

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

Physics Lib.

QD 66 .S45-8 1919

SOLUBILITIES

OF

INORGANIC AND ORGANIC COMPOUNDS

A COMPILATION OF QUANTITATIVE SOLUBILITY

DATA FROM THE PERIODICAL

LITERATURE

BY

ATHERTON SEIDELL, Ph.D.

Hygienic Laboratory, U. S. Public Health Service, Washington, D. C.

SECOND EDITION
ENLARGED AND THOROUGHLY REVISED

NEW YORK

D. VAN NOSTRAND COMPANY

25 PARK PLACE

1919

COPYRIGHT, 1907, 1911, 1919, BY D. VAN NOSTRAND COMPANY

Standope Press
F. H. GILSON COMPANY
BOSTON, U.S.A

PREFACE

The principal object in preparing a compilation of solubility data, from the point of view of the advancement of chemistry, is to furnish material for the origination and verification of theories of solution. The majority of investigators who have been engaged on such problems, have been compelled to determine experimentally the values required for developing the generalizations they hoped to establish. In fact, a large part of the most accurate data which are here brought together, are the outgrowth of such studies. It is hoped, therefore, that the present effort to make these and all other quantitative results more accessible for theoretical studies of solubility, will lead to noteworthy advances in this field of chemistry.

Of the various properties which determine the uses of compounds in a chemical way, solubility is of first importance. Therefore, solubility data are perhaps of even greater interest from a practical than from a theoretical point of view. For this reason it has been necessary to consider the needs of those who require such information only incidentally and may, therefore, be less familiar with some of the forms used for its expression. With this in mind, and at the suggestion of users of the preceding edition, chapters have been prepared in which are described, among other things, the sources of solubility data, the methods of calculating them to desired terms, the interpretation of their tabular arrangement, as well as some of the methods used for the accurate determination of solubilities.

Soon after the previous edition was issued, the collection of the new data, to be used in keeping the subject matter up to date, was systematically begun. In doing this, the experiment was made of examining each journal page by page, instead of scanning the titles of original papers contained in it. This resulted in the discovery of many data that would otherwise have been overlooked, and it soon became apparent that a more careful search of the literature than that previously made was necessary. It was, therefore, decided not only to examine the current periodicals minutely, but to go through the back volumes in a manner equally as thorough. The data collected in this way soon amounted to more than could be advantageously added as a supplement to the tables in the first edition, and it was decided to wait until the whole book could be completely rearranged, before making any additions

PREFACE

to the subject matter. It also appeared advisable to extend the scope to include freezing-point and certain other data, which had been omitted entirely from the first edition. The undertaking, therefore, developed far beyond the original expectation of regularly adding, from year to year, the new data which would keep the compilation up to date. Since the amount of time at my disposal for this work was limited, progress necessarily has been slow. Finally, the advent of the war extended the period far beyond the limit caused by other conditions.

Although the compilation has now been completed, I realize that in a work of this kind, more satisfactory results would have been achieved if several individuals had coöperated in its preparation. The recent decision of the American Chemical Society to extend its activities to the publication of reference books, will, I hope, insure that hereafter, compilations of the present character will be made in the exceptionally thorough manner which only an organization with elaborate facilities can provide.

In this connection I wish to express the opinion that the new venture of publishing compendia of chemical literature, which the chemical societies of England and America are just now about to undertake, will prove of service to the progress of chemistry in English speaking countries, second only to that rendered by the journals of original and of abstract literature, which these societies have so successfully developed.

I realize, more than ever, that opportunities for the occurrence of errors are innumerable and although I have endeavored to maintain unremitting vigilance to avoid them, my efforts toward this end have not always been successful. I desire to express my appreciation to all who have called attention to errors in the former edition and I will be equally grateful to those who point out to me needed corrections in the present book. In this connection, I am greatly indebted to Professor B. N. Menschutkin of the Polytechnic Institute (Sosnovka), Petrograd, Russia, who, in calling my attention to an error in the tabulation of some of his work given in the first edition, sent me a complete set of reprints of his many papers on solubility and personally corrected the tables which I prepared from them, for use in the present volume.

In conclusion I wish gratefully to acknowledge the assistance rendered me by Dr. W. S. Putnam of the Cooper Union of New York during the compilation of the first 150 pages of the tables.

A. S.

Washington, D. C., *Feb.* 22, 1919.

The following detailed account of the collection and arrangement of the solubility data contained in the present volume, has been prepared particularly for those who need quantitative solubilities rarely, and are more or less unfamiliar with the usual tabular methods of expressing such data. To those who are better acquainted with the subject, the descriptions in some cases at least, will probably be considered more elementary than necessary. It is hoped, however, that with the aid of the explanations here given, no one need remain uncertain as to the true meaning of any result or form of expression found in the book.

Sources of the Data. — In addition to those determinations made for the specific purpose of ascertaining particular solubilities, many results are reported in connection with the study of theories of solution and are, therefore, easily located. On the other hand, since solubilities often form only an incidental part of an investigation. many valuable data can be found only by a very careful search of the literature. Consequently, in collecting material for the present compilation, the procedure was adopted of perusing, page by page, every volume of a selected number of chemical journals, for the years 1900 to 1918. In doing this, attention was paid particularly. to collecting all tabulated data, but a vigilant watch for solubility statements in the text was also maintained. The twenty-three journals which were examined in this manner are designated with asterisks (*) in the volume-year table of journals given at the end of the book. There is also listed in this table a somewhat larger number of other journals, containing relatively few papers in which solubility data may be expected. In these cases, a page by page examination would have required more effort than the results to be gained appeared to justify. Consequently, only the tables of contents of these journals were searched for references to solubility The last volume number given for each journal in this table shows the final volume examined as above mentioned.

Of the abstract journals, only "Chemical Abstracts" was systematically searched for references to data published in other than the twenty-three journals which were minutely examined. The original of practically all references obtained in this way was consulted.

The larger handbooks of inorganic and organic chemistry, such as those of Dammer, Moissan, Gmelin-Kraut, Abegg, Beilstein and others, were not examined, since it was believed that the major part of the data so obtained would undoubtedly have been already collected from the journals.

Of the available compendia of physical constants, only the fourth edition of Landolt and Börnstein's "Tabellen" and the three issues of the international "Tables annuelles de Constantes et Données Numérique" were systematically examined, and in these cases the volumes were used principally to check the completeness of the compilation made directly from the journals.

Of the various pharmacopæias and pharmaceutical reference books, only the eighth edition of the U. S. Pharmacopæia (1905) was used to any extent as a source of solubility data. Most of the results contained in the subsequent ninth edition (1916), are taken from the previous edition and calculated to the basis of volume, instead of weight, of solvent required to dissolve unit weight of solid. It is believed that, for the present compilation, the weight basis for expressing the results is to be preferred, and moreover, by taking the data directly from the eighth edition, the errors incidental to the recalculation and rounding off to whole numbers, are eliminated.

In this connection, it should be mentioned that the results obtained from pharmaceutical reference books for the more complex compounds such as the alkaloids, are for the most part of only qualitative interest, and although probably of sufficient exactness for use in pharmaceutical compounding, do not come within the scope of quantitative accuracy adopted for the present volume.

Collection and Compilation of the Data. — In all cases where solubility results were found recorded in an original communication, the data and accompanying descriptions of the experiments were copied and the record thus made filed for future use. In preparing these abstracts the actual experimental results were always recorded when available, rather than the values as recalculated by the author to terms which best suited the solution of the problem in hand. In many cases the original analytical data were not given and uncertainties arose as to the factors used and as to just how the calculations had been made. This was particularly true in the many cases where the results were expressed in gram molecular quantities per given volume of solution or on the basis of molecular percentage.

The supplementary information sought in each paper included such points as the method which had been employed for securing

equilibrium, the care exercised in purifying the material, the exact composition of the solid phase, the procedure followed in separating the saturated solution and analyzing it, as well as any other details which might be of value in forming a correct estimate of the accuracy of the work. The time consumed in this part of the examination of the original papers was usually found to have been well spent when the compilation of the solubility tables from these data sheets was undertaken. This was especially the case when it became necessary to compare the results for the same compounds obtained by two or more investigators. When practically all abstracting of the solubility data in the journals already referred to had been completed, the data sheets, which were at first grouped according to the journals examined, were arranged alphabetically in accordance with the names of the compounds for which data had been determined. In this way all results for a particular compound were brought together and the actual preparation of the systematically arranged tables could be begun.

It will be noted that by this plan the original papers were practically all consulted before the actual compilation of any of the data was started. In only a small percentage of cases was the author's paper again consulted, at the time the manuscript of the compiled tables was prepared or later. Although this plan introduces numerous opportunities for errors resulting from the recopying of the original data, it appeared to be the only practical procedure. A more direct transference of the original results to the finished page would have required that the work be done in the library or that a much larger number of books be withdrawn than is ordinarily permitted.

Although it was originally intended to have the manuscript pages typewritten before transmitting them to the printer, this plan had to be abandoned on account of the difficulty in obtaining the services of a competent person and also on account of the considerable added expense. This necessity may possibly have resulted advantageously, since one of the several opportunities for the introduction of mistakes through copying the figures, was eliminated.

The copy as forwarded to the printer was, for the most part, clear and legible but it was far from the orderly character of type-written pages, consequently, it would be surprising if none of the many errors made by the compositors as a result of imperfect copy, were overlooked during the proof-reading, which from beginning to end was done without assistance. In order to reduce

typographical and all other errors to the least possible number, it would be necessary to compare every original paper with the final printer's proof and to repeat every calculation of a result one or more times. That this was not possible in the present case will be easily realized when the very large amount of the data is considered.

These details are mentioned at this time because it is believed that the user of the book is entitled to exact information in regard to the conditions under which the compilation was made. It is only with a clear understanding of its limitations that the book can be used to greatest advantage.

In this connection it should be pointed out that although opportunities for errors in recording the purely numerical data here brought together are abundant, in the majority of cases the mistakes are not necessarily misleading if proper regard is paid to the general import of the results as a whole. Thus on the basis of the well-established principle that changes in solubility, such as are due to temperature or concentration of solvent, always proceed regularly, errors in the case of one or more figures in a table will become apparent on careful comparison with the remaining results, or by plotting them on cross section paper and drawing the curve. Consequently, the table as a whole provides a check on the individual results of which it is composed.

Scope. — In brief, it may be stated that it has been the intention to include in this compilation, the actual results, or a reference to all quantitative solubility data, recorded in the journals referred to in a preceding section and listed in the table at the end of the book.

Freezing- or melting-points of binary or more complex systems, as explained in the footnote on page I, are considered to be quantitative solubility data. The experimental results are quoted for only those systems in which one component is water or alcohol, or which are mixtures of fairly well-known compounds, and references are given to all others for which data were found

Owing to the uncertainty of the boundary between solubility and other equilibria, it has been necessary arbitrarily to draw the line in regard to certain data which it has appeared wise to exclude. In accordance with this, no attempt has been made to gather either figures or references, for the following:

- (a) Melting-point data for mixtures of metals (alloys).
- (b) Melting-point data for mixtures of minerals, except a few of relatively simple composition.

- (c) Freezing-points of very dilute solutions made for the determination of molecular weights or electrolytic dissociation.
- (d) Data for the solubility of gases in molten metals.
- (e) The so-called solubility of metals in various solvents, due to a chemical reaction which occurs.
- (f) Data for solid solutions.
- (g) Data for compounds of unknown or variable composition. Order of Arrangement. — The alphabetical arrangement is believed to have the advantage that data for particular compounds can be more easily located than would be the case if various compounds or systems had been grouped according to selected relationships. There is one difficulty which applies equally to any arrangement designed to avoid duplications, and that is the placing of those systems for which solubility results are given for two or more of the constituents involved. This applies especially to freezing-point lowering data for binary mixtures. In these cases the results show in turn the solubility of each component in the other and it is necessary to choose one, or to record the results under the name of each member in two separate places. There are many similar cases, in aqueous systems of two or more salts and of mixtures of liquids, where results are given in succession for the solubility of each component in solutions of varying concentrations of the other. In order to prevent duplication in these cases it was necessary arbitrarily to select that component under which the results for the entire system are to be recorded. In harmony with the general alphabetical plan of the book, it appeared most logical to make the selection on the basis of the alphabetical order of the names of the compounds involved. In the majority of cases. therefore, every system in which solubility data for two or more compounds are given, is placed under the name of that component, the initial of which comes earliest in the alphabet.

The advantage of this plan is that every system is assigned to a single position by rule and opportunities for unknowingly recording independent investigations of the same system, under different headings at widely separated portions of the book, are avoided.

An exception to this rule, which it was considered wise to observe, is in connection with mixed systems containing a compound of one of the rarer elements. In these cases, on account of the greater interest in the rare earth compound, the data have been located under its name.

In the case of those mixtures of salts and liquids which yield

liquid layers over certain concentrations and, therefore, to all intents and purposes become reciprocally soluble liquid mixtures, they are placed under the name of the salt or of that component which exists as a solid under ordinary conditions. It has only rarely been possible to give cross references in the body of the book, but in all cases those components of the mixtures, other than the one under which the data are alphabetically recorded, are included in the subject index of the book and the reader, therefore, should not fail to consult the index when results or a cross reference to the desired compound are not found in the proper place in the body of the book.

Nomenclature. — In regard to questions of the proper naming of compounds for the purpose of their correct alphabetical arrangement, particularly in respect to organic compounds, the usage followed in the index of "Chemical Abstracts" has been adopted. Thus the name under which a given compound is indexed in "Chemical Abstracts" is, in practically all cases, the one used for deciding its position in the present compilation.

The most notable deviation from this rule is in the case of compounds of those metals to which specific names, differing from the name of the metal itself, have been given; thus, for example in the present compilation, iron salts are not classed under ferrous and ferric and tin salts under stannous and stannic but under iron and tin, respectively. Another exception is the grouping of di and tri substituted amines under the mono substituted compound, instead of placing them under the widely separated headings Di and Tri. Thus results for diethylamine and triethylamine are given in connection with ethyl amine instead of being grouped, on the one hand with dimethyl, dipropyl, diphenyl, etc., amines, and on the other with trimethyl, tripropyl, triphenyl, etc., amines.

In harmony with the adoption of "Chemical Abstracts" as authority for the correct naming of compounds, the rules adopted for that publication (see, in connection with index to Vol. II, 1917) have been followed as closely as possible in all other matters connected with systematic nomenclature. The exceptions which may be found are either mistakes, or occur in those tables reused from the first edition, in which corrections of the original plates would have cost more than the advantage to be gained appeared to justify. (For example, see first table, page 144, and many others in which the old forms of spelling names such as aniline, sulfate, glycerol, etc., have not been corrected.)

Abbreviations. - Although, in practically every case the abbre-

viations which have been used are identical with those adopted for "Chemical Abstracts" and will, in general, be readily understood, for the sake of accuracy and as a matter of convenience a list of those made use of in the present volume is given at the close of this chapter. (Page xxi.)

Literature References. — In order to save space, when several references must be given in connection with one result or table, and to avoid the repetition of the complete journal reference when data for different compounds are given in the same paper, an abbreviated form of reference, consisting of the name of the author and year of the work, has been adopted. These are to be used in connection with the author's index, in which the complete references are arranged chronologically under each name.

Deviations from this system occur in connection with the tables reused from the first edition. In these cases it was decided not to incur the expense of altering the plates simply for the sake of uniformity. The complete references given with the old tables are sometimes, but not always, repeated in the author's index.

Forms of Stating and Methods of Calculating Solubilities to Desired Terms. — When a solid compound is brought in contact with a liquid, more or less of it dissolves with the production of a homogeneous liquid mixture. The disappearance of the solid in the liquid continues, however, only up to a certain point, beyond which at a given temperature, no more of the solid can be made to dissolve. This quantity is designated as the solubility of the compound in the particular liquid. Solubility, therefore, always refers to a saturated solution and is expressed numerically in terms of the composition of the homogeneous liquid in equilibrium with an excess of undissolved solid. It is obvious that the composition of a saturated solution may be expressed in a great variety of terms and it is, therefore, to be expected that investigators will choose those terms which best suit the elucidation of the particular problems in hand.

As might be expected, the terms in most general use and those which permit of the widest applicability of the results, are based on the weights of the ingredients of the saturated solution. These may be either the weight of the dissolved compound contained in a unit weight (usually 100 grams) of the homogeneous liquid mixture, which corresponds to percentage of the dissolved compound in the saturated solution, or else the weight of the dissolved substance in a unit weight of the solvent. In either case the one form may be easily calculated to the other. Thus, for instance,

if it is found that 100 grams of the saturated solution contain 20 grams of the dissolved compound, there can be present only 100-20=80 grams of solvent, and since this 80 grams of solvent holds 20 grams of the dissolved compound, $20 \div 80 \times 100=25$ grams of it are present per 100 grams of solvent. The calculation in the opposite direction is, of course, just as simple. If 100 grams of solvent contain 25 grams of dissolved compound, then 100 + 25 grams of solution must contain 25 grams or 100 grams of saturated solution contain $185 \times 100 = 20$ grams of the dissolved compound.

In the case of most solubility statements contained in the pharmaceutical literature, the results are given in terms of weight or volume of solvent required to dissolve unit weight of solid. Since all such results are simply the reciprocal of the terms, grams solid contained in unit number of grams of solvent, the procedure for transforming them to the more usual form simply involves dividing I gram by the stated number of grams of solvent. In those cases, however, where the amount of solvent is expressed in volume instead of weight, it is first necessary to multiply by the specific gravity of the solvent in order to find the weight corresponding to the given volume.

A more serious complication is, however, introduced in those cases where the results have been reported only in terms of volume of the saturated solution (100 cc. or 1 liter). On account of the change in volume which always results when a solid dissolves in a liquid, a calculation of the weight of the solvent present, when only the weight of the dissolved compound and total volume of the solution is given, cannot be made. In these cases it is also necessary to know the weight of a unit volume of the saturated solution, that is, its specific gravity, in order to convert the results from the volume to the weight basis. Consequently, for solubility results to be most generally useful, the specific gravity of the saturated solution should always be determined.

The calculation of a given result from the volume to the weight basis or vice versa, with the aid of the specific gravity (density), is readily understood when it is remembered that this factor is simply the weight in grams of 1 cc. of the solution. If, for example, it is stated that 100 cc. of saturated solution contain 25 grams of salt and the specific gravity is 1.15, it is apparent that 115 grams of the solution contain 25 grams of the salt, or 100 grams contain

 $[\]frac{25}{1.15}$ = 21.7 grams. Conversely, when the calculation of the amount of salt in 100 cc. from that in 100 grams of solution is to

be made, the weight of dissolved compound must be multiplied by the specific gravity.

One of the forms of presenting solubility data for which especial care is needed in converting the values to a different basis is in the case of results for salts with water of crystallization. In some instances these results are expressed in weight of the hydrated compound in a given volume or weight of the saturated solution. If it is desired to ascertain the weight of anhydrous salt present. it will be necessary first to calculate the grams of anhydrous salt equivalent to the stated number of grams of the hydrated compound and, if the results have been expressed in terms of volume of saturated solution, this will be all that is necessary, but if, for instance, the grams of hydrated salt per 100 grams of saturated solution or of water have been given, then it will be necessary to add the weight of water present as water of crystallization in the salt, to the weight of water present as solvent. The total weight of solvent is, therefore, made up of the weight of water used for preparing the solution and that carried by the salt as H₂O of crystallization.

In the case of solvents composed of mixtures of water and alcohol, or other liquids, authors sometimes fail to specify whether the figures for such mixtures refer to the weight or volume basis, consequently, without a specific gravity determination, the exact composition of the mixture is uncertain. The above remarks concerning the calculation of solubility results from one form to another apply equally to determinations made in mixed solvents, provided all supplementary data for accurately establishing the composition of the mixed solvent are given.

Although in most cases the actual experimental results of solubility determinations are obtained in terms of weight, many investigators find that certain advantages are to be gained, in particular problems, by converting their analytical results to the basis of normality or gram molecules, and in practically all such cases it is not thought necessary to present also the gram quantities from which the molecular values were calculated. Although this may be justified from the narrow point of view of the particular problem in hand, it is greatly to be deplored when the broader aspects of the value of solubility data as a whole are considered. As already mentioned, solubility results which have been determined for some one purpose may frequently be applied to the solution of other problems, or serve in the development or testing of generalizations or of laws of solution. It is, therefore, important that in the case of

all solubility data the results should either be expressed in the gravimetric terms derived most directly from the experimental determinations, together with the specific gravities of, and solid phases in contact with the solutions, or else, when presented in terms more or less remote from those of the directly determined values, the method of making the calculations should be plainly indicated and all factors or supplementary data which have been used, presented in detail.

In preparing the present compilation occasion was several times taken to write to authors for data supplementary to those published, which although not essential to the solution of the particular problem in hand, and therefore omitted from the paper, were, nevertheless, needed for calculating the results to a form which would permit comparison with similar data by others or their use in the solution of other problems.

The calculation of results from the molecular basis to the gram basis or vice versa, introduces, in addition to the errors incidental to the calculation itself, those resulting from the selection of the atomic or molecular weights which are used as the factors. It is indeed rare for an author to state the actual molecular weights used for a calculation, and although the revisions of atomic weights which are occasionally made are usually not of great magnitude, opportunities for slight differences in recalculating results to a desired basis, due to differences in molecular weights, are worthy of consideration. A source of greater inaccuracies, however, is that resulting from the failure of authors to differentiate clearly between the significance of normality (gram equivalents) and gram molecules (formula weights) in calculating or in expressing their results.

It also occasionally happens that the compounds involved are described only by names which are not specific and a doubt may arise as to the exact formula expressing the composition of the compound in question. This applies particularly to work described in languages other than English. In cases of complex mixtures of several salts the results are sometimes given in terms of the ions present and the calculation of such results to the gram basis calls for especial care.

The general procedure for calculating gram quantities to the molecular basis consists simply in dividing by the molecular weight, or molecular equivalent weight in the case of results to be expressed in normality, and pointing off according to the unit quantity of solution selected. The reverse calculation is, of course, made by multiplying the molecular or normality values as given, by the

molecular, or molecular equivalent weights. An example which will illustrate the principal points involved, is the case of the calculation of the grams of dissolved compound per 100 grams of solvent, from a result expressed in terms of molecular per cent, that is, in terms of molecules of dissolved compound present in a total of 100 molecules of dissolved compound plus solvent. Thus, in the case of the solubility of mercuric iodide in pyridine, it has been found that the saturated solution at 100° contains 25 mol. per cent HgI₂, which designates a mixture of 25 gram mols. of HgI₂ and 100 – 25 = 75 gram mols. of pyridine. To convert to gram quantities, each figure is multiplied by the respective molecular weight and the product for the HgI₂ divided by the product for the C₆H₆N. Thus, (25 × 454.45) ÷ (75 × 79.08) = 1.915, which, × 100, = 191.5 grams HgI₂ per 100 grams of C₆H₆N.

Although, in the present compilation an attempt has been made to calculate as many as possible of the data to terms of weight of the compounds involved, especially for the commoner substances, this has not appeared advisable in some cases, either on account of uncertainties as to the factors to be used, or on account of the relative unimportance of the data and the considerable labor which would have been involved in making the calculations.

The principal terms used in expressing the solubility of gases in liquids are defined in connection with the tables of data in the body of the book. See, for instance, p. 227.

Explanation of Tables. — Although the tables of results contained in the present volume will, it is hoped, be easily understood by all who are familiar with the subject, for the benefit of those who need solubility data only rarely, it has appeared desirable to mention some of the principles followed in constructing the tables and explain in detail the exact meaning of the results contained in a number of typical tables.

The main consideration in connection with a compilation such as the present one, is to arrange the very large amount of material in the most concise manner compatible with perfect clearness. It has, therefore, been necessary to adopt forms and abbreviations which eliminate the repetition of readily understandable details.

In general, it may be stated that the record of a solubility determination consists of the analytical results showing the composition of a homogeneous liquid mixture in equilibrium at a given temperature, with one or more solid compounds or with another homogeneous liquid mixture. In the case of aqueous solutions of salts, for instance, the analysis will show the weight of salt and of

water contained in a given amount of the saturated solution. recording this analysis, however, as solubility data, it is not customary to state the weight of water directly, since its quantity is derivable from the given weight of salt and of solution (salt plus Thus, in all cases the amount of the dissolved compound is numerically reported in terms of unit quantity (100 grams, one liter, etc.) of the saturated solution or of the solvent. The tables. therefore, all show in the heading above the columns of figures, the terms in which the results are expressed (grams, cubic centimeters, · gram molecules, etc.) and the unit quantity of solution or solvent in which the numerically recorded amounts of dissolved compound are contained. When more than one column of figures are inclosed under a bracket below the heading, the arrangement is an abbreviation designed to eliminate the repetition of the heading over each column separately, and, therefore, indicates that the heading applies independently to each separate column of figures. Thus, in the case of the table showing the solubility of sodium nitrate in water (see p. 656) the heading which is as follows:

t°.	Gms. Nal	Gms. NaNO, per 100 Gms.			
	Solution.	Water.	per Liter.		
0	42.2	72.9-73*	6.71*		
10	44 · 7	80.8-80.5	7.16		

when translated into its detailed meaning shows, (1) that at 0°, 100 grams of the saturated solution of sodium nitrate in water contain 42.2 grams NaNO₃, (2) that at 0°, 100 grams of water dissolve from 72.9 to 73 grams NaNO₃ according to the authorities quoted (Mulder or Berkeley), and (3) that one liter of a saturated solution of sodium nitrate in water at 0° contains 6.71 gram molecules of NaNO₃.

This general form of heading is typical and will be found in practically all cases where results for the solubility of a single salt in a single solvent at various temperatures are given. As will be noted, tables of this form show the results for a single series of determinations at increasing temperatures expressed in more than one set of terms. As a general rule, and especially when determinations of the specific gravities of the solutions are also given, any one of the figures for a given temperature may be calculated, as described in the previous section, from either of the others at the same temperature. The advantages of tables giving the results in several sets of terms are that the reader is relieved of making the calculations individually.

In a number of cases where, either the importance of the compound does not warrant very detailed results, or where similar data for several near related compounds have been determined, composite tables showing the results for two or more compounds in one or more solvents have been constructed. Although by this procedure considerable space has been saved and frequent repetitions avoided, it is possible that clearness has sometimes been sacrificed.

An example of such a composite table is that for the three compounds, CdI₂.KI.H₂O, CdI₂.2KI.2H₂O and CdI₂.2NaI.6H₂O given in the first table on p. 178. The three solvents in which the solubilities were separately determined are placed in the first column of the table. Next follow the results for CdI₂.KI.H₂O, given in terms both of grams of anhydrous salt, CdI₂.KI, per 100 grams of solution and per 100 grams of solvent. The next group of figures shows successively the solubility of CdI₂.2KI.2H₂O in water, in absolute alcohol and in absolute ether, reported in each case, in terms of grams of anhydrous salt per 100 grams of saturated solution and also in grams per 100 grams of each solvent. The last group of figures, columns 6 and 7, gives similar results for CdI₂.2NaI.6H₂O.

Other examples of this type of table are given on p. 188. In these cases results for three compounds, each in the same solvent but at different temperatures, are given. The abbreviation here adopted consists in providing only one column of temperatures to serve for each of the three sets of results given in the succeeding columns. This general plan is followed in a very large number of cases throughout the book.

One other example is that of the results for platinic double chlorides, given in the first table on p. 498. In this case, although each column of results represents an independent series of solubilities in water, they have all been grouped under the same bracket, instead of each being given under a separate, complete heading. By this plan a very compact arrangement has been provided but the results are apt to be misunderstood unless the reader bears in mind that here as elsewhere it has been necessary to condense the data as much as possible.

Before leaving the general subject of composite tables, attention should be called to one point which will be found illustrated in a large number of them. This is in reference to results at other temperatures than those which apply to the table as a whole, as recorded in the first column under the designation t°. In these cases the figure for the temperature is given in a parenthesis immediately following the result for grams of compound dissolved and, of course,

means that the particular determination was made at the temperature stated in the parenthesis, instead of at the temperature shown in the column to, which applies to all the results not so modified.

This principle of indicating in parentheses any variations from the general order of the table, and also in respect to the introduction of additional matter, such as results for densities, points on the character of the solutions, etc., is one which has been followed in many instances.

As already stated, a solubility is an expression of the concentration of a solution in equilibrium with a particular solid compound. Therefore, if a compound can exist in more than one form at a given temperature, such as in different states of hydration, its solubility will show variations in accordance with which one of its forms is in contact with the saturated solution at the particular temperature. Information in regard to the solid phase is, consequently, essential to the accurate expression of a solubility. Whenever such facts are available they are shown in the tables by means of formulas recorded under the heading "Solid Phase." These formulas are usually placed on a line with the numerical results for the solution in contact with the solid represented by the formula given.

A case which illustrates strikingly the multiplicity of variations in solubility with change in degree of hydration is that of the solubility of the hydrates of ferric chloride in water (see p. 337). this case, to economize space, the formula for the hydrate has been placed immediately above that group of data to which each refers, instead of on the same line with the results for each solution in contact with that particular hydrate. An examination of this table will show the apparent anomaly that the same hydrate possesses two different solubilities at certain temperatures. Thus, in the section of the table giving results for solutions in contact with the solid phase Fe₂Cl₈.12H₂O, it will be noted that 100 grams of H₂O dissolve 106.8 grams FeCl₃ at 30° and two lines below, the same amount of water is stated to dissolve 201.7 grams FeCl, at 30°. This is due to the fact that each of the hydrates gives a more or less well developed reverse solubility curve. The character of these curves is plainly indicated by plotting them on cross-section paper from the results given in the table. If this is done it will be seen that in case of the results for Fe₂Cl₆.12H₂O, the grams of FeCl₂ contained in 100 grams of water increase regularly with rise of temperature up to 37°, which is the melting-point of this hydrate.

more crystals are added and the temperature raised above 37°, they melt and form a homogeneous solution of increased concentration. If, however, this more concentrated solution is cooled again below 37°, and crystals then added, they remain as solid phase and, when equilibrium is established, the composition of the solution corresponds to a point on the upper, reverse arm, of the solubility curve. With this salt, therefore, it is seen that for certain ranges of temperature the concentration of the saturated solution depends upon the procedure by which the point of equilibrium has been approached.

In cases where results are given for the solubility of a particular compound in aqueous solutions of another, the heading above the columns of figures shows, as usual, the terms in which the results are expressed (gms., cc., mols., etc.) and the unit amount of solution or solvent in which the recorded amounts of each compound is contained; while below the bracket are given, at the heads of the columns, the formulas of the respective compounds simultaneously present in the solution. Thus, there will usually be found in one column, the increasing concentrations of the salt present in the aqueous solution constituting the solvent, and in the other the amounts of the other compound of which the solubility is being determined and which is present as solid phase in contact with the solution. Examples of this form of table are those for the solubility of calcium sulfate in aqueous salt solutions (pp. 215 to 219) and numerous others throughout the book. In all cases where the solid phase exists in more than one form, this information, when available. is recorded in the usual manner in the column under the heading "Solid Phase." (See pp. 174, 185, 203, 404, and many others.) The results for the specific gravities of the saturated solutions are also given, when available. It is needless to say that, according to the arrangement of these tables, the figures in the horizontal lines refer to the same solution and those in the vertical columns to different solutions of the series.

In the case of tables showing the distribution of a compound between two immiscible solvents (see for example, results for mercuric chloride, pp. 420 and 421), the amounts of the dissolved compound in the conjugate layers are given under the same bracket with column headings designating the respective layers. In the case of equilibria in ternary systems, which form two liquid layers (see for example, last table, p. 511), the compositions of the upper and lower layers are given under separate brackets, the results on each horizontal line being for layers in contact with each other.

Data of this character are described more fully in the chapter on Methods for the Determination of Solubility.

The types of cases which have just been described were pointed out by users of the first edition of the book who did not understand the arrangement in these cases and suggested that an explicit description of them would make the book more generally useful. It is realized that the explanations which have been given here apply only to a certain proportion of the tables in the book. There are, no doubt, many tables and forms of expression, especially for the more complex systems, which will not be understood by the casual reader. In some of these cases brief remarks in connection with the tables have been given, but to just what extent these explanatory remarks are warranted, it has been difficult to decide. In conclusion, it should be mentioned that the title of the table is intended to describe the nature of the results and should always be used as a guide in the interpretation of the tabular arrangement.

ABBREVIATIONS

Most of the following abbreviations will be found written both with capitals and without.

```
[a]D. — Specific Rotation.
                                          g., gm., gms. — Gram(s).
 abs. — Absolute.
                                          gm. mol. — Gram Molecule(s).
 abs. coef. — Absorption Coefficient.
                                          G. M. — Gram Molecule(s).
 alcohol. - Ethyl Alcohol.
                                          hr(s). — Hour(s).
 amt(s). — Amount(s).
                                          i. -(d+l) Inactive (in connection
 anhy. - Anhydrous.
                                            with the name of an optically active
 aq. — Aqueous.
                                            compound.)
                                          inorg. - Inorganic.
 atm(s). — Atmosphere(s).
 at. wt. - Atomic Weight.
                                          insol. — Insoluble.
 b.-pt. - Boiling-point.
                                          1. — Lævo (in connection with the
 C. — Centigrade.
                                             name of an optically active com-
 calc. — Calculate(ed).
                                            pound).
 cc. — Cubic Centimeter(s).
                                          kg. kgm. — Kilogram(s).
 cm. — Centimeter(s).
                                          1. — Liter(s).
 coef. - Coefficient.
                                          mm. — Millimeter(s)
 com. - Commercial.
                                          m. - Meta.
 compd. — Compound.
                                          max. — Maximum.
 conc. — Concentration, Concentrated.
                                          mg., mgm. - Milligram(s).
 cond. - Conductivity.
                                          mol(s). - Molecule(s), Molecular.
 const. — Constant.
                                          mol. wt. - Molecular Weight.
 cor. - Corrected.
                                          millimol. — Milligram Molecule.
 crit. - Critical.
                                          m.-pt. - Melting-point.
 cryo. — Cryohydric.
                                          n. — Normal (gm. equiv. per 1.).
                                          N. — Normal (used rarely).
 cryst. — Crystalline.
d. - Dextro (in connection with the
                                          o. - Ortho.
   name of an optically active com-
                                          ord. — Ordinary.
                                          org. — Organic.
   pound).
d. — Density (d_{18} — Specific Gravity
                                          p. - Page.
   at 18°, referred to water at 4°; des
                                          p. — Para.
   at 20° referred to water at 20°).
                                          pet. — Petroleum.
decomp. — Decomposition.
                                          ppt. - Precipitate.
dif. - Different.
                                          pt. — Point.
dil. - Dilute.
                                          quad. pt. — Quadruple Point.
dist. coef. - Distribution Coefficient.
                                          qual. - Qualitative.
ed. — Edition.
                                          sapon. — Saponification.
elec. — Electric(al).
                                          sat. — Saturated.
equil. — Equilibrium.
                                          sol(s). — Solution(s).
equiv. — Equivalent(s).
                                          sp. gr. — Specific Gravity (Density).
eutec. — Eutectic.
                                          sq. cm. — Square Centimeter.
F. - Fahrenheit.
                                          Symmetrical.
f .- pt. - Freezing-point.
                                          sym. - Symmetrical.
```

ABBREVIATIONS

t°. — Temperature, Centigrade Scale. temp(s). — Temperature(s). tr. pt. — Transition Point. vol(s). — Volume(s). undissoc. — Undissociated. U. S. P. — U. S. Pharmacopeia.

wt. — Weight. ∞ — Infinity.

.10⁻², .10⁻³, etc., following a result means that the decimal point is to be moved as many places to the left as indicated by the minus exponent.

ACENAPHTHENE C12H10.

SOLUBILITY IN SEVERAL ORGANIC SOLVENTS. (Speyers — Am. J. Sci. [4] 14, 294, 1902.)

NOTE. — In the original paper the results are given in terms of gram molecules of acenaphthene, acetamide, acetanilide, etc., per 100 gram molecules of solvent, at temperatures which varied with each solvent and with each weighing of the solutions. The tabulated results here given were obtained by recalculating and reading the figures from curves plotted on cross-section paper.

	In Methyl Alcohol.			In Ethyl Alcohol.			In Propyl Alcohol.		
t ° .	(a)	(b)	(c)	(a)	(b)	(c)	(a)	(b)	(c)
0	81.33	1.80	0.39	81.1	1.9	0.57	82.3	2.26	o.88
10	80.40	1.70	0.38	8o.3	2.8	0.84	81.8	2.40	1.00
20	79.60	2.25	0.48	79.6	4.0	1.20	81.4	3.40	1.35
30	79.00	3.50	0.72	79 · I	5.6	1.70	80.9	4.75	1.90
40	78.45	6.00	I . 20	78.7	8.4	2.60	8o.6	7.10	2.90
50	78.15	9.00	I.77	78.8	13.2	3.90	80.7	11.10	4 · 40
60	78 . 30	11.70	2.35	79 · 4	23.2	7.∞	81.5	19.60	8.20
70	78.60	14.30	2.90	80.75	40.5	12.50	83.9	37.00	16.20

In Chloroform.			In Toluene.			
ŧ°.	(a)	(b)	(c)	(a)	(b)	(c)
0	143.8	16.4	12.7	90.7	13.18	7.9
10	140 · I	20.6	16.0	90.8	18.0	10.7
20	136.3	27.0	19.5	91.0	24.5	14.5
30	132.4	34.0	25.0	91.8	33.5	20.5
40	128.0	42.5	32.0	92.7	47.0	28.0
50	123.4	51.5	40.0	94.0	60.5	35.7
60	119.3	62.5	50.0	95.5	74.0	43 . 5
70	••••	• • •	• • •	97.2	89.0	52.5

- (a) Weight of 100 cc. solution in grams. (b) Grams dissolved substance per 100 grams solvent.
- (c) Gram molecules of dissolved substance per 100 gram molecules of solvent.

1000 gms. Aq. 25% NH4 dissolve 0.07 gm. acenaphthene at 25°. (Hilpert, 1916).

RECIPEOCAL SOLUBILITIES DETERMINED BY THE METHOD OF LOWERING OF THE FREEZING-POINT * ARE GIVEN BY GIUA (1915), FOR THE FOLLOWING PAIRS OF COMPOUNDS:

Acenaphthene + m Dinitrobenzene. " + 2.4 Dinitrotoluene. " + α Trinitrotoluene.

A considerable amount of data of this character is available, but, after careful consideration, it has been decided that references only will be given to it in the present volume, except in cases of mixtures of well-known compounds or of those in which water is one of the constituents.

[•] Pressing or Melting-point Curves as Solubility Data. — When a mixture of two compounds, rendered liquid by elevation of temperature, is gradually cooled, a point will be reached at which one or the other of the constituents will separate as a solid. This point represents the solubility of the one compound in the other. The method involved, differs principally from that ordinarily employed for solubility determinations, in that the composition of the mixture remains constant while the saturation temperature is being approached, instead of the reverse procedure.

RECIPROCAL SOLUBILITIES (Freezing-point Lowering Data, see footnote, page 1)
ARE GIVEN FOR THE FOLLOWING PAIRS OF COMPOUNDS:

Acenaphthene + Chloroacenaphthene	(Crompton an	d Walker, 1912.)
+ Bromoacenaphthene Lodoacenaphthene	"	44
" + Benzil	(Pawlewski, 18 (Fazi, 1916.)	393.)
" + p Nitrobenzoic Aldehyde" + Piperonilic Aldehyde	(Fazi, 1910.) "	
" + Vanillic Aldehyde	44	
Chloroacenaphthene + Bromoacenaphthene		d Walker, 1912.)
" + Iodoacenaphthene	44	"
Bromoacenaphthene + "	66	**

ACETALDEHYDE CH.COH.

SOLUBILITY IN ETHYL ALCOHOL DETERMINED BY THE METHOD OF LOWERING OF FREEZING-POINT (de Leeuw, 1911). Liquid air was used as the cooling medium and temperatures were measured with the aid of a specially constructed resistance thermometer.

t.	Wt. Per Cent CH ₄ COH in Mixture.	Mol. Per Cent CH ₂ COH in Mixture.	Solid Phase.	r.	Wt. Per Cent CH ₁ COH in Mixture.	Mol. Per Cent CH ₂ COH in Mixture.	Solid Phase.
-123.3	100	100	CH,COH	-122.3	51.8	50.7	СН,СОН.С,Н,ОН
-125.4	90.7	90.3	"	-125.3	45.6	44.5	**
-127.6	84.5	83.9	"	 128	40.6	39.5	CH ₂ COH.2C ₂ H ₂ OH
-132	8o.9	80.2	(Eutectic)	—123.2 ·	35.3	34.3	44
—126	78. I	77.3	CH,COH.C,H,OH	-126.8	30.2	29.3	**
— 126	75.2	74.4	"	—130.6	17.9	17.3	C ₂ H ₂ OH
-124.3	67.0	66.o	"	-120.6	10.2	9.8	**
-123.5	60.8	59.7	"	-114.9	0.0	0.0	66

Freezing-point data for mixtures of acetaldehyde and paraldehyde as well as the complete x-T diagrams are given by Holleman (1903). Results for mixtures of paraldehyde and p xylene are given by Paterno and Ampola (1897).

Results for mixtures of the α and β forms of Acetaldehyde phenyl hydrazone are given by Laws and Sidgwick (1911).

ACETAMIDE CH,CO.NH,

SOLUBILITY IN WATER AND IN ALCOHOL. (Speyers.)

In Water.				In Ethyl Alcohol.			
t°.	(a)	(b)	(c)	(a)	(b)	(c)	
0	105.5	70.8	29.6	85.62	17.3	18.5	
10	104.9	o. 18	34.0	86.2	24.0	26.0	
20	104.3	97 · 5	40.8	87.3	31.5	33.8	
30	103.7	114.0	47 · 7	88.8	40.5	43.0	
40	103.0	133.0	55.5	90.7	50.0	53 · 5	
50	102.3	154.0	64.0	93.0	61.0	64.5	
бo	101.6	177.5	74.0	95.5	72.0	76.5	

(s) Wt. of 100 cc. sat. solution in gms. (b) Gms. Acetamide per 100 gms. solvent. (c) Gm. mois. Acetamide per 100 gm. mois. solvent.

100 gms. pyridine dissolve 17.75 gms. acetamide at 20-25°; 100 gms. aq. 50 per cent pyridine dissolve 84.7 gms. acetamide at 20-25°. (Dehn, 1917.)

Freezing-point curves are given for: Acetamide + Benzene (Moles and Jimeno, 1913); Acetamide + Phthalide (Lautz, 1913); Acetamide + Triphenyl guanidine (Lautz, 1913); Tribromoacetamide + Trichloroacetamide (Küster, 1891).

ACETANILIDE C.H.NH.COCH.

SOLUBILITY IN SEVERAL SOLVENTS.

Solvent.	ť.	Sp. Gr. of Sat. Solution.	Gms. C ₄ H ₄ NH.COC per 100 Gms Sat. Solution	. Authority.
Water	16	• • •	0.47	(Greenish and Smith, 1903.)
"	25	0.997	0.54	(Holleman and Antush, 1894.)
"	30	1.000	0.69	(Seidell, 1907.)
Ether	25	·	2.8	(Marden and Dover, 1926.)
Formic Acid (95%)	16.8	I.12I	56.74	(Aschan, 1913.)
Acetic Acid (99.5%)	21.5		33.21	(Seidell, 1907.)
Acetone	30-31	0.902	31.15	4
Amyl Acetate	"	0.882	10.46	"
Amyl Alcohol	25		14.00	u
Aniline	30-31	1.034	19.38	*
Benzene	"	0.875	2.46	44
Benzaldehyde	. "	1.068	18.83	4
Toluene	25	0.862	0.50	44
Xylene	32.5	0.847	1.65	"
Pyridine	20-25		32.7	(Dehn, 1917.)
50% Aq. Pyridine	"		35.7	"
Petroleum Ether	about 20		0.03	(Salkower, 1916.)

SOLUBILITY IN METHYL ALCOHOL, ETHYL ALCOHOL AND IN CHLOROFORM. (Speyers, 1902.) See Note, page 1.

	In CH ₂ OH.		In	In C ₂ H ₄ OH.		In CHCl.	
ť.	Sp. Gr. of Sat. Solu- tion.	Gms. C ₆ H ₆ NH.COCH ₈ per 100 Gms. Sat. Solution.	Sp. Gr. of Sat. Solu- tion.	Gms. C ₆ H ₈ NHCOCH ₈ per 100 Gms. Sat. Solution.	Sp. Gr. of Sat. Solu- tion.	Gms. C ₆ H ₆ NH. COCH ₆ per 100 Gms. Sat. Solution.	
0	o.860	18.5	0.842	12.8	1.503	3 · 53	
10	0.864	23.I	0.844	16.7	1.475	7.24	
20 -	0.875	29. I	0.850	21.3	I.440	10.7	
30	0.892	35.1	0.860	26.5	1.398	14.5	
40	0.911	42.9	0.874	32.9	1.354	18.7	
50	0.932	51.7	0.895	39.4	1.314	23.7	
60	0.957	59.2	0.920	46.4	I.272	29.I	

SOLUBILITY OF ACETANILIDE IN MIXTURES OF ETHYL ALCOHOL AND WATER.

Results at 25°. (Holleman and Antush, 1894.)

Results at 30°. (Seidell, 1907.)

Wt.	Results at 25 . (I	oueman and Autusii, 1094.)	Results at 30 . (Sciucu, 1907.)		
I et Cent C ₂ H ₂ OH in Solvent.	Sp. Gr. of Sat. Solution.	Gms. C _e H _e NH.COCH _e per 100 Gms. Sat. Solution.	Sp. Gr. of Sat. Solution.	Gms. C ₆ H ₆ NH.COCH ₆ per 100 Gms. Set. Solution.	
0	0.997	0.54	I.000	0.69	
10	0.985	0.93	0.984	1.00	
20	0.973	1.28	0.970	2.20	
30	0.962	2.30	0.956	4.80	
40	0.950	4.85	0.945	ʻ9. 40	
50	0.939	8.87	0.934	15.40	
бо	0.928	14.17	0.926	22.00	
70	0.918	19.84	0.917	27.60	
80	0.907	25.17	0.907	31.20	
85	0.899	26.93	0.900	31.70	
90	0.890	27.65	0.893	31.60	
95	0.874	26.82	0.885	30.80	
100	0.851	24.77	0.878	29.00	

(See remarks under a Acetnaphthalide, page 13.)

SOLUBILITY OF ACETANILIDE IN MIXTURES OF	ETHER AND CHLOROFORM AND OF
ACETONE AND BENZENE AT 25°.	(Marden and Dover, 1916.)
Results for Ether-Chloroform Mixtures	Results for Acetone-Renzene Misture

Results for Ether-	CHOIOIGIH MIXIUIGS.	Kesults for Aceta	me-denzene militure.
Wt. Per Cent CHCls in Mixed Solvent.	Gms. C _e H _e NH.COCH _e per 100 Gms. Mixed Solvent.	Wt. Per Cent CoHo in Mixed Solvent.	Gms. C ₆ H ₄ NH.COCH ₈ per 100 Gms. Mixed Solvent.
100	17.7	100	1.36
90	11.7	90	6.78
8o ·	8.2	80	13.0
70	6.2	70	20.0
60	4.95	60	29.2
50	4.25	50	30.0
40	3.8	40	30.5
30	3.5	30	33.0
20	3.25	20	36.0
10	3.05	10	45.7
0	2.9	0	39.4

DISTRIBUTION OF ACETANILIDE BETWEEN IMMISCIBLE SOLVENTS AT 25°. Conc. C₆H₆NH.COCH₃ in Benzene layer + Conc. in H₂O layer = 1.65.

" " Chloroform " + Conc. in H₂O layer = 7.75.

(Marden, 1914.)

" Ether " + Conc. in H₂O layer = 2.98. (Marden, 1914.)

SOLUBILITY OF HALOGEN SUBSTITUTED ACETANILIDES IN ETHYL ALCOHOL AT DIFFERENT TEMPERATURES. (Chattaway and Lambert, 1915.) Gms. of Each Anilide per 100 Gms. of Each Sat. Solution.

t°.	p Chloro- acetanilide.	2.4 Dichloro- acetanilide.	p Bromo- acetanilide.	2.4 Dibromo- acetanilide.	4 Chloro- 2 Bromo- acetanilide.	2 Chloro- 4 Bromo- acetanilide.
5			4.244	2.480		
10	3.278	3.008	4.847	2.876	4.334	2.575
15	3.777	3.564	5.561	3.382	5.088	2.961
20	4.366	4.192	6.390	4.002	5.986	3.466
25	5.040	4.962	7.300	4.714	7.043	4.095
30	5.828	5.864	8.440	5.615	8.328	4.891
35	6.700	6.937	9.715	6.686	9.844	5.820
40	7.728	8.276	11.156	7.914	11.586	6.887
45	8.918	9.750	12.767	9.357	13.718	8.186
					·	

(Results for unstable needle forms of p bromoacetanilide and 2.4 dibromoacetanilide are also given.)

SOLUBILITY OF p NITROACETANILIDE AND OF 2.4 DICHLOROACETANILIDE IN ACETIC ACID AT 16°. (Orton and King, 1911.)

Compound.	Solvent.	Gms. Cmpd. Dissolved per 100 cc. Sat. Sol.
p Nitroacetanilide	Glacial Acetic Acid	0.83
"	50% Aq. " "	0.38
2.4 Dichloroacetanilide	Glacial Acetic Acid	6.37
66	50% Aq."""	0.83

reezing-noi	nt curves (see footnote, page I) are giv	ven for mixt	ures of:
	e and Antipyrine	(Comanducci,	
44	" m Nitraniline		d Whiteley, 1895.)
44	" m Dinitrobenzene	и	4
44	" a Dinitrophenol	"	61
44	" p Nitroacetanilide	(Küster, 1891.)
	etanilide and Dinitroacetanilide cetanilide and 2.4 Dibromoacetanilide		d Sluiter, 1906.)

ACETIC ACID CH.COOH.

RECIPROCAL SOLUBILITY OF ACETIC ACID AND WATER DETERMINED BY THE METHOD OF LOWERING OF THE FREEZING-POINT.

ť.	Gms. CH ₂ COOH per 100 Gms. Sat. Solution.	Solid Phase.	t°.	Gms. CH ₂ COOH per roo Gms. Sat. Solution.	Solid Phase.
0	0	Ice	- 20	67.0	CH3COOH
– 5	15.2	"	-15	72.3	"
-10	28.5	"	-10	77.5	"
-15	40.0	"	– 5	82.2	"
- 20	49.2	"	Ö	87.0	"
-25	57.0	"	+ 5	91.8	"
- 26 .	7 60.0	(Eutectic)	10	95.8	"
-25	62.5	ĊH₃COOĤ	16.6	100.0	"

The data in the above table were obtained by plotting the results of Pickering (1893), Roloff (1895), Dahms (1896) (1899), de Coppet (1899), Kremann (1907), Faucon (1910), Balló (1910), Groschuff (1911), Paterno and Salimei (1913), and Tsakalotos (1914), on cross-section paper and drawing a curve through the points in best agreement. In addition to making determinations of the freezing-points of the mixtures, Balló also analyzed the solid phases which separated, and showed that these contained, in all cases, increasing percentages of acid and, therefore, must have consisted of mixed crystals. This formation of mixed crystals is offered as an explanation of the abnormality of the freezing-point lowering of the system.

SOLUBILITY OF ACETIC ACID IN ETHYL ALCOHOL (98.9%) DETERMINED BY THE METHOD OF LOWERING OF FREEZING-POINT. (Pickering, 1893.)

ť.	Gms. CH ₂ COOH per 100 Gms. Sat. Solution.	Solid Phase.	ť.	Gms. CH ₃ COOH per 100 Gms. Sat. Solution.	Solid Phase.
-75	26.0	CH ₃ COOH	—10	67.7	CH ₂ COOH
-70	27.7	"	- 5	73.2	"
-60	33.0	"	Ō	79.I	" .
-50	38.2	"	+ 5	85.2	"
-40	43.7	"	10	91.5	"
-30	50.2	"	15	98.0	"
- 20	58.0	"	16.6	100.0	"

(The original results were plotted on cross-section paper and the above figures read from the curve.)

SOLUBILITY DATA DETERMINED BY THE METHOD OF LOWERING OF THE FREEZING-POINT (see footnote, page 1) ARE GIVEN FOR MIXTURES OF Acetic Acid and Each of the Following Compounds:

Chloroacetic Acid (Mameli and Mannessier, 1913; Kendall, 1914.)
Dichloroacetic Acid (Kendall, 1914.)
Trichloroacetic Acid (Kendall, 1914.)
Acetic Anhydride (Pickering, 1893.)
Benzene (Dahms, 1895, 1896; Roloff, 1895; Groschuff, 1911; Baud, 1912, 1912 (a); Kendall and Booge, 1916.)
Benzene + Vaseline (Roloff, 1895.)
Benzene + Water (Roloff, 1895.)
Benzene + Water (Roloff, 1895.)
Benzoic Acid (Kendall, 1914.)
Chlorobenzene (Baud, 1913 (c).)
Nitrobenzene (Dahms, 1895; Baud, 1913 (c).)
Carbon Disulfide (Pickering, 1893.)
Cyclohexane (Baud, 1913 (a) (b).)

Dimethylpyrone (Kendall, 1914 (a).)
Dimethyl Oxalate (Kendall and Booge, 1916.)
Dimethyl Succinate (Kendall and Booge, 1916.)
Ethyl Ether (Pickering, 1893.)
Ethylene Bromide (Dahms, 1895; Baud, 1912 (a).)
Ethylene Dibromide (Baud, 1912 (b).)
Formamide (English and Turner, 1915.)
Formic Acid (Baud, 1913 (c).)
Methyl Alcohol (Pickering, 1893.)
Picric Acid (Kendall, 1916.)
Propyl Alcohol (Pickering, 1893.)
Sulfuric Acid (Pickering, 1893.)
Thymol (Paterno and Ampola, 1897.)

p Xylene (Paterno and Ampola, 1897.)

DISTRIBUTION OF ACETIC ACID BETWEEN:

Water	and	Amyl	Alc	ohol	at	20°.
	(Hera	and Fi	scher,	1904.)	

Water and Benzene at 25°. (Herz and Fischer, 1905.)

Gms. CH ₈ COOH per 100 cc.			G. M. CH ₃ COOH per 100 cc.		Gms. CH _s COOH per 100 cc.		G. M. CH ₂ COOH per 100 cc.	
H ₂ O Layer.	Alcoholic Layer.	H ₂ O Layer	Alcoholic Layer.	H ₂ O Layer.	C ₆ H ₆ Layer.	H ₂ O Layer.	C ₆ H ₆ Layer.	
I	0.923	0.01	0.0095	5	0.130	0.05	0.0014	
2	1 .847	0.03	0.0280	10	0.417	0.10	0.0005	
3	2.741	0.05	0.0460	20	I.55	0.20	0.0030	
4	3.694	0.07	0.0645	30	3.03	0.30	0.0290	
5	4.587	0.09	0.0830	40	4.95	0.50	0.051	
6	5 · 475	0.11	0.1010	• •	• • •	0.70	0.090	
7	6.434	0.13	0.1190					
8	7.328							

Note. — The distribution results of Herz and co-workers are reported in millimolecules per 10 cc. portions of each layer in the several cases. To obtain the figures given in the tables here shown, the original results, before and after calculating to gram quantities, were plotted on cross-section paper, and from the curves thus obtained, readings for regular intervals of concentration of acetic acid in the aqueous layer were selected.

DISTRIBUTION OF ACETIC ACID BETWEEN WATER AND BENZENE. (Waddell, 1898; see also Lincoln, 1904.)

The measurements were made by adding varying amounts of benzene or water to 5 cc. of acetic acid and then running in water or benzene till saturation was reached. The observed readings were calculated to grams per 100 grams of the liquid mixture.

	Upper	Layer.	Lower Layer.	
ŧ°.	CH_COOH.	C ₆ H ₆ .	H ₂ O.	CH ₂ COOH. C ₆ H ₆ . H ₂ O.
25	0.46	99.52	0.02	9.4 0.18 90.42
25	3.10	96.75	0.15	28.2 0.53 71.27
25	5.20	94.55	0.25	37.7 0.84 61.46
25	8.7	90.88	0.42	48.3 1.82 49.88
25	16.3	82.91	0.79	61.4 6.1 32.5
25.	30.5	67.37	2.13	66.0 13.8 20.2
25	52.5	39.60	7.60	52.8 39.6 7.6
35	1.2	98.68	0.08	16.4 0.62 82.98
35	5 · 7	93.97	0.33	36.8 1.42 62.78
35	9.0	90.42	0.58	49.0 2.10 48.90
35	45.0	49.00	6.0	61.3 25.5 13.2
35	52.2	39 · 4	8.4	52.2 39.4 8.4

Additional data in connection with the distribution of acetic acid between water and benzene are given by King and Narracutt (1909), Kuriloff (1898), Farmer (1903), Bubanovic (1913), and Lincoln (1904). This latter investigator points out that the same degree of clouding does not represent the end point in all cases as was assumed by Waddell (1900).

Data for the distribution of acetic acid between benzene and aqueous solutions of sodium acetate at 25° are given by Farmer (1903).

DISTRIBUTION OF ACETIC ACID BETWEEN WATER AND CHLOROFORM: At Room Temperature. At 25°.

(Wright, Thomson and Leon — Proc. Roy. Soc. 49, 185, 1891.)

(Herz and Lewy; Rothmund and Wilsmore.)

Results in parts per 100 parts of solution. Upper Layer. Lower Layer.							LCOOH occ.		CH ₃ COOB
Сн-соон	. CHCla.	H₃O.	сн соон.	CHCI.	Н₃О.	H ₂ O Layer.	CHCl _s Layer.	H ₂ O Layer.	CHCla Layer.
0	0.84	99.16	•	99.01	0.99	2	0.089	0.05	0.0032
6.46	0.92	92.62		98.24	0.72	4	0.313	0.075	0.0062
17.69	0.79	81.52	3 .83	94.98	1.19	6	0.596	0.100	0.0100
25.10	1.21	73.69		91.85	1.38	8	0.974	0.150	0.0198
33·7I	2.97	63.32		87.82	1.13	10	1.430	0.175	0.0260
44.12	7.30	48.58	17.72	80.00	2.28	12	1.982	0,200	0.0325
50. 18	15.11	34.71	25.75	70.13	4.12	20	5.10	0.30	0.070
_	•	-				30	10.2	0.50	0.170
						40	15.3	0.70	0.275
						50	21.9	o. Ś o	0.335
						52.3	39.54	0.87	0.659

See Note, page 6.

In addition to the above results, data for somewhat lower concentrations of acetic acid determined at 20° are given by Dawson and Grant (1901).

Results showing the influence of electrolytes upon the distribution of acetic acid between water and chloroform are given by Rothmund and Wilsmore and by Dawson and Grant.

DISTRIBUTION OF ACETIC ACID AT 25° BETWEEN:

Water as		on Disui	lphide.	Water and Carbon Tetrachloride (Herz and Lewy.)			
Gms. CH ₂ COOH per 100 cc.		G. M. CH ₂ COOH per 100 cc.		Gms. CH ₂ COOH per 100 cc.		G. M. CH ₂ COOH per 100 cc.	
H ₂ O Layer.	CS ₂ Layer.	H ₂ O Layer.	CS ₂ Layer.	H ₂ O Layer.	CCl ₄ Layer.	H ₂ O Layer.	CCl ₄ Layer.
65	2.64	1.1	0.45	30	8. r	0.5	0.03
70	3.0	I.2	0.55	40	3.0	0.7	0.055
75 80	3.3	I.2	0.80	50	4.8	0.9	0.095
	5 · 4	1.35	0.97	60	5.8	I.I	0.155
85	6.4	I.4	1.3	70	12.0	1.2	0.235
				76.2	25.2	I.27	0.420

Results for the distribution of acetic acid between water and mixtures of equal volumes of carbon disulfide and carbon tetrachloride at 25° are given by Herz and Kurzer (1910).

DISTRIBUTION OF ACETIC ACID AT 25° BETWEEN:

W	ater and	Bromot	orm.	Water and Toluene.			
(H. and	L. — Z. ele	ctro. Ch. 11	, 818, '05.)	(H. a	nd F. — Ber	. 38, 1140	, '05.)
	H ₂ COOH	G. M. CH			H ₈ COOH		CH ₃ COOH
H ₂ O Layer.	CHBra Layer.	H ₂ O Layer.	CHBra Layer.		CeHeCHs Layer.	H ₂ O Layer.	CeHsCHs Layer.
20	1.5	0.4	0.035	5	0.119	0.1	0.0025
30	3.0	0.6	0.070	IO	0.328	0.2	0.0075
40	4.8	0.8	0.120	20	1.132	0.4	0.0260
50	7.8	0.1	0.20	30	2.265	0.6	0.0530
60	12.0	1.1	0.28	40	3.725	0.8	0.090
65	15.6	1.15	0.395	50	5.841	1.0	0.140
70	27.0	• • •	• • •	60	8.344	• • •	•••
See Not	e, page	5.					

DISTRIBUTION OF ACETIC ACID BETWEEN WATER AND ETHYL ETHER. (de Kolossovsky, 1911.)

Results at 18°.

	Gms. CH ₄ COO	H per 100 cc. of	Gms. CH ₂ COOI	I per 100 cc. of:		
t.	H ₂ O Layer (\$).	Ether Layer (p').	$\frac{p}{p'}$.	H ₂ O Layer (p).	Ether Layer (*).	<u>p</u> '.
13	0.365	0.207	1.76	1.0	0.5	2.0
18	0.367	0.201	1.82	2.0	1.0	2.0
27	0.379	0.195	1.94	4.0	2.I	1.9
7.5	0.799	0.551	1.45	6.0	3.5	1.7
12	0.803	0.529	1.52	8.0	4.9	1.6
18	0.802	0.501	1.60	10.0	6.6	1.5
25	0.789	0.474	1.66	15.0	11.4	1.3
				20.0	17.0	1.2
				25.0	23.3	1.07

According to results obtained at 25° by Morgan and Benson (1907), the ratio of distribution for concentrations of acetic acid up to 12 grams per 100 cc. of the H₂O layer is more nearly constant (1.92) than shown above for 18°. A similar constancy of distribution (approx. 2.08 at 15°) was also found by Pinnow (1915).

Results showing the influence of varying concentrations of a large number of electrolytes upon the distribution of acetic acid between water and ether are given by de Kolossovsky, Dubrisay (1912), and by Hantzsch and Vagt (1901).

Data for the distribution of acetic acid between ether and molten CaCl₂.6H₂O and ether and molten LiNO₁₃H₂O are given by Morgan and Benson (1907).

One determination of the distribution of acetic acid between sat. aq. CaCl₁ solution (20 gms. per l.) and kerosene gave 97.7 gms. acid per 100 gms. aq. layer and 27 gms. per 100 gms. kerosene layer at ordinary temperature. (Crowell, 1918.)

DISTRIBUTION OF ACETIC ACID AT 25° BETWEEN:

Water and o or p Xylene.			Water and m Xylene. (Herz and Fischer.)				
(Herz and Fischer.)							
Gms. CH ₈ COOH per 100 cc.		G. M. CH ₂ COOH per 100 cc.		Gms. CH ₃ COOH per 100 cc.		G. M. CH ₈ COOH per 100 cc.	
H ₂ O Layer.	o or p Xylene Layer.	H ₂ O Layer.	o or p Xylene Layer.	H ₂ O Layer.	Xylene Layer.	H ₂ O Layer.	m Xylene Layer.
5	0.24	O.I	0.004	5	o · o6	0.1	0.0015
10	0.48	0.2	0.010	10	o.30	0.2	0.007
20	1.13	0.4	0.025	20	0.95	0.4	0.022
30	2.15	6.0،	0.047	. 30	1.91	0.6	0.042
40	3.40	0.8	0.079	40	3.04	0.8	0.072
50	5.10	1.0	O.122	50	4.65	0.1	0.111
60	7 · 27	I.2	0.230	60	6.65	1.2	• • •
70	12.52						

See Note, page 6.

Data showing effect of camphor on the reciprocal solubility of acetic acid and olive oil are given by Wingard, 1917.

Chloro ACETIC ACIDS CH2CICOOH, CHCl2COOH, and CCl2COOH.

SOLUBILITY OF THE α, β, AND γ MODIFICATION OF MONOCHLOROACETIC ACID
IN WATER AT DIFFERENT TEMPERATURES.
(Miers and Isaac, 1908; Pickering, 1895.)

The determinations were made by the sealed tube method. The following figures were obtained by plotting the original results on cross-section paper:

Gms. per 100 Gms. of Each Sat. Solution.					Gms. per 100 Gms. of Each Sat. Solution.		
ť.	a Modifi-	β Modifi- cation.	γ Modifi- cation.	e.	a Modifi-	β Modifi- cation.	γ Modifi- cation.
20			88.o	50	95.0	97.0	99.6
25		85.8	90.0	51 (m. pt.)	•••	3	100.0
30	86.o	88.2	92.2	55	97.2	99.3	• • •
35	88.4	90.6	94.1	56.5 (m. pt.)	• • •	0.001	• • •
40	90.8	93. 0	95.8	60	99.0	• • •	• • •
45	93.0	95.0.	97.8	62.4 (m. pt.)	0.00r	• • •	• • •

Reciprocal solubilities of mono-, di-, and trichloroacetic acids and water determined by the freezing-point method are given by Pickering (1895).

SOLUBILITY OF TRICHLOROACETIC ACID IN WATER AT 25°.
(Seidell, 1910.)

100 gms. saturated solution of $d_{25} = 1.615$ contain 92.32 gms. CCl₁.COOH.

SOLUBILITY DATA DETERMINED BY THE METHOD OF LOWERING OF THE FREEZING-POINT (see footnote, page 1) ARE GIVEN FOR MIXTURES OF Chloro-acetic Acid and Each of the Following Compounds:

Dichloroacetic Acid (Kendall, 1914.)
Trichloroacetic Acid (Kendall, 1914.)
Acetophenone (Kendall and Gibbons, 1915.)
Dibenzyl Acetone (Kendall and Gibbons, 1915.)
Benzil (Kendall and Gibbons, 1915.)
Benzene (Kendall and Booge, 1916.)
Benzoic Acid (Kendall, 1914.)
Camphor (Pawlewski, 1893.)
Cinnamic Acid (Kendall, 1914.)
Crotonic Acid
Cetyl Alcohol (Mameli and Mannessier, 1913.)
o Cresol (Kendall, 1914.)
Methyl Cinnamate (Kendall and Booge, 1916).

Dimethyl Oxalate (Kendall and Booge, 1916.) Dimethyl Succinate (Kendalland Booge, 1916.) Dimethylpyrone (Kendall, 1914 (a).) Naphthalene (Miers & Isaac, 1908; M. & M., 1913.) Phenol (Kendall, 1916.) Piperonal (Kendall & Gibbons, 1915; M. & M., 1913.) Salol (Mameli and Mannessier, 1913.) Sulfuric Acid (Kendall and Carpenter, 1914.) o Toluic Acid (Kendall, 1914.) m " " Þ " " Vanillin (Kendall and Gibbons, 1915.)

SOLUBILITY DATA DETERMINED BY THE METHOD OF LOWERING OF THE FREEZING-POINT (see footnote, page 1) ARE GIVEN BY KENDALL (1914) FOR MIXTURES OF Dichloroacetic Acid and Each of the Following Compounds:

Trichloroacetic Acid	07	Coluic	: Acid	
Benzoic Acid	1118	44	44	
Cinnamic Acid	Þ	"	"	
Crotonic Acid	α	44	44	(Phenylacetic Acid)
Dimethylpyrone				•

SOLUBILITY DATA DETERMINED BY THE METHOD OF LOWERING OF THE FREEZING-POINT (see footnote, page 1) ARE GIVEN FOR MIXTURES OF Trichloro-acetic Acid and Each of the Following Compounds:

Acetophenone (Kendall and G	ibbo ns, 1915.)	Ethyl Ether (Tsakalotos and Guye, 1910.)			
Anisaldehyde "	**	Ethyl Acetate (Kendall and Booge, 1916.)			
Benzene (Kendall and Booge, 19)16.)	Ethyl Benzoate " "			
Benzaldehyde (Kendall and G		Methyl Benzoate " "			
m Hydroxy Benzaldehyde		" Anisate " "			
p " 4		" Cinnamate " "			
o Nitro Benzaldehyde		" p Toluate " "			
m " "	(Kendall and	α Naphthol (Kendall, 1916.)			
b " "	Gibbons,	β "			
Benzophenone	1915.)	α Naphthyl Acetate (Kendall and Booge, 1916.)			
Benzil		B " " " " "			
Benzoquinone		Phenol (Kendall, 1916.)			
Benzoic Acid (Kendall, 1914.)	,	o Nitro Phenol (Kendall, 1916.)			
Camphene (Timoteiew & Kravt	20V. 1015. 1017.)	m 44 44 44			
Cinnamic Acid (Kendall, 1914		b ** ** **			
Crotonic Acid "	•,	Piperonal (Kendall and Gibbons, 1915.)			
o Cresol (Kendall, 1914.)		Nitro Piperonal " "			
m " "		Phenyl Anisylketone " "			
<i>m</i>		"Benzoate (Kendall and Booge, 1916.)			
Diethyl Oxalate (Kendalla	nd Booge, 1916.)	" Salicylate " "			
Diethyl Succinate "	nd booke' (Ato')	Salicylic Aldehyde (Kendall and Gibbons, 1915.)			
Dimethyl Oxalate "	**	Sulfuric Acid (Kendall and Carpenter, 1914.)			
	••	o Toluic Acid (Kendall, 1914.)			
Dimethyl Malonate "	•	m " " " "			
Dimethyl Succinate "		p " " "			
Dimethyl Terephthalate Booge, 1916.)	(Kendall and	g u u u			
Dimethylpyrone (Plotnikov,	1911: Kendall.	Thymol (Kendall, 1916.)			
1914 (a).)		Vanillin (Kendall and Gibbons, 1915.)			
		4 Comment / Canoom) 13:34			

DISTRIBUTION OF CHLORACETIC ACID BETWEEN:

(Herz and Fischer.)

Water and Benzene at 25°.			Wat	Water and Toluene at 25°.				
Gms. CH ₃ ClCOOH per 100 cc.			G. M. CH ₂ CICOOH per 100 cc.		Gms. CH ₂ ClCOOH per 100 cc.		G. M. CH ₂ ClCOOH per 100 cc.	
H ₂ O Layer.	CeHe Layer.	H ₂ O Layer.	C ₆ H ₆ Layer.	H ₂ O Layer.	C ₆ H ₆ CH ₉ Layer.	H ₂ O Layer.	CaHaCHa Layer.	
0.25*	8.69	0.0025	0.090	0.1*	5.22	0.001	0.055	
0.5	15.59	0.005	0.155	0.5	20.31	0.005	0.20	
1.0	27 .87	0.010	0.28	1.0	34.87	0.010	0.36	
1.5	41.10	0.015	0.415	1.5	49.14	0.015	0.50	
2.0	52.90	0.02	0.54	2.0	60.46	0.02	0.62	
3.0	68.or	0.03	0.70	3.0	72.28	0.03	0.77	
4.0	76.52	0.04	0.79	4.0	81.72	0.04	0.85	
				5.0	86.94	0.05	0.90	

• See Note, page 6.

Additional data for the distribution of monochloroacetic acid between water and benzene as well as similar results for dichloroacetic acid are given by Georgievics, 1915.

Water and Carbon Tetra-

DISTRIBUTION OF CHLORACETIC ACID BETWEEN: (Herz and Lewy.)

Wate	er and Ch	ıloroforn	1 at 25°.	Water and Bromoform at 25°.				
Gms. CHgClCOOH		G. M. CH ₂ CICOOH per 100 cc.			Gms. CH ₂ CICOOH per 100 cc.		G. M. CH ₂ CICOOH per 100 cc.	
H ₂ O Layer.	CHCla Layer.	H ₂ O Layer.	CHCla Layer.	H ₉ O Layer.	CHBrs Layer.	H ₂ O Layer.	CHBra Layer.	
5*	0.283	0.05	0.0025	40*	0.850	0.45	0.011	
10	0.614	0.10	o.oo6o	50	ı .889	0.50	0.0165	
20	88o. I	0.20	0.0135	60	2.994	0.60	0.028	
40	2.948	0.40	0.029	70	4.241	0.70	0.040	
50	3 . 684	0.60	0.045	8o	5.620	0.80	0.053	
бo	4.440	0.70	0.061	90	7.560	0.90	0.067	
70	7.086	0.75	0.077	- 91.6	11.340	0.97	0.120	

DISTRIBUTION OF CHLORACETIC ACID BETWEEN:

(Hers and Lewy.)

Water	at	25°.	mpinde	chloride at 25°.				
	i. CH ₂ CICOOH G. M. CH ₂ CICOOH per 100 cc. per 100 cc.		Gms. CH ₅ ClCOOH per 100 cc.		G. M. CH ₂ CICOOH per 100 cc.			
H ₂ O Layer.	CS ₂ Layer.	H ₉ O Layer.	CS ₂ Layer.	H ₂ O Layer.	CCl ₄ Layer.	H _g O Layer.	CCL Layer.	
60*	0.426	0.6	0.0042	90*	1.417	0.95	0.0150	
8 0	0.691	0.8	0.007	95	2.031	1.00	0.0195	
90	o .8o3	1.0	0.009	100	2 . 645	1.05	0.0270	
100	I .040	1.05	0.0105	105	4.26	1.10	0.0415	
105	I -464	1.10	0.015	106.7	5.19	1.13	0.0550	
106.7	1 .8go	1.13	0.020			_		

[•] See Note, page 6.

Results showing the influence of sulfuric acid upon the distribution of monochloroacetic acid between water and ethyl ether at 26° are given by Hantzsch and Vagt (1901).

CyanoACETIC ACID CH1(CN)COOH.

Water and Carbon Disulphide

DISTRIBUTION OF CYANOACETIC ACID BETWEEN: (Hantzsch and Sebalt, 1899.)

Water and Ethyl Ether.			Water and Benzene.				
Gms. CH ₂ (CN)COOH per Liter.			40	Gms. CH ₂ (CN)COOH per Liter.			
.	H ₂ O Layer.	(C ₂ H ₂) ₂ O Layer.	t°.	H _e O Layer.	C _e H _e Layer.		
0	0.070	0.042	6	0.067	0.020		
10	0.076	0.044	25	0.130	0.019		
21	0.083	0.030	•				
3 0	0.089	0.027					

Phenyl ACETIC ACID (α Toluic Acid) CH₂(C₆H₆)COOH.

. SOLUBI	LITY IN	WATER AND	IN ALCOHOLS.	(Timoteiew, :	(894.)
Solvent.	t. Gm	s. CH ₂ (C ₂ H ₄)CO per 100 Gms. Sat. Sol.	OH Solvent.	t°.	s. CH ₂ (C ₄ H ₄)COOH per 100 Gms. Sat. Sol.
Water	20	1.64	Ethyl Alcohol	0.0	50.7
Methyl Alcohol	-17	50.6	"	+19.4	64.4
" "	-13	53 · 2	"	20.0	65.I
"	0	59.2	Propyl Alcohol	-17.0	29.4
"	+19.4		"	-13.0	32.3
"	20	71.8	"	0.0	40.9
Ethyl Alcohol	-17	39·7	"	+19.4	56.8
"	-13	41.5	"	20.0	57 . 2

SOLUBILITY OF PHENYLACETIC ACID IN SEVERAL SOLVENTS AT 25°. (Herz and Rathmann, 1913.)

Solvent.	Gms. CH ₂ (C ₄ H ₄)COOH per 100 cc. Sat. Sol.	Solvent.	Gms. CH ₂ (C ₄ H ₄)COOH per 100 cc. Sat. Sol.
Chloroform	60.17	Tetrachlorethylene	21.10
Carbon Tetrachlorid	e 25.07	Tetrachlorethane	61.45
Trichlorethylene	44.89	Pentachlorethane	44.26

The freezing-point curve (Solubility, see footnote, page 1) is given by Sal-kowski (1885) for mixtures of phenylacetic acid and hydrocinnamic acid.

ACETIC ACID ESTERS.

SOLUBILITIES OF SEVERAL ACETIC ACID ESTERS IN AQUEOUS ALCOHOL AT ROOM
TEMPERATURE. (Pfeiffer, 1892.)

or HO added to cause separation of a second phase in mixtures of the given

cc. Ethyl Alcohol in	cc. H ₂ O added to cause separation of a second phase in mixtures of the given amounts of Alcohol and 3 cc. of:								
Mixtures.	CH,COOCH,	### amounts of Alcohol and 3 of CH4COOC4H4. CH4CAOCAHA. CH4CAOCAHA. CH4CAOCAHA	CH4COOC4H4	CH,COOC,H11.					
3	∞	6.0	4.50	2.08	1.76				
6	• • •	∞	10.48	6.08	4.24				
9	• • •	• • •	17.80	10.46	9.03				
12		• • •	26.00	15.37	13.24				
15	• • •	• • •	35.63	20.42	17.52				
18	• • •	• • •	47 . 50	26.60	22.22				
21	• • •	• • •	58.71	31.49	26.99				
24	• • •	• • •	∞	37.48	32.14				
27	• • •	• • .•	• • •	43.75	37 · 23				
30	• • •	• • •	• • •	50.74	42.06				
33	• • •	• • •	• • •	59 · 99	48.41				

ChloroACETIC ACID ESTERS.

SOLUBILITY OF MONOCHLOR, DICHLOR, AND OF TRICHLORACETIC ESTER IN AQUEOUS ALCOHOL AT ROOM TEMPERATURE.

(Bancroft -- Phys. Rev. 3, 193, 1895-96, from results of Pfeiffer, 2. physik. chem. 9, 469, '90-)

cc. Ethyl Alcohol in	cc. H ₂ O added to cause separation of a second phase in mixtures of the given amts. of Alcohol and 3 cc. of a						
Mixtures.	CH2CICOOC3H4.	CHCl2COOC2H	CCl ₂ COOC ₂ H ₂ .				
3	1.32	0.90	0.65				
6	4.01	2.45	1.80				
9	7.30	4.33	3.02				
12	10.78	6.60	4.50				
15 18	16.16	9.20	6.50				
18	22.16	• • •	• • •				
21	28.74						

Mono-, Di-, and Tri ACETIN $C_8H_8(OH)_2(OC_2H_4O)$, $C_9H_8(OH)(OC_2H_3O)_2$, and $C_9H_8(OC_2H_3O)_3$.

The partition coefficients of these three compounds between olive oil and water are given by Baum (1899) and Meyer (1901, 1909), as 0.06, 0.23, and 0.3 respectively.

MethACETIN (p Acetanisidine, or p oxymethylacetanilide) C₆H₄.OCH₅. NHCH₂CO.

100 gms. H₂O dissolve 0.19 gms. of the compound at 15° and 8.3 gms. at 100°. (German Pharmacopoeia.)

α **ACETNAPHTHALIDE** C₂H₃ONH(C₁₀H₇).

SOLUBILITY IN MIXTURES OF ALCOHOL AND WATER AT 25°.

(Holleman and Antusch — Rec. trav. chim. 13, 289, 1894.)

Vol. % Alcohol.	Gms. per 100 Gms. Solvent.	Sp. Gr. of Solutions.	Vol. % Alcohol.	Gms. per 100 Gms. Solvent.	Sp. Gr. of Solutions.
IOO	4.02	0.7916	65	1.78	o .897 7
95	4.31	0.8150	60	I · 44	0.9091
90	4.11	0.8344	55	I . 02	0.9201
85	3.69	o · 8485	50	0.71	0.9290
80	3.18	0.8624	35	0.25	0.9537
75	2.73	0.8761	20	0.09	0.9717
70	2.31	0.8798	10	0.04	0.9841

Constant agitation was not employed. The mixtures were allowed to stand in bath and the solutions analyzed after different lengths of time. Formulas are not given. This applies to all determinations by Holleman and Antush.

ACETONE (CH₂)₂CO.

SOLUBILITY OF ACETONE AT 25° IN AQUEOUS SOLUTIONS OF: Electrolytes. Non-Electrolytes. (Bell — J. Phys. Ch. 9, 544, 1905; Linebarger — Am. Ch. J. 14, 380, 1892.)

Gms. Electro- lyte per 100 Gms. Aq.	Gm	. (CH ₂) ₂ (solvent in	O per 100 Solutions of	Gms. f:	Gms. Non- Gms. (CH ₂) ₂ CO per 100 Gms Electrolyte Solvent in Solutions of:			
Solution.	K ₂ CO ₃	Na ₃ CO ₃	(NH ₄) ₂ CO ₃		Aq. Solution		Anethol.*	(C ₆ H ₅) ₂ CO.
1.25	• • •	• • •		83.5	5	92.5	103.0	90.0
2.50		51.0	110.0	65.0	10	117.0	123.0	108.5
5.00	65.0	38.0	73 · 5	47.0	20	137.0	144.5	126.0
7.5	46.5	27.5	57.0	38.o	30	148.5	155.0	133.0
10.0	34 · 5	19.5	44.5	29.0	40	155.5	162.0	136.0
12.5	25.5	14.0	35.0	• • •	50	159.5	166. 0	135.5
15.0	0.81	9.0	28.0	• • •	60	100.2	165.0	131.5
20.0	8.0	2.7		• • •	70	155.0	158.0	123.0
25.0	3.7		• • •	• • •	8 0	•••	•••	108.5
30.0	1.6			• • •	90	• • •	• • •	82.0

^{*} Anethof = propenylanisol, CH2.CH:CH.CeH.OCH2. † Naphthalene results at 35°.

NOTE. — In the case of the results for the aqueous solutions of electrolytes, the determinations were made by adding successive small quantities of acetone to the mixtures of given amounts of water and electrolyte, and noting the point at which a clouding, due to the separation of a second phase, occurred. In the case of the aqueous non-electrolyte solutions, successive small amounts of water were added to mixtures of known amounts of acetone and the non-electrolyte. In all cases the results, as given in the original papers, have been recalculated and plotted on cross-section paper. From the curves so obtained, the above table was constructed.

Additional data for systems containing acetone are given under the salt involved, as, for instance, Potassium Carbonate, p. 511, Potassium Fluoride, p. 534, etc.

MISCIBILITY OF ACETONE AT O° WITH MIXTURES OF:

Chlore	oform and W	ater (Bonner,	1910).	Bromob	enzene and '	Water (Bonn	er, 1910).
Gms. CHCla.	Gms. H _e O.	Gms. (CH ₄) ₂ CO.	Sp. Gr. of Mixture.	Gms. C _s H _s Br.	Gms. H _s O.	Gms. (CH ₄) ₁ CO.	Sp. Gr. of Mixture.
0.988	0.012	0.501	1.18	0.977	0.023	0.685	1.12
0.900	0.100	1.300	1.01	0.90	0.10	1.13	10.1
0.792	0.208	1.633	0.98	0.80	0.20	1.41	0.98
0.696	0.304	1.750	0.96	0.70	0.30	1.52	0.97
0.600	0.400	1.770	0.95	0.60	0.40	1.57	0.96
0.500	0.500	1.720	0.94	0.50	0.50	1.60	0.95
*0.420	0.580	1.650	• • •	* 0.49	0.51	1.60	• • •
0.400	0.600	1.630	0.93	0.40	0.60	1.59	0.94
0.300	0.700	1.530	0.94	0.30	0.70	1.55	0.93
0.200	0.800	1.321	0.95	0.20	0.80	1.46	0.93
0.100	0.900	I.144	0.97	0.10	0.90	1.30	0.93
0.018	0.982	0.464	0.98	. 0.02	0.98	0.849	0.95

NOTE. — The determinations were made by gradually adding acetone to the mixtures of the given amounts of water and the other constituent until a homogeneous solution was obtained. The results give the binodal curve for the system. The author also determined "tie lines" showing the compositions of the various pairs of liquids which may exist in equilibrium. When the two layers are practically of the same composition the tie line is reduced to a point designated as the "plait point" of the binodal curve. This point is indicated by a in the above tables.

SOLUBILITY OF ACETONE IN AQUEOUS SOLUTIONS OF CARBOHYDRATES.

(Krug and McElroy — J. Anal. Ch. 6, 184, '92; Bell — J. Phys. Ch. 9, 547, '05.)

In Aqueous Solutions of Cane Sugar.

Per cent	Gms. (CHa) CO per 100 Gms. Sugar Solution at:								
Sugar.	15°.	20°.	25°.	30°.	35°·	40°.			
10	597 - 2	• • •	581 . 8		574.8				
20	272.5	• • •	250.0		251.8				
30	172.4	• • •	150.0	• • •	150.6				
35	• • •	• • •		• • • •	•••	110			
40	• • •	96.4	92.8	89.8		85			
45	• • •	71.9	68.8	65.7		62			
50	•••	50.8	48.1	45.9	• • •	42			
55	• • •	35.8	33.8	32.5	• • •	29			
60	• • •	25.2	24.2	23.4	• • •	• • • •			
65	•••	18.3	17.7	17.0	• • •				
70	•••	13.2	12.8	12.5	• • •				

In Aqueous Dextrose Solutions.

In Aqueous Maltose Solutions.

Per cent Dextrose.	Gms. (CHa) CO per 100 Gms. Solvent at:			Per cent	Gms. (CHa)2CO per 100 Gms. Solvent at:		
	15%.	25°.	35°.	Maltose.	15°.	25°.	35°.
10	736.7	747 - 9	761.5	IO	353.6	348.I	342.0
20	255.3	247 . 7	240.8	20	185.4	181.2	176.9
30	157.5	149.8	142.5	30	119.9	116.0	112.4
40	86.9	79.6	74.0	40	78.4	74.7	70.5
50	36.2	33.0	31.2	50	46.2	42.9	39.8

The determinations were made as in the case of the solubility of acetone in aqueous solutions of electrolytes. See preceding page.

DISTRIBUTION OF ACETONE BETWEEN:

Benzene and Water.					Toluene and Water.	
Results at 20°. (Philip and Bramby, 1915.) Gm. (CH ₂) ₂ CO per 1000 cc.		Results at 25°. (Herz and Fischer, 1905.) Gms. (CH ₂) ₂ CO per 1000 cc.			At Different Temps. (Hantzsch and Vagt, 1901.) Gms. (CH ₂) ₂ CO per 1000 cc.	
H _e O Layer.	C ₆ H ₄ Layer.	H ₂ O Layer.	C _e H _e Layer.	r.	H ₂ O Layer.	C ₄ H ₄ CH ₄ Layer.
0.10	0.08	10*	12.0	0	2.105	0.993
0.20	0.12	50	41.7	10	2.000	0.957
0.30	0.25	100	101.5	20	1.960	0.957
0.40	0.34	150	155.9	30	1.867	0.957
	• • •	200	225.0	• • •	• • •	• • •
•	•	•	See Note name 6			

Philip and Bramby also give data for the effect of NaCl, KCl and LiCl upon the distribution of acetone between benzene and water.

In the determinations by Hantzsch and Vagt the equilibrium was approached from above. The amount of acetone in the lower layer was determined by analysis, and that in the upper layer calculated by difference.

DISTRIBUTION OF ACETONE BETWEEN: (Herz and Rathmann, 1913.)

	—————				
r and trachloride.				er and lorethane.	
CO per Liter.	Mols. (CH ₂) ₂	CO per Liter.	Mols. (CH ₂)	CO per Liter.	
CCl ₄ . Layer.	H ₂ O Layer.	CHCl _s Layer.	H ₂ O Layer.	C ₂ HCl ₆ Layer.	
0.0833	0.032	0.168	0.144	0.251	
0.146	0.0781	0.399	0.271	0.469	
0.514	0.145	0.676	0.541	0.859	
0.997	0.263	1.17	0.806	1.275	
2.10	0.493	1.98	1.149	1.763	
• • •	1.01	3. 06	• • •	• • •	
Water and			Water and		
orethane.	Tetrachlo	rethylene.	Trichlor	ethylene.	
CO per Liter.			Mols. (CH ₂) ₂ CO per Liter.		
C ₂ H ₂ Cl ₄ Layer.	H ₂ O Layer.	CCl ₂ :CCl ₂ Layer.	H ₂ O Layer.	CHCl:CCla Layer.	
0.341	0.274	0.081	0.1 60	0.193	
0.994	0.562	0.174	0.350	0.359	
1.210	1.020	0.343	0.654	0.719	
1.323	1.545	0.629	0.946	1.029	
1.936	2.007	0.891	1.389	1.562	
	crachloride. CO per Liter. CCl ₄ Layer. O.0833 O.146 O.514 O.997 2.10 cr and orethane. CO per Liter. C ₄ H ₂ Cl ₄ Layer. O.341 O.994 I.210 I.323	trachloride, Chlore Coper Liter. Mols. (CH ₂)s H ₂ O Layer. 0.0833 0.032 0.146 0.0781 0.514 0.145 0.997 0.263 2.10 0.493 I.OI was and orethane. Coper Liter. CH ₂	CO per Liter. CCl, Layer. O.0833 O.146 O.997 O.514 O.997 O.493 I.01 O.493 O.502 O.341 O.341 O.341 O.374 O.381 O.394 O.562 O.174 I.210 I.020 O.343 I.323 I.545 O.629	trachloride. CO per Liter. Mols. (CH ₀) ₂ CO per Liter. H ₀ O Layer. 0.0833 0.032 0.168 0.144 0.145 0.514 0.145 0.097 0.263 1.17 0.806 2.10 0.493 1.01 3.06 Water and Tetrachlorethylene. CO per Liter. Mols. (CH ₀) ₂ CO per Liter. H ₀ O Water and Tetrachlorethylene. CO per Liter. Mols. (CH ₀) ₂ CO per Liter. H ₀ O Layer. Layer. Layer. Layer. 1.01 Mols. (CH ₀) ₂ CO per Liter. Mols. (CH ₀) ₃ CO per Liter. Mols. (CH ₀) ₄ CO per Liter.	

The distribution coefficient of acetone between olive oil and water is given by Meyer (1901), as 0.146 at 3° and 0.235 at 30°.

SOLUBILITY DATA DETERMINED BY THE METHOD OF LOWERING OF THE FREEZING-POINT (see footnote, p. 1) ARE GIVEN FOR MIXTURES OF Acetone and Each of the Following Compounds:

Bromine	(Mass and Mo	Intosh, 1912.)	Phenol	(Schmidlin and	Lang, 1910.)
Chlorine	**	44	Resorcinol	**	
Hydrobromic Acid	l "	**	Pyrogallol	"	44
Chloroform	(Takalotos and	Guye, 1910.)	Pyrocatechol	4	•
	(Bramby, 1916		•		

Depression of the freezing-point of mixtures of acetone and water and each of the following compounds are given by Waddell (1899): Ether, hydroquinone, phenol, p nitrophenol, salicylic acid.

ACETOPHENONE CH,COC,H,

The freezing-point curve for mixtures of acetophenone and sulfuric acid is given by Kendall and Carpenter (1914).

Freezing-point curves (solubility, see footnote, page 1) for mixtures of Cinnamylidene **Acetophenone** and each of the following compounds are given by Giua (1916): Acenaphthene, azobenzene, ethyl ether and α trinitrotoluene.

ACETYLAGETONE CH.COCH.COCH.

SOLUBILITY IN WATER. (Rothmund — Z. phys. Ch. 26, 475, '08.)

	Gms. CH ₈ COCH ₈ COCH ₈ per 100 Gms.				
\$*.	H ₂ O Layer.		Acetyl Acetone Layer.		
30	15.46		95.02		
40	17.58		93.68		
50 60	20.22		91.90		
бо	23.23		89.41		
70	27.10		85.77		
8o	33.92		78.82		
87.7 (crit.	temp.)	56.8			

Note. — Weighed amounts of water and acetyl acetone were placed in small glass tubes, which were then sealed and slowly heated until the contained mixtures became homogeneous. The temperature was then allowed to fall very gradually and the point noted at which cloudiness appeared. This point was accurately established for each tube by repeated trials. The curve plotted from these determinations shows two percentage amounts of acetyl acetone which cause cloudiness at each temperature below the critical point. Of these two points, for each temperature, one represents the aqueous layer, i.e., the solubility of acetyl acetone in water; and the other represents he acetyl acetone layer, i.e., the solubility of water in acetyl acetone. This method is known as the 'Synthetic Method,' and yields results in harmony with those obtained by the analytical method, i.e., by analyzing each layer after complete separation occurs. See also, chapter on Methods of Solubility Determinations.

ACETYLENE C.H.

SOLUBILITY IN WATER.

(Winkler; see Landolt and Börnstein's Tabellen, 3d ed. p. 604, '05.)

t°.	a.	q.
0	r.73	0.20
5	1.49	0.17
10	1.31	0.15
15	1.15	0.13
20	1.03	0.12
25	0.93	0.11
30	0.84	0.00

a, "Absorption Coefficient," = the volume of gas (reduced to o° and 760 mm. pressure) taken up by one volume of the liquid at the given temperature when the partial pressure of the gas equals 760 mm. mercury.

q, "Solubility," = the amount of gas in grams which is taken up by 100 grams of the pure solvent at the given temperature if the total pressure, i.e., the partial pressure of the gas plus the vapor pressure of the liquid at the absorption temperature, is 760 mm.

SOLUBILITY OF ACETYLENE IN WATER, AQUEOUS SOLUTIONS OF ALKALIES AND SULFURIC ACID AT 15°. (Billitzer, 1902.)

Aq. Solution		l _{ss} of Acetylene in Aq. Solutions of Normality:								
of:	0.0I	0.025	. 0.05	0.10	0.15	0.25	0.50	1.00	2.00	3.00
Ba(OH) ₂		1.218		1.230	1.240		• • •		• • •	
Ca(OH) ₂	1.230		• • •							
NHOH	1.216	• • •		1.218		1.220	1.225	1.230	1.235	1.240
NaOH	1.210		I.200	1.180		1.128	1.040	0.885	0.600	0.370
KOH	1.212			1.185		1.130	1.056	0.912	0.660	0.460
Na ₂ SO ₄				1.170		1.068	0.940	0.720	0.340	
H ₂ SO ₄	•••	• • •	• • •	1.190	• • •	• • •	1.120	1.040	0.900	0.780

SOLUBILITY IN WATER, $l_{15} = 1.251$.

The above results were determined by the method of Ostwald (Handbuch physiko-chemischen Messungen 207 ff.). A thermostat was used and great care taken to reduce experimental errors and purify the acetylene. The results are in terms of the Ostwald Solubility Expression, for which see page 227, following.

SOLUBILITY OF ACETYLENE IN AQUEOUS ACETONE SOLUTIONS. (Kremann and Hönel, 1913.)

Vol. Per Cent H ₂ O in Solvent	Gms. C2H2 dissolved per Liter Sat. Solution at:				
(H ₂ O + Acetone).	••	18*	25°		
0	37	21	15.2		
5	31	18.2	13.5		
10	26	15.0	10.5		
20	15	9.5	8.0		
35	8.4	5.5	. 4.45		
50	5· 7	1.23	2.22		
75	• • •	• • •	1.23		
100	• • •	• • •	0.98		

The freezing-point curve for mixture of acetylene and methyl ether are given by Baume and German (1911, 1914).

ACETYLENE Biiodide, cis and trans.

Data for the lowering of the freezing-points of mixtures of these two isomers are given by Chavanne and Vos (1914).

ACONITIC ACID C₁H₁(COOH)₁.

100 grams of formic acid (95% HCOOH) dissolve 2.01 grams C₂H₂(COOH)₂ at 20.6° C.

ACOMITIME (Amorphous) C₁₄H₄₇NO₁₁.

ether

SOLUBILITY IN SEVERAL SOLVENTS.

(At 25° U.S.P.; at 18°-22°, Müller - Apoth-Ztg. 18, 2, '03.)

Solvent.	Gms. CaHal 200 Gms. So 18°-22°.	NO ₁ per lyent at:	Solver	n t	Gms. CatHa 100 Gms.	NO ₁₁ per solvent at:
Water Alcohol Ether	• • • •	0.03I 4.54 2.27	Benzene . Carbon Tetr Petroleum E		1.99	17.85
	bs. alcohol	" 2.7			stan and Umi gens, 1885.)	ney, 1892.)

1.56

TrichloroACRYLIC ACID CC12:CC1COOH.

SOLUBILITY OF TRICHLOROACRYLIC ACID IN WATER (Boeseken and Carriere, 1915.)

	Gms. CCla:		Between	n the con	centration 4.5
r.	CCICOOH per 100 Gms Sat. Solution	Solid Phase.	and 64.1 formed.	-	id layers are ercentage of
0.0	0.0	Ice	CCl _a : CCl	COOH i	in each is as
- 0.36	2.0	4	follows:		
- 0.6 Eutec. +13.7 "	4·5 64·1 68·5	Ice+CCl ₂ : CClCOOH.2½ H ₂ O CCl ₂ : CClCOOH.2½ H ₂ O "	ť.		L:CCICOOH per s. Sat. Solution. ver. Upper Layer.
17.0	74.5	ee	10	5.0	
19.2 m. pt.	ž · •	æ	20	5.2	64.1
17.0 Eutec		CCla: CClCOOH+	30	6.0	63.8
,		CCla: CClCOOH.21 HaO	40	7.5	62.2
20.3 "	82.8	CCIa: CCICOOH	50	13.0	59 · 5
25.0	84.5	"	55	18.0	56.0
30.0	86.ŏ	44	60	27.0	49.0
40.0	89.5	44	62 crit. t		38.o
50.0	92.5	4	The original	rinal ree	ults were plot-
б о.о	94.5	*		-	on paper and
70.0	98.5	«			
72.9	100.0	46	curves.	ngures	read from the

ACTINIUM EMANATIONS.

SOLUBILITY IN SEVERAL SOLVENTS. (Hevesy, 1912.)

A method was elaborated for determining the partition coefficient between a gas and a liquid phase. The solubility of actinium emanations was then determined in KCl, H₂O, H₂SO₄, C₂H₄OH, C₅H₁₁OH, (CH₂)₂CO, C₆H₅CHO, C₄H₆, C₇H₅, petroleum ether and CS₂. The solubility increases in the order named. Close relations are indicated between actinium, thorium and radium.

ADIPIC ACID (Normal) (CH₂)₄(COOH)₂.

100 grams H₂O dissolve 1.44 grams adipic acid at 15°.

(Henry - Compt. rend., 99, 1157, '84; Lamouroux - Ibid., 128, 998, '99.)

ADIPINIC ACID (CH₂)₄(COOH)₂.

100 grams of formic acid (95% HCOOH) dissolve 4.04 grams of (CH₂)₄ (COOH)₂ at 18.5°; 100 cc. of the saturated solution contain 4.684 grams of the acid. (Aschan, 1913.)

AGARIC ACID C10H20O5.H2O.

100 grams trichloroethylene dissolve 0.014 gram agaric acid at 15°.

(Wester and Bruins, 1914.)

AIR

SOLUBILITY IN WATER. (Winkler — Ber. 34, 1409, '01; see also Peterson and Sondern — Ber. 22, 1439, '89.)

			cc.* of atmospheric O and N per liter of:				
			Dist. H ₂ O (a	at 760 mm.).	Sea Water	(at 760 mm.).	
t".	В.	B'.	Oxygen.	Nitrogen.	Oxygen.	Nitrogen.	
0	0.02881	0.02864	10.19	18.45	7 · 77	14.85	
5	.02543	.02521	8.91	16.30	6.93	13.32	
IO	.02264	.02237	7 .87	14.50	6.29	12.06	
15	.02045	.020II	7.04	13.07	5 · 70	11.05	
20	.01869	.01826	6.35	11.91	•••	10.25	
25	.01724	.01671	5 · 75	10.9 6	• • •	9.62	
30	.01606	.01539	5 · 24	10.15			
40	.01418	.01315	4.48	8.67			
50	.01297	.01140	3.85	7·5 5		•	
60	.01216	.00978	3 ⋅ 28	6.5 0			
80	.01126	.00600	1.97	4.03			
100	.01105	.00000	0.00	0.00			

B= "Coefficient of Absorption," i.e., the amount of gas dissolved by the liquid when the pressure of the gas itself without the tension of the liquid amounts to 760 mm.

 $B' = {}^{\alpha}$ Solubility," *i.e.*, the amount of gas, reduced to o° and 760 mm., which is absorbed by one volume of the liquid when the barometer indicates 760 mm. pressure.

* Reduced to o° and 760 mm.

SOLUBILITY OF AIR IN AQUEOUS SULPHURIC ACID AT 18° AND 760 MM. (Tower - Z. anorg. Ch. 50, 382, 'co.)

Wt. % H₂SO₄ 98 90 80 70 60 50 Solubility Coef. 0.0173 0.0069 0.0069 0.0055 0.0059 0.0076

SOLUBILITY OF AIR IN ALCOHOL, ETC. (Robinet, 1864.)

Solvent.	Vols. Air per 100 Vols. Solvent.	Solvent.	Vols. Air per 100 Vols. Solvent.
Alcohol (95.1%)	· · 14·I	Oil of Lavender.	6.9
Petroleum Benzene		Oil of Turpentine.	24.2

ALANINE (a Aminopropionic Acid) CH₂CH(NH₂)COOH.

SOLUBILITY IN MIXTURES OF ALCOHOL AND WATER AT 25°. (Holleman and Antusch, 1894.)

Vol. % Alcohol.	Gms. per 100 Gms. Solvent.	Sp. Gr. of Solutions.	Vol. % Alcohol.	Gms. per 100 Gms. Solvent.	Sp. Gr. of Solutions.
0	16.47	1.0421	35	4.91	0.9670
5	14.37	1.0311	40	3 .89	0.9577
10	12.43	1.0280	50	2.38	0.9355
15	10.49	10101	60	I.57	0.9102
20	8.48	0 9984	70	0.85	o · 8836
25	7.11	0.9886	80	0.37	o 8556
. 31	5 · 53	0 9761			

See remarks under a Acetnaphthalide, page 13.

100 gms. pyridine dissolve 0.16 gm. α alanine at 20-25°.

(Dehn, 1917.)

20

Solubility of d Alanine and of dl Alanine in Water at Different Temperatures.

Result	a for
Kesun	B IOF:

(Pellini and Coppola, 1913.)

ť.	d Alanine.	d-l Alanine. Gms. $d-l$ Alanine per	Mixtures $d + l$ Alanine. Gms. per 100 Gms. H ₂ O.		
	Gms. d Alanine per 100 Gms. H ₂ O.	Gms. $d - l$ Alanine per 100 Gms. H ₂ O.	d Alanine.	l Alanine.	
0	12.99	12.89	13.27	4.01	
17	15.17	14.95	14.5	4.1	
30	17.39	17.72	17.05	4.99	
45	20.55	21.58	• • •	• • •	

ALBUMIN (Egg).

100 gms. H₂O dissolve 100 gms. egg albumin at 20-25°. (Dehn, 1917.) 100 gms. pyridine dissolve 0.1 gm. egg albumin at 20°-25°.

100 gms. aq. 50% pyridine dissolve 6.29 gms. egg albumin at 20°-25°.

(Dehn, 1917.)

ALLANTOIN C4H6N4O3.

SOLUBILITY IN WATER. (Titherly, 1912.)

The author obtained results varying from 0.7 to 0.77 gms. allantoin per 100 gms. H_2O at 25°. The variations were considered to be due to slow decomposition of the compound.

ALIZARIN C14H6O2(OH)2.

SOLUBILITY IN WATER AT VARYING TEMPERATURES. (Hüttig, 1914; Beilstein.)

t°.	25° _{7.}	€00°.	250°.
Grams Alizarin per liter	0.000595	0.340	3.017

According to Dehn (1917), 100 gms. H₂O dissolve 0.04 gm. alizarin at 20°-25°.

SOLUBILITY OF ALIZARIN IN AQUEOUS SOLUTIONS OF:

Ammoni	a at 25°.	Sodium Hydroxide at 25° (Hüttig, 1914.)			
Gms. NHs per Gms. Alizarin Liter. per Liter.		Gms. NaOH per Liter.	Gms. Alizarin per Liter.	Solid Phase.	
0.160	0.132	0.427	1.159	$C_{14}H_8O_4$	
4.025	0.228	1.050	3.820	$C_{14}H_{8}O_{4} + C_{14}H_{7}O_{4}Na$	

100 gms. 95% formic acid dissolve 0.10 gm. alizarin at 20.8°. (Aschan, 1913.) Alizarin is soluble in all proportions in pyridine and in aq. 50% pyridine at 20°-25°. (Dehn, 1917.)

ALOIN.

Squires and Caines (1905) found the solubility of aloin in water at room temperature to be 0.83 gm. per 100 cc. and in 90% alcohol, 5.55 gms. per 100 cc.

According to Wester and Bruins (1914) 100 gms. trichloroethylene dissolve 0.013 gm. aloin at 15°.

ALUMINIUM BROMIDE AIBra.

SOLUBILITY IN SEVERAL ORGANIC SOLVENTS. (Menschutkin, 1909-10.)

(Determinations by Synthetic Method.)

	_	
I'n	Kenzene.	

In Para Xylene.

	A					
r.	Gms. AlBr: per 100 Gms. Sat. Sol.	Solid Phase.	t.	Gms. AlBra pe 100 Gms. Sat. Sol.	Solid Phase.	
5.7 m. pt.	0	C _s H _s	14 m. pt.	0	p C ₄ H ₄ (CH ₄) ₂	
4.5	10	"	12.5	11.4	•	
3	20	"	10.2 Eutec	. 25	AlBrs++ C.H.(CHa)s	
1.8 Eutec	. 27.4	(C ₄ H ₄ +AlBr ₂)	20	35.7	AlBr _a	
10	35.3	AlBr ₂	30	47.2	u	
20	46.5	"	40	61.2	4	
30	59	4	50	72.2		
40	70	4	бо	79.6	•	
60	83	u	8o	90.9	"	
8 0	91.2	4	90	95.4	•	
90	95.3	46	96	100	•	
ģ6	100	4	-			

In Toluene.

In Benzoyl Chloride.

t°.	Gms. AlBra per 100 Gms. Sat. Sol.	Solid Phase.	t	•.	Gms. AlBra per 100 Gms. Sat. Sol.	Solid Phase.
-15	16.1	AlBra	– 0.	5 m. pt.	. 0	C.H.COCI
ō	23.7	44	- 2.	5	11.7	4
10	32.I	"	- 5	Eutec	. 22.2	C ₂ H ₂ COCl+AlBr ₂ .C ₂ H ₂ COCl
20	42.5	•	20		33.7	AlBra-CaHaCOCI
30	56	44	40		42.6	**
40	68.8	u	60		51.6	æ
50	76.5	4	80		ŏо.5	4
70	87.2	u	90	m. pt.	65.5	44
90	95·7	u	бo	•	68.g	44
9 6	100	4	60		71. Š	4
			30		75.8	u
			7	Eutec		AlBra-CaHaCOCI+AlBra
			20		80.6	AlBra
			50		85.6	44
			80		93.2	a
			96		100	4

Reciprocal solubilities determined by the method of lowering of the freezing-point (see footnote, page 1) are given by Kahlukow and Sachanow (1909) for mixtures of Aluminium Bromide and each of the following compounds: aniline, benzene, benzonitrile, methylbenzoate, p bromaniline, bromobenzene, methylene bromide, p dibromobenzene, dimethylaniline, diphenylamine, methylaniline, naphthaline, nitrobenzene, pyridine, toluene and p xylene. Similar data for mixtures of Aluminium Bromide and dimethylpyrone are given by Plotnikow (1911).

SOLUBILITY OF ALUMINIUM BROMIDE IN SEVERAL ORGANIC SOLVENTS (Con.) (Determinations by Synthetic Method.)

In Benzophenone.

In Ethylene Bromide.

. r.	Sms. AlBra p roo Gm. Sat Sol.	er Solid Phase.	r.	Gms. AlBra 100 Gm. Se Sol.	per it. Solid Phase.
48 m. pt.	0	(C ₀ H ₄) ₂ CO	10 m. pt.	0	CaH4Bra
45	12	a	6	11.5	**
42	19	"	2	21.3	"
38 Eutec	. 24.7	" +AlBra.(CaHa)aCO	- 2 Eutec.		CaHaBra+AlBra
60	30.9	AlBra-(CaHa)aCO	10	36.1	AlB _D
80	36.4	u	20	42.I	44
100	42.2	æ	30	48.7	"
120	49	4	40	56	4
130	53	•	50	63.7	•
142 m. pt.			60	71.5	4
130	64	" .	70	79.I	44
100	69	e e	8 0	86.8	
70	72.2	æ	90	94.5	•
50	74	æ	96	100	•
38 Eutec	· 75	" +AlBr	•		
50	78	AlBa			
Šo	8 8	. "			
90	93 · 5	•			
9 6	100	a			

In Nitrobenzene.

In o Chloronitrobenzene.

r. G	Gms. AlBr: per t°. 100 Gm. Sat. Solid Phase. Sol.			Grms. AlBra per t°. 100 Gm. Sat. Solid Phase. Sol.			
5.5 m. pt	. 0	C ₂ H ₄ NO ₂	32.5 m	. pt.	0	CHCINO:	
0	18	"	25	-	21.8	"	
-5	28 .8	*	13.8 E	utec.	37 · 5	" +Albra CaHaCINO	
-15 Eutec.	42	" +AlBra.CaHaNOa	30		43.I	AlBrao CaHaCINO	
ŏ	44.3	AlBra.CaHaNOa	50		50.3	•	
30	49.4	44	70		57.6	•	
60	56.7	u	83.5 m	. pt.	62.9	4	
8 o	63.6	"	70	-	67	u	
87 m. pt.	68.4	"	40		73 · 7	•	
80 ·	71.3	u	21 E	utec.	77 - 5	" ∔AlBra	
6o	73.9	u	40		80.6	AlBra	
40	76.4	и	60		84		
20 Eutec.	78.9	" +AlBn	8o		88.6	u	
40	82.4	AlBra	90		93 · 4		
60	85.8	"	ģ6		100	•	
8o	89.8	#	•				
93	96.6						
ģ6	100	•					

SOLUBILITY OF ALUMINIUM BROMIDE IN SEVERAL ORGANIC SOLVENTS (Con.). (Determinations by Synthetic Method.)

In m Chloronitrobenzene.

In p Chloronitrobenzene.

	Gms. AlBra p 100 Gms. Sa Sol.		t	Gms. AlBr 100 Gms. Sol.	
44.5 m. p	t. o	# C ₆ H ₄ CINO ₈	83 n	a.pt.o	p C₀H₄CINO₂
40	18.9	"	80	9 .	"
35.5 Eute	x. 27.8	"+AlBrass CaHaCINO:	70	24.8	e
50	34.8	AlBram CaHaCINO2	60 I	Eutec. 36.6	" +AlBra + CaH4CINO
70	44.5	и	80	45.6	AlBra. p CaHaCINOs
90	54 · 5	"	100	54.9	a
103.5 m. p	t. 62.9	. "	115 n	n. pt. 62.9	••
90 -	68.6	"	100	66.8	"
70	73 - 4	66	60	72.4	4
50	77.3	"	20 I	Lutec. 78	" +-AlBra
40 Eutec.	79.I	" +AlBra	60	85.3	AlBra
60	82.2	AlBra	80	89.3	
8o	87.I	"	93	95.4	4
90	02.2	u	ģ6	100	•
	95.1	u	-		
95 96	100	*			

In o Bromonitrobenzene.

In m Bromonitrobenzene.

t.	Gms. AlBra 200 Gms. S Sol.	per at. Solid Phase.	Gms. AlBra per roo Gms. Sat. Solid Phase.			
38 m. pt.	0 0	.C ₆ H ₄ BrNO ₂	54 m. pt.	. 0 1	mC ₄ H ₄ BrNO ₂	
30	19.7	4	50	11.6	4	
21 Eutec.	30	" +AlBrao CaHaBrNO2	45.5 Eute	c. 19.5	"+AlBra.m CaHaBrNO	
40	37.6	AlBrao CoHaBrNOs	60	25.5	AlBra.m CaHaBrNO2	
60	45.3	es	80	34.5	"	
80	53	u	110	49.5	46	
88.5 m. p		u	122 m. pt.	56.9	"	
80 Î	59.7	· u	110	61.6	4	
60	64.1	u	8o	69.2	4	
40	68.6	u	60	74.I	4	
24 Eutec.	72	" +AlBra	42 Eutec.	78.7	" +AlBr	
40	75.5	AlBra	6 0	80.3	AlBra	
60	79.8	' "	80	84.9	"	
8o	86.3	4	93	93.6	a	
93 .	94.5	u	<u>9</u> 6	100	•	
0 6	100	4	•			

SOLUBILITY OF ALUMINIUM BROMIDE IN SEVERAL ORGANIC SOLVENTS (Con.). (Determinations by Synthetic Method.)

In p Bromonitrobenzene.

In p Nitrotoluene.

					
t º.	Gms. AlBr _{a l} 100 Gms. Si Sol.	per at. Solid Phase.	t.	Gms. AlBr 100 Gms. Sol.	per Sat. Solid Phase.
124.5 m. p	t. o 1	.C ₄ H ₄ BrNO ₂	53.5 m. p	t. o	♦ C₀H₄CH₄NO₃
119	10	"	50	10	"
110	25.2	"	40	31.3	u
98 Eutec.	35.3	" +AlBra-p CaHaBrNO2	29 Eutec.	46.1	"+AlBra. + CaHaCHaNO
110	39.7	AlBra. P CaHaBrNOs	50	52.9	AlBra. p CaH4CH4NO
130	48.7	"	80	63	"
144 m. pt.	56.9	4	88 m. pt.	66	46
120	65.5	4	80	68.5	4
90	70.5	4	50	74.3	u
60	74.I	4	27 Eutec.	78.9	" +AlBra
45 Eutec.	76	" +AlBra	50	83.3	AlBra
60	79.6	AlBra	70	87.7	"
8o	86.6	**	85	92.2	4
93	95.4	4	93	96.7	4
<u>9</u> 6	100	44	9 6	100	4

In m Nitrotoluene.

In o Nitrotoluene.

					Ā
/	Gms. Alf t°. per 100 G Sat. Sol	ms. Solid Phase.	ť.	Gms. All per 100 G Sat. So	ms. Solid Phase.
16	m. pt. o	s C₃H₄CH₄NO₃	$-8.5 \mathrm{m.p}$	t. o	o C₀H₄CH₃NO₂
12	- T · J	**	-11 Eutec.	8.7	"+AlBrs.20CaH4CH4NO
8		46	10	. 12.8	AlBra.20CaH4CH4NOs
I	Eutec. 32	"+Albra.ss CaHaCHaNO	30	24.8	"
20	38.5	AlBra.ss CaHaCHaNOa	40	38	**
40	46.6	u	42.5 Eute		"+ AlBrs.20CaHaCHaNOs
80	59.7		60	54.3	AlBraso Callichano
90	63.3	"	75	59.5	u
96	m. pt. 66	4	90 m. pt.	66	u
90	68.8	44	70	72	u
60	73.8	44	40	76.I	
27	Eutec. 78.9	" +AlBr	19 Eutec.	79.I	" +AlBo
40	82	AlBra	40	82.5	AlBr ₃
70	89	u	70	87.5	44
90	_	u	90	93.8	
96		•	ģ6	100	

ALUMINIUM CHLORIDE AIC1.6H2O.

SOLUBILITY IN WATER. (Gerlach — Z. anal. Ch. 8, 250, '69.)

100 gms. saturated solution contain 41.13 gms. AlCla at 15°, Sp. Gr. of solution = 1.354.

SOLUBILITY OF ALUMINIUM CHLORIDE IN SEVERAL ORGANIC SOLVENTS. (Menschutkin, 1909.)

(Determinations by Synthetic Method.)

In Nitrobenzene.

In o Chloronitrobenzene.

					L
ŗ.	Gms. AlC per 100 Gm Sat. Sol.	ls. Solid Phase.	r.	Gms. Alc per 100 G Sat. Sol	ms. Solid Phase.
5.5 m. p	t. o	C _e H _e NO ₂	32.5 m. p	ot. o	o C _e H ₄ CINO ₂
2 Eutec.	10.3	" +AlCls.2CeHaNOs	27	IO.2	ii .
15	18	AlCla.2CaHaNOa	21	16.1	"
25.5 Eute	C. 30.5	" +AlCla.CaHaNO2	15 Eutec.	20.3	" +AICla.o CaHaCINO2
45	34.2	AlCla.CaHaNOa	35	25.5	AlCla.o CaHaCINOa
65	39.5	. "	55	31.5	u
65 85	48	44	75	38.7	44
90 m. pt.	52	u	89 m. pt.	45.9	"
82	55.6	u	8o -	51	u
72	58	u	69 Eutec.	54 · 4	" +AlCle
52 Eutec.	61.6	" +AlCl	110	57 · 5	AlCl _s
90	64	AlCla	150	65.4	"
130	67.7	a	175	74.6	u
160	72.4	u	194	100	".
180	80.1	"	•		
194	100	"			

In m Chloronitrobenzene.

In p Chloronitrobenzene.

				_			
Gms. AlCls per roo Gms. Solid Phase. Sat. Sol. 44.5 m. pt. o ss C ₆ H ₄ CINO ₈			Gms. AlCla per roo Gms. Solid Phase. Sat. Sol. 83.5 m. pt. o * CaHaCINOs				
36 Eutec.	16.6	"+AlCls.ss C ₄ H ₄ ClNO ₂	73	12.8	**		
50	21	AlCla.ms CaH4CINO2	68 Eute	ec. 17.1	" +AICh. + C.H.CINO2		
70	28.3	u	80	22.2	AlCla. o CaH4CINOs		
90	36.8	4	100	31.4	u		
104 m. pt.	45.9	u	120	41.8	4		
90	52.4	u	126 m. p	t. 45.9	"		
81 Eutec.	55.6	" +AlCle	110	53.2	" .		
120	60	AlCle	94 Eute	c. 58.1	"+ AlCla		
140	64.I	.a	125	60.5	AlCle		
160	70.2	u	155	66.g	"		
	•		180	77 · 7	, "		
			190	88.2	u		
			104	100	u		

The solubility of aluminium chloride in anhydrous hydrazine is stated by Welsh and Broderson (1915) to be 1.0 gm. in 100 cc. at room temperature.

SOLUBILITY IN SEVERAL ORGANIC SOLVENTS (Con.). (Determinations by Synthetic Method.)

In o Bromonitrobenzene.

In m Bromonitrobenzene.

				4	L.
t°.	Gms. AlCi per 100 Gm Sat. Sol.	s. Solid Phase.	ť.	Gms. AlCl per 100 Gm Sat. Sol.	s. Solid Phase.
38.5	0	C ₄ H ₄ BrNO ₂	54 · 7	0	# C _t H _t BrNO _t
32	7.5	«	51	6.5	"
26	13.1	u	47 Eu	tec. 11.9	"+AlCla.ss CaHaBrNO2
20 Eutec	17.5	" +AlCh.o C.H.BrNO:	60	16	AlClass CaHaBrNOa
40	21.7	AlClas CaHaBrNOs	80	22.9	44
60	26.4	"	100	30.7	4
80	31.7	u	110	35.9	"
97 m. pt.	38	u	116 m.	pt. 39.8	4
100	39.8	a	113	42.3	4
90	44.6	u	107	44.5	-
80 Eutec	46.5	" +AICle	97 Eu	tec. 47.4	"+AICI
110	50.1	AlCI ₉	120	51.5	AICh '
130	54 · I	4	140	56.5	4
150	60.2	a	160	64.5	4
170	70	4	180	77 -4	ø
180	77 - 4	"	190	88.8	•
			197	100	•

In p Bromonitrobenzene.

In o Nitrotoluene.

	F -101E01		A			
r.	Gms. AlCl per 100 Gm Sat. Sol.		ť.	Gms. AlCl per 100 Gm Sat. Sol.		
124.5 m.	pt. o	C ₄ H ₄ BrNO ₂	$-8.5 \mathrm{m}$		C ₄ H ₄ CH ₄ NO ₂	
117	7 · 4	er .	-9.3 E	utec. 1	"+AlCla.20 CaHaCHaNOa	
111	12.8	4	0	1.5	VICls.20 CaHaCHaNOs	
105	17.7	4	20	4	"	
99 Eute	C. 22.2	"+AlCla. CaHaBrNO	40	11	"	
120	28.4	AlCla. p CaHaBrNOs	55 Eute	ec. 31	"+AlClas CaHaCHaNOa	
140	36.4	. "	85	41.8	AlClass CaH4CHaNOa	
145 m. p	t. 39.8	"	95.5 m	pt.49.3	u	
140	44.5	i ⁴⁴	70	56.8	4	
120	51.2	•	45 Eut	ec. 61.5	" +AlCla	
113 Eute	c. 52.8	" +AlCla	95	64.5	AlCla	
130	55.9	AlCle	145	73.7	46	
150	61.3	**	180	86.2	æ	
180	77.4	u	185	89.5	*	
190	88.8	44	194	100	•	
194	100.0	et	•			

One liter sat. solution of AlCl₂ in CCl₄ contains 0.74 gm. at 4°, 0.22 gm. at 14°, 0.15 gm. at 20° and 0.06 gm. at 34°.

One liter sat. solution of AlCl₃ in CHCl₃ contains 0.65 gm. at -15°, 1.0 gm at o° and 0.72 gm. at 25°. (Lloyd, 1918.)

SOLUBILITY IN SEVERAL ORGANIC SOLVENTS (Con.). (Determinations by Synthetic Method.)

In m Nitrotoluene.

In p Nitrotoluene.

t*. p	Gms. AlC er 100 Gr Sat. Sol	la ns. Solid Phase.	1	Gms. AlC per 100 Gr Sat. Sol.	ns. Solid Phase.
16 m. pt.	0 1	m C ₆ H ₄ CH ₂ NO ₂	52.5	m.pt.o	CaHaCHaNOa
13 Eutec.	7.8	"+AlCla.2m CaHaCHaNOa	47	9.2	"
27		AlCla.2m CaHaCHaNOa	42	15	"
35 Eutec.	24.5	" +AlCla.m CaHaCHaNOa	37 E	utec. 19	"+AICL+CHCH,NO
65	34	AlClass CaHaCHaNOa	55	29.1	AlCh. p CoH4CH4NO2
'90	44.2	a	80	34.8	"
95	46.7	a	95	41.3	4
99.5 m.pt	.49.3	4	109 m	ı. pt. 49.3	•
70	56.8	•	100	53 · 4	•
45 Eutec.	61.5	" +AlCla	60	61.7	a
95	64.5	AlCla	45 E	utec. 64	" +AlCle
120	68.2	и	105	69.5	AlCla
130	70.2	•	165	80	44
_	-		190	94.3	•
			194	100.0	•

In Benzophenone.

In Benzoyl Chloride.

					_
r.	Gms. AlCl per 100 Gm Sat. Sol.	s. Solid Phase.	t.	Gms. AlCl per 100 Gr Set. Sol.	ns. Solid Phase.
48 m. pt.		C ₆ H ₄) ₂ CO	-0.5 m. pt	. 0 (C ₄ H ₄ COCI
44	8.5	44	-4	7.9	"
39.5 Eute	C. 15.4	" +AlCl ₆ (C ₆ H ₆) ₂ CO	-7.5 Eute	C. 12.7	" +AICla.CaHaCOCI
60	19.3	AlCla.(CaHa)aCO	0	14.I	AlCla-CaHaCOCI
90	26.5	"	20	18.8	#
120	37	"	40	25	*
130 m. pt.	42.3	. 4	60	33	
110	48.8	*	80	42.2	4
8o	53 · 5	44	93 m. pt.	48.7	4
60 Eutec.	56. I	" +AlCle	80	52.9	
100	58	AlCla	60	57.2	*
140	63	u	40	61	.
160	68. 6	u			
180	78:5	#4			
190	89.1	•			_
192	93	· u			•
194	100	u .			

ALUMINIUM FLUORIDE AIF.

Fusion-point data (Solubility, see footnote, page 1) are given by Pushin and Baskov (1913) for the following mixtures:

 $AIF_3 + NaF_4$, $AIF_3 + KF_5$, $AIF_4 + LiF_5$, $AIF_4 + CsF_5$, $AIF_4 + RbF_5$.

Similar data for mixtures of AIF₃ + NaF are given by Fedotieff and Illjinsky (1913).

ALUMINIUM HYDROXIDE Al(OH):.

SOLUBILITY OF MOIST FRESHLY PRECIPITATED ALUMINIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF ALUMINIUM SULPHATE,

(Kremann and Hüttinger, 1908.)

	(2232222 222 222322 2237	
Results at 20°.		Results at 40°.

Gms. per 10		SOUG Phase.	Gms. per 100		Solid Phase
Al ₂ (SO ₄) ₄ . 2.37	Al(OH) ₂ . O . I 5	Al ₂ O ₂ .SO ₃ .9H ₂ O	Al ₂ (SO ₄) ₂ . 5 . 22	Al(OH) ₃ . I . 33	Al ₂ O ₃ .SO ₃ .9H ₂ O
5	0.30	111101.001.91110	3.22	±.33 _±	Transition Point
3 7	0.65	"	8.85	1.82	Al ₂ O ₂ .2SO ₂ 12H ₂ O
9.1	1.30	Transition Point	10	1.65	"
10	1.23	Al ₂ O ₃ 2SO ₃ .12H ₂ O	15	1.40	"
15	1.04	- " "	20	2.15	"
20	1.40	"	25	3.80	"
25	2.40	"	28.5	5.80	Transition Point
30	3.70	"	30	4.35	Al ₂ O ₃ .3SO ₃ .16H ₂ O
31.6	4.20	Transition Point	35	1.60	
33	2.75	Al ₂ O ₃ .3SO ₃ .16H ₂ O	49	0.60	. "
34 · 73	0.92	26		Results	at 60°.†
			Gms. per 100	Gms. H ₂ O	Solid Phase.
• The fie	ures given	are not sufficient to deter-	Ala(SO4)a.	Al(OH):	
		nt accurately.	3.24	0.75	Al ₂ O ₃ .SO ₃ .9H ₂ O
t The at	thor's figur	res for 60° are reproduced	8.83	2.53	Al ₂ O ₃ .2SO ₃ .12H ₂ O
without change as they are not sufficient to deter- mine transition points.			12.67	1.85	"
			24.07	3.14	• "
			31.55	4.89	
			42.38	6.02	Al ₂ O _{2.3} SO _{3.16} H ₂ O

SOLUBILITY OF ALUMINIUM HYDROXIDE IN AQUEOUS SODIUM HYDROXIDE SOLUTIONS. (Haber and van Oordt, 1904.)

. 49.85

I.42

The mixtures were agitated for 24 hours. So-called acetic acid soluble tonerde (E. Merck) was used for the experiments. Temp. 20°-23°.

Normality of Aq. NaOH.	Gms. AlsOs per Lit
0.49	9.27
0.99	13.90
2.00	14.40

SOLUBILITY OF ALUMINIUM HYDROXIDE IN AQUROUS SOLUTIONS OF SODIUM HYDROXIDE. (Herz, 1911; Slade, 1911 and 1912.)

The experiments show that the ratio of Na to Al in the solution varies considerably depending upon whether the used Al hydroxide was precipitated hot or cold, also upon the length of time it was dried and upon the nature of the drying agent. Herz found a nearly constant ratio of 3 Na to 1 Al in solution. Slade gives ratios of approximately 2.5: 1 in normal NaOH at 25° for cold precipitated hydroxide dried over H_1SO_4 and 9.0: 1 for hot precipitated Al hydroxide dried over P_2O_6 . Drying in thin layers also increased this ratio but to a somewhat less extent. Slade reports the solubility of Al(OH)4 in a 0.6414 normal NaOH solution to be 1.34 gm. per 100 cc. at room temperature.

ALUMINIUM OXIDE Al₂O₂.

Fusion-point lowering data for mixtures of aluminium oxide and cryolite are given by Lorenz, Jabs and Eitel (1913). The results show one eutectic at approximately 940°. The eutectic mixture contains 19.8% Al₂O₂.

Results for aluminium oxide and magnesium oxide are given by Rankin and

Merwin (1916).

ALUMINIUM SULFATE Al2(SO4)3.18H2O.

SOLUBILITY IN WATER.

(Poggiale, 1843; Kremann and Hüttinger, 1908.)

ť.	Gms. Al ₂ (SO ₄); per 100 Gms. Sat. Sol.	Solid Phase.	ť.	Gms. Als(SO ₄)s per Solid Phase.		
- 1.02	8.09	Ice	20	26.7	Ale(SO4)3.18H4O	
- 1.43	10.7	"	30	28.8	46	
- 2.04	14.3	44	40	31.4	86	
– 2.65	17.5	и	50	34 · 3	u	
- 2.85	19.2	14	60	37.2	44	
- 4 Eut	ec. 23.1	Ice + Al ₂ (SO ₄) ₄₋₁ 8H ₂ O	70	39.8	44	
0 .	23.8	Al ₂ (SO ₄) ₂₋₁₈ H ₂ O	80	42.2	**	
+ 7.73	24.8	14	90	44 · 7	44	
10	25.1	66	100	47.I	u	

SOLUBILITY OF ALUMINIUM SULFATE IN AQUEOUS SOLUTIONS OF FERRIC SULFATE AT 25° AND VICE VERSA. (Wirth and Bakke, 1914.)

Gms. per 100	Gms. Sat. Sol.	Solid Phase.	. Gms. per 100 (. Gms. per 100 Gms. Sat. Sol.		
Ale(SO4)a.	Fez(SO4)4.	Sond Phase.	Ale(SO4)s.	Feg(SO ₄)2.	Solid Phase.	
27.82	0	Alg(SO4)a.18HgO	10.03	32.42	Fe ₂ (SO ₂) ₂ .9H ₂ O	
26.01	6.064	"	8.819	34.02	44	
24 .2I	9.819	u	6.626	35.82	66	
21.64	13.02		5.200	38.83	"	
15.22	23.28	44	2.342	42.44	a	
10.46	31.90	" +Fes(SO4)2-9H3O	• • •	44 · 97	"	

EQUILIBRIUM BETWEEN ALUMINIUM SULFATE, LITHIUM SULFATE, AND WATER AT 30°. (Schreinemaker and De Waal, 1906.)

Composition in Weight per cent:

	Composition in	Merkur bet ceur	•	
Of Sol	ution.	Of R	esidue.	Solid Phase.
% Li ₂ SO ₄ .	% Al ₂ (SO ₄) ₃ .	% LisSO4.	% Al ₂ (SO ₄) ₈ .	
25.1	0	• • •	• • •	Li ₂ SO ₄ .H ₂ O
21.93	5.34	• • •	• • •	44
16.10	14.89	63.70	4.02	44
13.63	20.76	14.72	31.17	{ Li ₂ SO ₄ .H ₂ O + Al ₂ (SO ₄) ₂ .18H ₂ O
13.24	21.71	61 . 24	7.22	Li ₂ SO ₄₋₄ H ₂ O
11.73	22.08	6.92	33 · 54	Alg(SO ₄) ₂ .18H ₂ O
6.75	24.34	3.77	37.06	4
3 · 44	26.12	• • •	•••	"
0.0	28. 0			44

SOLUBILITY OF ALUMINIUM SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 25°. (Wirth, 1912.)

Gms. per 100 Gms. Sat. Sol. Als(SO4) 8. HsSO4.		Solid Phase.	Gms. per 100 G	Solid Phase.	
		Sond Phase.	Ala(SO ₄)a.	H ₂ SO ₄ .	Soud Phase.
27.82	0	Ala(SO ₄)a.z8HaO	4.8	40	Ale(SO4)3-18H3O
29.2I	5.13	"	1.5	50	"
26.2	10	4	I	60	"
19.5	20	и	2.3	70	44
11.6	30	44	4	75	"

A curve was plotted from the published results and the above figures read from the curve.

100 gms. glycol dissolve 16.82 gms. Al₂(SO₄)₃.

(de Coninck, 1905.)

ALUMINIUM SULFIDE AlaSa.

Fusion-point data for mixtures of Al₂S₂ + Ag₂S are given by Cambi (1912).

ALUMS.

SOLUBILITY OF AMMONIUM ALUM AND OF POTASSIUM ALUM IN WATER.

(Mulder; Poggiale — Ann. chim. phys. [3] 8, 467, '43; Locke — Am. Ch. J. 26, 174, '01; Marino — Gazz. chim. ital. 35, II, 351, '05; Berkeley — Trans. Roy. Soc. 203 A, 214, '04.)

	Amr	nonium Alum.		P	Potassium Alum.			
t* .	Gms. (NH ₄) ₂ Al ₂ (SO ₄) ₄ per 100 g. H ₂ O.	Gms. (NH ₄) ₂ Al ₉ (SO ₄) ₄ 2 ₄ H ₉ O per 100 g. H ₉ O.	G.M.(NH ₄) ₂ Al ₂ (SO ₄) ₄ per 100 g. H ₂ O.	Gms. K ₂ Al ₂ (SO ₄) ₄ per 100 g. H ₂ O.	Gms. K ₃ Al ₃ (SO ₄) ₄ 24H ₃ O per 100 g. H ₃ O.	G. M. Kg Alg(SO ₄) ₄ per 100 g. H ₃ O.		
0	2.10	3.90	0.0044	3.0	5.65	0.0058		
5	3.50	6.91	0 10074	3.5	6.62	o.oo68		
10	4.99	9.52	0.0105	4.0	7.6o	0.0077		
15	6.25	12.66	0.0132	5.0	9 · 59	0.0097		
20	7 · 74	15.13	0.0163	5.9	11.40	0.0114		
25	9.19	19.19	0.0194	7 - 23	14.14	0.0140		
30	10.94	22.OI	0.0231	8.39	16.58	0.0162		
40	14.88	30.92	0.0314	11.70	23.83	0.0227		
50	20.IO	44 · IO	0.0424	17.00	36.40	0.0329		
60	2 6.70	66.65	0.0569	24.75	57 · 35	0.0479		
70	• • •	• • •	• • •	40.0	110.5	0.0774		
80	• • •	• • •	• • •	7 1.0	321.3	0.1374		
90	• • •	• • •	• • •	109.0	2275.0	0.2110		
92.5	• • •	• • •	• • •	119.0	00-	0.2313		
95	109.7	∞	0.2312	•••	•••	•••		

Note. — The potassium alum figures in the preceding table were taken from a curve plotted from the closely agreeing determinations of Mulder, Locke, Berkeley, and Marino. For the higher temperatures (above 60°), however, the results of Marino are lower than those of the other investigators, and are omitted from the average curve.

Locke called attention in his paper to the fact that Poggiale's results upon ammonium and potassium alum had evidently become interchanged through some mistake. This explanation is entirely substantiated, not only by Locke's determinations, but also by those of Mulder and Berkeley. The ammonium alum figures given above were therefore read from Poggiale's potassium alum curve, with which Locke's determination of the solubility of ammonium alum at 25° is in entire harmony.

SOLUBILITY OF AMMONIUM ALUM IN PRESENCE OF AMMONIUM SULFATE AND IN
PRESENCE OF ALUMINIUM SULFATE IN WATER,

(Rüdorff — Ber. 18, 1160, '85.)

Minton Word	100	G	ms. Saturate	d Solution Contain:
Mixture Used. Saturated Ammonium Alum at 18.5°	Gra	ım	(NH ₄) ₂ SO ₄	+ Grams Alg(SO ₄)
				3.69 16.09
20 cc. above sol. + 6 gms. cryst. Al ₂ (SO ₄) ₃ .				16.09
20 cc. above sol. + 4 gms. cryst. (NH ₄) ₂ SO ₄ .			20.81	0.20

SOLUBILITY OF MIXTURES OF POTASSIUM ALUM AND ALUMINIUM SULFATE AND OF POTASSIUM ALUM AND POTASSIUM SULFATE IN WATER.

(Marino - Gazz. chim. ital. 35, II, 351, 05.)

t°.	Gms. per 1000 G	ms. H ₂ O.	Gm. Mols. per room	Mols. H ₂ O.	Solid	
• •	Alg(SO4)3.18H2O.	K ₂ SO ₄ .	Alg(SO ₄) ₃ , 18H ₂ O.	KaSO4.	Phase.	
0	243 · 73	23 - 45	6.1	2.3	K,Al,(SO,),.24H,O	
20	824.25	30.85	15.1	3.1	+ AL(SO.)	
35	911.02	35.29	24 · I	3.6	66	
50	1243.21	59.55	33 · 5	ŏ.1	"	
65	1598.00	119.43	43 · I	12.6	u	
77	1872.11	183.80	50.5	18.g	"	
0	5.06	75.83	0.1 .	7. 8	K2Al2(SO4)2.24H2O	
0.5	8.66	75.18	0.2	7 · 7	+ K ₂ SO	
5.	16.07	85.78	0.4	8.8	"	
10	18.52	96.50	0.5	9.9	"	
15	20.56	109.30	0.55	11.2	"	
30	3 9.60	147.8	1.0	15.2	u	
40	73.88	163.1	I.Q	ıŏ.8	"	
50	126.0	195.4	3.4	20 · I	66	
δo	249 - 7	238.8	6. 7	24.6	"	
70	529.0	323.7		32.6	"	
30	1044.0	517.27	28.1	53 · 4	"	

Solubility of Mixtures of Potassium Alum and of Thallium Alum in Water at 25°.

(Fock - Z. Kryst. Min. 28, 397, '97.)

K,Al,(SO,)4.24H,O; Tl,Al,(SO,)4.24H,O.

	Con			Solid Phase		
KAKSON	per Liter.	TIAI(S	O4)2 per Liter.	Mol. %	So Cr of	Mol. % of Potassium
Grams.	Mg. Mols.	Grams.	Mg. Mols.	Mol. % KAl(SO₄)₂.	Sp. Gr. of Solutions.	Alum.
69.90	270.5	0.00	0.00	100	1.0591	100.0
74.56	288.2	0.48	1.13	99.61	1.0601	99.32
67.90	262.8	1.72	4.07	98.48	1.0598	96.84
65.30	252.7	4.52	10.67	95.95	1.0603	90.84
64.95	251.4	9.60	22.67	91.73	1.0605	82.04
53 - 23	205.9	18.44	43.56	82.54	1.0609	68.24
45 - 32	I 75 · 4	24.60	58.10	75.12	1.0609	58.23
38 · 02	147.2	32 - 48	76.75	65.73	1.0611	46.72
34 · 54	133.6	35 · 59	84.10	61 . 36	1.0611	44 - 23
28.35	109.7	42.99	101.60	51.93	1.0623	32.07
10.94	42 - 4	66.12	156.2	21.34	1.0654	7.94
0.00	0.0	75 - 46	178.3	0.00	1.0674	0.00

Data for the influence of pressure on the solubility of potassium alum in water at o° are given by Stackelberg, 1896.

Data for the solubility of Rubidium Alums are given on p. 582.

SOLUBILITY OF SODIUM ALUM IN WATER. (Smith, 1909.)

	Gms. NasAls(SO	Gms. NasAls(SO4)4 per 100 Gms.		Gms. NagAlg(SO4)4.24HgO per 100 Gms		
Sat. Sol. Water.	t*.	Sat. Sol.	Water.			
10	26.9	36.7	10	50.8	103.1	
15	27.9	38. 7	15	52.7	111.3	
20	29	40.9	20	54.8	121.4	
25	30.1	43.I	25	56.9	131.8	
30	31.4	45.8	30	59.4	146.3	

Above 30°, sodium alum is decomposed in contact with its saturated solution. The exact temperature of transition has not been determined.

Single determinations differing from the above are given by Tilden (1884) and by Auge (1890).

Solubility of Caesium Alum, Rubidium Alum, and of Thallium Alum in Water.

(Setterburg - Liebig's Annalen, 211, 104, '82; Locke - Am. Ch. J. 26, 183, '01; Berkeley - Trans. Roy. Soc. 203 A, 215, '04.)

4° .	Caesium Alum. Gms. per 100 Gms. H ₂ O.		Rubidiu Gms. per 100	m Alum. o Gms. H ₂ O.	Thallium Alum. Gms. per 100 Gms. H ₂ O.	
• •	Al ₂ Cs ₂ (SO ₄)4	Al ₂ Cs ₂ (SO ₄) ₄ •24H ₂ O.	AlaRba(SO4)4	Al ₂ Rb ₂ (SO ₄) ₄ .24H ₂ O.	AlaTla(SO4)4.	Al ₂ Tl ₂ (SO ₄) ₄ .24H ₂ O.
0	0.21	0.34	0.72	I.2I	3.15	4 . 84
5	0.25	0.40	o.86	1.48	3.8o	5 . 86
10	0.30	0.49	1.05	1.81	4.60	7.12
20	0.40	0.65	1.50	2.59	6.40	10.00
25	0.50	0.81	1.8o	3.12	7.60	11.95
30	0.60	0.97	2.20	3.82	9.38	14.89
40	0.85	1.38	3.25	5.69	14.40	23.57
50	1.30	2.11	4.80	8.50	22.50	38.41
60	2.00	3 · 27	7 - 40	13.36	35.36	65.19
70	3.20	5 · 27	12.40	23.25	• • •	• • •
80	5 - 40	9.01	21.60	43 - 25	• • •	• • •
90	10.50	18.11		• • •	• • •	• • •
100	22.70	42 - 54	• • •			• • •

Note. — Curves were plotted from the closely agreeing determinations recorded by the above named investigators and the table constructed from the curves.

Recent determinations of the solubility of caesium alum in water, by Hart and Huselton (1914), agree well with the data in the above table. For additional caesium alums see page 180.

SOLUBILITY OF Ammonium Chromium Alum IN WATER. (Koppel, 1906.)

It was shown that, due to the transition between the violet and green forms of the compound, the saturation point is reached very slowly, especially at the higher temperatures. From the determinations at 0° it was found that equilibrium is reached in 2½ hours. If this saturation time is taken for the other temperatures, the results are considered to show the solubility of the violet form alone. The final saturation represents the attainment of an equilibrium between the violet and green forms.

Kes	ults for the V	iolet Form.	Re	sults for Final	Equilibrium.
r.	Time of Saturation, Hrs.	Gms. (NH ₄) Cr (SO ₄) ₂ per 100 Gms. Sol.	t°.	Time of Saturation, Hrs.	Gms. (NH4) Cr(SO4)s per 100 Gms. Sol.
0	2.5	3.8	0	2.5	3.8
30	2.5	10.6	30	300	15.7–16
40	2.5	15.5	40	250	24.5-24.8

AMMONIA NH.

SOLUBILITY OF AMMONIA IN WATER.

(Roscoe and Dittmar — Liebig's Annalen, 112, 334, '59; Raoult — Ann. chim. [5] 1, 262, '74; Mallet — Am. Ch. J. 19, 807, '97.)

	At 760 mm	. Pressure.		At 760 mm	At 760 mm. Pressure.		
t*.	G. NH ₂ per 100 g. H ₂ O.	Vol. NH ₃ per 1 g. H ₅ O.	t*.	G.NH ₂ per 100 g. H ₂ O.	Vol. NHs per 1 g. H ₂ O.		
-40	294.6	•••	20	52.6	710		
— 30	278.1	• • •	25	46.0	635		
- 20	176.8	• • •	30	40.3	595 (28°)		
— 10	111.5	• • •	35	35.5	•••		
0	87.5	1299	40	30.7	•••		
5	77 · 5	1019	45	27.0	•••		
IO	67.9	910	50	22.9	•••		
15	60.0	802	56	18.5	• • •		

SOLUBILITY OF AMMONIA IN WATER DETERMINED BY METHOD OF LOWERING OF FREEZING-POINT. (Rupert, 1910.)

	ť	Gms. NH ₈ per 100 Gms. Sol	Solid Phase.	t *	Gms. NH ₂ per 100 Gms. Sol.	Solid Phase.
	0	0	Ice	-80.6	52	NH ₂ H ₂ O
-	2	2	4	-82.8	54	"
_	4.6	4	44	-85.8 ·	56	46
_	7.6	6	и	-87 E	utec. 56.5 N	Ha.HaO+2NHa.HaO
_	10.6	8	4	-84.8	58	2NH ₂ H ₂ O
_	13.9	10	44	-82.2	60	ce .
_	17.6	12	48	-80.4	62	44
_	21.4	14	er	-79.2	64	"
_	25.8	16	44	-79.8 m	ı. pt. 66	u
_	31.3	18	4	-79.2	68	46
	37	20	4	-80.3	70	u
	43.6	22	4	-82.1	72	4
	50.7	24	u	-84.5	74	4
_	60.3	26	"	-87.4	76	u
_	72.2	28	44	-90.4	7 8	u
_	87.2	30	4	-93.6	80	4
_	102.3	32	"	-94 E	Cutec. 80.3	2NHa.HaO+NHa
	116.7	34	"	-QI.7	82	NH ₂
_	120 E	Eutec. 34.5	Ice + NH ₄ H ₄ O	-89.4	84	"
_	103.8	36	NH ₄ H ₄ O	-87.4	86	4
_	92.9	38	46	-85.6	88	44
_	86.7	40	4	—84.1	90	4
_	83.5	42	4	-82.7	92	4
_	81.4	44	•	-81.5	94	•
_	8o ·	46	**	-80.3	96	44
	79.3	48.7	a	-79.I	98	"
_	79.4	50	44	-78	100	64

More recent data on the above system, by Smits and Postma (1914) agree quite closely with the above except in the region of the eutectic Ice + NH₈H₂O. These authors report a temperature of -100.3 instead of -120 for this point. Additional determinations are also given by Baumé and Tykociner (1914). Older data for the ice curve are given by Guthrie (1884) and Pickering (1893).

VAPOR PRESSURE OF AQUEOUS AMMONIA SOLUTIONS. (Perman, 1903.)

Gms. NHa per		Vapor Pressure in mm. of Mercury at:								
100 Gms. Sol.	⊙°.	10°.	20°.	30°.	40°.	50°.	60°.			
0	4.5	9	17.5	31.5	55	125	149.5			
2.5	13	18	32.5	56.5	91	146	234			
5	20	27	47 · 5	83	134.5	210	327			
7.5	27.5	40	70	115	183.5	281	425			
10	35	54	93	153.5	241.5	363.5	539.5			
12.5	45	69	118	193.5	303.5	455	666			
15	57.5	89	151	245	377.5	564	816.5			
17.5	75	115	191	305.5	465.5	688.5	985			
20	93	144	237	393	569.5	834.5	1191			
22.5	117	180.5	291	455.5	690	1005	1432			
25	144.5	226.5	360	561.5	830.5	1195				
27.5	181	280	440	68o	1007	• • •	• • •			
30	222	346	537	817	1189.5		• • •			

The apparatus (Perman, 1901) used for the above determinations, consisted of a pipet provided with a stop-cock at its upper end and connected with a Hg leveling tube at its lower end. For maintaining constant temperatures the vessel was surrounded by a glass jacket into which water or vapors of liquids boiling at various temperatures could be introduced. The aqueous ammonia solution was drawn in above the Hg and boiled to expel air. A portion of it was withdrawn for analysis through the stop-cock at the top, by elevating the level of Hg. The vapor pressures of the analyzed mixture at various constant temperatures were then read with the aid of an adjacent millimeter scale. Curves were plotted from the results and readings for regular intervals of concentration and temperature made.

By means of a modification of the above apparatus the author was also able to estimate the partial pressure of the ammonia and of the water of each mixture. Tables for these values are given. Data have also been calculated for the latent heat of evaporation of aqueous ammonia solutions.

Influence of Salts and Other Compounds on the Vapor Pressure of Aqueous Ammonia Solutions.

(E. G. Perman, J. Chem. Soc. (Lond.), 81, 480, 1902.)

Vapor pressure determinations were made as above described on aqueous solutions of the following compositions—(a) 10.43% Urea + 16.36% NH₄, (b) 5.29% Urea + 17.22% NH₄, (c) 4.56% Mannitol + 12.27% NH₄, (d) 3.05% K₂SO₄ + 7.49% NH₄, (e) 5.27% NH₄Cl + 16.85% NH₄, (f) 10.26% NH₄Cl + 12.9% NH₄, (g) 2.68% CuSO₄ + 14.65% NH₄, (h) 3.94% CuSO₄ + 6.54% NH₄.

The author's data were plotted on cross section paper and the following values read from the curves.

t°.	t°. Vapor Presure of Each Solution in mm. of Mercury.							
	(a)	(b)	(c)	(d)	(6)	(y	(x)	(A)
20	204	200	120		193	130	155	
30	325	325	198		302	220	235	87
40	485	500	311	200	47 I	345	<u> 3</u> 65	145
50	715	727	465	304	695	522	545	223
60	1050	1060	705	453	975	770	• • •	344

In an earlier paper Perman (1901) gives data similar to the above for the vapor pressure of ammonia in aqueous solutions of sodium sulfate.

MUTUAL SOLUBILITY OF AQUBOUS AMMONIA AND POTASSIUM CARBON-ATE SOLUTIONS.

(Newth - J. Chem. Soc. 77, 776, 1900.)

The solutions used were: Potassium Carbonate saturated at 15° (contained 57.2 grams K₂CO₃ per 100 cc.). Aqueous Ammonia of 0.885 Sp. Gr. (contained about 33 per cent ammonia). The determinations were made by adding successive small quantities of one of the solutions to a measured volume of the other, and observing the point at which opalescence appeared.

	Saturated K ₂ CO ₂	in Aq. Ammonia.	Aq. Ammonia in Saturated K ₂ CO ₂ .		
\$°.	cc. K ₂ CO ₃ per zoo cc. Ammonia,	%K ₂ CO ₂ Solution in Mixture.	cc. Ammonia in 100 cc. K ₂ CO ₃ .	%K ₂ CO ₂ Solution in Mixture.	
I	2.0	2.0	37·5	72.7	
6	3.0	3.0	47 · 5	67.6	
II	5.0	4.7	52.5	65.o	
16	6.5	6.1	60.0	63.0	
21	8.5	8.0	77 · 5	56.3	
26	10.5	9.5	105.0	49.0	
31	12.5	II.I	152.5	39.0	
38	20.0	16.6	195.0	33.0	
39	21.0	17.0	220.0	31.0	
42	25.0	20.0	250.0	28.5	
43	35.0	26.0	285.0	26.5	

Above 43° the solutions are completely miscible. If 10 per cent of water is added to each solution the temperature of complete miscibility is lowered to 25°. The mutual solubilities are:

	Per cent K ₂ CO ₂ Solution in:			
6*.	Ammonia Layer.	K ₂ CO ₂ Sol. Layer.		
0	8	62		
10	II	52		
20	15	38		
25 (crit. pt.)	2	5		

With the addition of 12.9 per cent of water to each solution the temperature of complete miscibility (crit. pt.) is lowered to 10°. With the addition of 18.1 per cent water this temperature becomes 0°.

SOLUBILITY OF AMMONIA IN AQUEOUS SALT SOLUTIONS. (Recult.)

	In Calcium N Gms. NI Gms. S	litrate Solutions H _a per 100 pivent in:	In Potassium Hydroxide Solution Gms. NH ₂ per 100 Gms. Solvent in:		
6°.	28.38% Ca(NO ₂) ₂ .	In 50.03% Ca(NO2)2	11.25% KOH.	25.25% KOH.	
0	96.25	104.5	72.0	49.5	
8	78.50	84.75	57 .0	37 · 5	
16	65.00	70.5	46.0	28.5	
24	• • •	•••	37 ⋅ 3	21 .8	

The freezing-point curve for mixtures of ammonia and ammonium thiocyanate is given by Bradley and Alexander (1912).

SOLUBILITY OF AMMONIA IN AQUBOUS SALT SOLUTIONS AT 25°. (Abegg and Riesenfeld, 1902.)

The determinations were made by the dynamic method of vapor pressure measurement previously used by Doyer (1890), Konowalow (1898), Gahl (1900), and Gaus (1900). It consists in passing an indifferent gas through an aqueous ammonia solution of known concentration and calculating the vapor pressure from the volume of indifferent gas required to remove a definite amount of ammonia from solution. The indifferent gas (H + O) was generated by an electric current and its volume measured by means of a voltmeter. The accompanying ammonia was removed by passing through 0.01 n. HCl and estimated by means of electrolytic conductivity. The molecular vapor pressure was obtained by dividing the absolute vapor pressure, calculated from above measurements, by the concentration (normality) of the ammonia. For I n. ammonia in water at 25° the molecular vapor pressure was 13.45 mm. Hg; for 0.5 n. solution it was 13.27 mm. Hg.

Since it has been shown by much experimental evidence, that Henry's Law of the proportionality of the concentration in the liquid and vapor phase applies very closely in the present case, see also Gaus (1900), it follows that the ammonia pressure relation of two solutions of equal ammonia content is reciprocally proportional to the solubility relation of the ammonia in them. Hence, to calculate the solubility from the vapor pressures, it is only necessary to divide the value for the molecular vapor pressure in H₂O by that for the salt solution. Thus the solubility of NH₂ in H₂O becomes unity. All determinations were made with I n. aqueous ammonia in salt solution of 0.5, I and I.5 normality. The figures therefore show mols. NH₂ per liter of the particular salt solution at 25°. In a later paper by Riesenfeld (1903), additional determinations are given for 35°.

Salt Solution.	Mols. NHs	per Liter S	alt Sol. of:	Salt Solution.	Mols. NH	per Liter S	
Solution.	0.5 n.	I D.	1.5 D.	Solution.	0.5 n.	ı n.	1.5 n.
KCl	0.930	0.866	0.809	KCN	0.926	0.858	0.802
KBr	0.950	0.904	0.857	KCNS	0.932	0.868	0.814
KI	0.970	0.942	0.900	K_2SO_4	0.875	0.772	0.678
KOH	0.852	0.716	0.607	K_2SO_3	0.865	0.768	0.675
NaCl	0.938	0.889	0.843	K_2CO_3	0.788	0.650	0.554
NaBr	0.965	0.916	0.890	$K_2C_2O_4$	0.866	0.771	0.675
NaI	0.995	0.992	0.985	K₂CrO₄	0.866	0.771	0.675
NaOH	0.876	0.789	0.716	CH ₂ COOK	0.866	0.765	0.685
LiCl	0.980	1.008	1.045	HCOOK	0.868	0.760	0.678
LiBr	1.001	1.040	1.000	KBO_2	0.814	0.677	0.560
LiI	1.030	1.094	1.190	K_2HPO_4	0.860	0.749	0.664
LiOH	0.863	0.808	0.768	Na_2S	0.887	0.795	0.726
KF	0.839	0.722	0.626	*KClO ₃	0.927	• • •	• • •
KNO_3	0.923	0.862	0.804	*KBrO ₃	0.940	• • •	• • •
KNO ₂	0.920	0.855	0.798	*KIO ₈	0.951	• • •	• • •

^{*} These salt solutions are 0.25 normal.

Konowalow (1898) expressed the results of determinations of the solubility of ammonia in aqueous silver nitrate by the equation $H = 56.58 \ (m-2 \ n)$ in which H = partial pressure of NH₂ in mm. of Hg., m = molecular concentrations of NH₃ and n = molecular concentration of AgNO₂. Similar results are given in later papers (Konowalow, 1899, a, b) for a large number of other salt solutions.

Gaus (1900) gives data for the vapor pressure of ammonia in aqueous 0.4 n solutions of about 20 salts, only a few of which occur in the above table.

SOLUBILITY OF AMMONIA IN ABSOLUTE ETHYL ALCOHOL. (Delepine — J. pharm. chim. [5] 25, 496, 1892; de Bruyn — Rec. trav. chim. 11, 112, 192.)

		Gms. NH ₃	Gms. NH ₃ per 100 Gms. Solution.		Gms. NH ₃ per 100 Gms. Alcohol	
ŧ*.	Density.	per 100 cc. Solution.	(Delepine.)	(de Bruyn.)	(Delepine.)	(de Bruyn.)
0	0.782	13.05	20.95	19.7	26.5	24.5
5	0.784	12.00	19.00	17.5	23.0	21.2
IO	0.787	10.85	16.43	15.0	19.6	17.8
15	0.789	9.20	13.00	13.2	15.0	15.2
20	0.791	7 · 50	10.66	11.5	11.9	13.2
25	0.794	6.00	10.0	10.0	11.0	II.2
30	0.798	5.15	9.7	8.8	10.7	9 · 5

According to Müller (1891), one volume of alcohol absorbs 340 volumes of ammonia at 20° and 760 mm. pressure.

SOLUBILITY OF AMMONIA IN AQUEOUS ETHYL ALCOHOL. (Delepine.)

	In 06	% Alcohol.	In 90% Alcohol.		In 80% Alcohol.	
6°.	Sp. Gr. Solution.	G. NH ₃ per 100 Gms. Sol.	Sp. Gr. Solution.	G. NH ₂ per 100 Gms. Sol.	Sp. Gr. Solution.	G. NH _a per 100 Gms. Sol.
0	0.783	24.5	0.800	30.25	0.808	39.0
IO	0.803	18.6	0.794	28.8	0.800	28.8
20	0.788	14.8	0.795	15.8	0.821	19. I
30	0.791	10.7	0.796	11.4	0.826	12.2
		In 60% Alcoho	1.	In 50	% Alcohol	
		Gr. G. NH		Sp. Gr. Solution.	G. NH ₃	

	10 00	% Alcohol.	111 50% AICOLOI.		
t°.	Sp. Gr. Solution.	G. NH ₃ per 100 Gms. Sol.	Sp. Gr. Solution.	G. NH ₃ per 100 Gms. Sol.	
0	0.830	50.45	0.835	69.77	
10	0.831	37 · 3	0.850	43 .86	
20	0.842	26.I	0.869	33.8	
30	0.846	21.2	o.883	25.2	

SOLUBILITY OF AMMONIA IN ABSOLUTE METHYL ALCOHOL. (de Bruyn — Rec. trav. chim. 11, 112, '92.)

t°.	G. NH ₃ per	100 Grams.	t°.	G. NH ₃ per 100 Grams. Solution. Alcohol.		
	Solution.	Alcohol.		Solution.	Alcohol.	
0	29.3	41.5	20	19.2	23.8	
5	26.5	36.4	25	16.5	20.0	
IO	24.2	31.8	30	14.0	16.0	
15	21.6	27.8				

SOLUBILITY OF AMMONIA IN ETHYL ETHER. (Christoff, 1912.)

Results in terms of the Ostwald Solubility Expression (see page 227), at 0° = 17.13, at 10° = 12.35, at 15° = 10.27.

Freezing-point lowering curves (Solubility, see footnote, page 1) are given by Baumé and Perrot (1910), (1914) for mixtures of ammonia and methyl alcohol and for mixtures of ammonia and methyl ether; results for ammonium and potassium, ammonium and sodium, and ammonium and lithium are given by Ruff and Geisel (1906); results for ammonium and hydrogen sulfide are given by Scheffer (1912).

SOLUBILITY OF AMMONIA IN HYDROXYLAMINE. (de Bruyn, 1892.)

100 gms. of the sat. solution contain 26 gms. NH₈ at $\pm 0^{\circ}$ and 19–20 gms. at 15–16°.

DISTRIBUTION OF AMMONIA BETWEEN:

Water and Amyl Alcohol at 20°	. Water and Chloroform at 20°.
(Herz and Fischer — Ber. 37,	(Dawson and McCrae — J Ch. Soc. 79, 496, 'or; see
4747. '04)	also Hantsch and Sebaldt — Z. phys. Ch. 30, 258, '99.)

Aq.	Alcoholic Layer.	G.M.N. Aq. Layer.	Ha per 100 cc. Alcoholic Layer.	Gms. NHs Aq. Layer	Per 100 cc. CHCla Layer.	G. M. N. Aq. Layer.	Ha per 100 cc. CHCla Layer.
0.5	0.072	0.25	0.0035	0.2	0.007	0.01	0.00038
1.0	O · 147	0.50	0.0073	0.4	0.015	0.02	0.00073
2.0	0.272	1.00	0.0148	0.6	0.023	0.03	0.00114
3.0	0 438	2.00	0.0295	0.8	0.031	0.04	0.00152
4.0	0 - 595	3.00	0.0460	1.0	0.039	0.05	0.00193
5.0	0.756	_		I . 2	0.046	o.o6	0.00232
•				1.4	0.055	80.0	0.00311
				1.6	o.063	0.10	0.00396

For calculations of above distribution results see Note, page 6.

Additional data for the distribution of ammonia between water and chloroform are given by Dawson and McCrae (1900), (1901a), (1901b); Dawson (1906), (1909); Abbott and Bray (1907); Sherrill and Russ (1907); Bell (1911), and by Moore and Winmill (1912). The results show that with increase of concentration of ammonia, the relative amount in the aqueous layer diminishes. Thus Bell found that at 25° the distribution ratio is 22.7 when the aqueous layer contains 1.02 gm. mols. NH₂ per liter and only 10 when 12.23 gm. mols. NH₃ are present in the aqueous layer. The influence of increase of temperature was also found to be in the direction of diminution of the relative amount in the aqueous layer.

The influence of the presence of a large number of salts in the aqueous layer has been studied by several of the above-mentioned investigators. In the case of copper, zinc and cadmium salts (Dawson and McCrae, 1900), (Dawson, 1909), the distribution ratio varied with salt concentration in a manner indicating that metal ammonia compounds were formed.

Results for the effect of KOH, NaOH and Ba(OH)₂ on the distribution at 18° are given by Dawson (1909).

Results for the effect of ammonium chromate upon the distribution at 25° are given by Sherrill and Russ (1907).

Results for the distribution of ammonia between water and mixtures of chloroform and amyl alcohol at 25° are given by Herz and Kurzer (1910).

DISTRIBUTION OF AMMONIA BETWEEN TOLURNE AND AIR. (Hantzsch and Vagt, 1901.)

t°.	Gms. NHs per	1000 CC.	Mols. NHs per 1000 cc.	
	C.H.CH, Layer.	Air.	C.H.CH, Layer.	Air.
0	0.366	0.0396	0.0215	0.00233
10	0.357	0.0435	0.0210	0.00256
20	0.326	0.0451	0.0192	0.00265
30	0.286	0.0462	0.0168	0.00272

AMMONIUM ACETATE CH, COONH,

100 cc. of sat. solution in acetone contain 0.27 gm. CH₂COONH₄ at 19°.

(Roshdestwensky and Lewis, 1912.)

AMMONIUM ARSENATES.

THE SYSTEM AMMONIA, ARSENIC TRIOXIDE AND WATER AT 30°. (Schreinemakers and de Baat, 1915.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100	Solid Phase.		
NH _a .	As ₂ O ₂ .	Song Phase.	NH ₈ .	As ₂ O ₃ .	Soud Pinage.	
0	2.26	As_2O_2	3.13	12.30	NH ₄ AsO ₂	
1.41	10.98	"	3.91	7.63	"	
2.78	20.49	"	6.95	4.72	"	
2.86	21.17	"	9.93	3.20	"	
2.88	18.43	NH ₄ AsO ₂	4.28	2.16	66	

Data are also given for the system NH₄Cl + As₂O₂ + H₂O at 30°.

100 gms. H₂O dissolve 0.02 gm. NH₄CaAsO_{4.}½H₂O.

" " " NH₄MgAsO_{4.}½H₂O.

(Field, 1873.)

SOLUBILITY OF AMMONIUM MAGNESIUM ARSENATE IN WATER AND IN AQUEOUS SOLUTIONS OF AMMONIUM SALTS. (Wenger, 1911.)

Gms. NH4MgAsO4 per 100 Gms. of Each Solvent.

r.	Water.	Ag. 5% NHLNG.	Aq. 5% NH4Cl.	Aq.• NH4OH.	Aq. NH4OH † +5% NH4Cl.	Aq. NH4OH† +10% NH4Cl.	Solid Phase.
0	0.0339	0.092	0.084	0.0087	• • •	• • •	NH4MgAsO4.6H4O
20	0.0207	0.114	0.113	0.0096	0.013	0.032	66
30	• • •	0.118	0.113	• • •	• • •		**
40	0.0275	0.139			• • •	• • •	"
50	0.0226	0.189	0.189	0.0100	• • •		u
60	0.0210	0.211	0.219	0.0090	0.047	0.054	4
70				0.0095	• • •		"
80	0.0236	0.189	0.231	0.0091	• • •	• • •	4

Composed of r part NHs(d = 0.96) + 4 parts HsO.
 Contained 4 parts NHs(d = 0.96) per 100 parts NHsCl solution.

AMMONIUM BENZOATE C.H.COONH.

SOLUBILITY IN WATER AND IN AQUEOUS ALCOHOL AT 25°. (Seidell, 1910.)

Gms. C ₈ H ₈ OH per 100 Gms. Solvent.	dus of Sat. Sol.	Gms. C ₄ H ₄ COONH ₄ per 100 Gms. Sat. Sol.	Gms. C ₂ H ₂ OH per 100 Gms. Solvent	d _M of Sat. Sol.	Gms. C ₆ H ₆ COONH ₄ per 100 Gms. Sat. Sol.
0	1.043	18.6	60	0.930	15
10	1.027	18	70	0.901	12.2
20	1.012	18	80	0.864	8.3
30	0.997	18. 1	90	0.828	4.2
40	0.979	18	95	0.810	2.7
50	0.956	17	100	0.796	1.6

100 gms. water dissolve 19.6 gms. C₆H₅COONH₄ at 14° 5, d₁₄ of sat. sol. = 1.042. (Greenish and Smith, 1901.)

100 gms. water dissolve 83.33 gms. C₆H₆COONH₄ at b.-pt. 100 gms. glycerol dissolve 10 gms. C₆H₆COONH₄ at room temp.

(U. S. P.) (Hager.) THE SYSTEM AMMONIA, BORIC ACID AND WATER AT 30° AND AT 60°. (Sborgi, 1913-15; Sborgi and Meccacci, 1916.)

Results	at 30°.	Results at 60°.							
(NH _a) ₂ O.	BrOs.	Solid Phase.	(NH ₄) ₅ O.	Gms. Sat. Sol. B ₂ O ₃ .	Solid Phase.				
0.23	4.81	H_3BO_3	0	7.39	H_3BO_3				
0.70	7.20	"	0.78	12.12	"				
0.78	7.62	$H_3BO_3+1.5.8$	1.42	15.60	$H_3BO_3+1.5.8$				
0.99	7 · 53	1.5.8	1.70	15.29	1.5.8				
r.08	7.66	"	3.23	18.60	"				
1.71	9.13	"	4.02	20.38	1.5.8+1.4.6				
2.25	10.71	"	4.88	21.76	1.4.6				
2.89	12.32	"	6.41	24.32	"				
3.13	12.59	"	7.90	27.31	1.4.6+1.2.4				
3.43	6.35	2.4.5	7.83	26.76	1.2.4				
6.51	4 48	"	7.91	17.57	"				
10.45	3.37	"	9 · 57	13.56	"				
18.05	2.02	"	15.45	8.33	"				
24.80	1.51	"	19.47	5.92	"				
30.56	I.22	"	22.57	4.47	"				
45.34	0.84	"							
0	/3TTT \ A	D 0 017 0		A *** * * * * * * * * * * * * * * * * *	D 0 455 0				

 $1.5.8 = (NH_4)_2O.5B_2O_3.8H_2O$ $2.4.5 = 2(NH_4)_2O.4B_2O_3.5HO_3$ $1.4.6 = (NH_4)_2O.4B_2O_3.6H_2O$ $1.2.4 = (NH_4)_2O.2B_2O_3.4H_2O$

AMMONIUM BROMIDE NH4Br.

SOLUBILITY IN WATER. (Smith and Eastlack, 1916.)

(Determinations by sealed tube method.)

ť.	Gms NH ₄ Br per 100 Gms. H ₂ O,	ť.	Gms. NH ₄ Br per 100 Gms. H ₂ O.	t°.	Gms. NH ₄ Br per 100 Gms. H ₂ O.
- 17 Eutec.	47 · 3	60	107.8	130	180
Ó	60.6	70	116.8	137.3	Transition pt.
10	68	80	126	140	192.3
20	75· 5	90	135.6	150	202.5
30	83.2	001	145.6	160	213.4
40	91.1	110	156.5	170	225.5
50	99.2	120	167.8		

SOLUBILITY OF AMMONIUM BROMIDE IN ABSOLUTE ETHYL ALCOHOL, METHYL ALCOHOL, AND IN ETHER.

(Eder; de Bruya — Z. phys. Ch. 10, 783, '92.)

	In Ethyl Gms. N per 100	H ₄ Br	In Methyl Gms N. per 100	H₄Br	In Ether (o 720 Sp. Gr. Gms. NH ₄ Br per 100 Grams.	
ŧ°.	Solution.	Alcohol.	Solution	Alcohol.	Ether.	
15	2.97	3.o6	• • • •	••••	0.123	
19	3.12	3.22	II.I	12.5	••••	
78	9.50	10.50				

100 cc. ethyl alcohol of $d_{15} = 0.8352$ dissolve 7.8 grams NH₄Br at 15°, d_{15} of sat. sol. = 0.8848. (Greenish, 1900.)

100 cc. anhydrous hydrazine dissolve 110 gms. NH₄Br at room temp. with evolution of ammonia. (Welsh and Broderson, 1915.)

SOLUBILITY OF AMMONIUM BROMIDE AT 25° IN MIXTURES OF: (Herz and Kuhn, 1908.)

Methyl and Ethyl Alcohols.				and Met lcohols.	hyl	Propyl and Ethyl Alcohols.		
Gms. CHiOH per 100 Gms. Solvent.	d % of Sat. Sol.	Gms. NH ₄ Br per 100 cc. Sat. Sol.	Gms. CaH ₇ OH per 100 Gms. Solvent.	d 🍇 of Sat. Sol.	Gms. NH ₄ Br per 100 cc. Sat. Sol.	Gms. CsH ₇ OH per 100 Gms. Sol- vent.	d 🏰 of Sat. Sol.	Gms. NH4Br per 100 cc. Sat. Sol.
0	0.8065	2.55	0	0.8605	9.83	0	0.8065	2.55
4.37	0.8083	2.99	II.II	0.8524	8.51	8.51	0.8062	2.51
10.40	0.8117	3.21	23.8	0.8426	6.90	17.85	0.8052	2.37
41.02	0.8252	5.06	65.2	0.8184	3.08	56.6	0.8048	1.63
80.69	0.8501	8.13	91.8	0.8097	1.28	88.6	0.8042	I.II
84.77	0.8508	8.47	93 · 75	0.8089	1.25	91.2	0.8049	1.05
91.25	0.8551	9.34	100	0.8059	0.95	95.2	0.8059	1.04
100	0.8605	9.83		•	, ,	100	0.8059	0.95

AMMONIUM Cadmium **BROMIDE** (NH₄)CdBr₂. ½H₂O.

100 parts water dissolve 137 parts of the salt; 100 parts of alcohol dissolve 18.8 parts and 100 parts of ether dissolve 0.36 part. (Eder, 1876.)

AMMONIUM Platinum BROMIDE (NH4)2PtBr6.

100 gms. sat. aqueous solution contain 0.59 gm. salt at 20°. (Halberstadt, 1884.)

SOLUBILITY OF TETRA ETHYL **AMMONIUM BROMIDE** N(C₂H₅)₄Br, AND OF TETRA METHYL AMMONIUM BROMIDE N(CH₄)₄Br in Acetonitrile.

(Walden – Z. phys. Ch., 55, 712, '06.)

100 cc. sat. solution in CH₂CN contain 9.59 gms. N(C₂H₅)₄Br at 25°. 100 cc. sat. solution in CH₂CN contain 0.17 gm. N(CH₃)₄Br at 25°.

SOLUBILITY OF TETRA ETHYL AMMONIUM BROMIDE IN WATER AND IN CHLOROFORM AT 25°.

(Peddle and Turner, 1913.)

100 gms. H₂O dissolve 279.5 gms. N(C₂H₆)₄Br. 100 gms. CHCl₂ dissolve 25.01 gms. N(C₂H₆)₄Br.

Data for the distribution of propyl benzyl methyl phenyl **AMMONIUM BROMIDE** between water and chloroform at 25° are given by Wedekind and Paschke (1910).

AMMONIUM CARBONATE (NH4)2CO3.

100 gms. H_2O dissolve 25.4 gms. ammonium carbonate, calculated as $C_2H_{11}N_2O_5$ at 16.7° d of sat. sol. = 1.095. (Greenish and Smith, 1901.) 100 gms. of carefully purified glycerol dissolve 20 gms. (NH₄)₂CO₃ at 15°. (Ossendowski, 1907.)

AMMONIUM BICARBONATE NH, HCO,.

SOLUBILITY IN WATER. (Dibbits — J. pr. Ch. [2] 10, 417, '74.)

6°.	Gms. NH,HCO	per 100 Grams.	* °. C	Grams NH4NCO3 per 100 Grams.		
•	Solution.	Water.	• •	Solution.	Water.	
0	10.6	11.9	20	17.4	21.0	
5	12.1	13.7	25	19.3	23.9	
IO	13.7	15.8	30	21.3	27.0	
15	15.5	18.3		_		

Solubility of Ammonium Bicarbonate in Aqueous Solutions of Ammonium Chloride Saturated with CO₂.

(Fedotieff —	- Z.	phys.	Ch.	49.	168,	'04.))
--------------	------	-------	-----	-----	------	-------	---

t°.	Wt. of r cc. Sol.		Per 1000 cc. Solution.				Per 1000 Grams H ₂ O.			
		G. M. NH ₄ Cl.	G. M. NH.HCO	Gms. NH ₄ Cl.	Gms. NH ₄ HCO ₈ .	G. M. NH ₄ Ci.	G. M. NH ₄ HCO ₃	Gms. NH ₄ Cl.	Gms. NH ₄ HCO ₂	
0	• • •	• • •	• • •	• • •	• • •	0.0	I.22	0.0	119.0	
0	I .077	4.41	0.37	235.9	29.2	5 · 42	0.46	290.8	36.0	
15	1.064	0.0	2.12	0.0	167.2	0.0	2.36	0.0	186.4	
15	1.063	0.5	1.84	2 6.8	145.2	0.56	2.06	29.9	162.9	
15	1.062	1.0	1.59	53 · 5	125.5	1.13	1.80	60.6	142.2	
15	1.062	1.41	I · 42	75 - 4	112.2	1.59	1.60	85.I	126.9	
15	1.065	1.89	4.28	8.00I	101.1	2.18	1.48	116.8	116.8	
15	1.069	2.87	0.99	153.3	78.2	3.42	1.18	183.0	93 · 3	
15	1.076	3.84	0.79	205.2	62.5	5.03	0.98	269.3		
15	1.085	4.82	0.65	257.9	51.4	6.21	0.84	332.5	66.4	
15	1.085	4.95	0.62	264.8	48.9	6.40	0.81	343.5	64.2	
30		• • •	• • •		• • •	0.0	3.42	0.0	270.0	
30	•••	• • •,	i • • •.	• • •	•••	7 · 4	1.15	397 ∙0	91.0	

SOLUBILITY OF AMMONIUM BICARBONATE IN AQUEOUS SOLUTIONS OF SODIUM BICARBONATE SATURATED WITH CO₂. (Fedotleff.)

	Per 1000 cc. Solution.						Per 1000 Grams HgO.			
ŧ°.	Wt. of r cc. Sol.	G. M. NaHCO	G. M. NH,HCO	Gms. NaHCO	Gms. NH ₄ HCO ₃ .	G. M. NaHCO	G. M. NH ₄ HCO ₅	Gms. NaHCO	Gms. NH ₄ HCO ₈	
0		• • •	• • •	• • •	• • •	0.0	1.51	0.0	119.0	
0	1.072	0.53	1.28	44.6	101.4	0.58	1.39	48.2	109.4	
15	1.064	0.0	2.12	0.0	167.2	0.0	2.36	0.0	186.4	
15	1.090	0.63	1.92	52.5	151.3	0.71	2.16	59.2	170.6	
30	•••	• • •	•••	•••	•••	0.0	3.42	0.0	270.0	
30	• • •	•••	• • •	• • •	• • •	0.83	2.91	70.0	230.0	

SOLUBILITY OF AMMONIUM BICARBONATE IN AQUEOUS SOLUTIONS OF AMMONIUM NITRATE. (Fedotieff and Koltunoff, 1914.)

r.	d of Sat.	Gms. per 100 Gms. H ₂ O.		ť.	d of Sat.	Gms. per 100 Gms. H ₂ O.	
t	d of Sat. Sol.	NHANO.	NH4HCO.	•.	Sol.	NH4NO.	NH4HCO.
0		0	11.90	15	I.242	103.4	8.25
0	1.265	118	4.52	15	1.269	128.9	7 · 79
15	1.064	0	18.64	15	1.302	166.9	7.46
15	1.113	23.26	12.91	30		0	26.96
15	1.164	49.82	10.33	30	• • •	231.9	12.57

SOLUBILITY OF MIXTURES OF AMMONIUM BICARBONATE, SODIUM BICARBONATE, AND AMMONIUM CHLORIDE IN WATER SATURATED WITH CO₂. (Fedotieff.)

t*.	Wt. of	Gram Mols. per 1000 Gms. H ₂ O.		Gms. per 1000 Gms. H ₂ O.			Solid	
	1 oc. Sol.	NaHCO.	NaCl.	NH ₄ Cl.	NaHCO.	NaCl.	NH ₄ Cl.	Phase.
0	1.114	0.59	0.96	4.92	49.61	56.16	263.4	a + b + c
0	1.187	0.12	4.83	2.74	10.09	282.6	146.7	. "
15	1.116	0.93	0.51	6.28	78.18	29.84	336.2	"
15	1.178	0.18	4 · 44	3 · 73	15.13	259.8	199.6	"
15	1.151	0.30	3.09	4.56	25.22	180.8	244 · I	$\mathbf{a} + \mathbf{c}$
15	1.128	0.51	1.68	5 · 45	42.87	98.28	291.7	"
15	I.112	0.99	0.35	5.65	83.22	20.47	302 . 4	$\mathbf{a} + \mathbf{b}$
15	1.108	1.07	0.20	5.21	89.95	11.70	278.9	"
15	1.106	1.12	0.11	4.92	94.14	6.44	263.4	"
15	I.IOI	1.16	0.14	4.00	97 . 52	8.19	214.1	"
15	1.090	0.93	0.95	2.03	78.18	55 · 58	108.6	**
	a -	NaHCO	8 7.	b -	- NH₄HΩ	Ю,	c = N	IH₄Cl.

AMMONIUM Uranyl CARBONATE 2(NH₄)₂CO₂UO₂CO₂. (Ebelmen.)

100 grams H₂O dissolve 5 grams of the salt at 15°.

AMMONIUM Lead COBALTICYANIDE NH4PbCo(CN)6.3H4O.

(Schuler - Sitz. Ber. K. Akad. W. (Berlin) 79, 302.)

100 grams H₂O dissolve 12 grams of the salt at 18°.

AMMONIUM PerCHLORATE NH4ClO4.

SOLUBILITY IN WATER. (Carlton, 1910.)

r.	Sp. Gr. Sat. Sol.	Gms. NH ₄ ClO ₄ per 100 cc. Sat. Sol.	ť.	Sp. Gr. Sat. Sol.	Gms. NH ₄ ClO, per 100 cc. Sat. Sol.
0	1.059	11.56	80	1.193	48.19
20	1.098	20.85	100	1.216	57.01
40	1.128	30.58	107 b. pt.	1.221	59.12
60	1.158	39.05	•		

In a paper by Thin and Cumming (1915), it is stated that ammonium perchlorate is "sparingly soluble" in water and according to one determination at 14.2°, 100 gms. of the sat. solution was found to contain 1.735 gms. NH₄ClO₄. It is probable that these authors have misplaced the decimal point. This appears more probable since a determination of the solubility in 98.8 per cent ethyl alcohol at 25.2° gave 1.96 gms. NH₄ClO₄ per 100 gms. sat. solution, and in 98.8 per cent alcohol containing 0.2 per cent HClO₄ gave 1.97 gms. per 100 gms. sat. solution.

SOLUBILITY OF AMMONIUM PERCHLORATE AND SEVERAL OF ITS DERIVATIVES IN WATER AT 15°. (Hofmann, Höbald and Quoos (1911-12).)

		(2201111112) 2300010 230 Quoos (1311 13/1)	
G	ms. Salt per to Gms. H ₂ O.		ms. Salt per
100		OTT (O TT) MOIO	o Gms. H ₂ O.
NH ₄ ClO ₄	18.5	$CH_3(C_2H_5)_3NCIO_4$	23.6
CH ₃ NH ₃ ClO ₄	109.6	$C_2H_7(C_2H_5)_3NClO_4$	7.9
(CH ₃) ₂ NH ₂ ClO ₄	208.7	(CH3)2(C2H5)2NClO4	134.3
C ₂ H ₅ NH ₃ ClO ₄	208.7	C ₂ H ₃ (CH ₃) ₃ NClO ₄	5
$(C_2H_5)_2NH_2ClO_4$	150.9	BrC ₂ H ₄ (CH ₂) ₈ NClO ₄	3.5
(CH ₃) ₃ NHClO ₄	19.9	BrC ₂ H ₂ (CH ₂) ₂ NClO ₄	2.5
(CH ₃) ₄ NClO ₄	0.5	(OH)C ₂ H ₄ (CH ₃) ₂ NClO ₄	290.7
$(C_2H_5)_4NClO_4$	3.7	(OH)CH ₂ CH(OH)CH ₂ (CH ₃) ₃ NClO	4 155.7
C ₆ H ₅ (CH ₈) ₃ NClO ₄	17.9	NO ₃ C ₂ H ₄ (CH ₃) ₃ NClO ₄	0.6
ICH ₂ (CH ₃) ₃ NClO ₄	3.1	C ₂ H ₅ (CH ₂) ₃ NClO ₄	199.5
C ₂ H ₅ (CH ₃) ₃ NClO ₄	10.9	C ₂ H ₄ (NH ₅ ClO ₄) ₂	144.5
C ₃ H ₇ (CH ₃) ₃ NClO ₄	15.4	$C_2H_4[(CH_3)_3NClO_4]_2$	1.2
C ₄ H ₉ (CH ₃) ₃ NClO ₄	3.7	$C_8H_6[(CH_3)_3NClO_4]_2$	1.5
C ₆ H ₁₁ (CH ₈) ₈ NClO ₄	2.2.	Br ₂ C ₂ H ₃ (CH ₃) ₂ NClO ₄	2.2
		BrC ₃ H ₈ (CH ₃) ₂ NClO ₄	2.6

Milbauer (1912-13) found that 100 gms. of cold H₂O dissolve I.126 gm. tetramethyl ammonium perchlorate (CH₂)₄NClO₄ and 100 gms. alcohol dissolve 0.04 gm. of the salt.

AMMONIUM CHLORIDE NH4CL.

SOLUBILITY IN WATER.

(Mulder; below oo, Meerburg - Z. anorg. Ch. 37, 203, 1903.)

t* .	Gms. NH ₄ Cl j	per 100 Gms.	ŧ°.	Gms. NH4Cl per 100 Gms.		
	Solution.	Water.	.	Solution.	Water.	
-15	19.7	24.5	40	31.4	45.8	
-10.9	20.3	25·5	50	33 · 5	50.4	
-5.7	21.7	27 . 7	60	35.6	55.2	
0	22.7	29 . 4	70	37.6	6o ⋅ 2	
+ 5	23.8	31.2	80	39.6	65 · 6	
IO	24.9	33 · 3	90	41.6	71.3	
15	26.0	35.2	100	43.6	77 - 3	
20	27 · I	37 . 2	110	45.6	83.8	
25	28.2	39 · 3	115.6	46.6	87 · 3	
30	29.3	41.4	•			

Density of saturated solution at 0° = 1.088, at 15° = 1.077, at 19° = 1.075. Eutectic, Ice + NH₄Cl = - 16° and 19.5 gms. NH₄Cl per 100 gms. sat. sol. 100 gms. H₂O dissolve 31.25 gms. NH₄Cl at 3.5°, 38.5 gms. at 25° and 49.6 gms. at 50°.

(Biltz and Marcus, 1911.)

Data for the solubility of ammonium chloride in water at 0° under pressures

up to 500 atmospheres are given by Stackelberg, 1806.

SOLUBILITY OF AMMONIUM CHLORIDE IN AQUEOUS AMMONIUM BICARBONATE SO-LUTIONS SATURATED WITH CO2. (Fedotieff-Z. Phys. Ch. 49, 169, 1904.)

	1174 -A	t. of G. M. G. M. Gms. Gms. NH ₄ HCO ₃ . NH ₄ Cl. NH ₄ HCO ₅ . NH ₄ Cl.			Per 1000 Gms. H ₂ O.				
t*.	r cc. Sol.	G.M. NH4HCO3.	G. M. NH ₄ Cl.	Gms. NH4HCO	Gms. NH ₄ Cl.	G. M. NH,HCO	G.M. NH ₄ Cl.	Gms. NH ₄ HCl	Gms. NH ₄ Cl.
0	1.069	0.0	4.60	0.0	246.1	0.0	5 · 57	0.0	298 .0
0	1.077	0.37	4.41	29.2	235.9			36.o	
15	I .077			0.0				0.0	
15	1.085	0.62	4.95	48.9	264.8			64.2	
30	• • •	• • •	• • •	• • •		0.0	7 - 78	0.0	416.4
30	• • •	• • •	• • •	• • •	• • •	1.15	7 - 40	91.0	397 - 9

SOLUBILITY IN AQUEOUS AMMONIA SOLUTIONS AT 0°. (Engel — Bull. soc. chim. [3] 6, 17, 1891.)

Sp. Gr. of Solutions.	Milligram per 10 cc	Molecules Solution.	Grama per 100 cc. Solution.			
Solutions.	NH ₃ .	NH ₄ Cl.	№ .	NH.CI.		
1.067	5 · 37	45 .8	0.92	24.52		
1.054	12.02	45 · 5	2.05	24.35		
1.031	38.0	44 · 5	6.48	23.82		
1.025	47.0	44.0	8.02	23.56		
1.017	54.5	43.63	9.30	23.35		
0.993	80.0	43.12	13.66	23.09		
0.992	9 0.0	44.0	15.36	23.56		
0.983	95.5	44 · 37	16.29	23.75		
0.953	130.0	49 · 75	22.18	26.63		
0.931	169.75	60.0	28.97	32.14		

Solubility of NH₄Cl in Aqueous Ammonia Solutions at 17.5°. (Strömbolm, 1908.)

Normality I	Equiv. per Liter.	Gms. per 1000 cc. Solution			
NH ₀ .	NH,Cl.	NH.	NH,Cl.		
0	5· 4 35	0	290.8		
0.15	5.420	2.55	290		
4.76	5.082	81 T	271.9		

SOLUBILITIES OF MIXTURES OF AMMONIUM CHLORIDE AND OTHER SALTS IN WATER.

(Rüdorff, Karsten, Mulder.) Both salts present in solid phase:

t°.	Grams per 100 Grams H ₂ O.	t°.	Grams per 100 Grams HgO.		
19.5	29.2 NH ₄ Cl+ 174.0 NH ₄ NO ₂ R		67.7 NH ₄ Cl+21.9 KCl M		
21.5	26.8 " + 46.5 (NH ₄) ₂ SO ₄ R	14.8	38.8 " + 34.2 KNO ₃ K		
20,0	33.8 " + 11.6 BaCl ₂ R	18.5	39.8 " $+38.6$ KNO ₂ K		
18.5	39.2 " + 17.0 Ba(NO ₂) ₂ K	14.0	36.8 " + 14.1 K ₂ SO ₄ R		
15.0	28.9 " + 16.9 KCl R	18.7	37.9 " + 13.3 K ₂ SO ₄ K		
22.0	30.4 " + 19.1 KCl R	18.7	22.9 " +23.9 NaCl R		

SOLUBILITY OF AMMONIUM CHLORIDE IN AQUEOUS SOLUTIONS OF AMMONIUM SULFATE AT 30°. (Wibaut, 1909; Schreinemakers, 1910.)

Gms. per 100 Gms. Sat. Sol. Gms. per 100 Gms. Sat. Sol. Solid Phase. Solid Phase. NH,Cl. (NHL),SO4. (NH₄)₂SO₄. NH₄Cl. NH₄Cl 29.5 18.3 NH₄Cl+(NH₄)₂SO₄ 0 25 28.5 5 $(NH_4)_2SO_4$ 30 13.2 " 10 25.7 8.5 35 " " 15 23.2 2.8 40 " " 20.2 42 0

SOLUBILITY OF MIXTURES OF AMMONIUM CHLORIDE AND COBALT CHLORIDE IN WATER AT 25°. I (Foote, 1912.)

Gms. per 100	Gms. Sat. Sol.		100 Gms. Solid	Solid Phase.	
NH ₄ Cl.	CoCl ₂ .	NH ₄ Cl.	CoCl ₂ .	H₄Ò.	
17.90	15.63	• • •	3.2		Mixed crystals of
13.59	25.19	83.01	13.52	3.47	NH ₄ Cl+CoCl ₂ .
8.75	34.28	35.12	50.66	14.22	2H ₂ O
7 · 45	35.24	34.02	49.64	16.31	Mixed crystals +
7.62	34.61	7.07	55.27	37.66	CoCl ₂ .6H ₂ O

SOLUBILITY OF A	MINOMIN	CHLORIDE	IN A	OUEOUS	Hydrochloric	Acm.
-----------------	---------	----------	------	--------	--------------	------

Results at 0°. (Engel, 1888.)			Results at 25°. (Armstrong and Eyre, 1910-11.				
Sp. Gr. of Sat. Sol.		o cc. sat. sol.	Gms. HCl per	d 🥞 Sat. Sol.	Gms. NH ₂ Cl per 100 Gms. Sat. Sol.		
	HCl.	NH ₄ Cl.	100 Gms. H ₂ O.	Sat. Sol.	100 Gms. Sat. Sol.		
1.076	•	24 .61	0	1.080	28.3		
1.069	1.05	23.16	0.91	1.079	27.4		
1.070	1.99	21.78	1.82	1.082	26.4		
1.073	3.93	19.36	3.65	1.083	24.6		
1.078	7.74	14.54	18.25	1.099	11.3		
1.106	19.18	5.78			-		
1.114	22.07	4.67					

SOLUBILITY OF MIXTURE OF AMMONIUM CHLORIDE AND LEAD CHLORIDE IN WATER AT SEVERAL TEMPERATURES. (At 17°, 50° and 100° Demassicux (1913) at 25° Foote and Levy, 1907.)

At 1	17°.	At	25°.	At	50°.	At	100°.	Solid Phase
Gms. per 10	o Gms. Sol.	Gms. per re	o Gms. Sol.	Gms. per 10	o Gms. Sol.	Gms. per 1		in Each
PbCla.	NH,Cl.	PbCla.	NH,Cl.	PbCl _p .	NH,CL	PbCla.	NH,Cl.	Case.
0.30	27.03	• • •	• • •	0.32	34.14	1.61	43.42	NH ₄ Cl
0.52	26.68	• • •		2.65	33.62	4.2I	42.91	"
0.64	26.49	I.20	28.15	3.96	33.56		• • •	" +1.2
• • •	• • •			• • •	• • •	9.26	41.90	" +2.3
	• • •	• • •	•••	•••	• • •	9.88	40.22	2.I
• • •	• • •	• • •	• • •	• • •		11.60	38.32	**
• • •	• • •		• • •		• • •	12.67	37.62	" +z.2
0.34	22.32	0.93	27.45	3.31	31.90	11.40	36.29	1.2
0.098	12.36	0.35	21.59	1.76	27.16	8.32	32.64	**
0.078	4.93	0.29	17.97	0.71	19.42	4.54	26.08	**
0.078	4.23	0.11	10.25	0.49	12.45	1.98	13.12	"
0.076	3.48	0.03	2.77	0.48	4.86	1.76	8.59	" +PbCle
0.16	1.43	• • •		0.67	1.45	1.85	5.33	PbCl _e
0.21	0.96	• • •	• • •	1.08	0.51	2.02	1.32	44
0.89	o Í			1.69	0	3.10	o Č	4
	NT	IT CL -/DI	C11	- ANTE	CI DLCI	-		

 $1.2 = NH_4Cl.2(PbCl_2), 2.1 = 2NH_4Cl.PbCl_2.$

The following additional data for the above system at 22° are given by Brönsted (1909).

Gm. Equiv. NH ₄ Cl per 100 Gms. H ₄ O	Gm. Equiv. PbCl ₂ per 100 Gms.	Solid Phase.	Gm. Equiv. NH ₄ Cl per 100 Gms. H ₂ O.	Gm. Equiv. PbCl ₂ per roo Gms. Sat. Sol.	Solid Phase.
0	7.49 × 10-8	PbCl _a	0.8	0.837×10-8	2PbCl ₂ .NH ₄ Cl
0.1	3.10 X 10-8	. "	I	0.758×10-	u
0.2	1.916×10 ⁻⁸	44	2	0.695×10-8	et
0.4	1.348×10 ⁻⁸	"	3	o.968×10 ^{-\$}	"
0.5	1.263×10 ⁻⁸	46	4	1.502×10 ⁻⁸	"
0.55	1.189×10 ⁻⁸	2PbCl ₂ .NH ₄ Cl	5	2.338×10 ⁻⁸	u
0.6	1.092×10-8	"	Ğ.	3.580×10 ⁻⁸	4
0.7	0.956×10-8	. 44	7.29 sat.	6.46 × 10-8	" +NH4Cl
\m .			1 NITE OF		

The two curves intersect at 0.52 normal NH₄Cl.

SOLUBILITY OF MIXTURES OF AMMONIUM CHLORIDE AND MAGNESIUM CHLORIDE IN WATER. (Biltz and Marcus, 1911.)

Gms. per 100 Gms. Sat. Sol. Solid Phase.			to. Gms. per 100 Gms. Sat. Sol. Solid Phase.				
• •	MgCl ₂ .	NH,Cl.			M Pt. le.	NH.J.	
3.5	21.41	5.93	NH ₄ Cl+MgCl ₂ .6H ₂ O	3.5	34 · 43	0.09	(NH ₄)M _E Cl ₄ .6H ₄ O +M ₂ Cl ₄ .6H ₄ O
25	20.95	8.78	"	25	35.41	0.09	" · · · · · · · · · · · · · · · · · · ·
50	20.84	12.46	. "	50	36.92	C.15	44 44

SOLUBILITY OF MIXTURES OF AMMONIUM AND MANGANESE CHLORIDES IN WATER AT 25°.

(Foote and Saxton, 1914.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100	Gms. Sat. Sol.	Solid Phase.
NH ₄ CL	MnCl.	Soud Phase.	NH ₄ Cl.	MnCl ₂ .	Soud Phase.
23.97	7 . 97)		17.09	18.76	
22.94	9.65		15.05	22.44	
21.44	12.31	α mixed crystals	13.17	24.52	β mixed crystals or double sait 2NH ₄ Cl.
21.18	13.38		9.15	29.24	MnClg.2HgO
20.IO	15.19		5.90	34.78	
19.70	15.92)		3.77	39.48	
19.75	16.02	α and β mixed crystals	2.98	43.71	2NH4Cl.MnCl2.2H2O
19.67	15.47	•	2.94	43.44	+MnCl ₂ .2H ₂ O

 α mixed crystals consist of NH₄Cl with varying amounts of MnCl_{2.2}H₂O; β mixed crystals consist of the double salt 2NH₄Cl.MnCl_{2.2}H₂O with excess of NH₄Cl.

This case represents a very rare type of solid solution "in which a single salt and a double salt are each capable of taking up very considerable quantities of the other to form homogeneous mixed crystals."

EQUILIBRIUM IN THE SYSTEM AMMONIUM CHLORIDE, MERCURIC CHLORIDE, WATER AT 30°. (Meerburg, 1908.)

Gms. per 200 Gms. Sat. Sol.		Solid	Gms. per 100 Gr	Gms. per 100 Gms. Sat. Sol.		
HgCla.	NH ₄ Cl.	Phase.	HgCl ₁ .	NH ₄ Cl.	Phase.	
0	29.50	NH ₄ Cl	57.05	9.92	3.2.I	
22.80	26.91	"	58.65	9.20	" +9.2	
42.45	25.05	u	*51.83	8.76	9.2	
50.05	24.79	" I.2.I	*46	7.52	"	
53.08	22.77	1.2.1	*35.60	5.26	"	
58.90	20.02	" +1.1.1	*32.90	5.06	.4	
56.38	18.50	1.1.1	29.65	3.62	" +HgCl ₂	
55.58	16.82	44	40.12	5.13	H_gCl_a	
57.01	14.12	" +3.2.2	21	2.29	44	
56.26	13.04	3.2.I	7.67	0	"	

 $\begin{array}{lll} 1.2.1 &= HgCl_2.2NH_4Cl.H_2O; & 1.1.1 &= HgCl_2.NH_4Cl.H_2O; \\ 3.2.1 &= 3HgCl_2.2NH_4Cl.H_2O; & 9.2 &= 9HgCl_2.2NH_4Cl. \end{array}$

SOLUBILITY OF MIXTURES OF AMMONIUM AND NICKEL CHLORIDES IN WATER AT 25°. (Foote, 1912.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100	Gms. per 100 Gms. Sat. Sol.		
NH ₄ Cl.	NiCl ₂ .	Solici Primite.	NH ₄ Cl.	NiCl ₂ .	Solid Phase.	
26.07	3.10)		7.98	37.41)		
22.27	8.04		8.07	37 · 73 l	Mixed crystals and	
20 .68	10.32	Mixed crystals of	8.23	37 · 45	NiCl ₂ .6H ₂ O	
17.43	15.01	NH ₄ Cl and NiCl ₂₋₂ H ₂ O	8.17	37.64 J		
II.22	26.93	MICH-2II4O	.7.51	37.19		
10.21	30.56		3. 0 6	37.98}	NiCl ₂ .6H ₂ O	
9.16	35.703		ŏ	37 · 53		

[•] In these solutions 2 to 3 weeks were required for attainment of equilibrium.

SOLUBILITY OF MIXTURES OF POTASSIUM CHLORIDE AND AMMONIUM CHLORIDE IN WATER AT 25°.

(Fock — Z. Kryst. Min. 28, 353, '97.)

Grams p Solu	er Liter	Mol. p in Sol	er cent ution.	Sp. Gr. of Solutions.	Mol. Sol	per cent fa
NH.CI.	KCl.	NH ₄ Cl.	KCI.	Solutions.	NH.CI.	KC.
0.00	311.3	0.00	100.0	1.1807	0.0	100
22.81	293.3	9.41	90.59	1.1716	1.21	98.79
35.39	278.7	15.04	84.96	1 . 1678	2.11	97.89
89.17	273.2	34.26	65.74	1.1591	6.18	93.82
127.8	234.6	46.59	53 · 44	1.1493	8.90	91.10
147.2	204.2	51.63	48.37	1.1461	10.53	89.47
197.3	157.7	63.56	36.44	1.1301	17.86	82.14
232.5	116.8	73.49	26.51	1.1326	60.20	39.80
244 · 5	123.0	73.48	26.52	1.1329	76.88	23.12
261.9	0.111	70.10	20.00	1.1245	97.51	2.40
250.Ó	102.2	82.14	17.86	1.1212	97 · 79	2.21
278.6	53.16	87.96	12.04	1.1000	98.85	1.15
320 7	31.24	93.45	6.55	1.0012	99.33	0.67
273.5	0.00	100.00	0.00	1.0768	100.0	0.00

The following additional data for the above system are given by Biltz and Marcus (1911). The results show that NH₄Cl + KCl form a series of mixcrystals broken by a gap which extends between about 20 and 98 mol. per cent NH₄Cl in the crystals.

C	omposition	of Sat. Solut	Composition of Solid Phase.				
Gms. per 100 Gms., Sat. Sol.		Mols. per : H ₂	roco Mols. O.	Gms. per Crys	Gms. per 100 Gms. Crystals.		
NH ₄ Cl.	KCI.	NH ₄ Cl.	KCl.	NH ₄ Cl.	KCl.	NH ₄ Cl in Crystals.	
5.13	22.29	23.8	74.2	1.21	98.79	1.7	
7	20.40	32.5	67.9	2.22	97.78	3.1	
II	18.04	52.2	61.4	4	96	5.5	
13.73	16.11	65.9	55.5	5.89	94.11	8	
15.46	14.53	74 · 4	50.2	7.24	92.76	9.8	
19.54	12.16	96.3	43	11.20	88.8o	14.9	
22.04	10.49	109	37 · 4	16.90	83.10	22.I	
21.68	10.40	109	37 · 4	26.04	73.96	32.9	
21.95	10.48	109	37 · 4	97.60	2.40	98.3	
24.30	6.48	118.2	22.6	98.28	1.72	98.8	

These authors also give data for the ammonium chloride carnellite and potassium chloride carnellite diagram at 25°.

Solubility of Mixtures of Ammonium and Potassium Chlorides in Water at 25°, 65° and 90°.
(Uyeda, 1912.)

The results as presented by Uyeda show the percentage composition of the dissolved mixture and of the undissolved residue in the several cases, but not the quantity of salts dissolved. Mixed crystals were formed over certain ranges of concentration at each temperature.

Data for the cryohydric temperatures and composition of the saturated solutions of mixtures of the chlorides, nitrates and sulfates of ammonium, potassium and sodium are given by Mazatto (1891).

SOLUBILITY OF AMMONIUM CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE SATURATED WITH CO.. (Fedotieff.)

			Per 1000	cc. Solution	1.		Per 1000	Gms. H ₂ O	
t*.	Wt. of 1 cc. Sol.	G. M. NaCl.	G. M. NH ₄ Cl.	Gms. NaCl.	Gms. NH ₄ Cl.	G. M. NaCl.	G. M. NH ₄ Cl.	Gms. NaCl.	Gms. NH ₄ Cl.
0	1.060	0.0	4.60	0.0	246 · I	0.0	5 · 57	0.0	298.0
0	1.185	4.04	2.26	236.5	121.0	4.89	2.73	286.4	146.1
15	1.077	0.0	5.29	0.0	283 · I	0.0	6.64	0.0	355.0
15	1.097	0.81	4.71	47 · 5	252.1	I .02	5.91	59.8	316.4
15	1.120	ı.68	4.13	98.0	221.7	2.09	5.18	122.4	277 .0
15	1.153	2.87	3 .38	168.o	180.7	3 · 57	4 · 20	208.9	224.7
15	1.175	3.65	2.98	213.5	159.4	4.55	3.72	266.8	198.8
30		• • •		• • •	• • •	0.0	7 . 78	0.0	416.4
30	1.166	3.30	3 · 70	193.0	198.0	4.26	4 · 77	249.0	255.4
45		• • •	• • •	• • •		0.0	9.03	0.0	483.7
45		• • •	• • •	• • •	• • •	4.0	6.02	233.9	322.1

Solubility of Ammonium Chloride in Aqueous Ethyl Alcohol at 15° and at 30°.

Gms. C.H.OH per	Gms. NH4Cl per 100 Gms. Solvent at:				
Gms. C ₂ H ₅ OH per 100 Gms. Solvent.	15°.	30°.			
0	35.2	40.4			
20	25	29.7			
40 60	16.8	19			
60	9.5	II.I			
80	4	5.3			
92.3	I.3	• • •			
100	0.6	•••			

Results at 15° by interpolation from Gerardin (1865), Greenish (1900) and deBruyn (1892). Those at 30° from Bathrick (1896).

100 gms. absolute methyl alcohol dissolve 3.35 gms. NH₄Cl at 19°.

100 gms. 98% methyl alcohol dissolve 3.52 gms. NH₄Cl at 19.5°. (deBruyn, 1892.)
(deBruyn, 1892.)

SOLUBILITY OF AMMONIUM CHLORIDE IN MIXTURES OF SEVERAL ALCOHOLS WITH WATER.

(Armstrong, Eyre, Hussey and Paddington (1907); and Armstrong and Eyre (1910-11.)

t°.	Gm. Mols. Al-	Gms. NH ₄ Cl per 100 Gms. Sat. Solution in:					
• .	cohol per 1000 Gms. H _f O.	Aq. CH ₄ OH.	Aq. C _s H _s OH.	Aq. C.H.OH.			
0	0	23	23	23			
0	0.25	22.8	22.6	22.7			
0	0.50	22.6	22.2	22.3			
0	1	22.I	21.5	21.1			
0	3	20.5	19	• • •			
25.	0	28.3	28.13 (1.0805)	28.3			
25	0.25	28.1	28 (1.0780)	28.1			
25	0.50	27.9	27.6 (1.0753)	27.5			
25	I	27.6	27 (1.0704)	26. 6			
25	3	26.I	26.5 (1.0528)	• • •			
25	5	• • •	22.6 (1.0376)	•••			

(Figures in parentheses show Sp. Gr. of sat. sols.)

SOLUBILITY OF AMMONIUM CHLORIDE IN SEVERAL ALCOHOL MIXTURES AT 25°.
(Herz and Kuhn, 1908.)

In Methyl and Ethyl Alcohol.			l and Propyl cohol.	In Propyl and Ethyl Alcohol.		
	Gms. CH ₃ OH per 100 Gms. Solvent.	Gms. NH ₄ Cl per 100 Gms. Sat. Solution.	Gms. C ₂ H ₇ OH per 100 Gms. Solvent.	Gms. NH ₄ Cl per 100 Gms. Sat. Solution.	Gms. C ₈ H ₇ OH per 100 Gms. Solvent.	Gms. NH ₄ Cl per 100 Gms. Sat. Solution.
	0	0.53	0	2.76	0	0.53
	. 10	0.67	10	2.33	10	0.50
	20	0.80	20	1.90	20	0.47
	30	0.98	30	1.58	30	0.42
	40	1.18	40	1.26	40	0.39
	50	1.40	50	1.03	50	0.36
	60	1.65	бо	0.82	бо	0.32
	70	1.92	70	0.60	70	0.30
	80	2.18	80	0.41	80	0.26
	90	2.48	90 -	0.30	90	0.22
	100	2.76	100	0.18	100	0.18

SOLUBILITY OF AMMONIUM CHLORIDE IN AQUEOUS GLYCEROL SOLUTIONS AND IN AQUEOUS ACETONE SOLUTIONS AT 25°.
(Hera and Knoch—Z. anorg. Chem. 45, 263, 267, '05.)

In Aqueous Glycerol.
(Sp. Gr. of Glycerine 1.255, Impurity about 1.5%.)

In Aqueous Acetone.

(Sp. Gr. of	Glycerine 1.4	55, Impuri	ty about 1.5%.)					
Wt. %	NH _e Cl pe Solu	r 100 CC.	Sp. Gr. at ^{25°}				tion.	Sp. Gr. at ²⁵
Glycerine.	Millimols.	Grams.	4°	2000000		Millimols.	Grams.	4°
ο.	585.1	31.32	1.0793	0		585 · I	31.32	T -0793
13.28	544.6	29.16	1.0947	10		534·I	28.59	t.0618
25.98	502.9	26.93	1.1127	20		464.6	24.87	1.0451
45.36	434 - 4	23.26	1.1452	30		396.7	21.23	1.0263
54 - 23	403.5	21.60	1.1606	40		328.5	17.59	0.9998
83 84	291.4	15.60	1.2225	*46.5	L	283.7	15.19	0.9800
100.00	228.4	12.23	1.2617	*85.7	U	18.9	1.01	0.8390
		-		90		9.4	0.50	0.8274

^{*} Between these two concentrations of acetone, the solution separates into two layers. L indicates tower layer, U indicates upper layer.

100 cc. anhydrous hydrazine dissolve 75 gms. NH₄Cl at room temp. with evolution of ammonia. (Welsh and Broderson, 1915.)

SOLUBILITY OF TETRA ETHYL **AMMONIUM CHLORIDE** N(C₄H₄)₄Cl, and also of Tetra Methyl Ammonium Chloride N(CH₂)₄Cl in Acetonitrile.

100 cc. sat. solution in CH₃CN contain 29.31 gms. N(C₂H₃)₄Cl at 25°. 100 cc. sat. solution in CH₂CN contain 0.265 gms. N(CH₃)₄Cl at 25°. (Walden – Z. physik. Chem. 55, 712, '06.)

Solubility of Tetra Ethyl Ammonium Chloride in Water and in Chloroform.

(Peddle and Turner, 1913.)

100 gms. H_2O dissolve 141.0 gms. $N(C_2H_5)_4Cl$ at 25°. 100 gms. CHCl₃ dissolve 8.24 gms. $N(C_2H_5)_4Cl$ at 25°.

SOLUBILITY OF DIMETHYL **AMMONIUM CHLORIDE** IN WATER AND IN CHLOROFORM. (Hantzsch, 1902.)

100 gms. H₂O dissolve 208 gms. of the salt. 100 gms. CHCl₂ dissolve 26.9 gms. of the salt (temp. not stated in abstract).

AMMONIUM CHROMATES.

SOLUBILITY IN WATER AT 30°. (Schreinemaker — Z. physic. Chem. 55, 89, '06.)

Comp	osition in V	Vt. per cent	t of:	
The So	dution. % NH ₃ .	The R. CrO ₃ .	esidue. % NH2.	Solid Phase.
6.933	22.35	76 CL 03.	70 11113	(NH ₄) ₂ CrO ₄
9.966	16.53	47 · 59	20.44	-66
16.973	8.20		•••	66
22.53	6.37	38.03	12.15	66
27.00	6.87	48.02	12.01	$(NH_4)_2CrO_4 + (NH_4)_2Cr_2O_7$
26.19	5.70	47 . 38	8.8r	(NH ₄) ₂ Cr ₂ O ₇
25.99	5.10	41.56	7 · 58	66
30.16	3.50		• • •	• • • • • • • • • • • • • • • • • • • •
38.89	3.10	8o. 16	8.80	• "
42 - 44	3.15	59.72	6.75	$(NH_4)_3Cr_3O_7+(NH_4)_3Cr_3O_{10}$
44.08	2.27	54.90	4.14	$(NH_4)_3Cr_3O_{10}$
52.91	1.11	60.88	3.09	"
54.56	1.03	63 .07	3.09	$(NH_4)_2Cr_3O_{10} + (NH_4)_2Cr_4O_{10}$
56.57	0.97	65.70	2.95	(NH ₄) ₂ Cr ₄ O ₂
58.87	0.65	69.74	3.24	46
62.48	0.46	71.93	3.10	
63.60	0.40	73.68	1.18	$(NH_4)_2Cr_4O_{13}+CrO_3$
63.66	0.41	71 - 47	2.07	44
62.94	0.21	• • •	• • •	CrO₃
62.28	0.0		•••	CrO ₃

200 gms. of the sat. aq. solution contain 28.80 gms. (NH₄)₂Cr₀, at 30°. 100 gms. of the sat. aq. solution contain 32.05 gms. (NH₄)₂Cr₂O₇ at 30°.

AMMONIUM CITRATES.

Solubility in Aqueous Solutions of Citric Acid at 30°. (van Itallie, 1908.)

(Data read from curve plotted from original results.)

Gms. per 100 Gms. Sat. Sol.		ol. Solid Phase.	Gms. per 100 (Gms. Sat. So	ol. Solid Phase.
C ₄ H ₄ O ₇ .	NH ₈ .	Solid Plase.	C ₄ H ₄ O ₇ .	NH _a .	
65	0	$C_4H_4O_7.H_4O$,53	7.5	C ₄ H ₇ O ₇ .NH ₄
68	0.5	. "	56	8.2	44
72	1.3	a	59.1	8.5	CaHaOaNHa+CaHaOa(NHA)a
75		CaHaOr.HaO+CaHaOr.NHa	54	8.5	C ₄ H ₆ O ₇ (NH ₄) ₂
70	2.4	C ₄ H ₇ O ₇ .NH ₄	50	7.9	tt .
65	2.5	u	45.8	8.4	4
6ŏ	2.7	u	47	II.I	и
55	2.8	4	50	12.9	C.H.O.(NH.).+C.H.O.
52	2.8	a	54 · 5	14.5	(NH), ?H ₂ O
50	3.6	4	52	15	CaHaO1(NHT)3.3HaO
49.2	5.1	4	50	16	"
50	6.2	u	48.4	17.9	4

Composition of the solid phases determined by "Rest Method."
(Schreinemakers, Z. anorg. Ch. 37, 207.)

AMMONIUM CALCIUM FERROCYANIDE.

100 gms. sat. aqueous solution contain 0.258 gm. (NH₄)₂CaFe(CN)₆ at 16°. (Brown.)

AMMONIUM FLUOBORIDE NH43BF1.

100 parts of water dissolve 25 parts salt at 16°, and about 97 parts at b. pt. (Stelba — Chem. Techn. Cent. Anz. 7, 459)

AMMONIUM FORMATE HCOONH4, and also Ammonium Acid Formate. SOLUBILITY IN WATER. (Groschuff — Ber. 36, 4351, '03.)

			(Groschut -	– Dei. 30, i	4331, 03./		
ŧ°.	Gms. HCOONH.			t° .	Gms. per 100		
• •	Solution.	Water.	Phase.	•	HCOONH:	нсоон.	Phase.
-20	41.9	72	HCOONH4	-6.5	46.7	34.I	HCOONH-HCOOH
0	50.5	102	46	+ 1.5	49.6	36. 2	46
20	58.9	143	4	6	51.3	37 - 4	44
40	67.1	204	44	8.5	52.1	38	и
60	75.7	311	44	- 7	49.6	36.2	HCOONH, labil.
80	84.2	531	44	+13	53	38.6	· " stabil.
116	m. pt.			29	55.8	40.7	" "
	-			39	57.8	42.2	H ₂ O free solution

SOLUBILITY OF AMMONIUM FORMATE IN FORMIC ACID SOLUTIONS. (Groschuff.)

30 grams of HCOONH4 dissolved in weighed amounts of anhydrous formic acid and cooled to the point at which a solid phase separated.

	HCOONH, per 100 Gms. Solution.	HCOONH per 100 G. M HCOOH.	. Phase.	t°.	HCOONH ₄ . per 100 Gms. 1 Solution.		H, S M. Pi	olid nase.
- 3	35.3	39.9	HCOONH. HCOOH	II	50	73	HCOONI	I, labil.
+ 8.5	40.6	49.9		39	57.8	100	"	stabil.
21.5	50	73 •	"	78	73 · I	199	"	**
				116 m	nt. 100	∞	44	**

100 gms. 95% Formic Acid dissolve 6.2 gms. HCOONH4 at 21°. (Aschan, 1913.)

AMMONIUM IODATE NH.10.

SOLUBILITY IN AQUEOUS IODIC ACID AT 30°. (Meerburg, 1905.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100 (0 " 1 "	
HIO ₃ .	NH4IO3.	Soud Phase.	HIO ₃ .	NH ₄ IO ₃ .	Solid Phase.
0	4.20	NH ₄ IO ₈	24	0.62	NH ₄ IO ₅₋₂ HIO ₃
2.54	3.89	"	44 · 43	0.39	"
4.52	3.8 3	"+NH4IO3.2HIO3	76.35	0.31	" +HIO
6.57	1.94	NH ₄ IO ₃ .2HIO ₃	76.70	0	HIO ₃

AMMONIUM Per IODATE NH4IO4.

SOLUBILITY IN WATER.

100 gms. H₂O dissolve 2.7 gms. salt at 16°, $d_{16} = 1.078$. (Barker, 1908.)

AMMONIUM IODIDE NH.I.

SOLUBILITY IN AQUEOUS ALCOHOL AT 25°. (Smith and Eastlack, 1916.) (Seidell, unpublished.) $\begin{array}{cccc} \text{Gms.NH}_4\text{I} & \text{Gms. C}_2\text{H}_5\text{OH} \\ \text{per 100 Gms.} & \text{per 100 Gms.} \\ \text{H}_2\text{O.} & \text{Solvent.} & \text{Sat. Sol.} \end{array}$ Gms. NH₄I Gms. NH₄I per 100 Gms. t°. per 100 Gms. H₂O. Sat. Sol. Solvent. -27.5 Eutec. 125.2 64.5 1.646 40 190.5 0 181.g - 20 136 50 199.6 10 1.590 61.7 161.1 -10 208.9 60 145 20 1.525 58.7 142.I 0 70 218.7 154.2 30 1.462 55.5 124.8 10 163.2 80 228.8 40 1.395 52 108.3 167.8 48 15 100 250.3 50 I.320 92.3 20 120 43.8 172.3 273.6 60 1.250 77.9 25 176.8 140 1.168 2QQ.2 70 39 64 181.4 80 30 I.004 33.3 49.9 1.013 90 27.5 37.9 20.8 100 0.929 . 26.3

Tetra Ethyl AMMONIUM IODIDE N(C2H4)4I.

SOLUBILITY IN SEVERAL SOLVENTS. (Walden — Z. physik. Chem. 55, 698, '06.)

			Sp. Gr.	Gms. N(C ₂ H ₂) ₄ I	
Solvent.	Formula.	ť°.	of Solution.	cc. Solution.	Gms. Solution.
Water	H ₂ O	0	1.0470		15.58
Water	H ₂ O .	25	1.1021	36.33 (35.5)	32.9
Methyl Alcohol	CH ₂ OH	o	0.8326	3.7-4.3	4.44
Methyl Alcohol	CH₃OH	25	0.8463	10.5 (10.7)	12.29
Ethyl Alcohol	C ₂ H ₄ OH	0	0.7928		0.439
Ethyl Alcohol	C ₂ H ₄ OH	25	0.7844	0.98 (0.88)	1.113
Glycol	(CH ₂ OH) ₂	0	1.1039	3.27	2.97
Glycol	(CH ₂ OH) ₂	25	1.0904	7.63 (7.55)	7
Acetonitrile	CH ₂ CN	0	0.8163	2.24	2.74
Acetonitrile	CH ₂ CN	25	0.7929	2.97 (3.54)	3.74
Propionitrile	CH ₂ CH ₂ CN	0	0.8059	0.618	0.767
Propionitrile	CH ₂ CH ₂ CN	25	0.7830	0.81-1.01	0.99
Benzonitrile	C ₆ H ₅ CN	25		0.467	0.451
Methyl Sulphocyanide	CH ₃ SCN	25	1.0828	4.40	4.06
Ethyl Sulphocyanide	C ₂ H ₄ SCN	25	1.0012	0.475	0.47
Nitro Methane	CH ₂ NO ₂	0	1.1658	13.59	3.004
Nitro Methane	CH ₂ NO ₂	25.	1.1476		4.72
Nitroso Dimethyline	(CH ₂) ₂ N.NO	25		2.67	2.66
Acetyl Acetone	CH ₃ COCH ₂ COCH ₃	25		0.268	•••
Furfurol	C ₄ H ₅ O.COH	ò	1.1738	3.91	3.33
Furfurol	C ₄ H ₄ O.COH	25	1.1692	5.33	4.55
Benzaldehyde	C ₆ H ₅ COH	25	•••	0.43	
Salicylaldehyde	C ₆ H ₄ .OH.COH	25		change-	
•				able-17.7	• • •
Anisaldehyde	C ₆ H ₄ .OCH ₈ .COH	25		0.59	
Acetone	(CH ₃) ₂ CO	0	0.7991	0.174	0.218
Acetone	(CH ₃) ₂ CO	25		0.249	0.316
Ethyl Acetate	CH ₃ COOC ₂ H ₅	25		.0.00039	
Ethyl Nitrate	C ₂ H ₅ ONO ₂	25	1.0984	0.062	0.056
Benzoyl Ethyl Acetate	C6H5COCH2COOC2H5	25	1.1303	0.321	0.284
Dimethyl Malonate	$CH_2(COOCH_3)_2$	25	1.1335	0.040	0.035
Methyl Cyan Acetate		0	1.1341	1.82	1.605
Methyl Cyan Acetate	CH₂CNCOOCH₃	.25	· • • •	2.83	• • •
Ethyl Cyan Acetate	CH2CNCOOC2H5	0	1.0760	1.057	0.981
Ethyl Cyan Acetate	CH2CNCOOC2H5	25	1.0607	1.71	1.41
Nitrobenzene	C ₆ H ₅ NO ₂	25	• • •	0.504	0.422
Acetophenone	C ₆ H ₅ COCH ₈		• • •	0.13	0.127
Amyl Alcohol	C ₆ H ₁₁ OH		•••	0.071	0.089
Paraldehyde	$(C_2H_4O)_3$	• •	• • •	0.036	0.037
Methyl Formate	HCOOCH ₃	• •	• • •	0.031	0.032
Bromobenzene	C ₆ H ₆ Br	••	·	0.009	0.006

(Walden — Z. physik. Chem. 61, 635, 1907-'08.)

Tetra Methyl AMMONIUM IODIDE N(CH₂)₄I.

SOLUBILITY IN SEVERAL SOLVENTS.
(Walden — Z. physik. Chem. 55, 708. '06.)

	•	-	Sp. Co. of	Gms. N(CH ₂) ₄ I per 100.		
Solvent.	Formula.	t°.	Solution.	cc. Solution.	Gms. Solution.	
Water	H ₂ O	0	1 .0188	2.0I	1.97	
Water	H,O	25	1.0155	5.31-5.89	5.22	
Methyl Alcohol	CH.OH	0	0.8025	0.18-0.22	0.22	
Methyl Alcohol	CH,OH	25	0.7920	0.38-0.42	0.48	
Ethyl Alcohol	C_H_OH	25	0.7894	0.09		
Glycol	(CH ₂ OH) ₂	o	• • •	1.014		
Glycol	(CH ₂ OH) ₂	25	1.0678	0.240	0.224	
Acetonitril	CH ₂ CN	25	•••	0.650		
Nitro Methane	CH,NO,	ō	1.1387	0.25-0.32	0.22	
Nitro Methane	CH,NO,	25	1.1285	0.34-0.38	0.21	
Acetone	(CH ₃) ₂ CO ·	ō		0.118		
Acetone	(CH ₂),CO	25		o · 187		
Salicyl Aldehyde	C.H.OH.CO)H o	1.1492	0.302	0.263	
Salicyl Aldehyde	C.H.OH.CO	OH 25	1.1379	0.510	0.484	

Very exact determinations of the solubility of tetra methyl ammonium iodide in aqueous solutions of KOH and of NH $_6$ OH at 25 $^\circ$ are given by Hill (1917).

Tetra Propyl AMMONIUM IODIDE N(C₂H₇)₄I.

SOLUBILITY IN SEVERAL SOLVENTS. (Walden — Z. physik. Chem. 55, 709, '06.)

	(Walden — Z. physik. (.hem.	55, 709, '05.)		
Solvent,	Formula.	t°.	Sp. Gr. of Solution.	Gms. N(C₃H₂)₄I 1	Gms.
Methyl Alcohol	СН•ОН	0	0.9756	40.92	Solution.
Methyl Alcohol	CH ₂ OH		1.0187	56.42	41.94
Ethyl Alcohol	C ₂ H ₅ OH	25 O	0.8349	• . •	55·37 8.14
Ethyl Alcohol	C ₂ H ₅ OH		0.0349	6.5-6.8	
Acetonitrile	CH ₃ CN	25	0.8716	19.88-20.29	23.28
		0	0.8553	13.03	15.24
Acetonitrile	CH ₂ CN	25	0.8584	18.69	21.77
Propionitrile	C ₂ H ₅ CN	0	0.8280	6.37	7.66
Propionitrile	C ₂ H ₅ CN	25	0.8191	9.65	10.29
Benzonitrile	C ₆ H ₅ CN	25	1.0199	8.44	8.3 5
Nitro Methane	CH₃NO₂	0	1.181	14.79	12.52
Nitro Methane	CH ₂ NO ₂	25	1.158	22.24	19.21
Nitro Benzene	C ₆ H ₅ NO ₂	25	1.193	5.71	4.79
Benzaldehyde	C ₆ H ₅ COH	0	1 .0581	7.06	6.67
Benzaldehyde	C ₆ H ₆ COH	25	1.0549	9.87	9.35
Anisaldehyde	C ₆ H ₅ .OCH ₃ .COH	0	1.1114	5.60	5.04
Anisaldehyde	C ₆ H ₅ .OCH ₃ .COH	25	1.1004	6.75	6.14
Salicylaldehyde	C₀H₅.OH.COH	25		39.28	• • •
Ethylnitrite	C ₂ H ₅ NO ₂	ŏ	1.1207	0.522	0.466
Ethylnit rite	C ₂ H ₅ NO ₂	25	1.1025	o.ŏ53	0.592
Dimethyl Malonate		ŏ	1.1532	0.208	0.259
Dimethyl Malonate		25	1.1345	0.320	0.282
Acetone	(CH ₃) ₂ CO	ŏ	0.8259	2.692	4.65
Acetone	(CH ₃) ₂ CO	25	0.8049	3.944	4.90
Ethyl Acetate	CH ₃ COOC ₂ H ₅	25	0.8975	0.0063	0.007
Ethyl Bromide	C ₂ H ₆ Br	25			0.187
	~		ılden — Z. phy	rsik. Chem. 61, 639,	
		• • • •			• •

Solubility of Tetra Amyl, Tetra Ethyl and Tetra a Propyl Ammonium IODIDES IN WATER AND IN CHLOROFORM AT 25°. (Peddle and Turner, 1913.)

Gms. Each Salt (Determined Separately), per 100 Gms. Solvent.

Solvent.	Gms. Each Suit (Determined Separately), per 100 Gms. Solven							
Sorvent.	N(C,H11)4I.	N(C.H.).I.	αN(C ₂ H ₂) ₄ I.	$\overline{}$				
Water	0.74	45	18.64					
CHCl ₃	210.8	. 1.55	54.56					

Freezing-point data for mixtures of tetra methyl ammonium iodide and iodine, and for phenyltrimethyl ammonium iodide and iodine are given by Olivari (1908).

AMMONIUM Iridium CHLORIDES.

SOLUBILITY IN WATER AT 19	. (Delepine, 1908.)	
Name of Salt.	Formula.	Gms. per 100 Gms. H ₂ O.
Ammonium iridium chloride	(NH ₄) ₂ IrCl ₅	0.77
Diammonium aquo penta chloro iridite		
Triammonium hexa chloro iridite	IrCl ₆ (NH ₄) ₃ +H ₂ (

AMMONIUM Iodo MERCURATE 2NH4I.HgI2.H2O.

100 gms. of the saturated aqueous solution contain 4.5 gms. NH₄, 22.6 gms. Hg and 62.3 gms. I at 26° , sp. gr. = 2.98.

AMMONIUM Tetra **MOLYBDATE** (NH₄)₂O.4M₀O₃.2H₂O.

100 gms. H₂O dissolve 3.52 gms. salt at 15° (d = 1.03), 3.67 gms. at 18° (d = 1.04) and 4.60 gms. at 32° (d = 1.05). (Wempe, 1912.)

AMMONIUM Phospho **MOLYBDATE** (NH₄)₂PO₄.14MoO₃.4H₂O.

SOLUBILITY IN WATER AND AQUEOUS SOLUTIONS AT 15°. (de Lucchi, 1910.) Solvent. Gms. Salt per 1000 Gms. Solvent.

Water	0.238
5 per cent aqueous NH4NO ₃ solution	0.137
1 per cent aqueous HNO ₃ solution	0.203

NITRATE NHANO. MUINOMMA

SOLUBILITY IN WATER.

(Schwarz — Ostwald's Lehrbuch, 2d ed. p. 425; Muller and Kaufmann — Z. physik. Chem. 42, 497, '01-'02.)

6° .	Sp. Gr. Solution.	G. Mols.	Gms. NH ₄ NO ₂ per		Solid
• •	Solution.	NH ₄ NO ₃ per 100 Mols. H ₂ O.	Solution.	Water.	Phase.
0	• • •	26.63	54.19	118.3	NH₄NO₃ rhomb. β
12.2	1.2945	34.50	60.53	153.4	46
20.2	1.3116	43.30	65.80	192.4	66
25.0	1.3197	48.10	68.17	214.2	66
30.0	1.3299	54 . 40	70.73	241 8	65
32 · I	I .3344	57.60	71.97	256.9	NH_4NO_2 rhomb. β + rhomb. α
35.0	1.3394	59.80	72.64	265.8	NH ₄ NO ₂ rhomb. «
40.0	1.3464	66.80	74.82	297.0	- 46
50.0	•••	77 · 4I	77 - 49	344.0	. "
60.0		94 - 73	80.81	421.0	46
70.0		112.30	83.32	499.0	66
80.0		130.50	85.25	580.0	66
90.0		166.50	88.08	•	NH4NO2 rhombohedral?
100.0	• • •	196.00	89.71	871.0	

SOLUBILITIES OF MIXTURES OF AMMONIUM NITRATE AND OTHER SALTS. (Rüdorf - Mulder.)

100 gms. H_2O dissolve 162.9 gms. $NH_4NO_3+77.1$ gms. $NaNO_3$ at 16° R. 100 gms. H_2O dissolve 88.8 gms. $NH_4NO_3+40.6$ gms. KNO_3 at 9° M. 100 gms. H_2O dissolve 101.3 gms. $NH_4NO_3+6.2$ gms. $Ba(NO_3)_2$ at 9° M.

SOLUBILITY OF AMMONIUM NITRATE IN AMMONIA. (Kuriloff—Z. physic. Chem. 25, 109, '98.)

1° .	Gms. NH ₄ NO ₈ .	Gms. NH ₉ .	Mols. NH ₄ NO per 100 Mols. NH ₄ NO ₈ + NH ₈ .		Gms. NH4NOs.	Gms. NH ₃ .	Mols. NH, NO, per 100 Mols. NH, NO, + NH,
-8o	0	100	0.0	33 · 3	0.9358	0.2352	
-6 0	1.3918	4 · 4327	6.25	35.9	0.7746	0.1857	45.9 4 7 0
-44.5	0.9526	1.2457	13.9	68.8	4.2615	0.7747	53.8
-30	0.8308	0.3700	32.3	94.0	0.6439	0.0665	
-10.5	0.9675	0.3515	36 .9		0.7578	0.0588	74.2
0	0.7600	0.2607	3 8.3	o. 861	• • •	• • •	100.0
t° -	temperat	ure of e	quilibrium	between	solution	and so	lid phase

SOLUBILITY OF AMMONIUM NITRATE IN AQUEOUS SOLUTIONS OF AMMONIUM SULFATE AND VICE VERSA. (Massinik, 1916, 1917.)

Results at 0°.				Results	at 30°. od Haenen, 1910	Results at 70°.		
	(GC WALL	, 1910.)	(Schreine)	HILKEIS EI	M Daenen, 1910	.,	(de Mai	u, 1910.)
Gms 100 Gms NH ₄ NO ₂	Sat. Sol.	Solid Phase.	Gms. 100 Gms. NH ₄ NO ₈ .	per Sat. Sol. (NH ₄) ₂ SO ₄ .	Solid Phase.	Gms. 100 Gms. NH ₄ NO ₃ .	per Sat. Sol. (NH ₄) ₂ SO ₄ .	Solid Phase.
54.19	0	NH ₄ NO ₈	70. I	0	NH ₄ NO ₃	84.03	0	NH ₄ NO ₂
40.12	6	44	67.63	2.38	"	81.38	2.41	"
45.99	9.53	NH4NO+13	66.93	3.46	NH4NO2+1-3	81.01	2.45	NH4NO2+1-3
31.61	19.5	1.3	63.84	4.96	1.3	80.25	2.68	1.3
30.87	20.43	1.3+1.2	58.06	8.22	1.3+1.2	76.0I	3.96	e e
31.04	20.4	1.2	52.75	II.42	1.2	73.48	5.14	1.3+1.2
29.81	21.33	"	49.80	13.27	" +(NHJ),SO,		5.82	1.2
29.58	41.64	1.2+(NH ₄)2SO	37.20	19.48	(NH ₄) ₂ SO ₄	70.15	6.71	1.2+(NHL),SO4
5.61	37.89	(NH ₄) ₂ SO ₄	19.91	28.83	"	11.10	40.81	(NH ₄) ₂ SO ₄
ŏ	41.4	"	12.05	34.7	**	0	47.81	u
			0	44.I	44			

1.3 = (NH₄)₂SO_{4.3}NH₂NO₃. 1.2 = (NH₄)₂SO_{4.2}NH₄NO₃. Freezing-point lowering data for mixtures of ammonium nitrate and lead nitrate are given by Bogitch (1915).

SOLUBILITY OF AMMONIUM NITRATE IN NITRIC ACID. (Groschuff — Ber. 37, 1488, '04.)

Determinations by the "Synthetic Method," see Note, page 16.

t°.	Gms. NH4NOs per 100 Gms. Sol.	Mols. NH4NOs per 100 Mols. HNO	Solid Phase.	** .	Gms. NH ₄ NO ₈ per 100 Gms. Sol.	Mols. NH ₄ NO ₈ per 100 Mols. HNO	Solic Phas	
8	21.1	21.1	NH4NO3.2HNO3	11.0	51.7	84.3	NH,NO3.	HNO,
23	28.7	31.6	" •	12.0	54.7	95.1	••	labil.
29.5m.p	t. 38.8	50.0		11.5	57.6	108.0	**	b
27.5	44.6	63.4	. 9	11.5	54.0	92.4	NH4NO	labil.
23.5	49.4	76.8	•	17.0	54.7	95.1	•	stabil
17.5	54.0	92.4		27.0	56.2	101.0	44	
16.5	54 · 3	93.5	NH4NO2.HNO2	49.0		120.0	4	
4.0	45.8	66.7	labil	79.0	68. r	168.o	14	
	a=	solution	n in HNO.	b = s	olution	in NHLN	1O-	

rbd. = rhombohedric.

SOLUBILITY OF AMMONIUM TRI-NITRATE IN WATER. (Greschuff.)

r.	Gms. NH ₄ NO ₂ per 100 Gms. Solution.	Gms. HNO ₂ per 100 Gms. Solution.	Mols. NH ₄ NO ₅ ° per 100 Mols. H ₂ O.	Mols. NH ₄ NO ₈ per roo total Mols. Solution.	Solid Phase.
– 8	34.2	53.9	64.3	22	NH4NO3.2HNO3
- 2.5	34.8	54.8	75.1	23.I	"
+ 3	35 4	55.8	90	24.3	"
8.5	36.6	56.9	113	25.7	"
19.5	37 · 4	58.9	225	29	"
25	38.1	60	450	31	"
29.5 m. p	t. 388	61.2	∞	33	"
		• or N	H ₄ NO ₃₋₂ HNO ₃₋		

SOLUBILITY OF MIXTURES OF AMMONIUM NITRATE AND SILVER NITRATE IN WATER AT VARIOUS TEMPERATURES.
(Schreinemakers and deBast, 1910.)

Gms. per 100 Gms. Sat. Sol. Gms. per 100 Gms. Sat. Sol. Solid Phase. Solid Phase. AgNO, NH,NO, AgNO₃. NH₄NO₃. D+rb.AgNO₂ - 7.3 47.I Ice+rb. AgNO₃ 100 6 67.9 32.I 8.43 D+rb.NH,NO 44.87 -10.7 44.52 0 22.13 16.8 Ice+D+rb. AgNO -14.9 42 18 49.22 27.07 " +D -14.8 39.51 18.79 30 29.76 52.50 " +D+8 rb. NH4NO3 D+rb. NH,NO₁+

a+rb. NH,NO₁ -18.7 15.99 37.3 士 32 " +rb. NH4NO₃ -17.4 0 41.2 32.68 40 52.22 D+a rb. NH4NO 50.36 19.59 D+rb. AgNOs 55 36.6 52.38 55.36 58.89 18 22.06 {D+rb. NH₄NO₈+ rbd.NH₉NO₈ " 85.4 30 23.42 D+rbd. NH,NO, 55 63.32 26.12 101.5. 47.5 52.5

SOLUBILITY OF AMMONIUM NITRATE IN AQUEOUS SOLUTIONS OF SILVER
NITRATE AND VICE VERSA AT 30°.
(Schreinemakers and deBaat, 1910.)

rb. = rhombic.

 $D = NH_4NO_2.AgNO_3.$

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per Sat.	Gms. per 100 Gms. Sat. Sol.		
AgNO, NH,NO			AgNO ₃ .	NH ₄ NO ₃ .	Solid Phase.	
0	70.I	NH4NO3	45.85	34 · 47	D	
12.51	63.59	"	52.45	28.86	"	
21.31	58.64	"	57 · 93	24.33	"	
27.75	54.12	"	58.88	23.42	D+AgNO ₃	
29.76	52.5	NH_4NO_3+D	63.27	15.62	AgNO ₃	
35.62	45.44	\mathbf{D}	69.08	Ğ.59	"	
41.09	39.60	"	73	o Š	66	
		$D = NH_4N^{\circ}$	O3.AgNO3.			

Results are also given by Schreinemakers (1908-09) for the reciprocal solubility of ammonium nitrate and silver nitrate in aqueous alcohol solutions at 30°.

100 cc. anhydrous hydrazine dissolve 78 gms. NH₄NO₃ at room temp. with decomp. (Welsh and Broderson, 1915.)

Freezing-point data for mixtures of ammonium nitrate and silver nitrate are given by Flavitzkii (1909) and by Zawidzki (1904). The eutectic is at 102.4° and 30.9 Mol. % AgNO₂. Results for NH₄NO₂ + TlNO₃ are given by Boks (1902).

RECIPROCAL SOLUBILITY OF AMMONIUM NITRATE AND SODIUM NITRATE IN WATER AT 0°, 15° AND 30°.

(Fedotieff and Koltunoff, 1914.)

to. Sp. Gr. S		Gms. per 10	o Gms. H ₂ O.	ŧ°.	Sp. Gr. Sat.	Gms. per ro	Gms. H ₂ O.			
Sol.	Sol.	NH,NO.	NaNO ₃ .	• .	Sol.	NH4NO3.	NaNOs.			
0	1.354	0	73 · 33	15	1.429	155.3	75.38			
0	1.407	105.5	66	15	1.405	156.1	60.76			
0	1.264	118.4	0	15	1.364	159	36.50			
15	1.375	0	83.9	15	1.350	160	27.79			
15	1.386	24.03	81.21	15	1.330	162.3	17.63			
15	1.392	42.81	79 - 34	15	1.298	167.4	0			
15	1.401	64.6	78. 0 6	30	1.401	0	96.12			
15	1.417	110.9	75.8 1	30	1.450	220.8	88.31			
15	1.428	152	75.35	30	1.329	232.6	0			

SOLUBILITY OF AMMONIUM NITRATE IN AQUEOUS ETHYL ALCOHOL. (Fleckenstein – Physik. Z., 6, 419, '05.)

40	Gr	Grams of NH4NO3 Dissolved per 100 Grams Aq. Alcohol of (Wt. %):							
t°,	100%.	86.77%.	76.12%.	51.65%.	25.81%.	0%.			
20	2.5	II	23	70	140	195			
30	4	14	32	90	165	230			
40	5	18	43	115	196	277			
50	Ğ	24	55	144	244	365			
60	7 · 5	30	70	183	320	• • •			
70	9	41	93	230	• • •	• • •			
80	10.5	56	•••	• • •	• • •				

Note. — The figures in the preceding table were read from curves shown in the abridged report of the work, and are, therefore, only approximately correct. Determinations of the solubility in methyl alcohol solutions were also made but not quoted in the abstract. The "Synthetic Method" (see Note, page 16) was used.

100 grams absolute ethyl alcohol dissolve 4.6 grams NH4NO3 at 14° and 3.8 grams at 20.5°.

100 grams absolute methyl alcohol dissolve 14.6 grams NH₄NO₂ at 14°, 16.3 grams at 18.5° and 17.1 grams at 20.5°.

(Schiff and Monsacchi — Z. physik. Chem., 21, 277, '96; at 20.5° de Bruyn — Ibid., 10, 783, '92.)

SOLUBILITY OF AMMONIUM NITRATE IN AQUEOUS ETHYL AND METHYL ALCOHOLS AND IN A MIXTURE OF THE TWO AT 30°. (Schreinemakers, 1908-09.)

Gms. per 100 Gms. Sat. Sol.			Gms. p	er 100 Gms.	Sat. Sol.	Gms	per 100 Gms.	Sat. Sol.		
H ₂ O.	C.H.OH.	NH ₄ NO ₈ .	H ₂ O.	СН₀ОН.	NH ₄ NO ₃ .	H ₂ O.	*CH_OH +C_H_OH.	NH,NO.		
0	96.4	3.6	0	83.3	16.7	3.4	84.9	11.7		
5	89.6	6.5	5	74.8	21.3	5	82.9	12.3		
10	80.4	10.7	10	63.8	27.I	10	74.6	16.4		
15	68.6	17	15	50.7	35	15	63.5	24		
20	53 · 5	26.8	20	35.2	46.3	20	48.2	35.1		
25	32.5	44.8	25	19.8	59	25	22.4	54		
29.9	0	70.I	29.9	0	70.I	29.9	0	70.1		
		• Weight	t per cent	CH,OH -	51.7, C₂H₅OF	I = 48.3.				

Additional determinations of the solubility of ammonium nitrate in aqueous ethyl alcohol solutions at 0°, 30° and 70° are given by deWaal (1910). At certain concentrations at 67.5° the solutions separate into two layers.

AMMONIUM Magnesium NITRATE 2NH4NO3.Mg(NO3)2.

100 parts water dissolve 10 parts salt at 12.5°.

(Foucroy.)

AMMONIUM Manganic MOLYBDATE 5(NH4)2MoO4.Mn2(Mo2O7)2.12H2O. 100 parts water dissolve 0.98 part salt at 17°. (Struve - J. pr. Chem., 61, 460, '54.)

AMMONIUM OLEATE C17H22COONH4.

SOLUBILITY IN SEVERAL SOLVENTS. (Falciola, 1910.)

Solvent.	Gms. C ₁₇ H ₈₈ COONH ₄ dissolved per 100 cc. solvent:						
Absolute Alcohol	31 at o°	59	at 10°	100	at 50°		
75 per cent Alcohol	•••	8.2	at 20°	10.8	36 at 30°		
r part Alcohol + 2 parts Ether		9.45	at 15°	16.9	at 20°		
Acetone	• • •	4.7	at 15°	-			

AMMONIUM OXALATE (COONH4)2.H2O.

SOLUBILITY IN WATER.

(Av. curve from results of Engel, 1888; Foote and Andrew, 1905; Woudstra, 1912; Colani, 1916.)

t°.	Gms. (COONH ₄) ₂ per 100 Gms. Sat. Solution.	t°.	Gms. (COONH ₄) ₂ 200 Gms. Sat. Solu
0	2 . I	25	4.8
10	3	30	5.6
15	3.5.	40	7 · 4
20	4.2	50	9.3

SOLUBILITY IN AQUEOUS SOLUTIONS OF OXALIC ACID. (Woudstra, 1912.)

Results at 30°. (Interpolated from Original.)

Results at 45°.

Gms. per 100 C	ms. Sat. Sol.	Solid Phase.	Gms. per 100	Solid Phase.	
(COONH ₄) ₂ .	(COOH)	Solid I mase.	(COONH ₄) ₂ .	(COOH) ₁ .	_
0.14	12.36	Α	0.22	21.22	. A
0.28	12.78	A+T	0.31	21.31	"
0.30	12	T	0.53	20.54	$\mathbf{A} + \mathbf{T}$
0.39	10	"	0.56	21.23	${f T}$
0.47	8	"	0.61	20.55	"
0.52	7	"	0.54	20.92	66
0.68	Ġ	"	0.79	16.44	"
I	5	"	1.23	12.88	"
2	3.96	"	7.16	7.98	"
3	3.61	"	3 · 54	5.83	"
4	3.60	"	5.65	5.67	"
5	3.81	"	6.72	5.95	"
5.98	4.21	T+A. O.	8.74	6.53	T+A.O.
7	3.63	A. O.	8.93	6.27	A. O.
8.19	3.36	A. O.+N. O.	9.04	6.14	"
7	2.32	N. O.	12.38	5	A. O.+N. O.
6	1.02	"	8.31	3.04	N. O.
5 · 53	0.22	"	9.59	1.45	.66

 $A. = Oxalic Acid (COOH)_1.H_2O.$

A. O. = Acid Ammonium Oxalate (COO)₂HNH₄.H₂O.

T = Ammonium tetroxalate (COOH)₂(COO)₂HH₄.2H₂O.

N. O. = Neutral Ammonium Oxalate (COONH₄)₂.H₂O.

Additional data for this system at 25° are given by Walden (1905), and at 0°, by Engel (1888).

SOLUBILITY IN WATER OF MIXTURES OF AMMONIUM OXALATE AND:

Other Oxalates at 25°. (Foote and Andrew, 1905.)					Other Ammonium Salts. (Colani, 1916.)				
	Gms. per 100 Gms. Sat. Solution.				G	ms. per 100	Gms. Sat. S	Solu	tion.
2.79 (C	OONH4),H2O	+25.96	(COOK),H,O	15	0.14	(COONHA)	+26.3	5	NH,CI
4.8	**	+5.75		50	0.67	#	+32.5	5	44
5-45	44	+0.59	(COO) ₂ Mg. ₂ H ₂ O	18	0.11		+42.4	30	NH4)2SO4
6.19	44	+1.45	(COO) ₂ Zn. ₂ H ₂ O	50	0.65	u	+45.9	2	••
5.06	44	+0.28	(COO) ₂ Cd. ₃ H ₂ O	19	0.08		+62.2		NH4NO
-				50	0.35	"	+72.1	I	"

Both salts in excess in every case. No double salts formed.

SOLUBILITY OF AMMONIUM OXALATE AND OF AMMONIUM THORIUM OXALATE'
IN WATER AT 25°.
(James, Whittemore and Holden, 1914.)

The mixtures were constantly agitated for periods varying from many weeks to several months.

Gms. per 100 (NH ₄) ₂ C ₂ O ₄ .	Gms. H ₂ O. Th(C ₂ O ₄) ₂ .	Solid Phase.	Gms. per roc (NH ₄) ₂ C ₂ O ₄ .	Th(C ₂ O ₄) ₂ .	Solid Phase.
5.25	0	$(NH_4)_2C_2O_4$	29.47	39.10	2.1.7+2.1.2
6.04	I.54	"	23.04	29.87	2.1.2
7.78	4.51	"	16.84	21.18	44
10.37	8.87	"	13.27	15.06	"
15.46	16.8g	"	8.13	0.13	"
21.47	26.37	"	5.3Ğ	5.63	"
28.18	36.54	"+2.1.7	1.70	I.42	"

2.1.7 = $2\text{Th}(C_2O_4)_2.(NH_4)_2C_2O_4.7H_2O$; 2.1.2 = $2\text{Th}(C_2O_4)_2.(NH_4)_2C_2O_4.2H_2O$. 100 gms. 95% formic acid dissolve 6.2 gms. $(NH_4)_2C_2O_4$ at 21°. (Aschan, 1913.) 100 cc. anhydrous hydrazine dissolve 44 gms. $(NH_4)_2C_2O_4$ at room temp. with evolution of ammonia. (Welsh and Broderson, 1915.)

AMMONIUM PALMITATE C16H21O2NH4.

SOLUBILITY IN SEVERAL SOLVENTS. (Falciola, 1910.)

Gms. C14HatO2NH4 per 100 c.c. of: Ábsolute Mixture of 1 Pt. ť. Alcohol + 2 Parts Ether. Alcohol 75% Alcohol. 50% Alcohol. Acetone. 0.5 0 . . . 0.37 (13°) 0.2 (13°) 10 0.7 1.78 . . . 20 I.4 4.335 · 33 0.20 **II.02** 30 . . . 14.84 6.6940 4.5 50 11

AMMONIUM PHOSPHATES (NH₄)₂PO₄, (NH₄)₂HPO₄, and NH₄H₂PO₄. 100 gms. H₂O dissolve 131 gms. (NH₄)₂HPO₄ at 15°, d₁₆ sat. sol. = 1.343. (Greenish and Smith, 1901.)

Data for the solubility of mono ammonium phosphate in anhydrous and in aqueous ortho phosphoric acid, determined by the synthetic method, are given by Parravano and Mieli, 1908.

SOLUBILITY OF AMMONIUM PHOSPHATES IN AQUEOUS SOLUTIONS OF ORTHO PHOSPHORIC ACID AT 25°.

(Parker, 1914.)

Gms. per 100 Gms. Sat. Solution.		Gms. per 100 Gms.					
		Solid Phase.	Sat. Sol	ution.	Solid Phase.		
H,PO,	NH ₂		H ₄ PO ₄ .	NH ₄ .	_		
4.I	22.6	(NH ₄) ₂ PO ₄ .3H ₂ O	40	9 '	NH ₄ H ₂ PO ₄		
4.4	18.4	"	30	5.4	"		
10	13.1	"	20.6	4	".		
20	7	"	30	3.8	"		
30	7.7	"	40	4	66		
34 - 4	10	$(NH_4)_2PO_4.3H_2O+(NH_4)_2HPO_4$	50	4.2	"		
40	10.2	(NH ₄) ₂ HPO ₄	60.6	4.4	"		
48.2	11.6	(NH ₄) ₂ HPO ₄ +NH ₄ H ₂ PO ₄		•			

The original figures have been calculated to grams, plotted on cross-section paper and the above table read from the curve.

Data for this system are also given by D'Ans and Schreiner (1910). The agreement is satisfactory except for the (NH₄)₂PO_{4·3}H₂O end of the curve, for which much lower values for the NH₃ component are given by D'Ans and Schreiner.

AMMONIUM Magnesium **PHOSPHATE** NH₄MgPO₄.6H₂O and 1H₂O.

SOLUBILITY IN WATER AND SALT SOLUTIONS, (Bube, 1910.)

The solutions were saturated in 7-16 liter flasks. The stirrer was introduced through a mercury sealed connection, in order to prevent loss of moisture or ammonia during the long periods required for saturation. Great care was exercised to eliminate errors of manipulation. Large volumes of the saturated solutions were used for analysis. In the cases where equilibrium was approached from above (designated by *, in table below) the mixtures were heated to about 90° for \(\frac{1}{2} \) hour, and then cooled while being continually stirred for 4-5 hours at 50°, and then in a thermostat at 25° for the remaining period shown.

Solvent.	t°.	Time for Gms. per 100 Gms. Sat. Sol.				Solid Phase.	
SOLVEIL.	• •	Saturation	Mg.	PrOs.	NH.		
Water	25°	69 hrs.	0.0808	0.0965		Mixed Hydrates	
a	25	o days	0.0867	0.0002		44	
•	25	14 "	0.1352	0.1333	0.1301	"	
M	22.7	17 hrs.*	0.1076	0.1084	0.1040	Monohydrate	
2 = NH ₆ Cl	25	20 days	0.3129	0.3057		Mixed Hydrates	
1 3-2 NH ₄ Cl+z s NH ₂	25.2	16 hrs.*	0.0249	0.02025	•••	Monohydrate	
0.2 Mol. MgCl, per liter H ₂ O	25	27 days		0.0206		Mixed Hydrates	
0.3 " " " "	25.2	16 hrs.*		0.0512		Monohydrate	
T Mol. (NH4)2HPO4 per liter H2O	24.25	•	0.1229	•••	•••	"	

SOLUBILITY OF AMMONIUM MAGNESIUM PHOSPHATE IN SEVERAL SOLVENTS. (Weager, 1911.)

		Gms. NH ₄ MgPO ₄ per 100 Gms. Solvent in:							
r.	Water.	Aq. 5% NH4NO	Aq. 5% NH ₄ Cl.	Mixture of 1 Pt. NH ₂ (d=0.96) +4 Pts. H ₂ O.	Ag. 5% NH4Cl+4 NH4 per 100.	Aq. 10% NH ₄ Cl+4 NH ₅ per 100.			
0	0.023	0.110	0.060	0.0087	• • •				
20	0.052	0.046	0.105	0.0098	0.0165	0.0541			
30	• • •	0.054	0.113			• • •			
40	0.036	0.064	0.071	0.0136	•••	• • •			
50	0.030	0.072	0.093	0.0153	• • •	• • •			
60	0.040	0.085	0.173	0.0174	0.0274	0.0731			
70	0.016	0.083	0.124	0.0178	• • •	•••			
80.	0.019	0.101	0.191	0.0145	•••	• • •			

AMMONIUM Manganese PHOSPHATE NH4MnPO4.7H4O.

SOLUBILITY IN SEVERAL SOLVENTS.

(Wenger, 1911.)

Gms. NH.MnPO. 1	er roo Gms.	Solvent in:
-----------------	-------------	-------------

		4		
ť.	Water.	Aq. 5% Aq. 5° NH,NO. NH,C		Mixture of 1 Pt. NH ₂ (d=0.96)+4 parts H ₂ O.
0	• • •	0.021	0.002	0.0116
20	O ·	0.020	0.025	0.0122
30	• • •	0.023	0.034	• • •
40	0	0.021	0.039	0.0118
50 60	• • •	0.023	0.035	0.0132
60	0	0.027	0.038	0.0194
70	0.005	0.028	0.041	0.0191
80	0.007	0.033	0.045	0.0197

AMMONIUM Sodium PHOSPHATES

Data for the distribution of each of 5 ammonium sodium ortho- and pyrophosphates between water and chloroform at 18°, are given by Abbott and Bray (1909).

AMMONIUM Hydrogen PHOSPHITE (NH4H)HPO₃.

100 grams water dissolve 171 grams (NH₄H)HPO₄ at 0°, 190 grams at 14.5° and 260 grams at 31°. (Amat., 1887.)

AMMONIUM Hypo PHOSPHITE NH4H2PO2.

100 cc. H₂O dissolve 83 gms. NH₄H₂PO₂ at room temp. (Squire and Caines, 1905.)

AMMONIUM PERMANGANATE NH, MnO.

100 parts water dissolve approximately 8 parts of NH₄MnO₄ at 15°. (Aschoff.)

AMMONIUM PICRATE C6H2(NO2)2ONH4.

100 cc. H₂O dissolve 1.1 gm. Am. picrate at room temp. (Squire and Caines, 1905.) 100 cc. 90% alcohol dissolve 1.2 gm. Am. picrate at room temp.

(Squire and Caines, 1905.)

AMMONIUM Fluo SILICATE (NH4)2SiF4.

100 parts water dissolve 18.5 parts (NH₄)₂SiF₆ at 17.5,° Sp. Gr. 1.096.

(Stolba, 1877.)

AMMONIUM SALICYLATE C.H.OH.COONH.

SOLUBILITY IN AQUEOUS ALCOHOL SOLUTIONS AT 25°. (Seidell, 1909, 1910.)

Gms. C ₂ H ₅ OH per 100 Gms. Solvent.	Sp. Gr. of Sat. Sol.	Gms. C ₄ H ₄ . OHCOONH ₄ per 100 Gms. Sat. Sol.	Gms. C ₂ H ₅ OH per roo Gms. Sat. Sol.	Sp. Gr. of Sat. Sol.	Gms. C ₆ H ₄ .OH. COONH ₄ per 100 Gms. Sat. Sol.
0	1.148	50.8	70	1.015	42
20	1.122	50.3	8o	0.979	38
40	1.088	48.3	90	0.936	31.6
50	1.067	46.7	95	0.907	27.8
ŏo	I.042	44.7	100	0.875	22.3

AMMONIUM SELENATE (NH4)2 SeO4

100 gms. H₂O dissolve 1.22 gms. (NH₄)₂ SeO₄ at 12°.

(Tutton, 1907)

AMMONIUM STEARATE C18H26O2NH4.

SOLUBILITY IN SEVERAL SOLVENTS. (Falciola, 1910.)

ť.	Gms. C ₁₈ H ₃₆ O ₂ NH ₄ per 100 cc. of:						
• .	Absolute Alcohol.	75% Alcohol.	50% Alcohol.	Ether.	Acetone.		
0	0.1		• • •		• • •		
10	0.3	0.56	0.25		0,08 (13°)		
20	0.5	• • •	0.51	0.1	1		
30	0.9	r.83	1.16				
40	1.8	5	3.21	·			
50	5.5	• • •	•••	• • •			

AMMONIUM SULFATE (NH4)2SO4.

SOLUBILITY IN WATER. (Mulder.)

4.	Grams (NH ₄) ₂ SO ₄ per 100 Grams.		t°.	Grams (NH4)2SO4 per 100 Grams.		
•	Water. Solution.	¥*.	Water.	Solution.		
0	7 0.6	41.4	30	78.o	43.8	
5	71.8	41.8	40	ŠI .0	44.8	
10	73.0	42.2	60	88.o	46.8	
15	74.2	42.6	80	95 · 3	48.8	
20	75·4 ·	43.0	100	103.3	50 8	
25	76.7	43 · 4	108.9	107.5	51.8	

Sp. Gr. of saturated solution at 15° = 1.248; at 19° = 1.241

Eutectic point, Ice + $(NH_4)_5SO_4 = -19.05^\circ$ and 38.4 gms. $(NH_4)_2SO_4$ per 100 gms. sat. solution.

SOLUBILITY IN AQUEOUS AMMONIA SOLUTIONS AT 25°. (D'Ans and Schreiner, 1910.)

Mols. per 100	o Gms. Sat. Sol.	Gms. per 1000 Gms. Sat. Sol		
(NH ₂).	(NH ₄) ₂ SO ₄ .	(NH ₃).	(NH ₄) ₂ SO ₄	
0	3.28	0	433 - 4	
I.O2	2.60	17.4	343.6	
1.95	2.13	33.2	281.5	
3.44	1.59	58.6	210.1	
5.35	1.16	91.1	153.3	
· 7 · 13	0.78	121.4	103	
9.47	o ´	161.2	ō	

SOLUBILITY OF AMMONIUM SULFATE IN AQUEOUS SOLUTIONS OF COPPER SULFATE AT 30° AND VICE VERSA. (Schreinemakers, 1910.)

Gms. per 100 Gms. Sat. Solution.		Solid Phase.	Gms. per 100 Soluti		Solid Phase.	
(NH.),SO4.	CuSO ₄ .		(NH ₄) ₂ SO ₄ .	CuSO ₄ .		
44	0	$(NH_4)_2SO_4$	8.19	13.65	1.1.6	
38.32	0.77	$(NH_4)_2SO_4 + 1.1.6$	6.98	16.77	"	
29.27	1.57	1.1.6	5.79	20.53	1.1.6+CuSO ₄ .5H ₂ O	
17.53	4.05	"	2.45	20.19	CuSO₄.5H₂O	
*9.33	11.03	"	0	20.32	"	
 Solubility of r.r.6 in water. 						

1.1.6 = $CuSO_4(NH_4)_2SO_4.6H_2O$.

Several additional determinations for the above system at 19°, are given by Rüdorff (1873), and by Schiff (1859).

SOLUBILITY OF AMMONIUM SULFATE IN AQUEOUS SOLUTIONS OF FERROUS SULFATE AT 30° AND VICE VERSA.
(Schreinemakers, 1910 a.)

Gms. per roo Gms. Sat. Solution.		Solid Phase.		oo Gms. Sat. ition.	Solid Phase.
(NH ₄)-SO ₄ .	FeSO4.		(NH ₄) ₂ SO ₄ .	FeSO ₄ .	
44 - 27	0	$(NH_4)_2SO_4$	8.90	17.64	1.1.6
43.88	0.79	(NH)SO+1.1.6	6.44	23.59	"
34.24	I.72	1.1.6	5.91	25.24	1.1.6+FeSO _{4.7} H ₂ O
19.64	5.70	"	5.24	25.24	FeSO₄.7H₂O
16.29	7.95	"	0	24.90	ü
11.45	13.13	"			
_		$1.1.6 = (NH_4$)2SO4.FeSO	₄.6H₂O.	

Data for the quaternary system (NH₄)₂SO₄ + FeSO₄ + Li₂SO₄ + H₂O at 30° are also given.

SOLUBILITY OF AMMONIUM SULFATE IN AQUEOUS SOLUTIONS OF LITHIUM SULFATE AND VICE VERSA.

(Schreinemakers, Cocheret, Filippo and deWaal, 1905, 1907.) Results at 30°. Results at 50°.

Gms. per 100 Gms. Sat. Solution.		Solid Phase.	Gms. per roc Solu	o Gms. Sat.	Solid Phase.	
(NH4),SO4.	Li ₂ SO ₄		(NH ₄) ₂ SO ₄ .	Li ₂ SO ₄ .		
44 . I	0	(NH ₄) ₂ SO ₄	45.7	0	(NH ₄) ₂ SO ₄	
40.8	3		43.05	5.86	$(NH_4)_2SO_4+NH_4LiSO_4$	
39.5	6.6	(NH ₄) ₂ SO ₄ +NH ₄ LiSO ₄	19.65	16.35	NH ₄ LiSO ₄	
30	10	NH ₄ LiSO ₄	13.90	21.20	££	
21.6	15	"	13.97	21.23	NH ₄ LiSO ₄ +Li ₂ SO ₄ .H ₂ O	
`15	20	44	11.45	21.75	Li ₂ SO ₄ .H ₂ O	
12.5	21.9	NH ₄ LiSO ₄ +Li ₂ SO ₄ .H ₂ O	9.63	22.79	"	
8.9	23	Li ₂ SO ₄ .H ₂ O	8.58	23.00	• "	
0	25.1	"	7.56	22.86	u	
	_	•	0	24.3	и	

Additional data for the triple points of the above system at 20°, 57° and 97° are given by Spielrein (1913), but the terms in which the results are presented are not clearly shown.

Data for the quaternary system, ammonium sulfate, lithium sulfate, alcohol and water at 6.5°, 30° and 50° are given by Schreinemakers and van Dorp (1907).

A mixture of an excess of ammonium and of potassium sulfates in water at 19° was found by Rüdorff (1873) to contain 37.97 gms. (NH₄)₂SO₄ + 39.3 gms. K₂SO₄ per 100 gms. sat. solution.

SOLUBILITY OF AMMONIUM SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 30°.
(Van Dorp, 1910 and 1911.)

Gms. per 100 Gms. Sat. Solution.		Solid Phase.	Gms. per 100 Soluti	Solid Phase.	
(NH ₄) ₂ SO ₄ . 44 · 3 43 · 6 44 · 1 42 · 9	H ₂ SO ₄ . 0 10 13.2 15	(NH ₄) ₂ SO ₄ (NH ₄) ₂ SO ₄ +3.1 3.1	(NH.) ₁ SO ₄ . 32.8 26.1 20.9 17.6	H ₁ SO ₄ . 40 45 50 55	(NH ₄)HSO "
41 40.8 43 45.5 42.3	20 25 30 33.8 35	" 3.1+(NH ₄)HSO ₄ (NH ₄)HSO ₄ 3.1 = 3 [(NH ₄) ₅	17.8 20 30 37 60.J.H ₁ SO.	60 61.7 62.9 62.2	66 66 66

Data for the solubility of ammonium sulfate in aqueous solutions of sulfuric acid of concentration extending to 10 gm. mols. per liter, are given by D'Ans (1909 and 1913).

Data for the solubility of ammonium and lithium sulfates in concentrated sunuric acid containing traces of water, at 30°, are given by Van Dorp (1913-14).

SOLUBILITY OF AMMONIUM SULFATE IN AQUEOUS SOLUTION OF ETHYL ALCOHOL AT 30° AND AT 50°.

(Results at 30°, Wibaut, 1909; at 50°, Schreinemakers and de Baat, 1907.)

Results at 30°. Two liquid layers are formed at concentrations of alcohol between 5.8 and 62%. These have the compositions:

Upper Layer. Gms. per 100 Gms. Sat Solution.				Lower Layer.			
				Gms. per 100 Gms. Sat. Solution.			
(NH ₄),SO ₄ .	C ₄ H ₄ OH.	H₂O.		(NH ₄),SO ₄ .	С.Н.ОН.	H _s O.	
2.2	56.6	41.2		37·I	5.8	57.I	
2.6	54 · 5	42.9	•	35 · 7	6.3	58	
3.4	52.3	44 · 3		33.8	7 · 4	58.8	
13.2	31.8	55.		21.7	18.4	59.9	
17	25	58		17	25	58	

At a concentration of 62% alcohol the liquid is homogeneous and contains 1.3 gms. (NH₄)₂SO₄ per 100 gms. sat. solution, At 90.4% alcohol no (NH₄)₂SO₄ is dissolved.

Results at 50°.

Gms. per 100 Gms. Saturated Solution.						
(NH ₄) ₂ SO ₄ .	C ₂ H ₄ OH.	H ₅ O.				
43.02	2.32	54.66				
4I.I	4.I	54.8				
I.2	64.5	34.3				
0.2	75·5	24.3				

Between the concentrations 4.1 and 64.5% C₂H₂OH the mixtures separate into two layers. The percentage composition of each member of several such conjoined layers, is as follows:

. 1	Upper Layer.		Lower Layer.				
Gms. per 100 Gms. Sat. Solution.			Gms. per 100 Gms. Sat. Solution				
(NH),SO,	C.H.OH.	H ₂ O.	(NH ₄),SO ₄ .	C₁H₄OH.	H ₂ O.		
I.2	64.5	34.3	41.1	4.I	54.8		
1.6	60	38.4	36.8	6	57.2		
3.8	50	46.2	30.8	9	60.2		
7 - 4	40	52.6	26.6	12	61.4		
10	24 4	ee 6	22 6	TC	61 4		

Two determinations at 0° by deWaal (1910) gave 30 gms. (NH₄)₂SO₄ per 100 gms. sat. solution in 9.41% alcohol and 0.14 gm. (NH₄)₂SO₄ in 73.03% alcohol. Between these concentrations of alcohol two liquid layers are formed.

reveen these concentrations of alcohol two liquid layers are formed 100 gms. 95% formic acid dissolve 25.4 gms. (NH₄)₂SO₄ at 16.5°.

(Aschan, 1913.)

SOLUBILITY OF AMMONIUM SULFATE IN AQUEOUS ETHYL ALCOHOL SOLUTIONS.

(Continued.)

(Traube and Neuberg — Z.	physik. Chem. 1, 510, '87; Bodländer –	- Ibid. 7, 318, '91; Schreinemaker -
Ibid. 23, 657, '97; de	physik. Chem. 1, 510, '87; Bodländer – Bruyn <i>— Ibid</i> . 32, 68, '00; Linebarger	— Am. Ch. J. 14, 380, '92.)

Upper Layer Results. Grams per 100 Gms. Solution at 10°-40°.		Lower Layer Results.				
		Gms. C ₂ H ₅ OH per 100 Gms.	Gms. (NH ₄) ₂ SO ₄ per 100 g. Solution at:			
C₂H₄OH.	(NH4)2SO4.	Solution.	6.5°.	150.	330	
100	0.0	0	42.0	42.6	44	
8 0	O.I	2.5	39.0	40.2	3	
70	0.3	5.0	36.2	37 - 2	3	
60	1.4	7.5	33.2	34.5	42	
50	3.2	10.0	30.0	31.0	35	
45	4.8	12.5	27.2	28.0	3	
40	6.6	15.0	24.6	25.2	3	
35	9.2	17.5	22.0	22.4	?	
30	12.2	20.0	20.0	20.0	3	
25	14.6					

NOTE. — When ammonium sulfate is added to aqueous solutions of alcohol, it is found that for certain concentrations and temperatures the solutions separate into two liquid layers, the upper of which contains the larger percentage of alcohol.

Most of the determinations which have been made upon this system, as contained in the papers referred to above, are given in terms of grams of ammonium sulfate, of alcohol and of water per 100 grams of these three components taken together. Those results which are given in other terms can be readily calculated to this basis, and it is, therefore, possible to make a comparison of the several sets of determinations by plotting on cross-section paper and drawing curves through the points. In the present case the grams of alcohol per 100 grams of solution were taken as ordinates, and the grams of ammonium sulfate in the same quantity of each solution taken as abscissæ. It was found that a single curve could be drawn through practically all the points representing the upper layer solutions at the several temperatures, but the points for the solutions containing the larger amounts of water gave curves which diverged with increase of temperature. The results given for 33° in the above table are not to be accepted as correct until further work has been done.

SOLUBILITY OF AMMONIUM SULFATE IN AQUEOUS PROPYL ALCOHOL SOLUTIONS AT 20°.

(Linebarger - Am. Ch. J. 14, 380, '92.)

Gms per	100 Gms. Lution.	Gms. per 100 Gms. Solution.			
C ₂ H ₇ OH.	(NH4)2SO4.	C ₂ H ₇ OH.	(NH ₄) ₂ SO ₄ .		
70	0.4	40	3.2		
6c	1.0	30	4.8		
50	2.0	20	6.7		

67 AMMONIUM Cadmium SULFATE

AMMONTUM Cadmium **SULFATE** (NH₄)₂Cd(SO₄)₂6H₂O.

100 cc. H₂O dissolve 72.3 gms. (NH₄)₂Cd(SO₄)₂ at 25°.

(Locke, 1901.)

AMMONIUM Chromium **SULFATE** (Alum) (NH₄)₂Cr₂(SO₄)₄.24H₂O.

100 cc. H₂O dissolve 10.78 gms. anhydrous or 21.21 gms. hydrated salt at 25°. (Locke, 1901.)

AMMONIUM Cobalt SULFATE (NH₄)₂Co(SO₄)₂.6H₂O.

SOLUBILITY IN WATER.

(Tobler — Liebig's Annalen 95, 193, '55; v. Hauer — J. pr. Chem. 74, 433, '58; at 25°, Locke — Am Ch. J. 27, 459, '01.)

t°.		a)2Co(SO4)2 o Gms.	t°.	Gms. (NH ₄) ₂ Co(SO ₄) ₂ per 100 Gms.		
	Water.	Solution.		Water.	Solution.	
0	6.0	5 · 7	40	22.0	18.0	
10	9.5	8.7	50	27.0	21.3	
20	13.0	11.5	60	33 · 5	25.I	
25	14.72	12.8	70	40.0	28.6	
30	17.0	14.5	80	49.0	32.9	

Note. — The determinations reported by the above named investigators were plotted on cross-section paper and although considerable variations were noted, an average curve which probably represents very nearly the true conditions was drawn through them, and the above table made from this curve.

AMMONIUM Indium SULFATE (NH₄)₂In₂(SO₄)₄.24H₂O.

100 gms. H₂O dissolve 200 gms. salt at 16° and 400 gms. at 30°. (Rössler, 1873.)

AMMONIUM Iron SULFATE (Alum) (NH₄)₂Fe₂(SO₄)_{4.24}H₂O.

100 cc. H₂O dissolve 44.15 gms. anhydrous or 124.40 gms. hydrated salt at 25°. Sp. gr. of saturated solution at 15° = 1.203. (Locke, 1901.)

AMMONIUM Iron **SULFATE** (ferrous) (NH₄)₂Fe(SO₄)₂.6H₂O.

SOLUBILITY IN WATER.

(Tobler: at 25°, Locke - Am. Ch. J. 2KE, 459, 'OI.)

ŧ°.	G. (NH ₄) ₂ Fe(SO ₄) ₂ per 100 g. H ₂ O.	t°.	G. (NH ₄) ₂ Fe(SO ₄) ₂ per 100 g. H ₂ O.	t°.	G. (NH ₄) ₂ Fe(SO ₄) ₃ per 100 g. H ₂ O.
0	12.5	25	25.0 (T)	50	40
15	2 0 · 0	25	35.1 (L)	70	52
		40	33.0		

AMMONIUM Lead SULFATE (NH4)2SO4.PbSO4.

SOLUBILITY IN WATER.

(Barre, 1909.)

ť.	Gms. (NH4) ₂ SO ₄	per 100 Gms.	Solid Phase.
	Sat. Solution.	Water.	Solid Phase.
20	12.17	13.86	$(NH_4)_2SO_4.PbSO_4$
50	16.15	19.25	. "
75	19.52	24.3I	"
100	22.74	29.42	66

AMMONIUM Lithium SULFATE 68

AMMONIUM Lithium SULFATE NH.LiSO.

SOLUBILITY IN WATER.

(Schreinemakers, Cocheret, Filippo and deWaal, 1905, 1907.)

r.	Gms. NH ₄ LiSO ₄ per 100 Gms. Sat. Sol.	Solid Phase.	ŧ°.	Gms. NH ₄ LiSO ₄ per 100 Gms. Sat. Sol.	Solid Phase.
0	0	Ice	-10	35.25	NH ₄ LiSO ₄
- 5	14	"	+10	35.58	"
— 10	23.5	"	30	25.87	"
-15	29.7	"	50	36	"
- 20.6 Eutec	. 35.15	Ice+NH4LiSO4	70	36. <u>1</u> 8	"

AMMONIUM Magnesium SULFATE (NH₄)₂Mg(SO₄)₂.

SOLUBILITY OF AMMONIUM MAGNESIUM SULFATE IN WATER. (Porlezza, 1914.)

ť.	Gms. per		Solid Phase.	ť.	Gms. per 100 Gms.		Solid Phase.
• • •	Sat. Sol.	Water.	***************************************	•	Sat. Sol.	Water.	
-0.34	1.01	1.02	Ice	20	15.23	17.96	(NH ₂) ₂ Mg(SO ₂) ₂
-0.80	2.98	3.07	"	25	16.45	19.69	44
-1.23	4.92	5.17	66	30	17.84	21.71	•
-1.6o	6.56	7.02	ч	40	20.51	25.86	64
-2.02	8.34	9.10	44	50	23.18	30.17	40
-2.34 E	utec	I	$cc + (NH_0)_2Mg(SO_0)_2$	60	26.02	35.17	•
0	10.58	11.83	(NH ₄)MgSO ₄	80	32.58	48.32	•
10	12.75	14.61	u	100	39.66	65.72	•

AMMONIUM Manganese **SULFATE** (NH₄)₂Mn(SO₄)₂.6H₂O.

100 cc. water dissolve 37.2 gms. (NH₄)₂Mn(SO₄)₂ at 25°. (Locke, 1901.)

AMMONIUM Nickel SULFATE (NH₄)₂Ni(SO₄)₂.6H₂O.

SOLUBILITY IN WATER.

(Average curve from Tobler, Locke, at 25°.)

\$*.	G. (NH ₄) ₂ Ni(SO ₄) ₂ per 100 Gms.		t°.	G. (NH ₄) ₂ Ni(SO ₄) ₂ per 100 Gms.		
	Water.	Solution.	• •	Water.	Solution.	
0	1.0	0.99	40	12.0	10.72	
IO	4.0	3.85	50	14.5	12.96	
20	6.5	6.10	60	17.0	14.53	
25	7 · 57	7 . 04	70	20.0	16.66	
30	9.0	8.45	•			

AMMONIUM Sodium SULFATE NH4NaSO4.2H2O.

100 gms. water dissolve 46.6 gms. NH₄.NaSO_{4.2}H₂O at 15° Sp. Gr., of Sol. = 1.1749.

AMMONIUM Strontium SULFATE (NH4)2SO4.SrSO4.

SOLUBILITY IN WATER. (Barre, 1909.)

t*.	Gms. (NH ₄) ₂ SO	per 100 Gms.	C-U + DL
	Sat. Solution.	Water.	Solid Phase.
50	<43 · 99	78.54	$(NH_4)_2SO_4.SrSO_4+SrSO_4$
75	45.40	83.15	"
100	46.27	66.2	

AMMONIUM Vanadium SULPATE (Alum) (NH4)2V2(SO4)424H2O. 100 cc. H₂O dissolve 31.69 gms. anhydrous or 78.50 gms. hydrated salt at 25°.

AMMONIUM Zinc SULFATE (NH4)2Zn(SO4)2.6H2O.

SOLUBILITY IN WATER. (Average curve, see Note, p. 67, Tobler, Locke, at 25°.)

\$*.	G. (NH ₄) ₂ Zn(SO ₄) ₂ per 100 Gms.		t°.	G. (NH ₄) ₂ Zn(SO ₄) ₂ per 100 Gms.		
	Solution.	Water.		Solution.	Water.	
0	6.54	7.0	40	16.66	20	
IO	8.67	9.5	50	20.0	25	
20	11.11	12.5	60	23.1	30	
25	12.36	14.I	70	25.9	35	
30	13.79	16.0	80	29.6	42	

AMMONIUM PERSULFATE (NH.) +S=O1.

100 parts H₂O dissolve 58.2 parts (NH₄)₂S₂O₈ at 0°.

(Marshall, 1891.)

AMMONIUM Sodium Hydrogen **SULFITE** (NH₄)Na₂H(SO₂)₂4H₂O. 100 gms. H₂O dissolve 42.3 gms. salt at 12.4° and 48.5° gms. at 15°.

(Schwincker, 1889.)

AMMONIUM Antimony SULFIDE (Sulfoantimonate) (NH4) SbS4.4H2O. SOLUBILITY IN WATER AND IN AQUEOUS ALCOHOL.

	In Water.	(Donk, 1908.)	In Aqueous A	Alcohol at 10°.
ť.	Gms. (NH ₄) ₂ SbS ₄ per 100 Gms. Sat. Sol	Solid Phase.	Gms. per 100 G	(NH ₄),SbS ₄ .
- 1.9	9.9	Ice	0	43.2
- 5	20	44	5.1	35.9
– 8	30.2	•	19.1	23.I
-13.5	41.6	Ice+(NH ₄) ₃ SbS ₄ .4H ₂ O	43.I	8.7
o	41.6	(NH ₄) ₈ SbS ₄ .4H ₂ O	53.1	4.I
+20	47 - 7	44	93 · 3	0
30	54 · 5	"		

AMMONIUM β-Naphthalene Mono **SULFONATE** C₁₀H₁₇SO₂NH₄.

100 cc. of the saturated aqueous solution contain 13.05 gms. of the salt at 25° , and $d_{25} = 1.034$. (Witt, 1915.)

AMMONIUM Phenanthrene Mono SULFONATES C14H2SO2NH4 (2), (3) and SOLUBILITY IN WATER AT 20°.

(Sandquist, 1912.) 100 gms. H_2O dissolve 0.37 gms. $C_{14}H_4SO_3NH_4$ (2). 100 gms. H_2O dissolve 0.26 gms. $C_{14}H_4SO_3NH_4$ (3). 100 gms. H_2O dissolve 4.41 gms. $C_{14}H_4SO_3NH_4$ (10).

AMMONIUM 2.5 di-iodobenzene SULFONATE C₄H₄I₂SO₂(NH₄).

100 gms. H₂O dissolve 4.35 gms. salt at 20°. (Boyle, 1909.)

AMMONIUM TARTRATES (NH4)2C4H4O6.

100 cc. H₂O dissolve 2.83 gms. $(NH_4)_2C_4H_4O_6.2H_2O$ at 0°. 100 cc. H₂O dissolve 5.9 gms. $(NH_4)_2C_4H_4O_6$ at 15° (d = 1.04). (Fenton, 1898.)

(Greenish and Smith, 1903.)

AMMONIUM Lithium TARTRATES dextro and racemic.

100 gms. sat. sol. in H₂O contain 13.104 gms. racemate (NH₄)Li(C₄H₄O₆). H₂O at 20°. 100 gms. sat. solution in H₂O contain 14.186 gms. dextro (NH₄)Li(C₄H₄O₆). H2O at 20°. (Schlossberg, 1900.)

Freezing-point data for mixtures of water and ammonium tartrate and of water and ammonium racemate are given by Bruni and Finzi (1905).

AMMONIUM THIOCYANATE NH.SCN.

SOLUBILITY IN WATER. .

(VACTER)	e curve from results of	Rudoru, 1000 and 1072;	wassinjew, 19	io; smits an	a Lettner, 1912.)	
t°.	Gms. NH ₄ SCN per 100 Gms. Sat. Sol.	Solid Phase.	f. geri	ms. NH ₄ SCN	V Solid Sol. Phase.	
-10	20	Ice	0	54 · 5	NHSCN	
-15	28.5	"	+10	50	"	

— 10	20	Ice	0	54 · 5	NHSCN
-15	28.5	"	+10	59	"
-20	35.5	"	20	63	"
-25.2	42 Eutec.	Ice+NH4SCN	25	65.5	"
-10	50	NH SCN	30	67.5	"

Data for the system ammonium thiocyanate, thiourea and water at 25° are given by Smits and Kettner (1912) in the form of a triangular diagram, but the numerical results are omitted. The diagram confirms the freezing-point lowering results in showing that the molecular compound NH₄SCN.4(NH₄)₂CS is formed.

100 gms. acetonitrile dissolve 7.52 gms. NH4SCN at 18°. (Naumann and Schier, 1914.)

Freezing-point curves have been determined for the following mixtures:

Ammonium Thiocyanate + Ammonia. (Bradley and Alexander, 1912.) + Potassium Thiocyanate. (Wrzesnewsky, 1912.) " + Thiocarbamide (Thiourea). (Renolds and Werner, 1903; Findlay, 1904; Atkins and Werner, 1912; Smits and Kettner, 1912; Wrzesnewsky, 1912.)

AMMONIUM URATE (Primary) C₅H₂N₄O₂NH₄.

SOLUBILITY OF THE LACTAM AND LACTIM FORMS IN WATER. (Gudzeit, 1908-09.)

t°.	Gms. or Each per 1000 cc. Sat. Solution.						
	Lactam.	Lactim.	Mixture of the Two.				
18	0.456	0.304	0.414				
37	. 0.817	0.540	0.741				

AMMONIUM Meta VANADATE NH4VO3.

SOLUBILITY IN WATER AND IN AQUEOUS AMMONIUM SALT AND AMMONIUM HYDROXIDE SOLUTIONS. (Meyer, 1909.)

Gms. per 1000 cc. in Each Solvent.

t°.	Water.	0.05 n.	0.1 n.	0.05 n.	0.1 D.	o.o668 n.	0.245 D.	0.588 n. NH ₄ .
18	4.35	ЙҢСІ. 1.66	NH ₄ Cl. O . 4 I	NH,NO ₂ . 1.67	NH,NO. 0.58	nh₃. 5 . 58	NH₃. 7 · Q7	ин _я . 12.06
25	6.08	2.63	1.17	2.77	1.23	7.06	8.58	12.66
35	10.77	5.21	2.69				• • •	
45	15.71	8.88	5.40		• • •	• • •	• • •	• • •
55	19.97	11.18	7.40				• • •	• • •
70	30.47						• • •	• • •

100 cc. anhydrous hydrazine dissolve 2 gms. ammonium metavanadate at room temp. (Welsh and Broderson, 1915.)

AMYGDALIN C₂₀H₂₇NO.3H₂O.

100 gms. trichlorethylene dissolve 0.029 gm. amygdalin at 15°.

(Wester and Bruins, 1914.)

AMYL ACETATE BUTYRATE, FORMATE, etc.

Solubility in Water and in Aqueous Alcohol at 20°. (Bancroft - Phys. Rev. 3, 131, 196, 205, '95-'96; Traube. - Ber. 17, 2304, '84.)

Ester.	cc. Ester per 100 cc. H ₂ O.	Sp. Gr. of Ester.	Ester.	cc. Ester per 100 cc. H ₂ O.	Sp. Gr. of Ester.
Amyl acetate	0.2		Amyl propionate		0.88
Iso amyl acetate Amyl butyrate		0.85	Iso amyl format	e o.3 (gms.	at 22°)

cc. H₂O added to cause separation

SOLUBILITY IN AQUBOUS ALCOHOL AT ROOM TEMPERATURE. (Pfeiffer, 1892.)

Solubility of Iso Amyl Acetate Solubility of Amyl Acetate and Amyl in Aq. Alcohol Mixtures. Formate in Aq. Alcohol Mixtures.

Per 5 cc. C ₂ H ₈ OH.		cc. C ₂ H ₆ OH in Mixture.	of second phase in mixtures of the given amounts of alcohol and 3 of portions of :		
cc. H ₃ O.	cc. Iso Amyl acetate.	,	Amyl Formate.	Amyl Acetate.	
7	0.41	3	r.80	1.76	
6	0.7	9	8.77	9.03	
5	1.31	15	17.01	17.52	
3.61	3.0	21	27.06	26.99	
3.0I	4.0	27	38.31	37 · 23	
2.60	5.0	33	50.71	48.41	
		3 9	65.21	• • •	
		45 4 8	85.10	• • •	
		4 8	94 - 20	• • •	

AMYL ALCOHOL C.H.10H.

SOLUBILITY OF AMYL ALCOHOL IN WATER AT 22°. (Herz -- Ber. 31, 2671, '98.)

100 cc. water dissolve 3.284 cc. amyl alcohol. Sp. Gr. of solution = 0.9949, Volume = 102.99 cc.
100 cc. amyl alcohol dissolve 2.214 cc. water. Sp. Gr. of solution = 0.8248, Volume = 101.28 cc.
Sp. Gr. of H₂O at 22° = 0.9980; Sp. Gr. of amyl alcohol at 22° = 0.8133.

SOLUBILITY IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL. (Pfeiffer, 1892; Bancroft, 1895-96.)

Mixture of		c.c. H ₂ O added to *		Mixture of		c.c. H ₂ O Added to * Mixture at	
C.H.OH	+C.H.OH	Mixt	ure at	C ₄ H ₁₁ OH	+C.H.OH	Mixt	ure at
c.c.	c.c.	9.1°.	19.2°.	c.c.	c.c.	13.3°.	17.4°.
3	3	3.21	3.5	3	3	3.36	3 · 47
3	6	10.35	10.80	6	3	2.20	2.25
3	9	18.34	19.10	9	3	2.10	2.15
3	12	27 - 47	29.15	12	3	2.10	2.10
3	15	41.25	43.15	15	3	2.10	2.10
		.* Tust enough	water was ad-	ded to produc	ce cloudiness	_	

Note. — The effect of various amounts of a large number of salts upon the temperature (39.8°) at which a mixture of 20 cc. of amyl alcohol + 20 cc. of ethyl alcohol + 32.9 cc. of water becomes homogeneous has been investigated by Pfeiffer (Z. phys. Ch. 9, 444, '92). The results are no doubt of interest from a solubility standpoint, but their recalculation to terms suitable for presentation in the present compilation has not been attempted.

DISTRIBUTION OF ISOAMYL ALCOHOL BETWEEN WATER AND COTTON SEED OIL AT 25°. (Wroth and Reid, 1916.)

Gms. C ₄ H ₁₁ (
Oil Layer.	H ₂ O Layer.	Ratio.
I.947	0.9153	0.470
2.195	1.1156	0.508
2.273	1.1050	0.486
2.372	0.9995	0.421

SOLUBILITY OF AMYL ALCOHOL IN WATER AND IN AQUEOUS SOLUTIONS OF ETHYL AND METHYL ALCOHOLS. (Fontein, 1910.)

.44	In Water. Gms. C ₄ H ₁₁ OH per 100 Gms.			In Aq. Ethyl Alcohol.* Gms. C _b H ₁₁ OH per roo Gms.		In	Aq. Methyl Alcohol.† Gms. C ₄ H ₁₁ OH per 100 Gms.	
ť.	H ₂ O Layer.	C ₄ H ₁₁ OH Layer.	t°.	C ₂ H ₂ OH+H ₂ O Layer.	C _s H ₁₁ OH Layer.		CH ₂ OH+H ₂ O Layer.	C _t H ₁₁ OH Layer.
0.5	4		4.5	16.2	• • •	3.6	II	• • •
15.5	2.6	90.7	20	20.8	• • •	20	19.3	
20	2.6	90.6	40	26.7	• • •	38.4	• • •	78.4
40	2.I	89.5	60	33		40	31.2	78
60	2	88	67.8		24.4	50	37.I	74.8
80	2.5	86	70	36.5	73.7	60	43.3	71.6
100	3	83.8	80	40.8	70.I	70	52.7	65
120	3.8	80.8	90	47	64	72	(crit. te	emp.)
140	5	76.4	94.2	(crit. ter	np.)			
160	7.3	70			_			
170	9.3	65.1						
180	13.5	57.3						
187.5	(crit.	temp.)						

The "synthetic method" was used for the preceding determinations. Fermentation amyl alcohol of b. pt. 131°-131.4° and d_{15.5} = 0.814 was employed. It contained 16% of optically active amyl alcohol. Many other series of determinations were made with solvents containing other percentages of ethyl and methyl alcohol. Also, other series were made for the above-named ternary systems at constant temperatures from which binodal curves were obtained. The author uses a very ingenious indirect method for determining the composition of the conjugated solutions. Data are also given for the distribution of

† Of 33 per cent CH₂OH.

ethyl alcohol between water and amyl alcohol.

The results of Alexejew (1886) for the solubility of amyl alcohol in water

agree fairly well with the above data.

AMYL AMINE C.H.1.NH2.

The freezing-point curve for mixtures of amyl amine and water is given by Pickering (1893).

Iso AMYLAMINE HYDROCHLORIDE C.H.11.NH2.HCl (iso).

100 gms. H₂O dissolve 192.2 gms. of the salt at 25°. (Peddle and Turner, 1913.) 100 gms. CHCl₃ dissolve 5.1 gms. of the salt at 25°.

Data for the distribution of ε-chloramyl amine between water and tetrachlorethane at 0°, water and nitrobenzene at 25° and water and benzene at 25° are given by Freundlich and Richards (1912).

AMYLENE (Trimethylethylene) (CH₂)₂C: CHCH₂.

* Of 33.55 per cent CaHaOH.

RECIPROCAL SOLUBILITY IN ANILINE; DETERMINATIONS BY SYNTHETIC METHOD. (Konowalow, 1903.)

ť.	Gms. Aniline per 100 Gms. Amylene Layer. Aniline Layer.		t* .	Gms. Aniline per 100 Gms. Amylene Layer. Aniline Layer.		
0		81.5	10	28	73	
2	19.7	80.5	12	34	68	
4	20.5	79 · 5	13	38.5	64.7	
6	21.7	78	14	45	59	
8	24.2	75.8	14.5	(crit. temp.)	51.6	

SOLUBILITY OF AMYLENE IN LIQUID CARBON DIOXIDE. (Büchner, 1905-06.)

(Determinations made by the synthetic method.)

t°. (crit.)	31	103	201
Gms. C ₅ H ₁₀ per 100 gms. sat. sol.	0	38	100

AMYLENE HYDRATE (CH.), C(OH)CH., CH.

The distribution coefficient of amylene hydrate between olive oil and water at ord. temp. is 1. (Baum, 1899.)

ANDROMEDOTOXINE C21H21O16.

SOLUBILITY IN SEVERAL SOLVENTS AT 12° AND AT THE BOILING-POINTS OF THE SOLVENTS.
(Zaayer, 1886.)

· Solvent.	ms. CaHalO10 per 100	Gms. Sat. Sol. at :
	12*.	B. Pt.
Water	2.81	0.87
Ethyl alcohol ($d_{12} = 0.821$) 11.70	•••
Amyl alcohol	1.14	•••
Chloroform	0.26	0.26
Commercial ether	0.07	0.07
Benzine	0.004	•••

ANETHOLE (p Propylanisole) CH₄CHCH[4]C₆H₄OCH₄.

SOLUBILITY IN AQUEOUS ALCOHOL AT 20° (Schimmel and Co., Reports, Oct. 1895, p. 6.)

Vol. per cent alcohol = 20 25 30 40 50 Gm. anethole per liter aq. alcohol = 0.12 0.20 0.32 0.86 2.30 333.3 gms. anethole dissolve in one liter of 90% alcohol at room temperature.

(Squire and Caines, 1905.)

Freezing-point data for mixtures of anethole and menthol are given by Scheuer (1910).

ANILINE C.H.(NH2).

SOLUBILITY IN WATER AT 22°.

(Herz, 1898; see also Vaubel, 1895; Aignan and Dugas, 1899.)

roo cc. H_2O dissolve 3.481 cc. $C_4H_4(NH_2)$ — Vol. of Sol. = 103.48, Sp. Gr. = 0.9986.

100 cc. $C_4H_5(NH_2)$ dissolve 5.22 cc. H_2O —Vol. of Sol. = 104.96, Sp. Gr. = 1.0175.

100 cc. sat. aq. sol. contain 3.607 gms. C6H6NH2 at 25°. (Reidel, 1906.)

SOLUBILITY OF ANILINE IN WATER. (Determination by synthetic method.) (Sidgwick, Pickford and Wilsden, 1911.)

ť.	Gms. C ₆ H ₆ N	IH2 per 100 Gms.	t°.	Gms. C ₄ H ₄ NF	L per€roo Gms.
•.	Aq. Layer.	Aniline Layer.	• •	Aq. Layer.	Aniline Layer.
13.8	3.611	5.12 (20°)	120	9.1	14.6
30	3.7	5.4	130	11.2	16.9
50	4.2	6.4	140	13.5	19.5
70	5	7.7	150	17.1	24
90	6.4	9.9	160	22	32
IIO	8	13	165	2 6.1	•••

The critical solution temperature for aniline and water is 168°.

Alexejew (1886) and Rothmund (1898) obtained results for the preceding system which differ in part quite widely from the above table.

More recent determinations, in terms of cc. aniline per 100 cc. of mixture, are given by Kolthoff (1917).

SOLUBILITY OF ANILINE IN AQUEOUS SOLUTIONS OF ANILINE HYDROCHLORIDE. (Sidgwick, Pickford and Wilsden, 1911.)

The temperatures at which a second liquid phase separated from homogeneous mixtures of known amounts of aniline + HCl + H₂O were determined for a very extensive series of mixtures. The procedure consisted in first heating a given mixture until it became homogeneous and then cooling it slowly, with constant shaking. A critical turbidity preceding the actual separation by a few degrees was always noticed. The point of separation was taken as that at which a small gas flame seen through the liquid disappeared. At higher temperatures, the observations were made on mixtures contained in sealed bulbs. In the actual experiments, binodal curves for mixtures of Aq. HCl (of different strengths) and aniline were determined. By interpolation from these, the following isothermal curves were obtained. lowing isothermal curves were obtained.

Isotherm for 15°.				Isotherm for 25°.				
Gms. p	ch Mixtures. er 100 Gms. Solution.	Gms. per	Aniline Rich Mixtures. Gms. per 100 Gms. Sat. Solution.		H ₂ O Rich Mixtures. Gms. per 100 Gms. Sat. Solution.		Aniline Rich Mixtures. Gms. per 100 Gms. Sat. Solution.	
C ₄ H ₄ NH ₂ .	C.H.NH.HCL	H.O. C	H ₄ NH ₂ .HCl.	C ₄ H ₄ NH ₄ . (HNH.HCl.	H ₂ O. C	H _a NH _a HCl.	
3.615	0	7.276	3.025	3.681	0	14	8.884	
3.791	1.529	7.231	1.989	4.020	3.02	10.84	6.062	
4.144	5.829	5.816	1.195	5.380	11.40	6.949	1.912	
4.940	11.44	5.230	0.340	7.023	15.83	6.043	0.828	
5.995	16.03	5.006	0.163	11.86	19.02	5.568	0.363	
10.44	19.35	4.960	0.080	31.35	20.15	5.311	0.089	
26.80	21.49	4.942	0	59 · 95	15.55	5 . 299	0	
Isotherm for 40°.				Isotherm for 60°.				
3.941	0	15.65	8.752	4.58	0	14.27	5.93	
4.187	1.523	10.21	4.243	4.87	1.512	9.569	2.632	
4.371	3.009	7.874	2.166	5.13	2.984	8.109	1.112	
4.823	5.815	7.069	1.452	5.67	5.762	7.492	0.4876	
6.210	11.30	7.058	0.9669	7.69	11.14	7.051	0.2284	
8.779	15.55	6.225	0.4052	11.53	15.25	7.047	0.1138	
38.69	18	5.940	0.0960	22.80	16.66	7.030	0	
64.20	12.84	5.930	0	51.10	14.36			
	Isotherm	for 80°.		Isotherm for 100°.				
5.66	0	12.31	3.387	7.10	0	41.57	11.45	
5.95	1.495	9.848	1.350	7.68	1.467	18.16	4-995	
6.26	2.950	8.998	0.5857	8.10	2.891	12.76	1.784	
7.11	5.678	8.524	0.2769	9.60	5.522	11.37	0.1836	
9.95	10.85	8.512	0.1387	13.60	10.41	11.90	0	
31.18	14.85	8.500	0	Ū	•	_		
	Isotherm	for 120°.		Isotherm for 140°.				
9.30	0	17.94	2.459	13.75	0	29.52	4.043	
21.21	9 · 497	14.45	0	38.75	7.384	21.09	o ii	

The authors also calculated the position of tie lines for the binodal curves with the aid of distribution coefficients, which they determined at 25° and which are quoted in a subsequent table (page 78 following).

Additional data for the system aniline + HCl + H₂O at 0°, 25° and at 35° are given by Thonus (1913), and for aniline + HCl by Leopold (1910).

SOLUBILITY OF ANILINE IN AQUEOUS SALT SOLUTIONS AT 18°. (Euler — Z. physik. Chem. 49, 307, '04.)

Aq. Solution.	Gms. Salt per liter.	Gms. C ₆ H ₅ (NH ₂) per 100 g. solvent.	Aq. Solution.	Gms. Salt per liter.	Gms. C ₄ H _g (NH ₂) per 100 g. solvent.
H ₂ O alone	•	3.61	1 nNaOH	40.06	1.90
o. 5 nKCl	37.3	3.15	1 nLiCl	42.48	2.80
1 nKCl	74.6	2.68	1 nCaCl2	67.25	3.∞
1 nNaCl	58.5	2.55			

SOLUBILITY OF ANILINE IN AQUEOUS ANILINE HYDROCHLORIDE SOLUTIONS AT 18°.

(Lidow - J. russ. phys. chem. Ges. 15, 420, '83; Ber. 16, 2297, '83.)

Per cent C ₆ H ₈ NH ₉ HCl in Solvent.	Gms. C ₆ N ₆ NH ₃ per 100 g. Solvent	Per cent C ₆ H ₆ NH ₂ .HCl in Solvent.	Gms. C ₆ H ₅ NH ₂ per 100 g. Solvent.
5	3.8	30	39.2
12	5 · 3	35	50.4

SOLUBILITY OF ANILINE IN AQUBOUS SOLUTIONS OF GLYCEROL AND VICE VERSA.
(Kolthoff, 1917.)

(The liquids were measured from burets. The determinations at 100° were made in sealed tubes. The others were made in open tubes.)

Results for the Solubility of Aniline in Aqueous Glycerol.

Per cent Glycerol in	cc. Aniline dissolved by 100 cc. of Aq. Glycerol of Conc. shown at:					
Per cent Glycerol in Aq. Mixture used.	18°.	25°.	36°.	100°.		
o (= water)	3.25	3 · 4	5.6	9.9		
39	5.15	5.3	• • •	•••		
39 56	7.5	7.6	• • •	28 (58% Glycerol) 38 (66% ")		
65	10	• • •	• • •	38 (66% ")		
74.3	11.75	12.1	•••	• • •		
74·3 78	20	20	16	• • •		
87	70	• • •	• • •	•••		

Results for the Solubility of Aqueous Glycerol in Aniline.

Per cent Glycerol in	cc. of Aq. Glycerol Mixture dissolved by 100 cc. Aniline at:					
Per cent Glycerol in Aq. Mixture used.	18°.	25°.	36°.	100°.		
o (= water)	4.6	5	4	5.3		
39	• • •	6.4	• • •	• • •		
47	5.2	• • •	• • •	•••		
47 56	7.9	7 · 7	• • •	15 (58% Glycerol) 17 (66% ")		
74·3°	13.1	11.7	• • •	17 (66% ")		
74·3° 78	17.1	14.8	• • •	• • •		

DISTRIBUTION OF ANILINE BETWEEN WATER AND BENZENE AT 25°. (Farmer and Warth, 1904.)

Gms. C ₄ H ₄ NH	Ratio.	
Water Layer.	C.H. Layer.	Katio.
0.0135	0.1312	9.7
0.0122	0.1282	10.5
0.0065	o. o 656	10.1

Data for the distribution between water and benzene at 25° of each of the following substituted anilines; o, m and p nitraniline, chloraniline, bromaniline, p nitrosmethylaniline, and p nitrosodimethylaniline are given by Farmer and Warth (1904).

SOLUBILITY OF ANILINE, PHENOL MIXTURES IN WATER. (Schreinemaker – Z. physik. Chem. 29, 584; 30, 460, '00.)

\$* .	+ 74 6	= 25.4 Mols. Anil Mols. Phenol ture per 100 Gms		+ 50 1	= 50 Mols, Aniline dols. Phenol ture per 100 Gms.
	Aq. Layer.		•	Aq. Layer.	A. + P. Layer.
40	5.0	86 · o	40	4.0	91.5
40 60	5.5	8 ₂ .0	8o	5.5	85. <u>5</u>
8o	8.0	77 O	100	8 .0	82.0
100	12.5	67 0	120	13.5	73 · 5
110	19.0	56.5	130	19.0	66 o
104 (CT	it. temp.)	33	135	23 5	58.o
			140 (CT	it. temp.)	35

Determinations in above table by "Synthetic Method," see NOTE, p. 16. Schreinemakers gives results for several other mixtures of aniline and phenol which yield curves entirely similar to those for the two mixtures here shown.

DISTRIBUTION OF ANILINE BETWEEN: (Vaubel — J. pr. Chem. [2] 67, 477, '03.)

Water and Ether.				Water a	nd Carbon '	Tetrachl	oride.
Compos	ition of Solutions.	Gms. CaHaNHain:		Composition of Solutions.		Gms. C ₆ H ₄ NH ₂ in:	
G. CaHaNE Used.	Solvent.	Aq. Layer.	Etler Layer.	G. CaHaNHa Used.	Solvent.	Aq. Layer.	CCL Layer.
1.2478	50 cc. H ₂ O				50 cc. H ₂ O		
_	+20 cc. Ether	0.1671	1.0807	0.3478	+20 cc. CCl	0.3358	0.012
	50 cc. H ₂ O				50 cc. H ₂ O		
	+50 cc. Ether	0.0835	1.1643		+ 50 cc. CCl₄	0.2767	1.971
1.2478	50 cc. H ₂ O		_		50 cc. H ₂ O		
	+ 100 cc. Ether	0.0504	1.1884	1.2478	+ 100 cc. CCL	0.1845	1.061

SOLUBILITY OF ANILINE IN SULPHUR. (Alexejew — Ann. Physik. Chem. 28, 305, '86.)

£°.	Gms. C ₆ H ₆ NH ₂ per 100 g.		\$ *.	Gms. CaHaNHa per 100 g.		
•	S. Layer.	Anilin Layer.	5	S. Layer.	Anilin Layer.	
IOO	4	75	130	15	58	
110	6	70	135	17.5	47	
120	to	64	138 (crit	. temp.)	23	

DISTRIBUTION OF ANILINE BETWEEN WATER AND TOLUENE AT 25°. (Riedel, 1906.)

NOTE. — Mixtures of aniline and toluene were shaken with water and after separation of the two layers the Sp. Gr. of the A: T mixture (layer) was determined and also the amount of aniline in each layer.

Solution Shaken with	Vol. per cent S Aniline: Toluene	Sp. Gr. of A: T	CHIBI OGERGE	H ₂ in 100 cc. of:
A: T Mixture.	in Mixtures Used.	Separation.	A:T Layer.	Aq. Layer.
HO	50:50	0.9257	41.5	2.14
-66	25:75	0.8928	20.7	1.5
66	12.5:87.5	0.8737	8.62	0.86
44	5.5:94.5	0.8661	3.87	0.45
"	2.5:97.5	0.8627	ī.68	0.21

The author also gives data for the distribution of aniline between toluene and aqueous solutions of K₂SO₄, KBO₃, Ba(OH)₂, Sr(OH)₃ and Ca(OH)₃.

SOLUBILITY DATA DETERMINED BY THE FREEZING-POINT METHOD (see footnote, page 1) ARE GIVEN FOR MIXTURES OF ANILINE (m. pt. -5.5° to -6.8°) AND OTHER COMPOUNDS.

Name and M. Pt. of the Other Com-	Data for F	irst Eutectic.	
pound of Each Mixture	M. Pt.	Wt. Per Cent. C4H4NH2.	Authority.
Nitrosodimethyl aniline (85.5°)	- 0.2	94.21	(Kremann, 1904.)
Benzene (5.42°)			(Kremann and Borjanovics, 1916.)
Nitrosobenzene (63.5°)	-12.5	77.2	(Kremann, 1904.)
Nitrobenzene (2.8°)	-30.6	53 · 4	4
o Dinitrobenzene (116.5°)	-10	92.2	(Kremann and Rodinis, 1906.)
m " (91°)	- 8	92.72	(Kremann, 1904.)
p "	no e	utectic	(Kremann and Rodinis, 1906.)
s Trinitrobenzene (122.2°)	not det	ermined 3	(Kremann, 1904.)
o Chloronitrobenzene (32°)	-19.5	66. r	(Kremann, 1907.)
m " (43°)	-12.6	79 - 7	(Kremann and Rodinis, 1906.)
g " (82.5°)	-16.3	72.7	
Benzoic acid (121.25°)	•••		(Baskov, 1913.)
Chloroform (-63°)	-71	21.7	(Tsakalatos and Guye, 1910.)
o Cresol (30.4°)	-17	78.84	(Kremann, 1906.)
## " (4.2°)	-30	74.3 5	и
p " (33.2°)	-15.5	85.56	(Kremann, 1906; Philip, 1903.)
Ethylacetate (-83.8°)	• • •		(Wroczynski and Guye, 1910.)
Hydroquinone	89	62	(Kremann and Rodinis, 1906.)
Allyl mustard oil	•••	{	(Kurnakov and Kriat, 1913.) (Kurnakov and Solover, 1916.)
o Chlorophenol	• • •	7	(Bramley, 1916.)
Nitrophenol (46°)	-13.5	80.2	(Kremann and Rodinis, 1906.)
# " (96°)	-18.7	74.28	u u
p " (113°)	-17.5	86.89	u
m Dinitrophenol (110.5°)	- 7.3	94 · 5 10	(Kremann, 1906.)
Pyrocatechol (105°)	-13	86.5 ¹¹	44
Resorcinol (110°)	not de	termined	((Kremann and Rodinis, 1906.)
Nitrotoluene (51.3°)	-17	89	(Kremann, 1904.)
Dinitrotoluene (71°), 1.3.4; 1.3.5 { and 1.2.6	-r ₃	80.8	(Kremann, 1906.)
Trinitrotoluene (82°)	– 8	96.4 13	
Isopentane (less than -24°)	•••	• • •	(Campetti and del Grosso, 1913.)

¹ A second cutectic melts at 76° and contains 7 per cent C₂H₆NH₆, a molecular compound of m. pt. 92° and containing 24 per cent C₆H₆NH₆ exists between these cutectics. The author also gives data for the effect of nitrobenzene, o nitrophenol and of m xylene upon the lowering of the m. pt. of the above compound. * A break in the curve at 41.5° and 39.2 per cent CaHaNHa indicates that a molecular compound exists between the first eutectic and this point. * The first eutectic apparently lies too near pure aniline to be determined. An equi-molecular compound of aniline and s trinitrobenzene (m. pt. 30°) exists over the range pure aniline to the second eutectic which melts at ror° and contains 8.7 per cent CoHaNHa. ⁴ A second eutectic melts at o and contains 28.7 per cent CaHaNHa, the molecular compound between these points melts at 8.3° and contains 46.2 per cent C₄H₆NH₂. ⁵ A second eutectic melts at -31° and contains 17 per cent CoHoNH2, the molecular compound between these points melts at -14.6° and contains 49 per cent C₆H₆NH₂. * The second eutectic melts at 6° and contains 23 per cent C₆H₆NH₂, the molecular compound melts at 19.2° and contains 47.5 per cent C₆H₆NH₂. 7 There are two eutectics between which an equi-molecular combination exists. 8 There is a break in the curve at 26° and 421. per cent CaHaNHa indicating the existence of a molecular compound from the eutectic up to this point. • There is a break in the curve at 42° and 39.8 per cent C₆H₄NH₂ indicating formation of a molecular compound. ** There is a break in the curve at 74° and 32.9 per cent C4H4NH2 indicating the existence of a molecular compound from the eutectic up to this point. " There is a break in the curve at 39° and 48.9 per cent CaHaNH2. 12 A second eutectic melts at 60° and contains 7 per cent CaHaNH2, the molecular compounds melts at 85° and contains 30 per cent CaHaNHa.

RECIPROCAL SOLUBILITY OF ANILINE AND HEXANS. (Keyes and Hildebrand, 1917.)

(Meyes and Indebtand, 1917.)							
to of Complete Miscibility.	Gms. Hexane per 100 Gms. Mixture.	t° of Complete Miscibility.	Gms. Hexane per 100 Gms. Mixture.				
26. I	9.6	59.2	35.9				
43.9	14.8	59.4	41.6				
45.9	16.3	59.6	4 8				
4 9.9	20	57 ⋅ 9	62.9				
51.4	21	53.9	73.I				
56	27.2	47.2	80.6				
58.2	31	35.6	88.I				
58.2	34.6	16.5	93.8				

RECIPROCAL SOLUBILITY OF ANILINE AND PHENOL, DETERMINED BY THE Freezing-Point Method.

		(Schreinem	nakers, 1899.)		
t° of Melting.	Mols. C ₆ H ₅ NH per 100 Mols. Mixture.	Solid Phase.	t° of Melting.	Mols. C ₆ H ₆ NH ₂ per 100 Mols. Mixture.	Solid Phase.
- 6.I	100	C ₄ H ₄ NH ₂	30.4 m. pt.	50	1.1
- 8.9	96	44	28.6	40	44
-11.7 Eutec.	92.3	C ₆ H ₆ NH ₂ +1.1	22.3	30	"
-6.5	90	1.1	14.8 Eutec	21.2	1.1+C ₄ H ₄ OH
+10.1	80	u	18.4	20	C ₄ H ₄ OH
22	70	æ	31.4	10	"
28.5	60	4	37 · 3	4	"
		$I.I = C_4H_4I$	VH.C.H.OH.		

Data for the solubility of aniline in cyclohexane at pressures up to 300 atmospheres are given by Kohnstamm and Timmermans (1913).

ANILINE HYDROCHLORIDE C.H.NH.HCI.

100 cc. H₂O dissolve 17.8 gms. of the salt at 15°. (Niementowski and Roszkowski, 1897.)
100 gms. H₂O dissolve 107.1 gms. of the salt at 25°. (Peddle and Turner, 1913.)
100 gms. sat. solution in water contain 52.1 gms. C₆H₆NH₂.HCl at 25°. 100 gms. sat. solution in aniline contain 8.89 gms. C₄H₄NH₂.HCl at 25°.

(Sidgwick, Pickford and Wilsden, 1911.)

DISTRIBUTION OF ANILINE HYDROCHLORIDE BETWEEN WATER AND ANILINE AT 25°. (Sidgwick, Pickford and Wilsden, 1911.)

C _{eq.}	Can.							
0.11	0.006	19.30	0.6	0.219	2.74	I	0.804	I.24
0.2	0.020	10	0.7	0.327	2.14	I.I	1.005	I
0.3	0.043	6.98	0.8	0.471	1.70	I.2	I.228	0.98
0.4	o.o86°	4.65	0.9	0.631	I.43	1.3	1.412	0.92
0.5	0.146	3.42						_

 $C_{sq.}$ = gms. salt per 100 gms. aq. layer. $C_{sa.}$ = gms. salt per 100 gms. ani-

Nitrantlines $C_4H_4NH_2NO_3$. o, m, and p.

SOLUBILITY IN WATER.

(Carnelly and Thomson — J. Chem. Soc. 53, 768, '88; Vaubel — J. pr. Chem. [2] 52, 73, '95; above so',
Löwenherz — Z. physik. Chem. 25, 407, '98.)

\$*.	Grams Nitraniline per Liter of Solution.				
	Ortho Nitraniline.	Meta Nitraniline.			
20	• • •	1.14–1.67	0.77-0.80		
24.2	1 .25 (25°)	1.205	•••		
27.3		I.422	• • •		

100 cc. H₂O dissolve 2.2 gms. p nitraniline at 100°. (Jaeger and Kregten, 1912.)

Solubility of Ortho and of Meta Nitraniline in Hydrochloric Acid.

(Lowenherz.)

Ortho Nitraniline at 25°.				1	Meta Nitraniline.				
G. Mols. per Liter. Grams per Liter.		per Liter.	G. Mols.	s. per Liter. Gram		s per Liter.			
HCI	C ₀ H ₀ NH ₂ . NO ₂ (o)	HCI	CaHaNH ₃ . NO ₃ (o)	HCI	C ₀ H ₈ NH ₂ . NO ₂ (m)	HC1	C ₆ H ₆ NH ₉ . NO ₃ (m)		
0.0	0.0001	0.0	1.25	(25°) 0.0	0.0091	0.0	I.20		
0.63	10	22.97		(26.5°) 0.0125	0.0183	0.46	2.53		
0.95	0.0174	34.63	2.40	(23.3°) 0.0247	0.0274	0.90	3.85		
1.26	0.0215	45.94	2.97			_			

SOLUBILITY DATA DETERMINED BY THE FREEZING-POINT METHOD ARE GIVEN FOR THE FOLLOWING MIXTURES.

```
    Nitraniline + m Nitraniline

                                          (Kremann, 1910; Valeton, 1910; Holleman, Hartogs
               + 0
0
                                             and van der Linden, 1911, Nichols, 1918.)
       "
m
               + 1
       44
               + o Nitracentanilide
                                          (Jaeger, 1906.)
       44
þ
               + p Nitrosoaniline
                                          (Jacger and van Kregten, 1912.)
0
               + Benzene
                                          (Bogojawiensky, Winogradow and Bogalubow, 1906.)
       44
m'
               +
       46
þ
               +
       ..
0
               + Nitrobenzene
       ..
               +
       44
þ
               +
       "
               + Ethylenebromide
0
       44
               +
                           ..
       44
               +
       "
                                          (Crompton and Whitely, 1895.)
               + m Dinitrobenzene
11%
       "
              + s Trinitrobenzene
                                          (Smith and Walts, 1910; Sudborough and Beard, 1910.)
116
       "
Þ
               + 5
111
               + Naphthalene
                                          (Pushin and Grebenschikov, 1913.)
       44
               + Phenol
                                          (Kremann and Rodinis, 1906.)
0
       "
               +
200
       "
               +
s Tribromaniline + 2 Chlor, 4.6 Dibromaniline
                                                      (Sudborough and Lakhamalani, 1917.)

    Nitroethylaniline + 
    Nitrosoethylaniline

                                                      (Jaeger and van Kregten, 1912.)
        propylaniline + p Nitrosopropylaniline
Nitrodiethylaniline + Nitrosodiethlyaniline
                                                      (Jaeger, 1905, 1907.)
                                                      (Wroczynski and Guye, 1910.)
Methylaniline + Benzylchloride
                                                             (Schmidlin and Lang, 1912.)
Dimethylaniline + Benzene
                  + Tetramethyldiaminobenzophenone
                  + Phenol
                                                             (Bramley, 1916; Kremann, 1906.)
                  + o Chlorophenol
                                                             (Bramley, 1916.)
                                                             (Giua, 1915.)
Tetranitromethylaniline +\alpha Trinitrotoluene
                          + p Nitrotoluene
Nitrosodimethylaniline +\beta Naphthylamine
                                                             (Kremann, 1904.)
                           + Phenol
                                                                   44
           44
                           + o Toluidine
                           + 0
                           + m Xylidine
```

SOLUBILITY OF META AND OF PARA NITRANILINE IN ORGANIC SOLVENTS AT 20°. (Carnelly and Thomson.)

Solvent.		Para.	Solvent	Gms. p	Para.
Methyl Alcohol		95.9	Benzene	24.5	19.8
Ethyl Alcohol	70.5	58.4	Toluene	17.1	13.1
Propyl Alcohol	56.5	43 · 5	Cumene	11.5	9.0
Iso Butyl Alcohol	26.4	19.1	Chloroform	30.1	23.1
Iso Amyl Alcohol	85.1	62.9	Carbon Tetra Chloride	2 · I	1.7
Ethyl Ether	78.9	61.0	Carbon Disulfide	3.3	2.6

ANTLINE SULFATE C.H.NH. H.SO.

100 cc. H₂O dissolve 6.6 gms. C₄H₄NH₂.H₂SO₄ at 15°.

(Niementowski and Rosskowski, 1897.)

ANISIC ACID (p-Methoxybenzoic Acid) CH₂O.C₄H₄COOH.

1000 cc. sat. aqueous solution contain 0.2263 gm. acid at 25°. (Paul, 1894.)

SOLUBILITY OF ANISIC ACID IN SEVERAL ALCOHOLS. (Timofeiew, 1894.)

In Methyl Alcohol.		In Ethyl	Alcohol.	In Propyl Alcohol.		
Gms. per 100 Gms.		Gms. per 100 Gms.		Gms. per 100 Gms.		
t°.	Sat. Sol.	Solvent.	Sat. Sol.	Solvent.	Sat. Sol.	Solvent.
0	51.1	104.5	46.7	87.6	35	53.8
16.5	64.9	183.5	53.6	115.5	43	75.5

Data for the distribution of anisic acid between water and olive oil at 25° are given by Boëseken and Waterman (1911, 1912).

p ANISIDINE C.H.(OCH3).NH2.

DISTRIBUTION BETWEEN BENZENE AND WATER AT 25°.
(Farmer and Warth, 1904.)

CH (OCH) NH --- --

Gms. C ₆ H ₄ (OCH ₂).NH ₂ per 100 cc.				
C _s H _s Layer:	H _f O Layer.			
0.4356	0.0747			
0.6662	0.1112			
0.9010	0.1472			

ANISOLE C.H.OCH.

RECIPROCAL SOLUBILITY OF ANISOLE AND BENZYL CHLORIDE DETERMINED BY THE FREEZING-POINT METHOD. (Wroczynski and Guye, 1910.)

t° of Melting.	Gms. C ₆ H ₅ OC per 100 Gms Mixture.	H _s Solid Phase.	t° of Melting.	Gms. C _e H _g O(per 100 Gm Mixture.	CH ₈ Solid is. Phase.
-37.2	100	C ₆ H ₆ OCH ₈	-72.8 Eutec	. 46.1	C ₄ H ₄ OCH ₄ +C ₄ H ₄ CH ₄ Cl
-40	93 · 3	"	–60	28	C ₂ H ₄ CH ₂ Cl
-50	75.3	"	- 5 0	13	64
-60	62.1	4	-41.1	Ō	. "

p NitrANISOLE C4H4NO2.OCH2.

FREEZENG-POINT CURVES (Solubilities, see footnote, page 1) ARE GIVEN FOR THE FOLLOWING MIXTURES.

p Nitranisole + Mercuric Chloride (Mascarelli, 1908, 1909; Mascarelli and Ascoli, 1907.)
" + Urethan (Mascarelli, 1908, 1909; Pushin and Grebenschukov, 1913.)
" + " + HgCl ₂ (Mascarelli, 1908, 1909.)
" + Diphenylamine (Pushin and Grebenschukov, 1913.)
Dinitranisole + Dinitrophenetal (Blanksma, 1914)

ANTHRACENE C14H10

SOLUBILITY OF ANTHRACENE IN SEVERAL SOLVENTS.

Solvent.	t*.	Gms. CuHip I	er Authority.		
Ethyl Alcohol (abs.)	16	0.076	(v. Becchi.)		
	19.5	1.9	(de Bruyn, 1	892.)	
	25	0.328	(Hildebrand,	Ellefson and	Beebe, 1917.)
66 66 66	b. pt.	o.83	(v. Becchi.)		
Methyl Alcohol (abs.)	19.5	r.8	(de Bruyn 1	892)	
Benzene	25	. 1.86	(Hildebrand,	Ellefson and	Beebe, 1917.)
Carbon Disulphide	25	2.58	**	44	64
Carbon Tetrachloride	25	0.732	61	*	*
Ether	25	1.42	4	"	•
Hexane	25	0.37	u	**	4
95% Formic Acid	18.3	0.03	(Aschan, 191	3.)	
Toluene	16.5	0.92	(v. Becchi.)		
44	100	12.94	•		
Trichlorethylene	15	1.01	(Wester and	Bruins, 1914.	.)

SOLUBILITY OF ANTHRACENE IN BENZENE AND IN MIXTURES OF BENZENE AND PENTANE AND OF BENZENE AND HEPTANE. (Tyrer, 1910, and private communication. See Note, p. 447.)

In Benzene + Pen-In Benzene + Heptane In Benzene. tane at 15°. at 14° and 70° % C₄H₄ in Sol-Gms. C₆H₁₀ per 100 Gms. Solvent d. of Sat. Sol. per 100 Gms. Solvent. Gms. C₁₄H₁₀ per 100 Gms. Solvent. % C_sH_s in Solvent. ť. vent. at 14°. at 70°. 0.605 0.9008 0.184 0 0 0 0.210 1.67 10 0.8909 0.975 0.284 10 0.225 12.5 2.10 0.8812 1.43 .20 20 25 2.64 0.279 0.372 0.8717 30 2.03 30 0.357 37.5 0.474 3.23 40 0.8627 2.78 40 3.87 0.447 0.592 50 0.8541 62.5 50 50 0.718 3.75 0.549 4.59 60 60 0.8460 5.14 0.600 75 0.850 5 · 37 70 0.8374 70 0.780 87.5 0.976 6.15 0.8347 8.35 80 1.180 75 0.915 100 6.9390 1.059 100 1.225

Results for the solubility in benzene, differing from the above in some cases by 15%, are given by Findlay (1902).

SOLUBILITY OF ANTHRACENE IN ALCOHOLIC PICRIC ACID SOLUTIONS AT 25°. (Behrend – Z. physik. Chem. 15, 187, '94.)

Grams per 100 Grams Solution. Grams per 100 Gms. Solution. Solid Phase. Solid Phase. Picric Anthracene. Anthracene. Anthracene Picrate 0 0.176 Anthracene 3.999 0.202 " I.017 0.190 5.087 0.180 " " 2.07I 0.206 5.843 0.162 " " 2.673 0.215 6.727 0.151 " 3 - 233 0.228 7.511 0.149 Anthracene Picrate + Picric Acid Picric Acid Anthracene and 3.460 0.236 7.452 0 Anthracene Picrate

SOLUBILITY IN LIQUID SULFUR DIOXIDE IN THE CRITICAL REGION. (Centnerswer and Teletow, 1903.)

Weighed amounts of anthracene and liquid SO₂ were placed in glass tubes which were sealed and rotated at a gradually increasing temperature, and the point observed at which the solid disappeared.

t°.	Gms C ₁₄ H ₁₉ per 100 Gms. SO ₂ .	t".	Gms. C ₁₄ H ₁₆ per 100 Gms. SO ₂ .	t*.	Gms. C ₁₄ H ₁₀ per 100 Gms. SO ₂ .
40.I	2.11	65	4	98	9.36
45.8	2.48	78.2	5.66	99.1	9.95
47.0	2.65	88	7.14	106.5	12.78

Freezing-point curves are given for mixtures of anthracene and each of the following compounds: Diphenyl, diphenylamine, α and β naphthylamines, α and β naphthols, resorcinol, ρ toluidine and triphenyl methane (Vignon, 1891); Naphthalene (Vignon and Miolati, 1892); Phenanthene (Vignon, 1891, Garelli, 1894); Picric acid (Kremann, 1905).

ANTHRAQUINONE (C4H4)2(CO)2.

SOLUBILITY IN LIQUID SULFUR DIOXIDE IN THE CRITICAL REGION. (Centnerswer and Teletow, 1908.) (See Anthracene, above.)

ť°.	Gms. C ₁₄ H ₆ O ₂ per 100 Gms. SO ₂ .	ť.	Gms. C ₁₄ H ₄ O ₁ per 100 Gms. SO ₂ .	t°.	Gms. C ₁₄ H ₄ O ₂ per 100 Gms. SO ₂ .
3.96	0.64	92.1	2.81	118.5	5.60
51.5	0.88	101.4	3.67	141.6	7.53
67.9	1.73	106.3	4.23	160	9.60
82.4	2.24	108.7	4.40	179	12.70
				183.7	18.30

100 parts of absolute ethyl alcohol dissolve 0.05 part anthraquinone at 18° and 2.249 parts at b. pt. (v. Becchi.)

100 gms. alcohol dissolve 0.437 gm. anthraquinone at 25°.

(Hildebrand, Ellefson and Beebe, 1917.)

SOLUBILITY OF ANTHRAQUINONE IN BENZENE AND IN CHLOROFORM. (Tyrer, 1910.)

In Benzene.				In Chloroform.	
r.	Sp. Gr. Solution.	Gms. C ₁₄ H ₆ O ₂ per 100 Gms. C ₄ H ₆ .	ť.	Sp. Gr. Solution.	Gms. C ₁₄ H ₀ O ₂ per 100 Gms. CHCl ₂ .
0	0.8900	0.110	0	1.5244	0.340
20	0.8794	0.256	10	1.5046	0.457
30	0.8692	0.350	20	1.4850	0.605
40	0.8591	0.495	30	1.4656	0.780
50	0.8439	0.700	40	1.4461	0.994
60	0.8389	0.974	50	1.4261	1.256
70	0.8288	1.355	55	1.4164	1.415
80	0.8190	1.775	60	1.4070	1.577

SOLUBILITY OF ANTHRAQUINONE IN A MIXTURE OF CHLOROFORM AND HEXANE AT 12.6° AND 49°. (Tyrer, 1910, also private communication. See Note, p. 447.)

% CHCle in Solvent.	Gms. C _M H ₂ O ₂ per 100 Gms. Solvent at:		%CHCl, in	Gms. C ₁₄ H ₂ O ₂ per 100 Gms. Solvent at:	
	12.6°.	49.0°.	Solvent.	12.6°.	49.0°.
0	0.006	0.056	60	0.101	0.292
10	0.016	0.074	70 .	0.148	0.417
20	0.024	0.096	80	0.222	0.608
30	0.034	0.124	90	0.334	0.852
50	0.068	0.212	100	0.482	1.209

SOLUBILITY OF ANTHRAQUINONE IN ETHER.

(Smits - Z. Electrochem. 9, 663, '03.)

Weighed amounts of ether and anthraquinone were placed in glass tubes which were then sealed. The temperature noted at which the anthraquinone disappeared and also at which the liquid phase disappeared (critical temp.). The two curves cross at 195° and again at 241°. Between these two temperatures the critical curve lies below the solubility curve, hence for this range of temperature no solubility curve is shown. The following figures were read from the curves, and are therefore only approximately correct.

t*.	Gms. C ₂₄ H ₆ O ₂ per 100 g. Solution.	t°.	Gms. C ₁₄ H ₆ O ₂ per 100 g. Solution.	t*.	Gms. C ₁₄ H ₈ O ₂ per 100 g. Solution.
130	3	241	30	260	80
150	4 .	245	40	270	90
170	4.5	247	50	275	100
195	5.0	250	60		

100 parts of toluene dissolve 0.19 part anthraquinone at 15° and 5.56 parts at 100° (v. Becchi).

100 gms. ether dissolve 0 104 gm. anthraquinone at 25°.

(Hildebrand, Ellefson and Beebe, 1917.)

Data for the solubility of anthraquinone in mixtures of phenol and water are given by Timmermanns (1907).

Hydroxy ANTHRAQUINONES $C_4H_4 < (CO)_2 > C_4H_4OH$.

1000 cc. H₂O dissolve 0.0035 gm. α oxyanthraquinone at 25°. (Hüttig, 1914.)

1000 cc. H₂O dissolve 0.0011 gm. β oxyanthraquinone at 25°. "
1000 cc. H₂O dissolve 0.000012-0.000062 gm. 1.4 dioxyanthraquinone (= chin-

izarin) at 25°. 1000 cc. H₂O dissolve 0.00158 gm. 1.6 dioxyanthraquinone (= chrysazin) at 25°.

(Hüttig, 1914.)

ANTHRAFLAVINE (2.6 Dioxyanthraquinone) C12He(CO)2(OH)2.

1000 cc. H₂O dissolve 0.0003 gm. anthraflavine at 25°. (Hüttig, 1914.)

ANTHRARUFINE (1.5 Dioxyanthraquinone) C₁₂H₆(CO)₂(OH)₂.

1000 cc. H₂O dissolve 0.000285 gm. anthrarufine at 25°. (Hüttig, 1914.)

ANTIMONY Sb.

Fusion-point data for mixtures of antimony and iodine are given by Jaeger and Dornbosch (1912); for mixtures of antimony and sulphur by Jaeger and Van Klooster (1912), and for mixtures of antimony, iodine and arsenic by Quercigh (1912).

ANTIMONY TriBROMIDE SbBrz.

SOLUBILITY IN BENZENE DETERMINED BY "SYNTHETIC METHOD."

		(Mense	chutkin, 1910.)		
t°.	Gms. SbBr ₁ per 100 Gms. Sat. Sol.	Solid Phase.	r.	Gms. SbBr per 100 Gms Sat. Sol.	Solid Phase.
5.6 m. pt.	0	C _e H _e	90	83	2SbBr ₈ .C ₆ H ₆
4.5 Eutec	. 8.3 🗘	H ₆ +2SbBr ₈ .C ₆ H ₆	92.5 m. pt.	90.2	4
15		2SbBr ₃ .C ₆ H ₆	91.5	92.8	"
35	23	u	90	93.8	"
55	39	4	85 Eutec.	96.3	2SbBr ₈ .C ₆ H ₆ +SbBr ₈
75	60.5	•	90	98	SbBr ₃
85	74.3	•	94	100	

SbBr₈ + Acetophenone.

Gms. SbBr_s Solid per roo Gms. Shat. Sol. Phase.

C.H.COCH.

RECIPROCAL SOLUBILITIES OF ANTIMONY TRIBROMIDE AND VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD."

(Menschutkin, 1911.)

SbBr ₂ + Acetic Acid.		SbBr ₂ + Benzoic Acid.			· Benzoyl oride.	SbBr ₂ + Benzene Sulphonic Acid.		
r.	Gms. SbBr ₀ per 100 Gms. Sat. Sol.	t.	Gms. SbBr _s per 100 Gms. Sat. Sol.	e.	Gms. SbBr _a per 100 Gms. Sat. Sol.	t.	Gms. SbBr _s per 100 Gm. Sat. Sol.	
16.5*	0	120 *	•	- o.5°	• 0	52.5	• •	
15	12.2	115	20. I	– 3	19.5	50	15.8	
10	41.8	110	36.8	- 6†	32	47.5	2Ó.2	
4 †	58.2	105	50	+10	41.2	44 f	36.9	
20	64.3	100	Ó1.5	20	47.5	50 .	39.I	
40	72.5	95	71	30	54	бо	45.7	
60	81.9	85	83.1	40	6o.8	70	55.2	
70	97.1	79 T	87.6	50	67.8	80	68. r	
80	92.4	85	92	бо	74.9	85	77.6	
90	97.8	90	96.4	80	89.4	90	90.3	
94	100	94	100	94	100	94	100	

Molecular compounds are not formed in the above systems. The diagram in each case consists of two arms meeting at the eutectic.

Gms. SbBr₃

to. per roo Gms. Sat. Sol.

SbBr₂ + Amylbenzene.

Solid

Phase.

4.5 SbBrs.CsHs.CsH11 -34 *

SbBr₂ + Anisole.

Gms. SbBr.

per 100 Gms. Solid Phase.

Solid.

C₂H₄OCH₄

-9-3	-		, -	7.5		J-T	_	-00
15	22.7	44	-50	8.3	"	-35	2.	5 "+1.1
1.5*	48.6	" +1.1	-30	16.6	"	-20	II.	
20	56.8	I.I	-25	21	"	0	26.	5 "
30	63.3	44	-17‡	32.5	"+SbBra	10	37 ·	
37.5*	75	66	-10	33 · 5	SbBr ₂	20	50.	
31 f	83.2	z.z+SbBra	0	35.6	4	25	59	4
40	84.6	SbBr _a	20	41.6	u	30.	5 * 77	44
Ġo .	88.4	66	40	51.3	44	30	77.	+SbBra
(8o	94. I	64	60	65	ш	40	80.	
94	100	44	80	84	44	Ġо	86	
				•		80	93.	Ġ "
SbBr	+ Benza	aldehyde.	SbBr		zonitrile.			nzophenone.
ť.	per 100 Gr Sat. Sol.	ns. Dhase	ť°.	Gms. Sb per 100 G Sat. So	ms. Dhese		Gms. SbB: er 100 Gm Sat. Sol.	
- 20	38.4	· 1.1	—13.2	* 0.0	C ₄ H ₄ CN	48 *	•	C ₄ H ₄ CO.C ₄ H ₄
0	45.5	44	-16	19.2	"	40	24	**
20	54 - 3	u	—18†	28.7	"+1. 1	29 T	41.2	"+ı.ı
35	64. I	u	0	43	1.1	40	50	1.1
40	70.3	**	20	59	64	45	56.3	44
41.5	77.2	44	30	67	4	48.5	* 66.4	44
37.8	84.4	1.1+SbBr ₂	38 *	77.8	"	45	76	44
55	88	SbBr _a	35 †	82.5	r.r+SbBr _a	40	80	1.1+SbBr ₃
75	93.1	"	55	87.5	SbBr ₂	50	82.6	SbBr _a
85	96.1	"	75	93.3	44	70	88.7	"
90	98.2	44	85	96.5	44	80	92.4	"
94	100	• "	90	98.3	**	90	97.3	44
			94	100	•	94	100	u
	•	m. pt.		† Eute	с.	1 tr	. pt.	

I.I = compound of equimolecular amounts of the two constituents in each case.

RECIPROCAL SOLUBILITIES OF ANTIMONY TRIBROMIDE AND VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD."

(Menschutkin, 1910.)

	(Memschutkin, 1910.)										
SbBr ₃ + Brombenzene.		SbBi Chlorbe		SbB: Iodobe		SbB: Fluorbe	r; + enzene.				
r.	Gms. SbBr ₃ per 100 Gms. Sat. Sol.	t°.	Gms. SbBr _s per 100 Gms. Sat. Sol.	ť.	Gms. SbBr ₂ per 100 Gms. Sat. Sol.	ť.	Gms. SbBr ₂ per 100 Gms. Sat. Sol.				
-31 *	•	-45.2*	0	-28.6*	0	-39.2*	•				
-32	5.7	-47 t	5.2	-30.3	7.Ġ	-39.5 t	1.3				
-251		-40	6.8	-32 f	14.3	-25	4.3				
-15	15	—30	9.6	- 20	21.6	-15	6.7				
<u> </u>	20.8	— 20	12.6	-10	27.5	+ 5	12.6				
+ 5	26.8	-10	16	. •	33 · 4	25	21.8				
15	33	0	20	+10	39⋅3	45	35·3				
25	39.6	20	30	20	45.2	55	45·5				
45	54.6	40	45.4	40	57.6	65	60.8				
65	71.9	60 80	65.8	60 80	71.I	75	81.8				
85	90.7		86.3 100		86.3 100	85	93 · 5 100				
94	100	94	100	94	100	94	100				
	SbBr₃ +		Bra +	SbB			Br _s +				
p Dib	rombenzene.	Dichlo	rbenzene.	Nitrob	enzene.	m Dinit	robenzene.				
ť.	Gms. SbBr ₃ per roo fims. Sat. Sol.	t°.	Gms. SbBr ₃ per 100 Gms. Sat. Sol.	ť.	Gms. SbBr ₃ per 100 Gms. Sat. Sol.	r.	Gms. SbBr _s per roo Gms. Sat. Sol.				
88 *	• •	54 · 5 *	0	6 *	0	90 *	•				
85	10	51.5	14	I	22	8 0	29. I				
80	25.2	48.5 †	26.5	- 4	37 - 4	70	50				
75	39.2	55	35.9	-9	48.4	60	63				
70	52	60	43.I	-14.5 †	55.3	50	70.8				
65 1	62.2	65	50.7	- 5	58.3	47-51					
70	68.7	70	58.8	+ 5	61.5	Şo	73 · 4				
75	75.3	75	67.2	25	68.6	60	78.2				
80	81.8	80 0 -	75.8	45	76.6	70	84				
85	88.3	85	84.5	65	85.3	80	90.4 96.8				
90							~~ X				
94	94·3 100	90 94	93 · 4 100	85 94	94.7 100	90 94	100				

Molecular compounds are not formed in the above systems. The diagram in each case consists of two arms meeting at the eutectic.

SbBr _a	+ Ethyll	benzene.	SbBr ₈ + Propylbenzene.			Sb	SbBr ₃ + p Cymene.		
r.	Gms. SbBi per 100 Gm Sat. Sol.	Solid Phase.	t°.	Gms. SbBr per 100 Gm Sat. Sol.	Solid S. Phase.	\$* .	Gms. SbBr per 100 Gm Sat. Sol.	Solid B. Phase.	
-93 *	0	C ₆ H ₆ .C ₂ H ₆	-80	1.3	I.I	-75 *	•		
-93.2	0.4	"+1.1	-60	3.7	**	-77 t	2		
-70	I	1.1	-40	9.4	44	-50	б. 1	I-1	
-50	2.2	44	- 20	22.5	"	-30	12.3	"	
-30	4.8	t P	-10	38.4	44	-10	27	u	
-10	12	*	– 5‡	49	1.1+SbBr ₂	0	42.3	44	
+10	29.2	44	+10	53.3	SbBr ₈	+5‡	51.5	1.1+Sb Br	
20	46.3	**	20	57.I	44	20	56	SbBr _e	
29 ‡	69.7	$1.1 + SbBr_8$	40	66.2	4	40	64. I	44	
50	78.2	SbBr _a	60	77.2	"	60	75	66	
70	87.3	44	80	89.8	4	80	88.5	=	
90	97.7	44	94	100	u	94	100	•	
		* m. pt.		† Eutec.		‡ tr. pt.			

I.I = compound of equimolecular amounts of the two constituents in each case.

RECIPROCAL SOLUBILITIES OF ANTIMONY TRIBROMIDE AND VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD."

(Menschutkin, 1911.)

SbBr ₃ -	+ Cyc	lohexane.	SbBr ₃ +	- Pseu	do Cymene.	SbB	$r_s + 1$	Mesitylene.
to. Del	ms. SbI r 100 Gr Sat. Sol	ns. Dhara	t°. pe	ms. SbB r 100 Gr Sat. Sol.	3000 Dbase	t°. per	ms. Sbl 1 100 G: Sat. Sol	ms. Dhana
6.4*	0	C ₆ H ₁₂	-57.2*	0 (C ₆ H ₈ (CH ₈) 1, 2, 4	-54.4*	0	C ₄ H ₄ (CH ₄), 1, 3, 5
6 †	0.3	C ₆ H ₁₂ +SbBr ₂	-58.8 †	9.7	" + 1.1	-55.2 T	2.I	" +1.1
20	1.4	SbBr ₈	-50	11	1.1	-30	3.6	1.1
40	3.7	66	—30	16.2	"	— 10	9	"
60	7.1	"	-10	31	и	+10	25.4	и
80	12.5	и	0	47.6	44	20	35.5	"
liquid	layers	formed	7 §	63.5	1.1+2.1	29‡	46.5	1.1+2.1
92.5	17.4	97.6	15	67.4	2.I	40	54.2	2.I
110	25.8	96.5	25	73	64	50	61.7	**
130	36.4	95	33 §	79.I	2.1+SbBr ₂	60	70.2	44
150	47.8	92.7	50	82.8	SbBr _a	69.5*		"
170	62.3	86.3	70	88.4	66	69 †	87.7	2.1 +SbBr ₃
175‡	-	74.0	90	97 - 4	**	80	92.7	SbBr ₈

SbBr₃ + Diphenylmethane. SbBr₃ + Naphthalene. SbBr₃ + α Nitronaphthalene.

t *. 1	Gms. SbB per 100 Gm Sat. Sol.	s. Dhare	t °. p	Gms. SbBr _s er 100 Gms Sat. Sol.	Solid Phase.	t°. pe	Sms. SbB er 100 Gn Sat. Sol.	
26 *	0	$CH_2(C_6H_6)_2$	79 - 4 *	0	C ₁₀ H ₈	57 *	0.0	$\alpha C_{10}H_7NO_2$
22.5	12.8	"+2.I	75	23.7	"	50	23.2	66
40	22.8	2.1	70	37.4	"	40	42.6	66
50 60	29.5	"	65	48.6	44	33·5 T	50.5	"+ 1.1
60	37.5	44	57	61.2	" +2.I	37 · 5	62.6	1.1 T
70	47.8	"	60	68	2.1	38.2*	67.6	44
8o	60.2	"	65	81.3	"	38 †	68	1.1+SbBr ₈
90 *	81.I	"	66 *	84.9	44	50	73 - 4	SbBr ₈
85	89.6	"	65 †	86.7	2.1 +SbBr ₈	70	83.8	44
82 †	92.2	2.1 + SbBr ₃	75	90.I	SbBr _a	90	96.4	44
90	96.2	. SbBr ₃	85	94.9	"			
04	100	"	go	97 - 7	44			

SbBr ₃ + Diphenyl.			$SbBr_3 + Phenol.$			SbBr _* + Phenetol.		
t°.	Gms. SbBr ₃ per 100 Gms. Sat. Sol.	Solid Phase.	t°.	Gms. SbBr ₃ per 100 Gms. Sat. Sol.	Solid Phase.	t. i	Gms. SbBr per 100 Gm: Sat. Sol.	Solid Phase.
170.5	• 0	C.H.C.H.	41 *	0	C,H,OH	-28.6*	0	C.H.OC.H.
60	35.7	"	35	22.5	"	-29 †	1.6	" +1.1
50	54.3	**	30	40	44	-10	4.8	1.1
47 †	57 · 4	"+2.1	28.5	44.6	"+2.1	+10	12.9	44
55	68.5	2.1	40	53	2.I	20	19.2	44
60.5	* 82.7	"	50	62.5	**	30	29.7	4
70	86.5	SbBr ₂	60	75.8	**	40	46.2	u
8o	91.5	44	65	84.7	u	48.8*	74 - 7	"
90	97.3	**	66.5*	88.5	u	47 †	77.8	1.1+SbBr _k
94	100	44	75	91.7	SbBr _a	60	83	SbBr _s
			₁8š	95.8	"	70	87.3	46
			90	98.1	u	90	97.4	u
	* m. pt.	•	† Eute	c.	‡ crit. t.		§ tr. pt.	

¶ Not obtained regularly, in such cases, single eutectic at 23° and 61.5 per cent SbBr₃.

I.I = compound of equimolecular amounts of the two constituents in each case.

2.I = compound of 2 molecules of SbBr₂ with one molecule of the other constituent.

RECIPROCAL SOLUBILITIES OF ANTIMONY TRIBROMIDE IN VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD."

(Menschutkin, 1910-12.)

	SbBr _s + α Brom- naphthalene.		- α Chlor- thalene.	SbBr ₃ -	+βChlor- thalene.	SbBr ₃ + Tetra- hvdrobenzene.		
нај		пари		napn		пуаго		
6°.	Gms. SbBr ₂ per 100 Gms. Sat. Sol.	ť.	Gms. SbBr _s per 100 Gms. Sat. Sol.	t°.	Gms. SbBr _a per 100 Gms. Sat. Sol.	t.	Gms. SbBr ₂ per roo Gms. Sat. Sol.	
3 *	•	—17 *	0	56 *	0		• • •	
0	15.8	— 2 I	. 13.8	50	26. I	-5	11.7	
- 3.5	† 31.4	-24.5		45	38.5	15	15. i	
15	38.7	—10	27.3	40	49	35	24. I	
35	49.9	+10	35∙5	37.5 †	53.6	55	41	
45	56.9	30	46.7	45	58.8	65	55.I	
55	64.7	50	61.6	55	66.8	70	64.5	
65	72.9	60	69.9	65	75.2	75	76.2	
75	81.8	70	78.6	75	83.8	80	84.4	
80	86.3	8o	87.5	8o	88. r	85	90.7	
85	90.8	90	96.6	85	92.4	90	95.8	
90	95-4	94	100	90	96.7	94	100	
	SbBr ₃ +		SbBr ₂ +					
SbBr	. +-	SbB	3r2 +	SbE	Bra +	Sb	Br₃ +	
	+ oluene.		Br. + rtoluene.		Br. + rtoluene.		Br _a +	
	oluene.				rtoluene.		roluene.	
o Chlorto		m Chlor	rtoluene. Gms. SbBr ₃ per 100 Gms. Sat. Sol.					
o Chlorto	oluene. Gms. SbBr ₂ per 100 Gms.	m Chlor	rtoluene. Gms. SbBr, per roo Gms. Sat. Sol.	p Chlor	Gms. SbBra	m Nit	roluene. Gms. SbBr. per 100 Gms.	
o Chlorto	Gms. SbBr _s per 100 Gms. Sat. Sol.	m Chlor	rtoluene. Gms. SbBr ₃ per 100 Gms. Sat. Sol.	p Chlor	rtoluene. Gms. SbBr ₁ per 100 Gms. Sat. Sol.	m Nit	roluene. Gms. SbBr, per 100 Gms. Sat. Sol.	
#. 1 -36.2*	oluene. Gms. SbBr _s per 100 Gms. Sat. Sol.	m Chlor to. -47.84 -50† -30	rtoluene. Gms. SbBrs per 100 Gms. Sat. Sol. 0 8.1 11.7	p Chlort°.6.2 *	rtoluene. Gms. SbBr ₁ per 100 Gms. Sat. Sol. O	m Nit	Gms. SbBr ₃ per 100 Gms. Sat. Sol. 0 24.2 39	
. 1 -36.2 -38.5 †	oluene. Gms. SbBr ₃ per 100 Gms. Sat. Sol. 0	# Chlor # . — 47 .8 * — 50 † — 30 — 10	rtoluene. Gms. SbBrs per 100 Gms. Sat. Sol. O 8.1 11.7 17.5	p Chlore to	rtoluene. Gms. SbBr ₃ per 100 Gms. Sat. Sol. 0 23.3	m Nit	Gms. SbBr ₃ per 100 Gms. Sat. Sol. 0 24.2 39 46.6	
#. 1 -36.2 * -38.5 † -20	oluene. Gms. SbBr ₃ per 100 Gms. Sat. Sol. 0 10.7 15.4 22.5 32.5	m Chlor to. -47.84 -50† -30	rtoluene. Gms. SbBrs per 100 Gms. Sat. Sol. 0 8.1 11.7	p Chlore to	rtoluene. Gms. SbBr ₁ per 100 Gms. Sat. Sol. 0 23 · 3 33 39 · 3 47 · 2	m Nit	roluene. Gms. SbBr _s per 100 Gms. Sat. Sol. 0 24.2 39 46.6 56.8	
#. 1 -36.2 * -38.5 † -20	oluene. Gms. SbBr ₃ per 100 Gms. Sat. Sol. 0 10.7 15.4 22.5 32.5 38.8	# Chlor #. -47.8 -50 -30 -10 -10 30	rtoluene. Gms. SbBr, per roo Gms. Sat. Sol. O 8. I II. 7 I7. 5 25. 8 37. 5	p Chlor t°. 6.2* 2.5† 20 30 40 50	rtoluene. Gms. SbBr ₁ per 100 Gms. Sat. Sol. 0 23.3 33 39.3 47.2 56.3	m Nit	Gms. SbBr ₃ per 100 Gms. Sat. Sol. 0 24.2 39 46.6	
7. 1 -36.2* -38.5† -20 +20	oluene. Gms. SbBr _s per 100 Gms. Sat. Sol. 0 10.7 15.4 22.5 32.5 38.8 46.8	# Chlor #. -47.8 * -50 † -30 -10 +10 30 40	rtoluene. Gms. SbBr, per 100 Gms. Sat. Sol. O 8. I II. 7 I7. 5 25.8	p Chlor t°. 6.2* 2.5† 20 30 40	rtoluene. Gms. SbBr _s per 100 Gms. Sat. Sol. 0 23.3 33 39.3 47.2 56.3 66.7	# Nit	roluene. Gms. SbBr _s per 100 Gms. Sat. Sol. 0 24.2 39 46.6 56.8	
o Chlorte t. 1 -36.2 - -38.5 † -20 0 +20 30	oluene. Gms. SbBrs per 100 Gms. Sat. Sol. 0 10.7 15.4 22.5 32.5 38.8 46.8 56	# Chlor # . -47.8 * -50 † -30 -10 +10 30 40 50	rtoluene. Gms. SbBr, per 100 Gms. Sat. Sol. 8. 1 11.7 17.5 25.8 37.5 45.1 54.4	p Chlor t°. 6.2* 2.5† 20 30 40 50 60 70	rtoluene. Gms. SbBr ₃ per 100 Gms. Sat. Sol. 0 23.3 33 39.3 47.2 56.3 66.7 77.8	# Nit	roluene. Gms. SbBr _s per roo Gms. Sat. Sol. 0 24.2 39 46.6 56.8 62.7 69.7 77.5	
#. 1 -36.2 * -38.5 † -20 0 +20 30 40	oluene. Gms. SbBrs per 100 Gms. Sat. Sol. 0 10.7 15.4 22.5 32.5 38.8 46.8 56 66.5	# Chlor # . - 47.8	rtoluene. Gms. SbBr, per 100 Gms. Sat. Sol. 0 8.1 11.7 17.5 25.8 37.5 45.1 54.4	¢ Chlor t°. 6.2 * 2.5 † 20 30 40 50 60 70 80	rtoluene. Gms. SbBr _a per roo Gms. Sat. Sol. 0 23.3 33 39.3 47.2 56.3 66.7 77.8 88.2	m Nit	roluene. Gms. SbBra per roo Gms. Sat. Sol. 0 24.2 39 46.6 56.8 62.7 69.7 77.5 81.5	
#. 1 -36.2 * -38.5 † -20 0 +20 30 40 50	oluene. Gms. SbBrs per 100 Gms. Sat. Sol. 0 10.7 15.4 22.5 32.5 38.8 46.8 56 66.5 77.8	# Chlor #. -47.8 * -50 † -30 -10 +10 30 40 50 60 70	rtoluene. Gms. SbBr, per roo Gms. Sat. Sol. 8	p Chlor t°. 6.2* 2.5† 20 30 40 50 60 70	rtoluene. Gms. SbBr ₃ per 100 Gms. Sat. Sol. 0 23.3 33 39.3 47.2 56.3 66.7 77.8	m Nit 16 * 10 * 0	roluene. Gms. SbBr _s per roo Gms. Sat. Sol. 0 24.2 39 46.6 56.8 62.7 69.7 77.5	
e Chlorte t*. 1 -36.2 * -38.5 † -20 0 +20 30 40 50 60	oluene. Gms. SbBrs per 100 Gms. Sat. Sol. 0 10.7 15.4 22.5 32.5 38.8 46.8 56 66.5	# Chlor # . - 47.8	rtoluene. Gms. SbBr, per 100 Gms. Sat. Sol. 0 8.1 11.7 17.5 25.8 37.5 45.1 54.4	¢ Chlor t°. 6.2 * 2.5 † 20 30 40 50 60 70 80	rtoluene. Gms. SbBr _a per roo Gms. Sat. Sol. 0 23.3 33 39.3 47.2 56.3 66.7 77.8 88.2	m Nit	roluene. Gms. SbBra per roo Gms. Sat. Sol. 0 24.2 39 46.6 56.8 62.7 69.7 77.5 81.5	

Molecular compounds are not formed in the above systems. The diagram in each case consists of two arms meeting at the eutectic.

gr t Det	+ Tolums. SbBr	a Calid	Č	+ o N Sms. Sbl er 100 G Sat. Sol	ms. These		r _s + p l Gms. SbE per 100 Gr Sat. Sol.	ns. Dieses
-93 *	0	C.H.CH.	- 8.5 ⁴	' 0	o NO2.C4H4.CH3	52.5	• 0	ø NO₂.C₄H₄.CH₄
-93·5 †	1.0	"+1.I	-13.5	19.5	" +1.1	45	29.8	",
-80°	2.4	1.1	0	27.6	1.1	40	42.2	•44
60	6.2	"	10	35.6	"	35	50	u
-40	12.4	**	20	47.5	"	25	61	"
-20	25.7	u	25	55.7	66	16†	67	." +SbBr _a
- r t	53.I	1.1+2.1	31 🗜	70	" +SbBr _s	30	71.6	SbBr ₈
+20	69.4	2.1	40	73 · 5	SbBr ₃	50	78.9	44
30 ‡	78	2.1+SbBr ₈		77.5	44	60	82.9	66
40	80.6	SbBr _s	60	81.7	44	70	87.2	66
60	86.6	.4	8o	91.4	44	80	92	"
80	93.8	4	90	97.2	"	90	97.5	"
94	100	"						
		• m. j	pt.	† 1	Eutec.	‡ tr. pt	:.	

^{1.1 =} compound of equimolecular amounts of the two constituents in each case.
2.1 = compound of 2 molecules of SbBr₃ with 1 molecule of the other constituent.

RECIPROCAL SOLUBILITIES OF ANTIMONY TRIBROMIDE AND VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD."

(Menschutkin, 1910-11.)

	: + Tri- lmethane.	SbBr ₂ +	o Xylene.	SbBr _a + 1	n Xylene.	SbBr _a +	p Xylene.
ť.	Gms. SbBr ₃ per 100 Gms. Sat. Sol.	ť.	Gms. SbBr ₃ per 100 Gms. Sat. Sol.	t.	Gms. SbBr ₂ per 100 Gms. Sat. Sol.	ť.	Gms. SbBr ₃ per 100 Gms. Sat. Sol.
92 * 85	0	-29 *	0	-57 *	0	14 *	0
8 5	18	-33 †	10.5	-59.2 t	5.5	12	16.6
8ŏ	30. I	- 20	17	-45	10	10 †	28
70	47	-10	24.6	-35	14.2	20	36
60	58.2	0	34.5	-25	20	30	44.6
48†	Ğ7.Ι	20	65.8	- 5	38.8	40	53.8
60	73 - 3	24 *	77.2	+ 5	56.6	50	63.5
70	79.5	22.5	78.6	12.5	75.4	60	74
80	86.4	30	8o	25	77.6	67.5*	87.3
90	. 95.2	50	84.7	45	82.3	66.5 †	88.3
94	100	70	90.1	65	87.9	75	91.4
		90	97 · 7	87.	95.3	85	95.7
		• m. pt.	† 1	Eutec.	‡ tr. pt.		

In the case of each of the above xylenes the compound existing between the first and second eutectic consists of equimolecular amounts of SbBr₂ and xylene.

Solubility data determined by the freezing-point method (see footnote, page I) are given for mixtures of antimony tribromide and each of the following compounds: azobenzene, benzil, s diphenylethane and stilbene (Van Stone, 1914), aniline, benzophenone, triphenylmethane and toluene. (Kurakov, Krotkov and Okaman, 1915.)

ANTIMONY TriCHLORIDE SbCl.

SOLUBILITY IN WATER. SOLID PHASE SbCl₂. (Meerburg — Z. anorg. Chem. 33, 299, 1903.)

t°.	Mols. SbCls per 100 Mols. HgO.	Gms. SbCl ₈ per 100 g. H ₂ O.	6°.	Mols. SbCls per 100 Mols. HgO.	Gms. SbCl ₂ per 100 g. H ₂ O.
0	47 - 9	601.6	35	91.6	1152.0
15	64.9	815.8	40	108.8	1368.0
•	§ 72.4	910.1	50	152.5	1917.0
20	₹74.1	931.5	60	360.4	4531.0
25	78.6	988 . I	72	∞ ∞	∞
30	84.9	1068.0			

SOLUBILITY OF ANTIMONY TRICHLORIDE IN AQUEOUS HYDROCHLORIC ACID. SOLID PHASE SbCl₃. TEMP. 20°.

Mols. per 100 Mols. H ₂ O.		Gms. per 100 g. H ₂ O.			s. per ols. H ₅ O.	Gms. per 200 g. H ₂ O.	
HCI.	SbCl ₃ .	HCI.	SbCla.	HCl.	SbCl ₃ .	HCI.	SbCl
0	72.4	0.0	910.1	9.1	68.g	18.41	866.4
2.4	71.2	4.86	895.4	11.7	68.ī		856.3
6.1	69.9	12.34	879.0	28.7	62.8		789.8
8.3	68.2	16.80	857.6	· ·		•	. ,

100 gms. absolute acetone dissolve 537.6 gms. SbCl₄ at 18°. du sat. sol. = 2.216. (Naumann, 1904.)
100 gms. ethyl acetate dissolve 5.9 gms. SbCl₄ at 18° d sat. sol. = 1.7968. (Naumann, 1910.)

RECIPROCAL SOLUBILITIES OF ANTIMONY TRICHLORIDE AND VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD."

(Menschutkin, 1911.)

SbCl _a	SbCl _s + Acetic Acid.			SbCl _a + Acetophenone.			SbCl ₄ + Anisol.		
ť. p	Gms, SbC er 100 Gn Sat. Sol.	ls Solid ns. Phase.	t°.	Gms. SbCl. per 100 Gms Sat. Sol.	Solid Phase.	ť.	Gms. SbCi per 100 Gm Sat. Sol.		
16.5	• 0	CH3COOH	19.5*	. 0	C ₆ H ₆ COCH ₈	-34 *	0	C ₄ H ₄ OCH ₄	
10	22.7	' "	15	14.3	46	-36.5 †	11.8	" +r.x	
0	42.5	44	5	28.5	4	-30	16	1.1	
- 5	48.5	"	ī †	31.8	" +1.1	—10	28.3	4	
- 9t	52.7	" +I.I	15	35.4	1.1	十10	43	*	
o	59	1.1	35	41.6	66	20	52.8	4	
10	67.3	46	55	55.2	44	25 🖡	63.6	" +2.1	
19*	79.1	44	60.5*	65.4	"	35	70	2.1	
25	81.5	SbCl _a	45	79.3	u	41.5*	80.9	44	
45	87.4	**	32 †	84	r.r+SbCla	40 t	84.5	"+SbCl _e	
45 65	95.3	44	50	89.3	SbCl _a	60	92	SbCl _a	
73	100	- "	70	98.2	44	70	98	"	

S	bCl _a + A	niline.	SbCl ₄	+ Benzal	dehyde.	SbCI	4 + Ben	zophenone.
t°.	Gms. SbCle per 100 Gms Sat. Sol.	Solid Phase.	t°.	Gms. SbCl ₄ per 100 Gms Sat. Sol.	Solid Phase.	t°.	Gms. SbC per 100 Gn Sat. Sol.	ns. There
- 7.2	T I	C ₄ H ₄ NH ₂ +1-4	10	43.5	r.1	48 *	0	C ₄ H ₄ COC ₄ H ₄
+20	7 -	1.4	20	47.5	**	40	16.3	44
60	18.7	44	30	52.4	**	35 †	21.6	" +z.z
77 ‡ 88 *	29.6	14+13	40	60.2	"	45	26.2	1.1
	44.8	1.3	43.5	68.1	"	55	31.4	44
87 🕇	46.3	1.3+1.2	40	74.2	u	65	37 · 5	44
94.5	54.0	1.2	30	8o.6	66	76 *	55.4	"
89.5	61.7	1.2+1.1	25 †	83	r.r+SbCl _s	65	71.6	44
100.5	71	I.I	35	85	SbCl.	45	8o.6	и.
70	82.2	"	45	87.5	**	39 T	82.7	"+SbCl
31 †	88	1.1+SbCl ₈	65	95.2	u	50	87	SbCl _e
60	94.9	SbCl ₈	73	100	u	70	97 - 7	"

I.I = compound of equimolecular amounts of the two constituents in each case.

2.I = compound of 2 molecules of SbCl₃ with I molecule of the other constituent.

^{1.2, 1.3} and 1.4 = compounds of 1 molecule of SbCl₈ with 2, 3 and 4 molecules of aniline.

SbCl _a	+ Benzoic Acid.	SbCl _s + Chle	- Benzoyl oride.		Benzene nic Acid.		+ Tetra- benzene.
r.	Gms. SbCl ₂ per 100 Gms. Sat. Sol.	t*	'Gms. SbCl _a per 100 Gms. Sat. Sol.	t°.	Gms. SbCl _a per 100 Gms. Sat. Sol.	ť.	Gms. SbCl _e per 100 Gms. Sat. Sol.
120	0	- 5	17.8	52.5*	0	-25	19.1
110	23	-15	36.8	45	18	-15	24
100	38.8	-23 t	45	25	43.7	– š	30
90	50	- 5	50.7	5	56. ī	+ 5	37.I
80	59 66	+15	58.2	$-\bar{s}$ †	6o.8	15	45.I
70	66	25	62.9	+5	49.8	25	54.3
60	71.6	35	68.4	25	56.7.	35	64.5
46†	78	45	74.9	45	69.2	45	74
60	89.2	55	82.4	65	90.2	55	83.6
70	97.5 •	70	96.5	73	100	65	92.8

Molecular compounds are not formed in the above systems. The diagram in each case consists of two arms meeting at the eutectic.

^{*} m. pt. † Eutec. ‡ tr. pt.

RECIPROCAL SOLUBILITIES OF ANTIMONY TRICHLORIDE AND VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD."

(Menschutkin, 1910-'11.)

ShCl	+ Ber	7000	ShCl. J	L Brom	benzene.	SbCl _s + Chlorbenzene.		
				Gms. SbC	*1	SUCI		CI
t°. pe	ims. SbCl r 100 Gm Sat. Sol.	Solid Phase.		er 100 Gr Sat. Sol.	ns. Dhace	ť.	Gms. Sh per 100 G Sat. So	ms. Dhase
4*	7.3	C ₆ H ₆	-31 t	0	C _s H _s Br	-45.2	† 0	C _e H _e Cl
I	19.4	" +2.I	-32.5*	4.8	" +1.1	-47 -	4.3	
10	24.6	2.I "	-30	6.8	I.I "	-40	7	I.I
20	30.5	"	-20	14.8	44	-30	11.1	
40 60	44.1 60.6	и.	-10	23.9	66	-15	20.5	
75	76.8	46	+ 3 ‡	34·3 40.3	r.r+SbCl	- 5 0 1	32.5 44.2	
79 t	85.3	u	20	52	SbCl	20	56	•
70	93.5	44	40	68	u	40	72.1	•
62 *	<u>9</u> 6	2.1+SbCl ₄	Ġо	85.8	44	Ġο	88.2	
67.5	97.9	SbCl ₀	73	100	*	73	100	и
SbCl _a -	- Fluor	benzene.	SbCl ₄	+ Iodol	benzene.	SbCl ₃	+ Nitro	benzene.
G. De	er 100 Gm	: Journ	€. De	ms. SbCl _e r 100 Gms	JULL	t. ,	Gms. SbC	solid
υ. μ	Sat. Sol.	B. Phase.		Sat. Sol.	Phase.	•. ,	per 100 Gm Sat. Sol.	S. Phase.
-39.2 †	•	C _e H _e F	-28.6 †		C _e H _e I	6†	•	C ₂ H ₄ NO ₂
-40.5 *	2.4	"+ 1.I	-35	12.8	"	— 2	20.4	*
-25	II	I.I "	-45 -	29.8	"+1.1	.—IO	32	
-15	17.3	"	-34 ·5	11.7	I.I, unstable	-16.5	* 38	T1.1
-10	21.4	44	-15	26.4	44 44	-10.5	44	1.t u
- 5 0	26.4 34.1	**	- 3 -35	.49.I 32.5	ı.ı+SbCl	- 7.5 - 6 t	50 64.8	66
+ 5.5		1.1+SbCla	-35 -15	38.9	SbCl	– 6.5	* 67.5	r.r+SbCle
15	53.6	SbCl	+ 5	46.4	"	+ 5	69.6	SbCla
25	61.6	44	25	56	"	35	78.7	u
45	77 - 7	44	45	69.6	4	55	87.4	es
65	93.8	**	65	88.8	4	70	96.6	4
a. a.		•	G1 G 1		•. ••	C1 C1		4.
	·	benzene.	-	•	zonitrile.			ylbenzen e.
t°. pe	ims. SbC er 100 Gm Sat. Sol.	S. Phase.	e. ı	Gms. Sb(per 100 Gi Sat. Sol	ms. Dhace	t°. p	Sms. SbCl _s er 100 Gms Sat. Sol.	Solid Phase.
-93 †	0	C ₄ H ₄ -C ₄ H ₄	-13.2 †	0	C ₄ H ₄ CN	-80	4	1.1
-93.5 *	0.3	71.4	-16	10.2	"	60	11.7	ec
-70	0.6	1.1 "	-19 *	17.2	" +1.1	-40 -	25.4	
-50	I.I	44	—10 0	21.9	I.I "	-33 ¥	32.7	1.1+2.1
-30 -10	2.5 7	64	10	28.5 38.7	64	-25 -15	38.7	2.I "
+10	18.8	44	15	47.4	44	- ¹³ ‡	47.2 56.8	2.1+SbCla
30	44.4	44	20	62.6	44	٠	57.4	SbCL
39 †	68. I	64	21.5	68.7	66	20	63.3	
35 *	77.4	1.1+2.1	20	72.4	44	40	72.6	44
37 T	8r.1	2.1	15*	78.9	"	бo	ͺ87.1	4
36.8 *	81.8	2.1+SbCl ₈	25	81.6	4	70	97.3	44
50	87.2	SbCl _a	45	87.6	"	•••	• • • •	
70	98		65	95.6	"	-25	44.4 -	nstable 1.1
	80.4	z.z+SbCla	73	100	••	-21 I -10	54·9 56	"r.r+SbCle" "SbCle
33	w.4	(unstable)				-10	20	
		• Eutec.		† m. pt.		‡ tr. pt.		

I.I = compound of equimolecular amounts of the two constituents in each case.
2.I = compound of 2 molecules of SbCl₂ with I molecule of the other constituent.

RECIPROCAL SOLUBILITIES OF ANTIMONY TRICHLORIDE AND VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD."

(Menschutkin, 1910-11.)

			(Mer	schutkin, 19	10-11.)			
	SbCl ₄	+ m Din	itrobenz	ene.		SbCl _s	+ Propyl	benzene.
t. p	Gms. SbCl _a per 100 Gms. Sat. Sol.	Solid Phase.	t°. pe	ems. SbCl _s r 100 Gms. _] Sat. Sol.	Solid Phase.		Gms. SbCl _a er 100 Gms. Sat. Sol.	Solid Phase.
90 *	0	m C ₄ H ₄ (NO	D): 20	72.8 unst		-70	0.6	2.1
80	18.6	44	15	76.2		– 30	10.1	. "
70	31.3	"	10	70.0		-10	26.6	4
60	40.7	44	5	80.8 6 82.7 6		0	40.4	4
50 40	48 53.6	66	-10	64.0		7 8.5 ‡	57·5 68.2	"+SbCl
30	53.0 58	64	+10	69 '		20	71.4	SbCl
20	61.5 um	stable "	20	71.6	4 .44	40	78.5	"
10	64.5	" "	30	74.8	"	65	92.5	44
ı †	66.8		SbCl4 40	78.7	4	• • •	•••	•••
-rr	68.8		50	83.5	"	- 70	1.5 1.1	unstable
+27.5	52.5	" I.I	60	89	"	-30	10	
28.5	* 58.2	u	70	96.4 100		- 5 + 1.5*	48.2 " 65.3 "	44
27.5 25	63 67.5	u	73	100		T 1.3		⊦SbCl₃ "
-3	97.3					10	68.6	SbCl _a "
	+ p Dibi benzene.	rom-		Dichlor zene.	-	SbCl _a	+ Cyclohe	-
	Gms.	SbCl _a		Gms. SbC	J.		Cme ShCl -	
ť.	per 100 Sat.	Gms.	ť.	per 100 Gr Sat. Sol.	ns.	t.	Gms. SbCl _s p Sat. S	iol.
88 *					•	6.4*		
85		. 7	54·5 . 50	0 14		6 †	o. o.	
80 80	-	.4	45	30		20	1.	
70	35		40	48		40	4.	
60		.8	39.5	50.5		6 0	ġ.	
55	59	•	45	59.5		Two lie	quid layers	formed
49.5			50	67.8		70	13.7	97
65		.8	55 ·	75.7		8o	19.5	96. I
60		.3	60	83		00	32.3	92.7
70	95	i	70	96.2		20	57.I	83.2
						24 25 · 5 §	58.9 68	76.7
					•	-3·3 ¥	•	
SbC	$C_{l_1} + p C_{l_2}$ Gms. SbCl ₂		SbCl	+ Pseud Gms. SbCla		e. S	bCl _s + D Gms. Sb	
<u>t</u> e. 1	per 100 Gms	Solid Phase	t°.	per 100 Gms Sat. Sol.	Solid Phase.	t°.	per 100 G	ms. There
-75 *		С"Н,СН"С"Н	-57.4		H (CH) -			CH.CH
-76.5		41.1 1.1+ "	-60 t	18.6	H ₄ (CH ₂), r	, 2, 4 7.5 - 1.1 65	.5 ° 0 14	"
-50	` 7	1.1	-45	23.6	1.I	55	33.4	44
-30	15	"	-25	33.3	4	50		"+2.1
-10	30	"	-10	45	44	55	45.2	2.1
- 3.5	‡ 4 <u>1</u>	1.1+2.1	<u> </u>	50.7	" +:		51.4	46
10	46. i	2.I	+15	55.8	2.1	70	70.7	u
30	60		35	62.2	"	71		«
40 ‡		2.1+SbCl _a	50 56 *	69.7	"	65	85.5	
50 60	81.2 87	u	50 °	79.2	2.1 +SbCl	57 65		2.1+SbCl ₂ SbCl ₂
70	95.6	"	65	87.5 93.9	SbCl _a	4 05 70	93.I 97	ancri
,-	93.0	•	~3	73·Y	2004	,0	9 /	

I.I = compound of equimolecular amounts of the two constituents in each case.
2.I = compound of 2 molecules of SbCl₈ with I molecule of the other constituent.

‡ tr. pt.

f crit. t.

† Eutec.

RECIPROCAL SOLUBILITIES OF ANTIMONY TRICHLORIDE AND VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD."

(Menschutkin, 1910-11.)

Sb	Cl _s + N	lesitylene.	St	Cl _s + 1	Diphenyl ane.	St	Cl _s + T Metha	
	Gms. SbC per 100 Gn Sat. Sol.	18. There	ť.	Gms. Sb per 100 G Sat. So	ms. Solid	r.	Gms. SbC per 100 Gr Sat. Sol.	os. Dhase
-54.4	* 0	CaHa(CHa)a z,	3,5 26*	0	CH ₂ (C ₂ H ₄)	92 *	•	CH(C _a H _a) _a
-55.6	1.5	" +ı.		\$ 7.9	" +2.	ı 85	11.8	"
-40	3	1.1	40 ັ	15.1	2.1	8ŏ	19.3	и
-20	7	46	60	26	"	70	32	46
0	14.2	64	70	33	**	Ġо	42.4	44
IO	20.3	46	80	41.6	4	50	49.6	44
30	39.3	**	90	52.7	44	49 †	50	" +1.1
38 †	51.4	" +2.	r 95	59.8	44	45	62.8	1.1
65	65.4	2.1	100 *	72.9	"	40	68.3	"
75.5	* 79.2	41	95	82.2	"	35 ‡	72	1.1+SbCl
70	87	44	90	86.7	"	45	76.6	. SbCl _e
58.5	92.4	" +SI		91.5	**	55	82.4	"
63	94	SbCl ₈	67 ‡	95.7	2.1+SbCl ₈	65	90.6	u
70	98	44	70	97	SbCl,	70	96.I	**
SbCl	s + Nap	hthalene.	na	+αC phthale: 3ms. SbCl	ne.	S	bCl _s + β naphtha Gms. SbC	lene.
t°.	per 100 Gr Sat. Sol.	ns. Phase.	t°. pe	r 100 Gm: Sat. Sol.		t°.	per 100 Gr Sat. Sol.	Phase.
79.4	0	C ₁₀ H ₈	- 17 *	0	$\alpha C_{10}H_7C1$	56	0	B C10H7C1
75 .	15.2	• •	-21 ‡	8. I	" +2.1	50	16.6	**
65	35	"	0	14.4	2.1	45	27.2.	44
59 I	42.8	" +2.3	10	18.7	44	40	35.4	44
65	48.4	2.1	20	24.6	•	30	47 - 3	**
75	58.8	**	30	33 · 5	•	25 ‡	52.3	" +1.1
80	65		40	47.7	4	29.5*	58.2	1.1
86 *	78	4	45	61.5	44	28‡	64	ı.ı+SbCl
80	88.7	"	46 *	73.6	"	35	68. 3	SbCl _a
70 .	93		45·5‡	75	2.1+SbCla	45	75·3	61
65‡	94	2.1+SbCla	55	82.2	SbCl _a	60	87.5	44
70	97.2	SbCl _e	70	96.5	••	73	100	
Sb		Bromnapht			SbCl ₈ -	+α Nit	ronaphth	alene.
ţ°.	Gms G	. SbCl _s per 100 ms. Sat. Sol.	Solid Phase.		r .	Gms. Sb(Gms. S	Cl. per 100 lat. Sol.	Solid Phase.
3 *		0	a C10H1Br		57 *	c) _ α	C ₁₀ H ₇ NO ₂
- i‡		8.3	"+1.1		50	13	3.6	44
10		12.8	I.I 4		40		' · 3 ′	4
25		24	"		30 ‡		.8	" +1.1
33		38.5	"		3 5		3.2	1.1
34 - 5	; -	52.4	"		37 ⋅ 5		.3	46
33	. 🛦	62.1			39 *	~	.7	"
31.5	1 T	64.7	1.1+SbCl		37.5		.9	
40		69.7	SbCl _e		34 ⋅ 5 ∓			.ı+SbCl
50		76.2	"		45	78		SbCl _s
60		84.5	 u		60		.4	-
70		94.8	-		70	90	.6	-
		* m pt.		† tr. pt.	1	Eutec.		

^{1.1 =} compound of equimolecular amounts of the two constituents in each case.

^{2.1 =} compound of 2 molecules of SbCl₈ with 1 molecule of the other constituent.

RECIPROCAL SOLUBILITIES OF ANTIMONY TRICHLORIDE AND VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD."

(Menschutkin, 1910-12.)

	SbCl _a + P	henol	SI-	Cla + Ph	enetal	SPC	L + To	luana
		4	J L	Cma Sh	CI.	300		~
ť.	Gms. SbC per 100 Gn Set. Sol.	DS. Dhase	ť.	Gms. Sb per 100 G Sat. So	ms. Dhane	t.	Gms. Sbe per 100 G Sat. Sol	ms. Dhase
41 *	. 0	C ₆ H ₆ OH	-28.6	5 * o	C ₄ H ₄ OC ₂ H ₄	-93 *	0	C ₆ H ₆ .CH ₆
35	16.2	44	-29 †	I.4	"+1.I	-94 †	I.I	" +1.I
30	25.6	44	- 20	4.5	1.1	- 7 0	3.1	1.1
20	38.7	44	<u>- 10</u>	8.1	"	-30	15.8	**
10	48	" " 土。 -	+10	18.2	4	۰,	41.5	« " ⊥
5 T	52	₹2.1	20	27.4	•	11 ‡	57.8	₹2.1
15	58.6	2.I "	30	39.4		20	62.8	2.I "
30	70.6		40	. * 58	"	40	78	"
37	83 .	2.1+SbCl	42.2 35 †		44	42.5 °	83.1 85.8	2.1+SbCla
36.5 55	5 † 83.7 90.6	SbCl	35 T 50	77.8 86.8	"	50	8g	SbCl
33 70	08.2	"	70	97.1	44	70	97.8	44
,0	90.2		70	97.2		70	97.0	
SbC	Cla + o Chle	ortoluene.	SbCl	+lm Chi	lortolue ne.	SbCl _a -	- p Chlo	rtoluene.
	Gms. Sb0	J		Gms. Sb0	Ch o.v.		Gms. SbCl	
ť.	per 100 Gi Sat. Sol.	ms. Dheen	t°.	per roo Gr Sat. Sol	ms. Dhees		er 100 Gm Sat. Sol.	
-36 .	.2 * 0	o CIC.H.CH.	-47 .	8 * o	# CIC,H,CH,	6.2*	0 1	CIC,H,CH,
-37 .		" +1.1	-491	6.9	" +1.1	3	12.7	**
- 20	18.3	1.1	-40	12.3	1.1	0	23.5	44
-10	29.2	44	-30	20. I	**	- 3 .	32.2	**
- 5	37.1	"	-20	31	4	- 7.5 T	43.8	"+SbCl
	5 ¥ 47.9	1.1+SbCle	-141		1.1+SbCl ₈	0	47.2	SbCl _a
+10	53.1	SbCl _s	0	46.I	SbCl _e	10	52.2	
20	58.2	"	10	51.6	4	30	64.8	
30	64.6 71.8	4	20	57·4 72.8	*	40	72.3 80.2	4
40 60	88.4	4	40 60	89.I	44,	50 60	88.8	64
73	100	44	73	100	4	70	97.4	4
13			13			,-	77.4	
SbC	1. + o Nitr		SbC	l _s + m Ni	trotolue ne.	SbCl ₃	+ p Ni	rotoluene.
	Gms. SbCl ₂	Solid	(Gms. SbCla	Solid	G	ms. SbCla	Solid
	Sat. Sol.	Phase.		er roc Gms Sat. Sol.	Phase.		r 100 Gma Sat. Sol.	Phase.
– 8 .		NO ₁ C ₁ H ₁ CH ₁	16 *	•	# NO ₂ C ₄ H ₄ CH			NO ₂ C ₄ H ₄ CH ₄
-13.		" " !	10	15	**	45	18.5	**
	5 7 18.5	T1.1	0	30.7		35	33.Ğ	4
-10	21.3	I.I 4	-10	39.2		30	38.8	
+10	31.1		— 20	42.8 zation not	•	20	46	
30	39 50	"		ed here		7·5 T	52 62.3	
34.	• >	и	0	67.2	SbCla	7·3 5	66.I	44
33	68	**	20	72.5	4	3 †	68.5	1.1+SbCl
	5 † 74.6	"+SbCl	30	76.3	44	10	70	SbCl
40	79.1	SbCl	40	80.8	44	30	`75·5	4
50	84.5	u T	50	86	64	50	85	44
70	97.5	*	бo	91.6	•	70	97.5	**
			73	100	•	=		
		• m. pt.		† Eute	xc.	‡ tr. pt.		
				•				

I.I = compound of equimolecular amounts of the two constituents in each case.

2.I = compound of 2 molecules of SbCl₂ with I molecule of the other constituent.

RECIPROCAL SOLUBILITIES OF ANTIMONY TRICHLORIDE AND VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD."

(Menschutkin, 1910.)

SbCl ₄ + o Xylene.			SbCl _s + m Xylene.			SbCl ₂ + p Xylene.		
t°. 1	Gms. Sb0 per 100 G: Sat. Sol	ns. Phase.	t °. p	Gms. Sb(er 100 Gi Sat. Sol	ns. Phase.	t* . pe	Gms. SbCle er 100 Gms Sat. Sol.	Solid Phase.
-20	0	o CaH4(CH2)2	-57 *	0 :	m C ₄ H ₄ (CH ₂) ₂	14 *	0	p CaH4(CHa)a
-35 t	14	" +1.1	-60.5	t 7·5	" +1.1		† 11.7	" +1.1
-30	17.5	1.1	-45	15.8	1.1	20	17.5	1.1
- 20	24.8	44	-25	29	"	40	37.3	44
-10	33.4	"	– š	46.2	**	50	52.3	•4
0	43.4	"	- 2 ‡	49.8	" +2.1	55 ‡	62.7	" +2.I
10	55	46	5	53.I	2.I	60	66.I	2.I
IQ.	5*68. I	64	15	58.7	44	70 *	81	44
25	71.3	2.1	25	65.7	"	65	88.1	46
30	75.7	14	33	73.8	ш	58 †	92	" +SbCI₄
33 -	5*8r	, 4	38 *	8ï	u	6g :	97.2	SbCl _a
31.	5 † 82.5	2.1 +SbCl ₂		† 83.7	2.1+SbCla		•••	••••
50	88	SbCl _a	50	87.7	SbCle	IO	20.7 \$	C ₆ H ₄ (CH ₃) ₂ unstable
60	92.4	**	бо	91.5	u	7 T	32.8	" <u>+2.1</u> "
71	98.5		70	97.2	44	35	50.3	2.1
•	- •		•			55	62.7	
		• m. p	t.	† E	utec.	‡ tr	. pt.	

I.I = compound of equimolecular amounts of the two constituents in each case.

2.I = compound of 2 molecules of SbCl₄ with I molecule of the other constituent.

DISTRIBUTION OF ANTIMONY TRI AND PENTACHLORIDES BETWEEN AQUEOUS HCl and Ether at Room Temperature (Mylius, 1911)

When I gm. of antimony as SbCl₅ or as SbCl₅ is dissolved in 100 cc. of aq. HCl of the following strengths and the solution shaken with 100 cc. of ether, an amount of metal, depending upon the concentration of the aq. acid solution, enters the ethereal layer.

With 1% S	bCl _a Solution.	With 1% SbCl. Solution.			
Per cent Conc. of HCL	Per cent of Total Sb in Ether Layer.	Per cent Conc. of HCl.	Per cent of Total Sb in Ether Layer.		
20	6	20	81		
15	13	15	22		
10	22	10	6		
5	8	5	2.5		
I	0.3	I	trace		

Solubility data determined by the freezing-point method (see footnote, p. 1) are given for mixtures of antimony trichloride and each of the following compounds: azobenzene, benzil, s diphenylethane, and stilbene (Van Stone, 1914); benzene, naphthalene, diphenylmethane and triphenylmethane (Kurnakov, Krotkov and Oksman, 1915); SbBr₃, SbI₃, and SbBr₃ + SbI₄ (Bernadis, 1912); SbCl₄ (Aten, 1909).

ANTIMONY PentaCHLORIDE SbCl.

Data for the freezing-points of mixtures of antimony pentachloride and antimony pentafluoride are given by Ruff (1909).

ANTIMONY TriFLUORIDE SbF.

SOLUBILITY IN WATER. (Rosenheim and Grünbaum, 1909.)

r.	Gms. SbF ₃ per 100 Gms.				
••	Water.	Sat. Solution.			
0	384.7	79 · 4			
20	444 - 7	81.6			
22.5	452.8	81.9			
25	492.4	83. 1			
30	563.6	84.9			

SOLUBILITY IN AQUEOUS SOLUTIONS OF SALTS AND OF HYDROFLUORIC ACID AT 0°.

Normality		Gms. SbF ₂ per 100 Gms. H ₂ O present in Aq. Solutions of:								
of Aq. Salt Solution.	KCI.	KBr.	KNO,	K ₂ SO ₄ .	K ₂ C ₂ O ₄ .	(NH ₄) ₂ C ₂ O ₄	K,C,H,O,	HF.		
'ı	461.8	448.7	458.2	419.9	465.7	• • •	461.4	432.5		
0.5	448.3	450		408.5	481.2	431.9	430.5	404		
0.25	431.9	455.6	418.3	406.6	451.3	442.3	430.8			
0 125	407.3	417.2	401.4	• • •	405.2	433 - 3	435.2	*479.4		
			•	(2 # HF.)						

Celluloid flasks were used and all measuring apparatus provided with HF resistant coating. The SbF₂ was prepared in the form of rhombic transparent crystals from Sb₂O₂ and HF.

ANTIMONY TriIODIDE Sbl.

SOLUBILITY IN METHYLENE IODIDE AT 12°. (Retgers, 1893.)

100 parts CH₂I₂ dissolve 11.3 parts SbI₂. Sp. Gr. of solution = 3.453.

SOLUBILITY DATA DETERMINED BY THE FREEZING-POINT METHOD ARE GIVEN FOR MIXTURES OF:

Antimony triiodide and arsenic triiodide.

(Quercigh, 1912; Jaeger and Dornbosch, 1912; Vasilev, 1912.)

" phosphorus triiodide. (Jaeger and Dornbosch, 1912.)

" iodine. (Quercigh, 1912.)

ANTIMONY TriOXIDE Sb.O.

Freezing-point data are given for mixtures of antimony trioxide and antimony trisulfide. (Quercigh, 1912.)

ANTIMONY TriPHENYL Sb(C4H4)2.

Freezing-point data are given for mixtures of antimony triphenyl and mercury diphenyl and for antimony triphenyl and tin tetraphenyl. (Cambi, 1912.)

ANTIMONY SELENIDES ShSe, ShSe.

Freezing-point data for SbSe + AgSe and Sb₂Se + AgSe. (Pélabon, 1908.)

ANTIMONY TriBULPHIDE Sb.S.

1000 cc. water dissolve 0.00175 gm. Sb₂S₂ at 18°. (Weigel, 1907.)

SOLUBILITY DATA DETERMINED BY THE FREEZING-POINT METHOD ARE GIVEN FOR MIXTURES OF:

Antimony	trisulphide a	and	cuprous sulfid	e. (Parravano and Cesaris, 1912.)
86	E1	"	stannous sulfi	de. " "
44	44	**	lead sulfide.	(Jaeger and Van Klooster, 1912; Pélabon, 1913.)
44	44	46	silver sulfide.	(Jaeger and Van Klooster, 1912,)

ANTIMONY Potassium TARTRATE C2H2(OH)2(COOK)(COOSbO).4H2O.

100 gms.	water dissolv	ve 5.9 gms. salt at room temp.	(Squire and Caines, 1905.)
ıT	44 44	6.0 " " " 25°.	(S and S, 1903.)
44	44 44	8 " " " 21°.	(Aschan, 1913.)
46	05% HCOO	H dissolve 82.7 gms, salt at 20.8°.	(Aschan, 1913.)
44	glycerol diss	H dissolve 82.7 gms. salt at 20.8°. olve 5.5 gms. salt at 15.5°.	(, -)-3-3- ,

Solubility of Antimony Potassium Tartrate in Aq. Alcohol Solutions at 25°. (Seidell, 1910.)

Wt. Per cent C ₁ H ₂ OH in Solvent.	d₂s of Sat. Sol.	Gms. C ₄ H ₄ O ₄ . KSbO. ½H ₄ O per 100 Gms. Sat. Sol	Wt. Per cent C ₂ H ₂ OH in Solvent.	d_{25} of Sat. Sol.	Gms. C ₄ H ₂ O ₄ . KSbO. H ₂ O per 100 Gms. Sat. SoL.
0	1.052	7.85	40	0.935	0.38
5	1.025	5.50	50	0.913	0.23
10	1.007	3.92	60	0.890	0.12
20	0.980	1.92	70	0.866	0.06
30	0.958	0.84	100	0.788	trace

ANTIPYRINE C11H12N2O.

100 gms.	water		80	gms.	C11H12N2	Oat 15°. (G	reenish and Smith, '03.)
47	11	44	100	"	"	25°.	(U. S. P.)
**	alcohol	44	100	**	44	ñ	**
44	90% alcohol	44	75.2	44	44	44	4
44	chloroform	44	100	"	44	44	4
	ether	44	1.3	**	44	44	(Enell, 1899.)
41	pyridine	46	38.0		44	at 20-25°	(Dehn, 1917.)
44	50% aq. pyrid	ine "	79.6	ı"	"	"	**

THE SOLIDIFICATION POINTS OF MIXTURES OF ANTIPYRINE AND CHLORAL HYDRATE. (Teakalatos, 1913.)

t° of Solidification.	Gms. C ₁₁ H ₁₂ N ₂ per 100 Gms. Mixture.	Solid Phase.	t° of Solidification.	Gms. C ₁₁ H ₁₂ N ₂ O per 100 Gms. Mixture.	Solid Phase.
108.9	100	C ₁₁ H ₁₂ N ₂ O	60	40.9	1.2
90	86.I	**	61.8 m. pt.	36.7	4
70	73	"	57	30.1	4
50.5 Eutec	64.2	"+r.r	50	26.I	. 4
60	56.8	1.1	40	20.2	· ••
62.3 m. pt.	53.2	"	33.8 Eutec.	16.5	1.2+CCl ₂ .COH.H ₂ O
60	50.3	" .	40	6	CCl.COH.H.O
56 Eutec.	47.2	"+1.2	51.6	0	16

 $\begin{array}{l} \text{1.1} = C_{11}H_{12}N_2O.CCl_4COH.H_2O \text{ (Hypnal)}.\\ \text{1.2} = C_{11}H_{12}N_2O.2(CCl_4.COH.H_2O) \text{ (Bihypnal)}. \end{array}$

THE SOLIDIFICATION POINTS (Solubility, see footnote, p. 1), OF MIXTURES OF ANTIPYRINE AND SALOL.
(Bellucci, 1912, 1913.)

Initial t° of Solidification.	Gms. C ₁₁ H ₁₂ N ₂ O per 100 Gms. Mixture.	Initial t° of Solidification.	Gms. C ₁₁ H ₁₅ N ₂ O per 100 Gms. 4 Mixture.
112.6	100	65	40
104.5 98	90 80	53	. 30
98	80 .	30 Eutec.	17
91	70	34	20
83	60	35	10 .
75	50	42	0

07 APOMORPHINE HYDROCHLORIDE

APOMORPHINE HYDROCHLORIDE C17H17NO2.HCl.

100 gms. water dissolve 1.7 gms. salt at 15° and 2 gms. at 25°. 100 gms. 90% alcohol dissolve 2 gms. salt at 25°.

(Dott. 1906; Squires and Caines, 1905.)

ARACHIDIC ACID CanHanO2.

SOLUBILITY DATA DETERMINED BY THE FREEZING-POINT METHOD ARE GIVEN BY MEYER, BROD AND SOYKA (1913), FOR MIXTURES OF:

> Arachidic and Stearic Acids. " Palmitic Acids.
> " Lignoceric Acids.

ARBUTIN C12H16O7.4H2O.

100 gms. trichlorethylene dissolve 0.011 gm. arbutin at 15°.

(Wester and Bruins, 1914.)

ARGON, A.

SOLUBILITY IN WATER. (Estreicher - Z. physik. Chem. 31, 184, '99.) 9

Cor. Ber.		Vol.	Vol. Absorbed	Absorption C	Solubility.	
8°.	Pressure.	H₃O.	Argon.	4.	1.	4.
0	• • •		• • •	• • •	0.0578	0.0102
I	764.9	77 - 40	4.34	0.0561	0.0561	0.0099
5	765.0	77 - 39	3.92	0.0507	0.0508	0.0090
10	7 65 · 3	77 · 4I	3 · 49	0.0450	0.0453	0.0079
15	762.4	77.46	3.13	0.0404	0.0410	0.0072
20	757.6	77 · 53	2.86	o.0369	0.0379	0.0066
25	766.7	77.62	2.64	0.0339	0.0347	o.0060
30	760.6	77 · 73	2.43	0.0312	0.0326	0.0056
35	757 · I	77.86	2.24	0.0288	0.0305	0.0052
40	758.3	77 - 99	2.07	0.0265	0.0286	0.0048
45	756.4	78.15	1.92	0.0246	0.0273	0.0045
50	747.6	78.31	1.73	0.0221	0.0257	0.0041

a - under barometric pressure minus tension of H₂O vapor.

SOLUBILITY OF ARGON AND WATER. (von Antropoff, 1909-10.)

t°.	Coef. of Absorption.
0	0.0561
10	0.0438
20	0.0379
30	0.0348
40	0.0338
50	0.0343

The coef. of absorption adopted for these results is that of Bunsen as modified by Kuenen. The modification consists in substituting unit of mass in place of unit of volume of water in the formula.

Data for the solubility of argon in water and in sea water, together with a

critical discussion of the literature, are given by Coste (1917).

Data for the solubility and diffusion of argon in solid and liquid metals are given by Sieverts and Bergner (1912).

l = under 760 mm. pressure.

q = grams argon per 100 g.H₂O when total pressure is equal to 760 mm.

[•] See Acetylene, page 16.

ARSENIC As.

Data for the fusion-points of mixtures of arsenic and iodine are given by Jaeger and Doornbosch (1912).

MetaARSENIC ACID AsO2H.

DISTRIBUTION AT 25° BETWEEN: (Auerbach, 1903.)

H₂O and Amyl Alcohol. Sat. Aq. H₂BO₂ Solution and Amyl Alcohol. Gms. AsO₂H per 1000 cc. Gms. AsO₂H per 1000 cc. Aq. Layer. Alcoholic Layer. Aq. Layer. Alcoholic Layer. 4.82 9.28 0.90 I.75 18.74 9.63 1.75 3.47 18.44 3.50

ARSENIC TriBROMIDE and TriIODIDE AsBr. and AsI.

100 gms. H₂O dissolve about 6 gms. AsI₂ at 25°. (U. S. P.)
100 gms. carbon disulfide dissolved about 5.2 gms. AsI₂. (Squires.)
100 gms. methylene iodide, CH₂I₂, dissolve 17.4 gms. AsI₃ at 12°, d of sat solution = 3.449. (Retgers, 1893.)

SOLUBILITY DATA DETERMINED BY THE FREEZING-POINT METHOD ARE GIVEN FOR MIXTURES OF:

Arsenic tribromide and naphthalene. (Pushin and Kriger, 1914.)
" " phosphorus triiodide. (Jaeger and Doornbosch, 1912.)
" triiodide and iodine. (Quercigh, 1912.)

ARSENIC TriCHLORIDE AsCl.

When 1.0 gm. of arsenic as the trichloride is dissolved in 100 cc. of aq. HCl and the solution shaken with 100 cc. of ether the following percentages of the metal enter the ethereal layer; with 20% HCl, 68%; 15% HCl, 37%; 10% HCl, 7%; 5% HCl, 0.7% and with 1% HCl, 0.2% of the arsenic. (Mylius, 1911.)

ABSENIO TRIOXIDE As,O,.

SOLUBILITY OF THE:

Crystallized	Modification.	Amorphous Modification. In Water.		
In W	ater.			
\$* .	Gms. As ₂ O ₃ per 100 cc. Sat. Solution.	\$° .	Gms. As ₂ O ₈ per 100 cc. H ₂ O.	
2	I.20I	ord. temp.	3 · 7	
15	1.657	b. pt.	11.86	
25 39 .8 b. pt.	2.038 2.930 6.+		Ether and CS ₂ . 3. A ₂ O ₃ per 100 g. Solvent. 0.446	
(Bruner and St. Tolloczk, '03; Chodounsky — I	o — Z. anorg. Chem. 37, 456, Lasty. Chem. 13, 114, '88.)	Ether CS ₂	0 · 454 0 · 001 r. Chem. [2] 31, 347, *85.)	

SOLUBILITY OF ARSENIC TRIOXIDE IN AQUEOUS SOLUTIONS OF AMMONIA AT 30° (INTERPOLATED FROM ORIGINAL RESULTS).

(Schiememakers and deBast, 1915.)

		(commembers and	denger, 1312.)		
Gms. per 100 Gms. Sat Sol.		Solid Phase.	Gms. per 100	Solid Phase.	
NH _s .	As ₂ O ₃ .		NH ₄ .	As ₂ O ₃ .	
0	2.3	As_2O_3	4	7.6	NH ₄ AsO ₄
I	8.3	"	5	6.2	"
2	14.9	"	7	4.6	"
2.8	20.5	$As_2O_3+NH_4AsO_2$	10	3.1	"
3	13	NH_4AsO_4	13	2.4	"
3.5	9.1	"	14.3	2.2	"

SOLUBILITY OF ARSENIC TRIOXIDE IN WATER AND IN AQUEOUS SOLUTION OF HYDROCHLORIC ACID AT 15° (Interpolated from the original).

(Wood, 1908.)

Mols. HCl per Liter.	Gms. As ₂ O ₂ per 200 cc. Solution.	Mols. HCl per Liter.	Gms. As ₂ O ₂ per
0	1.495	6	3.8
0.46	1.5	7	7.5
. 2	1.2	8	12.5
4	1.3	9	17.7

SOLUBILITY OF ARSENIC TRIOXIDE IN AQUEOUS SALT SOLUTIONS.
(Schreinemakers and deBaat, 1917.)

In Aq. Ammonium Bromide at 30°.			In Aq	. Sodium Bron	ium Bromide at 30°.		
Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100		Calla Dhaaa		
As ₂ O _b	NH ₄ Br.	Soud Pause.	As ₂ O ₃ .	NH ₄ Br.	Solid Phase.		
2.26	0	As ₂ O ₂	2.19	5 · 57	As ₂ O ₂		
2.25	0.339	"+As ₂ O ₂ NH ₄ Br	2.09	10.89	44		
0.679	4.37	As ₂ O ₂ .NH ₄ Br	1.88	20.79	44		
0.518	7.18	. 44	1.63	30.39	**		
0.386	13.31	"	1.50	35.75	**		
0.303	20.14		1.20	39.24	(As _t O ₂),NaBr		
0.237	31.69	"	0.953	43.64	44		
0.154	41.34	u	0.852	45.99	"		
0.190	45.66	"+NH,Br	0.719	50.25	" +NaBr.2HeO		
0	44.8	NH_4Br	o ·	±49.5	NaBr.2H ₂ O		

In Aq. Barium Chloride at 30°. In Aq. Barium Bromide at 30°. Gms. per 100 Gms. Sat. Sol. Gms. per roo Gms. Sat. Sol. Solid Phase. Solid Phase. As₂O₂. BaBr₂. As₂O₃. BaCl2. As₂O₂ 2.09 9.41 2.24 3.84 2.03 16.88 2.20 8.72 44 8.86 " 1.97 24.03 2.19 I.87 24.41 2.15 10.34 1.58 (As₂O₂)₂BaBr₂ 1.60 (As₂O₂)₂.BaCl₂ 23.49 9.55 0.757 29.09 I.I2 13.62 0.678 33.08 0.905 16.93 0.464 20.06 38.19 0.737 0.322 0.608 23.87 43.02 " +BaBra.2HgO " +BaCl₂.2H₂O 0.277 50.03 0.506 26.54 50.62 BaBrg.2HgO 27.6 BaCl2.2H2O, 0

In Aq. Calcium Bromide at 20°. In Aq. Calcium Chloride at 19.5°-20°. Gms. per 100 Gms. Sat. Sol. Gms. per 100 Gms. Sat. Sol. Solid Phase. Solid Phase. CaBr₂. As₂.O₂. As₂O₂. CaCla. 1.58 As₂O₂ 1.78 As₂O₂ 9.65 0 12.66 1.28 20.13 1.39 0.912 34.90 I.OI 23.09 0.789 0.865 27.68 **4**I 0.698 47 .67 0.757 31.85 0.513 52.06 0.697 36.01 0.687 58.22 " +CaBra.6HaO 0.675 41.92 " +CaCla.6HaO 58.20 CaBr₂.6H₂O CaCl2.6H2O 42.7 100 gms. 95% formic acid dissolve 0.02 gm. As₂O₂ at 19.8°. (Aschan, 1913.)

	q. Lithium Bro	omide at 30°.	In Aq. 1	Lithium Cl	hloride at 30°.
Gms. per 10	o Gms. Sat. Sol.	Solid Phase.	Gms. per 10	o Gms. Sat. S	ol.
As ₂ O ₂ .	LiBr.	Soud Phase.	As ₂ O ₈ .	LiCl.	[Solid Phase.
2.26	0	As ₂ O ₂	1.69	7 · 57	As ₂ O ₃
1.69	11.68	u	1.15	15.30	" -
1.20	23.23	u	0.77	22.67	₄ 7
0.734	35.54	"	0.54	29.04	4
0.534	37	" +(As ₂ O ₂) ₂ LiBr	0.43	35.37	4
0.332	42.62	(As ₂ O ₂) ₂ .LiBr	0.39	41.13	4
0.281	43.87	"	0.385	43.01	u
0.198	46.75	"	0.41	45.12	" +LiCl.H ₄ O
0	59.62	LiBr.H ₂ O	•	46.I	LiCl.H ₂ O
_	• • •				Tadida ak asa
	Potassium Bro		•		Iodide at 30°.
As _t O ₂ .	roo Gms. Sat. Sol. KBr.	Solid Phase.	As ₂ O ₂ .	o Gms. Sat. S KL	
2.25	0.33		2.26	0	As _z O _z
0.818	2.51		0.772	1.1	
0.460	12.78	_	0.7/2	9.5	
•	•		0.183	22.8	
0.327	22.59		•		-
0.290	27.40		0.150	34 · 3	**
0.275	36.98		0.119	40.7	
0.207	39.04		0.081	47.0	
0.166	42.07		0.115	53.5	
0	±41.3	KBr	0.134	60.5	· ·
D varies f	rom (As ₂ O ₂) ₂ Kl	Br to (As ₂ O ₃)7(KB	r) ₄ . O	61.5	KI
In Aq.	Strontium Bro	mide at 30°.	In Aq. St	rontium C	hloride at 30°.
Gms. per 10	Gms. Sat. Sol.	Solid Phase.	Gms. per 100 (Gms. Sat. Sol.	Solid Phase.
As ₂ O ₃ .	SrBr ₂ .		As ₂ O ₈ .	SrCl ₂ .	Some I mase.
1.69	11.69 A	5 ₁ O ₂	2.14	6.27	As ₂ O ₂
1.74	22.09	"	1.92	13.67	44
1.48	31.98	"	1.67	21.29	44
1.25	41.91	"	1.46	27.46	44
1.07	46.87		1.28	34.03	4
0.991	4 8.91	"+SrBr ₂ .6H ₂ O	I.23	36.16	" +SrCl ₂ .6H ₄ O
0	49.11	SrBr ₂ .6H ₂ O	0	37 · 5	SrCl ₂ .6H ₂ O
ARSENIC	PENTOXIDE	As _t O _k		-	
		SOLUBILITY IN	WATER.		
	Ome As O	(Menzies and Po	tter, 1912.)	C 4 C	
t°.	Gms. As ₂ O ₅ per 100 Gms. Sat. Sc	ol. Solid Phase.	t°.	Gms. As ₂ O ₅ po oo Gms. Sat. S	ol. Solid Phase.
– 5	10.6	Ice	—10	36.2	As ₂ O ₅₋₄ H ₂ O
– 10	15.6	"	0	37.3	4
- 20	21.3	4	+10	38.3	
-30	25.1	44	20	39.7	**
4.0	27.8	u	29.5	4 - 4	"+3As-Ct-CH-C
-40 -50	29.9	44	40	41.4 41.6	3As ₂ O ₅ .5H ₂ O
	utec. 31.7	Ice+As ₂ O ₆₋₄ H ₂ O	60	42.2	3,1000,3110
	32.6	As ₂ O ₃ .4H ₂ O	80	-	"
— 50 — 40	•	nayot,4mgo		42.9	4
-40 -30	33 · 5	66	100	43 · 4	a
—30	34.4	66	120	43.7	4
^^	35.4	-	140	44 · 5	₹'
- 20		* 1 -	4 ^	0	
		dissolve 7.6 gms.	As ₂ O ₅ at 19	° .	(Aschan, 1913.)
		dissolve 7.6 gms.	As ₂ Os at 19	°.	(Aschan, 1913.)
		dissolve 7.6 gms.	. As ₂ O ₆ at 19	•	(Aschan, 1913.)
		dissolve 7.6 gms.	. As ₂ O₅ at 19	°.	(Aschan, 1913.)

ARRENIOUS SULFIDE Ass.

1000 cc. water dissolve 0.000517 gm. As₈S₈ at 18°.

(Weigel, 1907.)

Data for the fusion-points of mixtures of arsenious sulfide and silver sulfide are given by Jaeger and Van Klooster (1912).

ASPARAGINE C.H.N.O.H.O.

Solubility β -l-Asparagine, C₄H₄N₅O₄.H₅O, and of β -l-Asparaginic Acid, C₄H₇NO₄, in Water.

(Bresler - Z. physik. Chem. 47, 613, '04.)

p-resperagnic.				p-raparaginic red.			
s• .	Gms. C ₆ H ₆ N ₂ O ₅ .H ₂ O per 100 g. H ₂ O.	t°.	Gms. C ₄ H ₂ N ₂ O ₂ .H ₂ O per 100 g. H ₂ O.	£°.	Gms. C ₄ H ₇ NO ₄ per 100 g. H ₅ O.	t°.	Gms. C ₄ H ₇ NO ₄ per 100 g. H ₂ O.
0.7	0.9546	55.5	10.650	0.2	0.2674	51.0	1.2746
7.9	1.4260			9.5	0.4042	63.5	1.8147
17.5	2.1400	87.0	36.564	16.4	0.5176	70.0	2.3500
28.0	3.1710	98.0	52 - 475	31.5	0.7514	80.5	3.2106
41.4	5.6500			40.0	0.9258	97 · 4	5.3746

100 gms. H₂O dissolve 2.4 gms. asparagine at 20°-25°. (Dehn, 1917.)
100 gms. pyridine dissolve 0.03 gm. asparagine at 20°-25°.
100 gms. 50% aq. pyridine dissolve 0.15 gm. asparagine at 20°-25°.
100 gms. trichlorethylene dissolve 0.018 gm. asparagine at 15°. (Wester & Bruins, 1914.)

100 gms. 50% aq. pyrkmie dissolve 0.15 gm. asparagine at 20 -25. (Wester & Bruins, 1914.)

Data for the solubility of asparaginic acid in aqueous salt solutions are given by Würgler (1914).

ASPIRIN (Acetyl salicylic acid) C₄H₄(OCH₂CO)COOH.

100 gms. water dissolve 0.25 gm. aspirin at room temperature. (Squire and Caines, 1905.)
100 cc. 90% alcohol dissolve 20 gm. aspirin at room temperature. "

ATROPINE C₁₇H₂₂NO₃.

SOLUBILITY OF ATROPINE, C₁₇H₂₂NO₂, and of Atropine Sulfate, (C₁₇H₂₂NO₂)₂.SO₂(OH)₂, in Water and Other Solvents.

(U. S. P.; Müller, 1903.)

Solvent.	t°.	Grams Atrop	Grams Atropine Sulfate per 100	
Solvent.	٠.	Solution.	Solvent. (U. S. P.)	Grams Solvent. (U. S. P.)
Water	25	1.782 (20°)	0.222 (0.13*)	
Water	80	• • •	1.15	454 · 5
Alcohol	25		68.44	27
Alcohol	60	• • •	III.II	52.6
Ether	25	2.21 (20°)	6.02	0.047
Chloroform	25	68.03 (20°)	64.10	0.161
Benzene	20	3.99		• • •
Carbon Tetrachloride	20	0.661	1.136† (1.76)	:)
Ethyl Acetate	20	3.88	•••	• • •
Petroleum Ether	20	0.83	• • •	
Glycerol	15	• • •	3	33
Aniline	20		348	•••
Diethylamine	20	• • •	67 §	• • •
Pyridine	20	• • •	73 §	• • •
Piperidine	20	• • •	1148	• • •
50% Aq. Glycerol } + 3% H ₂ BO ₃	••	ro¶	•••	•••
Oil of Sesame	20	• • •	0.25*	•••

^{*}Zalai, 1910. †At 17*, Schnidelmeiser, 1901. ‡Gori, 1913. ‡Scholtz, 1912. ¶Baroni and Borlinetto, 1911.

DISTRIBUTION OF ATROPINE BETWEEN WATER AND CHLOROFORM AT 25°. (Seidell, 1910d.)

Gms. Atropine Added	Gms. Atropine Recovered per 15 cc.				
per 15 cc. H ₂ O+15 cc. CHCl ₂ .	Aqueous Layer (a).	Chloroform Layer (b).	<u>b</u> .		
0.005	0.0010	0.0057	5.7		
0.025	0.0021	0.0256	12.2		
0.125	0.0049	0.1246	25.4		
0.625	0.0160	0.6267	3Q.I		

ATROPINE METHYLBROMIDE C17H21NO2.CH4Br.

100 gms. water dissolve 100 gms. of the salt at room temp. (Squires and Caines, 1905.) 100 cc. 90% alcohol dissolve 10 gms. of the salt at room temp. "

AZELAIC ACID C7H14(COOH)2.

SOLUBILITY IN WATER. (Lamouroux, 1899.)

 t° = 0 15 20 35 50 65 Gms. $C_7H_{14}(COOH)_2$ per 100 cc. solution = 0.10 0.15 0.24 0.45 0.82 2 20 100 gms. 95% HCOOH dissolve 3.79 gms. azelaic acid at 19.4°. (Aschan, 1913.)

DISTRIBUTION OF AZELAIC ACID BETWEEN WATER AND ETHER AT 25°. (Chandler, 1908.)

Gms. C7Hu(CO	OH): per 1000 cc.	Gms. C ₇ H ₁₄ (COOH) ₂ per 1000 co		
Aq. Layer.	Ether Layer	Aq. Layer.	Ether Layer.	
0.06	0.47	0.40	5.83	
0.10	1.10	0.50	7.40	
0.20	2.71	0.58	8.65	
0.30	4.26		•	

AZOBENZENE C6H5.N2.C6H5.

SOLUBILITY OF AZOBENZENE IN SEVERAL BINARY MIXTURES. (Timmermans, 1907.)

Solvent, Binary Mixture of:	t°.	Gms. (CaHaN): per 100 Gms. Sat. Sol.
·	6.4	0.46
34.9% Butyric Acid + 65.1% H ₂ O (= sat. sol.)	10	0.55
at 2.3°)	20	1.13
at 2.3)		1.92
	40.6	2.95
	8.8	3.22
36% Triethylamine + 64% H₂O (= sat. sol. at }	II	2.57
19.1°)	14	1.66
	17.4	0.54
	69.3	0.43
36.5% Phenol + $63.5%$ H ₂ O (= sat. sol. at	72.7	0.47
65.3°)	80	I.47
3. 3 /	90	2.43
	100	3 · 45
	23.9	0.52
71.4% Phenol + 28.6% H ₂ O (= sat. sol. at	25.2	0.87
20.6°)	40	4 · 45
,	60	10.35
(0/ C	72.6	133.40
46% Succinic Nitrile $+54\%$ H ₂ O (= sat. sol. at 54°)	56.9	0.54

SOLUBILITY OF AZOBENZENE IN SEVERAL ALCOHOLS. (Timofeiew, 1894.)

Solvent.	ť.	Gms. (C ₄ H ₂ N) ₂ per 100 Gms. Sat. Sol.	, Solvent.	t°.	Gms. (C ₆ H ₄ N) ₂ per 100 Gms. Sat. Sol.
Methyl Alcohol	9.5	3.8	Ethyl Alcohol	10.5	5.88
" "	10.5	3.95	Propyl Alcohol	9.5	5.42
Ethyl Alcohol	9.5	5.29	•• ••	10.5	6.02

SOLUBILITY OF AZOBENZENES IN WATER AND IN PYRIDINE. (Dehn, 1917.)

Solvent.	r.	Gms. Each Compound (Determined Separately) per 100 Gms. Solvent:						
Solvent.	••	Azobenzene.	benzene. azobenzene.					
Water	20-25	0.03	0.05	0.016				
Pyridine	20-25	76.44	136.7	27.90				
Aq. 50% Pyridine	20-25	16.78	67.7	4.51				

Hydroxy AZOBENZENE C.H.N: N.C.H.OH.

1000 cc. sat. solution in H₂O contain 0.0225 gm. C₆H₆N: N.C₆H₄OH at 25°. 1000 cc. sat. solution in H₂O sat. with C₆H₆ contain 0.0284 gm. C₆H₆N: N. C₆H₄OH at 25°.

1000 cc. sat. solution in C6H6 sat. with H2O contain 15.20 gms. C6H6N: N. C6H6OH at 25°. (Farmer, 1901.)

Distribution results for hydroxyazobenzene between benzene and water gave: conc. in $C_6H_6 + conc.$ in $H_2O = 539$ at 25°. (Farmer, 1901.)

Amino AZOBENZENE C₆H₆N: N.C₆H₄.NH₂.

Distribution results for amino azobenzene between benzene and water gave: conc. in $C_6H_6 + \text{conc.}$ in $H_2O = 3,173$ at 25°. (Farmer and Warth, 1904.)

AZOANISOL, AZOBENZENE, AZOPHENETOL, etc.

SOLUBILITY DATA, DETERMINED BY THE FREEZING-POINT METHOD (see footnote, p. 1), ARE GIVEN FOR THE FOLLOWING MIXTURES:

p. 1), ARE CIVEN FOR THE	I OLLOWING MILKIURES.
p Azoanisol	Azobenzene
p Azoanisol + p Azoanisol (1) + p Azoanisolphenetol (1) + p Azoanisolphenetol (1) + p Azoanisolphenetol (1) p Azoxyanisol + p Azoanisolphenetol (2) + p Azoanisolphenetol (3), (4) + p Azoxyphenetol (3), (4) + Benzene (2) + Ethylene bromide (2) + Hydroquinone (5) + Benzophenone (5) + P Methoxycinnamic Acid (5) + Nitrobenzene (2) p Azoanisolphenetol + Azophenetol (1) + p Dipropylazophenetol (1) Azobenzene	
	" + p Dipropylazophenetol (1) p Azoxyphenetol
+ Azoxybenzene (6) " + p Azotoluene (7) " + p Azonaphthalene (7) " + Benzalaniline (7) p Azobenzoic Acid Ethyl Ester - + p Azoxybenzoic Acid Ethyl	+ Cholesterylisobutyrate (4) " + Cholesterylpropionate (4) " + Cholesterylbenzoate (4) " + p Methoxycinnamate (4) p Azotoluene
Ester (5)	, company (//

(1) Bogojawiausky and Winogrodow, 1907; (2) Bogojawiauski, Winogrodow and Bogolubow, 1906; (3) Ratinjanz and Rotaiski, 1906; (4) Prins, 1909; (5) de Kock, 1904; (6) Hartley and Stewart, 1914; (7) Pascal and Normand, 1913; (8) Vanstone, 1913; (9) Beck, 1904; (10) Basca (1910-17); (11) Jaeger, 1907; (12) Hasselblatt, 1913; (13) Garelli and Calzolari, 1899; (14) Bruni and Gorni, 1899.

39.6

77.9 43.8

AZOLITMINE C7H7NO4.

100 gms. H₂O dissolve 39.5 gms. azolitmine at 20°-25°. (Dehn, 1917.) 100 gms. pyridine dissolve 0.05 gm. azolitmine at 20-25°.

100 gms. aq. 50% pyridine dissolve 0.12 gm. azolitmine at 20°-25°.

AZOPHENETOL (p) C₆H₅N₂.C₆H₄.OC₂H_p

SOLUBILITY IN 100 PER CENT ACETIC ACID.

(Dreyer and Rotarski - Chem. Centr. 76, II, 1016, '05.)

t°= 89.2 91 93 95.6 97.2 99.6 Mols. per liter. 0.153 0.176 0.185 0.209 0.232 0.252

A break in the curve at 94.7° corresponds to the transition temperature of the α modification into the β modification.

BARIUM ACETATE Ba(CH,COO)2.

SOLUBILITY IN WATER.

(Walker and Fyffe, 1903; Krasnicki, 1887, gives incorrect results.) Gms. Ba(CH₂COO)₂ Gms. Ba(CH₂COO)₂ ŧ°. per 100 Gms. Solid Phase. per 100 Gms. Solid Phase. Water. Solution. Water. Solution. 58.8 $Ba(C_2H_3O_2)_2.3H_2O$ 37.0 44.1 Ba(C₂H₃O₂)₂ 0.3 40.5 79.0 7.9 61.6 38.1 78.7 41.5 44.0 " 17.5 60.2 40.9 44.5 43.8 77.9 72.8 51.8 " 21.6 42 . I 76.5 43.4 " " 78.1 43.9 24.I 63.0 74.6 42.7 Ba(C,H,O,),.H,O " 26.2 76.4 43.3 73.0 73 · 5 42 . 4 42.9 " 30.6 75.1 84.0 74.0 42.5 75.8 " 35.0 43.I 74.8 42.8 99.2

Transition temperatures 24.7° and 41°.

"

100 cc. 97% ethyl alcohol dissolve 0.0723 gm. barium acetate at room temp.
(Crowell, 1918.)

SOLUBILITY OF BARIUM ACETATE IN AQUEOUS SOLUTIONS OF ACETIC ACID

AT 25°.

Mols. per roc	Mols. Sat. Sol.	(Iwaki, 1914.)	Mols. per 100	Mols. Sat. Sc	al. c.v. m
СН.СООН.	(CH ₂ COO) ₂ Ba.	Solid Phase.	CH.COOH.	(CH ₂ COO) ₂ B	Solid Phase.
ĆΟ	5.18	(CH ₂ COO) ₂ Ba. ₃ H ₂ O	28.72	4.52	3.3.11
0.41	5.21	"	36.54	5.60	"
1.40	5.34	" +3.3.11	42.08	7.85	"
1.46	5.32	3.3.11	46.51	8.87	" +1.3
3.30	3.48	•	51.98	8.62	1.3
10.23	3.14	"	65.77	8.40	
20.60	3.62	"	85.27	7.36	"

 $3.3.11 = 3(CH_1COO)_2Ba.3CH_1COOH.11H_2O, 1.3 = (CH_1COO)_2Ba.3CH_1COOH.$

BARIUM ARSENATE Ba₁(AsO₄)₂.

too gms. H₂O dissolve 0.055 gm. Ba₂(AsO₄)₂; 100 gms. 5% NH₄Cl dissolve 0.195 gm., and 100 gms. 10% NH₄OH dissolve 0.003 gm. Ba₂(AsO₄)₂

(Field - J. Ch. Soc. 11 6, 1850.)

BARIUM BENZOATE (C.H.COO), Ba.6H2O.

100 gms. sat. aqueous solution contain 4.3 gms. salt (anhydrous?) at 15° and 10.1 gms. at 100°. (Tarugi and Checchi, 1901.)

BARIUM BORATES.

SOLUBILITY IN AQUEOUS BORIC ACID SOLUTIONS AT 30°. (Sborgi, 1913.)

Gms. per 100 Gms.Sat. Sol.		Solid Phase.	Gms. per 100	Gms. Sat. Sol.	Solid Phase.
Ba _e O ₂ .	BaO.		BagOs.	BaO.	Soud Phase.
3.6	0.04	H ₂ BO ₂ +1.3.7	0.3	0.23	1.3.7
3.4	0.04	1.3.7	0.3	0.31	1.37+1.1.4
2.5	0.04		0.2	0.8	1.1.4
2.0	0.04	"	0.2	1.2	"
1.0	0.05	"	0.24	4.8	"
0.5	0.09	"	0.26	5.8	$1.14+Ba(OH)_2$
0.4	0.12	ш	0.08	5.3	Ba(OH) ₂

1.3.7 = BaO.3B₂O₂.7H₂O (Triborate); 1.1.4 = BaO.B₂O₂.4H₂O (Metaborate). The original results were plotted and above figures read from curve.

BARIUM BROMATE Ba(BrO₂)₂H₂O.

SOLUBILITY IN WATER. (Trauts and Anachütz, 1906; Rammelsberg, 1841.)

\$° .	Gms. Ba(BrO ₂) ₂ per 100 Gms. Solution.	t°.	Gms. Ba(BrO ₂) ₂ per 100 Gms. Solution.	t°.	Gms. Ba(BrO ₂) ₁ per 100 Gms. Solution.
- o.o34	0.28	30	0.95	70	2.922
0	o.286	40	1.31	80	3.521
+10	0.439	50	1.72	90	4.26
20	0.652	бo	2.271	98.7	5.256
25	o.788		•	99.65	5 · 39

SOLUBILITY OF BARIUM BROMATE IN AQUEOUS SOLUTIONS OF SALTS AT 25°. (Harkins, 1911.)

Conc. of Salt		Gms. Ba(BrO ₂) ₂ Dissolved per Liter in Aqueous Sol. of:						
in Gms. Equiv- alents per Liter.	. KNO2.	Ba(NO ₂) ₂ .	KBrOs.	Mg(NO ₃) ₂ .				
0	7.93 (1.0038)	7.93	7.93	7.93				
0.025	8.62 (1.0059)	7.22 (1.0059)	5.216 (1.0046)					
0.050	9.91 (1.0080)	6.83 (1.0083)	3.415 (1.0062)	• • •				
0.100	10.25 (1.0120)	6.415 (1.0132)	1.72 (1.0109)	8. 196 (1.0114)				
0.200	• • •	6.230 (1.0233)	•••	•••				

Figures in parentheses show densities of the sat. sols. at $\frac{25^{\circ}}{4^{\circ}}$.

BARIUM BROMIDE BaBr,.2H,O.

SOLUBILITY IN WATER. (Kremers — Pogg. Ann. 99, 47, '56; Etard — Ann. chim. phys. [7] 2, 540, '94.)

	Gms. Ba	RL3 ber 100	Grams.		Gms. BaBr ₂ per 100 Grams.		
t° .	Water.	Solu		ŧ°.	Water.	Solut	
	(Kremers.)	(Kremers.)	(Etard.)		(Kremers.)	(Kremers.)	(Etard.)
—20	• • •	• • •	45.6	40	114	53 · 2	51.5
0	98	49 · 5	47 · 5	50	118	54 · I	52.5
10	IOI	50.2	48.5	60	123	55.1	· 53·5
20	104	51.0	49 · 5	70	128	56.I	54.5
25	106	51.4	50.0	8o	135	57 - 4	55.5
30	109	52.1	50.6	100	149	60.0	57.8
	_			140	• • •	• • •	59 · 4

Sp. Gr. of saturated solution at 19.5° = 1.710.

Data for the system Barium Bromide + Barium Oxide + H₂O at 25° are given by Milikau (1916).

SOLUBILITY OF MIXTURES OF BARIUM BROMIDE AND BARIUM IODIDE IN WATER AT DIFFERENT TEMPERATURES.

(Etard.)

£°.	Grams per 100 Gms. So	lution. to.	Grams per 100 Gms. Solution.		
6	BaBra. Bal	3.	BaBr ₂ .	Bals.	
-16	4.8 58.	4 170	0.11	67 . 4	
⊢6 0	5.5 66.		14.9	67.7	
135	9.2 67.	2 Both	salts present in	solid phase.	

SOLUBILITY OF BARIUM BROMIDE IN METHYL AND ETHYL ALCOHOLS. (de Bruyn — Z. physik. Chem. 10, 783, .92; Richards — Z. anorg. Chem. 3, 455, '93; Rohland — Ibid. 15 413, '97.)

\$° .	Parts BaBre per 100 parts Aq. CaHsOH of:		Parts BaBrg_aHgO per 100 parts of Aq. CHgOH of:		
	100%. 97%.	87%.	100%.	93.5%•	50%.
15.0	0.48 (BaBrg.2HgO)	• •	45 · 9	27 · 3	4.0
22.5	3	6	56.1	• • •	

100 gms. sat. solution in methyl alcohol at the crit. temp. contain 0.4 gm. BaBr₂. (Centnersswer, 1910.)

Data for the lowering of the melting point of BaBr₂ by BaF₂ and by BaCl₃ are given by Ruff and Plato (1903).

BARIUM PerBROMIDE BaBr4.

Data for the formation of barium perbromide in aqueous solutions at 25° are given by Herz and Bulla (1911). See reference calcium perbromide, p. 189.

BARIUM BUTYRATE Ba(C,H,O,),2H,O.

SOLUBILITY IN WATER. (Deszathy - Monatsh. Chem. 14, 249, '93.)

4.0	Gms. Ba(C ₄ H ₇ O ₂) ₂ per 100 Gms.		t°.	Gms. Ba(C ₄ H ₇ O ₂) ₂ per 100 Gms.		
t°.	Water.	Solution.	6	Water.	Solution.	
0	37 - 42	27 - 24	50	36.44	26.77	
10	36.65	26.82	60	37.68	27 . 36	
20	36.12	26.55	70	39.58	28.36	
30	35.85	26.38	80	42.13	29.64	
40	35.82	26.37				

100 gms. 97% ethyl alcohol dissolve 0.17 gm. barium butyrate at ord. temp.
(Crowell, 1918.)

BARIUM CAMPHORATE BaC10H14O4.4H2O.

SOLUBILITY OF BARIUM CAMPHORATE IN AQUEOUS SOLUTIONS OF CAMPHORIC ACID AT 16°-17°.

(Jungfisch and Landrieu, 1914.)

Gms. per roo Gms. Sat. Sol.			Gms. per roc	Gms. Sat. Sol.	
Camphoric Acid.	Barium Camphorate.	Solid Phase.	Camphoric Acid.	Barium Camphorate:	Solid Phase.
0.68	0.134	d Camphoric ac. + 1.3	0.48	22.71	1.3
0.84	0.150	u	0.45	32.19	44
0.693	0.20	1.3	0.50	37.22	"
0.38	2.59	a	0.51	40.99	1.3 + Ba Camphorate
0.44	11.10	4	0	42.59	Ba Camphorate

1.3 = Barium tetracamphorate, $C_{10}H_{14}O_4Ba.3C_{10}H_{16}O_4$.

BARIUM CAPROATE AND BARIUM ISO CAPROATE.

SOLUBILITY IN WATER.

(Kulisch, 1893.) Barium Caproate (Methyl 3 Pentan.) (König, 1893.)
Barium Iso Caproate (Methyl 2 Pentan.)

	Ba(C	Ha-CHaCH	((CH ₂)CH ₂ COO) ₂ .	Ba(CH ₂ CH(CH ₂)CH ₂ .CH ₂ COO) ₂ .				
s* .	Gms. Ba(C ₆ H ₂₁ O ₂) ₂ per 100 Gms. Water. Solution.		per 100 Gms. Solid Phase.		Gms. Ba(C ₆ H ₁₁ O ₂) ₂ per 100 Gms. Water. Solution.		Solid Phase.	
0	11.71	10.49	Ba(C ₆ H ₁₁ O ₂) _{2.3} H ₂ O	14.34	12.54	Ba(C ₆ H ₂₁ O ₂) ₂₋₄ H ₂ O		
10	8.38	7 · 73	**	13.33	11.77	44		
20	6.89	6.45	66	12.67	11.26	•		
30	5 . 87	5.55	*	12.37	10.11	4		
40	5 · 79	5.47		12.42	11.05	•		
50	6.63	6.21	"	12.83	11.38	4		
60	8.39	7 · 74	4	13.63	11.99	•		
70	11.09	9.98	*	14.68	12.80	•		
80	14.71	12.82	•	16.24	13.97	•		
90	19.28	16.16	•	17.95	15.23	•		

BARIUM CARBONATE BaCO.

SOLUBILITY IN WATER. (Holleman, Kohlrausch and Rose, 1893.)

Electrolytic conductivity method used.

I liter H₂O dissolves 0.016 gm. BaCO₃ at 8.8°, 0.022 gm. at 18°, and 0.024 gm. at 24.2°.

SOLUBILITY OF BARIUM CARBONATE IN WATER CONTAINING CO.

The average of several determinations at about 10°, by Bineau, Lassaigne, Foucroy and Bergmann is 1.10 gms. BaCO₂ per liter water. Wagner (Z. anal. Ch. 6, 167, '67) gives 7.25 gms. BaCO₂ per liter of water saturated with CO₂ at 4-6 atmospheres pressure.

Eleven determinations by McCoy and Smith (1911), of the solubility of barium carbonate at 25° in water in contact with pressures of CO₂ varying from 0.2 to 30 atmospheres, showed that a maximum solubility is reached at 22 atmospheres (see also calcium carbonate, p. 192), at which point the saturated solution contains 0.727 mols. = 45.1 gms. H_2 CO₃ per liter and 0.028 mols. = 7.3 gms. $Ca(HCO_3)_2$ per liter. The equilibrium constant is $k = 2.24 \times 10^{-2}$ and the solubility product Ba \times CO₃ = k_3 = 8.1 \times 10⁻³.

SOLUBILITY OF BARIUM CARBONATE IN AQUEOUS SOLUTIONS OF AMMONIUM CHLORIDE AT 30°.

(Kernot, d'Agostino and Pellegrino, 1908.)

Gms. per 1000 cc. H ₂ O.		Solid	Gms. per	Gms. per 1000 cc. H ₂ O.		
BaCO ₂ .	NH4Cl.	Phase.	Ba.COa.	NH4Cl.	Phase.	
0.035	0	BaCO ₃	2.245	335.70	BaCO ₃	
0.521	8.099	"	2.706	358.66	"	
1.333	64.536	66	2.630	418.33	NHLCl	
1.596	92.593	"	2.151	414.71	"	
2	160.265	"	1.558	413.77	"	
2.093	186.775	"	0.730	410.16	"	
2.256	268.920	"	0	397.58	"	

Data are also given for 25°. Some uncertainty exists as to the terms in which the results are expressed. In some cases the column headings read "Gms. per liter of H₂O" and in others "Gms. per liter of solution." The saturation was effected by adding just the necessary amount of one constituent to cause the disappearance of the last particle of the other. The amounts so added were determined by weighing the flasks. At high concentrations of the two salts, the sudden increase in solubility appears to indicate a molecular combination.

SOLUBILITY OF BARIUM CARBONATE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AND OF SODIUM CHLORIDE.

(Cantoni and Goguelia, 1905.)

In KClat B.pt. of Sol. In NaClat B.pt. of Sol. In 10% KCl Sol. In 10% NaCl Sol.

Gms. KCl per 100 Gms. Sol.	Gms. BaCOs per 1000 cc. Sat. Sol.	Gms. NaC per 100 Gms. Sol.	Gms. BaCOs per 1000 cc. Sat. Sol.	t°.	Gms. BaCOs per 1000 cc. Sat. Sol.	tº.	Gms. BaCOs per 1000 cc. Sat. Sol.
0.15	0.0847	0.15	0.0587	10	0.2175	10	0.1085
1.00	0.1781	I	0.0787	20	0.2408	20	0.1126
3	0.2667	3	0.1056	40	0.2972	40	0.1231
10	0.4274	10	0.1575	60	0.3491	40	0.1303
30	0.5550	30	0. 2784	80	0.4049	40	0.1418

Barium carbonate boiled with aqueous NH4Cl is slowly but completely decomposed. The time required varies inversely as the concentration of the NH₄Cl

Data are also given for solubility in 10% aqueous KCl and NaCl at the boiling point, the time factor being varied from 1 to 198 hours.

Data for lowering of the melting point of BaCO₂ by Na₂CO₂ are given by Sackur

(1911-12).

BARIUM CHLORATE Ba(ClO₃)₂.H₂O.

SOLUBILITY IN WATER. (Carlson, 1910; Trautz and Anschütz, 1906.)

ť°.	Sp. Gr. of Sat. Sol.		:10a)2 per 100 Sat. Sol.	ť.	Sp. Gr. of Sat. Sol.		ClOu): per 100 Sat. Sol.
0	1.195	20.3*	16.90	40	1.355	35.8*	33.16†
10		24.3	21.23	60	I.433	42.6	40.05
20	I.274	28.2	25.26	8o	1.508	48	45.90
25		30	27 - 53	100	1.580	53.I	51.2
30	•••	32	29.43	105.6 b. pt.	1.600	54.6	52.62
			* C.	† (T and	4.5		

The determinations of Trautz and Anschütz appear to have been made with very great care. The original paper of Carlson was not available and it has been impossible to explain the discrepancy between the two sets of results.

BARIUM Per**CHLORATE** Ba(ClO₄)_{2.3}H₂O.

SOLUBILITY IN WATER. (Carlson, 1910.)

t.	Sp. Gr. Sat. Sol.	Gms. Ba(ClO ₄) ₂ per 100 Gms. Sat. Sol.	t*.	Sp. Gr. Sat. Sol.	Gms. Ba(ClO ₄) ₂ per 100 Gms. Sat. Sol.
0	1.782	67.3	80	2.114	83.2
20	1.912	74.3	100	2.155	84.9
40	2.000	78.2	120	2.105	86.6
40 60	2.070	Š 1	140	2.230	88.3

BARIUM CHLORIDE BaCl_{2.2}H₂O.

SOLUBILITY IN WATER. (Mulder, Engel, 1888; Etard, 1894.)

to. Gms. BaCle per roo Gms. Water. Solution.	Gms. BaCk	per 100 Gms.	40	Gms. BaCle per 100 Gms.	
	• .	Water.	Solution.		
0	31.6	24	60	46.4	31.3
10	33 · 3	25	70	49.4	33.I
20	35.7	2 6.3	80	52.4	34.4
25	37	27	100	58.8	37
30	38.2	27.7	130	59 · 5	37.3
40	40.7	28.9	160	63.6	38.9
50	43.6	30.4	215	75· 9	43.I

Sp. Gr. of solution saturated at $0^{\circ} = 1.25$; at $20^{\circ} = 1.27$.

SOLUBILITY OF MIXTURES OF BARIUM CHLORIDE AND AMMONIUM CHLORIDE IN WATER.

At 30°. (Schreinemakers, 1908.)			At Varying Temps. (Schreinemakers, 1910b.)				
Gms. per 100 Gms. Sat. Sol.		ol. Solid Phase.	. Gπ	ns. per 100	ol. Solid Phase.		
BaCle.	NH ₄ Cl.	Some Phase.	•	BaCle.	NH ₄ Cl.	- Soud Lines.	
22.16	5.71	BaCla. 2HsO	16.2	8.07	16.10	BaCls.2HsO+NH4Cl	
18.36	10.06	"	0	8.22	19.26	u	
15.42	13.84	4	30	8.19	24.89	"	
10.8g	20.01	u	40	8.40	26.93	"	
8.33	24.69	"	50	8.55	29.53	4	
7.97	25.92	BaCls.2HsO+NH4Cl	•				
3.56	27.47	NH4Cl					

SOLUBILITY OF BARIUM CHLORIDE IN AQUEOUS SOLUTIONS OF BARIUM HYDROXIDE AND VICE VERSA AT 30°. (Schreinemakers, 1909–1910, 1910b.)

Gms. per 100	Gms. Sat.	Sol. Solid Phase.	Gms. per 100 (3ms. Sat. S	Sol. Solid Phase.
BaCla.	BaO.	Soud Phase.	BaCls.	BaO.	Soud Phase.
27.6	0	BaCIs.2HsO	18.67	4.61	BaCl(OH).2HsO+BaO.9HsO
27.42	1.78	44	18.04	4.62	BaO.9HaO
.27 .36	1.77	" +BaCl(OH).2HsO	17.08	4.60	ü
24.98	2.33	BaCl(OH).2HsO	12.81	4.58	"
21.46	3.27	"	10.77	4.45	44
19.18	4.67	4	• ``	4.99	**

SOLUBILITY OF MIXTURES OF BARIUM CHLORIDE AND BARIUM NITRATE IN WATER:

At 30°. (Coppadoro, 1912, 1913.)				At Varying Temps. (Etard, 1894.)			
Gms. per roo		Colid Phase	ť°.	Gms. per 100		Solid Phase	
BaCle.	Ba(NOs)2			BaCh.	Ba(NO ₃)		
6.06	9.55	Ba(NOs)s	0	22.5	4.3	BaCls.2HsO+Ba(NOs)s	
13.75	8.20	4	20	24.5	6	44	
16.14	7.92	44	40	26.5	7.5	u	
22.70	7.94	**	60	28.5	9.5	44	
2 6.11	7.88	Ba(NOs)s+BaCls.2HgO	100	31	14	**	
26.64	5.37	BaCls. 2HsO	140	32	20	4	
2 6.91	4.13	44	180	33	26	44	
27.38	1.58	"	210	32	32	44	

SOLUBILITY OF BARIUM CHLORIDE IN AQUEOUS SOLUTIONS OF COPPER CHLORIDE AT 30° AND VICE VERSA. (Schreinemakers and de Baat, 1908-09.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100	Solid Phase.	
BaCla.	CuCls.	Sond Phase.	BaCle.	CuCls.	Sond Phase.
0	43.95	CuCls.2H ₂ O	5.49	30.76	BaCls.2HsO
1.25	42.45	66	10.13	21.76	44
3.08	42.07	" (unstable)	17.08	11.49	44
2.72	42.36	CuCls.2HsO+BaCls.2HsO	22.78	.5.13	44
2.84	41.18	BaCls.2HsO	27.6	0	4
3.98	37.42	46			

Solubility data have been determined for the following systems:

BaCl2.2H2C) + CuCl ₂ .2H ₂ O	+ NH ₄ C1 + H ₂ O a		reinemakers, 1909.)
"	+ "	+KCl +HO at		and de Baat, 1914.)
"	+ "	+ NaCl + H ₂ O at	30°. ("	and de Baat, 1908-09.)
"	+BaO+NagO	+ H ₂ O at 30°.	(Sch	reinemakers, 1910b.)
66	+ Ba(NO ₂) ₂	+ NaNOs + NaC	1 + H ₂ O at 30°.	(Coppadoro, 1913.)
"	+HCl+NaCl	+H ₂ O at 30°.		nakers, 1909-10, 1910b.)

SOLUBILITY OF BARIUM CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID:

	At o°. (Engel, 1888.)		(Masson, 1911, 19	At 30°.	nakers, 1909–10.)
Sp. Gr.		Gms. Sat. Sol.	Sp. Gr.	Gms. per 100	Gms. Sat. Sol.
Sat. Sol.	HCl.	BaCls.	Sat. Sol.	HCl.	BaCls.
1.250	0	24.07	1.3056	•	27.84
I.242	0.32	23.31	1.2651	1.36	24.02
1.228	0.83	22.11	1.2147	3.32	19.20
1.210	1.51	20.14	1.1789	5.01	15.2
1.143	4.58	12.76	1.1419	7.13	II.I
1.118	6.13	9.37	1.1068	10	5.8
1.000	7 - 55	6.33	1.0880	13.43	2.4
1.079	10.81	2.64	1.0895	16.92	0.38
r.088	16.92	0.28	1.1024	20.62	o
	•		1.1609	32.18	0

The results of Schreinemakers show that at 37.34% HCl the barium chloride dihydrate is converted into monohydrate.

Less than I part of BaCl₂ is soluble in 20,000 parts of concentrated HCl and in 120,000 parts of conc. HCl containing \{\frac{1}{2}}\text{ volume of ether.} (Mar, 1892.)

SOLUBILITY OF BARIUM CHLORIDE IN AQUEOUS SOLUTIONS OF MERCURIC CHLORIDE:

At o°.	(Schreiner	nakers, 1910.)	At 30°.	(Schreinemaker	n, 1910.)
Gms. per 100	3ms. Sat. Sol	Solid Phase.	Gms. per 10	Solid Phase.	
HgCla.	BaCh.	Soud Phase.	HgCls.	BaCls.	Soud Phase.
•	23.70	BaCls.2HsO	0	27.77	BaCh. 2HsO
14.25	24	"	2.90	27.56	"
36.20	24.89	"	12.98	26.99	44
46.08	24.05	BaCla.3HgCla.6HaO+BaCla.2HaO	34.57	26.69	44
46.59	23.28	BaCls.3HgCls.6HsO	46.50	25.22	44
47.78	21.05	- 11	55.22	23.17	" +HgCls
48.46	20.67	" +HgCla	48.97	17.87	HgCla
44.33	18.50	HgCle	41.30	14.26	ű
29	11.50	46	27.62	8.41	"
16.36	6.11	44	14.10	2.65	46
3.95	•	44	7.67	0	u

SOLUBILITY OF MIXTURES OF BARIUM CHLORIDE AND MERCURIC CHLORIDE IN WATER.

(Foote and Bristol - Am. Ch. J. 32, 248, '04.)

\$* .	Gms. per Solu BaCl ₃ .	roo Gms. tion. HgCl ₂ .	Solid Phase.	t°.	Gms. per Solut BaCl ₂ .		Solid Phase.
10.4	23.58	50.54	{BaCl ₂ 2H ₂ O+ HgCl ₂ .	10.4	22.10	51.66	Double Salt BaCl ₂ .3HgCl ₂ .6H ₂ O.
10.4	23.44	50.74	(Double Salt	10.4	21.64	51.74	BaClg-2HgO+HgClg.
10.4	22.58	51.23	BaCl ₂ .3HgCl ₂ . 6H ₂ O.	25	23.02	54.83	prohamio Luce
10.4	22.48	51.41	(ongo.			_	

SOLUBILITY OF MIXTURES OF BARIUM CHLORIDE AND SODIUM CHLORIDE

	(At 30 Schreinemakers and d	o°.	x. 12 x. 28~09.)		(Precht	arying T and Wittg üdorff, 188	en. 1881:
Sat.	roo Gms Sol.	Solid Phase.	Gms. per	Sol.	Solid Phase.	ť.	Gms. per Sat.	roo Gms• Sol.
BaCk. O 2.28	NaCl. 26.47 25.28	NaCl	BaCh. 12.25 15.83	NaCl. 13.39 10.06	BaCls.2HsO	20 40	BaCla. 2.9	NaCl. 25 23
3.80 5.76	23.77 20.25	" +BaCls.2HsO BaCls.2HsO	20.93	5·39 2·76	44 44	60 80	4.5 6.8 9.4	23.4 22.8
8.19	17.89	"	27.60	0	46	100	11.8	22.2

SOLUBILITY OF MIXTURES OF BARIUM CHLORIDE AND POTASSIUM CHLORIDE IN WATER. (Foote, 1904.)

100 gms. saturated solution contain 13.83 gms. BaCl₂ + 18.97 gms. KCl at 25°. Fusion-point curves (solubility, see footnote, p. 1) are given for the following

mixtures:

+ TICI

```
BaCl<sub>2</sub> + BaCO<sub>3</sub>
                              (Sackur, 1911-12.)
        + BaCrO<sub>4</sub>
         + BaO
                              (Sackur, 1911-12, Arndt, 1907.)
   44
        + BaSO<sub>4</sub>
                              (Sackur, 1911-12, Ruff and Plato, 1903.)
   **
        ∔ BaF₂
                              (Botta, 1911; Ruff and Plato, 1903; Plato, 1907.)
   46
        + BaI•
                              (Ruff and Plato, 1903.)
   44
        + CdCl<sub>2</sub>
                              (Sandonini, 1911, 1914; Ruff and Plato, 1903.)
   "
        + CaCl<sub>2</sub>
                              (Sandonini, 1911, 1914; Ruff and Plato, 1903; Schaefer, 1914.)
        + CuCl<sub>2</sub>
                              (Sandonini, 1914.)
   ..
         + PbCl<sub>2</sub>
                              (Sandonini, 1911, 1914; Ruff and Plato, 1903.)
   44
        + LiCl
                              (Sandonini, 1913, 1914.)
   44
        + MgCl
                              (Sandonini, 1912, 1914.)
   "
        + MnCl<sub>2</sub>
                              (Sandonini, 1912, 1914; Ruff and Plato, 1903.)
   46
        + KCI
                              (Sandonini, 1911; Ruff and Plato, 1903; Vortisch, 1914.)
                              (Sackur, 1911-12; Ruff and Plato, 1903; Le Chatelier, 1894; Vortisch, 1914.)
         + NaCl
   ..
           NaCl+KCl (Vortisch, 1914(6); Gemsky.)
   44
         + SrCl<sub>2</sub>
                              (Sandonini, 1911, 1914; Ruff and Plato, 1903; Vortisch, 1914.)
   ..
         + ZnCl<sub>2</sub>
                              (Sandonini, 1912 a, 1914.)
```

SOLUBILITY OF BARIUM CHLORIDE IN AQUEOUS ETHYL ALCOHOL SOLUTIONS.

(Korreng, 1914.)

99.41

At 15°. At 30°. At 60°. (Schiff, 1861; Rohland, 1897.) (Schreinemakers and Messink, 1910.) Gms. per 100 Gms. Sat. Sol. Gms. per 100 Gms. Sat. Sol. Gms. BaCle Solid Phase. Solid Phase. CHOH. per 100 Gms. C.H.OH. BaCh. C₂H₂OH. BaCle. 27 95 BaCls.2HsO BaCls.2HsO 10 31.1 0 0 31.57 21.9 32.67 10.63 16.68 20.16 20 5.68 " 34.10 66.02 " 50.16 30 14.7 13.21 " 60.72 2.23 2.82 40 10.2 88.55 60 92.53 0.05 0.25 3.5 " +BaCla.HaO " +BaCls.HsO 80 0.06 90.25 0.09 0.5 94.73 BaCla.HaO 97 0.014 97.14 . . . 93.95 BaCk.HsO 0.08 08.17 " +BaCla BaCla

100 gms. methyl alcohol dissolve 2.18 gms. BaCl₂ at 15.5° and 7.3 gms. BaCl₂. 2 H₂O at 6°. (de Bruyn, 1892.) 100 gms. glycerol dissolve 9.73 gms. BaCl₂ at 15°-16°. (Oseendowski, 1907.)

100 cc. anhydrous hydrazine dissolve 31 gms. BaCl₂ at room temp.

One liter sat. sol. in nitrobenzene contains 0.167 gm. BaCla at 20°, 0.33 gm. at 50° and 0.40 gm. at 100°. (Lloyd, 1918.)

Data for the system BaCl₂ + Triethylamine + H₂O are given by Timmermans (1907).

SOLUBILITY OF MIXTURES OF BARIUM CHLORIDE AND GLYCINE IN WATER AT 20°. (Pfeiffer and Modelski, 1912.)

Gms. per 100 cc	. Sat. Sol.	Solid Phase.			
NH ₂ CH ₂ COOH.	BaCla.	Soud Phase.			
5.5	37	BaCla.2HsO+BaCla.2NHsCHsCOOH.HsO			
26	16	NH4CH2COOH+BaCl2.2NH2CH2COOH.H2O			

BARIUM CHROMATE BaCrO.

SOLUBILITY OF BARIUM CHROMATE IN WATER.

One liter of sat. solution contains 0.002 gm. of the salt at 0°; 0.0028 gm. at 10°; 0.0037 gm. at 20° and 0.0046 gm. at 30°.

(Kohlrausch, 1908.)

Results higher than the above are given by Schweitzer, 1890, as follows:

One liter of aqueous solution saturated at room temp. contains 0.01 gm. BaCrO4; if ignited barium chromate is used, only 0.0062 gm. dissolves.

One liter sat. sol. contains 0.043 gm. of the salt at boiling point. (Mescherski, 1882.)

Fresenius (1890) gives the following: I liter of sat. sol. at room temp. contains 0.02 gm. of the salt, the solvent being 1.5% sol. of CH₂CO₂NH₄ and 0.022 gms. when the solvent is 0.5% sol. of NH₄NO₅.

One liter of 45% aq. ethyl alcohol solution dissolves 0.000022 gm. at room temp. (Guerini, 1912.)

BARIUM CINNAMATES.

SOLUBILITY OF BARIUM CINNAMATES IN WATER, METHYL ALCOHOL AND ACETONE.

	Compound.	Formula.	r.	Solvent.	Gms. Anh drous Sal per 100 Gn Sat. Sol.	t Authority.
Bariu	m Cinnamate	Ba(CaHrO2)2.2HsO	15	H ₂ O	0.726	(Tarugi and Checchi, 1901.)
44	"	"	100	44	2.27	4 4
"	Allocinnamate	Ba(CeHrOz)2-HeO	IQ	СНОН	15.8	(Liebermann, 1903.)
"	"	u	12	44	15.4	(Michael and Garner, 1903.)
"	46	Ba(CaHrOs)23HsO	20	44	2.56	(Michael, 1901.)
66	"	"	20	(CHa)2CO		44
66	"	"	20	H ₂ O	6	44
66	Hydrocinnamate	Ba(CaHrO2)2, 2HsO	27	44	2.0	E4
46		"	25	СН-ОН	0.1	44
66	"	"	ıŏ	"	9.7	(Michael and Garner, 1903.)
66	Isocinnamate	44	20	44	7Ó .	(Michael, 1901.)
66	"	4	20	(CHa)aCO		44
46	46	u	20	H ₂ O	17	*

BARIUM CITRATE Ba₂(C₂H₂O₇)_{2.7}H₂O.

Solubility in Water and in Alcohol.

100 grams water dissolve 0.0406 gram Ba_s(C_eH_sO₇)_{2.7}H₂O at 18°, and 0.0572 gm. at 25°.

100 grams 95% alcohol dissolve 0.0044 gram Ba₂(C₂H₃O₇)_{2.7}H₂O at 18°, and 0.0058 gm. at 25°.

(Partheil and Hübner - Archiv. Pharm. 241, 413, '03.)

BARIUM CYANIDE Ba(CN),.

Solubility in Water and in Alcohol at 14°. (Joannis - Ann. chim. phys. [5] 26, 489, '82.)

100 parts water dissolve 80 parts Ba(CN). 100 parts 70% alcohol dissolve 18 parts Ba(CN).

BARIUM FERROCYANIDE AND BARIUM POTASSIUM FERRO-CYANIDE.

(Wyrouboff - Ann. chim. phys. [4] 16, 292, '69.)

100 parts water dissolve o.1 part Ba, Fe(CN), 6H,O at 15°, and 1.0 part at 75°.

100 parts water dissolve 0.33 part BaK, Fe(CN), 5H,O at ord. temp.

BARIUM FLUORIDE BaF.

SOLUBILITY IN WATER. (Kohlrausch, 1908.)

One liter sat. sol. contains 1.586 gms. of the salt at 10°; 1.597 gms. at 15°; 1.607 gms. at 20°; 1.614 gms. at 25° and 1.620 gms. at 30°.

Freezing-point curves are given for mixtures of BaF₂+KF by Puschin and

Baskow (1913), and for BaF₂+BaI₂ by Ruff and Plato (1903).

BARIUM FORMATE Ba(HCOO)₂.

SOLUBILITY	IN WATER.	(Stanley, 1904. See al	so Krasnicki, 1887.)
t°.	Gms. Ba(HCOO); per 100 Gms. Sat. S	oL to.	Gms. Ba(HCOO) ₂ per 100 Gms. Sat. Sol.
0	23.24	40	25
10	23.22	50	25.9
20	23.65	60	26.9
25	23.9	80	29.3
30	24.2	100	32.8

BARIUM HYDROXIDE Ba(OH)28H2O.

SOLUBILITY IN WATER. SOLID PHASE Ba(OH)₂.8H₂O. (Rosenthiel and Rühlmann — Jahresber. Chem. 314, '70.)

40	Gms. Ba(OH) ₂ per 100 Gms.		t° .	Gms. Ba(OH)2 per 100 Gms.		
• •	Water.	Solution.		Water.	Solution.	
0	1.67	1.65	30	5 · 59	5 - 29	
5	1.95	, I ·92	40	8.22	7.60	
10	2.48	2.42	50	13.12	11.61	
15	3.23	3.13	60	20.94	17.32	
20	3 89	3.74	75	63.51	38.85	
25	4.68	4 · 47	30	101.40	50.35	

Data are given by Sill (1916), for the influence of pressures up to 490 kgs. per sq. cm. on the solubility of Ba(OH)₂.8H₂O in H₂O at 25°.

SOLUBILITY OF BARIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF BARIUM NITRATE AT 25° AND VICE VERSA. (Parsons and Carson, 1910.)

Sp. Gr. G	ms. per 10	Gms. H	O. Solid	Sp. Gr. Sat. Sol.		oo Gms. Ha	
Sat. Sol.	Ba(OH)2.	Ba(NOa):	Phase.	Sat. Sol.	Ba(OH)2	.Ba(NO2)2.	Phase.
1.0512	T - 7	0	Ba(OH) ₃ .8H ₂ O	1.1371	4.93	10.21	Ba(OH)2.8H2O
1.0651	4.35	I.88	44	1.1448	5.02	11.48	" +Ba(NO ₂) ₃
1.0790	4.48	3 - 47	44	1.1210	3.22	11.04	Ba(NOs)s
1.0975	4.40	5.66	u	1.1002	1.55	10.66	4
I.1220	4.72	7.55	"	1.0797	0	10.30	4

SOLUBILITY OF BARIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF ALKALI CHLORIDES AT 25°. (Herz, 1910.)

In Lithium Chloride.			In Potassium Chloride.		bidium ride.	In Sodium Chloride.	
Gms. per 1	oo cc. Sat. Sol.	Gms. per 100	cc. Sat. Sol.	Gms. per 100	cc. Sat. Sol.	Gms. per 100	cc. Sat. Sol.
LiCl.	Ba(OH)2.	KCl.	Ba(OH) ₃ .	RbCl.	Ba(OH)2.	NaCl.	Ba(OH)2.
9.75	11.45	25.95	5.93	15.11	5 · 55	16.51	6.91
6.02	8.03	13.05	5.66	Ö	4.76	8.37	5.99
3.18	6.39	8.60	5 · 53		• • •	4.27	5.40
0	4.76	0	4.76			0	4.76

SOLUBILITY OF BARIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE AT 30°. (Schreinemakers, 1909–10.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 10	o Gms. Sat. Sol.	Solid Phase.	
BaO.	Na ₂ O.	Soud Phase.	BaO. NagO.		John Phase.	
4.99	0	BaO.9HsO	1.84	26.14	BaO.4HsO	
1.29	4.78	44	1.75	27.72	ee .	
0.89	6.43	44	1.58	28.43	4	
0.57	9.63	44	1.34	29.24	" +BaO.2HsO	
0.53	11.62	u	0.82	32.12	BaO.2H ₂ O	
0.47	17 .87	4	0.59	34.72	"	
1.06	23.28	u	0.57	41.09	" +NaOH.H ₂ O	
1.87	24.63	BaO.9HsO+BaO.4HsO	0	+42	NaOH.H ₂ O	

Solubility of Barium Hydroxide in Aqueous Acetone at 25°. (Herz and Knoch - Z. anorg. Chem. 41, 321, '04.)

Sp. Gr. of Solutions.	Vol. %	Ba(OH), per Soluti	roo cc. Sat. on.	Gms. Ba(OH) ₂ per
Solutions.	Acetone.	Millimols.	Grams.	too Gms. Solution.
1.0479	0	55.08	4.722	4.506
1.0168	10	31.84	2.730	2.686
0.9927	20	17.79	1.525	1.536
0.9763	30	9.10	0.779	0.798
0.9561	40	4.75	0.407	0.426
0.9398	50	1.54	0.132	0.141
0.9179	60	0.48	0.041	0.045
o 8956	70	80.0	0.007	0.018

Data for the systems Ba(OH)2 + Phenol + H2O at 25° and Ba(OH)2 + Resorcinol + H₂O at 30° are given by van Meurs (1916).

BARIUM IODATE Ba(IO1)2.H2O.

SOLUBILITY IN WATER. (Trautz and Anschutz, 1906.)

\$°. Gi	ms. Ba(IO ₂) ₂ per to Gms. Solution	ι°.	Gms. Ba(IO ₂) per 100 Gms. Solution.	t°.	Gms. Ba(IO ₂) ₂ per 200 Gms. Solution.
- 0.046	o.oo8	30	0.031	70	0.093
+ 10	0.014	40	0.041	80	0.115
20	0.022	50	0.056	90	0.141
25	0.028	60	0.074	100	0.197

One liter sat. aqueous solution contains 0.3845 gm. Ba(IO₃)₂ at 25°. (Harkins and Winninghoff, 1911.)

At room temperature Hill and Zink (1909), found 0.284 gm. Ba(IO2)2 per liter sat. aqueous solution.

SOLUBILITY OF BARIUM IODATE IN AQUEOUS SALT SOLUTIONS AT 25°. (Harkins and Winninghoff, 1911.)

Added Salt.	Mols. Salt per Liter.	Gms. Ba(IO ₂) ₂ per Liter.	Added Salt.	Mols. Salt per Liter.	Gms. Ba(IO ₈) ₂ per Liter.	Added Salt.	Mols. Salt per Liter.	Gms. Ba(IO ₂) ₂ per Liter.
Ba(NO ₃)2	0.001	0.331	Ba(NO2)2	0.100	0.148	KNO ₃	0.200	0.777
	0.002	0.294	44	0.200	0.136	KIO ₂	0.000106	0.368
"	0.005	0.237	KNO ₃	0.002	0.396	44	0.000530	0.303
**	0.020	0.164	**	0.010	0.445	**	0.001061	0.220
44	0.050	0.140	44	0.050	0.643			•

100 cc. conc. ammonia (Sp. Gr. 0.90) dissolve 0.0199 gm. Ba(IO₈)₈ at room (Hill and Zink, 1909.) temp.

100 cc. 95% ethyl alcohol dissolve 0.0011 gm. Ba(IO₃)₂ at room temp. (Hill and Zink, 1909.)

BARIUM IODIDE Bal.

SOLUBILITY IN WATER.

(Kremers - Pogg. Ann. 103, 66, 1858; Etard - Ann. chim. phys. [7] 2, 544, '94.) Gma BaT. nes see Gma

	.0	Gms. Bal2	per 100 Gm	Solid Phase.	£0 '	ims. Bala	per 100 Gm	Solid Phase.
•		WALEI.	Jointon.			Water.	Solution.	
	20	143.9	59.0	BaI ₂ .6 H ₂ O	40	231.9	69.8	BaL _{2.2} H ₂ O
		170.2		"	60	247 - 3	71.2	46
+	10	185.7	65.0	"	80	261.0	72.3	44
	20	203.1	67.0	"	100	271.7	73 · I	66
	25	212.5	68.o	"	120	281.7	73.8	46
	30	219.6	68.7		160	294.8	74.6	46

Sp. Gr. of sat. solution at 19°.5 = 2.24.
100 gms. 95% HCOOH dissolve 75 gms. BaI₂ at 20.2°.
(Aschan, 1913.) 100 gms. 97% ethyl alcohol dissolve 1.07 gms. BaI₂.2H₂O at 15°. (Rohland, 1897.) Data for the system BaI₂+BaO+H₂O at 25° are given by Milikau (1916).

BARIUM PerIODIDE Bal.

Data for the formation of barium periodide in aqueous solutions at 25° are given by Herz and Bulla (1911). (See reference calcium perbromide, p. 186.)

BARIUM IODOMERCURATE.

A saturated solution of BaI₂ and HgI₂ in water at 23.5° was found by Duboin (1906) to have the composition BaI₂.1.33HgI₂.7.76H₂O, d=2.76.

BARIUM MALATE BaC,H,O,.

SOLUBILITY IN WATER. (Cantoni and Basadonna — Bull. soc. chim. [3] 35, 731, '06.)

t°.	Gms. Ba.C ₄ H ₄ O ₅ per 100 cc. Sol.	ŧ°.	Gms. BaC ₄ H ₄ O ₅ per 100 cc. Sol.	ŧ°.	Gms. BaC ₄ H ₄ O ₈ per 100 cc. Sol.
20	0.883	35	0.895	60	I.OII
25	0.901	40	0.896	70	1.041
30	0.903	50	0.942	80	I . 044

SOLUBILITY IN WATER AND IN ALCOHOL. (Partheil and Hübner — Archiv. Pharm. 241, 413, '03.)

100 grams water dissolve 1.24 gms. BaC₄H₄O₅ at 18°, and 1.3631 gms. at 25°.

100 grams 95% alcohol dissolve 0.0038 gms. BaC₄H₄O₅ at 18°, and 0.0039 gm. at 25°.

BARIUM MALONATE BaC, H2O4.2 H2O.

SOLUBILITY IN WATER. (Miczynski — Monatsh. Chem. 7, 263, '86.)

t°.	Gms. BaCaH	O4 per 100 Gms.	ŧ°.	Gms. BaC ₃ H ₂ O ₄ per 100 Gms.		
	Water.	Solution.		Water.	Solution.	
0	0.143	0.143	50	0.287	0.285	
10	0.179	0.179	60	0.304	0.303	
20	0.212	0.211	70	0.317	0.316	
30	0.241	0.240	80	0.326	0.325	
40	0.266	0.265				

Results alightly higher than the above, from 0°-50° are given by Cantoni and Diotalevi (1905).

BARIUM MOLYBDATE BaMoO4.

100 parts water dissolve 0.0058 part BaMoO4 at 23°. (Smith and Bradbury, 1891.)

BARIUM NITRATE Ba(NO.).

SOLUBILITY IN WATER.

(Mulder; Gay Lussac; Etard - Ann. chim. phys. [7] 2, 528, 94; Euler - Z. physik. Chem. 49, 315, '04.)

t* .		Ba(NO2)2 00 Gms.	t°.	Gms. Ba(NO ₃) ₂ per 100 Gms.	
	Water.	Solution.		Water.	Solution.
0	5.0	4.8	80	27.0	21.3
10	7.0	6.5	100	34.2	25.5
20	9.2	8.4	120	42.0	29.6
25	10.4	9.4	140	50.0	33 · 3
30	11.6	10.6	160	58.0	36.7
40	14.2	12.4	180	67.0	40 · I
50	17.1	14.6	200	76.0	43.2
60	20.3	16.9	215	84.5	45.8

Results from 0°-35° differing from the above are given by Vogel (1903).
100 gms. sat. aqueous solution contains 4.74 gms. Ba(NO₂)2 at 0°. (Coppedore, 1911.)

SOLUBILITY OF MIXTURES OF BARIUM NITRATE AND LEAD NITRATE IN WATER AT 25°. (Fock, 1897; Euler, 1904.)
In Solution.

		In Solid Phase.				
Sp. Gr. of Solution.	Gms. p	er Liter.	Mg. Mols	per Liter.	Mol. %	. Mol. % Ba(NO ₃) ₂
	Ba(NO ₂) ₂ .	Pb(NO ₃) ₃ .	Ba(NO ₃) ₂ .	Pb(NO ₃) ₃	Ba(NO2)2.	Ba(NO ₃) ₃
1.079	102.2	0	391.0	0	100	100
I .088	54.9	17.63	210.I	53 · 3	79.78	98.30
1.108	86.5	49.80	330.7	150.7	68.70	96.74
1.119	79 · 7	68 . 10	304.9	205.7	59. 69	94.80
1.140	7 7 · O	97 - 20	294 - 4	293.6	50.09	93.62
1.163	69.8	130.7	266.8	395.0	40.31	92.49
1.198	66.o	177.3	252:5	535.6	32.03	90.07
1.252	57 · 5	247 · 7	222.6	748.5	22.91	83 . 47
1.294	25.9	334 · 3	99.2	1010.3	8.11	75 - 44
1.376	28.8	429 - 7	110.3	1298 0	7 · 77	35.11
1.459	• •	553 -8	0.0	1673.0	0.0	0.0
Tables o	f results ar	e also giver	1 for 15°, 30			

SQLUBILITY OF MIXTURES OF BARIUM NITRATE AND POTASSIUM NITRATE IN WATER. (Findlay, Morgan and Morris, 1914; Foote, 1904.)

			morgan and m	ULLES, 1914,			
40	Gms. per 100	Gms. per 100 Gms. Sat. Sol.		t°.	Gms. per 100	Solid	
t°.	Ba(NO ₂) ₃ .	KNO.	Solid Phase.		Ba(NOs)s.	KNOs.	Phase.
9.1	6.25	0	a	25*	6.62	14.89	a+2b.s
9.1	4.20	8.15	a+2b.a	25	5.49	16.30	2b.s
9.1	1.98	12.02	2b.4	25	3.04	21.99	"
9.1	ø.98	16.80	b+2b.a	25	2.04	27 . 76	b+2b.c
9.1	0	16.76	ь	35	11.39	0	s
2I.I	8.46	0	a	35	8.18	12.99	"
2I.I	7 - 47	2.12	**	35	8.08	17.48	44
21.I	6.35	5.98	44	35	8.42	19.75	a+2b.a
21.I	6.06	8.47	44	35	5.85	24	2b.4
21 I	5.98	13.24	a+2b.a	35	5.02	26.05	u
21.1	3.35	18.24	2b.4	35	3.02	34.87	b+2b.4
21.I	2.30	21.47	44	35	I.77	34.98	b
21.I	1.76	24.86	b + 2b.a	35	•	35.01	44
21.I	0	24.77	ь		Results by Fo	ote.	
	a = Ba(1		2b.a = 2KN	NO ₃ .Ba(1	$NO_2)_2, \qquad b$	$= KNO_3.$	

SOLUBILITY OF MIXTURES OF BARIUM NITRATE AND SODIUM NITRATE IN WATER.
(Coppadoro, at o°, 1912; at 30°, 1913.)
Results at o°.
Results at 30°.

Gms. per 100 Gms. Sat. Sol.				2 2 2 2 3			
Gms. per 100	Gms. Sat. Sc)l. Sal	Solid Phase.		Gms. Sat. Sol.	Solid Phase.	
Ba(NO ₃)2.	NaNOs.	. 301	IC Financ.	Ba(NO3)2.	NaNOs.	SOUG I DESC.	
4.33	0.41	В	a(NO ₃)2	10.33	0	Ba(NOs)2	
3 · 34	1.68		"	8.58	2.33	"	
2.50	3 · 54		44	5.28	7.00	44	
1.60	8.02		44	3.89	12.07	"	
1.56	12.71		4	3.54	14.41	u	
1.53	20.24		44	3.20	17.87	u	
1.56	27.74			3.07	19.06	4	
1.55	30.81		u	2.81	23.55	44	
1.49	35.83		"	2.27	41.22	66	
1.55		98 % Ba(NC	h):+ 2 % Nal	₹O₃ 2.11	48.22	Ba(NOs)s+NaNOs	
1.55	_	26 % "	+ 73.8%	' I	48.50	NaNOs	
1.54	42.06	2.6% "	+ 97-4%	' o	49.16	u	
0.51	41.68	0 % "	+100 % 4	•	• • • • • • • • • • • • • • • • • • • •		

SOLUBILITY OF BARIUM NITRATE IN AQUEOUS SOLUTIONS OF NITRIC ACID AT 30°. (Masson, 1911.)

Sp. Gr.	Gms. per 100	cc. Sat. Sol.	Sp. Gr.	Gms. per 100 cc. Sat. Sol.		
	HNOs.	Ba(NOs)2.	Sp. G1.	HNOs.	Ba(NOz)2.	
1.0891	•	54.31	1.0633	78.54	16.66	
1.0811	8.303	30.50	1.0668	98.40	15.88	
• • •	15.72	27·73	1.0783	125.9	14.99	
1.0663	31.49	22.76	1.1050	188.6	14.11	
1.0619	47.18	19.71	1.1341	251.6	13.75	
1.0609	63	17.84	1.1645	315.7	13.52	

Fusion-point curves (solubility, see footnote, p. 1) are given by Harkins and Clarke, 1915, for the following mixtures:

 $\begin{array}{lll} Ba(NO_3)_2 + NaNO_3 + KNO_5, & Ba(NO_3)_2 + NaNO_3, & Ba(NO_3)_2^{\dagger} + KNO_5, \\ Ba(NO_3)_2 + LiNO_3, & Ba(NO_3)_2 + LiNO_3 + KNO_3. \end{array}$

SOLUBILITY OF BARIUM NITRATE IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL AT 25°. (D'Ans and Siegler, 1913.)

Gms. C ₂ H ₂ OH per 100 Gms.	Gms. per 100	Gms. Sat. Sol.	Gms. C.H.OH	Gms. per 100 Gms. Sat. Sol.		
Solvent.	C.H.OH.	Ba(NOs)2.	per 100 Gms. Solvent.	C ₂ H ₂ OH.	Ba(NOs)s.	
0	0	9.55	58	57	1.85	
10.25	9.5	7.63	78.7	78.2	0.62	
18.6	17.5	6.02	90.1	89.9	0.18	
25.05	23.7	5.25	99 · 4	99.39	0.005	
40.2	38.3	3 - 53				

Data are also given by Vogel (1903), but as the results are given in gms. per 100 cc. and densities are omitted, no exact comparison can be made with the above.

Solubility of Barium Nitrate in Aqueous Phenol Solutions at 25°.

(Rothmund and Wilsmore - Z. phyiak. Chem. 40, 620, '02.)

	per Liter.	Gms.	per Liter.	G. Mols. p	er Liter.	Gms. p	er Liter.
C _e H _e OH	Ba(NOs)s.	Ć₀Н₅ОН.	Ba(NO ₂) ₂ .	C.H.OH.	Ba(NO ₂) ₂ .	С. Н.ОН.	Ba(NO ₂) ₂
0.000	0.3835	0.0	100.2	0.310	0.3492	29.12	91.31
	0.3785	4.23	98.97	0.401	0.3400	37 · 73	88.90
	0.3746	7.71	97 • 95	0.501	0.3299	47.11	86.26
0.146	o · 3664	13.73	95.81	0.728 (sat.	0.3098	68.45	oo. 18

Data for the above system are also given by Timmermans (1907). 100 gms. hydroxylamine dissolve 11.4 gms. Ba(NO₂); at 17°-18°. (de Bruyn, 1892.) 100 cc. anhydrous hydrazine dissolve 3 gms. Ba(NO₂); at room temp.

(Welsh and Brodersen, 1915.)

100 gms. methyl alcohol dissolve 0.5 gm. Ba(NO₃)₂ at 25°. (D'Ans and Siegler, 1913.)

100 gms. acetone dissolve 0.005 gm. Ba(NO₃)₂ at 25°. "

BARIUM NITRITE Ba(NO2)2.H2O.

SOLUBILITY IN WATER.

		(Oswald, 1914; see also	, Vogel, 1903.)		
ť.	Gms. Ba(NO ₂); per 100 Gms. Sat. Sol.	Solid Phase.	ť.	Gms. Ba(NO ₂) ₂ per 100 Gms. Sat. Sol.	Solid Phase.
– 1.7	9.2	Ice	20	40.3	Ba(NO ₂) ₂ .H ₂ O
- 3.2	19.5	44	43	50.3	et
- 5.8	33.I	46	6 1	58.6	u
- 6.5	34.5	" +Ba(NO2)2.H2O	80	67.3	44
- 4.3	. 34.9	Ba(NO2)2.H2O	92	7I.7	4
十17	40*	4	110	82	"
		* d of the sat. solution	n = 1.4897.		

SOLUBILITY OF MIXTURES OF BARIUM NITRITE AND SILVER NITRITE IN WATER AT 13.5°. (Oswald, 1914.)

Gms. per 100	Gms. H ₂ O.	0.11.1 70			
Ba(NO2)2	AgNO ₂	Solid Phase.			
64	10.2	$AgNO_2 + BaAg_2(NO_2)_4.H_2O$			
75.6	9.5	$Ba(NO_2)_2 + BaAg_2(NO_2)_4.H_2O$			

SOLUBILITY OF BARIUM NITRITE IN AQUEOUS ALCOHOL SOLUTIONS AT 19.5°-20.5°. (Vogel, 1903.)

% alcohol in solvent: 10 20 30 40 50 60 70 80 90 Gms. Ba(NO₂)₂.H₂O per 100 cc. sat. sol. 49.3 29.3 18.4 13.3 9.1 4.8 2.7 0.98 0 BARIUM OXALATE BaC.O.

SOLUBILITY OF THE THREE HYDRATES IN WATER. (Groschuff – Ber. 34, 3318, 'o1.)

	BaC ₂ O	4,3}H₂O.	BaC ₂	O4.2H2O.	BaC ₂ C	$BaC_2O_4.1H_2O.$		
t°.	Gms. BaC ₂ O ₄ per 1000 g. Sol.	G. M. BaC ₂ O ₄ per 100 Mol. H ₂ O.	Gms. BaC ₂ O ₄ per 1000 g. Sol.	G. M. BaC ₂ O ₄ per 100 G. M. H ₂ O.	Gms. BaC ₂ O ₄ per zooo g. Sol.	G. M. BaC ₂ O ₄ per 100 Mol. H ₂ O.		
0	0.058	0.00046	0.053	0.00042	0.089	0.00070		
9.5		0.00066		•••		• • • •		
18	0.112	0.00090	o.o89	0.00071	0.124	0.00099		
30	0.170	0.00136	0.121	0.00097	0.140	0.00112		
40	• • •	• • •	0.152	0.00122	0.151	0.00121		
45	•••	• • •	0.169	0.00135		• • •		
50	• • •	• • •	• • •	•••	0.164 .	0.00131		
55	• • •	• • •	0.212	0.00170	• • •	• • •		
60		• • •			0.175	0.00140		
65	•••	•••	0 250	0.00200	• • •	• • •		
73	• • •	•••	0.285	0.00228	• • •			
75	• • •	•••	• • •	• • •	o.188	0.00151		
90	• • •	•••	•••	•••	0.200	0.00160		
100	• • •			*** .	0.211	0.00169		

The following additional data for the solubility of the above three hydrates in water are given by (Kohlrausch, 1908).

BaC	O4.3 H4O.	BaCz	O _{4.2} H ₂ O.	BaCıOı. HiO.		.2H ₂ O. BaC	
t°.	Gms. per Liter.	t°.	Gms. per Liter.	t°.	Gms. per Liter.		
2.07	0.0553	3	0.0519	0.08	0.0499		
4.2	0.059	5.47	0.0575	2.46	0.053		
16. I	0.0962	11.28	0.0693	9.62	0.0619		
17.8	0.1047	17.9	0.085	15.04	0.0699		
•		23.3	0.0987	17.54	0.0751		
		28.4	0.1124	27.02	0.001		
		•	_	33.73	0.1018		

Cantoni and Diotalevi (1905) obtained higher results than either of the above. Solubilities of Barium Oxalate (BaC₂O₄, ½H₂O) in Aqueous Acetic Acid at 26°-27°. (Herz and Muhs, 1903.)

Normality	G. Residues Gms. per 100 cc. Solution.			Normality	G. Residue*	Gms. per 100 cc. Solution	
of Acetic Acid.	per 50.05 cc. Sol.	CH4COOI		of Acetic Acid.	per 50 cc. Sol.	сн соон.	Ba Oxalate
0	0.0077	0.00	0.0154	3.85	0.0564	23.12	0.1127
0.565	0.0423	3 · 39	0.0845	5.79	0.0511	34.76	0 1021
1.425	0.0520	8.55	0.1039	17.30	0.0048	103.90	0.0096
2.85	0.0556	17.11	0.1111	• • •	•••	•••	• • •

[•] Dried at 70°.

BARIUM ACID OXALATE BaC2O4.H2C2O4.2H2O.

SOLUBILITY IN WATER. (Groschuff.)

t°.	Gms. per 100	Gms. Solution.	Mols. per 10	∞ Mols. H₂O.	Mols. H ₂ C ₂ O ₄
• •	H ₂ C ₂ O ₄ .	BaC ₂ O ₄ .	H ₂ C ₂ O ₄ .	BaC ₂ O ₄ .	per 1 Mol.Ba.C2O4.
0	0.27	o.o 30	0.054	0.0024	22
18	0.66	0.070	0.130	0.0056	24
20.5	0.76	0.076	0.15	0.0061	25
38	1.61	0.16	0.33	0.013	25
4 I	1.82	0.18	0.37	0.015	25
53	2.92	0.31	0.60	0.026	24
60	3.6o	0.40	0.75	0.033	22.5
80	6.21	0.81	1.34	0.070	19
90	7.96	I.II	1.75	0.098	18
99	10.50	1.55	2.39	0.141	17

BARIUM OXIDES.

Data for the lowering of the fusion points (solubility, see footnote, p. 1), of mixtures of BaO and B₂O₂ are given by Guertler (1904). Results for mixtures of BaO and CaCl₂ and for BaO and SrCl₂ are given by Sackur (1911-12).

BARIUM Glycerol PHOSPHATES.

SOLUBILITY IN WATER.

			Gms. Anh	y- ·
t°.	Compound.	Formula.	drous Salt	er Authority.
			oo Gms. Sat.	
21	Barium Glycerolphosphate	BaCaHrOaP.HaO	4.5	(Rogier and Fiore, 1913.)
13	" α Glycerolphosphate	BaC ₂ H ₇ O ₂ P	1.4	(King and Pyman, 1914.)
12	"β"	BaCaHrOaP. HaC	5.8	u u
2 I	" Glycerolphosphate	BaCaHaOaP. HaO	8.4	(Langheld and Oppmann, 1912.)
22	" di Glycerolphosphate		3.76	" "

BARIUM PICRATE. Solubility in H₂O + C₂H₅OH at 25°.

(Fischer, 1914.)

BARIUM PROPIONATE Ba(C₂H₂O₂)₃.H₂O, also 6H₂O.

SOLUBILITY IN WATER. (Krasnicki - Monatsh. Chem. 8, 597, '87.)

t *.	Gms. Ba($C_2H_5O_2$) ₂ per 100 Gms.		\$° .	Gms. Ba($C_2H_4O_2$) ₂ per 100 Gms.	
	Water.	Solution.		Water.	Solution.
0	47 . 98	32.41	50	62 . 74	38·5 7
10	51.56	34.02	60	64.76	39.31
20	54.82	35 - 42	70	66 . 46	39.93
30	57 · 77	36.6 5	8 0	67 .85	40.42
40	60.41	37 .66	• •	• • •	• • •

100 cc. 95% ethyl alcohol dissolve 0.1631 gm. barium propionate at room temp. (Crowell, 1918.)

BARIUM SALICYLATE Ba(C4H4OHCOO)2.H2O.

100 gms. sat. aqueous solution contain 28.65 gms. anhydrous salt at 15° and (Tarugi and Checchi, 1901.) 54.08 gms. at 100°.

BARIUM DinitroSALICYLATE. Solubility in H₂O + C₂H₃OH at 25°. (Fischer, 1914.) BARIUM SILICATE BaSiOs.

Fusion-point curves (solubility, see footnote, p. 1) for mixtures of:

BaSiO₂+CaSiO₂ and BaSiO₂+MnSiO₃ are given by (Lebedeu, 1911). BaSiO₂+Li₂SiO₃ and BaSiO₃+Na₃SiO₃ are given by Wallace, 1909. BaSiO₂+BaTiO₃ are given by Smolensky (1911-12).

BARIUM STEARATE and Salts of Other Fatty Acids.

SOLUBILITY OF BARIUM STEARATE, PALMITATE, MYRISTATE AND LAURATE IN SEVERAL SOLVENTS. (Jacobson and Holmes, 1916.)

Solvent.	t*.	Gms. Each Salt (Determined Separately) per 100 Gms. Solvent.				
		Ba Stearate.	Ba Palmitate.	Ba Myristate.	Ba Laurate.	
Water	15.3	0.004	0.004	0.007	0.008	
"	50	0.006	0.007	0.010	0.011	
Abs. Ethyl Alcohol	16.5	0.006	0.009	0.009	0.010	
" "	50	0.003	0.004	0.004	0.007	
Methyl Alcohol	15	0.042	0.045	0.057	0.084	
	50.5	0.077	0.088	0.108	0.163	
Ether	25	0.001	.0.001	0.003	0.007	
Amvl Alcohol	25	0.007	0.008	0.000	0.000	

BARIUM SUCCINATE AND BARIUM ISO SUCCINATE

Ba.CH₂CH₂(COO)₃. Ba.CH₂CH₂(COO)₃.

SOLUBILITY OF EACH IN WATER. (Miczynski - Monatsh. Chem. 7, 263, 1886.)

t°.	Gms. Ba. per 10	Succinate o Gms.	Gms. Ba. Iso Succinate per 100 Gms.		
	Water.	Solution.	Water.	Solution.	
0	0.421	0.420	, 1.884	1.849	
10	0.432	0.430	2.852	2.774	
20	0.418	0.417	3.618	3 · 493	
30	0.393	0.392	4.181	4.014	
40	o.366	o . 365	4.542	4 . 346	
50	0.337	o. 336	4.700	4.594	
бо	o . 306	0.305	4.656	4 · 450	
70	0.273	0.272	4.410	4.224	
. 8 o	0.237	0.237	3.962	3.810	

100 gms. H₂O dissolve 0.396 gms. Ba Succinate at 18° and 0.410 gms. at 25°.

100 gms. 95% alcohol dissolve 0.0015 gms. Ba Succinate at 18° and o.0016 gms. at 25°. (Partheil and Hübner - Archiv. Pharm. 241, 413, '03.)

Cantoni and Diotalevi (1905), and Tarugi and Checchi (1901), obtained data in close agreement with the above.

BARIUM SULFATE BaSO.

SOLUBILITY IN WATER. (Kohlrausch, 1908.)

One liter of sat. solution contains 0.00115 gm. BaSO4 at 0°; 0.0020 gm. at 10°; 0.0024 gm. at 20° and 0.00285 gm. at 30°.

Melcher (1910) obtained results a little lower than the above. His data for

higher temperatures are 0.00336 gm. at 50° and 0.0039 gm. at 100°.

Kohlrausch obtained the following results for the solubility of heavy spar (BaSO₄); 0.0019 gm. at 0°, 0.0023 gm. at 10°; 0.0027 gm. at 20°; 0.00315 gm at 30° and 0.0033 gm. at 33.5°.

100 gms. sat. solution of BaSO4 in 21.37% aqueous ammonium acetate solution contain 0.016 gm. at 25°. (Marden, 1916.)

SOLUBILITY OF BARIUM SULFATE IN AQUEOUS SOLUTIONS OF IRON, ALUMINIUM AND MAGNESIUM CHLORIDES AT 20°-25°. (Fraps, 1901.)

Gms. Chloride	Milligrams BaSO ₄ per Liter in:			Gms. Chloride	Mgs. BaSO ₄ per Liter in:			
per Liter.	Aq. FeCla	Aq. AlCla.	Aq. MgCl ₃ .	per Liter.	Aq. FeCla.	Aq. AlCla.	Aq.MgCl	
I	58	33	30	25	150	116	50	
21/2	72	43	30	50	160	170	50	
5	115	60	33	100	170	175	50	
10	123	94	33	• • •	• • •	•••	••	

SOLUBILITY OF BARIUM SULFATE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC AND OF NITRIC ACIDS. (Banthisch, 1884.)

In Hydrochloric Acid.

In Nitric Acid.

cc. containing	Mgs. BaSO ₄ per x Mg. Equiv		er 100 cc.	r Mg. Equiv.	Mgs. BaSO ₄ per r Mg. Equiv.		er 100 cc.
of HCl.	of HCl.	HCI.	BaSO4.	of HNO3.	of HNO3.	HNO3.	BaSO4.
2.	0.133	1.82		2.	0.140	3.15	0.0070
I.	0.089	3.65	0.0089	I.	0.107	6.31	0.0107
0.5	o.056	7.29	0.0101	0.5	0.085	12.61	0.0170
0.2	0.017	18.23	0.0086	0.2	.o.o48	31.52	0.0241

100 cc. HBr dissolve 0.04 gm. BaSO₄; 100 cc. HI dissolve 0.0016 gm. BaSO₄ at the boiling point. (Haslam, 1886.)

SOLUBILITY OF BARIUM SULFATE IN CONCENTRATED AQUEOUS SOLUTIONS OF SULFURIC ACID AT 20°. (Von Weimarn, 1911.)

Gms. HaSO4 per 100 Gms. Solvent.	Gms. BaSO4 per 100 cc. Sat. Sol.	Gms. H _s SO ₄ per 100 Gms. Solvent.	Gms. BaSO ₄ per 100 cc. Sat. Sol.
73.83	o. oo 30	85.78	0.3215
78.04	0.0135	88. 0 8	1.2200
80.54	0.0285	93	· · · · *
83.10	0.0800	96.17	4.9665
84.15	†	96.46	18.6900

^{*} Solid Phase = BaSO₄(H₂SO₄)₂.H₂O + BaSO₄.H₂SO₄. † Solid Phase = BaSO₄ + BaSO₄.H₂SO₄.H₂O.

Data for the above system are also given by Volkhouskii (1910).

100 cc. sat. solution of BaSO₄ in abs. H₂SO₄ contain 28.51 gms. BaSO₄, solid phase = BaSO_{4.3}0H₂SO₄. (Bergius, 1910.)

100 cc. of sat. solution of BaSO₄ in 95% formic acid contain 0.01 gm. BaSO₄ at 18.5°. (Aschan, 1913.)

Fusion-point curves (solubility, see footnote, p. I) are given the following mixtures of barium sulfate and other salts:

BaSO ₄ + NaCl	(Sackur, 1911-12.)
" + KCl	u
" ∔ CaCl₂	"
" + K,SO,	(Grahmann, 1913; Calcagni, 1912.)
" + Li ₂ SO ₄	(Calcagni and Marotta, 1912.)
" + Na ₂ SO ₄	(Calcagni, 1912.)

BARIUM Amyl SULFATE Ba(C₆H₁₁SO₄)₂.2H₂O.

SOLUBILITY OF MIXED CRYSTALS OF THE ACTIVE AND INACTIVE SALT IN WATER AT 20.5°.
(Marckwald, 1904.)

Gms. Salt per 200 Gms. HgO.	Per cent Active Salt in Dissolved Salt.	Gms. Salt per 100 Gms. H ₂ O.	Per cent Active Salt in Dissolved Salt.
28.2	100	18.3	49.6
26.3	91.6	16.6	3 6.3
24.8	84.5	15	25.8
21.7	71.2	13.6	10.6
19.5	59 · 5	12.8	0

Mixed crystals of the active and inactive barium amyl sulfate were dissolved in water by warming, then cooled to the beginning of crystallization and shaken two hours at 20.5°. The percentage of the active salt was determined by the polariscope. Its specific rotation was $[\alpha]_D = +2.52^\circ$.

BARIUM Isoamyl SULFATE Ba(C₅H₁₁SO₄)_{2.2}H₂O.

100 gms. H₂O dissolve 9.71 gms. of the anhydrous salt at 10°, 11.85 gms. at 19.3° and 12.15 gms. at 20.5°. (Marckwald, 1902.)

BARIUM PerSULFATE BaSrOs.4HrO.

100 parts water dissolve 39.1 parts BaS₂O₆ or 52.2 parts BaS₂O₆. 4H₂O at o°.

(Marshall — J. Ch. Soc. 59, 771, '91.)

BARIUM SULFITE BaSO:

SOLUBILITY IN WATER AND IN AQUEOUS SUGAR SOLUTIONS. (Rogowicz — Z. Ver Zuckerind. 938, 1905.)

Conc. of Sugar Sol.	Gm. BaSO ₄ per 100 cc. Sol.		Conc. of	Gm. BaSO ₄ per 100 cc. Sol.	
	at 20°.	at 80°.	Conc. of Sugar Sol.	at 20°.	at 80°.
o° Bx	0.0197	0.00177	40° Bx	o .0048	0.00158
10° "	0.0104	0.00335	50° "	o. 00 30	0.00149
20° "	0.0097	0.00289	60° " (sat.)	0.0022	0.00112
30° "	0.0078	0.00223	•••		• • •

BARIUM SULFONATES.

SOLUBILITY OF SEVERAL BARIUM SULFONATES IN WATER.

Bariur	Salt. n:		Formula.	t°.	drous Salt per 100 Gans. H ₂ O.	Authority.
3.4	Diiodobenze	me Sulfonate	CnHcO.LS.Ba.H.O	21.5	0.27	(Boyle, 1909.)
2.5	"	"	CnHaOalaSaBa.4 HaO	20	0.522	
	enanthrene	Sulfonate	(C14HeSO2)2Ba.1H2O	20	0.016	(Sandquist, 1912.)
3	"	"	(CMHaSOa)aBa.3HaO	20	0.03	"
10	"	"	(Cs4HsSOs)sBa.3HsO	20	0.13	u
Bı	romobenzen	e Sulfonate	(CaHaBrSOa)aBa	17.5	3.31	(Meyer, 1875.)

BARIUM TARTRATE Ba(C,H,O,).

SOLUBILITY IN WATER.

(Cantoni and Zachoder — Bull. soc. chim. [3] 33, 751, '05; see also Partheil and Hübner.)

t°.	Gms. Ba(C ₂ H ₂ O ₃) ₂ per 100 cc. Solution.	t°.	Gms. Ba(C ₂ H ₂ O ₂) ₂ per 100 cc. Solution.	t*.	Gms. Ba(C ₂ H ₂ O ₃) ₂ per 100 cc. Solution.
0	0.0205	30	0.0315	70	o · 0480
10	0.0242	40	0.0352	8o	0.0527
20	0.0270	50	0.0389	85	0.0541
25	0.0207	60	0.0440		• • •

SOLUBILITY OF BARIUM TARTRATE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE, SODIUM CHLORIDE AND AMMONIUM CHLORIDE.

(Cantoni and Jolkowski, 1907.)

At Different Temperatures. Varying Concentrations at 16°.

	Gms. Ba(CaHaOa)2 per 100 cc. Sat. Sol. in:			Gms. Chlo-	Gms. Ba(C ₂ H ₂ O ₃) ₂ per 100 cc. Sat. Sol in:		
t°.	7% KCL	7% NaCl.	7% NH4CI.	ride per 100 Gms. Solvent.	KCI.	NaCl.	NH4Cl.
16	0.0823	0.0887	0.1050	0.5	0.0398	0.0410	0.0441
30	0.1017	0.1151	0.1370	I	0.0466	0.0514	0.0589
55	0.1230	0.1348	0.1590	3	0.0723	0.0826	0.0892
70	0.1500	0.1781	0.2030	10	0.1199	0.1260.	0.1342
85	0.1828	0.2168	0.2360	15	0.1435	0.1440	
				20	0.1466	0.1573	0.1663

(See Note p. 222.)

SOLUBILITY OF BARIUM TARTRATE IN AQUEOUS ACETIC ACID SOLUTIONS AT 26°-27°.

(Herz and Muhs, 1903.)

Normality of Acetic Acid.			o cc. Solution.		Gms. residue* per 50 cc. Sol.	Gms.per 100 CH ₃ COOH.	
0	0.0328	٥.	0.0655	3 · 77	0.1866	22.62	0.3728
0.565	0.1151	3 · 39	0.2300	5.65	0.1865	33.90	0.3726
I 425	0,1559	8.55	0.3115	16.85	0.0218	101.10	o.o43 6
2.85	0 1739	17.11	0.3475	• • •			• • •
			* Dried	l at 70°			

100 grams 95% alcohol dissolve 0.032 gm. Ba tartrate at 18° and 0.0356 gm. at 25°. (Partheil and Hubner.)

BARIUM β TRUXILATE. BaC₁₈H₁₄O_{4.2}H₂O.

100 cc. sat. solution in water contain 0.028 gm. of the salt at 26°. (de Jong, 1912.)

BEHENIC ACID C11H4COOH.

Freezing-point data (solubility, see footnote, p. 1) are given for the following mixtures of behenic acid and other compounds.

Behenic Acid + Erusic Acid (Mascarelli and Sanna, 1915.)

- " + Isoerusic Acid " + Brassidinic Acid
- " + Isobehenic Acid

(Meyer, Brod and Soyka, 1913.)

Methylester + Isobehenic Acid Methyl Ester. "

BENZALANILINE C.H.CH:N.C.H.

Solubility data determined by the freezing-point method are given by Pascal and Normand (1913), for mixtures of benzalaniline and each of the following compounds: Azobenzene, benzylaniline, dibenzyl, hydrazobenzene, stilbene and tolane.

BENZALAZINE C.H.CH: N.N: CHC.H.

Solubility data determined by the freezing-point method are given by Pascal (1914), for mixtures of benzalazine and each of the following compounds: Diphenylhydrazine, diphenyldiacetylene, naphthalene, furfuralazine, diphenylbutadiene and cinnamylidene. Data are also given for mixtures of thiophenylalazine and cinnamylidene.

BENZALDEHYDE C.H.CHO.

100 gms. H₂O dissolve 0.3 gm. C₆H₅.CHO at room temp. (Fluckinger, 1875; U. S. P.) Freezing-point data for mixtures of C₆H₅.CHO and HNO₅ are given by Zukow and Kasatkin (1909).

Para HydroxyBENZALDEHYDE & C.H.OH.CHO.

Freezing-point data are given for mixtures of p hydroxybenzaldehyde + dimethylaniline and p hydroxybenzaldehyde + phenol. (Schmidlin and Lang, 1912.)

Ortho NitroBENZALDEHYDE o C.H.NO2.CHO.

SOLUBILITY IN WATER AND IN AQUEOUS SOLUTIONS AT 25°.
(Goldschmidt and Sunde, 1906.)

Solvent.	Gms. C ₆ H ₄ NO ₂ . CHO per 100 cc. Sat. Sol.	Solvent.	Gms. C ₆ H ₄ NO ₈ CHO per roo co Sat. Sol.	. Solver	ort. Gms. CaHaNOs CHO per 100 cc. Sat. Sol.
H ₂ O	0.2316 1	n NaCl	0.1899	I nKN	
0.5 n HCl	0.2391 2	n "	0.1390	2 n	0.3419
ı n "	0.2466 0.	5 n HNO	0.3207	0.5 n Na	NO3 0.3013
2 n "	0.2658 1	n "	0.3758	1 71	" 0.3132
1 n KCl	0.2046 0.	5 n KNO	0.3123	2 n	" 0.3201
2 n "	0.1912				

Meta NitroBENZALDEHYDE m C4H4NO2.CHO.

Para NitroBENZALDEHYDE & C.H.NO.CHO.

Data for the system p nitrobenzaldehyde + nitrobenzene + hexane are given by Timmermans (1907).

Solubility data determined by the freezing-point method are given for:

p Nitrobenzaldehyde + Sulfuric Acid (Kendall, 1914.)

m " + Benzene (Schmidlin and Lang, 1912.)

m " + Phenol ""

BENZALDOXIME C.H.CH: NOH.

Solubility data determined by the freezing-point method are given for mix-tures of:

 α Benzaldoxime + β Benzaldoxime (Cameron, 1898.) α Nitrobenzaldoxime + β Nitrobenzaldoxime. (Beck, 1904.)

BENZAMIDE C.H.CONH.

SOLUBILITY IN ETHYL ALCOHOL. (Speyers — Am. J. Sci. [4] 14, 295, '02.)

t°.	Sp. Gr. of Solutions.	G.M. C.H.CONH. per 100 G.M. C.H.OH.	Gms. C ₆ H ₅ CONH ₂ per 1∞ Gms. C ₂ H ₅ OH.	t°.	Sp. Gr. of Solutions.	G. M. C _e H ₆ CONH ₂ per 100 G.M. C _e H ₆ OH.	Gms. C ₀ H ₀ CONH ₂ per 100 Gms. C ₀ H ₀ OH.
0	ე.8ვვ	3.I	8.15	40	0.848	11.0	28.92
	0.832	4.2	11.04	50	0.862	14.2	37 · 34 ·
20	0.833	5.9	15.52	60	o.881	17.2	45 . 22
25		6.8	17 .87	70	0.913	20.4	53.63
30	0.838	8.2	21.56		•••		• • • •

SOLUBILITY OF BENZAMIDE IN MIXTURES OF ALCOHOL AND WATER AT 25°.

(Holleman and Antusch - Rec. trav. chim. 13, 294, '94.)

Vol. % Alcohol.	Gms. C ₈ H ₈ CONH ₂ per 100 Gms. Solvent.	Sp. Gr. of Solutions.	Vol. % Alcohol.	Gms. CeHsCONHs per 100 Gms. Solvent.	Sp. Gr. of Solutions.
100	17.03	o .830	70	23.87	0.925
95	21.12	0.856	60	18.98	0.939
90	24.50	0.878	50	13.74	0.949
85	26.15	0.895	40	8.62	0.958
83	26.63	0.900	31	5 · 33	0.967
80	26.43	0.907	15	2.28	0.982
75	25 41	0.917	•	1.35	0.999

See remarks under a Acetnaphthalide, p. 13.

100 gms. pyridine dissolve 31.23 gms. benzamide at 20°-25°. (Dehn, 1917.)
100 gms. aq. 50% pyridine dissolve 39.15 gms. benzamide at 20°-25°.

The coefficient of distribution of benzamide between oil and water is 0.66 at 3° and 0.43 at 36°. (Meyer, 1900, 1909.)

RENZANTI.IDE

Solubilities determined by the freezing-point method are given by Vanstone (1913) for mixtures of benzanilide and each of the following compounds: benzil, benzylideneaniline, and benzoin.

Results for mixtures of o chlorobenzanilide and p chlorobenzanilide are given by King and Orton (1911).

BENZENE C.H.

SOLUBILITY IN WATER AT 22°. (Herz — Ber. 31, 2671, '98.)

100 cc. water dissolve 0.082 cc. C_6H_6 , Vol. of Sol. = 100.082, Sp. Gr. = 0.9979. 100 cc. C_6H_6 dissolve 0.211 cc. H₂O, Vol. of sol. = 100.135, Sp. Gr. = 0.8768.

SOLUBILITY OF WATER IN BENZENE.

(Groschuff, 1911.)

6m. HsO per 100
Gms. Sat. Sol.

3 0.030 55 0.184

23 0.061 66 .0.255

40 0.114 77 0.337

BENZENE, AQ. ALCOHOL MIXTURES; BENZENE, AQ. ACETONE MIXTURES AT 20°.

H₂O added to mixtures of known amounts of the other two and appearance of clouding noted.

(Bancroft - Phys. Rev. 3, 31, 1895.96.)

C₂H₄,C₂H₅OH and H₂O C₄H₄,CH₂OH and H₂O C₄H₅,(CH₂),CO and H₂O

Per 5 cc. CaHaOH.		Per 5 cc.	СН₃ОН.	Per 5 cc. (CH ₂) ₂ CO.		
cc. H ₂ O.	cc. CeHe.	cc. H ₂ O.	cc. CeHe.	cc. H ₂ O.	cc. C ₆ H ₆ .	
20	0.03	5.0	0.15	8.0	0.10	
8	0.13	3.0	0.215	3.0	0.395	
4	0.39	2.0	0.59	2.0	0.69	
2	1.17	I · 4	I .O	I.3	1.0	
1.5	ı .87	I.0	1.9	0.51	2.0	
1.0	3 · 57	8.و	3.0	0.295	3.0	
0.605	8.0	0.69	4.0	0.2	4.0	
0.34	20.0	0.49	8.0	0.15	5.0	

C₂H₅OH added to mixtures of known amounts of C₄H₆ and H₂O until the solutions became homogeneous at 20°. (Liacoln, 1900.)

Per 5 cc. CaHa.		Per 5	cc. CeHe.	Per 5 cc. CaHa.		
cc. H ₂ O.	cc. CaHaOH.	cc. H ₂ O.	cc. CsHsOH.	cc. HsO.	cc. CaHaOH.	
I	4.6	20	31.6	50	58	
5	12.8	30	41.4	60	65.6	
10	19.8	40	39 · 5	70	73.I	

Lincoln also gives results at 10°. Data of a similar character for mixtures of benzene, ethyl alcohol and water at 20, 25 and 35° are given by Taylor (1897).

For results at 15°, see page 287.

Data for mixtures of benzene, ethyl alcohol and glycerol and for mixtures of benzene, ethyl alcohol and lactic acid are given by Rozsa (1911).

MUTUAL SOLUBILITY OF BENZENE AND CARBON TETRACHLORIDS. (Determined by the synthetic method.)

		(Dauci, 19	13./		
ť.	Gms. C ₄ H ₄ per 100 Gms. Mixture.	ť.	Gms. CaHa per 100 Gms. Mixture.	t°.	Gms. CaHa per 100 Gms. Mixture.
-24.2	0	-40	19.3	— 20	48
-30	2.8	-34	24.2	-10	64.1
-40	8.5	-35 tr. pt.	. 31	0	85.3
-46.3 Eute	C. 12.9	-30	36	+ 5.5	5 100

MUTUAL SOLUBILITY OF BENZENE AND CHLOROFORM. FREEZING-POINT METHOD. (Wroczynski and Guve. 1910.)

		141011101	D. (, ., .,	20.,		
t°.	Gms. CeHe per 100 Gms Solution.		ť°.	Gms. C ₆ H ₆ per 100 Gms. Solution.	Solid Phase.	t*.·	Gms. C ₄ H ₄ per 100 Gms Solution.	Solid Phase.
-63 .	5 0	CHCl _a	-60	26.8	CaHa	— 20	58.3	C ₆ H ₆
-70	11.8	66	— 50	32	"	— 10	70.8	"
-75	14.7	4	-40	39	"	0	88	66
—81 .	7 18.4	CHCl+C.H.	-30	47.8	"	5	100	"
- 70	22.6	C ₆ H ₄				_		

The eutectic point was found by extending the curves to their intersection. The temperature of the eutectic could not be reached by use of liquid CO₂.

MUTUAL SOLUBILITY OF BENZENE AND FORMIC ACID. SYNTHETIC METHOD.

t° of Miscibility	Gms. HCOOH per 100 Gms. Sol.	t° of Miscibility.	Gms. HCOOH per 100 Gms. Sol.	t° of Miscibility.	Gms. HCOOH per 100 Gms. Sol.
21	9.2	70	31.5	60	74
30	10.3	72	35	40	82
40	12.2	73.2	43-5 1	20	87
50	16.5	72	60	5	89.6
60	22	70	65		

SOLUBILITY OF BENZENE IN AQUEOUS SOLUTIONS OF FORMIC ACID. SYNTHETIC METHOD. (Ennis, 1914.)

In 95 Wt. % • HCOOH.		In 85 V HCO		In 75 V HCC	Vt. % ЮН.	In 60 Wt. % HCOOH.	
t° of Miscibility.	Gms. C ₄ H ₄ per 100 Gms. Sol.	t° of Miscibility.	Gms. C ₄ H ₄ per 100 Gms. Sol.	t° of Miscibility.	Gms. C ₄ H ₄ per 100 Gms. Sol.	t° of Miscibility.	Gms. C ₆ H ₆ per 100 Gms. Sol.
57 · 5	96.3	71	97 · 5	122	12	105	6
77	94 · 4	87	96.6	97.5	8.5	82	3.8
95	89.8	101	96	74	6	76	3
112	85.2	100.5	14.3				-
94.5	24.7	81	10				
80.5	20	46	7				
51	12.5		-				

MUTUAL SOLUBILITY OF BENZENE AND ETHYL ALCOHOL. FREEZING-POINT.

METHOD. (Viala, 1914; see also Rozsa, 1911 and Pickering, 1893.)

		-3-4, 500	,		3.7
ť.	Gms. CaHs per 100 Gms. Sol.	t°.	Gms. CaH4 per 100 Gms. Sol.	ť.	Gms. CaHa per 100 Gms. Sol.
-113.9	0	-60	19.3	— 10	57.6
-100	8	– 50	24.I	0	85
- 90	10	-40	29.8	I	93
– 80	12	-30	37	5.5	100
– 70	15	- 20	4 5 · 7		

MUTUAL SOLUBILITY OF BENZENE AND β NAPHTHALENE PICRATE, $C_6H_9(NO_2)_5OH.C_{10}H_7OH.$ (Kuriloff, 1897.) Synthetic method used — see Note, p. 16

t°.	Gms. Picrate	Gma. Benzene	a	t°.	Gms. Picrate.	Gms. Benzene.	a
157	100.	• • •	100.0	111.6	1.173	1.037	19.2
148.4	2.128	0.115	79 · 3	102.0	1.087	1.780	11.2
137 - 4	1.274	0.170	61.1	29.5	0.390	8.430	0.95
134.2	1 - 384	0.297	49 · 3	4.6	1.329	21.80	0.48
126.8	1.019	0.343	38.3	5.02	• • •	100.0	• • •

 α = Mols. β Naphthalene Picrate per 100 Mols. of β Naphthalene Picrate plus Benzene.

Determinations for a large number of isothermes are also given.

THE SYSTEM BENZENE, PHENOL AND WATER AT 25°. (Horiba, 1914.)

In the case of phenol, the bromine method was used for its determination. In the case of the other two compounds, the amounts required to produce constant turbidity were measured directly from burettes.

Solubility of Benzene in Aqueous Solutions Containing Phenol and Vice Versa. Solubility of Phenol in Benzene Solutions Containing Water and Vice Versa.

dee.	Gms. per 100 Gms. CaHaOH+CaHa+HaO.		. Saturating	d	Gms. per 100 Gms. CeHeOH+CeHe+HeO.		Saturating
411.	С.Н.ОН.	CaHa.	Phase.	H.	С.Н.ОН.	CaHa.	Phase.
I.0002	0	0.198	C ₄ H ₄		29.29	0	C ₁ H ₂ OH
8000.1	1.059	0.204	"	• • •	71.63	1.62	"
I.002I	2.602	0.205	u		74.5	3	CeHeOH+CeHe
1.00305	3.526	0.199	**	1.0256		16.33	CeHe
• • •	5.65	0.17	СьНь+СьНьОН	0.9891	55.80	36.13	"
• • • • • • • • • • • • • • • • • • • •	5.953	0.132	C ₄ H ₄ OH	0.9629	44 - 39	50.56	44
1.0059	6.516	0.075	4	0.9142	21.15	. 77.22	и
1.0069	7.683	0.025	"	0.8818	4.78	94.98	u
1.0073	8.195	0	44	0.8764	0	99.95	"

Data are also given for the solubility of phenol as solid phase, in C₆H₆ and in water and in their mixtures. A complete table for the conjugate points, showing the distribution of phenol between the aqueous and the benzene layers, is given. The results agree with those of Rothmund and Wilsmore. See page 482.

RECIPROCAL SOLUBILITY, DETERMINED BY FREEZING-POINT METHOD, OF MIXTURES OF Benzene and Phenol Benzene and Phenol

	and Skirrow, 1917		(Hatcher and Skirrow, 1917.)			
to of Melting.	Gms. CaHa per	Solid	40 63634	Gms. CaHa per	Solid	
39 · 4	0	C ₄ H ₄ OH	-39.4	0	CHIN	
30	11.8	44	-45	10	"	
20	25	"	-50	17	"	
10	38.2	**	-55	23.3	u	
0	51.5	ee	- 58 Eutec.	. 26	" +CaHa	
- 5.4 Eutec.	58.4	" +CeHe	– 50	31	C ₄ H ₄	
— 2.5	67.5	C ₆ H ₆	-40	37 · 7	"	
0	78.3	44	-30	46	44	
+ 2.5	89	44	-20	57	**	
5.1	100	44	— 10	71.5	44	
•			0	90.5	u	

Additional data on the system Benzene + Phenol are given by Dahms, 1895; Paterno and Ampola, 1897; Tsakalotos and Guye, 1910, and Rosza, 1911. Additional data on the system Benzene + Pyridine are given by Pickering, 1893.

SOLUBILITY OF BENZENE IN SULPHUR. By "Synthetic Method" see Note, p. 16. (Alexejew, 1886.)

Gms. CoHe per 100 Gms. Gms. CaHe per 100 Gms. t°. S Layer. CoHe Layer. S Layer. CeHe Layer. 6 TOO 75 140 16 61 8 IIO 72.5 150 19 55 120 10 70 160 45 130 12 66 164 (crit. temp.) 35

SOLUBILITY DATA, DETERMINED BY THE FREEZING-POINT METHOD (see footnote, p. 1), ARE GIVEN FOR THE FOLLOWING MIXTURES:

```
(Roloff, 1895. See Benzoic Acid, p. 135.)
Benzene + Benzoic acid
         + o Nitrobenzylchloride
                                              (Schmidlin and Lang, 1912.)
   ı.
         + Bromoform
   "
         + Tetramethyldiamino benz-
              hydrol
   ..
         + Benzhydrol
   **
         + Nitrobenzene
                                              (Dahms, 1895.)
   44
         + o, m and p Chloronitrobenzene ((Bogojawlensky, Winogradow and Bogolubow,
   44
         + m Bromonitrobenzene
                                                 (1906.)
   64
         + o, m and p Dinitrobenzene
                                              (Kremann, 1908.)
   44
         + Carbon disulfide
                                              (Pickering 1893.)
   "
         + Camphene
                                              (Kurnakoff and Efremoff, 1912.)
   "
         + m Cresol
                                              (Kremann and Borjanovics, 1916.)
   **
         + Cyclohexane
                                              (Mascarelli and Pestalozza, 1907, 1908.)
   **
         + Diphenyl
                                              (Washburn and Read, 1915.)
   44
         + Diethylamine
                                             (Pickering, 1893.)
   "
         + Diphenylamine
                                              (Bruni, 1898; Dahms, 1895.)
   44
         + Ethyl ether
                                              (Pickering, 1893.)
   44
         + Ethylene bromide
                                              (Dahms, 1895.)
   44
         + Ethylene dibromide
                                              (Baud and Gay, 1911.)
   "
         + Ethylene chloride
                                              (Baud and Gay, 1910.)
   "
         + Ethylene dichloride
                                              (Baud and Gay, 1911.)
   "
         + Menthol
                                              (Dahms, 1895.)
   "
         + Methyl alcohol
                                              (Pickering, 1893.)
                                             (Bruni, 1898; Pickering, 1893; Washburn and
   66
         + Naphthalene
                                                 Read, 1915.)
   "
                         +\beta Naphthol
                                             (Bruni, 1898.)
   44
                         + Diphenylamine
   46
         + Phenanthrene
   "
                            + Carbazol
   "
         + Paraldehyde
                                             (Paterno and Ampola, 1891, 1897.)
                                             (Bogojawlensky, Winogradow and Bogolubow,
         + o, m and p Nitrophenol
                                                 1906.)
         + Propyl alcohol
                                              (Pickering, 1893.)
         + Quinine
                                             (Van Iterson-Rotgans, 1913.)
         + Thiophene
                                             (Tsakalotos and Guye, 1910.)
         + Bromotoluene
                                             (Paterno and Ampola, 1897.)
         + 1.2.4, 1.2.6 and 1.3.4 Dinitro-
                                              (Kremann, 1908.)
              toluene
         + Urethan
                                             (Pushin and Glagoleva and Mazarovich, 1914.)
         + p Xylene
                                              (Paterno and Ampola, 1897.)
Bromobenzene + Chlorobenzene
                                              (Pascal, 1913.)
                - Iodobenzene
                + Fluorobenzene

    Dibromobenzene + o Dibromobenzene (Holleman and van der Linden, 1911.)

                    + p Dichlorobenzene (Bruni and Gorni, 1899; Küster and Würfel, 1904-
         44
                                                 os; Kruyt, 1912.)
         44
                     + p Diiodobenzene
                                              (Nagornow, 1911.)
         46
                     + p Bromoiodoben-
                          zene
         44
                     + D Chlorobromo-
                                              (Bruni and Gorni, 1899.)
                          benzene
                     + 

→ Chloronitroben-
                                             (Pawlewski, 1898.)
         44
                      +m
                     + p Bromotoluene
                                             (Borodowski and Bogojawlenski, 1904.)
```

SOLUBILITY OF DIBROMOBENZENE IN SEVERAL SOLVENTS AT 25°. (Hildebrand, Ellefson and Beebe, 1917.)

Solvent.	Gms. C ₆ H ₆ Br ₂ (p) per 100 Gms. Solvent.	Solvent.	Gms. C ₆ H ₄ Br ₂ (\$) per 100 Gms. Solvent.
Methyl Alcohol	10.35	Carbon Tetrachloride	
Benzene	83.8	Ethyl Ether	71.3
Carbon Disulfide	90	Hexane	25.9

DiBromoBENZENE (p) C4H4Br2.

SOLUBILITY IN ETHYL, PROPYL, ISO BUTYL ALCOHOLS, BTC. (Schröder — Z. physik. Chem. 11, 456, '93.)

Determinations by "Synthetic Method" see Note, p. 16. Grame C.H.Br. (A) per von Grame Set Solution in:

\$° .		Grams C ₆ H ₄ Br ₂ (p) per 100 Grams Sat. Solution in:							
₩.	С.Н.ОН.	C ₈ H ₇ OH.	(СНа)СН.СНаОН.	(C ₂ H ₄) ₂ O.	CS ₂ .	C₀H₄.	C.H.Br.		
0	• • •	• •	• • •	• •	27	• •	• •		
IO	• • •	• •	• • •	30	34	34	22		
20	• • •	• •	•••	38 ·	43	43	29		
30	14	• •	. 15	47	53	53	36		
40	19	• •	20	57	62	62	45		
50	26	27	30	67	72	71	54		
60	38	40	44	77	8 1	80	67		
70	57 . 6	67	65	87	90	88	79		
75	80.5	85	77 .	••	• •	••	84		
80	94 · 4	• 95	94.6	• •	••	• •	90		

Solubility of Mixtures of p Dibromobenzene and p Dichlorobenzene in Aqueous Solutions of Ethyl Alcohol

Solvent, 50 Vol. % C₂H₈OH, t=49.1°. Solvent, 90.9 Vol. % C₂H₈OH, t = 25° (Küster and Dahmer, 1905.) (Küster and Würfel, 1904-05.)

Gms. per 100 cc. Sat. Sol.		Mol. % CeH4Bre in Solute.	Gms. per ro	Mol. % CaHaBı in Solute.	
CaHaBra.	CaHaCla.	in Solute.	CaHaBra.	CaH4Cla.	in Solute.
0.484	0	100	2.909	0	100
0.505	0.044	89.8	2.674	0.696	94.3
0.496	0.084	80.7	2.220	2.808	70.7
0.477	0.503	59 · 3	1.769	4 . 249	49.I
0.470	0.721	54 · 4	1.271	6.237	24.5
0.196	1.311	11.6	0.675	6.877	9.9
0	1.614	0	o .	8.271	0

Additional data for the above system are given by Thiel (1903).

Tribromo BENZENE, C₆H₂Br₃. Solubility, gms. per 100 gms. at 20-25°:
In H₂O, 0.004; in pyridine, 24.3; in Aq. 50% pyridine, 2.01.

(Dehn. 1917) (Dehn, 1917.)

SOLUBILITY DATA, DETERMINED BY THE FREEZING-POINT METHOD (see footnote, p. 1), ARE GIVEN FOR THE FOLLOWING MIXTURES.

p.	Bromochlorobenzene	+ p Dichlorobenzene (Bruni and Garni, 1899.)
	**	+ o Bromochlorobenzene (Holleman and Van der Linden, 1911.)
Þ	Bromoiodobenzene	+ p Diiodobenzene (Nagornow, 1911.)
ō	Bromonitrobenzene	+ o Chloronitrobenzene (Kremann; Kremann and Ehrlich, 1908.)
	46	+ p Bromonitrobenzene (Holleman & de Bruyn, 1900; Narbutt, '05.)
#	46	+ 0 " (Narbutt, 1905.)
	46	+ 6 " "
	66	+ m Chloronitrobenzene (Hasselblatt, 1913; Küster, 1891.)
	44	+ m Iodonitrobenzene (Hasselblatt, 1913.)
	44	+ m Fluoronitrobenzene "
	46	+ m Chloronitrobenzene (Kremann, 1908.)
ø	"	+ m Cinoronici Openzene (Kremann, 1908.) + p " (Kremann, 1908; Isaac, 1913; Kremann & Bhrlich, 1908.)

ChloroBENZENE CaHaCl.

SOLUBILITY OF CHLOROBENZENE IN SULPHUR.

"Synthetic Method," see page 16.
(Alexejew.)

	Grams C ₆ H ₈ Cl per 100 Grams.					
ŧ°.	Sulphu Layer.		Chlor Ben- sene Layer.			
90	13		70			
100	18.5		63			
110	27		53			
116	crit. temp.	38				

pDichloroBENZENE, C.H.Cl2. o and m ChloronitroBENZENE, C.H.ClNO.

SOLUBILITY OF EACH IN LIQUID CARBON DIOXIDE. (Büchner, 1905-e6.)

p Dichlorobenzene.			 Chloronitrobenzene. 	m Chloronitrobenzene.
t°.	Gms. p CeH4Cla per 100 Gms. Sat. Solution.	t°.	Gms. o CaH4ClNO2 per 100 Gms. Sat. Solution.	Gms. # CaH4CINOs t°. per 100 Gms. Sat. Solution.
-33	1.2	-32	I	– 1 1.8
-10	4.2	+ 5	7.8	+16.5 11.2
+10	11.4	7	16.5–36 quad. pt.	7.5 38.2 quad. pt.
20	22.7	8	.58.8	20 53.2
22	34.4	11	65.8	•

SOLUBILITY OF o, m AND p CHLORONITROBENZENES IN ANILINE, DETER-MINED BY THE FREEZING-POINT METHOD (see also p. 77). (Kremann, 1907.)

Gms Each Compound (Determined Senarately) per you Gms Set Sol

40	Gms. Each Compound (Determined Separately) per 100 Gms. Sat. Sol.						
• •	o CaHaCINOs.	m CeHeCINO2.	p CaHaCINOs.				
-10	43.19 (=31 Mol. %)	21.60 (= 14 Mol. %)	27.75 (= 18.5 Mol. %)				
- 2.5	51.30 (=39 "	31.67 (= 21.5 "	31.67 (= 21.5 "				
+10	69.15 (= 57 "	49.29 (= 36.5 "	38.50 (= 27 "				

SOLUBILITY DATA, DETERMINED BY THE FREEZING-POINT METHOD (see footnote, p. 1), ARE GIVEN FOR THE FOLLOWING MIXTURES:

```
Chlorobenzene + Iodobenzene

" + Cyanbenzene

" + Fluorobenzene
                                                        (Pascal. 1913.)
o Dichlorobenzene + p Dichlorobenzene
p "| + p Diiodobenzene
                                                        (Holleman and Van der Linden, 1911.)
                                                        (Nagornow, 1911.)
                      + p Chloroiodobenzene
1.2.4 Trichlorobenzene + 1.2.3 Trichlorobenzene
                                                                           (Van der Linden, 1912.)
                            + 1.3.5
                                                   + 1.2.3 Trichlorobenzene
\alpha Hexachlorobenzene + \beta Hexachlorobenzene
p Chloroiodobenzene + p Diiodobenzene
                                                       (Nagornow, 1911.)
o Chloronitrobenzene + p Chloronitrobenzene (Holleman and de Bruyn, 1900.)
                                              (Bogajawlewsky, Winogradow and Bogolubow, 1906.)
            "
                          + Formic acid
                                                        (Bruni and Berti, 1900.)
           **
                           + m Iodonitrobenzene (Hasselblatt, 1913.)
1115
           44
                          + m Fluoronitrobenzene
            "
                          + Naphthalene
                                                      (Kremann and Rodenis, 1906.)
                          + Diphenylamine
                                                        (Tinkler, 1913.)
                           + Naphthalene
                                                       (Kremann and Rodenis, 1906.)
o Iodonitrobenzene + p Iodonitrobenzene (Holleman, 1913.)

m Benzene disulfone chloride + p Benzene disulfone chloride. (Holleman and Pollak, 1910.)
```

MUTUAL SOLUBILITY OF NITROBENZENE AND WATER (Campetti and Del Grosso, 1913; Davis, 1916.)

	Gms. CaHal	Gms. CaHaNOs per 100 Gms.		Gms. CaHaN	Gms. CaHaNOs per 100 Gms.	
t°.	HO Layer.	CoHoNO, Layer.	t°.	H ₂ O Layer,	C.H.NO. Layer.	
20	0.19	9 9.76	180	4.2	93 · 7	
40	0.3	99.6	200	7.2	QI.	
60	0.4	99.3	220	11.8	87	
80	0.8	99	230	15.8	83	
100	I	98.7	240	23	72	
120	1.3	98.2	24 I	26	67	
140	1.9	97.2	242	32	58	
160	2.8	95.8	244.5	crit. t. 50.	-	

Data for the solubility of nitrobenzene in hexane, diisoamyldecane and American petroleum at pressures up to 3000 atmospheres, are given by Kohnstamm and Timmermans (1913).

SOLUBILITY OF o, m AND p NITROBENZENE IN WATER AND IN PYRIDINE. (Dehn. 1917.)

••	40	Gms. Each Compound Separately per 100 Gms. Solvent.			
Solvent.	t°.	Nitrobenzene.	m Nitrobenzene.	≱ Nitrobenzene.	
Water	20-25	0.21+	2.14+	1.32+	
50% Aq. Pyridine	20-25	173	two layers formed	85.3	
Pyridine	20-25	260	394	53.2	

SOLUBILITY DATA, DETERMINED BY THE FREEZING-POINT METHOD (see footnote, p. 1), ARE GIVEN FOR MIXTURES OF NITROBENZENE AND EACH OF THE FOLLOWING COMPOUNDS:

Ethyl Ether (Tsakalotos and Guye, 1910.) Mercuric Bromide (Mascarell and Ascoli, 1907.) Hexane (Timmermans, 1907, 1911.) Mercuric Chloride "Mercuric Chloride "Mercuric Chloride "Nitrosobenzene (Jaeger and van Kregten, 1912.) Phenol (Dahms, 1895.) Ethylene Bromide "Naphthalene (Kremann, '04; Kurnakov. #el,'15.)

DiNitroBENZENE (m) C₆H₄(NO₂)₂.

SOLUBILITY IN BENZENE, BROM BENZENE AND IN CHLOROFORM. "Synthetic Method." (Schröder.)

t°.	Gms. C ₂ H ₄ (NO ₂) ₂ per 100 Gms. Sol. in:			\$* .	Gms. C ₆ H ₄ (NO ₃) ₃ per 100 Gms. Sol. in:		
		C ₆ H ₈ Br				C ₆ H ₆ Br	
		• • •		40	52.0	38.0	42.0
20	26.o	18.5	25 O			47 - 5	
25	33.0	23.7	29.0			57.0	
30	40.0	28.7	33.0			•••	

SOLUBILITY OF m DINITROBENZENE IN SEVERAL ALCOHOLS AND ACIDS

				CIEW, 1894.)			
Solvent.	ť.	Gms. # CaH4(NOa)a per 100 Gms.		Solvent.	ť.	Gms. as Co	H ₄ (NO ₀) ₂ Gms. •
		Sat. Sol.	Solvent.			Sat. Sol.	Solvent.
CH ₂ OH	13.8	5.38	5.65	CH ₃ COOH	15.5	15.7	18.6
С₁Ң₀ОН	13.8	2.83	2.92	"	23	17.8	21.6
C ₂ H ₂ OH	13.8	2	2	C ₂ H ₆ COOH	13.5	12	13.6
C ₂ H ₇ OH	73	43.6	77 · 3	"	15.5	12.9	14 8
нсоон	13.5	9	9.9	"	23	13.45	15.5
HCOOH	15.5	9.6	10.5	C ₈ H ₇ COOH	13.5	7.3	8.3
.CH ₂ COOH	13.5	15.2	17.9	"	15.5	8.2	8.9

100 gms. 95% formic acid dissolve 11.89 gms. m dinitrobenzene at 20.8°. (Aschan, '13). 100 gms. pyridine dissolve 106.3 gms. m dinitrobenzene at 20°-25°. (Dehn, 1917.) 100 gms. 50% aq. pyridine dissolve 45.5 gms. m dinitrobenzene at 20°-25°.

Solubilities of Di-Nitro BENZENES and of Tri-Nitro BENZENES in Several Solvents.

(de Bruyn - Rec. trav. chim. 13, 116, 150, '94.)

		Grams per 100 Grams Solvent.					
Solvent.	t°.	(ø)CeH4. (NO2)2.	(m)C ₆ H ₄ . (NO ₂) ₂ .	(p)C ₆ H ₄ . (NO ₂) ₂ .	(s)C ₈ H ₈ . (NO ₂) ₃ .	(as)C ₄ H ₂ (NO ₂) ₃ .	
Methyl Alcohol	20.5	3.30	6.75	0.69	4.9 (16°)	16.2 (15.5%)	
Ethyl Alcohol	20.5	1.9	3.5	0.4	1.9 (16°)	5.45 (15.5°)	
Propyl Alcohol	20.5	1.09	2.4	0.298		• • •	
Carbon Bi-Sulphide	17.6	0.236	1.35	0. 148	0.25	•••	
Chloroform	17.6	27.1	32.4	1.82	6.r		
Benzene	18.2	5.66	39.45	2.56	6.2 (16°)	•••	
Ether	17.5	• • •	• • •	• • •	1.5	• • •	
Ethyl Acetate	18.2	12.96	36.27	3.56	•••	• • •	
Toluene	16.2	3.62	30.66	2.36	•••	•••	
Carbon Tetra Chloride		0.143	1.18	0.12	• • •	•••	
Water	(ord.)	0.014	0.0525	0.008	•••	•••	

Symmetrical Tri-Nitro BENZENE.

SOLUBILITY IN AQUEOUS ALCOHOL AT 25°.
(Holleman and Antusch — Rec. trav. chim. 13, 296, '94.)

Vol. % Alcohol.	G. C ₀ H ₂ (NO ₂) ₂ (s) per 100 g. Solvent.	Sp. Gr. of Solutions.	Vol. % Alcohol.	G. C ₆ H ₈ (NO ₂) ₈ (s) per 100 g. Solvent.	Sp. Gr. of Solutions
100	2.34	0.7957	80	0.57	0.8582
95	1.57	0.8131	75	0.47	0.8708
90	1.12	0.8288	70	0.37	0.8808
85	0.79	0.8436	60	0.23	0.9064

See remarks under α Acetnaphthalide, p. 13.

100 gms. 93 vol. % ethyl alcohol dissolve 2.1 gms. of o C₆H₄(NO₂)₂, 3.1 gms. m C₆H₄(NO₂)₂ and 0.33 gm. p C₆H₄(NO₂)₂ at 25°. (Holleman and de Bruyn, 1900.)
100 gms. of each of the following solvents dissolve the indicated gms. of 1.2.4 trinitrobenzene at 15.5°: C₆H₆, 140.8 gms.; CHCl₂, 12.87 gms.; CH₂OH, 12.08 gms.; (C₂H₆)₂O, 7.13 gms.; C₂H₆OH, 5.42 gms; CS₂, 0.4 gm. (de Bruyn, 1890.)
Data for the solubility of m dinitrobenzene in a solution of nitrobenzene in hexane are given by Timmermans (1907).

Solubility data, determined by the freezing-point method, are given for mixtures of o, m and p dinitrobenzene with fluorene, Kremann (1911); with phenanthrene, Kremann, et al (1908). Results for mixtures of o and p dinitrobenzene with naphthalene, by Kremann and Rodinis (1906). Data for m dinitrobenzene with nitrotoluenes are given by Giua (1915) and for m dinitrobenzene and diphenylamine by Giua (1915a). Similar data for mixtures of s trinitrobenzene with xanthone, quinol, dimethylpyrone, s tribromophenol, fluorenone, coumarine, and phenyl ether are given by Sudborough and Beard (1911). Results for s trinitrobenzene and q dipyridyl are given by Smith and Watts (1910) and for s trinitrobenzene and fluorene by Kremann (1911). Results for mixtures of m dinitrobenzene and naphthalene and for 1.3.5 trinitrobenzene and naphthalene are given by Kremann, (1904) and Kurnakov, Krotkov and Oksman (1915).

BENZYHYDROL (C.H.)2CHOH,

Solubility data, determined by the freezing-point method (see footnote, p. 1), are given for mixtures of benzhydrol and phenol and for benzhydrol and dimethylaniline by Schmidlin and Lang (1912).

BENZIL C.H.CO.COC.H.

Data for the solubility of benzil in aqueous ethyl alcohol are given by Timmermans (1907) and by Kendall and Gibbons (1915). Data for aqueous solutions of benzil and phenol, for benzil and succinic acid nitrile and for benzil and triethyl amine are given by Timmermans (1907).

SOLUBILITY DATA, DETERMINED BY THE FREEZING-POINT METHOD (see footnote, p. i), ARE GIVEN FOR THE FOLLOWING MIXTURES:

Benzil -	+ Dibenzyl	(Vanstone, 1913.)
" -	+ Azobenzene	"
" .	+ Stilbene	44
	Hydrobenzoin	44
	+ Benzoin	(Beurath, 1912-13; Vanstone, 1909.)
" -	- Benzoic acid	(Kendall and Gibbons, 1915.)

BENZINE (Petroleum) C₅H₁₂C₆H₁₄.

100 parts of alcohol dissolve about 16 parts benzine of 0.638 o.660 Sp. Gr., at 25°.

BENZOIO ACID C.H.COOH.

SOLUBILITY IN WATER.

(Bourgoin - Ann. chim. phys. [5] 15, 171, '78.) Grams. C₆H₅COOH Grams. C.H.COOH

B*.	pu.	o ome.	b .	per roo onto.		
	Water.	Solution.		Water.	Solution.	
0	0.170	0.170	40	0.555	0.551	
IO	0.210	0.209	50	0.775	0.768	
20	0.290	0.289	60	1.155	1.142	
25	0.345	0.343	80	2.715	2.643	
30	0.410	0.408	100	5.875	5 · 549	

100 grams saturated aqueous solution contain 0.25 gm. C₆H₆COOH at 15°; 0.3426 gram at 25°; 0.353 gram at 26.4°; 0.667 gram at 45°; 5.875 gms. at 100

(Paul, 1894; Noyes and Chapin, 1898; Greenish and Smith, 1903; Hoffman and Langbeck, 1905; Lumsden, 1905; Philip, 1905; see also Alexejew, 1886; Ost, 1878; Vaubel, 1895; Freundlich and Seal, 1912.)

SOLUBILITY OF MIXTURES OF LIQUID BENZOIC ACID AND WATER. (Alexejew.)

Determinations by "Synthetic Method," see Note, p. 16. Figures read from curve.

Gms. C ₆ H ₆ COOH per 100 Gms.				Gms. C ₆ H ₅ C	Gms. C ₆ H ₅ COOH per 100 Gms.		
• .	Aq. Layer.	Benzoic Ac. Layer.	• .	Aq. Layer.	Benzoic Ac. Layer.		
70	6	83	100	12.0	69.0		
80	7 · 5	79.5	110	18.0	59.0		
90	8.5	76	116 (c	rit. temp.) 3	35		

SOLUBILITY OF BENZOIC ACID IN AQUEOUS SOLUTIONS OF: (Hoffman and Langbeck.)

	Potas	sium Chlor	ide at 25°.	Potassium Nitrate at 25°.			
Nor- mality	r- Gms. Dissolved C ₆ H ₅ COOH.		manty	Gms. KNO	Gms. Dissolved C ₆ H ₅ C		
of Aq.	per Liter.	Mol. Conc.	Wt. per cent.	of Aq. KNO ₃	per Liter.	Mol. Conc.	Wt. per cent.
0.02	1.49	5.0254-10	··· 0.339	0.02	2.02	5.0326-10	⁻⁴ 0.340
0.05	3.73	4.9801 "	0.333	0.05	5.06	5.0421 "	0.341
0.20	14.92	4 7639 "	0.322	0.20	20.24	5.0297 "	0.340
0.50	37.30	4. 3632 "	0.295	0.50	50.59	4 . 9400 "	0.334
				1.00	101 . 19	4 . 7646 "	0.322

SOLUBILITY OF BENZOIC ACID IN AQUEOUS SOLUTIONS OF: (Hoffmann and Langbeck.)

	Sodium	n Chlorid	e.	Sodium Nitrate.				
Nor- mality	Gms. NaCl	Gms. C ₆ H ₈ COOH per 100 Gms. Sol.		Nor- mality of Aq.	Gms. Na NO ₃	Gms. C ₆ H ₆ COOH per 100 Gms. Sol.		
of Ag. Na.Cl.	per Liter.	at 25°.	at 45°.	Na NO ₃ .	per Liter.	at 25°.	at 45°.	
0.00	0.00	0.340	o.667	0.02	1.70	0.340	0.666	
0.02	1.17	0.339	o . 663	0.05	8.51	0.339	0.663	
0.05	2.93	0.335	0.654	0.20	17.02	0.333	0.647	
0.20	11.70	0.336	0.617	0.50	42 - 54	0.319	0.613	
0.50	29.25	0.282	0.546	1.00	85.09	0.294	• • •	
1.00	58.50		0.449					

Solubility of Benzoic Acid in Aqueous Solutions of Sodium Acetate, Formate, Butyrate, and Salicylate.

(Noyes and Chapin - Z. physik. Chem. 27, 443, '98; Philip - J. Ch. Soc. 87, 992, '05.)

Grams		Grams	s C₀H₀COOH	per Liter of	Solution in:	
Sodium Salt per	CII2COONa.		HC	OONa.	CeH-COONs.	C.H.OH.COONs.
Liter.	At 25°.	At 26.4°.	At 25°.	At 26.4°.	At 26.4°.	Åt 26.4°.
0	3.41	3 · 53	3.41	3 · 53	3 · 53	3 · 53
I	4.65	4 · 75	4.25	4 · 35	4.50	3.62
2	5 · 70	5 .85	4 · 75	4.85	5 - 40	3.70
3	6.70	6.90	5.20	5.30	6.15	3.80
4	7.60	7.85	5.60	5.70	6.90	3.87
6	• • •	• • •	• • •	• • •	8.40	4.00
8	• • •	• • •	• • •		•	4.10

SOLUBILITY OF BENZOIC ACID IN AQUEOUS SOLUTIONS OF SODIUM MONO-CHLORACETATE, SODIUM SUCCINATE AND POTASSIUM FORMATE AT 25°. (Philip and Garner, 1909.)

In Aq. CH2ClCOONa.		In Aq. (CH2COONa)2. In Aq. 1		нсоок.		
Gms. per Li	ter Solution.	Gms. per Lite	er Solution.	Gms. per Liter Solution.		
CH ₂ ClCOONa	C ₄ H ₄ COOH.	(CH2COONa)1.	C ₄ H ₄ COOH.	HCOOK.	C.H.COOH.	
0	3.38	0	3.38	•	3.38	
1.375	3.684	1.182	4.087	1.025	4.087	
3.426	4.026	2.932	5.112	2.563	4.734	
6.839	4.417	5.848	6.564	5.124	5 - 503	
13.710	4.929	11.730	9.005			

The authors also obtained data for the solubility of benzoic acid in aqueous solutions of sodium acetate and sodium formate which agree closely with those quoted in the second table above.

100 cc. 90% ethylalcohol dissolve 36.1 gms. C_6H_6COOH at 15.5°. (Greenish & Smith, '03.) 100 cc. of a 1.0 n aqueous solution of aniline hydrochloride dissolve 0.537 gm. C_6H_6COOH at 25°. (Sidgwick, 1910.)

SOLUBILITY OF BENZOIC ACID IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL AT 25°.

(Seidell, 1908, 1910.) Gms. per 100 Gms Sat. Gms. per roo Gms. Sat. Sol. Wt. % C₂H₄OH Wt. % CaHaOH Sp. Gr. of Sat. Sol. Sp. Gr. of Sat. Sol. CaHaCOOH. in Solvent. in Solvent. C.H.OH. C.H.OH. C.H.COOH. 0 0.367 60 T 0 0.943 45.72 23.80 10 0.985 0.60 70 9.94 0.940 49.21 29.70 19.66 1.70 80 20 0.970 52.8 0.934 34 28.83 30 0.959 3.90 90 0.922 57.6 36 36.36 800.0 40 9.10 63.I 0.051 100 36.9 50 0.046 41.50 17

SOLUBILITY OF BENZOIC ACID IN 90% ALCOHOL, IN ETHER AND IN CHLOROFORM. (Bourgoin.)

Solvent.	t°.	Gms. CoHsCOOH per 100 Grams.		
	U	Solvent.	Solution.	
90% Akohol	15	41 .62	29.39	
Ether	15	31.35	23.86	
Chloroform	25	14.30	12.50	

SOLUBILITY OF BENZOIC ACID IN SEVERAL ALCOHOLS. (Timofeiew, 1894.)

Alcohol.	I. Gms. C ₆ H ₆ COOH per 100 Gms.		Alcohol.	to Gm	Gms. CeHsCOOH per 100 Gms.		
		Sat. Sol.	Solvent.	ALCOHOL.	t . —	Sat. Sol.	Solvent.
Methyl	 18	23.I	30	Propyl	— 18	14.5	16.9
"	-13	24.3	32.I	"	-13	15.7	18.5
66	+ 3	33 · 5	50.4	"	+ 3	23.I	30
66	19.2	40. I	67.1	66	19.2	28.2	39 · 3
"	23	41.7	71.5	66	23	29.8	42.3
Ethyl	—18	20.3	25.4	Isopropyl	21.2	32.7	48.5
"	-13	21.2	2 6.9	Allyl	21.2	25.1	33 · 4
"	+ 3	28.8	40.4	Isobutyl	0	15.3	18
66	19.2	34 · 4	52.4	Isoamyl	18	20.2	25.4
"	23	35.9	55.9	Capryllic	21.2	22.7	28.7
			•	Ethyleneglycol	18	8	8.60

Additional data agreeing closely with the above, are given by Timoseiew (1891) and Bourgoin (1878).

SOLUBILITY OF BENZOIC ACID IN AQUEOUS SOLUTIONS OF DEXTROSE. (Hoffman and Langbeck.)

Normality of	Gms. C ₆ H ₁₂ O ₆	Dissolved CoH ₅ CO	OH at 25°.	Dissolved CoH5COOH at 45°.		
Normality of Aq. Dextrose.	per Liter.	Mol. Conc.	Weight Per Cent.	Mol. Conc.	Weight Per Cent.	
0.02	3.67	5.0322.10-4	0.34	9.9088.10-4	0.674	
0.05	9.00	5.0403 "	0.34	9.9328 "	0.669	
0.204	36.73	5 .0303 "	0.34	9 · 9323 "	0.669	
0.533	96.15	5.0321 "	0.34	10.0101 "	0.674	
I .068	192 - 30	5.0443 "	0.341	10.0369 "	0.676	

SOLUBILITY OF BENZOIC ACID IN AQUEOUS SOLUTIONS OF URBA AND OF THIO URBA.
(Hoffman and Langbeck.)

	Normality of Solution.	Gms.	C ₆ H ₈ COOH Dissolved at 25°.
	of Solution.	per Liter.	Mol. Conc. Wt. per cent.
In Aqueous Urea	0.10	6.01 CO(NH ₂) ₂	5.1876.10-4 0.350
In Aqueous Thio Ures	0.20	15.23 CS(NH ₂) ₂	5.4994 " 0.372

Data for the system benzoic acid, succinic acid nitrile and water are given by Schreinemakers, 1898, and for the system benzoic acid, phenol and water by Timmermanns, 1907.

SOLUB	LITY OF BER	vzoic Acid in Benzene	AND	VICE VERSA.	(Roloff, 1895.)
ť.	Gms. CaHaCOOH	per Solid Phase.	to.	Gms. C ₄ H ₄ COOH 1 100 Gms. Sat. Sc	per Solid Phase.
5.37	0	C_6H_6	20	8.8	C ₆ H ₆ COOH
5	1.75	"	30	13	"
4.50	3.95	"	50	25	"
4.20	5	$C_6H_6+C_6H_6COOH$	70	43.5	"
5	5.05	C ₆ H ₆ COOH	90		66
7	5.50	"	IIO	91.5	"
9	5.70	"	121	100	**
II	6	66			

Von Euler and Löwenhamn (1916) found 7.76 gms. C_6H_6COOH per 100 cc. of sat. solution in benzene at 25°, and 7.76 gms. $C_6H_6COOH + 2.50$ gms. $C_6H_6OHCOOH$ o per 100 cc. of benzene solution saturated with both acids.

SOLUBILITY OF BENZOIC ACID IN ORGANIC SOLVENTS.

Solvent.	ť.	Gms. CaHaCOOH per 100 cc. Sat. Sol.	Solvent.	t°.	d _m of Sat. Solution.	Gms. CsHsCOOH per 100 Gms. Sat. Sol.
Aq. 75% Acetic Acid	14-16	10.92 (1)		25	0.875	32.37 (6)
Benzene	14-16	7.04 (1)	Amyl Acetate	25	0.912	22 (6)
Carbon Disulfide	14-16	4.24 (1)	Alcohol (Abs.)	25	0.908	58.40 (6)
Carbon Tetrachloride	14-16	4.50 (1)	Benzene	25	0.897	12.23 (6)
44	25	6.70 (2)	Chloroform	25	1.456	15.14 (6)
46	26	6.58 (3)	Carbon Tetrachloride	25	1.564	4.18 (6)
Chloroform	25	18.03 (2)	Carbon Disulfide	25	1.282	4.82 (6)
Ethyl Ether	14-16	39.80 (1)	Cumene	25	0.006	8.59 (6)
Glycerol	15-16		Ethyl Ether (Abs.)	25		46.74 (6)
Ligroin	14-16	0.72 (1)	Ligroin	25	0.720	1.75 (6)
Petroleum Ether †	26	0.98 (3)	Naphtha	25	0.730	2.65 (6)
Pentachlor Ethane	25	10.02 (2)	Nitrobenzene	25	1.225	10.05 (6)
Tetrachlor Ethane	25	15.17 (2)	Toluene	25	0.884	10.60 (6)
Tetrachlor Ethylene	25	8.06 (2)	Spts. Turpentine	25	0.850	5.00 (6)
Trichlor Ethylene	25	13.62 (2)	Water	25	1	0.368(6)
"	15	6.44*(5)	Xylene	25	0.877	9.71 (6)
Dichlor Ethylene	15	9.67*(5)	•	•	••	,, ,,

^{• =} Gms. C₄H₄COOH per 100 gms. sat. sol. † (B. pt. 30-70.)

(1) Bornwater and Holleman (1912); (2) Hers and Rathmann (1913); (3) de Jong (1909); (4) Ossendowski (1907); (5) Wester and Bruins (1914); (6) Seidell (1910).

One liter sat. sol. of benzoic acid in ethyl acetate contains 8 gms. at -6.5°, 37.7 gms. at 21.5° and 95.7 gms. at 75°.

(Lloyd, 1918.)

SOLUBILITY OF BENZOIC ACID IN MIXTURES OF ORGANIC SOLVENTS AT 25°. (Marden and Dover, 1916.)

		tate	of Ethyl Ace- Benzene.
Gms. % CaHs in Solvent.	Gms. C ₆ H ₆ COOH per 100 Gms. Solvent.	% CaHa in Solvent.	Gms. C ₄ H ₅ COOH per 100 Gms. Solvent.
.4 100	11.6	100	11.6
90	18.3	90	14
. 1 80	24.I	80	16.5
.6 70	31	70	20
.2 60	33 · 5	60	20.4
.8 50	37	50	22
.6 40	42.2	40	23.9
.8 30	47	30	26.5
.6 20	49	20	29
.2 10	51.3	10	28.2
.0 0	55.6	0	41.2
	n. +1 LCOOH Gms. % CaHs in Solvent. 4 100 90 .1 80 .6 70 .2 60 .8 50 .6 40 .8 30 .6 20 .2 10	## Henzene. ### Cool	m. + Benzene. tate - LCOOH (Gms. Solvent. Solvent. Solvent. Solvent. Solvent. 1.4 100 11.6 100 18.3 90 18.3 90 1.1 80 24.1 80 2.2 60 33.5 60 2.8 50 37 50 2.6 40 42.2 40 2.8 30 47 30 2.6 20 49 20 2.2 10 51.3 10

^{*} This is probably a mistake in the original and should be %(CaHa):O in Solvent.

SOLUBILITY DATA, DETERMINED BY THE FREEZING-POINT METHOD (see footnote, p. 1), ARE GIVEN FOR MIXTURES OF BENZOIC ACID AND EACH OF THE FOLLOWING COMPOUNDS:

o Chlorobenzoic Ac	[] (Bornwater and Holleman,	Piperonal Pyridine	(Kendall and Gibbons, 1915.) (Baskov, 1914.)
b " '	(1912.)	Salicylic Acid	
m Nitrobenzoic Acid			Nitrile (Schreinemakers, 1898.)
Benzil	(Kendall and Gibbons, 1915.)		(Kendall and Carpenter, 1914.)
Camphor	(Journiaux, 1912.)	o Toluic Acid	(Kendall, 1914.)
Cinnamic Acid	(Kachler, 1870; Kendall, 1914.)	o Toluidine	(Baskov, 1913.)
	(Kendall, 1914.)	p · "	(Baskov, 1913; Vignon, 1891.)
Fluorobenzoic Acid		-	•

DISTRIBUTION OF BENZOIC ACID BETWEEN WATER AND BENZENE:

(Hendrix Gms. Ca	10°. on, 1897.) HsCOOH oo cc.	Gms. Cal	20°. 1, 1891.) H4COOH 00 cc.	Gms.	At 25°. (Farmer, 1903.) Gms. CaHaCOOH per 100 cc.		At 40°. (Hendrixon, 1897.) Gms. C ₄ H ₅ COOH per 100 cc.	
H ₃ O. Layer. 0.0215 0.0412 0.0562 0.0890 0.1215 0.1409	CaHa Layer. 0.0725 0.2363 0.4422 1.0889 2.0272 2.7426	H ₈ O. Layer. 0.0163 0.0244 0.0452 0.0788 0.1500 0.2890	CeHs. Layer. 0.0535 0.099 0.273 0.737 2.42 9.70	0.2002 0.2012 0.2020	2 (0.1891*) 2 (0.1902*)	CaHa Layer. 3·335 3·329 3.319	H ₈ O Layer. 0.0238 0.0404 0.0837 0.1155 0.1715	CeHs Layer. 0.0714 0.1637 0.5740 1.0269 2.1420 3.9167

DISTRIBUTION OF BENZOIC ACID BETWEEN BENZENE AND AQUEOUS POTASSIUM BENZOATE SOLUTIONS AT 25°. (Farmer, 1903.)

Gms. Mols. CaHaCOOK per Liter Aq. Sol.	Gm. Mols. CaHa	COOH per Liter.	Gms. C ₆ H ₆ COOK per Liter Aq.	Gms. CaHaCOOH per liter.		
Liter Aq. Sol.	Aq. Layer.	CaHa Layer.	Sol.	Aq. Layer.	CaHe Layer.	
0.0093	0.01587	0.2776	1.341	1.937	· 33.88	
0.028	0.01597	0.2768	4.035	1.950	33.79	
0.047	0.01603	0.2762	6.774	1.956	33.71	

DISTRIBUTION OF BENZOIC ACID BETWEEN:

	and Chloroform.		897.) Wate 40°.	er and CCL. At	
Gms. CeHeCO	OH per 100 cc.	Gms. CaHaCO	OH per 100 cc.	Gms. CaHaCO	OH per 100 cc.
H ₂ O Layer.	CaHa Layer.	H ₂ O Layer.	CaHa Layer.	H _s O Layer.	CCh Layer.
0.0208	0.0915	0.0258	0.0880	0.134	0.830
0.0269	0.1518	0.0432	0.2059	0.291	4.41
0.0327	0.2170	0.0885	0.6961		
0.1057	2.0030	0.1553	2.0435		

The coefficient of distribution of benzoic acid between olive oil and water at 25° is given by Boeseken and Waterman (1911) as 12.6.

AminoBENZOIC ACID (a) C4H4.NH2.COOH.

SOLUBILITY OF O AMINOBENZOIC ACID IN WATER. (Lunden, 1905-06.)

ť.	Sp. Gr. G Sat. Sol.	ms. C4N4NH2COOH(0) per 100 cc. Sat. Sol.	t°.	Sp. Gr. Sat. Sol.	Gms. CaH4NH2COOH(0) per 100 cc. Sat. Sol
25	0.999	0.519	34.9	0.998	0.731
26.I	• • •	0.540	35	0.997	0.744
28. I		0.570	39.8	0.997	0.889

SOLUBILITY OF AMINOBENZOIC ACID IN AQUEOUS SALT SOLUTIONS AT 25°. (Lunden, 1905-06.)

Normality of Salt Solution.	Sp. Gr. (Sat. Solution.	Gms. C4H4NH4COOH per 100 cc. Sat. Solution.	Caladia	Sp. Gr. Sat. Solution.	Coons. Coons C
$0.768 \frac{1}{2} Ba(NO_3)_2$	1.080	0.634	2.633 KNO ₃	1.155	0.501
0.507 "	1.052	0.603	1.372 "	1.083	0.544
0.3427 "	1.037	0.585	0.598 "	1.033	0.549
0.1780 "	810. I	0.555	1.853 KI	1.221	0.541
0.1545 "	1.015	0.549	0.946"	1.114	0.559
			0.560 "	1.068	0.556

The author also gives additional data for aqueous salt solutions at 28.1°. Additional data for the solubility of aminobenzoic acid in aqueous salt solutions are given by Euler (1916).

AminoBENZOIC ACID C6H4.NH2.COOH (m).

SOLUBILITY IN WATER AND IN OTHER SOLVENTS. (de Coninck -- Compt. rend. 116, 758, '93.)

	In Water.	In Organic Sol	Organic Solvents.				
t* .	Gms. C ₆ H ₄ .NH ₂ .COOH(m) per 100 cc. H ₂ O.	Solvent.	t°.	Gms. C ₄ H ₄ .NH ₂ .COOH(m) per 100 cc. Solvent.			
0	0.43	Ethyl Alcohol (95%)	12.5	2.02			
10	0.52	Methyl Alcohol (pure)	10.5	4.05			
20	o · 67	Acetone	11.3	6.22			
30	o ·87	Methyl Iodide	10.0	0.04			
40	1.15	Ethyl Iodide	0.0	0.02			
50	1.50	Chloroform	12.0	0.07			
60	2.15	Bromoform	8.0	trace			
70	3.15	•					

MUTUAL SOLUBILITY OF AMINOBENZOIC ACIDS AND WATER AT HIGH TEMPERA-TURES, DETERMINED BY THE SYNTHETIC METHOD. (Flaschner and Rankin, 1910.)

MIXTURES OF O ACID and H ₂ O.			res of m Acid and H ₂ O.	Mixtures of p acid and H ₂ O.		
to of Melting.	Gms. o Acid per 200 Gms. Mixture.	t° of Melting.	Gms. # Acid per roo Gms. Mixture.	t° of Melting.	Gms. p Acid per 100 Gms. Mixture	
83.6	4.8		t. sol. temp.		it. sol. temp.	
95.8	9.9	77.8	4.6	82.2	5	
101.4	18.5	90	5.8	90	7.1	
103.4	30.6	100	9.7	100	15.8	
104.4	38	110	20.2	105	22	
105	49.4	120	51.2	IIO	32.3	
105.6	59 · 4	130	73 · 7	116	51.8	
107.8	69.7	140	83. 7	120	62	
112	8o	150	90.7	130	77	
116.2	87.2	160	95.8	150	91. 1	
128.4	95	170	99.2	170	98	
144.6	100	174.4	100	186	100	

 t^o reading, for critical saturation and for separating, also given in the case of the o acid.

Data for the distribution of o aminobenzoic acid between water and benzene at 25° are given by Farmer and Warth (1904).

Aminonitro BENZOIC ACIDS C. H. NO. NH2. COOH o, m and p.

SOLUBILITY OF THE THREE ISOMERIC AMINONITROBENZOIC ACIDS:

r . 2.7	Gms. CeHs.NO	In Ether. Gms. CaHa-NO ₃ -NH ₂ -COOH per 100 cc. Ether.			n Ethyl Alcohol (90%). Gms. CaHaNO, NHa COOH per 100 cc. Alcohol.		
	Ortho. 10.84	Meta. I.70	Para. 6.41	t. 2	Ortho. 8.13	Meta. I.70	Para. 8.4
5.8	16.05 (6.8°)	1.81	8.21	9.6	10.70	2.20	11.3

SOLUBILITY IN WATER OF THE THREE ISOMERIC: (Vaubel, 1895.)

			(,	33.7			
Aminobenzo Sulphonic Acids.					A:	mino Phenols.	
5° .	G. CaHa.	NH ₂ .SO ₂ H ₁ pe	er 100 G. Aq. Sol.	40	G. CaHa(OH).NH ₂ per 100 G	. Aq. Sol.
•,	Ortho.	Meta.	Para.	• .	Ortho.	Meta.	Para.
7	T.06	1.276	0.502 (6°)	0	I.7	2.6 (20°)	1.1

Brom, Chlor and IodoBENZOIC ACIDS.

2.0m) Omo and 1000		•		
Solubility i	n Water at 25°	. (Paul, 189		1898; Vaubel, 1895.) Aqueous Solution.
Compound.	Formula.	•	Grams.	Gram Mol.
Brombenzoic Acid	C ₆ H ₄ Br.COOH	(ortho)	1.856	0.00924
Brombenzoic Acid	C ₆ H ₄ Br.COOH		0.402	0.00200
Brombenzoic Acid	C ₆ H ₄ Br.COOH		0.056	0.00028
Chlorbenzoic Acid	C ₆ H ₄ Cl.COOH	(ortho)	2.087	0.01333
Iodobenzoic Acid	C ₆ H ₄ I.COOH	(ortho)	0.952	0.00384
Iodobenzoic Acid	C.H.I.COOH	(meta)	0.116	0.00047
Iodobenzoic Acid	C ₆ H ₄ I.COOH	(para)	0.027	(Koopal, 1912.)
The	following results a	at 28°. (Si	eger, 1912.)	
Chlorobenzoic acid	C ₆ H ₄ ClCOOH	(ortho)	2.25	• • •
"	"	(meta)	0.45	• • •
"	"	(para)	0.093	• • •
MUTUAL SOLUBILITY OF TEMPERATURES, DETER				
	hlorobenzoic	m Chlorob		Chlorobenzoic
	aid + Water.	Acid + V		Acid + Water.
to of Gms. Acid to of Melting. Mixture. Melting.	Gms. Acid per 100 Gms. Mixture.	t° of Melting.	Gms. Acid per 100 Gms. M Mixture.	to of Gms. Acid per 100 Gms. elting. Mixture.
170 (Crit. sol. temp.) 100.	8 5.5	123	4.2	(67 (crit. t.)

5.5 123.8 169 18.9 162 102.7 10 3 6.2 142.8(crit.t.) 34.3 180 104 20 170 5.4 75.8 100 10.5 126.2(crit.t.) 34.9 123.8 180 10 196 104 76 125 81.5 183 27 14.5 61 87.5 200 110 85.3 184 130 21.5 80 187 210 120 140 92 93.2 47 88.3 220 130 96.5 150 200 97.5 79.5 96.9 156 220 240 139.5 100 100 92 100 254 100 240

SOLUBILITY OF ORTHOCHLOROBENZOIC ACID IN AQ. SOLUTIONS OF SODIUM ACE-TATE, SODIUM FORMATE AND POTASSIUM FORMATE AT 25°. (Philip and Garner, 1909.)

In Aq. CH ₂ COONa. Grams per Liter.			HCOONa. per Liter.	In Aq. HCOOK. Grams per Liter.		
CH4COONs.	C.H.CICOOH.	HCOONs.	C.H.CICOOH.	HCOOK.	C.H.CICOOH.	
1.009	3 · 599	0.843	3.381	0	2.128	
2.484	6.181	2.102	5.258	1.025	3.396	
5.027	15.60	4.196	7.637	2.563	5.226	
10.07	18.27	8.410	11.02	5.124	7 · 543	

SOLUBILITY OF CHLOROBENZOIC ACIDS IN SEVERAL SOLVENTS AT 14-16°. (Bornwater and Holleman, 1912.)

Solvent.	Gms. per 100 cc. Sat. Solution.						
Solvent.	CHCICOOH.	# CaHaCICOOH.	& C.H.CICOOH.				
Ligroin	0.07	0.084	trace				
Carbon Tetrachloride	0.58	0.48	0.04				
Benzene	0.92	0.66	0.017				
Carbon Disulfide	0.52	0.62	0.01Ď				
75% Aq. Acetic Acid	6.22	• • •	0.32				
Ethyl Ether	16.96	14	I.72				
Acetone	28.42	•••	2.58				
Ethyl Acetate	13.20	•••	1.Ğ4				

Freezing-point data are given by Bornwater and Holleman (1912) for mixtures of o, m and p chlorobenzoic acids.

!

FluoroBENZOIC ACIDS C.H.FCOOH.

100 cc.	aqueous	solution	saturated	at 32°	contain	0.882	gm.	0	C ₄ H ₄ F.COOH.
**	- 46	44	44	11	**	0.308	-11	111	44
44	46	44	44	66	44	0.107	46	b	44
						,		•	(Slothouwer, 1914.)

IodoBENZOIC ACID p C.H.ICOOH.

MUTUAL SOLUBILITY OF PARA IODOBENZOIC ACID AND WATER AT HIGH TEM-PERATURES DETERMINED BY THE SYNTHETIC METHOD. (Flaschner and Rankin, 1910.)

to of Melting.	Gms. Acid per 100 Gms. Mixture.	t° of Melting.	Gms. Acid per 100 Gms. Mixture.	t° of Melting.	Gms. Acid per 100 Gms. Mixture.
175 crit. sol	. t.	207	22	230	87.4
178	3	210	4 I	240	92.7
190	5.8	215	63.5	269	98.1
200	10	220	77	270	100

p Iodo Bromo and ChloroBENZOIC ACID Methyl Esters.

FREEZING-POINT DATA (Solubility, see footnote, p. 1) ARE GIVEN FOR THE FOLLOWING MIXTURES. (Jaeger, 1906.)

- p Chlorobenzoic methyl ester + p Bromobenzoic methyl ester. + p Iodobenzoic + p Bromobenzoic **⊅** Iodobenzoic
- HexahydroBENZOIC ACID CH2(CH2.CH2)2.CH.COOH.

100 gms. H₂O dissolve 0.201 gm. of the acid at 15°, d. saturated solution = 1.048. (Lumsden, 1905.)

HydroxyBENZOIC ACIDS m and p (o = Salicylic Acid, see p. 588).

SOLUBILITY OF META AND PARA HYDROXYBENZOIC ACIDS IN WATER. BENZENE, ETC. (Walker and Wood, 1898.)

in Water.			In Benzene.			
t*.		OH.COOH Sms. H ₂ O.	Gms. C ₆ H ₄ .OH.COOH per 100 Gms. C ₆ H ₆ .			
	Meta.	Para.	Meta.	Para.		
IO	0.55	0.25	• • •	8100.0		
20	0.90	0.50	0.008	0.0027		
25	I.08	0.65	0.010	0.0035		
30	I.34	0.81	0.012	0.0045		
35	1.64	I .0I	0.015	o.0060		
40	2.10	I . 24	0.017	0.0082		
50	3.10	2.12	0.028	0.0162		
60	• • • •	• • •	0.047	0.028		
8o		• • •	•••	0.066		

In Acetone.			In Ether.			
G, C ₆ H ₄ .OH.COOH per 100 cc. Sol.		s•.	G. C ₆ H ₄ .OH.COOH per 100 ₂ cc. Sol.			
	Meta.	Para.		Meta.	Para.	
23	26.0	22.7	17	9 · 73	9 · 43	

100 gms. sat. sol. in H₂O contain 0.7 gm. m acid at 15° and 4 gms. at 50°.

0.44 " 53.58 " " 44 44 171 236.22 " p " (Savorro, 1914.) 95% formic acid dissolve 2.37 gms. m acid at 20.8°. (Aschan, 1913.) MUTUAL SOLUBILITY OF META AND PARA OXYBENZOIC ACIDS AND WATER AND OF PARAMETHOXYBENZOIC ACID AND WATER AT HIGH TEMPERATURES, DE-TERMINED BY THE SYNTHETIC METHOD. (Flaschner and Rankin, 1910.)

Meta Oxybenzoic Acid Para Oxybenzoic Acid Para Methoxybenzoic ∔H**₂**Ο. ∔H₃O. Acid $+ H_2O$. Gms. Acid per 100 Gms. Mixture. Gms. Acid per' 100 Gms. Mixture. Gms. Acid per t° of t° of t° of 100 Gms. Mixture. Melting. Melting. Melting. 78.2 138.2 crit. sol. t. 9.9 77 TO 90.8 140 20 **19.8** 90 9 98 30 97.4 29.5 142 12 103.2 39.8 18 104.4 40.I 144 108.8 8.111 49 50 145 30 119.2 60 120 59.6 146 59.4 70 60.2 131.4 134 150 73.3 80 160 143.4 77.9 154.4 8g.8 90.8 180.6 170 95.6 175.6 90.4 184 100 199.8 100 213 100

Readings for to of critical saturation obtained by cooling from to of melting, are also given by the authors.

Coefficients of distribution of oxybenzoic acids between water and olive oil are given by Boeseken and Waterman (1911) as follows: p oxybenzoic acid, 0.6; m oxybenzoic acid, 0.4; 2.4 dioxybenzoic acid, 1.0; 2.5 dioxybenzoic acid, 0.3; 3.4 dioxybenzoic acid, 0.05; 3.4.5 trioxybenzoic acid 0.025.

Methyl**BENZOIC ACIDS** $C_6H_4COOH.CH_2$. o, m, and p.

SOLUBILITY IN WATER. (Vauhel, 1805.)

t*.	Gms. CeH4CO	OH.CHa per 1000 Gm	s. Sat. Solution.
	Ortho	Meta.	Para.
25	1.18	o. 98	0.35

NitroBENZOIC ACIDS C4H4.NO2.COOH. o, m, and p.

SOLUBILITY IN SEVERAL SOLVENTS.

(de Connick, 1894; for solubility in H₂O, see also Paul; Vaubel; Löwenherz; Goldschmidt, 1898; Holleman, 1898; Noyes and Sammet, 1903; Sidgwick, 1910.)

Solvent.		Gms. CaH4.N	102.COOH per 100 0	c. Solvent.
	t°.	Ortho.	Meta.	Para.
Water	15	0.625	0.238	0.0213
66	20	0.682 (0.645G.)	0.315	0.039
44	25	0.738 (0.779G.)	0.341	0.028 (0.045)
46	30	0.922 (0.922G.)	•••	•••
"	35	1.141 (1.054)	0.477	0.0419
Methyl Alcohol	10	42.72	47.34	9.6
Ethyl Alcohol	10	28.2	33.1 (11.7°)	0.9
" " (abs.)	15	37 · 58*	47.26*	19.71*
" " (33 Vol.%)	15	0.64 (11.8°)	0.52	0.055
Acetone	10	41.5	41.5	4 · 54
Benzene_	10	0.294	0.795	0.017 (12.5°)
Carbon Disulfide	10	0.012	0.10 (8.5°)	0.007
Chloroform	IO	0.455 (11°)	5.678	0.066
**	15	1.06†	3·45†	0.088†
"	25	1.13†	4 - 7†	0.114†
	35	I.59 [†]	6.31†	0.156†
Ether	10	21.58	25.175	2.26
Ligröin	10	trace	0.013	0

Gms. acid per 100 cc. saturated solution. † = Gms. acid per 100 gms. solvent.

SOLUBILITY OF ORTHO NITROBENZOIC ACID IN WATER. (Noyes and Sammet, 1903.)

40	C.H.NO.COOH	o per Liter Sol.	ť.	CaHANO: COOH	COOH o per Liter Sol.		
t°.	Millimols.	Grams.	• •	Millimols.	Grams.		
10	26.62	4.645	25	43 · 3	7.231		
15	31.06	5.187	30	51.6	8.616		
20	36.57	6.106	_				

Additional determinations by other investigators, in millimols C₆H₄NO₂COOH o per liter at 25°, are: 46.5 (van Maarseveen, 1898); 44.19 (Paul, 1894); 42.3 (Holleman, 1898); 43.6 (Kendall, 1911).

SOLUBILITY OF ORTHO, META AND PARA NITROBENZOIC ACIDS IN WATER AT HIGH TEMPERATURES, DETERMINED BY THE SYNTHETIC METHOD. (Flaschner and Rankin, 1910.)

o C ₆ H ₄ NO ₂ C	00H+H 2 0	. mCi	H₄NO₃COOH	[+H₂O. <i>‡</i>	C ₄ H ₄ NO ₂ C(0.1+HOC
t° of	Gms. Acid per 100 Gms.		t° of:	Gms. Acid per 100 Gms.	t° of	Gms. Acid
Melting.	Sat. Sol.	Melting.	Solution	Sat. Sol.	Melting.	per 100 Gms. Sat. Sol.
52 crit. t.	• • •	63.2	• • •	2	118 crit. t	• •••
69	5	77 - 4	• • •	6	143	5
75	9.9	77 - 4	90	7	150	9
75 78 .	13.5	77 - 4	100	10.5	1 55	14.5
79 80	49.5	77 - 4	105	17	160	30
	62	77 - 4	107 . 5 crit.	t. 30	165	53 - 5
85	73 · 5	77 - 4	106	50	170	65. 5
90	7 8.6	77 - 4	100	58.6	180	76.7
100	83.5	77 - 4	90	65.4	190 ´	83.2
120	94	80	• • •	74	200	88
148	100	100	• • •	88.5	220	195.2
		120	• • •	96.8	237	100
		140.4		100		

Data for the solubility of mixtures of o, m and p nitrobenzoic acids in water at 24.4° are given by Holleman (1898).

SOLUBILITY OF ORTHO NITROBENZOIC ACID IN AQUEOUS SOLUTIONS OF HYDROCHLORIC, FORMIC, MALONIC AND SALICYLIC ACIDS AT 25°. (Kendall, 1911.)

Solvent.	Normality of Solvent.	Gms. o CaHaNOnCOOH per Liter Sat. Solution.	Solvent.	Normality of Solvent.	Gms. o CaHaNO2.COOH per Liter Sat. Solution.
HCl	0.0179	6.146	CH ₂ (COOH) ₂	0	7.281
"	0.0357	5.661	"	0.0313	7.144
"	0.125	4.976	"	0.1001	6.934
"	0.250	4.997	"	0.2004	6.656
"	0.500	4.752	C ₄ H ₄ (OH)COOH	0.0094	7.276
HCOOH	0.0517	7.188	"	0.0136	7.352
"	0.0998	7.124	"	0.0162	7.369

SOLUBILITY OF ORTHO NITROBENZOIC ACID IN AQUEOUS SOLUTIONS OF DEXTROSE, SODIUM CHLORIDE, AND OF SODIUM NITRATE.

Original results in molecular quantities. (Hoffman and Langbeck, 1905).

In Dextrose. In NaCl. 'In NaNO.

G. C ₆ H ₁₂ O ₆ per 100 cc. Solution.	G.(0)CoH41 per 100 g At 25°.	NO2.COOH Solvent.	G. NaCl. per 100 cc. Solution.	G.(e)CeHal per 100 g At 25°.	NO2.COOI . Solvent. At 35°.	H G.NaNOs per 100 cc. Solution.	G.(e)CeH. per 100 At 25°.	NO2.COOH g. Solvent.
0.0	0.736	1.063	0.117	0.743	1.072	0.170	0.746	1.074
0.36	0.736	1.064	0.195	0.746	1.075	0.284	0.754	o80. 1
1.80	0.732	1.061	0.585	0.749	1.070	0.851	0.767	1.096
						4.255		
20.00	0.703	1.030	5.80	0.597	0.831	8.510	0.748	I .047

SOLUBILITY OF ORTHO NITROBENZOIC ACID IN AQUEOUS SOLUTIONS OF SODIUM BUTYRATE, ACETATE, FORMATE, AND SALICYLATE AT 26.4°.

(Philip, 1905.)

Original results in terms of $\frac{\text{Mols.}}{100}$ per liter.

Gms. Na Salt	Gass. Or	Gms. Ortho CoHcCOOH.NOs per Liter of Solution in:					
per Liter.	C.H.COONs.	CH ₂ COONa.	HCOONs.	C.H.OH.COONs.			
0	7.85	7.85	7.85	7.85			
0.5	8.35	8.50	8.60	8.35			
1.0	8.90	9.15	9.50	8.70			
2	10.0	10.80	11.5	9.4			
3	11.2	12.55	13.5	0.11			
4	12.4	14.5	15.6	11.5			
6	15.2	• • •	• • •				

SOLUBILITY OF ORTHO NITROBENZOIC ACID IN SEVERAL ALCOHOLS. (Timofelew, 1894.)

Solvent. to.		Gms. Acid per 100 Gms.		Solvent.		Gms. Acid per 100 Gms. Sat. Sol. Solvent.	
Solvent.	• •		Solvent.	Suvent.	•	Sat. Sol.	Solvent.
	. 0	36.2	56.6	C ₂ H ₇ OH	0	17.7	21.5
"	22		109.1	"	22	31.2	45.5
C ₂ H ₅ OH	0	23.3	30.4	(CH ₂) ₂ CH.CH ₂ OH	0	9.65	10.7
"	22	42.7	74.5				

Freezing-point data for mixtures of o nitrobenzoic acid and dimethylpyrone are given by Kendall (1914a).

SOLUBILITY OF META NITROBENZOIC ACID IN SEVERAL ALCOHOLS. (Timofeiew, 1894.)

Solvent.	ť.	Gms. Acid per 100 Gms.		Solvent.	t°.	Gms. Acid per 100 Gms	
Solvent.	٠.	Sat. Sol.	Solvent.	Solvent.	6.	Sat. Sol.	Solvent.
CH ₂ OH	0	41.9	72.2	C ₂ H ₄ OH	21.5	43.9	89.8
"	19	53 · 7	116	C ₂ H ₇ OH	0	24 · I	31.8
"	21.5	57 · I	133.I	"	19	31	45
C ₂ H ₂ OH	0	33.6	50.6	"	21.5	32.5	48
"	19	42.3	73.2				

SOLUBILITY OF META NITROBENZOIC ACID IN AQUEOUS SOLUTIONS OF SODIUM ACETATE, SODIUM FORMATE, SODIUM MONOCHLORACETATE AND POTASSIUM FORMATE AT 25°.

(Philip and Gamer, 1909.)

In HCOOK. In CH₂COONa. In HCOONa. In CH₂ClCOONa. Gms. per Liter. Gms. per Liter. Gms. per Liter. Gms. per Liter. HCOOK. # C.H.NO. CH,-COONs. SS CaHaNOs-COOH. HCOONa. ** CaHaNOr COOH. CH₂Cl-# C.H.NO. COONs. 0 3.424 0 3.424 3.424 3.424 0.843 1.000 5.144 4.776 1.375 4.075 1.025 4.742 4.876 2.484 7.932 2.IO2 6.380 3.426 2.563 6.446 5.027 12.61 4.196 8.616 6.839 5.861 5.124 8.551 10.07 20.77 8.410 11.90 13.710 7.264

SOLUBILITY OF PARA NITRO BENZOIC ACID IN AQUBOUS SOLUTIONS OF ANILIN AND OF PARA TOLUIDIN AT 25°. (Löwenhers - Z. physik. Chem. 25, 395, '98.)

In Anilin.

In p-Toluidin.

	ls. per Liter.		er Liter.		. per Liter.	Gms. per	
C.H.NH.	Cooh.	C _e H _e NH _e	Coon.	CH,NH ₃ - CH ₃ .	Cooh.	CH ₃ .	COOH.
0.0	0.00164	0.0	0.274	0.0	0.00164	0.0	0.274
0.01	0.00841	0.91	1.406	0.01	0.0100	1.071	1.671
0.02	0.01379		2.304	0.02	0.0174	2.142	2.902
0.04	0.02172	3.64	3.629	0.03	0.0245	3.213	4.097
o . 08	0.0347	7 - 29	5 · 798				

1000 cc. of sat. solution of para nitrobenzoic acid in aqueous I normal sodium para nitrobenzoate contain 0.0046 gm. mols. = 0.768 gm. pC₄H₄NO₂COOH at 25°. (Sidgwick, 1910.)

SOLUBILITY OF PARA NITROBENZOIC ACID IN SEVERAL ALCOHOLS. (Timofeiew, 1894.)

Solvent.	t°.	Gms. Acid per 100 Gms.		Solvent.	ť.	Gms. Acid per 100 Gms.	
Solvent.	• .	Sat. Sol.	Solvent.	Solvent.	• .	Sat. Sol.	Solvent.
CH ₂ OH	18.5	3 · 45	3 · 57	C ₂ H ₅ OH	21	3.22	3.32
"	21	3.75	3.90	C ₂ H ₇ OH	18.5	2.I2	2.17
С₄Ң₀ОН	18.5	3.25	3.36	"	19.5	1.85	1.90
"	19.5	3.16	3.26	"	21	2.29	2.34

DinitroBENZOIC ACIDS C4H4(NO2)2COOH. 1.3.5 and 1.2.4.

SOLUBILITY OF 3.5 AND OF 2.4 DINITROBENZOIC ACIDS IN AQUEOUS SOLUTIONS OF SODIUM ACETATE AT 25°.

(Philip and Garner, 1909.)

Gms. per	roo cc. Sat. Sol.	Gms. per 1	oo cc. Sat. Sol.
CH4COONs.	3.5CaHa(NOa)2COOH.	CH4COONs.	2.4C4H4(NO2)3COOH.
0	0.1314	0	0.0572
0.0976	0.3392	0.0976	0.2056
0.2428	0.6720	0.2428	0.3434
0.4846	1.201	0.4846	0.5023
9 .9718	2.115	0.9718	0.7440

Data for the solubility of 1.3.5 dinitrobenzoic acid in water and aqueous solutions of KCl, NaCl, KNO₃ and NaNO₃, and for its distribution between water and benzene at 25°, are given by B. de Szyszkowski (1915).

SOLUBILITY OF 1.3.5 DINITROBENZOIC ACID IN WATER AT HIGH TEMPERATURES. DETERMINED BY THE SYNTHETIC METHOD.

(Flaschner and Rankin, 1910.)

r.	Gms. Acid per 100 Gms. Sol.	ť.	Gms. Acid per 100 Gms. Sel.	ť.	Gms. Acid per 100 Gms. Sol.
123.8 cri	t. t	123	66.5	160	90.9
113	4.4	125	72.7	180	95
120	9.3	130	79 · 3	200	99
121	14.5	140	85.7	206	100
122	40	150	89		

SOLUBILITY OF NITROBROMOBENZOIC ACIDS AND OF NITROCHLOROBENZOIC ACIDS IN WATER AT 25°.

(Holleman, 1910.)

Acid.	Gms. Acid per 100 cc. Sol.	Acid.	Gens. Acid per 100 cc. Sol.
C.H.COOH.NO.Br 1.2.3		C ₆ H ₄ COOH.NO ₂ Cl 1.2.3	
C ₄ H ₂ COOH.NO ₂ .Br 1.2.5	0.741	C ₄ H ₄ COOH.NO ₂ .Cl 1.2.5	0.967

Holleman also gives data for the solubility of various mixtures of the above two bromo compounds and of the two chloro compounds and uses the results for estimating the quantity of each in an unknown mixture.

Dinitro p oxyBENZOIC ACID C4H2OH(NO2)2COOH.

SOLUBILITY OF MIXTURES OF DINITRO PARA OXYBENZOIC ACID AND OTHER COMPOUNDS IN ABSOLUTE ETHYL ALCOHOL AT 29.6°.

(Morgenstern, 1911)

Dinit Acid	tro p Oxy + Phena	ybenzoic inthrene.	Dinitro p Oxybenzoic Acid + Fluorene.		enzoic ene.	Dinitro p Oxybenzo Acid + Retene.		nzoic ie.
Gms. per 100 gms. Sat. Sol. Solid Phase.		Gms. per 100 Gms. Sat. Sol.		Solid	Gms. per 100 Gms. Sat. Sol.		Solid	
Acid.	Phenan- threne.		Acid.	Fluorene.	Phase.	Acid.	Retene.	Phase.
2.0483	0.1333	Acid	2.0440	0.1232	Acid	2.0232	0	Acid
2.0776	0.2796	"	2.0823	0.3484	"	2.0484	0.1236	"
2.1249	0.5267	"	2.1045	0.4824	"	2.0933	0.3446	"
2.2195	1.0311	"	2.1744	0.8960	**	2.1276	0.5162	"
2.2883	1.4310	"	2.2618	1.4308	"	2.2346	1.0489	"
1.2171	6.0092	Phenanthrene	1.0490	3.8618	Fluorene	2.3034	1.3634	"
o.8681	5.8300	**	0.8004	3.7566	"	1.9664	3.3698	Retene
0.6017	5.6890	**	0.5620	3.6532	"	0.7830	3.0032	**
0.3487	5.5619	"	0.3900	3.5811	"	0.5597	2.9331	"
0.2157	5.4890	44	0.2113	3.5024	"	0.2740	2.8466	66
0	5.3781	"	0	3.4115	"	•	2.2795	44

BENZOIC ANHYDRIDE (C.H.CO):O.

Freezing-point data are given for mixtures of benzoic anhydride and sulfuric acid by Kendall and Carpenter (1914).

BENZOIN (Benzoyl phenyl carbinol) C₄H₅CH(OH)COC₄H₅.

SOLUBILITY OF BENZOIN IN WATER, PYRIDINE AND AQUEOUS 50% PYRIDINE AT 20-25°.

(Debn., 1917.)

Solvent.'	Gms. Benzoin per 100 gms. Solvent.
Water	0 03
Aq. 50 % Pyridine	6.63
Pyridine	20.20

100 gms. 95% formic acid dissolve 3.06 gms. benzoin at 18.5°. (Aschan, 1913.) Freezing-point data (solubilities, see footnote, p. 1) are given by Vanstone (1913), for mixture of benzoin and each of the following compounds:

Dibenzyl, benzylaniline, benzylideneaniline and hydrazobenzene.

BENZOPHENONE (C.H.,),CO.

SOLUBILITY IN AQUEOUS ALCOHOL AND IN OTHER SOLVENTS.

(Derrien — Compt. rend. 130, 722, '00; Bell — J. Physic. Chem. 9, 550, '05.)

In Aqueous Alcohol at 40°.

Wt. % Alcohol	per ro	Gms.	Wt. % Alcohol	Gms. (C _s H _s) ₂ CO co Gms.
in Solvent.	Solvent.	Solution.	in Solvent.	Solvent.	Solution.
40	2	1.9	67.5	39	28 · I
45	5	4.8	70	56	35.9
50	8	8 · 3	71	67	39.2
5 5	II	9.9	72	90	47 - 4
60	16	13.8	72.5	105	51.2
65	28	22.6	73	156	δι. ο

In Aqueous Alcohol and other Solvents. (Derrien.)

Solvent.	ť.	Gms. (C ₄ H ₄) ₂ CC per 100 cc Solvent.			Gms. (C ₄ H ₄) ₅ CO per 100 cc. Solvent.
97% Ethyl Alcohol	17	13.5	Ethyl Ether (rectified)	12.7	17.5
85 cc. 97% Alcohol + 15 cc. H ₂ O	17	3.8	Benzene	17	76.0
80 " + 20 "	17	2.2	Xylene	17.6	38.4
75 " + 26 "	17	1.3	Nitro Benzene	15.8	58.8
Methyl Alcohol (pure)	9.8	11	Chloroform (com.)	16.5	-
	15	14.3	Bromoform	17.3	33 · 3
Acetic Ether (pure)	9.6	19.2	Toluene	17.2	
Carbon Disulfide	16. I	66.6	Ligröine	14.6	

Determinations made by means of the Pulfrich refractometer (Osaka, 1903-8), gave 39 gms. benzophenone per 100 gms. absolute ethyl alcohol at 20°, and 78.6 gms. benzophenone per 100 gms. benzene at 25°.

SOLUBILITY OF BENZOPHENONE IN AQUEOUS SOLUTIONS OF PHENOL AND OF n BUTYRIC ACID, DETERMINED BY THE SYNTHETIC METHOD, ARE GIVEN BY TIMMERMANS (1907).

In Aq. 36 (Sat.	$6.51\% C_6H_6OH$ t = 65.3).		$1.4\% C_6H_6OH$ t = 20.6).	In Aq. 39.4 (Sat.	$4\% C_{1}H_{7}COOH$ t = -2.3).
t° of Sat.	Gms. (C ₄ H ₅) ₂ CO per 100 Gms. Sat. Sol.	t° of Sat.	Gms. (CaHs)2CO per roo Gms. Sat. Sol.	t°. of Sat.	Gms. (C ₄ H ₂) ₂ CO per 100 Gms. Sat. Sol.
75.4	0.685	26.I	0.96	6.1	0.439
81.1	1.06°	29.3	I.77	18.5	1.12
85.3	I.4I	39.5	4.06	28.9	1.71
88.I	1.67	55.5	7.82	44	2.66
	-	82.6	16.82	61.6	3.92
				75.2	5.09

Solubility data for mixtures of benzophenone and resorcinol and for benzophenone and pyrocatechinol, determined by the freezing-point method, are given by Freundlich and Posnjak (1912). Similar data for mixtures of benzophenone and thymol are given by Pawlewski (1893). Results for mixtures of benzophenone and sulfuric acid are given by Kendall and Carpenter (1914).

BENZOYL CHLORIDE, BENZOYL tetra hydro quinaldine, d and l.

Fusion-point data are given for mixtures of benzoyl chloride and phenol by Tsakalotos and Guye (1910), and for mixtures of the d and l forms of benzoyl tetrahydroquinaldine, by Adriani (1900).

BENZYLAMINE HYDROCHLORIDE C.H.CH.NH.HCI.

100 gms. H₂O dissolve 50.6 gms. of the compound at 25°. (Peddle and Turner, 1913.)

DIBENZYLAMINE HYDROCHLORIDE (C.H.CH.)2NH.HCI.

100 gms. H₂O dissolve 2.17 gms. of the compound at 25°. (Peddle and Turner, 1913.) 100 gms. chloroform dissolve 0.37 gm. of the compound at 25°. "

TriBENZYLAMINE HYDROCHLORIDE (C.H.CH.), N.HCl.

100 gms. H₂O dissolve 0.61 gm. of the compound at 25°. (Peddle and Turner, 1913.)
100 gms. chloroform dissolve 11.41 gms. of the compound at 25°. "

DIBENZYL C.H.CH.C.H.CH., BENZYLANILINE C.H.CH.NHC.H.

SOLUBILITY DATA, DETERMINED BY THE FREEZING-POINT METHOD (see footnote, p. 1), ARE GIVEN FOR THE FOLLOWING MIXTURES:

Dibenzyl + Stilbene " + Benzylphenol		Pascal and Normand, 1903.) Normand, 1913.)
" + Hydrobenzene	44	. "
" + Tolane	44	æ
Benzylaniline + Dibenzyl	44	•
" + Stilbene	44	•
" + Benzylphenol	•	•
" + Hydrazobenzene	44	•
" + Tolane	*	•

NitroBENZYL CHLORIDE & C.H.CHNO.Cl.

SOLUBILITY IN SEVERAL SOLVENTS AT 25°. (v. Halban, 1913.)

	Gms. 🌶 CaHa			Gma. # CaH	CHNO.CI
Solvent.	per 100		Solvent.	per 100	
	Solvent.	Sat. Sol.		Solvent.	Sat. Sol.
Methyl Alcohol	8.87	8.15	Nitrobenzene	57.8	36.4
Ethyl Alcohol	7.10	6.63	Ethylacetate	57.8	36.4
Propyl Alcohol	5.70	5.39	Ethylbenzoate	43.3	30.2
Amyl Alcohol	4.88	4.65	Ethylnitrite	51.2	3 3 · 9
Butyl Alcohol	21.5	17.7	Isoamylbromide	12.5	10.4
Acetic Acid	18.1	15.3	Brombenzene	32	24.2
Acetone	107	51.7	Chloroform	47.6	32.3
Acetophenone	63.1	38.7	Carbon Tetrachloride	6.05	5.69
Paraldehyde	24.9	19.9	Benzy lchloride	45.3	31.2
Ether	23.I	18.8	α Bromnaphthaline	31.7	23.4
Acetonitrile	96.6	49.I	# Hexane	1.30	1.28
Nitromethane	68.8	40.8	Isopentane	0.49	0.49
o Nitrotoluene	51.1	33.8	Benzene	69.7	37 - 4

Data for the lowering of freezing-point are given by Holleman (1914) for mixtures of o and p nitro benzylchloride.

DIBENZYL HYDRAZINE CaHiCH, NH. CaHiCH, NH.

Reciprocal solubilities of dibenzylhydrazine and cinnamylidene, determined by the method of lowering of the fr.-pt. (see footnote, p. 1), are given by Pascal ('14).

ChloronitroBENZYLIDENES C₄H₅C: NO₂.Cl. BENZYLIDENE NAPHTHAL-AMINES C₄H₅CH: NC₁₆H₇.

DATA FOR THE LOWERING OF THE FREEZING-POINTS (solubilities, see footnote, p. 1) ARE GIVEN FOR THE FOLLOWING MIXTURES.

```
o Chloronitrobenzylidene + m Chloronitrobenzylidene (Holleman, 1914.)
p " + m " "
p " " " "
```

α Benzylidene naphthalamine +β Benzylidene naphthalamine (Pascal and Normand, '25.)

BERYLLIUM ACETATE (basic) BeaO(CH,COO)6.

100 gms. chloroform dissolve 33.3 gms. Be₄O(CH₄COO)₄ at 18°. (Wirth, 1914.)

BERYLLIUM Potassium FLUORIDE, etc.

SOLUBILITY IN WATER AND IN ACETIC ACID SOLUTIONS.
(Marienac: Sestini, 1890.)

	Gms. Anhydrous Salt				
	Salt.	Formula.	Solvent.	per 100 Gm	
				At 20°.	At 100°.
Beryllium	potassium fluoride	BeF ₂ .KF	Water	2.0	5.2
- 66	sodium "	BeF ₂ .NaF	44	I.4	2.8
"	hydroxide	Be(OH) ₂	Water + CO2 sat.	o.0185 (I	3eO)
"	phosphate	Bea(PO4)2.6H2O	2% CH4COOH	0.055	•••
46	• ù		10% "	0.1725	•••

BERYLLIUM HYDROXIDE Be(OH).

SOLUBILITY IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE. (Rubenbauer — Z. anorg. Chem. 30 334, 62.)

Moist Be(OH), used, solutions shaken 5 hours, temperature probably about 20°.

Per 20 cc. Solution.		Molecular Dilution	Gms. per 100 cc. Solution.		
Gms. Na.	Gms. Be.	of the NaOH.	NaOH.	Be(OH)2.	
0.3358	0.0358	I .37	2.917	0.850	
0.6716	0.0882	o · 68	5.840	2.094	
0.8725	0.1175	0.53	7 . 585	2.789	
1 . 7346	0.2847	0.27	18.310	6.760	

SOLUBILITY IN AQUEOUS SODIUM HYDROXIDE AT DIFFERENT TEMPERATURES. (Haber and Oordt, 1904.)

Normality of	Gm. BeO per Liter Sat. Sol. at:					
Normality of Aq. NaOH.	20-23°. 0.060	50-53°. O . 080	100°. 0.080			
0.5 I	0.000	0.000	0.200			
2	0.570	0.900	1.020			

BERYLLIUM OXALATE BeCrO4.3HrO.

100 gms.	water		dissolve	63.2 gm	s. BeC ₂ O ₄	.3H2O at 25	(Wirth, 1914.) "
α	0.1 n oxalic	acid	**	75.92	• •	16	4
44	O.I n sulfuric	**	44	72.65	16 6	44	44
44	1.0 # "	44	66	52.8	4 4	4 44	•

BERYLLIUM PALMITATE and Salts of Other Fatty Acids.

SOLUBILITIES IN ETHYL AND METHYL ALCOHOLS AT 25°. (Jacobson and Holmes, 1916.)

G.1	Gms. of Each Salt (Determined Separately) per 100 Gms. Solvent.					
Solvent. Ethyl Alcohol	Be Palmitate. O.004	Be Stearate.	Be Laurate. O.004	Be Myristate.		
Methyl Alcohol	0.042	0.040	0.050	0.047		

BERYLLIUM SULFATE BeSO4.6H2O.

SOLUBILITY IN WATER. (Levi, Malvano, 1906.)

ŧ°.	Mols. H ₂ O per 1 Mol. BeSO ₄ .		Solution.	Solid Phase.		Iols. H ₂ O er 1 Mol. BeSO ₄ .		Gms. Solution.	Solid Phase.
31	11.18	52.23	34.32	BeSO ₄ .6H ₂ O	95.4	6.44	90.63	47.55	BeSO44H O
50	9.62	60.67	37.77	"	107.2	5.06	115.3	53.58	44
72.2	7.79	74.94	42.85	**	III	4.55	128.3	56.19	"
77.4	7.13	81.87	45.01	**	80	6.89	84.76	45.87	BoSO ₄ aH ₆ O
30	13.33	43.78	30.45	BeSO ₄₋₄ H ₂ O	91.4	5.97	97.77	49.42	**
40	12.49	46.74	31.85	4.	105	4.93	118.4	54.21	46
68	9.42	61.95	38.27	44	119	3.91	149.3	59.88	44
85	7.65	76.30	43,28	44	•	• •		••	

SOLUBILITY OF BERYLLIUM SULFATE IN AQUEOUS SULFURIC ACID AT 25°. (Wirth, 1912-13.)

Gms. H _s SO ₄ per 100 Gms. Solvent.	Gms. BeSO ₄ per 100 Gms. Sat. Sol.	Solid Phase.	Gms. H ₂ SO ₄ per 100 Gms. Solvent.	Gms. BeSO ₄ per 100 Gms. Sat. Sol.	Solid Phase.
0	8.212	BeSO ₄ .6H ₂ O	45.5I	6.628	BeSO ₄ .6H ₂ O
5.23	8.429	"	50.63	5.438	BeSO _{4.4} H ₂ O
9.61	7 · 944	"	56.59	3.640	"
18.70	6.603	"	63.24	2.244	"
34	5.631	"	65.24	2.128	**
40.35	5.773	"	73.64	2.185	"

Freezing-point data for mixtures of beryllium sulfate and potassium sulfate are given by Grahmann (1913).

BERYLLIUM MetaVANADATE Be(VO₁)₂.4H₂O.

100 gms. H₂O dissolve 0.1 gm. of the salt at 25°.

(Brinton, 1916.)

BETAINE (Trimethyl glycocoll) C₅H₁₁O₂N.H₂O.

SOLUBILITY OF ANHYDROUS BETAINE IN WATER AND ALCOHOLS. (Stoltzenberg, 1914.)

(Figures read from the author's curves.)

ť.	Gms. (Gms. CaHuOaN per 100 Gms.			Gms. CsH11O2N per 100 Gms.		
	H ₂ O.	СН•ОН.	C₃H₅OH.	ť.	H₂O.	CH₃OH.	C₃H₅OH.
— 10	134	38	5	50	197	70	16
0	140	43	6	60	215	75	18.5
+10	147	49 .	7	70	236	8o	22
20	157	54	8.5	80	259		25
30	168	60	II	90	286		
40	182	65	13	100	328		

BETAINE SALTS.

SOLUBILITY OF EACH, SEPARATELY, IN WATER. (Stoltzenberg, 1914.) Grams per 100 Grams HsO.

ť.	CaHuOaN. HCl.	CaHuOaN. HBr.	C ₄ H ₁₁ O ₂ N. HI.	C ₆ H ₁₁ O ₂ N. H ₂ SO ₄ .H ₂ O.	C ₆ H ₁₁ O ₂ N. H ₂ PO ₄ .	CaHuO2N. HMnO4.	C _k H ₁₁ O ₂ N. HAuC _k .
— 10	38	28	35	67	35	1.5	1.3
0	44	39	66	86	45	1.75	1.5
+10	52	52	98	107	58	2.5	2
-20	60	65	130	132	73	5	3
30	70	79	162	164	91	9	4.5
40	8 1	94	198	203	112	16	6
50	93	110	231	250	135	30	8
60	106	127	269	306	160	(55°) 48	11.5
70	120	144	304		190	• • •	15
80	135	162	(75°) 321		223	• • •	18
90	151	183		• • •	• • •	• • •	23
100	169	206		• • •	• • •	• • •	

Data are also given by Stoltzenberg for the following basic salts of betaine $(C_6H_{11}O_2N)_2HCl.H_2O$, $(C_6H_{11}O_2N)_2.HBr$, $(C_6H_{11}O_2N)_2HI$, $(C_6H_{11}O_2N)_2HAuCl_4.H_2O$.

BETOL (β-Naphthylsalicylate) βC₇H₈O₃.C₁₀H₇.

Freezing-point data including super solubility curves, are given for mixtures of betol and salol by Miers and Isaac, 1907.

BISMUTH

BISMUTH Bi.

RECIPROCAL SOLUBILITIES, DETERMINED BY THE METHOD OF LOWERING OF FUSION-POINT (see footnote, p. 1), ARE GIVEN FOR THE FOLLOWING MIXTURES:

Bismuth + Bromine

'' + Chlorine

'' + Iodine

'' + Sulfur

(Amadori and Becarelli, 1912.)

(Aten, 1905; Palabon, 1904.)

MUTUAL SOLUBILITY OF BISMUTH AND ZINC. (Spring and Romanoff, 1906.)

t°.	Upper Layer.		Lower Layer.		t°.	Upper Layer		Lower Layer.	
• .	%Bi.	%Zn.	%Bi.	%Zn.	• .	% Bi.	%Zn.	% Bi.	%Zn.
266	86	14			584	80	20	10	90
419	• •	• •	3	97	650	77	23	15	85
475	84	16	5	95	750 810-8	70 320 (cri	30 t. temp	.) 27	73

BISMUTH CHLORIDE. BiCl. BSMUTH OxyCHLORIDE BiOCl.H₂O. Solubility in Aqueous Solutions of Hydrochloric Acid.

Results at 25°. (Noyes and Hall, 1917.) Results at 30°. (Jacobs, 1917.) Gms. per roo Gms. Sat. Solution. Gms. Atoms per 1000 Gms. H₂O. Solid Phase. Cl. Bi. H(=Cl-3Bi). BisOs. HCL I .002 0.60 BiOCLH₂O 0.3477 0.00130 0.3438 2.40 I.007 0.00376 0.4237 5.69 0.4350 5.35 010.1 0.00860 8.17 8.47 0.5221 0.4960 0.6244 0.01767 8.70 8.93 " 1.013 0.5714 810.1 0.03138 0.6434 0.7375 14.52 13.02 15.80 1.025 0.8824 0.05338 0.7223 18.60 1.0760 0.08937 0.8079 1.036 30.10 21.7 I.044 I.2277 0.1177 0.8746 36.95 25.4 1.061 1.5321 0.1810 0.9891 54.70 31.5 32.8 1.083 0.2657 1.105 BIOCI 1.0021 56 1.157 3.1865 0.5685 1.481 58.5 BiCla.2HaO 33 " +BiCla 33.8 56.6 I.237 4.5056 0.9022 1.799 1.288 1.100 2.025 56.25 BiCla 5.325 34.9 6.0661.317 2.115 BiCl.HCl 1.329 55.9 35.9

SOLUBILITY OF BISMUTH CHLORIDE IN SEVERAL SOLVENTS.

Solvent.

Solvent.

C. Solvent.

Grms. BiCla per 100.

C. Solvent.

Grms. Solvent.

Authority.

Authority.

Authority.

Authority.

Authority.

Authority.

Authority.

17.9 $(d_{18} = 0.9194)$ (Naumann, 1904, '05.)

Ethyl Acetate

18° ... 1.66 $(d_{18} = 0.9106)$ (Naumann, 1910).

Anhydrous Hydrazine ord. temp. 32 ... (Welsh and Broderson, 1915.)

100 grms. 95% formic acid dissolve 0.05 grm. bismuth oxychloride (BiOCl) at 19.8°. (Aschan, 1913.)

Freezing-point data are given for BiCl₃+CuCl, BiCl₃+FeCl₄, BiCl₄+PbCl₅, BiCl₅+PbCl₅, BiCl₅+PbCl₅, BiCl₅+TlCl by Scarpa (1912).

BISMUTH CITRATE (CH₂)₂C(OH)(COO)₃Bi. BISMUTH Ammonium CITRATE.

SOLUBILITY OF EACH IN WATER AND IN AQUEOUS ETHYL ALCOHOL AT 25°. (Seidell, '10.)

Gms. C ₁ H ₂ OH per 100 Gms Solvent.	100 Gms. Sat. Sol.	Gms. C ₂ H ₂ OH per roo Gms. Solvent.	Citrate per 100 Cms. Sat. Sol.	ds Sat. Sol.
Q	0.011	o ·	22.25	1.25
51	0.041	51.	I.34	0.92
91.4	0.065	91.4	None	0.81

BISMUTH HYDROXIDE Bi(OH).

SOLUBILITY OF BISMUTH HYDROXIDE IN AQUEOUS SOLUTIONS OF SODIUM AND POTASSIUM HYDROXIDES AT 20° AND AT 100°.

(Moser, 1909.)

Gms. KOH per Liter.	Gms. Dissolved Bi	(OH) a per Liter at:	Gms. Mach	Gms. Dissolved Bi(OH); per Liter at:		
	20°.	100°.	per Liter.	20°.	100°.	
28	0	o. 188	20	0	o.i88	
50	trace	0.249	40	trace (0.0014)*	0.249	
112	0.037	0.373	8o	0.050 (0.0029)*	0.436	
168	0.074	• • •	120	0.087 (0.0054)*	0.622	
224	0.100	0.622	160	0.100		
280	0.124	0.622	200	0.124	0.622	
336	0.137		240	0.137	• • •	
448	0.137	I.494	320	0.137	I.494	
560	0.174	2.054	400	0.199	2.120	
		* Results at	25° by Knox (1909).		

At 100° some Bi(OH), was converted into BiO(OH).

SOLUBILITY OF BISMUTH HYDROXIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AND OF POTASSIUM BROMIDE AT 30°.

(Herz and Bulla, 1909.)

(An excess of bismuth hydroxide, prepared according to Moses and having the composition corresponding to BiO.OH, was shaken 2-3 weeks at 30° with aqueous KCl and KBr. The analyses of the sat. solutions are expressed in terms of millimols KOH and KCl or KBr. They have been calculated for the following table to gms. BiO.OH and KCl or KBr.)

Solvent.	Gms. per 100	cc. Sat. Sol.	Solvent.	Gms. per 100 cc. Sat. Sol.	
	BiO.OH.	KCl.	Soivent.	BiO.OH.	KBr.
2 n KCl	3.759	13.75	1 n KBr	8.555	7.67
3 n KCl	5.745	20.71	2 n KBr	17.785	15.02

BISMUTH IODIDE Bil.

100 gms. absolute alcohol dissolve 3.5 gms. BiI₂ at 20°. (Gott and Muir, 1888.) 100 gms. methylene iodide, CH₂I₂, dissolve 0.15 gm. BiI₂ at 12°. (Retgers, 1893.)

BISMUTH NITRATE Bi(NO₃)₃.5H₂O.

100 gms. acetone dissolve 48.66 gms. Bi(NO₃)₃.5H₂O at 0°, and 41.7 gms. at 19°. (von Laszczynski, 1894.)

SOLUBILITY OF BISMUTH NITRATE IN AQUEOUS NITRIC ACID AND IN AQUEOUS NITRIC ACID CONTAINING ACETONE, AT ORDINARY TEMPERATURE.
(Dubrissay, 1911.)

Solvent.	Gms. Bi(NO ₂) ₂ per per 100 cc. sat. Sol.	Solid Phase.
0.922 n HNO2	86.86	Bi(NO ₃) ₃ .5H ₂ O
0.922" " + 6.66% Acetone	85.5 1	ü
0.922 " " +13.33% "	81.96	"
2.3 " "	80.37	"
2.3 " "+16.66% "	74 - 47	"

SOLUBILITY OF DOUBLE NITRATES OF BISMUTH AND MAGNESIUM, NICKEL, COBALT, ZINC AND MANGANESE IN CONC. HNO₃ AT 16°.

(Jantsch, 1912.)

 $(d_{16} \text{ of HNO}_8 = 1.325, 100 \text{ cc. of this acid contained } 51.59 \text{ gms. HNO}_8.)$

Double Salt.	Gms. Hydrated Salt per 100 cc. Sat. Solution.		Gms. Hydrated Salt per 100 cc. Sat. Solution.
Bi ₂ Mg ₃ (NO ₃) ₁₂ .24H ₂ O Bi ₂ Ni ₄ (NO ₃) ₁₂ .24H ₂ O	41.69 46.20	Bi ₂ Zn ₃ (NO ₃) ₁₂ .24H ₂ O Bi ₂ Mn ₃ (NO ₃) ₁₂ .24H ₂ O	57.51
Bi ₂ Co ₃ (NO ₃) ₁₂ .24H ₂ O	54.67		• • • •

BISMUTH OXIDE BigO1.

SOLUBILITY OF BISMUTH OXIDE IN AQUEOUS NITRIC ACID AT 20°. (Rutten and van Bemmelen, 1902.)

Present in Shaker Flask.	Gms. per 100 Gms. Solution.		Mols. per 100 Mols. H ₂ O.			Solid	
Per 1 part BigO3. 3N2O5.10H2O.	Bi ₂ O ₃	N ₂ O ₅	Bi ₂ O ₃	N ₂ O ₅ R	atio Bi ₂ O ₃ : N ₂ O ₅ .	Phase.	
24.4 parts H ₂ O 3.2 parts H ₂ O	0.321 6.37	0.963 7.17	0 126 2.844	1.61 13.82	1:12.8	Bi ₂ O ₈ .N ₂ O ₈ .2H ₂ O	
Dilute HNO. Dilute HNO.	18.74 31.48	15.9 23.7	10.50 27.2	38.65 83.8	-· - 6\	Si ₂ O ₈ N ₂ O ₅ .H ₂ O	
Dilute HNO ₃ - 6.13% N ₂ O ₅	32.93	24.83	30.15	97-97	1: 3.2 {]	Bi ₂ O ₂ .N ₂ O ₂ .H ₂ O and Bi ₂ O ₂ .3N ₂ O ₂ .roH ₂ O	
6.816% N ₂ O ₃ 24.0% N ₂ O ₃ 51.0% N ₂ O ₃	32.67 24.16	24.70 28.25	29.70 19.65	96.57 98.76	1: 3.2 1: 5.0	Bi ₂ O ₈ .3N ₂ O ₈ .10 H₂O	
51.0% N ₂ O ₈ 70.0% N ₂ O ₈	11.66 20.76	46.62 53·75	10.81 33.51	186.23 355.87	1:10.6)		
	27.85	51.02	51.0	403.0	1: 7.9 { E	SigO ₈ .3NgO ₈ .10HgO and SigO ₈ .3NgO ₈ .3HgO	
Anyhdrous HNO Bi ₂ O ₂ + "	8.56 4.0 5	68.28 74.90	14.35 7.45	492.0 592.9	1:34.3 }1	Si ₂ O ₂ , 3N ₂ O ₃ , 3H ₂ O	

Results are also given for 9°, 30°, and 65°.

BISMUTH TriPHENYL Bi(C.H.)2.

Fusion-point data (see footnote, p. 1) are given for mixtures of bismuth triphenyl and mercury diphenyl by Cambi (1912).

BISMUTH SALICYLATE (basic, 64% Bi₂O₃).

SOLUBILITY IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL AT 25°.

	(36)	uen, 1910.)	
Gms. C ₂ H ₅ OH per 100 Gms. Solvent.	Gms. Salt per 100 Gms. Sat. Sol.	Gms C ₂ H ₄ OH per 100 Gms. Solvent.	Gms. Salt per 100 Gms. Sat. Sol.
0	0.010	80	0.065
20	0.015	90	0.095
40	0.022	92.3	0.105
60	0.036	100	0.160

BISMUTH SELENIDE Bi2Se1.

Fusion-point data (see footnote, p. 1) are given for mixtures of bismuth selenide and silver selenide by Pelabon (1908).

BISMUTH SULFIDE Bi2S2.

1 liter H₂O dissolves 0.00018 gm. Bi₂S₂ at 18°.

(Weigel, 1906; see also Bruner and Zawadski, 1912.)

SOLUBILITY OF BISMUTH SULFIDE IN AQUEOUS ALKALI SULFIDE SOLUTIONS AT 25°.

		(KBOX, 1909)	
Solvent.	Gms. Bi ₂ S ₈ per 100 cc. Sat. Solution.	Solvent.	Gms. Bi ₂ S ₂ per 100 cc. Sat. Solution.
0.5 n Na ₂ S	0.0040	0.5 n Na ₂ S+1 n NaOH	0.0185
1.0 n "	0.0238	1 n Na ₂ S+1 n NaOH	0.0838
1.5 n "	0.1023	$0.5 n K_2S + 1 n KOH$	0.0240
0.5 n K ₂ S	0.0043	$1 n K_2S + 1 n KOH$	0.1230
1 n "	0.0337	1.25 n K ₂ S +1.25 n KOH	0.2354
1.5 n "	0.0639	•	

Freezing-point data (see footnote, p. 1) are given for mixtures of bismuth sulfide and bismuth telluride by Amadori (1915).

BORAX, see sodium tetraborate, p. 629.

BORIC ACID H₂BO₂.

SOLUBILITY OF BORIC ACID IN WATER. (Nasini and Ageno, 1909.)

t°.	Gms. H ₂ BO ₂ per 100 Gms. Sat. Sol.	ť°.	Gms. HaBOs per roo Gms. Sat. Sol.	t°.	Gms. H ₂ BO ₂ per 100 Gms. Sat. Sol.
-o.76 Eutec	2.27	30	6.30	80	19.11
0	2.59	40	8.02	90	23.30
+10	3 · 45	50	10.35	100	28.7
20	4.8	60	12.90	110	38.7
25	5 · 5	70	15.70	120	52.4

The results of Herz and Knoch (1904), and one determination by Auerbach (1903), given in terms of gms. per 100 cc. sat. solution, appear to be in good agreement with the above. The earlier data of Ditte (1877) are low.

Solubility of Boric Acid in Aqueous Solutions of Hydrochloric, Sulphuric, and Nitric Acids at 26°.

(Herz - Z. anorg. Chem. 33, 355, 34, 205, '03.)

Normality of	Normality of Dissolved	Gms. Strong Acid	Gms. B(OH) ₈ per 100 cc. Solution.			
the H ₂ SO ₄ , HCl or HNO ₃ .	B(OH) _s .	per 100 cc. Solution.	In HCl.	In H ₂ SO ₄ .	In HNOs.	
0	0.91	•	5 · 64	5.64	5.64	
0.5	o.78	5	4.0	4.25	4.50	
1.0	0.71	10	3.2	3.6	3.9	
2.0	o · 58	15	2 · 45	3.o	3.35	
3.0	0.49	20	1.8	2.5	2.9	
4.0	0.41	25		2.0	2.55	
5.0	0.35	30	• • •	1.55	2.I	
6.0	0.26	35	• • •	• • •	1.75	

The determinations given in the original tables in terms of normal solutions when plotted together lay close to an average curve drawn through them. The figures in the tables here shown were read (and calculated) from the average curve.

Solubility of Boric Acid in Aqueous Solutions of Electrolytes At 25°.

(Bogdan - Ann. Scient. Univ. Jassy, 2, 47, '02-'03.)

Gms. Electro-	Grams HaBOs per 100 Gms. HaO in Aq. Solutions of:							
lyte per 100 Gms. H ₂ O.	NaCl.	KCl.	NaNOs.	KNO3.	Na ₃ SO ₄ .	K,SO4.		
· o	5 · 75	5 · 75	5 · 75	5 · 75	5 · 75	5 · 75		
10	5 · 75	5.80	5.78	5.81	5.88	5.92		
20	5.74	5.86	5.81	5.88	6.00	6.10		
40	5.72	5.98	5.87	6.04	6.33	6.50		
60	5.72	6.12	5.95	6.20	6.70	6.92		
8o	5.71	6.29	6.02	6.37	7.10	7.40		

Interpolated from the original.

SOLUBILITY OF BORIC ACID IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AND OF ALKALI CHLORIDES AT 25°. (Herz, 1910.)

(The original results are given in millimols per 10 cc. They have been calculated to gram quantities, plotted on cross-section paper and the following values read from the curves.)

Gms. HCl or Alkali Chloride per 100 cc.	Gms. HaBOa Dissolved per 100 cc. Sat Sol. in Aq.:							
Sat. Sol.	HCl.	LiCl.	NaCl.	RbCl.	KCl.			
0	5 · 59	5 · 59	5 · 59	5 · 59	5 · 59			
2	4.92	5.20	5.40	5.60	5.67			
4 .	4.36	4.85	5.30	5.62	5 · 75			
6	3.88	4 · 45	5.20	5.67	5.85			
8 .	3.50	4.07	5.15	5.72	5.90			
10	3.15	3 · 75	5.10	5 · 77	6			
15	• • •	3	5.07	5.90	6.25			
20			• • •	6.10	6.50			
30	• • •	• • •	• • •	6.55	•••			

THE SYSTEM BORIC ACID, ACETIC ACID AND WATER AT 30°. (Dukelski, 1909.) (The sat. solutions and residues were analyzed by titrating total acidity with 0.1 n NaOH and the acetic acid alone by an iodometric method.)

	er 100 Gms. t. Sol.	Solid Phase	Gms. pe	er 100 Gms. at. Sol.	Solid Phase.	Gms. per Sat	100 Gms. Sol.	Solid Phase.
B ₂ O ₂ .	(CH _s CO) _s O.	r nasc.	B ₂ O ₂ .	(CH ₂ CO) ₂ O	· FDESC.		(CH ₂ CO) ₂ O	
3.55		B(OH):	1.01	73.96	B(OH)a	4.98	82.13	B ₂ O _{8.2} (CH ₂ CO) ₂ O
3.18	7.78	44	0.54	80.67	"	5.13	84.60	u
2.98	16.44	44	0.45	84.55	"+(?)	5.41	85.68	"
2.34	28.96	"	0.39	84.65	44	4.82	88.74	B ₂ O ₂₋₃ (CH ₂ CO) ₂ O
1.98	41.06	"	0.41	84.48	"	4.71	89.98	44
1.47	52.63	"	0.46	84.44	"	4.06	92.68	"
1.12	67.76	**	0.50	84.51	"	3.10	95.76	66

SOLUBILITY OF BORIC ACID IN AQUEOUS SOLUTIONS OF:

Acetic A	icid at 26°.	(Herz, 1903a	r)	Acetone at 2	O. (Herz and	Knoch, 1904.)
Normality of	Solutions.	Gms. per 100	cc. Solution.	cc. Acetone	B(OH) ₃ per 100	cc. Solution.
CH ₃ COOH.	B(OH)	CH ₂ COOH.	B(OH)	per 100 cc. Solvent.	Millimols.	Grams.
0	0.91	0	5.64	0	79.15	4.91
I	0.82	. 5	4.7	20	81.71	5.07
2	0.65	IC	4.2	30	83.35	5.17
4	0.42	20	3.0	40	82.72	5.13
6	Q-25	30	2.0	50	81.62	5.06
		•		6 0	76.40	4.74
				70	67.62	4.19
				80	55.05	3.41
				100	8.06	0.50

SOLUBILITY OF BORIC ACID IN AQUEOUS SOLUTIONS OF URBA, ACETONE, AND OF PROPYL ALCOHOL AT 25° (Bogdan.)

Grams of CO(NH ₂) ₂ ,(CH ₂) ₂ CO or of C ₂ H ₇ OH per	Gms. H ₂ BO ₂ per 100 g. H ₂ O in Aq. Solutions of:					
too Gms. H ₂ O.	CO(NH ₂) ₃	(CH ₂) ₂ CO.	С.Н.ОН.			
0	5 · 75	5 · 75	5 · 75			
10	5 . 84	5 . 84	5-80			
20	5 · 93	5 · 93	5.85			
40	- 6.13	6.12	5.94			
60	6.31	6.29	6.03			

SOLUBILITY OF BORIC ACID IN AQUEOUS SOLUTIONS OF SEVERAL ALCOHOLS AT 25°. (Mueller and Abegg, 1906.)

T- A-	Machad	Alashal	T- A-	Esh.d	Alcohol.	T.
In Aa.	. Metnvi	Alcohol.	in Aa.	Ethvi	Alconol.	11

In Aq.	Propy	l Alco	hol.
--------	-------	--------	------

Soly	rent.	Gms. HaBOa		vent.	Gms. H ₂ BO	Sol	vent.	des of	Gms. H ₂ BO ₂
dy.	Wt. %	per 100 cc. Sat. Sol.	dy.	Wt. % C.H.OH.	per 100 cc. Sat. Sol.	dag.	Wt. % C.H.OH.	Sat. Sol.	per 100 cc. Sat. Sol.
0.9691	19	5 · 55	0.9714	20.2	5.14	0.9043	50.83	0.9193	3.99
0.9340	41.5	6.27	0.9350			0.8231		0.8570	2.83
0.9185	50	6.81	0.8789		4.52	0.8133	95.5	0.8466	3.58
0.9019	58	7.20	0.8576	76.2	4.34	0.8010	100	0.8297	5.96
0.8842	66	8. 10	0.8198	91.1	5 · 54				
0.7960	100	17.99*	0.8089	95	5 54 6 85				
	day = 0.	8904.	0.7947	100	9-47†	t	d ₂₄ = 0.85	53-	

In Aq. i Butyl Alcohol.

In Aq. i Amyl Alcohol.

Solvent.		dos of Gms. HaBOs		Solt	vent.	des of	Gms. HaBOa
das.	Mol. % C.H.OH.	d _{an} of Sat. Sol.	per 100 cc. Sat. Sol.	das.	Mol. % C ₄ H ₁₁ OH.	d _{as} of Sat. Sol.	per 100 cc. Sat. Sol.
0.9923	0.70	1.0124	5.48	0.9943	0.448	1.0132	5.48
0.9853	2.15	1.0038	5.32	0.9936	0.520	1.0125	5.46
0.9855	2.18	1.0046	5.32	0.9931	0.525*	1.0123	5.46
0.8173	71.4	0.8351	2	0.8232	67.26	0.8200	1.60
0.8133	77 . I	0.8220	2.15	0.8183	75 - 54	0.8253	I.69
0.8081	85.6	0.8195	2.61	0.8142	83.40	0.8223	1.98
0.7984	100	0.8172	4.30	0.8068	100	0.8220	3 · 54
	• = H ₂ O	sat. with am	yl alcohol.	$\dagger = Amyl$	alcohol sat. w	ith H ₂ O.	

One liter H₂O saturated with amyl alcohol dissolves 55.5 gms. H₂BO₂ at 15°.

(Auerbach, 1903.)

SOLUBILITY OF BORIC ACID IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL AT 15° AND AT 25°. (Seidell, 1908.)

Results at 15°.

Results at 25°.

dus of	Gms. CaHaOH	Gms. H ₈ BO ₈ per 100 Gms.	d₃ of	Gms. CsHsOH per 100 Gms.	Gms. per 100 Gms. Sat. Sol.	
Sat. Sol.	Solvent.	Sat. Sol.	Sat. Sol.	Solvent.	HaBOa.	C ₂ H ₄ OH.
1.014	0	4.II	1.018	0	5.42	0
0.9986	· 8.9	3.90	. 0.987	20	5.20	18.g6
0.9658	32	3.58	0.952	40	5.10	37.96
0.9268	51	3.48	0.908	60	5	57
0.8820	70.2	3.22	0.862	80	5.05	75.96
0.8389	91.3	5.06	0.853	85	5.30	80.50
0.8370	93.6	5.70	0.842	go,	6.20	84.4
0.8356	99.8	9.18	0.838	95	8	87.4
	•	-	0.838	100	11.20	88.8

Solubility of Boric Acid in Aqueous Solutions of Lactic Acid, Oxalic Acid, d and i Tartaric Acids at 25°.

In Aq. Lactic Acid. (Mueller and Abegg, 1906.)

In Aq. Oxalic Acid. In Aq. d and i Tartaric Acid. (Herz, 1910.)

So	lvent.	d ₂₅ of	Gms. HaBOa	Gms. per	, 100 cc.		Gms. per 100 cc.	Sat. Sol.
d≱.	Mol. % CaHaOa.	Sat. Sol.	per 100 cc. Sat. Sol.	Sat. H ₂ C ₂ O ₄ .	501.	Solid Phase.	CaHaOs.	H ₂ BO ₂ .
1.0252	2.321	I.0444	6.64	2.26	6.17	H ₂ BO ₂	0	5 - 59
1.0722	6.819	1.0986	9.98	5.36	6.70	**	11.25 d Acid	6.20
1.1405	18.77	1.1635	11.53	12.39	7.44	" +H ₂ C ₂ O ₄	22.5 "	6.63
1.2023	36.33	1.2254	12.90	11.27	3.45	H ₂ C ₂ O ₄	45 "	7.48
				10.84	0.97	. 11	9.45 i Acid	6.11
				10.77	0.55	44	18.90 "	6.48
				10.63	•	44	37 "	7.23

SOLUBILITY OF BORIC ACID IN:

Pure Glycerol (Sp.Gr. - 1.260 at 15.5°).

Aq. Solutions of Glycerol . at 25°.

iHooper - Pharm. J. Trans. [3] 13, 258, '82.)

(Herz and Knoch - Z. anorg. Chem. 45, 268, '05.)

£*.	2 priso ber	Gms. B(C	H) _a per 100 ns.	Wt. % Glycerine	Millimols B(OH) _a per	Sp. Gr.	Gms. B(
•	Glycerine		. Solution.	in Solvent.	100 cc. Sol.	at $\frac{25^\circ}{4^\circ}$.	cc. Solution.	Gms.So- lution.
0	20	15.87	13.17	0	90.1	1.017	5 · 59	5.50
10	24	19.04	16.∞	7.15	90 · I	1.038	5 - 59	5.38
30	28	22.22	18.21	20 - 44	90.6	1.063	5.62	5.28
30	33	26.19	20.75	31.55	92.9	1.090	5.76	5.29
40	38	30.16	23 . 17	40.95	. 97.0	1.113	6.02	5.41
50	44	34.92	25.95	48.7	103.0	1.133	6.39	5.64
60	50	39 . 68	28.41	69.2	140.2	1 . 187	8.69	7 . 32
70	56	44.65	30.72	100.0	390.3	I . 272	24.20	19.02
80	61	48.41	32.61					-
90	67	53 . 18	34.70					
100	72	57.14	36.36					

IN AQUEOUS SOLUTIONS OF GLYCEROL AT 25°. (Mueller and Abegg, 1906.)

Aqueous Solutions of Dulcite AT 25°. (Mueller and Abegg, 1906.)

	Solvent.		das of	Gms. H ₄ BO ₆	Sol	vent.	d _{RE} of	Gms. HaBOs
434.	Mol. % CaHaOa.	Wt. % CsH ₂ Os.	Sat. Sol.	per 100 cc. Sat. Sol.	das.	Mol. % C ₄ H ₄ (OH) ₄ .	Sat. Sol.	per 100 cc. Sat. Sol.
1.1574	24.64	60	1.1707	7 - 49	0.9995	0.065	1.0686	5.50
	46.75		1.2260	13.22	8100.1	0.130	1.0212	5.63
1.2370	67.71	90	1.2526	18.35	1.0060	0.260	1.0260	5.81
1.2531	90.58	96.6	1.2710	23.44				

100 gms. glycerol ($d_{15} = 1.256$) dissolve 11 gms. H_2BO_2 at $15^{\circ}-16^{\circ}$.

(Ossendowski, 1907.) 100 gms. dichlorethylene dissolve 0.006 gm. H₂BO₂ at 15°. (Wester and 100 gms. trichlorethylene dissolve 0.016 gm. H₂BO₂ at 15°. "
100 cc. anhydrous hydrazine dissolve 55 gms. H₂BO₃ at room temp. (Wester and Brunis, 1914.)

(Welsh and Broderson, 1915.)

Solubility of Boric Acid in Aqueous Solutions of Mannite at 25° and Vice Versa. (Ageno and Valla, 1912, 1913.)

Grams per r	oo cc. Sat. Sol.	Solid Phase.	Gms. per ro	cc. Sat. Sol.	Solid Phase.
HaBOs.	CaH14Os.		HaBOa.	CaH14Os.	
5.50	0	H_3BO_3	8.70	25.65	H ₂ BO ₂
5.90	1.82	"	9.43	32.43	" $+C_6H_{14}O_3$
6.29	5.46	"	7.71	27.97	$C_6H_{14}O_6$
6.44	7.28	"	5.75	25.65	"
6.64	9.11	"	4.92	24.65	"
6.83	10.93	"	3.46	23.03	"
7.08	12.75	"	2.87	22.98	"
7.27	14.57	"	1.64	20.8 <mark>0</mark>	"
7.71	18.99	"	0	19.58	"

Additional determinations at 30° also given.

Determinations at 25°, differing somewhat from the above, are given by Mueller

and Abegg (1906). ! Data for the system boric acid, phenol and water are given by Timmermans (1907).

DISTRIBUTION OF BORIC ACID BETWEEN WATER AND AMYL ALCOHOL AT 25°.

(Fox - Z. anorg. Chem. 35, 130, '03.)

Millimol	s B(OH) _s in	Gms. B(O	H)3 in 100 cc.	Millimols	B(OH) ₃ in	Gms. B(OH)3 in 100 cc
Aq. Layer.	Alcoholic Layer.	Aq. Layer.	Alcoholic Layer.	Aq. Layer.	Alcoholic Layer.	Aq. Layer.	Alcoholic Layer.
265.8	76.6	1.648	0.475	87.9	33.2	0.545	0.206
196.5	59 · 5	1.219	0.369	75·2	22.7	0.466	0.141
159.6	47 · 5	0.990	0.294	64.6	19.76	0.400	0.123
126.0	37 · I	0.781	0.230				

RESULTS AT 15°. (Mueller and Abegg, 1906.)

Millimols B(O	Millimols B(OH): per Liter.		Gms. B(OH)s per 100 cc.				
Aq. Layer.	Alcohol Layer.	Aq. Layer.	Alcohol Layer	Aq. Layer.	Alcohol Layer.	Aq. Layer.	Alcohol Layer.
894	264	5.44	1.64	427 - 4	127.6	2.65	0.79
607.2	176.4	3.76	1.09	372	110	2.31	0.68
589.3	177.4	3.65	I.10	28q.I	84.0	I.70	0.53

Data agreeing with those of Fox at 25° are also given by Muesler and Abegg, 1906. One determination at 35° gave 0.907 gm. B(OH)₃ per 100 cc. aq. layer and 0.274 gm. per 100 cc. alcohol layer.

DISTRIBUTION OF BORIC ACID BETWEEN AQUEOUS SODIUM CHLORIDE SOLUTIONS AND AMYL ALCOHOL AT .25°. (Mueller and Abegg, 1906)

Gms. per 100 cc.: Gms. per 100 cc.: Aq. Layer. Alcohol Layer. d₂ of Aq. Layer. Alcohol Layer. dage of Alcohol Alcohol Layer. NaCl. HaBOa. H₂O. H₂BO₂. NaCl. HaBOa. H₂O. H₂BO₂. Layer. 5.46 1.65 0.8206 16.64 I.79 0.8247 0 7 39 5.13 4.71 6.40 1.65 0.8277 1.79 0.8241 5 · 53 8 · 72 5.37 17.90 5.02 4.31 5.02 5.90 1.67 20.36 0.8268 4.19 0.8240 5.27 10.91 5.23 5.46 I.60 0.8250 23.52 4.97 1.96 0.8233 3.59

DISTRIBUTION OF BORIC ACID BETWEEN WATER AND MIXTURES OF AMYL ALCOHOL AND CARBON DISULFIDE AT 25°. (Herz and Kurzer, 1910.)

25.03

3.20

1.99

4.95

0.8229

0.8254

25 Vol. % C₅H₁₁OH+95 Vol. % CS₂. 50 Vol. % C₅H₁₁OH+50 Vol. % CS₂. 75 Vol. % C₆H₁₁OH +25 Vŏl. % CS₂.

Gms. HaBOa per 100 ec.		Gms. Ha	BO3 per 100 cc.	Gms. HaBOa per 100 cc.		
Aqueous Layer.	CsH110H+CS2. Layer.	Aqueous Layer.	C ₄ H ₁₁ OH + CS ₂ . Layer.	Aqueous Layer.	C _s H ₁₁ OH+CS ₂ . Layer.	
0.387	0.095	0.469	0.095	0.433	0.053	
0.743	0.171	0.839	0.161	0.910	0.108	
1.143	0.266	I . 207	0.226	1.343	0.164	
1.590	0.365	1.791	0.344	1.940	0.238	

BORIC ANHYDRIDE B.O.

13.84

5.16

5.15

1.77

Fusion-point data (solubilities, see footnote, p. 1) are given for mixtures of B₂O₃+CaO and B₂O₃+SrO by Guertler (1904).

BORIC ACID (Tetra) H₂B₄O₇.

too grams water dissolve 2.69 grams H₂B₄O₇ at 15°, Sp. Gr. = 1.015.

(Gerlach, 1889.)

BORON TRI-FLUORIDE BF.

1 cc. H₂O absorbs 1.057 cc. BF₃ at 0° and 762 mm.; 1 cc. conc. H₂SO₄ (Sp. Gr. 1.85) absorbs 50 cc. BF₃.

BRASSIDIC ACID CaH17CH: CHC11H22COOH.

Solubility data determined by the freezing-point method are given by Mascarelli and Sanna (1915), for mixtures of brassidic and erucic acids and brassidic and isoerucic acids.

BROMAL HYDRATE CBr. CH(OH):

The distribution coefficient of bromal hydrate between olive oil and water is 0.665 at ord. temp. (Baum, 1899); 0.7 at ord. temp. (Meyer, 1909).

BROMINE Br.

SOLUBILITY IN WATER.

(Winkler — Chem. Ztg. 23, 687, '99; Roozeboom — Rec. trav. chim. 3, 29, 59, 73, 84, '84; Dancer — J. Chem. Soc. 15, 477, '62; at 15°, Dietze — Pharm. Ztg. 43, 290, '98')

		Grams Bromin	" Absorption	"Solubility." ● g.		
t°.	Water. (W.) (R. D. & D.)		Solution. (W.) (R. D. & D.)			Coefficient." *
0	4.17	4.22	3.98	4.05	60.5	43 · I
5	3.92	3 · 7	3 · 77	3 · 57	45 . 8	32.4
10	3 74	3 · 4	3.61	3 · 29	35.I	24.8
15	3.65	3.25	3.52	3.15	27 .0	19.0
20	3.58	3.20	3.46	3.10	21.3	14.8
25	3.48	3.17	3.36	3.07	17 0	11.7
30	3 - 44	3.13	3.32	3.03	13.8	9.4
40 .	3 · 45		3 · 33	• • •	9.4	6.2
50	3.52		3.40	• • •	6.5	4.0
60	• • •	• • •			4.9	2.8
8a				• • •	3.0	1.1

For definition of "Absorption Coefficient" α and "Solubility" q, see Acetylene, p. r6.

One liter sat. solution of bromine in water contains 0.21 mol. Br₂ = 33.56 gms. Br at 25°. (Bray and Connolly, 1910.)

The coefficient of solubility of bromine in water at 15°, determined by an aspiration method, is given as 33 by Jones (1911). This investigator also gives the figure 56 for the solubility coefficient in 25 vol. % acetic acid and 551 for 90 vol. % acetic acid at 15°.

Data for the distribution of bromine between water and air at 25°, are given by Hantzsch and Vagt (1901).

SOLUBILITY OF BROMINE IN AQUEOUS SOLUTIONS OF MERCURIC BROMIDE
AT 25° AND VICE VERSA.
(Herz and Paul, 1914.)

Gms. per 100 cc. Sat. Sol.		Solid	Gms. per 100	Gms. per 100 cc. Sat. Sol.		
HgBr ₂ .	Br.	Phase.	HgBrs.	Br.	Phase.	
•	3.40	Br ₂	0.763	3 · 57	$Br_2 + HgBr_2$	
0.202	3 · 53	"	0.701	2.88	HgBr ₂	
0.285	3 · 55	"	0.664	1.20	"	
0.462	3.56	"				

SOLUBILITY OF BROMINE IN AQUEOUS SOLUTIONS OF POTASSIUM BROMIDE. (Results at 0° and 25°, Boericke, 1905; at 0°, Jones and Hartmann, 1916; at 18.5° and 26.5°, Worley, 1905.)

Gm. Mols	Gms. KBr pet	Gms. Bromine Dissolved per Liter of Sat. Solution at:					
KBr per Liter.	Liter.	o°.	18.5°.	25°.	26.5°.		
0	0	41.6 (24.2)	35.56	34	34.23		
0.005	0.59	41.7 (25.5) 36.1	34.3	35.1		
0.010	1.19	42.6 (26.2)	, ,,	35	36		
0.020	2.38	44.4 (27.5)		36.5	37 · 35		
0.050	5.95	50.2 (31.5)) 43.8	41	42.5		
0.100	11.90	59.7 (40)	52.23	49.3	51.87		
0.20	23 .80	79.1 (57.1)) 69.69	67.3	68.69		
0.50	59.51	138.6 (111.	9) 123	119	116		
0.80	92.22	200 (174)	178.70	176	168.10		
1	119.02	243.1 (217.)	5) 216 ·	216.5	204		
1.725	205.2	402.3 (395.9	9)	• • •	• • •		
1.82	216.6	423.8 (423)	• • •	• • •	• • •		
2.17	258.2	511.7 (511.	7)	• • •	• • •		
3.033	360.8	736.7		632.4	• • •		

Very accurate determinations at 0°, at concentrations of KBr below 0.01 normal, are given by Jones and Hartmann. Liquid bromine in contact with aqueous solutions at 0° is slowly converted to the hydrate, Br₃.10H₂O, with a reduction in amount of dissolved bromine. At this temperature there are, consequently, two saturation concentrations. The unstable one being for solutions in contact with liquid bromine and the stable one being for solutions in contact with Br₃.10H₃O. The results for the latter are shown in parentheses in the above table.

SOLUBILITY OF BROMINE IN AQUEOUS SOLUTIONS OF POTASSIUM SUL-PHATE, SODIUM SULPHATE, AND OF SODIUM NITRATE AT 25°. (Jakowkin — Z. physik. Chem. 20, 38, '96.)

Normality of Salt Solution.	In K ₂ SO ₄ Gms. per Liter.		In Na ₂ SO ₄ Gms. per Liter.		In NaNOs Gms. per Liter.	
SELL SOLULION.	K ₂ SO ₄ .	Br.	NasSO4.	Br.	NaNO3.	Br.
ł	91.18	25.14	63.55	25.07	85.09	28 · 8o
}	45 - 59	29 · 44	31.77	29.20	42.54	31.35
1	22.79	31 .46	15.88	31.33	21.27	32.62
1	11.39	32.70	7 · 94	32.94	10.63	33 · 33
2,4	5.69	33.10	3 · 97	33.26	5.31	33 · 74

SOLUBILITY OF BROMINE IN AQUBOUS SALT SOLUTIONS AT 25°. (McLauchlan, 1903.)

Salt.	Gms. Salt per Liter.	Normality of Dis- solved Br.	Gms. Br. per Liter.	Salt.	Gms. Salt per Liter.	Normality of Dis- solved Br.	Gms. Br. per Liter.
Water	0.0	0.424	33.95	NH,NO,	80.11	o . 688	55.15
Na,SO,	63.55	0.286	23.9	ŊaĊl	58.50	0.701	55.90
K.SO.	81.10	0.310	24.8	KCl	74.60	0.718	57 . 40
(NH ₄),SO ₄	70.04	0.971	77 • 7	NH ₄ Cl	53.52	1.028	82.2
NaNO,	85.09	0.3495	28.0	CH,COONH	77.09	4.26	340.5
KNO,	101.19	0.362	28.95	H.SO.*	49.03	o. <u>3</u> 66	29.26

^{*} Wildeman.

SOLUBILITY OF BROMINE IN AQUEOUS SOLUTIONS OF SODIUM BROMIDE AT 25°.
(Bell and Buckley, 1912.)

Grams per Liter Sat. Sol.		d ₂₅ of Sat. Sol.	Gms. per Li	d. of	
NaBr.	Br.	Sat. Sol.	NaBr.	Br.	d _{is} of Sat. Sol.
92.6	99.2	1.213	319.7	546	1.997
160.5	176.7	I.372	359	641.6	2.137
205.8	247 .8	1.515		769.2	2.327
255.8	343	1.678	408.3	834	2.420

RECIPROCAL SOLUBILITY OF BROMINE AND CHLORINE, BROMINE AND HYDROBROMIC ACID AND BROMINE AND SULFUR DIOXIDE, DETERMINED BY METHOD OF LOWERING OF THE FREEZING-POINT (see footnote, p. 1).

			Bromine + Hydro- bromic Acid.			+ Sulfur xide.
(Lebeau, 1 Karsten	906; see also , 1907.)	(Büchner	and Karsten, 1	90 8-0 9.)	(van der G	loot, 1913.)
t° of Melting.	Gms. Br per 100 Gms. Mixture.	to of Melting.	Gms. Br per 100 Gms. Mixture	Mol. % Br. in Mixture,	t° of Melting.	Gms. Br per 100 Gms. Mixture.
-102.5	0	-87.3	0	0	-75.1	0
-100	6.5	90	6	2.5	-75·3*	1.73
– 90	31	-95*	11.2	4.8	-60	4
– 80	48.6	-90	11.8	5	-40	12.5
– 70	60.4	8o	15.2	6.8	-30	21
— 60	70	-70	22	11.5	- 20	35.5
 50	79	60	. 31.7	19	— 18	40.5
– 40	86:3	– 50	43	30	– 16	48
– 30	91.1	-40	54 · 5	43 · 5	- 14	72
- 20	95.2	-30	66.2	60	-13	90
— 10	89	- 20	79 · 5	76.5	— 10	96.5
- 7.3	100	— 12.5	90	90	- 7.I	100
			• Eutec		-	

Solubility Data, Determined by the Freezing-point Method (see footnote, p. 1), Are Given for the Following Mixtures:

Bromine + Methyl alcohol (Maass and McIntosh, 1912.)

" + Ethyl alcohol " + Ethyl acetate "

" + Ethyl bromide (Wroczynski and Guye, 1910.)

" + Iodine (Meerum-Terwogt, 1905; Kruyt and Heldermann, 1916.)

+ Sulfur (Ruff and Winterfeld, 1903.)

grams Br at -95°, 39 grams at -110.5°, and 36.9 grams at -116°.

(Arctowski, 1895 - 1896.)

DISTRIBUTION OF BROMINE BETWEEN WATER AND CARBON TETRACHLORIDE AT 0°. (Jones and Hartmann, 1916.)

Gms. Bromine per Liter. Gm. Braper Gm. CCl. Gm. Br. per Gm. CCl4 Gms. Bromine per Liter. Density Density CCL H₂O H₂O CCL CCl-Brs. CCl-Brs. Solution. Solution. Layer. Layer. Layer. Layer. 0.01640 1.6454 1.28 26.99 0.07261 1.6896 122.82 5.35 138.66 0.01847 1.6470 0.08162 1.6972 6.03 I.44 30.45 1.6755 0.08661 6.30 0.05433 QI.12 1.7012 184.41 4.I2 0.06126 1.6809 4.59 103.07 0.1646 1.7667 II.22 201.10

161 BROMINE

DISTRIBUTION OF BROMINE AT 25° BETWEEN WATER AND: (Calculated from results of Jakowkin, 1895. Those in parentheses from Herz and Kurzer, 1910.)

Carbon Disulfide.		Bromo	oform.	Carbon Tetrachloride.		
Gms. B	Gms. Br. per Liter of:		Gms. Br. pe	er Liter of:	Gms. Br. per Liter of:	
Aq. Layer.	CS ₂	Layer.	Aq. Layer.	CHBr. Layer.	Aq. Layer.	CCL Layer.
0.5	36	(35)	0.5	33	0.5	15 (13)
1	80	(75)	1	66	ı	28 (23)
2	163	(155)	2	136	2	60 (45)
3	240	(230)	3	206	3	90 (70)
4	330	(310)	4	276	4	123 (95)
5	420	(395)	5	346	5	156 (122)
6	515	(48o)	Ğ	415	Ğ	190 (150)
7	620	(565)	• • •	•••	8	260 (220)
•					10	340 (300)
					12	430 (400)
					14	520 (550?)

Lewis and Storch (1917) point out that Jakowkin (1896) failed to take into consideration, the hydrolysis of the bromine in the aqueous phase in the very dilute solutions. They used 0.001 n HCl which prevents the hydrolysis but is presumably too dilute to affect the true solubility. The distribution coefficient found in this way, given in terms of mols. Br per 1000 gms. H₂O, divided by the mol. fraction of Br in the CCl₄, is 0.3705 at 25°. These authors also give a series of determinations of the distribution of bromine between 0.1 n HBr and CCl₄ at 25°.

DISTRIBUTION OF BROMINE BETWEEN WATER AND MIXTURES OF CARBON DISULFIDE AND CARBON TETRACHLORIDE AT 25°. (Hers and Kurzer, 1910.)

25 Vol. % CS₂ + 75 Vol. 50 Vol. % CS₂ + 50 Vol. 75 Vol. % CS₂ + 25 Vol. % CCl₄.

Gms. Bromine per Liter.		Gms. Bro	mine per Liter.	Gms. Bromine per Liter.	
Aq. Layer.	CSa+CCh Layer.	Aq. Layer.	CS2+CC4 Layer.	Aq. Layer.	CSa+CCh Layer.
0.79	28.4	0.63	28.7	0.71	46
1.53	58.4	1.19	54 · 5	I.34	87.2
2.32	86.6	1.76	81.1	3.98	213.8
2.98	111.3	2.45	110.9	5.06	330.5
3.66	137.8	2.95	132.9	6.82	444.2
5.26	205.1	6.47	343.8		
7.95	324.9	7.97	447.7		
9.66	432.2				

DISTRIBUTION OF BROMINE AT 25° (Herz and Rathmann, 1913) BETWEEN:

Water and Tetrachlorethane. Water and Pentachlorethane. Grams Bromine per Liter. Gms. Bromine per Liter. Aq. Layer. CaHaCle Layer. Aq. Layer. CaH.Cla Layer. 0.216 6.47 0.402 10.70 0.592 18.20 0.670 18.29 0.944 0.864 29.46 23.49 35.46 1.348 41.65 1.300 2.444 74.57 2.408 67.44

DATA FOR THE DISTRIBUTION OF BROMINE BETWEEN AQUEOUS SALT SOLUTIONS AND ORGANIC SOLVENTS ARE GIVEN BY THE FOLLOWING INVESTIGATORS:

Immiscible Solvents.	ť*.	Authority.
Aqueous CdBr ₂ +CCl ₄	25	(Van Name and Brown, 1917.)
Aqueous CdBr _{2.2} KBr+CCl ₄	25	44
Aqueous HBr+CCL	25	(Lewis and Storch, 1917.)
Aqueous HgBr ₂ +CCl ₄	25	(Herz and Paul, 1914; Van Name and Brown, 1917.)
Aqueous HgBr _{2.2} KBr+CCl ₄	25	(Van Name and Brown, 1917.)
Aqueous KBr+CCL	0	(Jones and Hartmann, 1916.)
Aqueous KBr+CS ₂	32.6	(Roloff, 1894.)

BROMOFORM CHBr.

100 cc. H₂O dissolve 0.125 gm. CHBr₂ at 15°-20°...

(Squire and Caines, 1905.)

Bromoform and Toluene.

SOLUBILITY (Freezing-point lowering data, see footnote, p. 1) FOR MIXTURES OF:

	(Büchner, 1905-06.)		(Baud, 1912.)	
ť.	Gms. CHBr; per 100 Gms. CHsBr+COs.	to of Freezing.	Gms. CHBrs per 100 Gms. CHBrs+CeHs.CHs.	Solid Phase.
-31	•	+ 7.7	100	CHBr ₃
-32	3 · 7	-11.4	86.6	"
-30	4.9	-22.2	75.6	66
– 16	13.5	-30.9	69.8	66
– 8	24	-48.5	60.3	"
- 5	35.2-67.7 quad. pt.			
- 3.5	92.1			

BRUCINE $C_{21}H_{20}(OCH_1)_2N_2O_2.4H_2O.$

Bromoform and Liquid Carbon Dioxide.

SOLUBILITY OF BRUCINE IN SEVERAL SOLVENTS.

Solvent.	t°.	Gms. Brucine per 100 Gms. Sat. Sol	Authority.
Water	18-22	0.056-0.125	(Müller, 1903; Squire and Caines, 1905; Zalai, 1910.)
Aniline	20	12	(Scholtz, 1912.)
Benzene	18-22		(Müller, 1903; Schaefer, 1913.)
Carbon Tetrachloride	e 18–22	0.08	
" "	20	1.96	(Schindelmeiser, 1901; Gori, 1913.)
Chloroform	25	11.6	(Schaefer, 1913.)
Trichlor Ethylene	15	2.5	(Wester and Bruins, 1914.)
Ether	18-22		(Müller, 1903.)
Ethyl Acetate	18-22	4.26	u
Ethyl Alcohol	25	45.2	(Schaefer, 1913.)
Diethylamine	20	1.6	(Scholtz, 1912.)
Methyl Alcohol	25	55.6	(Schaefer, 1913.)
Petroleum Ether		: 0. 055 - 0.088	
Glycerol	18-22		(Müller, 1903.)
Pyridine	20	28	(Scholtz, 1912.)
	20-2	31.9	(Dehn, 1917.)
Aq. 50% Pyridine	20-2	31.6	u
Piperidene	20	1	(Scholtz, 1912.)

Results for the solubility of brucine and brucine sulfate in mixtures of alcohol, chloroform and benzene are given by Schaefer (1913).

BRUCINE Per CHLORATE C11H20(OCH3)2N2O2.HClO4.

100 gms. H₂O(+ 2%HClO₄) dissolve 0.15 gm. of the salt at 18°.
(Hofmann, Roth, Höbold and Metzler, 1910.)

BRUCINE SULFATE.

100 cc.	methyl alcohol	dissolve	0.28 gn	ı. brucine	sulfate at	25°.	(Schaefer, 1913.)
**	ethyl "	44	1.66 "	44	"	"	(Schaefer, 1913.)
44	chloroform	46	0.6 "	44	44	44	(Schaefer. 1913.)

BRUCINE d, l, and i TARTRATE.

SOLUBILITY OF EACH OPTICAL ISOMER IN WATER (Dutilh, 1912.)

40	Gms. per 100 Gms. water.				
ť.	d Tartrate.	l Tartrate.	Racemic Tartrate.		
20	• • •	• • •	1.38		
25	1.008	1.84	•••		
35	1.272	3.24	•••		
44	1.590	4.64	• • •		
50	1.854	6.56	•••		

BUTANE C.H.

Solubility in Water at to and 760 mm.

t°.	, o°.	4°.	10°.	15°.	20".
Vol. C ₄ H ₁₀ per					
100 vols. H ₂ O	3.147	2.77	2.355	2.147	2.065

DiphenylBUTADIENE.

Freezing-point curves (solubility, see footnote, p. 1), are given by Pascal (1914) for mixtures of diphenylbutadiene and each of the following compounds: diphenyldiacetylene, diphenylhydrazine and cinnamylidene.

BUTYL ACETATE CH.CO.C.H.

SOLUBILITY OF BUTYL ACETATE AND OF BUTYL FORMATE IN MIXTURES OF ALCOHOL AND WATER.

(Bancroft - Calc. from Pfeiffer - Phys. Rev. 3, 205, '95-'96.)

ec. Alcohol in Mixture.	cc. H ₂ O added to cause separation of a second phase in mixtures of the given quantity of alcohol and 3 cc. portions of:			
	Butyl Formate.	Butyl Acetate.		
3	3 · 45	2.08		
3 6	8.83	6.08		
9	14.75	10.46		
12	21.45	15.37		
15 18	29.65	20.42		
18	39.0	25.60		
21	51.8	31.49		
24	∞	37 . 48		
27		43 - 75		
30		50.74		
33		59 - 97		

100 cc. H₂O dissolve 0.7 cc. isobutyl acetate at 25°.

(Bancroft.)

IsoBUTYL ACETATE, etc.

SOLUBILITY IN WATER. (Traube, 1884; at 20°, Vaubel, 1899.)

s*.	Compound.	Grams Com- pound per 100 Grams H ₂ O.
22 .	Iso Butyl Acetate	0.5
22	Iso Butyl Formate	1.0
20	Normal Butyric Aldehyde	3.6
20	Iso Butyric Aldehyde	10.0

Secondary BUTYL ALCOHOL CH₂.CHOH.CH₂CH₃. Iso BUTYL ALCOHOL (CH₂)₂CH.CH₂OH.

SOLUBILITY OF BUTYL ALCOHOLS IN WATER, "SYNTHETIC METHOD."
(see Note, p. 16).
(Alexajew, 1886.)

Secondary Butyl Alcohol and Water.			Iso Butyl Alcohol and Water.		
Gms		Alcohol per 100 Gms.		cohol per 100 Gms.	
t°.	Aqueous Layer.	Alcoholic Layer.	Aqueous Layer.	Alcoholic Layer.	
-20	27	66	•••		
-10	28	60	•••	• • •	
0	27.5	56	13	85	
IO	26.0	57	•••	•••	
20	22.5	60	9	84	
30	18	63. 5	•••	•••	
40	16	65. 5	7 ·5	83	
60	13	67	7	82	
80	15	63 52	7	77 • 5	
100	20	52	8	72	
107 crit.	temp. 3		• • •	•••	
120			16	62	
130			28	50	
133 cri	t. temp.			49	

Additional determinations of the reciprocal solubility of secondary butyl alcohol and water are given by Dolgolenko (1908). This investigator prepared three fractions of 98°-98.6°, 98.6°-99° and 99°-99.5° boiling point respectively, and determined the curve for each fraction and water by the "synthetic method." The first fraction gave a closed curve having both a lower and an upper critical solution temperature, while the other fractions gave curves with only an upper critical solution temperature, and in other respects in fair agreement with the results of Alexejew as shown in the above table. The explanation of this difference in the case of the first fraction, is supposed to be that this fraction contained a larger proportion of tertiary butyl alcohol than the others, due to the lower boiling point of this isomer. Since the tertiary alcohol is entirely miscible with secondary alcohol and water its presence would restrict the boundaries of inhomogeneity and, therefore, tend to favor a closed curve for the system.

Solubilities, Determined by the Freezing-point Method (see footnote, p. 1),
Are Given for the Following Mixtures Containing Butyl Alcohols.

Isobutyl alcohol + Water	(Dreyer, 1913.)
" " + Liquid CO ₂	(Büchner, 1905-06.)
Normal butyl alcohol + Water	(Dreyer, 1913.)
" " + Liquid CO ₂	(Büchner, 1905-06.)
Secondary butyl alcohol + Water (Dreyer,	1913; Timmermans, 1907, 1910, 1911.)
" '" + " + Hydroquinine	(Timmermans, 1907.)
Tertiary butyl alcohol + Water.	(Dreyer, 1913.)

DISTRIBUTION OF ISOBUTYL ALCOHOL BETWEEN WATER AND COTTON SEED OIL AT 25°. (Wroth and Reid, 1916.)

Gms. CiHsOH per 100 cc.					
Oil Layer.	HsO Layer.	Ratio.	Oil Layer.	H ₂ O Layer.	Ratio
1.168	2.043	1.74	I.375	2.301	1.67
1.276	2.250	1.76	1.405	2.429	1.72
1.288	2.135	1.65	1.495	2.450	1.64

The partition coefficient of tertiary butyl alcohol (CH₈)₂C(OH)CH₈, between olive oil and water is given as 0.176 at ord. temp. (Baum, 1899.)

ISOBUTYLAMINE HYDROCHLORIDE (CH2)2CHCH2NH2.HCl.

100 gms. H₂O dissolve 238.9 gms. of the salt at 25°. (Peddle and Turner, 1913.)
100 gms. CHCl₂ dissolve 11.56 gms. of the salt at 25°. (Peddle and Turner, 1913.)

BUTYLCHLORAL CH,CHCl.CCl,CHO.

The distribution coefficient of butylchloral between oil and water is given as 1.6. (Meyer, 1907.)

BUTYLCHLORALHYDRATE CH, CHCl.CCl, CH(OH),

The partition coefficient of butylchloralhydrate between olive oil and water is given as 1.589 at ord. temp. (Baum, 1899.)

BUTYRIC ACIDS (normal) CH₂(CH₂)₂COOH; (iso) (CH₂)₂CH.COOH.

SOLUBILITY OF NORMAL BUTYRIC ACID IN WATER, DETERMINED BY THE FREEZING-POINT METHOD. (Faucon, 1909, 1910.)

t° of Congealing.	Gms. Acid per 100 Gms. Mixture.	t° of Congealing.	Gms. Acid per roo Gms. Mixture.	t° of Congealing.	Gms. Acid per 100 Gms. Mixture
0	0	- 3.57	67.38	-13.40	87.62 Eutec.
- r.o8	5.12	- 5.20	75	-12.40	90.08
-2.70	12.75	-6.80	8o	— 10	95.92
-2.96	25.32	– 8.61	84	– 8	98.60
-3.07	50.60	— 10.25	85.41	- 5.40	99.15
-3.14	59 · 72	-12.54	86.54	- 3.12	100
			•		

Higher values for the temperature of congealing of the above mixtures are given by Ballo (1910). For additional data see also Timmermans (1907) and Tsakalotos (1914). Data for the miscibility of normal butyric acid and water are also given by Faucon. The curve is entirely in the metastable region. The mixtures are either opalescent or completely homogeneous and never form two distinct layers, even with the application of centrifugal force. The results are as follows:

SOLUBILITY OF ISOBUTYRIC ACID IN WATER, DETERMINED BY THE FREEZING-POINT METHOD. (Faucon, 1910.)

The congealing temperatures for mixtures containing up to 60 grams isobutyric acid per 100 gms. coincide with the results given in the above table for normal butyric acid and water. For higher concentrations the following results were obtained.

MISCIBILITY OF ISOBUTYRIC ACID AND WATER, DETERMINED BY THE "SYNTHETIC METHOD."

(Smirnoff, 1907.)

	Gms. Acid per 100 Gms.:			
ť.	Upper Layer.	Lower Layer.		
10.05	69.08	17.82		
12	67.I	18.3		
14	64.9	19.1		
16	62.3	20		
18	59.2	2I.I		
20	55.4	22.8		
22	49	25.8		
22.5	46	27		
23	41	29		
23.3 crit. t.	34	.7		

Determinations varying more or less from the above are given by Rothmund (1898), Friedlander (1901) and Faucon (1910). The discrepancies are shown by Smirnoff to be due to the effect of variations in purity of the isobutyric acid upon the position of the curve. Smirnoff fractionated the purest obtainable acid and determined the miscibility curve for each fraction. The above results were obtained with fraction 4 of boiling point 154°-155°, twice refractionated.

An extensive series of determinations are given by Smirnoff of the effect of various percentages of different salts upon the temperature of immiscibility of

aqueous 16.46% isobutyric acid solution.

DISTRIBUTION OF BUTYRIC ACID BETWEEN WATER AND BENZENE AT 13°-15° (Georgievics, 1913.)

Gms. Butyric Acid	Gms. Acid Found per			
Used.	150 cc. Benzene Layer.	25 cc. H ₂ O Layer.		
2.0044	1.7643	0.2401		
2.9968	2.6965	0.3003		
3.5028	3.1740	0.3288		
4.0088	3.6544	0.3544		
4.5342	4.1521	0.3821		

The distribution ratio of normal butyric acid between water and benzene at room temperature was found by King and Narracott (1909), to be I to 0.7585, and for isobutyric acid, the ratio was I to 0.810.

One determination of the distribution of butyric acid between sat. aqueous CaCl₂ solution and kerosene gave 7.2 gms. acid per 100 gms. aqueous layer and 92.8 gms. per 100 gms. kerosene layer at ord. temp. (Crowell, 1918.)

DATA FOR THE FOLLOWING TERNARY SYSTEMS CONTAINING NORMAL BUTYRIC ACID ARE GIVEN BY TIMMERMANS, 1907.

Normal	Butyric	acid	+ Water	+ Azobenzene.
46	41	44	- 44	+ Barium nitrate.
44	66	66	44	+ Benzophenone.
66	44	44	44	+ Camphor.
46	64	66	44	+ Cane sugar.
44	66	44	44	+ Mannite.
44	46	66	66	+ Naphthalene.
44	64	44	44	+ Potassium sulfate.
44	44 -	44	44	+ Sodium chloride

Freezing-point data are given for mixtures of n butyric acid and formamide by English and Turner (1915), and for mixtures of trichlorobutyric acid and dimethyl pyrone by Kendall (1914).

CADMIUM BROMIDE CdBr.

SOLUBILITY IN WATER.

(Dietz — Ber. 32, 95, '99; Z. anorg. Chem. 20, 260, '99; Wiss. Abh. p.t. Reichanstalt, 3, 433, '90; see also Eder — Dingler polyt. J. 221, 189, '76; Etard — Ann. chim. phys. [7] 2, 536, '94.)

t° .	Gms. CdBr ₂ per 100 Gms. Solution.	Mols. CdBr per 100 Mols. H ₂ O.	Solid Phase.	t° . j	Gms. CdBr ₂ per 100 Gms. Solution.	Mols. CdBr per 100 Mols. H ₂ O	Solid Phase.
0	37 - 92	4.04	CdBr ₂ .4H ₂ O	40	60.65	IO . 20	CdBr,.H,O
18		6.21	"	45	60.75	10.24	" -
30	56.90	8.73	"	60	61.10	10.39	"
	61 .84	10.73	46		62.29	10.48	"
35	60.29	10.05	CdBr ₂ .H ₂ O	100	61.63	10.63	66

Density of saturated solution at 18°= 1.683.

SOLUBILITY OF CADMIUM BROMIDE IN ALCOHOL, ETHER, ETC.

100 gms. sat. solution of CdBr₂.4H₂O in abs. alcohol contain 20.93 gms. CdBr₃ at 15°. (Eder.)
100 gms. sat. solution of CdBr₂.4H₂O in abs. ether contain 0.4 gm. CdBr₃ at 15°.

(Eder.)

100 gms. absolute acetone dissolve 1.559 gms. CdBr₂ at 18°. d₁₈ sat. sol. = 0.8073. (Naumann, 1904.)

100 gms. benzonitrile dissolve 0.857 gm. CdBr₂ at 18°. (Naumann, 1914.)

100 gms. anhydrous hydrazine dissolve 40 gm. CdBr₂ at room temp.
(Welsh and Broderson, 1915.)

RECIPROCAL SOLUBILITIES, DETERMINED BY THE METHOD OF LOWERING OF THE FREEZING-POINT (see footnote, p. 1), ARE GIVEN FOR THE FOLLOWING MIXTURES:

```
Cadmium Bromide + Cadmium Chloride
                                             (Nacken, 1907; Ruff and Plato, 1903.)
                    + Cadmium Iodide
                                            (Nacken, 1907.)
    **
              "
                    + Calcium Fluoride
                                            (Ruff and Plato, 1903.)
    "
              44
                    + Cuprous Bromide
                                            (Herrmann, 1911.)
    44
              "
                    + Potassium Bromide
                                                         (Brand, 1913.)
    44
              44
                     Sodium Bromide
    "
                                     + Potassium Bromide
```

CADMIUM (Mono) AMMONIUM BROMIDE CdBr2.NH4Br

SOLUBILITY IN WATER. (Rimbach, 1905; Eder.)

t°	100 Grams	zoo Grams Solution contain Gms.				Atomic Relation.				
•	Cd.	Br.	NH4.	Ca T	: Br	:	NH.	per 100 Gms. Solution.		
1.0	16.33	34.87	2.63	I	3		I	53.82		
14.8	17.40	37.15	2.80	I	3		1	58.01		
52.2	19.79	42.38	3.21	I	3		I	65.31		
110.1	22.99	49.17	3.72	I	3		I	75.98		

100 gms. sat. solution of CdBr. NH₄Br in abs. alcohol contain 15.8 gms. double salt at 15° (Eder).

100 gms. sat. solution of CdBr₂.NH₄Br in abs. ether contain 0.36 gm. double salt at 15° (Eder).

CACODYLIC ACID (CH1)2A8O.OH.

100 cc. H₂O dissolve about 200 gms. cacodylic acid at 15°. (Squire and Caines, 1905.) 100 cc. 90% alcohol dissolve about 28.5 gms. cacodylic acid at 15°. "

CADMIUM (Tetra) AMMONIUM BROMIDE CdBr..4NH.Br.

SOLUBILITY IN WATER.

(Rimbach.)

The double salt is decomposed by water at temperatures below 160°.

**. `	Cd. Br. NH4.			Atomic Relation in Sol.			Atomic Relation in Solid.		
	Cd.	Br.	NH4.	Cd	: Br :	NH4.	ट्य	: Br :	NH4.
0.8	14.72	50.46	6.67	I	4.82	2.82	I	10.02	8.02
13.0	14.95	51.48	6.85	I	4.85	2 .85	I	11.57	9 · 57
44.0	15.01	53.85	7.35	I	5.04	3.04	I	6.84	4.84
76.4	14.6	5 5.2 8	7.80	I	5.32	3.32	I	6.63	4.63
123.5	15.5	59 - 50		1	5 . 38	3 · 38	I	7 - 40	5.40
160.0	14.7	62.67	9 · 43	I	5.99	3.99	1	6.03	4.03

CADMIUM (Mono) POTASSIUM BROMIDE CdBr. KBr. H.O.

SOLUBILITY IN WATER.

(Rimbach; see also Eder.)

t * .	zoo Gms. Solution contain Gms.			Atomic	Gms. CdBr. KBr		
	Cd.	Br.	K.	Cd :	Br	: K.	per 100 Gms. Solution.
0.4	15.41	33.0	5 - 42	I	3	I	53.63
15.8		35.96		I	3	I	58.61
50.0		41.86		I	3	I	67 .87
112.5	22.24	48.28	8.14	0.98	3	1.03	78.11

CADMIUM Tetra**POTASSIUM BROMIDE** is decomposed by water at ordinary temperatures.

CADMIUM (Mono) RUBIDIUM BROMIDE CdBr. RbBr.

SOLUBILITY IN WATER. (Rimbach.)

t*.	roo Gms. Solution contain Gms.			Atomic 1	Gms. CdBrs.RbBr per·100 Gms.		
	Cd.	Br.	Rb.	Cd :	Br	; Rb.	Solution.
0.4	8.37	17.93	6.43	I	3	1.01	32.65
14.5	10.72	23.02	8.30	0.99	3	1.01	41.87
	15.01		11.51	I	3	I	58.54
107.5	19.65	41.12	14.06	I.02	3	0.96	75 - 77

CADMIUM (Tetra) RUBIDIUM BROMIDE CdBr2.4RbBr.

SOLUBILITY IN WATER. (Rimbach.)

r.	100 Gms. Solution contain Gms.				Atomic kelation in Sol.					Gms. CdBrs.4RbBr per 100 Gms.
	Cd	Br	Rb.		Cq	:	Br	:	Rb.	Solution.
0.5	5.70	24.94	17.97		o .98		6		4.05	47 · 95
13.5	6.55	28.74	20.74		0.97		6		4.05	
51.5	8.25	35.51	25.39		0.99		6		4.02	68.82
114.5	9.50	40.67	29.00	•	1.00		6		4.0	79. 04

CADMIUM (Mono) SODIUM BRÓMIDE CdBr, NaBr21H2O.

SOLUBILITY IN WATER, ETC., AT 15°.

(Eder - Ding. polyt. J. 221, 189, 76.)

0.1	Gms. CdBr ₂ .NaF	Br per 100 Gms.	Solid		
Solvent.	Solution.	Solvent.	Phase.		
Water	49.0	96.I	CdBr ₂ .NaBr.2 H ₂ O		
Absolute Alcohol	21.2	27.0	"		
Absolute Ether	0.52	0.53	46		

CADMIUM CHLORATE Cd(ClO₃)_{2.2}H₂O.

SOLUBILITY IN WATER. (Meusser, 1902.)

Gms. Mols. Cd(ClOs): Cd(ClOs): per roo Gms. per roo Mols. Solution. HsO.	Gms. Mols. Cd(ClOs): Cd(ClOs): Solid Phase. per 100 Gms. per 100 Solution. Mols. H ₂ O.
- 6.5 26.18 3.07 Ice	± 0 74.95 25.92 Cd(ClOs)s.2HsO
-13.0 52.36 9.52 "	18 76.36 27.98 "
-20.0 72.10 22.47 Cd(ClOs)2.2HgO	49 80.08 34.82 "
-15.0 72.53 22.87 "	65 82.95 42.14 "

Density of the sat. solution at 18° = 2.284.

CADMIUM CHLORIDE CdCl1.21H1O.

SOLUBILITY IN WATER. (Dietz — W. Abh. p. t. Reichanstalt 3, 433, '00; above 100°, Etard — Ann. chim. phys. [7] 2, 536, '94.)

t °.	G. CdCl ₂ pe roo Gms. Solution.	r Mols.CdCl ₂ per 100 Mols. H ₂ O.		ŧ°.	G.CdCl ₂ per 100 Gms. Solution.	Mols.CdCl _s per 100 Mols. H ₂ O.	Solid Phase.
- 9	43 . 58	7.5]		+10	57 · 47	13.3]	
0	49 - 39	. 9.6 ل	CACL AH O	20	57 - 35	13.2	
+10	55.58	12.3	ر دندني بيني	40	57.51	13.3	CACI TIO
15	59.12	14.2		60	57.71	13.4	Cuci.n.
-10	44 · 35	7.8)		80	58.41	13.8	
0	47 - 37	9.0		100	59.52	14.4	
+ 18	52.53	10.9	CdCl,.21H,O	150	64.8		
30	56.91	12.8	(monoclinic)	200	72.0		
36	57.91	13.5		270	77 · 7		

Density of saturated solution at 18° = 1.741.

100 gms. abs. ethyl alcohol dissolve 1.52 gms. CdCl2 at 15°.5.

100 gms. abs. methyl alcohol dissolve 1.71 gms. CdCl₂ at 15°.5. (de Bruyn, 1892.)

100 gms. abs. methyl alcohol dissolve 1.5 gms. CdCl2 at the crit. temp.

100 gms. benzonitrile dissolve 0.063 gm. CdCl₂ at 18°.

(Centnerszwer, 1910.) (Naumann, 1914.) RECIPROCAL SOLUBILITIES, DETERMINED BY THE METHOD OF LOWERING OF THE FREEZING-POINT (see footnote, p. 1), ARE GIVEN FOR THE FOLLOWING MIXTURES:

Cadmium	Chloride	+ Cadmium Iodide	(Nacken, 1907 (c); Ruff and Plato, 1903.)
44	44	+ Cadmium Fluoride	(Ruff and Plato, 1903)
44	44	+ Cadmium Sulfate	41 14
44	44	+ Calcium Chloride	(Sandonnini, 1911, 1914; Menge, 1911.)
44	44	+ Cuprous Chloride	(Herrmann, 1911.)
44	44	+ Lead Chloride	(Sandonnini, 1912, 1914; Herrmann, 1911.)
44	46	+ Magnesium Chloride	
66	".		(Sandonnini, 1914; Sandonnini and Scarpa, 1911.)
44	44	+ Mercuric Iodide	(Sandonnini, 1912.)
44	44	+ Potassium Chloride	(Brand, 1911.)
66	66	+ Sodium Chloride	
44	66		Potassium Chloride (Brand, 1911.)
44	64	+ Strontium Chloride	(Sandonnini, 1911; 1914.)
44	44	+ Thallium Chloride	(Korreng, 1914; Sandonnini, 1913.)
44	44	+ Tin (ous) Chloride	(Herrmann, 1911; Sandonnini, 1914.)
44	44	+ Zinc Chloride	(Herrmann, 1911.)

CADMIUM AMMONIUM CHLORIDE CdCla.NH4Cl.

SOLUBILITY IN WATER. (Rimbach — Ber. 30, 3075, 1897.)

s °.	100 Gms	. Soluțion cont	ain Gms.	Gms. CdCls.NH4Cl per 100 Gms.		
¥ ·.	Cd.	Cl.	NH .	Solution.	Water.	
2.4	14.26	13.44	2.24	29.94	42 - 74	
16.0	15.82	15.07	2.56	33 · 45	50.26	
41.2	18.61	17.46	2.89	38.96	63.8 3	
63.8	20.92	19.73	3.34	43.99	78.54	
105.9	24.70	23.52	4.01	52.23	109.33	

. CADMIUM (Tetra) AMMONIUM CHLORIDE CdCl₁.4NH₄Cl.

IN CONTACT WITH WATER.

The salt is decomposed in aqueous solution.
(Rimbach.)

s °.	100 Gms.	Solution cont	Atomic	Relation	in Solution.	
• •	Cd.	Cl.	NH.	Ca	: a	: NH.
3.9	5 · 75	18.17	7 · 37	1	9.96	7.96
16.1	6.96	20.26	7 - 97	. 1	9.20	7.13
40.2	9.91	23.84	8.92	1	7.61	5.61
58.5	12.50	26.53	9.35	I	6.71	4.66
112.9	16.66	31.79	10.78	I	6.02	4.02
113.9	16.51	32.71	11.30	I	6.26	4.26

SOLUBILITY OF MIXTURES OF CADMIUM TETRA AMMONIUM CHLORIDE AND CADMIUM AMMONIUM CHLORIDE IN WATER. (Rimbach — Ber. 35, 1300, '02.)

v.	200 Gms. Solution contain Gms.			Atomic Relation.			Solid Phase, Mol. per cent of:	
	Cd.	Cl.	NH4.	Cd	: a :	NH4.	CICL.	CAC
1.1	5 · 34	17.62	7 . 27	I	10.47	8.50	49.6	50.4
14.0	7.12	19.86	7 .84	I	8.84	6.87	47.0	53.0
40.7	10.24	23.82	8.85	I	7 · 37	5 · 37	77 .0	23.0
58.5	12.50	26.53	9 · 35	I	6.71	4.66	• • •	• • •

SOLUBILITY OF MIXTURES OF CADMIUM TETRA AMMONIUM CHLORIDE AND AMMONIUM CHLORIDE IN WATER.

(Rimbach.)

t* .	zoo Gms. Solution contain Gms.				Atomic Relation		Solid Phase, Mol. per cent of:	
	Ca.	Cl.	NH.	ट्य	: a :	NH.	NH ₄ Cl.	CdCl.4NH.C.
1.0	2.82	17.11	7.82	I	19.21	17.28	59.0	41.0
13.2	2.76	18.84	8.71	I	21.62	19.62	74.0	26.0
40 · I	3.16	22.56	10.49	I	22.65	20.74	71.0	29.0
58.2	3.51	25.21	11.72	I	22.79	20.89	69.0	31.0

GADMIUM BARIUM CHLORIDE 2(CdCl2).BaCl2.5H2O.

SOLUBILITY IN WATER. (Rimbach — Ber. 30, 3083, '97.)

5° .	I	o Gms. Soluti contain Gms.	Gms. s(CdCls).BaCls per 100 Gms.		
• •	Cd.	Ċl.	Ba.	Solution.	Water.
22.6	17.71	16.89	11.0	45.60	83.82
41.3	19.22	18.15	11.77	49.14	96.62
53 . 9	19.85	18.75	12.41	51.04	104.25
62.2	20.59	19.66	12.83	53.08	113.13
69.5	21.20	20.18	13.09	54 · 47	119.64
107.2	24.25	23.23	14.90	62.38	165.85

CADMIUM BARIUM CHLORIDE CdCl, BaCl, 4H,O.

SOLUBILITY IN WATER. (Rimbach.)

s*.	10	o Gms. Solutio contain Gms.	XII.	Gms. CdCl ₂ .BaCl ₂ per 100 Gms.		
	Cd.	Cl.	Ba.	Solution.	Water.	
22.5	11.98	15.19	14.71	41.88	72.06	
32.9	12.40	16.18	16.09	44.67	80.73	
41.4	13.05	16.95	16.81	46.81	88.01	
53 · 4	13.96	18.21	18.13	50.30	101.21	
62.0	14.73	18.81	18.74	52.28	109.56	
97.8	17.57	22.48	22.00	62.05	163.50	
108.3	18.53	23.51	22.79	64.83	184.33	
100.2	18.67	23.60	20.05	65.31	188.27	

GADMIUM MAGNESIUM CHLORIDE 2(CdCl,)MgCl,.12H,O,

SOLUBILITY IN WATER.

(Rimbach.)

\$° .	20	oo Gms. Soluti contain Gms.	Gms. 2(CdCl2).MgCl2 per 100 Gms.		
	Cd.	CI.	Mg.	Solution.	Water.
2.4	22.14	21.06	2.41	45.61	83 . 86
20 .8	24.30	22 .80	2.55	49.69	98·7 7
45 - 5	26.24	24.55	2.72	53 · 51	115.10
67.2	28.45	26.71	2.98	58.14	138.90
121.8	31.84	30.20	3 · 44	65 . 48	189.6 9

CADMIUM (Mono) RUBIDIUM CHLORIDE CdCl₂. RbCl.

SOLUBILITY OF CADMIUM MONORUBIDIUM CHLORIDE IN WATER. (Rimbach, 1902.)

r.	100 Gm	s. Solution cont	Gms. CdCls.RbCl per 100 Gms.		
	Cd.	Cl.	Rb.	Solution.	Water.
1.2	4.80	4.53	3.63	12.97	14.90
14.5	6.20	5.88	4.75	16.80	20.19
41.4	9.34	8.86	7.14	25.31	33.89
57.6	11.40	10.78	8.63	30.83	44.58
103.9	17.14	16.37	13.39	46.62	87.36

CADMIUM (Tetra) RUBIDIUM CHLORIDE CdCl.4RbCl.

IN CONTACT WITH WATER. (Rimbach.)

The double salt decomposes to CdCl₂.RbCl and RbCl.

8° .	100 Gms. Solution contain Gms.				Atomic Rel	Solid Phase, Mol. per cent of:		
	Cd.	a.	Rb.	æ	: a	: Rb.	CdCl ₂ . RbCl.	CdCl ₂ . 4RbCl.
0.7	0.65	6.52	14.73	I	31.88	29.88	30	70
8.8	1.07	7 · 37	16.13	I	21.89	19.89	24	76 '
13.8	1.32	7.86	16.93	I	18.88	16.83	16	84
42.4	3.21	11.35	22.45	I	11.21	9.21	14	86
59.0	4.61	13.41	25.31	I	9.23	7.23	33	67
108.4	8.94		31.15	I	6.57	4.59	••	••

SOLUBILITY OF MIXTURES OF CdCl, 4RbCl and RbCl in Water. (Rimbach.)

s*.	roo Gms. Solution contain Gms.			Atomic Relation.			Solid Phase, Mol. per cent of:	
	Ca.	CI.	Rb.	Cd	: Ĉ1 :	Rb.	CdCl ₂₋₄ RbCl	RbCl.
0.4		12.86	30.97		I	I	55	45
14.8		13.62	32.81		1	I	67	33
17.9		14.0	33.71		I	I	80	20

THE EFFECT OF THE PRESENCE OF HCl, CaCl₂ and of LiCl upon the Decomposition of Cadmium Tetrarubidium Chloride by Water at 16°. (Rimbach, 1905.)

, 1	oo Gms.	Solution co	ntain Gm	s	Mols. per 100 Mols. H ₂ O. Molecular Ratio.				
Total Cl.	a.	HCl.	Cd.	Rb.	CdCla.	RbCl.	HCl.	CdCl ₂	: RbCl.
36.44	0.84	36.61	0.41	1.39	0.109	0.483	29.76	I	4.43
28.45	0.80	28.44	0.35	1.38	0.082	0.422	20.35	I	5.15
12.09	3.24	9.11	0.69	6.74	0.139	1.772	5.60	I	12.75
	Ca.	CaCl ₃ .					CaCl ₂ .		
14.98	7.56	20.91	0.73	2 .80	0.159	0.799	4.59	I	5.04
12.70	5.77	15.96	0.77	4.87	0.163	1.353	3.41	I	8.31
10.85	3.78	14.47	I .00	8.51	0.211	2.365	2.24	I	II.22
9.08	1.84	5.10	1.24	12.14	0.262	3.385	1.09	I	12.92
•	Li.	Lia.					LiCl.		
26.49	4 . 87	29.40	0.56	3.871	0.139	1.271	19.40	I	9.13
20.37	3 · 33	20.11	0.52	7 .84	0.122	2 · 433	12.54	I	19.88
See	Note o	n next	page.						

GADMIUM (Mono) POTABBIUM CHLORIDE CdCL, KCl.H.O.

SOLUBILITY IN WATER.

(Rimbach -- Ber. 30, 3079, '97; see also Croft -- Phil. Mag. [1] 32, 256, '40.)

t* .	100	Gms. Solution contain Gms.	•	Gins. CdCls.KCl per 1co Gins.		
	Ca.	a		Substice.	Water.	
2.6	9.53	9.03	3.31	21.87	27.99	
15.9	11.63	8e.or	3.99	26.60	36.24	
41.5	15.47	14.73	5.45	35.66	55-34	
60.6	17.68	16.80	6.20	40.67	68.55	
105.1	22.46	21.34	7 .87	51 - 67	106.91	

GADMIUM (Tetra) POTASSIUM GHLORIDE CdCl, 4KCl.

In CONTACT WITH WATER.
(Rimbach.)

The double salt is decomposed when dissolved in water at ordinary temperature.

	100 Grams Solution contain Gms.						
\$°.	Cd.	cı.	R.				
4	3.64	9.84	8.31				
23.6	5.66	14.02	11.52				
50.2	9.10	18.09	13.60				
108.9	11.94	23.11	17.16				

Note. — The effect of the presence of certain chlorides upon the decomposition of cadmium tetra potassium chloride by water at 16° was investigated by Rimbach in a manner similar to that used in the case of cadmium tetra rhubidium chloride (see preceding page). The results, which show the extent to which increasing amounts of the several chlorides force back the decomposition of the double salt, were plotted on cross-section paper, and the points at which the decomposition was prevented, were determined by interpolation. These values which show the minimum amount of the added chlorides which must be present to insure the crystallization of the pure double salt are shown in the following table.

Added Chloride.	Mols. per 100 Mols. H ₂ O.			Donales of	Mols. per Liter of Solution.		
	CdCl ₃ .	KCI.	Added Chloride.	Density of Solutions.	CdCl ₂ .	KCl.	Added Chloride.
HCl LiCl CaCl ₂	0·344 0·544	0.296 1.376 2.176 6.514*	19.80 9.30 3.80 2.378	1.1403 1.1380 1.2333 1.214	0.270	o.132 o.663 1.080 3.195*	8.828 4.483 1.887 1.167

• Total.

SOLUBILITY	OF	CADMIUM	CHLORIDE	IN .	AQUEOUS	SOLUTIONS	OF	POTASSIUM
			TRMPRRATI					

		an intimators	J 12112 1 102		(, -)-4-,
Gms. per 100	gms. H ₅ O.	Solid Phase.	Gms. per 100 CdCls.	gms. H _s O.	Solid Phase.
Results a			Results a		
111.3	0.0	CdCl ₂ .2 H ₂ O	133.85	0.0	CdCl ₂ .H ₂ O
59 · 59	6.7	" $+ D_{1-1-1}$	92.15	2.70	" $+ D_{1-1-1}$
* 26.98	11.09	$\mathbf{D_{1\cdot 1\cdot 1}}$	51.90	11.50	$\mathbf{D_{1\cdot 1\cdot 1}}$
ıi.Ğı	30.04	" $+D_{1-4}$	*37.91	15.21	"
I.44	34.76	$D_{1-4}+KCl$	24.45	21.73	"
0.0	33.94	KCl	18.97	35.51	66
Results a			19.92	37.63	" $+D_{1-4}$
129.65	0. 0	CdCl ₂ .2½H ₂ O	2.98	40.45	$D_{1-4}+KCl$
97.62	0.70	"	0.0	40.36	KCl
68.23	7.08	" $+D_{1\cdot 1\cdot 1}$	Results a	it 54.5.	
47.12	9.89	$\mathbf{D_{1\cdot 1\cdot 1}}$	133.9	0.0	CdCl ₂ .H ₂ O
*32.67	13.06	"	102.15	2.32	" $+D_{1-1-1}$
24.26	16.10	"	*44.0I	18.39	$\mathbf{D_{1\cdot 1\cdot 1}}$
15.99	25.97	"	26.13	43.78	" $+D_{1-4}$
15.47	33.58	" $+D_{1-4}$	4.20	45.52	$D_{1-4}+KCl$
2.42	37.66	$D_{1.4}+KCl$	0.0	43.00	KCl
0.0	37.21	KCl			

D_{1.1.1} = CdCl₂.KCl.H₂O, D_{1.4} = CdCl_{2.4}KCl.

* Shows the solubility of the double salt in water.

SOLUBILITY OF THE DOUBLE SALT. CdCl₃.4KCl in Water. (Sudhaus, 1914.)

t°.	Gms. CdCls.4KCl per 100 gms. HsO.	Mol. Ratio in Solution.
19.3	41.65	rCdCl ₂ : 6.37 KCl
23.6	45.35	":5.85 "
29.7	49.05	" : 5·34 "
4 0.I	57 · 55	":4.60 "
50.2	68.89	" :4.30 "
54 · 5	69.9 1	":4.12 "

SOLUBILITY OF CADMIUM CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT SEVERAL TEMPERATURES AND VICE VERSA. (Sudhaus, 1914.)

Gms. per 100 gms. H ₂ O. CdCl ₂ . NaCl.	Solid Phase.	Gms. per 100	NaCl.	Solid Phase.
Results at 19.3°.		Results at	29.7° (c	on.).
111.30 0.0	CdCl ₂ .2½H ₂ O	*43·74	27.46	$\mathbf{D_{1\cdot2\cdot8}}$
116.64 7.52	" $+D_{1\cdot 2\cdot 3}$	9.43	37 · 54	" +NaCl
85.15 12.19	$\mathbf{D_{1\cdot 2\cdot 3}}$	Results a		
*40.01 25.67	"	137.03	15.14	$CdCl_2.H_2O+D_{1\cdot 2\cdot 3}$
5.96 36.76	" +NaCl	*48.17	29.50	$\mathbf{D_{1\cdot 2\cdot 3}}$
0.0 35.84	NaCl	13.31	38.16	" +NaCl
Results at 29.7°.		Results a	t 54.5°.	
132.67 9.63	$CdCl_{2.2} + H_{2}O + D_{1.}$	2.8 140 . 42	19.10	$CdCl_2.H_2O+D_{1-2-8}$
123.54 10.10	$\mathbf{D_{1\cdot 2\cdot 3}}$	* 52.76	32.97	$\mathbf{D_{1-2-3}}$
106.16 12.92	"	22.53	39.07	" +NaCl
91.10 15.41	"	0.0	36.82	NaCl
$D_{1.2.2} = CdCl_{2.2}N_{1}$	aCl.3H ₂ O.		•	

* Shows the solubility of the double salt in water.

CADMIUM CINNAMATES (C.H.CH:CH.COO)2Cd.

100 gms. water dissolve 0.070 gm. cadmium cinnamate at 26°. (de Jong, 1909.)
100 " " 0.56 " cadmium isocinnamate at 20°. (Michael, 1903.)
100 " " 0.10 " cadmium allocinnamate at 20°.

CADMIUM CYANIDE Cd(CN),

100 gms. H₂O dissolve 1.7 gms. Cd(CN)₂ at 15°.

(Jonnais, 1882.)

CADMIUM FLUORIDE CdF.

100 cc. of sat. solution in water contain 4.33 gms. CaF₂ at 25°.
100 cc. of sat. solution in 1.08 n. HF contain 5.62 gms. CaF₂ at 25°. (Jacque, 1901.)
Freezing-point lowering data (solubility, see footnote, p. 1) are given for mixtures of cadmium fluoride and cadmium iodide by Ruff and Plato (1903), and for mixtures of cadmium fluoride and sodium fluoride by Puschin and Baskov, (1913).

CADMIUM HYDROXIDE Cd(OH).

SOLUBILITY IN WATER.

I liter of aqueous solution contains 0.0026 gm. Cd(OH)2 at 25°.
(Bodinder, 1898.)

SOLUBILITY IN AQUEOUS AMMONIUM HYDROXIDE SOLUTIONS.

Results at 25°. (Bonsdorff, 1904.)		Results at 16–21°. (Euler, 1903.)		
Normality of NHs.	Gms. Cd(OH) ₂ per liter.	t.	Normality of NHa.	Gma. Cd(OH) ₀ per liter.
0.5	0.274	16–17	0.47	0.44
1.0	0.707	66	0.87	1.17
1.8	1.516	21	0.26	0.09
4.6	5.609	"	0.51	0.32

CADMIUM IODIDE Cdls.

SOLUBILITY IN WATER. (Dietz, 1900; see also Kremers, 1858; Eder, 1876; Etard, 1894.)

ť.	Gms. CdIs p	er 100 Gms.	Mols. CdIs	\$*.	Gms. CdIs	per 100 Gms.	Mols. CdIa
•.	Solution.	Water.	per 100 Mols. H ₂ O.	• •	Solution.	Water.	per 100 Mols. HsO.
0	44 - 4	79.8	3.9	30	47 - 3	89.7	4.43
10	45 - 4	83.2	4.I	40	48.4	93.8	4.6
15	45.8	84.5	4.17	50	49.35	97 - 4	4.8
18	46.02	85.2	4.2	75	52.65	111.2	5.4
20	46.3	86.2	4.26	100	56.08	127.6	6.3
25	46.8	87.9	4 · 34		•	•	•

Density of saturated solution at 18° = 1.590.

SOLUBILITY OF CADMIUM IODIDE IN ORGANIC SOLVENTS.

'' Solvent.	t*.	Gms. CdI ₂ Solution.	per 100 Gms.	Observer.
Absolute Alcohol	15	50.5	102	(Eder.)
Ethyl Alcohol	20	42.6	74.27	(Timofeiew, 1891.)
Methyl Alcohol	20	59.0	143.7	(Timofeiew, 1891.)
Propyl Alcohol	20	28.9	40.67	(Timofelew, 1891.)
Absolute Acetone	18	20	25 *	(Naumann, 1904.)
Benzonitrile	18	• • •	I.63	(Naumann, 1914.)
Ethyl Acetate	18		1.84 †	(Naumann, 1910.)
Ethyl Ether	12°	• • •	0.143	(Tyrer, 1911.)
Anhy. Hydrazine	15-20		84 ‡	(Welsh and Broderson, 1915.)
Benzene	16.0		0.047	(Linebarger, 1895.)
"	35.0		0.094	
! d₁₀ = . 994.		$\dagger d_{10} = .$	9145.	‡ per zoo cc.

SOLUBILITY OF CADMIUM IODIDE IN METHYL ALCOHOL, ETHYL ALCOHOL, PROPYL ALCOHOL AND IN ISOPROPYL ALCOHOL AT DIFFERENT TEMPERATURES.

(Muchin, 1913, see also Timofeiew, 1894.)

t.	Grams CdI ₂ per 100 Grams Sat. Solution in:					
	снюн.	СаНьОН.	C ₄ H ₇ OH.	C ₄ H ₇ OH(iso).		
0	67	33 · 5	16	36.9		
5	• • •	41	22	36.9		
10	68	54 (at 12.6° = tr. temp.)	28.5	37.2		
20	69	53	41.5 (tr. temp.)	37.3		
25	69.5	52.2	37.8	37.3		
30	70	51.5	35.5	37.3		
40	7 1	50.8	34.5	37 ⋅ 3		
50	72.5	50	34.0	37·3		

SOLUBILITY OF CADMIUM IODIDE IN ETHYL ETHER. (Linebarger, 1895.)

t°.	Mols CdIs per roo Mols. CdIs+(CsHs)sO.	Gms. CdI ₂ per 100 gms. (C ₂ H ₄) ₂ O.
0	0.03	0.148
15.5	0.04	0.198
20.3	0.05	0.247

SOLUBILITY OF CADMIUM IODIDE IN METHYL FORMATE, ETHYL FORMATE, PROPYL FORMATE AND IN ETHYL ACETATE AT DIFFERENT TEMPERATURES. (Muchin, 1913.)

Gms. Cdl. per 100 Gms. Sat. Solution in:

t°.					
	HCOOCHs.	HCOOC ₂ H ₄ .	HCOOC ₄ H ₇ .	СН.СООС.Н.	
0	0.84	1 <u>.</u> 16	2.37	4.73(?)	
13.0	0.75	1.05	2.07	1.67	
2Ó.O	0.66	0.77	1.53	2.02	

SOLUBILITY OF CADMIUM IODIDE IN ANILINE, PYRIDINE AND IN QUINOLINE AT DIFFERENT TEMPERATURES. (Muchin, 1913.)

Gras. Cdls per 100 Gras. Sat. Solution in:

t°.	Gms. Cale per 100 Gms. Sat. Solution in:					
	CaHaNHa.	C.H.N.	C.H.N.			
40	I.7	• • •	•••			
50	2.3	0.1	• • •			
60	3.1	0.5	2			
7 <u>9</u> 80	4	1.7	3.5			
8 o	5.I	4.8	5			
90	. 6.4	13.4	6.7			
100	8.4	30	8.3			

SOLUBILITY OF CADMIUM IODIDE IN MIXTURES OF SOLVENTS AT DIFFERENT TEMPERATURES. (Muchin, 1913.)

Composition of Solvent	Wt. per cent	Gms. CdI ₂ per 100 Gms. Sat. Solution at:			
in Mols.	Alcohol in Solvent.	·•.	r6.8°.	36.8°.	
1CH ₂ OH+2CHCl ₃	11.8	11.0	10.4	9.3	
ICHOH+ICHCL	2I.I	22.4	22.3	20.6	
1C2H3OH+2CHCl3	16.2	7.5	7.1	6.6	
1C2H4OH+1CHCl2	27.8	13.9	14.3	13.6	
2C ₂ H ₅ OH+1CHCl ₃	43.5	25.2	24.I	•••	
xC2H5OH+yCHCl2	60.3	34.4	• • •	•••	
- a · · · · · ·	91.5	45.4	• • •	• • •	
$_{1}C_{2}H_{6}OH + _{2}C_{6}H_{6}$	22.8	17.6	16.3 (16.3°)	15.2 (31.2°)	
1C2H6OH+1C6H6	37.I	26.I	26.0 (15.7°)	26.o "	
2C ₂ H ₅ OH+1C ₆ H ₆	54.I	33 · 5	35.3 (15°)	• • •	
$xC_2H_5OH+yC_6H_6$	9.8	6.5	• • •	•••	

SOLUBILITY OF CADMIUM IODIDE IN MIXTURES OF SOLVENTS. (Muchin, 1913.)

Results for a mixed solvent composed of:

One Mol. Pyridine+One Mol. Chloroform.				0	One Mol. Pyridine+One Mol. Bensene.			
r.	Gms. CdIs per 100 Gms. Sat. Sol.	r.	Gans. Cdlis per 100 Gans. Sat. Sol.	ř.	Gans. Cdls per 100 Gans. Sat. Sol.	r.	Gens. (Villaper 200 Gens. Sat. Suk.	
50.1	1.27	63	6.3	57.9	I.77	72.5	32.6	
54	1.72	64	8.3	60	2.2	74.0	35.9	
56	2.3	64.5	12.35	65	4.2	70	36.3	
58	3.0	64	14.8	70	8.1	80	40.8	
60	4.0	62	22.0	71	11.5	85	41.6	
62	5.6	61.15	24.67	71.5	15.0	90.4	42.67	

SOLUBILITY OF CADMIUM IODIDE IN ETHYL ETHER CONTAINING WATER AT 12°. (Tyrer, 1911.)

Gms. H₂O per
100 gms. ether+H₂O→ 0.0 0.10 0.30 0.50 0.70 0.90 1.00 1.10 1.14 sat.
Gms. CdL₂ per
100 gms. solvent→ 0.143 0.78 2.07 3.36 4.77 6.46 7.30 8.27 8.68

DISTRIBUTION OF CADMIUM IODIDE AT 30° BETWEEN: (Dahr and Datter, 1923.)

Water and Amyl Alcohol.

Abs. Ether

Water and Ethyl Ether.

Gms. per 100 cc. HsO Layer (c). Alcohol Layer (c').		C .	Gms. pe	<u>c</u> .	
		<u>c.</u> .	HsO Layer (c).	Ether Layer (c').	ş.
47 - 75	43	1.11	37.18	8.38	4.43
29.08	25.86	1.13	30. 0 3	6.61	4 · 54
14.46	12.55	1.15	15.38	3.09	4.97
10.69	8.94	I.20	12.60	2.38	5.29
6.23	4.94	1.33	9.89	1.83	5.40
2.42	1.54	1.55	7.68	1. 0 6	5.52
1.93	1.10	1.76	4.03	0.73	5.60
1.76	0.94	1.87	3.10	0.51	6. 0 3

Freezing-point data (solubility, see footnote, p. 1) are given for the following mixtures:

Cadmium	Iodide	+ Cuprous Iodide + Mercuric Iodide	(Herrmann, 1911.) (Sandonnini, 1914.)
44	44	+ Potassium Iodide	
44	44	+ Sodium Iodide	(Diamo, 1911)

CADMIUM AMMONIUM IODIDES (Mono and Di).

29.4

15

SOLUBILITY OF EACH SEPARATELY IN WATER, ETC. (Rimbach, 1905; Eder, 1876.)

41.7

Cd. Mono Ammonium Iodide. Cd. Diammonium Iodide. Gms. CdIs.NH4I per Gms. CdIs:sNH4I per ť. 100 Gms. Solvent. ť. roo Gms. Solution. Solvent' Solution. Solvent. Water 15 52.6 III 14.5 85.97 6.116 Abs. Alcohol 15 53 113 15 59 143

15

II

10

CADMIUM POTASSIUM IODIDES, Mono = CdI2.KI.H2O, $Di = CdI_{2.2}KI.2H_{2}O.$

CADMIUM DiSODIUM IODIDE Cdl, 2Nal.6H,O.

SOLUBILITY OF EACH SEPARATELY IN WATER, ETC., AT 15°.

_			(COURT.)			
Solvent.	Gms. CdI ₂ .KI per 100 Gms.		Gms. CdI ₂ .2KI per 100 Gms.		Gms. CdI _{2.2} NaI per 100 Gms.	
	Solution.	Solvent.	Solution.	Solvent.	Solution.	Solvent.
Water	51.5	106	57 .8	137	61.3	158.8
Abs. Alcohol	•••	• • •	41.7	71	5 3 · 7	116.2
Abs. Ether	• • •		3.9	4.I	9.0	9.9

CADMIUM NITRATE Cd(NO.).

SOLUBILITY IN WATER. (Funk -- Wiss. Abh. p. t. Reichanstalt 3 440, 'co.)

s • .	Gms. Cd(NO ₂) ₂ per 100 Gms.		Mols. Cd(NO ₃) ₃ per 100 Mols. H ₂ O.	Solid	
	Solution.	Water.	per 100 Mois. rigO.	Phase.	
-13	37 - 37	59.67	4 · 55	Cd(NO ₂) ₂ .9H ₂ O	
– 1	47 - 33	89.86	6.85	τι	
+ 1	52.73	111.5	8.50	"	
0	52.37	109.7	8.37	Cd(NO ₂) ₂ .4H ₂ O	
+ 18	55.9	126.8	9.61	n n	
30	58.4	140.4	10.7	u	
40	61.42	159.2	12.I	u	
59.5	76.54	326 . 3	25.0	66	

Density of saturated solution at $18^{\circ} = 1.776$.

The eutectic of the system Cd(NO₂)_{2.4}H₂O + Cd(NO₂)₂ is at 44.8° and has the (Vasiley, 1910.) composition Cd(NO₃)₃.2.65H₂O.

CADMIUM OXALATE CdC₂O_{4.3}H₂O.

I liter of sat. aqueous solution contains 0.033 gm. CdC₂O₄ at 18°. (Kohlrausch, 1908.)

CADMIUM SILICATE CdSiO2.

Fusion-point data are given for CdSiO₂ + ZnSiO₂. (van Klooster, 1910-11.)

CADMIUM SULPHATE CdSO.

SOLUBILITY IN WATER.

(Mylius and Funk — W. Abh. p. t. Reichanstalt 3, 444, '00; see also Kohnstamm and Cohn — Wied Ann. 65, 344, '08; Steinwehr — Ann. der Phys. (Drude) [4] 9, 1050, '02; Etard — Ann. chim. phys. [7] 2 536, '94.)

t * .	Gms. C per 100 Solution.		Solid Phase.	t* .	Gms. per 100 Solution.	CdSO ₄ Gms. Water.	Solid Phase.
-17	44.5	80.2	CdSO _{4.7} H ₂ O	40	43.99	78.54	CdSO. H.O.
— 10	46. I	85.5	"	60	44.99	83.68	"
- 5	48.5	94.2	"	73.5	46.6	87.28	"
– 18	43 - 35	76.52	CdSO.4H,O	74.5	46.7	87.62	CdSO ₄ .H ₂ O
- 10	43.27	76. 28	"	77	42.2	73.02	"
0	43. OI	76.48	"	85	39.6	65.57	"
+ 10	43. 18	76.00	"	90	38.7	63.13	u
20	43.37	76.60	u	100	37.8	60.77	u

For results at high pressures, see Cohen (1909).

SOLUBILITY OF CADMIUM SULPHATE IN AQUEOUS SOLUTIONS OF SULPHURIC ACID AT 0°.

(Engel - Compt. rend. 104, 507, '87.)

Equivalents per	r 10 Gms. H ₂ O.	Density of Solutions.	Grams per 100 Grams H ₂ O.		
H ₂ SO ₄ .	CdSO ₄ .	of Solutions.	H ₂ SO ₄ .	CdSO4.	
٥.	71.6	1.609	0.00	74.61	
3.87	70.9	1.591	1.90	73 .87	
12.6	62.4	1.545	6.18	65.03	
28.1	50.6	1.476	13.78	52.73	
43 · 3	40.8	1.435	21.23	42.52	
47.6	37.0	1.421	23 ·34	38.5 6	
53.8	32.7	I .407	2 6.38	34.07	
71.5	23.0	1.379	35.06	23.96	

100 gms. 95% formic acid dissolve 0.06 gm. CdSO₄ at 18.5°. (Aschan, 1913.) Freezing-point data (solubility, see footnote, p. 1) are given for mixtures of CdSO₄ + Li₂SO₄, CdSO₄ + K₂SO₄ and CdSO₄ + Na₂SO₄ by Calcagni and Marotta (1913).

SOLUBILITY OF MIXED CRYSTALS OF CADMIUM SULPHATE AND FERROUS SULPHATE IN WATER AT 25°.

(Stortenbecker - Z. physik. Chem. 34, 109, '00.)

		Mol. per cent Cd i				
	Gms. per 100	Gms. H ₂ O.	Mols. per 100	Mols. H ₂ O.	Mol. % Cd. in Sol.	Crystals of Solid Phase.
	CdSO ₄ .	FeSO4.	Cd.	Fe.	in Sol.	Soud Phase.
Cryst	als with 2} h	Iols. H ₂ O.				
	76.02	0.0	6.57	0.0	100	100
	57.61	10.63	4.98	1.26	79.8	99.0
Cryst	als with 7 M	ols. H ₂ O.				
	57.61	10.63	4.98	1.26	79.8	3 6.6
	• • •	• • •	• • •	• • •	78.5	34.6
	• • •	• • •	• • •	• • •	44.6	II.I
	• • •	.1.	• • •	• • •	24.4	4.8
	0.0	26.69	0.0	3.165	0.0	.0.0

CADMIUM POTASSIUM SULFATE CdK₂(SO₄)₂.

SOLUBILITY IN WATER. (Wyrouboff, 1901.)

t°.	G. CdK ₂ (SO ₄) ₂ per 100 Gms. H ₂ O.	Solid Phase.	t°.	G. CdKs(SO ₄)s 100 Gms. Hs(per Solid Phase.
16	42.89	$CdK_2(SO_4)_2.2H_2O$	26	42.50	$CdK_2(SO_4)_2.1\frac{1}{2}H_2O$
31	46.82	ci ·	31	42.80	"
40	47.40	"	40	43 - 45	"
			64	44.90	"

CADMIUM SODIUM SULFATE 180 CADMIUM SODIUM SULFATE CdNa₂(SO₄)₂₋₂H₂O.

SOLUBILITY IN WATER, ALSO WITH THE ADDITION OF CADMIUM SUL-PHATE AND OF SODIUM SULPHATE.

(Koppel, Gumpery — Z. physik. Chem. 52, 413, '05.)

s* .	Gms. per Solut	100 Gms.		100 Gms.	Mols. per H ₁	100 Mola O.	Solid Phase.
	CdSO ₄ .	NasSO4.	CdSO ₄ .	NasSO4.	CdSO4.	Na ₂ SO ₄ .	
24	22.25	15.07	35 · 49	24.04	3.07	3.05	
30	22.55	15.29	36.28	24.60	3.14	3.12	$CdNa_2(SO_4)_2.2H_2O$
40	22.89	15.65	37.24	25 . 45	3.22	3.28	
0	40.32	4.85	73 · 54	8.85	6.36	Ι.12)	ı
IO	39.91	5.24	72.77	9.55	6.30	1.21	CdNa ₂ (SO ₄) ₂ .2H ₂ O
20	40.26	5.16	73.81	9 · 45	6.39	I.20	+CdSO ₂ §H ₂ O
40	39.89	7.18	75.38	13.56	6.52	1.72	
— 14.	8 40 . 18	4.60	72.68	8.32	6.29	1.05	
0	37 - 30	6 . 53	66.32	11.62	5 · 74	1 - 47	CdNa ₂ (SO ₄) ₂ .2H ₂ O
10	32.53	8.69	55 · 34	14.78	4.79	1.84	+ Na ₂ SO ₄ .10H ₂ O
20	22.69	14.71	36.25	23.52	3.14	2.98	11100001.101130
25	16.33	19.82	25.60	31.06	2.21	3.94	
30	9.21	27.80	14.62	44 - 14	1.26	4.59	CdNa ₂ (SO ₄) ₂ .2H ₂ O
35	8.26	29.35	13.26	47.06	1.15	5.96	+ Na ₂ SO ₄
40	9.98	28.27	16.24	46.27	1.41	5.86 J	1144004

CADMIUM SULFIDE CdS.

1000 cc. H₂O dissolves 9 × 10⁻⁶ gms. CdS at 18°.

(Weigel, 1906.)

CAESIUM ALUMS

SOLUBILITY OF CAESIUM CHROMIUM ALUM, CAESIUM IRON ALUM, CAESIUM INDIUM ALUM, AND OF CAESIUM VANADIUM ALUM IN WATER.

(Locke - Am. Ch. J. 27, 174, 'o1.)

		Gms. per 10	xo cc. H₂O. •	Gram Mols. Salt per	
Formula of Alum.	\$° .	Anhydrous Salt.	Hydrated Salt.	100 cc. H ₂ O.	
$Cs_2Cr_2(SO_4)_4.24H_2O$	25	0.57	0.94	0.00151	
46	30	0.96	1.52	0.0025	
"	35	1.206	1.9 1	0.0032	
46	40	1.53	2 · 43	0.00405	
$Cs_2Fe_2(SO_4)_4.24H_2O$	25	1.71	2.72	0.0045	
"	30	2.52	4.01	o.0066	
"	35	3.75	6.01	0.0099	
ć ž	40	6.04	9.80	0.0156	
$Cs_2In_2(SO_4)_4.24H_2O$	25	7 · 57	11.73	0.0172	
$Cs_2V_3(SO_4)_2.24H_2O$	25	0.771	1.31	0.00204	

See also Alums, p. 32.

CAESIUM CHLORAURATE CsAuCl4.

SOLUBILITY IN WATER. (Rosenbladt, 1886.)

r .	Gms. CsAuCl ₄ per 100 Gms. Solution.	t° .	Gms. CsAuCl ₄ per 100 Gms. Solution.	ť.	Gms. CsAttO4 per roo Gms. Solution.
10	0.5	40	3.2	80	16.3
20	o.8	50	5.4	90	21.7
30	1.7	60	8.2	100	27.5
•		70	12.0		

CARSIUM FLUOBORIDE CsBF14.

100 grams water dissolve 0.92 gram CsBFl₄ at 20°, and 0.04 gram at 100°.
(Godefiroy, 1876.)

CAESIUM BROMIDE CsBr.

SOLUBILITY OF CARSIUM AND LEAD BROMIDES AND THEIR DOUBLE SALTS IN WATER AT 25°.
(Foote, 1907.)

Gms. per 200 Gms. Sat. Sol.		L Solid Phase.	Gms. per 100 (ms. Sat. Sc	Solid Phase.
CaBr.	PbBra.	OOFI LIMBC	CsBr.	PbBr ₂ .	Some Parse.
0.24	0.33	PbBr ₂ +CsPb ₂ Br ₅	33.65	trace	CsPbBr ₃
0.33	0.36	"	36.7	"	" $+Cs_4PbBr_6$
12.83	trace	$CsPb_2Br_5$	46.4	"	Cs ₄ PbBr ₆
17.24	"	"	51.15	"	"
17.68	"	" $+CsPbBr_3$	54 · 4	ea	" +CsBr
18.58	"	CsPbBr ₈	55.23	0	\mathbf{CsBr}

CAESIUM Mercuric BROMIDE CsBr.2HgBrs.

100 grams saturated aqueous solution contain 0.807 gram CsBr.2HgBr₂ at 16°. (Wells, 1892.)

CAESIUM CARBONATE Cs2CO1.

100 grams absolute alcohol dissolve 11.1 grams Cs₂CO₃ at 19°, and 20.1 grams at b. pt. (Bunsen.)

CAESIUM BICARBONATE CSHCO.

100 grams sat. solution in H₂O contain 67.8 grams CsHCO₂ at about 20°. (de Forcraud, 1909.)

CAESIUM CHLORATE CsClO, CAESIUM PerCHLORATE CsClO.

SOLUBILITY OF EACH IN WATER. (Calzolari, 1912; see also Carlson, 1910.)

	Results for CsClO ₃ .				Results for CsClO ₄ .				
ť.	Gms. CsClO per 100 Gms HsO.		Gms. CsClOs per 100 Gms. HsO.	ť.	Gms. CsClO ₄ per 100 Gms. H ₂ O.	t°.	Gms. CsClO ₄ per roo Gms. H ₂ O.		
0	2.46	50	19.4	0	0.8	50	5.4		
10	3.8	60	26.2	IO	1.0	60	7 · 3		
20	6.2	70	34.7	20	1.6	70	9.8		
25	7.6	80	45.0	25	2.0(d=3	1.01) 80	14.4(d=1.084)		
30	9.5	90	58.0	30	2.6	90	20.5		
40	13.8	100	79.0	40	4.0	100	30.0		

CAESIUM CHLORIDE CsCl.

SOLUBILITY IN WATER.

(Berkeley — Trans. Roy. Soc. (Lond.) 203 A, 208, '04; see also Hinrichsen and Sachsel — Z. physik. Chem. 50, 99, '04-'05; at 25°, Foote.)

\$ °.	G. CsCl per roo Gr Solution. Wate	ns. G. Mol. CsCl r. per Liter.	t°.	G. CsCl pe	Water.	G. Mol. CaCl per Liter.
0	61.7 161.	4 6.74	60	69.7	229.7	8.28
10	63.6 174.	7 7.11	70	70.6	239.5	8.46
20	65.1 186.	5 7.38	80	71.4	250.0	8.64
30	66.4 197.	3 7.63	90	72.2	260.1	8.80
40	67.5 208.		100	73.0	270.5	8.96
50	68.6 218.	5 8.07	119.4	74 · 4	290.0	9.22

SOLUBILITY OF MIXTURES OF CABSIUM CHLORIDE AND MERCURIC CHLORIDE IN WATER AT 25°. (Foote, 1903.)

Gms. per 100 Gms. Solution.		Solid Phase.	Gms. per Solu	r 100 Gms.	Solid Phase.
CsCl,	HgCl ₂ .		CsCl.	HgCl ₂ .	Sout Plase.
65.61	0.0	CaCI	38.63	1.32	5 /22 5 4
65.78	0.215	CsCi + Cs ₆ HgCl ₅	17.03	0.51 }	Double Salt CaHgCl ₂ == 38.3% CaCl
62.36	0.32	Double Salt	1.53	0.42)	Commercia == 30.3 % CaCl
57.01	0.64 }	Ca _b HgCl _b	0.61	2.64	CaHg + CaHgaCla
52.35	1.23	= 65.1% CsCl	0.49	2.91	Double Salt
51.08	1.44	$Cs_0HgCl_6 + Cs_0HgCl_4$	0.40	3.78 ∫	$CsHg_3Cl_6 = 23.7\% CsCl$
49.30	1.49 }	Double Salt	0.44	4.63	$CsHg_sCl_s + CsHg_sCl_{11}$
45.95	1.69 }	$C_{5}H_{g}Cl_{4} = 55.4\%C_{8}Cl$	0.41	4.68	Double Salt
45.23	1.73	$Ce_2HgCl_4 + CeHgCl_8$	0.25	5.65 \$	$CsHg_{\mathfrak{g}}Cl_{11} = 11.1\%C_{\mathfrak{g}}Cl$
			o.18	7.09	$CsHg_sCl_{11} + HgCl_s$
			0.0	6.90	HgCl _a

Solubility of Mixtures of Caesium Chloride and Mercuric Chloride in Acetone at 25°. (Foote, 1911.)

Gms. per 100 Gms. So	lution. Solid Phase.	Gms. per 100	Gms. Solution.	Solid Phase.
CsCl. HgCla		CsCl.	HgCls.	
0.032 0	CsCl	0.48	28.48 Cs	Cl.2HgCl2
0.11 0.0		0.48	30.05	
0.19 0.1		0.47	44.40	' +CsCl.5HgCl ₂
0.25 0.1		0.32	49.83 Cs	
0.45 13.0	8 CsCl.HgCl ₂	0.20	57·74 '	
0.46 21.5		0.13	57.70	" +HgCl ₂
0.56 27.2	" +CsCl.2HgC	ી ૦.૦	57.74 Hg	cl ₂

CAESIUM Iridium CHLORIDES Cs2 IrCl6, etc.

CAESIUM Platinic CHLORIDE CsPtCls.

100 gms. H₂O dissolve 0.135 gm. CsPtCl₆ at 20°. (Rosenheim and Weinheber, 1910-11.)

CAESIUM Tellurium CHLORIDE CsTeCl.

SOLUBILITY IN AQUEOUS HYDROCHLORIC ACID. (Wheeler, 1893.)

100 parts HCl (Sp. Gr. 1.2) dissolve 0.05 part CsTeCl₆ at 22°. 100 parts HCl (Sp. Gr. 1.05) dissolve 0.78 part CsTeCl₆ at 22°.

CAESIUM Thallium CHLORIDE 3CsCl.TlCl₂.2H₂O.

100 parts H₂O dissolve 2.76 parts 3CsCl.TlCl₃.2H₂O at 17°, and 33.3 parts at 100°. (Godeffroy, 1886.)

Freezing-point lowering data (solubilities, see footnote, p. 1) are given for the following mixtures of caesium chloride and other salts.

		Mixture.			Author	ity.	
Caesium	Chloride	+ Cuprous C	hloride (Sandonnini and So	arpa, 1912; S	andonnini, 1914.)	
66	**	+ Silver Chlo		**	***		
64	44	+ Thallium (Chloride	**	u	"	
44	66	+ Lithium C	hloride	(Korreng, 1915;	Richards and	Meldrum, 1917.)	
**	44	+ "	" +	NaCl (Richards			
44	46	+ Potassium		(Zemcznany and			
44	46	+ Rubidium	"	"	"		
46	44	+ Sodium	"	"	4		

CAESIUM CHROMATES, Cs2CrO4, Cs2Cr2O7, etc.

SOLUBILITY IN WATER AT 30°. (Schreinemakers and Meijeringh, 1908.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per	roo Gms. Sat. Sol.	Solid Phase.
Ca ₀ O.	CrOs.		Cs ₂ O.	CrOs.	
70.63	0.0	CsOH.nH ₂ O	0.169	21.2 1	$Cs_2Cr_3O_{10}$
69.22	0.119	" $+Cs_2CrO_4$	0.096	25.59	"
36.06	1.883	Cs ₂ CrO ₄	1.8g	36.19	"
31.00	7.523	"	2.79	41.68	"
31.68	9.652	"	3.20	44.23	"
35.80	13.08	" =	±3.13	±44.45	" $+Cs_2Cr_4O_{18}$
31.05	10.79	$Cs_2Cr_2O_7$	2.96	44.66	$Cs_2Cr_4O_{13}$
24.05	8.98	"	3.40	46.03	"
3.04	2.16	"	3.94	56.77	"
1.61	4 · 57	$"+Cs_2Cr_3O_1$	0 4 - 35	62.70	" $+CrO_3$
1.18	7.95	$Cs_2Cr_3O_{10}$	2.33	62.50	CrO₃
0.586	15.05	"	0	62.28	"

CAESIUM FLUORIDE CsF.13H2O.

100 gms. H₂O dissolve 366.5 gms. CsF at 18°, solid phase CsF.1\(\frac{1}{2}\)H₂O. (de Forcrand, 1911.)

CAESIUM HYDROXIDE CSOH.

100 gms. sat. solution in H_2O contain 79.41 gms. CsOH at 15° (de Forcrand, 1909a); for 30°, see above.

CAESIUM IODATE CsIO4.

100 parts H₂O dissolve 2.6 parts CsIO₈ at 24°, and 2.5 parts 2CsIO₈.I₂O₈ at 21°. (Wheeler, 1892; Barker, 1908.)

CAESIUM Per IODATE CsIO4.

100 gms. H₂O dissolve 2.15 gms. CsIO₄ at 15°, d₁₂ sat. solution = 1.0166. (Barker, 1908.)

CAESIUM IODIDES CsI, CsI, etc.

SOLUBILITY IN WATER AT 25°. (Foote and Chalker, 1908.)

	(1.000	and Charker, 1900.		
Gms. per 100 Gm	s. Sat. Solution.	Empirical Comp.	Present in 1	Residue
Cal.	I.	of Residue.	a resent m	iveardur.
7.72	1.18	CsI _{3.29}	CsI _s and	d CsIs
7.69	1.19	CsI _{3,98}	"	"
2.40	I.23	CsI _{5:75}	CsI _s aı	\mathbf{I} be
2.35	I.23	CsI _{7.43}	"	"
2.30	1.25	$CsI_{19.3}$	"	66

CAESIUM IODIDE CsI.

SOLUBILITY OF MIXTURES OF CABSIUM IODIDE AND IODINE IN WATER.

(Foote — Am. Ch. J. 29, 210, '03.)

ŧ°.	Gms. per r Solu CsI.		\$° .	Gms. per : Solut CsI.		Solid Phase at both Temps.
-4	27 . 68	0.0	35.6	51.48	0.0	CsI
-4	27.52	0.09	35.6	51.66	0.71	CsI and CsI,
-4	3.18	0.31	35.6	10.72	1.78	CsI, and CsI,
-0.2	0.85	0.34	35.6	3.74	1.60	CsI _s and I

s* .	Gms. per 100 Gms. Solution.		In Separated Coms. per 100	Heavy Solution Gms. Solution.	Solid
	Cal.	ī.	CaI.	I.	Phase.
52.2	16.75	4.52	• • •	• • •	CsI, and CsI,
52.2	6.69	3.36	• • •	• • •	CsI, and I
52.2	6.72	3.32	22.94	73 - 72	CsI.
52.2	6.65	3 · 45	22.80	74.63	I
73	26.98	15.07	• • •	• • •	CsI ₂ and CsI ₃
73	16.66	10.50	27.56	68.40	CsI.
73	6.27	4.08	17.68	80.02	I

CAESIUM (Tri) IODIDE CsI.

100 cc. saturated aqueous caesium iodide (about 17 per cent CsI) solution contain 0.97 gram CsI₂ at 20°, density of solution = 1.154.

(Wells—Am. J. Sci. [3] 44, 221, '92.)

CAESIUM NITRATE CSNO.

SOLUBILITY IN WATER.
(Berkeley — Trans. Roy. Soc. (Lond.) 203 A, 213, '04.)

s °.	Gms. Cs	NO _s per Gms.	G. Mols. CsNO2	t°.	Gms. Cs	NOs per Sms.	G. Mols CaNO,
	Solution.	Water.	per Liter.		Solution.	Water.	per Liter.
0	8.54	9 · 33	0.476	60	45.6	83.8	3.41
IO	12.97	14.9	0.725	70	51.7	107.0	4.10
20	18.7	23.0	1.11	8o	57 · 3	134.0	4.81
30	25.3	33.9	1.58	90	62.0	163.0	5.50
40	32 · I	47 . 2	2.12	100	66.3	197.0	6.19
50	39.2	64.4	2.73	106.2	68.8	220.3	6.58

THE ICE CURVES FOR MIXTURES OF CARSIUM NITRATE AND WATER, DETERMINED BY THE SYNTHETIC METHOD. (Jones, 1908.)

Supersolubility curve. Solubility curve. to of Crystalli- Gms. CsNO₂ per tzation. 100 Gms. HsO. Solid Gms. CsNO₂ per 100 Gms. HsO. Solid to of Crystalli-Phase. Phase. Ice **— I.2** 9.21 Ice 0.21 -0.3" " -2.5 1.28 -0.4 1.28 " " 6.01 -3.0 3.99 **-1.2** " " 6.01 -3.2 8.0 **-1.3** " " 8 -3.2 -1.4 (Eutec.)

The eutectic is given as -1.254° and 8.51 gms. CsNO₃ per 100 gms. H₂O, by Washburn and MacInnes (1911).

CAESIUM OXALATE Cs2C2O4.H2O.

SOLUBILITY OF MIXTURES OF CAESIUM OXALATE AND OXALIC ACID IN WATER AT 25°.

(Foote and Andrew, 1905.)

Varying amounts of the two substances were dissolved in hot water and the solutions allowed to cool in a thermostat held at 25°.

Gms. S	per 100 olution.	G. Mols G. Mo	. per 100 ls. H ₂ O.	Solid
H ₂ C ₂ O ₄ .	CagCgO4.	H ₂ C ₂ O ₄ .	Cs ₂ C ₂ O ₄ .	Phase.
10.20	• • •	2.274	• • •	H ₂ C ₂ O ₄ ,2H ₂ O
10.29	0.61	2.314	0.035	$H_2C_2O_4.2H_2O + H_3C_8(C_2O_4)_2.2H_2O$
7.90	9.92	1.924	0.614 {	Double Salt.
4.11	25.12	1.162	1.81 S	$H_3Cs(C_2O_4)_2.2H_2O$
4.32	27 · 55	1.279	2.06	$H_3Cs(C_2O_4)_22H_2O + H_4Cs_2(C_2O_4)_3$
4.27	28.30	1.267	2.14 }	Double Salt.
4 40	35.90	1 .476	3.07 \$	$H_4Cs_2(C_2O_4)_8$
4.82	40.10	1.752	3.71	$H_4Cs_2(C_2O_4)_8 + HCsC_2O_4$
4 · 45	42.32	1.672	4.05 }	Double Salt.
3.05	48.80	1.268	5.16 }	HCsC ₂ O ₄
I .04	68.69	0.688	11.56)	
0.91	71.24	0.648	13.06	$HCsC_2O_4+H_6Cs_8(C_2O_4)_7$
0.77	73 - 45	0.598	14.51	Double Salt.
0.75	74.04	0.596	14.96 }	$H_6Cs_8(C_2O_4)_7$
0.74	75.20	0.625	15.93	$H_6Cs_8(C_2O_4)_7 + Cs_2C_2O_4 \cdot H_3O$
0.0	75.82	0.0	15.97	Cs ₂ C ₂ O ₄ .H ₂ O

CAESIUM Telluracid OXALATE Cs2[HeTeOs.C2O4].

100 gms. H_2O dissolve 6.42 gms. $Cs_2[H_4TeO_4.C_4O_4]$ at 0°, 12.39 gms. at 20°, 15.08 gms. at 30°, 19.78 gms. at 40° and 27.66 gms. at 50°. (Rosenheim and Weinheber, 1910-11.)

CAESIUM PERMANGANATE CsMnO.

100 cc. sat. aqueous solution contain 0.097 gm. CsMnO, at 1°, 0.23 gm. at 19°, and 1.25 gms. at 59°. (Patterson - J. Am. Chem. Soc. 28, 1735, 'e6.)

CAESIUM SELENATE Cs2SeO4.

100 grams H₂O dissolve 245 grams Cs₂SeO₄ at 12°.

(Tutton - J. Chem. Soc. 71, 850, '97)

CARSIUM SULPHATE Cs.SO.

SOLUBILITY IN WATER. (Berkeley - Trans. Roy. Soc. (Lond.) 203 A, 210, '04.)

t°.	Gms. Cs ₂ SO ₄ po 100 Gms. Solution. Water	Cs ₂ SO ₄	t°.		SSO ₄ per	G. Mols. Ca ₂ SO ₄
				Solution.	Water.	per Liter.
0	62.6 167.	I 3.42	60	66.7	199.9	3.78
10	63.4 173.	1 3.49	70	67.2	205.0	3.83
20	64.1 178.	, ,	8o	67.8	210.3	3.88
30	64.8 184.	0	90	68.3	214.9	3.92
40	65.5 189.	9 3.68	100	68.8	220.3	3.97
50	66.1 194.	9 3.73	108.6	69.2	224.5	4.00

CAESIUM DOUBLE SULFATES 186

SOLUBILITY OF CAESIUM DOUBLE SULPHATES IN WATER AT 25°. (Locke — Am. Ch. J. 27, 459, 'oi.)

Name.	Formula.	Gms. Anhy per 100	Gm. Mols. Salt per 100 Gms. H ₂ O.	
		Solution.	Water.	Gms. H ₂ O.
Caesium Cadmium Sulphate	CsgCd(SO ₄) _{2.6} H ₂ O	58.16	139.9	0.2455
Caesium Cobalt Sulphate	Cs ₂ Co(SO ₄) _{2.6} H ₂ O	29.52	41.9	0.081
Caesium Copper Sulphate	CapCu(SO ₄) _{2.6} H ₂ O	31.49	46.0	0.0882
Caesium Iron Sulphate	Ca ₂ Fe(SO ₄) ₃ .6H ₂ O	50.29	101.1	0.1967
Caesium Magnesium Sulphate	CapMg(SO ₄) ₂ .6H ₂ O	34.77	53.3	0.1106
Caesium Manganese Sulphate	Ca ₂ M _{II} (SO ₄) _{2.6} H ₂ O	44.58	80.4	0.157
Caesium Nickel Sulphate	Cs ₂ Ni(SO ₄) _{2.6} H ₂ O	20.37	25.6	0.0495
Caesium Zinc Sulphate	Cs ₂ Zn(SO ₄) _{2.6} H ₂ O	27.87	38.6	0.0738

SOLUBILITY OF CARSIUM SODIUM SULFATES IN WATER AT 25°. (Foote, 1911.)

Gms. per 100 Gn	ns. Sat. Solution.	Per cent CsSO ₄ in Residue.	Empirical Composition of Residue.		
CasSOs.	NasSOL.	in Residue.			
54.65	II.44	89.98	1Na ₂ SO ₄ .3.53Cs ₂ SO ₄		
54.58	11.63	78.22	1Na ₂ SO ₄ .1.41Cs ₂ SO ₄		
54.81	11.25	34.67	4.8Na ₂ SO ₄ .1Cs ₂ SO ₄		

The author's solubility method for determination of the formation and composition of double salts is described in the paper containing the above results.

CAESIUM DihydroxyTARTRATE Cs2C4H4O3.2H2O.

100 gms. H₂O dissolve 22.5 gms. Cs₂C₄H₄O₅.2H₂O at 0°.

(Fenton, 1898.)

CAFFEINE C₁H(CH₂)₂N₄O₂.H₂O.

SOLUBILITY IN WATER.
(Average curve from results of Zalai, 1910; Pellini, 1910, and U.S.P., 8th Ed.)

ť.	Gms. CaH(CHa)aNaOa per 100 Gms. HsO.	r.	Gms. CaH(CHa)aNaOa per 100 Gms. HaO.
0	0.6	40	4.64
15	1.0	50	6.75
20	1.46	60	9.7
25	2.13	70	13.5
30	2.8	80	19.23

SOLUBILITY OF CAFFEINE IN ORGANIC SOLVENTS.

Solvent.	ť.		H(CH ₂) ₂ N ₄ O ₂ Gms. Solvent.	Solvent.	t°.	Gms. C ₄ H(CH ₄) ₂ N ₄ O ₂ per 100 Gms. Solvent.
Ethyl Alcohol	25	1.32 (2		Carbon Tetra-	(18	0.09 (4)
u* u	25	I.88 (1	(1)	chloride	₹ 20	0.26 (6)
" "	60	5.85 (r)		b.pt.	0.70(4)
Methyl "	25	1.14(2	2)	Chloroform	17	12.9 (5)
Amyl "	25		$(d_{\mathbf{S}} = 0.810)$	"	25	12.3 (1)
Amyl Acetate	30.5	0.72 (3)(da=0.862)	66	25	11.92(2)
Acetic Acid (99.5%)	21.5	2.6 (3		"	b.pt.	15.63 (4)
Acetone	30.5	2.32 (3	(das = 0.832)	Ether	18	0.12(4)
Aniline	30.5	29.4 (3	(o80.1=460)	"	25	0.27 (1)
Benzaldehyde	30.5		$(d_{00}=1.087)$	"	b.pt.	0.30(4)
Benzene	18.0	0.91 (4		Trichlorethylene	15	0.76 (7)
"	25.0	1.16(2	2)	Dichlorethylene	15	1.82 (7)
"	30.5	1.23 (3	(dm=0.875)	Pyridine		34.39 (8)
- "	b.pt.	5.29 (4	i)	50% Aq. Pyridir	ne "	11.12 (8)
Carbon Disulfide	17	0.06(5)	Toluene	25	$0.58(3)(d_{10}=0.861)$
				Xylene	32.5	I.I3 (3)(dm=0.847)
(r) = U. S. P.; (2)	- Scha	efer, 1913	; (3) = Seide	ll. 1907; (4) = Göcke	l, 1898;	(5) = Commaille, 1875;

(1) = U. S. P.; (2) = Schaefer, 1913; (3) = Seidell, 1907; (4) = Göckel, 1898; (5) = Commaille, 1875 (6) = Gori, 1913; (7) = Wester and Bruins (1914); (8) = Dehn, 1917.

Data for the solubility of caffeine in mixtures of alcohol and chloroform and alcohol and benzene are given by Schaefer (1913).

SOLUBILITY OF CAFFEINE IN AQUEOUS SOLUTIONS OF SODIUM BENZOATE AND VICE VERSA. (Pellni, 1910.)

Results at 25°. Results at 40°. Gms. per 100 Gms. H₂O. Gms. per 100 Gms. H₂O. Solid Phase. Solid Phase. CaH10N4O2 C7HeO2Na. C8H10N4O2. C7HsO2Na. 4.64 2.13 CaH₁₀N₄O₃.H₂O 0 0 CaHaoN4Oa.HaO 8.32 6.67 31.43 25.31 38.10 56.82 69.68 45 "+C7HsO2N2.HsO 76.75 "+C7HsO2Na.HsO 51.74 57.99 74.64 46.27 76.68 C7HsO2Na.H2O 55.98 74.02 C7H6O2Na.H2O 69.56 " 24.79 18.31 67.97 62.97 ** 0 50.82 9.47 66 0 61.17

SOLUBILITY OF CAFFEINE IN AQUEOUS SOLUTIONS OF SODIUM SALICYLATE AND VICE VERSA. (Pellini and Amadori, 1912.)

	Results at 25°	•	Results at 40°.			
Gms. per 100	Gms. H ₂ O.	Solid Phase.	Gms. per 100	Solid Phase.		
C8H10N4O2.	C7HsO3Na.	Sond Phase.	C8H10N4O2.	C7H5O2Na.	Solid Friase.	
2.13	0	CaHaoNaOa.HaO	4.64	0	CaH10N4O2.H2O	
38.36	30.76	"	59· 4 9	37 - 47	"	
55.23	47.31	u	86.49	62.47	"	
74.32	68.8 1	44	95.94	69.15	46	
16.78	124.96	C ₇ H ₈ O ₂ Na	26.93	131.52	C7H5O8Na	
13.22	121.27	**	10.75	124.35	"	
9.03	120.54	44	0	119.66	. "	
0	115.43	"				

Data for the depression of the freezing-point of sodium salicylate solutions by caffeine and theobromine are also given.

DISTRIBUTION OF CAFFEINE BETWEEN WATER AND CHLOROFORM. (Marden, 1914.)

Grams C	Caffeine in:	Ratio of Caffeine in
105 cc. HsO Layer.	50 cc. CHCla Layer.	Equal Vols. H ₂ O and CHCl ₂ .
0.0090	0.0563	0.0456
0.0180	0.1048	0.0492
0.0291	0.1770	0.0470

CALCIUM ACETATE Ca(CH₂COO)₂.2H₂O.

SOLUBILITY IN WATER. (Lumsden, 1902; Krasnicki, 1887.)

\$° .	per 100 Solution.	H _s COO) ₂ Gms. Water.	Solid Phase.	t°.	per 100 Solution.	H _s COO) ₂ Gms. Water.	Solid Phase.
0	27.2	37 · 4	Ca(CH ₃ COO) ₂₋₂ H ₃ O	60	24.6	32.7	Ca(CH ₃ COO) ₂₋₂ H ₃ O
10	26.5	36.0	Ca(CH ₃ COO) ₂ .2H ₂ O	80	25.1	33 · 5	Ca(CH ₃ COO) _{2.2} H ₃ O
20	25.8	34 · 7	Ca(CH ₃ COO) ₃₋₂ H ₃ O	84	25.3	33.8	Ca(CH ₃ COO) ₂ .2H ₂ O
25	25.5		Ca(CH ₂ COO) ₂ .2H ₂ O	85	24.7	32.9	Ca(CH ₃ COO) ₂ .H ₂ O
30	25.3		Ca(CH ₃ COO) ₂ .2H ₂ O	90	23.7	31.1	Ca(CH ₃ COO) ₂ .H ₂ O
40	24.9	33.2	Ca(CH ₃ COO) _{2.2} H ₂ O	100	22.9	29.7	Ca(CH ₅ COO) ₂ .H ₅ O

SOLUBILITY OF CALCIUM ACETATE IN AN AQUEOUS SATURATED SOLUTION OF SUGAR AT 31.25°. (Köhler, 1897.)

100 gms. solution contain 8.29 gms. $Ca(CH_1COO)_2 + 60.12$ gms. sugar. 100 gms. water dissolve 26.3 gms. $Ca(CH_2COO)_2 + 190.3$ gms. sugar.

100 cc. anhydrous hydrazine dissolve I gm. calcium acetate at room temp.
(Welsh and Broderson, 1915.)

70

80

7.11

7.38

6.64

6.87

GALGIUM (Tri) Methyl ACETATE Ca[(CH_s);CCOO]_s.

CALCIUM (Di) Ethyl **ACETATE** Ca[(C₂H₅)₂CHCOO]₂.

CALCIUM Methyl Ethyl ACETATE Ca[CH₃(C₂H₅).CHCOO]₃.

SOLUBILITY OF EACH IN WATER.

(Landau — Monatsh. Chem. 14, 717, '93; Keppish — Ibid. 9, 600, '88; Sedlitzki — Itid. 8, 573, '87.)

Ca. Tri Methyl Acetate. Ca. Di Ethyl Acetate. Ca. Methyl Ethyl.

Acetate. Gms. Ca(C₂H₀O₂)₂ per 100 Gms. Gms. Ca(C₆H₁₁O₂)₂ per 100 Gms. Gms. Ca(C₅H₆O₂)₂ per 100 Gms. Water. Water. Solution. Water. Solution. Solution. 7.30 6.81 28.78 22.35 23.22 0 30.3 10 6.84 6.40 27.8 21.75 31.71 24.07 6.54 6.14 25.6 20.38 20 33.76 25.23 25.89 6.40 6.01 19.16 34.92 30 23.7 40 6.44 6.05 22.I 18.10 35.20 26.04 6.64 50 6.22 20.8 17.22 34.60 25.71 6.86 60 6.42 10.0 16.60 24.80 33.11

16.11

30.74

27 . 40

23.41

21.56

CALCIUM Methyl Propyl ACETATE Ca[CH₂(C₂H₇).CHCOO]₁.

19.2

CALCIUM (Di) Propyl ACETATE Ca[(C2H7)2CHCOO]2.

CALCIUM (Iso) Butyl **ACETATE** Ca[(CH_s),CH(CH₂),COO], Solubility of Each in Water.

(Stiassny — Monatah. Chem. 12, 596, '91; Furth — Ibid. 9, 313, '88; König — Ibid. 15, 22, '94.)

Ca. Methyl Propyl Acetate. Ca. Di Propyl Acetate. Ca. Iso Butyl Acetate.

t°.	Gms. Ca(C ₆ H ₁₁ O ₂) ₂ per 100 Gms.	Gms. Ca(C ₆ H ₁₅ O ₂) ₂ per 100 Gms.	Gms. Ca(C ₆ H ₁₁ O ₂); per 100 Gms.		
	Water. Solution.	Water. Solution.	Water. Solution.		
0	16.58 14.22	9.57 8.73	7.48 6.96		
10	15.80 13.65	8.35 7.71	6.38 5.99		
20	15.14 13.15	7.19 6.71	5.66 5.36		
30	14.61 12.75	6.11 5.77	5.31 5.04		
40	14.21 12.45	5.09 4.84	5.31 5.04		
50	13.94 12.24	4.14 3.98	5.68 5.37		
. 60	13.79 12.13	3.25 3.15	6.41 6.02		
70	13.78 12.12	2.44 2.38	7.51 6.98		
80	13.89 12.20	1.65 1.62	8.97 8.23		
90	•••	•••	10.79 9.74		

CALCIUM BENZOATE Ca(C6H6COO)2.

100 cc. sat. solution in water contain 3.02 gms. Ca[C₆H₆COO]₂ at 26°. (de Jong, 1912.) 100 gms. sat. solution in water contain 8.6 gms. Ca[C₆H₆COO]₂ at 15° and 10.2 gms. at 100°.

(Tarugi and Checchi, 1901.)

CALCIUM BORATES CaB₂O_{4.4}H₂O, CaB₂O_{4.6}H₂O.

SOLUBILITY OF EACH SEPARATELY IN WATER. (Mandelbaum, 1909.)

0 مو	ms. per 100 (Gms. Sat. Sc	ol. Solid Phase.	ا مو	Gms. per 100 (3ms. Sat. Sol.	Solid Phase.
• •	B ₂ O ₂ .	CaBrOs.	Sond Phase.	• .	B ₂ O ₂ .	CaBaOs.	Soud Phase.
30	0.0365	0.310	CaBsO4.4HsO	30	0.0205	0.254	CaB ₂ O ₄ .6H ₂ O
50	0.036	0.307	" (amorphous)	50	0.032	0.353	" (cryst.)
70	0.048	0.392	"	70	0.068	0.457	"
90	0.0315	0.310	"	90	0.0675	0.359	æ

SOLUBILITY OF CALCIUM BORATES IN AQUEOUS SOLUTIONS OF BORIC ACID AT 30°.
(Sborgi, 1913.)

Solid
Phase.
3.9
u
" +1.3.1s
1.3.12
4
•
a
*
44
4
" +HaBOs
H _a BO ₀

$$1.1.6 = CaO.B_2O_3.6H_2O,$$
 $2.3.9 = 2CaO.3B_2O_3.9H_2O,$ $1.3.12 = CaO.3B_2O_3.12H_2O.$

Many determinations, in addition to the above, are given in the original paper.

CALCIUM BROMIDE CaBra.6H2O.

SOLUBILITY IN WATER.

(Kremers, 1858; Etard, 1894, gives results which yield an irregular curve and are evidently less accurate than those of Kremers.)

t	Gms. CaBr ₂ per 100 Gms.		Solid Phase.	t°.	Gms. CaBr ₂ per 100 Gms.		Solid Phase.
	Water.	Solution.			Water.	Solution.	
-22 [*]	IOI	50.5	CaBn.6HaO+Ice	34.2	185	65.1	CaBra.6HaO+CaBra.4HaO
0	125	55.5	CaBra.6HaO	40	213	68.I	CaBra.4HaO
10	132	57	**	60	278	73 · 5	"
20	143	58.8	66	80	295	74.7	44
25	153	60.5	66	105	312	75.7	*
			• Eutec.		† tr.	pt.	

Density of saturated solution at 20° = 1.82.

Data for the system calcium bromide, calcium oxide and water at 25° are given by Milikau (1916).

Freezing-point data are given for mixtures of calcium bromide and calcium chloride, calcium bromide and calcium fluoride by Ruff and Plato, 1903.

CALCIUM PerBROMIDE CaBr.

Data for the formation of calcium perbromide in aqueous solutions at 25° are given by Herz and Bulla (1911). The experiments were made by adding bromine to aqueous solutions of CaBr₂ and agitating with carbon tetrachloride. From the bromine content of the CCl₄ layer, the amount of free bromine in the aqueous layer can be calculated on the basis of the distribution ratio of bromine between water and CCl₄. This furnishes the necessary data for calculating the amount of calcium perbromide existing in the aqueous layer.

CALCIUM (Normal) BUTYRATE Ca[CHa(CHa),COO],HaO.

CALCIUM (Iso) BUTYRATE Ca[(CH₂)₂CH.COO]_{2.5}H₂O.

SOLUBILITY OF EACH IN WATER.

(Lumsden — J. Chem. Soc. 81, 355, '02; see also Chancel and Parmentier — Compt. rend. 104, 474, '87; Deszathy — Monatsh. Chem. 14, 251, '03, and also Hecht — Liebig's Annalen 213, 72, '82, give results for the normal salt which are somewhat below those of Lumsden for the lower temperatures. Sedlitzki — Monatsh. Chem. 8, 566, '87, gives slightly different results for the iso salt.)

Calcium Normal Butyrate. Calcium Iso Butyrate. Gms. Ca(C₄H₇O₂)₂ per 100 Gms. Gms. Ca(C₄H₇O₂)₂ Solid per 100 Gms. t . Phase. Water, Solution. Water. Solution. 16.78 Ca(C4H,O2)2.5H2O 16.8g 20 · IO 0 20.3I 0 16.08 18.30 19.15 22.40 10 20 " 20 18.20 15.39 30 23.80 19.23 " 40 25 17.72 15.05 25.28 20.65 " 17.25 14.71 60 28.40 22.I2 30 " 40 16.40 14.00 62 28.70 22.30 22.03 Ca(C,H,O,),.H,O 13.16 60 15.15 65 28.25 80 80 14.95 13.01 27.00 21.26 " 13.69 100 15.85 IOO 26. IO 20.60

CALCIUM d CAMPHORATE CubH14O4Ca.7H2O.

SOLUBILITY OF CALCIUM CAMPHORATE IN AQUEOUS SOLUTIONS OF CAMPHORIC ACID AT 15° AND VICE VERSA.

(Jungfleisch and Landrieu, 1914.)

Solid Phase.	Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100 Gms. Sat. Sol.	
Sond Phase.	C ₁₀ H ₁₄ O ₁ Ca.	C ₈ H ₁₄ (COOH) ₂ .	Soud Phase.	C10H14O4Ca.	CaH14(COOH)2.
CaHas(COOH)2	7 · 75	2.90	CeHM(COOH)2	1.23	1.35
" +CmHMOs.Ca.7HgO	8.66	3	44	1.97	1.57
C ₁₀ H ₁₄ O ₄ Ca.7H ₂ O	8.57	3.07	**	2.55	1.71
"	7.94	1.50	"	4.34	2.18
· u	7 · 37	0	**	4.73	2.33

Calcium camphorate tetrahydrate exists at higher temperatures. Its solubility at 100° was found to be 8.68 gms. $C_{10}H_{14}O_4Ca$ per 100 gms. sat. solution. By careful work, the result at 15° for $C_{10}H_{14}O_4Ca$. $4H_2O$ was found to be 12.21 gms. $C_{10}H_{14}O_4Ca$ per 100 gms. sat. solution.

CALCIUM CAPROATE (Hexoate) Ca[CH₂(CH₂)₄COO]₂.H₂O.

CALCIUM 3 Methyl PENTANATE Ca[CH₂.CH₂.CH(CH₄)CH₂.COO]_{2.3}H₂O.

CALCIUM CAPRYLATE Ca[CH₂(CH₂)₆COO]₂.H₂O.

SOLUBILITY OF EACH IN WATER.
(Lumsden; the Pentanate, Kulish, 1893; see also Keppish, 1888, and Altschul, 1896, for results on the Caproate.)

Ca	. Caproate.		l Pentanate.	Ca. Caprylate.
ť.	Gms. Ca(C ₆ H ₁₁ O ₂) ₂ per 100 Gms. H ₂ O.	Gms. Ca(CeHii)	Solution.	Gms. Ca(C ₈ H ₁₀ O ₈) ₉ per 100 Gms. H ₂ O ₄
0	2.23	12.33	10.98	0.33
20	2.18	17.18	14.66	0.31
40	2.15	18.99	15.97	0.28
50	2.10	18.73	15.78	0.26
50 60	2.15	17.71	15.04	0.24
80	2.30	13.37	11.80	0.32
100	2.57	9.94	9.04	0.50

CALCIUM CARBONATE CaCO2.

EQUILIBRIUM IN THE SYSTEM CaO-H₂O-CO₂ AT 16°.

The following data for the solubility of calcite (CaCO₂) in water at 16° in contact with air containing the partial pressure P of CO₂ were calculated from the results of Schloesing (1872), Engel (1888), and others by Johnston (1915) and Johnston and Williamson (1916). These authors describe the changes in the system resulting from a gradual increase in partial pressure of CO2, as follows:

"We begin by considering the equilibrium between the hydroxide M(OH)2 and the aqueous solution saturated with it as affected by a progressive increase from zero of the partial pressure P of CO₂ in the atmosphere in contact with the solution. Addition of CO₂ is followed by a dis-Pot CO₂ in the atmosphere in contact with the solution. Addition of CO₃ is followed by a distribution between the vapor and liquid phases until there is equilibrium between the residual partial pressure of CO₂ and the H₂CO₃ in solution, and in turn between the latter and the several ions; the net effect of this is a definite decrease in [OHT], the concentration of hydroxide ion, which necessitates that more of the hydroxide dissolve in order to keep the solubility-product [M++][OHT]² constant. Consequently the total concentration of M++ increases, part of it being now associated with carbonate and bicarbonate; in other words, the apparent solubility of the base increases if the method of analysis of the solution is a determination of M, whereas it would decrease if one should determine [OHT]². This process continues until the product [M++][CO₂=] reaches the value requisite for the precipitation of MCO₃ (on the assumption) that superspaturation does not occur) which for a given have takes place at a superspaturation does not occur) which for a given have takes place at a assumption that supersaturation does not occur) which, for a given base, takes place at a definite value of P which depends only upon the temperature; this transition pressure P_1 is, at a given temperature, the highest under which solid hydroxide is stable and the lowest at which solid carbonate is stable.

which solid carbonate is stable.

At P_1 the solubility (as measured by the total [M]) begins to diminish, because increase of P increases $[CO_8^{-n}]$ while the product $[M++][CO_8^{-n}]$ must remain constant so long as MCO_8 is the stable solid phase; this increase of $[CO_8^{-n}]$ continues until a definite pressure P_0 is reached, when the formation of bicarbonate in the solution becomes the predominant reaction and $[CO_8^{-n}]$ begins to decrease again. P_0 is thus a minimum in the solubility curve. With further increase beyond P_0 the concentration of both M++ and HCO_8^{-n} increases steadily until the precipitation value of the product $[M++][HCO_8^{-n}]^2$ is reached at P_2 , which is a transition pressure at which both carbonate and bicarbonate are present as stable solid phases. Beyond P_2 bicarbonate alone is stable, and its total solubility falls off very slowly with further increase of partial pressure of CO_8 ."

THE CALCULATED ION-CONCENTRATIONS AND SOLUBILITY OF CALCITE IN Water at 16° in Contact with Air Containing the Partial Pressure P OF CO2.

Partial Pressure P of CO ₂ Measured	Ion-concentrations per Liter × 10 ⁻⁴ .				Total Ca, Mols. per	Grams CaCOs per
in Atmospheres.	Ca++.	OH	CO.	HCOr.	Liter X 10√.	Liter.
3.16×10 ⁻¹⁴	138.5	277	0.0071	0.0000235	• • •	2
2.80×10 ⁻¹⁰	6.81	13.3	0.144	0.01		0.074
9.78×10 ^{—9}	2.377	3.82	0.414	0.10		0.026
6.14×10 ⁻⁸	1.654	1.82	0.593	0.30	• • •	0.018
2.19×10 ⁻⁷	1.476	1.02	0.665	0.60		0.016
3.73×10 ⁻⁷	1.459	0.787	0.672	0.787	• • •	0.0159
3.85×10 ⁻⁷	1.459	0.774	0.672	0.80		0.0159
6.07×10 ⁻⁷	1.473	0.614	0.666	I		0.016
7.62×10 ⁻⁶	2.051	0.147	0.478	3		0.022
7.63×10 ^{—6}	3.777	0.034	0.260	7		0.040
2.15×10 ⁻⁴	5.197	0.0174	0.188	10		0.056
2 X 10 ⁻⁴	5.09	0.0182	0.19	9.96	5.52	0.055
2.5 × 10 ⁻⁴	5.46	0.0157	0.18	10.54	5.93	0.059
3 X 10 ⁻⁴	5.79	0.0140	0.17	II.22	6.31	0.063
3.5 × 10 ⁻⁴	6.08	0.0126	0.16	11.82	6.64	0.066
4 X 10 ⁻⁴	6.35	0.0115	0.16	12.36	6.94	0.069
4.5 × 10 ⁻⁴	6.59	0.0107	0.15	12.86	7.21	0.072
5 × 10 ⁻⁴	6.82	0.0100	0.14	13.32	7.46	0.075

THE SOLUBILITY OF CALCIUM CARBONATE (CALCITE) IN WATER AT 16° IN CONTACT WITH AIR CONTAINING PARTIAL PRESSURE P OF CO₂.

(Calc. from Schloesing, 1872, and Engel, 1888, by Johnston, 1915.)

	(Carc. from Schloesing, 1972, and Engel, 1995, by Johnston, 1915.)						
Partial Pressure P of CO ₂ in Atmospheres.	Total Ca, Mols. per Liter.	Total Ca(HCO ₂): Mols. per Liter.	Partial Pressure P of CO ₂ in Atmospheres.	Total Ca, Mols. per Liter.	Total Ca(HCO ₂) ₂ Mols. per Liter		
0.000504	0.000746	0.000731	0.4167	0.007825	0.007874		
808000.0	0.000850	0.000837	0.5533	0.008855	0.008854		
0.00333	0.001372	0.001364	0.7297	0.00972	0.00972		
0.01387	0.002231	0.002226	0.9841	0.01086	0.01086		
0.02820	0.002965	0.002961	I	0.01085	0.01085		
o .o5008	0.003600	0.003597	2	0.01411	0.01411		
0.1422	0.005330	0.005328	4	0.01834	0.01834		
0.2538	0.006634	0.006632	6	0.02139	0.02139		

THE SOLUBILITY OF CALCIUM CARBONATE (CALCITE) IN WATER AT 25° IN CONTACT WITH CO2 UNDER INCREASING PRESSURES. (McCoy and Smith, 1911.)

Approx. Pressure of CO ₂ in	Mols. per Lite	r Sat. Solution.	Gms. per	Solid Phase.	
Atmospheres.*	H ₂ CO ₈ .	Ca(HCO ₈) ₂ .	H ₂ CO ₃ .	Ca(HCO ₃) ₂ .	Sond Phase.
0.1	0.003522	0.004116	0.22	0.67	CaCO ₃
1.1	0.03728	0.009734	2.3	1.58	"
9.9	0.3329	0.02236	20.6	3.62	"
13.2	0.444	0.02495	27.5	4.04	"
16.3	0.550	0.02600	34.I	4.21	$Ca(HCO_3)_2$
25.4	0.858	0.02603	53.2	4.22	W Disambasata n aaf

* Calc. by Henry's Law from CO₂ concentrations. See also remarks under Ferrous Bicarbonate, p. 336. These results show that the solution becomes saturated with Ca(HCO₂)₂ at about 15 atmospheres pressure of CO₂, and it would be theoretically possible to convert all the CaCO₃ to Ca(HCO₃)₂ by introducing sufficient CO₂ at pressures greater than 15 atmospheres. Under the conditions of the present experiment, it was calculated that more than 3 months time would have been required for the complete conversion.

The solubility of calcium carbonate in water saturated with CO₂ at one atmosphere pressure was found by Cavazzi (1916) to be 1.56 gms. CaCO₂ at o° and 1.1752 gms. at 15°. A supersaturated solution prepared by passing a rapid stream of CO₂ through sat. Ca(OH)₂ solution at 15° contained 2.29 gms. CaCO₃.

SOLUBILITY OF CALCIUM CARBONATE IN WATER AT 15°. (Treadwell and Reuter, 1896.)
(Among the investigators who have reported results upon the solubility of calcium carbonate may be mentioned, Cossa, 1869; Schloesing, 1872; Caro, 1874; Reid, 1887–88; Irving and Young, 1888; Anderson, 1888-89; Engel, 1888; Lubavin, 1892; Pollacci, 1896.)

cc. CO ₂ per 100 cc. Gaseous Phase	Partial Pressure of CO ₂ in mm.	Gms. pe	Gms. per 100 cc. Saturated Solution.				
(o° and 760 mm.).	Hg.	Free CO2.	Ca(HCO2)2.	Ca.			
8.94	67.9	0.1574	0.1872	0.0462			
6.04	45.9	0.0863	0.1755	0.0433			
5 · 45	41.4	0.0528	0.1597	0.0394			
2.18	16.6	0.0485	0.1540	0.0380			
1.89	14.4	0.0347	0.1492	0.0368			
1.72	13.1	0.0243	0.1331	0.0329			
0.79	6	0.0145	0.1249	0.0308			
0.41	3.1	0.0047	0.0821	0.0203			
0.25	1.9	0.0029	0.0595	0.0147			
0.08	o.ó		0.0402	0.0099			
	• • •		0.0385	c.0005			

Therefore I liter sat. solution at 15° and 0 partial pressure of CO₂ contains 0.385 gram Ca(HCO₂)₂. Determinations similar to the above, made in 0.1 n NaCl solutions at 15°, are also given. It is pointed out by Johnston (1915), that although Treadwell and Reuter made very painstaking analyses; their mode of working did not secure equilibrium conditions, a fact which is borne out by the lack of constancy of the calculated solubility-product constant.

SOLUBILITY OF CALCIUM CARBONATE (CALCITE) IN WATER IN CONTACT WITH AIR AT DIFFERENT TEMPERATURES.

(Wells, 1915.)

(Joplin, Mo., calcite was used. The solutions were kept in a thermostat and agitated by a current of out-door air filtered through cotton and washed by water. The CO content of the air varied from 3.02 to 3.27 parts per 10,000. The calcium content of the solutions was determined by titrating with 0.02 n NaHSO4, using methyl orange as indicator. The solutions were slightly acid to phenolphthaleine, showing, that the calcium was present chiefly as bicarbonate.)

t°.	Gms. CaCOs per Liter.
0	0.081
10	0.070
20	0.065
25	0.056 (0.046)
30	0.052
40	0.044
50	0.038 (0.020)

Results in parentheses by Kendall (1912). In connection with these it is stated by Johnston (1915), that assurance is wanting that the partial pressure of CO, was the same at both temperatures and the results are, therefore, not necessarily comparable.

SOLUBILITY OF CALCIUM CARBONATE IN WATER AT DIFFERENT TEMPERATURES AND IN CONTACT WITH AIR CONTAINING DIFFERENT PARTIAL PRESSURES OF CO₂.

(Leather and Sen, 1909.)

Results at 15°.			Results at 25°.			Results at 40°.		
Partial Pressure	Gms. per	Liter Sol.	Partial Pressure	Gms. per	Liter Sol.	Partial Pressure		Liter Sol.
CO ₂ in Gas Phase.	CaCOs.	CO ₂ .	CO ₂ in Gas Phase.	CaCOs.	COs.	CO ₂ in Gas Phase.	CaCOs.	COF
0.8	0.193	0.117	0.7	0.159	0.091	0.6	0.136	0.078
1.5	0.193	0.152	1.6	0.177	0.111	1.7	0.143	0.085
1.7	0.238	0.135	4.6	0.341	0.208	2.9	0.175	0.106
6.8	0.445	0.327	7.8	0.446	0.301	3.5	0.232	0.169
9.9	0.627	0.456	16.5	0.539	0.522	. 7	0.284	0.234
13.6	0.723	0.560	30.1	0.743	0.715	14.9	0.384	0.293
14.6	0.686	0.623	35.5	0.755	0.803	22.2	0.427	0 333
31.6	1.050	1.117			_	31.7	0.480	0.476

Similar results also given for 20°, 30° and 35°.

The mixtures were constantly agitated at constant temperature. The solid phase in each case was found to be CaCO2 and it is concluded that Ca(HCO2)2

cannot exist in this solid state above 15°

In discussing the experiments of Leather and Sen, Johnston (1915) points out that their method of analysis gives low results for CO₃. A calculation of the data yields very irregular results and the most that can be deduced from them is that the solubility-product constant of calcite probably decreases somewhat with temperature, becoming apparently about 0.5×10⁻⁸ at 40°.

Data for the solubility of CaCO₁ in boiling water are given by Cavazzi (1917).

Data for the solubility of calcum carbonate in water are given by Cavaza (1927). Data for the solubility of calcum carbonate in water containing excess of carbon dioxide are also given by Seyler and Lloyd (1909). The experiments were made at room temperature. Additional experiments showed that small amounts of CaCl₂, CaSO₄ or NaHCO₅ did not affect the solubility-product constant. Small amounts of NaCl, Na₂SO₄ and MgSO₄, containing no ion in common with CaCO₅ resulted in an increase of the total calcium in the solution with CaCO, resulted in an increase of the total calcium in the solution.

Data for the solubility of calcium carbonate in water, determined by the conductivity method, are given by Holleman and by Kohlrausch and Rose (1893).

SOLUBILITY OF CALCIUM CARBONATE IN AQUEOUS SOLUTIONS OF AMMONIUM CHLORIDE.

Results at 12°-18°. Results at 25°. Results at 60° for Calcite and Aragonite. (Cantoni and Goguelia, 1905.) (Rindell, 1910.) (Warynski and Kouropatwinska, (Flasks allowed to stand (Constant agitation 1916.) 24 hrs.),... 98 days.) Gms. per Liter. Gms. per Liter Sat. Sol. . Gms. per Liter Sat. Sol. Gms. per Liter. NH_iCl. NH₄Cl. CaCO₃. NH4Cl. CaCO₃. NH₄Cl. Calcite Aragonite. 0.285 0.423 6.7 0 0.028 0 0.041 53.5 0.184 0.600 13.4 26.8 0.373 1.07 0.164 1.07 100 0.371 0.645 0.502 0.333 5.35 200 5.35 0.678 0.453 10.70 53.5 10.70 0.505 26.76 26.76 0.728 53 - 52 53.52 0.934 1.015 160.56 1.36 160.56 I.21

SOLUBILITY OF CALCIUM CARBONATE IN AQUBOUS SOLUTIONS OF AMMONIUM NITRATE AND OF TRIAMMONIUM CITRATE.

In Aq. NH₄NO₅ at 18°. In Aq. NH₄NO₅ at 25°. In Aq. Triammonium Citrate at 25°. (Berju and Kosminiko, 1904.) (R.ndell, 1910.) (Rindell, 1910.)

Gms. per Liter Sat. Sol.		Gms. per Li	ter Sat. Sol.	Mols. Citrate	Gms. CaCOs	
NH4NOs.	CaCOs.	NH4NO3.	Ca.CO ₂ .	per Liter.	per Liter.	
0	0.131	5	0.200	0.0625	1.492	
5	0.211	10	0.278	0.125	2.264	
10	0.258	20	0.383	0.250	3.980	
20	0.340	40	0.526	0.500	6.687	
40	0.462					
8o	0.584					

SOLUBILITY OF CALCIUM CARBONATE IN AQUEOUS SOLUTIONS OF MAGNESIUM CHLORIDE, MAGNESIUM SULFATE, SODIUM CHLORIDE AND SODIUM SULFATE UNDER CO₂ Pressure of Two Atmospheres. (Ehlert and Hempel, 1912.)

Aq. Salt Solution.	t°.	drated Salt per 1000 Gms. H ₂ O.	Gms. CaCOs per 1000 cc. Solvent.	Aq. Salt Solution.	t°.	Gms. Hy- drated Salt per 1000 Gms. H ₂ O	Gms. CaCO ₀ per 1000 cc. Solvent.	
MgCl ₂ .6H ₂ O	5	0	2.337	NaCl	5	50	3.740	
"	5	6.1	2.352	"	5	86	3.783	
44	5	50	3.404	"	5	106.g	3.690	
"	5	86.g	4.083	"	5	175.6	3.350	
"	5	350	3.301	"	5	263.4	2.811	
"	5	700	2.736	"	Š.	351.2	2.163	
"	5	1150	2.205	MgSO _{4.7} H ₂ O	14	105.3	2.177	
"	5	1725	1.70Ğ	"	14	(sat.)	0.914	
"	5	2300 sat.	1.406	Na ₂ SO ₄ .10H ₂ O	14	137.7	1.406	
NaCl	5	28	3.280	- ii	14	(sat.)	1.920	

SOLUBILITY OF CALCIUM CARBONATE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AND OF POTASSIUM SULFATE AT 25°. (Cameron and Robinson, 1907.)

	r 100 Gms. t. Sol.	Gms. per	ere of CO2. 100 Gms. Sol.	Gms. pe	r 100 Gms. t. Sol.	Gms. per Sat	100 Gms. t. Sol.
KCl.	CaCOs.	KCl.	CaCO ₃ .	K ₂ SO ₄ .	CaCO ₂ .	K ₂ SO ₄	CaO.
0	0.0013	0	0.062	1.60	0.0104	0.69	0.69
3.9	0.0078	3.9	0.145	3.15	0.0116	1.37	0.69
7.23	0.0078	7.23	0.150	4.73	0.0132	1.67	0.47*
13.82	0.0072	13.82	0. IČ5	6.06	0.0148	2.18	0.30*
18.21	0.0070	18.21	0.154	8.88	0.0192	2.99	0.24*
26	0.0060	26	0.126	10.48	0.0188		
			* Solid ph	ase syngenite			

One liter aqueous solution containing 223.8 gms. KCl dissolves 0.075 gm. calcite at 60°.

One liter aqueous solution containing 223.8 KCl dissolves 0.093 gm. aragonite at 60°. (Warynski and Kouropatwinska, 1916.)

SOLUBILITY OF CALCIUM CARBONATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 25°.

Solutions in contact with.

CO ₂ Free Air.	Ordinary Air.	CO ₂ at One Atmos. Pressure.
(Cameron, Bell and Robinson, 1907.)	(Cameron and Seidell, 1902.)	(Cameron, Bell and Robinson, 1907.)
Gms. per 100 Gms. H ₂ O.	Gms. per 100 cc. Sat. Sol.	Gms. per 100 Gms. H ₂ O.

Gms. per 100 Gms. H ₂ O.		Gms. per	Gms. per 100 cc. Sat. Sol.		Gms. per 100 Gms. H ₂ O.		
NaCl.	CaCOs.	NaCl.	CaCOs.	NaCl.	CaCOs.		
1.60	0.0079	I	0.0112	1.49	0.150		
5.18	0.0086	4	0.0140	5.69	0.160		
9.25	0.0094	8	0.0137	11.06	0.174		
11.48	0.0104	10	0.0134	15.83	0.172		
16.66	0.0106	15	0.0119	19.62	0.159		
22.04	0.0115	20	0.0106	29.89	0.123		
30.50	0.0119	25	0.0085	35.85	0.103		

Data for the solubility of calcium carbonate in aqueous solutions of mixtures of sodium chloride and sodium sulfate in contact with air and with CO₂ are given by Cameron, Bell and Robinson (1907).

Data for solubility of CaCO₂ in aqueous NaCl and other salt solutions, de-

Data for solubility of CaCO₁ in aqueous NaC1 and other sait solutions, determined by boiling and cooling the solution, are given by Gothe (1915).

Data for the solubility of mixtures of calcium carbonate and calcium sulfate in aqueous solutions of sodium chloride at 25° are given by Cameron and Seidell (1901).

Data for the solubility of mixtures of calcium carbonate and calcium sulfate in aqueous solutions of mixtures of sodium chloride and sodium sulfate at 25°, in contact with air and with CO₂, are given by Cameron, Bell and Robinson (1907).

One liter aqueous solution containing 175.5 gms. NaCl dissolves 0.062 gm. calcite at 60°.

One liter aqueous solution containing 175.5 gms. NaCl dissolves 0.071 gm. aragonite at 60°. (Warynski and Kouropatwinska, 1916.)

SOLUBILITY OF CALCIUM CARBONATE IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE IN CONTACT WITH CO2 FREE AIR. (LeBlanc and Novotny, 1906.)

Solvent.	Gms. CaCOs per Liter Sat. Sol.		
Solvent.	At 18°.	At 95°-100°.	
Water	0.0128	0.0207	
About o.oooi n NaOH	0.0087	0.0096	
" 0.0010 n "	0.0042	0.0069	
" o.oioo n "	0.0042	0.0057	

Data on the equilibrium in aqueous solutions of CaCO₂, Na₂CO₂ and NaOH are given by Wegscheider and Walter (1907).

SOLUBILITY OF CALCIUM CARBONATE IN AQUEOUS SOLUTIONS OF SODIUM SULFATE. Solutions in contact with:

	Air at 25°. d Robinson, 1907.)	Ordinary Air at 24°. (Cameron and Seidell, 1902.)			
Gms. per 10 NasSO4.	CaCO ₂ .	Gms. NasSO ₄ per Liter.	Gms. Total Ca per Liter Calc. as Ca(HCOs)s.		
0.97	0.0151	5	0.175		
1.65	0.0180	10	0.232		
4.90	0.0262	20	0.277		
12.69	0.0313	40	0.332		
14.55	0.0322	8o	0.400		
19.38	0.0346	150	0.510		
23.90	0.0360	250	0.725		

Freezing-point data for mixtures of calcium carbonate and calcium chloride are given by Sackur (1911-12).

CALCIUM CHLORATE Ca(ClO₂)_{2.2}H₂O.

100 grams saturated aqueous solution contain 64 grams Ca(ClO₈)₂ at 18°. Density of solution is 1.729. (Mylius and Funk, 1897.)

CALCIUM CHLORIDE CaCL.

SOLUBILITY IN WATER

(Rooseboom — Z. physik. Chem. 4, 42, '89; see also Mulder; Ditte — Compt. rend. 92, 242, '81; Engel — Ann. chim. physic. (6)12, 381, '88; Etard — Ibid. [7] 2, 532, '94.)

5°.	Gms. CaC 100 G Water. So	ms.	Solid Phase.	t° .	100	aCl ₂ per Solid Phase.
-55	42.5	29.8	Ice + CaCl₂.6HgO	60	136.8	57.8 CaCla.2HgO
-25	_	33.3	CaCl2.6H2O	70	141.7	58.6 CaCla.aHaO
ŏ.	59.5	37 · 3	CaCl ₂ .6H ₂ O	80	147.0	59.5 CaCla.2HaO
10	65.0	39 · 4	CaCl ₂ .6H ₂ O	90	152.7	60.6 CaCl _{3.2} H ₂ O
20	74.5	42.7	CaCl ₂ .6H ₂ O	100	159.0	61.4 CaClasHgO
30.2	102.7	50 . 7	CaCla.6H ₂ O	120 .	173.0	62.4 CaCla.2HaO
20			CaCl ₂₋₄ H ₂ Oa	140	191.0	65.6 CaCla.2HaO
29.8			O_0Ha + a O_0H_{4-}	160	222.5	60.0 CaCla.aHaO
40	115.3	53 - 4	.4HgO a.	170	255.0	71.8 CaCla.aHaO
20	104.5	51 . I	CaCl ₂₋₄ H ₂ O β	175.5	297.0	74.8 CaCle.2HaO +CaCle.1150
29.2	112.8	53.0	O _E Ha + a O _E H _a .	180	300.0	75.0 CaCla.HaO
35	122.5	55.0	₄H ₂ O β	200	311.0	75.7 CaCla-HaO
38.4	127.5	56.0	4H2Oβ+CaCl2.2H2O	235	332.0	76.8 CaCla HaO
45.3	130.2	56.6	4H ₂ O a + CaCl ₂₋₂ H ₂ O	260	347.0	77.6 CaCls.H ₂ O

Density of saturated solution at $0^{\circ} = 1.367$, at $15^{\circ} = 1.399$, at $18^{\circ} = 1.417$; at $25^{\circ} = 1.47$.

SOLUBILITY OF CALCIUM CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AT 0°.

_		(Engel, r	887.)			
Gms. per 100 cc. Sat. Sol.		de of Sat. Sol.	Gms. per 100	Gms. per 100 cc. Sat. Sol.		
CaCls.	HCl.	og or sar. som	CaCls.	HCl.	de of Sat. Sol.	
51.45	0	1.367	29.84	15.84	1.283	
46.45	3.32	I.344	20.12	23.15	1.250	
42.80	5.83	1.326	11.29	34.62	1.238	
36.77	10.66	1.310				

SOLUBILITY OF MIXTURES OF CALCIUM CHLORIDE, MAGNESIUM CHLORIDE AND CALCIUM MAGNESIUM DOUBLE CHLORIDE (TACHHYDRITE). (Van't Hoff and Kenrick, 1912.)

t*.		o Gms. H ₂ O.	Solid Phase.		
	CaCls.	MgCla.			
16.7	41.2	31.6	MgCla.6HsO+CaCla.6HsO		
21.95	57 · I	26	" +Tachhydrite		
28.2	54 · 5	28.4	Tachhydrite+MgCle.6HgO		
116.7	0	85.63	" + " +MgCl ₀₋₄ H ₂ O		
25	32.3	17.9	+CaCls.6HsO+CaCls.4HsO		
28.2	80.1	16.1	" +CaCls.4HsO		
28.2	88.7	7.24	CaCls.6HsO+CaCls.4HsO		

Tachhydrate = $2\text{MgCl}_1.\text{CaCl}_2.\text{12H}_2\text{O}$. 100 grams H₂O dissolve 63.5 grams CaCl₂ + 4.9 grams KCl at 7° (M). 100 grams H₂O dissolve 57.6 grams CaCl₂ + 2.4 grams NaCl at 4° (M). 100 grams H₂O dissolve 59.5 grams CaCl₂ + 4.6 grams NaCl at 7° (M). 100 grams H₂O dissolve 72.6 grams CaCl₂ + 16 grams NaCl at 15° (R).

(M) = Mulder. $(R) = R \ddot{u} dorff.$

35.80

SOLUBILITY OF CALCIUM CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 25° AND VICE VERSA. (Cameron, Bell and Robinson, 1907.)

Gms. per 100 Gms. H₂O. Gms. per 100 Gms. H₂O. dat Sat. Sol. Solid Solid CaCle. NaCl. Phase. CaCls. NaCl. Phase. CaCla.6HaO 30.08 NaCl 84 0 1.2653 10.70 78.49 I.846 " +NaCl 18.85 " 1.2367 19.53 1.637 58.48 NaCl 1.2080 32.48 " 3.92

I.2030

0

SOLUBILITY OF CALCIUM CHLORIDE IN AQUEOUS ALCOHOL AT ROOM TEMPERATURE. (Bödtker, 1897.)

Solution Used.	Vol. Per Cent Alcohol.	Gms. CaCl ₂ per 5 cc. Sol.	Solution Used.	Alcohol.	Gms. CaClaper . 5 cc. Sol.
15 Gms. CaCls.6HsO			15 Gms. CaCl ₂ .6H ₂ O+20 cc	. :	
+ 20 cc. alcohol	92.3	1.430	alcohol + 2 Gms. CaCl	99.3	1.561
15 Gms. CaCl ₂ .6H ₂ O			T 3	99.3	1.590
+ 20 cc. alcohol	97.3	1.409	" +4 " "	99.3	1.641
15 Gms. CaCl ₂ .6H ₂ O			" + š " "	99.3	1.709
+ 20 cc. alcohol	99.3	1.429			
15 Gms. CaCl ₂ .6H ₂ O					
+ 20 cc. alcohol					
+ 1 Gm. CaCla	99.3	1.529			

SOLUBILITY OF CALCIUM CHLORIDE IN AQUEOUS SOLUTIONS OF ACETONE AT 20°.

(Frankforter and Cohen, 1914.)

Measured amounts of acetone were added to known solutions of CaCl₂ in water, until opalescence, indicative of the separation of a second liquid layer, was observed. The composition of a large number of such mixtures gives the limiting values for the binodal curve of the system. The lines were also determined in several instances by using such quantities of the three components that an adequate amount of each layer would be formed to permit the determination of the CaCl₂ in it. The points thus located on the curve fix the tie lines, and from them the approximate position of the plait point can be estimated.

Points	on	the	Binodal	Curve
		at	20°.	

I.444I

1.3651

1.3463 1.2831 53 · 47 36 · 80 I.799

7.77

Composition of Points Representing Tie Lines at 20°.

Gms.	per 100 Gms. Sat. S	ol. Gms. per 100 G	ms. Upper Layer. Gm	s. per 100 Gr	ns. Lower Layer.
Acetone.	CaCls.	Acetone.	CaCls.	Acetone.	CaCls.
9	40.5* (solid	phase 90.2	0.186	28.5	16.61
22.7	38.16† Ca(Љ ა 8ვ.ვ	0.628	34.6	12.97
20.8	31.2	81	0.948	40	10.6
20.2	28	78.5	1.321	43.5	9.36
21	24.4	60	5 (plait point)	60	5
23	21.I	Doints o	n the Binodal C):Goront
25	19.2	roints o	Temperatu		Juierent
30	15.6		•		
35	12.8	ť.		100 Gms. S	
40	10.5		Acetone.		CaCl ₂ .
45	8.8	5	31.09		15.52
50	7 · 4	10	22.77		23.64
55	6. ī	15	31.00		15.52
6ŏ	5	18	30.58		15.27
65	3.9	25	21.44		22.25
70	2.8	25	29.83		14.89
75	1.8	30	20.99		21.79
8ŏ	I	30	29.27		14.62
85	0.5	. 35	21.14		20.91
90	0.2	35	28.59		14.29
95	0.1	40	19.83		20.58
		adruple point. 40	27.90		13.93

SOLUBILITY OF CALCIUM CHLORIDE IN A SATURATED SOLUTION OF SUGAR AT 31.25°.
(Köhler, 1897.)

100 grams saturated solution contain 42.84 grams sugar + 25.25 grams CaCl₂, or 100 grams water dissolve 135.1 grams sugar + 79.9 grams CaCl₂.

100 gms. 95% formic acid dissolve 43.1 gms. CaCl₂ at 19°. (Aschan, 1913.)
100 cc. anhydrous hydrazine dissolve 16 gms. CaCl₂ at room temp.
(Welsh and Broderson, 1915.)
100 gms. propyl alcohol dissolve 10.75 gms. CaCl₂ (temp.?). (Schlamp, 1894.)

FREEZING-POINT DATA (Solubility, see footnote, p. 1) ARE GIVEN FOR THE FOLLOWING MIXTURES OF CALCIUM CHLORIDE AND OTHER SALTS.

(1) = Ruff and Plato, 1903; (2) = Plato, 1907; (3) = Sackur, 1911-12; (4) = Karandeeff, 1910; (5) = Menge, 1911; (6) = Sandonnini, 1911; (7) = Sandonnini, 1913; (8) = Sandonnini, 1913; (9) = Korreng, 1914; (10) = Schaefer, 1914.

CALCIUM CHLORIDE ACETAMIDATE CaCl, 3CH, CONH,

SOLUBILITY IN ACETAMIDE AT VARIOUS TEMPERATURES, DETERMINED BY THE SYNTHETIC METHOD.
(Menschutkin, 1908.)

e. d	Gms. per Sat. Cls.3CHs- CONHs	Sol.	Solid Phase.	£•	Gms. per 10 Sat. S aCls-3CHs- CONHs	oo Gms.	Solid Phase.
82 m. pt.	0	0	CH ₂ CONH ₂	100	65.6	25.3	1.3
78	8	3.I	**	150	70.5	27.I	"
74	15.4	5.9	**	165	74.8	28.8	**
66	27	10.4	**	175	80.6	31	"
54	39.2	15.1	**	180	85.5	32.9	"
46 Eutec.	45	17.3	" +1.6	184	90.5	34.8	46
58	48.5	18.7	1.6	186 tr. pt	94.5	36.4	" +CaCls(?)
62	54 · 5	21	"	200	97 · 5	37.5	CaCla(?)
64 tr. pt.	62.1	23.9	1.6+1.3	210	100	38.5	**
1.6	5 = CaC	12.6CH3(CONH₂.	1.3 = C	aCl ₂ .3CH ₁	CONH].

CALCIUM CHLORIDE ACETIC ACIDATE CaCl, 4CH, COOH.

SOLUBILITY IN ACETIC ACID AT VARIOUS TEMPERATURES, DETERMINED BY THE SYNTHETIC METHOD.

(Menschutkin, 1906.)

t°.	Gms. per Sat. CaCl _{2.4} CH ₂ - COOH	Sol.	Solid	r.	Gms. per Sat. CaCh.4CHs- COOH	roo Gms. Sol. = CaCls.	Solid Phase.
16.2 m. pt.	0	0	CH ₂ COOH	40	5 4 · 7	17.3	I.4
15	18	5 · 7	**	45	63	19.9	66
14	27	8.5	"	50	69.5	21.9	46
13	34	10.7	**	60	79 · 5	25.I	66
11.1 Eutec.	42	13.3	" +1.4	65	84.5	26.7	44
30	47.6	15	1.4	70	91.2	28. 8	66
35 .	50	15.8	**	73 m. pt.	100	31.6	*

 $1.4 = CaCl_2.4CH_3COOH.$

CALCIUM CHLORIDE ALCOHOLATES CaCl:.3CH:OH, CaCl:.3CH:OH.

(The compounds were prepared by mixing anhydrous CaCl₂ with the alcohol. In the case of the methyl alcohol compound, the tri CH₂OH salt crystallizes above 55°, the tetra salt below this temperature.)

SOLUBILITY OF EACH IN THE RESPECTIVE ALCOHOL AT VARIOUS TEMPERATURES,

DETERMINED BY THE SYNTHETIC METHOD.

(Menschutkin, 1906.)

Results for CaCl ₂ .3CH ₂ OH.							Resul	ts for	CaCl ₂ .3C	.HoH.
r.	Gms. per Sat.	100 Gms. Sol.	Solid Phase.	r	Sat. S		Solid Phase.		Gms. per 10 Sat. So	o Gms.
(CaCla.3CH	OH = CaCl		Ca	Cla.3CHaO	H = CaCl		Ća	Cls.3CsHsOl	H=CaCl ₂
0	33 · 3	17.85	1.4	95	66.3	35.5	1.3	0	34.8	15.5
IO	37.6	20.15	"	115	70.3	37.6	"	20	46	20.5
20	42.2	22.6	**	135	75.2	40.3	"	40	58.7	26. I
30	47	25.2	44	155	81.8	43.8	"	60	73	32.5
40	52	27.8	**	165	86.2	46.2	**	70	80.8	36
50	57.3	30.7	"	170	89.5	47.9	"	8o	86.8	38.7
55	Ğo Ö	32.I	66	174	93.5	50. I	"	85	89.2	39.7
56	61.3	32.8	66	177*	100	53.6	44	go	gí.g	40.8
55	60.5	32.4	" +1.3	100		55.7	1.1(?)	95	96.2	42.8
75	63.I	33.8	1.3	215		57 - 7	46	97*	100	44.5
					8 36 -4					

 $I_{-4} = CaCl_{a-4}CH_1OH$. $I_{-3} = CaCl_{a-3}CH_1OH$, $I_{-1} = CaCl_{a-1}CH_1OH$.

CALCIUM CHROMATE CaCrO.

SOLUBILITY OF THE SEVERAL HYDRATES IN WATER. (Mylius and Wrochem — Wiss. Abh. p. t. Reichanstalt 3, 462, '00.)

s°.	Gms. CaCrO41	Solution.	fols. CaCrO ₄ per 100 Mols. H ₂ O.	t°.Gms	CaCrO ₄ p	er 100 Gms.	Mols.CaCrO ₄ per 100 Mols. H ₂ O.
Sc	did Phase, a C			Sc		CaCrO ₄ . H	
0	17.3	14.75	2.0	0	7 · 3	6.8	0.84
18	16.68	14.3	1.93	18	4.8	4.4	0.51
20	16.6	14.22	1.93	31	3.84	3.7	0.44
30	16.5	13.89	1.85	38.5	2.67	2.6	0.31
45	14.3	12.53	r.65	50	1.63	1.6	0.19
Sol	id Phase, β Ca	CrO4.2H2O (R	hombic.)	60	1.13	I.I	0.13
0	10.9	9.8	1.25	COI	13.0	0.8	0.09
13	11.5	10.3	I.33		Solid Pha	se, CaCrO4.	-
40	11.Ğ	10.4	I.34	0	4.5	4.3	0.52
	Solid Phase,	CaCrO ₄ .H ₂ O.	-	18	2.32	2.27	0.27
0	13.0	11.5	1.50	31	2.92	1.89	0.22
18	10.6	9.6	I.22	50	1.12	1.11	0.13
25	10.0	9.1	1.15	бо	o .83	0.82	0.11
40	8.5	7.8	o.98	70	0.80	0.79	0.09
60	6.1	5 · 7	0.70	100	0.42	0.42	0.05
75	4.8	4.6	0.56				•
100	3.2	3.1	0.37				

Densities of the saturated solutions of the above several hydrates at 18° are: α CaCrO₄.2H₂O, 1.149; β CaCrO₄.2H₂O, 1.105; CaCrO₄.H₂O, 1.096; CaCrO₄.₂H₂O, 1.044; CaCrO₄, 1.023.

100 cc. 29% alcohol dissolve 1.206 grams CaCrO₄. 100 cc. 53% alcohol dissolve 0.88 gram CaCrO₄.

(Fresenius - Z. anal. Chem. 30, 67s, '01)

CALCIUM CINNAMATE Ca(C₄H₄.CH:CHCOO)₃.3H₂O.

SOLUBILITY OF CALCIUM CINNAMATE AND ITS ISOMERS IN SEVERAL SOLVENTS.

Name of Salt.		Formula.	Solvent.	t°.	Gms. Anhy- drous Salt per 100 Gms. Solvent.		
Calciu	m Cinnamate	Ca(CaHaCH:CHCOO)2.3HaO	Water	2	0.1g(1)		
"	"	и	"	15	0.21(2)		
"	**	4	"	2Ğ	0.24(1)		
**	a c	u	"	100	1.15(2)		
"	Isocinnamate	Ca(CaHrO ₂) ₂ ,2H ₂ O	"	20	23.8 (3)		
"	ш	ii	Acetone	20	19.6 (3)		
"	Allocinnamate	Ca(CeHrO ₂) ₂₋₃ H ₂ O	"	20	2 (3)		
"	66	Ca(CaHrO ₂) ₂₋₂ H ₂ O	Water	20	10.2 (4)		
"	"	4	Acetone	18	2.7 (5)		
"	Hydrocinnamate	Ca(CaHrO ₂)a?HaO	66	14	0.19(5)		
"	"	u	"	10	0.21(5)		
"	46	46	Water	27	4.25(3)		
"	u	€E	Acetone	25.	3.3 (3)		
				- 5	0-0 W/		

^{(1) =} De Jong, 1909; (2) = Tarugi and Checchi, 1901; (3) = Michael, 1901; (4) = Liebermann, 1903; (5) = Michael and Garner, 1903.

CALCIUM, CITRATE Cas(C.H.O.)2.4H2O.

SOLUBILITY IN WATER AND IN ALCOHOL AT 18° AND AT 25°. (Parthell and Hübner, 1903.)

Solvent.	Grams Cas(CsHsO7)2.4HsO per 100 Gms. Solvent at:		
•	18°.	25°.	
Water	0.08496	0.0959	
Alcohol (Sp. Gr. 0.8092 = 95%)	0.0065	0.0089	

EQUILIBRIUM IN THE SYSTEM CALCIUM OXIDE-CITRIC ACID-WATER AT 30°. (van Italie, 1908.)

The compositions of the solid phases were determined by the "Rest Method" of Schreinemakers (1903). The results are presented in the triangular diagram and it was necessary to select the fictitious compound C₆H₃O₇.1½H₃O instead of C₆H₃O₇ in order to keep the citrate component within the limits of the diagram. This is in harmony with the choice of anhydrides as components in the inorganic oxy acid systems.

Gms. per roo Gms. Sat. Sol.		Solid Phase.	Gms. per	roo Gms. Sat. Sol.	Solid Phase.
CaHgO7. 14HaO.	CaO.	Sond Phase.	CaHaOr.	CaO.	Solid Plane.
55.86	0	C ₆ H ₆ O ₇ .H ₂ O	20.3	0.35	CaHaOrCa.4HaO
54.8	O. 24	"	16.3	0.33	46
55.4	0.35	" +(C ₄ H ₇ O ₇) ₂ Ca. ₃ H ₂ O	12.5	0.39	•
53 · 7	0.40	(CaHrOr) Ca.3HgO	8.3	0.28	64
48.3	0.52	4	5.2	0.25	•
42.6	0.60	44	4.I	0.20	Quadruple pt.
38.5	0.77	44	3.2	0.20	•••
36.5	0.70	" +C ₄ H ₂ O ₇ Ca. ₄ H ₂ O	2.4-0	0.21-0.13	Hydrate of (C ₂ H ₂ O ₇) ₂ Ca ₂ (?)
34.8	0.77	C ₄ H ₄ O ₇ C ₂ . ₄ H ₄ O	0.18	0.24	Quadruple pt.
27.5	0.45	a ·	0	0.113	Ca(OH) ₃

CALCIUM Potassium FERROCYANIDE CaK.Fe(CN)4.3HaO.

100 parts H₂O dissolve 0.125 part salt at 15°, and 0.69 part at boiling-point.
(Kunheim and Zimmerman, 1884.)
100 gms. H₂O dissolve 0.41 gm. CaK₂Fe(CN)₆ at 15-17°. (Brown, 1907.)

CALCIUM FLUORIDE CaF.

One liter sat. aqueous solution contains 0.016 gm. CaF₂ at 18° and 0.017 gm. at 26°.

One liter sat. aqueous solution contains 0.0131 gm. fluorspar at 0°, 0.0149 gm. at 15°, 0.0159 gm. at 25° and 0.0167 gm. at 40°. (Kohlausch, 1904-05, 1908)

Freezing-point data for mixtures of calcium fluoride and calcium iodide are

Freezing-point data for mixtures of calcium fluoride and calcium iodide are given by Ruff and Plato (1903) and for mixtures of calcium fluoride and calcium silicate by Karandeeff (1910).

CALCIUM FORMATE Ca(HCOO),

SOLUBILITY IN WATER.

(Lumsden, 1902; see also Krasnicki, 1887.)

ť.	Gms. Ca(HCOO)2 per 100 Gms.		t°.	Gms. Ca(HCOO)2 per 100 Gms.		
	Water.	Solution.	.	Water.	Solution.	
0	16.15	13.90	60	17.50	14.89	
20	16.60	14.22	80	17.95	15.22	
40	17.05	14.56	100	18.40	15.53	

Results in good agreement with the above are given by Stanley (1904).

CALCIUM GLYCEROPHOSPHATES $\alpha = \text{OH.CH}_2.\text{CH}(\text{OH})\text{CH}_2.\text{OPO}_2\text{Ca},$ $\beta = \text{OH.CH}_2.\text{CH.OPO}_2\text{Ca}.\text{CH}_2\text{OH}.$

SOLUBILITY OF CALCIUM α GLYCEROPHOSPHATE IN WATER.
(Power and Tutin, 1905; Couch, 1917.)

t*.	Gms. CaCaHrOaP per 100 Gms. Sat. Sol.	ť.	Gms. CaCsHrOsP per 100 Gms. Sat. Sol.
0	5	40	3.5
10	4.6	60	2.7
20	5.2	80	1.8
25	5	100	0.9

Results varying from 1.7 to 5.4 gms. per 100 gms. sat. solution at or near 18° are given by Rogier and Fiore (1913), Willstaetter (1904) and King and Pyman (1914). It is pointed out by Couch, however, that since the solubilities of the α and β isomer differ, and also that the commercial product contains both isomers, variable results will be obtained, depending on the composition of the product and the method used for determining the solubility. These authors also show that increasing amounts of alcohol in the solvent decrease the solubility of calcium glycerophosophate.

bility of calcium glycerophosphate.
100 grams H₂O dissolve 1.66 grams calcium β glycerophosphate at 20°. (Couch, 1917.)
The results of King and Pyman (1914) are: 1.4 gms. at 13° and 1 gm. at 15°.

CALCIUM HEPTOATE (Oenanthate) Ca[CH₂(CH₂)₃COO]₃.H₂O.

SOLUBILITY IN WATER.

CALCIUM HYDROXIDE Ca(OH)1.

Recent determinations of the solubility of calcium hydroxide in water, agreeing fairly well with the average results given in the table on next page, are given by Bassett, Jr. (1908), Moody and Leyson (1908), Chugaev and Khlopin (1914) and Seliwanow (1914).

One liter sat. aqueous solution contains 0.305 gm. CaO at 120°, 0.169 gm. at 150° and 0.084 gm. at 190°. (Herold, 1905.)
One liter of aqueous 5.2% NH₄ solution dissolves 0.81 gm. Ca(OH)₂ at about

One liter of aqueous 5.2% NH₃ solution dissolves 0.81 gm. Ca(OH)₂ at about 20°. (Konowalow, 1899b.)

CALCIUM HYDROXIDE Ca(OH)2.

SOLUBILITY IN WATER.

	(Assessment of the same	the results of Lamy	vava. Mahen 1	882-84 Herzfeld ve	97, and Guthrie, 1901.)
1	(Water Grand Hour	the results of Damy,	, 1070; MILLUEIL, I	1003-04, HELMEIU, 10	9/, and Guine, 1901.)

5° .	Grams per 10	Grams H ₂ O.	*	Grams per 100 Grams HsO.		
	Ca(OH) ₂ .	CaO.	٠.	Ca(OH ₂).	CaO.	
0	0.185	0.140	50	0.128	0.097	
10	0.17Ğ	0.133	60	0.116	0.088	
20	0.165	0.125	70	0.106	0.080	
25	0.159	0.120	80	0.094	0.071	
30	0.153	0.116	90	0.085	0.064	
40	0.141	0.107	100	0.077	0.058	

SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF AMMONIUM CHLORIDE AT 25°.

(Noyes and Chapin - Z. physik. Chem. 28, 520, '99.)

Millimok	per Liter.	Grams per Li	iter of Saturated	d Solution.
NH₄Cl.	Ca(OH) ₂ .	NH₄Cl.	Ca(OH) ₂ -	CaO.
0.00	20.22	0.00	1.50	1.13
21.76	29.08	. 1.165	2.16	1.63
43 - 52	39 - 23	2.330	2.91	2.20
83 .07	59.68	4 · 447	4 · 42	3 · 45

SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF CALCIUM CHLORIDE.

(Zahorsky - Z. anorg. Chem. 3, 41, '93; Lunge - J. Soc. Chem. Ind. 11, 882, '92.)

Concentration	Grams CaO Dissolved per 100 cc. Solvent at:						
Concentration of CaCl ₂ Solutions, Wt.%.	20°.	40°.	60°.	80°.	100°.		
0	0.1374	9 .1162	0.1026	0.0845	0.0664		
5	0.1370	0.1160	0.1020	0.0936	0.0906		
10	0.1661	0.1419	0.1313	0.1328	0.1389		
15	0.1993	0.1781	0.1706	0:1736	0.1842		
20	0.1857*	0.2249	0.2204	0.2295	0.2325		
25	0.1661*	0.3020*	0.2989	0.3261	0.3710		
30	0.1630*	o.368o*	0.3664	0.4122	0.4922		

^e Indicates cases in which a precipitate of calcium oxychloride separated and thus removed some of the CaCls from solution.

The results in o% CaCls solutions, i.e., in pure water, are high when compared with the average results given above.

SOLUBILITY OF CALCIUM HYDROXIDE IN AQUBOUS SOLUTIONS OF CALCIUM CHLORIDE AT 25°. (Schreinemakers and Figee, 1911.)

		(omimmens			
Gms. per 100	Gms. Sat. Sol	L Solid Phase.	Gms. per 100 (3ms. Sat. Sol.	Solid Phase.
CaCls.	CaO.	Soud Phase.	CaCls.	CaO.	Soud Phase.
5.02	0.101	Ca(OH) ₂	33.21	0.245	CaCla.4CaO.14HaO
10	0.115	"	33 · 72	0.254	" +CaCls.CaO.2HsO
15.14	0.140	u	34.36	0.173	CaCla.CaO.2HaO
18.15	0.148	" +CaCl,.4CaO.14H,0	38.61	0.060	"
18.01	0.152	CaCl2.4CaO.14H2O	41.32	0.048	"
21.02	0.147	66	44.30	0.030	tt
28.37	0.170	ee ee	44.61	0.029	" +CaCls.6H90
32.67	0.225	Ca(OH) ₂ ?	44.77	• • •	CaCls.6HsO

Data for the above system at 10°, 25°, 40°, 45°, 48°, and 50° are given by Milikau (1916).

Data for the solubility of calcium hydroxide in aqueous calcium iodide solutions at 25° are also given by Milikau.

SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF CALCIUM NITRATE AT 25° AND AT 100°.
(Bassett and Taylor, 1914; see also Cameron and Robinson, 1907a.)

R	esults at	: 25°.	Results at 100°.			Resu	Results at 100° (Con.).		
Gms. per : Sat.	roo Gms. Sol.	Solid Phase.	Gms. per Sat.	100 Gms Sol.	_ Solid Phase.		r 100 Gms i. Sol.	s. _Solid Phase.	
CaO.	Ca(NO _b) _s .	`	CaO.	Ca(NO ₂	} -	CaO.	Ca(NO ₂)	•	
0.1150	0	Ca(OH) ₂	0.0561	0	Ca(OH) ₂	I.576		CasNsO7.2HsO	
0.0978	4.836	46	0.0550			1.348		u	
0.1074	9.36	**	0.0624	4.91		1.167		44	
0.1193	13.77	44	0.1110	15.39	"	1.077	66.44	ee	
O. 1444	22.46	66	0.1200			1.141	69.12	tt	
0.1650	27.83	"	0.155	21.86	"			" + a very	
0.1931	32.94	**	0.269	33.03	**	1.252	70.60	little Cas-	
0.2579	40.66	**	0.480	42.26	"			N ₂ O ₇ . H ₂ O	
0.3060	44 - 44	"	0.973	50.94	"	I.203	70.40	CanNaOr. HaO	
0.2802	45.28	CaeNsOr.3HsO	1.261	53 - 75	, 44	1.103	71.44	"	
0.2314	47.79	44	I.477	55.40) "	0.937	73.85	"	
0.1894	51.07	"	1.476	55 43	, "	0.849	75.74	66	
0.1659	53.20	"	1.491	55.65		0.815		"	
0.1486	55.25	"	1.635	56.89	(" +CaaNsO	70.804	77.62	Ca(NO ₂) ₂	
0.0836	57.72 0	a(NO ₀)2.4H2O	1.686	57.03	} 2H₃O	0.412	77 - 74	**	
0	57.98	"	1.596	57.91	CasNsOr.2HsC	0	78.43	66	

Cerasine wax bottles were used and more than 6 months constant agitation allowed for attainment of equilibrium at 25° and 4-14 days at 100°.

SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF CALCIUM SULFATE AT 25°. (Cameron and Bell, 1906.)

Gms. per 100 cc. Sat. Sol.		Solid	Gms. per 10	Solid	
CaSOs.	CaO.	Phase.	CaSO ₄ .	CaO.	Phase.
0	0.1166	Ca(OH) ₂	0.1634	0.0939	CaSO _{4.2} H ₈ O
0.0391	0.1141	4	0.1722	0.0611	u .•
0.0666	0.1150	u	0.1853	0.0349	"
0.0955	0.1215		0.1918	0.0176	4
0.1214	0.1242	··	0.2030	0.0062	.
0.1588	0.1222	" +CaSO4.2H2O	0.2126	0	•

The mixtures were constantly agitated at 25° for two weeks.

SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AND OF SODIUM CHLORIDE. (Cabot, 1897.)

	· In KCl	Solutions.	In	In NaCl Solutions.			
Gms. of the Chloride	Gms	. CaO per Lite	rat:	Gm	Gms. CaO per Liter at:		
per Liter.	o°.	15°.	99°.	·•.	15°.	99°.	
0	1.36	1.31	0.635	1.36	1.31	0.63 5	
30	1.701	1.658	0.788	1.813	1.703	0.969	
60	1.725	1.674	0.876	• • •	1.824	1.004	
120	1.718	1.606	0.894	1.86	I.722	1.015	
240	1.248	1.199	0.617	I.37	1.274	0.771	
320	• • •	• • •	• • •	1.054	0.929	0.583	

Results in harmony with the above for the solubility of calcium hydroxide in aqueous solutions of potassium chloride at 50°, are given by Kernot, d'Agostino and Pellegrino (1908).

SOLUBILITY OF LIME IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE ALONE AND CONTAINING SODIUM HYDROXIDE. (Maigret, 1905.)

G. NaCl	Gens. C	aO per Liter	of Solution.	G. NaCl.	Gms. CaO per Liter of Solution.			
per Liter.	Without NaOH.	o.89.NeOH per Liter.	4.09.NaOH per Liter.	per Liter.	Without NaOH.	o.89.NaOH per Liter.	4.09.NaOH per Liter.	
0	1.3	0.8	0.22	150	1.65	I .25	0.44	
5	1.4	0.9	• • •	175	1.6	I . 2	• • •	
IO	ı .6	1.0	• • •	182	ı .6	I.2	• • •	
25	1.7	1.1		225	I .4	1.0	•••	
50	8. I	1.25		250	1.3	0.9	• • •	
75	1.9	1.4	0.55	300	I . I	0.7	0.22	
100	1.85	1.4	•••	•••	• • •	• • •	• • •	

SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF SOLUM HYDROXIDE.

(d'Anselme — Bull. soc. chim. [3] 29, 938, '03.)

Concentra	tion of NaOH:	Grams CaO per Liter Sat. Solution at:						
Normality.	Gms. per Liter	20°.	50°.	70°.	100°.			
0	0	1.170	o . 88o	0.75	0.54			
N/100	0.4	0.94	0.65	0.53	0.35			
N/25	1.6	0.57	0.35	0.225	0.14			
N/15	2.66	0.39	0.20	0.11	0.05			
Ň/8	5.00	0.18	0.06	0.04	0.01			
N/5	8 .∞	0.11	0.02	O.OI	trace			
N/2	20.00	0.02	trace	0.00	0.00			

For results upon mixtures of calcium hydroxide and alkali carbonates and hydroxides, see Bodländer — Z. angew. Chem. 18, 1138, '05.

SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF GLYCEROL AT 25°.

(Herz and Knoch — Z. anorg. Chem. 46, 103, '05; for older determinations, see Berthelot — Ann. chim phys. [3] 46, 176; and Carles — Arch. Pharm. [3] 4, 558, '74.)

Density of Solutions	Wt. per cent Glycerine	Millimols	Gms. per 100 cc. Solution.		
Solutions	in Solution.	³ Ca(OH) ₂ per roo cc. Solution.	Ca(OH) ₂	- CaO.	
1.0003	0.0	4.3	0.1593	0.1206	
I .0244	7.15	8.13	0.3013	0.2281	
I .0537	20 - 44	14.9	0.5522	0.4180	
1.0842	3 ¹ .55	22.5	0.8339	0.631 3	
1.1137	40.95	40.I	1.48 6	1.125	
1.1356	48.7	44.0	1.631	1.234	
I . 2072	69.2	95.8	3.550	2 . 687	

Datá tor the solubility of calcium hydroxide in aqueous solutions of phenol at 25° are given by van Meurs (1916).

SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF GLYCEROL AND OF CAME SUGAR AT 25°.

(Cameron and Patten, 1911.)

In order to obviate the uncertainties due to the presence of a large excess of the solid phase in contact with the solutions, the clear liquids, saturated at 0°, were decanted from the solid and slowly brought to 25° and constantly agitated at this temperature, until equilibrium with the finely divided solid phase, which separates at the higher temperature, was reached.

Resu	lts for G	lycerol Sol	utions.	Results for Sugar Solutions.				
des of	Gms. per 100	Gms. Sat. So	l. Solid		Gms. per 100	Gms. Sat. S		
Sat. Sol.	Ca(OH)2.	C ₂ H ₄ (OH) ₃ .	Phase.	Set. Sol,	Ca(OH)s.	CraHasOu	Phase.	
0.983	0.117	0	Ca(OH)e	I	0.188	0.62	Ca(OH) ₂ + Sugar	
1.008	0.178	3.50	•	1.021	0.730	4.82	4	
• • •	0.413	15.59	•	1.037	1.355	7.50	•	
1.042	0.48	17.84	•	1.067	3.21	11.90	•	
1.088	0.88	34.32	"	1.109	5.38	17.42	•	
1.149	1.34	55.04	•	1.123	6.07	19.86	*	

SOLUBILITY OF CALCIUM HYDROXIDE IN AQUBOUS SOLUTIONS OF CAME SUGAR AT 80°.

(von Ginneken, 1911.) Gms. per 100 Gms. Sat. Sol. Gms. per 100 Gms. Sat. Sol. Solid Solid CaO. Sugar. Phase. CaO. Sugar. Phase Ca(OH) Ca(OHDa 0.117 4.90 0.358 19.50 0.180 0.548 24.60 0.00 0.230 14.75 1.017 29.70

SOLUBILITY OF LIME IN AQUEOUS SOLUTIONS OF SUGAR.
(Weisberg — Bull. soc. chim. (3) 22, 775, '99.)

The original results were plotted on cross-section paper and the following table constructed from the curves.

ad series to = TEO.

rst series to = 16'-170

TOC OCT	ics, t —	10-17.	2d, actica v — 15 .					
Gms. per Solv Sugar.	roo Gms.	G. CaO per 100 Gms. Sugar in Sol.	Gms. per Solu Sugar.	roo Gms.	G. CaO per 100 Gms. Sugar in Sol.			
I	0.30	35.0	I	0.50	62.5			
2	0.56	28.7	2	0.75	36.o			
3	0.85	28.0	3	I.02	32.5			
4	1.12	2 7 · 7	4	I.22	30.2			
5 6	1.40	2 7 · 5	5 6	1.45	28.5			
	1.65	27·5		1.67	27 . 7			
8	2.22	27 · 5	8	2.22	27 . 5			
10	2.77	2 7 · 5	10	2 . 77	27 - 5			
12	3 - 27	27 · 5	12	3 · 27	27.5			
14	3.85	2 7 · 5	14	3.85	27.5			

In the second series a very much larger excess of lime was used than in the first series. The author gives results in a subsequent paper, — Bull. soc. chim. [3] 23, 740, '00, — which show that the solubility is also affected by the condition of the calcium compound used, i.e., whether the oxide, hydrate, or milk of lime is added to the sugar solutions.

A very exhaustive investigation of the factors which influence the solubility of lime in sugar solutions is described by Classen (1911).

CALDIUM IODATE Ca(IO,),.6H,O.

SOLUBILITY IN WATER.

Offsitus and Funk - Ber. 30, 1724, '97; W. Abh. p. t. Reichanstalt 3, 448, '00.)

t * .	Gms. Ca(IO ₂) ₂ per 100 Gms. Sol.	Mols. Ca(IO ₂) ₃ per 100 Mols. H ₂ O.	Solid Phase.	t * .	Gms. Ca(IO ₂) ₂ per 100 Gms. Sol.	Mols. Ca(IO ₂) ₂ per 100 Mols. H ₂ O	
0	0.10	0.0044	Ca(IO ₃) .6H ₂ O	21	0.37	0.016	Ca(10,),.H,O
10	0.17	0.0075	"	35	0.48	0.021	76
18	0.25	0.011	"	40	0.52	0.023	66
30	0.42	0.019	"	45	0.54	0.024	"
40	0.61	0.027	66	50	0.59	0.026	66
50	0.89	0.040	"	60	0.65	0.029	66
54	I .04	0.046	"	80	0.79	0.034	66
60	1.36	o.063	"	100	0.94	0.042	66

Density of solution saturated at 18° = 1.00.

CALCIUM IODIDE Cal.

SOLUBILITY IN WATER.

(Average curve from the results of Kremers — Pogg. Ann. 103, 65, 58; Etard — Ann. chim. phys. [7] 2, 532, '94.)

t *.	Gms. CaI ₂ per 100 Gms. Solution.	ŧ°.	Gms. Cal ₃ per 100 Gms. Solution.	ŧ°.	Gms. Cals per roo Gms. Solution.
0	64.6	30	69	80	78
10	66.o	40	70.8	100	Š1
20	67.6	60	74		

Density of solution saturated at $20^{\circ} = 2.125$.

The fusion-point curve (solubility, see footnote, p. 1) is given for mixtures of calcium iodide and iodine by Olivari (1908).

CALCIUM IODO MERCURATE.

A saturated solution of CaI₂ and HgI₂ in water at 15.9° was found by Duboin (1906) to have the composition CaI₂.1.3HgI₂.12.3H₂O; d=2.89 and the solid phase in contact with the solution was CaI₂.HgI₂.8H₂O.

CALCIUM PerIODIDE Cal.

Data for the formation of calcium periodide in aqueous solution at 25° are given by Herz and Bulla (1911). (See reference note under calcium perbromide, p. 189.)

CALCIUM LACTATE Ca(C₆H₁₀O₆).5H₂O.

100 gms. H_2O dissolve 3.1 gms. of the salt at 0°, 5.4 gms. at 15° and 7.9 gms. at 30°. (Hill and Cocking, 1912.)

CALCIUM MALATE CaC4H4O5.H2O.

SOLUBILITY OF CALCIUM MALATE IN WATER AND IN ALCOHOL. (Partheil and Hübner, 1903.)

100 gms. H₂O dissolve 0.9214 gm. CaC₄H₄O₅.H₂O at 18°, and 0.8552 gm. at 25°.

100 gms. 95% alcohol dissolve 0.0049 gm. CaC₄H₄O₅.H₂O at 18°, and 0.00586 gm. at 25°.

CALCIUM (Neutral) MALATE Ca(C₄H₄O₅).₃H₂O.
CALCIUM (Acid) MALATE Ca(C₄H₅O₅)₂.6H₂O.
CALCIUM MALONATE Ca(C₂H₂O₄).₄H₂O.

SOLUBILITY OF EACH IN WATER.

(Iwig and Hecht, 1886; Cantoni and Basadonna, 1906; the malonate, Micrynski, 1886.)

	Ca. Neutral Malate.			Ca. Acid	Malate.	Ca. Malonate.		
	Gms. Ca(C ₄ H ₄ O ₄) per 100			Gms. Ca(C		Gms. Ca(CaHaOt)		
ť.	Gms. HsO.	Gms. Sol.	cc. Sol. (C and B).	Water.	Solution.	per 100 Gms. H ₂ O.		
0			(C and b).	****		0.290 (0.374)		
10	0.85	0.84	• • •	1.8	I.77	0.330 (0.419)		
20	0.82	0.81	0.907	1.5	1.48	0.365 (0.460)		
30	0.78	0.77	0.835	2	1.96	0.396 (0.495)		
40	0.74	0.73	0.816	5.2	4.94	0.422 (0.524)		
50	0.66	0.65	0.809	15-	13.00	0.443 (0.544)		
57	0.57	0.56		32.24	24.29			
60	0.58	0.58	0.804	26	20.64	0.460		
70	0.63	0.63	0.795	II	9.91	0.472		
80	0.71	0.70	0.754	6.8	6.37	0.479		
90	•••		0.740		••	· · · ·		

The results for calcium malonate given above in parentheses are by Cantoni and Diotalevi (1905), but these authors fail to state the terms in which their data are reported. By comparison with other papers of the series, it is probable that in this case the figures refer to grams per 100 cc. saturated solution.

CALCIUM NITRATE Ca(NO2)2.4H2O.

SOLUBILITY IN WATER. (Bassett and Taylor, 1912.)

(Silica vessels used. Constant agitation at constant temperature for two to three days. Calcium determined by precipitation as oxalate and weighing as oxide.)

	Gms.			Gms.			Gms.	
• \$* .	Ca(NO _a)		t°	Ca(NOs)	<u>S</u> olid	t°.	Ca(NOa)	Solid
• • •	per 100 Gr	ns. Phase.	, be	r 100 Gn	ns. Phase.	• • •	per 100 Gn	ns. Phase.
_	Sat. Sol.			Sat. Sol.			Sat. Sol.	
− o.4	1.4	Ice	10	53 · 55	Ca(NO ₆)2-4H2O	45	71.45	Ca(NO _t) _{3.3} H ₂ O
- 1.4	4.78	4	15	54.94	66	50	73 · 79	и
- 1.9	6.53	44	20	56.39	44	51	74.73	u
- 3.0	5 10	"	25	57.98	44	51.1	†	"
- 4.1	5 12.98	4	30	60.41	**	49	77 - 49	Ca(NOs)3.2HgO
-15.7	33.13	**	35	62.88	44	51	78.05	"
-21.7	38.7	**	40	66.21	46	55	78.16	Ca(NO ₃) ₂
-28.7	*		42.4	68.68	**	80	78.2	u
-26.7	43.37	Ca(NO ₈)2.4H2O	42.4	68.74	**	100	78.43	"
-10	47.3I	46	42.7	· · · †	44	125	78.57	и
0	50.50	44	42.45	71.7	44	147.5	78.8	4
5	51.97	**	40	70.37	Ca(NO ₄)2.3H2O	151	79	"
			f m. nt	_	* Entectic.			

SOLUBILITY OF THE UNSTABLE CALCIUM NITRATE TETRAHYDRATE β IN WATER. (Results supplementary to the above.) (Taylor and Henderson, 1915.)

		(1 aylor and	i menderson, 1915.)		
ť.	Gms. Ca(NOs) per 100 Gms. Sat. Sol.	Solid Phase.	ť.	Gms. Ca(NO.) per 100 Gms. Sat. Sol.	Solid Phase.
0	50.17	aCa(NOs)s.4HzO	38	66.65	BCa(NOs)2-4H2O
22.2	56.88	46	39	67.93	ш
25	57.90	u	39.6 (m. pt.)	69.50	44
30	60.16	и	39 (reflex pt.)	75.34	u
30	61.57	βCa(NOs)3-4HsO	40	66.22	arCa(NOs)2.4H2O
34	63.66	"	42.7 (m. pt.)	69.50	"
	62.88	aCa(NOs)s.4HsO	42.4 (reflex pt.)	71.70	a
35 38	64.34	u	25	77.30	Ca(NO _t) ₂

SOLUBILITY OF CALCIUM NITRATE IN AQUEOUS SOLUTIONS OF CALCIUM THIOSULFATE AT 9° AND AT 25° AND VICE VERSA.

(Kremann and Rodemund, 1914.)

Results at 9°. Results at 25°. Gms. per roo Gms. Sat. Sol. Gms. per 100 Gms. Sat. Sol. Solid Phase. Solid Phase. Ca (NOs)2 CaS₂O₂. CaS₂O₂. Ca(NO₂)2. 46.02 5.46 Ca(NO₀)2.4H₂O 54.03 4.27 Ca(NOs)24H2O 45.68 6.8r " +CaSaOa.6HaO 50.25 **Q.IO** 27.92 10.46 CaSeOs.6HeO " +CaSeOs.6HsO 45.92 13 22.81 10.40 42.93 13.83 CaSeOs.6HsO 29.33 32.01 17.09 . . . 23.78 19.51 8.15 29.85

SOLUBILITY OF CALCIUM NITRATE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AT 9° AND AT 25° AND VICE VERSA.

(Kremann and Rodemund, 1914.)

Results at 9°. Results at 25°.

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100	Calla Diagra		
Ca(NOs)2.	NaNOs.	Soud Phase.	Ca(NO ₂)2.		Solid Phase.	
47.5I	9.51	Ca(NO ₀) _{3.4} H ₅ O	54.58	7.25	Ca(NO ₄) ₂₋₄ H ₂ O	
46.08	12.56	" +NaNOs	53.22	10.70	ч	
26.67	23.32	NaNO _a	52.73	12.08	"+NaNOs	
11.76	34.26	44	52.40	11.88	NaNO ₃	
			37.31	19.48	"	
			26.91	24.98	"	
			14.61	36.12	44	

'These authors also give the complete solubility relations of the reciprocal salt pairs, Ca(NO₃)₂ + Na₂S₂O₃ = 2NaNO₃ + CaS₂O₄ at 9° and 25°.

SOLUBILITY OF CALCIUM NITRATE IN AQUEOUS SOLUTIONS OF NITRIC ACID AT 25°.
(Bassett and Taylor, 1912.)

(The mixtures were shaken intermittently, by hand, during quite long periods; one week was allowed between duplicate determinations.)

Gms. per i			Gms. per			Gms. per		•
Sat. S		Solid Phase.	Sat.	Sol.	Solid Phase.	Sat.	Sol.	Solid Phase.
Ca(NOs)2.	HNOs.		Ca(NO ₃) ₂ .			Ca(NO ₃)2.		•
57.98	0	Ca(NOs)2-4H2C	32.84	32.63	Ca(NOs)2.4HsC	9.34	65.69	Ca(NO ₂) ₂₋₂ H ₂ O
54.82	3.33	44		33.52	**		67.20	"
52.96	5.87	46	33 - 44	35.63	Ca(NOs) 9.3 HsC	5.06	71.12	Ca(NO ₁) ₂
51.58	7.21	66	29.05	41.66	"	2.53	74.77	**
47.82	11.27	"	27.79	45.70	"	1.05	78.56	"
45.59	13.71	"	31.00	40.56	Ca(NOs)2.2H2C	0.54	80.83	44
40.70	19.65	44	26.07	45.70		0.36	85.83	"
38.17	22.80	"	17.41	55.48	"	0.01	90.90	44
34.46	28.81	6.	12.25	62.05	. "	•	96.86	u

Freezing-point data for the Ternary System Ca(NO₃)₂+KNO₃ + NaNO₃ are given by Menzies and Dutt, 1911.

SOLUBILITY OF CALCIUM NITRATE IN SEVERAL ORGANIC SOLVENTS.

Solvent.	ť.	Gms. Ca(NO ₈) ₂ per 100 Gms. Sat. Solution.	Aut	hority.
Methyl Alcohol	25	65. 5	(D'Ans and	Siegler, 1913.)
Propyl "	25	36.5	"	u
i Butyl "	25	25	"	64
Amyl "	25	13.3	u	66
Acetone	25	58.5	**	44
Methyl Acetate	18	4I (d sat. sol.=1.313)	(Naumann,	1909.)]

SOLUBILITY OF CALCIUM NITRATE IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL AT 25°. (D'Ans and Siegler, 1913.)

Gms. per 100	Gms. Sat. S	ol. Solid Phase.	Gms. per roc	Gms. Sat. So	l. Solid Phase.
С.Н.ОН.	Ca(NOs)2.	- Soud Phase.	C ₂ H ₂ OH.	Ca(NO ₂)2.	Soud Phase.
0	57 · 5	$Ca(NO_1)_2.4H_2O$	15.2	69.52	Ca(NO ₃) ₂ unstable
8. 1	55.2	44	20.4	66.08	66 E6
14.I	52.9	a	35.9	57·7	cs es
22.3	50.2	"	41.8	51.4	u u
29.4	49	61	27.39	61.96	Ca(NO ₂) ₂ stable
31.2	52	и	28.5	61.15	·
29.5	56.2	"	29.6	60.3	" +Ca(NOs)s.2CaHsOH
27.8	бо	66	60.2	38. 6	Ca(NOs)2.2C2H4OH
26.5	62.3	" +Ca(NO ₄);	54.6	41.9	44
0	82.5	Ca(NOs)2 unstable	42.5	50.97	••
5.8	77	"	35.8	55.3	*

CALCIUM NITRITE Ca(NO2)2.4H2O.

SOLUBILITY IN WATER. (Oswald, 1914.)

ť.	Gms. Ca(NO ₂) ₂ per roo Gms. Sat. Sol.	Solid Phase.	. IO	s. Ca(NO2)s p c Gms.Sat. S	oer Solid Phase.
- 4	16.7	Ice	18.5	43	Ca(NOs)s-4HsO
- 9.3	25.5	"	42	51.8	44
-12.5	29.5	**	44	53 · 5	" +Ca(NO2)2-2H2O
-14.5	32	66	54	55.2	Ca(NO ₂) _{3.2} H ₂ O
-17.5	35	" +Ca(NO ₂) ₂₋₄ H ₂ O	64	58.4	u
- 9.5	36.2	Ca(NO ₂)s-4HsO	70	60.3	44
0	38. 3	"	73	61.5	44
16	42.3 (du=1	.4205) "	91	71.2	u

An aqueous solution simultaneously saturated with calcium nitrite and silver nitrite, contains 92.4 gms. Ca(NO₂)₂ + 11.2 gms. AgNO₂ per 100 gms. H₂O at 14°.

(Oswald, 1914)

100 cc. sat. solution of calcium nitrite in 90 % alcohol contain 39 gms. Ca(NO₂)₃. H₂O at 20°.

100 cc. sat. solution of calcium nitrite in absolute alcohol contain 1.1 gms. Ca(NO₂)₃.H₂O at 20°. (Vogel, 1903.)

CALCIUM OLEATE (C15H21O2)Ca.

One liter water dissolves about 0.1 gm. calcium oleate at tonot stated. (Fahrion, 1916.) 100 gms. glycerol (of d = 1.114) dissolve 1.18 gms. calcium oleate at tonot stated. (Asselin, 1873.)

CALCIUM OXALATE Ca(COO)2.H2O.

SOLUBILITY IN WATER, BY ELECTROLYTIC CONDUCTIVITY METHOD. (Holleman, Kohlrausch, and Rose, 1893; Richards, McCaffrey, and Bisbee, 1901.)

t°.	Gms. CaC ₂ O ₄ per Liter of Solution.	t°.	Gms. CaC ₂ O ₄ per Liter of Solution.
13	o.0067 (H)	25	0.0068 (R, McC and B)
18	0.0056 (K and R)	50	0.0095 "
24	o.oo8o (H)	95	0.0140 "

SOLUBILITY OF CALCIUM OXALATE IN AQUEOUS SOLUTIONS OF ACETIC ACID AT 26°-27°. (Herz and Mubs, 1903.)

Normality of Acetic Acid.	G. CH ₂ COOH per 100 cc. Sol.	Residue from 50.058 cc. Solution.
0	0.00	0.0017
0.58	3.48	0.0048
2.89	17.34	0.0058
5 · 79	34 · 74	o.oo64

The residues were dried at 70° C.

SOLUBILITY OF CALCIUM OXALATE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AT 25°.

(Henderson and Taylor, 1916.)

Normality of HCL	Gms. CaCsO ₄ per Liter Sat. Sol.	Normality of HCl.	Gms. CaC ₆ O ₄ per Liter Sat. Sol.
0	0.009	0.500	2.638
0.125	0.717	0.625	3.319
0.250	1.359	0.750	3.922
0.375	2.019	1	5.210

These authors also give data showing the effect of increasing amounts of KCl and KNO₃ upon the solubility of calcium oxalate in 0.5 normal HCl at 25°, and also of the effect of increasing amounts of potassium trichloracetic acid upon the solubility in 0.5 normal trichloracetic acid, and of increasing amounts of potassium monochloracetic acid upon the solubility of calcium oxalate in 0.5 normal monochloracetic acid.

SOLUBILITY OF CALCIUM OXALATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AND OF SODIUM PHOSPHATE.

(Gerard, 1901.)

Salt in Aq. Solution.	Gms. Salt per Liter.	ť.	Gms. CaC ₂ O ₄ per Liter.	Salt in Aq. Solution.	Gms. Salt per Liter.	t°.	Gms. CaCsO ₄ per Liter.
NaCl	1	25	0.0075	NaCl	25	37	0.0414
"	5	25	0.0188	$Na_2H(PO_4)_2$	4.8	15	0.016
"	10	25	0.0255	"	4.8	37	0.033
"	25	25	0.0291				

One liter 45% ethyl alcohol dissolves 0.000525 gm. calcium oxalate, temp. not stated. (Guerin, 1912.)

CALCIUM OXIDE CaO.

100 gms. molten CaCl₂ dissolve 16.2 gm. CaO at about 910°.

(Arndt and Loewenstein, 1909.)

Data for the systems, CaO + MgO and for CaO + Al₂O₃ + MgO are given by Rankin and Merwin (1916); for CaO + Al₂O₃ + SiO₂ by Rankin and Wright (1915); for CaO + Fe₃O₃ by Sosman and Merwin (1916); and for CaO + MgO + SiO₂ by Bowen (1914).

Data for the system CaO + C + CaC₂ + CO are given by Thompson (1910).

CALCIUM PHOSPHATE (Tribasic) Ca₂(PO₄)₂.

SOLUBILITY IN WATER.

The determinations of the solubility of this salt in water, as stated in the literature, are found to vary within rather wide limits, due, no doubt, to the fact that so-called tribasic calcium phosphate is apparently a solid solution of the dibasic salt and calcium oxide, and therefore analyses of individual samples may show an excess of either lime or phosphoric acid. When placed in contact with water, more PO₄ ions enter solution than Ca ions, the resulting solution being acid in reaction and the solid phase richer in lime than it was, previous to being added to the water. For material having a composition approximating closely that represented by the formula Ca₃(PO₄)₂ the amount which is dissolved by CO2 free water at the ordinary temperature, as calculated from the calcium determination, is 0.01 to 0.10 gram per liter, depending upon the conditions of the experiment. Water saturated with CO₂ dissolves 0.15 to 0.30 gram per liter.

A list of references to papers on this subject is given by Cameron and Hurst -J. Am. Chem. Soc., 26, 903, 1904; see also Cameron and Bell, Ibid., 27, 1512, 1905.

CALCIUM PHOSPHATE (Dibasic) CaHPO4.2H2O.

SOLUBILITY IN WATER.

(Cameron and Seidell — J. Am. Chem. Soc. 26, 1460, '04; see also Rindell — Compt. rend. 134, 112, '06; Magnanini — Gazz. chim. ital. 31, II, 544, '01.)

- 1 liter of CO, free water dissolves 0.136 gram CaHPO, at 25°.
- I liter of water sat. with CO, dissolves 0.561 gram CaHPO, at 25°.

SOLUBILITY OF DI CALCIUM PHOSPHATE AND OF MONO CALCIUM PHOSPHATE IN AQUEOUS SOLUTIONS OF PHOSPHORIC ACID AT 25°. (Cameron and Seidell — J. Am. Chem. Soc. 27, 1508, '05; Causes — Compt. rend. 114, 414, '92.)

Grams So	per Liter of lution.	Gms	. per Liter n CaO Found.	P ₂ O ₈ per Liter in Excess of that combined	Solid Phase.
CaO.	P ₂ O ₅ .	Carc. Hot	a Cato round.	with Ca.	
1.71	4.69	4.15	CaHPO ₄	2.53	CaHPO, 2H,O
II 57	36.14	28.05	" ·	. 21.5	u -
23.31	75 . 95	56.53	"	46.45	46 ,
39.81	139.6	97.01	"	89.0	"
49.76	191.0	120.7	"	128.0	"
59.40	234.6	144.1	66	159.4	44
70.31	279.7	170.6	ec .	190.7	"
		\$ 174.2	CaHPO, or	226.0	CaHPO, 2H, O+
7 7 .00	317.0	321.3	CaH ₄ (PO ₄),	122.2	CaH, (PO), H,O
72.30	351.9	301.6	CaH (PO)	169.0	CaH (PO), HO
69.33	361.I	289.3	"	186.1	""
59.98	419.7	250.2	u	267.9	"
53 . 59	451.7	223.7	"	316.1	"
44.52	505.8	185.8	"	393 . 1	"
39.89	538.3	166.4	. "	437 · 4	"
" _'	•• • •	· · ·			

Density of the solution in contact with both salts at 25° = 1.29.

SOLUBILITY OF CALCIUM PHOSPHATES IN AQUEOUS SOLUTIONS OF PHOSPHORIC ACID AT DIFFERENT TEMPERATURES. (Bassett, Jr., 1908, 1917.)

Results at 25°.			Results at 40°.			Results at 50.7°.		
Gms. S	er 100 at. Sol.	Solid Phase.	Gms. S	per 100 sat. Sol.	Solid Phase.	Gms. p Gms. S	er 100 at. Sol.	Solid Phase.
CaO. 3.088	P ₂ O ₃ .	C-HRO. HO	CaO. 1.768	P ₂ O ₃ .	CaH ₄ P ₂ O ₄ .H ₄ O	CaO.	P ₂ O ₅ . 62.01	CaH4PaOs+
4.908	28.34	CaH4P2Os.H2O	3.584	42.42 36.79	"	0.336	02.01	CaH ₄ P ₂ O ₂ .H ₂ O
5.809	24.20	" +CaHPO	5.755	27.25	" +CaHPO ₄	0.635	58.08	CaH ₄ P ₂ O ₂ .H ₂ O
5.523	22.90	CaHPO ₄	4.813	21.67	CaHPO ₄	1.428	50.25	**
4-499	17.55	"	3.810	16.35	и	2.974	41.92	"
2.638	9.100	46	2.536	9.905	u	4.880	33.18	14
1.878	6.049	44	1.847	6.979	"	5.725	29.61	" +CaHPO
0.826	2.387	**	1.267	4.397	и	3.507	15.48	CaHPO ₄
0.165	0.417	∫" CaHPOs.	0.576	1.819	44	2.328	9.465	"
0.07	0.166	} 2H₃O	0.156	0.426	"	1.563	6.157	4
0.06	0.140	"	0.0592	0.158	"	0.692	2.281	"_
0.05	0.118	"	0.0508	0.128	CasPsOs.HsO	0.0596	0.1527	CaHPO _{1.2} H ₅ O
0.04	0.093	44	0.0098	0.0262	. "	0.0514	0.1331	CasPsOs.HsO
0.03	0.070) b	0.0709	trace	Ca4PsO+4HsO	0.0351	0.0942	44
0.02	0.047	More basic than CaHPO+2H+O	0.0814	"	"	0.0106	0.0300	u
10.0	0.023	CHAPOL2H ₂ O	0.0840	"	**	0.0007	0.0007	u

In the case of most of the solutions 7-15 weeks constant agitation was allowed for attainment of equilibrium. For the last seven results at 25°, 18 months were required. Cerasine bottles were used in these cases. The solid phases were determined by analysis. The quintuple points were found by dilatometer experiments at 36°, 21° and 152°. (See next page.)

SOLUBILITY OF CALCIUM PHOSPHATES IN AQUEOUS SOLUTIONS OF PHOSPHORIC ACID AT TEMPERATURES ABOVE 100°.
(Bassett, Jr., 1908.)

r.	Gms. per 100 Gi	ms Sat. Sol.	Solid Phase.
	CaO.	PgOs.	Soud Phase.
100	2.503	53.71	CaH4P2Os+CaH4P2Os.H2O
115 b. pt.	5.623	43.60	CaHaPrOa.HrO+CaHPOa
132	4.327	53 · 43	CaH ₄ P ₂ O ₉ +CaH ₄ P ₂ O ₈ .H ₂ O
169 "	4.489	63.95	CaH ₄ P ₂ O ₈

The quintuple points for the system determined by dilatometer experiments are as follows:

152	5.60	53	CaH4P4Oe+CaH4P4OeH4O+CaHPOe
21	5.81	23.5	CaH ₄ P ₂ O ₄ .H ₂ O+CaHPO ₄ +CaHPO _{4.2} H ₂ O
36	0.0514	0.14	CaHPO ₁ +CaHPO _{1.2} H ₂ O+Ca ₂ P ₂ O _{3.} H ₂ O

For additional data on the solubility of calcium phosphates in water, see Cameron and Bell, 1905 and 1910.

Data for the four component system, lime, phosphoric acid, sulfuric acid and water, the essential constituents of "superphosphates," are given by Camezon and Bell (1906).

One liter of aqueous 0.005 n potassium bitartrate solution sat. with calcium phosphate, contains 0.08 gm. Ca and 0.181 gm. H₄PO₄ at 25°. (Magnanini, 1901.)

SOLUBILITY OF CALCIUM PHOSPHATE IN AQUEOUS SALT SOLUTIONS UNDER 2
ATMOSPHERES PRESSURE OF CO₂ AT 14°.

(Ehlert and Hempel, 1912.)

Salt in Aq. Solvent.	Gms. Salt per 100 Gms. H ₂ O.	Gms. Cas(PO4)s per Liter Solvent.	Salt in Aq. Solution.	Gms. Salt per 100 Gms. H ₂ O.	Gms. Cas(PO ₄) ₂ per Liter Solvent.
Water		0.228	MgSO ₄ .K ₂ SO ₄ .MgCl ₂ .6H ₂ O	70.95	1.777
NH_Cl	45.74	1.371	a .	conc.	2.491
u'	conc.	1.203	K ₄ SO ₄	74 - 5	4.904
(NH ₄) ₂ SO ₄	56.5	2.413	46	conc.	4.765
**	conc.	5.885	NaCl	50	1.321
MgCla.6HaO	86.g	1.287	"	conc.	0.641
"	conc.	2.892	NaNO ₈	72.7	1.583
MgSO ₄ .7H ₂ O	105.3	1.9728	"	Conc.	0.864
- "	conc.	3.6001	Na ₂ SO ₄ .10H ₂ O	137.7	2.491
MgCl _s .KCl.6H _s O	79.2	1.577	"	conc.	3.227
- "	conc.	1.154			•

Data for the solubility of calcium phosphate in aqueous saturated solutions of carbon dioxide containing ammonia are given by Foster and Neville, 1910.

CALCIUM PELARGONATE (Nonate) Ca[CH₂(CH₂)₇ COO]₂.H₂O.

CALCIUM PROPIONATE Ca(CH1.CH1COO)1.H1O.

SOLUBILITY OF EACH IN WATER. (Lumsden, 1902; Krasnicki, 1887.)

Calcium	Pelargonate.	Calcium Propionate.			
t°.	Gms. Ca[CH ₂ (CH ₂)7COO] ₂ per 100 Gms. H ₂ O.	Water.	COO) ₂ per 100 Gms.		
0	0.16	42.80	29.97		
20	0. 14	39.85	28.48		
40	0.13	38.45	27.76		
60	0.12	38.25	2 7.6 7		
80	0.15	39.85	28.48		
90	0.18	42.15	2 9.66		
100	0.26	48.44	32.63		

CALCIUM SALICYLATE Ca(C.H.OHCOO)2.3H2O.

100 grams of the saturated aqueous solution contain 2.29 grams of the anhydrous salt at 15° find 35.75 grams at 100°. (Tarugi and Checchi, 1901.)

CALCIUM SELENATE CaSeO.

SOLUBILITY IN WATER (Etard — Ann. chim. phys. [7] 2, 532, '94.)

Gms. per 100 gms. sol. 7.4 7.3 7.6 6.8 5.1

The accuracy of these results appears questionable.

CALCIUM SILICATE CaSiO.

SOLUBILITY IN WATER AND IN AQUEOUS SUGAR SOLUTIONS AT 17°. (Weisberg — Bull. soc. chim. [3] 15, 1097, '96.)

The sample of calcium silicate was air dried.

Grams per 100 cc. Saturated Solution.

Solvent.	A	At 17°.		After Boiling and Filtering Hot.	
	CaO(det.)	CaSiO ₃ (calc.)	CaO(det.)	CaSiO ₈ (calc.)	
Water	0.0046	0.0095	• • •		
10% sugar sol.	0.0065	0.0135	0.0094	0.0195	
20% sugar sol.	0.0076	0.0157	0.0120	0.0249	

FREEZING-POINT DATA (Solubility, see footnote, p. 1) ARE GIVEN FOR THE FOLLOWING MIXTURES OF CALCIUM SILICATE AND OTHER COMPOUNDS.

CaSiO ₂ -	⊢ CaS	(Lebedew, 1911.)
" _	- CaTiO	(Smolensky, 1911-12.)
	⊢ Li₂SiO₃	(Wallace, 1909.)
	- MgSiO ₃	(Allen and White, 1911; Ginsberg, 1906.)
	- MnSiO	(Ginsberg, 1908, 1909.)
" -	⊢ Na ₂ SiO ₂	(Wallace, 1909; Kultascheff, 1903.)

CALCIUM SUCCINATE Ca(C2H2O2)2.

CALCIUM (Iso) SUCCINATE CaCH2.CHC2O4.H2O.

SOLUBILITY OF EACH IN WATER.
(Miczynski, 1886.)
Coloium Succinete

	Calcium	ouccina	le.		Calcium I	so Succii	nate.
ť.	Gms. Ca(C ₂ H ₂ O ₂) ₂ per roo Gms. H ₂ O.	t°.	Gms. Ca(C2H2O2)2 per 100 Gms. H2O.	t°.	Gms. Ca(C2H2O2)2 per 100 Gms. H2O.	ť.	Gms. Ca(C ₂ H ₂ O ₂) ₂ per 100 Gms. H ₂ O.
. 0	1.127	50	1.029	0	0.522	50	0.440
10	I.220	60	0.894	10	0.524	60	0.396
20	1.276	70	0.770	20	0.517	70	0.342
40	1.177	80	0.657	40	0.475	- 80	0.279

100 cc. H₂O dissolve 1.424 gms. CaC₄H₄O₄.H₂O at 18° and 1.436 gms. at 25° (Partheil and Hübner, 1903.)

100 gms. H₂O dissolve 1.28 gms. CaC₄H₄O₄ at 15° and 0.66 gms. at 100°. (Tarugi and Checchi, 1901.)

Results for calcium succinate in water, varying considerably from the above and indicating an increase of solubility with temperature, are given by Cantoni and Diotalevi (1905) but the terms used for expressing the results are not stated.

100 cc. 95% alcohol dissolve 0.00136 gm. CaC4H4O4.H2O at 18° and 0.00136 gm. at 25°. (Parheil and Hübner, 1903.)

CALCIUM SULFATE CaSO4.2H2O.

SOLUBILITY IN WATER.

(Hulett and Allen, 1902; for references to other determinations see Hulett and Allen, also Euler, 1904. For data by the electrolytic conductivity method, see Holleman, Kohlrausch and Rose, 1893, 1908.)

t°.	Gms. CaSO ₄ per 100 cc. Solution.	Millimols per Liter.	Density of Solutions.	r.	Gms. CaSO ₄ per 100 cc. Solution.	Millimols per Liter.	Density of Solutions
0	0.1759	12.926	1.00197	40	0.2097	15.413	0.99439
10	0.1928	14.177	1.00173	55	0.2009	14.765	0.98796
18	0.2016	14.817	1.00059	65.3	0.1932	14.200	0.98256
25	0.2080	15.235	0.99911	75	0.1847	13.575	0.97772
30	0.2090	15.361	0.99789	100	0.1619	11.900	• • •
35	0.2096	15.405	0.99612	107	• • •	11.390	• • •

SOLUBILITY OF CALCIUM SULFATE ANHYDRITE AND OF SOLUBLE ANHYDRITE IN WATER. (Melcher, 1910.)

t.	Millimols per Liter.	Gms. CaSO ₄ per Liter.	Solid Phase.
100	11.65	1.586	CaSO ₄ .2H ₂ O
100	11.4	1.552	Soluble anhydrite
100	4.6	0.626	Anhydrite
156	3.2	0.436	Soluble anhydrite
156	1.35	0.184	Anhydrite
218	0.35	. 0 .048	"

Data for the solubility of calcium sulfate in sea water are given by Manuelli, 1916.

SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SOLUTIONS OF AMMONIUM ACETATE AT 25°. (Marden, 1916.)

Gms. CH ₂ COONH ₄ per 100 Gms. Solution.	d ₂₆ .	Gms. CaSO ₄ per 200 Gms. Sat. Solution.
0	I	0.2085
2.13	1.005	0.454
5.34	1.012	0.752
10.68	1.024	1.146
21.37	1.045	I.755

SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS SOLUTIONS OF HYDRO-CHLORIC, NITRIC, CHLOR ACETIC, AND FORMIC ACIDS. (Banthisch - J. pr. Chem. 29, 52, '84; Lunge - J. Soc. Chem. Ind. 4, 32, '85.)

In Nitric. In Chlor Acetic. In Formic. In Hydrochloric.

Grams Acid per 100 cc.	100 0	CaSO ₄ per	Gms. CaSO ₄ per 100 cc. Solution	Gms. CaSO, per	Gms. CaSO ₄ per
Solution.	at 25°.	at 102°.	at 25°.	at 25°.	at 25°.
0	0.208	0.160	0.208	0.208	0.208
I	0.72	1.38	0.56	• • •	
2	I .02	2 . 38	0.82	• • •	• • •
3	1.25	3.20	1.02	• • •	• • •
4	I .42	3.64	I.20	0.22	0.24
6	1.65	4.65	r.48	• • •	•••
8	1.74	• • •	1.70	• • •	• • •
IO	• • •		1.84	0.25	• • •
12		• • •	1.98	• • •	• • •

Data for the solubility of mixtures of CaSO₄(NH₄)₂ SO₄.H₂O + (NH₄)₂SO₄ and of CaSO₄(NH₄)₂SO_{4.4}H₃O + CaSO_{4.2}H₃O at various temperatures between 3° and 100° are given by Barre, 1909 and 1911. Additional data for this system, including results for the pentacalcium salt, $(NH_4)_2Ca_4(SO_4)_4.H_2O$, are given by D'Ans, 1909.

1.2508

1.2510

80.1

SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SOLUTIONS OF AMMONIUM SALTS.

(In NH₄Cl and NH₄NO₂, Cameron and Brown — J. Physic. Chem. 9, 210, '05; In (NH₄)₂SO₄ at 25°, Sullivan — J. Am. Chem. Soc. 27, 529, '05; In (NH₄)₂SO₄ at 50°, Bell and Tabor — J. Physic. Chem. 10, 119, '06.)

19, '06.)		O1 T 3777 370		T 3777 01	T 3777 370
	In NH.			In NH ₄ Cl	In NH,NO.
	at 25			at 25°.	at 25°.
Gms. Ammo- nium Salt per Liter.	G. CaSO, Dissolved per Liter	l Dissolved	Gms. Ammo- nium Salt per Liter.	G. CaSO ₄ Dissolved per Liter.	G. CaSO ₄ Dissolved per Liter.
-	-	-	-	•	-
0	2.08	2.08	300	10.10	10.80
20	5.00	3.70	375	7 · 40	• • •
40	7.00	5.10	400	• • •	11.40
60	8.00	6.05	600	• • •	12.15
8o	8.50	7.∞	800	• • •	12.10
100	9.10	7.65	1000	• • •	11.81
150	10.30	8.88	1400	• • •	10.02
200	10.85	9.85	sat.	• • •	7 · 55
In (N	IH),SO,	at 25°.	In	(NH),SO.	at 50°.
Grams per 1	Liter Sol.	Wt. of 100 cc.	Grams per	Liter Sol.	Sp. Gr.
(NH ₄) ₂ SO ₄ .	CaSO ₄ .	Sat. Sol.	(NH4)2SO4.	CaSO ₄ .	of Solutions.
0	2.08	99.91	0	2.168	
0.129	2.04	99.91	15.65	1.609	1.∞26
0.258	1.99	99.92	30.67	1.750	1.0113
0.821	1.81	99.95	91.6	2.542	1.0440
1.643	1.66	99.99	160.4	3.402	1.0819
3.287	1.54	100.10	221.6	4.068	1.1108
6.575	1.44.	100.34	340.6	5.084	1.1653
13.15	1.46	100.82	416.5	5.354	1.1964
26.30	1.62	101.76	428.4	4.632	1.2043
84.9	2.33	105.34	530.8	2.152	1.2437
-4- 0	2.00	3.3-	330.0	3 -	

SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SOLUTIONS OF CALCIUM SALTS AT 25°

566

566.7

169.8

339.6

3.33

4.50

110.32

119.15

(Cameron and Seidell — J. Physic. Chem. 5, 643, '01; Seidell and Smith — *Ibid.* 8, 493, '04; Cameron and Bell — J. Am. Chem. Soc. 28, 1220, '06.)

In Calcium Chloride.		In Calcium Nitrate.			In Calcium Hydroxide and vice versa.		
Grams per	Liter Sol.	Gms. per I	iter Sol.	Wt. of	Gms. per	Liter Sol.	Solid
CaCl ₃ .	CaSO ₄ .	Ca(NO ₃) ₂ .	CaSO ₄ .	z cc. Sol.	CaO.	CaSO4.	Phase.
0.00	2.06	0.0	2.08	0.998	0.0	2.126	CaSO _{4.2} H ₂ O
7 · 49	I . 24	25	I.24	1.014	0.062	2.030	a -
11.96	1.18	50	I . 20	1.032	0.176	1.918	"
25.77	I.IQ	100	1.13	1.067	0.349	1 .853	"
32.05	8o. 1	200	0.93	1.137	0.61	1.722	"
51.53	1.02	300	0.76	I . 204	0.939	1.634	"
97 -02	0.84	400	0.57	1.265	1.222	1.588	CaSO ₄ .2H ₂ O+ Ca(OH) ₂
192.71	0.47	500	0.40	1.328	1-242	1.214	Ca(OH)
280.30	0.20	544	0.35	1.352	1.150	0.666	"
3 67 .85	0.03	• • •	• • • •	• • • •	1.166	0.00	"

SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SOLUTIONS OF COPPER SULFATE AT 25°.

(Bell and Taber, 1907.)

Gms. per Lit	Gms. per Liter Sat. Sol.		Gms. per Lite	Gms. per Liter Sat. Sol.		
CuSO ₄ .	CaSO ₄ .	d₃ Sat. Sol.	CuSO ₄ .	CaSO ₄ .	ds Sat. Sol.	
I.144	2.068	. I .002	39.407	1.718	1.041	
3.564	1.986	1.005	49.382	I.744	1.051	
6.048	1.944	1.007	58.880	1.782	1.061	
7.279	1.858	1.009	97.950	1.931	1.098	
14.814	1.760	1.016	146.725	2.048	1.146	
19.729	1.736	1.021	196.021	2.076	1.192	
29.543	ı.688	1.030	224.916	2.088	1.218	

SOLUBILITY OF MIXTURES OF CALCIUM SULFATE AND CAESIUM SULFATE IN WATER.

(D'Ans, 1908.)

ť.	Mols. CasO4. CasO4 per 1000 Gms. = Sat. Sol.	Gms. CasO4.CasO4 per 1000 Gms. Sat. Sol	Solid Phase.
25	o.667	35 ²	Dicalcium Sulfate + Gypsum
60	o.607	3 ² 0	

Solubility of Calcium Sulfate in Aqueous Solutions of Magnesium Chloride and of Magnesium Nitrate at 25°.

(Cameron, Seidell, and Smith.)

In Magnesium Chloride. Grams per Liter of Sat. Solution.			In Magnesium Nitrate.			
Grams pe	r Liter of Sat.	Solution.	Grams per Liter Solution. Wt. of 1			
MgCls.	CaSO ₄ .	H₄O.	Mg(NOs)2.	CaSO ₄ .	Solution.	
O .	2.08	997 - 9	0	2.08	0.9981	
8.50	4.26	996.5	25	5·7 7	1.0205	
19.18	5.69	994 · 5	50	7.88	1.0398	
46.64	7 · 59	989.I	100	9.92	1.0786	
121.38	8.62	972.2	200	13.34	1.1498	
206.98	6.57	949.9	300	14	1.2190	
337	2.77	908.7	400	14.68	1.2821	
44I.I	1.39	878.6	514	15.04	I.3553	

SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SOLUTIONS OF MAGNESIUM SULFATE AT 25°. (Cameron and Bell, 1906a.)

Grams per Liter Solution.		Sp. Gr. of	Grams per Li	Sp. Gr. of Solutions at ##*.	
MgSO4.	CaSO ₄ .	Sp. Gr. of Solutions at ##°.	MgSO4.	CaSO ₄ .	Solutions at ##".
0	2.046	1.0032	149.67	1.597	1.1377
3.20	1.620	1.0055	165.7	I.549	1.1479
6.39	1.507	1.0000	171.2	I.474	1.1537
10.64	1.471	1.0118	198.8	1.422	1.1813
21.36	1.478	7.0226	232.I	1.254	1.2095
42.68	1.558	1.0419	265.6	1.070	1.2382
64.14	1.608	1.0626	298	0.860	1.2624
85.67	1.617	1.0833	330.6	0.647	1.2877
128.28	I.627	1.1190	355	0.501	1.3023

SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SOLUTIONS OF PHOSPHORIC ACID AT 25°.
(Taber, 1906.)

Gms. p	er Liter.	Sp. Gr. of Solutions at ##.	Gms. p	Sp. Gr. of	
P ₂ O ₄ .	CaSO ₄ .	Solutions at ##.	PsOs.	CaSO ₄ .	Sp. Gr. of Solutions at ##.
ο,	2.126	0.9991	145.1	7.920	1.106
5	3.143	1.002	205	8.383	1.145
10.5	3 · 734	1.007	311.5	7.965	I.22I
21.4	4.456	1 .016	395.8	6.848	1.280
46.3	5.760	1.035	494.6	5.572	1.344
105.3	7.318	1.075			

SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID. (Cameron and Breazeale, 1903.)

Grams H ₂ SO ₄	Kesu	lts at 25°.	Results at 35°.	Results at 43°.	
per Liter of Solution.	Gms. CaSO ₄ per Liter.	Wt. of 1 cc. Sol.	Gms. CaSO ₄ per Liter.	Gms. CaSO ₄ per Liter.	
0.00	2.126	0.9991 grams	• • •	2.145	
o.48	2.128	1.0025 "	2.209	2.236	
4.87	2.144	1.0026 "	2.451	2.456	
8.11	2.203	1.0051 "	• • •	2.760	
16.22	2.382	1.0098 "	• • •	3.116	
48.67	2.727	1.0302 "	3 · 397	3.843	
75.00	2.841	1.0435 "	• • • •	4.146	
97 - 35	2.779	1.0756 "	3.606	•••	
146.01	2.571		3.150	4.139	
194.70	2.313	1.1134 "	•••	3.551	
243 - 35	1.901	1.1418 "	•••	2.959	
292.02	1.541	1.1681 "	***	2.481	

SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE, BROMIDE, AND IODIDE AT 21°. (Ditte, 1898.)

In KCl Solutions. In KBr Solutions. In KI Solutions.

Grams of the Potassium Salt per Liter.	Gms. CaSO ₄ per Liter.	Gms. CaSO ₄ per Liter.	Gms. CaSO ₄ per Liter.
0	2.05	2.05	2.05
10	3.6	3.1	2.8
20	4.5	3.6	3.2
40	5.8	4.5	3.9
40 60	6.6	5.2	4.5
8 0	7 . 2	5.9	4.85
100	7.5	6.3	5.1
125	double salt	6.7	5 · 45
150	• • •	7.0	5.8
200	• • •	7.3	5.95
250	• • •	double salt	6.00
300	•••	•••	double salt

SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SOLUTIONS OF POTASSIUM NITRATE AND OF POTASSIUM SULFATE AT 25°. (Seidell and Smith, 1904; Cameron and Breazeale, 1904.)

In Potassium Nitrate.			In Potassium Sulphate.			
Gms. per Liter Solution.		Wt. of z cc. Solution.	Gms. p Solu	Gms. per Liter Solution.		
KNO2	CaSO ₄ .	Solution.	K ₂ SO ₄ .	CaSO ₄ .	Wt. of z cc. Solution.	
0.0	2.08	0.9981	0.0	2.08	0.9981	
12.5	3.28	1.0081	4.88	1.60	1.0036	
25.0	4.08	1.0154	5.09	1.56	1.0038	
50.0	5.26	1.0321	9.85	1.45	1.0075	
.100.0	6.86	1.0625	19.57	1.49	1.0151	
150	7.91	1.0924	28.35	1.55	1.0229	
200	8.69	1.1224	30.66	1.57	1.0236	
260	syngenite	1.1539	32 - 47	1.58*		

^{*} Solid phase syngenite. Results for the solubility of syngenite in solutions of potassium sulphate are also given in the original paper.

Data for the solubility of syngenite, $K_2Ca(SO_4)_2$. H_2O , and of potassium pentacalcium sulfate, $K_2Ca_4(SO_4)_6$. H_2O , in water at various temperatures, are given by D'Ans (1909). This author also gives results for the effect of the following salts upon the concentration of the boundary solution for gypum-potassium syngenite at 25°: KCl, KBr, KI, KCO₃, KClO₄, KNO₃, CH₃COOK, KOH, K₄Fe(CN)₆, K₅Fe(CN)₆, NaCl, NaI, NaNO₃, CH₅COONa, HCl, HNO₅, H₅PO₄, CH₅COOH, H₅SO₄, Ag₅SO₄ and cane sugar.

Data for the solubility of mixtures of CaSO₄, K₅SO₄, H₅O + CaSO₄, 2H₅O and CaSO₄, K₅SO₄, H₅O + K₅SO₄ in water at temperatures between 0° and 99°, are given by Barra (1998).

given by Barre (1909, 1911).

Data for mixtures of gypsum-rubidium syngenite and of dicalcium salt-syngenite, at temperatures between 0° and 40°, are given by D'Ans (1909).

SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 26°.

(Cameron, 1901; also Orloff, 1902; Cloez, 1903; d'Anselme, 1903.)

Grams per 100 cc. Solution.		Wt. of 1 cc. Solution.	Grams per 100	Wt. of 1 cc. Solution.	
NaCl.	CaSO ₄ .	Solution.	NaCl.	CaSO ₄ .	Solution.
0	0.2121	0.9998	17.650	0.712	1.1196
9.115	0.666	1.0644	22.876	0.679	1.1488
14.399	0.718	1.0981	26.417	0.650	1.1707
14.834	0.716	1.1012	32.049	0.572	1.2034

SOLUBILITY OF MIXTURES OF CALCIUM SULFATE AND CALCIUM CARBONATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 23°. (Cameron and Seidell, 1901a.)

Grams per Liter Solution.			Grams per Liter Solution.			
NaCl.	Ca(HCO ₂) ₂ .	CaSO ₄ .	NaCl.	Ca(HCO _t) ₂ .	CaSO.	
0	0.060	1.930	79.52	0.060	6.424	
3.63	0.072	2.720	121.90	0.056	5.272	
11.49	0.089	3.446	193.80	0.048	4.786	
39.62	0.101	5.156	267.60	0.040	4.462	

Data for the solubility of mixtures of calcium sulfate and sodium chloride at 0°-99° are given by Arth and Cretien (1906).

Data for the equilibrium CaSO₄ + Na₂CO₃ \(\approx CaCO₅ + Na₆SO₄ at 25° are

given by Herz (1911a).

SOLUBILITY OF MIXTURES OF CALCIUM SULFATE AND SILVER SULFATE IN WATER. (Euler, 1904.)

	Per Liter	of Solution.	Total Salt	So. Gr of	
t*.	Gms. Salt.	Gms. Equiv. Salt.	per 100 Gms. Solution	Sp. Gr. of Solutions.	
17° { CaSO ₄ Ag ₂ SO ₄	2.31 7.235	0.034 } 0.0464}	0.9473	1.0083	
25° { CaSO ₄ Ag ₂ SO ₄	2.61 8.11	0.0383}	1.062	1.010	

'SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND OF SODIUM SULFATE AT 25°. (Seidell, Smith, Cameron, Breazeale.)

In	Sodium Nit	rate.	In Sodium Sulfate.			
Gms. per L	iter Solution.	Wt. of r cc.	Gms. per Lite	Wt. of r cc.		
NaNO.	CaSO ₄ .	Solution.	NasSO4.	CaSO ₁ .	Solution.	
0	2.08	0.9981	2.39	1.65	1.0013	
25	4.25	1.0163	9 · 54	1.45	1.0076	
50	5.50	1.0340	14.13	1.39	1.0115	
100	7.10	1.0684	24.37	I.47	1.0205	
200	8.79	1.1336	46.15	1.65	1.0391	
300	9.28	1.1916	115.08 .	2.10	1.0965	
600	7.89	1.3639	146.61	2.23	1.1427	
655	7 - 24	1.3904	257.10	2.65	I.2120	

Data for the solubility of calcium sulfate, sodium sulfate glauberite, sodium sulfate syngenite, separately and mixed, in water at various temperatures, are given by D'Ans (1909) and Barre (1911).

SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS AND ALCOHOLIC MONO-POTASSIUM TARTRATE SOLUTIONS AT 20°. (Magnanini, 1901.)

Colvent.	Gms. CaSO ₄ per 100 Gms. Solution.	Solvent.	Gms. CaSO ₄ per 100 Gms. Solution.
Water Aq. N/200 KHC ₄ H ₄ O ₈	0.2238	10% alcoholic N/200 KHC ₂ H ₄ O ₆ Aq. N/200 KHC ₂ H ₄ O ₆ +5% tar-	0.0866
10% alcohol	0.0970	taric acid 10% alc. N/400 KHC2H4O4+5%	0.2566
		tartaric acid	0.1086

SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SUGAR SOLUTIONS. (Stolle, 1900.)

Per cent Concen-	Gms. CaSO ₄ Dissolved by 1000 Gms. of the Sugar Solutions at:					
tration of Sugar Solutions.	30°.	40°.	50°.	60°.	70°.	8o°.
0		2.157	1.730	1.730	1.652	1.710
10	2.041	1.730	1.730	1.574	I.574	1.613
20	1.808	1.652	1.419	1.380	1.419	1.263
27	1.550	1.438	1.361	1.283	1.283	0.972
35	1.263	1.050	1.088	1.108	0.914	• • •
42	1.030		0.777	0.816	0.855	0.729
49		0.564	0.739	0.564	0.603	0.486
55	• • •	0.486	0.505	0.486	0.369	0.330

100 gms. glycerol of d_{15} 1.256 dissolve 5.17 gms. CaSO₄ at 15°–16°. (Ossendowski, 1907.) 100 gms. glycerol of d 1.114 dissolve 0.95 gm. CaSO₄ at ord. temp. (Asselin, 1873.)

FREEZING-POINT DATA (Solubilities, see footnote, p. 1) ARE GIVEN FOR THE FOLLOWING MIXTURES OF CALCIUM SULFATE AND OTHER SALTS:

Calcium	Sulfate	+ Lithium Sulfate	(Müller, 1910.)
44	44	+ Potassium Sulfate	(Müller, 1910; Grahmann, 1913.)
"	44	+ Rubidium Sulfate	(Müller, 1910.)
44	**	+ Sodium Sulfate	(Müller, 1910; Calcagni and Mancini, 1910.)

CALCIUM SULPHIDE CaS.

SOLUBILITY IN AQUEOUS SUGAR SOLUTIONS. (Stolle.)

Per cent Concen-	Grams CaS Dissolved per Liter of the Sugar Solutions at:										
tration of Sugar Solutions.	30°.	40°.	50°.	60°.	70°.	80°.	90°.				
0	1.982	2.123	1.235	1.390	1.696	2.032	2 . 496				
10	1.866	1.316	1.441	1.673	1.560	1.634	1.544				
20	2.187	1.696	1.802	1.905	1.879	1.892	1.930				
27	2.522	2.097	2.059	2.226	2.342	2.304	2.357				
35	2.689	2.265	2.304	2 - 406	2.342	2.857	2.947				
42	2.342	2.136	2.226	2.522	2.574	2.509	2.689				
49	2 - 445	2.290	2 - 458	2.638	2.728	2.818	3.063				
55	2.509	2.226	2.340	2.882	2 766	2.972	3.616				

CALCIUM SULFITE CaSO,2H,O.

SOLUBILITY IN WATER AND IN AQUEOUS SUGAR SOLUTIONS AT 18°. (Weisberg, 1896.)

	Grams CaSOs per 100 cc. Solution.			
Solvent.	At 18°.	After Boiling Solution 2 Hours.		
Water	0.0043	••••		
10 Per cent Sugar	0.0083	0.0066		
30 Per cent Sugar	0.0080	0.0069		

RESULTS AT HIGHER TEMPERATURES. (Van der Linden, 1916.)

C-l	Gms. CaSO _{4.2} H ₂ O per 1000 gms. Sat. Solution at.								
Solvent.	30°.	40°.	50°.	60°.	70°.	80°.	90°.	b. pt.	
Water	0.064	0.063	0.057	0.061	0.045	0.031	0.027	0.011	
Aq. Sucrose of 15 gms. per 100 cc.	0.103	0.083	0.073	0.080	0.059	0.041	0.036	0.041	
Aq. Sucrose, 15 gms. +1.5 gms. Glucose per 100 cc.	0.104	0.081	0.085	0.071	0.060	0.047	0.040	0.029	
Water+Excess CaSO ₄	0.031	0.029	0.025	0.019	0.012	0.000	0.008	0.006	
Aq. Sucrose, 15 gms. per 100 cc. +Excess CaSO ₄	0.035	0.032	0.022	0.019	0.021	0.017	0.020	0.021	
Aq. Sucrose, 15 gms. +1.5 gms. Glucose per 100 cc. +Excess CaSO ₄	0.032	0.027	0.022	0.020	0.019	0.019	0.019	0.023	

CALCIUM Phenanthrene SULFONATES.

SOLUBILITY IN WATER. (Sandquist, 1912.)

		Gms. Anhydrous Salt per 100 Gms. H ₈ O.			
Calciu	m- 2-Ph	enanthrene i	Monosulfo	nate	0.024
"	- 3-	"	"	. 2H2O	0.083
66	-10-	"	"	.2H ₃ O	0.30

CALCIUM TARTRATE CaC4H4O44H2O.

SOLUBILITY IN WATER. (Cantoni and Zachoder, 1905.)

ť.	Gms. CaCaHaOa4HaO per 100 cc. Sol.	ť.	Gms. CaC ₄ H ₄ O _{4.4} H ₅ O per 100 cc. Sol.	ť.	Gms. CaCiHiO ₁₋₄ H ₂ O per 100 cc. Sol.
0	· o . o 3 6 5	30	0.0631	70	0.1430
10	0.0401	40	0.0875	80	0.1798
20	0.0475	50	0.1100	85	0.2190
25	0.0525	60	0.1262		

100 gms. aq. Ca. tartrate solution contain 0.0185 gm. CaC4H6O6.4H2O at 18°, and 0.029489 gm. at 25°.

100 gms. 95% alcohol solution contain 0.0187 gm. CaC4H4O6.4H2O at 18°, and

0.02352 gm. at 25°.

100 gms. aq. Ca. tartrate solution contain 0.0364 gm. CaC₄H₄O₆ at 20°.

100 gms. 10% alcohol solution contain 0.0160 gm. CaC₄H₄O₆ at 20°.

100 gms. aqueous 5% tartaric acid solution contain 0.1632 gm. CaC₄H₄O₆ at 20°.

(Magnanini, 1901.)

Solubility of Calcium Tartrate, CaC₄H₄O₄.4H₄O, in Aqueous Acetic Acid Solutions at 26°-27°.

(Herz and Muhs, 1903; see also Enell, 1899.)

Normality of Acetic Acid.	Gms. CH ₂ COOH per 100 cc. Sol.	Residue from 50.052 cc. Sol.	Normality of Acetic Acid.	Gms. CHaCOOH per 100 cc. Sol.	
•	0	0.0217	3.8 0	22.80	0.2042
0.57	3.42	0.1082	5.70	34.20	0.1844
1.425	8.55	0.1635	10.09	60.54	0.1160
2.85	17.10	0.1970	16. 5 05	93.03	0.0337
The resid	ue was dried a	t 70° C.			

SOLUBILITY OF CALCIUM TARTRATE IN AQUEOUS SOLUTIONS OF CALCIUM CHLORIDE, TARTARIC ACID, ETC., AT 18°. (Paul, 1915.)

(The determinations were made by weighing the tartrate remaining undissolved and calculating the amount dissolved by difference. It was found that even a small amount of $\rm CO_2$ in the water had a distinct influence on the solubility. One liter of pure $\rm CO_2$ free water was found to dissolve 0.380 gm. $\rm CaC_4H_4O_6.4H_2O$ at 18° and one liter of ordinary distilled water, 0.410 gm. at the same temperature.)

Results for Aque- Results for Aqueous Results for Aque- Results for Alcoholic

	alcium Solution.		sium Tar Sols.		Tartaric id Sols.	Ta	artaric A Sols.	cid
Gms. p	Gms. per Liter. Gms. per Liter. C		Gms. ;	Gms. per Liter.		Gms. per Liter.		
CaCle.	CaC ₄ H ₄ O ₅ . 4H ₂ O.	KaCaHaOa. HaO.	CaC ₄ H ₄ O ₆ . 4H ₅ O.	CaHaOa.	CaC ₁ H ₄ O ₅ . ₄ H ₅ O.	C ₂ H ₂ OH.	C ₄ H ₆ O ₄ .	CaC ₁ H ₄ O ₄ . 4H ₂ O
0.503	0.202	0.392	0.166	I	0.910	50	0	0.263
1.005	0.179	2.139	0.160	2	1.162	"	4	1.107
3.518	0.166	2.352	0.157	4	1.511	"	16	1.85
4.523	0.154	2.614	0.150	6	1.776	80	0	0.205
5.025	0.154	4.705	0.223	8	1.972	"	4	0.867
7.538	0.171	23.524	0.263	10	2.205	"	16	1.506
10.05	0.177	47.048	0.305	12	2.380	100	0	0.190
25.125	0.182			14	2.514	"	4	0.766
50.25	0.224			16	2.643	"	16	1.297

Data for the effect of potassium chloride and of potassium acetate upon the solubility of calcium tartrate in aqueous 0.5 normal acetic acid solutions at 25°, and also for the effect of potassium monochloracetate upon the solubility of the salt in 0.5 normal chloracetic acid solutions at 25°, are given by Henderson and Taylor (1916).

SOLUBILITY OF CALCIUM TARTRATE IN AQUEOUS SOLUTIONS OF AMMONIUM, POTASSIUM AND SODIUM CHLORIDES AT SEVERAL TEMPERATURES. (Cantoni and Jolkowsky, 1907.)

NOTE. — (The authors refer in all cases to their determination of the amount of decomposition of the tartrate by the aqueous chloride solutions. Constant agitation and temperature were maintained.)

Gms. Chloride per Liter Solvent.		Tartrate D per Liter o		ť.	Gms. Ca Tartrate per Liter of 7% Aqueous:		
Liter Solvent.	NH _C I.	KCl.	NaCl		NH ₄ Cl.	KCl.	NaCl.
5	0.701	0.643	0.680	16	1.676	1.504	1.637
10	0.861	0.822	0.840	30	2.417	2.031	2.275
30	1.281	1.180	1.305	55	3.712	2.154	3 · 579
100	1.897	1.753	1.860	70	5.080	2.546	4.148
200	2.305	2.110	2.163	85	6.699	4.264	6.305

CALCIUM BITARTRATE CaH, (C, H,O,).

Solubility in Water and in Aqueous Solutions of Acids and OF SALTS. (Warington — J. Chem. Soc. 28, 946, '75.)

In other Acids and in Salt Solutions at 14°. In Hydrochloric Acid. Conc. of HCl Gms. per 100 Gms. Sol. Gms. CaH₂(C.H.O₂)₂ per 100 Gms. Solvent. At 22°. At 80°. Gms.Acid or Salt Gms. CaH₂(C₄H₄O₈)₈ per 100 cc. Sol. per 100 cc. Sol. Acid or Salt. Acetic Acid 0.81 0 0.600 4.027 0.422 0.68 3.01 Tartaric Acid 1.03 0.322 5 · 35 6.88 2.15 Citric Acid 0.84 11.35 0.546 4.26 Sulphuric Acid 0.685 II.IQ 20.23 1.701 8.36 22.75 40.93 Hydrochloric Acid 0.504 I.947 80.12 Nitric Acid 16.13 48.31 0.845 1.969 Potassium Acetate 1.387 0.744 100 gms. H₂O dissolve 0.422 gms... bitartrate at 14° Potassium Citrate 1.397 0.843

CALCIUM THIOSULFATE CaS,O,.6H,O.

SOLUBILITY OF CALCIUM THIOSULFATE IN AQUEOUS SOLUTIONS OF SODIUM THIOSULFATE AT 9° AND 25° AND VICE VERSA. (Kremann and Rodemund, 1914.)

	Resul	lts at 9°.	Results at 25°.			
Gms. per re Sat. S	oo Gms. iol.	Solid Phase.	Gms. per Sat.	100 G ms . Sol.	Solid Phase.	
NasSiOs. 0 11.04 25.21 31.01	CaS ₂ O ₃ . 29.4 22.64 15.84	CaS ₂ O ₃ .6H ₂ O "+Na ₂ S ₂ O ₃ .5H ₂ O Na ₂ S ₂ O ₃ .5H ₂ O	NasS ₂ O ₂ . O 9.24 15.67 18.34 28.24	CaS ₂ O ₇ . 34 · 7 29 · 69 21 · 41 25 · 18 21 · 14	CaS ₂ O ₃ .6H ₂ O " " "	
			30.19 31.24 35.04	20.33 18.43 11.61	"+Na ₂ S ₂ O ₃ .5H ₂ O Na ₂ S ₂ O ₃ .5H ₂ O	

Data are also given for the quaternary systems, CaS2O3+Na2S2O3+NaNO3 +H₂O and CaS₂O₂+Ca(NO₂)₂+NaNO₂+H₂O at 9° and 25°. A triple salt of the composition CaNa₂(S₂O₃)₂NO_{3.11}H₂O was obtained.

CALCIUM VALERATE Ca[CH₁(CH₂),COO]₃.H₂O. **CALCIUM** (Iso) **VALERATE** Ca[(CH₂),CH.CH₂.COO]₃.₃H₂O.

SOLUBILITY OF EACH IN WATER.

(Lamsden — J. Chem. Soc. 81, 355, '02; see also Furth — Monatsh. Chem. 9, 313, '88; Sedlitzky— *Ibid*, 8, 566, '87.)

	Calcium Valerate.		Calcium Iso Valerate.			
t* .	Gms. Ca(C ₂ H ₀ O ₂) ₂ per 100 Gms. Water. Solution.	t°.		C ₈ H ₉ O ₂) ₂ o Gms. Solution.	Solid Phase.	
0	9.82 8.94	0	26.05	20.66	$Ca(C_5H_9O_2)_{2\cdot3}H_2O$	
IO	9.25 8.47	10	22.70	18.50		
20	8.80 8.09	20	21.80	17.90	66	
30	8 40 7 75	30	21.68	17.82	"	
40	8.05 7.45	40	22.00	18.18	"	
50	7.85 7.28	45 · 5	22.35	18.42	. "	
57	7.75 7.19	50	19.95	16.63	Ca(C ₅ H ₂ O ₂) ₂ .H ₂ O	
60	7.78 7.22	60	18.38	15.52		
70	7.80 7.24	70	17.40	14.82	"	
70 80	7.95 7.36	80	16.88	14.44	"	
90	8.20 7.58	90	16.65	14.28	"	
Iœ	8.78 8.07	100	16.55	14.20	66	

CAMPHENE C10H14.

Freezing-point data (solubility, see footnote, p. 1) are given by Kurnakov and Efrenov (1912) for mixtures of camphene + methylmustard oil, camphene + naphthalene and camphene + phenanthene.

CAMPHOR $C_{10}H_{16}O$ d and l.

APPROXIMATE SOLUBILITY OF d CAMPHOR IN SEVERAL SOLVENTS AT ORDINARY TEMPERATURE. (U. S. P., Squires; Greenish and Smith, 1903.)

Solvent.	Parts Camphor per 100 Parts Solvent.	Solvent.	Parts Camphor per 100 Parts Solvent
Water	0.08-0.14	Chloroform	300-400
90% Alcohol	100	Olive Oil	25-33
95% Alcohol	125	Turpentine	66
Ether	173	Glacial Acetic Acid	200
Carbon Disulfide	Readily Soluble	Lanolin	12.5 (Klose,1907).

Saturated solutions of d camphor and of l camphor in turpentine of $\alpha_D = 4.38$ (in a 10 cm. tube at 18°) were found to have $d_{18} = 0.9028$ and 0.9030 respectively; the α_D in a 10 cm. tube were +23.07 and -16.52 respectively. (Jones, 1907-08.)

SOLUBILITY OF CAMPHOR IN CONCENTRATED AQUEOUS HYDROCHLORIC ACID. (Zaharia, 1899.)

(The dissolved camphor could not be determined by evaporating and weighing the residue on account of volatility; polarimetric methods could not be used on account of the interference of the HCl. The author, therefore, determined the densities (H₂O at 4° in each case) of the pure solvent and saturated solution in each case, and assumed that the difference represented the weight of camphor dissolved. The saturated solutions were prepared by stirring the several mixtures with a glass stirring rod, at intervals, during 6 hours.)

Solvent.	Densities at o°.		Densiti	es at 10°.	Densitie	s at 20°.	Densities at 40°.	
	Solvent.	Sat. Sol.	Solvent.	Sat. Sol.	Solvent.	Sat. Sol.	Solvent.	Sat. Sol.
27.2 % HCl	1.145	1.143	1.140	1.138	1.135	1.133	1.125	1.123
30 .6 "	1.164	1.159	1.158	1.153	1.153	1.148	1.142	1.138
33.9 "	1.181	1.167	1.175	1.163	1.169	1.159	1.157	I.149
34.98 "	1.187	1.158	1.181	1.160	1.175	1.158	1.163	1.153
35.74 "	1.191	1.140	1.185	1.148	1.179	1.153	1.167	1.153
36.38 "	1.195	1.126	1.189	1.134	1.182	1.140	1.170	1.153
36.68 "	1.197	1.116	1.190	1.124	1.184	1.134		

RECIPROCAL SOLUBILITY OF CAMPHOR AND PHENOL, DETERMINED BY THE FREEZING-POINT METHOD.

(Wood and Scott, 1910.)

(The freezing-point was determined in most cases by measuring the rate of cooling of the mixtures and ascertaining the point at which the rate changed. The experiments were made with very great care.)

Freez-	Gms. Camphor per 100 Gms. Mix- ture.	Solid Phase.	t° of Freezing.	Gms. Camphor per 100 Gms. Mix- ture.	Solid Phase.	t° of Freezing.	Gms. Camphor per 100 Gms. Mix- ture.	Solid Phase.
174.5	100.0	C ₁₀ H ₁₆ O	—13.8	71.48	C-H-O	-22.6	52.52	
158	95.98	"	-26.4, -			-23.6	44.90	
		44					44.90	
140	92.55		-15.9	69.32	1.1	-28-30.5	40.35	"+Синон
112	88.86	"	— 20. I	67.76	u	-15.7	38.57	CaHaOH
80	82.88	"	-19.3	66.64	"	-3	34.50	44
50.7	79 - 73	u	-18.7	62.21	44	+5	30.31	u
29.5	76.58	"	-18.6 m.	pt	44	16. I	25.40	"
-0.I	73.37	u	-20.I	61.51	"	25	20.3T	44
-13.5	72.24	"	- 20	55.80	44	36 I	6.87	44
	T T =	CvHvC	CHOH.			•	•	

Data for the above system obtained by the method of determination of the temperature of disappearance of the last crystal, are given by Kremann, Wischo and Paul (1915). The results are not in good agreement with the above. These authors also give similar determinations for the systems camphor +resorcinol and camphor $+\beta$ naphthol.

Data for the systems camphor + phenol + water, camphor + n butyric acid + water, camphor + succinic acid nitrile + water and camphor + triethylamine + water are given by Timmermans, 1907.

Freezing-point data (solubilities, see footnote, p. 1) are given for the following mixtures of camphor and other compounds.

Camphor	+ Borneol	(Vanstone, 1909.)
42	+ Hydroquinone	(Efremov, 1912, 1913.)
44	+ Menthol	(Pawlewski, 1913.)
"	+ α Naphthol	(Caille, 1909.)
44	+ β Naphthol	(Caille, 1909.)
44	+ α Mononitronaphthalene	(Journiaux, 1912.)
66	+ Naphthalene	u u
64	+ β Naphthylamine	
44	+ Nitric Acid	(Zukow and Kasatkin, 1909.)
44	+ Phosphoric Acid	" "
44	+ Pyrocatechol	(Efremov, 1912, 1913.)
66	+ Pyrogallol	(Journiaux, 1912.)
66	+ Resorcinol	(Caille, 1909; Efremov, 1912, 1913.)
44	+ Salol	(Caille, 1909.)
44	+ Sulfur Dioxide	(Bellucci and Grassi, 1913, 1914.)
44	+ a Trinitrotoluene	(Giua, 1916.)
44	+ p Toluidine	(Efremov, 1915, 1916.)
"	+ 17 other compounds	" " "

BenzolCAMPHOR Enol and keto forms.

Solubility data have been used by Dimroth and Mason (1913) for determining the transition of the tautomeric forms into each other. Results are given for the solubility of each form in ether, acetone, ethylacetate, ethyl alcohol and methyl alcohol.

One liter benzene dissolves 256 gms. enol benzoylcamphor at 5°, by freezing-point method. (Sidgwick, 1915.)

Bromo**CAMPHOR** α C₁₀H₁₈OBr.

APPROXIMATE SOLUBILITY IN SEVERAL ORGANIC SOLVENTS AT ORDINARY TEMP.
(U. S. P.; Squires: Beilstein; results in alcohol by Müller, 1892.)

Solvent.	Parts Bromo Camphor per 100 Parts Solvent.	Solvent.	Parts Bromo Camphor per 100 Parts Solvent.
Alcohol	12.1 at 15°	Ethe r	50
"	19.7 " 25°	Chloroform	143
"	130.0 " 50°	Olive Oil	12.5
"	705.0 " 61°	95% Formic Acid	13.6 (Aschan, 1913.)

Freezing-point data (solubility, see footnote, p. 1) are given for mixtures of l bromocamphor +d chlorocamphor by Padoa (1904); for mixtures of d bromocamphor +l bromocamphor by Padoa and Rotondi (1912); for mixtures of bromocamphor +lstearine by Batelli and Martinetti (1885); \$\beta\$ bromocamphor + salol by Caille, 1909.

CAMPHOROXIME $C_{10}H_{16}$: NOH d and l.

100 gms. turpentine dissolve 8.68 gms. d oxime at 18°, $d_{13} = 0.8784$, $\alpha_D = 2.30$ in 10 cm. tube.

100 gms. turpentine dissolve 8.69 gms. *l* oxime at 18°, $d_{18} = 0.8782$, $\alpha_D = 18.24$ in 10 cm. tube.

 α_D of the turpentine = 4.38 in a 10 cm. tube at 18°.

 α_D of the turpentine = 4.38 in a 10 cm. tupe at 18°. In the case of results in l amyl bromide the $d_{16} = 1.199$ in both cases and the α_D was -3.55 (10 cm. tube) for the d oxime and + 11.48 for the l oxime. The α_D of the amyl bromide was +4.6 in 10 cm. tube at 18°. The results show that the solubility and rotatory power of the d and l isomerides are identical in an optically active as well as in an inactive solvent.

Freezing-point data are given for mixtures of d and l camphoroxime by Beck (1904) and Adriani (1900).

CAMPHORIC ACID C₈H₁₄(COOH)₂.

100 gms. of water dissolve 0.8 gm. C₀H₁₄(COOH)₂ at 25°, and 10 gms. at the b. pt. (U.S.P.)

SOLUBILITY OF CAMPHORIC ACID IN AQUEOUS SOLUTIONS OF ALCOHOL AT 25°. (Seidell, 1908, 1910.)

Wt. % C ₂ H ₂ OH in Solvent.	ds of Sat. Sol.	Gms. C ₈ H ₁₆ (COOH) ₂ per 100 Gms. Sat. Sol.	Wt. % C2H3OH in Solvent.	d_{SS} of Sat. Sol.	Gms. CaHss (COOH)a per 100 Gms. Sat. Sol.
0	I	0.754	60	I	45
10	I	1.60	70	Ι,	49
20	I	6.30	80	0.995	51.20
30 .	I	14	90	0.980	51.40
40	I	26	96.3	0.970	50.37
50	I	31	100	0.960	50.10

SOLUBILITY OF CAMPHORIC ACID IN SEVERAL SOLVENTS.

		des of	Gms.			des of	Gms.
Solvent.	t°.	Sat. (CaHid(COOH)2 D	er Solvent.	t°.	Sat. C.F	I ₁₄ (COOH) ₂ per
555, 525,	• •		100 Gms. Solvent			Sol. 100	Gms. Solvent.
Amyl Alcohol(iso)	25	0.907	50(3)	Carbon Disulfide	25	1.258	0.020(3)
Butyl Alcohol(iso)	22.5		54.1(1)	Chloroform	25		0.153(3)
Ethyl Alcohol	o Č		84.7(1)	Cumene	25	0.890	0.197(3)
u* u	15.1		112(2)	Ether (abs.)	25	0.922	91.40(3)
" "	62.5		147(2)	95% Formic Acid	ı8.	5	8.68(4)
Methyl Alcohol	0		116.3(1)	Ligroin	25	0.714	0.007(3)
" "	22.5		131.1(1)	Nitrobenzene	25	I.2	0.5(3)
Propyl Alcohol	o Č		42.2(1)	Spts. Turpentine	25	0.852	1.74(3)
u u	22.5		61 (1)	Toluene	25	0.862	0.15(3)
Benzene	25	0.873	0.008(3)	Xylene	25	0.859	0.23(3)
(1) Time	ofeiew	(1914);	(2) Beilstein; (3)	Seidell (1910); (4) As	chan,	(1913).	

Data for the distribution of camphoric acid between water and ether at 25° are given by Chandler (1908). Data for the freezing points of mixtures of d and l camphoric acid and d and l isocamphoric acid are given by Centnerszwer (1899).

CAMPHORIC ANHYDRIDE C₁₀H₁₄O₂ d and l.

One liter of benzene dissolves 37.5 gms. d camphoric anhydride at 5°, determined by depression of the freezing-point. (Sidgwick, 1915.)

APPROXIMATE	SOLUBILITY	IN	SEVERAL	SOLVENTS	AT	Room	TEMP.
	(Se	lf an	d Greenish.	r 907.)			

	Solve	nt.	ns. Cantharidine per 100 Gms. Solvent.	Solvent.	Gms. Cantharidine per 100 Gms. Solvent.
Aq.	25%	Acetone	0.02	Aq. 10% Acetic Acid	0.14
"	50%	"	0.10	" 45% Formic "	O. 12
"	75%	"	0.45	Carbon Tetrachloride	0.04
			-	Lanolin	4.4 (Klose, 1907.)

CAOUTCHOUC.

SOLUBILITY IN ORGANIC SOLVENTS. (Hanausek, 1887.) Gms. Canatchone Dissolved per roo Gms. Solve

Solvent.	Gms. Caoutchoug Dissolved per 100 Gms. Solvent.				
Solvent.	Ceara. Tete Noire.		Sierra Leone.		
Ether	2.5	3.6	4.5		
Turpentine	4.5	5	4.6		
Chloroform	3	3.7	3		
Petroleum	1.5	4.5	4		
Benzene	4.4	5	4.7		
Carbon Disulfide	0.4	ŏ	o .		

SOLUBILITY OF CAOUTCHOUC IN MIXTURES OF BENZENE AND ALCOHOL. (Caspari, 1915.)

(Freshly prepared solutions of deresinified caoutchouc in benzene were titrated with alcohol to appearance of two phases. The end point is sharp to within one drop of precipitant, especially at low concs. of caoutchouc. For purposes of converting the weights of caoutchouc to volume, the factor 0.91 may be taken.) Populte at 200

			Kes	uits at 2	o			
Gms. Caoutchouc.	cc. CeHe.	cc. Abs. CaHaOH.	Gms. Caoutchouc	cc. CeHe.	с. 95% Сънон.	Gms. Caoutchouc.	cc. CeHe.	C. 92% C.H.OH.
0.032	40	17	0.206	40	II	0.80	40	9.6
0.080	40	15.8	0.81	40	10.8	2.01	40	8.8
0.405	40	14.8	2.01	40	10.2	3.20	40	8.1
2.404	40	14.5	3.22	40	9.8	-		
4.061	40	13.8						
							_	

	Ke	sults at	40°.	Results at 60°.				
Gms.	Caoutchouc.	cc. CaHs.	cc. Abs. CaHaOH.	Gms. Caoutchouc.	cc. CeHe.	cc. Abs. CaHaOH,		
	0.2	40	18.8	0.2	40	~21.6		
	1.0	40	18.1	I	40	23.3		
	2	40	17.4	2 ·	40	24.4		

SOLUBILITY OF CAOUTCHOUC IN MIXTURES OF BENZENE AND ACETONE. (Caspari, 1915.) Results at 20°. ! Results at 40°. Results at 60°.

Gms. Caoutchouc.								
0.11	20	15.7	0.10	20	19.6	O . IO	20	23
0.80	20	15.0	0.98	20	17.6	1.01	20	26.4
1.86	20	14.7						

CARBAMIDES.

SOLUBILITY IN SEVERAL SOLVENTS. (Walker and Wood, 1898.)

as Methyl phenyl carbamide (m. pt. 82°), benzyl carbamide (m. pt. 149°). o tolyl carbamide (m. pt. 185°) and p tolyl carbamide (m. pt. 173°).

Gms. Each Carbamide Separately per 100 cc. Sat. Solution.

Solvent.	40	Onis. Each Carbamide Separately per 100 Cc. Sat. Solution.			
	٠. ۵	Methyl Phenyl.	Benzyl.	# Tolyl.	o Tolyl.
Water	45	74	1.71	0.307	0.251
Acetone	23	29.4	3.10	2.66	0.462
Ether	22.5	2.28	0.053	0.062	0.0162
Benzene	44.2	12.4	0.0507	0.043	0.0155

100 gms. chloroform dissolve 0.6-0.7 gm. diiododithio carbamide (CSN₂H₄)₂I₂ (Werner, 1912.)

at temp. not stated.

CARBAZOLE (Diphenylene imide) (C₄H₄)₂NH.

100 grams abs. alcohol dissolve 0.92 gm. (C_6H_4)₂NH at 14°, and 3.88 gms. at b. pt.

100 gms. toluene dissolve 0.55 gm. (C₆H₄)₂NH at 16.5°, and 5.46 gms. at b. pt. Freezing-point data are given for mixtures of carbazole and phenanthene by Garelli (1894).

CARBINOL CH₂OH, see Methyl alcohol, p. 435.

Trimethyl CARBINOL (CH₂)₂COH, Triphenyl CARBINOL (C₄H₅)₂COH.

Freezing-point data (solubilities, see footnote, p. 1) are given for mixtures of trimethyl carbinol and water by Paterno and Mieli (1907). Results for trimethyl carbinol + phenol, trimethyl carbinol + thymol and trimethyl carbinol + bromotoluene are given by Paterno and Ampola (1897). Results for triphenyl carbinol + phenol are given by Yamamoto (1908).

CARBON DIOXIDE CO.

SOLUBILITY IN WATER. (Bohr, 1899; Geffcken, 1904; Just, 1901.)

	So	lubility in Wa	In 6.53% NaCl.	In 17.62% NaCl.		
ŧ°.	4.	β.	ı.	β.	β.	
0	0.335	1.713	• • •	1.234	0.678	
5	0.277	I .424	• • •	I .024	0.577	
IO	0.231	1.194	• • •	0.875	0.503	
15	0.197	1.019	1.070	0.755	0.442	
20	0.169	o . 878	• • •	0.664	0.393	
25	0.145	0.759	0.826	0.583	0.352	
30	0.126	0.665	• • •	0.517	0.319	
40	0.097	0.530	•••	0.414	0.263	
50	0.076	0.436	• • •	0.370	0.235	
60	0.058	0.359	• • •	0.305	0.183	

q = wt. of gas dissolved by 100 grams of solvent at a total pressure of 760 mm. β = the **Bunsen Absorption Coefficient** which signifies the volume (v) of the gas (reduced to 0° and 760 mm.) taken up by unit volume (V) of the liquid when the pressure of the gas itself minus the vapor tension of the solvent is 760 mm. $\beta = \frac{v}{V(\tau + 0.00367\ t)}.$

l — the Ostwald Solubility Expression which represents the ratio of the volume (v) of gas absorbed at any pressure and temperature, to the volume (V) of the absorbing liquid, i.e. $l = \frac{v}{V}$. This expression differs from the Bunsen Absorption Coefficient, β , in that the volume (v) of the dissolved gas is not reduced to 0° and 760 mm. The solubility l is therefore the volume of gas dissolved by unit volume of the solvent at the temperature of the experiment. The two expressions are related thus:

$$l = \beta (r + 0.00367 t), \quad \beta = \frac{l}{(r + 0.00367 t)}.$$

SOLUBILITY IN WATER AT PRESSURES ABOVE ONE ATMOSPHERE. (Wroblewski — Compt. rend. 94, 1335, '82.)

Pressure In Atmos- pheres.	Coefficient of S	aturation * at:	Pressure in Atmos-	Coefficient of Saturation * at:		
	o°.	12.4°.	pheres.	~°.	12.4°.	
I	1.797	1.086	20	26.65	17.11	
5	8.65	5.15	25 [.]	30.55	20.31	
IC	16.03	9.65	30	33 · 74	23.2 5	

^{*} Coefficient of absorption is no doubt intended.

SOLUBILITY OF CARBON DIOXIDE IN WATER AT HIGH PRESSURES. (Sander, 1911-12.)

Note. — The pressures varied from 25 to 170 kilograms per square centimeter. The results are expressed in terms of the volume of CO₃, reduced to 1 kg. per sq. centimeter, dissolved by unit volume of liquid at the temperature and pressure of the experiment. A Caillet apparatus, provided with the well-known Caillet tube, was used. The experiments were made with very great care. In general, the procedure consisted in compressing CO₃ above mercury in the closed millimeter graduated end of the Caillet tube and taking many readings on the scale at various pressures and temperatures. The volumes thus found were compared with similar readings made after a known amount of solvent had been introduced above the layer of mercury, by means of a graduated pipet with turned-up end. The differences show the volume of CO₃ dissolved at given temperatures and pressures.

Two series of determinations were made. In the case of the results marked(a) the used volume of water was 0.210 cc. and for those marked (b) the volume was 0.102 cc. The volumes of CO₂ used, varied from 60 to 76 cc.

Pressure in Kg. per Sq. Cm.		r Kg. per S	(Reduced to eq. Cm.) Dis- r cc. H ₅ O.	r.	Pressure in Kg. per Sq. Cm.	cc. CO ₂ (Reduced to 1 Kg. per Sq. Cm.) Dissolved by 1 cc. H ₂ O.		
	-	(a)	(b)		-	(a)	(b)	
20	25	• • •	17.77	60	90	22.74	21.16	
"	30		19.77	"	100	26.22	27.85	
"	40	• • •	21.52	"	110	28.92	28.79	
"	50	• • •	28.09	"	120	30.20	33.90	
"	55	• • •	29.75	100	60	8.97	•••	
35	30	II.77	13.57	"	70	10.11	6.40	
<i>"</i>	40	14.82	20	"	80	11.05	9.59	
"	50	18.96	24.64	"	90	12.62	10.85	
"	60	22.90	22.50	"	100	13.63	12.40	
"	70	27 . 18	27 . Ğ2	"	110	14.88	16.31	
"	80	• • •	32.85	"	120	16.40	15.78	
60	40	10.88	9.80	"	130	17.93	16.89	
"	50	12.24	13.72	"	140	19.56	17.71	
"	čo	14.46	15.28	"	150	20.58	17.49	
"	70	16.8o	17.46	"	160	22.07		
"	80	19.74	22.67	"	170	22.78	• • •	

SOLUBILITY OF CARBON DIOXIDE IN WATER EXPRESSED IN TERMS OF THE FAHR-ENHEIT SCALE OF TEMPERATURE AND POUNDS PER SQUARE INCH PRESSURE. (Heath, 1915; Anthony, 1916, see also Riley, 1911.)

(The existing data were calculated to this form, particularly for use in the bottling industry.)

Pounds per Sq.			Volum	nes of CO	Da Gas	Dissolv	ed by	One Vo	lume o	f Water	r at:		
Inch Pressure	32°.	36°.	40°.	44°.	48°.	5 5°∙	60°.	65°.	70°.	75°·	8o°.	85°.	90°.
15	3.46	3.19	2.93	2.70	250	2.20	2.02	1.86	1.71	1.58	1.84	4.35	1.27
20	4.04	3.73	3.42	3.15	2.02	2.57	2.36	2.17	2	1.84	1.69	1.58	1.48
25	4.58	4.27	3.92	3.61	3.35		2.69	2.48	2.29	2.10	1.93	1.80	1.70
30	5.21	4.81	4.41	4.06	3.77	3.3I	3.03	2.80	2.58	2.37	2.18	2.03	1.91
35	5.80	5.35	4.91	4.52	4.19	3.69	3.37	3.11	2.86	2.63	2.42	2.26	2.13
40	6.37	5.89	5.39	4.97	4.61	4.05	3.71	3.42	3.15	2.89	2.67	2.49	2.34
45	6.95	6.43	5.88	5.43	5.03					3.16		2.72	2.56
50	7.53	6.95	6.36	5.89	5.45	4.80				3.42			2.77
55	8.11	7.48	6.86	6.34	5.87	5.17				3.69	3.40	3.17	2.99
60	8.71	8.02	7.35	6.79	6.29	3.53	5.08	4.68	4.31	3.95	3.64	3.39	3.20
70	9.86	9.09	8.33	7.70	7.13	6.27	5.76	5.30	4.89	4.49	4.14	3.86	3.63
80	11.02	10.17	9.31	8.61	7.98	7	6.43	5.92	5.46	5.02	4.62	4.31	4.06
90	12.18	11.25	10.30	9.52	8.82		7.11		6.04		5.12	4.77	4.49
100	13.34	12.33	11.20	10.43	9.66	8.4	7.79	7.18	6.62	6.08	5.60	5.22	4.QI

SOLUBILITY OF CO2 IN AQUEOUS SOLUTIONS OF ACIDS AND SALTS. (Geffcken.)

Aq. Solvent.	Gms. Acid per Liter.		lved, lat:	Aq. Solvent	Gms. Salt	CO ₂ Disso	
Solvent.	per Liter.	15°.	25°.	Solvent	per Liter.	15°.	25°.
HCl	18.23	1.043	0.806	CsCl	84.17		0.781
"	36.46	1.028	0.799	KCl	37 . 30	0.976	0.759
"	72.92	1.000	0.795	ĶCl	74.60	0.897	0.700
HNO ₃	31.52	1.078	0.840	ΚI	83.06	0.992	0.775
"	63.05	1.086	0.853	ΚI	166.12	0.923	0.727
• • • • • • • • • • • • • • • • • • • •	126.10	1.100	0.877	KBr	59 - 55	0.986	0.768
H ₂ SO ₄	24.52	810.1	0.794	KBr	119.11	0.914	0.713
"	49.04	0.978	0.770	KNO_8	50.59	1.005	0.784
"	98.08	0.917	0.730	KNO_8	101.19	0.946	0.749
"	147.11	0.870	0.698	RbCl	60.47	o .989	0.769
"	196.15	0.828	0.667	RbCl	120.95	0.921	0.788

SOLUBILITY IN AQUEOUS SOLUTIONS OF SALTS. (Mackenzie, 1877.)

Salt in	Gms. Salt per	Density of		Absorption (Coefficient α at	t:
Solution.	100 Gms. Solution.	Density of Solution 15°.	8°.		15°.	22°.
KCl	6.05	1.021	0.988		0.777	0.670
"	8.646	1.053	0.918		0.777	0.649
"	11.974	1.080	0.864		0.720	0.597
"	22.506	1.549	0.688		0.571	0.480
NaCl	7.062	· 1.038	0.899		0.735	
"	12.995	1.080	0.633		0.557	0.482
"	17.42	1.123	0.518		0.431	0.389
"	26.00	1.195	0.347	(6. 4°)	0.297	0.263
NHCl	6.465	1.021	1.023		0.825	0.718
"	8.723	1.047	1.000		0.791	0.702
"	12.727	1.053	0.922		0.798	0.684
**	24 · 233	1.072	0.813	(10°)	0.738	0.600
			8°.	16.5°.	22°.	30°.
BaCl ₂	7.316	1.068	0.969	0.744	0.680	0.56 6
"	9· 75 3	1.092	1.021	0.645	0.607	0.543
	14.030	1.137	• • •	0.618	0.524	0.467
"	25.215	1.273	0.495	0.618	0.383	0.315
SrCl ₂	9.511	1.087	0.779	0.663	0.581	0.508
"	12.325	1.1159	0.737	0.586	0.507	0.539
"	17.713	1.173	0.606	0.473	0.444	0.367
	31.194	I.343	0.285	0.245	0.247	0.223
CaCl ₂	4.365	1.0 36	0.942	0.759	0.673	0.596
"	5 ·739	1.049	0.855	0.726	0.616	0.527
66 66	8.045	r.068	0.838	0.674	0.581	0.500
66	15.793	1.139	0.632	0.520	0.471	0.400

Data for the solubility of CO₂ in sea water are given by Hamberg (1885).

According to Fox (1909a), analyses of sea water are given by framerg (1005).

According to Fox (1909a), analyses of sea water all show an excess of base over acid, that is, when O_0 is left out of account. This CO_0 (about 50 oc. per liter) is, of course, in equilibrium with the excess of base, which is actually equal to about 40 mgs. OH per liter. The partial pressure of CO_0 very seldom, if ever, exceeds 6 in 10,000. For the determination of the absorption coefficient of CO_0 there are, consequently, four independent variables to be considered; influence of alkalinity, a chemical influence in addition to the purely physical influences of temperature, pressure and salinity. For convenience, the dissolved CO_0 may be considered as made up of two parts, about 1% dependent upon physical influences alone and a far larger part dependent upon the alkalinity, pressure and temperature, but independent of salinity. Extensive experimental determinations are described.

A critical review of the literature on the solubility of carbon dioxide in water and in sea water is given by Coste (1917).

SOLUBILITY OF CARBON DIOXIDE IN AQUEOUS SOLUTIONS OF SALTS AT 15.2°. (Setschenow, 1892.)

(Results expressed in terms of cc. CO₂ (at o° and 760 mm.) dissolved per 1 cc. sat. solution.)

sat. solutio		. .		_			_	
Salt.	Gms. Salt per	Dis- solved	Salt.	Gms. Salt per	Dis- solved	Salt.	Gms. Salt per	Dis- solved
Saut.	Liter.	CO ₂ .	Jail.	Liter.	CO.	out.	Liter.	CO*
NH ₄ Cl	I	1.005	LiCl	16.72	1.035	NaCl	12.0	0.978
44	10	0.985	44	50.15	0.808	"	64	0.760
"	51.6	0.941	44	125.4	0.596	".	128	0.580
"	172	0.810	66	250.8	0.497	"	192	0.466
"	258	0.770	44	501.5	0.120	NaBr	115.1	0.775
NH ₄ NO ₂	2.8	1.013	MgSO ₄	26.5	0.001	. "	460.3	0.364
44	11.2	1.002	"	79 . 5	o. 66g	"	600.4	0.221
"	55	0.989	_"	159	0.441	NaNO ₃	89.3	0.835
66	101	0.962	"	318	o. 188	"	125	0.762
"	202.I	0.011	KBr	83.9	0.908	u	208.4	0.621
"	404.3	0.807	"	167.7	0.810	"	416.8	0.385
"	810.4	0.612	**	251.5	0.748	66	625.2	0.244
$(NH_4)_2SO_4$	72.2	0.712	"	503.1	0.579	NaClO ₂	233.3	0.625
(144.4	0.575	KI	319.1	0.777	"	349.9	0.506
Ba(NO ₃)	62.7	0.922	"	478.6	0.688	"	699.8	0.257
Ca(NO ₃) ₂	41	0. 923	"	957 · 3	0.506	Na ₂ SO ₄	14.2	0.950
Citric Acid	12	1.007	KSCN	326	0.691	"	94.8	0.620
"	49	0.975	"	489	0.590	"	284.4	0.234
"	99	0.950	"	978	0.387	ZnSO ₄	38.3	0.903
66	198	0.893	KNO _a	58. 8	0.959	46	76.7	0.783
44	298	0.841	"	117.5	0.800	44	230	0.474
"	595	0.719	"	235. I	0.781	"	460	0.209

Several determinations at other temperatures are also given.

SOLUBILITY OF CARBON DIOXIDE IN AQUEOUS SALT SOLUTIONS AT 25°.
(Findlay and Shen, 1912.)

			/×	, marc cases 13119			
Salt.	Gms. Salt per 100 cc. Solution.	d of Sat. Sol.	Solubility of CO ₂ , Ost- wald Ex- pression l ₌ .	Salt.	Gms. Salt per 100 cc. Solution.	Sat. of (olubility CO ₂ , Ost- ald Ex- ession <i>l</i> ₂ .
Water alone	• • •		0.825	Fe(SO ₄)(NH ₄) ₂ SO ₄ .6H ₂ (1.052	0.641
NH ₄ Cl	2.35	1.005		46	10.26	1.057	0.629
66	5.05	1.013	0.754	"	22.47	I.124	0.460
66	10.02	1.022		KC1	1.84	1.008	0.792
66	17.09	1.045	0.665	46	3.05	1.017	0.764
BaCl ₂	2.80	1.018	0.789	"	4.58	1.026	0.749
"	5.8r	1.040	0.741	46	7.46	1.044	0.701
66	8.15	1.054	0.710	Sucrose	2.63	1.000	0.813
66	9.97	1.070	0.676	46	5.16	1.018	0.798
Chloral Hy-	∫ 5.08	1.019	0.815	"	9.68	1.038	0.767
drate	10.12	1.041	0.795	"	12.33	1.051	0.744
		•					• .

Data for KCl solutions at higher pressures are given by Findlay and Creighton, 1910.

Data for the influence of colloids and fine suspensions upon the solubility of carbon dioxide in water at 25° and at various pressures are given by Findlay, 1908; Findlay and Creighton, 1910, 1911; Findlay and Shen, 1911, 1912; Findlay and Williams, 1913; Findlay and Howell, 1915.

The solubility of CO₂ increases slightly with increasing concentrations of

The solubility of CO₂ increases slightly with increasing concentrations of Fe(OH)₃, gelatine, silicic acid, aniline (chem. combination occurs), methyl orange, blood, serum, peptone, protopeptone, and commercial hemoglobin. The solubility diminishes slightly with increasing concentrations of arsenious sulfide, dextrine, soluble starch, glycogen (?), egg albumen and serum albumen. No appreciable effect is produced by suspensions of charcoal or silica.

When the solubility is increased by a given substance, the solubility curve falls with increase of pressure; when it is lessened, the curve rises with increasing pressure. In the case of starch and other neutral colloids, the solubility passes through

a minimum with increase of pressure.

Data for the influence of colloids and suspensions on the evolution of CO₂ from supersaturated solutions, are given by Findlay and King, 1913-14.

SOLUBILITY OF CARBON DIOXIDE IN AQUEOUS SALT SOLUTIONS AT 15.5° AND 760 MM. PRESSURE.
(Christoff, 1905.)

A gravimetric method was used. A stream of CO₂ was passed through the weighed salt solution and, after saturation, the solution again weighed and the difference taken to represent absorbed CO₂. The loss of water from the solution was prevented by first passing the CO₂ through a series of U-tubes containing some of the same solution. Constant temp. was not employed, but corrections of the results were made for the slight variations in temp. which occurred. Absorption flasks of special shape, graduated to hold 75 cc., were used.

Salt in Aq. Solution.		onc. of q. Sol.	Gms. COs Absorbed per 75 cc. Solvent.	Salt in Aq. Solution.	9	Conc. of Aq. Sol.	Gms. CO ₂ Absorbed per 75 cc. Solvent.
Water Alone			0.1382	K4P4O12	I	normal	0.1237
(NH ₄) ₂ SO ₄	I	normal	0.1093	KHSO4	0.6	6 "	0.1020
(NH ₄) ₂ Fe ₂ (SO ₄) _{4.24} H ₂ O	I	"	0.0991	"	2.	"	0.1000
K ₂ Al ₂ (SO ₄) ₄ .24H ₂ O	I	"	0.1054	K ₂ SO ₄	0.6	6 "	0.1140
NH ₄ HB ₂ O ₄	0.25	"	0.7672	"	I		0.1002
CuSO ₄	2	66	0.0751	Na ₄ B ₄ O ₇	0.0		0.2205
LiCl	I	"	0.1087	"	0.1	25 "	0.5317
MgSO ₄	0.5	"	O. 1200	"	0.2	5 "	0.8511
66	ı	66	0.1020	"		sol.	1.8285
46	2	"	0.0662	"	"	+crysts.	3.2240
46	4	"	0.0527	NaBO ₂	0.2	5 normal	0.8122
KBr	Ī	"	0.1280	NaCl	I	"	0.1050
KC1	I	"	0.1213	Na ₃ PO ₄ .12H ₂ O	I	"	0.5828
KI	I	"	0.1204	Na ₄ P ₂ O ₇ .10H ₂ O	I	"	0.8463
KNO ₃	I	"	0.1231	Na ₄ P ₄ O ₁₂	I	"	0.0700
K ₂ HA ₅ O ₄	0.5	"	0.1110	ZnSO ₄	2	"	0.0720
KH ₂ As ₆ O ₄	1	"	0.0812	Sugar	0. I	"	0.1225
KH ₂ PO ₄	I	"	0.0860	u	0.5	"	0.1089
K.HPO.	0.5	"	0.4900(?)	"	1	"	0.0931

SOLUBILITY OF CARBON DIOXIDE IN AQUEOUS SOLUTIONS OF SULFURIC ACID.

Res	ults at 15.5°	. (Christoff	, 1905.)	Results at 20°. (Christoff, 1906.)			
Per cent H ₂ SO ₄ in Solvent.	Gms. CO ₂ Absorbed per 75 cc. Solvent.	Per cent H ₂ SO ₄ in Solvent.	Gms. CO ₂ Absorbed per 75 cc. Solvent.	Per cent H ₂ SO ₄ in Solvent.	Solubility of CO ₂ , Ostwald Expres- sion <i>l</i> ₂₀ .		
2.5	0.1282	40	0.0713	0	0.9674		
5	0.1079	45	0.0725	35.82	0.6521		
10	0.0833	70	0.0918	61.62	0.7191		
20	0.0755	90	0.1433	95.6	0.9924		
30	0.0751	="			$\beta = 0.926$ (Bohr, 1910.)		

SOLUBILITY OF CARBON DIOXIDE IN AQUEOUS SOLUTIONS OF CHLORAL HYDRATE AND OF GLYCEROL AT 15°.

Results in terms of the Bunsen absorption coefficient β , and also the Ostwald solubility expression l (see p. 227). (von Hammel, 1915.)

In Aq	. Chloral Hy	drate.	In	Aq. Glycerol.
3ms.	Abs Coef	Salubility	Gms.	Aba Coof

Gms. CCl ₂ .CH(OH) ₂ per 100 Gms. Aq. Sol.	Abs. Coef., β ₁₅ .	Solubility, I ₁₆ .	Gms. (CHsOH)sCHOH per 100 Gms. Aq. Sol.	Abs. Coef., β_{16} .	Solubility, 115.
17.7	0.885	0.935	0	1.008	1.064
31.6	0.803	0.848	26.11	0.785	0.820
38.3	0.781	0.825	43.72	0.639	0.675
49.8	0.760	0.802	62.14	0.511	0.540
57.I	0.765	o . 808	77 - 75	0.430	0.454
68.8	0.797	0.842	90.74	0.404	0.427
79 - 4	0.903	0.953	99.26	0.410	0.438

SOLUBILITY OF CARBON DIOXIDE IN ALCOHOL. (Bohr — Wied. Ann. Physik. [4] 1, 247, '00)

In 9	99 per cent	Alcohol.	In 98.7 per cent Alcohol.		
t°.	oc. CO2 (at o° a	nd 760 mm.) per 1 cc.	cc. CO2 (at oo a	and 760 mm.) per 1 cc.	
٠.	Alcohol.	Sat. Solution.	Alcohol.	Sat. Solution.	
-65	38.41	35 - 93	39.89	37 - 22	
-20	7.51	7 · 4I	7 · 25	7.16	
-10	5 · 75	5.69	5 · 43	5 - 38	
0	4 · 44	4 - 40	4.35	4.31	
+10	3 · 57	3 · 55	• • •	• • •	
20	2.98	2.96	• • •	• • •	
25	2.76	2.74	•••	• • •	
30	2 · 57	2.56	•••	•••,	
40	2.20	2.19	•••	•••	
45	2.0I	2.00	•••	• • •	

SOLUBILITY IN AQUEOUS ALCOHOL AT 20°. (Müller, 1889; Lubarsch, 1889.)

Density of Alcohol.	Per cent Alcohol by Wt.	Abs. Coef. of CO ₂ , α.	Density of Alcohol.	Per cent Alcohol by Wt.	Abs. Coef. of CO ₂ , \alpha.
0.998	1.07	0.861	0.922	49.0	0.982
0.969	22.76	0.841	0.870 (18.8°)	71.1	1.293
0.960 (22.4°)	28.46	0.792	0.835 (16°)	85.3	1.974
0.956	31.17	0.801	0.795 (19°)	99.7	2.719
0.935 (17°)	42.15	0.877			

SOLUBILITY IN AQUEOUS ALCOHOL AT 25°. (Findlay and Shen, 1911.)

Results for alcohol, of $d_{\frac{14}{14}} = 0.9931$			for alcohol, = 0.9929	Results for alcohol, of $d_{\frac{34}{15}} = 0.9834$		
(2.95 gms.	per 100 cc.).	(3.01 gms.	per 100 cc.).	(8.83 gms	. per 100 cc.).	
Pressure m.m. Hg.	Solubility of CO ₂ , Ostwald Expression l ₂₈ .	Pressure m.m. Hg.	Solubility of CO ₂ , Ostwald Expression l ₂₈ .	Pressure m.m. Hg.	Solubility of CO ₂ , Ostwald Expression I ₂ s.	
737	0.812	745	0.814	747	0.786	
836	0.813	937	0.815	942	0.784	
1073	0.811	1083	0.813	1090	0.785	
1338	0.811	1357	0.812	1360	0.788	

These authors also showed that the solubility of CO_2 in wort containing 13 gms. solids per 100 cc. is less than in water; also that the solubility of CO_2 in beer is less than in aqueous alcohol solutions of alcohol content equal to that of the beer.

SOLUBILITY OF CARBON DIOXIDE IN AQUEOUS SOLUTIONS OF NON-ELECTROLYTES AT 20°.

Results in terms of the Bunsen Absorption Coefficient β , see p. 227. (Usher, 1910.)

Aqueous Solu- tion of:	Gm. Mols. per Liter.	d _m of Aq. Sol.	Absorp- tion Coef. 6.	Aqueous Solu- tion of:	Gm. Mols. per Liter.	d₃ of Aq. Sol.	Absorp- tion Coef. β.
Water Alone			0.877	Resorcinol	0.5	1.0096	0.901
Sucrose	0.125	1.0152	0.846	Catechol	0.5	1.0107	0.868
"	0.25	1.0313	0.815	Urethan	0.5	1.0037	0.869
"	0.50	1.0637	0.756	Carbamide	0.5	1.0072	0.864
66	I	1.1281	0.649	Thiocarbamide	0.5	1.0092	0.859
Dextrose	0.5	1.0328	0.792	Antipyrine	0.5	1.0134	0.859
Mannitol	0.5	1.0303	0.782	Acetamide	0.5	1.0005	0.879
Glycine	0.5	1.0141	0.843	Acetic Acid	0.5	1.0026	0.868
Pyrogallol	0.5	1.0172	0.853	n Propyl Alcohol	0.5	0.9939	0.869
Quinol	0.5	1.0095	0.887		-		

SOLUBILITY OF CARBON DIOXIDE IN ORGANIC SOLVENTS AT LOW TEM-PERATURES AND PRESSURES. (Stern, 1912-13.)

Very accurate determinations with an elaborate apparatus. The results are expressed in terms of K' = the number of cc. of CO₃, reduced to 0°, absorbed at the indicated pressure by 1 gram of liquid. This number differs from the Bunsen absorption coefficient only by a constant factor which is the density d of the liquid. Therefore Bunsen coef. $\beta = K'd$. The results are also expressed in terms of the Ostwald solubility expression l (see p. 227).

· t·.	Pressure in m.m. Hg.	Solvent, (d_ga = d_ga =	0.872.	d	CH#OH. o.884. o.866.	(CH	vent,);;CO. 0.900 0.879.	CH-CO	.CaHs.	Solver CH4CO d_qa = 1 d_qa = 1	CHs. 1.056.
		K'.	ī.	<u>K'.</u>	ī.	<u>K'.</u>	<u>l.</u>	<u>K'.</u>	<u>ı. </u>	<u>K'.</u>	<u> </u>
– 78	50	107		194	120.5	311	196.6	250.2	177.5	304.9	224.I
	100	111.8	68.4	195	119.6	322	198.1	255.6	177.1	315	224.3
66	200	115.7	69.5	202.9	I 20.I	344.5	201.5	271.8	179.2	337-4	223.I
"	400	123.8	71.4	221.5	122.2	400	208.8	310.9	183.2	389.3	225.6
"	700	138.6	74-7	260	126.8	545-5		• • •			
– 59	100	40.85	27.27	63	42.5	97.8	67.2	85.3	65.6	94-3	75.8
	200	4I	27.16	64.2	42.7	101.2	68	86.3	65.3	98.45	77.I
**	400	42.35	27.65	66.3	43.I	106.6	72.8	91.6	66.7	103.6	77.6
"	700	44.15	28.10	69	43.35	118.8	72.8	101.5	69.7	112.9	79

SOLUBILITY OF CARBON DIOXIDE IN ORGANIC SOLVENTS AT HIGH PRESSURES. (See Note, p. 228.) (Sander, 1911-12.)

Pres-									
Kg.	СНОН	CHOH	(C-HA-O	CH4COOC4H4		C ₄ H ₄ Cl	CaHaBr	CaHaNOs	CaHaCHa
		(0.103 CC.)	(0.131 00.)	(0.155 CC.)	(0.08 cc.)	(o. top cc.)	(0.113 C.)	(0.164 CC.)	(0.114 CC.)
	(===)	, (,	(0.1.01 00.7	Results a		(111111)	, (5.55		(0.204 00.)
20		56.16			71.16	62.61	50.83	57.12	57.91
30	104.8	86.62		188.2	125.3	95.22	82.20	92.50	103.3
40	149.7	I 22.I		227.0	192.4	137.3	121.1	115.0	155.9
50	188.8	174.6			264.3	187.5	160	155.9	235.8
Results at 35°.									
20		40			48.65	46.66	43.38	44.48	49.6
40	113.1	98.16		188.4	138.3	101.5	90.43	94.39	118.8
60	173	150.0	241.3	219.8	243.I	168.3	146	145.1	192.1
80		260.6					233.9	227	
		•		Results a	t 60°.		00 7	•	
20		24.73	• • •	• • •	34.57	35.86	30.58	31.38	
40	72.82	64.65		140.5	88.71	73.69	62.64	52.26	78.67
60	122.5	111.5	195.4	186.7	156.6	118.1	98.73	72.15	128.1
80	167.9	159.2	221.4	223.4	215	149.3	131.4	85.03	171.0
100	195.7	213.0	248.7		284.4		16g.7		210
		•	•	Results a			, ,		
30						33.65	30.56	41.00	28.68
40		26.5		80.70	46.52	48.16	41.49	50.36	49.25
60	66.05	74.5I	101	132	01.27	77.24	72.64	70.85	85.9 8
80	111.2	107.7	142.8		155.8	103	02.86	86.86	117.6
100	145.7	144.7	175.4		212.Q	121.5	118	•••	149
120	174.6	175-4			258.2	140.7	140.7		171.8
130	-0-6		•••	•••	•••	146.8	•••		178.2

The figures in parentheses immediately below the formulas of the solvents in the above table, show the volumes of solvent used for the series of determinations in each case. The volumes of CO₂ varied from about 55 to 77 cc. in the several cases. The increasing content of CO₂ in the solvents at increasing pressures caused a considerable increase in volume of the solvent. This was determined and the proper calculation of the readings to the saturated solution were made. All necessary figures to show the extent of the applicability of Henry's Law in the present case, are given.

SOLUBILITY OF CARBON DIOXIDE IN ORGANIC SOLVENTS. (Just, 1901.)

The determinations are described in great detail. Results are given in terms of the Ostwald solubility expression l (see p. 227).

Solvent.	ls.	l ₂₀ .	hs.	Solvent.	l ₂₅ .	l ₂₀ .	hs.
Water	0.8256			Benzene	2.425	2.540	2.710
Glycerol	0.0302			Amylbromide	2.455	2.638	2.803
Carbon Disulfide	0.8699	0.8888	0.9446	Nitrobenzene	2.456	2.655	2.845
Iodobenzene	1.301	1.371	1.440	Propyl Alcohol	2.498		
Aniline	1.324	1.434	1.531	Carvol	2.498	2.690	2.914
o Toluidine	1.381	I.473	1.539	Ethyl Alcohol (97%)	2.706	2.923	3.130
m "	1.436	1.581	1.730	Benzaldehyde	2.841	3.057	3.304
Eugenol	1.539	1.653	1.762	Amylchloride	2.910	3.127	3.363
Benzene Trichloride	1.643			Isobutylchloride	3.105	3.388	3.659
Cumol	1.782	1.879	1.978	Chloroform	3.430	3.68r	3.956
Carven	1.802	1.921	2.030	Butyric Acid	3.478	3.767	4.084
Dichlorhydrine	1.810	1.917	2.034	Ethylene Chloride	3.525	3.795	4.061
Amyl Alcohol	1.831	1.941	2.058	Pyridine	3.656	3.862	4.291
Bromobenzene	1.842	1.964	2.092	Methyl Alcohol	3.837	4.205	4.606
Isobutyl Al∞hol	1.849	1.964	2.088	Amylformate	4.026	4.329	4.646
Benzylchloride	1.938	2.072	2.180	Propionic Acid	4.078	4.407	4.787
Metoxylol	2.000	2.216	2.346	Amyl Acetate	4.119	4.41 Ï	4.850
Ethylenebromide	2.157	2.294	2.424	Acetic Acid (glacial)	4.679	5.129	5.614
Chlorobenzene	2.265	2.420	2.581	Isobutyl Acetate	4.691	4.968	
Carbontetrachloride	2.294	2.502	2.603	Acetic Anhydride	5.206	5.720	6.218
Propylenebromide	2.301	2.453	2.586	Acetone	6.295	6.921	• • •
Toluene	2.305	2.426	2.557	Methyl Acetate	6.494	• • •	• • •

Solubility of Carbon Dioxide in Ethyl Ether. Results in Terms of the Ostwald Solubility Expression \boldsymbol{l} .

(Christoff, 1912.)

$$l_0 = 7.330.$$
 $l_{10} = 6.044.$ $l_{15} = 5.465.$

Data for the solubility of carbon dioxide in mixtures of acetic acid and carbon tetrachloride and of ethylene chloride and carbon disulfide are given by Christoff, 1905.

Data for the adsorption of CO₂ by p azoxyphenetol at temperatures below and above its melting point, show that no adsorption or solution occurs while the material is in the solid (unmelted) condition, but after the first melting, absorption takes place and as soon as the isotropic liquid phase is reached, a second very well-marked increase in absorption is observed. After this, expansion and decrease of solubility proceed regularly with rise of temp. (Homfray, 1910.)

The absorption coefficient β of CO₂ in Russian petroleum was found by Gniewosz and Walfisz (1887) to be 1.17 at 20° and 1.31 at 10°.

Data for the absorption of CO₂ by rubber and carbon are given by Reychler (1910).

Data for the absorption of CO₂ by hemoglobin are given by Jolin (1889).

Data for the distribution of CO₂ between air and H₂O, air and aq. H₂SO₄ and air and toluene at various temperatures, are given by Hantzsch and Vagt (1901).

Data for the freezing-points of mixtures of CO₂ and methyl-ether and for CO₂ and methyl alcohol are given by Baume and Perrot (1911, 1914).

CARBON DISULFIDE CS.

SOLUBILITY IN WATER. (Chancel and Parmentier, 1885; Rex, 1906.)

	Grams C	Sa per 100		Grams CS2 per 100		
t°.	cc. Solution.	Gms. H _s O (Rex).	ť.	cc. Solution.	Gms. HsO (Rex).	
0	0.204	0.258	30	0.155	0.195	
5	0.199	•••	35	0.137	• • •	
10	0.194	0.239	40	0.111		
15	0.187	•••	45	0.070	• • •	
20	0.179	0.217	49	0.014	• • •	
25	0.169	• • •				

100 cc. H₂O dissolve 0.174 cc. CS₂ at 22°; Vol. of solution = 100.208, Sp. Gr. = 0.9981.

100 cc. CS₂ dissolve 0.961 cc. H₂O at 22°; Vol. of solution = 100.961, Sp. Gr. = I.253. (Hers, 1898.) SOLUBILITY OF CARBON DISULFIDE IN:

Aq. Solutions of Ethyl Alcohol at 17°.

Methyl Alcohol. (Tuchschmidt and Folleuins, 1871.) (Rothmund, 1898.)

1374 man aant	cc. CS ₂	Wt. per cent	oc. CS ₀		Wt. per	CS ₂ in:
Wt. per cent Alcohol.	per 100 cc. Solvent.	Alcohol.	per 100 cc. Solvent.	t* .	CH-OH Layer.	CSa Layer.
100	∞	91.37	50	10	45.I	98.3
98.5	182	84.12	30	20	50.8	97.2
98.15	132	76.02	20	25	54.2	96.4
96.95 .	100	48.40	2	30	58.4	95.5
93 · 54	70	47.90	0	35	64	93.5
				40.5 (crit. temp.) 80	.5

SOLUBILITY OF CARBON DISULFIDE IN ETHYL ALCOHOL. (Guthrie, 1884.)

Gms. CS ₂ per 100 Gms. CS ₂ +C ₂ H ₂ OH.	Appearance on Cooling in Ice and Salt Mixture.						
94.94	Remains	clear	down	to -	-18.4		
89.54	Becomes	turbio	lat -	-14.	4		
84.89	"	"	".	- 15.	ġ		
79.96	46	"		– 1Ğ.			
65.11	"	"	".	- 17.	7		
59.58	Remains	clear					
29.92	"	"	"	"	"		

CARBON MONOXIDE CO.

SOLUBILITY IN WATER. (Winkler, 1901.)								
ť.	β, "Absorp. Coef."	β',"Solu bility."	q.	t°.	β, "Absorp. Coef."	β', "Solu- bility."	e .	
0	0.03537	0.03516	0.0044	40	0.01775	0.01647	0.0021	
5	0.03149	0.03122	0.0039	50	0.01615	0.01420	0.0018	
IO	0.02816	0.02782	0.0035	60	0.01488	0.01197	0.0015	
15	0.02543	0.02501	0.0031	70	0.01440	0.00998	0.0013	
20	0.02319	0.02266	0.0028	80	0.01430	0.00762	0.0010	
25	0.02142	0.02076	0.0026	90	0.01420	0.00438	0.0006	
30	0.01998	0.01915	0.0024	100	0.01410	0.00000	0.0000	

 β = vol. of CO absorbed by I volume of the liquid at a partial pressure of 760

mm. See p. 227. β' = vol. of CO (reduced to 0° and 760 mm.) absorbed by 1 volume of the liquid under a total pressure of 760 mm.

q = grams of CO dissolved by 100 grams H₂O at a total pressure of 760 mm.

SOLUBILITY OF CARBON MONOXIDE IN WATER AND AQUEOUS SOLUTIONS.

The solubility in water, in terms of the Ostwald solubility expression (see p. 227), was found by Findlay and Creighton (1911) to be $l_{25} = 0.0154$.

Data for the solubility of CO in water at high pressures are given by Cassuto, 913.

Data for the solubility of CO in aq. NaOH solutions are given by Fonda, 1910. Results for the solubility of CO in aq. H₂SO₄ at 20° are given in terms of the Ostwald solubility expression *l* by Christoff (1906) as follows:

 l_{25} for $H_2O = 0.02482$, l_{25} for 35.82% $H_2SO_4 = 0.0114$, l_{25} for 61.62% $H_2SO_4 = 0.00958$, l_{25} for 95.6% $H_2SO_4 = 0.02327$ and 0.02164.

Data for the solubility of CO in ox blood and ox serum at 25° are given by Findlay and Creighton, 1910-11.

Data for the influence of time on the absorption of CO by blood are given by Grehaut (1894). The author passed air containing from one part CO per 1000 to one part CO per 60,000, through 100 cc. portions of blood and found that the maximum absorption, 18.3 cc. CO per 100 cc. of blood (for the 1:1000 mixture) occurred in three hours.

Data for the solubility of CO in aqueous hemoglobin solutions are given by Hüfner (1895) and Hüfner and Kulz (1895).

SOLUBILITY OF CARBON MONOXIDE IN AQUEOUS ALCOHOL SOLUTIONS AT 20° AND 760 MM. PRESSURE.

	(Luoma	ш, 100у./	
Wt. % Alcohol.	Vol. % Absorbed CO.	Wt. % Alcohol.	Vol. % Absorbed CO.
0	2.41	28.57	1.50
9.09	I.87	33 · 33	1.94
16.67	1.75	50	3.20
23.08	1.68		

SOLUBILITY OF CARBON MONOXIDE IN ORGANIC SOLVENTS. (Just, 1901.)

Results in terms of the Ostwald Solubility Expression, see p. 227.

Solvent.	l ₂₅ .	h.	Solvent.	hs.	l _{ab} .
Water	0.02404	0.02586	Toluene .	0.1808	0.1742
Aniline	0.05358	0.05055	Ethyl Alcohol	0.1921	0.1901
Carbon Disulfide	0.08314	0.08112	Chloroform	0.1954	0. 1897
Nitrobenzene	0.09366	0.00105	Methyl Alcohol	0.1955	0.1830
Benzene	0.1707	0.1645	Amyl Acetate	0.2140	0.2108
Acetic Acid	0.1714	0.1689	Acetone	0.2225	0.2128
Amyl Alcohol	0.1714	0.170Ó	Isobutyl Acetate	0.2365	0.2314
Xylene	0.1781	0.1744	Ethyl Acetate	0.2516	0.2419

100 volumes of petroleum absorb 12.3 vols. CO at 20°, and 13.4 vols. at 10°.
(Gniewozz and Walfisz, 1887.)

SOLUBILITY OF CARBON MONOXIDE IN ETHYL ETHER. (Christoff, 1912.)

Results in terms of the Ostwald solubility expression, see p. 227.

 $l_0 = 0.3618.$ $l_{10} = 0.3842.$

SOLUBILITY OF CARBON MONOXIDE IN MIXTURES OF ACETIC ACID AND OTHER SOLVENTS AT 25°. (Skirrow, 1902.)

Results in terms of the Ostwald solubility expression, see p. 227.

Mixture of Acetic Ac. and:	Wt. % CHrCOOH in Mixture.	CO.	Mixture of Acetic Ac. and:	Wt. % CHsCOOH in Mixture.	.co.
Aniline	100	0.173	Chloroform	56.4	0.196
"	86.5	0.110	"	o '	0.206
66	58.3	0.070	Nitrobenzene	78.4	0.156
66	17.8	0.058	".	49	0.130
66 .	o	0.053	"	o	0.093
Benzene	67.5	0.199	Toluene	74 · 7	0.191
"	33 · 5	0.198	"	56.9	0.195
66	19.2	0.190	",	20.5	0.190
66	o	0.174	"	0	0.182

SOLUBILITY OF CARBON MONOXIDE IN MIXTURES OF ACETONE AND OTHER SOLVENTS AT 25°. (Skirrow.)

Mixture of Acetone and:	% (CH ₄) ₂ CO in Mixture. By Wt.	CO.	Mixture of Acetone and:	% (CH ₁) ₂ CO in Mixture. By Wt.	ço.
Aniline	100	0.238	Chloroform	66.6	0.226
"	79.2	0.179	"	26.5	0.212
"	44.9	0.110	66	o Č	0.207
66	0	0.053	$\boldsymbol{\beta}$ Naphthol	86	0.190
Carbon Disulfid	e 82	0.236	3.6	73.I	0.169
"	50.5	0.227	Nitrobenzene	78.4	0.207
"	26	0.187	"	46.8	0.157
66	14.5	0.144	46	0	0.093
"	o	0.096	Phenanthrene	87.2	0.205
Naphthalene	86.7	0.199	"	75	0.183
- 44	72.6	0.187			•

SOLUBILITY OF CARBON MONOXIDE IN MIXTURES OF BENZENE AND OTHER SOLVENTS AT 25°. (Skirtow, 1902.).

The solubility of the CO given in terms of the Ostwald expression, see p. 227.

Mixture of Benzene and:	% C _s H _s in Mixture. By Wt.	CO.	Mixture of Bensene and:	% C ₆ H ₆ in Mixture. By Wt.	CO.
Naphthalene	100	0.174	Aniline	87.3	0.156
- "	88.5	0.164	"	71.7	0.131
66	66.2	0.141	"	42.6	0.005
Phenanthrene	89.5	0.144	"	21.2	0.068
"	72.6	0 127	"	0	0.053
α Naphthol	96.5	0.140	Nitrobenzene	71.8	0.152
7.6	87.9	0.139	"	45.I	0.127
Naphthol	97.9	0.158	"	Ö	0.003
36	95.6	0.149	Ethyl Alconol	47 · 7	0.181
			• "	•	0.102

SOLUBILITY OF CARBON MONOXIDE IN MIXTURES OF TOLUBNE AND OTHER SOLVENTS AT 25°.

			/2007	10W, 1902./			
THE PARTIE OF YOU		n Mixture.	ço.	Mixture of Tol- uene and:		n Mixture.	•
uene and:	Wt. %.	Mol. %.	l ₂₅ .		Wt. %.	Mol. %.	/s.
Aniline	100	100	0.182	α Naphthol	95 · 5	97.I	0.171
"	93 · 4	93 · 5	0.160	**	QI.2	04.2	0.162
"	80. I	80.3	0.148	Nitrobenzene	81. 7	85.7	0.160
66	55.4	55.6	0.115	"	50.8	58. I	0.131
er .	25.4	25.6	0.077	"	23.7	29.3	0.108
"	0	٥	0.053	66	0	0	0.003
Naphthalene		94.8	0.169	Phenanthrene	94.4	97	0.170
- " "	84.g	88.7	0.161	"	88.8	93.9	0.161
"	77.3	82.5	0.153	"	78.4	87.5	0.147

SOLUBILITY OF CARBON MONOXIDE IN MIXTURES OF ORGANIC SOLVENTS AT 25°. (Skirrow.)

Mixture Composed of:			in Mixture.	∞	
	By Wt.	By Mol.	198 -		
Chloroform and		0.0		0.207	
"	"	13.0		0.202	
66	44	100		0.196	
Carbon Bisulphi	de and Ethyl Di Chloride		100	0.147	
. "	66 ·		75	0.157	
46	46		· 51	0.160	
"	· 66		18.4	0.140	
66	66		. 0.0	0.083	
Methyl Alcohol a	and Glycerine	0.0	0.0	o . 196	
" "		39.6	30 · I	0.006	
"	44	6ó.5	50.1	0.052	
u	44	77 · I	68.g	0.025	
"	46	100.0	100.0	very small	

NOTE. — From the results shown in the preceding five tables, it is concluded that the solubility of carbon monoxide in various mixtures of organic solvents is, in general, an additive function.

CARBON OXYSULFIDE COS.

SOLUBILITY OF CARBON OXYSULFIDE IN WATER. (Winkler, 1906.)

ť.	β.	q.	ť.	β.	q.
0	1.333	0.356	20	0.561	0.147
5	1.056	0.281	25	0.468	0.122
10	0.836	0.221	30	0.403	0.104
15	0.677	0.179	_		

For β and q see Carbon Dioxide, p. 227.

SOLUBILITY OF CARBON OXYSULFIDE IN SEVERAL SOLVENTS.

Solvent.	ť.	cc. COS per 100 cc. Solvent.		luthority.
Water	13.5	^	(Hempe	l, 1901.)
"	20	54	(Stock	and Kuss 1917.)
Alcohol	22	800	44	4
Toluene	22	1500	*	•
HCl solution of CuCl	13.5	20	(Hempe	l, 1901 .)
1 gm. KOH+2cc.H ₂ O+2cc.C ₂ H ₅ OH	13.5	7200	•	1
Pyridine		4.4	•	•
Nitrobenzene	• • •	12.0	•	• .

CARBON TETRACHLORIDE CCL.

SOLUBILITY IN WATER. (Rex, 1906.)

230

6. 0.007 0.083 0.080 0.085

RECIPROCAL SOLUBILITY OF CARBON TETRACHLORIDE, ALCOHOL AND WATER.
(Curtis and Titus, 1915.)

Alcohol was added from a weight buret to mixtures of weighed amounts of CCl₄ and H₂O, stirred vigorously at 19.75°, until the mixture became homogeneous.

Per cent CC4.	Per cent CaHaOH.	Per cent H ₂ O.
41.94	43.19	14.89
33.07	47.68	19.25
25.46	50.50	24.04
17.00	51.95	31.05
14.02	51.56	34.42
10.53	50.97	38.50

In order to determine the effect of temperature upon the mutual solubility, one component was added to a known mixture of the other two, and the critical solubility temperature determined by raising and lowering the temp. through the critical point several times. A further amount of the third component was then added and the critical solubility temperature again determined.

Ratio Collection	OH = 0.5048.	Ratio College	la DH = 1.064.	Ratio Colle	H = 2.1012.	Ratio CCle	= 1.0922.
Per cent H _s O.	Crit. Sol.	Per cent H ₂ O.	Crit. Sol. t°.	Per cent H ₂ O.	Crit. Sol.	Per cent C ₂ H ₂ OH.	Crit. Sol. t°.
24.25	-1.8	12.47	2.03	6.84	12.7	47 - 43	44.5
24.61	+3.6	13.95	23.9	7.16	21.55	47.83	39 5
25.13	10.6	14.45	29.8	7 · 35	27.2	48. 6	30.6°
25.64	17	14.85	35.4	7.54	31.3	49.61	19.9
26.14	24.5	15.3	39.55	7.84	36.8	50.07	14.6
27.15	31.45	15.67	42.75	8.02	39.75	50.5 0	9.15
28.52	35.5(?)	16.02	45.5	8.28	44.I	51.06	1.6

The results show that temperature has very little effect on the mutual solubility of the three components. Extensive series of determinations of refractive indices and densities of the mixtures are also given.

Freezing-point data for CCl4+Cl are given by Waentig and McIntosh (1916).

CARMINE.

CARVACROL (CH₂)₂CH.C₄H₂(CH₂)OH.

MISCIBILITY OF AQ. ALKALINE SOLUTIONS OF CARVACROL WITH SEVERAL ORGANIC COMPOUNDS INSOLUBLE IN WATER. (Sheuble, 1907.)

To 5 cc. portions of aq. KOH solution (250 gms. per liter) were added the given amounts of the aq. insoluble compound from a buret and then the carvacrol, dropwise until solution occurred. Temperature not stated.

Composition of Homogeneous Solutions.

Aq. KOH.	Aq. Insol. Compd.	Carvacrol.
5 cc.	2 cc. (= 1.64 gms.) Octyl(1) Alcohol	1.8 gms.
5 "	5 cc. (= 4.1 gms.) "	2.6 "
5 "	2 cc. (= 1.74 gms.) Toluene	4 "
5 "	3 cc. (= 2.61 gms.) "	4.8 "
5 "	2 cc. (= 1.36 gms.) Heptane	4.6 "

(x) = the normal secondary octyl alcohol, i.s., the so-called capryl alcohol, CH4(CH4)s. CH(OH) CHs.

CARVOXIME C₁₀H₄:NOH d, l and i.

Solubility in Aqueous Alcohol of $d_{17-5} = 0.9125$ (51.6 Per Cent C₂H₈OH). (Goldschmidt and Cooper, 1898.)

The determinations were made by the synthetic method. On account of the slow rate at which melted carvoxime solidified on cooling below the melting point, in the tubes containing the synthetic mixtures, it was possible to obtain results which show the solubility curve for liquid carvoxime, in addition to the curves for dextro and inactive carvoxime. The curves for these latter intersect the curve for liquid carvoxime respectively at 51.7°, the m. pt. of dextro, and 70.5° the m.pt. of inactive carvoxime.

Gms. Gms.		Mols. Carvoxime	t ^e of Solution.		Solid Phase.	
Carvoxime.	Solvent. p	er 100 Gms. Solvent.	Solid.	Liquid.		
0.0668	1.0868	0.0373	38.4	13.9	d Carvoxime	
0.1232	1.0830	0.0689	45.8	31.9	"	
0.2026	1.0218	0.1202	50.3	49.8	66	
0.4040	1.0218	0.2396	•••	79.6	66	
0.4128	0.8130	0.3077	• • •	94.5	66	
0.0657	1.0980	0.0363	54.2	• • •	i Carvoxime	
0.1212	1.0161	0.0723	62.5	33 · 7	66	
0.2715	1.0129	0.1625	69.25	61.3	66	
0.3755	1.0384	0.2192	•••	76.6	"	
0.4496	0.7768	0.3409	•••	102.9	66	

SOLUBILITY IN d LIMONENE. (Goldschmidt and Cooper, 1898.)

r.	Gms. C ₁₀ H ₄ :NOH per 100 Gms. d Limonene.	Solid Phase.	t.	Gms. C ₁₀ H ₄ :NOH per 100 Gms. d Limonene.	Solid Phase.
24.6	44.6	l Carvoxime	48	198.7	l Carvoxime
30	59.2	1 "	49.4	199.7	d "
30.3	63.3	ď "	55.1	325.I	<i>l</i> "
38.4	104.3	<i>l</i> "	55.9	346.6	d "
39.3	103.1	ď "	58.8	560	d "
43.I	130.8	1 "	63.2	1269.3	d "

Freezing-point data are given for mixtures of d and l carvoxime by Adriani, 1900 and by Beck, 1904.

CASEIN.

100 gms. H₂O dissolve 2.01 gms. casein at 20-25°. (Dehn, 1917.)

100 gms. pyridine dissolve 0.09 gm. casein at 20–25°.

100 gms. aq. 50% pyridine dissolve 0.56 gm. casein at 20–25°.

Data for the solubility of casein in aqueous NaCl solutions are given by Ryd (1917). An abstract of experiments on the solubility of casein in dilute acids is given by Van Slyke and Winter (1913). Results for the solubility of casein in aqueous solutions of KOH, LiOH and Ca(OH)₂ at various temperatures, are given by Robertson, 1908.

CATECHOL o C₆H₄(OH)₂.

Freezing-point data (solubilities, see footnote, p. 1) are given for mixtures of catechol and picric acid, catechol and a naphthylamine and catechol and p toluidine by Philip and Smith, 1905.

CEPHAELINE Salts.

SOLUBILITY IN WATER. (Carr and Pyman, 1914.)

Gms. Hydrated Salt Formula. Salt. per 100 cc. Sat. Sol. Cephaeline Hydrochloride C₂₈H₂₈O₄N₂.2HCl.7H₂O 17-18 26.5 C28H38O4N2.5HCl 18 about 50 " Hydrobromide C28H25O4N2.2HBr.7H2O 17-18 5.4 (dried at 2007)

GERIUM AGETATE, BUTYRATE, FORMATE, etc.

SOLUBILITY IN WATER. (Wolff — Z. anorg. Chem. 45, 102, '05.)

Salt.	Formula.	Grams Anhydrous Salt per 100 Gms. Solution at			
Sau.	rormus.	11°.	15°.	76°.	
Acetate	Ce(C ₂ H ₂ O ₂) ₃ -1 ¹ / ₂ H ₂ O		19.61	12.97	
Butyrate	$Ce(C_4H_7O_2)_3$, and $3H_2O$	3.544	3.406	1.984	
Iso Butyrate	$Ce(C_4II_7O_2)_{s-3}H_2O$	• • •	6.603(20.4°)	3.39	
Formate	Ce(CHO ₂),	_ •••	0.398(13°)	0.374(75.3 °)	
Propionate	$Ce(C_3H_5O_2)_3.H_2O_4$ and $3H_2O_4$	o	18.99	15.93	

CERIUM AMMONIUM NITRATE (Ceri) Ce(NO₃)₄.2NH₄NO₃-SOLUBILITY IN WATER.

(Wolff.) .

t*.	Gms. 7	Atomic Relation.			Gr	Gms. Co(NO ₃) _{4.2} NH ₄ NO ₃ per 100 Gms.		
	NH4.	Co.	NH.	:	Ce.		Solution.	Water.
25	4.065	15.16	2.08	:	I		58.49	140.9
35.2	4.273	16.1c	2.06	:	I		61.79	161.7
45 - 3	4.489	16.6ç	2.08	:	1		64.51	174.9
64.5	4.625	(17.40 Ce (15.03 Ce IV	2.06 2.39		1 Ce 1 Ce I	V	66.84	201.6
85.6	4.778	(18.16 Ce (15.79 Ce IV	- 0 :	:	ı Ce I	V	69.40	226.8
112	6.117	{22.82 Ce {16.22 Ce IV	2.08 2.95		ı Ce ı Ce IV	7	88.03	735 · 4

CERIUM AMMONIUM NITRATE (Cero) Ce(NO₂)_{2.2}NH₄NO_{2.4}H₃O.

SOLUBILITY IN WATER.

(Wolff.)

ŧ°.	Gms. per 100 Gms. Solution.		Atomic Relation.	Gms. Ce(NO ₃) ₃ .2NH ₄ NO ₃ per 100 Gms.		
• •	NH4.	Ce.	NH ₄ : Ce.	Solution.	Water.	
8.75	4.787	18.56	1.999:1	70.2	235.5	
25.0	5 00	19.80	1.995:1		296.8	
45.0	5.53	21.06	2.037 : I	•	410.2	
60.0	6.01	22.77	2.054 : I	•	681.2	
65.06	6.11	23.42	2.022 : I	89.1	817.4	

CERIUM AMMONIUM SULPHATE Ce,(SO,), (NH,),SO,8H,O.

SOLUBILITY IN WATER.

(Wolff.)

Cog(SO ₄);	ms. .(NH ₄) ₂ SO ₄ oo Gms.	Solid to.	t°.	Gr Ce ₂ (SO ₄) ₃ .(per 100	NHL) ₂ SO ₄	Solid Phase.
Solution				Solution.	Water.	
22.3 5.06	5·33 5·18	.8H ₂ O "	45.0 55.25 75.4 85.2	2.91 2.16 1.46 1.17	1.48	Anhydride " " "

CEROUS CHLORIDE CeCla.

100 cc. anhydrous hydrazine dissolve 3 gms. CeCl₃, with evolution of gas, at room temp. (Weish and Broderson, 1915.)

CERIUM CITRATE 2(CeC₆H₈O₇).7H₂O.

100 gms. of aq. citric acid solution containing 10 gms. citric acid per 100 cc., dissolve 0.3 gm. $Ce(C_0H_0O_7)$ at 20°. (Holmberg, 1907.)

CERIUM COBALTICYANIDE Ce2(CoC4N6)2.9H2O.

100 gms. aq. 10% HCl ($d_{15}=1.05$) dissolve 1.075 gms. of the salt at 25°. (James and Willand, 1916.)

CERIUM FLUORIDE CeF.

Freezing-point lowering data are given for mixtures of CeF₃ + KF by Puschin and Baskow, 1913.

CERIUM GLYCOLATE Ce(C₂H₂O₃)₃.

One liter H₂O dissolves 3.563 gms. of the salt at 20°. (Jantsch and Grunkraut, 1912-13.)

CERIUM IODATE Ce(IO₃)₂.

One liter sat. aqueous solution contains 1.456 gms. Ce(IO₂)₁, determined by a chemical method, and 1.636 gms. determined electrolytically. (Rimbach and Schubert, 1909.)

CERIUM MALONATE $Ce_2(C_2H_2O_4)_2 + 6H_2O$.

Solvent.	t°. G	ms. Ces(CsHsOs)s per
Aq. Ammonium Malonate, containing 10 gms. per 100 cc.	20	0.2
Aq. Malonic Acid, containing 20 gms. per 100 cc.	20	0.6 (Holmberg, 1907.)
		(DOMEDCIK, 1907.)

CERIUM Magnesium, etc., NITRATES.

SOLUBILITY IN CONC. Aq. HNO₂ (d₂₈ = 1.325 = 51.59 Gms. HNO₂ per 100 cc.) At 16°. (Jantsch, 1912.)

Cerium magnesium nitrate, 1 liter sat. solution contains 58.5 gms. [Ce(NO₃)₆]Mg₃. 24H₂O.

"	cobalt	64	"	"	"	103.3 "	"	Coz	"
"	zinc	"	"	66	"	111.7 "	"	Zn.	"
"	manganese	"	"	66	"	178.8 "	"	Mn,	"

CERIUM OXALATE Ce₂(C₂O₄)₂.9H₂O.

One liter H₂O dissolves 0.00041 gm. Ce₂(C₂O₄)₃ at 25°, determined by the electrolytic method. (Rimbach and Schubert, 1909.)

SOLUBILITY OF CERIUM OXALATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AND OF OXALIC ACID AT 25°. (Hauser and Wirth, 1908; Wirth, 1912.)

Conc. of Aqueous Acid.	Sat	Ce ₂ (C ₂ O ₄) ₂ .	Solid Phase.	Conc	. of Aq. Acid.	Sat	Sol.	. Solid Phase.
0.1# H ₂ SO ₄		0.0215 Ce	(C ₂ O ₄) ₃ .9H	Oo.1n(C	OOH)2			O ₂ (C ₂ O ₂) ₂ .9H ₂ O
0.5 "	0.0524	0.0828	"	0.5 "	•	0.0083	0.0131	44
1.0 "	0.114	0.1802	••	1.0 "	1	0.0040	0.0063	44
1.445 "	0.1764	0.2788	"	3.2 '	' (sat.)	0.0019	0.0030	"
2.39 "	0.3083	0.4871	"	0.05	+.05nH.SO	40.0030	0.0047	66
2.9 "	0.4724	0.7467	*	0.05 "	' +.5	0.0025	0.0030	"
3.9 "	0.6300	0.9957	**	0.25	' +.25 "	0.0046	0.0073	er
4.32 "	0.7502	1.1860	**	0.50 "	+.05 "	0.0105	0.0166	66
5.3 "	0.9019	1.4250	44	0.50 '	' + .50 "	0.0010	0.0016	u

CERIUM Dimethyl **PHOSPHATE** Ce₂[(CH₂)₂PO₄]₆.H₂O.

100 gms. H₂O dissolve 79.6 gms. Ce₂[(CH₄)₂PO₄]₆ at 25° and about 65 gms. at 95°. (Morgan and James, 1914.)

CERIUM SELENATE Ce₂(SeO₄)₂.11H₂O.

SOLUBILITY IN WATER. (Cingolani, 1908.)]

r.	Gms. Ce ₂ (SeO ₄)s per 100 Gms. H ₂ O.	Solid Phase.	r.	Gms. Ces(SeOs)s per 100 Gms. HsO.	Solid Phase.
0	39.55	$Ce_2(SeO_4)_3.12H_2O$	60	13.68	$Ce_2(SeO_4)_3.8H_2O$
11.6	37.0	- 46	60.8	13.12	"
12.6		$Ce_2(SeO_4)_3.11H_2O$	78.2	5 · 53	"
26	33.84	"	80.5	4.56	$Ce_2(SeO_4)_3.7H_2O$
28.8	33.22	"	91	2.02	**
34.2	33.15	$Ce_2(SeO_4)_3.1oH_2O$	95.4	1.536	$Ce_2(SeO_4)_3.4H_2O$
45	32.16	"	98	1.785	"
45.9	31.89	46	100	2.513	"

CERIUM SULFATE Ce2(SO4)2.

SOLUBILITY OF THE SEVERAL HYDRATES IN WATER.

(Koppel, 1904; the previous determinations by Muthman and Rolig, 1898, and by Wyrouboff, 1901, are shown by Koppel to be inaccurate.)

\$* .	Gms. Ceg(SO ₄) ₈ per 100 Gms. Solution.	Mols. Ceg(SO ₄); per 100 Mols. H ₂ O.	Solid Phase.	t°.	Gms. Ce ₂ (SO ₄) ₃ per 100 Gms. Solution.	Mols. Ce ₂ (SO ₄) ₃ per 100 Mols. H ₂ O.	Solid Phase.
0	14.20	0.525	Ce ₂ (SO ₄) ₃ .12H ₂ O	20.5	8.69	0.302	Ce3(SO4)3.8H3O
18.8	14.91	0.555	44	40	5.613	0.188	**
19.2	15.04	0.561	•	60	3.88	0.129	. "
Ó	17.35	0.665	Ce2(SO4)2-9H2O	45	8.116	0.280	$Ce_3(SO_4)_8.5H_3O$
15	10.61	0.376	44	60	3.145	0.103	
21	8.863	0.308	4	80	1.19	0.0382	•
31.6	6.686	0.227	**	100.5	0.46	0.0149	•
45.6		0.164	44	35	7.8	027	$Ce_{s}(SO_{4})_{s-4}H_{6}O$
50	4.465	0.148	44	40	5.71	0.19	
60	3 · 73	0.123	•	50	3.31	0.11	
65	3 · 47	0.114	44	65	1.85	o.06	•
Ö	15.95	0.605	Ceg(SO ₄) ₈ .8H ₂ O	82	0.98	0.032	•
15	9.95	0.350	•	100.5	0.42	0.014	•

SOLUBILITY OF CERIUM SULFATE IN AQUEOUS SOLUTIONS OF ALKALI SULFATES. (Barre, 1910.)

In aq. sols. of K₃SO₄ at 16°.		In aq. Na₃SO	sols. of at 19°.	In aq. sols. of (NH ₄) ₂ SO ₄ at 16°.		
Gms. p	er 100 Gms. H ₂ O.	Gms. per 1	∞ Gms. HsO.	Gms. per 100 Gms. H ₂ O.		
KsSOs.	Ces(SO ₄)2.	NacSOs.	Cez(SO ₄)2.	(NH4)2SO4.	Ces(SO ₄)s.	
0	10.747	0	9.648	•	10.747	
0.178	0.956	0.328	0.637	3.464	1.026	
0.510	0.432	0.684	0.259	9.323	0.782	
0.726	0.250	1.091	0.0937	19.240	0.748	
1.290	0.042	1.392	0.0570	29.552	0.701	
0	6.949 (at 33°)	1.699	0.0303	45.616	0.497	
		2.640	0.0120	55.083	0.194	
		3.589	0.0065	63.920	0.090	
		5.660	0.0046	72.838	0.035	
		7.710	0.0037			

The following double salts were found. $Ce_3(SO_4)_3$, K_4SO_4 , $2H_2O$, $2Ce_2(SO_4)_3$, $3K_4SO_4$, $8H_2O$, $Ce_3(SO_4)_3$, $5K_4SO_4$, $Ce_2(SO_4)_3$, Na_3SO_4 , $2H_2O$, $Ce_2(SO_4)_3$, $(NH_4)_3SO_4$, $8H_2O$ and $Ce_2(SO_4)_3$, $5(NH_4)_3SO_4$.

SOLUBILITY OF CERIUM SULFATE IN AQ. SOLUTIONS OF SULFURIC ACID AT 25°. (Wirth, 1912.)

Normality of Ag.	Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Normality of Aq.	Gms. per r Sat. S	Solid Phase	
of Aq. H ₂ SO ₄ .	CeO ₂ =	Ce2(SO4)1	rouse.	H ₂ SO ₄ .	CeO ₂ -	Ces(SO4)a.	rnase.
0.0	4.604	7.60	Ce ₂ (SO ₄) ₂ .8H ₂ O	4.32	2	3.301	Ce2(SO ₄) ₈ .8H ₆ O
0.1	4.615	7.618	"	6.685	0.9115	1.505	"
I.I	3.64	6	u	9.68	0.4439	0.733	"
2.16	3.04	5.018	44	15.15	0.145	0.239	66

CERIUM SULFONATES.

SOLUBILITY IN WATER. (Holmberg, 1907; Katz and James, 1913.)

Name.	Formula.	ť.	drous Salt per 100 Gms. HsO.
Cerium m Nitrobenzene Sulfonate	Ce[C ₆ H ₄ (NO ₂)SO ₂] ₈ .6H ₂ O	15	25.5
Cerium Bromonitrobenzene Sulfonate	: Ce[C ₆ H ₄ Br(NO ₂)SO ₂ 1.4.2] ₈ .8H ₂ O	25	5.89

CERIUM TARTRATE Ce₂(C₄H₄O₆)₃.4½H₂O, also 6H₂O.

SOLUBILITY IN WATER (Rimbach and Shubert, 1909, by electrolytic method)
AND IN AQ. SOLUTIONS. (Holmberg, 1907.)

Solvent.	ŧ*.	Gms. An- hydrous Salt per 100 Gms. Sat. Sol.	Solid Phase.
Water	25	0.005	$Co_2(C_4H_4O_1)_{4-4}H_4O$
Aq. Am. Tartrate, 10 Gms. per 100 cc.	20	0.7	$Ce_2(C_4H_4O_6)_3.6H_4O$
Aq. Am. Tartrate, 20 Gms. per 100 cc.	20	2	и
Aq. Tartaric Acid, 20 Gms. per 100 cc.	20	0.4	a
Aq. Tartaric Acid, 40 Gms. per 100 cc.	20	0.2	•

CERIUM TUNGSTATE Ce2(WO4).

Freezing-point lowering data for mixtures of Ce₂(WO₂)₂ and PbWO₄ are given by Zambonini, 1913.

CETYL ALCOHOL C16H2OH.

100 gms.	methyl	alcohol	dissolve	96.9	gms.	C ₁₆ H ₈ OH	at 23.9°.	(Timofeiew, 1894.)
ส	ethyl	"	46	102.2	46	16	11 11.	44
44	**	"	**	410	46	44	" 37	"
44	propyl	44	44	405	"	44	" 39	44

CHLORAL HYDRATE CCI.CHO.H₂O.

Solubility in Water, Ethyl Alcohol, Chloroform, and in Toluene. (Speyers, 1902.)

Calculated from the original results, which are given in terms of gram molecules of chloral hydrate per 100 gram mols. of solvent.

	In W	ater.	In A	lcohol.	In Ch	oroform.	In To	duene.
t * .	w.	S.	w.	S.	w.	S.	w.	S.
0	1.433	189.7	1.11	123.3	1.530	3.7	0.898	3.2
5	1.460	233.0	1.16	130.0	1.515	4.0	0.900	4.0
10	1 . 485	275.0	1.23	140.0	1.510	5.0	0.910	7.0
15	1.510	330.0	1.30	160.0	1.505	9.0	0.915	0.11
20	1.535	383 .o	1.36	185. 0	1.510	19.0	0.94	21.0
25	1.555	433.0	1.42	215.0	1.520	34.0	0.97	36. 0
30	1.580	480.0	1.49	245.0	1.540	56.0	1.02	56.0
35	1.59	516.0	1.55	280.0	1.570	80.0	1.13	80.0
40	1.605	•••	1.60	320.0	1.590	110.0	1.40	110.0
45	1.620	• • •			• • •	• • •	• • •	• • •

W = wt. of 1 cc. saturated solution, S = Gms. C₂HCl₃.H₃O per 100 grams solvent.

SOLUBILITY IN SEVERAL SOLVENTS.

Solvent.	t°.	Gms. CClsCOH.HsO per 100 Gms. Solvent.	Solvent.	t°.	Gms. CCl ₂ COH.H ₂ O 100 Gms. Solvent.
50% Aq. Pyridine	20-25	374 (Dehn, 1917.)	Ether	ord. t.	200 (Squires.)
Pyridine	20-25	80.9 "		∫ cold	10 "
Carbon Disulfide	ord. t.	1.47 (Squires.)	pentine		20 "
Glycerol	ord. t.	200 "	Olive Oil	ord. t.	100 "

Freezing-point data (solubility, see footnote, p. 1) are given for mixtures of chloral and water by van Rossem (1908); for mixtures of chloral and ethyl alcohol by Leopold (1909); for mixtures of chloral hydrate and menthol by Pawlewski (1893) and for mixtures of chloral hydrate and salol by Bellucci (1912, 1913).

DISTRIBUTION OF CHLORAL HYDRATE BETWEEN WATER AND ORGANIC SOLVENTS.

Immiscil	ole Solvents.	t. Di	st. Coef. $\frac{\text{Conc. in H}}{\text{Conc. in Org. So}}$	O Authority.
Water as	nd Ether	o–30°	0.235	(Hantzsch and Vagt, 1901.)
Water as	nd Benzene	•••	•••	(Bubanovic, 1913.)
Water as	nd Olive Oil	ord.	4.9	(Baum, 1899.)
66 6		30°	4.3	(Meyer, 1901; 1909.)
		3	16.7	(Meyer, 1901.)
"	' Toluene	0-20°	58-74.5	(Hantzsch and Vagt, 1901.)

CHLORAL FORMAMIDE CCL.CH(OH).NH.CHO.

CHLORINE Cia.

100

100 gms. H₂O dissolve 5.3 gms. CCl₂CH(OH).NHCHO at 25°. 100 gms. 95% alcohol dissolve 77 gms. CCl₂CH(OH).NHCHO at 25°.

SOLUBILITY IN WATER.

	(Winkler, 1912; Roozeboom, 1884, 1885, 1888.)									
t.	β′.	q.	ť.	Gms. Cl per 1∞ Gms. H₂O.	Solid Phase.					
0	4.610	1.46	-0.24	0.492	Ice + Cl.8 aq.					
3	3.947	1.25	0	0.507-0.560	Cl.8 aq.					
3 6	3.411	1.08	2	o.644	"					
9	3.031	0.96	4	0.732	"					
9.6	2.980	0.94	6	0.823	"					
12	2.778	o.88	8	0.917	46					
10	3.005	0.980	9	0.965-0.908	"					
15	2.635	0.835	20	1.85	"					
20	2.260	0.716	28.7	3.69	" + 2 layers					
25	1.985	0.630	•		•					
30	1.769	0.562								
40	1.414	0.451								
50	1.204	0.386								
60	1.006	0.324								
70	0.848	0.274								
80	0.672	0.219								
90	0.380	0.125								

 β' = vol. of Cl. (reduced to 0° and 760 mm.) absorbed by I vol. H₂O at total pres-

sure of 760 mm.

q = Gms. Cl per 100 gms. H₂O at a total pressure of 760 mm.

The coefficient of solubility of chlorine at 15°, determined by an aspiration method, is given as 51.7 for carbon tetrachloride, 39.6 for acetic anhydride, 36.7 for 99.84% acetic acid, 25.3 for 90 vol. % acetic acid, 16.43 for 75 vol. % acetic acid and 13.43 for 65 vol. % acetic acid.

(Jones, 1911.)

SOLUBILITY IN WATER. (Goodwin, 1882.)

The saturated aqueous solution of the chlorine was cooled until chlorine hydrate separated; the temperature was then gradually raised and portions withdrawn for analysis at intervals. The chlorine was determined by iodometric titration and the results calculated to volume of chlorine dissolved by unit volume of solvent at the given temperature and 760 mm. pressure. Slightly different results were obtained for solutions in contact with much, little, or no chlorine hydrate. The following results are taken from an average curve:

ť.	Solubility Coefficient.	ť.	Solubility Coefficient.	ť.	Solubility Coefficient.
2.5	1.76	11	. 3	25	2.06
5	2	12.5	2.75	30	1.8
7.5	2.25	15	2.6	40	1.35
10	2.7	20	2.3	50	I

SOLUBILITY OF CHLORINE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AND OF POTASSIUM CHLORIDE. (Goodwin.)

		Coefficient o	Solubility in:		Results at 21	. (Mellor, 1901.)
\$°. ⊂	HCl. .046 Sp. Gr.).	HCl (1.08 Sp. Gr.).	HCl (1.125 Sp. Gr.).	KCl (20 g. per 100 cc.)		solubility of Cl. twald <i>l</i> , see p. 227.)
0	4.I	6.4	7 · 3	1.5	ο.	2.2799
5	5.1	5.2	6.7	2	3.134	1.6698
10	4.I	4.5	6.1	2.2	9.402	1.5013
15	3.5	3.9	5.5	1.6	12.540	1.5292
20	3	3.4	4.7	I.2	31.340	1.8033
25	2.5	3	4	I	125.360	2.4473
30	2	2.4	• • •	0.9	219.380	3.1312
40	1.25	1.6	• • •	•••	313.401	3.8224

✓ Goodwin also gives results for solutions of NaCl, CaCl₂, MgCl₂, SrCl₂, Fe₂Cl₂, CoCl₂, NiCl₂, MnCl₂, CdCl₂, LiCl, and in mixtures of some of these, but the concentrations of the salt solutions are not stated.

SOLUBILITY OF CHLORINE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE. (Kumpf, 1882; Kohn and O'Brien, 1898.)

t°.	Coefficient of Solubility in:								
	9.97% NaCl.	16.01% NaCl.	19.66% NaCl.	26.39% NaCl.					
0	2.3	1.9	1.7	0.5					
5.	2	1.6	1.4	0.44					
10	1.7	1.3	1.15	0.4					
15	1.4	1.06	0.95	0.36					
20	1.2	0.9	0.8	0.34					
25	0.94	0.75	0.65	0.3					
50 80	•••	• • •	• • •	0.2					
80	•••	• • •	• • •	0.05					

100 cc. of 6.2 per cent CaCl₂ solution dissolve 0.245 gm. Cl at 12°. 100 cc. of 6.2 per cent MgCl₂ solution dissolve 0.233 gm. Cl at 12°. 100 cc. of 6.2 per cent MnCl₂ solution dissolve 0.200 gm. Cl at 12°.

For coefficient of solubility see p. 227.

Freezing-point data (solubility, see footnote, p. 1) are given for the following mixtures containing chlorine.

Chlorine	+ Chloroform		(Waentig and	McIntosh, 1916.)	
"	+ Ethyl Alcohol		"	44	
44	+ Methyl Alcohol		u	u	
**	+ Ethyl Acetate	(Waentig and McI	ntosh, 1916; h	faass and McIntosh, r	912.)
44	+ Methyl Acetate		(Waentig and	McIntosh, 1916.)	-
44	+ Ether		. 4	"	
66	+ Hydrochloric Acid		(Mass and M	(cIntosh, 1912.)	
66	+ Iodine		(Stortenbecke	r. 1888. 1889.)	
44	+ Sulfur		(Ruff and Fis	cher, 1903.)	
44	+ Sulfur Dioxide	(Smits and Mooy,	1910: Van de	r Goot, 1913.)	
44	+ Sulfuryl Chloride (S		(Van der Good		
44		- Sulfur Dioxide	4	-7 -5-04	
46	+ Stannic Chloride		(Waentig and	McIntosh, 1916.)	
44	+ Toluene			dass and McIntosh, r	912.)
64	+ Nitrosvi Chloride (I	NOCI)	(Boubpoff and	Guve. 1011.)	•

DISTRIBUTION OF CHLORINE BETWEEN CCl₄ AND GASEOUS PHASE AND BETWEEN CCl₄ AND WATER. (Jakowkin, 1899.)

Results for CCl₄ + Gaseous Phase.

Results for dist. between CCl₄ and H₂O.

1st Series.

Millimole per Liter.

Millimole per Liter.

Millimols C	1 mar T idam	minimos per Lit		Millimois per Liter. Millim			mos per Liter.	
Adminute C	i per tater.	H	O Layer.	CCI4.	H _s O	Layer.	CCIL	
Gaseous Phase.	CCh Phase.	Total Cl.	Unhydro- lized Cl.	Layer.	Total Cl.	Unhy- drolized Cl.	Layer.	
0.1109	8.908	58.21	39.67	803.3	61.73	42.55	864.2	
0.2666	22.46	38.36	22.97	464.6	42.62	26.36	335.1	
0.5365	44.14	23.08	11.12	222.5	28.98	15.24	311.3	
0.8800	75.09	10.10	2.707	52.93	21.70	9.94	202.7	

Data for the effect of HCl upon the distribution between H₂O and CCl₄ are also given.

CHLORINE DIOXIDE CIO2.8H2O ± 1H2O.

SOLUBILITY IN WATER. (Bray, 1905-06.)

	t°.	Gms. ClO ₂ per Liter.	Solid Phase.	t°.	Gms. ClO ₂ per Liter.	Solid Phase.
- 0.	79 Eute	c. 26.98	$ClO_2.8H_2O + Ice$	15.3	87.04	$ClO_1.8H_2O \pm 1H_2O$
0		27.59	$ClO_1.8H_2O \pm rH_2O$	10.7 tr.pt.	107.9	" + liquid ClO ₂
I		29.48	44	14	more than > 107.9	liquid ClO _B
5.	7	42.IO	u	10.7	116.7	"
TO		60.05	46	τ .	more then > TOS 6	44

The exact composition of the hydrate could not be determined on account of manipulative difficulties.

Data for the distribution of ClO₂ between H₂O and CCl₄ at o° and 25° are given, also some results showing the effect of H₂SO₄, KClO₃ and of KCl on this distribution.

CHLORINE MONOXIDE CI.O.

100 volumes of water at 0° absorb 200 volumes of Cl2O gas.

CHLORINE TRIOXIDE Cl.O.

SOLUBILITY IN WATER AT APPROX. 760 MM. PRESSURE. (Brandan, 1869.)

6ms. Cl₂O₃ per 100 gms. H₂O 4.765 5.012 5.445 5.651

Garzarolli and Thurnbalk, 1881, say that Cl₂O₃ does not exist, and above figures are for mixtures of Cl₂O and Cl.

CHLOROFORM CHCl.

SOLUBILITY IN WATER. (Chancel and Parmentier, 1885; Rex, 1906.)

t°.	Gms. CHCla per Liter of Solution.	Density of Solutions.	t°.	Gms. CHCl ₂ per 100 Gms. H ₂ O (Rex).
0	9.87	1.00378		
3.2	8.90		0	1.062
17.4	7.12	1.00284	ю	0.895
29.4	7.05	1.00280	20	0.822
41.6	7.12	1.00284	30	0.776
54.9	7.75	1.00300	_	• •

700 cc. H₂O dissolve 0.42 cc. CHCl₂ at 22°; Vol. of sol. = 100.39 cc., Sp. Gr. =

100 cc. CHCl₃ dissolve 0.152 cc. H₂O at 22°; Vol. of sol. = 99.62 cc., Sp. Gr. = 1.4831. (Herz, 1898.)

SOLUBILITY OF CHLOROFORM IN AQUEOUS ETHYL ALCOHOL, METHYL ALCOHOL, AND ACETONE MIXTURES AT 20°.. (Bancroft, 1895.)

In Ethyl Alcohol. Per 5 cc. CaHaOH.		In Meth	yl Alcohol.	In Acetone. Per 5 cc. (CH ₄) ₂ CO		
		Per 5 cc	. СН•ОН.			
oc. H _s O.	cc. CHCls.	cc. H ₂ O.	cc. CHCla.	cc. H ₂ O.	. cc. CHCla.	
10	0.20	10	0.10	5	0.16	
8	0.3	5	0.48	4	0.22	
6	0.515	4	0.8	3	0.33	
4	1.13	2	4	2	0.58	
2	2.51	1.49	7	I	O.95 5	
I	4.60	1.35	8	0.79	1.12	
0.91	5	1.12	10	0.505	1.60	
0.76	6			0.30	2.50	
0.55	8 ·			0.21	3.50	
0.425	10			0.19	4	
0.20	20			0. IÓ	5	
0.125	30.24			0.12	10	

Data for the system chloroform, ethyl ether and water are given by Jüttner, IQOI.

Experiments by Schachner (1910) show that various fats (olive oil, sheep suet, goose fat) in an atmosphere containing 0.55% CHCl₃ vapor, dissolve 0.96-0.98 per cent CHCl₃ at 38.5

Data for the properties of solutions of CHCl, in water, saline solution, serum, hemoglobin, etc., in their relation to anesthesia are given by Moore and Roaf, (1904) and Waller (1904-05).

Freezing-point lowering data (solubility, see footnote, p. 1) are given for the

following mixtures of chloroform and other compounds.

Mixture.	Authority.
Chloroform + Hydrobromic Acid	(Mass and McIntosh, 1912.)
" + Hydrochloric Acid	(Baume and Borowski, 1914.)
" + Methyl Alcohol " + Methyl Ether	
• p nitrophenyl chloroform + m nitrophenyl chloroform	(Baume, 1914, 1909.)

CHOLESTEROL C.H.OH.H.O.

100 gms. H₂O dissolve 0.26 gm. cholesterol at 20-25° pyridine 68.10 gms. .. 50% aq. pyridine I.10 100 cc. H₂O dissolve 0.0006 gm. cholesterol-digitonide at b. pt. (Mueller, 1917.) 100 cc. ether dissolve 0.0007 gm. cholesterol-digitonide at room temp.

Freezing-point lowering data (solubility, see footnote, p. 1) are given for mixtures of cholesterol acetate and phytosterol α and β by Jaeger, 1907. Data for mixtures of cholesterol and oleic acid, cholesterol and palmitic acid and cholesterol and stearic acid are given by Partington, 1911.

SOLUBILITY OF STEARIC ACID ESTER OF CHOLESTEROL IN OILS AT 37° AND VICE VERSA. (Filehne, 1907.)

The determinations were made by adding small weighed amounts of the ester to the oil at 60° and cooling to 36-37° while stirring continually. The additions of the ester were repeated until a clouding just appeared at 36-37°. In the case of the solubility of the oils in cholesterol, the composition of the sat. solution was estimated by means of the specific gravity and the melting point.

Solvent.	t° of Clouding.	Gms. Ester per 100 Gms. Oil.	Solute.	Gms. Sat.	Solution in Det. by:
Olive Oil	37.6		Olive Oil	Sp. Gr.	M. pt.
Castor Oil	37.6	3·35 0.26	Oleic Acid	25·5 37	33.8 40
Oleic Acid	37.5	4.11	Castor Oil	31 5	1.85
Ricinic (Oil) Acid	37	0.33	Ricinic Acid	20	16
Pseudo Ricinic Acid	1 36.2	0.85	Pseudo Ricinic Acid	. 10	12
Crotonic (Oil) Acid	36.5	0.87	Crotonic Acid	(5)	5

CHOLINE PERCHLORATE and its Nitric Ether.

HOLINE PERCHLORATE and its Nitric Ether.

100 gms. H₂O dissolve about 290 gms. (CH₂)₂N(ClO₄)CH₂CH₂OH at 15°. (Hofmann 100 gms. H₂O dissolve 0.62 gm. (CH₂)₃N(ClO₄)CH₂.CH₂.ONO₂ at 15°. at 20°. (Hobold, 1911.)

CHROMIUM ALUMS.

SOLUBILITY OF CHROMIUM ALUMS IN WATER AT 25°. (Locke, 1901.)

		rer 100 cc. water.			
Alum.	Formula.	Grams	Grams	Gram	
		Anhydrous.	Hydrated.	Mols.	
Potassium Chromium Alum	$K_2Cr_2(SO_4)_4.24H_2O$	12.51	24.39	0.0441	
Tellurium Chromium Alum	Te ₂ Cr ₂ (SO ₄) ₄ .24H ₂ C	10.41	16.38	0.0212	

CHROMIUM CHLORIDES CrCl.6H2O.

SOLUBILITY OF THE GREEN AND THE VIOLET MODIFICATIONS IN WATER AT 25°. (Olie Jr., 1906.)

The solubility of hydrated chromium chloride depends upon the inner composition of the solution, that is, the relative amounts of the green and the violet modification of the salt present in the saturated solution. These are determined by precipitating with silver nitrate. A freshly prepared solution of the green chloride yields only one-third of its chlorine in the cold, hence the composition of this modification, according to Werner, is represented by the formula $[Cr(H_2O)_4Cl_2]$ Cl.2H₂O. The violet chloride is considered to have the composition, [Cr(H₂O)₄]Cl₂. A determination of the amount of each present involves precipitating one portion of the solution at 0° with silver nitrate and another portion (for total Cl) at the boiling point. Experiments were first made with aqueous solutions of different percentage composition of the two modifications. These were agitated at 25° and analyzed at intervals until equilibrium was reached. The time for equilibrium varied from 18 to 40 days according to the concentrations present. The effect of temperature and of the presence of HCl on the transition of the green chloride was also studied.

The equilibrium in saturated solutions at 25° was determined by rubbing the hydrated chromium chloride with a little water previously cooled to 0° to a thin mush. This was then agitated at 25° and portions removed at successive intervals of time and analyzed. The results show the total chloride and per cent present as the green modification.

25 Gms. Green Salt			25 G	ms. Violet	Salt	25 Gms.	Violet Salt	: + 10 cc.	
+ 1	o Gms. H _z	0.	+ 1	to Gms. H	O. 0	f 35% So	l. of the Gi	reen Salt.	
	Gms. CrCla			Gms. CrCls			Gms. CrCla		
	per 100 Gms.			per 100 Gms.			per 100 Gms.		
tion.	Sat. Sol.	Salt.	tion.	Sat. Sol.	Salt.	tion.	Sat. Sol.	Salt.	
l hr.	58.36	91.7	l hr.		1.53	ı l hr.	65.49	15.95	
4 hrs.	63.27	75.2	ı day	63.88	8.46	2 days	70.47	26.81	
ı day	68.50	62.36	4 days	70.68	30.89	5 "	76.38	39 - 34	
3 days	68.95		7 "	72.11	37.28		73.26	34.20	
to days	68.58	57.38	26 "	70.62	51.54	12 "	71.14	58.60	
În a la	ter naner (Olie Ir.	(1007) 8	ives additi	onal res	ults at 20	°. 32° and	25°.	

100 cc. anhydr. hydrazine dissolve 13 gms. CrCl, at room temp. (Welsh & Broderson,'15.)

CHROMIUM TRIOXIDE CrOs.

SOLUBILITY IN WATER.

(Büchner, and Prins, 1912-13; Kremann, Daimer and Bennesch, 1911; Koppel and Blumenthal, 1907; and Mylius and Funk, 1900.)

ť.	Gms. CrO ₃ per 100 Gms. Sat. Sol.	Solid Phase.	1	. ۱	Gms. CrO _s per 100 Gms Sat. Sol.	Solid Phase.	r.	Gms. Cr0 per roo Gm Sat. Sol.	Solid Phase.
- 0.9	3.6	Ice	_	43	5 49.1	Ice	50	64.55	CrO _b
- I.g	7.8	44	_	60	53 - 3	••	65	64.83	a T
- 3.7	11.5	46	- 1	155	60.5	" +CtOs	82	66	•
- 4.8	14.1	.44	_	20	61.7	CrO _n	90	68.5	44
-10.9	5 24.9	u		0	62.24	44	100	67.4	44
-11.7	25.2	44	+	18	62.45	44	115	68.4	44
-18.7	5 33.5	u	•	24.	8 62.88	**	122	70.7	u
-25.2		44		40	63.50		103-106		decomposition

Density of solution sat. at 18° = 1.705.

100 cc. anhydrous hydrazine dissolve I gm. CrO₃ with evolution of gas and production of a black precipitate at room temp. (Welsh and Broderson, 1915.)

CHROMIUM DOUBLE SALTS.

SOLUBILITY IN WATER.

(Jörgensen, 1879, 1884, 1890; Struve, 1899.)

Name of Salt.	Formula.	ť.	Gms. per too Gms. H ₂ O.
Chlorotetraamine Chromium Chlo-			
riɗe	CrCl(NH ₂) ₄ (OH ₂)Cl ₂	15	6.3
Chloropurpureo Chromium Chloride	CrCl(NH ₄) ₅ Cl ₂	ıĞ	0.65
Luteo Chromium Nitrate	$Cr(NH_2)_6(NO_2)_2$?	2.6
Chloropurpureo Chromium Nitrate	CrCl(NH _a) _a (NO _a) _a	17.5	I.4
Chromic Potassium Molybdate	3K ₂ O.Cr ₂ O ₃ .12MoO ₃ .20H ₂ O		2.5

CHROMIUM SULFATES (ous and ic).

SOLUBILITY IN WATER.

Salt.	Gms. per 100 Gms. H ₂ O.	Solid Phase.	Authority.
Chromous	12.35 (at o°)	CrSO _{4.7} H ₂ O	(Moissan, 1882.)
Chromic	120 (at?°)	Cr ₂ (SO ₄) ₃ .18H ₂ O	(Etard, 1877.)

CHROMIUM THIOCYANATE Cr(CNS).

Data for the distribution of Cr(CNS), between water and ether at 0°-30° are given by Hantzsch and Vagt, 1901.

CHRYSAROBIN Cat HatO7.

SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.)

Solvent.	Gms. per 10	oo Gms. Solvent at:	Solvent.	Gms. per 100 Gms.	
Water Alcohol Benzene	25°. 0.021 0.324 4	8°°. 0.046 0.363 (60°)	Chloroform Ether Amyl Alcohol Carbon Disulfide	Solvent at 25°. 5.55 0.873 3.33	

CHRYSENE C18H19.

SOLUBILITY IN TOLUBER AND IN ABS. ALCOHOL.

100 gms. toluene dissolve 0.24 gm. C₁₈H₁₂ at 18°, and 5.39 gms. at 100°. 100 gms. abs. alcohol dissolve 0.097 gm. C₁₈H₁₂ at 16°, and 0.170 gm. at boiling point.

CINEOLE (Eucalyptole) C10H18O.

Freezing-point lowering data (solubility, see footnote, p. 1) for mixtures of cineole and each of the following compounds are given by Bellucci and Grassi, (1913); phenol, α and β naphthol, o, m and p cresol, o, m and p nitrophenol, o, m amidophenol, pyrocatechol, resorcinol, hydroquinone, guaiacol, o, m and p oxybenzoic acid, methyl salicylate, phenyl salicylate, naphthalene and thymol.

CINCHONA ALKALOIDS.

SOLUBILITY OF CINCHONINE, CINCHONIDINE, QUININE, AND QUINIDINE IN SEVERAL SOLVENTS. (Müller, 1903; see also Prunier, 1879.)

	Grams of the Alkaloid per 100 Grams Solution.						
Solvent.	Cinchonine C ₁₉ H ₂₃ N ₃ O.	Cinchonidine C ₁₉ H ₂₂ N ₃ O.	Ot C ₂₀ H ₂ Hydrate.	inine N ₂ O ₂ .	Quinidine C ₂₀ H ₂₄ N ₂ O ₃ .		
Ether	0.10	0.211	1.61g	0.876	0.776		
Ether sat. with H ₂ O	0.123	0.523	5.618	2.794	1.629		
H ₂ O sat. with Ether	0.025	0.0306	0.0667	0.0847	0.031		
Benzene	0.0545	0.099	0.2054	1.700	2.451		
Chloroform	0.6979	9.301	100+	100+	100+		
Acetic Ether	0.0719	0.3003	4.65	2.469	1.761		
Petroleum Ether	0.0335	0.0475	0.0103	0.0211	0.0241		
Carbon Tetra Chloride	e o . 0361	0.0508	0.203	0.529	0.565		
Water	0.0239	0.0255	0.574	0.0506	0.0202		
Glycerine (15.5°)	0.50	• • •	0.50	•••	• • •		

SOLUBILITY OF CINCHONINE AND CINCHONIDINE IN SEVERAL SOLVENTS.

Solvent.	t.		loid per 100 Solvent.	Authority.
		Cinchonine.	Cinchonidine	· ·
Water	ord. temp.	0.0043	• • •	(Hatcher, 1902.)
"	20	0.0131	• • •	(Scholtz, 1912.)
"	25	0.0113	0.021	(Schaefer, 1910.)
Aq. 10% Ammonia	20	0.025		(Scholtz, 1912.)
$Aq. 85\% C_2H_5OH + 10\% Am$. 20	0.41	• • •	u
Aniline	20	1.6	• • •	4
Pyridine	20	1.4	7.78	(Scholtz, 1912; Dehn, 1917.)
50% Aq. Pyridine	20-25	• • •	IO	(Dehn, 1917.)
Aq. 85% C ₂ H ₅ OH (d_{20} =0.832	20	0.86	• • •	(Scholtz, 1912.)
C ₂ H ₄ OH (95%)	20	0.80	5	(Wherry and Yanovaky,1918.)
C ₂ H ₅ OH (prob. 02.3 wt. %)	25	0.62	5. I	(Schaefer, 1913.)
Abs. C₂H₅OH	19	0.874	•••	(Timofeiew, 1894.)
Abs. C ₂ H ₄ OH	25	0.89		(Sill, 1905.)
Benzene	25	0.057	0.127	(Schaefer, 1913.)
Acetone	25	0.001	• • •	(Sill, 1905.)
Chloroform	17	0.014		(Oudemans, 1872.)
"	25	0.606	19	(Schaefer, 1913.)
"	50	0.565	•••	(Köhler, 1879.)
Ether	25	0.055	• • •	(Sill, 1905.)
"	32	0.264	• • •	(Köhler, 1879.)
Isoamyl Alcohol '	. 25	1.10	• • •	(Sill, 1905.)
Isobutyl Alcohol	19	1.09		(Timofeiew, 1894.)
Methyl Alcohol	25	0.785-1.1	7 7.39	(Schaefer, 1913; Sill, 1905.)
Piperidine	20	3.5	•••	(Scholtz, 1912.)
Diethyl Amine	20	1.3		es.
Th. 1. 6 .4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 .				

Results for the solubility of cinchonine and cinchonidine in mixtures of ethyl and methyl alcohols with benzene and with chloroform are given by Schaefer (1913). It is pointed out by Schaefer (1910), that if the saturated solution is analyzed

It is pointed out by Schaefer (1910), that if the saturated solution is analyzed by shaking out with chloroform or ether, variable results, depending on the age and method of manufacture of the alkaloid, will be obtained.

and method of manufacture of the alkaloid, will be obtained.

Except in the case of the results by Sill in the above table, the saturated solutions were obtained by agitating at intervals, instead of constantly at the given temperature.

SOLUBILITY OF CINCHONINE, CINCHONIDINE AND CINCHOTINE SALTS IN WATER.

		Gms. p	er 100 Gms.	H ₂ O.	
Salt.	t°.	Cinchonine	Cinchoni-	Cinchoti	ne Authority.
		Salt.	dine Salt.	Salt.	
Hydrobromide	25	1.7	1.66		(Schaefer, 1910.)
Bíhydrobromic	ie 25	55.5	14.3		"
Hydrochloride		4 · 51	4.82	2.128	(Schaefer, 1910; Forst and Böhringer, 1881.)
Bihydrochloric			62.5		(Schaefer, 1910.)
Sulfate	25	1.174	1.085	3.286	(Schaefer, 1910; Forst and Böhringer, 1881.)
Sulfate	8ŏ	3.1	4.8	•	(U. S. P.)
Bisulfate	25	66.6	100		(Schaefer, 1910.)
Perchlorate	12	O . 3(solve	at = aq.6%	HC107)	(Hofmann, Roth, Höbold and Metzler, 1910.)
Salicylate	25	0.17	0.075		(Schaefer, 1910.)
Tannate	25	0.001	0.055		u
Tartrate	25	3.127		I.768	(Schaefer, 1910; Forst and Böhringer, 1881.)
Bitartrate	ıŏ	0.99		1.28	(Forst and Böhringer, 1881.)
Oxalate	20	0.06		1.16	
	4 at 15°				1 at 15°. 6 at 13°. 7 3 at 16°. 8 at 16°.
				-	

Solubility of Cinchonine Sulfate and of Cinchonidine Sulfate in Alcohol and Other Solvents.

		Gms. per 100 (Gms. Solvent.	
Solvent.	t°.	(C ₁₀ H ₂₀ N ₂ O) ₂ - H ₂ SO ₄ .2H ₂ O.	(C ₁₉ H ₂₂ N ₂ O) ₂ - H ₂ SO ₄₋₃ H ₂ O.	Authority.
Ethyl Alcohol (92.3 wt. %)	25	9.8 (10)	0.85 (1.4)	(Schaefer, 1913; U. S. P.)
	60	(19.2)	(3.1)	(U. S. P.)
Methyl Alcohol	25	83.9	35.9	(Schaefer, 1913; U. S. P.)
Chloroform Ether	25	0.66 (1.45)	0.1 (0.11) 0.02	(Schaefer, 1913; U. S. P.) (U. S. P.)
Glycerol	25 15	a.04 6.7		(U. S. F.)
~-, ~~~	-3	~.,	• • •	

Results for mixtures of alcohol, chloroform and benzene are given by Schaefer, '12. Very carefully determined data for the solubility of *Cinchonine* in ethyl alcohol, methyl alcohol, amyl alcohol and acetone solutions of various concentrations of a large number of organic acids and of phenols are given by Sill, 1905.

CINNAMIC ACID C.H.CH: CH.COOH.

100 gms. H₂O dissolve 0.0495 gm. C₆H₅CH:CHCOOH at 25°. (De Jong, 1909.)
100 gms. H₂O dissolve 0.0607 gm. C₆H₆CH:CHCOOH at 25°. (Sidgwick, 1910.)
100 cc. 0.5 n sodium cinnamate solution dissolve 0.155 gm. C₆H₆CH:CHCOOH at 25° (Sidgwick, 1910.)
100 cc. sat. sol. in petroleum ether (b. pt. 30°-70°) contain 0.095 gm. C₆H₆CH:

CH.COOH at 26°.

100 cc. sat. sol. in petroleum etner (b. pt. 30 -70) contain 0.095 gm. C₄r₄CH: CH.COOH at 26°.

100 cc. sat. sol. in carbon tetrachloride contain 2.172 gms. C₄H₄CH:CH.COOH

at 26°. (De Jong, 1909).

100 cc. sat. sol. in 95% formic acid contain 3.76 gms. C₆H₆CH:CH.COOH at 20°.

(Aschan, 1913.)
SOLUBILITY OF CINNAMIC ACID (Melting point, 133°) IN ALCOHOLS. (Timofeiew, 1894.)
Gms. Cinnamic Acid per 100 Gms. Sat. Solution in:

40	•	ma. Camarine ricie p	C. 100 C	. colucion m.
r.	СН,ОН.	C,H,OH.	C ₂ H ₇ OH.	(CH ₂),CH.CH ₂ OH.
- 1 8	8.1	6.74	4.3	• • •
—12.5	9.3	8	5.5	• • •
0	13	11.3	8.2	
+19.5	22.5	18.1	13.4	8.6

Solvent.	CHCOOH D		Solvent.	c	нсоон		POLAG		_	COOH
	100 cc. Sat. S	ol. CH	Cl _a C	CL 10	occ. Sat.	Soi. Cal	ICl,	C3H	Clai i	per 100 cc.
										Sat. Sol.
Chloroform .	12.00	100	cc.+ o	CC.	I2.00	100	cc.+	0	cc.	6.04
Carbontetrachlo	ride 1.75	80	" 🕂 20	"	0.86	80	" `	20	46	5.91
Trichlorethylene		50	" 🕂 50	"	6.61	50	" 	50	"	5.85
Tetrachlorethyle	ne 2.55	33 -	3" + 66	.6 "	4.50	33.	3"∔	66.	6 "	5.82
Tetrachlorethan	11.05	20	ັ" + 8o	"	3.32	20	~"÷	80	"	5.70
Pentachlorethan	B 5.54	0	" † 100	"	1.75	0	" †	100	"	5.54

CINNAMIC ACID C.H.CH:CH.COOH.

SOLUBILITY OF CINNAMIC ACID IN AQUEOUS SOLUTIONS OF SODIUM ACETATE, BUTYRATE, FORMATE, AND SALICYLATE AT 26.4°.

(Philip — J Chem. Soc. 87, 992, '95.)

Calculated from the original results, which are given in terms of molecular quantities per liter.

Gms. Na Salt	Gms. CeHsCH:CH.COOH per Liter in Solutions of:							
per Liter.	CH ₂ COONs.	C ₂ H ₇ COONa.	HCOONs.	CoH4.OH.COONs.				
0	0.56	0.56	0.56	0.56				
1	1.50	1.30	0.92	0.62				
2	2.12	1.85	1.12	o · 70				
3	2.52	2.25	I . 27	0.73				
4	2.85	2.60	1.40	o · 77				
5	3.05	2.90	I .47	o ·8o				
Š	• • •	•••	•••	0.90				

1 liter of aqueous solution contains 0.491 gm. C₆H₅CH:CH.COOH at 25° (Paul).

SOLUBILITY OF CINNAMIC ACID IN AQUEOUS SOLUTIONS OF ANILIN AND OF PARA TOLUIDIN AT 25°.

(Lowenherz — Z. physik. Chem. 25, 394, '98.)

Original results in terms of molecular quantities per liter.

In Aq	ueous Anilin.	In Aqueo	Aqueous p Toluidin.			
Gr	ams per Liter.	Grams per Liter.				
CoHanha.	CoHoCH: CHCOOH.	CoH4CH4NH4.	C ₆ H ₆ CH:CHCOOH.			
0	0.49	0	0.49			
I.	1.20	I	I.52			
2	1.65	2	2.20			
3	2.02	3	2.83			
4	2.35	4	3 · 35			
6	2.02	5	3 ·8o			

Freezing-point data for mixtures of cinnamic acid and dimethylpyrone and for hydrocinnamic acid and dimethylpyrone are given by Kendall, 1914.

BromoCINNAMIC ACIDS.

Solubility of α and of β Bromocinnamic Acids in Water at 25°. (Paul, 1894.)

Acid.	Per 1000 cc. Sat. Solution.			
nusu.	Gms.	Millimols.		
α C ₆ H ₅ CH: CBrCOOH β C ₆ H ₆ CBr: CHCOOH	3.9325 0.5255	17.32 2.315		

Solubility of α Iso Bromocinnamic Acid in Aqueous Solutions of Oxanilic Acid (Melting point = 120°) at 25°. (Noyes, 1890.)

Normality of		Grams per Liter.			
CHANHCO- COOH.	C.H.CH- CBrCOOH.	CHNHCO- COOH.	C.H.CH- CBrCOOH.		
0	0.0176	•	3.995		
0.0275	0.0140	4 · 54	3.178		
0.0524	0.0129	8.65	2.928		

Allo CINNAMIC ACIDS (Unstable Isomers of Cinnamic Acid).

SOLUBILITY OF EACH OF THE THREE ISOMERIC ALLOCINNAMIC ACIDS AND OF THE MELTS OF THE THREE ISOMERS IN WATER.

Resu	lts for:		(Micyci)	1911.)			
Allocin	namic Acid	Allocin	namic Acid		namic Acid	Melte	ed Allocin-
of M	. pt. 68°.		. pt. 58°.	of M	. pt. 42°.		nic Acid.
	_ •	(Natural Is	ocinnamic Acid.)	(Artificial I	ocinnamic Acid.)		
t°.	Gms. Acid	r.	Gms. Acid per Liter.	ť.	Gms. Acid per Liter.	t°.	Gms. Acid per Liter
18	6.88	18	7.62	18	8.95	18	13.63
25	8.45	25	9.37	25	11.03	25	14.44
35	11.14	35	12.39	35	14.61	35	16.05
45	14.46	45	16.09			45	18.11
55	18.45					55	20.55
Thes	e curves in	tersect ti	hat for the r	nelted aci	d at the	65	23.43
melting	points of t	he solid is	somers.			75	27.60

The results show that the three isomers are polymorphic modifications of the cis acid.

100 gms. ligroin (b. pt. 60–70°) dissolve more than 16 gms. isocinnamic acid.
(Liebermann, 1903.)
100 gms. ligroin (b. pt. 60–70°) dissolve approx. 2 gms. allocinnamic acid. "

SOLUBILITY OF α CHLOROCINNAMIC ACID, ETC., IN BENZENE. (Stoermer and Heymann, 1913.)

Name of Compound.	M . pt.	Gms. Cmpd. per 100 Gms. C4H4.	Name of Compound.	M. pt.	t°.	Gms. Cmpd. per 100 Gms. C ₄ H ₄ .
α Chlor- Allo α " α Brom- Allo α " β Chlor- Allo β "	137 111 131 120 142 132	20 2.6 21 11 20 5.17 18.5 6.9 17 1.94 16 3.17	β Brom- Allo β " cis Dichlor- trans cis Dibrom- trans "	T2T	13 14 13 14 14	1.58 0.86 6.1 21.2

FREEZING-POINT DATA (Solubility, see footnote, p. 1) FOR MIXTURES OF CINNAMIC ACID AND OTHER COMPOUNDS, AND OF CINNAMIC ACID DERIVATIVES AND OTHER COMPOUNDS.

Cinnamic Acid + Phenylpropionic Acid (Bruni and Gorni, 1899.)

p Methoxycinnamic Acid + Hydroquinone (de Kock, 1904.)

α Monochlorcinnamic Aldehyde + α Monobromcinnamic Aldehyde
Cinnamylidine + Diphenylbutadiene (Pascal, 1914.)

" + Diphenyldiacetylene "

CITRIC ACID (CH₂)₂COH(COOH)₂.H₂O.

SOLUBILITY OF HYDRATED AND OF ANHYDROUS CITRIC ACID, DETERMINED SEPARATELY, IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL AT 25°.

(Seidell, 1910.)

Results for	Hydrat	ed Citric Acid.	Results for	Anhydr	ous Citric Acid.
Wt. % C ₂ H ₄ OH in Solvent.	d _m of Sat. Sol.	Gms. (CH ₂) ₂ COH- (COOH) ₂ .H ₂ O per 100 Gms. Sat. Solution.	Wt. % C.H.OH in Solvent.	d ₂₅ of Sat. Sol.	Gms. (CH ₂) ₂ COH- (COOH) ₂ per 100 Gms. Sat. Solution.
0	1.311	67.5	20	1.297	62.3
20	1.286	66	40	1.246	59
40	1.257	64.3	60	1.190	54.8
50 60	1.237	63.3	70	1.160	52.2
60	1.216	62	80	1.120	48.5
70	1.192	6o.8*	90	1.065	43.7
80	1.163		100	1.010	38.3
90	1.125	54·7*			
100	1.068		Solid phase dehy	drated mo	re or less completely.

	255	CITRIC ACID
SOLUBILITY OF HYDRATED AND SEPARATELY, IN SEVERAL Results for Hydrated Citric	ORGANIC ACIDS AT 25°.	ACID, DETERMINED (Seidell, 1910.) Inhydrous Citric Acid.
·	Gms. (CH ₂) _r COH (COOH) ₃ .H ₂ O Solvent. per 100	Gma. d_{35} of $(COOH)_2$ COH Sat. Sol. $(COOH)_2$ per 100 Gms.
Amyl Acetate of $d_{20} = 0.8750$ 0.891 Amyl Alcohol of $d_{20} = 0.8170$ 0.877 Ethyl Acetate of $d_{20} = 0.8915$ 0.917 Ether (abs.) of $d_{20} = 0.7110$ 0.722 Chloroform of $d_{20} = 1.476$ 1.485	14 15.430 Ether (abs.) 15 5.276 Chloroform 18 2.174 CaHe, CS2	0.7160 1.05 1.4880 0
	0.005gm. citricacidat 1	at 20°. (Aschan, 1913.) 15°. (Wester & Bruins, '14.)
DISTRIBUTION OF CITRIC ACID E	SETWEEN WATER AND E	THER. (Pinnow, 1915.)
Results at 15°.	•	ts at 25.5°.
Mols. Citric Acid per Liter. In H ₂ O Layer. In Ether Layer. Dist. C	oef. Mols. Citric Acid	Ether Layer. Dist Coef.
0.902 0.0077 II7	• •	0.0063 114
0.460 0.0036 128	, ,,,,	0.0031 155
0.220 0.0017 129	0.241	0.00155 155
0.297 0.0023 129	0.315	0.0020 158
COBALT AMINES.		
SOLUBILITY IN WATER AT (DEDINARY TEMPERATURE.	(Lal De, 1917.)
		Gms. Isom-
Name of Isomeride.	Formul	a. eride per
Triamine Cobalt Nitrate 1.2 Dinitrotetraamine cobaltitetr amine cobaltiate 1.6 Dinitrotetraamine cobaltitetra	anitrodi- $ \begin{bmatrix} (NH_s)_sCo(NO_s)_s \\ Co(NO_s)_s \end{bmatrix}^{I} - \begin{bmatrix} NH_s \end{bmatrix}^{I} $ anitrodi-	eride per litter Sat. Sol. 2.882 Co(NO ₂) ₄ 3.68
Triamine Cobalt Nitrate 1.2 Dinitrotetraamine cobaltitetramine cobaltiate 1.6 Dinitrotetraamine cobaltitetramine cobaltiate	anitrodi- $\begin{bmatrix} (NH_4)_2Co(NO_2)_2 \\ Co(NH_2)_2 \end{bmatrix}^1 - \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix}$ anitrodi-	eride per liter Sat. Sol. 2 . 882 Co(NO ₂) ₄ 3 . 68 " 0 . 398
Triamine Cobalt Nitrate 1.2 Dinitrotetraamine cobaltitetramine cobaltiate 1.6 Dinitrotetraamine cobaltitetramine cobaltiate Hexa-amine cobaltihexanitrocobaltia	anitrodi- [(NH ₃) ₃ Co(NO ₂) ₃ [Co (NO ₂) ₂] - anitrodi- "	eride per liter Sat. Sol. 2 . 882 Co(NO ₂) ₄ 3 . 68 " 0 . 398
Triamine Cobalt Nitrate 1.2 Dinitrotetraamine cobaltitetra amine cobaltiate 1.6 Dinitrotetraamine cobaltitetra amine cobaltiate Hexa-amine cobaltihexanitrocobaltia COBALT DOUBLE SALTS.	anitrodi- $\begin{bmatrix} (\mathrm{NH_2})_2\mathrm{Co}(\mathrm{NO_2})_2\\ \mathrm{Co}(\mathrm{NH_2})_2 \end{bmatrix}^{\mathrm{I}} - \begin{bmatrix} \mathrm{Co}(\mathrm{NH_2})_2\\ \mathrm{Co}(\mathrm{NH_2})_2 \end{bmatrix}^{\mathrm{I}} - \begin{bmatrix} \mathrm{Co}$	eride per liter Sat. Sol. 2 . 882 Co(NO ₂) ₄ 3 . 68 " 0 . 398
Triamine Cobalt Nitrate 1.2 Dinitrotetraamine cobaltitetra amine cobaltiate 1.6 Dinitrotetraamine cobaltitetra amine cobaltiate Hexa-amine cobaltihexanitrocobaltia COBALT DOUBLE SALTS. SOLUB:	anitrodi- $\begin{bmatrix} (NH_s)_s Co(NO_s)_s \\ Co(NH_s)_s \end{bmatrix}^1 - \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$ anitrodi- $(Co(NH_s)_s)^{\underline{m}} - \begin{bmatrix} \\ \\ \\ \end{bmatrix}$ ILITY IN WATER.	co(NO ₂) ₄ = eride per liter Sat. Sol. 2.882 Co(NO ₂) ₄ 3.68 " 0.398 co(NO ₂) ₄ 0.0215
Triamine Cobalt Nitrate 1.2 Dinitrotetraamine cobaltitetra amine cobaltiate 1.6 Dinitrotetraamine cobaltitetra amine cobaltiate Hexa-amine cobaltihexanitrocobaltia COBALT DOUBLE SALTS.	anitrodi- $\begin{bmatrix} (NH_s)_s Co(NO_s)_s \\ Co(NH_s)_s \end{bmatrix}^1 - \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$ anitrodi- $(Co(NH_s)_s)^{\underline{m}} - \begin{bmatrix} \\ \\ \\ \end{bmatrix}$ ILITY IN WATER.	eride per liter Sat. Sol. 2.882 Co(NO ₂) ₄ 3.68 (NH ₃) ₂ 3.68 (NO ₂) ₄ 0.398 (NO ₂) ₄ 0.0215
Triamine Cobalt Nitrate 1.2 Dinitrotetraamine cobaltitetra amine cobaltiate 1.6 Dinitrotetraamine cobaltitetra amine cobaltiate Hexa-amine cobaltihexanitrocobaltia GOBALT DOUBLE SALTS. SOLUB! (Jörgensen — J. pr. Chem. [2] 18, 205, '78; 11	[(NH ₂) ₂ Co(NO ₂) ₃ anitrodi- [Co(NH ₂) ₂] - [Anitrodi- te [Co(NH ₂) ₄] - [Co(NH ₂	co(NO ₂) ₄ = eride per liter Sat. Sol. 2.882 Co(NO ₂) ₄ 3.68 " 0.398 co(NO ₂) ₄ 0.0215
Triamine Cobalt Nitrate 1.2 Dinitrotetraamine cobaltitetra amine cobaltiate 1.6 Dinitrotetraamine cobaltitetra amine cobaltiate Hexa-amine cobaltihexanitrocobaltia GOBALT DOUBLE SALTS. SOLUB! (Jörgensen — J. pr. Chem. [2] 18, 205, '78; 18 Name. Chloro purpureo cobaltic bromie	[(NH ₂) ₂ Co(NO ₂) ₃ anitrodi- [Co(NH ₂) ₂] - [Anitrodi- te [Co(NH ₂) ₄] - [Co(NH ₂	eride per liter Sat. Sol. 2.882 Co(NO ₂) ₄ 3.68 co(NO ₂) ₄ 3.68 co(NO ₂) ₄ 0.398 co(NO ₂) ₄ 0.0215 phys. chem. Ges. 24, 629, Gms. Salt per 100 Gms. H ₂ O. 14.3 0.467
Triamine Cobalt Nitrate 1.2 Dinitrotetraamine cobaltitetra amine cobaltiate 1.6 Dinitrotetraamine cobaltitetra amine cobaltiate Hexa-amine cobaltihexanitrocobaltia GOBALT DOUBLE SALTS. SOLUB: (Jörgensen — J. pr. Chem. [2] 18, 205, '78; in Name. Chloro purpureo cobaltic bromic Bromo purpureo cobaltic bromic	[(NH ₂) ₂ Co(NO ₂) ₃ anitrodi- [Co(NH ₂) ₂] - [anitrodi- te [Co(NH ₂) ₄] ¹ -	co (NO ₂) ₄ 1
Triamine Cobalt Nitrate 1.2 Dinitrotetraamine cobaltitetra amine cobaltiate 1.6 Dinitrotetraamine cobaltitetra amine cobaltiate Hexa-amine cobaltihexanitrocobaltia GOBALT DOUBLE SALTS. SOLUB: (Jörgensen — J.pr. Chem. [2] 18, 205, '78; in Name. Chloro purpureo cobaltic bromic Bromo purpureo cobaltic bromic Chloro tetra amine cobaltic chloro	[(NH ₂) ₂ Co(NO ₂) ₃ anitrodi- [Co(NH ₂) ₂] - [anitrodi- te [Co(NH ₂) ₄] ¹ - [CO(NH ₂) ₄] - [CO(NH ₂) ₅] - [CO(NH ₂) ₄] - [CO(NH ₂)] - [CO(NH ₂) ₄] - [CO(NH ₂)] - [CO(NH ₂)] - [CO(NH ₂)] -	eride per liter Sat. Sol. 2.882 Co(NO ₂) ₄ 3.68 co(NO ₂) ₄ 0.398 co(NO ₂) ₅ 0.0215 phys. chem. Ges. 24, 629, Gms. H ₃ O. 14.3 0.467 16 0.19 2.50
Triamine Cobalt Nitrate 1.2 Dinitrotetraamine cobaltitetra amine cobaltiate 1.6 Dinitrotetraamine cobaltitetra amine cobaltiate Hexa-amine cobaltihexanitrocobaltia GOBALT DOUBLE SALTS. SOLUB: (Jörgensen — J.pr. Chem. [2] 18, 205, '78; in Name. Chloro purpureo cobaltic bromic Bromo purpureo cobaltic bromic Chloro tetra amine cobaltic chloric Chloro purpureo cobaltic chloric	[(NH ₃) ₂ Co(NO ₂) ₃ anitrodi- [Co(NH ₃) ₄] ¹ - [anitrodi- te [Co(NH ₃) ₄] ¹ - [Co(NH ₃) ₄] ¹	eride per liter Sat. Sol. 2.882 Co(NO ₂) ₄ 3.68 co(NO ₂) ₄ 0.398 co(NO ₂) ₅ m 0.0215 phys. chem. Ges. 24, 629, to Gms. Salt per 100 Gms. H ₂ O. 14.3 0.467 16 0.19 2.50 0.232
Triamine Cobalt Nitrate 1.2 Dinitrotetraamine cobaltitetra amine cobaltiate 1.6 Dinitrotetraamine cobaltitetra amine cobaltiate Hexa-amine cobaltihexanitrocobaltia GOBALT DOUBLE SALTS. SOLUB: (Jörgensen — J.pr. Chem. [2] 18, 205, '78; in Name. Chloro purpureo cobaltic bromic Bromo purpureo cobaltic bromic Chloro tetra amine cobaltic chloric Chloro purpureo cobaltic chloric Chloro purpureo cobaltic chloric Chloro purpureo cobaltic chloric Chloro purpureo cobaltic chloric	[(NH ₃) ₂ Co(NO ₂) ₃ anitrodi- [Co(NH ₃) ₄] - [Co(NH ₃) ₅] - [Co(NH	co (NO ₂) ₄ 1
Triamine Cobalt Nitrate 1.2 Dinitrotetraamine cobaltitetra amine cobaltiate 1.6 Dinitrotetraamine cobaltitetra amine cobaltiate Hexa-amine cobaltihexanitrocobaltia GOBALT DOUBLE SALTS. SOLUB: (Jörgensen – J. pr. Chem. [2] 18, 205, '78; in Name. Chloro purpureo cobaltic bromic Bromo purpureo cobaltic chloric Chloro purpureo cobaltic chloric	[(NH ₃) ₂ Co(NO ₂) ₃ anitrodi- [Co(NH ₃) ₄] - [Co(NH ₃) ₅] - [Co(NH	co (NO ₂) ₄ co (NO ₂) ₄
Triamine Cobalt Nitrate 1.2 Dinitrotetraamine cobaltitetra amine cobaltiate 1.6 Dinitrotetraamine cobaltitetra amine cobaltiate Hexa-amine cobaltihexanitrocobaltia GOBALT DOUBLE SALTS. SOLUB: (Jörgensen — J.pr. Chem. [2] 18, 205, '78; in Name. Chloro purpureo cobaltic bromic Bromo purpureo cobaltic bromic Chloro tetra amine cobaltic chloric Chloro purpureo cobaltic chloric	[(NH ₃) ₂ Co(NO ₂) ₃ anitrodi- [Co(NO ₂) ₂] - [Co(NH ₃) ₄] - [Co(NH ₃) ₅] - [Co(NH ₃) ₆] - [Co(NH ₃) ₅] - [Co(NH ₃) ₆] - [Co(NH	co (NO ₂) ₄ 1
Triamine Cobalt Nitrate 1.2 Dinitrotetraamine cobaltitetra amine cobaltiate 1.6 Dinitrotetraamine cobaltitetra amine cobaltiate Hexa-amine cobaltihexanitrocobaltia GOBALT DOUBLE SALTS. SOLUB: (Jörgensen – J.pr. Chem. [2] 18, 205, '78; in Name. Chloro purpureo cobaltic bromic Bromo purpureo cobaltic chloric Chloro purpureo cobaltic chloric Luteo cobaltic chloride Luteo cobaltic chloride	[(NH ₃) ₂ Co(NO ₂) ₃ anitrodi- [Co(NO ₂) ₂] - [Co(NH ₃) ₄] - [Co(NH ₃) ₅] - [Co(NH ₃) ₅] - [Co(NH ₃) ₅ Cl ₂ - [Co(NH ₃) ₅ Cl ₂ - [Co(NH ₃) ₆ Cl ₃ - [Co(NH ₃) ₆ Cl	co (NO ₂) ₄ co (NO ₂) ₄
Triamine Cobalt Nitrate 1.2 Dinitrotetraamine cobaltitetra amine cobaltiate 1.6 Dinitrotetraamine cobaltitetra amine cobaltiate Hexa-amine cobaltihexanitrocobaltia GOBALT DOUBLE SALTS. SOLUB: (Jörgensen — J.pr. Chem. [2] 18, 205, '78; in Name. Chloro purpureo cobaltic bromic Bromo purpureo cobaltic bromic Chloro tetra amine cobaltic chloric Chloro purpureo cobaltic chloric	[(NH ₃) ₂ Co(NO ₂) ₃ anitrodi- anitrodi- te [Co(NH ₃) ₄] ¹ - [Co(NH ₃) ₄ - [Co(NH ₃) ₄] ¹ - [co (NO ₂) ₄ 1 3.68 2.882 2.882 3.68 3
Triamine Cobalt Nitrate 1.2 Dinitrotetraamine cobaltitetra amine cobaltiate 1.6 Dinitrotetraamine cobaltitetra amine cobaltiate Hexa-amine cobaltihexanitrocobaltia GOBALT DOUBLE SALTS. SOLUB: (Jörgensen — J.pr. Chem. [2] 18, 205, '78; in Name. Chloro purpureo cobaltic bromic Bromo purpureo cobaltic bromic Chloro purpureo cobaltic chloric Luteo cobaltic chloride Luteo cobaltic chloride Roseo cobaltic chloride Roseo cobaltic chloride Chloro purpureo cobaltic iodide Chloro purpureo cobaltic iodide	[(NH ₃) ₃ Co(NO ₂) ₃ anitrodi- [Co(NH ₃) ₄] - [Co(NH ₃) ₅] - [Co(NH ₃) ₅] - [Co(NH ₃) ₅ Cl ₂ - [Co(NH ₃) ₅ Cl ₃ - [Co(NH ₃) ₅ Cl	co (NO ₂) ₄ 1
Triamine Cobalt Nitrate 1.2 Dinitrotetraamine cobaltitetra amine cobaltiate 1.6 Dinitrotetraamine cobaltitetra amine cobaltiate Hexa-amine cobaltihexanitrocobaltia GOBALT DOUBLE SALTS. SOLUB: (Jörgensen — J.pr. Chem. [2] 18, 205, '78; in Name. Chloro purpureo cobaltic bromic Bromo purpureo cobaltic bromic Chloro purpureo cobaltic chloric Chloro purpureo cobaltic chloric Chloro purpureo cobaltic chloric Chloro purpureo cobaltic chloric Luteo cobaltic chloride Luteo cobaltic chloride Roseo cobaltic chloride Roseo cobaltic chloride Chloro purpureo cobaltic iodide Chloro purpureo cobaltic iodide Chloro purpureo cobaltic iodide Chloro purpureo cobaltic initrate	[(NH ₃) ₂ Co(NO ₂) ₃ anitrodi- [Co(NO ₂) ₂] - [Co(NH ₃) ₄] - [Co(NH ₃) ₅] - [Co(NH ₃) ₅] - [Co(NH ₃) ₅ Cl ₂ - [Co(NH ₃) ₅ Cl ₃	eride per liter Sat. Sol. 2.882 Co(NO2)4 3 3.68 (NH3)2 3.68 (NO2)4 0.398 co(NO2)4 0.0215 phys. chem. Ges. 24, 629, Gms. Salt per 100 Gms. H ₂ O. 14.3 0.467 16 0.19 2.50 0.232 15.5 0.41 46 6 1.03 0.4.26 46.6 12.74 0.16.12 16.2 24.87 19.2 2.0 15 1.25
Triamine Cobalt Nitrate 1.2 Dinitrotetraamine cobaltitetra amine cobaltiate 1.6 Dinitrotetraamine cobaltitetra amine cobaltiate Hexa-amine cobaltihexanitrocobaltia GOBALT DOUBLE SALTS. SOLUB: (Jörgensen — J.pr. Chem. [2] 18, 205, '78; in Name. Chloro purpureo cobaltic bromic Bromo purpureo cobaltic bromic Chloro purpureo cobaltic chloric Chloro purpureo cobaltic chloric Chloro purpureo cobaltic chloric Chloro purpureo cobaltic chloric Luteo cobaltic chloride Luteo cobaltic chloride Roseo cobaltic chloride Roseo cobaltic chloride Chloro purpureo cobaltic iodide Chloro purpureo cobaltic iodide Chloro purpureo cobaltic initrate Chloro purpureo cobaltic sulpha	[(NH ₃) ₃ Co(NO ₂) ₃ anitrodi- anitrodi- te [Co(NH ₃) ₄] ¹ - [Co(NH ₃) ₅ Co ₁ - [Co(NH ₃) ₅	eride per liter Sat. Sol. 2.882 Co(NO2)4 3 3.68 (NH3)2 3.68 (NH3)2 0.398 co(NO2)4 0.0215 phys. chem. Ges. 24, 629, Gms. H ₂ O. 14.3 0.467 16 0.19 2.50 0.232 15.5 0.41 46 6 1.03 0.4.26 46.6 12.74 0.16.12 16.2 24.87 19.2 2.0 15 1.25 17.3 0.75
Triamine Cobalt Nitrate 1.2 Dinitrotetraamine cobaltitetra amine cobaltiate 1.6 Dinitrotetraamine cobaltitetra amine cobaltiate Hexa-amine cobaltihexanitrocobaltia GOBALT DOUBLE SALTS. SOLUB: (Jörgensen — J.pr. Chem. [2] 18, 205, '78; in Name. Chloro purpureo cobaltic bromic Bromo purpureo cobaltic bromic Chloro purpureo cobaltic chloric Chloro purpureo cobaltic chloric Chloro purpureo cobaltic chloric Chloro purpureo cobaltic chloric Luteo cobaltic chloride Luteo cobaltic chloride Roseo cobaltic chloride Roseo cobaltic chloride Chloro purpureo cobaltic iodide Chloro purpureo cobaltic iodide Chloro purpureo cobaltic iodide Chloro purpureo cobaltic initrate	[(NH ₄) ₂ Co(NO ₂) ₃ anitrodi- [Co(NO ₂) ₂] - [Co(NH ₃) ₄] - [Co(NH ₃) ₅] - [Co(NH ₃) ₅] - [Co(NH ₃) ₅ Cl ₂ - [Co(NH ₃) ₅ Cl ₃ - [Co(NH ₃) ₅ Cl	eride per liter Sat. Sol. 2.882 Co(NO2)4 3 3.68 (NH3)2 3.68 (NH3)2 0.398 co(NO2)4 0.0215 phys. chem. Ges. 24, 629, Gms. H ₂ O. 14.3 0.467 16 0.19 2.50 0.232 15.5 0.41 46 6 1.03 0.4.26 46.6 12.74 0.16.12 16.2 24.87 19.2 2.0 15 1.25 17.3 0.75

COBALT ACETATE Co(CH₂COO)₂.

100 cc. anhydrous hydrazine dissolve I gm. cobalt acetate with evolution of gas at room temp. (Weish and Broderson, 1915.)

COBALT BROMIDE CoBra.

SOLUBILITY IN WATER. (Etard, 1894.)

66.7 66.8 68.1 (blue)

100 gms. methyl acetate ($d_{18} = 0.935$) dissolve 10.3 gms. CoBr₂ at 18°, d_{18} of sat. solution = 1.013. (Naumann, 1909.)

COBALT CHLORATE Co(ClO₂)₂.

SOLUBILITY IN WATER. (Meusser, 1902.)

r.	Gms. Co(ClO ₂) ₂ per 100 Gms. Solution.	Mols. Co(ClO ₂) ₂ per 100 Mols. H ₂ O.	Solid Phase.	ť.	Gms. Co(ClO ₂) ₂ per 100 Gms. Solution.	Mols. Co(ClO ₂) ₂ per 100 Mols. H ₂ O.	Solid Phase.
—12	29.97	3.41	Ice	18	64.19	14.28	Co(ClO ₂) ₂₋₄ H ₄ O
-21	53.30	9.08	Co(ClO ₂) ₂ .6H ₂ O	2 I	64.39	14.51	. "
-19	53.61	9.20	u	35	67.09	16.10	"
o	57 · 45	10.75	•	47	6 9.66	18.29	
10.5	61.83	12.90	4	6 1	76.12	25.39	

Density of solution saturated at 18° = 1.861.

COBALT PerCHLORATE Co(ClO4)2.9H2O.

SOLUBILITY IN WATER. (Goldblum and Terlikowski, 1912.)

e.	Gms. Co(ClO _d) ₂ per 100 Gms. H ₂ O.	Solid Phase.	ť.	Density Sat. Sol.	Gms. CO(ClO ₁) ₂ per 100 Gms. H ₂ O	Source Finance
-10.9	32.67	Ice	0	1.564	100	Co(ClO ₂) ₂₋₅ H ₄ O
-30.7	58.16	и	7.5	1.566	101.9	44
-62.2 Eutec.	• • • •	Ice+Co(ClO ₂) ₂ .9H ₂ O	18	1.567	103.8	4
-30.7	83.2	Co(ClO ₂) ₂ .9H ₂ O	26	1.581	113.4	*
-21.3	90.6	4	45	1.588	115	

COBALT CHLORIDE Cocia.

SOLUBILITY IN WATER. (Etard — Compt. rend. 113, 699, '91; Ann. chim. phys. [7] 2, 537, '94.)

t* .	Gms. CoCl ₂ per 100 Gms. Solution.	Solid Phase.	t°.	Gms. CoCl ₂ per 100 Gms. Solution.	Solid Phase.
-10	27.0	CoCl6H_O (red)	35	38.o	CoCl ₂ .H ₂ O (violet)
0	29.5	- "-	40	41.0	T _t
+ 10	31.5	"	50	47.0	"
20	33 · 5	"	60	47 · 5	CoCl.H,O (blue)
25	34 · 5	"	80	49.5	• ""
30	35.5	"	100	51.0	"

SOLUBILITY OF COBALT AMMONIUM CHLORIDES IN WATER. (Kurnakoff — J. russ. phys. chem. Ges. 24, 629, '93; J. Chem. Soc. 64, ii, 509, '93.)

Salt.	Grams per 100 Grams H ₂ O at:				
	⊙ .	16.9°.	46.6°		
CoCl ₂ .5NH ₂	0.232		1.031		
CoCl.5NH,.H,O	16.12	24.87			
CoCl6NH	4.26	• • •	12.74		

SOLUBILITY OF COBALT CHLORIDE IN AQUEOUS HYDROCHLORIC ACID SOLUTIONS AT 0°. (Engel — Ann. chim. phys. [6] 7, 355, '89.)

Milligram Mols. per 10 cc. Sol.		Sp. Gr. of Solutions.	Gms. per : Solu	roo Gms.	Gms. per 100 cc. Solution.		
₹CoCl₃.	HCL.	Solutions.	CoCl ₂ .	HCl.	CoCla.	HCl.	
62.4	0	1.343	30.17	0.00	40.5	0	
58.52	3 · 7	1.328	28.62	0.102	38.0	0.135	
50.8	11.45	1.299	25.39	0.321	33.0	0.417	
37 - 25	25.2	1.248	19.43	0.738	24.2	0.919	
12.85	55.0	1.167	7.15	1.718	8.34	2.00	
4.75	74 · 75	1.150	2.68	2.369	3.08	2.72	
12.0	104.5	1.229	6.34	3.099	7 · 79	3.8 1	
25.0	139.0	1.323	12.27	3.829	16.24	5.07	

SOLUBILITY OF COBALT CHLORIDE IN AQUEOUS ALCOHOL AT 11.5°. (Bödtker — Z. physik. Chem. 22, 509, '97.)

10 gms. of CoCl₂.6H₃O were added to 20 cc. of alcohol and in addition the amounts of CoCl₂ shown in the second column. The solutions were shaken 2 hours, 5 cc. withdrawn, and the amount of dissolved CoCl₂ determined by evaporation and weighing.

Vol. %	Gms. CoCls Added.	Gms. per 5	cc. Solution.	Vol. %	Gms. CoCl ₂ Added.	Gms. pe	5 cc. Sol.
Alcohol.	Added.	H₃O.	CoCl ₂ .	Alcohol.	Added.	H₃O.	CoCl ₂ .
91.3	0.0	1.325	1.168	99.3	0.612	0.764	1.459
98.3	0.0	1.134	1.214	99.3	0.813	o · 688	1.568
98.3	0.0	1.068	1.181	99.3	I.022	0.634	1.713
99.3	0.0	1.045	1.199	99.3	I.240	0.553	1.831
99.3	0.194	0.899	I . 204	99 · 3	I .446	0.483	1.943
99.3	0.400	0.829	1.325	99 · 3	1.650	0.500	2.183

100 gms. sat. solution in alcohol (0.792 Sp. Gr.) contain 23.66 gms. CoCl., Sp. Gr. = 1.0107. (Winkler - J. pr. Chem. 91, 207, '64)

SOLUBILITY OF COBALT CHLORIDE IN ORGANIC SOLVENTS.

Solvent.	t°.	Gms. per 100	Gms. Solvent.	Authority.				
Solvent.	٠.	CoCle.	CoCl _{2.2} H ₂ O.	Authority.				
Acetone	0	9.11	17.16	(von Laszczynski, 1894.)				
"	22.5	9.28	17.06	(von Laszczynski, 1894.)				
66	25	8.62	• • •	(Krug and McElroy, 1892.)				
66	1Š	2.75	• • •	(Naumann, 1904.)				
Ethyl Acetate	14	0.08	• • •	(von Laszczynski, 1894.)				
u u	79	0.26	•••	44				
Ether, Abs.	• • •	0.021	0.201	(Bödtker, 1897.)				
Glycol		10.7(per	100 g. sol.)	(de Coninck, 1905.)				
Acetonitrile	18	4.08		(Naumann and Schier, 1914.)				
Methyl Acetate	18	0.369*	•••	(Naumann, 1909.)				
95% Formic Acid	20.5	6.2	• • •	(Aschan, 1913.)				
Anhy. Hydrazine		I	• • •	(Welsh and Broderson, 1915.)				
, ,	* dn sat. sol. = 0.938.							

SOLUBILITY OF COBALT CHLORIDE IN PYRIDINE. (Pearce and Moore, 1913.)

t.	Gm. CoCl ₂ per 100 Gm Sat. Sol.	Solid Phase.	t°.	Gm. CoCl per 100 Gm Sat. Sol.	Solid B. Phase.	t°.	Gm. CoCl per 100 Gm Sat. Sol.	Solid Phase.
-48.2 _	0	C _s H _s N	34.6	0.749	1.4	74.8	2.037	1.2
-50.3 Eut	ес	"+ r.6	37.6	0.754	4	78.2	2.276	44
-45	0.4185	r.6	44.6	0.950	"	79.8	2.428	u
-30	0.4205	44	47.2	1.020	4	88	3.284	44
-19.6	0.4208	44	51	1.110	"	90 tr. j	p t.	" +CoCla
— 10	0.4310	4	55	1.192	66	96.5	7.251	CoCle
0	0.4307	•	60	I.324	66	98.8	7.936	44
15 tr. pt.		1.6+1.4	64.2	1.460	**	106	12.540	*
23	0.569	1.4	68	1.572	"	110	14.165	44
25	0.575	44	70 tr.	pt	" +1.2			
16 -	- CaCla 60	`.H.N	T.4 =	CoClo 4C	'.H.N	1.2 = (CoClaraCaT	I.N

COBALT CITRATES.

SOLUBILITY IN WATER. (Pickering, 1915.)

Salt.	Formula.	ť°.	Gms. per ro	o cc. Sat. Sol. Salt (anhydrous).
Cobalt Citrate (normal)	$Co_3[(COO.CH_3)_2C(OH)COO]_2.2H_2O$	10	0.08	0.267
Cobalt Hydrogen Citrate	CoH[(COO.CH ₂) ₂ C(OH)COO]	10	0.20	o.906
Cobalt Potassium Citrate	KCo[(COO.CH ₂) ₂ C(OH)COO].4H ₂ O	10	1.05	5.11
Cobalt Potassium Citrate	K ₄ Co[(COO.CH ₂) ₂ C(OH)COO] ₂	10	3.04	31

COBALT FLUORIDE CoF₂.4H₂O.

100 gms. sat. solution in water contain 2.23 gms. of cobalt fluoride of α variety. 100 gms. sat. solution in water contain 2.32 gms. of cobalt fluoride of β variety.
(Costachescu, 1910.)

COBALT IODATE Co(IO,)2.

SOLUBILITY IN WATER. (Meusser - Ber. 34, 2435, 'or.)

	Solid Pha	se :						
\$* .	Co(IO	a)2.4H2O.)3.2HgO.	Co(IO ₂) ₂ .			
	G.	M.	G.	М.	G.	М.		
0	0.54	0.028	0.32	0.014	• • •	• • •		
18	0.83	0.038	0.45	0.020	1.03	0.046		
30	1.03	0.046	0.52	0.023	0.89	0.040		
50	1.46	0.065	0.67	0.030	0.85	0.030		
60	1.86	0.084	• • •	• • •	• • •	• • •		
65	2.17	0.098	• • •	• • •	• • •	• • •		
75	• • •	• • •	0.84	0.038	0.75	0.033		
100	• • •	• • •	I .O2	0.045	0.69	0.031		
			•	•	1,0			

G = Gms. $Co(IO_3)$, per 100 gms. solution. M = Mols. $Co(IO_3)$ s per 100 Mols. H_2O .

COBALT IODIDE Col.

SOLUBILITY IN WATER.
(Etard — Compt. rend. 113, 699, '91; Ann. chim. phys. [7] 2, 537, '94)

The accuracy of these results is doubtful.

t* .	Gms. CoI ₂ per roo Gms. Solution.	Solid Phase.	t°.	Gms. Col ₂ per 100 Gms. Solution.	Solid Phase.
– 10	55 · 5	Col ₂ .H ₂ O (green)	25	67.5	Col ₂ .H ₂ O (olive)
0	58.o	- 76	30	70.0	- "
10	Ğ1.5	"	40	75.0	Col ₂ .H ₂ O (yellow)
15	63.2	"	50	79.0	- 46
20	65.2	"	80	8o.o	66
25	67	66	110	81.0	u

COBALT MALATE Co(COO.CH₂.CHOHCOO).2H₂O.

100 cc. sat. solution in water contain 0.14 gm. Co = 0.453 gm. anhydrous salt at 10°. (Pickering, 1915.)

COBALT MALONATES.

SOLUBILITY OF COBALT MALONATES IN WATER. (Lord, 1907.)

• Salt.	Formula.	t°.	Gms. Anhy- drous Salt per 100 Gms. Sat. Sol.
Cobalt Malonate	CoCH ₂ (COO) ₂ .2H ₂ O	18	1.353
" Ammonium Malonate	Co(NH ₄) ₂ [CH ₂ (COO) ₂] _{2.4} H ₂ O	18	10.61
" Caesium "	$CoCs_2[CH_2(COO)_2]_2.4H_2O$	18	14.23
" Potassium "	CoKa[CHa(COO)a]a.4HaO	18	4.26

COBALT NITRATE Co(NO.).

SOLUBILITY IN WATER.

(Funk - Wiss. Abh. p. t. Reichanstalt 3, 439, 'co.)

\$° .	Gms. Co(NO ₂)2 per 100 Gms Solution.	Mols. Co(NO _R)s i. per 100 Mols. H ₂ O	Solid Phase.	ŧ°.	Gms. Co(NO ₃) ₃ per 100 Gms. Solution.	Mols. Co(NOs) per 100 Mols. H ₂ (Sound I make
- 26	39 · 45	6.40	Co(NO ₈) _{2.0} H ₂ O	41	55.96	12.5	Co(NO ₂) ₂ .6H ₂ O
-20.		7 · 35	4	56	62.88	16.7	**
-21	41.55	6.98	Co(NO ₂) ₂ .6H ₂ O	55	61.74	15.8	Co(NO ₃) ₃ .3H ₂ O
-10	43.69	7.64	•	62	62.88	1Ğ.7	•
- 4	44.85	7.99	•	70	64.89	18.2	•
Ö	45.66		**	84	68.84	21.7	•
+18	49 - 73	9.71		91	77 21	33 · 3	•

Density of solution saturated at $18^{\circ} = 1.575$.

SOLUBILITY OF COBALT NITRATE IN GLYCOL. (de Coninck, 1905.)

100 grams saturated solution contain 80 gms. cobalt nitrate.

COBALT RUBIDIUM NITRITE Rb, Co(NO2) 6. H2O.

100 gms. H₂O dissolve 0.005 gm. of the salt.

(Rosenbladt, 1886.)

COBALT OXALATE Co(COO)2.

100 gms. 95% formic acid dissolve 0.04 gm. Co(COO)₂ at 19.8°. (Aschan, 1913.) COBALT SULFATE CoSO₄.7H₂O.

SOLUBILITY IN WATER.

(Mulder; Tobler, 1855; Koppel, Wetzel, 1905.)

Gms. CoSO4 per to Gms.		Mols. CoSO ₄ . per 100	ť.	Gms. CoSO ₄ per 100 Gms.		Mols. CoSO ₀	
	Solution.	Water.	Mols. H ₂ O		Solution.	Water.	per 100 Mols. H ₂ O.
0	20.35	25.55	2.958	35	31.40	45.80	5.31
5	21.90	28.03	3.251	40	32.81	48.85	5.664
10	23.40	30.55	3.540	50	35.56	55.2	•••
15	24.83	33.05	3.831	60	37.65	60.4	• • •
20	26.58	36.21	4.199	70	39.66	65.7	• • •
25	28.24	39.37	4.560	80	41.18	70	• • •
30	29.70	42.26	4.903	100	45.35	83	•••

100 gms. H₂O dissolve 37.8 gms. CoSO₄ at 25°.

(Wagner, 1910.)

Freezing-point data (solubility, see footnote, p. 1) for mixtures of CoSO₄ + Li₈SO₄, CoSO₄ + K₈SO₄ and CoSO₄ + Na₈SO₄ are given by Calcagni and Marotta (1913).

Solubility of Mixtures of $CoSO_4.7H_2O$ and $Na_3SO_4.10H_2O$ in Water.

(Koppel; Wetzel.)

t°.	Gma 2000 Gma	ı. per s. Solution.	Gms. per 100 Gms. H ₂ O.		Mola 100 Mol	. per s. H _s O.	Solid Phase.	
	CoSO4.	Na ₂ SO ₄ .	CoSO4.	Na ₂ SO ₄ .	CoSO ₄ .	NasSO4.		
0	16.56	7.63	21.85	10.07	2.54	I . 27	CoSO4.7H ₂ O+	
5	17.46	9.59	23.94	13.15	2.77	1.67	Na ₂ SO ₄ .10H ₂ O	
10	17.90	11.73	25.41	16.67	2.94	2.11	46	
20	17.59	16.43	26.65	24.9I	3.09	3.15	CoNag(SO ₄) ₃₋₄ H ₉ O	
25	17.06	15.70	25.36	23.32	2.95	2.97	"	
30	15.94	14.93	23.15	21 . ÓI	2.70	2.74	"	
35	15.73	14.52	22.54	20.85	2.62	2.64	u	
40	14.87	14.22	20.98	20.05	2 . 46	2.53	4	
18.5	18.75	15.61	28.61	23.82	3.32	3.02	CoNag(SO ₄) ₂₋₄ H ₂ O	
20	19.30	15.10	29.42	23.01	3.41	2.92	+ CoSO4.7H3O	
25	20.30	13.60	30 74	20.58	3.56	2.6I	44	
30	21.67	12.05	32.70	18.17	3 · 79	2.30	4	
35	22.76	10.43	34.06	15.61	3.95	1.98	••	
40	24.05	9.16	35.01	13.72	4.81	1.74	44	
18.5	16.87	16.97	25.50	25.65	2.96	3 25	CoNag(SO ₄) ₂₋₄ H ₂ O	
20	15.41	18.12	23.18	27.26	2.69	3 · 45	+NasSO4.10HsO	
25	10.63	23.26	16.07	35 - 17	ı .86	4.46	4	
30	6.01	28.67	9.20	43 · 74	I .07	5.54	4	
35	4.56	32.14	7.19	50.79	0.835	6.44	CoNag(SO4)3-4H5O	
40	4.72	31.78	7 · 45	50.10	0.864	6.34	+ Na ₂ SO ₄	

SOLUBILITY OF COBALT SULPHATE IN METHYL AND ETHYL ALCOHOL AND IN GLYCOL.

Solvent.		ŧ°.	Gms. per 100 Gms. Solvent.		Observer.	
			CoSO4.	CoSO _{4.7} H ₂ C	5.	
Methyl Alcoho	l (abs.)	3	• • •	42.8	(de Bruyn—Z. physik. Ch. 10, 784, '92.)	
"	"	15		50.9	44	
44	"	18	1.04	54.5	44	
"	(93.5%)	3		13.3	"	
"	(50%)	3		1.8	4	
Ethyl Alcohol	(abs.)	3		2.5	4	
Glycol		(per 100 solut		(de Coninck—Bull.acad.roy.Belgique, 359, '05.)	

COBALT SULFIDE CoS.

One liter water dissolves 0.00379 gm. CoS at 18° (electrolytic conductivity method, assuming complete dissociation and hydrolysis). (Weigel, 1906.)

COCAINE C17H21NOs.

SOLUBILITY IN SEVERAL SOLVENTS.

Solvent.	t*.	Gms. C ₁₇ H ₂₁ NO ₂ per 100 Gms. Solvent.	Authority.
Water	20	0.028	(Zalai, 1910.)
."	土20	0.140	(Baroni and Barlinetti, 1911.)
u	25	0.17	(U. S. P.)
a	8ŏ	0.38	44
3 Gms. H ₂ BO ₂ in Aq. 50% Glycerol	士20	8	(Baroni and Barlinetti, 1911.)
Alcohol (92.5 Wt. %)	25	20	(U. S. P.)
Ether	25	26.3	44
"	18-22	ıı.Ğ	(Müller, 1903.)
Ether sat. with H ₂ O	18–22	34	u
Water sat. with Ether	18-22	0.254	a
Aniline	20	76	(Scholtz, 1912.)
Carbon Tetrachloride	20	31.94	(Gori, 1913.)
Chloroform	18–22	100+	(Müller, 1903.)
Benzene	18–22	100	"
Ethyl Acetate	18-22	59	6.
Petroleum Ether	18-22	2.37	44
Pyridine	20-25	8o+	(Dehn, 1917; Scholts, 1912.)
Piperidine	20	56	(Scholtz, 1912.)
Diethylamine	20	36	4
Sesame Oil	20	4.34*	(Zalai, 1910.)
Olive Oil	25	8.3	(U. S. P.)
Oil of Turpentine	25	7.1	44
-	• Per roc	cc.	

COCAINE HYDROCHLORIDE C17H21NO4.HCl.

100 gms. H_1O dissolve 250 gms. of the salt at 25° and 1000 gms. at 80°. (U. S. P.) 100 gms. 92.3% alcohol dissolve 38 gms. salt at 25° and 71 gms. at 60°. (U. S. P.) 100 gms. chloroform dissolve 5.4 gms. salt at 25°. (U. S. P.) 100 gms. glycerol dissolve 25 gms. salt at 15°. (B. P.)

COCAINE PERCHLORATE C17H21NO4.HC1O4.

100 gms. H₂O (containing 8% free HClO₄) dissolve 0.26 gm. perchlorate at 6°. (Hofmann, Roth, Höbold and Metzler, 1910.)

CODEINE C₁₈H₂₁NO₂.H₂O.

CODEINE PHOSPHATE C18H21NO2.H2PO4.2H2O.

CODEINE SULFATE (C18H21NO3)2.H2SO4.5H2O.

SOLUBILITY OF EACH SEPARATELY IN SEVERAL SOLVENTS.

		Gms. per r	oo Gms. So	olvent.		
Solvent.	t°.	Codeine.	C. Phos- phate.	C. Sulfate.	Authority.	
Water	25	0.80-1.7	44.9	3.3	(U.S.P.; Baroni and Barlinetto,	
"	20	0.84	• • •		(Zalai, 1910.) [1911.)	
46	80	1.70	227	16	(U. S. P.)	
Alcohol (92.3 Wt. %)	25	63.7	0.383	O. I	(Schaeffer, 1913; U. S. P.)	
	60	108.7	1.03	0.27	(U. S. P.)	
Methyl Alcohol	25	62.8		0.56	(Schaeffer, 1913.)	
Chloroform	25	133-151	0.015	0.007	(Schaeffer, U. S. P.)	
Carbon Tetrachloride	20	2.04-1.33			(Gori, 1913; Beilstein, Suppl.)	
Ether	25	8	0.075		(U. S. P.)	
Benzene	25	11.4		Insol.	(Schaeffer, 1913.)	
Trichlorethylene	15	12			(Wester and Bruins, 1914.)	
3 Gms. HaBOa per 100 cc.	•					
	ord. 1	t. 4			(Baroni and Barlinetto, 1911.)	
100 gms. trichlorethyle	ne di	issolve o.oı	4 gm. co	odeine h	ydrochloride at 15°.	

Data for the solubility of codeine and codeine sulfate in mixtures of alcohols, benzene and chloroform are given by Schaeffer (1913).

COLCHICINE C2H2NO.

SOLUBILITY IN SEVERAL SOLVENTS. (Müller, 1903; U. S. P.)

Solvent.	t.	Gms. C ₂₉ H ₂₆ NO ₃ per 100 Gms. Solvent.	Solvent.	ť.	Gms. C ₂₅ H ₂₅ NO ₅ per 100 Gms. Solvent.				
Water	18-22	9.6	Water sat. with Ether	18-22	12.05				
66	25	4.5	Benzene	18-22	0.04				
**	25 80	5	Benzene	25	1.15				
"	82	13.7*	Chloroform	18-22	100+				
Ether	18-22	0.13	Carbon Tetrachloride	18-22	0.12				
66	25	0.64	Ethyl Acetate	18-22	1.34				
" sat. with H ₂ O	18-22	o. 18	Petroleum Ether	18-22	0.06				
Beilstein.									

COLCHICINE SALTS.

Name.	Formula.	Solvent.]:	t*.	Gms. Salt per Liter Sat. Sol.	Authority.
Colchicine Iodohydrate Iso Colcnicine Iodohydrate	C ₂₂ H ₂₅ NO ₄ .HI	Water	30 30	0.84	(Pfannl, 1911.)
Colchicine Silicotungstate	(C ₂₂ H ₂₅ NO ₅) ₅ SiO ₅ 12WO ₂ .2H ₂ O	.} " }Aq. 1% HC	15	0.083	(Jensen, 1913.)

COLLIDINE (2.4.6 Trimethyl Pyridine) C₄H₂N(CH₂)₂.

SOLUBILITY IN WATER. (Rothmund, 1898.)

ť.	Gms. Collidir	e per 100 Gms.	ť.	Gms. Collid	Gms. Collidine per 100 Gms.		
		Collidine Layer.	•.	Aq. Layer.	Collidine Layer.		
5.7 C	rit. t. 17	.20					
10	7.82	41.66	80	1.73	86.12		
20	3.42	54.92	100	1.78	88.07		
30	2.51	62.80	120	1.82	88.98		
40	1.93	70.03	140	2.19	89.10		
60	1.76	80.19	160	2.93	87.2		
		-	180	3.67	•••		

COLLIDINE (1.3.5 Trimethyl Pyridine) C₅H₂N(CH₂)₂.

DISTRIBUTION BETWEEN WATER AND TOLUENE. (Hantzsch and Vagt, 1901.)

	G. Mols. Collidine per Liter.				G. Mols. Colli		
ť.	H ₂ O Layer.	Toluene Layer.	Dist. Coef.	. t*.	H _e O Layer	Toluene Layer.	Dist. Coef.
0	0.0035	0.0580	0.0603	50	0.0017	0.0596	0.0285
10	0.0026	0.0587	0.0443	70	0.0015	0.0597	0.0251
20	0.0022	0.0588	0.0374	90	0.0013	0.0598	0.0218
30	0.0020	0.0594	0.0337				

CONGO RED $[C_6H_4.N:N.C_{10}H_5(NH_2)SO_2Na]_2$.

	(Dehn, 1917.)
100 gms. pyridine dissolve 0.29 gm. congo red at 20°-25°.	44
100 gms. aq. 50% pyridine dissolve 7.32 gms. congo red at 20-25°.	46

CONIINE (aPropyl Piperidine) C₈H₁₇N.

100 gms. H₂O dissolve 1.83 gms. coniine at 20°. (Zalai, 1910.)

COPPER ACETATE $Cu(C_2H_1O_2)_2H_2O$.

100 gms. glycerol ($d_{15} = 1.256 = 96\%$) dissolve 10 gms. copper acetate at $15^{\circ}-16^{\circ}$. (Ossendowski, 1907.)

SOCUBILITY OF ANHYDROUS COPPER ACETATE IN PYRIDINE. (Mathews and Benger, 1914.)

		/present 10 mmc 21			
e.	Gms.Cu(C ₂ H ₂ O ₂ per 100 Gms. Sat. Sol.	Solid Phase.	t°.	Gms.Cu(C ₂ H ₂ O ₂ per 100 Gms. Sat. Sol.	Solid Phase.
—11 .6	0.37	Cu(C ₂ H ₂ O ₂) ₂₋₄ C ₂ H ₄ N	45.2	4.17	$Cu(C_2H_4O_2)_2 + C_4H_4N$
+ 2	0.6	16	34.8	3.75	$Cu(C_2H_4O_2)_2.C_2H_4N$
13	1.03	44	55.7	4.13	u '
26.45	1.61	64	64.3	4.48	4
37 · 4	2.83	44	76.2	4.83	a
41.9	3.12	u	83.3	5.40	æ
43.2	3.39	"	95.4	6.31	"
Transitio	n point = 44	·7°·			

COPPER 'BROMIDE (ous) Cu₂Br₂.

SOLUBILITY OF CUPROUS BROMIDE IN AQUEOUS SOLUTIONS OF POTASSIUM BROMIDE AT 18°-20°.

(Bodlander and Storbeck, 1902.)

	M	(illimols _, per	Liter.							
KBr.	Total Cu.	Total Br.	Cu (ic).	Cu (ous).	KBr.	Total Cu.	Cu (ic).	Cu (ous).		
0	0.3157	0.4320	0.2096	0.1061	0	0.0201	0.0133	0.0067		
25	0.119		0.012	0.107	2.98	0.0076	0.0007	0.0068		
40	0.200		0.013	0. 187	4.76	0.0127	0.0007	0.0119		
60	0.310		0.025	0.285	7.15	0.0197	0.0015	0.0181		
80	0.423		0.012	0.411	9.53	0.0266	0.0007	0.0261		
100	0.584			0.584	11.91	0.0371	• • •	0.0371		
120	0.693			0.693	14.29	0.0441		0.0441		
500	8.719			8.719	59 - 55	0.5540	• • •	0.5540		

100 gms. acetonitrile dissolve 3.86 gms. Cu₂Br₂ at 18°. (Naumann and Schier, 1914.) Freezing-point lowering data for mixture of CuBr + KBr are given by de Cesaris, 1911.

COPPER BROMIDE (ic) CuBr₂.

100 gms. acetonitrile dissolve 24.43 gms. CuBr₂ at 18°. (Naumann and Schier, 1914.) 100 gms. 95% formic acid dissolve 0.16 gm. CuBr₂ at 21°. (Aschan, 1913.)

COPPER CARBONATE Basic.

SOLUBILITY IN AQUEOUS CO₈ SOLUTIONS AT 30°. (Free, 1908.)

Aq. 0.5 n Na₂CO₃ and 0.5 n CuSO₄ were mixed and the precipitate washed and suspended in H₂O containing CO₂ at a pressure slightly above atmospheric, for 3 days. The filtered precipitate was kept in water ready for use. In the fresh condition or dried, the molecular ratio of the constituents was found to be 1CuO: 0.515 CO₂: 0.61 H₂O. For the solubility determinations, about 2 gms. of the precipitate were suspended in 600 cc. of H₂O and CO₂ passed in to the desired concentration. The mixture was shaken frequently for 3 days. The total CO₂ in the sat. solution was determined and the free CO₂ calc. by difference, assuming that the amount combined to the Cu was in the molecular ratio 2CuO:1CO₂.

Parts pe	er Million.	Parts per Million.			
Free CO ₂ .	Metallic Cu.	Free CO2.	Metallic Cu.		
o = pure	H ₂ O 1.5	859	28		
157	8.3	961	31		
277	13.7	1158	33.7		
348	17	1224	34.8		
743	25.7	1268-1549	35.3-39.7*		
	0.0-44-1-4-00	N -A - 1 -A1			

• Saturated with CO₂ at 1 + atmosphere.

Results practically identical with the above were obtained for a NaCl solution containing 100 parts per million. Data for other concentrations of NaCl and for other salts are also given. Salts with a common ion depress the solubility. Those with no common ion increase it slightly. A recalculation of the results of Free is given by Seyler (1908).

SOLUBILITY OF MIXTURES OF COPPER CARBONATE AND POTASSIUM CARBONATE IN WATER AT 25°. (Wood and Jones, 1907-08.)

100 gms. H_2O dissolve 3.15 gms. $CuCO_1+105$ gms. K_2CO_2 at 25° when the solid phase in contact with the solution is $CuCO_2$. $K_3CO_2+K_3CO_3$.

Additional points on the curves were determined but the analytical data are not given. The following approximate values were read from the curve for the double salt, CuCO₃.K₃CO₃:

Gms. per 10	o Gms. H₂O.	Calld Dhana
K ₂ CO ₃ .	CuCO ₃ .	Solid Phase.
105	3.15	$K_2CO_3+CuCO_3.K_2CO_3$
100	3.20	CuCO ₃ .K ₂ CO ₃
90	3.40	"
85	3.60	**

The triple point for double salt + CuCO₂ could not be determined since $CuCO_2$ is not capable of existing alone and decomposes into $CO_2 + Cu(OH)_2$.

COPPER CHLORATE (ic) Cu(ClO₃)₂.4H₂O.

SOLUBILITY IN WATER. (Meusser, 1962.)

t.	Gms. Cu(ClO ₂) ₂ per 100 Gms. Solutions.	Mols. Cu(ClO ₂), per 100 Mo H ₂ O.	Solid Phase.	t°.	Gms. 'Cu(ClO ₃) ₂ per 100 Gms. Solutions.	Mols. Cu(ClO ₂) per 100 Mo H ₂ O.	Solid Phase.
	Solutions.	Dg∪.			Solutions.	n _i o.	
-12	30.53	3 · 43	Ice	18	62.17		Cu(ClO ₂) ₂₋₄ H ₂ O
-31	54 · 59	9.39	Cu(ClO ₂) ₂₋₄ H ₂ O	45	66.17	15.28	4
-21	57.12	10.41	••	59.6	69.42	17.73	•
+ 0.8	58.51	11.02	, ••	7 , I	76.9	25.57	•

Density of solution saturated at 18° = 1.695.

COPPER CHLORIDE (ic) CuCl, 2H,O.

SOLUBILITY IN WATER.

(Reicher and Deventer, 1890; see also Etard, 1894.)

r.	Gms. CuCle per 100 Gms. Solution.	t°.	Gms. CuCl ₂ per 100 Gms. Solution.	r.	Gms. CuCl _e per 100 Gms. Solution.
-40 Eute	c. 36.3	20	43.5	50	46.65
0	41.4	25	44	60	47 · 7
10	42.45	30	44.55	80	49.8
17	43.06	40	45.6	100	51.9

Density of solution saturated at 0° = 1.511, at 17.5° = 1.579. 100 gms. sat. solution in water contain 43.95 gms. CuCl₂ at 30°, solid phase, CuCl₂.2H₂O. (Schreinemakers, 1910.)

COPPER CHLORIDE (ous) CuCl.

100 gms. H₂O dissolve 1.52 gms. CuCl at 25°.

(Noss, 1912.)

SOLUBILITY OF CUPROUS CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID CONTAINING CuCl₂ AT 25°.

(Poma, 1909, 1910.) Results for 4 n HCl. Results for I n HCl. Results for 2 n HCl. Mols. per Liter. Mols. per Liter. Mols. per Liter. Solid Solid Solid CuCh Added. CuCla CuCla+CuCl. Phase, CuCle+CuCl. Phase. CuCl2+CuCl. Phase. 0.0862 CuCl 0 0 0.2365 CuCl 0.7704 CaCl 0 0.1 0.2017 0.004 0.3528 0.095 0.9044 4 0.4766 * 0.188 0.2 0.3256 0.180 1.0370 0.4 0.5707 0.235 0.5385 1.3040 . 0.379 0.5 0.6924 · O.282 0.6038 0.473 1.4380

Solubility of Cuprous Chloride in Aqueous Solutions of Hydrochloric Acid.

(Engel - Ibid. [6] 17, 372, '89; Compt. rend. 121, 529, '95.)

Milligram Mols. per 10 cc. Sol.		Sp. Gr. of Solutions.	Gms. per	roo cc. Sol.	Gms. per 100 Gms. Sol.		
Cu ₂ Cl ₂ .	HCl.	Solutions.	Cu ₂ Cl ₂ .	HCI.	Cu _g Cl ₂ .	HCI.	
Results at	: o°.						
0.475	8.975	1.05	0.471	0.327	0.448	0.312	
1.5	17.5	1.049	1.486	0.638	1.418	o.6o8	
2.9	26.0	1.065	2.872	0.948	2.697	0.932	
4.5	34 5	1.080	4 · 457	1.257	4.127	1.164	
8.25	47 .8	1.135	8.172	I . 743	7.199	1.535	
15.5	68.5	1.261	15.7	2 . 497	12.46	1.980	
33.0	104.0	1.345	32.68	3.827	24.30	2.845	
Results at	15°-16°.						
7 · 4	54 · 4	1.19	7 · 33	1.983	6.159	r.666	
10.8	68.9	1.27	10.69	2.511	8.422	1.977	
12.8	75.0	1.29	12.68	2.734	9.826	2.119	
16 o	92.0	1.38	15.84	3.346	11.48	2.424	

Solubility of Cupric Chloride in Aqueous Solutions of Hydrochloric Acid at 0°.

(Engel - Ann. chim. phys. [6] 17, 351, '89.)

Milligram Mols. per 1	o cc. Sol. Sp Gr. of Solutions.	Gms. per	100 cc. Sol.	Gms. per 100 Gms. Sol.	
CuCl ₂ . H	CI. Solutions.	CuCl ₂ .	HCl.	CuCl ₃ .	HCl.
91.75	1.49	61.70	0.0	41.41	0.0
86.8	1.5 I.475	58.37	1.64	39.58	1.11
83.2 7	7.8 1.458	55 - 95	2 . 84	38.37	1.95
79.35	0.5 1.435	53 · 37	ვ.8ვ	37.19	2.67
68.4 20	0.25 1.389	46.01	7.38	33.11	5.31
50.0 37	7.5 1.319	33.62	13.67	25.50	10.37
22.8 70	0.25 1.231	15.33	25.61	12.46	20.80
23.5 102	2.5 1.288	15.81	37.36	12.27	29.00
26.7 128	3.0 I.323	17.96	46.66	13.57	35.26
		20.0	Sat. HCl		

COPPER CHLORIDB, AMMONIUM CHLORIDB MIXTURES IN AQUEOUS SOLUTION AT 30°.

(Meerburg - Z. anorg. Chem. 45, 3, '05.)

Grams per 100 Gms. Sat. Solution.		Grams Gms. So	per 100 lid Phase.	Solid Phase.	
CuCl ₃ .	NH ₄ Cl.	CuCl ₃ .	NH ₄ Cl.	,	
0	29.5	• • •	• • •	NH ₄ Cl	
1.9	28.6	6. o	48.2	NH4C1+CuCl2.2NH4Cl-2H4O	
3.6	25.9	37.0	34.9	CuCle-aNH ₄ Cl-aH ₆ O	
10.5	16.5	21.7	23 · I	• •	
19.9	9.4	28.5	18.4	•	
29.4	4.9	35.1	15.3	*	
41.4	2.I	43.1	13.3	"	
43 - 2	2.0	51.9	6.6	CuClg.aNH ₄ Cl.aH ₅ O + CuClg.aH ₅ O	
43.9	0	•••	•	CuCl ₂ .aH ₂ O	

Additional determinations for the ammonia end of this system at 25° are given by Foote, 1912.

COPPER AMMONIUM CHLORIDE CuCl2.2NH4Cl.2H2O.

SOLUBILITY IN WATER. (Meerburg, 1905.)

r.	Gms. CuCl _b .2NH ₄ Cl per 100 Gms. Solution.	Solid Phase.	r.	Gms. CuCl _s .2NH ₄ Cl per 100 Gms. Solution.	Solid Phase.
-10.5	3.87	Ice	30	27.70	CuCl ₂₋₂ NH ₄ Cl ₋₂ H ₄ O
-10.8	20.I2	•	40	30.47	u
-11	20.3	Ice+CuCla.aNH4Cl.aH2O	50	33.24	•
-10	20.46	CuCl ₀₋₂ NH ₄ Cl ₋₂ H ₄ O	60	36.13	"
0	22.02	44	70	39.35	"
12	24.26	44	80	43.36	; «
20	2 5.9 5	**			

SOLUBILITY OF CUPROUS CHLORIDE IN AQUEOUS SOLUTIONS OF CUPRIC SULFATE AT ABOUT 20°. (Bodländer and Storbeck, 1902.)

Millimols per Liter.					Grams per Liter.				
CuSO ₄ .	Total Cu.	Total Cl.	Cu (ic).	Cu (ous).	CuSO ₄ .	Total Cu.	Total Cl.	Cu (ic).	Cu (ous).
0	2.880	5.312	2.258	0.622	0	0. 183	0.188	0.143	0.040
0.987	3.602	4.908	3.145	0.457	0.158	0.229	0.174	0.200	0.029
I.975	4.553	4.687	4.131	0.422	0.315	0.290	0.166	0.263	0.027
2.962	5.193	4.256	4.625	0.509	0.473	0.330	0.151	0.292	0.032
4.937	7.276	4.329	6.546	0.730	0.788	0.463	0.154	0.416	0.046

SOLUBILITY OF CUPROUS CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AT ABOUT 20°. (Bodlinder and Storbeck, 1902.)

	Millimols per Liter.					Grams per Liter.				
KCL.	Total Cu.	Total Cl.	Cu (ic).	Cu (ous).	KCL.	Total Cu.	Total Cl.	Cu (ic).	Cu (ous).	
0	2.851	5.416	2.222	0.629	0	0. 181	0.193	0.141	0.040	
2.5	1.955	6.015	1.421	0.534	0.186	0.124	0.213	0.000	0.034	
5	1.522	7.525	1.008	0.514	0.373	0.097	0.267	0.069	0.033	
IO	1.236	11.735	0.475	0.761	0.746	0.079	0.416	0.030	0.048	
20	1.446	21.356	0.324	1.122	1.492	0.002	0.759	0.021	0.071	
50	2.411	not det.	0.1088	2.302	3.730	0.153	not det.	0.007	0.146	
100	4.702	"	0	4.702	7.460	0.200	"	0	0.299	
200	0.485	"	0	9.485	14.920	0.603	"	0	0.603	
1000	97	"	0	97	74.60	6.170	"	0	6.170	
2000	384	"	•	384	149.2	24.42	"	0	24.420	

The results in the 3d, 7th, 8th and last line of this table are at 16°.

SOLUBILITY OF COPPER CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE.

(Hunt, 1870.)

	Gms. CuCle per 100 cc. Solution of:						
ť.	Sat. NaCl.	15% NaCl.	5% NaCl				
11	8.9	3.6					
40	11.9	6	I.I				
oo	16.0	10.3	2.6				

SOLUBILITY OF CUPROUS CHLORIDE IN AQUEOUS SOLUTIONS OF FERROUS CHLORIDE AT 21.5° AND VICE VERSA.

(Kremann and Noss, 1912.)

In order to ascertain the composition of the solid phase, the experiment was made by mixing together weighed amounts of H₂O, CuCl and FeCl₂ and agitating in a thermostat at constant temperature. A weighed portion of the clear saturated solution in each case was analyzed and the composition of the solid phase calculated by difference.

Gms. per 100 Gms. H ₂ O.		Solid Phase.	Gms. per 10	Gms. H ₂ O.	C-II DL	
FeCl _a .	CuCl.	Solid Phase.	FeCla.	CuCl.	Solid Phase.	
0	1.53	CuCl	43 · 75	12.42	CuCl	
6.02	1.33	"	54	17.04	"	
11.62	1.80	"	66.40	21.6	"	
16.30	3.11	"	73.20	23.20	" +FeCl _{2.4} H ₂ O	
26.30	7.12	"	71.90	21.65	FeCl _{2.4} H ₂ O	
29.35	8.06	"	69.30	11.g	46	
33.12	9.56	66	65.10	o	"	

SOLUBILITY OF CUPROUS CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 26.5° AND VICE VERSA.

(Kremann and Noss, 1912.)

(See remarks above.)

Gms. per 100 Gms. H ₂ O.		C-114 DL	Gms. per 10		
NaCl.	CuCl.	Solid Phase.	NaCl.	CuCl.	Solid Phase.
0	1.55	CuCl	44.14	57.21	CuCl
10.8	3.15	"	55.10	44.10	NaCl
20.7	7.30	"	56.80	41.70	"
27	40.60	"	50.90	18.70	"
36.48	40.10	"	• ,	•	

SOLUBILITY OF CUPROUS CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AT 22° AND VICE VERSA. (Brönsted, 1912.)

Sat	roo Gms. . Sol.	Solid Phase.	Gms. per Sat.		Solid Phase.	Gms. per a		Solid Phase.
KCI.	CuCl.	I nasc.	KCl.	CuCl.	F Basc.	KCI.	CuCl.	r dasc.
3.87	0.115	CuCl	21.64	13.32	CuCl	24.04	4.53	CuCl.2KCl
6.56	0.405	66	23.84	17.23	44	25.03	3.14	"
8.24	0.861	44	25.24	21.47	**	26.28	2.20	u
II.33	2.19	"	23.87	15.48	CuCl.2KCl	27.06	1.60	44
15.30	4.80	**	23.57	13.99	"	26.68	1.21	KC1
17.47	7.19	44	23.50	11.39	*	26.32	0.58	"
20.31	10.21	66	23.49	7.35	u	25.68	0	4

Solubility of Cupric Chloride in Aqueous Solutions of Mercuric Chloride at 35° and Vice Versa.

(Schreinemakers and Thonus, 1912.)

Gms. per roo'Gms. Sat. Sol.		Solid Phase.	Gms. per 100	Gms. per 100 Gms. Sat. Sol.		
HgCl.	CuCl ₂ .	Soud Phase.	HgCl ₂ .	CuCl _p .	Solid Phase.	
0	44 - 47	CuCl ₂ .2H ₂ O	52.54	18.46	$HgCl_2$	
21.03	33 · 5	"	52.81	18.06	76	
37.30	26.07	"	51.03	14.73	66	
44 - 47	23.31	"	49.50	5.94	46	
50.47	21.50	" +HgCl ₂	23.87	2.64	"	
52.44	19.40	HgCl ₂	8.51	0	46	

SOLUBILITY OF COPPER CHLORIDE AND POTASSIUM CHLORIDE DOUBLE SALTS AND MIXTURES IN WATER.

(Meyerhoffer - Z. physik. Chem. 5, 102, '90.)

	Cl per 1 Gra	m Solution.	Mols. per 100 Mols. H ₂ O.		Solid
8°.	Present as CuCl ₃ .	Present as KCL	CuCl ₂ .	KCl.	Phase.
39 · 4	0.120	0.107	5 .56	9.93	CuClg.aKCl.aHgO + KCl
49.9	0.129	0.115	6.39	11.4	44
60.4	0.142	0.125	7.71	13.6	44
79 I	0.168	0.142	11.1	ı8.8	44
90.5	0.188	0.154	14.9	24.4	44
93.7	0.194	0.156	16.2	26.0	CuCla.KCl + KCl
98.8	0.197	o. 162	17.5	28.7	
ĺ.	0.214	0.021	9.84	1.94	CuCl _{2.2} KCl. ₂ H ₂ O + CuCl _{2.2} H ₂ O
39.6	0.232	0.049	12.0	5 · 44	*
50 I	0.233	0.059	13.7	6.90	44
52.9	0.241	0.062	14.8	7.63	44
60.2	0.246	0.066	15.8	8.49	CuCl ₂ .KCl + CuCl _{2.2} H ₂ O
72.6	0.255	0.063	16.8	8.35	64
64.2	33	• • • •	14.9	11.6	CuCl _{2.2} KCl. ₂ H ₂ O + CuCl _{2.} KCl
72.5	•••	•••	14.8	15.0	CuCl ₂ .KCl

SOLUBILITY OF CUPRIC CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 30° AND VICE VERSA. (Schreinemakers and de Baat, 1908-09.)

Gms. per 100 Gms. Sat. Sol. Gms. per 100 Gms. Sat. Sol. Solid Phase. Solid Phase. NaCl. CuCl₂. NaCl. CuCle. CuCl₂.2H₂O NaCl 32.40 0 43.95 12.25 28.64 3.10 41.14 13.54 " " 4.28 41.06 15.40 23.72 " " 6.41 39.40 16.98 18.44 " +NaCl " 10.25 36.86 20.61 11.03 66 32.38 NaCl 12.02 26.47

SOLUBILITY OF CUPRIC CHLORIDE IN AQUEOUS ALCOHOL AT_II.5. (Bodtker, 1897.)

10 gms. of CuCl₂2H₂O and the indicated amounts of CuCl₂ were added to 20 cc. portions of alcohol. The solutions shaken two hours and 5 cc. portions withdrawn.

Vol. % Alcohol.	Gms. CuCla	Gms. per 5	cc. Solution.	Vol. % Alcohol.	Gms. CuCla	Gms. per 5 o	c. Solution.
Alcohol.	Added.	H ₂ O.	CuCl ₂ .	Alcohol.	Added.	√H ₂ O.	CuCl ₂ .
89.3	0	0.794	1.137	99.3	0.223	0.330	1.295
92.3	•	0.648	1.090	99.3	0.887	0.247	1.639
96.3	0	0.478	1.116	99.3	1.540	0.191	2.086
99.3	0	0.369	1.208	99.3	1.957	0.164	2.400

SOLUBILITY OF CUPRIC CHLORIDE IN SEVERAL SOLVENTS.

(Etard — Ann. chim. phys. [7] 2, 564, '94; de Bruyn — Z. physik. Chem. 10, 783, '92; de Coninck — Compt. rend. 131, 59, '90; St. von Laszczynski — Ber. 27, 2285, '94.)

C-1	Grams CuCl ₂ per 100 Grams Sat. Solution at:						
Solvent.	€.	15°.	20°.	40°.	80°.		
Methyl Alcohol	36	40.5 (de B.)	36.5	37.0	• • •		
Ethyl Alcohol	32	35.0 (de B.)	35 · 7	39.0	• • •		
Propyl Alcohol	29	• • •	30.5	30.5	• • •		
Iso Propyl Alcohol	• • •	•••	• • •	16.0	30.0		
n Butyl Alcohol	15	•••	15.3	16.0	16.5		
Allyl Alcohol	23	• • •	23.0	• • •	• • •		
Ethyl Formate	10	• • •	9.0	8.0	• • •		
Ethyl Acetate	• • •	• • •	3.0	2.5	I.3 (72°)		
Acetone (abs.)	8.86*	8.92†	2.88 (18°)	• • •	1 .40 (56°)		
Acetone (80%)	• • •	• • •	18.9‡	• • •	• • •		
Ether	• • •	0.043 (11°)	0.11	• • •	• • •		
* (CuCl ₂₋₂₋₁	Aq.)	† (CuCla.a Aq.)	‡ (23° C	uCl ₂ .2 A	1.)		

For the solubility of cupric chloride in mixtures of a number of organic solvents, see de Coninck.

Solvent.	ť.	CuCl, per roo Gms. Sat. Sol.	Sp. Gr. Sat. Sol.	Authority.
Acetonitrile	18	1.57		(Naumann and Schier, 1914.)
Ethyl Acetate	18	0.4	0.9055	(Naumann, 1904.)
Methyl Acetate	18	0.55	0.939	(Naumann, 1909.)
Anhydrous Hydrazine	ord. temp.	5 (decom	p.)	(Welsh and Broderson, 1915.)

SOLUBILITY OF CUPROUS CHLORIDE IN ACETONITRILE. (Naumann and Schier, 1914)
100 gms. acetonitrile of boiling point 81.6° dissolve 13.33 gms. CuCl at 18°.

SOLUBILITY OF CUPRIC CHLORIDE IN PYRIDINE.

		(Mathews and Spe	ro, 1917.)		
	Gms. CuCl, per roo Gms. Sat. Sol.		r	Gms. CuCl ₂ per 100 Gms. Sat. Sol.	Solid Phase.
-17.3	0.140	CuCl ₂ .6C ₄ H ₄ N	45	0.422	CuCl ₂₋₂ C ₅ H ₅ N
-12.I	0.195	u	53	0.493	a
— 10	0.295	" (unstable)	6o	0.565	" (unstable)
- 8.9 tr. pt.	0.270	" +CuCl ₂₋₂ C ₅ H ₅ N	62	0.616	" "
+ 2	0.275	CuCl ₂ .2C ₅ H ₄ N	58 tr. pt.		" +2CuCl ₂ ,3C ₅ H ₅ N
10	0.293	44	63	0.543	2CuCl ₂₋₃ C ₄ H ₄ N
25	0.348	"	75	0.631	4
35	0.382	et .	95 .	0.917	•

DISTRIBUTION OF CUPRIC CHLORIDE BETWEEN AQ. HCl AND ETHER

When I gm. of copper as chloride is dissolved in 100 cc. of 10% HCl and shaken with 100 cc. of ether, 0.05% of the metal enters the ethereal layer. (Mylius, 1911.) COPPER Ammonium CHLORIDE CuCl. NH4Cl.

SOLUBILITY IN ABSOLUTE ALCOHOL AT 25°. (Foote and Walden, 1911.)

Gms. per 100	Gms. Sat. Sol.	Call I Dhana
CuCl ₂ .	NH ₄ Cl.	Solid Phase.
4.7	not det.	NH4Cl+CuCl2.NH4Cl
6.45	"	CuCl ₂ .NH ₄ Cl
12.00	"	"
34.7	"	" +CuCl ₂ .C ₂ H ₅ OH

COPPER Potassium CHLORIDE CuCl₂.KCl.

SOLUBILITY IN ABSOLUTE ALCOHOL AND IN ACETONE AT 25°. (Foote and Walden, 1911)

In Acetone.

in Absolute Alconol.			in Acetone.			
Gms. per roc	Gms. Sat. Sol.	Solid Phase.	Gms. per 1	oo Gms. Sat. S	ol. Solid Phase.	
. CuCl ₂ .	KCI.	OULU 1 DAGO.	CuCl ₂ .	KCl.	- Soud Phase,	
1.40	0.28	KCl+CuCl ₂ KCl	0.34	0.38	KCI+CuCl ₃ .KCl	
2.15	not. det.	CuCl ₂ .KCl	0.48	not det.	CuCl ₂ .KCl	
5.25	"	u	1.50	"	"	
30.16	"	"	2.06	"	u	
34.45	0.21	" +CuCl2.C2H4OH	2.40	0.27	" +CuCl ₂ .C ₂ H ₄ O	
33 · 97	0	CuCl ₂ .C ₂ H ₄ OH			,	

Freezing-point data (solubility, see footnote, p. 1) are given for the following mixtures of cuprous chloride and other chlorides.

- CuCl + CuCl₂ (Sandonnini, 1912 (a)). + FeCla (Hermann, 1911.) "
 - + PbCl₂ + LiCl (Sandonnini, 1911, 1914; Korreng, 1914.)
 - " + RbCl (Sandonnini, 1914; Sandonnini and Aureggi, 1912.)
 - " + AgCl (Sandonnini, 1911, 1914; Poma and Gabbi, 1911, 1912.)
 - + KCl (Sandonnini, 1911, 1914; Korreng, 1914; Sackur, 1913; Poma and Gabbi, 1911, 1912.) "
 - + NaCl (Sandonnini, 1911, 1914; Korreng, 1914; Sackur, 1913; de Cesari, 1911.)
 - " + TICI (Sandonnini, 1911, 1914.)
 - + SnCl₂ (Hermann, 1911.)
 - ∔ ZnCl₂

Freezing-point lowering data for mixtures of CuCl + Cu₂O and CuCl + Cu₂S are given by Truthe, 1912.

COPPER Potassium CITRATE CuK₄[(COOCH₂)₂C(OH)COO]₂.

100 cc. sat. solution in H2O contain 43.3 gms. of the salt at 10°. (Pickering, 1915.) COPPER CYANIDE (ous) Cu₂(CN)₂,

Freezing-point data for Cu₂(CN)₂ + KCN and Cu₂(CN)₂ + NaCN are given by Truthe (1912).

COPPER HYDROXIDE (ic) Cu(OH)2.

SOLUBILITY IN AQUEOUS SOLUTIONS OF AMMONIA AT 18°. (Dawson, 1909.)

Mols. NH _s per Liter.	Gm. Atoms Cu per Liter.	Mols. NH ₃ per Liter.	Gm. Atoms Cu per Liter.
0.2	0.00054	3	0.0548
0.5	0.0033	4	0.0784
I	0.0109	5	0.1041
1.5	0.0204	6	0.1254
2	0.0314	8	0.1599
2.5	0.0442	g.g6	0.1787

Three series of results at 25°, somewhat higher than the above, are given by Bonsdorff, 1904.

Data showing the effect of increasing amounts of (NH₄)₂SO₄, Ba(OH)₂, NaOH and of Na₂SO₄ upon the solubility of cupric hydroxide in aqueous ammonia solution at 18°, are given by Dawson, 1909 a.

COPPER IODATE (ic) Cu(IO₂)₂H₂O.

One liter sat. aqueous solution contains 1.36 gms. Cu(IO₂)₂ at 25°, determined by measurement of single potential differences against a 0.1 n calomel electrode. (Spencer, 1913.)

COPPER IODIDE (ic) Cul₂.

One liter sat. aqueous solution contains 11.07 gms. Cul₂ at 20°

(Fedotieff, 1911-12.)

COPPER IODIDE (ous) Cu₂I₂.

SOLUBILITY OF CUPROUS IODIDE IN AQUEOUS SOLUTIONS OF AMMONIUM BROMIDE AND OF POTASSIUM BROMIDE. (Kohn, 1909; Kohn, and Klein, 1912.)

Results for Aq. NH ₄ Br at 20°.			Resu	ilts for Aq.	KE	r Solutio	ons.
Normality NH ₄ Br Sol.	Gms. Cu ₂ I ₂ per 1000 cc. Sat. Sol.	ť.		Gms. Cu ₂ I ₂ per 1000 cc. Sat. Sol.		Normality of KBr Sol.	Gms. Cu _s I _s per rooo Gms. Sat. Sol.
2	1.9068	19.5	2	1.467	23	3	3 · 595
3	3.6540	24	2	1. 5 58	22	4	7.126
4	6.0588	19.5	3	3.409	22	4	6.977

SOLUBILITY OF CUPROUS IODIDE IN AQUEOUS SOLUTIONS OF IODINE AT 20° AND VICE VERSA. (Fedotieff, 1910-11.)

	er Liter.			er Liter.	Solid	Gms.	per Liter.	Solid
Cu.	I.	Phase.	Cu.	I.	Phase.	Cu.	<u>I.</u>	Phase.
0.285	0.5848	CuI		5.0854		0.748	4.7112	I
0.482	1.3053	44	1.032	5.6854	44	0.606	3.8562	44
0.583	1.9218	44	1.000	6.2816	u	0.448	2.9493	u
0.678	2.5573	"	1.112	6.5301	"	0.300	2.0689	"
0.756	3.2042	"	1.232	7.6529	" +I	0.159	1.2304	4
	3.9539			6.4440		at $0^{\circ} = 0.925$	5.4609	CuI+I
0.898	4.4359	**	0.898	5.5941	44.	at $40^{\circ} = 1.658$	11.3658	44

Constant agitation and temperature. Iodine determined by thiosulfate titra-

tion; copper, electrolytically.

Additional data for the solubility of cuprous iodide in aqueous solutions of iodine in presence of acids and salts at 25°, are given by Bray and MacKay (1910). These authors state that cuprous iodide is difficultly soluble in water, but in the presence of iodine a considerable amount dissolves, owing to the formation of cupric iodide and tri-iodide.

100 gms. acetonitrile dissolve 3.52 gms. Cu₂I₂ at 18°. (Naumann and Schier, 1914.) Freezing-point lowering data for mixtures of CuI + AgI are given by Quercigh, '14.

COPPER NITRATE (ic) Cu(NO₃)₂.

SOLUBILITY IN WATER. (Funk, 1900.)							
r.	Gms. Cu(NO ₂) ₂ per 100 Gms. Solution.	Mols. Cu(NO ₂) ₂ per 100 Mols. H ₂ O.	Solid Phase.	ť°.	Gms. Cu(NO ₂) ₂ per 100 Gms. Solution.	Mols. Cu(NO ₂) ₂ per 100 Mols. H _e O	Sound Palesco
-23	36. 0 8	5 - 4.2	Cu(NO ₂) ₂ .9H ₂ O	20	55.58	12	Cu(NO ₂) ₂ .6H ₂ O
- 20	40.92	6.65	4	26.4	63.39	16.7	**
-21	39.52	6.27	Cu(NO ₂) ₂ .6H ₂ O	25	60.01	14.4	Cu(NO ₂) ₂₋₃ H ₂ O
0	45	7.87	4	40	61.51	15.2	"
+10	48.79	9.15	4	60	64.17	17.2	"
18		11.20	. "	80	67.51	20	u
				114.5	77.50	33.3	"

Density of solution saturated at 18° = 1.681.

100 gms. H₂O dissolve 127.4 gms. Cu(NO₃)₂ at 20°, d₂₀ sat. sol. = 1.688. (Fedotieff, 1911-12.) Data for the solubility of copper nitrate in aq. ammonia solutions are given by Stasevich, 1913.

Data for the solubility of copper nitrate in aq. solutions of copper sulfate

and of sodium nitrate at 20° are given by Massink, 1916 and 1917.

100 cc. anhydrous hydrazine dissolve I gm. copper nitrate, with decomposi-(Welsh and Broderson, 1915.) tion, at room temp.

COPPER OXALATE (ic) CuC₂O₄₋₃H₂O.

One liter H₂O dissolves 0.02364 gm. CuC₂O₄ at 25°, determined by the conductivity method. (Schäfer, 1905.)

COPPER OXIDE (ic) CuO.

SOLUBILITY IN AQUEOUS SOLUTIONS AT 25°. (Jaeger, 1901.)

In Aq. Hyd	rofluoric Acid.	In Aq.	HF + KF.	In Aq. HNO ₃ and	CH ₄ COOH.
Normality of HF.	Gm. Atoms Cu per Liter.	Normality of HF.	Gm. Atoms Cu per Liter.	Solvent.	Gm. Atoms Cu per Liter.
0.12	0.0307	0.12	0.0356	I n CH ₂ COOH	0.1677
0.28	0.1164	0.28	0.06437	1 n HNO2	0.4802
0.57	0.2494	0.57	0.1442		
1.08	0.388	1.11	0.2451	Eu determined electr	columbically.
2.28	0.463	2.17	0.2517	a determined electr	oryticany.

COPPER OXIDE (ous) Cu₂O.

SOLUBILITY IN AQUEOUS AMMONIUM SOLUTIONS AT 25°. (Donnan and Thomas, 1911.)

The cuprous oxide was prepared by adding KOH solution to a mixture of equal weights of CuSO_{4.5}H₂O and sucrose dissolved in water, until nearly all the precipitate had redissolved. The solution was kept at 70° until the cuprous oxide had separated. Two batches were prepared. The first, No. I, obtained from the more dilute solution, was bulky and dark red in color, Cu = 88.62%. The second, No. II, was bright red, Cu = 88.59%. The solubility determinations were made with extreme care. A special apparatus was used. By means of this, the constituents of the mixtures were introduced into the bottles in an atmosphere of hydrogen and every precaution taken to prevent oxidation. The bottles were sealed and rotated for 2-4 weeks at constant temperature. In case the slightest tinge of blue developed in a bottle (indicating oxidation), it was rejected.

Results for Preparation No. I.				Resu	lts for Pre	paration No	. II.
Gms. per 1000 Gms. Sol. Mols. per 1000 Gms. Sol.		Gms. per 10	Gms. per 1000 Gms. Sol. Mols. per 1000 Gms. S				
Cu.	NH ₃ .	Cu.	NH ₃ .	Cu.	NH ₃ .	Cu.	NH ₃ .
0.3593	3.91	0.00566	0.23	0.4229	7.82	0.00665	0.46
0.6869	13.77	0.01080	0.81	0.6678	8.16	0.01050	0.48
1.0144	27.03	0.01597	1.59	0.9890	22.61	0.01555	1.33
1.0462	32.64	0.01645	1.92	1.0494	28.39	0.01650	1.67
1.3229	68.68	0.02081	4.04	1.3528	54.15	0.02127	3.19
1.4882	74.12	0.02340	4.36	1.5048	72.08	0.02366	4.24
1.6313	98.52	0.02565	5.56	1.5963	78.20	0.02510	4.60
1.6981	122.40	0.02670	7.20	1.6555	102.05	0.02603	6

COPPER SULFATE CuSO_{4.5}H₂O.

SOLUBILITY IN WATER.
(Etard, 1894; Patrick and Aubert, 1874; at 15°, Cohen, 1903; at 25°, Trevor, 1891.)

ť°.	Gms. CuSO ₄ J	er 100 Gms.	t°.	Gms. CuSO ₄	Gms. CuSO ₄ per 100 Gms.		
• •	Solution.	Water.	• .	Solution.	Water.		
0	12.5	14.3	60	28.5	40		
10	14.8	17.4	80	35.5	55		
20	17.2	20.7	100	43	75-4		
25	18.5	22.7	120	44	78.6		
30	20	25	140	44 · 5	80.2		
40	22.5	28.5	160	44	78.6		
50	25	33 · 3	180	43	75.4		

Sp. gr. of sat. solution of CuSO_{4.5}H₂O in H₂O at 16° = 1.193. (Greenish, 1902.) 100 gms. sat. solution in H₂O contain 20.32 gms. CuSO₄ at 30°. (Schreinemakers, 1910.)

SOLUBILITY OF COPPER SULFATE IN AQUEOUS SOLUTIONS OF AMMONIUM SULFATE AT 0°. (Engel, 1886.)

Milligram Equiv. per 10 cc. Solution.		Sp. Gr. of Solutions.	Grams per		
(NH ₄) ₂ SO ₄ .	CuSO.	Solutions.	(NH ₄),SO ₄ .	CuSO ₄ .	
0	18.52	I.144	0	14.79	
5 · 45	20.15	1.190	3.61	16.09	
7	10.5	1.108	4.63	8.38	
7 - 4	9.1	1.099	4.90	7.26	
8.45	6.425	1.0815	5 · 59	5.13	
11.35	3 · 7	1.071	7.51	2.95	
18.6	1.178	1.082	12.31	0.94	
31.2	1	1.116	20.65	0.80	

SOLUBILITY OF MIXTURES OF COPPER AMMONIUM SULFATE AND NICKEL AMMONIUM SULFATE IN WATER AT 13°-14°: (Fock, 1897.)

$CuSO_4.(NH_4)_2SO_4.6H_2O + NiSO_4.(NH_4)_2SO_4.6H_2O.$

Mol. % in	Solution.	Mols. per ro	o Mols. H ₂ O.	Mol. % in	Solid Phase.
Cu Salt.	Ni Salt.	Cu Salt.	Ni Salt.	Cu Salt.	Ni Salt.
0	100	0	0.521	0	100
33 · 34	66.66	0.1476	0.295	10.29	89.71
56.05	43.95	0.2664	0.2089	30.59	69.41
73.89	26.20	0.4165	0.1449	52.23	47 · 77
79.92	20.08	0.4785	0.1202	78.8 0	21.20
. 100	0	1.0350	0	100	0

SOLUBILITY OF MIXTURES OF COPPER AMMONIUM SULFATE AND ZINC AMMONIUM SULFATE IN WATER AT 13°-14°. (Fock, 1897.)

$CuSO_4.(NH_4)_2SO_4.6H_2O + ZnSO_4.(NH_4)_2SO_4.6H_2O.$

Mol. % in	Solution.	Mols. per 10	o Mols. H ₂ O.	Mol. % in	Solid Phase.
Cu. Salt	Zn Salt.	Cu Salt.	Zn Salt.	Cu Salt.	Zn Salt.
4.97	95.C3	0.0422	0.8069	2.39	97:61
10.65	89.35	0.0666	0.5638	4.52	95.48
19.24	8 o .76	0.1218	0.5115	90.3	90.97
30.19	69.81	0.2130	0.4924	14.67	85.33
44 - 44	55.56	0.3216	0.4022	22.62	77.38
100	0	1.035	Э	100	0

SOLUBILITY OF COPPER SULFATE IN AQUEOUS SOLUTIONS OF MAGNESIUM SULFATE AT 0°. (Discon, 1866.)

Gms. per 100 Gms. H ₂ O.		Solid Phase.	Gms. per 100	Solid Phase.	
CuSO ₄ .	MgSO ₄ .	Soud Phase.	CuSO ₄ .	MgSO ₄ .	Soud Phase.
0	26.37	MgSO4.6H ₂ O	12.03	15.67	CuSO _{4.5} H ₆ O
2.64	25.91	•	13.61	8.64	4
4.75	25.30	44	14.99	0	•
9.01	23.30	$MgSO_4.6H_6O+CuSO_4.5H_6O$			

SOLUBILITY OF COPPER SULFATE IN AQUEOUS SOLUTIONS OF COPPER CHLORIDE AT 30°. (Schreinemakers, 1910.)

Gms. per 100 Gms. Sat. Sol.	Solid Phase.	Gms. per Sat.	zoo Gms. Sol.	Solid Phase.
CuCl ₂ . CuSO ₄ O 20.33 6.58 I3.62 15.68 8.93 25.67 4.77	2 CuSO _{4.5} H ₂ O 2 " 3 "	CuCl ₂ . 39.48 42.62 43.25 43.95	CuSO ₄ . 3.21 2.90 1.14	CuSO _{4.5} H ₂ O "+CuCl _{2.2} H ₂ O CuCl _{2.2} H ₂ O

DATA FOR EQUILIBRIUM IN COMPLEX SYSTEMS CONTAINING COPPER SULFATE.

SOLUBILITY OF COPPER SULFATE IN AQUEOUS SOLUTIONS OF LITHIUM SULFATE AT 30°.

(Schreinemakers, 1908, 1909.)

Gms. per Sat	Too Gms. Sol.	Solid Phase.	Gms. per : Sat.	roo Gms. Sol.	Solid Phase.
Li ₂ SO ₄ .	CuSO ₄ . 20.32	CuSO _{4.5} H ₂ O	Li ₂ SO ₄ . 17.Q2	CuSO ₄ .	CuSO ₄ .5H ₂ O
3·54 6.08	17.59 •16.10		20.55 22.23	10.05	" +Li ₂ SO ₄ .H ₂ O Li ₂ SO ₄ .H ₂ O
11.94 15.72	13.55 12.14	"	23.59 25.24	3·39 0	"

SOLUBILITY OF COPPER SULFATE IN AQUEOUS SOLUTIONS OF LITHIUM AND OTHER CHLORIDES AT 25°.

(Herz, 1910.)

	ithium oride.		assium oride.	In Rubidium Chloride. Gms. per 100 cc. Sat. Sol.		In Sodium Chloride. Gms. per 100 cc. Sat. Sol.		
	Sol.		r 100 cc. Sol.					
LiCl.	CuSO ₄ .	KCl.	CuSO ₄ .	RbCl.	CuSO ₄ .	NaCl.	CuSO ₄ .	
3.10	20.06	4.19	23.89	0	22.34	2.10	22.41	
5.93	18.78	8.75	24.92	13.22	25.02	7.72	22.76	
12	17.03	17.50	29.Q3			14.79	24.05	

SOLUBILITY OF COPPER POTASSIUM SULFATE CuK2(SO4)2.6H2O IN WATER AT 25°. 100 gms. H₂O dissolve 11.14 gms. CuK₂(SO₄)₂. (Trevor, 1891.)

Additional data for the system Copper sulfate + Potassium sulfate + H₂O are given by Meerburg, 1909.

Data for the solubility in water of mix-crystals of copper sulfate and manganese sulfate at 0° and 17°, and of copper sulfate and zinc sulfate at 12°, 18°, 25°, 35°, 40° and 45°, are given by Hollemann, 1905-06.

COPPER SULFATE, MANGANESE SULFATE, MIXED CRYSTALS AT 25°. (Stortenbecker, 1900.)

	o Gms. H₃O.	Mols. per 100	Mols. H ₂ O.	Mol. % Cu in Solution.	Mol. % Cu
CuSO4.	MnSO ₄ .			in Solution.	in Crystals.
Triclinic C	rystals with 5H2C				
20.2	0	2.282	0	100	100
				90.5	99 · 3
19.76	3.69	2.23	0.44	83.5	• • • •
				74 · I	97 · 3
				57 ⋅ 7	95.1
				31.0	81.3
13.65	31.52	I.54	3.76	20.0	
	• •	•	•	2Ó.I	70.4
11.61	39.4I	1.31	4.70	21.8	
		•	• •	21.2	42.6
				20.0	34 · 4
9.39	46.77	1.06	5 · 59	15.9	22.9
, ,,			0 0,	13.45*	15.2*
6.47	5 3 · 3 9	0.73	6.37	10.27	10.5
•	•••			5.0	4.9
3.01	58.93	0.34	7.03	4.6	
•	• ••	•	, ,	. 2.31	2.15
0.0	61.83	0.0	7 · 375	0.0	100.0
Monoclini	Crystals with 7E	. O.			
		_		20.0	28.2
9.39	46.77	т.об	5.58	15.9	23.5
9.39	4-11		J 3	13.45	20.8
6.47	53 · 39	0.73	6.37	10.27	16.0
0.47	33.39	0.73	0.37	4.6*	5.8*
0.0	67.07±	0.0	8±*	0.0	100
0.0		Indicates points		-	100
	•	LIBOICRIES DOIDES	OR JADU EOUIST	T1007) -	

Indicates points of labil equilibrium.

COPPER SULFATE, ZINC SULFATE, MIXED CRYSTALS IN WATER AT 18°. (Stortenbecker, 1897.)

Mols. per 100 Mols. H ₂ O.		Mol. % Cu	Mol. % Cu	
Cu.	Zn.	in Solution.	in Crystals.	
2 · 28	0	100	100	
1.83	2.08	46.8	94.9	
1.41	3.6o	28.1		Triclinic Crystals with 5H ₂ O.
1.19	5.01	19.2	77.9)
1.86	3.36	ვნ.₂	40.4	
I.22	4 · 45	21.5	29.5-31.9	
1.01	4.72	17.6	24 · I–28 ·	
0.82	5.03	14.0	19.0-22.	Monoclinic Crystals with 7H2O.
0.51	5 · 59	8.36	12.4-14.9	
0.30	5.56	4 . 87	7 .02	
0.0	6.42	0.0	0	
1.19	5.01	19.2	5.01	1
0.51	5.59	8.36	1.97	Rhombic Crystals with 7HgO.
0.267	5 · 77	4.42	1.15	
0.0	£.04	0.0	0.00	J

SOLUBILITY OF COPPER SULFATE, SODIUM SULFATE MIXTURES IN WATER. (Koppel, 1901-02; Massol and Maldes, 1901.)

ť.	Gms. per : Solut	ioo Gms.	Mols. per H	r 100 Mols. LO.	Solid Phase.
	CuSO ₄ .	Na ₂ SO ₄ .	CuSO ₄ .	Na ₂ SO ₄ .	
0	13.40	6.23	r.88	0.98	CuSO ₄₋₅ H ₂ O+Na ₆ SO ₄₋₁₀ H ₂ O
10	14.90	9.46	2.23	1.56	u
15	15.18	11.64	2.34	2.02	4
17.7	14.34	13.34	2.24	2.34	CuSO ₄ .Na ₂ SO ₄₂ H ₂ O
23	14.36	12.76	2.23	2.21	a a
40.15	13.73	12.26	2.10	2.10	"
17.7	14.99	13.48	2.37	2.39	CuSO4.Na4SO4.2H4O+CuSO4.5H4O
23	16.41	11.35	2.57	1.99	u
40.15	20.56	8	3.25	1.47	u
18	13.53	13.84	2.10	2.41	CuSO4.Na4SO4.2H4O+Na4SO4.10H4O
20	11.34	15.70	1.76	2.73	u
25	6.28	21.20	0.98	3.70	u
30	2.607	28.38	0.43	5.21	«
33.9	1.475	32.30	0.25	6.18	«
37.2	1.494	31.96	0.25	6.08	æ
30	5.38	22.17	•		C-SO N- SO -WOLL
30.1	3.69	25.37			CuSO ₄ .Na ₂ SO _{4.2} H ₂ O+increasing
30	1.57	32.09		• ,	amts. of Na ₂ SO ₄ .10H ₂ O

Data for the system copper sulfate, sodium sulfate, water, at 20° and 35° are given by Massink, 1916, 1917.

SOLUBILITY OF COPPER SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 0°. (Engel, 1887.)

Milligram Equiv. per 10 Gms. H ₂ O.		Sp. Gr. of Solutions.	Grams per 100 Grams H ₂ O.			
H ₂ SO ₄ .	CuSO ₄ .	Solutions.	H ₂ SO ₄ .	CuSO ₄ .		
0	18.6	I.144	0	14.85		
4.14	17.9	1.143	2.03	14.29		
14.6	19.6	1.158	7.16	15.65		
31	12.4	1.170	15.20	9.90		
54.2	8. o 6	1.195	26.57	6.43		
56.25	7 ·75	1.211	27 - 57	6.19		
71.8	5	I.224	35.2	3.99		

SOLUBILITY OF COPPER SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 25°. (Bell and Taber, 1908; Foote, 1915.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per Sat.	roo Gms. Sol.	Solid Phase.	
H ₂ SO ₄ .	CuSO ₄ .		H ₂ SO ₄ .	CuSO ₄ .		
0	18.47	CuSO _{4.5} H ₄ O	55.72	2.13	CuSO _{4.3} H ₂ O+CuSO _. H ₄ O	
11.14	12.62	u	61.79	0.95	CuSO ₄ -H ₄ O	
25.53	5.92	u	77 - 93	0.17	60	
36.77	3.25	a	83.29	0.15	•	
42.15	2.63	u	85.46	0.19	u	
47.66	2.59	a	85.76	0.43	" +CuSO ₄	
49	2.83	" +CuSO _{4·3} H ₂ O	86.04	0.40	CuSO ₄	
50.23	2.70	CuSO _{4.3} H ₂ O	92.70	0.19	4	
54.78	2.19	4				

SQLUBILITY OF COPPER SULFATE IN METHYL AND ETHYL ALCOHOL, ETC. (de Bruyn, 1892; de Coninck, 1905.)

Solvent.	t°.	Gms. per	CuSO _{4.5} H ₂ O		TY IN AQUEOUS HOL AT 15°.
Methyl Alcohol Al		1.05	15.6		chiff, 1861.)
" " 93	.5% 18		0.93	Wt. %	Gms. CuSO _{4.5} H _g O per 100 g. Solvent.
" " 50	% 18		0.40	Alcohol.	per 100 g. Solvent.
" " Åt	os. 3		13.4	10	15.3
Ethyl Alcohol Abs.	. 3		I.I	20	3.2
Glycol	14.6		7.6*	40	0.25
Glycerol	15.5	• • •	30		
Glycerol	15-10		36.3	(Ossendowski,	1907.)
95% Formic Acid	18.5		0.05	(Aschan, 1913.))
Anhy. Hydrazine	ord. t	. 2	†	(Welsh and Bro	oderson, 1915.)
	* Per 100 gms.	solution.	t dec	omp.	

Data for the solubility of copper sulfate in methyl alcohol are given by Carrara and Minozzi, 1897.

COPPER SULFIDE (ic) CuS.

One liter of water dissolves 0.00033 gm. CuS at 18°, determined by the conductivity method. (Weigel, 1906; see also Bruner and Zawadski, 1909.) 100 cc. sat aq. sodium sulfide solution (of d=1.225) dissolve 0.0032 gm. CuS. (Holland, 1897.)

SOLUBILITY OF COPPER SULFIDE IN AQUEOUS SUGAR SOLUTIONS.
(Stolle. 1900.)

% Sugar in Solvent.	Gms. CuS per Liter of Aq. Sugar Solution at:						
in Solvent.	17.5°.	45°-	75°.				
10	0.5672	0.3659	1.1345				
30	0.8632	0.7220	1.2033				
50	0.9076	1.0589	1.2809				

COPPER SULFIDE (ous) Cu₂S.

Freezing-point lowering data (solubility, see footnote, p. 1) for mixtures of Cu₂S + Ag₂S, Cu₂S + PbS and Cu₂S + ZnS are given by Friedrich, 1907-08. Results for Cu₂S + Sb₂S₂ are given by Chikashigi and Yamanchi, 1916. Data for Cu₂S + FeS are given by Shad and Bornemann, 1916.

COPPER SULFONATES.

100 gms. H₂O dissolve 0.25 gm. copper 2-phenanthrene monosulfonate at 20°.
" " 0.09 " " 3- " " " (Sandquist, 1912.)

COPPER TARTRATE CuC4O4H4.3H2O.

SOLUBILITY IN WATER. (Cantoni and Zachoder, 1905.)

r.	Gms. CuC ₄ O ₂ H ₄₋₃ H ₂ O per 100 cc. Solution.	ť°.	Gms. CuC ₄ O ₈ H ₄₋₃ H ₂ O per 100 cc. Solution.	t.	Gms. CuC ₄ O ₇ H _{4.3} H ₂ O per 100 cc. Solution.
15	0.0197	40	0.1420	65	0.1767
20	0.0420	45	0.1708	70	0.1640
25	0.0690	50	0.1920	75	0.1566
30	0.0890	55	0.2124	80	0.1440
35	0.1205	60	0.1970	85	0.1370

COPPER THIOCYANATE (ic) Cu(SCN)2.

SOLUBILITY IN AQUEOUS AMMONIA SOLUTIONS AT 25° AND AT 40°. (Hom, 1907.)

		Result	s at 25°.	, , , , , ,		Results at	40°.
d _m	Gms.	per 100 G	ms. Sat. Sol.	Solid Phase.	Gms. per 100	Gms. Sat. Sol.	Solid Phase.
Sat. S		NH ₈ .	Cu(SCN)2.	Song I nasc.	NH _s .	Cu(SCN)2.	Soud Phase.
1.00	82	0.79	2.45	Cu(SCN)2.2NHa	0.94	2.81	Cu(SCN)2.2NHa
1.01	66	1.98	4.08	"	1.77	4.18	"
1.02	13	2.50	5.11	"	2.57	6.55	u
1.01	71	4.26	5.96	Cu(SCN)2-4NH8	3.52	8.76	"
1.01	51	5.35	6.22	"	4.35	11.78	Cu(SCN)2-4NHa
1.01	34	6.39	6.59	"	5.50	12.07	"
1.00	70	9.93	7.98	"	7.58	12.99	"
0.99		6.55	11.24	a	13.98	16.58	4
0.99	85 2	1.47	15.22	"	18.02	19.76	4

COUMARIN C.H.O.

100 gms.	water	dissolve	e 0.0 1	gm.	coumarin	at	20°-	25°.	(Dehn, 1917.)
ıt	pyridine	"	87.7	gms.	44	**	4	, -	44
44	50% aq. pyridine chloroform	44	60.1	8	44	**	44	•	44
44	chloroform	44	40.4	"	44	"	25°.	(Or	nka. 1903-08.)

Freezing-point lowering data for mixtures of coumarin and sulfuric acid are given by Kendall and Carpenter, 1914.

CRESOLS $C_6H_4(OH)CH_3 o$, m and p.

SOLUBILITY OF EACH SEPARATELY IN WATER. (At 20°, Vaubel, 1895; Sidgwick, Spurrell and Davies, 1915.)

Determinations by synthetic method; melting-point of $o = 29.9^{\circ}$, of $m = 4^{\circ}$, of $p = 33.8^{\circ}$. Triple point for o = 87 and 2.5 gms. per 100 gms. sat. sol. at 8°; triple point for p = 86 and 2 gms. per 100 gms. sat. sol. at 8.7°.

ť°.	Gms. per	roo Gms. Sa	t. Solution.	t°.	Gms. per 100 Gms. Sat. Solution.		
••	Cresol.	m Cresol.	p Cresol.		Cresol.	# Cresol.	p Cresol.
20	2.45	2.18	1.94	120	6.22	7	6.58
40	3.08	2.51	2.26	130	6.70	8.86	9
50	3.22	2.72	2.43	140	7.67	12.3	15.9
60	3.40	2.98	2.69	143 . 5 crit. t.	• • •		00
70 80	3.74	3.35	3.03	147 crit. t.		∞	
80	4.22	3.80	3.52	150	II.I		
90	4.80	4 · 43	4.16	160	23.7		
100	5.30	5 · 47	5.10	162.8 crit. t.	×		
IIO	5.80	5.96	5.50				

One liter aqueous I normal solution of the sodium salt of o cresol dissolves 7.57 gms. o cresol at 25°, 8.32 gms. at 40°, 9.84 gms. at 60° and 13.62 gms. at 80° (Sidgwick, 1910.)

MISCIBILITY OF AQUEOUS ALKALINE SOLUTIONS OF m CRESOL WITH SEVERAL ORGANIC COMPOUNDS INSOLUBLE IN WATER.

(Sheuble, 1907.)

To 5 cc. portions of aq. KOH solution (250 gms. per liter) were added the given amounts of the aq. insoluble compound from a buret, and then the *m* cresol dropwise, until solution occurred. Temp. not stated.

cc. Aq. KOH.		Ag. Insol. Cmpd.			
5	2 cc. (1.64	gms.) Octyl Alcohol*	I.I gms.		
5	5" (4.1	·") " " "	r.8 "		
5	2 " (1.74	") Toluene	4.4 "		
5	2 " (1.74 3 " (2.61 2 " (1.36	")"	5.I "		
5	2 " (1.36	") Heptane	6.4 "		

DISTRIBUTION OF CRESOL BETWEEN WATER AND ETHER. (Vaubel, 1903.)

Composition of Solvent.	Gms. Cresol in H _e O Layer.	In Ether Layer.
200 cc. H ₂ O+100 cc. Ether	0.0570	1.0760
200 cc. H ₂ O+200 cc. Ether	0.0190	· I.II44

FREEZING-POINT LOWERING DATA (Solubility, see footnote, p. 1) FOR MIXTURES OF 0, m AND p CRESOL (each determined separately) AND OTHER COMPOUNDS.

```
Mixture.
                                                           Authority.
o, m and p Cresol + Dimethylpyrone (Kendall, 1914.)
                     + Picric Acid
                                            (Kendall, 1916.)
               44
                     + Pyridine
                                            (Hatcher and Skirrow, 1917.)
               "
o and p
                                            (Bramley, 1916.)
                                            (Kendall and Carpenter, 1914.)
                    + Sulfuric Acid
               "
o, m and p
                     + Urea
                                            (Kremann, 1907.)
Trinitrocresol + Naphthalene
                                            (Saposchinikow and Gelvich, 1903, 1904.)
```

CROTONIC ACIDS $\alpha = \text{CH}_1\text{CH}: \text{CHCOOH}, \beta = \text{HCH}_2\text{C}: \text{CHCOOH}.$

FREEZING-POINT LOWERING DATA FOR MIXTURES OF CROTONIC ACIDS AND OF CROTONIC ACID AND OTHER COMPOUNDS.

Mixture.	Authority.
α Crotonic Acid + β Crotonic Acid	(Morrell and Hanson, 1904.)
" + Dimethylpyrone	(Kendall, 1914.)
" + Sulfuric Acid	(Kendall and Carpenter, 1914.)
Chlorocrotonic Acid + Dimethylpyrone	(Kendall, 1914.)
" + Sulfuric Acid	(Kendall and Carpenter, 1914.)

Methyl CRYPTOPINES, A, B and C forms, C₂₂H₂₅O₅N.

The solubilities of the three forms in benzene, determined by lowering of the freezing-point, are: 5 gms. A form per liter at 5°, 30 gms. B form and 110 gms. C form.

(Sidgwick, 1915.)

CUMINIC ACID C₄H₇C₆H₄.COOH (p Isopropyl Benzoic Acid).

SOLUBILITY IN WATER AT 25°. (Paul, 1894.)

1000 cc. sat. solution contain 0.1519 gm. or 0.926 millimol cuminic acid.

Pseudo**CUMIDINE** (CH₃)₃.C₆H₃.NH₂ (s, 5 Amino, 1. 2. 4, Trimethyl Benzene).

SOLUBILITY IN WATER.

(Lowenberz, 1898.)

t*. 19.4*. 23.7*. 28.7*. Gms. \(\psi\) Cumidine per liter H₂O 1.198 . 1.330 1.498

CYANAMIDE CN.NH2.

SOLUBILITY IN WATER, DETERMINED BY FREEZING-POINT METHOD. (Pratolongo, 1913.)

to of Congealing.	Gms. CN.NH ₂ per 100 Gms. Sat. Sol.	Solid Phase.	to of Congealing.	Gms. CN.NH ₂ per 100 Gms. Sat. Sol.	Solid Phase.	
-0.62	2.58	Ice	-14.39	40.19	CN.NH _e	
- 3.96	9.42	44	- 2.49	56.80	44	
- 7.58	18.40	" .	+14.50	77.20	4	
-12.72	30.9	" .	25.6	87.15	4	
- 16.6 Eutec.	37.8	" +CN.NH ₂	37.90	96.77	44	
-15.6	38.75	CN.NH2	42.9	100	u	
Simila data for CN.NH ₂ + urea and CN.NH ₂ + dicyandiamide are also given.						

DiCYANDIAMIDINE Perchlorate C2H6N4OHClO4.

100 gms. H_2O dissolve 9.97 gms. of the salt at 17° (d sat. sol. = 1.039). (Carlson, 1910.)

CYANOGEN (CN)2.

SOLUBILITY IN WATER AND OTHER SOLVENTS. (Berthelot, 1904.)

The determinations were made over mercury with exclusion of air. The mercury was not attacked by the $(CN)_2$. On account of polymerization, the solubility increased with time of contact and amount of agitation of the mixture. One volume of H_2O at 30° dissolves 3.5 vols. $(CN)_2$ after 2 hours, and 9.7 vols.

after 97 hours.

One volume of abs. alcohol at 20° dissolves 26 vols. (CN)2 immediately; 39

vols. after 4 hours; 89 vols. after 48 hrs. and 223 vols. after 4 days.

One volume glacial acetic acid dissolves 42 vols. of (CN), immediately and

50.5 vols. after 3 days.

One volume of chloroform dissolves about 19 vols. (CN)2 immediately and 29-30 vols. with time.

One volume of benzine finally dissolves 28 vols. (CN):

One volume of rectified turpentine dissolves 9-10 vols. of (CN)2.

One volume of ether dissolves 5 vols. (CN)2 at 20°. (Gay Lussac.)

CYCLOHEXANE (Hexamethylene, Hexahydrobenzene) CH2 < (CH2.CH2)2 >

Freezing-point data (solubility, see footnote, p. 1) for mixtures of cyclohexane and ethylene bromide are given by Baud (1913b). Results for mixtures of cyclohexane and methyl alcohol are given by Lecat (1909). Results for mixtures of cyclohexane and piperidine are given by Mascarelli and Constantino (1909, 1910).

CYCLOHEXANOL (CH2), CHOH.

100 gms. H_2O dissolve 5.67 gms. cyclohexanol at 11°. 100 gms. cyclohexanol dissolve 11.27 gms. H_2O at 11°. (de Forcrand, 1912.)

RECIPROCAL SOLUBILITY OF CYCLOHEXANOL AND WATER, DETERMINED BY THE FREEZING-POINT METHOD. (de Forcrand, 1912.)

to of Solidification.	Gm. (CH ₂) ₅ .CHOH per 100 Gms. Mixture.	to of Solidification.	Gm. (CH ₂),CHOH per 100 Gms. Mixture.
+22.45	100	-57.4 Eutec.	95.030
17.48	99.767	-43.2	93.150
– 1.40	98.817	-33	91.962
 34.10	96.868	– 18.50	90.980
-4 6.80	95.910	—14.58	90.36
-55.70	95.170	-12.05	88.73

Freezing-point data for mixtures of cyclohexanol and phenol are given by Mascarelli and Pestalozza, 1908, 1909.

CYCLOHEXANONE (CH₂)₄:CO.

Freezing-point data for mixtures of cyclohexanone and phenol are given by Schmidlin and Lang, 1910.

CYTISINE (Ulexine) $C_{11}H_{16}N_2O$ (m. pt. 151°-151.5°).

SOLUBILITY IN SEVERAL SOLVENTS AT 15°. (Van de Moer, 1891.)

	c	C 17	NO	-	Come C H NO see	
Solvent.	Gms. C ₁₁ H ₁₄ N ₂ O per 100 Gms. Sat. Sol.			Solvent.	Gms. C ₁₁ H ₁₆ N ₂ O per 100 Gms. Sat. Sol.	
Water			roportions	Benzine	1.26	
Alcohol	"	- "- "	"	Petroleum Ether	insol.	
Chloroform	"	"	46	Amyl Alcohol	0.303	
Ether (d 0.725)		0.302		Carbon Disulfide	insol.	
Ether, abs.		inso	ol.	Ethyl Acetate	very soluble	

DEXTRIN C₁₂H₂₀O₁₀.

SOLUBILITY IN WATER. (Lewis, 1914.)

"In the case of dextrin, however, no matter how small an amount of water be employed, under no condition does the concentration of the solution remain constant, while on the other hand the addition of further solvent, never fails to dissolve additional dextrin, although the use of no amount of water, however large, will dissolve the whole of the sample."

100 gms. pyridine dissolve 65.44 gms. dextrin at 20–25°. (Dehn, 1917.) 100 gms. aq. 50% pyridine dissolve 102 gms. dextrin at 20–25°. "(Dehn, 1917.)

DIACETYL TARTARIC ETHER (m. pt. 104°) DIACETYL RACEMIC ETHER (m. pt. 84°).

Freezing-point lowering data for each of these compounds in ethylene bromide and in p xylene are given by Bruni and Finzi, 1905.

DIBENZYL C6H5.CH2.CH2.C6H5.

Freezing-point lowering data for mixtures of dibenzyl and stilbene are given by Garelli and Calzolari, 1899.

DIDYMIUM Ammonium NITRATE Di(NO₂)₂.2NH₄NO₂.

100 gms. H₂O dissolve 292 gms. of the salt at 15°.

(Holmberg, 1907.)

DIDYMIUM SULFATE Di₂(SO₄)₂.

	S	OLUBILITY I	N WATER.	(Marignac, 1853.)	
ť.	Gms. Di ₂ (SO ₄) ₈ per 100 Gms. H ₂ O.	Solid Phase.	t°.	Gms. Di ₂ (SO ₄) ₈ per 100 Gms. H ₂ O ₄	Solid Phase.
12	43.I	$Di_2(SO_4)_3$?	34.0	$Di_2(SO_4)_3.6H_2O$
18	25.8	"	19	11.7	Di ₂ (SO ₄) ₃ .8H ₂ O
25	20.6	"	40	8.8	u
25 38	13	"	50	6.5	. "
50	11	"	100	ı.8	"

DIDYMIUM POTASSIUM SULFATE K₂SO₄.Di₂(SO₄)_{8.2}H₂O. (Marignac.)

100 gms. H₂O dissolve 1.6 grams of the double salt at 18°.

DIDYMIUM SULFONATES.

SOLUBILITY IN WATER. (Holmberg, 1907.)

	S	alt.		Formula.	ť.	Gms. Anhydrous Salt per 100 Gms. H ₂ O.
Didym	ium Benze	ne Sulfor	ate	$Di(C_6H_6SO_2)_2.0H_2O$	15	53.1
ŭ	m Nitro	Benzene	Sulfonate	$Di(C_6H_4(NO_2)SO_3)_3.6H_2O$	15.	47.8
"	m Chloro	, "	u	Di(C ₆ H ₄ ClSO ₈) ₈₋₉ H ₂ O	15	12.7
"	m Bromo	, "	æ	Di(CaHaBrSOa)a.oHaO	15	14.3
"	Chloro N	itro "	"	Di(C ₆ H ₄ Cl(NO ₂)ŚO ₃ *) ₃ .16H ₂ O	15	25.3
"	α Napht	halene Su	lfonate	Di(C ₁₀ H ₇ SO ₃) ₃ .6H ₂ O	15	6. i
"	1.5 Nitro	"	"	Di(C ₁₀ H ₆ (NO ₂)SO ₃) ₃ .6H ₂ O	15	0.52
"	1. 6	"	"	Di(C ₁₀ H ₄ (NO ₂)SO ₃) ₃ .0H ₂ O	15	0.18
"	1.7	"	"	$Di(C_{10}H_4(NO_2)SO_3)_3.9H_2O$	15	1.3
• (SO,:NO,:Cl = 1,3.6.)						

DIETHYLAMINE see ETHYLAMINE, page 294.

DIONINE (Ethyl Morphine) C₁₉H₂₂NO₂.

100 cc. H₂O dissolve 0.2613 gm. C₁₀H₂₂NO₃ at 20°. (Zalai, 1910.) 100 cc. oil of sesame dissolve 0.5144 gm. C₁₀H₂₂NO₃ at 20°.

DIPHENYL C.H.C.H.

100 grams absolute methyl alcohol dissolve 6.57 grams at 19.5°.
100 grams abs. ethyl alcohol dissolve 9.98 grams at 19.5°. (de Bruyn, 1892.)

Freezing-point data (Solubility, see footnote, p. 1) are given for mixtures of diphenyl + naphthalene by Washburn and Read (1915) and by Vignon (1891). Results for diphenyl + phenanthrene and for diphenyl + triphenylmethane are given by Vignon (1891).

DIPHENYLAMINE (C.H.)2NH.

RECIPROCAL SOLUBILITY OF DIPHENYLAMINE AND WATER, BY SYNTHETIC : METHOD. (Campetti and del Grosso, 1913.)

r.	Gms. (C ₂ H ₄), NH per 100 Gms. Mixture.	ť.	Gms. (C ₄ H ₄) ₂ NH per 100 Gms. Mixture.	ť.	Gms. (C _e H _e) ₂ NH per roo Gms. Mixture.
231	1.48	305 crit.	t. 47.5	239	88.28
264	3 · 49	304	62.52	229	90.23
275	5.62	299	73.07	210	92.93
297	16.50	289	82.08	152	97.19
303	45.16	249	86.73		

Similar data for the systems diphenylamine + ether and diphenylamine + isopentane are given by Campetti, 1917.

SOLUBILITY OF DIPHENYLAMINE IN SEVERAL SOLVENTS.

Solvent.	ť.	Gms. (C ₄ H ₄) ₂ NH per 100 Gms. Solvent.	Authority.
Water	20-25	0.03	(Dehn, 1917.)
Methyl Alcohol	14.5	45.2	(Timofeiew, 1894.)
"	19.5	57 · 5	(de Bruyn, 1892.)
Ethyl Alcohol	14.5	39 • 4	(Timofeiew, 1894.)
u u	19.5	56	(de Bruyn, 1892.)
Propyl Alcohol	14.5	29.4	(Timofeiew, 1894.)
Pyridine	20-25	302	(Dehn, 1917.)
Aq. 50% Pyridine	20-25	two layers formed	"

SOLUBILITY OF DIPHENYLAMINE AND ALSO OF TRIPHENYLAMINE IN CARBON DISULFIDE. (Arctowski, 1895.)

NH(C ₂ H ₄) ₂ in CS ₂		N(C	H _a), in CS,
t.	Gms. per 100 Gms. Solution.	ť.	Gms. per 100 Gms. Solution.
$-88\frac{1}{2}$	0.87	—8 3	1.91
-117	0.37	-91	1.56
		— 102	I.24
		$-113\frac{1}{2}$	0.98

SOLUBILITY OF DIPHENYLAMINE IN HEXANE AND IN CARBON DISULFIDE. (Etard, 1894.)

ď.	Gms. NI per 100 G	I(C _s H _s) ₂ ns. Sol. in:	r.	Gms. NH(C ₂ H ₄) ₂ per 100 Gms. Sol. in:		
	Hexane.	CS ₂ .		Hexane.	CS ₂ .	
-60		1.3	0	2.6	33.7	
- 50		2.2	+10	3.8	46.8	
-40		3.8	20	6.7	60.9	
-30	0.5	7.2	30	13.8	76	
-20	0.8	12.5	40	47		
-10	1.4	21.6	50	94	• • •	

FREEZING-POINT DATA FOR MIXTURES OF DIPHENYLAMINE AND OTHER COMPOUNDS.

Diphenylamine	+ Acetyldiphenylamine	(Böeseken, 1912.)
- a	+ Ethylene Bromide	(Dahms, 1895.)
46	+ Naphthalene	(Roloff, 1895; Vignon, 1891.)
44	+ α Naphthylamine	(Vignon, 1891.)
44	+ Nitronaphthalene	(Battelli and Martinetti, 1885.)
44	$+\alpha$ and β Naphthol	Vignon, 1891.)
44	+ Paraffin	(Palasso and Battelli, 1883.)
44	+ Phenanthrene	(Narbutt, 1905.)
44	+ Phenol	(Philip, 1903.)
44	+ Resorcinol	(Vignon, 1891.)
46	+ → Nitrotoluene	(Giua, 1915.)
46	+ 2.4 Dinitrotoluene	44
44	+ α Trinitrotoluene	46
44	+ p Toluidine	(Vignon, 1891.)
46	+ Urethan	(Pushin and Grebenschikov, 1913.)
Diphenylmethylamine	+ Phenol	(Bramley, 1916.)
"	+ o Chlorophenol	"
Hexanitrodiphenylamine	+ a Trinitrotoluene	(Giua, 1915.)

DIPHENYLAMINE BLUE.

SOLUBILITY IN SEVERAL SOLVENTS AT 23°. (Szathmary de Szachinar, 1910.)

Solvent.	Gms. Diphenylamine Blue per 100 Gms. Sat. Sol.	Solvent.	Gms. Diphenylamine Blue per 100 Gms. Sat. Sol.
Methyl Alcoho	l o.385	Acetone	0.177
Ethyl "	0.230	Aniline	0.395
Amyl "	0.049		

DIPHENYL SULFIDE (C₆H₆)₂S, etc.

Freezing-point lowering data for mixtures of $(C_6H_6)_2S + (C_6H_6)_2Se$, $(C_6H_6)_2S + (C_6H_6)_2Te$, $(C_6H_6)_2S + (C_6H_6)_2S + (C_6H_6)_2Se + (C_6H_6)_2Te$, are given by Pascal (1912).

DYES

Data for the distribution of 12 dyes between water and isobutyl alcohol at 25°, are given by Reinders and Lely, Jr. (1912).

DYSPROSIUM OXALATE Dy2(C2O4)2.10H2O.

100 cc. ac	q. 20%	methylamine	oxalate	dissolve	0.276 g	m.	$Dy_2(C_2O_4)_8$.	(Grant and
44	- 44	ethylamine	44	**	1.787	**	46	James.
66	44	triethylamine	: "	"	1.432	"	44	1917.)

EDESTIN and Edestin Salts.

SOLUBILITY IN AQ. SALT SOLUTIONS AT 25°. (Osborne and Harris, 1905.)

The determinations were made by shaking an excess of the air-dry preparation with 20 cc. of the salt solution, allowing the globulin to settle and determining nitrogen in 10 cc. of the clear supernatant solution. The edestin or edestin salt was calculated from the N. The results are given in the form of curves. The following figures were read from the curve for the solubility of neutral edestin in aq. NaCl.

Gms. NaCl per 20 cc. Solvent \rightarrow 0.468 0.585 0.702 0.818 0.935 Gm. Edestin per 20 cc. Sat. Sol. \rightarrow 0.25 0.55 0.92 1.25 1.45

Curves are also given for the solubility of edestin in aqueous solutions of many other salts and of the solubility of edestin chloride, bichloride and sulfate in aq. sodium chloride solutions.

100 gms. pyridine dissolve 0.07 gm. edestin at 20–25°. (Dehn, 1917). 100 gms. aq. 50% pyridine dissolve 9.05 gm. edestin at 20–25°.

ELATERIN Callada

100 cc. 90% alcohol dissolve 0.09 gm. elaterin at 15-20. (Squire and Caines, 1905.) 100 cc. chloroform dissolve 4 gms. elaterin at 15-20.

EMETINE and Salts.

SOLUBILITY IN WATER. (Carr and Pyman, 1914.)

	Salt.	Formula.	t*.	Gms. Hydrated Salt per 100 cc. Sat. Sol.
Emeti		C ₂₉ H ₄₀ O ₄ N ₂ .2HCl.7H ₂ O	18	13.1
"	Hydrobromide	C ₂₉ H ₄₀ O ₄ N ₂ .2HBr.4H ₂ O	17-18	1.9
"	Nitrate	C ₂₉ H ₄₀ O ₄ N ₂ .2HNO ₃ .3H ₂ O	17-18	3.7
"	Sulfate			more than 100

ERBIUM OXALATE $Er_2(C_2O_4)_3.14H_2O.$

SOLUBILITY IN AQ. SULFURIC ACID AT 25°. (Wirth, 1912.)

Normality of	Gms. per 100	Gms. Sat. Sol.	Solid Phase.		
Normality of Aq. H ₂ SO ₄ .	Er ₂ O ₃ .	Er2(C2O1)2.			
2.16	0.329	0.5144	$Er_2(C_2O_4)_3.14H_2O$		
3.11	0.493	0.7708	"		
4.32	0.7036	1.10	"		
6.175	1.10	1.72	. "		

ERBIUM Dimethyl PHOSPHATE Er2[(CH3)2PO4]6.

100 gms. H₂O dissolve 1.78 gm. Er₂[(CH₂)₂PO₄]₆ at 25°. (Morgan and James, 1914.)

ERBIUM SULFATE Er2(SO4)2.8H2O.

SOLUBILITY IN WATER AND AQ. H2SO4 AT 25°. (Wirth, 1912.)

Normality of H ₂ SO ₄ .	Gms. per Sat.		Solid Phase.	Normality of H ₂ SO ₄ .	[Gms. per Sat.	roo Gms. Sol.	Solid Phase.
	Er ₂ O ₃ .	Er2(SO4)8.		01 119304.	Er ₂ O ₃ .	Er2(SO4)3.	
Water alone	7 - 339	11.94	$\text{Er}_2(SO_4)_4.8\text{H}_2O$	2.16	3.98	6.473	Er ₂ (SO ₄) ₂ .8H ₂ O
O.I	7.389	12.02	44	6.175	0.9352	1.521	"
0.505	6.249	10.164	"	12.6	0.0852	0.1386	4
1.1	5.256	8.549	"				

ERBIUM Bromonitrobenzene SULFONATE Er(C₆H₂Br. NO₂.SO₂, 1.4.2)₂.12H₂O. 100 gms. sat. solution in water contain 6.056 gms. anhydrous salt at 25°. (Katz and James, 1913.)

ERUCIC ACID C₈H₁₇CH:CH(CH₂)₁₁COOH.

SOLUBILITY IN ALCOHOLS. (Timofeiew, 1894.)

Alcoh	iol.	er.	Gms. Erucic Acid per 100 Gms. Sat. Sol.	Alcoi	hol.	t.	Gms. Erucic Acid per 100 Gms. Sat. Sol.
Methyl A	lcohol	— 2	2.25	Ethyl Al	lcohol	十21.4	63.4
"	"	+18	60.4	Propyl A	Alcohol	– 2	10.2
٠66	"	21.4	62	a ·	"	+18	60.5
Ethyl Ale	cohol	- 2	8.24	66	"	21.4	63

ERYTHRITOL (CH2OH.CHOH)2.

100 gms. H_2O dissolve 61.5 gms. erythritol at 20–25°. (Dehn, 1917) 100 gms. aq. 50% pyridine dissolve 8.47 gms. erythritol at 20–25°. 100 gms. pyridine dissolve 2.50 + gms. erythritol at 20–25. (Dehn, 1917; Holty, 1905.)

285 ETHANE

0.0000

0.0007

ETHANE C.H. SOLUBILITY IN WATER. (Winkler, 1901.) ŧ°. β. β. β. g. ß. 0.0982 0.0987 0.0132 0.0292 0.0271 40 0.0037 50 0.0216 0.0803 0.0796 0.0107 0.0246 0.0020 5 0.0648 0.0087 60 0.0218 IO 0.0656 0.0175 0.0024 0.0073 0.0195 0.0541 70 0.0018 0.0550 0.0135 15 0.0462 80 0.0183 20 0.0472 0.0062 0.0097 0.0013 0.0398 0.0176 0.0054 90 0.0054

0.0049

 β = Absorption coefficient, i.e., the volume of gas (reduced to o° and 760 mm.) absorbed by I volume of the liquid when the pressure of the gas itself without the tension of the liquid amounts to 760 mm.

100

0.0172

 β' = Solubility, i.e., the volume of gas (reduced to 0° and 760 mm.) which is absorbed by one volume of the liquid when the barometer

indicates 760 mm. pressure.

0.0410

0.0362

0.0347

25

30

q = the weight of gas in grams which is taken up by 100 grams of the pure solvent at the indicated temperature and a total pressure (that is, the partial pressure of the gas plus the vapor pressure of the liquid at the absorption temperature) of 760 mm.

Freezing-point data for mixtures of ethane and hydrochloric acid are given by Baume and Georgitses, 1912, 1914.

SOLUBILITY OF ETHANE IN SEVERAL ALCOHOLS AND OTHER SOLVENTS. (McDaniel, 1911.)

Solvent.	ť.	Abs. Coef. A.	Bunsen Coef. B.	Solvent.	t°.	Abs. Coef. A.	Bunsen Coef. B.
Methyl Alcohol (99%	22.1	0.4436	0.4102	Amyl Alcohol	22	0.4532	0.4196
"	30.2	0.4278	0.3883		30.1	0.4444	0.4002
" "	40	0.3938	0.3436	Benzene	22.I	0.4954	0.4600
" "	49.8	0.2695	0.2278	"	35	0.4484	0.3976
Ethyl Alcohol (99.8%	22.2	0.4628	0.4282	"	40.I	0.4198	0.3661
" "	30.T	0.4503	0.4051	"	49.9	0.3645	0.3081
" "	40	0.4323	0.3771	Toluene	25	0.4852	0.4450
Isopropyl Alcohol	21.5	0.4620	0.4275	"	30	0.4778	0.4300
- 11-5 11	29.9	0.4532	0.4081	"	40.I	0.4675	0.4080
" "	40	0.4400	0.3837	"	50.2	0.4545	0.4013
" "	60.3	0.4244	0.3478	"	60	0.4502	0.36 90

Abs. coef. A = vol. of ethane absorbed by unit volume of solvent at the temp. stated. For definition of Bunsen Coef. B, see β above, and also carbon dioxide, p. 227. Additional data for the solubility of ethane in amyl alcohol are given by (Friedel and Gorgeu, 1908).

ETHYL ACETATE CH, COOC, H,.

SOLUBILITY OF ETHYL ACETATE IN WATER AND VICE VERSA. (Merriman, 1913, see also Seidell, 1910.)

Results for Ethyl Acetate in Water.			Results	for Water in I	Ethyl Acetate.
t°.	$d_{\frac{1}{4^5}}$ of Sat. Sol.	Gms. CH ₃ COOC ₂ H ₄ per 100 Gms. H ₂ O.	t*.	$d_{\frac{4}{40}}$ of Sat. Sol.	Gms. H ₂ O per 100 Gms. CH ₂ COOC ₂ H ₄ .
0	1.0034	11.21	0	0.9280	2.34
5	I.0022	10.38	10	0.9164	2.68
10	1.0009	9.67	20	0.9054	3.07
15	0.9995	9.05	25	0.9002	3.30
20	0.9979	8.53	30	0.8953	3.52
25	0.9962	8.08	40	0.8863	4.08
30	0.9943	7.71	50	• • •	4.67
40	0.9901	7.10	,60	• • •	5.29

SOLUBILITY IN WATER AND IN AQUEOUS SALT SOLUTIONS AT 28°. (Euler — Z. physik. Chem. 31, 365, '99; 49, 306, '04.)

	Conc. of Salt Solution.		CH ₂ COOC ₂ H ₂ per Liter.		Solvent.		onc. of Salt Solution.	CH ₂ Co	OOC ₂ H ₆ Liter.
_olvent.	Nor mali	- Gms. per ty. Liter.	Gram Mols.	Grams.	202102	mali	r- Gms. per ty. Liter.	Gram Mols.	Grams.
Water	0	0	0.825		NaCl(at 18°) 1	14.62	0.76	67.0
KNO ₈	3	50.59	0.77	67.81	" "	3	29.25	0.67	59.0
66	I	101.19	0.72	63.40	"	I	58.5	0.51	45.0
66	2	202.38	0.625	55.04	Na ₂ SO ₄	I	71.08	0.465	40.96
KCl	ł	18.4	0.747	65.79	" (at 18	8°) 🛂	35 · 54	0.61	54.0
66	3	36.8	0.685	65.33	"	I	71.08	0.42	37.0
"	I	73.6	0.575	50.64	MgSO ₄	ł	16.30	0.733	64.55
"	2	147.2	0.41	3 6. 11	**	3	32.6	0.655	57.68
NaCl	ł	14.62	0.745	65.61	"	I	65.21	0.505	44 · 47
66	•	29.25	0.677	59.62	ZnSO ₄	ł	20.18	0.733	64.55
44	I	58.5	0.545	47.99	"	3	40.36	0.653	57.50
44	2	117.0	0.315	27.74	u	I	80.73	0.500	44.03

Additional data for the influence of salts upon the solubility of ethyl acetate in water are given by Lundin, 1913.

Solubility of Ethyl Acetate in Aqueous Solutions of Ethyl Alcohol at 25°. (Seidell, 1910.)

Wt. % C₂H₅OH in Solvent.	d₂s of Sat. Sol.	cc. CH ₂ COOC ₂ H ₅ per 100 cc. Solvent.	Gms. CH ₂ COOC ₂ H ₄ per 100 Gms. Solvent.
0	0.999	10	8.6
5	0.993	10.5	9.5
10	0.986	12	10.9
15	0.974	15	13.3
20	°0.960	27	19.6
25	0.945	44	37.0
30	0.931	70	66.7
35	0.918	125	132.5
40	•••	∞	∞ `

SOLUBILITY OF ETHYL ACETATE IN AQUEOUS ETHYL ALCOHOL, METHYL ALCOHOL, AND ACETONE MIXTURES AT 20°.
(Bancroft — Phys. Rev. 3, 122, 131, '95-'96.)

In Ethyl Alcohol. Per 1 cc. CaHaOH.			hyl Alcohol. ∝. CH₃OH.	In Acetone. Per 1 cc. (CH2):CO.		
cc. H ₂ O.*	CH4COOC4H4-†	cc. H ₂ O.	CH.COOC.H.	cc. H₂O.	CH.COOC.H.	
10	0.25	IO	1.08	10	I .0I	
8	0.27	. 3	o.68	5	0.60	
4	0.35	1.5	1.69	2	0.43	
2	1.02	1.29	2.50	1.5	0.47	
1.06	2.50	1.0	4.9	1.0	0.63	
0.65	5.0	0.98	7.0	o.8	0.74	
0.54	7.0	1.0	8.o	0.51	1.00	
0.44	10.0	1.03	10.0	0.25	2.00	
• •		•		0.29	5.00	

^{*} Saturated with ethyl acetate.

Data for the distribution of ethyl acetate between petroleum and water, benzene and water, and benzene and a large number of aqueous solutions, at various temperatures, are given by Philip and Bramley, 1915.

[†] Saturated with water.

Benzene and Water at 15°.

RECIPROCAL SOLUBILITY OF ETHYL ALCOHOL AND WATER AT LOW TEM-PERATURES, DETERMINED BY THE FREEZING-POINT METHOD. (Pictet and Altschul, 1895; Pickering, 1893.)

t°. of Freezing.	Sat. Sol.	C ₂ H ₄ OH per 100 Gms. Sat. Sol.	Solid Phase.	t°. of Freezing.	Sp. Gr. Sat. Sol.	C _s H _s OH per 100 Gms. Sat. Sol.	Solid Phase.
– 1	0.9962	2.5	Ice	– 23.6	0.9512	33.8 I	ce
– 2	0.9916	4.8	**	– 28.7	0.9417		u
- 3	0.9870		66	- 33.9	0.9270	40.3	
– 5	0.9824	11.3	"	– 41	0.9047	56.I	u
– 6.1	0.9793	13.8	"	– 50	• • •	68	u `
- 8.7	0.9747	17.5	44	– 60		75	
- 9.4	0.9732	18.8	44	– 70		80	6 4
-10.6	0.9712	20.3	44	8o	• • •	83.5	•
-12.2	0.9689		64	-100		89.5	
-14	0.9662		44	— 118 Eut	ec	93 · 5	" + C₃H₄OH
-16	0.9627	26.7	44	-115		96 C _J I	L OH
-18.9	0.9578		"	-110.5		100	"

The result for the eutectic and for the f.-pt. of C₂H₈OH are by Puschin and Glagoleva, 1914, 1915; the other data for concentrations of C2H6OH above 70% were obtained by exterpolation. Additional data for the freezing-point lowering

are given by Rozsa (1911).

Freezing-point lowering data for mixtures of ethyl alcohol and hydrochloric

Benzaldehyde and Water at o°.

acid are given by Maass and McIntosh, 1913.

The distribution coefficient of ethyl alcohol between amylalcohol and water was found by Fontein (1910) to be 1.13 at 15.5° and 1.21 at 28°.

MISCIBILITY OF ETHYL ALCOHOL WITH MIXTURES OF:

Composit	(Bonner, 1910.) Composition of Homogeneous Mixtures.				(Bonner, 1910.) (See also, p. 125.) Composition of Homogeneous Mixtures.				
Gms. C _s H _s CHO.	Gms. H ₂ O.	Gms. C ₂ H ₄ OH.	Sp. Gr. of Mixture.	Gms. C ₄ H ₄ .	Gms. H ₂ O.	Gms. C₂H₄OH.	Sp. Gr. of Mixture.		
0.957	0.043	0.159	I.O2	0.987	0.013	0.170	0.86		
0.898	0.102	0.283	1.01	0.937	0.063	0.356	0.87		
0.800	0.200	0.420	0.99	*0.900	0.100	0.500	0.86		
0.700	0.300	0.550	0.98	0.800	0.200	0.860	0.86		
0.598	0.402	0.601	0.97	0.700	0.300	0.910	o.88		
* 0.570	0.430	0.610		0.600	0.400	1.07	0.87		
0.496	0.504	0.643	0.96	0.500	0.500	1.18	0.87		
0.394	0.606	0.681	0.95	0.400	0.600	I.22	0.88		
0.298	0.702	0.701	0.95	·o.300	0.700	I.2I	0.89		
0.200	0.800	0.670	0.95	0.201	0.799	1.13	0.89		
0.100	0.900	0.610	0.96	0.100	0.900	0.97	0.92		
0.031	0.969	0.461	0.97	• 0.020	0.980	0.59	0.94		
-		-			-				

NOTE. — The determinations were made by gradually adding ethyl alcohol to the mixtures of the given amounts of water and the other constituent until a homogeneous solution was obtained. The results give the binodal curve for the system. The author also determined "tie lines" showing the compositions of various pairs of liquids which may exist in equilibrium. As the two layers approach each other in composition, the tie line is gradually shortened and finally reduced to a point, designated as the "plait point" of the binodal curve. This point is indicated by a * in the above tables. The mixtures above and below the correspond, according to their Sp. Gr., to the upper and lower layers of the correspond, according to their Sp. Gr., to the upper and lower layers of the system. See also, last table p. 289.

The distribution coefficient of ethyl alcohol between benzene and water at 25° was found by Morgan and Benson (1907) to be 1.16. Additional data for this system are also given by Bubanovic, 1913 and by Taylor (1897).

MISCIBILITY OF ETHYL ALCOHOL (see Note, p. 287) WITH MIXTURES OF: Bromobenzene and Water at 0°. Nitrobenzene and Water at 15°.

(Bonner, 1910.) (Bonner, 1910.) Composition of Homogeneous Mixtures. Composition of Homogeneous Mixtures. Gms. Sp. Gr. Sat. Sol. Gme. Gms. H₂O. Gms. C₄H₄OH. Sp. Gr. Sat. Sol. Gms. Gms. C₄H₄OH. CHINO2. HO. C.H.Br. 0.99 0.010 0.115 0.965 0.035 0.248 8o.1 I.34 *****0.91 0.06 0.040 0.32 0.00 0.49 0.90 0.10 0.65 1.07 0.90 0.10 0.53 I.02 0.80 0.20 0.96 0.80 0.20 0.86 0.97 I 0.70 0.30 0.96 0.70 0.30 1.19 1.00 0.94 0.60 0.40 1.30 0.98 0.594 0.406 1.238 0.93 0.50 0.50 , 0.50 1.31 0.92 0.50 1.39 0.95 0.60 0.91 0.40 0.60 I.34 0.92 0.40 1.43 0.30 0.70 0.92 0.70 1.30 0.91 I.43 0.30 0.20 0.80 1.36 0.806I.212 0.92 0.93 0.194 O. 10 0.90 1.16 0.10 0.90 0.98 0.93 0.93 0.024 0.976 0.803 0.92 0.02 0.98 0.601 0.95

MISCIBILITY OF ETHYL ALCOHOL (see Note, p. 287) AT 0° WITH MIXTURES OF:
Benzyl Acetate and Water. (Bonner, 1910.)
Composition of Homogeneous Mixtures.

Composition of Homogeneous Mixtures.

Componen								
Gms. CH ₃ CO ₂ .CH ₄ .C ₄ H ₄ .	Gms. H ₂ O.	Gms. C ₂ H ₆ OH.	Sp. Gr. Sat. Sol.	Gms. C _s H _s CH ₂ OH.	Gms. H ₂ O.	Gms.	Sp. Gr. Sat. Sol.	
0.977	0.023	0.120	1.05	0.90	0.10	0.13	1.03	
0.901	0.099	0.317	1.03	0.80	0.20	0.26	I	
0.80	0.200	0.46	0.99	0.70	0.30	0.35	0.98	
0.70	0.300	0.58	0.97	0.60	0.40	0.39	0.98	
* o.68	0.32	0.60		0.50	0.50	0.40	0.97	
0.60	0.40	0.69	0.95	0.40	0.60	0.41	0.97	
0.50	0.50	0.78	0.94	*o.38	0.62	0.42		
0.40	0.60	0.85	0.94	0.379	0.621	0.417	0.98	
0.30	0.70	0.88	0.93	0.30	0.70	0.41	0.97	
0.20	0.80	o.88	0.93	0.194	0.806	0.388	0.97	
0.10	0.90	0.80	0.94	0.10	0.90	0.35	0.98	
0.041	0.959	0.665	0.95	0.04	0.96	0.139	0.99	

MISCIBILITY OF ETHYL ALCOHOL (see Note, p. 287) AT 0° WITH MIXTURES OF:
Benzylethyl Ether and Water.

(Bonner, 1910.)

Carbon Tetrachloride and Water.

(Bonner, 1910.)

Composition of Homogeneous Mixtures. Composition of Homogeneous Mixtures. Gms. Gms. C.H.CH2.O.C2H4. H2O. Sp. Gr. Sat. Sol. Sp. Gr. Sat. Sol. Gms. C₂H₄OH. Gms. Gms. Gms. C₂H₄OH. CCL. H₂O. 0.039 0.189 0.961 1.36 0.971 0.029 0.94 0.224 0.90 0.928 0.072 0.10 0.37 0.92 0.347 1.23 0.80 0.20 0.92 0.02 0.08 0.54 0.39 . . . 0.70 0.30 0.67 0.91 0.00 0.10 0.45. I.20 *****0.67 0.80 0.20 0.67 0.33 0.71 1.15 . . . 0.70 0.60 0.40 0.78 0.91 0.30 0.82 1.07 1.03 0.50 0.50 0.87 0.60 0.94 0.91 0.40 0.60 0.92 0.501 0.40 0.93 0.499 I.04 1 0.30 0.70 0.96 0.92 0.40 0.60 0.97 1 0.198 0.802 0.952 0.75 0.92 0.25 1.105 0.95 0.10 0.90 0.86 0.10 0.90 1 0.92 0.93 0.08 0.92 0.793 0.94 0.032 0.968 0.745 0.93

DISTRIBUTION OF ETHYL ALCOHOL AT 25° (Bugarszky, 1910) BETWEEN:

Bromobenzene and Water.		Carbon Tetra Wa	chloride and ter.	Carbon Disulfide and Water.			
Gms. C ₂ H ₄ OH	per Liter.	Gms. C₂H₄O	H per Liter.	Gms. C ₂ H ₂ OH per Liter.			
C.H.Br Layer.	H ₂ O Layer.	CCL Layer.	H ₂ O Layer.	CS ₂ Layer.	H _r O Layer.		
0.72	18.5	0.45	18.7	0.27	19.1		
1.36	36.9	0.93	36.5	1.87	37 ·		
2.68	68.2	2.55	68.I	10.23	69.3		

MISCIBILITY OF ETHYL ALCOHOL (see Note p. 287) AT 0° WITH MIXTURES OF:

Chloroform and Water. (Bonner, 1910.) Diethylketone and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Composition of Homogeneous Mixtures. Sp. Gr. Sat. Sol. Gms. Gms. Gms. Gms. CH.CO.CH. CHCL. HO. C.H.OH. H₂O. C.H.OH. 0.907 0.093 0.434 1.10 0.938 0.062 0.136 0.85 0.90 0.10 0.45 1.18 0.900 0.19 0.85 0.10 0.80 0.20 0.60 I.12 0.895 0.105 0.201 0.86 0.68 0.800 0.70 0.30 1.07 0.20 0.31 0.87 0.593 0.407 0.726 I.04 0.781 0.219 0.317 0.87 0.88 0.729 0.702 0.298 0.501 0.499 1.03 0.356 0.420 0.58 0.73 0.600 0.890.400 0.392 0.404 0.596 10.1 0.90 0.733 0.547 0.453 0.410 0.300 0.70 0.70 0.501 0.99 0.499 0.411 0.91 0.803 0.672 0.980.197 0.458 0.542 0.415 0.92 0.100 0.00 0.61 0.98 0.407 0.593 0.404 0.088 0.912 0.608 0.08

Additional data for the miscibility of alcohol with chloroform + water mixtures are given by Miller and McPherson, 1908.

MISCIBILITY OF ETHYL ALCOHOL WITH MIXTURES OF ETHYL ETHER AND WATER AT O°. (Corliss, 1914; Bonner, 1910; see also Kremann, 1910a.)

Comp	osition of the	he Lower La	yer.	Composition of Upper Layer.				
Gms. (C ₂ H ₄) ₂ O.	Gms. H ₂ O.	Gms. C ₃ H ₄ OH.	Sp. Gr. Sat. Sol.	Gms. (C ₂ H ₄) ₂ O.	Gms. H ₂ O.	Gms. C ₂ H ₆ OH.	Sp. Gr. Sat. Sol.	
0.10	0.90	0.163	0.970	• • •				
• • •				0.957	0.043	0.151	0.757	
0.16	0.84	0.297	0.951	0.902	0.098	0.230	0.778	
0.178	0.822	0.318	0.945	0.87	0.13	0.26	0.788	
0.192	0.808	0.332	0.941	0.85	0.15	0.275	0.794	
0.204	0.796	0.34	0.937	0.825	0.175	0.292	0.800	
0.227	0.773	0.352	0.932	0.79	0.210	0.313	0.808	
0.250	0.75	0.36	0.926	0.759	0.243	0.33	0.815	
0.293	0.707	0.37	0.916	0.70	0.30	0.35	0.827	
0.335	0.665	0.375	0.906	0.645	0.355	0.366	0.839	
0.422	0.578	0.385	o.886	0.562	0.438	0.385	0.857	
*0.49	0.51	0.385	0.874	0.49	0.51	0.385	0.874	

The data for the binodal curve given by Corliss and by Bonner agree closely. The Sp. Gr. determinations of Corliss were made on larger amounts of solution and appear to be the more accurate. In addition, Corliss gives the specific gravities of each layer of a series of liquids in contact with each other, and from these and the binodal curve, the above data for the composition of the several conjugate layers have been calculated. Data are also given by Corliss for the distribution of colloidal arsenious sulfide between the two layers of the system.

Data for the distribution of ethyl alcohol between ether and water and between ether and molten CaCl₂.6H₂O are given by Morgan and Benson (1907).

MISCIBILITY OF ETHYL ALCOHOL WITH MIXTURES OF ETHYL ETHER AND
WATER AT 25°. (Horibe, 1911-12.)
Composition of Lower Layer.

	Composition	of Lower Layer.	Composition of Upper Layer.					
Gms. (C ₂ H ₄) ₂ O.	Gms. H _g O.	Gms. C ₂ H ₄ OH.	Gms. (C ₂ H ₄) ₂ O.	Gms. H _g O.	Gms. C ₂ H ₄ O ₂ H.			
5 - 77	94 23	0	98.72	1.28	0			
6.3	85.7	8	94.5	2.2	3.3			
7.2	79.2	13.6	88.5	3 · 7	7.8			
8	76	16	84.4	4.9	10.7			
9.7	70.4	19.9	75.I	8.4	16.5			
13.3	62.8	23.9	60.8	15.5	23.7			
22.I	50.6	27.3	43.8	28. I	28.1			
28.4	43.4	28.2	35.8	35.6	28.6			
*31.6	40	28.4 (Plait point)	31.6	40	28.4			

The binodal curve was determined in the usual way (see Note, p. 287). A series of conjugate liquids was then prepared and the Sp. Gr., refractive index and viscosity of each layer determined. From specially prepared curves for variations of physical constants with composition of mixture, the composition of the several conjugate liquids was ascertained. The results thus obtained, are given in the above table.

Data for the miscibility of ethyl alcohol with mixtures of water, ethyl ether and sulfuric acid at 0° and with mixtures of ethyl ether, water and ethylsulfuric acid at 0° are given by Kremann, 1910a.

MISCIBILITY OF ETHYL ALCOHOL (see Note p. 287) AT 0° WITH MIXTURES OF:

Ethyl Acetate and Water. (Bonner, 1910.)

Composition of Homogeneous Mixtures.

Composition of Homogeneous Mixtures.

Composition	on or mount	Remonth in	Acures.	Composition of Itomogeneous Mixtures.				
Gms. CH ₄ COOC ₅ H ₅	Gms. H ₂ O.	Gms. C ₂ H ₄ OH.	Sp. Gr. Sat. Sol.	Gms. C ₄ H ₄ Br.	Gms. H ₂ O.	Gms. C ₁ H ₄ OH.	Sp. Gr. Sat. Sol.	
0.92	0.080	0.100	0.91	0.967	0.033	0.240	1.23	
0.90	0.10	0.13	0.91	0.90	0.10	0.37	1.15	
0.799	0.201	0.228	0.93	*o.83	0.17	0.45		
0.699	0.301	0.265	0.92	0.80	0.20	0.51	1.09	
0.60	0.40	0.29	0.95	0.70	0.30	0.64	1.06	
0.50	0.50	0.30	0.95	0.60	0.40	0.754	1.03	
* 0.48	0.52	0.30		0.50	0.50	0.83	I	
0.40	0.60	0.31	0.96	0.40	0.60	0.89	0.99	
0.30	0.70	0.31	0.96	0.30	0.70	0.89	0.97	
0.197	0.803	0.282	0.97	0.10	0.90	0.73	0.97	
0.102	0.898	0.143	0.99	0.017	0.983	0.182	0.99	

MISCIBILITY OF ETHYL ALCOHOL (see Note p. 287) AT 0°, WITH MIXTURES OF: Ethyl Butyrate and Water. (Bonner, 1910.)

Composition of Homogeneous Mixtures.

Composition of Homogeneous Mixtures.

Gms. C ₂ H ₇ COOC ₂ H ₄	Gms. . H₂O.	Gms. C ₂ H ₄ OH.	Sp.Gr. Sat. Sol.	Gms. C ₂ H ₄ COOC ₂ N	Gms.	Gms. C₂H₄OH.	Sp. Gr. Sat. Sol.
0.97	0.030	0.166	0.96	0.977	0.023	0.138	0.90
0.90	0.10	0.32		0.90	0.10	0.27	0.90
0.80	0.20	0.483	0.88	0.80	0.20	0.38	0.90
0.70	0.30	0.567	0.89	0.695	0.305	0.453	0.92
0.599	0.401	0.628	0.90	0.60	0.40	0.49	0.91
0.494	0.506	0.659	0.91	0.50	0.50	0.52	0.92
*0.46	0.54	0.67	• • •	*0.46	0.54	0.53	• • •
0.40	0.60	0.69	0.92	0.398	0.602	0.532	0.93
0.297	0.703	0.693	0.93	0.30	0.70	0.55	0.94
0.193	0.807	0.684	0.94	0.201	0.799	0.517	0.95
0.10	0.90	0.63	0.94	0.10	0.90	0.46	0.96

MISCIMILITY OF ETHYL ALCOHOL (see Note, p. 287) AT 0° WITH MIXTURES OF:
Ethylene Chloride and Water.
(Bonner, 1910.)

(Bonner, 1910.)

Compositi	on of Hom	оделеона М	interes.	Composition of Homogeneous Mixtures.				
CH C CH C	Gens. H _e O.	Gms. C ₂ H ₂ OH.	Sp. Gr. Set. Sel.	CH, CHCL	Gms. Hgt).	(ims. C _e H _e ()H.	Star (St. State State	
0.971	0.029	0.191	1.15	0.985	0.015	0.220	1.10	
0.90	0.10	0.42	ãо. 1	0.90	0.10	0.43	1.03	
* o.88	0.12	0.46		0.805	0.195	0.586	1.01	
0.792	0.208	0.670	10.1	0.70	0.30	0.00	80.0	
0.70	0.30	0.80	0.98	*0.67	0.33	0.72		
0.60	0.40	0.93	0.96	0.60	0.40	0.77	0.96	
0.50	0.50	0.99	0.95	0.50	0.50	0.82	0.95	
0.40	0.60	10.1	0.94	0.437	0.563	0.857	0.04	
0.30	0.70	0.99	0.94	0.30	0.70	0.88	0.03	
0.20	0.80	0.95	0.94	0.20	0.80	0.86	0.03	
0.095	0.905	0.842	0.96	0.10	0.90	0.79	0.04	
0.02	0.980	0.514	0.97	0.03	0.07	0.576	0.05	

MISCIBILITY OF ETHYL ALCOHOL (see Note, p. 287) AT 0° WITH MIXTURES OF: Heptane and Water. (Bonner, 1910.)

Compositi	Composition of Homogeneous Mixtures.			Composition of Homogeneous Mixtures.				
Gms. Heptane.*	Gms. H ₂ O.	Gms. C ₂ H ₄ OH.	Sp. Gr.) Sat. Sol.	Gms. Hexane.	Gms. H ₂ O.	Gms. C ₁ H ₄ OH.	Sp. Gr. Sat. Sol.	
0.962	0.038	0.704	0.79	0.97	0.03	0.59		
0.90	0.10	I .44	0.80	0.90	0.10	1.30	0.77	
0.798	0.202	2.375	0.82	o .80	0.20	2.04	0.79	
0.70	0.30	2.82	0.81	0.70	0.30	2.45	0.81	
0.60	0.40	3.06	0.82	0.60	0.40	2.73	0.82	
0.50	0.50	3.16	0.83	0.50	0.50	2.93	0.83	
0.40	0.60	3.17	0.84	0.40	0.60	3.00	0.83	
0.30	0.70	3.10	0.85	0.20	0.80	2.75	0.85	
0.196	0.804	2.96	0.87	0.10	0.90	2.23	0.86	
0.093	0.907	2.305	o.88	0.014	0.986	1.056		

^{*} Kahlbaum's Heptane and Hexane "aus Petroleum" were used.

MISCIBILITY OF ETHYL ALCOHOL (see Note, p. 287) AT 0° WITH MIXTURES OF:

Isoamyl Alcohol and Water.
(Bonner, 1910.)

(Bonner, 1910.)

on of Homo	ogeneous M	ixtures.	Composition of Homogeneous Mixture				
Gms. H ₂ O.	Gms. C₂H₅OH.	Sp. Gr. Sat. Sol.	Gms. (CH ₃) _F CH.CH ₄ OH.	Gms. H ₂ O.	Gms. C ₂ H ₆ OH.	Sp. Gr. Sat. Sol.	
0.097	0.116	0.84	0.70	0.30	0.13	0.87	
0.10	0.12	0.84	0.589	0.411	0.177	0.89	
0.203	0.258	0.85		0.498	0.194	0.90	
0.306	0.396	0.86	0.50	0.50	0.20	0.90	
0.398	0.427	0.88	0.40	0.60	0.20	0.92	
0.503	0.449	0.89	0.387	0.613	0.204	0.02	
0.601	0.453	0.90		0.65	0.21		
0.706	0.434	0.92	0.304	0.696	0.205	0.94	
0.73	0.43	• • •	0.30	0.70	0.21	0.94	
0.804	0.411	0.94	0.20	0.80	0.20	0.95	
0.900	0.369	0.96	0.132	0.868	0.189	0.96	
	Gms. H ₂ O. 0.097 0.10 0.203 0.306 0.398 0.503 0.601 0.706 0.73 0.804	Gms. H ₂ O. C ₃ H ₃ OH. O.097 O.116 O.10 O.12 O.203 O.258 O.306 O.396 O.398 O.427 O.503 O.449 O.601 O.453 O.706 O.434 O.73 O.43 O.804 O.411	H ₁ O. C ₂ H ₁ OH. Sat. Sol. 0.097 0.116 0.84 0.10 0.12 0.84 0.203 0.258 0.85 0.306 0.396 0.86 0.398 0.427 0.88 0.503 0.449 0.89 0.601 0.453 0.90 0.706 0.434 0.92 0.73 0.43 0.804 0.411 0.94	Gms. Gms. Sp. Gr. Gms. (CH,))- H ₂ O. C ₂ H ₃ OH. Sat. Sol. CH.CH ₄ OH. O.0097 O.116 O.84 O.70 O.10 O.12 O.84 O.589 O.203 O.258 O.85 O.502 O.306 O.396 O.86 O.50 O.398 O.427 O.88 O.40 O.503 O.449 O.89 O.387 O.601 O.453 O.90 *O.35 O.706 O.434 O.92 O.304 O.73 O.43 O.30 O.804 O.411 O.94 O.20	Gms. Gms. Sp. Gr. H ₂ O. C ₂ H ₃ OH. Sat. Sol. CH.CH ₄ OH. H ₂ O. 0.30 0.10 0.12 0.84 0.589 0.411 0.203 0.258 0.85 0.502 0.498 0.306 0.396 0.86 0.50 0.50 0.398 0.427 0.88 0.40 0.60 0.503 0.449 0.89 0.387 0.613 0.601 0.453 0.90 0.35 0.65 0.706 0.434 0.92 0.304 0.696 0.73 0.43 0.30 0.70 0.804 0.411 0.94 0.20 0.80	Gms. Gms. Sp. Gr. H ₂ O. C ₂ H ₃ OH. Sat. Sol. CH.CH ₄ OH. H ₄ O. C ₃ H ₄ OH. Sat. Sol. CH.CH ₄ OH. H ₄ O. C ₃ H ₄ OH. O.70 O.30 O.13 O.10 O.12 O.84 O.589 O.411 O.177 O.203 O.258 O.85 O.502 O.498 O.194 O.306 O.306 O.86 O.50 O.50 O.20 O.308 O.427 O.88 O.40 O.60 O.20 O.503 O.449 O.89 O.387 O.613 O.204 O.601 O.453 O.90 *O.35 O.65 O.21 O.706 O.434 O.92 O.304 O.606 O.205 O.73 O.43 O.30 O.70 O.21 O.804 O.411 O.94 O.20 O.80 O.20	

MISCIBILITY OF ETHYL ALCOHOL (see Note, p. 287) AT 0° WITH MIXTURES OF:

Isoamyl Bromide and Water. (Bonner, '10.) Isobutyl Bromide and Water. (Bonner, '10.)

Composition of Homogeneous Mixtures.

Composition of Homogeneous Mixtures.

-						A -	
Gms. C _s H ₁₁ Br.	Gms. H ₂ O.	Gms. C ₂ H ₄ OH.	Sp. Gr. Sat. Sol.	Gms. (CH ₂) ₂ - CHCH ₂ Br.	Gms. H ₂ O.	Gms. C₂H₄OH.	Sp. Gr. Sat. Sol.
0.975	0.025	0.251	1.10	0.976	0.024	0.200	1.18
* 0.96	0.04	0.36		* 0.93	0.07	0.42	• • •
0.90	0.10	0.68	10.1	0.90	0.10	0.52	1.09
0.80	0.20	1.09	0.96	0.80	0.20	0.83	1.01
0.70	0.30	1.37	0.94	0.70	0.30	1.05	0.98
0.60	0.40	1.57	0.93	0.60	0.40	1.21	0.96
0.498	0.502	1.676	0.91	0.501	0.499	1.30	0.94
0.40	0.60	1.75	0.91	0.40	0.60	1.35	0.93
0.30	0.70	1.75	0.91	0.30	0.70	1.36	0.93
0.20	0.80	1.71	0.91	0.20	0.80	1.32	0.92
0.10	0.90	1.46	0.92	0.10	0.90	I.20	0.93
0.022	0.978	1.027	0.03	0.047	0.953	0.937	0.94

MISCIBILITY OF ETHYL ALCOHOL (see Note, p. 287) AT 0° WITH MIXTURES OF: Isoamyl Ether and Water. (Bonner, '10.)

Mesitylene and Water. (Bonner, '10.)

tion of Hom	ogeneous M	ixtures.	Composition of Homogeneous Mixtures.				
Gms. O. H ₂ O.	Gms. C _s H _s OH.	Sp. Gr. Sat. Sol.	Gms. C _e H _s (CH _e) ₃ .	Gms. H ₂ O.	Gms. C ₂ H ₄ OH.	Sp. Gr. Sat. Sol.	
0.042	0.368	0.81	*o .97	0.03	0.48		
0.10	0.70	0.82	0.963	0.037	0.516	o.86	
0.11	0.74		0.90	0.10	1.09	0.85	
0.121	0.793	0.82	0.80	0.20	r.66	0.84	
0.20	I.20	0.83	0.70	0.30	2.04	0.85	
0.298	I.573	0.83	0.60	0.40	2.32	0.85	
0.406	1.876	0.84	0.50	0.50	2.52	0.85	
0.50	1.98	0.84	0.40	0.60	2.64	0.86	
0.60	2.19	0.85	0.30	0.70	2.68	0.87	
0.698	2.24	0.86	0.199	0.801	2.49	0.87	
0.80	2.14	0.87	0.10	0.90	2.28	0.89	
0.90	1.87	0.89	0.051	0.949	1.615	0.90	
	0. H ₂ 0. 0. O ₄ 2 0. IO 0. II 0. I2I 0. 20 0. 298 0. 406 0. 50 0. 60 0. 698 0. 80	Gms. Gms. C,H ₄ OH. C,H ₄ OH. O.042 O.368 O.10 O.70 O.11 O.74 O.121 O.793 O.20 I.20 O.298 I.573 O.406 I.876 O.50 I.98 O.60 2.19 O.698 2.24 O.80 2.14	O. H ₂ O. C ₂ H ₂ OH. Sat. Sol. O.042 O.368 O.81 O.10 O.70 O.82 O.11 O.74 O.121 O.793 O.82 O.20 I.20 O.83 O.298 I.573 O.83 O.406 I.876 O.84 O.50 I.98 O.84 O.60 2.19 O.85 O.698 2.24 O.86 O.80 2.14 O.87	Gms. CH ₄ O. CH ₄ OH. Sat. Sol. CH ₄ (CH ₄). O.042 O.368 O.81 *O.97 O.10 O.70 O.82 O.963 O.11 O.74 O.90 O.121 O.793 O.82 O.80 O.20 I.20 O.83 O.70 O.298 I.573 O.83 O.60 O.406 I.876 O.84 O.50 O.50 I.98 O.84 O.40 O.60 2.19 O.85 O.30 O.698 2.24 O.86 O.199 O.80 2.14 O.87	Gms. Gms. Sp. Gr. Gms. CH ₃ OH. Sat. Sol. C ₂ H ₃ (CH ₃). H ₃ O. O.042 0.368 0.81 0.97 0.03 0.10 0.70 0.82 0.963 0.037 0.11 0.74 0.90 0.10 0.121 0.793 0.82 0.80 0.20 0.20 1.20 0.83 0.70 0.30 0.298 1.573 0.83 0.60 0.40 0.406 1.876 0.84 0.50 0.50 0.50 0.50 0.608 2.24 0.86 0.199 0.801 0.80 2.14 0.87 0.10 0.90	Grms. Grms	

MISCIBILITY OF ETHYL ALCOHOL (see Note, p. 287) AT 0° WITH MIXTURES OF:
Methyl Aniline and Water. (Bonner, 'ro.)

Composition of Homogeneous Mixtures.

Composition of Homogeneous Mixtures.

						A	
Gms. CH ₄ NHC ₄ H ₆ .	Gms. H ₂ O.	Gms. C ₂ H ₄ OH.	Sp. Gr. Sat. Sol.	Gms. C ₄ H ₆ OC ₂ H ₆ .	Gms. H _g O.	Gms. C₃H₅OH.	
0.959	0.041	0.218	0.96	0.992	0.18	0.157	
0.90	0.10	0.37	0.95	*0.90	0.10	0.55	
0.795	0.205	0.555	0.93	0.897	0.103	0.554	
0.70	0.30	0.68	0.93	0.798	0.202	0.916	
* o.66	0.34	0.72		0.70	0.30	1.18	
0.60	0.40	0.76	0.93	0.60	0.40	1.39	
0.50	0.50	0.84	0.93	0.495	0.505	1.518	
0.40	0.60	0.89	0.93	0.399	0.601	1.560	
0.30	0.70	0.91	0.93	0.30	0.70	1.54	
0.20	0.80	0.87	0.94	0.198	0.802	1.449	
0.098	0.902	0.734	0.95	0.10	0.90	1.21	
0.041	0.959	0.581	0.96	0.082	0.918	1.156	

MISCIBILITY OF ETHYL ALCOHOL (see Note p. 287) AT 0° WITH MIXTURES OF:

Pinene and Water. (Bonner, 1910.)

Composition of Homogeneous Mixtures.

Comp. Gms. Gms. Sp. Gr. Ch.-H.O. C.H.OH. Sat. Sol. CH.-CH.-CH.-Br. H.O. C.H.OH. Sat. Sol.

Gms. C ₁₀ H ₁₆ .	Gms. H ₂ O.	Gms. C ₂ H ₄ OH.	Sp. Gr. Sat. Sol.	Gms. CH ₄ .CH ₂ .CH ₄ Br.	Gms. H₂O.	Gms. C ₂ H ₄ OH.	Sp. Gr. Sat. Sol.
0.99	0.010	0.268	0.87	0.975	0.025	0.190	1.26
* 0.985	0.015	0.47		* 0.92	0.08	0.42	
0.897	0.103	1.595	0.85	0.90	0.10	0.50	1.12
0.795	0.205	2.268	0.84	0.80	0.20	0.72	1.06
0.70	0.30	2.67	0.84	0.70	0.30	0.88	I.02
0.60	0.40	2.94	0.85	0.60	0.40	1.01	0.99
0.493	0.507	3.135	0.85	0.50	0.50	1.10	0.98
0.393	0.607	3.126	0.86	0.40	0.60	1.15	0.96
0.293	0.707	3.038	0.86	0.30	0.70	I.I4	0.95
0.194	0.806	2.799	0.87	0.204	0.796	I.I2	0.94
0.094	0.906	2.331	0.89	0.096	0.904	I.O2	0.94
0.035	0.965	1.639	0.91	0.027	0.973	0.687	0.95

MISCIBILITY OF ETHYL ALCOHOL (see Note p. 287) AT 0° WITH MIXTURES OF:

Toluene and Water. (Bonner, 1910.)
Composition of Homogeneous Mixtures.

o Toluidine and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures.

Compone		-B		Composition of Exemples of Exemples of				
Gms. C ₄ H ₄ CH ₃ .	Gms. H ₂ O.	Gms. C ₂ H ₄ OH.	Sp. Gr. Sat. Sol.	Gms. CH ₄ .C ₄ H ₄ .NH ₄ .	Gms. H ₂ O.	Gms. C ₂ H ₆ OH.	Sp. Gr. Sat. Sol.	
0.948	0.052	0.388	0.87	0.954	0.046	0.025	1.01	
0.90	0.10	0.61	0.86	0.90	0.10	0.21	0.93	
0.80	0.20	0.95	0.86	0.80	0.20	0.32	0.97	
0.70	0.30	1.21	o.86	0.70	0.30	0.41	0.96	
0.60	0.40	1.41	o.86	0.60	0.40	0.455	0.96	
0.50	0.50	1.53	0.87	0.50	0.50	0.48	0.96	
0.40	0.60	1.59	0.87	0.40	0.60	0.50	0.96	
0.30	0.70	1.56	0.88	0.30	0.70	0.50	0.96	
0.20	0.80	I .44	0.89	0.20	0.80	0.49	0.96	
0.10	90.و	I.23	0.91	0.098	0.902	0.462	0.98	
0.028	0.972	0.817	0.94	0.027	0.973	0.262	•••	

MISCIBILITY OF ETHYL ALCOHOL (see Note p. 287) AT 0° WITH MIXTURES OF:
Bromotoluene (b. pt. 182-3) and Water.

(Bonner, 1910.)

(Bonner, 1910.)

Composition of Homogeneous Mixtures.

Composition of Homogeneous Mixtures.

Gms. BrC ₄ H ₄ .CH ₈ .	Gms. H ₂ O.	Gms. C ₂ H ₄ OH.	Sp. Gr. Sat. Sol.	Gms. NO ₂ .C ₆ H ₄ .CH ₆ .	Gms. H ₂ O.	Gms. C₂H₄OH.	Sp. Gr. Sat. Sol.
0.98	0.02	0.33	• • •	0.978	0.022	0.253	1.08
0.951	0.049	0.522	1.09	* 0.95	0.05	0.50	
0.90	0.10	0.87	1.06	0.90	0.10	0.84	0.97
0.80	0.20	1.28	0.97	0.80	0.20	1.29	0.96
0.70	0.30	I.54	0.94	0.70	0.30	1.57	0.92
0.60	0.40	1.71	0.93	0.60	0.40	1.73	0.91
0.50	0.50	1.81	0.92	0.506	0.494	1.782	0.91
0.40	0.60	1.89	0.91	0.398	0.602	1.868	0.91
0.30	0.70	1.89	0.90	0.294	0.706	1.816	0.91
0.20	0.80	1.78	0.90	0.20	0.80	1.63	0.91
0.10	0.90	1.533	0.91	0.10	0.90	1.30	0.92
0.033	0.967	1.307	0.92	0.056	0.944	1.105	0.93

MISCIBILITY OF ETHYL ALCOHOL (see Note p. 287) AT O' WITH MIXTURES OF: - Yulana and Water (Ronner, 1010) W Yulene and Water (Ro

O Aylene a Composition		er. (Bonn geneous Mi	er, 1910.) xtures.	m Aylene a		er. (Bonn geneous Mi	er, 1910.) ctures.
Gms. • C ₄ H ₄ (CH ₂) ₂ .	Gms. H ₂ O.	Gms. C₂H₄OH.	Sp. Gr. Sat. Sol.	Gms. ## C ₄ H ₄ (CH ₂) ₂ .	Gms. H ₂ O.	Gms. C₂H₄OH.	Sp. Gr. Sat. Sol.
0.971	0.029	0.352	0.89	0.967	0.033	0.388	0.88
* 0.96	0.04	0.53		0.90	0.10	0.81	0.87
0.90	0.10	0.93	0.87	0.80	0.20	1.30	0.85
0.786	0.214	1.32	0.87	0.70	0.30	1.Ğ1	0.86
0.70	0.30	1.53	0.87	0.60	0.40	I.77	0.86
0.60	0.40	1.72	0.87	0.50	0.50	1.90	0.87
0.50	0.50	1.87	0.87	0.40	0.60	1.98	0.87
0.40	0.60	1.96	0.88	0.30	0.70	2.01	0.88
0.30	0.70	1.94	0.88	0.20	0.80	1.87	0.89
0.20	0.80	1.81	0.89	0.10	0.90	1.53	0.90
0.031 Addition	0.969 al data f	I.I9 or the sy	0.93 stem ethyl	o.o23 alcohol, m xyle	0.977 ene, wat	1.168 er at o°,	0.92 19°, 41°

63° and 100° are given by Holt and Bell, 1914.

p XYLENE AND WATER. (Bonner, 1910.) Composition of Hompsonsons Minture Composition of Unananana Minteres

Compositio	Composition of Homogeneous Mixtures.					or Howos	cneous Mix	ures.
Gms. p C ₄ H ₄ (CH ₃) ₂ . 0.066	Gms. H ₂ O. O.034	Gms. C₂H₄OH. 0.306		~	Gms. p C ₄ H ₄ (CH ₂) ₂ . O . 50	Gms. H ₂ O. O.5O	Gms. C₃H₅OH. I.68	Sp. Gr. Sat. Sol. 0.86
*0.92	0.08	0.57			0.40	0.60	I.77	0.86
0.90	0.10	0.65	0.85		0.292	0.702	1.743	0.87
0.80	0.20	1.05	0.85		0.193	0.807	1.625	0.88
0.70	0.30	1.35	0.85		0.100	0.90	1.39	0.89
0.60	0.40	1.56	0.85		0.015	0.085	0.863	0.03

The coefficient of distribution of ethyl alcohol between olive oil and water is 0.026 at 3° and 0.047 at 30°. (Meyer, 1901; 1909.)
100 gms. cottonseed oil (0.922 Sp. Gr.) dissolve 22.9 gms. ethyl alcohol at 25°.
100 gms. ethyl alcohol dissolve 11.75 gms. cottonseed oil at 25°. (Wroth and Reid, '16.)

DISTRIBUTION OF ETHYL ALCOHOL BETWEEN COTTONSEED OIL AND

WATER AT 25°. (Wroth and Reid, 1916.) C-- CHOH per ---

Ratio.
O Layer.
5.147 29.5
5.738 29.9
5.835 27.1
5.876 24.7
3.682 28.7

Data for the reciprocal solubility of ethyl alcohol and turpentine are given by Vèzes and Mouline, 1904, 1905-06.

Data for the system ethyl alcohol, water, petroleum are given by Rodt (1916).

ETHYLAMINES $C_2H_6.NH_2$, $(C_2H_6)_2NH$, $(C_2H_6)_3N$.

Freezing-point data (solubility, see footnote, p. 1) for mixtures of ethylamine + water, diethylamine + water, and triethylamine + water are given by Guthrie, 1884 and by Pickering, 1893.

The solubility of ethylamine and of diethylamine in water at 60°, calculated from the vapor pressures determined by an aspiration method, are given by Doyer, (1890) as follows:

Amine.	Vapor Pressure in mm. Hg.	Ostwald Solubility Ex. l (see p. 227.)	Bunsen Absorption Coef. (see p. 227.)
$C_2H_5NH_2$	64.5	321	263
$(C_2H_5)_2NH$	233	89	73

Data for the solubility of triethylamine in water at high pressures are given by Kohnstamm and Timmermans, 1913.

SOLUBILITIES OF DI ETHYL AMINE AND WATER.*

DISTRIBUTION OF TRI ETHYL AMINE BETWEEN WATER AND AMYL ALCOHOL AT 25°.

(Lattey - Phil. Mag. [6] 10, 398, '05.)

' (Herz and Fischer - Ber. 37, 4751, '04.)

	Gms. NI per 10	H(C ₂ H ₈) ₂ o Gms.			Millimols I	
t * .	Aqueous Layer.	Amine Layer.	Agueous Layer.	Alcoholic Layer.	Aqueous Layer.	Alcoholic Layer.
155	21.7	59.0				
150	23.6	55 - 5	o.o885	2.299	0.0875	2.273
148	24.8	53 · 5	0.1683	4 · 457	0.1664	4 - 408
146	26.3	51.0	0.1866	4.922	0.1846	4.868
145	28.0	49.0	0.2502	6.491	0.2474	6.418
144	31.0	45 ·O				
143.5	(crit. t.) 37	· 4				

Triethyl AMUNE N(C₂H₅)₂.

SOLUBILITY IN WATER.* (Rothmund, 1898.)

	Gms. N(Gms. N(C ₂ H ₄), per 100 Gms.			Gms. N(C ₂ H ₄), per 100 Gms.		
t.	Aq. Layer.	Am	ine Layer.		Aq. Layer.	Amine Layer	
18.6 (crit.	temp.)	51.9		40	3.65	96.48	
20	14.24	• •	72	50	2.87	96.4	
25	7.30		95.18	55	2.57	96.3	
30	5.80		96.60	60	2.23	96.3	
35	4.58		96.5	65	1.97	96.3	

SOLUBILITY OF TRIETHYLAMINE IN WATER AND IN AQ. ETHYL ALCOHOL AT DIFFERENT TEMPERATURES.* (Meerburg, 1902.)

V	later.	13.33%	Alcohol.	28.98%	Alcohol.	38.84%	Alcohol.	60.16%	Alcohol.
t°.	m. N(C ₂ H ₄); per 100 Gms. Sol.	t°.	m. N(C ₂ H ₂) ₃ per 100 Gms. Sol.		m. N(C ₂ H ₄) ₃ per 100 Gms. Sol.		n. N(C ₂ H ₄) ₃ per 100 Sms. Sol.		N(C ₁ H ₄) per 100 ms. Sol.
69.2	1.7	38.3	8.2	54.5	22.8	73 · 4	31.2	76-77	71.2
30.8	5.6	31.7	13.9	45	29.8	65.4	33 · 3	74-75	75
23.1	8.5	28	21.6	33 · 4	51.1	51.6	40.6	72-73	8 o
18.7	25.8	26.4	30.6	31.4	63.7	42.I	50.6		
18.7	37.2	24.9		30.3	68.5	40.9	54 · 7		
19.5	51.8	24.2	49.8	28.5	82.2	34.2	70.6		
20.5	68.6	24.I	60.7	35	91.8	33	77 - 5		
20.5	84	24	69.7			34.7	88 .	1	
20.5	89.7	23.5	76.6			40.5	91.3		
21.2		24	81.5						
25.8	95.5	24.2	87.4						
26.5	96.1	25	92				_		

NOTE. — Results for triethylamine, water and ethyl ether, and for triethylamine, water and phenol are also given by Meerburg.

100 gms. abs. methyl alcohol dissolve 57.5 gms. NH(C₆H₆)₂ at 19.5°.
100 gms. abs. ethyl alcohol dissolve 56 gms. NH(C₆H₆)₂ at 19.5°.
(de Bruyn, 1892.)

[•] Determinations made by "Synthetic Method," see Note, p. 16.

DISTRIBUTION	OF	ETHYLAMINES	BETWEEN	WATER	AND	TOLUENE.
		(Moore and)	Winmill rare.	١		

	Results at 18°.		Results	at 25°.	Results at 32.35°.	
Amine.	Gms. Equiv. per Liter Aq. Layer.	Partition Coef.	Gms. Equiv. per Liter Aq. Layer.	Partition Coef.	Gms. Equiv. per Liter Aq. Layer.	Partition Coef.
$(C_2H_5)NH_2$	0.0756	26.09	0.1159	19.13	0.1287	14.76
"	0.0886	26.14	0.0999	19.11	0.2479	14.79
$(C_2H_5)_2NH$	0.0484	2.14	0.0483	1.59	0.1200	1.093
"	0.0503	2.14	0.0416	1.59	0.1104	1.095
$(C_2H_5)_3N$	0.0189	0.131	0.0104	0.099	0.0132	0.069
"	0.0191	0.131	0.0131	0.099	0.0133	0.069

Similar data for triethylamine at 25° and at other temperatures are given by Hantzsch and Sebaldt, 1899, and by Hantzsch and Vagt, 1901.

Data for ternary systems composed of triethylamine, water and each of the following compounds: naphthalene, cane sugar, KCl, K₄CO₂, K₂SO₄ and KSCN, are given by Timmermans (1907).

ETHYL, DIETHYL and TriETHYLAMINE HYDROCHLORIDES, etc. SOLUBILITY OF EACH IN WATER AND IN CHLOROFORM AT 25°. (Peddle and Turner, 1913.)

- Amin	e Salt.	Formula.	Solubility in Water. Gms. Amine Salt per 100 Gms. H ₂ O.	Gms. Amine	Salt
Ethylamine	Hydrochloride	C ₂ H ₅ .NH ₂ .HC		0.17	
Diethylamine	"	$(C_2H_5)_2NH.H($	Cl 231.7	29.45	
"	Hydrobromide	$(C_2H_5)_2NH.HI$	311.6	46.65	
"	Hydroiodide	(C ₂ H ₅) ₂ NH.HI	377.2	71.56	
Triethylamine	Hydrochloride	(C ₂ H ₅) ₃ N.HCl	137	17.37	
""	Hydrobromide	(C ₂ H ₅) ₃ N.HBr	150.6	23.44	
"	Hydriodide	$(C_2H_6)_8N.HI$	370	92.2	
ETHYL BROD	MIDE C ₂ H ₄ Br.				
	SOLUBILITY 1	N ETHER. (Part	nentier, 1892.)		
	r.	-13°.		22.5. 3:	2.
Gms. C₂H₅Br	per 100 gms. E	ther 632 56	1 462	302 25	3
	OF THE PERSON OF THE	TITE DOOLEDE T			

SOLUBILITY OF ETHYL BROMIDE, ETC., IN WATER. (Rex, 1906.)

Dissaland Substance				
Dissolved Substance.	•°.	10°.	20°.	30°.
Ethyl Bromide	1.067	0.965	0.914	0.806
Ethyl Iodide	0.441	0.414	0.403	0.415
Ethylene Chloride	0.922	0.885	0.869	0.894
Ethylidene Chloride	0.656	0.595	0.550	0.540

ETHYL BUTYRATE C.H.COOC.H.

SOLUBILITY IN WATER AND IN AQUEOUS ETHYL ALCOHOL MIXTURES AT 20°. 100 g. H₂O dissolve 0.5 g. ethyl butyrate at 22°. 100 cc. H₂O dissolve 0.8 cc. ethyl butyrate at 20°. (Traube, 1884.) (Bancroft, 1895.) 100 cc. ethyl butyrate dissolve 0.4 - 0.5 cc. H₂O at 20°.

Per 5 cc. (cc. H₂O 10 2.06 2.10 Ethyl Alcohol (cc. C₈H₇COOC₂H₅ 0.34 0.96

ETHYL CARBAMATE (Urethan) CO(OC₂H₅)NH₂. See also p. 741. SOLUBILITY IN SEVERAL SOLVENTS AT 25°. (U. S. P. VIII.)

Solvent.	Water.	Alcohol.	Ether.	Chloroform.	Glycerol.
Gms. CO(OC ₂ H ₅)NH ₂ per 100 gms. solvent	100+	166	100	77	33

ETHYL ETHER (C.H.),O.

26

135

104.2

RECIPROCAL SOLUBILITY OF ETHER AND WATER.

(Klobbie — Z. physik. Chem. 24, 619, '97; Schuncke — Ibid. 14, 334, '94; St. Tolloczko — Ibid. 20, 407. '96.)

Solubility of Ether in Water. Solubility of Water in Ether. Lower Layer — Aqueous. Upper Layer — Ethereal. Gms. (CaHa)2O per 100 Gms. Gms. H₂O per 100 Gms. Water. Solution. Ether. Solution. 0 13.12 11.6 10.1 1.0 5 11.4 10.2 1.06 I .05 10 8.7 1.12 (2.6, S.) 9.5 I.I2 15 8.2 7.6 1.16 1.15 6.95 20 6.5 I . 20 1.20 (2.65, S.) 25 1.26 6.05 5.7 1.26 30 5.1 5.4 I.33 1.32 *40 4.7 4.5 I.52 1.50 *****50 4.3 4.I I .73 1.7 *****60 3.8 3.7 1.83 8. **1 ***70 3.2 2.04 3.3 2.0 *****80 2.8 2.25 2.9 2.2

100 cc. H₂O dissolve 8.11 cc. ether at 22°; vol. of solution, 107.145 cc., Sp. Gr. 0.9853.

100 cc. ether dissolve 2.93 cc. H₂O at 22°; vol. of solution, 103.282 cc.; Sp. Gr. 0.7164. (Herz. 1898.)

More recent determinations of the solubility of ethyl ether in water, agreeing closely with the above data, are given by Osaka, 1910.

Data for the temp.-pressure diagram of ether-water are given by Scheffer, 1912a.

SOLUBILITY OF ETHER IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID.

(Schuncke — Z. physik. Chem. 14, 334, '94; in 38.52% HCl, Draper — Chem. News, 35, 87, '77.)

In 38.52 % HCl. In 31.61 % HCl. In 20 % HCl. cc. Ether cc. Ether Gms. per 1 Gram HeO. cc. Ether Gms. per 1 g. HgO. per 100 cc. Solvent. DET 100 CC. per 100 cc. Solvent. HCI. (CaHa)aO. HCI. (C2H4)2O. Solvent. -6 181 0.4622 1.387 67.2 p.253 149. 0.5637 0.4622 1.308 0 177.5 142 58.3 0.253 0.4863 +6 131.5 172.5 0.4622 I 2075 51.1 0.253 0.4231 121 .7 (14°) 0.4622 1.1075 163 40.5 0.253 0.3299 15 111.9 (20.8°) 0.4622 20 158 1.0005 33 · I 0.253 0.2688

0.4622 0.9360

27.5 0.253

0.2221

In 12.58 % HCl.				In 3.65 % HCl.			
t*.	cc. Ether per	Gms. per HCl.	r Gram H ₂ O. (C ₂ H ₅) ₂ O.	cc. Ether per	Gms. per 1 HCl.	Gram H ₂ O. (C ₂ H ₄) ₂ O.	
-6	26.45	0.144	0.2106	19.23	0.0308	0.1454	
0	22.19	0.144	0.1748	•••	• • •		
+6	1 9.18	0.144	0.1503	14.31	0.0308	0.1070	
15	15.61	0.144	0.1210	11.83	0.0308	0.0868	
20	13.76	0.144	0.1059	10.52	0.0308	0.0769	
26	12.70	0.144	0.0970	9.24		0.0673	

The above data are recalculated and discussed by Jüttner, 1901.

^{*} Indicates determinations made by Synthetic Method, for which see page 26.

Data for the solubility of ethyl ether in carbon dioxide at high pressures are given by Sander (1911–12). The determinations were made by using quite small amounts of ether and observing the pressure at which a drop of liquid just appeared or disappeared in a mixture of known weight per cent composition. The results give the "gas curve" for constant temperature and when plotted in connection with "liquid curve" (see CO₂, p. 233), give the complete pressure - concentration diagram.

Freezing-point lowering data for mixtures of ethyl ether and hydrochloric acid are given by Maass and McIntosh (1913).

SOLUBILITY OF ETHER IN AQUEOUS SALT, ETC., SOLUTIONS AT 18°.

		(Date	, -304./		
Aq. Solu- tion of:	Gms. per Liter Added Salt.	Gms. (C ₂ H ₄) ₂ O per 100 cc. Solvent.	Aq. Solu- tion of:	Gms. per Liter Added Salt.	Gms. (C ₂ H ₂) ₂ O per 100 cc. Solvent.
Water	0	7.8	Na ₂ SO ₄	59 · 54	3.7
KNO ₃	101.19	5.4	Mannite	91.06	6.7
KCl	73.6	4.7	H ₂ SO ₄	49	6.6
LiCl	42.48	5.2	"	122.5	5.65
NaCl	58.5	4.5	"	245.	4.55

SOLUBILITY OF ETHYL ETHER IN AQ. SALT SOLUTIONS AT 28°. (Thorin, 1915.)

Solvent.	Gms. (C ₂ H ₄) ₂ O per 100 cc. Solvent.	Solvent.	Gms. (C₂H₄)₂O per 100 cc. Solvent.		Gms. (C ₂ H ₄) ₂ O er 100 cc. Solvent.
Water	5.85	o. 5 n Na ₂ PO ₄	4. I7	o. 5 n Na Succinate	4.68
o.5 n NaI	5.70	o.5 n Na ₄ AsO ₄	4.20	o. 5 n Na Citrate	4.19
0.5 n NaBr	4.68	0.5 n Hg(CN)2	5.71	o.5nNaAcetate	4.15
o.5 n NaCl	4.48	o.5 n NH4NOs	5.37	o.5nNaTartrate	4.12
0.5 n NaF	4.15	o.5 n FeCla	5.09	o.5nNaPhthalate	5.88
0.5 n Na ₂ SO ₄	4.30	0.5 n Na ₂ Cr ₂ O ₇	4.84	o. 5 n Na Cinnamate	6.29
o.5 n Na ₂ CrO ₄		o.5 n FeSO ₄	4.33	o.5 n Na Benzoate	5 - 99
o.5 n Na ₂ MoC		0.5 n Al ₂ (SO ₄) ₃	3.95	o.5n Na Salicylate	6.44
0.5 % Na ₂ WO ₄	4.12	o.5 # Am. Oxalat	æ 4.74	o. 5 n Na Benzene Sulfonate	6.05

SOLUBILITY OF ETHYL ETHER IN 0.91 PER CENT (PHYSIOLOGICAL NORMAL SALINE) AQUEOUS NaCl Solution. (Bennett, 1912.)

Determinations made by freezing-point method. Ether of $d_{15} = 0.720$ used.

	Gms. (C ₂ H ₄) ₂ O	cc. (C ₂ H ₄) ₂ O
t°.	per 100 Gms. Aq. NaCl.	(at 15°) per 100 cc. Aq. NaCl.
0	13.08	18.27
5	11.15	15.58
10	9 • 45	13.20
15	8.10	11.31
20	6.87	9.60
25	5.96	8.33
30	5.30	7.40

Purified ether prepared from methylated spirit gave slightly higher results.

SOLUBILITY OF ETHYL ETHER IN AQ. SULFURIC ACID AT 0°. (Kremann, 1910a.)

Gms. per 100	Gms. Homoge	neous Mixture.	Gms. per 100 (Gms. Homog	encous Mixture.
(C ₂ H ₄) ₂ O.	H ₂ O.	H ₂ SO ₄ .	(C ₂ H ₄) ₃ O.	H₂O.	H ₄ SO ₄ .
24.2	34 · 5	41.3	16.1	42.7	41.2
24.8	35.4	39.8	6.1	78	15.9
43.9	15.7	40.4	53.8	8.5	37 · 7
34	26. I	39.9			

Data for the system ethyl ether, ethyl alcohol, water, sulfuric acid at o° are also given.

SOLUBILITY OF ETHER IN AQUEOUS ETHYL ALCOHOL AND IN AQUEOUS METHYL ALCOHOL MIXTURES AT 20°. (Bancroft, 1895.)

In Ethyl Alcohol. In Methyl Alcohol. Per 1 cc. CH₂OH. Per 5 cc. C.H.OH. Per 5 cc. C.H.OH. Per 1 cc. CH₂OH. oc. H₂O. * cc. (C₂H₂)₂O. † cc. H₂O. * cc. (C₂H₂)₂O. † cc. H₂O. cc. (C₂H₂)₂O. cc. H₂O. cc. (C,H,),O. 1.13 0.83 1.80 50 1.30 7 10 4.45 7.8 0.85 7 0.64 3 25 1.70 4 8 3.87 0.60 5 10 2.41 4 0.52 3.10 8 2.5 0.56 10 10 0.44 3.35 1.8 6 5.10 2.08 0.63 15 15 0.45 I.23 6 I.77 I 5.21 17.5 Saturated with ether. † Saturated with water.

THE SYSTEM ETHYL ETHER-MALONIC ACID-WATER AT 15°. (Klobbie, 1897.)

Results for Conjugated Liquid Layers Formed Results for the Liquid Layers in when Insufficient Malonic Acid to Satu-Contact with Excess of rate the Solutions Was Present. Malonic Acid.

Gms. per 100 Gms. Lower Layer.		Gms. per 100 Gms. Upper Layer.		Gms. per 100 Gms. Liquid.			Solid Phase.		
Malonic Acid.	H ₂ O.	Ethyl Ether.	Malonic Acid.	H₄O.	Ethyl Ether.	Malonic Acid.	H ₂ O.	Ethyl. Ether.	
0	92.23	7.77	0	1.20	98.80	8	0	92	Malonic Acid
4.63	87.42	7.94	0.72	1.54	97 - 74	g.g6	0.42	8g.61	66
11.60	79.92	8.48	2.IQ	1.99	95.82	10.41	2.79	77.80	"
20.45	69.55	9.99	5.01	3.08	10.10	27.22	5.23	67.54	66
27.43	60.57	12	9.52	5.19	85.29	35.51	10.73	53.75	"
33.63	47 - 45	18.80	21.80	13.42	64.91	46.48	20.86	32.66	66
34.17	35.81	30.02	30.44	25.37	44.10	51.33	26.30		"
31.11	26.76	42.12	31.11	26.76	42.12	57.37	39.10	3.52	**

Data for the system ethyl ether, succinic acid nitrile and water are given by Schreinemakers, 1898.

Data for the extraction of formic acid from water by ether are given by Dakin. Janney and Wakemann, 1913.

ETHYL FORMATE HCOOC, H.

100 grams water dissolve 10 grams ethyl formate at 22°.

(Traube, 1884.)

ETHYL METHYL KETONE CH2.CO.C2H4.

SOLUBILITY IN WATER. (Rothmund, 1898.)

By synthetic method, see Note, page 16.

ť.	Gms. Ketone	per 100 Gms.	ť.	Gms. Ketone per 100 Gms.		
	Aq. Layer. I	Cetone Layer.	• .	Aq. Layer. 1	Ketone Layer.	
-10	34.5	89.7	90	16.1	84.8	
+10	26.I	90	110	17.7	80	
30	21.9	89. 9	130	21.8	71.9	
50	17.5	89	140	26	64	
70	16.2	85.7	151.8	(crit. temp	0.) 44 . 2	

The accuracy of Rothmund's data is questioned by Marshall (1906) and the following new determinations given.

Data for the reciprocal solubility of ethyl methyl ketone and water, containing 1.5% ethyl alcohol, are given by Bruni (1899, 1900). This system is of interest particularly on account of having both an upper and a lower critical point.

Freezing-point data for mixtures of ethylmethyl ketone and water are given by

Timmermans (1911) and by Bruni, 1899, 1900.

DIETHYL KETONE (Propione) (C₂H₄)₂CO.

SOLUBILITY IN WATER. (Rothmund, 1898.)

The determinations were made by Synthetic Method, see p. 16. The critical temperature could not be reached and high accuracy is not claimed for the results.

ť.		thyl Ketone oo Gms.	ť.	Gms. Diethyl Ketone per 100 Gms.		
	Aq. Layer.	Ketone Layer.		Aq. Layer.	Ketone Layer.	
20	4.60		100	3.68	93.10	
40	3.43	97 - 42	120	4.05	90.18	
60	3.08	96.18	140	4.76	87.01	
80	3.20	04.02	160	6.10	83.33	

ETHYL PROPIONATE C.H.COOC.H.

SOLUBILITY IN WATER AND IN AQUEOUS ETHYL ALCOHOL MIXTURES. (Pfeiffer, 1892; Bancroft, 1895.)

cc. Alcohol in Mixture.	cc. H ₂ O to Cause Separation of a Second Phase in Mixtures of the Given Amounts of Alcohol and 3 cc. Portions of Ethyl Propionate.
3 6	2.32
6	6.87
9	12.35
12	19.17
15 18	27.12
	36.84
21	50.42
24	∞

100 grams H₂O dissolve 1.7 grams ethyl propionate at 22°.

(Traube, 1884.)

Mixtures of Ethyl Alcohol,

1.23

5.

DiETHYL Diacetyl TARTRATE (CHOCOCH₂)₂(COOC₂H₅)₂.

Freezing-point lowering data (solubility, see footnote, p. 1) for mixtures of diethyl diacetyl tartrate and each of the following compounds are given by Scheuer (1910); m nitrotoluene, ethylene bromide, phenol and naphthalene. Results for diethyl diacetyl tartrate and naphthalene are also given by Palazzo and Batelli (1883).

ETHYL VALERATE C.H.COOC.H.

ETHYL (Iso) VALERATE (CH₂)₂.CH.CH₂COOC₂H₄.

Mixtures of Ethyl Alcohol,

SOLUBILITY OF EACH IN WATER AND IN AQUEOUS ALCOHOL MIXTURES AT 20°. (Pfeiffer, 1892; Bancroft, 1895.)

100 cc. water dissolve 0.3 cc. ethyl valerate at 25°.

100 cc. water dissolve 0.2 cc. ethyl iso valerate at 20°. 100 cc. ethyl iso valerate dissolve 0.4+ cc. water at 20°.

Ethyl Valerate and Water.				Ethyl Iso Valerate and Water.		
Duly! Valerate and Water.				Per 5 cc. Ethyl Alcohol.		
oc. Alcohol.*	cc. H ₂ O.†	cc. Alcohol.*	cc. H=O.t			
•••••				cc.H₂O.	cc. Ethyi Iso Valerate.	
3	I .42	39	53.13			
9	7.18	45	63.60	10	0.15	
15	14.13	57	90.53	8	0.23	
21	22.40	72	131.0	6	0.46	
27	31.62	81	180.0	5.	0.72	

33

41.62

cc. Alcohol in mixture.
 † cc. H₂O added to cause the separation of a second phase in mixtures of the given amounts of alcohol and 3 cc. portions of ethyl valerate.

ETHYLERE C₂H₄- SOLUBILITY IN WATER AND IN ALCOHOL. (Bussen and Carius; Winkler, 1906.)

ť.	B.	•	Salub	ility in Alcohol.
0	0.226	0.0281		
5	•	0.0237	r.	Vols. C _e H _e per roo Vols. Alcohol.
IO	0.162	0.0200	0	359.5
15	~-	0.0171	4	337 · 5
20	0.122	0.0150	10	308.6
25		0.0131	15	288.2
30	0.098	0.0118	20	271.3

For β and q see Ethane, p. 285.

SOLUBILITY OF ETHYLENE IN AQUEOUS SOLUTIONS OF ALKALI HYDROXIDES. ETC., AT 15°. (Billitzer, 1901.)

Results in terms of the Ostwald Solubility Expression I. See p. 227. Solubility L. in Ac. Solution of Non

Aqueous Solution of:	owasmo, se m ad. oracion or mornance.							
Aqueous Solucion of.	0.1.	0.25.	0.5.	0.75.	1,0.			
KOH	0.154	0.144	0.130	0.118	o. 1056			
NaOH	0.153	0.144	0.128	0.114	0.101			
NHOH	•••	0.157	0.156	0.155	0.154			
Na ₂ SO ₄	0.1525	0.1425	0.127	0.100	0.003			
In H ₂ O alone	0.1503	•••	•••					

SOLUBILITY OF ETHYLENE IN METHYL ALCOHOL AND IN ACETONE. (Lovi, 1901) Results in terms of the Ostwald Solubility Expression 1. See p. 227.

ť.	In Methyl Alcohol.	In Acetone.	ť.	In Methyl Alcohol.	In Acetone.	
0	3.3924	4.0652	30	1.8585	1 . 8680	
10	2.8831	3.3580	40	1.3432	1.0852	
20	2.3718	2.6278	50	0.8259	0.2772	
25	2.1154	2.2500	60	0.3506	•••	

The formulas from which the above figures were calculated are:

In Methyl Alcohol, l = 3.3924 - 0.05083 t - 0.00001 f. l = 4.0652 - 0.06046 t - 0.000126 fIn Acetone.

SOLUBILITY OF ETHYLENE IN SEVERAL SOLVENTS. (McDaniel, 1911.)

Solvent.	ť.	Abs. Coef.	Bunsen Coef. 8.	Solvent.	t°.	Abs. Coef.	Bunsen Coef. 8,
Benzene	22	3.010	2.786	Heptane	22.4	3.463	3.207
"	35	2.655	2.353	-"	35	3.186	2.824
46	50	2.482	2.100	"	39	. 3.110	2.722
Hexane	22	3.038	2.8141	Acetone	20	2.571	2.200
- "	35	2.826	2.505	"	35	2.308	2.046
7 "	45	2.586	2.219	Limonene	22	no constant	equilibrium

Abs. Coef. A = vol. of ethylene absorbed by unit vol. of solvent at temp. stated. For definition of Bunsen Coef. β, see carbon dioxide, p. 227.

The Coef. of Abs. β of ethylene in Russian petroleum is 0.164 at 10° and 0.142 at 20°.

(Gniewosz and Walhss, 1887.)

Freezing-point data (solubility, see footnote, p. 1) for mixtures of ethylene and

methyl ether are given by Baume and Germann, 1911, 1914.

ETHYLENE BROMIDE C.H.Br.

F.-PT. DATA FOR MIXTURES OF ETHYLENE BROMIDE AND OTHER COMPOUNDS.

Ethylene	Bromide	+ Naphthalene	(Baud, 1912; Dahms, 1895.)
-44	"	+ β Naphthol	(Bruni, 1898.)
"	"	+ " + Picric Acid	(Bruni, 1808.)
44.	44	+ Paraldehyde	(Paterno and Ampola, 1897.)
**	44	+ Phenol	(Dahms, 1895; Paterno and Ampola, 1897.)
44	"	+ Toluene	(Baud, 1912.)
44	44	+ Bromotoluene	(Paterno and Ampola, 1897.)
ų.	"	+ • Xylene	4 # # 1097.9

ETHYLENE CYANIDE C2H4(CN)2.

DISTRIBUTION BETWEEN WATER AND CHLOROFORM. (Hantzsch and Vagt, 1901.)

t°.	Gm. Mols. C ₂ H	Ratio, c1.	
٠.	Aq. Layer, c1.	CHCl, Layer, 4.	Katio, -
0	0.0786	0.0464	1.69
10	0.0787	0.0463	1.70
20	0.0701	0.0450	I.72

Additional data for the influence of KOH, KCl and HCl on the above distribution are also given.

DIETHYLENE ETHER (CH2OCH2)2.

Freezing-point data (solubility, see footnote, p. 1) are given for mixtures of diethylene ether and water, by Unkovskaja, 1913.

Tetraphenyl ETHYLENE (C₆H₆)₂C:C(C₆H₆)₂.

Freezing-point data for tetraphenyl ethylene + silicotetraphenyl are given by Pascal and Normand (1913).

β **EUCAINE** C₁₅H₂₁NO₂ and Salts.

100 cc. H ₂ O dissolve o						1	(Zalai,	
100 cc. oil of sesame dissolve 3.49 gms. anhydrous \$\beta\$ eucaine at 20°.								
100 cc. aniline oil dissolve 66.6 gms. anhydrous β eucaine at 20°.								
	ssolve	e 2.5	gms.	β eucai	ne hydrochlorid	de at 15–20°	(Squire and	
100 cc. 90% alcohol	"	9	"	"		· ·		
100 cc. H ₂ O	**	25	"	"	lactate	"	Caines,	
100 cc. 90% alcohol	**	12.5	"	"	44	44	1905.)	
100 cc. ĆHČla	"	20	"	"	44	44		

EUROPIUM Bromonitrobenzene **SULFONATE** Eu[C₄H₂Br(1)NO₂(4)SO₃(2)]₃.-10H₂O.

100 gms. sat. solution in water contain 6.31 gms. anhydrous salt at 25°.
(Katz and James, 1913.)

FATS.

SOLUBILITY OF THE FATTY ACIDS OBTAINED FROM SEVERAL SOURCES IN ALCOHOL AND IN BENZENE. (Dubois and Pade, 1885.)

Crude Fatty	Gms. Fat	per 100 Gms. Ab	Gms. Fats per 100	
Crude Fatty Acid of:	°.	10°.	26°.	Gms. Benzene at 12°
Mutton	2.48	5.02	67.96	14.70
Beef	2.51	ŏ.05	82.23	15.89
Veal	5	13.78	137.10	26.08
Pork	5.63	11.23	118.98	27.30
Butter	10.61	24.81	158.2	69.61
Margarine	2.37	4.94	47.06	13.53

MISCIBILITY OF FATS AND 90 VOL. PER CENT ALCOHOL AT 37°. (Vandevelde, 1911.)
Mixtures of fats and alcohol in various proportions were shaken twice daily for 8 days and the volume of each layer, as well as its composition, determined.

Mixture.		Composition of	Composition of Mixture-		Volume after Agitation.		Gms. Alcohol	
		cc. Alcohol	cc. Fat	cc. Alcohol	cc. Fat	roo Gms. Alcohol Layer	per 100 Gms. Fat Layer.	
	Alcohol + Cocali	ine 25	5	25.4	4.6	4.9	19.4	
	" "	20	10	19.2	10.8	5.6	16.2	
	" "	15	15	13	17	7.2	13.5	
	"	10	20	Ğ.7	23.3	9.1	12.2	
	"	5	25	I.I	28.9	13	11.4	
	Alcohol + Butter	r Fat 25	5	25.I	4.9	3.5	17.4	
	" "	20	10	19.2	10.8	3.5	14.1	
	u u	15	15	13	17	4	14. I	
	" "		20	7.1	22.9	5.7	11.4	
	u u	5	25	2	28	14.1	9.5	
	Alcohol + Olive	Oil 25	5	24.7	5.3	2.3	11.2	
	" "	20	10	19.2	10.8	2.4	8.7	
	u u	15	15	13	17	2.4	8.7	
	"	10	20	7.5	22.5	2.5	8.8	
	"	5	25	2.2	27.8	7	7.6	

For other data on the solubility of fats see Ewers (1910) and Louise (1911).

FLUORENE

FLUORENE (Diphenylenemethane) C₄H₄.CH₂.C₄H₄.

Freezing-point data (solubility, see footnote, p. 1) are given by Kremann (1911) for mixtures of fluorene and each of the following compounds: o, m and p dintrobenzene, 1.3.5, trinitrobenzene, dinitrophenol, dinitrotoluene, trinitrotoluene and picric acid.

FLUORESCEIN CmH12Os.

```
100 gms. H<sub>2</sub>O dissolve 0.005 gm. fluorescein at 20-25°
                                                                                                            (Dehn, 1917.)
100 gms. pyridine dissolve 13.29 gms. fluorescein at 20-25° 100 gms. aq. 50% pyridine dissolve 37.22 gms. fluorescein at 20-25°
```

FORMALDEHYDE, Solid Polymers (CH₂O)_n.

SOLUBILITY OF THE SIX WELL-DEFINED SOLID POLYMERS OF FORMAL-DEHYDE IN WATER. (Auerbach and Barschall, 1908.)

		•	
Name.	Formula.	m. pt.	Gms. per 100 cc. Sat. Solution in Water.
Paraformaldehyde	$(CH_2O)_n + xH_2O$	150-160	20-30 gms. at 18°
α Polyoxymethylene	(CH ₂ O) _n	163-8	11 gms. at 18-25°
β Polyoxymethylene	(CH ₂ O) _n	163-8	3.3 gms. at 18°, about 4 at 25°
γ Polyoxymethylene	(CH ₂ O) _a	163-5	less than o.1 at 18°, o.1 gm. at 25°
8 Polyoxymethylene	(CH ₂ O) _n	169-70	practically insoluble
a Trioxymethylene	C ₂ H ₄ O ₂	63-4	17.2 at 18°, 21.1 at 25°

All are insoluble in alcohol and ether except trioxymethylene.

SOLUBILITY OF TRIOXYMETHYLENE IN AQ. SODIUM SULFITE SOLUTIONS AT 15°. (Lumière and Seyewetz, 1902.)

Data are also given for the solubility of various mixtures of trioxymethylene and sodium sulfite in water at 15°.

The distribution coefficient of formaldehyde between water and ether is 8.5 at

o° and 9.23 at 20°. (Hantzsch and Vagt, 1901.)

FORMAMIDE HCONH₂.

SOLUBILITY IN WATER, DETERMINED BY THE FREEZING-POINT METHOD. (English and Turner, 1915.)

t° of Solidif.	Gms. HCONH ₂ per 100 Gms. H ₂ O.	Solid Phase.	t° of Solidif.	Gms. HCONH ₂ per 100 Gms. H ₂ O.	Solid Phase.	t° of Solidif.	Gms. HCONH ₂ per 100 Gms. H ₂ O.	Solid Phase.
-0	0		-31.I		Ice	-37.6	267	HCONH.
-2.7	9.93	"	-42.5		"	-29.4	369.8	66
-5.7	17.87	"	-45.4	187.8	HCONH ₂ .H ₂ O	-21.9	540.3	"
-11	35.45	"	-40.4	218.3	"	-14.5	836.8	66
-23.6	81.93	"	-40	241.4	"	- 6.4	1780	"

Similar data are also given for formamide + formic acid and formamide + propionic acid.

o and p ChloroFORMANILIDES Cl.C.H.NH.CHO.

Freezing-point lowering data for mixtures of o and p chloroformanilide are given by King and Orton, 1911.

FORMIC ACID HCOOH.

SOLUBILITY IN WATER, DETERMINED BY FREEZING-POINT METHOD. (Faucon, 1910.)

t° of Solidif.	Gms. HCOOH per 100 Gms. Mixture.	t° of Solidif.	Gms. HCOOH per 100 Gms. Mixture.	t° of Solidif.	Gms. HCOOH per 100 Gms. Mixture.
0	0	-30	53	-40	74.2
-5	12.5	-35	57.6	-30	79
-10	23	-40	62.5	- 20	84.2
-15	32	-45	66.5	- 10	89.4
- 20	39.2	-49 Eutec.	. 70	0	95
-25	46.5	-45	71.7	+8.51	100

Similar data for mixtures of 97.4% formic acid and water are given by Kremann. 1907.

DISTRIBUTION OF FORMIC ACID BETWEEN WATER AND BENZENE AT 13-15°. (v. Georgievics, 1913.)

A small separatory funnel was used and the acid in each layer titrated with 0.1 n NaOH, using phenolphthaleine as indicator.

Gms. HCOOF	I Found per:	Gms. HCOOH Found per:			
25 cc. H ₂ O Layer.		25 cc. H ₂ O Layer.	150 cc. CaHa Layer.		
1.016	0.016	2.365	0.035		
1.539	0.031	3.826	0.062		
1.800	0.024	5.874	0.114		
2.112	0.031	7.836	0.138		

The distribution ratio of formic acid between water and benzene was found by

King and Narracott (1909) to be I to 0.0242 at room temp.

Freezing-point lowering data (solubility, see footnote, p. 1) are given for mixtures of formic acid and dimethylpyrone by Kendall, 1914.

FUMARIC ACID COOH.CH:CH.COOH.

MALEIC ACID COOH.CH:CH.COOH. (See also p. 398.)

SOLUBILITY IN WATER. (Vaubel, 1899.)

100 gms. water dissolve 0.672 gm. fumaric acid at 165°.

100 gms. water dissolve 50 grams maleic acid at 100°.

Data for the distribution of fumaric acid between water and ether at 25° are given by Chandler, 1908.

FURFUROL C4H4OCHO.

SOLUBILITY IN WATER. (Rothmund, 1898.)

Determinations by Synthetic Method, for which see p. 16.

40	Gms. C ₄ H ₂ OCHO per 100 Gms.		\$*.	Gms. C ₄ H ₂ OCHO per 100 Gms.		
t°.	Aq. Layer.	Furfurol Layer.	٠.	Aq. Layer.	Furfurol Layer.	
40	8.2	93 · 7	100	18.9	83.5	
50	8.6	93	110	24	78.5	
60	9.2	92	115	28	74.6	
70	10.8	90.7	120	34 · 4	68.I	
7° 80	13	89	122.7	(crit. t.)	51	
90	15.5	86.6			•	

GADOLINIUM CobaltiCYANIDE Gd2(CoC6N6)2.9H2O.

1000 gms. aq. 10% hydrochloric acid dissolve 1.86 gms. of the salt at 25°.

(James and Willard, 1916.)

GADOLINIUM GLYCOLATE $Gd_2(C_2H_2O_3)_3.2H_2O.$

1000 cc. H₂O dissolve 14.147 gms. of the salt at 20°. (Jantsch and Grünkraut, 1912-13.)

GADOLINIUM Magnesium NITRATE, etc.

SOLUBILITY OF DOUBLE NITRATES OF GADOLINIUM AND OTHER METALS IN CONC. NITRIC ACID OF $d_{10} = 1.325$ (= 51.59 Gm. HNO₃ PER 100 CC.) at 16°. (Jantsch, 1912.)

Salt.			Formula.			Salt per Liter Sat. Solution.
Gadolinium	Magnesium	Nitrate	[Gd(NO ₃)	6 Mgs.	24H2O	352.3
"	Nickel	"	• `"	Ni ₃	"	400.8
"	Cobalt	"	"	Cos	"	451.4
"	Zinc	"	"	Zn_s	"	472.7

GADOLINIUM OXALATE Gd2(C2O4)2.10H2O.

SOLUBILITY IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 25°. (With, 1912.)

Normality of	Gms. per 100	Gms. Sat. Sol.	Solid Phase.		
Normality of Aq. H ₂ SO ₄ .	Gd ₂ O ₃ .	Gd ₂ (C ₂ O ₄) ₃ .			
2.16	0.1883	0.3005	$Gd_2(C_2O_4)_3$. IoH_2O		
3.11	0.3010	0.4803	66		
4.32	0.4359	0.6956	"		
6.175	0.707	1.128	"		

SOLUBILITY OF GADOLINIUM OXALATE IN AQUEOUS 20% SOLUTIONS OF METHYLAMINE OXALATE, ETHYLAMINE OXALATE AND TRIETHYLAMINE OXALATE.

Solvent.	Gms. Gd ₂ (C ₂ O ₄) ₂ per 100 cc. Solvent.		
Aq. 20% Methylamine Oxalate	0.069		
" Ethylamine "	0.360		
" Triethylamine "	0.883		

GADOLINIUM Dimethyl PHOSPHATE Gd2[(CH2)2PO4]4.

100 gms. H₂O dissolve 23 gms. Gd₂[(CH₂)₂PO₄]₆ at 25° and 6.7 gms. at 95°.
(Morgan and James, 1914.)

GADOLINIUM SULFATE Gd2(SO4)2.8H2O.

. 50	LUBILITY IN WATER.	(Benedicks, 1900.)
ر.••	Gms. Gd ₂ (SO ₄) ₃ per 100 Gms. H ₂ O.	Solid Phase.
0	3.98	Gd ₂ (SO ₄) ₃ .8H ₂ O
10	3.3	"
14	· 2.8	66
25	2.4	"
34.4	2.26	"

Solubility of Gadolinium Sulfate in Aqueous Solutions of:
Sodium Sulfate at 25°. (Bisselland James, 1916.) Sulfuric Acid at 25°. (Wirth, 1912.)

9		Gms. H	Solid Phase.	Normality of H ₂ SO ₄ .	Gms. per roc		
	Na ₂ SU ₄ .	Gd ₂ (SO ₄) ₃	•	or misori.	Gd ₂ O ₃ =	Gd ₂ (SO ₄) ₂ .	
	0	2.15	$Gd_2(SO_4)_2.8H_2O$	0	I.793	2.981	Gd ₂ (SO ₄) ₃ .8H ₂ O
	0.43	2.06	"	O. I	1.98	3.201	a
	0.47	0.76	Gd2(SO4)3.Na2SO4.2H2O	0.505	2.365	3.931	66
	1.26	0.17	"	1.1	2.20	3.807	"
	3.01	0.07	66	2.16	1.78q	2.974	"
	7.46	0.05	**	6.175	0.528	0.8777	66
	27.40	0.05	ee .	12.6	0.0521	0.0867	66

GADOLINIUM SULFONATES.

Salt.	SOLUBILITY IN WATER. Formula.	• .	Gms. Anhydrous Salt per 100 Gms. H ₂ O.	Authority.
Gadolinium m Nitro- benzene Sulfonate	Gd[C ₆ H ₄ (NO ₂)SO ₂] ₂ .7H ₂ O	15	_ ((Holmberg, 1907.)
Gadolinium Bromoni- trobenzene Sulfonate	Gd[C ₆ H ₂ Br(NO ₂)SO ₂ (1.4.2)] ₈ .10H ₂ O	25	6.31	(Katz and James, 1913.)

GALACTOSE $C_6H_{12}O_6$. See also Sugars, pages 695–7.

100 gms. saturated solution in pyridine contain 5.45 gms. $C_6H_{12}O_6$ at 26°, density of solution = 1.0065.

100 gms. H_2O dissolve 68.3 gms. galactose at 20–25°.

100 gms. aq. 50% pyridine dissolve 6.83 gms. galactose at 20–25°.

(Dehn, 917.)

GALLIC ACID 3.4.5, (OH)₂C₆H₂COOH.H₂O.

SOLUBILITY IN AQUEOUS ETHYL ALCOHOL AT 25°. (Seidell, 1910.)

Wt. Per Cent C ₄ H ₅ OH in Solvent.	d₂s of Sat. Sol.	Gms. C _a H _a (OH) _a COOH.H _a O per 100 Gms. Sat. Sol.	Wt. Per Cent C ₂ H ₃ OH in Solvent.	d ₂₆ of Sat. Sol.	Gms. C ₂ H ₂ (OH) ₂ COOH.H ₂ O per 100 Gms. Sat. Sol.
0	1.002	1.15	60	0.957	16
10	0.992	2	70	0.946	18
20	0.983	4.2	80	0.933	19.9
30	0.977	7.5	90	0.919	21.2
40	0.972	10.6	95	0.911	21.6
50	0.965	13.4	100	0.902	22.2
100 gms.	H ₂ O dissolve	e 0.95 gm. gallic	acid at 15°.		ish and Smith, 1903.)
100 gms.	H ₂ O dissolve	e 33. 3 gms. gall	ic acid at 100	o ~.	(U. S. P. VIII)

SOLUBILITY OF GALLIC ACID IN ORGANIC SOLVENTS AT 25°.

	(Sexten, 1910.)		
Solvent.	Density of Solvent.	d _{ss} of Sat. Solution.	Gms. C ₄ H ₂ (OH) ₂ COOH.H ₂ O per 100 Gms. Sat. Sol.
Acetone	$d_{15}=0.797$	0.941	25.99
Amylalcohol (iso)	$d_{20} = 0.817$	0.834	5.39
Amylacetate	$d_{20} = 0.875$	0.878	2.72
Benzene	$d_{25} = c.873$	0.875	0.022
Carbon Disulfide	$d_{25} = 1.258$	I.262	0.042
Ether (abs.)	$d_{20} = 0.711$	0.718	1.370
Ethylacetate	$d_{25} = 0.892$	0.911	3.610

The amount of gallic acid dissolved by carbon tetrachloride, chloroform and toluene was too small for estimation.

100 gms. glycerol dissolve 8.3 gms. C₄H₂(OH)₂COOH.H₂O at 25°. (U. S. P. VIII.) 100 gms. 95% formic acid dissolve 0.56 gm. gallic acid at 19.4°. (Aschan, 1913.)

GERMANIUM DIOXIDE GeO:

100 gms. H₂O dissolve 0.405 gm. GeO₂ at 20°, and 1.07 gms. at 100°. (Winkler, 1887.)

GERMANIUM (Mono) SULFIDE GeS

GERMANIUM (Di) SULFIDE GeS2.

100 gms. H₂O dissolve 0.24 gm. GeS 100 gms. H₂O dissolve 0.45 gm. GeS₂.

(Winkler, 1887.)

GLASS.

For data on the solubility of glass in water and other solvents, see:

(Cowper, 1882; Emmerling, 1869; Böhling, 1884; Kreusler and Herzhold, 1884; Kohlrausch, 1891; Förster, 1892; Mylius and Förster, 1889; 1892; Wartha, 1885; Nicolardot, 1916.)

GLOBULIN (Serum).

SOLUBILITY IN AQUROUS MAGNESIUM SULFATE SOLUTIONS. (Galeotti, 1906; Scaffidi, 1907.)

The precipitated globulin (from oxblood) was not dried, but pressed between filter paper, and an excess introduced into each MgSO₄ solution. After constant agitation for 12 hours, the saturated solution was filtered, weighed and evaporated to constant weight, the coagulated globulin then washed to disappearance of SO₄ and dried and weighed.

Results for 10°. Results for 25°. Results for 40°. Results for 55°. Results for 70°.

Gms. per 100 Gms. Gms. per 100 Gms. Gms. per 100 Gms. per 100 Gms. per 100 Gms. Sat. Sol.

Sat. Sol. Sat. Sol. Sat. Sol. Sat. Sol.

		-						OBL.	
MgSO4.	Globulin.	MgSO ₄ .	Globulin.	MgSO4.	Globulin.	MgSO4.	Globulin.	MgSO ₄ .	Globulin.
0.06	0.07	0.06	0.07	0.06	0.42	0.40	I.14	0.71	0.34
0.18	0.34	O. 2I	0.61	0.31	1.42	0.88	2.14	2.52	0.55
0.65	1.63	0.63	2.20	0.61	5.39	1.60	3.34	4.74	1.14
2.11	3.35	2.28	5.56	1.92	8.31	5.64	5.06	6.83	1.17
4.32	4.42	3.35	6.07	5.40	8.63	10.81	3.10	9.22	1.76
13.63	2.60	16	4.03	14.72	3	13.84	2.11	13.29	I
20.86	0.37	21.30	0.95	18.47	1.02	17.90	0.69	15.38	0.37
24. 18	0.18	25.47	0.03	27.03	0.01			17.67	0.07

The coagulation curve and freezing-point curve are also given.

GLUCOSE d C₆H₁₂O₆.H₂O. See also Sugars, pages 695-7.

100 gms. H ₂ O '	dissolve 8	2 7.62	gms.	glucose	at 20-25°.	(Dehn, 1917.)
		9.17	44	44	**	4
100 gms. aq. 50% pyridine 100 gms. trichlor ethylene	" "	0.006	**	44	15°	
					(Wester at	nd Bruins, 1914.)

GLUTAMINIC ACID C3H5NH2(COOH)2.

Data for the solubility of glutaminic acid in aq. salt solutions are given by Würgler (1914) and Pfeiffer and Würgler (1916).

GLUTAMINIC ACID HYDROCHLORIDE C,H,NH, (COOH), HCL

SOLUBILITY IN WATER. (Stoltzenberg, 1912.)

(The following results were taken from the diagram given by the author.) Gms. Glutaminic Acid. Gms. Glutaminic Acid.

t°.	HCl per 100 cc. Sat. Sol.	t.	HCl per 100 cc. Sat. Sol.
0	31.5	60	57
10	34.5	70	62
20	38	80	67.5
30	42.5	90	74
40	47	100	81
50	. 52	20	1.4 (sol. sat. with HCl)

GLUTARIC ACID (Pyrotartaric) (CH₂)₂(COOH)₂.

SOLUBILITY IN WATER. (Lamouroux, 1899)

20°. 35°. so°. 65°.

Gms. $(CH_2)_3(COOH)_2$

per 100 cc. solution 42.9 58.7 63.9 79.7 95.7 111.8 100 gms. 95% formic acid dissolve 55.62 gms. glutaric acid at 18.6°. (Aschen, 1913.)

Data for the distribution of glutaric acid between water and ether at 25° are given by Chandler, 1908.

F. pt. data for glutaric acid + sulfuric acid.

(Kendall and Carpenter, 1914.)

0.235

GLYCINE (Glycocoll) CH₂.NH₂.COOH.

100 gms. H₂O dissolve 51 gms. CH₂.NH₂.COOH at 20-25°. (Dehn, 1917.)

100 gms. pyridine dissolve 0.61 gm. CH₂.NH₂.COOH at 20-25°. 100 gms. aq. 50% pyridine dissolve 0.74 gm. CH₂.NH₂.COOH at 20-25°.

SOLUBILITY OF GLYCINE IN WATER AND IN AO. SALT SOLUTIONS AT 20°. (Pfeiffer and Würgler, 1915, 1916.)

Salt.	Mols. Salt per Liter.	Gms. Glycine per 10 cc. Sat. Sol.	Salt.	Mols. Salt per Liter.	Gms. Glycine per 10 cc. Sat. Sol.
Water	only	1.962	LiCl	0.96	4.188
BaCl ₂	0.5	2.375	LiBr	0.97	4.245
$BaBr_2$	0.5	2.954	SrCl ₂	0.25	2.129
SrCl ₂	0.5	2.362	"	0.50	2.331
$SrBr_2$	0.49	2.440	"	1	2.605
$CaCl_2$	0.57	4.848	66	2	3.301
CaBr ₂	0.51	4.004			

10 cc. sat. aq. solution contains 1.8 gms. glycine + 2.7 gms. KCl at 20° when both are present in the solid phase. (Pfeiffer and Modelski, 1912.)

GLYCOLIC ACID CH.OH.COOH.

SOLUBILITY IN WATER. (Emich, 1884.) 80°. 20°. 60°. TOO". Gms. CH2OH(COOH)

per 100 gms. H₂O 0.033 0.102

PhenylGLYCOLIC ACID dextro and racemic. CH.C₄H₄.OH.COOH.

SOLUBILITY OF DEXTRO AND OF RACEMIC PHENYL GLYCOLIC ACID IN CHLOROFORM. (Holleman, 1898.)

Gms. Detro Acid Gms. Racemic ť. per 100 Gms. CHCla. Acid per 100 Gms. CHCla. 0.877 0.952 15 15 25 1.328 1.07 25 35 1.950 1.60 35

GLYCYRRHIZIC ACID.

100 gms. sat. solution in H2O contain 0.575 gm. glycyerrhizic acid at 15°. (Capin, '12.) 100 gms. sat. solution in H₂O contain 0.152 gm. Am. glycyrrhizate at 0° and 0.225 gm. at 15°. (Capin. 1912.)

Phenyl GLYOXAL Phenyl hydrazone C₆H₅.CO.CH.N.NH.C₆H₅.

One liter C₆H₆ dissolves 52.6 gms. of the A form at 5°. One liter C₆H₆ dissolves 2.9 gms. of the B form at 5°. (Sidgwick, 1915.)

GOLD Au.

SOLUBILITY OF GOLD IN POTASSIUM CYANIDE SOLUTIONS. (Maclaurin, 1893.) Gold disks were placed in Nessler tubes with aqueous KCN solutions. Gms. Au Dissolved in 24 Hours in Nessler Tubes:

Dan								
Per cent KCN.	Full.	} Full.	Oxygen. Passed in.	Oxygen + Agitation.				
O.I	0.00195	0.00331	• • •	• • •				
I	0.00162	0.00418	0.00845	0.0187				
5	0.0032	0.0046	0.01355	0.0472				
20	0.0012	0.00305	0.0115	0.0314				
50	0.00043	0.00026	0.00505	0.0108				

The following data for more dilute KCN solutions are given by Christy (1901). Gold strips 2 × 1 inch were rotated for 24 hrs. in aq. KCN solutions and the loss in weight determined.

Per cent KCN.	Mgs. Au Dissolved,	Per cent KCN.	Mgs. Au Dissolved.	Per cent KCN.	Mgs. Au Dissolved.
0	0.010	0.002	0.44	0.016	74.96
0.0005	0.043-0.07	0.00325	1.77	0.0325	150.54
0.001	0.10-0.23	0.004	4:29	0.065	168.12
0.0016	0.16	0.008	48.43	_	

Data are also given for 48 hour periods and for solutions containing O₂. One liter of conc. HNO₂ dissolved 0.66 gm. Au on boiling for two hours. (Dewey, '10.) Data for the rate and limit of solubility of Au in conc. HCl solutions of iron alum and of cupric chloride are given by McCaughey, 1909.

GOLD CHLORIDE (Auric) AuCl.

100 gms. H₂O dissolve 68 gms. AuCl₂.

When I gm. of gold as chloride is dissolved in aq. HCl of different strengths and the solutions shaken with 100 cc. portions of ether, the following percentages of the gold enter the ethereal layer. With 20% HCl, 95%; 10% HCl, 98%; 5% HCl, 98%; 11% HCl, 84% and 0.18% HCl, 40.3% of the gold.

Distribution results, indicating considerable variation in the constitution of the dissolved substance in the two layers, are also given.

(Mylius, 1911.)

GOLD PHOSPHORUS TRI CHLORIDE (Aurous) AuCIPCI.

100 gms. PCl, dissolve 1 gram at 15°, and about 12.5 grams at 120°. (Lindet - Compt. rend. 101, 1492, '85.)

GOLD ALKALI DOUBLE CHLORIDES.

SOLUBILITY OF SODIUM GOLD CHLORIDE, LITHIUM GOLD CHLORIDE, POTASSIUM GOLD CHLORIDE, RUBIDIUM GOLD CHLORIDE, AND CAESIUM GOLD CHLORIDE IN WATER.

(Rosenbladt - Ber. 19, 2537, '86.) Grams Anhydrous Selt per 100 Grams Solution

Grams Annyurous Sant per 100 Grams Solution.							
NaAuCl.	LiAuCla.	KAuCl ₄ .	RbAuCl4.	CsAuCl.			
58.2	53 · I	27 . 7	4.6	0.5			
60.2	57 · 7	38.2	9.0	0.8			
64.0	62.5	48.7	13.4	I .7			
69.4	67.3	59.2	17.7	3.2			
77 · 5	72.0	70.0	22.2	5.4			
90.0	76.4	80.2	26.6	8.2			
• • •	81.o	• • •	31.0	12.0			
• • •	85. 7	• • •	35 - 3	16.3			
• • •		• • •	39 · 7	21.7			
• • •			44 · 2	27.5			
	58.2 60.2 64.0 69.4 77.5 90.0	NaAuCl ₄ . LiAuCl ₄ . 58.2 53.1 60.2 57.7 64.0 62.5 69.4 67.3 77.5 72.0 90.0 76.4 81.0 85.7	NaAuCla. LiAuCla. KAuCla. 58·2 53·I 27·7 60·2 57·7 38·2 64·0 62·5 48·7 69·4 67·3 59·2 77·5 72·0 70·0 90·0 76·4 80·2 81·0 85·7	NaAuCla. LiAuCla. KAuCla. RbAuCla. 58.2 53.1 27.7 4.6 60.2 57.7 38.2 9.0 64.0 62.5 48.7 13.4 69.4 67.3 59.2 17.7 77.5 72.0 70.0 22.2 90.0 76.4 80.2 26.6 81.0 31.0 85.7 35.3 39.7			

100 gms. glycerol ($d_{15} = 1.256$) dissolve 0.21 gm. AuK(CN)_{2.5}H₂O at 15-16°. (Ossendowski, 1907)

GUALACOL C4H4(OH)OCH20. GUAIACOL CARBONATE [C.H.(OCH.)O], CO.

SOLUBILITY IN WATER, ALCOHOL, ETC. (U.S. P. VIII.)

Solvent.	ť.	Gins. per 100 Gins. Solvent.		
		Guaiacol.	Guaiacol Carbonate.	
Water	25	1.89	• • •	
Alcohol	25	•••	2.08	
Chloroform	25		66.6	
Ether	25		7.69	
Glycerol	25	100	•••	

The coefficient of distribution of guaiacol carbonate between olive oil and water at 25° is given as $\frac{S_{\text{oll}}}{S_{\text{w}}}$ = 3.7 by Boëseken and Waterman, 1911, 1912.

Freezing-point lowering data (solubility, see footnote, p. 1) are given for mixtures of guaiacol and α naphthylamine by Pushin and Mazarovic, 1914; for mixtures of guaiacol and picric acid by Philip and Smith, 1905; and for mixtures of guaiacol and salol by Bellucci, 1912, 1913.

α Tri Phenyl GUANIDINE C. H. N:C(NHC. H.)2.

SOLUBILITY IN MIXTURES OF ALCOHOL AND WATER AT 25°. (Holleman and Antusch, '94.)

Vol. % Alcobol.	Gms. C ₂ H ₂ N:C(NHC ₂ H ₄) ₂ per 100 Gms. Solvent.	Density of Solutions.	Vol. % Alcohol.	Gms. C ₂ H ₄ N:C(NHC ₂ H ₄) ₂ per 100 Gms. Solvent.	Density of Solutions.
100	6.23	0.8021	80	1.06	0.8572
95	3.75	0.8158	75	0.67	0.8704
90	2.38	0.8309	70	0.48	0.8828
85	1.58	0.8433	. 60	0.22	0.9048

See remarks under α Acetnaphthalide, p. 13. Freezing-point lowering data for mixtures of triphenylguanidine and triphenyl methane and for triphenylguanidine and phthalide are given by Lautz, 1913.

HEMOGLOBIN.

100 gms. H₂O dissolve 15.16 gms. hemoglobin at 20–25°. 100 gms. pyridine dissolve 0.15 gm. hemoglobin at 20–25°. (Dehn, 1917.) 100 gms. aq. 50% pyridine dissolve 0.77 gms. hemoglobin at 20-25°.

HELIANTHIN (Methyl Orange, Tropaeolin).

100 cc. H₂O dissolve 0.0055 to 0.0225 gm. helianthin. 100 cc. pyridine dissolve 0.75 gm. helianthin.	(Dehn, 1917a.)
100 cc. 50% aq. pyridine dissolve 62.5 gms. helianthin.	и.
Doubte for other columns and observations on the state of colo	and commonant

Results for other solvents and observations on the state of colored compounds in solution are given.

HELIUM He.

SOLUBILITY IN	WATER. (von Antropost, 1909-10.)
ť.	Coef. of Absorption.
0	0.0134
10	0.0100
20	0.0138
30	0.0161
40	0.0191
70	0.0226

The coef. of absorption adopted for the present results is that of Bunsen as modified by Kuenen. The modification consists in substituting unit of mass in place of unit of volume of water, in the formula.

HELIUM He.

SOLUBILITY IN WATER. (Estreicher – Z. physik. Chem. 31, 184, '99.)

					Absorption Coefficient.		
t° . ^C	or. Barometi Pressure.	ic Vol. of Water.	Vol. of He.	q.	At Bar. Pressure Minus H ₂ O Vapor Tension.	At 760 mm. Pressure.	
0	• • •	• • •	• • •	0.000270	• • •	0.0150	
0.5	764.0	73 - 584	1.093	•••	0.0149	0.0149	
5	758.0	73.578	1.062	0.000260	0.0144	0.0146	
10	758.o	73 - 597	1.046	0.000255	0.0142	0.0144	
15	757.8	73.641	800·I	0.000246	0.0137	0.0140	
20	758.4	73 - 707	0.996	0.000242	0.0135	0.0139	
25	762.3	73 - 793	0.983	0.000238	0.0133	0.0137	
30	764.4	73 . 897	0.985	0.000238	0.0133	0.0138	
35	764.5	74.0167	0.972	0.000234	0.0131	0.0138	
40	762.0	74.147	0.957	0.000232	0.0129	0.0139	
45	761.7	74.294	0.947	0.000229	0.0127	0.0140	
50	760.9	74.461	0.920	0.000223	0.0124	0.0140	

For q and also absorption coefficient, see Ethane, p. 285.

HEPTANE n CH₂(CH₂)₅CH₂.

F.-pt. lowering data for mixtures of heptane and phenol are given by (Campett and Delgrosso, 1913).

HEPTOIC ACID CH₄(CH₂)₄COOH.

100 gms. H₂O dissolve 0.241 gm. heptoic acid at 15°.

(Lumsden, 1905.)

HEXAMETHYLENE (Hexahydrobenzene). See Cyclohexane, p. 280.

HEXAMETHYLENE TETRAMINE (CH2)4N4.

100 gms. H₂O dissolve 81.32 gms. (CH₂)₆N₄ at 12°. (Delepine, 1895.)

100 gms. abs. alcohol dissolve 3.22 gms. (CH₂)₆N₄ at 12°.

100 cc. 90% alcohol dissolve 12.5 gms. (CH₂)₆N₄ at 15-20°. (Squire and Caines, 1905.)

100 gms. CHCl₂ dissolve 8.09 gms. (CH₂)₆N₄ at 12°. (Delepine, 1895.)

HEXANE C.H.

SOLUBILITY IN METHYL ALCOHOL. (Rothmund, 1898.)

Determined by synthetic method, see p. 16.

	Gms. Hexane	per 100 Gms.		Gms. Hexane per 100 Gms.		
ť.	Alcoholic Layer.	Hexane Layer.	t.	Alcoholic Layer.	Hexane Layer.	
10	26.5	96.8	35	43.6	91.2	
20	31.6	95.9	40	52.7	85.5	
30	38.3	93 · 7	42.6	(crit. t.) 6	58.9	
t. data	a for hexane	+ phenol.		(Campetti	and Delgrosso, 1913.)	

F.-pt. data for hexane + phenol.

HIPPURIC ACID C₄H₄CO.NH.CH₄COOH.

SOLUBILITY IN SEVERAL SOLVENTS.

Solvent.	ť.	Gms. CaHaCO.NHCHaCOOH per 100 Gms. Solvent.	Authority.
Water	20-25	0.42	(Dehn, 1917.)
Methyl Alcohol	22	g.8o	(Timofeiew, 1894.)
Ethyl Alcohol	22	5.20	4
Propyl Alcohol	23	2.80	u
50% Aqueous Pyridine	20-25	88	(Dehn, 1917.)

SOLUBILITY OF HIPPURIC ACID AT 25° IN AQUEOUS SOLUTIONS OF:

	Formic Acid.	(Kendall, 1911.)	So	xdium Hippur	ate. (Sidgwick, 1910.))
Normality of Aq. HCOOH.	Gms. Hippuric Acid per Liter.	Normality of Aq. HCOOH.	Gms. Hippuric Acid per Liter.	Normality of Aq. Sodium Hippurate.	Gms. Hippuric Acid per Liter.	
0	3.67	5	4.08	0	6.99(?)	
1.25	3.61	10	4.77	1	13.97(?)	
2.5	3.72					

HIPPURIC ACID C.H.CONH.CH,COOH.

SOLUBILITY IN AQ. POTASSIUM HIPPURATE SOLUTIONS AT 20°. (Hoitsema — Z. physik. Chem. 27, 317, '98.)

Density		per Liter Sol.	Grams per l	Liter Solution	
of Solutions.	CoHoNO3.	KC ₉ H ₈ NO ₃ .	C ₂ H ₂ NO ₃ .	KC9H8NO3	Phase.
I.002	0.0182	0	3.276	0.0	C ₀ H ₀ NO ₈
1.003	0.0163	0.011	2.919	2.39	**
800·I	0.0183	0.071	3.278	15.43	44
I.022	0.0234	0.254	4.191	55.18	•
1.114	0.064	1.36	11.47	295 - 4	•
1.182	0.131	2.21	23.46	480 · I	•
1.192	0.147	2.32	26.32	504.1)	CoHoNO2+
1.195	0.153	2.40	27.40	521.4	CoHeNO3-KCoHeNO3-HgO
I . 20I	0.133	2.50	23.82	543 · I	C ₉ H ₉ NO ₃ .KC ₉ H ₉ NO ₃ .H ₃ O
1.239	0.084	3.01	15.04	654.0	4
1.282	o.o68	3 · 57	12.18		CaHaNOa.KCaHaNOa.HaO
I . 282	0.065	3.58	11.60	777.8	+KC ₂ H ₂ NO ₃
1.276	0.031	3.56	5 · 55	773 - 4	' KC ₀ H ₀ NO ₀
1.277	0.011	3 · 55	1.917	771.3	. *
1.277	0.00	3.56	•••	773 • 4	•

HOLOCAINE HYDROCHLORIDE.

100 gms. H₂O dissolve 2 gms. holocaine hydrochloride at 15-20°. (Squire and Caines, 1905.)

HOMATROPINE HYDROBROMIDE C16H21NO,.HBr.

SOLUBILITY IN WATER, ETC. (U. S. P. VIII.)

100 gms. water dissolve 17.5 gms. salt at 25°.
100 gms. alcohol dissolve 3.08 gms. salt at 25°, and 11.5 gms. at 60°.
100 gms. chloroform dissolve 0.16 gm. salt at 25°.

HYDRASTINE C₁₁H₂₁NO₆. HYDRASTININE HYDROCHLORIDE CuHuNO2.HCl.

SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P. VIII; at 18°-22°, Müller, 1903.)

Solvent.	Gms. C ₂₁ H ₂₁ NO ₆ Soluti	per 100 Gms.	Solvent.	Gms. per 100 Gms. Solution at 18°-22°.	
	At 18°-22°.	At 80°.		CatH21NO6.	CuHuNO.HCl.
Water	0.033	0.025	Ether	0.51	0.078 (25°)
Alcohol	0.74 (25)	5. 9 (∞°)	Ether+H ₂ O		• • • .
Benzene	8.89	• • •	Chloroform	100+	0.35 (25°)
Ethyl Acetate	4.05	• • •	CCL	0.123	• • •
Petroleum Ether	0.073			_	

HYDRAZIDES.

Solubility of the Tautomeric Forms of Hydrazides in Benzene at 5°. Determined by the freezing-point method. See also p. 487. (Sidgwick, 1915.)

Compound. Formula. Gms. Compound Dissolved per Liter Benzene. Phthalylphenylhydrazide $C_4H_4 < \frac{CO}{CO} > N.NH.C_4H_4$ A form 5.5 Phthalylphenylmethylhydrazide $C_4H_4 < \frac{CO}{CO} > N.N(CH_4)C_4H_4$ form 1.1

HYDRAZINE NH2.NH2.

DISTRIBUTION OF HYDRAZINE BETWEEN WATER AND BENZENE. (Georgievics, 1915.)

Gms. NH	I2.NH2 per:		Gms. NH.NH ₂ per:		
25 cc. H ₂ O Layer.	75 cc. CaHa Layer.	25 cc. H ₂ O Layer.	75 cc. CaHa Layer.		
0.4137	0.027	1.7601	0.0626		
0.6676	0.0335	2.3336	0.1101		
1.0862	0.0355	4.75	0.137		

HYDRAZINE PerCHLORATE N2H4(HClO4)2.3H2O.

SOLUBILITY IN WATER. (Carlson, 1910.)

t°.	Sp. Gr. Sat. Sol.	Gms. N ₂ H ₄ (HClO ₄) ₂ per 100 cc. Sat. Sol.
18	1.264	41.72
35	1.391	66.9

HYDRAZINE MonoNITRATE N2H4.HNO2.

SOLUBILITY IN WATER. (Sommer, 1914.)

ť.	Gms. N ₂ H ₄ HN	D ₂ per 100 Gms.	t.	Gms. N ₂ H ₄ .HNO ₂ per 100 Gms.		
υ.	Sat. Sol.	Water.	₩.	Sat. Sol.	Water.	
10	63.63	174.9	40.02	85.86	607.2	
15	68.47	217.2	45.02	88.06	737.6	
20.01	72.70	266.3	50.01	91.18	1034	
25.01	76.61	327.5	55.01	93.58	1458	
30.01	80.09	402.2	60.02	95.51	2127	
35.01	83.06	490.3			-	

HYDRAZINE SULFATE N.H.H.SO.

100 grams water dissolve 3.055 gms. N₂H₄.H₂SO₄ at 22°. (Curtius and Jay, 1889.)

Phenyl HYDRAZINE and other substituted hydrazines. See page 486.

HYDRIODIC ACID HI.

SOLUBILITY IN WATER, DETERMINED BY FREEZING-POINT METHOD. (Pickering, 1893a.)

			(I MACHINE, 1093a.)		
t.	Gm. HI per 100 Gms. Sat. Sol.	Solid Phase.	r.	Gms. HI per roo Gms Sat. Sol.	. Solid Phase.
-10	20.3	Ice	–6 0	52.6	HI.4H ₂ O
-20	29.3	4	- 40	59	"
-30	35.1	4	about-35.5 m. pt.	64	er
-40	3 9	66	-40	65.5	4
- 50	42	u	-49	66.3	" +нізню
-60	44 · 4	ш	-48 m. pt.	70.3	HI.3H ₂ O
-70	46.2	и	- 56	73 · 5	" +HI.2H ₂ O
-80	47 · 9	" +HI.₄H₄O	-52	74	HI 2H ₂ O

F.-pt. data for HI + H₂S (Bagster, 1911), HI + (CH₂)₂O. (Maass and McIntosh, 1912.)

HYDROBROMIC ACID HBr.

SOLUBILITY IN WATER.

(Rooseboom — Z. physik. Chem. 2, 454, '88; Rec. trav. chim. 4, 107, '85; 5, 358, '86; see also Pickering — Phil. Mag. [5] 36, 119, '93.'

\$ •.		red(at 760-765mm.) co Gms.	β.	Gms. HBr Dissolved at Lower Pressures per 100 Gms. H ₂ O.	
	Water.	Solution.		Gms. H ₂ O.	
- 2.5	255.0	71 .83	• • •	175.0 (10 mm.)	
-15	239.0	70.50	• • •	•••	
Ö	221.2	68.85	611.6	• • •	
+10	210.3	67 . 7Ğ	581.4	108.5 (5 mm.)	
15	204.0	67.10	• • •	• • •	
25	193.0	65.88	532 · I	•••	
50	171.5	63.16	468.6	•••	
75	150.5	60.08	406.7	•••	
100	130.0	56.52	344.6	•••	

For β see ethane, p. 285.

F.-pt. data for HBr + H₂S (Bagster, 1911); HBr + (CH₂)₂O, HBr + CH₂OH, HBr + C₂H₃OH, HBr + CH₃COOC₂H₃ and HBr + C₄H₄CH₃.

(Mass and McIntosh, 1912) (Reid and McIntosh, 1912)

HYDROCHLORIC ACID HCl.

SOLUBILITY IN WATER BY THE FREEZING-POINT METHOD.

(Composite curve from results of Roloff, 1895; Pickering, 1893(a); Roozeboom, 1884, 1889 and Rupert, 1909.)

	Gms. HCl			Gms. HCl	
t°.	per 100 Gms Sat. Sol.	. Solid Phase.	r.	per 100 Gms Sat. Sol.	. Solid Phase.
-1.706	1.66	Ice ·	-18.4	48.6	HCl.2H ₂ O
-14.97	10.02	••	-17.7 m. pt	. 50.3	u
-28.84	14.51	"	-18.7	52.85	"
-40	17.40	4	-19.4	54.1	. 46
-60 .	21.30	"	-20.8	55.7	4
-80	24.20	44	-21.3	56.5	4
-86 Eutec.	24.8	" +HCl_3H ₂ O	-23.2	57.3	æ
- 5 0	30.1	HCl.3H ₂ O	- 23 . 5 Eutec		" +HCl.H ₂ O
-40	32.7	"	-21.5	58.2	HCl.H.O
-30	36.5	44	-20.7	59.1	4
-24.9 m. pt.		4	-18.4	61.1	"
-27.5	44	" +HCl.2H ₂ O	-17.4	62.4	"
-23.8	45.7	HCl.2H ₂ O	-15.4	65.4	4
-21.2	45.9	44	-15.35	66.8	4

At about -15.35 two liquid layers are formed. Data for these are as follows: HCl layer.

t° of Saturation	Gms. H ₂ O per 100 Gms. Sat. Sol.	ť.	Gms. HCl per 100 Gms. Sat. Sol.	d. of Sat. Sol.	ť.	Gms. HCl per 100 Gms. Sat. Sol.	d. of Sat. Sol.
Below — 50	0.008	-20	67.65	1.279	15	64.70	1.231
" - 5 0	0.017	-15	67.29	1.269	20	64.19	1.228
Bet. -15 and o	0.077	-10	66.71	I.260	30	63.21	1.229
Above 45	0.021	-5	66.44	1.255	35	62.90	1.227
"	0.052	ŏ	65.85	1.247	40	62.27	1.218
"	0.11	+5	65.48	1.245	45	61.76	1.212
66	0.13	10	65.18	1.240	50	61.65	1.219
T2					P 1		

For additional data on this system see Baume and Tykociner, 1914.

HYDROCHLORIC ACID HCl.

SOLUBILITY IN WATER AT DIFFERENT TEMPERATURES AND PRESSURES.

(Deicke; Roscos and Dittmar — Liebig's Ann. 112, 334, *59; below o*, Rooseboom — Rec. trav. chim. 3, 104, '84.)

	At Different	Temperatur	res and 760 mm	. Pressure.	At Different Pressures and o		
t°.	cc. HCl per 100 cc. H ₂ O.	Density.	Gms. HCl per	Gms. HCl per 100 g. H ₂ O.	Pressures.	Gms. HCl per 100 g. H ₂ O	
0	525.2	t . 2257	45.15	82.31	60	61. 3	
4	497 7	1.2265	44.36	79 73	100	65.7	
4 8	480 3	1.2185	43 83	78.03	150	68.6	
12	471 3	1.2148	43.28	76.30	200	70.7	
14	462 4	I.2074	42.83	74.92	300	7 3 .8	
18	451.2	1.2064	42.34	73 · 41	400	76.3	
23	435.0	1.2014	41.54	71.03	500	78.2	
30	•••	• •	40.23	67 . 3	600	8o.o	
40	•••	• • •	38.68	63.3	750	82.4	
50	•••	• • •	37 · 34	59.6	1000	85.6	
60	• • •		35 - 94	56.1	1300	89.5	

Pressures in mm, Hg minus tension of H₂O vapor.

SOLUBILITY IN WATER AT TEMPERATURES BELOW 0°.

At a pressure of 760 mm.				At pressures below and above 760 mm.			
ť.	q.	ť.	q.	tr. ` ı	nm. Pressure	. q.	
- 24	101.2	-15	93.3	-23.8		84.2	
— 21	98.3	-10	89.8	-21	334	86.8	
- 18.3	96	- 5	86.8	-19	580	92.6	
— 18	95.7	ò	84.2	– 18	900	98.4	
				— 17.7	1073	101.4	

For definition of q, see Ethane, p. 285.

The eutectic is at -86° and 33 gms. HCl per 100 gms. H₂O.

SOLUBILITY OF HYDROCHLORIC ACID GAS IN METHYL ALCOHOL, ETHYL ALCOHOL, AND IN ETHER AT 760 MM. PRESSURE.

(de Bruyn - Rec. tray. chim. 11, 129, '92; Schuncke - Z. physik. Chem. 14, 336, '94.)

	Grams HCl gas per 100 Grams Solution in:						
5° .	Сн₃он.	С.Н.ОН.	(C₂H₂)₂O.				
-10	54.6	• • •	37.51 (-9.2°)				
- 5	• • •	•••	37.0				
Ō,	51.3	4 5 · 4	35.6				
+ 5	• • •	44.2 (6.5°)	33 · I				
10	• • •	42.7 (II.5°)	30.35				
15	• • •	•••	27.62				
20	47 ·o (18°)	4I .O	24.9				
25	• • •	40 · 2 (23 · 5°)	22.18				
30	43 ·o (31 · 7°)	38.1 (32°)	19.47				

SOLUBILITY OF HYDROCHLORIC ACID GAS IN AQ. SULFURIC ACID SOLUTIONS. (Coppadoro, 1909.)

Res	ults at 1	7°•	Results at 40°.			Results at 70°.		
d of Sat. Sol.	Gms. per Sat.	100 Gms. Sol.	d of Sat.	Gms. per i	roo G ms. Sol.	d of Sat. Sol.	Gms. per Sat.	roo G ms. Sol.
301.	H ₂ SO ₄ .	HCl.	Sol.	H ₂ SO ₄ .	HCl.	304	H,SO,	HCI.
1.211	0	42.7	1.185	3.56	35.6	1.145	1.61	32.7
I.220	1.86	39.9	1.195	5.86	34 .8	1.150	3 .38	31.1
I.220	4.75	39.2	1.210	8.90	32.4	1.160	4.80	30.5
1.235	8.04	36.9	1.255	16.80	27.6	1.180	7.93	28.9
1.260	12.80	33.2	1.255	18.8	25.9	1.225	18.9	22.8
1.305	20 .9	28.5	1.340	28.6	18.5	1.230	20	22.3
1.355	30.8	22.6	1.400	44.2	11.5	1.315	36.2	13.2
1.430	44.6	15	1.520	61.1	3.35	1.380	4 8	6.99
1.545	59 • 4	6.26	1.575	66.4	1.17	1.510	62.7	1.56
1.580	65.4	3.25	1.650	73.2	0.17	1.560	67.6	0.54
1.660	73 · 7	0.62	1.725	79.4	0.081	1.700	80.7	0.05
1.735	77 · 5	O.II	1.755	81.4	0.032	1.745	83	0.035
1.815	89	0.068	1.770	83.5	0.029	1.745	83.4	0.032

MISCIBILITY OF HYDROCHLORIC ACID WITH MIXTURES OF WATER AND PHENOL AT 12°. (Schreinemakers and van der Horn van der Bos, 1912.)

Composition of the Reciprocally Saturated Liquid Pairs. Water Rich Layer. Phenol Rich Layer.				Composition of the Solutions in Contact with Solid Phenol.			
% HCl.	% Phenol.	% HCl.	% Phenol.	% Water.	% HCl.	% Phenol.	
0	7 · 45	0	72	II.22	0	88.78	
3.1	6.6	0.00	78	84.5	10.7	4.8	
6.6	5.3	0.2	80.3	80.38	15.64	3.98	
8	5.I	0.36	82.6	72.43	24.37	3.2	
10.7	4.8	0.52	84.5	60.25	36.25	3.5	

Additional data for this system are given by Krug and Cameron, 1900.

FREEZING-POINT DATA (Solubility, see footnote, p. 1) FOR MIXTURES OF HYDROCHLORIC ACID AND OTHER COMPOUNDS.

Hydrochloric Acid	+ Hydrogen Sulfide	(Baume and Georgitses. 1912, 1914.)
	+ Methyl Alcohol {	(Baume and Borowski, 1914; Baume and Pamfil, 1911, 1914; Maass and McIntosh, 1913.)
44	+ Methyl Chloride	(Baume and Tykociner, 1914.)
44	+ Methyl Ether	(Maass and McIntosh, 1912; Baume, 1911, 1914.)
44	+ Propionic Acid	(Baume and Georgitses, 1912, 1914.)
44	+ Sulfur Dioxide	(Raume and Pamfil rorr rore)

HYDROCYANIC ACID HCN.

DISTRIBUTION BETWEEN WATER AND BENZENE. (Hantzsch and Sebalt, 1899; Hantzsch and Vagt, 1901.)

40	Mol. HC	N per Liter:	c	40	Mol. HCl	N per Liter:	e
• •	Ho. Ho. Layer (c).	CaHa Layer (c').	c'	•	H ₂ O Layer (c).	C ₄ H ₄ Layer (c').	₹.
6	0.00625	0.00325	1.923	7	0.0574	0.0148	3.88
16	0.00593	0.00363	1.634	20	0.0572	0.0154	3.72
25	0.00580	0.00375	I.547				

Data for the effect of HCl and of KCl on the distribution are also given.

HYDROFLUORIC ACID HF.

100 grams H₂O dissolve 111 grams HF at -35°.

(Metzner, 1894.)

HYDROGEN H.

SOLUBILITY IN WATER.

(Winkler — Ber. 24, 99, '91; Bohr and Bock — Wied. Ann. 44, 318, '91; Timofejew — Z. physik. Chem. 6, 147, '90.)

ŧ°.	p.	<u>l.</u>	β.	q.
0	0.0214	• • •	0.0214	0.000193
5	0.0203	0.0209 - 0.	0241 0.0204	0.000184
IO	0.0193	0.0204 - 0.	0229 0.0195	0.000176
15	0.0185	0.0200 - 0.	0217 0.0188	0.000169
20	0.0178	0.0196 - 0.	0205 0.0182	0.000162
25	0.0171	0.0193 - 0.	0.0175	0.000156
30	0.0163	•••	0.0170	0.000147
40	0.0153	• • •	0.0164	0.000139
50	0.0141	• • •	o.0161	0.000129
60	0.0129	• • •	0.0160	0.000119
80	0.0085	• • •	0.0160	0.000079
100	0.0000	• • •	··· o.0160	0.000000

l = Ostwald Solubility Expression, see p. 227. For β', β, and q, see Ethane, p. 285. Data for the solubility of hydrogen in water at pressures up to 10 atmospheres are given by Cassuto, 1913.

Solubility of Hydrogen in Aqueous Solutions of Acids and Bases at 25°.

(Geficken - Z. physik. Chem. 49, 268, '04.)

Gram Equiv	·	Solubility of H (l_{26} = Ostwald Expression) in Solutions of:							
Bases / per Liter.	HCI.	HNO3.	}H₃SO₄.	СН•СООН.	CH2CICOOE	кон.	NaOH.		
0.0	0.0193	0.0193	0.0193	0.0193	0.0193	0.0193	0.0193		
o`.5	0.0186	0.0188	0.0185	0.0192	0.0189	0.0167	0.0165		
1.0	0.0179	0.0183	0.0177	0.0191	0.0186	0.0142	0.0139		
2.0	0.0168	0.0174	0.0163	0.0188	0.0180	• • •	0.0097		
3.0	0.0159	0.0167	0.0150	0.0186	•••	• • •	0.0072		
4.0	•••	0.0160	0.0141	0.0186	• • •	• • •	0.0055		

The above figures for the concentrations of acids and bases were calculated to grams per liter, and these values with the corresponding l_{25} values for the solubility of hydrogen, plotted on cross-section paper. From the resulting curves, the following table was read:

Grams Acids	Solubility of H (l ₂₅ = Ostwald Expression) in Solutions of:									
and Bases per Liter.	HCI.	HNO3.	HaSO4.	СН•СООН.	CH_CICOOH.	кон.	NaOH.			
0	0.0193	0.0193	0.0193	0.0193	0.0193	0.0193	0.0193			
20	0.0185	0.0189	0.0186	0.0192	0.0191	0.0172	0.0165			
40	0.0179	0.0186	0.0180	0.0191	0.0190	0.0153	0.0140			
60	0.0173	0.0183	0.0174	0.0190	0.0188	0.0135	0.0117			
8o	0.0167	0.0180	0.0168	0.0189	0.0187		0.0097			
IOO	0.0160	0.0179	0.0162	0.0189	0.0185		0.0082			
150	• • •	0.0171	0.0148	8810.0	0.0182	• • •	0,0058			
200	• • •	0.0165	0.0140	0.0186	0.0179					
250				0.0184		• • •	•••			

For Ostwald Solubility Expression l, see p. 227.

THE SOLUBILITY OF HYDROGEN IN CONC. H₂SO₄ AT 20°. (Christoff, 1906.)

% H ₂ SO ₄	0	35.82	61.62	95.6
120	0.0208	0.00954	0.00708	0.01097

SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF AMMONIUM NITRATE AT 20°.

(Knopp - Z. physik. Chem. 48, 103, '04.)

•	Normality (per 1000 Gms.) H ₂ O.	Molecular Concentra- tion.	Absorption Coefficient of Hydrogen.	Density of Solutions.
0.00	0.00	0.00	0 .0188	•••
1.037	0.1308	0.002352	0.01872	I .0027
2.167	0.2765	0.004956	0.01845	1.0072
3.378	0.4363	0.007799	0.01823	1.0122
4.823	0.6333	0.011280	0.01773	1.0182
6.773	0.9069	0.016447	0.01744	1.0262
11.550	1.6308	0.028525	0.01647	1.04652

SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF BARIUM CHLORIDE.

(Braun - Z. physik. Chem. 33, 735, '00.)

Gms. BaCl ₂	Coefficient of Absorption of Hydrogen at:						
per 100 Gms. Solution.	5°.	100.	15°.	20°.	250.		
0.00	0.0237	0.0221	0.0206	0.0191	0.0175		
3.29	0.0211	0.0198	o.q185	0.0172	0.0157		
3.6	0.0209	0.0197	0.0184	0.0170	0.0156		
6.45	0.0196	0.0186	0.0173	0.0161	0.0147		
7.00	0.0194	0.0183	0.0172	0.0159	0.0146		

SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF CALCIUM CHLOR-IDE, MAGNESIUM SULPHATE, AND LITHIUM CHLORIDE AT 15°. (Gordon — Z. physik. Chem. 18, 14, '95.)

Coefficient of Absorption of hydrogen in water at 15° = 0.01883.

In Calcium Chloride.			Ir	ı Magn Sulpl	esium nate.	In Lithium Chloride.			
Gms. CaCl ₂ per 200 g. Sol.	G. M. CaCl ₂ per Liter.	Absorption Coefficient of H.	Gms. MgSO ₄ per 100 g. Sol.	G.M. MgSO ₄ per Liter.	Absorption Coefficient of H.	Gms. LiCl per 100 g. Sol.	G. M. LiCI per Liter.	Absorption Coefficient of H.	
3.47	0.321	0.01619	4.97	0.433	0.01501	3.48	0.835	0.01619	
б. 10	0.578	0.01450	10.19	0.936	0.01159	7.34	1.800	0.01370	
11.33	I.122	0.01138	23.76	2.501	0.00499	14.63	3.734	0.0099	
17.52	1.1827	0.00839					•		
26. 34	2.962	0.00519							

For definition of Coefficient of Absorption, see page 227.

SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF POTASSIUM CARBONATE, CHLORIDE, AND NITRATE AT 15°.
(Gordon.)

In Potassium Carbonate.			In	Potassi Chloric		In Potassium Nitrate.			
Gms. K ₂ CO ₃ per roog. Sol.	G. M. K ₂ CO ₂ per Liter.	Absorption Coefficient of H.	Gms. KCl per 100 g. Sol	G. M. KCl per . Liter.	Absorption Coefficient of H.	Gms. KNOs per 100 g. Sol.	G. M. KNOs per Liter.	Absorption Coefficient of H.	
2.82 8.83	0.209	0.01628 0.01183	3.83 7.48	0.526 1.051	0.01667	4·73 8·44	0.482	0.01683 0.01559	
16.47	1.376	0.00761	12.13	1.755	0.01279	16.59	1.820	0.01311	
24. 13 41. 81	2.156 4.352	0.00462 0.00160	19. 21 22. 92	2.909 3·554	0.01012	21.40	2.430	0.01180	

SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AND NITRATE AT 20°. (Knopp — Z. physik. Chem. 48, 103, '04.)

In		ım Chloric		In Potassium Nitrate.					
9 .	Normality (per 1000 g. H ₂ O).	Absorption Coefficient.	Density of Solutions.	3 .	Normality (per 1000 g. H ₂ O).	Absorption Coefficient.	Density of Solutions.		
1 .089	0.1475	0.01823	I .0052	I.224	0.1245	0.01835	1.0059		
2.123	0.2907	0.01757	8110. I	2.094	0.2114	81810.0	1.0113		
4.070	0.5687	10010.0	1.0243	4.010	0.4127	0.01785	I .0236		
6.375	0.9127	0.01531	1.0394	5.925	0.6225	0.01743	I .0359		
7.380	1.0682	0.01472	1.0460	7.742	0.8293	0.01667	I .0477		
13.612	2.1222	0.01255	1.0875	13.510	1.5436	0.01436	I .0865		

SOLUBILITY OF HYDROGEN IN AQUEOUS SODIUM CARBONATE AND SULPHATE SOLUTIONS AT 15°. (Gordon.)

In Sod	ium Carl	onate.	In Sodium Sulphate.				
Gms. NagCO ₃ per 100 Gms. Solution.	G.M. Na ₂ CO ₂ per Liter.	Absorption Coefficient of H.	Gms. Na ₂ SO ₄ per 100 Gms. Solution.	G. M. Na ₂ SO ₄ per Liter.	Absorption Coefficient of H.		
2.15	0.207	0.01639	4.58	0.335	0.01519		
8.64	0.438	0.01385	8.42	0.638	0.0154		
11.53	1.218	0.00839	16.69	1.364	0.00775		

SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE. (Braun; Gordon.)

Gms. NaCl	Coefficient of Absorption of Hydrogen at:							
per 100 Gms. Solution	50.	100.	15°.	20°.	250.			
1.25	0.0218	0.0205	0.0191	0.0177	0.0162			
3.8o	8,010.0	8810.0	0.0176	0.0162	0.0148			
4.48	0.0192	0.0182	0.0171	0.0159	0.0143			
6.00	0.0184	0.0175	0.0164	0.0153	0.0138			
14.78	••	•••	0.0093		•••			
23 . 84	• • •	• • •	0.00595	• • •				

Solubility of Hydrogen in Aqueous Solutions of Sodium Nitrate.

In Sodium Nitrate at 15°.

(Gordon.)

In Sodium Nitrate at 20°.

(Knopp.)

	• .	. • • •		** <u>*</u>				
* .	Normality (per 1000 Gms. H ₂ O).	Absorption Coefficient of H.	Density of Solutions.	Gms. Na.NO ₃ per 100 Gms. Solution.	G. M. NaNOs per Liter.	Absorption Coefficient of H.		
1.041	0.1236	0.01839	1.0052	5 · 57	0.679	0.01603		
2.192	0.2634	0.01774	1.0130	11.16	1.413	0.0137		
4 - 405	0.5416	0.01694	1.0282	19.77	2.656	0.01052		
6.702	0.8442	0.01518	1.04411	37 · 43	5.711	0.00578		
12.637	I · 7354	0.0130	1 .08667					

SOLUBILITY OF	Hydrogen	IN AQUEO	us Solutions	OF	VARIOUS	SALTS	AT	15°.	
		(Ste	ner, 1894.)						

Salt in Aq. Bunsen Absorption Coefficient β (X10) in Aq. Solution of Normality.									
Solution.	<u>o.</u>	ı.	2.	3.	4.	5.	6.	7.	9.
LiCl	1883	1574.	1325	1121	949	• • •			
KNO ₂	1883	1524	1276	1076					
AlCl _a	1883	1511	1221	993	810	667	550		
KCl	1883	1502	1217	996	820				
NaNO ₂	1883	1496	1201	984	808	667	542		
¹ CaCl₂	1883	1493	1195	958	780	635	510		
NaCl	1883	1478	1144	88o	, 699	573			
MgSO ₄	1883	1451	1120	856	659	499			
ZnSO ₄	1883	1446	1113	852	667	510			
Na ₂ SO ₄	1883	1370	991	710					
K ₂ CO ₂	1883	1338	967	700	508	372	273	206	158
Na ₂ CO ₃	1883	1340	699						
Cane Sugar	1883	1280	731						
_				o. 75		-0a D	17.		00.
SOLUBILITY OF		GEN IN		OL. (1) of Absorp	mofeiew,	1890; BU			
Coef. of Ab ton in 98. Alcohol	.8%	ť	'. tie	on in 7% Alcohol.	-	t°.	in	f. of Abs Pure Al (Bunser	cohol
0 0.067		4	0	.0749		I		0.069	16
6.2 0.069	3	18	.8 o	.0740		- 5		0.068	47
13.4 0.070						11.4	1	0.067	65
•	-					23.	7	0.066	33

SOLUBILITY IN AQUEOUS ALCOHOL SOLUTIONS AT 20° AND 760 MM. PRESSURE. (Lubarsch, 1889.)

Wt. % Alcohol.	Vol. % Absorbed H.	Wt. % Alcohol.	Vol. % Absorbed H.
0	1.93	28.57	1.04
9.09	1.43	33 · 33	1.17
16.67	1.29	50	2.02
23.08	1.17	66.67	2.55

SOLUBILITY OF HYDROGEN IN AQ. SOLUTIONS OF CHLORAL HYDRATE. (Müller, C. 1912-13.)

Gms. Chloral			Absorption Coefficient.		
nydrate per 100 Gms. Aq. Sol.	Solution.	β _t .	β ₁₀ .		
15.5	1.0722	0.01732	0.01724		
28.3	1.143	0.01569	0,01540		
46.56	1.2505	0.01388	0.01375		
52	1 . 2870	0.01314	0.01280		
63	1.371	0.01270	0.01243		
68	1.4097	0.01286	0.01270		
78.4	1.4993	0.01398	0.01380		
	Hydrate per 100 Gms. Aq. Sol. 15.5 28.3 46.56 52 63	Gms. Chloral Hydrate per 100 Gms. Aq. Sol. 15.5 I.0722 28.3 I.143 46.56 I.2505 52 I.2870 63 I.371 68 I.4097	Hydrate per roo Gms. Aq. Solution. 15.5 1.0722 0.01732 28.3 1.143 0.01569 46.56 1.2505 0.01388 52 1.2870 0.01314 63 1.371 0.01270 68 1.4097 0.01286		

SOLUBILITY OF HYDROGEN IN CHLORAL HYDRATE SOLUTIONS AT 20°. (Knopp, 1904.)

þ.	Normality (per 1000 Gms. H ₂ O).	Molecular Concentration.	Absorption Coefficient of H.	Density of Solutions.
4.91	0.310	0.005594	0.01839	I.0202
7.69	0.504	0.008992	0.01802	1.0320
14.56	1.030	0.018223	0.01712	1.0669
29.50	2.530	0.043601	0.01542	1.1466
38.42	3.770	0.063647	0.01440	1.1982
49.79	6	0.097493	0.01353	1.2724
63.90	10.700	0.161660	0.01307	I.3743

For definition of Bunsen Absorption Coef., see p. 227.

SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF GLYCEROL.

Results a	at 14° and 21	°. (Henkel, 1905, 1912.)	Results at	25°. (Drucker a	nd Moles, 1910.)
6° .	Wt. % Glycerol.	Absorp. Coef. β (See p. 227.)	Wt. % Glycerol.	d Sat. Sol.	l _{ss} (Ostwald Expression).
14	0	0.0193	0	I	0.0196
"	2.29	0.0189	4	10101	0.0186
"	5.32	0.0186	10.5	1.0260	0.0178
"	8.57	0.0182	22 .	1.0542	0.0154
"	10.83	0.01815	49.8	1.1200	0.0000
"	15.31	0.01765	50.5	1.1300	0.0097
21	0	0.0184	52.6	1.1365	0.0000
"	2.29	0.0181	67	1.1752	0.0067
"	5.68	0.0177	8o	1.2113	0.0051
"	6.46	0.0176	82	1.2159	0.0051
"	10.40	0.0171	88	1.2307	0.0044
"	18.20	0.0160	95	1.2502	0.0034

Additional data for this system are given by Müller, C. 1912-13.

SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF SEVERAL COMPOUNDS. (Huner, 1906-07.)

Aqueous Solution of:	Conc. of Solvent Gms. per Liter.	t.	Absorption Coef. B.
Water alone	0	20.II	0.0181
Dextrose (Grape Sugar)	41.45	20	0.0176
44	87.3	20.25	0.0166
"	174	20.28	0.0152
Urea .	60	20.17	0.0170
Acetamide	59	20.II	0.0180
Alanine	89	20.08	0.0156
Glycocol	75	20.16	0.0158

SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF CANE SUGAR AND OF GRAPE SUGAR. (Muller, C. 1912-13.)

t*.	Wt. % Cane Sugar.	Sp. Gr. Sat. Sol.	Abs. Coef. β_{18} .	t.	Wt. % Grape Sugar.	Sp. Gr. Sat. Sol.	Abs. Coef. β_{20} .
15.2	5.04	$d_{15} = 1.019$	0.0173	19.3	0		0.0184
11.6	14.7	$d_{11} = 1.060$	0.0151	20.5	12.2	$d_{20} = 1.048$	0.0160
12	20.26	$d_{11} = 1.084$	0.0146	20.5	20.7	$d_{20} = 1.084$	0.0145
12.7	29.86	$d_{13} = 1.128$	0.0126	2I.I	32.56	$d_{20} = 1.130$	0.0125
8.11	31.74	$d_{12} = 1.138$	0.0119	21.8	45.8	$d_{20} = 1.199$	0.0102
13.3	39.65	$d_{13.5} = 1.175$	0.0103	21.2	59	$d_{20} = 1.266$	0.0078
12.6	42.94	$d_{12.5} = 1.195$	0.0094				

SOLUBILITY OF HYDROGEN IN AQUEOUS SUGAR SOLUTIONS AT 15°. (Gordon, 1895.)

Gms. Sugar per 100 Gms. Solution.	Gm. Mols. Sugar per Liter.	Absorption Coefficient of H.		
16.67	0.520	0.01561 -		
30.08	0.993	0.01284		
47.65	1.699	0.00892		

SOLUBILITY OF HYDROGEN AT 25° (Findlay and Shen, 1912) IN AQ. SOLUTIONS OF:

Dextrin. Starch. Gelatin.

Gms. Dextrin per 100 cc.	Sp. Gr.	l ₁₆ .	Gms. Starch per 100 cc.	Sp. Gr.	l ₂₅ .	Gms. Gelatin per ioo cc.	l ₂₅ .
		0.0194		1.005	0.0194	1.53	0.0194
8.58	1.019	0.0191	3.56	110.1	0.0189	2.69	0.0189
8.12	1.028	0.0188	7.13	1.024	0.0181	4.74	0.0185
19.20	1.066	0.0174	9.29	1.032	0.0182	5.71	0.0182

SOLUBILITY OF HYDROGEN IN AQUEOUS PROPIONIC ACID SOLUTIONS. (Braun, 1900.)

Gms. C ₂ H ₄ COOH per 100 Gms. Solution.	Coefficient of Absorption of Hydrogen at:						
	5*.	10°.	15*.	20°.	25°.		
2.63	0.02245	0.0214	0.0200	0.0188	0.0172		
3.37	0.0222	0.0212	0.0199	0.0187	0.0171		
5.27	0.0224	0.0212	0.0198	0.0184	0.0171		
6.50	0.0218	0.0209	0.0193	0.0183	0.0169		
9.91	0.0213	0.0203	0.0191	0.0178	0.0160		

SOLUBILITY OF HYDROGEN IN RUSSIAN PETROLEUM. (Gniewasz and Walfisz, 1887.)

Coefficient of absorption (see p. 227) at $20^{\circ} = 0.0582$, at $10^{\circ} = 0.0652$.

SOLUBILITY OF HYDROGEN IN WATER AND IN ORGANIC SOLVENTS.

Results in terms of the Ostwald Expression, see p. 227.				(Just, 1901.)	
Solvent.	l _{as} .	l ₂₀ .	Solvent.	lz.	l ₂₀ .
Water	0.0199	0.0200	Amyl Acetate	0.0774	0.0743
Aniline	0.0285	0.0303	Xylene	0.0819	0.0783
Amyl Alcohol	0.0301	0.0353	Ethyl Acetate	0.0852	0.0788
Nitrobenzene	0.0371	0.0353	Toluene	0.0874	0.0838
Carbon Disulfide	0.0375	0.0336	Ethyl Alcohol (98.8%)	0.0894	0.0862
Acetic Acid	0.0633	0.0617	Methyl Alcohol	0.0945	0.0902
Benzene	0.0756	0.0707	Isobutyl Alcohol	0.0976	0.0929
Acetone	0.0764	0.0703			

SOLUBILITY OF HYDROGEN IN ETHYL ETHER. (Christoff, 1912.)

Results in terms of the Ostwald Solubility Expression l (see p. 227).

$$l_0 = 0.1115$$
, $l_5 = 0.1150$, $l_{10} = 0.1195$, $l_{15} = 0.1259$.

Data for the solubility of hydrogen in metals are given by Sieverts and co-workers, 1909, 1910, 1912.

HYDROGEN PEROXIDE H₁O₂.

DISTRIBUTION OF HYDROGEN PEROXIDE BETWEEN WATER AND AMYL ALCOHOL
AT 0° AND AT 25°.
(Calvert, 1901; Joyner, 1912.)

Results at o°. (Calvert, Joyner.)		Results at 25°. (Calvert.)				
Mols. H ₆ O ₂ per Liter.		W	Mols. H ₂ O ₂	Mols. H ₂ O ₂ per Liter.		
H ₂ O layer (W).	Alcohol Layer (A).	<u>A</u> .	H ₂ O Layer (W).	Alcohol Layer (A).	Ä.	
0.146	0.0216	6.76	0.094	0.013	7.01	
0.200	0.030	6.66	0.194	0.028	6.91	
0.407	0.061	6.63	0.297	0.042	7.08	
0.749	0.113	6.66	0.670	0.095	7.09	
1.970	0.293	6.71	0.913	0.130	7.01	

Data are also given for the distribution of hydrogen peroxide between aqueous sodium hydroxide solutions and amyl alcohol at 0° and at 25°.

DISTRIBUTION OF HYDROGEN PEROXIDE BETWEEN WATER AND ORGANIC SOLVENTS. (Walton and Lewis, 1916.)

Different amounts of perhydrol (30% H_2O_2 solution) were added to various mixtures of water and organic solvents and, after constant agitation for about 1 hour, the H_2O_2 in each layer was determined.

Solvent	ť.	Ratio, Conc. aq.	Solvent.	ŧ°.	Ratio, Conc. aq.
		Conc. org. solvent			Conc. org. solvent
Ethyl Acetate	25	3.92-4.11	Methyl Iodide	25	Approx. 200
Isobutyl Alcohol	25	2.58- 2.63	m Toluidine	25	Approx. 5
Amyl Acetate	25	13 -13.2	Phenol	25	4.35 -5.55
Acetophenone	25	5.82-6.06	Quinoline	Ó	0.276-0.391
Ether	25	8.28-9.11	"	25	0.365-0.642
Ether	ō	5.72- 5.85	"	40	0.516-0.602
Aniline	25	4.08- 4.10		•	•

The following approximate values, determined at room temp., are quoted from the dissertation of A. Braun, Univ., Wisconsin, 1914.

Solvent.	Ratio, Conc. aq.	Solvent.	Ratio Conc. aq		Ratio, Conc. aq.
Con	C. org. solv	ent Co	DC. org. so	lvent	Conc. org. solvent
Ethyl Acetate	Į.	Ethylisovalerianate	1	Isobutyl Alc	ohol 1
Nitrobenzene	200	Isoamyl Propionate	i ji	Propyl Form	nate i
Acetophenone	1	Chloroform	800	Isobutyl But	yrate i
Amyl Acetate	Ī	Benzene	300	Propyl Buty	

The distribution ratio of hydrogen peroxide between water and ether at 17.5° varies with concentration from 13.9 to 17.4. (Osipoff and Popoff, 1903.)

HYDROGEN SELENIDE H.Se

SOLUBILITY IN WATER. (de Forcrand and Fonzes-Diacon, 1902.)

Vol. H₂Se (at o° and 760 mm.) dissolved per 1 vol. H₂O

4° 9.65 13.2 22.5

3.45 3.31 2.70

HYDROGEN SULFIDE H.S.

SOLUBILITY IN WATER. (Winkler, 1906, 1912.)

40	Abs. Coef. β.	•	.	Abs. Coef. β		40	Abs. Coef. β.	
	4.621			2.257	-		1.176	
	3.935		•	2.014	•••		1.010	•
10	3.362			1.811			0.006	
15	2.913			1.642		90	0.835	0.041
20	2.554	0.380	50	1.376	0.186		0.800	

SOLUBILITY IN WATER AND IN ALCOHOL AT to AND 760 MM. PRESSURE.
(Bunsen and Carius; Fauser, 1888.)

	In Water.					Alcohol.
F.	ı Vo	l. H ₂ O Absorbs.	β.	q.	r Vol. Al	cohol Absorbs.
0	4.37 Vols.	H ₂ S (at o° and 760 mm.)	4.686	0.710	17.89 Vols.H	S (at o° and 760 mm.)
5	3.97	u	4.063	0.615	14.78	4
10	3 · 59	ee	3.520	0.530	11.99	u
15	3.23	er .	3.056	0.458	9.54	4
20	2.91	"	2.672	0.398	7.42	4
25	2.61	"		• • •	5.96 (24°)	•
30	2.33	u	• • •			
35	2.08	u				
40	1.86	44	• • •	• • •	• • •	

For β and q see Ethane, page 285.

The PT and the Px curves for the system $H_2S + H_2O$ are given by Scheffer, 1911.

SOLUBILITY OF HYDROGEN SULFIDE IN AQUEOUS SOLUTIONS OF HYDRIODIC ACID AT 25° AND 760 MM. TOTAL PRESSURE.

(Pollitzer, 1909.)

Mols. per Liter.		Gms. per Liter.		Mols. per Liter.			Gms. per Liter.		
(H').	[HI].	[H ₂ S].	HI.	H₂S.	[H].	(HI).	[H ₄ S].	HI.	H ₂ S.
0.20	0	0.1040	0			4.38	0.163	560.4	5.55
1.23	1.01	0.111	129.2	3.78	5.33	5.005	0.165	640.3	5.62
1.74	1.51	0.113	193.2	3.85	6.06	5.695	0.181	728.6	6.17
2.18	1.93	0.125	246.9	4.26	7 · 33	6.935	0.197	887.2	6.71
2.92	2.64	0.138	337.8	4.70	9.75	9.21	0.267	1179	9.10
3.71	3.42	0.142	437.5	4.84					

Data for the solubility of hydrogen sulfide in liquid sulfur are given by Pelabon, 1897.

Freezing-point lowering data for mixtures of H₂S and CH₂OH and H₂S and (CH₂)₂O are given by Baume and Perrot, 1911, 1914.

SOLUBILITY OF HYDROGEN SULFIDE IN AQUEOUS SALT SOLUTIONS AT 25°. (McLauchlan, 1903.)

Note. — The original results are given in terms of $\frac{l}{l_0}$ which is the iodine titer (l) of the H₂S dissolved in the salt solution, divided by the titer (l_0), of the H₂S dissolved in pure water. These figures were multiplied by 2.61 (see 25° result in last table on page 322) and the products recorded in the following table as volumes of H₂S absorbed by 1 vol. of aqueous solution.

Solution.	Grams Salt per Liter.	$\frac{l}{l_0}$. pe	Vols. H ₂ S er 1 Vol. Sol.	Solution.	Gms. Salt per Liter.	$\frac{l}{l_0}$.	Vols. H _s S per 1 Vol. Sol.
n NH ₄ Br	98	I	2.61	n KBr	119	0.945	2.47
n NHLCl	53 · 4	0.96	2.40	n KCl	74.5	0.853	2.22
n NH₄NO₃	80	0.99	2.58	n KNO ₃	IOI	0.913	2.38
1 n (NH4)2SO4	33	0.82	2.14	3 n K ₂ SO ₄	43 · 5	0.78	2.04
1 n (NH4)2SO4	16.5	0.91	2.37	1 n K2SO4	21.7	0.89	2.32
n NH ₄ C ₂ H ₄ O ₂	77.I	1.09	2.84	n KI	166	0.98	2.56
n (NH ₂) ₂ CO	60.1	1.02	2.66	n NaBr	103	0.935	2.44
n HCl	18.22	0.975	2.54	n NaCl	58.5	0.847	7 2.2I
3 n H ₂ SO ₄	24.52	0.905	2.36	🕯 n NaCl	29.2	0.93	2.42
# C4H4O6	150	0.944	2.46	n NaNO	85	0.893	3 2.32
$3 n C_4 H_6 O_6$	450	0.858	2.24	n Na ₂ SO.	35.5	0.73	1.90
Pure C ₂ H ₅ (OH) ₃	1000 ·	0.863	2.26	1 n Na ₂ SO	17.8	0.855	2.23

Similar data are also given for the solubility of H₂S in aq. C₂H₆OH solutions and in aq. CH₂COOH solutions at 25°.

HYDROQUINOL (Hydroquinone) C₆H₄(OH)₂ p.

100 gms. sat. solution in water contain 6.7 gms. hydroquinol at 20°, Sp. Gr. of sol. = 1.012. (Vaubel, 1899.)
100 gms. 95% formic acid dissolve 6.07 gms. hydroquinol at 20.2°. (Aschan, 1913.)

SOLUBILITY OF HYDROQUINOL IN SULFUR DIOXIDE IN THE CRITICAL VICINITY. (Centnerswer and Teletow, 1903.)

Determinations made by the Synthetic Method, for which see Note, p. 16.

t*.	Gms. Hydroquinol per 100 Gms. SO ₂	t°.	Gms. Hydroquinol per 100 Gms. SO ₂	t*.	Gms. Hydroquinol per 100 Gms. SO ₂
63	0.89	117.6	4.46	136.7	10.31
73.5	I.22	123.3	5.66	141.4	13.3
89.2	2.18	134.2	8.31	145	14.9

DISTRIBUTION OF HYDROQUINOL BETWEEN WATER AND ETHER AT 15°. (Pinnow, 1911.)

Conc.* Hydroquinol in:		Conc. Hydroquinol in:			
H ₂ O Layer.	Ether Layer.	H ₂ O Layer.	Ether Layer.		
0.00502	O.OIII	0.0502	0.1275		
0.01196	0.0249	0.0818	0.2343		
0.01,28	0.0274	0.1105	0.3543		
0.0236	0.0552	0.1411	0.5300		
0.0455	0.1148	0.1502	_ 0.5604		

^{*} The terms in which the conc. is expressed are not stated.

FREEZING-POINT DATA (Solubility, see footnote, p. 1) ARE GIVEN FOR THE FOLLOWING MIXTURES:

Hydroquinol and	Naphthalene.	(Kremann a	nd Janetzky, 1912.)		
** **	Pyrocatechol.	(Jaeger, 190	7.)		
	Resorcinol.	44			
	p Toluidine.		Smith, 1905.)		
Monochlorohydroquinol and Monobromohydroquinol. (Küster, 1891.)					
Diacetylmonochlorohydroquinol and Diacetylmonobromohydroquinol.					

HYDROXYLAMINE NH2(OH).

HYDROXYLAMINE HYDROCHLORIDE NH2(OH).HCl.

SOLUBILITY OF EACH IN SEVERAL SOLVENTS. (de Bruyn, 1892.)

(Küster, 1911.)

Solvent.	e.	Gms. NH ₂ OH per 100 Gms. Solution.	r.	Gms. NH ₂ (OH).HC per 100 Gms. Solvent.
Methyl Alcohol (abs.) Ethyl Alcohol (abs.)	5 15	35 15	19.75 19.75	16.4 4.43
Ether (dry) Ethyl Acetate	(b. pt.) (b. pt.)	I.2 I.6	•••	

For densities of NH₂(OH).HCl solutions, see Schiff and Monsacchi, 1896.

PhthalyiHYDROXYLAMINE $C_6H_4 < \frac{CO}{C:NOH} > 0$.

One liter benzene dissolves 0.33 gm. of the A form of melting point 220°-226°.
(Sidgwick, 1915.)

HYOSCYAMINE C17H22NO3.

SOLUBILITY IN SEVERAL SOLVENTS AT 18°-22°. (Müller, 1903.)

Solvent.	oms. C ₁₇ H ₂₁ NO ₃ per 100 Gms. Solution.	Solvent.	Gms. C ₁₇ H ₁₁ NO ₃ per 100 Gms. Solution.
Water Ether Ether sat. with H ₂ O Water sat. with Ether Benzene	0.355 2.02 3.913	Chloroform Acetic Ether Petroleum Ether Carbon Tetrachloride	100+ 4.903 0.098 0.059

HYOSCINE (Scopolamine) HYDROBROMIDE, etc.

SOLUBILITY IN SEVERAL SOLVENTS AT 25°. (U. S. P. VIII.) Grams per 100 Grams Solvent.

Solvent.	Hyoscine Hydrobromide C ₁₇ H ₁₁ NO ₄ HBr. ₃ H ₂ O.	Hyoscyamine Hydrobromide C ₁₇ H ₂₈ NO ₃ .HBr.	Hyoscyamine Sulfate (C ₁₇ H ₂₂ NO ₂) ₂ .H ₂ SO ₄
Water	66.6	very soluble	very soluble
Alcohol	6.2	50	15.6
Ether		0.062	0.04
Chloroform	0.133	40	0.043

Nitro INDAN Carboxylic Acids. Freezing-point lowering data for mixtures of l nitroindan-2-carboxylic acid and d nitroindan-2-carboxylic acid are given by Mills, Parker and Prowse, 1914.

INDIGO
$$(C_6H_4 < \frac{CO}{NH} > C:)_3$$
.

100 gms. 95% formic acid dissolve 0.14 gm. indigo at 19.8°.

(Aschan, 1913.)

INDIUM IODATE In(IO2)2.

100 gms. H₂O dissolve 0.067 gm. In(IO₂)₂ at 20°. (Mathers and Schluederberg, 1908.)

IsoINOSITOL C₆H₁₂O₆.

100 gms. H₂O dissolve 25.12 gms. C₆H₁₂O₂ at 18° and 43.22 gms. at 100°. (Müller, 1912.) IODIC ACID HIO. P TODIC ACTD IN WATER

	SOLUBILITY OF	IODIC ACID IN	WATER.	(Groschuff, 1906.)	
t°.	Gms. I ₂ O ₃ per 200 Gms. Sat. Sol.	Solid Phase.	ť.	Gms. I ₂ O ₂ per 100 Gms. Sat. Sol.	Solid Phase.
– 0.3	1.69	Ice	16	71.7	HIO3
- 1.01	6.81	"	40	73 · 7	u
- 2.38	26.22	4	60	75.9	et
- 4.72	51.42	•	80	78.3	ee
-6.32	57.61	44	85	78.7	"
-12.25	67.40	ee	101	80.8	"
-14	69.10	" +HIO ₃	110	82.1	HIOs+HIsOs
-15	70	(unstable) Ice	125	82.7	$HI_{s}O_{s}$
-19	72	44	140	83.8	4
o	70.3	HIO3	160	85.9	4

SOLUBILITY OF IODIC ACID IN NITRIC ACID. (Groschuff.)

•		oms. mor per 100 oms.					
t.	Aq. Solution.	27.73% HNOs Solution.	40.88% HNOs Solution.				
0	74.I	18	9				
20	75.8	21	10				
40 60	77 · 7	27	14				
60	80	38	18				

IODINE I.

SOLUBILITY OF IODINE IN WATER. (Hartley, 1908.)

The above determinations were made with great care. Results for single temperatures in good agreement with the above are given by Dietz, 1898; Jakowkin, 1895; Noyes and Seidensticker, 1898; Sammet, 1905; Bray and Connolly, 1910, 1911; Herz and Paul, 1914 and Fedotieff, 1911–12.

SOLUBILITY OF IODINE IN AQUEOUS MERCURIC CHLORIDE AND IN AQUEOUS CADMIUM IODIDE SOLUTIONS AT 25°.

	In Aq (Herz and	In Aq (Van Name and	. CdI ₂ . I Brown, 1917.)			
Millimols per Liter.		Gms. p	Gms. per Liter.		Gms. per Liter.	
Hg.	I ₂ .	HgCl2.	I.	CdI ₂ .	I.	
0	1.34	0	0.340	3.66	2.072	
94 · 44	12.94	25.64	3.285	45.78	9.056	
124.42	14.60	33.78	3.706	91.56	11:386	
195.42	18.06	54.29	4.583	183.12	14.040	
334.60	25.43	90.84	6.454	•		

SOLUBILITY OF IODINE IN VERY DILUTE AQUEOUS SOLUTIONS OF POTASSIUM IODIDE.

(Determinations made with very great care.)

Results at o°. (Jones and Hartman, 1915.)		Results at 25°. (Bray and MacKay, 1910.)		Results at 25°. (Noyes and Seidenstricker, 1898.)		
Normality of Aq. KI Sol.	$d_{\frac{g}{2}}$ of Sat. Sol.	Gms. I per roo Gms. Sat. Sol.	Normality of Aq. KI Sol.	Millimols I, per Liter Sat. Sol.	Normality of Aq. KI Sol.	Millimols I ₂ per Liter Sat. Sol
0.000002	1.0002	0.0282	0	I.333	0	I.342
0.00200	1.0004	0.0409	0.001	1.788	0.00083	1.814
0.00500	1.0010	0.0760	0.002	2.266	0.00166	2.235
0.01000	1.0020	0.1356	0.005	3.728	0.00664	4.667
0.01988	1.0044	0.2533	0.010	6. 185	0.01320	8.003
0.0500	1.0100	0.600	0.020	11.13	0.02657	4.68
0.09993	1.0210	I.100	0.050	25.77	0.05315	28.03
,,,,	•		0.100	51.35	0.1063	55.28

SOLUBILITY OF IODINE IN AQUEOUS SOLUTIONS OF POTASSIUM IODIDE AT 25° AND VICE VERSA. (Parsons and Whittemore, 1911.)

(Time of rotation 6 mos. or longer. Duplicate determinations at different lengths of time, were made.)

Sp. Gr. Sat. Sol.	Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Sp. Gr.	Gms. per 100 Gms. Sat. Sol.		Solid
Sat. 301.	KI	I	Phase.	Sat. Sol.	KI	I	Phase.
1.349	16.03	18.49	Iodine	3.246	27.92	66.45	KI
1.516	19.70	26.16	44	3.232	29.71	62.81	u
1.769	22.88	36. 0 6	"	2.665	35.80	49.61	"
1.910	23 - 55	40.52	"	2.539	38.09	44.58	u
2.403	24.78	53.60	u	2.216	44.82	31.01	"
2.904	25	63.12	"	2.066	49.04	23.08	"
3.082	25.18	66.04	"	1.888	54.41	11.63	46
3.316	2Ğ	68.og	" +KI	I.733	60.39	0	44

Additional data for this system are given by Bruner, 1898; Hamberger, 1906; and Lami, 1908.

Data for the solubility of iodine in aq. 40% ethyl alcohol and aq. 60% ethyl alcohol solutions of potassium iodide at 25°, are given by Parsons and Corliss, 1910. The solid phases were identified in each case and it was demonstrated that no polyiodides of potassium exist in the solid phase or in solution at 25°

An extensive series of determinations of the simultaneous solubility of iodine and potassium iodide in nitrobenzene and in other organic solvents, as well as and potassium today in introbenzene and in other organic solvents, as wen as in mixtures of nitrobenzene and other solvents are given by Dawson and Gawler, 1902, and Dawson, 1904. The determinations were made to obtain information on the formation of polyiodides in solution. The molecular ratio of dissolved I₁/KI was found to be I or more in all cases. (See also p. 537.)

Freezing-point lowering data, determined by time-cooling curves, for mixtures of iodine and potassium iodide are given by Kremann and Schoulz, 1912. Data for this system are also given by Olivari (1908).

327 IODINE

SOLUBILITY OF IODINE IN AQUROUS SOLUTIONS OF POTASSIUM BROMIDE AND OF SODIUM BROMIDE AT 25°. (Bell and Buckley, 1912.)

In Aq. KBr	Solutions.	In Aq. NaBr Solutions.			
Gms. KBr per Liter.	Gm. Atoms I per Liter.	Gms. NaBr per Liter.	Gm. Atoms I per Liter.		
60.6	0.0176	96.4	0.0266		
106.9	0.0278	187.7	0.0425		
175.9	0.0415	271.8	0.0538		
229.8	0.0532	357 · 4	0.0598		
281.9	0.0628	422.21	0.0638		
330.6	0.0717	499.I	0.0648		
377.I	0.0797	569. 9	0.0644		
411	0.0864	632	0.0622		
461.7	0.0948	679.7	0.0595		
509.8	0.1006	750.5	0.0551		
567.9 sat.	0.1094	756.1 sat.	0.0550		

SOLUBILITY OF IODINE IN AQUEOUS SOLUTIONS OF ACIDS.

Aqueous.Acid.	Mols. I per Liter Sat. Sol.	Gms. I per Liter Sat. Sol.	Authority.
0.001 n HCl	0.001332	0.338	(Bray and MacKay, 1910.)
0.10 n HNO3	0.001340	0.340	(Sammet, 1905.)
0.10 n H ₂ SO ₄	0.001342	0.341	44

SOLUBILITY OF IODINE IN AQUEOUS SODIUM IODIDE SOLUTIONS. (Gill, 1913-14.)

Aqueous NaI solutions were prepared by dissolving the stated amounts of the salt in water and diluting to 100 cc. An excess of iodine was added to each of these solutions, the mixtures heated to 60° and shaken for several minutes. They were then allowed to cool in a thermostat at 25° for four hours. The dissolved iodine in weighed amounts of the saturated solutions was titrated with thiosulfate. The densities of the Aq. NaI mixtures and also of the solutions after saturation with iodine were determined.

Gms. NaI per 100 cc. Aq. Solution.	d ₂₅ of Aq. NaI Solution.	d ₂₅ of Aq. NaI after Saturation with I.	Gms. I Dissolved at 25° per 100 Gms. of the Sat. Sol.
5	1.0369	1.0698	4.99
10	1.0720	1.1415	9.96
15	1.1072	1.2162	14.93
20	1.1458	1.2998 ·	20.02

Determinations at other temperatures were made in an apparatus which permitted constant stirring of the solutions at the several temperatures. Results, interpolated from the original, are as follows:

		ed per 100 Gms. in Aq. NaI of:	e.	Gms. I Dissolved per 100 Gms. Sat. Solution in Aq. NaI of:		
ť.	10 Gms. per	20 Gms. per 100 cc.	٠.	To Gms. per	20 Gms. per	
IO	8.9	17.6	30	10.3	20.5	
15	9.3	18.3	40	10.9	22	
20	9.6	19	50	11.7	23.4	
25	10	19.4	60	12.6	24.9	

SOLUBILITY OF IODINE IN AQUEOUS SALT SOLUTIONS AT 25°. (McLauchlan, 1903.)

Salt.	Gms. Salt per Liter.	Gms. Dissolved I per Liter.	Salt.	Gms. Salt. per Liter.	Gms. Dissolved I per Liter.
Na ₂ SO ₄	29.77	0.160	NH ₄ Cl	53 · 4	0.735
K ₂ SO ₄	43.5	0.238	NaBr	103	3.29
$(NH_4)_2SO_4$	33	0.246	KBr	119	3.801
NaNO ₃	85	0.257	NH₄Br	98	4.003
KNO ₃	101.2	0.266	NH ₄ C ₂ H ₂ O ₂	77.I	0.440
NH4NO2	80	0.375	$(NH_4)_2C_2O_4$	86.9	0.980
NaCl	58.5	0.575	H ₂ BO ₂	55.8	0.300
KCl	73.6	0.658			•

SOLUBILITY OF IODINE IN NITROBENZENE SOLUTIONS CONTAINING VARIOUS IODIDES AT ROOM TEMPERATURE. SOLUTIONS SAT. WITH I IN EACH CASE.

(Dawson and Goodson, 1904.)

Iodide.	Gms. per Liter.		Iodide.	Gms. per Liter.	
lodide.	Iodide.	Iodide. Iodine.		Iodide.	Iodine.
Potassium Iodide	12.35	112.7	Caesium Iodide*	48.2	213
" "	45.56	295.7	Caesium Iodide	223	858
. "	115.8	608.2	Ammonium Iodide	69.5	482
" . "	155.2	943.6	Ammonium Iodide*	94.3	66g
Sodium Iodide	13.55	125	Aniline Hydriodide	164	721
44 44	57 · 7	393	Dimethylaniline Hydriodide	160	626
44 44	109.1	738	Tetramethylammonium Iodide	49.3	266
16 46	228	1251	Tetramethylammonium Iodide	51.4	280
Rubidium Iodide	85.4	421	Strontium Iodide	106.5	599
Rubidium Iodide	217.5	1060	Barium Iodide	42.2	237
Lithium Iodide	84.1	642	Barium Iodide	158.5	809

Solvent = o nitrotoluene instead of nitrobenzene.

Similar results are also given for solutions containing KI in addition to the other iodide, and one series for the simultaneous solubility of KBr and I in nitrobenzene. It is considered that the increased solubility is most easily explained on the assumption that periodides are formed in solution.

SOLUBILITY OF IODINE IN AQUEOUS ETHYL AND NORMAL PROPYL ALCOHOL SOLUTIONS AT 15°. (Bruner, 1898.)

In Aq. (n.) Propvi Alcohol.

In Ag. Ethyl Alcohol.

Vol. % C.H.OH in Solvent.	Gms. I per 100 cc. Solution.	Vol. % C,H,OH in Solvent.	Gms. I per 100 cc. Solution.	Vol. % C.H.OH in Solvent.	Gms. I per 100 cc. Solution.	Vol. % C ₂ H ₇ OH in Solvent.	Gms. I per 100 cc. Solution.
IO	0.05	60	1.14	10	0.05	60	2.71
20	0.06	70	2.33	20	O.II	70	4.10
30	0.10	80	4.20	30	0.40	80	6.05
40	0.26	90	7 - 47	40	0.94	90	9.17
50	0.88	100	15.67	50	1.64	100	14.93

SOLUBILITY OF IODINE IN AQUEOUS ETHYL ALCOHOL AND IN AQUEOUS ACETIC ACID SOLUTIONS AT 25°. (McLauchlan, 1903.)

In Aq. C ₂ H ₂ O	H Solutions.	In Aq. CH ₂ COOH Solutions.		
Gms. C ₂ H ₈ OH per 100 Gms. Solvent.	Gms. I per 100 cc. Sat. Solution.	Gms. CH ₂ COOH per 100 Gms. Solvent.	Gms. I per 100 cc. Sat. Solution.	
0	0.034	0	0.034	
4.55	0.039	20 .	0.076	
28.48	0.172	39.5	0.173	
44.41	0.955	61.1	0.510	
72.51	6.698	80.7	1.363	
100	24.548	100	3.162	

SOLUBILITY OF IODINE IN AQUEOUS GLYCEROL SOLUTIONS AT 25°. (Hers and Knoch, 1905.)

Density of glycerine at 25°/4° - 1.2555; impurities about 1.5%.

Wt.% Glycerine in Solvent.	. Millimols I per 100 cc. Solution.	Grams I per 100 cc. Solution.	Density of Solutions at 25°/4°.
0	0.24	0.0304	0.9979
7 - 15	0.27	0.0342	1.0198
20.44	o.38	0.0482	1.0471
31.55	0.49	0.0621	1.0750
40.95	0.69	0.0875	1.0995
48.7	1.07	0.135	I.1207
69.2	2.20	0.278	1.1765
100.0	9.70	1.223	1.2646

100 gms. glycerol ($d_{15} = 1.256$) dissolve 2 gms. iodine at $15^{\circ}-16^{\circ}$. (Ossendowski, 1907.)

SOLUBILITY OF IODINE IN BENZENE, CHLOROFORM, AND IN ETHER. (Arctowski - Z. anorg. Chem. 11, 276, '95-'96.)

In l	Benzene.	· In	n Chloroform. In Ether		n Ether.
t°.	Gms. I per 100 Gms. Solution.	ŧ°.	Gms. I per 100 Gms. Solution. •	ŧ°.	Gms. I per 100 Gms. Solution.
4.7	8.08	-49	0.188	-8_{3}	15.39
6.6	8.63	$-55\frac{1}{2}$	0.144	-9ŏ	14.58
10.5	9.60	-60	0.129	 108	15.09
13.7	10.44	-69 1	0.089		
16.3	11.23	$-73\frac{1}{2}$	0.080		
_		+10	1.76 per 10	oo gms. (CHCl.
			(Duncan — F	harm. J. Tr	ans. 22, 544, '01-'02.

SOLUBILITY OF IODINE IN BROMOFORM, CARBON TETRACHLORIDE, AND IN CARBON DISULFIDE AT 25°. (Jakowkin, 1895.)

I liter of saturated solution in CHBr, contains 189.55 gms. I. I liter of saturated solution in CCl₄ contains 30.33 gms. I. I liter of saturated solution in CS₂ contains 230 gms. I.

SOLUBILITY OF IODINE IN CARBON DISULFIDE. (Arctowski, 1894.)

r.	Gms. I per 100 Gms. Solution.	t* .	Gms. I per 100 Gms. Solution.	t°.	Gms. I per 100 Gms. Solution.
-100	0.32	0	7.89	30	19.26
– 8 0	0.51	10	10.51	36	22.67
– 63	1.26	15	12.35	40	25.22
- 20	4.14	20	14.62	42	26.75
— 10	5.52	25	16.92		

SOLUBILITY OF IODINE IN SEVERAL SOLVENTS AT 25°. (Herz and Rathmann, 1913.)

Solvent.	Iodine per Liter of Sat. Sol.		Solvent.	Iodine per Liter of Sat. Sol.	
Chloroform Carbon Tetrachloride Tetrachlorethylene	Mols. 0.352 0.237 0.241	Gms. 44.68 30.08 30.59	Trichlorethylene Tetrachlorethane Pentachlorethane	Mols. 0.312 0.244 0.272	Gms. 39.61 30.97 34.53

One liter sat. solution of iodine in nitrobenzene contains 50.62 gms. I at 16°-17°. (Dawson and Gawler, 1902.)

100 gms. hexane dissolve I.32 gms. iodine at 25°. (Hildebrand, Ellefson and Beebe, 1917.)
100 gms. sat. solution of iodine in anhydrous lanolin (melting point 46°), contain 5.50 gms. iodine at 45°. (Klose, 1907.)

SOLUBILITY OF IODINE IN MIXTURES OF CHLOROFORM AND ETHER AT 25°. (Marden and Dover, 1916.)

Gms. CHCl ₂ per 100 Gms. CHCl ₂ +(C ₂ H ₄) ₂ O.	Gms. Iodine per 100 Gms. CHCl ₃ +(C ₃ H ₄) ₂ O.	Gms. CHCl ₂ per 100 Gms. CHCl ₂ +(C ₂ H ₄) ₂ O.	Gms. Iodine per 100 Gms. CHCl ₃ +(C ₂ H ₄) ₂ O.
0	35.1	60	9.83
10	29.6	70	7 · 5
20	24.8	80	5 · 73
30	20.2	90	4.31
40	16.3	100	3.10
50	• 12.7		

100 cc. of a mixture of CHCl₈ + CS₂ (3:1) dissolve 7.39 gms. iodine (t°?.) The addition of S even up to the point of saturation does not affect the amount of iodine held in solution. (Olivari, 1908.)

Diagrammatic results for mixtures of iodine and each of the following compounds are given by Olivari, 1911: CHI₂, p C₆H₄Br₂, [C₄H₄]N₂, p C₆H₄(NO₂)₂, (C₆H₅CO)₂O and C₆H₅COOH.

SOLUBILITY OF IODINE IN MIXED SOLVENTS AT 16.6°. (Strömbolm, 1903.)

Solvent.	Gms. I per Liter Sat. Sol.	Solvent.	Gras. I per Liter Sat. Sol.
Ether	206.3	Ether+20.96 gms. CS2 per liter	202.3
Carbon Disulfide	178.5	Ether+41.9 " CS ₂ "	217.2
Ether+3.06 gms. H ₂ O per liter	221	CS ₂ +22.5 " ether "	189.3
" +7.91 gms. H ₂ O "	235.7	CS ₂ +45.1 " ether "	20I.I
" +excess H ₂ O	251.4	Ether+47.63 " CHCla "	195.2
" +9.79 gms. C ₂ H ₅ OH "	219.I	CS ₁ +50.06 " CHCl ₂ "	172.8
" +19.6 " " "	231.5	Ether+80.3 " C4H4 "	204.I
" +20.4 " " "	243.9	Ether+77.85 " CH•I "	220.2
" +30.2 " " "	254.4	$CS_2 + 62.2$ " S "	189-4

One liter sat. solution in ether contains 167.3 gms. I at 0°. (Strömholm, 1903.)

IODINE

SOLUBILITY OF IODINE IN MIXTURES OF CHLOROFORM AND ETHYL ALCOHOL, CHLOROFORM AND NORMAL PROPYL ALCOHOL, CHLOROFORM AND BENZENE, AND CHLOROFORM AND CARBON DISULFIDE AT 15°.

(Bruner, 1898.)

Vol. % CHCla	Gms. I Dissolved per 100 cc. of Mixtures of:							
in Solvent.	CHCI+C,H,OH.	CHCl ₄ +C ₄ H ₇ OH.	CHCl ₂ +C ₂ H ₄ .	CHCl _s +CS _s .				
0	15.67	14.93	10.40	17.63				
10	9.43	13.16	9.84	15.93				
20	8.69	11.20	8.78	14.20				
30	7.80	8.98	7 - 74	12.16				
40	7.09	8.00	6.96	10.20				
50	6.62	7.82	6.20	9.08				
6 0	6.24	7.09	5 · 34	7.72				
70	5 · 77	6.42	4.89	6.42				
[.] 80	5.06	5 · 54	4 · 53	5.27				
'90	4.34	4.52	4.07	4.32				
100	3.62	3.62	3.62	3.62				

SOLUBILITY OF IODINE IN MIXTURES OF CARBON TETRACHLORIDE AND BEN-ZENE AND IN MIXTURES OF CARBON TETRACHLORIDE AND CARBON DISUL-FIDE AT 15°. (Bruner, 1898.)

Vol. % CCL	Gms. I per 100 c	c. of Mixture of:	Vol. % CCL	Gms. I per 100 cc. of Mixture of:		
in Solvent.	CCL+C.H.	CCL+CS,	in Solvent.	CCI+C.H.	CCL+CS ₁ .	
0	10.40	17.6	60	4.90	5·55. [′]	
10	9.44	14.44	70	4.09	4.50	
20	8.53	12.33	80	3.41	3 · 37	
30	7 · 77	10.34	90	2.74	2.60	
40	6.63	8.60	100	2.06	2.06	
50	5.70	6.83				

In the case of the above determinations the volume change occurring on mixing the solvents was neglected. The temperature was not accurately regulated and the mixtures not shaken during the saturation. The curves plotted from the results are not smooth.

DISTRIBUTION OF IODINE BETWEEN WATER AND BROMOFORM, WATER AND CAR-BON DISULFIDE, AND WATER AND CARBON TETRACHLORIDE AT 25°. (Jakowkin, 1895.)

The original results were plotted on cross-section paper and the following table made from the curves. Jakowkin points out that the results of Berthelot and Jungfleisch, 1872, are incorrect on account of the presence of HL.

Gms. I per Liter	Gms. I per Liter of:				
of H ₂ O Layer in Each Case.	CHBr, Layer.	CS, Layer.	CCL Layer.		
0.05	20	30	4		
0.10	45	60	8.5		
0.15	71	91	13		
0.20	100	126	17.5		
0.25	130	160	22		

A theoretical discussion of the results of Jakowkin is given by Schükarew (1901).

DISTRIBUTION OF IODINE BETWEEN CARBON DISULFIDE AND Aq. POTASSIUM OXALATE.

(Dawson - Z. physik. Chem. 56, 610. '06; Dawson and McRae - J. Chem. Soc. 81, 1086, '02.)

Concentration Gms. I per l		r Liter of	Vol. of Solution which Contains	Fraction of I Uncombined
Aq. K ₂ C ₂ O ₄ .	Aq. Layer.	CS ₂ Layer.	r Mol. I.	in Solution.
1.0 Equiv.	2 . 408	10.82	105.3	0.005495
1.0 "	3 - 555	16.32	71.37	0.00561
1.0 "	5.766	27.91	4 3 · 99	0.005915
1.0 "	6.861	34.01	36.98	0.006055
1.2 "	3.525	17.07	71.97	0.005645

DISTRIBUTION OF IODINE BETWEEN AMYL ALCOHOL AND VATER AND BETWEEN AMYL ALCOHOL AND AQUEOUS POTASSIUM IODIDE

SOLUTIONS AT 25°. (Herz and Fischer — Ber. 37, 4752, '04.)

The original results were plotted on cross-section paper, and the following tables made from the curves.

Millimols I per to c	rc.	Millimols I	per 10 cc. of I	H ₂ O and of A	q. KI Layers.	
Millimols I per 10 cc. Amyl Alcohol Layer in Each Case.	Н₀О.	N _{IO} KI.	$\frac{2N}{10}$ KI.	3N KI.	4N KI.	ION KI.
2.5	0.012	0.135	0.160	0.170	0.170	• • •
3.0	0.014	0.150	0.185	0.200	0.200	0.160
4.0	0.018	0.180	0.235	0.255	0.270	0.240
5	0.021	0.210	0.280	0.315	0.340	0.315
5 6	0.025	0.230	0.330	0.375	0.410	0.390
7	0.029	0.250	0.375	0.430	0.480	0.470
8	• • •	0.260	0.420	0.490	0.550	0.555
9	•••	0.270	0.450	0.550	0.620	0.640
IO	• • •	0.280	0.470	0.605	0.690	0.720
12	• • •		0.490	0.700	o .830	0.900
14	• • •	• • •	0.510	0.790	0.980	I . 200
20	• • •	•••	0.575		• • •	• • •

Gms. I per 100 cc.	Gms. I per 100 cc. of H ₂ O and of KI Layers.						
Gms. I per 100 cc. Amyl Alcohol Layer in Each Case.	H ₂ O.	<u>N</u> KI.	$\frac{2N}{10}$ KI.	3N KI.	4N KI.	ION KI.	
3	0.014	0.164	0.20	0.21	0.21	• • •	
4	c 016	0.196	0.24	026	0.26	0.21	
6	026. ب	0.252	0.34	0.38	0.40	0.37	
8	0.033	0.297	0.43	0.49	0.54	0.51	
IO	0.040	0.328	0.51	0.61	0.67	0.69	
12		0.341	0.58	0.73	0.81	0.84	
14	• • •	•••	0.60	0.83	0.95	1.00	
16	• • •	• • •	0.63	0.91	1.09	I.20	
18	• • •	• • •	0.64	• • •		• • •	
25			0.71				

The original figures for 5N/10 and 10N/10 KI solutions give practically identical curves.

Results for the distribution of Iodine between N/10 KI solutions on the one hand, and mixtures in various proportions of $C_6H_6 + CS_{20}$, $C_6H_6 + CS_{20}$, $C_6H_6 + C_6H_6 + C_$

DISTRIBUTION OF IODINE BETWEEN WATER AND IMMISCIBLE ORGANIC SOLVENTS.

Results for Water + Carbontetra- chloride at 18°. (Dawson, 1908.)		Results for Water + Nitrobenzene at 18°. (Dawson, 1908.)		Results for + Carbon fide at (Dawson,	Disul- 15°.	Results for Water + Chloroform at 25°. (Hers & Kurser, 1910.)	
Mols. Iodin	e per Liter.	Mols. Iodine per Liter.		Gms. Iodin	e per Liter.	Mols. Iodine per Liter.	
HeO Layer.	CCl, Layer.	HeO Layer. C	HaNO, Lay	er. H _e O Layer.		H _e O Layer. C	HCl, Layer.
0.000416	0.0344	0.00019	0.0333	0.0452	27.85	0.00025	0.0338
0.000535	0.0443	0.00050	0.0854	0.0486	30.09	0.00120	0.1546
		0.00133	0.2275	0.0486	30.31	0.00184	0.2318
		0.00189	0.3328			0.00259	0.3439
Results fo	or Water	Results fo	or Water	Results f	or Water	Results fo	or Water
+ Trichl	orethyl-	+ Tetrachlor-		+ Tetrachlor-		+ Pentachlor-	
	t 25°.	ethylene at 25°.		ethane at 25°.		ethane at 25°.	
	hmann, '13.)	(Herz & Rathmann, '13.)		(Hers & Rathmann, '13.)		(Hers & Rathmann, '13.)	
Mols. Iodin	e per Liter.	Mols. Iodine	per Liter.	Mols Iodin	e per Liter.	Mols. Iodin	e per Liter.
H _e O Layer.	CHCl.CCl ₂ Layer.	H ₀ O Layer.	CCla.CCla	H ₂ O Layer.	C ₂ H ₂ Cl ₄ Layer.	H _r O Layer.	C ₂ HCl ₂ 1 Layer.
0.00046	0.0543	0.00088	0.0653	0.00110	0.1101	0.00002	0.0848
0.00070	0.0778	0.00127	0.0032	0.00145	O. 1247	0.00117	0.1067
0.00112	0.1275	0.00172	0.1285	0.00150	0.1470	0.00160	0.1434
0.00236	0.2672	0.00281	0.2161	0.00217	0.2103	0.00204	0. 1963
_				-			

Data for the distribution of iodine between water and mixtures of CS₁+CCl₄ at 25° are given by Herz and Kurzer, 1910.

Data for the distribution of iodine between carbon disulfide and aqueous solutions of each of the following iodides at 25° are given by van Name and Brown, 1917. Cadmium iodide, cadmium potassium iodide, lanthanum iodide, nickel iodide, strontium iodide, zinc iodide and zinc potassium iodide. Results for the distribution of iodine between carbon tetrachloride and aq. mercuric potassium iodide are also given.

Results for distribution between CS₂ and aq. BaI₂ sols. are given by Herz and

Data for the distribution of iodine between carbon disulfide and aqueous solutions of potassium iodide at 15° and at 13.5°, and between carbon disulfide and aqueous solutions of hydriodic acid at 13.5°, are given by Dawson, 1901 and 1902. Data for the distribution of iodine between carbon tetrachloride and aqueous

solutions of mercuric bromide and of mercuric chloride at 25° are given by Herz and Paul. 1914.

DISTRIBUTION OF IODINE BETWEEN CARBON DISULFIDE AND AQ. ETHYL ALCOHOL AT 25°. (Osaka, 1903-08.)

Gms. CaHaOH	Gms. Iodi	ne per Liter:	c	Gms. C ₂ H ₄ OH	Gms. Iodir	e per Liter:	
per 100 cc. Aq. Alcohol.	CS, Layer	Aq. Alcohol Layer c'.	ž.	per 100 cc. Aq. Alcohol.	CS, Layer	Aq. Alcohol Layer c'.	Ş.
7.6	0.072	35.86	0.0020	19.1	0.330	97	0.0034
7.6	0.211	107.79	0.0020	22.9	0.115	23.78	0.0048
11.4	0.077	32.93	0.0023	22.9	0.418	89.61	0.0047
11.4	0.280	133.22	0.0021	26.7	0.0756	9.8	0.0077
15.3	0.075	25.61	0.0029	26.7	0.495	65.10	0.0076
15.3	0.315	115.34	0.0027	30.5	0.0636	4.90	0.0130
19.1	0.045	13.42	0.0034	30.5	0.546	42.27	0.0129

DISTRIBUTION OF IODINE BETWEEN ETHER AND ETHYLENE GLYCOL. (Landau, 1910.) Results at oo. Results at 25°.

Gms. Iodii	ne per Liter:	_	Gms. Iodin	Gms. Iodine per Liter:		
(C ₂ H ₄) ₃ O Layer (a).	(CH ₂ OH) ₂ Layer (b).	<u>ā</u> .	(C ₂ H ₂) ₂ O Layer (a).	(CH ₂ OH) ₂ Layer (b).	î.	
2.139	1.449	1.48	2.208	I.449	1.52	
7.820	4.347	1.8o	4.255	2.541	ı.Ğo	
16.620	9.486	1.75	7.728	4.347	1.78	
20.564	11.685	1.76	16.200	9.120	1.78	
31.785	18.135	1.75	30.322	17.062	1.78	
79.950	44.460	1.80	78.195	44.460	1.76	

DISTRIBUTION OF IODINE BETWEEN GLYCEROL AND BETWEEN GLYCEROL AND CARBON TETRACHLORIDE.

(Landau, 1910.)

Results for Glycerol and Benzene.					Results for G	lycerol and	CCl.
		ne per Liter:		Gms. Iodine per Liter:			
ť.	Glycerol Layer	. Benzene Layer. (b)	$\frac{(b)}{(a)}$.	t°.	Glycerol Layer.	CCL Layer.	$\frac{(b)}{(a)}$.
25°	0.407	1.922	4.72	25°	0.365	0.565	1.55
	0.676	4.086	6.04		0.684	I.224	1.78
"	1.470	10.212	6.95	"	1.416	2.652	1.87
"	2.622	20.102	7.67	"	5.064	9.888	1.95
"	5.280	42.458	8.04	"	7.636	14.766	1.93
40°	0.459	2.168	4.72	40°	0.322	0.575	1.79
"	0.658	3.911	5.94	"	0.690	1.169	1.74
"	1.584	11.244	7.10	"	1.224	2.772	1.69
"	3.048	24 . 104	7.91	"	2.832	6.444	2.26
"	5.564	46.960	8.44	"	6.854	15.410	2.25
50°	0.467	2.194	4.70	50°	0.299	0.653	2.19
-66	0.642	3.864	6.02	""	0.570	1.270	2.23
"	1.463	11.196	7.65	"	1.511	3 · 457	2.29
"	2.391	19.872	8.31	"	2.664	6.468	2.43
"	5.383	46.782	8.69	"	6.348	16.008	2.52

DISTRIBUTION OF IODINE BETWEEN GLYCEROL AND CHLOROFORM.

Results at 25°. (Herz & Kurzer, 1910.)		Results at 30°. (Hantzsch & Vagt, 1901.)			Results at Dif. Temps. (Hantzsch & Vagt, 1901.)				
	ne per 1000 ms.		Mols. Iodi	ne per Liter:	c	ť.	Mols. I	per Liter:	٠.
Glycerol Layer c.	CHCla Layer c'.	` ₹.	Glycerol Layer c.	CHCl ₂ Layer c'.	₹.	• .	Glycerol Layer c.	CHCla Layer c'.	7
0.0244	0.0564	0.43	0.00097	0.00172	0.056	0	0.0119	0.0177	0.675
0.0397	0.0019	0.43	0.00204	0.00412	0.495	20	0.0084	0.0213	0.400
0.0500	0.1151	0.43	0.00418	0.00898	0.465	40 50	0.0077	0.0221	0.349

Data are also given by the above named investigators for the distribution of iodine between aqueous glycerol solutions and chloroform at several temperatures.

DISTRIBUTION OF IODINE BETWEEN GLYCEROL AND ETHYL ETHER. (Hantzsch & Vagt, 1901.)

r.	Mols. Iodi		
	Glycerol Layer	Ether Layer (c').	출.
Ó	0.00566	0.0270	0.21
30	0.00544	0.0272	0.20
30	0.00100	0.0051	0.20

FREEZING-FOINT DATA (Solubility, see footnote, p. 1) FOR MIXTURES OF IODINE AND OTHER ELEMENTS.

Iodine	and	Selenium	(Pellini and Pedrina, 1908.)
44	"	Sulfur	(Olivari, 1908; Smith and Carson, 1908.)
"	"	Tellurium	(Jacger and Menke, 1912.)
44	"	Tin	(van Klooster, 1912-13; Remders and de Lange, 1912-13.)

SOLUBILITY OF IODINE IN ARSENIC TRICHLORIDE. (Sloan and Mallet, 1882.)

t.	o°.	15°.	96°.
Gms. I per 100 gms. AsCl ₃	8.42	11.88	36.89

IODOZOSIN (Sodium tetra iodofluorescein) C₂₀H₆I₄O₅Na₂.

100 gms. H₂O dissolve 90 gms. iodoeosin at 20-25°.

(Dehn, 1917.)

100 gms. pyridine dissolve 4.63 gms. iodoeosin at 20-25°.
100 gms. aq. 50% pyridine dissolve 71.6 gms. iodoeosin at 20-25°.

IODOFORM CHI, **IODOL** C₄I₄NH (Tetraiodopyrrol).

SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P. VIII; Vulpius, 1893.)

Solvent.	۴.	Gms. per 100 Gms. Solvent.			
	• •	CHJ.	C,L,NH.		
Water	25	0.0106	0.0204		
Alcohol	25	2.14 (1.43 gms. (V.))	II.I		
Alcohol	b. pt.	(10 gms. (V.))			
Ether	25	19.2 (16.6 gms. (V.))	66.6		
Chloroform	25		0.95		
Pyridine	20-25	173.1 (Dehn, 1917.)			
Aq. 50% pyridine	20-25	22.4			
Lanolin (30% H ₂ O)	46	5.2 (Klose, 1907.)			

IRIDIUM CHLORIDE IrCl.

When I gm. iridium as chloride is dissolved in 100 cc. of 10% HCl and shaken at 18° with 100 cc. of ether, 0.02 per cent of the metal enters the ethereal layer. When 20% HCl is used 5% of the metal enters the ether. When dissolved in 1% HCl or in water approximately 0.01 per cent of the metal enters the ethereal layer.

IRIDIUM Ammonium CHLORIDE IrCl. 2NH Cl.

SOLUBILITY IN WATER. (Rimbach and Korten, 1907.)

ť.	Gms. IrCl _{4.2} NH	Cl per 100 Gms.	٠, (Gms. IrCl ₄ .2NH ₄ Cl per 100 Gms		
€.	Water.	Sat. Sol.	٠.	Water.	Sat. Sol.	
14.4	0.699	0.694	52.2	1.608	1.583	
26.8	0.905	0.899	61.2	2.130	2.068	
39.4	1.226	I.124	69.3	2.824	2.746	

IRIDIUM DOUBLE SALTS.

SOLUBILITY IN WATER. (Palmaer - Ber. 23, 3817; 24, 2090, '91.)

	Double S	elt.	Formula.	6°.	Gms. H ₂ O.
Irido	Pentamine	Bromide	Ir(NH ₂),Br ₂	12.5	0.284
"	66	Bromonitrate	Ir(NH ₂) ₂ Br(NO ₂) ₂	18	5.58
66	46	Tri Chloride	Ir(NH _a) _a Cl _a	15.1	6.53
"	**	Chloro Bromide	Ir(NH ₂),ClBr ₂	15	0.47
66	66	Chloro Iodide	Ir(NH ₂),CII,	15	0.95
**	"	Chloro Nitrate	Ir(NH ₂),Cl(NO ₂),	15.4	1.94
44	66	Chloro Sulphate	Ir(NH ₃),CISO _{4.2} H ₄ O	15.0	0.74
66	66	Nitrate	Ir(NH ₂),(NO ₃),	ıŏ	0.28
ec	Aquo Penta	amine Bromide	Ir(NH ₂) ₄ (OH ₂)Br ₂	ord. temp.	25.0
66	te a	Chloride	Ir(NH ₂) ₅ (OH ₂)Cl ₂	ord. temp.	74.7
"	"	Nitrate	Ir(NH ₂),(OH ₂)(NO ₃),	17	10.0

IRON BROMIDE (Ferrous) FeBr2.6H2O.

SOLUBILITY IN WATER. (Etard - Ann. chim. phys. [7] 2, 537, '94.)

\$°.	Gms. FeBra per 100 Gms. Sol.	ŧ°.	Gms. FeBra per 100 Gms. Sol.	t ° .	Gms. FeBra per 100 Gms. Sol.
- 20	47 .0	30	55.0	60	59.0
0	50.5	40	56· 2	80	61.5
20	53.5			100	64.0

IRON CARBONATE (Ferrous) FeCO2.

SOLUBILITY OF FERROUS CARBONATE IN AQUEOUS SALT SOLUTIONS, BOTH WITH AND WITHOUT THE PRESENCE OF CARBON DIOXIDE.

(Ehlert and Hempel, 1912.)

(Each mixture was 1000 cc. in volume and was rotated constantly for 24 hours. Temp., probably 5-8°.)

	SOLUBILITY II		SOLUBILITY IN ABSENCE OF CO ₂ .		
Aqueous Solution of:	Gms. Salt per 1000 Gms. H ₂ O.	Gms. FeCO ₁ per 1000 cc. Solvent.	Gms. Salt per 1000 Gms. H ₂ O.	Gms. FeCO ₂ per 1000 cc. Solvent.	
Water alone	0	6.191		•••	
NaCl	• • •	•••	351.2	0.350	
MgCl ₂ .6H ₂ O	· 86.9	5.840	•••	•••	
"	700	4.555		• • •	
"	1150	4.459		•••	
"	1437.5	4.693	• • •	• • •	
"	1725	5.398		• • •	
. "	2300	9.052	2300	4.205	
$Na_2SO_4.10H_2O$	137.7	7 - 943	137.7	0.701	
"	Sat. at 14°	9.578	Sat. at 14°	0.934	
MgSO ₄ .7H ₂ O	105.3	6.242	105.3	1.467	
a .	Sat. at 14°	7 - 392	Sat. at 14°	2.933	

IRON BICARBONATE (Ferrous) Fe(HCO₁)₂.

SOLUBILITY OF FERROUS BICARBONATE IN CARBONATED WATER AT 30°. (Smith, H. J., 1918.)

Pure white ferrous carbonate was prepared by heating to 100° for several days in a steel bottle, an aqueous solution of ferrous sulfate, sodium bicarbonate and carbon dioxide (introduced at 400 lbs. pressure). The crystalline product was similar to the mineral siderite and was probably isomorphous with calcite. Fifty to one hundred gram portions were placed in a two-liter steel bottle, coated on the inside with a mixture of beeswax and Venice turpentine. Water was added and CO₂ introduced through a needle valve from a cylinder of the liquefied gas. The pressure was read on a gauge. The bottle was rotated at constant temperature for several days or until equilibrium was reached. The portion of the saturated solution for analysis was withdrawn through a brass tube attached to the valve on the inside of the bottle and packed with cotton to act as a filter. The filtered portion was received in a tared evacuated flask, containing a few cc. of conc. H₂SO₄. The CO₂ was determined by absorption and the iron by precipitation, resolution, reduction and titration with permanganate. The results show that the decomposition tension of Fe(HCO₂)₂ is greater than 25 atmospheres at 25°.

Gms. Mols. per Liter.	Gms. per Liter.	Gms. Mols. per Liter.	Gms. per Liter.	
H ₂ CO ₂ . Fe(HCO ₂) ₂ .	H ₂ CO ₃ . Fe(HCO ₂) ₂ .	H ₂ CO ₃ . Fe(HCO ₃) ₂ .	H ₂ CO ₃ . Fe(HCO ₃) ₂ .	
0.1868 0.00245	11.58 0.436	0.3294 0.00311	20.43 0.553	
0.1985 0.00256	12.31 0.455	0.3745 0.00315	23.23 0.560	
0.2168 0.00262	13.45 0.466	0.4046 0.00332	25.09 0.590	
0.2327 0.00274	14.43 0.487	0.4750 0.00348	29.45 0.619	
0.2960 0.00303	18.35 0.539	0.6600 0.00402	40.93 0.715	
0.3116 0.00304	19.32 0.541	0.7154 0.00418	44.36 0.744	
0.3153 0.00318	19.55 0.566	0.7600 0.00434	47.13 0.772	

IRON CHLORIDE (Ferrous) FeCl_{2.4}H₂O.

100 gms. sat. sol. in water contain 17.54 gms. Fe = 39.82 gms. FeCl₂ at 22.8°.
100 gms. sat. sol. in water contain 18.59 gms. Fe = 42.8 gms. FeCl₂ at 43.2°.
(Boecke, 1911.)

IRON CHLORIDE (Ferrous) FeCl₂.4H₂O. Solubility in Water. (Etard.)

t°.	Gms. FeCl ₂ per 100 Gms. Solution.	Solid Phase.	t° .	Gms. FeCl ₂ per 100 Gms. Solution.	Solid Phase.
IO	39.2	FeCl _{2.4} H ₂ O	60	47.0	FeCl.4H ₂ O
15	40.0	"	80	50.0	
25	41.5	"	87	51.2	FeCl ₂ .4H ₂ O+FeCl ₂
30	42.2	"	90	51.3	FeCl ₂
40	43.6	"	100	51.4	" ,
50	45.2	"	120	51.8	"

SOLUBILITY OF IRON CHLORIDE (FBRRIC) Fe,Cl, in WATER. (Roozeboom — Z. physik. Chem. 10, 477, '92.)

	s. FeCl _s per 100 Gms.	t°. D	iols. Fe ₃ C		Claper 100
to. per 100 Mols. H ₂ O. H ₂ O.	O. Solution.	•	er 100 Mol H ₂ O.	H ₂ O.	Solution.
Solid Phase, Fe ₂ Cl	₈₋₁₂ H ₂ O.	So	lid Phase,	Fe ₂ Cl ₆₋₅ H ₄	O (con.).
-55 2·75 49·		35	15.64	281 .6	73·79
-27 2.98 53.	60 34.93	50	17.50	315.2	75 · 9 I
0 4.13 74.		55	19.15	344.8	77.52
+20 5.10 91.		55	20.32	365.9	78.54
30 5.93 106.	8 51.64	Solid	Phase, Fe	2Cl ₆₋₄ H ₂ O.	
37 8.33 150.		50	19.96	359.3	78.23
30 11.20 201.	7 66.85	55	20.32	365.9	78.54
20 12.83 231.	1 69.79	3.	20.70	372.8	78.86
8 13.7 246.	7 71.15	69	21.53	387.7	79.50
Solid Phase, Fe ₂ Cl _{6.7} 1	H₃O.	73 · 5	25.0	450.2	81 .8 1
20 11.35 204.	4 67.14	70	27.9	502 . 4	83.41
32 13.55 244.0	0 70.92	66	29.2	525.9	84.0 3
30 15.12 272	4 73.13	Solid	Phase, F	e _z Cl _e .	
25 15.54 280.0	o 73.69	66	29.2	525.9	84.03
Solid Phase, Fe ₂ Cl _{6.5} F	H₂O.	75	28.92	511.4	83.66
12 12.87 231.	8 69.87	, ·	29 · 20	525.9	84.03
27 14.85 267.	- 1	100	29.75	535.8	84.26

SOLUBILITY OF FERRIC CHLORIDE IN AQUEOUS SOLUTIONS OF AMMONIUM CHLORIDE AT 25°, 35°, AND 45°.

(Mohr — Z. physik. Chem. 27, 197, '98.)

Results at 25°. Results at 35°. Results at 45°.

Mok too Mo	. per ls. H₃O.	Mols 100 Mo	. per ls. H ₂ O.	Mols 100 Mo	per s. H ₂ O.	Solid Phase in Each Case.
NH,CI.	FeCla.	NH ₄ Cl.	FeCls.	NH ₄ Cl.	FeCla.	m Bach Case.
0	10.98	•	13.36	0.0	33 · 4	Fe ₂ Cl _{6.12} H ₂ O (5.H ₂ O at 45°)
1.57	10.74	1.41	13.05			Hydrate + Double Salt
2.48	9.02	3.08	9.28	4.08	9 . 58	Double Salt
5.28	7 · 73	6.98	7.64		•••	4
9.59	6.77	10.76	6.70	13.09	6.31	44
9.83	6.70	11.60	6.52	13.54	6.28	Double Salt + Mixed Ciystals
9.65	6.07	12.28	6.08	12.91	. 5 . 49	Mixed Crystals
9.93	5.23	11.57	3.98	13.49	4.84	4
9.92	3.97	11.89	3.38	13.46	4.99	•
10.31	2.05	13.23	1.38	• • •	• • •	•
13.30	0.0	14.79	0.0	16.28	0.0	NH ₄ Cl

SOLUBILITY OF FERRIC CHLORIDE IN AQUBOUS SOLUTIONS OF AMMONIUM CHLORIDE AT 15°.

(Roozeboom — Z. physik. Ch. 10, 148, '92.)

Mols. per 100	Mols. H ₂ O.	Grams per 1	oo Gms. HgO.		olid		
NH ₄ Cl.	FeCls.	NH ₄ Cl.	FeCl ₂	Pl	ane.		•
0.0	9 · 30	0.0	83.88	FegCl ₆₋₁₂ H ₂ C)		
1.09	9 · 57	3.24	86.32	-			
1.36	9.93	4.03	91.61	FegCla.12Hg(+ Doubl	e Salt	
2.00	9.27	5.92	83 . 64	Double Salt			
2.79	8.71	8.31	78.77	•			
4.05	8.09	12.08	73.20	•			
6.41	7.18	19.12	64.83	4			
10.78	Ó.2I	32.04	56. 00				
7.82	6.75	23.21	6o.8₃	Mixed Crysts	als contain	ing 7.29%	FeCl _e
7.62	5 · 94	22.63	53 · 47	•	*	5-55	•
7 . 70	5.03	22.90	45 · 42	•	44	44	*
7.81	4.34	23 · 23	39.13	•	•	3.8	•
8.52	2.82	25·33	25 · 43	•		1.64	4
10.95	o · 68	32.55	6.15	•	•	0.31	•
11.88	0.0	35 - 30	0.0	NH ₄ Cl			

SOLUBILITY OF FERRIC CHLORIDE IN AQUEOUS HYDROCHLORIC ACID SOLUTIONS AT DIFFERENT TEMPERATURES.
(Roozeboom and Schreinemaker — Z. physik. Chem. 15, 633, '94.)

Mols. per	roo Mols.	Gms. per H	100 Gms. O.	Solid		100 Mols.	Gms. pe	r 100 Gms. [sO. Solid
HCI.	FeCl _a .	HCI.	FeCls.	Phase.	HCI.	FeCl ₃ .	HCl.	FeCla. Phase.
	Results	at o°.				Results at	25° (con.)	•
0	8. 25	0	74.30	1	0.0	29.00	0.0	261.1)
7.52	б. 51	15.22	58.62		7.5	29.75	15.18	267.9 FeaCla
13.37	ნ. ვვ	27.06	57.01	1	19.5	35.25	39.46	317.4)
16.80	8.70	33.99	78.34	ľ	19.5	35.25	39.46	317.4)
18.45	10.23	37 · 34	92. 10	Fe ₂ Cl ₂	20.6	35 · 34	41.68	318.3 FeeCle
20.40	15.40	41.28	138.7	.i2Hg(31.34	41.58	63.42	374·4 4H ₈ O
2 0. IO	16.∞	40.67	144. I	l	33.00	43.00	66.77	387.3
19.95	17.70	40.37	159.4	ľ	34.65	44.80	70.11	403.41
19.00	22.75	38.45	204.8	l ·	40.41	40.25	81.77	362.4) Fe ₂ Cl ₆
18.05	23.41	36.53	210.8	!	3 9.03	41.38	78.98	372.7 } ⊿ HCl
18.05	23.40	36.53	210.8	Fe ₂ Cl ₅	35.74	45.24	72.33	407.4) +4H ₅ O
19.50	25.93	39.55	233.5	.7HgO	,	Result	s at 40°.	
24. 12	30.04	48.81	270.5	Fe ₂ Cl ₆	. 0	32.4	0.0	291.7 FegCls
2 6.00	32.16	52.60	289.6	.5Hg(13.4	37·45	27.11	337.3 SH ₂ O
26.00	32.16	52.60	289.6	Fe ₂ Cl ₆	T2 A	37·45	27.11	337.3 Fe ₂ Cl ₂
34.60	38. 11	70.01	343.2	4H2(27.0	50.80	54.64	457.5 4H ₂ O
37.27	36.60	75.4I	329.6	Fe ₃ Cl ₆	0	58.0	0.0	522.3)
34.60	38. 11	70.01	343.2	+4H ₂ (50.8	54.64	457.5} FeaCle
	Resul	ts at 25°.			42.01	48.64	85.00	438.0
0.0	10.90	0.0	98.15	1	42.50	47.52	86.72	428 a) FeeCla
2.33	23.72	4.715	213.6	LFe ₂ Cl ₆	40 07	48.64	85.00	:.o. } .anu
0.0	24.5	0.0	220.7	.12.H ₂ (, 42	40.04	03.00	438.0) + ₄ H ₂ O
0.0	23.5	0.0	211.6	-	R	esults fo	r other	temperatures
2.33	23.72	4.715	213.4	FegCla	are	also g	ven ir	the original
7.50	29.75	15.18	267.9	.7Hg(pap			- one original
0.0	31.50	0.0	283.6		Pup			
	J- · J-							

RESULTS FOR THE SYSTEM FERRIC OXIDE, HYDROCHLORIC ACID, WATER AT 25°.
(Cameron and Robinson, 1907.)

(Excess of ferric hydroxide was added to aq. ferric chloride solutions and agitated for 3 months.)

Gms. per 100 Gms.				Gms. per	coo Gms.	
Sat. Sol.		Solid Phase.	d _{as} of Sat. Sol.	Sat. Sol.		Solid Phase.
Fe ₂ O ₂ .	HCl.		SEL. SUL	Fe ₂ O ₂ .	HCl.	
34.61	59.88	FeCla.HCl.2HgO	1.485	21.84	29.33	FeCla.6H ₂ O+ Fe ₂ O _{3.2} HCl.H ₂ O
33.27	60.23	"	1.349	16.82	22.55	FeO. #HCl.HO
32.78	54.71	" + FeCle	1.321	15.83	21.10	44
31.95	58.20	FeCla+FeCla.2HgO	1.284	14.62	19.53	"
34.42	54.12	FeCl ₀₋₂ H ₂ O	I.242	12.59	16.61	46
35.22	59.28	"	I.220	11.76	15.28	4
34.07	55.71		1.195	10.56	13.76	a
34.21	55 · 47	" +FeCl _{2.2} H ₂ O	1.158	8.60	II.24	4
34 · 44	51.11	FeCl ₀₋₃ H ₂ O+ "	1.115	6.47	8.39	4
33.04	46.72	" +FeCl _e .6H _e O	1.070	4.04	5.36	44
24.42	33.40	FeCl. 6H2O	1.047	2.85	3.66	44

Data for the systems $FeCl_1 + MgCl_2 + KCl + H_2O$ at 22.8° and for $FeCl_2 + KCl + NaCl$ are given by Boeke, 1911.

100 gms. abs. acetone dissolve 62.9 gms. FeCl₃ at 18°. (Naumann, 1904.) 100 gms. anhydrous lanolin (m. pt. about 46°) dissolve 4.17 gms. FeCl₃ at 45°. (Klose, 1907.)

DISTRIBUTION OF FERRIC CHLORIDE BETWEEN WATER AND ETHER AT 18°. (Mylius, 1911.)

One-gram portions of iron as chloride were dissolved in 100 cc. of aq. HCl of different concentrations and shaken with 100 cc. of ether in each case. The percentage of iron in the ethereal layer was determined after separation of the two layers.

Per cent conc. of Aq. HCl	1	5	10	15	20
Per cent of Iron Extracted by Ether	(0.01)	0.1	8	02	QQ

Fusion-point curves (solubility, see footnote, p. 1) for mixtures of FeCl₂ + PbCl₂ and FeCl₂ + ZnCl₂ are given by Herrmann, 1911, and for mixtures of FeCl₃+TlCl by Scarpa, 1912.

SOLUBILITY OF THE SALT PAIR FeCl₃.NaCl IN WATER AT 21°. (Hinrichsen and Sachsel, 1904-05.)

Gms. Used.			Gms. per 100 Gms. Solution.		Mols. Mols. H ₂ O.	Solid Phase.	
FeCla.	NaCl.	FeCls.	NaCl.	FeCla.	NaCl.		
0	3.6	0	36.10	0	II.2	NaCl	
1.8	3	24.27	9.10	2.69	2.8	Mix Crystals	
3.6	2.5	25.40	8.4 5	2.81	2.6	u"	
5.5	2	26.40	5.25	2.93	2.54	"	
7.2	1.5	38.15	3.90	4.23	I.22	. "	
9	I	45.38	2.45	5.03	0.75	"	
10.8	0.5	46.75	2.11	5.18	0.65	"	
10.8	o	83.39	0	9.3	o	FeCl _s	

SOLUBILITY OF THE SALT PAIR FeCl₈.KCl IN WATER AT 21°. (Hinrichsen and Sachsel, 1904-05.)

Gms. 1	Gms. Used. Gms. per 100 Gms. Gms. Solution.		Gms. per 100 Gms. Solution.		s. per 100 H ₂ O.	Solid Phase.
FeCla.	KCl.	FeCla.	KCl.	FeCla.	KCl.	
0	35	0	34.97	0	8.45	KCl
13	28	13.44	24.45	1.49	5.90	Mix Crystals
18	21	23.18	16.54	2.57	3.99	u"
23	18.5	28.05	11.60	3.11	2.82	"
23 28	16	35.72	11.68	3.96	2.82	"
31	10.5	36.62	11.19	4.06	2.70	FeCl ₃ .2KCl.H ₂ O
36.2	9	37.35	13.67	4.14	3.30	" .
46.5	6	51.60	7 · 54	5.73	1.82	"
155	0	83.89	0	9.3	0	FeCl _s

SOLUBILITY OF THE SALT PAIR FeCl₄.CsCl in Water at 21°, (H. and S.)

Gms.	Solution. Mols. H ₂ O.		Solu		Gms. Mols. per 100 Mols. H ₁ O.		Solid Phase.
FeCl _a .	CsCl.	FeCla.	CsCl.	FeCls.	CsCl.	•	
0	65	0	65	0	6.95	CsCl	
0.6	11.6	0.45	55.18	0.05	5.9	FeCl ₃ .3CsCl.H ₂ O	
I.4	10.2	2.I	52.38	0.23	5.6	""	
2.2	8.8	5.24	51.44	0.57	5.5	"	
2	7 - 4	7.8	47.70	0.86	5 . I	FeCl ₃ .2CsCl H ₂ O	
3.8	6	8.93	41.15	0.99	4.4	"	
4.6	4.6	15.34	25.25	1.70	2.7	"	
5 - 4	2.8	21.65	14.96	2.40	1.6	"	
6.2	I.4	27.96	8.42	3.10	0.9	"	
35	0.2	48.71	0.94	5.40	0.1	"	
35	0	83.89	0	9.3	0	FeCl _s	

IRON FORMATE (Ferric) Fe₃(OH)₂(HCOO)₁.4H₂O.

SOLUBILITY IN WATER AND IN ABSOLUTE ALCOHOL. (Hampshire and Pratt, 1913.)

	Solubili	Solubility	in Abs. Alcohol.	
t*.	Gms. Salt per 100 Gms. H ₂ O.	Solid Phase.	r.	Gms. Salt per 100 Gms. C ₂ H ₂ OH.
15	5.08	Fe ₃ (OH) ₂ (HCOO) ₇ .4H ₂ C	19	4.59
20	5.52	"	22	6.25
25	6.10	"	23	7.62
30	6.78	**	(The sat. solution	e are not etable \
35	7.52	"	(The sat. solution	s are not stable.)

IRON HYDROXIDE (Ferric) Fe(OH):

SOLUBILITY OF FERRIC HYDROXIDE IN AQ. OXALIC ACID SOLUTION AT 25°. (Cameron and Robinson, 1909.)

The solutions were constantly agitated for 3 months. The solubility is directly proportional to the concentration of the oxalic acid and no definite basic ferric oxalate is formed.

d _m of	Gms. per roc	Gms. Sat. Sol.	d₃ of Sat. Sol.	Gms. per 100 Gms. Sat. Sol.		
d _{ss} of Sat. Sol.	Fe ₂ O ₃ .	C ₂ O ₃ .	Sat. Sol.	Fe _l O ₁ .	C _t O _t .	
1.007	0.48	0.61	1.040	2.33	3.10	
1.015	0.95	I.23	1.050	2.98	3.85	
1.031	1.86	2.45	1.064	3.62	5.17	

IRON NITRATE (Ferric) Fe(NO₃)₃.9H₂O.

EQUILIBRIUM IN THE SYSTEM, FERRIC OXIDE, NITRIC ACID AND WATER AT 25°. (Cameron and Robinson, 1909.)

Solutions of ferric nitrate of varying concentrations were shaken with freshly precipitated ferric hydroxide at const. temp., 25°, for 4 months. The acid branch of the curve was studied in a similar manner by starting with ferric nitrate and various concentrations of nitric acid. No definite basic nitrates of iron were formed.

d ₂₅ of Sat. Sol.	Gms. per 100 Gms. Sat. Sol.		Solid Phase.	d ₂₅ of Sat. Sol.	Gms. per 100 Gms. Sat. Sol.		Solid Phase.	
SEL. SUL	Fe _l O ₃ .	N ₂ O ₃ .	•	Jat. Jul.	Fe ₂ O ₃ .	N ₂ O ₃ .		
1.032	1.78		Fe ₂ O ₃ . m N ₂ O ₃ . n H ₂ O	I.452	12.14	33.5	Fe_2O_3 .3 N_2O_5 .18 H_2O	
1.079	3.99	5.61	"	I.434	9.95	36.3	"	
1.127	5.79	9	4	1.417	7.25	40.3	"	
1.177	7.22	12.31	44	1.404	5.02	47.5		
1.264	9.70	16.60	d	1.428	3.55	51.5	**	
1.368	12.48	22.70	**	1.450	4.51	52	4	
1.435	14.62	28.13	"	1.465	4 . 19	55.2	4	
1.498	15.40	29.52	44	1.407	3.93	47.2	Fe ₂ O ₃₋₄ N ₂ O ₃₋₁ 8H ₂ O*	
1.496	15.22	30.50	Fe ₂ O ₃ .3N ₂ O ₃ .18H ₂ O	1.419	3.52	49.6	4	

This salt was obtained accidentally and its preparation could not be repeated.

IRON NITRATE (Ferrous) Fe(NO₃)₂.6H₂O.

SOLUBILITY IN WATER. (Funk, 1900.)

ť.	Gms. Fe(NO ₂) ₂ per 100 Gms. Sol.	Mols. Fe(NO ₂) ₂ per 100 Mols. H ₂ O.	Solid Phase.	e.	Gms. Fe(NO ₂) _s per 100 Gms. Sol.	Mols. Fe(NO ₂) _e per too Mols H _e O	Solid Phase.
-27	35.66	5 · 54	Fe(NO ₂) ₂ .9H ₂ O	-9	39.68	6.57	Fe(NO ₂), SELO
-21.5	36:10	5.64	4	0	41.53	7.10	•
-19	36.56	5.76	44	18	45.14	8.23	*
-15.5	37.17	5.91	**	24	46.51	8.70	44
	• • •			60.5	62.50	16.67	•

Density of solution saturated at 18° = 1.497.

IRON OXALATE (Ferrous) FeC, O4.2H,O.

SOLUBILITY IN WATER AT 25° DETERMINED BY THE CONDUCTIVITY METHOD. (Schifer, 1905.)

The sat. solution contains 5.38.10⁻⁴ gm. mols. C₂O₄ per liter.

IRON OLEATE.

100 gms. glycerol (d = 1.114) dissolve 0.71 gm. iron oleate.

(Asselin, 1873.)

IRON OXIDES, HYDROXIDE and SULPHIDE.

SOLUBILITY IN AQUEOUS SUGAR SOLUTIONS. (Stelle — Z. Ver Zuckerind. 50, 340, '00.)

% Suga	r Fe	(OH)	at:	us Liter of Fe ₄ O	Sugar So at:	olutions D	issolves b Fe ₃ O ₄ s	lilligrams t:	ot: .	Feß at:	
went.	27-4°.	45°-	75°.	17.50.	45°.	17.5°.	45°•	75°.	17.5°.	45°.	750.
10	3.4	3 · 4	6.1	I .4	2.0	10.3	10.3	12.4	3.8	3.8	5.3
30	2.3	2.7	3.8	I · 4		12.4	10.3	12.4	7.1	9.1	7.2
50	2.3	1.9	3.4	0.8	1.1	14.5	10.3	14.5	9.9	1ġ.8	9.1

IRON PHOSPHATE Fe,(PO,).

THE ACTION OF WATER AND OF AQUEOUS SALT SOLUTIONS UPON FERRIC PHOSPHATE.

(Lachowicz - Monatsh. Chem. 13, 357, '92; Cameron and Hurst - J. Am. Chem. Soc. 26, 888, '04.)

The experiments show that the ordinary precipitation methods for the production of ferric phosphate give products which do not conform to the formula Fe₃(PO₄)₃. By digesting such samples with water very little is dissolved, but the material is decomposed to an extent depending upon the relative amounts of solid and solvent used. The amount of PO₄ dissolved per gram of Fe₃(PO₄)₃ varies from about 0.0026 gram removed by 5 cc. H₃O to 0.0182 gram removed by 800 cc. H₂O at the ordinary temperature.

SOLUBILITY FERRIC PYROPHOSPHATE IN AQ. AMMONIA AT 0°. (Pascal, 1909.) The solutions containing an excess of salt were agitated violently every hall

The solutions containing an excess of salt were agitated violently every half hour for seven hours and filtered at o°. The sat. sol. was analyzed for ammonia and for residue obtained by evaporation.

Gms. NH _a per 100 Gms. Sat. Sol.	Gms. Fe ₄ (P ₂ O ₇) ₃ per 100 Gms. Sat. Sol.	Solid Phase.	Gms. NH ₃ per 100 Gms. Sat. Sol.	Gms. Fe ₄ (P ₂ O ₇) ₃ . per 100 Gms Sat. Sol.	
0.884	5.606	Fe _i (P ₂ O ₇);	5.92	14.71	viscous black deposit
1.59	9.75	"	8.26	13.89	chamois colored lumps
3.71	14.85	æ	10.55	7.40	44
4.72	15.94	u	15.96	2.52	"
5.93	13.92	viscous black deposit	18.83	0.445	44
7.91	14.61	"		_	

SOLUBILITY OF FERRIC PHOSPHATE IN AQ. PHOSPHORIC ACID SOLUTIONS AT 25°(Cameron and Bell, 1907.)

Solid ferric phosphate of unknown composition was constantly agitated with aq. phosphoric acid solutions of concentrations up to 5% for 4 months. Analyses of the sat. solutions and solid phases were made.

d_{25} of Sat. Sol.	Gms. per 100 (ims. Sat. Sol.	Solid Phase.		
Sat. Sol.	Fo ₂ O ₃ .	P ₂ O ₅ .			
1.0074	0.0105	0.942	Solid Solution		
1.0162	0.0205	1.984	"		
I.0244	0.0384	2.838	"		
1.0310	0.0611	3.770	"		
1.0383	0.0849	4.706	"		

IRON SULFATE (Ferrous) FeSO4.7H2O.

S	OLUBILITY OF	FERROUS SU	JLFATE IN	WATER. (Fr	menckel, 1907.)
r.	Gms. FeSO ₄ per 100 Gms.H ₂ O ₄	Solid Phase.	ť.	Gms. FeSO ₄ per ro Gms.: H ₂ O.	Solid Phase.
-o.172	1.0156	Ice	45.18	44.32	FeSO ₊₇ H _e O
-o.566	4.2852	44	50.21	48.60	•
- I.063		44	52	50.20	•
-1.511		. «	54.03	52.07	•
-1.771	14.511	æ		tr. pt. 54 . 58	" +FeSO.4H.O
—1.82 1	Eutec. 17.53	Ice+FeSO _{4.7} H ₄		54.95	FeSO ₄₄ H ₄ O
0	15.65	FeSO _{4.7} H _g O	65	55.59	" unstable
+10	20.51	"	70.04		u 4
15.25	23.86	66	64.8 t	r. pt	FeSO _{4.4} H ₄ O+FeSO ₄ .H ₆ O
20.13	26.5 6	44	68.02	52.31	FeSO ₄ .H _e O
25.02	29.60	44	77	45.90	46
30.03	32.93	4	80.41	43.58	"
35.07	36.87	44	85.02	40.46	"
40.05	40.20	"	90.13	37.27	**
diam of s	at. sol. = 1.21	ro!		, (G	reenish and Smith, 1903.)

SOLUBILITY OF FERROUS SULFATE IN AQ. SOLUTIONS OF LITHIUM SULFATE AT 30°.

AND VICE VERSA. (Schreinemakers, 1910.)

Gms. per 100 Gms. Sat. Sol.		L." Solid Phase.	Gms. per 100	Gms. Sat. Sol.	Solid Phase,
FeSO ₄ . 24.87	Li _k SO ₄ .	FeSO ₄ .7H ₂ O	FeSO ₄ . 15.39 12.68	14504. 16.80 18.31	Li ₂ SO ₄ .H ₂ O
24.45 21.15 18.79	5.58 11.16	u u	5.32 3.74	22.15 23.15	"
16.51 16.11	15.81 16.50	" +Li ₂ SO ₄ .H ₂ O	0	25.1	"

EQUILIBRIUM IN THE SYSTEM FERRIC OXIDE, SULFURIC ACID AND WATER AT 25°. (Cameron and Robinson, 1907.)

(Excess of freshly precipitated ferric hydroxide was added to ferric sulfate solutions of varying concentrations and the mixtures constantly shaken for 4 months.)

d ₂₅ of Sat. Sol.	Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100 Gms. Sat. Sol.		Solid Phase
Sec. 301.	Fe ₂ O ₃ .	SO ₃ .		Fe ₂ O ₃ .	SO ₃ .	
1.001	0.07	0.11	Solid Solution	20.48	26.18	Fe ₂ O ₃ .3SO ₃ .10H ₂ O
1.011	0.62	0.94	"	19.77	28.93	"
1.045	2.03	2.65	"	10.87	31.35	Fe ₂ O ₃ .4SO ₃ 10H ₂ O
1.131	6.18	7.40	"	0.16	35.96	"
1.217	10.03	11.84	"	0.07	41.19	"
1.440	15.90	20.70	"	1.05	42.43	"

SOLUBILITY OF FERRIC SULFATE AND OF FERROUS SULFATE IN AQ. SOLUTIONS OF SULFURIC ACID AT 25°. (Wirth, 1912-13.)

Results for Ferric Sulfate. Results for Ferrous Sulfate. Gms. per 100 Gms. Sat. Sol. Gms. per roo Gms. Sat. Normality of used Acid. Normality of Solid Phase. used Acid. Fo₂O₃ = Fe₁(SO₄)₂, Fo₂O₃ FeSO4. 2.25 9.99 25.02 2.25 19.03 6.685 5.82 14.58 10.2 10.30 5.414 19.84 3.816 FeSO₄.H₂O 0.02 0.05 12.46 7.26 15.15 2.11 4.015 " 0.08 19.84 0.1522

EQUILIBRIUM IN THE SYSTEM FERRIC OXIDE-SULFUR TRIOXIDE-WATER AT 25°.
(Wirth and Bakke, 1914.)

(The mixtures were shaken for 3-4 weeks.)

Gms. per 100 Gms.		go Gms.		Gms. per	100 Gms.		
Sat. Sol.		Sol.	Solid Phase.	Sat. Sol.		Solid Phase.	
	Fe ₂ O ₃ .	SO ₃ .		Fo ₂ O ₃ .	SO ₃ .		
		71.23	not det.	14.49	31.45	unstable	
	0.24	56.84	"	15.71	31.88	u	
	2 52	24 {	prob. Fc ₂ (SO ₄) ₂ .H ₂ SO ₄ .9H ₂ O	20.21	31.30	64	
	3 · 53	34 {	$+Fe_{3}(SO_{4})_{3}.H_{4}SO_{4}{3}H_{2}O$	0.20	27 54	$Fe_2(SO_4)_3.H_2SO_4.8H_2O+$	
	6.65	32.15	Fe ₂ (SO ₄) ₃ .H ₂ SO ₄ .8H ₂ O	9.39	31.54	Fe ₂ (SO ₄) ₂ .9H ₂ O	
	9.39	31.54	" +Fe(SO ₄) ₃ .H ₂ SO ₄ .3H ₂ O	11.06	29.43	Fe ₂ (SO ₄) ₂ .9H ₂ O	
	12.03	31.51	Fe(SO ₄) ₈ .H ₂ SO ₄ .8H ₂ O	13.88	28.33	"	
	13.27	31.84	66	15.23	27.92	•	
	13.68	31.78	unstable	16.07	27.98	44	

Results are also given for the two forms of yellow ferric sulfate (α copiapite and β copiapite) also for ferric hydroxide and sulfate solutions.

It was found that a saturated solution of Fe₂(SO₄)₂.H₂SO₄.8H₂O in abs. alcohol at 25° contained 8 gms. Fe₂O₃ + 17.18 gms. SO₂ (Ratio, 1:4.235) per 100 gms. sat. sol.

The yellow ferric sulfate Fe₂(SO₄)₃.9H₂O is less soluble in alcohol. After 4 weeks shaking at 25°, 100 gms. of the sat. solution in abs. alcohol contained 4.497 gms. Fe₂O₃ and 6.779 gms. SO₃ (Ratio, 1:3.006). Thus the alcoholic solution, just as the aqueous, is considerably more acid than the solid phase with which it is in equilibrium.

100 grams sat. solution in glycol contain 6 gms. FeSO₄ at ordinary temperature. (de Coninck.)
100 gms. anhydrous hydrazine dissolve 1 gm. ferrous sulfate at room temp. with decomposition. (Welsh and Broderson, 1915.)

SOLUBILITY OF MIXTURES OF FERROUS SULPHATE FeSO₄.7H₂O and SODIUM SULPHATE Na₂SO₄.10H₂O in Water.

(Koppel — Z. physik. Chem. 52, 405, '05.)

\$*.		100 Gms.	Gms. per	100 Gms. O. Na ₂ SO ₄ .	Soli	d Phase.
	FeSO4.	Na ₂ SO ₄ .				
0	14.54	4.93	18.06	6.11	$FeSO_4.7H_2O + N_4$	SO4.10HgO
15.5	17.76	11.32	25.05	15.97	44	"
21.8	16.57	15.32	24.34	22.51	FeNag(SO ₄) ₂₋₄ H ₂ C)
24.92	16.21	15.13	23.62	22.04		
35	16.35	14.98	23.91	21.83	44	
40	16.37	15.42	24.01	22.62	•	
18.8	18.13	13.8	26.63	20.28	FeNag(SO ₄) ₂₋₄ H ₂ O	+ FeSO4.7HeO
23	19.58	12.5	28.82	18.4	4	4
27	20.97	11.3	30.95	16.64	•	•
31	22.91	9.71	33.99	14.41	•	-
35	23.85	9.26	35.66	13.85		•
40	26.32	7.85	39.98	11.92	44	44
18.8	18.23	14.83	27.23	22.16	FeNag(SO ₄) ₂₋₄ H ₂ C	OgHot. OSgaN+
23	13.83	18.04	20.31	26.48	"	4
28	7.66	24·4I	11.28	35.94	4	•
31	4.58	29.50	6.95	44.75	4	4
35	4.04	30.49	6.16	46.58	FeNagSO44H3O	- NasCa
40	4.10	30.60	6.27	46.99		•

IRON Potassium SULFATE (Ferrous) FeSO. K. SO. 6H.O.

3	OLUBILITY IN WAT	ER. (10	bler, 1855.)
ť.	Gms. K ₂ Fe(SO ₂) ₂ per 100 Gms. H ₂ O.	ť.	Gms. K ₂ Fe(SO ₂) ₂ per 100 Gms. H ₂ O.
0	19.6	35	4 I
10	24.5	40	45
14.5	29.I	55	56
16	30.9	65	57 · 3
25	26 E	70	64.2

IRON SULFIDE (Ferrous) FeS.

One liter of water, saturated at 18° with precipitated ferrous sulfide, contains 70.1.10⁻⁴ mols. FeS = 0.00616 gm., determined by conductivity method.

(Weigel, 1906, 1907.)

Additional data for the solubility in water are given by Bruner and Zawadzki.

100 gms. anhydrous hydrazine dissolve 9 gms. FeS at room temp. with decomposition.

(Welsh and Broderson, 1915.)

Fusion diagrams for mixtures of FeS + PbS and for FeS + ZnS are given by Friedrich, 1907, 1908.

IRON SULFONATES.

SOLUBILITY OF IRON PHENANTHRENE SULFONATES IN WATER AT 20°.

	Salt.	Gms. Anhydrous Salt per 100 Gms. H ₂ O.		
	2-Phenanthrene	Monosulfonate	5H₂O	0.044
"	3- "	"	5H ₂ O	0.20
"	10- "	"	6H ₂ O	0.16

IRON THIOCYANATE (Ferric) Fe(CNS)s.3H2O.

DISTRIBUTION BETWEEN WATER AND ETHER. (Hantzsch and Vagt, 1901.)
Results at 25°.
Results at Several Temperatures.

Gm. Mols. Fe(Gm. Mols. Fe(•		
H ₂ O Layer (c). Ether Layer (c).			H ₂ O Layer (c).	Ether Layer (c').	ē.	
0.0202	0.0108	ı.87	0	0.0089	0.0167	0.532
0.0119	0.0034	3.51	10	0.0127	0.0128	0.995
0.0066	0.00093	7.07	20	0.0165	0.0091	1.814
0.0035	0.00025	13.95	30	0.0196	0.0059	3.303
			35	0.0207	0.0048	4.32

Results for the effect of HNO₃ upon the distribution at 25° are also given.

ITACONIC ACID CH2:C(COOH)CH2COOH.

Data for the distribution of itaconic acid between water and ether at 25° are given by Chandler, 1908.

KERATIN

100 gms. H₂O dissolve 8.71 gms. keratin at 20–25°. (Dehn, 1917.)
100 gms. aq. 50% pyridine dissolve 16 gms. keratin at 20–25°.

Pyridine mixes with keratin in all proportions at 20–25°. "

KRYPTON Kr. SOLUBILITY IN WATER. (von Antropoff, 1909-10.)

(Results in terms of coefficient of absorption as defined by Bunsen, see p. 227, and modified by Kuenen in respect to substituting mass for volume of water involved.)

t°.	Abs. Coef. (First Series).	Abs. Coef. (Second Series
0	0.1249	0.1166
10	0.0965	0.0877
20	0.0788	0.0670
30	0.0762	0.0597
40	0.0740	0.0561
50	0.0823	0.0610

The cause of the differences between the first and second series of results was not ascertained by the author.

LACTIC ACID (i) CH, CHOHCOOH.

DISTRIBUTION BEIWEEN WATER AND ETHER.

	esults at 15°. cid per Liter:	•		esults at 27.5°. Acid per Liter:	(w)
Ho Layer (w).	Ether Layer (e).	₩.	H _s O Layer (w).	Ether Layer (e).	<u>(*)</u>
1.98	0.215	9.19	1.354	0.130	10.42
1.351	0.133	10.15	0.3203	0.0278	11.52
0.297	0.0246	12.08	0.1855	0.0156	11.89
0.1448	0.0118	12.27		•	•
0.0548	0.0046	11.88			

F.-pt. data for mixtures of trichlorolactic acid and dimethylpyrone are given by Kendall, 1914.

LACTOSE (see sugars, pages 695-7).

LANTHANUM BROMATE La(BrO₁)₃.9H₂O.

100 gms. H₂O dissolve 28.5 gms. lanthanum bromate at 15°.

(Marignac.)

LANTHANUM CITRATE 2(LaC2H5O7).7H2O.

100 gms. aq. citric solution containing 10 gms. citric acid per 100 cc., dissolve 0.8 gm. La($C_0H_0O_7$) at 20°. (Holmberg, 1907.)

LANTHANUM CobaltiCYANIDE La2(CoC4N4)2.9H2O.

100 gms. aq. 10% HCl ($d_{16} = 1.05$) dissolve 10.41 gms. salt at 25°. (James and Willand, 1916.)

LANTHANUM GLYCOLATE La(C₂H₂O₃)₂.

One liter H₂O dissolves 3.328 gms. La(C₂H₂O₃)₃ at 20°. (Jantach and Grunkraut, 1912-13.)

LANTHANUM IODATE La(IO1)1.

SOLUBILITY IN WATER AND IN AQ. SALT SOLUTIONS AT 25°. (Harkins and Pearce, 1916.)

1000 gms. H₂O dissolve 0.6842 gm. La(IO_3)₃ at 25°, d_{34} sat. sol. = 0.99825.

	_						•
Salt.	Conc. of Salt, Milli- Normal.	Gms. Li(IO ₂) ₂ per Liter.	$d_{\underline{a}\underline{a}}$ of Sat. Sol.	Salt.	Conc. of Salt, Milli- Normal.	Gms. Li(IO ₂) ₂ per Liter.	d _{ag} of Sat. Sol.
La(NO)	0.5595	0.99732	NaNO ₃	25	0.86901	1.00250
"	5	0.5288	0.99807	"	50	0.99040	1.00385
44	10	0.5194	0.99859	"	100	1.1603	1.00742
46	50	0.5522	1.00212	"	200	1.385	1.01290
66	100	0.6214	1.00661	"	400	ı.Ğ3Ğ	1.02422
"	200.52	0.7431	1.01533	"	800	2.156	1.04677
KIO ₃	0.0990	0.6290	1.00030	"	1600	2.859	1.00005
46	0.4957	0.5633	1.00027	"	3200	3.030	I.17243
44	0.9914	0.4970	1.00030	La(NO ₃) ₃ .		0.631	1.00112
46	I.9828	0.3738	1.00031	2NH ₄ NO ₁	• ,	0.031	1.00112
NaIO _s	0.0913	0.63538	1.00060	"	52.68	0.674	1.00355
"	0.4560	0.56466	1.00059	"	105.36	0.754	1.00971
44	0.9130	0.50835	1.00065	**	158.04	0.816	1.01608
66	1.8260	0.39938	1.00065	66	196.83	0.867	1.02183
"	3.6530	0.19736	1.00069	66	393.67	1.063	1.04343
46	4.5326	0.13393	1.00083	66	787.35	I.364	1.08286
"	6.7989	0.09733	1.00130	66	1574.70	I.923	1.16652

According to Rimbach and Schubert (1909), one liter H₂O dissolves 1.681 gms. Li(IO₃)₃ at 25°, determined chemically, and 1.871 gms. determined electrolytically; solid phase, 2La(IO₃)₃.3H₂O.

LANTHANUM MALONATE Las(C₂H₂O₄)₂.5H₂O.

100 gms. aq. Am. malonate sol. (10 gms. per 100 cc.) dissolve 0.2 gm. $La_1(C_bH_2O_4)$ 100 gms. aq. malonic acid sol. (20 gms. per 100 cc.) dissolve 0.6 gm. t at 20°. (Holmberg, 1907.)

LANTHANUM MOLYBDATE Laz(MoO4)2.

One liter H₂O dissolves 0.0179 gm. La₂(MoO₄), at 25° and 0.0332 gm. at 85°. (Hitchcock, 1895.

LANTHANUM Ammonium NITRATE La(NO₃)_{3.2}NH₄NO₂.

100 gms. H₂O dissolve 181.4 gms. La(NO₂)₂.2NH₄NO₂ at 15°. (Holmberg, 1907.)

LANTHANUM; Double NITRATES.

Solubility of Lanthanum Double Nitrates in Conc. HNO₂($d_{14} = 1.325$) At 16°. (Jantsch, 1912.)

	Salt.		F	ormula.		Gms. Hydrated Salt Dissolved per Liter Sat. Sol.
Lanthanur	n Magnesium	Nitrate	[La(NO _s)).laMgs.2	4H•O	63.8
"	Nickel	"	,,,,	Nie	""	80.3
"	Cobalt	"	"	Coa	"	100.2
"	Zinc	"	"	Zn.	"	124. I
"	Manganese	"	"	Mn _s	"	193.1

LANTHANUM NITRATE La(NO₁)₂.

SOLUBILITY OF LANTHANUM NITRATE IN AQUEOUS SOLUTIONS OF LANTHANUM OXALATE AT 25° AND VICE VERSA. (James and Whittemore, 1912.)

Gms. per roo Gms. Sat. Sol.		Solid Phase.	Gms. per 100	Gms. Sat. Sol.	Solid Phase.
$La_2(C_2O_4)_3$.	La(NO ₂) ₃ .	Sond Phase.	Lag(CgO4)3.	La(NO ₂) ₃ .	Soud Phase.
0	60.17	La(NO ₂) ₂	not det.	not det.	$La_2(C_2O_4)_3.5H_2O$
0.67	59.91	"	3.32	42.27	Lag(CgO ₂) ₃ .8HgO
2.10	59.03	"	2.80	38.50	
2.23	59.03	" +Lag(CgO ₄)g-3HgO	2.51	35.57	"
2.26	58.22	Lag(C ₂ O ₄) ₂₋₃ H ₂ O	2.21	31.53	44
2.34	55.20	" .	2.01	28.63	û.
2.47	52.74	4	1.46	22.15	44
2.59	49.84	u	1.18	17.99	u
2.68	45.26	и	0.50	9.89	"
not det.	not det.	$La_2(C_2O_4)_3.5H_2O$	0.28	5.06	•

LANTHANUM OXALATE $La_2(C_1O_4)_3.9H_2O$.

One liter water dissolves 0.00062 gm. La₂(C₂O₄)₃ at 25°, determined by electrolytic method.

(Rimbach and Schubert, 1909.)

100 gms. aq. 10.2% HNO₂ (d = 1.063) dissolve 0.80 gm. La₂(C₂O₄)₂ at 15°. (v. Scheele, 1899.) 100 gms. aq. 19.4% HNO₂ (d = 1.116) dissolve 2.69 gms. La₂(C₂O₂)₂ at 15°.

SOLUBILITY OF LANTHANUM OXALATE IN AQ. SOLUTIONS OF SULFURIC ACID AT 25°. (Hauser and Wirth, 1908; Wirth, 1908; Wirth, 1912.)

Normal- ity of H ₂ SO ₄ .	Sat.	roo Gms. Sol. La ₂ (C ₂ O ₄) ₂	Solid Phase.	Normal- ity of H ₂ SO ₄ .	Sat	roo Gms. Sol.	Solid Phase.
0.1	0.0208	0.0346	La ₂ (C ₂ O ₄) ₃ .9H ₂ O	2	0.4417	0.7344	$La_{2}(C_{2}O_{4})_{3}.9H_{2}O$
0.5	0.0979	0. 1629	"	3.09	0.680	1.1306	"
I	0.2383	0.3962	"	4.32	0.880	1.4630	"
1.5	0.310	0.5304	"	5.6	I.002	1.8155	"

SOLUBILITY OF LANTHANUM OXALATE IN AQ. SOLUTIONS OF OXALIC ACID.

AT 25°. (Hauser and Wirth, 1908.)

Normality of Aq. Oxalic Acid.	Gms. per 100 Gm	s. Sat. Sol.	Solid Phase.	
	La ₂ O ₂ =	Lag(CrOs)2.	I. (CO) aHO	
0.I I.O	unweighable	0.00053	$La_2(C_2O_4)_3.9H_2O$	
3.2 (sat.)	0.00032 0.00045	0.00053 0.00075	. "	

Results are also given for the solubility in mixtures of sulfuric and oxalic acids. 100 cc. aq. 20% triethylamineoxalate dissolve approx. 0.032 gm. La₂(C₂O₄)₃.

(Grant and James, 1917.)

LANTHANUM Dimethyl PHOSPHATE La₂[(CH₃)₂PO₄]_{6.4}H₂O.

100 gms. H₂O dissolve 103.7 gms. La₂[(CH₃)₂PO₄]₆ at 25°. (Morgan and James, 19924.)

LANTHANUM SULFATE La2(SO4)3.9H2O.

	SOLUBILITY I	N WATER.	(Muthmann and Rölig, 1898.)				
ť.	Gms. Lag(SO4)3	per 100 Gms.	Gms. Lag(SO ₄)2 per 100 Gm				
ь.	Solution.	Water.	. . ~	Solution.	Water.		
0	2.91	3	50	I .47	1.5		
14	2.53	2.6	75	0.95	0.96		
30	r.86	1.9	100	0.68	0.69		

SOLUBILITY OF LANTHANUM SULFATE IN AQ. SOLUTIONS OF AMMONIUM SULFATE, POTASSIUM SULFATE AND SODIUM SULFATE. (Batte, 1910, 1911.)

In Aq. (NH₄)₂SO₄ at 18°. In Aq. K₂SO₄ at 16.5°. In Aq. Na₂SO₄ at 18°.

Gms. per 100	Gms. H ₂ O.	Solid	Gms. per 10	o Gms. H ₂ O.	Solid	Gms. per re	o Gms. H ₂ O.	Solid
(NH4),SO4.	Lag(SO4)3.	Phase.	K ₄ SO ₄ .	Lag(SO4)3.	Phase.	Na ₂ SO ₄ .	Lag(SO4)3.	Phase.
4.01	0.393	1.1.2	0	2.198	1.0.9	0	2.130	1.0.9
8.73	0.279	"	0.247	0.727	I.I.2	0.395	0.997	1.1.2
18.24	0.253	"	0.496	0.269	"	0.689	0.353	"
27.80	0.476*	"	0.846	0.185	"	0.774	0.200	"
	0.277*	"	1.020	0.054	1.5	1.136	0.120	"
-	0.137	2.5	1.156	0.022	ű	2.480	0.044	"
	0.067	_	•			3.802	0.010	"
	0.0117	1.5				5.548	_,	"
73.78.	0.0033	"	_					

unstable equilibrium.

1.0.9 = La₂(SO₄)_{3.9}H₂O₁ 1.1.2 = La₂(SO₄)₃. X_2 SO_{4.2}H₂O (where $X = (NH_4)$, K or Na), 2.5 = 2La₂(SO₄)_{3.5}(NH₄)₂SO₄, 1.5 = La₂(SO₄)_{3.5} X_2 SO₄.

SOLUBILITY OF LANTHANUM SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 25°. (Wirth, 1912.)

Normality of Aq. H ₂ SO ₄ .	Gms. per ro Sat. S $La_2O_3 = L$	iol.	Solid Phase.	Normality of Aq. H ₂ SO ₄ .	Sa	t. Sol. Lag(SO _d) ₃ .	Solid Phase.
Water	1.43 2	.483	Lag(SO _d)3.9HgO	4.321	I.II	1.927	Lag(SO ₄)3-9HgO
0.505	1.69 2		u'	6.685	0.531	0.9217	"
1.10	1.796 3	811.	"	9.68	0.266	0.4617	4
2.16	1.818 3	.156	"	12.60	0.214	0.371	4
3 ·39	1.42 2	.465	"	15.15	0.177	0.307	4

Data for the solubility of lanthanum sulfate in aq. H₂SO₄ in presence of solid oxalic acid at 25° are given by Wirth, 1908.

LANTHANUM SULFONATES.

SOLUBILITY OF EACH IN WATER.

Sulfonate. Formula.	Anhydro Sulionat per 100 Gms. H	e Authority.
Lanthanum Benzene Sulfonate La[CaHaSOa]a.9HaO	63.1	(Holmberg, 1907.)
" m Nitrobenzene Sulfonate La[C4H4NO3SO3]3.6H4O	ıĞ	"
" m Chlorbenzene Sulfonate La[CaHaCl.SOala.9HaO	13.1	" •
" m Brombenzene " La[C ₄ H ₄ Br.SO ₂] _{2.9} H ₂ O	12.9	4
" (6) Chloro (3) Nitrobenzene (1) Sulfo- La[C ₆ H ₆ Cl(NO ₆)SO ₆] _{6.8} H ₄		u
"(1) Bromo (4) Nitrobenzene (2) nate La[C ₄ H ₄ BrNO ₄ SO ₅ l ₄ .8H ₄ C	5	(Katz & James, '13.)
" α Naphthalene Sulfonate La[C ₁₀ H ₇ SO ₂] _{3.6} H ₆ O	5.2	(Holmberg, 1907.)
" 1.5 Nitronaphthalene Sulfonate La[CuH4(NO)SO11.6H4C	0.5	5 "
" 1.6 " " .9H ₂ C	0.2	I "
" I.7 " " .9He0	1.1	

LANTHANUM TARTRATE La₂(C₄H₄O₆)₂₋₉H₂O.

One liter H_2O dissolves 0.059 gm. $La_2(C_4O_4O_6)_2$ at 25° (solid phase $La_2(C_4H_4O_6)_3$. 3 H_2O). Determined by electrolytic method. (Rimbach and Schubert, 1909.)

SOLUBILITY OF LANTHANUM TARTRATE IN AQ. TARTARIC ACID AND AMMONIUM TARTRATE SOLUTIONS AT 20°. (Holmberg, 1907.)

In Aq. Tar	taric Acid.	In Aq. Ammonium Tartrate.			
Gms. Tartaric Acid per 100 cc. Solvent.	Gms. La ₁ (C ₁ O ₄ O ₃); per 100 Gms. Sat. Sol.	Gms. Am. Tartrate per 100 cc. Solvent.	Gms. Le ₂ (C ₁ H ₂ O ₂) ₂ per roo Gms. Sat. Sol.		
20	0.6	10	0.2		
40	I.2	20	0.6		

LANTHANUM TUNGSTATE Las(WO4)2.

One liter H₂O dissolves 0.0117 gm. La₂(WO₄)₃ at 27° and 0.0236 at 65°.

LAURIC ACID C11H21COOH.

SOLUBILITY IN ALCOHOLS. (Timofeiew, 1894.)

Alcohol.	t°.	Gms. C ₁₇ H _{ss} COOH pe roo Gms. Sat. Sol.	Alcohol.	t°.	Gms. C ₁₂ H ₂₂ COOH per roo Gms. Sat. Sol.
Methyl Alcohol	0	14.8	Propyl Alcohol	0	21.5
"	2 I	58.6	"	21	52.6
Ethyl Alcohol	0	20.5	Isobutyl Alcohol	0	18.4
"	21	57·3	"	21	49 · 7

LEAD Pb.

An extensive investigation of the solubility of lead in the water passing through lead pipes is described by Paul, Ohlmüller, Heise and Auerbach, 1906. The solubility is increased by oxygen, CO₂, sulfates and perhaps other salts; it is decreased by hydrocarbonates.

Solubility of Lead in Liquid Ammonia-Sodium Solutions at -33°. (Smith, F. H., 1917.)

Gm. Atoms Sodium per Liter of Liquid Ammonia.	Gm. Atoms Pb Dissolved per Gm. Atom Na.	Gm. Atoms Na per Liter of Liquid Ammonia.	Gm. Atoms Pb Dissolved per Gm. Atom Na.
0.078	1.95	0.13	2.17
0.093	2.20	0.14	2.12
0.094	2.03	0.33	1.83
0.110	2.24	0.34	1.73
O. I2	1.78	•	

LEAD ACETATE Pb(C₂H₂O₂)_{2.3}H₂O.

100 gms. H₂O dissolve 55.04 gms. Pb(C₂H₂O₂)₂ at 25°. (Jackson, 1914.)

EQUILIBRIUM IN THE SYSTEM LEAD OXIDE, ACETIC ACID, WATER AT 25°. (Sakabe, 1914.)

Gms. per roc	Gms. Sat. Sol	Solid Phase.	Gms. per 100	Gms. Sat. Sc	ol. Solid Phase.
PbO.	СН,СООН.	Sond Phase.	PbO.	CH,COOH	· Soud Phase.
4.18 3.80	21.53 16.78	Pb(C ₂ H ₂ O ₂) ₂₋₃ H ₂ O "	7.15	7.26	(C ₂ H ₄ O ₂)(HO)Pb+ (C ₂ H ₄ O ₂) ₂ Pb. ₂ (HO) ₂ Pb
3.16	13.07	u	5.20	5.61	(C ₂ H ₂ O ₂) ₂ Pb.2(HO) ₂ Pb
2.64	5.49	u	3.78	4.17	46
3.34	5.36	æ	2.89	2.51	4
4.38	7.30	4	1.45	1.03	66
5.18	7.92	" +(С,Н,О,)(НО)РЬ	1.05	0.54	РЬО
š·59	7.72	(C ₂ H ₂ O ₂)(HO)Pb	1.07	0.48	16
6.51	7 · 79	"	I	0.20	u

Equilibrium was attained quickly in the acid solutions but 2-3 days were required in case of the basic salts. Both sat. solutions and solid phases were analyzed.

EQUILIBRIUM IN THE SYSTEM LEAD ACETATE, LEAD OXIDE, WATER AT 25°. (Jackson, 1914.)

dan of	Gms. per roc	Gms. Sat. Sol.	Solid	dan of	Gms. per 10	o Gms. Sat. S	iol. Solid
Sat. Sol.	PbO.	Pb(C ₂ H ₄ O ₂) ₂ .	Phase.	Sat. Sol.	PbO.	Pb(C,H,O,)	Phase.
1.326	-o.27*	35.19	1.3	2.280	24.74	49.21	3.1.3+1.2.4
I.334	' +o.10	35.60	"	2.048	23.59	43.17	1.2.4
1.367	1.01	37.14	"	1.951	22.78	40.78	"
I.422	3.38	38.93	"	1.657	19.63	31.40	66
1.531	6.01	41.95	"	1.599	18.73	29.63	66
1.658	9.47	44.7I	"	1.382	14.62	20.96	"
	14.22	47.88	"	1.348	13.41	19.65	"
1.852	14.44	47.92	"	1.229	10.66	12.99	"
	15.89	48.95 1.	3+3.1.3	1.157	8.47	8.64	66
1.930	15.90	48.42	3.1.3	1.119	7.87	5.27	"
1.942	16.25	48.85	"	1.117	7.79	5.25	66
1.956	16.65	49.04	"		7.17	4.17	Pb(OH) ₂
2.024	18.83	48.71	"	1.100	6.84	4.31	"
2.161	22.23	48.52	"	1.005	6.54	4.25	"
2.193	22.94	48.96	"	1.085	5.91	3.82	u
	23.28	49.14	"	1.075	5.29	3.40	"
2.220	23.53	49.01	"		0.20	0.11	"
	•	In this case th	ne acidity is	expressed	in terms of	PbO.	

1.3 = Pb(C₂H₃O₂)_{2.3}H₂O, 3.1.3 = 3Pb(C₂H₃O₂)₂.PbO.3H₂O, 1.2.4 = Pb(C₂H₃O₂)₂-2PbO.4H₃O.

The above results show the solubility of lead acetate in aqueous solutions containing increasing amounts of lead hydroxide. The mixtures were constantly agitated for periods varying from 2 to 7 days. Both the saturated solutions and the solid phases were analyzed. The basic lead in a given sample was determined by measuring the volume of standard acid neutralized by it. The neutral lead acetate was determined by precipitation of the lead as sulfate or as oxalate.

SOLUBILITY OF LEAD ACETATE IN AQ. SOLUTIONS OF POTASSIUM ACETATE AT 25°.
(Fox, 1909.)

Gms. per 10	o Gms. Sat. Sol.	C I'I W
CH,COOK.	(CH ₂ COO) ₂ Pb.	Solid Phase.
0	35.9	(CH ₃ COO) ₂ Pb. ₃ H ₂ O
13.87	38.05	"
15.40	36.00	46

SOLUBILITY OF LEAD ACETATE IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL AT 25°. (Seidell, 1910.)

Wt. % C ₂ H ₄ OH in Solvent.	d _m of Sat. Sol.	per roo Gms Sat. Sol.	. Solid I hase.	Wt. % C₂H₅OH in Solvent.	d₃ of Sat. Sol.	Gms. (C ₂ H ₂ O ₂) ₂ P per 100 Gm: Sat. Sol.	soud France.
0	I.343	36.5 (C2H2O2)2Pb.3H2O	70	0.955	12.4	$(C_2H_2O_2)_2Pb3H_2O$
10	1.275		"	80	0.907	9.4	"
20	1.215	28.6	"	81	0.905	9	"
30	1.157	25	"	85	0.855	4	$(C_2H_3O_2)_2Pb$
40	1.105	21.0	. "	go	0.826	1.6	"
50	1.055	18.7	"	95	0.806	0.6	"
60	1.002		"	100	0.790	0.4	"

100 gms. 95% formic acid dissolve 0.99(?) gm. Pb(C₂H₂O₂)₂ at 19.8°. (Aschan, 1913.) 100 gms. anhydrous lanolin (m. pt.46°) dissolve 1.1 gm. Pb(C₂H₂O₂)₂ at 45°. (Klose, '97.) 100 gms. glycerol dissolve about 20 gms. Pb(C₂H₂O₂)₂ at 15°. (Osendowski, 1907.)

LEAD ARSENATE PhHAsO4.

Two gm. portions of amorphous dilead arsenate were agitated at 32° with 90 to 180 cc. portions of 0.0338 normal aqueous ammonia for two days. The saturated solutions were found to contain only traces of lead but amounts of As₂O₅ varying from 1.956 to 1.429 gms. per liter. (McDonnell and Smith, 1916.)

LEAD BENZOATE Pb(C7H4O2)2.H2O.

SOLUBILITY IN WATER. (Pajetta, 1906.)

t°. 18°. 40.6°. 49°. Gms. Pb(C₇H₆O₂)₂ per 100 gms. sat. sol. 0.149 0.249 0.310

LEAD BORATE Pb(BO₂)₂.H₂O.

100 cc. anhydrous hydrazine dissolve about 2 gms. Pb(BO₂)₂ at room temp.
(Welsh and Broderson, 1915.)

LEAD BROMATE Pb(BrO₂)₂.H₂O.

100 gms. water dissolve 1.32 gms. Pb(BrO₃)₃ at 19.94°. (Rammelsberg, 1841; Böttger, 1903.)

LEAD BROMIDE PbBr.

SOLUBILITY IN WATER. (Lichty — J. Am. Chem. Soc. 25, 474, '03.)

t°.	Density of Solutions,	Gms. PbB	ra per 100	Milligram Mols. PbBry per 100		
6 ~.	H ₂ O at o°.	cc. Solution.	Gms. H _g O.	cc. Solution.	Gms. H _g O.	
0	1.0043	0.4554	0.4554	I .242	1.242	
15	1.0053	0.7285	0.7305	1.987	1.989	
25	1.0061	0.9701	0.9744	2.646	2.655	
35	1.0060	1.3124	1.3220	3·577	ვ.60ვ	
45	1.0059	1.7259	I -7457	4.705	4.760	
55	1.0046	2 - 1024	2.1376	5.73I	5.827	
65	1 .0028	2.516	2.574	6.859	7.016	
80	1.0000	3.235	3 · 343	8.819	9.113	
95	0.9995	4.1767	4.3613	11.386	11.890	
100	•••	4.550	4.751	12.40	12.94	

SOLUBILITY OF LEAD BROMIDE IN AQUEOUS HYDROBROMIC ACID AT 10°.

100 grams H₂O containing 72.0 grams HBr dissolve 55.0 grams PbBr₂ per 100 gms. solvent, and solution has Sp. Gr. 2.06.

(Ditte - Compt. rend. 92, 719, '81.)

SOLUBILITY OF LEAD BROMIDE IN PYRIDINE. (Heise, 1912.)

t.	Gms. PbBr ₂ per 100 Gms. Pyridine.	Solid Phase.	t°.	Gms. PbBr ₂ per 100 Gms. Pyridin	e. Solid Phase.
-26	1.02	PbBr ₂₋₃ C ₄ H ₄ N	45	0.661	PbBr2.2CaHaN
— 10	o.89	a	64	0.800	66
- 5	0.84	"	77	0.969	"
Ö	0.80	"	95	1.33	"
+13	0.661	44	100	I.44	•
19 tr. p	ot	" +PbBr2.2C4H4N	105	1.56	•
26	0.583	PbBr ₂₋₂ C ₄ H ₄ N	٠.	_	

FREEZING-POINT DATA (Solubility, see footnote, p. 1) ARE GIVEN FOR THE FOLLOWING MIXTURES OF LEAD BROMIDE AND OTHER COMPOUNDS.

Lead	Bromide	+ Lead Chloride	(Mönkemeyer, 1906.)
"	44	+ Lead Iodide	**
44	44	+ Lead Fluoride	(Sandonnini, 1911.)
66	**	+ Lead Oxide	(Sandonnini, 1914.)
44	"	+ Mercuric Bromide	(Sandonnini, 1912, 1914.)
66	44	+ Silver Bromide	(Matthes, 1911.)

LEAD Dicyclohexyl DiBROMIDE (C₄H₁₁)₂PbBr₂.

LEAD Dicyclohexyl DiCHLORIDE (C₆H₁₁)₂PbCl₂.

SOLUBILITY OF EACH IN SEVERAL SOLVENTS AT 22.5°. (Grüttner, 1914.)

Solvent.	Grams per 100 Grams Solvent.			
Solvent.	(CaHil) aPbBra.	(C _a H ₁₁) _a PbCl _a		
Benzene	0.014	0.016		
Carbon Tetrachloride	0.004	0.004		
Chloroform	0.078	0.083		
Alcohol + Pyridine (1:1)	2.560	2.904		

Similar results are also given for lead tetracyclohexyl, $Pb(C_6H_{11})_4$, lead tetraphenyl, $Pb(C_6H_6)_4$, and lead diphenyldicyclohexyl, $Pb(C_6H_6)_2(C_6H_{11})_2$.

Solvent.	Gms. per 100 Gms. Solvent.			
Solvent.	Pb(CaHu)4.	Pb(CaHa)4.	Pb(C4H4)2(C4H11)2.	
Alcohol	0.010	0.020	0.324	
Benzene	1.068	1.145	2.298	
Carbon Tetrachloride	0.244	0.303	0.845	
Ethyl Acetate	0.030	0.123	0.231	

LEAD CAPROATE, CAPRYLATE, CAPRATE, etc.

SOLUBILITY OF EACH IN ETHER AND IN PETROLEUM ETHER. (Neave, 1912.)

Lead Salt.	Melting point.	Gms. Salt per	Ethyl Ether		y in Pet. Ether.
Desti Satt.	meiting pomit.	At 20°.	At B. pt. of Sat. S	ol. At 20°.	At B. pt. of Sat. Sol.
Pb Caproate	73-74		1.364		0.0608
" Heptylate	90.5-91.5	0.2397	1.490	0.020	0.0528
" Caprylate	83.5-84.5	0.0038	0.546 p	oractically ins	iol. 0.0384
" Nonylate	94-95	0.1115	0.2404	"	0.0450
" Caprate	100	0.0200	0.4285	46	0.0170
" Myristate	107 p	ractically inso	ol. 0.0555	"	0.0210
" Laurate	103-104	"	0.0205	"	practically insol.
" Palmitate	Ĭ12 ·	"	0.0261	"	- "
" Stearate	125	"	practically in	sol. "	0.0170

The ethyl ether was distilled over sodium. Petroleum ether distilling between 40°-60° was used. The solutions were stirred constantly at 20°. A definite volume of the sat. solution was evaporated to dryness and residue weighed in each case.

LEAD CARBONATE PbCOs.

SOLUBILITY IN WATER BY ELECTRICAL CONDUCTIVITY METHOD. (Kohlrausch and Rose, 1893; Böttger, 1903.)

I liter of water dissolves 0.0011 - 0.0017 gm. PbCO₃ at 20°.

SOLUBILITY OF LEAD CARBONATE (NEUTRAL) IN AQUEOUS SOLUTIONS OF CARBON DIOXIDE AT 18°.
(Pleissner, 1907.)

Millimols	per Liter.	Milligrams per Liter.		
CO ₁ .	PbCO ₁ .	CO ₂ .	PbCO ₈ .	
0	0.008	0	1.75	
0.064	0.029	2.8	6	
0.123	0.034	5 · 4	7	
0.328	0.040	14.4	8.2	
0.592	0.048	26	9.9	
o.988	0.053	43 - 5	10.9	
2.40	0.076	106	15.4	

A determination of the solubility of basic lead carbonate in water gave 1.6 mg. Pb₂(CO₂)₂(OH)₂ per liter = 1.3 mg. Pb or 0.006 millimol Pb.

Data for equilibrium in the system composed of $K_2CO_3 + PbCO_3 + K_2CrO_4 + PbCrO_4$ at 25° are given by Goldblum and Stoffella, 1910.

Data for equilibrium by lead carbonate precipitation in aq. solutions of sodium salts at 25° are given by Herz, 1911.

LEAD CHLORATE Pb(ClO₂)₂.H₂O.

100 grams H₂O dissolve 151.3 gms. Pb(ClO₂)₂, or 100 gms. sat. solution contain 60.2 gms. Pb(ClO₂)₂ at 18°. Density of solution, 1.947. (Mylius and Funk, 1897.) 100 gms. H₂O dissolve 440 gms. Pb(ClO₂)₂ at 18°, $d_{18} = 1.63$. (Carlson, 1910.)

LEAD CHLORIDE PbCla.

SOLUBILITY IN WATER. (Lichty; see also Formanek, 1887; Bell, 1867; Ditte, 1881.)

	Density	Gms. PbCl	2 per 100	Milligram Mol	. PbCl ₂ per 100
t°.	of Solutions, H ₂ O at o°.	cc. Solution.	Gms. H ₂ O.	cc. Solution.	Grams H ₂ O.
0	1.0066	0.6728	0.6728	2.421	2.42I
15	1.0069	0.9070	0.9090	3.265	3.272
25	1.0072	1 .0786	1.0842	3.882	3.903
35	1.006o	1.3150	I . 3244	4.733	4.767
45	I .0042	1.5498	1 . 5673	5 · 579	5 .644
5 5	I .0020	1 . 80 19	1 .8263	6.486	6.573
65	0.9993	2.0810	2.1265	7 - 490	7.651
80	0.9947	2.5420	2.6224	9.150	9 · 439
95	0.9894	3 ·0358	3.1654	10.926	11.394
100		3 . 208	3.342	11.52	12.01

SOLUBILITY OF LEAD CHLORIDE IN AQUEOUS SOLUTIONS OF ACETIC ACID AT 25°. (Hill, 1917.)

Normality of Acetic Acid.	Dissolved PbCl ₂ .		Normality	Dissolved PbCl ₂ .		
	Gms. per Liter.	Equiv. per Liter.	of Acetic Acid.	Gms. per Liter.	Equiv. per Liter.	
0	10.77	0.07753	0.465	10.27	0.07392	
0.05	10.82	0.07782	0.929	9.45	0.06803	
0.10	10.85	0.07717	1.845	7.90	o.o5 686	
0.20	10.70	0.07703	3.680	5.26	0.03788	

SOLUBILITY OF LEAD CHLORIDE IN AQUEOUS AMMONIUM CHLORIDE AT 22°. (Brönsted, 1911.)

Gm. Equivalents per Liter.		Solid Phase.	Gm. Equiva	Solid Phase.	
NH ₄ Cl.	PbCl ₂ .	Sond Phase.	NH ₄ Cl.	PbCl2.	Sond Prase.
0	0.0749	PbCl ₂	0.8	0.0087	NH ₄ Cl.2PbCl ₂
O. I	0.0325	a a	I	0.0080	44
0.2	0.0194	4	1.5	0.0073	44
0.4	0.0138	4	2.5	0.0092	"
0.5	0.0130	44	4	0.0182	44
0.52	0.0127	" +NH4Cl.2PbCl2	6	0.0473	4.
0.55	0.0123	NH ₄ Cl. ₂ PbCl ₂	7.29	0.0898	" +NH(CI
0.65	0.0105	44	7.29	0	NH ₄ Cl

For additional results at 25.2° see von Ende, 1901.

SOLUBILITY OF LEAD CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID.

Results at 18°.	(Pleisaner, 1907.)	Results at 25.2°. (von Ende, 1901.)				
Normality of HCl.	Gms. PbCl ₂ per Liter.	Normality of HCl.	Millimols PbCl ₂ per Liter.	Normality of HCl.	Millimols PbCl ₂ per Liter.	
0	9.34	0	38.8	1.026	4.41	
0.0001	9.305	0.0045	37.35	2.051	5.18	
0.0002	9.300	0.0151	33 · 75	3.085	7.78	
0.0005	9.243	0.0452	25.46	5	19.38	
0.00102	9.200	0. 1850	10.25	7.5	65.8 6	
0.0102	8.504	0.5142	5.37	12.05	164.30	

SOLUBILITY OF LEAD CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID.

(At o°, Engel — Ann. chim. phys. [6] 17, 359, '89; at 25°, Noyes — Z. physik. Chem. 9, 623, '92; at different temperatures, Ditte — Compt. rend. 92, 718, '81; see also Bell — J. Chem. Soc. 21, 350, '68.)

Gms. HCl	Gms. PbCl ₂ per Liter at:		Gms. HCl per 100	Gms. PbCl2 per 100 Gms. Solution at:				
per Liter.	·•.	250.	Gms. H ₂ O.	o°. ´	20°.	40°.	55°•	°.
0	5.83	10.79	0	8.0	8.11	17.0	21.0	31.0
0.5	4.5	9.0	100	I . 2	I · 4	3.2	5 · 5	12.0
1.0	3.6	7.6	150	1.5	2.0	5.0	7 · 5	16.0
2.0	2.2	6.0	200	3.5	5.0	8.2	11.7	21.5
3.0	1.6	5.0	250	6.5	8.0	13.0	16.2	28.5
3.0 6	I ·4	3.1	300	10.7	12.5	17.5	22.0	35.0
10	I . 2	1.8	400	21.5	24.0	• • •	• • •	• • •
100	I . 2	• • •						
200	5.2	• • •						
250	10.5	• • •						
300	17.5	• • •						
400	40.0	• • •						

SOLUBILITY OF LEAD CHLORIDE IN AQUEOUS SALT SOLUTIONS AT 25°.

(Noyes; in HgCl₂ solutions at 20°, Formanek — Chem. Centralb. 270, '87.)

In Aqueous Solutions of:

HCl, KCl, MgCl ₃ , CaCl ₃ , MnCl ₃ and ZnCl ₃ Gram Equivalents per Liter of:		In CdCle Gram Equiv. per Liter.		In HgCle Gram Equiv. per Liter.		In Pb(NO ₂) ₂ Gram Equiv. per Liter.	
Salt.	PbCl ₂ .	CdCl ₂ .	PbCl ₂ .	HgCl ₃ .	PbCl ₂ .	Pb(NO ₂) ₂ .	PbCl ₂ .
0.0	0.0777	0.00	0.0777	0.0	0.0777	0.0	0.0777
0.05	0.050	0.05	0.0601	0.1	0.0992	0.2	0.0832
0.10	0.035	0.10	o ·0481				
0.20	0.021	0.20	0.0355				

The above results were calculated to grams per liter plotted on cross-section paper, and the figures in the following table read from the curves.

Gms.	Salt	Grams PbCl ₂ per Liter in Aqueous Solutions of:								
per Liter.	aa.	KCI.	MgCl ₂ .	CaCl ₂ .	MnCl ₂ .	ZnCl ₃ .	CdCl ₂ .	H	gCl ₂ .	Pb(NO ₃) ₃
0	10.79	10.79	10.79	10.79	10.79	10.79	10.79	10.790	N) 9.71	F) 10.79
I	8.5	9.3	7.7	8.7	9.5	• • •	10.2	0.11	9.8	10.8
2	6.5	8.2	6.5	7.6	8.3	• • •	9.7	11.4	10.0	10.85
3	5.2	7.2	5 · 7	6.7	7 · 3	• • •	9.2	11.7	10.3	10.87
4	4.3	6.5	5.2	6.0	6.3	• • •	8.6	12.0	10.5	10.90
6	3.2	5.3	4.4	4.8	5.0		7 · 7	12.7	11.0	10.95
8	2.5	4.5	• • •	3.9	4.I		7.0	13.3	11.6	11.00
10	2. T	3.9	• • •	3.3	3 . 5		6.3	14.0	12.2	11.05
14		3.1	• • •	• • •	3·5 2·8	3.0	5 · 4		13.2	11.15
20	•••	• • •			• • •		4 . 7		14.8	11.20
40	• • •		• ••	•••	•••	• • •	•••	• • •	19.0	11.70

SOLUBILITY OF LEAD CHLORIDE IN A	Aqueous Solutions of 1	LEAD NITRATE AT 25°.
Results by Harkins, 1011.		strong and Evre. 1013.

Gms. per Liter Sat. Sol.		dgs of Sat.	Aq. Pb(NO ₂) ₂ Sol., Gms. per 2000 Gms. H ₂ O.	Gms. PbCl ₂ per 1000 Gms.
Pb(NO ₂) ₂ .	PbCl ₂ .	▼ Sol.	roco Gms. H ₂ O.	Sat. Sol.
0	10.81	1.0069	0	10.89
3.31	10.67	1.0095	3.31	10.96
8.28	10.65	1.0139	6.62	10.53
16.56	10.84	1.0210	33.12	11.15
33.12	11.57	•••	82.80	12.95

SOLUBILITY OF LEAD CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AT 25.2°. (von Ende, 1901.)

	CHLUKIUB AI 23.2.	(von muc, ryor)	
Normality of KCl.	Gm. Equiv. PbCle per Liter.	Nermality of KCl.	Gm. Equiv. PbCl ₂ per Liter.
0	0.07760	0.0999	0.02380
0.001	0.07664	0.5006	0.01480
0.0025	0.07570	0.7018	0.01476
0.0049	0.07404	0.9991	0.00980
0.0099	0.07056	1.5018	0.00996
0.0200	0.06432	2.0024	0.01112
0.0599	0.04524	ვ.∞ვ6	0.01948

SOLUBILITY OF LEAD CHLORIDE IN AQUBOUS SOLUTIONS OF POTASSIUM CHLORIDE AT 20°. (Bronsted, 1912.)

Gm. Equivalents per 1000 Gms. Solution.		Solid Phase.	Gm. Equ 1000 Gm	ivalents per s. Solution.	Selid Phase.			
KCI.	PbCl ₂ .		KCl.	PbCl ₂ .				
0.195	0.01900	PbCl ₂	2.IO	0.01022	2PbCl ₂ .KCl			
0.299	0.01452	44	2.20	0.01060	**			
0.375	0.01324	4	2.29	0.01184	 "			
0.483	0.01236	u	2.36	0.01300	2PbCl ₂ .KCl+PbCl ₂ .KCl.jH ₂ O			
0.510	0.0125	" +2PbCl _b .KCl	2.45	0.01308	PbCl _s .K.Cl.§H _s O			
0.575	0.01068	2PbCla.KCl	2.66	0.01396	44			
0.639	0.00954	44	2.77	0.01476	"			
0.930	0.00770	u	2.91	0.01550	"			
I.224	0.00736	4	3.05	0.01656	"			
1.575	0.00786	4	3.18	0.01780	u			
1.884	0.00894	44	4.57*	0.0280*	" +KC			
. •	• Gm. equivalents per 1000 Gms. H.O.							

Data for the solubility of lead chloride in aqueous KCl and aqueous NaCl are given by Demassieux, 1914.

SOLUBILITY OF LEAD CHLORIDE IN AQUEOUS SOLUTIONS OF ALCOHOL AND OF MANNITOL AT 25°. (Kernot and Pomilio, 1912.)

Results for Aqueous Ethyl Alcohol. Results for Aqueous Mannitol.

Gms. per Liter Solution.		Gms. per Liter Solution.			
CH,OH.	PbCl ₂ .	(CH ₂ OH) ₂ (CHOH) ₄ .	PbCl ₂ .		
0	10.75	0	10.75		
5.75	10.16	2.84	10.42		
11.51	9.36	5.69	10.67		
. 23.02	9.14	11.38	10.64		
46.05	8.25	22.76	10.91		
92.10	7.12	45 · 53	11.16		
184.20	4.76	91. 0 6	11.29		

SOLUBILITY OF LEAD CHLORIDE IN GLYCEROL. (Presse, 1874.)

I part glycerol + 7 parts H₂O dissolve 0.91 per cent PbCl₂. I part glycerol + 3 parts H₂O dissolve 1.04 per cent PbCl₂. I part glycerol + 1 part H₂O dissolves 1.32 per cent PbCl₂. Pure glycerol dissolves 2 per cent PbCl₂.

SOLUBILITY OF LEAD CHLORIDE IN AQUEOUS SOLUTIONS OF SEVERAL COMPOUNDS AT 25°. (Armstrong and Eyre, 1913.)

Aqueous Solution of:	Gms. Cmpd. per 1000 Gms. H ₂ O.	Gms. PbCl ₂ per 1000 Gms. Sat. Sol.	Aqueous Solution of:	Gms. Cmpd. per roco Gms. H ₂ O.	Gms. PbCl _a per 1000 Gms. Sat. Sol.
Water alone	0	10.89	Ethyl Alcohol	11.51	10.43
Glycol	15.51	10.75	Glycerol	23.01	10.98
"	62.04	10.90	Propyl Alcohol	15.01	10.08
Acetaldehyde	II.OI	10.54	ar a	60.06	9.37
"	33.03	9.82	Methyl Acetanilide	29.82	10.25
Paraldehyde	11.01	10.50	Hydrochloric Acid	9.12	4.23
66	33.02	9.96	" "	18.23	3.60
TOO oo 'anhyd	leone hydra	hoseith arise	ve a ome PhCl. at and	tomo wit	docom

100 cc. anhydrous hydrazine dissolve 3 gms. PbCl₂ at ord. temp. with decomposition. (Welsh and Broderson, 1915.)

SOLUBILITY OF LEAD CHLORIDE IN PYRIDINE. (Heise, 1912.)

ť.	Gms. PbCl ₂ per 100 Gms. Pyridine.	Solid Phase.	r.	Gms. PbCl _s per 100 Gms. Pyridine.	Solid Phase.
- 20	0.303	PbCl ₂ .2C ₅ H ₅ N	76	0.893	PbCl ₂ .2C ₆ H ₆ N
0	0.364	"	90	1.07	"
+22	0.459	"	94	1.12	"
44	0.559	"	102	1.31	"
65	0.758	"		•	

FREEZING-POINT DATA (Solubility, see footnote, p. 1) ARE GIVEN FOR THE FOLLOWING MIXTURES OF LEAD CHLORIDE AND OTHER COMPOUNDS.

Lead	Chloride	+ Lead Fluoride	(Sandonnini, 1911.)
44	44	+ Lead Iodide	(Monkemeyer, 1906.)
**	46	+ Lead Oxide	(Ruer, 1906.)
44	44	+ Lead Sulfide	(Truthe, 1912.)
44	44	+ Lithium Chloride	(Tries, 1914.)
44	44	+ Magnesium Chloride	(Menge, 1911.)
46	**	+ Manganese Chloride	(Sandonnini, 1911, 1914.)
**	44	+ Potassium Chloride	(Tries, 1914; Lorenz and Ruckstuhl, 1906.)
44	44	+ Rubidium Chloride	" Lines, 1914, Dorenz and Rucastum, 1900.)
66	**	+ Silver Chloride	(Matthes, 1911; Tries, 1914.)
44	44	+ Strontium Chloride	(Sandonnini, 1911, 1914.)
**	44	+ Sodium Chloride	(Tries, 1914.)
"	44	+ Thallium Chloride	· · · · · · · · · · · · · · · · · · ·
44	**	+ Tin Chloride	(Korreng, 1914; Sandonnini, 1913.)
46	**	+ Zinc Chloride	(Hermann, 1911; Sandonnini, 1911, 1914.)
		T LINE CHIOLIGE	(Herrmann, 1911.)

LEAD CHLORIDE (Basic).

SOLUBILITY OF BASIC LEAD CHLORIDES IN WATER AT 18°. (Pleisaner, 1907.)

Compound	Formula.	Gms. per Liter Sat. Aq. Solution.			
Basic Lead Chloride	PbCl ₂ .PbO.H ₂ O	Pb =	Pb Salt.		
3 " " "	PbCl ₂ .3PbO.H ₂ O	0.079	0.025		

LEAD FluoroCHLORIDE PbFCl.

Solubility of Lead Fluorochloride in Water and in Aqueous Solutions.

(Stark, 1911.)

Solubility in Aq. Solutions at 25°.

Solu	bility in Water.			Solubil	lity in Aq. Solutions at	: 2 5°.
t. ,	Gms. PbFCl per 100 Gms. H ₂ O.	Aq. Solution of:		ms. PbFCl per 100 cc. Sat. Sol.	Aq. Solution of:	Gms. PbFCl per 100 cc. Sat. Sol.
0	0.0211	o.00996 n I	PbCl ₂	0.0030	0.0535 n HCl	0.0758
18	0.0325	0.0195 %	"		0.1069 n "	o.1006
25	0.0370	0.0392 %	"	0.0005	0.0518 n CH ₂ COOH	0.0512
100	0.1081				0.1055 # "	0.0561

LEAD CHROMATE PbCrO4.

SOLUBILITY OF LEAD CHROMATE IN WATER.

ť.	Mols. PbCrO ₄ per Liter.	Gms. PbCrO ₄ per Liter.	Method.	Authority.
18	3.0.10-7	0.00010	Solution equilibrium	(Beck and Stegmüller, 1910.)
	1.4.10 ⁻⁷	0.00004	"	(Auerbach and Pick.)
18	3.2.10-7	0.00010	Conductivity	(Kohlrausch, 1908.)
20	2.1.10 ⁻⁷	0.00007	Radio Indicators	(v. Hevesy and Rona, 1915.)

SOLUBILITY OF LEAD CHROMATE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC AND OF NITRIC ACIDS. (Beck and Stegmüller, 1910, 1911.)

Solubility in Aq. HCl. Solubility in Aq. HNO₃ at 18°.

Normality	Milligram	s Pb per 100 cc. S	Normality of	Milligrams Pb per		
of HCl.	18°.	25°.	37°.	HNO ₃ .	100 cc. Sat. Sol.	
0.1	ვ.86	4.96	7.40	0.1	2.67	
0.2	8.15	10.06	15.40	0.2	4.70	
0.3	13.56	17.38	27.30	0.3	6.46	
0.4	22.14	27.78	43.60	0.4	8.31	
0.5	32.30	42.60	68	0.5	10.31	
0.6	46.60	61.06	97.20	0.6	12.39	

Results are also given for the solubility of mixtures of lead chromate and lead sulfate in aqueous hydrochloric acid at 25° and 37°.

SOLUBILITY OF LEAD CHROMATE IN AQUEOUS POTASSIUM HYDROXIDE SOLUTIONS. (Lacland and Lepierre, 1891.)

t°.	Grams KOH per 100 cc.	Grams PbCrO4 per 100 cc.
15	2.308	1.19
60	2.308	1.62
80	2.308	2.61
102	2.308	3.85

LEAD CITRATE Pb(CaHaO,)2.H2O.

SOLUBILITY IN WATER AND IN ALCOHOL.

100 gms. H_3O dissolve 0.04201 gm. $Pb(C_6H_5O_7)_3.H_3O$ at 18°, and 0.05344 gm. at 25°.

100 gms. alcohol (95%) dissolve 0.0156 gm. Pb(C₆H₆O₇)₂.H₂O at 18°, and 0.0167 gm. at 25°. (Parthell and Hübner — Archiv. Pharm. 24I, 4I3, '03.)

LEAD DOUBLE CYANIDES.

SOLUBILITY IN WATER. (Schuler — Sitzber. Akad. Wiss. Wien, 79, 302, '79.)

Double Salt.	Formula.	t°.	Gms. per 100 Gms. H ₂ O.
Lead Cobalticyanide	Pb ₃ [Co(CN) ₆] ₂ .7H ₂ O	18	56.5
Lead Cobalticyanide	Pb[Co(CN) ₆] ₂ .7H ₂ O	19	61.3
Lead Potassium Cobalticyanide	PbKCo(CN) ₆ .3H ₂ O	18	14.8
Lead Cobalticyanide Nitrate	Pb (Co(CN)6)2.Pb(NO3)2.12H2O	18	5.9 .
Lead Ferricyanide Nitrate	$Pb_a[Fe(CN)_e]_a \cdot Pb(NO_a)_a \cdot 12H_aO$	16	7.5
Lead Potassium Ferricyanide	PbKFe(CN) ₆ .3H ₂ O	16	21.0

LEAD FLUORIDE PbF1.

One liter of water dissolves 0.6 gm. PbF₂ at 9°, 0.64 gm. at 18°, and 0.68 gm. at 26.6° (conductivity method).

(Kohlrausch, 1908.)

100 cc. anhydrous hydrazine dissolve 6 gms. PbF₂ at room temp. with decom-

position. (Welsh and Broderson, 1915.) Freezing-point data (solubility, see footnote, see p. 1) for mixtures of PbF2 and PbI2 are given by Sandonnini (1911); for mixtures of PbF2 + PbO by Sandonnini (1914); for mixtures of PbF2 + Pb2 (PO4)2 by Amadari (1912), and for PbF2 + NaF by Puchin and Baskow (1913).

LEAD FORMATE Pb(HCOO)2.

SOLUBILITY OF LEAD FORMATE IN AQUEOUS SOLUTIONS OF BARIUM FORMATE AT 25°. (Fock, 1897.)

Mol. % in Solution.		Grams per Liter.		Sp. Gr. of Solutions.	In Solid Phase Mol. % of	
Pb(HCO ₂) ₂ .	Ba(HCO ₂) ₂ .	Pb(HCO ₂) ₃ .	Ba(HCO ₂) ₂ .	Solutions.	Pb(HCO ₂) ₂ .	Ba(HCO ₂) ₂ .
0	100	• • •	28.54	I.2204	0	100
0.29	99.71	1.104	28.65	1.2213	1.72	98.28
0.74	99.26	2.803	28.90	1.2251	5.29	94.71
1.24	98.76	5.309	32. 24	1.2529	11.94	88. 06
2.91	97.09	II.42	29.29	1.2341	24.81	75.19
5.92	94.08	23.11	28.13	1.2355	56.54	43 . 46
100	0	28.35		1.0011	100	0

LEAD HYDROXIDE Pb(OH)2.

SOLUBILITY OF LEAD HYDROXIDE IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE. (Moist Lead Hydroxide used, temperature not given.)
(Rubenbauer, 1902.)

Amount of Na	Amt. of Pb	Mol. Dilution	Grams per 100 cc. Solution.		
in 20 cc.	in 20 cc.	of NaOH.	NaOH.	Pb(OH) ₂ .	
0.2024	0.1012	2.27	I.759	0.590	
0.3196	0.1736	I.44	2.778	1.010	
0.5866	0.3532	0.785	5.10	2.056	
0.9476	0.4071	0.485	8.235	2.370	
1.7802	0.5170	0.258	15.470	3.010	

LEAD IODATE Pb(IO₂)₂.

One liter of water dissolves 0.0134 gm. Pb(IO₁)₂ at 9.2°, 0.019 gm. at 18° and 0.023 gm. at 25.8°. (Kohlrausch, 1908; Böttger, 1903.)
One liter H₂O dissolves 0.0307 gm. Pb(IO₂)₂ at 25°. (Harkins and Winninghoff, 1911.)

Solubility of Lead Iodate in Aqueous Salt Solutions at 25°. (H. and W., 1911)

Gms. per Liter.		Gms. pe	τ Liter.	Gms. per Liter.	
KNO ₃ .	$Pb(IO_2)_2$. KIO_2 . $Pb(IO_2)_2$.		Pb(NO ₂)2.	Pb(IO ₂) ₂ .	
0.202	0.0318	0.0113	0.0199	1.656	0.0052
1.011	0.0363	0.0227	0.0122	16.561	0.0045
5.055	0.0567	Pb(NO ₂) ₂ .		82.805	0.0078
20.220	0.0708	0.0165	0.0242	496.83	0.0418
	•	0.165	0.0115	., 0	•

LEAD IODIDE Pbl.

SOLUBILITY IN WATER. (Lichty, 1903.)

40	Density.	Grams Pbl	2 per 100.	Millimols PbIe per 100.	
t°.	Density. (H ₂ O at o°.)	cc. Solution.	Grams H.O.	cc. Solution.	Grams H _e O.
0	1.0006	0.0442	0.0442	0.096	0.096
15	0.9998	0.0613	0.0613	0.133	0.133
. 25	0.9980	0.0762	0.0764	0.165	0.166
35	0.9951	0.1035	0.1042	0.224	0.226
45	0.9915	0.1440	0.1453	0.312	0.315
55	0.9872	0.1726	0.1755	0.374	0.381
65	0.9827	0.2140	0: 2183	0.464	0.473
8o	0.9745	0.2937	0.3023	0.637	0.65 6
95	0 9671	0.3814	0.3960	0.828	0.859
100	• • •	0.420	0.436	0.895	0.927

Data for the solubility of lead iodide in water by the conductivity method are given by Böttger, 1903; Kohlrausch, 1904-05; Denham, 1917.

SOLUBILITY OF MIXTURES OF LEAD IODIDE AND POTASSIUM IODIDE IN WATER. (Ditte, 1881; Schreinemakers, 1892.)

t°.	Gms. per rooc	Gms. H ₄ O	Solid Phase.	t.	Gms. per re	oo Gms. H ₂ O.	Solid Phase
• •	PbI ₂ .	KI.	Soun Plane.	• .	PbI.	KI.	Soud Phase
5		163	Double Salt + PbIe	50	526.7	1906	Double Salt+KI
20	9	260	. "	64	789.3	2161	**
28	25	325	44	83.5	1,108.6		**
39	45	449	64	92	1,273	2566	••
67	255	75I	•	137	2,382	3278	•
8ò	731	1186	44	165	4,187	4227	•
80	569.9	976.4	. •	218	10,303	•••	••
104.5	1411	1521	94	24I	12,803	7998	•
120	2151	1812	44	242	12,749	•••	••
137	2874	2097	64	250	15,264	• • •	•
175	5603	2947	•	157	5,218 gr	ns. Pbl.sKI	PbIaaKLaaHaO
189	•••	3339	44	172	6,489	£6 44	44
9	96.6	1352	" + k i	186	7,903	£ 44	•
13	114.3	1384	**	194	9,266	£6 44	•
23	186.3	1510	** **	201	11,320	",	••

Ordinary solubility method used for temperatures below boiling-point of the solution and sealed tube (with constriction in middle) method used for temperatures above boiling point.

One liter sat. aqueous solution of iodine dissolves 0.00216 gm. mols. PbI2 (0.996 gms.) at 20°. (Fedotieff, 1911-12.)

SOLUBILITY OF LEAD IODIDE IN ACETONE, ANILINE AND AMYL ALCOHOL. (von Laszczynski, 1894.)

Solvent.	· t°.	Gms. PbI ₂ per 100 Gms. Solvent.
(CH ₃) ₂ CO	59	0.02
$C_6H_5NH_2$	13	0.50
C ₆ H ₆ NH ₂	184	1.10
C ₆ H ₇ OH	133.5	0.02

SOLUBILITY OF LEAD IODIDE IN PYRIDINE. (Heise, 1912.)

c .	Gms. PbI ₂ per 100 Gms Pyridine.	s. Solid Phase.	ŧ°.	Gms. PbI ₂ per 100 Gms. Solid Phase. Pyridine.
-43.5 fpt.		PbI _{e-3} C _e H _e N	35	O. 188 Pble-2CaHaN
- 37	0.16 6	. "	57	0.190 "
-20	0.175	a	77	0.228 "
- 9	0. 18 6	. "	92	0.290 "
o	0.200	"	98	0.340 "
+ 3	0.215	46	105	0.370 "
6 tr. pt.	0.225	PbI2.3C4H4N+PbI4.2C4H4N	108	0.410 "
15	0.208	PbI ₄₋₂ C ₄ H ₄ N	112	0.445

100 gms. 95% formic acid dissolve 0.25 gm. PbI₂ at 19.8°. (Aschan, 1913.) 100 cc. anhydrous hydrazine dissolve 2 gms. Pbl₂ at room temp. with decomposition. (Welsh and Broderson, 1915.)

Freezing-point data for mixtures of lead iodide and silver iodide are given by Matthes (1911).

LEAD MALATE Pb.C.H.O.3H.O.

SOLUBILITY IN WATER AND ALCOHOL. (Partheil and Hübner, 1903.)

100 gms. H₂O dissolve 0.0288 gm. PbC₄H₄O_{5.3}H₂O at 18°, and 0.06504 gm. at 25°.

100 gms. 95% alcohol dissolve 0.0048 gm. PbC₄H₄O₅.3H₂O at 18°-25°.

LEAD LAURATE, MYRISTATE, PALMITATE and STEARATE.

SOLUBILITY OF EACH IN SEVERAL SOLVENTS. (Jacobson and Holmes, 1916.)

(See Lithium Laurate, p. 375, for formulas and other details. See also p. 362.)

Solvent.	e.	Gms. of Each		Salt (Determined Separately) per 100 Gms. Solvent.		
0017000	••	Pb Laurate.	Pb Myristate.	Pb Palmitate.	Pb Stearate.	
Water	35	0.000	0.005	0.005	0.005	
"	50	0.007	0.006	0.007	0.006	
Abs. Ethyl Alcohol	25	0.000	0.004	0	0	
	35	0.032	0.004	0.001	0.001	
	50	0.264	0.052	0.012	0.004	
Methyl Alcohol	15.5	0.061	0.056	0.051	0.030	
" "	25	0.096	0.078	0.069	0.051	
" "	35	0.113	0.082	0.076	0.062	
"	50	0.280	0.119	0.093	0.083	
Ether	14.5	0.010	0.013	0.010	0.007	
Ethyl Acetate	14	0.017	0.010	0.009	0.007	
" "	35 - 5	0.035	0.015	0.000	0.008	
" "	50	0.201	0.077	0.033	0.020	
Benzene	15	0.011	0.010	0.009	0.008	

LEAD NITRATE Pb(NO₂)₂.

SOLUBILITY IN WATER. (Mulder; Kremers, 1854; at 15°, Michel and Kraft, 1854; at 17°, Euler, 1904.)

	Grams Pb(NO ₂) ₂ per 100 Gms.				Grams Pb(NO ₂) ₂ per 100 Gms.		
ť.	W	ater.	Solution.	t*.	Wa	iter.	Solution.
0	36.5(1)	38.8(2)	27.33 ⁽⁸⁾	40	69.4	75	41.9
IO	44 · 4	48.3	31.6	50	78.7	85	45
17	50	54	34.2	60	88	95	47.8
20	52.3	56.5	35.2	80	107.6	115	52.7
25	56.4	60.6	36.9	100	127	138.8	57.1
30	60.7	66	38.8	17	52.76*		34 · 54*
			• T.,	ia-			

⁽¹⁾ Mulder, (2) Kremers, (3) Average of M and K.

Density of saturated solution at 17° = 1.405. (Euler.) 100 gms. H_2O dissolve 55.8 gms. $Pb(NO_2)_2$ at 20°. (LeBlanc and Noyes, 1890.) 100 gms. H_2O sat. with $Pb(NO_2)_2 + KNO_2$ at 20° dissolve 95.39 gms. $Pb(NO_2)_2$. (LeBlanc and Noyes, 1890.) 100 gms. H_2O sat. with $Pb(NO_2)_2 + NaNO_2$ at 20° dissolve 38.42 gms. $Pb(NO_2)_2 + 84.59$ gms. $NaNO_3$. (Le Blanc and Noyes, 1890.)

Solubility of Lead Nitrate in Aqueous Solutions of Copper Nitrate at 20°. Fedotieff, 1911-12.)

Gms. per 100 Gms. H ₂ O.			Gms. per roo	Gms. per 100 Gms. H ₂ O.		
Cu(NO2)2.	Pb(NO ₂) ₂ .	d₂ of Sat. Sol.	Cu(NO ₂) ₂ .	Pb(NO ₂) ₂ .	d_{20} of Sat. Sol.	
0	55.11	1.419	37.96	13.08	1.360	
7.7	39.34	1.354	60.32	8.19	1.451	
15.04	27.80	1.322	83.11	5.37	1.546	
24.63	19.05	1.321	100.29	3.53	1.622	
33.25	14.70	I.343	127.70*	2.33*	1.700	
•	• Solid phase in	contact with this sole	ution = $Pb(NO_3)_2 +$		0.	

SOLUBILITY OF LEAD NITRATE IN CONCENTRATED AQUEOUS SOLUTIONS OF SODIUM NITRATE AND VICE VERSA, DETERMINED BY SYNTHETIC METHOD. (Isaac, 1908.)

(The several mixtures were enclosed in sealed tubes and heated until only one or two very small crystals remained undissolved. The temperature was then determined at which the edges of these crystals just showed a change from sharp to round or vice versa.)

	for Lead Ni Solid Phase.		Results i	or Sodium I Solid Phase	
t° of	Gms. per 100	Gms. Sat. Sol.	t° of	of Gms. per 100 Gms. S	
Saturation.	NaNOs.	Pb(NO ₂) ₂ .	Saturation.	NaNO3.	Pb(NO2)2.
32	34.42	19.69	21	40.97	13.62
35.5	34.15	20.33	26.5	42.04	13.38
39.5	33.71	21.35	31	43.18	12.88
44	33 · 35	22.IQ	38.8	44.63	12.78
49. I	32.94	23.15	4 I	45.II	12.94
55	32.60	23.93	44.25	46.03	12.45
55 58	32.47	24.24	51	47.28	12.50
62	32.33	24 . 57	58	49.03	11.76
65	32.19	24.89	64	49.92	11.56

SOLUBILITY OF MIXED CRYSTALS OF LEAD NITRATE AND STRONTIUM NITRATE IN WATER AT 25°. (Fock, 1897.)

Mol. per cent	in Solution.	Gms. per 100	cc. Solution.	Sp. Gr. of	Mol. per cent	in Solid Phase.
Pb(NO ₂) ₂ .	Sr(NO ₂) ₂ .	Pb(NO ₂) ₂ .	Sr(NO ₂) ₂ .	Solutions.	Pb(NO ₂) ₂ .	Sr(NO ₂) ₂ .
100	0	46.31	0	I.4472	100	•
87.41	12.39	50.47	4.56	1.4336	99.05	0.95
78.68	21.32	53.92	8.14	1.4288	98.11	1.89
56.39	43.61	45.34	17.81	1.4263	97.02	2.98
60.29	39.71	44.48	18.74	I.4245	96. 0 6	3.94
33.70	36.30	25.23	35.03	1.4468	83.84	16.16
24.58	75.42	19.13	37 · 54	1.4867	32.88	67.12
o T	100	o -	71.04	1.5141	ō	100

SOLUBILITY OF LEAD NITRATE IN ETHYL AND METHYL ALCOHOL.

. Solvent.	G					
Aq. C ₂ H ₄ OH (Sp. Gr. 0.9282)	4°.	8°. 5.82	22°. 8.77	40°. 12.8	50°.	(G)
Abs. C₂H₅OH	4.90	3.02	0.04 (20.5°)			(de B)
Abs. CH ₄ OH	• • •	•••	I.37 "Gerai	 rdin, 1865	; de Bru	" yn, 1892.)

100 cc. anhydrous hydrazine dissolve 52 gms. lead nitrate at room temperature with formation of a yellow precipitate. (Welsh and Broderson, 1915.)

SOLUBILITY OF LEAD NITRATE IN PYRIDINE. (Walton and Judd, 1911.)

ť.	Gms. Pb(NO ₂) per 100 Gms. Pyridine.	Solid Phase.	t°.	Gms. Pb(NO ₂) per 100 Gms. Pyridine.	
-19.4	2.93	Pb(NO ₂) ₂₋₄ C ₄ H ₄ N	45	22.03	Pb(NO ₂) ₂₋₄ C ₄ H ₄ N
-14.5	2.14	"	49.97	29.37	44
— 10	1.90	"	51 tr. pt.	•••	" +Pb(NO ₂)2-3C ₄ H ₄ N
0	3.54	"	59.52	36.70	Pb(NO ₂) ₂₋₃ C ₄ H ₄ N
5.4	3.93	"	70	47.29	"
5·4 8.7	5.39	*	8o	61.60	4
14.72		# '	89.93	QO. 21	44
19.97		4	94.94	128.06	4
24.75		"	gó tr. pt.		" +3Pb(NO ₂)2.2C ₄ H ₄ N
30.03		"	99.89 T	143.36	3Pb(NO ₂) ₃₋₂ C ₄ H ₄ N
34.97		u	104.90	152	4
40.03			109.90	163.80	."

SOLUBILITY OF LEAD NITRATE-NITRITE, Pb(NO₂)₂.2Pb(NO₂)₂.2Pb(OH)₂.2H₂O, IN AQUEOUS SOLUTIONS OF ACETIC ACID AT 13.3°. (Chilesotti, 1908.)

Normality of Acetic Acid	Gms. PbO per 100 cc. Sat. Sol.	Normality of Acetic Acid.	Gms. PbO per 100 cc. Sat. Sol.
0	0.601	0.25	5.450
0.05	I.323	0.50	9.690
0.10	2.185	0.75	15.874

LEAD OXALATE PbC,O,.

One liter of water dissolves 0.0015 gm. PbC₂O₄ at 18° (conductivity method). (Böttger - Z. physik. Chem. 46, 602, '03; Kohlrausch - Ibid. 50, 356, '04-'05.)

LEAD OXIDES. SOLUBILITY IN WATER.

(Böttger; Ruer - Z. anorg. Chem. 50, 273, '06.)

No		Gm. Equiv. per Liter.	Gms. per Liter.
I.	Yellow Oxide, by boiling Pb hydroxide with 10% NaOH	1.03 X 10-4	0.023
2.	Red Oxide, by boiling Pb hydroxide with conc. NaOH	0.56×10-4	0.012
3.	Yellow Oxide, by heating No. 1 to 630°	1.05×10-4	0.023
4.	Yellow Oxide, by heating No. 2 to 740°	1.00 X 10-4	0.022
5.	Yellow Oxide, by heating com. yellow brown oxide to 620°	1.09 X 10-4	0.024
Ğ.	Yellow Brown Oxide commercially pure	1.10X10-4	
7.	Yellow Brown Oxide, by long rubbing of No. 5.	1.12×10-4	0.025

Böttger gives for three samples of lead oxide, 0.017, 0.021, and 0.013 gm. per liter respectively.

One liter H₂O dissolves 0.068 gm. PbO at 18°, solid phase PbO and 0.1005 gm. PbO at 18°, solid phase Pb₂O₂(OH)₂. (Pleissner, 1907.) Results for the solubility of hydrated lead oxide in water and dilute H_SO₄ solutions are given by Sehnal (1909). The results are considerably higher than the above, viz. 0.1385 gm. Pb per 1000 cc. H₂O at 20°; with increase of H₂SO₄ the solubility decreases rapidly.

100 cc. anhydrous hydrazine dissolve I gm. lead oxide (red) at room temp.

(Welsh and Broderson, 1915.)

Freezing-point lowering data for mixtures of PbO + PbSO are given by Schenck and Rassbach, 1908. Data for mixtures of PbO + SiO₂ are given by Weiller, 1911, and by Cooper, Shaw and Loomis, 1909.

LEAD Per**OXIDE** PbO₂.

The two forms of lead superoxide, (a) amorphous and (b) crystalline, differ in their solubilities in sulphuric acid. One liter of very concentrated H₂SO dissolves about 0.010 mol. PbO₂ (b) at 22°. One liter of conc. H₂SO₄ containing 1720 gms. per liter, dissolves 0.0995 mol. PbO₃ (a) at 22°. The solid phase is slowly converted to Pb(SO₄)₂. One liter of H₂SO₄ containing 1097 gms. H₂SO₄ per liter dissolves 0.004 mol. PbO₃ at 22°. The solid phase is converted more quickly to Pb(SO₄)₂. In more dilute H₂SO₄ solutions no solubility can be detected. (Dolezalek and Finckli, 1906.)

LEAD PALMITATE, LEAD STEARATE. See also p. 360.

100 cc. absolute ether dissolve 0.0138 gm. palmitate and 0.0148 gm. stearate. (Lidoff, 1893.)

LEAD TetraPHENYL Pb(C4H5)4.

Freezing-point data for $Pb(C_4H_6)_4 + Si(C_4H_6)_4$ are given by Pascal (1912).

LEAD PHOSPHATE (Ortho) Pb2(PO4)2.

One liter water dissolves 0.000135 gm. lead phosphate at 20° by conductivity method. (Böttger, 1903.)

One liter of 4.97 per cent aqueous acetic acid solution dissolves 1.27 gms. Pba(PO4)2. (Bertrand, 1868.)

(D.).

LEAD SUCCINATE PLC.H.O.

SOLUBILITY IN WATER AND IN ALCOHOL. (Partheil and Hübner, 1903.)

100 gms. H₂O dissolve 0.0253 gm. PbC₄H₄O₄ at 18°, and 0.0285 gm. at 25°. 100 gms. 95% alcohol dissolve 0.00275 gm. PbC₄H₄O₄ at 18°, and 0.003 gm.

Density of alcohol used = 0.8092.

SOLUBILITY OF LEAD SUCCINATE IN WATER.

(Cantoni and Diotalevi, 1905.) 10°. az°. 32°. 39°. 50°. Gms. PbC₄H₄O₄ per 100 cc. sat. sol. 0.015 0.019 0.024 0.027 0.029

LEAD SULFATE PLSOL

SOLUBILITY IN WATER.

(Average curve from gravimetric results of Dibbits (1874), Beck and Stegmüller (1910) and Pleissner (1907) and conductivity results of Böttger (1903) and Kohlrausch (1904-05).

t°.	Gms. PbSO ₄ per Liter.	ť.	Gms. PbSO4 per Liter.
0	0.028	20	0.041
5	0.031	25	0.045
10	0.035	30	0.049
15	0.038	35	0.052
15 18	0.040	40	0.056

Results considerably higher than the above are reported by Sehnal (1909). This author finds 0.082 gm. PbSO₄ per liter at 18° and claims that the presence of H₂SO₄ in the PbSO₄ reduces the solubility very greatly. His results for the solubility in presence of small amounts of H₂SO₄ are:

Gms. H₂SO₄ per 1000 cc. solu-

tion 0.0008 0.0106 0.0080 0.4000 0.0800 Gms. dissolved PbSO4 per 1000 cc. solution at 20° 0.082 0.051 0.025 0.013 0.006

Sehnal also gives results showing that the solubility in water and dilute H₂SO₄ solutions is exactly the same at 100° as at 20°.

Data for the solubility of PbSO₄ precipitates are given by deKoniack, 1907.

SOLUBILITY OF LEAD SULFATE IN AQUEOUS SOLUTIONS OF AMMONIUM ACETATE AND OF SODIUM ACETATE.

(Noyes and Whitcomb, 1905; Dunnington and Long, 1899; Dibbits, 1874.)

In Sodium Acetate. In Ammonium Acetate. At 25° (N. and W.). At 100° (D. and L.).

Millimols	per Liter.	Gms. per l	Liter.	G. NH,C,H,O,	G. PbSO	Gms. per roo	Gms. H ₂ O.
NH ₄ C ₄ H ₄ O ₃ .	PbSO _k	NH,C,H,O,.	PbSO4.		per 100 g. Solution.	NaC ₂ H ₄ O ₂ .	PbSO4.
0	0.134	0	0.041	28	7.12	2.05	0.054
103.5	2.10	7.98	0.636	32	9.88	8.2	0.853
207.I	4.55	15.96	1.38	37	10.58	4 I	11.23
414.I	10.10	31.92	3.02	45	11.10		1

SOLUBILITY OF LEAD SULFATE IN AQUEOUS SOLUTIONS OF AMMONIUM ACETATE AT 25°. (Marden, 1916.)

Gms. per 1000 Gms. Set. Sol.		Gms. per 1000	de of Sat. Sol.	
NH ₄ C ₂ H ₄ O ₂ .	PbSO ₄ .	NH4C3H4O3.	PbSO4.	sa or sat. sol.
7.96	0.636	53 · 4	5.60	1.012
15.91	1.370	106.8	rő.8	1.024
31.70	3.04	213.7	3 8.9	1.045,

SOLUBILITY OF LEAD SULFATE IN AQUBOUS SOLUTIONS OF POTASSIUM ACETATE AND OF SODIUM ACETATE AT 25°. (Fox, 1999.)

In Ac Gms. per 100	q. Potassiun Gms. Sat. Sol.		In Gms. pe	Solid		
CH,COOK. (CH,COO),Pb.		Solid Phase.	CH,COONa. (CH,COO),Pb.		Na ₂ SO ₄ .	Phase.
4.33	2.54	PbSO ₄ +PbK ₂ (SO ₄) ₂	6.69	0.78	0.34	PbSO ₄
9.03	3.55	44	6.95	0.81	0.35	64
17.81	5.43	"	11.76	2.73	1.26	44
26. 58	9.83	"	16.90	5.70	2.49	**
28.82	11.40	u	19.92	8.24	3.60	".
28.93	19.41	u	21.51	10.75	4.68	44

In the case of the CH₂COOK solutions, the double salt PbK₂(SO₄₎₂ is formed and no SO₄ ions enter the solution.

SOLUBILITY OF LEAD SULFATE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC AND OF NITRIC ACIDS AND OF SODIUM CHLORIDE.

(Beck and Stegmiller, 1910.)

		.\~~~ u		.,			
In A	queous H	ICI.		. HNO: 18°.	In Aq. NaCl at 18°.		
Normality	Milligrams	Pb per 100	cc. Solution.	Normal-	Mgm. Pb per 100 cc.	Normal- ity of	Mgm. Pb per 100 cc.
of HCl.	At 18°.	At 25°.	At 37°.	ity of HNO ₃ .	Sol.	NaCl.	Sol.
$o(=pure H_2O)$	2.60	3	3.80	0. I	10.48	O. I	11.19
O. I	19	22.18	28.04	0.2	17.48	0.2	18.73
0.2	35.70	42.88	54.50	0.3	23.41	0.3	26. 5I
0.3	55.37	65.15	84.04	0.4	29.84	0.4	33.76
0.4	75.27	88.80	111.90				•

SOLUBILITY OF LEAD SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID
AT 18°. (Pleisener, 1907.)

(See also Sahnal preceding page.)

		,	See winn Semini	, brecoming bares	,		
Gms. p	Gms. per Liter. Millimols per Liter.		Gms. pe	r Liter.	Millimols per Liter.		
H ₄ SO ₄ .	PbSO ₄ .	H ₂ SO ₄ .	PbSO ₄ .	H ₂ SO ₄ .	PbSO ₄ .	H ₂ SO ₄ .	PbSO ₄ .
0	0.0382	0	0. 126	0.0245	0.0194	0.25	0.064
0.0049	0.0333	0.05	0.110	0.0490	0.0130	0.50	0.043
0.0098	0.0306	0.10	0. 101	0.4904	0.0052	5	0.017
Ca	T	· C	C			TTTTO NO. 6	. A

SOLUBILITY OF LEAD SULFATE IN CONCENTRATED AQUEOUS SOLUTIONS OF ACIDS. (Schultz, 1861; Rodwell, 1862.)

In Aq. H ₂ SO ₄ .			In Aq. HCl. In Aq. I			Aq. HN	INO₃.	
(a)	(b)	(c)	(a)	(b)	(c)	(a)	(b)	(c)
I.540 ·	63.4	0.003		10.6		1.08	11.6	0.33
1.793	85.7	0.011	1.08	16.3	0.35	1.12	17.5	0.59
1.841	97	0.039	I.II	22	0.95	1.25	34	0.78
			1.14	27.5	2. II	1.42	60	1.01
			т. тб	3т.б	2.86			

(a) Sp. Gr. of Aq. Acid. (b) Gms. Acid per 100 Gms. Solution. (c) Gms. PbSO₄ per 100 Gms. Solvent. Solubility of Lead Sulfate in Conc. Solutions of Sulfuric Acid. (Donk. 1916.)

ť.	Gms. per zoo Gms. Sat. Sol.		Solid Phase.	•• t• .		100 Gms.J . Sol.	Solid Phase.
	H ₂ SO ₄ .	PbSO4.			H ₂ SO ₄ .	PbSO ₄ .	
0	51.2	0	PbSO ₄	100	61.2	0	PbSO ₄
0	89.4	0	" +H ₂ SO ₄ .H ₂ O	100	72.5	0. I	44
0	97	0	H ₂ SO ₄	100	96.3	0.2	46
0	97.2	0.3	" +PbSO4	100	99.I	0.9	**
50	50.4	0	PbSO₄	200	79	0	66
50	86.7	0.1	**	200	88.8	0. I	**
50	95. I	0.2	"	200	95.5	0.3	46
50	99.3	0.6	"	200	98.9	1.1	44
• • • • •							

Additional data for highly concentrated solutions of H₂SO₄ are given by Ditz and Kanhaüser (1916).

SOLUBILITY OF BASIC LEAD SULFATES IN WATER AT 18°. (Pleissner, 1907.)

Compound.	Formula.		ne Liter Sat. Solution Contains:		
Basic Lead Sulfate	PbSO ₄ .PbO	Mg. Lead Salt	= Mg. Pb = IO.6	0.050	
Basic Lead Sulfate	PbSO ₄ .3PbO.H ₂ O	26.2	22	0.100	

LEAD PerSULFATE Pb(SO₄)₂.

SOLUBILITY IN AQUEOUS SULFURIC ACID AT 22°.

		(Dominion and)	mcan, 1900./			
Gms. per Liter.		Solid Phase.	Gms.	Gms. per Liter.		
H ₄ SO ₄ .	Pb(SO ₄)2.	Soud Phase.	H ₂ SO ₄ .	Pb(SO ₄) ₂ .	Solid Phase.	
948	0	PbOSO ₄ .H ₄ O	1253	14.85	PbOSO ₄ .H ₂ O	
1014	0.719	44	1352	16.17	"	
1081	1.198	•	1470	9.30	Pb(SO ₄) ₂	
1008	I · 557	•	1532	9.46	**	
1130	2.115	•	1631	19.80	44	
1180	5.749	"	1698	33.34	u	
1217	9.303	64	1703	35.22	"	

The solid phase at concentrations of acid up to 1352 gms. per liter is the white basic salt of the composition PbOSO₄.H₂O. In the concentration limits of about 1470–1703 gms. H₂SO₄ per liter the original yellow color of the solid phase remains unchanged.

Freezing-point data (solubility, see footnote, p. 1) for mixtures of PbSO₄+Li₄SO₄, PbSO₄ + K_4 SO₄ and PbSO₄ + N_4 SO₄ are given by Calcagni and Mariotta (1912). Results for mixtures of PbSO₄ + K_4 SO₄ are also given by Grahmann, 1913.

LEAD (Hypo)SULFATE.

SOLUBILITY OF MIXTURES OF LEAD HYPOSULPHATE AND STRONTIUM HYPOSULPHATE AT 25°.

(Fock — Z. Kryst. Min. 28, 389, '97.)

Mol. per cent in Solution.		Grams p	er Liter.	Sp. Gr. of	Mol. per cent in Solid Phase.		
PbS _s O _s 4H _s O.	SrS ₂ O ₀ 4H ₂ O.	PbS ₂ O ₆ .	SrS ₈ O ₆ .	Sp. Gr. of Solutions.	PbS ₂ O ₆ .4H ₂ O.	SrS ₂ O ₀ 4H ₂ O.	
0.0	00.00	0.0	145.6	1.1126	0.0	100.0	
1.05	98.95	2.97	151.2	1.1184	0.30	99 · 7	
15.31	84.69	40.82	152.5	1.1503	3.87	96.13	
46.8o	53.20	149.2	114.5	1.2147	9.84	90.16	
62.30	37 - 70	256.1	85.o	1.2889	19.26	80.74	
7 5 · 75	24.25	310.3	67.0	1.3252	23.73	76.2 7	
78.09	21.91	373 · 7	70.8	1.3726	32.24	67.76	
88.29	11.71	509.5	45.6	1.4671	49 - 97	50.13	
100.0	0.00	374.3	0.0	1.6817	0.00	0.00	

LEAD SULFIDE PbS.

One liter H₂O dissolves 3.6.10⁻⁴ gm. Mols. = 0.00086 gm. PbS at 18°. (Weigel, 1907.) Determined by conductivity method. See also Bruner and Zawadzki (1909). Fusion diagrams for PbS + ZnS and PbS + Ag₂S are given by Friedrich (1908). Results for PbS + Sb₂S₄ are given by Wagemmann (1912).

LEAD SULFONATES. SOLUBILITY IN WATER.

Name.	Formula.	t. Gn	ns. Salt per Coms. H ₂ O. Authority.
	C12H4O2L4S2Pb.4H2O		O. 77 (Boyle, 1909.)
Lead β Naphthalene Sulfonate	(CwH7SO2)2Pb.H2O	25	0.4 (Witte, '15; Euwes, '09.)
" a " "	(C ₂₀ H ₇ SO ₂) ₂ Pb.2H ₂ O	24.9	4. IQ5 (Euwes, 1909.)
Lead 2 Phenanthrene Monosulfonat	e rH _r O	20	O.OI4 (Sandquist, 1912.)
" 3 " "	3H ₂ O	20	0.08 "
" 10 " "	4H₄O	20	0.14 "

LEAD TARTRATE PbC.O.H.

SOLUBILITY IN WATER.

(Cantoni and Zachoder — Bull. soc. chim. [3] 33, 751, '05; Partheil and Hübner — Archiv. Pharm. 241, 413, '03.)

t*.	Gms. PbC ₄ O ₆ H ₄ per 100 cc. Solution.	t°.	Gms. PbC ₄ O ₆ H ₄ per 100 cc. Solution.	t* .	Gms. PbC ₄ O ₆ H ₄ per 100 cc. Solution.
18	0.010 (P. and H.)	50	0.00225	70	0.0032
25	o.0108 "	55	0.00295	75	0.0033
35	0.00105	60	0.00305	80	0.0038
40	0.0015	65	0.00315	85	0.0054

Note. — The positions of the decimal points here shown are just as given in the original communications.

roo gms. alcohol of 0.8092 Sp. Gr. (about 95%) dissolve 0.0028 gm. PbC₄O₄H₄ at 18°, and 0.00315 gm. at 25°.

(P. and H.)

LECITHIN CaHHNPO.

100 gms. of sat. solution in aqueous 5% bile salts contain 4.5 gms. lecithin at 15°-20° and 7 gms. at 37°. Lecithin is practically insoluble in water.

(Moore, Wilson and Hutchinson, 1909.)

LEUCINE CH₂(CH₂)₂CH(NH₂)COOH.

100 cc. H₂O dissolve 2.2 gms. leucine at 18°. 100 cc. alcohol dissolve 0.06 gm. leucine at 17°.

Data for the solubility of leucine in aqueous solutions of salts at 20° are given by Würgler, 1914, and Pfeiffer and Würgler, 1916.

LIGNOCERIC ACID.

Data for the freezing-points (solubility, see footnote, p. 1) of mixtures of lignoceric acid and other compounds are given by Meyer, Brod and Soyka, 1913.

LIGRÖIN.

100 cc. H₂O dissolve 0.341 cc. ligröin at 22°, Vol. of solution = 100.34, Sp. Gr. 0.9969.

100 cc. ligroin dissolve 0.335 cc. H₂O at 22°, Vol. of solution = 100.60, Sp. Gr. 0.6640. (Herz, 1898.)

LITHIUM Li

One gm. atom Li dissolves in 3.93 gm. mols. NH₂ at -80°, at -50° at -25°, and at 0°. (Ruff and Geisel, 1906.)

LITHIUM ACETATE CH₁COOLi.2H₂O.

Freezing-point data for mixtures of lithium acetate and acetic acid are given by Vasilev, 1909.

LITHIUM SulfoANTIMONATE Li₄SbS₄.10H₂O.

SOLUBILITY IN WATER AND IN AQUEOUS ALCOHOL.

In	Water. (Donk, 1908.)		In Aqueous Alcohol at 10° and 30°.				
r.	Gms. Li _e Sbi per 100 Gm	S ₄ 18. Solid Phase.	ť.	Gms. per Sat.		Solid Phase.	Authority.	
	Sat. Sol.			C.H.OH.	Li ₆ SbS ₄ .			
- 1.7	7.1	Ice	10	10.7	41.8	Li ₆ SbS ₄ .zcH ₂ O	(Donk, 1908.)	
— 3.2	12.8	"	10	26.2	36.5	**	u	
- 5.1	17.5	**	10	66.2	20.6	44	*	
-10.8	23.2	"	30	13.3	46.3	Li ₂ SbS _{4.8} H ₂ O	1	
-15.9	28.5	"	30	51.9	30.7	44	1	
-26.2	35.3	"	30	54.8	29.9	*	(Schreine-	
-42	40.4	Ice+Li ₂ SbS ₄ .10H ₂ O	30	58:4	30.8	"	makers and	
0	45.5	Li ₆ SbS ₄ .10H ₂ O	30	58.6	32.3	" +Li ₄ SbS ₄	Jacobs,	
+10	46.9	44	30	65.26	29.31	Li _s SbS ₄	1910.)	
30	50.1	•	30	74.3	24. I	u	1	
50	51.3	•	30	79.5	20.5	*	J	

LITEIUM BENZOATE C.H.COOLi.

SOLUBILITY IN AQUEOUS ALCOHOL SOLUTIONS AT 25°.

		(Seagerr)	, 1910.)		
Per cent C _a H _c OH in Solvent.	d₂s of Sat. Sol.	Gms. C ₆ H ₆ COOLi per 100 Gms. Sat. Sol.	Per cent C ₂ H ₅ OH in Solvent.	d ₂₆ of Sat. Sol.	Gms. C _s H _s COOLi per 100 Gms. Sat. Sol.
0	1.103	27.64	60	0.970	19.80
10	1.088	28.60	70	0.932	15.40
20	1.072	28.50	8o	0.890	10.70
30	1.052	27.80	90	0.847	6.40
40	1.030	26.20	95	0.823	4.50
50	1.003	23.60	100	0.799	2.60

100 gms. H₂O dissolve about 40 gms. C₄H₄COOLi at the b. pt. (U.S.P.)
100 gms. alcohol dissolve about 10 gms. C₄H₄COOLi at the b. pt. "

LITHIUM BORATE LigOB,O.

SOLUBILITY IN WATER.

t° 0 10 20 30 40 45 Gms. Li₂OB₂O₃ per 100 Gms. H₂O 0.7 1.4 2.6 4.9 11.12 20 (Le Chatelier, 1897.)

EQUILIBRIUM IN THE SYSTEM LITHIUM OXIDE, BORIC OXIDE, WATER AT 30°. (Dukelski, 1907.)

Gms. per 100 Gms. Sat. Sol.		d. Solid Phase.	Gms. per 100	Solid Phase.	
Li ₂ O.	B ₂ O ₃ .	Soud Finage.	Li ₂ O.	B ₂ O ₃ .	Sond Phase.
7.01		LiOH.H ₂ O	1.32	3.36	Li ₂ O.2B ₂ O ₃ .2H ₂ O
7.51	2.98	44	0.86	2.47	"
7.71	. 3.38	" +Li ₂ O.B ₂ O ₃ .16H ₂ O	0.53	2.47	u
7.68	3.56	Li ₂ O.B ₂ O ₃ .16H ₂ O	2.17	13.12	"
5.40	2.78	44	2.61	16.39	"
3.47	2.42	44	5.08	30.81	Li ₂ O.5B ₂ O ₃ .10H ₂ O
2.94	2.51	66	4.10	27.07	44
I. 58	3.27	"	3.22	15.40	a
2.17	6.90	44	1.55	15.40	a
3.66	14.78	44	1.30	14.14	u
5.25	22	44	0.96	11.47	B(OH)
5.63	23.8	44	0.63	4.85	44
1.81	6.20	Li ₂ O.2B ₂ O ₂ .xH ₂ O	0	3 · 54	"

Freezing-point data (solubility, see footnote, p. 1) for mixtures of LiBO₂ + NaBO₂, and LiBO₂ + Li₂SiO₃ are given by van Klooster, 1910-11.

LITHIUM BROMATE LiBrO.

100 gms. H₂O dissolve 153.7 gms. LiBrO₂ at 18°, or 100 gms. saturated solution contain 60.4 gms. Sp. Gr. of sol. = 1.833. (Mylius and Funk, 1897.)

LITHIUM BROMIDE LiBr.2H2O.

SOLUBILITY IN WATER. (Kremers, 1858; Bogorodsky, 1894; Jones, 1907.)

ť.	Gms. LiBr per 100 Gms. H ₂ O.	Solid Phase.	t*.	Gms. LiBr pe	
– 0.46	1.058	Iœ (J)	10	166	LiBr.2H ₂ O (K)
- 1.94	4.274	4	20	177	44
- 4.27	8.678	"	30	191	44
-10.3	17.80	4	40	205	"
-30.5	37.64	u	44	209	" +LiBr.H ₂ O (B)
-45	50	" +LiBr.3HeO	50	214	LiBr. H ₂ O (K)
-30	8o	LiBr.3H ₂ O	60	224	u
— 10	122	"	80	245	"
0	143	" (K)	100	266	u
+ 4	160	" +LiBr.2H ₂ O (B)	150		LiBr.H ₂ O+LiBr (B)

Freezing-point data for LiBr + LiOH (Scarpa, 1915), for LiBr + AgBr. (Sandonnini and Scarps, 1913.)

100 gms. glycol dissolve 60 gms. LiBr at 14.7°. (de Coninck, 1905.)

DiLITHIUM d CAMPHORATE C10H14O4Li2.

Solubility in Aqueous Solutions of Camphoric Acid at 13.5°-16° AND VICE VERSA.
(Jungfleisch and Landrieu, 1914.)

Gms. per 100 Gms. Sat. Sol.		c.	olid Phase.	
C _t H _u (COOH) ₂ .	C10H14O4Lia.	30	MIG PRESC.	
0.621	0	Camphoric A	\cid	$C_4H_{14}(COOH)_2$
2.02	3 · 77	"	"	u
3.25	10.63	Monolithium	Tetracamphorate	C10H16O4Li.3C10H16O4
3.51	12.61	"	"	"
3.99	20.56	"	Dicamphorate	$C_{10}H_{14}O_4.Li.C_{10}H_{16}O_4$
3.43	24 . Ğ9	"	"	"
2.87	37.16	"	Camphorate	C10H11O4Li
0	40.80	Dilithium Ca	amphorate	C10H14O4Li2

The mixtures were kept in a cellar at nearly constant temperature and shaken from time to time until equilibrium was reached. Additional results at 17°-23° are also given.

LITHIUM CARBONATE LizCOz.

SOLUBILITY IN WATER. (Bevade, 1885; Flückiger, 1887; Draper, 1887.)

An average curve was constructed from the available results and the following table read from it.

t o.	Gms. LigCO ₃ per 100 Gms.		£°.	Gms. LigCOg per 100 Gms.	
	Water.	Solution.		Water.	Solution.
0	1.54	\I.52	40	1.17	1.16
10	1.43	1.41	50	8o. 1	1.07
20	1.33	1.31	60	I . OI	1.00
25	1.29	1.28	80	0.85	o ·84
30	1.25	I · 24	100	0.72	0.71

Density of saturated solution at 0° = 1.017; at 15° = 1.014.

Solubility of Lithium Carbonate in Aqueous Solutions of ALKALI SALTS AT 25°. (Geffcken - Z. anorg. Chem. 43, 197, '05.)

The original results were calculated to gram quantities and plotted on cross-section paper. The figures in the following table were read from the curves.

Gms. Salt	Grams Li ₂ CO ₃ per Liter in Aqueous Solutions of:							
per Liter.	KClO3.	KNO3.	KCl.	NaCl.	K ₂ SO ₄ .	Na ₂ SO ₄ .	NH ₄ Cl.	(NH ₄) ₂ SO ₄ .
0	12.63	12.63	12.63	12.63	12.63	12.63	12.63	12.63
10	12.95	13.05	13.10	13.4	13.9	14.0	16.0	20.7
20	13.10	13.3	13.5	13.9	14.7	15.0	19.2	25.0
30	13.25	13.6	13.8	14.3	15.4	16. 0	21.5	28.2
40	13.40	13.8	14.0	14.6	16.0	16.6	23.3	30.8
60		13.8	14.2	14.5	16.9	17.8	26.0	35.2
8 0		13.6	14.0	14.4	17.7	18.6	27.6	38.5
100	• • •	13.5	13.9	14.2	18.2	19.4	28.4	41.0
120	• • •	13.3	13.7	14.0	• • •	19.9	28.7	42.6
140	• • •	13.0	13.3	• • •	• • •	20.4	28.8	43 · 5
170	• • •	12.6	• • •	• • •	• • •	• • •	28.9	• • •
200	• • •	12.2	• • •	• • •	• • •	• • •	29.0	•••

100 gms. aq. alcohol of 0.941 Sp. Gr. dissolve 0.056 gm. Li₂CO₃ at 15.5°. One liter sat. sol. in water contains 0.1722 gm. mols. = 12.73 gms. Li₂CO₃ at 25°. (Ageno and Valla, 1911.)

SOLUBILITY OF LITHIUM CARBONATE IN AQUEOUS SOLUTIONS OF ORGANIC COM-POUNDS AT 25°.

(Rothmund, 1908, 1910; see also Traube, 1909.)

The solubility in H₂O = 0.1687 mols. Li₂CO₂ per liter = 12.47 gms. at 25°.

Gm. Mols. Li₂CO₂ per Liter in Aq. Solution of:

	One most rajeog per rater in Aq. Solution of:					
Aqueous Solution of:	0.125 Normality.	0.25 Normality.	0.5 Normality.	Normality.		
Methyl Alcohol	• • •	0.1604	0.1529	0.1394		
Ethyl Alcohol	0.1614	0.1555	0.1417	0.1203		
Propyl Alcohol	0.1604	0.1524	0.1380	0.1097		
Amyl Alcohol (tertiary)	0.1564	0.1442	0.1224	0.0899		
Acetone	0.1600	0.1515	0.1366	0.1104		
Ether	0.1580	0.1476	0.1300	• • •		
Formaldehyde	0.1668	0.1653	0.1606	0.1531		
Glycol	0.1660	0.1629	0.1565	0.1472		
Glycerol	0.1670	0.1647	0.1613	0.1532		
Mannite	0.1705	0.1737	0.1778	•••		
Grape Sugar	0.1702	0.1728	0.1752	0.1778		
Cane Sugar	0.1693	0.1689	0.1661	0.1557		
Urea	0.1686	0.1673	0.1643	0.1605		
Thiourea	0.1667	0.1643	0.1600	0.1523		
Dimethylpyrone	0.1562	0.1460	0.1280	0.0992		
Ammonia	0.1653	0.1630	0.1577	0.1466		
Diethylamine	0.1589	0.1481	0.1283	0.0937		
Pyridine	0.1592	0.1503	0.1347	0.1001		
Urethan.	0.1604	0.1525	0.1377	0.1113		
Acetamide	•••	0.1614	0.1520	0.1358		
Acetonitrile	0.1618	0.1556	0.1429	0.1178		
Mercuricyanide	0.1697	0.1704	•••	•••		

Freezing-point data for mixtures of Li₂CO₃ + Li₂SO₄ Li₂CO₃ + K₂CO₅.

(Amadori, 1912.) (Le Chatelier, 1894.)

LITHIUM (Bi) CARBONATE LiHCO2.

100 gms. H₂O dissolve 5.501 gms. LiHCO₂ at 13°,

(Bevade, 1884.)

LITHIUM CHLORATE LiCIO.

100 gms. H₂O dissolve 213.5 gms. LiClO₂ at 18°, or 100 gms. sat. solution contain 75.8 gms. Sp. Gr. of sol. = 1.815. (Mylius and Funk, 1897.)
100 gms. H₂O dissolve 483′gms. LiClO₂ at 15°, d₁₅ of sat. sol. = 1.82. (Carlson, 1910.)

LITHIUM CHLORAURATE LIAUCL.

SOLUBILITY IN WATER. (Rosenbladt, 1886.)

ť.	Gms. LiAuCl, per 100 Gms. Solution.	ť.	Gms. LiAuCl ₄ per 100 Gms. Solution.	· t •.	Gms. LiAuCl, per 100 Gms. Solution.
IO	53.1	40	67.3	60	76.4
20	57 · 7	50	72	70	81
30	62.5			80	85.7

LITHIUM CHLORIDE LiCI.

SOLUBILITY IN	WATER.	(Average curve from results of Gerlach, 1869.)
---------------	--------	--

t.	Gms. LiCl per 100 Gms.		ť.	Gms. LiCl per 100 Gms.	
	Water.	Solution.	٠.	Water.	Solution.
0	67	40.I	40	90.5	47.5
10	72	41.9	50	97	49.2
20	78.5	44	60	103	51.9
25	81.5	44.9	8 o	115	53.5
30	84.5	45.8	100	127.5	56

Density of saturated solution at 0°, 1.255; at 15°, 1.275.

SOLUBILITY OF LITHIUM CHLORIDE IN AQUBOUS SOLUTIONS OF HYDROCHLORIC ACID.

Resul	ts at o°. (E	ngel, 1888.)	Results at 25°.	(Hers, 1911-12.)		
Gms. per 100 cc. Sat. Sol.			Gms. per 100 cc. Sat. Sol.			
LiCl.	HCl.	eg or sar. sor.	LiCl.	HCL		
51	0	1.255	. 57 • 4	0		
41.4	8.2	1.243	56.87	2.30		
28.5	24.I	1.249	53.64	3.84		
24.6	29.5	1.251	51.98	6.43		

SOLUBILITY OF LITHIUM CHLORIDE IN AQUEOUS SOLUTIONS OF ALCOHOL AT 25°.
(Pinar de Rubies, 1913-1914.)

The LiCl was determined by titration with AgNO₃. Solutions saturated by constant agitation for many hours. Solid phase, LiCl.H₂O for all mixtures. The anhydride, LiCl, separates only from the most highly concentrated alcohol solutions.

Gms. per 100	Gms. Sat Sol.	Gms. per 100 Gms. Sat. Sol.		
C₃H₅OH.	LiCl.	C ₂ H ₄ OH.	LiCl.	
0	44.9	50	25.75	
10	40.9	60	21.6	
20	37.25	70	2I.I	
30	33 · 3	75	20.8	
40	29.4	80	20.75	

SOLUBILITY OF LITHIUM CHLORIDE IN ETHYL ALCOHOL AT DIFFERENT TEMPERATURES. (Turner and Bissett, 1913.)

t".	Gms. LiCl per 100 Gms. C ₂ H ₄ OH.	Solid Phase.	t°.	Gms. LiCl per 100 Gms. C ₂ H ₄ OH.	Solid Phase.
0	14.42	LiCl.4C2H5OH	20	24.28	LiCl
5	15.04	"	30	25.10	"
IO	16.77	"	40	25.38	"
15	18.79	"	50	24.40	"
17	20.31	"	60	23.46	"

SOLUBILITY OF LITHIUM CHLORIDE IN SEVERAL SOLVENTS.

GDBS. LICI						GMS. LICI			
Solvent.		per 100 Gms. Solvent.	Authority.	Solvent.	t°.	per 100 Gms. Solvent.	Au	thority.	
Alcohol:		•		Alcohol:			•		
Methyl	25	42.36	(Turner & Bissett, 1913.)	Amyl	25	9.03	(Turner &	Bissett, 1913.)	
Ethyl	25	2.54*	(Patten & Mott, 1904.)	"	?	7.2	(Andrews	& Ende, 1895.)	
Propyl	25	16.22	(Turner & Bissett, 1913.)	66	25	ġ*	(Patten & Mott, 1907.)		
eë -	?	15.86	(Schlamp, 1894.)	Butyl	25	10.57*	44	**	
"	25	3.86*	(Patten & Mott, 1904.)	Glycerol	25	4.32*	et '	*	
Allyl	25	4.38*	" " .	Phenol	53	1.93*	*	*	
 Pused LiCl used for these determinations. 									

100 cc. anhydrous hydrazine dissolve 16 gms. LiCl at room temp.
(Welsh and Broderson, 1915.)

Ethyl Acetate and Benzene

SOLUBILITY OF LITHIUM CHLORIDE IN SEVERAL SOLVENTS. (Laszczynski, 1894; deConinck, 1905.)

In Acetone. (L.)				In P	yridine. (L.)	In Glycol. (de C.)	
t.	Gms. LiCl per 100 Gms. (CH ₄) ₂ CO.	t".	Gms. LiCl per 100 Gms. (CH ₂)2CO.	ť.	Gms. LiCl per 100 Gms. C ₆ H ₅ N.	t *.	Gms. LiCl per 100 Gms. Sat. Sol.
0	4.60	46	3.76	. 15	7.78	15	II
12	4.41	53	3.12	100	14.26		
25	4.11	58	2.14				

SOLUBILITY OF LITHIUM CHLORIDE IN PYRIDINE. (Kahlenberg and Krauskopf, 1908.)

	In Anh	ydrous Pyr	In 97% Pyridine + 3% H ₂ O by Volume.				
	Gms. LiCl p	per 100 Gms.	Solid Phase.	ť.	Gms. LiCl per 100 Gms.		
t°.	Set. Sol.	Solvent.	Sond Phase.	6.	Sat. Sol.	Solvent.	
8	11.31	12.71	LiCl.2C ₅ H ₅ N	22	12.50	14.31	
28	11.87	13.47	. "	32	13.79	15.98	
40	11.60	13.10	LiCl.C ₅ H ₅ N	45	15.58	18.46	
Ġо	11.38	12.84	"	58	16.72	20.08	
8o	11.71	13.27	"	72	17.12	20.66	
100	13.01	14.98	"	97	18.35	22.48	
-	a temp about	~go ' ´			•		

SOLUBILITY OF LITHIUM CHLORIDE AT 25° IN MIXTURES OF:

Acetone and Benzene.

	(Marden and	(Marden and Dover, 1917.)			
Solvent.	Gms. LiCl per 100 Gms. Solvent.	Gms. Acetone per 100 Gms. Solvent.	Gms. LiCl per roo Gms. Solvent.	Gms. Ethyl Acetate per 100 Gms. Solvent.	Gms. LiCl per 100 Gms. Solvent.
100	2.30	40	0.088	100	1.78
90	1.69	20	0.019	`90	0.147
80	0.966	10	0.009	8o	0.028
60	0.234	0	0	70	0.005

DISTRIBUTION OF LITHIUM CHLORIDE BETWEEN WATER AND AMYL ALCOHOL AT 30°. (Dhar and Datta, 1913.)

Mols. Li(Il per Liter.	<u>s</u> .	. Mols. Li	9.	
H ₂ O Layer c ₁ .	Alcohol Layer 4.	<u>4</u> .	HeO Layer 61.	Alcohol Layer 6.	<u>.</u>
3.24	0.0347	93 · 37	2.68	0.0240	111.66
3.06	0.0325	94.15	2.58	0.0275	113.40
2.93	0.0300	97.70	2.34	0.0200	117
2.82	0.0275	102.58	1.84	0.0125	147.2
2.76	0.0250	110.40	0.65	0.0030	216.66

Freezing-point data (solubility, see footnote, p. 1) are given for the following mixtures of lithium chloride and other compounds.

LITHIUM CHROMATE LigCrO4.2HgO.

LITHIUM BICHROMATE Li,Cr,O,.2H,O.

Solubility in Water at 30°. (Schreinemaker - Z. physik. Chem. 55, 79, '06; at 18°, Mylius and Funk - Ber. 30, 1718, '97.)

Co	mposition in	Weight per	C-MA	
Of S	olution.		esidue.	Solid Phase.
%CrO ₃ .	%Li₂O.	%CrO₃.	%Li ₂ O.	
0.0	7.09	• • •	• • •	LIOH.H ₆ O
6.986	7 · 744	4.322	18.538	*
16.564	8.888	10.089	19.556	•
25.811	10.611	15.479	21.106	•
3 3.618	12.886		19.398	•
37.411	14.306	44 · 555	17.411	CeHe Poor H OF H HOLL
37 - 588	14.381	36.331	18.552	
37 · 4 95	13.311	51.075	16.384	Li ₂ CrO _{4.2} H ₂ O
40.280			• • •	и
43 - 404	11.809	53 · 793	14.070	Li ₂ Cr _. O ₄ .aH ₂ O + Li ₂ Cr ₂ O ₇ .aH ₂ O
45.130	9.515	56.085	10.190	LigCrgO7.2HgO
47 - 945	7.951	58.029	9.238	44
57.031	6.432	65.560	8.733	44
67.731	5.713	71.687	8.513	LigCryO7.2HgO + CrO9
67.814	5.689	80.452	3.780	
65 . 200	4.661		• • •	CrO₃
63.257	2.141	85.914	0.758	•
62.28				•

A saturated aqueous solution contains:

49.985 per cent Li₂CrO₄, or 100 grams H₂O dissolve 99.94 grams Li,CrO, at 30° (S.).

56.6 per cent Li, Cr, O, or 100 grams H,O dissolve 130.4 grams

Li₂Cr₂O₇ at 30° (S.).

52.6 per cent Li₂CrO₄, or 100 grams H₂O dissolve 110.9 grams LiCrO₄ at 18° (M. and F.). Sp. Gr. of sat. solution at 18° - 1.574.

LITHIUM CITRATE C₂H₄(OH)(COOLi)₂.4H₂O.

100 gms. H₂O dissolve 61.2 gms. Li citrate at 15°. d_{16} sat. sol. = 1.187. (Greenish and Smith, 1902.)

SOLUBILITY IN AQUEOUS ALCOHOL AT 25°. ' (Seidell, 1910.)

Wt. % C.H.OH in Solvent.	d ₂₅ of Sat. Sol.	Gms. C ₂ H ₄ OH(COOLi) ₃ ,- 4H ₄ O per 100 Gms. Solvent.	Wt. % C ₂ H ₂ OH in Solvent.	d₂s of Sat. Sol.	Gms. C ₂ H ₂ OH(COOLi) ₃ ,- 4H ₂ O per 100 Gms. Solvent.
0	1.216	74 . 50	50	0.933	4.93
10	1.150	49.30	60	0.897	2.25
20	1.083	32.10	70	0.867	0.60
30	1.025	18.80	8o	0.838	0.30
40	0.976	9.65	100	0.788	0.02

LITHIUM FLUORIDE Lif.

100 gms. H₂O dissolve 0.27 gm. LiF at 18°. Sp. gr. of sol. = 1.003.
(Mylius and Funk, 1897.)
F.-pt. data for LiF + LiOH and for LiOH + LiI are given by Scarpa, 1915.

LITHIUM FORMATE HCOOLi.

SOLUBILITY IN WATER. (Groschuff, 1903.)

e .	Gms. HCOOLi per 100 Gms. Solution.	Mols. HCOOLi per 100 Mols H _c O.		ť.	Gms. HCOOLi per 100 Gms. H ₂ O.	Mols. HCOOLi per 100 Mol H ₄ O.	
-20	21.14	9.28	HCOOLi.H ₂ O	91	54.16	40.90	HCOOLi.H.O
0	24.42	11.18	"	98	57.05	45.99	HCOOLi
18	27.85	13.36	"	104	57.64	47.11	"
49.5	35.60	19.14	"	120	59.63	51.13	46
74	44.91	28.22	"				

Sp. gr. sat. sol. at $.18^{\circ} = 1.142$.

SOLUBILITY OF NEUTRAL LITHIUM FORMATE IN ANHYDROUS FORMIC ACID. (Groschuff, 1903.)

. e. .	Gms. HCOOLi per 100 Gms. Solution.	Mols. HCOOLs per 100 Mols. (HCOOH.	Solid Phase.
0	25.4	30	HCOOLi
18	25.9	30.9	"
39	26.4	31.75	"
39 60	26.9	32.6	ic
79	27 . Š	34	44

LITHIUM HIPPURATE C.H.CO.NHCH.COOLi.

100 gms. H₂O dissolve about 40 gms. of the salt at 15-20°.

(Squire and Caines, 1905.)

LITHIUM HYDROXIDE LIOH.H.O.

SOLUBILITY IN WATER. (Dittmar, 1888; Pickering, 1893.)

t.	Gms. per 100 Gms. Solution.		Gms. LiOH per 100 Gms.	t°.	Gms. per 100 Gms. Solution.		Gms. LiOH per 100 Gms
	Li ₂ O =	LiOH.	H ₂ O.		Li ₂ O =	LiOH.	H _e O.
- 10.5		7 · 23	• • •	30	7.05	11.27	12.9
— 18 Eutec.		11.2	• • •	40	7.29	11.68	13
0	6.67	10.64	12.7	50	7.56	12.12	13.3
10	6.74	10.80	12.7	60	7.96	12.76	13.8
20	6.86.	10.99.	12.8	8 o	8.87	14.21	15.3
25	6.95	11.14	12.9	100	10.02	16.05	17.5

SOLUBILITY OF LITHIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF LITHIUM SULFOANTIMONATE AT 30° AND VICE VERSA. (Donk, 1908.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.		r 100 Gms. . Sol.	Solid Phase.
LiOH.	Li ₂ SbS ₄ .		Lioh.		
11.4	0	Lioh.H _o	2.I	48.3	LiOH.H ₂ O
9. Ī	8.3	46	2.I	52.1	" +Li ₂ SbS ₄ .10H ₂ O
2.3	29.9	*	1.4	51.8	Li ₂ SbS ₄ .10H ₂ O
•			0	51.3	4

Data for equilibrium in the system lithium hydroxide, phenol, water at 25° are given by van Meurs, 1916.

LITHIUM IODATE Li(IO₂). H₂O.

100 gms. H₂O dissolve 80.3 gms. LilO₂ at 18°, or 100 gms. solution contain 44.6 grams. Sp. gr. of sol. = 1.568. (Mylius and Funk, 1897.)

LITHIUM IODIDE Lil.3H2O.

SOLUBILITY IN WATER. (Kremers, 1858, 1860; ice curve, Jones, 1907.)

ť.	Gms. per 100 Gms.		Solid Phase.	t°.	Gms. per 100 Gms.		Solid Phase.
• .	Water.	Sat. Sol.	Soud Phase.	• .	Water.	Sat. Sol.	
- 0.296	1.08	1.06	Ice	20	165	62.2	LiI.3H2O
-1.218	4.36	4.19	44	25	167	62.6	"
-2.70	8.71	8.02	"	30	171	63.1	"
6.14	17.69	15.03	"	40	179	64.2	"
-16.2	38.31	27.70	46	50	187	65.2	"
-25	48.67	32.72	"	бo	202	66.g	"
-59	85.13	46	. "	70	230	69.7	"
-69 Eute	c. 93	48.2	Ice+LiI.3H ₂ O	75	263	72.5	46
-60	100	50	LiI.₃H₂O	75	m. pt.	• • •	"
-40	118	54.13	u	85	m. pt.		LiI.2H 2 O
— 20	134	57.27	"	80	435	81.3	LiI.H ₂ O
Ο.	151	60.2	"	100	481	82.8	"
10	157	61.1	"	I 20	590	85.5	"

SOLUBILITY OF LITHIUM IODIDE IN SEVERAL SOLVENTS.

Solvent.	ť.	Gms. LiI per 100 Gms. Solvent.	Aut	hority.
Methyl Alcohol	25	343 · 4		Bissett, 1913.)
Ethyl Alcohol	25	250.8	"	"
Propyl Alcohol	25	47.52*	u	#
Amyl Alcohol	25	112.5	u	44
Glycol	15.3	38.9	(de Coninck,	1905.)
Furfurol	25	45.9t	(Walden, 190	x6.)
Nitromethane	Ö	1.22	u	
"	25	2.52	44	
* Solid phase = Lil.4	C₁H₁OH.	† = gms. per 100	cc. sat. soluti	on.

F.-pt. data for LiI + AgI are given by Sandonnini and Scarpa, 1913.

LITHIUM IODOMERCURATE 2Lil. Hgl2.6H2O.

100 gms. sat. solution of lithium iodomercurate in water prepared by cooling a hot solution and allowing to stand at 24.7° for 3 months, contained 1.30 gms. Li, 27.4 gms. Hg, 58 gms. I and 13.3 gms. H₂O; Sp. Gr. of the sat. sol. = 3.28. (Duboin, 1905.)

LITHIUM LAURATE, MYRISTATE, etc.

Solubility in Water and in Alcohol of d=0.797, at 18° and at 25°. (Partheil and Ferie, 1903.)

		Gms. Salt per roo cc. Sat. Solution in:					
Salt.	Formula.	Wat	ter at	Alcohol at			
		18°.	25°.	18°.	25°.		
Stearate	C ₁₇ H ₃₅ COOLi	0,010	0.011	0.041	0.0532		
Palmitate	C ₁₅ H ₃₁ COOLi	0.011	0.018	0.0796	0.0056		
Myristate	C ₁₃ H ₂₇ COOLi	0.0232	0.0234	0.184	0.2100		
Laurate	C ₁₁ H ₂₂ COOLi	0.158	0.1726	0.418	0.4424		
Oleate	C ₁₇ H ₃₂ COOLi	0.0674	0.1320	0.9084	1.010		

LITHIUM LAURATE, MYRISTATE, PALMITATE and STEARATE.

SOLUBILITY OF EACH OF THESE SALTS, DETERMINED SEPARATELY, IN SEVERAL SOLVENTS. (Jacobson and Holmes, 1916.)

Li taurate = $C_{11}H_{22}COOLi$. Li myristate = $C_{12}H_{27}COOLi$, Li palmitate = $CH_{3}(CH_{2})_{14}COOLi$ and Li stearate = $CH_{3}(CH_{2})_{16}COOLi$. Excess of salt shaken with solvent for 2 hrs. in all cases. The sat. sol. was

analyzed by evaporating to dryness and weighing residue.

Solvent.	e.	Gms. of Each Salt (determined separately) per roo Gms. Solvent.				
	•.	Li Laurate.	Li Myristate.	Li Palmitate.	Li Stearate.	
Abs. Ethyl Alcohol	20	0.403	0.194	0.096	0.072	
	25.4	0.447	0.224	0.118	,o.o8g	
** **	35	0.546	0.278	0.142	0.106	
"	50	0.782	0.435	0.248	0.200	
. " "	65	1.149	0.669	0.391	0.333	
Methyl Alcohol	15.2	3.159	1.346	0.616	0.349	
<i>""</i> "	25	3.773	1.680	0. 7 71	0.439	
"	34.6	4.597	2.193	1.086	0.658	
66 66	50	6.088	3.281	1.652	1.057	
Water	16.3	0.154	0.027	0.010	0.009	
"	25	0.187	0.036	0.015	0.010	
46	35	0.207	0.042	0.015	0.010	
· ·	50	0.280	0.062			
Ether	15.8	0.011	0.013	0.007	0.011	
"	25	0.006	0.004	0.007	0.011	
Amyl Alcohol	16	0.073	0.029	0.019	0.011	
" "	25.7	0.111	0.046	0.032	0.028	
" "	35	0.126	0.062	0.033	0.031	
" "	49.2	0.203	0.109	0.069	0.060	
Chloroform	15.2	0.006	0.004	0.004	0.004	
Amyl Acetate	14.5	0.068	0.037	0.038	0.034	
u u	25	0.064	0.034	0.024	0.029	
"	35	0.061	0.044	0.037	0.031	
" "	50	0.061	0.045	0.036	0.044	
Methyl Acetate	24.5	0.026	0.013	0.015	0.012	
Acetone	15	0.300	0.413	0.434	0.571	
"	25	0.376	0.447	0.508	0.706	
"	35	0.430	0.502	0.537	0.663	

The above lithium salts were prepared by adding the calculated amount of lithium acetate to the alcoholic solutions of the respective fatty acids. The resulting precipitates were dissolved in boiling alcohol and the solutions allowed to stand over night in a cool place. The salts so obtained were washed and dried.

LITHIUM TetraMOLYBDATE Li₂O.MoO_{2.2}H₂O.

100 cc. sat. aqueous solution contain 43.13 gms. Li₂O.MoO_{3.2}H₂O at 20°. d₂₀ of sat. sol. = 1.44. (Wempe, 1912.)

LITHIUM NITRATE LINO, 3H2O.

	So	LUBILITY IN WAT	ER. (Donne	an and Burt, 190	3.)
r.	Gms. LiNO _s per 100 Gms. Solutions	Solid Phase.	ť.	Gms. LiNO ₃ per 100 Gms. Solution.	Solid Phase.
0. I	34.8	LiNO _{3.3} H ₂ O	29.87	56.42	LiNO _{3.3} H ₂ O
10.5	37.9	"	29.86	56.68	"
12.1	38.2	"	29.64	57.48	"
13.75	39.3	"	29.55	58.03	"
19.05	40.4	"	43.6	6 0.8	Lino, HO
22.I	42.0	"	50.5	61.3	u -
27.55	47.3	"	55	63	"
29.47	53.67	u	őŏ	63.6	"
29.78	55.09	"	64.2	64.9	LiNO ₃
			50.0	66 -	"

70.9 66.1

The eutectic Ice + LiNO_{1.3}H₁O₁, is at -17.8° and about 33 gms. LiNO₂ per 100 gms. sat. sol. Transition points, 29.6° and 61.1°.

Data for the system LiNO₂+Li₂SO₄+H₂O at 0°, 30° and 70° are given by

Massink, 1916.

A sat. solution of lithium nitrate in acetone contains 0.343 gm. mols. = 23.67 gms. per liter at about 20°. (Roshdestwensky and Lewis, 1911.)

Freezing-point data for LiNO₂ + KNO₂ and LiNO₂ + NaNO₂ are given by Carveth, 1898. Results for LiNO₂ + KNO₃ are also given by Harkins and Clark, 1915. Results for LiNO₃ + Li₂SO₄ are given by Amadori, 1913.

LITHIUM NITRITE LINO, HO.

	SOLU	BILITY IN WATER	, (Usw	ald, 1914.)	
e,	Gms. LiNO, per roo Gms. Sat. Sol.	Solid Phase.	t.	Gms. LiNO, per 100 Gms. Sat. Sol.	Solid Phase.
- 7·5	II.I	Ice	38.5	55.5	Lino, H ₂ O
-11.7	15	"	42	56.9	
-21	21.2	"	49	60.6	u
-28.8	20 .	"	49.5	61.2	" +Lino, }HeO
-31.3	20.4	" +Lino,.H ₂ O	65	63.8	Lino, Ho
-19.3	33.9	Lino, H ₂ O	81.5	68.7	"
o T	41.5	"	91	72.4	"
+10	48.9 (d19=1.3186.)	44	96	ģ1.8	44
25	50.9	"	92.5	94.3	u

100 gms. H₂O dissolve 10.5 gms. AgNO₂ + 78.5 gms. LiNO₂ at 14°. (Oswald, 1914.) LITHIUM OXALATE Li2C2O4.

SOLUBILITY OF MIXTURES OF LITHIUM OXALATE AND OXALIC ACID IN WATER AT 25°. (Foote and Andrew, 1905.)

Mixtures of the two substances were dissolved in water, and the solutions cooled in a thermostat to 25°.

Gms. per 100 Gms. Solution.		Mols. per ro	o Mols. H ₂ O.	Solid Phase.		
H ₂ C ₂ O ₄ .	Li ₂ C ₂ O ₄ .	H ₁ C ₂ O ₄ .	Li ₂ C ₂ O ₄ .			
10.20	• • •	2.274		$H_2C_2O_4.2H_2O$		
10.66 10.55	2.96 } 3.11 \$	2.457	0.622	H ₂ C ₂ O ₄ .H ₂ O and HLiC ₂ O ₄ .H ₂ O		
8.08	3.18	1.823	0.633	Double Salt HLiC2O4.4H2O		
2.60	5.03	0.563	0.962	= $39.2H_2C_1O_4$ and $44.7Li_1C_1O_2$		
2.16	6.54	0.469	1.273	HLiC ₂ O ₄ .H ₂ O and Li ₂ C ₂ O ₄		
2.12	1.61 \$ 5.87		1.001	Li ₂ C ₂ O ₄		

100 gms. aqueous solution, simultaneously saturated with lithium oxalate and ammonium oxalate at 25°, contain 5.75 gms. Li₂C₂O₄ + 4.8 gms. (NH₄)₂C₂O₄. (Foote and Andrew, 1905.)

LITHIUM PHOSPHATE Lipo.

100 gms. H₂O dissolve 0.04 gm. Li₂PO₄.

(Mayer, 1856.)

LITHIUM (Hypo) PHOSPHATE Li₄P₂O_{4.7}H₂O.

100 gms. H₂O dissolve 0.83 gm. hypophosphate at ord. temp. (Rammelsberg, 1892)

LITHIUM PERMANGANATE LiMnO4.3H2O

100 gms. water dissolve 71.4 gms. permanganate at 16°.

(Ashoff.)

LITHIUM SALICYLATE C.H.OHCOOLI.H.O.

SOLUBILITY IN AQUEOUS ALCOHOL SOLUTIONS AT 25°. (Seidell, 1909, 1910.)

Gms. C ₁ H ₁ OH per 100 Gms. Solvent.	d_{25} of Sat. Sol.	Gms. C ₄ H ₄ OHCOOH. ₄ H ₄ O per roo Gms. Sat. Sol.	Gms. C ₁ H ₃ OH per 100 Gms. Solvent.	d _M of Sat. Sol.	Gms. C ₄ H ₄ OH(OOH.) H ₂ O per roo Gms. Sat. Sol.
0	1.209	56	60	1.104	51.1
10	1.195	55.9	70	1.083	49.5
20	1.180	55 · 4	8o	1.056	47.5
30.	1.163	54 · 7	.90	1.026	45.8
40	I.144	53 · 7	92.3	I.020	45.6
50	1.124	52.5	100	1.027	48.2

100 gms. propyl alcohol dissolve 18.7 gms. Li salicylate (temp.?). (Schlamp, 1893.)

LITHIUM SULFATE Li2SO4.H2O.

SOLUBILITY IN WATER.

(Average curve from Kremers, 1855; Etard, 1894.)

ť.	Gms. Li ₂ SO ₄ per 100 Gms. Solution.	t*.	Gms. Li ₂ SO, per	t*.	Gms. Li ₂ SO ₄ per 200 Gms. Solution.
-20	18.4	20	25.5	50	24.5
-10	24.2	25	25.3	60	24.2
0	26. I	30	25.1	80	23.5
10	25.9	40	24.7	100	23

SOLUBILITY OF LITHIUM-POTASSIUM SULFATE IN WATER. (Spielrein, 1913.)

ť.	Sat. Sol.	Solid Phase.	ť.	Gms. per roo ec.	Solid Phase.
20 20	Li ₂ SO ₄ . K ₂ SO ₄ . 35.6 3.6	Li ₂ SO ₄ .K ₂ SO ₄ +Li ₂ SO ₄ "+K ₂ SO ₄	60 08		Li ₂ SO ₄ .K ₂ SO ₄ +K ₂ SO ₄ +Li ₂ SO ₄
60	13.3 13.1 32.5 6	" +Li ₂ SO ₄	98	30.2 9.3 9 23	" +K ₁ SO ₄

SOLUBILITY OF LITHIUM-SODIUM SULFATES IN WATER, (Spielrein, 1911.)

				(,	-9-5-7				
	Gms. pe	T 100 CC			G	ms. per	7 100 CC		
٠t°.	Sat	. Sol.	Sol	id Phase.	t°.	Sat.	Sol.	Solid Pha	se.
	Li ₂ SO ₄ .	Na ₂ SO ₄			ว	LI ₂ SO ₄ .	Natio,	7	
0	31.4	5.9	Li ₂ SO ₄ .Na ₂ S	O4.5}H4O+L14SO4	33.5	25.8	13.9	LisO, NasO, 3H	O+LI ₄ SO ₄
0	18.5	11.4	**	"+Na2SO4				"	+Na ₂ SO ₄
7.5	20.4	11.17	"	(triple pt.)	53	28	16 6	"	+LI ₄ SO ₄
16	32	9.3	**	**	53	16.7	27.3	11	+Na ₂ SO ₄
24	26	14.9	Li ₂ SO ₄ .Na ₂ S	O4.12H2O+Li2SO4	99	27.4	14.4	44	+LisO.
24	16.5	21.4	44	+Na ₂ SO ₄	99	14.4	25.I	44	+Na ₂ SO ₄
32	20	16.8	u	(triple pt.)			-		

There is some uncertainty as to whether all of the above results are in terms of grams per 100 cc. or per 100 gms. of sat. solution.

SOLUBILITY OF LITHIUM SULFATE IN ABSOLUTE SULFURIC ACID. (Bergius, 1910.)

10 cc. sat. solution in abs. H_2SO_4 contain 2.719 gms. Li₂SO₄ and the crystalline solid phase has the composition Li₂SO_{4.7}H₂SO₄ and melts at about 12°.

SOLUBILITY OF LITHIUM SULFATE IN AQ. HSO4 AT 30°. (van Dorp, 1910.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100	Gms. Sat. Sol.	Solid Phase.
H ₄ SO ₄ .	Li ₄ SO ₄ . 22.74	Li ₂ SO ₄ .H ₂ O	H ₄ SO ₄ . 55.08	Li ₂ SO ₄ . 13.69	LiSO ₄
12.23	20.45	- ű -	6ĭ.46	17.10	"
16.60	19.10	"	62.49	18.89	Li ₂ SO ₄ .H ₂ SO ₄
32.70	13.37	"	69.40	13.75	"
42.98	10.57	"	78.23	11.64	"
52.72	II.44	"	83.43	15.65	"

SOLUBILITY OF LITHIUM SULFATE IN AQUEOUS ALCOHOL AT 30°.

(Schreinemakers and van Dorp, Jr., 1906.)

Gms. per 100 (Gms. Set. Sol.	Solid Phase.	Gms. per 100	Gms. Sat. Sol.	Solid Phase.
C.H.OH.	Li ₂ SO ₄ .		C.H.OH.	Li _s SO ₄ .	
0	25.I	Li ₂ SO ₄ .H ₂ O	47.28	3.04	Li ₂ SO ₄ .H ₂ O
11.75	16.16	"	58.59	I.22	"
21.IQ	11.52	66	69.39	0.396	"
20.40	8.17	"	80.74	٥ ΄	"
33.31	6.66	"	94.11	. 0	"

F.-pt. data for Li₂SO₄ + MnSO₄ are given by Calcagni and Marotta, 1914: Results for Li₂SO₄ + SrSO₄ are given by Calcagni and Marotta, 1912. Results for Li₂SO₄ + Na₂SO₄ and Li₂SO₄ + K₂SO₄ are given by Nacken, 1907; results for Li₂SO₄ + Ag₂SO₄ are given by Nacken, 1907b.

LITHIUM SILICATE LizSiO2.

Fusion point data for Li₂O + SiO₂ and Li₃SiO₃ + ZnSiO₃ are given by van Klooster, 1910-11. Results for Li₂SiO₃ + MgSiO₃, Li₃SiO₄ + Na₂SiO₃, Li₃SiO₃ + K₂SiO₃ and Li₃SiO₃ + SrSiO₃ are given by Wallace, 1909.

	Sa	ılt.		Formula.	t°.	Gms. Salt per roo Gms. Sat. Sol.	Authority.
Lithium	Dihydro	xytartrate	•	Li ₂ C ₄ H ₄ O _{8.2} H ₂ O	0	0.070	(Fenton, 1898.)
Lithium	Sodium :	Racemic 1	Cartrate	LiNaC4H4O6.2H2O	20	19.97	(Schlossberg, 1900.)
66	"	Dextro	"	"	20	22.55	4
"	Potassiu	m Racemi	ic "	LiKC ₄ H ₄ O ₆ .H ₂ O	20	35.19	a
"	"	Dextro	"	"	20	37.82	u

MAGNESIUM Mg. F.-pt. data for Mg+Hg. MAGNESIUM ACETATE Mg(CH2COO)2.4H2O. (Cambi and Speroni, 1915.)

EQUILIBRIUM IN THE SYSTEM MAGNESIUM OXIDE-ACETIC ACID-WATER AT 25°. (Iwaki, 1914.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 10 Sat. S	o Gms. ol.	Solid Phase.	
CH,COOH.	MgO.		CH.COOH.	MgO.		_
3.36	1.731	MgO	31.37	7.99 (CI	I ₄ COO) ₂ Mg. ₄ I	I ₂ O
5.65	2.93	и	36.23	8.18	115	+233
8.06	4.21	«	35.77	8.17	2-3-3	
12.46	6.54	"	40.87	7.42	66	
15.46	8.24	" +(CH ₂ COO) ₂ Mg ₋₄ H ₂ O	47.86	6.74	66	
15.38	8.31	(CH ₂ COO) ₂ Mg ₋₄ H ₂ O	56.16	5.81	4	
14.25	7.24	44	δī.59	4.68	44	
20.19	7 - 47	u	69.13	3.75	"	
22.93	7.60	u	75.93	2.85	"	
26.61	7 · 74	"	82.90	2.23	•	
	COTT CO	AL - CIT COATT .	TT 0 3/			. •

2.3.3 = 2(CH₂COO)₂Mg.3CH₂COOH.3H₂O. More careful work in the region of the double salt showed that a second double salt of the composition 5(CH₂COO)₂ Mg.10CH2COOH.7H2O was obtained. This compound usually separated from the more concentrated acetic acid solutions.

MAGNESIUM BENZOATE Mg (C.H.COO)2.4H2O.

100 gms. H₂O dissolve 6.16 gms. Mg(C₄H₅COO)₂ at 15° and 19.6 gms. at 100°. (Tarugi and Checchi, 1901.)
100 gms. H₂O dissolve 3.33 gms. Mg(C₄H₅COO)₂ at 15-20. (Squire and Caines, 1905.)

MAGNESIUM BROMATE Mg(BrO₂)₂.6H₂O.

100 cc. sat. solution contain 42 grams Mg(BrO₃)₃, or 0.15 gram mols. at 18°.

(Kohlrausch -- Sitzb. K. Akad. Wiss. (Berlin), i, 90, '97.)

MAGNESIUM BROMIDE MgBr, 6H,O.

SOLUBILITY IN WATER.

(Menschutkin - Chem. Centrb. 77, I, 646, '06; at 18°, Mylius and Funk - Ber. 30, 1718, '97.)

40	Grams MgBr	per 100 Gms.	t°.	Grams MgBr ₂ per 100 Grams.		
t°	Solution.	Water.	t	Solution.	Water.	
-10	47 - 2	89.4	40	50.4	ю. тог	
0	47 - 9	91.9	50	51.0	104 · I	
10	48.6	94.5	60	51.8	107.5	
18	49.0	96.1	80	53 - 2	113.7	
18	50.8	103.4 (M. and F.)	100	54.6	120.2	
20	49.I	96.5	120	56.o	127.5	
25	49 - 4	97.6	140	58.o	138.1	
30	49.8	99.2	160	62.0	163. 1	

Density of saturated solution at 18° = 1.655 (M. and F.) Etard — Ann. chim. phys. [7] 2, 541, '94, gives solubility results which are evidently too high.

MAGNESIUM BROMIDE ETHERATES, ALCOHOLATES, ACIDATES, ETC.

SOLUBILITIES RESPECTIVELY IN ETHER, ALCOHOL, ACIDS, ETC., AT VARIOUS TEMPERATURES.

(Boris N. Menschutkin. Monograph in the Russian language entitled "On Etherates and Other Molecular Combinations of Magnesium Bromide and Iodide." St. Petersburg, 1907, pp. 267 and XLVIII. Also published in the Memoirs of the St. Petersburg Polytechnic Institute, Vols. 1-7, 1904-1907, and in condensed form in Vols. 49-62 of the Zeit. anorg. Chem., 1906-1909.)

Preparation of Material. The dietherate of magnesium bromide, MgBr₃.2(C₂H_b)₂O (Z. anorg. Chem., 49, 34, '06) was prepared by the very gradual addition of bromine to a cold mixture of magnesium powder and dry ether. It is very hygroscopic and is stable only under its ethereal solution. It is decomposed by water and reacts with very many organic compounds as alcohols, acids, ketones, esters, aldehydes, etc. The addition products thus formed constitute the material employed in the author's succeeding studies. The monoetherate of magnesium bromide, MgBr₂.(C₂H_b)₂O, was prepared just as the dietherate, but the temperature during crystallization was kept above 30°, at which point the dietherate is converted to monoetherate. It is also precipitated by dry ligröin.

Method of Determination of Solubility. At temperatures below 30° the determinations were made by agitating an excess of the salt with the solvent and analyzing the saturated solution. At the higher temperatures the synthetic (sealed tube) method of Alexejeff (Wied. Ann., 1885) was used.

See also p. 301.

SOLUBILITY OF MAGNESIUM BROMIDE DIETHERATE, MgBr₂.2(C₂H₅)₂O, AND OF MAGNESIUM BROMIDE ETHERATE, MgBr₂(C₂H₃)₂O, IN ETHYL ETHER, (C₂H₅)₂O, AT VARIOUS TEMPERATURES.

(Menschutkin. See preceding page.)

	Solubility of t		erate	Solubility of the Monoetherate in Ether.			
r.	Gms. per 100 Gms MgBr ₂ .2(C ₂ H ₄) ₂ O.		Mols. MgBr ₂ . 2(C ₂ H ₄) ₂ O per 100 Mols. Sat. Sol.	ť.	Gms. per 100 Gm MgBr ₂ .(C ₂ H ₄) ₂ O.	MgBr ₂ .	Mols. MgBr ₂ . (C ₂ H ₄) ₂ O per 100 Mols. Sat. Sol.
- 8	1.08	0.6	0.24	0	68.8	49.I	28.I
0	1.44	0.8	0.32	20	67.2	47.9	27.I
+10	2.3	I.27	0.52	30	66.5	47.3	26.6
14	2.95	1.64	0.67	40	65.5	46.7	26.1
16	3.48	1.93	0.80	60	63.8	45.5	25.1
18	4.14	2.3	0.96	80	62.1	44.3	24.2
20	4.86	2.7	1.125	100	60.7	43.3	23.5
22.	.8 6.3	3.5	1.6	120	59.6	42.5	22.9
Two	liquid layers sepan	ate between	these con-	140	58.5	41.7	22.3
	centrations of M	Br ₂ .2(C ₂ H) ;0.	158	57 · 5	41	21.9
23	72.3	40. I	36.8	Two li	quid layers separat		
24	75 ·3	41.8	40.5		centrations of Mg	Br ₂ .(C ₂ H ₄)	, O.
26		44 . I	46.6	158	5.8	4.15	. r.6
28	.5 84.2	46.7	54.2	158	4.8	3 · 4	1.36
30	85.5	47 - 4	56.9	159		I.4	0.56
				162	0.38	0.27	0.11
				170	0.18	0.13	0.05

At 22.8° and 158° the saturated solutions of the dietherate and monoetherate, respectively, separate into two liquid layers which have at the intervening temperatures the following composition. Determinations of the specific gravity of the lower layer gave $d_{\frac{15}{4}} = 1.1628$ and $d_{\frac{26}{4}} = 1.1492$.

ť.	Lower La	ует.	Upper Lay		
	MgBr ₂₋₂ (C ₂ H ₂) ₂ O.	MgBr ₂ .	MgBr ₂ ,2(C ₂ H ₂)2O.	MgBr ₂ .	
-10	75.75	42	3.2	1.8	unstable
0	73.9	41	4.I	2.3	"
+10	72.2	40.I	5	2.8	"
20	70.8	39·3	5.9	3.3	stable
30	69.8	38.7	6.8	3.8	
40	68.8	38.2	7 · 7	4.3	
50	68	37.8	8.5	4.7	
50 60	67.7	37.6	9.2	5.1	
70	67.7	37.6	9.7	5.4	
80	68	37.8	10	5.6	
90	68.6	38.I	10.2	5.7	
100	69.4	38.5	10.4	5.8	
120	71	39.3	10.1	5.6	
140	72.4	40.15	9.2	5.1	
158	74	41	7.8	4.3	

SOLUBILITY OF ETHYL, METHYL, PROPYL, ETC., ALCOHOLATES OF MAGNESIUM BROMIDE IN THE RESPECTIVE ALCOHOLS. (Menschutkin, 1907.)

These compounds were all prepared by the action of magnesium bromide dietherate upon the several alcohols. The ether was expelled and the new alcoholate addition product recrystallized from the respective alcohol. The solubility determinations were made by the synthetic method.

Sol	ubility of	So	lubility of	Solui	bility of	Solut	oility of
MgB	rs.6CHsOH	MgE	r ₂ .6C ₂ H ₄ OH		6C₃H₁OH M		
in Me	thyl Alcohol.		thyl, Alcohol.	in Prop	yl Alcohol. ir	IsoBu	tyl Alcohol.
	Gms. MgBr ₂ .		Gms. MgBr ₂ .	•	Gms. MgBr ₂ .		Gms. MgBra.
ť.	6CH₅ÕH	t°.	6C₃H₄ÕH	t°.	6C₃H₁OH	t°.	6C₄H₀OH
	per 100 Gms. Sat. Sol.		per 100 Gms. Sat. Sol.		per 100 Gms. Sat. Sol.		per 100 Gms. Sat. Sol.
0	42.6	0	17.2	0	77.9	0	55.8
20	44.6	10	24.9	10	81.5	10	60.5
40	46.7	20	32.7	20	85. ī	20	65.2
60	48.9	30	40.3	30	88.5	30	6 9 .8
80	51.4	40	47.8	40	92	40	74.3
100	55 - 5	60	62.2	43	93	50	78.5
120	60.7	80	73.8	46	94 · 3	60	82.4
140	66.8	90	78.7	48	95.8	65	84.2
160	74	100	86.7	50	97.8	71	88
180	84.5	103	90	52 m. j	t. 100	75	92
185	88	106	94.4			77	94.6
190 m.		108.5	m.pt. 100	_		80 m.	
	olubility of		Solubilit			Solubil	ity of
	.6 Iso C _t H ₁₁ O		MgBr _{2.4} (CH ₂)•CHOH	Mgl	Br2.4(C	H ₂) ₂ COH
in Iso	Amyl Alcohol		in Dimethyl		in Tr	imethy	l Carbinol.
	Gms. MgBr ₂		./01	s. MgBr ₂ .			Gms. MgBr ₂ .
ť.	6C _s H ₁₁ OH pe 100 Gms.	a a		H ₂) ₂ CHOH 100 Gms.	ť.		4(CH ₂);COH per 100 Gms.
	Sat. Sol.		•	Sat. Sol.			Sat. Sol.
, 0	70.2		0	40	24.	7 m. pt. 9	of (CH ₄), COH
10	75.6		20	42.2	24.4	Lute	c. o.o6
20	80.2		40	45	25		I
30	84.5		60	48.5	35		9.5
35	86.7		8o ·	53 - 3	45		19.1
38	88.7		100	59	55		32.2
40	90		120	67.3	60		40.5
42	9 2		130	74	70		62.5
44	04.2		136	83.6	75		77
	. pt. 100		138	00	73 79		91.5
70 11	p 100			-			
			139 m. pt. :	100	XO T	n. pt.	100

MAGNESIUM BROMIDE ANILINATES.

SOLUBILITY OF MAGNESIUM BROMIDE ANILINATES IN ANILINE AT DIFFERENT TEMPERATURES. (Menschutkin, 1907.)

The compounds were formed by the action of aniline on magnesium bromide dietherate. The three compounds were: MgBr₂.6C₆H₆NH₂, MgBr₂.4C₆H₄NH₂ and MgBr₂.2C₆H₅NH₃.

t°.	Gms. MgBr ₂ . 4C ₄ H ₄ NH ₂ per 100 Gms. Sat. Sol.	Solid Phase.	r.	Gms. MgBr ₂ . 4C ₄ H ₄ NH ₃ per 100 Gms. Sat. Sol.	Solid Phase.
10	3.2	MgBr ₂ .6C ₆ H ₄ NH ₆	160	26	MgBr2-4C4H4NH4
50	5. I	44	180	28.3	"
70	7.5	"	200	33 · 5	4
90	12.8	"	220	45	"
100	18.5	"	230	55	44
103.5	27.5	44	237 tr. pt.	76.3	u
103 tr. pt.	24	MgBr ₂₋₄ C ₄ H ₄ NH ₂	250	77.3	MgBs, 2C,H4NH2
120	24.3	44	260	78. I	æ
140	24.3	•	270	79	4

MAGNESIUM BROMIDE PHENYLHYDRAZINATES.

SOLUBILITY OF MAGNESIUM BROMIDE. PHENYLHYDRAZINATES IN PHENYL-HYDRAZINE.

(Menschutkin, 1907.)

(Approximate determinations.)

r.	Gms. MgBr ₂ . 6C ₄ H ₄ NHNH ₂ per 100 Gms. Sat. Sol.	Solid Phase.	t.	Gms. MgBr ₉ . 6C ₆ H ₄ NHNH per 100 Gms. Sat. Sol.	Solid Phase.
20	3	MgBrs.6CaHaNHNHs	100 tr. pt.	54.8	$MgBr_{a-4}C_aH_aNH.NH_a$
40	7	"	140	60.8	u
60	16.4	"	180	6 8. 4	44
80	33	44	200	73 · 4	"
99	54.8	*			u

MAGNESIUM BROMIDE COMPOUNDS with Benzaldehyde and with Acetone-SOLUBILITY RESPECTIVELY IN BENZALDEHYDE AND IN ACETONES. (Menschutkin, 1907.)

The compounds were prepared by the action of benzaldehyde and of acetone on magnesium bromide dietherate. On account of the nature of the compounds the results are only approximately correct.

Solubility of MgBrs.3CsHsCOH in Benzaldehyde.					Solubility of MgBr ₂ .3CH ₂ .CO.CH ₂ . in Acetone.				
r .	Gms. MgBr ₃ . 3C ₆ H ₆ COH per 100 Gms. Sat. Sol.	ť.	Gms. MgBr ₃ . ₃ C ₆ H ₄ COH per 100 Gms. Sat. Sol.	t°.	Gms. MgBr ₃ . 3CH ₃ .CO.CH ₃ per 100 Gms. Sat. Sol.	t.	Gms. MgBr ₃ . 3CH ₃ COCH ₃ per 100 Gms. Sat. Sol.		
0	0.7	140	17.8	0	0.2	75	50		
30	1.3	145	37 · 5	30	0.8	76	71.6		
30 60	1.9	146	65	60	1.45	8o	83. 3		
100	3.4	148	84.5	70	2	84	89.8		
120	6	153	93.2	73	5.5	88	95.2		
130	9.5	159 m. pt.	100	74	14	92 m. p	t. 100		

MAGNESIUM BROMIDE COMPOUNDS with Methylal, Ortho Ethylformate, Formic Acid and Acetic Acid.

(Menschutkin, 1907a.)

The compounds were prepared by the action of methylal, ortho ethylformate and absolutely dry formic and acetic acids on magnesium dietherate. In the case of the latter compounds the results are only approximately correct, due to their extreme hygroscopicity.

Solubility of Solubility of Solubility of Solubility of MgBr₂.2CH₂(OCH₃)₂ MgBr₂.2CH(OC₂H₄)₃ MgBr₂.6HCOOH in Methylal. in Orthoethylformate. in Formic Acid. Solubility of MgBr₂.6CH₃COOH in Acetic Acid.

e.	Gms. MgBr ₂ . 2CH ₂ (OCH ₂) ₂ per 100 Gms. Sat. Sol.	40 20	ms. MgBr _s . CH(OC ₂ H ₄) _s er 100 Gms. Sat. Sol.	40	ms. MgBr ₂ . 6HCOOH er 100 Gms. Sat. Sol.	40	Gms. MgBr. 6CH,COOH per roo Gms. Sat. Sol.
20	0.3	0	11.1	0	49.8	17	0.3
40	0.45	20	12.5	20	57 · 5	30	1.5
6o	0.6	40	14.8	40	65.I	50	4.5
8o	0.75	60	18.6	60	73.I	60	7.9 `
100	0.9	8o	25.7	70	78. I	70	16.2
106	I.I	90	35	8o	86	8o	3 8.5
2 liquid lay	yers here	95	41	86	95	90	57 - 7
106	86.2	100	50	88 m. pt	. 100	100	71.8
108	90.8	105	66			105	8o
110	95.4	110	88.5			110	89.5
112 m. pt.	100	114 m. pt.	100			112 m. pt	. 100

MAGNESIUM BROMIDE COMPOUNDS with Acetamide, Acetanilide and Acetic Anhydride. (Menschutkin, 1909.)

The compounds were prepared by reaction with magnesium bromide dietherate.

	Solu	bility of		Solul	bility of	Solul	bility of
	MgBra.6	CH ₂ CONH ₂		MgBr ₂ .6Cl	I₃CÓNHC₄H₄	MgBr ₂ .6	(CH ₁ CO) ₁ O
		etamide.		in Ace	etanilide.	in Acetic	Anhydride.
	Gms.	_		Gms.			Gms.
40	MgBr ₃ .6CH CONH ₄	i _s - Solid Phase.	t°.	MgBr ₁ .6CH ₂ CONHC ₄ H	Solid Phase.	ť.	MgBr ₂ . 6(CH ₄ COO) ₄ O
ţ.	per 100 Gn		• •	per 100 Gms		٠.	per 100 Gms.
	Sat. Sol.			Sat. Sol.			Sat. Sol.
82 r	n. pt. of CH _e (CH_CONH	112	m. pt. of CH ₂ C	CONHC ₄ H ₄	0	26.4
80	3.1	"	110	3 · 7	CH ₄ CONHC ₄ H ₄	20	28.7
70	21.7	•	108	7 · 7	"	40	31.6
60	40	"	107	·5* 0	"+MgBr ₂ CH ₂		35 · 7
50.	s* 56	CH ₂ CONH ₂ +MgBr ₂ .	. 107		CONHO		4I.I
50.		CH ₂ CONH ₂	I 20	13.1	MgBrs.CH,CONHC	H, 100	48.4
70	57.8	MgBr ₂ -CH ₄ CONH ₄	140	19.3	44	120	57.8
90	60.5	"	160	25.5	"	130	69.8
110	65	u	180	35.3	"	133	77
130	71.5	66	200	59 · 5	u	135	85
150	8 0	"	205	73.2	"	136.5	† 100
160	85	"	207	82.5	"		
165	90	"	200	100	u		
169†	100	"	_				
		• Eut	ec.		† m. pt.		

MAGNESIUM BROMIDE COMPOUNDS with Urethan and with Urea. (Menschutkin, 1909.)

Sol	lubility of	Magnesium Bromide	Solubility of Magnesium Bromide				
U	rethan Cor	npounds in Urethan.	Urea Compounds in Urea.				
	Gms.	_		Gms.			
t. I	MgBr, 4CtH	D- Solid Phase.	ť°.	MgBr ₂₋₄ CO- (NH ₂) ₂	Solid Phase.		
• .	CONH ₂ per 100 Gms		• .	per 100 Gms.	Sond Phase.		
	Sat. Sol.			Sat. Sol.			
49 m.	. pt. of urethan	C_H_OCONH_		m. pt. of urea	CO(NH ₂) ₂		
45	18.5	a	126	9.5	44		
39 .	36.5	"	120	17.2	41		
35 *	43.3	" +MgBr ₃ .6C ₃ H ₃ OCONH ₃	114	21.8	"		
50	45.6	MgBr ₂ .6C ₂ H ₂ OCONH ₂	108.5		$(NH_2)_2 + MgBr_3.6CO(NH_2)_2$		
70	51.3	u	115	29.8	MgBr ₂ .6CO(NH ₂) ₂		
8o	56.2	44	120	35	"		
90	66.5	u	127	45 · 5	**		
91.5	75.5	ee	130	60	44		
9 1 †	69.4	" +MgBr,4C,H,OCONH,	130†	58	" $+MgBr_2.4CO(NE_2)_2$		
100	73.8	MgBr ₃₋₄ C ₃ H ₄ OCONH ₃	145	60.7	MgBr ₂₋₄ CO(NH ₂) ₂		
110	80	64	160	67.2	44		
115	84. I	"	165	71.4	44		
120	90	"	170	83.7	44		
123	100	"	171	96	44		
		• Eutec.	1	tr. pt.			

MAGNESIUM CAMPHORATE C10H14O4Mg.14H2O.

Solubility of Magnesium Camphorate in d Camphoric Acid at 15° and Vice Versa. (Jungfleisch and Landrieu, 1914.)

Gms. per 100 Gms		Solid Phase.		Gms. Sat. Sol.	Solid Phase.
$C_{10}H_{10}O_4$.	H _M O ₄ Mg		$C_{10}H_{10}O_4$.	C10H14O4Mg.	
0.622 (13.5°)	0	$C_{10}H_{16}O_4$	3.16	10.30	$C_{10}H_{10}O_4$
I.20	I.2Q	"	3.5	16.5	" $+C_{10}H_{14}O_4Mg.14H_2O$
1.98	3.53	"	3.6	16.7	C10H14O4Mg.14H2O
2.36	5.66	"	1.91	15.1	u C
2.85	8.19	"	0	14.25	46

MAGNESIUM CARBONATE

384

MAGNESIUM CARBONATE MgCO, 3H2O.

SOLUBILITY IN WATER IN PRESENCE OF CARBON DIOXIDE AT 15°.

(Treadwell and Reuter - Z. anorg. Ch. 17, 200, '98.)

cc. CO2 per 100 cc.	Partial	Grams per 100 cc. Solution.				
Gas Phase (at of and 760 mm.).	Pressure of CO ₂ in mm. Hg.	Free CO2.	MgCO ₈ .	Mg(HCO ₃) ₃ .	Total Mg.	
18.86	143.3	0.1190		1.2105	0.2016	
5 · 47	41.6	0.0866	• • •	1.2105	0.2016	
4 · 47	3 3.8	0.0035		1.2105	0.2016	
1.54	11.7	•••	0.0773	1.0766	0.2016	
1.35	10.3	• • •	0.0765	0.7629	0.1492	
1.07	8.2	• • •	0.0807	0.5952	0.1224	
0.62	4.7	• • •	0.0701	0.3663	0.0865	
0.60	4.6	• • •	0.0758	0.3417	o · 0788	
0.33	2.5	• • •	0.0748	0.2632	0.0655	
0.21	1.6	• • •	0.0771	0.2229	0.0594	
0.14	1.1	• • •	0.0710	0.2169	0.0566	
0.03	0.3	•••	0.0711	0.2036	0.0545	
•••	•••	• • •	o.o685	0.2033	0.0536	
•••	•••	•••	0.0702	0.1960	0.0529	
•••	. •••	•••	0.0625	0.2036	0.0520	
•••	• • •	•••	0.0616	0.1954	0.0511	
•••	•••	• • •	0.0641	0.1954	0.0518	

Therefore at 0 partial pressure of CO₂ and at 15° and mean barometric pressure, one liter of saturated aqueous solution contains 0.641 gm. of MgCO₃ plus 1.954 gms. Mg(HCO₃)₂.

gms. Mg(HCO₃)₃.

It is pointed out by Johnston (1915) that although Treadwell and Reuter made very painstaking analyses, their mode of working did not secure equilibrium conditions, a fact which is borne out by the lack of constancy of the calculated solubility-product constant.

SOLUBILITY OF MAGNESIUM CARBONATE IN WATER CHARGED WITH CARBON DIOXIDE AT PRESSURES GREATER THAN ONE ATMOSPHERE.

(Engel and Ville - Compt. rend. 93, 340, '81; Engel - Ann. chim. phys. [6] 13, 349, '88.)

Pressure of CO ₂ in	G. MgCOs* per Liter.		Pressure of	G. MgCO ₂ * per Liter		
Atmospheres.	At 12°.	At 19°.	CO ₂ in Atmospheres.	At 12°.	At 19°.	
0.5	20.5		4.0	42.8	• • •	
I .O	26.5	25 .8	4.7	• • •	43 · 5	
2.0	34 2	33.1 (2.1 At.)	6.0	50.6	48.5 (6.2 At.)	
3.0	39.0	37.2 (3.2 At.)	9.0		56.6	

SOLUBILITY IN WATER SATURATED WITH CO, AT ONE ATMOSPHERE.

			(Engel.)		
ŧ°.	Gms. MgCOg* per Liter.	t°.	Gms. MgCOg* per Liter.	t°.	Gms. MgCOg* per Liter.
5	36	30	21	60	II
10	31	40	17	80	5
20	26			100	Ö

Dissolved as Mg(HCO₃)₂.

Data for the system magnesium carbonate-carbonic acid-water at 20°, 25°, 30°, 34° and 39° are given by Leather and Sen (1914). In connection with these results, it is pointed out by Johnston (1915), that it is questionable whether equilibrium was really obtained and furthermore, the accuracy of the analytical results cannot be trusted since the ratio of total amount of CO₂ in solution, to the magnesia is very irregular. The results when plotted directly show great inconsistencies.

THE CALCULATED SOLUBILITY OF MgCO: 3H2O IN WATER AT 18° IN CONTACT WITH AIR CONTAINING PARTIAL PRESSURES OF CO2 FROM 0.0002 TO 0.0005 Atmospheres.

(Johnston, 1915.)

It is shown that if the CO₁ pressure is kept constant at P and the water evaporated off so slowly at 18° that equilibrium conditions are continuously maintained, the following amounts of Mg(OH)₂ or of MgCO₃.3H₂O will be obtained.

Partial Pressure P of CO ₂ in Atms.	Total Mg $\frac{\text{Mols.}}{l}$.	Gms. per Liter.		
0	0.00015	o.0087 Mg(OH) ₂		
0.00020	0.01934	1.13		
0.00025	0.02218	1.29 "		
0.00030	0.02486	1.45 "		
0.00035	0.02742	1.60 "-		
0.00040	0.02868	3.97 MgCO ₃ .3H ₂ O		
0.00045	0.02924	4.05		
0.00050	0.02976	4.12 "		

SOLUBILITY OF MAGNESIUM CARBONATE IN NATURAL WATERS. (Wells, 1915.)

(In all cases the solutions were in equilibrium with atmospheric air at 20°.) Milligrams per Liter of Sat. Solution.

Mixture.	Mg.	Free CO ₂ .	CO, as Bi-
Natural Magnesite in Distilled H ₂ O	0.018	trace	0.065
" in Aq. NaCl (27.2 g. per l.)	0.028	trace	0.086
MgCO _{2.3} H ₂ O (equilibrium from bicarbonate end	0.038	0.28 CO2 as carbo	nate 0.83
		0.32 CO ₂ " "	0.50

SOLUBILITY OF MAGNESIUM CARBONATE IN AQUEOUS SOLUTIONS OF POTASSIUM BICARBONATE.

(Auerbach, 1904.)

The conditions necessary for preventing changes in equilibrium due to hy-The mixtures were shaken from 1-4 days. drolysis and loss of CO, are discussed. The sat. sol. analyzed for total alkali $(K + \frac{Mg}{Mg})$ by titration with standard HCl 2. The neutralized solution was boiled to expel using methyl orange as indicator. CO2 and then excess 0.1 n NaOH added and the filtrate from magnesium precipitate back titrated with 0.1 n HCl. The Mg was calculated from the used 0.1 n NaOH and the K obtained by difference.

R	Results at 15°. Results at 25°.		25°.	Results at 35°.				
Mols. p	er Liter.	olid Phase.	Mols. pe	r Liter.	Solid Phase.	Mols. pe	r Liter.	Solid Phase.
KHCO.	MgCO ₃ .	ond Phase.	KHCO ₂ .	MgCO ₁ .	Soud Phase.	KHCO ₂ .	MgCO ₃ .	
0	0.0095 M	gCO ₃ .3H ₂ O	0	0.0087	MgCO _{2.3} H ₂ O	0	0.0071	MgCO ₃₋₃ H ₄ O
0.0992	0.0131	**	0.0985	0.0115	"	0.1092	0.0098	"
0.1943	0.0167	"	0.2210	0.0149	**	0.2811	0.0142	"
0.3992	0.0211	" (labil)	0.3434	0.0181	**	0.4847	0.0177	44
0.2681	0.0192	" +z.z	0.4985	0.0217	" (labil)	0.5807	0.0198	" (labil)
0.5243	0.0097	1.1	0.3906	0.0196	" +1.1	0.5088	0.0184	" +1.1
0.6792	0.0074	**	0.5893	0.0128	1.1	0.6231	0.0153	I.I
0.981	0.0028	**	0.6406	0.0117	**	0.8535	0.0119	44
1.1 =	MgCO ₃ .KH	CO ₃ .4H ₂ O.	1.125	0.0061	**		-	

Additional data for this system are given by Nanty, 1911. Data for the solubility of MgCO, in aq. NaCl and other salt solutions, determined by prolonged boiling and subsequent cooling of the solution out of contact with air, are given by Gothe (1915).

Solubility of Magnesium Carbonate in Aqueous Solutions of Sodium Carbonate at 25°. The solutions being in equilibrium with an atmosphere free from CO₂.

(Cameron and Seidell -	- J. Physic. Ch. 7, 588, '03.)
------------------------	--------------------------------

Wt. of r Liter	Grams p	er Liter.	Reacting Weights per Liter.		
Wt. of r Liter of Solution.	NagCO3.	MgCO3.	NagCO3.	MgCO ₃ .	
996.8	0.00	0.223	0.000	0.00266	
1019.9	23.12	0.288	0.220	0.00344	
1047 . 7	50.75	0.510	0.482	0.00620	
1082.5	86.42	0.879	0.820	0.01027	
1118.9	127.3	1.314	1.209	0.01570	
1147.7	160.8	1.636	1.526	0.01955	
1166.1	181 .9	1.972	I . 727	0.02357	
1189.4	213.2	2.317	2.024	0.02770	

SOLUBILITY OF MAGNESIUM BI CARBONATE AND OF MAGNESIUM CARBONATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 23°. The solutions being in equilibrium with an atmosphere of CO₂ in the one case, and in equilibrium with air free from CO₂ in the other.

(C. and S.)

In Presence of	CO2 as Gas Phase.	In F	ee from CO ₃ .	
Gms. NaCl per Liter.	Gms. Mg(HCO ₂) ₂ per Liter.	Wt. of 1 Liter.	Gms. NaCl per Liter.	Gms. MgCO ₈ per Liter.
7.0	30.64	996.9	0.0	0.176
56.5	30.18	1016.8	28.0	0.418
119.7	27.88	1041 . I	59 · 5	0.527
163.9	24.96	1070.5	106.3	0.585
224.8	20.78	1094.5	147 - 4	0.544
306. 6	10.75	1142.5	231.1	0.460
		1170.1	272.9	0.393
•		1199.3	331.4	0.293

SOLUBILITY OF MAGNESIUM CARBONATE IN AQUEOUS SOLUTIONS OF SODIUM SULPHATE AT 24° AND AT 35.5°. The solutions being in equilibrium with an atmosphere free from CO₂.

(Cameron and Seidell.)

Results at 24°.			Results at 35.5.°			
Wt. of z Liter.	Gms. Na ₂ SO ₄ per Liter.	Gms. MgCO ₂ per Liter.	Wt. of r Liter.	Gms. Na ₂ SO ₄ per Liter.	Gms. MgCO ₃ per Liter.	
907.5	0.00,	0.216	995.1	0.32	0.131	
1021.2	25.12	0.586	1032.9	41 .84	0.577	
1047.6	54.76	0.828	1067.2	81 .84	0.753	
1080.9	95.68	1.020	1094.8	116.56	0.904	
1133.8	160.8	I .230	1120.4	148.56	0.962	
1157.3	19 1 .9	1.280	1151.7	186.7	I .047	
1206.0	254.6	1.338	1179.8	224.0	I .088	
1242.0	305.1	1.388	1236.5	299.2	1.130	

MAGNESIUM CHLORATE Mg(ClO₃)₂.6H₂O.

SOLUBILITY IN WATER. (Meusser — Ber. 35, 1416, '02.)

\$°.	Gms. Mg(ClO ₂) ₂ per 100 Gms Solution.	Mols. Mg(ClO ₂) ₂ . per 100 Mols. H _g O.	Solid Phase.	t°.	Gms, Mg(ClO ₃) ₃ per 100 Gms. Solution.	Mols. Mg(ClO ₂) ₂ per 100 Mols. H ₂ O.	Solid. Phase.
- 18	51.64	10.05	$Mg(ClO_8)_2.6H_8O$	42	63.82	16.60	$Mg(ClO_3)_{3-4}H_2O$
0	53 - 27	10.73	•	65. 5	69.12	20.08	•
18		12.22	**	39.5	65 . 37	17.76	$Mg(ClO_3)_3.2H_6O$
29	60.23	14.25	**	61.0	69.46	21.40	•
35		16.48	•	68	70.69	22.69	•
•				93	(73.71)	(26.38)	•

Sp. Gr. of saturated sol. at $+ 18^{\circ} = 1.564$.

MAGNESIUM CHLORIDE MgCl2.

SOLUBILITY IN WATER.

(van't Hoff and Meyerhoffer, 1898; Engel; Lowenherz. Results quoted from Landolt and Börnstein, 1912.)

to. Gms. M	gClaper 100		£0	Gms. Mg(le per 100	Gms' Solid
Soluti	on. Water.	Phase.	• •	Solution	. Water.	Phase.
-10 II	.1 12.5	Ice	0	34.5	52.8	MgCl ₂ .6H ₂ O
-20 I6	.0 19.0	. "	10	34.9	53 · 5	•
-30 19	.4 24.0	. "	20	35 - 3	54.5	44
-33.6 20	.6 26.0	Ice + MgCl ₂ .12H ₂ O	22	35.6	55.2	•
-20 26		MgCl ₂ .12H ₂ O	25	36.2	56.7	•
-16.4 30	.6 44.0	4 f.pt. "	40	36.5	57.5	• .
-16.8 31	.6 46.2	MgCl ₂ .12H ₂ O + MgCl ₂ .8H ₂ O a	60	37.9	61.0	•
-17.4 32	_	★ MgCl ₂₋₁₂ H ₂ O +	80	39.8	66.o	•
	-	and ordinary -	100	42.2	73.0	*
-19.4 33		MgCl ₂ .6H ₂ O	116	7 46.2	85.5	MgCla.6HgO + MgCla.4HgC
- 9.6 33	.9 51.3		152	6 49.1	96.4	MgCl ₂₋₄ H ₂ O
- 3·4 34	·4 52·3	MgCl ₂ .8H ₂ O a + MgCl ₂ .6H ₂ O ab		5 55.8	126.0	MgCl ₂₋₄ H ₂ O + MgCl ₂₋₂ H ₂ O
			186		128.0	MgCl ₂₋₂ H ₂ O

^{* =} Unstable.

SOLUBILITY OF MAGNESIUM CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AT 0°. (Engel — Compt. rend. 104, 433, '87.)

Milligram Mols. per 10 cc. Solution.		Sp. Gr. of	Grams per Liter of S	Solution.
HCI.	⅓MgCl₂.	Solutions.	HCl.	MgCl ₃ .
0.0	99 · 55	1.362	0.0	474.2
4.095	95.5	1.354	14.93	454.8
9.5	90.0	I.344	34.63	428.6
17.0	82.5	1.300	61 .97	393.0
20.5	79.0	1.297	74 · 74	376.2
28.5	71.0	1.281	103.9	338.3
42.0	60.125	• • •	153.1	286.4
58.75	46.25	• • •	214.2	220.3
76.0	32.0	• • •	277 · I	152.0
			sat. HCl (Ditte)	6.5

100 gms. H₂O dissolve 52.65 gms. MgCl₂ at 3.5°, 55.26 gms. at 25° and 58.66 gms. at 50°. (Bilts and Marcus, 1911.)

SOLUBILITY OF BASIC MAGNESIUM CHLORIDE IN WATER AT 25°. (Robinson and Waggaman, 1909.)

An excess of MgO was shaken with each of 20 MgCl₂ solutions at 25° for six months and the supernatant clear solutions and solid phases with adhering liquid, analyzed. The solutions were titrated with 0.02 n HCl for dissolved MgO (present as Mg(OH)₂). The composition of the solid phase in each case was ascertained by plotting the analytical results on a triangular diagram.

d ₂₅ of		r 100 Gms. t. Sol.	Solid Phase.'	d ₂₅ of Sat. Sol.	Gms. per 100 Gms. Sat. Sol.		Solid Phase.
Sat. Sol.	MgCl ₂ .	MgO.		Sat. Sol.	MgCl ₂ .	MgO.	
1.019	2.36	0.00008	Indefinite	1.141	17.53	0.0024	2MgO.HCl.5HgO
1.038	4.47	0.00028	Solid Solution	1.162	18.52	0.0025	"
1.056	6.79	0.00048	"	1.192	22.04	0.00245	ш
1.075	9.02	0.00080	"	1.245	26.88	0.0025	"
I.III	13.14	0.00115	"	1.274	29.80	0.0024	"
•	- •	•		1.321	34.22	0.0030	, "

Solubility of Mixtures of Magnesium Chloride. Potassium Chloride AND OF MAGNESIUM POTASSIUM CHLORIDE (CARNALLITE) IN WATER AT VARIOUS TEMPERATURES.

(van't Hoff and Meyerhoffer, 1899, 1912.)

	Gms. pe	OOI 15	-						
t°.	Gms.	H ₂ O.	So	lid Pha	ise.	K	ind of Po	oint on (Curve.
	MgCl ₂ .	KCl.							
— 11.1		24.6	Ice +KCl			Cryoh	ydric o	of KCl	
-33.6	26		" +MgCl ₂	.t2H ₂ O		-	26	MgC	2.12H2O
- 34.3	22.7	I.24	" +KC1+	MgCl ₂ .	12H ₆ O		"		" +KCI
— 21	34.9	2.03	Carnallite+	MgCl ₂ .	r2H ₂ O+KC				f Carnallite 🕆
- 0	35.5	3.02	" +KC1			Point	on Cu	rve	
25	38.4	4.76	"+"			"	"		
50	42	6.17	" "			"	"		(Uhlig, 1913.)
Ğ1.5	42.6	7.20	" + "			"	"		
154.5	65.5	14.07				"	"		
167.5	88. I	17.26	" + "			M. pt	. of Ca	rnallite	;
25	55.5	0.83	" +MgC	12.6H4O)	Point	on Cu	rve	
50	59.13			**		"	•	4	(Uhlig, 1913.)
Šo	65	1.24		**		"	•	•	V
115.7	85.6	1.66	" +	46	+MgCl ₂₋₄ H	O Trans	ition P	oint	[Carnallite
152.5	105.7	9.93	" +MgC	1,4H ₆ O	+KCI	Upper	r Form	ation T	emp. of
176	126.9	16.97	MgCl ₂ .4H ₂ O	+Mg(12.2H2O+K	Cl Trans	ition F	oint	_
186	126.9	26. I	MgCl ₂ .				on Cu		
Carnall	$ite = M_i$	KCl.	6H ₂ O.						

SOLUBILITY OF MIXTURES OF MAGNESIUM CHLORIDE AND OTHER SALTS IN WATER AT 25°. (Löwenherz, 1894.)

Gms. Mols. per 1000 Mols. H₂O. Gms. per Liter of Solution. Mixture. 25. Cl+4.4 SO₄ 19.5 Cl+5.3 SO₄ 26.9 Cl+0.3 K+45.7 SO₄ MgCl₂.6H₂O+MgSO₄.6H₂O MgCl₂.7H₂O+MgSO₄.6H₂O MgCl₂.7H₂O+MgSO₄.6H₂O 73 "+15 " MgCl₂.6H₂O+MgCl₂.KCl.6H₂O 106 Cl₂+1 K₂+105 Mg

Results for all possible combinations of magnesium sulfate and potassium chloride and of magnesium chloride and potassium sulfate are also given.

100 cc. anhydrous hydrazine dissolve 2 gms. MgCl₂ at room temp. A flocculant ppt. separates on standing. (Welsh and Broderson, 1915.)

ppt. separates on standing.

Freezing-point data (solubility, see footnote, p. 1) for mixtures of MgCl₂ and KCl, NaCl, AgCl, ZnCl₂ and SnCl₂ are given by Menge (1911). Data for mixtures of MgCl₂ + SrCl₂ and MgCl₂ + MnCl₃ are given by Sandonnini (1912, 1914). Data for MgCl₂ + MgSO₄ are given by Jaenecke (1912). Data for MgCl₂+TlCl are given by Korreng (1914) and data for MgCl₂+KCl and MgCl₂+HCl are given by Derphy (1918). by Dernby (1918).

MAGNESIUM CINNAMATE (C.H.CH.CH.COO)2Mg.H2O.

100 gms. sat. solution in water contain 0.85 gm. (C₆H₆CH.CHCOO)₂Mg at 15° and 1.94 gms. at 100°. (Tarugi and Checchi, 1901.)

MAGNESIUM CHROMATE MgCrOs.7H2O.

100 grams H₂O dissolve 72.3 grams MgCrO₄ at 18⁶, or 100 grams solution contain 42.0 grams. Sp. Gr. = 1.422. (Mylius and Funk, 1897.)

MAGNESIUM POTASSIUM CHROMATE MgCrO., K,CrO., 2H,O.

100 grams H₂O dissolve 28.2 grams at 20°, and 34.3 grams at 60°. (Schweitzer.)

MAGNESIUM PLATINIC CYANIDE MgPt(CN).

SOLUBILITY IN WATER.

(Buxhoevden and Tamman - Z. snorg. Ch. 15, 319 '97.)

	Gms. MgPt(CN	D₄		Gms. MgPt(CN)
t°.	per 100 Gms. Solution.	Solid Phase.	t°.	per 100 Gms. Solution.	Solid Phase.
-4.12	24.90	MgPt(CN)4.6.8-8.1HgO	48.7	40.89	MgPt(CN)4-4H2O
0.5	26.9	" (Red)	55	41.33	•
5.5	28.65	4	58.1	42.15	•
18.0	32.46	•	69.0	43.40	4
36.6	39 · 53	•	7 7 .8	44.90	•
45.0	41.33	4	87.4	45 - 52	•
46.2	42.0	4	90.0	45.6 5	
42.2	40.21	MgPt(CN)4.4HgO	93.0	45.04	•
46.3	39.85	" (Bright Green)	96.4	44 · 33	MgPt(CN)4.2HgO
			100.0	44.0	" (White)

MAGNESIUM FerroCYANIDES.

SOLUBILITY IN WATER AT 17°. (Robinson, 1909.)

One liter sat. sol. contains 1.95 gms. magnesium potassium ferrocyanide, MgK₂FeC₆N₆.

One liter sat. sol. contains 2.48 gms. magnesium ammonium ferrocyanide, Mg(NH₄)₂FeC₆N₆.

MAGNESIUM FLUORIDE MgF.

One liter of water dissolves 0.076 gm. MgF₂ at 18° by conductivity method.

One liter water dissolves 0.087-0.090 gm. MgF₂ at 0.3° and 0.084 gm. at 27 (Kohlrausch, 1908.) by conductivity method.

MAGNESIUM HYDROXIDE Mg(OH)2.

160

One liter of water dissolves 0.008 - 0.009 gm. Mg(OH)2 at 18° by conductivity method. (Dupre and Brutus, 1903.)

One liter of water dissolves 0.009 gm. Mg(OH)2 at 18° by conductivity method (Kohlrausch and Rose, 1893), 0.012 gm. (Tamm, 1910).

SOLUBILITY OF MAGNESIUM OXIDE IN AQUEOUS SOLUTIONS CONTAINING SODIUM CHLORIDE AND SODIUM HYDROXIDE.

(Maigret, 1905.)

Gms. NaCl	Gms. MgO per Liter Solution with Added:				
per Liter.	o.8 g. NaOH per Liter.	4.0 g. NaOH per Liter.			
125	0.07	0.03			
140	0.045	• • •			

none

none

SOLUBILITY OF MAGNESIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF AMMONIUM CHLORIDE AND OF AMMONIUM NITRATE AT 29°.

(Herz and Muhs — Z. anorg. Ch. 38, 140, '04.)

Note. — Pure Mg(OH), was prepared and an excess shaken with solutions of ammonium chloride and of ammonium nitrate of different concentrations.

Concentration of NH ₄ Cl or of NH ₄ NO ₂ , (Normal.)	Acid Required for Liberated NH ₂ OH in 25 cc. (Normal.)	Normal Mg(OH) ₂ .		Grams pe	
.7 (NH ₄ CI)	0.09835	0.156	0.388	4.55	20.86
0.466 "	0.1108	0.108	0.250	3.15	13.39
0.35 "	0.09835	0.089	0.172	2.60	9.21
0.233 "	0.1108	0.0638	0.106	ı.86	5.67
0.175 "	0.1108	0.049	0.0771	1.43	4.13
0.35 (NH4NOs)	0.1108	0.0833	0.1834 (NH	(NOs)2.43	14.69 (NH4NOa)
0.175 "	0.1108	0.0495	0.076	" I.45	6.09 "

MAGNESIUM IODATE Mg(IO,),

SOLUBILITY IN WATER.

(Mylius and Funk - Ber. 30, 1722, '97; Wiss. Abh. p. t. Reichanstalt 3, 446, '00.)

t°.	Gms. Mg(IO ₈) ₈ per 100 Gms. Solution.	Mols. Mg(IO ₃) ₃ per 100 Mols H ₂ O.	Solid Phase.	t°.	Gms. Mg(IO ₃) ₂ per 100 Gms. Solution	Mols. Mg(IO ₂) ₂ per 100 Mols . H ₂ O.	Solid Phase.
0	3.1	0.15	Mg(IO ₃) ₂ .10H ₂ O	0	6.8	0.34	$M_{\mathcal{E}}(IO_3)_2.4H_0O$
20	10.2	0.55	4	10	6.4	0.30	**
30	17.4	I.OI		18	7.6	0.40	•
35	21.9	1.35	•	20	7.7	0.40	•
50	67.5	10.0	•	35	8.9	0.47	•
•				63	12.6	0.69	•
				100	19.3	1.13	•

Sp. Gr. of solution sat. at 18° = 1.078.

MAGNESIUM IODIDE MgI,8H,O.

SOLUBILITY IN WATER. (Menschutkin, 1905, 1907.)

The salt was prepared by the action of water upon magnesium iodide dietherate (see p. 391) by which the octrahydrate and not the hexahydrate is formed. The crystals of this hydrate melt at 43.6°. The solubility determinations were made by the synthetic method.

ť.	Gms. per 100 Gn	ns. Sat. Solution.	Solid Phase.				
••.	MgI ₂ .6H ₂ O =	MgI ₂ .	-	ond Phase.			
0	76	54.7	$MgI_2.8H_2O$				
18		59.7 (d=1.909)	"	(Mylius and Funk, 1897.)			
20	81	58.3	"				
40	88	63.4	"				
43.5 tr.	pt. go.8	65.4	" +M	gI ₂ .6H ₂ O			
	8 9.8	64.7	MgI ₂ .6H ₂ O	0			
43 80	90.3	65	"	•			
I 2O	90.9	65.4	46				
160	91.7	66	66				
200	93.4	67.2	66				
215	94.3	67.9	66				

MAGNESIUM IODIDE ETHERATES, ALCOHOLATES, ACIDATES, etc.

SOLUBILITIES RESPECTIVELY IN ETHER, ALCOHOL AND ACID SOLVENTS AT VARIOUS TEMPERATURES.

Boris N. Menschutkin. Monograph in the Russian Language entitled "On Etherates and Other Molecular Combinations of Magnesium Bromide and Iodide," St. Petersburg, 1907, pp. 267 + XLVIII. Also published in "Memoirs of the St. Petersburg Polytechnic Institute," vols. 1-7, 1904-07 and in condensed form in vols. 49-67 of the Zeit. anorg. Chem., 1906-09.

Preparation of Material. The dietherate of magnesium iodide, MgI₂.2C₄H₁₀O, was prepared by the very gradual addition of iodine to a mixture of magnesium and dry ether. The reaction is not so violent as that which takes place during the preparation of the magnesium bromide dietherate (see p. 379). Two liquid layers are present at the end of the reaction and by slight cooling beautiful white needle-like crystals separate from the lower one. The growth of these crystals is also accompanied, as in the case of the magnesium bromide compound, by an evolution of ether droplets. Magnesium iodide dietherate is very hygroscopic, it is less stable than magnesium bromide dietherate, and becomes yellowish even after several hours, and brown after a day, owing probably to separation of iodine. As in the case of the magnesium bromide compound it reacts with very many organic compounds as aicohols, acids, ketones, etc., with liberation of ether and formation of addition products. These latter constitute the material used for the following solubility studies.

Method of Determination of Solubility. The synthetic (sealed tube) method of Alexejeff (Wied. Ann., 1885) was used almost exclusively.

Explanation of Results. As is seen from the following table, the solubility increases much more rapidly with temperature than in the case of magnesium bromide dietherate, especially in the vicinity of the melting point of MgI_{2.2}C₄H₁₀O under its ethereal solution, which is at 23.6°. At this temperature there appears two layers, the lower one of which may be considered as a solution of ether in dietherate, and the upper one as a solution of the lower layer in ether. By increase of temperature a point is reached, at which both layers are miscible in all proportions (critical point). In the case of magnesium bromide dietherate no such critical point could be obtained. Both layers may be cooled below 23.6°, but only to about + 15° since here spontaneous crystallization of the dietherate almost always occurs, and the temperature rises to 23.6°. The great tendency to crystallize is probably due to the difference between the composition of the lower layer and of the saturated solution of the dietherate. The determinations in the vicinity of the critical point were quite difficult to make on account of the considerable opalescence which occurred and also the formation of a white substance, the nature of which was not ascertained. The critical concentration, as determined by means of the law of straight averages of Cailletet and Mathias, was approximately 40.3 per cent MgI₂.2(C₂H₆)₂O; the temperature, 38.5°. concentrations of MgI_{2.2}C₄H₁₀O greater than 54 per cent, a single liquid is again formed and the solubility curve can be followed up to the melting point of the dietherate at 51°.

SOLUBILITY OF	MAGNESIUM IODII	B DIETHERATE	IN	ETHER	AT	DIFFERENT
	TRMPRRATURE	S. (Menschutkin	100	6)		

t°.	Gms. per 10 Sat. So	o Gms. Il.	Mols. MgI ₂ .2(C ₂ H ₄) ₂ O per 100 Mols.	Solid Phase.	
•••	MgI ₁₋₂ (C ₂ H ₄) ₂ O	- MgL.	per 100 Mols. Sat. Sol.		
5.4	2.2	1.45	0.39	$MgI_{2.2}(C_2H_5)_2O$	
11.8	3 · 7	2.43	0.66	· ·	
15.6		3.46	0.96	"	
18. 1	5·3 8·3	5.4	I.55	"	
20.4	11.Ğ	7.55	2.24	"	
22.2	17.3	11.28	3.56	"	
23.6	22	14.4	4.67	. "	
	two concentrati		I2.2(C2H5)2O two liq	uid layers separate	
23.6	54 · 4	35.5	17.I	ćc	
25	73	47.6	31.9	"	
30	82.5	54	42.9	"	
35	87	57	53 · 4	"	
40	89.6	58.6	60.4	"	
45	93.5	61.2	71.4	"	
43	93.3	61.2	72.4	"	

51.5 m. pt. 100 65.2 100 "
At 23.6° the saturated solution separates into two liquid layers which have the following composition at different temperatures.

	G	ms. per 100	Gms. Solution.		
r .	Lower La MgI ₉₋₂ (C ₂ H ₄) ₂ C	yer.) = MgI ₂ .	Upper La MgL ₁₋₂ (C ₂ H ₄) ₂ (yer.) = MgI ₂ .	
15	54 · 4	35.5	20.5	13.4	unstable
20	54 · 4	35 · 5	21.5	14.I	"
25	54 · 4	35.5	22.5	14.7	stable
30	54 - 4	35.5	23.5	15.4	"
35 '	54 · I	35.3	26	17	"
35 ° 36	53 · 5	34.9	27	17.7	"
	52.2	34.2	28.5	18.7	" .
37 38	50.5	33.1	32	21	"
38.5 crit. temp	40.3	26.3	40.3	26.3	

MAGNESIUM IODIDE ALCOHOLATES and ANILINATE.

SOLUBILITY OF EACH IN THE RESPECTIVE ALCOHOLS OR ANILINE. (Menschutkin.)

MgI ₂ .6CH ₂ OH MgI ₂ .6		MgI ₂	.6C₂H₅OH	Mg	12.6C6H6NH2 1	MgI2.6(CH ₃) ₂ CHOH		
in Methyl Alcohol. in Ethyl Alcoho		ıyl Alcohol.	in Aniline. in Dimethyl Carbinol.						
ť.	Gms. MgI ₂ .6CH ₃ OH per 100 Gms. Sat. Sol.		Gms. MgI ₂ .6C ₂ H ₄ OH per roo Gms. Sat. Sol.	t°.	Gms. MgI ₂ .6C ₄ H ₄ NH ₂ per 100 Gms. Sat. Sol.	ť.	Gms. MgL ₂ .6(CH ₂) ₇ - CHOH per 100 Gms. Sat. Sol.		
0	49.6	0	21.9	0	3.3	10	57.I		
20	52.6	20	33 · 2	60	3.9	30	60		
40	55.3	40	44.4	100	5	50	63.3		
60	58.8	60	55-3	130	8.5	70	67		
80	6 0.6	8o	65.5	150	17.5	90	71.2		
100	63.3	100	74.7	170	38	110	76.2		
120	66.2	120	82.7	180	52	120	79.4		
140	69.5	130	87.2	188‡		130	84.8		
160	73.2	140	93.3	200	65.9 *	136	91.7		
180	77.I	143	96	210	67.2*	138†	100		
200	81.5	146.5		230	69.8*	,			
Solid Phase, MgIs-4CsHsNHs. † M. pt. † Tr. pt.									

MAGNESIUM IODIDE COMPOUNDS.

SOLUBILITY OF MAGNESIUM IODIDE COMPOUNDS WITH BENZALDEHYDE, ACETONE, ACETAL, AND ACETIC ACID IN EACH OF THESE LIQUIDS. ((Menschutkin.)

	MgI ₂ .6C ₄ H ₄ COH MgI ₂ .6CH ₄ COCH ₄ in Acetone.			.2CH ₂ CH-) ₂ in Acetal.	MgI ₂ .6CH ₂ COOH in Acetic Acid.		
r.	Gms. MgI ₃ 6C ₄ H ₄ COH per 100 Gms. Sat. Sol.	ť.	Gms. MgI ₂ 6CH ₂ COCH ₃ per 100 Gms. Sat. Sol.	ť.	Gms. MgI ₄ 2CH ₄ CH(OC ₂ H ₄) ₂ per 100 Gms. Sat. Sol.	r .	Gms. MgI ₄ 6CH ₄ COOH per 100 Gms- Sat. Sol.
0	3.2	0	4.9	20	0.15	20	· 0.6
20	3.8	30	6.7	60	0.45	40	2
40	5 3	50	8.3	77	0.60	60	5
60	7.7	60	10.2	(Between	these two con-	70	9.5
80	11	70	15.2		tions the mix-	80	18.5
100	18.5	8o	28.6		parates into two	95	42
110	26.5	85	40	liquid :	layers.)	105	54 · 5
120	40	90	59.2	77	92	115	65
125	53	95	80	79	93 · 7	125	73.8
130	74.5	100	92.5	81	95.5	135	85
136	94.2	105	98.5	83	97 · 3	140	94
139 m. pt. 100		106.5 m.pt. 100		86 m. pt. 100		142 m. pt. 100	

On account of the properties of these molecular compounds, their great hygroscopicity, etc., the solubility determinations are not strictly accurate in all cases.

SOLUBILITY OF MAGNESIUM IODIDE COMPOUNDS WITH FORMIC AND ACETIC ACID ESTERS IN THE RESPECTIVE ESTERS.

(Menschutkin.)

MgI₂.6HCOOC₂H₄ MgI₂.6CH₄COOCH₄ MgI₂.6CH₄COOC₂H₅ MgI₂.6CH₄COOC₄H₇ in Ethyl Formate. in Methyl Acetate. in Ethyl Acetate. in Propyl Acetate.

ť.	Gms. MgI ₃ 6HCOOC ₂ H ₄ per 100 Gms. Sat. Sol.	ť.	Gms. MgI ₂ 6CH ₄ COOCH ₈ per 100 Gms. Sat. Sol.	r.	Gms. MgL ₂ 6CH ₂ COOC ₂ H ₅ per 100 Gms. Sat. Sol.	ť.	Gms. MgI ₂ 6CH ₂ COOC ₂ H ₇ per 100 Gms. Sat. Sol.
0	15.1	0	0.4	0	3.2	0	4.I
IO	17.4	60	0.75	20	4.8	20	5.4
20	20.5	90	0.9	40	8. 6	30	6.5
30	25	100	1.8	50	13.7	35	7.8
40	31.8	103	2.4	55	21.5	40	19
50	44	(Two l	ayers here.)	60	38	45	46
60	68	103	74.2	65	63.5	50	72.5
70.51	m. pt. 100	110	81.7	70	90.5	55	88.2
		120	98	75	92.7	60	96
		121 m	pt. 100	78.5	m. pt. 100	65 n	a.pt. 100

	-	• •	U -		
MgI ₂ .6CH ₂ 0 in Isobu	COO (iso) C4H9 tyl Acetate.	MgI ₂ .6CH ₂ COO (iso) C ₅ H ₁₁ in Isoamyl Acetate.			
t°.	Gms. MgI ₂ .6CH ₄ - COO (iso) C ₄ H ₅ per 100 Gms. Sat. Sol.	t°.	Gms. MgI ₂ .6CH ₂ - [COO (iso) C ₆ H ₁₁ per 100 Gms. Sat. Sol.		
0	10.5	0	7.7		
20	13.6	20	11.5		
40	17.6	40	20.9		
60	24.9	45	25.5		
70	33.7	50	33.2		
80		55	47.8		
85	52 89	57.5	63		
87.5m.		60 m. pt.	100		

SOLUBILITY OF MAGNESIUM IODIDE COMPOUNDS WITH ACETONITRILE, ACETAMIDE AND URETHAN IN THESE LIQUIDS. (Menschutkin.)

MgI in Ac	3.6CH3CN cetonitrile.			CH ₂ CONH ₂ cetamide.		MgI ₂ .61 in	NH ₂ COOC ₂ H ₆ Urethan.
r.	Gms. MgI ₁ 6CH ₂ CN per 100 Gms. Sat. Sol.	t°.	Gms. MgI, 6CH ₃ CON per 100 Gm Sat. Sol.	Ha Calid Mhass	61 مد	Gms. MgL NH ₃ COOC ₂ per 100 Gm Sat. Sol.	He Called Dhann
0	37.2	82 m	. pt. of acets	mide	49 m	. pt. of uret	han
30	49.8	70	28	CH ₄ CONH ₄	45	27.51	NH₄COOC₃H₄
50	58.2	58	46.7	"	39	45	"
70	67.9	49*	56.5	"+MgIa.6CHaCONH	32*	51.8	"+MgL.NH,COOC,H,
75	71.7	80	63.4	MgI, 6CH, CONH,	40	55	MgIa-NHaCOOCaHa
80	76.5	130	76	"	60	64.7	u
85	83	160	85.5	44	80	78.8	u
8 <u>9</u>	91.3	170	90.8	"	86	92.5	•
-,	<i>j</i> - 0	177	100	44	871	100	•
		-,,,	* Eut	ec.	t m. p	t.	

MAGNESIUM IODOMERCURATE MgI2.2HgI2.7H2O.

The sat. solution in water at 17.8° has the composition MgI₂.1.29HgI₂.11.06H₂O and Sp. Gr. 2.92. (Duboin, 1906.)

MAGNESIUM DiLACTATE Mg(C₄H₂O₄).6H₂O racemic, Mg(C₄H₄O₅).3H₂O, inactive.

SOLUBILITY OF RACEMIC AND OF INACTIVE MAGNESIUM DILACTATE IN WATER. (Jungfleisch, 1912.)

100 gms. H₂O dissolve 7 to 8 gms. racemic and 2.28 gms. inactive lactate at 15°.

MAGNESIUM LAURATE, MYRISTATE, PALMITATE and STEARATE.
SOLUBILITY OF EACH IN SEVERAL SOLVENTS. (Jacobson and Holmes, 1916.)

Grave Fach Salt Determined Separately per 100 Grave Solvent

•		Gms. Each Salt Determined Separately per 100 Gms. Solvent.							
Solvent.	t° .	Mg Laurate (C ₁₁ H ₁₀ COO) ₂ - Mg.	Mg Myristate (CuHgCOO)r Mg.	Mg Palmitate (CH ₃ (CH ₂) _M - COO) ₂ Mg.	Mg Stearate (CH ₃ (CH ₂) ₆ - COO) ₂ Mg.				
Water	15	0.010	0.006	0.005	0.003				
"	25	0.007	0.006	o.oo8	0.004				
"	35	0.010	0.007	0.006	0.007				
"	50	0.026	0.014	0.009	0.008				
Abs. Ethyl Alcohol	15	0.519	0.158	0.034	0.017				
il	25	0.591	0.236	0.058	0.023				
"	35	0.805	0.373	0.085	0.031				
66	50	1.267	0.577	0.151					
Methyl Alcohol	15	1.095	0.571	0.227	0.084				
· "	25	1.108	0.763	0.36	0.100				
"	51.5			0.50	0.166				
Ether •	25	0.015	0.010	0.004	0.003				
Ethyl Acetate	15	0.004	0.004	0.004	0.004				
"	35	0.011	0.010	0.007	0.008				
"	50	0.024	0.021	0.013	• • •				
Amyl alcohol	15	0.191	0.086	0.043	0.014				
ii .	25	0.236	0.145	0.066	0.018				
"	35	1.481	0.438	0.104	0.039				
"	50	4.869	1.893	0.263	0.105				
Amyl Acetate	15	0.119	0.063	0.039	0.029				
"	25	0.162	0.073	0.045	0.030				
66	34.6	0.259	0.105	0.057	0.046				
"	50	1.939	0.605	0.216	0.115				

MAGNESIUM NITRATE Mg(NO.).

SOLUBILITY IN WATER. (Funk — Wiss. Abh. p. t. Reichanstalt 3, 437, 'co.)

t°	Gms. Mg(NO ₂) ₂ per 100 Gms. Solution.	Mols. Mg(NO ₃) ₃ per 100 Mols H ₂ O.	Solid Phase.	t°.	Gms. Mg(NO ₂) ₂ per 100 Gms. Solution.	Mols. Mg(NO ₃) ₂ per 100 Mo H ₂ O.	Solid ls. Phase.
-23	35 - 44	6.6	Mg(NO ₂) ₂₋₉ H ₂ O	40	45.87	10.3	Mg(NO ₂) ₂ AH ₂ O
-20	36.19	7.0		80	53.69	14.6	44
-18	38.03	7 · 4	**	90	57.81	16.7	44
—18	38.03	7 · 37	O ₂ H _{0.c} (cON) ₂ M	89	63.14	20.9	
- 4	5 39.50	7.92	4	77 ·	5 65.67	23.2	. *
0	39.96	8.08	44	67	67.55	25.1	
+18	42.33	8.9	4	•	* Reverse	curve.	

Sp. Gr. of solution saturated at 18° = 1.384.

The eutectic is at -29° and 34.6 gms. $Mg(NO_3)_2$ per 100 gms. sat. solution. Fusion-point data for $Mg(NO_3)_1 + Zn(NO_3)_2$ are given by Vasilev (1909.) Results for $Mg(NO_3)_2 + HNO_3$ are given by Dernby (1918).

MAGNESIUM OLEATE (CH₂(CH₂)₁₂CH₂CH.CH₂COO)₂Mg.

One liter H₂O dissolves about 0.23 gm. oleate (soap).
100 gms. glycerol (d 1.114) dissolve 0.94 gm. oleate.

(Fahrion, 1916.) (Assehn, 1873.)

MAGNESIUM OXALATE MgC2O4.2H2O.

One liter of water dissolves 0.3 gm. MgC₂O₄ at 18° (conductivity method). (Kohlrausch, 1905.)

MAGNESIUM! OXIDE MgO.

Fusion-point data (quenching method) for MgO + SiO₂ are given by Bowen and Anderson, 1914.

MAGNESIUM PHOSPHATE MgHPO4.3HrO.

SOLUBILITY OF MAGNESIUM PHOSPHATE IN AQUROUS SOLUTIONS OF PHOSPHORIC ACID AT 25°. (Cameron and Bell, 1907.)

The mixtures were constantly agitated for two months and the clear solutions analyzed for magnesia and phosphoric acid.

d _∞ of	Gms. per Liter.		Solid Phase. Sales		Gms. p	er Liter.	Solid Phase.
Sat. Sol.	MgO.	P ₂ O ₅ .	Soud Phase.	Sat. Sol.	MgO.	PrOs.	Solid Filast.
	0.207	0.486	MgHPO4-3H4O		109.5	439	MgHPO4.3H4O
	0.280	0.732	44	1.470	122.6	498	**
• • •	0.553	1.917	44	• • •	129.9	546.5	44
• • •	1.438	4.85	44		140	584	44
1.006	2.23	· 7.35	"	1.595	146.8	623.3	44
1.017	4.73	16.84	44		147.3	625.9	**
1.042	11.19	38.59	4		150.3	645.8	4
1.069	17.33	61.21	**	• • •	155.5	680.7	u \
1.100	26.09	93.09	4		160	700	" +MgH ₄ (PO ₄) ₂ -XH ₄ O
I.144	37.40	130.7	44	1.626	87. I	779.6	MgH ₄ (PO ₄) ₂ .XH ₂ O
1.285	75.5	281.8	"	1.644	77.I	809.6	44
•	•		**	1.654	70.6	835.I	66

MAGNESIUM (Hypo) PHOSPHATE Mg₂P₂O₆.12H₂O.

One liter of water dissolves 0.066 gm. hypophosphate. (Salzer, 1886.) One liter of water dissolves 5 gms. magnesium hydrogen hypophosphate, MgH₂P₂O_{6.4}H₂O. (Salzer.)

MAGNESIUM SALICYLATE $Mg(C_7H_8O_3)_2.4H_2O.$

100 gms. sat. solution in water contain 20.4 gms. salicylate at 15° (14.3 gms. Squire and Caines, 1905), and 79.7 gms. at 100°. (Tarugi and Checchi, 1901.)
100 gms. 90% alcohol dissolve 0.6 gm. salicylate at 15°-20°. (Squire and Caines, 1905.)

MAGNESIUM SILICATE MgSiOz.

Fusion-point data for mixtures of MgSiO₂ + MnSiO₂ are given by Lebedew (1911). Results for MgSiO₂ + Na₂SiO₂ are given by Wallace (1909).

MAGNESIUM FLUOSILICATE MgSiF6.6H2O.

One liter of water dissolves 652 gms. of the salt at 17.5°. Sp. Gr. of solution = 1.235. (Stolba, 1877.)

MAGNESIUM SUCCINATE C4H4O4Mg.5H2O.

100 gms. sat. solution in water contain 24.35 gms. succinate at 15° and 66.36 gms. at 100°. (Tarugi and Checchi, 1901.)

MAGNESIUM SULFATE MgSO4.7HzO.

SOLUBILITY IN WATER.

(Results by several investigators. 4th Ed. Landolt and Börnstein, "Tabellen," 1912.)

	Gms. MgSO ₄			Gms. MgSO4	
t°.	per 100 Gms.	Solid Phase.	ť°.	per 100 Gms.	Solid Phase.
	Sat. Sol.			Sat. Sol.	
					rtions of Curve.
-2.9	13.9 (1)	Iœ	-8.4	23.6 (I)	Ice
-3.9	19. (2)	" $+MgSO_4.12H_2O$	-5	19 (12)	" +MgSO4.7HgO rhomb.
+1.8	21.1 (2)	$MgSO_4.12H_2O + MgSO_4.7H_2O$	0	20.6 (3)	MgSO ₄₋₇ H _g O rhomb.
10	23.6 (3)	MgSO _{4.7} H ₂ O (rhombic)	0	25.8 (3)	" β hexagonal
20	26.2 (3)	a	+10	27.9 (3)	4 4
25	26.8 (4)	**	20	30 (3)	" "
30	29 (5)	u	0	29 (3)	MgSO ₄ .6H ₆ O
40	31.3 (5)	u	10	29.7 (3)	u
48	33 (6)	" +MgSO4.6HgO	20	30.8 (3)	"
50	33.5 (7)	MgSO ₄ .6H _g O	30	31.2 (7)	**
55	34.3 (7)	"	70	37.3 (5)	"
60	35.5 (5)	44	80	39.1 (5)	•
68	37 (8)	" +MgSO ₄ .HgO	90	40.8 (5)	44
80	38.6 (7)	MgSO ₄ .H _f O	IOO	42.5 (5)	44
83	40.2 (9)	u			
99.4	40.6 (10)	u			
164	29.3 (11)	"			
188	20.3 (11)	at '			
(-\ d-	C	. (a) Cassaull at all agent (. Y	-0 (A D	and some (a) Muldom

(1) de Coppet, 1872; (2) Cottrell et al, 1901; (3) Loewel, 1855; (4) Basch, 1901; (5) Mulder; (6) Van der Heide, 1893; (7) Smith, 1912; (8) Van't Hoff, 1901; (9) Geiger, 1904; (10) Meyerhoffer, 1912; (11) Etard, 1894; (12) Guthrie, 1876. See also Tilden, 1884.

Data for densities of aq. MgSO4 solutions are given by Barnes and Scott, 1898.

SOLUBILITY OF MAGNESIUM SULFATE IN AQUEOUS SOLUTIONS OF POTASSIUM SULFATE AT 25° AND VICE VERSA. (Van Klooster, 1917.)

Gms. per 100 Gms. Sat. Sol.		l. Solid Phase,	Gms. per 100	Gms. Sat. Sol.	Solid Phase.	
MgSO4.	K ₂ SO ₄ .	Solid Phase.	MgSO4.	K ₂ SO ₄ .	Sond Phase.	
26.76	0	MgSO _{4.7} H ₂ O	13.26	10.34	MgK4(SO4)2.6H4O	
26.67	1.68	···	12.88	10.51	44	
26.57	2.34	· ·	12.68	10.70	" +K _e SO ₄	
26.36	3.76	u	12.06	10.77	K ₄ SO ₄	
26.39	4.02	" +MgK ₂ (SO ₄) ₂ .6H ₂ O	10.69	10.84	u	
18.76	7.02	MgK ₂ (SO ₄) ₂ .6H ₂ O	7.8	11.10	u u	
16.36	8.43	ш	4	11.03	4	
14.27	9.63	"	0	10.77	"	
100 gms.	95% for	mic acid dissolve 0.34	gm. MgSO4 a	at 19°.	(Aschan, 1913.)	

SOLUBILITY OF MAGNESIUM SULFATE IN METHYL AND ETHYL ALCOHOLS (de Bruyn, 1892.)

Solvent.	t°.	Per 100 G	ms. Solvent.	Solvent.	t°.	Per 100	Gms. Solvent.
Abs. CH ₅ OH	18	1.18 gms	. MgSO4	93% Methyl Alc.	17	9.7 gms	. MgSO _{4.7} H ₂ O
"	17	41 "	MgSO _{4.7} H ₂ O	93% Methyl Alc. 50% " "	3-4	4.I "	. "
"	3-4		4	Abs. C ₂ H ₄ OH		1.3 "	"

SOLUBILITY IN AQUEOUS ETHYL ALCOHOL. (Schiff, 1861.)

Weight per cent Alcohol 10 20 40 Gms. MgSO_{4.7}H₂O per 100 gms. solvent 64.7 27.1 1.65

SOLUBILITY OF MAGNESIUM SULFATE IN SATURATED SUGAR SOLUTION AT 31.25°. (Köhler, 1897.)

100 gms. saturated aqueous solution contain 46.52 gms sugar + 14 gms. $MgSO_4$.

100 gms. water dissolve 119.6 gms. sugar + 36 gms. MgSO₄.

Data for the system magnesium sulfate, phenol, and water are given by Timmermans, 1907.

Fusion-point data for mixtures of MgSO₄ + K₂SO₄ are given by Ginsberg, 1906; Nacken, 1907a and Grahmann, 1913. Results for MgSO₄ + Na₂SO₄ are given by Nacken 1907b.

MAGNESIUM POTASSIUM SULFATE MgK₂(SO₄)₂.6H₂O.

SOLUBILITY IN WATER. (Tobler, 1855.)

t° = 0° 20° 30° 45° 60° 75° Gms. MgK₂(SO₄)₂ per 100 gms. H₂O 14.1 25 30.4 40.5 50.2 59.8 100 gms. H₂O dissolve 30.52 gms. MgK₂(SO₄)₂.6H₂O at 15°. (Lothian, 1909.)

MAGNESIUM SULFITE MgSO1.6H2O.

10 gms. cold water dissolve 1.25 gms. sulfite; 100 gms. boiling water dissolve 0.83 gm. (Hager, 1875.)
100 gms. H₂O dissolve 1 gm. sulfite at 15°. (Squire and Caines, 1905.)

MAGNESIUM SULFONATES.

SOLUBILITY IN WATER AT 20°. (Sandquist, 1912.)

		Compour	ıd.		Gms. Anhydrous Salt per 100 Gms. H ₂ O.
Magnesiun	n -2-Pl	henanthre	ne Monosulfonate	e 6H ₂ O	0.051
"	-3-	66	"	4H ₂ O	0.116
"	-10-	"	"	5H ₂ O	0.22

B MALAMINIC ACID CH₂(OH)COOH; CH₂CONH₂, CH₂COO.NH₂.CHCOOH.

SOLUBILITY IN WATER AT 18°. (Lutz, 1902.)

Compound.	Mpt.	Gms. per 100 Gms. H _f O.	$(\alpha)_D$ in Water $C=1, 1=2$.
d β Malaminic Acid	149	7.52	+9.70
l "	149	7.50	-9.33
7 "	148	4.02	• • •

MALEIC ACID COOHCH: CH.COOH (see also p. 304).

SOLUBILITY IN SEVERAL ALCOHOLS. (Timofeiew, 1894.)

Alcohol.	r.	Gms. (CHCOOH) ₂ per roo Gms. Sat. Sol.	Alcohol.	r.	Gms. (CHCOOH) ₂ per 100 Gms. Sat. Sol.
Methyl Alcohol	22.5	41	Propyl Alcohol	0	20
Ethyl Alcohol	0	30.2	"	22.5	24.3
"	22.5	34 · 4	Isobutyl Alcohol	0	14.2
			"	22.5	17.5

Data for the distribution of maleic acid between ether and water at 25° are given by Chandler, 1908.

Freezing-point data for mixtures of maleic acid and I mandelic acid are given by Centnerszwer, 1899.

MALIC ACID 1 COOH.CH, CHOHCOOH.

100 gms. methyl alcohol dissolve 124.8				gms.	malic	acid a	t o°.	(Timofeiew, 1894.)
iP.	" "	"	167.7	٠,,	"	"	19.1°.	4
**	ethvl "	44	91.4	"	**	44	10°.	m .
44	propyl' "	44	54	**	44	46	10°.	u .
44	dichlorethyl	ene "	0.00	o "	**	44	15°.	(Wester & Bruins, 1894.)
"	trichlorethy		0.01	•	44	44	150	4 20

DISTRIBUTION OF MALIC ACID BETWEEN WATER AND ETHER. (Pinnow, 1915.)

I	Results at 15°.		Results at 25.5°.				
	cid per Liter:	Dist. Coeff.	Gm. Mols.	-			
H ₂ O Layer.	Ether Layer.	Dist. Com.	HeO Layer.	Ether Layer.	Dist. Coeff.		
0.564	0.0091	62	1.179	0.0172	6 8. 4		
0.288	0.0045	64	0.582	0.0082	71		
0.151	0.0024	62.9	0.293	0.0040	73		
0.067	0.0157	61.6	0.142	0.0020	71		

Freezing-point data for i malic acid +l mandelic acid are given by Centnerszwer, 1899.

MALONIC ACID CH2(COOH)2.

SOLUBILITY IN WATER.

(Klobbie, 1897; Miczynski, 1886; Henry, 1884; Lamouroux, 1898, 1899.)

ť.	Gms. CH ₂ (CC	OH), per 100.	t°.	Gms. CH ₂ (COOH) ₂ per 100.			
	Gms. Solution.	cc. Solution (L.).	• .	Gms. Solution.	cc. Solution (L.).		
0	52	61	50	71	93		
10	56.5	67	60	74.5	100		
20	60.5	73	70		106		
25	62.2	76.3	80	82	• • •		
30	64	8o	100	89	• • •		
40	68	86.5	132 m	pt. 100	• • •		
	•	Average curve from	results of K.,	M., and H.			

100 gms. 95% formic acid dissolve 22.42 gms. malonic acid at 19.5°. (Aschan, 1913.)

SOLUBILITY OF MALONIC ACID IN ALCOHOLS. (Timofeiew, 1894.)

Alcohol. t*.		Gms. CH ₂ (COOH) ₂ per 100 Gms. Sat. Sol.	Alcohol.	c .	Gms. CH ₄ (COOH) ₁ per 100 Gms. Sat. Sol.	
Methyl	Alcohol	-18.5	42.7	Ethyl Alcohol	+19.5	41.3
"	44	-15	43.5	Propyl Alcohol	-18.5	19.5
66	66	ŏ	47.3	a u	-15	20.2
66	66	+19	52.5	"	ŏ	24.3
44	"	+19.5	53 · 3	66 66	+19	29.5
Ethyl A	Alcohol	-18.5	30	" "	+19.5	30.7
"	44	-15	30.7	Isobutyl Alcohol	o	17.5
46	66	ŏ	35.3	" "	19	21.2
66	66	+10	40. I		•	

SOLUBILITY OF MALONIC ACID IN ETHER. (Klobbie, 1897.)

r.	Gms. CH ₂ (COOH) per 100 Gms. Solution.	ť.	Gms. CH ₂ (COOH) ₂ per 100 Gms. Solution.	e.	Gms. CH ₂ (COOH), per 100 Gms. Solution.
0	6.25	30	10.5	100	46
10	7.74	8 0	33	110	5 6
20	Ò	90	39	120	70
25	9.7		•	132 m. pt	. 100

100 gms. saturated solution of malonic acid in pyridine contain 14.6 gms. at 26°. (Hoky, 1903.)

SOLUBILITY OF SUBSTITUTED MALONIC ACIDS IN WATER. (Lamouroux, 1899.)

Gms. per 100 cc. Saturated Aqueous Solution.

r.	Malonic Acid.	Methyl Malonic Acid.	Ethyl Malonic Acid.	s Propyl Malonic Acid.	s Butyl Malonic Acid.	Iso Amyl Malonic Acid.
0	61.1	44.3	52.8	45.6	11.6	38.5
15	70.2	58.5	63.6	60. I	30.4	51.8
25	76.3	67.9	71.2	70	43.8	79.3
30	92.6	91.5	90.8	94 · 4	79.3	83.4

DISTRIBUTION OF MALONIC ACID BETWEEN ETHER AND WATER AT 25°. (Chandler, 1908.)

Mols. Acid	d per Liter.	Conc. H _f O	Dist. Coef.
HO Layer.	Ether Layer.	Coef. $\frac{\text{Conc. H}_{\text{f}}O}{\text{Conc. Ether}}$.	corrected for Ionization.
0. 1478	0.0135	10.94	9.86
0.1121	0.0102	11.07	9.79
0.0862	0.0076	11.28	9.86
0.0331	0.0027	12.22	0.82

MANDELIC ACID C.H.CH(OH)COOH i and d.

SOLUBILITY IN SEVERAL SOLVENTS.

Solvent.	t*.	Gms. Ca	H ₅ CHOHCOOH ₄ Gms. Sat. Sol.	Authority.
Water	20		(inactive acid)	(Schlossberg, 1900.)
"	20	19.17	(dextro acid)	"
Methyl Alcohol	0	51.1	(inactive acid)	(Timoteiew, 1894.)
	16.5	64.9	u	"
Ethyl Alcohol	o Č	46.7	4	, "
	16.5	53.6	#	"
Propyl Alcohol	o Č	35	44	4
<i>"</i> " "	16.5	43	44	"
95% Formic Acid	19	40	•	(Aschan, 1913.)

FREEZING-POINT DATA (Solubility, see footnote, p. 1) ARE GIVEN FOR THE FOL-LOWING MIXTURES OF MANDELIC ACID AND OTHER COMPOUNDS.

d	Mandelic	Acid + l Mandelic Acid	(Adriani, 1900.)
i	44	" +1 " "	(Centnerszwer, 1899.)
i	44	Methylester + 1 Mandelic Methylester	46
i	44	Isobutylester + 1 Mandelic Isobutylester	41
	44	Acid + Dimethylpyrone	(Kendall, 1914.)
1	44	I Menthylester + d Mandelic I Menthylester	(Findley and Hickmans 2007.

Menthyl MANDELATES.

SOLUBILITY IN ETHYL ALCOHOL. (Findlay and Hickmans, 1909.)

Solvent.	t*.		Solvent.	Solid Phase.	Solvent.	ť.	Gms. S	olvent.	Solid Phase.
80% Alcohol	35		1.08	D	80% Alcohol	10		0.287	D
44	35	3.19		L	"	10	0.595		L
46	35	0.80	0.80	R	"	10	0.184	0.184	R
"	35	0.544	1.35	D+R	44	10	0.404	0.291	D+R
66	35	2.83	0.60	L+R	"	10	0.505	0.088	L+R
"	25		0.595	D	Abs. Alcohol	0		1.06	D
"	25	1.64		L	"	0	1.93		L
"	25	0.448	0.448	R	"	0	0.625	0.625	R
"	25	0.321	0.882	D+R	44	0	0.535	0.915	D+R
"	25	1.192	0.267	L+R	44	0	1.03	0.54	L+R
$^{\circ}$ $d_{22} = 0.8517$.									

D = l menthyl d mandelate, $[\alpha]_D^{17.5} = -9.45^{\circ}$ in alcohol.

L = l menthyl l mandelate $[\alpha]_D^{\infty} = -140.92^{\circ}$ in alcohol.

R = l menthyl r-mandelate $[\alpha]_{0}^{11.3} = -75.03$ in alcohol.

MANGANESE BORATE MnH4(BO3)2.

SOLUBILITY IN WATER AND IN AQUEOUS SALT SOLUTIONS. (Hartley and Ramage — J. Ch. Soc. 63, 137, '93.)

Grams MnH₄(BO₃)₂ per Liter in Solutions of:

6 °.	H _y O + trace Na ₂ SO ₄ .	Na ₂ SO ₄ (o.2 Gms. per Liter).	Na ₂ SO ₄ (20 Gms. per Liter).	NaCl (20 Gms. per Liter).	CaCl ₂ (20 Gms. per Liter).				
14	0.94	1.7	• • •	• • •					
18	• • •		0.77	1.31	2.91				
40	0.50	0.69 (5:	2°) 0.65		2 . 44				
60	• • •	• • •	0.36	0.60	2.25				
8 0	o.08	• • •	0.12	0.29	1.35				

MANGANESE BROMIDE MnBr.

SOLUBILITY IN WATER. (Etard, 1894.)

t*.	Gms. MnBry per 100 Gms. Solution.	Solid Phase.	\$* .	Gms. MnBrs per 100 Gms. Solution.	Solid Phase.
- 20	52.3	MnBr ₂₋₄ H ₂ O	40	62.8	MnBr ₂ .4H ₆ O
-10	54.2	•	50	64.5	4
0	56.0	44	бo	66.3	*
10	57.6	**	70	68.0	64
20	59·5	•	Š0	69.2	MnBr.aH2O
25	60.2	•	90	69.ვ	**
30	61 · I	•	100	69.5	•

MANGANESE CARBONATE MnCO.

One liter water dissolves 5.659.10⁻⁴ mols. MnCO₃ = 0.065 gm. at 25°. (Ageno and Valla, 1911.)

MANGANESE CHLORIDE MnCl.

Solubility in Water.

(Etard; Dawson and Williams - Z. physik. Chem. 31, 63, '99.)

t* .	Sp. Gr. of Solutions.	Grams MnCl ₂ p	er 100 Grams	Mols. MnCl ₂	Solid
6 °.	Solutions.	Water.	Solution.	per 100 Mols. H ₂ O	
-20	• • •	53.8	35.0		MnCla4HgOs
-10	• • •	58.7	37 .0	• • •	44
0		63.4	38.8	•••	•
+10		68.1	40.5	•••	•
20		73 · 9	42.5	• • •	•
25	1.4991	77.18	43.55	8o. 11	•
30	1.5049	80.71	44.68	11.55	•
40	1.5348	88.59	46.96	12.69	•
50	I · 5744	98.15	49 · 53	14.05	•
57.65	1.6097	105.4	51.33	15.10	•
60	8016.1	108.6	52.06	15.55	MnCl _{2.2} H ₅ O
70	1.6134	110.6	52.52	15.85	
8o	• • •	112.7	52.98	16.14	**
90	• • •	114.1	53.2	•••	
100	• • •	115.3	53 · 5	• • •	•
120	• • •	118.8	54.3	•••	
140	• • •	119.5	55.0	• • •	•

One liter of water dissolves 87.0 grams MnCl₂. One liter of sat. HCl dissolves 19.0 grams MnCl₂ at 12°. (Ditte — Compt. rend. 92, 242, '81.)

EQUILIBRIUM IN THE SYSTEM MANGANESE CHLORIDE, POTASSIUM CHLORIDE AND WATER. (Süss, 1913.)

	Gms. per 100 Gms.				Gms. per	•		
ť.	Sat. S	Sol.	Solid Phase.	t°.	Sat.	Sol.	Solid Phase.	
	MnCl ₂ .	KCJ.			MnCl ₂ .	KCl.	•	
6	40.23	1	MnCl ₂ .4H ₂ O	52.8	50.14	6.01	MnCl ₂₋₄ H ₂ O+MnCl ₂₋₂ H ₂ O+1.1.2	
6	35.94	9.41	" +1.1.2+KCl	58.3	51.72		MnCl ₂ .4H ₂ O+MnCl ₂ .2H ₂ O	
6		23.06	KC1	62.6	51.86		MnCl ₂ , 2H ₂ O	
28.4	44.46	1	MnCl ₂ .4H ₂ O	62.6	49.95	6.67	" +1.1.2	
28.4	43.28	8.66	" +I.I.2	62.6	44.05	12.40	1.1.2+MnCl ₂ .2KCl.2H ₂ O	
28.4		13.79	" +1.2.2+KCl	62.6	36.85	18.77	MnCl ₂ .2KCl.2H ₂ O+MnCl ₂ .4KCl	
28.4		26.01	KC1	62.6	•	31.57	KC1	
		•					3.7 OL 17.01 TT.O.	

 $1.1.2 = MnCl_{2}.KCl_{2}H_{2}O.$ $1.2.2 = MnCl_{2}2KCl_{2}H_{2}O.$

100 cc. anhydrous hydrazine dissolve 13 gms. MnCl₂ at room temp.

(Welsh and Broderson, 1915).

Fusion-point data for MnCl₂ + SnCl₃ (Sandonnini, 1911), MnCl₂ + SnCl₃ (Sandonnini and Scarpa, 1911), MnCl₂ + ZnCl₃ (Sandonnini, 1912 and 1914).

MANGANESE CINNAMATE (C.H.CH:CHCOO),Mn.

100 gms. H₂O dissolve 0.26 gm. manganese cinnamate at 26°. (De Jong, 1909.)

MANGANESE FLUOSILICATE MnSiF6.6H2O.

100 gms. H₂O dissolve 140 gms. salt at 17.5°. Sp. Gr. of solution = 1.448. (Stolba, 1883.)

MANGANESE HYDROXIDE Mn(OH)2.

One liter H₂O dissolves 2.15.10⁻⁶ gms. mols. Mn(OH)₂ at 18°.

One liter H₂O dissolves 2.10.10⁻⁴ gms. mols. Mn(OH₂) at 18°. (Tamm, 1910.)
The determination of S. & F. was made by the neutralization method of Kuster, that is, by determining the conductivity minimum on adding Ba(OH)₂ to MnSO₄ solution and calculating the Mn(OH)₂ remaining in solution.

SOLUBILITY OF MANGANESE HYDROXIDE IN AQUEQUS SOLUTIONS OF ORGANIC SALTS. (Tamm, 1910.)

(25 cc. of the neutral salt solution + 25 cc. of aqueous suspension of Mn(OH)₂ were shaken different lengths of time. Temp. not stated.)

100 cc. sat. solution in 1 n sodium tartrate solution contain 0.052 gm. Mn₂O₄.

100 cc. sat. solution in 1 n sodium malate solution contain 0.032 gm. Mn₅O₄.
100 cc. sat. solution in 1 n sodium citrate solution contain 0.095 gm. Mn₅O₄.

MANGANESE IODOMERCURATE 3MnI1.5HgI1.20H2O.

A saturated solution of the salt in water at 17° has the composition 1.4 Mnl₂.HgI₂.10.22H₂O and density 2.98. (Duboin, 1906.)

MANGANESE NITRATE Mn(NO₃)₂.

SOLUBILITY IN WATER.

(Funk - Wiss. Abh. p. t. Reichanstalt 3, 438, 'co.)

6°.	Der 100	Mols. Mn(NO ₃) ₃ per 100 Mols. H ₂ O.	Solid Phase.	s • .	Gms. Mn(NO ₂) ₂ per 100 Gms. Sol.	Mols. Mn(NO ₂) ₂ per 100 Mols.H ₂ O.	Solid Phase.
-29	42.29	7 - 37	Mn(NO ₂) ₂ .6H ₂ O.	18	57 - 33	13.5	Mn(NO ₃) ₃ .6H ₆ O.
- 26	43.15	7.63	••	25	62.37	16.7	•
-21	44.30	8.0	•	27	65.66	19.2	$Mn(NO_3)_3.3H_5O.$
- 16	45.52	8.4	4	20	66.99	20.4	••
- 5	48.88	9.61	•	30	67.38	20.7	44
0	50 . 49	10.2	**	34	71.31	24.9	44
+11	54.50	12.0	•	35 · 5	76.82	33 · 3	•
_					_		

Sp. Gr. of solution saturated at 18° = 1.624.

The Eutec is at -36° and 40.5 gms. Mn(NO₃), per 100 gms. Sat. Sol.

MANGANESE OXALATE MnC2O4.2H2O.

SOLUBILITY IN AQUEOUS SOLUTIONS AT 25°. (Hauser and Wirth, 1909.)

In Oxal Solut		In Ammoni Solut		In Sulfuric Acid Solutions.			
Per 1000 G	^		ns. Sat. Sol.		ms. Sat. Sol.		
G. Mols. (COOH) ₂ .	Gms. Mn(COO)	G. Mols. , (NH ₄) ₂ (COO) ₂	Gms. . Mn(COO) ₂ .	Normality H ₂ SO ₄ .	Gms. Mn(COO) ₂ .	Solid Phase.	
0	0.312	0.005	0.338	0.025	1.825	MnC ₂ O ₄ .2H ₄ O	
0.0125	0.759	0.025	0.479	0.24	8.850	44	
0.025	0.930	0.050	0.761	I	25.955	u	
0.050	. 1.080	0.125	1.789	2.389	51.080	"	
0.125	1.396	0.245	3.970	2.987	60.109	$MnC_1O_4.2H_2O+(COOH)_3$	
0.25	1.708	0.245	4.005	3.952	73.200	44	
0.49	2.081	0.281	4.650	4.500	82.401	44	

Results are also given for the solubility of MnC₂O_{4.2}H₂O in aq. solutions of H₂SO₄ containing also about 0.25 gm. mols. free oxalic acid per liter at 25°

MANGANESE OXIDE MnO.

Fusion-point data for mixtures of manganese oxide and silicic acid are given by Doernickel, 1907.

MANGANESE (Hypo) PHOSPHITE Mn(PH₂O₂)₂H₂O.

100 gms. H₂O dissolve 15.15 gms. salt at 25°, and 16.6 gms. at b. pt. (U. S. P.)

MANGANESE SILICATE MnSiO₂.

Fusion-point data for mixtures of manganese silicate and titanate are given by Smolensky, 1911–12.

MANGANESE SULFATE MnSO.

SOLUBILITY IN WATER.

(Cottrell — J. Physic. Ch. 4, 651, '01; Richards and Fraprie — Am. Ch. J. 26, 77, '01. The results of Linebarger — Am. Ch. J. 15, 325, '93, were shown to be incorrect by Cottrell, and this conclusion was confirmed by R. and F.)

t* .	Grams MnSO ₄ per 100 Gms.		Solid Phase.	6°.	Grams MnSO ₄ per 100 Gms.		Solid Phase
	Water.	Solution.			Water.	Solution.	
-10	47.96	32.40	MnSO4.7HgO	16	63.94	38.99	MnSO ₄₄ H ₄ O
0	53 - 23	34.73	*	18.5	64.19	39.10	*
5	56.24	35.99	*	25	65.32	39.53	•
9	59 - 33	37.24	4	30	66.44	39.93	•
12	61.77	38.19	•	39.9	68.81	40.77	•
14.3	63.93	39.00	*	49.9	72.63	42.08	•
5	58.06	36.69	MnSO4.5HgO	41.4	60.87	37.84	MnSO ₄ .HgO
9	59.19	37.18	44	50	58.17	36.76	•
15	80.16	37.91	•	60	55.0	35 - 49	•
25	64.78	39.31	4	70	52.0	34.22	•
30	67 . 76	40.38	•	80	48.0	32.43	•
35.5	71.61	41.74	•	90	42.5	29.83	•
				100	34.0	24.24	,.*

SOLUBILITY OF MANGANESE SULFATE, COPPER SULFATE MIXED CRYSTALS IN WATER AT 18°. (Stortenbecker, 1900.)

Mola. per 100 Mola. H ₂ O.		Mol. per cent Cu in :		Mols, per 100 Mols. H ₂ O.		Mol. per cent Cu in :	
Cu.	Mn.	Solution.	Crystals.	Ču.	Mn.	Solution.	Crystals.
Solid Ph	se, CuMn	SO4.5H2O,	Triclinic.	Solid P	hase, CuMi	SO4.5H2O.	Triclinic.
2.282	0	100	100	[0.73	6.37	10.27	10.5]
• • •		90.5	• • •		• • •	5.0	4.9
2.23	0.44	83.5	• • •	0.34	7.03	4.60	• • •
•••		74 · I	97 · 3	• • •	•••	2.31	2.15
. • • •		57 · 7	95.1	• • •	7 · 375	0.0	0.0
• • •	• • •	31.0	81.3	Solid	Phase. CuM	InSO₄. Mon	oclinic. 7H2O.
I · 54 I · 31 [I · 06	3.76 4.70 5.58	29.0 26.1 21.8 21.2 20.0 15.9	70.4 42.6 34.4 22.9]	 [1.06 [0.73 	5·58 6·37 	20.4 15.9 12.45 10.27 4.60	28.2* 23.5] 20.8 16.0] 5.8*

^{*} Indicates meta stabil points.

CuMnSO₄.5H₂O = 100-90.8 and 2.11-0 mol. per cent Cu. CuMnSO₄.7H₂O = 37.8-4.92 mol. per cent Cu.

SOLUBILITY OF MANGANESE SULFATE IN GLYCOL.

100 gms. saturated solution contain 0.5 gm. MnSO₄.

(de Coninck, 1905.)

SOLUBILITY OF MANGANESE SULFATE IN AQUEOUS SOLUTIONS OF AMMONIUM SULFATE AT 25° AND 50° AND VICE VERSA. (Schreinemakers, 1909.)

Results at 25°.

Results at 50°.

Gms. per 100 Gms. Sat. Sol.		Solid Phase		100 Gms. t. Sol.	Solid Phase.
MnSO4.	(NH ₄) ₂ SO ₄		MnSO4.	(NH ₄) ₂ SO ₄ .	
39.3	0	MnSO ₄₋₅ H _e O	36.26	0 1	MnSO ₄ .H _f O
38.49	3.64	" +D ₆	35.35	2.95	" +D ₃₋₁
33 · 44	4.91	$\mathbf{D_0}$	30.57	5.14	D ₃₋₁
22.06	9.65	44	16.86	17.62	4
9.02	20.36	4	6.92	35.98	44
2.91	37.42	44	6.29	39.71	4
1.75	42.58	" +(NH ₄) ₂ SO ₄	5.70	43.24	" +(NH ₄) ₂ SO ₄
I.77	43.24	(NH ₄) ₂ SO ₄	3.49	44.02	(NH.) SO,
0	43 - 4	46	0	45.7	4
$D_4 = N$	InSO ₄ .(NH ₄)	₂ SO ₄ .6H ₂ O.	$D_{2-1} =$	$= (MnSO_4)_2(N$	NH4)3SO4.

SOLUBILITY OF MANGANESE SULFATE IN AQUEOUS SOLUTIONS OF SODIUM SULFATE AT 35° AND VICE VERSA.
(Schreinemakers and Provije, 1913.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.		100 Gms. Sol.	Solid Phase.	
MnSO4.	Na ₂ SO ₄ .	:	MnSO ₄ .	Na ₂ SO ₄ .	A 60 \ AT 60 \	
39.45	0	MnSO ₄ .H ₂ O	13.96	21.91	$(MnSO_4)_9.(Na_9SO_4)_{18}$ $+MnSO_4(Na_9SO_4)_8$	
33.92	5.23		12.19	22.49	: MnSO((NaSO))	
33.06	7.97	" +(MnSO ₄) ₊ (Na ₅ SO ₄) ₂₀	10.45	23.41	u	
32.92	7.42	-	7.43	26.58	44	
31.05	9.20	(MnSO _d) _p (Na ₂ SO _d) ₁₀	5.69	29.31	,,	
27.67	10.76	46	5.11	30.52	" +Na ₂ SO ₄	
22.14	14.28	46	2.96	31.33	•	
14. 58	20.0I	a a	0	33		

Data for the solubility of mix crystals of manganese and zinc sulfates between 0° and 39° are given by Sahmen, 1905-06.

SOLUBILITY OF MANGANESE SULFATE IN AQUEOUS ETHYL ALCOHOL. (Schreinemakers, 1909; Schreinemakers, and Deuse, 1912.)

	Results at 2	5°∙	Results at 50°.			
Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100	Solid Phase.		
C.H.OH.	MnSO4.	Soud I hase.	C ₂ H ₅ OH.	MnSO ₄ .	Soud Phase.	
0	39.3	MnSO _{4.5} H ₆ O	0	36.26	MnSO ₄ .H ₂ O	
6.81	33.72	44	6.67	28.12	u	
liquid layers separate here			16.02	18.75	"	
53.09	1.23	**	22.63	12.54	"	
57 - 39	0.56	"	36.47	4.12		
76 70	0	MnSO. H.O	,	-		

Composition of the liquid layers.

The following reciprocally saturated metastable solutions were obtained at 50°.

Water rich Layer.		C ₂ H ₄ OH rich Layer.		Water ric	h Layer.	C ₂ H ₄ OH rich Layer.	
%C,H,OH.	%MnSO4.	%C₂H₅OH.	%MnSO4.	% C₂H₅OH.	% MnSO4.	% С _₃ Н₄ОН.	% MnSO4.
6.81	33·72*	53.09	I. 23*	5. 6 8	34.95	53.64	0.97
8.48	31.51	49.76	1.83	7.69	30.99	45.83	2.19
15.02	22.61	32.75	8.0 1	8.70	29.20	41.93	3.11
				11.85	24.84	35.15	5.05

^{*} These liquids in contact with MnSO_{4.5}H₂O.

Similar data are also given for 30° and for 35°. Both stable and metastable liquid pairs were obtained at these intermediate temperatures.

Additional data for this system are also given by Cuno, 1908.

SOLUBILITY OF MANGANESE SULFATE IN AQUEOUS ETHYL ALCOHOL (CON.).

Composition of the conjugated liquids in contact with excess of solid salt.

t°.	C ₂ H ₄ OH r	ich Layer.	Aqueous	Solid Phase.	
	% C,H,OH.	% MnSO4.	% C ₂ H ₄ OH.	% MnSO4.	
10	37.06	5.44	13.78	25.25	MnSO _{4.5} H ₂ O
15	44.56	2.79	9.25	29.79	"
17.	47.11	2.22	8.53	30.88	"
21	53 - 55	1.10	6.10	35.05	"
25	53.00	1.23	6.81	33.72	"
30	45.20	2.49	8.69	30.15	MnSO4.H2O
31	43.90	2.74	8.47	30.10	"
35	41.71	3.44	9.24	28.61	"
37	38.26	4.84	11.03	26.47	u
41	34.01	5.86	11.93	24.97	"
42	32.37	6.8g	13.57	23.00	"
43	31.42	8.5ī	14.33	22.01	"

Data for the solubility of manganese sulfate and potassium iodate in methyl alcohol are given by Karplus, 1907.

SOLUBILITY OF MANGANESE SULFATE IN AQUEOUS ETHYL AND PROPYL ALCOHOL SOLUTIONS AT 20°. (Linebarger, 1892; Snell, 1898.)

Conc. of Alcohol	Gms. MnSO ₄ p	er 100 Gms. Aq.	Conc. of Alcohol in Wt. per cent.	Gms. MnSO ₄ per 100 Gms. Aq.		
in Wt. per cent.	Ethyl Alc.	Propyl Alc.		Ethyl Alc.	Propyl Alc.	
34	9.5	.6	44	3.3	1.9	
36	7.2	4.6	48	2.2	I.4	
38	5.8	3 5	52	1.4	I.I	
40	4.7	2.8				

100 cc. anhydrous hydrazine dissolve about 1 gm. MnSO₄ at room temp.

(Welsh and Broderson, 1915.)

Fusion-point data for mixtures of MnSO₄ + K₂SO₄, and MnSO₄ + Na₂SO₄ are given by Calcagni and Marotta, 1914.

MANGANESE SULFIDE MnS.

One liter sat. solution in water contains 71.6.10⁻⁶ mols. MnS = 0.00623 gm. per liter at 18° by conductivity method. (Weigel, 1907; see also Bruner and Zawadzki, 1909.)

MANGANESE Potassium VANADATE MnKV₅O₁₄.8H₂O.

100 gms. H₂O dissolve 1.7 gms. salt at 18°.

(Radan, 1889.)

MANNITOL CH2OH(CHOH)4CH2OH.

SOLUBILITY IN WATER. (Findlay, 1902.)

to. Gms.	CH ₂ OH(CHOH) ₄ CH ₂ O per 100 Gms. H ₂ O.	Gms. CH ₂ OH(CHOH) ₄ CH ₂ OH per 100 Gms. H ₂ O.			
0	7.59		40	35.4	
IO	II.63 (13.94 g	ms. Campetti, 1901)	50.8	46.69	
20		ms. Campetti, 1901).	60	60.01	
24.5	20.96		70	74.5	
30	25.4		80	91.5	
35.8	29.93		100	133.1	

100 gms. alcohol, Sp. Gr. 0.905, dissolve 1.56 gms. mannitol at 14°. (Krusemann, 1876.)

Data for the solubility of mannitol at high pressures are given by Cohen,
Inouye and Euwen, 1910.

100 gms. sat. sol. in pyridine contain 0.47 gm. mannitol at 26°. (Holty, 1905.)
100 gms. aq. 50% pyridine dissolve 2.46 gms. mannitol at 20-25°. (Dehn, 1917.)
Data for the ternary systems mannitol + succinic acid nitrile + water and mannitol + triethylamine + water, are given by Timmermans, 1907.

MERCURY ACETATE (ic) Hg(C₁H₂O₂)₂, (ous) Hg₂(C₂H₂O₂)₂,

100 gms. water dissolve 25 gms. mercuric acetate at 10°.

100 gms. water dissolve 0.75 gm. mercurous acetate at 13°.
100 cc. anhydrous hydrazine dissolve about 2 gms. mercurous acetate at room temp. with precipitation of Hg. (Welsh and Brodemon, 1915.)

MERCURY BENZOATE (ic) (C₄H₄COO)₂H₂O.

100 gms. H₂O dissolve 1.2 gms. mercuric benzoate at 15° and 2.5 gms. at 100°. (Tarugi and Checchi, 1901.)

MERCURY BROMIDE (ic) HgBr₂.

SOLUBILITY IN WATER.

t.	Gms. HgBr ₁ per 100 Gms. H _g O.	Authority.
9	1.06	(Lassaigne, 1876.)
25	0.61	(Sherrill, 1903.)
100	20-25	(Lassaigne.)

Mercurous bromide. One liter sat. aq. solution contains 0.000039 gm. Hg2Br2 (Sherrill, 1903.)

EQUILIBRIUM IN THE SYSTEM MERCURIC BROMIDE, AMMONIA, WATER AT 8°-10°. (Gaudechon, 1910.)

The mixtures were shaken intermittently for 21-48 hrs. Both the clear sat. solution and the separated and dried solid phases were analyzed.

Initial Mixture.			Sat. Solution.				
Gms. Mols. per Liter.			Gms. Atoms. per Liter.			Solid Phase.	
HgBra.	NH.	NH ₄ Br.	Hg.	Br.	N.	CORE I Mage:	
0.0125	0.0250	0	trace	0.0154	0.0185	(NHg ₂ Br) ₄ HgBr ₂	
0.0166	0.0332	0	0.00032	0.0172	0.0202	36% " +64% NHgaBrNHaBr	
0.025	0.050	0	0.00078	0.0241	0.0251	NHgaBr.NH4Br	
0.050	0.100	0	0.0019	0.0525	0.0514		
0.0125	0.025	0.0375	0.00178	0.0497	0.0497	44	
0.025	0.050	0.075	0.0041	0.103	0.108	u	
0.0328	0.0656	0.0984	0.0061	0.133	0.133	93% " +6% NHgBr.3NH4Br	
0.0365	0.073	0.1095	0.0060	0.132	0.133	36% " +64% NHgBr.3NH4Br	
0.050	0.100	0.150	0.007	0.170	0.169	NHg ₂ Br. ₃ NH ₄ Br	
0.100	0.200	0.300	0.0124	0.333	0.338	46	
o.c180	0.036	0.01875	0.001	0.0315	0.0318	NHgaBr.NH4Br	
0.050	0.100	0.006	0.0057	0.1172	0.1178	44	
0.050	O. 100	0.150	0.0071	0.169	0.168	NHg ₂ Br ₋₃ NH ₄ Br	
0.100	0.200	0.160	0.0083	0.184	0.187	66	
0.125	0.250	0.306	0.0160	0.393	•••	64	

SOLUBILITY OF MERCURIC BROMIDE IN AQUEOUS SALT SOLUTIONS AT 25°.
(Herz and Paul, 1913.)

(The mixtures were constantly agitated for eight days.)

In Aq. BaBr ₂ .		In Aq. CaBr ₂ .		In Aq. KBr. Mols. per Liter.		In Aq. NaBr. Mols. per Liter.		In Aq. SrBr ₂ . Mols. per Liter.	
Mols. per Liter.		Mols. per Liter.							
BaBrg.	HgBr2.	CaBr ₂ .	HgBr ₂ .	KBr.	HgBr2.	NaBr.	HgBr ₂ .	SrBr ₁ .	HgBrs.
0	0.017	0.072	0.117	0	0.017	0.118	0.078	0.062	0.104
0.274	0.370	0.645	0.676	0.209	0.098	0.596	0.285	0.328	0.471
0.396	0.540	1.892	1.358	0.770	0.472	1.142	0.540	0.668	0.902
0.579	0.759	2.479	2.766	2.380	1.360	2.448	1.276	1.401	1.770
I.096	1.478	3.754	3.666	3.470	1.930	5.246	2.306	1.872	2.238

The following slightly higher results for KBr solutions are given by Sherrill

Mols. KBr per liter o 0.05 0.10 0.5 0.866 2 3 4 Mols. HgBr, per liter 0.017 0.055 0.088 0.0359 0.611 1.407 2.096 2.339

Data for equilibrium in the system HgBr₂ + KOH + H₂O at 25° are given by Herz (1910).

SOLUBILITY OF MERCURIC BROMIDE IN AQUEOUS SOLUTIONS OF METYHL ... ALCOHOL, ETHYL ALCOHOL AND OF ETHYL ACETATE AT 25°.

(Herz and Anders, 1907.)

In Aq.	Methyl	Alcohol.	In Aq.	Ethyl A	Alcohol.	In Aq.	Ethyl A	cetate.
Wt. % CH ₂ OH in Solvent.	d _{gs} of Sat. Sol.	Gms. HgBr ₂ per 100 cc. Sat. Sol.	Wt. % C.H.OH in Solvent.	dga of Sat. Sol.	Gms. HgBr ₂ per roo cc. Sat. Sol.	Wt. % CH ₄ CO ₂ C ₂ H ₄ in Solvent.	d_{24} of Sat. Sol.	Gms. HgBr ₂ per 100 cc. Sat. Sol.
10.6	0.9857	0.72	0	I.0022	0.60	0	1.0022	0.60
30.77	0.9588	1.29	20.18	0.9717	0.67	4.39	1.0018	0.574
47.06	0.9401	2.52	40.69	0.9435	1.59	96.76	1.1159	26.69
64	0.9386	6.85	70.01	0.9214	6.58	100	1.0113	14.13
78.05	0.9744	14.66	100	0.9873	22.81		•	•
100	1.2275	50.25						

100 gms. sat. sol. in 95% C₂H₅OH ($d_{15}=0.8126$) contain 13.2 gms. HgBr₂ at 0°, 16.53 gms. at 25° and 22.63 gms. at 50°. (Reisiders, 1900.)

SOLUBILITY OF MERCURIC BROMIDE IN ALCOHOLS. (Timofeiew, 1894.)

In Me	thyl Alcohol.	In Et	hyl Alcohol.	In Prop	yl Alcohol.	In Isob	utyl Alcohol.
ť.	Gms. HgBr ₂ per 100 Gms. CH ₂ OH.	t*.	Gms. HgBr ₂ per 100 Gms. C ₂ H ₄ OH.	t°.	Gms. HgBr ₂ per 100 Gms. C ₈ H ₇ OH.	ť.	Gms. HgBr ₁ per 100 Gms. C ₄ H ₆ OH.
0	41.15	0	25.2	0	14.6	0	4.61
IO	49.5	10	26.3	IO	15.6	10	5.63
19	66.3	19	29.7	19	15.5	23	6.65
22	60.9	39	31.9	39	20.8	39	9.58
39	71.3	65	44 · 5	65	31.3	65	15.80
65	90.8	89	66.9	86.5	42.7	•	•
97	139.1	•	-	•			

SOLUBILITY OF MERCURIC BROMIDE IN MIXTURES OF ALCOHOLS AT 25°. (Herz and Kuhn, 1908.)

and Ethyl Alcohols.			in Mixt	ures of opyl Ale		In Mixtures of Ethyl and Propyl Alcohols.		
% CH ₆ OH in Mixture.	d _{as} of Sat. Sel.	Gms. HgBr ₂ per 100 cc. Sat. Sol.	% C ₄ H ₇ OH in Mixture.	d_{24} of Sat. Sol.	Gms. HgBr ₁ per 100 cc. Sat. Sol.	% C ₂ H ₇ OH in Mixture.	$d_{\frac{2\pi}{2}}$ of Sat. Sol.	Gms. HgBr ₂ per 100 cc. Sat. Sol.
0	0.9873	22.8	•	I.227	50.20	0	0.9873	22.80
4.37	0.9932	23. İ	II.II	1.1954	47.28	8. r	0.9802	22.25
10.4	1.000	25.4	23.8	1.1524	41.53	17.85	0.9740	21.0Ô
41.02	1.080	33.3	65.2	1.0257	25.30	56.6	0.9487	17.63
80.69	1.185	45.7	91.8	0.9437	16.35	88.6	0.9269	14.76
84.77	1.193	46.8	93.75	0.9368	15.86	91.2	0.9239	14.64
91.25	1.211	48.6	96.6	0.9275	14.66	95.2	0.9227	14.06
100	I.227	50.2	100	0.9213	13.78	100	0.9213	13.78

SOLUBILITY OF MERCURIC BROMIDE IN ORGANIC SOLVENTS.

In Carbon Disulfide. (Arctowski, 1894.)				In Other Solvents at 18°–20°. (Sulc., 1900.)				
ť.	Gms. HgBr ₂ per 100 Gms. Solution.	t *.	Gms. HgBr ₂ per 100 Gms. Solution.	Solvent.	Formula.	Gms. HgBr 2 per 100 Gms. · Solvents.		
-10	0.049	15	0.140	Chloroform	CHCl ₃	0.126		
- 5	0.068	20	0.187	Bromoform	CHBr ₃	0.670		
ŏ	0.087	25	0.232	Carbon Tetrachloride	CCl ₄	0.003		
+ 5	0.105	30	0.274	Ethyl Bromide	C ₂ H ₅ Br	2.31		
10	0.122	•	• •	Ethylene Dibromide	C ₂ H ₄ Br ₂	2.34		

One liter benzene dissolves 6.99 gms. HgBr₂ at 25°. (Abegg and Sherrill, 1903.)

SOLUBILITY OF MERCURIC BROMIDE IN AN EQUIMOLECULAR MIXTURE OF ETHYL ALCOHOL AND BENZENE. (Dukelski, 1907.)

6. 0. 10. 20. 30. 40. 50. 60. Gms. HgBr₂ per 100 Gms. Sat. Sol. 10.7 12 14 16 17.5 19 21 100 gms. of sat. sol. in acetone at 25° contain 34.76 gms. HgBr₂. (Reinders, 1900)

SOLUBILITY OF MERCURIC BROMIDE IN ANILINE. (Staronka, 1910.)

ť.	Mol. % HgBr ₁ .	Gms. HgBr, per 100 Gms. C ₄ H ₄ NH ₂ .	Solid Phase.	ť.	Mol. % HgBr ₂ .	Gms. HgBr ₂ per 100 Gms. C ₄ H ₄ NH ₂ .	Solid Phase.
60	4	16.14	HgBr ₂ .2C ₄ H ₄ NH ₂	110*	33.3	193.3	HgBr ₃₋₂ C ₄ H ₄ NH ₄
70	5.8	23.83	"	109.7	33 - 5	195	" +HgBr2.C4H4NH2
80	8.3	35.04	"	115	37.2	229.3	HgBra.CoHaNHa
90	12.2	53.80	"	120	42.3	283.8	44
IOO	18.8	89.64	"	124	50	387.2	4
105	23.2	116.9	"	123	55.4	480.9	u
•	-	-	* M. pt.	† Eu	tec.		

100 gms. ethyl acetate dissolve 13.05 gms. HgBr₂ at 18°. (Naumann, 1910.) 100 gms. methyl acetate dissolve 21.93 gms. HgBr₂ at 18° (d₁₈ sat. sol. = 1.090). (Naumann, 1909.)

SOLUBILITY OF MERCURIC BROMIDE IN PYRIDINE. (Staronka, 1910.)

r.	Mol. % HgBr ₂ .	Gms. HgBr ₂ per 100 Gms. C ₄ H ₄ N.	Solid Phase.	t°.	Mol. % HgBr ₂ .	Gms. HgBr ₂ per 100 Gms. C ₄ H ₄ N.	Solid Phase.
10	5	24	HgBr2.2C4H4N	107*	39	291.5 Hg	Br ₂ .2C ₂ H ₄ N+H ₈ Br ₂ .C ₄ H ₄ N
30	8	39.64	14	IIO	40.4	309	HgBr ₂ .C ₄ H ₄ N
50	II.2	57 - 49	"	120	45.5	381.3	"
50 80	17.5	96.68	"	123†	50	455.8	4
100	22	128.5	44	125	51	474 - 4	3HgBr ₃ .2C ₆ H ₆ N
IIO	24.5	147.8	"	130	54.2	539 · 4	**
118†	33.3	227.6	"	134†	60	683.7	44
IIO	35.5	250.8	u	133	64	810.4	"
			• Eut	iec.	† m. pt.		

SOLUBILITY OF MERCURIC BROMIDE IN QUINOLINE. (Staronka, 1910.)

t*.	Mol. % HgBr ₂ .	Gms. HgBr ₁ per 100 Gms. C ₂ H ₇ N.	Solid Phase.
88	4 · 4	12.85	HgBr ₂ .2C ₉ H ₇ N
III	8.9	27.28	• • • • • • • • • • • • • • • • • • • •
127	14.3	46.58	"
134	17.6	61.16	".

Data for the solubility of mercuric bromide in nitrobenzene, in p nitrotoluene, in m nitrotoluene, in o nitrotoluene and in o nitronaphthalene, determined by the method of lowering of the freezing-point, are given by Mascarelli, 1906, and Mascarelli and Ascoli, 1907. Data for HgBr₂ + Se are given by Olivari, 1912.

DISTRIBUTION OF MERCURIC BROMIDE BETWEEN WATER AND BENZENE (THIOPHENE FREE) AT 25°. (Sherrill, 1903.)

Mols. per Liter.		Dist. Coef.	Mols. p	Dist. Coef.	
H ₂ O Layer.	CeHe Layer.	Dist. Coer.	HrO Layer.	CoHe Layer.	DESC. COCC.
0.017	0.194	0.876	0.00634	0.0715	0.89
0.01147	0.1303	0.88	0.00394	0.0436	0.90
0.00953	0.1074	0.89	0.00320	0.0353	0.90

Data are also given for the distribution between aqueous potassium iodide solu-

tions and thiophene free benzene at 25°.

Data for the solubility of mix crystals of $HgBr_1 + HgI_1$ in acetone at 25° and in ethyl alcohol of $d_{18} = 0.8126 = 95\%$ at 0°, 25° and 50° are given by Reinders (1900). In the case of acetone, the ratio of $HgBr_2$ in the solution increases with increase of per cent of $HgBr_3$ in the solid phase. In the case of the alcohol solutions the ratio in solution does not show such regular variations with change of per cent of $HgBr_3$ in the solid phase.

MERCURY CHLORIDE (ic) HgCl₂, (ous) Hg₂Cl₂.

SOLUBILITY OF MERCURIC CHLORIDE IN WATER.

Average curve from results of Etard, 1894; Foote, 1903; Osaka, 1903-08; Herz and Paul, 1913; Greenish and Smith, 1903; Schreinemakers and Thonus, 1912; Sherrill, 1903; Morse, 1902.

tr. G	ms. HgCl ₂ per o Gms. Sat. Sol.	t*.	Gms. HgCl ₂ per 100 Gms. Sat. Sol.	t* .	Gms. HgCl _s per roo Gms. Sat. Sol.
0	3 · 5	25	6.9	80	23.I
IO	4.6	30	7.7	100	38
15.5	$5.3 (d_{15} = 1.047)$	40	9.3	120	59
20	6. r	60	14	150	78.5

SOLUBILITY OF MERCUROUS CHLORIDE IN WATER.

ť.	Gms. Hg ₂ Cl ₂ per 100 Gms. Sat. Sol.	Authority.	t*.	Gms. Hg ₂ Cl ₂ per 100 Gms. Sat. Sol.	Authority.
0.5	0.000140	(Conductivity, Kohlrausch, 1908.)	24.6	0.00028	(Kohlrausch, 1908.)
18	0.000075	(Indirect, Behrend, 1893.)	25	0.000047	(Sherrill, 1903.)
18	0.00021	(Conductivity, Kohlrausch, 1908.)	43	0.00070	(Kohlrausch, 1908.)
20	0.000038	(Ley and Heimbucher, 1904.)			

SOLUBILITY OF MERCURIC CHLORIDE IN AQUBOUS SOLUTIONS OF SODIUM CHLORIDE.

(Homeyer and Ritsert - Pharm. Ztg. 33, 738, '88.)

Per cent Concentration	Gms. HgCl ₂	per 100 Gms. NaC	Cl Solution at:			
of NaCl Solutions.	150	15° 65°				
0.5	10	13	44			
1.0	14	18	48			
5.0	30	36	64			
10.0	58	68	110			
25.0	120	142	19 6			
26.0 (saturate	d) 128	152	208			

SOLUBILITY OF MERCURIC CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AT:

	C	°.		20-25° (?).				
(Engel	Ann. chim.	phys. [6] 17,	362, '89.)		(Ditte - Ibid. [5] 22, 551, '81.)			
Mg. Mols. pcr 100 ec. Sol. HCl. HgCl.		Gms. per 100 cc. Sol. HCl. HgCl ₂ .		Sp. Gr. of Solutions.	Parts HCl per 100 Parts H ₂ O.	Parts HgCl ₂ per 100 Parts Solution		
4.3	9.7	1.57	13.11	1.117	0.0	6.8		
9.9	19.8	3.61	18.04	1.238	5.6	46.8		
17.8	35 · 5	6.49	32 - 44	1.427	. 10.1	73 · 7		
26.9	55.6	9.81	49.04	1.665	13.8	87.8		
32.25	6 8.9	11.76	58.8o	1.811	21.1	127.4		
34.25	72 - 4	12.48	62 .40	1 ·874	31.0	141.9		
41.5	85 5	15.13	75.65	2.023	50.0	148.0		
48.I	88 6	17.54	87 - 70	2.066	68.o ⋅	154.0		
70.9	95 · 7	25 .84	129.20	2 . 198				

One liter of 0.1 n Hg(NO₃)₂ solution dissolves 105 gms. HgCl₂ at 25°.

(Morse, 1902.)

This result, together with distribution experiments, show that complexes of HgCl₂ and Hg(NO₃)₂ are formed.

SOLUBILITY OF MERCURIC CHLORIDE IN AQUEOUS SALT SOLUTIONS AT 25°. (Herz and Paul, 1913.)

In Aque	eous Ba- Chloride.	In Aque cium C	ous Cal- hloride.		ous Lith- hloride.	In Aqueo nesium (ous Mag- Chloride.
Mols. p	er Liter.	Mols. p	er Liter.	Mols. p	er Liter.	Mols. p	er Liter.
BaCle.	HgCla.	CaCl ₂ .	HgCl ₂ .	LiCl.	HgCl	MgCla.	HgCla.
0	0.265	0.190	0.364	0.414	0.351	0.168	0.374
0.385	0.697	0.402	0.766	0.835	0.666	0.415	0.719
0.572	1.167	0.656	1.108	1.271	I.02I	0.570	1.131
0.776	1.620	0.964	1.811	1.738	1.678	0.997	1.864
1.336	2.645	1.429	2 . 645	2.265	2.214	I.320	2.569
3.030	5.348	1.723	3.304	3.091	2.896	1.728	3.206

In Aqueous Potas- sium Chloride.					ous Strontium loride.	
Mols. p	er Liter.	Mols. p	er Liter.	Mols. pe	r Liter.	
KCl.	HgCl ₂ .	NaCl.	HgCla.	SrCl ₂ .	HgCl ₂ .	
0	0.265	0.201	0.372	0.164	0.315	
0.1	0.381 (Sherrill, 1903.)	0.416	0.508	0.311	0.563	
0.174	0.355	0.671	0.748	0.519	0.829	
0.221	0.381	1.153	1.192	0.724	1.342	
0.25	O. 542 (Sherrill, 1903.)	1.941	2.022	1.046	1.776	
0.683	0.836	3.162	3 · 434	1.384	2.293	

SOLUBILITY OF MERCURIC CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AT 20° AND VICE VERSA.

(Tichomirow, 1907; see also results by Foote and Levy on next page.)

Gms. per 100	Gms. H ₂ O.	Solid Phase.	Gms. per ro	Gms. H ₂ O.	Solid Phase.
KCl.	HgCl ₂ .	Soud I hass.	KCl.	HgCl ₂ .	
0	7 · 39	HgCl ₂	20.35	29 F	IgCl ₂ .KCl
I.12	11.63	u	2 6.31	34.83	"
2.39	15.72	"	30.32	39.10	"
4.05	22.17	"	34.12	42.82	" +HgCl ₂ .2KCl
4.84	25.16	" $+2$ HgCl ₂ .KCl	34.18	39.34	HgCl ₂ .2KCl
5.60	25.13	2 HgCl ₂ .KCl	34 - 34	35.16	"
6.71	25.66	"	35.54	30.63	"
7 · 39	26.41	" +HgCl ₂ .KCl	37.72	24.30	"
7.46	24.70	HgCl₂.KCl	41.33	19.33	" +KCl
8.95	19.93	. "	39.66	15.76	KCl
15	22.87	66	37.87	10.28	"
17.57	26.12	66	35.32	2.1	«

100 gms. 1 n aq. NaCl solution dissolve 25.08 gms. HgCl₂ at 25°.
(Osaka, 1903-08.) Data for the solubility of mercuric chloride in aqueous solutions of glycerol, sucrose, tartaric and citric acids at 25° are given by Moles and Marquina, 1914.

Data for equilibrium in the system HgCl₂ + KOH + H₂O at 25° are given by Herz, 1910.

Similar data for mercurous chloride + KOH + H₂O at 25° are given by Herz, 1911.

Solubility of Mixtures of Sodium and Mercuric Chloride in Water at 25°.

(Foote and Levy - Am. Ch. J. 35, 239, '06.)

60
igO
•
GO No CI
6.01% NaCl 0.85% HgO
•

SOLUBILITY OF MIXTURES OF POTASSIUM AND MERCURIC CHLORIDES IN WATER AT 25°.

(Foote and Levy.)

of Solution. oo Grams tion.			sition.	Solid Phase.
HgCl ₂ .	KCl.	HgCl ₂ .	H ₂ O.	
none	100	none	••• (KCI
15.04			···)	
15.02	• • •	26.15	}	KCl and
15.02	• • •	52.01		2KCl.HgCl ₈ .H ₂ O
14.92		61.04	<i>j</i>	
18.91	34.61	61.66	3.73	2KCl.HgCl2.H2O
21.39	34.77	62.02	3.21	Calc. Composition 34.05% KCl, 61.84% HgCl
23.88	34.80	61 .84	3 · 35)	4.11% H ₂ O
27.62	• • •	65.24	}	2KCl.HgCl ₂ H ₂ O and
		73.98)	KCl.ĤgCl ₃ .Ĥ ₃ O
25.34	21.89	75.10	3.01	
18.95	21.02	73 . 36	5.62	KCl.HgCl ₂ .H ₂ O
	20.76	73.06	6.18	Calc. Composition 20.52% K.Cl., 74.53% HgCl ₂
22.81	20.75	74 · 54	4.71	4.95% H ₂ O
24.32	20.54	73 - 99	5 · 47	}
25.13		76.46	• • • }	KCl.HgCl2.H2O and
		80.60		KCl.aHgCl _{2.2} H ₂ O
	12.09	83 . 20	4.71	KCl.aHgCla.aH ₃ O Calc. Composition
24.73	11.87	83.18	4.95	11.43% KCl, 83.05% HgCls.5.52% HgO
24.75		84.46	•••]	1
25.17		93.68	• • •	KCl.2HgCl ₂ .2H ₂ O and HgCl ₈
24.82		98.50	• • • •	J
6.90	none	100.00	none	HgCl ₈
	or Grams tion. HgCl ₃ . none 15.04 15.02 15.02 14.92 14.92 18.91 21.39 23.88 27.62 27.38 25.34 18.95 19.56 22.81 24.32 25.13 24.73 24.75 24.75 24.82	of Grams HgCl ₂ . KCl. none 100 15.04 15.02 15.02 14.92 18.91 34.61 21.39 34.77 23.88 34.80 27.62 27.38 25.34 21.89 18.95 21.02 19.56 20.76 22.81 20.75 24.32 20.54 25.13 25.16 25.11 12.09 24.73 11.87 24.75 24.82	of Grams of Undissolved Residue HgCl ₂ . KCl. HgCl ₂ . none 100 none 15.04 3.63 15.02 26.15 15.02 52.01 14.92 61.04 18.91 34.61 61.66 21.39 34.77 62.02 23.88 34.80 61.84 27.62 65.24 27.38 73.98 25.34 21.89 75.10 18.95 21.02 73.36 19.56 20.76 73.06 22.81 20.75 74.54 24.32 20.54 73.99 25.13 76.46 25.16 80.60 25.11 12.09 83.20 24.73 11.87 83.18 24.75 84.46 25.17 93.68 24.82 <td< td=""><td>coordination. of Undissolved Residue HgCl3. KCl. HgCl3. H₂O. none 100 none 15.04 3.63 15.02 26.15 15.02 52.01 14.92 61.04 18.91 34.61 61.66 3.73 21.39 34.77 62.02 3.21 23.88 34.80 61.84 3.35 27.62 65.24 27.38 73.98 25.34 21.89 75.10 3.01 18.95 21.02 73.36 5.62 19.56 20.76 73.06 6.18 22.81 20.75 74.54 4.71 24.32 20.54 73.99 5.47 25.13 76.46 25.11 12.09 83.20 4.71 </td></td<>	coordination. of Undissolved Residue HgCl3. KCl. HgCl3. H ₂ O. none 100 none 15.04 3.63 15.02 26.15 15.02 52.01 14.92 61.04 18.91 34.61 61.66 3.73 21.39 34.77 62.02 3.21 23.88 34.80 61.84 3.35 27.62 65.24 27.38 73.98 25.34 21.89 75.10 3.01 18.95 21.02 73.36 5.62 19.56 20.76 73.06 6.18 22.81 20.75 74.54 4.71 24.32 20.54 73.99 5.47 25.13 76.46 25.11 12.09 83.20 4.71

SOLUBILITY OF MIXTURES OF MERCURIC AND RUBIDIUM CHLORIDES IN WATER AT 25°. (Foote and Levy, 1906.)

Composition of Solution. Gms. per 100 Gms. Solution.		Perce Ui	ntage Composi ndissolved Resid	Solid Phase.	
RbCl.	HgCl	RbCl.	HgCl ₂ .	Н,О.	
48.57	none	100	none	none	RbC1
46.76	9.18	88.04	II.24	0.72	
47 · 54	9.49	60.33	37.51	2.16	RbCl and aRbCl.HgCl2.HgO
47 - 55	9.39	56.59	40.75	2.66	
47 · 3	9 · 47	46.73	49.38	3.88	, , , , , , , , , ,
47.65	10.35	46.50	50.92	2.58	2RbCl.HgCl ₂ .H ₂ O Calc. Com- position 45.55% RbCl, 51.05%
35.16	19.58	45.98	50.80	3.22	HgCl ₃ 3.4% H ₂ O
34.77	19.94	43.07	52 - 44	4.49	2RbCl.HgCl ₂ .H ₂ O and 3RbCl.
34.76	20.10	41.10	55.36	3.54	2HgCl ₀ .2H ₀ O
30.27	20.17	39.07	57 · 34	3.59	3RbCl.2HgCl ₂ .2H ₂ O Calc. Composition
29.20	20.55	39.10	57 · 4 7	3.43	38.55% RbCl, 57.62% HgCl _a .
27.38	20.63	38.67	57 - 40	3.93	3.82% H ₂ O
26.83	20.87	38.48	57.36	4.16	3RbCl.2HgCl ₂ .2H ₂ O and
27.09	20.97	31.40	64.35	4.25	RbCl.HgCl ₂ .H ₂ O
26.15	20.58	30.34	65.48	4.18	RbCl.HgCl ₂ .H ₂ O
23.81	18.71	30.87	65.10	4.03	Calc. Composition
18.10	14.25	29.87	65.28	4.85	29-49% RbCl, 66.xx% HgCla. 4-40% H ₄ O
10.87	10.42	29.33	66.15	4.52	· · · · · -
10.68	10.56	28.59	67.99	3.42	RbCl.HgCl ₂ .H ₂ O and 3RbCl
10.50	10.05	26.22	72.20	1.58	4HgCl _s .H _s O
10.06	9.86	25.28	73.38	0.84	3RbCl.4HgCls.HgO
8.48	8,71	25.30	73 · 15	1.55	Calc. Composition
8.46	8.80	25.44	73.67	0.89	24.76% RbCl, 74.01% HgCla
5.68	8.70	25.09	73.46	I.45	1.23% H ₂ O
5.10	8.33	24.92	73 · 93	1.15	
3.43	8.25	22.79	75 · 72		3RbCl.4HgCl ₂ .H ₂ O and RbCl
3.38	8	12.68	86.74	0.58	5HgCl _e
2.98	7.71	8.40	91.24	•••	RbCl.5HgCl ₂
1.89	7.64	8.38	91.78	• • •	Calc. Composition
1.50	7 · 55	8.30	91.81	• • •	8.20% RbCl, 91.8% HgCl,
1.10	7.2I	8.07	91.58	•••]	
0.79	7.16	6.91	93.15	•••	RbCl.5HgCl ₂ and HgCl ₂
0.84	7.42	2.27	97.09	•••)	W-C1
none	6.90	none	100	• • •	HgCl ₂

SOLUBILITY OF MERCURIC CHLORIDE IN ACETIC ACID. (Etard, 1894.)

t.;	Gms. HgCl _s per 100 Gms. Solution.	. t*.	Gms. HgCl ₂ per 100 Gms. Solution.	ť.	Gms. HgCle per 100 Gms. Solution.
20	2.5	70	8.5	110	13.6
30	3.5	80	9.7	120	1Ğ.5
40	4.7	90	. II	130	20.7
50	6	100	12.4	140	25.2
60	7.2			160	34.8

SOLUBILITY OF MERCUROUS CHLORIDE (CALOMEL) IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE, BARIUM CHLORIDE, CALCIUM CHLORIDE AND OF HYDROCHLORIC ACID AT 25°.

(Richards and Archibald, 1902.).

Solid phase in each case. Calomel + about 0.1 gm. of mercury.

In Aqueous NaCl			In Aqueous BaCl ₂ .		
Sp. Gr. of	Gms. per Liter.		Sp. Gr. of	Gms. per Liter.	
Sp. Gr. of Solutions.	NaCl.	HgCl.	Sp. Gr. of Solutions.	BaCla.	HgCl.
	5.85	0.0041	1.088	104.15	0.044
1.040	58.50	0.041	1.134	156.22	0.088
1.078	119	0.129	1.174	208.30	0.107
1.093	148.25	0.194	1.263	312.54	0.231
T T42	222 2	0.280	-	• •	

In Aqueous CaCla.

292.5

1.188

In Aqueous HCl.

Sp. Gr. of Solutions.	Gms. per Liter.		Sp. Gr. of Solutions.	Gms. pe	Gms. per Liter.	
	CaCl ₂ .	HgCl.	Solutions.	HCl.	HgCl.	
• • •	39.96	0.022	• • •	31.69	0.034	
• • •	` 55∙5	0.033		36.46	0.048	
1.064	III	0.081	1.042	95 - 43	0.207	
1.105	138.75	0.118	1.069	158.4	0.399	
1.151	195.36	0.231	1.091	209.2	0.548	
1.205	257.52	0.322	1.114	267.3	0.654	
1.243	324.67	0.430	1.119	278.7	0.675	
1.315	432.9	0.518	1.132	317.3	0.670	
1.358	499 · 5	0.510	1.153	364.6	0.673	

100 gms. bromoform, CHBrs, dissolve 0.055 gm. HgCl at 18°-20°. (Sulc., 1900.)

SOLUBILITY OF MERCURIC CHLORIDE IN AQUEOUS ETHYL ALCOHOL AT 25°. (Abe, 1912.)

Gms. per 100	Gms. Sat. Sol.	Solid Phase.	Gras. per 100	Gms. Sat. Sol.	Solid Phase.
C.H.OH.	HgCl ₂ .	Sond Phase.	C.H.OH.	HgCl ₂ .	Sond Phase.
0	6.80	$HgCl_2$	45.84	15.36	$HgCl_{\bullet}$
5.08	6.65	"	49.86	18.18	"
14.49	6.41	"	53.61	21.40	"
21	6.55	"	57.26	24.51	"
26.25	7.31	. "	60.55	27.67	"
31.53	8.51	"	63.95	29.86	"
36.85	10.32	"	67.39	32.40	66
41.36	12.64	"			

SOLUBILITY OF MERCURIC CHLORIDE IN AQ. ETHYL ALCOHOL AT 25°. (Herz and Anders, 1907.)

Wt. % C ₂ H ₂ OH in Solvent.	dag of Solvent.	dag of Sat. Sol.	Gms. HgCl ₂ 'per 100 cc. Sat. Sol.
0	0.9971	1.0565	7.22
20.18	0.9665	1.0214	6.76
40.69	0.9302	1.0180	10.69
70.01	0.8632	1.0616	23.60
100	0.7856	1.1067	36.86

SOLUBILITY OF MERCURIC CHLORIDE IN AQUEOUS METHYL ALCOHOL AT 25°.
(Here and Anders, 1907.)

Wt. % CH ₂ OH in Solvent.	dag of Solvent.	dag of Sat. Sol.	Gms. HgCl ₂ per 100 cc. Sat. Sol.
10.60	0.9792	1.0441	7.90
30.77	0.9481	1.0420	11.31
37.21	0.9369	1.0507	13.43
47.06	0.9186	1.0809	19.71
64	0.8800	1.2015	38.44
78.05	0.8489	1.3314	57.17
100	0.7879	1.2160	48.62

100 cc. 90% ethyl alcohol dissolve 27.5 gms. HgCl₂ at 15.5°, d₁₅ sat. sol. = 1.065. (Greenish and Smith, 1903.)
100 gms. 99.2% ethyl alcohol dissolve 33.4 gms. HgCl₂ at 25°. (Osaka, 1903-8.)
" abs. " " " 49.5 " " . . (de Bruyn, 1892.)
" methyl " " 52.9 " " at 19.5° and 66.9 gms. at 25°. (de Bruyn, 1892.)
" " at the crit. temp. (Centnersswer, 1910.)

Solubility of Mercuric Chloride in Methyl, Ethyl Propyl, **Butyl, Iso Butyl and Allyl Alcohols.

(Etard - Ann. chim. phys. [7] 2, 563, '94.)

Note. — For the solubility in Me, Et, and propyl alcohols at room temperature, see Rohland — Z. anorg. Ch. 18, 328, '98; at 8.5°, 20° and 38.2°, see Timofejew — Compt. rend. 112, 1224, '91; in Me and Et alcohols at 25°, see de Bruyn — Z. physik. Ch. 10, 783, '92. The determinations of these investigators agree well with those of Etard, which are given below.

s • .	Grams HgCle per 100 Grams Saturated Solution in:									
• •	сн₄он.	C₃H₅OH.	C₀H ₇ OH.	CH ₀ (CH ₂) ₀ OH.	(CH ₆) ₂ CHCH ₂ OH.	CH,CH.CHOH				
-30	• • •	14.5	15.0	• • •	• • •	• • •				
-20		20 · I	15.7	13.5	• • •	21.0				
-10	15.2	26.5	16.5	13.7	• • •	25.5				
0	20 · I	29.8	17.4	14.0	5.2	3 0.0				
+10	26.3	3 0.6	18.0	14.3	6.0	37 · 5				
20	34.0	32.0	18.8	14.6	6.8	46.5				
25	40.0	32.5	19.5	15.5	7.2	•••				
30	44 · 4	33 · 7	20.0	16.5	7 · 5	• • •				
40	58.6	35.6	23.0	19.6	9.7	•••				
60	62.5	41.2	29.8	26.5	17.0	•••				
80	66.0	47 · 5	36.8	33.0	24.9	• • •				
100	70 · I	54.3	43.8	•••	31.7	•••				
120	73.5	6r.5	50. 6	• • •	39.2	• • •				
150	78.5	,•••	• • •	• • •	•••	•••				

SOLUBILITY OF MERCURIC CHLORIDE IN AQ. ETHYL ACETATE AT 25°. (Hers and Anders, 1907.)

Wt. % CH ₂ COOC ₂ H ₄ in Solvent.	dag of Solvent.	dag of Sat. Sol.	Gms. HgCl ₁ per 100 cc. Sat. Sol.
0	0.9971	1.0565	7.22
4·39*	•••	1.0581	7.38
96.76†	• • •	1.2371	41.55
100‡	0.884	1.1126	26.42

[?] Almost sat, with ethyl acetate. † Ethyl acetate almost sat, with H₂O. ‡ (b. pt. = 75.77°.)

SOLUBILITY OF MERCURIC CHLORIDE IN WATER-ETHER MIXTURES AT 25°.
(Abe, 1912.)

Gms.	Solid Phase.		
HgCla.	Ether.	H ₂ O.	
6.92 5.2	87.86 1.2	5.22* 93.6	HgCl ₂
4.3	5.2	90.5	"
2.8	5.4	91.8	"
1.5	5 · 4 * (Solvent, e	93 . I ther sat. with H	

SOLUBILITY OF MERCURIC CHLORIDE IN MIXTURES OF ETHER AND ETHYL ALCOHOL AT 25°. (Abe, 1912.)

Gms. per 100	Gms. Sat. Sol.	Gms. per 100	Gms. per 100 Gms. Sat. Sol.		
HgCl ₂ .	C ₂ H ₄ OH.	HgCl2.	C₃H₄OH.		
32.43	67 . 57	36.29	27.16		
35.50	58.59	34.08	22.48		
37 - 39	51.02	28.55	15.20		
37.96	44 · 79	20.67	8.97		
38.24	38.69	5.49	0		
37 - 75	32.84				

SOLUBILITY OF MERCURIC CHLORIDE IN MIXTURES OF ALCOHOLS AT 25°.
(Herz and Kuhn, 1908.)

In Mixtures of Ethyl and Methyl Alcohols.

In Mixtures of Ethyl and Propyl Alcohols.

In Mixtures of Methyl and Propyl Alcohols.

% CH ₄ OH in Solvent.	dag of Sat. Sol.	Gms. HgCl ₂ per 100 cc. Sat. Sol.	%C ₂ H ₇ OH in Solvent.	d _{as} of Sat. Sol.	Gms. HgCl ₂ per 100 cc. Sat. Sol.	% C ₂ H ₇ OH in Solvent.	dga of Sat. Sol.	Gms. HgCla per 100 cc. Sat. Sol.
	1.107	36.86	0	1.1070	36.86	0		
4.37	1.130	39.43	8. r	1.0988	36.67	II.II	1.2278	50.34
10.40	1.157	42.61	17.85	1.0857	34.06	23.80	1.2848	57.14
41.02	1.294	58.37	56.6	1.0272	27.11	65.20	1.1568	42.28
80.69	1.321	61.67	88.6	0.9854	21.66	91.80	1.0090	25.09
84.77	1.288	57.82	91.2	0.9824	21.60	93 · 75	1.0029	23.23
91.25	1.254	53.85	95.2	0.9772	20.87	96.6	0.9851	21.52
100	1.216·	48.62	100	0.9720	20.03	100	0.9720	20.03

SOLUBILITY OF MERCURIC CHLORIDE IN MIXTURES OF ETHYL ALCOHOL AND BENZENE AND OF ETHYL ALCOHOL AND CHLOROFORM AT DIFFERENT TEMPERATURES.

(Dukelski, 1907.)

one mol. C ₂ H ₅ OH two		two mo	Mixture of ls. C ₂ H ₅ OH mol. C ₆ H ₆ .	In a Mixture of one mol. C ₂ H ₅ OH + one mol. CH ₂ Cl.		In a Mixture of two mols. C ₂ H ₅ OH + one mol. CHCl ₅ .	
ť.	Gms. HgCl ₂ per 100 Gms. Sat. Sol.	e.	Gms. HgCl ₂ per 100 Gms. Sat. Sol.	ť.	Gms. HgCl ₂ per 100 Gms. Sat. Sol.	t°. 1	Gms. HgCl ₂ per 100 Gms. Sat. Sol.
-2.5	15.20	-5.2	19.45	-20.5	3.82	-20.5	6.60
0	15.40	0	20.13	— I2	4.43	0	7.69
6	16.38	9.1	21.65	0	4.89	8	8.96
20.5	18.40	20.9	23 . 57	8	5.37	23	10.66
20.65	18.50	24.4	24.19	23	7.12	38.5	12.50
24.5	19.33	36.5	26.53	38.5	8.51	44.2	14.40
34.5	21.34	53 · 7	31.27	44.2	9.51		
54 · 4	24 . 84	74	38.74	45.6	9.98		
54 · 5	24.42						

Some of the determinations were made by the direct method of saturating the solution at a given temperature and determining the dissolved material by evaporating and weighing. Others were made by the synthetic method of Alexejew.

SOLUBILITY OF MERCURIC CHLORIDE IN MIXTURES OF METHYL ALCOHOL AND CHLOROFORM, METHYL ALCOHOL AND CARBON] TETRACHLORIDE, AND METHYL ALCOHOL AND DICHLORETHANE AT DIFFERENT TEMPERATURES.

(Dukelaki, 1907.)

In a M	lixture of	in a N	lixture of	In a N	lixture of	in a Mi	ixture of
one mo	i. CH₃OH	two mo	ls. CH ₂ OH	two mo	ls. CH ₂ OH	two mol	. CH.OH
+ one n	nol. CHCla.	+ one n	nol. CHCls.	+ one	mol. CCl ₄ .	+ one mo	ol. C2H4Cl3.
t*.	Gms. HgCl ₂ per 100 Gms. Sat. Sol.	ť.	Gms. HgCl ₂ per 100 Gms. Sat. Sol.	ť.	Gms. HgCl ₂ per 100 Gms. Sat. Sol.	t*.	Gms. HgCl _g per 100 Gms. Sat. Sol.
-12	I.73	—12	3 · 33	0	5.20	0	13.33
0	3.51	0	6.73	7 · 7	6.69	12.5	21.30
8	5.63	8	8.21	24.9	14.06	20.8	29.23
23	10.15	23	16.56	30.6	19.40	25.3	34.78
24.9	10.71	24.9	18.45	35.5	20.50	30.2	36.87
30.6	11.40	30.6	19.70	36. I	21.80	37 - 4	37 - 95
38.5	12.02	38.5	20.83	48.5	21.90	45.9	39.36

SOLUBILITY OF MERCURIC CHLORIDE IN MIXTURES OF METHYL ALCOHOL AND BENZENE AT DIFFERENT TEMPERATURES.

(Timofeiew, 1894.)

	xture of one mol. + one mol. C ₆ H ₆ .	In a Mixture of one mol. CH ₂ OH + two mols. C ₆ H ₆			
\$*.	Gms. HgCl ₂ per 100 Gms. Sat. Sol.	t*.	Gms. HgCl _e per xoo Gms. Sat. Sol.		
0	8	0	4.8		
21-25	23.9	21-25	17 . I		
30	2 7 · 3	30	18		
37	28.1	37	18.4		

SOLUBILITY OF MERCURIC CHLORIDE IN BENZENE, IN DICHLORETHANE AND IN ETHYLACETATE AT DIFFERENT TEMPERATURES. (Dukelski, 1907.)

In C₄H₄.		I	n C ₂ H ₄ Cl ₂ .	In CH2COOC2H4.		
t°.	Gms. HgCl ₂ per 100 Gms. Sat. Sol.	t*.	Gms. HgCl ₂ per 100 Gms. Sat. Sol.	ŧ*.	Gms. HgCl ₂ per 100 Gms. Sat. Sol.	
6.5	0.26	0	1.33	0	22.9	
18	0.53	12.5	1.55	6.5	22.7	
34 . I	0.64	2 5.3	1.73	26.1	22.8	
54 · I	I.02	33	2.05	38.5	. 23·5	
69	1.39	45.9	2.42	45.3	26.4	

SOLUBILITY OF MERCURIC CHLORIDE IN MIXTURES OF BENZENE AND ETHYL-ACETATE, CHLOROFORM AND ETHYL ACETATE AND OF CARBON TETRACHLORIDE AND ETHYL ACETATE.

(Dukelski, 1907.)

In a Mixture of one mol. C ₄ H ₆ + one mol. CH ₂ COOC ₂ H ₆ . Gms. HgCl ₂ per roo Gms. Sat. Sol.		CHCl	re of one mol. - one mol. OOC ₂ H ₅ .	In a Mixture of one mole CCl ₄ + two moles. CH ₂ COOC ₂ H ₄ .	
		t*. Gms	. HgCl ₂ per Sms. Sat. Sol.	· ••.	Gms. HgCl ₂ per 100 Gms. Sat. Sol.
0	9.62	0	3 · 34	0	9.24
6.5	9.62	2 6.1	4.07	10.3	9.05
25.7	9.78	36. I	4.78	25.7	9.32
27.6	9.98	46	5.38	27.6	9.50
35.5	10.81	48.5	5.10	38.5	9.89
45.3	13.69		•	45.3	11.70

SOLUBILITY OF MERCURIC CHLORIDE IN ETHYL ACETATE AND IN ACETONE.

(Etard, 1894; von Lasscynski, 1894; Krug and McElroy, 1892; Linebarger, 1894; Aten, 1905-06.)

NOTE. — The results obtained by the above-named investigators were calculated to a common basis and plotted on cross-section paper. The variations which were noted could not be satisfactorily harmonized, consequently all the results are included in the following table:

SOLUBILITY.

In Ethyl Acetate.

In Acetone.

Grams HgCl ₂ per 100 Grams Solution.					Gms. HgCl ₂ per roo Gms. Solution.			
•	Laszcynski.	Aten.	Linebarger.	Etard.	K and McE.	Laszcynski	. Aten.	Etard.
-10		23.0		40			44 ·o *	57.0
0	22.0	23.2	32.0	40		49.7	43 .0 *	61.7
+10	22.2	23.5	32.5	40		52.0	51.0 *-58.9	61.7
20	22.5	23 . 4	32.7	40		54	58.5 †	61.7
25	22.7	23.5	33.0	40	37 · 4	55.2	58.2. †	61.7
30	23.0		33 . 2	40	•••	• • • • • • • • • • • • • • • • • • • •	• • • •	61.7
40	23.5		33 · 5	40				61.7
50	24.0		33 · 5	41				61.7
60	24.7		• • •	42.5		• • •	• • •	61.7
80	26.0			45 . 2			• • •	61 · 7
IOO		• • •		48.0			•••	
120				50.8		• • •	• • •	• • •
150	• • • •			55.0				•••
		Solid ph	ase HgCl ₂ (Cl	H _a) ₂ CO.		(t) Solid	Phase HgClg.	

100 gms. absolute acetone dissolve 143 gms. HgCl₂ at 18°. (Naumann, 1904.)
100 gms. ethyl acetate ($d_{14} = 0.8995$) dissolve 48.8 gms. HgCl₂ at 18°. (Naumann, 1910.)
100 gms. methyl acetate ($d_{14} = 0.935$) dissolve 42.6 gms. HgCl₂ at 18°. (Naumann, 1909.)

SOLUBILITY OF MERCURIC CHLORIDE IN SEVERAL SOLVENTS. (Arctowski, 1894; von Laszcynski, 1894; Sulc, 1900.)

In Carbon Bisul- phide (A.).			enzene n L.).	In Several Solvents at 18-20° (S.).		
ŧ°.	Gms. HgCl ₂ per 100 Gms. Solution.	t*. .	Gms. HgCl ₂ per 100 Gms. Solution.	Solvent.	Gms. HgCl ₂ per 100 Gms. Solvent.	
-10	0.010	15	0.537 0.616	CHBr, CHCl,	o.486 o.106	
0 10	o.018 o.026	41 55	0.843	CCl.	0.100	
15	0.032	84	1.769	C ₂ H ₅ Br	2.010	
20	0.042			C ₂ H ₄ Br ₃	1.530	
25	0.053					
30	o.o6 3					

SOLUBILITY OF MERCURIC CHLORIDE IN MIXTURES OF ACETONE AND BENZENE, ETHER AND CHLOROFORM AND OF ETHYL ACETATE AND BENZENE AT 25°.

(Marden and Dover, 1917.)

	tures of I ₄ + C ₆ H ₆ .		tures of In Mixts + CHCl _s . CH ₂ COOC ₂ H		
Gms. CH ₂ COCH ₃ per 100 Gms. Mixture.	Gms. HgCl ₂ per 100 Gms. Mixed Solvent.	Gms. CHCl ₂ per 100 Gms. Mixture.	Gms. HgCl ₂ per 100 Gms. Mixed Solvent.	Gms. CH ₈ COOC ₈ H ₈ per 100 Gms. Mixture.	Gms. HgCl _s per 100 Gms. Mixed Solvent.
100	140	0	6.95	100	49.3
90	117	10	5.85	· 90	26
8o	96.5	20	4.73	8o	22.I
70 ,	77	30	3.70	70	18. I
60	6o	40	2.80	60	14.2
50	45	50	2.10	50	11
40	31.4	60	1.48	40	8 ·
30	20	70	0.95	30	5.4
20	10.7	8o	0.657	20	3.I
10	3.9	90	0.328	10	I.6
0	0.66	100	0.128	0	0.66

SOLUBILITY OF MERCURIC CHLORIDE IN BENZENE. (Average curve from results of Linebarger, 1895; Sherrill, 1903; and Marden and Dover, 1917.)

t°.	Gms. HgCl ₂ per 100 Gms. C ₂ H ₄ .	t*.	Gms. HgCl ₂ per 100 Gms. C ₆ H ₆ .
0	0.20	25	0.64
10	0.39	30	0.71
20	o.56	40	0.84

SOLUBILITY OF MERCURIC CHLORIDE IN ABSOLUTE ETHYL ETHER. (Etard, 1894; Laszcynski, 1894; Köhler, 1879.)

ť°.	Gms. HgCl ₂ per 100 Gms. Solution.	t°.	Gms. HgCl ₂ per 100 Gms. Solution.	t°.	Gms. HgCle per
-20	6	60	6	· 90	7.5
0	6	70	6.4	100	8
20	6	80	7	110	8.5

SOLUBILITY OF MERCURIC CHLORIDE IN CHLORINATED HYDROCARBONS AT 25°. (Hoffmann, Kirmreuther and Thal, 1910.)

Solvent.	Formula.	Gms. HgCl ₂ per 100 Gms. Solvent.	Solvent.	Formula.	Gms. HgCl ₂ per 100 Gms. Solvent.
Ethylene Chloride Tetrachlorethane Chloroform Pentachlorethane	C ₂ H ₂ Cl ₄ CHCl ₅		Dichlorethylene Trichlorethylene Tetrachlorethylene Carbontetrachloride	CHCl.CHCl CHCl.CCl ₂ CCl ₂ .CCl ₃ CCl ₄	0.114 0.0274 0.0072 trace
~			** 6*		_

100 gms. 95% formic acid dissolve 2.1 gm. HgCl₂ at 19°. (Aschan, 1913.)
100 gms. 95% formic acid dissolve 0.02 gm. Hg2l₂ at 16.5°. "
100 cc. anhydrous hydrazine dissolve 1 gm. HgCl₂ with decomp. at room temp. (Welsh and Broderson, 1915.)
100 cc. anhydrous hydrazine dissolve 1 gm. Hg₂Cl₂ with decomp. at room temp. (Welsh and Broderson, 1915.)
100 gms. glycerol dissolve 80 gms. HgCl₂ at 25°. (Moles and Marquina, 1914.)
100 gms. glycerol dissolve 8 gms. HgCl₂ ? Hg₂Cl₂ at 15-16°. (Ossendowski, 1907.)
100 gms. anhydrous lanolin (m. pt. about 46°) dissolve 1.55 gms. HgCl₂ at 45°.

SOLUBILITY OF MERCURIC CHLORIDE IN PYRIDINE. (McBride, 1910.)

The determinations at the lower temperatures were made by stirring an excess of HgCl_s with pyridine and analyzing the sat. solution. Those at the higher temperatures were made by the synthetic method.

	Gms.				Gms.			
t°.	HgCl ₂ per 100 Gms.			t°.	HgCl ₂ per 100 Gms.		Solid Phas	: .
	Sat. Sol.				Sat. Sol.			
-32.6	2.76	HgCl ₂ .2C ₄ H ₄ N		94 - 7	60.72	HgC	La.2CaHaN+3H	gCl ₂ .2C ₆ H ₆ N
-21.75	7.86	4		74 - 7	48.38	HgC	la.CaHaN(unstal	ole)
0.02	13.14	44		83.5	50.53	44	(stable)
12.58	17.34	"		90.4	53.41	44	44	
18.78	19.78	u		97	56.45	44	44	
27.23	22.65	44		100.5	57.84	"	44	
31.05	24.46	M		104.2	60.72	"	46	
40.90	20.20	ď		107	63.06	46	(unstal	ole)
50. ÍO		u		106.2		66	+3HgCl _{2.2} C ₆ H	N
ŏo.o₃	40.36	**		95.2	60.77		3HgCla.2CaHaN	(unstable)
70.15	46.44	44		106.4	61.93		"	(stable)
76	• • •	" +HgCla.CaHaN		109.8	62.58		"	44
80.02	51.52	HgCla.2CaHaN (unst	able)	114	63.18		44	"
89	56.45	"	"	124.2	65		4	4
94. I	60.09	"	46	145.5	69.66		"	"

Data for this system are also given by Staronka (1910).

Data for the solubility of HgCl₂.2C₄H₄N and of Hg(NO₂)₂.2C₄H₄N.2H₂O in aqueous solution of pyridine at 18°.1 are given by Strömholm (1908).

Data for the solubility of diamine mercuric chloride, (NH₃)₂HgCl₂ – NH₂HgCl₃ in aqueous solutions of ammonia at 17.5° are given by Strömholm (1908).

SOLUBILITY OF MERCURIC CHLORIDE AND OF DOUBLE MERCURIC AND TETRA METHYL AMINE CHLORIDE (CH₃)₄NC1.6HgCl₂ in Aq. Ether AT 17°. (Strömholm – J. pr. Ch. [2] 66, 443, '02; Z. physik. Chem. 44, 64, '03.)

Molecular Concentration per Liter.			Gram	s per Liter of S	olution.
H ₂ O.	HgCl ₂ (*).	HgCl ₂ (†).	H₂O.	HgCl ₂ (*).	HgCl ₂ (†)
0.0	0.1515	0.0342	0	41.16	9.26
0.0656	0.1795	0.0428	1.18	48.64	11.60
0.1311	0.2069	0.0516	2.36	56.08	14.00
0.1956	0.2339	o.o6o3	3.52	63.38	16.34
0.2611	0.2489	0.0690	4.70	70.16	18.70
0.3267	0.2849	0.0779	5.88	77 - 20	21.10
0.3922	0.3100	o.o866	7.06	84.02	23.48

(*) Results in this column are for solutions in contact with the Solid Phase HgCl₂. (†) Results in this column are for solutions in contact with the Solid Phase (CH₂)₄NCl.6HgCl₂.

SOLUBILITY OF MERCURIC CHLORIDE AND OF DOUBLE MERCURIC AND TETRA METHYL AMINE CHLORIDE IN ALCOHOL-ETHER SOLUTIONS AT 17°. (Strömholm.)

Grams C ₂ H ₆ OH per Liter.	Grams HgCl ₂ (*) per Liter.	Grams HgCl2 (†) per Liter.
0.0	41.16	9.26
4 · 58	50.00	11.87
9.16	58.76	14.38
13.74	66.96	16.90

SOLUBILITY OF DOUBLE MERCURIC CHLORIDES IN AQUEOUS AND PURE ETHER AT 16.6°. (Strömholm, 1902, 1903.)

Mol. Conc. of HgCl2 per Liter of: Gms. HgCl2 per Liter of:								
Pure Ether.	Aq. Ether (1).	Aq. Ether (2).	Aq. Ether (3).	Pure Ether.	Aq. Ether (4).	Aq. Ether (5).	Aq. Ether (6).	Solid Phase.
0.1515	0.2387	0.2647	0.3196	41.04	64.69	71.71	86.58	HgCl ₂
0.0673	0.1157	0.1293	0.1617	18.23	31.41	35.05	43.79	(CH _a .CH _a C _a H _a) _a SCI.6H _g Cl _a
0.0404	0.0720	0.0835	0.1034	10.95	19.51	22.61	28.01	(CH4.C4H4CH4C4H4) SCI.6HgCla
0.0342		0.0706		9.26				(CH ₂),NCl.6HgCl ₂
0.0264		0.0568						(C ₂ H ₄) ₂ SCl.6H ₂ Cl ₂
0.0209	0.0400	0.0460	0.0594	5.66	10.83	12.48	16.10	(CH _a C _a H _a) ₂ SCl.6HgCl _a
0.0063		0.0144		1.70		3.90		(CH ₂) ₂ .H ₂ NCl. ₂ HgCl ₂
(1) containing 0.21055 mol. H ₂ O per liter. (2) 0.2756 mol. H ₂ O per liter. (3) 0.421 mol. H ₂ O per liter. (4) containing 3.79 gms. H ₂ O per liter. (5) 4.97 gms. H ₂ O per liter. (6) 7.59 gms. H ₂ O per liter.								

SOLUBILITY OF MIXTURES OF MERCURIC AND POTASSIUM CHLORIDES AT 25° IN:

Absolute Alcohol. (Foote, 1910.)				Acetone. (Foote, 1910.)				
	100 Gms. olution.	Solid Phase.		100 Gms. olution.	Solid Phase.			
KCl.	HgCl ₉ .	•	KCl.	HgCl2.	•			
0.21	33.69	HgCl ₂ +5KCl.6HgCl ₂ .2C ₂ H ₄ OH	I.27	6r.87	HgCl ₂ +KCl.5HgCl ₂ .(CH ₂) ₂ CO			
0.28	33.80	" "	1.39	60.68	KCl.5HgCl ₂ .(CH ₂) ₂ CO			
0.22	24.84	5KCl.6HgCl ₂ .2C ₂ H ₄ OH	2.58	55.85	44			
0.28	6.21	и	2.78	54.41	" +5.6.a ·			
0.25	1.65	5KCl.6HgClg.2C2H5OH+KCl	2.93	48.13	5.6.2			
0.17	I.57	" "	2.52	18.04	44			
0.38	1.03	u u	3 · 34	13.26	"			
	-		2.92	II	" +KCI			
5.6.2 = 5KCl.6HgCl _{2.2} (CH ₃) ₂ CO.								

100 gms. of sat. abs. alcohol solution of HgCl₂ + NaCl contain 46.85 gms.

(Foote, 1910.) HgCl₂ and 3.01 gms. NaCl at 25°.

SOLUBILITY OF MERCURIC CHLORIDE AND SODIUM CHLORIDE IN ETHYL ACETATE AT 40°.

(Linebarger - Am. Ch. J. 16, 214, '94.)

Mols. per 100 Mols. Acetate.			Gms. per 100 Gms. Acetate.		Gms. per 100 Gms. Solution.		
NaCl.	HgCl ₃ .	NaCl.	HgCl ₂ .	NaCl.	HgCla.	Phase.	
0.8	12.9	v . 53	39 · 7	0.53	28.4	HgCl ₂	
2.3	12.4	1.53	38.15	1.51	27.61	••	
4.3	16.4	2.85	50.44	2.78	33 · 54	-	
9.1	22.85	6.05	86.14	5.60	46.28	•	
18.5	34.9	12.29	107 -4	10.95	51 . 76	4	
20.0	40.0	13.29	123.0	11.73	55.18	HgCl ₂ + NaCl	

The double salt (HgCl₂)₂.NaCl is formed under proper conditions.

DISTRIBUTION OF MERCURIC CHLORIDE BETWEEN WATER AND BENZENE. (Linhart, 1915.)

	Results at 25	•	Results at 40°.			
Mols. HgCl, per Liter:		Conc. in H ₂ O	Mols. HgCl ₂	Conc. in H ₂ O		
CaHa Layer.	H ₂ O Layer.	Conc. in C ₆ H ₆	C ₄ H ₆ Layer.	H _r O Layer.	Conc. in C ₆ H ₆	
0.02100	0.2866	13.65	0.02647	0.34600	13.07	
0.01224	0.15777	12.91	0.015296	0.18470	12.08	
0.005244	0.064756	12.35	0.011774	0.138228	11.74	
0.000618	0.007382	11.95	0.008041	0.001050	11.44	
0.000310	0.003606	11.90	0.004140	0.04586	11.08	
0.000155	0.001845	11.90	0.000847	0.009153	10.81	

DISTRIBUTION OF MERCURIC CHLORIDE BETWEEN WATER AND ETHER. (Hantzsch and Sebalt, 1899.)

50 cc. ether + 50 cc. sat. aqueous HgCl₂ solution were shaken together at different temperatures and after equilibrium was established the HgCl₂ in each layer determined.

40	Mois. rig	Ci ₂ per Liter:	٠,
t°.	H ₂ O Layer (c').	(C ₂ H ₄) ₂ O Layer (c ²).	2 .
0	o.∞56	0.01407	0.391
10	0.0066	0.01415	0.467
17.5	0.0090	0.02150	0.419
25	0.0095	0.02076	0.429

Determinations by Skinner (1892) at room temp. using concentrations of HgCl₂ in the aqueous layer varying from 1.4 to 5.9 per cent, gave a distribution coefficient, $\frac{c_1}{c_2}$ = approximately 0.23.

DISTRIBUTION OF MERCURIC CHLORIDE BETWEEN AQUEOUS HCl AND ETHER AT 18°. (Mylius, 1911.)

When 1 gm. of Hg as $HgCl_2$ is dissolved in 100 cc. of H_2O or aqueous HCl and shaken with 100 cc. of ether, the percentage of the Hg which goes into the ethereal layer is as follows:

Percentage Conc. of Aq. HCl o (=H₂O) I 10 20 Per cent Hg in Ether Layer 69.4 13 0.4 0.2

DISTRIBUTION OF MERCURIC CHLORIDE BETWEEN WATER AND TOLUENE AT 24°.
(Brown, 1898.)

Gms. HgC	2 per 100 cc.	Gms. HgCl2 per 100 cc.			
H _s O Layer.	C _s H ₆ CH ₃ Layer.	H ₂ O Layer.	C _o H _s CH _s Layer.		
0.442	0.0270	1.816	0.130		
0.732	0.0488	3.766	0.292		
0.780	0.0542	3.754	0.298		
1.192	0.0812	6.688*	0.528*		

* This solution saturated.

Results at Dif. Temperatures. (Hantzsch and Vagt, 1901.)

Results at 25°. (Morse, 1902; Drucker, 1912; Hantzsch and Vagt, 1901.)

ť°.	Mols. Hg	Cl ₂ per Liter:	<u>c1</u>	Mols. HgC	<u>9</u> 1.	
• .	H ₁ O Layer (c ₁).	CoH, CH, Layer (4).		H ₂ O Layer (c ₁).	C ₆ H ₅ CH ₂ Layer (c ₂).	4
0	0.0578	0.0047	12.35	0.18410	0.01590	11.6
10	0.0575	0.0050	11.60	0.09193	0.00807	11.4
20	0.0576	0.0050	11.40	0.04593	0.00410	II.I
30	0.0574	0.0051	II.20	0.02289	0.00211	10.8
50	0.0573	0.0052	11.25	0.01142	0.00108	10.5
				0.00573	0.00057	10

Data for the effect of $Hg(NO_3)_2$ upon the distribution are given by Morse (1902). Results for the effect of $ZnCl_2$ are given by Drucker (1912).

FREEZING-POINT DATA (Solubilities, see footnote, p. 1) ARE GIVEN FOR THE FOLLOWING MIXTURES:

Mercuric	Chloride	+ Mercuric Iodide	(Pados and	Tibaldi, 1903.)
44	**	+ Selenium	(Olivari, 19	oq.)
**	**	+ Sulfur	"	
44	44	+ Nitrobenzene	(Mascarelli,	1906.)
44	44	+ o m and p Nitrotoluene		1906, 1907, 1909.)
44	".	+ Urethan	("	1908, 1909.)
44	64	+ " + α Nitronaphthalene	<i>`</i> "	1906, 1907.)
46	44	+ " + p Nitrotoluene	<i>`</i> "	1908.)
44	44	+ α Nitronaphthalene	<i>`</i> "	1906, 1907.)
44	44	+ p Nitranisole	` "	1906.)

MERCURY CINNAMATE (ic) (C₄H₄CH.CHCOO)₂H₂.?H₂O.

100 gms. H₂O dissolve about 0.03 gm. mercuric cinnamate at 25°. (De Jong, 1906.) 100 gms. H2O dissolve about 0. 53 gm. Hg cinnamate at 100°. (Tarugi & Checchi, 1901.)

MERCURIC CYANIDE Hg(CN)2.

SOLUBILITY IN WATER.

t°.	Gms. Hg(C	N)2 per 100:	Authority.	
• .	Gms. H ₂ O.	cc. Sat. Sol.	Authority.	
- 0.45 Eutec.	about 11		(Guthrie, 1878.)	
13.5	9.3	• • •	(Timofeiew, 1894.)	
15	12.5	• • •	(Marsh and Struthers, 1905.)	
20	• • •	9.3	(Konowalow, 1898, 1899.)	
25	• • •	11.12	(Sherrill, 1903.)	
25	11.27	10.95(d ₁₄ =1.0813)	(Herz and Anders, 1907.)	
101.1	53.85	• • •	(Griffiths.)	

One liter 5.2% aqueous NH₃ solution dissolves 204.3 gms. Hg(CN)₂ at about 20°. (Konowalow, 1898.)

SOLUBILITY OF MERCURIC CYANIDE IN AQUEOUS POTASSIUM CYANIDE SOLU-TIONS AT 25°. (Sherrill, 1903.)

Mols p	er Liter.	Gms. per Liter.		
KCN.	Hg(CN)2.	KCN.	Hg(CN)2.	
0.0493	0.4855	3.21	122.6	
0.0985	0.5350	6.41	135.2	
0.1970	0.6270	12.83	158.4	

The regularity of the increase in solubility proves that the complex Hg(CN)₂. KCN is formed at the given concentrations.

Data are also given for the distribution of Hg(CN)₂ between aqueous solutions of KCN and ether at 25°.

SOLUBILITY OF MERCURIC CYANIDE IN AQUEOUS SOLUTIONS OF METHYL ALCOHOL, ETHYL ALCOHOL AND OF ETHYL ACETATE AT 25°. (Herz and Anders, 1907.)

In Aq. Methyl Alcohol.			In Aq. Ethyl Alcohol.			In Aq. Ethyl Acetate.		
Wt. % CH ₂ OH in Solvent.	$d_{\underline{a}\underline{a}}$ of Sat. Sol.	Gms. Hg(CN) ₂ per 100 cc. Sat. Sol.	Wt. % C ₄ H ₄ OH in Solvent.	$d_{\underline{a}\underline{s}}$ of Sat. Sol.	Gms. Hg(CN) ₂ per 100 cc. Sat. Sol.	Wt. % CH₄COOC₃H₄ in Solvent.	dan of Sat. Sol.	Gms. Hg(CN) _s per 100 cc. Sat. Sol.
10.6	1.0640	11.02	0	1.0813	10.95	0	1.0810	10.95
30.77	1.0484	12.46	20. 18	1.0339	8.76	4.39	1.0798	10.83
47.06	1.0426	16.37	40.69	1.0006	9.02	96.76	1.9374	2.66
64	1.0441	20.48	70.01	0.9419	9 · 57	100	0.9097	1.80
78.05	1.0484		100	0.8552	8. 19			
100	1.0762	34.29						

SOLUBILITY OF MERCURIC CYANIDE IN ETHYL ALCOHOL, METHYL ALCOHOL AND IN MIXTURES OF THE TWO.

In Ethyl Alcohol. (Timofeiew, '94; de Bruyn, '92; Herz and Kuhn, 1908.)		In Met Duk	In Methyl Alcohol. (Dukelski, 1907.)		In CH ₂ OH+C ₂ H ₅ OH at 25°. (Hers and Kuhn, 1908.)		
ť.	Gms. Hg(CN) ₂ per 100 Gms. Sat. Sol.	t°.	Gms. Hg(CN) ₂ per 100 Gms. Sat. Sol.	% CH _e OH in Mixture.	dag of Sat. Sol.	Gms. Hg(CN), per 100 cc. Sat. Sol.	
0	8.3	0	26.10	4.37	0.8618	9.02	
10	8.8	14.17	29.17	10.4	0.8707	10.10	
20	9.25	23.4	32.OI	41.02	0.9267	16.70	
25	9.53*	27.4	31.77	80.69	1.024	28.20	
30	9.8	31.7	32.53	84.77	1.034	29. 60	
40	10.3	38. I	33.29	91.25	1.052	30	
* d ₂	_=0.8552	44.5	34.05	100	1.076	34.30	

100 gms. of a sat. solution of Hg(CN)2 in a mixture of equimolecular amounts of CH₂OH and C₂H₄ contain 10.2 gms. Hg(CN)₂ at 10°, 13 gms. at 30° and 15 gms. at 50°. (Dukelski, 1907.)

SOLUBILITY OF MERCURIC CYANIDE IN MIXTURES OF PROPYL AND METHYL ALCOHOLS AND PROPYL AND ETHYL ALCOHOLS AT 25°. (Herz and Kuhn, 1908.)

In C.H-OH+CH-OH.

In C.H-OH+CH-OH.

		1		The observations is considered.			
% C ₂ H ₇ OH in Mixed Solvent.	des of Solvent.	d _{as} of Sat. Sol.	Gms. Hg(CN) ₂ per 100 cc. Sat. Sol.	%C ₂ H ₇ OH in Mixed Solvent.	das of Solvent.	das of Sat. Sol.	Gms. Hg(CN) ₂ per 100 cc. Sat. Sol.
0	o. 7878	1.0760	34.3	0	0.7867	0.8552	8.01
11.11	0.7894	1.0327	29.52	8. I	0.7886	0.8549	7.90
23.80	0.7907	0.9891	24.48	17.85	0.7902	0.8527	7.30
65.20	0.7954	o.88 00	· 10.48	56.6	0.7926	0.8386	5.21
91.80	0.7992	0.8376	5.04	88.6	0.7973	0.8311	3.87
93.75	0.7995	0.8335	4.23	91.2	0.7979	0.8306	3.84
96.60	0.7999	0.8322	3.98	95.2	0.7986	0.8293	3.64
100	0.8004	0.8283	3.44	100	0.8004	0.8283	3.44

100 gms. propyl alcohol dissolve 3.79 gms. Hg(CN)₂ at 13.5°. (Timoteiew, 1894.)
100 gms. acetonitrile (b. pt. 81.6°) dissolve 9.58 gms. Hg(CN)₃ at 18°.

(Naumann and Schier, 1914.)

100 gms. benzonitrile (b. pt. 190-1°) dissolve 1.093 gms. Hg(CN)₂ at 18°. (Naumann, 1914.)

SOLUBILITY OF MERCURIC CYANIDE IN ANILINE. (Staronka, 1910.)

t° of Solidification 41° 49 58.5 65 77 83.5 84 88.5

Mol. % Hg(CN)2 in sat.

Solution 3.7 5.7 7.7 9 14.2 18.2 19.7 23.4

The solid phases are the unstable $Hg(CN)_3.4C_6H_6NH_3$ and the stable $Hg(CN)_3.2C_6H_6NH_2$ (m. pt. about 90°).

One liter sat. solution in ethyl ether contains 2.53 gms. Hg(CN)₂ at 25°.

(Abegg and Sherrill, 1903.)

100 gms. glycerol dissolve 27 gms. Hg(CN)₂ at 15.5°.

SOLUBILITIES OF MERCURIC CYANIDE DOUBLE SALTS IN WATER AND IN ALCOHOL.

Double Salt.	t°.	Gms. per	100 Grams	•	Observer.
Double Sait.	• • •	Water.	Alcohol.	•	Obsciver.
Hg(CN) ₂ .2KCN	∞ld	22.7	• • •		
Hg(CN),.2TICN	Io	12.6		(Fromuller	— Ber. 11, 92, '78.)
Hg(CN)2.2TICN	100	9.7		•	- 46
2Hg(CN)2.CaBr2.5H2C) cold	100.0	50.0		(Custer.)
2Hg(CN)2.CaBr2.5H2C) boiling	400.0	100.0		4
Hg(CN), KCl.H,O	18°	14.81			(Brett.)
Hg(CN) ₂ .KBr. ₂ H ₂ O	18°	7.49			•
Hg(CN) ₃ .KBr. ₂ H ₂ O	boiling	100.0+			•
Hg(CN) ₂ .BaI ₂ .4H ₂ O	cold	6.42	4.42		(Custer.)
Hg(CN) ₂ .BaI ₂ .4H ₂ O	boiling	250.0	62.5	(90% Alc.)	4
Hg(CN) ₂ .KI	∞ ld	6.2	1.04	(34°B Alc.)	(Caillot.)
Hg(CN), NaI.2H,O	18°	22.2	15.4	(90% Alc.)	(Custer.)
Hg(CN), SrI, 6H,O	· 18°	14.3	25.0	(90% Alc.)	

SOLUBILITY OF MECURIC CYANIDE IN ORGANIC SOLVENTS AT 18°-20°.
(Sulc. 1900.)

Solvent.	Formula.	G. Hg(CN) ₂ per 200 Gms. Solvent.
Bromoform	CHBr.	0.005
Carbon Tetra Chloride	CCl,	0.001
Ethyl Bromide	C ₂ H ₅ Br	0.013
Ethylene Di Bromide	C ₂ H ₄ Br ₂	0.001

Data for the ternary system, mercuric cyanide, phenol, water are given by Timmermans, 1907.

١

SOLUBILITY OF MERCURIC CYANIDE IN PYRIDINE. (Starogka, 1910.)

_	Mols.		_	Mols.		_	Mols.	
E	Ig(CN)	L C.V. Dhara	40 -	Ig(CN)	I. C.P.A Di		Hg(CN)	
		ls. Solid Phase.		r 100 M0	ls. Solid Phase.	t°. per	IOO MC	ls. Solid Phase.
н	CH.N	+		C.H.N	r	н	CH.N	+
9	7. I	Hg(CN),6C,H,N		17.3	Hg(CN), 2C,H4N	56.5	26.6	2Hg(CN)2-3C4H4N
II	8.7	4	28.5	18.4	4	68	27.5	Hg(CN), C, H,N
12.2	10.4	4	32	19.3	u	70	27.7	u
13	11.3	u	38	20.6	u	86	29	"
13.5	12.9	4	42	22.3	4	III	32	"
14.5	13.8	*	46	23.7		122.5	33.8	u
16.5	15.8	u	53	25.3	2Hg(CN)2-3C4H4N	125	34.4	•
20.5	15.9	"	54.5	26	u	141	38.3	44
100	gms.	pyridine disso	lve 64	.8 gms	. Hg(CN) ₂ at 1	8°.		(Schroeder, 1905.)

SOLUBILITY OF MERCURIC CYANIDE IN QUINOLINE. (Staronka, 1910.)

r.	Mols. Hg(CN) ₃ per 100 Mols. Hg(CN) ₂ +C ₉ H ₇ N	Solid Phase.	ť.	Mols. Hg(CN) ₃ per 100 Mols. Hg(CN) ₂ +C ₅ H ₇ N	Solid Phase.
45	4.2	$Hg(CN)_{1\cdot3}C_1H_1N$	137	13.2	Hg(CN),-2C,H,N(?)
54	6	" tr. pt. 60°	161	17.4	u
89 (61°)	8.2		180	22.5	•
99 (61)	9.2		192	27.I	•

MERCURY FULMINATE C. HgN.O.

One liter of solution in water contains 0.70 gm. C₂HgN₂O₂ at 12° and 1.76 gms. at 49°. (Holleman, 1896.)

MERCURIC IODIDE HgI2.

SOLUBILITY IN WATER.

t°.	Gms. HgI, per Liter.	Observer.
18	o.coc4 (conductivity method)	(Kohirausch, 1904–05.)
17.5	0.040	(Bourgoin, 1884.)
22	0.054	(Rohland, 1898.)
25	0.0501	(Morse, 1902.)

SOLUBILITY OF MERCUROUS IODIDE IN WATER AT 25°. (Sherrill, 1903.)

One liter sat. solution contains 2×10^{-7} gms. Hg₂I₃, determined by indirect method.

Data for the solubility of mercurous iodide in aq. KI solutions at 25° are also given by Sherrill.

SOLUBILITY OF MERCURIC IODIDE IN AQUEOUS SOLUTIONS AT 25°. (Herz and Paul, 1913.)

In Aq.	BaI ₂ .	In Aq.	. CaI ₂ .	In Aq.	NaI.	In Aq.	SrI ₂ .
Mols. p	er Liter.	Mols. p	er Liter.	Mols. p	er Liter.	Mols. pe	r Liter.
Bal.	Hgl ₄ .	Cala.	HgI ₂ .	NaI.	HgL ₁ .	SrI ₂ .	HgI _e .
0.099	0.059	0.053	0.050	0.794	0.412	0.254	0.212
0.748	0.742	0.252	0.261	1.385	0.622	0.355	0.320
0.978	0.897	0.468	0.440	2.225	9.945	0.539	0.582
1.508	1.462	1.799	1.706	_		0.608	0.694

SOLUBILITY OF MERCURIC IODIDE IN AQUEOUS SOLUTIONS OF POTASSIUM IODIDE AT 25°. (Sherrill, 1903; Herz and Paul, 1913.)

Mols. 1	per Liter.	Gтаs. р	er Liter.	Mols.	per Liter.	Gms. 1	er Liter.
KI.	HgL.	KI.	HgI ₂ .	KI.	Hgl ₂ .	KI.	HgI ₂ .
0.05	0.025	8.3	11.4	I	0.50	166	227.2
0.10	0.05	16.6	22.7	1.5	0.75	249	340.8
0.20	0.10	33.2	45.4	2	I	332	454.5
0.50	0.25	83	113.6	2.5	1.25	415	578

Data for the distribution of mercuric iodide between aq. KI solutions and benzene at 25° are given by Sherrill, 1903.

EQUILIBRIUM IN THE TERNARY SYSTEM MERCURIC IODIDE, POTASSIUM IODIDE, WATER AT 20° AND 30°. (Dunningham 1914.)

Results at 20	o°.	F	Results at 30°.				
Gms. per 100 Gms. Sat. Sol.		Gms. per 100	Gms. per 100 Gms. Sat. Sel.				
HgI ₄ .	Soud Phase.	KI.	HgI.	Solid Phase.			
19.3	KI	60.6	• • •	KI			
32.4	"	40	53	" +KHgl			
48	u	39.6	52.7	KHgI _s			
53.6	" +KHgI,	40	52.2	"			
52.6	KHgI	40.2	51.2	"			
52.2	4	39 · 3	50.3	44			
51 2	KHgI ₄ .H ₂ O	33 · 7	49.8	4			
50.3	" +HgI ₂	33	52	et			
49.4	HgL	31.4	51.7	KHgI.H ₂ O			
40.2	4	29.I	52.2	**			
22.5	4	•	-				
	Gras. Sat. Sol. HgL. 19.3 32.4 48 53.6 52.6 52.2 51.2 50.3 49.4 40.2	HgIa. Solid Phase. 19.3 KI 32.4 " 48 " 53.6 "+KHgIa 52.6 KHgIa 52.2 " 51 2 KHgIa-HaO 50.3 "+HgIa 49.4 HgIa 40.2 "	Gms. Sat. Sol. HgLe. 19.3 KI 60.6 32.4 " 40 48 " 39.6 53.6 "+KHgLe 40.2 52.6 KHgLe 40.2 51.2 KHgLeHeO 33.7 50.3 "+HgLe 33.4 49.4 HgLe 31.4 40.2 " 29.1	Gms. Sat. Sol. Hgla. 19.3 KI 60.6 32.4 " 40 53 48 " 39.6 52.7 53.6 "+KHgla 40 52.2 52.6 KHgla 40.2 51.2 52.2 " 39.3 50.3 51.2 KHgla 40.2 51.2 50.3 "+Hgla 33.7 49.8 50.3 "+Hgla 33.52 49.4 Hgla 31.4 51.7 40.2 " 29.1 52.2			

EQUILIBRIUM IN THE TERNARY SYSTEM MERCURIC IODIDE, POTASSIUM IODIDE, ETHYL FTHER AT 20°. (Dunningham, 1914.)

Two liquid layers with compositions as follows, are formed:

Gms. per 100 Gms. Upper Layer.		Gms. per 100 Gi	Solid Phase.	
KI.	HgL.	KI.	HgI ₂ .	Soud Prase.
1.1	2.8	No	one	KI+KHgIa
1.1	2.4	17.6	53.2	$KHgI_a$
0.8	2.5	16.5	56.I	HgI_{e}
No	one	17	58.2	KHgI _a +HgI _a

Data are also given for the four component system, $HgI_2 + KI + (C_1H_4)_2O + H_2O$ at 20°. The results are of special interest since 3 liquid layers are formed.

Solubility of Mercuric Iodide in Aqueous Ethyl Alcohol:

At 18°. (Bourgoin.)

At 25°. (Herz and Knoch – Z. anorg. Ch. 45, 266, '05.)

Solvent.	Gms. HgI ₂ per Liter.	Wt.% Alcohol in Solvent.	HgI ₂ per 100 Millimols.	cc. Solution	Sp. Gr. of Solutions 25°/4°
Abs. Alcohol	11.86	100	3.86	I.754	0.8033
H ₂ O+80% 90° Alc.	2.857	95.82	2.56	1.162	0.8095
H ₂ O+10% 90° Alc.	0.086	92 - 44	1.92	0.873	0.8154
		86.74	1.38	0.623	o .8300
		78.75	0.935	0.425	0.8465
		67 . 63	0.45	0.204	0.8721

SOLUBILITY OF MERCURIC IODIDE IN AQUEOUS METHYL ALCOHOL AND IN AQUEOUS ETHYL ACETATE AT 25°. (Herz and Anders, 1907.)

	In Aq. Meth	ıyl Alcohol.	•	In Aq. Ethyl Acetate.			
Wt. % CH ₂ OH in Solvent.	d _{Es} of Solvent.	d _{as} of Sat. Sol.	Gms. HgI ₂ per roo cc. Sat. Sol.	Wt. % CH _s - COOC ₂ H ₆ in Solvent.	d _{gs} of Sat. Sol.	Gms. HgI ₂ per 100 cc. Sat. Sol	
47.06	0.9186	0.9187	0.044	4.36	0.9973	0.013	
64	0.8800	0.8834	0.158	96.74	0.9063	1.87	
78.05	0.8489	0.8519	0.445	100	0.9011	1.00	
100	0.7879	0.8155	2.500		•	-	

100 gms. sat. solution in 95% alcohol ($d_{18} = 0.8126$) contain 0.72 gm. HgI₂ at 0°, 1.06 gms. at 25° and 2.15 gms. at 50°. (Reinders, 1900.)

SOLUBILITY OF MERCURIC IODIDE IN ALCOHOLS.

Alcohol.	Formula.	r.	Sp. Gr. of Solution.	Gms. HgI ₂ pe 100 Gms. Alcohol.	Observer.
Methyl	CH•OH	15-20	0.799	3.24	(Rohland.)
"	"	19	• • •	3.7	(Timofeiew.)
"	"	19.5	• • •	3.16	(de Bruyn.)
66	"	23	• • •	3.98	(Beckmann.)
44	"	66 (b. pt.)	• • •	6.512	(Sulc.)
Ethyl	C _t H _t OH	15-20	0.810	1.42	(Rohland.)
y *	46	ıŠ	• • •	1.48	(Bourgoin.)
44	"	19		1.86	(Timofeiew.)
"	"	19.5		2.00	(de Bruyn.)
"	ll .	25	0.803	2. IÓ	(Hers and Knoch.)
"	"	78 (b. pt.)		4.325	(Sulc.)
Propyl	C ₂ H ₇ OH	15-20	0.816	0.826	(Rohland.)
47	"	19	• • •	1.25	(Timofeiew.)
Amyl	$C_{\mathbf{i}}H_{11}OH$	13	• • •	0.66	(Laszcynski.)
"	"	71		3.66	u
"	"	100		5.30	
44	"	133.5		9 · 57	#
Isopropyl	(CH ₃) ₂ CH.OH	81 (b. pt.)	• • •	2.266	(Sulc.)
Isobutyl	(CH ₂) ₂ CHCH ₂ OH	22.5	• • •	0.51	(Timofeiew.)
"	,	105-107 (b. pt.)		2.433	(Sulc.)

SOLUBILITY OF MERCURIC IODIDE IN MIXTURES OF ALCOHOLS AT 25°. (Herz and Kuhn, 1908.)

In CH	OH+C ₃ I	H₀OH.	In C ₂ F	I-ОН+С	H₃OH.	In C _a H	OH+C	H₅OH.
Per cent CH ₂ OH in Solvent.	d_{28} of Sat. Sol.	Gms. Hgl ₂ per 100 cc. Sat. Sol.	Per cent C ₂ H ₇ OH in Solvent.	$d_{\mathbf{g}_{\mathbf{S}}}$ of Sat. Sol.	Gms. HgI ₂ per 100 cc. Sat. Sol.	Per cent C ₂ H ₇ OH in Solvent.	$d_{\mathbf{g}_{\mathbf{k}}}$ of Sat. Sol.	Gms. HgI ₂ per 100 cc. Sat. Sol.
0	0.8038	1.80	0	0.8156	3.16	0	0.8038	1.80
4.37	0.8039	1.93	II.II			8. I	0.8036	1.73
10.40	0.8046	2.08	23.80	0.8155	3.04	17.85	0.8043	1.65
41.02	0.8077	2.32	65.20			56.6	0.8057	1.55
80.69	0.8131	2.89	91.80	0.8101	1.69	88.6	• • •	•••
84.77	0.8140	2.96	93.75	0.8110	1.67	91.2	0.8099	1.52
91.25	0.8146	2.98	96.60	0.8108	1.53	95.2	0.8108	1.44
100	0.8156	3.16	100	0.8116	1.42	100	0.8116	1.42

Solubility of Mercuric Iodide in Acetone in Ethyl Acetate and in Benzene.

(Sulc; Krug and McElroy — J. Anal. Ch. 6, 186, '92; Laszcynski — Ber. 27, 2285, '94.)

In Acetone.		In Et	hyl Acetate.	In Benzene.	
\$* .	Gms. HgI ₂ per 100 Gms. (CH ₂) ₂ CO.	t°.	Gms. HgI ₂ per 100 Gms. CH ₃ COOC ₂ H ₅ .	t°.	Gms. HgI ₂ per 100 Gms. C ₆ H ₆ .
– 1	2.83	-20	1.49	15	0.22
18	3.36	+17.5	1.56	60	o.88
25	2.09 (K. and McE.)	21	1.64	65	0.95
40	4.73	40	2.53	84	I . 24
58	6.07	55	3.19	80 (t	.pt.) 0.825 (Sulc.)
56(1	o.pt.) 3.249 (Sulc.)	76	4.31		•

74-78 (b.pt.) 4.20 (Sulc.)

100 gms.	acetone	dissolve	2.04	gms.	HgI ₂	at 23°.	(Beckman	n and Stock, 1895.)
"	benzene		0.25	-11	п	"	- 44	44
66	chloroform	44	0.07	**	"	44	"	44
66	acetone	"	2	66	66	(red) at	25°.	(Reinders, 1900.)
46	44	44	3.09	"	44	(red) at (yellow)	at 25°.	"
44	ethyl acetat	e "	1.47	"	44	at 18°.		(Naumann, 1910.)

One liter sat. solution in benzene contains 2.24 gms. HgI₂ at 25°.

(Abegg and Sherrill, 1903.)

SOLUBILITY OF MERCURIC IODIDE IN ANILINE. (Pearce and Fry, 1914.)

r.	Gms. HgI ₂ per 100 Gms. Aniline.	Solid Phase.	r.	Gms. HgI ₂ per 100 Gms. Aniline.	Solid Phase.
-11.48 *	c	H4NH2+HgI2.2C4H4NH4	4 8.8	128.1	HgI ₂ (red)
-6.5	23.35	HgI ₂ .2C ₄ H ₄ NH ₂	63.6	163.8	44
+ 0.4	28.69	u	70.82	184.1	44
17.8	42.85	u	76.2	201.6	u
2I.I	47 - 55	a	95.9	246.7	66
26.9	55 - 47	u	108†	• • •	" +HgI2 (yellow)
30.I	62.05	a	115.7	281.8	HgI ₂ (yellow)
36.2	75.80	44	137.2	285. 2	44
42.9	96.49	u	181.1	297.9	•
46.8†	• • •	" +HgI ₂ (red)	199.1	863.2	•
		• Eutec. † *	Tr. pt.		

Additional data on this system are also given by Staronka, 1910.

Data for the solubility of mercuric iodide in nitrobenzene and in p nitrotoluene, determined by the synthetic (sealed tube method), are given by Smits and Bakhorst (1915). The transition point of HgI₂, red to yellow, was found to be at 1.68 mol. per cent HgI₂ and 127.5° in nitrobenzene and 1.81 mol. per cent HgI₃ and 128° in p nitrotoluene. The interesting part of the investigation is the characteristic prolongation of the melting line above the transition point. Similar data for the solubility of mercuric iodide in nitrobenzene, m nitrotoluene, p nitrotoluene and in nitronaphthalene, determined by the freezing-point method, using a Beckmann apparatus, are given by Mascarelli (1906a). Observations on the appearance and color changes of the HgI₂ are given.

SOLUBILITY OF MERCURIC IODIDE IN CARBON DISULFIDE. (Linebarger, 1894; Arctowski, 1894, 1895-96.)

ť.	Gms. HgI ₂ per 100 Gms. Solution.	r.	Gms. HgI ₂ per 100 Gms. Solution.	r.	Gms. HgI ₂ per 100 Gms, Solution,
-116	0.017	– 5	0.141	15	0.271
- 93	0.023	ō	0.173	20	0.320
-86.5	0.024	+ 5	0.207	25	0.382
- 10	0.107	10	0.239	30	0.445

One liter sat. solution of mercuric iodide in CS2 contains 3.127 gms. at 15°. One liter sat. solution of mercuric iodide in CCl₄ contains 0.170 gm. at 18°.

Data are also given by Dawson for the distribution of HgI2 between aqueous solutions of KI and CS₂ at 15° and aqueous solutions of KI and CCl₄ at 18°.

100 cc. anhydrous hydrazine dissolve 69 gms. HgI₂ with precipitation of Hg at room temp.

(Weish and Broderson, 1915.)

SOLUBILITY OF MERCURIC IODIDE IN SEVERAL ORGANIC SOLVENTS. (Sulc - Z. aborg. Ch. 25, 401, '00.)

Solvent.	Formula.	t*.	Gms. HgI ₂ per 100 Gms. Solvent.
Chloroform	CHCl ₂	18-20	0.040
Chloroform	CHCl _a	61 (b. pt.)	0.163
Bromoform	CHBr ₂	18-20	o.48ŏ
Tetra Chlor Methane	CCl,	18–20	0.006
Tetra Chlor Methane	CCl.	75 (b. pt.)	0.094
Ethyl Bromide	C ₂ H ₅ Br	18-20	0.643
Ethyl Bromide	C ₂ H ₄ Br	38° (b. pt.)	0.773
Ethylene Di Bromide	C ₂ H ₄ Br ₂	18-20	0.748
Ethyl Iodide	C ₂ H ₄ I	18-20	2.041
Ethylene Di Chloride	C,H,Cl,	85.5° (b. pt.) 1.200
Iso Butyl Chloride	(CH ₃) ₂ .CHCH ₄ Cl	69 "	0.328
Methyl Formate	HCOOCH,	36–38 "	1.166
Ethyl Formate	HCOOC ₂ H ₅	52-55 "	2.150
Methyl Acetate	CH ₃ COOCH ₃	56-59 "	2.500
Acetal	$CH_{\bullet}CH(OC_{\bullet}H_{\bullet})_{\bullet}$	105 "	2.000
Epi Chlor Hydrine	CH, O.CH.CH, CI	117 "	6.113
Hexane	$C_{0}H_{14}$	67	- 0.072

SOLUBILITY OF MERCURIC IODIDE IN ETHER AND IN METHYLENE IODIDE.

In Ether. (Sulc; Laszcynski.)			hylene Iodide. anorg. Ch. 3, 253, '93.)
t* .	Gms. HgI ₂ per 100 Gms. (C ₂ H ₈) ₂ O.	; t*.	Gms. HgI ₂ per 100 Gms. CH ₂ I ₂ .
0	0.62	15	2.5
36	0.97	100	16.6
35 (t	o. pt.) 0.47 (Sulc)	180	58.o

SOLUBILITY OF MERCURIC IODIDE IN FATTY BODIES. (Mehu - J. pharm. chim. [5] 12, 249, '85.)

Solvent.	t,". 10	Gms. HgIs per	Solvent.	t°.	Gms. HgI ₂ per 100 Gms. Solvent
Bitter Almond Oil	25	0.5	Vaseline	25	0.025
Bitter Almond Oil	100	1.3	Vaseline	100	0.20
Castor Oil	25	4.0	Poppy Oil	25	1.0
Castor Oil	IOO	20.0	Olive Oil	25	0.4
Nut Oil	100	1.3	Carbolic Acid	100	2.0

100 grams oil of bitter almonds dissolve 5.0 grams HgI₂.KI at 25°.
(Mobil)

SOLUBILITY OF MERCURIC IODIDE IN OILS. (Amon, 1903, 1904.)

on.	Gms. HgL per 100 cc. Oil.	Oil.	Gms. Hgie per 100 cc. Oil.
Castor Oil	1.90	Peanut Oil	0.52
Walnut "	I.20	Olive "	0.45
Linseed "	1.23	Almond "	0.39
Cod Liver "	0.545	Vaseline	o.ăó

SOLUBILITY OF MERCURIC IODIDE IN PYRIDINE.

(Determinations from -50° to 98.5° made by saturating the solvent at constant temperatures are given by Mathews and Ritter (1917). Measurements of the points of solidification of various mixtures of the two components, covering the range from 10° to 135°, are given by Staronka (1910).

t°.	per 100 Gms. Sat. Sol.	Solid Phase.	t*.	oms. HgI _s per 100 Gms. Sat. Sol.	Solid Phase.
-50	1.93	HgI ₂₋₂ C ₄ H ₄ N	90.08	61.43	HgI _{s-2} C _s H _s N
-31.5	4.27	"	100	65.72	44
-10	10.28	"	105	68.89	44 1
- 0.1	14.85	44	107 m. pt.	72.09	64
+ 8.83	18.42	44	105	75.67	44
20.02	24.40	"	100	79 - 73	ec
25.55	27.90	"	90	84.16	et
40.08	37.64	"	87 Eutec.	85.17	" +HgL.C.H.N
50.02	43.15	46	100	86	HgI ₂ .C ₄ H ₄ N
60.07	48.29	44	120	87.16	44
80.05	57.60	44	135	88.78	:44

SOLUBILITY OF MERCURIC IODIDE IN QUINOLINE.

r.	Mols. HgI ₂ per 100 Mols. HgI ₂ +C ₂ H ₇ N.	Solid Phase.	t°.	Mols. Hgl ₂ ' per 100 Mols. Hgl ₂ +C ₂ H ₇ N.	
100	4.7	HgL _{1.2} C ₁ H ₁ N	160	37 · 7	HgI ₂ .C ₂ H ₂ N
115.5	9.1	**	165	41.6	"
133.5	13.2	a	165	43	44
138	23.I	16	170	4 8. 8	*
145	26.7	HgI ₂ .C ₂ H ₇ N	169.5	49.5	4
153	31.4	"	166.5	54 · 4	"

Fusion point data for mixtures of HgI₂ + I are given by Olivari, 1908.

MERCURIC IODIDE Diamine (NH₂)₂HgI₂.

Data for the solubility of diamine mercuric iodide in aqueous ammonia solutions at 20° are given by Francois (1900). The solid is not stable in solutions containing less than 48 gms. NH_0 per liter.

MERCURY NITRATE (ic) Hg(NO₂)₂, (ous) Hg₂(NO₂)₂.

100 gms. anhydrous lanolin (m. pt. about 46°) dissolve 1.15 gm. Hg(NO₃)2 at 45°. (Klose, 1907.)

100 cc. anhydrous hydrazine dissolve about 2 gms. Hg2(NO2)2 with precipita-(Welsh and Broderson, 1915.) tion of Hg at room temp.

MERCURY OXIDE HgO.

SOLUBILITY IN WATER. (Schick, 1903.)

t°.	Gms. per 1000 cc. Solution.				
25	o.o518 yellow HgO	o.o513 red HgO			
100	o.410 yellow HgO	o.379 red HgO			

At 25° the mixtures were constantly agitated for 4 days or longer. At 100° the solutions were boiled and stirred for 5 hours. A longer period would probably have caused better agreement between the red and yellow HgO.

One liter H₂O dissolves 0.05′gm. HgO (red, large grains) at 25°. (Hulett, 1901.)

One liter H₂O dissolves 0.15 gm. HgO (red, finest grains) at 25°.

SOLUBILITY OF MERCURIC OXIDE IN AQUEOUS HYDROFLUORIC ACID AT 25°. (Jacger, 1901.)

Normality of HF.	Gms. Hg per 9.6 cc. Sat. Sol.	Gm. Atoms Hg per Liter.
0.12	0.0242	0.01258
0.24	0.0475	0.0247
0.57	0.1210	0.0629
1.11	0.2247	0.1168
2.17	0.4976	0.2586

MERCURY DIPHENYL Hg(C4H4)2.

Fusion-point data for mixtures of $Hg(C_0H_0)_2 + Sn(C_0H_0)_4$ are given by Cambi (1912).

MERCURY SELENITE HgSeO.

SOLUBILITY IN AQUEOUS SODIUM SELENITE SOLUTIONS AT 25°. (Rosenheim and Pritze, 1909.)

Normality of Na ₂ SeO ₂ Solution.	Gms. HgSeO ₃ per 100 Gms. Sat. Sol.	Normality Na ₂ SeO ₃ of Solution.	Gms. HgSeO _s per 100 Gms. Sat. Sol.
0.0625	0.18	0.5	0.70
0.125	0.32	I	1.39
0.25	0.53	2	2.73

MERCURY SULFATE (ic) HgSOL

EQUILIBRIUM IN THE SYSTEM, MERCURY OXIDE, SULFUR TRIOXIDE, WATER (Hoitsema, 1895.)

Results expressed in molecules per sum of 100 molecules of the three components of the system. The mixtures were rotated for 3 hours or longer.

Results at 25°. Results at 50°.

Liquid Phase. Liquid Phase. Solid Phase. Solid Phase. HO. H.O. HgO. SO₂. HgO. SO₂. 3HgO.SO 98.5 98.9 3HgO.SO I.24 0.33 o.g6 0.17 g6.6 2.49 0.92 96 3.05 0.93 1.65 94.4 3.93 93.2 4.92 I.00 I.85) 3HgO.SO; and 92.8 4.24 93.9 5.10 2.00 4.52 2.12) 3HgO.2SO2.2HgO 92.8 5.16 2.96 94 - 4 3HgO.2SO₂.2H₂O 4.65 I.94 93 • 4 92.5 5.34 2.I2 92.9* 3HgO.SO, and 4.81 2.20 3HgO.SO 2.20 92.2 5.5792.9 5.11 8p. r 3HgO.2SO3.2HgO 3HgO.2SO2.2HgO 92.3* 3HgO.2SO,.2HgO 5.20 2.54 3HgO.SO 92.I 5.75 2.II 5.80 92.3 5.58 2.00 Q2 2.16 3HgO.2SO₂.2HgO 5.81 2.08 3HgO.SO, and Q2.I 91.2* 6.27 HgO.SO. QI.Q 5.97 2.90 3HgO.SO 3HgO.2SO₃.2H₆O 6.15 91.9 2.05 3HgO.2SO_{3.2}H₂O 91.5 6.34 2.19 and HgO.SO QI.3 6.54 2.13 91.3* HgO.SO 91.2 6.77 2.02 HgO.SO, HgO 6.37 2.30 1.80 91.3 6.90 " **91.6** 6.601.75 91.3 7.67 IO.I 91.1 8.32 0.57 O.80 HgO.SO, HgO and 91.3 7.84 90.5 9.11 0.4 QI 8.36 0.69 HgO.SO_a 8g.6 10.2 0.23 90.5 8.95 0.53 86.7 13.2 0.06 80.2 10.6 0.22 HgO.SO 31.6 68.4 0.03 75.8 trace 66 24.2 39.2 60.7 trace

* Indicates unstable equilibrium

MERCUROUS SULFATE HgsSO4.

SOLUBILITY IN WATER, IN SULFURIC ACID AND IN POTASSIUM SULFATE AT 25°. (Drucker, 1901; Wright and Thomson, 1884-85; Wilsmore, 1900.)

Solvent.	Hg ₆ SO₄ per l	Liter.	
Solvent.	Gm. Mol.	Gms.	
Water	11.71 10-4	0.58	(e.47 W. and T., o.39 W.)
Aq. H ₂ SO ₄ (1.96 gms. per liter)	8.31 "	0.41	
Aq. H ₂ SO ₄ (4.90 gms. per liter)	8.78 "	0.44	
Aq. H ₂ SO ₄ (9.80 gms. per liter)	8.04 "	0.40	•
Aq. K ₂ SO ₄ (34.87 gms. per liter)	9.05 "	0.45	

SOLUBILITY OF MERCUROUS SULFATE IN WATER AT DIFFERENT TEMPERATURES. (Barre, 1911.)

r.	Gms. per 100	C-P-I DI	
	Hg ₂ SO ₄ .	H ₁ SO ₄ .	Solid Phase.
16.5	0.055	0.008	Hg ₂ SO ₄
33	0.060	0.018	"
50	0.065	0.037	"
75	0.074	0.063	44
100	0.002	0.071	"

The mixtures were kept at constant temp. but not constantly agitated. By successive treatment of a given amount of Hg₁SO₄ with H₂O, it is gradually converted to an almost insoluble basic salt, Hg₁O.Hg₂SO₄.H₂O.

SOLUBILITY OF MERCUROUS SULFATE IN AQUEOUS POTASSIUM SULFATE SOLUTIONS. (Baire, 1921.)

Results at 15°. Gms. per 100 Gms. Sat. Sol.					33°. . Sat. Sol.	, ,		
K.SO4.	HgsO4.	H ₂ SO ₄ (free).	K,SO4.	Hg ₂ SO ₄ .	HeSO4 (free).	K ₄ SO ₄ .	Haso,	H ₂ SO ₄ (free)
2.90	0.0475	0.0080	2.94	0.0677	0.0250	3.10	0.1344	0. 1684
5.70	0.0703	0.0093	5.68	0.1015	0.0350	5.75	0.2120	0.2135
8.22	0.0012	0.0098	8.30	0. 1364	0.0441	8.50	0.2951	0.2514
8.77	0.0994	• • •	10.70	0.1724	0.0438	13.20	0.4610	0.2503
9.44	0.1080	0.0110	11.90	0.1902	0.0420	17.30	0.6440	0.2225

MERCURY SULFIDE HgS.

One liter H_2O dissolves 0.054 \times 10⁻⁴ mols. HgS = 0.0000125 gm. at 18°. (Weigel, 1906, 1907. See also Bruner and Zawadzki.)

Hexamethyl MELLITIC ACID Ester C₆(COOCH₂)₆.

Data for the ternary system hexamethyl mellitic acid ester, phenol and water are given by Timmermans (1907).

MENTHOL C₁₀H₁₀OH.

One cc. of 95% alcohol dissolves about 5 gms. menthol at room temp.
(Greenish and Smith, 1903.)

FREEZING-POINT DATA (Solubility, see footnote, p. 1) ARE GIVEN FOR THE FOLLOWING MIXTURES.

Menthol	+ Ethylene bromide	(Dahms, 1895.)
44	+ Menthane	(Vanstone, 1909.)
44	+ Methyl urethan	(Scheuer, 1910.)
"	+ Naphthalene	u
64	+ p Toluidine	(Pawlewski, 1893.)

SOLIDIFICATION POINTS OF MIXTURES OF MENTHOL AND SALOL. (Bellueci, 1912, 1913.)

t° of Solidification 42 30.5 28 28.5 32.5 41.9 Gm. Salol per 100 Gm. Mixture 100 80 60 40 20 0

METHANE

METHANE CH.

SOLUBILITY IN WATER. (Winkler, 1901.)

ŧ°.	β.	β' .	q.	ŧ°.	₿.	ø.	q.
	0.05563	0.05530		40	0.02369	0.02198	0.00159
5	0.04805	0.04764	0.00341	50	0.02134	0.01876	0.00136
10	0.04177	0.04127	0.00296	60	0.01954	0.01571	0.00115
15	0.03690	0.03628	0.00260	70	0.01825	0.01265	0.00093
	0.03308			80	0.01770	0.00944	0.00070
25	0.03006	0.02913	0.00209	90	0.01735	0.00535	0.00040
30	0.02762	0.02648	0.00191	100	0.01700	0	0
<u> </u>		C 0 0/	D. 1		0-		

For the values of β , β' and q see Ethane, page 285.

SOLUBILITY OF METHANE IN METHYL ALCOHOL AND IN ACETONE. (Levi, 1901, 1902.)

In methyl alcohol l (Ostwald expression, see page 227) = 0.5644 - 0.0046 l -0.00004 %.

In acetone l (Ostwald expression) = 0.5906 - 0.00613 t - 0.000046 θ . From which are calculated the following values:

	In Methyl Alcohol.				In Acetone.				
ŧ°.	ı.	ŧ°.	l.	ŧ°.	l.	t°.	l.		
0	0.5644	40	0.3164	0	0.5906	40	0.2718		
10	0.5144	50	0.2344	10	0.5247	50	0.1691		
20	0.4564	60	0.1444	20	0.4496	60	0.0572		
30	0.3904	70	0.0464	30	0.3653		•		

SOLUBILITY OF METHANE IN SEVERAL ALCOHOLS AND OTHER SOLVENTS. (McDaniel, 1911.)

•		(44)	icramer, 15	,,			
Solvent.	t°.	Abs. Coef.	Bunsen Coef. β,	Solvent.	ť.	Abs. Coef.	Bunsen Coef. B.
Alcohol:			- •				
Methyl (99%)	22. I	0.4436		Toluene	40. I	0.4675	0.4080
"	30.2	0.4278	0.3883	"	50.2	0.4545	0.4013
"	40	0.3938	0.3436	"	60	0.4502	0.3690
"	49.8	0.2695	0.2278	m Xylene	21.I	0.5146	0.4778
Ethyl (99.8%)	22.2	0.4628	0.4282	"	30.5	0.5028	0.4529
ii .	30.1	0.4503	0.4051	"	50	0.4972	0.4203
66	40	0.4323	0.3771	"	60	0.4870	0.3992
Isopropyl	21.5	0.4620	0.4275	Hexane	22.2	0.6035	0.5585
- "	20.0	0.4532	0.4081	"	40.2	0.5320	0.4639
"	40	0.4400	0.3837	"	49.7	0.5180	0.4380
"	60.3	0.4244	0.3478	"	6o i	0.4964	0.4068
Amyl	22	0.4532		Heptane	22.2	0.7242	0.6720
" "	30. I	0.4444	0.4002	-"	30. I	0.6006	0.6221
Benzene	22. I	0.4954	0.4600	"	40	0.6675	0.5820
"	35	0.4484	0.3076	Pinene*	20	0.4888	0.4565
ll .	40. I	0.4198	0.3661	"	30. I	0.4620	0.4163
"	49.9	0.3645	0.3081	"	39.1	0.4472	0.3914
Toluene	25	0.4852	0.4450	"	45	0.4440	0.3811
"	30	0.4778	0.4300	46	55.2	0.3694	0.3076
	0-2		b. pt. 155-	τ6ο°.	55		

Abs. coef. A = vol. of methane absorbed by unit vol. of solvent at temp stated. For definition of Bunsen abs. coef. β see carbon dioxide, p. 227.

SOLUBILITY OF METHANE IN ETHYL ALCOHOL. (Bunsen, 1877, 1892.)

2*. 6.4°. m. 19°. Abs. coef. β (found) 0.51721 0.50382 0.49264 0.48255 0.4729 0.4629 from which the following formula was calculated.

Bunsen abs. coef. β for methane = 0.522745 - 0.00295882 t - 0.0000177 t. The solubility of methane in aq. H_8SO_4 (Christoff, 1906) in terms of the Ostwald solubility expression h_0 . In 95.6% H_8SO_4 , h_0 = 0.03303; in 61.62% H_8SO_4 , h_0 = 0.01407; in 35.82% H_8SO_4 , h_0 = 0.01815; in H_8O , h_0 = 0.03756. The solubility of methane in ethyl ether, in terms of the Ostwald Solubility Expression l (see p. 227), is 1.066 at 0° and 1.028 at 10°. (Christoff, 1912.) The coef. of absorption β (Bunsen) of methane in petroleum (Russian) is 0.144

at 10° and 0.131 at 20°. (Gniewoss and Walfisz, 1887.) Fusion-point data are given for diphenyl methane + naphthalene by Miolati, (1892) and for diphenyl methane + phenol by Paterno and Ampola (1897).

Triphenyl METHANE CH(C₆H₆)₂.

SOLUBILITY IN ANILINE. (Hartley and Thomas, 1906.)

By synthetic method, see page 16.

t * .	Gms. CH(C ₆ H ₈) ₃ per 100 Gms. So- lution.	cent	Solid Phase.	Gms. CH(C ₂ H ₂) ₂ Mol. per Solid cent Phase. Gms. So- CH(C ₂ H ₂) ₃ . lution.
23.0	5 · 4	1.85	CH(C ₆ H ₆) ₈ .C ₆ H ₆ NH ₈ rhombs	71.3 67.9 44.6 CH(C ₆ H ₆) ₈ .C ₆ H ₈ NH ₉ rhombs
35.3	9.5	3.8	66	71.6 71.7 49.1 "
43.0	13.5	5.6	•	71.2 76.3 55.1 "
52.1	21.9	9.7	44	70.6 78.3 57.9
61.4	36.5	17.8	4	71.6 82.1 63.5 CH(C ₆ H ₆) ₈ monoclinic
66.0	47.2	25 · 4	•	74.3 84.9 68.2 "
68.7	54.8	31.6	•	82.1 91.7 80.9 "
70.1	64.6	40.9	•	87.3 96.1 90.2 "

SOLUBILITY OF TRI PHENYL METHANE IN BENZENE. (Linebarger - Am. Ch. J. 15, 45, '03.) (Hartley and Thomas.)

\$* .	Gms. CH(C ₆ H ₆) ₃ per 100 Grams C ₆ H ₆ .	Solid Phase.	, t°.	Gms. CH(C ₆ H ₈) ₃ per 100 Gms. Solution.	CTT(CATTRAN	
3.9	3.90	$C_6H_6+CH(C_6H_6)_3.C_6H_6$	33	12.6	4.4	CH(C ₆ H ₆) _p .C ₆ H ₆ rhombs
4.0	4.06	CH(CeHa)a.CeHa	49.4	24.0	8.8	
12.5	5.18	4	65.6	38 .9	17.2	*
16.1	6.83	4	73.8	57 · 5	30.2	•
19.4	7.24	4	77 · I	67 . 4	39 · 7	•
23.1	8.95	•	77.9	76.3	50.7	•
37 · 5	_	(CeHe) CH.CeHe + CH(CeHe)	77 . 5	80.2	56.4	
42.0		CH(CeH4)s	76.2	84 · I	62.8	
44.6		H	74.6	87 . 5	69 · I	CH(C ₆ H ₆) ₈ monoclinic
50.1	30.64	4	76.0	8g.o	72.2	*
55 · 5	40.51	4	78.8	90.5	75.3	
71.0	140.00	44	82.3	93.1	81.3	•
76.2	319.67	•	86.6	95.7	87 . 8	•

Hartley and Thomas call attention to the inaccuracy of Linebarger's results and to the correctness of the determinations of Kuriloff (1897a). According to Kuriloff the tr. pt. (C₆H₆)₂CH.C₆H₆ + C₆H₆ is at 4.2° and 1.25 mol. % (C₆H₆)₂CH, the m. pt. of (C₆H₆)₂CH.C₆H₆ is 78.2° and the tr. pt. (C₆H₆)₃CH.C₆H₆ + (C₆H₆)₅CH is at 74° and 69.4 mol. % (C₆H₆)₅CH. SOLUBILITY OF TRI PHENYL METHANE IN CARBON BISULPHIDE. (Etard — Ann. chim. phys. [7] 2, 570, '04; below – 80°, Arctowski — Z. anorg. Ch. 11, 273, '05.)

t°.	Gms. CH(C ₆ H ₅) ₃ per 100 Gms. Solution.	t°.	Gms. CH(C ₆ H ₅) ₃ per 100 Gms. Solution.	ŧ°.	Gms. CH(C ₆ H ₈) ₈ per 100 Gms. Solution.
-113.5	o.98	-40	7 · 5	40	63.7
-102	I . 24	-20	13.7	50	72.4
– 91	1.56	0	25.8	60	78.6
– 83	1.91	+10	3 8 . 7	70	85:6
– 60	3.4	20	43.2	80	92.2
	• .	30	52.9		-

SOLUBILITY OF TRI PHENYL METHANE IN HEXARE AND IN CHLOROFORM. (Eural)

\$* .	Gms. CH(C ₆ H ₆) ₃ per 100 Gms. Solution in:		t° .	Gms. CH(C ₆ H ₆) ₈ per 100 Gms. Solution in:		
	Hexane.	Chloroform.		Herane.	Chloroform.	
-50		10.5	30	12.5	48.8	
-30	I . 2	15.2	40	20.0	56.I	
-20	1.6	19.0	50	25.8	63.8	
-10	2.2	23.5	бo	45 · 7	71.7	
0	3.5	28.9	70	62.0	79.8	
+10	5.6	35.0	8 0	78.5	87.2	
20	8.3	41.5	90	97.0	•••	

SOLUBILITY OF TRI PHENYL METHANE IN: (Hartley and Thomas.)

Pyrrole. Thiophene. Mol. Mol. Gms. CH(C₀H₄)₈ per 100 Gms Sol. Solid CH(C₆H₆)₈ per per 100 Gms. cent Solution. CH(C₆H₆)₈. cent CH(C₆H₆)₈. Solid Phase. Phase. CH(C₆H₄)₃.C₄H₄NH rhombs 8.I CH(C₄H₄)₃.C₄H₄S rhombs 24.6 24.3 25.7 26.0 8. or 29.0 29.8 10.4 33 · 5 31.1 13.5 31.5 33.4 12.I 44.0 43 .6 2I . I CH(C₆H₄)₈ 36.8 15.8 40.6 47.6 48.4 24 . 4 monoclinic 44 42.7 49.I 20.9 58.7 53 · 5 32.9 46.9 56.0 25.9 57 . 4 70.2 44.7 32.8 53.2 63.9 74.8 50.6 . 57.6 **56**.0 60.0 72.3 41.8 62.7 78.7 CH(C₆H₅)₃
" monoclinic 63.9 76.7 67.0 81.g 60.8 47 .4 68.5 81.9 82.1 55.6 67.2 61.3 59.8 70.5 7I . I 84.4 74.2 87.4 80.0 91.5 74.8 76.3 79.0 90.3 97.6 89.2 91.8 87.2 96.2 8g.g

F.-pt. data for triphenylmethane + naphthalene are given by Vignon (1891). SOLUBILITY OF TRIPHENYL METHANE IN PYRIDINE. (Hartley and Thomas, 1906.) Synthetic method used, see note, p. 16.

ť.	Gms. CH(C ₄ H ₄) ₃ per 100 Gms. Solution.	Mol. per cent CH(C ₆ H ₆) ₃ .	Solid Phase.	t°.	Gms. CH(C ₆ H ₅) ₈ per 100 Gms. Solution.	Mol. per cent CH(C ₆ H ₆) ₃ .	Solid Phase.
22.8	46.2	22	CH(C ₀ H ₄) ₈	59.3	75.6	50.3	CH(C,H,),
31.7	53 · 3	27.2	" monoclinic	67.8	81.9	59.7	4
37.9	5 7 .6	30.7	"	72.8	85.7	66.4	*
48.7	66.6	39.5	4	80.6	91.5	77.2	
53.1	70.1	43.5	44	86.8	95.8	88.1	•

Ethyl and Methyl Sulfon METHANES.

SOLUBILITY IN WATER AND IN 90% ALCOHOL.

Compound.	Formula.	t°	Water. 90		AUTOPITY.
Sulfonal (CH ₃) ₂ Tetronal (C ₂ H ₄) Trional (CH ₃) (C(SO ₂ C ₂ H ₄) ₂) ₂ C(SO ₂ C ₂ H ₄) ₂ C ₂ H ₄)C(SO ₂ C ₂ H ₄) ₂	15.5 15-20 15-20	0.22 0.18 0.31	1.25	(Greenish and Smith, 1903.) (Squire and Caines, 1905.)

DISTRIBUTION BETWEEN WATER AND OLIVE OIL AT ROOM TEMP. (Baum. 1800: Mever. 1900)

	(Daum, 1	oyy, meyer, 1909.)	Sms. Cmrd	DET 100 CC.	Ratio
Compound.	ł		H ₂ O Layer		(v) (v)
Dimethyl Sulfon Dimethyl	Methane	(CH ₄) ₂ C(SO ₂ .CH ₄) ₂	0.6072	0.0622	0.103
Diethyl Sulfon Methane		CH ₂ (SO ₂ C ₂ H ₄) ₂	0.610	0.092	0.151
Sulfonal		(CH ₂) ₂ C(SO ₂ C ₂ H ₄) ₂	0.070	0.0686	0.979
Trional		(CH ₂)(C ₂ H ₂)C(SO ₂ ,C ₂ H ₂);			
Tetronal		(C ₂ H ₄) ₂ C(SO ₂ .C ₂ H ₄) ₂	0.0462	0.1446	3.756

METHYL ACETATE CH₂COOCH₂.

100 gms. H₂O dissolve 25 gms. CH₂COOCH₂ at 22°. (Traube, 1884.) More recent data for the solubility of this compound in water are given by (Herz, 1917).

METHYL ALCOHOL CH.OH.

FREEZING-POINTS OF MIXTURES OF METHYL ALCOHOL AND WATER. (Pickering, 1893; Baumé and Borowski, 1914.)

t°.	Gms. CH ₂ OH per 100 Gms. Sol.	Solid Phase.	ť.	Gms. CH ₂ OH per 100 Gms. Sol.	Solid Phase.	ť.	Gms. CH ₂ OH per 100 Gms. Mixtures.	Solid Phase.
-10	14.5	Ice	-70	58.3	Ice	-130	75.5	Ice
- 20	25	44	-80	62.6	4	-138.5 Eute	C. 77	" +СН•ОН
-30	33	44	-90	65.7	44	-130	82	CH_OH
-40		**	-100	68.8	"	-120	86.5	**
— 50	47	66	-110	71.5	66	-110	92	**
– 60			— I 20	74.0	44	-95.7	100	**

In the vicinity of the eutectic the solutions become vitreous and direct determina-tions of the f.-pt. cannot be made. The above results were obtained from the curve.

MISCIBILITY OF METHYL ALCOHOL (see Note, p. 287) AT 0° WITH MIXTURES OF:

Carbon Tetrachloride and Water. (Bonner, 1910.) Chloroform and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures.

		<u> </u>				A .	
Gms. CCl.	Gms. H _z O.	Gms. CH₄OH.	Sp. Gr. of Mixture.	Gms. CHCl _s .	Gms. H ₂ O.	Gms. CH₄OH.	Sp. Gr. of Mixture.
* 0.985	0.015	0.215		0.979	0.021	0.161	
0.974	0.026	0.328	1.30	0.90	0.10	0.35	1.17
0.90	0.10	0.74	1.13	0.80	0.20	0.49	1.12
0.80	0.20	1.10	1.04	* 0.73	0.27	0.57	• • •
0.70	0.30	1.40	I	0.70	0.30	0.60	so. 1
0.60	0.40	1.68	0.97	0.60	0.40	0.70	1.05
0.50	0.50	1.71	0.95	0.50	0.50	0.77	1.02
0.40	0.60	1.77	0.93	0.40	0.60	0.83	1
0.20	0.80	1.88	0.92	0.20	0.80	0.84	0.97
0.10	0.90	1.90	0.92	0.10	0.90	0.74	0.96
0.026	0.974	1.045	0.93	0.013	0.987	0.267	8وُ.ه
				-		•	-

MISCIBILITY OF METHYL ALCOHOL (see Note, p. 287) AT 0° WITH MIXTURES of:

Brombenzene and Water. (Bonner, 1910.) Ethyl Bromide and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Composition of Homogeneous Mixtures. Gms. Gms. H₂O. Gms. CH₂OH. Sp. Gr. of Mixture. Gms. C_sH_sBr. Gms. H₂O. Gms. CH₂OH. Sp. Gr. of Mixture. CHLBr. 0.991 0.009 0.230 0.027 0.202 I.27 . . . 0.973 0.985 0.015 0.314 I.24 0.950 0.05 0.33 . . . *****0.98 0.02 0.064 0.40 0.936 1.18 0.393 0.00 0.10 10.1 I.04 0.90 0.10 0.54 I.14 0.80 0.80 0.86 0.20 1.50 0.98 1.05 0.20 1.84 0.70 0.30 0.70 0.95 0.30 I.04 10.1 0.60 0.40 2.065 0.94 0.60 1.18 0.40 0.99 0.50 0.50 2.24 0.91 0.50 0.50 1.26 0.97 0.40 0.60 2.30 0.00 0.60 0.96 0.40 1.31 0.30 2.28 0.89 0.80 0.70 0.20 I.2I 0.04 0.80 2.20 0.20 0.800.10 0.00 0.94 0.94 0.905 0.005 I.Q27 0.00 0.022 0.978 1.94 0.98

MISCIBILITY OF METHYL ALCOHOL (see Note, p. 287) AT 0° WITH MIXTURES OF:

0.91

Hexane and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures.

I.332

0.984

0.016

Heptane and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures.

Gms. Hexane(1). H ₂ O. CH ₂ OH. Sp. Gr. of Mixture. Heptane(1). H ₃ O. 0.973 0.067 4.280 0.966 0.034 0.90 0.10 4.69 0.80 0.90 0.10 0.80 0.20 5.26 0.80 0.793 0.207 0.691 0.309 5.710 0.82 0.70 0.30	
0.90 0.10 4.69 0.80 0.90 0.10 0.80 0.20 5.26 0.80 0.793 0.207	Gms. Sp. Gr. of CH ₂ OH. Mixture.
0.80 0.20 5.26 0.80 0.793 0.207	4.78
	5.55 0.80
0.601 0.300 5.710 0.82 0.70 0.30	6.36 0.82
	7.30 0.82
0.60 0.40 6.17 0.81 0.60 0.40	8.22 0.82
0.491 0.509 6.365 0.83 0.50 0.50	8.76 0.82
0.40 0.60 6.33 0.83 0.40 0.60	8.65 o.83
0.30 0.70 6.13 0.84 0.30 0.70	7.78 0.83
0.20 0.80 5.49 0.85 0.198 0.802	6.71 0.84
0.10 0.90 4.01 0.86 0.10 0.90	4.40 0.87
0.016 0.984 1.759 0.91 0.038 0.962	2.96 0.91

(1) The hexane and heptane used were Kahlbaum's "aus Petroleum." 100 cc. cotton seed oil (d_{26} =0.922) dissolve 4.84 gms.CH.OH at 25°. . (Wroth and Reid, 1916.) 100 cc. methyl alcohol dissolve 6.74 gms. cotton seed oil at 25°. "

DISTRIBUTION OF METHYL ALCOHOL BETWEEN WATER AND COTTON SEED OIL AT 25°. (Wroth and Reid, 1916.)

Gms. CH ₂ O	H per 100 cc.	Ratio.	Gms. CH ₃ O	.	
Oil Layer.	H _r O Layer.	Katio.	Oil Layer.	H ₂ O Layer.	Ratio.
0.199	17.28	86.6	0.275	23.48	85.2
0.253	23.34	92.2	0.258	24.44	94
0.298	25.73	86.2	0.284	23.06	81.4
0.264	24.15	01.3			

Freezing-point curves (solubility, see footnote, p. 1) are given for the following mixtures: CH₂OH + SO₂, CH₂OH + C₂H₆COOH, (CH₂OH.HCl) + C₂H₆COOH, (C₂H₆COOH.HCl) + CH₂OH (Baumé and Pamfil, 1914); CH₂OH + NH₂ (Baumé and Borowski, 1914); CH₂OH + CH₂I (Baume and Tykociner, 1914).

METHYL AMINES CH₂NH₂, (CH₂)₂NH, (CH₂)₂N.

Freezing-point data (solubility, see footnote, p. 1) for mixtures of CH₂NH₂ + H₂O, (CH₂)₂NH + H₂O and (CH₂)₂N + H₂O are given by Pickering (1893).

The solubility of methylamine and of dimethylamine in water at 60°, calculated

The solubility of methylamine and of dimethylamine in water at 60°, calculated from the vapor pressures determined by an aspiration method are given by Doyer (1890) as follows:

Amine.	Vapor Pressure in mm. Hg.	Ostwald Solu- bility Coef. 1. (see p. 227).	Bunsen Abs. Coef. β. (see p. 227).
CH ₃ NH ₂	40.6	511	419
(CH ₃) ₂ NH	90.3	230	188

SOLUBILITY OF TRIMETHYL AMINE IN VARIOUS SOLVENTS AT 25°. (v. Halban, 1913.)

The measurements were made according to the dynamic method in the form developed by R. Abegg and his collaborators (Gaus, 1900; Abegg and Riesenfeld, 1902). The calculations of the partial pressures of the trimethylamine were made according to the Abegg and Riesenfeld method.

E= calc. partial pressure of $(CH_4)_4N$ above a 1 normal solution, based on Henry's Law.

 λ = solubility, i.e., the quotient of the concentration in the solution and in the gas phase: $\lambda = \frac{\text{mols. } (CH_2)_2 N \text{ per liter} \times RT \times 760}{\text{partial pressure of } (CH_2)_2 N \text{ in mm. Hg}}$, $RT \times 760 = 18,590$.

Solvent.	E.	λ.	Solvent.	E.	λ.	Solvent.	E.	λ.
Methyl Alc.	26. I	711	Acetophenone	321	57.9	Ethyl Acetate	220	84.5
Ethyl "	39.5	471	Ether	349	53.3	Ethyl Benzoate	244	76.2
Propyl "	39.4	472	Acetonitrile	292	63.7	Chloroform	31.1	598
	48.3		Nitromethane		56.5	α Bromnaphthalene	409	47
	•		o Nitrotoluene		54.7	Hexane	248	75
Acetone " 2	43	76.7	Nitrobenzene	350	53.1	Benzene	172	109

Two determinations are also given for triethyl amine:

Water and Amyl Alcohol.

 λ_{25} in hexane = 2160. λ_{25} in nitromethane = 400.

METHYL AMINE AND TRI METHYL AMINE, DISTRIBUTION BETWEEN:

Water and Benzene.

(Herz and Fischer -- Ber. 37, 4751, '04.) (Herz and Fischer - Ber. 38, 1143, '05.) Gms. NH₂(CH₂) Millimols NH₂(CH₂) Gms. N(CH₂)₂ Millimols N(CH₂)₂ per 100 CC. per 10 cc. per 100 cc. per 10 cc. Alcoholic Alcoholic C₆H₆ Aq. CaHa Aq. Aq. Λq. Layer. Layer. Layer. Layer. Layer. Layer. Layer. Layer. 0.3804 · o . 584 0.37 0.12 1.155 0.345 0.174 0.295 0.812 0.670 0.94 0.33 3.036 I .070 0.396 1.377 1.57 5.054 1.759 1.819 0.921 0.54 1.075 0.545 6.083 28°. I 0.69 2.210 1.462 0.731 2.474 1.237 0.72 6.429 3.619 1.823 2.00 2.315 2.139 I.077 2.981 2.53 0.92 8.126 2.757 1.376 4.663 2.328 10.613 3.974 3.292 1.683 5 . 568 2.847 3.30 I.24 3.996 2.053 6.760 3 - 474 6.582 3.465 11.135 5.861

DISTRIBUTION OF METHYLAMINE BETWEEN WATER AND CHLOROFORM AND DIMETHYL AND TRIMETHYL AMINES BETWEEN WATER AND TOLUENE.
(Moore and Winmill, 1912.)

Results at 18°. Results at 25°. Results at 32.35°. Amine. Gm. Equiv. per Liter Aq. Layer. Gm. Equiv. per Liter Aq. Layer. Partition Coef. Gm. Equiv. per Partition Partition Liter Aq. Layer. Coef. Coef. (CH₃)NH₂ 0.0817 8.496 0.1203 7.965 0.1399 0.0800 8 6 8.477 0.1312 0.0959 (CH₃)₂NH 0.0759 23.28 13.38 0.1203 19.013 0.1003 0.1010 13.36 0.0975 23.29 19.05 0.1043 0.0677 0.0688 0.1182 1.815 3.297 2.291 0.0641 1.820 0.1248 3.290 2.297

Similar data for the distribution of trimethylamine between water and toluene at 25° and at other temperatures are given by Hantzsch and Sebalt (1899) and Hantzsch and Vagt (1901).

DiMETHYL AMINE HYDROCHLORIDE (CH₁)₂NH.HCl.

100 gms. H₂O dissolve 369.2 gms. (CH₃)₂NH.HCl at 25°. (Peddle and Turner, 1913.) 100 gms. CHCl₃ dissolve 16.91 gms. (CH₃)₂NH.HCl at 25°. "

Phenyl METHYL AMINE HYDROCHLORIDE (CH₅)(C₅H₅)NH.HCl.

100 gms. H₂O dissolve 378.8 gms. (CH₂)(C₆H₅)NH.HCl at 25°. (Peddle and Turner, '13.)

Di and TriMETHYL AMINE CHLOROPLATINATES, (CH₃)₂NH.H₂PtCl₆, (CH₄)₂N.H₂PtCl₆.

SOLUBILITY OF EACH IN AQ. ALCOHOL AT 0°. (Bertheaume, 1910.)

Solv	ent.	rately) per 100 Gms. Solvent.			
Absolute Alcohol		(CH.),NH.H,PtCl. 0.0048	(CH ₂)N.H ₂ PtCl ₄ . 0.0036		
90° 80°	"	0.110	0.070		
	"	0.325	0.243		
70° 60°	"	0.558	0.391		
60°	"	0.996	0.766		

METHYL BUTYRATE C.H. COOCH.

100 gms. H₂O dissolve 1.7 gms. C₁H₇COOCH₂ at 22°. (Traube, 1884.)

More recent data for the solubility of methyl butyrate in water are given by Herz, 1917.

METHYL BUTYRATE, METHYL VALERATE.

SOLUBILITY OF EACH IN AQUEOUS ALCOHOL MIXTURES. (Bancroft, 1895; from Pfeiffer, 1892.)

100 cc. H₂O dissolve 1.15 cc. methyl butyrate at 20°.

cc. Alcohol	cc. H ₂ O	Added.*	cc. Alcohol	cc. H ₂ O Added.*	
in Mixture.	Butyrate.	Valerate.	in Mixture.	Valerate.	
3	2.34	1.66	27	44.15	
6	6.96	5.06	.30	52.37	
9	12.62	9.03	33	62.25	
12	19.45	13.40	36	74.IS	
15	28.13	18.41	39	91.45	
18	38.8o	24	42	∞ ု	
21	55.64	30.09			
24	∞	36. 72			

cc. H₂O added to cause the separation of a second phase in mixtures of the given amounts of ethyl alcohol and 3 cc. portions of methyl butyrate and of methyl valerate respectively.

METHYL ETHER (CH₁)₂O.

F.-pt. curves are given for $(CH_1)_2O + H_2O$ (Baumé and Perrot, 1914); $(CH_3)_2O + C_2H_3$, $(CH_2)_2O + SO_2$ (Baumé, 1914); $(CH_3)_2O + NO$ (Baumé and Germann, 1914); $(CH_3)_2O + CO_2$ (Baumé and Borowski, 1914).

METHYL IODIDE, Methylene Chloride and Methylene Bromide.

SOLUBILITY OF EACH IN WATER. (Rex, 1906.) Gms. per too Gms. H₂O.

t°.	ome ber 100 ome 1110.					
•••	CH,I.	CH ₂ Cl ₂ .	CH ₂ Br ₂			
0	1.565	2.363	1.173			
10	1.446	2.122	1.146			
20	1.419	2	1.148			
30	1.429	1.969	1.176			

Fusion-point data for methyl iodide + pyridine are given by Aten (1905-06).

METHYL ORANGE H1NC,H4.N2.C6H4SO2Na.

dissolve 0.02 gm. methyl orange at 20-25°.] (Dehn, 1917.) 100 gms. H₂O pyridine 46 aq. 50% pyridine 51.5

METHYL OXALATE (CH₂)₂C₂O₄. 100 gms. H₂O

dissolve 6.18 gms. (CH₂)₂C₂O₄ at 20-25°. (Dehn, 1917.) <u>"</u>] pyridine 4.8 aq. 50% pyridine 95% formic acid " 44 .. 93.I 66 " ** at 20.2° (Aschan, 1913.) ** 22.58 F.-pt. data for (CH₃)₂C₂O₄ + H₂O are given by Skrabal (1917).

METHYLENE BLUE $(CH_2)_2N.C_6H_2(NS)C_6H_2:N(CH_2)_2Cl.$

dissolve 4.36 gms. methylene blue at 20–25°. (Dehn, '17.) 100 gms. H₂O 0.26 " pyridine ** 64 "

given by Pelet-Jolivet (1909).

METHYL PROPIONATE C₂H₄COOCH₂.

100 gms. H₂O dissolve 5 gms. C₂H₄COOCH₂ at 22°. (Traube, 1884.)

More recent data for the solubility of methyl propionate in water are given by Herz (1917).

METHYL SALICYLATE C.H.OH.COOCH.

100 cc. H₂O dissolve 0.074 gm. C₆H₄OH.COOCH₂ at 30°. (Gibbs, 1908.) 100 cc. 0.1 n H₂SO₄ dissolve 0.077 gm. C₆H₄OH.COOCH₈ at 30°.

SOLUBILITY OF METHYL SALICYLATE IN AQUEOUS ALCOHOL AT 25°. (Seidell, 1910.)

Wt. % C.H.OH in Solvent.	d_{25} of Sat. Sol.	Gms. C ₄ H ₄ OH COOCH ₄ per 200 Gms. Sat. Sol.	Wt. % C _s H _s OH in Solvent.	d_{26} of Sat. Sol.	Gms. C ₄ H ₄ OH COOCH ₅ per 100 Gms. Sat. Sol.
0	I	0.12	60	0.923	18.60
30	o.958	0.60	65	0.929	30.50
40	0.940	2.30	70	0.943	39.40
50	0.925	6.20	75	0.974	58.50
5 5	0.922	10	8o	1.050	72

SOLUBILITY OF METHYL SALICYLATE IN AQUEOUS ALCOHOL AT DIFFERENT TEMPERATURES. (Seidell, 1910.)

Wt. % C.H.OH in Solvent.	Gms. C ₆ H ₄ OH.COOCH ₂ per 100 cc. Solvent at:						
in Solvent.	15°.	20°.	25°.	30°.			
0	(about) o.r	0.1	0.1	0.1			
30	9.3	0.4	0.5	0.6			
40	0.8	I.I	1.4	1.8			
50	2.4	3 · 5	5	6			
55 60	4.2	6	7.8	9.5			
60	7.7	10	12.5	15.5			
65	13	16.5	20.2	24.5			
70	22	28	33	40			
75 80	43	52	33 62	72			
80	92	135	180	230			

METHYL SULFATE (CH₂)₂SO₄.

RECIPROCAL SOLUBILITY OF METHYL SULFATE AND OIL OF TURPENTINE.

The determinations were made by the synthetic method (sealed tubes). The d_{25} of the oil of turpentine, $C_{10}H_{16}$, was 0.8602, its absolute index of refraction for yellow light at 25° was 1.467 and its rotation in a 100-mm. tube was -32.25°.

	Gms. (CH ₂) ₂ S(O ₄ per 100 Gms.		Gms. (CH ₂) ₂ SO ₄ per 100 Gms.		
ť.	(CH ₂) ₂ SO ₄ Rich Layer.	C ₁₆ H ₁₆ Rich Layer.	t*.	(CH ₄) ₂ SO ₄ Rich Layer.	C ₁₆ H ₁₆ Rich Layer.	
30	95	4	80	87	13	
40	93	5	90	84 -	17	
50	92	6	100	76	27	
60	91	8	105	68	37	
_70	89	10	108.2 (crit. t.)	50.	5	

The results are influenced appreciably by the age and purity of the products and by the length of time the mixtures are kept in the sealed tubes. Somewhat different results were obtained with a sample of turpentine containing 5 vol. % of white spirit.

MICHLER'S KETONE (Tetramethyl-p₁-diamidobenzophenone) CO[C₆H₄(4)-N(CH₂)_al_a.

100 gms. H ₂ O	dissolve	e 0.04 gm	. of ketone	at 20-25°.	(Dehn, 1917)
" pyridine,	"	9.92 "	44	"	44
" aq. 50% pyridine	44	3 ⋅59 "	"	**	••

MOLYBDENUM TRIOXIDE (Molybdic acid dihydrate) MoO3.2H3O.

SOLUBILITY IN WATER. (Rosenheim and Bertheim, 1903.)

ť.	Gms. MoO ₃ per	roco Gms.	ť.	Gms. MoO ₂ per 1000 Gms.		
υ.	Sat. Solution. H ₂ O.		٠.	Sat. Solution.	H ₂ O.	
18	1.065	1.066	59	10.117	11.258	
23	1.822	1.856	60	10.760	12.057	
30	2.570	2.638	66	14.730	17.274	
40	4.541	4.761	70	17.048	20.550	
48	5.980	6.360	74 · 4	17.290	20.904	
50.2	6.431	6.873	75	17.300	20.920	
54 .	7 . 283	7.855	79	17.400	21.064	

When a solution of the dihydrate is held at $40-50^{\circ}$, considerable amounts of crystals, designated by the authors as α molybdic acid monohydrate, separate. They differ from the β molybdic acid monohydrate obtained by direct conversion of the dihydrate at 70°, in being better crystals and in yielding solutions which can be filtered.

SOLUBILITY OF a MOLYBDIC ACID MONOHYDRATE IN WATER. (Rosenheim and Davidsohn, 1903.)

t°.	Gms. MoO ₂ per	1000 Gms.	t*.	Gms. MoO ₂ per 1000 Gms.		
t ,	Sat. Solution.	H ₂ O.	• .	Sat. Solution.	H _t O.	
14.8	2.112	2.117	45	3.648	3.66 1	
24.6	2.612	2.619	52	4.167	4.184	
30.3	2.964	2.973	бо	4.665	4.685	
36.8	3.284	3.295	70	4.213	4.231	
42	3 - 434	3.446	80	5.185	5.212	

SOLUBILITY OF MOLYBDIC ACID DIHYDRATE IN AQ. AMMONIUM SALT SOLUTIONS. (R. and D., 1903.)

t°.	Solvent.	Gms. MoU ₃ per 1000 Gms			
• .		Sat. Solution.	Solvent.		
29.6	10% (NH4)2SO4	18.91	19.27		
31.5	10% NH4HSO4	26.79	27.53		
41.8	"	33.22	34.36		
49.7		36.32	37.69		

Fusion-point data for MoO₂ + Na₂MoO₄ are given by Groschuff (1908).

MORPHINE C17H19NO3.H2O.

SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.; Müller, W., 1903.)

Solvent.	Gms. Morphine per 100 Gms. Solution.			Solvent.	Gms. Morphine per 100 Gms. Solution.		
	At 18°-22°.	At 25°.	At 80°.		At 18°-22°.	At 25°.	
Water	0.0283	0.030	0.0961	Chloroform	0.0655	0.0555	
Alcohol		0.600	1.31 (60°)	Amyl Alcohol	,	0.8810	
Ether	0.0131	0.0224	• • •	Ethyl Acetate	0.1861	0.1905	
Ether sat. with		-		Petroleum			
$\mathbf{H_{s}O}$	0.0004	• • •		Ether	0.0854		
H ₂ O sat. with				Carbon Tetra-	,		
Ether	0.0447			chloride	0.0156	0.032 (17°)	
Benzene	0.0625			Glycerol	0.45 (15.5		
Water	0.0254 (20°) (Win	terstein, 1909.)	CČL	0.025 (20	(Gori, 1913.)	
Chloroform	0.0504 (20°) `	4	Aniline	6.1 (20°)		
Water	0.0288 (15°) (Gue	rin, 1913.)	Pyridine	16 (20°)	a	
Acetone	0.128 (15°)	44	Piperidine	39.8 (20°)		
Aq. 50 Vol. %		• •		Diethylamine	7.41 (20°	44	
Acetone	0.132 (15°)	44	50% Åq.	3	f(Baroni and	
Water	0.0217 (20°) (Zala	i, 1910.)	Glycerol +	\5.2	Barlinetto.	
Water	0.0192 (d, 1907.)	3% H ₂ BO ₂	(r. temp.)	1911.)	

SOLUBILITY OF MORPHINE IN SEVERAL SOLVENTS AT 25°. (Schaefer, 1913.)

Solvent.	Gms. C ₁₇ H ₁₉ NO ₃ .H ₂ O per 100 cc. Solvent.	Solvent.	Gms. C ₁₇ H ₁₈ NO ₃ .H ₂ O per 100 cc. Solvent.
Ethyl Alcohol	0.388	1 Vol. C ₂ H ₅ OH+4 Vols. CHCl ₂	0.66
Methyl Alcohol		" +4 Vols. C6H6	0.2
Chloroform	0.04	I Vol. CH ₃ OH +4 Vols. CHCl ₃	4 · 54
Benzene	insol.	" +4 Vols. C ₆ H ₆	2.5

SOLUBILITY OF MORPHINE IN ETHYL ETHER AT 5.5°. (Marchionneschi, 1907.)

	Sc	dvent.		Gms. Morphine per 100 Gms. Sat. Sol.	Solid Phase.
	and Distilurified by		over No	0.049	C ₁₇ H ₁₉ NO ₃ .H ₂ O
emer r	urmed by		1 OVEL IVA	0.263 0.56	C ₁₇ H ₁₉ NO ₂

SOLUBILITY OF MORPHINE IN AQUEOUS SOLUTIONS OF SALTS AND BASES AT ROOM TEMPERATURE, SHAKEN EIGHT DAYS. (Dieterich, 1890.) To N/ro Solt or Rose To N/r Solt or Rose

	In N/10 Sa	It or Base.	In N/1 Salt or Base. Grams per Liter.		
Aq. Salt or Base.	Grams pe	er Liter.			
Aq. Suit of Dass.	Salt or Base.	Morphine.			
NH,OH	3.51	0.20	35.08	0.505	
$(NH_4)_2CO_8$	4 · 8o	0.031	48.03	0.040	
KOH	4.62	2.78	46.16	• • •	
K,CO ₈	6.92	0.20	69.15	0.379	
KHCO ₂	10.02	0.024	100.16	0.040	
NaOH	4.00	3 · 33	40.05	• • •	
Na ₂ CO ₈	5 - 30	0.09	53.03	0.14	
NaHCO ₈	8.41	0.032	84.06	0.044	
Ca(OH); (sat.)	•••	1 .∞ (25°)	• • •	•••	

MORPHINE ACETATE CH₂COOH.C₁₇H₁₉NO₂, 3H₂O, Morphine Hydrochloride HCl.C₁₇H₁₉NO₂, 3H₂O, Morphine Sulphate H₂SO₄. (C₁₇H₁₉NO₂)₂, 5H₂O, and Apo Morphine Hydrochloride HCl.C₁₇H₁₇NO₂.

SOLUBILITY IN SEVERAL SOLVENTS.

(U. S. P.)

Grams	per	100	Grams	œ	Solvent.
-------	-----	-----	-------	---	----------

Solvent.	Acetate.		Hydrochloride.		Sulphate.		Apo M. Hy	irochloride.
	25°.	80°.	25°.	80°.	25°.	80°.	250.	80°.
Water Alcohol	44.9 4.6	50.0 40.0*	5.81 2.4	200.0 2.8*	6.53 0.22	166.6 0.53*	2.53 2.62	6.25 3·33
Chloroform	0.21	•••	•••	• • •	• • •		0.026	• • • •
Ether	• • •	• • •	•••	• • •	• • •	• • •	0.053	• • •
Glycerine	19.2	•••	20.0	• • •	• • •	• • •	• • •	• • •
			* 60°.	+ •	c.c ⁰ .			

100 gms. H₂O dissolve 1.69 gms. apo morphine hydrocloride at 15.5°, and 2.04 gms. at 25°.

100 gms. 90% alcohol dissolve 1.96 gms. apo morphine hydrochloride at about 15.5°. (Dott, 1906.)
100 gms. H₂O dissolve 4.17 gms. morphine hydrated sulfate .5H₂O at 15°.

(Power, 1882.)

MORPHINE SALTS (con.)

SOLUBILITY IN WATER AND IN 90% ALCOHOL AT ORD. TEMP. (Squire and Caines, 1905.)

	Gms. Sal	t per 100 cc.		ms. Salt	рег 100 сс.
Morphine Salt.	H₂O.	90% Alcohol.	Morphine Salt.	H _z O.	90% Alcohol.
Morphine Acetate		1	Diacetyl Morphine (Heroine)	0.11	2.5
" Hydrochloride		2	" HCl	50	9.1
" Sulfate		0.143	Ethyl Morphine HCl (Dionin)	14.3	20
" Tartrate	10	0.172		_	_

100 gms. 4% HClO₄ solution dissolve 0.44 gm. morphine perchlorate at 15°.
(Hofmann, Roth, Höbald and Metzler, 1910.)

SOLUBILITY OF MORPHINE SALTS IN SEVERAL SOLVENTS AT 25°. (Schaeffer, 1913.)

Gms. of Each Salt Separately per 100 cc. of Each Solvent.

	Morphine Hydrochloride.	Morphine Sulfate.	Diacetyl Morphine.	Diacetyl Morphine HCl.	Ethyl Morphine HCl.	
95% Ethyl Alcohol	0.606	0.2	3	9.1	4	
85% Ethyl Alcohol	1.2	0.4	• • •		• • •	
80% Ethyl Alcohol	2	0.77				
Methyl Alcohol		• • •	4	II.I	66.6	
Chloroform	Insol.	Insol.	66.6	33 · 3	0.526	
Benzene	Insol.	Insol.	12.5	Insol.	Insol.	
I Vol. C ₂ H ₅ OH+4 Vols. CHCl	8 0.18	0.0164	66.6	4.5	5	
" $+4$ Vols. C_6H_6	0.089	0.0133	25	0.71	1.14	
1 Vol. CH ₈ OH +4 Vols. CHCl	3	0.22	66. 6	20	20	
" +4 Vols. C ₆ H ₆	0.253	0.066	25	6. 6	8.33	

Ethyl MORPHINE C₁₇H₁₇ON(OH)(OC₂H₅).

IOO cc. H₂O dissolve 0.208 gm. C₁₇H₁₇OH(OH)(OC₂H₄) at 25°. (\$chaeffer, 1912.)

" alcohol " 1.33 gms. " " "

ether " 66.6 " " " "

Ethyl MORPHINE HYDROCHLORIDE C₁₇H₁₇NO(OH)(OC₁H₅).HCl.2H₂O (Dionin) (see also on preceding page).

SOLUBILITY IN WATER AND IN ALCOHOL. (Schaeffer, 1912.)

Gms. Ethyl Morphine HCl
per 100 cc.

Water. Alcohol.

t°.	Water.	Alcohol.
15	8.7	3.85
25	12.5	5
40	25	12.I
, 50 · · ·	40	20

These results differ from similar data for commercial samples of Dionin.

The differences are believed to be due to the impurities (amorphous salts of the by-products of the ethylation) in commercial products.

100 cc. H2O dissolve 10 gms. ethyl morphine hydrochloride at ord. temp. (Dott, 1912.)

MUSTARD OIL Allyl Isothiocyanic Ester CS:NC, H,.

SOLUBILITY IN SULFUR BY SYNTHETIC METHOD. (See Note, p. 16.)
(Alexejew, 1886.)

6° .	Gms. Mustard Oil per 100 Gms.			
٠.	Sulfur Layer.	Mustard Oil Layer		
90	10	72		
100	12	67		
110	15	62		
120	23	51		
124 (crit. temp.))	35		

Freezing-point data for allyl isothiocyanate + aniline are given by Kurnakov and Solovev (1916). Results for methyl isothiocyanate + phenanthrene and methyl isothiocyanate + naphthalene are given by Kurnakov and Efrenov (1912).

MYRISTIC ACID C12H27COOH.

SOLUBILITY IN ALCOHOLS. (Timofeiew, 1894.)

Alcohol.	ť.	Gms. C ₁₃ H ₂₇ COOH per 100 Gms. Sat. Sol.	Alcohol.	r.	Gms. C ₁₉ H ₂₇ COOH per 100 Gms. Sat. Sol.
Methyl Alcohol	0	2.81	Propyl Alcohol	0	5.6
" "	21	21.2	<i>a</i>	21	31.2
u u	31.5	59.2	u u	36.5	55.3
Ethyl Alcohol	0	7.14	Isobutyl Alcohol	0	6.4
" "	21	31	" "	21	28

Freezing-point data for myristic acid + palmitic acid are given by Heintz (1854).

NAPHTHALENE C10Hs.

1000 cc. H₂O dissolve 0.019 gm. C₁₀H₈ at 0° and 0.030 gm. at 25°. (Hilpert, 1916.) SOLUBILITY IN ACETIC AND OTHER ACIDS. (Timofeiew, 1894.)

Acid.	ť.	Gms. C ₁₀ H ₈ per roo Gms. Acid.	Acid.	t°.	Gms. C ₁₈ H ₈ per 100 Gms. 'Acid.
Acetic Acid	6.75	6.8	Isobutyric Acid	6.75	12.3
" "	21.5	13.1	Propionic Acid	6.75	13.9
"	42.5	31.1	-u u	21.5	23.4
" "	51.3	53 · 5	"	50	79.8
- "	60	III	Valeric Acid	6.75	9.5
Butyric Acid	6.75	13.6	" " •	21.5	17.7
u u	21.5	22.I	a a	65	167.4
" "	60	131.6			•

SOLUBILITY OF NAPHTHALENE IN AQUEOUS AMMONIA. (Hilpest, 1916.)

Solvent.	Gms. C _{le} H ₈ per 1000 Gms. Solvent at:		
	·.	25°.	
Aq. 5% NH ₃	0.030	0.044	
Aq. 10% NH ₃	0.042	0.074	
Aq. 25% NH ₃	0.064	0.162	
100% NH:	33	120	
Aq. 2% Pyridine	0.082	0.245	

SOLUBILITY IN METHYL, ETHYL, AND PROPYL ALCOHOLS. (Speyers—Am. J. Sci. [4] 14, 294, '02; at 10.5°, de Bruyn—Z. physik. Chem. 10, 784, '92; at 11°, Time feiew—Compt. rend. 112, 1137, '91.)

The original results were calculated to a common basis, plotted on cross-section paper, and the following table read from the curves.

	In Methyl Alcohol.		In Ethyl Alcohol.		In Propyl Alcohol.	
ŧ°.	Wt. of r cc. Solution.	Gms. C ₁₀ H ₆ per 100 Gms. CH ₈ OH.	Wt. of 1 cc. Solution.	Gms. C ₁₀ H ₆ per 100 Gms. C ₂ H ₆ OH.	Wt. of 1 cc. Solution.	Gms. C ₁₀ H ₆ per 100 Gms. C ₂ H ₇ OH.
0	0.8194	3.48	0.8175	5.0	0.8285	4 · 45
IO	0.812	5.6	0.814	7.0	0.824	5.6
20	0.807	8.2	0.810	9.8	0.821	8.2
25	0.805	9.6	0.809	11.3	0.820	9.6
30	0.804	11.2	0.809	13.4	0.820	11.4
40	0.805	16.2	0.812	19.5	0.823	16.4
50	0.813	26.0	0.822	35.0	0.837	26.o
бo	0.837	50.0	0.855	67.0	0.867	50.0
65	0.870	• • • •	0.890	96.o	0.897	80.0
70	0.9023 (680))	0.930	179.0	0.933	134.1 (68.5°)

EQUILIBRIUM IN THE SYSTEM NAPHTHALENE, ACETONE, WATER. (Cady, 1898.)

An excess of naphthalene was added to each of a series of mixtures of water and acetone and the temperature determined at which a second liquid phase first appeared. Since an excess of naphthalene was present, the amount dissolved was not known. The following supplementary experiment was, therefore, required to ascertain the composition of the saturated solution in each case. "A weighed quantity of naphthalene was added to a known weight of the mixed liquids, the amount being just sufficient to cause the formation of two liquid phases. The consolute temperature of the system was then determined and the experiment repeated several times with different amounts of naphthalene. If the results are plotted, using the weights of naphthalene in a constant quantity of the mixed liquids as abscissas and the temperatures as ordinates, we shall get a series of curves. The composition of the liquid phase at the moment when the system passes from solid, solution and vapor to solid, two solutions and vapor is given by the point at which the prolongation of the curve for that particular mixture of acetone and water, cuts the ordinate for temperature at which the change takes place. This method requires no analysis and is of advantage in this case where ordinary quantitative analysis would be very difficult." Considerable difficulty was experienced in determining the consolute temperatures. It was necessary on account of the extreme volatility of the acetone to seal the mixtures in tubes.

The table of results, calculated with the aid of the determinations made as described above, is given on the following page.

TABLE SHOWING THE TEMPERATURES AT WHICH SOLUTIONS OF THE GIVEN COM-POSITIONS BEGIN TO SEPARATE INTO TWO LAYERS IN PRESENCE OF SOLID NAPHTHALENE. (Cady, 1898.)

(Calculated as described on preceding page.)

ť.	Gms. per 100 Gms. Solution.				
	Acetone.	Water.	Naphthalene.		
65.5	10	89.92	0.08		
53 · 3	19.91	80	0.09		
45	29.92	69.67	0.41		
38	40.81	58.22	0.97		
32.2	48.67	48.68	2.65		
28.5	57 · 43	36.64	5 · 9 3		
28.2	60.43	25 · 75	13.82		

The isotherms for intervals of 10° lie so close together that they are practically indistinguishable for the greater part of their length.

SOLUBILITY OF NAPHTHALENE IN LIQUID CARBON DIOXIDE. (Büchner, 1905-06.) (Synthetic Method used.)

Crit. Temp.	Gms. C ₁₀ H ₈ per 100 Gms. Sat. Sol.
34.8	8
64	54
8o	100

100 gms. 95% formic acid dissolve 0.30 gm. naphthalene at 18.5°. (Aschan, 1913) 100 gms. 95% formic acid dissolve 3.44 gms. α nitronaphthalene at 18.5°. "Data for equilibrium in the systems: naphthalene, phenol, water and naphthalene, succinic acid nitrile, water, determined by the synthetic method, are given by Timmermans (1907).

SOLUBILITY OF NAPHTHALENE IN:

	Chloroform.	(Carbon Tetra Chloride,	Carbon Di Sulphide.
	(Speyers; Etard.)	(S	chröder — Z. physik Ch. 11, 457, '93.) t	. (Arctowski — Compt. end. 121, 123,'95; Etard.
\$°.	Wt. of 1 cc. Solution.	Gms. C ₁₆ H ₈ per 100 Grams CHCle	Gms. C ₁₀ H _s per too Gms. Sat. Solution.	Gms. C ₁₆ H ₈ per 200 Gms. Sat. Solution.
108	• • •	• • •	• • •	0.62
- 82	•••	• • •	• • •	1.38
– 50	• • •	• • •	• • •	2.3
– 30	• • •	8.8	• • •	6.6
— 10	• • •	15.6	• • •	14.1
0	I . 393	19.5	9.0	1 9. 9
+ 10	1.355	25.5	I 4.0	27 · 5
20	1.300	31 ·8	20.0	3 6.3
25	1.280	35 · 5	23.0	41.0
30	1.255	40·I	2 6.5	46.a
40	1.205	49 - 5	35 · 5	57 - 2
50	1.150	60.3	47 · 5	67 . 6
60	1.090	73 · I	62.5	79.2
70	I -040	87 . 2	8o.o	90.3

Note. — Speyers' results upon the solubility of $C_{10}H_a$ in CHCl_a, when calculated to grams per 100 grams of solvent, agree quite well with Etard's (Ann. chim. phys. [712 570, '94 figures, reported on the basis of grams $C_{10}H_a$ per 100 grams saturated solution.

SOLUBILITY OF NAPHTHALENE IN: (Schröder; Etard; Speyers.)

Be	enzenė.	Chlor Benzene.	Hexane.	Tolu	ene.
t°.	Gms. C ₁₉ H _e per 100 Gms. Solution.	Gms. C ₁₀ H ₀ per 100 Gms. Solution.	Gms. C ₁₀ H ₆ per 100 Gms. Solution.	Wt. of 1 cc. Solution.	Gms. C ₁₀ H ₀ per 100 Gms. C ₀ H ₀ .CH ₀ .
-50	• • •	• • •	0.3	• • •	• • •
- 20		• • •	1.9	• • •	• • •
0		• • •	5 · 5	0.9124	
+10	27.5	24.0	9.0	0.9126	15.0
20	36. 0	31.0	14.0	0.9135	28.0
25	40.5	35.0	17.5	0.9155	36.o
30	45.5	39.0	21.0	0.9180	42.0
40	54.0	48.0	30.8	0.9250	56.o
50	65.o	57·5	43.7	0.9350	69.5
60	77.5	70.5	60.6	0.9475	83.0
70	88.o	85.0	78.8	0.9640	97.5
80	• • •	•••	•••	0.9770	0.111

Freezing-point data (solubility, see footnote, p. 1) are given for mixtures of naphthalene and each of the following compounds:

```
a Naphthol. (Crompton & Whitely, 1895; Küster, 2.4 Dinitrophenol. 5 (Saposchinikow, 1904;
                 '95; Vignon, '91; Miers & Isaac, '08a.) Picric Acid.
                                                                               Kremann, 1904.)
β Naphthol. (Crompton & Whitely, 1895; Vignon,
                                                    Pyridine. (Hatcher & Skirrow, 1917.)
Pyrocatechol. (Kremann & Janetzky, 1912.)
                  1891; Isaac, 1908.)
α Naphthylamine.
                                                     Resorcinol.
                          (Vignon, 1891.)
                                                                      (Vignon, 1891; Kremann &
                                                                         Janetzky, 1912.)
Dihydronaphthalene. (Küster, 1891.)
                                                     Stearic Acid.
                                                                            (Courtonne, 1882.)
Nitronaphthalene.
                          (Palazzo & Battelli, 1883.)
                                                     Sulfur.
                                                                             (Bylert,
                                                                                        .)
Palmitic Acetic Ester. (Batelli & Martinetti, '85.)
                                                     Nitrotoluene.
                                                                            (Kremann, 1904.)
Paraffin.
                          (Palazzo & Battelli, 1883.)
                                                     1.2.4 Dinitrotoluene.
Phenanthrene.
                      (Vignon, 1891; Miolati, 1897.)
                                                     1.2.6
                                                                        (Kremann & Rodinis, 1906.)
                                                                   46
                                                                                  ..
           (Yamamoto, '08; Hatcher & Skirrow, '17.)
                                                     1.3.4
                                                                                  44
o Nitrophenol. (Saposchinikow, '04; Kremann, '04.)
                                                     1.3.5
Nitrophenol.
                                                     Trinitrotoluene.
                           (Kremann, 1904.)
                                                                             (Kremann, 1904.)
                                                     p Toluidine.
Thymol.
                                                                            (Vignon, 1891.)
                                                                             (Roloff, 1895.)
```

F.-pt. data are also given for the following mixtures:

To per ducta and allog Broad for this tor	
	(Campetti & Delgrosso, 1913; Palazzo & Batelli, 1883.)
a Nitronaphthalene + Urethan.	(Mascarelli, 1908.)
α Nitronaphthalene + α Naphthylami	ne. (Tsakalotos, 1912.)

β NAPHTHALENE SULFONIC ACID C₁₀H₇SO₂H.

SOLUBILITY IN AQUEOUS HYDROCHLORIC ACID AT 30°. (Masson, 1912.)

dagof Sat.	Mols. per	Liter Sat. Sol.	Gms. per Liter Sat. Sol.	
Solution.	HCl.	C ₁₀ H ₇ SO ₃ H.	HCl.	C ₁₀ H ₇ SO ₂ H.
1.1925	0	3.263 ·	0	679
1.1653	1.291	2.470	47.08	514
1.1553	1.826	2.117	66.59	440.6
1.1115	4.017	0.762	146.5	158.6
1.1197	7.232	0.089	263.7	18.5
1.1560	0.88	0.063	360.3	13.1

β NAPHTHOIC ACID C₁₀H₇COOH.

One liter of aqueous solution contains 0.058 gm. C₁₀H₇COOH at 25°.

(Paul, 1894.)

Dihydro & NAPHTHOIC ACIDS C₁₀H₂COOH (118° and 161° isomers).

SOLUBILITY OF EACH ISOMER, DETERMINED SEPARATELY, IN WATER. (Derick and Kamm, 1916.)

r.	per 10 cc. of the Sat. Solution of the:			
	118° Isomer.	161° Isomer.		
0	0.39	0.19		
20	0.56	0.34		
40	1.34	0.69		
55–56	2.89	1.45		
71-72	6.7	3.48		
80	9.3	4.68		
90	14.6	8		
96-97	20. I	10.5		

8 NAPHTHOL CmH7OH.

SOLUBILITY IN WATER.

r.	Gms. β C ₁₉ H _T OH per 100 cc. Sat. Sol.	Authority.
12.5	0.044	(Kuriloff, 1897.)
25.I	0.074	(Küster, 1895.)
29.5	0.0876	(Kuriloff, 1898.)

Data for the solubility of isomorphous mixtures of β naphthol and naphthalene in water at 25.1° are given by Küster (1895).

SOLUBILITY OF & NAPHTHOL IN AQUEOUS SOLUTIONS OF PICRIC ACID AT 29°. (Kuriloff, 1898.)

Mols. X 10° per 10	oo cc. Solution.	Gms. per 100	cc. Solution.	
C ₄ H ₂ .OH(NO ₂) ₂ .	C ₁₀ H ₇ OH.	C.H.OH(NO.).	C ₁₀ H ₇ OH.	Solid Phase.
0	609	0	0.0877	β Naphthol
54	615	0.0124	0.0886	46
68.5	620	0.0157	0.0894	" + Naphtholpicrate
69	607	0.0158	0.0875	β Naphtholpicrate
69	597	0.0158	0.0860	4
88	494	0.0212	0.0712	44
100	390	0.0229	0.0562	"
196	180	0.0440	.0.0250	u
308	105	0.0706	0.0151	4
933	8	0.2138	0.0011	" +Picric Acid
928	0	0.2126	0	Picric Acid

Data are also given for the distribution of β naphthol between water and benzene. The mean of the conc. in C_6H_6 layer divided by conc. in H_1O layer is given as 67. The temperature is not given. The determination of the β naphthol was made by an iodine titration method.

The coefficient of distribution of β naphthol between H₂O and CHCl₂ at 25° is; conc. in H_2O + conc. in $CHCl_3$ = 0.0171.

Data for the solubility of β naphthol, picric acid (naphthol picrate) and their mixtures in benzene, determined by the synthetic (sealed tube) method, are given by Kuriloff (1897a).

7 Kurilott (1897a). 100 cc. 90% alcohol dissolve about 55 gms. β C₁₀H₇OH at 15.5°. (Greenish and Smith, 1903.) 100 gms. 95% formic acid dissolve 3.11 gms. β C₁₀H₇OH at 18.6°. (Aschan, 1913.) SOLIDIFICATION TEMPERATURES OF MIXTURES OF B NAPHTHOL AND SALOL. (Bellucci. 1912.)

	(Dentece)	1311.7	
t° of Solidification.	Gms. β C ₁₀ H-OH per 100 Gms. Mixture.	t° of Solidification.	Gms. β C ₁₆ H ₇ OH per 100 Gms. Mixture.
121.7	100	8 o	40
116.5	90	68	30
III	80	52.5	20 .
105	70	34 Eutec.	10
97 · 5 88	60	38.5	5
88	50	42	Ö

FREEZING-POINT DATA (Solubility, see footnote, p. 1) ARE GIVEN FOR THE FOLLOWING MIXTURES:

α Naphthol	$+ \alpha$ Naphthylamine.	(Vignon, 1891.)
44 -	+β "	"
**	+ Dimethylpyrone.	(Kendall, 1914.)
"	+ Resorcinol.	(Vignon, 1891.)
44	+ p Toluidine.	(Vignon, 1891; Philip, 1903.)
β Naphthol	+ α Naphthol.	(Vignon, 1891; Crompton and Whiteley, 1895.)
44	+ α Naphthylamine	(Vignon, 1891.)
44	+β ' '	44
44	+ Dimethylpyrone	(Kendall, 1914.)
44	+ Picric Acid.	(Kendall, 1916.)
64	+ Sulfonal	(Bianchini, 1914.)
44	+ p Toluidine.	(Vignon, 1891.)

- a NAPHTHYLAMINE p Sulfonic Acid, 1.4 a C10H6NH2.SO2H.
- a NAPHTHYLAMINE o Sulfonic Acid, 1.2 a C10H6NH2.SO2H.

SOLUBILITY OF EACH SEPARATELY IN WATER. (Dolinski, 1904)

	Gms. per 100 Gms. H ₂ O ₀			Gms. per 100	Gms. H ₂ O.
6°.	♦ Sulphonic	o Sulphonic	ŧ°.	Sulphonic	o Sulphonic
	Ac.	Ac.		Ac.	Ac.
0	0.027	0.24	50	0.059	0.81
IO	0.029	0.32	60	0.075	1.01
20	0.031	0.41	70	0.097	I .37
30	0.037	0.52	80	0.130	1.80
40	0.048	0.65	90	0.175	2.40
		_	100	0.228	3.19

The coefficient of distribution of β naphthylamine between benzene and water at 25° is; conc. in C_6H_6 + conc. in H_2O = 279. The coefficient for α naphthylamine, similarly determined, is 252. (Farmer and Warth, 1904.)

FREEZING-POINT DATA ARE GIVEN FOR THE FOLLOWING MIXTURES:

β NAPHTHYL BENZOATE C₆H₅COOC₁₀H₇.

100 gms. 95% formic acid dissolve 0.25 gm. C₀H₀COOC₁₀H₇ at 18.6°. (Aschan, 1913.)

NARCEINE $C_{22}H_{27}NO_8 + 3H_2O$.

100 gms. H₂O dissolve 0.078 gm. narceine at 13°; 100 gms. 80% alcohol dissolve

0.105 gm. at 13°.
100 gms. CCl₄ dissolve 0.011 gm. narceine at 17° (Schindelmeiser, 1901); 0.002 gm. at 20° (Gori, 1913).

NARCOTINE Ca0H22NO7.

SOLUBILITY IN SEVERAL SOLVENTS.

Solvent.	t°.	Gms. Narcotine per 100 Gms. Solvent.	Authority.
Water	15	0 I*	(Guerin, 1913.)
Water	20	0.00445	(Zalai, 1910.)
Acetone	15	41.96*	(Guerin, 1913.)
Aq. 50 Vol. % Acetone	15	0.7*	"
Aniline	20	25	(Scholtz, 1912.)
Pyridine	20	2.3	ш
Piperidine	20	I.7	ec .
Diethylamine	20	0.4	и
Carbon Tetrachloride	20	1.04	(Gori, 1913.)
Trichlor Ethylene	15	6.5	(Wester and Bruins, 1914.)
Oil of Sesame	20	0.086	(Zalai, 1910.)
	Per roo	cc solvent	

NEODYMIUM CHLORIDE NdCl.6H₂O.

SOLUBILITY IN WATER. (Matignon, 1906, 1909.)

Method of obtaining saturation not stated.

t°.	d _{1.8} of	Gms. NdCl ₃ per 100 Gms.		Gms. NdCl ₃ .6H ₇ O per 120 Gms.	
• •	Sat. Sol.	Sat. Sol.	Water.	Sat. Sol.	Water.
13	I.74	49.67	98.68	71.12	246.2
100			140		

100 gms. abs. alcohol dissolve 44.5 gms. (anhydrous) NdCli at 20°. Saturation was obtained by spontaneous evaporation of the solution over H2SO4.

(Matignon, 1906.) 100 gms. anhydrous pyridine dissolve 1.8 gms. anhydrous NdCl₈ at about 15 Saturation obtained by daily agitation of the solution for some weeks. (Matignon, 'o6.)

NEODYMIUM COBALTICYANIDE Nd₂(C₀C₆N₆)₂.9H₂O.

1000 gms. aq. 10% HCl ($d_{16} = 1.05$) dissolve 4.19 gms. salt at 25°. (James & Willand, '16.)

NEODYMIUM GLYCOLATE Nd(C₂H₂O₂)₂.

One liter H₂O dissolves 4.609 gms. salt at 20°. (Jantsch & Grünkraut, 1912-13.)

NEODYMIUM MOLYBDATE Nd₂(MoO₄)₃.

One liter H₂O dissolves 0.0186 gm. salt at 28° and 0.0308 gm. at 75°. The mixtures were frequently stirred at constant temperature during only two hours.
(Hitchcock, 1895.)

NEODYMIUM Double **NITRATES.**

Solubility in Aq. HNO₃ of $d_{14} = 1.325 (= 51.59 \text{ Gms. HNO}_3 \text{ per}$ 100 CC.) AT 16°. (Jantsch, 1912.)

Double Salt.			Formula.			Gms. Hydrated Double Salt per 100 Gms. Sat. Sol.
Neodymium	Magnesium	Nitrate	[Nd(NO ₈)	$_{6}]_{2}Mg_{3}.$	24H2O	97 · 7
66	Nickel	•6	• "	Ni ₃	"	116.6
"	Cobalt	66	"	CO ₃	"	151.6
"	Zinc	"	"	Zn_3	"	177
"	Manganese	"	"	Mn_3	"	296

NEODYMIUM OXALATE Nd₂(C₂O₄)₃.10H₂O.
SOLUBILITY IN WATER AT 25° BY ELECTROLYTIC DETERMINATION.
(Rimbach and Schubert, 1909.)

One liter sat. solution contains 0.0053 mg. equivalents of anhydrous salt = 0.49 milligram.

SOUUBILITY IN AQUEOUS 20% SOLUTIONS OF METHYL, ETHYL AND TRIETHYL AMINE OXALATES, ROUGHLY DETERMINED. (Grant and James, 1917.) 100 cc. aq. 20% methyl amine oxalate dissolve 0.027 gm. neodymium oxalate.

et.hyl 44 0.107 " " triethyl 0.065 SOLUBILITY OF NEODYMIUM OXALATE IN AQUEOUS SOLUTIONS OF NEODYMIUM NITRATE AT 25°. (James and Robinson, 1913.)

(The mixtures were constantly agitated at constant temperature for twelve weeks.)

Gms. per 100 Gms. Sat. Sol.		0.22.01	Gms. per 100	Gms. Sat. Sol.	
Nd ₂ (C ₂ O ₄) ₃ .	Nd ₂ (NO ₂₎₆ .	Solid Phase.	Nd ₂ (C ₂ O ₄) ₂ .	Nd ₂ (NO ₂) ₆ .	Solid Phase.
0.18	6.46	$Nd_2(C_2O_4)_3.11H_2O$	2.07	47.64	$Nd_2(C_2O_4)_3.11H_2O$
0.54	12.23	44	2.54	50.52	a
0.76	17.78	64	2.89	52.82	"
0.85	22.67	44	3.17	54.67	u
0.96	27 - 43	46	2.21	56.48 probably	1.23.24
1.28	31.36	44	I.44	59.68	$Nd_2(NO_2)_4(?H_2O)$
1.38	35.26	u	1.33	59.67	"
1.66	38.70	"	1.21	59.70	ee .
1.88	42.13	44	0.96	59.75	æ
1.96	44.82	4		60.46	u

 $I.2\frac{1}{2}.24 = Nd_2(C_2O_4)_3.2\frac{1}{2}Nd_2(NO_3)_6.24H_2O_4$

NEODYMIUM Dimethyl PHOSPHATE Nd2[(CH2)2PO4]4.

100 gms. H₂O dissolve 56.1 gms. Nd₂[(CH₂)₂PO₄]₆ at 25° and about 22.3 gms. at 95°. (Morgan and James, 1914.)

NEODYMIUM SULFATE Nd2(SO4)2.

SOLUBILITY IN WATER. . (Muthmann and Rolig, 1898.)

ť.	Gms. Nd ₂ (SO ₄) ₃ per 100 Gms.		t°.	Gms. Nd ₂ (SO ₄) ₂ per 100 Gms.	
٠.	Solution. Water.	Water.	••	Solution.	Water.
0	8.7	9.5	50	3.5	3.7
16	6.6	7 . I	80	2.6	2.7
30	4.7	5	108	2.2	2.3

NEODYMIUM SULFONATES.

SOLUBILITY IN WATER.

Gms. Anhy-

Sulfonate.	Formula.	to drous Salt per Author	ity.
Neodymium:		H ₂ O.	

(Nitrobenzene Nd[CaH4(NO2)SO2]2.6H2O 46.I 15 (Holmberg, 1907.) Bromo | Sulfonate Nd[C₄H₄Br(1)NO₂(4)SO₂(3)]₄.8H₂O 25 7.25 (Katz & James, 1913.)

NEODYMIUM TUNGSTATE Nd2(WO4)2.

One liter H₂O dissolves 0.0190 gm. Nd₂(WO₄)₂ at 22°, 0.0168 gm. at 65° and 0.0152 gm. at 98°. The mixtures were not constantly agitated and only two hours were allowed for saturation. (Hitchcock, 1895.)

NEON Ne.

SOLUBILITY IN WATER.

(v. Antropoff, 1909-10.) ٥. 10.

Coef. of Absorption β 0.0114 0.0118 0.0147 0.0158 0.0203 0.0317

The results are in terms of the coefficient of absorption as defined by Bunsen (see p. 227) and modified by Kuenen, in respect to substitution of mass of H₂O for volume of H_2O in the formula Absorp. coef. Kuenen = $\frac{\sqrt{w} - v_f/\infty}{\text{mass of } H_2O \times P}$

NEURINE PERCHLORATE CH1.CH.N(CH1)2OH.HCIO4.

100 gms. H₂O dissolve 4.89 gms. of the salt at 14.5°. (Hoimann & Höbold, 1977.)

NICKEL BROMATE Ni(BrO₃)₂.6H₂O.

100 gms. cold water dissolve 27.6 gms. nickel bromate.

NICKEL BROMIDE NiBr2.6H2O.

SOLUBILITY IN WATER. (Etard, 1894.)

t*.	Gms. NiBr ₂ per 100 Gms. Solution.	ť.	Gms. NiBr ₂ per 100 Gms. Solution.	t.	Gms. NiBr _s per 100 Gms. Solution.
- 20	47 · 7	25	57 ⋅ 3	8o	60. 6
-10	50.5	30	58	100	60.8
0	53	40	59. I	120	60.9
+10	55	50	60	140	61
20	56.7	60	60.4		

NICKEL CARBONATE NiCO.

One liter H₂O dissolves 7.789 \times 10⁻⁴ mols. NiCO₅ = 0.0925 gm. at 25°. (Ageno and Valla, 1911.)

NICKEL CARBOXYL.

100 gms. of the aqueous solution saturated at 9.8° contain 2.36 cc. of the vapor = 6.43 milligrams Ni. In blood serum it is 2½ times as soluble. (Armit, 1907.)

MICKEL CHLORATE Ni(ClO.).

SOLUBILITY IN WATER. (Meusser — Ber. 35, 1419, '02.)

ŧ°.	Gms. Ni(ClO ₂) ₂ per 100 Gms Solution.	Mols. Ni(ClO ₂) ₂ per 100 Mols. H ₂ O		ŧ°.	Gms. Ni(ClO ₃) ₂ per 100 Gms. Solution.	Mols. Ni(ClO ₂) ₂ per 100 Mols. H ₂ C	Solid Phase.
— 18	49 · 55	7 .84	Ni(ClO ₃) ₃ .6H ₃ O	48	67.60	16.65	Ni(ClO ₃) ₃₋₄ H ₅ O
- 8	51.52	8.49	4	55	68.78	17.59	"
0	52.66	8.88	*	65	69.05	18.01	**
+ 18	56.74	10.47		79.5	75.50	24.68	*
40	64 . 47	15.35	#	-13.5	31.85	3.73	Ice
				- 0	26.62	2.00	44

Sp. Gr. of solution saturated at + 18 = 1.661.

According to Carlson (1910) 100 gms. sat. sol. in H_2O at 16° contain 64.1 gms. Ni(ClO₈)₂ and d_{16} of sat. sol. = 1.76.

NICKEL PerCHLORATE Ni(ClO4)2.9H2O.

SOLUBILITY IN WATER. (Goldblum and Terlikowski, 1912.)

ť.	d of Sat. Sol.	Gms. Ni(ClO ₄) ₂ per 100 Gm H ₂ O.	Solid Phase.	ť.	d of Sat. Sol.	Gms. Ni(ClO ₄) ₂ per 100 Gm: H ₂ O.	
. 0		o	Ice	-21.3		92.5	Ni(ClO _d),9H ₂ O
-10.9		33.19	4	0	1.573	104.6	Ni(ClO ₄) ₈₋₅ H ₆ O
-21.3		46.68	ee	7.5	1.576	106.8	Ni(ClO ₄) ₃₋₅ H ₂ O
-30.7		70	ec .	18	1.576	110.1	44
-49		• • • •	Ice + Ni(ClO ₄) ₈ .9H ₈ O	26	1.584	112.2	44
-30.7	• • •	90	Ni(ClO _d) ₃ .9H ₂ O	45	1.594	118.6	•

NICKEL CHLORIDE NiCl. 6H2O.

SOLUBILITY IN WATER. (Etard, 1894.)

r.	Gms. NiCl _s per 100 Gms. Solution.	4*.	Gms. NiCl _a per 100 Gms. Solution.	ť.	Gms. NiCl _s per 100 Gms. Solution.
-17	29.7	25	40	60	45.I
Ö	35	30	40.8	70	46
+10	37.3	40	42.3	78	46.6
20	39.I	50	43.9	100	46.7

1000 cc. sat. HCl solution dissolve 4 gms. NiCl₂ at 12°. (I 100 gms. abs. alcohol dissolve 10.05 gms. NiCl₂ at room temperature. (Ditte, 1881.)

100 gms. abs. alcohol dissolve 53.71 gms. NiCl₂.6H₂O at room temperature.

100 gms. abs. alcohol dissolve 2.16 gms. NiCl₂.7H₂O at 17°, and 1.4 gms. at 3°. (de Bruyn, 1892.) 100 gms. saturated solution in glycol contain 16.2 gms. NiCl₂ at room temperature. (de Coninck, 1905.)

100 cc. anhydrous hydrazine dissolve 8 gms. NiCl₂ at room temp. and solution is colored violet. (Welsh and Broderson, 1915.)

100 gms. 95% formic acid dissolve 5.9 gms. NiCl₂ at 20.5°. (Aschan, 1913.) When I gm. of nickel, as chloride, is dissolved in 100 cc. of 10% aq. HCl and shaken with 100 cc. of ether, 0.01 per cent of the Nickel enters the ethereal layer.

NICKEL CITRATE Ni₂[(COOCH₂)₂C(OH)COO]₂.2H₂O.

'100 cc. sat. solution in water contain 0.28 gm. Ni =[0.94 gm. anhydrous salt at 10°. (Pickering, 1915.)

NICKEL Potassium CITRATE K4Ni[(COOCH2)2COHCOO]2.

100 cc. sat. sol. in water contain 3.9 gms. Ni = 41 gms. salt at 10°. (Pickering, 1915.)

NICKEL HYDROXIDE Ni(OH)2.

Aqueous ammonia solutions of nickel hydroxide were evaporated in a vacuum desiccator and samples withdrawn at intervals for analysis. The results obtained in duplicate series yielded different curves. For 2 n NH, the gms. Ni per liter varied from 0.17 to 0.83. For 4 n NH2, the gms. Ni per liter varied from 0.36 to 1.8. (Bonsdorff, 1904.)

NICKEL IODATE Ni(IO2)2.

SOLUBILITY IN WATER. (Meusser — Ber. 34, 2440, 'or.)

t°.	Gms. Ni(IO ₃) ₂ per 100 Gms. Solution.	Mols. Ni(IO ₂) ₃ per 100 Mols H ₂ O.	Solid s. Phase.	t°.	Gms. Ni(IO ₃) ₃ per 100 Gms. Solution.	Mols. Ni(IO ₂) ₂ per 100 Mol H ₂ O.	Solid s. Phase.
0	0.73	0.033	Ni(IO ₃) ₂₋₄ H ₂ O	18	0.55	0.0245	Ni(IO ₂) ₂₋₂ H ₂ O (a)
18	I.OI	0.045	4	50	0.81	0.035	•
30	1.41	0.063	64	75	1.03	0.045	
0	0.53	0.023	$Ni(IO_3)_2.2H_3O(1)$	80	1.12	0.049	4
18	0.68	0.030	44	30	1.135	0.050	Ni(IO ₂) ₂
30	ა.86	0.039	44	50	1.07	0.046	
50	1.78	0.080	"	75	1.02	0.045	•
8	0.52	0.023	$Ni(IO_3)_2.2H_3O(2)$	90	o .988	0.044	•
		(1)	a Dihydrate.	(2)	₿ Dihydrat	e.	

NICKEL IODIDE Nil2.6H2O.

SOLUBILITY IN WATER. (Etard, 1894.)

ť.	Gms. Nil ₂ per 100 Gms. Solution	ŧ°.	Gms. NiI ₂ per 100 Gms. Solution.	ť.	Gms. Nil, per 100 Gms. Solution.
-20	52	25	60.7	60	64.8
0	55· 4	30	61.7	70	65
IO	57·5	40	63.5	80	65.2
20	59·7	50	64.7	90	65.3

By interpolation the tr. pt. for NiI₂.6H₂O + NiI₂.4H₂O is at 43°.

NICKEL MALATE Ni[CH2CHOH(COO)]2.3H2O.

100 cc. sat. solution in water contain 0.02 gm. Ni = 0.06 gm. salt at 10°. (Pickering, 1915.)

MICKEL MITRATE Ni(NO₂)₂.

SOLUBILITY IN WATER.

(Funk - Wiss. Abh. p. t. Reichanstalt, 3, 439, '00.)

t°.	Gms. Ni(NO ₂) ₂ per 100 Gms. Solution.	Mols. Ni(NO ₁) ₂ per 100 Mo H ₂ O.	Solid ls. Phase.	6°. 1	Gms, Ni(NO ₈) ₂ per 100 Gms. Solution.	Mols. Ni(NO ₃) ₂ per 100 Mols. H ₃ O.	Solid Phase.
-23	39.02	6.31	Ni(NO ₃) ₃₋₉ H ₃ O	20	49.06	9 · 49	Ni(NO ₂) _{2.6} H ₂ O
-21	39.48	6.43	44	41	55.22	I2.I	44
-10	.5 44.13	7 79	44	56.7	62.76	16.7	"
-21	39.94	6.55	Ni(NO ₃) _{2.6} H ₂ O	58	61.61	15.9	Ni(NO ₂) ₃₋₃ H ₂ O
-12	.5 41.59	7.01	**	бo	61.gg	16.0	44
-10	42.11	7.16	•	64	62.76	16.6	"
- 6	43.00	7 - 44	4	70	63.95	17.6	4
0	44.32	7.86	44	90	70.16	23.I	44
+18	48.59	9.3	••	95	77.12	33 · 3	4

100 gms. sat. solution in glycol contain 7.5 gms. Ni(NO₂)₂ at room temperature.

(de Coninck.)

100 cc. anhydrous hydrazine dissolve 3 gms. Ni(NO₂)₂ at room temp.

(Welsh and Broderson, 1915.)

NICKEL OXALATE Ni(COO)₂.

100 gms. 95% formic acid dissolve 0.01 gm. at 19.8°.

(Aschan, 1913.)

NICKEL SULFATE NiSO4.7H2O.

SOLUBILITY IN WATER. (Steele and Johnson, 1904; see also Tobler, Etard and Mulder.)

t°.	Grams NiSO ₄ per		Solid	t°.	Grams NiSO ₄ per 100 Gms.		Solid
	Solution.	Water.	Phase.	•	Solution.	Water.	Phase.
-5	20 . 47	25 · 74	NiSO ₄₋₇ H ₂ O	33.0	30.25	43 · 35	NiSO _{4.6} H ₂ O
0	21.40	27 . 22	-	35.6	30.45	43 - 79	' (blue)
9	23.99	31.55	**	44 · 7	32.45	48.05	44
22.6	27 . 48	37.90	"	50.0	33 - 39	50.15	44
30	29.99	42 . 46	4	53.0	34.38	52.34	44
32.3	30.57	44.02	4	54.5	34 · 43	52.50	Niso _{4.6} H ₂ O
33	31.38	45 - 74	44	57.0	34.81	53.40	" (green)
34	31.2Q	45 · 5	**	60	35 · 43	54.80	4
32.3	30.35	43 · 57	Niso.6H2O	70	37 - 29	59 - 44	
33.0	30.25	43 · 35	" (blue)	80	38.71	63.17	•
34.0	30.49	43.8 3	•	99	43 - 42	76.71	•

Transition points, hepta hydrate

hexa hydrate = 31.5°. Hexa hydrate (blue)

hexa hydrate (green) = 53.3°.

SOLUBILITY OF MIXTURES OF NICKEL SULPHATE AND COPPER SULPHATE, (Fock — Z. Kryst. Min. 28, 387, '97.)

Results	at 35°.	-	-			
Gms. per 100	Gms. H₃O.	Mol. per cen	t in Solution.	Mol. per cent i	n Solid Phase.	Crystal
CuSO ₄ .	NiSO4.	CuSO ₄ .	NiSO ₄ .	CuSO ₄ .	NisO4.	Form.
9.62	583.9	1.57	98.43	0.35	99.65	Rhombic
41.66	484.4	7.69	92.31	2.12	97 .88	14
75 - 39	553 · 5	11.66	88.34	4.77	95.23	Tetragonal
106.40	506.5	16.92	83.08	6.52	93.48	4
172.0	483.8	25.63	74.37	13.88	86.17	•
186.g	468.o	07.00	#0 TO	§18.77	81.23	Tetragonal
100.9	400.0	27.90	72.10	194.91	5.09	Triclinic
Results	at 67°.					
20.04	729.3	2.65	97 - 35	0.93	99.07	Monoctinic
10.66	706.2	8.31	91.69	2.86	97.14	"
88.08	501.6	13.55	86.45	3.92	96.08	4
47 - 94	675.0	16.39	83.61	6.66	93 - 34	•
249.9	747 .8	24.46	75·5 4	22.32	77 .68	{ Monoclinic Triclinic

SOLUBILITY OF MIXTURES OF NICKEL SULPHATE AND SODIUM SULPHATE, ETC.

(Koppel; Wetzel - Z. physik. Chem. 52, 401, '05.)

						• • • •	
t°.	Gms. Gms. S	per 100 olution.	Gms. ; Gms.	per 100 H ₂ O.	Mols. 1 Mols.	per 100 H ₂ O.	Solid
	NiSO4.	Na ₂ SO ₄ .	NiSO4.	Na ₂ SO ₄ .	NiSO4.	Na ₂ SO ₄ .	Phase.
0	16.94	7.61	22.46	10.09	2.61	1.28),,,,,,
5	17.99	10.85	25.28	15.24	2.94	1.93	NiSO4.7H ₂ O + Na ₂ SO _{4.10} H ₂ O
10	18.97	13.85	28.26	20.64	3.29	2.61	
20	18.76	17.21	29.31	26.87	3.410	3 - 404	NiNag(SO ₄) ₃₋₄ H ₂ O
25	17.85	16.54	27.33	25.33	3.181	3.208	e6
30	16.74	15.34	24.64	22.58	2.868	2.861	•
35	16.28	14.91	23.66	21.67	2.753	2.744	•
40	15.35	14.49	21.88	20.65	2.546	2.616	•
18.5	19.61	16.49	30.70	25.80	3.56	3.27	1
20	20.13	16.15	31.59	25.35	3.67	3.21	
25	21.20	14.77	33.11	23.06	3.85	2.92	NiNag(SO ₄) ₉₋₄ H ₂ O + NiSO ₄₋₇ H ₂ O
30	22.60	12.80	34.98	19.82	4.07	2.59	NiSO _{4.7} H ₂ O
35	23.62	10.78	36.01	16.43	4.19	2.08	i
40	24.92	9.39	37 - 93	14.29	4.41	1.81	j
18.5	16.80	18.93	26.14	29.45	3.04	3.72	1
20	15.48	20.18	24.06	31.37	2.80	3.97	NiNag(SO ₄) ₂₄ H ₂ O + Na ₂ SO ₄ .10H ₂ O
25	10.92	24.12	16.81	37.13	1.96	4.70	Na ₂ SO ₄ .10H ₂ O
30	6.40	28.71	9.87	44 - 25	1.15	5.60	J
35	4.54	31.65	7.13	49 - 59	0.838	6.28) NiNag(SO)2-4H2O +
40	4.63	31.37	7.24	49.03	0.843	6.21	Na ₂ SO ₄

SOLUBILITY OF NICKEL POTASSIUM SULFATE NIK2(SO4)2.6H2O IN WATER. (Tobler, 1855; v. Hauer, 1858.)

ť.	Gms. NiK ₄ (SO ₄) ₂	per 100 Gms. H ₂ O.	r.	Gms. NiK ₂ (SO ₄) ₂ per 100 Gms. H ₂ O.		
	(Tobler.)	(v. Hauer.)		(Tobler.)	(v. Hauer.)	
0	5.3	• • •	50	30	• • •	
10	. 8.9		60	35· 4	20.47	
20	13.8	9.53	70	42		
30	18.6	• • •	80	46	28.2	
40	24	14.03				

SOLUBILITY OF NICKEL SULFATE IN AQUEOUS SOLUTIONS OF METHYL
ALCOHOL AT 14°.
(de Bruyn, 1903.)

Small test tubes of 4-6 cc. capacity were used. They were almost completely filled with the salt and solvent and placed in the bath in an inclined position with salt occupying the upper part of the tube. This caused a "spontaneous circulation of the solvent." The solutions were analyzed by precipitating NiO with KOH at the boiling point, in porcelain vessels.

Wt. Per cent	Gms. NiSO ₄ per 100 Gms. Sat. Sol. in Contact with:							
CH ₂ OH in Solvent.	NiSO _{4.7} H ₂ O as Solid Phase.	NiSO ₄ .6H ₂ O α as Solid Phase.	NiSO ₄ .6H ₄ O β as Solid Phase.	NiSO _{4.4} H ₂ O as Solid Phase.				
o (H ₂ O)	26.4	26 (low)	27.2	25.1				
10	19.7	22 (?)	20.4	• • •				
20 .	13.1	14.7	14	14.8				
30	6.8	6.6	7⋅5	• • •				
40	2.8	2.4	3.1					
50 60	1.3	I	I.4	I.4				
60	o.8	0.4	0.6	• • •				
70	0.6	0.2	0.4					
8o	0.65	0.2	0.4	0.66				
85	1.5	0.3	0.7	• • •				
90	5.7	1.2	2.5	• • •				
95	II	6	9 (?)	• • •				
100	16.8	12.4 (low)	15.7 (low)	7.38				

NiSO_{4.6}H₂O α is greenish blue. NiSO_{4.6}H₂O is more greenish than the α salt.

SOLUBILITY OF NiSO4.3CH₂OH.3H₂O IN AQUEOUS CH₂OH AT 14°. (de Bruyn, 1903.)

Wt. Per cent CH ₂ OH.	Gms. NiSO ₄ per 100 Gms. Sat. Sol.	Wt. Per cent CH ₂ OH.	Gms. NiSO ₄ per 100 Gms. Sat. Sol.
· 85	1.93	90	0.70
86	1.73	92.5	0.50
87	1.48	95	0.455
88	1.25	97.5	0.77
89	10.1	100	3.72

Approximately two hours were allowed for attainment of equilibrium. In solutions containing more than 15% H₂O the salt is gradually transformed to NiSO₄.6H₂O₅.

100 gms. absolute ethyl alcohol dissolve 1.4 gm. NiSO_{4.7}H₂O at 4° and 2.2 gms. at 17°. (de Bruyn, 1892.)
100 gms. sat. solution in glycol contain 9.7 gms. NiSO₄ at room temp.

(de Coninck, 1905.)

NICKEL SULFIDE Nis.

One liter H₂O dissolves 39.9 × 10⁻⁴ gm. mols. NiS = 0.0036 gm. at 18°, by conductivity method. (Weigel, 1906.) Fusion-point data for Ni₂S+Na₂S and Ni₂S₂+Na₃S are given by Friedrich (1914).

NICOTINE C10H14N2.

SOLUBILITY IN WATER. (Hudson, 1904.)

Determinations made by Synthetic Method, for which see Note, page 16. Below 60° and above 210° both liquids are miscible in all proportions; likewise with percentages of nicotine less than 6.8 and above 82 per cent the liquid does not show two layers at any temperature. Below 94° the upper layer is water. Above 94° the upper layer is nicotine. The curve plotted from the following results makes a complete circle.

Percentage of Nicotine in the Mixture.	Temperature of Appearance of Two Layers. Degrees C.	Temperature of Homogeneity. Degrees C.
6.8	94	95
7.8	89	155
10.0	75	
14.8	65	200
32.2	6 1	210
49.0	64	205
66.8	72	190
80.2	87	170
82.0	129	130

Additional data for the above system are given by Tsakalotos (1909). The values for the temperatures of saturation are in general, from 1° to 5° lower than those of Hudson.

NIOBIUM Potassium FLUORIDE NbK₂F₇.

SOLUBILITY IN WATER AND IN AQUEOUS HF AND AQUEOUS KF SOLUTIONS. (Ruff and Schiller, 1911.)

' The determinations were made in platinum vessels. The mixtures were shaken for 3 hour periods at constant temperature and the saturated solutions filtered through platinum funnels.

0.1	40	Gms. per 100 Gms. Sat. Solution.			
Solvent.	t°.	NbF.	KF.	HF.	Solid Phase.
Water	16	5.19	2.98	0.35	K,NbOF,H,O
"	16	7.07	5 · 33	4.35	KaNbOFa.HaO+KaNbFa
Aq. 10.95% HF	16	4.33	2.32	10.43	K ₂ NbF ₇
" 7.41% KF	16	1.16	5 · 54	0.13	K ₄ NbOF ₄ .H ₂ O
" 7.39% KF	16	2.67	6.04	5.39	Kanbofs.Hao+KanbF7
Water	85	30.39	14.68	0.35	K _a NbOF _a .H _a O(?)
Aq. 4.81% KF	80	11.66	10.08	1.53	"

NITRIC ACID HNO.

DISTRIBUTION OF NITRIC ACID BETWEEN WATER AND ETHER AT 25°. (Bogdan, 1905, 1906.)

Mols. HNO ₃ per Liter of:		Mols. HNO, per Liter of:		
H _f O Layer.	Ether Layer.	H ₂ O Layer.	Ether Layer.	
0.9145	0.0855	0.09005	0.00181	
0.4811	0.0278	0.04749	0.00064	
0.2644	0.00894	0.02760	0.00029	
0.1392	0.00278	0.02462	0.00025	

RECIPROCAL SOLUBILITY OF NITRIC ACID AND WATER, DETERMINED BY THE FREEZING-POINT METHOD.

(Küster and Kremann, 1904; see also Pickering, 1893.)

e.	Gms. HNO ₃ per 100 Gms. Sat. Sol.	Solid Phase.	t.	Gms. HNO ₂ per 100 Gms. Sat. Sol.	Solid Phase.
-10	13.9 Ia	1	- 40	69.7	HNO3.3H2O
-20	22.9 "		-42 Eutec.	70.5	" +HNO ₁ .H ₂ O
-30	27.8 "		-40	72.5	HNO,.H,O
-40	31.5 "		-38 m. pt.	7 7 · 75	4
-43 Eutec.	32.7 "	+HNO ₃ .3H ₂ O	-40	82.4	a
-40	34.I	HNO,3H ₂ O	- 50	86.5	"
-30	40	44	-60	88.8	u
-20	49.2	4	-66.3 Eutec.	89.95	" +HNO ₃
$-18.5 \mathrm{m.pt}$. 53.8	**	-60	91.9	HNO ₃
-20	58.5	44	- 50	94.8	u
-30	65.4	u	-41.2 m. pt.	100	4

NITROGEN N.

SOLUBILITY IN WATER.

(Winkler --- Ber. 24, 3606, '91; Braun --- Z. physik. Chem. 33, 732, '00; Bohr and Bock -- Wied. Ann-44, 318, '91.)

t°	" Coefficie	at of Absorptio	" Solubility " B'.	q.	
0	o.0235*	0.0239†	‡	0.0233*	0.00239*
5	0.0208	0.0215	0.0217	0.0206	0.00259
10	0.0186	0.0196	0.0200	0.0183	0.00230
15	0.0168	0.0179	0.0179	0.0165	0.00208
20	0.0154	0.0164	0.0162	0.0151	0.00189
25	0.0143	0.0150	0.0143	0.0139	0.00174
30	0.0134	0.0138	• • •	0.0128	0.00161
35	0.0125	0.0127		0.0118	0.00148
40	8110.o	8110.0		0.0110	0.00139
50	0.0100	0.0106	• • •	o.0096	0.00121
60	0.0102	0.0100	• • •	0.0082	0.00105
80	o.0096		• • •	0.0051	0.00069
100	0.0095	0.0100		0.0000	0.00000
	• w.		† B. and B.	‡ B.	

For values of β , β' , and q, see Ethane, p. 285. Single determinations of the solubility of nitrogen in water reported by Hüfner (1906-07), Bohr (1910), Müller (1912-13) and von Hammel (1915), are, on the average, about 2-3 units in the fourth place higher than the above figures of Winkler for the absorption coefficient β . Drucker and Moles (1910), give an extensive review of the literature and present results which, they state, are in very satisfactory agreement with previous determinations. A critical review of the literature of the solubility of nitrogen in water and in sea water is given by Coste (1917).

Data for the solubility of the nitrogen of air in water are given by Fox (1909a). The oxygen was removed from air and the solubility of the residual N + 1.185% argon was determined. After making correction for the argon, the following formula for the solubility of pure nitrogen in water was deduced:

1000 \times coef. of abs. $\beta = 22.998 - 0.5298t + 0.000196t - 0.00006779t.$

Data for the solubility of nitrogen in water at pressures up to 10 atmospheres are given by Cassuto (1913). The solubility was found to increase at a somewhat slower rate than proportional to the pressure.

SOLUBILITY OF NITROGEN IN SEA WATER. (Fox, 1909a).

Before using the sample of sea water for the solubility determinations it was found necessary to add acid, otherwise the CO₂ could not be boiled out or the precipitation of neutral carbonates prevented. The very small amount of acid was titrated back, using phenolphthaleine as indicator.

The results are in terms of number of cc. of nitrogen (containing argon) absorbed by 1000 cc. of sea water from a free dry atmosphere of 760 mm. pressure.

The calculated formula expressing the solubility is:

 $\begin{array}{lll} 1000 \ a = 18.639 - 0.4304 \ t + 0.007453 \ f - 0.0000549 \ f \\ - \ Cl \ (0.2172 - 0.007187 \ t + 0.0000952 \ f). \end{array}$

		-	-			,,	•	
Parts Chlorine per 1000.	t°=0°.	4*.	8*.	12°	16°.	20°.	24°.	28°.
0	18.64	17.02	15.63	14.45	13.45	12.59	11.86	11.25
4 8	17.74	16.27	14.98	13.88	12.94	12.15	11.46	10.89
8	16.90	15.51	14.32	13.30	12.44	11.70	11.07	10.52
12				12.72				
16				12.15				
20	14.31	13.27	12.34	11.57	10.92	10.36	9.87	9.44

A recalculation of Fox's determinations to parts per million, with correction for vapor pressure, is published by Whipple and Whipple (1911).

SOLUBILITY OF NITROGEN IN AQUEOUS SOLUTIONS OF SULFURIC ACID

R	esults at 21°.	(Bohr, 1910.)	Results at:	20°. (Christoff, 1906.)
Normality of Aq. H ₂ SO ₄ .	Absorption Coef. β (Bunsen).	Normality of Aq. H ₂ SO ₄ .	Absorp. Coef. \$\beta\$ (Bunsen).	Per cent H ₂ SO ₄ .	Ostwald Solubility Expression las.
0	0.0156	24.8	0.0048	0	0.01537
4.9	0.0001	29.6	0.0051	35.82	0.008447
8.9	0.0072	34.3	0.0100	61.62	0.006144
10.7	0.0066	35.8*	0.0129	95.6	0.01672
20.3	0.0049				
		• ,	= about 06%		

For definitions of Absorption Coef. (Bunsen) and Solubility Expression (Ostwald), see p. 227.

SOLUBILITY OF NITROGEN IN AQUEOUS SALT SOLUTIONS. (Braun.)

13.83 Per cent	11.92 Per cent.	6.90 Per cent.	3.87 Per cent.	
		0.90 Per cent. 0.0160	3.87 Per cent. 0.0180	3.33 Per cent. 0.0183
0.0127	0.0137			· · ·
0.0117	0.0125	0.0147	0.0166	0.0168
0.0104	0.0114	0.0132	0.0148	0.0150
0.0092	0.0098	0.0118	0.0132	0.0135
0.0078	0.0086	0.0104	0.0114	0.0119
Coef	ficient of Absorption	on of N in Sodium	Chloride Solutions	of:
11.73 Per cent.	8.14 Per cent.	6.4 Per cent.	2.12 Per cent.	o.67 Per cent
0.0102	0.0127	0.0138	0.0179	0.0200
		0.0126	0.0164	0.0185
0.0093	0.0113	0.0120		
0.0093 0.0081	0.0113	0.0113	0.0147	0.0164
20	•		•	0.0164 0.0148

SOLUBILITY OF NITROGEN IN ALCOHOL. (Bunsen.)

t°. o°. 5°. 10°. 15°. 20°. 24°
Vols. N * dissolved

ois. N * dissolved by 1 Vol. Alcohol. 0.1263 0.1244 0.1228 0.1214 0.1204 0.1198

* At 0* and 760 mm.

NITROGEN

459

SOLUBILITY OF NITROGEN IN MIXTURES OF ETHYL ALCOHOL AND WATER AT 25°. (Just, 1901.)

Results in terms of the Ostwald solubility expression, see p. 227.

Vol. % H ₂ O in Mixture.	Vol. % Alcohol in Mixture.	Dissolved N (l_{24}) .
100	0	0.01634
80	20	0.01536
67	33	0.01719
Ö	IOO (99.8% Alcohol)	0.1432

SOLUBILITY OF NITROGEN IN SEVERAL SOLVENTS AT 20° AND 25°. (Just.)

Solvent.	l ₂₈ .	L ₂₀ .	Solvent.	l ₂₆ .	l ₂₀ .
Water	0.01634	0.01705	Toluene	0.1235	0.1186
Aniline	0.03074	0.02992	Chloroform	0.1348	0.1282
Carbon Disulfide	0.05860	0.05290	Methyl Alcohol	0.1415	0. 1348
Nitro Benzene	0.06255	0.06082	Ethyl Alcohol (99.8%)	0.1432	0.1400
Benzene	0.1159	0.1114	Acetone	0.1460	0.1383
Acetic Acid	0.1190	0.1172	Amyl Acetate	0.1542	0.1512
Xylene	0.1217	0.1185	Ethyl Acetate	0.1727	0. 1678
Amyl Alcohol	0.1225	0.1208	Isobutyl Acetate	0.1734	0.1701

Solubility of Nitrogen in Petroleum. Coefficient of Absorption at 10° = 0.135, at 20° = 0.117. (Gniewasz and Walfisz, 1887.)

SOLUBILITY OF NITROGEN IN AQUEOUS PROPIONIC ACID AND UREA SOLUTIONS. (Braun.)

t°.	Coefficient of Absorption of N in C ₂ H ₆ COOH Solutions of:							
• .	11.22 per cent.	9.54 per cent.	6.07 per cent.	4.08 per cent.	3.82 per cent.			
5	0.0195	0.0204	0.0208	0.0210	0.0200			
10	0.0178	0.0182	0.0186	0.0192	0.0191			
15	0.0159	0.0163	0.0164	0.0169	0.0167			
20	0.0146	0.0147	0.0148	0.0154	0.0155			
25	0.0130	0.0134	0.0134	0.0137	0.0137			

t°.	Coefficient of Absorption of N in CO(NH ₂) ₂ Solutions of:								
• .	15.65 per cent.	11.9 per cent.	9.42 per cent.	6.90 per cent.	5.15 per cent.	2.28 per cent.			
5	0.0175	0.0179	0.0190	0.0198	0.0197	0.0199			
10	0.0162	0.0167	0.0176	0.0183	0.0182	0.0184			
15	0.0150	0.0149	0.0158	0.0165	0.0165	0.0171			
20	0.0140	0.0139	0.0146	0.0151	0.0151	0.0155			
25	0.0130	0.0130	0.0133	0.0137	0.0135	0.0139			

Solubility of Nitrogen in Aqubous Solutions of Chloral Hydrate at 15°. Results by Müller, C (1912–13.) Results by von Hammel (1915).

	•			/	. , , , ,
Gms. CCl ₈ .CH(OH) ₂ per 100 Gms. Aq. Sol.	d₃ of Aq. Sol.	Absorp. Coef.	Gms. CCl ₂ CH(OH) ₂ per 100 Gms. Aq. Sol.	Abs. Coef. β at 15°.	Solubility l _{ss} (Ostwald).
o	1	0.0170	0	0.0170	0.01796
15.8	1.0738	0.0158	15	0.0152	0.0160
28.2	1.1422	0.01422	2Ğ. I	0.0141	0.0149
37.25	1.1946	0.01300	37.6	0.0123	0.0130
47	1.2535	0.01275	48.9	0.0115	0.0121
56.52	1.3225	0.01245	61.3	0.0114	0.0120
71.5	1.441	0.01420	70.9	0.0131	0.0138
78.8	1.503	0.01492	79. I	0.0156	0.0165
,	5-5		17		

SOLUBILITY OF NITROGEN IN AQUEOUS SOLUTIONS OF GLYCEROL.

Results of Müller, C. Results of von Hammel Results of Drucker and Moles (1912–13).

Gms. (CH ₂ OH) ₃ - CHOH per 100 Gms. Aq. Sol.	d ₁₆ of Aq. Sol.	Abs. Coef. β at 15°.	Gms. (CH ₂ OH) ₂ - CHOH per 100 Gms. Aq. Sol.	Abs. Coef. \$\beta\$ at \$15°.	Gms. (CH ₂ OH) ₂ - CHOH per 100 Gms. Aq. Sol.	d₂ of Aq. Sol.	Solubility l ₂₅ (Ostwald).
25	1.061	0.01266	15.7	0.01400	0	0	0.0156
42.2	1.108	0.00976	29.9	0.01087	16	1.0392	0.0103
51.5	1.133	0.00759	46.6	0.00840	29.7	1.0744	0.0067
58	1.151	0.00703	57.6	o.oo698	48.9	1.1263	0.0052
80.25	1.212	0.00530	67. I	0.00635	74.5	1.1931	0.0025
90	1.240	0.00583	7 7	0.00527	84.1	1.2213	0.0024
95	1.249	0.00716	88.5	0.00536			
			00 05	0.00001			

Solubility of N_2 in pure isobutyric acid of $d_{25} = 0.9481$, l_{25} (Ostwald) = 0.1651. (Drucker and Moles, 1910.)

Solubility of N_2 in aq. 37.5% isobutyric acid of $d_{25} = 0.9985$, l_{25} (Ostwald) = 0.0396. (Drucker and Moles, 1910.)

Solubility of N_2 in aq. 37.5% isobutyric acid of $d_{25} = 0.9985$, l_{20} (Ostwald) = 0.0384. (Drucker and Moles, 1910.)

SOLUBILITY OF NITROGEN IN AQUEOUS SOLUTIONS OF SEVERAL COMPOUNDS. (Humer, 1906-07.)

Aq. Solution of:		Conc. of	Aq. Solution.	ť.	Abs. Coef. β.	
Aq	. Solution or:	Normality.	Gms. per Liter.	•	Aus. Coet. p.	
Glucose		I	180	20.18	0.01215	
"		0.5	90	20.21	0.01380	
"		0.25	45	20.2	0.01480	
Alanine	(a Aminopropionic Acid)	1	89	20.19	0.01213	
Glycocol	(Aminoacetic Acid)	I	75	20.16	0.01212	
Aribinose		1	150	20.21	0.01203	
Levulose		I	180	20.25	0.01221	
Erythritol		I	122	20.25	0.01321	
Urea		I	60	20.18	0.01477	
Acetamide		I	59	20.22	0.01475	

SOLUBILITY OF NITROGEN IN AQUEOUS SOLUTIONS OF CANE SUGAR AT 15°.

Gms.C ₁₂ H ₂₂ O ₁₁ per 100 Gms. Aq. Solution.	d₁₅ of Aq. Sol.	Abs. Coef. β at 15°.	Gms. C ₁₁ H ₁₆ O ₁₁ per 100 Gms. Ag. Solution.	d ₁₄ of Aq. Sol.	Abs. Coef. β at 15°.
11.38	1.050	0.01480	30.12	1.120	0.01090
20	1.082	0.01280	47.89	1.220	0.00785
29.93	1.128	0.01053	48.57	1.223	0.00700

Data for the solubility of nitrogen in defibrinated ox-blood and ox serum under pressures varying 760-1400 mm. Hg are given by Findlay and Creighton (1910-11). Data for the solubility of nitrogen in liquid oxygen are given by Erdman and

Bedford (1904) and Stock (1904.)

SOLUBILITY OF NITROGEN IN METHYL ALCOHOL SOLUTIONS OF POTASSIUM IODIDE AND OF URBA. (Levi, 1901.)

Solubility of N (in terms of the Ostwald Solubility Expression I). Solvent. Gms. KI or of Urea. At 15°. per 100 Gms. CH₂OH Solution. du of Solvent. of Solvent. d, of Solvent. 4. lu. (=pure CH₂OH) 0.8080 0.2154 0.7980 0.1923 0.7937 0.1649 0.8171 0.2028 0.8070 0.1802 0.8019 0.1524 2.152 KI 0.8249 0.1966 0.8015 0.1756 0.8101 3.053 " 0.1466 0.8841 0.1464 0.8801 0.8930 0.1676 0.1258 10.939 0.8148 0.2030 0.8050 0.1823 0.7997 2.738 Urea 0.1561 0.8122 0.1750 0.8080 0.1491 4.841 " 0.8231 0.1951 0.8350 0.1878 0.8241 0.1690 0.8193 0.1444 7.377 "

SOLUBILITY OF NITROGEN IN ETHYL ETHER. (Christoff, 1912.)

Results in terms of the Ostwald expression l (see p. 227), $l_0 = 0.2580$, $l_{10} = 0.2561$.

NITROGEN OXIDE (ic) NO.

SOLUBILITY IN WATER. (Winkler, 1901.)

ť. ß. B'. β. 8'. 0.0738 0.0734 0.00984 0 40 0.0351 0.0325 0.00440 0.00860 0.0641 0.0646 5 50 0.0315 0.0277 0.00376 0.0571 0.0564 0.00757 60 0.0295 TO 0.0237 0.00324 0.00680 0.0195 15 0.0515 0.0506 70 0.0281 0.00267 0.0460 0.00618 80 0.0270 0.00100 20 0.0471 0.0144 0.00564 90 0.0265 0.0082 25 0.0430 0.0419 0.00114 0.0400 0.0384 0.0263 30 0.00517 100 0.0000 0.00000

For values of β , β' and q, see Ethane, page 285.

Solubility of Nitric Oxide in Aqueous Sulphuric Acid Solutions at 18°.

(Lunge, 1885; Tower, 1906.)

Wt. per cent H ₂ SO ₄ in Solution. 98	Sp. Gr. at 15°. I . 84	Tension of H ₂ O Vapor.	Solubility Coefficient of NO at 18°. O.O227	(o.o35, L.)
90	1.82	0.1 mm.	0.0193	
8 0	1.733	0.4 "	0.0117	
70	1.616	1.5 "	0.0113	
60	1.503	3.1 "	0.0118	(0.017, L.)
50	1.399	6.2 "	0.0120	• • •

Volume of NO (at 760 mm.) per 1 volume of aqueous H₂SO₄.

SOLUBILITY OF NITRIC OXIDE IN ALCOHOL. (Bunsen.)

Vols. NO* 0° 5° 10°. 15° 20° 24° 0.316 0.300 0.286 0.275 0.266 0.261 absorbed by 1 vol. Alc.

• At o° and 760 mm.

Data for the solubility of nitric oxide in aqueous solutions of FeSO₄, NiSO₄, CoSO₄ and MnCl₂ at 20° are given by Usher (1908); Hüfner (1907) and Manchot and Zecheulmayer (1906).

chot and Zecheulmayer (1906).

The abs. coef. β for N in sat. aq. NiSO₄ at 20° is 0.0245; for sat. CoSO₄ it is 0.0288 and for sat. aq. MnCl₂ it is 0.0082.

NITROUS OXIDE N.O.

SOLUBILITY IN WATER. (Bunsen; Roth, 1897; Knopp, 1904; Geffcken, 1904.)

t°.	Coefficient of	Absorption β		Solubility in Terms of Ostwald Expression (l).*		
	(B.)	(R.)	· q.	(R.)	(K.)	(G.)
5	1.0954	1.1403	0.205	1.161	• • •	1.067
IO	0.9196	0.9479	0.171	0.9815		0.9101
15	0.7778	0.7896	0.143	0.8315		0.7784
20	0.6700	0.6654	0.121	0.7131	0.6739	0.6756
25	0.5961	0.5752	0.104	0.6281	•••	0.5942

* Calculated by Geffcken.

For definitions of β and q, see p. 285; for l, see p. 227.

Note. — Knopp and also Geffcken call attention to the fact that Roth in making his determinations used a rubber tube between the gas burette and the shaking flask, and give this as an explanation of the high results which he obtained.

SOLUBILITY OF NITROUS OXIDE IN AQUEOUS SULPHURIC ACID. (Lunge — Ber. 14, 2188, '81; see also Gesschen's results.)

Sp. Gr. of H ₂ SO ₄ Vols. N ₂ O dissolved	1.84	1.80	1.705	1.45	1.25
by 100 vols. H ₂ SO ₄	75·7	66.0	39 · I	41.6	33.0

100 vols. of KOH solution of 1.12 Sp. Gr. absorb 18.7 vols. N₂O. 100 vols. of NaOH solution of 1.10 Sp. Gr. absorb 23.1 vols. N₂O.

SOLUBILITY OF NITROUS OXIDE IN AQUEOUS SOLUTIONS OF ACIDS. (Geffcken.)

Results in terms of the Ostwald Solubility Expression (l). See p. 227. In Hydrochloric Acid. In Nitric Acid. In Sulphuric Acid.

Gms. HCl	N ₂ O I	Dissolved	Gms. HNO	N ₂ O D	issolved	Gms. H ₂ SO	N ₂ O D	issolved
per Liter.	45.	125.	per Liter.	45.	l ₂₅ .	per Liter.	4.5.	128.
18. 22	0.755	0.577	36.52	0.777	0.597	24.52	0.734	o. 566
36.45	0.738	0.568	63.05	0.777	0.602	49.04	0.699	0.543
72.90	0.716	0.557	126, 10	0.775	0.611	98.08	0.645	0.509
						147.12	0.602	0.482
						196.16	0.562	0.463

SOLUBILITY OF NITROUS OXIDE IN AQUEOUS SOLUTIONS OF: (Roth.)

		Oxalic Acid.					
20	C	efficient of A	Coefficient of Abs. in (COOH) ₂ Solutions of:				
•	3.38%.	4.72%.	8.84%.	9.89%.	13.35%.	0.812%.	3.70%.
5	1.057	1 .0365	0.9883	0.9635	0.9171	1.1450	1.1094
IO	0.8827	0.8665	0.8296	0.8101	0.7711	0.9526	0.9264
15	0.7388	0.7258	0.6977	0.6826	0.6505	0.7940	0.7745
20	0.6253	0.6147	0.5926	0.5810	0.5555		o . 653 8
25	0.5427	0.5329	0.5143	0.5054	0.4860	0.5784	0.5643

SOLUBILITY OF NITROUS OXIDE IN AQUEOUS SOLUTIONS OF PROPIONIC ACID AT 20°.
(Knopp.)

Gms. C₂H₂COOH

per liter 15.15 60.42 158.4 176.6 344.0

Coef. of Absorption of N₂O 0.6323 0.6369 0.6504 0.6534 0.7219

SOLUBILITY OF NITROUS OXIDE IN AQUEOUS SALT SOLUTIONS.

Results by Geffcken in terms of the Ostwald expression (l). See page 227.

Salt.	Formula.	Conc. of Sal	t per Liter.	Solubility of N2O.		
Sait.	rormum.	Gram Equiv.	Grams.	45.	126-	
Ammonium Chloride	NH,Cl	0.5	26.76	0.730	0.557	
Ammonium Chloride	NH ₄ Cl	1.0	53 - 52	0.691	0.529	
Caesium Chloride	CsCl	0.5	84.17	0.710	0.544	
Lithium Chloride	LiCl	0.5	21.24	0.697	0.535	
Lithium Chloride	LiCl	1.0	42 . 48	0.623	0.483	
Potassium Bromide	KBr	0.5	59 55	0.697	0.536	
Potassium Bromide	KBr	I .O	119.11	0.627	0.485	
Potassium Chioride	KCl	0.5	37 · 3	0.686	0.527	
Potassium Chloride	KCl	1.0	74.6	0.616	0.475	
Potassium Iodide	KI	0.5	83.06	0.702	0.541	
Potassium Iodide	KI	1.0	166.12	0.633	0.492	
Potassium Hydroxide	KOH	0.5	28.08	0.668	0.514	
Potassium Hydroxide	KOH	1.0	56.16	0.559	0.436	
Rubidium Chloride	RbCl	0.5	60.47	0.695	0.533	
Rubidium Chloride	RbCl	1.0	120.95	0.625	0.483	

Results by Knopp, in terms of the coefficient of absorption. See page 227.

Salt.	Formula.	Conc. of Sal	t per Liter.	Coef. of Absorption of NgO at 20°.
Sut.	romum.	Normality.	Grams.	of N ₂ O at 20°.
Potassium Nitrate	KNO ₃	0.1061	10.74	0.6173
66	"	0.2764	27.94	0.6002
"	"	0.5630	56.97	0.5713
"	"	1.1683	118.2	0.5196
Sodium Nitrate	NaNO ₃	0.1336	11.37	o.őoŚg
"	"	0.3052	25.97	0.5876
u	"	0.6286	53.50	0.5465
of	"	1.1200	95.30	0.4926

Results by Roth, in terms of the coefficient of absorption.

Grams NaCl per		Coefficient of	Absorption of 1	√gO at:	
soo Grams Solution.	50.	10°.	15°.	so ^o .	250.
0.99	1.060g	0.8812	0.7339	0.0191	0.5363
1.808	1.0032	0.8383	0.7026	0.5962	0.5190
3 .886	0.9131	0.7699	0.6495	0.5520	0.4775
5 .865	0.8428	0.7090	0.5976	0.5088	0.4424

SOLUBILITY OF NITROUS OXIDE IN AQUEOUS SALT SOLUTIONS.

Results by Gordon in terms of coefficient of absorption. See p. 227.

·	Concentration of Salt.		Coefficie	Coefficient of Absorption of N ₂ O at:					
Salt.	Grams per roo Grams Solution.	Gram Mols. per Liter.	٠, مع	to°.	15°.	80°.			
Calcium Chloride	5 · 79	0.547	0.819	0.697	0.591	0.500			
"	9.86	0.964	o.668	0.586	0.509	0.435			
66	13.99	1.416	0.510	0.441	0.380	0.328			
Lithium Chloride	1.35	0.319	0.986	0.831	0.700	0.594			
46	3.85	0.928	0.878	0.743	0.629	0.536			
66	11.48	2 . 883	0.606	0.512	0.437	0.382			
Lithium Sulphate	2.37	0.219	0.934	0.792	0.670	0.569			
"	5.46	0.521	0.795	0.665	0.557	0.474			
46	8.56	o . 836	0.646	0.555	0.477	0.415			
Magnesium Sulphate		0.521	0.766	0.664	0.561	0.471			
"	7.66	o . 687	0.708	0.586	0.488	0.414			
66	10.78	0.997	0.569	0.491	0.417	0.346			
Potassium Chloride	4.90	0.676	0.879	0.751	0.643	0.555			
66	7.64	1.037	0.799	0.693	0 591	0.494			
"	14.58	2.147	0.654	0.574	0.500	0.430			
66	22.08	3.414	0.544	0.459	0.390	0.339			
Potassium Sulphate	2.62	0.154	0.986	0.831	0.701	0.605			
- · · · · · · · · · · · · · · · · · · ·	4.78	0.285	0.918	0.763	0.637	0.542			
Sodium Chloride	6.20	1.107	0.800	0.682	0.585	0.509			
"	8.88	1.614	0.713	0.603	0.510	0.434			
66	12.78	2.391	0.634	0.532	0.440	0.386			
Sodium Sulphate	5.76	0.427	0.808	0.677	0.584	0.495			
"	8.53	0.646	0.692	0.574	0.482	0.416			
66	12.44	0.974	0.559	0.486	0.417	0.354			
Strontium Chloride	3.31	0.215	0.928	0.788	0.671	0.578			
"	5·73	0.380	0.848	0.700	0.610	0.550			
u			0.644	0.547	0.463				
	13.24	0.939	0.044	U.54/	5.403	0.390			

SOLUBILITY OF NITROUS OXIDE IN ALCOHOL AND IN AQUEOUS CHLORAL HYDRATE SOLUTIONS AT 20-.

(Bunsen; Knopp - Z. physik. Ch. 48, 106, '04.)

	In Alcohol (B.).	In Aq. Chloral Hydrate (K.).				
6°.	Vols. N ₂ O (at o° and 760 mm.) per 1 Vol. Alcohol.	Normality of CaHClaO.HaO.	Gms. C ₂ HCl ₂ O.H ₂ O per Liter.	Coef. of Abs. of NgO.		
0	4.178	0.184	30 · 43	0.618		
5	3.844	0.445	73.60	0.613		
10	3.541	0.942	155.8	0.596		
15	3.268	1.165	192.7	0.589		
20	3.025	I .474	243 .8	0.579		
24	2.853	1.911	316.4	0.567		

SOLUBILITY OF NITROUS OXIDE IN PETROLEUM. COEFFICIENT OF ABSORPTION AT 10° = 2.49, AT 20° = 2.11.

(Gniewasz and Walfisz — Z. physik. Ch. 1, 70, '87.)

SOLUBILITY OF NITROUS OXIDE IN AQUEOUS SOLUTIONS OF GLYCEROL AND OF URBA.
(Roth, 1897.)

t°.	Coefficient of Absorption of N ₂ O in Glycerol Solutions of:								
٠.	3.46 Per cent.	6.73 Per cent.	12.12 Per cent.	16.24 Per cent.					
5	1.097	1.055	0.999	0.959					
IO	0.917	0.887	0.841	0.810					
15	0.767	0.745	0.710	o.686					
20	0.647	0.630	0.605	0.585					
25	0.556	0.542	0.527	0.508					

\$°.	Coefficient of Absorption of N2O in Urea Solutions of:								
₩.	3.31 per cent.	4.97 per cent.	6.37 per cent.	7.30 per cent.	9.97 per cent.				
5	1.104	1.096	1.088	1.101	1.069				
ľo	0.921	0.920	0.909	0.921	0.901				
15	0.771	0.773	0.761	0.772	0.761				
20	0.653	0.656	0.644	0.655	0.651				
25	0.560	0.567	0.550	0.570	o.56a				

SOLUBILITY OF NITROUS OXIDE IN AQUEOUS SOLUTIONS OF GLYCEROL.

Result	s at 15°.	Results at 20°.			
Per cent Glycerol.	Absorption Coef. α.	Per cent Glycerol.	Absorption Coef. α.		
0	0.7327	0	0.6288		
2.49	0.7181	2.36	0.6131		
3.28	0.7103	4.88	0.5993		
7.17	0.6844	6.88	0.5903		
10.52	o.6668	9.86	0.5633		
14.05	0.6410	15.82	0.5315		
17.08	0.6229	v			

Data for the influence of colloids and fine suspensions on the solubility of nitrous oxide in water at 25° are given by Findlay and Creighton (1910), and Findlay and Howell (1914).

Results for solutions of ferric hydroxide, dextrin, arsenious sulfide, starch, gelatin, glycogen, egg albumen, serum albumen, silicic acid and suspensions of charcoal and of silica are given.

Data for the solubility of nitrous oxide in blood are given by Siebeck (1909) and by Findlay and Creighton (1910–11).

NITROGEN TETROXIDE NO.

Data for the solubility of nitrogen tetroxide in ferrous bromide solutions are

given by Thomas (1896).

Freezing-point data (solubility, see footnote, p. 1), are given for mixtures of $NO_2 + NO$ by v. Wittorff (1904), and for mixtures of $NO_2 + o$ Nitrotoluene by Breithaupt.

NITROCELLULOSE (Soluble Pyroxylin, Tetra and Penta Nitrate).

SOLUBILITY IN ETHER-ALCOHOL MIXTURES. (Matteoschat, 1914; see also Stepanow, 1907.)

A sample of gun cotton containing 12.95% N was used. The compound was first covered with alcohol and then the amount of ether to yield the desired composition of solvent was added. Lower results were obtained with ready prepared ether-alcohol mixtures.

Ratio of	Gms. Gun Cotton Dissolved per 100 Gms. Solution in Mixtures Prepared with:							
Ether : Alcohol.	99.5 Vol. % Alcohol.	95 Vol. % Alcohol.	90 Vol. % Alcohol.	80 Vol. % Alcohol.				
1:2	34 · 4	• • •	• • •	• • •				
I:I	52.3	42.3	28.7	14.2				
2:I	40.5	52.4	53.9	45				
3:I	25	42.4	53	57·5				

NOVOCAINE (base) $CH_2(C_4H_4NH_2COO)CH_2[N.(C_2H_5)_2].2H_2O.$

100 cc. H₂O dissolve 0.333 gm. anhydrous novocaine at 20°. (Zalai, 1910.) 100 cc. oil of sesame dissolve 4.29 gms. anhydrous novocaine at 20°.

NOVOCAINE (Hydrochloride) CH₂(C₆H₄NH₂COO).CH₂[N(C₂H₆)₂].HCl.

100 gms. H₂O dissolve about 100 gms. of the salt at room temp. 100 gms. alcohol dissolve about 3 gms. of the salt at room temp.

OCTANE CH₁(CH₂)₆CH₁.

RECIPROCAL SOLUBILITY OF OCTANE AND PHENOL. (Campetti and Del Grosso, 1913.)

r.	Gms. Phenol per 100 Gms. Mixture.	t*.	Gms. Phenol per
22.55	13.28	49.5 crit. t.	52.2
37.85	22.74	49.35	52.37
38.15	23·53	44.7	71.14
44 - 70	32.85	30.6 5	82.01
4 7 · 7 5	41.72	19.65	85.99

OLEIC ACID C₈H₁₇CH:CH(CH₂)₇COOH.

SOLUBILITY OF OLEIC ACID IN AQUEOUS ALCOHOL SOLUTIONS AT 25°. (Seidell, 1910.)

Oleic acid of $d_{25} = 0.8935$ and containing 99.5% acid, determined by titration, was used. It was found that the addition of as little as one drop of this acid to aq. alcohol solutions containing up to 50 wt. % C_2H_5OH caused an opalescence on shaking, therefore, indicating a solubility of less than about 0.05 gm. acid per 100 cc. water or of aq. alcohol. With solutions containing more than 50 wt. % C_2H_5OH the following results were obtained:

Wt. Per cent C₂H₅OH.	cc. Oleic Acid per 100 cc. Aq. Alcohol to produce cloudiness.)		Ren	arks.						
51	0.08-0.2	Cloudiness	gradually in	crease	đ.						
58.2	0.2 -0.4	"	"	"							
65.5	0.3 -0.6	Cloudiness	disappeared	when	about	5.5	c. a	cid	had	been	added.
70.2	o.6 — 1	"	"	"	"	4.5	œ.	"	"	"	"
81.4	∞	No cloudin	ess appeared	at all							•

It was found that although the end points obtained by addition of oleic acid to aq. alcohol mixtures are not sharp, they become so when the procedure is changed to addition of H_1O to mixtures of oleic acid and alcohol. By this method perfectly clear liquid may be transformed by one drop of the H_2O to an opalescent mixture which, after standing a few minutes, separates into two liquid layers. Determinations made in this way gave the following observed and calculated quantities.

	f Constituents alescent Mixt		Results Calculated from the Plotted Curve.		
Alcohol + Olei	Alcohol + Oleic Acid Mixture.		Wt. Per cent C.H.OH in		Gms. Oleic Acid
C ₂ H ₄ OH.	Oleic Acid.	to Cause Separation.	Aq. Alcohol.	per 100 cc. Aq. Alcohol.	per 100 Gms. Sat. Sol.
15.30	1.794	10.4	57		0
15.30	3.588	10.2	58.5	0	5
15.30	4.485	9.8	60	II	12.3
15.30	7.175	9.25	62.5	30	20
15.30	II.210	8.05	65	49	30.5
24.42	22.420	10.10	67.5	69	40
15.30	20.81 0	6.50	70	91.	50
1.195	8.969	0.321	75.5	• • •	68.5
			80		QQ

After standing 24 hours the opalescent mixtures separated into layers which, on analysis, gave the results shown in the following table:

COMPOSITION OF UPPER AND LOWER LAYERS OBTAINED BY THE ADDITION OF WATER TO MIXTURES OF AQUEOUS ALCOHOL AND OLEIC ACID AT 25°. (Con. from p. 466).

Composition of Original Mixture.

After Separation into Two Layers:

Wt. %	cc. Aq.	œ.	cc. H ₆ O to Cause		ower Layer	r	U	pper Laye	r.
in Aq. Alc. Used.	Alcohol Mixture.	Oleic Acid.	Separa- tion.	cc. Total	Sp. Gr.	cc. Oleic Acid.	cc. Total Vol.	Sp. Gr.	cc. Oleic Acid.
70.2	25	2	3.90	29	0.893	1.48	I		0.35
70.2	25	4	3.70	26	0.890	1.89	6	0.875	1.98
65.5	26.5	5	1.75	22.7	0.891	1.93	9.3	0.875	2.78
70.2	25	8	2.75	16	0.893	0.98	19	0.876	6.59
70.2	25	12.5	1.55	6	0.890	0.37	33.2	0.878	11.87
70.2	35	25	I,	4:5	•••	0.28	55.5	0.877	24.14

The C₂H₅OH in the two layers could not be determined on account of excessive foaming during distillation of the neutralized solution. Some losses occurred in transferring the original mixtures to the graduated cylinders and differences between final amounts and those originally present are due to these losses.

SOLUBILITY OF OLEIC ACID IN AQUEOUS SOLUTIONS OF BILE SALTS.
(Moore, Wilson and Hutchinson, 1909.)

Solvent.

Gms. Oleic Acid per 100
Gms. Sat. Sol. Water less than o. r 5% Aq. Solution of Bile Salts about 0.5 5% Aq. Solution of Bile Salts+1% Lecithin

DISTRIBUTION OF OLEIC ACID BETWEEN AQUEOUS ALCOHOL AND BENZINE. (Holde, '10.)

Gm. (Approx.)		
50 cc. Aq. Alcohol Layer,	50 cc. Benzine Layer.	Dist. Coef.
0.277	0.723	2.61
0.112	o.888	7.93
0.025	0.975	39
0.006	0.994	166
0.002	0.998	499
	50 cc. Aq. Alcohol Layer. O . 277 O . 112 O . 025 O . 006	Layer. Layer. 0.277 0.723 0.112 0.888 0.025 0.975 0.006 0.994

SOLIDIFICATION-POINTS OF MIXTURES OF OLBIC AND STRARIC ACIDS. (Meldrum, '13.)

Solidification Temp.	Per cent Oleic Acid in Mixture.	Solidification Temp.	Per cent Oleic Ac in Mixture.
o o	54.8	50	44.7
10	53 - 3	60	41.2
20	51.6	70	36.6
30	49.7	80	30.5
40	47.6		

Additional data for the above system as well as for mixtures of oleic and palmitic acids and for the ternary system oleic, palmitic and stearic acids are given by Carlinfante and Levi-Malvano (1909). Results for Oleic Acid + Stearic acid are also given by Fokin (1912).

Tri**OLEIN** (C₁₈H₂₂O₂)₂C₂H₅.

SOLIDIFICATION-POINTS OF MIXTURES OF TRIOLEIN AND OTHER FATS.
(Kremann and Schoulz, 1912.)

		(TELCHIMANIA WILL	ochoum, ryrr.,		
Triolein +	Tripalmitin. Wt. Per cent TrioleIn.	Triolein +	- Tristearin. Wt. Per cent. TrioleIn.	Tripalmitin t° .	+ Tristearin. Wt. Per cent Tristearin.
– 7	100	+28	95.2	60.4	90
十25	93.9	44	85.3	58	75
48.2	78.5	50.7	76.7	57.8	69.4
50	73.9	56	6 8. 8	56	60.2
56.9	53	64.3	47.2	57.2	53
6 0.9	27.2	64.3 ·	25.4	55.1	43.8
62.6	0	56	0	54 · 5	31.2
				60.4	8.4

Data for the ternary system, triolein, tripalmitin and tristearin are also given.

OILS. (See also Fats, p. 302.)

SOLUBILITY OF SEVERAL OILS IN ALCOHOL (d₁₅ = 0.795) AT 14-15°. (Davidsohn and Wrage, 1915.)

Oil.	Gms. Oil per 100 Gms Sat. Sol.
Linseed Oil	3.32
Rape Oil	1.36
Cotton Seed Oil	3.61
Olive Oil	2.25

Results are also given for the solubility of mixtures of oils and fatty acids in alcohol. The following results at 22°, in terms of approx. volume of oil dissolved by 100 volumes of 80% alcohol, are given by Aubert (1902). Nigella oil, 4.3; oil of boldo leaves, more than 100; matico oil, about 20; cascarilla oil, 5; weldmint oil, 66.

Miscibility curves for various oils with acetone, petroleum and aniline are given by Louise (1911). The use of this data for the identification of oils and the detection of adulterants in them is described.

An extensive series of observations on the solubility of water in oils and on the

water content of various oils is given by Umney and Bunker (1912).

Freezing-point data for oil of helianthus annus + stearic acid are given by Fokin (1912).

OSMIC ACID OsO₄, 100 gms. H₂O dissolve 5.88 gms. Osmic Acid at about 15°. (Squire and Caines, 1905.)

OXALIC ACID H₂C₂O₄.2H₂O.

SOLUBILITY IN WATER.
(Koppel and Cahn, 1908; for older data see Alluard, Micsynski, 1886; Lamouroux, 1899.)

ť.	Gms. H ₂ C ₇ O ₄ per 100 Gms. Sat. Sol.	Solid Phase.	t*.	Gms. H ₂ C ₂ O ₄ per 100 Gms. Sat. Sol.	Solid Phase.
- 0.064	0. 1805	Iœ	20	8.69	H _e C ₂ O ₄₋₂ H _e O
- O.152	0.452	**	30	12.46	44
- o. 533	1.820	"	40	17.71	**
— 0.936	3.291	44	50	23.93	64
— 1.50	5.836	44	60	30.71	**
- 0.95	3.302	$H_4C_2O_4.2H_2O$	70	37.92	44
0	3.416	"	80	45.80	**
+10	5.73I	44	90.2	54.67	**

H₂C₂O_{4.2}H₂O melts in its H₂O of crystallization at 98°.

SOLUBBLITY OF OXALIC ACID IN AQUEOUS HCL AND IN AQUEOUS HNO. AT

Solubility of Oxalic Acid in Aqueous HCl and in Aqueous HNO₂ at 30°.

In Aq. Hydrochloric Acid.

In Aq. Nitric Acid.

	and. make	OCILIOI IC 1	····			11416 1166	•
G. Mols. HCl per liter Sat. Sol.	d _{ae} Sat. Sol.	G. Mols. (COOH) ₂ per liter Sat. Sol.	Gms. (COOH) _s per liter Sat. Sol.	G. Mols. HNO ₃ per liter Sat. Sol.	d _{ae} Sat. Sol.	G. Mols. (COOH) ₂ per liter Sat. Sol.	Gms. (COOH) ₂ per liter Sat. Sol.
0	1.0594	1.479	133.I	0.478	1.0648	1.268	114.I
0.503	1.0561	1.190	107.1	1.606	1.0932	1.039	93.48
0.970	1.0577	1.032	92.85	4.224	1.1666	0.790	71.09
1.939	1.0654	0.821	73.88	9.590	1.3074	0.639	57 . 50
2.959	1.0757	0.675	60.74	13.62	1.3938	0.847	76.23
4.528	1.0957	0.555	49.95	14.12	1.4060	0.966	86.94
6.026	1.1165	0.525	47.25	15.59	1.4319	1.114	100.2
7.907	1.1494	0.607	54.63	16.92	1.4443	0.840	75.6
9.680	1.1843	0.871	78.38	20.84	1.4819	0. 524	47.15
				21.63	1.4917	P. 553	49.76

SOLUBILITY OF OXALIC ACID IN AQUEOUS SOLUTIONS OF H2SO4 AT 25°. (Wirth, '08.)

Conc. of das of Sat.		Gms. per 100	Gms. Sat. Sol.	Conc. of	dn of Sat.	Gms. per 100 Gms. Sat. Sol.		
Aq. H ₂ SO ₄ Normality.	Sol.	SO ₂ .	(COOH) ₁ .	Aq. H ₂ SO ₄ Normality.	Sol.	SO ₂ .	(COOH) ₂ .	
0	1.047	0	10.23	4.85	1.157	14	3.92	
I	1.064	2.98	8.03	.5.67	1.177	16.44	3.51	
2.39	1.140	7.30	6.02	6.45	1.220	17.84	3.12	
4.36	1.146	12.57	4.26	8.9	1.280	25.92	2.37	

SOLUBILITY OF OXALIC ACID IN SEVERAL ALCOHOLS. (Timofeiew, 1894.)

Alcohol.	ť.	Gms. (COOH) ₂ per 100 Gms. Sat. Sol.	Alcohol.	· t.	Gms. (COOH) ₂ per 100 Gms. Sat. Sol.
Methyl Alcohol	- 1.5		Propyl Alcohol	- I.5	12.2
	+20.2	39.8		+18.5	16.7
Ethyl Alcohol	- 1.5	22.4		20.2	17.5
a a	+18.5	26.2	Isobutyl Alcohol	20.2	10.9
"	20.2	26.9		-	-

SOLUBILITY OF OXALIC ACID IN ABSOLUTE AND IN AQUEOUS ETHER AT 25°. (Bödtker, 1897; Bourgoin.)

100 gms. absolute ether dissolve 1.47 gms. (COOH)₂.2H₂O. 100 gms. absolute ether dissolve 23.59 gms. (COOH)₂.

In Aqueous Ether Solutions.

Gms. Solid Acid Added per	100 cc. Ether Solution.	Gms. per 100 c	Gms. per 100 cc. Etner Solution.		
(COOH) ₂₋₂ H ₄ O.	(COOH) ₂ .	H ₂ O.	(COOH) ₂ .		
(1) 5	0	1.250	0.742		
(2) 5	0	0.788	0.720		
5	0	0.418	1.044		
5	2.44	0.360	3.388		
. 5	4.82	0.484	6.038		
5	7.14	0.558	8. 538		
. 5	9.42	0.632	10.996		
5	11.63	0.676	13.316		
Š	13.79	o. 760	15.684		
5	18.18	0.816	17.818		
Š	22.73	0.816	17.818		
(r) Ether saturate	d with water.	(2) Ether contains	ing 0.604 per cent water		

100 gms. glycerol dissolve 15 gms. oxalic acid at 15.5°. (Ossendowski, 1907.)
100 gms. 95% formic acid dissolve 9.74 gms. anhydrous oxalic acid at 16.8°.
(Aschan, 1913.)

DISTRIBUTION OF OXALIC ACID BETWEEN WATER AND AMYL ALCOHOL AT 20°. (Herz and Fischer, 1904.)

Millimols 🖟 (C	OOH), per 10 cc.	Gms. (COC	H), per 100 cc.
Aq. Layer.	Alcoholic Layer.	Aq. Layer.	Alcoholic Layer.
o.68o6	0.1451 '	o.306	0.0653
2.364	0.7233	1.064	0.326
6.699	2.550	3.015	1.148
10.029	4.300	4.511	1.934

Data for the distribution of oxalic acid between mixtures of amyl alcohol + ether and water at 25° are given by Herz and Kurzer (1910).

DISTRIBUTION OF OXALIC ACID BETWEEN WATER AND ETHER. (Pinnow, 1915.)

Results at 27°. Results at 15°. Dist. Coef. of: Gm. Mols. (COOH)2 per Liter.

Total Undissoc. Water Ether Gm. Mols. (COOH)₂ per Liter. Dist. Coef. of: Total Total Water Ether Undissoc. Layer. Layer. Acid. Acid. Layer. Acid. Acid. Layer. 8.49 0.760 8.18 11.6 0.0637 II.Q 0.3435 0.02945 13.5 14.8 8.81 8.37 0.1885 0.561 0.01395 0.0433 13 0.00845 8.6g 0.3575 0.0250 8.26 0.124 14.3 0.0802 16.1 8.72 0.2550 0.0165 8.12 0.00553 15.5 0.0470 0.00248 19 8.19 0.1754 0.01025 17.1 7.94 19.8 8.26 0.0022

Data for the effect of H₂SO₄ upon the above distribution are also given. Data similar to the above for a greater range of conc. at 25° are given by Chandler (1908).

OXYGEN O.

SOLUBILITY IN WATER. (Winkler, 1891; Bohr and Bock, 1891.)									
ŧ°.	Coef. of Absorption β.		Coef. of Absorption β. g. Cc. O per Liter H ₂ O.		t°.	Coef. of Absorption B.		g .	
0	0.0489*	0.0496†	0.00695	10.187	40	0.0231*	0.0233	0.00308	
5	0.0429	0.0439	0.00007	8.907	50	0.0209	0.0207	0.00266	
10	0.0380	0.0390	0.00537	7.873	60	0.0195	0.0189	0.00227	
15	0.0342	0.0350	0.00480	7.038	70	0.0183	0.0178	0.00186	
20	0.0310	0.0317	0.00434	6. 356	80	0.0176	0.0172	0.00138	
25	0.0283	0.0290	0.00393	5.776	90	0.0172	0.0169	0.00079	
30	0.0261	0.0268	0.00359	5.255	100	0.0170	0.0168	0.00000	
_			• W.	1	B. and	l B.			

For values of β and q see Ethane, p. 285.

According to determinations by Fox (1909a), which agree satisfactorily with the above, the solubility of oxygen in water is expressed by the formula: $1.340i + 0.28752\beta - 0.0003024\beta$. References to more recent papers on the solubility of oxygen are given by Coste (1917, 1918).

SOLUBILITY OF THE OXYGEN OF AIR IN WATER.

\$. 5.2°. 5.65°. 14.78°. 24.8°. Solubility * 8.856 8.744 7.08 5.762

* cc. Oxygen per 1000 cc. H₂O saturated with air at 760 mm.

SOLUBILITY OF OXYGEN IN WATER AND IN AQUEOUS SOLUTIONS OF ACIDS,
BASES AND SALTS. (Geffcken, 1904.)

Aq. Solution of:	Concentrati	on per Liter.	Solubility of Oxygen.*		
- <u>-</u>	Gram Equ	tiv. Grams.	118°.	l ₂₆ .	
Water alone	• • •	• • •	o . o ვ6 ვ	o.0308	
Hydrochloric Acid	0.5	18.22	0.0344	0.0296	
"	1.0	36.45	0.0327	0.0287	
66	2.0	72.90	0.0299	0.0267	
Nitric Acid	0.5	36.52	0.0348	0.0302	
66	1.0	63.05	0.0336	0.0205	
"	2.0	126.10	0.0315	0.0284	
Sulphuric Acid	0.5	24.52	0.0338	0.0288	
"	1.0	49.04	0.0319	0.0275	
46	2.0	98.08	0.0335	0.0251	
66	3.0	i47 · 12	0.0256	0.0220	
66	4.0	106.16	0.0233	0.0200	
66	5.0	245 - 20	0.0233	0.0104	
Potossium Hudrovid		28.08	•		
Potassium Hydroxide	•		0.0291	0.0252	
	1.0	56.16	0.0234	0.0206	
Sodium Hydroxide	0.5	20.03	0.0288	0.0250	
**	1.0	40.06	0.0231	0.0204	
"	2.0	80.12	0.0152	0.0133	
Potassium Sulphate	0.5	43 · 59	0.0294	0.0253	
"	1.0	87 . 18	0.0237	0.0207	
Sodium Chloride	0.5	29.25	0.0308	0.0262	
"	1.0	58.5	0.0260	0.0223	
"	2.0	110.0	0.0182	0.0158	
• In terms of the	See page 227.	•			

SOLUBILITY OF OXYGEN IN AQUEOUS POTASSIUM CYANIDE SOLUTIONS AT 20°. (Maclaurin, 1893.)

Gms. KCN per 100 gms. sol. I 10 20 30 50 Coefficient of absorption β 0.020 0.018 0.013 0.008 0.003

SOLUBILITY OF OXYGEN IN SEA WATER. (Fox, 1909a.)

Before using the sample of sea water for the solubility determinations, it was found necessary to add acid, otherwise the CO₂ could not be boiled out or the precipitation of neutral carbonates prevented. The very small amount of acid was titrated back, using phenolphthaleine as indicator.

Results in terms of cc. of oxygen absorbed by 1000 cc. of sea water from a free dry atmosphere at 760 mm. pressure.

The calculated formula expressing the solubility is: 1000 a = 10.291 - 0.2809 t + 0.000009 t + 0.0000632 t - Cl (0.1161 - 0.003922 t + 0.0000631 t).

Parts Chlorine per 1000.	t*= o*.	4*-	8*.	12°.	16°.	20°.	24°.	28°.
0	10.29	9.26	8.40	7.68	7.08	6. 57	6. 14	5.75
4	9.83	8.85	8.04	7.36	6.80	6.33	5.91	5 · 53
8	9.36	8.45	7.68	7.04	6.52	6.07	5.67	5.31
12	8.90	8.04	7.33	6.74	6.24	5.82	5.44	5.08
16	8.43	7.64	6.97	6.43	5.96	5.56	5.20	4.86
20	7 · 97	7.23	6.62	6.11	5.69	5.31	4.95	4.62

A recalculation of Fox's determinations to parts per million, with correction for vapor pressure, is published by Whipple and Whipple (1911).

Additional data on the solubility of atmospheric oxygen in sea water are given by Clowes and Biggs (1904).

Data for the solubility of oxygen in water under pressures up to 10 atmospheres are given by Cassuto (1913). The solubility increases at a somewhat slower rate than proportional to the pressure.

SOLUBILITY OF OXYGEN IN AQUEOUS SALT SOLUTIONS AT 25°. (MacArthur, 1916.)

Aq. Salt Solution.	d _{ss} Aq. (Solu- tion.	cc. oxy- gen per Liter.	Aq. Salt Solution.	d _m Aq. c Solu- tion.	c. Oxy- gen per Liter.	Aq. Salt Solution.		cc. Oxy- gen per Liter.
Dist. H ₂ O	1	5.78	0.25 # KBr	1.019	5.29	0.125% NaBr	1.007	5.65
0.125# NH ₄ Cl	1.0015	2.31	2 % "	1.079	3.27	0.25 % "	1.017	5.52
0.25 # "	1.0025	1.16	4 # "	1.162	1.84	0.50 % "	1.03Ó	5.15
I # "	1.014	0.07	0.125# KCl	1.003	5.52	I # "	1.075	4.47
0.125# BaCl ₂	1.019	5.40	0.25 n "	1.0086	5.30	2 % "	1.150	3.37
0.25 # "	1.042	5.04	0.50 n "	1.020	4.98	3 " "	1.219	2.57
0.50 # "	1.082	4.27	I # "	1.042	4.26	4 # "	1.305	2.02
I # "	1.177	3.10	2 # "	1.086	3.21	6 n "	1.455	1.28
0.25 % CaCl2	1.022	5.08	3 # "	1.134	2.36	0.125n NaCl	1.0022	5.52
I # "	1.084	3.71	4 " "	1.170	1.86	0.25 # "	1.0067	5.30
5 # "	1.34	2.14	0.125# KI	1.013	5.65	0.50 % "	1.017	4.92
0.125 % CaCl	1.014	5.67	0.25 n "	1.027	5.49	I n "	1.038	4.20
0.125 n LiCl	1.0004	5.63	0.50 % "	1.056	5.20	2 % "	1.075	3.05
0.50 % "	1.0001	5.17	I # "	1.116	4.75	3 # "	1.112	2.24
I # "	1.021	4.59	2 16 "	1.23	3.77	4 " "	1.149	1.62
2 # "	I.044	3.63	5 n "	1.46	1.81	0.125# Na ₂ SO ₄	1.014	5.04
3 n "	1.113	1.97	0.25 # KNO	1.015	5-49	0.25 n "	1.032	4.60
4 "	1.220	1.12	0.50 # "	1.029	5.11	0.50 n "	1.063	3.97
0.125 n MgCl	1.011	5.35	I # "	1.059	4.61	I # "	1.130	3
0.50 n "	1.044	4.37	2 n "	1.110	3.65	O.125# Sucrose	1.015	5.40
I # "	1.085	3.18	0.125# K2.SO4	1.016	5.11	0.25 n "	1.033	4.82
2 n "	1.160	2.22	0.25 n "	1.032	4.66	0.50 n "	1 763	4.39
4 " "	1.284	0.78	0.5 n "	1.060	3.89	I # "	1.147	3.20
5 # "	1.343	0.54	0.125n RbCl	1.0094	5.65	2 % "	1.336	1.84

SOLUBILITY OF OXYGEN IN AQUBOUS SULFURIC ACID SOLUTIONS.

Results at 21°.		(Bohr, 1910.)		Results at 20°. (Christoff, 1906).			
Normality of H ₂ SO ₄ .	Absorp. Coef. β.	Normality of H ₀ SO ₄ .	Absorp. Coef. β.	Wt. % H _e SO ₄ .	Ostwald Solubility Expression las-		
0	0.0310	24.8	0.0103	0	0.03756		
4.9	0.0195	29.6	0.0117	35.82	0.01815		
8.9	0.0155	34.3	0.0201	61.62	0.01407		
10.7	0.0143	35.8 (= 96%)	0.0275	95.60	0.03303		
20.3	0.0110						

SOLUBILITY OF OXYGEN IN ETHYL ALCOHOL, METHYL ALCOHOL AND IN ACETONE.

(Timofejew — Z. physik. Ch. 6, 151, '90; Levi — Gazz. chim. ital. 31, II, 513, '01.)

t* .	In Ethyl Alcohol of	99.7% (T.). B'.	In Methyl Alcohol (L.)	In Acetone (L.)
0	0.2337	0.2207	0.31864	0.2997
5	0.2301	0.2247	0.30506	0.2835
10	0.2266	0.2194	0.29005	0.2667
15	0.2232	0.2137	0.27361	0.2493
20	0.2201	0.2073	0.25574	0.2313
25	0.2177 (24°)	0.2017 (24°)	0.23642	0.2127
30	• • •	• • •	0.21569	0.1935
40	• • •		0.16990	0.1533
50	• • •	• • •	0.11840	0.1057

For values of β and β' , see Ethane, p. 285. l = Ostwald Solubility Expression. See p. 227.

The formulæ expressing the solubility of oxygen in methyl alcohol and in acctone as shown in the above table are as follows:

In Methyl Alcohol
$$l = 0.31864 - 0.002572 t - 0.00002866$$
.
In Acetone $l = 0.2997 - 0.00318 t - 0.000012$

The formula expressing the absorption coefficient of oxygen in ethyl alcohol is $\beta = 0.23370 - 0.00074688 t + 0.000003288 f$.

SOLUBILITY OF OXYGEN IN AQUEOUS ALCOHOL AT 20° AND 760 MM. (Lubarsch, 1889:)

Wt. Per cent Alcohol.	Vol. Per cent Absorbed O.	Wt. Per cent Alcohol.	Vol. Per cent Absorbed O.	Wt. Per cent Alcohol.	Vol. Per cent Absorbed O.
0	2.98	23.08	2.52	50	3.50
9.09	2.78	28.57	2.49	66.67	4.95
16.67	2.63	33 · 33	2.67	80	5.66

SOLUBILITY OF OXYGEN IN PETROLEUM. COEFFICIENT OF ABSORPTION AT $10^{\circ} = 0.229$, AT $20^{\circ} = 0.202$. (Gniewasz and Walfisz, 1887.)

SOLUBILITY OF OXYGEN ETHYL ETHER. (Christoff, 1912.)

Results in terms of the Ostwald Solubility Expression, $l_0 = 0.4235$, $l_{10} = 0.4215$.

SOLUBILITY OF OXYGEN IN AQUEOUS SOLUTIONS OF:

Chloral Hydrate at 20°. (M)		(Müller, 1912-1;	3.) Glycero	olat 15°. (Müller,	1912–13.)
Gms. CCl ₂ .CH(OH) ₂ per 100 Gms. Aq. Sol.	d₃ of Aq. Sol.	Abs. Coef. β (Bunsen) at 20°.	Gms. (CH ₂ OH) ₂ CHOH per 100 Gms. Aq. Sol.	d of Aq. Sol.	Abs. Coef. 8 (Bunsen) at 15°.
16.9	1.0798	0.02795	20.5	$d_{12.5} = 1.0509$	0.02742
32	1.1630	0.02495	25	$d_{13} = 1.0621$	0.02521
52.9	1.2935	0.02325	3 7 · 3	$d_{14.5} = 1.0957$	0.02022
61.08	1.354	0.02410	45	$d_{12.5} = 1.1161$	0.01744
65.5	1.382	0.02580	52	$d_{12.5} = 1.1351$	0.01570
71.4	I . 4404	0.02730	71.5	$d_{12.5} = 1.1908$	0.00950
78	1.46	0.03280	88.5	$d_{18.5} = 1.236$	o.oo886

SOLUBILITY OF OXYGEN IN AQUEOUS SOLUTIONS OF:

Glucose a	at 20°. (Mü	ller, 1912–13.)	Cane Sugar	(Müller, 1912-13.)	
Gms. C ₆ H ₁₉ O ₆ per 100 Gms. Aq. Sol.	d₂s of Aq. Sol.	Abs. Coef. β (Bunsen) at 20°.	Gms. C ₂₂ H ₂₂ O ₁₁ per 100 Gms. Aq. Sol.	d ₁₁ of Aq. Sol.	Abs. Coef. β (Bunsen) at 15°.
10.84	1.0413	0.0269 0	12.1	1.0482	0.02969
20.7	1.0835	0.02250	24.38	I.1022	0.02396
33.8	1.1370	0.01815	28.44	1.1205	0.02181
51.0	1.2295	0.01390	42.96	1.1938	0.01600
58.84	1.2649	0.01250	50	1.2318	0.01359

Influence of Anesthetics upon the Solubility of Oxygen in Olive Oil. (Hamberger, 1911.)

Narcot	nd Conc. of ^S ic Added be Oil.	Pure Solvent.	Oxygen in: Narcotic Solution.	Name and Co Narcotic Ad to the Oil	ded	_	lubility o Pure Solvent.	Narcotic Solution.
Sulfonal	(o.8 per 100)	9.69	4.55	Monochlorhydrin	e(s	per 100)	9.10	7.50
"		9.69	5.68	"	(2.5	")	9.10	7.50
"		9.69	6.25	"	(1.25	")	9.10	7.90
Trional	(saturated)	9.10	4.55	Dichlorhydrine	(10	")	9.10	7.96
**		9.10	5.68	"	(5	")	9.10	8
Tetronal	(2 per 100)	9.67	9.10	Phenylurethan	(5	")	8.53	6.25
**		9.67	9.20	"	(2.5	")	8.53	7.50
Camphor	(10 bet 100)	8.53	7.96					

Data for the solubility of oxygen in liquid air are given by Baly (1900).

Data for the solubility of oxygen in hemoglobin are given by Jolin (1889).

Data for the solubility of oxygen in defibrinated ox-blood and ox-serum, at pressures varying from 760 to about 1400 mm. Hg, are given by Findlay and Creighton (1911).

OZONE O3.			OLUBILITY IN ilfert, 1894; Car				
t°.	W.	G .	R.	t°.	W.	<i>G</i> .	R.
0	39.4.	61.5	0.641	27	13.9	51.4	0.270
6	34.3	61	0.562	33	7.7	39.5	0.195
11.8	29.9	59.6	0.500	40	4.2	37.6	0.112
13	28	58. I	0.482	47	2.4	31.2	0.077
15	25.9	56.8	0.456	55	0.6	19.3	0.031
10	21	55.2	0.281	60	0	T2.2	o Č

W= milligrams ozone dissolved per liter water. G= milligrams ozone in one liter of the gas phase above the solutions. R= ratio of the dissolved to undissolved ozone (W+G).

The experiments of Schöne (see preceding page) were repeated by Inglis (1903). "The results confirm Schöne's experiments and indicate that ozone, when passed through water, is partly decomposed."

when passed through water, is partly decomposed."

According to Moufang (1911) the solubility of ozone in distilled water ranges from about 10 milligrams per liter at 2° to about 1.5 milligrams per liter at 28°. The solubility is greatly affected by other substances in solution. Small amounts of acids increase the solubility and render the aqueous solution of the ozone more permanent. Alkalis decrease the solubility. Neutral salts (i.e., calcium sulfate) increase the solubility.

SOLUBILITY OF OZONE IN DILUTE SULFURIC ACID. (Rothmund, 1912.)

The explanation of the discrepancies concerning the solubility of ozone in water is that the ozone quickly decomposes as the saturation point is reached. Rothmund, therefore, determined the solubility in dilute H_2SO_4 in which decomposition takes place much more slowly than in pure water. At 0° the absorption coef. β (Bunsen, see p. 227) in 0.1 n H_2SO_4 , is 0.487. The coef. remains practically the same when the concentration of the ozone is changed over a wide range, hence Henry's Law holds for ozone. The dissolved ozone has the same molecular weight as the gaseous. The solubility depression which ozone experiences through 0.1 n H_2SO_4 is calculated as 1.5%. Therefore, by extrapolation, it is calculated that the abs. coef. β of ozone in H_2O at 0°, is 0.494.

PALLADIUM CHLORIDE PdCl2.

When I gm. of palladium, as chloride, is dissolved in 100 cc. of H₂O and shaken with 100 cc. of ether, 0.02 per cent of the metal enters the ethereal layer at ord. temp. When aq. 10% HCl is used, 0.01 per cent of the metal enters the ethereal layer.

(Mylius, 1911.)

100 cc. anhydrous hydrazine dissolve I gm. PdCl₂, with evolution of gas and formation of a black precipitate, at room temperature. (Welsh and Broderson, 1915.)

PALMITIC ACID CH₄(CH₂)₁₄COOH.

SOLUBILITY IN AQ. AND ABSOLUTE ETHYL ALCOHOL.

	Gms. C	Н¹(СН³)ЧСООН be	f 100 cc.:
ť.	Absolute Alcohol.	Aq. 75% Alcohol.	Ag. 50% Alcohol.
10	2.8	0.24	0.05
20	9.2	0.43	0.08
30	• • •	1.19	0.12
40	31.9	3.59	0.31

100 cc. sat. solution of palmitic acid in methyl alcohol of 94.4 vol. % (d = 0.8183) contain 1.03 to 1.17 gms. at 0.2°, equilibrium being approached from above. The mixtures were simply allowed to stand in an ice chest for from 12 to 156 hours.

(Hehner and Mitchell, 1897.)

SOLUBILITY OF PALMITIC ACID IN SEVERAL ALCOHOLS. (Timoleiew, 1894.)

Alcohol.	t°.	Gms. CH ₂ (CH ₂) _H COOH per 100 Gms. Sat. Sol.	Alcohol.	ť.	Gms. CH _s (CH _s) _M COOH per 100 Gms. Sat. Sol.
Methyl Alcohol	0	0.72	Propyl Alcohol	0	2.92
- (6	21	5.1	"	21	13.8
"	36	29.5	Isobutyl Alcohol	0	2.2
Ethyl Alcohol	0	2	čí (21	12.8
- "	21	10.1			

One hundred gms. of aq. 5% solution of bile salts dissolve about 0.1 gm. palmitic acid. 100 gms. aq. 5% solution of bile salts containing 1% of lecithin dissolve 0.6 gms. palmitic acid. (Moore, Wilson and Hutchinson, 1909.)

SOLIDIFICATION POINTS OF MIXTURES OF PALMITIC AND STEARIC ACIDS. (De Visser, 1898.)

Fifty gram samples of each mixture were used and great care taken to insure accuracy of the determinations.

t° of Solidi- fication.	Gms. Stearic Acid per 100 Gms. Mixture.	t° of Solidi- fication.	Gms. Stearic Acid per 100 Gms. Mixture.	Solidi- fication.	Gms. Stearic Acid per 100 Gms. Mixture.
69.32	100	57 . 2	55	54.85 Eute	ec. 30
67.02	90	56.42	50	55.46	25
64.51	8 o	56.38	45	56.53	20
61.73	70	56.11	40	59.31	10
58.76	60	55.62	36	62.62	0

Additional determinations on this system by Dubowitz (1911) are, for the most part, in good agreement with the above. According to Carlinfanti and Levi Malvano (1909), however, the eutectic could not be located and there were indications of the existence of solid solutions.

DATA ARE GIVEN FOR THE SOLIDIFICATION POINTS OF THE FOLLOWING MIXTURES:

Palmitic Acid	+ Tripalmitin		(Kremann and K	lein, 1913.)
44	+ - +	Stearic Acid.	• "	"
44		Tristearin.	(Kremann and K	ropach, 1914.)
44	+ Tristearin + S	tearic Acid.	4	44
44	+ Tristearin.		14	44
Tripalmitin	+ Tristearin + S	tearic Acid.	14	44
- "	+ Stearic Acid.		(Kremann and K	lein, 1913.)
Palmitic Acid	Cetyl Ester + Pa	raffin.	(Palazzo and Bat	telli, 1883.)

PAPAVERINE C₂₀H₂₁NO₄.

100 gms. carbon tetrachloride dissolve 0.203 gm. at 17°. (Schindelmeiser, 1901.)
100 gms. carbon tetrachloride dissolve 0.518 gm. at 20°. (Gorl, 1913.)
100 gms. ethyl ether dissolve 0.38 gm. at 10°.

100 gms. of each of the following solvents dissolve the stated amount of papaverine at 20°. Aniline, 29 gms.; pyridine, 8 gms.; piperidine, 1 gm.; diethylamine, 0.4 gm. (Scholtz, 1912.)

PARAFFIN.

SOLUBILITY OF OZOKERITE PARAFFIN OF MELTING POINT 64°-65° AND SP. GR. AT 20° = 0.917 IN SEVERAL SOLVENTS AT 20°.

(Pawlewski and Filemonowicz, 1888.)

	Gms. Paraffin per 100			Gms. Paraffin per 100		
Solvent.	Gms. Solvent.	cc. Solvent.	Solvent.	Gms. Solvent.	cc. Solvent.	
Carbon Disulfide	12.99		Acetone	0.262	0.200	
Benzine, boiling below 75°	11.73	8.48	Ethyl Acetate	0.238		
Turpentine, b. pt. 158°-166°	6.06	5.21	" Alcohol	0.219	• • •	
Cumol, com. b. pt. 160°	4.26	3.72	Amyl Alcohol	0.202	0.164	
" frac. 150°-160°	3.99	3.39	Propionic Acid	0.165		
Xylene, com. b. pt. 135°-143°	3.95	3.43	Propyl Alcohol	0.141	• • •	
" frac. 135°-138°	4.39	3.77	Methyl Alcohol	0.071	0.056	
Toluene, com. b. pt. 108°-110°	-	3 · 34	Methyl Formate	0.060		
11ac. 100 -100	3.92	3.41	Acetic Acid	0.060	0.063	
Chloroform	2.42	3.61	_ " Anhydride	0.025		
Benzene	1.99	1.75	Formic Acid	0.013	0.015	
Ethyl Ether	1.95	• • • •	Ethyl Alcohol 75%	0.0003		
Isobutyl Alcohol, com.	0.285	0.228				

F.-pt. data for paraffin + stearin are given by Palazzo and Battelli (1883).

PENTANE CHa(CHa)aCHa.

Data for the solubility of pentane in liquid carbon dioxide, determined by the synthetic method, are given by Büchner (1906).

IsoPENTANE (CH₂)₂CH.CH₂CH₄.

RECIPROCAL SOLUBILITY OF ISOPENTANE AND PHENOL. (Campetti and Del Grosso, 1913.)

	Gms. Phenol per 100 Gms.			
ť.	Isopentane Rich Layer.	Phenol Rich Layer.		
20	4.5	87		
30	7	83.5		
40	11.5	80		
50 60	18	75·5 68		
	29.5			
65	40	58		
66 crit. temp.	50			

F.-pt. data for mixtures of hexachloro- α -keto γ -R-pentene, C₆Cl₆O, + penta chloromonobromo α -keto γ -R pentene, C₆Cl₆BrO, are given by Küster (1890, 1891).

PEPTONE.

100 gms. H₂O dissolve 42.2 gms. peptone at 20–25°. (Dehn, 1917.)

" pyridine " 0.22 "" " "

aq. 50% pyridine " 12.6 " " " "

PERCHLORIC ACID HCIO4.

SOLUBILITY IN WATER. (van Wyk, 1902, 1905.)

Mixtures of HClO₄ and water were cooled until crystals appeared and then very gradually warmed and constantly stirred while an observation was made of the exact temperature at which the last crystal disappeared. At certain concentrations and temperatures unstable solid phases were obtained, also, curves for two series of mix crystals were encountered. The methods for detecting these phases consisted in seeding the saturated solutions with the several different crystalline forms, and observing the change in rate of cooling during the solidification of the mixture. The data for the mix-crystal curves I and II are not given in the following table:

	Mols. HClO			Mols. HClO	
ť.	per 100 Mols HClO ₄ +H ₂ O.	. Solid Phase.	t°.	per 100 Mols. HClO ₄ +H ₂ O.	Solid Phase.
0	0	Ice	-32	26	HC104.21H20
— 10	5	4	-29.8	28.57	a
— 2 I	7	4	-44	27	HClO ₄₋₂ H _e O
-34.5	9	•	-41	27.25	"
-54	II	u	-34	28	44
-50.5	; 19	HClO ₄₋₃ H ₄ O	-24	29.9	u
-45	20	44	— 17.8m.	pt. 33 . 3	"
-42.3	21	66	-21.5	36	**
-41.4	22.22	66	-23 .6	36.5	" +HClO ₄ .H ₄ O
-43	23.5	66	-12.5	37	HCIO, HO
-40.5	22.5	HClO4-3H4O a	1+3	38	*
-39.5	22.75	46	28	40.8	*
-37.6	24	a	40	43 · 7	4
-37.5	26	u	50 m. pt	. 50	*
-38.8	27	46	45	59.9	
-47.8	22.5	HClO ₄₋₃ H _e O \$	27.5	71.5	•
-44	24	44	17	77.2	*
-43.5	24.5	4	+2.2	83.3	•
-43.2	-	u	-21.5	90.7	
-44.5		ee	-40	94	•,
-37.2	25	HClO4-3HqOa+HClO4-21HqO	-102	100	۲

PETROLEUM ETHER.

100 cc. H₂O dissolve 0.005 cc. petroleum ether at 15°.

(Groschuff, 1910.)

PHENACETIN (p Acetphenetidin) C₄H₄(OC₂H₅)NHCH₃CO p.

SOLUBILITY IN AQUEOUS ALCOHOL AT 25°. (Seidell, unpublished.)

Wt. % C.H.OH in Solvent.	d ₂₀ of Sat. Sol.	Gms. C ₄ H ₄ (OC ₂ H ₄) NHCH ₂ CO per 100 Gms. Sat. Solution.	Wt. % C ₂ H ₆ OH in Solvent.	d ₂₅ of Sat. Sol.	Gms. C ₆ H ₄ (OC ₂ H ₄) NHCH ₂ CO per 100 Gms. Sat. Solution.
o (water)	I	0.0766	70	0.879	6.25
10	0.984	0.14	80	0.858	7.63
20	0.968	0.28	85	0.847	7.88
30	0.952	0.65	90	0.834	7.82
40	0.935	1.50	92.3	0.827	7.70
50	0.917	2.85	95	0.821	7-45
60	0.898	4 · 55	100	0.806	6.64

100 gms. H₂O dissolve 1.43 gms. phenacetin at the b. pt. (U.S.P., VIII.) 100 gms. 92.3 wt. % alcohol dissolve about 50 gms. phenacetin at the b. pt. "

SOLUBILITY OF PHENACETIN IN SEVERAL SOLVENTS. (Seidell, 1907.)

Solvent.	r.	Gms. Phenacetin per 100 Gms. Sat. Solution.	Solvent.	e .	Gms. Phenacetin per 100 Gms. Sat. Solution.
Acetone	30-31		Benzene	30-31	0.65 (0.873)
Amyl Acetate	30-31	2.42 (0.865)	Chloroform	25	4.76
Amyl Alcohol	25	3.51 (0.819)	Ether	25	1.56
Acetic Acid (99.5%)	21.5	13.65 (1.064)	Toluene	25	0.30 (0.863)
Aniline	30-31		Xylene	32.5	1.25 (0.847)
Benzaldehyde	30-31		-	- •	
-					

(Figures in parentheses are Sp. Gr. of Sat. Solutions.)

100 cc. petroleum ether dissolve 0.015 gm. phenacetin at room temp. (Salkower, 1916.) 100 gms. pyridine dissolve 17.39 gms. phenacetin at 20–25°. (Dehn, 1917.) 100 gms. aq. 50% pyridine dissolve 28.94 gms. phenacetin_at 20–25°. "

PHENANTHRAQUINONE C.H.(CO2CO2C.H.

SOLUBILITY IN BENZENE AND IN ETHYL ACETATE. (Tyrer, 1910.)

	Solubility in	Benzene.	S	olubility in E	thyl Acetate.
ť.	Sp. Gr. of Sat. Solution.	Gms. (C ₀ H ₄) ₂ (CO ₂) ₂ per 100 Gms. Benzene.	r.	Sp. Gr. of Sat. Solution.	Gms. (C ₄ H ₄) ₂ (CO ₂) ₂ per 100 Gms. Ethyl Acetate.
10	0.8902	0.412	10	0.9102	0.518
15	0.8850	0.471	20	0.9025	0.626
20	0.8800	0.538	30	0.8906	0.770
30	0.8698	0.738	40	0.8789	0.995
40	0.8601	1.032	50	0.8674	I.292
50	0.8506	1.354	60	0.8561	1.640
60	0.8415	1.760	65	0.8508	1.902
70	0.8327	2.687	70	0.8454	2.215
80	0.8241	3.770	75	0.8401	2.515

NOTE. — The Sp. Gr. determinations given in the above table and in the tables for anthracene and anthraquinone, pp. 81 and 82, are not included in the original paper of Tyrer (1910) but, in response to my request, have been kindly supplied for the present volume. I am also indebted to Dr. Tyrer for the modified form of his original tables showing the solubilities of anthraquinone and phenanthraquinone in mixed solvents. (A. S.)

SOLUBILITY OF PHENANTHRAQUINONE IN MIXTURES OF ORGANIC SOLVENTS.

(Tyrer, 1910.)

In C ₆ H ₆ -	+ Hydrocarbons	In CHCl	+ Pentane	In CH ₄ COOC	₂H₅ + Hydro-
(1	r) at 48°.	at	14.5°	carbons(I) at 48°.
Per cent	Gms. Phenan-	Per cent	Gms. Phenan-	Per cent	Gms. Phenan-
C _e H _e in Mixed	thraquinone per 100 Gms.	CHCl _s in Mixed	thraquinone per 100 Gms.	CH ₂ COOC ₂ H ₅ in Mixed	thraquinone per 100 Gms.
Solvent	Solvent.	Solvent.	Solvent.	Solvent.	Solvent.
0	0.0708	0	0.025	0	0.073
10	o.o88	10	0.045	14.19	0.126
20	0.118	20	0.080	27 · 37	0.207
30	0.160	30	0.115	39.94	0.335
40	0.228	40	0.165	52.12	0.494
50	0.318	50	0.220	63.56	0.656
60	0.440	60	0.330	74.19	0.817
70	0.588	70	0.525	84.62	0.993
80	0.772	80	0.805	90	1.073
90	1.004	90	1.415	100	1.230
100	1.288	100	2.402		_

(1) Distilled from petroleum, b. pt. = 82°-92°. (See note, preceding page.)

PHENANTHRENE C14H10.

SOLUBILITY IN ALCOHOL AND IN TOLUBNE.*
(Speyers -- Am. J. Sci. [4] 14, 295, '02.)

In Toluene.

In Alcohol.

\$* .	Gms. C ₁₄ H ₁₈ per 100 Grams C ₂ H ₅ OH.	Sp. Gr. of Solutions (HsO at 4°.)	Gms. C ₁₄ H ₁₀ per 100 Grams C ₆ H ₅ .CH ₈	Sp. Gr. of Solutions (H ₂ O at 4°.)
0	3.65	0.814	23.0	0.925
10	3.80	o .807	30.0	0.929
20	4.6	0.801	42.0	0.934
25	5.5	0.799	50.0	0.939
30	6.4	0.797	58.o	0.943
40	8.2	0.795	76. 0	0.955
50	10.6	0.794	95.0	0.971
60	15.6	0.797	115.0	0.989
70	33.0	0.815	135.0	1.007
80	•••	0.865 (76.4°)	155.0	1.027

 Calculated from the original results which are given in terms of gram molecules of Phenanthrene per 100 gram molecules of solvent, and for irregular intervals of temperature.

Behrend, 1892, reports 2.77 gms. phenanthrene per 100 gms. alcohol at 12.3°, and 3.09 gms. at 14.8°.

SOLUBILITY OF PHENANTHRENE IN ORGANIC ACIDS. (Timofeiew, 1894.) Gms. C_HH₁₀ per 100 Gms. Gms. C₁₄H₁₀ per 100 Gms. Sat. Sol. Acid. Acid. ; Sat. Sol. Propionic Acid Acetic Acid 8.31 17 23 23 " g.8 39 21.4 39 " " " 34.6 62.4 70.5 40.3 Butyric Acid 15.6 Isobutyric Acid 12.3 23 23 Valeric Acid

" " 39 21 Valeric Acid 39 16.6

100 gms. 95% formic acid dissolve 0.46 gms. C₁₄H₁₀ at 20.8°. (Aschan, 1913.)

F.-pt. data for mixtures of phenanthrene and each of the following compounds are given by Kremann et. al., (1908); 1.2.6 dinitrotoluene, 1.2.4. dinitrotoluene, 1.3.4 dinitrotoluene, trinitrotoluene and trinitrobenzene. Results for mixtures of phenanthrene and 2.4 dinitrotoluene are given by Kremann and Hofmeier (1910).

SOLUBILITY OF PHENANTHRENE IN SEVERAL SOLVENTS AT 25°. (Hildebrand, Ellefson and Beebe, 1917.)

Solvent.	Gms. C ₁₄ H ₁₀ per 100 Gms. Solvent.	Solvent.	Gms. C _M H ₁₀ per 100 Gms. Solvent.
Alcohol	4.91	Carbon Tetrachloride	26.3
Benzene	59 · 5	Ether	42.9
Carbon Disulfide	80.3	Hexane	9.15

SOLUBILITY OF PHENANTHRENE PICRATE IN ABSOLUTE ALCOHOL. (Behrend, 1892.)

5°.	Gran	Grams per 100 Grams Saturated Solution.								
	Picric Acid	+	Phenanthrene =	Phenanthrene Picrate.						
12.3	0.91		0.71	I . 62						
14.3	1.00		0.78	1.78						
17.5	1.05		0.82	1.87						

SOLUBILITY OF PHENANTHRENE PICRATE IN ALCOHOLIC SOLUTIONS CONTAINING PICRIC ACID AND ALSO PHENANTHRENE. (Behrend.)

	Grams Add	led to 62 cc.	Abs. Alcohol.	Gms. per 100 Gms. Sat. Solution.				
t° .	P. Picrate +	Picric Ac. +	Phenanthrene.	Picric Ac. + Phenanthrene - P. Picrate.				
12.3	· 1.4	0	0.5	0.534	1.413	1.947		
12.3	1.4	0	0.9	0.409	2.141	2.550		
12.3	8. ه	0	2.I	0.354	2.77	3.124		
12.3	8.م	0	4.0	0.139	5.626	5.765		
17.5	1.4	0.1	0	1.159	0.75	1.91		
17.5	1.4	0.2	0	1.285	0.68	1.97		
17.5	1.4	I .O	0	2.45	0.37	2.82		
17.5	1.4	4.0	0	6.15	0.195	6.345		
17.5	1.4	0.0	2.2	0.423	3.276	3.699		

PHENOL C.H.OH.

SOLUBILITY IN WATER. (Alexejew, 1886; Schreinemaker, 1900; Rothmund, 1898.)

The determinations were made by the "Synthetic Method," for which, see Note, p. 16.

r.	Gms. Phenol p	per 100 Gms.
• .	Aqueous Layer.	Phenol Layer.
IO	7 · 5	75
20	8.3	72.I
30	8.8	69.8
40	9.6	6 6.9
50	12	62.7
55 60	14.I	59 · 5
	16.7	55.4
65	21.9	49.2
68.3 (crit. temp.)	33	.4

Results confirming the above, and also viscosity measurements, are given by Scarpa (1904).

The complete T - x data for the system are given by Smits and Maarse (1911).

The complete T - x data for the system are given by Smits and Maarse (1911). F.-pt. data for the system are given by Rózsa (1911) and Paterno and Ampola 1897).

Vaubel (1895) states that 100 gms. sat. aqueous solution contain 6.1 gms. phenol at 20°. Sp. Gr. of solution = 1.0057.

PHENOL

PHENOL.

SOLUBILITY OF PHENOL IN AQUEOUS ACETONE SOLUTIONS. (Schreinemakers, 1900.)

	In 4.24% Acetone		In 12. Aceto			4.6% tone.	In 59 Aceto	.9% on e.
٠.	Grams Pho 100 G		Gms. Phe			henol per Gms.		henol per Gms.
•	Aq. Acetone Layer.	Phenol Layer.	Aq. Acetone Layer.	Phenol Layer.	Aq. Acetone Layer.	Phenol Layer.	Aq. Acetone Layer.	Phenol Layer
20		• • •			•••	• • •	26. o	60.5
30	5.0	74.0	4.0	71.0	6. o	69.5	28. 5	57.0
40	5.5	70.0		•••		•••	32.0	52.0
50	5.7	67.0	5.0	67. o	8. o	64.0	34·5\$	49. 🕞
60	6. <u>5</u>	61.0	•••	•••	•••	• • •	36.5	46.5
70	9.0	51.0	7.5	57 · 5	19.0	57.0	36. 5 (49.5°) 4	1.5
80	14.0	34.0	10.5	49.5	14.0	52.5		•
	(84°) 22.	5	20. 4*	30.5*	23. ot	47. of		
			(90. 3°) 25.	. 0	2 6. 5‡	44.01		
			-		(90.5°) 35	;. o		
	90		185°		187°-5	\$ 45°	147°-5	

The figures in the above table were read from curves plotted from the original results. Similar data are also given for acetone solutions of seven other concentrations.

The determinations were made by adding various quantities of phenol to the mixtures of water and acetone and observing the temperature at which the two layers became homogeneous. The isothermal lines for 30°, 50°, 68°, 80°, 85° and 87° were located. The results for 30° and 80° are as follows: (Schreinemakers, 1900.)

	Results at 30°.						esults at	80°.
Gms. 1	per 100 Gms.	Mixture.	Gms. p	Gms. per 100 Gms. Mixture.			er 100 Gms.	Mixture.
ню.	(CH ₂) ₂ CO.		HO.	(CH ₂),CO.	C.H.OH.	H _O .	(CH ₂),CO.	с.н.он.
92	0	8	18.4	34.I	47 · 5	83. 3	3.7	13
92.3	1.7	6	17.2	25.8	57	82.9	7.1	10
91	4	5	17.9	81.I	64	74 - 7	.13.8	11.5
88.4	7.6	4	19.1	12.9	68	61.8	20.2	18
81	15	4	21.1	9.9	69	52.5	24.5	23
70.9	23.I	6	22.6	7.4	70	40.6	27.4	32
62.1	28.9	9	25.2	4.6	70.2	32.2	21.8	46
51.6	34.9	13.5	27 . I	2.3	70.6	33 · 4	15.6	51
39.8	40.2	20	28.7	1.3	70	35.4	11.6	53
28.9	43.I	28	30	0.5	69.5	40.5	7.5	52
21.8	40.2	38	•	•		49.7	4.3	46
	·	•				62.7	2.8	34.5

SOLUBILITY OF PHENOL IN BENZENE AND IN PARAFFIN. (Schweissinger, 1884-85.)

Solvent.	Gms. C ₆ H ₆ OH per roo Gms. Solvent at:						
	16°.	21°.	25°.	43°.			
Paraffin	1.66		• • •	5			
Benzene	2.5	8.33	10	100			

Data for equilibrium in systems composed of phenol, water and each of the following compounds are given by Timmermans (1907): NaCl, KCl, KBr, KNO₂, K₂SO₄, MgSO₄, tartaric acid, salicylic acid, succinic acid and sodium oleate.

PHENOL

MISCIBILITY OF AQUEOUS ALEALINE SOLUTIONS OF PHENOL WITH SEVERAL ORGANIC COMPOUNDS INSOLUBLE IN WATER.

(Scheuble, 1907.)

To 5 cc. portions of aq. KOH solution (250 gms. per liter) were added the given amounts of the aq. insoluble compound from a buret and then the phenol, dropwise, until solution occurred. Temperature not stated.

Composition of Homogeneous Solutions.

cc. Aq. KOH.	cc. Aq. Insol. Cmpd.	Gms. Phenol.
5	2 (= 1.64 gms.) Octyl * Alcohol	2.6
5	5 (= 4.1 gms.) " "	3.9
5	2 (= 1.74 gms.) Toluene	4.9
š	3 (= 2.61 gms.) Toluene	6.7
Š	2 (= 1.36 gms.) Heptane	15

* = the normal secondary octyl alcohol, i. s., the so-called capryl alcohol, CH4(CH2)4. CH(OH) CH3.

SOLUBILITY OF PHENOL IN AQUEOUS SOLUTIONS OF DEXTRO TARTARIC ACID AND OF RACEMIC ACID. (Schreinemakers, 1900.)

In 5.093% Acid.			In 19.34% Acid.			In 40.9% Acid.		
	Gms. Phenol p	er 100 Gms.	G	Gms. Phenol per 100 Gms.			Gms. Phenol p	er 100 Gms
t°.	Aq. Acid Layer.	Phenol Layer.	t°.	Aq. Acid Layer.	Phenol Layer.	t°.	Aq. Acid. Layer.	Phenol Layer.
30	7 · 5	72.5	50	10	77	70	13	• • •
50	10.5	65.5	60	12.5	72	8o	16.5	77
60	14.5	58	70	19	64	85	20	74
65	19.5	53	75	29	56	90	26.5	71
67.5	25	48.5	77*	4	7	95	39	63.5
69*	47	∙5	• Crit	ical tempera	ture.	97 *	5	4

Identical results were obtained with the dextro and racemic acids, showing that both have exactly the same influence on the formation of layers in the system water-phenol.

DISTRIBUTION OF PHENOL BETWEEN:

AMYL ALCOHOL AND WATER AT 25°.

BENZENE AND WATER AT 20°.

(Herz and Fischer — Ber. 37, 4747, '04.)

(Vaubel — J. pr. Ch. [2] 67, 476, '03.)

Millimol per : Alcoholic Layer.	Aqueous	Gms. 1 per 10 Alcoholic Layer.	00 сс.	Volumes of Solvents used per r Gm. Phenol	Gms. Phenol in: H ₂ O C ₆ H ₆ Layer. Layer
0.75 0.9 1.1 2.6 54.1 56.3	0. 047 0. 05 0. 07 0. 16 3. 83 3. 9	0. 705 0. 846 1. 035 2. 445 50. 88 52. 93	0. 0441 0. 047 0. 066 0. 150 3. 601 3. 667	50 cc.H ₂ O + 50 cc.C ₀ H ₆	0.286 0.714 0.1188 0.8212 0.0893 0.9107 0.0893 0.9107

DISTRIBUTION OF PHENOL BETWEEN WATER AND BENZENE AT 20°. (Philip and Bramley, 1915.)

Gms. Phenol per Liter.		Ratio -	Gms. Pheno	Gms. Phenol per Liter.		
Aq. Layer, s.	CeHe Layer, b.	Katio - •	Aq. Layer, s.	C.H. Layer, b.	Ratio 6.	
0.945	2.073	2.194	o.356	0.7736	2.173	
0.888	1.944	2.189	0.238	0.5177	2.175	
0.711	I - 553	2.184	0.119	0.2594	2.180	
0.594	1.293	2.176	0.0601	0.1314	2.189	
0.475	1.036	2.181		•	-	

Results are also given for the effect of NaCl, KCl and of LiCl upon the above distribution.

DISTRIBUTION OF PHENOL BETWEEN WATER AND BENZENE AND BETWEEN AQUEOUS K, SO, SOLUTIONS AND BENZENE AT 25°. (Rothmund and Wilsmore - Z. physik. Ch. 40, 623, '02.)

Note. — The original results, which are given in terms of gram mols. per liter, were calculated to grams per liter, and plotted on cross-section paper. The following figures were read from the curves obtained.

Between H₂O and C₄H₄.

Effect of K₂SO₄ upon the Distribution.

	Grams C ₀ H ₈ OH per Liter of:			(1) Gms. CeHsOH per Liter of:		(2)Gms. CeHsOH per Liter of:	
H ₂ O Layer.	CeHe Layer.	Aq. Solution.	Aq. Layer.	CeHe Layer.	Aq. Layer.	C ₆ H ₆ Layer.	
5	10	1.36	17.08	59.96	9.52	26.28	
10	28	2.72	16.92	60.63	9.50	26.38	
15	52	5 · 44	16.85	60.92	9.46	26.55	
20	84	10.89	16.44	62.73	9.35	27.06	
25	128	21.79	15.89	65.19	9.09	28.27	
30	200	43 - 59	14.85	69.71	8.68	30.21	
35	300	87.18	12.92	78.∞	7.79	34.38	
40	410						
45	520						
50	610	(1) First series.		(a) Se	cond series.		

EQUILIBRIUM IN THE SYSTEM PHENOL, BENZENE AND WATER AT 25°. (Horiba, 1914-1916.)

Gms. r	Gms. per 100 Gms. Sat. Sol.						
C,H,OH.	C₀H₀.	H ₂ O.	Solid Phase.				
81.06	18.94	0	C.H.OH				
89.78	7.92	2.30	44				
92.31	4.07	3.62	**				
95.14	0	4.86	44				

The results for the conjugated liquid layers are as follows:

Upper Laver.

Lower Layer.

Gms. per 1	oo Gms. of the	Liquid.	Gms. per	100 Gms. of th	ne Liquid.	
C.H.OH.	C₀H₀.	H _r O.	C.H.OH.	C₅H₅.	H _r O.	
0	99.95	0.05	0	0.198	99.802	
4.78	94.98	0.24	I.43	0.21	98.36	
17.36	81.83	0.81	2.80	0.21	96.99	
21.15	77.22	1.63	3.01	0.21	96.77	
28.01	69.81	2.18	3.35	0.21	96.44	
44.39	50.56	5 .05	4.07	0.19	95.74	
55.80	36.13	8.07	4.58	0.19	59.23	
74 - 5	3	22.5	5.65	0.17	94.18	
70.70	Ō	29.29	8.195	•	91.805	

Data for this system are also given by Rózsa (1911).

Data for this system are also given by Rózsa (1911).

The coefficient of distribution of phenol between olive oil and water at 25°, conc. in oil + conc. in H₂O, is given by Boeseken and Waterman (1911) as greater than 9 and less than 10.3. The figure was obtained by dividing the solubility of phenol in olive oil by the solubility in water, each being determined separately. Results for this system are also given by Reichel (1909).

According to Greenish and Smith (1903), 100 cc. of olive oil dissolve about 50 gms. of phenol at 15.5°. These authors report that 100 cc. of glycerol dissolve about 300 gms. of phenol at 15.5°.

DISTRIBUTION OF PHENOL BETWEEN WATER AND CARBON TETRA CHLORIDE AT 20°.

(Vaubel - J. pr. Ch. [2] 67, 476, '03.)

Gms. Pheno	N	Grams Phenol in:			
Used.	Volumes of Solvents.	H ₂ O Layer.	CCl, Layer.		
1	50 cc. H ₂ O+ 10 cc. CCl ₄	o.8605	0.1285		
I	" + 20 CC. "	0.7990	0.1900		
1	" + 30 cc. "	0.7275	0.2615		
I	" + 50 cc. "	0.6435	0.3455		
I	" +1∞ cc. "	0.4680	0.5210		
I	" +150 cc. "	0.3645	0.6245		
1	" +200 cc. "	0.3240	o.6650		

DISTRIBUTION OF PHENOL BETWEEN WATER AND ORGANIC SOLVENTS AT 25°. (Herz and Rathmann, 1913.)

Results	for:	(11012 4110 11				
H ₂ O and Chloroform. Mols. C ₄ H ₄ OH per Liter.		Tetra	d Carbon chloride. OH per Liter.	H ₂ O and Tetrachlor Ethane. Mols. C ₆ H ₆ OH per Liter.		
H ₂ O Layer		H ₂ O Layer.	CCl Layer.	H ₂ O Layer.	C ₂ H ₂ Cl ₄ Layer.	
0.0737	0.254	0.0605	0.0247	0.023	0.061	
0.163	0.761	0.140	0.072:	0.0345	0.094	
0.211	1.27	0.213	0.141	0.081	0.265	
0.330	3.36	0.355	0.392	0.114	0.406	
0.436	5 · 43	0.489	I.47	0.151	0.617	
		0.525	2.49	0.155	0.651	
	Pentachlor nane.		nd Trichlor hylene.	H ₂ O and Tetrachlor Ethylene.		
Mols. C ₄ H ₄	OH per Liter.	Mols. C	H _s OH per Liter.	Mols. C	H ₅ OH per Liter.	
H ₂ O Layer.	C.HCl, Layer.	H _r O Layer.	CHCl:CCl, Layer.	H ₂ O Layer.	CCl2:CCl2 Layer.	
0.0420	0.0495	0.044	0.046	0.0653	0.0277	
o.o8 66	0.110	0.101	0.107	0.143	0.0650	
0.150	0.226	0.180	0.236	0.327	0.198	
0.222	0.432	0.236	0.388	0.421	0.411	
0.280	0.708	0.277	0.555	0.490	0.684	
0.333	1.170	0.339	0.986			

DISTRIBUTION OF PHENOL AT 25° BETWEEM: (Hers and Fischer — Ber. 38, 1143, '05.)

V	Vater and	1 Toluene	·.	Water and m Xylene.					
		Grams (Millimols (Grams C ₆ H ₅ OH per 100 cc.			
C _s H _s CH _s Layer.	H ₅ O Layer.	CeHsCH2 Layer.	H ₂ O Layer.	mC _s H ₄ (CH _s) ₂ Layer.	H ₂ O Layer.	mC _e H ₄ (CH ₂) ₂ Layer.	H 2O Layer.		
1.244 3.047 4.667 6.446 14.960 17.725	0.724 1.469 2.200 2.861 4.750 5.346	1.169 2.865 4.389 6.061 14.07 16.69	0.681 1.381 2.068 2.691 4.467 5.027	1.610 4.787 12.210 22.718 34.827 51.352	1.071 2.726 5.168 6.994 8.124 9.123	21.36 32.75	1.007 2.563 4.860 6.577 7.64c 8.578		
47.003 53.783 90.287	7.706 8.087 9.651	44·20 50·58 84·89	7.246 7.604 9.074	77 · 7°3	10.050	73 - 07	9 · 45¢		

FREEZING-POINT DATA (Solubilities, see footnote, p. 1) ARE GIVEN FOR MIXTURES OF PHENOL AND EACH OF THE FOLLOWING COMPOUNDS:

Dimethylpyrone	e. (Kendall, 1914a.)	Bromotoluene	. (Paterno and Ampola, 1897.)
Phenylhydrazin	e. (Cuisa and Bernardi, 1910.)	o Toluidine.	(Kremann, 1906.)
Picric Acid.	(Philip, 1903; Kremann, 1904.)	p Toluidine.	(Kremann, 1906; Philip, 1903.)
Picric Acid +Ot	her Cm'p'ds. (Kremann, '04.)	Urea (Kremann	& Rodenis, 1906; Philip, 1903.)
	y, 1916; Hatcher & Skirrow, 1917.)	Methyl Urea.	(Kremann, 1910.)
Quinoline.	(Bramley, 1916.)	as Dimethyl U	Jrea. "
Resorcinol.	(Jaeger, 1907.)	s Dimethyl U	
Sulfuric Acid.	(Kendall and Carpenter, 1914.)	Urethan. (Masc	arelli & Pestalozza, 1908, 1909.)
Thymol.	(Paterno and Ampola, 1897.)		(Paterno and Ampola, 1897.)
-		m Xvlidene.	(Kremann roof)

PHENOLATE of Phenyl Ammonium.

SOLUBILITY IN WATER. (Alexejew, 1886.)

The determinations were made by the synthetic method (see p. 16). The results were plotted and the following figures read from the curve:

t°.	Gms. Phenolate per roe Gms.		e.	Gms. Phenolate per 100 Gms.		
	Aq. Layer.	Phenolate Layer.	•••	Aq. Layer.	Phenolate Layer.	
10	3	94	110	9	76	
30	4	93	120	12	69	
50	5	91	130	17.5	60.	
70	6	87.5	140 crit. temp.		40	
90	7	83	• *			

AminoPHENOLS. See last line p. 138.

s Tribromo**PHENOL** C₆H₂Br₂OH.

Data for the solubility of mixtures of symmetrical tribromophenol and symmetrical trichlorophenol in diluted methyl alcohol at 25° are given by Küster and Würfel (1904–05). The results are presented in terms which are not clearly explained.

SOLUBILITY OF MIXTURES OF 5 TRIBROMO PHENOL AND 5 TRICHLORO PHENOL IN METHYL ALCOHOL AT 25°. (Thiel, 1903; from Wurfel, 1896.)

Molecular per o	ent C ₆ H ₂ .OH.Br ₃	# Solu	bility of	m -4-1	
In Solid.	In Solution.	C _e H ₂ .OH.Cl ₂ .	C ₆ H ₂ .OH.Br ₃ .	Total.	
0	0	0.204	0	0.204	
4.49	3 · 59	0.194	0.007	0.201	
10.13	7.58	0.191	0.016	0.206	
16.28	12.15	0.172	0.024	0.196	
62 . 44	13.07	0.204	0.031	0.235	
69.88	15.86	0.150	0.028	0.178	
81.76	19.01	0.096	0.023	0.118	
84.66	24.05	0.069	0.022	0.091	
87 . 53	32.46	0.043	0.021	0.063	
93.62	47 .87	0.021	0.019	0.040	
100.0	100.0	0.0	0.019	0.019	

NitroPHENOLS C.H. (OH) NO. o, m and p.

100 gms. sat. solution in water contain 0.208 gm. o nitrophenol at 20°.

" " " 2.14 gms. m " " (Vaubel, 1895.)

" " " " 1.32 " p " " (Vaubel, 1895.)

First, data for mixtures of m nitrophenol and water and for p nitrophenol and

F.-pt. data for mixtures of m nitrophenol and water and for p nitrophenol and water are given by Bogojawlewsky, Winogradow, and Bogolubow (1906).

NitroPHENOLS C6H4(OH).NO2 o, m and p.

SOLUBILITY (OF	EACH	SEPARATELY	IN	WATER.	(Sidgwick, Spurrell and Davies, 1915.)
--------------	----	------	------------	----	--------	--

ť.	Gms. per	r 100 Gms.	Sat. Sol.	t°.		Gms. per 100 Gms. Sat. Sol.			
• .	Ortho.	Meta.	Para.	• •		Ortho.	Meta.	Para.	
40	o.330 *	3.02*	3.28	100	•	1.078			
50	0.388	3.68	4.22	110		1.37	• • •		
60	0.463	4 · 54	5 · 53	120		1.59		• • •	
70	0.560	5.80	7.50	120		1.91	• • •		
80	0.685	7.90	10.85	140		2.32		• •	
90	0.856	11.69	21.2	150		2.90			
92.8	crit. t		90	160		3.75			
98.7	crit. t	∞		200+	crit. t	, ∞			
• • • •		4 41 - 4		L					

in above table indicates that a solid phase is present.

The above determinations were made by the synthetic method. M. pt. of $o=44.9^\circ$; of $m=95.1^\circ$, of $p=113.8^\circ$. Triple pt. for $o=43.5^\circ$ at conc. 99.48 and 0.35; for $m=41.5^\circ$ at conc. 74 and 3.16; for $p=39.6^\circ$ at conc. 71.2 and 3.26. One liter sat. solution in water contains 3.89 gms. o nitrophenol at 48°. One liter sat. solution in 1.0 n o $C_0H_4(ONa)NO_2$ contains 9.6 gms. o nitrophenol

at 48°. (Sidgwick, '10.)

SOLUBILITY OF O NITROPHENOL IN LIQUID CARBON DIOXIDB. (Büchner, 1905-6.)

ť.	Gms. o C ₀ H ₄ (OH)NO ₂ per roo Gms. Sat. Sol.	t°.	Gms. o C ₆ H ₄ (OH) NO per 100 Gms. Sat. Sol.
-52	1.9	12.5	10
-40	2.5	14	21.2
- 20	3.8	15	33.8
0	5.2	16	48.5
+10	7.7	20	60.7

100 gms. 95% formic acid dissolve 16.06 gms. o C₆H₄(OH)NO₂ at 20.8°. (Aschan, '13.) 100 gms. 95% formic acid dissolve 23.44 gms. p C₆H₄(OH)NO₂ at 18.6°. "One liter of sat. solution of the pale yellow form of p nitrophenol in benzene, contains 7.1 gms. p C₆H₄(OH)NO₂ at 5°, determined by the f.-pt. method.

SOLUBILITY OF THE THREE NITROPHENOLS, SEPARATELY, IN TOLUBNE, BROMOBENZENE AND IN ETHYLENE DIBROMIDE. (Sidgwick, Spurrell and Davies, 1915.)

	Gms. o C ₆ H ₄ (0	OH) NO2 per 10	o Gms. S	at. Sol.	40	Gms. ø (H ₄ (OE	NO ₂ per 10	o Gms.Sat. Sol.
t* .	In C ₄ H ₄ CH ₄ .	In CaHaBr.	In C ₄ E	LBr ₂ .	t°.			In CaHaBr.	In CaHaBra.
15	46.9		40		70	18	. 5	• • •	31
20	55.2	48.8	47 -	.8	80	28	. I	32.7	52
25	64.6	57 · 7	56.		90	54	٠4	59.7	73 · 2
30	74.6	67.2	67.	2	100	79	.6	80.6	88.5
35	84.5	78.3	79		110	96	.3	96.3	98
40	93.1	89.7	90.	6		-			•
r.	per 100 G	H ₄ (OH)NO ₂ ms. Sat. Sol. H ₅ CH ₃ .	ť.	per roc	C ₄ H ₄ (O) Gms. Si C ₄ H ₄ CH	tt. Sol.	t*.	per 100	C ₄ H ₄ (OH)NO ₃ Gms. Sat. Sol. cH ₄ CH ₄ .
39.6		1.63	64.8		16.44	-	78.5		0.50
45.8			67.7		20.26		82.3	7	9 · 57
48.9	, ,	7.03	71.5		33.16		88.8		1.43
54	-).11	74.5		46.93		95.1	-	
58	1	r.28	75.7		57.71				

DiNitro **PHENOL** C₆H₆.OH.(NO₂)₂.

100 gms. abs. methyl alcohol dissolve 6.3 gms. $C_6H_1.OH.(NO_1)_2$ at 19.5°. 100 gms. abs. ethyl alcohol dissolve 3.9 gms. $C_6H_1.OH.(NO_1)_2$ at 19.5°. (de Bruyn, '92.)

FREEZING-POINT DATA (Solubility, see footnote, p. 1) ARE GIVEN FOR THE FOLLOWING MIXTURES CONTAINING SUBSTITUTED PHENOLS.

```
    ø Bromophenol + p Bromophenol.
    ø Chlorophenol + p Chlorophenol.
    ø Iodophenol + p Iodophenol.
    s Tribromophenol + s Trichlorophenol.

                                                                            (Holleman and Rinkes, 1911.)
                                                                            (Küster and Würfel, 1904-05.)
2.4.6 Tribromophenol + Acetyl tribromophenol.
                                                                            (Boeseken, 1912.)
o Chlorophenol + Quinoline.
+ Pyridine.
                                                                            (Bramley, 1916.)

    Nitrophenol + Acetyl ο Nitrophenol.
    Nitrophenol + α Dinitrophenol.

                                                                            (Boeseken, 1912.)
                                                                            (Crompton and Whitely, 1895.)
+ p Toluidine.
p Nitrophenol + p Nitrosophenol.
Each of o, m and p Nitrophenol + Dimethylpyrone.
                                                                            (Pawlewski, 1893; Philip, 1903.)
                                                                            (Jacger, 1908.)
                                                                            (Kendall, 1914a.)
                                            + Picric Acid.
                                                                            (Kremann and Rodenis, 1906.)
                                                                            (Kendall and Carpenter, 1914.)
                                            + Sulfuric Acid.
     44
                  44
                                 "
                                            + Urea.
                                                                            (Kremann and Rodenis, 1906.)
2.4 Dinitrophenol + Dimethylpyrone.
                                                                            (Kendall, 1914a.)
PHENOLPHTHALEIN (C.H.OH)2CO.C.H.CO.
100 gms. H<sub>2</sub>O
                                   dissolve 0.0175 gm. phenolphthalein at 20°.
                                                                                    (Acree and Slagle, 1909.)
at 20-25°. (Dehn, '17.)
                                                                           44
                                                 0.04
     "
                                        "
                                                                           44
                                                          gms.
           Pyridine
                                              796.
                                        "
                                                                           "
           aq. 50% pyridine
                                              300
```

PHENYL ALANINE a C. H. NHCH(CH.) COOH.

Data for the solubility of phenyl alanine in aqueous salt solutions at 20° are given by Würgler (1914) and Pfeiffer and Würgler (1916).

PHENYLENE DIAMINES o, m, and p. $C_6H_4(NH_2)_2$.

SOLUBILITY IN WATER AT 20°. (Vaubel, 1895.)

100 cc. sat. solution contain 23.8 gms. $m_1^*C_6H_4(NH_2)_2$, d_{20} of sat. sol. = 1.0317. 100 cc. sat. solution contain 3.7 gms. $p C_6H_4(NH_2)_2$, d_{20} of sat. sol. = 1.0038.

RATIO OF DISTRIBUTION BETWEEN WATER AND BENZENE AT 25°. (Farmer and Warth, 1904.)

Results for o Phenylene Diamine.			Results for m Phenylene Diamine.			
Gms. o C ₆ H ₄ (NH ₂) ₂ per: Ratio conc. C ₆ H ₄			Gms. # C ₄ H ₄ (NH ₆) ₂ per: Ratio conc. C ₄ H conc. H ₄ O			
50 cc. C.H.	1000 cc. H ₂ O.	conc. H ₂ O	50 cc. C ₆ H ₆ .	1000 cc. H ₂ O.	conc. H ₂ O	
0.0273	0.9818	0.556	0.0828	9.088	0.182	
0.2040	7 · 5470	0.541	0.0463	5.260	0.176	

PHENYL HYDRAZINE C.H.NH.NH. RECIPROCAL SOLUBILITY OF PHENYLHYDRAZINE AND WATER, DETERMINED BY THE FREEZING-POINT METHOD. (Blanksma, 1910.)

r.	Gms. C ₆ H ₆ NH.NI per 100 Gm Sat. Sol.	H ₂ Solid Phase.	t.	Gms. C ₆ H ₆ NH.NE per 100 Gms Sat. Sol.	Solid Phase.
0	0	Ice	19.8	60.1	H,NH.NH
- 0.3	2.2	"	20.4	64.2	"
- 0.6		66	21.8	75	"
- 0.7		" +C ₄ H ₄ NH.NH ₂ .1H ₂ O	23	79.2	a
+ 1	4.7	C4H4NH.NH2.4H2O	24.2	83.7	4
7	6	44	26. I	91	u
11.6	7	"	26.2	92.3	"
15	8	u	25.7	93 · 7	"
ıŏ.8	9.6	44	23.2	97.2	u
19.6		"	17	98.8	u
			16.6	99	" +C ₄ H ₄ NH.NH ₆
			19.6 m. pt	. 100	C.H.NH.NH.

Between the concentrations 10.9 and 60.1, two liquid layers are formed. See p. 487.

RECIPROCAL SOLUBILITY OF PHENYL HYDRAZINE AND WATER. (Con.)

The temperatures of separation into two liquid layers of mixtures containing from 10.9 to 60 per cent $C_6H_6NH.NH_2$, are:

t° of Separation.	Gms. C ₄ H ₄ NH.NH ₂ per 100 Gms. Mixture.	t° of Separation.	Gms. C ₄ H ₄ NH.NH ₄ per 100 Gms. Mixture.	t° of Separation.	Gms. C ₄ H ₄ NH.NH ₂ per 100 Gms. Mixture.
19.8	11.6	54.6	2 9.7	50.6	48.9
34	13.8	55.1	31.4	50	51.2
45	16.5	55.2 crit. t		46	53· 5
49.4	18.7	55.2	36.9	44.2	54·7
52.4	21.9	55	39.3	39.6	56.7
54	25.2	54	41.7	24	59.5
54 · 4	28.3	52.6	46	19.8	60°. 1

Additional data for concentrations of C₆H₆NH.NH₈ above 60 per cent, are given by Oddo (1913).

Benzoyl PHENYL HYDRAZINE C.H.NH.NHC, H.O.

SOLUBILITY IN AQUEOUS ALCOHOL AT 25°. (Holleman and Antusch, 1894.)

Vol. % Alcohol.	Gms. Hydrazine per 100 g. Solvent.	Sp. Gr. Solutions.	Vol. % Alcohol.	Gms. Hydrazine per 100 g. Solvent.	Sp. Gr. Solutions.
100	2.39	0.793	8 o	1.59	0.859
95	2.43	0.814	70	1.08	0.884
93	3	0.822	55	0.51	0.917
90	2.26	0.831	40	0.16	0.946

The above results give an irregular curve. See remarks under α acetnaphthalide, p.13.

Phthalyl PHENYL HYDRAZIDE
$$C_6H_4 < \frac{CO}{CO} > N.N < \frac{H}{C_6H_6}$$
.

Phthalyl **PHENYL** Methyl **HYDRAZIDE**
$$C_6H_4 < \frac{CO}{CO} > N.N < \frac{CH_8}{C_6H_6}$$
.

Very careful determinations of the solubilities of the enantrotropic forms of these two compounds in alcohol, chloroform, ethyl acetate, acetone, benzene and in methyl alcohol are given by Chattaway and Lambert (1915). See also p. 312.

Acetone PHENYL HYDRAZONE (CH₂)₂C.N₂HC₄H₅.

DATA FOR THE SYSTEM ACETONE PHENYL HYDRAZONE + WATER ARE GIVEN BY BLANKSMA (1912).

The following results were obtained for the solubility of (CH₂)₂C.N₂.HC₄H₅.H₂O in water.

t°.	Gms. (CH ₂) ₂ C.N ₂ .HC ₆ H ₆ per 100 cc. Solution.	Solid Phase.
0	0.090	(CH ₄) ₂ C.N ₂ HC ₄ H ₄ .H ₄ O
15	0.187	44
32.8	0.412	44

DibromoPHENYL SELENIDE and TELLURIDE (C₆H₆)₂SeBr₂,(C₆H₆)₂TeBr₂.

Data for the solubility of mixtures of dibromophenyl selenide and dibromophenyl telluride in benzene at 21° are given by Pellini (1906).

PHLOROGLUCINOL 1.2.3 C₄H₄(OH)_{2.2}H₂O.

100 gms. H ₂ O	dissolve	: I.I	3 gms. ph	loroglucinol	at 20-25°.	(Dehn, '17.)
" pyridine	**	296	11 -	744	44	
" aq. 50% pyriding	e "	134	44	44	44	•

PHOSPHO MOLYBDIC ACID

PHOSPHO MOLYBDIC ACID PiOi.20MoOi.52HiO.

SOLUBILITY IN ETHER. (Parmentier, 1887.)

o°. 8.1°. 19.3°. 27.4°. 32.9". 80.6 84.7 Gms. Acid per 100 gms. Ether 96.7 103.9 107.9

PHOSPHORUS P. (yellow)

SOLUBILITY IN BENZENE.

(Christomanos - Z. anorg. Ch. 45, 136, 65.)

6°. ,	Gms. P per	Sp. Gr. of a. Solution.	t°.	Gms. P per	Sp. Gr. of Solution.	t°. z	Gms. P per
0	1.513	• • •	23	3 · 399	0.8875	50	6.80
5 8	1.99	• • •	25	3.70	o.8861	55	7 · 32
8	2.31	0.8990	30	4.60	• • •	60	7.90
10	2 · 4	0.8985	35	5.17	• • •	65	8.40
15 18	2.7	0.894	40	5 · 75	• • •	70	8.90
18	3.1	0.892	45	6.11	• • •	75	9.40
20	.3-2	0.890				81	10.03

Solubility of Phosphorus in Ether. (Christomanos.)

t ° .	Gms. P per 100 Gms. (C ₂ H ₈) ₂ O.	Sp. Gr. of Solutions.	\$ ° .	Gms. P per 100 Gms. (C ₂ H ₈) ₂ O.	Sp. Gr. of Solutions.	t°.	Gms. 1º per 100 Gms. (C ₂ H ₈) ₂ O.
0	0.434		15	0.90	0.723	28	1.60
5	0.62	• • •	18	1.01	0.719	30	1.75
5 8	0.79	0.732	20	I .04	0.718	33	1.80
IO	0.85	0.729	23	I.12	0.722	35	2.00
	•		25	1.30	0.728	_	

SOLUBILITY OF YELLOW PHOSPHORUS IN SEVERAL SOLVENTS AT 15°. (Stich, 1903.)

Solvent.	Gms. P per 100 Gms. Solution.
Almond Oil	1.25
Oleic Acid	1.06
Paraffin	1.45
Water	0.0003
Acetic Acid (96%)	0.105

SOLUBILITY OF PHOSPHORUS IN CARBON DISULFIDE. (Cohn and Inouye, 1910.)

e.	Gms. P per 100 Gms. Sat. Sol.	t r. ,	Gms. P per 100 Gms. Sat. Sol.	ť.	Gms. P per 100 Gms. Sat. Sol.
— 10	31.40	-3.5	66.14	0	81.27
-7.5	35.85	-3.2	71.72	+5	86.g
-5	41.95	-2.5	75	10	89.8

The above determinations were made with very great care. The authors show that the previous determinations of Giran (1903) are inaccurate.

100 gms. alcohol (d=0.799) dissolve 0.312 gm. P, cold, and 0.416 gm., hot. (Büchner)

100 gms. glycerol ($d_{18}=1.256$) dissolve 0.25 gms. P at 15–16°. (Ossendowski, 1907.)

Red phosphorus is completely insoluble in turpentine even up to 270° provided the determination is made without access of air (sealed tube). If air is not excluded a postriou of the red phosphorus may be converted to really a base house. cluded a portion of the red phosphorus may be converted to yellow phosphorus which would dissolve.

RECIPROCAL SOLUBILITY OF PHOSPHORUS AND SULFUR, DETERMINED BY THE SYNTHETIC (Sealed Tube) METHOD. (Giran, 1906.)

(Mixtures of P and S were sealed in small tubes and first heated to about 200° to cause combination. They were then cooled to the solidification point and gradually heated to the temperature at which the last crystal disappeared. The following results, which were read from the diagram, show the eutectics and maxima of the curves.)

Eutectics.			Maxima of Curves.		
ť.	Mols. % S in Mixture.	Selid Phase.	t*.	Mols. % S in Mixture.	Solid Phase.
-40	33.5	$P_4S_2+P_2$	+167	43.6	P_4S_0
+46	50	$P_4S_3+P_2S_3$	296	60.8	P ₂ S ₃
230	67.5	$P_2S_3+P_2S_5$	272	72.I	P_2S_6
243	75	P ₂ S ₆ +PS ₈	314	86.I	PS.

Additional data for this system are given by Boulouch (1902 and 1906) and by Helff, 1893.

PHOSPHORUS SULFIDES P4S1, P4S7, P4S10.

SOLUBILITY IN CARBON DISULFIDE, BENZENE, AND IN TOLUENE. (Stock, 1910.)

ť.	Gms. P ₆ S ₈ per 100 Gms.:			Gms. P ₄ S ₇ per 100 Gms. CS ₉ .	Gms. PaSa per soo
٠.	CS _t .	C ₄ H ₄ .	C ₆ H ₆ C ₁ H ₆ .	Gms. CS ₃ .	Gms. CS ₃ .
— 20	II.I		• • •	• • •	0.083
0	27			0.005	0.182
十17	100	2.5	3.125	0.0286	0.223
80		11.1		• • •	•••
IIO			15.4	•••	• • •

PHOSPHORIC ACID (ortho) HaPO4.

SOLUBILITY IN WATER. (Smith and Menzies, 1909.)

(The sat. solutions were analyzed by titration. The mixtures were constantly stirred for at least two hours.)

t°.	Gms. H ₂ PO ₄ per 100 Gms. Sat. Sol.	Solid Phase.	ť°.	Gms. H ₄ PO ₄ per 100 Gms. Sat. Sol.	Solid Phase.
-8r*	62.9	$Ice + 2H_4PO_4.H_2O$	24.38	94.80	10H ₄ PO ₄ .H ₄ O
-16.3	76.7	2H ₄ PO ₄ .H ₄ O	24.40	94.84	44
+ 0.5	78.7	"	24.81	94 - 95	•
14.95	81.7	"	25.41	95.26	4
24.03	85.7	44	25.85	95 · 54	u
27	87.7	"	26.2*	• • •	" +H,PO
29.15	90.5	4	26.23	95.90	$H_{\bullet}PO_{\bullet}$
29.35	91.6	4	27.02	95.98	•
28.5	92.5	u	29.42	96.15	*
27	93 - 4	u	29.77	96.11	4
25.4	94.1	"	37.65	97.80	• •
23.5*		" +10HiPO4.H1O	39.35	98.48	4
24.11	94.78	10H ₂ PO ₄ .H ₂ O	42.30	100	44
		• Eutec.	† M.	pt.	

Note. — The results of Giran (1908), determined by the freezing-point method, are shown to be erroneous, due to supercooling which would result from failure to induce crystallization by inoculation.

F.-pt. data for mixtures of phosphoric and phosphorus acids are given by Rosen-

heim, Stadler and Jakobsohn (1906).

PyroPHOSPHORIC ACID H4P2O7.

SOLUBILITY IN WATER. (Giran, 1908; see note on preceding page.)

t.	Gms. H ₄ P ₂ O ₇ per 100 Gms. Sat. Sol.	Solid Phase.
-75	59	Ice +H.P.O1 H.O
+26 m. pt.	86.8	H ₄ P ₂ O ₇ .13H ₂ O
23	8 8.8	" +H.P.O
61 m. pt.	100	$H_{\bullet}P_{\bullet}O_{\bullet}$

HypoPHOSPHORIC ACID H₂PO₃.H₂O.

100 gms. sat. solution in water contain 81.8 gms. H₂PO₂ at the m. pt., 62°, of the hydrated compound, H₂PO₃.H₂O. (Rosenheim and Prize, 1908.)

PHTHALIC ACIDS $C_6H_4(COOH)_2$, o, m and p.

SOLUBILITY OF EACH IN WATER. (Vaubel, 1895, 1899.)

Acid.	₹".	Gms. per 100 Gms. Solution.
o Phthalic Acid	14	0.54
m = Isophthalic Acid	25	0.013
h = Terephthalic Acid		almost insoluble

MELTING TEMPERATURES OF MIXTURES OF O PHTHALIC ACID AND WATER. (Flaschner and Rankin, 1910.)

(The determinations were made by the sealed tube method of Alexejew.)

Wt. % Acid	14.4	28.2	39.6	49.3	75	100
Saturation Temp.	97°	111.5°	121.2°	130°	162°	231°
Unstable boundary				27°	84°	

SOLUBILITY OF 0 PHTHALIC ACID IN ALCOHOL AND IN ETHER AT 15°. (Bourgoin, 1878.)

Solvent.	Gms. C ₆ H ₄ (COOH) ₂ o per 100 Gms.			
Absolute Alcohol	Solution.	Solvent.		
Absolute Alcohol	9.156	11.70		
90 per cent Alcohol	10.478	10.08		
Éther	. 0.679	0.684		

SOLUBILITY OF O PHTHALIC ACID IN ALCOHOLS. (Timofeiew, 1894.)

Alcohol.	ť.	Gms. o C ₀ H ₄ (COOH) ₂ per 100 Gms. Sat. Sol.	Alcohol.	t.	Gms. ø C _s H ₄ (COOH) ₂ per 100 Gms. Sat. Sol.
Methyl Alcohol	— 2	15.1	Ethyl Alcohol	21.4	11.65
" "	+19	19.5	Propyl Alcohol	– 3	3.42
"	+21.4	20.4	u u	+19	5.27
Ethyl Alcohol	— 2	8.2	"	22	5.54
" "	+19	11	" "	23	5.70

DISTRIBUTION OF O PHTHALIC ACID AND OF m PHTHALIC ACID (ISOPHTHALIC)
BETWEEN WATER AND ETHER AT 25°. (Chandler, 1908.)

Results for o Phthalic Acid. Mols. o C.H. (COOH):			Ratio for	Mols. m C ₄ H		_	Ratio for
	s. Ether Layer, b	Ratio 6	Union- ized Acid.	per Lit		Ratio 5.	Union- ized Acid.
0.0261	0.0322	0.809	o.637	0.000398	0.0485	0.0821	0.0359
0.0131	0.0150	0.873	0.645	0.000272	0.0288	0.0943	0.0352
0.0085	0.0001	0.932	0.667	0.000263	0.0279	0.0944	0.0350
0.0056	0.0056	1.006	0.635	0.000252	0.0266	0.0949	0.0341

Ratio of solubilities of Phthalic acids in olive oil and water at 25°.

(Böcseken and Waterman, 1911, 1912.)

o Phthalic acid, solubility in oil + solubility in H₂O = 0.01.

p Phthalic acid (Terephthalic), solubility in oil + solubility in H₂O = 9.52.

100 gms. 95% formic acid dissolve 0.55 gm. p phthalic acid (Terephthalic) at 20.2°.

(Aschan, 1913.)

NitroPHTHALIC ACIDS o and m (Iso) C₆H₂(NO₂)(COOH)₂.

SOLUBILITY OF THE SEVERAL NITRO PHTHALIC ACIDS IN WATER AT 25°. (Holleman and Huisinga, 1908.)

Acid.					M. pt.	Gms. Acid per 100 Gms. Sat. Solution.
α Nitro Ortho	Phthal	ic Acid			220	2.048
в " "	"	"			164-166	very soluble
Symmetrical	Nitro Is	o Phthalic	Acid	(anhy.)	255-256	0.220
"	"	"	"	(hydrated)	255-256	0.157
Asymmetrical		"	"		245	0.967
Vicinal	"	"	"		300	0.216

The authors also give several tables showing the solubility of one of the above compounds in aqueous solutions of another. These data are made the basis of an ingenious solubility method for determining the composition of unknown mixtures of these compounds.

PHTHALIC ANHYDRIDE C.H. < CO > O.

SOLUBILITY IN WATER. (van der Stadt, 1902.)

All determinations, except first three, made by the Synthetic Method. See p. 16.

ť.	Gms. C ₈ H ₄ O ₂ per 100 Gms.		Mol. per cent C ₈ H ₄ O ₃ .	ť.	Gms. C _s H ₄ O _s per 100 Gms		Moi. per cent	
	Water.	Solution.	C ₀ H ₄ O ₃ .	• •	Water.	Solution.	per cent C _s H ₄ O _s .	
0	0.00295	0.00295	0.00036	189.5	1076	91.66	56.73	
25	0.6194	0.6150	0.0754	188.8	1265	92.68	60.63	
50	1.630	1.604	0.198	187.1	1474	93.65	64.22	
135.9	94 · 3	48.54	10.30	181.8	2332	95.88	73.95	
165.4	210	67.75	20.36	176.2	3334	97.07	80.23	
179.4	319.3	76.13	27.98	169.4	5745	98.28	87.49	
186.2	449.6	81.81	35 · 37	130.9	37570	99.72	97.89	
189.6	546.I	84.50	39 · 93	131	83010	99.86	99.02	
191	821.5	89.19	50	131.2	∞	100	100	
190.4	863.4	89.62	51.24					

SOLUBILITY OF PHTHALIC ANHYDRIDE IN CARBON DISULFIDE. (Arctowski, 1895; Etard, 1894.)

t*.	Gms. C ₆ H ₄ O ₅ per 100 Gms. Solution.	ť.	Gms. C ₀ H ₄ O ₂ per 100 Gms. Solution.	ť.	Gms. C ₆ H ₄ O ₅ per 100 Gms. Solution.
-112.5	0.013	+10	0.3	70	2.3
-93	0.013	20	0.7	90	3 · 7
-77.5	0.016	30	0.8	100	5 8
-40	0.03	40	I.2	120	8
- 20	0.06	50	1.3	140	13.3
-10	0.10	60	1.7	160	20.7
•	0.20			180	30.2

100 gms. 95% formic acid dissolve 4.67 gms. phthalic anhydride at 19.8°.
(Aschan, 1913.)
100 gms. pyridine dissolve 83.5 gms. phthalic anhydride at 20–25°. (Dehn, 1917.)

PHTHALIMIDE $o C_6H_4 < (CO)_2 > NH$.

dissolve 0.06 gm. phthalimide at 20-25°. (Dehn, 1917.) pyridine 14.15 gms. aq. 50% pyridine 7.74

PHTHALONIC ACID COOH.C. H. CO. COOH. 2 H.O.

100 gms. sat. solution in water contain 64.4 gms. anhydrous acid at 15°, Sp. Gr. (Tcherniac, 1916.) of sat. solution = 1.243.

Amide of PHTHALIDECARBOXYLIC ACID C₄H₄ < CO(CONH₂) > O (m. pt. 185.5°).

100 gms. H₂O dissolve 0.132 gm. of the acid at 16.2° and 5.7 gms. at b. pt. (Tcherniac, 1916.)

PHYSOSTIGMINE (Eserine) C₁₅H₂₁N₂O₂.

Water dissolves only traces of physostigmine. 100 gms. of a solvent composed of 3 gms. H₂BO₂ per 100 cc. of aq. 50% glycerol dissolve 2.5 gms. C₁₅H₂₁N₂O₂ at room temp. (Baroni and Borlinetto, 1911.)

PHYSOSTIGMINE SALICYLATE C6H4(OH)COOH.C14H21N1O2 and Physostigmine Sulfate H₂SO₄(C₁₅H₂₁N₂O₂)₂.

SOLUBILITY OF EACH IN WATER, ALCOHOL, ETC. (U. S. P. VIII.)

Solvent.	ť.	Gms. per 100 Gms. Solvent.			
Solvent.	٠.	Salicylate.	Sulfate.		
Water	25	1.38	very soluble		
Water	8ŏ	6.66	"		
Alcohol	25	7.87	"		
Alcohol	60	25	"		
Chloroform	25	11.6	"		
Ether	25	0.57	0.083		

Methylphenyl PICRAMIDES.

Solubility in Ethyl Alcohol at 18°. (Hantzsch, 1911.)

100 cc. C₂H₆OH dissolve 0.32 gm. of the isomer melting at 108°. 100 cc. C₂H₄OH dissolve 0.42 gm. of the isomer melting at 128°.

PICRIC ACID C₄H₂,OH.(NO₂)₂ 1.2.4.6.

SOLUBILITY IN WATER. (Dolinski - Ber. 38, 1836, '05; Findlay - J. Ch. Soc. 81, 1219, '02.)

Gms. C ₆ H ₈ N ₈ O ₇ per 100 Grams				Gms. C ₆ H ₈ N ₈ O ₇ per 100 Grams				
5°. Solution.		Water.		Solution.		Water.		
0	0.67 (D.)	o.68 (D.) I .05 (F.)	60	2.77 (D.)	2.81(D.)	3.17 (F)	
10	.8 0	0.81	I . IO	70	3 · 35	3 · 47	3.89	
20	1.10	1.11	I.22	80	4.22	4.41	4.66	
30	1.38	I .40	1.55	90	5 · 44	5.72	5 · 49	
40	1.75	1.78	1.98	100	6.75	7 - 24	6.33	
50	2.15	2.19	2 · 53					

Dolinski does not refer to the previous determinations of Findlay. 100 gms. H₂O dissolve 1.525 gms. C₄H₂.OH.(NO₂)₈ at 30° and 1.868 gms. at 40°. (Karplus, 1907.)

100 gms. H₂O dissolve 1.45 gms. C₆H₂.OH.(NO₂)₈ at 20°. (Sisley, 1902.) 100 gms H₂O containing 5 gms. H₂SO₄ per liter, dissolve 0.61 gm. C₆H₂OH(NO₂)₈ (Sisley, 1902.) at 20°.

100 gms. ethyl alcohol dissolve 8.37 gms. C₈H₂OH(NO₈), at 22°. (Timofelew, 1894.) 100 gms. methyl alcohol dissolve 22.5 gms. C₆H₂OH(NO₃), at 22°. " 100 gms. propyl alcohol dissolve 3.81 gms. C₆H₂OH(NO₃), at 22°. "

100 gms. 95% formic acid dissolve 10.83 gms. C₄H₂OH(NO₂)₂ at 19.8°. (Aschan, 1913.)

SOLUBILITY OF PICRIC ACID IN WATER AND IN AQUEOUS SALT SOLUTIONS AT 25°.

(Levin - Z. physik. Ch. 55, 520, '06.)

One liter of aqueous solution contains 0.05328 gram mols. - 12.20 grams C.H.OH(NO.), at 25°.

Gm. Mols. Salt		Gram Mols. Picric Acid per Liter in Aq. Solutions of:				
per Liter.	NaCl.	NaNO ₃ .	Na ₃ SO ₄ .	LiCl.	Li ₂ SO ₄ .	NH ₄ Cl.
0.01	0.05524	0.05529		0.05480		0.05487
0.02	0.05559	0.05872	0.05872	0.05558	0.06053	0.05540
0.05	0.05729	0.06632	0.06632	0.05703	0.06691	0.05771
0.07	0.05862	0.07093	0.07093	0.05878	0.07013	o.o586 5
0.10	0.05902	0.07670	0.07670	0.06132	0.07437	• • •
0.50	0.0790	• • •	• • •	• • •	0.123	• • •
1.00	0.1180		• • •	•••	0.149	• • •

Gm. Mols.	Grams Picric Acid per Liter in Aq. Solutions of:					
Salt per Liter.	NaCl.	NaNO2.	Na ₃ SO ₄ .	LiCl.	Li ₂ SO ₄ .	NH.CL.
0.01	12.66	12.67	12.83	12.55	12.97	12.57
0.02	12.74	13.45	13.45	12.74	13.87	12.69
0.05	13.12	15.19	15.19	13.06	15.33	13.22
0.07	13.43	16.25	16.25	13.47	16.06	13.44
0.10	13.52	17.57	17.57	14.05	17.04	• • •
0.50	18.09	• • •	• • •		28.18	• • •
1.00	26.98		• • •		34.14	

Solubility in Aq. Cane Sugar. Solubility in Aq. Grape Sugar.

Gm. Mols. Sugar	Picric Ac. per Liter Solution.		icric Ac. per Liter Solution. Sp. Gr. Gr.		Picric Acid per Liter Sol.	
per Liter.	Gm. Mols.	Gms.	Solution.	Grape Sugar per Liter.	G. Mols.	Gms.
0.10	0.05202	11.92	I.0122	0.10	0.0530	12.14
0.25	0.04978	11.40	1.0319	0.25	0.0521	11.93
0.50	0.0482	11.04	1.0654	0.50	0.0509	11.66
1.00	0.0443	10.15	1.1204	1.00	0.0474	10.86

Solubility of Picric Acid in Absolute Alcohol. (Behrend - Z. physik. Ch. 10, 265, '92.)

100 gms. sat. solution contain 5.53 grams $C_0H_0N_1O_7$ at 12.3°, and 5.92 grams at 14.8°. Sp. Gr. of the latter solution = 0.8255.

SOLUBILITY OF PICRIC ACID IN BENZENE. (Findley.)

\$°.		Mols. HaNaO7 per 100 lols.CaHa.	t°.	Gms. C ₆ H ₈ N ₃ O ₇ per 100 Gms. C ₆ H ₆ .	Mols. CeHaNaO7 per 100 Mols. CeHa.
5	3.70	1.26	38.4	26.15	8.88
IO	5 · 37	1.83	45	33 · 57	11.40
15	7 · 29	2.48	55	50.65	17.21
20	9.56	3.25	58 . 7	58.42	19.83
25	12.66	4 - 30	65	71.31	24.20
26.5	13.51	4.60	75	96.77	32.92
8 5	21 . 38	7 . 26			

SOLUBILITY OF PICRIC ACID IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AT 25°. (Stepanow, 1910.)

(The solutions were saturated by constant agitation at constant temperature. The picric acid in the saturated solutions was determined by evaporation and weighing. The solubility passes through a minimum.)

Mols. HCl per Liter.	C ₄ H ₄ .OH.(NO), per Liter.	Mols. HCl per Liter.	C ₄ H ₂ .OH.(NO ₂) ₃ per Liter.	
	Mols.	Gms.		Mols.	Gms.
0.25	0.0116	2.66	3.67	0.0068	1.55
0.50	0.0079	1.80	4.40	0.0082	1.87
0.75	0.0062	I.42	5.14	0.0098	2.26
I	0.0054	I.24	5.51	0.0105	2.41
I . 47	0.0050	1.14	5.87	0.0115	2.65
2.20	0.0051	1.15	6.24	0.0123	2.82
2.94	0.0057	1.31	6.61	0.0125	2.86

SOLUBILITY OF PICRIC ACID IN ETHER. (Bougault, 1903.)

Solvent.	t°.	Gms. C ₄ H ₄ N ₂ C	per Liter
Ether of Sp. Gr. 0.721	13	10.8	(B.)
Ether of Sp. Gr. 0.725 (0.8 pt.H ₂ O per 100)	13	36.8	66
Ether of Sp. Gr. 0.726 (1 pt. H ₂ O per 100)	13	40	"
Ether saturated with H ₂ O	15	51.2	
H ₂ O saturated with Ether	15	13.8	

100 parts of ether dissolve about 2.27 gms. picric acid at 15°. (S. 1905.)

"chloroform "2" "6.04" ""

petroleum ether "6.04" ""

100 gms. sat. solution in pure ether contain 5 gms. picric acid at 20°. (Sisley, 1902.)

100 cc. sat. solution in pure ether contain 12 gms. picric acid at 20°.

100 cc. sat. solution in pure toluene contain 12 gms. picric acid at 20°.

100 cc. sat. solution in pure toluene contain 10.28 gms. picric acid at 20°.

100 cc. sat. solution in pure amyl alcohol contain 1.755 gms. picric acid at 20°.

DISTRIBUTION OF PICRIC ACID AT 25° BETWEEN:

Water and Toluene.

Water and Amyl Alcohol.

(Herz and Fischer — Ber. 37, 4747, '04.)			Water and Toruche.				
			(H. and F. — Ber. 38, 1142, '05.)				
Millimols C ₆ H ₈ N ₈ O ₇ per 10 cc.		Gms. C ₆ H ₆ N ₅ O ₇ per 100 cc.		Millimols C ₆ H ₂ N ₃ O ₇ per 10 cc.		Gms. C ₆ H ₉ N ₃ O ₇ per 100 cc.	
Aq. Layer.	Alcohol Layer.	Aq. Layer.	Alcohol Layer.	Aq. Layer.	Toluene Layer.	Aq. Layer.	Toluene Layer.
0.0553	0.0930	0.127	0.213	0.075	0.126	0.172	0.289
0.0920	0.1850	0.211	0.424	0.109	0.230	0.250	0.527
0.1613	0.4127	0.369	0.946	0.163	0.482	0.374	I . 104
0.1869	0.5182	0.428	1.188	0.244	1.026	0.559	2.351
0.3161	1.079	0.724	2.473	o.389	2.347	0.891	5.380
0.4471	r .638	1.024	3 · 753	0.496	3 · 747	1.137	8.586
0.5624	2.189	1.288	5.017	0.583	5.135	1.336	11.770
0.6423	2 . 549	1.472	5.839	-			

Additional data for the distribution of picric acid between water and amyl alcohol and water and toluene at 20° are given by Sisley (1902). Very irregular results were obtained. The fact that the colors of the two layers are different, was taken to indicate that the picric acid dissolves in a different molecular form in the two layers.

DISTRIBUTION OF PICRIC ACID AT 25° BETWEEN:

		•			
Water as	nd Bromoform.	Water and Chloroform.			
(Hers and Lewy - Z.	Electrochem. 11, 820, '05.)	(H.	and L.)		
Millimols C _e H ₂ N ₂ (per 10 cc.	O ₇ Gms. C ₆ H ₈ N ₂ O ₇ per 100 cc.	Millimols C ₀ H ₂ N ₃ O ₇ per 10 cc.	Gms. C ₆ H ₂ N ₂ O ₇ per 100 cc.		
Aq. Bromoform		Aq. Chloroform	Aq. Chloroform		
Layer. Layer.	Layer. Layer.	Layer. Layer.	Layer. Layer.		
0.321 0.365	0.736 0.836	0.207 0.254	0.474 0.582		
0.401 0.515	0.919 1.180	0.329 0.547	0.754 1.253		
0.475 0.655	1.088 1.501	0.488 1.09	1.118 2.498		
0.575 0.871	1.317 1.995	0.561 1.41	1.285 3.230		
0.674 1.14	1.545 2.612	o.588 I.53	1.348 3.505		
	DISTRIBUTION OF PI	CRIC ACID BETWEEN:			
Water and Benz	zene. (Kuriloff, 1898.) V	Vater and Ether at 20'	. (Sisley, 1902.)		
Mols. Picric	Acid per Liter:	Gms. Picric Acid per Liter:	51. 6.4		
Aq. Layer.	CaHa Layer.	Ag. Laver. Ether Laver.	Dist. Coef.		
0.0261	0.0040	6.78 17.85	2.63		
0.0208	0.0779	3.74 6.70	1.79		
0.0188	0.0618	2.85 3.72	1.34		
0.0132	0.0359	0.85 0.11	0.13		
0.0007	0.0108	0.10 0.001	0.01		
		d between water and			
form and toluene	at 25°, are given by H	erz and Kurzer (1910)			
		, see footnote, p. 1) A			
I KDEZING-POL	THE FOLLOWI	ng Mixtures:	RE CIVEN FOR		
Picric	Acid + Dimethylpyro				
**	+ Resorcinol.	(Philip and Smith,	1905.)		
	+ I nymoi.	(Kendall, 1916.)			
**	+ α Trinitrotolι	iene. (Giua, 1916.)			
MethylPICRIC A	ACID C ₄ H(CH ₂)(OH)	(NO ₂) ₃ , 1.3.2.4.6.			
		UTIONS AT 25°. (Kend	lall, 1911.)		
	Normality of	•	Normality of		
Aq. Solvent.	Dissolved	Aq. Solvent.	Dissolved		
	Methyl Picric Acid.		Methyl Picric Acid.		
Water		1975 n o Nitrobenzoic A			
" +Ligroin		0981 n Salicylic Acid	0.01063		
" +Toluene 0.00805 n HCl		1393 n " " +Excess of Salicylic Ac	0.01072 . id 0.02613*		
0.01593 n HCl	0.0041 HgO	TEXCESS OF SAUCYTIC AC	ad 0.02013.		
o.01013 n Picric A					
 normality of salicylic acid + methylpicric acid. 					
PICROTOXIN C ₂₀ H ₂₄ O ₁₃ .					
100 gms. H ₂ O	dissolve o.	41+gm. picrotoxin at			
. pyriain		gms. "	11 11 11		
	opyridine of	•••			
DIMPITO ACTO	(CH)(COOH)				

PIMELIC ACID (CH₃)₅(COOH)₃.

DISTRIBUTION BETWEEN WATER AND ETHER AT 25°. (Chandler, 1908.)

Mols. (CH ₂) ₅ (COOH), per Liter.	Diet Cont 6	Dist. Coef.	
Aq. Layer, s.	Ether Layer, b.	Dist. Coef. $\frac{a}{b}$	Corrected for Ionization.	
0.00998	0.01407	0.7095	0.670	
0.00702	0.00979	0.7170	0.670	
0.00480	0.00667	0.7195	0.663	
0.00284	0.00380	0.7480	0.663	
0.00179	0.00253	0.7075	0.653	

PILOCARPINE C11H16N2O2.

100 cc. oil of sesame dissolve 0.3142 gm. C11H16N2O2 at 20°.

(Zalai, 1910.)

PILOCARPINE HYDROCHLORIDE C₁₁H₁₆N₂O₂.HCl, Pilocarpine Nitrate C₁₁H₁₆N₂O₃.HNO₄, and Piperine C₁₇H₁₈NO₂ in Several Solvents.

(U. S. P., VIII.)

Solvent.	ť.	Gms. per 100 Gms. Solvent.			
Water Alcohol	25	C ₁₁ H ₁₆ N ₂ O ₂ .HCl. 333	C ₁₁ H ₁₆ N ₂ O ₂ .HNO ₂ . 25 1.66	C ₂ H ₁₉ NO ₃ . insoluble	
Alcohol Chloroform	25 60	4·35 9.09 0.18	6.2	6.66 22.7	
Ether	25 25		• • •	58.8 2.8	

PINACOLIN CH₁.CO.C(CH₂)₃.

SOLUBILITY IN WATER AND IN AQ. ACETONE AT 15°. (Delánge, 1908.)

Per cent Acetone in Solvent.	cc. Pinacolin Dissolved per 100 cc. Solvent.
$o (= pure H_2O)$	2.44
20	3 · 47
33	6.06
50 60	9.09
60	14.27

PINENE HYDROCHLORIDE C10H14.HCl.

100 gms. 95% formic acid dissolve 1.2 gms. C₁₀H₁₆.HCl at 16.8°. (Aschan, 1913.)

PIPECOLINE C₅H₉(CH₂)NH d and l.

F.-pt. data for mixtures of d and l pipecoline are given by Ladenburg and Sobecki (1910).

PIPERIDINE CH₂<(CH₂.CH₂)₂>NH.

DISTRIBUTION BETWEEN WATER AND BENZENE AT ORD. TEMP. (Georgievics, 1915.)

Gms. Pip	eridine per:	Gms. Piperidine per:		
25 cc. H ₂ O Layer.	75 cc. C.H. Layer.	25 cc. H ₂ O Layer.	75 cc. CoHe Layer.	
0.1573	0.4127	0.891	2.339	
0.256 ·	0.674	1.299	3.589	
0.409	1.088	1.712	4.789	
0.674	1.746	· ·		

PIPERIDINE HYDROCHLORIDE CH₁<(CH₂.CH₂)₁>NH.HCl.

SOLUBILITY IN SEVERAL SOLVENTS. (Freundlich and Richards, 1912.)

Solvent.		ť.	Mols. Piperidine HCl per Liter.	
Water		0	4.87	
	>	25	5.19	
Tetrachlor Ethane (sat. with	th H ₂ O)	0	0.13	
"	"	25	0.29	
Nitrobenzene	"	25	0.00543	
Benzene	"	25	0.00102	

Methyl**PIPERIDINES** 2-, 3-, 4-, n Methyl, etc.

Data for the reciprocal solubility of 2-methylpiperidine and water, 3-methylpiperidine and water, 4-methylpiperidine and water, nitrosopiperidine and water and for n-methylpiperidine and water, determined by the synthetic (sealed tube) method of Alexejeff, are given by Flaschner and MacEwan (1908) and by Flaschner (1909) and (1908). Similar data for n-ethylpiperidine and water and for n-propylpiperidine and water are given by Flaschner (1908).

αα' Diphenyl PIPERIDINES C₁₇H₁₉N.

SOLUBILITIES OF THE ACID SALTS OF $\alpha\alpha'$ DIPHENYL PIPERIDINE AND OF ISO $\alpha\alpha'$ DIPHENYL PIPERIDINE IN WATER AT 25°. (Scholtz, 1901.)

Piperidine Base.	Gms. per 100 Gms. Sat. Solution:			
•	HCI Salt.	HBr Salt.	HI Salt.	H ₂ SO ₄ Salt.
α, α' Diphenyl Piperidine, m. pt. 71°	0.85	0.90	0.12	6.31
Iso α, α' Diphenyl Piperidine, liquid	3.02	I	0.72	easily soluble

PIPERINE C₁₇H₁₈NO₂. (See also under Pilocarpine, preceding page.)
SOLUBILITY IN SEVERAL SOLVENTS.

Solvent.	ť.	Gms. C ₁₇ H ₁₂ NO ₂ per 100 Gms. Solvent.	Authority.
Water	20-25	0.01	(Dehn, 1917.)
Ethyl Alcohol	9.5	2.9	(Timofeiew, 1894.)
Methyl "	9.5	4.4	66
Propyl "	9.5	2.94	44
Trichlor Ethylene	15	9.83	(Wester and Bruins, 1914.)
Pyridine	20-25	22.46	(Dehn, 1917.)
Aq. 50% Pyridine	20-25	11.39	"

PLATINUM ALLOYS.

SOLUBILITY OF PLATINUM ALLOYS IN NITRIC ACID. (Winkler — Z. anal. Ch. 13, 369, '74.)

Alloy.	Approx.	Grams Alloy Dis	solved per re	o Grams H	NO ₃ Solution of
Autoy.	Pt in Alloy.	1.398 Sp. Gr.	1.298 Sp. Gr.	1.190 Sp.G	r. 1.298 Sp. Gr.:
Pt and Silver	10	57	44	69	37
"	5	69	57	51	35
. "	2.5	62	ĞΪ	69	••
"	1	75	70	76	• •
Pt and Copper	10	46	27	11	51
"	5	36	34	14	41
"	2.5	51	40	30	• •
"	I	52	41	37	• •
Pt and Lead	10	7	9	8	
"	5	8	ģ	10	• •
"	2.5	22	17	II	• •
"	ı+	21	18	23	• •
Pt and Bismuth	10	14	19	4	3
44	5	21	20	6	3 18
"	2.5	25	42	8	
46	I	49	64	IO	
Pt and Zinc	10	10	11	19	5
"	5	16	12	6	11
66	2.5	16	24	19	• •
"	1	20	32	37	• •

PLATINUM BROMIDE PtBr.

100 grams sat. aqueous solution contain 0.41 gram PtBr4 at 20°. (Halberstadt — Ber. 17, 2962, '84)

PLATINIC POTASSIUM BROMIDE K, PtBr.

100 grams sat. aqueous solution contain 2.02 grams K₂PtBr_s at 20°. (Halbertadt.)

PLATINIC DOUBLE CHLORIDES of Ammonium, Caesium, Potassium, Rubidium and Thallium. (Data for each separately.)

SOLUBILITY IN WATER.

(Crookes - Chem. News 9, 37, 205, '64; Bunsen - Pogg. Ann. 113, 337, '61.) ne ner von Greme Weter

	Grams per 100 Grams water.				
t°.	(NH ₄) ₂ PtCl ₆ .	Cs2PtCla.	KaPtCla.	Rb ₂ PtCl ₆ .	Tl ₂ PtCl ₆ .
0	•••	0.024	0.74	0.184	• • •
10	o.666 (15°)	0.050	0.90	0.154	0.0064 (15°)
20	•••	0.079	1.12	0.141	•••
25	• • •	0.095	1.26	0.143	• • •
30	• • •	0.110	1.41	0.145	•••
40	• • •	0.142	1.76	0.166	•••
50	•••	0.177	2.17	0.203	• • •
60	• • •	0.213	2 . 64	0.253	• • •
70	•••	0.251	3.19	0.329	• • •
80	• • •	0.291	3 · 79	0.417	•••
90	• • •	0.332	4 · 45	0.521	• • •
IOO	1.25	0.377	5.18	0.634	0.050

SOLUBILITY OF POTASSIUM CHLOROPLATINATE IN WATER AND IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AND OF SODIUM CHLORIDE. (Archibald, Wilcox and Buckley, 1908.)

Solubil	ity in Water.	In Aq. 1	KCl at 20°.	In Aq. Na	aCl at 16°.
ť.	Gms. K ₂ PtCl ₄ per 100 Gms. H ₂ O.	Gm. Mols. KCl per Liter.	Gms. K ₂ PtCl ₆ per 100 Gms. Solvent.	Gm. Mols. NaCl per Liter.	Gms. K ₂ PtCl ₆ per 100 Gms. Solvent.
0	0.4784	0.20	0.0236	0	0.672
10	0.5992	0.25	0.0207	0.05	0.700
20	0.7742	0.50	0.0109	0.10	0.729
30	I	I	0.0046	0.25	0.758
40	1.355	2	0.0045	0.50	0.775
60	2.444	3	0.0043	0.75	0.791
80	3.711	4	0.0042	I	0.805
100	5.030	sat.	0.0034	2	0.834

Solubility of Potassium Chloroplatinate in Aqueous Solutions of Methyl Alcohol and of Ethyl Alcohol at 20°. (Archibald, Wilcox and Buckley, 1908.)

Wt. Per cent Alcohol in	Gms. K ₂ PtCl ₆ per 100 Gms.:		Wt. Per cent Alcohol in	Gms. KaPtCla per 100 Gms.:	
Solvent.	Aq. CH ₈ OH.	Aq. C ₃ H ₄ OH.	Solvent.	Aq. CH ₂ OH.	Aq. C ₂ H ₄ OH.
0	0.7742	0.7742	50	0.0625	0.0491
5	0.535	0.491	60	0.0325	0.0265
10	0.412	0.372	70	0.0182	0.0128
20	0.264	0.218	8o	0.0124	0.0085
30	0.1831	0.134	90	0.0038	0.0025
40	0.1165	0.076	100	0.0027	0.0009

100 gms. aq. 8.2% isobutyl alcohol dissolve 0.625 gm. K_2PtCl_6 at 20°. 100 gms. aq. sat. isobutyl alcohol dissolve 0.318 gm. K_2PtCl_6 at 20°. (Archibald, Wilcox and Buckley, 1908.) One liter of 55% alcohol dissolves 0.150 gm. (NH₄) $_2PtCl_6$ at 15–20°. (Freenius, 1846.) " 76% " 0.067 " " " 446.) " 4

DISTRIBUTION OF PLATINUM CHLORIDE BETWEEN WATER AND ETHER AT ORD. TEMP. (Mylius, 1911.)

When I gm. of platinum as chloride is dissolved in 100 cc. of aq. 10% HCl and shaken with 100 cc. of ether, 0.01 per cent of the platinum enters the etheral layer. If water is used instead of 10% HCl, approximately the same per cent of Pt enters the ether layer.

100 cc. anhydrous hydrazine dissolve I gm. platinic chloride, with formation of a black precipitate at room temp. (Welsh and Broderson, 1915.)

ChloroPLATINATES of Hydrocarbon Sulfines.

SOLUBILITY OF EACH IN WATER.	AT 16°. (Strömholm, 1900.)	
Chloroplatinate.		Gms. Salt per
Name.	Formula.	roo Gms. Sat. Solution.
Trimethyl Sulfine Chloroplatinate	$[(CH_3)_3S]_2PtCl_6$	0.47
Dimethyl Ethyl Sulfine Chloroplatinate	$[(CH_3)_2(C_2H_5)S]_2PtCl$	6 3.43
Methyl Diethyl Sulfine Chloroplatinate	[CH ₃ (C ₂ H ₅) ₂ S ¹ ₂ PtCl ₅	2.42
Triethyl Sulfine Chloroplatinate	$[(C_2H_5)_8S]_2PtCl_6$	1.98
Similar results for more complex sulfines ar	e also given.	

PLATINO AMINES.

Solubility in \	WATER. (Cleve, 18	366 ?)
Amine.	Formula.	Gms. per 100 Gms. H ₂ O.
Platino Semi Diamine Chloride	$Pt < {\rm Cl}^{\rm (NH_3)_2.Cl}$	0.26 at 0°, 3.4 at 100°
Chloro Platino Amine Chloride	Cl ₂ Pt < NH ₃ Cl NH ₃ Cl	0.14 at 0°, 3 at 100°
Chloro Platino Semi Diamine Chloride	Cl ₂ Pt(NH ₄) ₂ Cl	0.33 at 0°, 1.54 at 100°

PLATINOUS NITRITE AMMONIUM COMPOUNDS.

SOLUBILITY IN WATER. (Tschugaev and Kiltinovie, 1916.)

When ammonia is added to a cold solution of potassium platinomitrite a copious precipitate of the composition Pt2NH₄(NO₂)₃, is obtained. By comparison of the solubility of this precipitate with that of each of three hitherto described ammonioplatinum compounds, it was found that the precipitate obtained as de-NH₄ NO₂

scribed, corresponds to the cis form of dinitro diammonio platinum,

The results for the solubility of cis and trans dinitro diammonio platinum and of tetra ammonia platinous platinonitrite in water, are as follows:

Gms. Each Compound per 100 Gms. H₂O.

t°.	cis PtaNH ₂ (NO ₂) ₂ .	trans Pt2NH ₂ (NO ₂)2.	[Pt4NH ₄][Pt(NO ₂) ₄].
25	o. o 83	₽.063	0.011
63	0.66	0.49	• • •
74 - 4		0.81	• • •
95	2.32	1.85	• • •

Determinations of the solubility of several mixtures of the cis and trans compounds in water are also given.

PONCEAU (Free Acid) $C_{10}H_7N:N.C_{10}H_4(OH)(SO_2H)_2.9H_2O$.

SOLUBILITY IN SEVERAL SOLVENTS AT	23.° (Sisley, 1902.)
Solvent.	Gms. Ponceau per Liter.
Water	209.6
" +5 Gms. H ₂ SO ₄ per Liter	180
" Sat. with Amyl Alcohol	195
Amyl Alcohol	73 - 4

Ether, pure none Data are also given for the distribution of ponceau between water and amyl alcohol at 18°.

POTASSIUM K.

SOLUBILITY OF POTASSIUM IN LIQUID AMMONIA. (Ruff and Geisel, 1906.)

t*.	Mols. NH ₄ to Dis- solve 1 Gm. Atom K.
-100	4.82
- 5 0	4.79
0	4 · 74

SOLUBILITY OF POTASSIUM IN MELTED KOH. (von Hevesy, 1909.)

Difficulty was experienced due to the failure of the excess of K to separate completely from the saturated solution. Time of heating, 50 hours.

t*.	Gms. K per 100 Gms. KOH.
480	7.8-8.9
600	3 -4
650	2 -2.7
700	0.5-1.3

POTASAMMONIUM K₂(NH₂)₂.

100 gms. liquid ammonia dissolve 99.5 gms. K₂(NH₂)₂ at 0° and 97 gms. at +8.44°.

POTASSIUM ACETATE CH,COOK.13H2O. SOLUBILITY IN WATER

		SOLUBILITY	N WATER. (A	Abe, 1911.)	
ť.	Gms. CH ₂ COO per 100 Gms. H ₂ O.	K Solid Phase.	ť.	Gms. CH ₂ COOl per 100 Gms. H ₆ O.	K Solid Phase.
0. I	216.7	2CH ₄ COOK.3H ₂ O	41	327 - 7	2 CH ₄ COOK.3H ₄ O
5	223.9	"	41.3 tr. pt.	•••	" +2CH4COOK.H4O
10	233.9	64	42	329	2CH ₄ COOK.H ₄ O
15	243.I	44	45	332.2	"
20	255.6	ee	50	337 · 3	**
25	269.4	44	60	350	44
30	283.8	44	70	364.8	44
	301.8	66	80	380.1	u
35 38	314.2	64	90	396.3	"
40	323.3	a a	96	406.5	"

SOLUBILITY OF POTASSIUM ACETATE IN AQ. ALCOHOL SOLUTIONS AT 25°. (Seidell, '10.) Wt. % C₂H₂OH d₂₅ of Gms. CH₂COOK per in Solvent. Sat. Sol. 100 Gms. Solvent. in Solvent. Sat. Sol. 100 Gms. Solvent. Sat. Sol. 100 Gms. Solvent.

in Solvent.	Sat. Sol.	100 Gms. Solvent.	in Solvent.	Sat. Sol.	100 Gms. Solven
0	1.417	219.6	70	1.156	118.3
20	1.363	219.6	80	1.085	87.6
40	1.302	192.4	90	0.990	52.9
50	1.260	171.8	95	0.922	34.2
60	1.210	147.5	100	0.850	16.3

F.-pt. data for potassium acetate + acetic acid (Vasilev, 1909); potassium acetate + sodium acetate (Baskov, 1915). (Baskov, 1915.)

POTASSIUM SulfoANTIMONATE K₂SbS₄.5H₂O.

	Soi	LUBILITY IN	WATER.	(Donk, 1908.)	
t*.	Gms. K ₂ SbS ₄ per 100 Gms. Sat. So	Solid Phase.	ť°.	Gms. K ₄ SbS ₄ per 100 Gms. Sat. Sol.	Solid Phase.
- 1.3	9.5	Ice	-34	62	Ice+K ₄ SbS ₄ .6H ₂ O
- 2.6	17.1	**	— 10	65.5	K ₂ SbS ₄ .6H ₂ O
- 4	24.2	u	- 4.5	69.1	"
- 7.2	35.4	u	0	75.4	K ₂ SbS ₄ .5H ₂ O
-10.6	42.9	**	+10	76.2	44
-13.5	48.8	**	30	75.I	"
-18.5	52.6	66	50	77.7	K ₄ SbS ₄₋₃ H ₄ O
-28.8	59.6	4	80	79.2	"

501 POTASSIUM SulfoANTIMONATE

Solubility of Potassium Sulfoantimonate in Aq. Solutions of Potassium Hydroxide at 30° and Vice Versa. (Donk, 1908.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100	Solid Phase.	
K ₄ SbS ₄ .	KOH.	Sond Phase.	K.SbS.	KOH.	Soud Phase.
75	0	$K_4SbS_4.5H_2O$	19.8	40.5	K ₂ SbS ₄
68.4	3.4	K ₂ SbS ₄ .3H ₂ O	11.5	49.9	" +KOH.2H ₂ O
56.8	II	66	9.4	49.9	KOH.2H ₂ O
50.9	16.1	K _s SbS ₄	0	56.3	"
37.7.	25.5	46			

SOLUBILITY OF POTASSIUM SULFOANTIMONATE IN AQ. ETHYL ALCOHOL. (Donk, 1908.)

Results at 10°.			Results at 30°.		
Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100	Solid Phase.	
K ₄ SbS ₄ .	C ₂ H ₄ OH.	Soud Pilase.	K ₄ SbS ₄ .	C,H,OH.	Soud Phase.
0	94	$K_4SbS_4.5H_2O$	0	97	K _a SbS ₄₋₃ H ₂ O
0	90.5	"			
Two Liquid Layers Formed Here.			Two Liquid Lay	ers Formed Here.	
69.2	o.8	**	75.I	0	**
76.I	0	44			

Composition of the Liquid Layers.

Gms. per 100 Gms.

Composition of the Liquid Layers.

Gms. per 100 Gms.

Alcohol	lic Layer.	Aqueo	us Layer.	Alcohol	lic Layer.	Aqueo	ış Layer.
K.SbS.	C₁H₄OH.	K.SbS.	C ₂ H ₅ OH.	K.SbS4.	C ₁ H ₄ OH.	K.SbS.	C,H,OH.
0	85	67.4	1.1	0	93.I	70.5	±0.5
2.2	54.7	49	3.4	0	85.6	65.2	I.2
4.2	46.9	45.6	3.8	2.2	56.8	47.8	5.7
27 - 4	16			8.5	4I.I	37.I	9.2
• • •		12.7	3I.I				

Solubility of Potassium Sulfoantimonate in Aq. Methyl Alcohol at 15°. (Donk, 1908.)

Composition of the Liquid Layers.

				Gms. per i	oo Gills.	
Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Alcoholic Layer.		Aqueous Layer.	
K,SbS4.	СН₃ОН.	<u>.</u>	K.SbS.	CH ₃ OH.	K.SbS.	СН•ОН.
0.5	99.5	K ₂ SbS ₄	5	82.5	62.5	8
0.45	99.5	"	4.9	76.3	• • •	• • •
1.5	93.9	"	7	66.9	• • •	• • •
1.8	92	"	13.6	5 4	• • •	• • •
Two Liquid Lay	ers Formed He	re.	19.1	4 5 · 5		• • •
62.7	7 · 5	K ₂ SbS ₄ 9H ₂ O		• • • .	31.1	31.3
68.4	3.5	"	• • •	• • •	4I.I	22.2
75 · 5	0	**	• • •	• • •	47.2	18.2
Two Liquid Lay	ers Formed He	re.	• • •	• • •	57.2	II.I
0.5	ο8. τ	**				

POTASSIUM (Dihydrogen) ARSENATE KH2AsO4.

100 gms. sat. aq. solution contain 15.9 gms. KH₂AsO₄, or 100 gms. H₂O dissolve 18.86 gms. at 6°. Sp. Gr. of solution = 1.1134. (Field, 1859.) 100 cc. sat. aq. solution contain 28.24 gms. KH₂AsO₄ at about 7°.

100 cc. sat. aq. solution contain 28.24 gms. κ_{12} at about /. (Muthmann and Kuntze, 1894.) 100 gms. glycerol ($d_{16}=1.256$) dissolve 50.1 gms. potassium arsenate at 15–16°. (Ossendowski, 1907.)

POTASSIUM BENZOATE KC7H4O2.3H2O.

SOLUBILITY IN WATER. (Pajetta, 1906, 1907.)

t°. 17.5° 25° 33.3° 50° Gms. KC₇H₆O₂ per 100 Gms. Solution 41.1 42.4 44 46.6

POTASSIUM BORATES.

SOLUBILITY OF POTASSIUM BORATES IN WATER AT 30°. (Dukelski — Z. anorg. Chem. 50, 42, '06, complete references given.)

Gms. per 100 9	Gms. Solution.	Gms. per 100	Gms. Residue	
K₃O.	B ₂ O ₃ .	K ₂ O.	BgO ₃ .	Phase.
47 - 50				KOH.2H3O
46.36	0.91	46.13	9.02	K ₂ O.B ₂ O ₃₋₂ }H ₃ O
40.51	1.25	41.62	9.71	66
36.82	1 .80	39.90	13.19	•
32.74	3.51	37 - 22	14.58	•
29.63	6.98	35.05	17.92	•
24.84	17.63	30.02	21.70	**
23.30	18.19	26.84	31.49	KgO.aBgOs.4HgO
16.21	13.10	25.12	33.18	46
11.78	9.82	20.57	26.43	4
9.18	8.00	22.38	31.30	4
6.22	9.13	20.87	31.06	u
7 · 73	13.37	22.2I	36.24	KgO.2BgO3.4HgO + KgO.5BgO3.8HgO
7.81	13.28	17.50	34.18	•
7.71	13.21	11.49	34.81	K ₂ O. ₅ B ₂ O ₂ .8H ₂ O
7 63	13.28	12.51	40.52	44
3.42	7 · 59	10.77	37 · 35	44
1.80	4.15	5.88	20.00	•
0.51	3.19	10.81	40.89	44
0.33	4.58	7.72	34.21	$K_2O.5B_2O_3.8H_2O + B(OH)_3$
0.31	4.46	3.91	30.68	u
•••	3 · 54	•••	•••	es

POTASSIUM MetaBORATE KBO2.

Fusion-point data for potassium metaborate + sodium metaborate and for potassium metaborate + potassium metaphosphate are given by van Klooster (1910-11).

POTASSIUM PerBORATES, 2KBO₁.H₂O₂. 2KBO₁.H₂O₂.

SOLUBILITY OF EACH IN WATER. (v. Girsewald and Wolokitin, 1909.)

Borate.	% Active O in Borate.	t*.	Gms. Salt per 100 Gms. Water.
2KBO ₃ .H ₃ O	14.93	0	1.25
	14.93	15	2.50
2KBO3.H2O2	20.84	15	0.70

POTASSIUM (Fluo) BORIDE KBF4.

100 gms. H₂O dissolve 0.44 gm. KBF₄ at 20°, and 6.27 gms. at 100°. (Stolba, 1889.)

POTASSIUM BROMATE KBrO.

SOLUBILITY IN WATER.

(Kremers — Pogg. Ann. 97, 5, '56; Rammelsberg — Ibid. 55, 79, '42; Pohl — Sitzber. Akad. Wiss Wien. 6, 595, '51.)

	Gms. KBrO2 per 100 Gms.		£°.	Gms. KBrO ₃ per 100 Gms.		
t°.	Water.	Solution.	¥	Water.	Solution.	
0	3 · I	3.0	40	13.2	11.7	
10	4.8	4.6	50	17.5	14.9	
20	6.9	6.5	60	22.7	18.5	
25	8.0	7 · 4	80	34 ⋅ 0	25.4	
30	9.5	8.7	100	50.0	33 · 3	

Sp. Gr. of solution saturated at 19.5° = 1.05.

SOLUBILITY OF POTASSIUM BROMATE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND OF SODIUM CHLORIDE.

(Geffcken - Z. physik. Chem. 49, 296, '04.)

In Sodium Nitrate.			In Sodium Chloride.			
Grams per Liter. NaNO2. KBrO3.		Mols. KBrOs G per Liter. NaCl		per Liter. KBrO2.	Mols. KBrO ₈ per Liter.	
0.0	78.79	0.4715	0.0	78.79	0.4715	
42.54	96.01	0.5745	29.25	82.24	0.5220	
85.09	6.8or	0.6497	58.50	93.87	0.5616	
170.18	128.3	0.7680	117.0	100.9	0.0042	
255 - 27	150.9	0.9026	175.5	104.3	0.6244	
340.36	172.3	1.031	234.0	106.9	0.6400	

SOLUBILITY OF POTASSIUM BROMATE IN AQUEOUS SOLUTIONS OF VARIOUS COMPOUNDS AT 25°. (Rothmund, 1910.)

Solvent, o.5 Normal Aq. Sol. of:	Mols. KBrO ₂ per Liter.	Gms. KBrO ₃ per Liter.	Solvent, 0.5 Normal Aq. Sol. of:	Mols. KBrO ₂ per Liter.	Gms. KBrO ₂ per Liter.
Water alone	0.478	79.84	Dimethylpyrone	0.478	79.84
Methyl Alcohol	0.444	74.16	Ammonia	0.445	74.33
Ethyl Alcohol	0.421	70.33	Dimethylamine	0.384	64.13
Propyl Alcohol	0.400	68.31	Pyridine	0.415	69.31
Tertiary Amyl Alcoho	l 0.383	63.97	Piperidine	0.396	66.15
Acetone	0.425	70.99	Urethan	0.433	72.33
Ethyl Ether	0.395	65.98	Formamide	0.473	79.02
Formaldehyde	0.397	66.31	Acetamide	0.445	74.33
Glycol	0.448	74.84	Glycocol	0.501	83.68
Glycerol	0.451	75.34	Acetic Acid	0.456	76.17
Mannitol	0.451	75.34	Phenol	0.426	71.15
Grape Sugar	0.431	71.99	Methylal	0.405	67.66
Urea	0.477	79.68	Methyl Acetate	0.420	70.15

POTASSIUM BROMIDE KBr.

SOLUBILITY IN WATER.

(Average curve from results of Meusser — Z. anorg. Chem. 44, 79, '05; Etard — Compt. rend. 98, 1432, '84; Ann. chim. phys. [7] 2, 526, '04; de Coppet — Ibid. [5] 30,416, '83; Tilden and Shenstone — Phil. Trans. 175, 23, '84.)

\$°.	Grams KBr p	er 100 Grams	ŧ°.	Grams KBr per 100 Grams		
6	Solution. Water.		₩.	Solution.	Water.	
- 6.5	20.0	25.0	30	41.4	70.6	
-8.5	26.5	35·7	40	43.0	75 · 5	
-10.5	29.5	41.8	50	44.5	80.2	
-11.5	31.2	45 - 3	60	46 · I	85.5	
-10	31.8	46.7	70	47 · 4	90.0	
- 5	33 · 3	50 · o	80	48.7	95.0	
0	34.9	53 · 5	90	49.8	99.2	
5	36.1	56.5	100	51.0	104.0	
10	37 · 3	59 · 5	110	52.3	109.5	
15	38.5	62.5	140	54.7	120.9	
20	39 · 5	65.2	181	59.3	145.6	
25	40.4	67.7			-	

SOLUBILITY OF MIXTURES OF POTASSIUM BROMIDE AND AMMONIUM BROMIDE IN WATER AT 25°. (Fock — Z. Kryst. Min. 28, 357, '97.)

Grams per Li	ter Solution.	Mol. per ce	ent in Solution.	Sp. Gr. of	Mol. per cent	ent in Solid Phase.	
NH ₄ Br.	KBr.	NH₄Br.	KBr.	Sp. Gr. of Solutions.	NH ₄ Br.	KBr.	
0.00	558.1	0.0	100	1.3756	0.00	100	
6.4	554.2	1.38	98.62	I .3745	0.26	99 · 74	
24.64	536.5	5.29	94.71	I .3733	I . 27	98.73	
51.34	516.8	10.77	89.23	1.3721	3.02	96.98	
152.9	441.2	29.63	70.37	1.3711	8.42	91.58	
262.2	347 · 3	47.84	52.16	1.3715	17.20	82.80	
347.6	262.3	61.69	38.31	I · 3753	27.98	72.02	
381.4	260.3	64.03	35 - 97	I · 3753	32.53	67 . 47	
417.8	232.2	68.61	31.39	1.3766	39 · 45	60.55	
432.5	222.3	70.27	29.73	I · 3777	variable	variable	
48o.8	179.9	76.47	23.53	1.3766	98.53	I .47	
5 77 · 3	0.0	100.0	0.0	1.3763	100.0	0.00	

SOLUBILITY OF POTASSIUM BROMIDE AT 25° IN:

Aq. Solutions of KCl and Vice Versa. Aq. Solutions of KI and Vice Versa. (Amadori and Pampanini, 1911.) (Amadori and Pampanini, 1911.)

	o Gms. H _g O.	Gms. per re	Gms. per 100 Gms. H ₂ O.		
KBr.	KCl.	KBr.	KI.		
68.47	0	53.21	35.92		
62.26	5.43	42.32	66.63		
58.5 0	8.46	34.14	95.36		
52.45	12.48	30.08	119.52		
45.42	17.17	29.62	110		
38.70	21.23	22.15	127.10		
26.62	25.88	21.88	127.31		
12.94	31.02	18.54	130.61		
0	36.12	0 .	149.26		

(See also next page.)

SOLUBILITY OF POTASSIUM BROMIDE IN AQUEOUS SOLUTIONS OF POTASSIUM HYDROXIDE. (Ditte - Compt. rend. 124, 30, '97.)

Grams per 100	o Grams H ₂ O.	Grams per 1000 Grams H2O.			
KOH.	KBr.	KOH.	KBr.		
36.4	558.4	277.6	248.1		
113.5	433.6	434 · 7	137 . I		
177.2	358.I	579.6	64.8		
231.1	281.2	806.9	33 · 4		

SOLUBILITY OF MIXTURES OF POTASSIUM BROMIDE AND CHLORIDE AND OF MIXTURES OF POTASSIUM BROMIDE AND IODIDE IN WATER. (Etard - Ann. chim. phys. [7] 3, 275, '97.)

Mixtures of KBr and KCl. Mixtures of KBr and KI.

\$° .	Grams per 100	Gms. Solution.	Grams per 100 Grams Solution		
6	KBr.	KCl.	KBr.	KI.	
- 20	17.5	10.5	9.2	42.5	
0	21.5	10.8	9.9	45 - 3	
10	23.2	11.0	10.2	46.6	
20	24.8	II . 2	10.5	47 · 5	
25	25.5	11.3	10.7	48.0	
30	26.3	11.4	10.9	48.6	
40	28.0	11.5	11.2	49.6	
60	30.6	11.8	11.9	51.3	
80	33 · 4	I2.I	12.6	52.7	
100	35 · 7	12.6	13.2	53.8	
120	38.0	12.9	14.0	54.8	
150	40.6	13.4	14.9	55.5	

SOLUBILITY OF POTASSIUM BROMIDE IN AQUEOUS SOLUTIONS OF Potassium Chloride, and of Potassium Chloride in Aqueous Solutions of Potassium Bromide, at 25.2°.

(Touren - Compt. rend. 130, 1252, '00.)

KBr in Aq. KCl Solutions.			tions.	KCl in Aq. KBr Solutions.				
Mols. p	er Liter.	Grams	per Liter.	r Liter. Mols. per Liter.			er Liter.	
KCI.	KBr.	KCl.	KBr.	KBr.	KCl.	KBr.	KCl.	
0.0	4.761	0.0	567.0	0.0	4.18	0.00	311.8	
0.67	4.22	50.0	502.5	0.49	3.85	58.4	287.2	
0.81	4.15	60.4	494.2	0.85	3.58	101.3	267.1	
1.35	3.70	100.7	440.7	1.31	3.19	156.1	238.0	
1.48	3 · 54	110.4	42I .Ó	1.78	2.91	211.9	217.1	
1 .61	3.42	120.0	407 - 2	2.25	2.58	268 · o	192.4	
1.70	3.34	126.8	397 · 7	2.69	2.33	320 - 4	173.8	
2.46	2.50	183.5	297 - 7	•	-			
3.775	0.525	281.6	625.3					

SOLUBILITY OF POTASSIUM BROMIDE IN AQUBOUS SOLUTIONS OF POTASSIUM NITRATE, AND OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF POTASSIUM BROMIDE, AT 14.5° AND AT 25.2°.

(Touren—Compt. rend. 130, 908, '00.)

KBr in Aqueous KNO. Solutions. KNO, in Aq. KBr Solutions. Mols. per Liter. Grams per Liter. Mols. per Liter. Grams per Liter. KNO₃. KBr. KNO₈. KBr. KBr. KNOs. KBr. KNO. Results at 14.20°. Results at 14.20. 2.228 0.0 4.332 0.0 515.9 0.0 0.0 225.4 0.362 4.156 36.6 494.9 0.356 2.026 42.4 205.0 71.4 487.4 0.706 4.093 0.784 1.835 93.4 185.7 130.0 175.0 187.8 160.6 1.092 1.730 1.235 3.939 124.9 469.1 1.577 1.587 2.542 1.406 302.7 142.2 Results at 25.20. 3.536 1.308 421.1 132.3 0.0 4.761 0.0 566.2 0.131 4.72 13.3 561.0 Results at 25.20. 0.0 3.217 0.38 3.026 0.527 4.61 53·3 549·I 0.0 325.5 45.3 306.2 110.8 272.0 0.721 4.54 72.9 540.8 0.93 2.689 1.37 2.492 4.475 IIO.3 533.0 4.44 II8.4 528.8 1.00 163.1 252.2 1.170 4.44 1.504 4.375 1.208 2.216 143.8 224.3 152.2 521.1 341.8 198.1 2.87 1.958

SOLUBILITY OF POTASSIUM BROMIDE IN ALCOHOLS AT 25°. (de Bruyn — Z. physik. Chem. 10, 783, '92; Rohland — Z. anorg. Chem. 18, 327, '98.)

3.55

Alcohol.	Grams KBr Dissolved by 100 Gms. Alcohol at:					
Alcohol.	Room Temp. (R.).	25° (de B.).				
Methyl Alcohol	1.92	1.51 Abs. Alcohol				
Ethyl Alcohol	o.28 (Sp. Gr. o.81)	0.13 "				
Propyl Alcohol	0.055	•••				

SOLUBILITY OF POTASSIUM BROMIDE IN AQUEOUS ALCOHOL. (Taylor — J. Physic. Ch. 1, 724, '96-'97.)

	Results a	at 30°.	Results at 40°		
Wt. per cent Alcohol in Solution.	Gms. KBr per	roo Gms.	Gms. KBr per 100 Gms.		
in Solution.	Sat. Solution.	Solvent.	Set. Solution.	Solvent.	
0	41.62	71.30	43 - 40	76.6 5	
5	38.98	67 . 25	40.85	72.70	
10	36.33	63 . 40	38 · 37	69.∞	
20	31.09	56.40	33 · 27	62.30	
30	25.98	50.15	28.32	56.45	
40	21.24	44 - 95	23.22	50.46	
50	16.27	38.8 5	18.11	44 · 25	
60	11.50	32.50	13.02	37 -40	
70	6.90	24.70	7.98	28.90	
8o	3.09	15.95	3.65	18.95	
90	0.87	8.80	1.03	10.45	

100 gm. acetone dissolve 0.023 gm. KBr at 25°.

(Krug and McElroy - J. anal. Chem. 6, 184, '98.)

422.8 182.8

1.807

SOLUBILITY OF POTASSIUM BROMIDE IN DILUTE AQUEOUS ETHYL ALCOHOL.

Results at 0°. (Armstrong and Eyre, 1910-11.)				Results at 25°. (Armstrong, Eyre, Hussey and Paddison, 1907.)				
Wt. % C ₂ H ₆ O in Solvent.	H G	ns. KBr pe Gms. Sat. S	r ol.	Wt. % in S	C ₂ H ₆ OH colvent.		KBr per s. Sat. Sol.	dgg of Sat. Sol.
0		34.92			0	40	o. 78	1.3824
1.14		34.35			1.14	39). 98	I.3727
2.25		32.96			2.25	39	. 54	1.3634
4.41		31.99			4.4I	38	3.41	1.3443
8.44		29.43		I	2.14	34	. 97	1.2815
				I	8.73	30	0.91	1.2322
IOO gms.	methvl	alcohol o	dissolv	e 2:17	gms. F	CBr at 25	°. (Turner	and Bissett, 1913.)
	ethvl	44	44	0.142	gm.	"	" "	44
	propyl	"	44	0.035	"	44	**	. "
	amyl	"	44	0.003	44	**	**	· u

SOLUBILITY OF POTASSIUM BROMIDE IN AQUEOUS SOLUTIONS OF METHYL ALCOHOL AT 25°. (Herz and Anders, 1907.)

Wt.% CH _s OH in Solvent.	Gms. KBr per	d_{2k} of Sat. Sol.	Wt. % CH ₂ OH in Solvent.	Gms. KBr per	d_{25} of Sat. Sol.
•	56.04	I . 3797	64	10.35	°0.9801
10.6	46.28	1.300	78. I	5.24	o.8906
30.8	29.98	1.159	98.9	2.74	0.8411
47.I	19.28	1.058	100	1.60	0.8047

The solubility of potassium bromide in methyl alcohol at the critical temperature is given by Centnerszner (1910), as 0.2 gm. KBr per 100 gms. sat solution.

100 gms. 95% formic acid dissolve 23.2 gms. KBr at 18.5°.

100 gms. 95% formic acid dissolve 23.2 gms. KBr at 10.3.
100 cc. anhydrous hydrazine dissolve 60 gms. KBr at room temp.
(Welsh and Broderson, 1915.)
100 gms. hydroxylamine dissolve about 44.7 gms. KBr at 17°-18°.
(de Bruyn, 1892.)

SOLUBILITY OF POTASSIUM BROMIDE AT 25° IN: (Herz and Knoch, 1905.)

Aqueous Acetone.				Aqueous Glycerol.				
cc. Acetone	Per 100	cc. Sat. S	olution.	Sn Ge	Wt. %	KBr per 1	o cc. Sol.	Sp. Gr.
per 100 cc. Solvent.	Millimols KBr.	Gms. KBr.	Gms. H ₂ O.	Sp. Gr. Solutions.	Glycerol in Solvent.	Millimols.	Gms.	Solutions.
0	481.3	57.3	80.6	I.3793	0	481.3	57.32	1.3793
20	366.7	43.67	69.5	1.2688	13.28	444.3	52.91	1.3704
30	310.5	36.98	62.97	1.2118	25.98	404	48'. I I	1.3655
40	259	30.85	55.60	1.1558	45.36	340.5	40.55	1.3594
50	202.9	24. 16	47.60	1.0918	54.23	310.4	36.98	1.3580
60	144.9	17.22	39.15	1.0275	83.84	219.25	26. 11	1.3603
70	95.3	11.35	29.78	0.9591	100	172.65	20. 56	1.3691
8o	46.5	5.54	20.10	0.8942				
90	10.1	I.20	10.15	0.8340				

100 cc. sat. solution of potassium bromide in furfurol (C4H2O.COH) contain 0.139 gm. KBr at 25°. (Walden, 1906.)

FUSION-POINT DATA FOR MIXTURES OF KBr AND OTHER SALTS.

KBr + KF	(Kurnakow and Wrzes	newsky, 1912;	Ruff and Plate), 1903.)	
KBr + KCl	(Wrzesnewsky, 1912;	Amadori and I	Pampanini, 1911	; Ruff and Pl	ato 1903.)
KBr + KI	44	44	"	**	"
KBr + AgBr	(Sandonnini, 1912.)				
KBr + NaCl	(Ruff and Plato, 1903.))			
KBr + KOH	(Scarpa, 1915.)				

POTASSIUM BUTYRATE C.H,COOK.

100 gms. water dissolve 296.8 gms. C₂H₇COOK, or 100 gms. sat. solution contain 74.8 gms. at 31.25°.

100 gms. of an aq. solution saturated with sugar and C₄H₇COOK contain 49.19 gms. sugar + 34.78 gms. C₄H₇COOK + 16.03 gms. H₂O at 31.25°.

POTASSIUM CAMPHORATES.

(Köhler, 1897.)

SOLUBILITY IN AQUEOUS SOLUTIONS OF d CAMPHORIC ACID AT 13.5-16° AND VICE VERSA.
(Jungfleisch and Landrieu, 1914.)

Gms. per 100 (Gms. Sat. Sol.	Solid Phase.	Gms. per 100 (Solid Phase.	
C ₆ H ₁₄ (COOH) ₂ .	C10H14O4K2.	Sond Phase.	C _s H _M (COOH) _s .	C ₁₀ H ₁₄ O ₄ K ₂ .	Soud Pinne.
0	66.65	$C_{\mathbf{p}}\mathbf{H}_{\mathbf{M}}O_{\mathbf{t}}\mathbf{K}_{\mathbf{t}}$	2.90	32.84	$C_{10}H_{10}O_{4}K.C_{20}H_{20}O_{4}$
0.90	69.69	C ₁₀ H ₁₀ O ₄ K	3.20	29.39	."
1	69	"	3.30	28.56	$C_{10}H_{10}O_4K_{-3}C_{20}H_{20}O_4$
1.10	66.79	44	3.20	27.32	u
0.90	66.65	CmHuO4K.H4O	3.20	22.77	4
1.50	62.37	**	3.10	21.66	44
2.60	59.34	44	2.90	12.97	4
3.20	58.37	4	2.90	11.73	••
3.20	58.00	44	3.10	11.59	dC₀HH(COOH)₃
3.20	52.71	CmHmOtk.CmHmOt	2.90	9.66	64
3.20	48.43	44	2.80	8.14	••
2.80	47.88	"	2.50	6.76	"
2.80	42.36	4	2.30	6.07	u
3	35.60	4	2	4.55	"
2.85	34.77	64	0.621	0	4

 $C_{10}H_{14}O_1K_2 = Dipotassium d$ camphorate. $C_{10}H_{14}O_1K_1 = Monopotassium d$ dicamphorate. $C_{10}H_{14}O_1K_1 = Monopotassium d$ dicamphorate. $C_{10}H_{14}O_1K_1 = Monopotassium d$ tetracamphorate.

POTASSIUM CARBONATE K₂CO_{2.2}H₂O.

SOLUBILITY IN WATER.

(de Coppet, 1872; Meyerhoffer, 1905; Osaka, 1910-12, Kremann and Zitek, 1909; de Waal, 1910;

		Muider, 1004.)			
t*.	Gms. K ₂ CO ₃ per 100 Gms. Sat. Solution.	Solid Phase.	t°.	Gms. K ₂ CO ₂ per 100 Gms. S Sat. Solution.	Solid Phase.
-10	21.3	Ice	40		K _e CO ₂ .2H _e O
- 20	31	u	50	54.8	4
-30	36.9	"	60	55.9	
	Eutec. 39.6	" +K ₂ CO ₂ eH ₂ O	70	57 · I	
-6.8 t	r. pt. 50.9	K ₂ CO ₂ .xH ₂ O+K ₂ CO ₂ .2H ₂ O	80	58.3	4
0	51.3	K ₆ CO ₃ .2H ₆ O	90	59.6	"
+10	52	a a	100	60.9	•
20	52.5	**	110	62.5	•
25	52.8	"	120	64.4	44
30	53.2	4	130	66.2	u

Single determinations, not in good agreement with the above, are given by Köhler (1897), by Engel (1888), and by Greenish and Smith (1901).

POTASSIUM BICARBONATE KHCO.

SOLUBILITY IN H2O. (Dibbets, 1874.)

t°. 0 10 20 30 40 60 Gms. KHCO₃ per 100 Gms. Sat. Sol. 18.3 21.7 24.9 28.1 31.2 37.5 100 gms. sat. aqueous solution contain 18.7 gms. KHCO₃ at 0° (d=1.127) (Engel, 1888); 23.7 gms KHCO₃ at 15° (Greenish & Smith, 1901); 26.3 gms. at 20° (de Forcrand, 1909).

SOLUBILITY OF POTASSIUM BICARBONATE IN AQUEOUS SOLUTIONS OF POTASSIUM CARBONATE AT 0°. (Engel, 1888.)

Milligram Mols. pe	er r cc. Solution.	Sp. Gr. of Solutions.	Grams per 1	oo cc. Solution
⅓K ₉ CO ₃ .	KHCO ₃	Solutions.	K ₂ CO ₂	KHCO2.
0.0	21.15	1.133	0.0	21.2
17.14	15.28	1.182	8.11	15.3
24.10	12.65	I . 20	16.7	12.6
34.50	10.25	I.24I	23.8	10.3
49.20	7 · 55	1.298	34.0	7.6
62.14	5.86	1.350	43.0	5.9
74.60	4.90	1.398	51.6	4.9
87.50	3 · 75	1.448	60.5	ვ.8
317.75	0.0	1.542	81.4	0.0

SOLUBILITY OF POTASSIUM CARBONATE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AND OF POTASSIUM HYDROXIDE AT 30°. (de Weal, 1910.)

Results for $K_{\bullet}CO_{\bullet} + KCl$. Results for K₂CO₂ + KOH.

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100	Solid Phase.	
K,CO,	KCl.	Sond Phase.	K ₄ CO ₃ .	KOH.	Sond Phase.
53 · 27	0	K ₂ CO ₁ .z ₃ H ₂ O	53 · 27	0	K ₂ CO ₃₋₁ H ₂ O
52.22	1.03	" +KCI	2.50	53 · 77	"
51.66	1.07	KCI	2.05	55.14	" +KOH.₂H₄O
1.64	26.22	"	0	55.75	KOH.2H ₂ O
•	28 OT	"			

100 gms. H_2O dissolve 10.76 gms. $K_2CO_2 + 2.66$ gms. KNO_2 at 10° when both salts are present in excess. (Kremann and Zitek, 1909.)

100 gms. H₂O dissolve 10.53 gms. K₂CO₂ + 6.12 gms. Na₂CO₂ at 10° when both salts are present in excess (Kremann and Zitek, 1909). See also Potassium Sodium Carbonate, p. 512.

Data for aqueous solutions of K₂CO₃ + KNO₃ + Na₂CO₂ + NaNO₃, simultaneously saturated with two or more of the salts at 10° and at 25°, are also given by Kremann and Zitek (1909).

Data for the reciprocal salt pairs K₂CO₂ + BaSO₄ ≠ K₂SO₄ + BaCO₄ at 25°.

80° and 100° are given by Meyerhoffer (1905).

An aqueous solution, simultaneously saturated with K₂CO₂.2H₂O, K₂SO₄ and BaCO₂, contains 53.1 gms. K₂CO₂ + 0.023 gm. K₂SO₄ at 25°. (Meyerhoffer, 1905.)

EQUILIBRIUM IN THE SYSTEM POTASSIUM CARBONATE, ETHYL ALCOHOL AND WATER AT 23°-26°. (Frankforter and Frary, 1913.)

Note.—The binodal curve for the system (see note, p. 287) was very carefully determined and tie lines were located by estimations of K_sCO_s in specially prepared conjugated liquids. The original results have been plotted and the following data for the conjugated layers read from the curve:

Alcohol Rich Layer (Upper)

Water Rich Laver (Lower.)

Gms.	per 100 Gms.	Solution.	Gms. per 100 Gms. Solution		olution.	
K ₂ CO ₃ .	C,H,OH.	H ₂ O.	K ₂ CO ₃ .	C₂H₄.	H ₂ O.	
0.095	90.65	9.255†	53.6	0.28	46.12†	
0.241	72.7	27.059	39.11	I	59.89	
1.72	53 · 5	44.78	29.62	4	66.38	
4.03	42.6	53.37	25.7	6.4	67.9	
6.30	35.5	58.2	21.08	11	67.92	
8.29	31	бо. 71	19.15	13.2	67.65	
10.35	27	62.65	18. 18	14.7	67.12	
14.2	20.5	65.3	14.2	20.5	65.3*	
-	•	* Plait point.	† Quad. point.	•		

The authors give a complete summary of previous investigations of this system by de Bruyn (1899, 1900); Bell (1905); Cuno (1908-09).

Data for the conjugated liquid layers obtained in the system potassium carbonate, ethyl alcohol and water at 17° and at 35° are given by de Bruyn (1900) and at 20°, 40° and 60° by Cuno (1908).

Composition of the Conjugated Liquids which are in Equilibrium with Solid Potassium Carbonate (Quadruple Points) at Various Temperatures.

(de Bruyn, 1900.) Gms. per 100 Gms. Upper Layer. Gms. per 100 Gms. Lower Layer. t°. K₂CO₂. HO. K₂CO₂. C.H.OH. C.H.OH. H₂O. -18 48.6 0.03 90.3 9.7 51.2 0.2 0.04 Q1.Q 8. I 51.3 0.2 48.5 0 91.5 8.4 +17 0.06 52.I 0.2 47 - 7 0.07 90.9 53.4 0.2 46.4 35 91.8 8.1 0.00 50 55.3 0.2 44.5 8.5 0.12 QI.4 75 57.9 0.2 41.9

EQUILIBRIUM IN THE SYSTEM POTASSIUM CARBONATE, METHYL ALCOHOL, WATER AT 23°-26°.

(Frankforter and Frary, 1913.)

The authors give the data for the binodal curve and the quadruple points but tie lines, other than for the quadruple points, were not determined.

Gms. per 1	oo Gms. Homoge	neous Liquid.	Gms. per 10	oo Gms. Homoge	neous Liquid.
K ₂ CO ₂ .	СН₃ОН.	H ₂ O.	K ₂ CO ₃ .	CH₄OH.	H ₆ O.
6.32	75.85	17.83*	21.61	33 · 43	44.96
6.91	63.13	29.97	23.15	31.26	45.60
8.07	59. 26	32.67	28.25	23.82	47.94
10.17	52.64	35-33	30.72	20.57	48.71
12.03	49.97	37.99	32.92	17.27	49.80
14.24	45.74	40.02	40.65	9.26	50.09
16.48	41.76	41.76	43.95	6.96	49.09
18.89	37.76	43.36	45.89	6.42	47.69
•			49.05	6. r	44.88†
	• Upr	er quad. point.	† Lower quad	l. point.	

The following results for the solubility of K₂CO₃ in concentrations of aq. CH₂OH above and below those yielding liquid layers are also given.

Gms. 1	per 100 Gms. Sat. Sol.	Gms. per 100 Gms. Sat. Sol.		
CH ₂ OH.	K ₂ CO ₂ .	Снон.	K,CO,	
1.03	51.39	85	2.05	
2.22	50.33	89.2	1.56	
6. I	49.05 (Lower quad. pt.)	91	1.98	
Two Liquid La	yers Formed Here.	93.6	2.72	
75.85	6.32 (Upper quad pt).	94 · 3	5.7 (Abs. CH ₄ OH).	

Data for the binodal curves for this system at 17° and at 35° are given by de Bruyn (1900).

This author also gives the following data for the composition of the conjugated liquids in equilibrium with solid potassium carbonate (quadruple points) at various temperatures.

t°.	Gms per	Gms per 100 Gms. Upper Layer.			Gms. per 100 Gms. Lower Layer.	
	K ₂ CO ₂ .	СН,ОН.	H _r O.	K ₂ CO ₃ .	СН•ОН.	H₂O.
-30	21.7	42.2	36. I	• • •		• • •
-20	13.8	52. I	34. I	• • •		
-20	12.4			44.2	8.2	47.6
0	7.6	66.3	26. I	46.3	6.7	47
0	7.4			46.6	6.6	46.8
+17	6.2	69.6	24.2	48.3	5.7	46
35	5	72.9	22.I	51	4.3	44.7

EQUILIBRIUM IN THE SYSTEM POTASSIUM CARBONATE, NORMAL PROPYL ALCOHOL AND WATER AT 22°-26°. (Frankforter and Frary, 1913.)

The authors give the data for the binodal curve and the quadruple points but tie lines were not located.

Gms. per 1	oo Gms. Homogen	eous Liquid.	Gms. per 10	o Gms. Homogen	eous Liquid.
K ₂ CO ₂ .	C,H,OH.	H _e O.	K ₄ CO ₃ .	C₀H₁OH.	H ₀ .
52.9	0.02	47.08*	7 · 45	9.30	83.25
46.98	0.12	52.91	5.97	11.07	82.96
39	0.20	60.80	4.73	12.71	82.56
34.58	0.20	65.15	3.86	14.60	81.54
30.43	0.45	69.12	3.11	17.17	79.7I
26.51	0.78	72.7I	2.42	24.71	72.87
22.81	1.32	75.87	1.91	34.90	63.19
19.08	2.31	78.62	1.71	39	59.29
16.35	3.24	80.41	1.33	45.57	53.09
13.47	4.41	82.12	0.948	51.56	47.49
10.99	6.24	82.77	0.387	64.20	35.4I
8.55	8.31	83.14	0.017	95.83	4.153†
٠.		uad. point.	† Upper quae		

EQUILIBRIUM IN THE SYSTEM POTASSIUM CARBONATE, ISOPROPYL ALCOHOL AND WATER AT 20°. (Frankforter and Temple, 1915.)

Note. — The results for the binodal curve in this and the following system are reported in terms of gms. per 100 gms. solvent (water + alcohol) instead of gms. per 100 gms. of homogeneous liquid (K_4CO_4 + water + alcohol.)

Gms. per 100 Gms. Alcohol + Water. Gms. per 100 Gms. Alcohol + Water.

K ₂ CO ₃ .	Alcohol.	Water.	K ₂ CO ₂ .	Alcohol.	Water.
44.844	2.911	97.089	15.021	19.445	80.555
3 6.137	4.783	95.217	13.244	23.919	76.081
28.879	7.349	92.651	6.065	45 - 397	54.603
24.152	9.159	90.841	3.933	53.265	46.735
17.665	14.395	85.605	2.954	57 - 294	42.706

EQUILIBRIUM IN THE SYSTEM POTASSIUM CARBONATE, ALLYL ALCOHOL AND WATER AT 20°.

(Frankforter and Temple, 1915.)

Gms. per 100 Gms. Alcohol + Water.			Gms. per	100 Gms. Alcoho	ol + Water.
K ₂ CO ₃ . 47 · 746	Alcohol. 2.103	Water. 97.897	K ₂ CO ₂ . 8.230	Alcohol.	Water. 69.323
33.200	5.267	94 - 733	5.521	39 - 337	60.663
23.486	9.309	90.691	2.020	54.487	45.513
16.354	15.037	84.963	1.015	62.610	37.390
11.331	22.454	77 . 546	0.0853	81.228	18.772

EQUILIBRIUM IN THE SYSTEM POTASSIUM CARBONATE, ACETONE, WATER AT 20°. (See also Acetone, p. 13). (Frankforter and Cohen, 1914.)

The binodal curve was very carefully determined and, in addition, data for the quadruple points (solid K_1CO_2) and five tie lines were located. These data were plotted and the following interpolated values for the conjugated liquids read from the curve.

Gms. p	Gms. per 100 Gms. Upper Layer.			Gms. per 100 Gms. Lower Layer.			
K ₂ CO ₃ . 0.0024	(CH ₂) ₂ CO. Q6.4	H ₂ O. 3 · 5+†	K ₂ CO ₃ .	(CH _s) ₂ CO. trace	H ₂ O.		
0.039	64	35.96	52.4 32.63	1.2	47.6† 66.17		
0.712	55.3	43.99	24.4	3.7	71.9		
1.36	48.5	50.14	22.91	4.7	72.39		
4.57	34	61.43	16.92	10.2	72.88		
6.97	27.5	65.53	14.77	13	72.23		
10.5	20	69.5 *	10.5	20	69.5		
		Plait point.	† Quad. poir	nts.	, ,		

EQUILIBRIUM IN THE SYSTEM POTASSIUM CARBONATE, POTASSIUM DIPROPYL MALONATE AND WATER AT 25°. (M'David, 1909-10.)

A series of mixtures of $K_2CO_3 + KC_{11}H_{10}O_4 + H_2O$ were prepared and thoroughly mixed. They were placed in a thermostat at 25° and the two layers which separated in each case, were analyzed.

Gms. p	per 100 Gms. Upper	r Layer.	Gms. per 100 Gms. Lower Layer.			
K ₂ CO ₃ . KC ₁₁ H ₁₉ O ₄ .		н.о.	K ₂ CO ₃ .	KC11H12O4.	н,о.	
4.05	65.I	30.85	42.6	0.4	57	
4.9	59.8	35 · 3	40.7	0.4	58.9	
5.6	53 · 5	40.9	35	0.5	64.5	
7.2	50.5	42.3	33 · 5	0.9	65.6	
8.7	39.2	52.I	28.9	0.7	70.4	
II	34.6	54 • 4	26.8	0.8	72.4	
14.5	23.5	62	24.8	3	72.2	
17	18.6	64.4	23.I	6.05	70.85	
18.6	15	66.4	21.7	8.7	69.6	

Several determinations at 2° and at 56° are also given.

Several determinations at 2 and at 30 and at 30 are 100 cc. anhydrous hydrazine dissolve I gm. K₂CO₂ at room temp.

(Welsh and Broderson, 1915.) 100 gms. aqueous solution simultaneously sat. with K2CO3 and cane sugar at

31.25° contain 22.24 gms. K₂CO₃ and 56 gms. sugar. (Köhler, 1897.) Freezing-point data for mixtures of K₂CO₃ + KCl and K₂CO₃ + NaCl (Sackur, 1911-12). K₂CO₃ + K₂SO₄ (Amadori, 1912; Le Chatelier, 1894); K₂CO₃ + Na₂CO₃ (Le Chatelier, 1894). (Le Chatelier, 1894.)

POTASSIUM Sodium CARBONATE K₂CO₂.Na₂CO₂.12H₂O.

SOLUBILITY IN WATER AT 25°. (Osaka, 1910-11.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100	Gms. Sat. Sol	Solid Phase.	
K ₂ CO ₂ .	Na ₂ CO ₃ .	Soud Phase.	K ₂ CO ₃ .	Na ₂ CO ₃ .	Solid Limber	
52.83	•	K ₂ CO ₃ .2H ₂ O	25.2	14. I	K ₂ CO ₃ .Na ₂ CO ₃ .12H ₆ O	
52	I	44	22.4	16.6	"	
50.7	2.6	44	19.8	18.7	4	
49.I	4.6	" +K2CO3.Na2CO3.12H2C	19.1	19.7	"	
49	4.6	K ₂ CO ₃ .Na ₂ CO ₃ .12H ₂ O	15.1	23.2	" +Na ₂ CO ₃ .10H ₂ O	
46.5	4.3	• •	14.5	22.8	Na_2CO_3 . 10 H_2O	
46.2	5.2	"	10.8	22.7	"	
4 I	6.3	44	10.7	22.4	"	
37 · 7	7	u	4.7	21.9	4	
31	10.5	"	Ο.	22.71	"	

The previous determinations of Kremann and Zitek (1909), agree in general with the above, but these authors report that the double salt contains 6H₂O instead of 12H2O.

100 gms. H₂O dissolve 184 gms. potassium sodium carbonate at 15° (d = 1.366). (Stolba, 1865.)

POTASSIUM URANYL CARBONATE 2K2CO2.(UO2)CO3.

100 gms. H₂O dissolve 7.4 gms. salt at 15°.

(Ebelmen, 1852.)

POTASSIUM CHLORATE KCIO.

SOLUBILITY IN WATER.

Average curve from results of Carlson (1910), Calzolari (1912), and Tschugueff and Chlopin (1914).

t°.	d of Sat. Sol.	Gms. KClO ₁ per 100 Gms. H ₂ O.	t°.	d of Sat. Sol.	Gms. KClO, per 100 Gms. H ₂ O.
0	1.021	3.3	40	1.073	14
10	• • •	5	50		19.3
15		6. 1	60	1.115	24.5
20	1.045	7.4	80	1.165	38.5
25		7·4 8.8	100	1.219	57
30	• • •	10.5	104 b. pt.	1.230	57 60

For previous results in good agreement with the above, see next page.

POTASSIUM CHLORATE KClO₃. (See also previous page.)

SOLUBILITY IN WATER.

(Gay-Lussac, 1819; Pawlewski, 1899; above 100°, Tilden and Shenstone, 1881; see also Blares, 1891; Etard, 1894; at 99°, Köhler, 1879.)

5°. .	Gms. K	Gms. KClO ₃ per 100 Gms.			Gms. KClO ₃ per 100 Gms.		
6	Solution.	Wa	ter.	t°.	Solution.	W	ter.
0	3.04	3.14	3.3*	70	22.55	29.16	32.5*
IO	4.27	4.45	5.0	80	26.97	36.93	39.6
20	6.76	7.22	7 · I	90	31 . 36	46.11	47 · 5
25	7 . 56	8.17	8.6	100	35.83	55·5 4	56.o
30	8.46	9.26	10.1	120	42 · 4	73 · 7	73 · 7
40	11.75	13.31	14.5	136	49 · 7	98.5	99.0
50	15.18	17.95	19.7	190	64.6	183.0	183.0
60	18.97	23.42	26.0	330	96.7	2930.00	• • •

* Gay Lussac.

100 gms. H₂O dissolve 5.06 gms. KClO₂ at 10°. (Roozeboom, 1891.) One liter of H₂O dissolves 65.5 gms. KClO₂ at about 20°. (Konowalow, 1899b.) One liter of 5.2% NH₂ solution dissolves 52.5 gms. KClO₂ at about 20°. "

SOLUBILITY OF POTASSIUM CHLORATE IN AQUEOUS SOLUTIONS OF POTASSIUM HYDROXIDE, HYDROGEN PEROXIDE, AND MIXTURES OF THE TWO AT 25°.

(Calvert, 1901.)

The mixtures were agitated by means of a stream of air. Equilibrium was approached both from above and below 25°.

c	omposition (of Solven	t.		Mols. KClO ₈ Dissolved per Liter of Sat. Sol.	Gms. KClO ₃ Dissolved per Liter of Sat. Sol.
Water alone					0.675	82.71
Aqueous o. 125 n	KOH				0.625	76.60
" 0.25 n	" .			•	0.573	70.23
$Aq. H_2O_2$	containing	g 1.26	mols. H ₂ O ₂	per L	0.730	89.45
• "	"	1.31	"	- "	0.737	90.33
Aq. 0.25 n KOH	"	0.015	46	"	0.578	70.82
• ""	"	0.276	. "	"	0.584	71.57
u	"	0.954	. "	"	0.616	75.50
"	"	1.073		"	0.673	82.47

SOLUBILITY OF POTASSIUM CHLORATE IN AQUEOUS SOLUTIONS OF POTASSIUM BROMIDE AT 13°. (Blarez, 1911.)

Gms. per 100 Gms. Solution.		Gms. po Sol	r 100 Gms. ution.	Gms. per 100 Gms. Solution.		
KBr.	KClO ₃ .	KBr.	KClO ₃ .	KBr.	KClO ₃	
0.20	5.18	1.0	5.04	6.0	3.46	
0.60	5.20	2.0	4.60	8.0	2.80	
o.8	5.06	3.0	4.2	10.0	2.40	
	-	4.0	4.0			

Solubility of Potassium Chlorate in Aqueous Solutions of Other Potassium Salts at 14°-15°. (Blarez, 1911.)

Salt.	Gms. per 100 Gms. Solution.		Salt.	Gms. per 100 Gms. Solution.		
	K Salt.	KClO ₃ .	38 11. ~	K Salt.	KClO ₃ .	
KOH	1.43	4 · 47	KNO ₃	2.59	4.51	
KCl	1.91	4.45	"	5.18	3.88	
	3.82	3 · 58	K ₂ SO ₄	2.23	4.71	
KBr	3.05	4 · 49	"	4 - 46	3.9 8	
"	6.10	3.6o	$K_2C_2O_4$	2.42	4.72	
KI "	4.25	4.59	, - "	4.85	3·9 3	
••	8.51	3.65				

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AT 20°.

(Winteler	— z.	Electrochem.	7,	360,	,∞∙)	

Sp. Gr. of Solutions.	Grams	per Liter.	Sp. Gr. of Solutions.	Grams per Liter.	
Solutions.	KCI.	KClO ₃ .	Solutions.	KCl.	KClO ₂ .
1.050	•	71.1	1.098	120	24.5
1.050	10	58.o	1.108	140	22.5
1.050	20	49.0	1.119	160	21.0
1.054	40	39 - 5	1.130	180	20.0
1.064	60	34.0	I.140	200	20.0
1.075	8o	30.0	1.168	250	20.0
1 .086	100	27.0			

SOLUBILITY OF POTASSIUM CHLORATE IN AQUEOUS SOLUTIONS OF POTASSIUM NITRATE.

(Arrhenius - Z. physik. Chem. 11, 397, '93.)

Results at 19.85°.

Results at 23.87°.

Mols. per Liter.		Grams p	Grams per Liter.		er Liter.	Grams per Liter.	
KNO3.	KClO ₃ .	KNO3.	KClO ₈	KNO3.	KClO ₈	KNO3.	KClO ₂
0.0	0.570	0.0	69.88	0.0	0.645	0.0	79.0 9
0.125	0.529	12.65	64.86	0.5	0.515	50.59	63.14
0.25	0.492	25.29	6o.33				
1.0	0.374	101.19	45 . 85				
2.0	0.328	202.38	40.22				

SOLUBILITY OF POTASSIUM CHLORATE: (Taylor, 1897; see also Gerardin, 1865.)

In Aqueous Alcohol.

In Aqueous Acetone.

Wt.per or Alcohol of of Acetor	Gms. I	t 30°. KClO3 per Gms.	At Gms. K(At . Gms. KC	lO ₃ per	At 46 Gms. KC	lO ₃ per Sms.
in Solven	t. Solution	. Water.	Solution.	Water.	Solution.	Water.	Solution.	Water.
0	9.23	10.17	12.23	13.93	9.23	10.17	12.23	13.93
5.	7 . 72	8 80	10.48	12.33	8.32	9.56	11.10	13.11
10	6.44	7.65	8.84	10.77	7.63*	9.09	10.28*	12.60
20	4.51	5.90	6.40	8.56	6.09	8.10	8.27	11.26
30	3.21	4.74	4.67	7.00	4.93	7 - 40	6.69	10.24
40	2.35	4.00	3.41	5.88	3.90	6.76	5.36	9 · 45
50	1.64	3 · 33	2.41	4.94	2.90	5.98	4.03	8.40
60	1.01	2.53	I.4I	3.69	2.03	5.17	2 .86	7 · 35
70	0.54	1.82	0.78	2.63	1.24	4.18	1.68	5.68
8o	0.24	I.22	0.34	1.73	0.57	2.88	0.79	3.97
90	0.06	0.62	0.12	1.17	0.18	1.82	0.24	2 . 45
•			* Solvent, o.	oo Wt. ner e	ent Acetone			

100 gms. sat. solution of KClO₃ in glycol contain 0.9 gms. KClO₃. (de Coninck, 1905.)

SOLUBILITY OF POTASSIUM CHLORATE IN AQUEOUS SOLUTIONS OF VARIOUS COMPOUNDS AT 25°. (Rothmund, 1910.)

Aqueous o.5 Normal Solution of:	KClO ₂ pe	r Liter.	Aqueous o.5 Normal Solution of:	KClO ₂ per Liter.	
Solution of:	Mols.	Gms.	Solution of:	Mols.	Gms.
Water alone	0.1475	20.44	Ammonia	0. 1474	20.43
Methyl Alcohol	Q. 1402	19.43	Dimethylamine	0.1342	18.60
Ethyl Alcohol	0. 1356	18.75	Pyridine	0. 1410	19.54
Propyl Alcohol	0.1343	18.61	Urethan	0.1400	19.40
Tertiary Amyl Alcohol	0.1279	17.72	Formamide	0.1539	21.32
Acetone	0. 1451	20. I I	Acetamide	0. 1447	20.05
Ether	0. 1336	18.51	Acetic Acid	0. 1462	20.26
Glycol	0. 1416	19.62	Phenol	0. 1362	18.87
Glycerol	0.1404	19.45	Methylal	0.1400	19.40
Urea	0.1510	20.92	Methyl Acetate	0. 1429	19.80

100 gms. glycerol ($d_{16} = 1.256$) dissolve 3.54 gms. KClO₂ at 15–16°. (Ossendowski, 1907.)

POTASSIUM PerCHLORATE KCIO4.

SOLUBILITY IN WATER.

(Average curve from results of Noyes and Sammet (1903); Carlson (1910); Rosenheim and Weinhaber (1910-11); Calzolari (1912); Thin and Cumming (1915).

t°.	d of Sat. Sol.	Gms. KClO ₄ per 200 Gms. H ₂ O.	t°.	d of Sat. Sol.	Gms. KClO ₄ per 100 Gms. Sat. Sol.
0	1.007	0.75	50		6.5
10	• • •	1.05	60	1.033	9
20	1.011	1.80	70		11.8
· 2 5	1.012	2.08	80	1.053	14.8
30		2.6	90		18
40	I.022	4.4	100	1.067	21.8

SOLUBILITY OF POTASSIUM PERCHLORATE IN AQUEOUS AND IN ALCOHOLIC Solutions of Perchloric Acid at 25.2°. (Thin and Cumming, 1915.)

In Aq. HClO	4 Solutions.	In Alcoholic HClO	4 Solutions.			
Normality of Aq. HClO ₄ .	Gms. KClO ₄ per 100 Gms. Sat. Sol.	Aqueous Solvent.	Gms. KClO ₄ per 100 Gms. Sat. Sol.			
o (= water)	2.085	93.5% Alcohol	0.051			
0.01	1.999	" +o.2% H	[ClO ₄ * 0.0175			
0.10	1.485	98.8% Alcohol + "	0.010			
I	0.527	" $+2\%$ HC	ClO4* 0.028			
* The HClO4 was added as aq. 20% HClO4 solution hence the concentration of the alcohol was decreased.						

SOLUBILITY OF POTASSIUM PERCHLORATE IN AQ. KCl AND AQ. K₂SO₄ SOLUTIONS AT 25°. (Noyes and Boggs, 1911.)

In	Aq. K	C1 Solutio	ns.			In Aq. K ₂ SO ₄	Solutions.
Gms.	per 100.2	cc. Sat. Sol		f 100.2 cc.	Gms. per 1	00.2 cc. Sat. Sol.	Wt. of 100.2 oc.
KC		KCl.	of :	Solution.	KClO ₄ .	K ₂ SO ₄ .	of Solution.
2.0	566	0			2.0566	• •	• • •
1.78	800	0.3715	10	OI . 42	1.8262	1002	101.47
1.5	597	0.7421	10	OI .45	1.6396	0.8665	101.55
100 gm	s. 51.2 `	Vol. % Ac]. C₂H₅ O	H(d=0.9)	319) dissol	ve 0.754 gm. 1	KClO4 at 25.2°. d Cumming, 1915.)
44	93.5	"	**	(d=0.8)	219) "	0.051 gm. l	KClO ₄ at 25.2°. d Cumming, 1915.)
"	98.8	"	"	(d = 0.79)	998) "	0.019 gm. I	KClO ₄ at 25.2°.
"	90 ¹	Wt. % Aq	ı. C₂H₄OI	H	"	0.036 gm. I	d Cumming, 1915.) CClO ₄ at 25.2°.
44	97-2	**	44		44	0.0156 gm. I	(Wenze, 1891.) (ClO ₄ at 25.2°. (Wenze, 1891.)

POTASSIUM CHLORIDE KCI.

SOLUBILITY IN WATER.

(Average curve from the results of Meusser — Z. anorg. Chem. 44, 70, '05; at 31.25°, Köhler — Z. Ver. Zuckerind. 47, 447, '97; Andrae — J. pr. Chem. [2] 29, 456, '84; Gerardin — Ann. chim. phys. [4] 5, 137, '65; de Coppet Ibid. [5] 30, 411, '83; Etard Ibid. [7] 2, 526, '94; Mulder; above 100°, Tilden and Shenstone — Proc. Roy. Soc. (Lond.) 35, 345, '83.)

e G	ms. KCl p	er 100 Gms.	G	ms. KCl pe	r 100 Gms.			er 100 Gms.
	Solution.	Water.		Solution.	Water.		Solution.	Water.
-9	19.3	23.9	40	28.6	40.0	147	41.5	70.8
-4.5	20.6	25.9	50	29.9	42.6	180	43 · 7	77 · 5
o	21.6	27.6	60	31.3	45.5		Solid P	hase Ice
5	22.7	29.3	70	32.6	48.3	-9	19.3	23.9
10	23 7	31.0	80	33.8	51.1	- 8.	17 . 7	21.5
15	24.5	32.4	90	35 · I	54.0	-8	16.7	20.0
20	25 -4	34.0	100	36.2	56.7	-7	14.9	17.5
25	26.2	35 · 5	130	39.8	66.0	-6	13.6	15.7
30	27 . I	37 ∙0				-5.5	12.5	14.3

Sp. Gr. of solution sat. at o = 01.150; at $15^0 = 1.172$.

The following determinations of the solubility of potassium chloride in water, made with exceptional care, are reported by Berkeley (1904).

t*.	d of Sat. Sol.	Gms. KCl per 100 Gms. H ₂ O.	ť.	d of Sat. Sol.	Gms. KCl per 100 Gms. H ₂ O,
0.70	1.1540	28.29	74.80	1.2032	49.58
19.55	1.1738	34 · 37	89.45	1.2069	53.38
32.80	1 . 1839	38.32	108 (b. pt.)	1.2118	58.11
59.85	1.1080	45.84	-		-

100 gms. H₂O dissolve 36.12 gms. KCl at 25°. (Amadori and Pampanini, 1911.) F.-pt. data for aq. KCl solutions are given by Roloff (1895).

Data for equilibrium in the system potassium chloride, arsenic trioxide and water at 30° are given by Schreinemakers and de Baat (1915).

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF HYDRO-CHLORIC ACID AT 0° AND AT 25°.

(Armstrong, Eyre, Hussey and Paddinson, 1907; Armstrong and Eyre, 1910-11.)

Solvent,	Gms. KCl per 10	o Gms. Sat. Sol.
Solvent, Gms. HCl per 1000 Gms. H ₂ O.	At o.	At 25°.
0	22.11	26.45
9.11	20.93	25.17
18.22	19.71	24.07
36.45	17.26	21.74
109.35	• • •	13.47
182.25	•••	6.93

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROBROMIC ACID AND OF HYDROCHLORIC ACID AT 25°. (Herz, 1911-12.)

In Aq. HCl.

In Aq. HBr.

Millimols per 10 cc. Millimols per 10 cc.
HCl. KCl. Gms. per Liter. Gms. per Liter. KCl. HBr. KCl. HBr. KCl. HCl. 318.5 5.66 37.49 20.64 279.6 42.72 281.9 252 6.6137.80 53.5 10.20 33.79 37.19 146 34.15 19.57 276.4 28.68 57.98 213.9 15.91 20.94 76.35 146.6 24.74 118.6 32.52 17.39 120.6

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AT 0°.

Milligram Mols.	per 10 cc.	Grams per 10	o cc. Solution.	Sp. Gr. of Solutions.
KCl.	HCl.	KCI.	HCI.	Solutions.
34 · 5	0.0	25 · 73	0.0	1.159
30.41	3.9	22.69	I.42	1.152
27 · 95	6.6	20.84	2.41	1.150
27 · 5	7.I	20.51	2.59	1.147
2 3 · 75	11.1	17.71	4.05	1.137
16.0	23.0	11.93	8.39	I.III
30.0	34.0	7 . 46	12.40	1.105
7 ·5	41.0	5.60	14.95	1.105
2.0	65.5	1.49	23.88	I.12I
2.4	148.8 (sat.)	1.52	54.26	I . 224

100 cc. saturated HCl solution dissolve 1.9 gms. KCl at 17°. (Ditte, 1881.) 100 gms. sat. aq. HCl solution dissolve 1.9 gms. KCl at 20°. (Stoltzenberg, 1912.) F.-pt. data for mixtures of KCl and HCl are given by Dernby (1918).

SOLUBILITY OF MIXTURES OF POTASSIUM CHLORIDE AND OF SODIUM CHLORIDE IN AQUEOUS HYDROCHLORIC ACID SOLUTIONS AT 25°. (Hicks, 1915.)

	Gms. per	100 Gms.	Sat.	Solutions.
--	----------	----------	------	------------

HCl.	NaCl.	KCl.
0	19.95	10.90
8.61	10.65	7.58
17.16	3.56	3.80
20.65	2.03	2.86
32.78	0.18	1.27

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS MAGNESIUM CHLORIDE SOLUTIONS.

(Precht and Wittgen - Ber. 14, 1667, '81.)

Grams KCl per 100 Grams Sat. Solution in:

t°.	MgCl ₂ .	15% MgCl ₂ .	21.2% MgCl ₂ .	³°% MgCl₂.	20% MgCl ₂ .
IO	14.3	9.9	5 · 3	1.9	4.2 KCl+5.7 NaC
20	15.9	11.3	6.5	2.6	6.0 " +5.9 "
30	17.5	12.7	7.6	3 · 4	6.9 " +6.0 "
40	19.0	14.2	8.8	4.2	7.9 " +6.1 "
50	20.5	15.6	10.0	5.0	8.9 " +6.3 "
60	21.9	17.0	11.2	5.8	9.9 " +6.4 "
80	24.5	19.5	13.6	7.3	10.9 " +6.6 "
90	25.8	20.8	14.7	8.1	11.9 " +6.7 "
100	27.1	22 · I	15.9	8.9	13.0 " +6.9 "

More recent data on the solubility of potassium chloride in aqueous solutions of magnesium chloride are given by Feit and Przibylla (1909).

Solubility of Mixtures of Potassium Chloride and Potassium Bromide at 25°.

(Fock, 1897.)

Grams per Liter Solution.		Milligra per l	Milligram Mols. per Liter.		Sp. Gr. of Solutions.	Mol. per cent KCl in
KBr.	KCl.	KBr.	KCl.	Solution.	_	Solid Phase.
558.1	0.00	4686.2	0.0	0.0	1.3756	0.00
531.5	23 - 44	4462.7	314.2	6.16	1.3700	0.00
503.6	46.57	4228.5	624.3	12.86	1 . 3648	8.23
454.6	82.62	3817.8	0.8011	22.49	1.3544	15.68
379.6	136.6	3188.1	1830.7	36.48	1.3320	3 3.66
324.8	166.9	2727.6	2237 -4	45.06	1.3119	63.51
218.0	213.9	1830.2	2868.o	60.30	1.2689	82.29
140.7	250.9	1181.1	3363.9	74.0I	1.2455	88.04
47 - 5	291.7	398.8	3911.4	85.22	1.1977	96.98
0.0	311.3	0.0	4173 · I	100.00	1.1756	100.00

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUBOUS POTASSIUM HYDROXIDE SOLUTIONS.

(Engel - Bull. soc. chim. [3] 6, 16, '91; Winteler - Z. Electrochem. 7, 360, '00.)

	Re	esults at ((Engel.)	Results at 20°. (Winteler.)				
Mg. Mo 10 cc. S KCl.	ls. per olution KOH.	Sp. Gr. of Solution.	Gms. po Solu KCl.	KOH.	Gms. po Solv KCl.	KOH.	Sp. Gr. of Solution.
35.5	0	1.159	26.83	0.0	29.3	1.0	1.185
31.0	2.375	1.146	23.44	1.33	2I . I	10.0	1.210
28.3	4.7	1.153	21.39	2.64	14.8	20.0	1.245
23.0	9.9	1.172	17.39	5.56	10.4	30.0	1.295
18.38	15 1	1.195	13.89	8.46	6.8	40.0	1.345
14.43	20.0	1.216	10.91	11.23	4.0	50.0	1.397
11.43	24.63	1.239	8.64	13.83	2.2	60.0	1.450
8.98	29.25	1.261	6.78	16.43	I .4	70.0	1.500
6.28	35.13	1.294	4.74	19.72	1.1	8o.o	1.550
		•	•	- ·	0.9	85.0	1.580

Solubility of Mixtures of Potassium Chloride and Potassium Iodide in Water.

(Etard - Ann. chim. phys. [7] 3, 275, '94.)

t.	Grams per 100	Gms. Solution.	t°.	Grams per 100 Gms. Solution.		
٠٠.	KCl. Kl.		• •	KCl.	KI.	
0	3 · 7	50.5	100	6.2	61.0	
20	4 · 2	53.0	140	7 · 3	63.7	
40	4 · 7	55.3	180	8.3	65.5	
60	5.2	57·5	220	9.4	66. 3	
80	5 · 7	59 · 4	245	10.0	66.5	

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM IODIDE AT 25° AND VICE VERSA.

(Amadori and Pampanini, 1911.)

Gms. per 10	oo Gms. H ₂ O.	Gms. per 10	er 100 Gms. H _e O.		
KCI.	KI.	KCl.	KI.		
0	149.26	19.64	68.22		
4.06	144.03	23.75	43.89		
7.63	137.79	2 9.56	23.83		
11.36	132.60	31.38	14.83		
11.74	133.90	33.68	7		
15.10	105.91	36.1 2	0		

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM NITRATE AT 0° AND AT 25°. (Armstrong and Eyre, 1910-11.)

Solvent, Gms. KNO ₃ per 1000 Gms. H ₂ O.	Gms. KCl Dissolved per 100 Gms. Sat. Solution at:				
H _i O.	o*.	25°.			
Ø	22.IO	26.73			
25.27	21.71	26.26			
50.55	21.25	25.61			
101.11	20.70	24.58			
151.66	•••	23.57			

SOLUBILITY DATA FOR THE RECIPROCAL SALT PAIRS KCl+NaNO₃ AT 5°, 25°, 50° AND 100°. (Reinders, 1914, 1915; see also Uyeda, 1909-10.)

Results at 25°.				Result	•			
(Gms. per 100 Gms. H ₂ O.			Gı	ns. per re	o Gms. E	⋤ O.	Solid Phase in Each
NaCl.	KCl.	NaNO ₃ .	KNO ₃ .	NaCl.	KCl.	NaNO ₂ .	KNO ₂ .	Case.
36.04				36.72				NaCl
32.28	10							u
30.27	16.45			28.35	23.00			NaCl+KCl
12	26.78				42.80			KC1
	35.54		IO		41.39		24.05	"
	34.92		22.79		38.75		52.54	KC1+KNO₂
	10		31.48		• • • •		85.10	
		10	37 - 49				• • • •	"
		60	41.87					"
		100.0	46.15			134.9	90.2	KNO2+NaNO2
• • •		96.66	20			114.1	·	NaNO ₂
10		77.46						"
23.62		58.01		20.5		84.8		NaNO ₂ +NaCl
33.90		10		28.4		43.9		NaCl
24.82	22.2	15.4	• • •	34	13.4		24.3	NaCl+KCl
21.36	20	-3-4	32.0	12.7	25.4	• • •	58.6	KC1+KNO ₂
24.5	•••	61.3	17.2		-3-4	• • •		KNO ₂ +NaNO ₂
7		82.1	43.15	19.2	• • •	104.1	27.2	NaNOz+NaCl
23.8	•••	64	41.2	12.2	•••	110.7	82.2	NaCI+NaNO ₁ +KNO ₂
4.5	•••	•••	40.3	59.9	•••	6.1	70.9	NaCl+KCl+KNO
	Results	s at 5°.		F	Results	at 100°.	.	
31.50	10.4			27.3	36.2			NaCl+KCl
J-1J-	29.84	•••	10.14	-,-0	41.6	• • •	199	KC1+KNO ₁
		82.10	18.1		• • • •	233.6	218	KNO ₂ +NaNO ₂
27.6	•••	41.7	•••	19.2	•••	158	•••	NaNOz+NaCl

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM NITRATE, AND OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE, AT SEVERAL TEMPERATURES.

(Touren, 1900; Bodländer, 1891; Nicol, 1891; Soch, 1898.)

KCl in Aq. KNO₂ Solutions at:

14.5° (T.).		25.2°	(T.).	20°, etc. (N.).		
Gms. per Lit	er Solution.	Gms. per Lit	ter Solution.	olution. Gms. per 1000 Gms.		
KNO.	KCl.	KNO.	KCl.	KNO.	KCL.	
0	288.3	0	311.8	0	345.2	
20.64	284.2	13.76	306.6	56.18	342.15	
32.18	282.I	32.18	303.6	168.54	334 - 39	
62.23	276.8	91.26	293.2	at 25°	° (S)	
82.77	273.5	122.7	287.2	225.8	341.3	
115.9	270.7	141.4	284.2	at 80° (S)		
119.1	268.3	182.7	276	1175	402	
123.4	267.2	-	•			

KNO₃ in Aq. KCl Solutions at:

I4.5°. Gms. per Liter Solution.		25.:	2°.	20°. Gms. per 1000 Gms. H ₂ O.		
		Gms. per Lite	er Solution.			
KCl.	KNO ₃ .	KCl.	KNO.	KCl. KNO		
0	225.4	0	325-5	0	311.1	
13.58	219.8	19.39	312.3	82.9	256.8	
31.63	208.2	49.22	288.7	165.8	221.7	
65.64	185.2	100.7	254	248.7	202	
132.6	159.5	155.2	224.4	310.8	501.6	
164.4	153.3	207.3	203.9			
196.5	144	226.8	196.9			
236.9	137.1					

In the case of the results by Touren, constant temperature and agitation were employed.

KNO ₃ in	Aq. KCl at	20.5° (B.).	KCl in Aq. KNO ₈ at 17.5° (B.).				
Gms. per 100	cc. Solution.	Sp. Gr. of Solutions.	Gms. per 100	Sp. Gr. of Solutions.			
KCl.	KNO3.	Solutions.	KNO ₃ .	KCl.	Solutions.		
0	27 68	1.1625	0	29.39	1.1730		
4.72	24.39	1.1700	6.58	27.50	, 1.1980		
7.74	22.44	1.1765	8.88	27.34	1.2100		
12.23	20.23	1.1895	12.48	2 6.53	1.2250		
15.15	18.96	1.1983	14.83	25.98	1.2360		
19.61	17.67	1.2150	15.22	25.96	1.2390		
22.17	17.11	1.2265	15.49	25.95	I.2388		
24 .96	16.79	1.2400	15.33	26.24	1.2410		

In the case of the above results by Bodländer, a saturated aqueous solution of potassium chloride was prepared and weighed amounts of potassium nitrate were added to measured volumes of it. The mixtures were warmed and then allowed to cool to the indicated temperature and frequently shaken during 24 hours.

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM
NITRATE AND VICE VERSA.
(Leather and Mukerji, 1913.)

••	Results at 30°.				Results at 40°.			Results at 91°.		
Sp. Gr. Sat. Sol.		100 Gms. IgO. KNOs.	Sp. Gr. Sat. Sol.		100 Gms. O. KNOs.	Sp. Gr. Sat. Sol.	Gms. per H ₂ KCl.	roo Gms. O. KNO.	Solid Phase in Each Case.	
1.186	37.58	0	1.194	40.60	0	I.222	53.58	0	KC1	
1.219	36.72	8.05	1.252	39.11	16.86	1.344	47.85	52.75	"	
1.251	36.19	19.36	1.305	37.08	35.45	1.486	43.30	114.6	"	
1.281	35.42	26.83	1.319	37.49	39.71	1.552	39.90	162.9	" +KNO ₃	
1.258	28.71	29.19	1.312	32.22	41.52	1.544	33.25	165.6	KNO ₃	
1.241	19.35	32.34	1.297	22.63	46.31	1.545	15.56	181.1	"	
1.225	9.44	38.10	1.279	11.58	52.66	1.552	0	202.8	44	
-	Results are also given for 20°.									

SOLUBILITY OF MIXTURES OF POTASSIUM CHLORIDE AND SODIUM CHLORIDE IN WATER.

40	Gn	Gms. per 100 Gms. H ₂ O.			ť.	Gms. per 100 Gms. H ₂ O.			
t°.	KC	1.	NaCl.		l		KCl.		Cl.
0	11.2(1)	11.2(2)	30(1)	30(2)	50	22(1)	19(2)	27.7(1)	32.3(2)
10	12.5	12.3	29.7	30.5	60	24.6	20.6	27.2	32.8
20	14.7	13.8	29.2	31	70	27.3	32.5	26.8	34.I
25	17.1(3)	14.5	29(3)	31.3	80	31 (3)	25.2(3)	26.4(3)	34
30	17.2	15.4	28.7	31.5	90	32.9	28.4	26. I	32.3
40	19.5	17	28.2	31.9	100	34.7	32.3	25.8	30.6
	(r) Prech	and Witt	gen, 1881	; (2) Etard,	, 1897; (3) at 25° an	d at 80°, So	ch, 1898.	

NOTE. — Page and Keightly, Rudorff and also Nicol give single determinations which lie nearer the results of Precht and Wittgen than to those of Etard.

SOLUBILITY OF POTASSIUM CHLORFDE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AND VICE VERSA. (Leather and Mukerji, 1913; see also Nicol, 1891.)

Results at 20°.				Results at 40°.			Results at 91°.			
Sp. Gr. Sat. Sol.		ioo Gms. O. NaCl.	Sp. Gr. Sat. Sol-	Gms. per H KCl.	100 Gms. O. NaCl.	Sp. Gr. Sat. Sol.	H.(NaCl.	Solid Phase in Each Case.	
1.176	KCl. 34.61	Naci.	1.104	40.60	Naci.	1.222	53.58	Naci.	KCI	
1.197	26.60	10.13	1.207	31.42	10.68	1.236	45.0I	10.66	"	
1.213	19.65	20.61	1.235	24.43	20.99	1.262	35.84	22.87	"	
1.237	14.92	30.36	1.248	18.23	30.60	1.262	33.12	28.12	"	
1.240	15.36	29.61	1.242	18.74	30.32	1.264	32.45	28.26	" +NaCl	
1.233	14.76	30.38	1.247	19.13	.29.92	1.235	27.15	29.18	NaCl	
1.224	9.70	32.40	1.222	10.49	32.59	1.223	13	33.93	•	
1.193	0	35.63	1.197	0	36.53	1.189	ō	38.72	"	
	Results are also given for 30°.									

100 gms. 40 wt. per cent alcohol dissolve 5.87 gms. KCl + 12.25 gms. NaCl at 25°.
100 gms. 40 wt. per cent alcohol dissolve 5.29 gms. KNO₁ + 10.06 gms. KCl at 25°.
(Soch, 1898.)

100 gms. abs. ethyl alcohol dissolve 0.034 gm. KCl at 18.5°. 100 gms. abs. methyl alcohol dissolve 0.5 gm. KCl at 18.5°.

(de Bruyn, 1892; Rohland, 1898.)

SOLUBILITY DATA FOR THE RECIPROCAL SALT PAIRS KCl+Na₂SO₄⇒K₂SO₄+NaCl. (Meyerhoffer and Saunders, 1899.)

40	d ₂ of Mols. per 1000 h		o Mols. H	, O.	Solid Phase.	
t°.	Sat. Sol.	SO ₄ .	K4.	Nag.	Cl ₂ .	Sond Plane.
4.4*		5.42	14.39	51.83	60.8	K ₂ Na(SO _d) ₂ +KCl+NaCl
0.2		3.35	12.78	50.93	60.36	$Na_2SO_4.zoH_2O+KCI+NaCI$
- 0.4		3.59	16.38	40.75	53 - 54	$Na_2SO_4.toH_2O+KCl+K_2Na(SO_4)_2$
16		4.72	17.58	50.56	63.42	K _a Na(SO _{d)2} +KCl+NaCl
24.8	1.2484	4.37	20.02	48.36	64.01	46
16.3*	• • •	16.29	9.16	61.06	53.93	K ₂ Na(SO ₄) ₂ +NaCl+Na ₂ SO ₄ .10H ₂ O+Na ₂ SO ₄
24.5	1.2625	14.45	9.90	58.46	53.91	K ₀ Na(SO ₄) ₂ +NaCl+Na ₆ SO ₄
0.3		2.75	25.77	17.93	40.95	K ₂ Na(SO ₂) ₂ +KCl+K ₂ SO ₄
25	I.2034	2.94	36.20	14.80	48.06	
17.9*	1.2470	13.84	0	62.54	48.70	$Na_2SO_4.10H_2O+Na_2SO_4+NaCl$
30.1*	1.289	50.41	10.08	40.33	0	$K_0Na(SO_4)_2+Na_2SO_4.10H_2O+Na_2SO_4$
-	-	- •			tr. pt.	

Curves are given in the original paper and a complete discussion of the older work.

Solubility of Mixtures of Potassium Chloride and Potassium

Sulfate in Water.

t*.	KCl +	Gms. H ₂	— ()haerver.	t°.	Gms. per 100	Gms. H ₄ C	Observer.
10	30.9	1.32	(Precht & Wittgen.)	40	38.7	1.68	(P. and W.)
15.8	28	2.3	(Kopp.)	50	41.3	1.82	u
20	33 · 4	1.43	(P. and W.)	60	43.8	1.94	u
25	34.76	2.93	(Van't Hoff & Meyerhoffer.)	80	49.2	2.21	a
30	36.1		(P. and W.)	100	54 - 5	2.53	44
		olution,	sat. with both salts, co				
K ₂ SO ₄	at 30°.				(Schreinemake	rs and de	Baat, 1914.)

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF STANNOUS CHLORIDE AT 25° AND VICE VERSA. (Fujimura, 1914.)

Gms. per 100 Gms. H ₂ O.		Solid Phase.	Gms. per 100	Solid Phase.	
SnCl ₂ .	KCl.	Soud Phase.	SnCl ₂ .	KC1.	Soud Phase.
0	34.73	KCI	58.48	17.85	SnCl ₁ .KCl.H ₄ O
2.86	32.17	u	81.78	19.06	44
4.37	34.08	u	107.65	17.79	u
5.95	31.76	SnCl ₂ .2KCl.2H ₂ O	170.70	21.26	**
5.83	30.65	"	247.50	24.38	66
10.24	27.30	u	337.26	25.51	**
17.42	24.68	u	290.30	19.66	SnCl ₂ .2H ₂ O
27.88	24.40	"	235.50	7.49	"
34.28	5.99	u	222.5	2.73	u
54.19	19.45	SnCl ₂ .KCl.H ₂ O	234.05	• • •	u

SOLUBILITY OF POTASSIUM CHLORIDE IN DILUTE SOLUTIONS OF ETHYL ALCOHOL AT 0° AND AT 25°.

(Armstrong, Eyre, Hussey and Paddison, 1907; Armstrong and Eyre, 1910-11.)

Wt. % CHOH	Gms. KCl Disso	Gms. KCl Dissolved per 100 Gms. Sat. Sol. at:			
in Solvent.	o°.	25°.	Sof. Sat.		
0	22.I	26.44	1.1813		
I.I4	21.6	25.91	1.1754		
2.25	20.9	25.29	1.1689		
4.41	19.7	24.21	1.1568		
8.44	• • •	22.46	1.1357		
12.13	15.5	• • •	• • •		
18.69	• • •	17.42	1.0847		

SOLUBILITY OF POTÆSSIUM CHLORIDE IN AQUEOUS ALCOHOL. (Gerardin — Ann. chim. phys. [4] 5, 140, '65.)

Interpolated from the original results.

Grams	KCI	ner	100	Gms.	Aa.	Alcoho	J of	Sn. C	<u>.</u> .

t° .	0.9904 Wt. %.	0.9848 = 9.35 Wt. %.	0.9793 13.6 Wt. %.	0.9726 19.1 Wt. %.	0-9573 	9-939 Wt. %.	o.8967 = 60 Wt. %.	0.8244 Wt. %.
0	23 . 4	19.5	15.5	11.5	7.0	4.0	1.7	0.0
5	25.0	0.12	16.8	12.8	8.0	4.8	2.2	0.0
IO	26.4	22.5	18.0	14.0	9.0	5.6	2.7	0.0
15	26.8	24.0	19.2	15.2	10.0	6.4	3.1	0.04
20	29 · I	25.3	20.3	16.1	10.8	7.2	3.5	0.06
25	30 . 4	26.8	21.5	17.1	11.6	7.9	3.9	0.08
30	31.7	28.0	22.6	18.2	12.5	8.5	4.2	0.10
40	34 · 3	30·8	24.8	20.0	14.0	9.9	4.8	0.20
50	37.0	33 · 5	27.0	21.8	15.5	10.8	5.2	0.30
60	•••	•••	• • •	• • •	16.8	8.11	5.5	0.40

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS ALCOHOL AT:

15°. 14.5°. (Schiff — Liebig's Ann. 118, 365, '61.) (Bodländer — Z. physik. Ch. 7, 316, '91.)

Sp. Gr.	Wt.	G. KCl per	Sp. Gr.	Grams p	er 100 cc. S	olution.
of Alcohol.	per cent Alcohol.	roo g. Aq. Alcohol.	of Sat. Solutions.	Сънон.	H₂O.	KCI.
0.984	10	19.8	1.1720		88.10	29 . IO
0.972	20	14.7	1.1542	2.79	85.78	26.85
0.958	30	10.7	1.1365	4.98	84.00	24.67
0.940	40	7 · 7	1.1075	10.56	79.63	20.56
0.918	50	5.0	1.1085	15.57	75.24	17.24
0.896	60	2.8	1.0545	20.66	70.52	14.27
0.848	80	0.45	1.0455	24.25	67.05	13.25
Gerardin's	results	at 15° agree	o.9695	40.42	50 . 18	6.35
		ove deter-	0.9315	48.73	40.60	3.82
mination	s.		0.8448	68.63	15.55	0.30

30° and 40°. (Bathrick — J. Physic. Chem. 1, 160, '96.)

Wt.	Gms. KCl ;	per 100 Gms. Alcohol	Wt.	Gms. KCl per 100 Gms. Aq. Alcohol.		
per cent Alcohol.	At 30°.	At 40°.	Alcohol.	At 30°.	At 40°.	
0	38.9	41.8	43 · I	II.I	13.1	
5.28	33.9	35.9	55.9	6.8	8.2	
9.43	30.2	33 · 3	65.9	3.6	4.I	
16.9	24.9	27.6	78 · 1	1.3	1.6	
25.1	19.2	21.8	86.2	0.4	0.5	
34.I	15.6	17.2				

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUBOUS SOLUTIONS OF ETHYL ALCOHOL AT 25°. (McIntosh, 1903.)

Wt. %	Mols. KCl per Liter.	Gms. KCl per 100 cc. Sat. Sol.	Wt. % C.H.OH.	Mols. KCl per Liter.	Gms. KCl per 100 cc. Sat. Sol.
0	4.18	31.18	60	0.56	4.18
10	3.21	2 3.9 3	70	0.305	2.27
20	2.40	17.89	80	0.125	0.93
30	1.78	13.27	90	0.042	0.31
40	1.26	9.40	100	0.011	0.08
50	0.84	6.26	•		

SOLUBILITY OF POTASSIUM CHLORIDE IN DILUTE AQUEOUS SOLUTIONS OF METHYL ALCOHOL AT 0° AND AT 25°.

(Armstrong and Eyre, 1910-11.)

Wt. % CH ₂ OH in Solvent.	Gms. KCl per roo Gms. Sat. Sol. at:				
in Solvent.	o*.	25°.			
0	22.06	26.69			
0.79	21.74	26.42			
1.57	21.39	26.01			
3.10	20.61	25.25			
8.76	17.84	22.82			

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS METHYL ALCOHOL AT 25°. (Herz and Anders, 1907; McIntosh, 1903.)

Solve		d _{as} of	Gms. KCl	Solv		d _{as} of	Gms. KCl
da≱.	Wt. % CH ₂ OH.	d _{an} of Sat. Sol.	per 100 cc. Sat. Sol.	d ag a.	Wt. % CH ₂ OH.	Sat. Sol.	per 100 cc. Sat. Sol.
0.9971	0	1.1782	31.13	0.8820	64	0.9064	3.44
0.9791	10.6	1.125	24.53	0.8489	78. I	0.8607	1.54
0.9481	30.8	1.033	13.65	0.8167	98.9(?)	0.8242	0.75
0.9180	47.I	0.9679	7.61	0.7882	100	0.7937	0.43
100 gm		alcohol dis	solve 0.53	gm. KCl			Bissett, 1913.)
**	ethyl	"	" 0.022	- 11 11	11 -	44	44
44	propyl	46	" 0.004	"	"	44	ee
"	amyl	"	" 0.0008	3 " "	44	4	4

Potassium chloride is insoluble in CH₂OH at the crit. temp. (Centnerszwer, 1910.)

SOLUBILITY OF POTASSIUM CHLORIDE IN DILUTE AQUEOUS SOLUTIONS OF PROPYL ALCOHOL AT 0° AND AT 25°.

(Armstrong and Eyre, 1910-11.)

Wt. %	Gms. KCl per 100 Gms. Sat. Sol. at:					
Wt. % C ₁ H ₇ OH in Solvent.	o•.	25°.				
I	22.06	26.44				
1.48	21.25	25.94				
2.91	20.49	25.23				
5.66	18.97	23.82				

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF GLUCOSE AT 25°. (Armstrong and Eyre, 1910-11.)

Wt. % C _s H _{tr} O _s +H _r O in Aq. Solvent.	Gms. KCl per 100 Gms. Sat. Solution.
0	26.63
4.72	25.86
9	25.18
16.53	23.89
37 . 27	20.15

525

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS ACETONE SOLUTIONS.

(Snell, 1898; at 20°, Herz and Knoch, 1904.)

Wt. (see Note) Per cent Acetone in	KCl per Solut	IOO CC.	Gms. per	30°. 100 Gms. tion.	Gms. per	40°. 100 Gms. tion.	At Gms. per Solu	50°. 100 Gms. tion.
Solvent.	Millimols.	Gms.	Acetone.	KCl.	Acetone.	KCl.	Acetone.	KCl.
0	410.5	30.62	0	27.27	0	28.69	0	30
9.1	351.7	26.23	6.96	23.42	6.79	25.33		
20	286.6	21.38	16.22	18.90	15.75	21.28		
30	223.7	16.69	25.45	15.06	two la		25.67	14.42
40	166.5	12.42	35.52	11.31	"		36.03	9.93
50	115.4	8.61	45.98	8.04	"		46.46	7.07
60	71.2	5.31	56.91	5.12	"		57.37	4.38
70	38.5	2.87	68.18	2.60	"		68.56	2.22
8o	12.9	0.96	79.43	0.76	79.34	0.58	79.25	0.94
90	2	0.15	89.88	0.13	89.84	0.16	±81° s	at. sol.
100	0	0	100	o Č	100	0		

NOTE. — For the 20° results the per cent acetone in the solvent is in terms of volume instead of weight per cent, and the concentration of the second solution is 10 per cent instead of 9.1 which is the weight per cent concentration of the solvent for the corresponding results at the other temperatures.

At the Temperature 40° and for Concentrations of Acetone between 20 and 80 Per cent the Saturated Solution Separates into Two Layers Having the Following Compositions:

Upper Layer. Gms. per 100 Gms. Solution.			Lower Layer. Gms. per 100 Gms. Solution.			
55.2	31.82	12.99	28.14	69.42	2.44	
53 - 27	35.44	11.29	30 .96	65.97	3.07	
51.23	48.50	10.27	32.64	63.79	3.56	
50.34	39.88	9.77	34.07	62.01	3.92	
48.02	43.18	8.79	37 · 44	57.67	4.89	
46.49	45.34	8.17	38.68	56.17	5.25	
58.99	25.24	15.77	23.66	74.91	I.43	

100 cc. sat. solution of potassium chloride in furfurol (C₄H₂O.COH) contain 0.085 gm. KCl at 25°. (Walden, 1906.)

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF GLYCEROL AT 25°. (Herz and Knoch, 1905.)

Sp. Gr. of	Glycerol a	at 25°/4°	= 1.2555.	I	mpurity a	bout 1.5	% .
Wt. Per cent Glycerol in	KCl per Solut		Sp. Gr. of Solutions.	Wt. Per cent Glycerol in	KCl per Solut		Sp. Gr. of Solutions.
Solvent.	Millimols.	Gms.	Solutions.	Solvent.	Millimols.	Gms.	Solutions.
0	424.5	31.66	1.180	54.23	238.5	17.79	1.210
13.28	383.4	28.61	1.185	83.84	149	11.11	1.259
25.98	339.3	25.31	1.194	100	110.6	8.25	1.286
45.36	271.4	20.24	I.211				

100 gms. H₂O dissolve 246.5 gms. sugar + 44.8 gms. KCl at 31.25°, or 100 gms. of the sat. solution contain 62.28 gms. sugar + 11.33 gms. KCl. (Köhler, 1897.)

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF PYRIDINE AT 10°. (Schroeder, 1908.)

Aq. 1	Mixture.	Gms. KCl	Aq. 1	Gms. KCl	
cc. H ₆ O.	oc. Pyridine.	per 100 Gms. Sat. Sol.	oc. H ₂ O.	cc. Pyridine.	per roo Gms. Sat. Sol.
100	0	23.79	40	60	3 · 33
90	10	19.76	30	70	1.25
80	20	16.37	20	80	0.24
70	30	13.19	10	90	0.04
60	40	10.05	0	100	0
50	50	6.34			

SOLUBILITY OF POTASSIUM CHLORIDE IN DILUTE AQUEOUS SOLUTIONS OF SEVERAL COMPOUNDS AT 25°. (Armstrong and Eyre, 1913.)

Compound.	Gms. Cmpd. per 1000 Gms. H ₂ O.	Gms. KCl per 100 Gms. Sat. Sol.	Compound.	Gms. Cmpd. per 1000 Gms. H ₂ O.	Gms. KCl per 100 Gms. Sat. Sol.
Water alone		26.89	Glycol	15.51	26.43
Acetaldehyde	11.01	27.05	-66	62.05	25.26
Paraldehyde	10.11	26.42	Mannitol	45.53	24.86
Glycerol	13.01	25.58	"	136.59	24.46

100 gms. 95% formic acid dissolve 19.4 gms. KCl at 19.7°. (Aschan, 1913.)

"glycerol (d₁₅ = 1.256) " 3.72 " " " 15-16°. (Ossendowski, 1907.)

100 cc. anhydrous hydrazine " 9 " " room temp.

(Welsh and Broderson, 1915.)

100 gms. hydroxylamine " 12.3 " " " 17-18°. (de Bruyn, 1892.)

FUSION-POINT DATA (Solubilities, see footnote, p. 1) ARE GIVEN FOR THE FOLLOWING MIXTURES OF POTASSIUM CHLORIDE AND OTHER SALTS.

KCI+KI.	(Wrzesnewski, '12; Amadori & Pam-	KCI+K ₄ SO ₄ .	(Jaenecke, '12; Sackur, '11-12;
•	panini, 'rr; Ruff & Plato, '03.)		Ruff & Plato, '03.)
KCI+KF.	(Ruff and Plato, 1903.)	KCl+HgCl	(Sackur, 1913.)
KC1+KOH	. (Scarpa, 1915.)	KCl+NaCl.	(Sackur, '13; Ruff & Plato, '03.)
KC1+KCrC	4. (Sackur, '11-12; Zemcznzny, '08.)	KC1+Na ₂ SO ₄ .	(Sackur, 1913.)
KCI+KPO	. (Amadori, 1912.)	KCl+SrCl ₂ .	(Vortisch, '14; Sackur, '11-12.)
KCI+K,P.C		KCI+TICI.	(Sandonnini, 1911; 1914.)
KC1+K-PO	4.	•	

POTASSIUM CHLOROIRIDATE K.IrCl.

100 gms. H₂O dissolve 1.25 gms. of the salt at 18-20°.
100 gms. H₂O dissolve 9.18 gms. dipotassium aquopentachloroiridite, IrCl₈ (H₂O)K₂ at 19°. (Delevine. 1008.)

POTASSIUM CHROMATES K₂CrO₄, K₂Cr₂O₇, K₃Cr₂O₁₀, etc.

EQUILIBRIUM IN THE SYSTEM, POTASSIUM OXIDE, CHROMIC ACID AND WATER AT SEVERAL TEMPERATURES.
(Koppel and Blumenthal, 1907.)

Result	в at o°.	Results	at 30°.	Results	at 60°.	
Gms. per 10 Solu	o Gms. Sat. tion.	Gms. per 10 Solut		Gms. per 10 Solut	o Gms. Sat.	Solid Phase at each
K ₄ O.	CrO ₃ .	K ₂ O.	CrO ₃ .	K ₄ O.	Cr ₂ O ₃ .	Temp.
31.18		46.8	• • •	about 50		KOH.2H ₂ O
26.06	0.54	26.89	0.94	32.98	0.53	K ₄ CrO ₄
19.31	4.27	22.25	3.06	21.05	9.15	"
17.06	11.77	18.65	13.72	20.25	14.43	u
17.62	18.71	19.12	20.30	20.70	21.97	"
17.73	19.04	19.35	21	20.61	23.61	" +K4Cr4O7
10.90	11.93	15.04	16.85	14.53	20.82	K ₂ Cr ₂ O ₇
1.87	3.13	11.20	13.11	10.01	21.21	"
0.78	22.38	2.42	28.21	6.86	39.64	61
I.47	42.95	2.50	44.50	7.06	49.84	" +K ₂ Cr ₂ O ₂₀
1.25	44.52		• • •	4.06	54.73	K _a Cr _a O ₃₀
1.17	46.84	·		2	60.60	u
1.37	47.40	2.35	49.95			" $+K_8Cr_4O_{13}$
1.24	48.23	1.35	53 · 39			K ₂ Cr ₄ O ₁₃
1.16	56.93					**
0.64	61.79	0.69	62.81	I.27	65.77	" +CrO ₃
o .	61.54		62.52	• '	65.12	CrO ₈

THE CRYOHYDRATES (EUTECTICS) IN THE SYSTEM K₂O - CrO₂ - H₂O.

The points were determined by adding to a sat. solution of $K_2Cr_2O_7$ successive 1 to 2 gm. portions of chromic acid and ascertaining the freezing-point and composition of the solution. At the point of appearance of a new solid phase an additional amount of chromic acid does not change the f.-pt. since the added CrO2 goes into the solid phase. This relation also holds at the points where the solution is simultaneously saturated with $K_2Cr_2O_7$ and $K_2Cr_2O_{10}$ or $K_2Cr_2O_{10}$ and $K_3Cr_4O_{12}$.

t° of Equi- librium of Sat. Sol.	Gms. per Sat. S	100 Gms. olution.	Solid Phase in Equilibrium with Sat. Sol.	t° of Equi- librium of Sat. Sol.	Gms. per Sat. So	roo Gms. lution.	Solid Phase in Equilibrium with Sat. Sol.
with Ice.	K₂O.	CrO ₃ .	and Ice.	with Ice.	K ₂ O.	CrO ₃ .	and Ice.
- 25	20	5.70	K ₂ CrO ₄	— 13.22	not det.	27.26	K ₂ Cr ₂ O ₇
-13	17.52	13.89	"	-14.50	"	28.85	"
-11.37		18.18	" •	-22.10	"	35.92	"
-11.50	17.18	18.11	" +K ₂ Cr ₂ O ₇	-22.11	0.47	36.14	44
-5	8.27	8. 0 1	K ₂ Cr ₂ O ₇	-26.77	0.88	39.86	a ·
- 0.63	1.38	2.93	46 ♦	-30.20	1.18	42.31	" +K2Cr3O20
-I.78	not det.	6.8r	**	-34.01	0.95	43.45	K ₂ Cr ₂ O ₃₀
-5.5	"	16.05	"	-39	0.79	45.65	" +K ₂ Cr ₄ O ₂₂
-6.43	0.48	17.25	44	-49	not det.	49.11	K ₂ Cr ₄ O ₁₂
10.25	0.45	23.63	66	-61.5	0.61	53 · 57	44

The viscosity of the solutions at the lower temperatures increased so much that the cryohydrate points could not be determined. By graphic extrapolation the cryohydrate temperature of chromic acid and of chromic acid + potassium tetrachromate is near -80° and the CrO₈ content is 59 gms. per 100 gms. sat. solution.

By interpolation from the data given in the preceding tables the following solubilities in water are obtained:

00-00		ocamica.					
THE I	CE CURVE AND	SOLUBILI	TY OF	Potassium	CHROMA	TE IN	Water.
t*.	Gms. K ₂ CrO ₄ per 100 Gms. H ₂ O.	Solid Phase.		t°.	Gms. K ₂ 0 100 Gms	CrO, per s. H ₂ O.	Solid Phase.
- 0.99	4 · 53	Ice	— I	1.35 Eute	c. 54.	54	Ice+K ₂ CrO ₄
— I.2	6.12	44		0	57 ·	II	K ₂ CrO ₄
- 4.3	26.99	66	3	0	65.	13	"
- 7.12	42.04	44	6	0	74 -	60	44
-10.35	52.41	"	10	5.8 b. pt.	88.	8	44
	ssium romate	Potassiu + Potass		hromate hromate.			ichromate richromate.
ť.	Gms. K ₂ Cr ₂ O ₇ per 100 Gms. H ₂ O.	t.	Sms. per	CrO ₈ .	t*.	S	r roo Gms. Sat
-o.63*	-	-11.5*	17.18	•	-30 *	K ₂ O. I . I	CrO ₃ . 8 42.51
o Č	4.65	o	17.73		ŏ	I.4	7 42.99
30	18.13	+30	19.35	21	+20	2.2	0 43.10
60	45.44	60	20.61	23.61	30	2.5	0 44.50
104.8	108.2	106.8	24.3	30.5	60	7.0	6 49.84
		• Eutec.		† b. pt.	114†	16.8	0 59.20
Potassi	um Trichromat	_	_		ssium Te	trachro	omate+

Tetrachromate. Gms. per 100 Gms. Sat. Sol.

Chromic Acid (CrO₂). Gms. per 100 Gms. Sat. Sol.

۲۰.	K _e O.	CrO ₂ .	t.	K ₂ O.	CrO ₃ .
-39 Eutec.	0.79	45.69	0	0.64	61.79
0	1.37	47.40	20	0.62	62.80
20	2	48.46	30	0.69	62.81
30	2.25	49.95	60	1.27	65.77
60	5.01	54.09	•		
Data for balling	. <i></i> ::-	4ha 17	$\nabla \cdot \nabla \nabla \cdot \mathbf{n}$	A data	h

Data for boiling points in the system K₂O + CrO₂.H₂O determined by means of the Beckmann apparatus, are also given.

The older data for K₂CrO₄ and K₂Cr₂O₇ are as follows:

SOLUBILITY OF EACH IN WATER.

(Alluard, 1864; Nordenskjold and Lindstrom, 1869; Etard, 1894; Kremers, 1854; Tilden and Shenstone, 1884.)

	Potas	sium Chro	Potassium	Potassium Dichromate.		
ŧ°.	Grams p	per 100 Grams	Water.	Grams per r	oo Grams Water.	
0	58.2*	59 · 3†	60.2‡	5 *	5\$	
IO	60.0	61.2	62.5	7	7	
20	61 . 7	63.2	64.5	12	12	
25	62.5	64.2	64.5	16	16	
30	63 . 4	65.2	66.5	20	20	
40	65.2	67.0	68.6	26	27	
50	66.8	69.o	70.6	34	37	
60	68.6	71.0	72.7	43	47	
70	70.4	73.0	74.8	52	5 8	
80	72.1	75.0	76.9	δı	70	
90	73.9	77.0	79.0	70	82 ·	
100	75.6	79.0	82.2	8o	97	
125	79.0		• • •	110	145	
150	83.0	• • •	•••	143	205	

· Etard. † Alluard. ‡ N. and L.

§ A., K., T. and S.

SOLUBILITY OF POTASSIUM CHROMATES IN WATER AT 30°. (Schreinemaker — Z. physik. Ch. 55, 83, '06.)

Composition in Wt. per cent of:

	Solid			
The So Per cent CrO ₂ .	olution Per cent KeO	The R. Per cent CrO ₂ .	esidue.	Phase.
O	±47	ra an a cos.		KOH.2H3O
0.0	47.16	12.59	47 · 54	K ₂ CrO ₆
0.1775	34.602	10.93	37 · 47	"
1.351	26.602	16.482	32.532	**
5.598	20.584	37.131	39.922	64
15.407	19.225	27.966	29 - 377	4
20.67	19.17	• • •	•••	K ₃ CrO ₄ + K ₃ Cr ₃ O ₇
19.096	17.30	37.64	22.61	K ₂ Cr ₂ O ₇
11.35	7.88	• • •	• • •	
17.93	3.412	25.85	7.82	• "
43.51	3.01	49 · 45	9.91	**
44.46	3 · 245	53 · 94	12.40	$K_3Cr_3O_7 + K_3Cr_3O_{30}$
46.368	2.823	60.314	12.935	K ₂ Cr ₃ O ₁₀
49 · 357	2.353	63 .044	11.684	$K_3Cr_3O_{30} + K_3Cr_4O_1$
53.215	1.360	62.958	8.002	K ₂ Cr ₄ O ₂₃
62.55	0.796	67 . 944	6.731	44
62.997	0.621	70.0	4.0	$K_2Cr_4O_{12} + CrO_8$
62.28	0.0	• • •	• • •	CrO ₃

100 gms. sat. solution in glycol, $C_2H_4(OH)_2$. H_2O , contain 1.7 gms. K_2Cr_04 at 15.4°. 100 gms. sat. solution in glycol, $C_2H_4(OH)_2$. H_2O , contain 6 gms. $K_2Cr_2O_7$ at 14.6°. (de Coninck, 1905.) 100 gms. H_2O dissolve 10.1 gms. $K_2Cr_2O_7$ at 15.5°. (Greenish and Smith, 1901.) 100 gms. sat. solution in water contain 5.52 gms. $K_2Cr_2O_7$ at 4.81°, 15.17 gms. at 30.1° and 17.77 gms. at 35.33°. (Le Blanc and Schmandt, 1911.) 100 cc. sat. aqueous solution contain 11.43 gms. $K_2Cr_2O_7$ at 20°. (Sherrill and Eaton, 1907.)

SOLUBILITY OF POTASSIUM CHROMATE IN AQUEOUS SOLUTIONS OF POTASSIUM MOLYBDATE AT 25° AND VICE VERSA.

(Amadori, 1912a.)

Gms. per re	o Gms. H ₂ O.	Gms. per 10	oo Gms. H ₂ O.	Gms. per 100 Gms. H ₂ O.	
K ₂ CrO ₄ .	K ₂ MoO ₄ .	K ₂ CrO ₄ .	K ₂ MoO ₄ .	K ₂ CrO ₄ .	K ₂ MoO ₄ .
64.62	0	14.13	98.72	4.92	165.4
49.59	I5.37	10.07	118.8	2.14	180.8
38.90	38.79	10.24	119.9	1.70	183
33.21	50.96	7.12	137.8	0	184.6
		6.37	157.2		

SOLUBILITY OF POTASSIUM CHROMATE IN AQUEOUS SOLUTIONS OF POTASSIUM SULFATE AT 25° AND VICE VERSA. (Amadori, 1912a.)

Gms. per 10	Gms. per 100 Gms. H _f O.		Gms. H ₂ O.	Gms. per 100 Gms. H ₂ O.	
K ₂ CrO ₄ .	K ₂ SO ₄ .	K ₂ CrO ₄ .	K ₂ SO ₄ .	K ₂ CrO ₄ .	K ₂ SO ₄ .
63. 0 9	0.76	40.93	3.33	7.81	8.98
61.39	1.17	27.36	4.82	4.36	10.25
58.40	1.84	20.83	5.72	1.94	10.86
51.81	2.36	14.65	7.12	0	12.10

100 cc. anhydrous hydrazine dissolve 1 gm. K_2CrO_4 at room temp. } (Welsh and Brod-100 cc. anhydrous hydrazine dissolve 1 gm. $K_2Cr_2O_7$ at room temp. } erson, 1915.)

FREEZING-POINT DATA (Solubilities, see footnote, p. 1) FOR MIXTURES OF POTASSIUM CHROMATES AND OTHER COMPOUNDS.

$K_3CrO_4 + K_3Cr_3O_7$.	(Groschuff, 1908.)
$K_2CrO_4 + K_2M_0O_4$.	(Amadori, 1913.)
$K_2Cr_2O_7 + K_2Mo_2O_7$.	4
$K_2CrO_4 + K_2SO_4$.	(Amadori, 1913; Groschuff, 1908.)
$K_2CrO_4 + K_2WO_4$.	(Amadori, 1913.)
$K_{\bullet}C_{r_{\bullet}}C_{r_{\bullet}} + K_{\bullet}W_{\bullet}C_{r_{\bullet}}$	44

POTASSIUM CITRATE (CH2)2C(OH)(COOK)3.H2O.

SOLUBILITY IN WATER.
(Average results of Seidell, 1910; Greenish and Smith, 1901; Köhler, 1897.)

ť.	Gms. (CH ₂) ₂ C(OH)(COOK) ₃ .H ₂ O per 100 Gms.				
	Sat. Solution.	Water.			
15.	61.8	162			
20	63.2	172			
25	64.5 ·	$182 (d_{25} = 1.518)$			
30	66	194			

100 gms. H_2O dissolve 198.3 gms. $(CH_2)_2COH(COOK)_3 + 303.9$ gms. cane sugar at 31.25°. (Köhler, 1897.)

SOLUBILITY OF POTASSIUM CITRATE IN AQUEOUS ETHYL ALCOHOL AT 25°. (Seidell, 1910.)

When potassium citrate is added to aqueous alcohol of certain concentrations the mixture separates into two liquid layers. A series of determinations made by adding an excess of the salt to 10–15 cc. portions of several aq. alcohol mixtures at 25° gave the following results.

Wt. % C ₄ H ₅ OH in Solvent.		d ₇₆ of Sat. Solution.	Wt. % C₂H₄OH in Sat. Solution.	Gms. (CH ₂) ₂ COH- (COOK) ₂ ,H ₂ O per 100 Gms. Sat. Solution.
8.9	$\begin{cases} a \\ b \end{cases}$	• • •		• • •
0.9	l b	1.4920	0	60
22	ζa		•••	0.2
32	(b	1.4930	ο.	61.6
	(a		65.1	0.38
51	{b			62.5
TO 0	Sa	0.8366	81	0.10
70.2	(b			62.3
81.4		0.83 56	81.4	0.038
91.6		0.8139	91.6	0.016
99.9		0.7896	99.5	0.014
		-		

a = upper, alcohol rich layer. b = lower, water rich layer.

A series of determinations was also made by adding just enough potassium citrate to the alcohol solution to cause distinct clouding and then, after bringing to 25°, titrating with the aqueous alcohol mixture to disappearance of the clouding. The results were plotted and the following interpolated values obtained.

Wt. % C ₄ H ₅ OH in Solvent.	d ₂₅ of Sat. Solution.	Gms. (CH ₂) ₂ COH- (COOK) ₃ .H ₂ O per 100 Gms. Sat. Sol.	Wt. % C.H.OH in Solvent.	d ₂₅ of Sat. Solution.	Gms.(CH ₂) ₂ COH- (COOK) ₂ H ₂ O per 100 Gms. Sat. Sol.
0	1.518	64.5	40	1.005	12.4
5	1.400	52.5	50	0.943	5.6
10	1.310	45.5	60	0.900	1.6
20	1.177	31.5	70	o.868	0.4
30	1.085	21.5	80	o.838	0.04

In one determination at 15°, made with alcohol of 59 Vol. per cent, 4.51 gms. (CH₂)₂COH(COOK)₂. H₂O were required to just cause clouding.

POTASSIUM CYANATE KCNO.

SOLUBILITY IN ALCOHOLIC MIXTURES. (Erdmann, 1893.)

Solvent.		Gms. KCNO per Liter Solvent at bpt.
80 per cent Alcohol + 20 per cent Water		62
80 per cent Alcohol + 20 per cent Methyl Alcohol		76
80 per cent Alcohol + 10 per cent Acetone	•	82

POTASSIUM CYANIDE KCN.

100 gms. H₂O dissolve 122.2 gms. KCN, or 100 gms. sat. solution contain 55 gms. KCN at 103.3 (Griffiths.)

100 gms. abs. ethyl alcohol dissolve 0.87 gm. KCN at 19.5°.

100 gms. abs. methyl alcohol dissolve 4.91 gms. KCN at 19.5°. (de Bruyn, 1892.) 100 gms. glycerol dissolve 32 gms. KCN at 15.5°. (Ossendowski, 1907.) 100 gms. hydroxylamine dissolve 41 gms. KCN at 17.5°. (de Bruyn, 1892.)

F.-pt. data for KCN + KCl, KCN + NaCN, KCN + AgCN, KCN + Cu₃ (CN)₂ and for KCN + $Zn(CN)_2$ are given by Truthe (1912).

POTASSIUM CHROMOCYANIDE K, Cr(CN).

100 gms. H₂O dissolve 32.33 gms. K₂Cr(CN)₄ at 20°. (Moissan, 1885; Christensen, 1885.)

POTASSIUM CHROMITHIOCYANATE K₂Cr(SCN)_{4.4}H₂O.

100 gms. H₂O dissolve 139 gms. salt. (Karsten, 1864-5.)

POTASSIUM CARBONYL FERROCYANIDE K, FeCO(CN), 3 H,O.

100 gms. H₂O dissolve 148 gms. salt at 16°. (Müller, 1887.)

POTASSIUM FERRICYANIDE K.Fe(CN)6.

POTASSIUM FERROCYANIDE K.Fe(CN)6.3H2O.

SOLUBILITY OF EACH IN WATER.

(Wallace, 1855; Etard, 1894; Schiff, 1860; Michel and Krafft, 1858; Thomsen.)

Note. — The available determinations fall very irregularly when plotted on cross-section paper, and the following figures, which are averages, are therefore hardly more than rough approximations to the true amounts. The figures under K₄Fe(CN)₆ show the limits between which the correct values probably lie.

	Gms. per 10	er 100 Gms. H ₂ O.			Gms. per 100 Gms. H ₂ O.		
t°.	K,Fe(CN).	K ₄ Fe	(CN) ₆ .	t°.	K _a Fe(CN) ₆ .	K ₄ Fe	(CN).
0	31	13	• • • •	40	60	38	70
10	36	20	20	60	66	52	83
20	43	25	40	80	• • •	66	89
25	46	28	48	100		76	91
30	50	32	57	104.4	82.6		

100 gms. H₂O dissolve 0.08946 gm. mols. = 32.97 gms. $K_4Fe(CN)_6$ at 25°, d_{24} of sat. sol. = 1.0908. (Harkins and Pearce, 1916.)

One liter of sat. solution in water contains 319.4 gms. K4Fe(CN)6.3H2O at 25°. Using the Harkins and Pearce figure for day, this result corresponds to 34.3 gms. K₄Fe(CN)₆ per 100 gms. H₂O.

4Fe(CN), per 100 gms. H₂U.

One liter of sat. solution in water contains 385.5 gms. K₂Fe(CN), at 25°.

(Grube, 1916.)

One liter	sat. sol.	in 0.4687 n	KOH,	contain	s:342.7 gms.	K ₂ Fe(CN)eat 25°.	(Grube, 1924.)
44	44	0.0628	"	66	302.3 "	- 41	" "	
•••	**	I.QAQ	••	•••	215.T "	•••	••	44
100 cc. anhy. hydrazine dissolve 2 gms. K ₄ Fe(CN) ₆ at room temp.								
						(W	elsh and Br	oderson, 1915.)

SOLUBILITY OF POTASSIUM FERROCYANIDE IN Aq. POTASSIUM HYDROXIDE SOLUTIONS AT 25°. (Grube, 1914.)

Solvent.	Gms. K ₄ Fe(CN) ₆ .3H ₆ (per 1000 cc. Sat. Sol.	Phase.	Solver	16.	Gms. Fe(CN) ₆₋₃ H per 1000 cc Sat. Sol.	
0.09984 n K	OH 308.5 K	Fe(CN)4.3H2O	0.94151	n KOH	184.8	K4Fe(CN)4-3H4O
0.2496 '	203.5	"	1.395	"	132.1	"
0.4963 '	247.1	"	1.883	"	86.12	"
0.7036 '	217.4	44	_			

SOLUBILITY OF MIXTURES OF POTASSIUM FERROCYANIDE AND FERRICYANIDE IN WATER AND IN AQ. POTASSIUM HYDROXIDE SOLUTIONS AT 25°. (Grube, 1914.)

Solvent.	Gms. per 1000	cc. Sat. Solution.	Solid Phase.	
Solvent.	K,Fe(CN).	K,Fe(CN)	20110	Phase.
Water	338. г	79.02	K ₄ Fe(CN) ₆ +K	Fe(CN) ₆₋₃ H ₂ O
0.4687 n KOH	309	66.64	"	"
0.9628 "	275.3	55. r 9	**	44
1.949 "	200.8	35.95	**	**

SOLUBILITY OF POTASSIUM FERROCYANIDE IN AQUEOUS SOLUTIONS OF SODIUM FERROCYANIDE AT 25° AND VICE VERSA. (Harkins and Pearce, 1916.)

Mols. per 1000	Gms. H ₂ O.	Gms. K ₄ Fe(CN) ₄	dag of	Mols. per 10	oo Gms. H ₂ O.	Gms. Na ₄ Fe(CN) ₄	d _{2.6} of
Na,Fe(CN).	K ₄ Fe(CN) ₆ . I	er 1000 Gms. H _s O.	Sat. Sol.	K ₄ Fe(CN) ₆ .	Na ₄ Fe(CN) ₆ .	Na ₄ Fe(CN) ₄ per 1000 Gms H ₂ O.	Sat. Sol.
0	0.89459	329.5	1.09081	0	0.6818	205.25	1.0595
0.05072	0.88272	325. I	1.0990	0. 1327	0.7056	214.47	1.0199
0.06633	0.88544	326	1.10039	0. 1789	0.7213	219.23	1.0792
0. 12306	0.88088	324.4	1.09350	0.2115	0.7253	220.44	1.1006
0.25972	0.89116	328.3	1.12796	0.2722	0.7610	231.29	1.1113
0.4900	0.91600	337 · 4	1.17241	0.3532	0. 7814	237.49	1.1243
0.87034	0.99000	364.6	1.19700	0.5850	0.8652	262.97	1.1567
0.91060	1.01200	372.3	1.21190	0.6111	0.8712	264.79	1.1581
0.95879	1.05177	3 ⁸ 7 · 5	1.22673	0.6994	0.8984	273.05	1.1830
1.0438	1.1159	411	1.25789	1.0578	0.9588	291.40	1.2267

POTASSIUM ZINC CYANIDE K₂Zn(CN)₄.

100 cc. H₂O dissolve 11 gms. K₂Zn(CN)₄ at 20°. (Sharwood, 1903.)

POTASSIUM FLUORIDE KF.2H2O.

100 gms. H₂O dissolve 92.3 gms. KF, or 100 gms. sat. solution contain 48 gms. KF at 18°. Sp. Gr. of solution = 1.502. (Mylius and Funk, 1897.)

SOLUBILITY OF POTASSIUM FLUORIDE IN HYDROFLUORIC ACID AT 21°.
(Ditte, 1896.)

Gms. per 100 Gms. H ₂ O.		Gms. per 100	Gms. H ₂ O.	Gms. per 100 Gms. HgC		
HF.	KF.	HF.	KF.	HF.	KF.	
0.0	96.3	9.25	29.9	20.68	38.4	
1.21	72.0	11.36	29.6	28.6o	46.9	
1.61	61 ∙0	12.50	30.5	41.98	61 ·8	
3 · 73	40 - 4	13.95	31.4	53.71	74.8	
4.03	32.5	15.98	33 · 4	74 - 20	105.0	
6.05	30.4	17.69	35.62	119.20	169.5	

According to de Forcrand (1911), a saturated solution of KF.2 H_2O in water at 18° has the composition 1 mol. KF + 3.90 mols. H_2O = 45.3 gms. per 100 gms. sat. solution. The solution in contact with KF.4 H_2O as solid phase, has the composition 1 mol. KF + 5.76 mols. H_2O = 35.96 gms. KF per 100 gms. sat. solution.

Equilibrium in the System Potassium Fluoride, Ethyl Alcohol and Water at 23°-26°.
(Frankforter and Frary, 1913.)

The authors determined the binodal curve, the quadruple points and two tie lines.

Gms.	Gms. per 100 Gms. Upper Layer.			Gms. per 100 Gms. Lower Layer.			
KF. 1.23	C ₂ H ₅ OH. 92.67	H ₂ O. 6.07*	KF. 45 · 33	C ₂ H ₂ OH. 0.67	H ₂ O. 54*		
• • •	• • •	• • •	37.82	1.70	60.49		
1.16	83.30	15.54	•••	• • •	• • •		
	• • • •	• • •	28.68	4.47	66.85		
2.86	65.81	31.33	• • •	• • •			
4.47	57 - 4	38.13	20.90	11.9	67.2†		
5.47	53.04	41.49		• • •			
• • •	• • •	• • •	18.55	15.6	65.85		
6.93	47.52	45 - 55	• • •				
8.84	41.28	49.88	15.7	21.8	62.5		
9.55	38.66	51.79					
	•••	• • •	13.57	27.27	59.15		
10.52	35.91	53 · 57		• • •			
• • •	• • •		11.43	33 · 23	54 · 34		
11	30	59	11	30	59‡		
	 Quad. points. 	† Tie line.	‡ 1	Plait point approx	•		

A method for the determination of alcohol in unknown mixtures, based upon the above data, is described by the authors.

THE BINODAL CURVE FOR THE SYSTEM POTASSIUM FLUORIDE, PROPYL ALCOHOL AND WATER AT 23°-26°. (Frankforter and Frary, 1913.)

Gms. per 100 Gms. Homogeneous Liquid.			Gms. per 1	Gms. per 100 Gms. Homogeneous Liquid.		
KF.	C.H.OH.	H ₂ O.	KF.	C₃H7OH.	H ₂ O.	
0.17	96.78	3.05₹	8.15	7 · 49	84.36	
0.31	78.91	21.19	10	5.97	84.03	
0.62	66.29	33.00	12.21	4.39	83.41	
o.81	59.97	39.22	14.18	3.45	82.37	
I.29	47.46	51.21	18.75	1.89	79.35	
1.77	35.40	62.83	25.83	0.74	73 - 43	
2.50	19.05	78.45	35.38	0.23	64.38	
5.32	10.64	84.04	47.62	0.039	52.34*	
		* Ouad, pe	oint.	•••		

One tie line was determined. In this case the upper layer contained 78.91% C₄H₇OH and 0.31% KF, and the lower layer contained 9.67% KF.

In this system, the effect of change in temperature is more marked than in the preceding one in which ethyl alcohol is present.

too gms. sat. solution of potassium fluoride in 99.6% propyl alcohol contain om. KF at room temp. (Frankforter and Frary, 1913.) 0.34 gm. KF at room temp.

BINODAL CURVE FOR THE SYSTEM POTASSIUM FLUORIDE, ISOPROPYL ALCOHOL

AND WATER AT 20°. (Frankforter and Temple, 1915.)

Results in terms of gms. per 100 gms. of solvent, alcohol + water.

Gms. per 100 Gms. Solvent.			Gms. per 100 Gms. Solvent.			
KF.	CH ₄ CHOHCH ₄ .	H ₄ O.	KF.	CH ₄ CHOHCH ₄ .	H ₄ O.	
51.826	1.555	98.445	12.385	21.438	78.562	
38.748	2.965	97.035	5.071	59.339	40.661	
26.039	6.525	93.475	3.973	65.455	34.545	
17.812	12.215	87.785	1.705	82.750	17.250	

BINODAL CURVE FOR THE SYSTEM POTASSIUM FLUORIDE, ALLYL ALCOHOL
AND WATER AT 20°.

(Frankforter and Temple, 1915.)

The results are given in terms of grams per 100 gms. Alcohol + Water instead of gms. per 100 gms. of the homogeneous mixture.

Gm	s. per 100 Gms. Solve	nt.	Gms. per 100 Gms. Solvent.			
KF.	CHe:CH.CHeOH.	H _s O.	KF.	СН4:СНСН4ОН.	H ₄ O.	
45.707	2.270	97.730	7.508	35.390	64.610	
38.076	3.983	96.017	6.024	42.011	57.989	
30.675	5.879	94.121	4.813	47 · 550	52.450	
24.341	7.129	92.871	3. 6 31	54.211	45.789	
20. 580	9.691	90.309	2.236	59.948	36.443	
17.371	11.491	88.509	1.931	65. 630	34.370	
13.184	17.764	82.236	1.635	68.845	31.155	
10.880	22.537	77.463	1.368	71.395	28.605	
8.873	29.529	70.471	1.066	75.377	24.223	

BINODAL CURVE FOR THE SYSTEM POTASSIUM FLUORIDE, ACETONE, WATER AT 20°.

(Frankforter and Cohen, 1914.)

Gms. per 100	Gms. Homogene	ous Mixture.	Gms. per 100	Gms. per 100 Gms. Homogeneous Mixtu		
KF.	(CH ₂)2CO.	H _o .	KF.	(CH ₂) ₂ CO.	H ₂ O.	
46.3	trace	53·7 *	9.17	23 - 53	67.30	
44.24	0.24	55.52	5	38.72	56. 28	
33.34	I	65.66	3.06	47.89	46.84	
29.86	1.60	68.54	1.38	58.06	40.55	
25.74	3.02	71.24	0.979	62.60	36.42	
20.28	5.90	73.80	0.75	65.41	33.84	
16.31	9.72	73.97	0.50	6 9. 5 8	29.92	
12.40	15.59	72.01	0	98	2*	
		* Ouad	l. noint.	•		

Data for 4 tie lines are also given and the approximate position of the plait point is shown on the diagram.

Several points on the binodal curves at temperatures between o° and 35° are also given.

A discussion, with examples, is given of the applicability of the above data to the determination of acetone in unknown mixtures.

BINODAL CURVE FOR THE SYSTEM POTASSIUM FLUORIDE, METHYL ETHYL KETONE AND WATER AT 20°.

(Frankforter and Cohen, 1916.)

Gms. per 10	co Gms. Homogeneo	us Mixture.	Gms. per 10	Gms. per 100 Gms. Homogeneous Mixture.			
KF.	CH ₂ .CO.C ₂ H ₄ .	H _e O.	KF.	CH4.CO.C2H4.	H₄O.		
34.38	0.17	65.45	10.50	4.87	84.63		
23.63	0.50	75.87	5.70	9.93	84.37		
18.62	1.49	79. 89	3.96	12.42	83. 61		
15.91	2.19	81.90	0.84	21.23	77.93		
13.80	2.98	83.22	0.34	23·55	76.11		

Freezing-point data (solubilities, see footnote, p. 1) for mixtures of KF + KI are given by Ruff and Plato (1903). Results for KF + K0H by Scarpa (1915). Results for KF + KPO₃, KF + K₄P₂O₇ and KF + K₄PO₄ are given by Amadori (1912). Results for KF + K₃SO₄ are given by Karandeef (1909). Results for KF + NaF are given by Kurnakow and Zemcznzny (1907).

POTASSIUM FORMATE HCOOH.

SOLUBILITY OF POTASSIUM FORMATE AND OF THE ACID SALT IN WATER. (Groschuff, 1903.)

Solid	Phase : H	COOK.	Solid Phase : HC			нсоок.н	соок.нсоон.		
ť.	Gms. HCOOK. per 100 Gms. Solution.	Mols. HCOOK per 100 Mols. H _e O.	Ğ₁ t° .	ns. HCOOK. HCOOH per 100 Gms. Solution.	- Gms. HCOOK per 100 Gms. Solution.	ť.	Gms. HCOOK per 100 Gms. Solution.	Mols. HCOOH per 1 Mol. HCOOK.	
- 20 + 18 50 90 120 140	72.8 76.8 80.7 86.8 92.0 96.0	57·4 71.0 89.8 141.0 247·0 511	o 25 50 80	60.4 69.8 79.2 90.7	39.0 45.1 51.2 58.6	0 19.5 39·3 60 70 90	36.3 38.2 40.8 44.0 45.9 52.1	3.21 2.96 2.65 2.33 2.16 1.68	

Sp. Gr. of sat. solution at $18^{\circ} = 1.573$.

NOTE. — Since the acid salt is less soluble at ordinary temperatures than the neutral salt, it can be precipitated from the solution of the neutral salt by addition of aqueous formic acid. Proceeding in this way an impure product is obtained, giving solubility values (expressed in HCOOK) as shown in the last three columns above.

POTASSIUM GERMANIUM FLUORIDE K.GeF.

SOLUBILITY IN WATER. (Winkler, 1887; Kruss and Nilson, 1887.)

100 gms. H_2O dissolve 173.98 gms. K_2GeF_6 at 18°, and 34.07 gms. at 100° (W.). 100 gms. H_2O dissolve 184.61 gms. K_2GeF_6 at 18°, and 38.76 gms. at 100° (K. and N.).

POTASSIUM HYDROXIDE KOH.

SOLUBILITY IN WATER. (Pickering, 1893; at 15°, Ferchland, 1902.)

r.	Gms. KOH per		Solid Phase.	hase. t°.		OH per Gms.	Solid Phase.	
	Water.	Solution	•		Water.	Solution.		
- 2.2	3.7	3.6	Ice	15	107	51.7	KOH.2H2O	
-20.7	22.5	18.4	u	20	112	52.8	44	
-65.2	44.5	30.8	"	30	126	55.76	66	
-36.2	36.2	26.6	KOH.4H4O	32.5	135	57 - 44	KOH.2H2O+	
-32.7	77 - 94	43.8	u	50	140	58.33	KOH.H₄O	
-33	80	44.4	KOH.4H ₂ O+KOH.2H ₂ O	100	178	64.03	KOH.H₂O	
-23.2	85	45.9	KOH.2H ₂ O	125	213	68.06	"	
ō	97	49.2	"	143	311.7	75.73	44	
IO	103	50.7	u					

Sp. Gr. of sat. solution at $15^{\circ} = 1.5355$.

100 gms. sat. solution in H₂O contain 50.48 gms. KOH at 15°.

100 gms. sat. solution in H₂O contain 53.1 gms. KOH at 15°. (de Forcrand, 1909.)

SOLUBILITY OF POTASSIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL AT 30°. (deWaal, 1910.)

Gms. per 100 Gms. Sat. Sol.			Solid Phase.	Gms.	Solid Phase.		
KOH.	С.Н.ОН.	H ₂ O.	Soud Phase.	KOH.	С,ЩОН.	H ₂ O.	Soud Phase.
55.75	0	44.25	KOH.2H2O	27.67	69.92	2.41	KOH.2H2O
54.81	0.43	44.76	**	27.20	73.01	negative*	"
Two liquid	d layers are fe	ormed here.		26.25	81.95	- "	4
31	57 . 50	11.50	KOH.2H2O				
28.99	65.07	5.94	"				
	9 NT42		- A - E A! T	ATT 1 ATT /	ATT . C TT AT	7 1 77 0	

Negative on account of reaction KOH+C₂H₆OH→C₂H₆OK+H₂O.

Data for equilibrium in the system potassium hydroxide, phenol, water at 25° are given by van Meurs (1916).

Freezing-point data for KOH + RbOH and KOH + NaOH are given by von Hevesy (1900). Results for KOH + KI are given by Scarpa (1915).

POTASSIUM IODATE KIO.

SOLUBILITY IN WATER. . (Kremers, 1856a; at 30°, Meerburg, 1904.)

t°. o° 20° 30° 40° 60° 80° 100° Gms. KIO2 per 100 gms. H₂O 4.73 8.13 11.73 12.8 18.5 24.8 32.2 100 gms. H₂O dissolve 1.3 gms. potassium hydrogen iodate, KH(IO₂)₂, at 15°, and 5.4 gms. at 17°. (Serullas.) 100 gms. H₂O dissolve 4 gms. potassium dihydrogen iodate, KH₂(IO₂)₃, at 15°. (Meineke, 1891.)

EQUILIBRIUM IN THE SYSTEM POTASSIUM IODATE, IODIC ACID, WATER AT 30°. (Meerburg, 1905.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 1 Sat. S	oo Gms. ol.	Solid Phase.	
HIO ₃ .	KIO ₂ .		HIO3.	KIO ₃ .		
0	9.51	K10³	3 · 47	3 · 59	KIO2.2HIO2 (unstable)	
0.65	9.49	" +KIO3.HIO3	4.80	2.90	"	
0.65	8.90	KIO2.HIO2	6.45	1.35	4 4	
0.67	6.6	u	9.35	0.64	KIO ₂ .2HIO ₃	
1.14	4 · 57	46	12.04	0.44	"	
1.69	3.63	"	17.50	0.30	**	
2.02	3.10	u	31.20	0.52	u	
3 · 34	2.10	46	53.64	0.68	a	
5	1.32	"	62.52	0.72	4	
7.00	I	46 -	76.40	0.80	+HIO ₂	
8.04	0.85	" +KIO2.2HIO2	76.7	0	HIO3	

100 cc. anhydrous Hydrazine dissolve 1 gm. KIO₈ at room temp.
(Welsh and Broderson, 1915.)

POTASSIUM PerIODATE KIO4.

100 gms. H₂O dissolve 0.66 gm. KIO₄ at 13°, d₂₄ of sat. solution = 1.0051.
(Barker, 1908.)

POTASSIUM IODIDE

SOLUBILITY IN WATER, DETERMINED BY THE FREEZING-POINT METHOD. (Kremann and Kershbaum, 1907.)

ť.	Gms. KI per 100 Gms. Sat. Sol.	Solid Phase.	ť,	Gms. KI per 100 Gms. Sat. Sol.	Solid Phase.
-12.5	38	Ice	-22.5	52.1	KI
-15	41.2	4	-20	52.6	44
-17.5	44.6	£4	-15	53 · 5	66
-20	48	44	-10	54 • 5	**
-22.5	51.2	**	– 5	5 5 · 4	46
-23.2 Eutec.	51.9	" +KI	o	56.4	•

POTASSIUM IODIDE KI.

SOLUBILITY IN WATER.

(Mulder; de Coppet, 1883; Etard, 1894; Meusser, 1905; see also Tilden and Shenstone, 1884; Schreinemakers, 1892.)

Gms. KI per 100 Gms.			• • •	Gms. KI per 100 Gms.		
t°.	Water.	Solution.	* & ° .	Water.	Solution.	
—10	115.1	53 · 5	80	192	65.8	
- 5	119.8	54.5	90	200	66.7	
– 1	122.2	55.0	100	208	67.5	
0	127.5	56.0	110	215	68 . 3	
10	136	57.6	120	223	69. o	
20	144	59.0		Ice Curv	•	
25	148	59 · 7		ice Cuiv	G	
30	152	6o.3	- 5	25.7	22 5	
40	160	61.5	– 7	42.6	29.9	
50	168	62.7	- 9.5	51.5	34.0	
60	176	63.7	-11.5	64 . 7	39 · 3	
70	184	64.8	-14	75.8	42 · 7	

Sp. Gr. of sat. solution at 15.2° = 1.704. (Greenish and Smith, 1901.) Individual determinations, in good agreement with the above results, are given by van Dam and Donk (1911), and by Greenish and Smith (1901).

SOLUBILITY OF POTASSIUM IODIDE + IODINE IN WATER AT 25°. (Foote and Chalker, 1908.)

Gms. per 100 Gms. Sat. Sol.		Present in	Gms. pe	Gms. per 100 Gms. Sat. Sol.			
KI.	Î.	I - KI.	Solid Phase.	KI.	I.	I - KI.	Solid Phase.
29.45	64.34	34.89) KI and	25.88	68.79	42.91	KI, and
28.91	63.88	34.97	KI,	25.57	69.01	43.44	Iodine
26.84	66.54	39.70	KI, and	27.86	66.56		KL.
27.18	67.14	39.96	KI,	27.27	66.91		, <u>m</u>
27.14	66.60	39.46	,	26.95	67.17		KI,
				25.71	67.91		

The experiments of Hamberger (1906) are discussed. (See also p. 326.)

SOLUBILITY OF MIXTURES OF POTASSIUM IODIDE AND SILVER IODIDE IN WATER AT 0°, 30° AND 50°. (Van Dam and Donk, 1911.)

Results at 0°. Gms. per 100 Gms. Sat. Sol.		Results	Results at 30°.		Results at 50°.		
		Gms. per 100 Gms. Sat. Sol.		Gms. per 100	l. Solid Phase in		
AgI.	KI.	AgI.	KI.	AgI.	KI.	` Each Case.	
0	56. I	•	6 0.35	0	62.6	KI	
9	53	16	55.5	10.7	59. I	и	
18	51.2	35.8	46.9	22.8	55.5	u	
31.3	46.6	42.8	43.9	45	43.2	u	
37.9	44	44. I	43.2	53 · 4	37.6	" +AgI.KI	
37.6	42.7	47 · 7	40.9	53 · 5	37.I	AgI.KI	
38	41.3	49.7	38.6	53 · 5	36.6	" +AgI	
28. I	36.4	42.8	38.8	53 · 5	36 . 5	AgI	
26.6	34.6	29.4	37.6	39	38. I	"	
6.5	26. I	10	31.4	28	36.7	4	
1.5	20.5	• • •		16	გ ვ.8	u	
0.2	9.8	0.1	10.2	2.5	24.8	"	
27.5	48.7		• • •	• • •		AgI.2KI+KI	
21	50.3	• • •	• • •	• • •	• • •	AgI.2KI	

SOLUBILITY OF POTASSIUM IODIDE IN DILUTE AQUEOUS SOLUTIONS OF ETHYL ALCOHOL AT 25°.

(Armstrong, Eyre, Hussey, and Paddison, 1907.)

Wt. Per cent C.H.OH in Solvent.	d ₃₅ of Sat. Sol.	Gms. KI per 100 Gms. Sat. Sol.	Wt. Per cent C ₂ H ₂ OH in Solvent.	$d_{\frac{35}{4}}$ of Sat. Sol.	Gms. KI per 100 Gms. Sat. Sol.
0	1.7268	59.80	4.41	1.6833	58. 0 8
1.14	1.7154	59.41	12.14	1.6063	54.93
2.25	1.7042	58.95	18.73	1.5420	52.08

100 gms. aqueous 94% ethyl alcohol dissolve 3.99 gms. KI at 17°. (de Bruyn, 1892.) 100 gms. aqueous 98% methyl alcohol dissolve 17.1 gms. KI at 17°. "

100 cc. of ethyl alcohol of $d_{15} = 0.8292$ dissolve 8.83 gms. KI at 15°, d_{15} of sat. solution = 0.8989. (Greenish and Smith, 1901.)

SOLUBILITY OF POTASSIUM IODIDE IN ABSOLUTE ALCOHOLS. (de Bruyn - Z. physik. Ch. 10, 783, '92; Rohland - Z. anorg. Ch. 18, 327, '98.)

100 gms. methyl alcohol dissolve 16.5 gms. KI at 20.5°. 100 gms. ethyl alcohol dissolve 1.75 gms. KI at 20.5°. 100 gms. propyl alcohol dissolve 0.46 gm. KI at 15°-20° (R.).

SOLUBILITY OF POTASSIUM IODIDE IN: Aqueous Ethyl Alcohol at 18°.

Ethyl Alcohol of 0.9496 Sp. Gr.

t* .	Gms. KI per	Sp. Gr. of Alcohol.	Weight per cent Alcohol.	Gms. KI per 100 Gms. Alcohol.	Sp. Gr. of Alcohol.	Weight per cent Alcohol.	Gms. KI per 100 Gms Alcohol.
8	67 . 4	0.9904	5.2	130.5	0.9390	45	66.4
13	69.2	0.9851	ğ.8	119.4	0.9088	59	48.2
25	75 · I	0.9726	23.0	100.1	0.8464	86	11.4
25 46	84.7	0.9665	29.0	89.9	0.8322	91	6.2
55	87.5	0.9528	38.0	76.9	-	-	
62	90.2		_	(Gerardii	a — Ann. chi	m. phys. [4] & 25% ' 65.)

SOLUBILITY OF POTASSIUM IODIDE IN AQUEOUS SOLUTIONS OF METHYL ALCOHOL AT 25°. (Herz and Anders, 1907.)

Solvent.		Sat. So	lution.	Sol	vent.	. Sat. Solution	
dgs.	Wt. Per cent CH ₂ OH.	ď₹.	Gms. KI per 100 cc.		Wt. Per cent CH ₅ OH.	d ₂₈ .	Gms. KI per 100 cc.
0.9971	•	1.7213	102.9	0.8820	64	1.185	40.33
0.9791	10.6	1.634	92.12	0.8489	78. I	1.066	28.05
0.9481	30.8	1.460	71.55	0.8167	93.9	0.9700	18.7 6
0.9180	47.1	1.325	55.6	0.7881	100	0.9018	13.28

SOLUBILITY OF POTASSIUM IODIDE IN SEVERAL ALCOHOLS.

Alcoh	nol.	t*.	Gms. KI per 100 Gms. Alcohol.	Authority.
Methyl A	Alcohol	11.4	I3.5	(Timofeiew, 1894.)
"	"	12.2	14.6	"
"	"	13.5	ıĠ	u
"	"	25	18.04	(Turner and Bissett, 1913.)
Ethyl	"	13.6	1.63	(Timofeiew, 1894.)
"	"	25	` 2.1Ğ	(Turner and Bissett, 1913.)
Propyl	"	12.2	0.731	(Timofeiew, 1894.)
it "	"	25	0.43	(Turner and Bissett, 1913.)
Amyl	"	25	0.098	u u

100 cc. sat. solution of KI in ethyl alcohol contain 1.585 gms. KI at 25°. (Laurie, 1912.) SOLUBILITY OF POTASSIUM IODIDE IN LIQUID METHYL ALCOHOL AT TEM-PERATURES UP TO THE CRITICAL POINT. (Tyrer, 1910.)

(Determined by the Sealed Tube Method.)

t°.	Gms. KI per 100 Gms. CH ₈ OH.	ť.	Gms. KI per 100 Gms. CH ₈ OH.	t°.	Gms. KI per 100 Gms. CH ₂ OH.
15	14.50	120	27.2	220	27.5
30	16.20	140	29.2	240	24.8
50	18.g	160	30.6	245	22.6
Š0	22.5	180	30.7	247	21
100	25	200	29. I	250	13.8
	·		crit. temp.	252.5	7.6

SOLUBILITY OF POTASSIUM IODIDE IN VAPOR OF METHYL ALCOHOL ABOVE THE CRITICAL POINT. (Tyrer, 1910a.)

Solvent, Gms. CH ₂ OH		Gms. KI Disso	olved per 100 Gm	s. Solvent at:	
per r cc. Vapor.	252°.	270°.	280°.	290°.	300°.
O.I	0.3	• • •	• • •	• • •	
0.2	1	I	I	I	I
0.3	3.7	3.5	3.4	3.4	3.3
0.36	7.6	7.4	7.3	7.2	7
0.4	11.8	11.5	11.3	II	
0.45	18. I			• • •	

Data for the above system are also given by Centnerszwer (1910). This author gives the crit. temp. as 266° and the corresponding concentration as 8.64 gms. KI per 100 gms. of the sat. solution.

SOLUBILITY OF POTASSIUM IODIDE IN MIXTURES OF ALCOHOLS AT 25°. (Herz and Kuhn, 1908.)

In Methyl + Ethyl Alcohol.			In Methyl + Propyl Alcohol.			In Ethyl + Propyl Alcohol.		
Per cent CH ₂ OH in Solvent.	d_{25} of Sat. Sol.	Gms. KI per 100 cc. Sat. Sol.	Per cent C ₂ H ₇ OH in Solvent.	d ₂₅ of Sat. Sol.	Gms. KI per 100 cc. Sat. Sol.	Per cent C ₂ H ₇ OH in Solvent.	d_{28} of Sat. Sol.	Gms. KI per 100 cc. Sat. Sol.
0	0.8015	1.55	0	0.9018	13.16	0	0.8015	1.55
4.37	0.8041	1.91	II.II	0.8823	10.96	8. 1	0.7983	1.46
10.4	0.8071	2.25	23.8	0.8629	8.54	17.85	0.7991	1.37
41.02	0.8295	4.94	65.2	0.8187	2.62	56.6	0.7988	0.75
80.69	0.8794	10.13	91.8	0.8045	0.60	88.6	0.8022	0.52
84.77	0.8795	10.72	96.6	0.8041	0.58	91.2	0.8027	0.49
91.25	0.8908	11.84	100	0.8041	0.43	95.2	0.8029	0.44
100	0.9018	13.16		•		100	0.8041	0.43

SOLUBILITY OF POTASSIUM IODIDE IN ACETAMIDE. (Menachutkin, 1908.)

(Determinations by Synthetic Method.)

t*.	Gms. KI per 100 Gms. Sat. Sol.	Solid Phase.	t°.	Gms. KI per 100 Gms. Sat. Sol.	Solid Phase
82 m. pt.	0	CH ₂ CONH ₂	70	28.75	KI
78 ⁻	6.5	a -	85	29. I	44
74	12.8	"	100	29.45	46
70	17.8	"	130	30.15	"
66	21.5	" .	145	30.5	44
58	26.2	tt .	160	30.8	•
53 Eutec.	28.4	" +KI	175	31.1	44

SOLUBILITY OF POTASSIUM IODIDE IN ACETONE AND IN PYRIDINE. (von Laszcynski, 1894; at 25°, Krug and McElroy, 1892.)

Solvent.	Gms. KI per 100 Gms. Solvent at:							
	-2.5°	10°	22*	25°	56°	119°		
Acetone	3.08		2.38	2.93	1.21			
Pyridine		0.26				0.11		

100 gms. glycerol dissolve 40 gms. KI at 15.5°. (Ossendowski, 1907.)
100 gms. 95% formic acid dissolve 38.2 gms. KI at 18.5°. (Aschan, 1913.)
100 cc. anhydrous hydrazine dissolve 175 gms. KI at room temp.
(Welsh and Broderson, 1915.)

100 gms. hydroxylamine dissolve 110 gms. KI at 17.5°. (de Bruyn, 1892.)
100 gms. sat. solution in hydrated lanolin (containing 30% emulsified water)
contain 42.5 gms. KI at 45°. (Klose, 1907.) KI is insoluble in anhydrous lanolin.

SOLUBILITY OF POTASSIUM IODIDE IN SEVERAL SOLVENTS. (Walden, 1906.)

Solvent.	Formula.	ŧ°.	Sp. Gr. of Solution.	Gms. KI per 100		
	r ormuia.	•	Solution.	cc. Solution.	Gms. Solution.	
Water	H ₂ O	0	1.6699	94.05	56.32	
Water	H ₂ O	25	1.7254	102.70	59 · 54	
Methyl Alcohol	CH ₂ OH .	ŏ	0.8964	11.Ğ1	12.95	
Methyl Alcohol	CH ₂ OH	25	0.9003	13.5-14.3	14.97	
Ethyl Alcohol	C ₂ H₅OH	ō	0.8085	1.197	1.479	
Ethyl Alcohol	C ₂ H ₄ OH	25	0.7908	1.520	1.922	
Glycol	(CH ₂ OH) ₂	ŏ	1.3954	45.85	31.03	
Glycol	(CH ₂ OH) ₂	25	1.3888	47.23	33.01	
Acetonitrile	CH₃CN	ŏ	0.8198	1.852	2.259	
Acetonitrile	CH ₃ CN	24	0.7938	1.57	2.003	
Propionitrile	C ₂ H ₅ CN	Ö	0.8005	0.34-0.41	•	
Propionitrile	C ₂ H ₅ CN	25	0.7821	0.32-0.30	0.0404	
Benzonitrile	C ₆ H ₅ CN	25	1.0076	0.051	0.0506	
Nitromethane	CH ₃ NO ₂	ŏ	1.1627	0.314-0.3		
Nitromethane	CH ₂ NO ₂	25	1.1367	0.289-0.3		
Nitrobenzene	C ₆ H ₆ NO ₂	25		0.0010		
Acetone	(CH ₃) ₂ CO	ŏ	0.8227	1.732	2.105	
Acetone	(CH ₃) ₂ CO	25	0.7968	1.038	1.302	
Furfurol	C ₄ H ₄ O.COH	ŏ	• • • • • • • • • • • • • • • • • • • •	15.10		
Furfurol	C ₄ H ₃ O.COH	25	1.2014	5.62	4.94	
Benzaldehyde	C ₆ H ₅ COH	25	I.0446	0.343	0.328	
Salicylic Aldehyde	C ₆ H ₄ .OH.COH	ŏ	1.1501	1.257	1.003	
Salicylic Aldehyde	C ₆ H ₄ .OH.COH	25	1.1373	0.549	0.483	
Anisic Aldehyde	C ₆ H ₄ .OCH ₃ .COH	ŏ	1.1223	1.520	1.355	
Anisic Aldehyde	C ₆ H ₄ .OCH ₃ .COH	25	1.1180	0.720	0.644	
Ethyl Acetate	CH ₂ COOC ₂ H ₅	25		0.0013		
Methyl Cyanacetate		ŏ	1.1521	3.256	2.827	
Methyl Cyanacetate	CH ₂ CNCOOCH ₃	25	1.1358	2.459	2.165	
Ethyl Cyanacetate	CH ₂ CNCOOC ₂ H ₅	25	1.0628	0.989	0.930	

SOLUBILITY OF POTASSIUM IODIDE AT 20° IN SEVERAL SOLVENTS CONTAINING DISSOLVED IODINE. (Olivari, 1908.)

Gm. Mols. KI per Liter in Solvent Containing:

Solvent.	o.5 Gm. Mols.	r.5 Gm. Mols. L. per Liter.	2.5 Gm. Mols. L per Liter.			
Acetic Acid	0.511	1.460	2.080			
Ethyl Acetate	0.400	1.400	1.980			
Ethyl Alcohol	0.520	1.220	1.730			
Nitrobenzene	0.414	0.960	1.380			
Ethylbromide	0.140	0.350	••••			

EQUILIBRIUM IN THE SYSTEM POTASSIUM IODIDE — ETHYL ETHER — WATER AT 20°. (Dunningham, 1914.)

Gms. per 100 Gms. Upper Layer.			Gms. pe	Solid		
KI.	H _z O.	(C ₂ H ₄) ₂ O.	KI.	H _e O.	(C ₂ H ₄) ₂ O.	Phase.
		•••	59.2	40.8		KI
0	3.9	96. 1	0	93	7	None
0.4	0.4	99.2	55.6	40.7	3.7	KI
0.1	2.2	97.7	25	72.1	2.9	None

DISTRIBUTION OF POTASSIUM IODIDE BETWEEN WATER AND:

Nitrobenzene at 18°. (Dawson, 1908.) Phenol at Room Temp. (Riesenfeld, 1902.)

	Mols. KI per Liter.		Dist. Gms. KI per		et 100 cc.	Dist.
`	C.H.NO. Layer.	H ₂ O Layer.	Ratio.	C.H.OH Layer.	Aq. Layer.	Ratio.
	0.00114	6.05	5300	0.052	0.725	13.2
	0.00108	6.05	5600	0.197	2.42	12.3
				2.09	30.7	14.7

Freezing-point data for $KI + K_1SO_4$ and KI + NaCl are given by Ruff and Plato (1903). Results for KI + AgI are given by Sandonnini (1912a). Results for $KI + SO_4$ are given by Walden and Centnerszwer (1903).

POTASSIUM IODOMERCURATE (Thoulet Solution).

A sat. solution at 22.9°, prepared by adding KI and HgI₂ in excess to water, contained 8.66% K, 22.49% Hg, 52.58 (57.7) % I and 10.97 (11.15)% H₂O, corresponding to 0.22 mol. alkali, 0.11 mol. Hg and 0.45 mol. I. (Duboin, 1905.)

POTASSIUM MOLYBDATE K.M.OO.

SOLUBILITY OF POTASSIUM MOLYBDATE IN AQUEOUS SOLUTIONS OF POTASSIUM SULFATE AT 25° AND VICE VERSA.
(Amadori, 1912a).

Gms. per 1	oo Gms. H ₂ O.	Gms. per 100 Gms. H ₂ O.			
K ₄ SO ₄ .	K ₂ MoO ₄ .	K ₄ SO ₄ .	K ₂ MoO ₄ .		
0	184.6	1.50	99.49		
0.46	180.7	2.13	45.89		
0.72	177	3.95	17.48		
0.98	127.2	8.55	4.73		
1.27	107.5	12.IO	0		

Freezing-point data for K₂MoO₄+ K₃SO₄, K₂MoO₄ + K₂WO₄ and K₂Mo₂O + K₃W₂O₇ are given by Amadori (1913).

POTASSIUM NITRATE KNO.

SOLUBILITY ICE CURVE AND SUPERSOLUBILITY ICE CURVE. (Jones, 1908.)

40	Gms. KNO ₃ pe	er 100 Gms. H ₂ O.		Gms. KNO ₂ per 100 Gms. H ₂ O.					
of Cryst.	Solubility Ice Curve.	Supersolubility Ice Curve.	of Cryst.	Solubility Lee Curve.	Supersolubility Ice Curve.				
— I	3.336	I.OII	-3		5.762				
-2	7.582	3.538	-4	• • •	8.694				
-2.8 *	11.62	5.56	-5	• • •	11.12				
			-5·3*	•••	11.82				
Cryohydrate.									

SOLUBILITY IN WATER.

(Mulder; Andrae, 1884; Gerardin, 1865; Etard, 1894; Ost, 1878; at 31.25°, Köhler, 1897; Euler, 1904; Tilden and Shenstone, 1884; Berkeley, 1904.)

Average Curve.

	Gms. KNO ₃ per 100 Gms.		t° .	Gms. KNO	Gms. KNO ₃ per 100 Gms.		
t* .	Water.	Solution.	₩.	· Water.	Solution.		
0	13.3	11.7	70	138	58.o		
IO	20.9	17.3	80	169	62.8		
20	31.ď	24.0	90	202	66.9		
e 5	37 · 3	27.2	100	246	71.1		
30	45.8	31.4	110	30Q	75.0		
40	63.9	39.o	120	394	79.8		
50	85.5	44.0	125	493	83.1		
60	110.0	52.0	_		_		

The very carefully determined figures of Berkeley are as follows:

r.	d _₫ of Set. Sol.	Gms. KNO ₂ per 100 Gms. H ₂ O.	t°.	d _g of Sat. Sol.	Gms. KNO ₁ per 100 Gms. H ₂ O.
0.40	1.0817	13.43	60.05	1.3903	111.18
14.90	1.1389	25.78	76	1.4700	156.61
30.80	1.2218	47.52	91.65	1.5394	210.20
44.75	1.3043	74.50	114 b. pt.	1.6269	311.64

1000 gms. H₂O dissolve 384.48 gms. KNO₂ at 25°. (Armstrong and Eyre, 1910-11.) One liter sat. solution in water contains 2.8 mols. = 283.11 gms. KNO₂ at 20°. (Rosenheim and Weinheber, 1910-11.) Recent determinations of the solubility of potassium nitrate in water, agreeing satisfactorily with the above data, are given by Chugaev and Khlopin (1914).

SOLUBILITY OF MIXTURES OF POTASSIUM NITRATE AND BARIUM NITRATE IN WATER.

(Euler - Z. physik. Ch. 49, 313, '04.)

t°.	Sp. Gr. of Sat. Solution.	Grams per 100 Grams H ₂ O.					
17	1.120	13.26 KNO ₈ + 6.31 Ba(NO ₈) ₂					
21.5	• • •	17.00 " + 7.58 "					
30	1.191	24·04 " + 9·99 "					
50	•••	49.34 " +18.09 "					

Solubility of Potassium Nitrate in Aqueous Solutions of Nitric Acid at 0°.

(Engel — Compt. rend. 104, 913, '87.)

Sp. Gr. of Solutions.	Equivalents p	er 10 cc. Solution.	Grams per 100 cc. Solution.			
I .079	12.5 KNO.	o HNO	12.65 KNO.	0.00 HNO.		
	9.9 "	5.87 "	10.02 "	3.71 "		
1.093	8.28 "	13.2 "	8.38 "	8.38 "		
1.117	7 · 4 "	21.55 "	7 · 49 "	13.58 "		
I · I44	7.4 "	31.1 "	7 · 49 "	19.47 "		
I -202	7.6 "	48.o "	7.68 "	30.04 "		
1.280	10.3 "	68.0 "	10.42 "	42.86 "		
1 · 498	28.3 "	120.5 "	28.64 "	75.95 "		

Freezing-point data for KNO₂ + HNO₃ are given by Dernby (1918).

SOLUBILITY OF POTASSIUM NITRATE AND OF ACID POTASSIUM NITRATES IN NITRIC ACID.

(Groschuff --- Ber. 37, 1490, '04.)

Note. — Determinations made by the so-called thermometric method, i.e., by observing the temperature of the disappearance of the separated, finely divided solid from solutions of known concentration.

t*.	Grams per 100 Gms. Solution. KNO2. HNO2.		on. Solid			Gms. per Solu KNO ₃ .	roo Gms. tion. HNO ₃ .	Solid Phase.	
- 6	24.4	75·4I	KNO3.2	HNO ₃ (¹)	22.5	47 . 2	52.93	KNO ₂ J	HNO ₃
+14	32.6	67.42	46	(stabil)	23.5	47.8	52.11	**	(stabil)
17	34.8	65.04	*		25.5	48.6	51.46	**	
19.5	37.2	62.90	44		27.0	49 · 4	50.78	44 .	
22	44.5	55.46	**		29.0	50.1	49.94	KNO ₂ J	HNO ₃
21.5	47.8	52.11	KNO3.2	HNO ₃ (2)	30.5	50.9	49.15	44	(labil)
21.5	48.6	51.46	44	(labil)	21.0	49 · 4	50.78	KNO ₃	(labil)
20	50.9	49.15	**		39.0	50.9	49.15	•	(stabil)
- 4	37.2	62.81	KNO ₃ .H	INO ₃	50	51.7	48.32		•
-16.5	44.5	55.46	**	(labil)	-				
(1) Solution in HNO ₃ .			(2)	Solution is	n KNOs.				

CONDUCT OF ACID POTASSIUM NITRATE TOWARDS WATER.

Gms. per 100 Gms.				Solid	t* .	Gms. per 100 Gms. Solution.		Solid Phase.
		KNO3.	HNO.	Phase.		KNO3.	HNO.	T Hare.
	22	44.5	55.5	KNO2-2HNO3	50	38.7	48.3	KNO3
	20.5	44 · I	55.0	44	ĞΙ	36.0	44.8	**
	18	43 .8	54 · 5	•	63	34.5	43.0	•
	12	43.0	53.6	44 .	60.5	30.9	39 - 5	*
	6	42.3	52.7	4	56	27.6	34 · 4	4
	0	41.6	51.8	**	43	20.8	25.9	*
	12	41.3	51.4	KNO ₃	17	11.7	14.6	44
	22	40.9	51.0	44	-5	5.54	6.91	**
	40	39.9	49.8	**	-		-	•

Solubility of Mixtures of Potassium Nitrate and Potassium Chloride in Water.

(Etard — Ann. chim. phys. [7] 3, 283, '94; at 20°, Rüdorff — Bes. 6, 482, '73; Nicol — Phil. Mag. [5] 31, 385, '91.)

t°.	Gms. per too Gms. Solution.		£°.	Gms. per 100 Gms.		ŧ°.	Gms. per 100 Gms. Solution.	
	KNOs.	kCl.	• •	KNO3.	KCl.		KNO3.	KCI.
0	5.0	20.0	30	16.o	21.2	70	39 · 5	17.5
10	8 .o	20.8	40	21.0	21.0	80	45 · 5	15.8
20	12.6	21.2	50	27.0	20.0		57 · 5	
25	14.0	21.3	δo	33.5	19.0		69.0	

SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF: (Touren — Compt. rend. 131, 259, '00.)

Po	tassium	Carbona	te.	Potassium Bi Carbonate.				
	Results	at 14.5°.		Results at 14.5°.				
Mols. p	er Liter.	Gms. per	Liter.	Mols. per Liter. Grams per Li				
K.CO.	KNO ₃	K _s CO _s .	KNO.	KHCO3.	KNO.	KHCO ₃ .		
0.0	2.228	0.0	225	0.0	2.33	0.0	236	
0.48	1.85	66 . 4	188	0.39	2.17	39.0	220	
1.25	1.39	172.9	141	0.76	2.03	76.0	205	
2.58	0.86	356.9	87	1.16	1.92	116	194	
3.94	o.64	544.9	65	1.55	18. r	155	183	
	Result	s at 25°.		Results at 25°.				
0.0	3.217	0.0	326	0.0	3.28	0.0	332	
0.59	2.62	81.6	265	0.80	2.84	89	287	
1.35	1.97	186.7	199	1.33	2.65	133	268	
g.10	1.46	290.5	148	1.91	2.45	191	249	
2.70	1.14	373.6	115					
3.58	0.79	495 · I	8ŏ					

SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF POTASSIUM CARBONATE AT 24.2°.
(Kremann and Zitek, 1909.)

Gms. per 100	Gms. per 1000 Gms. H ₂ O.		Gms. per re	Solid	
KNO ₃ .	K ₂ CO ₃ .	Phase.	KNO,	K ₂ CO ₂ .	Phase.
376.8	0	KNO,	73	688.I	KNO,
285	130.3	u	38.8	878.3	es
161.7	348.4	4	31.1	1112.2	" +K ₂ CO ₂
141.8	371.9	**	-		

1000 gms. H₂O containing I mol. KCl (101.11 gms.) dissolve 324.85 gms. KNO₃ at 25°. (Armstrong and Eyre, 1910-11.)

Data for the system potassium nitrate, potassium sulfate, water at 35° are given by Massink (1916, 1917).

SOLUBILITY OF MIXTURES OF POTASSIUM NITRATE AND POTASSIUM SULPHATE IN WATER. (Euler — Z. physik. Ch. 49, 313, '04.)

t* .	Sp. Gr. of Sat. Solution.	Grams per 100	Grams Water.
15	1.165	24.12 KNO	5.65 K ₂ SO ₄
20	•••	30.10 "	5 .58 "
25	I.210	36.12 "	5.58 "

SOLUBILITY OF MIXTURES OF POTASSIUM NITRATE AND SODIUM CHLORIDE IN WATER.

(Etard — Ann. chim. phys. [7] 3, 283, '94; the older determinations of Rüdorff, Karsten, Mulder, etc., agree well with those of Etard.)

\$* .	Gms. per 100 Gms. Solution.		ŧ°.	Gms. per 100 Gms. Solution.		ŧ°.	Gms. per 100 Gms. Solution.	
	KNO3.	NaCl.		KNO3.	NaCl.		KNO.	NaCl.
0	13	24	40	30.5	19	120	73	8.0
10	16	23	50	36	17	140	77	7.0
20	20	22	60	42.5	15	160	79.5	6.0
25	23	21.5	80	55	12	170	80.5	5 · 5
30	25	20.5	100	67	9.5	·	_	

100 gms. H₂O, simultaneously sat. with potassium nitrate and sodium chloride, contain 41.14 gms. KNO₂ + 38.53 gms. NaCl at 25° and 168.8 gms. KNO₃ + 39.81 gms. NaCl at 80°. (Soch, 1898.)

SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AND VICE VERSA. (Leather and Mukerji, 1913.)

	Result	ts at 20°.		Results at 30°.				
Sp. Gr.	Gms. per ro	Gms. H _r O.		Sp. Gr.	Gms. per 10	er 100 Gms. H ₂ O. Soli		
Sat. Sol.	KNO ₃ .	NaCl.	Phase.	Sat. Sol.	KNO ₃ .	NaCl.	Phase.	
1.167	31.49	0	KNO ₃	1.261	46.48	9.82	KNO ₃	
1.220	33.41	9.94	u	1.302	47.08	20. 18	u	
1.267	34.93	19.44	u	1.343	47.24	29.86	44	
1.311	36.41	29.46	44	1.372	49.24	38.72	" +NaCl	
1.344	37.30	37 · 73	" +NaCl	1.342	38.3 6	38.55	NaCl	
1.330	31.41	37 · 57	NaCl	1.298	25.32	38.23	u	
1.283	19.56	37.51	44	1.258	12.15	37.38	4	
1.243	9.76	36.73	44	I.202	• • •	36.30	4	
	Result	ts at 40°.			Resul	ts at 91°.		
1.288	64.74	0	KNO,	1.552	202.8	•	KNO.	
1.320	64.66	11.32	64	1.573	204.2	12.81	4	
• • •	64.05	23.41	44	1.601	208.1	28.45	4	
1.396	64.13	35.08	44	1.645	213.3	37.92	u	
1.411	64.77	38.79	" +NaCl	1.660	218.8	39.08	" +NaCl	
1.376	52.81	39.51	NaCl	1.607	175.8	40.87	NaCl	
1.323	34.98	38.98	u	1.517	126.9	44.33	. "	
1.267	17.33	37.74	"	1.378	57 · 53	42.90	. "	
At the l	nigher tem	peratures	, results for		certain s	olutions ar	e reported.	

At the higher temperatures, results for NainO3 in certain solutions are reported.

SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND VICE VERSA. (Leather and Mukerji, 1913.)

Results at 30°.			Res	Results at 40°.			Results at 91°.			
Sp. Gr. Sat. Sol.	Gr. Gms per 100 Gms.		Sp. Gr. Gms. per 100 Gms. Sat. Sol.		Sp. Gr. Sat. Sol.			in		
OBC. 501.	KNO ₃ .	NaNO ₃ .	_	KNO.	NaNO ₃ .	_	KNO ₃ .	NaNOs.	Each Case.	
1.317	45.73	25.90	1.358	63.21	23.85	1.615	200.8	43.4	KNO ₃	
1.403	47.25	52.53	1.428	63.86	49.79	1.674	207.2	92.90	44	
1.472	50.93	79.27	1.505	66.44	79.46	1.751	229.5	156.2	44	
1.544	54-34	103.3	1.570	74.06	116.2	1.790	251.8	206.5	" +NaNO	
1.520	47.67	103.1	1.573	68.72	116.7	1.774	211.7	200	NaNO ₃	
1.481	30.25	101.6	1.526	43.92	112.2	1.695	128.5	186	44	
1.451	14.30	99.10	1.476	20.33	109.9	1.610	55.75	173.1	64	
1.406	0	95.90	1.421	0	105.2	1.521	0	160.8	**	
Resul	ts at 20'	are also	given.							

SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND VICE VERSA AT 20°.

(Carnelly and Thomson — J. Ch. Soc. 53, 782, '88; Nicol — Phil. Mag. 31, 369, '91.)

KNO, in Aq. NaNO, Solutions. NaNO, in Aq. KNO, Solutions.

Grams per 100	Grams HgO.	Grams per 100 Grams H20		
NaNOs.	KNO	KNO3.	NaNO ₃ .	
0	31.6	0	88	
IO	30.5	IO	90	
20	31.0	20	92	
40	33.0	25	93	
60	35.5	30	94	
80	4I .Q	35	96	

SOLUBILITY OF. POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND VICE VERSA AT 10° AND AT 24.2°.
(Kremann and Zitek, 1909.)

ť.	Gms. per 1000 Gms. H ₂ O.		Solid Phase.	ť.	Gms. per 10	Solid Phase.	
• .	KNO ₃ .	NaNO ₃ .	Soud Phase.	• .	KNO ₃ .	NaNO ₃ .	SOINT PHISE.
10	208.9	0	KNO _B	24.2	422	931.3	KNO _B
10	301.9	848.3	" +NaNOs	24.2	437	1019	" +NaNO
10	0	805	NaNO ₃	24.2	123.6	910.6	NaNO _a
24.2	377.3	ō	KNO ₃	24.2	0	913	**
24.2	390	346.7	и				

SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF SILVER NITRATE
AT 30° AND VICE VERSA.
(Schreinemakers, 1908–09.)

Gms. per roo	Gms. Sat. Sol.	Solid Phase.	Gms. per 100	Solid Phase		
KNO ₃ .	AgNO ₃ .	Sond Phase.	KNO,	AgNO ₃ .	Juliu I hasu	
31.3	•	KNO ₃	17.38	57.85	AgNO ₃ .KNO ₃	
30.45	11.51	44	13.44	65.08	64	
29.22	23.59	44	11.22	69.01	" +AgNO	
26.58	39.09	44	5 · 53	71.65	AgNO ₃	
25.02	46.38	" +AgNO ₃ .KNO ₃	0	73	"	

SOLUBILITY OF MIXTURES OF POTASSIUM NITRATE AND SILVER NITRATE IN WATER.
(Etard, 1894.)

ť.	Gms. per 100 Gms. Sol.		40	Gms. per 100 Gms. Sol.		t°.	Gms. per roo Gms. Sol.	
ь.	KNO3.	AgNO ₃ .	t	KNO3.	AgNO ₃ .	• •	KNO3.	AgNO ₃ .
0	13.5	43	30	26.8	49 - 4	80	36.2	55.I
10	19	44.7	40	29.6	51.5	100	38.3	55.3
20	23	47	50	32	54	120	40	55.6
25	25	48	60	33 · 5	54.8	140	41.5	55.8

SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM NITRATE AND SILVER
NITRATE IN WATER AT 25°.
(Herz, 1905; Fock, 1897.)

Gms. per Liter.		Mg. Mols. per Liter.		Mol. Per cent	Mol. Per cent
AgNO ₃ .	KNO ₃ .	AgNO ₃ .	KNO,	AgNO ₃ in Solution.	AgNO, in Solid Phase.
45.9	321.8	270	3180	7.83	0.2896
110.7	322.6	651.3	3184	16.96	0.6006
176.8	333 · 7	1040	3298	23.97	0.9040
259.6	364	1528	3597	29.81	1.054
365.6	456.4	2151	4511	32.28	1.604
507.9	387.2	2988	3816	43.85	2.439
745.9	39 8.6	4388	3960	52.70	8.294

SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF STRONTIUM NITRATE AND VICE VERSA AT 20° AND AT 40°.

(Findlay, Morgan and Morris, 1914.)

ť.	Gms. per 100 Gms. Sat. Sol.					roo Gms. Sol.	Solid Phase.	
	KNO ₃ .	Sr(NO ₂) ₂ .	•		KNO3.	Sr(NO ₂) ₂ .	•	
20	22.90	5.49	KNO ₃	20	12.65	41.12	Sr(NO ₂) ₂₋₄ H ₂ O	
20	21.70	9.17	"	20	10	40.70	u	
20	21.01	17.10	"	40	30.26	23.70	KNO ₂	
20	19.60	31.24	u	40	26.90	38.52	" $+Sr(NO_2)_2.4H_4O$	
20	19.49	34.9I	"	40	22.50	40.22	Sr(NO ₂) ₂₋₄ H ₂ O	
20	19.69	39.56	" +Sr(NO ₂),4H ₂ O	40	11.19	44.19	"	
20	17.56	40.37	Sr(NO ₂) ₂₋₄ H ₂ O	40	o ´	47.7	u	

1000 gms. H₂O, simultaneously saturated with both salts, contain 552 gms. KNO₂ + 1074 gms, Sr(NO₂)₂ at 25°, (LeBlanc and Noyes, 1890.)

SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM NITRATE AND THALLIUM NITRATE IN WATER AT 25°.
(Fock.)

Grams p	er Liter.	Mg. Mols	per Liter.	Mol. per cent TlNO ₂	Sp. Gr. of	Mol. per cent TINO3
TINO3.	KNO3.	TINO3.	KNO ₃ .	in Solution.	Solutions.	in Solid Phase.
0.00	351.0	0.0	3468.2	0.00	1.2632	0.00
2.37	329.0	8.9	3251.5	0.43	1.1903	o · o8 _.
6.15	332.4	23.1	3285.1	0.70	1.1956	0.20
17.64	333 · 7	66.3	3298.1	1.97	1.2050	0.57
49 · 74	333 · 3	186.9	3294 · 4	5 · 37	1.2196	1.78
63.60	321.0	239.0	3172.4	7.01	1.2436	2.19
86.18	330.5	323.8	3265.8	9.02	1.2617	2.77
123.8	428.3	465.2	4232.6	9.90	1.2950	{ 6.∞
3.0	720.3	4-2.5		9.30	- 1-930	(27 .04
101.3	245 · I	380.6	2423.3	13.58	1.2050	93 · 33
116.1	0.0	463°. I	0.0	100.00	1.0964	100.00

SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS ALCOHOL SOLUTIONS. (Gerardin — Ann. chim. phys. [4] 5, 151, '65.) Grams KNO₃ per 100 Grams Aqueous Alcohol of Sp. Gr.:

t°. 0.9904 0.9843 0.9793 0.9726 29571 0.939 $\overline{W}_{1}^{5.5}$ $\overline{W}_{1}^{6.935}$ $\overline{W}_{1}^{13.5}$ $\overline{W}_{1}^{10.1}$ $$		
10 17 13 10 7 4.5 3	0.8967 = 60 Wt.%.	0.8429 - 00 Wt.%.
	I	0.2
18 22.5 18.5 14.5 10 6.2 4.5	1.6	0.3
20 24 20 16 11 7.0 5	2	0.3
25 29 24.5 20 I3.5 9.0 6.5	2.5	0.4
30 36 30 25 17 11.5 8	3.0	0.5
40 52 43 36 27 16.5 11	4	0.6
50 72 61 50 38 23.0 16	6	0.7
60 93 79 69 52 31.0 21	8	1.1

SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS ALCOHOL AT 18° (Bodländer — Z. physik. Ch. 7, 316, '91.)

Sp. Gr. of Solution.	Gms. per	100 cc. Sc	dution.	Sp. Gr. of Solution.	Gms. pe	r 100 cc. S	olution.
_	C₃H₅OH.	H ₃ O.	KNO3.	Solution.	Същон.		KNO.
1.1480		89.80	25.0	1.0120	23.33	69.81	8.06
1.1085	3 . 30	87.44	20.11	0.9935	28.11	64.74	6.50
1.1010	5 · 24	86.26	18.60	0.9585	37 - 53	54.21	4.11
1.0805	8.69	83.18	16.18	0.9450	42.98		3 · 37
1.0755	9.06	83.10	15.39	0.9050	51.23	27.32	1.95
1.0655	14.08	77 - 93	14.54	0.8722	61.65	24.74	0.83
I .0490	16.27	76.36	12.27	0.8375	69.60	13.95	0.20
1.0375	19.97	72.93	10.8	• • • •	-		

SOLUBILITY OF POTASSIUM NITRATE IN DILUTE ETHYL ALCOHOL AT 25°. (Armstrong and Eyre, 1910-11.)

Wt. % C ₂ H ₂ OH in Solvent.	Gms. KNO ₂ per 100 Gms. Sat. Solution.
0	27.77
1.14	26.69
2.25	25.79
4.41	23.81

SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS ALCOHOL AND IN AQUEOUS ACETONE.
(Batnrick, 1896.)

In Aqueous Alcohol.			In Aqueous A	a Aqueous Acetone at 40°		
Wt. Per cent Alcohol.	Gms. KNO ₃ per 100	Gms. Aq. Alcohol.	Wt. Per cent Acetone.	Gms. KNO ₀ per 100 Gms.		
	At 30°.	At 40°.		Solvent.		
•	45.6	64.5	0	64.5		
8.25	32.3	47.I	8.5	51.3		
17	22.4	33 - 3	16.8	38.9		
25.7	15.1	24. I	25.2	22.8		
35	11.4 (34.4°)	16.7	34.3	24.7		
44.9	7	11.6 (44°)	44.I	17		
54 · 3	4.5	7.2 (55°)	53.9	11.9		
65	2.7	4.4	64.8	7.2		
75.6 88	1.3	2 (76.3°)	76	3		
88	0.4	o.6 (88.5°)	87.6	0.7		

100 gms. H₂O saturated with sugar and KNO₂ dissolve 224.7 gms. sugar + 41.9 gms. KNO₂, or 100 gms. of the saturated solution contain 61.36 gms. sugar +11.45 gms. KNO₂ at 31.25°. (Köhler, 1897.)

SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF METHYL ALCOHOL, ETHYL ALCOHOL AND MIXTURES OF THE TWO AT 30°.

(Schreinemakers, 1908-09.)

In Aq. CH ₂ OH.		In Aq. C ₂ H ₄ OH.		In Aq. (CH $_3$ OH+C $_2$ H $_3$ OH)	
Gms. per 100	Gms. Sat. Sol.	Gms. per 100 (Gms. Sat. Sol.	Gms. per 100 Gms.	Sat. Sol.
CH,OH.	KNO,	C ₂ H ₄ OH.	KNO ₃ .	(CHOH+CHOH)	KNO ₃ .
0	31.3	10. I	20.7	0	31.3
7.8	23.3	23.8	12.1	12.7	18.9
17.3	16.3	32.2	9	29.2	12.8
27.8	11.2	43.I	6. r	41	6.7
38.4	7 · 7	56.g	3.3	47.8	5.1
57	3.8	76.8	o.88	56.4	3.5
98.58	0.43	92.3	0.15	74.8	1.2

^{*} The mixture contained 51.7% CH₂OH and 48.3% C₂H₂OH.

100 gms. trichlorethylene dissolve 0.01 gm. KNO₂ at 15°. (Wester and Bruins, 1914.)
100 cc. anhydrous hydrazine dissolve 14 gms. KNO₂ at room temp.
(Welsh and Broderson, 1915.)

100 gms. aq. 40 weight % C₂H₄OH, simultaneously saturated with the two salts, dissolve 13.74 gms. KNO₃ + 15.78 gms. NaCl at 25°. (Soch, 1898.)

SIMULTANEOUS SOLUBILITY OF POTASSIUM NITRATE AND SILVER NITRATE IN AQUEOUS 51.6 PER CENT C₂H₆OH AT 30°.

(Schreinemakers, 1908-09.)

Gms. per 100 Gr	ms. Sat. Solution.	Solid Phase.	
KNO,	AgNO ₂ .		
4.8	0	KNO ₃	
4.55	5. IS	44	
4. II	16.47	44	
4.26	21.28	" +AgNO ₂ .KNO ₃	
2.62	36.94	AgNO ₃ .KNO ₃ +AgNO ₃	
0	37	AgNO ₃	

Fusion-point data (solubilities, see footnote, p. 1), are given for KNO₃ + KNO₂ by Meneghini (1912); for KNO₃ + AgNO₃ by Usso (1904); for KNO₃ + NaNO₃ by Carveth (1898) and by Hissink (1900); for KNO₃ + Sr(NO₄)₂ and KNO₃ + NaNO₃ + Sr(NO₄)₂ by Harkins and Clark (1915); for KNO₃ + TlNO₃ by Van Eyk (1899, 1905).

POTASSIUM NITRITE KNO2.

SOLUBILITY IN WATER. (Oswald, 1912, 1914.)

r.	Gms. KNO ₂ per 100 Gms. Sat. Sol.	Solid Phase.	ť.	Gms. KNO ₂ per 100 Gms. Sat. Sol.	Solid Phase.
- 4.1	16.1	Ice	+ 17.5	74·5 *	KNO ₂
- 7.6	24.I	44	25	75.75	44
-13.8	40.2	44	40	77	44
-18.6	50.1	46	55	77 · 5	*
-24 .6	61.7	"	75	78.5	"
-30	69.8	"	100	80.5	"
-31.6 Eutec.	71.8	" +KNO	III	80.7	4
– 6.5	73.2	KNO ₂	119	8r.15	
0	73.6	**	125 .	81.8 [°]	"
		$d_{17.4} = 1.6$	464.		

100 gms. H₂O dissolve about 300 gms. KNO₂ at 15.5°. (Divers, 1899.) The figure 138.5 gms. KNO₂ per 100 gms. H₂O at 15°, given by von Niementowski and von Roszkowski (1897), is evidently low.

SOLUBILITY OF MIXTURES OF POTASSIUM NITRITE AND OF SILVER NITRITE IN WATER. (Oswald, 1914.)

	at 25°.	Results	Results at 13.5°.	
Solid Phase in Each Case.	Gms. H ₂ O.	Gms. per roc	o Gms. H ₂ O.	Gms. per re
Soud Phase in Each Case.	AgNO ₂ .	KNO ₃ .	AgNO ₂ .	KNO2.
$AgNO_3 + K_4Ag_2(NO_2)_4.H_2O$	5.3	23.I	2.36	18
KNO2+K2Ag2(NO2)4.H2O	39.3	279	26.3	276

Of the two layers obtained by mixing an equal volume or more of 96% ethyl alcohol with a nearly saturated aqueous solution of KNO₂, the lower contains 71.9% KNO₂ and the upper, alcoholic, 6.9%. With methyl alcohol there is no separation into two layers. (Donath, 1911.)

POTASSIUM OXALATE K₂C₂O_{4.4}H₂O.

SOLUBILITY OF MIXTURES OF POTASSIUM OXALATE AND OXALIC ACID IN WATER AT 25°. (Foote and Andrew, 1905.)

Gms. per 100 Gms. Solution.		Mols. per 100 Mols. H ₂ O.		Solid Phase.	
H ₂ C ₂ O ₄ .	K ₀ C ₂ O ₄ .	H ₂ C ₂ O ₄ .	K ₂ C ₂ O ₄ .	Soud Phase.	
10.2	• • •	2.274		H ₂ C ₂ O ₄ .2H ₂ O	
10.31	0.04	2.302	0.005	$H_2C_2O_4.2H_2O + H_2K(C_2O_4)_2.2H_2O$	
9.26	0.13	2.046	0.016	D. W. W. W. W. CO.	
3.39	0.63	0.707	0.071	Double salt $H_3K(C_2O_4)_2.2H_2O$	
2.06	4.2ŏ	0.440	0.495	H ₄ K(C ₂ O ₄).2H ₂ O+HKC ₂ O ₄	
1.16	11.50	0.266	1.427	Double salt HKC ₂ O ₄	
0.99	16.93	0.240	2.235	Double sait HEC204	
0.85	21.08	0.221	2.928	$HKC_2O_4 + H_2K_4(C_2O_4)_3.2H_2O$	
0.82	21.49	0.211	2.998]	
0.64	23.52	0.169	3.361	Double salt H ₂ K ₄ (C ₂ O ₄) ₂₋₂ H ₂ O	
0.57	24.88	0.153	3.617	}	
0.43	27.52	0.122	4.14	H ₂ K ₄ (C ₂ O ₄) ₃ 2H ₂ O+K ₂ C ₂ O ₄ .H ₂ O	
	27.40	• • •	4.00	K ₂ C ₂ O ₄ .H ₂ O	

EQUILIBRIUM IN THE SYSTEM POTASSIUM OXALATE, OXALIC ACID, WATER AT 0°, 30° AND 60°.

(Koppel and Cahn, 1908.)

Results at o°.		Results at 30°.		Results at 60°.		
Gms. per 100 Gms. Sat. Sol.		Gms. per 100 Gms. Sat. Sol.		Gms. per 100 Gms. Sat. Sol.		Solid Phase in Each Case.
C ₂ O ₃ .	K₄O.	C ₂ O ₃ .	K ₀ O.	C ₂ O ₃ .	K ₄ O.	
2.72	• • •	9.97	•••	24.75	• • •	H _e C _e O _{e-2} H _e O
2.91	0.226*	10.15	0.10	• • •	• • •	"
2.985	0.342*			• • •	• • •	u
2.827	0.125	10.23	0.34	25.70	0.46	" +KH4(C2O4)3.2H4O
2.345	0.145	•••	• • •	• • •	• • •	ee 66
1.471	0.195	7.28	0.33	25.80	0.54	KH ₆ (C ₂ O ₄) ₃₋₂ H ₆ O
0.823	0.240	4	0.41	22.06	0. 58	u
0.799	0.454	3.08	0.50	20.17	0.67	a
1.173	0.785	2.38	1.002	14.25	0.90	44
1.381	0.962	2.98	1.79	9.82	1.48	44
1.545	1.155		• • •	6.95	2.244	44
1.666	I.273	4.24	2.76	9.17	5.60	" +KHC ₁ O ₄
1.754	1.479	4.26	3.38	8.81	6.37	KHC ₂ O ₄
2.627	2.858	5.44	5.43	10.17	IO	4
3.772	4.422	6.66	7.27	12.36	13.40	u
4.292	5. 161	8. 64	10.05	14. 10	16	ee .
4.975	6.088	10.03	12.01	15.35	17.80	44
5.652	7	10.80	12.94	16.07	18.89	" $+(K_0C_2O_4)_2H_0C_2O_4.2H_0O$
6.27	7.87	II.47	14.13	16.51	19.59	(K ₂ C ₂ O ₄) ₂ .H ₂ C ₂ O ₄ .2H ₂ O
7.63	9.72	12.16	15.11	16.80	20. IO	44
8.66	11.14	12.32	15.37	16.95	20.34	44
9.055	11.58	12.90	16.23	17.14	20.70	" +K ₂ C ₂ O ₄ .H ₂ O
8.826	11.52	12.36	16.14	16.71	20.41	K ₂ C ₂ O ₄ .H ₂ O
5.215	12.33	8.52	15.03	15.94	20. II	u
2.23	14.80	4.53	15.55	15.06	19.66	u
1.245	16.82	1.87	18.17	8.82	19.25	"
0.871	18.4	0.74	22.32	2.04	23.09	•
0.511	20.91		•••	0.434		44
0.325	23.30			0.365	31.40	44
0	41.3	0	46.79	0	51.34	KOH.H _O
		Supersa	turated.		† Abou	t.

EQUILIBRIUM IN THE SYSTEM POTASSIUM OXALATB, OXALIC ACID, WATER AT 25°. (Hartley, Drugman, Vlieland and Bourdillon, 1913.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100 Gms. Sat. Sol.		Solid Phase.
C _z O ₃ .	K _t O.	•	C ₂ O ₃ .	K _t O.	
8.29	0	H ₂ C ₂ O ₄ .2H ₂ O	3.079	2.052	$\mathbb{K}\mathbf{H}_{\mathbf{q}}(\mathbf{C}_{\mathbf{r}}\mathbf{O}_{\mathbf{q}})_{\mathbf{q},2}\mathbf{H}_{\mathbf{q}}\mathbf{O}$
8. 278	0.045	"+KH ₄ (C ₂ O ₄) ₂₋₂ H ₂ O	3.450	2.360	" +KHC ₂ O ₄
7.412	0.064	KH ₂ (C ₂ O ₄) ₂ ,2H ₂ O	3.793	3.199	KHC ₁ O ₄
2.827	0.238	"	5.457	5.919	и
2.007	0.346		9.816	11.96	" +2K ₂ C ₂ O ₄ .H ₂ C ₂ O ₄ .2H ₂ O
1.734	0.567		12.365	15.71	2K ₂ C ₂ O ₄ .H ₂ C ₂ O ₄ .2H ₂ O+K ₂ C ₂ O ₄ .H ₂ O
2.675	1.714	, "	11.85	15.51	K ₂ C ₄ O ₄ .H ₄ Q

Similar data at 15° for the above system are given by Jungfleisch and Landrieu (1914a).

SOLUBILITIES IN THE SYSTEM POTASSIUM OXALATE, OXALIC ACID, WATER AT THE CRYOHYDRIC POINTS. (Koppel and Cahn, 1908.)

(Temp. of Equilibrium of Solution with Ice.)

t° of Ice	Gras. per 100 Gras. Sat Solid Phase.	t° of Ice	Gms. per 100	Solid Phase.
Separa-		Sерага-	Gms. Sat. Sol.	Ice+:
Separa- tion.	C ₂ O ₂ . K ₂ O.	tion.	€ ₄ O ₃ . K ₄ O.	• •
-0.95	2.641 H ₂ C ₂ O ₄₋₂ H ₂ O	- 4.45		C ₂ C ₂ O ₄) ₂ .H ₂ C ₂ O ₄ .2H ₂ O
-0.90	2.720 0.0466 " +KH ₂ (C ₂ O ₂) ₂ 2H ₂ O	- 5.20	7.616 9.74	"
-0.52	1.672 0.0602 KH ₂ (C ₂ O ₂) ₂ .2H ₂ O	- 5.32	7.090 9.04	46
-0.25	0.643 0.210 "	- 5.97	0.51 11.01	" +K ₂ C ₂ O ₄ .H ₂ O
∸0. 58	1.229 0.823 "	- 6.55	6.742 10.45	K ₄ C ₂ O ₄ .H ₄ O
0.78	1.648 1.234 " +KHC ₂ O ₄	— 8.10	4.999 10.86	"
- 1.50	2.707 2.950 KHC ₂ O ₄	— 10.30	3.358 11.76	
-2.10	3.68 ₇ 4.36 ₃ "	— 13.60	1.854 13.08	4
- 2.78	4.576 5.50 "	— 17.40	1.200 14.55	
-3-45	5.681 7.05 " +(K ₂ C ₂ O _{4).}	-23.80	0.606 16.89	•
	H ₂ C ₄ O ₄ .2H ₂ O			

SOLUBILITIES IN THE SYSTEM POTASSIUM OXALATE, OXALIC ACID, WATER AT THE BOILING POINTS. (Koppel and Cahn, 1908.)

t° of B. pt.	Gms. per 100 Gms. Sat. Sol.		Solid Phase. to of B. pt.		Gms. per Sat.	roo G ms. Sol.	Solid Phase-
D. pt.	C _t O _t .	K ₁ O.		D. pt.	C ₂ O ₃ .	K ₂ O.	
105.5	39.84	5.25	KH2(C2O2)2.2H2O	102.8	19.10	18.25	KHC ₂ O ₄
104.9	36.95	5.83	u	103.25	21.11	21.71	u
104.3	32.75	5.97	"	107.7	25.19	27.91	" +K4C4O4.H4O
103.4	27.64	9.12	44	106.35	22.04	26.45	$K_aC_aO_4.H_aO$
102.9	27.46	11.43	"+KHC ₂ O ₄	106.25	19.17	25.02	44
102.5	23.36	10.50	KHC ₂ O ₄	108.25	12.73	27.69	64
102.4	18.81	12.29	"	111.8	5.35	30.40	u

From the preceding tables the following results for the solubilities of the pure oxalates in water are obtained.

SOLUBILITY OF POTASSIUM OXALATE, K2C2O4.H2O IN WATER.

ť.	Gms. per	100 Gms	Sat. Sol.		t*.	Gms. per	100 Gm	s. Sat. Sc	
		+ K ₂ O =	K,C,O,	Phase.	•. •	C ₂ O ₃ -	+ K₂O =	K,C,O,.	Phase.
– 0.78	1.31	1.71	3.02	Ice	30	12.36	16.14	28.50	K ₁ C ₁ O ₄ .H ₂ O
- 1.49	2.48	3.20	5.68	4	40		17.22		44
- 2.50	3.99	5.20	9.195	4	50			32.60	"
— 3.22	5.15	6.705	11.855	u	60		19.66		"
- 5.88	8.429	11.01	19.43	" +K ₂ C ₂ O ₄ .H ₂ O	70	15.94	20.81	36.75	**
0	8.83	11.52	20.35	$K_2C_2O_4.H_2O$	80	16.86	22.02	38.875	
+10	10.48	13.69	24.17	"	90.2	17.73	23.14	40.90	"
20	11.57	15.11	26.675	**	106.2	19.17	25.02	44.19	"
				• h. nt.					

100 gms. sat. aq. sol. contain 20.62 gms. $K_2C_2O_4$ at 0°, d=1.161. (Engel, 1888). The results of Hartley, Drugman, Vlieland and Bourdillon (1913) and of Colani (1916), for the solubility of neutral potassium oxalate in water, agree satisfactorily with the above.

SOLUBILITY OF POTASSIUM BIOXALATE, KHC₂O₄, IN WATER. (Koppel and Cahn, 1908.)

40	Gms. per 100	Solid Phase.	
• •	C ₂ O ₂ .	K ₂ O.	Soud Phase.
60	8.75	6.50	KHC ₂ O ₄
102.4 b. pt.	18.81	12.29	"

The KHC₂O₄ is decomposed to the less soluble tetroxalate at temperatures below 50°.

SOLUBILITY OF POTASSIUM TETROXALATE, KH2(C2O4)2.2H2O, IN WATER. (Koppel and Cahn, 1908.)

t°.	Gms. KH ₂ (C ₂ O ₂) ₂ per 100 Gms. H ₂ O.	Solid Phase.
-0.25 cryohydrate	0.99	KH4(C1O1)2-2H4O
0	1.27	4
30 6 0	4.30	•
	11.95	•
103.5 b. pt.	72.17	•

SOLUBILITY OF MIXTURES OF POTASSIUM OXALATE AND OTHER SALTS IN WATER. (Colani, 1916.)

Results at 15°.

Results at 50°.

Gms. per 100 Gms. Sat. Sol.	Gms. pe	r 100 Gms. Sat. Sol.	Solid Phase in Each Case.
10.03 K ₂ C ₂ O ₄ +19.19 KCl	15.18 K20	C2O4+20.26 KCl	K-C-O-H-O+KCI
23.55 " + 1.82 K ₂ SO ₄	31.06 '	' + 1.99 K ₂ SO.	4 " +K.SO.
20.39 " +11.60 KNO ₃ (19°)	19.63	+28.29 KNO	* +KNO
	4. 4		

100 gms. aqueous solution, simultaneously saturated with potassium and sodium oxalates, contain 26.15 gms. $K_2C_2O_4+2.44$ gms. $Na_2C_2O_4$ at 25°. (Foote and Andrew, 1905).

POTASSIUM Telluric Acid OXALATE K₂[H₄TeO₆.C₂O₄].

SOLUBILITY IN WATER. (Rosenheim and Weinheber, 1910-11.)

o° 20° 30° 40° 50° Gms. K₂[H₆TeO₆.C₂O₄] per 100 gms. H₂O 2.67 5.36 6.82 9.07 12.35

POTASSIUM PERMANGANATE KMnO.

SOLUBILITY IN WATER. (Baxter, Boylston, and Hubbard, 1906; Patterson, 1906.)

ť.	Gms. KMnO4 per 100:			ť.	Gms. KMnO4 per 100:	
٠.	Gms. Solution.	Gms. H ₂ O.	cc. Solution (P).	٠.	Gms. Solution.	Gms. H ₂ O.
0	2.75	2.83	2.84	34.8	9. 6 4	10.67
9.8	4. I3	4.31	• • •	40	11.16	12.56
15		• • •	5.22	45	12.73	14.58
19.8	5.96	6.34	•••	50	14.45	16.89
24.8	7.06	7 · 59	• • •	55	16.20	19.33
29.8	8.28	9.03	8.69	65	20.02	25.03

Sp. Gr. of saturated solution at 15° = 1.035.

Determination by Worden (1907), made with extreme care, gave results in very close agreement with the above.

SOLUBILITY OF POTASSIUM PERMANGANATE IN:

	Wat (Voerma			Aqueous Acetone Solutions at 13% (Herz and Knoch, 1904.)			
44	Gms. KMnO	per 100 Gms.		cc. Acetone	KMnO4 per 100 cc. Solution.		
t* .	Solution.	Water.	Solid Phase.	per 100 cc. Solvent.	Millimols.	Grams.	
– 0.18	o. 58	0. 58	Ice	0	148.5	4.70	
- 0.27	0.99	1.01	"	10	162.5	5.13	
– 0.4 8	1.98	2.02	"	20	177.3	5.61	
– 0.58	2.91	3	Ice+KMnO	30	208.2	6. 59	
+10	4.01	4.22	KMnO ₄	40	257.4	8. 14	
15	4.95	5.20	**	50	289.7	9. 16	
25	7	7 · 53	**	60	316.8	10.02	
40	10.40	11.61	4	70	328	10.38	
50	14.35	16.75	4	80	312.5	9.89	
-				90	227	7. 18	
				100	67	2.14	

SOLUBILITY OF POTASSIUM PERMANGANATE IN AQUEOUS SOLUTIONS OF POTASSIUM CARBONATE. (Sackur and Taegener, 1912.)

Mols. KMnO4 per Liter in:

t°.	o.1 # 1K2CO2.	ı # ⅓K₂CO₃.	2 # 1K2CO3.	4 n 1K2CO2.	6 n 1K2CO2.
0	0. 1462	0.0629	0.0446	0.027	0.0156
25	0.4375	0.2589	• • •	0.093	• • •
40	0.7380	0.5007	0.3519	• • •	

SOLUBILITY OF POTASSIUM PERMANGANATE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE. (Sackur and Taegener, 1912.)

Mols. KMnO4 per Liter in:

ť.	o.1 # KCl.	0.5 # KCL	ı # KCl.	2 # KCl.
0	0.1395	0.076	0.0532	0.0379
25	0.4315	o.306	0.220	0. 1432
40	0.738	0. 584	0.444	0.288

SOLUBILITY OF POTASSIUM PERMANGANATE IN AQUEOUS SOLUTIONS OF POTASSIUM HYDROXIDE. (Sackur and Taegener, 1912.)

Mols. KMnO4 per Liter in:

t°.	H ₂ O.	ı # KOH.	2 # KOH.	4 % KOH.	6 n KOH.	8 * KOH.	10 n KOH.
0	0. 176	0.050	0.031	0.027	0.023	0.017	0.012
10	0.278	0.112	o.o68	0.048	0.042	0.028	0.016
20	0.411	0.179	0.119	0.079	0.074(199	0.032	0.029
30	0.573	0.316(329)	0.213(329)	0. 149 (327)	0.114	0.062(329)	0.040
40	0.792	0.439	0.306	0.211	0.161	0.084	0.052
50	1.154(53")	0.638	0.462	0.304	0.219	0.111	• • •
70	1.812	1.172	0.869	0.572	0.390	o. 188	0.082
80	• • •	1.513	1.190		0.500	0.231	• • •
90					0.649	0.297	• • •

SOLUBILITY OF POTASSIUM MANGANATE IN AQUEOUS SOLUTIONS OF POTASSIUM HYDROXIDE. (Sackur and Taegener, 1912.)

(The K_2MnO_4 was prepared by boiling $KMnO_4$ with very conc. KOH, draining by suction and washing with ice cold K_2CO_2 solution. The impurities were of no consequence since the determinations were made in alkaline solutions.)

Mols.	K ₂ Mn	O ₄ per	Liter	in:
-------	-------------------	--------------------	-------	-----

ť.	2 % KOH.	4 * KOH.	6 * KOH.	8 s KOH.	10 # KOH.				
0	0.907	0.554	0.155	o.o63 ·	0.0145				
10	1.013	• • •		0.070	0.0152				
15		0.681 (179	0.224	•••	•••				
20	1.140	0.733 (25°)	0. 261 (23°)	0.078	0.0160				
30	1.252	0.772	0.303	0.096	0.0215				
40	• • •	0.852	0.362	0.119	0.0305				
45	I.424	0.889	0.388						
50	•••	0.938 (519)	•••	0.142	0.0462				
60	• • •	1.003	0.469	0. 167	0.062 (637)				
70	• • •	1.074	0.528	0. 196	0.070				
80		1.143	0.587	0.222	0.083				

100 cc. anhy. hydrazine dissolve 2 gms. KMnO4, with evolution of gas and formation of a brown precipitate, at room temp. (Welsh and Broderson, 1915.)

SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM PERMANGANATE AND POTASSIUM PERCHLORATE AT 7°. POTASSIUM FERCILORGIE G., .
(Muthmann and Kuntze, 1894; recalculated by Fock, 1897.)

Mol. per cent

Milligram Mols. per Liter.		Gms. 1	Gms. per Liter.	
KMnO4.	KClO ₃ .	KMnO ₄ .	KCiO4.	Crystals of Solid Phase.
0	6 3.91	0	8.86	0
29.37	54.48	4.65	7 · 55	2.84
67.73	42.75	10.71	5.93	9.78
79.04	39 · 59	12.50	5.49	10.81
99.81	3 8.63	15.79	5.36	15.9 6
122.24	34 · 39	19.34	4.77	23.56
119.21	38.91	18.84	5.39	24.28
128.08	33 · 77	20.26	4.68	26.40
144.46	33.14	22.86	4 · 59	34.32
167.81	29.53	26.55	4.09	44.42
183.09	25.19	28.97	3.49	67.33
197.82	20. 16	31.30	2.80	77.95
233.75	28.26	36.98	3.92	94 · 37
264.27	0	41.81	0	100

SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM PERMANGANATE AND RUBIDIUM PERMANGANATE AT 7°. (Muthmann and Kuntze, calc. by Fock.)

Milligram Mols. per Liter.		Gms. p	Mol. per cent KMnO4 in		
KMnO4.	RbMnO ₄ .	KMnO ₄ .	RbMnQ4.	Crystals of Solid Phase.	
27.04	22.69	4. 28	4.64	3.50	
75	22.22	11.84	4 · 54	13.75	
120.26	31.29	19.03	6.40	34.29	
188.30	38.98	29.80	7 · 97	71.45	
198.36	41.29	31.39	8.44	92.50	
205.76	42.50	32.56	8.69	99.47	
225.12	26	35.61	5.32	99.32	
264.27	0	41.81	0	100	

POTASSIUM PICRATE C₆H₂(NO₂)₂OK.

Data for the solubility of potassium picrate in aqueous solutions of ethyl alcohol, methyl alcohol and of acetone at 25° are given by Fisher (1914).

POTASSIUM PHOSPHATES

SOLUBILITY OF POTASSIUM ACID PHOSPHATE, KH2PO4.H3PO4, IN WATER. (Parravano and Mieli, 1908.)

Determinations by Synthetic (sealed tube) Method.

t.	Gms. KH ₂ PO ₄ .H ₂ PO ₄ per 100 Gms. Sat. Sol.	Solid Phase.	ť.	Gms. KH ₂ PO ₄ .H ₃ PO ₄ per 100 Gms. Sat. Sol.	Solid Phase.
-0 .6	3.337	Ice	65.2	68.44	KH ₂ PO ₄
-2.5	12.13	u	7 8	72.43	"
-6.7	29.43	, 44	87.5	77.6	"
- 9.2	36.98	u	105.5	85.9	"
-13 Eutec.	44	" +KH2PO4	120 tr. pt.	92. I	" +KH ₂ PO ₄ .H ₄ PO ₄
o (?)	45.8	KH ₂ PO ₄	135	96. I	KH2PO4.H2PO4
+10.9	50.3	"	139	100	

One liter of sat. aq. solution contains 249.9 gms. KH₂PO₄ at 7°. (Muthmann and Kuntze, 1894.)

SOLUBILITY OF POTASSIUM ACID PHOSPHATE, KH₂PO₄, IN ANHYDROUS PHOSPHORIC ACID.

(Parravano and Mieli, 1908.)

Determinations by Synthetic (sealed tube) Method.

· ••.	Gms. per 100 Gms. Sat. Solution.				
• .	KH ₂ PO ₄ .H ₂ PO ₄ =	KH.PO.			
38.5	18.17	10.56			
84	58.42	33 · 97			
IIO	77.53	45.08			
126.5	92.26	51.90			

Equilibrium in the System Potassium Hydroxide, Phosphoric Acid, Water at 25° .

(D'Ans and Schreiner, 1910a; Parker, 1914.)

The results of these investigators agree satisfactorily when plotted on cross-section paper. The following figures were read from the curves. Some uncertainty exists in regard to the solid phase in contact with some of the solutions.

Mols. per rooo Gms. Sat. Sol. K. PO ₄ .		ol. Solid Phase.	Mols. per 1000	ol. e.	Solid Phase.		
		- Soud Phase.	K.	PO ₄ .		HILL LIMES	•
9.62	0	KOH.2H ₄ O	7	4	K,	PO ₄ +K ₆ E	IPO4
9.76	0.24	" +K,PO4.3H4O	6	3.6	K ₂ HPC) ₄	
9.15	0.5	K ₂ PO ₄ .3H ₂ O	5	3.15	**		
8.2	I	4	4	2.65	66	or KH ₂ F	(?) ₄ O
7 · 5	1.5	"	3	2.2	"	**	(?)
8.2	2	u	2	1.7	**	"	(?)
7 · 5	2.5	"	1.5	1.5	**	"	(?)
8.8	2.9	и .	1.6	2	KH ₂ F	O ₄	
9.7	2.9	" +K ₄ PO ₄	2.I	4	"		
9.5	3	K ₄ PO ₄	2.5	6	**		
8.5	3.4	er e	3	8	44		
8	3.6	44	1.65	6	KH ₂ PC	4.H ₄ PO ₄ (Parker)
7 · 5	3.75	44	1.35	8		"	u :

Fusion-point data for KPO₃ + K₄P₂O₇ are given by Parravano and Calcagni (1908, 1910).

POTASSIUM HYPOPHOSPHATE, etc.

SOLUBILITY IN WATER. (Salzer — Liebig's Ann. 211, 1, 82.)

(Salzer — Liebig's Ann. 211, 1, 82.)								
Gms. Sa Salt. Formula. Gms								
			Cold.	Hot.				
Potassium	Hypophosphate	K,P,O,.8H,O	400					
"	Hydrogen Hypophosphate	K,HP,O,3H,O	200	• • •				
"	Di Hydrogen Hypophosphate	K ₂ H ₂ P ₂ O ₆ .3H ₂ O	33 66.6	100				
"	Tri Hydrogen Hypophosphate	KH,P,O,		200				
"	Penta Hydrogen Hypophosphate	e K ₃ H ₅ (P ₂ O ₆) ₃ .2H ₂ (O 40	125				
**	Hydrogen Phosphite	KH,PO,	172 (20°)					
66	Hypophosphite	KH,PO,	200 (25°)	333				
4	Hypophosphite	KH,PO,*	14. 3 (25°)	28				
	• Solvent ale	cohol.						

POTASSIUM PHOSPHOMOLYBDATE K,PO4.11MoO3.13H2O.

100 gms. H₂O dissolve 0.0007 gm. at 30°. 100 gms. aqueous 10% HNO₃ dissolve 0.204 gm. at 30°. (Donk, M. G., 1905.)

POTASSIUM SELENATE K2SeO4.

SOLUBILITY IN WATER.

t*.		-5°.			97°•
Gms. K ₂ SeO ₄ per 100 gms. solution	51.5	51.7	52	52.6	54.9
100 gms. H ₂ O dissolve 115 gms. K ₂ SeO	4 at 12°.				ard, 1894.) ton, 1907.)

POTASSIUM SILICATE K.SiO.

Data for equilibrium in the systems $K_3SiO_3 + H_3O$, $K_3Si_2O_5 + H_3O$, $K_4SiO_5 + SiO_3$, $SiO_2 + H_3O$ and $K_3SiO_3 + SiO_2 + H_3O$, at temperatures between 200° and 1000° +, determined by the "hydrothermal quenching method," are given by Morey (1917).

POTASSIUM STANNATE K₂SnO_{3.3}H₂O.

100 gms. H_2O dissolve 106.6 gms. at 10°, and 110.5 gms. at 20°. Sp. Gr. at 10° = 1.618 at 20° = 1.627. (Ordway, 1865.)

POTASSIUM SULFATE K.SO.

SOLUBILITY IN WATER.

(Mulder; Andrae, 1884; Trevor, 1891; Tilden and Shenstone, 1884; Berkeley, 1904; see also Etard, 1894.)

t°.	Gms. K ₂ SO ₄ per 100 Gms.		t°.	Gms. K ₂ SO ₄ per 100 Gms.		t°.	Gms. K ₂ SO ₄ per 100 Gms.	
• .	Water.	Solution.	• .	Water.	Solution.	• .	Water.	Solution.
0	7 · 35	6.85	40	14.76	12.86	90	22.8	18.57
10	9.22	8.44	50	16.50	14.16	001	24.I	19.42
20	II.II	10	60	18.17	15.38	120	26.5	20.94
25	12.04	10.75	70	19.75	16.49	143	28.8	22.36
30	12.97	11.48	80	21.4	17.63	170	32.9	24.76

Sp. Gr. of solution saturated at 18° = 1.083.

The determinations of Berkeley (1904), which were made with exceptional care, are as follows:

t*.	Sp. Gr. of Sat. Solution.	Gms. K ₂ SO ₄ per 100 Gms. H ₂ O.	t.	Sp. Gr. of Sat. Solution.	Gms. K ₂ SO ₄ per 100 Gms. H ₂ O.
0.40	1.0589	7 - 47	58.95	1.1089	18.01
15.70	1.0770	10.37	74.85	1.1157	20.64
31.45	1.0921	13.34	89.70	1.1194	22.80
42.75	1.1010	15.51	101.1 b. pt.	1.1207	24.21

Individual determination in good agreement with the above, are given by Le-Blanc and Schmandt (1911); Greenish and Smith (1901); Osaka (1903-8); Nacken (1910); Smith and Ball (1917).

SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM SULFATE AND AMMONIUM SULFATE AT 25°. (Fock, 1897.)

Grams per Liter.		Milligram 1	Milligram Mols. per Liter.		Sp. Gr.	Mol. per cent			
	K ₂ SO ₄ .	(NH ₄) ₂ SO ₄ .	K ₂ SO ₄ .	(NH ₄) ₂ SO ₄ .	K ₂ SO ₄ in Solution.	ot Solution.	Mol. per cent K ₂ SO ₄ in Solid Phase.		
	127.9	0.0	734	0.0	100	1.086	100		
	135.7	115.7	778.5	874.6	47 · I	1.149	91.28		
	84 . 20	281 . 1	483	2126	18.5	I . 200	80.05		
	59.28	355.0	340	2685	11.13	I . 226	68.63		
	40.27	482 . 7	231	36 5 0	5.98	1 . 246	27.53		
	0.00	542.3	0.0	4100	0.00	1.245	0.00		

Results are also given for 14°, 15°, 16°, 30°, 46°, and 47°.

SOLUBILITY OF POTASSIUM SULFATE IN AQUEOUS AMMONIA SOLUTIONS AT 20°. (Girard, 1885.)

Gms. NH₃ per 100 cc. solution 0 6.086 15.37 24.69 31.02 Gms. K₂SO₄ per 100 cc. solution 10.80 4.10 0.83 0.14 0.04

One liter sat. solution in water contains 105.7 gms. K₃SO₄ at 20°. One liter sat. solution in 5.2% NH₃ contains 45.2 gms. K₃SO₄ at 20°. (Konowalow, 1899b.)

SOLUBILITY DATA FOR THE RECIPROCAL SALT PAIR K₃SO₄ + BaCO₃ ⇒ K₂CO₃ + BaSO₄. (Meyerhoffer, 1905.)

ť.	Gms. per 100 Gms. Sat. Sol.		Solid Phase.	ť.	Gms. per 100 Gms. Sat. Sol.		Solid Phase.	
	K ₄ SO ₄ .	K,CO,			K.SO.	K ₂ CO ₃ .		
25	10.76	0	$K_4SO_4+BaSO_4$	25	0.602	7 · 35	BaCO ₂ +BaSO ₄	
25	6.76	5.85	u 4	25	0.173	2.85	44	
25	3.92	12.6	u u	80	0.613	2.49	44	
25	2.485	17.81	" +BaCO ₃	80	1.39	4.88	••	
25	1.72	22.I	K ₀ SO ₄ +BaCO ₀	80	7.1	15.33	"+ K _{\$} SO ₄	
25	o.o886	28.5	44 44	100	0.797	2.36	BaCO ₂ +BaSO ₄	
25	0.023	53.1	" +K ₂ CO ₃₋₂ H ₂ O	100	1.83	4.51	a 4	
25	0	53.2	K ₂ CO ₃ .2H ₂ O+BaCO ₃	100	9.42	13.6	" +K ₆ SO ₄	

SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM COPPER SULFATE AND AMMONIUM COPPER SULFATE IN WATER.

CusO, K-SO, 6H-O and CuSO, (NH.)-SO, 6H-O at 129-149

782004-0118C	Janu Cu	204(11114) 8	304.01190	at 13 -14 .	Ų.	rock, 1897.)
∞ Mols.			H	о.	Mol. per cer	
NH, Salt.	in Solution.	in Solid.	K Salt.	NH Salt.	in Solution.	jin Solid.
1.035	0	0	0.2946	0.5096	36.63	58. 20
o.8618	•	0.	0.3339	0.3319	50.15	75.34
o.649 o	16.76	33.05	0.4560	0.1961	69.93	83.86
0.5887	30.40	46.22	0.4374	0	100	100
	Mols. NH, Salt. 1.035 0.8618	Mol. per ce in Solution. 1.035 0 0.8618 5.06 0.6490 16.76	Mol. per cent K Salt. NH4 Salt. I .035 0 0 0 .8618 5 .06 10 .34 0 .6490 16 .76 33 .05	Mols. Mol. per cent K Salt. Mols. per H	In Solution. in Solid. NH, Salt. in Solution. in Solid. 1.035 0 0 0.2946 0.5096 0.8618 5.06 10.34 0.3339 0.3319 0.6490 16.76 33.05 0.4560 0.1961	Mol. per cent K Salt. Mol. per cent K Salt. Mols. per roo Mols. Mol. per cent Mols. Mols. per roo Mols. Mols. per roo Mols. Mol. per cent Mols. Mol. per cent Mols. Mol. per cent Mols. Mols. per roo Mols. Mol. per cent Mols. Mols. per roo Mols. </td

SOLUBILITY OF SOME POTASSIUM DOUBLE SULFATES IN WATER AT 25°. (Locke, 1902.)

ם	ouble Salt.		Formula.	Gms. Anhydrous Salt per 100 Gms. H ₂ O.
Potassium	Cobalt	Sulfate	$K_2Co(SO_4)_2.6H_2O$	12.88
"	Copper	"	K ₂ Cu(SO ₄) ₂ .6H ₂ O	11.6g
"	Nickel	"	K ₂ Ni(SO ₄) ₂ .6H ₂ O	6.88
"	Zinc	"	$K_2Zn(SO_4)_2.6H_2O$	13.10

SOLUBILITY OF POTASSIUM NICKEL SULFATE AND ALSO OF POTASSIUM ZINC SULFATE IN WATER, EACH SEPARATELY DETERMINED AT DIFFERENT TEMPERATURES.

	Gms. per 10	o Gms. H ₂ O.		Gms. per 100 Gms. H ₂ O.		
r.	K ₂ Ni(SO ₂) ₂ .6H ₂ O.	K ₂ Zn(SO ₄) ₂ .6H ₂ O.	t.	K ₂ Ni(SO ₂) ₂ .6H ₂ O.	K ₂ Z _n (SO ₂), .6H ₂ O.	
0	6	13	40	23	45	
10	9	19	50	28	56	
20	14	26	60	35	72	
25	16	30	70	43	88	
30	18	35	•			

SOLUBILITY OF THE THREE HYDRATES OF POTASSIUM FERROSULFATE IN WATER AT DIFFERENT TEMPERATURES. (Küster and Thiel, 1899.)

	K ₂ SO ₄ .FeSO _{4.6} H ₂ O.		K ₂ SO ₄ .FeS	K ₂ SO ₄ .FeSO _{4.4} H ₂ O.		K ₂ SO ₄ .FeSO _{4.2} H ₂ O.	
\$* .	cc. N/10 K.MnO ₄ per 2cc. Solution.	Gms. K ₂ SO ₄ .FeSO ₄ per 100 cc. Sol.	cc. N/10 KMnO4 per 2 cc. Solution.	Gms. K ₂ SO ₄ .FeSO ₄ per 100 cc. Sol.	cc. N/10 K.Mn per 2 cc. Solution.	O ₄ Gms. K ₂ SO .FeSO ₄ per 100 cc. Sol.	
0.5	12.4	18.36	15.5	22.94	15.4	22.79	
17.2	17.0	25.16	18.1	26.79	21.6	31.98	
40. I	24.8	36.72	21.9	32.41	27.6	40.86	
60	29.0	42.93	24 · I	35 . 68	28.8	42.63	
80	3o.6	45.29	27 3	40.46	28.6	42 - 34	
90	• • •	• • •	29.6	43 .82	28.9	42 - 73	
95	• • •	• • •	29.8	44.11	27 . 7	41 .OE	

SOLUBILITY OF MIXTURES OF POTASSIUM AND LEAD SULFATES AND OF POTASSIUM AND STRONTIUM SULFATES IN WATER.

(Baire, 1909.)

Results for K-SO. + PhSO.

Results for K ₄ SO ₄ + PbSO ₄ .			Re	Results for K ₂ SO ₄ + SrSO ₄ .			
t.	Gms. K ₂ SO ₄ per 100 Gms. Sat. Sol.	Solid Phase.	t°.	Gms. K ₄ SO ₄ per 100 Gms. Sat. Sol.	Solid Phase.		
7	0.56	PbSO ₄ .K ₂ SO ₄	17.5	1.27	K ₂ SO ₄ .SrSO ₄ +SrSO ₆		
17	0.62		50	1.88	"		
50	1.09	u	75	2.71	•		
75	1.37	e	100	3.90			
100	1.60	44		- •			

SOLUBILITY OF POTASSIUM SULFATE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE, BROMIDE, AND IODIDE.
(Blarez, 1891.)

Interpolated from the original results.

Grams Halogen	Grams K ₂ SO ₄ per 100 cc. in Aq. Solutions of:					
Salt per 100 cc. Solution.	KCl at 12.5°.	KBr at 14°.	KI at 12.5°.			
0	9.9	10.16	9.9			
2	8.3	9.1	9.2			
4	7.0	8.2	8.4			
6	5 · 7	7 · 4	7 · 7			
8	4.6	6.6	7.2			
IO	3.5	6.0	6.6			
12	•••	5 · 5	6.0			

SOLUBILITY OF POTASSIUM SULFATE IN AQUEOUS SOLUTIONS OF POTASSIUM HYDROXIDE AT 25°. (D'Ans and Schreiner, 1910.)

	roco Gms. colution.	Gms. per Sat. So	100 Gms. lution.	Mols. per Sat. S	1000 Gms. plution.	Gms. per i Sat. Sol	oo Gms. ution.
(KOH) ₂ .	K ₂ SO ₄ .	KOH.	K ₂ SO ₄ .	(KOH) ₃ .	K ₂ SO ₄ .	KOH.	K ₁ SO ₄ .
0	0.617	0	10.75	2.86	0.035	32.06	0.61
0.258	0.433	2.892	7 · 544	3.42	0.009	38.33	0.16
0.433	0.280	4.854	4.878	4.809	0	53·5I	0
1.13	0.137	12.67	2.386				

SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM SULFATE AND POTASSIUM CHROMATE AT 25° (Fock, 1897.)

Milligram 1	Mols. per Liter.	Grams p	er Liter.	Mol. per cent	Sp. Gr. of	Mol. per cent
K ₂ SO ₄ .	K2CrO4.	K ₂ SO ₄ .	K ₃ CrO ₄ .	Mol. per cent K ₂ SO ₄ in Solution.	Solution.	Mol. per cent K ₂ SO ₄ in Solid Phase.
618.1	0.0	107.7	0.00	100.0	1.083	100.0
608.4	103	106.0	20.02	85.51	1.092	99.65
341.0	691.8	59 . 46	134.5	33.01	1.141	97 - 30
174.8	1496.0	30 - 47	290.5	10.50	1.231	91.97
110.7	2523	19.30	490.5	4.21	1.356	28.43
100.6	2687	17.54	522.3	3.60	I . 377	2.41
0.0	2847	0.0	553·5	0.00	1.398	0.00
734.0	0.0	127.9	0.0	100.0	1.0863	100.0
617.0	103.4	107.6	20 · I	85 . 65	1.0934	99.78
463	452.7	80.72	88.0	55 · 55	1.1235	98.49
279	948.2	48.64	184.4	22.72	1.1700	· 96.07
153	1469	26.68	285.6	9.41	1.2255	85 . 7 7
296	2681	51.61	521.2	21.09	I.3688	25·73
0.0	2715	0.00	527.8	0.00	1.3781	0.00

SOLUBILITY OF POTASSIUM SODIUM SULFATES IN WATER.

Double Salt.	t°.	Gms. per 100 Gms. H ₂ O.	Authority.
3K2SO4.Na2SO4	103.5	40.8	(Penny, 1855.)
5K2SO4.Na2SO4	4 · 4	9.2	(Gladstone, 1854.)
"	12.7	10.1	
"	100	25	

SOLUBILITY OF POTASSIUM SULFATE IN AQUEOUS SOLUTIONS OF SODIUM SULFATE.

Results at 34° and at 60°.

Results at 25°.

(Smith a	nd Ball, 1917.)	•		(Nacken,	1910.)	
	100 Gms. I ₂ O.	Gms. per 100 Gms. Sat. Sol. at 34°. Gms. per 100 Gms. Sat. Sol. at 60°.		Solid Phase at 34° and at 60°.		
Na ₂ SO ₄ .	K ₂ SO ₄ .	Na ₂ SO ₄ .	K ₂ SO ₄ .	Na ₂ SO ₄ .	K ₄ SO ₄ .	at 34 and at 00.
0	12.05	0	11.9	0	15.3	K ₄ SO ₄
1.78	12.33	7.1	10.7	6.6	13.9	" +Glaserite
3.58	12.65	31.4	4.3	27.I	8.2	Na ₂ SO ₄ +Mix crystals
5.38 .	12.89	33.1	o	31.3	0	Na ₂ SO ₄
7.19	13.12					

Additional data for the above system at 15°, 25°, 40°, 50°, 60°, 70° and 80° are given by Okada (1914). The results show that potassium and sodium sulfates form a double salt of the composition $K_2Na(SO_4)_2$. This double salt dissolves sodium sulfate as a solid solution but not potassium sulfate.

SOLUBILITY OF POTASSIUM SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 185.
(Stortenbecker, 1902.)

Mols. per 100 Mols. K ₂ SO ₄ +H ₂ SO ₄ +H ₂ O.		Solid Phase.	Mols. per 100 Mols. K ₂ SO ₄ +H ₂ SO ₄ +H ₂ O.		Solid Phase.
K,SO4.	H ₂ SO ₄ .		K ₂ SO ₄ .	H ₂ SO ₄ .	
1.10	0	K ₂ SO ₄	2.80	5.79	K ₂ SO ₄₋₃ KHSO ₄
1.59	0.95	"	2.61	5.61	KaSO4.6KHSO4
2.49	2.70	"	2.25	6. 19	" +KHSO
2.75	3.17	K ₂ SO ₄ .KHSO ₄	1.08	7.94	KHSO ₄
2.75	3.74	4	0.77	9.2	u
2.83	5.08	44	0.44	22.7	"

SOLUBILITY OF POTASSIUM SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 0°. (D'Ans, 1909a.)

Mols. per 1000 Gms. Sat. Sol.		Solid Phase.	Mols. per Sat.	Solid Phase.	
K,SO4.	H ₂ SO ₄ .		K ₂ SO ₄ .	H ₂ SO ₄ .	
0.53	0.37	K ₄ SO ₄	0.61	2.12	K_a+K_b
0.64	0.75	44	0.54	2.29	K _b
0.74	1.08	" +K.H(SO.).	0.53	2.30	" +KHSO4
0.73	1.13	K,H(SO),	0.43	2.48	KHSO ₄
0.71	1.44	44	0.28	3.04	46
0.69	1.66	u	0.12	4.43	u
0.69	1.88	" +Ka	0.09	5.27	44

K₄ and K₅ are acid sulfates between K₄H(SO₄)₂ and KHSO₄. Their compositions were not determined.

Solubility of Potassium Sulfate in Aqueous Solutions of Sulfuric Acid at ${\bf 25}^{\circ}.$

(D'Ans, 1909a, 1913; see also Herz, 1911-12.)

Mols. per 1000 Gms. Sat. Sol.				r 1000 Gms. t. Sol.	Solid Phase.
K ₂ SO ₄ .	H ₂ SO ₄ .		K ₂ SO ₄ .	H ₂ SO ₄ +SO ₃	
I.27	1.31	$K_2SO_4+K_4H(SO_4)_2$	0.250	8. 10	KH ₂ (SO ₄) ₂ .H ₂ O
1.33	1.99	K.H(SO.).+Ky	0.352	8.15	44
I. 24	2.03	Ky	0.364	8. 16	" +KH ₂ (SO ₂),
1.13	2.17	u ·	0.341	8. 29	KH ₂ (SO ₂) ₂
1.04	2.35	" +KHSO.	0.322	8.33	"
1.032	2.345	KHSO4	0.325	8.45	u
0.67	2.83	и	0.346	6.62	"
0.22	4.13	4	0.384	8.57	"
0.15	5.36	4	0.412	8.71	u
J. 1.	3.30		0.583	8.82	u
K ₂ SO ₄ .	H ₂ SO ₄ +SO ₂ .		0.880	8.65	" +KHS ₂ O ₇
0.171	6.42	KHSO ₄	0.800	8.63	KHS ₂ O ₇ (unstable)
0.190	6.60	"	0.882	8.70	u
0.266	6.gr	" +KH ₂ (SO ₂) ₂ .H ₂ O	0.561	8.96	et
0. 182	7.26	1 million partie	0.365	9.80	ee
0.157	7.62		0.43	9.78	u
0. 167	7.88		0.665	9.80	"
0.201	8		0.937	9.66	4

K_y = an acid sulfate between K₄H(SO₄)₂ and KHSO₄ of which the exact composition was not determined.

SOLUBILITY OF POTASSIUM SULFATE IN AQUEOUS ALCOHOL.
(Gerardin, 1865; Schiff, 1861.)

In Aq. Alcohol of 0.939 Sp. Gr. = 40 Wt. %.		In Alcohol of Different Strengths at 15°.		
t°.	Gms. K ₂ SO ₄ per 100 Gms. Alcohol.	Weight per cent Alcohol.	Gms. K ₂ SO ₄ per 100 Gms. Sat. Sol.	
40	0.16	10	3.90	
80	0.21	20	1.46	
60	0.92	30	0.56	
		40	0.21	

SOLUBILITY OF POTASSIUM SULFATE IN AQUEOUS ALCOHOL AT 25°. (Fox and Gauge, 1910.)

Gms. per 100 Gms. Sat. Solution.			Gms. per 100 Gms. Sat. Solution.		
K ₂ SO ₄ .	C ₂ H ₂ OH.	H ₂ O.	K.SO.	C.H.OH.	H ₂ O.
9.17	1.35	89.48	2.66	15.26	82.08
6.90	4.80	88 . 3 0	1.83	20.50	77.67
4.96	7.80	87 . 24	0.97	26.91	72.12
4.32	9.70	85.98	0.41	35.97	63.62
3·5 7	12.34	84.09	0.22	43.90	55.88
2.71	14.51	82.78	0.016	69.26	30.72

SOLUBILITY OF POTASSIUM SULFATE AT 25° (Fox and Gauge, 1910.) IN: Aqueous Chloral Hydrate Solutions. Aqueous Glycerol Solutions.

Gms. p	Gms. per roo Gms. Sat. Solution.			Gms. per 100 Gms. Sat. Solution.		
K ₂ SO ₄ .	CCl ₂ CH(OH) ₂ .	H ₂ O.	K ₂ SO ₄ .	(СН2ОН)2СНОН.	H₂O.	
9.13	6.44	84.43	8.87	8.96	82.17	
8.41	9.09	82.50	7.69	13.36	78.95	
7 · 79	12.38	79.83	6.47	20.34	73.19	
7.31	13.20	79 - 49	5.83	24.15	70.02	
5.88	22.07	72.05	4.44	33 · 73	61.83	
4 · 54	33.15	62.31	3.65	40.40	55.95	
3.36	44 . 40	52.24	3.38	43 · 52	53.10	
2.92	47 . 30	49.78	2.69	50.18	47.13	
2	62.82	35.18	2.07	57.22	40.71	
1.75	70.28	27.97	1.53	67.94	30.53	
1.40	80.36	18.24	0.98	78.18	20.84	
1.08	85.26	13.66	0.73	98.28	0.99	

SOLUBILITY OF POTASSIUM SULFATE AT 25° (For and Gauge, 1910.) IN: Aqueous Acetone Solutions. Aqueous Pyridine Solutions. Green per 100 Green Set Solution.

Gms. per 100 Gms. Sat. Solution.			Gms. per 100 Gms. Sat. Solution.		
K.SO4.	(CH ₂)2CO.	H _r O.	K,SO4.	CH < (CH.CH)2>N.	H ₂ O.
7.20	4.92	87.88	7.95	4.23	87.82
5.02	10.06	84.92	4.77	13.90	81.33
2.96	16.23	80.8 _I	2.75	24.51	72.74
1.50	24.31	74.19	I.47	34.19	64.34
0.47	37.19	62.34	0.45	46.29	53.26
0.20	46.29	53·5I	0.12	55.93	43.95
0.03	62.40	37.57	0.006	75.90	24.09

Aqueous Ethylene Glycol Solutions.

SOLUBILITY OF POTASSIUM SULFATE AT 25° (Fox and Gauge, 1910.) IN:

Aqueous Mannitol Solutions.

raqueous i	stryicute Gryce	n boiletions.	riqueous mammen contact			
Gms. p	per 100 Gms. Sat. S	olution.	Gms.	per 100 Gms. Sat. Solu	Solution.	
K _e SO ₄ .	(CH ₂ OH) ₂ .	H ₂ O.	K ₂ SO ₄ .	(CHOH)4(CH4OH)2.	H _t O.	
9.67	3.16	87.17	10.32	3.20	86.48	
7.69	9.79	82.53	9.61	8.35	82.04	
5.74	18.47	75 - 79	9.19	11.26	79.55	
3.57	32.11	64.32	8.66	14.30	77.04	
1.83	49.03	49.14	8.35	17.22	74 - 43	

SOLUBILITY OF POTASSIUM SULFATE AT 25° IN:

Aq.	Sucrose Solutions. ox and Gauge, 1910.)		Aq. Pota	Solutions.	
Gms. p	er 100 Gms. Sat. S	Solution.	Gms. per 100 Gms. Sat. Solution		
K,SO4.	C ₂₂ H ₂₂ O _{1;} .	H₂O.	K ₂ SO ₄ .	CH4COOK.	H _r O.
9.65	9.56	80.79	6.65	6.11	87.24
8.65	18.55	72.80	5.09	8.68	86.23
7.42	28.16	64.42	3.99	11.29	84.72
6.35	37 - 24	56.41	2.35	15.59	82.06
5.21	47 · 55	47.24	1.23	20.12	78.65
4.24	57	38.76	0.39	29.95	69.66
100 gms. gl	ycerol of $d = 1$.	255 dissolve 1.3	316 gms. K ₂ SO ₄	at ord. temp.	(Vogel, 1867.)

SOLUBILITY OF POTASSIUM SULFATE IN AQUEOUS ACETIC ACID AND IN

AQUEOUS PHENOL S	OLUTIONS AT 25°.				
(Rothmund and Wilsmore, 1902.)					
In Ag. Acetic Acid.	In Ac. Phenol.				

In Ind. House Hore.				in riq. i henor.			
Mols. pe	r Liter.	Grams per	r Liter.	Mols. per Li	ter.	Grams pe	r Liter.
CH ₂ COOH.	K ₂ SO ₄ .	снясоон.	K ₂ SO ₄ .	C ₆ H ₅ OH.	K₂SO₄.	C ₆ H ₅ OH.	K,SO.
0.0	0.6714	0.0	117.0	0.0	0.6714	0.0	117.0
0.07	0.6619	4.2	115.4	0.032	0.6598	3.01	115.0
0.137	0.6559	8.22	114.4	0.064	0.6502	6.02	113.3
0.328	0.6350	19.68	8.011	0.127	0.6310	11.94	110.0
0.578	0.6097	34.68	106.3	0.236	0.6042	22.19	105.3
1.151	0.5556	69.06	96.87	o . 308	0.5834	28.97	101.7
2.183	0.4743	128.58	82.70	0.409	0.5572	38.46	97.2
				0.464	0.5480	43.63	95.5
				0.498 (sat.)	0.5377	46.82	93.8

100 gms. water dissolve 10.4 gms. K₃SO₄ + 219 gms. sugar at 31.25°, or 100 gms. sat. solution contain 3.18 gms. K₃SO₄ + 66.74 gms. sugar. (&\text{Schler}, 1897.)
100 gms. 95% formic acid dissolve 36.5 gms. K₃SO₄ at 21°. (Aschan, 1913.)
100 gms. 95% formic acid dissolve 14.6 gms. KHSO₄ at 19.3°.
100 cc. anhydrous hydrazine dissolve 5 gms. K₃SO₄ at room temp. (Welsh and Broderson, 1915.)
(Welsh and Broderson, 1915.)

100 gms. hydroxylamine dissolve 3.5 gms. K4SO4 at 17-18°. (de Bruyn, 1892.)

FREEZING-POINT DATA (Solubility, see footnote, p. 1) ARE GIVEN FOR THE FOLLOWING MIXTURES:

 $K_4SO_4 + K_2WO_4$ (Amadori, 1913.) + Ag₂SO₄. (Nacken, 1907b.) + NaCl. + Na.SO4. (Sackur, 1911-12.) (Jaenecke, 1908; Nacken, 1907 (b) (c); Sackur, 1911-12). + SrSO4. (Grahmann, 1913; Calcagni, 1912, 1912a.)

POTASSIUM BISULFATE KHSO4.

SOLUBILITY IN WATER. (Kremers, 1854.)

t°.	o°.	. 20°.	40°.	100°.
Gms. KHSO4 per 100 gms. H ₂ O	36.3	51.4	67.3	121.6
See also p. 560.				

POTASSIUM PerSULFATE K.S.O.

SOLUBILITY IN WATER. (Tarugi, 1904.)

ť.	Gms. K ₂ S ₂ O ₈ per 100 cc. Sat. Sol.	t°.	Gms. K ₀ S ₂ O ₅ per 100 cc. Sat. Sol.	ť.	Gms. K ₂ S ₂ O ₂ per 100 cc. Sat. Sol.
0	1.620	15	3.140(3.7)	30	7.190(7.7)
5	2.156	20	4.490	35	8.540
10	2.600	25	5.840	40	9.890

The results in parentheses are the averages of a large number of determinations by Pajetta (1906). This investigator employed constant agitation for various lengths of time. Tarugi approached equilibrium from above as well as below but stirred the solutions only at intervals. The determination of the dissolved persulfate was made by boiling a measured volume of the clear saturated solution for 20 min. and titrating the H_2SO_4 liberated, according to the equation $K_2S_2O_8 + H_2O = K_2SO_4 + H_2SO_4 + O$. Tarugi also reports that the presence of a number of sodium and other salts in solution, does not appreciably alter the solubility of $K_2S_2O_8$ in water.

100 gms. H₂O dissolve 1.77 gms. K₂S₂O₈ at o°.

(Marshall, 1891.)

SOLUBILITY OF POTASSIUM PERSULFATE IN SATURATED AQUEOUS SALT SOLUTIONS AT 12°. (Pajetta, 1906.)

(An excess of the salt and of $K_2S_2O_8$ was, in each case, added to water and the mixture stirred at constant temperature for 10 to 20 hours.)

Salt.	Gms. K ₂ S ₇ O ₃ per roo Gms. Sat. Sol.	Salt.	Gms. K ₂ S ₂ O ₃ per 100 Gms. Sat. Sol.
Water alone	3.196	K ₂ SO ₄	0.798
Na ₂ SO ₄ .10H ₂ O	6.238	KHSO ₄	0.336
NaHSO ₄	8.842	KNO ₃	0.904
Na ₂ HPO ₄ .12H ₂ O	4.766	K ₂ CO ₃	0.0146
$Na_2B_4O_7$. 10 H_2O	3.825	KHCO ₃	0.317
NaNO ₃	19.302	MgSO ₄ .7H ₂ O	2.990
Na_2CO_3 . 10 H_2O	5.682	CaSO _{4.2} H ₂ O	3.384
NaHCO ₂	5.042		

Additional determinations made with salt solutions of lower concentrations than saturation, gave the following results at 12.5°.

Salt.	Gms. Salt per 100 Gms. H-O.	Gms. K ₂ S ₂ O ₈ per 100 Gms. Sat. Sol.	Salt.	Gms. Salt per 100 Gms. H ₂ O.	Gms. K ₂ S ₂ O ₃ per 100 Gms. Sat. Sol.
Na ₂ CO ₈	2.304	4.297	NaHSO ₄	5.218	4.556
NaHCO ₃	3.652	4.230	NaNO ₃	3.696	4.613
$Na_2SO_4.10H_2O$	7	4.554	Na ₂ HPO ₄	3.086	4.446

POTASSIUM Ethyl SULFATE K(C2H5)SO4.

SOLUBILITY IN WATER. (Illingworth and Howard, 1884.)

4° .	Gms. K(C ₂ H ₄)SO ₄ per 100 Gms.
••	Sat. Sol.
-14.2	45.01
0	53.71
+15	62.35

SOLUBILITY OF POTASSIUM ETHYL SULFATE, POTASSIUM METHYL SULFATE AND OF POTASSIUM AMYL SULFATE IN WATER, DETERMINED BY THE FREEZING-POINT METHOD. (Illingworth and Howard, 1884.)

Results for $K(C_2H_4)SO_4$ Results for $K(CH_4)SO_4$ Results for $K(C_4H_{11})SO_4$ + H_4O . Results for $K(C_4H_{11})SO_4$

t°. of Solidifi- cation.	Gms. (C ₂ H ₂)S per 100 Gms. So	SO ₄ Solid b Phase.	t° of Solidifi- cation.	Gms. K(CH ₂)So per 100 Gms. Sol	Phase.	t° of Solidifi- cation.	Gms. C(C _t H ₁₁)S per 100 Gms. Sol	Phase.
- 2.2	10	Ice	- 2.3	10	Ice	- r.g	10 I	ce
	20	"	- 3.6	15	u	- 4.3	20	44
- 8.2	30	"	- 5	20	u	- 5.4		44
-12.1	40	и	- 8	30	44	• •	•	$+K(C_6H_{11})SO_4$
-14.2	45.01	"+K(C,H,)SO	-11.8		" +K(CH ₂)SC	4.8	25	K(C,H1)SO
- 6	50	K(C ₂ H ₄)SO ₄	-11.5	40	K(CH _a)SO ₄	0	33.44	u
0	53.71	"	0	47.I	"	+17.3		"
+15	62.35		+12.3		44		• •	

POTASSIUM Sodium SULFITE KNa₂H(SO₃)_{2.4}H₂O.
100 gms. H₂O dissolve 69 gms. of the salt at 15°.

(Schwicker, 1889.)

POTASSIUM SULFONATES

SOLUBILITY IN WATER.

		Salt.			t°.	Gms. Anhy drous Salt : oo Gms. H	per Authority.
Potassiun	n Napi	hthalene Me	onosulfonate.	H-O	25	8.48*	(Witt, 1915.)
"	2 P	henanthren	e Monosulfon	ate. HO	20	0.273	(Sandquist, 1912.)
"	3	"	46	O ₂ Ho.	20	0.342	44
"	10	"	"	.ıH.O	20	0.84	u
66	o G	uaiacol Sulf	onate (Thioc	ol)	15-20	16.6	(Squire & Caines, 1905.)
				= 1.029	•		

100 cc. 90 vol. % alcohol dissolve 0.25 gm. thiocol at 15°-20°. (Squire and Caines, 1905.)

POTASSIUM SULFIDE K.S.

Fusion-point data for K₂S + S are given by Thomas and Rule (1917).

POTASSIUM Antimony SULFIDE, see Potassium Sulfoantimonate, p. 500.

POTASSIUM TARTRATE (K2C4H4O6)2.H2O.

100 gms. H₂O dissolve 138 gms. K₂C₄H₄O₆ at 16.6°, Sp. Gr. of sat. sol. = 1.49. (Greenish and Smith, 1901.)

POTASSIUM (Bi) TARTRATE (Mono) KHC4H4O4, Cream of Tartar.

SOLUBILITY OF MONO POTASSIUM TARTRATE IN WATER. (Alluard, 1865; Roelofsen, 1894; Blarez, 1891; at 20°, Magnanini, 1901; at 25°, Noyes and Clement, 1894.)

ť.		Gms. KHC ₄ H ₄ O ₄ per 100 Gms. Solution.	t°.	Gms. KF Gm	IC,H ₂ O ₀ s. Soluti	per 100	
0	o. 30 (R.)	0.32 (A.)	o. 35 (B.)	40	0.96	1.3	1.29
10	0.37	0.40	0.42	50	1.25	1.8	1.80
20	0.49	o. 53 (M.)	0.60	60		2.4	
25	o. 58	0.654 (N. and C.)	0.74	80		4.4	
30	0.69	o.g (A.)	0.89	100	• • •	6.5	• • •

SOLUBILITY OF MONO POTASSIUM TARTRATE IN AQUEOUS ALCOHOL AT 25°. (Seidell, 1910.)

		(October)	. 3.0.7		
Wt. % C ₂ H ₂ OH in Solvent	d _{ss} of Sat. Sol.	Gms. KHC ₄ H ₄ O ₆ per 100 Gms. Sat. Sol.	Wt. % C ₂ H ₂ OH in Solvent.	d_{26} of Sat. Sol.	Gms. KHC ₄ H ₄ O ₆ per 100 Gms. Sat. Sol.
Ð	1.002	0.649	50	0.912	0.064
10	0.985	0.358	60	0.890	0.043
20	0.970	0.210	80	0.842	0.023
30	0.953	0.131	92.3	0.807	0.014
40.	0.933	0.087	100	0.789	0.010

unu emi on Mono Pomesseus Te

SOLUBILITY OF MONO POTASSIUM TARTRATE IN AQUEOUS ALCOHOL AT 18°. (Paul, 1917.)

565

Gms. C₂H₅OH per 100 cc. solvent 0 5 8 10 Gms. KHC₄H₄O₆ per liter sat. sol. 4.903 3.58 2.94 2.57

Approximate determinations at other temperatures are given by Roelofsen (1894) and by Wenger (1892).

SOLUBILITY OF MONO POTASSIUM TARTRATE (KHC₄H₄O₆) IN NORMAL SOLUTIONS OF ACIDS AT 20°. (Ostwald; Huecke, 1884.)

Purified tartrate was added in excess to normal solutions of the acids, and, after shaking, clear I cc. portions of each solution were withdrawn and titrated with approximately 0.1 n Ba(OH)₂ solution; I cc. normal acid requiring 10.63 cc. of the Ba(OH)₂ solution.

Acid.	Gms. Acid per 100 cc. Solvent.	cc. N/10 Ba(OH) ₂ per 1 cc. Solution.	Gms. KHC ₄ H ₄ O ₈ per 100 cc. Solution.	Acid.		cc. N/10 Ba(OH) ₂ K per 1 cc. 1 Solution.	
HNO.	б. 31	5·77*	10.21	C ₂ H ₄ SO ₄ H	11.0	5.01*	8.87
HCl	3.65	5.32	9.42	HO.(CH ₂) ₂ SO ₃ H	12.61	5.33	9.43
HBr	8. 10	5.38	9.75	C ₆ H ₅ SO ₃ H	15.81	5.25	9.29
HI	12.80	5.43	9.61	HCOOH	4.60	0.45	0.80
H ₂ SO ₄	4.90	3.97	7.03	CH ₃ COOH	6.∞	0.27	0.48
HCH ₂ SO ₄	11.21	5.58	12.44	CH ₂ ClCOOH	9.45	1.01	1.79
HC,H,SO,		5.41	9.58	C ₂ H ₄ COOH	7.40	0.24	0.42
HC,H,SO,	14.01	5.21	9.22	C ₃ H ₇ COOH	8. 8 1	0.23	0.41

^{*} The figures in this column show the amount of the Ba(OH)₂ solution in excess of that which would have been required by the normal acid solution alone in each case, viz., 70.63 cc. They, therefore, correspond to the amount of KHC₂H₂O₆ dissolved in x cc. of each saturated solution, and when multiplied by x.77give the grams of KHC₂H₂O₆ per roo cc. solution.

SOLUBILITY OF MONO POTASSIUM TARTRATE (KHC₄H₄O₆) IN AQUEOUS SOLUTIONS OF ELECTROLYTES AT 25°. (Noyes and Clement, 1894; Magnanini, 1901.)

Electro-	Gm. Ed Lit	quiv. per er.	Gms Lit	. per er.	Electro-		uiv. per iter.		s. per ter.
lyte.	Electro- lyte.	KHC ₄ H ₄ O ₆ .	Electro- lyte.	KHC ₄ H ₄ O ₄ .	lyte.	Électro- lyte.	KHC, H,O,	Electro- lyte.	KHC, H ₀
KC1	0.025	0.0254	1.86	4.788	CH ₂ COOK	0.05	0.0410	4.91	7.718
"	0.05	0.0196	3.73	3.680	"	0.10	0.0504	9.82	9.486
"	0.10	0.0133	7.46	2.509	"	0.20	0.0634	19.63	11.930
"	0.20	0.0087	14.92	1.636	KHSO4(20°)	0.01	0.0375	1.36	7.06
KClO ₃	0.025	0.0256	3.06	4.821	"	0.02	0.0500	2.72	9.41
"	0.05	0.0197	6.13	3.716	"	0.10	0.1597	13.62	30.06
"	0.10	0.0138	12.2Ğ	2.601	KHC ₂ O ₄ * (20°)	0.01	0.0369	1.28	6.94
"	0.20	0.0097	24.52	1.728	"	0.02	0.0424	2.56	7.98
KBr	0.05	0.0192	5.95	3.699	"	0.10	0.1132	12.82	21.30
"	0.10	0.0134	11.01	2.517	HCl	0.013	0.0367	0.45	6.90
"	0.20	0.0087	23.82	I.620	"	0.025	0.0428	0.01	8. ó 6
KI	0.05	0.0106	8.30	3.687	"	0.050	0.0589	1.82	11.00
"	0.10	0.0132	16.Ğ1	2.492	NaCl	0.05	0.0376	2.02	7.08
"	0.20	0.0086	33.22	1.610	"	0.10	0.0397	5.85	7.48
KNO ₂	0.05	0.0105	5.06	3.676	u	0.20	0.0428	11.70	8.05
"	0.10	0.0136	10.12	2.551	NaClO ₂	0.05	0.0382	5.32	7.18
"	0.20	0.0000	20.24	1.606	"	0.10	0.0405	10.65	7.63
K ₂ SO ₄	0.05	0.0208	4.36	3.921	"	0.20	0.0446	21.30	8.40
46	0.10	0.0147	8.72	2.760			• • • •	-0-	
"	0.20	0.0100	17.44	ı.888					

^{• =} acid potassium oxalate.

POTASSIUM Sodium TARTRATE. KNa.C₄H₄O_{6.4}H₂O. (Rochelle or Seignette Salt.)

100 gms. sat. aq. solution contain 36.66 gms. KNaC4H4O6 at 9.7° and 47.97 gms. at 29.5°. (van't Hoff and Goldschmidt, 1895.)
100 gms. H2O dissolve 53.53 gms. KNaC4H4O6 at 15°, Sp. Gr. of sol. = 1.2713. (Greenish & Smith, 1901.)

SOLUBILITY OF MIXTURES OF POTASSIUM TARTRATE AND OF SODIUM TARTRATE IN WATER AT SEVERAL TEMPERATURES. (van Leeuwen, 1897.)

6°. Gms. per 100 Gms. Sat. Sol. Solid Phase.			F" _	ns. per 100		Solid Dhess		
18	19.2	16.5	KNaC	H ₄ O ₄ 4H ₂ O	26.6	56	4.2	KNaC,H,O,4H,O+K,T
38	26.6	22.8	66		48.3	51.6	13.2	4 4
20.9	11.8	28	" +	Na _t T	59.7	44 · 5	25.3	K_2T+Na_2T
38	25.8	24.7	44	44	80	39.7	34.7	4 4
50	3Ğ.7	23.9	44	66		•	- · ·	

 $K_2T = K_2C_4H_4O_6.\frac{1}{2}H_2O.$ $Na_2T = Na_2C_4H_4O_6.2H_2O.$

SOLUBILITY OF SEVERAL POTASSIUM SALTS OF TARTARIC ACIDS IN WATER AT 20°. (Schlossberg, 1900.)

Salt.	Formula.	Gms. Salt per roo Gms. Sat. Sol.
Potassium Sodium Salt of Racemic Acid	$KNa(C_4H_4O_6).3H_2$	O 62.84
Potassium Sodium Salt of d Tartaric Acid	KNa(C4H4O6).4H2	0 63.50
Potassium Neutral Inactive Pyrotartrate	$K_2C_5H_6O_6.H_2O$	56.33
Potassium Neutral Dextropyrotartrate	$K_2C_6H_6O_6$	57.62

SOLUBILITY OF POTASSIUM SODIUM TARTRATE IN AQ. ALCOHOL SOLUTIONS AT 25°. (Seidell, 1910.)

Wt. % C₁H₄OH in Solvent.	d_{35} of Sat. Sol.	Gms. KNaC4H4O6.4HgO per 100 Gms. Solvent.	Wt. % C ₄ H ₂ OH in Solvent.	d_{36} of Sat. Sol.	Gms. KNaC ₄ H ₄ O ₄₋₄ H ₂ O per 100 Gms. Sat. Sol.
0	1.310	53 · 33	50	0.908	2.40
10	1.216	41.60	60	0.878	0.90
20	1.124	26.20	70	0.857	0.30
30	1.034	13.80	8o	0.840	0.06
40	0.961	6	100	0.789	trace

POTASSIUM DihydroxyTARTRATES K₂C₄H₄O₈.H₂O and KHC₄H₄O₈.H₂O.

100 gms. H_2O dissolve 2.66 gms. $K_2C_4H_4O_8$. H_2O at 0°. (Fenton, 1898.) 100 gms. H_2O dissolve 2.70 gms. $KHC_4H_4O_8$. H_2O at 0°. "

F.-pt. data for mixtures of d and l dimethyl ester of potassium bitartrate and for mixtures of d and l diacetyl dimethylester of potassium bitartrate are given by Adriani (1900).

POTASSIUM TELLURATE K.TeO.

100 gms. H₂O dissolve 8.82 gms. K₂TeO₄ at 0°, 27.53 gms. at 20° and 50.42 gms. at 30°. (Rosenheim and Weinheber, 1910–11.)

POTASSIUM THIOCYANATE KSCN.

SOLUBILITY IN WATER.

t.	Gms. KSCN per	Solid Phase.	Authority.
- 6.5	16.7	Ice	(Rüdorff, 1872.)
- 9.55	23. I	64	"
-31.2 Eutec.	50.25	" +KSCN	(Wassilijew, 1910.)
0	63.9	KSCN	
20	68.5	44	(Rüdorff, 1869.)
25	70.5	66	(Foote, 1903.)

SOLUBILITY OF MIXTURES OF POTASSIUM THIOCYANATE AND SILVER THIOCYANATE IN WATER AT 25°.

(Foote, 1903.)

Gms. per 100	Gms. Solution.	Mols. per 10	Mols. H ₂ O.	Solid
KSCN.	AgSCN.	KSCN.	AgSCN.	Phase.
70.53	• • •	44.36		KSCN
66.55	9.32	51.13	4 19	KSCN + 2KSCN AgSCN
64 . 47	10.62	47.98	4.60)	
61.25	11.76	42.07	4.72	Double Salt. 2KSCN.AgSCN =
58 . 34	13.55	38.47	5 · 23	53.92% KSCN
53.21	17.53	33.71	6.50 j	-VCCN A-CON I
50·68	20.43	32.52	7 . 67	2KSCN.AgSCN+ KSCN.AgSCN
49 · 43	20.32	30.29	7.28 ๅ	Double Salt.
32.51	18.34	12.26	4.05	KSCN.AgSCN =
24.68	16.41	7 · 77	3.02 ^J	36.9% KSCN
23.86	16.07	7.36	2.90	KSCN.AgSCN + AgSCN

SOLUBILITY OF POTASSIUM THIOCYANATE IN ACETONE, AMYL ALCOHOL, BTC. (von Laszcynski, 1894.)

I	n Acetone.	In A	myl Alcohol.	In	Ethyl Aceta	te.	In Pyridine.
\$° .	Gms. KSCN per 100 Gms. (CH ₂) ₂ CO.	t° .	Gms. KSCN per 100 Gms. CgH ₁₁ OH.	t°.	Gms. KSCN per 100 Gms. CH ₃ COOC ₂ H ₆ .	, t ° .	Gms. KSCN per 100 Gms. C ₈ H ₅ N.
22	20.75	13	o.18	0	0.44	0	6.75
58	20.40	65	1.34	14	0.40	20	6.15
-		100	2.14	79	0.20	58	4 · 97
		133.5	3.15			97	3 .88
			-			115	3.21

SOLUBILITY OF POTASSIUM THIOCYANATE IN PYRIDINE, DETERMINED BY THE SYNTHETIC METHOD.

(Wagner and Zerner, 1911.)

r.	Gms. KSCN per 100 Gm Mixture.		t°.	Gms. KSCN per 100 Gms. Mixture.	Solid Phase.
-42	0	C _s H _s N	70 - 71	I.23	KSCN
-42.I	0.5	u	116–117	0.89	
-42.4	1.33	u	172.7	at this tempera	ture two liquid
-42.8	2.4	**	-	layers appear	and do not be-
-43.3 Euteo	. 3.1	" +KSCN		come homogene	ous up to 200°.
about +10	2.2	KSCN	173.8 m. pt.	100	KSCN

100 gms. anhydrous acetonitrile dissolve 11.31 gms. KSCN at 18°.

(Naumann and Schier, 1914.)

Fusion-point data for mixtures of KSCN + NaSCN and KSCN + RbSCN are given by Wrzesnewsky (1912).

POTASSIUM THIOSULFATE K2S2O2.

SOLUBILITY IN WA	TER. (Jo. 19	911,1912.)
------------------	--------------	------------

ť.	Gms. K ₂ S ₂ O ₂ per 100 Gms. H ₂ O.	Solid Phase.	t°.	Gms. K ₂ S ₂ O ₃ per 100 Gms. H ₂ O.	Solid Phase.
0	96. I	$K_2S_2O_3.2H_2O$	56.1	234 . 5	K ₄ S ₂ O ₃ .H ₂ O+3K ₂ S ₂ O ₃ .H ₄ O
17	150.5	3K ₂ S ₂ O ₂ .5H ₂ O	60	238.3	3K ₂ S ₂ O ₂ .H ₂ O
20	155.4	"	65	245.8	u
25	165	4.	70	255.2	"
30	175.7	4	75	268	"
35	202.4	" +K ₂ S ₂ O ₃ .H ₂ O	78.3	292	" +K ₂ S ₂ O ₂
40	204.7	K ₂ S ₂ O ₃ .H ₂ O	80	293.I	K _a S ₂ O ₃
45	208.6	44	85	298.5	44
50	215.2	44	90	312	u
55	227.7	44	-		

POTASSIUM Sodium THIOSULFATE KNaS2O3.2H2O.

100 gms. H₂O dissolve 213.7 gms. KNaS₂O_{3.2}H₂O (a) at 15°. (Schwicker, 1889.) 100 gms. H₂O dissolve 205.3 gms. KNaS₂O_{3.2}H₂O (b) at 15°. "(Schwicker, 1889.)

POTASSIULI FluoTITANATE K2TiF6.H2O.

SOLUBILITY IN WATER. (Marignac, 1866.)

Gms. K₂TiF₆ per 100 gms. H₂O 0.55 0.67 0.77 0.91 1.04 1.28

POTASSIUM VANADATE K₂V₅O_{14.5}H₂O.

100 gms. H₂O dissolve 19.2 gms. at 17.5°.

(Radan, 1889.)

POTASSIUM ZINC VANADATE. KZnVsO14.8H2O.

100 gms. H₂O dissolve 0.41 gm. of the salt (Radan).

PRASEODYMIUM CHLORIDE PrCl.

SOLUBILITY IN WATER, AQ. HYDROCHLORIC ACID AND IN PYRIDINE. (Matignon, 1906, 1909.)

Solvent.	t°.	Sp. Gr. Sat. Sol.	Gms. per 100 Gms. Sat. Sol.
Water	13	1.687	50.96 PrCl₃
Aq. HCl	13	1.574	41.05 PrCl3+7.25HCl
Pyridine	room temp.	• • •	2.1 PrCl ₃

PRASEODYMIUM GLYCOLATE Pr₂(C₂H₂O₂)₂.

One liter water dissolves 3.578 gms. Pr₂(C₂H₂O₂)₃ at 20°. (Jantsch & Grünkraut, '12-13.)

PRASEODYMIUM MOLYBDATE Pr₂(MoO₄)₈.

One liter water dissolves 0.0152 gm. Pr₂(MoO₄), at 23° and 0.0143 gms. at 75°.
(Hitchcock, 1895.

PRASEODYMIUM Double NITRATES

SOLUBILITY AT 16° IN CONC. HNO, OF d 14 = 1.325. (Jantsch, 1912.)

	Salt.		_	Formula.		Gms. Hydrated Salt per 100 cc. Sat. Solution.
Praseodymium	Magnesium	Nitrate	[Pr(NO ₃)	6]2Mg3.2	24H2O	7.70
"	Nickel	"	- ' "	Ni _s	"	9.28
"	Cobalt	"	"	Cos	"	12.99
"	Zinc	"	"	Zn ₃	"	14.69
"	Manganese	"	"	Mns	"	23.40

PRASEODYMIUM OXALATE Pr₂(C₂O₄)₂.10H₂O.

One liter H_2O dissolves 0.00074 gm. $Pr_2(C_2O_4)_3$ at 25°. (Rimbach and Schubert, 1909.) 100 gms. aq. 19.4% HNO3 (d=1.116) dissolve 1.16 gms. $Pr_2(C_4O_4)_3$ at 15°. 100 gms. aq. 10.2% HNO3 (d=1.063) dissolve 0.50 gm. $Pr_2(C_2O_4)_3$ at 15°. (v. Scheele, 1899.)

PRASEODYMIUM Dimethyl PHOSPHATE Pr₂[(CH₃)₂PO₄]₆.

100 gms. H₂O dissolve 64.1 gm. Pr₂[(CH₂)₂PO₄]₆ at 25°. (Morgan and James, 1914.)

PRASEODYMIUM SULFATE Pr2(SO4):.

SOLUBILITY IN WATER. (Muthmann and Rölig, 1898.)

t°.	Gms. Pr per 100		Solid Phase.	t°.	Gms. Pr		Solid Phase.
	Solution.	Water.	r nasc.		Solution.	Water.	rmase.
0	16.5	19.8	Pr ₂ (SO ₄) ₃ .8H ₂ O	75	4.0	4.2	Pr ₂ (SO ₄) ₂ .8H ₂ O
18	12.3	14.1	44	85	1.5	1.55	Pr ₂ (SO ₄) ₈ .8H ₂ O +
35	9 · 4	10.4	44		_		Pr ₂ (SO ₄) _{2.5} H ₂ O
55	6.6	7.1	44	95	1.0	1.01	Pr ₂ (SO ₄) _{3.5} H ₂ O

PRASEODYMIUM SULFONATES

SOLUBILITY IN WATER.

	Praseodymium	Salt of:	Fo	rmula.	Gms. Anhy drous Salt per 100 Gms H ₂ O.	Anthonitus
Bromo	nitrobenzene S	Sulfonic Acid	Pr(C ₆ H ₄ .Br.J 8H ₂ O	NO2.SO8,1,4,2)5	6.08 (Katz & James, '13.)
Benzen	ie Sulfonic Ac	id	Pr(C ₄ H ₄ SO ₃)	₃.9H₂O	55.6	(Holmberg, 1907.)
m Nitr	obenzene Sulf	onic Acid	Pr[C ₄ H ₄ (NO)SO ₂] ₂ .6H ₂ O	33.9	u
m Chlo	robenzene Sul	lfonic Acid	Pr[C,H,Cl.S	O ₂ ₂ .9H ₂ O	12.6	44
Chloro	nitrobenzene :	Sulfonic Acid	Pr(C ₆ H ₈ .SO ₈ 14H ₂ O	.NO ₂ .Cl,1,3,6) ₈ ,-	25.9	u
α Napl	hthalene Sulfo	nic Acid	Pr[C ₁₀ H ₇ SO ₂] ₂ .6H ₂ O	6. I	u
1.5 Nit	ronaphthalene	Sulfonic Acid	Pr(C10H6(NO	O ₂)SO ₂ la. 6H ₂ O	0.47	"
ı.Ğ	- "	"	"	. 9H ₂ O	0.18	"
1.7	"	"	"	O-HII.	1.3	"

PRASEODYMIUM TUNGSTATE Pr₂(WO₄)₂.

One liter water dissolves 0.0438 gm. Pr₂(WO₄)₈ at 75°. (Hitchcock, 1895.)

PROPIONIC ACID C.H.COOH.

SOLUBILITY IN WATER, DETERMINED BY THE FREEZING-POINT METHOD. (Faucon, 1910.)

t° of Solidif.	Gms. C ₂ H ₅ COOH per 100 Gms. Sol.	Solid Phase.	t° of Solidif.	Gms. C ₂ H ₆ COOH per 100 Gms. Sol.	Solid Phase.
– 1.33	4.98	Ice	-17.2	73.48	Ice
- 2.60	10.11	"	-21	81.75	44
- 3.76	15	"	-29.10	86.85	46
– 6. 10	25	**	-29.40	87.65	" +C ₂ H ₄ COOH
- 7.70	35.28	44	- 28.30	89.12	C ₂ H ₄ COOH
- 9.20	45.20	**	-26.90	92.40	66
- 10.80	55	**	-23.90	97.22	"
-14.20	65.88	u	-19.30	100	44

Additional data for this system are given by Tsakalatos (1914), Herz (1917) and Balló (1910). The last-named investigator also determined the composition of the solid phases and explains the abnormal freezing-point lowering on the basis of production of mix-crystals.

production of mix-crystals.

The ratio of distribution of propionic acid between water and benzene was found by King and Narracott (1909) to be 1:0.129 at room temperature.

DISTRIBUTION OF PROPIONIC ACID BETWEEN ETHER AND AQUEOUS SALT Solutions at 18°. (de Kolossovsky, 1911.)

Aq. S	ialt Solution (2 Mols. per Liter).	C _t H _t COOH	q	
Salt.	Gms. Salt per 100 cc. Water alone	Aq. Layer (q). I. 170	Ether Layer (q'). 2.305	<u>q</u> . 0.50
NaCl	11.69	0.762	2 · 543	0.30
$MgCl_2$	19.05	0.567	3.135	0.18
KNO ₃	20.22	0.972	2.298	0.42
KC ₂ H ₄ O ₂	22.43	1.324	2.406	0.55

β IodoPROPIONIC ACID CH₁I.CH₃.COOH.

Iodo**PROPIONIC ACID** CH21. CH2. CUCH.
One liter sat. solution in water contains 80 gms. CH2ICH2COOH at 25°.
(Sidgwick, 1910.)

One liter sat. solution in I n aq. sodium \(\beta \) iodopropionate contains 126 gms. at (Sidgwick, 1910.)

β Phenyl**PROPIONIC ACID** (Hydrocinnamic Acid) CH₂(C₆H₆).CH₂COOH.

SOLUBILITY IN WATER AND IN AQ. NORMAL SODIUM & PHENYLPROPIONATE. (Sidgwick, 1910.)

Solvent.	Gms. CH ₂ (C ₂ H ₄) CH ₂ COOH per Liter Solution at:		
		25°.	
Water	4.80	7.5	
1 n aq. CH2(C6H5)CH2.COONa	7.65	172.5 (liquid layers formed)	

SOLUBILITY OF B PHENYLPROPIONIC ACID IN WATER AND IN ALCOHOLS. (Timofeiew, 1894.)

Alco	bol.	t°.	Gms. CH ₂ (C ₄ H ₄)- CH ₂ COOH per 100 Gms. Sat. Solution.	Alcohol.	ť.	Gms. CH ₂ (C ₄ H ₄) CH ₂ COOH per roo Gms. Sat. Solution.
Water		10	0.7	Ethyl Alcohol	+1g.6	77.2
Methyl	Alcohol	-18. ₅	55.8	" "	20	78.8
"	"	-16	57.6	Propyl Alcohol	-18.5	35
44	"	0	66. o	- u u	-16	39
"	"	+19.6	82.8	"	+19.6	73.4
"	46	20	83.8	"	20	73.9
Ethyl	"	-18.5	46	Isobutyl Alcohol	19.6	67.3
"	**	-16	48	, , , , , , , , , , , , , , , , , , , ,	.,	7-0

SOLUBILITY OF B PHENYLPROPIONIC ACID IN SEVERAL SOLVENTS. (Herz and Rathmann, 1913.)

Solvent.	CH ₄ (C ₆ H ₄)CH ₅ .COOH per Liter. Solvent.			CH _a (C _a H _a) CH _a COOH per Liter.		
Chloroform	Mols.	Gms.	Tetrachloro Ethylene	Mols.	Gms.	
	5.444	817.2			709.2	
Carbon Tetrachloride	4.604	691.1	Tetrachloro Ethane	5.430	815. 1	
Trichloro Ethylene	5.140	771.6	Pentachloro Ethane	5.019	753 · 4	

β Phenyl Dibromo**PROPIONIC ACID** C₂H₂Br₂(C₆H₄)COOH. 100 cc. sat. sol. in carbon tetrachloride contain 0.124 gm. acid at 26°. (De Jong, 1909) 100 cc. sat. sol. in petroleum ether contain 0.072 gm. acid at 26°.

PhenviPROPIOLIC ACID C6H6C: C.COOH.

SOLUBILITY IN SEVERAL SOLVENTS. (Herz and Rathmann, 1913.)

Solvent.	C ₆ H ₆ C:C COOH per Liter.	Solvent.	C.COOH Liter.
Chloroform Carbon Tetrachloride Trichloro Ethylene	Mols. Gms. 0.789 115.30 0.227 33.16 0.382 55.82	Tetrachloro Ethylene Tetrachloro Ethane Pentachloro Ethane	Gms. 47·34 104.90 59.91

PROPIONIC ALDEHYDE C2H4COH.

100 gms. H₂O dissolve 16 gms. aldehyde at 20°.

(Vaubel, 1899.)

PROPIONITRILE C2H6CN.

SOLUBILITY IN WATER.

Synthetic method used. See Note, p. 16.

(Rothmund, 1898.)

	Wt. per cen	t C2H5CN in:		Wt. per	cent C2H	IsCN in:
t°.	Aq. Layer.	C ₂ H ₅ CN Layer.	t°.	Âq. Layer.		C ₂ H ₅ CN Layer.
40	10.7	92.1	95	19.6		78. o
50	11.6	90.5	100	22.4		75 · 5
60	12.7	88.5	105	26.0		72 · I
70	13.2	86.I	110	32.0		66.5
80	14.9	83.4	113.1 (c1	it. temp.)	48.3	-
90	17.6	80.2	,		. •	

PROPYL ACETATE, Butyrate and Propionate.

Solubility of Each in Aqueous Alcohol Mixtures. (Bancroft - Phys. Rev. 3, 205, '95, calc. from Pfeiffer.)

	cc. H ₂ O Add	led to Çause S	eparation * in:		cc. H ₂ O Ad	ded to cause	Separation * in.
ec. Alco- hol in Mixture.	P. Ace-	P. Buty- rate.	P. Propio-	cc. Alco- hol in Mixture.	P. Acetate.	P. Buty- rate.	P. Propio- nate.
3	4.50	1.19	1.58	21	58.71	19.68	27 .83
3 6	10.48	3 · 55	4.70	24	•	23.72	33 · 75
9	17.80	6.13	8.35	30		32.10	47.15
12	26.00	9.05	12.54	36		41.55	63.18
15	35.63	12.31	17.15	42		51.60	83.05
18	47 - 50	15.90	22.27	48		62 - 40	107 . 46
				54		73 85	• • •

^{*} cc. H₂O added to cause the separation of a second phase in mixtures of the given amounts of alcohol and 3 cc. portions of propyl acetate, butyrate and propionate

SOLUBILITY OF PROPYL ACETATE, FORMATE, AND PROPIONATE IN WATER.

100 cc. H₂O dissolve 1.7 gms. propyl acetate at 22°.

(Traube, 1884.)

100 cc. H₂O dissolve 2.1 gms. propyl formate at 22°. 100 cc. H₂O dissolve 0.6 cc. propyl propionate at 25°.

(Bancroft, 1895.)

PROPYL ALCOHOL C.H.OH.

Freezing-point data (solubilities, see footnote, p. 1) for mixtures of propyl alcohol and water are given by Pickering (1893). Results for mixtures of isopropyl alcohol and water are given by Dreyer (1913).

100 gms. sat. solution of propyl alcohol in liquid carbon dioxide contain 36.5 gms. C₁H₇OH at -24° and 57.5 gms. at -30°. (Büchner, 1905-06.)

MISCIBILITY OF PROPYL ALCOHOL WITH MIXTURES OF CHLOROFORM AND WATER AT O'. (Bonner, 1910.)

See Notes, pp. 14 and 287.

Composition of Homogeneous Mixtures. Composition of Homogeneous Mixtures.

Gms. CHCla.	Gms. H ₂ O.	Gms. C ₂ H ₇ OH.	Sp. Gr. of Mixture.	Gms. CHCl ₃ .	Gms. H ₂ O.	Gms. C ₈ H ₇ OH.	Sp. Gr. of Mixture.
0.977	0.023	0.304	1.28	0.500	0.50	I.34	0.97
0.926	0.074	0.631	1.13	0.394	0.606	1.32	0.98
0.90	0.10	0.76	1.11	0.293	0.707	1.235	0.96
0.80	0.20	1.06	1.04	0.194	0.806	0.996	0.95
0.70	0.30	I.20	1.01	0.097	0.903	0.672	0.97
0.60	0.40	1.30	0.98	0.030	0.97	0.39	0.97

MISCIBILITY OF PROPYL ALCOHOL AT 0° WITH MIXTURES OF:

Carbon Tetrachloride and Water.
(Bonner, 1910.)
Composition of Homogeneous Mixtures.

Ethyl Bromide and Water. (Bonner, 1910.)

Composition of Homogeneous Mixtures.

						_	
Gms. CCl4.	Gms. H ₂ O.	Gms. C ₈ H ₇ OH.	Sp. Gr. of Mixture.	Gms. C₂H₄Br.	Gms. H _g O.	Gms. C _s H ₇ OH.	Sp. Gr. of Mixture.
0.975	0.025	0.317	1.31	0.941	0.039	0.367	I.2I
0.931	0.069	0.536	1.17	0.912	0.088	0.615	I.II
0.90	0.10	0.65	1.14	0.90	0.10	0.64	1.10
0.80	0.20	0.949	1.07	0.80	0.20	0.85	1.05
0.70	0.30	1.12	1.02	0.70	0.30	1	1.02
0.60	0.40	I.20	0.99	0.60	0.40	1.00	I
0.499	0.501	1.234	0.98	0.491	0.500	1.124	0.98
0.40	0.60	1.195	0.97	0.40	0.60	1.10	0.97
0.30	0.70	1.13	0.96	0.30	0.70	0.90	0.96
* 0.25	0.75	1.06		0.20	0.80	0.81	0.96
0.194	0.806	0.912	0.96	0.14	0.86	0.671	0.96
0.100	0.90	o. 68	0.96	0.10	0.90	0.56	0.97
0.013	0.987	0.354	0.96	* 0.023	0.977	0.227	0.99

See Notes, pp. 14 and 287.

MISCIBILITY OF PROPYL ALCOHOL AT 0° WITH MIXTURES OF:

Bromobenzene and Water. (Bonner, 1910.) Bromotoluene and Water. (Bonner, 1910.)
Composition of Homogeneous Mixtures. Composition of Homogeneous Mixtures.

Gms. C ₆ H ₆ Br.	Gms. H ₂ O.	Gms. C₃H ₇ OH.	Sp. Gr. of Mixture.	Gms. C ₄ H ₄ CH ₄ Br.	Gms. H ₂ O.	Gms. C _s H ₇ OH.	Sp. Gr. of Mixture.
0.983	0.017	0. 186	1.29	0.968	0.032	0.252	1.23
0.909	0.091	0.56	1.11	0.90	0.10	0.52	I.II
0.90	0.10	0.58	1.11	0.80	0.20	0.78	1.03
0.80	0.20	0.87	1.05	0.70	0.30	0.96	1.01
0.70	0.30	1.05	1.02	0.60	0.40	1.07	0.99
0.60	0.40	1.15	I	0.50	0.50	1.13	0.97
0.50	0.50	1.19	0.97	0.40	0.60	1.13	0.96
0.40	0.60	1.19	0.97	0.30	0.70	1.03	0.95
0.30	0.70	1.00	0.95	*o.25	0.75	0.97	
0.20	0.80	0.93	0.95	0.20	0.80	0.90	0.94
0.10	0.90	0.71	0.96	0.10	0.90	0.72	0.95
0.021	0.979	0.457	0.98	0.013	0.987	0.424	0.96

See Notes, pp. 14 and 287.

DISTRIBUTION OF PROPYL ALCOHOL BETWEEN WATER AND COTTON-SEED OIL AT 25°. (Wroth and Reid, 1916.)

Gms. C ₂ H ₇ OH per 100 cc.		Ratio.	Gms. C ₂ H ₇ Ol	Ratio.	
Oil Layer.	H ₂ O Layer.	Ratio.	Oil Layer.	H ₂ O Layer.	KRUO.
1.447	8.112	5.60	1.516	10.07	6.64
1.475	8.897	6 . 10	1.576	10.49	6.65
1.503	9.809	6.53	1.694	10.41	6.14

Data for systems composed of normal propyl alcohol, water and various inorganic salts are given by Timmermans, 1907.

PROPYLAMINE CH₁.CH₂.CH₂.NH₂.

The solubility of propylamine in water at 60°, determined by an aspiration method using an indifferent gas, is 191 when expressed in terms of the Bunsen absorption coefficient β (see p. 227) and $l_{00}=233$ when expressed in terms of the Ostwald solubility expression: (Doyer, 1890.)

Freezing-point data for mixtures of propylamine and water, isopropylamine and water and for dipropylamine and water are given by Pickering (1893).

DISTRIBUTION OF PROPYLAMINES BETWEEN WATER AND TOLUENE. (Moore and Winmill, 1912.)

	Results	at 18°.	Results	at 25°.	Results a	t 32.35°.
Amine.	Gm. Equiv. Amine per Liter of Aq. Layer.	Partition Coef.	Gm. Equiv. Amine per Liter of Aq. Layer.	Partition Coef.	Gm. Equiv. Amine per Liter of Aq. Layer.	Partition Coef.
Propylamine	0.0973	5 · 434	0.03837	4.470	0.0602	3.311
((0.0928	5 · 439	0.04300	4.470	0.0578	3.317
Dipropylamine	0.0764	0.1185	0.0722	0.0769	0.01168	0.05802
• 16	0.0794	0.1188	0.0681	0.0771	0.01199	0.05795
Tripropylamine	0.0003	0.003	• • •	•••	•••	•••

PROPYLAMINE HYDROCHLORIDE α NH₂(C₂H₇).HCl.

100 gms. H_2O dissolve 278.2 gms. $NH_2(C_1H_7)$.HCl at 25°. (Peddle and Turner, 1913.) 100 gms. $CHCl_2$ dissolve 5.26 gms. $NH_2(C_2H_7)$.HCl at 25°. (Peddle and Turner, 1913.)

DiPROPYL AMINE HYDROCHLORIDE NH(C₂H₇)₂.HCl.

100 gms. H_2O dissolve 165.3 gms. $NH(C_2H_7)_2.HCl$ at 25°. (Peddle and Turner, 1913.) 100 gms. $CHCl_2$ dissolve 47.24 gms. $NH(C_2H_7)_2.HCl$ at 25°. (Peddle and Turner, 1913.)

PROPYL CHLORIDE, Bromide, etc.

SOLUBILITY IN WATER. (Rex, 1906.)

D1 C	Grams P. Compound per 100 Gms. H ₂ O at:					
Propyl Compound.	<u>~°.</u>	100.	20°.	30°.		
CH ₂ CH ₂ CH ₂ Cl (normal)	0.376	0.323	0.272	0.277		
CH ₃ CH ₂ CH ₂ Br "	0.298	0.263	0.245	0.247		
CH ₃ CH ₂ CH ₂ I "	0.114	0.103	0.107	0.103		
(CH ₂) ₂ CHCl (iso)	0.440	0.363	0.305	0.304		
(CH ₃) ₂ CHBr "	0.418	0.365	0.318	0.318		
(CH ₃) ₂ CHI "	o.167	0.143	0.140	0.134		

PROPYLENE C.H.

SOLUBILITY IN WATER. (Than, 1862.)

t°.	β.	q.
0	0.4465	0.0834
5	0.3493	0.06504
10	0.2796	0.0519
15	0.2366	0.0437
20	0.2205	0.0405

For values of β and q, see Ethane, p. 285.

PYRENE C16H10

SOLUBILITY IN TOLUBNE AND IN ABSOLUTE ALCOHOL.

100 gms. toluene dissolve 16.54 gms. pyrene at 18°.
100 gms. absolute alcohol dissolve 1.37 gms. pyrene at 10° and 3.08 gms. at

PYRIDINE $CH < (CH.CH)_2 > N$.

SOLUBILITY IN WATER, DETERMINED BY THE FREEZING-POINT METHOD.
(Average curve from results of Pickering (1893) and Baud (1909.)

t°. of Solidi- fication.	Gms. C ₄ H ₄ N per 100 Gms. Mixture.	Solid Phase.	t° of Solidi- fication.	Gms. C ₅ H ₅ N per 100 Gms. Mixture.	Solid Phase.	fication.	Gms. C ₄ H ₄ N p 100 Gm Mixtur	s. Phase.
0	0	Ice	-10	58.5	Ice	-60	84	Ice
— 1	7 · 5	"	-12.5	62	**	-65 Eutec.	85	" +C ₄ H ₄ N
-2	17	"	-15	64.5	44	60	87	C ₄ H ₄ N
-3	28	66	- 20	68	44	-55	89	•
-4	37 · 5	"	-25	71	44	-50	92	•
-5 -6	43.5	44	-30	73.5	66	-45	95	"
-6	43·5 48	44	-40	78	44	-40	97	44
-8	54	44	-50	81.5	"	-38 m. pt.	100	"

Timmermans (1912) is reported to have made determinations on the above systems but the original paper could not be located.

Baud also gives data for the densities of pyridine + water mixtures.

DISTRIBUTION OF PYRIDINE BETWEEN WATER AND BENZENE.

	emperature. evics, 1915.) _e H _e N per	At (Hantzsch and Mols. C _s H	Ratio.	
25 cc. H ₂ O Layer.	75 cc. CaHa Layer.	Aq. Layer.	C ₆ H ₆ Layer.	KAUO.
0.0617	0.4733	0.00148	0.00436	0.339
0.0958	0.7631	0.00076	0.00226	0.339
0.1549	1.2249	0.00038	0.00110	0.345
0.2432	2.0096	0.000208	0.000546	0.381
0.3297	2.6553	0.000112	0.000274	0.413
0.723	5.4159	(at 5.5°) 0.000456	0.000928 .	0.491
1.147	9.878	(at 50°) 0.000314	0.001088	0.289

DISTRIBUTION OF PYRIDINE BETWEEN WATER AND TOLUENE. (Hantzsch and Vagt, 1901.)

At	25°.	At Various Temperatures.						
Mols. C.H	Mols. C.H.N per Liter.		ť.	Mols. C _t H _t	Ratio.			
Aq. Layer.	C.H.CH, Layer.	Ratio.	• •	Aq. Layer.	C.H.CH, Layer.	ARUO.		
0.0517	0.1129	0.458	0	0.0168	0.0201	0.840		
0.0261	0.0559	0.466	10	0.0135	0.0215	0.627		
0.0132	0.0275	0.481	20	0.0111	0.0228	0.529		
0.0067	0.0137	0.496	30	8010.0	0.0234	0.461		
0.0033	0.0066	0.551	40	0.0101	0.0245	0.411		
0.0019	0.0034	0.629	50	0.0096	0.0252	0.380		
0.001	0.0017	0.647	70	0.0085	0.0263	0.324		
0.0007	0.0010	0.696	90	0.0082	0.0266	0.307		

Data for systems composed of pyridine, water and various inorganic salts are given by Timmermans, 1907.

Methyl PYRIDINES

Data for the reciprocal solubility of 3 methyl pyridine (= β picoline) and water, 2.6 dimethyl pyridine (= 2.6 lutidine) and water, methyl pyridine (= γ picoline) zinc chloride and water, methyl pyridine zinc chloride and each of the following alcohols; methyl, ethyl, propyl, isobutyl, isoamyl, cetyl and methyl hexylcarbinol, determined by the synthetic method (see Note, p. 16), are given by Flaschner (1909). See also p. 262, for 2.4.6 trimethyl pyridine (collidine) and water.

PYRIDINE

PYRIDINAMINO SUCCINIC ACIDS.

100 gms. H_2O dissolve 1.67 gms. of the d compound, 1.64 gms of the l compound and 1.68 gms. of the dl compound at 18°. (Lutz, 1910.)

PYROCATECHOL o C₄H₄(OH)₂.

100 gms. H₂O dissolve 45.1 gms. C₄H₄(OH)₂ at 20°. (Vaubel, 1899.) 100 gms. pyridine dissolve an unlimited amount of C₆H₄(OH)₂ at 20°. (Dehn, 1917.) 100 gms. aq. 50% pyridine dissolve 101 + gms. of C₆H₄(OH)₂ at 20-25°. " F.-pt. data for pyrocatechol + resorcinol are given by Jaeger (1907).

PYROGALLOL C₆H₃(OH)₃ I, 2, 3.

SOLUBILITY IN WATER, RTC. (U. S. P. VIII.)

100 gms. water dissolve 62.5 gms. $C_6H_4(OH)_2$ at 25°. 100 gms. alcohol dissolve 100 gms. $C_6H_4(OH)_2$ at 25°. 100 gms. ether dissolve 90.9 gms. $C_6H_4(OH)_2$ at 25°.

Dimethyl **PYRONE** C₇H₈O₂.

Freezing-point data for mixtures of dimethyl pyrone and each of the following compounds: salicylic acid, o, m, p and α toluic acids and trinitrotoluene are given by Kendall (1914a). Results for mixtures of dimethyl pyrone and sulfuric acid are given by Kendall and Carpenter (1914).

QUINHYDRONE C.H.O2.C.H.(OH)2.

Data for the solubility and dissociation of quinhydrone in water at 25° are given by Luther and Leubner (1912).

QUINIDINE C20H24N2O2. ?H2O.

SOLUBILITY IN SEVERAL SOLVENTS.

Solvent.	· to.	Gms. C ₂₀ H ₂₄ N	2O2 per 100.	Authority.	
Solvent.	• •	Gms. Solvent.	cc. Solvent.	Authority.	
Water	18–22	0.020		(Müller, 1903.)	
Water	25	• • •	0.0145	(Schaefer, 1910.)	
Ethyl Alcohol (95%)	20	4	• • •	(Wherry & Yanovsky, 1918.)	
Ethyl Alcohol	25		2.22	(Schaefer, 1913.)	
Methyl Alcohol	25	• • •	o.66	"	
Benzene	25	• • •	1.19	u	
Benzene	18-22	2.45		(Müller, 1903.)	
Carbon Tetrachloride	18–22	0.557		44	
Chloroform	18-22	100+		61	
Chloroform	25		25	(Schaefer, 1913.)	
Ether $(d = 0.72)$	18-22	0.78		(Müller, 1903.)	
Ether sat. with H ₂ O	18–22	1.63		"	
H ₂ O sat. with Ether	18–22	0.031		44	
Ethyl Acetate	18–22	1.76		46	
Pet. Ether (b. pt. 59°-64°)	18-22	0.024	• • •	44	
1 vol. C ₂ H ₆ OH+4 vols. CHCl ₂	25	• • •	33 · 3	(Schaefer, 1913.)	
1 vol. C ₂ H ₅ OH+4 vols. C ₆ H ₆	25	• • •	12.5	44	
1 vol. CH ₂ OH+4 vols. CHCl ₂	25	• • •	25	"	
1 vol. CH ₂ OH+4 vols. C ₆ H ₆	25	• • •	6.6	u	

QUINIDINE SALTS

SOLUBILITY IN WATER AT 25°. (Schaefer, 1910.)

Salt per Gms. H ₂ O. .05 .0477 .86

SOLUBILITY OF QUINIDINE SULFATE IN SEVERAL SOLVENTS AT 25°. (Schaefer, 1913.)

Solvent.	Gms. Q. Sulfate per 100 cc. Solvent.	Solvent.	Gms. Q. Sulfate per 100 cc. Solvent.
Ethyl Alcohol Methyl Alcohol Chloroform Benzene	5 40 8.33 Insol.	I vol. C ₂ H ₄ OH+4 vols. CHCl ₃ I vol. C ₂ H ₄ OH+4 vols. C ₄ H ₄ I vol. CH ₄ OH+4 vols. CHCl ₃ I vol. CH ₄ OH+4 vols. C ₄ H ₄	33·3 8·33 33·3

QUININE $C_{20}H_{24}N_2O_2.3H_2O$.

SOLUBILITY IN SEVERAL SOLVENTS.

Solvent.	r.		oer 100.	Hydrated Quinine Gms. per 10 Gms. Solver	
Water	18-22				(Müller, 1903.)
Water	25	0.051	0.033		(U. S. P.; Schaefer, 1910.)
"	23 80	0.037	-	0.120	
Ethyl Alcohol	20	100	• • •	•	(Wherry and Yanovsky, 1918.)
"""	25	166.6	• • •	166.6	(U. S. P.)
" "	25 25				(Schaefer, 1913.)
Methyl Alcohol	20	•••	1333 66.6	•••	(Connecter, 1913.)
Benzene	25	• • •	0.55	0.205	(Schaefer; Müller, 1903.)
"	20	0.5		•	(Wherry and Yanovsky, 1918.)
"	18-22	1.7	•••		(Müller, 1903.)
Aniline	20	14.5	•••		(Scholtz, 1912.)
Carbon Tetrachloride	20	0.54	•••	0.204	(Gori, 1913; Müller, 1903.)
Chloroform	25	50-52.6	•••	62.5	(Schaefer, 1913; U. S. P.)
"	18-22	100+	•••	100+	(Müller, 1903.)
Diethylamine	20	57	•••		(Scholtz, 1912.)
Ether	25	22.2	•••	76.9	(U. S. P.)
(d=0.72)	18-22	0.876	•••	1.62	(Müller, 1903.)
" sat. with H-O	18-22	2.8	• • • •	5.62	"
H ₂ O sat. with Ether	18-22	0.085		0.067	at
Ethyl Acetate	18-22	24.7		4.65	4
Petroleum Ether (b.		-4.7	•••	4.03	
pt. 59°-64°)	18-28	0.021		0.010	ч
Oil of Sesame	20		0.0453		(Zalai, 1910.)
Glycerol	25	0.633		0.472	(U. S. P.; Ossendowski, 1907.)
Piperidine	20	110	• • •		(Scholtz, 1912.)
Pyridine	20	101	• • •	•••	4
Aq. 50% Pyridine	20-25	59.4	• • • •		(Dehn, 1917.)
7.65 gms. HaBOa per 100	room	J J - T			
cc. aq. 50% Glycerol	temp				(Baroni and Barlinetto, 1911.)
15.3 gms. HaBOa per 100	noon c				
cc. aq. 50% Glycerol			•••	•••	4

Solubility of Quinine in Benzene, Determined by the Synthetic (Sealed Tube) Method.

(van Iterson-Rotgans, 1914.)

t.	Wt. % Quinine.	Solid Phase.	ť°.	Wt. % Quinine.	Solid Phase.	t°.	Wt. % Quinine.	Solid Phase.
5.4	•	C _s H _s	53-5	4.81		137	80	$C_{20}H_{24}N_2O_2$
5.3*		" +	63	6.09	Mixed phase,	142	83.04	44
17	0.72	CapHanNaOa.CaHa	91	30.01	probably a	146	85.26	46
29	1.48	46	102	43.4	colloid or sol-	152	87.44	
38.5	2.36	**	104.5	45.9	ution of high	158.5	91.4	"
49	5.22	" unstable	100	51.8	viscosity.	166	95.02	**
±70	28.9	4 4	130	75.46		174.7	100	44
			-	• Eutec.				

SOLUBILITY OF QUININE IN AQUEOUS SOLUTIONS OF CAUSTIC ALKALIES. (Doumer and Deraux, 1895.)

METHOD. — A one per cent solution of quinine sulfate, containing a very small amount of HCl, was gradually added to 200 cc. portions of the caustic alkali solutions of the various concentrations stated, and the point noted at which a precipitate of the appearance corresponding to that of I cc. of milk in 100 cc. of water, remained undissolved.

In Aq. Ammonia.		In Aq. Sodi	um Hydroxide.	In Aq. Pot. Hydroxide.		
Gms. NH _a per 200 cc. Solution.	Gms. Anhydrous Quinine Dissolved.	Gms. NaOH per 200 cc. Solution.	Gms. Anhydrous Quinine Dissolved.	Gms. KOH per 200 cc. Solution.	Gms. Anhydrous Quinine Dissolved.	
0.52	0.084	0.007	0.002	0.612	0.088	
0.65	0.084	0.012	0.091	1.512	0.082	
4.59	0.096	0.740	0.000	3.456	0.068	
13.08	O. I22	2.160	0.079	10.944	0.039	
ığ.88	0.144	3.188	0.056	44.704	0.006	
25.19	0.174	Ğ. 172	0.044			
35.79	0.184	8.537	0.021			
•••	•	17.074	0.015			

SOLUBILITY OF QUININE SALTS IN WATER. (Regnault and Willejean, 1887.)

Salt.	t*.	Gms. Salt per 100 Gms. H ₂ O.	Salt.	t°.	Gms. Salt per
Brom Hydrate (basic)	14	2.06	Salicylate (basic)	15	0.114
" (neutral)	12	12.33	Sulfate "	14	0.139
" "	14	13.19	" "	16	0.153
" "	16	14.79	"	18	0.160
"	15	14.20	" (neutral)	15	8.50
Chlor Hydrate (basic)	12	3.80		17	8.00
	14	4.14	** **	18	9.62
	15	4.25	Valerate (basic)	12-16	2.59
Lactate (basic)	15	10.03			•
u u	37	16. 1 Š			

SOLUBILITY OF QUININE SALTS IN WATER AT 25°. (Schaefer, 1910.)

Salt.	Gms. Salt per 100 Gms. H ₂ O.	Salt.	Gms. Salt per
Acetate	2	Hypophosphite	2.85
Anisol	0.042	Lactate, basic	16.6
Arsenate	0.154	Nitrate	1.43
Benzoate	0.278	Oxalate	0.071
Bihydrobromide	20	Phosphate Phosphate	0.125
Bihydrochloride	143 (133)	Picrate	0.029
Bihydrochloride + Urea	100	Quinate	28.6
Bisulfate	11.78	Salicylate	0.048
Chlorhydrosulfate	77 (50)	Sulfate	0.143
Chromate	0.032	Bisulfoguiacolate	200
Citrate	0.121 (0.083)	Sulfophenate	0.4
Glycerophosphate, basic	0.1178 (insol.)	Urate	0.182
Hydrobromide	2.33	Phenylsulfate	0.147
Hydrochloride	4.76	Tartrate	0.105
Hydroferrocyanide	0.05	Tannate	o.o5(*)
Hydroiodide	0.40	Valerate	1.25
=	* Insol.		•

It is pointed out that different values for the solubility may be obtained de-

pending on the method used for preparing the saturated solution.

Results in parentheses are by Squire and Caines (1905), and are for 15°-20°

instead of 25°.

SOLUBILITY OF QUININE SALTS IN SEVERAL SOLVENTS. (Phelps and Palmer, 1917.)

		Solubility, Parts per 100 Parts Solvent in:					
Salt.	M. pt. (uncorr.)	CCI.	CHCl.	Ethyl Acetate (Alcohol free).			
	•	CC4.	(Alcohol free).	Cold.	Hot.		
Quinine racemic lactate	165.5	0.00715	28.6	0.286	3.33		
" d lactate	175	0.0111		0.25	•••		
" 1 "	171	0.00476		0.20	• • •		
" formate	110-113	0.00625	• • •		• • •		
" acetate	124-126	0.05					
" propionate	110-111	0.238		• • •	• • •		
" butyrate	77.5	4	• • •	• • •	• • •		
" succinate	192	0.001			0.4		
" tartrate	202.5	0.0004	• • •	• • •	0.0333		
" malate	177.5	0.0008			0.5		
" citrate	183.5	. 0.00167		• • •	0.0833		
" sulfate	214	0.0025	0.0333	0.00715	0.0133		
Quintoxime lactate	•••	0.11			•••		

Saturation was obtained by shaking at intervals by hand, during 72 hours. In case of the determination at "hot," the solutions were boiled under a reflux condenser for 18 hours.

QUININE HYDROCHLORIDE C20H24N2O2.HCl.2H2O.

SOLUBILITY IN AQUEOUS SALT SOLUTIONS AT 16°. (Tarugi, 1914.)

The determinations were made by adding an aqueous solution of quinine hydrochloride to the aqueous salt solution until turbidity occurred. From the volumes involved, the solubility per 100 cc. was calculated.

In Aq. NaCl.		In Aq.	NaNO.	NO ₃ . In Aq.KCl.		In Aq. CaCl2.	
Gms. per 1	roo cc. Sol.	Gms. per	oo cc. Sol.	Gms. per	100 cc. Sol.	Gms. per	i∞ ∝. Sol.
NaCl.	Q.HCl.	NaNO.	Q.HCl.	KCl.	Q.HCl.	CaCla.	Q.HCl.
2.02	2.6	0.677	2.85	2.63	2.545	6.37	1.028
2.49	1.94	0.970	1.96	3	1.882	7.03	0.951
3.40	I.22	2.008	0.67	5 · 57	0.804	7 · 75	0.879
8.34	0.54	3.65	0.43	8.26	0.531	7.96	0.765
II.40	0.205	9.31	0.292	10.42	0.407	34.42	0. 183
15.56	0.140	19.12	0.168	17.87	0.205		
19.83	0.085	31.78	0.0663	25.74	0.0007		

100 cc. 90% alcohol dis	solve 20 gms. Q. bihydrochloride at 15°-20°.	
" chloroform		
90% alconoi	" 14.3 " O. hydrochlorosulfate at 15°–20°.	Caines, 1905.)
	" 14.3 " Q. hydrochlorosulfate at 15°–20°. " 0.5 " Q. glycerophosphate at 15°–20°.	1903.7
100 gms. H ₂ O dissolve	1.3 gms. anhydrous Q. glycerophosphate at 10	o°.
•	(Rogier and F	iore, 1913.)

QUININE SALICYLATE $C_{20}H_{24}N_2O_2.C_6H_4(OH)COOH.2H_2O.$

SOLUBILITY IN AQUEOUS ALCOHOL AT 25°. (Seidell, 1909, 1910.)

Wt. % C₁H₄OH in Solvent.	d_{25} of Sat. Sol.	Gms. Q. Sal. 2H ₂ O per 100 Gms. Sat. Sol	Wt. % C ₄ H ₄ OH in Solvent.	d₂ s of Sa t. Sol.	Gms. Q. Sal. 2H ₂ O per 100 Gms. Sat. Sol.
0	0.999	o.o65	60	o .896	2.45
10	0.982	0.080	70	0.876	3.25
20	0.966	0.200	80	0.854	4.20
30	0.952	0.48	90	0.832	4.71
40	0.935	I	92.3	0.826	4.62
50	0.916	1.70	100	0.797	3.15

SOLUBILITY OF QUININE SULFATE IN SEVERAL SOLVENTS AT 25°. (Schaefer, 1913.)

Solvent.	Gms. Q. Sulfate per 100 cc. Solvent.		Gms. Q. Sulfate per 100 cc. Solvent.
Ethyl Alcohol	0.4	I vol. C ₂ H ₅ OH+4 vols. CHCl ₃	12.5
Methyl Alcohol	3.12	r vol. C ₂ H ₆ OH+4 vols. C ₆ H ₆	0.53
Chloroform	0.27	1 vol. CH ₂ OH+4 vols. CHCl ₂	20
Benzene	insol.	1 vol. CH4OH+4 vols. C4H4	4.76

100 gms. trichlorethylene dissolve 0.07 gm. Q. sulfate at 15°. (Wester and Bruins, 1914.)

QUININE TANNATES True and False

SOLUBILITY IN WATER AND IN AQUEOUS HCl AT 37°. (Muraro, 1908.)

_		Gms. Q. Tannate per 100 Gms.			
Tannate.	Formula.	H ₂ O.	Aq. 1% HCl.	Aq. 3% HCl.	
True Tannate I	$C_{20}H_{24}N_{2}O_{2}.C_{10}H_{14}O_{2}.4H_{2}O$	0	0.984	3.656	
True Tannate II	$(C_{20}H_{24}N_2O_2)_2.(C_{10}H_{14}O_9)_3.8H_2O$	0	1.210	4.756	
False Tannate	$(C_{20}H_{24}N_2O_2.H_2SO_4)_2(C_{10}H_{14}O_9)_5.14H_2O$	0.313	0.847	1.560	

The work of Muraro is criticized by Biginelli (1908). 100 cc. 90% alcohol dissolve 33.3 gms. Q. tannate at 15°-20°. (Squire and Caines, 1905.)

QUININE PYROTARTRATES l, i, d.

SOLUBILITIES IN ALCOHOL AT 18°. (Ladenburg and Herz, 1898.)

100 gms. alcohol dissolve 15 gms. of the l pyrotartrate, 3.2 gms. of the i and 4.2 gms of the d compound. The results show that the i acid is not a mixture of dand l acid, and, therefore, that the i quinine compound is a salt of the racemic acid.

SOLUBILITY OF QUININE AND OF QUININE SALTS IN WATER AND OTHER SOLVENTS. (U. S. P. VIII.)

Gms. Quinine Compound per 100 Gms. Solvent in:

Compound. Water. Chloroform. Glycerol. Alcohol. Ether. At 25°. At 80°. At 25°. At 25°. At 25°. At 25°. 52.Ğ C₂₀H₂₄N₂O₂ 0.057 0.123 166.6 22.2 62.5 0.065 0.129 166.6 76.g 166.6 5.55 250 0.417 122

0.633 C₂₀H₂₄N₂O₂.₃H₂O C₂₀H₂₄N₂O₂HCl.₂H₂O 0.472 12.2 $C_{20}H_{24}.N_2O_2.C_6H_4(OH).-$ COOH. HIO 2.86 6.25 1.30 9.00 0.01 2.70 (C20H24N2O2)2.H2SO4.7H2O 2.78 0.139 2.22 1.16 0.25 C20H24N2O2.H2SO4.7H2O 11.77 147 5.55 0.056 0.100 5 - 55 C₂₀H₂₄N₂O₂.HBr.H₂O 2.5 33.3 149.2 6.2 12.5

QUINOLINE ETHIODIDE C.H.N.C.H.I.

100 gms. H_2O dissolve 301.3 gms. $C_0H_7N.C_2H_6I$ at 25°. 100 gms. $CHCl_0$ dissolve 1.78 gms. $C_0H_7N.C_2H_6I$ at 25°. (Peddle and Turner, 1913.)

RADIUM EMANATIONS

SOLUBILITY IN WATER. (Boyle, 1911; Kofler, 1913.)

	Solubility.		t°.	Solubility.		
t:	l (Boyle).	α (Kofler).	• .	l (Boyle).	α (Kofler).	
0	o.508	0.54	30	0.195	0.205	
5	0.41	0.442	40	. 0.16	0.165	
10	0.34	0.37	50		0.14	
15	0.29	0.31	60	• • •	0.12	
20	0.245	· O. 265	70		0.11	
25	0.215	0.232	. 90	• • •	0.108	
-						

The results of Boyle are in terms of l, the Ostwald Solubility Expression (see p. 227). Those of Kofler are in terms of the expression $\alpha =$ V and v are the volumes involved and E' and E the total amount of emanation contained respectively in the air and in the liquid.

SOLUBILITY IN SEVERAL SOLVENTS. (Ramstedt, 1911; Swinne, 1913.)

Solvent.	Results at o*.		Results at 18°.		Results at 14°. (Boyle, 1911.)	
	- lo-	Sp. Gr. of Sol.	118.	Sp. Gr. of Sol.	l ₁₄	
Water	0.52	0.9999	0. 285	0.9986	0.30	
Sea Water			• • •	• • •	0.255	
Ethyl Alcohol	8. 28	0.8065	6. 17	0.7911	7.34	
Amyl Alcohol	• • •				9.31	
Acetone	7.99	0.8186	6.30	0.7972	•••	
Aniline	4 · 43	1.0379	3.80	1.0210	• • •	
Benzene		• • •	12.82	0.8811	• • •	
Carbon Disulfide	33 · 4	1.2921	23.14	1.2640	• • •	
Chloroform	20.5	1.5264	15.08	1.4907	• • •	
Cyclohexane		• • •	18.04	0.7306	•••	
Ethyl Acetate	9.41	0.9244	7.34	0.9029	• • •	
Ethyl Ether	20.9	0.7362	15.08	0.7158		
Glycerol	• • •		0.21	1.262	• • •	
Hexane	23.4	0.6769	16.56	0.6612		
Toluene	18.4	0.8842	13.24	o. 8666	13.7	

The above results are in terms of the Ostwald Solubility Expression (see p. 227).

RESORGINOL C.H.(OH), 1, 3.

SOLUBILITY IN: Water. Ethyl Alcohol. (Speyers - Am. J. Sci. [4] 14, 294, '02.) (Speyers.) Sp. Gr. of Gms.C₆H₄(OH)₃ per 100 Gms. Solutions. Gms. C₆H₄(OH)₂ per 100 Gms. Sp. Gr. of Solutions. ŧ°. Water. Solution. Alcohol. Solution. I.IOI 0 60 37 . 5 1.033 210 67.8 10 1.118 81 44.8 1.036 223 6g.a 20 70.3 1.134 103 50.7 I.04I 236 25 I.142 70.8 117 53.9 1.045 243 1.148 30 131 56.7 1.048 250 71.4 40 1.157 161 58.9 1.056 266 72.7 50 1.165 198 66.5 1.065 286 74.I 60 I.172 246 7I.I I .075 311 75.7 70 1.176 76.2 1.087 320 341 77.3 80 1.179 487 82.9 1.104 78.9 375

Note. — The original results of Speyers are given in terms of mols. per 100 mols. $H_1\mathrm{O}$.

According to Vaubel (1895), 100 gms. H₂O dissolve 175.5 gms. C₆H₄(OH)₈, or 100 gms. sat. solution contain 63.7 gms. at 20°. Sp. Gr. of sol. = 1.1335.

SOLUBILITY OF RESORCINOL IN ALCOHOLS AND IN ACIDS. (Timofeiew, 1894.)

Solve	nt.	ť.	Gms. C ₆ H ₄ (OH) ₂ m per 100 Gms. Sat. Sol.	Solvent	·•	t°.	Gms. C ₄ H ₄ (OH) ₂ m per 100 Gms. Sat. Sol.
Methyl A	Alcohol	11.6	69	Formic	Acid	15	20.2
Ethyl	"	10.4	59.2	Acetic	"	15	32.5
"	"	11.6	61.5	Propionic	"	15	22.8
Propyl	"	10.4	51.5	Butyric	"	15	14.7
"	"	11.6	51.6	Isobutyric	: "	15	9.6
			-	Valeric	"	15	6. s

SOLUBILITY OF RESORCINOL IN BENZENE.

(Rothmund, 1898.)

t*.	Gms. C ₄ H ₄ (OH) ₂ per 100 Gms. Sat. Sol.	t°.	Gms. C ₄ H ₄ (OH) ₂ per 100 Gms. Sat. Sol.
73	3.18	95.5	61.7
77	4 · 75	96.5	77.64
82	6.94 ′	83.46	98.5
95.5	37 · 44	90.23	100

Between the concentrations 37.44 and 61.7 at 95.5° two liquid layers are formed. The reciprocal solubilities of these two layers, determined by the synthetic method (see Note, p. 16), are as follows:

ť.	Gms. C ₆ H ₄ (OH) ₂ per 1∞ Gms.		t°.	Gms. C ₆ H ₄ (OH) ₃ per 100 Gms.		
	C.H. Layer.	C ₄ H ₄ (OH) ₃ Layer.	6	C ₆ H ₆ Layer.	C ₄ H ₄ (OH) ₂ Layer.	
60	4.8	79 - 4	90	13	71.3	
70	6.6	77 - 5	100	19.5	65.7	
80	9.2	75	105	24.6	60.7	
			100.3	crit. temp.	42.4	

Resorcinol mixes with pyridine in all proportions. (Dehn, 1917) 100 gms. aqueous 50% pyridine dissolve 901 gms. C₆H₄(OH)₂ m at 20°-25°. "

100 cc. olive oil dissolve 4.55 gms. C₆H₄(OH)₂ m at 15°-20°. (Squire and Caines, 1905.) The coefficient of distribution of resorcinol at 25° between olive oil and water (conc. in oil + conc. in H₂O) is given as 0.04 by Boeseken and Waterman (1911, 1012)

Freezing-point data (solubility, see footnote, p. 1), for mixtures of resorcinol and p toluidine are given by Philip and Smith (1905) and by Vignon (1891). Results for mixtures of resorcinol and m xylene are given by Campetti (1917).

DISTRIBUTION OF RESORCINOL BETWEEN WATER AND ORGANIC . SOLVENTS AT ORDINARY TEMPERATURE.

_	(Vaubel — J. pr. Ch. [2] 67, 478, '03.)	C C1	T (OTD !
Gms. C ₆ H ₄ (OH) ₂ Used.	Solvents.	H ₂ O Layer.	Organic Solvent Layer.
1.191	60 cc. H ₂ O+ 30 cc. Ether	0.2014	0.9896
1.191	$60 \text{ cc. } \text{H}_2\text{O} + 60 \text{ cc. Ether}$	0.2475	0.9525
o ·800	40 cc. H ₂ O+ 40 cc. Benzene	0.5873	0.2127
0.800	40 cc. H ₂ O+ 80 cc. Benzene	0.5773	0.2227
0.500	50 cc. H ₂ O+ 50 cc. CCl ₄	o · 4885	0.0115
0.500	50 cc. H ₂ O+1∞ cc. CCl ₄	o · 4880	0.0120
0.500	50 cc. H ₂ O+150 cc. CCl ₄	o . 4880	0.0120

RHODIUM SALTS. SOLUBILITY IN WATER.

(Jorgensen J. pr. Ch. [2]	17, 433, 83, 34, 394, 80, 44, 51,	'91.)	
Salt.	Formula.	t°.	Gms. per 100 Gms. H ₂ O.
Chloro Purpureo Rhodium Chloride	ClRh(NH ₃) ₅ Cl ₂	17	0.56
Luteo Rhodium Chloride	Rh(NH _x) ₆ Cl _x	8	13.3
Luteo Rhodium Nitrate	$Rh(NH_2)_{\mathfrak{s}}(NO_2)_{\mathfrak{s}}$	ord. t.	
Luteo Rhodium Sulphate	$[Rh(NH_3)_6]_2(SO_4)_3.5H_2O$	20	2.3

ROSANILINE CapHaiNaO.

100 gms. H ₂ O dissolve 0.03 gm. C ₂₀ H ₂₁ N ₃ O ₄ at 20°-25°.	(Dehn, 1917.)
100 gms. pyridine dissolve 41.5 gms. C ₂₀ H ₂₁ N ₂ O ₄ at 20°-25°.	и
100 gms. aq. 50% pyridine dissolve 35.1 gms. C ₂₀ H ₂₁ N ₂ O ₄ at 20°-25°	. "

Triphenyl p ROSANILINE HYDROCHLORIDE (C.H. NH. C.H.); C(OH). HCl.

SOLUBILITY IN SEVERAL SOLVENTS AT 23°. (v. Szathmary de Szachmar, 1910.)

Solvent.	Gms. Triphenyl p Rosaniline HCl per 100 Gms. Sat. Sol.
Methyl Alcohol	0.447
Ethyl "	0.285
Amyl "	0.11
Acetone	0.19
Aniline	0.518

ROSOLIC ACID C20H16O2.

100 gms. H ₂ O dissolve 0.12 gm. C ₂₀ H ₁₆ O ₃ at 20°-25°.	(Dehn, 1917.)
100 gms. pyridine dissolve 160 gm. C ₂₀ H ₁₆ O ₂ at 20 ⁸ -25°.	"
100 gms. aq. 50% pyridine dissolve 80 gm. C ₂₀ H ₁₆ O ₂ at 20°-25°.	4

RUBIDIUM ALUMS. See also Alums, p. 32.

SOLUBILITY IN WATER. (Locke, 1901.)

	- ,		Gms. Alum per 100 Gms. H ₂ O.			
Alum.	Formula.	t°.	Anhydrous.	Hydrated.	G. Mols.	
Rb. Aluminum Alum	RbAl(SO ₄) ₄ .12H ₂ O	25	1.81	3.15	0.0059	
46	"	30	2.19		2.0072	
44	66	35	2.66		0.0087	
44	66	40	3. 22		0.0106	
Rb. Chromium Alum	RbCr(SO ₄) ₂ .12H ₂ O	25	2.57	4.34	0.0079	
"		30	3. 17		0.0096	
66	. 44	35	4. 11		0.0128	
"	44	40	5.97		0.0181	
Rb. Vanadium Alum	RbV(SO ₄) ₄ .12H ₂ O	25	5 · 79	9.93	0.0177	
Rb. Iron Alum	RbFe(SO ₄).12H.O	25	9.74	16.98	0.0294	
"	`"	зŏ	20.24		0.0617	

Biltz and Wilke, 1906, find for the solubility of rubidium iron alum in water, at 6.6° , 4.55 gms. per 100 cc. solution; at 25° , 29 gms; and at 40° , 52.6 gms.

RUBIDIUM FLUOBORIDE RbBF.

100 gms. H₂O dissolve 0.55 gm. RbBF₄ at 20°, and 1 gm. at 100°. (Godeffroy, 1876.)

RUBIDIUM BROMIDE RbBr.

SOLUBILITY IN WATER. (Rimbach, 1905.)

t°.	Gms. RbBr	Gms. RbBr per 100 Gms.		Gms. RbBr	er 100 Gms.
6	Water.	Solution.		Water.	Solution.
0.5	89.6	47 . 26	39.7	131.85	56.87
5	98	49.50	57 · 5	152.47	60.39
16	104.8	51.17	113.5	205.21	67 . 24

Freezing-point data for RbBr + AgBr are given by Sandonnini (1912a).

RUBIDIUM BICARBONATE RbHCO.

100 gms. sat. solution in H₂O contain 53.73 gms. RbHCO₃ at about 20°. (de Forcrand, 1909.)

RUBIDIUM CARBONATE Rb₂CO₂.

100 gms. absolute alcohol dissolve 0.74 gm. Rb₂CO₈.

(Bunsen.)

RUBIDIUM CHLORATE RbClO₂.

SOLUBILITY IN WATER. (Calzolari, 1912.)

t°.	Gms. RbClO ₃ per 100 Gms. H ₂ O.	t°.	Gms. RbClO ₃ per 100 Gms. H ₂ O.
0	2.138	42.2	12.48
8	3.07	50	15.98
19.8	5.36	7 6	34.12
30	8	99	62.8

There is some uncertainty as to whether the results of Calzolari refer to 100 gms. of H2O or 100 gms. of saturated solution.

100 gms. H_2O dissolve 3. I gms. RbClO₃ at 15° (d_{15} of the sat. sol. = 1.07). (Carlson, '10.) For earlier data see Reissig, 1863.

RUBIDIUM PerCHLORATE RbClO4.

SOLUBILITY IN WATER. (Carlson, 1910; Calzolari, 1912.)

40	Gms. RbClC	Gms. RbClO ₄ per 100 Gms. H ₂ O.		Gms. RbClO ₄ per 100 Gms. H ₂ O.		
t°.	(Calzolari.)	(Carlson.)	t·.	(Calzolari.)	(Carlson.)	
0	0.5	1.1 (1.007)	50	3.5	4.6	
10	0.6	I.2	60	4.85	6.27 (1.028)	
20	I	1.56 (1.010)	70	6.72	8.2	
25	I.2	r.8	80	9.2	11.04 (1.050)	
30	1.5	2.2	90	12.7	15.5	
40	2.3	3.26 (1.017)	· 100	18	22 (?) (1.070)	

The figures in parentheses are densities of sat. solutions. 100 gms. H₂O dissolve 1.08 gm. RbClO₄ at 21.3°.

(Longuimine, 1862.)

RUBIDIUM Potassium PerCHLORATE Rb2K(ClO4)2.

100 gms. sat. solution in H₂O contain 1.55 gms. Rb₂K(ClO₄)₂ at 20° (d₂₀ of the sat. solution = 1.013). (Carlson, 1910.)

RUBIDIUM CHLORIDE RBC1.

SOLUBILITY IN WATER. (Rimbach, 1902; Berkeley, 1904.)

to Mols. RbCl		Gms. RbCl per 100 Gms.		t°.	Mols. RbCl	Gms. RbCl per 100 Gms.	
.	per Liter.	Water.	Solution.	٠.	per Liter.	Water.	Solution.
0	5.17	77.0	43 · 5	60	6.90	115.5	53.6
IO	5 · 55	84.4	45.8	70	7.12	121.4	54.8
20	5.88	91.1	47 · 7	8o	7 · 33	127:2	56.o
30	6.17	97.6	49 - 4	90	7 · 52	133.1	57 · I
40	6.43	103.5	50.9	100	7.71	138.9	58. 9
50	6.67	109.3	52.2	112.9	7 · 95	146.6	59 · 5

The following determinations of the Sp. Gr. of the sat. solutions are given by Berkeley.

gms. RbCl at 25°. (Turner and Bissett, 1913.) 100 gms. methyl alcohol dissolve 1.41 0.078 gm. ethyl ** propyl 0.015 0.0025 " 66 66 amyl

100 cc. anhydrous hydrazine dissolve 5 gms. RbCl at room temp.

(Welsh and Broderson, 1915.)

Freezing-point data (solubility, see footnote, p. 1) for RbCl + AgCl and RbCl + TlCl are given by Sandonnini (1911, 1914). Results for RbCl + NaCl are given by Zemcznzny and Rambach (1910).

RUBIDIUM TELLURIUM CHLORIDE Rb.TeCl.

100 gms. aq. HCl of 1.2 Sp. Gr. dissolve 0.34 gm. Rb₂TeCl₄ at 23°.
100 gms. aq. HCl of 1.05 Sp. Gr. dissolve 13.09 gms. Rb₂TeCl₄ at 23°.
(Wheeler, 1893.)

RUBIDIUM THALLIUM CHLORIDE 3RbCiTiCls.2HsO.

100 gms. H₂O dissolve 13.3 gms. at 18°, and 62.5 gms. at 100°. (Godeffroy, 1886.)

RUBIDIUM CHROMATE (Mono) Rb₂CrO₄.

SOLUBILITY IN WATER. (Schreinemakers and Filippo, Jr., 1906.)

r.	Gms. RbCrO ₄ per 100 Gms. Solution.	e.	Gms. RbCrO ₄ per 100 Gms. Solution.	ť.	Gms. RbCrO ₄ per 100 Gms. Solution.
- 7	36.65	50	47 - 44	-2.40	15.58
0	38.27	60.4	4 8.90	-3.25	20.03
10	40.23	Solid P	hase, Ice	-4.14	24. 28
20	42.42	-o.6	0.95	-5.55	30.15
30	44.11	— 1.1	7.22	-6.71	34.31
40	46.13	— 1 .57	9.87	about -7	36.65

EQUILIBRIUM IN THE SYSTEM RUBIDIUM OXIDE, CHROMIUM TRIOXIDE AND WATER AT 30°. (Schreinemakers and Filippo, Jr., 1906.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100	Solid Phase.	
CrO ₃ .	Rb _z O.	Solid Phase.	CrO ₃ .	Rb _z O.	Sond Phase.
0	60.56	RЬОН	13.91	3.38	Rb ₂ Cr ₂ O ₇
0	56.8 ₂	Rb ₂ CrO ₄	15.05	3.45	" +Rb ₂ Cr ₃ O ₂₀
0.776	37.88	44	15.31	3 · 59	Rb ₂ Cr ₂ O ₇
2.89	34.89	u	15.19	3.19	Rb ₂ Cr ₂ O ₂
4.96	30.20	4	18.96	2.37	46
8.54	28.17	"	24.92	1.66	44
11.98	27.99	"	37 · 34	1.61	44
15.38	28.73	и	48.20	1.54	u
15.54	28.55	" +Rb ₂ Cr ₂ O ₇	53.87	1.67	4
13.69	23.87	Rb ₂ Cr ₂ O ₇	54.29	1.28	" +Rb ₂ Cr ₄ O ₂₉
9.98	17.56	u	58.69	1.07	Rb ₂ Cr ₄ O ₁₃
5.72	8.47	64	62.38	0.93	4
4.58	7.98	64	62.74	0.93	44
4.87	4.60	44	63.07	0.92	" +CrO ₂
8.16	3 · 57	"	62.28	o Í	CrO ₈

RUBIDIUM DICHROMATE Rb2Cr2O7.

SOLUBILITY OF THE POLYMORPHIC FORMS IN WATER. (Stortenbecker, 1907; see also Wyrouboff, 1901.)

ť.	Gms. Rb ₂ Cr ₂ O ₇ per 100 Gms. Sat. Sol.			
	Monoclinic Form.	Triclinic Form.		
18	5.42	4.96		
24	6.94	6.55		
30	9.08	8.70		
40	13.22	12.90		
50	18.94	18.77		
Ğ5	28.10	27.30		

100 gms. sat. aq. solution contain 9.47 gms. Rb₂Cr₂O₇, at 30°. (Schreinemakers and Filippo, Jr., 1906.)

RUBIDIUM FLUORIDE RbF.14H2O.

100 gms. H₂O dissolve 130.6 gms. RbF at 18°.

(de Forcrand, 1911.)

RUBIDIUM HYDROXIDE REOH.

100 gms. sat. aqueous solution contain 63.39 gms. RbOH at 30°.

(Schreinemakers and Filippo,1906.)
100 gms. sat. aqueous solution contain 64.17 gms. RbOH at 15°. (de Forcrand, 1909a.) Fusion-point data for mixtures of RbOH + NaOH are given by (v. Hevesy, 1900).

RUBIDIUM IODATE RbIO2.

100 gms. H₂O dissolve 2.1 gms. RbIO₂ at 23°.

(Wheeler, 1892.)

RUBIDIUM PerIODATE RbIO.

100 gms. H₂O dissolve 0.65 gm. RbIO₄ at 13°, d₁₄ of sat. solution = 1.0052. (Barker, 1908.)

RUBIDIUM IODIDE RbI.

100 gms. H₂O dissolve 137.5 gms. RbI at 6.9°, and 152 gms at 17.4°. (Reissig, 1863.) SOLUBILITY OF RUBIDIUM IODIDE IN ORGANIC SOLVENTS. (Walden, 1906.)

Gms. RbI per 100 cc. Solution. Solvent. Formula. 1.478 at o° 1.350 at 25° Acetonitrile CH₂CN Propionitrile | C₂H₆CN 0.274 0.305 " " Nitromethane CH₂NO₂ 0.567 0.518 " Acetone (CH₃)₂CO 0.960 0.674 Furfurol C₄H₄O.COH " 4.930

Fusion-point data for RbI + AgI are given by Sandonnini (1912a).

RUBIDIUM PerIODIDES

SOLUBILITY IN WATER AT 25°. (Foote and Chalker, 1908.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100	Solid Phase.	
RbI.	Ī.	Sond Phase.	RbI.	1.	Sond Phase.
61.93	0	RbI	28.01	64.85	RbI₃+I
59·94	5.90	" +RbIs	27.85	65.12	**
57 - 24	8.02	RbI _s	27.83	65.13	**
33.89	38.08	**	27.99	64.98	"

The results show that RbI7 and RbI9 are not formed.

RUBIDIUM BROMIODIDE RbBr.I.

100 gms. sat. aq. solution contain about 44 gms. RbBr₂I, and the Sp. Gr. of the solution is 3.84. (Wells and Wheeler, 1892.)

RUBIDIUM IRIDATE and IRIDITES

SOLUBILITIES IN WATER. (Delépine, 1908.)

Salt.	Formula.	t°.	Gms. Salt per 100 Gms. H ₂ O.
Rubidium Chloroiridate	Rb ₂ IrCl ₆	19	0.0555
Trirubidium Hexachloroiridite	Rb ₃ IrCl ₆ .H ₂ O	19	0.91
Dirubidium Aquopentachloroiridite	$Rb_2IrCl_5(H_2O)$	19	1.05

RUBIDIUM ParaMOLYBDATE 5Rb₂O.12MoO₂.H₂O.

100 cc. sat. aq. solution contain 1.941 gms. of the salt at 24°. (Wempe, 1912.)

RUBIDIUM NITRATE RbNO.

SOLUBILITY IN WATER. (Berkeley, 1904.)

	Mols. Grams RbNOs per 100 Gms.			t°.	Mols. RbNOs	Gms. RbNO2 per 100 Gms.	
t°.	RbNO ₂ ·	Water.	Solution.	• •	Per Liter.	Water	Solution.
0	1.27	19.5	16.3	60	7 · 99	200	66 . 7
10	2.04	33.0	24.8	70	9.02	251	71.5
20	3.10	53 · 3	34.6	8o	9.93	309	75.6
30	4.34	81.3	44.8	90	10.77	375	78.9
40	5.68	116.7	53 - 9	100	11.54	452	81.9
50	6.88	155.6	60.9	118.3	12.76	617	86.1

The following Sp. Gr. determinations are also given by Berkeley.

t'. o.6 15.85 31.55 45.85 63.4 75.60 90.95 118.3* Sp. Gr. Sat. Sol. o.1389 1.2665 1.4483 1.6216 1.8006 1.9055 2.0178 2.1867 * Boiling-point.

THE SOLUBILITY AND SUPERSOLUBILITY ICE CURVES FOR RUBIDIUM NITRATE AND WATER. (Jones, 1908.)

40.100	Gms. RbNO ₃ p	er 100 Gms. H ₂ O.	to of Cryst.	ms. RbNO _s p	ns. RbNO, per 100 Gms. H ₂ O.	
t°. of Cryst. of Ice.	Solubility Curve.	Supersolubility Curve.	of Ice.	Solubility Curve.	Supersolubility Curve.	
-0.4	1.16		-3.5	• • •	9.94	
—1.8		I.24	-2.3	13.97	• • •	
—2.1		5.39	-4.2		13.97	
—1.7	9.94		-2.7 Cryohydrat	e 17.11		

RUBIDIUM Telluric Acid **OXALATE** Rb₂[H₆TeO₆.C₂O₄].

SOLUBILITY IN WATER. (Rosenheim and Weinheber, 1910-11.)

t°. 0° 20° 30° 40° 50° Gms. Rb₂[H₆TeO₆.C₂O₄] per 100 gms. H₂O 3.85 7.26 9.40 12.76 16.90

RUBIDIUM PERMANGANATE RbMnO4.

One liter of aqueous solution contains 6.03 gms. RbMnO₄ at 7°.

100 cc. sat. aq. solution contain 0.46 gm. RbMnO₄ at 2°, 1.06 gms. at 19° and 4.68 gms. at 60°. (Patterson, 1906.)

RUBIDIUM SELENATE Rb₂SeO₄.

100 gms. H₂O dissolve 158.9 gms. Rb₂SeO₄ at 12°.

(Tutton, 1897.)

SOLUBILITY OF MIXED CRYSTALS OF RUBIDIUM ACID SELENATE AND RUBIDIUM ACID TELLURATE AND OF RUBIDIUM ACID SULFATE AND RUBIDIUM ACID TELLURATE IN WATER AT 25°. (Pellini, 1909.)

Results for RbHSeO ₄ + RbHTeO ₄ .			Results for RbHSO ₄ + RbHTeSO ₄ .			
Gms. per roco cc. Sat. Sol. Mol. % Selenate		Gms. per 1000 cc. Sat. Sol.		Mol. % Sulfate		
RbHSeO4.	RbHTeO4.	in Solid Phase.	RbHSO4.	RbHTeO4.	in Solid Phase.	
76.46	39.51	51.55	26.675	38.403	47.91	
. 95.82	35.30	52.22	32.117	31.58	50.33	
171.70	22.98	53.95	42.917	26.764	50.74	
462.80	5	56.33	59.074	20. 182	50.99	
850.30	3.40	67.46	498.25	0.02887	52.52	

RUBIDIUM FLUOSILICATE Rb.SiF.

100 gms. H₂O dissolve 0.16 gm. Rb₂SiF₆ at 20°, and 1.36 gms. at 100°. (Stolba, 1867.)

RUBIDIUM SILICOTUNGSTATE Rb₈SiW₁₂O₄₂.

100 gms. H₂O dissolve 0.65 gm. Rb₈SiW₁₂O₄₂ at 20°, and 5.1 gms. at 100°. (Godefiroy, 1876.)

RUBIDIUM SULFATE Rb2SO4. SOLUBILITY IN WATER.

SOLUBILITY IN WATER. (Etard, 1894; Berkeley, 1904.)

Mols. 8°. Rb ₂ SO ₄		Gms. Rb ₂ SO ₄ per 100 Gms.		t°.	Mols. Rb ₂ SO ₄	Gms. Rb ₂ SO ₄ per 100 Gms.	
• .	per Liter.	Water.	Solution.	• •	per Liter.	Water.	Solution.
0	1.27	36.4	27 · 3	60	2.15	67 . 4	40.3
10	1.46	42.6	29.9	70	2.25	71.4	41.7
20	1.64	48.2	32.5	80	2.34	75.0	42.9
30	1.79	53 · 5	34.9	90	2 . 42	7 8.7	44.0
40	1.92	58.5	36. 9	100	2 · 49	81.8	45.0
50	2.04	63.1	3 ⁸ · 7	102.4	2.50	82.6	45.2

The following Sp. Gr. determinations are also given by Berkeley.

15.80 31.6 44.2 57.90 74.75 89.45 102.4* 1.3287 1.3704 1.3998 1.4232 1.4480 1.4649 1.4753 Sp.Gr.Sat.Sol. 1.2740

100 cc. sat. solution in absolute H₂SO₄ contain 58.81 gms. Rb₂SO₄.
(Bergius, 1910.)

SOLUBILITY OF RUBIDIUM DOUBLE SULFATES IN WATER AT 25° (Locke, 1902.)

	Per 100 cc. H ₂ O.		Per 100 (x. H₃O.
Formula.	Gms. Mols.	Formula.	Gms.	Mols.
	Anh. Salt. Salt.		Anh. Salt.	Salt.
Rb ₂ Cd(SO ₄) ₂ .6H ₂ O	76.7 o.1615	Rb ₂ Mn(SO ₄) ₂ .6H ₂ O	35 · 7	0.0857
Rb ₂ Co(SO ₄) ₂ .6H ₂ O	9.28 0.022	$Rb_2Mg(SO_4)_2.6H_2O$	20.2	0.0521
Rb,Cu(SO ₄) ₂ .6H ₂ O	10.28 0.0241	Rb ₂ Ni(SO ₄) ₂ .6H ₂ O	5.98	0.0142
Rb.Fe(SO ₄) ₂ .6H ₂ O	24.28 0.0579	Rb ₂ Zn(SO ₄) ₂ .6H ₂ O	10.10	0.0236

RUBIDIUM Dihydroxy TARTARIC ACID Rb₂C₄H₄O_{8.3}H₂O.

100 gms. H₂O dissolve 6.51 gms. Rb₂C₄H₄O_{8.3}H₂O at 0°. (Fenton, 1898.) On account of the unstable character of the compound, only ½ hour was allowed for saturation of the solution.

RUTHENIUM SALTS

SOLUBILITIES IN WATER. (Howe, 1894.)

	Salt.		Formula.	ť.	Gms. Salt per 100 Gms. H ₂ O.	
Rutheniun	a Potassium N	Vitros	ochloride	K ₂ RuCl ₆ NO	25	12
"	"		"	"	60	8o
"	Ammonium	Nitro	sochloride	(NH ₄) ₂ RuCl ₄ NO	25	5
"	"		"	"	60	22
"	Rubidium N	litros	ochloride	Rb ₂ RuCl ₂ NO	25	0.57
"	"	10100	"	"	60	2.13
66	66		" (hydrated)	Rb ₂ RuCl ₅ NO.2H ₂ O	25	114.3
".	Caesium Ni			Cs-RuClsNO		0.20
"	Cacsium 141	11020	anoride	CSIKUCIGIVO	25	
				••	60	0.56
"	"	"	(hydrated)	Cs ₂ RuCl ₅ .NO.2H ₂ O	25	105.8

SACCHARIN (1, Benzosulfonazole, 2(1), one) C₄H₄< $\frac{SO_2}{CO}$ > NH·

100 parts H₂O dissolve 0.4 part at 25° and 4.17 parts at 100°.

100 parts 1120 dissolve 0.4 parts at 25°. (U. S. P. VIII.)
100 parts alcohol dissolve 4 parts at 25°. (U. S. P. VIII.)
100 gms. trichlorethylene dissolve 0.012 gm. saccharin at 15°. (Wester and Bruins, 1914.) (U. S. P. VIII.)

DISTRIBUTION OF SACCHARIN AT 25° BETWEEN:

Water * and Ether. (Marden, 1914.) Water † and Amyl Acetate. (Marden, 1914.)

Gms. S	accharin per:		Gms. Sa		
100 cc. H ₂ O Layer.	50 cc. Ether Layer.	Dist. Coef.	Ios cc. Aq. Layer.	50 cc. Amyl Acetate Layer.	Dist. Coef.
0.0290	0.0438	0.267	0.0045	0.0700	0.0306
0.0458	0.0829	0.235	0.0065	0.0957	0.0322
0.0719	0.1245	0.245	0.0114	0.1724	0.0315
• •	Slightly acidified	with HCl.	† Containing s cc. co	nc. HCl per too co	

The amount of saccharin entering the ethereal layer is increased by addition of HCl to the aqueous layer. With 5 cc. conc. HCl per 100 cc. H₂O, the distribution coefficient is reduced to 0.0624.

SALICIN C₆H₄(CH₂.OH)O.C₆H₁₁O₆.

SOLUBILITY IN SEVERAL SOLVENTS.

Solvent.	ť.	Gms. per 100 Gms. Solvent.	Authority.
Water	15	3.52	(Greenish and Smith, 1903.)
Water	25	4.16	(Dott, 1907.)
90% Alcohol	15	1.5	(Greenish and Smith, 1903.)
90% Alcohol	15	2	(Squire and Caines, 1905.)
Trichlor Ethylene	15	0.013	(Wester and Bruins, 1914.)

SALICYLAMIDE OH.C.H.CONH2.

DISTRIBUTION BETWEEN WATER AND OLIVE OIL. (Meyer, 1901.)

r.	Gms. OHC ₆ H ₄ CO	Dist. Coef.	
	H ₀ Layer.	Oil Layer.	Disc. Coer.
3	0.056	0.126	2.25
36	0.075	0.107	1.40

BALICYLIC ACID C.H.OH.COOH 1:2.

SOLUBILITY IN WATER.

(Average curve from the closely agreeing determinations of Walker and Wood, 1898; at 26.4°, Philip, 1905; at 25°, Paul, 1894; at 20°, Hoitsema, 1898a; Hoffman and Langbeck, 1905. For determinations not in good agreement with the following, see Alexejew, 1886; Bourgoin, 1878; Ost., 1878.)

e. T	Gms. C ₄ H ₄ .OH.COOH per Liter Solution.	r.	Gms. C _t H _t .OH.COOH per Liter Solution.	ť.	Gms. ·C ₄ H ₄ .OH.COOH per Liter Solution.
0	0.8	25	2.2	60	8.2
10	1.2	30	2.7	70	13.2
20	1.8	40	3.7	80	20.5
		50	5.4		

SOLUBILITY OF SALICYLIC ACID IN WATER. (Savorro, 1914.)

ť.	Gms. C ₄ H ₄ .OH.COOH per 1000 Gms. Sat. Sol.	ť.	Gms. C₄H₄.OH.COOH per 1000 Gms. Sat. Sol.	r.	Gms. C ₄ H ₄ .OH.COOH per 1000 Gms. Sat. Sol.
0	I.24	35	3.51	70	13.70
5	1.29	40	4.16	75	17.55
10	1.35	45	4.89	80	22.08
15	1.84	50	6.38	85	27.92
20	2	55	7.44	90	37.35
25	2.48	60	9	95	50.48
30	2.98	65	10.94	100	75.07

SOLUBILITY OF SALICYLIC ACID (LIQUID) IN WATER.

Determinations by Synthetic Method. See Note, p. 16. The original data in each case were plotted and the following figures read from the curves.

	Gms. CaH	exejew.) (40HCOOH per so Gms.	e.	(Flaschner and Rankin, 1910.) Gms. C ₆ H ₆ OHCOOH per 100 Gms.		
r.	Aqueous Layer.	Salicylic Acid Layer.	•.	Aqueous Layer.	Salicylic Acid Layer.	
60	7	68	60	4.5	68	
70	8	64	70	6.5	62.5	
70 80	12	58	80	10	54	
90	19	49	85	15	46	
os crit. t	emp.	22	87 crit.	temp. 30	•	

Data for the melting-point curve of mixtures of solid salicylic acid and water are also given by Flaschner and Rankin.

SOLUBILITY OF SALICYLIC ACID IN AQUEOUS SALT SOLUTIONS AT 25° AND AT 35°. (Hoffman and Langbeck, 1905.)

	Normality	Gms.	C ₄ H ₄ OH.CO	OH Dissolved at 25°.	C.H.OH.CO	OH Dissolved at 35°.
Salt.	of Salt Solution.	Salt per Liter.	Gms. per 1000 Gms. Sat. Sol.	Gm. Mol. Per cent.	Gms. per roco Gms. Sat. Sol.	Gm. Mol. Per cent.
KCl	0.020	1.49	2.24	2.9216.10-4	3.23	4.2206.10-4
"	0.100	7.46	2.25	2.9377 "	3.23	4.2203 "
"	0.492	36.73	2.02	2.6321 "	3.01	3.9268 "
"	1.004	74.92	1.89	2.4759 "	2.68	3.5003 "
KNO ₃	0.020	2.02	2.25	3.9351 "	3.25	4.2499 "
"	0.100	10.12		3.0103 "	3.32	4.3334 "
"	0.504	51.10	2.38	3.1061 "	3.38	4.4123 "
"	1.004	101.60		3.1249 "	3.36	4.3848 "
NaCl	0.020	1.19	2.23	2.9110 "	3.22	4.2062 "
"	0.100	5.95	2.22	2.9027 "	3.20	4.1806 "
"	0.497	29.50	2	2.6128 "	2.85	3.7171 "
"	0.988	58.8o	1.72	2.2487 "	2.43	3.1596 "

SOLUBILITY OF SALICYLIC ACID IN AQUROUS SALT SOLUTIONS AT 25°. (Philip, 1905; Philip and Garner, 1909.)

	. Sodium		. Sodium mate.	In Aq. Sodium Monochlor Acetate.		
Gms.	per Liter.	Gms	. per Liter.	Gms. per Liter.		
CH.COONs.	С.Н.ОНСООН.	HCOONs.	с.н.онсоон.	CH2CICOONa.	с нонсоон.	
1.01	3.60	0.81	3.40	1.38	2.83	
2.48	5.93	1.63	4.42	3 · 43	3.58	
5.03	9.56	4.06	7.11	6.84	4.64	
10.07	16.81	8.14	10.44	13.71	6.17	
In Aq. Sodium Succinate.		In A	lq. Potassium Formate.	In Aq. Sodium Butyrate at 26.4°.		
Gms.	per Liter.	(Gms. per Liter.	Gms. per Liter.		
C.H.(COONs)	. С.н.онсоон.	HCOOL	C. C.H.OHCOOR	I. CH,COON	. С.Н.ОНСООН.	
1.18	2.97	0	2.265	I	3.3	
2.93	4.34	1.03	3.38	2	4.5	
5.85	6.56	2.56	4.93	4	6.85	
11.73	· 10.82	5.12	7.13	5	8.1	
One liter	of I normal acid at 25°.	queous sodi	um salicylate so	olution dissol	ves 4.97 gms. (Sidgwick, 1910.)	

SOLUBILITY OF SALICYLIC ACID IN AQUEOUS SOLUTIONS OF SODIUM SALICYLATE AT 20.1°. (Holtsema, 1898a.)

Gm. Mols. per Liter.		Gms. per Liter.			
C.H.OH- COONs.	Sp. Gr. or Solutions.	С.Н.ОН-	C.H.OH- COONs.	Solid Phase.	
0	1.002	1.823	0	C ₁ H ₁ OHCOOH	
0.017	1.003	1.55	2.705	"	
0.113	1.009	1.71	17.98	44	
0.226	1.016	1.97	35.96	46	
0.344	1.024	2.26	54.74	ee .	
0.500	1.034	2.80	79.56	46	
1.70	1.112	8.56	270.5	46	
2.11	1.137	13.11	335.7	C_H_OHCOOH.C_H_OHCOONa +C_H_OHCOOH	
2.IQ	I.144	12.56	348.4	C.H.OHCOOH.C.H.OHCOONa	
3.41	1.215	11.88		44	
4.23	1.263	11.19	673	C.H.OHCOOH.C.H.OHCOONa +C.H.OHCOONa	
4.18	1.259	6.63	665. I	C ₄ H ₄ OHCOON ₈	
4.12	1.258	2.90	665.5	44	
4.15	1.257	•	660.3	4	
	CaH,OH- COONa. O .017 O.113 O.226 O.344 O.500 I.70 2.II 2.I9 3.41 4.23 4.18 4.12	CaH,OH-COONa. O I.002 O.017 I.003 O.113 I.009 O.226 I.016 O.344 I.024 O.500 I.034 I.70 I.112 2.II I.137 2.I9 I.144 3.41 I.215 4.23 I.263 4.18 I.259 4.12 I.258	CaH.OH-COONa. O I.002 I.823 O.017 I.003 I.55 O.113 I.009 I.71 O.226 I.016 I.97 O.344 I.024 2.26 O.500 I.034 2.80 I.70 I.112 8.56 2.II I.137 I3.II 2.I9 I.144 I2.56 3.41 I.215 II.88 4.23 I.263 II.19 4.18 I.259 6.63 4.12 I.258 2.90	Sp. Gr. of C ₄ H,OH-COONa. O 1.002 1.823 0 O.017 1.003 1.55 2.705 O.113 1.009 1.71 17.98 O.226 1.016 1.97 35.96 O.344 1.024 2.26 54.74 O.500 1.034 2.80 79.56 1.70 1.112 8.56 270.5 2.11 1.137 13.11 335.7 2.19 1.144 12.56 348.4 3.41 1.215 11.88 542.6 4.23 1.263 11.19 673 4.18 1.259 6.63 665.1 4.12 1.258 2.90 665.5	

SOLUBILITY OF SALICYLIC ACID IN AQUEOUS SOLUTIONS OF ACIDS AT 25°. (Kendall, 1911.)

	Gms. per Li		Gms. per Liter.			
Acid.	Acid.	С.Н.ОН-	Acid.		cid.	СНОН-
Water alone	0	2.257	Formic Acid	230.15	HCOOH	2.370
Acetic Acid	37.52 CH4COOH	1 2.335	"	460.30	**	2.901
"	75.05 "	2.400	Hydrochloric Acid	0.653	HCI	1.781
"	150.10 "	2.549	"	1.302	**	1.710
"	300.20 "	2.850	"	4.558	44	1.677
Formic Acid	2.38 HCOOH	2.114	"	9.117	"	1.649
"	4.59 "	2.035	44	18.235	44	1.551
"	11.05 "	2.114	Malonic Acid	3.253	CH ₂ (COOH) ₂	2.051
"	21.17 "	2.035	"	10.49	"	1.944
"	28.76 "	2.049	"	20.84	44	I.880
"	57·53 "	2.066	Methyl Picric Acid	2.28	C ₇ H ₈ O ₇ N ₈	2.115
"	115.07 "	2.121	•			_

SOLUBILITY OF SALICYLIC ACID IN AQUEOUS SOLUTIONS OF O NITROBENEOIC ACID AT 25° AND VICE VERSA. (Kendall, 1911.)

Gms. per	r Liter.		Gms. p	er Liter.	
C.H.NO COOH.	о С.Н. онсоон.	Solid Phase.	C ₄ H ₄ .NO ₂ COOH.	COOH.	Solid Phase.
0	2.257	Salicylic Acid	7.188	2.243	 Nitrobenzoic Acid
2.615	1.974	"	7.213	1.873	
7.202	1.887	•4	7 - 233	I.294	
7.283	1.885	" +Nitrobenzoic			

SOLUBILITY OF SALICYLIC ACID IN AQUEOUS ALCOHOL AT 25°. (Seidell, 1908, 1909, 1910.)

		(, -,-	-, -,-,, -,,		
Wt. Per cent C.H.OH in Solvent.	d ₂₅ Sat. Sol.	Gms. C _s H ₄ OHCOOH per 100 Gms. Sat. Sol.	Wt. Per cent C ₂ H ₄ OH in Solvent.	d ₂₆ of Sat. Sol.	Gms. C ₀ H ₄ OHCOOH per 100 Gms. Sat. Sol.
10	0.984	0.38	60	0.943	18. 30
20	0.970	0.80	70	0.941	24
30	0.959	2.20	8o	0.937	28.30
40	0.951	5.90	90	0.930	31.40
50	0.945	12.20	100	0.919	33.20

SOLUBILITY OF SALICYLIC ACID IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL, ISOBUTYL ALCOHOL, DEXTROSE, CANE SUGAR, AND OF LEVULOSE AT 25° AND AT 35°. (Hoffmann and Langbeck, 1905.)

	Conc. of Solvent.		C.H.OH.COOH Dissolved at 25°.		C ₆ H ₄ OH.COOH Dissolved at 35°.	
Aq. Solvent.	Normal- ity.	Gms. per Liter.	Gm. Mol. Per cent.	Gms. per 100 Gms. Sat. Sol.	Gm. Mol. Per cent.	Gms. per 100 Gms Sat. Sol.
C ₂ H ₅ OH	0.0249	1.146	2.8966.10-4	0.222	4.2044.10-4	0.322
ü	0.0560	2.578	2.9150 "	0.223	4.2348 "	0.324
"	0. 1747	8.04	2.9901 "	0.220	• • •	
"	0.2399	11.05	•••		4.4341 "	0.339
"	1.03	47.4	3 - 5279 "	0.270	5.2816 "	0.404
"	1.638	75-44	3.9253 "	0.300		• • • •
C ₄ H ₄ OH (iso)	0.020	1.496	2.909 "	0. 223	4.229 "	0.324
"	0.051	3.74	2.955 "	0.226	4.289 "	0.329
"	0.100	7.48	3.033 "	0.232	4.435 "	0.339
"	0.521	38.60	3.718 "	0.285	5.624 "	0.431
C ₆ H ₁₂ O ₆	0.02	3.6	2.886 "	0.221	4.184 "	0.321
"	0.10	18	2.898 "	0.222	4.202 "	0.322
"	0.50	8g.6	2.954 "	0.226	4.263 "	0.326
66	I	180	3.015 "	0.231	4.360 "	0.334
$C_{12}H_{22}O_{11}$	0.02	6.88	2.902 "	0.221	4.206 "	0.322
"	0.10	34.97	2.964 "	0.227	4.287 "	0.328
"	0.50	172	3.239 "	0.248	4.697 "	0.360
"	1.10	376.3	3.633 "	0.278	5.236 "	0.401
$C_6H_{12}O_6$	0.02	3.6	2.888 "	0.221	JJ.	
((0.06	10.8	2.895 "	0.221		
"	0.25	45	2.944 "	0.225	•••	•••

SOLUBILITY OF SALICYLIC ACID IN ALCOHOLS, IN ETHER AND IN ACETONE. (Timofeiew, 1891; at 15°, Bourgoin, 1878; at 23°, Walker and Wood, 1898.)

Solvent.	t°.	Gms. C₄H per 10	OHCOOH o Gms.	Solvent.	t°.	Gms. C ₆ H ₄ per 12	
		Solvent.	Solution.			Solvent.	Solution.
CH ₃ OH	- 3	40.67	28.91	$C_2H_7OH(n)$	- 3	26.12	20.71
CH ₂ OH	+21	62.48	38.46	$C_2H_7OH(n)$	+21	37.69	27.36
C ₂ H ₅ OH	— 3	36.12	26.29	$(CH_3)_2O$	15	50.47	33 - 55
C_2H_5OH	+15	49.63	33.17	$(CH_3)_2O$	17	• • •	23.4*
C_2H_5OH	21	53 · 53	34.87	(CH ₂) ₂ CO	23	• • •	31.3*
C ₂ H ₄ OH 90%	15	42.09	29.62				

^{*} Gms. per 100 cc. sat. sol. instead of per 100 gms. sat. sol.

SOLUBILITY OF SALICYLIC ACID IN MIXTURES OF ACETONE AND BENZENE AT 25°. (Marden and Dover, 1917.)

Gms. per 100 Gms. Mixed Solvent.		Gms. per 100 G	ms. Mixed Solvent.	Gms. per 100 Gms. Mixed Solvent.		
Acetone.	Salicylic Acid.	Acetone.	Salicylic Acid.	Acetone.	Salicylic Acid.	
100	55	60	36.7	20	15	
90	51.1	50	31	10	7.1	
8o	46.4	40	25.3	0	0.92	
70	42.3	3¢	20			

¹⁰⁰ gms. sat. solution in methyl alcohol contain 39.87 gms. salicylic acid at 15°. (Savorro, 1914.)

SOLUBILITY OF SALICYLIC ACID IN BENZENE. (Walker and Wood, 1898.) (von Euler and Löwenhamn, 1916.)

ť.	Gms. C ₄ H _r - OHCOOH per 100 Gms. C ₄ H ₄ .	ť.	Gms. C ₄ H _c - OHCOOH per 100 Gms. C ₄ H ₄ .	t°.	Solvent.	Gms. C.H OHCOOH per 100 cc. Sat. Sol.
11.7	0.460	34.6	1.261	18	C_6H_6	0.525
18.2	0.579	36.6	1.430	25	C ₆ H ₆	0.762
25	0.78	49.4	2.380	18	o. 5n CH2ClCOOH in CaHa	
30.5	0.991	64.2	4.40	18	0.5n C6H6OH in C6H6	0.746

SOLUBILITY OF SALICYLIC ACID IN MIXTURES OF BENZENE AND ETHYL ACETATE AT 25°. (Marden and Dover, 1917.)

Gms. per 100 Gms. Mixed Solvent.		Gms. per 100 Gm	s. Mixed Solvent.	Gms. per 100 Gms. Mixed Solvent.		
Ethyl Acetate.	Salicylic Acid.	Ethyl Acetate.	Salicylic Acid.	Ethyl Acetate.	Salicylic Acid.	
100	38	60	16.6	20	6.2	
90	24.2	50	14.5	10	3.42	
80	22.7	40	12.8	. •	0.92	
70	10.5	30	0.6		-	

SOLUBILITY OF SALICYLIC ACID IN SEVERAL SOLVENTS AT 25°. (Herz and Rathmann, 1913.)

Solvent.	Gms. C ₆ H ₄ OHCOOH per 100 cc. Sat. Sol.	Solvent.	Gms. C ₆ H ₄ OHCOOH per 100 cc. Sat. Sol.
Chloroform	2.168	Tetrachlor Ethylene	1.105
Carbon Tetrachlorid	e 0.4143	Tetrachlor Ethane	2.085
Trichlor Ethylene	1.519	Pentachlor Ethane	1.064
100 gms. dichlor ethy 100 gms. trichlor ethy	lene dissolve 0.757 vlene dissolve 0.28	gm. salicylic acid at gm. salicylic acid at 1	15°. \ (Wester and 5°. \ Bruins, 1914.)

SOLUBILITY OF SALICYLIC ACID IN OILS (Temp. not stated). (Engfeldt, 1913.)

Oil of:	Gms. C ₄ H ₄ OHCOOH per 100 Gms. Sat. Sol.	Oil of:	Gms. C _t H _t OHCOOH per 100 Gms. Sat. Sol.
Phocae (Dog Fish Oil)	1.70	Sesami	2.61
Jecoris Aselli (Cod Liver	Oil) 1.86	Cannabis	3
Arachidis (Peanut Oil)	1.88	Lini (Linseed Oil)	3.04
Amygdalarum	2.08	Juglandis (Walnut Oil)	3.15
Olivæ (Olive Oil)	2.14	Gossypii (Cottonseed Oi	l) 3.23
Rapæ (Rape Seed Oil)	2.17	Ricini (Castor Oil)	12.98
Papaveris (Poppy Seed (Oil) 2.22	Paraffiniam Liquid	0

The ratio of the solubilities of salicylic acid in olive oil and in water (conc. in oil \div conc. in H_2O) at 25° is given as 11.8 by Boeseken and Waterman (1911, 1912). This corresponds to 2.6 gms. acid per 100 gms. olive oil.

DISTRIBUTION OF SALICYLIC ACID BETWEEN:

Water and Benzene. (Hendrixon, 1897.) Water and Chloroform. (Hendrixon, 1897.)

Results	at 10°.	Results	at 40°.	Results at 10°.		Results at 40°.	
Gms. Ac	id 100 cc.	Gms. Acid per 100 cc.		Gms. Acid per 100 cc.		Gms. Acid per 100 cc.	
HO Layer.	CaHa Layer.	H ₂ O Layer	C ₆ H ₆ Layer.	H ₂ O Layer.	CHCl ₂ Layer.	H ₂ O Layer.	CHCl Layer.
0.0264	0.0391	0.0260	0.0400	0.0293	0.0442	0.0335	0.0475
0.0377	0.0655	0.0719	0. 1649	0.0457	0.0946	0.0819	0.1775
O. I 200	0.4159	0.1220	0.3539	0.1172	0.5640	0.1589	0.5297
0.1292	0.4713	0.1563	0.5016	0.1229	0.6196	0. 2687	1.3887
		0.2014	0.7625	0.1236	0.6260	0.3053	1.7570

Similar data for the distribution between water and benzene at 18° are given by Nernst (1891).

Acetyl SALICYLIC ACID (Aspirin) CH4COO.C4H4.COOH, 1.2.

SOLUBILITY AND MELTING-POINT CURVES FOR MIXTURES OF ACETYL SALICYLIC ACID AND WATER, DETERMINED BY THE SYNTHETIC METHOD. (Flaschner and Rankin, 1909.)

Solubilit	y Curve (Liquid	Mpt. Curv	e (Solid Acid + H ₂ O).	
40	ms. CH ₆ COO.C ₆ H ₄ .	- 40	Gms. CH4COOC4H4-	
t°. ,	H ₂ O Rich Layer.	Acid Rich Layer.	t°.	COOH per 100 Gms. Mixture.
25	4.8	•••	82.4	4.8
50	6	74	90.4	10
70	10	67	92.4	20
8o	14	60	93.6	6o
85	17.5	55	99	80
87.5	20	50	109.4	89.5
89 crit. te	mp. 3	5	131	100

SALOL (Phenylsalicylate) C₆H₄.OH.COOC₆H₅, 1.2.

SOLUBILITY OF SALOL IN AQUEOUS ALCOHOL AT 25°. (Seidell, 1909, 1910.)

Wt. Per cent C ₂ H ₅ OH in Solvent.	d _≤ of Sat. Sol.	Gms. Salol per 100 Gms. Sat. Sol.	Wt. Per cent C _a H _a OH in Solvent.	d ₂₅ of Sat. Sol.	Gms. Salol per 100 Gms. Sat. Sol.
0	0.999	0.015	70	0.877	4.40
20	0.967	0.020	8o	0.863	7.70
. 40	0.934	0.22	90	0.865	14
	0.914	0.76	92.3	0.868	17.70
50 60	0.895	2.10	100	0.898	35

SOLUBILITY OF SALOL IN SEVERAL SOLVENTS. (Seidell, 1907.)

Solvent.	ť°.	d Sat. Sol.	Gms. Salol per 100 Gms. Sat. Sol.	Solvent.	t°.	Sat. p	Gms. Salol er 100 Gms. Sat. Sol.
Acetone	30-31		90.99	Amyl Alcohol	25	0.869	20.44
Benzene	30-31	1.148	88.57	Acetic Acid (99.5%)	21.5	1.143	63.24
Amyl Acetat	e 30-31	1:136		Xylene	32.5		87.14+
Aniline	30-31	• • •	very soluble	Toluene	25	1.128	83.62

100 gms. pyridine dissolve 381 gms. salol at 20°-25° (Dehn, 1917). The solution in aqueous 50 per cent pyridine separates into two layers.

SOLIDIFICATION TEMPERATURES (Solubility, see footnote, p. 1) FOR MIXTURES OF:

Salol a	Salol and Thymol. (Bellucci, 1912.)			Salol and	d Urethan.	(Bellucci, 1912, 1913.)		
	Gms. Salol per 100 Gms. Mixture.	t° of Solidif.	Gms. Salol per 100 Gms. Mixture.	t° of Solidif.	Gms. Salol per 100 Gms. Mixture.	t° of Solidif.	Gms. Salol per 100 Gms. Mixture.	
42	100	23 .	50	42	100	36.5	50	
34 26	90	29	40	36. <u>5</u>	90	39	40	
	80	34.5	30	29 Eutec		41.5	30	
18	70	40	20	31	80	44	20	
13 Eutec	c. 66	46	10	30	70	47	10	
17.5	60	51	0	34	60	48.5	0	

The Eutec. for salol + camphor is at +6° and contains 56% salol. (Bellucci, The Eutec. for salol + monobrom camphor is at 21° and contains 60% salol.) 1912, 13.) Solidification temperatures for Salol + Sulfonal and for Salol + β Naphthol are given by Bianchini (1914).

•	` ' ''		
SANTONIN C ₁₅ H ₁₈ O ₂		SEVERAL SOLVENT	
	SOURTHLE IN S	BARKET SOLAEN	13.
Solvent.	t°.	Gms. C ₁₈ H ₁₈ O ₂ per 100 Gms. Solvent.	Authority.
Water	20-25	0.02+	(Dehn, 1917.)
Alcohol (90%)	15	about 2.3	(Greenish and Smith, 1903.)
Trichlor Ethylene	15	2.46	(Wester and Bruins, 1914.)
Pyridine	20-25	12.72	(Dehn, 1917.)
Aq. 50% Pyridine	20-25	12.35	a

F.-pt. data for mixtures of stereoisomeric santonin salts are given by Malvino and Manino (1908).

SAMARIUM CHLORIDE SaCl.

100 gms. pyridine dissolve 6.38 gms. SaCla at 15°.

(Matignon, 1906, 1909.)

SAMARIUM GLYCOLATE Sa(C₂H₂O₂),

100 gms. H₂O dissolve 0.6373 gm. Sa(C₂H₂O₂)₂ at 20°.

(Jantsch and Grünkraut, 1912-13.)

SAMARIUM Double NITRATES.

SOLUBILITY IN CONC. HNO₃ of d₁₄ = 1.325 AT 16°.

	Salt.			ormula.		Gms. Hydrated Salt per 100 cc. Sat. Sol.
	Magnesium	Nitrate	$[Sa(NO_3)_{\epsilon}]$]Mg ₃ .	24 H ₂ O	24.55
"	Nickel	"	"	Ni ₃	"	29.11
"	Cobalt	"	"	Cos	"	34.27
"	Zinc	"	46	Zn_3	"	36.47
"	Manganese	66	"	Mn_3	"	50.04

SAMARIUM OXALATE Sa₂(C₂O₄)₃.10H₂O.

One liter H₂O dissolves 0.00054 gm. Sa₃(C₃O₄)₈ at 25°, determined by the electrolytic conductivity method. (Rimbach and Schubert, 1909.)

SOLUBILITY OF SAMARIUM OXALATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 25°. (With, 1912)

	C C- (C-0)	(,	(,			
Normality of Aq. H ₂ SO ₄ .	Gm. Sa ₂ (C ₂ O ₄) ₂ per roo Gms. Sat. Sol.	Solid Phase.	Normality of Aq. H ₂ SO ₄ .	Gm. Sa ₂ (C ₂ O ₄) ₃ per 100 Gms. Sat. Sol.	Solid Phase.	
I	0.1015	$Se_2(C_2O_4)_3$.10 H_2O	2.8	o.3886	$Sa_{2}(C_{2}O_{4})_{3}$. $IoH_{2}O$	
1.445	0.1804	64	4.32	0.7008	44	
1.93	0.2254	46	6.175	1.072	4	

SAMARIUM Dimethyl PHOSPHATE Sa₂[(CH₂)₂PO₄]₆.

100 gms. H₂O dissolve 35.2 gms. Sa₂[(CH₂)₂PO₄]₆ at 25° and about 10.8 gms. at 95°. (Morgan and James, 1914.)

SAMARIUM SULFATE Saz(SO4):

SOLUBILITY IN AQUEOUS SOLUTIONS OF AMMONIUM SULFATE AT 25°. (Keyes and James, 1914.)

Gms. per 100 Gms. H _f O.		Solid Phase.	Gms. per 10	C-114 Dhass	
(NH ₄) ₂ SO ₄ .	Sa ₂ (SO ₄) ₈ .	Soud Phase.	(NH4)2SO4.	Sa ₂ (SO ₄) ₃ .	Solid Phase.
0.03	2.I	Sag(SO ₄);	32.5	0.9	1.1.7
0.8	2	**	46.3	I	66
I.I	2.8	" +1.1.7	77 · 5	1.3	" +(NH ₄) ₂ SO ₄
1.9	1.5	1.1.7	77.3	0.3	(NH ₄) ₂ SO ₄
7.4	o.8	44	76.8	0.6	u
τŘ.Ř	0.8	44	•		

 $1.1.7 = Sa_2(SO_4)_3.(NH_4)_2SO_4.7H_2O.$

SOLUBILITY IN AQUEOUS SOLUTIONS OF SODIUM SULFATE AT 25°.* (Keyes and James, 1914.)

Gms. per 100 Gms. H ₂ O.		Solid Phase.	Gms. per 10	o Gms. H ₂ O.	Solid Phase.
Na ₂ SO ₄ .	Sa ₂ (SO ₄) ₃ .	Sond Phase.	Na ₂ SO ₄ .	Sa ₂ (SO ₄) ₃ .	Solid Phase.
	2.05	Sa ₂ (SO ₄) ₃	10.51	0.012	2Sa ₂ (SO ₄) ₃ .3Na ₂ SO ₄ .6H ₂ O
O. I	2	"	14.71	0.010	**
0.5	0.11	2Sa ₂ (SO ₄) ₈₋₃ Na ₂ SO ₄ .6H ₂ O	20.02	0.012	"
1.9	0.03	"	23. 6 8	0.018	66
6.44	0.016	u	27.40	0.011	a

The mixtures were rotated at constant temperature for 5 months.

100 cc. anhydrous hydrazine dissolve I gm. Sa₂(SO₄), at room temp.
(Welsh and Broderson, 1915.)

SAMARIUM SULFONATES

SOLUBILITY IN WATER.

Salt.	Formula.	r.	Gm. Anhydrous Seper 100 Gn H ₂ O.	14
Samarium m Nitro- benzene Sulfonate Samarium Bromonitro-	$Sa[C_0H_4(NO_2)SO_2]_3.7H_2O$	15	50.9	(Holmberg, 1907.)
	$Sa\big[C_4H_4(1)Br(4)NO_2(2)SO_4\big]_4.10H_4O$	25	7.84	(Katz and James, 1913.)

SCANDIUM OXALATE $Sc_2(C_2O_4)_3.5H_2O$.

SOLUBILITY IN AQUEOUS SOLUTIONS OF AMMONIUM OXALATE AND OF HYDRO-CHLORIC ACID.

In Aq.	In Aq. Ammonia Oxalate at 25°. (Wirth, 1914.)		In Aq. Hydrochloric Acid at 25° and at 50°. (Meyer, 1914.)			
Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Normality of Aq. HCl.	Gms. Sc ₂ (C ₂ O ₄) ₂ per 100 Gms. Sat. Sol.		
C ₂ O ₃ .	Sc ₂ O ₃ .		Aq. ACI.	At 25°.	At 50°.	
1.624	0.3019	Sc ₂ (C ₂ O ₄) ₃ 5H ₂ O	0.1	0.0299	0.0420	
2.4	0.4012	"	0.5	0.0650	0.0870	
4.478	0.7108	" +(NH ₄) ₂ C ₂ O ₄	1	0.1020	0.1435	
			2	0.1716	0.2556	
			5	0.4170	0.6533	

SOLUBILITY IN AQUEOUS SOLUTIONS OF SULFURIC ACID.

Result	ts at 25°. (Wi	rth, 1914.)	Results at 25	5° and at 50°.	(Meyer, 1914.)
Normality of Aq. H ₂ SO ₄ .	Gms. Sc ₂ (C ₂ O ₄) ₃ per 100 Gms.	Solid Phase.	Normality of Aq. H ₂ SO ₄ .	Gms. Sc ₂ (C ₂ O ₄) Sat.	per 100 Gms. Sol.
Aq. Aşoq.	Sat. Sol.		ng. mpoq.	At 25°.	At 50°.
I	0.1148	$Sc_2(C_2O_4)_3.5H_2O$	O. I	0.0385	0.0562
2.I	0.2573	44	0.5	0.0997	0. 1481
2.43	0.2904	"	1	0.1663 .	0.2493
3 · 57	0.4204	"	2	0.3176	0.4429
4.86	0.5834	6	5	0.7761	1.1280

100 gms. sat. solution of scandium oxalate in 2.43 n H₂SO₄ + 0.5 n oxalic acid contain 0.0284 gm. Sc₂O₃ at 25°. (Wirth, 1914.)

SCANDIUM SULFATE Sc₂(SO₄)_{2.5}H₂O.

SOLUBILITY IN WATER AND IN AQUEOUS SULFURIC ACID AT 25°. (Wirth, 1914.)

Solvent.	Gms. Sc ₂ (SO ₄) _a per roo Gms. Sat. Sol.	Solid Phase.	Solvent.	Gms. Sc ₂ (SO ₄) ₃ per roo Gms. Sat. Sol.	Solid Phase.
Water	28.52	$Sc_{2}(SO_{4})_{3-5}H_{2}O$	4.86 n H ₂ SO ₄	8.363	$Sc_2(SO_4)_3.5H_4O$
0.5 n H ₂ SO ₄	29.29	44	9.73 n H ₂ SO ₄	1.315	44
1 n H ₂ SO ₄	19.87	44	22.35 n H ₂ SO ₄	0.484	$Sc_2(SO_4)_{4-3}H_2O$

Scandium sulfuric acid double sulfate, $Sc_3(SO_4)_3.3H_3SO_4$. Ioo gms. sat. sol. in conc. H_2SO_4 of d=1.6 contain 0.8616 gm. of the double salt. (Wirth, 1914.)

SEBACIC ACID (CH₂)₈(COOH)₂.

100 gms. 95% formic acid dissolve 1.05 gm. sebacic acid at 19°. (Aschan, 1913.)

DISTRIBUTION OF SEBACIC ACID BETWEEN WATER AND ETHER AT 25°. (Chandler, 1908.)

Mol. Concentration	D-41-	
Aq. Layer.	Ether Layer.	Ratio.
0.00062	0.0291	0.0213
0.00058	0.0272	0.0213
0.00047	0.0213	0.0221
0.00036	0.0155	0.0232

RELENIUM Se.

SOLUBILITY IN CARBON DISULFIDE. (Marc, 1906.)

100 cc. CS₂ dissolve 0.065 gm. amorphous Se at room temperature. Se which is heated to 180° for 6-7 hours is insoluble in CS₂. Se crystallized from the melt at 200° is insoluble in CS₂. Se heated once quickly to 140° is very slightly soluble in CS₂.

100 cc. CS₂ dissolve at the boiling-point 3-3.4 mgs. Se which has been heated to

140° for 1 hr.

100 cc. CS₂ dissolve at the boiling-point 2 mgs. Se which has been heated to 195° for 2 days. (Marc, 1907.) 100 gms. methylene iodide (CH₂I₂) dissolve 1.3 gms. Se at 12°. (Retgers, 1893.)

SOLUBILITY OF MIX CRYSTALS OF SELENIUM AND SULFUR IN CARBON DISULFIDE AT 25°. (Ringer, 1902.)

Mols. per 100 Mols. Solution.		Mol. Per Mols.		r 100 Mols.	Mol. Per		
CS ₂ .	Se.	S.	Crystals.	CS ₂ .	Se.	S.	Cent Se in Crystals.
43.I	0	56.9	o	58.24	2.35	39.4I	55.67
45.I	0.93	53.97	3 · 54	64.66	1.58	33.76	68.38
44.98	1.03	53.99	3.81	81.11	2.4	16.49	58.7
47.84	2.07	50.59	8.69	88.41	2.17	9.42	61.5
49.54	2.19	48.27	16.4*	91.38	1.68	6.94	65
47.62	2.16	50.22	14.2*	99.51	0.49	0	100
46.12	1.485	52.39	29.35*	99.14	0.86	•	100‡

Mix crystals homogeneous in all except these solutions.
 † = Solubility of hexagonal selenium.
 ‡ = Solubility of amorphous selenium.

Fusion-point curves for mixtures of selenium and other metals are given by Pelabon (1909). Results for Se + Te are given by Pellini and Vio (1906).

Diohenyl SELENIUM BROMIDE (C4H4)2SeBr2.

RECIPROCAL SOLUBILITY OF DIPHENYL SELENIUM BROMIDE AND DIPHENYL TELLURIUM BROMIDE IN WATER AT 25°. (Pellini, 1906a.)

Gms. per 1000 cc. Sat. Sol.		Mol. % (C _t H _t) ₁ - SeBr _t in Cryst.	Gms. per 100	Mol. % (C.H.)	
(C ₄ H ₄) ₂ TeBr ₂ .	(C ₆ H ₈) ₂ SeBr ₃ .	Mixture.	(C ₀ H ₄) ₂ TeBr ₂ .	(C ₄ H ₄) ₂ SeBr ₂ .	SeBr, in Cryst. Mixture.
18.614	0	0	10.224	14.608	44.89
17.400	1.448	4.91	7 · 544	19.876	51.18
16.152	4.172	10.51	6.780	18.984	94 - 25
15.030	6.210	18.21	3. 184	17.392	95.82
13.320	8. 148	24.98	0	18.984	100
11.940	11.420	34 · 94			

SELENIC ACID H.SeO.

SOLUBILITY IN WATER, DETERMINED BY FREEZING-POINT METHOD. (Kremann and Hofmeier, 1908.)

t°.	Gms. H ₂ SeO ₄ per 100 Gms. Sat. Sol.	Solid Phase.	. t°.	Gms. H ₂ SeO ₄ per 100 Gms. Sat. Sol.	Solid Phase.
0	0	Ice ·	-55	71.5	H _a SeO ₄ .4H _a O
— 10	21	"	-65 Eutec.	74	" +H ₂ SeO ₄ .H ₂ O
-20	30	u	–50	75.5	H ₂ S ₂ O ₄ .H ₂ O
-30	36	u	-20	79	"
-40	40	"	0	8 1	"
	42.5	u	+20	85	"
-50 -60	45	4	26 m. pt.	88	*
- 80	48	u	20	91	"
-95 Eutec	50	" +H ₂ SeO ₄₋₄ H ₂ O	16 Eutec.	91.5	" +H _c SeO ₄
-8 0	52	H _e SeO ₄₋₄ H _e O	30	93	H ₆ SeO ₄
-70	54	4	40	94.5	"
-6 0	` 58		50	96.5	•
-51 m. pt.		*	6o	100	•

SELENIOUS ACID H.SeO.

SOLUBILITY IN WATER. (Etard, 1894.)

t°.	Gms. H ₂ SeO ₃ per 100 Gms. Solution.	t°.	Gms. H ₂ SeO ₃ per 100 Gms. Solution.	t°.	Gms. H ₂ SeO ₂ per 100 Gms. Solution.
-10	42.2	25	67	60	7 9 · 3
0	47 - 4	30	70.2	70	79.3
+10	55	40	77 - 5	80	79.3
20	62.5	50	79.2	90	79.4

SELENIOUS ANHYDRIDE (Selenium Dioxide) SeO2.

SOLUBILITY IN SEVERAL SOLVENTS. (de Coninck, 1906.)

Solvent.	t°.	Gms. SeO ₂ per 100 cc.Solvent.
Water	11.3-15	38.5
Ethyl Alcohol (93%)	14.1	10.2
Methyl Alcohol	11.8	6.66
Acetone	15.3	4.35
Acetic Acid (Glacial)	12.9	1.11

SILICA SiO.

SOLUBILITY IN WATER AND IN AQUEOUS SOLUTIONS OF ACIDS. (Lenher and Merrill, 1917.)

A platinum bottle and stirrer were used. The silica was prepared by adding silicon tetrachloride to water. The gel thus formed was washed until free of HCl and dried between filter papers. Conductivity water was used and equilibrium was reached within 24 hours. The saturated solution was evaporated to dryness in a platinum dish. The residue was weighed and the silica volatilized with HFl + H_8SO_4 . The difference was considered to show "the amount of silica which had changed from an unfilterable to a filterable state of division."

	Results fo	or Aq. HCl:		Results fo	or Aq. H ₂ SO ₄ :
A	t 25°.	· A	\t 90°.	A	t 90°.
Per cent HCl.	Gm. SiO ₂ per 50 cc. Sol.	Per cent HCl.	Gm. SiO ₂ per 50 cc. Sol.	Per cent H ₂ SO ₄ .	Gm. SiO ₂ per 50 cc. Sol.
0	0.0080	0	0.0213	3.9	0.0211
3	0.00665	2	0.0198	7 · 3	0.0186
6.3	0.00465	3	0.0186	15.6	0.0112
11.1	0.00245	5.4	0.0152	25.4	o.0058
18.9	0.0008	7,6	0.0115	36	0.0034
25.1	o.ooo6	10	0.0091	46.9	0.0013
34.6	0.0003	13.6	0.0056	55.6	0.0005
-		18.6	0.0029	71	0.0004

At 90°, a slow current of CO₂ through the solutions did not affect the results. Ignited silica reaches equilibrium very slowly as compared with silica gel. The true solubility of ignited silica is probably the same as that of gelatinous silica.

SOLUBILITY OF SILICA IN MELTED CALCIUM CHLORIDE. (Arndt and Lowenstein, 1909.)

t°.	Gms. SiO ₂ per 100 Gms. Sat. Solution.
800	2.5
850	3.8
900	5.4
950	7.6

SOLUBILITY IN LEAD, IN ZINC AND IN SILVER. (Moissan and Siemens, 1904.)

Ir	ı Lead.	I	n Zinc.		In Silver.
t°.	Gm. Si per 100 Gms Lead.	t°.	Gm. Si per 100 Gms. Zinc.	t*.	Gm. Si per 100 Gms. Silver.
1250	0.024	600	0.06	970	9.22 (58.02)
1330	0.070	650	0.15	1150	14.89 (27.66)
1400	0.150	730	0.57	1250	19.26 (19)
1450	0.210	800	0.92	1470	41.46 (16)
1550	0.780	850	1.62	•	

The silicon which crystallized from the saturated solution in silver was found to be incompletely soluble in HF. The figures in parentheses show the percentage soluble in HF in each case.

Freezing-point data for mixtures of silicon tetraphenyl and tin tetraphenyl are given by Pascal (1912).

SILICON IODIDES SizI6, SiI4.

SOLUBILITY IN CARBON DISULFIDE. (Friedel and Lachburg, 1869; Friedel, 1869.)

100 gms. CS₂ dissolve 19 gms. Si₂I₆ at 19°. 100 gms. CS₂ dissolve 26 gms. Si₂I₆ at 27°. 100 gms. CS₂ dissolve 2.2 gms. SiI₄ at 27°.

SILICO TUNGSTIC ACID H.SiW12Oc.

100 gms. H₂O dissolve 961.5 crystallized silico tungstic acid at 18°, and the solution has Sp. Gr. 2.843.

SILVER Ag.

For equilibrium between metallic Silver and mercury (Silver amalgam) and mixed aqueous solutions of their nitrates, determined for mixtures of the two metals in all proportions, see Reinders, 1906.

SILVER ACETATE CH.COOAg.

Silver Nitrate

SOLUBILITY IN WATER.

(Nernst, 1889; Arrhenius, 1893; Goldschmidt, 1898; Nauman and Rucker, 1905; Raupenstrauch, 1885; Wright and Thompson, 1884, 1885.)

t°.	Gms. Ag(C ₂ H ₃ O ₂) per Liter.	t°.	Gms. Ag(C ₂ H ₂ O ₂) per Liter.	t* .	Gms. Ag(C ₂ H ₂ O ₂) per Liter.
0	7 . 22	25	11.2	50	16.4
10	8.75	30	12.I	60	18.9
15	9.4	40	14.1	70	21 .8
20	10.4			80	25.2

Sodium Acetate

SOLUBILITY OF SILVER ACETATE IN AQUEOUS SOLUTIONS OF:

Direct Millace.			bodium ricciate.			
Gms. AgNO ₃ Gms. CH ₃ COOAg per Liter at: 16° (Nernst). 19.8° (Arrhenius).			Gms. CH ₂ COOHg per Liter a per Liter. 16° (N., N. and R.). 18.6° (A.).			
0	10.05	9.85	0	10.05	9.9	
5	8.2	7.9	5	6.3	6.6	
10	7.0	6.6	10	4.6	4.9	
15	6.4	5 · 5	15 .	3.8	4.I	
20	5 · 7	4.5	20	3 · 3	3 · 5	
30	4.4	• • •	30	• • •	2.8	
40	3.2	• • •	40	• • •	2 · 4	

SOLUBILITY OF SILVER ACETATE IN AQUEOUS SALT SOLUTIONS AT 25°. (Jaques, 1910.)

Aq. Solution of;	Gms. Salt. per Liter.	Gms. AgC ₂ H ₂ O ₂ per Liter.	Aq. Solution of:	Gms. Salt per Liter.	Gms. AgC ₂ H ₂ O ₂ per Liter.
Water alone	0	80.11	Potassium Acetate	2.22	9.60
Cadmium Acetate	1.13	10.39	" "	22.2	4.43
" "	5.76	8.10	" "	III	2.41
"	11.52	6.71	"	222	2.18
" "	57 . Ğ	4.33	Silver Nitrate	2.77	9.93
" "	115.2	3.95	" "	5.55	9
Lead Acetate	1.63	10.69	" "	11.10	7.41
" "	8.13	9.45	" "	22.21	5.81
"	16.26	8.34	Sodium Acetate	1.97	9.27
" "	8r.3	7.26	u u	19.7	4.21
u " u	162.6	5.99	" "	98.5	2.33
			" "	197	2.07

SOLUBILITY OF SILVER ACETATE IN AQUEOUS SOLUTIONS OF NITRIC ACID AT 25°. (Hill and Simmons, 1909.)

Normality of Aq. HNO.	Per cent HNO ₃ in Solvent.	d_{26} of Sat. Sol.	Gms. AgC ₂ H ₃ O ₂ per Liter Sat. Sol.
0	0	1.005	11.13
0.50	3.096	1.072	85.31
I	6.128	1.140	161.9
2	11.757	I . 267	307.4
4.02	22.386	1.470	549.3
5.03	27.328	1.561	656
6.44	33.813	1.670	792.2

Results are also given for the solubility of AgC₂H₂O₂+AgNO₂ in Áq. HNO₂ at 25°.

SOLUBILITY OF SILVER ACETATE IN AQUEOUS SOLUTIONS OF SEVERAL COMPOUNDS AT 25°. (Armstrong and Eyre, 1913.)

Aqueous Solution of:	Gms. Compound per 1000 Gms. H ₂ O.	Gms. AgC ₂ H ₂ O ₂ per 1000 Gms. Sat. Sol.	Aqueous Solution of:	Gms. Compound per 1000 Gms. H ₂ O.	Gms. AgC ₂ H ₂ O ₂ per xooo Gms. Sat. Sol.
Water	0	11.08	Propyl Alcohol	15	9.88
Acetaldehyde	11	10.13	ā" u	6ŏ	8.03
Paraldehyde	11	8.92	Glycerol	9.21	8.66
"	33	g. 16	Glycol	15.5	10.86
Isobutyl Alcohol	66.4	7.55	""	62.1	8.44

Silver Nitrate

SILVER Monochlor ACETATE CH₂ClCOOAg.
One liter aqueous solution contains 12.97 gms. CH₂ClCOOAg at 16.9°. (Arrhenius, '93.)

SOLUBILITY OF SILVER MONO CHLOR ACETATE AT 16.0° IN AQUEOUS SOLUTIONS OF:

Sodium Chlor Acetate

SHVC	initiate.	bodium omor ricciate.			
Gms. AgNO ₃ per Liter.	Gms. CH ₂ ClCOOAg per Liter.	Gms. CH ₂ ClCOONa per Liter.	Gms. CH ₂ ClCOOAg per Liter.		
0.0	12.97	0.0	12.97		
9.6	10.05	ვ.88	10.05		
17.0	7 · 55	7 - 77	8.16		
		15.53	6.02		
		31.07	4.19		
		58.26	3.26		

SOLUBILITY OF SILVER MONOCHLORO ACETATE IN NITRIC ACID AT 25°.
(Hill and Simmons, 1909.)

Normality of Aq. HNO ₂ .	Gms. HNO ₃ per 100 Gms. Solvent.	d₃ of Sat. Sol.	Gms. AgC ₂ H ₂ ClO ₂ per Liter.
0	0	1.0095	15.18
0.25	1.564	1.0426	50.33
0.50	3.096	1.0791	91.83
I	6.128	1.1473	167.3
2	11.757	1.2716	310.8
4	22.277	1.4749	549.1
5	27.185	1.5673	659.2

SILVER Dipropyl ACETATE AgC₈H₁₆O₂.

100 gms. H₂O dissolve 0.123 gm. AgC₈H₁₈O₂ at 11.7°, and 0.190 gm. at 72°. (Furth, 1888.)

SILVER Methyl Ethyl ACETATE Ag.CH₁.CH₂CH(CH₂)COO.

SILVER Diethyl **ACETATE** Ag[(C₂H₅)₂CH.COO].

SILVER Trimethyl ACETATE Ag(CH₂)₂CCOO.*

SOLUBILITY OF EACH IN WATER. (Sedlitzky, 1887; Keppish, 1888; Stiassny, 1891.)

t°.	Gms.	Gms. per 100 Gms. H ₂ O. Gms. per			. per 100 Gms	er 100 Gms. H ₂ O.	
• •	Ag.C.H.O.	AgC ₄ H ₁₁ O ₂ .	AgC,H,O,	•	AgC,H,O2.	AgC ₆ H ₁₁ O ₂ .	AgC ₄ H ₂ O ₂ .
0	1.112	0.402	1.10	50	1.602	0.536	I.47
10	1.126	0.413	1.15	60	1.827	0.585	1.57
20	1.182	0.432	I.22	70	2.093	0.643	1.68
30	1.280	0.458	I.22	80	2.402		1.80
40	1.420	0.494	1.37				

SILVER ARSENATE Ag.AsO.

One liter H₂O dissolves 0.0085 gm. Ag₂AsO₄ at 20°. See Note, p. 608. (Whitby, 1910.)

SILVER ARSENITE Ag.AsO.

One liter H₂O dissolves 0.0115 gm. Ag₂AsO₂ at 20°. See Note, p. 608. (Whitby, 1910.)

SILVER BENZOATE C.H.COOAg.

Nitric Acid (N. and S.).

One liter of aqueous solution contains 1.763 gms. C₄H₅COOAg at 14.5°, and 2.607 gms. at 25°. (Holleman, 1893; Noyes and Schwartz, 1898.)

SOLUBILITY OF SILVER BENZOATE AT 25° IN AQUEOUS SOLUTIONS OF:

Chloracetic Acid (N. and S.).

Gms. Mols. per Liter. Gms. per Liter. Gms. Mols. per Liter. Gms. per Liter. CoOAg. CH, CICOOH. СІСООН. CeHs COOAs. Cooke. CooAg. HNOs. HNO2. 0.01144 0 2.607 0 0.01144 0 2.607 0.004435 0.01395 0.280 3.195 0.00394 0.01385 0.371 3.172 3.889 0.01612 0.00887 0.01698 0.559 0.00787 0.744 3.691 0.00802 0.01715 0.562 3.926 0.01574 0.02003 1.487 4.792 0.01774 0.02324 1.118 5.321 1.686 0.02674 0.03071 7.031

One liter of cold alcohol dissolves 0.169 gm. C₆H₆COOAg; one liter of boiling alcohol dissolves 0.465 gm. (Liebermann, 1902.)

SILVER BORATE AgBO.

One liter of aqueous solution contains about 9.05 gms. AgBO₂ at 25°.
(Abegg and Cox, 1903.)

SILVER BROMATE AgBrOs.

SOLUBILITY IN WATER.

t°.	Gms. AgBrO ₂ per Liter.	Authority.
20	1.586	(Böttger, 1903.)
24.5	1.911	(Noyes, 1900.)
25	1.68	(Longi, 1883.)
27	1.71	(Whitby, 1910, see note, p. 608.)
25	1.949	(Hill, 1917.)

SOLUBILITY OF SILVER BROMATE IN AQUEOUS ACETIC ACID AT 25°. (Hill, 1917.)

Normality of Aq. Acetic Acid.	Gms. AgBrO ₂ per Liter.	Normality of Aq. Acetic Acid.	Gms. AgBrO ₂ per Liter.
o.04 98	1.9429	0.4988	1.863
0.0997	1.9379	0.9975	1.8013
0.1995	1.9206	1.8721	1.6178

Solubility of Silver Bromate in Aqueous Ammonia and Nitric Acid Solutions at 25°. (Long., 1883.)

Calmana		Gms. AgBrO ₂ per		
Sp. Gr. $0.998 = 5\%$ Sp. Gr. $0.96 = 10\%$	35.10 443.6	1000 Gms. Sol. 35 · 54 462 · 5 3 · 12		
	Sp. Gr. $0.96 = 10\%$	Sp. Gr. 0.998 = 5% 35.10		

SOLUBILITY OF SILVER BROMATE AT 24.5° IN AQUEOUS SOLUTIONS OF:

Silver Nitrate (Noyes).				Potassium Bromate (N.).			
Normal	Content.	Gms. p	er Liter.	Normal	Content.	Gms. pe	r Liter.
AgNO ₃ .	AgBrO ₃ .	AgNO ₈ .	AgBrOs.	KBrO2.	AgBrO ₃ .	KBrOs.	AgBrO
0.0	1800.0	0.0	1.911	0.0	0.0081	0.0	1.911
0.0085	0.0051	I .445	1.203	0.0085	0.00519	I · 42	1.225
0.0346	0.0022	5.882	0.510	0.0346	0.00227	5.78	0.536

SILVER BROMIDE AgBr.

SOLUBILITY IN WATER.

t °.	Gms. AgBr per Liter.	Authority.
20	0.000084	(Böttger - Z. physik. Ch. 46, 602, '03.)
25	0.000137	(Abegg and Cox - Z. physik. Ch. 46, 11, '03.')
100	0.00370	(Böttger — Z. physik. Ch. 56, 93, '06.)
(See also Ho	olleman — Z. physik, Ch. 12.	20. '02: Kohlrausch — Ibid. 50. 265. '05.)

SOLUBILITY OF SILVER BROMIDE IN AQUEOUS AMMONIA SOLUTIONS, (Longi — Gazz. chim. ital. 13, 87, '83; at 80°, Pohl — Sitzber. Akad. Wiss. Wien, 41, 267, '60.)

	Gms. AgBr	Gms. AgBr at 80° per	
Solvent.	1000 cc. Solvent.	1000 Gms. Solvent.	1000 Gms. Solvent.
Ammonia Sp. Gr. 0.998=5%	0.114	0.114	
Ammonia Sp. Gr. $0.96 = 10\%$	3.33-4.0	3 · 47	•••
Ammonia Sp. Gr. 0.986	• • •	• • •	0.51* 1.0†
* Dried AgBr.		† Freshly pptd.	

SOLUBILITY OF SILVER BROMIDE IN AQUEOUS AMMONIA SOLUTIONS.

Results at 15°. (Bodländer, 1892.)			Results at 25°. (Bodiander and Fittig, 1901-02.) Gms. Mols. per 1000 Gms. H ₂ O.		Results at 25°. (Whitney and Melcher, 1903.) Concentration per Liter.	
Sat. Sol. Oms. Mols. per Liter.						
Sat. Sol.	NH.	Ag ₃ Br ₂ .	NH ₄ .	AgBr.	G. Mols. NH _s .	G. Atoms Ag.
0.9932	1.085	0.0011	0.1932	0.00060	0.0764	0.000276
0.9853	2.365	0.0031	0.3849	0.00120	0.115	0.000391
0.9793	3.410	0.0050	0.7573	0.00223	0.268	0.000941
0.9720	4.590	0.0074	1.965	0.00692	0.273	0.00107
0.9655	5.725	0.0101	3.024	0.01163	0.450	0.00170
			5.244	0.02443	0.497	0.00159

SOLUBILITY OF SILVER BROMIDE IN AQUEOUS SOLUTIONS OF:

Ammonia at o°. (Jarry, 1899.)

Monomethyl Amine at 11.5°. (Jarry.)

	Grams per re	Gms. per 100	cc. Solution.		
NH _s Gas.	AgBr.	NH _s Gas.	AgBr.	NH ₂ CH ₃ .	AgBr.
3.07	0.080	26.27	1.067	10.11	0.07
4.88	0.096	31.26	1.568	13.17	0.12
6.69	0.172	33.89	1.987	15.13	0.16
8.29	0.212	36.52	2 .669	17.97	0.28
11.51	0.349	37 - 22	2 .888	32.58	0.55
15.32	0.557	37 · 70	2.930	35.62	0.73
18.09	0.722	39.26	2 .892	43.11	I . 27
19.53	0.741	39 · 9 5	2.852	48.44	2.89

SOLUBILITY OF SILVER BROMIDE IN AQUEOUS SOLUTIONS OF METHYL AMINE AT 25°. (Bödlander and Eberlein, 1903; Wuth, 1902.)

In Methyl Amine.

Mols. per Liter.

In Ethyl Amine.
Mols, per Liter.

<u>F</u>						
Total Base.		Free Base.*		Total Base.	AgBr.	Free Base.*
1.017	0.0025	1.012 (l	B.&E.) ·	0.483	0.00231	o.478 (B. & E.)
	0.0013	0.505 (I		0.200	0.00097	0.198 "
			B. & E., W.	0.100	0.000475	0.099 "
0.102	0.00026	0. 102 (I	B. & E.)	0.103	0.000711	
	0.00041			0.06572	0.000258	
0.051	0.00012	0.051 (I	B. & E.)	0.05512	0.000193	
0.04	0.00034	7)	W.)	0.03942	0.000137	· "
0.02	0.00026	(1	W.)	0.01272	0.000086	7 "

^{*} The free base is found by subtracting from the total base two mols. of base for each atom of dissolved Ag.

SOLUBILITY OF SILVER BROMIDE IN AQUEOUS SOLUTIONS OF MERCURIC NITRATE AT 25°. (Morse, 1902.)

Mols. HgNO _F (HNO ₂) per Liter. I	Mols. AgBr per Liter. O.03660	Gms. AgBr per Liter. 6.878	Mols. HgNO _r (HNO ₂) per Liter. O . O2 5	Mols. AgBr per Liter. O.00450	Gms. AgBr per Liter. O.863
0.10	0.00873	1.640	0.0125	0.00329	0.618
0.05	0.00630	1.200	0.0100	0.00306	0.575

Since HNO₂ was present in all cases, its influence on the solubility was examined. It was found that no appreciable differences were obtained with concentrations varying between 0.1 and 2 normal HNO₂. Both crystallized and amorphous silver bromide gave identical results.

Results at 25°.

SOLUBILITY OF SILVER BROMIDE IN AQUEOUS SALT SOLUTIONS. (Mees and Piper, 1912.)

	t°.	Gms. AgBr per Liter.		
Aq. 11	per cen	t Sodium Thiosulfate	3	2.06
a ·	"	Ammonium Thiocyanate	"	0.03
"	"	Ammonium Carbonate	"	0.004
"	"	Sodium Sulfate	"	0.055
66	"	Thiocarbamide	"	1.40

SOLUBILITY OF SILVER BROMIDE IN AQUEOUS SALT SOLUTIONS. (Valenta, 1894; see also Cohn, 1895.)

Salt Solution.		Gms. AgBr per 100 Gms. Aq. Solution of Concentratio				
		1: 100.	5: 100.	10: 100.	15: 100.	20: 100.
Sodium Thio Sulphate	20	0.35	1.90	3.50	4.20	5.80
" Calc. by Cohn	20	0.50	2.40	4.59	6.58	8.40
Sodium Sulphite	25			0.04		80.0
Potassium Čyanide	25		6.55		• • •	
" Calc. by Cohn	25		6.85			• • •
Potassium Sulphocyanide	25			0.73	• • •	
Ammonium Sulphocyanide	20		0.21	2.04	5.30	• • •
Calcium Sulphocyanide	25			0.53	• • •	
Barium Sulphocyanide	25		• • •	0.35		
Aluminum Sulphocyanide	25			4.50		• • •
Thio Carbamide	25		• • •	1.87	• • •	• • •
Thio Cyanime	25	80.0	0.35	0.72	• • •	•••

NOTE. — Cohn shows that the lower results obtained by Valenta are due to the excess of solid AgBr used and the consequent formation of the less soluble di salt, 3(AgS₂O₂Na)₂, instead of the more soluble tri salt, (AgS₂O₂Na)₂Na₂S₂O₃.

100 cc. H₂O containing 10 per cent of normal mercuric acetate, Hg(C₂H₂O₂)₂+Aq., dissolve 0.0122 gm. AgBr at 20°.
100 gms. NaCl in conc. aq. solution dissolve 0.474 gm. AgBr at 15°.
100 gms. NaCl in 21 per cent solution dissolve 0.182 gm. AgBr at 15°.
100 gms. KBr in conc. solution dissolve 3.019 gms. AgBr at 15°.
95 gms. NaCl + 10 gms. KBr in conc. aq. solution dissolve 0.075 gm. AgBr at 15°.
(Schierhols, 1890.)

SOLUBILITY OF SILVER BROMIDE IN AQUEOUS POTASSIUM BROMIDE AT 25°. (Hellwig, 1900.)

Mols. KBr per Liter	2.76	3.68	4.18	4 · 44	4.864
Gms. KBr per Liter	2.20	7.50	13.50	17.95	26.44

SOLUBILITY OF SILVER BROMIDE IN AQUEOUS SOLUTIONS OF SODIUM SULFITE,

Results at Room Temperature (?).

(Mees and P	(Lutner and 1	Leubner, 19128.)			
per Liter.	Gms.	per Liter.	Gms. Formula Weights per Liter.		
AgBr.	Na ₂ SO ₃ .	AgBr.	SO,".	Ag'.	
0.000746	4.85	0.0329	0.232	0.0025	
0.00219	9.47	0.05264	0.406	0.0023	
0.00393	17.65	0.116	0.448	0.0023	
0.00448	38.2	0.265	0.466	0.0053	
0.00865	70.75	0.57	0.474	0.0055	
0.01585	83.75	0.79	0.675	0.0084	
	AgBr. 0.000746 0.00219 0.00393 0.00448 0.00865	AgBr. Na ₂ SO ₃ . 0.000746 4.85 0.00219 9.47 0.00393 17.65 0.00448 38.2 0.00865 70.75	AgBr. Gms. per Liter. 0.000746 4.85 0.0329 0.00219 9.47 0.05264 0.00393 17.65 0.116 0.00448 38.2 0.265 0.00865 70.75 0.57	AgBr. NasSOs. AgBr. Gms. Form per	

SOLUBILITY OF SILVER BROMIDE IN AQUEOUS SOLUTIONS OF SODIUM THIOSULFATE AT 35°.

(Richards and Faber, 1899.)

Gms. Cryst. Na Thiosulfate per Liter.	Gms. AgBr Dissolved per Gm. of Thiosulphate.	Mols. AgBr Dissolved per Mol. of Na ₂ S ₂ O ₃ .
100	0.376	0.496
200	0.390	0.515
300	0.397	0.524
400	0.427	0.564

100 cc. of 3 % AgNO₂ solution dissolve 0.04 gm. AgBr at 25°. (Hellwig, 1900.)

Fusion-point data for mixtures of AgBr + AgCl and AgBr + AgI are given by Mönkemeyer (1906). Results for AgBr + NaBr are given by Sandonnini and Scarpa (1913).

SILVER BUTYRATE C,H,COOAg.

SILVER (Iso)BUTYRATE (CH₂)₂CHCOOAg.

SOLUBILITY OF EACH SEPARATELY IN WATER.

(Goldschmidt, 1898; Arrhenius, 1893; Raupenstrauch, 1885.)

ť°.	Gms. per	100 Gms. H ₂ O.	t°.	Gms. per 100 Gms. H ₂ O.		
٠.	Butyrate.	Iso Butyrate.	• .	Butyrate.	Iso Butyrate.	
0	0.363	0.796	30	0.561	1.060 (1.1022)	
10	0.419	0.874	40	0.647	1.176 (R.)	
17.8	0.432 (A.)	•••	50	0.742	1.313	
18.8	0.445 (A.)		60	0.848	•••	
20	0.484	0.961 (0.9986)	70	0.964	1.670	
25	• • •	(1.0442)	80	1.14	1.898	

SOLUBILITY OF SILVER BUTYRATE IN AQ. SOLUTIONS OF SILVER ACETATE, SILVER NITRATE AND OF SODIUM BUTYRATE.

(Arrhenius, 1893.)

In Si	lver Acet	ate at 17	7.8°.	In Silver Nitrate at 18.8°.				
G. Mols. per Liter.		Grams per Liter.		G. Mols. j	G. Mols. per Liter.		Grams per Liter.	
CH _s COOAg.	C ₃ H ₇ COOAg.	CH ₃ COOAg.	C ₃ H ₇ COOAg.	AgNO ₃ .	C _g H ₇ COOAg.	AgNO ₃ .	CooAg.	
0.0	0.0221	0.0	4.32	0.0	0.0228	0.0	4 - 445	
0.0270	0.0139	4.51	2.71	0.0667	o .0078	11.33	1.521	
0.0506	0.0103	8.45	2.01	0.100	0.0062	17.00	1.209	
In Sodium Butyrate at 18.2°.								
G. Mols. per Liter.		Grams	Grams per Liter.		G. Mols. per Liter.		Grams per Liter.	

G. Mois, per Liter.		Grams per Liter.		G. Mois, per Liter.		Grains per Later.		
	C ₃ H ₇ COONa.	C ₃ H ₇ COOAg.	Coons.	C ₃ H ₇ COOAg.	C ₂ H ₇ COONa.	COOAg.	Coona.	CoOAg.
	0.0	0.0224	0.0	4.363	0.0658		7 - 24	
	0.0066	0.0199	0.73	3.881	0.1315	0.0060	14.47	•
	0.0164	0.0169	1.81	3.296	0.263	0.0040	28.96	o · 780
	0.0329	0.0131	3.62	2.555	0.493	0.0027	54.28	0.526

SILVER CAPROATES $Ag(C_6H_{11}O_2)$.

SOLUBILITY OF EACH SEPARATELY IN WATER. (Keppish, 1888; Stiassny, 1891; Kulisch, 1893; König, 1894; Altschul, 1896.)

Results in terms of gms. salt per 100 gms. H₂O.

ŧ°.	Normal Caproate CH ₂ (CH ₂) ₄ COOAg.		Methyl Pentan M 4 Acid CH2.CH.CH2	Acid 4	Methyl Pentan 4 Acid Is(CH2)2CH(CH2)
• •	Clig(Clig)	.(C	CH ₂) ₂ COOAgCH	CH₃ČH₂COOAg.	.COOAg.
0	o.076 (A.)	0.078(Keppish)	0.168 (König)	0.880 (Kulish)	
10	0.085	0.089	0.162	o .858	0.528
20	0.100	0.107	0.163	0.849	0.550
30	0.123	0.131	0.170	0.854	0.574
40	0.154	0.161	0.183	0.871	0.602
50	0.193	0.198	0.203	0.902	0.632
60	0.240	0.243	0.229	0.946	0.666
70	0.295	0.288	0.263	1.003	0.702
80	0.354	• • •	0.300	1.073	0.742
90	• • •	• • •	0.347	1.157	•••

SILVER CARBONATE AgrCO:

SOLUBILITY IN WATER.

t°. G	ms. Ag ₂ CO ₃ pe	r Liter.	Authority.
15	0.031		(Kremers, 1852.)
25	0.033	(0.00012 gm. atoms Ag.)	(Abegg and Cox, 1903.)
25	0.032	(by potential measurement)	(Spencer and Le Pla, 1909.)
100	0.50		(Joulin, 1873.)
15	0.85	(in H ₂ O sat. with CO ₂)	(Johnson, 1886.)

SILVER CHLORATE AgClO:

100 gms. cold water dissolve 10 gms. AgClO₃ (Vauquelin); 20 gms. AgClO₃ (Wächter).

SILVER CHLORIDE AgCl.

SOLUBILITY IN WATER.

(A large number of determinations are quoted by Abegg and Cox, 1903; see also Kohlrausch, 1904–05; Böttger, 1903, 1906.)

t*. 14°. 20°. 25°. 42°. 100°. Gms. AgCl per Liter 0.0014 0.0016 0.0020 0.0040 0.0218

More recent determinations are as follows:

t°.	Gms. AgCl per Liter.	Method.	Authority.
10	0.00089	Conductivity	(Kohlrausch, 1908.)
18	0.00150	Conductivity	(Melcher, 1910.)
21	0.00154	Colorimetric (See Note, p. 608)	(Whitby, 1910.)
25	0.00172	Analytical	(Glowczynski, 1914.)
50	0.00523	Conductivity	(Melcher, 1910.)
100	0.02107	"	(Melcher, 1910.)
100	0.0217	Colorimetric	(Whitby, 1910.)

Note in the case of determination by Glowczynski, one liter of sat. solution was treated with freshly distilled ammonia and evaporated to dryness in a platinum dish. The residue was dissolved in strong ammonia and again evaporated. The residue then dissolved in 5-6 cc. of 0.05 s KCN and the silver separated electrolytically, dissolved in HNO₂ and titrated with 0.01 s NH₄SCN.

Comparative determinations of the solubilities of AgCl, AgSCN, AgBr and AgI in water at 25°, showed that if the solubility of AgCl be taken as 1, that of AgSCN is 0.0748, that of AgBr is 0.0550 and that of AgI is 0.00077. (Hill, 1908.)

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS AMMONIA SOLUTIONS AT 25°.

(Whitney and	Melcher, 1903.)		(Straub, 1911.)			
Gm. Mols. NH ₂ (total) per Liter.	Gm. Atoms Ag per Liter.	Gm. Mols. NH ₄ (total) per 1000 Gms. H ₄ O.	Gm. Atoms Ag per 1000 Gms. H ₂ O.	Solid Phase.		
0.0282	0.00141	0.0428	0.025	AgCl		
0.0288	0.00149	1.688	0.1308	"		
0.0590	0.00304	3.782	0.372	"		
0.118	0.00621	3.945	0.378	"		
0.253	0.0140	5.10	0.574	"		
0.397	0.0227	5.33	0.609	"		
0.428	0.0249	5 · 545	0.633	44		
0.818	0.0514	6.26	0.754	" +2AgCl.3NH ₈		
0.863	0.0541	6.52	0.775	2AgCl.3NH ₀		
0.896	0.0569	8.28	0.848	66		
0.909	0.0584	11.78	0.980	"		
0.961	0.0616	12.68	1.030	44		
1.991	0.147	12.96	1.090	"		
2.042	0.151	14.47	1.039	46		

Additional data for the above system at 25° are given by Bodländer and Fittig (1901-02). These authors also give results showing the effect of KCl and of AgNO₃ on the solubility of AgCl in aqueous ammonia. Determinations at 15° are given by Bodländer (1892).

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SOLUTIONS OF:

Monomethyl Amine at 11.5°.

Ammonia at o°.

	(Jarry,	(Jan	ry.)		
	Gms. per 100	Gms. per 100 Gms. Solution.			
NH, Gas.	AgCl.	NH ₂ Gas.	AgCl.	NH ₂ CH ₃ .	AgCl.
I.45	0.49	28.16	6.50	1.78	0.16
2.94	1.36	29.80	7.09	4 · 44	0.62
5.60	3.44	30.19	7.25	5.51	0.83
6.24	4	32.43	5.87	7.66	1.32
11.77	4.68	34.56	4 · 77	13.70	3.29
16.36	5.18	37.48	3.90	18.69	5 · 43
-				36.69	9.93

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SOLUTIONS OF AMMONIA. (Longi, 1883; at 25°, Valenta, 1894; at 80°, Pohl, 1860.)

Solvent.	t*.	Gms. AgCl per 100 Gms. Solvent.
Aq. Ammonia of 0.998 Sp. Gr. = 5%	12	0.233
" 0.96 Sp. Gr. = 10%	18	7.84
" o.ģ86 Sp. Gr.	80	1.49
" = 3%	25	1.40
" = 15%	25	7.58

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SOLUTIONS OF METHYL AMINE AND OF ETHYL AMINE AT 25°.
(Bodländer and Eberlein, 1903; Wuth, 1902; Euler, 1903.)

Results for Methyl Amine.

Mols. per Liter.

Results for Ethyl Amine.

Mols. per Liter.

Total Base.	AgCl.	Free Base.	Total Base.	AgCl.	Free Base.
1.017	0.0387	0.940 (B. & E.)	0.483	0.0314	0.420 (B. & E.)
0.93	0.0335	(E.)	0.200	0.0115	0.177 "
0.508	0.0178	0.472 (B. & E.)	0.100	0.0062	0.088 "
0.203	0.0068	0.189 "	0.094	0.0048	(E.)
0.102	0.0036	0.0050 "	0.050	0.0029	0.044 (B. & E.)
0. 195	0.00048	(W.)	0.103	0.00824	(W.)
0.074	0.00042		0.0551	0.000235	
0.020	0.00030	"	0.0127	0.000114	

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SOLUTIONS OF AMMONIUM CHLORIDE.

(Schierholz, 1890; see also Vogel, 1874; Hahn, 1877.)

Solubility at 15°. Gms. per 100 Gms. Solution.		•		Communication Co		
NH,Cl.	AgCl.	ť.	NH ₄ Cl.	AgCl.		
10	0.0050	15	26.31	0. 276		
14.29	0.0143	40	"	0.329		
17.70	0.0354	60	"	0.421		
19.23	0.0577	8o	"	0.592		
• 21.91	0.110	90	"	0.711		
25.31	0.228	100	"	0.856		
28.45	0. 340 (24. 5)	110	"	1.053		
Sat. at ord. temp. 0.157		Sp. Gr. of 26.31% NH4Cl solution				
	•		at $15^\circ = 1.6$	o8.		

One liter aq. sol. containing 0.00053 gm. NH₄Cl dissolves 0.001604 gm. AgCl at 25°.

One liter aq. sol. containing 0.00530 gm. NH₄Cl dissolves 0.002379 gm. AgCl at 25°.

(Glowczynski, 1914.)

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SOLUTIONS OF AMMONIUM CHLORIDE AT 25°. (Forbes, 1911.)

Gms. Eq	uiv. per Liter.	Gms. Eq	uiy. per Liter.	Gms. Equiv. per I	
NH ₄ Cl.	Ag.	NH ₄ Cl.	Ag.	NH ₄ Cl.	Ag.
0.513	0.000042	2.566	0.001425	4 · 777	0.0135
0.926	0.000113	2.918	0.002160	4.902	0.01492
1.141	0.000172	3.162	0.002795	5.503	0.02404
1.574	0.000365	3.510	0.004029	5.764	0.03017
2.143	0.000842	4.363	0.009353		

These determinations were made by gradually adding 0.25 n and 0.01 n AgNO₃ to the chloride solution and observing the point of initial opalescence

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SOLUTIONS OF ALUMINIUM AND AMMONIUM SALTS. (Valenta; see also Cohn, 1895.)

Aq. Salt Solution.		Gms. AgCl per 100 of Concentr		l per 100 Gn Concentrat	ims. Solvent	
			1 : 100.	5:100.	10 : 100.	
Aluminium	Thiocyanate	25		• • • •	2.02	
Ammonium	Carbonate	25			0.05	
"	Thiocyanate	20	• • •	0.08	0.54	
"	Thiosulfate	20	0.57	1.32	3.92	
"	"	Calc. by Cohn*	0.64	3.07	5.86	
		* See Note, p. 603.		- •	-	

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SOLUTIONS OF BARIUM CHLORIDE AND OF CALCIUM CHLORIDE. (Forbes, 1911.)

Gms. Equiv. per Liter.							uiv. per Liter.
Aq. Solution of:	ŧ°.	BaCl ₂ .	Ag.	Aq. Solution of:	t°.	CaCl ₂	Ag.
Barium Chloride	25	1.248	0.000186	Calcium Chloride	25	3.264	0.001463
"	25	1.610	0.000339	"	25	3.737	0.002182
"	25	2.676	0.001274	"	25	4.033	0.002802
66	25	3.260	0.002366	"	25	4.539	0.004175
		CaCl					
		2		66	25	5.005	0.005823
Calcium Chloride	25	1.748	0.000289	"	ī	3.512	0.000964
"	25	2.20I	0.000501	"	25	3.320	0.001514
"	25	2.741	0.000900	"	35	3.221	0.001806

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SOLUTIONS OF HYDRO-CHLORIC ACID AT 25°. (Forbes, 1911.)

Gms. Equiv. per Liter.		Gms. Eq	uiy. per Liter.	Gms. Equiv. per Liter.		
HCl.	Ag.	HCl.	Ag.	HCl.	Ag.	
0.649	0.000032	2.149	0.000374	4. 182	0.002147	
1.300	0.000126	2.975	0.000814	4.735	0.003168	
1.911	0.000266	3.576	0.001358	5.508	0.005126	

The determinations of Forbes were made by gradually adding 0.25 n and 0.01n AgNO₃ to the chloride solution and observing the point of initial opalescence.

Note. — The determinations of Whitby were made by a colorimetric method which was based upon the observation that the color produced by heating a solution of a silver salt with sodium hydroxide and certain organic compounds such as dex-trin, glycerol, starch, sugar, etc., is proportional to the amount of silver present.

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS HYDROCHLORIC ACID SOLU-TIONS AT ORDINARY TEMPERATURE. (Pierre, 1847; Vogel.)

Solvent. Conc. HCl + Aq.	Gms. AgCl per Liter.	too vol. sa	Solvent. t. HCl + 10 vol. H ₂ O	Gms. AgCl per Liter. o. 56
r vol. Conc. HCl + r vol. H ₂ O	1.6	"	+ 20 "	0.18
Sat. HCl Sp. Gr. 1.165 " (at b. pt.	2.98) 5.60	"	+ 30 " + 50 "	0.09 0.035

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SOLUTIONS OF MERCURIC NITRATE AT 25°. (Morse, 1902.)

Mols. HgNO ₁ (HNO ₂) per Liter.	Mols. AgCl per Liter.	Gms. AgCl per Liter.	Mols. HgNO ₂ (HNO ₂) per Liter.	Mols. AgCl per Liter.	Gms. AgCl per Liter.
0.0100	0.00432	0.620	0.050	0.00914	1.310
0.0125	0.00499	0.715	0.100	0.01395	2
0.025	0.00690	0.990	I	0.04810	6.896

Since HNO, was present in all cases, its influence on the solubility was examined. It was found that no appreciable differences were obtained with concentrations varying between 0.1 and 2 normal HNO₃. Both crystallized and amorphous silver chloride gave identical results.

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SALT SOLUTIONS. (Vogel; Hahn; Valenta)

Salt Solution.	Conc. of Salt.	t°.	Gms. Age	Cl per Solution.
Barium Chloride	27.32%	24.5	0.057	(H.)
Barium Chloride	saturated	ord. temp.	0.014	(Vg.)
Barium Sulphocyanide	10:100	25	0.20	(VL)
Calcium Sulphocyanide	10:100	25	0.15	(Vl.)
Calcium Chloride	41 . 26%	24.5	0.571	(H.)
Calcium Chloride	saturated	ord. temp.	0.093	(Vg.)
Copper Chloride	46	24.5	0.053	(H.)
Ferrous Chloride	"	"	0.169	(H.)
Ferric Chloride	"	66	0.006	(H.)
Manganese Chloride	66	"	0.013	(H.)
Magnesium Chloride	50:100	25	0.50	(Vl.)
Magnesium Chloride	36.35%	24.5	0.531	(H.)
Magnesium Chloride	saturated	ord. temp.	0.171	(Vg.)
Strontium Chloride	66	"	o . 088	(Vg.)
Zinc Chloride	"	24.5	0.0134	(H.)
Potassium Chloride	"	ord. temp.	0.0475	(Vg.)
Potassium Chloride	24.95%	19.6	0.0776	(H.)
Potassium Cyanide	5: 100	25	2.75	(V1.)
Potassium Cyanide	5: 100	25	5 - 24	(Cohn*)
Potassium Sulphocyanide	10: 100	25	0.11	(V1.)
Sodium Chloride	saturated	ord. temp.	0.095	(Vg.)
Sodium Chloride	25.95%	19.6	0.105	(H.)

^{*} See Note, p. 603.

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SOLUTIONS OF NITRIC ACID AT 25°. (Glowczynski, 1914.)

Mols. per Liter.		Gms. per Liter.			
HNO ₃ .	AgCl.	HNO3.	AgCl.		
0.0005	1.15.10-6	0.0315	0.001647		
0.001	1.19.10-6	0.063	0.001705		
0.01	I . 24 . 10 ^{—6}	0.630	0.00176		
0.30	1.57.10 ^{—6}	18.9	0.00225		
1.50(?)	1.71.10-6	94.5	0.00245		

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AT 25°. (Forbes, 1911.) (Glowczynski, 1914.)

	uiv. per Liter.	Gms. Eq	uiv. per Liter.	Mols. pe	r Liter.	Gms. p	er Liter.
KCl.	Ag.	KCl.	Ag.	KCl.	AgCl.	KCl.	AgCl.
	0.000141				1.28.10		
	0.000235			6.32.10	1.52.10	0.00471	0.002178
1.713	0.000391	3.424	0.003602	2.0.10 -4	2.13.10 ⁻⁶	0.01491	0.003052
2.022	0.000616	3.843	0.005725	4.0.10 →	2.24.10	0.02984	0.003209
	0.001050		0.001734 (at 19))	•		
2.628	0.001390	2.955	0.002786 (at 35°)			

The determinations of Glowczynski were made by the method described in Note, on p. 605. The determinations of Forbes were made by gradually adding 0.25 n and 0.01 n AgNO₃ to the chloride solution and observing the point of initial opalescence.

One liter 4 n aq. KCl dissolves 0.00637 gm. mol. = 0.915 gm. AgCl at 25°.
(Hellwig, 1900.)

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AT 15°. (Schierholz — Sitzber. K. Akad. Wiss. (Vienna) 101, 2b, 8, '90.)

Grams per 100 Grams Solution.		Grams per : Solut		
KCI.	AgCl.	KCl.	AgCl.	
10.0	. 0.000	22 . 47	0.045	
14.29	0.004	24.0	0.072	
16.66	0.008	25.0	0.084	
20.00	0.020	Sp. Gr. of 25%	KCl sol., -	I.170

MIXTURES OF SILVER CHLORIDE AND SILVER HYDROXIDE IN EQUI-LIBRIUM WITH AQ. POTASSIUM HYDROXIDE SOLUTIONS AT 25°. (Noyes and Kohr - J. Am. Ch. Soc. 24, 1144, '02.)

Normality	Millimols per Liter.		Grams per Liter.			
of KOH.	KCI.	KOH.	КСl.	KOH.	AgCl.	
0.333	3.414	347 .8	0.255	10.05	0.4896	
0.065	o . 598	65.0	0.0446	2.00	0.0828	

SOLUBILITY OF SILVER CHLORIDE IN AQ. SODIUM CHLORIDE SOLUTIONS. (Schierholz; Vogel; Hahn.)

Solubility at 15°. Gms. per 100 Gms. Solution.		Solubility at Different Temperatures			
		t°	Gms. AgCl per 100 Gms. Solution in:		
NaCl.	AgCl.		14% NaCl	26.3% NaCl.	
10.0	0.0025	15	0.007	0.128	
14.29	0.0071	30	0.011	0.132	
18.18	0.0182	40	0.014	0.158	
21.98	0.0439	50	0.023	o.184	
23·53	0.0706	70	0.042	0.263	
25.64	0.103	80	0.054	0.315	
26.31	0.127	90	0.069	0.368	
		100	0.090	0.460	
Sp. Gr. of 26.31%	NaCl sol. $= 1$.	207. 109	0.107 (104°)	0.571	

SOLUBILITY AT 20°, 50°, AND 90° (CALC. FROM ORIGINAL). (Barlow — J. Am. Chem. Soc 28, 1446, 'o6.)

Gms. NaCl per 100 cc.	per 100 cc. Solution at:		Gms. NaCl per 100 cc.	Gms. AgCl dissolved per 100 cc. Solution at:			
Solution.	20°.	50°.	900	Solution.	20°.	50°.	90°.
3 · 43	0.00018	0.0016	0.0067	11.5	0.0031	0.0124	0.0436
4.60	0.00025	0.0025	0.0100			0.0191	
5 · 75	0.00047			23.0	0.0313	0.0889	0.1706
7.67	0.00125	0.0058	0.0236				

Results are also given for the solubility of silver chloride in aqueous sodium chloride solutions containing hydrochloric acid.

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SODIUM CHLORIDE AT 25°. (Forbes, 1911.)

Gms. Equiy. per Liter.		Gms. Equi	iv. per Liter.	Gms. Equiv. per Liter.		
[NaCl].	[Ag]× 10 ³ .	[NaCl].	[Ag] × 10 ³ .	[NaCl].	[Ag]× 10 ³ .	
0.933	0.086	2.272	0.570	3 · 747	2.462	
1.190	0.130	2.658	0.851	3.977	2.879	
1.433	0.184	2.841	1.040	4.363	3.810	
1.617	0.245	3.270	1.583	4.535	4.298	
1.871	0.348	3.471	1.897	5.039	6.039	

SOLUBILITY OF SILVER CHLORIDE IN AQ. SODIUM NITRATE SOLUTIONS.

t°.	Gms. per 100 Gms. H ₂ O.		t°.	Gms. per 100 Gms. H ₂ O.		
	NaNO3.	AgCl.	٠.	NaNOs.	AgCl.	
5	0.787	0.00086	15-20	0.393	0.00096	
18	0.787	0.00146	"	0.787	0.00133	
30	0.787	0.00233	"	2.787	0.00253	
45-55	0.787	0.00399		(Mulder.)		

One liter aq. 3 n AgNO₂ dissolves 0.0056 gm. mols. = 0.8 gm. AgCl at 25°. (Hellwig, 1900.)

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SODIUM SULFITE SOLUTIONS AT 25°.
(Luther and Leubner, 1912.)

Gms. Formula	Weight per Liter.	Gms. Formula V	veight per Liter.	
SO ₃ ". Ag'.		SO,".	Ag'.	
0.080	0.011	· o.483	0.059	
0.106	0.017	0.470	0.070	
0.220	0.033	0.652	0.103	
0.234	0.036	0.890	0.140	
0.478	0.057	0.937	0.142	

The AgCl was prepared by precipitating dilute AgNO₂ with alkali chloride at the b. pt. The resulting solid corresponded to the granular modification of Stas. About one hour constant agitation was allowed for attainment of equilibrium.

Solubility of Silver Chloride in Aqueous Solutions of Sodium Thiosulfate, etc.

(Valenta; Cohn; Richards and Faber, 1899.)

Salt Solution.	Gms. AgCl per 100 Gms. Aq. Solutions of Concentrate					oncentration:
out bolews.	• . ,	I : 100.	5:100.	10:100.	15:100.	20 : 100.
Sodium Sulfite	25			0.44	• • •	0.95
Sodium Thiosulfate	20	0.40	2	4.10	5.50	6. 10
" Calc. by Cohr	ı.•	0.38	1.83	3.50	5.02	6.41
Sodium Thiosulfate	35				• • • • • • • • • • • • • • • • • • • •	o.o8t
ATT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25			0.83		
m · · ·	25	0.40	1.90	3.90		• • •
* See Note, p. 603.	1	Gms. per	100 CC. 80	lution (R.	and F.).	

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS STRONTIUM CHLORIDE AT 25°. (Forbes, 1911.)

Gms. Equiv. per Liter.		Gms. Equi	Gms. Equiv. per Liter.		Gms. Equiv. per Liter.	
SrCl ₂ .	Ag× 10³.	SrCl ₂	Ag× 10 ³ .	SrCl ₂	Ag× 10 ³ .	
0.550	0.033	1.818	0.348	3.494	2.018	
0.989	0.092	2.140	0.510	4.152	3 · 594	
1.359	0.173	2.476	0.747	5.216	8.174	
1.572	o. 236	2.992	1.252	5.775	12.040	

The determinations were made by gradually adding 0.25 n and 0.01 n AgNO₃ to the chloride solution and observing the point of initial opalescence.

One liter of 4.777 n ZnCl₂ solution dissolves 0.000364 mol. AgCl at 25°.

(Forbes, 1911.)

Fusion-point data are given for the following mixtures.

 AgCl + AgI.
 (Monkemeyer, 1906.)

 AgCl + Ag2S.
 (Truthe, 1912; Sandonnini, 1912.)

 AgCl + NaCl.
 (Sackur, 1913; Botta, 1911; Sandonnini, 1911, 1914.)

 AgCl + TICl.
 (Sandonnini, 1911, 1914.)

SOLUBILITY OF SILVER CHLORIDE IN PYRIDINE. (Kahlenberg and Wittich, 1909.)

t.	Gms. AgCl per 100 Gms. Pyridine.	Solid Phase.	ť.	Gms. AgCl per 100 Gms. Pyridine.	Solid Phase.
— 57 Eutec.	• • • •	$AgC1.2C_{b}H_{b}N + C_{b}H_{b}N$	0	5.35	AgCl
49	0.77	AgCl.2C ₄ H ₄ N	10	3.17	66
-35	0.99	«	20	1.91	er
- 30	1.36	u	30	I.20	44
-25	1.80	"	40	0.80	ee
- 22	2.20	u	50	0.53	46
 tr. pt. 	. 2.75	" +AgCl.C ₄ H ₄ N	60	0.403	44
- 20	3 · 75	AgCl.C _t H _t N	70	0.32	*
— 18	3.85	"	80	0.25	44
-10	4.35	**	90	0.22	44
- 5	5.05	• "	100	0.18	44
– 1	5.60	44	110	0.12	4

SILVER CHROMATE Ag2CrO4.

One liter of water dissolves 0.026 gm. Ag₂CrO₄ at 18°, and 0.020 gm. at 25°.

One liter H₂O dissolves 0.029 gm. Ag₂CrO₄ at 25°.

One liter of H₂O dissolves 0.0142 gm. Ag₂CrO₄ at 0.26°; 0.0225 gm. at 14.8°, 0.036 gm. at 30.7° and 0.084 gms. at 75°.

(Kohlfausch, 1908.)

One liter H₂O dissolves 0.0256 gm. at 18°, 0.0341 gm. at 27° and 0.0534 gm. at 50°, determined by a colorimetric method (see Note, p. 608).

(Whitby, 1910.)

SOLUBILITY OF SILVER CHROMATE IN AQUEOUS AMMONIA AT 25°. (Sherrill and Eaton, 1907.)

Mols. NH₄OH per Liter 0.080.01 0.02 0.04 Mols. × 10³ Ag₂CrO₄ per Liter 4.160 17.58 2.004 8.595

SOLUBILITY OF SILVER CHROMATE IN AQUEOUS NITRIC ACID AT 25°. (Sherrill and Russ, 1907.)

Mols. HNO	Milliaton	s per Liter.	Solid	Mols. HNO2	Milliatoms	per Liter.	
per Liter.	Cr.	Ag.	Phase.	per Liter.	Cr.	Ag.	Phase.
0.01	3.157	6.315	Ag ₂ CrO ₄	0.06	6.833	• • •	Ag ₂ CrO ₄
0.015	3.730		"	0.07	7 · 333	• • •	"
0.02	4.177	8.356	"	0.075	7 - 477	14.85	" +Ag ₂ Cr ₂ O ₇
0.025	4.567	• • •	"	0.08	7.260	15.45	. "
0.03	5.200	• • •	"	0.10	5.647	19.01	44
0.04	5.803	11.62	ı.	0.13	4.293	23.89	**
0.05	6.380		"	0.14	3.948	25.63	**

One liter 65% aqueous alcohol dissolves 0.78 × 10⁻⁴ gms. equivalents = 0.0129 gm. Ag₂CrO₄ at room temp. (?).

SOLUBILITY OF SILVER CHROMATE IN AQUEOUS SOLUTIONS OF NITRATES AT 100°. . (Carpenter, 1886.)

Solvent.	Gms. Salt per 100 cc. H _e O.	Gms. Ag ₂ CrO ₄ per 100 cc. Solution.
Water	o	0.064
Sodium Nitrate	50	0.064
Potassium Nitrate	50	0.192
Ammonium Nitrate	50	0.320
Magnesium Nitrate	50	0.256

SILVER (Di) CHROMATE Ag2Cr2O7.

One liter of aqueous solution contains 0.00019 gm. mol. or 0.083 gm. Ag₂Cr₂O₇ at 15°. (Mayer, 1903.)

SOLUBILITY OF SILVER DICHROMATE IN AQUEOUS NITRIC ACID AT 25°.
(Sherrill and Russ, 1907.)

Mols. HNO	Milliatoms	Milliatoms per Liter.		
per Liter.	Cr.	Ag.	Solid .	Phase.
. 0	32.20	5.390	AgCrO ₄ +	Ag ₂ Cr ₂ O ₁
0.01	25.06 ·	6.131	**	"
0.02	20.21	7.148	44	66
0.04	13.59	9.529	44	"
0.06	11.10	II.I	$Ag_2Cr_2O_7$	
0.08	II.I	II.I	•	16
o.o8+o.1 A	gNO3 6.625	•••	•	16

At the lower concentrations some of the dichromate is converted into solid chromate.

SILVER CITRATE C.H.O.Ag.

100 gms. H₂O dissolve 0.0277 gm. C₆H₆O₇Ag₈ at 18°, and 0.0284 gm. at 25°.
(Partheil and Hübner, 1903.)

SILVER CYANIDE AgCN.

One liter of aqueous solution contains 0.000043 gm. AgCN at 17.5° and 0.00022 gm. at 20° (by Conductivity Method).

(Abegg and Cox; Böttger, 1903.)

SOLUBILITY OF SILVER CYANIDE IN AQUEOUS AMMONIA SOLUTIONS.
(Longi, 1883.)

100 gms. aq. ammonia of 0.998 Sp. Gr. = 5%, dissolve 0.232 gm. AgCN at 12°. 100 gms. aq. ammonia of 0.96 Sp. Gr. = 10%, dissolve 0.542 gm. AgCN at 18°. One liter aq. 3 n AgNO₂ dissolves 0.0091 gm. mol. = 1.216 gm. AgCN at 25°. (Hellwig. 1900.) Fusion-point data for mixtures of AgCN + NaCN are given by Truthe (1912).

SILVER FERRICYANIDE AgrFeCNs.

One liter H₂O dissolves 0.00066 gm. Ag₂FeCN₆ at 20°. See Note, p. 608.
(Whitby, 1910.)

SILVER SODIUM CYANIDE AgCN. NaCN.

100 gms. H_2O dissolve 20 gms. at 20°, and more at a higher temperature. 100 gms. 85% alcohol dissolve 4.1 gms. at 20°. (Baup, 1858.)

SILVER THALLOUS CYANIDE AgCN.TICN.

100 gms. H₂O dissolve 4.7 gms. at 0°, and 7.4 gms. at 16°. (Fronmüller, 1878.)

SILVER FLUORIDE AgF.2H2O.

SOLUBILITY IN WATER. (Guntz and Guntz, Jr., 1914.)

ť.	Gms. AgF per 100 Gms. H ₂ O.	Solid Phase.	ť.	Gms. AgF per 100 Gms. H ₂ O.	Solid Phase
-14.2 Eutec.	60	Ice+AgF.4H.O	25	179.5	AgF.2H ₂ O
+18.5	165	AgF.4H ₂ O	28.5	215	"
18.65	169.5	" +AgF.2H ₂ O	32	193	44
20	172	AgF.2H ₂ O	39.5	222	" +AgF
24	178	u	108	205	AgF

Two unstable hydrates, AgF.H₂O and 3AgF.5H₂O were also obtained. 100 gms. H₂O dissolve 181.8 gms. AgF at 15.8°, d_{18-8} of Sat. Sol. = 2.61. (Gore, 1870.)

SOLUBILITY OF SILVER FLUORIDE IN AQUEOUS SOLUTIONS OF HYDRO-FLUORIC ACID AT 0° AND AT 24°.

(Gunts and Gunts, Jr., 1914.)

Results Gms. per 100 Gms. H ₂ O.'		,			
		Solid Phase.	Gms. per 100	Gms. H _e O.	Solid Phase.
AgF.	HF.	Sond Luzze.	AgF.	HF.	Soud Phase.
87.5	0.40	AgF.4H ₂ O	178	΄Ο	AgF.2H ₂ O
89.4	2.60	"	178.5	1.73	44
93.8	3.97	u	177.65	5.42	"
118.5	9.60	u	179.5	10	"
156	14	" +AgF.2H ₂ O	189.5	13.4	4
159	17.2	AgF.2H ₆ O	191.5	14.3	" +AgF(?)
185	24	46	207	0.15	3 AgF.5H ₂ O
189	25.7	AgF	206.2	1.25	"
188	29.5	44	202.5	7.9	"
196	39.8	"	198.6	12.65	"
142.1	52	AgF.2H ₂ O	195.5	11.7	AgF.H ₂ O
121.75	57 . 2	"	194.5	13	"
94.93	66.57	"	189.5	18.8	$_3A_gF5H_fO+A_gF(?)$
173.75	0.4	3AgF.5H ₂ O	193	36.6	AgF
174	3.6	"	193.5	16	

Additional determinations at other temperatures are given.

SILVER FULMINATE CAg₂(NO₂)CN.

One liter of aqueous solution contains 0.075 gm. C₂Ag₂N₂O₂ at 13°, and 0.180 gm. at 30° (Holleman, 1896.)

SILVER HEPTOATE (Önanthylate) AgC7H18O2.

SOLUBILITY IN WATER. (Landau, 1893; Altschul, 1896.)

t°.	Gms. AgC ₇ H ₁₃ O ₂ per 100 Gms. H ₂ O.		t°.	Gms. AgC ₇ H ₁₀ O ₂ per 100 Gms. H ₂ O.		
0	0.0635 (Landau)	0.0436 (Altschul)	50	0.1652 (Landau)	0.0858 (Altschul)	
10	0.0817	0.0494	60	0.1906	0.1036	
20	0.1007	0.0555	70	0.2185	0.1351	
30	0.1206	0.0617	80	0.2495	0.1688	
40	0.1420	0.0714				

SILVER IODATE AgIO,.

One liter of aqueous solution contains 0.04 gm. or 0.00014 gm. mol. at 18°-20°, and 0.05334 gm. or 0.000189 gm. mol. at 25°.

(Longi; Böttger; Kohlrausch; Noyes and Kohr, 1902.)

The solubility of silver iodate in water, determined by a colorimetric method (see Note, p. 608), was found by Whitby (1910) to be 0.039 gm. AgIO₁ per liter at 20°. Determinations reported by Sammet (1905) made by a chain cell method, gave 0.0611 gm. AgIO₂ per liter at 25° and 0.1849 gm. at 60°.

One liter of H₁O dissolves 0.0275 gm. AgIO₂ at 9.43°, 0.039 gm. at 18.4° and

0.0539 gm. at 26.6°. (Kohlrausch, 1908.)

SOLUBILITY OF SILVER IODATE IN AQUEOUS SOLUTIONS OF AMMONIA AND OF NITRIC ACID AT 25°. (Longi, 1883.)

100 gms. aq. ammonia of 0.998 Sp. Gr. = 5% dissolve 2.36 gms. AgIO₃. 100 gms. aq. ammonia of 0.96 Sp. Gr. = 10% dissolve 45.41 gms. AgIO₃. 100 gms. aq. nitric acid of 1.21 Sp. Gr. = 35% dissolve 0.096 gm. AgIO₃.

SOLUBILITY OF SILVER IODATE IN AQUEOUS SOLUTIONS OF NITRIC ACID AT 25°. (Hill and Simmons, 1909.)

Normality of Aq. HNOs.	Gms. AgIO₃ per Liter.	Normality of Aq. HNO ₂ .	Gms. AgIO ₃ per Liter.
Ö	0.0503	I	0.2067
0.125	0.0864	2	0.3319
0.250	0.1075	4	0.6985
0.500	0.1414	8	1.587

The solubility of the amorphous modification of AgIO₁ is considerably higher than that of the crystalline, but the amorphous product rapidly becomes crystalline and correct results are soon obtained.

SILVER IODIDE AgI.

One liter of aqueous solution contains 0.0000028 gm. AgI at 20°-25°. (Average of several determinations by Kohlrausch, Abegg and Cox, etc., Holleman gives higher figures.)

One liter of water dissolves 0.0000253 gm. AgI at 60° , determined by a chain cell method (Sammet, 1905). This author also gives data for the solubility of AgI in 1 n and 0.1 n KI solutions at 60° .

SOLUBILITY OF SILVER IODIDE IN AQUEOUS AMMONIA.

Per cent Con- centration of Aq. Ammonia.	d of Aq. Ammonia.	t°.	Gms. AgI per Liter,	Authority.
7	0.971	16	0.045	(Ladenburg, 1902.)
10	0.960	12	0.035	(Longi, 1883.)
20	0.926	16	0.166	(Baubigny, 1908.)

Baubigny used a sealed tube and noted the first appearance of crystallization of AgI in mixtures of known compositions.

SOLUBILITY OF SILVER IODIDE IN AQUEOUS MERCURIC NITRATE AT 25°. (Morse, 1902.)

Mols. Hg(NO ₂) ₂ per Liter.	Mols. AgI per Liter.	Gms. AgI per Liter.	Mols. Hg(NO ₂) ₂ per Liter.	Mols. AgI per Liter.	Gms. AgI per Liter.
0.010	0.00340	0.800	0.050	0.00740	1.737
0.0125	0.00358	0.841	0.100	0.01161	2.730
0.025	0.00476	1.118	I	0.10700	25.160

Since HNO₃ was present in all cases its influence on the solubility was examined. It was found that no appreciable differences were obtained with concentrations varying between 0.1 and 2n HNO₃. Both crystallized and amorphous silver iodide gave identical results.

SOLUBILITY OF SILVER IODIDE IN AQUEOUS SOLUTIONS OF POTASSIUM IODIDE AND OF SILVER NITRATE AT 25°. (Hellwig, 1900.)

In Aq. KI Solutions. In Aq. AgNO₂ Solutions.

Mols. KI per Liter.	Mols. AgI per Liter.	Gms. AgI per Liter.	Mols. AgNOs per Liter.	Mols. AgI per Liter.	Gms. AgI per Liter.	Solid Phase.
0.335	0.000363	0.0853	0.20	0.000289	0.068	AgI
0.586	0.00218	0.512	0.35	0.000532	0.121	44
0.734	0.0044	1.032	0.50	0.00127	0.299	44
1.008	0.0141	3.32	0.70	0.00362	0.850	46
1.018	0.0148	3.47	1.215	0.0131	3.08	Ag ₂ INO ₂
1.406	0.0535	12.55	1.63	0.0267	6.26	4
1.486	0.0658	15.46	2.04	0.0458	10.Q	26
1.6304	0.102	24.01	2.54	0.0678	16. í	Ag ₂ I(NO ₂) ₂
1.937	0. 198	46.42	3.75	0.141	33.2	4
		•	4.69	0.227	53.2	æ
			5.90	0.362	85	4

SOLUBILITY OF SILVER IODIDE IN AQUEOUS SALT SOLUTIONS. (Valenta, 1894; Cohn, 1895.)

Aq. Salt. Solution.	ť.	Gms. A	gI per 100 (Gms. Aq. Se	ol. of Conce	ntration:
	٠.	1:100.	5 : 100.	10:100.	15:100.	20 : 100.
Sodium Thiosulfate	20	0.03	0.15	0.30	0.40	0.60
" Calc. by Co	hn.•	0.623	2.996	5.726	8.218	10.493
Potassium Cyanide	25		8.28	• • •		• • •
" Calc. by Col	hn.*		8.568		• • •	
Sodium Sulfite	25			0.01		0.02
Ammonium Thiocyanate	20		0.02	0.08	0.13	
Calcium "	25			0.03		
Barium "	25			0.02		
Aluminium "	25	• • •	•••	0.02	•••	• • •
Thiocarbamide ·	25			0.79		
Thiocyanime	25	0.008	0.05	0.00		
	•	ee Note, p. (•	5.59	•••	•••

SOLUBILITY OF SILVER IODIDE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE,
POTASSIUM BROMIDE AND OF POTASSIUM IODIDE AT 15°.

(Schierholz, 1890.)

In Sodium Chloride. Gms. per 100 Gms. Solution.		In Potassium Iodide.		
		Gms. per 100 Gms. Solution.		
NaCl.	AgI.	KI.	AgI.	
26.31	0.0244	59.16	53 · 13	
25.00	0.00072	57 - 15	40.0	
		50.0	25.0	
		40.0	13.0	
In Dotocoi	um Doomida	33 · 3	7 · 33	
In Potassium Bromide. Gms. per 100 Gms. Solution.		25.0	2.75	
KBr	AgI	21.74	1.576	
30.77	0.132	20.0	0.80	

100 gms. sat. silver nitrate solution dissolve 2.3 gms. AgI at 11°, and 12.3 gms. at b. pt.

100 gms. pyridine dissolve 0.10 gm. AgI at 10°, and 8.60 gms. at 121°.
(von Laszcynski, 1894.)

SOLUBILITY OF SILVER IODIDE IN AQUEOUS SODIUM IODIDE AT 25°. (Krym, 1909.)

Gms. per 100 Gms. H ₂ O.		Solid Phase.	Gms. per 10	o Gms. H ₄ O.	Solid Phase.
NaI.	AgI.	Soud Phase.	NaI.	AgI.	Soud Phase.
59.29	21.21	AgI	226	120.9	AgI.NaI.3}H ₂ O+NaI
67.47	28.52	«	222.7	112.1	NaI
134.1	99 · 54	u	214.7	90.84	u
156.9	124.6	u	203.9	59.48	u
179.8	150	" +AgI.NaI.3}H ₂ O	194.5	. 31.10	u
196.3	134.8	AgI.NaI.3 H ₂ O	185.52	0	u
223.7	122	"			

The above table was calculated from the original results which are expressed in mols. per 1000 mols. H_1O .

Fusion-point data for mixtures of AgI + HgI, are given by Steger (1903). Results for AgI + NaI are given by Sandonnini and Scarpa (1913).

SILVER LAURATE, MYRISTATE, PALMITATE and STEARATE

SOLUBILITY OF EACH, DETERMINED SEPARATELY, IN WATER AND OTHER SOLVENTS AT SEVERAL TEMPERATURES.

(Jacobson and Holmes, 1916.)

C-14	ť.	C	Gms. each Salt per 100 Gms. Solvent.			
Solvent.	٠.	Laurate.	Myristate.	Palmitate.	Stearate.	
Water	35	• • •	0.007	0.004	0.004	
"	50		0.007	0.006	0.004	
Abs. Ethyl Alcohol	25	0.009	0.008	0.007	0.007	
"	50	0.009	0.008	0.007	0.007	
Methyl Alcohol	15	0.074	0.063	0.060	0.051	
" "	25	0.072	0.067	0.059	0.052	
cc 66	35	0.078	0.071	0.062	0.055	
<i>"</i>	50	0.083	0.073	0.066	0.000	
Ether	15	0.010	0.009	0.009	0.007	

SILVER LEVULINATE (Acetyl propionate) CH₂.COCH₂CH₂COOAg.

SOLUBILITY IN WATER. (Furcht and Lieben, 1909.)

t°.	Gms. per 100 G	Gms. per 100 Gms. Sat. Solution.				
8	0. 5363 (white salt)	o. 5195 (yellow salt)				
9	0.5166	0.5372				
14-15	o.6 0 78 "	0.6448 "				
99.6	3.49	3.70				

SILVER MALATE C.H.O.Ag.

100 gms. H₂O dissolve 0.0119 gms. at 18°, and 0.1216 gm. at 25°. (Partheil and Hübner, 1903.)

SILVER NITRATE AgNO:

SOLUBILITY IN WATER.
(Etard, 1894; Kremers, 1854; Tilden and Shenstone, 1884.)

ť.	Gms. Ag	Gms. AgNO ₂ per 100 Gms.			Gms. AgNO ₂ per 100 Gms.		
• •	Solut	ion.	Water.	• •	Solution.	n.	Water.
- 5	48 (Etard	D		50	79 (Etard	82	455
0	53	55	122	60	81.5	84	525
10	62	63	170	80	85.5	87	669
20	68	69	222	100	88.5	901	952
25	70.5	72	257	120	91	95	1900
30	72.5	75	300	140	93 · 5	• • •	
40	76.5	79	376	160	95		

100 gms. sat. aq. solution contain 47.1 gms. $AgNO_3$ at -7.3° (= Eutectic). (Middleberg, 1903.) 100 gms. sat. aq. sol. contain 65.5 gms. $AgNO_3$ at 15.5°. (Greenish and Smith, 1903.) 100 gms. sat. aq. sol. contain 73 gms. $AgNO_3$ at 30°. (Schreinemakers and de Baat, 1910a.)

SOLUBILITY OF SILVER NITRATE IN AQUEOUS NITRIC ACID AT 25°. (Masson, 1911.)

d _m of Sat.	Gm. Mols	per Liter.	Gms. AgNO ₂	des of Sat.	Gm. Mols.	per Liter.	Gms. AgNO ₂
Sol.	HNO ₃ .	AgNO ₃ .	per Liter.	Sol.	HNO.	AgNO ₃ .	per Liter.
2.3921	0	10.31	1752	1. 4980	4 · 497	2.590	440. I
2.2754	0.4042	9.36	1591	1.4195	5.992	1.698	288.6
2.1243	0.962	8.08	1373	1.3818	8.84	0.843	143.2
1.9402	1.698	6.54	IIII	1.3976	12.53	0.347	58.9 6
1.7052	2.834	4.526	769. I				

100 gms. 2HNO₂, 3H₂O dissolve 3.33 gms. AgNO₂ at 20°, and 16.6 gms. at 100°. 100 gms. conc. HNO₂ dissolve 0.2 gm. AgNO₂. (Schultz, 1860.)

SOLUBILITY OF MIXED CRYSTALS OF SILVER NITRATE AND SODIUM NITRATE IN AQUEOUS ETHYL ALCOHOL.
(Hissink, 1900.)

Results at 25° in Results at 50° in Aq. C_2H_6OH of $d_{20}=0.945$ (37 wt. %). Aq. C_2H_6OH of $d_{17}=0.859$ (75 wt. %).

Gms. r Gms	er 100 . Sol.	Wt. per Mix C	cent in rystals.	Gms. r Gms.	er 100 Sol.	Wt. pe	r cent in Crystals.
AgNO ₃ .	NaNOs.	AgNO ₃ .	NaNO ₃	AgNO ₃ .	NaNOs.	AgNOs.	NaNOs
47 - 32	0.0	100	0.0	29.78	0.0	100	0.0
44.01	8.78	99.1	0.9	27.9	2.5	99.5	0.5
36.78	20.42	42.9	57 · I	26.4	4.2	99.3	0.7
29.97	23.2	33.6	66 . 4	23.0	6.3	42.9	57 . 1
24.56	24.82	27.6	72.4	18.3	7.I	31.0	69.0
8.02	26.41	9.9	90.1	9.5	8.3	17.5	82.5
0.0	26.77	0.0	100.0	0.0	8.54	0.0	100.0

Very extensive data for equilibrium in the system silver nitrate, succinic acid nitrile and water are given by Middelberg (1903). This author first gives data for the ternary systems and then results for isotherms of the ternary system at 0°, 12°, 20°, 25° and 26.5°. A number of determinations for higher temperatures are also given. The following compounds of succinic nitrile and silver nitrate were identified: $C_2H_4(CN)_2.4AgNO_3$, $C_2H_4(CN)_2.2AgNO_3$, $C_2H_4(CN)_2.4gNO_3$, $C_2H_4(CN)_2.4gNO$

SOLUBILITY OF SILVER NITRATE IN ALCOHOLS. (de Bruyn, 1892.)

100 gms. abs. methyl alcohol dissolve 3.72 gms. AgNO₂ at 19°. 100 gms. abs. ethyl alcohol dissolve 3.10 gms. AgNO₂ at 19°.

SOLUBILITY OF SILVER NITRATE IN AQUEOUS ETHYL ALCOHOL. (Eder, 1878.)

Sp. Gr. of Aq. Alcoholic	Volume	Gms. AgNOs per 100 Gms. Aq. Alcohol at:				
Mixture.	per cent Alcohol.	150.	50°.	75°.		
0.815	95	ვ.8	7 · 3	18.3		
o · 863	80	10.3		42.0		
0.889	70	22.I	• • •			
0.912	60	30.5	58.1	89. 0		
0.933	50	35.8	• • •			
0.951	40	56.4	98. 3	160.0		
0.964	30	73 · 7				
0.975	20	107.0	214.0	340.0		
0.986	10	158.0	• • •	• • •		

100 gms. of a mixture of 1 vol. (95%) alcohol + 1 vol. ether dissolve 1.6 gms. AgNO₂ at 15°.

100 gms. of a mixture of 2 vols. (95%) alcohol + 1 vol. ether dissolve 2.3 gms. AgNO₃ at 15°.

100 gms. H₂O sat. with ether dissolve 88.4 gms. AgNO₂ at 15°. (Eder, 1878.)
100 gms. acetone dissolve 0.35 gm. AgNO₂ at 14°, and 0.44 gm. at 18°.
(von Lasczynski, 1894; Naumann, 1904.)

SOLUBILITY OF SILVER NITRATE IN SEVERAL SOLVENTS.

Solvent.	t°.	Gms. per 100 Gms. Solvent.	Authority.
Acetonitrile (anhydrous)	18	290	(Naumann and Schier, 1914.)
**	ord. temp.	about 150	(Scholl and Steinkopf, 1906.)
Benzonitrile	18	about 105	(Naumann, 1914.)
Benzene	35	0.022	(Linebarger, 1895.)
"	40.5	0.044	
Hydrazine (anhydrous)	ord. temp.	I (with decomp.)	(Welsh and Broderson, 1915.)

SOLUBILITY OF SILVER NITRATE IN PYRIDINE. (Kahlenberg and Brewer, 1908.)

Gr	ns. AgNO ₃			Gms. AgNO	
t°. per	: 100 Gms. C _s H _s N.	Solid Phase.	ť.	per 100 Gms. C ₄ H ₄ N.	Solid Phase.
-48.5 m. pt.	•	C _t H _t N	45	62.26	AgNO ₃ .3C ₅ H ₅ N
-50.5	3	"	46	63.09	"
-53	6	a	47	66.35	44
-59	9	"	48	70.85	44
-65 Eutec.		"+AgNO ₂ .6C ₅ H ₄ N	48.51	tr. pt	"+AgNO3.2C4H4N
-51.25	II.I	AgNO ₃ .6C ₄ H ₄ N	45	69.85	AgNO ₃₋₂ C ₄ H ₄ N
-44	11.7	44	50	72.25	46
-40	12.2	u	60	78.60	"
-35	12.6	"	70	89.10	44
-30	13.9	u	80	121.21	u
-25	17.6	u	87	215.02	"
-24 tr. pt.	• • •	"+AgNO _{3.3} C ₅ H ₆ N	80	228.5	u
-22	18.8	AgNO ₃₋₃ C ₄ H ₄ N	74	230.6	u
— 10	20.03	и	74	225.4	"
0	22.34	"	80	230.4	44
+10	27.21	66	87	237.I	ш
20	33.64	**	90	241.9	46
30	40.86	u	100	253.8	4
40	53 . 52	44	110	271.4	u

Fusion-point data for mixtures of AgNO₃ + TlNO₃ are given by van Eyk (1905).

SILVER NITRITE AgNO:

SOLUBILITY IN WATER. (Creighton and Ward, 1915.)

t°.	Gms. AgNO₂ per Liter.	ť.	Gms. AgNO _s per Liter.	t*.	Gms. AgNO ₂ per Liter.
0	1.55	. 20	3.40	40	7.15
10	2.20	25	4.14	50	9.95
15	2.75	30	5	60	13.63

The determinations by Abegg and Pick (1906) are slightly higher than the above at temperatures below 20°. Single determinations agreeing well with the above are given by Ley and Schaefer (1906), and by von Niementowski and von Roszkowski (1897).

SOLUBILITY IN AQUEOUS SOLUTIONS OF SILVER NITRATE AT 18°. (Naumann and Rucker, 1905.)

Mols. pe	r Liter.	Grams p	er Liter.	Mols. pe	r Liter	Grams p	er Liter.
AgNO ₃ .	AgNO ₂ .	AgNO ₃ .	AgNO ₂ .	AgNO ₈ .	AgNO ₂ .	AgNO ₃ .	AgNO ₂ .
0.0000	0.02067	0.000	3.184	0.02067	0.01435	3.512	2.20I
					0.01168		.,,
0.00517	0.01900	0.878	2.926	0.08268	0.00961	14.048	I · 480
0.01033	0.01689	1 . 756	2.601				

SOLUBILITY OF SILVER NITRITE IN AQUEOUS SOLUTIONS OF SILVER NITRATE AND OF POTASSIUM NITRITE AT 25°.

(Creighton and Ward, 1915.)

(Creignton and Ward, 1915.)
In Aqueous AgNO₂.
In Aqueous KNO₂.

Mols. AgNO ₂ per Liter.	Dissolved AgN	O ₂ per Liter.	Mols. KNO.	Dissolved AgNO ₂ per Later.	
per Liter.	Mols.	Gms.	per Liter.	Mols.	Gms.
0	0.0269	4. 135	0	0.0269	4.135
0.00258	0.0260	3.991	0.00258	0.0259	3.974
0.00588	0.0244	3 · 735	0.00588	0.0249	3.820
0.01177	0.0224	3.432	0.01177	0.0232	3.560
0.02355	0.0192	2.943	0.02355	0.0203	3.119
0.04710	0.0164	2.498	0.04710	0.0181	2.765

Additional determinations of the solubility of silver nitrite in aqueous silver nitrate solutions at 25° are given by Abegg and Pick (1905).

(Ley and Schaefer, 1906; see also p. 660.)

100 gms. H₂O sat. with both salts contain 10.9 gms. AgNO₂ + 78.3 gms.

Sr(NO₂)₂ at 14°.

(Oswald, 1912, 1914.)

100 gms. acetonitrile dissolve about 23 gms. AgNO₂ at ord. temp. and about 40 gms. at the boiling-point (81.6°). (Scholl and Steinkopf, 1906.)

SILVER OXALATE Ag₂C₂O₄.

One liter H₂O dissolves 0.0378 gm. Ag₂C₂O₄ at 21°, see Note, p. 608.

One liter H₂O dissolves 0.0416 gm. Ag₂C₂O₄ at 25°. Conductivity method. (Schäfer, 1905.)
One liter H₂O dissolves 0.0265 gm. Ag₂C₂O₄ at 9.72°, 0.034 gm. at 18.5° and 0.043 gm. at 26.9°. (Kohrausch, 1908.)

SOLUBILITY OF SILVER OXALATE IN AQUEOUS NITRIC ACID AT 25°.
(Hill and Simmons, 1909.)

		,-					
Normal- ity of Aq. HNO ₂ .	Per cent Conc. of HNO ₂ .	d₂s of Sat. Sol.	Gms. Ag ₁ C ₂ O ₄ . per Liter.	Normal- ity of Aq. HNO ₁ .	Per cent Conc. of HNO ₁ .	d_{26} of Sat. Sol.	Gms. Ag ₂ C ₇ O ₄ per Liter .
0.2517	1.574	1.0080	1.345	4.017	22.37	1.1415	17.11
0.5025	3.117	1.0186	2.189	5 . 564	29.84	1.1996	29.96
0.9806	6.017	1.0339	3.720	5.83	31.085	1.2162	33.88
1.040	11.476	1.0647	7.170				

SILVER OXIDE Ago.

One liter of H₂O dissolves 0.021 gm. at 20°, and 0.025 gm. at 25°. (Noyes and Kohr; Böttger; Abegg and Cox.)
One liter H₂O dissolves 0.0215 gm. Ag₂O at 20°. (See Note, p. 608.) (Whitby, 1910.)

SOLUBILITY OF SILVER OXIDE IN WATER. (Rebiere, 1915.)

Method of Preparation of the Sample.	Gm. Mols. A	g ₂ O per Liter.	Gms. AgrO per Liter.	
	At 25°.	At so.	At 25°.	At 50°.
By action of NaOH on AgNO ₃	2.16,10-4	2.97.10	0.050	0.0691
By action of Ba(OH)2 on AgNO3	2.23.10-4	3.09.10-4	0.0519	0.0719
By action of KOH on AgCl	2.32.10-4	3.55.10-4	0.0538	0.0825
By action of KOH on Ag ₂ CO ₃	2.95.10-4	3.89.10 ⁻⁴	0.0680	0.0904

SOLUBILITY OF SILVER OXIDE IN AQUEOUS AMMONIA AT 25°.

Mols. NH ₃ (Total) per Liter.	Gm. Atoms Ag per Liter.	Mols. NH ₂ (Total) per Liter.	Gm. Atoms Ag per Liter.	Mols. NH ₂ (Total) per Liter.	Gm. Atoms Ag per Liter.
0.220	0.0658	0.733	0.224	1.147	0.343
0.469	0.134	0.876	0.257	1.498	0.454
• . 684	0.205	0.915	0.276	1.522	0.470

SOLUBILITY OF SILVER OXIDE IN AQUEOUS SOLUTIONS OF ETHYL AMINE AND OF METHYL AMINE AT 18°.

	(Eu	ler.	1903	.)
--	-----	------	------	----

In Aqueous	Ethyl Amine.	in Aqueous N	letnyi Amine.
Normality of Aq. Amine.	Normality of Dissolved Ag.	Normality of Aq. Amine.	Normality of Dissolved Ag.
0.100	0.0322	0.100	0.0221
0.50	0. 160	0.500	0. 118
1	0.314	I	0.228

SILVER PERMANGANATE AgMnO.

100 gms. cold water dissolve 0.92 gm.: hot water dissolves more.
(Mitscherlich, 1832.)

SILVER PHOSPHATE Ag.PO.

One liter of water dissolves 0.00644 gm. at 20°.

(Böttger, 1903.)

SILVER PROPIONATE C:H:COOAg.

SOLUBILITY IN WATER. (Raupenstrauch, 1885; Arrhenius, 1893; Goldschmidt, 1898.)

Gms. C₂H₂O₂Ag per Liter. Gms. C₂H₅O₂Ag per Liter. Gms. C₂H₆O₂Ag per Liter. ť. 5.12 8.36 (8.48) 0 20 50 13.35 6.78 9.06 70 17.64 25 10 18.2 8.36 (A) 30 9.93 (9.70) 80 20.30

SOLUBILITY OF SILVER PROPIONATE IN AQUEOUS SOLUTIONS OF: (Arrhenius.)

Silver Nitrate at 19.7°.			Sodium Propionate at 18.2°.				
Mols. p	er Liter.	Gms. 1	er Liter.	Mols. pe	r Liter.	Gms. pe	r Liter.
AgNO ₃ .	C ₂ H ₆ O ₂ Ag.	AgNO ₃ .	C ₂ H ₅ O ₂ Ag.	C ₂ H ₄ O ₂ Na.	C ₂ H ₄ O ₂ Ag.	C ₂ H ₄ O ₂ Na.	C ₂ H ₆ O ₂ Ag.
0	0.0471	0	8.519	0	0.0462	0	8.362
0.0133	0.0415	2.289	7.511	0.0167	0.0393	1.607	7.114
0.0267	0.0379	4 - 577	6.86	0.0333	0.0345	3.215	6.244
0.0533	0.0307	9.059	5.556	0.0667	0.0258	6.429	4.670
O. IOO	0.0222	16.997	4.019	0. 1333	0.0191	12.859	3.456
				0.2667	0.0131	25.718	2.371
				0.5000	0.0101	48.77	1.828

SILVER SALICYLATE C.H.OH.COOAg 1,2.

One liter of aqueous solution contains 0.95 gm. at 23°.

(Holleman, 1893.)

SILVER SUCCINATE C4H4O4Ags.

100 gms. H₂O dissolve 0.0176 gm. at 18°, and 0.0199 gm. at 25°. (Parthell and Hübner, 1903.)

SILVER SULFATE Ag2SO4.

SOLUBILITY IN WATER. (Barre, 1911.)

ť.	Gms. Ag ₂ SO ₄ per 100 Gms. Sat. Sol.	ť.	Gms. Ag ₈ SO ₄ per 100 Gms. Sat. Sol.	ť.	Gms. Ag ₈ SO ₄ per
0	0.57	30	o. 88	70	I.2I
10	0.69	40	0.97	8o	1.28
20	0.79	50	1.05	90	1.34
25	0.834	60	1.14	100	1.39

The result at 25° is the average of the very accurate and closely agreeing determinations of Hill and Simmons (1909), Rothmund (1910) and Harkins (1911). Earlier determinations, differing somewhat from the above, are given by Euler (1904), Wright and Thompson (1884), Wentzel () and Drucker (1901).

SOLUBILITY OF SILVER SULFATE IN AQUEOUS SOLUTIONS OF AMMONIUM SULFATE. (Barre, 1911.)

Results	at 33°.	Results :	at 51°.	Results	at 75°.	Results a	t 100°.
Gms. per re Sat. S	oo Gms. ol.	Gms. per : Sat.	roo Gms. Sol.	Gms. per 100 Gms. Sat. Sol.		Gms. per 100 Gms. Sat. Sol.	
(NH.) SO.	Ag ₂ SO ₄ .	(NH4)2SO4.	Ag ₂ SO ₄ .	(NH ₄) ₂ SO ₄ .	Ag ₃ SO ₄ .	(NH ₄) ₂ SO ₄ .	Ag ₂ SO ₄ .
8.85	1.101	8.90	1.362	8.80	1.758	9.23	2.221
15.90	1.331	16.27	1.68o	15.23	2.155	15	2.626
22.22	1.500	22.43	1.887	22.30	2.490	22.OI	3.075
27.25	1.585	32.10	2.061	28.25	2.734	27	3.325
30.80	1.619	35.38	2.095	32	2.823	34.90	3.663
35.88	1.627	39.03	2.082	35.82	2.889	38.70	3.772
39.46	1.600	42.37	2.055	41.16	2.929	44.15	3.854
43.22	1.557	45.05	2.026	46.46	2.902	47.63	3.867

A series of determinations at 16.5° is also given.

SOLUBILITY OF SILVER SULFATE IN AQUEOUS NITRIC ACID AT 25°. (Hill and Simmons, 1909.)

Normality of Aq. HNO ₂ .	Per cent Conc. of Aq. HNO ₃ .	d ₂₆ of Sat. Sol.	Gms. Ag ₂ SO ₄ per Liter.	Normality of Aq. HNO ₂ .	Per cent Conc. of Aq. HNO ₂ .	d_{26} of Sat. Sol.	Gms. Ag ₂ SO ₄ per Liter.
0	0	1.0054	8.35	4.209	23.33	1.1956	73.212
1.0046	6.154	1.061	34.086	5.564	29.84	1.2456	84.609
2.0452	12.005	1.1069	49.010	8.487	42.37	1.3326	94.671
4.017	22.37	1.1871	71.166	10.034	48.77	1.3676	90.806

SOLUBILITY OF SILVER SULFATE IN AQUEOUS SOLUTIONS OF ACIDS AND SALTS AT 25°. (Swan, 1899.)

Acid or Salt. HNO ₂	Gm. Equiv. per Liter. O	Gms. Dissolved Ag ₂ SO ₄ per Liter. 8.41	Acid or Salt. H ₂ SO,	Gm. Equiv. per Liter.	Gms. Dissolved Ag ₂ SO ₄ per Liter. 8.41
	-	0.41		0	•
"	0.01589	9.33	"	0.02902	8.55
"	0.03178	10.18	"	0.05802	8.68
"	0.06357	11.83	"	0.10526	8.86
KHSO ₄	0.05264	8.13	K ₂ SO ₄	0.02718	7 · 93
"	0.10526	8.07	"	0.05434	7.68

SOLUBILITY OF SILVER SULFATE IN AQUEOUS SOLUTIONS OF SALTS AT 25°. (Harkins, 1911.)

Salt.	Gm. Equiv. Salt per Liter.	d _{zi} Sat. Sol.	Gms. Ag ₂ SO ₄ per Liter.	Salt.	Gm. Equiv. Salt per Liter.	d ₂₆ of Sat. Sol. ₹	Gms. Ag ₂ SO ₄ per Liter.
KNO ₃	ō		8.344	AgNO ₃	0.09961	1.0137	2.644
"	0.024914	1.0072	8.996	K ₂ SO ₄	0.025024	1.0064	7.899
"	0.049774	1.0092	9.531	"	0.050044	1.0079	7.694
"	0.09987	1.0034	10.435	"	0.100	1.0112	7 · 49
Mg(NO ₃) ₂	0.024764	1.0073	9.267	"	0.20003	1.0180	7.531
- "	0.049595	1.0094	10.029	$MgSO_4$	0.020022	1.0061	8. 140
"	0.09946	1.0133	11.334	"	0.050069	1.0079	7.941
AgNO ₃	0.024961	1.0065	6.095	"	0.10004	1.0105	7.740
-46	o.04986	1.0084	4.487	. "	0.20005	1.0164	7.733

One liter of aqueous solution in contact with a mixture of silver sulfate and silver acetate contains 3.95 gms. Ag₈SO₄ + 8.30 gms. CH₈COOAg at 17°. Sp. Gr. of solution = 1.0094. (Euler, 1904.)

7.24

17.44

SOLUBILITY OF SILVER SULFATE AT 25° IN AQUEOUS SOLUTIONS OF: (Drucker, 1901.)

Sulfuric Acid. Potassium Sulfate. Mols. per Liter. Mols. per Liter. Gms. per Liter. Gms. per Liter. AgsO4. H,SO4. Ag₂SO₄. H,SO, Ag₂SO₄. KaSO4. Ag₂SO₄. K.SO. 0.0260 8.11 0.98 0.0246 0.02 7.67 0.02 I.74 8.23 0.0236 1.96 0.0264 0.04 0.04 7.36 3.49 0.10 8.45 4.90 0.0231 0.10 8.72 0.0271 7.20

0.0232

0.20

SOLUBILITY OF SILVER SULFATE IN AQUEOUS POTASSIUM SULFATE SOLUTIONS. (Barre, 1911.)

9.81

8. 58

Results at 33°.		Results at 51°.		Results at 75°.		Results at 100°.	
Gms. per Sat.	roo Gms. Sol.	Gms. per Sat.	zoo Gms. Sol.	Gms. Gms. per 100 C Sat. Sol.		Gms. per 100 Gr Sat. Sol.	
K,SO4.	Ag ₂ SO ₄ .	K ₂ SO ₄ .	Ag ₂ SO ₄ .	K.SO.	AgoSO4.	K ₄ SO ₄ .	Ag ₂ SO ₄ .
3.22	o.863	3.20	1.023	3.12	1.273	3.23	1.488
5.62	0.940	5.61	1.127	5.73	1.406	5.60	1.675
8.37	1.046	8.40	1.247	8.43	1.554	8.45	1.890
10.41	1.117	10.55	1.340	10.55	1.665	11.30	2.115
11.80	1.177	13.16	1.450	13.17	1.806	15.07	2.410
	• • •	14.37	1.524	17.06	2.02I	18.58	2.677

Results at 14.5° are also given.

0.20

0.0275

SOLUBILITY OF SILVER SULFATE IN AQUEOUS SODIUM SULFATE SOLUTIONS. (Barre, 1910, 1911.)

Results	at 33°.	Results	at 51°.	r°. Results at 75°.		Results at 100°.	
Gms. per Sat.	us, per 100 Gms. Gms. per 100 Gms. Gms. per 10 Sat. Sol. Sat. Sol. Sat. Sol.		roo Gms. Sol.	Gms. per Sat.	100 Gms. Sol.		
Na ₂ SO ₄ .	Ag ₂ SO ₄ .	Na ₂ SO ₄ .	Ag ₂ SO ₄ .	Na ₂ SO ₄ .	Ag ₂ SO ₄ .	Na ₂ SO ₄ .	Ag ₂ SO ₄ .
0.25	0.861	0.25	1.032	0.20	1.215	0.50	1.341
o. 98	0.816	1.02	0.995	0.98	1.210	1.01	1.363
2.01	0.832	1.90	1.017	1.96	1.238	1.94	1.418
3	0.867	2.92	1.053	2.98	1.296	3.02	1.494
5.34	0.972	5.40	1.173	5.37	1.458	5.33	1.651
10.05	1.150	10.11	1.379	9.81	1.697	10.15	2.012
20.00	1.448	20.25	1.705	19.98	2.075	25.45	2.351
29.55	1.570	29.23	1.802	29.66	2.138	34.72	2.012
39.44	1.462	39.30	1.540	38.94	1.603	38.63	1.687
46.976	0.932	44.46	0.882	41.36	1.156	40.16	1.158
Result	8 at 14.5° a	and at 18°	are also g	iven.	-		•

Solubility in Silver Sulfate in Aqueous 0.5 n Solutions of Various Compounds at 25°.

(Rothmund, 1910.) Gms. Dissolved Ag₂SO₄ Gms. Dissolved Ag₂SO₄ per Liter. Gms. Dissolved Aq. o.5 # Solution of: Aq. o.5 # Solution of: Aq. 0.5 # Solution of: Ag₄SO₄ per Liter. per Liter. Methyl Alcohol Glycerol 7.764 8.202 Acetonitrile 16.37 Ethyl Alcohol 7.100 Mannitol Glycocol 9.262 13.50 Propyl Alcohol Grape Sugar Acetic Acid 6.798 8.418 7.857 Amyl Alc. (tert.) 6.36 Urea Phenol 11.81 9.448 Acetone 7.266 6.86 Dimethylpyrone 6.736 Chloral Ether 6.424 Urethan 7.078 Methylal 6.393 Formaldehyde Formamide 6.61 7.078 Methyl Acetate 8.42 Glycol 8.076 Acetamide 7.794

Fusion-point data for Ag₂SO₄ + Na₂SO₄ are given by Nacken (1907).

SILVER SULFIDE Ag.S.

One liter H₂O dissolves about 4.10⁻¹¹ gm. atoms Ag as sulfide at about 18°.

(Bernfeld, 1898.)

One liter H₂O dissolves 0.55.10⁻¹⁶ gm. mols. = 0.0001363 gm. Ag₂S at 18°.

(Weigel, 1907.)

Fusion-point data for Ag₂S + ZnS are given by Friedrich (1908).

SILVER SULFONATES

SOLUBILITY IN WATER AT 20°.

		Sulfonate.	(osuddase, 1912.)	Gms. Sulfonate per 100 Gms. HeO.
-	.2	Phenanthrene	Monosulfonate]	0.099
"	-3	"	"	0.20
"	.10	o "	"	0.52

SILVER TARTRATE C.H.O.Ag.

100 gms. H₂O dissolve 0.2012 gm. C₄H₄O₆Ag₂ at 18°, and 0.2031 gm. at 25°. (Parthell and Hübner, 1903.)

SILVER THIOCYANATE AgSCN.

SOLUBILITY IN WATER.

ť.	Gm. AgSCN per Liter.	Authority.			
20	0.00014	(Böttger, 1903.)			
21	0.00025	(Whitby, 1910. See Note, p. 608.)			
25	0.00017	(Küster and Thiel, 1903.)			
25	0.0002	(Abegg and Cox, 1903.)			
100	0.0064	(Böttger, 1906.)			

Additional data for the solubility of AgSCN in water are given by Kirschner (1912.)

SOLUBILITY OF SILVER THIOCYANATE IN AQUEOUS POTASSIUM THIOCYANATE AT 25°. (Hellwig, 1900.)

Mols. KSCN per Liter.	Mols. AgSCN per Liter.	Gms. AgSCN per Liter.	Mols. KSCN per Liter.	Mols. AgSCN per Liter.	Gms. AgSCN per Liter.
0.573	0.0124	2.06	I.I2	0.0975	16.18
0.626	0.0168	2.08	1.20	O.120	19.93
1.066	0.0850	14.01	1.25	0.134	22.34

One liter of aqueous 3 n AgNO1 dissolves 0.0432 gm. AgSCN at 25.2°. (Hellwig, 1900.)

SILVER VALERATES AgC,H,O,.

Normal Valerate, CH₂(CH₂)₂.COOAg. Iso Valerate, CH₂.CH(CH₂)₂CH₂COOAg.

SOLUBILITY OF EACH SEPARATELY IN WATER. (Fürth, 1888; Sedlitzky, 1887.)

	Gms. per 100	Gms. H ₂ O.		Gms. per 100 Gms. H ₂ O.		
t°.	Normal V.	Iso V.	ŧ°.	Normal V.	Iso V.	
0	0.229	0.177	50	0.474	o.360	
10	0.259	0.211	60	0.552	0.401	
20	0.300	0.246	70	0.636	0.443	
30	0.349	0.283	80	• • •	o.486	
40	0.408	0.321				

100 gms. H₂O dissolve 0.73 gm. silver valerate at 20°. (Markwald, 1899.) 100 cc. sat. aq. solution contains 0.71 gm. dextro silver valerate at 15°. (Taverne, 1900.)

SOLUBILITY OF SILVER VALERATE IN AQUEOUS SOLUTIONS OF SILVER ACETATE, SILVER NITRATE AND OF SODIUM VALERATE. (Arrhenius, 1893.)

In Silver Acetate at 17.8°.

In Silver Nitrate at 16.5°.

Mols. per Liter.		Gms. per Liter.		Mols. per Liter.		Gms. per Liter.	
C ₂ H ₂ O ₂ Ag.	C _k H _s O ₂ Ag.	C ₃ H ₄ O ₃ Ag.	C.H.O.Ag.	AgNO ₃ .	C _t H _t O _t Ag.	AgNO ₈ .	C,H,O,Ag.
0	0.0094	0	1.96	0	0.0094	0	1.96
0.0067	0.0070	1.13	1.46	0.0067	0.0068	1.14	1.42
0.0135	0.0057	2.27	1.19	0.0133	0.0051	2.29	1.07
0.0270	0.0037	4 · 54	0.77	0.0267	0.0031	4. 58	0.65
0.0505	0.00265	8.48	0.55	0.1000	0.0012	17.	0.25

In Sodium Valerate at 18.6°.

Mols. p	er Liter.	Gms. per Liter.		
C ₂ H ₂ O ₂ Na.	C _t H _t O ₂ Ag.	C.H.O.Na.	C,H,O,Ag.	
0	0.0095	0	1.986	
0.0175	0.0047	2.17	0.982	
0.0349	0.0030	4.32	0.627	
0.0698	0.0018	8.65	0.376	
0.1395	0.0015	17.31	0.313	

SILVER VANADATE AgeV4O13.

One liter of aqueous solution contains 0.047 gm. at 14°, and 0.073 gm. at 100°. (Carnelly, 1873.)

SODIUM Na.

SOLUBILITY IN LIQUID AMMONIA. (Ruff and Geisel, 1906.)

t.	Mols. NH ₃ Required to Dissolve 1 Gm. Atom Na.	ť.	Mols. NH ₄ Required to Dissolve 1 Gm. Atom Na.
-105	4.98	-30	5.52
— 70	5.20	0	5.87
- 50	5.39	+22	6.14

SOLUBILITY OF SODIUM IN MELTED SODIUM HYDROXIDE. (von Hevesy, 1909.)

t°. 480° 600° 610° 670° 760° 800° Gms. Na per 100 Gms. NaOH 25.3 10.1 9.9 9.5 7.9 6.9

Saturation could not be reached at temperatures below 480°. The saturated mixtures were cooled by plunging the container in water and the solidified contents analyzed.

SOLUBILITY OF SODIUM IN MELTED SODIUM HYDROXIDE CONTAINING OTHER METALS AT 480°. (von Hevesy, 1909.)

' Added Metal.	Gms. Added Metal per 100 Gms. NaOH.	Gms. Dissolved Na per 100 Gms. Solvent.	Added Metal.	Gms. Added Metal per 100 Gms. NaOH.	Gms. Dissolved Na per 100 Gms. Solvent.
Thallium	5.40	23.13	Cadmium	2.87	24.34
"	8.30	23 · 54	"	3.16	24.29
"	12.42	21.29	Gold	6.03	23.92
"	31.37	20.91	"	8.22	23.39
			Zinc	30.37	25.38

SODAMMONIUM Na₂(NH₂)₂.

100 gms. liquid ammonia dissolve 60.5 gms. Na₂(NH₂)₂ at -23° , 56.4 gms. at 0°, 56 gms. at $+5^{\circ}$ and 55 gms. at 9°. (Joannis, 1906.)

SODIUM ACETATE CH₂COONa.3H₂O.

SOLUBILITY IN WATER. (Green, 1908.)

r.	CH ₄ COONa per 100 Gms. H ₄ O.	Solid Phase.	ť.	CH ₂ COONa. per 100 Gms. H ₂ O.	Solid Pl	1880.
-10	19	Ice	20	123.5	CH ₂ COONa	(unstable)
 18	30.4	"	30	126	**	"
-10	33	CH ₂ COONa.3H ₂ O	40	129.5	44	"
0	36.3	u	50	134	44	
+10	40.8	"	60	139.5	46	
20	46.5	"	70	146	44	
30	54 · 5	"	8o	153	44	
40	65.5	"	90	161	44	
50	83	"	100	170	•	
58	138	"	110	180	66	
0	119	CH ₂ COONa (unstable)	120	191	"	
10	121	"	123 b. pt.	193	и	

Results differing somewhat from the above are given by Köhler (1897); Enklaar (1901) and Schiavor (1902).

SOLUBILITY OF SODIUM ACETATE IN AQUEOUS SOLUTIONS OF ACETIC ACID AT VARIOUS TEMPERATURES. (Dunningham, 1912.)

Resul	ts at o°.	Resul	ts at 15°.	Result	s at 30°.	Result	s at 75°.	
Gms. pe Sat. S	r 100 Gms. Solution.	Gms. p Sat.	er 100 Gms. Solution.	Gms. pe Sat.	er 100 Gms. Solution.	Gms. per Sat. S	r 100 Gms. olution.	Solid Phase in
Na ₂ O. ((CH,CO),O.	Na ₂ O.	(CH,CO),O.	Na ₂ O.	(CH ₁ CO) ₁ O.	Na ₂ O.	(CH ₄ CO) ₂ (Each Case.
	• • •	29.34	0.15	35.31	0.77	44.45	0.76	CH ₂ COONa
	• • •			26.25	8.92	32.47	5.03	"
• • •		• • •	• • •	• • •	• • •	22.30	36.69	"
24. I2	2.04	25.94	4.19	25.98	9. 0 6	• • •		CH4COONa.3H4O
14.46	8.55	15.49	12.01	18.09		• • •	• • •	"
9.72	31	11.45	23 · 54	13.53	21.88			**
9.77	41.23	11.25	34.56	13.24	33.05	• • •		" +1.X
9.04	43.94	10.33	39. 0 8	13.14	32.90	17.85	43.06	I.I
• • •	• • •	10.22	39 · 73	7.64	65.07	11.05	65.71	u
• • •	• • •	9.16	49.32		• • •	7.63	81.49	**
• • •	• • •	• • •		• • •		0.44	98.35	"
8.9 6	44.80	8.56		7.67	66.42	• • •	• • •	" +1.2
8.72	45.10	7.06	61.63	7.33	69.68			1.9
7.83	50.03	5.95	70.55	6.61	72.85	• • •	• • •	u
6. 19	62.44	4.84	77.60	5.52	77.76	• • •	• • •	•
4.02	79.29	2.87	86.61	3.78	83.92		• • •	*
1.05	92.29	1.02	95.87	2.94	86.73		• • •	4
0.42	97 · 51	0.79	98. 0 9	1.27	94.78			æ

 $I.I = CH_2COONa.CH_2COOH.$ $I.2 = CH_2COONa.2CH_2COOH.$

Additional data for 5°, 20°, 45° and 60° are also given.

Similar data for 30° are given by Dukelski (1909), and for 20° by Abe (1911-12). One determination at 25°, expressed in terms of volume of solution, is given by Herz (1911-12). Two determinations at 10° similarly expressed, are given by Enklaar (1901).

Data for the freezing-point of mixtures of sodium acetate and acetic acid are given by Vasilev (1909).

SOLUBILITY OF SODIUM ACRIATE IN AQUBOUS ETHYL ALCOHOL AT 25°. (Seidell, 1910.)

Wt. Per cent C.H.OH in Solvent.	d_{26} of Sat. Sol.	Gms. CH ₆ COO- Na.3H ₂ O per 100 Gms. Sat. Sol.	Wt. Per cent CaHoOH in Solvent.	d ₂₆ of Sat. Sol.	Gms. CH ₂ COO- Na ₋₃ H ₂ O per roo Gms. Sat. Sol.
0	1.209	55·7	60	0.990	30.4
10	1.160	53	70	0.942	22.8
20	1.135	49.8	80	0.882	13
30	1.108	46.5	90	0.838	6.7
40	1.072	42	95	0.828	6.1
50	1.038	37	100	0.823	7.3

The solid phase in contact with the solution was CH₂COONa.3H₂O in all cases.

100 gms. absolute alcohol dissolve 7.49 gms. CH₂COONa.3H₂O at room temp. (Bödtker, 1897.)

SOLUBILITY OF SODIUM ACETATE IN AQUEOUS ALCOHOL:

At 18°. (Gerardin, 1865.)			At Dif	At Different Temperatures. (Schiavor, 1902.)			
Wt. Gms. CH ₂ COONa Per cent per 100 Gms.		t°.	Degree	Gms. per 100 Gms. Alcohol.			
Alcohol.	Aq. Alcohol.	• •	Alcohol.	CH ₂ COON ₂ .	CH4COONa.3H4O.		
5.2	38	8	98.4	2.08	3.45		
9.8	35.9	12	98.4	2.12	3.51		
23	29.8	19	98.4	2.33	3.86		
29	27.5	II	90	2.07	3.42		
38	23.5	13	90	2.13	3.52		
45	20.4	15	63	13.46	22.32		
59	14.6	18	63	13.88	23.03		
86	3.9	21	63	14.65	24.30		
91	2. I	23	40	28.50	47.27		

100 gms. H₂O dissolve 237.6 gms. sugar + 57.3 gms. CH₂COONa, or 100 gms. of the saturated solution contain 58.93 gms. sugar + 14.44 gms. CH₂COONa at 31.25°. (Köhler, 1897.)

100 cc. anhydrous hydrazine dissolve 6 gms. sodium acetate at room temp.
(Welsh and Broderson, 1915.)
100 gms. propyl alcohol dissolve 0.97 gm. sodium acetate.
(Schlamp, 1894.)

SODIUM SulfoANTIMONATE Na₃SbS_{4.9}H₂O.

SOLUBILITY IN WATER. (Donk, 1908.)

ť.	Gms. Na ₄ SbS ₄ per 100 Gms. Sat. Sol.	Solid Phase.	t°.	Gms. Na ₆ SbS ₄ pe 100 Gms. Sat. Sol.	r Solid Phase.	tr.	Gms. Na ₈ SbS ₄ po 100 Gms Sat. Sol.	. Phase.
-o. 1	0.5	Ice	-I.75	II.2	Ice	49.6	38.9	Na ₄ SbS ₄ .9H ₄ O
-0.65	4	"	0	11.8	Na ₆ SbS ₄ .9H ₂ O	59.6	45	"
-0.9	5.7	"	15	19.3	"	69.6	50.7	46
-1.26	7.8	"	30	27.I	44	79.5	57.I	"
-1.45	9.2	44	38	32	u		•	

SOLUBILITY OF SODIUM SULFOANTIMONATE IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE AT 30°.

(Donk, 1908.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per roc	Solid Phase.	
Na ₄ SbS ₄ .	NaOH.	Soud Phase.	Na _s SbS ₄ .	NaOH.	Sond Phase.
27.I	0	Na ₆ SbS ₄ .9H ₆ O	16.4	42.6	Na ₂ SbS ₄ .9H ₂ O
13	9.9	4	17.7	47.2	"+NaOH.H ₂ O
5.9	24.8	4	9.1	49.5	NaOH.H ₂ O
10.5	32.9	*	0	54.3	

SOLUBILITY OF SODIUM SULFOANTIMONATE IN AQUEOUS SOLUTIONS OF SODIUM THIOSULFATE. (Donk, 1908.)

Results at o°.			Results at 30°.			
Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100	Gms. Set. Sol.	Solid Phase.	
Na _e SbS ₄ .	Na ₂ S ₂ O ₂ .	Song Phase.	Na ₆ SbS ₄ .	Na ₂ S ₂ O ₃ .	Sond Phase.	
11.8	0	Na ₆ SbS ₄ .9H ₆ O	· 19.9	7.7	Na ₆ SbS ₄ .9H ₆ O	
4.4	4.9	44	12.5	16.4	4	
0.8	14.6	"	4.2	37 · 7	"	
O. I	27.3	4	I	43.8	и	
D	33.6	" +Na ₆ S ₂ O ₆ .5H ₂ O	I	47	46	
0	33.6	Na ₂ S ₂ O ₂₋₅ H ₂ O	I	47.8	" +Na ₂ S ₂ O ₂₋₅ H ₂ O	
			•	45.8	$Na_2S_2O_3.5H_0O$	

SOLUBILITY OF SODIUM SULFOANTIMUNATE IN AQUEOUS ETHYL ALCOHOL. (Donk, 1908.)

Results at o°.		Results	at 30°.	Results at 65°.		
Gms. per 100	Gms. Sat. Sol.	Gms. per 100	Gms. Sat. Sol.	Gms. per 100	Gms. Sat. Sol.	
NasSbS4.	C ₂ H ₄ OH.	Na ₆ SbS ₄ .	C ₂ H ₄ OH.	Ha,SbS,	C,H,OH.	
11.8	0	19.3	5	47.9	•	
8.2	3 · 7	14.6	10.3	39.3	4.7 8*	
3.2	12.7	6.4	24.8	36.5	8*	
0.9	29	I.2	46	4. I	54. I*	
0	60 .8	0	76.2	0	81	

Two liquid layers separate between these concentrations of alcohol. The composition of several
of these conjoined layers is as follows:

Gms. per 100 Gm	s. Alcoholic Layer.	Gms. per 100 Gn	ns. Aqueous Layer.
Na ₄ SbS ₄ .	C,H,OH.	Na _e SbS ₄ .	C,H,OH.
4. I	54 . I	36.5	8
10.2	40.4	27.8	14.3
14. I	33 · 5	24. I	18.8
• • •	0	18	27.2

The solid phase in contact with each of the above solutions is Na₂SbS₆.9H₂O.

SOLUBILITY OF SODIUM SULFOANTIMONATE IN AQUEOUS METHYL ALCOHOL. (Donk, 1908.)

Results at 0°.			Results at 30°.			
Gms. per 100	Gms. per 100 Gms. Sat. Sol.		Gms. per 100	Calld Dhan		
Na ₂ SbS ₄ .	CH,OH.	Solid Phase.	Na ₄ SbS ₄ .	СН,ОН.	Solid Phase.	
8.6	3.4	Na ₂ SbS ₄ .9H ₂ O	27. I	0	Na ₆ SbS ₄ .9H ₆ O	
2.8	15.5	"	12.8	18. 1	46	
2. I	23. I	*	5.8	33.I	"	
0.3	50.3	"	O. I	65.7	u	
O. I	57	44	O. I	84.2	•	
0.05	81.7	4	1.2	91.2	•	
0.2	92	44	3.9	94	•	
2	95.9	*				

SODIUM ARSENATE Na;AsO4.12H2O.

100 gms. aqueous solution contain 21.1 gms. Na₃AsO₄.12H₂O (= 10.4 gms. Na₃AsO₄) at 17°. Sp. Gr. of solution = 1.1186. (Schiff, 1860.) 100 gms. glycerol dissolve 50 gms. sodium arsenate at 15.5°. (Ossendowski, 1907.)

EQUILIBRIUM IN THE SYSTEM SODIUM OXIDE, ARSENIC TRIOXIDE, WATER AT 25°. (Schreinemakers and de Baat, 1917.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100	Gms. Sat. Sc	Solid Phase.
As _t O _b	Na ₂ O.	Sond Phase.	As ₂ O ₃ .	Na ₂ O.	
2.019	0	As ₂ O ₂	31.05	21.82	Na ₄ As ₂ O ₄ .9H ₂ O
14.45	2.45	**	土29	土22.7	" +Na ₁₀ As ₄ O ₁₁ .26H ₂ O
24.42	4.23	"	21.92	24.04	Na ₂₀ As ₄ O ₁₁ .26H ₂ O
37 · 73	6.46	"	17.50	25.64	66
58.54	9.60	64	14.26	29.16	44
土73	土12	" +NaAsO2	14.63	30.24	44
63.01	12.73	NaAsO ₂	19.32	32.04	"+Na ₄ As ₂ O ₅
57.90	13.24	"	15.53	33.57	Na ₄ As ₂ O ₅
48.05	14.27	44	10.49	36.21	44
36.32	18.74	4	6.59	39.39	" +NaOH.H ₂ O
±34	土21.1	" +Na ₄ As ₂ O ₅ .9H ₂ O	5.11	39.69	NaOH.H ₂ O
32.24	21.6	Na ₄ As ₂ O ₅ .9H ₂ O	ō	41.2	"

SODIUM Hydrogen ARSENATE Na₂HA₅O_{4.12}H₂O.

SOLUBILITY IN WATER.

(Average curve from results of Schiff, 1860; Tilden, 1884; Greenish and Smith, 1901.)

t*.	Gms. Na ₂ HAsO ₄ per 100 Gms. H ₂ O.	t°.	Gms. Na ₂ HA ₅ O ₄ per 100 Gms. H ₂ O.	t°.	Gms. Na ₂ HAsO ₄ per 100 Gms. H ₂ O
0	7.3	20	26.5	40	47
10	15.5	25	33	60	65
15	20.5 (d=1.1765)	30	37	80	85

SODIUM Diethyl BARBITURATE Na(C₈H₁₁O₂N₂).

SOLUBILITY IN WATER. (Puckner and Hilpert, 1909.)

t°.	5°	15°	25°	010
Gms. Salt per 100 Gms. Sat. Sol.	ŏ.∘8	16.87	17.18	32.50

SODIUM BENZOATE C.H.COONa.

SOLUBILITY IN AQUEOUS ETHYL ALCOHOL AT 25°. (Seidell, 1910.)

Wt. Per cent C ₂ H ₂ OH in Solvent.	d₂s of Sat. Sol.	Gms. C ₆ H ₆ COONa per 100 Gms. Sat. Sol.	Wt. Per cent C ₂ H ₃ OH in Solvent.	d _™ of Sat. Sol.	Gms. C ₆ H ₆ COONa per 100 Gms. ¿ Sat. Sol.
0	1.155	36	6o ⁻	0.975	21.3
. IO	1.132	35.3	70	0.927	15.4
20	1.110	33 · 7	80	0.877	8.8
30	1.086	31.5	90	0.831	2.8
40	1.055	28.9	95	0.812	1.3
50	1.020	25.6	100	0.795	0.6

SODIUM (Tetra) **BORATE** Na₂B₄O₇.10H₂O (Borax).

SOLUBILITY IN WATER. (Horn and Van Wagener, 1903.)

t°.	Gms. Ns ₂ B ₄ O ₇ per 100 Gms. H ₂ O.	t°.	Gms. Na ₂ B ₄ O ₇ per 100 Gms. H ₂ O.	ť.		ns. Na ₂ B ₄ O ₇ r 100 Gms. H ₂ O.
0.5	1.3	50	10.5	60	19.4	20.3
10	1.6	54	13.3	62	22	20.7
21.5	2.8	55	14.2	. 65	22	21.Q
30	3.9	56	15	70		24.4
37.5	5.6	57	16	80		31.5
45	8. 1			90		4I
				100		52.5

Tr. temp., $Na_2B_4O_7.10H_2O \rightarrow Na_2B_4O_7.5H_2O$, approximately 62°. d_{16.5°} of sat. sol. = 1.020. (Greenish and Smith, 1901.) 100 gms. H_2O dissolve 3.33 gms. $Na_2B_4O_7$ at 25°, determined by refractometer.

SOLUBILITY OF SODIUM BORATES IN WATER AT 30°. (Dukelski, 1906, complete references given.)

Gms. per 100 Gms. Solution. Gms. per		Gms. per 100	Gms. Residue.	Solid Phase.	
Na ₂ O.	B ₂ O ₃ .	Na ₂ O.	B ₂ O ₃ .	Soud Phase.	
42.0	• • •	• • •	• • •	NaOH.H ₂ O	
41 .37	5.10	43 · 54	4.19	44	
38.85	5 · 55	37 - 20	81.11	Na ₂ O .B ₂ O ₃₋₄ H ₂ O	
34 · 44	3 · 73	33 · 52	10.80	4	
29.39	2.51	29.63	10.11	•	
26.13	2.75	27 .85	15.21	•	
23.00	3.82	24.91	11.60	•	
16.61	13.69	21.29	20.64	*	
21.58	4.63	24.52	19.04	Na ₂ O.B ₂ O ₃₋₄ H ₂ O + Na ₂ O.B ₂ O ₃₋₈ H ₂ O	
20.58	4.69	21.61	16.59	Na ₂ O ₃ B ₂ O ₃ SH ₂ O	
15.32	6.21	19.70	17.84	•	
12.39	9.12	18.05	18.17	4	
8.85	10.49	11.72	20.62	Na ₂ O ₋₂ B ₂ O ₃ .xoH ₂ O	
5.81	6.94	10.82	21.31	44	
1.88	2.41	7.31	15.50	4	
1.38	5.16	7.16	17 - 44	•	
2.02	7 · 79	6.24	16.38	*	
4.08	17.20	8.96	29.20	NagO.2B2O2.10H2O+NagO.5B2O2.10H2O	
3 · 79	15.84	5.68	28.19	Na ₂ O. ₅ B ₂ O ₃ .10H ₂ O	
2.26	12.14	5.21	29.19	4	
1.99	11.84	5 · 74	39.66	Na ₂ O. ₂ B ₂ O ₃ .xoH ₂ O + B(OH) ₃	
ı.86	11.18	1.06	28.78	B(OH) ₃	
0.64	6.11	0.31	31.19	44	
• • •	3 · 54	• • •	• • •	*	

EQUILIBRIUM IN THE SYSTEM SODIUM OXIDE, BORIC OXIDE, WATER AT 60°. (Sborgi and Mecacci, 1915, 1916.)

Gms. per : Sat.	oo Gms. Sol.	Solid Phase.	Gms. per Sat.	100 Gms. Sol.	Solid Phase.
Na ₂ O.	B ₂ O ₃ .		Na ₂ O.	B ₂ O ₃ .	
49.25	0	NaOH.H ₂ O	19.29	22.78	Na ₂ O.B ₂ O ₂ .4H ₂ O
48.44	0.81	"	20.30	25.50	44
49.28	1.53	" $+2$ Na ₂ O.B ₂ O ₃ .H ₂ O	22.2I	32.17	" +Na ₂ O.2B ₂ O ₃ .5H ₂ O
47.38	2.24	2Na ₂ O.B ₂ O ₃ .H ₂ O	19.43	27.09	Na ₂ O.2B ₂ O ₃ .5H ₂ O
44.74	3.78	"	16.13	23.05	a
42.94	5.67	" +Na ₂ O.B ₂ O ₃ .H ₂ O	13.51	19.10	"
40.14	5.41	Na ₂ O.B ₂ O ₂ .H ₂ O	11.58	16.62	"
38.70	5.56	"	6.95	11.50	u
35.76	6.29	"	5.65	14.89	"
34.93	6.80	"	6.84	20.40	"
31.88	9.85	" (unstable)	8.42	28.05	44
29.56	11.83	" "	11.29	41.47	" +Na ₂ O.5B ₂ O ₃ .10H ₂ O
28.07	14.65	. u u	8.29	33 - 57	Na ₂ O.5B ₂ O ₃ .10H ₂ O
33.12	7.47	" +Na ₂ O.B ₂ O _{2.4} H ₂ O	6.29	28.77	"
28.64	6.51	Na ₂ O.B ₂ O _{3.4} H ₂ O	3.22	21.94	44
22.06	10.29	44	3.40	22.59	" +H ₈ BO ₈
18.72	17.33	44	1.39	13.92	H _a BO _a
18.32	19.17	44	0	7.39	"

SOLUBILITY OF SODIUM BORATES IN SEVERAL SOLVENTS.

Borate.	Solvent.	t°.	Gms. Salt po	er Authority.
Sodium borate	Alcohol $(d=0.941)$	15.5	2.48	(U. S. P. VIII.)
"	Glycerol	15.5	60.3	(U. S. P. VIII.)
"	"	80	100	(U. S. P. VIII.)
Sodium Biborate	Trichlorethylene	15	0.011	(Wester and Bruins, 1914.)

Fusion-point data for mixtures of NaBO₂+NaPO₂ and NaBO₃+Na₂SiO₂ are given by Van Klooster (1910–11). Results for Na₂B₄O₇+Na₄P₂O₇ are given by Le Chatelier (1894).

SODIUM BROMATE NaBrOs.

SOLUBILITY IN WATER. (Kremers, 1855-56a.)

t°. o° 20° 40° 60° 80° 100° Gms. NaBrO₂ per 100 Gms. H₂O 27.5 34.5 50.2 62.5 75.7 90.9 Sp. Gr. of saturated solution at 19.5° = 1.231. (Gerlach.) 100 cc. anhydrous hydrazine dissolve 1 gm. NaBrO₂ with decomposition. (Welsh and Broderson, 1915.)

SODIUM BROMIDE NaBr.2H₂O.

SOLUBILITY IN WATER.

t*.	Gms. NaBr per roo Gms. Sat. Sol.	Solid Phase.	t°.	Gms. NaBr per 100 Gms. Sat. Sol.	Solid Phase.
10. I	20.8 (1)	Ice	. 50	53 · 7 (4)	NaBr.2H ₆ O
— 28	40.3 (2)	" +NaBr.5H₂€	50.7	53.9 (5)	" +NaBr
-23.5	41.2 (3)	NaBr.5H ₂ O+NaBr.2H ₂ O	80	54.2 (4)	NaBr
- 20	41.8 (4)	NaBr.2HgO	100	54.8 (4)	**
- 10	42.9 (4)	u	110	55. I (4)	"
0	44.3 (4)	4	140	56. 5 (6)	44
+16.4°	47 (8)*	44	180	59.5 (6)	44
20	47 · 5 (4)	44	210	60.9 (6)	44
30	49.4 (7)	66	230	62 (6)	**
40	51.4 (4)	44			
		\bullet ($d_{16} = 1.523$).			

(1) Rudorff (1862); (2) Guthrie (1875); (3) Panfiloff (1893); (4) de Coppet (1883); (5) Richards and Churchill (1899); (6) Etard (1894); (7) Cocheret (1911); (8) Greenish (1900).

SOLUBILITY OF SODIUM BROMIDE IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE AT 17°. (Ditte, 1897.)

Gms. per 100 Gms. H ₂ O.		Gms. per 100	Gms. H ₂ O.	Gans. per 100 Gms. H ₂ O.		
NaOH.	NaBr.	NaOH.	NaBr.	NaOH.	NaBr.	
0.0	91.38	17.17	63.06	28.43	48.00	
3.26	79.86	19.12	62.51	36.61	38.41	
9.24	68.85	22.35	59.60	46.96	29.37	
13.43	64.90	24.74	55.03	54 - 52	24.76	

SOLUBILITY OF SODIUM BROMIDE IN AQUEOUS ETHYL ALCOHOL AT 30°. (Cocheret, 1911.)

Gms. per roo Gms. Sat. Sol.		Solid Phase.	Gms. per 100 (C.V.I Di	
C ₃ H ₅ OH.	NaBr.	Sond Phase.	C ₂ H ₄ OH.	NaBr.	Solid Phase.
0	49.4	NaBr.2H ₂ O	65.51	16.08	NaBr.2H2O
11.79	42.9	"	72.36	13.41	u
31.78	32.12	u	76.92	12.03	" +NaBr
43.22	26.79	. "	87.35	7.44	NaBr
54 · 59	20.83	46	97.08	3.01	66

SOLUBILITY OF SODIUM BROMIDE IN ALCOHOLIC SOLUTIONS. (Rohland, 1898-05; de Bruyn, 1892; Eder, 1876.)

Alcohol	•	Concentration of Aq. Alcohol.	t °.	Gms. NaBr per 100 Gms. Alcohol.	
Methyl A	lcohol	$d_{16} = 0.799$	room temp.	21.7	(R.)
Ethyl	"	$d_{15} = 0.810$	" -	7.14	4
Propyl	"	$d_{15} = 0.816$	"	2.01	44
Ethyl	"	90% by vol.	3	4.0 (hy	drated NaBr)
Methyl	"	Absolute	19.5	17.35	(de Bruyn.)
Ethyl	"	"	15	6.3 (Na	Br2H2O) (Eder.)
Ethyl Eth	er	·c	15	0.08	**

A sat. solution of NaBr in CH₂OH contains 0.9 gm. NaBr per 100 gms. solution at the critical temperature. (Centnerszwer, 1910.)

100 cc. of ethyl alcohol of d=0.8327 dissolve 7.37 gms. NaBr at 16.4°, d_{16} of sat. sol. = 0.889. (Greenish, 1900.)
100 gms. propyl alcohol dissolve 2.05 gms. NaBr at ord. temp. (Schlamp, 1894.)

SOLUBILITY OF SODIUM BROMIDE IN MIXTURES OF ALCOHOLS AT 25°. (Herz and Kuhn, 1908).

In CH ₂ OH + C ₂ H ₅ OH.			In CH ₂ OH + C ₂ H ₂ OH.			In $C_2H_5OH + C_2H_7OH$.		
Per cent CH ₂ OH in Mixture.	d ₂₆ of Sat. Sol.	Gms. NaBr per 100 cc. Sat. Sol.	Per cent C _s H ₇ OH in Mixture.	d ₃₆ of Sat. Sol.	Gms. NaBr per 100 cc. Sat. Sol.	Per cent C ₂ H ₇ OH in Mixture.	d ₂₆ of Sat. Sol.	Gms. NaBr per 100 cc. Sat. Sol.
0	0.8189	2.93	0	0.9238	14.40	0	0.8189	2.93
4.37	0.8265	3.65	II.II	0.9048	12.43	8. I	0.8147	2.49
10.4	0.8273	4.04	23.8	0.8887	10.53	17.85	0.8145	2.47
41.02	0.8593	7.24	65.2	0.8390	4.42	56.6	0.8107	1.90
80.6g	0.9079	12.51	91.8	0.8153	1.47	88.6	0.8116	I.II
84.77	0.9104	12.86	93 · 75	0.8144	1.26	91.2	0.8083	0.83
91.25	0.9235	14.32	100	0.8093	0.74	95.2	0.8090	0.82
100	0.9238	14.40				100	0.8093	0.74

SOLUBILITY OF SODIUM BROMIDE IN ACETAMIDE AT VARIOUS TEMPERATURES. (Menschutkin, 1908.)

	Gms. per 10	o Gms.			Gms. per re Sat. S		
t°.	Sat. Sol	<u>. </u>	Solid Phase.	t°.			Solid Phase.
	NaBr.2CH	- NaBr.			NaBr.2CHr- CONH	- NaBr.	
82*	CONH ₂		OTT CONTE		COLUM		
	• • •	• • •	CH ₂ CONH ₂	90	29.4	13.7	NaBr.2CH ₂ CONH ₂
8ċ	6	2.8	"	100	32.2	15	u
78	11.5	5.36	41	110	35.3	16.4	ee .
76	16.3	7.6	"	120	38.7	18	"
74	20.2	9.4	u	130	42.6	19.8	"
72	23	10.7	и	135	45.3	21.I	" +NaBr
70‡	25	11.6	"+NaBr.2CHaCONE	L 155	46.4	21.6	NaBr
80	27	12.6	NaBr.2CH ₂ CONH ₂	175	47 · 5	22. I	. "
		• ;	M. pt. † Tr.	pt.	‡ Eut	ec.	

100 gms. 95% formic acid dissolve 22.3 gms. NaBr at 18.5°. (Aschan, 1913.)
100 cc. anhydrous hydrazine dissolve 37 gms. NaBr at room temp.
(Welsh and Broderson, 1915.)

FUSION-POINT DATA (Solubilities, see footnote, p. 1) ARE GIVEN FOR THE FOLLOWING MIXTURES.

NaBr + NaCl (Amadori, 1912a; Ruff and Plato, 1903.)
NaBr + NaI (Amadori, 1912a.)
NaBr + NaF. (Ruff and Plato, 1903.)
NaBr + NaOH (Scarpa, 1915.)
NaBr + NaNO2. (Meneghini, 1912.)
NaBr + Na₂SO₆ (Ruff and Plato, 1903.)

SODIUM CACODYLATE (CH₂)₂AsO.ONa.

100 gms. H_1O dissolve about 200 gms. of the salt at 15°-20°. (Squire and Caines, 1905.) 100 cc. 90% alcohol dissolve about 100 gms. of the salt at 15°-20°. "

SODIUM CAMPHORATIS

SOLUBILITY IN AQUEOUS d CAMPHORIC ACID SOLUTIONS AT 13.5°-16°. (Jungfleisch and Landrieu, 1914.)

	200 Gms.		Gms. pe	r 100 Gms.	
Sat.	Sol.	Solid Phase.	Sat	. Sol.	Solid Phase.
C ₁₀ H ₁₆ O ₄ . C	MH _M O ₄ Na ₄		C ₁₀ H ₁₄ O ₄ .	C ₁₀ H _M O ₄ N	1 ₂ .
0.621	0	C ₁₀ H ₁₆ O ₄	2.87	25.62	$C_{10}H_{15}O_4Na2C_{10}H_{16}O_42H_6O$
2.03	4.19	u	2.89	27.41	44
2.87	8.32	e e	2.74	30.69	44
3.03	10.05	4	2.63	32.75	**
2.97	7.80	" +C ₁₀ H ₁₀ O ₄ Na.2C ₁₀ H ₁₀ O ₄ .2H ₂ O	2.29	40.10	$C_{10}H_{10}O_4Na.H_2O$ (or $\frac{1}{2}H_2O$)
2.87	9.06	C _M H _M O ₄ Na.2C _M H _M O ₄ .2H ₂ O	2.17	40.54	46
2.94	10.46	•	1.06	47.04	46
2.68	14.99	44	o.88	49.60	CmHMO4Nag-3HgO
2.64	17.53	u	0	50.2	46

 $C_{10}H_{16}O_4$ = Camphoric acid. $C_{10}H_{16}O_4$ Na.2 $C_{10}H_{16}O_4$.2 H_2O = Monosodium d tricamphorate. $C_{10}H_{16}O_4$ Na. H_2O = Monosodium d camphorate. $C_{10}H_{16}O_4$ Na. H_2O = Disodium d camphorate (neutral).

(The mixtures were kept in a cellar at a nearly constant temperature and shaken from time to time. Additional determinations at 17°-23° are also given.)

SODIUM CARBONATE Na₂CO₂. 10H₂O₂.

SOLUBILITY IN WATER. (Wells and McAdam, Jr., 1907; Mulder, below 27° and above 44°.)

t*.	Gms. Na ₂ CO ₂ per 200 Gms. H ₂ O.	Solid Phase.	ť.	Gms. Na ₂ CO ₃ per 100 Gms. H ₂ O.	Solid Phase.
0	7	Na ₂ CO ₃ .10H ₂ O	34.76	48.98	Na ₂ CO _{2.7} H ₂ O
5	9.5	"	35.62	50.08	"
IO	12.5	"	35.50		" +Na ₂ CO ₃ .H ₂ O
15	16.4	" .	29.86	50.53	Na ₂ CO ₃ .H ₂ O
20	21.5	"	31.80	50.31	"
27.84	34.20	u	35.17	49.63	u
29.33	37.40	u	36.45	49.36	a
30.35	40.12	"	37.91	49.11	"
31.45	43.25	ш	41.94	48.51	"
32.06	45.64	"	43.94	47.98	"
32.15		" +Na ₂ CO ₃ .7H ₂ O	60	46.4	"
33.10		" +Na ₂ CO ₃ .H ₂ O	8o	45.8	"
30.35	43.50		100	45.5	"
32.86	46.28	"	105	45.2	æ

The determinations of Wells and McAdam, Jr., were made with extreme care. They correct the discrepancies which have so far existed between the solubility and transition points of the hydrates. Earlier data, which differ more or less from the above, are given by Löwel, 1851; Reich, 1891; Eppel, 1899 and Ketner, 1901–02. Single determinations at 15°, 25°, and 30° are given by Greenish and Smith (1901); Osaka (1910–1911); de Paepe (1911) and Cocheret (1911).

Sp. Gr. of solution saturated at 17.5°, 1.165 (Hager); at 18°, 1.172 (Kohlrausch); at 23°, 1.22 (Schiff); at 30°, 1.342 (Lunge). See also Wegscheider and Walter, 1905, for Sp. Gr. determinations at other temperatures.

EQUILIBRIUM IN THE SYSTEM SODIUM CARBONATE, SODIUM BICARBONATE,
AND WATER AT 25°.
(McCoy and Test, 1911.)

'(Forty grams of NaHCO₂ and about 200 cc. of H₂O were rotated at 25° until equilibrium was reached. Small portions of the clear solution were then analyzed by the Winkler method for carbonate content, and by titration in presence of methyl orange, for sodium. About 15 gms. of Na₂CO₂.10H₂O were then added, and the mixture again rotated until equilibrium was reached, and again analyzed. This was continued and the following results were obtained.)

Per cent of Total Na Present as Bicarbonate.	Gms. Na per Liter.	Gms. Bicarbonate per Liter.	Gms. Carbonate per Liter.	Solid Phase.
0	119.9	0	276.4	Na ₂ CO ₃ .10H ₂ O
5.92	127.6	27.6	276.3	" +Na ₂ CO ₃ .NaHCO ₃ .2H ₂ O
7.5	120	• • •	• • •	Na ₂ CO ₃ .NaHCO ₃ .2H ₆ O
10	107		• • •	
12.89	108	50.8	216.6	" +NaHCO ₃
15	100	• • •	• • •	NaHCO ₈
20	8o	• • •	• • •	и
32	60	• • •	• • •	44
56 80	40	• • •	• • •	44
80	30	• • •	• • •	4
100	27.02	98.7	0	и

The following data for this system also at 25°, but given in terms of weight instead of volume of solution, are reported by de Paepe (1911).

Gms. per 100 Gms. H ₂ O.		Solid Phase.	Gms. per 10	Solid Phase.	
Na ₂ CO ₃ .	NaHCO ₃ .	Soud Prase.	Na ₂ CO ₃ .	NaHCO ₂ .	Soud Phase.
28.3	0	Na ₂ CO ₃ .10H ₂ O	12.4	7.3	NaHCO ₀
27.3	2.I	4	6.2	9	
26.5	4.2	" +NaHCO	I	10.1	
19.2	5.7	NaHCO ₂			

SOLUBILITY OF SODIUM CARBONATE IN AQUEOUS SOLUTIONS OF SODIUM BROMIDE AND OF SODIUM IODIDE AT 30°. (Cocheret, 1911.)

In Aq. NaBr Solutions.

In Aq. NaI Solutions.

Gms. per 100	Gms. Sat. Sol.	s. Sat. Sol. Solid Phase.		Gms. Sat. Sol.	C-E4 DL	
Na ₂ CO ₃ .	NaBr.	Soud Phase.	Na ₂ CO ₂ .	NaI.	Solid Phase.	
27.98	0	Na ₂ CO ₃₋₁₀ H ₂ O	26.5	2.4	Na ₂ CO ₂ .10H ₂ O	
27.54	2.41	"	25.5	4.7	"	
26.72	4.06	"	24.4	8.6	"	
26 23	6.26	" +Na ₂ CO ₃₋₇ H ₂ O	24.3	9.5	" +Na ₂ CO ₃ .7 H₂O	
23.40	II	Na ₂ CO _{3.7} H ₂ O	23	11.2	Na ₂ CO ₃₋₇ H ₂ O	
22.68	12.22	44	20.8	14	"	
19.86	16.88	u	18.7	18.4	44	
19.57	16.95	" +Na ₂ CO ₃ .H ₂ O	15.3	25.4	" +Na ₂ CO ₃ .H ₄ O	
18.11	19.32	Na ₂ CO ₂ .H ₂ O	13.1	29.I	Na ₂ CO ₃ .H ₂ O	
8.45	33.39	"	10.4	33.3	**	
6.90	36.13	и	4.2	46	u	
3.04	44.75	"	2.7	. 51	"	
2.99	45.3I	" +NaBr.2H2O	0.9	57.6	**	
2.60	45.68	NaBr.2HgO	0.3	65.6	" +NaI.2H ₂ O	
0	49.40	44	0	65.5	Nal.2H ₂ O	

SOLUBILITY OF SODIUM CARBONATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 15°.

(Reich, 1891.)

	r 100 Gms. H ₂ O.	per	Gms. Na ₇ CO ₃ per 100 Gms.	Gms. p	er 100 Gms. H ₂ O.		Gms. Na ₂ CO ₃ per 100 Gms.
NaCl.	Na ₂ CO ₃ .10- H ₂ O.	roo Gms. Solution.	NaCl Solution.	NaCl.	Na ₂ CO ₃ .10- H ₂ O.	per 100 Gms. Solution.	NaCl Solution.
0	61.42	0	16.42	23.70	39.06	15.96	9.76
4.03	53.86	2.92	14.47	27.93	39.73	18.26	9.62
8.02	48	5.80	12.87	31.65	41.44	20.06	9.73
12.02	43.78	8.61	11.62	35.46	43.77	21.75	7.95
16.05	40.96	11.31	10.70	37.23	45.27*	22.46	10.13
19.82	39.46	13.71	10.11			•	_

^{*} Both salts in solid phase.

SOLUBILITY OF SODIUM CARBONATE IN AQUEOUS SODIUM CHLORIDE AT 30°. (Cocheret, 1911.)

Gms. per 100 Gms. Sat. Sol.		' Solid Phase.	Gms. per 100	Gms. per 100 Gms. Sat. Sol.		
Na ₂ CO ₃ .	NaCl.	Sond Frase.	Na ₂ CO ₂ .	NaCl.	Solid Phase.	1
27.98	0	Na ₂ CO ₃ .10H ₂ O	20.72	11.49	Na ₂ CO ₂ .H ₂ O	
27.48	0.90	44	18	14.12	" +NaCl	
27.12	3.33	66	14.81	16.26	NaCl	
26.82	4.15	" +Na ₂ CO ₃ .7H ₂ O	9.71	18.76	4	
25.59	5.17	Na ₂ CO ₃₋₇ H ₂ O	5.65	21.94	44	
24.26	5.93	"	o ·	26.47	44	
22.75	10.24	" +Na ₂ CO ₂ .H ₂ O	•			

SOLUBILITY OF SODIUM CARBONATE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE. (Kremann and Zitek, 1909.)

t°.	Gms, per 10	o Gms. H ₂ (). Solid Phase.	ť.	Gms. per ro	o Gms. H _s (O. Solid Phase.
.	Na ₂ CO ₃ .	NaNO3.	Soud Finase.	• •	Na ₂ CO ₃ .	NaNO3.	Sond Phase.
IO	11.98	0	Na ₂ CO ₃₋₁₀ H ₂ O	24.2	24.63	54 · 43	Na ₂ CO _{3.7} H ₂ O
10	8.75	70.48	" +NaNO	24.2	21.8	62.7	" +NaNOs
10	•	80.5	NaNO ₃	24.2	5.96	84.45	NaNO ₃
24.2	28.55	0	Na ₂ CO ₃ .10H ₂ O	24.2	0	91.3	46
24.2	26.33	45.96	" +NagCO3.7HgO				

SOLUBILITY OF SODIUM CARBONATE IN AQUEOUS ETHYL ALCOHOL AT 30°. (Cocheret, 1911.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100	Gms. Sat. Sc	Solid Phase.
Na ₂ CO ₂ .	C ₂ H ₆ OH.	Soud Phase.	Na ₂ CO ₃ .	C₂H₅OH.	- Soud Phase.
26.61	2.64	Na ₂ CO ₃ .10H ₂ O	0.40	63.20	Na ₂ CO ₃ .7H ₂ O
26.14	3.41*	"	0.11	73.06	" +Na ₂ CO ₃ .H ₂ O
1.38	44.81*	"	0.07	78. 19	Na ₂ CO ₃ .H ₂ O
0.62	52.99	"	0.06	90.95	44
0.53	55.70	" +Na ₂ CO ₃ .7H ₂ O	0.03	95.06	" +Na ₂ CO ₃
0.51	56.56	Na ₂ CO ₃ .7H ₂ O	• • •	98.46	Na ₂ CO ₃

^{*} Between these two concentrations, the mixtures separate into two liquid layers.

Results are also given for the solubility of Na₂CO₃ + NaBr and of Na₂CO₃ + NaCl in Aq. C₂H₆OH at 30°.

SOLUBILITY OF SODIUM CARBONATE IN AQUEOUS SOLUTIONS OF ETHYL AND OF PROPYL ALCOHOL AT 20°. (Linebarger, 1892.)

Wt. Per cent Alcohol.	Gms. Na ₂ CO ₃ p	er 100 Gms. Sol.	Wt. Per cent	Gms. Na ₂ CO ₃ per 100 Gms. Sol.		
	In Ethyl.	In Propyl.	Alcohol.	In Ethyl.	In Propyl.	
28	• • •	4.4	48	0.9	1.3	
38		2.7	50	0.84	I.2	
44	1.7	1.7	54	0.80	0.9	
46	1.13	1.5	62	•••	0.4	

SOLUBILITY OF SODIUM CARBONATE IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL. (Ketner, 1901-02.)

NOTE. — The mixtures were so made that alcoholic and aqueous layers were formed, and these were brought into equilibrium with the solid phase.

Gms. per 100 Gms. Alcoholic Layer.		Gms. per 1	oo Gms. Aq	C-P-I DL			
• .	С.н.он.	Na ₂ CO ₃ .	H ₄ O.	C ₂ H ₄ OH.	Na ₂ CO ₂ .	H ₂ O.	Solid Phase.
35	62.9	0.3	36.8	I	32.4	66.6	Na ₂ CO ₂ -H ₂ O
40	61	0.4	38.6	I.2	31.9	66.9	"
49	61	0.4	38.6	I.2	31.5	67.3	44
68	55.8	0.9	43.3	2.3	28.8	68.9	u
31.2	52.4	0.8	46.8	• • •	29.3		Na ₂ CO ₂₋₇ H ₂ O (β)
31.9	54.8	0.7	44.5	1.7	29.8	68.5	4
32.3	56. r	0.6	43.3	1.5	30.2	68.3	a
33.2	58. I	0.5	42.4	1.4	31	67.6	4
27.7	Crit. sol. ±	L 14% C2	H₂OH ± 1	13% Na ₂ C($0_3 \pm 73\%$	H ₂ O	
28.2	23 · 5	7.3	69.2	7.9	18.6	73 - 5	Na ₂ CO ₃₋₁₀ H ₂ O
29	32.7	3.8	63.5	4.3	22.7	73.0	44
29.7	40	2. I	57.9	2.9	25.5	71.6	64
30.6	47.8	I.2	51	2.3	27.8	69.9	u

SOLUBILITY OF Na₂CO₃.10H₂O IN DILUTE ALCOHOL AT 21°. (Ketner.)

Gms. p	per 100 Gms. Sol	ution.	Gms. per 100 Gms. Solution.			
Na ₂ CO ₃ .	C₂H₄OH.	H ₂ O.	Na ₂ CO ₃ .	C,H,OH.	H ₂ O.	
18.5	0	81.5	1.2	39.2	59.6	
12.7	6.2	81.1	0.2	58.2	41.6	
6.9	15.3	77.8	O. I	67. I	32.8	
3.2	26. I	70.7	0.06	73 · 3	26.64	

Isotherms showing the compositions of the conjugated liquids at 28.2°, 29.7° and 40° are also given.

EQUILIBRIUM IN THE SYSTEM SODIUM CARBONATE, NORMAL PROPYL ALCOHOL
AND WATER AT 20°.
(Frankforter and Temple, 1915.)

(Note. In this paper the results for the binodal curve are reported in terms of gms. per 100 gms. solvent (water + alcohol), instead of gms. per 100 gms. of the homogeneous liquid (sodium carbonate + water + alcohol.)

Gms. per	Gms. per 100 Gms. Alcohol + Water.			Gms. per 100 Gms. Alcohol + Water.			
Na ₂ CO ₃ .	Alcohol.	Water.	Na ₂ CO ₃ .	Alcohol.	Water.		
16. 568	3.409	96. 591	1.990	31.537	68.463		
15.363	4.472	95. 528	1.338	40.796	59.204		
11.696	6 . 595	93.405	0.930	46.933	- 53.067		
8.415	9.176	90.824	0.567	53.875	46. 125		
6.669	11.221	88.779	o. 298	59.5 07	40.493		
4.138	15.785	84.215	0. 160	63.568	36.432		
2.878	21.099	78.901	0.109	75.159	24.841		

For results on the system sodium carbonate, allyl alcohol, water at 20° see last table, p. 647.

100 gms. glycerol ($d_{15} = 1.256$) dissolve 98.3 gms. Na₂CO₂ at 15°-16°. (Ossendowski, 1907.)
100 gms. saturated solution in glycol contain 3.28-3.4 gms. sodium carbonate.

(de Coninck, 1905.)

100 gms. H₂O dissolve 229.2 gms. sugar + 24.4 gms. Na₂CO₃, or 100 gms. sat. aq. solution contain 64.73 gms. sugar + 6.89 gms. Na₂CO₃ at 31.25°. (Köhler, 1897.)

EQUILIBRIUM IN THE SYSTEM SODIUM CARBONATE, PYRIDINE, WATER. (Limbosch, 1909.)

Very pure materials were used. The boiling-point (cor.) of the pyridine was 115°-115.07°. Increasing amounts of this pyridine were added to aqueous solutions of sodium carbonate contained in glass tubes. After the tubes were sealed they were placed in a bath and the temperature noted at which the liquid mixture passed from a homogeneous to an opalescent condition. During the observation, the contents of the tubes were stirred by means of pieces of iron, moved with the aid of a magnet on the outside of the tube.

of	Per cent of Pyridine.	to of Sat.	of	Per cent of Pyridine.	to of Sat.	of	Per cent of Pyridine.	t° of Sat.
0.129	66.2	12	2.50	50	199	6.12	23.5	120
0.129	66.4	25	2.50	53.3	197	6. 12	25.5	132
0.129	67.7	36	2.50	59.4	173	6.12	28.4	152
0.129	69.2	44	2.50	69.2	123	6.99	13.8	54.2(40.5)
0.129	73 · 5	53	2.50	73.8	IIO	6.99	15.4	81 (17)
0.129	74.8	51.5	2.50	74.8	*	6.99	19.5	117
0.129	76. I	25.5(-64)	3.49	30.3	-o.5	6.99	22.7	142
0.129	77.8	11 (-59)	3.49	32.6	39	6.99	25. I	158
1.01	47.6	17	3.49	34.3	86.5	6.99	27.6	169
1.01	49.9	36	3.49	36.7	107	6.99	32.6	180+
1.01	51.2	55	3.49	37 · 4	123	9.36	8.50	64 (26)
1.01	52.2	72	3.49	42.5	194	9.36	9	78 (18)
1.01	56.1	107	3.49	69.6	167	9.36	11.4	106.5
1.01	60.6	III	3.49	71.2		9.36	13.8	127
1.01	66.8	110	5.23	23.3	63(27.5		16.3	148
I.OI	75. I	86.5	5.23	23.7	70(20.5		20. I	169
I.OI	76.9	71	5 · 23	24.6	79	9.36	25	180+
I.OI	78. I	#	5.23	26.2	96	9.36	50	180+
2.50	36.3	22	5.23	28.7	III	18.1	2.12	48 (18)
2.50	37.9	53 - 25	5.23	32.5	155	18.1	2.25	66
2.50	39.2	74 · 5	5.23	36.6	196	18. I	2.70	7 9
2.50	40	94	5.23	37.2	200+	18.1	4.20	108
2.50	43.6	147	5.23	55.4	*	18.1	5.40	126
2.50	47.6	185				18. I	6.80	155

[•] Precipitate of Na₂CO₂. Results in parentheses show lower temperatures of saturation.

Fusion-point data for Na₂CO₃ + NaCl are given by Le Chatelie (11894) and Sackur (1911-12). Results for Na₂CO₃ + Na₂SO₄ are given by Le Chatelier (1894), Sackur (1911-12) and by Amadori (1912). Results for Na₂CO₃ + KCl are given by Sackur (1911-12).

SODIUM (Bi) CARBONATE NaHCO:.

SOLUBILITY IN WATER. (Dibbits, 1874; Fedotieff, 1904.)

t°.	Gms. NaHCO	per 100 Gms.	t°.	Gms. NaHCO	per 100 Gms.
•.	Water. Solution.	Water.	Solution.		
0	6.9	წ.5	30	II.I	10
10	8.15	7 · 5	40	12.7	11.3
20	9.6	8.8	50	14.45	12.6
25	10.35	9.4	60	16.4	13.8

100 gms. H₂O dissolve 9.03 gm. NaHCO₂ at 15°, $d_{15} = 1.061$.

(Greenish and Smith, 1901.)
100 gms. alcohol of 0.941 Sp. Gr. dissolve 1.2 gms. NaHCO₂ at 15.5°
100 gms. glycerol dissolve 8 gms. NaHCO₂ at 15.5°. (Ossendowski, 1907.)

Solubility of Sodium Bicarbonate in Aqueous Ammonium Bicarbonate Solutions Saturated with CO_2 . (Fedotieff, 1904.)

	Wt. of r cc.	Mols.per 100	o Gms. H ₂ O.	Grams per 10	Grams per 1000 Gms. HaO		
t°.	Solution.	NH ₄ HCO ₃ .	NaHCO3.	NH4HCO3.	NaHCO ₂		
0	I .072	1.39	o · 58	109.4	48.2		
46		0.0	0.82	0.0	6g.o		
15	1.056	0.0	1.05	0.0	88.a		
ű	1.061	0.29	0.95	23.0	80.0		
46	1.065	0.56	0.89	44.0	74.6		
46	1.073	1.08	0.79	85 7	66.7		
"	1.000	2.16	0.71	170.6	59.2		
30		0.0	1.65	0.0	138.6		
""	• • •	2.91	0.83	230	70.0		

SOLUBILITY OF SODIUM BICARBONATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE SATURATED WITH CO₂. (Fedotieff; see also Reich, 1891.)

	Wt. of rcc.	Mols. per 10	oo Gms. H ₂ O.	Grams per 1	ooo Gms. H ₂ O
** .	Solution.	NaCl.	NaHCO3.	NaCl.	NaHCO ₃ .
0	• •	0.0	0.82	0.0	69.0
"	1.208	6.0	0.09	350.1	7.7
15	1.056	0.0	1.05	0.0	88.0
ű	1.063	0.52	0.82	30.2	68. 6
66	1.073	1.03	0.64	6o.1	53.6
66	1.096	2.11	0.41	123.1	34.8
"	1.127	3.20	0.28	187.2	23.0
66	1.158	4.39	0.19	256.9	16.1
"	1 . 203	6.06	0.12	354.6	10.0
30	1.066	0.0	1.31	0.0	110.2
"	I .079	I .02	o ·87	59.9	72.8
"	1.100	2.08	0.56	121.9	47 · 3
"	1.127	3 · 18	0.38	186.3	32.0
"	1.156	4.38	0.27	256.0	22.3
"	1.199	6.12	0.17	358.1	13.9
45	1.077	0.0	1.65	0.0	138.6
46	1 .086	I .04	I.12	60.7	94.0
46	1.115	2.65	0.62	155.2	52.0
46	1.127	3.24	0.52	189.4	43 · 4
"	1.155	4.38	0.37	256.1	30.7
"	1.198	6.18	0.23	3Ğ1.5	19.5

100 gms. alcohol of 0.941 Sp. Gr. dissolve 5.55 gms. sodium sulfocarbonate at 15.5° .

SOLUBILITY OF SODIUM BICARBONATE IN AQUEOUS SODIUM NITRATE SOLUTIONS.

(Fedotieff and Koltunoff, 1914.)

t*.	Sp. Gr. of Sat. Sol.	Gms. per ro	o Gms. H ₂ O.
• •	Sat. Sol.	NaNOs.	NaHCO.
0	1.356	72.74	I.4I
15	1.183	29.06	3.40
15	1.285	54.56	2.16
15	1.377	83.20	1.57
30	•••	95.14	1.80

SODIUM CHLORATE NaCiO.

SOLUBILITY IN WATER. (Carlson, 1910; Le Blanc and Schmandt, 1911; Osaka, 1903-08.)

t°. d of Sat. Sol.		Gms. NaClO ₂ per 100 Gms. H ₂ O.	r.	d of Sat. Sol.	Gms. NaClO ₃ per 100 Gms. H ₂ O.	
-15	1.380	72 ·	40	1.472	126 (115 Le B. & S.)	
0	1.389	79 (80 Le B. & S.)	50		140 (126 "	
10	• • •	89 (87 "	60	1.514	155	
15	1.419	95 (91 "	70		172	
20	1.430	101 (95.7 "	8o	1.559	189	
25	1.44	106 (101 O.)	100 .	1.604	230	
30		113 (105 Le B. & S.)	122 (b. pt.)	1.654	286	

The earlier data of Kremers (1856) lie between the values of Carlson and of Le Blanc and Schmandt.

SOLUBILITY OF SODIUM CHLORATE IN AQUEOUS SODIUM CHLORIDE SOLUTIONS AT 20°.

(Winteler, 1900.)

Sp. Gr. of	Gms. per Liter.		Sp. Gr. of	Gms. per Liter.	
Solutions.	NaCl.	NaClO ₂ .	Solutions.	NaCl.	NaClO ₃ .
1.426	5	668	1.365	175	393
1.419	25	638	1.345	200	338
1.412	50	599	1.319	225	271
1.405	75	559	1.289	250	197
1.398	100	522	1.256	275	120
1.389	125	484	1.235	290	78
1.379	150	442	1.217	300	55

100 gms. H_2O dissolve 24.4 gms. NaCl + 50.75 gms. NaClO₂ at 12°. 100 gms. H_2O dissolve 11.5 gms. NaCl + 249.6 gms. NaClO₂ at 122°. (Schlosing, 1871.)

SOLUBILITY OF SODIUM CHLORATE IN AQUEOUS ETHYL ALCOHOL. (Carlson, 1910.)

ť.	Gms. NaClO ₂ per	queous Alcohol of:	
6	50 Per cent.	75 Per cent	90 Per cent.
20	313.3	110.8	16. 1
40	321.8	133.5	22.9
40 60	326.8	155.8	29
70	• • •	161.3	•••

100 gms. alcohol of 77 Wt. per cent dissolve 2.0 gms. NaClO₃ at 16°. (Wittstein.) 100 gms. alcohol dissolve 1 gm. NaClO₃ at 25°, and 2.5 gms. at b. pt. 100 gms. glycerol dissolve 20 gms. NaClO₃ at 15.5°. (Ossendowski, 1907.) 100 cc. anhydrous hydrazine dissolve 66 gms. NaClO₃ at room temperature. (Welsh and Broderson, 1915.)

SODIUM PerCHLORATE NaClO4.H.O.

SOLUBILITY IN WATER. (Carlson, 1910)

t°.	d of Sat. Solution	Gms. NaClO ₄ per 100 cc. Sat. Solution.	Solid Phase.
15	1.666	107.6	NaClO ₄ .H ₂ O
50	1.731	123.4	"
143	1.789	141.4	NaClO ₆

SODIUM CHLORIDE NaCl

SOLUBILITY IN WATER.

(Mulder; de Coppet, 1883, Andræ, 1884; Raupenstrauch, 1885; above 100°, Tilden and Shenstone, 1884; Berkeley, 1904; Etard, 1894, gives irregular results.)

\$ ° .	Gms. N	aCl per s. H ₂ O.	Gms. NaCl per 100 g. Sol.	t°.		NaCl per ns. H ₂ O.	Gms. NaCl per 100 g. Sol.
0	35 · 7*	35.63†	26.28†	70	37.8*	37·5 ¹ †	27 . 27†
10	35.8	35.69	26.29	80	38.4	ვ8.თ	27 - 54
20	36.o	35.82	26.37	90	39.0	38.52‡	27 .80
25	36.12	35.92	26.43	100	39.8	39 . 12‡	28.12
30	36.3	36.03	26.49	118		39.8	28.46
40	36.6	36.32	26.65	140		42 · I	29.63
50	37.0	36.67	26.83	160		43.6	30.37
бо	37 · 3	37.06	27 .04	. 180		44.9	30.98
	•	* M.; de C.		† A.		‡ B.	

The original, very carefully determined figures of Berkeley, are as follows:

t*.	d of Sat. Sol.	Gms. NaCl per 100 Gms. H ₂ O.	ť.	d of Sat. Sol.	Gms. NaCl per 100 Gms. H ₂ O.
0.35	1.2090	35.75	61.70	1.1823	37.28
15.20	I.2020	35.84	75.65	1.1764	37.82
30.05	1.1956	36.20	90.50	1.1701	38.53
45.40	1.1891	36.60	ە. pt.	1.1631	39.65

100 gms. H₂O dissolve 35.99 gms. NaCl at 30°.

(Cocheret, 1911.)

SOLUBILITY OF SODIUM CHLORIDE IN WATER, DETERMINED BY THE FREEZING-POINT METHOD. (Matignon, 1909a.)

t.	Gms. NaCl per 100 Gms. H ₂ O.	Solid Phase.	t°.	Gms. Na.0 per 100 Gm H ₂ O.	
-0.4	0.69 Ic	e (Raoult)	-12.7	20	Ice
-o.8	1.37 "	(Biltz)	-16.66	25	"
-2.86	4.9 "	(Kahlenberg)	-21.3	30.7	" +NaCl.2H ₂ O
-3.42	5.85 "	(Raoult)	-14	32.5	NaCl.2HgO (de Coppet)
-6.6 •	II "	•	-12.25	32.9	" (Matignon)
-9.25	15 "		– 6.25	34.22	" (de Coppet)

Data for the influence of pressure on the solubility of sodium chloride in water are given by v. Stackelberg (1896); Cohen, Inouye, and Euwen (1910) and by Sill (1916).

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS SIMULTANEOUSLY SATURATED WITH OTHER SALTS.

The various papers of J. H. van't Hoff and collaborators, on this subject, have been collected by H. Precht and E. Cohn in a volume entitled "Untersuchungen über die Bildungsverhältnisse die Ozeanischen Salzablagerungen," Leipzig, 1912, p. 374. By far the larger part of the new data in these papers are for solutions simultaneously saturated with three or more salts and are, therefore, beyond the limits of complexity of mixture, set for the present volume. The various systems are described in detail and diagrams are given. A table summarizing much of the data (van't Hoff (1905)) is given on the following page.

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS SIMULTANEOUSLY SATURATED WITH OTHER SALTS AT 25°.

(van't Hoff, 1905.)

Mols. per 1000 Mols. H _e O.				Calution Caturated with Dannast to NaCle	
Na ₂ Cl ₃ .	K ₂ Cl ₂ .	MgCl ₂ .	MgSO4.	Na ₂ SO ₄ .	Solution Saturated with Respect to NaCl a
I	0.5	105	• • •	• • •	MgCl ₂ .6H ₂ O + Carnallite
2	5.5	70.5			KCl + Carnallite .
44	20	• • •		4.5	" + Glaserite
44	10.5			14.5	$Na_2SO_4 + $ "
46	• • •	• • •	16.5	3.0	" + Astrakanite
26		7	34	• • •	MgSO ₄ .7H ₂ O + Astrakanite
4	•	67.5	12	• • •	" $+ MgSO_4.6H_2O$
2.5	• • •	79	9.5		Kieserite + "
I	• • •	101	5		" + MgCl ₂ .6H ₂ O
23	14	21.5	-	• • •	KCl + Glaserite + Schönite
19.5	14.5	25.5	14.5		" + Leonite + "
9.5	9.5	47	14.5		" + " + Kainite
2.5	6	68	5		" + Carnallite + "
I	I	85.5	8		Kieserite + Carnallite + Kainite
42	8		16	6	Na ₂ SO ₄ + Glaserite + Astrakanite
27.5	10.5	16.5	18.5		Schönite + Glaserite + Astrakani
22	10.5	23	19		Leonite + Glaserite + Astrakanit
10.5	7.5	42	19		" + MgSO _{4.7} H ₂ O + Astraka
9	7.5	45	19.5		" + " + Kainite
3.5	4	65.5			$MgSO_4.6H_2O + " + "$
1.5	2	77	10		MgSO ₄ .6H ₂ O + Kieserite + "
I	0.5	100	5		Carnallite + MgCl ₂ .6H ₂ O + "
1	0.5	105	•••		MgCl ₂ .6H ₂ O + Carnallite
2	5.5	70.5			KČl + "
			CaCl ₂ .		•
1		51.5	90.5		MgCl ₂ .6H ₂ O + Tachhydrite
I	11		146		KČl + CaCl ₂ .6H ₂ O
I		35.5	121.5		Tachhydrite + CaCl ₂ .6H ₂ O
I	1.5	50.5	90.5		MgCl ₂ .6H ₂ O+Tachhydrite+Carna
I	9.5	5	141.5		CaCl ₂ .6H ₂ O + KCl + Carnallite
I	2	34.5	121.5		CaCl ₂ .6H ₂ O + Tachhydrite + Carna

Carnallite = KMgCl₃.6H₄O, Glaserite = K_4 Na(SO₄)₃, Astrakanite = Na₂Mg-(SO₄)₃.4H₂O, Kieserite = MgSO₄.H₂O, Leonite = MgK₂(SO₄)₂.4H₂O, Schönite = MgK₄(SO₄)₂.6H₂O, Kainite = MgSO₄.KCl₃H₂O.

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS OF AMMONIUM CHLORIDE. (Fedotieff, 1904.)

Wt. of I cc.		Mols. per 1000 Gms. H ₂ O.		Gms. per 100	Gms. per 1000 Gms. H ₂ O.	
	Solution.	NH ₄ Cl.	NaCl.	NH ₄ Cl.	NaCl.	
0		0	6.09	o	356.3	
"	1.185	2.73	4.89	146.1	286.4	
15	1.200	0	6. 12	0	357.6	
	1.191	1.07	5.58	57.3	326.4	
"	1.183	2.22	5.13	118.9	300	
ci	1.176	3.48	4.64	186.4	271.6	
"	1.175	3.72	4.55	198.8	266.8	
30		0	6.16	0	360.3	
"	1.166	4.77	4.26	255.4	249	
45	• • •	. 0	6.24	0	365	
"	•••	6.02	4	322.I	233.9	

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS AMMONIA AT 30°. (Hempel and Tedesco, 1911.)

de of	Gms. per 100	Gms. per 1000 cc. Sat. Sol.			Gms. per 1000 cc. Sat. Sol.		
d ₃₀ of Sat. Sol.	NH _s .	NaCl.	d₃o of Sat. Sol.	NH.	NaCl.		
1.1735	29.535	293.38	1.1406	72.07	283.38		
1.1656	40.655	292.5	1.1395	72.715	283. 06		
1.160	47.26	289.7	1.1301	81.855	277.49		
1.1494	60.78	286.5	1.1205	97 - 49	270.57		

Data for equilibrium in the system sodium chloride, arsenic trioxide, water, at 30°, are given by Schreinemakers and deBaat (1915).

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID.

	(Engel, 1888; Englast, 1901.)		
At o°. (En	gel.)	At 10°-10.5°.	(Enklear.)

Mg. Mols.	per 10 cc.	Sp. Gr. of Solution.	Gms. pe	r Liter.	Mols. ρ	er Liter.	Grams p	er Liter.
HCl.	NaCl.	Solution.	HCI.	NaCl.	HCl.	NaCl.	HCI.	NaCl.
0.0	54 · 7	I . 207	0.0	32.0	0.0	6.11	0.0	35 - 77
1.0	53 · 5	I . 204	0.365	31.3	0.27	5 · 77	9.84	33.76
1.85	52.2	I . 202	0.674	30.5	0.35	5.67	12.76	33.19
5.1	48.5	1.196	1.859	28.4	0.43	5.59	15.68	32.71
9.28	44.0	1.185	3.38	25.7	0.57	5 - 43	20.78	31.77
15.05	37.9	1.173	5 · 49	22.2	0.72	5.28	26.06	30.89
30.75	23.5	1.141	11.20	13.7	2.60	3.42	94 .77	20.01
56.35	6. r	1.119	20.54	3.6	2.80	3.18	102.1	19.04
		-	•	-	3.31	2.74	120.6	16.03

Results at 0° and at 25°. (Armstrong and Eyre, 1910–11.)

Results at 25°. Results at 30°. (Herz, 1911-12.) (Schreinemakers, 1909-10.)

Gms. HCl per Liter	Gms. Na	aCl per 100 Gms. Sat. Sol.	Mols. p	er Liter.	Gms. per 100 Gms. Sat. Sol.	
of Solvent.	At o°.	At 25°.	HCl.	NaCl.	HCl.	NaCl.
0	26.35	$26.52 (d_{25} = 1.2018)$	0.607	4.850	0	26.47
9.11	25.30	$25.45 (d_{25} = 1.1970)$	1.032	4.467	6.93	16.16
18.22	24.15	$25.42 (d_{25} = 1.1915)$	1.590	3.782	12.50	9.35
36.45	21.93	$22.34 (d_{25} = 1.1822)$	2.117	3.297	17.35	4.52
182.25		$7.04 (d_{25} = 1.1238)$	3.283	2.343	35.60	0.11

Results at 30°. (Masson, 1911.)

d ₂₀ of	Gm. Mols.	per Liter.	d_{20} of	Gms. Mols. per Liter.		
Sat. Sol.	HCl.	NaCl.	Sat. Sol.	HCl.	NaCl.	
1.2018	0	5.400	1.1427	3.052	2.463	
1.1906	0.4575	4.932	1.1289	4.152	1.628	
1.1801	0.969	4.386	1.1188	5.950	0.630	
1.1633	1.786	3.589	1.1258	7.205	0.268	
1.1512	2.412	2.078	•	• •		

In the case of the results of Masson equilibrium was approached from above and the solutions were kept in a thermostat and shaken occasionally during 2-6 days.

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS CALCIUM CHLORIDE SOLUTIONS AT 25°. (Mills and Wells, 1918.)

d_{26} of Sat. Sol.	Gms. per 100	Gms. Sat. Sol.	d₂ of Sat. Sol	Gms. per 100 Gms. Sat. Sol.		
	CaCl ₂ .	NaCl.		CaCl ₂ .	NaCl.	
1.207	1.103	25.30	1.225	9.50	17.55	
1.210	2.160	24.32	1.233	11.48	15.91	
1.209	3.220	23.37	1.241	17.77	10.54	
1.216	5.451	20.43	1.257	21	8.05	
1.220	7.398	19.17	1.276	24.58	5.63	

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS POTASSIUM NITRATE AT 25.° (Ritsel, 1911.)

Gms. per 10	o cc. Sat. Sol.	Gms. per 100 cc. Sat. Sol.		
KNO2.	NaCl.	KNO2.	NaCl.	
0	31.80	12	30.86	
4	32.26	16	30.45	
8	31.85	20	30.10	

Data for the solubility of NaCl in aqueous MgCl₂ solutions are given by Feit and Przibylla (1909.)

Solubility of Mixtures of Sodium Chloride and Other Salts in Water, etc.

Solvent.	ŧ°.	Gm	s. per 100 Gms. Solvent. Authority.					
Water	17	26.4	NaCl+22.1NH ₄ Cl* (Karsten.)					
"	17	34.5	" + 4.1BaCl ₂ "					
"	3.	38.3	" +29.5 KNO ₂ "					
"	25	38.5	" +41.14 " (Soch - J. Physic. Ch. 2, 46, '08.)					
"	8ŏ	39.8r	" +168.8 " "					
Alcohol (40%)	25	15.78	" +13.74 " "					
Water	20	30.54	" +13.95 KCl (Quoted by Euler - Z. physik, Ch.					
66	25	28.90	" +13.95 KCl (Quoted by Euler — Z. physik. Ch. +16.12 " (Quoted by Euler — Z. physik. Ch.					
* Sp. Gr. of solution at 17° = 1.179.								

SOLUBILITY OF MIXTURES OF SODIUM CHLORIDE AND POTASSIUM SULFATE IN WATER AT VARIOUS TEMPERATURES. (Precht and Wittgen, 1882.)

t°.	Grams per 100 Grams H2O.			ŧ°.	Grams per 100 Grams H2O.		
	NaCl	K ₂ SO ₄	KCI	• .	NaCl	K ₂ SO ₄	KCl
IO	33 · 4	8.1	3.2	60	36.4	11.9	2.7
20	34.0	8.9	3.I	70	36.6	12.8	3.2
30	34.6	9.6	2.9	80	36.0	12.3	5.1
40		10.4		90		12.4	
50	35.8	II.I	2.8	100	35.6	12.6	8.8

Solubility of Sodium Chloride in Aqueous Solutions of Sodium Bicarbonate Saturated with CO_2 . (Fedotiefi 1904.)

t°.	Wt. of 1 cc.	Mols. per roco Gms. H ₂ O.		Gms. per 100	o Gms. H ₂ O.
₽.	Solution.	NaHCO3.	NaCl.	NaHCOs.	NaCl.
0		0	6.09	0	356.3
"	1.208	0.09	6	7 · 7	350.1
15	1.203	0	6.12	0	357.6
"	1.203	0.12	6. o 6	10	354.6
30	1.196	0	6.16	0	360.3
"	1.199	0.17	6.12	13.9	358.1
45	1.189	0	6.24	0	365
46	1.198	0.23	6.18	19.5	361.5

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SODIUM HYDROXIDE AT 30°. (Schreinemakers, 1909-10, 1910.)

Gms. per 100 Gms. Sat. Sol.		Solid	Gms. per 100 G	Sms. per 100 Gms. Sat. Sol.		
Na ₂ O.	NaCl.	Phase.	Na ₂ O.	NaCl.	Solid Phase.	
0	26.47	NaCl	29.31	2.40	NaCl	
4 · 47	21.49	. "	37.85	I.I2	44	
12.22	13.62	u	41.42	0.97	" +NaOH.H ₂ O	
24 . 48	4.36	**	±42	0	NaOH.H ₂ O	

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SODIUM HYDROXIDE SOLUTIONS.

(Engel; Winteler, 1900.)

At o°	(Engel).
-------	----------

At 20° (Winteler).

Mg. Mols.	per 10 cc.	Sp. Gr. of	Gms. p	er Liter.	Gms. pe	r Liter.	Sp. Gr. of Solutions.
Na ₂ O.	NaCl.	Solutions.	NaOH.	NaCl.	NaOH.	NaCl.	Solutions.
0	54.7	1.207	0	320	10	30 8	I.200
4.8	49.38	I.22I	38.4	288.9	50	297	1.230
6.73	47.21	1.225	53.8	276.2	100	253	1.250
10.41	42.38	1.236	183.2	247.9	150	213	I.270
14.78	39.55	I.249	118.2	231.4	200	173	1.290
30.50	24.95	1.295	244	146	300	112	1.330
37.88	19.30	1.314	303	112.9	100	61	1.375
53.25	9.41	1.362	426	55	500	30	1.425
					640	18	1.490

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND VICE VERSA.

(Bodländer, 1891; Nicol, 1891; results at 25° by Soch, 1898.)

NaCl	in A	lqu	eous	NaN	Оз.
Res	ults	at	15.5°	' (B.)	•

NaNO₃ in Aqueous NaCl. Results at 15° (B.).

						-0 (,	-
Sp. Gr. of	Gms. per 100 cc: Sat. Solution. NaNO ₂ . H ₂ O. NaCl.			Sp. Gr. of Solutions.	Gms. per 100 cc. Sat. Solution.		
Solutions.	NaNO3.	H₂O.	NaCl.	Solutions.	NaCl.	H₃O.	NaNOs.
1.2025	0	88 . 47	31.78	1.3720	0	74.82	62.38
1.2305	7 · 53	87 . 63	27 .89	1 . 3645	4.0	75.69	56.76
1.2580	13.24	86.25	26.31	1.3585	7.24	75.71	52.09
1.2810	21.58	82.66	23 . 98	1.3530	11.36	76.86	47.08
1.3090	28 . 18	80, 42	22.30	I .3495	15.33	76.96	42.66
1.3345	33 ·80	79.25	20.40	1 . 3485	17.81		39.90
1.3465	37 .88*	77 - 37	19 .40*	1.3485	18.97*	77.15	38 · 73 *
1 . 3465	37 .64*	77 - 34	19.67*	1 . 3485	19.34*	77 - 49	38.02*

/ Results at 20° (N.).

c	Grams per 100	Grams H ₂ O.	Grams per	100 Grams H ₂ O.
0	NaNO,	35.91 NaCl	o NaCl	87.65 NaNO.
14.17	"	32.82 "	6.5 "	77 · 34 "
28.33	"	29.78 "	13.0 "	68.50 "
42.50	"	26.91 "	19.5 "	60.49 "
54.63*	: "	24.92* "		

100 gms. H_2O dissolve 43.66° gms. $NaNO_3 + 26.58$ ° gms. NaCl at 25°.
100 gms. H_2O dissolve 121.6° gms. $NaNO_3 + 17.62$ ° gms. NaCl at 80°.
100 gms. aq. alcohol of 40 wt. per cent dissolve 22.78 gms. $NaNO_3 + 10.17$ gms. NaCl at 25°.

^{*} Indicates solutions saturated with both salts.

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND VICE VERSA.
(Leather and Mukerji, 1913.)

Res	ults at	30°.	Res	sults at 4	,0°.	Re	sults at 9)1°.	
d _{so} of Sat. Sol.	Gms. per	0.	de of Sat. Sol.	Gms. per	0.	d _M of Sat. Sol.	Gms. per	0	Solid Phase in Each Case.
040.000	NaNO3.	NaCl.		NaNO ₃ .	NaCl.		NaNO3.	NaCl.	
I.202	0	36.3	1.197	0	36.53	1.189	0	38.72	NaCl
1.276	24.21	31.16	1.284	27.31	30.53	1.296	37 - 43	30.21	44
I.343	48.15	26.35	1.323	54.82	26.50	1.381	79.65	23.17	u ·
I.370	63.08	23.50	1.400	73.96	21.87	1.487	127.2	17.05	44
1.388	63.40	23.40	1.397	74.01	21.71	1.519	141.4	15.93	" NaNO
1.381	67.91	19.69	1.396	75.29	2L. 61	1.518	141.3	15.83	" NaNO;
1.394	81.46	9.76	1.410	89.90	10.80	1.504	149.5	9.03	"
1.406	95.90	ó '	1.421	105.2	0	1.521	160.8	ó	**

Results are also given at 20° which agree satisfactorily with those of Nicol. Additional results at 30°, agreeing fairly well with the above, are given by Coppadoro (1913). Data for the solubility of sodium chloride in dilute solutions of sodium nitrate at 0° and at 25° are given by Armstrong and Eyre (1910–11).

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS 7.45 PER CENT SODIUM SULFATE SOLUTIONS. (Marie and Marquis, 1903.)

ť.	Gms. NaCl per 100 Gms. Sat. Sol.	t.	Gms. NaCl per 100 Gms. Sat. Sol.
14.8	23.30	27 . 75	23.525
17.9	23·33	32.18	23.55
25.6	23.485	34.28	23.68

For additional data on this system see sodium sulfate, pp. 669 and 670.

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL. (Armstrong and Eyre, 1910-11.)

(Armstrong and Eyre, 1910-11.)

Results at 0°. Results at 25°

Results at U.			Mesuits at 25.	
Solvent Gms. C ₂ H ₂ OH per 1000 Gms. H ₂ O.	Gms. NaCl per 100 Gms. Sat. Sol.	d ₂₈ of Sat. Sol.	Solvent Gms. C ₂ H ₄ OH per 1000 Gms. H ₂ O.	Gms. NaCl per 100 Gms. Sat. Sol.
0	26.46	I.202	0	26.55
11.51	25.97	1.196	11.51	26.06
23.03	25.48	1.190	23.03	25.63
46.06	24.41	1.179	46. 0 6	24.75
138.18	20.95	1.159	92.12	23.29
		1.1115	230.3	19.35

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS ALCOHOL AT 28°. (Fontein, 1910.)

Gms. per 100 Gms. Sat. Sol.			Gms. p	er 100 Gms. Sat.	Sol.
Сщон.	H ₂ O.	NaCl.	С₁н₄он.	H ₂ O.	NaCl.
0	73 · 53	26.47	45.35	45.35	9.3
ვ.8	71.6	24.6	56.2	37 · 5	6.3
7 · 7	69:7	22.6	67.4	28.9	3 · 7
16.1	64.6	19.3	78.8	19.7	1.5
25.3	58.9	15.8	89.6	10	0.4
35	52.5	12.5			

Results are also given by Fontein showing the solubility of sodium chloride in mixtures of ethyl alcohol, amyl alcohol and water at 28°, both when one liquid phase is present and when conjugated liquid layers are formed.

SOLUBILITY OF SODIUM CHLORIDE IN ALCOHOLS. (At 18.5°, de Bruyn — Z. physik. Ch. 10, 782, '92; Rohland — Z. anorg. Ch. 18, 327, '98.)

t* .	Alcohol.	Gms. NaCl per 100 Gms. Alcohol.	\$° .	Alcohol	Gms. NaCl per 100 Gms. Alcohol.
18.5	Abs. Methyl "Ethyl	1.41 0.065	room temp.	Methyl $d_{15} = 0.799$ Ethyl $d_{15} = 0.81$ Propyl $d_{15} = 0.816$	0.176

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS ETHYL ALCOHOL SOLUTIONS.

(Bodländer — Z. physik. Ch. 7, 317, '91; Taylor — J. Phys. Ch. 1, 723, '97; also Bathrick — Ibid. 1, 159, '96.)

Results at 11.5° (B.)	Resu	1ts	at	11.5°	' (B.)	١.
-----------------------	------	-----	----	-------	--------	----

Results at 13° (B.).

Sp. Gr. of	Gms. per 100 cc. Solution.			Sp. Gr. of	Gms. per 100 cc. Solution.		
Sp. Gr. of Solutions.	Същон.	H₂O.	NaCl.	Sp. Gr. of Solutions.	C ₂ H ₅ OH.	H₂O.	NaCl.
1.2035	0	86.62	31.73	1.2030	0	88.70	31.60
1.1865	2.86	86.14	29.66	1.1348	11.8r	78.41	23.26
1.1710	5.41	83.93	27 - 77	1.1144	15.99	74.64	20.81
1.1548	7.93	8r . 50	26.05	1.0970	19.39	71.45	18.86
1.1350	10.84	78.78	24 · 28	1 .0698	24.95	65.80	16.23
1.1390	11.22	78.62	23.65	1.0295	32.33	57 - 96	12.66
1.1088	16.85	73 - 40	20.63	0.9880	40.33	49 - 34	9.13
				0.9445	49 . 28	38.54	5 · 93
				0.9075	57.91	29.37	3 · 47
				0.8700	63 .86	21.62	1.52
				0.8400	72.26	11.24	0.50

Results at 30° and at 40° (T.).

Wt ner cent	At 30°, Gms. NaCl per 100 Gms.		At 40°, Gms. Na	Cl per 100 Gms.
Wt. per cent Alcohol in Solvent.	Solution.	Water.	Solution.	Water.
0	26.50	36.o 5	26.68	36.38
5	24.59	34 - 29	24.79	34.69
10	22.66	32.57	22.90	33.00
20	19.05	29.40	19.46	30.20
30	15.67	26.53	16.02	27.25
40	12.45	23.70	12.75	24.37
50	9 34	20.60	9.67	21.42
6 0	6.36	16.96	6.65	17.82
70	3.36	12.75	3.87	13.10
80	1.56	7 - 95	I.69	8.68
90	0.43	4.30	0.50	5.10

100 gms. alcohol of 0.9282 Sp. Gr. = 45.0% by wt. dissolve at:

100 gms. of a mixture of equal parts of 96% alcohol and 98% ether dissolve 0.11 gm. NaCl.

(Mayer — Liebig's Ann. 98, 205, '56.)

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS METHYL ALCOHOL. (Armstrong and Eyre, 1910-11.)

Results	at o°.	Results at 25°.		
Solvent, Gms. CH ₂ OH per 1000 Gms. H ₂ O.	Gms. NaCl per 100 Gms. Sat. Sol.	Solvent, Gms. CH ₂ OH per 1000 Gms. H ₂ O.	Gms. NaCl per 100 Gms. Sat. Sol.	
0	26.35	8. oi	26.29	
8. oz	26.05	16.02	26.02	
16.02	25.79	32.04	25.50	
32.04	29.19	96.12	23.50	

A sat. solution of NaCl in CH₂OH contains 0.1 gm. NaCl per 100 gms. solution at the critical temperature. (Centnerszwer, 1910.)

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS PROPYL ALCOHOL. (Armstrong and Eyre, 1910-11.)

Aqueous propyl alcohol containing 15.01 gms. C₂H₇OH per 1000 cc. H₂O dissolves 25.71 gms. NaCl per 100 gms. sat. solution at 0° and 25.95 gms. at 25°. Aqueous propyl alcohol containing 30.02 gms. C₂H₇OH per 1000 cc. H₂O dissolves 25.12 gms. NaCl per 1000 gms. sat. solution at 0° and 25.37 gms. at 25°.

EQUILIBRIUM IN THE SYSTEM SODIUM CHLORIDE, NORMAL PROPYL ALCOHOL
AND WATER AT 23-25°.
(Frankforter and Frary, 1913.)

The authors determined the binodal curve and quadruple points of the system but did not locate tie lines.

Gms. per 100 Gms. Homogeneous Liquid.		Gms. per 100 Gms. Homogeneous Liquid			
NaCl.	C ₂ H ₇ OH.	H _t O.	NaCl.	C ₂ H ₇ OH.	H₄O.
0.55	87.7	11.75*	14.38	5.39	80.23
2.23	51.57	46.20	15.42	5.11	79.47
3.55	18.99	77.46	16.38	4.47	79.14
3.90	14.78	81.32	18.08	3.83	78.09
5.27	12.77	81.9 6	20.12	3.27	76.61
8.04	9.49	82.47	22.35	2.64	75.01
10.49	7.79	81.72	24.50	2.13	73.37
12.20	6.57	81.23	24.9	2.3	72.8*
		* Ou	ad. pt.		

The effect of temperature upon the equilibrium in the above system was greater than observed in any of the other systems investigated and additional data, illustrating the extent of the temperature influence, are given.

trating the extent of the temperature influence, are given.

100 gms. sat. sol. of NaCl in 99.6 per cent C₂H₇OH contain 0.04 gm. NaCl at 25°. (Frankforter and Frary, 1913.)

EQUILIBRIUM IN THE SYSTEMS SODIUM CHLORIDE, ALLYL ALCOHOL, WATER, AT 20° AND SODIUM CARBONATE, ALLYL ALCOHOL, WATER, AT 20°.

(Frankforter and Temple, 1915.)

Results for NaCl + CH ₂ : CHCH ₂ OH + H ₂ O. Gms. per 100 Gms. Alcohol + Water.				Results for CH ₂ : CH.CH 100 Gms. Alcoho	
NaCl.	Alcohol.	Water.	Na ₂ CO ₂ .	Alcohol.	Water.
3.509	69.867	30. 133	0.456	61.112	38.888
4.452	64.858	33.142	0.708	56.334	43.666
5.079	60.821	39. 179	1.011	51.930	48.070
6.712	54.683	45.317	1.468	48. 109	51.891
8. 776	47.132	52.868	2.580	41.052	58.948
10.650	40.392	59. 60 8	3.414	37.126	62.874
12.535	33.224	66.776	4.739	. 32. 166	67.834
14.925	2 7. 261	72.739	7.774	· 23 · 753	76.247
18.557	19.705	80.295	10.079	18.407	81.593

SOLUBILITY OF SODIUM CHLORIDE IN SEVERAL ALCOHOLS AT 25°. (Turner and Bissett, 1913.)

Alcohol.		Gms. NaCl per 100 Gms. Alcohol.
Methyl Alcohol,	CH ₂ OH	1.31
Ethyl Alcohol,	C ₂ H ₄ OH	0.065
Propyl Alcohol,	C ₃ H ₇ OH	O. OI 2
Amyl Alcohol,	C ₅ H ₁₁ OH	0.002

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS ACETONE SOLUTIONS AT 20°. (Frankforter and Cohen, 1914.)

Gms. per 100 Gms. Sat. Sol.			Gms.	per 100 Gms. S	Sat. Sol.
NaCl.	H _g O.	(CH ₂),CO.	NaCl.	H₂O.	(CH2)2CO.
25.9	73.06	1.04	16.55	61.59	21.86*
24.19	71.18	4.03	0.45	13.75	85.8*
20.85	66.78	12.37	0.32	13.92	85.76
18.32	63.16	18.52	0.19	10.82	88.99
17.89	62.21	19.90	0.12	8.94	90.94
		• Ou	ad pt.		

Between the concentration 21.86 and 85.8 per cent acetone, two layers are formed. The binodal curve corresponding to this range of concentration was determined and it is stated by the authors that tie lines were located but the analytical data for them are not given. The results for the binodal curve are as follows:

Gms. per 100 Gms. Homogeneous Liquid.			Gms. per 10	o Gms. Homoge	neous Liquid.
NaCl.	H ₂ O.	(CH)2CO	NaCl.	H₁O.	(CH2)2CO.
0.59	15.46	83.95	5.87	40. 19	53 · 94
0.79	17.58	81.63	6.45	42.12	51.43
0.93	18.83	80.24	7 · 53	46.12	46.35
1.27	22.19	76.54	8.87	49.39	41.74
1.57	23.89	74 · 54	9.47	50.92	39.61
2.31	27.27	70.42	10.35	53. 06	36.59
4.87	36.79	58.34	15.87	59.71	24.42

Additional data, showing the effect of temperature on the above system, are also given

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS OF:

Glycerol at 25°.

(Herz and Knoch, 1905.)

Acetone at 20°.

(Herz and Knoch, 1904.)

90

(22002 0000 00000, 1304)			(======================================				
cc. Acetone per 100 cc.	NaCl per Solut		Wt. Per cent Glycerol in	NaCl per Solut		Sp. Gr. of Solution.	
Solvent.	Millimols.	Gms.	Solvent.	Millimols.	Gms.		
0	537.9	31.47	0	545.6	31.93	1.1960	
10	464.6	27. 18	13.28	501.1	29.31	1.2048	
20	394.8	23.10	25.98	448.4	26.23	1.2133	
30	330. I	19.32	45.36	370.2	21.66	1.2283	
32) Lower layer	308.5	18.05	54.23	333.9	19.54	1.2381	
87 Upper layer	7.7	0.45	83.84	220.8	12.91	1.2666	
88	7.3	0.43	100 *	167. I	9.78	1.2964	

* Sp. Gr. of Glycerol, 1.2592. Impurities about 1.5%.

100 gms. sat. solution in glycol contain 31.7 gms. NaCl at 14.8°.

0.25

(de Coninck, 1905.)

100 gms. H₂O dissolve 236.3 gms. sugar + 42.3 gms. NaCl at 31.25°, or 100 gms. sat. aq. solution contain 62.17 gms. sugar + 11.13 gms. NaCl. (Köhler, 1897.)

(Welsh and Broderson, 1915.)

EQUILIBRIUM IN THE SYSTEM SODIUM CHLORIDE, METHYL ETHYL KETONE AND WATER AT 25° (BINODAL CURVE).

(Frankforter and Cohen, 1916.)

Gms. per 100 Gms. Homogeneous Liquid.			Gms. per 1	oo Gms. Homogene	ous Liquid.
NaCl.	CH ₂ .CO.C ₂ H ₄ .	H ₂ O.	NaCl.	CH ₄ .CO.C ₂ H ₄ .	H ₂ O.
0.35	20.13	79.52	6.75	10.80	82.45
0.55	19.75	79.70	10.07	7.65	82.28
I.42	16.52	82.06	14.32	5.36	80.32
1.80	17.70	80.50	14.65	3.83	81.52
2.47	16.24	81.29	23.15	2.08	74 - 77
4.11	13.34	82.55	24.14	0.94	74.92

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS OF CARBAMIDE (UREA) AND OF FORMAMIDE AT 25°.

(Ritzel, 1911.)

In Aqueous C	arbamide.	In Aqueous Formamide.		
Gms. CO(NH ₂) ₂ per 100 cc. Solution.	Gms. NaCl per 100 cc. Solution.	Gms. HCO.NH ₂ per 100 cc. Solution.	Gms. NaCl per 100 cc. Solution.	
0	31.80	0	31.80	
5	30.63	2.3	30.98	
9.6	29.05	5·3 8	30.86	
13	28.46	8	30.40	
13 18	27.65	11	29.11	
23	27.24	15	28.52	
28	26.56	18.8	27.76	

According to results by Fastert (1912), the solubility of sodium chloride in aqueous solutions of urea increases slightly with increase of urea in solution, thus:

Gms. CO(NH ₂) ₂ per 100 cc. Sol.	10	20	30	40	50
Gms. NaCl per 100 cc. Sol.	31.92	32.17	32.51	32.93	33.40

Data for equilibrium in the system sodium chloride, succinic acid nitrile, water are given by Timmermans (1907).

100 gms. 95% formic acid dissolve 5.8 gms. NaCl at 19.7°. (Aschan, 1913.)

100 gms. hydroxylamine dissolve 14.7 gms. NaCl at 17.5°. (de Bruyn, 1892.)

100 cc. anhydrous hydrazine dissolve 8 gms. NaCl at room temp.

FUSION-POINT DATA (Solubilities, see footnote, p. 1) ARE GIVEN FOR THE FOLLOWING MIXTURES.

NaCl + HC!(Dernby, 1918.) + Na₂CrO₄. (Sackur, 1911-12.) 44 + NaCN. (Truthe, 1912.) " (Ruff and Plato, 1903; Wolters, 1910; Plato, 1907.) + NaF. " + NaOH. (Scarpa, 1915.) ** + NaI. (Ruff and Plato, 1903; Amadori, 1912a.) " + NaNO2 (Meneghini, 1912.) 46 + Na₄P₂O₇. (LeChatelier, 1894.) " + Na₂SO₄. (Ruff and Plato, 1903; Jänecke, 1908; Wolters, 1910; Sackur, 1911-12.) 44 + SrCl₃. (Vortisch, 1914; Sackur, 1911-12.) + SrCO₃. (Sackur, 1911-12.) TICI. (Sandonnini, 1911, 1914.)

SODIUM CHROMATES (Mono, Di, etc.)

SOLUBILITY IN WATER.

(Mylius and Funk,	1900; see also Salkowski, 1901.)
Sodium Monochromate.	Sodium Dichromate.

\$ ° .	Gms. Nas CrO ₄ per 100 Gms. Solution.	Mols. Nas CrO, per 100 Mols H ₂ O.	Solid Phase.	t °.	Gms. Nas Cr ₂ O ₇ per 100 Gms. Solution.	Mols. Na ₂ Cr ₂ O ₇ per 100 Mols. H ₂ O.	
0	24.07	3.52 N	OeHot.4OrDea	0	61.98	II.2	NagCrgO7.2HgO
10	33.41	5 · 55	••	17	63.82	12.1	•
18*	40.10	7 · 43	•	18‡	63.92	12.16	•
18.5	41.65	7.94	•	34.5	67.36	14.2	*
19.5	<u> </u>	9.01	44	52	71.76		•
21	47 - 40	10.00	*	72	76.9	22.8	•
25.6	46.08	9.52 N	iasCrO4.4HsO	81	79.8	27 · I	•
31.5		9.90	**	93	81.19	29.6	Na ₂ Cr ₂ O ₇
36	47.98	10.2	84	98	81.25	29.8	44
40	48.97	10.6		-	0-4:	m Tri Ch	
45	50.20	11.6	**				romate.
49 - 5	50.93	11.5	4		Gms. Na ₂ Cr ₅ O ₁₀ per	Mois, Nas CrsOm per	Solid
54 - 5		12.2	•	t ~.	100 Gms. Solution.	100 Mols. H ₂ O	Phase.
59.5	53.39	12.7	•	0	.80.03	19.9	NagCrgO ₂₀ .HgO.
65	55 - 23	13.7	NagCrO ₄	15†	80.44		4
70	55.15	13.6	•	18	80.60		
80	55 · 53	13.8	44	55	82.68	23.7	**
100	55.74	14.0	**	99	85.78	29.9	"

Sp. Gr. of sat. sol. at 18° = 1.432.
 Sp. Gr. of sat. sol. at 18° = 2.059
 Sp. Gr. of sat. solution at 18° = 1.745.

Sodium Tetrachromate.

Tetrasodium. Chromate.

5° .]	Gms. Na ₂ Cr ₄ O ₁₃ per 100 Gms. Solution.	Mols. Na ₂ Cr ₄ O ₁₃ per 100 Mols. H ₂ O.	Solid Phase.	t* .	Gms. Na ₄ CrO ₅ per 100 Gms. Solution.	Mols. Na ₄ CrO ₈ per 100 Mols. H ₂ O.	Solid Phase.
0	72.96	10.5	NagCr ₆ O ₁₈₋₄ H ₂ O	0	33.87	4.11	Na ₆ CrO ₈₋₁₃ HO ₂
16	74.19	II .2	4	, IO	35.58	4 · 42	a
18 *	74.60	11.27	•	18†	37 - 50	4.81	•
22	76.01	12.3	•	27 . 7	40.00	5.38	*
	·	_		37	45.13	6.62	**

A new hydrate of sodium chromate, Na₂CrO₄.6H₂O, was found by Salkowski, (1901) and the following data for its range of existence were determined.

ť.	Gms. Na ₂ CrO ₄ per 100 Gms. Solution.	Mols. Na ₂ CrO ₄ per 100 Mols. H ₂ O.	Solid Phase.	ť.	Gms. Na ₂ CrO ₄ per 100 Gms. Sol.	Mols. Na ₂ CrO ₄ per roo Mols. H ₂ O.	Solid Phase.
17.7 10.2	43.65 44.12	8.62 N 8.77 "	a ₂ CrO ₄ .10H ₂ O	25.9	46.3*		IagCrO4.6HgO +NagCrO4.4HgO
19.525	44.2*		+Na ₂ CrO ₄ .6H ₂ O	28.9	46.47		ia ₂ CrO ₄₋₄ H ₂ O
21.2	44.64		Na ₂ CrO ₄ .6H ₂ O	29.7	46.54	9.67	
24.7	45.75	9.37	44	31.2	47.08	9.88	•
		* This dete	ermination by Rich	ards and	Kelley (1911).	

^{*} Sp. Gr. of sat. solution at 18°=1.926. † Sp. Gr. of sat. solution at 18°=1.446.

SOLUBILITY OF SODIUM CHROMATES IN WATER AT 30°. (Schreinemakers, 1906.)

Composition in weight per cent:

Of S	olution.	Of R	esidue.	
%CrO₃.	%NasO.	%CrO ₂ .	%NasO.	Solid Phase.
0	±42			NaOH.H ₂ O
2.00	41.44	5 .83	42.64	NaOH.H ₂ O + Na ₂ CrO ₆
2.04	40.89	• • •		Na ₈ CrO ₄
4.23	35.51	27 - 52	36.57	44
6.64	32 - 34	27.72	34.60	
15.19	27.06	37 .07	32.20	"
10.22	29.39	15.48		NagCrO4 + NagCrO5.13HeO
8.93	28.49	18.09	26.89	Na ₄ CrO _{8.13} H ₂ O
8.62	26.91	• • •	• • •	44
13.12	23.91	18.57	25.92	44
18.44	22.86			44
19.26	22.98	21.54	25.31	Na ₄ CrO _{5.13} H ₂ O + Na ₂ CrO _{4.4} H ₃ O
17.84	24.21	26.24	24.98	NagCrO4-4HgO
28.82	17.88	31.97	23 - 47	44
38.93	16.30	40.70	20.83	64
48.70	16.49	47 - 49	19.75	NagCrO4.4HgO + NagCrgO7.2HgO
50.68	15.72			Na ₃ Cr ₂ O ₇₋₂ H ₃ O
58.08	13.89	62.76	17.38	u
66.13	13.70	69.48	16.06	NagCrgO7.2HgO + NagCrgO10.HgO
65.98	14.15	6 9.46	15.15	Na ₃ Cr ₃ O ₃₀ .H ₃ O
68.46	10.95	73.88	13.38	Na ₂ Cr ₂ O ₁₀ .H ₂ O + Na ₂ Cr ₄ Q ₁₂₋₄ H ₂ O
6 6.88	9.85	71.27	10.67	Na ₃ Cr ₂ O ₁₉₋₄ H ₃ O
70.06	11.85	83.95		" (?)
69.04	11.04	81.80	6.43	CrO ₀
67.84	9.81	82 .85	5 42	44
64 . 48	4.51	79 · 49	2.71	44
62 . 28	0.0		• • •	4

100 gms. of a saturated aqueous solution conțain at 30°: 46.627 gms. Na₂CrO₄, or 100 gms. H₂O dissolve 87.36 gms. Na₂CrO₄. 66.4 gms. Na₂Cr₂O₇, or 100 gms. H₂O dissolve 197.6 gms. Na₂Cr₂O₇. 100 gms. absolute methyl alcohol dissolve 0.345 gms. Na₂CrO₄ at 25°. (de Bruyn, 1892.)

Data for equilibrium in the system sodium chromate, sodium sulfate and water at 15° and at 25° are given by Takenchi (1915). The mixtures were rotated at constant temperature until attainment of equilibrium and both the saturated solutions and the undissolved residues were analyzed. Very extensive tables of results are given. The decahydrates of sodium and chromium are isomorphous and the results show that these two salts are mutually miscible in all proportions at 15°. At 25° the solubility curve consists of three branches. The solutions of the first branch are in equilibrium with decahydrated mixed crystals, those of the second branch with anhydrous sulfate and those of the third with both anhydrous sodium sulfate and hexahydrated sodium chromate.

SOLUBILITY OF SODIUM DICHROMATE IN ALCOHOL AT 19.4°. (Reinitzer, 1913.)

• An excess of Na₂Cr₂O_{7.2}H₂O was shaken with absolute alcohol for 10 minutes and the mixture filtered. The filtrate contained 5.132 gms. Na₂Cr₂O_{7.2}H₂O per 100 cc. and its d_{10.4} was 0.8374. The solution decomposed within a few minutes with production of a brown precipitate and evolution of an aldehyde odor. The results are, therefore, only approximately correct.

SODIUM CINNAMATE C₆H₆CH:CH:CHCOONa.

100 gms. H₂O dissolve 9.1 gms. sodium cinnamate at 15.20°. 100 cc. 90% alcohol dissolve 0.625 gm. at 15–20°. (Squire and Caines, 1905.)

SODIUM CITRATE (CH₂)₂COH(COONa)₃,5½H₂O.

SOLUBILITY IN AQUEOUS ETHYL ALCOHOL AT 25°. (Seidell, 1910.)

Wt. Per cent C _e H _e OH in Solvent.	d_{26} of Sat. Sol.	Gms. C ₆ H ₆ O ₇ Na ₆ 5 H ₆ O per 100 Gms. Sat. Sol.	Wt. Per cent C ₂ H ₂ OH in Solvent.	d_{35} of Sat. Sol.	Gms. C ₆ H ₆ O ₇ Na ₈ ,- 5½H ₂ O per 100 Gms. Sat. Sol.
0	1.276	48.1	40	0.953	4.5
10	1.190	37 ⋅ 4	50	0.918	I.4
20	1.100	25	60	0.892	0.3
30	1.006	11.8	100	0.789	0

Data for equilibrium in the system sodium hydroxide, citric acid, phosphoric acid and water at 20° are given by Pratolongo (1913).

The author fails to describe clearly the terms in which the results are expressed, consequently their exact meaning is not clear.

SODIUM (Ferro) **CYANIDE** Na₄Fe(CN)₆.

SOLUBILITY IN WATER. (Conroy, 1898.)

t°. 20°. 42°. 80°. 98.5°. Gms. Na₄Fe(CN)₆ per 100 gms. H₈O 17.9 30.2 59.2 63

SODIUM FLUORIDE NaF.

100 gms. sat. aq. solution contain 4.3 gms. NaF at 18°. Sp. Gr. of solution = 1.044. (Mylius and Funk, 1897.)

SOLUBILITY OF SODIUM FLUORIDE IN AQUEOUS SOLUTIONS OF HYDRO-FLUORIC ACID AT 21°. (Ditte, 1896.)

Gms. per 10	oo Gms. H ₂ O.	Gms. per 100	o Gms. H ₂ O.
o HF 10 " 45.8 "	41.7 NaF 41.4 " 22.5 "	83.8 HF 129.7 " 596.4 "	22.9 NaF 23.8 " 48.8 "
56.5 "	22.7 "	777 · 4	81.7 "

FUSION-POINT DATA (Solubility, see footnote, p. 1) ARE GIVEN FOR THE FOLLOWING MIXTURES.

NaF + FeF ₃ . " + ZnF ₃ .	(Puschin and Baskov, 1913.)
" + NaI.	(Ruff and Plato, 1903.)
" + NaOH.	(Scarpa, 1915.)
" + Na ₂ SO ₄ .	(Wolters, 1910.)

SODIUM FLUOSILICATE Na₂SiF₆.

100 gms. H₂O dissolve 0.65 gm. at 17.5°, and 2.45 gms. at 100°. (Stolba, 1872.)

SODIUM FORMATE HCOONa.

SOLUBILITY IN WATER.

(Groschuff, 1903.)

t* .	Gms. HCOONa per 100 Gms Solution.	Mols. HCOONa per 100 Mols H ₃ O.	Solid Phase	t* .	Gms. HCOONa per 100 Gms. Solution.	Mols. HCOONs per 100 Mols H ₂ O.	Solid Phase.
-20	22.80	7.82	HCOONs.3HsO	25.5	50.53	27.0	HCOONs.2H3O
0	30 - 47	11.6	*	18	49.22	25.65	HCOONa
+15	41.88	19.1	4	29	50 · 44	26.9	•
18	44.92	21.6	4	54	53.80	30.8	•
18	44.73	21.4	HCOONs.aH2O	74.5	56.82	34.8	•
21	46.86	23.3	4	100.5	61.54	42.35	•
23	48.22	24.65	•	123	66.20	51.8	*

Sp. Gr. of the saturated solution of the dihydrate at 18° = 1.317.

SOLUBILITY OF SODIUM ACID FORMATE (EXPRESSED AS NEUTRAL SALT) IN AQUEOUS SOLUTIONS OF FORMIC ACID.

(Groschuff.)

t° .	Gms. HCOONa per 100 Gms. Solution.	Mols. HCOONs per 100 Mols- H ₂ O.	Solid Phase.	t°. 1	Gms. HCOONs per 100 Gms. Solution.	Mols. HCOONa per 100 Mo H ₂ O.	Solid ols. Phase.
0	22.35	19.5	HCOONa.HCOOH	45.5	38.85	43.I	HCOON a
25.5	29.62	28.45	4	70	41.27	47 · 5	
66.5	41.08	47 · I	4	85	43.09	51.2	

SODIUM GLYCEROPHOSPHATE (Disodium) OP(OC₁H₇O₂)(ONa)₂.5H₂O.

100 gms. sat. solution in H₂O contain 27.38 gms. of the anhydrous salt at 18°.

(Rogier and Fiore, 1913.)

SODIUM HYDROXIDE NaOH.

SOLUBILITY IN WATER.

(Pickering, 1893; Mylius and Funk (Dietz), 1900.)

\$* .	per 10	NaOH o Gms.	Solid Phase.	6°.	per 10		Solid Phase.
- 0	Solution		_		Solution.		
- 7.8	8.0	8.7	Ice	20	52.2	109	NaOH.H ₂ O
-20	16.0	19.1	•	30	54.3	119	**
- 28	19.0	23.5	Iœ+NaOH.7HgO	40	56.3	129	4
-24	22.2	28.5	NaOH.7H2O+NaOH.5H2O	50	59.2	145	*
-17.7	24.5	32.5	NaOH.5HgO + NaOH.4HgO a	60	63.5	174	•
0	29.6	42.0	NaOH.4H2O a	64.	3 69 .o	222.3	
+ 5	32.2	47 · 5	$NaOH_4H_5O \alpha + NaOH_3\frac{1}{2}H_5O$	61 .	8 74 . 2	288	NaOH.H ₂ O + NaOH
10	34.0	51.5	NaOH.31H2O	80	75.8	313	NaOH (?)
15.5	38 .9	63.53	" f. pt.	IIO	78.5	365	•
5	45 · 5	83.5	NaOH.31H3O+NaOH.2H3O	192	83.9	521	•
12	50.7	103.0	NaOH.2H2O+NaOH.H2O	•	• •	•	

Sp. Gr. of sat. solution at $18^{\circ} = 1.539$.

For determinations of the Sp. Gr. of sodium hydroxide solution, see Kohlrausch, 1879; Wegscheider and Walter, 1905.

100 gms. of the sat. solution in water contain 46.36 gms. NaOH at 15°. (de Forcand, 1909a.)

1000 gms. liquid ammonia dissolve 0.0025 gm. NaOH at -40°.

(Skossareswky and Tchitchinadse, 1916.)

Data for equilibrium in the system sodium hydroxide, resorcinol and water at 30° are given by van Meurs (1916).

Fusion-point data for NaOH + NaI are given by Scarpa (1915).

SODIUM IODATE NaIO:

SOLUBILITY IN WATER. (Gay-Lussac; Kremers, 1856a.)

o°. 20°. 40°. 60°. 80°. 100°. Gms. NaIO₂ per 100 gms. H₂O 2.5 9 15 **2**I 27 34

Equilibrium in the System Sodium Iodate, Iodic Acid and Water at 30°. (Meerburg, 1905.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100 C	ims. Sat. Sol	Solid Phase.
HIO3.	NaIO ₃ .	Sond Phase.	HIOs.	NaIO ₃ .	Soud Phase.
0	9.36	NaIO ₂₋₁ H ₂ O	II.20	7 · 54	NagO.2IgOs
1.98	9.52	44	11.82	7.20	" +NaIO ₃ .2HIO ₃
4.86	10.22	44	11.62	5.65	NaIO ₁₋₂ HIO ₁
5.86	11.04	**	23.23	3.69	u
7.40	11.60	" unstable	32.68	2.91	u
9.73	14.73	u u	46.62	2.67	u
6.70	11.21	" +Na ₂ O.2I ₂ O ₅	55.48	2.12	u
7.80	10.30	$Na_{d}O.2I_{d}O_{3}$	65.47	1.83	#
9.15	9	u	76.19	I.42	". +HIO₃
9.93	8.71	"	76.70	0	HIO₁ .

SODIUM IODIDE Nal.2H₂O.

SOLUBILITY IN WATER.

(de Coppet, 1883; see also Etard, 1884; and Kremers, 1856a.)

Water. Solution. Phase. Water. Solution. Phase.	ŧ°.	Grams NaI p	er 100 Gm	- Solid	ŧ°.	Grams Nal	per 100 Gms.	Solid
0 158.7 61.4 " 65 278.4 73.6 " 10 168.6 62.8 " 67 293 74.6 Nai 20 178.7 64.1 " 70 294 74.6 " 25 184.2 64.8 " 80 296 74.7 " 30 190.3 65.6 " 100 302 75.1 " 40 205.0 67.2 " 120 310 75.6 "	₩	Water.	Solution.	Phase.	6	Water.	Solution.	Phase.
10 108.6 62.8 67 293 74.6 Nai 20 178.7 64.1 70 294 74.6 " 25 184.2 64.8 80 296 74.7 " 30 190.3 65.6 100 302 75.1 " 40 205.0 67.2 120 310 75.6 "	-20	148.0	59 · 7	NaI.2H2O	60	256.8	72.0	NaI.aH ₂ O
20 178.7 64.1 " 70 294 74.6 " 25 184.2 64.8 " 80 296 74.7 " 30 190.3 65.6 " 100 302 75.1 " 40 205.0 67.2 " 120 310 75.6 "	Ο.	158.7	61.4		65	278.4	73.6	4
25 184.2 64.8 " 80 296 74.7 " 30 190.3 65.6 " 100 302 75.1 " 40 205.0 67.2 " 120 310 75.6 "	10	168.6	62.8	•	67	293	74.6	NaI
30 190.3 65.6 " 100 302 75.1 " 40 205.0 67.2 " 120 310 75.6 "	20	178.7	64.1	44	70	294	74.6	*
40 205.0 67.2 " 120 310 75.6 "	25	184.2	64.8	•	80	296	74 - 7	•
	30	190.3	65.6	44	100	302	75 · I	
50 227.8 69.5 " 140 321 76.3 "	40	205.0	67.2	•	120	310	75.6	•
	50	227.8	69.5	**	140	321	76.3	*

The eutectic mixture of Ice + NaI.5H₂O is at -31.5° and contains about 39 per cent NaI. (Meyerhoffer, 1904.)

The tr. pt. for NaI.5H₂O + NaI.2H₂O is at -13.5 and the saturated solution contains 60.2 gms. NaI per 100 gms. (Panfiloff, 1893s.)

The tr. pt. for NaI.2H₂O + NaI is at 64.3° and the saturated solution contains 74.4 gms. NaI per 100 gms. (Panfiloff, 1893.)

100 gms. H₂O dissolve 172.4 gms. NaI at 15° and the d₁₈ of the sol. is 1.8937.

(Greenish, 1900.) 100 gms. sat. solution in H₂O contain 65.5 gms. NaI at 30°. (Cocheret, 1911.)

SOLUBILITY OF SODIUM IODIDE IN ALCOHOLS AT 25°. (Turner and Bissett, 1913.)

100 gms. Methyl alcohol, CH, OH dissolve 90.35 gms. NaI.

Ethyl C₂H₄ OH 46.02 " " 44 C₂H₇OH 28.22 Propyl ** Amyl C₅H₁₁OH 16.30

SOLUBILITY OF SODIUM IODIDE IN AQUEOUS ETHYL ALCOHOL AT 30°. (Cocheret, 1911.)

Solid Phase.	Gms. Sat. Sol.	Gms. per 100	Solid Phase.	Gms. per roo Gms. Sat. Sol.	
Sond Phase.	C ₂ H ₅ OH.	Nal.	Sond Phase.	C ₂ H ₅ OH.	NaI.
NaI.2H ₂ O	53 · 2	38.5	NaI.2H ₆ O	0	65.52
"+NaI	55.37	37 · 49	46	3.42	64
NaI	59.24	35.65	66	18.5	54.2
44	61.78	33.24	64	28.5	48.8
"	68.70	30.90	u	41.7	42.35

Data are also given for the solubility of mixtures of NaI + Na₂CO₂ in aqueous ethyl alcohol at 30°.

Solubility of Sodium Iodide in Absolute Ethyl Alcohol at Temperatures up to the Critical Point.

(Tyrer, 1910a.)

ť.	Gms. NaI per 100 Gms. C ₂ H ₆ OH	t*.	Gms. NaI per 100 Gms. C ₂ H ₅ OH.	ť.	Gms. NaI per roo Gms. C ₂ H ₅ OH.
10	43 · 77	120	45.2	240	32.7
30	44.25	160	45	250	26.2
50 80	44.50	180	44.3	255	21
80	45	200	42.3	260	10.8
100	45.I	220	38.5	261.5*	8.6
		230	36.2		
	•	* 0014	t of solution		

The mixtures were placed in sealed glass tubes which were heated in a specially constructed, electrically heated air bath. The temperature at which the last trace of salt just dissolved was determined in each case. The experiments were made with very great care. Results are also given for the solubility of sodium iodide in the vapor of ethyl alcohol above the critical point.

SOLUBILITY OF SODIUM IODIDE IN MIXTURES OF ALCOHOLS AT 25°. (Herz and Kuhn, 1908.)

In CH₂OH + C₂H₃OH. In CH₂OH + C₂H₇OH. In C₂H₃OH + C₂H₇OH.

Per cent CH ₂ OH in Mixture.	d ₂₅ of Sat. Sol.	Gms. NaI per 100 cc. Sat. Sol.	Per cent C ₂ H ₇ OH in Mixture.	d ₃₄ of Sat. Sol.	Gms. NaI per 100 cc. Sat. Sol.	Per cent C ₂ H ₇ OH in Mixture.	d_{24} of Sat. Sol.	Gms. NaI per 100 cc. Sat. Sol.
0	1.0806	35.15	0	1.3250	63.22	0	1.0806	35.15
4.37	1.1029	37.68	II.II	1.2853	58.45	8. I	1.0732	34.60
10.4	1.1123	38.71	23.8	1.2528	54.64	17.85	1.0720	34.05
41.02	1.1742	45.98	65.2	1.1387	40.71	56.6	1.0276	28.41
80.69	1.2741	57 · 44	91.8	1.0420	29.14	88.6	1.0130	26.13
84.77	1.2886	58.92	93.75	1.0178	26.49	91.2	1.0104	25.88
91.25	1.3056	61.10	100	0.9968	24.11	95.2	1.0020	24.74
100	1.3250	63.22				100	0.9968	24. II

SOLUBILITY OF SODIUM IODIDE IN SEVERAL SOLVENTS. (At 22.5°, de Bruyn, 1892; at ord. temp. Rohland, 1898; Walden, 1906.)

Solvent.	Gms. NaI t°. per 100 Gms.			Gms. NaI per 100 cc. Sat. Solution.	
		Solvent.		at o'.	at 25°.
Absolute Ethyl Alcohol 22.	5	43.I	Acetonitrile	22.00	18.43
Ethyl Alcohol, $d_{15} = 0.810$ ord	l. temp	. 58.8	Propionitrile	9.00	6.23
Absolute Methyl Alcohol 22.		77.7	Nitro Methane	0.34	0.48
Methyl Alcohol, $d_{15} = 0.799$ ord		. 83.3	Acetone	very so	luble
Propyl Alcohol, $d_{15} = 0.816$ ord	l. temp	. 26.3	Furfural	•••	25.10

SOLUBILITY OF SODIUM IODIDE IN ACETAMIDE. (Menschutkin, 1908.)

ť.	Gms. per 100 Gms. Sat. Sol.		Solid Phase	ť.	Gms. per : Sat.	roo G ms. Sol.	Solid Phase.
•.	Nal.2CH, CONH	- NaI.	SOLIC PRINC		Nal.2CH, CONH	- NaL	Soud Phase.
82	m. pt. of pur	e acetamide	CH_CONH_	50	59	33	NaI.2CH ₂ CONH ₂
78	9.5	5.32	"	60	60.5	33.9	44
74	18	10.08	"	70	62.2	34.8	ec
70	25.5	14	44	80	64.2	35.9	æ
66	31.9	17.86	и	90	66.5	37.2	44
62	37.3	20.9	"	100	69.2	38.7	44
58	41.9	23.44	"	110	72.6	40.6	"
54	46. I	25.8	u	120	78.7	44	"
50	50	28	и	125	84.7	47.4	" +NaI
46	53.7	30. I	"	150	85.1	47.7	NaI
41.		32.3	" +NaI.2CH4CONH4	175	85.5	47.9	44

100 cc. anhydrous hydrazine dissolve 64 gms. NaI at room temp.
(Welsh and Broderson, 1915.)

SODIUM IODOMERCURATE

A saturated solution at 24.75°, prepared by adding NaI and HgI₂ in excess to water, contained 4.59% Na, 25% Hg, 58.25% I and 12.2% H₂O, corresponding to 0.20 mol. alkali, 0.12 mol. Hg and 0.45 mol. I. (Duboin, 1905.)

SODIUM MOLYBDATE Na₂M₀O₄.

SOLUBILITY IN WATER. (Funk, 1900a.)

ŧ°.	Gms. Na ₂ MoO ₄ per 100 Gms. Solution.	Mols. Na ₂ MoO ₄ per 100 Mols. H ₂ O	Solid Phase.	t*.	Gms. Na ₂ MoO ₄ per 100 Gms. Solution.	Mols. Na ₂ MoO ₄ per 100 Mols. H ₂ O.	Solid Phase.
0	30.63	3.86	Na ₂ MoO ₄ .10H ₂ O	15.5	39.27	5.65	Na ₂ MoO ₄ .2H ₂ O
4	33.83	4.47	64	18	39.40	5.70	"
6	35.58	4.83	64	32	39.82	5.78	44
9	38.16	5.39	64	51.5	41.27	6.14	66
10	39.28	5.65	Na ₂ MoO ₄ .2H ₂ O	100	45.57	7.32	**

d of the sat. sol. at 18° is 1.437.

100 gms. H₂O dissolve 3.878 gms. sodium trimolybdate, Na₂Mo₂O₁₀, at 20°, and 13.7 gms. at 100°. (Ulik, 1867.)

100 cc. H_2O dissolve 28.39 gms. Na₂O.4MoO₂.6H₂O at 21°, $d_{25} = 1.47$. (Wempe, 1912.) Fusion-point data for Na₂MoO₄ + Na₂WO₄ and Na₂MoO₄ + Na₂SO₄ are given by Boeke (1907).

SODIUM NITRATE NaNO.

SOLUBILITY IN WATER. (Mulder; Berkeley, 1904; see also Ditte, 1875; Maumee, 1864; Etard, 1894.)

t*.	Gms. NaN	ĭO₃ per 100 Gms.	Mols. per	t°.	Gms. NaNO, per 100 Gms.			
6.	Solution.	Water.	Liter.	٠.	Solution.	Water.	Liter.	
0	42.2	72.9- 73	6.71*	80	59.7	148 –148. *	10.35*	
10	44.7	80.8-80.5	7.16	100	64.3	180 -175.8	11.30	
20	46.7	87.5-88	7.60	120	68.6	218 -208.8	12.22	
25	47.6	91 - 92	7.80	180	78. I	356.7	•	
30	48.7	94.9-96.2	8.06	220	83.5	506		
40	50.5	102 -104.9	8.51	225	91.5	1076		
50	52.8	112 -114	8.97	313‡	100	00		
60	54.9	122 -124	9.42					
		 Berkeley. 		T at 119°.		‡ m.pt.		

SOLUBILITY OF SODIUM NITRATE IN AQUEOUS AMMONIA SOLUTIONS AT 15°. (Fedotieff and Koltunoff, 1914.)

In Aqueous NH ₂ .			In A	queous N	H₃ + NH₄N	√O².
d ₁₅ of Gms. per 100 Gms. H ₂ O.		d ₁₆ of Sat. Sol.	Gms	. per 100 Gms.	H₂O.	
Sat. Sol.	NH ₄ .	NaNOs.	Sat. Sol.	NH.	NH,NO	NaNOs.
1.253	13.87	75.03	1.324	12.91	83.51	74.10
1.233	17.28	73.99	1.330	16.97	128.9	69.40
1.212	20.38	73.18				

SOLUBILITY OF SODIUM NITRATE IN AQUEOUS SOLUTIONS OF NITRIC ACID AT 0°. (Engel, 1887; see also Schultz, 1860.)

Equivalents per 10 cc. Solution.		Sp. Gr. of Solutions.	Grams per 100 cc. Solution.		
NaNO3.	HNO ₃ .	Solutions.	NaNO3.	HNO.	
66 . 4	0	1.341	5 6 . 5	0.00	
63 . 7	2.65	1.338	54.2	1.67	
60.5	5 · 7	1.331	51.48	3 · 59	
56 .9	8.8	I.324	48 . 42	5 · 55	
52·75	12.57	1.312	44 .88	7.92	
48.7	16.9	1.308	41 - 44	10.65	
39 · 5	27 .0	1.291	33 . 61	17.02	
35.1	32.25	1.285	29.86	20.33	
31.1	37 - 25	1.282	26.46	23 . 48	
23.5	48.0	1.276	20.0	30.26	
18.0	57 - 25	1.276	15.32	36.09	
12.9	71.0	1.291	10.97	44.76	

SOLUBILITY OF MIXTURES OF SODIUM NITRATE AND POTASSIUM NITRATE IN WATER AT 20°.
(Carnelly and Thomson, 1888.)

Per cent NaNO ₃ in Mixtures		100 Gms. O.	Per cent Na NOs in Mixtures	Gms. per 100 Gms. H ₂ O.	
Used.	NaNOs.	KNO ₃ .	Used.	NaNO3.	KNO ₃ .
100	86.8	0	45 · 7	53 · 3	34 · 7
90	96.4	13.2	40	45.6	35 · 5
80	98.0	38.5	20	20.8	33 · 3
60	90.0	47.6	10	9.4	31.5
50	66.o	40.0	0	0.0	33.6

100 gms. H₂O dissolve 24.9 gms. NaCl + 53.6 gms. NaNO₂ at 20°. (Rüdorff, 1873; Karsten; Nicol, 1891.)

SOLUBILITY OF SODIUM NITRATE IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE AT 0°. (Engel, 1891.)

Milligram Mols. per 10 cc. Solution.		Sp. Gr. of	Grams per 100 cc. Solution.		
Na ₂ O.	NaNOs.	Solutions.	NaOH.	NaNO ₃ .	
0.0	66.4	1.341	0.0	56.50	
2.875	62.5	1.338	2.30	53.19	
6.1	57 - 15	1.333	4.89	48.63	
12.75	47.5	1.327	10.21	40 - 42	
2 6.0	29.5	1.326	20.83	25.10	
39.0	17.5	I . 332	31.25	14.89	
45 .88	13.19	1.356	36.76	II · 22	
6o · 88	6.05	1.401	48.75	5.15	

Data for equilibrium in the system sodium nitrate, sodium sulfate and water at 10°, 20°, 25°, 30°, 34° and 35° are given by Massink (1916, 1917).

SOLUBILITY OF SODIUM NITRATE IN AQUEOUS SOLUTIONS OF SODIUM THIOSULFATE.

(Kremann and Rodemund, 1914.)

Results at 9°.

Results at 13° (B.).

Results at 25°.

Results at 16.5° (B.).

Gms. per 100 Gms. Sat. Sol.		. Gms. per 100 Gms. Solid Phase. Sat. Sol.		Solid Phase.	
NaNO.	Na ₂ S ₂ O ₃ .		NaNOs.	Na ₂ S ₂ O ₃ .	
33.31	12.26	NaNO ₃	35.42	12.72	NaNO _s
22.57	23.41	" +Na ₆ S ₇ O ₃₋₅ H ₆ O	25.40	24.25	"
4.22	34 · 77	Na ₂ S ₂ O ₃₋₅ H,	19.90	31.81	" +Na ₂ S ₂ O ₂₋₅ H ₂ O
			18.02	32.83	Na ₈ S ₂ O ₃₋₅ H ₂ O
			4.33	40.50	et

SOLUBILITY OF SODIUM NITRATE IN ALCOHOLS.

100 gms. abs. methyl alcohol dissolve 0.41 gm. NaNO₂ at 25°. 100 gms. abs. ethyl alcohol dissolve 0.036 gm. NaNO₃ at 25°. (de Bruyn, 1892.)

SOLUBILITY OF SODIUM NITRATE IN AQUEOUS ETHYL ALCOHOL AT DIFFERENT TEMPERATURES. (Bodlander, 1891; Taylor, 1897; Bathrick, 1896.)

				11004100 10 10 10 10 10 10 10 10 10 10 10 10			
Sp. Gr. of	Gms. per 100 cc. Solution.			Sp. Gr. of	Gms. per 100 cc. Solution.		
Solutions.	С.Н.ОН.	H₃O.	NaNO3.	Solutions.	C₀H₅OH.	Н₂О.	NaNO ₃ .
1.3700	0.0	75 - 34	61.66	I . 3745	0.0	75.25	62.20
1.3395	3.08	73 · 53	57 · 34	1.3162	6.16	70.82	54.64
1.3120	6.01	71.81	53 · 39	1.2576	11.60	68.10	46.06
1.2845	8.30	70.85	49.30	1.2140	16.49	65.04	39.87
1.2580	10.91	69.47	45 - 42	1.1615	22 . 17	61.67	32.31
1.2325	13.77	67.12	42.36	1.0855	32.22	52.92	23.41
1.2010	16.46	66.16	37.48	1.0558	37 - 23	48.50	19.85
				1.0050	43.98	42.78	13.74
				0.9420	52.60	32.13	9 · 47
				0.9030	60.00	25.65	4.65
				0.8610	63 . 16	21.31	ı .63

Resul	lts at 30° (7	Γ.).	Results at 40° (Bathrick).		
Wt. per cent Alcohol in	Gms. 1 per 100	Gms.	Wt. per cent Alcohol.	Gms. NaNOs per 100 Gms. Aq. Alcohol.	
Solvent.	Solution.	Water	Alcohol.	Aq. Alcohol.	
0	49 - 10	96.45	0	104.5	
5	46.41	91.15	8.22	90.8	
10	43 - 50	85.55	17.4	73 · 3	
20	37 - 42	74 · 75	26.0	61.6	
30	31.31	65.10	36 o	48.4	
40	25.14	55.95	42.8	40.6	
50 60	18.94	46.75	55 · 3	27 · I	
60	12.97	37 - 25	65.I	18.1	
70	7.81	28.25	77.0	9.4	
90	I.2I	12.25	87.2	4.2	

SOLUBILITY OF SODIUM NITRATE IN AQUEOUS ALCOHOL AT 25°.
(Armstrong and Eyre, 1910-11.)

Sol	Gms. NaNO	
Mols. C ₁ H ₆ OH per 1000 Gms. H ₂ O.	Gms, C ₂ H ₂ OH per 1000 Gms, H ₂ O.	per 100 Gms. Sat. Sol.
0	0	47 · 93
0.25	11.51	47.32
0.50	23.03	46.73
I	46.06	45.43
2	92.12	43.04

SOLUBILITY OF SODIUM NITRATE IN AQUEOUS SOLUTIONS OF ACETONE.

Results at 30°. Results at 40°. (Taylor, 1897.) (Bathrick, 1896.) Gms. NaNOs Wt. per cent Acetone in Solvent. Wt. Gms. NaNOs per 100 Gms. per cent Acetone. per 100 Gms Aq. Acetone. Water. Solution. 105 96.45 0 49 · IO 0.0 8.47 5 46.96 93.20 91.2 16.8 78.3 45.II 90.40 9.09 20 40 . TO 83.70 25.2 66.4 30 35.08 77.20 34.3 57.9 20.80. 46.2 40 70.75 44 · I 32.8 50 24.34 64.40 53.9 60 64.8 18.55 59.95 23.0 10.8 76.0 70 13.15 50.50 7.10 80 38.20 87.6 3.2 8p. I 20.20 90

100 gms. hydroxylamine dissolve 13.1 gms. NaNO2 at 17-18°. (de Bruyn, 1892.) 100 cc. anhydrous hydrazine dissolve 100 gms. NaNO3 at room temp.

(Welsh and Broderson, 1915.) Fusion-point data for NaNO₃ + NaNO₂ are given by Bruni and Meneghini (1909, 1910).

Results for NaNO₃ + SrNO₃ + KNO₃ are given by Harkins and Clark (1915) and results for NaNO₃ + TlNO₃ by van Eyk (1905).

SODIUM NITRITE NaNO.

SOLUBILITY IN WATER. (Oswald, 1912, 1914.)

t*. (oms. NaNO ₂ per Gms. Sat. Sol.	Solid Phase.	ť.	Gms. NaNO ₂ per 200 Gms. Sat. Sol.	Solid Phase.
- 4.5	9.1	Ice	30	47 .8	NaNO _s
- 9	23.8	"	40	49.6	**
-12.5	29.6	u	52.5	51.4	66
-15.5 Eute	C. 39.7	" +NaNO2	65	54.6	44
- 8 .	40.8	NaNO ₂	81	57.9	"
0	41.9	ec .	92	59.7	"
10	43.8	**	103	62.6	"
20	45.8 (4 - 1	3585) "	128	68.7	44

100 gms. H₂O dissolve 83.3 gms. NaNO₂ at 15°. 100 gms. H₂O dissolve 83.25 gms. NaNO₂ at 15°. (Divers, 1899.)

(v. Niementowski and v. Roszkowski, 1897.)
100 gms. H₂O dissolve 73.5 gms. NaNO₂ at 15°, d₁₅ = 1.3476.
(Greenish and Smith, 1901.)

SOLUBILITY OF SODIUM NITRITE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND VICE VERSA AT SEVERAL TEMPERATURES.
(Oswald, 1912, 1914.)

Result	s at o°.	Results	at 21°.	Results at 52°.		Results at 103°.	
Gms. per 10	o Gms. H ₂ O.	Gms. per 100	Gms. H ₂ O.	Gms. per 10	o Gms. H ₂ O.	Gms. per re	oo Gms. H ₂ O.
NaNO.	NaNOs.	NaNOs.	NaNO ₂	NaNOs.	NaNOs.	NaNO2.	NaNO ₂
73	0	84.75	0	108.8	0	166	0
73 68	19	81.1	9.6	104.3	20.6	153.3	33.2
67	36.3	79 · 7	23.5	99.5	43.2	148.8	58.8
64.9	41.7*	73.8	50.8	98.8	82 *	142.4	116 *
50.3	46.8	73.I	54.5*	65.2	88	100	126.8
30.2	55 - 4	64.2	56.7	44.2	92.9	60.1	142.9
0	74.2	46.8	62.8	27.2	101.4	0	181.2
		21.6	74.7	14.7	109		
		0	89.3	0	118		

^{*} Both salts in solid phase.

Similar results are also given for 18°, 65°, 81° and 92°.

100 gms. H₂O, simultaneously saturated with both salts, contain 53.9 gms. NaNO₂ + 11.8 gms. Na₂SO₄ at 16°. (Oswald, 1914.)

SOLUBILITY OF MIXTURES OF SODIUM NITRITE AND SILVER NITRITE IN WATER AT 14° AND AT 22°. (See also p. 620.)
(Oswald, 1912, 1914.)

	at 22°.	Results	at 14°.	Results
Solid Phase in Each Case.		Gms. per 100		Gms. per 10
Cond I made in Date Care.	AgNO ₈ .	NaNOs.	AgNO ₂ .	NaNOs.
AgNO ₂ +Na ₂ Ag ₂ (NO ₂) ₄ .H ₂ O	21.5	58.3	15.2	55
NaNO ₂ +Na ₂ Ag ₃ (NO ₂) ₄ .H ₂ O	13.4	7 8.3	11.3	74 - 7

100 gms. abs. methyl alcohol dissolve 4.43 gms. NaNO2 at 19.5°. 100 gms. abs. ethyl alcohol dissolve 0.31 gm. NaNO2 at 19.5°. (de Bruyn, 1892.)

SODIUM RHODONITRITE Na₄Rh₂(NO₂)₁₂.

100 gms. H₂O dissolve 40 gms. at 17°, and 100 gms. at 100°. (Leidie, 1890.)

SODIUM OLEATE C₈H₁₇CH: CH(CH₂)₇COONa.

SOLUBILITY IN WATER AND AQUEOUS BILE SALTS.
(Moore, Wilson and Hutchinson, 1909.)

Solvent.	Gms. Oleate per 200 Gms. Sat. Sol.
Water	5
Aq. 5% Bile Salts	7.6
Aq. 5% Bile Salts + 1% Lecithin	11.6

SODIUM OXALATE Na₂C₂O₄.

SOLUBILITY IN WATER. (Souchay and Leussen, 1856; Pohl, 1852.)

t°.	15.5°.	21.8°.	, too*.
Gms. Na ₂ C ₂ O ₄ per 100 gms. H ₂ O	3.22	3.74	6.33

100 gms. sat. solution of sodium oxalate in water contain 3.09 gms. Na₂C₂O₄ at 15° and 4.28 gms. at 50°. (Colani, 1916.)
100 gms. 95% formic acid dissolve 8.8 gms. Na₂C₂O₄ at 19.3°. (Aschan, 1913.)

SODIUM OXALATE

SOLUBILITY OF MIXTURES OF SODIUM OXALATE AND OXALIC ACID IN WATER AT 25°. (Foote and Andrew, 1905.)

Gms. per Solut	100 Gms. ion.	Mols. per 100 Mols. H ₂ O.		Solid Phase.	
H ₂ C ₂ O ₄ .	Na ₂ C ₂ O ₄ .	H ₂ C ₂ O ₄ .	Na ₂ C ₂ O ₄ .		
10.20	• • •	2.274		H ₂ C ₂ O ₄ .2H ₂ O	
10.50	o.83	2.370	0.130	$H_3C_3O_4.2H_3O + HNaC_3O_4.H_3O$	
9.15	0.71	2.032	0.106		
6.88	0.86	1.493	0.125	Double Salt, HNaC2O4.H2O	
1.14	1.25	0.234	0.172	Double Sait, HNaCaO4.HaO	
0.47	3.20	0.098	ر 0.446		
0.42	3.85	0.090	0.541	$HN_8C_5O_4.H_3O + Na_5C_5O_4$	
	3.60		0.502	Na ₂ C ₂ O ₄	

SOLUBILITY OF MIXTURES OF SODIUM OXALATE AND OTHER SODIUM SALTS IN WATER AT 15° AND AT 50°. (Colani, 1916.)

t°.	Gms. per 100 Gms. Sat. Solution.	Solid Phase.
15	0.027 Na ₂ C ₂ O ₄ + 26.28 NaCl	Na ₂ C ₂ O ₄ +NaCl
50	0.063 " $+ 26.64$ "	" + "
15	0.86 " + 10.26 Na ₂ SO ₄	$Na_2C_2O_4+Na_2SO_4.roH_2O$
50	0.22 " + 31.95 "	" +Na ₂ SO ₄
15	0.051 " + 45.86 NaNO ₃	Na ₂ C ₂ O ₄ +NaNO ₃
50	0.047 " + 53.06 "	" + "

EQUILIBRIUM IN THE SYSTEM SODIUM OXALATE, URANYL OXALATE AND WATER AT 15° AND 50°. (Colani, 1917.)

Results at 15°.	Results at 50°.
me ner roo Cme	Come Der von Come

Gms. per 100 Gms. Sat. Sol. S		Solid Phase.	Gms. per Sat.		Solid Phase.
Na ₂ C ₂ O ₄ . 3.00	UO ₂ C ₂ O ₄ .	Na ₂ C ₂ O ₄	Na ₂ C ₂ O ₄ . 4.28	UO2C2O4.	Na ₂ C ₂ O ₄
4.93	3.14	" +2.1.2.5	9.03	13.09	" +2.1.2.5
1.80′	5.01	2.1.2.5+2.4.5.11	4.62	12.33	2.1.2.5 + 2.2.3.5
0.80	2.65	2.4.5.11+UO ₂ C ₂ O ₄ .3H ₂ O	3.60	9.84	2.2.3.5+2.4.5.11
0	0.47	UO2C2O4.3H2O	1.01	3.58	2.4.5.11+UO ₂ C ₂ O ₄ .3H ₂ O
			0	T	UO1.C1O4.3H2O

 $Na_2(UO_2)_4.(C_2O_4)_4.11H_2O.$

SODIUM PALMITATE CH₂(CH₂)₁₄COONa.

100 gms. sat. solution in H2O contain 0.2 gm. sodium palmitate.

100 gms. sat. solution in 5% aq. bile salts contain 1 gm. sodium palmitate.
100 gms. sat. solution in 5% aq. bile salts + 1% lecithin contain 2.4 gms. sodium palmitate. (Moore, Wilson and Hutchinson, 1909.)

SOLUBILITY OF SODIUM PALMITATE IN PALMITIC ACID. (Donnan and White, 1911.)

t°.	Gms. Na Palmitate per 100 Gms. Liquid Phase	Gms. Na Palmitate per 100 Gms. Solid Phase (Na Palmitate+ Palmitic Acid).	t°.	Gms. Na Palmitate per 100 Gms. Liquid Phase.	Gms. Na Palmitate per 100 Gms. Solid Phase (Na Palmitate+ Palmitic Acid).
60.2	2.3	0.7	71	22.60	25.38
62	4.96	11.12	72.9	28.65	35.05
64.4	7.98	13.78	73.5	29.07	35.23
66.65	12.28	16.36	76	30.7	35.9
67.75	13.72	18.70	79.2	33.36	35.66
68.95	15.56	26.55	82	36.02	39.64

The solid phases form three series of solid solutions.

A special apparatus was devised for preparing the saturated solutions and filtering from the solid phases.

SODIUM p NITROPHENOL C₄H₄.ONa(1).NO₂(4).

SOLUBILITY IN WATER AND IN AQUEOUS NORMAL SOLUTIONS OF NON-ELECTROLYTES. (Goldschmidt, 1895.)

Gms. C ₆ H	ONa(1).NO	(4) per 10	oo Gms.	Solution in:
-----------------------	-----------	------------	---------	--------------

t* .	Water.	Alcohol.	Urea.	Glycerine.	Acetone.	Propionitril.	Acetonitril.	Urethane.	
23.7	5.597	5.615	6. 244	6. 188	6. 225	6. 257	6.065	6. 520	
28 .6	6. 721	6.874	7.489	7.440	7.498	7.571	7. 328	7.889	
30.6	7.256	•••	•••	• • •	• • •	• • •	• • •	•••	
33.6	8. 125	8. 318	9.000	9.025	9.025	9.066	8.886	9.507	
35.9	8.851	•••	•••	•••	•••	•••	•••	•••	
36. I	8.883		9.683	9.688	9.665	9.911	9.667	10.248	
40.2	9.88ī	10. 147	10.666	10.777	10.695	10.905	10.667	11.379	
45.2	11.235	11.513	12.068	12.229			• • •	12.869	
50. I	12.730	13.133	13.555	13.785	• • •		• • •	•••	

The solid phase is C₆H₄ONa.NO_{2.4}H₂O below 36°, and C₆H₄ONa.NO_{2.2}H₂O above 36° in each case.

SODIUM PHOSPHATE (Ortho) Na;PO4.12H2O.

SOLUBILITY IN WATER. (Mulder).

t°.	Gms. per 100 Gms. H.O.	t°.	Gms. per 100 Gms. H ₂ O.	t.	Gms. per 100 Gms. H _g O.
0	1.5	25	15.5	60	55
10	4. I	30	20	80	8 1
20	II	40	31	100	108
-		50	43		

SODIUM Hydrogen **PHOSPHATE** Na₂HPO₄.12H₂O.

SOLUBILITY IN WATER. (Shiomi, 1908; Menzies and Humphrey, 1912.)

(omoni, 1900) atomico una 11mpino), 1911/							
t°.	Gms. Na ₂ HPO ₄ per 100 Gms. Solid Phase. H ₆ O.	t°.	Gms. Na ₂ HPO ₄ per 100 Gms. Solid Phase. H ₂ O.				
- 0.43 - 0.24	1.42 Ice 0.70 "	45 47 · 23	67.3 Na ₂ HPO _{4.7} H ₂ O 76.58 (S) "				
- o. 5 Eutec.	"+Na ₂ HPO ₄ .12H ₂ O	48.3 tr.pt.	SNa ₂ HPO _{4.7} H ₂ O+				
+0.05	I.67 Na ₂ HPO ₄ .12H ₂ O	48 "	(S) \ Na ₂ HPO _{4.2} H ₂ O				
10.26	3.55 (S) "	50	80, 2 Na ₂ HPO ₄ .2H ₂ O				
15.11	5.23 (S) "	55.17	81.4 (S) "				
20	7.66 "	60	82.9 "				
25	12 "	70.26	88.11 (S) "				
30.21	20.81 (S) "	8o	92.4 "				
30.76	23.41 (S) "	89.74	102.87 (S) "				
32	25.7 "	90.2	101.1 "				
33.04	30.88 (S) "	95 tr.pt.	··· + Na ₂ HPO ₄				
34	33.8 "	95.2 "	(S) " "				
35.2 tr. pt.	" +Na ₂ HPO _{4.7} H ₂ O	96.2	104.6 Na ₂ HPO ₄				
36.45 "	(<u>S</u>) " "	99.77	102.15 (S) "				
37.27	47.51 (S) Na ₂ HPO _{4.7} H ₂ O	105	103.3				
39.2	51.8 "	120	99.2 "				

Results marked (S) by Shiomi, all others by Menzies and Humphrey.

100 gms. H₂O dissolve 12.2 gms. Na₂HPO₄ at 25°, determined by refractometer.

(Osaka, 1903-8.)

100 gms. H₂O dissolve 5.23 gms. Na₂HPO₄ at 15°, $d_{16} = 1.049$. (Greenish and Smith, 1901.) 100 gms. alcohol of $d_{16} = 0.941$ dissolve 0.33 gm. Na₂HPO₄ at 15.5°.

SODIUM Dihydrogen PHOSPHATE NaH2PO4.

SOLUBILITY IN WATER.

		(Imadsu, 191	1-12.)		
e.	Gms. NaH ₈ PO ₆ per 100 Gms. H ₈ O.		t*.	Gms. NaH ₂ PO ₄ per 100 Gms. H ₂ O.	Solid Phase.
0.1	57.86	NaHaPO.2HaO	45	148.20	NaH ₂ PO ₄ .H ₂ O
5	63.82	"	50	158.61	"
10	69.87	u	55	170.85	"
15	76.72	u	57	175.81	"
20	85.21	44	57 · 4 t		" +NaH ₂ PO ₄
25	94.63	**	60	179.33	NaH ₂ PO ₄
30	106.45	4	65	184.99	**
35	120.44	44	69	190.24	"
40	138.16	4	8o	207.20	**
40.8 tr	.pt	" +NaHaPO4-HaO	90	225.31	**
41	142.55	NaH ₂ PO ₄ .H ₂ O	99.1	246.56	4

SODIUM Acid **PHOSPHATE** NaH₂PO₄.H₂PO₄.

SOLUBILITY IN WATER AND IN ANHYDROUS PHOSPHORIC ACID, DETERMINED BY THE SYNTHETIC METHOD. (Parravano and Mieli, 1908.)

		So	lubility	in H.PO.			
r.	Gms. NaH ₂ PO ₄ H ₂ PO ₄ per 100 Gms. Sat. Sol.	Solid Phase.	e.	'Gms. NaH ₂ PO ₄ H ₂ PO ₄ per 100 Gms. Sat. Sol.	Solid Phase.	r.	Gms. NaH ₂ PO ₄ ,- H ₂ PO ₄ per 200 Gms. Sat. Sol.
- 5.7	20.77	Ice	79.7	87.48	NaH ₂ PO ₄	98.5	52.72
- 7.9	26.92	"	85	88.65	"	III	69.59
-11.4	34.15	"	101.7	91.47	"+NaH2PO4.H2PO4	119	77 - 55
-38	56.66	44	104.5	92.67	NaH ₂ PO ₄ .H ₂ PO ₄	122	81.71
-34	80.46	NaH ₂ PO ₄	110	95.79	66	123	87.20
41	81.82	"	119	97.99	u	of Also TT	DO 69
51.7	83.68	44	126.5	100	" m. pt	or the H	PO ₄ = 40.6°

Data are also given for the fusion points of NaH₂PO₄ + H₂PO₄. Fusion-point data for mixtures of NaPO₂ + Na₄P₂O₄ are given by Parravano and Calcagni (1908, 1910.)

EQUILIBRIUM IN THE SYSTEM SODIUM HYDROXIDE, PHOSPHORIC ACID AND WATER AT 25°.___ (D'Ans and Schreiner, 1910a.)

Mols. per re	PO ₄ .	ol. Solid Phase.	Mols. per ro	PO ₄ .	Solid Phase.
13.32	• • •	NaOH.H ₂ O	6.76	4.88	Na ₂ HPO _{4.7} H ₂ O
4.28	0.040	Na ₆ PO ₄ .12H ₆ O	7.31	5 · 55	" unstable
3.24	0.183	44	6.76	4.88	" +Na ₂ HPO ₄₋₂ H ₂ O
2.24	0.752	44	6.19	4.68	Na ₂ HPO ₄ .2H ₆ O
2.73	1.08	4	6.01	4.67	"
3.48	1.33	$Na_0PO_4.12H_2O+Na_0HPO_4.12H_2O$	5.12	4.36	44
2.62	1.00	Na ₂ HPO ₄ .12H ₂ O	4.81	4.22	4
1.56	0.78	44	4.36	4.08	u
2.38	1.60	44	4.06	4.03	4
3.18	2.24	*	4.19	4.38	"
4.65	3.55	**	4.32	4.96	"
5.63	3.87	**	4.65	5.89	•
6.31	4.63	Na ₂ HPO ₄ .7H ₂ O	4.88	6.40	•

SODIUM PyroPHOSPHATE Na₄P₂O₇.10H₂O.

SOLUBILITY IN WATER. (Mulder; Poggiale.)

ť.	Gms. per	t.	Grns. per 100 Gms. H _e O.	ť.	Gms. per 100 Gms. H _e O.
0	3.16	25	8. 14	6 0	21.83
10	3.95	30	9.95	80	30.04
20	6.23	40	13.50	100	40.2 6
		50	17.45		

SODIUM PyroPHOSPHATES.

SOLUBILITY IN WATER. (Giran, 1903a.)

Salt.	Formula.	ť.	Gms. Anhydrous Salt per 100 cc. Sat, Sol.
Monosodium Pyrophosphate Disodium Pyrophosphate Trisodium Pyrophosphate	NaH ₂ P ₂ O ₇	18	62.7
	Na ₂ H ₂ P ₂ O ₇ .6H ₂ O	18	. 14.95
	Na ₂ HP ₂ O ₇ .6H ₂ O	18	28.17

SODIUM PHOSPHITES

SOLUBILITY OF SODIUM PHOSPHITES, ETC., IN WATER.

Salt.	Formula.	t°.	Gms. Salt per 100 Gms. H ₂ O.	Authority.
Hydrogen Phosphite	(NaH)HPO,21H,O	0	56 }	(Amat Compt.
	"	10	66 }	(Amat. — Compt. rend. 106, 1351, '88.)
44	u	42	193	
Hypophosphate	$Na_4P_2O_6.10H_2O$	∞ ld	3.3)	
Hydrogen Hypophosphate	Na ₂ HP ₂ O ₆ .9H ₂ O	3	4.5 }	(Salzer — Liebig's Ann. 211, 1, 82.)
Tri Hydrogen "	NaH _a P ₂ O ₆ 3H ₂ O	∞ ld	4.5 } 6.7 }	Aut. 214 7 083
Di Hydrogen "	Na ₂ H ₂ P ₂ O ₆ .6H ₂ O	∞ ld	2.2	(Salzer — Lichia's
Di Hydrogen "	Na ₂ H ₂ P ₂ O ₆ .6H ₂ O	b. pt	. 20.0∫	(Salzer — Liebig's Ann. 187, 331, '77.)
Hypophosphite	(NaH)HPO,.H,O	25	100.0 }	(U. S. P.)
Hypophosphite	(NaH)HPO ₂ .H ₂ O	b. pt	. 830)	•

100 gms. H₂O dissolve 108.7 gms. anhydrous sodium hypophosphite (NaH₂PO₂) at 15°, d₁₅ of sat. sol. = 1.388. (Greenish and Smith, 1901.)

SODIUM (Double) PHOSPHATE, FLUORIDE Na₂PO₄.NaF.12H₂O.

100 gms. water dissolve 12 gms. of the double sodium salt at 25°, and 57.5 gms. at 70°. Sp. Gr. of solution at 25° = 1.0329; at 70° = 1.1091. (Briegleb, 1856.)

SODIUM PICRATE C₆H₂(NO₂)₃.ONa.H₂O.

SOLUBILITY IN WATER AND IN AQUEOUS SOLUTIONS AT 25°. (Fisher and Miloszewski, 1910.)

100 cc. H₂O dissolve 4.247 gms. C₆H₂(NO₂)₃.ONa.H₂O at 25°.

Solubility in Aq		Gms. C ₀ H ₂ (NO ₂) ₂ .ONa.H ₂ O per 100 oc. Aq. Solution of Normality:									
Solution of:	0.01.	0.02.	0.04.	0.066.	0.10.	0.25.	0.5.	1.			
Na ₂ CO ₃	4.159	4.044	3.807	3.434	3.187	2.017	1.120	0.611			
NaCl	4.180	3.956	3.677	3.335	3.021	1.678	0.846	0.410			
Na_2SO_4	4.246	4. 102	3.870	3.651	3.195	2.053	1.156	0.552			
Na ₈ PO ₄	4.235	4.051	3.814	3.562	3.225	2.210	1.320	0.705			
NaOH	4.102	4.048	3.715	3.339	2.041	1.781	0.021	0.371			
NaNO ₂	4.154	4.020	3.710	3.363	3.041	1.032	0.943	0.684			
NaBr	4.100	4.117	3.770	3.384	3.024	I.777	0.012	0.400			

Data for the solubility of sodium picrate and the sodium salts of other nitrophenols in aqueous alcohol and acetone solutions at 25° are given by Fisher (1914).

SODIUM SALICYLATE C.H.OH.COONa.

SOLUBILITY IN AQUEOUS ETHYL ALCOHOL AT 25°. (Seidell, 1909, 1910.)

Wt. Per cent C ₂ H ₂ OH in Solvent.	d ₃₆ of Sat. Sol.	Gms. C ₄ H ₄ OH- COONs per 100 Gms. Sat. Sol.	Wt. Per cent C ₂ H ₂ OH in Solvent.	d_{35} of Sat. Sol.	Gms. C ₆ H ₄ OH- COONa per 100 Gms. Sat. Sol.
0	1.256	53 . 56	60	1.066	38.40
10	1.235	52.10	70	1.016	33
20	1.205	50.20	80	0.957	25
30	1.176	48	90	0.885	15
40	1.142	45.50	92.3	0.864	12
50	1.106	42.20	100	0.805	3.82

100 gms. sat. solution in water contain 51.8 gms. C₆H₄OHCOONa at 15° and d₁₅ of the sat. sol. is 1.249. (Greenish and Smith, 1901.) See also last line of first table on p. 590.

100 gms. propyl alcohol dissolve 1.16 gms. C₆H₆OHCOONa at ord. temp.

Sodium salicylate distributes itself between olive oil and water at 15° in the ratio of 0.156 gm. C₆H₄OHCOONa per 100 cc. oil layer and 1.444 gms. per 100 cc. aqueous layer. (Harrass, 1903.)

SODIUM SELENATE Na₂SeO₄.10H₂O.

SOLUBILITY IN WATER. (Funk, 1900a.)

t° .	Gms.	Mols. Na ₂ SeO ₄ per 100 Mols. H ₂ O.	Solid Phase.	t •	Gms. Na ₂ SeO ₄ per 100 Gms. Solution.	Mols. Na ₂ SeO ₄ per 100 Mols. H ₂ O.	Solid Phase.
0	11.74	1.26	Na ₂ SeO ₄ .xoH ₂ O	35.2	45 - 47	7 · 94	Na ₉ ScO ₄
15	25.01	3.18	4	39.5	45.26	7.87	44
15 18	29.00	3.90	•	50	44.49	7.63	"
25.2	3 6.91	5.57	*	75	42.83	7.14	•,
27	39.18	6.13	•	100	42.14	6.93	*
30	44.05	7.50					

Sp. Gr. of saturated solution at $18^{\circ} = 1.315$.

SODIUM SILICATE Na2SiO2.9H2O.

SOLUBILITY IN AQUEOUS SODIUM HYDROXIDE AND SODIUM CHLORIDE SOLUTIONS. (Vesterberg, 1912.)

Solvent.	t°.	2	Gms. per 100 cc. Sat. Solution.				
Solvent.	٠.	d_{17} of Sat. Sol.	$SiO_2 = Na_2SiO_2.9H_2O$. NaCl.			
Approx. 0.5 n NaOH	17.5	1.129	6.942	5.419 = 25.56			
" " NaCl	17.5	1.150	7.347	7.172 33.83	2.297		
Saturated NaCl Solution	19	1.258	4.563	4.376 20.64	27.91		

Solid phase Na₂SiO₂.9H₂O in each case. Fusion-point data for Na₂SiO₂ + SrSiO₂ are given by Wallace (1909). Results for Na₂SiO₂ + Na₂WO₄ are given by van Klooster (1910-11).

SODIUM STANNATE Na₂SnO₃.3H₂O.

100 gms. H_2O dissolve 67.4 gms. at 0°, and 61.3 gms. at 20°. Sp. Gr. of solution at 0° = 1.472; at 20° = 1.438. (Ordway, 1865.)

SODIUM SUCCINATE (CH₂)₂(COONa)₂.6H₂O.

SOLUBILITY IN WATER. (Marshall and Bain, 1910.)

44	ims. (CH ₂) ₂ - (COONa) ₂ (er 100 Gms. H ₂ O.	Solid Phase.	to.	Gms. (CH ₂) ₂ - (COONa) ₂ per 100 Gms H ₂ O.	Solid Phone
0	21.45	(CH ₂) ₂ (COONa) ₂ .6H ₂ O	50	56.3	(CH ₂) ₂ (COONa) ₂ .6H ₂ O
12.5	27.38	66	62.5	78.49	"
25	34.90	æ	64.9	83.38	" $+(CH_2)_2(COONa)_2$
37.5	43.64		75	86.63	(CH ₂) ₂ (COONa) ₂

SOLUBILITY OF SODIUM HYDROGEN SUCCINATE IN WATER. (Marshall and Bain, 1910.)

e.	Gms. (CH _s) _r (COOH)(COON per 100 Gms. H	la) Solid Phase.	r.	Gms. (CH ₂) ₂ - (COOH) (COONa) per 100 Gms. H ₂ O.	Solid Phase.
0	17.55	NaHSu*.3H ₆ O	38.7	63.99	NaHSu.3H ₂ O+NaHSu
2.5	27 · 93	44	50	67.37	NaHSu
25	39.82	44	62.5	76.15	44
37.5	60.01	4	75	86	"

EQUILIBRIUM IN THE SYSTEM SODIUM SUCCINATE, SUCCINIC ACID AND WATER. (Marshall and Bain, 1910.)

	Resul	ts at o°.	Results at 25°.				
Gms. per	roo Gms. Sol.		Gms. per	roo Gms. . Sol.			
Na ₂ Su.	H ₂ Su.	Solid Phase.	Na ₂ Su.	H ₂ Su.	Solid Phase.		
14 2 30.	2.68	H ₂ Su*	O C	7.7I	H ₂ Su		
3.23	4.76	"	3.68	10.26	"		
5.38	5.83	u	8,99	13.35	"		
8.27	7.12	" +NaHSu.3H ₂ O	12.64	15.53	44		
8.67	6.27	NaHSu.3H ₂ O	15.26	16.90	" +NaHSu.3HeO		
9.68	4.74	"		13.83	NaHSu.3H ₂ O		
11.74	3.49	"	15.97 18.89	8.41	Namou.3mgO		
15.62	•	44			64		
19.02	2.34		22.71 26.88	5.65			
18.36	1.90	Tragou.ucgo		4.08	" +Na ₂ Su.6H ₂ O		
18.07	1.67	Na ₂ Su.6H ₆ O	26.50	2.38	Na ₂ Su.6H ₂ O		
17.87	0.94	"	26.11	0.85	et		
17.64	• • •		25.87	0	"		
Results at 50°.				Results	at 75°.		
0	19.27	H ₂ Su*	0	37.64	H _e Su		
5.95	22.90	"	8.22	40.38	u		
10. 22	25.33	u	13.14	42.50	4		
15.49	28.73	"	16.93	44 38	"		
19.65	31.73	" +NaHSu	19.56	45.98	" +NaHSu		
20.72	26.51	NaHSu	21.88	35.60	NaHSu		
22.53	18.44	"	24.30	26.82	44		
25.53	13.00	u	29.45	15.28	u		
28.28	9.46	"	36.11	7.79	, "		
30.48	7.38	u	41.26	4.93	u.		
37.33	4.20	" +Na ₂ Su.6H ₂ O	45.27	4	" +NaeSu.HeO		
36.85	3.88	Na-Su.6H ₂ O	45.36	3.17	Na ₂ Su.H ₂ O		
36.67	2.66	4	45.93	1.23	"		
36.43	0	4	46.42	0	v		

The following double and triple points were located:

t°.	Gms. per 100	Gms. Sat. Sol.	Solid Phase.		
	Na ₂ Su.	H ₂ Su.	Sond Phase.		
34.9	30 .8	5.6	NaHSu.3H ₂ O+NaHSu+Na ₂ Su.6H ₂ O		
37.8	19.6	25.46	NaHSu.3H ₂ O+NaHSu+H ₂ Su		
38.7	22.47	16.44	NaHSu.3H ₂ O+NaHSu		
63.4	42.92	3.64	Na ₂ Su.6H ₂ O+Na ₂ Su.H ₂ O+Na HSu		
64.9	45 · 43	• • •	Na ₂ Su.6H ₂ O+Na ₂ Su.H ₂ O		

^{*}In the above tables the abbreviation Su is used for (CH₂)₂(COO)₂.

SODIUM SULFATE NasSO4.

SOLUBILITY IN WATER.
(Mulder; Löwel, 1851; Tilden and Shenstone, 1883; Etard, 1894; Funk, 1900a; Berkeley, 1904.)

t*.	Gms. Nas	ms.	Mols. Na _s SO ₄ per	Solid Phase.	<u>.</u> ۰۰	Gms. Na 100 G	ms.	Mols. Na ₂ SO ₄ per	
	Solution.	Water.	Liter (B.).		•	Solution.	Water.	Liter (B.))
0	4.76	5.0	0.31 N	a ₂ SO ₄ .10H ₂ O	50	31.8	46.7	2.92	Na ₂ SO ₄
5	6.0	6.4		44	60	31.2	45.3	2.83	44
10	8.3	9.0	0.631	-	80	30.4	43 . 7	2.69	•
15	8. 11	13.4			100	29.8	42.5	2.60	•
20	16.3	19.4	I.32	44	120	29.5	41.95	• • • •	66
25	21.9	28.0		4	140	29.6	42		•
27.5	25.6	34.0		•	160	30.7	44.25		•
30	29.0	40.8	2.63	*	230	31.7	46.4		
31	30.6	44.0		4	ŏ	16.3	19.5	• • •	NasSO ₄₋₇ HgO
32	32.3	47.8		•	5	19.4	24	• • •	•
32.75	33.6	50.65	3.11	"	10	23.I	30		
33	33.6	50.6		a ₂ SO ₄	15	27.0	37	• • •	•
35	33 · 4	50.2		4	20	30.6	44	•••	•
40	32.8	48.8	3.01	•	25	34.6	53	• • •	•

The very carefully determined values of Berkeley are as follows:

r.	d_t of Sat. Sol.	Gms. Na ₂ SO ₄ po 100 Gms H ₂ O.	Solid Phase.	ť.	d_t of Sat. Sol.	Gms. Na ₂ SO ₄ pe 100 Gms. H ₂ O.	
0.70	1.0432	4.71	Na ₂ SO ₄ .10H ₂ O	32.5 tr	. pt.		Na ₂ SO ₄ .10H ₂ O+Na ₂ SO ₄
10.25	1.0802	9.21	"	33 · 5	1.3307	49.39	Na ₂ SO ₄
15.65	1.1150	14.07	**	38.15	1.3229	48.47	"
20.35	1.1546		**	44.85	1.3136	47 - 49	44
24.90	1.2067	27.67	"	60.10	1.2918	45.22	**
27.65	1.2459	34.05	**	75.05	1.2728	43 · 59	\
30.20	1.2894	41.78	66	89.85	1.2571	42.67	**
31.95	1.3230	47.98	"	101.9*	1.2450	42.18	4
				* B. pt.			

The following additional data at high temperatures, determined by the sealed tube method, are given by Wuite (1913-14).

r.	Mol. Per cent Na ₂ SO ₄ .	Gms. Na ₂ SO ₄ per 100 Gms. H ₂ O.	Sol	id Phase.	ť.	Mol. Per cent Na ₂ SO ₄ .	Gms. Na ₂ SO ₄ per 100 Gms. H ₂ O.	Solid Phase.	
62	5.39	44.92	Na ₂ SO	4 (rhombic)	208	5.39	44.92	Na ₂ SO ₄ (rhombic)	
70	5.27	43.87	**	**	235	tr. pt.		" +monoclii	io
80	5.18	43.07	"	"	241	5.39	44.92	Na ₂ SO ₄ (monoclinic)	
120	5.04	41.84	"	66	250	5.04	41.84	4 4	
190	5.255	43.74	"	**	279	4.12	33.84	u u	
192	5.27	43.87	"	"	319	2.56	20.71	"	

Supersolubility curves for the ice phase, Na₂SO₄.7H₂O phase and Na₂SO₄ phase were determined by Hartley, Jones and Hutchinson (1908) by agitating mixtures of sodium sulfate and water contained in sealed tubes, and noting the points at which spontaneous crystallization occurred while the tubes were gradually cooled. The effect of mechanical friction, produced by bits of glass, garnet, etc., was also studied.

SODIUM SULFATE

Solubility of Mixtures of Sodium Sulfate and Magnesium Sulfate in Water (Astrakanite) $Na_2Mg(SO_4)_2.4H_2O$.

(Roozeboom, 1887, 1888.)

6° .	Mols. per 100 Mols. H ₂ O.		Grams p Grams	er 100 H₃O.	Solid	
Na	NasSO4.	MgSO4.	NasSO4.	MgSO4.	Phase.	
22	2.95	4.70	23.3	31.4	Astrakanito	
24.5	3 · 45	3.68	27 . 2	24.6	*	
30	3 · 59	3 · 59	28.4	24.I	*	
35	3.71	3.71	29.4	24.8	•	
47	3.6	3 .6	28 . 4	24.I	*	
22	2.95	4.70	23.3	31.4	Astrakanite + NasSOs	
24.5	3 · 45	3.62	27.2	24.2	"	
30	4.58	2.91	36 · I	19.1	44	
35	4.3	2.76	33.9	18.44	44	
18.5	3.41	4.27	43.0	45 · 5	Astrakanite + MgSO ₆	
22	2.85	4.63	35.2	48.9	66	
24.5	2.68	4.76	32.5	50.3	•	
30	2.3	5.31	25.9	55.0	•	
35	1.73	5.88	23.5	59 · 4		

SOLUBILITY OF MIXTURES OF SODIUM SULFATE, POTASSIUM CHLORIDE, POTASSIUM SULFATE, ETC., IN WATER.

(Meyerhoffer and Saunders, 1899.)

	Sp. Gr. of	Mo	ls. per 100	o Mols. H	₂ О.	C VI Di		
t°.	Solutions.	SO	K,	Naa	Cla	Solid Phase.		
*4.4	•••	5.42	14.39	51.83	60.8	KaNa(SO4)s+NasSO4.xoHsO+ KCl+NaCl		
0.2	• • •	3.35	12.78	50.93	60.36	Na ₂ SO ₄ .10H ₂ O+KCl+NaCl		
- 0.4		3.59	16. 38	40.75	53.54	Na ₂ SO ₄ .roH ₂ O+KCl+K ₂ Na(SO ₄) ₂		
16.3		4.72	17.58	50.56	63.42	K ₂ Na(SO ₄) ₂ +KCl+NaCl		
24.8	1.2484	4.37	20.00	48.36	64.01	K ₂ Na(SO ₄) ₂ +KCl+NaCl		
* 16.3	• • •	16.29	9. 16	61.06	53·9 3	K ₃ Na(SO ₄) ₂ +NaCl+Na ₂ SO ₄ .10H ₂ O+ Na ₂ SO ₄		
24 . 5	1.2625	14.45	9.90	58.46	53.91	K ₈ Na(SO ₄) ₂ +NaCl+Na ₂ SO ₄		
0.3	• • •	2.75	25.77	17.93	40.95	K ₃ Na(SO ₄) ₂ +KCl+K ₂ SO ₄		
25.0	1.2034	2.94	36. 20	14.80	48. <i>o</i> 6	K ₂ Na(SO ₄) ₂ +KCl+K ₂ SO ₄		
* 17.9	1.2474	13.84	0.0	62.57	48.70	Na ₂ SO ₄ .10H ₂ O+Na ₂ SO ₄ +NaCl		
* 30. I	1.2890	50.41	10.08	40.33	0.0	$K_3Na(SO_4)_2+Na_3SO_4.10H_2O+Na_3SO_4$		
-21.4		• • •		46.61	46.36	NaCl.2H2O+Na2SO4.10H2O		
-23.7	• • •	• • •	10.51	39.58	50.09	NaCl.2H2O+KCl		
- 10.9	• • •	I.45	30.68	• • •	29.23	KCI+K2SO4		
- 3	• • •	16.25	10.03	6. 2 1	• • •	K ₂ Na(SO ₄) ₂ +Na ₂ SO ₄ .10H ₂ O		
- 3	• • •	16.24	10.03	6. 21	• • •	K ₂ Na(SO ₄) ₂ +K ₂ SO ₄		
-14	• • •	1.39	25.59	8. 78	32.94	KaNa(SO4)z+Na2SO4.10H2O+KC		
-14	•••	1.39	25.59	8.78	32.94	KaNa(SO4)2+KaSO4+KCl		
-23.3	•••	0.41	15.15	44.20	58.97	NasSO4.10H2O+KCl+NaCl.2H2O		

^{*} Indicates transition points.

SOLUBILITY OF SODIUM SULFATE IN AQUEOUS SOLUTIONS OF SODIUM ACETATE AT 25°.

(Fox, 1909.)

Gms. per 100 Gms. Sat.Sol.		Solid Phase.	Gms. per 100 G	Call a Dhaire	
CH₄COONa.	Na ₂ SO ₄ .	Sond Phase.	CH₄COONa.	Na ₂ SO ₄ .	Solid Phase.
0	21.9	Na ₂ SO ₄ .10H ₂ O	12.58	13.50	Na ₂ SO ₄ .10H ₆ O
4.10	17.72	4	16.26	11.50	44
7.71	16.48	u	20.68	8. ro	

SOLUBILITY OF SODIUM SULFATE IN AQUEOUS SODIUM CHLORIDE AT 15°. ((Schreinemakers and de Baat, 1909.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100	Solid Phase.	
NaCl.	Na ₂ SO ₄ .	Sond Phase.	NaCl.	Na ₂ SO ₄ .	Sond Phase.
5.42	7.86	Na ₂ SO ₄ .10H ₂ O	21.03	5.26	Na ₈ SO ₄ .10H ₈ O
11.51	5.87	44	23.39	5.64	" +NaCl
15.97	5.23	44	25.21	2.26	NaCl

SOLUBILITY OF SODIUM SULFATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT DIFFERENT TEMPERATURES. (Seidell, 1902.)

Results at 10°. Resu		ults at 21.5°.		Results at 27°.		7°.		
Sp. Gr.			Sp. Gr. of			Sp. Gr. of	Gms. per	100 Gms.
Solutions	· NaCl.	NasSO4.	Solutions.	NaCl.	NasSO4.	Solutions.	NaCl.	Na SO4.
1 ·080	0.0	9.14	1.164	0.0	21.33	1.228	0.0	31.10
1.083	4.28	6.42	1.169	9.05	15.48	1.230	2.66	28.73
I.IOE	9.60	4.76	1.199	17.48	13.73	1.230	5.29	27.17
1.150	15.65	3 · 99	1.214	20.41	13.62	1.235	7.90	26.02
1.164	21.82	3 · 97	1.243	26.01	15.05	1.259	16.13	24.83
1.192	28.13	4.15	I .244	26.53	14.44	1.253	18.91	21.39
1.207	30.11	4.34	I.244	27.74	13.39	1.249	19.64	20.II
1.217	32.27	4 · 59	I · 244	31.25	10.64	1.245	20.77	19.29
I . 223	33.76	4.75	I.243	31.80	10.28	1.238	32.33	9.53
			1.245	32.10	8.43			
			1.219	33.69	4.73			
			1.212	34.08	2.77			
			1.197	35.46	0.00			

Results at 30°.		Results at 33°.			Results at 35°.			
Sp. Gr.	Gms. per	100 Gms. H ₂ O.	Sp. Gr. of			Sp. Gr. of	Gms. per	TOO Gms.
of Solutions.	NaCl.	Na ₂ SO ₄ .	Solutions.	NaCl.	NasSO4.	Solutions.	NaCl.	NasSO .
1.281	0.0	39.70	1.329	0.0	48 . 48	I.324	0.0	47 - 94
1.282	2 . 45	38.25	1.323	I.22	46.49	1.314	2.14	43.75
1.284	5.61	36.50	1.318	1.99	45 . 16	1.256	13.57	26.26
1.290	7.91	35.96	1.315	2 . 64	44.09	1.238	18.78	19.74
1.276	10.61	31.64	1.309	3 · 47	42.61	1.231	31.91	8.28
1.270	12.36	29.87	1.265	12.14	29.32	1.193	35.63	0.00
1.258	15.65	25.02	1.237	21 .87	16.83			
1.249	18.44	21.30	I.234	32.84	8.76			
I.244	20.66	19.06	1.217	33 - 99	4.63			
1.236	32.43	9.06	1.208	34 · 77	2.75			

SOLUBILITY OF SODIUM SULFATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 25°.

(Cameron, Bell and Robinson, 1907.)

da of G	ims. per 10	Gms. H ₂ O.	Solid Phase.	d _{as} of Sat. Sol.	Gms. per 10	o Gms. H ₂ O.	Solid Phase.
Sat. Sol.	NaCl.	Na ₂ SO ₄ .	Source Prince.	Sat. Sol.	NaCl.	Na ₂ SO ₄ .	Juli Parist.
I.2173	2.96	26.60	Na ₆ SO ₆ .zoH ₆ O	1.2429	- 26. 54	12.64	Na _e SO _e
1.2162	5.79	24.32	44	1.2438	31.06	9.98	44
1.2150	9.90	21.41	4	1.2451	32.41	9.93	44
I.2275	13.43	19.62	4	1.2453	33	9.84	" +NaCl
1.2385	15.82	19.64	41	1.2309	33.81	6.66	NaCl
1.2571	19.13	20.73	" $+Na_2SO_4$	1.2162	34.60	3 .38	44
1.2476	23.22	16. 28	Na ₂ SO ₄	I.2002	35.80	0	44

Data are also given for the system sodium sulfate, sodium chloride, calcium sulfate and water at 25°.

SOLUBILITY OF SODIUM SULFATE IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE AT 25°. (D'Ans and Schreiner, 1910.)

Mols. per 1000 Gms. Sat. Sol.		Solid Phase.	Mols. per rooc	Solid Phase.	
(NaOH) ₂ .	Na ₂ SO ₄ .	Soud Phase.	(NaOH) ₂ .	Na _e SO _e .	Soud Phase.
0.074	1.41	Na ₂ SO ₄ .10H ₂ O	2.82	0.24	Na ₂ SO ₄
0.70	1.08	"	3.52	0.126	44
1.47	0.90	" $+Na_2SO_4$	5.83	0.013	u
2.02	0.59	Na ₂ SO ₄	6.62	. 0	O ₂ H.HO ₈ N

SOLUBILITY OF SODIUM SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 25°. (D'Ana, 1906; 1909c; 1913.)

Sat. Sol. Solid Phase. Sat. SO ₂ .	Na ₂ SO ₄ .	
ANDOUGH ATORONGE. SUG.	6	
O I.54I Na ₂ SO ₄ .10H ₂ O 8.70	0.076	NaH ₂ (SO ₄) ₂ .H ₂ O
0.286 1.671 " 8.86	0. 156	u ,
0.338 1.742 " 8.93	0.273	"
0.60 1.85 " 8.84	0.527	" (unstable)
0.763 2 " 8.70	0.808	" "
0.884 2.256 " +Na ₂ SO ₄ 8.62	0.844	« «
0.423 0.77 NaHSO4.H4O 8.61	0.899	"
0.496 0.47 " 8.87	0.445	" +Na ₁ SO ₄₋₄ }H ₂ SO ₄
1.666 2.437 Na ₂ SO ₄ +Na ₄ H(SO ₄) ₂ 8.93	0.437	Na ₂ SO ₄₋₄ H ₂ SO ₄
1.576 2.363 "+Na ₆ H(SO ₂) ₂ .H ₂ O 9.08	0.394	"
2.611 2.001 $Na_0H(SO_0)_2+$ " 0.36	0.425	" +NaHS _t O _t
.5.91 0.409 NaHSO4 9.18	0.567	NaHS ₂ O ₇
6.30 0.332 " 9.42	0.728	u
6.64 0.297 "+NaH ₂ (SO ₂) ₂ .H ₂ O 9.48	0.76	4
6.90 0.173 NaH ₂ (SO ₂) ₂ .H ₂ O 9.48	0.953	" +?
7.36 0.071 " 9.85	0.787	?
7.74 0.047 " 9.98	0.908	?
8.12 0.037 " 9.77	1.03	unstable
8.40 0.046 " 10.16	0.797	
10.78	0.302	

[•] From this point on the figures in this column are Mols.SO₂ = H₂SO₄ + SO₂.

100 cc. sat. solution of Na₂SO₄ in absolute H₂SO₄ contain 29.99 gms. Na₂SO₄ and the molecular compound which is formed contains 8 mols. H₂SO₄ per I mol. Na₂SO₄ and moltage to about 40° (Region 1992).

Na₂SO₄ and melts at about 40°.

(Bergins, 1910.)

Aqueous H₂SO₄ containing 0.51 mol. per liter dissolve 2.238 mols. Na₂SO₄ per liter at 25°; Aq. H₂SO₄ of 0.779 mol. per liter dissolves 2.465 mols. Na₂SO₄ at the same temperature.

(Hers, 1911-12.)

671

SOLUBILITY OF SODIUM SULFATE IN AQUEOUS ETHYL ALCOHOL. (de Bruyn, 1900.)

e.	Concentra- tion of	Gms. Na ₂ SO ₄	Gms. p	er 100 Gms. S	Soud Phase.	
۲.	Alcohol in Wt. %.	per 100 Gms. Aq. Alcohol.	. H ₀ .	С.Н.ОН.	Na ₂ SO ₄ .	Soud Phase.
15	0	12.7	88.7	0	11.3	Na ₂ SO ₄ .10H ₂ O
	9.2	6.7	85.1	8. 6	6.3	"
66	19.4	2.6	78.6	18.9	2.5	"
66	39.7	0.5	60	39.5	0.5	"
66	58.9	O. I	41.1	58.8	O. I	"
66	72	0	28	72	.0	"
66	0	37 · 4	72.8	0	27.2	Na ₂ SO ₄ .7H ₂ O
"	11.2	16.3	76 . 5	9.5	14	66
66	20.6	7	74.3	19.2	6.5	44
66	30.2	2	68.4	29.6	2	44
25	0	28.2	78. I	0	21.9	NagSO4.10HgO
	10. 6	13.9	78.5	9.3	12.2	"
66	24	4.5	72.8	22.9	4.3	44
"	54	0.4	45.6	54	0.4	" +Na ₂ SO ₄
36	0	49.3	67	0	33	Na _e SO _e
"	8.8	29.2	70.6	6.8	22.6	"
**	12.8	22.4	71.2	10.5	18.3	"
66	17.9	15.4	71.1	15.5	13.4	44
66	18.1	15.3	71	15.7	13.3	4
"	28.9	5.4	66 .5	28.4	5. I	4
"	48.7	o.8	50.9	48.3	0.8	4
45	0	47.9	67.6	o	32.4	4
	9	27.5	71.3	7. I	21.6	44
66	14.5	19.2	71.8	12.1	16. I	"
66	20.6	12.3	70.6	18.4	10	"
66	.31	5.1	65.6	29.5	4.9	44

The following additional determinations at 25° are given by Schreinemakers and de Baat (1909):

25	• • •		63.41	34.84	1.75	Na ₂ SO ₄ .10H ₂ O
	• • •	• • •	49	50.5	0.5	
"	• • •	• • •	46.6	53	0.4	" +Na ₂ SO ₄
66			34.9	64.95	0.15	Na ₂ SO ₄

Between certain concentrations of the aqueous alcohol the liquid separates into two layers. The following results were obtained at 25°, 36° and 45°:

ŧ°.		Upper Layer.	•	Lower Layer.			
•	Gms. H ₂ O.	Gms. C ₂ H ₅ OH.	Gms. Na ₂ SO ₄ .	Gms. H ₂ O.	Gms. C ₂ H ₅ OH.	Gms. Na ₂ SO ₄ .	
25 "	66.5	27.3	6.2	67 . 4	5.1	27 · 5	
ű	68.1	23.9	8.0	68.5	6.0	25.5	
"	68.3	23.1	8.6	68.3	6.7	25.0	
36				66.6	4.I	29.3	
"	57 · 7	38.4	3.9		•••		
"	65.0	28.3	6.7	68.8	5.9	25.3	
"	68. ı	21.2	10.7	68.g	9.4	21.7	
45	ъ.8	32.9	5 · 3				
it	65.8	25.3	8.g	68.4	8.8	22.8	
"	66.o	24.0	10.0	68.6	10.1	21.3	

Data for equilibrium in the system Na₂SO₄ + NaCl + C₂H₅OH + H₂O at 15°, 25° and 35° are given by Schreinemakers and de Baat (1909), and Schreinemakers (1910).

SOLUBILITY OF SODIUM SULFATE IN AQUEOUS PROPYL ALCOHOL AT 20°. (Linebarger, 1892.)

Gms. C ₈ H ₇ OH per 100 Gms. Alcohol-Water Mixture.	Gms. Na ₂ SO ₄ per 100 Gms. Sat. Solution.	Gms. C ₈ H ₇ OH per 100 Gms. Alcohol-Water Mixture.	Gms. Na ₂ SO ₄ per 100 Gms. Sat. Solution.
42.20	1.99	56.57	0.55
49 - 77	1.15	60.64	0.44
55.65	0.72	62.81	0.38

100 gms. H_2O dissolve 183.7 gms. sugar + 30.5 gms. Na_2SO_4 at 31.25°, or 100 gms. sat. solution contain 52.2 gms. sugar + 9.6 gms. Na_2SO_4 . (Köhler, 1897.) 100 gms. 95% formic acid dissolve 16.5 gms. Na_2SO_4 at 19°. (Aschan, 1913.)

SOLUBILITY OF SODIUM SULFATE, IN AN AQUEOUS SOLUTION OF UREA. (Löwenberg, 1805.)

	olvent.	ť.	Gms. Na ₂ SO ₄ per 100 Gms. Sat. Sol.	The Corresponding Fig- ure for the Solubility of Na ₂ SO ₄ in Pure Water Was Found to be:
100 gms. H ₂ ()+12 gms. urea	20.86	22.36	
ii .	(č	24.83	21.21	21.62
66	"	28.32	26.50	26.48
46	"	29.83	28.23	•••
"	"	31.90		32.34
"	"	34.85	27.73	33.09
"	"	39.92	27.I9	32.58

Fusion-point data for Na₂SO₄ + KCl are given by Sackur (1911-12). Results for Na₂SO₄ + SrSO₄ are given by Calcagni (1912-1912a). Results for Na₂SO₄ + Na₂WO₄ are given by Boeke (1907).

SODIUM BiSULFATE NaHSO₄. (See also last table, p. 670.)

100 gms. H_2O dissolve 30 gms. NaHSO₄ at 16°. (Aschan, 1913.) 100 gms. H_2O dissolve 28.6 gms. NaHSO₄ at 25° and 50 gms. at 100°. (U.S.P. VIII.) 100 gms. 95 per cent alcohol dissolve about 1.4 gms. NaHSO₄ at 25°. (U.S.P. VIII.) 100 gms. 95% formic acid dissolve 30 gms. NaHSO₄ at 19.3°. (Aschan, 1913.)

SODIUM SULFIDE Na₂S.9H₂O.

SOLUBILITY IN WATER. (Parravano and Fornaini, 1907.)

r.	Gms. Na ₂ S per 100 Gms. Sat. Sol.	Solid Phase.	r.	Gms. Na ₂ S per 100 Gms. Sat. Sol.	Solid Phase.
— 10 Eu	tec. 9.34	Na ₂ S.9H ₂ O+Ice	60	29.92	Na ₂ S.51H ₂ O
+10	13.36	Na ₂ S.9H ₂ O	70	31.38	"
15	14.36	"	80	33.95	"
15 18	15.30	44	90	37.20	4
22	16.20	44	48 tr. pt	• • • •	Na ₂ S.9H ₂ O+Na ₂ S.6H ₂ O
28	17.73	46	50	26.7	Na ₂ S.6H ₂ O
32	19.09	41	60	28. I	"
37	20.98	**	70	30.22	"
45	24.19	46	80	32.95	"
48.9 tr.	pt	" +Na ₂ S.51H ₂ O	90	36.42	"
50	28.48	Na ₂ S.5 H ₂ O	91 . 5 tr.	pt	" +Na ₂ S.5}H ₂ O

Fusion-point data for Na₂S + S are given by Thomas and Rule (1917).

SODIUM Antimony **SULFIDE**. See Sodium Sulfoantimonate, p. 627.

SODIUM SULFITE Na, SO.

SOLUBILITY IN WATER. (Hartley and Barrett, 1909.)

r.	Gms. Na ₂ SO ₃ per 100 Gms. H ₂ O.	Solid Phase.	ť.	Gms. Na ₂ SO ₂ per 100 Gms. H ₂ O.	Solid Phase.
– 0.76	2.15	Ice	18.2	25.31	Na ₂ SO ₂₋₇ H ₂ O
— 1.37	4.21	"	23.5	29.92	" (unstable)
— 1.96	6. 24	4	29	34.99	66 66
— 2.77	9.44	4	37.2	44.08	u u
- 3⋅5*	12.48	" +Na ₂ SO ₂ .7H ₂ O	21.6	•••	" +Na ₂ SO ₇
- 4 .5	17.91	Ice (unstable)	37	28.04	Na ₂ SO ₃
- 1.9	13.00	Na ₂ SO ₂₋₇ H ₂ O	47	28.13	er
+ 2	14.82	4	55. 6	28.21	u
5.9	17.61	· 4	59.8	28.76	"
10.6	20.01	"	84	28.26	u
		* Eutec.	† tr. pt.		

Oxidation was prevented by preparing the material and making the solubility determinations in an atmosphere of hydrogen.

Supersolubility curves for the salt are also given. The Sp. Gr. of the sat. solution at 15° is 1.21.

(Greenish and Smith, 1901.)

SODIUM HydroSULFITE Na₂S₂O₄.

SOLUBILITY IN WATER. (Jellinck, 1911.)

t*.	Gms. Na ₂ S ₂ O ₄ per 100 Gms. H ₂ O.	Solid Phase.	ť.	Gms. Na ₂ S ₂ O ₄ per 100 Gms. H ₄ O.	Solid Phase.
-0.107	0.394	Ice	- 4. 58 Eutec.	19	$Ice+Na_0S_2O_4.2H_2O$
-1.10	4	44	+20	22 (±5% error)	$Na_2S_2O_4.2H_2O$
-2.21	ġ	"	52 tr. pt.	27.8	" $+Na_{2}S_{2}O_{4}$
-3.15	13	"	20	24. I	Na ₂ S ₂ O ₄ (unstable)
-4.17	17	u		•	

The pure sample was prepared by salting out the commercial product with NaCl. It is very easily oxidized to Na₂S₂O₅ and must be kept in an indifferent atmosphere or a vacuum. A special apparatus was required for the freezing-point determinations (ice curve) and for the solubility determinations. Great difficulty was experienced in obtaining concordant results with a given sample of Na₂S₂O₄.

SODIUM SULFONATES

SOLUBILITY IN WATER.

Salt.	Formula.	• • • •	Gms. Anhydrous alt per 10 Gms. H ₂ O	o Authority.
Sodium:			_	
2.5 Diiodobenzene Sulfonate	C ₆ H ₈ I ₂ SO ₂ .Na	22.5	6.82	(Boyle, 1909.)
3.4 " "	C ₆ H ₈ I ₂ SO ₂ Na.H ₂ O	22.5	3.47	4
β Naphthalene Sulfonate	C ₁₀ H ₇ .SO ₂ Na	23.0	6.04	(Fischer, 1906.)
	a	25	5.87*	(Witt, 1915.)
2 Phenathrene Sulfonate	C14H4SO2Na.4H4O	20	0.42	(Sandquist, 1912.)
3 " "	C14HeSO2Na.HeO	20	1. İ	44
10 " "	C14Ha.SO2Na.2HaO	20	1.63	a
Phenol Sulfonate	CaH4(OH)SOaNa.2H4O	15	14.7	(Greenish & Smith, 'oz.)
"	"	25	19.2	(Seidell, 1910.)
• $d_{\mathbf{z}} = 1.019$.	$\dagger d_{15} = 1.067.$	•	$\frac{1}{2}d_{25} = 1$	1.079

SOLUBILITY OF SODIUM & NAPHTHALENE SULFONATE IN AQUEOUS HYDRO-CHLORIC ACID AT 23.9°. (Fischer 1906.)

Normality of Aq. HCl. 2 %, 3 %. 5 #. Gms. C₁₀H₇.SO₂Na per 100 gms. Aq. HCl 6.47 5.35 2.42 SOLUBILITY OF SODIUM PHENOL SULFONATE IN AQUEOUS ALCOHOL AT 25°. (Seidell, 1910.)

Wt. Per cent C.H.OH in Solvent.	d_{20} of Sat. Sol.	Gms. C _s H _s (OH)- SO _s Ns2H _s O per 100 Gms. Sat. Sol.	Wt. Per cent C.H.OH in Solvent.	d_{26} of Sat. Sql.	Gms. C ₄ H ₄ (OH) SO ₂ Na. ₂ H ₂ O per 100 Gms. Sat. Sol.
o (== H ₂ O)	1.079	19.38	60	0.919	7.5
10	1.054	17.4	70	o.886	5. I
20	1.030	15.5	8o	0.852	2.9
30	I.004	13.6	90	0.820	1.1
40	0.977	11.7	95	0.810	0.8
50	0.050	0.7	IOD	0.800	1.5

In the 100 per cent C₂H₅OH solution, the solid phase, C₄H₄(OH) SO₂Na.2H₅O₄

became opaque.

100 gms. H₂O dissolve 18.25 gms. C₄H₄(OH)SO₄Na.2H₂O at 14.8°, d₁₄₋₈ of sat.

(Greenish and Smith, 1901.)

SODIUM TARTRATES

SOLUBILITY IN WATER.

Salt.	Formula.	t°.	per 100 Authority. Gms. H ₂ O.
Sodium Neutral Inactive Pyrotarta "Dextro"	rate C ₆ H ₆ O ₆ .Na ₆ .6H ₂ O	20 20	39.73 (Schlossberg, 1900.) 41.10
Sodium Dihydroxy Tartrate	C4H4O2Na2.3H2O	0	0.039 (Fenton, 1898.)
SODIUM TELLURATE Na.1	പ്രം ചെ		

100 gms. H₂O dissolve 0.47 gm. Na₂TeO₄ at 18°, and 2 gms. at 100°. Solid phase Na₂TeO_{4.2}H₂O.
100 gms. H₂O dissolve 1.43 gms. Na₂TeO₄ at 18°, and 2.5 gms. at 50°. Solid phase Na₂TeO_{4.4}H₂O.
(Mylius, 1901.)

SODIUM THIOSULFATE Na₂S₂O₃.5H₂O(I).

		SOLUB	ILITY IN WATER		ng and Bu	rke. 1904.	. 1006.)
	Gms. Na			(-4-	Gms. Na		, -300,
t° ⊁		Gms.	Solid Phase.	ť.	100 (Solid Phase.
	Sat. Sol.				Sat. Sol.	Water.	
0	33.40	50.15	$Na_2S_2O_3.5H_4O(I)$	0	60.47		Na ₆ S _F O ₅ .H ₆ O(II)
10	37 · 37	59.66	"	10	61.04	156.7	"
20	41.20	70.07	"	20 .	62.11	163.9	"
25	43.15			25	62.73	168.3	u
3 5	47.71			30	63.56	174.4	"
45	_ 55 ·33	123.87		40	65.22	187.6	u
48.17	*		" $+Na_2S_2O_3.2H_2O(I)$	50	66.82	201.4	"
0			$Na_0S_2O_0.2H_2O(I)$	56.5*	• • •		" +Na ₀ S ₂ O ₀
10	53 · 94	117.10	"	0	46.14		Na ₂ S ₂ O ₃ .6H ₂ O(III and IV)
20	55.15	122.68		10	51.66	106.8	"
25	56.03	127.43	4	13	54.96	122	
30	57.13	138.84	"	14.35*	• • •	• • •	" $+Na_{s}S_{s}O_{s}.tH_{s}O.(IV)$
40	59.38	146.20	"	14.3*			" $+Na_2S_2O_3.7H_4O(III)$
50	62.28	165.11	"	0	57 - 42		Na _p S ₂ O _{p-7} H ₂ O(III)
60	65.68	191.30		10	58.28	139.7	•
66. 5*	• • •	• • •	"+Na ₂ S ₂ O ₃	20	59.28	145.6	et
0	41.96		Na ₂ S ₂ O ₃₋₅ H ₂ O(II)	25	60 . 18	151.1	•
10	45.25	82.65	"	30	60.78	155	44
20	49.38	97 · 55	46	40	62.60	167.4	"
25	52.15	108.98	tt	47.5	64.68	183.1	44
30	56.57	130.26	"	48.5*	• • •		" +Na ₂ S ₂ O ₃ .H ₂ O(III)
30.22	*	• • •	" $+Na_2S_2O_3.4H_2O(II)$		64.78	183.9	Na ₆ S ₂ O ₅ .H ₆ O(III)
33 • 5	58.59	141.48	$Na_2S_1O_3.4H_4O(II)$	50	65.3	188.2	«
36.2	60.51	153.23	u	55	66.45	198.1	"
	62.80	168.82	u	60	68.07	213.1	"
40.65	₹	• •	" $+Na_2S_2O_3.H_2O(II)$	61*	• • •		"+ Na ₀ S ₂ O ₀
			•	tr. pt.			

SOLUBILITY IN WATER (Continued).

t".	Gms. Na	S ₂ O ₂ per	Solid Phase.	t°.		a _r S _r O _r per Gms.	, Solid Phase.
••	Sat. Sol.	Water.	COMA I MISC.	•.	Sat. Sol.	Water.	/ COING I Mase.
0	57.63	136	Na ₂ S ₂ O ₃ . H ₂ O (IV)	30	63.34	172.80	$Na_2S_2O_3.H_2O(V)$
IO	58.49	140.9	**	40	64.75	183.70	"
20	59 · 57	147.3	"	50	66 . 58	199.2	66
25	60.35	152.2	44	55	67.59	208.5	44
30	61.03	156.6	**	43*	• • •	• • •	"+Na ₂ S ₂ O ₃₋₁ H ₂ O (V)
40	62.95	169.9	"	25	64.21	179.4	$Na_2S_1O_3$. $H_4O(V)$
50	65.45	189.5	"	40	64.99	185.6	"
	67.07	203.7	"	50	66.02	194.3	u
55 58*	• • •		" $+Na_2S_2O_2$	60	67.4	206.7	"
0	57.63	136	$Na_{1}S_{2}O_{1-2}H_{2}O(V)$	70	69.06	223.2	44
10	59.05	144.2	"	70*	• • •	•••	" +Na ₂ S ₂ O ₃
20	61.02	156.5	"	40	67.4	206.7	Na ₂ S ₂ O ₃
25	62.30	165.3	"	50	67.76	210.2	"
30	63.56	174.4	u	бo	68.48	217.3	"
35	65.27	188	44	70	69.05	223. I	44
27.5	*	• • •	" +Na ₂ S ₂ O ₃ .H ₂ O (V)	80	69.86	231.8	44
• tr.nt.							

The authors adopted a new system of naming the hydrates, based upon their mutual transition relations. These transitions occur in such a way that the members of one group undergo transition into members of the same group and not into members of another group. Those hydrates belonging to group (I) are called primary hydrates, those belonging to group (II) are called secondary and those belonging to the (III), (IV) and (V) groups are called tertiary, quaternary and quintary respectively.

Commercial sodium thiosulfate is the primary pentahydrate, Na₂S₂O₃.5H₂O (I).

100 gms. alcohol dissolve 0.0025 gm. $Na_2S_2O_3$ and 0.0034 gm. $Na_2S_2O_3.5H_2O$ at room temperature. (Bödtker, 1897.)

100 gms. alcohol of 0.941 Sp. Gr. dissolve 33.3 gms. sodium thiosulfate at 15.5°.

Data for the lowering of the freezing-point of Na₂S₂O_{3.5}H₃O by each of the following compounds: urea, glucose, cane sugar, NaCl, NaClO₃, NaNO₃ and Na₂SO₄ are given by Bautaric (1911).

SODIUM TUNGSTATE Na2WO4.2H2O.

SOLUBILITY IN WATER. (Funk, 1900s.)

\$° .	Gms. Na ₂ WO ₄ per 100 Gms. Solution.	Mols. NagWO ₄ per 100 Mols. H ₂ O.	Solid Phase.	t°.	Gms. Na ₂ WO ₄ per 100 Gms. Solution.	Mols. Na ₂ WO ₆ per 100 Mols. H ₂ O.	Solid Phase.
-5	3 0.60	2.70	Na ₂ WO ₄ .roH ₂ O	-3.5	41 .67	4.37	Na ₂ WO ₄₋₂ H ₂ O
-4	31 .87	2.86	4	+0.5	41.73	4.39	4
-3 .		3.01	••	18	42.0	4 - 40	•
-2	34.52	3.23		21	42.27	4.48	•
0	36.54	3.52		43 · 5	43.98	4.81	• .
+3	39.20	3.95	**	80.5	47.65	5.57	64
5	41.02	4.26	*	100	49 · 31	5 95	•

Sp. Gr. of sat. solution at 18° = 1.573. For Sp. Gr. determinations of aqueous solutions at 20°, see Pawlewski, 1900.

Fusion-point data for Na₂WO₄ + WO₃ are given by Parravano (1909).

SODIUM URATE C₁H₂N₄O₂.Na.

SOLUBILITY IN AQUEOUS SODIUM CHLORIDE AT 37°. (d'Agostino, 1910.)

Gms. Mols. per Liter.		Gms. Mo	ls. per Liter.	Gms. Mols. per Liter.		
NaCl.	C ₄ H ₄ N ₄ O ₃ .Na.	NaCl.	C ₂ H ₂ N ₄ O ₂ Na.	NaCl.	C ₂ H ₂ N ₄ O ₂ .Na.	
0	o.∞536	0.01084	0.00211	0.05116	0.00050	
0.00486	0.00340	0.01398	0.00172	0.06667	0.00034	
0.00532	0.00321	0.02564	0.00102	0.07363	0.00032	
0.00865	0.00256	0.04012	0.00054	0.08595	0.00026	

One liter of H₂O dissolves 1.5 gms. sodium urate at 37°. (Bechbold and Ziegler, 1910.) One liter of serum dissolves 0.025 gm. sodium urate at 37°. "(Bechbold and Ziegler, 1910.)

SODIUM MetaVANADATE NaVO.

SOLUBILITY IN WATER. (MacAdam and Pierle, 1912.)

t*.	Gms. NaVOz per Solid P	hase. t*.	Gms. NaVO ₂ per 100 Gms. H ₂ O.	Solid Phase.
25	21.10 NaV	O ₈ 25	15.3	NaVO ₂₋₂ H ₂ O
40	26.23 "	40	30.2	44
60	32.97 "	60	68.4	u
75	38.83 "	75	38.8	NaVO ₈

Considerable time was required for attainment of equilibrium. The two solid phases appear to exist for the whole rage of temperature and the conditions for the transformation of one into the other were not ascertained.

SODIUM FluoZIRCONATE 5NaF.ZrF4.

100 gms. H₂O dissolve 0.387 gm. at 18°, and 1.67 gms. at 100°. (Marignac, 1861.)

SPARTEINE C15H26N2.

SOLUBILITY IN WATER AND IN AQUEOUS SODIUM CARBONATE SOLUTIONS. (Valeur, 1917.)

The author prepared solutions of recently distilled colorless sparteine ($\alpha =$ -2°.46' in 5 cm. tube) in aqueous 5 per cent Na₂CO₂ and determined the temperature at which clouding occurred in each.

t° of Clouding.	Gms. C ₁₅ H ₂₅ N ₂ per 100 cc.	t° of Clouding.	Gms. C ₁₈ H ₂₈ N ₂ per 100 cc.	t° of Clouding.	Gms. C ₁₄ H ₂₅ N ₂ per roo cc.
23.4	2. I	33 · 5	1.5	47	0.9
24	1.95	36.5	1.35	53	0.75
25	1.8	39.8	I.2	60.2	0.60
28.6	1.65	43.5	1.05	72.5	0.45

A saturated solution of sparteine in water was prepared, and after removing the solid phase by centrifugation, the amount of sparteine in the saturated solution was determined with the aid of the data in the above table. Enough Na₂CO₂ and H₂O to yield 5 per cent Na₂CO₃ were added and the temperature of clouding observed and compared with the above results. The average of these determinations was 0.556 gm. sparteine per 100 cc. sat. solution in water at 10.8°.

SPARTEINE SULFATE C15H26N2.H2SO4.5H2O.

100 gms. H₂O dissolve about 200 gms. sparteine sulfate at 15-20°. 100 cc. 90% alcohol dissolve about 20 gms. sparteine sulfate at 15-20°. (Squire and Caines, 1905.)

STEARIC ACID CH₂(CH₂)₁₆COOH.

100 gms. H_2O dissolve 0.1 gm. stearic acid at 37°. 100 gms. 5% aqueous solution of bile salts dissolve less than 0.1 gm. stearic acid. 100 gms. 5% aq. sol. of bile salt + 1% lecithin dissolve 0.2 gm. stearic acid. In the same solvents there is dissolved of sodium stearate, 0.1, 0.2 and 0.7 gm.

respectively. (Moore, Wilson and Hutchinson, 1909.)

SOLUBILITY OF STRARIC ACID IN AQUEOUS ETHYL ALCOHOL AT 25°. (Seidell, 1910.)

Wt. % C.H.OH in Solvent.	d_{26} of Sat. Sol.	Gms. C ₁₇ H _{ss} COOH per 100 Gms. Sat. Sol.	Wt. % C.H.OH in Solvent.	d_{25} of Sat. Sol.	Gms. C ₁₇ H _{ss} COOH per 100 Gms. Sat. Sol.		
0	0.999	0.034	70	0.865	0.80		
20	0.967	0.04	8o ·	0.841	1.63		
40	0.932	0.10	90	0.818	3.30		
50	0.911	0.18	95	0.807	5.55		
60	0.888	0.40	100	0.795	8.30		
100 cc. $(94.3 \text{ Vol. } \% \text{ C}_2\text{H}_6\text{OH contain 0.0996 gm. C}_{17}\text{H}_{86}\text{COOH at 0}^{\circ} (d_0 = 0.8318)$.							
sat. sol. { 95	5.1 "	" "	0.1139 "		$(d_0 = 0.8287)$.		
in (9	5.7 "	"	0.1246 "	" "	$(d_0 = 0.8265).$		

Saturation was approached from above without constant agitation. (Emerson, 1907.)

SOLUBILITY OF STRARIC ACID IN ETHYL ALCOHOL AT SEVERAL TEMPERATURES. (Falciola, 1910.)

t°.	Gms. C _{II} H _M COOH per 100 cc. of:						
• .	Absolute Alcohol.	75% Alcohol.	50% Alcohol.				
10	0.9	0.15	• • •				
20	2		o.08 (23°)				
30	4.5	0.39	0.10				
40	13.8	0.77	0.12				

100 cc. sat. solution in 94.4 Vol. % CH₈OH ("methylated alcohol" of d = 0.8183) contain 0.15 gm. C₁₇H₈₅COOH at $+0.2^{\circ}$. Saturation was approached from above without constant agitation. (Hehner and Mitchell, 1897.)

SOLUBILITY OF STEARIC ACID IN SEVERAL SOLVENTS AT 25°.

	(Seidell, 1910.)		_
Solvent.	d of Solvent.	d_{26} of Sat. Sol.	Gms. C ₁₇ H _{ss} COOH per 100 Gms. Sat. Sol.
Acetone	$d_{15} = 0.797$	0.815	4.73
Amyl Alcohol (iso)	$d_{20} = 0.817$	0.815	9.43
Amyl Acetate	$d_{20} = 0.875$	0.867	11.19
Carbon Disulfide	$d_{25} = 1.259$	1.163	19.20
Carbon Tetrachloride	$d_{25} = 1.587$	1.465	10.25
Chloroform	$d_{22} = 1.476$	I.332	15.54
Ether (abs.)	$d_{22} = 0.711$	0.744	20.04
Ethyl Acetate	$d_{25} = 0.892$	0.895	7.36
Nitrobenzene	$d_{25} = 1.205$	1.100	I.24
Toluene	$d_{15} = 0.872$	0.865	13.61

Fusion-point data for stearic acid + tristearin and for stearic acid + tristearin + palmitic acid are given by Kremann and Kropsch (1914).

STILBENE C.H.CH:CH.C.H.

Freezing-point data for mixtures of stilbene and p dimethoxystilbene are given by Pascal and Normand (1913).

STRONTIUM ACETATE Sr(CH, COO), 1 H2O.

SOLUBILITY IN WATER. (Osaka and Abe. 1911.)

t.	Gms. Sr(CH ₁ CC per 100 Gms. H	OO) ₂ Solid Phase.	t°.	Gms. Sr(CH ₃ C) per 100 Gms. H	OO) ₂ Solid Phase.
0.05	36.93	Sr(CH ₂ COO) ₂₋₄ H ₂ O	25	40.19	Sr(CH ₂ COO) ₂ .½H ₂ O
5	39.91	"	35.03	38.82	"
IO	43.61	"	50	37.35	"
8.4 tı	r. pt. 43 . 1	" +Sr(CH ₂ COO) ₂ .½H ₂ O	70	36.24	66
8	43.5	Sr(CH ₂ COO) ₂ . H ₂ O	8o	36.10	44
10	42.95	4	90	36.24	u
15	41.90	"	97	36.36	"

STRONTIUM BENZOATE Sr(C7H4O2)2.H2O.

SOLUBILITY IN WATER.

(Paje	tta.	1906	.)	

t°.			31.4°.	
Gms. Sr(C ₇ H ₈ O ₂) ₂ per 100 Gms. Solution	5.31	5.4	5.56	5.77

STRONTIUM BROMATE Sr(BrOz)2.

One liter of aqueous solution contains 0.9 gm. molecules or 309 gms. Sr(BrO₃)₂ at 18°. (Kohlrausch, 1897.)

STRONTIUM BROMIDE SrBr₂.6H₂O.

SOLUBILITY IN WATER.

(Average curve from results of Kremers, 1858; and Etard, 1894.)

t*.	Gms. SrBr ₂ per 100 Gms.		ť.	Gms. SrBr ₂ per 100 Gms.		
	Solution.	Water.	• •	Solution.	Water.	
0	46	85.2	40	55.2	123.2	
10	48.3	93	50	57.6	135.8	
20	50.6	102.4	60	6 0	150	
25	51.7	107	8o	64.5	181.8	
30	52.8	111.9	100	69	222.5	

Sp. Gr. of sat. solution at 20° approximately 1.70.
100 gms. abs. alcohol dissolve 64.5 gms. SrBr₂ at 0°. Sp. Gr. of solution = 1.21.
(Fonzes-Diacon, 1895.)

SOLUBILITY OF STRONTIUM BROMIDE IN AQUEOUS SOLUTIONS OF STRONTIUM NITRATE AT 25°. (Harkins and Pearce, 1916.)

Mols. per 100	o Gms. H ₂ O	Gms. SrBr ₂ per 1000 Gms. H ₂ O.	d_{24} of	Mols. per 100	o Gms. H ₂ O.	Gms. SrBr ₂	d _{za} of Sat. Sol.
Sr(NO ₂) ₂ .	SrBr ₂ .	H ₂ O.	Sat. Sol.	Sr(NO ₂) ₃ .	SrBr2.	per 1000 Gms. H ₂ O.	Sat. Sol.
0		1066.1	1.7002	0.30663	4.3180	1068.8	1.73766
		1066.95			4.3190	1069.17	1.74866
		1067.42		1.8610	4.3390	1073.97	1.77368
0. 14568	4.3170	1068.54	1.72844				

Data for equilibrium in the system strontium bromide, strontium oxide and water at 25° are given by Milikau (1916).

STRONTIUM CAMPHORATE d C10H14O4Sr.4H2O.

SOLUBILITY IN AQUEOUS SOLUTIONS OF CAMPHORIC ACID AT 16-17°. (Jungfleisch and Landrieu, 1914.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100 G	ms. Sat. Sol.	Solid Phase.	
C ₈ H ₁₄ (COOH) ₂ .	C10H14O4Sr.	Sond Frase.	C ₈ H _M (COOH) ₃ .	C ₁₀ H ₁₄ O ₄ Sr.	Soud Phase.	
1.25	1.413	C ₂ H ₁₄ (COOH) ₂	I.20 ·	17.99	$(C_{20}H_{24}O_4)_2Sr(C_{20}H_{24}O_4)_2$	
1.03	1.7705	$(C_{10}H_{18}O_4)_2Sr(C_{10}H_{16}O_4)_2$, 0	16.95	CmH4O4Sr4H4O	
1.13	6. 525	a	0	16.56	44	
1.20	12.452		0	12.86 (a)	t 98") "	

STRONTIUM CARBONATE SrCO.

One liter of water dissolves 0.00082 gm. at 8.8° and 0.0109 gm. at 24° by conductivity method.

(Holleman, 1893; Kohlrausch and Rose, 1893.)

One liter of water saturated with CO₂ dissolves 1.19 gms. Sr(HCO₂)₂.

Data for the solubility of strontium carbonate in water containing CO₂ at pressures between 0.05 and 1.1 atmospheres are given by McCoy and Smith (1911). The equilibrium constant is $k = 1.29 \times 10^{-2}$ with an average deviation from the mean of 1.2 per cent. From this value, the solubility product is calculated to be Sr \times CO₂ = $k_2 = 1.567 \times 10^{-2}$.

679

SOLUBILITY OF STRONTIUM CARBONATE IN AQUEOUS AMMONIUM CHLORIDE. (Cantoni and Goguelia, 1905.)

Gms. NH ₄ Cl per 100 Gms. Solution.	Gms. SrCO ₂ per 2000 cc. Sat. Solution.
5 · 35	0.179
10	0.259
20	0.358

The mixtures were allowed to stand at 12-18° for 98 days. Fusion-point data for SrCO₂ + SrCl₂ are given by Sackur (1911-12).

STRONTIUM CHLORATE Sr(ClO₃)₂.

100 gms. H₂O dissolve 174.9 gms. Sr(ClO)₃, or 100 gms. sat. solution contain 63.6 gms. at 18°. Sp. Gr. of solution is 1.839. (Mylius and Funk, 1897.)

STRONTIUM CHLORIDE SrCl. 6H2O.

SOLUBILITY IN WATER.

	(VAGUE	e curve from	a the results of	Mulder; 1	Stard; see also	Filden, 1884.)		
s °.	Gms. SrCl ₂	Gms. SrCl ₂ per 100 Gms.		t°.	Gms. SrCl ₂)	Gms. SrCl ₂ per 100 Gms.		
	Solution.	Water.	Phase.	• •	Solution.	Water.	Phase.	
- 20	26.0	35.1	SrCla&HaO	60	45.0	8.18	SrCl _{2.6} H ₂ O	
0	30.3	43.5	•	70	46.2	85.9	SrCl ₂₋₂ H ₂ O	
IO	32.3	47 - 7	*	80	47 · 5	90.5	•	
20	34.6	52.9	4	100	50.2	100.8	**	
25	35.8	55.8	•	120	53.0	112.8	•	
30	37.0	58.7		140	55.6	125.2	-	
40	39 · 5	65.3	4	160	58.5	141.0	•	
50	42 0	72 A	44	т80	62.0	162.T		

Transition temperature about 62.5°. Sp. Gr. of sat. solution at 0° = 1.334; at $15^{\circ} = 1.36.$

SOLUBILITY OF STRONTIUM CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AT 0°. (Engel, 1888.)

Mg. Mols. per 10 cc. Solution.		Sp. Gr. of	Grams per 10	Grams per 100 cc. Solution.		
SrCl ₂ .	HCl.	Sp. Gr. of Solution.	SrCl ₂ .	HCl.		
51.6	0	1.334	40.9	0.0		
44.8	6.1	1.304	35 · 5	2.22		
37 .85	12.75	1.269	30.0	4.65		
27.2	23.3	I.220	21.56	8.49		
22.0	28.38	1.201	17.44	10.35		
14.0	37 · 25	1.167	11.09	13.58		
4.25	52.75	1.133	3.37	19.23		

SOLUBILITY OF STRONTIUM CHLORIDE IN AQUEOUS SOLUTIONS OF HYDRO-BROMIC AND OF HYDROCHLORIC ACIDS AT 25°. (Harkins and Paine, 1916.)

> In Aqueous HBr. In Aqueous HCl.

Gms. Equiv. HBr per 1000 Gms. H ₂ O.	d _{ag} of Sat. Sol.	Gms. SrCl ₂ per 100 Gms. Sat. Sol.	Gms. Equiv. HCl per 1000 Gms. H ₂ O.	d _{2s} of Sat. Sol.	Gms. SrCl ₂ per 100 Gms. Sat. Sol.
0	1.4015	35.80	0.1551	I.3953	35.17
0.06817	1.4020	35 · 47	0.5162	1.3788	33.60
0.4191	1.4010	33.92	1.017	1.3563	31.42
0.9716	1.3992	31.52	2.165	1.3065	26.33
1.154	1.3995	20.78	9.205	1.1498	3.055

SOLUBILITY OF STRONTIUM CHLORIDE IN AQUEOUS SOLUTIONS OF ACIDS AND OF SALTS AT 25°. (Harkins and Paine, 1916.)

Aqueous Solution of:	Gms. Equiv. added Salt per 1000 Gms. H ₂ O.	d_{25} of Sat. Sol.	Gms. SrCl ₂ per 100 Gms. Sat. Sol.	Aqueous Solution of:	Gms. Equiv. added Salt per 1000 Gms. H ₂ O.	d_{38} of Sat. Sol.	Gms. SrCl ₂ per 100 Gms. Sat. Sol.
CuCl ₂		1.4200	34.005	KNO ₃	0.09796	1.4107	35.86
"	2.276	1.4595	30.40	"	0.4755	1.4349	35.90
\mathbf{HI}	0.1641	1.4058	34.850	HNO ₃	0.1771	1.4038	35.52
"	0.4462	1.4121	33.28	"	0.3521	1.4059	35.40
"	0.7539	1.4196	31.52	"	I.277	1.4175	34.04
KI	0.09199	1.4093	35.45	NaNO ₃	0.3621	1.4216	
"	0.5401	1.4466	33 · 79	"	0.5010	1.4588	
"	0.6015	1.4513	33.60	"	3 · 553	1.5214	
"	I.445	1.5154	30.90	"	6.856	1.5581	25.53
KCl	0.0719	1.4032	35.62	$Sr(NO_3)_2$	0.1372	1.4113	35.42
"	0.433	1.4085	34.80	"	0.5766	1.4336	34 · 47
"	0.8576	1.4152	33.89	"	1.0988	1.4636	
"	I.594	1.4266	32.40	"	3.318	1.6664	28.97

Data for equilibrium in the system strontium chloride, strontium oxide and water at 0°, 25° and 40° are given by Milikau (1916).

100 gms. abs. methyl alcohol dissolve 63.3 gms. SrCl₂.6H₂O at 6°.

100 gms. abs. ethyl alcohol dissolve 3.8 gms. SrCl₂.6H₂O at 6°. (de Bruyn, 1892.)

SOLUBILITY OF STRONTIUM CHLORIDE IN AQUEOUS ETHYL ALCOHOL SOLUTIONS AT 18°. (Gerardin, 1865.)

Sp. Gr. of Aq. Alcohol at o°.	Wt. per cent Alcohol.	Gms. SrCl ₂ per 100 Gms. Alcohol.	Sp. Gr. of Aq. Alcohol at o°.	Wt. per cent Alcohol.	Gms. SrCl ₂ per 100 Gms. Alcohol.
0.990	6	49.81	0.939	45	26.8
0.985	IO	47.0	0.909	59	19.2
0.973	23	39.6	0.846	86	4.9
0.966	30	35.9	0.832	91	3.2
0.953	38	30.4	_	·	_

100 gms. 95% formic acid dissolve 23.8 gms. SrCl₂ at 19°. (Aschan, 1913.) 100 cc. anhydrous hydrazine dissolve 8 gms. SrCl₂ at room temp.

(Welsh and Broderson, 1915.)
Fusion-point data for SrCl₂ + SrF₂ are given by Plato (1907). Results for SrCl₂ + SrO and SrCl₂ + SrSO₄ by Sackur (1911-12). Results for SrCl₂ + TlCl by Korreng (1914) and results for SrCl₂ + ZnCl₂ by Sandonnini (1912a, 1914).

STRONTIUM CHROMATE SrCrO4.

SOLUBILITY IN WATER, ETC., AT 15°. (Fresenius, 1891.)

Solvent.	Gms. SrCrO ₄ per 100 Gms. Solvent.	Solvent.	Gms. SrCrO ₄ per 100 Gms. Solvent.
Water	0.12	Aq. Ethyl Alcohol (20%)	0.0132
Aq. NH ₄ Cl (5%)	0.195	Aq. Ethyl Alcohol (53%)	0.002
Aq. CH ₃ COOH (1%)	1.57		

STRONTIUM CINNAMATE (C6H6CH:CH.COO)2Sr.2H2O.

100 gms. H₂O dissolve 1 gm. (C₆H₆CH:CH.COO)₂Sr at 15°-20°.

(Squire and Caines, 1905.)

100 gms. sat. aqueous solution contain 1.18 gm. (C₆H₅CH:CH:COO)₈Sr at 15° and 3.11 gms. at 100°. (Tarugi and Checchi, 1901.)

STRONTIUM FORMATE Sr(HCOO)3.2H2O.

SOLUBILITY IN WATER. (Stanley, 1904.)

ť.	Gms. Sr(HCOO), per 100 Gms. H ₂ O.	Solid Phase.	t°.	Gms. Sr(HCOO), per 100 Gms. H ₂ O.	Solid Phase.
0	7.02 (8.35)	Sr(HCOO)2.2H2O	67.5	20.62 (21.76)	Sr(HCOO)2.2H2O
II	8.08 (9.54)	"	81.5	26.14 (26.36)	**
28.6	11.62 (13.25)	44	86	27.58 (27.57)	Sr(HCOO)2.H2O
37.4	13.01 (14.68)	"	91.7	27.01 (27.07)	"
51.4	16.31 (17.83)	"	100	26.57 (26.72)	"

There appears to be an error in the calculation of the results as given by the author in his table. The figures given above in parentheses have, therefore, been calculated from the weights of SrSO₄ recorded in the original table and show the weight of Sr(HCOO)₂ per 100 gms. of saturated solution.

STRONTIUM FLUORIDE SrF2.

One liter of water dissolves 0.1135 gm. SrF₂ at 0.26°, 0.1173 gm. at 17.4° and 0.1193 gm. at 27.4°, determined by the conductivity method. (Kohlrausch, 1908.)

STRONTIUM GLYCEROPHOSPHATE C2H7O2PO4Sr.2H2O.

100 gms. sat. solution in water contain 2.09 gms. anhydrous salt at 18° and 0.8 gm. at 60°. (Rogier and Fiore, 1913.)

STRONTIUM HYDROXIDE Sr(OH):.8H2O.

SOLUBILITY IN WATER. (Scheibler, 1883.)

t°.	Grams per 1	oo Grams Solution.	Grams per 100 cc. Solution.			
6	SrO.	Sr(OH)2.8H2O.	SrO.	Sr(OH)2.8H2O.		
0	0.35	0.90	0.35	0.90		
10	0.48	I.23	0.48	1.23		
20	o.68	1.74	o.68	1.74		
30	1.00	2.57	1.01	2.59		
40	1.48	3.80	1.51	3.87		
50	2.13	5.46	2.18	5 · 59		
60	3.03	7 · 77	3.12	8.00		
70	4 - 35	11.16	4.55	11.67		
80	6.56	16.83	7.02	18.01		
90	12.0	30.78	13.64	34.99		
100	18.6	47.71	22.85	58.61		

MUTUAL SOLUBILITY OF STRONTIUM HYDROXIDE AND STRONTIUM NITRATE IN WATER AT 25°. (Parsons and Perkins, 1910.)

d	Gms. per 100	Gms. H ₂ O.		dan Gms. per 100 Gms. H ₂ O.					
$d_{\frac{34}{24}}$ of Sat. Sol.	SrO as Sr(OH) ₂ .	Sr(NO ₂) ₂ .	Solid Phase.	dan of Sat. Sol.	SrO as Sr(OH) ₂ .	Sr(NO ₂) ₂ .	Solid Phase.		
1.481	0	79.27	Sr(NO ₂) ₂	1.267	1.11	37.8I	Sr(OH) ₂ .8H ₂ O		
1.492	0.38	79 - 47	"	1.217	1.01	28.80	"		
1.494	0.78	80.83	"	1.178	0.95	23.83	"		
1.506	1.76	81.06	Sr(OH)2.8H2O	1.148	0.91	17.96	44		
1.490	1.71	74.27	"	1.108	0.84	12.78	"		
1.419	1.51	63.71	"	1.079	0.81	8.96	u		
1.381	1.41	56.30	u	1.059	0.79	6.29	44		
1.327	1.27	46.97	44	1.033	0.78	4.45	4		

SOLUBILITY OF STRONTIUM HYDROXIDE IN AQUEOUS SOLUTIONS AT 25°.
(Rothmund, 1910.)

Aqueous Solution of:	Mols. Sr(OH) ₉ - 8H _r () per Liter.	Gms. Sr(OH) ₂ per Liter.	Aqueous Solution of:	Mols. Sr(OH) ₂ . 8H ₂ O per Liter.	Gms. Sr(OH) ₃ per Liter.
Water alone	0.0835	10.16	o.5 n Glycol	0.0922	11.21
o.5 n Methyl Alcohol	0.0820	9.97	" Glycerol	0.1004	13.31
" Ethyl Alcohol	0.0744	9.05	" Mannitol	0. 1996	24.20
" Propyl Alcohol	0.0708	8.61	" Urea	0.0820	9.97
" Amyl Alcohol	•		" Ammonia	0.0785	9.55
(tertiary)	0.0630	7.66	" Dimethylamine	0.0586	7.13
" Acetone	0.0692	8.42	" Pyridine	0.0694	8.44
" Ether	0.0645	7.85	•	,	• • •

Data for equilibrium in the system strontium hydroxide, phenol and water at 25° are given by van Meurs (1916).

STRONTIUM IODATE Sr(IO₂)₂.

100 gms. H₂O dissolve 0.026 gm. at 15°, and 0.72-0.91 gm. at 100°. (Gay-Lussac; Rammelsberg, 1838.)

STRONTIUM IODIDE SrI2.6H2O.

SOLUBILITY IN WATER.

(Average curve from the results of Kremers, 1858; and Etard, 1874.)

\$°. •	Gms. Srl ₂ per	r 100 Gms	Solid	t°.	Gms. SrI ₂ pe	Solid	
•	Solution.	Water.	Phase.	٠.	Solution.	Water.	Phase.
0	62.3	165.3	Srl ₂ 6H ₂ O	90	78.5	365.2	Srl ₂₋₂ H ₂ O
20	64.0	177.8	•	100	79 · 3	383.1	**
40	65.7	191.5	•	120	80.7	418.1	
60	68.5	217.5	•	140	82.5	471.5	
80	73.0	270.4	•	175	85.6	594 · 4	•

Transition temperature about 90°. Sp. Gr. of sat. solution at 20° = 2.15 100 gms. sat. solution of strontium iodide in absolute alcohol contain 2.6 gms. SrI₂ at -20°, 3.1 gms. at +4°, 4.3 gms. at 39°, and 4.7 gms. at 82°. (Etard, 1874.) Data for equilibrium in the system strontium iodide, strontium oxide and water at 25° are given by Milikau (1916).

STRONTIUM PerIODIDE Srl.

Data for the formation of strontium periodide in aqueous solution at 25° are given by Herz and Bulla (1911). The experiments were made by adding iodine to aqueous solutions of SrI₂ and agitating with carbon tetrachloride. From the iodine content of the CCl₄ layer the amount of iodine in the aqueous layer can be calculated on the basis of the distribution ratio of iodine between water and CCl₄. This furnishes the necessary data for calculating the amount of the strontium periodide existing in the aqueous layer.

STRONTIUM IODOMERCURATE SrI: HgI: 8H2O.

A saturated aqueous solution prepared by adding SrI₂ and HgI₂ in excess to warm water and filtering when the temperature had fallen to 16.5° was found to have the composition 1.0 SrI₂.1.24 HgI₂.18.09 H₂O. The $d_{16.5}$ was 2.5 (Duboin, 1906.)

STRONTIUM MALATE SrC4H4Os.

SOLUBILITY IN WATER. (Cantoni and Basadonna, 1906.)

ŧ°.	Gms. per 100 cc. Solution.	t°.	Gms. per 100 cc. Solution.	ŧ°.	Gms. per 100 cc. Solution.
20	0.448	40	1.385	55	2.460
25	0.550	45	I.743	60	2.821
30	0.752	50	2.098	65	3.148
35	1 .036			70	3.36a

STRONTIUM MALONATE CH2(COO)2Sr.

SOLUBILITY IN WATER. (Cantoni and Diotalevi, 1905.)

ť.	Gms. per 100 cc. Sat. Sol.	t°.	Gms. per 100 cc. Sat. Sol.	ť.	Gms. per 100 cc. Sat. Sol.
0	0.541	25	0.521	40	0.464
10	0. 540	30	0.499	45	0.453
20	0.532	35	0.478	50	0.443

STRONTIUM MOLYBDATE SrMoO4.

100 gms. H₂O dissolve 0.0104 gm. SrMoO₄ at 17°.

(Smith and Bradbury, 1891.)

STRONTIUM NITRATE Sr(NO₂)₂.

SOLUBILITY IN WATER. (Berkeley and Appleby, 1911.)

ť.	d_t or Sat. Sol.	Gms. Sr(NO ₂) ₂ pe 100 Gms. H ₂ (r Solid O. Phase.	ť.	d_t of Sat. Sol.	Gms. Sr(NO ₂), per 100 Gms. H ₂ C	Solid Phase.
0. 58	1.28561	40.124	Sr(NO ₂) ₂₋₄ H ₂ O	30.74	1.51282	90.086	Sr(NO ₂) ₂
14.71	1.39380	60.867	"	47 · 73	1.51150	91.446	**
26.40	1.48831	82.052	"	61.34	1.51048	93.856	"
29.06	1.51098	87.648	"	68.96	1.51057	95.576	"
29.3*			" +Sr(NO ₂) ₂	78.98	1.51001	97.865	**
30.28	1.51441	88. 577	Sr(NO ₂) ₂	88.94	1.51174	100.136	"
32.58	1.51408	88.943	"				

The determinations were made with very great accuracy.

SOLUBILITY OF STRONTIUM NITRATE IN AQUEOUS ALCOHOL AT 25°. (D'Ans and Siegler, 1913.)

Wt. % C.H.OH in Solvent.	Gms. per Sat. C ₂ H ₅ OH.	Sol.	Solid Phase.	Wt. % C ₂ H ₂ OH in Solvent.			Solid Phase.
0	0	44.25	Sr(NO ₂) ₂₋₄ H ₂ O	10	6	40.05	Sr(NO ₂) ₂ (unstable)
4	1.7	42.8	"	15.05	9.5	36.7	" (unstable)
6	2.6	42.I	u	18.8*	12.35	34.3	" +Sr(NO ₃) _{2.4} H ₂ O
10.8	4.95	40.4	"	20.6	13.8	33.2	Sr(NO ₂) ₂
16	7.95	37.6	"	40.65	32.35	20.5	44
20*	12.35	34.3	" +Sr(NO ₂) ₂	59.9	53.6	10.5	"
0	0	46.6	Sr(NO ₂) ₂ (unstable)	79.2	77.15	2.6	"
6	3.45	42.7		99.4	99.38	0.02	44
* Tr. pt.							

100 cc. anhydrous hydrazine dissolve 5 gms. Sr(NO₂)₂ at room temp.
(Welsh and Broderson, 1915.)

STRONTIUM NITRITE Sr(NO₂)₂.H₂O.

100 cc.	sat.	solution		water	contain	62.83	gms.	Sr(NO ₂) ₂ .H ₂ C	at	19.5°.
44	**	44	"	90% alcohol	44	0.42	"		**	20°.
44	"	44	"	abs. alcohol	"	0.04	44	" (20°. l, 1903.)

SOLUBILITY OF STRONTIUM NITRITE IN WATER. (Oswald, 1912, 1914.)

t°.	Gms. Sr(NO ₂) ₂ per 100 Gms. Sat. Sol.	Solid Phase.	r .	Gms. Sr(NO ₂) ₂ per 100 Gms ₂ Sat. Sol.	Solid Phase.
- 1.3	11.3	Ice	35	43.I	Sr(NO ₂) ₂ .H ₂ O
- 3.I	19.6	4	52.5	46.5	66
- 7.7	35.5	u	60.5	49.3	u
-6.8	32.8	" +Sr(NO ₂) ₂ .H ₂ O	65.5	50.7	44
- 2.3	33 · 4	Sr(NO ₂) ₂ .H ₂ O	82.5	54	44
- o.3	34 · 5	u	92	56.6	44
+10	39.3*	er .	98	58.1	44
		* d = 1.446	it.	•	

STRONTIUM OXALATE SrC,O,H,O.

One liter of water dissolves 0.0328 gm. SrC₂O₄ at 1.35°, 0.0444 gm. at 15.9°, 0.0461 gm. at 18°, 0.0575 gm. at 31.7° and 0.0617 gm. at 37.3°, determined by the conductivity method.

(Kohlrausch, 1908.)

One liter of sat. aqueous solution contains 0.057 gm. SrC₂O₄ at 0°, 0.077 gm. at 20° and 0.093 gm. at 40°. (Cantoni and Diotalevi, 1905.)

SOLUBILITY OF STRONTIUM OXALATE IN AQUEOUS ACETIC ACID SOLUTIONS AT 26°-27°. (Herz and Mubs, 1903.)

Normality of Acetic Acid.	Gms. per 100 cc. Solution.			Normality of	Gms. per 100 cc. Solution.		
	СН,СООН.	SrC ₂ O ₄ .H ₂ O.	· Acetic Acid.	СН,СООН.	SrC ₂ O ₄ .H ₂ O.		
0	0	0.009		3.86	23.16	0.0598	
0. 58	3.48	0.0526		5.79	34.74	0.0496	
1.45	8.70	0.0622		16.26	97.56	0.0060	
2.89	17.34	0.0642					

STRONTIUM OXIDE SrO.

Fused SrCl₂ dissolves 18.3 gms. SrO per 100 gms. of the fused melt at 910°. (Aradt., 1907.)

STRONTIUM PERMANGANATE Sr(MnO₄)₂.

100 gms. of the sat. solution in water contain about 2.5 gms. Sr(MnO₄)₈ at 0°. (Patterson, 1906.)

STRONTIUM SALICYLATE (C.H.OH.COO),Sr.2H,O.

100 gms. sat. solution in water contain 3.04 gms. (C₄H₄OHCOO)₅Sr at 15° and 20.44 gms. at 100°. (Tarugi and Checchi, 1901.)

SOLUBILITY OF STRONTIUM SALICYLATE IN AQUEOUS ALCOHOL AT 25°. (Seidell, 1909, 1910.)

Wt. % C ₄ H ₅ OH in Solvent.	d_{m} of Sat. Sol	Gms. (C ₄ H ₄ .OH COO) ₃ Sr. ₂ H ₂ O per 100 Gms. Sat. Sol.	Wt. % C ₄ H ₂ OH in Solvent.	d_{∞} of Sat. Sol.	Gms. (C ₆ H ₄ OH- COO) ₂ Sr. ₂ H ₂ O per 100 Gms. Sat. Sol.
0	I.022	5.04	60	0.923	7.15
10	1.006	4.88	70	0.893	5.90
20	0.993	5.22	80	0.859	4.40
30	0.982	ő. 20	90	0.824	2.56
40	0.966	7.70	92.3	0.815	2.02
50	o. 948	8.08	100	0.790	0.44

The solid phase was $(C_6H_4OH.COO)_2Sr.2H_2O$ in all cases except the solution in 100 per cent alcohol, in which partial dehydration and conversion of the crystalline salt to an amorphous bulky white powder occurred.

STRONTIUM SUCCINATE C.H.O.Sr.

100 gms. sat. solution in water contain 0.439 gm. C₄H₄O₄Sr at 15° and 0.215 gm. at 100°. (Tarugi and Checchi, 1901.)

SOLUBILITY OF STRONTIUM SUCCINATE IN WATER. (Cantoni and Diotalevi, 1905.)

	Gms. C ₄ H ₄ O ₄ Sr		Gms. C ₄ H ₄ O ₄ Sr		Gms. C ₄ H ₄ O ₄ Sr
t°.	per 100 cc. Sat. Sol.	t°.	per 100 cc. Sat. Sol.	t* .	per 100 cc. Sat. Sol.
0	0.052	20	0.270	40	0.375
5	0.076	25	0.382	45	0.389
10	0.111	30	0.451	50	0.424
15	0.177	35	0.413		

STRONTIUM SULFATE SrSO.

One liter of water dissolves 0.1133 gm. SrSO₄ at 2.85°, 0.1143 gm. at 17.4° and 0.1143 gm. at 32.3°, determined by the conductivity method. (Kohlrausch, 1908.)

SOLUBILITY OF STRONTIUM SULFATE IN AQUEOUS SOLUTIONS OF AMMONIUM ACETATE AT 25°. (Marden, 1916.)

Gms. per 100 G	ms. Sat. Sol.	Gms. per 100 Gms. Sat. Sol.		
CH,COONH,	SrSO ₄ .	CH4COONH4.	SrSO ₄ .	
0	0.0151	10.68	0.0942	
2.13	0.0451	21.37	0.115	
5.34	0.0732			

SOLUBILITY OF STRONTIUM SULFATE IN AQUEOUS CALCIUM NITRATE AT ROOM TEMPERATURE (Raffo and Rossi, 1915.)

Analyzed solutions of Sr(NO₃)₂, Ca(NO₃)₂ and CaSO₄ were mixed at 60° and allowed to stand at room temperature 1 to 2 days. The resulting SrSO₄ was determined and the difference between the amount found and the amount which would have resulted if all the Sr(NO₃)₂ had been converted to SrSO₄, was taken as the amount of SrSO₄ dissolved. Gradually increasing concentrations of Ca(NO₃)₂ were used.

Gms. per 100	cc. Sat. Sol.	Gms. per 100 cc. Sat. Sol.		
Ca(NO ₂) ₂ .	SrSO ₄ .	Ca(NO ₂) ₂ .	SrSO ₄ .	
0.5	0.0483	4	0. 1489	
I	0.0619	5	0. 1698	
2	0.1081	Ğ	0. 1955	
2	0.1275			

SOLUBILITY OF STRONTIUM SULFATE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC, NITRIC, CHLORACETIC AND FORMIC ACIDS. (Banthisch, 1884.)

ec. of Aq. Acid con- taining I	Gms. pe	. HCl r 100 cc. l.	In Aq. Gms. per Sol	HNO ₃ 100 cc. l.	In Aq. CH	oo cc. Sol.	In Aq. HC Gms. per : Sol.	100 CC.
Mg. Equiv. in each case.		SrSO ₄ .	HNO ₃ .	SrSO4.	COOH.	SrSO ₄ .	нсоон.	SrSO4.
0.2	18.23	0.161	31.52	0.381	• • •	• • •	• • •	• • •
0.5	7.29	0.207	12.61	0.307	• • •	• • •		• • •
I.0	3.65	0.188	6.30	0.217	94 · 47	0.026	46.02	0.024
2.0	1.82	0.126	3.15	0.138	47.23	0.022	• • •	
10.0	0.36	0.048	0.63	0.049	• • •	• • •	• • •	• • •

100 gms. 95 per cent formic acid dissolve 0.02 gm. SrSO₄ at 18.5°. (Aschan, 1913).

SOLUBILITY OF STRONTIUM SULFATE IN AQUEOUS SODIUM CARBONATE AT 25°. (Here, 1910.)

Freshly prepared and dried SrSO₄ was shaken 5 days with aqueous sodium carbonate solutions and the supernatant clear solutions analyzed.

Normality of Aqueous	Gm. Mols. per Liter Sat. Sol.			
$Na_{2}CO_{3}\left(\frac{Na_{2}CO_{3}}{2}\right)$.	Na ₂ CO ₂	Na ₂ SO ₄		
2 /	2	2		
0.6025	0.0382	0. 5643		
1.205	0.076	1.129		
2.41	0.153	2.257		

SOLUBILITY OF STRONTIUM SULFATE IN SULFURIC ACID SOLUTIONS.

t*.	Conc. of H ₂ SO ₄ .	Gms. SrSO ₄ per 100 Gms. Acid.	Authority.				
ord.	concentrated	5. 6 8	(Sturve, 1870.)				
"	fuming	9.77	44				
"	91%	0.08	(Varenne and Paulean, 1881.)				
70	Sp. Gr. $1.843 = 99\%$	14	(Garside, 1875.)				
ord.	Absolute H ₂ SO ₄	21.7*	(Bergius, 1910.)				
• per xoo cc. Sat. Sol.							

SOLUBILITY OF STRONTIUM SULFATE IN AQUEOUS SALT SOLUTIONS. (Virck, 1862.)

In Aq	. NaCl.	In Ac	ı, KCl.	In Aq	. MgCl ₂ .	In Aq	CaCl _a .
(a.)	(b.)	(a.)	(b.)	(a.)	(b.)	(a.)	(6.)
8.44	0. 165	8.22	0. 193	1.59	0.199	8.67	0. 176
15.54	0.219	12.54	0.193	4.03	0.206	16.51	0. 185
22.17	o. 181	18.08	0.251	13.63	0.242	33.70	0. 171

(a) = Gms. salt per 100 gms. aq. solution. (b) = Gms. $SrSO_4$ per 100 gms. solvent.

STRONTIUM TARTRATE SrC4H4O6.3H2O.

SOLUBILITY IN WATER.

(Cantoni and Zachoder, 1905.)

ť.	Gms. SrC ₄ H ₄ O ₈₋₃ H ₄ O per 100 cc. Solution.	t°.	Gms. SrC4H4O8.3H4O per 200 cc. Solution.	ť,	Gms. SrC ₄ H ₄ O ₆₋₃ H ₄ O per 100 cc. Solution.
0	O. II2	25	0. 224	60	0.486
10	0.149	30	0.252	70	0.580
15	0.174	40	0.328	8o .	o. 688
20	0.200	50	0.407	85	0.755

Solubility of Strontium Tartrate in Aqueous Solutions of Acetic Acid at 26°-27°.

(Herz and Muhs, 1903.)

Normality of	Gms. per re	o cc. Solution.	Normality of	Gms. per 100 cc. Solution.		
Acetic Acid.	СН,СООН.	SrC,H,O,3H,O.	Acetic Acid.	Сн.соон.	SrC,H,O,3H,O.	
0	0	0.227	3.77	21.85	1.051	
0.565	3.39	0.678	5.65	33.90	0.982	
1.425	8.15	0.864	16.89	101.34	0. 184	
2.85	17.10	0.996				

STRONTIUM (Di) TUNGSTATE SrW2O7.3H2O.

100 cc. H₂O dissolve 0.35 gm. at 15°.

(Lefort, 1878.)

STRYCHNINE Cat Has NaO2.

SOLUBILITY IN SEVERAL SOLVENTS.

Solvent.	t.	Gms. C ₂₁ H ₂₂ N per 100 Gm Solvent.		t».	Gms. C ₂₁ H ₂₂ N ₂ O ₂ per 100 Gms. Solvent.
Water	ord. t.	0.014 (1	 Carbon Tetrachloride 	20	0.158 (5)
u	20	0.0125(2	a) " "	20	0.22 (0)
46	20	0.0143 (3	3) " "	17	0.645 (10)
66	25	0.016 (4		25	10.25 (6)
46	20	0.021 (9	;) "	25	16.6 (14)
Aq. 10%NH3	20	0.033 (3		20	1.7 (3)
Aq. 3% H ₂ BO ₂ in 50%	6		Ethyl Acetate	20	0.197 (5)
Glycerol	ord. t.	3.5 (1) Ether	20	0.043 (5)
$C_2H_4OH (d=0.83)$	15-20	0.71 (7		25	0.018 (4)
" $(d=0.83)$	20	0.833 (3	s) " sat. with H ₂ O	20	0.051 (5)
" $(d=0.83)$	25	0.91 (4	ı) Glycerol	15	0.25
" +10% N	H ₂ 20	0.256 (3	Petroleum Ether	20	0.0093 (5)
" $(d=0.785)$	25	0.70 (6	i) Piperidine	20	0.7 (3)
$CH_{\bullet}OH(d=0.796)$	25	0.49 (6	i) Pyridine	20	1.5 (3)
Aniline	20	20 (3	3) "	26	1.24 (11)
Amyl Alcohol	25	0.55 (4) Aq. 50 % Pyridine	20-25	2.43 (8)
Benzene	20	0.77 (5) Water sat. with Ether	20	0.017 (5)
"	25	0.76 (6		20	0.061 (2)

⁽¹⁾ Baroni and Barlinetto (1911); (2) Zalai (1910); (3) Scholtz (1912); (4) U. S. P. 8th ed.; (5) Müller (1903); (6) Schaefer (1913); (7) Squire and Caines (1905); (8) Dehn (1917); (9) Gori (1913); (10) Schindelmeiser (1901); (11) Holty (1905).

SOLUBILITY OF STRYCHNINE IN AQUEOUS ALCOHOL AT 15°-20°. (Squire and Caines, 1905.)

Per cent Alcohol in Solvent 20 45 60 70 90 Gms. C₂₁H₂₂N₂O₂ per 100 cc. solvent 0.024 0.125 0.25 0.40 0.59

SOLUBILITY OF STRYCHNINE IN MIXTURES OF ETHER AND CHLOROFORM AT 25°. (Marden and Dover, 1916.)

Per cent CHCl _s in Mixed Solvent.	Gms. C ₂₁ H ₂₂ N ₂ O ₂ per 100 Gms. Mixed Solvent.	Per cent CHCl _s in Mixed Solvent.	Gms. C ₂₁ H ₂₂ N ₂ O ₂ per 100 Gms. Mixed Solvent.
100	15.3	50	0.35
90 80	7. I	30	0.21
8o	2.77	20	0.15
70	1.5	10	0.09
60	0.65	0	0.02

SOLUBILITY OF STRYCHNINE IN MIXED SOLVENTS AT 25°. (Schaefer, 1913.)

Mixture.	Gm. C ₂₁ H ₂₂ N ₂ O ₂ per 100 cc. of Mixture.
One volume of C ₂ H ₅ OH+4 vols. CHCl ₃	25
One volume of C ₂ H ₅ OH+4 vols. C ₆ H ₆	5
One volume of CH ₃ OH +4 vols. CHCl ₃	25
One volume of CH ₃ OH +4 vols. C ₆ H ₆	6.7

DISTRIBUTION OF STRYCHNINE BETWEEN WATER AND CHLOROFORM AT 25°. (Seidell, 1910a.)

Gm. C ₁₁ H ₂₂ N ₂ O ₃ Added per 15 cc. H ₂ O+15 cc. CHCl ₂ .	Gms. C ₁₁ H ₁₂ N ₁ O ₂	(b)	
CHCl.	H ₂ O Layer (c).	CHCl _a Layer (b).	$\frac{(b)}{(a)}$.
0.005	0.0006	0.0103(?)	• • •
0.025	0.0010	0.0253	25.2
0.125	0.0021	0.1299	61
0.625	0.0099	0.6225	64

STRYCHNINE ARSENATE CnHmN2O3.H2AsO4.4H2O(.14H2O).

100 gms. sat. solution in water contain 4.53 gms. C₁₁H₂₂N₁O₃.H₄AsO₄ at 25°.
(Puckner and Warren, 1910.)
100 gms. CHCl₄ dissolve 0.085 gm. C₂₁H₂₂N₁O₃.H₄AsO₄ at 15°.
(Hill, 1910.)

STRYCHNINE FORMATE CaHaNiOs. HCOOH. 2HiO.

SOLUBILITY IN WATER AND IN ALCOHOL. (Hampshire and Pratt, 1913.)

	Solubility in Water.	Solubility in Abs. Alcohol.			
ť.	Gms. Salt per 200 Gms. H ₂ O.	t.	Gms. Salt per 100 Gms. C ₂ H ₂ OH.		
19.5	30.59	18.5	10		
24	39.68	20	10.3		
27	44.25	22	10.64		

STRYCHNINE HYDROBROMIDE Cat Has No. O. HBr.

100 cc. H_1O dissolve 1.54 gms. of the salt at 15°-20°. (Squire and Caines, 1905.) 100 cc. 90% alcohol dissolve 1.04 gm. of the salt at 15°-20°. "

STRYCHNINE HYDROCHLORIDE Carlan, O1. HCl.

100 cc. H_2O dissolve 2.86 gms. of the salt at 15°-20°. (Squire and Caines, 1905.) 100 cc. 90% alcohol dissolve 1.37 gms. of the salt at 15°-20°. "100 gms. CHCl₈ dissolve 0.592 gm. of the salt at 15°. (Hill, 1910.

STRYCHNINE NITRATE CuHuN2O2.HNO3.

SOLUBILITY IN SEVERAL SOLVENTS.

Solvent.	ť.	Gms. Salt per 100 cc. Solvent.	Solvent.	r.	Gms. Salt per 100 cc. Solvent.
Water	15	1.4 (1)	CH ₂ OH	25	0.345 (3)
46	15-20	1.6 (2)	CHCl.	25	1.25 (3)
"	25	2.38 (4)	1 vol. C ₂ H ₄ OH+4 vols. CHCl ₂	25	5 (3)
"	8ō	12.5 (4)	I vol. C2H4OH+4 vols. C4H4	25	0.66 (3)
99% С ₂ Щ ₂ ОН	15-20	0.83 (2)	1 vol. CH ₂ OH+4 vols. CHCl ₂	25	4 (3)
	15	0.77 (1)	1 vol. CH ₂ OH+4 vols. C ₂ H ₄	25	I (3)
ee 4e	b. pt.	3.45 (I)	Glycerol	25	1.66 (4)
100% C ₂ H ₂ OH	25	0.37 (3)	-	•	

(1) Dott (1910); (2) Squire and Caines (1905); (4) Schaefer (1913); (4) U. S. P. VIII ed.

DISTRIBUTION OF STRYCHNINE NITRATE BETWEEN WATER AND CHLOROFORM AT 25°. (Seidell, 1920a.)

Gms. CnHmN,O, HNO	Gms. C ₂₁ H ₂₂ N ₂ O	•	
Gms. C ₁₁ H ₁₂ N ₁ O ₂ -HNO ₃ Added per 15 cc. H ₂ O + 15 cc.CHCl ₂ .	H ₆ O Layer (a).	CHCl, Layer (b).	<u>₫</u> .
0.005	0.0051	o.0030 (?)	
0.025	0.0222	0.0042	5.3
0.125	0.1017	0.0243	4.2
0.625	0.3250	0.1698	2

STRYCHNING OXALATE

100 gms. H₂O dissolve 1.13 gms. of the anhydrous salt at about 15°. (Dott, 1910.)

STRYCHNINE PERCHLORATE C11H2N2O2.HClO4.

100 gms. H₂O dissolve 0.022 gm. perchlorate at 15°. (Hofmann, Roth, Höbold and Metrier, 1910.)

STRYCHNINE SULFATE $(C_{21}H_{22}N_2O_2)_2.H_2SO_4.5H_2O.$

SOLUBILITY IN SEVERAL SOLVENTS.

Solvent.	t.	Gms. Salt per 100 cc. Solvent.	Solvent.	ť.	Gms. Salt per 100 cc. Solvent.
Water	15-20	2.08 (1)	CHCl _a	15	0.05 (4)
66	25	3.23 (2)	"	25	0.31 (2)
66	80	16.6 (2)	"	25	0.43 (3)
90% С.Н.ОН	15-20	0.74 (1)	1 vol. C ₂ H ₅ OH+4 vols. CHCl ₈	25	12.8 (3)
94% " ்	25	1.9 (2)	1 vol. C2H4OH+4 vols. C6H4	25	0.725 (3)
94% "	60	6.2 (2)	1 vol. CH ₂ OH+4 vols. CHCl ₂	25	25 (3)
100% "	25	0.8 (3)	1 vol. CH ₂ OH+4 vols. C ₄ H ₄	25	12.5 (3)
CH ₂ OH	25	8.33 (3)	Glycerol	15	18 (2)
(1) Squire	and Cai	nes (1905); (2)	U. S. P. VIII; (3) Schaefer (1913); (4)	Hill ((1910).

STRYCHNINE TARTRATE

SOLUBILITY OF d, l and of RACEMIC STRYCHNINE TARTRATE IN WATER. (Dutilh, 1912.)

Gms. of Each Separately per 1000 gms. H₂O. d Tartrate. l Tartrate. Racemic Tartrate. 9.48 14.14 14.02 7.35 16 17.72 11.50 19.12 25 22.9 14.52 24.70 15.60 27 17.02 30 35.18 22.90 38.42 40

SOLUBILITY OF MIXTURES OF d AND l TARTRATES AND OF RACEMIC STRYCHNINE TARTRATE IN WATER.
(Ladenburg and Doctor, 1899.)

R	esults for $d+l$ T	`artrate.		I	Results for Racen	nic Tartrate.
ť.	Gms. Anhydrous Salt per 100 Gms. H ₂ O.	Solid Phase.		t°.	Gms. Anhydrous. Salt per 100 Gms. H ₂ O.	Solid Phase.
7	1.48	50% 6+5%1		7	1.39	Racemic Tartrate
19	1.95	"		19	1.90	" .
27	2.38	"		27	2.33	44
35	3.02	"	•	35	3.17	44
42	3.75	44		42	3.02	"

100 gms. sat. solution in water contain 0.45 gm. anhydrous strychnine acid tartrate at about 15°. (Dott, 1910.)

SUBERIC ACID C6H12(COOH)2.

SOLUBILITY IN WATER. (Lamouroux, 1899.)

t°. o°. 15°. 20°. 35°. 50°. 65°. Gms. C₆H₁₂(COOH)₂ per 100 cc. sol. 0.08 0.13 0.16 0.45 0.98 2.22

SOLUBILITY OF SUBERIC ACID IN ALCOHOLS AT 4°. (Timofeiew, 1894.)

Alcohol.	Gms. C ₄ H ₁₁ (COOH) ₂ per 100 Gms.		
	Sat. Sol.	Alcohol.	
Methyl Alcohol	20.32	32.04	
Ethyl Alcohol	15.5	18.44	
Propyl Alcohol	12.2	13.9	

100 gms. 95 per cent formic acid dissolve 2.13 gms. C₆H₁₂(COOH)₂ at 19.5°.

(Aschan, 1913.)

Data for the distribution of suberic acid between water and ether at 25° are given by Chandler, 1908.

SUCCINIC ACID (CH₂)₂(COOH)₂.

SOLUBILITY IN WATER.
(Miczynski, 1886; van der Stadt, 1902; Lamouroux, 1899; for other concordant results, see Bourgoin, 1874; Henry, 1884.)

r.		COOH)2 per 100	Gms. Succinic Anhydride (CH ₂) ₂ COCOO	Mo	l. Per cent.
	Gms. H ₂ O.	cc. Solution.	per 100 Gms.	H ₂ O.	(CH ₂) ₂ COCOO.
0	2.80	2.78 (L.)	2.34	99.58	0.42
10	4.51	4	3.80	99.32	o.68 [,]
20 ·	6.89	5.8	5 · 77	98.97	1.03
25	8.06	7	6.74	ე8.8o	1.20
30	10. 58	8.5	8.79	98.44	1.56
40	· 16.21	12.5	13.42	97.64	2.36
50	24.42	. 18	19.95	96.53	3 - 47
60	35.83	24.5	28.77	95.07	4.93
70	51.07	• • •	40.11	93.26	6.74
8o	7 0.79		54.08	91.12	8.88
89.4	95.45		70.62	88.71	11.29
104.8	146.3	•••	101.2	84.57	15.43
115.1	188.5	• • •	126.8	81.4	18.6
134.2	335-4	• • •	187.8	74.72	25.28
159.5	748.2	• • •	295.2	65.27	34.73
180.6	t839	• • •	408.5	57.6	42.4
182.8	∞	• • •	542.3	50	50
174.4	• • •		808.5	40.7	59.3
153.3	• • •		2239	19.86	80. 14
128		• • •	8865.	5.89	94.11
118.8–119	• • •	• • •	∞	0	100

The following very careful determinations of the solubility of succinic acid in water are given by Marshall and Bain (1910).

SOLUBILITY OF SUCCINIC ACID IN AQUEOUS SOLUTIONS OF SALTS AND OF ACIDS AT 25°.
(Herz, 1910b, 1911.)

	. HBr. er Liter.	In Aq.		In Aq. Gms. pe		In Aq. Gms. pe	
HBr.	C ₄ H ₄ O ₄ . 81.21	HCl. 18.45	C ₄ H ₄ O ₄ . 66.25	KBr.	C,H,O,. 81.21	KCl. 28.34	C ₁ H ₂ O ₄ . 75.58
79.3	57.38	45.6	50.7Š	65.45	75.58	77.56	74.39
274.4	32.83	87.9 166.6	35.42 27.75	260.5 502.1	69.68 62.59	150.7 267	69.68 61.41

In Aq	. KI,	In Aq.	LiCl.	In	Aq. NaCl.	
Gms. per	r Liter.	Gms. pe	r Liter.			Solid
KI.	C ₄ H ₆ O ₄ .	LiCl.	C ₄ H ₄ O ₄ .	NaCl.	C ₄ H ₄ O ₄ .	Phase.
0	81.21	0	81.21	18.7	74.39	C ₄ H ₆ O ₄
46.48	79.12	7.63	70.86	32.73	69.68	"
102.9	77.93	23.32	62.59	64.3	61.41	44
-	.,	57.66	47.24	132.I	49.55	44
		117	29.51	289.4	27.16	46
		176.4	20.07	315.1	22.44	NaCl
		231.5	14.17	318	4.72	44

SOLUBILITY OF SUCCINIC ACID IN AQUEOUS SOLUTIONS OF POTASSIUM SUCCINATE AND VICE VERSA AT SEVERAL TEMPERATURES. (Marshall and Cameron, 1907.)

\$° .	Gms. per Sat. H ₂ C ₄ H ₄ O ₄ .	Sol.	Solid Phase.	t°.	Gms. per Sat. H ₂ C ₄ H ₄ O ₄ .	Sol.	Solid Phase.
0	2.71	0	$H_4C_4H_4O_4$	25	7.88	•	$H_4C_4H_4O_4$
0	7.26	8.00	" +KH4(C4H4O4)2	25	9.965	3.17	u
0	7.86	7.66		25	12.77	8.4	æ
0	8.24	9.95	KH4(C4H4O4)2	25	17.6	14.15	a
0	8.11	12.77	"	25	18. I	14.3	" +KH4(C4H4O4)2
0	7.87	15.47	" +KHC ₄ H ₄ O _{4.2} H ₂ O	25	15.36	18.48	KH4(C4H4O4)2
0	0	40.2	$K_2C_4H_4O_4.3H_2O$	25	13.7	23.6	" +KHC ₄ H ₄ O ₄
14	1.468	41.3	K ₂ C ₄ H ₄ O ₄ +KHC ₄ H ₄ O ₄	25	13.06	23.81	KHC,H,O,
			+KHC ₄ H ₄ O ₄ .2H ₂ O	25	11.98	24.43	"
15.	9 1.7	34.36 K	ℍℂℴℍℴΩℯℴⅇℍℊΩ+KℍℂℴℍℴΩℯ	25	9.97	25	44
20	6.39	0	H ₂ C ₄ H ₄ O ₄	25	6.61	28.6	a
20	7.48	1.85	66	25	2.6	38.2	u
20	14.63	11.64	46	25	2.II	40.6	**
20	15.03	13.32	" +KH ₂ (C ₄ H ₄ O ₄) ₂	25	1.03	48.7	" +K ₂ C ₄ H ₄ O ₄₋₃ H ₂ O
20	13.32	18.46	KH ₂ (C ₄ H ₄ O ₄) ₂	25	0.13	56.15	K ₂ C ₄ H ₄ O _{4.3} H ₂ O
20	12.74	22.45	" +KHC ₄ H ₄ O ₄	25	0	58.05	**
20	11.7	22.91	KHC ₄ H ₄ O ₄	40	12.9	0	$H_2C_4H_4O_4$
20	1.71	42.I	44	40	25.5	16.83	" +KH4(C4H4O4)2
20	1.05	47.3	" +K ₂ C ₄ H ₄ O ₄₋₃ H ₂ O	40	19		CH,CH,O,),+KHC,H,O,
20	0.985	48. I	K ₂ C ₄ H ₄ O ₄₋₃ H ₂ O	40	15.83	26.56	KHC,H,O,
20	0.909	48.75	44	40	0	62.10	₭ ₽С₄Ħ₄О₄₃Ħ₄O
20	0.159	54 - 3	66				
20	0	56.6	"				

SOLUBILITY OF SUCCINIC ACID IN ALCOHOLS AND IN ETHER. (Timofeiew, 1891, 1894; at 15°, Bourgoin, 1878.)

Solvent.	Gms. (CH ₂) ₂ (COOH) ₂ per 100 Gms. Solvent at:					
Solvent.		+15°.	+21.5°.	+39°.		
Abs. Methyl Alcohol	10.51	• • •	19.40	28.7		
Abs. Ethyl "	5.06	12.59	9.49	15		
90% " "	• • •	7.5I	• • •	• • •		
Abs. Propyi	2.11	•••	4.79	7 · 53		
Abs. Ether	• • •	1.265	• • •	• • •		
Isobutyl Alcohol	• • •	• • •	2.73	• • •		

100 gms. 95 per cent formic acid dissolve 2.06 gms. (CH₂)₂(COOH)₂ at 18.5°. (Aschan, 1913.)

DISTRIBUTION OF SUCCINIC ACID BETWEEN WATER AND AMYL ALCOHOL AT 20°.

(Herz and Fischer, 1904.)

Millimols per 1	IC₄H ₄ O₄ to cc.		C _t H _t O _t ∞ cc.		ls IC,H ₄ O ₄	Gms. (
Alcohol Layer.	Aq. Layer.	Alcohol Layer.	Aq. Layer.	Alcohol Layer.	Aq. Layer.	Alcohol Layer.	Aq. Layer.
o. 1888	0.2684	0.1114	0. 1584	3.899	6.0795	2.302	3.588
0.3643	0.5252	0.215	0.310	5.199	8.099	3.069	4.779
0.7077	1.0373	0.418	0.612	6. 334	10.170	3.739	6
1.440	2.1266	0.850	1.255	7.119	11.555	4.202	6.821
2.715	4.0495	1.603	2.391				

SOLUBILITY OF SUCCINIC ACID IN AQUEOUS ACETONE AT 20°. (Herz and Knoch, 1904.)

cc. Acetone per	C ₄ H ₆ O ₄ per 100 cc. Solution.		cc. Acetone per	C ₄ H ₆ O ₄ per 100 cc. Solution.		
zoojec. Solution.	Millimols.	Gms.	roo cc. Solution.	Millimols.	Gms.	
0	107.8	6. 363	60	275.7	16.27	
10	127.4	7.519	70	278.5	16.44	
20	155.8	9.194	80	265.3	15.66	
30	186.7	II.O2	90	201.9	11.91	
40	225.4	13.30	100	51.5	3.04	
50	254.3	15.01				

SOLUBILITY OF SUCCINIC ACID IN AQUEOUS GLYCEROL SOLUTIONS AT 25°. (Herz and Knoch, 1905.)

Wt. % Glycerol in	C ₄ H ₆ O ₄ pe Soluti	f 100 cc. ion.	Sp. Gr. of Solutions.	Wt. % Glycerol in	C ₄ H ₆ O ₄ pe Soluti	T 100 CC. OD.	Sp. Gr. of Solutions.
Solvent.	Millimols.	Gms.	Solutions.	Solvent.	Millimols.	Gms.	Solutions.
0	133.4	7.874	1.0213	40.95	105.8	6. 244	I.1120
7.15	128.2	7.566	1.0407	48.70	99.9	5.896	1.1298
20.44	118.3	6.982	1.0644	69.20	88.5	5.223	1.1804
31.55	109.7	6.476	1.0897	100*	74.Ğ	4.440	1.2530
	• Sr	o. Gr. of Gh	ycerol = 1.255.	5. Impurity	about 1.5 per	cent.	

DISTRIBUTION OF SUCCINIC ACID BETWEEN WATER AND ETHER AT 15°, 20° AND 25.5°. (Pinnow, 1915.)

Results at 15	Results at 20°.			Results at 25.5°.			
Gm. Mols. per Liter.	c	Gm. Mols.	per Liter.	e	Gm. Mols	per Liter.	
Aqueous Ether Layer (c').	č .	Aqueous Layer (c).	Ether Layer (c').	<u>e</u> .	Aqueous Layer (c).	Ether Layer (c').	č ,.
0.474 0.0783	6.05	0.644	0.096	6.71	0.3293	0.0438	7 . 52
	6. 23	0.312	0.046	6.87	0. 1768	0.0235	7 - 52
0.1175 0.0187	6. 28	0.151	0.0218	6.93	0.0894	0.0116	7.71
		0.0405	0.006	6.75			

Very careful determinations of this distribution at 0° and at 25°, in which the ionization of the succinic acid in the two solvents is taken into consideration, are given by Chandler, 1908. Two determinations at 0° and two at 15° are quoted by Kolossovsky, 1911. Earlier data for this system are given by Nernst, "Theoretical Chemistry," 3rd English edition, p. 496.

Brom**SUCCINIC ACID** CHBr(CH₂)(COOH)₂ (m. pt. 159°).

SOLUBILITY IN ALCOHOLS AT 22°. (Timofeiew, 1894.)

Alcohol.	Gms. CHBr(CH ₂)(COOH) ₂ per 100 Gms.			
	Sat. Solution.	Alcohol.		
Methyl Alcohol	56.5	129.7		
Ethyl Alcohol	45.5	83.6		
Propyl Alcohol	33.I	49.4		

Data for the distribution of monobromsuccinic acid between water and ether at 25° and for dibromsuccinic acid between water and ether at 25° are given by Chandler (1908).

Data for the melting-points of mixtures of the following pairs of optical antipodes are given by Centnerszwer (1899).

- d+1 Chlorsuccinic Acid.
 d+i Chlorsuccinic Acid.
 d Chlorsuccinic Acid + l Bromsuccinic Acid.
 i Chlorsuccinic Acid + l Bromsuccinic Acid.
- d+l Benzylaminosuccinic Acid.
- d+l Aminosuccinic Acid.

SUCCINIMIDE C.H. < CO > NH.

SOLUBILITY IN WATER AND IN ETHYL ALCOHOL.

Interpolated from original results.

(Speyers, 1902.)

	In '	Water.		In Ethyl Alcohol.			
ť.	Wt. of r cc. Solution.	Mols. per 100 Mols. H ₂ O.	Gms. per 100 Gms. H _e O.	Wt. of 1 cc. Solution.	Mols. per 100 Mols. C.H.OH.	Gms. per 100 Gms C ₂ H ₄ OH	
0	1.025	1.58	8.69	0.815	0.88	1.89	
IO	1.035	2.4	14	0.809	1.35	2.7	
20	1.052	4	23	0.806	2	4. I	
25	1.067	5.9	33	0.805	2.5	5⋅3	
30	1.086	8	45	0.804	3.I	6.8	
40	1.120	12.8	70	0.809	4.9	10.5	
50	1.145	17.8	96	o.816	7.8	16	
60	1.167	22.6	124	ö.835	12.3	26.5	
70	1.189	27.5	152	0.873	• • •	• • •	
8o	I.204	32.8	• • •	0.954	• • •		

Freezing-point data (solubilities, see footnote, p. 1), are given for ethylsuccinimide + bromotoluene and for ethylsuccinimide + p xylene by Paterno and Ampola (1897).

SUCCINIC NITRILE (Ethylene Cyanide) CNCH₂CH₂CN.

The solubility of succinic nitrile in water and also in aqueous sodium chloride solutions at various temperatures has been determined by Schreinemakers (1897), and the results presented in terms of mols. of nitrile per 100 mols. of nitrile + H_2O . The following calculations of these results to gram quantities was made by Rothmund. (Landolt and Börnstein's, "Tabellen" 1906.)

t*.	Gms. CNCH ₂ CI	LCN per 100 Gms.	r.	Gms. CNCH2CH2CN per 100 Gms.		
	Aq. Layer.	Nitrile Layer.		Aq. Layer.	Nitrile Layer.	
18.5	10.2	92	53 · 5	33.2	66.4	
20	II	91.5	55	40.3	62.8	
39	• • •	85.2	55.4 CI	it. temp.	51	
45	22					

Very complete data for the system succinic acid nitrile, ethyl alcohol and water, determined by the synthetic sealed-tube method, are given by Schreinemakers (1898c). Results for the system succinic acid nitrile, cane sugar and water are given by Timmermans (1907).

SUGAR C12H22O11 (Cane Sugar.)

SOLUBILITY IN WATER. (Herzfeld, 1892; see also Courtonne, 1877.)

t°.	Gms. C _m F	Gms. C ₁₃ H ₂₂ O ₁₁ per 100 Gms.		Gms. C ₁₉ H ₂₂ O ₁₁ per 100 Gms.	
	Solution.	Water.	t°.	Solution.	Water.
0	64 . 18	179.2	40	70.42	238. I
5	64 .87	184.7	45	71.32	248.7
IO	65. 58	190.5	50	72.25	260.4
15	66.33	197	60	74. 18	287.3
20	67.09	203.9	70	76.22	320.4
25	67.89	211.4	80	78.36	362.1
30	68.70	219.5	90	8o. 61	415.7
35	69.55	228.4	100	82.97	487.2
~ ~			_		

Sp. Gr. of sat. solution at 15° = 1.329; at 25° = 1.340.

100 gms. H₂O dissolve 212 gms. cane sugar at 25°, determined by means of Pulfrich's refractometer.

(Osaka, 1903-08.)

694 SOLUBILITY OF SUGAR IN AQUEOUS SALT SOLUTIONS AT 30°, 50°, AND 70°.

Interpolated from original results.

(Schukow, 1900-)

£°.	Gms. Salt per	Gms. C ₁₉ H ₂₅ O ₁₁ per 100 grams H ₂ O in Aq. Solution of:					
5 ~.	100 Gms. H ₂ O.	KCI.	KBr.	KNO2.	NaCl.	CaCla-	
30	0	219.5	219.5	219.5	219.5	219.5	
"	IO	216	218	217	210	197	
66	20	22I	220	216	211	189	
"	30	228	224	216	219	192	
66	40	237	228	217	233	200	
"	50			218	250	218	
**	60	•••	, · · ·	•••	269	243	
50	0	260.4	260.4	260.4	260.4	260.4	
""	• IO	261	262	260	255	239	
"	20	266	266	261	260	228	
66	30	274	.272	262	269	228	
66	40	284	276	262	284	236	
"	50	296	280	263	302	253	
"	60	• • •	• • •	• • •	• • •	276	
70	0	320.5	320.5	320.5	320.5	320.5	
****	10	326	324	321	323	295	
44	20	334	328	324	330	286	
"	30	345	334	327	344	286	
46	40	357	34 I	331	361	295	
"	50	370	349	334	384	308	
44	60	384	357	337	406	327	

Solubility of Cane Sugar in Saturated Aqueous Salt Solutions at 31.25° . (Köhler, 1897.)

4.	Gms. Sugar per 100 Gms.		Selt.	Gms. Sugar per 100 Gms	
Salt.	Solution.	Water.	SELIT.	Solution.	Water.
CH_COOK	• • •	324.8	Na ₂ CO ₃	64.73	229.2
C.H.COOK	49.19	306.1	KNO,	61.36	224.7
C,H,OH.(COOK)	50.30	303.9	K ₂ SO ₄	66.74	219.0
K,CO,	56.0	265.4	CH ₃ COOCa	60.12	190 · 0
KCl	62.28	246.5	Na ₂ SO ₄	52.20	183.7
CH ₂ COONa	59 · 93	237.6	CaCl ₂	42.84	135.1
NaČl	62.17	236.3	$MgSO_4$	46.52	119.6

SOLUBILITY OF CANE SUGAR IN AQUEOUS ALCOHOL SOLUTIONS AT 14°. (Schrefeld, 1894.)

Wt. per cent Alcohol.	Wt. per cent Sugar.	Gms. Sugar per 100 cc. Alcohol-H ₂ O Mixture.	Wt. per cent Alcohol.	Wt. per cent Sugar.	Gms. Sugar per 100 cc. Alcohol-H ₂ O Mixture.
0	66.2	195.8	50	38.55	62.7
5	64.25	179.7	60	26.70	36.4
IO	62.20	164.5	70	12.25	13.9
20	58.55	141.2	8o	4.05	4.2
30	54.05	117.8	90	0.95	0.9
40	47 - 75	gr.	100	C.00	0.0

SOLUBILITY OF CANE SUGAR IN AQUEOUS ALCOHOL SOLUTIONS. (Scheibler, 1872; correction, 1891.)

Result	ts at o°.	Results at 14°.			at 40°.	
Sp. Gr. of	Gms. Sugar	Sp. Gr. of	Gms.	per 100 cc. Sc	olution.	Gms. Sugar per 100 cc.
17.5°.	Solution.	17.5°.	Sugar.	С₂Н₄ОН.	H ₂ O.	Solution.
1.325	85.8	1.326	87.5	•0	45.10	
1.299	80.7	1.300	81.5	3.91	44.82	95.4
1.236	74.2	1.266	74.5	8.52	43.83	90
1.229	65.5	1.233	67.9	13.74	41.87	82.2
1.182	56.7	1.185	58	20.24	40.38	74.9
1.129	45.9	1.131	47.I	28. 13	38.02	63.4
1.050	32.9	1.058	33.9	37.64	34 · 47	49.9
0.972	18.2	0.975	18.8	46. 28	29.57	31.4
0.893	6.4	0.895	6.6	61.15	21.95	13.3
0.837	0.7	0.838	0.9	71.18	12.83	2.3
o.806	0.08	0.808	0.36	77.39	3.28	0.5
	Sp. Gr. of Solutions 17.5°. 1.325 1.299 1.236 1.229 1.182 1.129 1.050 0.972 0.893 0.837	Solution at 17.5°. Solution. Solution. 1.325 85.8 1.299 80.7 1.236 74.2 1.229 65.5 1.182 56.7 1.129 45.9 1.050 32.9 0.972 18.2 0.893 6.4 0.837 0.7	Sp. Gr. of Solution at 17.5°. 1.325 85.8 1.326 1.299 80.7 1.300 1.236 74.2 1.266 1.229 65.5 1.233 1.182 56.7 1.185 1.129 45.9 1.131 1.050 32.9 1.058 0.972 18.2 0.975 0.893 6.4 0.895 0.837 0.7 0.838	Sp. Gr. of Solution at 17.5°. Gms. Sugar per roo cc. Solution at 17.5°. Sp. Gr. of Solution at 17.5°. Gms. Sugar Solution at 17.5°. Gms. Sugar Solution at 17.5°. Gms. Sugar Sugar Sugar. Sp. Gr. of Solution at 17.5°. Gms. Sugar Sugar. <	Sp. Gr. of Solution at 17.5°. Gms. Sugar Solution at 17.5°. Sp. Gr. of Solution at 17.5°. Gms. per 100 cc. Solution at 17.5°. 1.325 85.8 1.326 87.5 0 1.299 80.7 1.300 81.5 3.91 1.236 74.2 1.266 74.5 8.52 1.229 65.5 1.233 67.9 13.74 1.182 56.7 1.185 58 20.24 1.129 45.9 1.131 47.1 28.13 1.050 32.9 1.058 33.9 37.64 0.972 18.2 0.975 18.8 46.28 0.837 0.7 0.838 0.9 71.18	Sp. Gr. of Solution at Portion of Solution at 17.5°. Gms. Sugar Solution at 17.5°. Sp. Gr. of Solution at 17.5°. Gms. per 100 cc. Solution. 1.325 85.8 1.326 87.5 0 45.10 1.299 80.7 1.300 81.5 3.91 44.82 1.229 65.5 1.233 67.9 13.74 41.87 1.182 56.7 1.185 58 20.24 40.38 1.129 45.9 1.131 47.1 28.13 38.02 1.050 32.9 1.058 33.9 37.64 34.47 0.972 18.2 0.975 18.8 46.28 20.57 0.893 6.4 0.895 6.6 61.15 21.95 0.837 0.7 0.838 0.9 71.18 12.83

100 gms. absolute methyl alcohol dissolve 1.18 gms. cane sugar at 19°.
(de Bruyn, 1892.)

SOLUBILITY OF CANE SUGAR IN AQUEOUS ACETONE AT 25°. (Herz and Knoch, 1904.)

Sp. Gr. of	cc. Acetone	Gms. Sugar	Gms. per 100 cc. Solution.			
Solutions.	per 100 cc. Solvent.	per 100 cc. Solution.	H _r O.	(CH ₂)2CO.	C ₁₂ H ₂₂ O ₁₁ .	
1.3306	0	89.8	43.3	0	89.8	
1.2796	20	76.7	42.9	8.4	76.7	
1.2491	30	72. I	39.5	13.4	72. I	
I.2002	40	59.3	39.8	20.9	59.3	
1.1613	45	52.5 .	39	24.6	52.5	

Above 45 cc. acetone per 100 cc. solvent the solution begins to separate into two layers. The lower of these contains 51 gms. sugar per 100 cc. and has Sp. Gr. 1.1522. The upper layer contains so little sugar that the amount could not be determined by the method employed. 100 cc. evaporated in a vacuum desiccator left a residue of 3.68 gms. Above the concentration of 80 cc. acetone per 100 cc. solvent the two layers unite. In pure acetone 100 cc. solution gave a residue of 0.18 gm. sugar.

SOLUBILITY OF SEVERAL SUGARS IN PYRIDINE AT 26°. (Holty, 1905.)

Sugar.	Formula.	d ₂₆ of Sat. Sol.	Gms. Sugar per 100 Gms. Sat. Sol.	
Cane Sugar (Sucrose)	CmHaOn		6.45	
Milk Sugar (Lactose)	C13H22O11.H2O	0.981	2.18	
Grape Sugar (Glucose)	d C ₆ H ₁₂ O ₆ .H ₂ O	1.005	7.62	
Fruit Sugar (Fructose)	l C ₆ H ₁₂ O ₆	1.052	18.49+	
Galactose	$C_0H_{12}O_0$	1.0065	5.45(?)	
Maltose .	C22H22O11	• • •	98. 10 *	(Dehn, 1917.)
Mannose	$C_6H_{12}O_6$	• • •	29.9 *	44
Raffinose	C ₁₈ H ₂₂ O ₁₆ .5H ₂ O	• • •	75 *	"

 $^{^{\}circ}$ It is uncertain whether these figures refer to gms. per 100 gms. sat. solution or gms. per 100 gms. pyridine at 20°-25°.

100 gms. aq. 50 per cent pyridine dissolve the following gms. of sugars at 20°-25°; sucrose, 38.5; maltose, 43.07; mannose, 78.70; lactose, 1.98; fructose, 85.42; galactose, 68.3; glucose, 49.17; raffinose, 8.76. (Dehn, 1917.) 100 gms. trichlorethylene dissolve 0.004 gm. cane sugar at 15°. (Wester & Bruins, 1914.)

For additional data on Galactose, see p. 305 and on Glucose, see p. 306.

Solubility of Milk Sugar (Lactose) Hydrate and β Anhydride in Water.

(Hudson, 1904, 1908.)

It was found that the saturation point was reached very slowly with this compound. From the results, it was concluded that "aqueous solutions of milk-sugar contain two substances in equilibrium and that the mutarotation of milk-sugar results from the slow establishment, in cold solutions, of the equilibrium of the balanced reaction, $C_{12}H_{24}O_{13}$ (Hydrate) $\rightleftarrows H_2O + C_{12}H_{22}O_{11}$ (β -anhydride).

The final solubility of hydrated milk sugar was determined by approaching saturation from below and from above with mixtures of water and excess of once recrystallized hydrated milk sugar. These were constantly rotated until equilibrium was reached (one week was allowed in all cases). The filtered saturated solutions were evaporated to dryness and the crystalline residues, consisting of the α and β anhydrides, weighed.

r.	Gms. C ₁₉ H ₂₉ O ₁₁ per 100 Gms. Sat. Sol.	, t	Gms. C ₁₉ H ₂₉ O ₁₁ per 100 Gms. Sat. Sol.
0	10.6	49	29.8
15	14.5	64	39.7
25	17.8	74	46.3
39	24	89	58.2

The initial solubility, obtained by agitating an excess of milk sugar hydrate with water for a few minutes, was somewhat less than one-half the above figures, at temperatures up to 25°

at temperatures up to 25°.

The final solubility of β anhydrous milk sugar was difficult of determination on account of the high concentration and instability of the saturated solution below 92°. At 0° the final saturation was hastened by addition of 0.1 n NH₄OH solution. At 0°, 42.9 gms. C₁₂H₃₂O₁₁ per 100 gms. sat. solution were found and at 100°, 61.2 gms.

SOLUBILITY OF SEVERAL SUGARS IN AQUEOUS ALCOHOL AT 20°. (Hudson and Yanovsky, 1917.)

	(TIMOSON and I	amosara, tati'i		
Sugar.	Formula.	Solvent.	Gms. Anhyo per 100 cc	
Sugar.	rotmus.		Initial Solubility.	Final Solubility.
α Arabinose	C _s H ₂₀ O _s	8∞% C₂H₄OH	0.74	1.94
β Cellose	$C_{19}H_{28}O_{11}$	20% "	3.2	4.7
β Fructose	C ₆ H ₂₂ O ₆	8o% "	13.4	27.4
β "	**	95% "	1.8	4.2
β "	."	Methyl Alcohol	5.2	II.I
α Galactose	C*H ²³ O*	60% C₂H₄OH	I.I	3. T
α "	"	8o% "	0.27	0.65
β, α Glucoheptose	$C_7H_{14}O_7$	20% "	4	4.5
α Glucose	C ₆ H ₁₂ O ₆	8o% "	2	4.5
α "	44	Methyl Alcohol	0.85	r.č
α " hydrate	C ₆ H ₁₂ O ₆ .H ₂ O	8∞% C₂H₄OH	1.3	3
β Glucose	C ₁ H ₁₂ O ₆ .	8o% "	4.9	ğ. I
α Lactose hydrate	C2H22O11.H2O	40% "	1.1	2.4
α Lyxose	C ₅ H ₁₁ O ₅	90% "	5.4	7.9
β Maltose hydrate	C12H22O11.H2O	60% "	3 •	4.75
β Mannose	C ₆ H ₁₂ O ₆	80% "	2.4	13
β "	44	Methyl Alcohol	0.78	4.4
β Mellibose Dihydrate	C12H22O4.2H2O	80% С <u>.</u> Н.ОН	0.76	1.3
α Rhamnose Hydrate	C4H12O1.H2O	100% "	8.6	9.5
α " "	44	70% "	8.2	ģ. 6
α Xylose	C _s H _M O _s	80% "	2.7	6.2
Sucrose	C12H22O11	8o% "	3.7	3.7
Trehalose Dihydrate	C ₁₃ H ₂₂ O ₁₁ .2H ₂ O	70% "	ĭ.8	ĭ.8
Raffinose Pentahydrate	C ₁₈ H ₂₈ O ₁₈ .5H ₂ O	50% "	1.4	1.4

SOLUBILITY OF SORBOSE AND GULOSE IN WATER AND ALCOHOLS. (de Bruyn and van Ekenstein, 1900.)

· ·	M =4	Gms. Sugar per 100 cc. Sat. Sol. in:				
Sugar.	Mpt.	H ₂ O at 100°.	CH ₂ OH at 17°.	C ₂ H ₄ OH at 17°.		
d Sorbose	151	0.22	1.70	1.02		
l Sorbose	150	0.23	1.68	I		
l Gulose	150	0.24	1.72	1.04		
100 gms. H ₂ O d 100 gms. H ₂ O d	issolve 108 gr issolve 14.3 g	ms. maltose at 20 ms. raffinose at 2	0°–25°. 20°–25°.	(Dehn, 1917.)		

Solubility of Phenylhydrazones and β Naphthylhydrazones of the Sugars in Water and in Alcohols at $16^\circ-18^\circ$.

(van Ekenstein and de Bruyn, 1896.)

The hydrazones were prepared by adding to a concentrated and warm solution of the sugar the equivalent quantity of the hydrazine dissolved in the molecular quantity of glacial acetic acid. The precipitated hydrazones were recrystallized from 30 to 50 per cent alcohol. No details in regard to the method of obtaining saturation or of analysis of the solutions are given.

Phenylhydrazone of:	37 -4	Gms. Compound per 100 cc. Sat. Sol. in:			
Phenyinydrazone ok:	Mpt.	Water.	СН,ОН.	C ₂ H ₄ OH.	
Methyl Mannose	178	0.2-0.06	0.50	0.05-0.02	
" Arabinose	ıĠı	"		""	
" Rhamnose	124	"	very sl. sol.	"	
" Galactose	180	"	"	"	
Ethyl Galactose	160		• • •	O. I	
" Mannose	159			0.2	
" Arabinose	153			0.4	
" Rhamnose	123		very sl. sol.	• • •	
Amyl Galactose	116	•••		0.6	
" Mannose	134	•••	• • •	3.5	
" Arabinose	120		• • •	3.6	
" Rhamnose	99	•••	very sl. sol.	6.5	
" Glucose	128	•••		1.2	
" Lactose	123		• • •	0.4	
Allyl Galactose	157	• • •		0.3	
" Mannose	142	• • •	•••	0.7	
" Arabinose	145	• • •		0.5	
" Rhamnose	135	• • •			
" Glucose	155	•••	•••	•••	
" Lactose	132	• • •	***	0.2	
" Melibose	192			0.3	
Benzyl Galactose	154	• • •	. 0.9	0.08	
" Mannose	165	•••	0.55	0.2	
" Arabinose	170	• • •	0.4	0.06	
" Rhamnose	121		15.4	6.7	
" Glucose	150		0.5	0.10	
" Lactose	128	•••	0.0	0.06	
8 Naphthyl Galactose	167	0.14		0.24*	
" Mannose	157	0.18		0.25*	
" Arabinose	141	0.22		0.62*	
" Rhamnose	170	0.20		0.44*	
" Glucose	95	0.25	•••	5*	
" Xylose	70	0.32	•••	6.62*	
" Lactose	203	0.07	•••	0.02	
" Maltose	176	0.07	•••	0.4	
" Melibose	135			1.3*	
110110030	-33	•••	• • •	3	

^{*} Solvent 96 per cent CaHaOH.

Solubility of the Benzalic Compounds of Some Polyatomic Alcohols at $16^{\circ}{-}18^{\circ}$.

(de Bruyn and van Ekenstein, 1899.)

No details of the determinations are given. .It is stated that the results are sufficiently exact for use in identifying hexites.

Name of Compound.	Mpt.		Gms. Compd. Dissolved per 100 cc. Sat. Sol. in:			
			Acetone.	Chloroform.	Alcohol.	
Dibenzalerythritol	201	(Fischer)	0.34	3.64	0.02	
Monobenzalarabitol	152	66	•••			
Dibenzaladonitol	165	44	0.64	1.36	0.14	
Dibenzalxylitol	175	44	1.10	0.85		
Dibenzalrhamnitol	203	66	0.70	2.55	1.10	
Monobenzal-d-Sorbitol	175	(Meunier)	very	easily soluble	•	
Dibenzal-d-Sorbitol	163	"	5.44	0.16	0.10	
Tribenzalmannitol	213-8	(Fischer)	0.42	8.75	0. IO	
Tribenzal- <i>l</i> -iditol*	215-8	64	0.47	0.17	0.05	
Tribenzal-d-talitol†	210	44	0.30	4.42	trace	
Dibenzaldulcitol	215-20	66	0.42	0.83	trace	
Dibenzalperseitol	230-5	64	0.04	trace	0.02	

^{*} Prepared from l idonic acid. † Prepared from d talonic acid.

100 gms. sat. solution in pyridine contain 0.47 gm. mannitol at 26°. (Holty, 1905.) 100 gms. sat. solution in pyridine_contain 2.5(?) gms. erythritol at 26°.

SULFANILIC ACID NH2.C4H4.SO2H.H2O.

SOLUBILITY IN WATER. (Philip, 1913; results for 60° and over by Dolinski, 1905.)

ť.	Gms. NH ₂ C ₄ H ₄ .SO ₄ H per 100 Gms. Sat. Sol.	Solid Phase.	F.	Gms. NH ₈ C ₈ H ₄ .SO ₈ H per 100 Gms Sat. Sol.	Solid Phase.
0	0.444	NH ₂ ,C ₄ H ₄ ,SO ₃ H _{.2} H ₂ O	44	2.44	NH2.C4H4.SO2H.H2O
7.2	0.622	"	44	2.36	NH2.C4H4.SO3H
13.3	0.841	u	47 · 5	2.52	44
18.9	1.093	"	54 · 5	2.85	"
18.9	1.137	NH ₂ .C ₄ H ₄ .SO ₂ H.H ₄ O	60	3.01	u
25. I	1.384	"	70	3.65	u
31.1	1.662	44	80	4.32	" ,
37 . 2	2.004	4	100	6.26	et .

SULFONIUM PERCHLORATES

SOLUBILITY IN WATER. (Hofmann, Höbold and Quoos, 1911-12.)

Name.			Formula.	ť.	Per roo Gr Gm. Mols.	
Trimethyl		e Perchlorate	(CH ₂) ₂ SClO ₄	16.5	0.0784	13.84
Ethyl dimethyl	"	"	C ₂ H ₄ (CH ₄) ₂ SClO ₄	15.9	0.1191	22.31
Propyl "	"	"	C ₂ H ₇ (CH ₂) ₂ SClO ₄	15	0.0590	12.04
n Butyl "	"	"	C,H,(CH,),SCIO,	15	0.0607	13.24
Ethylene dismethyl	."	"	C,H,(C,H,SClO,),	18	0.0423	14.86
Vinyl dimethyl	"	"	C ₂ H ₄ .S(CH ₄) ₂ .ClO ₄	18	0.0731	13.75
Trimethylene dismeth	ıyl "	"	$C_2H_4:(C_2H_4SClO_2)_2$	18	0.0402	14.68

Triethyl SULFONIUM IODIDE S(C. H.). I.

100 gms. H₂O dissolve 431 gms. S(C₂H₆)₃I at 25°. (Peddle and Turner, 1913.) 100 gms. CHCla dissolve 47.7 gms. S(CaHa)aI at 25°. (Peddle and Turner, 1913.)

SULFUR S.

In a series of papers by Aten (1905-06, 1912, 1912-13, 1913, 1914 and 1914a), the preparation and properties of the four known modifications of sulfur are described. These are designated by the symbols, S_{λ} , S_{μ} , S_{π} and S_{ρ} .

 S_{λ} is ordinary rhombic sulfur and its molecule is considered to be composed of

eight atoms of sulfur, S.

 S_{μ} is the insoluble, so-called amorphous sulfur.

Sr is obtained when ordinary sulfur is heated above its melting-point and

quickly cooled; it is especially easily prepared by warming S_{λ} in sulfur chloride. Its molecule is probably represented by S_{λ} .

So was discovered by Engel and is prepared by mixing concentrated HCl, cooled to 0°, with saturated sodium thiosulfate solution. The precipitated NaCl is removed by filtration and the solution extracted with toluene. The aqueous layer soon yields a cloudy precipitate of So. The molecule of this sulfur is considered to have the composition S₁.

Solubility of Sulfur (Sa) in Sulfur Monochloride (S2Cl2) Determined BY THE MELTING-POINT METHOD.

(Aten, 1905-06.)

to of Melting.	Mol. % S _s in Mixture.	Solid Phase.	t° of Melting.	Mol. % S _s in Mixture.	Solid Phase.
— 16	4.3	Rhombic S	83.5	67	Rhombic S
0	6	"	95.6	8r.8	"
十17.0	9.9	"	95.6 86	81.8	Monoclinic S
+17.9 36.8	17.1	**	103.2	88.4	u
55.2	28.5	41	110.4	95	**
65.6	40.3	"	118.8	100	"
77.7	55.4	44			

SOLUBILITY OF SULFUR (Sx) IN SULFUR MONOCHLORIDE (S2Cl2) (Aten, 1912-13.)

A preliminary experiment showed that if a solution of Sh in sulfur monochloride, saturated at 20°, is heated to 170° and cooled, it will then dissolve as much S_{λ} as already required to saturate it. The following determinations were made by sealing known amounts of S_{λ} and $S_{z}Cl_{z}$ in tubes, heating them to 100° for several hours and then cooling quickly to the indicated temperatures and shaking for 1 hour in the case of the 0° and 25° results and 2 hours in the case of the -60° results. The saturated solutions were analyzed by oxidizing with HCl + HNO₃ + Br and titrating the H₂SO₄, after removing the volatile acids.

Atoms S per 100 Atoms S+S2Cl2 in:

Atoms S per 100 Atoms S+S2Cl2 in:

Original Saturated Solution at:		Original	Saturated Solution at:				
Mixture.	−60°.	o°.	+25°.	Mixture.	_60°.	∘•.	+25°.
0	11.6	36. I	53 · 5	79.4	65.2	72	• • •
10	18.1	40. I	57.6	80. I	66. I	71.6	
28.7	31.9	47.4	62	89.9			82.1
49.9	42.9	56	66.4	90. I		80.5	
60. I	47 - 7	59.9	69.4	94.6			87. 7
6 9. 1	• • •		72.8	98		• • •	93 · 4

Results similar to the above are also given (Aten, 1912), for mixtures previously heated to 50°, 75° and 125°. All the data confirm the formation of the the new modification S_{π} . SOLUBILITY OF SULFUR (Sx) IN SULFUR MONOCELORIDE (S2Cl2) AT 25°. (Aten, 1912, 1913.)

The samples were heated to the temperatures indicated and rapidly cooled and powdered. The method of determining the solubilities is not described.

Previous Treatment of Sample.					Atoms S D solved per 1 Atoms S+S	100	
Unheate	d Sulfu	r			53 · 5		
Mixture	of Rho		nd.	Amorphous			
Sulfur					54 · 5		
Rhombie	c Sulfur	heated	l to	125°	56-58.5	(dependin	g on excess of S present.)
"	"	"	"	165°	60	(determine	ed immediately.)
"	"	"	"	165°	59.5	"	after 1 hr.)
"	"	"	"	165°	57 · 5	"	" 24 hrs.)
a	"	"	"	165°	53 . 2	"	" 8 days.)

SOLUBILITY OF SULFUR (Sr) IN TOLUENE AT 0° AND AT 25°. (Aten, 1913.)

Comp. of Mix- ture in Atom	Solubility is	Atom % S.	Comp. of Mix- ture in Atom	Solubility in Atom % S.		
Per cent S.	At o*.	At 25°.	Per cent S.	At o.	At 25°.	
35	2.88	5.94	74	4.05	7.52	
47		6.65	77	3.90	• • •	
54	3.26	6.76	8 o	4.22		
57	3.30	6.88	83		7.93	
73	• • •	7 · 45	85	• • •	8.08	

These results show that the greater the excess of S_r, the greater the solubility. It was found that under the same conditions, unchanged rhombic sulfur gives constant figures irrespective of the excess of S present. At o°, 2.59 atom per cent S_{λ} was found and at 25°, 5.65 atom per cent.

Solubility of Sulfur (S_{μ}) in Carbon Disulfide and Carbon Tetrachloride. (Wigand, 1910.)

When "insoluble" sulfur (S_{\mu}) is treated with CS₂ or CCl₄, a small amount dissolves, depending upon the length of time of contact, temperature and nature of the solvent but not on the relative amount of solvent. This action is explained on the assumption that a partial transformation of S_{μ} to soluble sulfur S_{λ} , takes place.

Data for the fusion points of mixtures of rhombic sulfur and "insoluble" sulfur (S_{μ}) and for monoclinic sulfur and "insoluble" sulfur (S_{μ}) are given by

Kruyt (1908).

SOLUBILITY OF SULFUR IN LIQUID AMMONIA. (Ruff and Hecht, 1911.)

At the temperatures o° to 40°, the solutions were constantly shaken for 3 to 4 days. For the results at the lower temperatures the solutions were saturated at room temperature then cooled, partially evaporated and shaken 4 to 6 hours. The saturated solutions were analyzed by evaporation of the ammonia by means of a current of hydrogen, absorbing in HCl and converting to the platinic chloride for weighing. The S residues were dried at 100°, with proper precautions, and weighed.

t°.	Gms. S per roo Gms. Sat. Solution.	t°.	Gms. S per 100 Gms. Sat. Solution.
- 7 8	38.6*	+16.4	25.65
-20.5	38.1 *	30	21
0	32.34	40	18.5

This figure corresponds to the compound S(NH₂)₂ = 38.5% S.

SULFUR 701

SOLUBILITY OF SULFUR IN AQUEOUS SODIUM SULFIDE SOLUTIONS. (Küster and Heberlein, 1905.)

The results are expressed in terms of x which represents the number of S atoms dissolved for each Na, in the solution. The figures, therefore, show the atomic ratio of S to Na, in the saturated solution and at the same time, the sulfur content of the compound Na₂S_x which is formed. In order to find the actual amount of sulfur dissolved per liter, it is only necessary to multiply the x value by the normality of the aqueous sodium sulfide solution used as solvent in the

A series of determinations made at 25°, by agitating aqueous sodium sulfide solutions with crystalline sulfur until equilibrium was reached, and then diluting each solution with an equal volume of water and shaking with excess of sulfur until equilibrium was again reached, gave the following results:

Normality of the Aq. Na ₂ S Solution.	# in the Result- ing Na ₂ S _x .	Normality of the Aq. Na ₂ S Solution.	z in the Result- ing Na ₂ S _z .
4	4 · 475	0.125 (32 hrs.)	5.225
2 (2 hrs.)	4.666	0.0625	5.239
I	4.845	0.03125	5.198
0.5	4.984	0.015625	5.034
0.25	5.115	0.007812 (128 hrs.)	4.456

The figures in parentheses in the above table show the number of hours required for attainment of equilibrium in these three cases. The authors also quired for attainment of equilibrium in these three cases. The authors also made determinations of the influence of temperature on the amount of sulfur dissolved, and found that for a normal Na₂S solution, the x value did not vary appreciably from the figure given above, over the range o° to 50°.

Results are also given showing the influence of the presence of NaCl and of KOH on the amount of sulfur dissolved by aqueous Na₂S solutions. In the former case the solubility was distinctly lowered, while in the latter it was notably increased.

increased.

SOLUBILITY OF SULFUR IN:

Tin Tetrachloride. (Gerardin, 1865.)			Amyl Alcohol.			
			(Gerardin.)			
\$* .	Gms. S per 100 Gms. SnCl ₄ .	Solid Phase.	\$° .	Gms. S per 100 Gms. C ₈ H ₁₁ OH.	Solid Phase.	
99	5.8	Solid S	95	1.5	Solid S	
IOI	6.2	"	110	2.1-2.2	"	
110	8.7–9.1	66	112	2.6-2.7	Liquid S	
112	9.4-9.9	Liquid S	120	3.0	ī.	
121	17.0	ii	131	5.3	"	

SOLUBILITY OF SULFUR IN AQUEOUS ACETONE AT 25°. (Herz and Knoch, 1905.)

Wt. Per cent	Sulfur per 100	Sp. Gr. of	
Acetone in Solvent.	Millimols.	Gms.	Sp. Gr. of Solution.
100	65	2.084	0.7854
95.36	45	I.442	0.7911
90.62	33	1.058	0.8165
85.38	25.3	0.811	0.8205

SOLUBILITY OF SULFUR IN ETHYL AND METHYL ALCOHOLS.

t* .	Alcohol.	Gms. per 100 Gms. Alcohol.	Authority.
15	Abs. Ethyl	0.051	(Pohl.)
15 18.5	44	0.053	(de Bruyn - Z. physik. Chem. 10, 781, '92.)
b. pt.	"	0.42	(Payen — Compt. rend. 34, 356, '52.)
18.5	Abs. Methyl	0.028	(de Bruyn.)

SOLUBILITY OF SULFUR IN BENZENE AND IN ETHYLENE DIBROMIDE. (Etard, 1894; see also Cossa, 1868.)

	In C ₆ H ₆ .				In C ₂ H ₄ Br ₃ .				
6° . p	Gms. S er 100 Gms. Solution.	ŧ°.	Gms. S per 100 Gms. Solution.	t° .	Gms. S per 100 Gms. Solution.	t°.	Gms. S per 100 Gms. Solution.		
0	I.0	70	8.0	0	I . 2	50	6.4		
10	1.3	Š0	10.5	10	I.7	60	8.4		
20	1.7	90	138	20	2.3	70	11.4		
25	2.I	100	17.5	25	2.8	80	16.5		
30	2 · 4	IIO	23.0	30	3 · 3	90	24.0		
40	3.2	120	29.0	40	4.4	100	36.5		
50 60	4·3 6.0	130	36.o						

RECIPROCAL SOLUBILITY OF SULFUR AND BENZENE, DETERMINED BY THE SYNTHETIC METHOD. (Kruyt, 1908-09.)

Wt. % S in	Limiting to of	Homogeneity.	Wt. % Sin	Limiting to of Homogeneity.		
Mixture.	Lower.	Upper.	Mixture.	Lower.	Upper.	
41.5	146	247	79.8	141	230	
55.2	158	230	81.4	138	above 246	
74.5	157	226	83.4	131	" 272	

100 gms. sat. solution of S in benzoyl chloride, C₆H₆.COCl, contain 1 gm. S at 0° and 55.8 gms. at 134°. (Bogousky, 1905.)

SOLUBILITY OF OCTOHEDRAL AND OF PRISMATIC SULFUR IN SEVERAL SOLVENTS. (Brönsted, 1906.)

The solubility of prismatic sulfur could not be determined in the ordinary way on account of its rapid transition to octohedral sulfur. A special apparatus was used which permitted the solvent to remain in contact with the solid for only a short time. Since sulfur dissolves very rapidly, this procedure was found to give satisfactory results.

40	Gms. each Variety Separately pe 100 cc. Saturated Solution.			
•.	Prismatic Sulfur.	Octohedral Sulfur.		
18.6	2.004	1.512		
25.3	2.335	1.835		
0	1.101	o.788		
15.5	1.658	1.253		
40	2.9	2.4		
0	0.113	0.080		
25.3	0.253	0.200		
0	0.852	0.611		
25.3	1.676	1.307		
o	0.028	0.019		
25.3	0.066	0.052		
	25.3 0 15.5 40 0 25.3 0	t*. roo cc. Satur Prismatic Sulfur. 18.6 2.004 25.3 2.335 0 1.101 15.5 1.658 40 2.9 0 0.113 25.3 0.253 0 0.852 25.3 1.676 0 0.028		

SOLUBILITY OF SULFUR IN SEVERAL SOLVENTS.

Solvent.	t °. 1	Gms. S per 100 Gms. Solvent.	Solvent.	ť.	Gms. S per 100 Gms. Solvent.
Aniline	130	85.3 (1)	Glycerol	15.5	0. 14 (4)
Benzene	15.2	1.5 (2)	Hydrazine (anhy.) re	om temp.	54 (decomp.)(5)
44	19.3	1.7 (2)	Lanoline (anhy.)	45	0.38(6)
	26	0.97(1)	Methylene Iodide	IO	10 (7)
"	71	4.38(1)	Nicotine	100	10.6 (8)
Carbon Tetrachlorie	de 25	0.86(3)	Phenol	174	16.4 (1)
Chloroform	12.2		Pentachlor Ethane	25	1.2 (3)
"	19.3	0.92(2)	Toluene	23	1.48(1)
"	22	1.21(1)	Tetrachlor Ethane	25	1.23(3)
Dichlor Ethylene	25	1.28(3)	Tetrachlor Ethylen		1.53(3)
Ethylene Chloride	25	0.84(3)	Trichlor Ethylene	25	1.63(3)
Ethyl Ether	23.5		"	15	1.16(9)

(1) Cossa, 1868; (2) Brönsted, 1906; (3) Hoffman, Kirmreuther and Thal, 1910; (4) Ossendowski, 1907; (5) Welsh and Broderson, 1915; (6) Klose, 1907; (7) Retgers, 1893; (8) Kleven, 1872; (9) Wester and Bruins, 1914.

SOLUBILITY OF SULFUR IN CARBON DISULFIDE. (Etard, 1894; Cossa, 1865; at 10°, Retgers, a893; below 77°, Arctowski, 1895-96.)

\$° .	Gms. S per 100 Gms.		ŧ°.	Gms. S per 100 Gms.		ŧ°.	Gms. S per 100 Gms.	
	Solution.	CS ₂		Solution.	CS ₂ .		Solution.	CS ₂ .
-110	3.0	3.1	–10	13.5	15.6	50	59.0	143.9
-100	3.5	3.6	0	18.0	22.0	60	66.o	194.1
– 80	4.0	4.2	10	23.0*	29.9	70	72.0	257.1
- 60	3.5	3.6	20	29.5	41.8	80	79.0	376.1
- 40	6.0	6.4	25	33 · 5	50.4	90	86.o	614.1
- 20	10.5	11.7	30	38.0	61.3	100	92.0	1150.0
			40	50.0	100.0			
				26.4	R.			

Sp. Gr. of solution saturated at 15° containing 26 gms. S per 100 gms. solution = 1.372.

SOLUBILITY OF SULFUR IN HEXANE (C₆H₁₄). (Etard.)

ŧ°.	Gms. S per 200 Gms. Solution.	t°.	Gms. S per 100 Gms. Solution.	ŧė.	Gms. S per
-20	0.07	60	1.0	130	5.2
0	0.16	80	r . 7	140	6.0
20	0.25	100	2 .8	160	7 - 2
40	0.55	120	4 · 4	180	8.2

Solubility of Sulfur (S_{λ}) in β Naphthol, Determined by the Synthetic Method. (Smith, Holmes and Hall, 1905.)

The mixtures of sulfur and β naphthol were heated until they were homogeneous and then cooled to the temperature at which clouding appeared.

t° of Clouding.	Gms. S per 100 Gms.	t° of Clouding.	Gms. S per 100 Gms.	t° of Clouding.	Gms. S per 100 Gms. β Naphthol.
118	34	154	84.1	164	209.7
132.5	46.6	157	97 · 4	163.8	238.1
134.5	48.8	160.5	119.3	163.8	264.8*
143.5	59 · 3	162.5	145.1	163	300 *
149.5	70	163.5	177.6		
		 Solid ph 	ase, \$\beta\$ naphthol.		

704 SOLUBILITY OF SULFUR IN COAL TAR OIL, LINSEED OIL AND IN OLIVE OIL. (Pelouse, x869; Pohl.)

	Grams S per 100 Grams Coal Tar Oil of:						G. S per	100 Gms.
t* .	Sp. Gr.: 0.87 b. pt.: 80°-100°.	o.88 85°-120°.	0.882 120°-220°.	0.885 150°-200°	1 DI . 210°-300°.	I .02 . 220°-300°.	Linseed Oil.	Olive Oil of 0.885 Sp. Gr
15	2.1	2.3	2.5	2.6	6.0	7.0	0.4	2.3
30	3.0	4.0	5 · 3	5.8	8.5	8.5	0.6	4.3
50	5.2	6.1	8.3	8.7	10.0	12.0	I . 2	9.0
50 80	8.11	13.7	15.2	21.0	37.0	41.0	2.2	18.0
IOO	15.2	18.7	23.0	26.4	52.5	54.0	3.0	25.0
IIO	• •••	23.0	26.2	31.0	105.0	115.0	3.5	30.0
120	• • • • • • • • • • • • • • • • • • • •	27.0	32.0	38.0	00	90	4.2	37.0
130	•••	• • •	38.7	43.8	∞	∞	5.0	43.0
						(160°)	10.0	

100 gms. oil of turpentine dissolve 1.35 gms. S at 16°, and 16.2 gms. at b. pt. (Payen, 1852.)

SOLUBILITY OF SULFUR IN TRIPHENYL METHANE, DETERMINED BY THE SYNTHETIC METHOD.

Results of	Smith, H	lolmes & H	all, 1905.	Results of Kruyt, 1908-09.			
% Triphenyl Methane in Mixture.	t° of First Limit of Mixing.	% Triphenyl Methane in Mixture.	t* of Second Limit of Mixing.	Methane in Mixture.	l t° of First Limit of Mixing.	% Triphenyl Methane in Mixture.	to of Second Limit of Mixing.
69. I	108.5	35.5	214.5	66.7	113	7	211.5
58.8	127	32.5	211	60.2	125.3	9.3	201.5
50.8	136.5	28.4	206	50.2	136.8	12	198.8
46.6	141	24.5	203	41	144.2	13.7	199.5
42.8	144	21.6	200	30.8	146	16.4	200.4
37.8	146	19.2	199	20	145.2	19.8	202. I
33 · 7	146.5	15.4	198	13.2	137.6	23.5	203.7
30.3	147			8. r	118.6	28.7	208
25.4	146			7	crystals	34 5	215.2

SOLUBILITY OF SULFUR IN PHENOL, DETERMINED BY THE SYNTHETIC METHOD. (Smith, Holmes and Hall, 1905.)

Γhe mixtures of sulfur and phenol were heated until they were homogeneous and then cooled to the temperature at which clouding appeared.

t° of Clouding.	Gms. S per 100 Gms. Phenol.	t° of Clouding.	Gms. S per 100 Gms. Phenol.	t° of Clouding.	Gms. S per 100 Gms. Phenol.
89.5	9. I	155	26.3	166	31.6
96.5	10.4	I57.5	27. I	167.5	32.4
122.5	15.3	160.5	28.6	170	33.5
138	19.9	162	29.6	172	34.9
148.5	23.6	164.5	30.7	175	36.5

RECIPROCAL SOLUBILITY OF SULFUR AND TOLUBNE, DETERMINED BY THE SYNTHETIC METHOD. (Kruyt, 1908-09.)

Wt. % S in	Limiting to of Homogeneity.		Wt. % S in	Limiting to of Homogeneity.		
Mixture.	Lower.	Upper.	Mixture.	Lower.	Upper.	
50.5	167	250	75.7	178	221	
62	179	223	77.9	174		
69.6	180	222	83.3	160	223	
73	180	222	90.5	124	above 250	

RECIPROCAL SOLUBILITY OF SULFUR AND META XYLENE, DETERMINED BY THE SYNTHETIC METHOD. (Kruyt, 1908-09.)

Wt. % S in	Limiting to of Homogeneity.		Wt. % S in	Limiting to of Homogeneity.		
Mixture.	Lower.	Upper.	Mixture.	Lower.	Upper.	
50.9	181	213	39.9	152	none (230)	
49. I	177	228	84.2	none	"	
47 · 7	172.5	none (?)	86. ı	164.5	199	
44.2	161.5	" (255)	87	159	202.5	
40.4	153.5	" (215)	90	139	none (220)	

Fusion-point data for the system sulfur-tellurium are given by Pelabon (1909); Pellini (1909); Chikashige (1911, 1911–12); Jaeger and Menke (1912).

Data for mixtures of sulfur and each of the following metals are given by Pela-

bon (1909); antimony, tin, lead, silver, gold and arsenic.

SULFUR DIOXIDE SO.

SOLUBILITY IN WATER. (Schönfeld, 1855; Sims, 1861; Roozeboom, 1884.)

Schönfeld.					Sims.			Roezeboom.	
	Vols. SO ₂ (760 mm.) j		Gms. SO ₂ per 100 Gms. H ₂ O		SO ₂ per 1	Gm. H _g O.	t* .	SO ₂ Dissolved per 1 pt. H ₂ O	
t * .	Sat. SO ₂ + Aq.	H₃O.	at total pressure 760 mm.	t ° .	Gms.	Vols.	•	at 760 mm. pressure.	
0	68.86	79 · 79	22.83	8	0.168	58.7	0	0.236	
5	59.82	67.48	19.31	IO	0.154	53 · 9	2	0.218	
10	51.38	56.65	16.21	14	0.130	45.6	4	0.201	
15	43.56	47.28	13 . 54	20	0.104	36.4	6	0.184	
20	36.21	39 - 37	11.29	26	0.087	30.5	· 7	0.176	
25	30.77	32.79	9.41	30	0.078	27 . 3	8	0.168	
30	25.82	27.16	7.81	36	0.065	22.8	10	0.154	
35	21.23	22.49	•••	40	0.058	20.4			
40	17.01	18.77	5.41	46	0.050	17.4	12	0.142	
	-	• • •	-	50	0.045	15.6			

Sp. Gr. of sat. solution at $0^\circ = 1.061$; at 10° , 1.055; at $20^\circ = 1.024$. The results of Sims are discussed and recalculated by Fulda, 1909. I gm. H₂O dissolves 0.0909 gm. SO₂ = 34.73 cc. (measured at 25°) at 25° and 760 mm. pressure. (Walden and Centnerszwer, 1902-03.)

FREEZING-POINT DATA FOR THE SYSTEM SULFUR DIOXIDE - WATER. (Baume and Tykociner, 1914.)

t° of Freezing.	Mols. SO ₂ per 100 Mols. SO ₂ +H ₂ O.	Solid Phase.	t° of Freezing.	Mols. SO ₂ per 100 Mols. SO ₂ +H ₂ O.	Solid Phase.
0	0	Ice	7.7	5. I	SO ₂ Hydrate
-o.2	0.8	"	8.3	5.9	66
-3 Eutec.		" +SO ₂ Hydrate	9.3	7. í	44
-0.2	2.8	SO ₂ Hydrate	I2. I	ΙÌ	
+3.5	3.3	"	:	:	i
6.8	5.5	66	12.2	95.1	"

At the temperature $+12.1^{\circ}$ and extending over the range of concentration 11 to 95.1 mols. per cent SO_2 a second phase rich in SO_2 separates. This crystallizes at -74° and the diagram is consequently composed of two lines parallel to the axis of concentration, the one at the $+12.1^{\circ}$ level corresponding to the SO_2 hydrate, and the other at the -74° level, to the SO_2 rich phase. The diagram is terminated by a very short branch rising from -74° to the temperature of solidification of pure SO_2 (-72.3°).

SOLUBILITY OF SULFUR DIOXIDE IN WATER AT DIFFERENT PRESSURES. (Lindner, 1912.)

Results at o°.		Results	at 25°.	Results at 50°.	
Pressure in mm. Hg.	Gms. SO ₂ per 100 cc. Sat. Sol.	Pressure in mm. Hg.	Gms. SO ₂ per 100 cc. Sat. Sol.	Pressure in mm. Hg.	Gms. SO ₂ per 100 cc. Sat. Sol.
0.4	0.0537	1.4	0.0534	4.9	0.0525
3 · 5	0.237	11.75	0.234	30.5	0.2276
29.4	1.227	87.9	1.212	204.5	1.181
109.4	3.804	313	3.750	696	3.628

SOLUBILITY OF SULFUR DIOXIDE IN AQUEOUS SALT SOLUTIONS. (Fox, 1902.)

Results in terms of the Ostwald Solubility Expression. See p. 227. Solubility Coefficient Lot SOn in an Solutions of Concentrations

Aqueous Salt Solution.	Solubility Coeff	icient l of S	O ₂ in aq.	Solutions of	Concentra	tions:
	o.s Normal	10 N.	1.5 N.	20 N.	2.5 N.	30 N.
NH ₄ Cl	$l_{26} = 34.58$	36.37	38.06	39.76	41.37	42 . 78
NH₄Br	$l_{25} = 36.25$	39.46	42.78	46.06	49 . 17	52.25
NHCNS	$l_{26} = 37.78$	42.74	47 . 26	52.26	57.01	61.46
NH NO.	$l_{26} = 33.96$	35.07	36.28	37 - 27	38.01	39.14
NH,NO,	$l_{35} = 23.35$	24.23	24.78	25.57	26.66	27 · 43
$(NH_4)_2SO_4$	$l_{25} = 33.35$	33.82	34 - 33	34.95	35 · 47	35.96
$(NH_4)_2SO_4$	$l_{35} = 22.91$	23.14	23.49	23.93	24.23	24.60
CdCl,	$l_{25} = 31.66$	30.55	29.46	28.16	27.09	26.06
CdCl,	$l_{35} = 21.73$	21.23	20.55	20.02	19.23	18.6 8
CdBr ₂	$l_{25} = 31.91$	31.01	30.17	29.27	28.15	27 . 46
CdBr ₂	$l_{35} = 21.88$	21 .46	20.81	20.60	19.70	19.17
CdI,	$l_{25} = 33.27$	33.76	34 16	34.74	34.98	35 - 77
CdI,	$l_{35} = 22.75$	23.06	23.36	23.71	23.99	24 . 30
CdSO.	$l_{28} = 31.11$	29.71	28.24	26 58	25.14	23.76
CdSO.	$l_{35} = 21.45$	20 43	19.42	18.31	17.41	16.25
KCl	$l_{25} = 34.42$	36.05	37.76	39 · 32	40.96	42.27
KCl	$l_{36} = 23.74$	25.15	26.54	27.94	28.93	30.02
KBr	$l_{25} = 35.94$	39.11	42.41	44.96	48 . 87	52.26
KBr	$l_{35} = 24.83$	27 . 49	29.64	31.93	34.12	36.14
KCNS	$L_{25} = 37.57$	42 . 38	47 -02	51.81	55.87	61 . 26
KCNS	$l_{35} = 25.63$	28.79	32.03	35.05	38.13	42.94
KI	$l_{25} = 38.66$	44.76	50.58	56.75	62.63	68.36
KI	$l_{35} = 26.30$	30.25	34.64	38.04	41 .87	45 · 43
KNO,	$l_{25} = 33.80$	34 · 79	35 · 77	36.6 6	37 · 57	38. 52
KNO.	$l_{35} = 23.27$	24.03	24.79	25.72	26.54	27 · 33
K,SO,	$l_{25} = 33.20$	33.61	• • •	• • •		• • •
NaBr	$l_{25} = 33.76$	34 · 54	35 - 27	36.26	36.84	37 · 74
NaCl	$l_{35} = 32.46$	32.25	31.96	31.76	31.51	31.36
NaCNS	$l_{25} = 35.44$	38.24	40.78	43 · 37	45.86	48.34
Na ₂ SO ₄	$l_{25} = 31.96$	31.14	30 . 45	29.51	28.66	. 28 . 44
Na SO	$l_{35} = 21.88$	21.35	20 81	20.21	19.75	19.27

The author also gives a series of determinations in which a mixture of SO₂ + CO₂ is used for saturating the solutions, thus changing the concentration of the SO₂ and yielding results for certain partial pressures of this gas.

Additional data for the solubility of sulfur dioxide in aqueous salt solutions are given by Walden and Centnerszwer (1902-03) but these authors present their results in terms of the difference between the amount of SO₂ dissolved in water and in the aqueous solution. The exact manner in which these calculations were made is not clearly explained. made is not clearly explained,

SOLUBILITY OF SULFUR DIOXIDE IN SULFURIC ACID OF 1.84 Sp. Gr.

Interpolated from original results.

(Dunn, 1882.)

t* .	Sp. Gr. of Set. Solution.	Coefficient of Absorp- tion (760 mm.).	ŧ۴.	Sp. Gr. of Sat. Solution.	Coefficient of Absorp- tion (760 mm.)
0	• • •	53.0	50	1.8186	9.5
10	1 .8232	35.0	60	1 .8165	7.0
20	1 .8225	25.0	70	1.8140	5.5
25	1.8221	21.0	8o	1.8112	4.5
30	1.8216	18.0	90	1.808o	4.0
40	1 .8205	13.0		•	

SOLUBILITY OF SULFUR DIOXIDE IN AQUEOUS SULFURIC ACID SOLUTIONS. (Dunn; see also Kolb, 1872.)

t* .	Sp. Gr. of H ₂ SO ₄ Solution.	Approximate Per cent H ₂ SO ₄ .	e Coefficient of Absorption.	\$°.	Sp. Gr. of H ₂ SO ₄ Solution.	Approximate per cent H ₂ SO ₄ .	Coefficient of Absorption
6.9	1.139	20	48.67	15.2	1.173	25	31.82
6.9	1.300	40	45 . 38	16.8	1.151	21	31.56
8.6	1.482	58	39.91	14.8	1.277	36	30.41
9.8	1.703	78	29.03	15.1	I ·458	56	29.87
5 · 5	1.067	IO	36.78	15.6	1.609	70	25.17
6.0	1.102	15	3.408	15.0	1.739	81	20.83

For definition of Coefficient of Absorption, see Ethane p. 285.

SOLUBILITY OF SULFUR DIOXIDE IN ALCOHOLS AND IN OTHER SOLVENTS. (de Bruyn, 1892; Schulze, 1881.)

In Ethyl Alcohol at 760 mm.				In Methyl Alcohol at 760 mm.		In Several Solvents at 0° and 725 mm. (S.)		
t*.		per 100 G C ₂ H ₆ OH		CH _s OH.	Salvent.	SO ₂ per 1 Grams.		
0	53 · 5			246.0	Camphor	0.880	308	
7	45.0	81.0	59.9	149.4	CH ₂ COOE	180.0 I	318	
12.3	39.9	66.4	52.2	109.2	HCOOH	0.821	351	
18.2	32.8	48.8	(17.8°) 44.0	78.6	$(CH_2)_2CO$	2.07	589	
2 6.0	24 .4	32.3	31.7	46.4	ŠO ₂ Čĺ ₂	0.323	189	

SOLUBILITY OF SULFUR DIOXIDE IN CHLOROFORM. (Lindner, 1912.)

Results at 25°.

Results at o

			_
Pressure in mm. Hg.	Gms. SO; per 100 cc Sat. Sol.	Pressure in mm. Hg.	Gms. SO ₂ per 100 cc. Sat. Sol.
2.7	0.0701	5.7	0.0669
5.6	0.1790	12.9	0.1712
22	0.6982	48	0.6728
90.2	3.097	200.2	2.954
219.6	8.217	488.8	7.839

SOLUBILITY OF SULFUR DIOXIDE IN SEVERAL SOLVENTS. (Lloyd, 1918.)

The dry, air free, SO₂ was passed through the solvent until saturation was reached and 5 cc. (usually) of the saturated solution were mixed with a large volume of water and titrated with standardized iodine solution.

Gms.	SO ₂	per	Liter	of	Saturated	Solution	in:
------	-----------------	-----	-------	----	-----------	----------	-----

t°.	Benzene.	Nitro- benzene.	Toluene.	e Nitro- toluene.	Acetic Anhydride.				
- 5	• • •				196				
Ö		• • •			148 (d = 1.22)				
+ 5					136				
10			• • •		122				
15		311.4		290.8	114				
20		267.4	217.5	236	106				
25	• • •	227.9	170.4	192.2	99				
30	127.5	190	124.4	160.7	90				
40	82.9	132	93.6	118.5	• • •				
50	60.3	98.7	77.2	87.2					
бо	34	78.6	54 · 7	68.8	• • •				

DISTRIBUTION OF SULPHUR DIOXIDE AT 20° BETWEEN: (McCrae and Wilson, 1903.)

Water and Chloroform.	Aq. HCl and Chloroform.
-----------------------	-------------------------

Gms. SO ₂ per Liter in:		Gm. Equiv. \(\frac{1}{2}SO_2\) per Liter in:		Conc.	Gms. SO ₂ per Liter in:		Gm. Equiv. 4SO2 per Liter in:	
Aq. Layer.	CHCla Layer.	Aq. Layer.	CHCla Layer.	of HCl.	Aq. Layer.	CHCla Layer.	Âq. Layer.	CHCla Layer.
1.738	1.123	0.0543	0.0351	0.05	r .86	1.46	0.0581	0.0456
I .753	1.122	0.0547	0.0350	"	3.07	2.83	0.0960	0.0884
2.346	1.703	0.0732	0.0532	"	4.28	4.07	0.1336	0.1271
2.628	1.897	0.0821	0.0592	"	5 - 34	5 42	0.1667	0.1692
3.058	2.385	0.0955	0.0745	0.10	1.25	1.41	0.039	0.044
3.735	3.062	0.1166	0.0956	"	2.78	3.08	0.0868	0.0962
4.226	3.626	0.1319	0.1132	"	3.86	4.08	0.1199	0.1275
5.269	4.798	0.1645	0.1498	66	5.161	5.72	0.1612	0.1784
6.588	6.183	0.2057	0.1930	0.2	1.268	1.51	0.0396	0.0471
31.92	33.84	0.9968	1.056	"	1.914	2.27	0.0597	0.0710
33.26	37 - 25	1.038	1.163	"	2.464	3.04	0.0769	0.0949
-	- · · · · ·			"	3.967	4.90	0.1239	0.1530
				0.4	1.202	1.61	0.038	0.0504
				"	1.894	2.26	0.059	0.0706

Freezing-point data for mixtures of sulfur dioxide and sulfuryl chloride (SO₂Cl₂) are given by van der Goot (1913).

SULFURIC ACID H2SO4 (Sulfur Trioxide, SO2).

SOLUBILITY IN WATER. (Landoldt and Börnstein, "Tabellen," 4th Ed., pp. 472-3, 1912.)

The available data for the freezing-points of mixtures of sulfuric acid and water have been plotted and the most probable values read from the curves. The data are also calculated to SO₄. The complete results are given on the following page.

SOLUBILITY OF SULFURIC ACID IN WATER, DETERMINED BY THE FREEZING-POINT METHOD.

C---

ť.	Gms. H ₂ SO ₄ per 100 Gms. Sat. Sol.	Gms. SO, per 100 Gms Sat. Sol.	. Solid Phase.	ť.	Gms. H ₂ SO ₄ per 100 Gms. Sat. Sol.	Gms. SO ₃ per 100 Gms. Sat. Sol.	Solid Phase.
-10	16.25	13.25(1)(-10	77.75	63.5 (3)	SO _{8.2} H ₆ O
- 20	24	19.5(1)(2)		. 0	80.25	65.5 (2)	"
—30	28.5	23.25 (2)	"	+ 8.35	* 84.5	68.98 (2)	"
-40	31.25	25.5 (2)	"	8.81		68.98 (1)	"
— <u>5</u> 0	33.5	27.25 (I)		0	88.25	72 (2)	u
-60	35.25	28.75 (1)	"	— 20	91.5	74.75 (I)	**
- 70	36.75	30 (2)	"	-30	92.5	75.5 (I)	44
—75	38	31 (2)	" +SO ₃₋₅ H ₂ O	-38	93	76 (2)	"+\$O ₂ .H ₂ O
-70	39	31.75 (2)	SO ₂ .5H ₂ O	—30	93.75	76.5 (4)	SO ₃ .H ₂ O
60	41.5	33.75 (2)		- 20	95.25	77.75 (4)	"
—50	44	36 (2)	"	-10	96.25	78.5 (1)(4)	• •
-40	47.75	39 (2)	a	. •	97.75	79.75 (4)	
-30	53.25	43.25 (2)	«	+10	99.75	8r (4)	"
-25*	57.65	47.06 (2)	"	10.35	100	81.62(1)(3)(7	
—30	61	49.75 (2)	"	10	• • •	82 (4)	"
-40	65.25	53.25 (2)		0		83.25 (4)	"
60	70.75	57.75 (3)	" (unstable)	-10		84.5 (4)	"
-70	73.25	59.75 (3)	" " +SO ₃ .2H ₂ O			85 (4)	" +SO ₃ .}H ₂ O
60	73.50	60 (3)	SO ₃ .2H ₂ O (unstable)	—10		85.25 (4)	SO ₂ . lH ₂ O
—50	74.25	60.5 (3)	"	. 0	• • •	86 (4)	46
-50	68	55.5 (2)	SO ₃ .5H ₂ O+SO ₃ .3H ₂ O	+10		86.75 (4)	44
-45	68.5	56 (6)	SO ₃₋₃ H ₂ O	20		87.5 (4)	46
-40	7 I	58 (6)	"	30		88.5 (4)	"
-38.9 *	73.14	59.69 <u>(</u> 6)	u	36 *	• • •	89.89 (4)	44
-40	74.25	60.5 (6)	"	30		90.5 (4)	44
-41	74-75	61 (6)	" +SO ₃ .2H ₄ O	20	• • •	91.5 (4)	46
-40	74.75	61 (4)	SO ₃ .2H ₂ O	IO	• • •	92.25 (4)	**
-30	75.25	61.5 (4)	44	6.5	• • •	93 (4)	" +(?)
- 20	76.5	62.5 (3)	"				
			* m	. pt.			

(1) = Pfaundler and Schnegg (1875); (2) = Pickering (1890); (3) = Thilo (1892); Pictet (1894); (4) = Knietsch (1901); (5) = Rüdorff (1862); (6) = Biron (1899); (7) = Marignac (1853). See also Pickering (1890-91); Lespieau (1894) and Giran (1913).

Solubility of Sulfuric Acid in Benzene Solutions of Valeric Acid at 18°.

(Gurwitsch, 1914.)

The mixtures were shaken with excess of 95.8% H₂SO₄ at 0° and then brought to equilibrium at 18°.

Gms. Valeric Acid per 100 Gms. Valeric Acid+Benzene.	Gms. H ₂ SO ₄ per 100 Gms. of the Sat. Solution.
o=Pure benzene	0
0.584	0.052
I. 62	0.104
3.64	0.226
7.60	0.378
17.5	0.454

TANNIC ACID

When a sample of tannic acid of apparently very good quality was added to water at room temperature, the solution increased so greatly in viscosity, that water at room temperature, the solution increased so greatly in viscosity, that even before the saturation point was reached, it became evident that a satisfactory separation of liquid and solid could not be made. The solubility in water is variously given in the pharmaceutical literature from about 20 to 300 gms. tannic acid per 100 gms. of water. Similarly, the quoted results for the solubility in alcohol vary from about 50 to 400 gms. acid per 100 gms. of alcohol. (Seidell, 1910.)

100 gms. glycerol dissolve 48.8 gms. tannin at 15-16°. (Ossendowski, 1907.)

100 gms. trichlorethylene dissolve 0.012 gm. tannin at 15°. (Wester and Bruins, 1914.)

TANTALUM Potassium FLUORIDE TaK: F7.

SOLUBILITY IN AQUEOUS HYDROFLUORIC AND POTASSIUM FLUORIDE SOLUTIONS. (Ruff and Schiller, 1911.)

The tantalum salt was purified by repeated crystallizations from pure anhydrous HFI. After drying at 120°, it was shaken in platinum flasks for 3 hour periods at constant temperature with HFI or KFI solutions or both together. The saturated solutions were filtered by means of a platinum funnel and subjected to analysis.

Mixture Shaken	t°.	Gms. per	100 Gms.	Sat. Sol.	Solid Phase.
in Pt. Flask.	• .	TaHs.	KF.	HF.	John Phase.
K ₂ TaF ₇ +H ₂ O	18	0.25	0.12	0.029	KaTayCaFu+KaTaF
" +aq. 4.77%KF	18	0.10	4.79	0.074	44
" +aq. 7.35% KF	16	0.09	6.73	0.015	"
" +aq. 4.47% HF	18	1.33	0.56	4.47	K ₂ TaF ₇
" +aq. 4.2 %HF	18.5	I.24	0.52	4.2	44
" +aq. 24.3%HF	18	5.35	2.25	24.3	4
" +aq. 10.44% HF+ }	18	0.036	21.93	10.44	44
" +H ₂ O	85	2.18	1.69	0.85	$K_aTa_yO_sF_u+K_2TaF_y$
" +aq. 4.77% KF	85	0.96	5.27	1.17	"
" +aq.4.47% HF	90	5.73	2.41	4.47	K ₂ TaF,
" +aq. 4.2% HF	90	6	2.52	4.2	"
" +aq. 23.3% HF	90	10.9	4.59	24.3	u
" +aq. 21.92% KF+ }	90	1.18	22.42	10.44	u

The solid phases were identified only by their crystal forms and it is possible that still others may be present.

TARTARIC ACIDS 'C₂H₂(OH)₂(COOH)₂. d, l, and rocemic

SOLUBILITY OF EACH SEPARATELY IN WATER. (Leidie, 1882.)

5° .	Grams Tartaric Acid per 100 Gms. H ₂ O.			ŧ°.	Gms. Tartari	ic Acid per 100	Gms. H ₂ O.
	Dextro and Laevo Acids.	Racemic Ac. Anhydrous.	Racemic Ac. Hydrated.		Dextro and Laevo Acids.	Racemic Ac. Anhydrous.	Racemic Ac. Hydrated
0	115.04	8.16	9.23	50	195.0	50.0	59 · 54
10	125.72	12.32	14.00	60	217.55	64.52	78.33
20	139.44	18.0	20.60	70	243.66	80.56	99.88
25	147 .44	21.4	24.61	80	273 · 33	98.12	124.56
30	156.2	25.2	29.10	90	306.56	117.20	152.74
40	176.0	37 ⋅0	43 - 32	100	343 - 35	137.80	184.91

100 gms. H₂O dissolve 140.8 gms. tartaric acid at 15°. The Sp. Gr. of the sat. solution is 1.31. (Greenish and Smith, 1902.)

SOLUBILITY OF TARTARIC ACID IN ALCOHOLS. (Timofeiew, 1894.)

		Gms. C ₂ H ₂ (OH)	r		Gms. C ₂ H ₂ (OH) _F
Alcohol.	ť.	(CÓOH) ₂ per 100 Gms. Solvent.	Alcohol.	ť.	(COOH) ₂ per 100 Gms. Solvent.
Methyl Alcohol	- 3	67.5	Ethyl Alcohol	+23	28.9
""	+19.2	70. I	. "	39	31.8
46	23	73.2	Propyl Alcohol	- 3	8.74
"	39	77.3	"	+19.2	10.85
Ethyl Alcohol	- 3	22.4	46	23	11.85
"	+19.2	27.6	46	39	14.4

SOLUBILITY OF TARTARIC ACID IN AQUBOUS ETHYL ALCOHOL SOLUTIONS AT 25°. (Seidell, 1910.)

Wt. Per cent C_1H_2OH in Solvent. d_{25} of Sat. Sol.		Gms. C ₂ H ₂ (OH) ₂ (COOH) ₂ per 100 Gms.		Wt. Per cent C ₂ H ₅ OH.	t d_{25} of Sat. Sol.	Gms. C ₂ H ₂ (OH) ₂ (COOH) ₂ per 100 Gms.	
		Sat. Sol.	Solvent.	in Solvent.	Sat. 501.	Sat. Sol.	Solvent.
•	1.321	57.9	137.5	60	1.142	43.9	78.3
10	1.300	56	127.3	70	1.095	40.2	66.9
20	1.276	54. I	117.9	8 o	1.040	35.3	54.6
30	1.251	52	108.3	90	0.973	29	40.8
40	I.220	49.6	98.4	95	0.937	25.4	34. I
50	1.184	47	88.6	100	0.905	21.6	27.6

SOLUBILITY OF TARTARIC ACID IN SEVERAL SOLVENTS.

Solvent.	Sp. Gr. of Solvent.	d_{25} of Sat. Sol.	t°.	Gms. C ₂ H ₂ (OH) ₃ - (COOH) ₂ per 100 Gms. Solvent.	Authority.
Amyl Alcohol	$d_{20} = 0.817$	0.824	25		eidell, 1910.)
Benzene	$d_{25} = 0.873$	0.875	25	0.0086	"
Carbon Tetrachloride	$d_{25} = 1.587$	1.589	25	0.0189	a
Ether	$d_{22} = 0.711$	0.715	25	0.61	"
"		• • •	15	O.40 (B	ou rgoin , 1878.)
Dichlorethylene			15	0.005 (We	ter & Bruins, '14.)
Trichlorethylene	• • •		15	0.005	"

DISTRIBUTION OF TARTARIC ACID BETWEEN WATER AND ETHER. (Pinnow, 1915.)

Re	sults at 15°.		Results at 27°.				
Gms. Mo	ls. per Liter.	c .	Gms. Mo	ls. per Liter.	c .		
H ₂ O Layer, c.	Ether Layer, c'.	$\frac{c}{c'}$.	H ₂ O Layer, c.	Ether Layer, c'.	$\frac{c}{c'}$.		
1.402	0.0072	197	1.625	0.0070	233		
0.790	0.0037	216	0.857	0.0033	259		
0.446	0.0022	210	0.427	0.0016	268		

F.-pt. data are given for mixtures of the d and racemic modifications of dimethyl ether of tartaric acid, and for mixtures of the d and racemic modifications of dimethyl ether of diacetyl tartaric acid by Roozeboom (1899). Results for mixtures of the d and i forms of the diformalic derivative of racemic tartaric acid by Ringer (1902). Results for mixtures of d tartaric acid and racemic acid ester and for d diacetyl tartrate and racemic acid ester are given by Beck (1904). Data for mixtures of d and d tartaric acid and for mixtures of d and d tartaric acid and for mixtures of d and d to tartaric acid and for mixtures of d and d to the diagram of tartaric acid are given by Centnerszwer (1899).

PyroTARTARIC ACID (Methyl Succinic Acid) CH₁.CH(COOH).CH₂(COOH).

100 gms. H₂O dissolve 51 gms. CH₂CH(COOH).CH₂COOH at 19.5°.

(Timofeiew, 1894.)

SOLUBILITY IN ALCOHOLS. (Timofciew, 1894.)

Alcohol.	r.	Gms. Acid per 100 Gms. Solvent.	Alcohol.	ť.	Gms. Acid per 100 Gms. Solvent.
Methyl Alcohol	-18.5 +19	53 109.8	Ethyl Alcohol Propyl Alcohol	19.5 19	72 · 4 44 · 9
" Ethyl Alcohol	+19.5 +19	112.5 70.8	"	19.5	47.1

100 gms. 95% formic acid dissolve 17.8 gms. pyrotartaric acid at 18.5°.
(Aschan, 1913.)

TERPIN HYDRATE C10H18(OH)2.H2O.

100 cc. H₂O dissolve 0.36 gm. terpin hydrate at 15-20°.

100 cc. 90% alcohol dissolve 7.1 gms. terpin hydrate at 15-20°.

(Squire and Caines, 1905.)

TELLURIUM Te.

100 gms. methylene iodide, CH₂I₂, dissolve 0.1 gm. Te at 12°. (Retgers, 1893.)

DISTRIBUTION OF TELLURIUM BETWEEN AQUEOUS HYDROCHLORIC ACID AND ETHER AT ROOM TEMPERATURE.

(Mylius, 1911.)

When I gm. of tellurium as the chloride, TeCl₄, is dissolved in 100 cc. of aqueous HCl and shaken with 100 cc. of ether, the following per cents of the metal enter the ethereal layers. With 20% HCl, 34 per cent; 15% HCl, 12 per cent; 10% HCl, 3 per cent; 5% HCl, 0.2 per cent and with 1% HCl, only a trace of the tellurium.

Fusion-point curves for mixtures of tellurium and each of the following metals are given by Pelabon (1909): Sb, Sn, Pb, Ag, Au and As. Results for mixtures of Te and Zn are given by Kobayashi (1911–12).

TELLURIC ACID H. TeO4.2H.O.

SOLUBILITY IN WATER. (Mylius, 1901.)

ť.	Gms. H ₂ TeO ₄ per 100 Gms. Sol.	Mols. H ₂ TeO ₄ per roo Mols. H ₂ O.	Solid Phase.	ť.	Gms. H ₂ TeO ₄ per 100 Gms. Sol.	Mols. H ₂ TeO ₄ per 100 Mols. H ₂ O.	Solid Phase.
0	13.92	1.51	H _e TeO ₄ .6H _e O	30	33.36	4.67	H ₂ TeO ₄ .2H ₂ O
5	17.84	2.03	44	40	36.38	5 · 33	44
10	26.21	3.31	"	60	43.67	7.04	"
15	32.79	4.55	44	80	51.55	9.93	44
10	25.29	3.15	H ₄ TeO ₄ .2H ₂ O	100	60 .84	14.52	"
18	28.90	3.82	44	110	67	19	44

TELLURIUM DOUBLE SALTS

SOLUBILITY OF TELLURIUM DOUBLE BROMIDES AND CHLORIDES IN AQUEOUS HYDROCHLORIC AND HYDROBROMIC ACIDS AT 22°.

(Wheeler, 1893a.)

Tellurium Double Salt.	Formula.	Solvent.	Gms. Double Gms.	e Salt per 100 Solvent
Idiana Dotte cer.	•		of 1.49 Sp. Gr.	of 1.08 Sp. Gr.
Te Caesium Bromide	TeBr4.2CsBr Aq	. HBr	0.02	0.13
Te Potassium Bromide	TeBr ₄ .2KBr	"	6.57	62.90
Te Rubidium Bromide	TeBr.2RbBr	"	0.25	3.88
Te Caesium Chloride	TeCl.2CsCl Ag	. HCl*	0.05	o.78
Te Rubidium Chloride	TeCl ₄ .2RbCl	"	0.34	13.09

[•] Sp. Gr. of Aq. HCl solutions 1.2 and 1.05 respectively.

TELLURIUM TetraIODIDE Tel.

SOLUBILITY IN MIXTURES OF AQUEOUS HYDRIODIC ACID AND IODINE AT 25°.

(Menke, 1912.)

Weighed amounts of $TeI_4 + I + 65$ wt. % HI solution were shaken in sealed glass tubes for 10 days. Both the clear saturated solution and the solid phase were analyzed.

Composition of Original Mixture in Gms.		Gms. per 100 Gms. Solution		Solid Phase.	
TeL.	Î.	64% HI.	TeL.	I.	
3	1.5	19.25	12	11.7	Small amt. TeI4.HI.8H2O
2	0.5	9.61	13	0	nuch "
2	0.5	9.61	13.5	8.2	46 46
3	3	8.99	20	21.8	small amt. "
Excess	None	5 (cc.)	9	0.19	TeI4.HI.8H4O
2	9	9.10	10	52.4	Iodine
4	10	9.27	15	47 · 7	"
3	7	9.02	17.5	47.9	44
None	Excess	5 (cc.)	None	61.I	65

THALLIUM ALUMS

SOLUBILITY IN WATER AT 25°.

(Locke, 1901.) Salt per 100 Grams HgO. Gms. Gms. Formula. Alum. Hydrated. Anhydrous. Tl Aluminum Alum TIAI(SO₄)₂.12H₂O 7.5 11..78 0.0177 TIV(SO₄)₂.12H₂O 25.6 Tl Vanadium Alum 43.31 0.0573 TlCr(SO₄)₂.12H₂O 16.38 Tl Chromium Alum 10.48 0.0212 TIFe(SO4)2.12H2O 64.6 Tl Iron Alum 36.15 0.0700 See also pp. 31 and 32.

THALLIUM BROMATE TIBrOs.

One liter saturated aqueous solution contains 3.463 gms. TlBrO₂ at 19.9° (Böttger, 1903) and 7.355 gms. at 39.75°. (Noyes and Abbot, 1895.)

THALLIUM BROMIDE TIBr.

One liter sat. aqueous solution contains 0.238 gm. TlBr at 0.13°, 0.289 gm. at 9.37°, 0.4233 gm. at 18° and 0.579 gm. at 25.68°. (Kohlrausch, 1908.)

Solubility of Thallium Bromide in Aqueous Solutions of Thallium Nitrate at 68.5°.
(Noyes, 1890.)

Gms. 1	fols. per Liter.	Gms. per Liter.		
TINO,	TlBr.	TINO3.	TlBr.	
0	0.00869	0	2.469	
0.0163	0.00410	4.336	1.164	
0.0294	0.00289	7.820	0.821	
0.0955	0.00148	25.400	0.420	

F.-pt. data for mixtures of TIBr + TICl, TIBr + TII and TICl + TII are given by Mönkemeyer (1906). Results for TICl + SnCl₂ and TICl + ZnCl₂ are given by Korreng (1914).

THALLIUM CARBONATE TI₂CO₄.

SOLUBILITY IN WATER. (Crookes, 1864; Lamy, 1863.)

Gms. Tl₂CO₂ per 100 gms H₂O 4.2 (C.) 5.23 12.85 27.2 (C.) 22.4

THALLIUM CHLORATE TICIO.

SOLUBILITY IN WATER.

(Muir, 1876.)

ť. o°. 20°. 50°. 100°. Gms. TlClO₃ per 100 gms. H₂O 12.67 36.65 57.31 2 3.92

One liter sat. aq. solution contains 38.51 gms. TlClO3 at 20°. (Noyes and Farrel, 1911.)
One liter of aqueous solution, saturated with both salts, contains 30.4 gms. TIClO₂ + 34.43 gms. Tl₂SO₄ at 20°. (Noyes and Farrel, 1911.)

Solubility of Mixed Crystals of Thallium Chlorate and Potassium Chlorate in Water at 10°.

(Roozeboom, 1891.)

NOTE. - Solutions of the two salts were mixed in different proportions and allowed to crystallize, such amounts being taken that not more than one or two grams would separate from one liter.

Gms. pe Solv	Gms. per 1000 cc. Mg. Mols. per 1000 Solution. Solution.		per 1000 cc.	Sp. Gr.	Mols. per cent KClO ₂ in Mixed	
TICIO.	KClO ₃ .	TICIO ₂ .	KClO ₈ .	Solutions.	Crystals.	
25.637		89.14	• • •	1.0210	0	
19.637	6.884	68.27	56.15	I.0222	2	
12.001	26.100	41.73	212.89	1.0278	12.61	
9.036	40.064	31.42	326.79	1.0338	25.01	
7.885	46.497	27.42	379.26	1.0359 }	26 20-07 02	
7.935	46.535	27.60	379.57	1.0360 \$	36.30-97.93	
6.706	46.410	23.32	378.55	1.0357	99.28	
6.723	47.109	23.37	384.25	1.0363	99.60	
4.858	47.312	16.89	385.91	1.0345	99.62	
2.769	47.134	9.63	384.46	1.0330	99.67	
	49.925		407.22	1.0330	100	

Solubility of Mixed Crystals of Thallium Chlorate and Potassium Chlorate in Water at Different Temperatures.

(Quoted by Rabe, 1902.)

100 gms. H₂O dissolve 2.8 gms. TIClO₃ + 3.3 gms. KClO₃ at 0°.

H₂O dissolve 10 gms. TIClO₃ + 1.5 gms. KClO₄ at 15°.

H₂O dissolve 12.67 gms. TIClO₃ + 16.2 gms. KClO₄ at 50°.

H₂O dissolve 57.3 gms. TIClO₃ + 48.2 gms. KClO₄ at 100°.

THALLIUM PerCHLORATE TICIO.

SOLUBILITY IN WATER.

(Carlson, 1910.)

r.	Sp. Gr. Sat. Sol.	Gms. TlClO ₄ per 100 Gms. H ₄ O.	t°.	Sp. Gr. Sat. Sol.	Gms. TlClO _t per 100 Gms. H ₂ O.
0	1.060	6	50	1.251	39.62
10	1.075	8.04	70	1.430	65.32
30	1.146	19.72	80	1.520	81.49

100 gms. H₂O dissolve 10 gms. TlClO₄ at 15° and 166.6 gms. at 100°. (Roscoe, 1866.)

THALLIUM CHLORIDE TICI.

SOLUBILITY IN WATER.

(Average curve from results of Noyes, 1892; Böttger, 1903; Kohlrausch, 1904; Hebberling; Crookes; Lamy. The results of Berkeley, 1904 are also given.)

ť.	Gms. TlCl p	er Liter.	ť.	Gms. TlCl	per Liter.	t.	Gms. Tl	Cl per Liter.
0	2.1 (av.) 1	. 7 (B.)	25	3.86	4	60	8	10.2
10	2.5	2.4	30	4.2	4.6	80	12	16
20	3.3	3.4	40 50	5.2 6.3	6 8	100	18	24.1 (99.3°)

The results of Berkeley are in terms of gms. of TICl per 1000 gms. H₂O but since the densities of the solutions are approximately 1 in all cases, except for temperatures above 60°, the differences are negligible. The Sp. Gr. of the sat. sol. at 99.3° is 0.9787 and the figure 24.1, therefore, becomes 23.58 gms. per liter sat. solution in water contains 2.27 gms. TICl at 9.54°, 3.05 gms. at

17.7°, and 3.97 gms. at 25.76°. (Kohlrausch, 1908.)

SOLUBILITY OF THALLIUM CHLORIDE AT 25° IN AQUEOUS SOLUTIONS OF: Acetic Acid. Nitric Acid.

(Hill, 1917.)			(Hill and Simmons, 1909.)					
Normality of Aq. CH ₄ COOH.	TICI per Liter.		Normality of	<i>d</i> ₂₅ of Sat. Sol.	TlCl per Liter.			
Aq. CH ₂ COOH.	Gms. Gm. Equiv.		Aq. HNÖ3.	Sat. Sol.	Gms.	Gm. Equiv.		
0	3.8515	0.016085	0	0.996	3.951	0.0165		
0.0501	3.8375	0.016027	0.4977	1.0184	5.937	2.475		
0.0958	3.8326	0.016006	1.0046	1.0359	6.882	2.875		
0.263	3.7503	0.015662	2.0452	1.0705	8. 143	3.401		
0.524	3.6539	0.015258	4.0170	1.1362	9.925	4.145		

SOLUBILITY OF THALLIUM CHLORIDE IN AQUEOUS SOLUTIONS OF SALTS WITH A COMMON ION AT 25°. (Noyes, 1892.)

Aqueous Solution of:	Gms. Equiv. Added Salt per Liter.	Gms. Equiv. Dissolved TlCl per Liter.	Aqueous Solution of:	Gms. Equiv. Added Salt per Liter.	Gms. Equiv. Dissolved TlCl per Liter.
Water alone	0	0.01612	$MgCl_2$	0.025	0.00004
NHCI	0.025	0.00877	76	0.050	0.00618
"	0.05	0.00593	"	0.10	0.00413
"	0.20	0.00271	66	0.20	0.00275
BaCl ₂	0.05	0.00620	$\mathbf{MnCl_2}$	0.025	0.00898
"	0.10	0.00425	"	0.05	0.00617
CdCl ₂	0.025	0.01040	"	0.10	0.00412
"	0.05	0.00780	"	0.20	0.00286
"	0.10	0.00578	KCl	0.025	0.00872
"	0.20	0.00427	"	0.05	0.00593
CaCl ₂	0.025	0.00899	"	O. IO	0.00399
"	0.05	0.00624	"	0.20	0.00265
"	0.10	0.00417	"	0.80	0.00170
"	0.20	0.00284	NaCl	0.025	o.oo8 6 9
CuCl ₂	0.025	0.00905	"	0.05	0.00592
"	0.05	0.00614	"	0.10	0.00395
"	0.10	0.00422	"	0.20	0.00271
66	0.20	0.00291	TlClO ₃	0.025	0.00897
HCl	0.025	0.00869	"	0.025	0.00894
"	0.05	0.00585	TINO ₃	0.025	0.00883
"	0.10	0.00384	"	0.05	0.00626
66	0.20	0.00254	"	0. 10	0.00423

SOLUBILITY OF THALLIUM CHLORIDE IN AQUEOUS SALT SOLUTIONS AT 25°.
(Noyes, 1890; Noyes and Abbott, 1895; Gefficken, 1904.)

Aq. Salt Solution.	G. Mols.	per Liter.	Gms. p	er Liter.
•	Salt.	TICI.	Salt.	TICI.
Ammonium Nitrate NH4NO	0	0.01612	0	3.861 (G.)
"	0.5	0.02587	40.02	6. 209
"	I	0.03121	80.05	7 - 473
44	2	0.03966	160. 10	9 · 497
Barium Chloride BaCle	0.0283	0.00857	5.895	2.052 (N.)
46	0. 1468	0.00323	30.59	0.773
Cadmium Sulfate CdSO ₄	0.030	0.0206	6.255	4.933 (N.)
"	0.0787	0.0254	16.41	6.081
	0.1574	0.0309	32.82	7 · 399
Hydrochloric Acid HCl	0.0283	0.00836	1.032	2.002 (N.)
66 66	0.0560	0.00565	2.043	1.353
. -	0. 1468	0.00316	5.357	0.757
Lithium Nitrate LiNO	0.5	0.02542	34 · 53	6.085 (G.)
«	I	0.03035	69.07	7.266
•	2	0.03785	138. 14	9.063
	3	0.04438	207.21	10.630
Potassium Chlorate KClO	0.5	0.0237	61.28	5.674 (G.)
Potassium Nitrate KNOs	0.015	0.0170	1.517	4.070 (N.)
"	0.030	0.0179	3.033	4.286
	0.0787	0.0192	7.775	4 · 597
. "	0.1574	0.0212	15.920	5.076
«	0.5 .	0.0257	50.55	6.153 (G.)
	I	0.0308	101.11	7 - 375
	2	0.0390	202.22	9.340
Sodium Acetate CH ₂ COONa	0.015	0.0168	1.231	4.023 (N.)
"	0.030	0.0172	2.462	4. 118
•	0.0787	0.0185	6.46	4.430
"	0.1574	0.0196	12.92	4.693
Sodium Nitrate NaNUs	0.5	0.02564	42.50	6. 139 (G.)
"	I	0.03054	85.01	7.313
"	2	0.03851	170.02	9.221
66 66	3	0.04544	255.03	10.88
**	4	0.05128	340.12	12.28
Sodium Chlorate NaClOs	0.5	0.02320	53 - 25	5.555 (G.)
66 66	I	0.02687	106.5	6.433
	2	0.03060	213	7.326
66 66	3	0.03303	319.5	7.909
	4	0.03850	426	9.215
Thallium Bromate TlBrOs (at 39.75°)		0.01959	5.201	4.690 (N.&A.)
Thallium Nitrate TlNOs	0.0283	0.0083	7.518	1.987 (N.)
66 66	0.0560	0.00571	14.89	1.368
	0. 1468	0.00332	39.05	0.795
Thallium Sulfate Tl ₂ SO ₄	0.0283	0.00886	14.27	2.121 (N.)
	0.0560	0.00624	28.23	1.494
Thallium Thiocyanate TISCN	0.0107	0.0119	2.802	2.849 (N.)
" (at 39.75°)	0.02149	0.01807	5.632	4.326 (N. & A.)

Note. — In the case of the results for thallium bromate and thallium thiocyanate at 39.75°, the solutions were saturated with respect to these salts as well as with respect to thallium chloride. SOLUBILITY OF THALLIUM CHLORIDE IN AQUEOUS SOLUTIONS OF SALTS AT 25° (Bray and Winninghoff, 1911.)

Solvent.		Saturated Solution.			
Gms. Equiv. Salt. per Liter.	dgs of Aq. Solvent.	Gms. Equiv. Salt per Liter.	d _{as} of Sat. Sol.	Gms. Equiv. TICl per Liter.	
• • •	• • •	• • •	0.9994	0.01607	
0.02001	0.9973	0.020	1.0009	0.01716	
0.05000	0.9992	0.04997	1.0028	0.01826	
0.10005	1.0023	0.09998	1.0063	0.01961	
0.3002	1.0145	0.3000	1.0194	0.02313	
1.0005	1.0568	0.9996	1.0632	0.03072	
0.01997	0.9975	0.01996	1.0012	0.01779	
0.05000	0.9995	0.04006	1.0037	0.01042	
0.1000	1.0030	0.00080	1.0074	0.02137	
0.3000	1.0167		1.0221	0.02600	
1	1.0628		1.0608	0.03416	
0.0200	1.0007		1.0028	0.01034	
0.0500	1.0076		1.0000	0.006772	
0.1000	1.0191	0.09997	1.0200	0.004679	
	Gms. Equiv. Salt. per Liter 0.02001 0.05000 0.10005 0.3002 1.0005 0.01997 0.05000 0.1000 0.3000 1	Gms. Equiv. Salt. per Liter. 0.02001 0.9973 0.05000 0.9992 0.10005 1.0023 0.3002 1.0145 1.0005 0.01997 0.05000 0.9995 0.1000 1.0030 0.3000 1.0167 1 1.0628 0.0200 0.0500	Gms. Equiv. Salt. per Liter. O.02001 O.9973 O.0200 O.05000 O.9992 O.04997 O.10005 I.0023 O.0998 O.3002 I.0145 O.9975 O.01997 O.05000 O.9975 O.01997 O.05000 O.9975 O.01996 O.01000 I.0030 O.09980 O.01000 I.0030 O.09980 O.0000 I.0000 I.0030 O.09980 O.00000 I.0000 I.0000 O.00000 O.000000 O.000000 O.000000 O.000000 O.000000	Gms. Equiv. Salt. per Liter. Solvent. Salt per Liter. Sol	

One liter of water dissolves 2.7 gms. thallo thallic chloride 3TlCl.TlCla at 15°-17°, and 35 gms. at 100°. (Crookes, 1864; Lamy; Hebberling.)

THALLIUM CHROMATE TICTO4.

100 gms. H₂O dissolve 0.03 gm. Tl₂CrO₄ at 60°, and 0.2 gm. at 100°. One liter of AgO dissolves 0.35 gm. 112ClO4 at 60, and 0.2 gm. at 100.

(Browning and Hutchins, 1900.)

One liter of aq. 31 per cent KOH solution dissolves 18 gms. Tl₂CrO₄.

(Lepierre and Lachand, 1891.)

One liter of H₂O dissolves 0.35 gm. thallium trichromate, Tl₂Cr₂O₁₀, at 15°, at 2.27 gms. at 100°.

(Crookes, 1864.)

and 2.27 gms. at 100°.

THALLIUM CYANIDE TICN and Double Cyanides.

SOLUBILITY IN WATER. (Fronmüller, 1878.)

Cyanide.	Formula.	Gms. Salt per 100 Gms. H ₂ O.
Tl Cyanide	TICN	16.8 at 28.5°.
Tl Cobalti Cyanide	Tl ₂ Co(CN) ₆ 3.6	at o°; 5.86 at 9.5°; 10.04 at 19.5°.
		at 0°; 15.2 at 14°; 29.6 at 31°.
Tl Ferro Cyanide	TLFe(CN) _{6.2} H ₂ O	0.37 at 18°; 3.03 at 101°. (Lamy.)

THALLIUM FLUORIDE TIF.

100 gms. H₂O dissolve 80 gms. TlF at 15°.

(Büchner, 1865.)

THALLIUM HYDROXIDE TIOH.

SOLUBILITY IN WATER. (Bahr, 1911.)

t.	d _{3.5} of Sat. Sol.	Mols. TIOH per Liter.	Gms. TIOH per Liter.	ť.	Mols. TIOH per Liter.	Gms. TIOH per Liter.
0	1.231	1.151	254.4	44.5	2.442	539.8
18.5	1.317	I.554	343 · 4	54. I	2.940	649.7
29	1.342	1.803	398.5	64.6	3.601	795.8
32. I	1.377	1.861	411.2	78.5	4.673	1033
36	1.417	2.075	458.6	90	5.705	1261
40	1.446	2.240	495	99.2	6.708	1483

The solutions were stirred by means of a current of hydrogen. The solid phase is the same at all temperatures.

THALLIUM IODATE THO:

One liter aq. solution contains 0.578 gm. TIIOs at 20°. (Böttger, 1903.) One liter aqueous solution contains 1.76.104 mols. TIIO, at 25° = 0.667 gm., determined by means of electrodes of the third kind. (Spencer, 1912.)

THALLIUM IODIDE TH

One liter sat. solution in water contains 0.0362 gm. at 9.9°, 0.056 gm. at 18.1° (Kohlrausch, 1908.) and 0.0847 gm. at 26°.

SOLUBILITY OF THALLIUM IODIDE IN WATER.

(Average results from Böttger, 1903; Kohlrausch, 1904-05; Werther; Crookes, 1864; Lamy; Hebberling.) °°. 20°. 40°. 60°. 100°.

Gms. TII per liter 0.06 I.20 0.02 0.15 0.35 0.70

One liter of 21 per cent aq. ammonia dissolves 0.761 gm. TICL

One liter of 6½ per cent aq. ammonia dissolves 0.758 gm. TiCl.

One liter of 90 per cent alcohol dissolves 0.0038 gm. TiCl.

One liter of 50 per cent alcohol dissolves 0.0027 gm. TiCl.

One liter of 50 per cent alcohol dissolves 0.0027 gm. TiCl.

(Long. 1888.)

Data for the temperatures of solidification of mixtures of TII and TiNO, are given by Van Eyk (1901).

THALLIUM NITRATE TINO.

SOLUBILITY IN WATER.

(Berkeley, 1904; see also Etard, 1894; Crookes; Lamy.)

4.0	Gms. TINOs per 100 Gms.		t°.	Gms. TINOs per 100 Gms.		
8° . ~	Solution.	Water.	t	Solution.	Water.	_
0	3.76	3.91	60	31.55	46.2	
IO	5.86	6.22	70	41.01	69.5	
20	8.72	9.55	80	52.6	111.0	
30	12.51	14.3	90	66.66	200.0	
40	17.33	20.9	100	80.54	414.0	
50	23.33	30 . 4	105	85.59	594.0	

Solid phase. TINO: rhombic.

100 gms. H₂O dissolve 43.5 gms. TINO₃ + 104.2 gms. KNO₃ at 58°. (Rabe, 1902.)

THALLIUM OXALATE TI2C2O4

One liter of saturated aqueous solution contains 15.77 gms. Tl₂C₂O₄ at 20°, and 18.69 gms. at 25°. (Böttger, 1903; Abegg and Spencer, 1905.)

SOLUBILITY OF THALLIUM OXALATE AT 25° IN AQ., SOLUTIONS OF:

Thallium Nitrate. Potassium Oxalate. (Abegg and Spencer.) (Abegg and Spencer.) Grams per Liter. Mol. Concentration. Mol. Concentration. Grams per Liter. TINO3. TlaCaO4. TlaCaO4. TINO Tl₂C₂O₄ K2C2O4. KaCaO4. TlaCaO4. o .03768 18.69 8.281 17.42 0.0498 0.0 0.00 0.0351 0.04114 0.0264 10.95 13.10 0.0006 0.03565 16.57 17.69 9.68 0.2467 4I.Q2 19.36 0.0799 0.0195 21.26 0.0390 6.128 0.4886 81.25 22.37 42.5I 0.04506 0.1597 0.01235 0.9785 0.05536 162.6 27.48

THALLIUM PHOSPHATE (ortho) TlaPO4.

One liter of sat. aqueous solution contains 4.97 gms. TlaPO4 at 15° and 6.71 gms. at 100°. (Crookes, 1864.)

(Rabe, 1901.)

THALLIUM PICRATE TIOC, H1 (NO2).

Gms.

0.825

1.14

0

18

30

40

SOLUBILITY IN WATER.

Gms.	(Rabe, 190).)	'Gms.	
OC ₄ H ₂ (NO ₂) er 100 Gms. H ₂ O.	Solid Phase.	ť.	TIOC ₀ H ₆ (NO ₂) ₈ per 100 Gms. H ₂ O.	Solid Phase.
0.135	Monoclinic Red	45	1.04	Triclinic Yellow
0.36	ee	47	1.10	u
0.575	"	50	1.205	"

2.43

бo

70

47 . 100 gms. H₂O simultaneously sat. with both salts dissolve:

0.132	gm.	C ₄ H ₂ (NO ₂) ₃ OT1	+ 0.36 gm	C ₂ H ₂ (NO ₂) ₂ OK	at 0°.
0.33=	"	"	+ 0.22	1 41	" 15°. " 20°.

SOLUBILITY OF THALLIUM PICRATE IN METHYL ALCOHOL. (Rabe, 1901.)

	Gms.	(2000)	1901.,	Gms.	
r.	TIOC _s H _s (NO _s) per 100 Gms. CH _s OH.	Solid Phase.	ť.	TIOC ₄ H ₂ (NO ₂), per 100 Gms. CH ₂ OH.	Solid Phase.
0	0.39	Red Form (monoclinic)	45	1.195	Yellow Form (triclinic)
18	0.59	44	48	1.265	44
25	0.70	44	50	1.325	#
30	0.795	44	53	1.41	"
35	0.90	*	57	I.54	"
40	1.02	u	60	1.65	u
45	1.17	46	65	1.84	•
47	1.265	u	•		

THALLIUM SELENATE TISEO4.

SOLUBILITY IN WATER.

t°.	Gms. Tl ₂ SeO ₄ per 100 Gms. H ₂ O.	Authority.
9.3	2.13	(Tutton, 1907.)
12	2.4	**
20	2.8	(Glauser, 1910.)
80	8.5	
100	10.86	(Tutton, 1907.)

THALLIUM SULFATE TISO4.

SOLUBILITY IN WATER. (Berkeley, 1904; see also Crookes; Lamy.)

ť.	Gms. Tl ₂ SO ₄ per 100 Gms.		ť.	Gms. Tl ₂ SO ₄ per 100 Gms.	
	Solution.	Water.	٠.	Solution.	Water.
0	2.63	2.70	60	9. 89	10.92
IO	3 · 57	3.70	70	11.31	12.74
20	4.64	4.87	8o	12.77	14.61
30	5.80	6. 16	90	14.19	16.53
50	8.44	9.21	99.7	15.57	18.45

100 gms. H₂O dissolve 3.36 gms. Tl₂SO₄ at 6.5°, 4.3 gms. at 12° and 19.14 gms. at 100°.

One liter sat. solution in water contains 48.59 gms. Tl₈SO₄ at 20° (Noyes and Farrel, 1911) and 54.59 gms. at 25° (Noyes and Stewart, 1911).

100 gms. H₂O simultaneously sat. with both salts dissolve:

4.74 gms.	112SO	4 + 10.3	gms.	K ₂ SO ₄ at	t 15`.	
4.74 gms.	**	+ 16.4	- "	"	62°.	
18.52 "		+ 26.2	44	44	100°.	(Rabe, 1902.)
0-						(,

SOLUBILITY OF THALLIUM SULFATE IN AQUEOUS SOLUTIONS AT 25°. (Noyes and Stewart, 1911.)

Sol	vent.	Saturated Solution.					
Salt Present.	Formula Wts. Salt per Liter.	Formula Wts. Salt per Liter.	Formula Wts. Tl ₂ SO ₄ per Liter.	d _{ss} of Sat. Sol.	Gms. Salt per Liter.	Gms. Tl ₂ SO ₄ per Liter.	
TINO ₃	o.099±	0.0996	0.08365	•••	26.51	42.17	
Na ₂ SO ₄	0.04995	0.0497	0.1080	1.0531	7.062	54 - 44	
66	0.20	0.1988	0.1173	1.0754	28.25	59.13	
NaHSO ₄	0.1015	0.1010	0.1161	1.0596	12.12	58.53	
H ₂ SO ₄	0.04967	0.0494	0.1172	1.0540	4.878	59.09	
"	0.09933	0.0987	0.1249	1.0604	9.747	62.95	

SOLUBILITY OF THALLIUM SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 25°. (D'Ans and Fritsche, 1909.)

Mols. per 1000 Gms. Sat. Sol.		Solid Phase.	Mols. per roco Gms. Sat. Sol. Solid F		
H ₂ SO ₄ .	Tl ₂ SO ₄ .	Soud Phase.	H ₂ SO ₄ .	Tl ₂ SO ₄ .	SOLIG FIRST.
0	0.103	Tl ₂ SO ₄	4.89	0.59	TiHSO.
2.99	0.46	" +Tl ₂ H(SO ₂) ₃	4.92	0.66	**
4.25	0.61	TLH(SO,),+TIHSO,	4.78	0.75	**
4 · 55	0.56	Tihso4	4.26	1.01	*
4.79	0.55	"	4.03	1.08	**

THALLIUM DOUBLE SULFATES

SOLUBILITY IN WATER AT 25°. (Locke, 1901.)

Double Sulfate.	Formula.	Salt per zoo cc. H ₂ O.		
		Gms. Anhydrous.	Gms. Mols.	
Tl Copper Sulfate	$Tl_2Cu(SO_4)_2.6H_2O$	8.I	0.0122	
Tl Nickel Sulfate	$Tl_2Ni(SO_4)_2.6H_2O$	4.61	0.007	
Tl Zinc Sulfate	$Tl_2Zn(SO_4)_2.6H_2O$	8.6	0.0129	

THALLIUM SULFIDE TIS.

One liter of sat. aqueous solution contains 0.215 gm. Tl₂S at 20°. (Böttger, 1903.) A diagram and discussion of the fusion points of Tl₂S + S, Tl₂S + Se and Tl₂S + Te are given by Pelabon, 1907.

THALLIUM SULFITE TI-SO.

100 gms. H₂O dissolve 3.34 gms. Tl₂SO₃ at 15.5°.

(Seubert and Elten, 1892.)

THALLIUM THIOCYANATE TISCN.

SOLUBILITY IN WATER AND IN AQUEOUS SALT SOLUTIONS. (Böttger, 1903; Noyes, 1890; Noyes and Abbott, 1895.)

One liter sat. aq. solution contains 3.154 gms. TISCN at 20°, 3.905 gms. at 25°, and 7.269 gms. at 39.75°.

Ag. Salt Solution.	t°.	Gms. Mols	per Liter.	Gms. pe	Liter.
Aq. San Sondon.	U	Salt.	TISCN.	Salt.	TISCN.
Thallium Bromate TlBrO ₂ (excess)	39.75	0.01496	0.0221	4.966	5.793 (N. & A.)
Thallium Nitrate TINO:	25	0.0227	0.00852	6.04	2.233 (N.)
a	25	0.0822	0.00406	21.88	1.064
Potassium Thiocyanate, KSCN	25	0.0227	0.0083	2.208	2.176(N)

THALLIUM VANADATES.

SOLUBILITY IN WATER. (Carnelly, 1	1873; Liebig,	1860.)
-----------------------------------	---------------	--------

Vanadate.	Formula.	Gms. Vanadate per 100 Gms. H ₂ O.		
Tl. meta vanadate	TIVO	At 15°. 0.087 (11°)	At 100°. O. 21	
" ortho vanadate	Tl ₃ VO ₃	1	1.74	
" pyro vanadate	TLV2O,	0. 20 (14°)	0.26	
" vanadate	$Tl_{12}V_{\mathfrak{s}}O_{26}$	0.107	0.20	

THEBAINE (Para Morphine) C19H21NO3.

SOLUBILITY IN SEVERAL SOLVENTS.

Solvent.	t°.	Gms. Thebaine per 100 Gms. Solvent.	Authority.
92 Wt. % Alcohol	25	0.1	•••
Ether	10	0.71	•••
Aniline	20	30	(Scholtz, 1912.)
Pyridine	20	9	44
Piperidine	20	2	u
Diethylamine	20	0.7	

THEOBROMINE (Dimethyl Xanthine) C.H. (CH.)2N.O2.

SOLUBILITY IN SEVERAL SOLVENTS.

Solvent.	ť.	Gms. C _t H ₂ (CH ₂) ₂ - N ₄ O ₂ per 100 Gms. Solvent.	Authority.
Water	18 .	0.0305	(Paul, 1901.)
"	15-20	0.059	(Squire & Caines, 1905.)
Aq. 0.25 n HCl	18	0.047	(Paul, 1901.)
" I n HCl	18	0.083	lt.
" o.1 n NaOH	18	1.78	"
" 0.25 n "	18	4.56	"
" 15.6 per cent Na ₄ (PO ₄) ₂ .Sol.	15	3.69	(Brissemoret, 1898.)
92.3 Wt. % Alcohol	21	0.045	(Squire & Caines, 1905.)
90 Wt. % Alcohol	15-20	0.02	"
Dichlorethylene	15	0.005	(Wester & Bruins, 1914.)
Trichlorethylene	15	0.008	"
Carbon Tetrachloride	b. pt.	0.021;	(Göckel, 1897.)
Ether	b. pt.	0.032	44

THIOPHENE MonoCARBONIC ACIDS α , β and a C₄H₄SCOOH.

The solubility of the three isomers is given by Voerman (1907) as 0.57 gm. of the α acid per 100 cc. sat. solution at 21°; 0.445 gm. of the β acid at 18°, and 0.75 gm. of the α acid at 17°. The solvent is not stated. Data for the solidification points of mixtures of the α and β acid are also given.

THEOPHYLLINE (Theocin) $C_6H_2(CH_2)_2N_4O_2.H_2O.$

100 gms. H_2O dissolve 0.52 gm. the ophylline at 15–20°. (Squire & Caines, 1905.) 100 cc. 90 vol. % alcohol dissolve 1.25 gms. the ophylline at 15–20°. "

THORIUM EMANATIONS.

Data for the solubility of thorium emanations are given by Klaus (1905).

THORIUM ChloroACETATES.

SOLUBILITY IN WATER AT 25°. (Karl. 1910.)

Name of Salt.	Formula.	Gms. Salt per roo Gms. H ₂ O.
Basic Thorium Monochloroacetate	(ClCH ₂ COO) ₂ Th(OH) ₂ .H ₂ O	0.0663
Basic Thorium Dichloroacetate	(Cl ₂ CHCOO) ₂ Th(OH) ₂	0.0887
Basic Thorium Trichloroacetate	(Cl ₂ C.COO) ₂ Th(OH) ₂	0.0001

THORIUM BORATE.

The precipitate which results when thorium nitrate is added to a solution of borax is not a stable compound. Solubility determinations made by four successive extractions of it at 18° with water, gave the following gms. of material per 100 gms. H₂O; 0.5366, 0.1250, 0.0611 and 0.0560. After the fourth extraction, the residue then contained 10.14% B₂O₃ and after boiling 10 gms. with 100 cc. of H₂O for 6 hrs. and repeating this four times, it contained 9.63-9.81% B₂O₃. (Karl, 1910.)

THORIUM HIPPURATE Th(C4H4.CO.CH4.NH.COO)4.

100 gms. H₂O dissolve 0.0318 gm. of the salt at 25°.

(Karl, 1910.)

THORIUM OXALATE Th(C₂O₄)₂.6H₂O.

SOLUBILITY IN AQUEOUS SOLUTIONS OF AMMONIUM OXALATE AT 25°. (Hauser and Wirth, 1909a, 1912.)

Gm. Mols. per 1000 Gms. Sat. Sol.		Solid Phase.	Normality of Aq. (NH ₄) ₂ C ₂ O ₄	Gms. ThO ₂ per roco Gms.	Solid Phase.	
(NH ₄) ₂ C ₂ O ₄ .	Th(C ₂ O ₄) ₂ .		(NH ₄) ₂ C ₂ O ₄	Sat. Sol.	,	
0.00033	0.00005	Th(C ₂ O ₂) ₂ .6H ₂ O	0.01	0.040	Th(C _t O _t) ₂ .6H _t O	
0.00072	0.00012	66	0,10	2.203	"	
0.00120	0.000208	64	0.5*	7.660	[Th2(C2O)2](NH)2.7H2O	
0.00153	0.00026	**	0.5*	10.63	"	
0.601	0.195	$[Th(C_2O_4]_3(NH_4)_2.3H_2O$	0.5*	15.90	"	
1.181†	0.427	"	0.5*	17.60	44	
1.420†	0.540	u	0.5*	17.75	"	
1.480†	0.563	44	-			

In these cases the greater part of the ammonium salt entered the solid phase complex and it was, therefore, necessary to add additional ammonium oxalate until constant results were obtained.
In these cases the solvent was saturated ammonium oxalate solutions containing an excess of the crystals.

A thorium ammonium oxalate of the composition $Th(C_2O_4.NH_4)_4.4H_2O$ is described by Brauner (1898). It is partially hydrolytically decomposed in aqueous solution and a solubility determination made by analyzing the solution from which the nearly pure salt began to crystallize, showed that 100 gms. H_2O contain 90.3 gms. $Th(C_2O_4.NH_4)_4.4H_2O$ and 9.3 gms. of $(NH_4)_2C_2O_4$ (= an additional $\frac{1}{2}$ mol. wt.)

SOLUBILITY OF THORIUM OXALATE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID.

	Résults at 17°. Results at 25°. (Colani, 1913.) (Hauser and Wirth, 1912.)		Results at 50°. (Colani, 1913.)			
Sat	r 100 Gms.	Conc. of Aq. HCl in	Gm. ThO ₂ per	Solid Phase.	Sa.	r 100 Gms. t. Sol.
HCl.	Th(C ₂ O ₄) ₂ .	Per cent.	Sat. Sol.		HCl.	Th(C ₂ O ₄) ₂ .
0	0.0017	24.8	0.100	3Th(C ₂ O ₄) ₂ ThCl ₄ .2H ₂ O	0	0.0017
I.2	o .0035	37	3.450	"	4.I	0.010
3.6	0.0061	37.6	3.492	"	8.4	0.028
4.6 8.4	0.0094				12.4	0.057
8.4	0.017				16.1	0.103
13.I	0.028				18	0.134
16.2	0.038				19.9	0.169
19.8	0.064				21.6	0.232

Data are also given for the solubility of thorium oxalate in aqueous solutions of mixtures of hydrochloric and oxalic acids at the above temperatures.

Solubility of Thorium Chlorooxalate, $_3$ Th $(C_2O_4)_2$ Th $Cl_4.2$ H $_2$ O, in Aqueous Hydrochloric Acid.

(Colani, 1913.) s Set Sol s, ner zoo Gms, Sat, Sol

40	Gillas per 100 Gillas date 301.		ť.	Ome, ber 1	Gilla, per 100 Gilla, Sar. Soi.	
ť.	HCl.	Th,(C,O,)Cl,	٠.	HCl.	Th ₄ (C ₂ O ₄) ₂ Cl ₄ .	
12	23	0.12	50	21.2	0.29	
15	26.3	0.17	50	23	0.34	
12	29.9	0.27	50	26.8	0.46	
15	32.5	0.48	50	29.8	0.75	
12	33. I	0.53	50	32.3	1.51	
15	35	1.03	50	34.6	2.59	

Results are also given showing the effect of oxalic acid upon the solubility of the above salt in aqueous hydrochloric acid.

SOLUBILITY OF THORIUM OXALATE IN AQUEOUS OXALIC ACID SOLUTIONS.

Results at 25°. Results at 50°. (Hauser and Wirth, 1912.) (Colani, 1913.) Gms. per 100 Gms. Sat. Sol. Gm. ThO₂ per 2000 Gms. Sat. Sol. Normality of Solid Phase. Aq. H₂C₂O₄. Th. H₂C₂O₄. 0.0002 0.0015 Th(C₂O₄)₂.6H₂O 1.7 Sat. Solution 0.0030 " +H₂C₂O_{4.2}H₂O 9.3 0.001 0.003 23

SOLUBILITY OF THORIUM OXALATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 25°.

(Hauser and Wirth, 1909a, 1912; Wirth, 1912.)

Normality of Aq. H ₂ SO ₄ .	Gms. ThO ₂ per 1000 Gms. Sat. Sol.	Solid Phase.	Normality of Aq. H ₂ SO ₄ .	Gms. ThO ₂ per 1000 Gms. Sat. Sol.	Solid Phase.
0.25	0.07	$Th(C_2O_4)_2.6H_2O$	4.32	1.10	Th(C ₂ O ₄) ₂ .6H ₂ O
0.5	0.14	"	4.9	1.32	"
1	0.26	u	6. 175	1.513	44
2.I	0.418	a	6.885	1.794	**
3.2	0.71	и	8.45	2.473	44

THORIUM PICRATE Th(C₄H₂N₂O₇)₄.10H₂O.

100 gms. H₂O dissolve 0.3052 gm. of the salt at 25°.

(Karl, 1910.)

THORIUM SELENATE Th (SeO4)2.9H2O.

100 gms. H₂O dissolve 0.498 gm. Th(SeO₄)₄ at 0° and 1.972 gms. at 100°. (Cleve, 1885.)

THORIUM SULFATE Th(SO4)2.

SOLUBILITY IN WATER. (Roozeboom, 1890; Demarcay, 1883.)

t°.	Gms. Th(SO		Solid Phase.	ŧ°.	Gms. Th(S		Solid Phase.
0	o.74 (R)		Th(SO ₄) ₂₋₉ H ₂ O	0	1.5	o(R)	Th(SO ₄) ₂ .6H ₂ O
IO	0.98	I 02	*	15	1.6	3	4
20	1.38	1.25	**	30	2.4	15	
30	1.995	1.85	44	45	3.8	35	*
40	2.998	2.83	"	60	6.6	64	*
50	5.22(510)	4.86	4	17	9.4	μ (D)	Th(SO ₄) ₂₋₄ H ₂ O
55	6.76	6.5±	4	40	4.04(R)4.5 (35°D)	
0	1.0	•	Th(SO ₄)2.8H2	50	2.54	1.94 (55°)	•
15	I.38			60	r .63		•
25	1.85		4	70	1.00	1 .32 (75°)	4
44	3.71		•	95	•••	0.71	•
	• •				_		

Additional results for the .8H₂O and the .9H₂O salt, in fair agreement with the above, are given by Wyrouboff (1901).

Ammonium Sulfate at 16°.

SOLUBILITY OF THORIUM SULFATE IN AQUEOUS SOLUTIONS OF:

Lithium Sulfate at 25°.

(Barre,	1911.)		(Barre, 1912.)		
Gms. per 100 Gms. H ₂ O.		Solid Phase.	Gms. per 100 Gms. H ₂ O.		
(NH ₄) ₂ SO ₄ .	Th(SO ₄) ₂ .	Souri Prinse.	Li-SO ₄ .	Th(SO ₄) ₂ .	
2.13	3.361	Th(SO _d) ₂ .9H ₂ O	0	1.722	
4.80	5.269	44	2.57	4.13	
10.02	8.947	**	4.93	6.20	
16.56	13.330	" +1.1.4	6.98	7.95	
28	10.359	1.1.4	9.23	9.68	
35.20	9.821	" +1.2.2	11.13	11.05	
45.14	6.592	1.2.2	13.18	12.54	
49.05	5.750	4 .	16.12	14.52	
52.88	4.583	133	20.49	16.02	
69.74	1.653	44	25.18	18.87	

 $1.1.4 = \text{Th}(\text{SO}_4)_2.(\text{NH}_4)_2\text{SO}_4.4\text{H}_2\text{O}; \ 1.2.2 = \text{Th}(\text{SO}_4)_2.2(\text{NH}_4)_2\text{SO}_4.2\text{H}_2\text{O}; \ 1.3.3 = \text{Th}(\text{SO}_4)_2.3(\text{NH}_4)_2\text{SO}_4.3\text{H}_2\text{O}.$

SOLUBILITY OF THORIUM SULFATE IN AQUEOUS SOLUTIONS OF POTASSIUM SULFATE. (Barre, 1911.)

Result	s at 16°.	(Danie, 1911.)	Resul	Results at 75°.		
Gms. per 100 Gms. H ₂ O.		Solid Phase.	Gms. per 100 Gms. H ₂ O.			
K ₂ SO ₄ .	Th(SO ₄) ₂ .	Sond Phase.	K.SO.	Th(SO ₄) ₂ .		
0	1.39	Th(SO ₄) ₂ .9H ₂ O	0	0.9248		
0.424	1.667	Th(SO ₄) ₂ .K ₂ SO ₄ .4H ₂ O	0.865	1.137		
1.004	2.193	u	1.167	1.173		
1.152	3.191	16	1.172	1.121		
I.224	2.514	44	1.270	0.907		
1.283	2.222	u	1.296	0.495		
1.348	1.706	44	1.852	0.297		
1.378	1.637	$Th(SO_4)_2.2K_4SO_4.2H_2O$	3.117	0.201		
1.487	o.870	"	4 .659	0.256		
1.844	0.370	"	5.348	0.170		
3.092	0.070	44	5.932	0.123		
4 050	0.027	Th(SO ₄) ₂ .3 ½ K ₂ SO ₄	7.177	0.031		
4.825	0.003	u	9.706	0.022		

SOLUBILITY OF THORIUM SULFATE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AND OF NITRIC ACID AT 30°. (Koppel and Holtkamp, 1910.)

In Ac	. Hydrochlor	ic Acid.	In Aq. Nitric Acid.			
Wt. % HCl in Solvent.	Gms. Th(SO ₄) ₂ per 100 Gms. Sat. Sol.	Solid Phase.	Wt. % HNO, in Solvent.	Gms. Th(SO ₄) ₂ per 100 Gms. Sat. Sol.	Solid Phase.	
0	2.15	Th(SO ₄) ₂ .8H ₂ O	0	2.15	Th(SO ₄) ₂ .8H ₂ O	
4.55	3.541	"	5.17	3.68	"	
6.95	3.431	44	10.04	4.20	"	
12.14	2.811	**	16.68	4.84	"	
15.71	2.360	**	21.99	4.47	66	
18.33	2.199	"	28.33	3.96	44	
20	2.110	Th(SO ₂) ₂₋₄ H ₂ O	28.51	3.88	"	
20	2.141	u	33.17	3 · 34	Th(SO ₄) ₃₋₄ H ₂ O	
23.9	1.277	44	38.82	2.51	"	

SOLUBILITY OF THORIUM SULFATE IN AQUEOUS SOLUTIONS OF:

	lfate at 16°.		Sulfuric Acid at 25°. (Barre, 1912.)		
Gms. per 100 Gms. H ₂ O.		Solid Phase.	Gms. per 100 Gms. H ₂ O.		
Na ₂ SO ₄ .	Th(SO ₄) ₂ .	Sond Phase.	H.SO4.	Th(SO ₄) ₂ .	
1.004	1.743	Th(SO ₄) ₂ .Na ₂ SO ₄ .6H ₂ O	0	1.722	
1.960	2.387	44	1.072	1.919	
2.98	3.962	66	1.941	2.017	
4.11	3.375	4	2.821	2.060	
5⋅79	2.136	"	3.843	2.061	
9.35	1.379	44	5.212	2.035	
12.24	1.169	66	8.055	1.863	
15.36	1.048	66	10.105	1.702	

SOLUBILITY OF THORIUM SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID

	Results at 25 (Wirth, 1912.)		Results at 20° and at the bpt. (Koppel and Holtkamp 1910.)					
Normality of Aq. H ₂ SO ₄ .	Gms. Th(SO ₄) ₂ per 100 Gms. Sat. Sol.	Solid Phase.	ť.	Wt. % H ₂ SO ₄ in Solvent.	Gms. Th(SO ₄) ₂ per 100 Gms. Sat. Sol.	Solid Phase.		
0	1.593	Th(SO ₂) ₂ .9H ₂ O	20	5	I.722	Th(SO ₄) ₂ .8H ₂ O		
I.I	1.831	44	20	15	0.9752	"		
2. 16	1.488	"	20	25	0.3838	"		
4.32	0.8751	и	20	40	0.0103	Th(SO ₄) ₂₋₄ H ₂ O		
6.68	0.4312	44	b. pt.	5	0.7407	Th(SO ₄) ₂ .8H ₂ O		
9.68	0. 1045	$Th(SO_{2})_{2}.8H_{2}O$	"	10	0.4808	"		
10.89	0.0636	и	"	15	0.3882	"		
15.15	0.0308	$Th(SO_4)_2.4H_2O$						

Results at 30°. (Koppel and Holtkamp, 1910.)

Wt. % H ₂ SO ₄ in Solvent.	Gms. Th(SO ₄) ₂ per 100 Gms. Sat. Sol.	Solid Phase.	Wt. % H ₂ SO ₄ in Solvent.	Gms. Th(SO ₄), po 100 Gms. Sat. Sol	Solid Phase.
0	2.152	Th(SO ₄) ₁ .8H ₂ O	15.03	1.484	Th(SO ₄) ₂ .8H ₂ O
0.4 6 6	2.055	44	23.64	0.7196	"
0.72	2.085	"	32.68	0. 3364	**
1.468	2.267	66	37.80	0.077	Th(SO ₄) ₂₋₄ H ₂ O
2.983	2.311	66	43.28	0.0213	44
4.38	2.367	44	45.69	0.0047	66
4.97	2.323	"	74	0.1208	44
9.95	1.961	**	80.5	0	"

THORIUM m Nitrobenzene SULFONATE Th(C₆H₄.NO₂.SO₂)_{4.7}H₄O.

100 gms. H₂O dissolve 61 gms. of the anhydrous salt at 15°. (Holmberg, 1907.)

THULIUM OXALATE $Tm_2(C_2O_4)_3.9H_2O(?.10H_2O)$.

100 cc. aq. 20% methyl amine oxalate dissolve approx. 4.082 gms. thulium oxalate. 100 cc. aq. 20% ethylamine oxalate dissolve approx. 5.728 gms. thulium oxalate. 100 cc. aq. 20% triethylamine oxalate dissolve approx. 1.340 gms. thulium oxalate. (Grant and James, 1917.)

THULIUM Bromonitrobenzene SULFONATE Tm(C₆H₂Br.NO₂.SO₃,1.4.2)₃.12H₂O.

100 gms. sat. solution in water contain 6.379 gms. of the anhydrous salt at 25°.
(Katz and James, 1913.)

THYMOL (3 Methyl 6 Isopropyl Phenol) CaH7.CaHa.OH.CHa.

SOLUBILITY IN WATER. (Seidell, 1912.)

ť°.	Gms. Thymol per 100 Gms. Sat. Sol.	t°.	Gms. Thymol per 100 Gms. Sat. Sol.	t°.	Gms. Thymol per 100 Gms. Sat. Sol.
IO	0.067	25	0.0995	37	0.132 $(d_{\overline{m}}=1)$
15	0.077	30	O. II2	40	0.141
20	0.088	35	0. 126		

SOLUBILITY OF THYMOL IN AQUEOUS HYDROCHLORIC ACID. (Seidell, 1912.)

Normality of Aq. HCl.	Gm. Thymol per 100 cc.	Sat. Sol. at:
Aq. HČl.	25°·	37.2°.
0	0.0995	0.132
0.1	0.0968 (d _{ss} =1.002)	0.129
0.5	0.0884 (d _{ss} =1.009)	0.121
I	0.0802 (d _{ss} =1.018)	0.112
2.5	0.0612 (d _{ss} =1.043)	0.0935
ς ΄	0.0445	$0.0772 (d_{-} = 1.081)$

100 cc. 90 vol. per cent alcohol dissolve about 300 gms. of thymol at 15°-20°. (Squire and Caines, 1905.)

SOLUBILITY OF THYMOL IN SEVERAL OILS. (Seidell, 1912.)

			Gms. 1	pamor ber 100 (ims. ot:		
ť°.	Olive Oil.	Peanut Oil.	Cod Liver Oil.	Liquid Petrolatum.	Castor Oil.	Cottonseed Oil.	Linseed Oil.
10	46.2	73	50	3.1	81.2	56.2	62.3
15	50.1	73.8	52	3.95	90.2	64	63.1
20	56.2	74.6	55.5	5.6	101.5	74.2	65.1
25	66.9	76.4	63 . I	9.78	116.5	89.4	69
30	84.5	83.2	77	16.3	137	113.7	78.3
35	111	106.7	102	25.5	165	146.5	100
37	124.3	130.5	116.5	29.9	180	166.5	116.5
40	151.9	212.5	150	38.9	213	217.5	152

The specific gravities of the above saturated solutions and of solutions of lower concentrations of thymol in the several oils are also given.

DISTRIBUTION OF THYMOL BETWEEN WATER AND OILS AT 25° AND AT 37°. (Seidell, 1912.)

Water + Olive Oil.				Water + Cod Liver Oil.			Water + Peanut Oil.		
Gms. Thymol per 100 cc.			Gms. Thymol per 100 cc.			Gms. Thymol per 100 cc.			
ť°.	Oil Layer (4).	H ₂ O Layer (c _w).	<u>c.</u>	Oil Layer (4)	H ₂ O Layer (c _w).	<u></u>	Oil Layer (4).	H ₂ O Layer (c _w).	د .
25	0.1014	44.95	443	0.1079	49	454	0.1077	46.48	43I
25	0.0848	36.34	428	0.0816	32.58	400	0.0786	32.45	413
25	0.0349	16.26	465	0.0371	16.18	436	0.0395	16.16	409
25	0.0106	4 · 54	430	0.0127	4.57	359	0.0088(?)	4.63	523
37	0.1087	46.35	427	0.1099	43.81	399			
37	0.0807	33.48	415	0.0862	32.90	380			
37	0.0381	16.24	426	0.0574	22.51	392			
37	0.0122	4.61	378	0.0250	8.86	357			
- T	·		£		f Al 1			·	. 1

Freezing-point data for mixtures of thymol and sulfuric acid are given by Kendall and Carpenter (1914).

Results for thymol + bromotoluene are given by Paterno and Ampola (1897).

TIN Sn.

DISTRIBUTION OF TIN BETWEEN AQUEOUS HYDROCHLORIC ACID AND ETHER AT ROOM TEMPERATURE. (Mylius, 1911.)

When I gm. of tin as the chloride, SnCl₄, is dissolved in 100 cc. of aqueous hydrochloric acid and shaken with 100 cc. of ether, the following per cents of the metal enter the ethereal layers. With 20% HCl, 17 per cent; with 15% HCl, 28 per cent; with 10% HCl, 23 per cent; with 5% HCl, 10 per cent and with 1% HCl, 0.8 per cent of the tin.

TIN CHLORIDE (Stannous) SnCl₂.

100 gms. H₂O dissolve 83.9 gms. SnCl₂ at o° and 269.8 gms. at 15°. Sp. Gr. of Solutions 1.532 and 1.827 respectively. (Engel, 1889; Michel and Krafft, 1851.)

SOLUBILITY OF STANNOUS CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIDE ACID AT 0°.

(Fragel)

	•	(Enger.)				
Milligram Mols. per 10 cc. Solution.		Sp. Gr. of	Grams pe Solu	Grams per 100 cc. Solution.		
HCI.	₫SnCl₂.	Solution.	HCl.	SnCl ₂ .		
0	74.0	· 1 · 532	0.0	70.26		
6.6	66.7	1.489	2 - 405	63.33		
13.54	63.75	1.472	4.935	60.52		
24.8	68.4	1.524	9.04	64.95		
34.9	81.2	1.625	12.72	77.11		
40.0	94.2	1.724	14.58	89.45		
44.0	117.6	1.883	16.04	111.7		
49 · 4	147.6	2.114	18.01	138.6		
66.0	156.4	2.190	24.05	148.5		
78.0	157.0	2.199	28.43	149.0		

100 gms. acetone dissolve 55.6 gms. SnCl₂ at 18°. $(d_{14} = 1.6.)$ (Naumann, 1904.) 100 gms. ether dissolve 11.4 gms. SnCl₂.2H₂O at 0°-25.5°.

100 gms. ether dissolve 11.4 gms. SnCl₂.2H₂O at 0°-35.5°.
100 gms. ethyl acetate dissolve 31.2 gms. SnCl₂.2H₂O at -2°, 35.53 gms. at +22° and 73.44 gms. at 82°. (von Laszynski, 1894.)
100 gms. ethyl acetate dissolve 4.46 gms. SnCl₂ at 18°. d₁₂ of the sat. solution

= 0.9215. (Naumann, 1910.)

100 gms. 95 per cent formic acid dissolve 4.1 gms. SnCl₂ at 19°. (Aschan, 1913.)

Freezing-point data for mixtures of SnCl₂ + ZnCl₂ are given by Herrmann (1911).

TIN CHLORIDE (Stannic) SnCl.

DISTRIBUTION OF STANNIC CHLORIDE BETWEEN WATER AND XYLENE.
(Smirnoff, 1907.)

Very concentrated aqueous stannic chloride solutions were agitated with xylene at various temperatures and the amount of SnCl₄, in terms of Cl, which entered the xylene layer was determined. The amount of Sn and Cl in the xylene was found to correspond to SnCl₄.

Results for Xylene + SnCl ₄ .5H ₂ O.				Results for Xylene + SnC4.4H ₂ O.			
	Gms. Cl pe	r 100 Gms.	_		Gms. Cl pe	r 100 Gms.	
t°.	Aq. Layer, c.	Xylene Layer, c'.	ç .	t°.	Aq. Layer, c.	Xylene Layer, c'.	$\frac{c}{c}$.
66	40.35	0.08	504.4	66	41.9	0.92	45.3
80	39.95	0. 18	228.5	80	41.91	1.56	27
97.5	40.24	0.33	122. I	100	41.85	2.52	16.7
III	40.27	0.68	59.3	III	41.68	3.23	12.9
Per cer	nt Cl in Sn(CL.5H ₂ O =	40.38.	Per ce	ent Cl in Sr	Cl.4H2O	= 42.37.

Results for Xylene + SnCl_{4.3}H₂O.

	Gms. Cl pe		
t.	Aq. Layer, c.	Xylene Layer, c'.	c .
8o	43.2	9.93	4.4
94	42.54	9.32	4.6
100	42.64	10.56	4. I
III	42.31	10.03	4.2

Per cent Cl in SnCl_{4.3}H₂O = 45.12.

TIN HYDROXIDE (Stannous) Sn(OH)₂.

One liter of the saturated solution in water contains 0.0000135 gm. mols. Sn(OH)₂ at 25°. (Goldschmidt and Eckhardt, 1906.)

SOLUBILITY OF STANNOUS HYDROXIDE IN AQUEOUS SODIUM HYDROXIDE SOLUTIONS AT 25°.

(Goldschmidt and Eckhardt, 1906.)

The authors desired to ascertain whether the mono, NaHSnO₂, or the disodium salt, Na₂SnO₂, predominates in alkaline tin hydroxide solutions. Given amounts of carefully prepared tin chloride, made from tin and HCl, and sodium hydroxide solutions were mixed in vessels containing hydrogen. The mixtures were shaken at 25° and the clear supernatant solutions in contact with the precipitated Sn(OH)₂, analyzed.

	Gm. Mols. per Lite	er.	Gm. Mols. per Liter.		
Total Na.	NaHSnO ₂ .	NaOH.	Total Na.	NaHSnO2.	NaOH.
0.00451	0.0009845	0.003525	0.02250	0.00838	0.01412
0.00680	0.00218	0.00462	0.02788	0.01038	0.01755
0.01149	0.003495	0.007995	0.02940	0.00874	0.02066
0.02143	0.006935	0.014495	0.03012	0.00865	0.02147
0.02143	0.00660	0.01483	0.03036	0.01082	0.01954
0.02186	0.00628	0.015575	0.03044	0.000405	0.021035

SOLUBILITY IN AQUEOUS SODIUM HYDROXIDE SOLUTIONS. MOIST TIN HYDROXIDE USED. ORDINARY TEMPERATURE. (Rubenbauer, 1902.)

Gms. per 20 cc. Solution.		Mol. Dilution of the	Gms. pe Solu	Mol. Dilution of the	
Na.	Sn.	NaOH.	Na.	Sn.	NaOH.
0.2480	0.1904	ı .86	0.8326	0.5560	0.55
o.368o	0.2614	1.25	0.9661	0.7849	'o.48
0.6394	0.4304	0.72	2.1234	1.8934	0.23

TIN IODIDE (Stannous) SnI.

Solubility in Water and in Aqueous Hydriodic Acid. (Young, 1897.)

t°.	Gms. SnI ₂ per 100 Gms. Aqueous HI Solutions of:							
	%-H₃O.	5.83%.	9.60%.	15.2%.	20-44%.	24.8%.	30.4%.	36.82%.
20	0.98	0.20	0.23	0.60	1.81	4.20	10.86	25.31
30	1.16	0.23	0.23	0.64	1.81	4.06	10.28	23.46
40	1.40	0.33	0.28	0.71	1.90	4.12	10.06	23.15
50	1.69°	0.46	o . 38	0.82	2.12	4 - 34	10.35	23.76
60	2.07	0.66	0.55	I.II	2.51	4.78	11.03	24.64
70	2.48	0.91	0.80	I .37	2.92	5 - 43	11.97	25.72
80	2.95	1.23	1.13	1.83	3.70	6.38	13.30	27.23
-90	3.46	1.65	1.52	2.40	4.58	7 .82	15.52	29.84
100	4.03	2.23	2.04	3.63	5.82	9.60	•••	34.05

TIN IODIDE (Stannic) SnI₄.

SOLUBILITY IN ORGANIC SOLVENTS. (McDermott, 1911.)

Solvent.	t°.	Sp. Gr. Sat. Sol.	Gms. SnI ₄ per
Carbon Tetrachloride	22.4	1.59	5.2 5
"	50	1.63	12.50
Chloroform	28	1.50	8.21
Benzene	20.2	0.95	12.65

SOLUBILITY OF STANNIC IODIDE IN CARBON DISULFIDE. (Sneider, 1866; Arctowski, 1895-'96.)

Gms. SnI₄ per 100 Gms.
Solution

-114°.5. -94°. -89°. -84°. -58°. Ord. temp.

9.41 10.65 9.68 10.22 16.27 59.2(S)

100 gms. methylene iodide, CH₂I₂, dissolve 22.9 gms. SnI₄ at 10°. Sp. Gr. of solution = 3.481. (Retgen, 1893.)

TIN OXALATE (Stannous) Sn(COO)2.

100 gms. 95 per cent formic acid dissolve 0.16 gm. Sn(COO)2 at 19°. (Aschan, 1913.)

TIN TetraPHENYL (Stannic) Sn(C₆H₆)₄.

Freezing-point data for $Sn(C_6H_6)_4 + Si(C_6H_6)_4$ are given by Pascal (1912).

TIN SULFATE (Stannous) SnSO4.

100 gms. H₂O dissolve 18.8 gms. SnSO₄ at 19° and 18.1 gms. at 100°. (Marignac.)

TOLUENE C.H.CH.

SOLUBILITY IN SULFUR.

· Figures read from curve, synthetic method used, see Note, page 16. (Alexejew, 1886.)

	Gms. C ₆ H ₅ CH	per 100 Gms.	4.0	Gms. C ₆ H ₅ CH ₂ per 100 Gms		
t ° .	S Layer.	Toluene Layer.	ŧ°.	S Layer.	Toluene Layer.	
100	3	73	150	12.5	59	
110	4	71	160	16	53	
120	5	68	170	22	47	
130	7	66	175	25	43	
140	9·5	63	178 cri	t. temp.	34	

NitroTOLUENE o CaH4.CH2.NO2.

RECIPROCAL SOLUBILITY OF o NITROTOLUBNE AND WATER. (Campetti and Delgrosso, 1913.)

The original results were plotted and the following figures read from the curve.

Gms. o Nitrotoluene per 100 Gms.				Gms. o Nitrotolu	Gms. o Nitrotoluene per 100 Gms.		
t°.	H ₂ O Rich Layer.	Nitrotoluene Rich Layer.	t.	H ₂ O Rich Layer.	Nitrotoluene Rich Layer.		
150	I	98	245	13	81		
175	1.5	96	250	16	78		
200	3	93	255	20	72		
225	6.5	89	260	29	63		
240	10.5	84	263.5	crit. t. 4	3		

100 gms. 95 per cent formic acid dissolve 13.25 gms. p C₆H₄.CH₈.NO₂ at 20.8°. (Aschan, 1913.)

TrinitroTOLUENE 2,4,6 C₆H₂.CH₂(NO₂)₂.

100 gms. H₂O dissolve 0.021 gm. C₆H₂·CH₂(NO₂)₈ at 15° and 0.164 gm. at 100°. 100 gms. alcohol dissolve 1.6 gms. C₆H₂CH₂(NO₂)₈ at 22° and 10 gms. at 58°. (Capisarow, 1915.)

TOLUENE SULFONAMINES o, m and p.

SOLUBILITY OF EACH IN WATER AT 25°. (Holleman and Caland (1911.)

Compound.					Gms. Comp'd per Liter Sat. Sol.	
Amine	of	0	Toluene	Sulfonic	Acid	1.624
"	"	m	"	"	"	7.812
"	."	Þ	"	"	"	3.156

FREEZING-POINT DATA (Solubility, see footnote, p. 1), FOR MIXTURES OF SUB-STITUTED TOLURNES AND OTHER COMPOUNDS.

Mixture.	Authority.
o Bromotoluene + p Bromotoluene	(van der Laan, 1907.)
Bromotoluene + p Xylene	(Paterno and Ampola, 1897.)
" + Veratrol	4 4
" + Tribenzylamine	u u
p Nitrotoluene $+ \alpha$ Ortho Nitrotoluene	(Holleman, 1914.)
" +β " "	"
" + 2, 4 Dinitrotoluene	(Giua, 1914, 1915.)
" + 2, 6 "	(Giua, 1915.)
" + 2, 4, 6 "	44
" + m Nitrotoluene	(Holleman and van den Arend, 1909.)
" + Urethan	(Mascarelli, 1908, 1909.)
2, 4 Dinitrotoluene + 2, 6 Dinitrotoluene	(Giua, 1914, 1915.)
" + 2, 4, 6 Trinitrotoluene	(Giua, 1915.)
2,6 " + " "	(Giua, 1914, 1915.)
a Trinitrotoluene + p Amino Acetophenone	(Giua, 1916.)
" $+\gamma$ Trinitrotoluene	(Giua, 1915.)
o Toluene Sulfochloride + p Toluene Sulfochloride	(Holleman and Caland, 1911.)
Binary Mixtures of Isomeric Tribromotoluenes	(Jaeger, 1904.)
" " " Chloronitrotoluenes	(Wibaut, 1913; Holleman and van den Arend, 1909.)

TOLUIC ACIDS (Monomethyl Benzoic Acids) CH₂.C₆H₄COOH.

SOLUBILITY IN WATER AT 25°.

(Paul, 1894.)

Acid.	CH ₄ .C ₄ H ₄ .COOH per Liter Solution.		
	Grams.	Millimols.	
Meta Toluic Acid	0.9801	7.207	
Ortho Toluic Acid	1.1816	8.683	
Para Toluic Acid	0.3454	2.540	

One liter sat. solution in water contains 0.42 gram p toluic acid at 25°. One liter sat. solution in 1 n aq. sodium p toluate contains 0.735 gm. p toluic acid at 25°.

(Sidgwick, 1910)

SOLUBILITY OF TOLUIC ACIDS (EACH SEPARATELY) IN WATER AT VARIOUS TEMPERATURES.

(Sidgwick, Spurrell and Davies, 1915.)

The determinations were made by the synthetic method, see p. 16; melting-point of o toluic acid = 102.4°, of m acid = 110.5° and of p acid = 176.8°. The triple point (solid phase present) for the o acid, is at 93.5° and the concentration of acid in the two layers is 2.5 and 91.2 gms. respectively per 100 gms. sat. solution. The tr. pt. for the m acid is at 91.8° and concentrations are 1.6 and 90.5; the tr.-pt. for the p acid is at 142° and concentrations, 5 and 74.

	Gms. pe	т 100 Gms.	Sat. Sol.		Gms. per 100 Gms. Sat. Sol.		
ť.	Toluic Acid.	# Toluic Acid.	p Toluic Acid.	t.	Toluic Acid.	m Toluic Acid.	
80	2.03*	1.16*		140	9.25	5 · 77	4.30*
90	2.42*	1.54		150	13.7	8.40	9.33
100	2.97	1.98	1.16*	159.1 crit t.			00
110	3.71	2.52	1.36*	160	30	19.4	
120	5.10	3.24	1.75*	161.1 crit. t.	∞		
130	6.93	4.30	2.50*	162.2 crit. t.	• • •	. ∞	
* Indicates that a solid phase is present							

Additional data for the solubility of the above compounds in water, determined by the synthetic method, are given by Flaschner and Rankin (1910).

RATIO OF THE SOLUBILITIES OF TOLUIC ACIDS (SEPARATELY DETERMINED) IN WATER AND IN OLIVE QIL AT 25°. (Boeseken and Waterman, 1911, 1912.)

The solubilities of each acid in water and in olive oil was separately determined and the ratio considered to correspond to the distribution coefficients in each case. The concentrations of the dissolved acids are not given.

Acid.			Ratio of Solubility in Olive Oil Solubility in Water		
	Toluic	Acid	40.5		
m Þ	"	"	21 29.5		

100 gms. 95% formic acid dissolve 2.99 gms. 0 toluic acid at 20.8°. (Aschan, 1913.) Freezing-point data for mixtures of o, m, p and α toluic acids (each separately) and sulfuric acid are given by Kendall and Carpenter (1914). Results for mixtures of o, m and α acids and picric acid are given by Kendall (1916).

TOLUIDINE C.H.CH.NH.

SOLUBILITY IN WATER. (Vaubel, 1895; Lowenherz, 1898.)

s* .	Gms. C ₆ H ₄ CH ₂ NH ₂ per 1000 Gms. H ₂ O.	Solid Phase.	t °.	Gms. C ₆ H ₄ CH ₅ NH ₂ per 1000 Gms. H ₂ O ₄	Solid Phase.
20	16.26	Liquid ortho T.	20.8	7 · 39	Para T.
20	0.15	Ortho T.	26.7	9.50	•
20	6.54	Para T.	31.7	11.42	

One liter sat. solution in water contains 15 gms. o toluidine at 25°.

One liter sat. solution in 1 n aq. o toluidine hydrochloride, contains 30 gms.

o toluidine at 25°. (Sidgwick, 1910.)

The following results for p toluidine, differing considerably from the above, are given by Walker (1890).

SOLUBILITY OF PARA TOLUIDINE IN ETHYL ALCOHOL. (Interpolated from original results of Speyers, 1902.)

** .	Wt. of 1 cc. Solution.	Mols. per 100 Mols. C ₂ H ₅ OH.	Gms. per 100 Gms. C ₂ H ₅ OH.	t°.	Wt. of 1 cc. Solution.	Mols. per 100 Mols. C ₂ H ₅ OH.	Gms. per 100 Gms. C ₂ H ₅ OH.
0	0.8885	20.72	48.I	20	0.9265	47 .0	0.011
5	0.8982	26.0	60.0	25	0.9360	56.o	132.0
10	0.9080	32.0	74.0	30	0.9460	66.0	156.0
15	0.0180	38.6	90 · c				

100 gms. pyridine dissolve 126 gms. p toluidine at 20°-25°. 100 gms. aq. 50% pyridine dissolve 96.1 gms. p toluidine at 20°-25°.

DISTRIBUTION OF PARA TOLUIDINE BETWEEN WATER AND CARBON TRITRACHLORIDE. (Vaubel, 1903.)

Gms. Toluidine Used.	Volumes of Solvents.	Gms. C ₆ H ₄ (CH ₂)NH ₂ p in:		
Used.	volumes of Solvents.	H ₂ O Layer.	CCl, Layer.	
I	200 cc. H ₂ O+100 cc. CCl ₄	0.1406	0.8594	
I	200 oc. H ₂ O+200 cc. CCl ₄	0.0666	0.9334	

Distribution of o, m and p Toluidine between Water and Benzene at 25°.

(Farmer and Warth, 1904.)

Ba	se.	Dist. Coef. Conc. in C ₆ H ₆		
o Toluidine		13.4		
177	"	19.1		
Þ	"	24.I		

Aceto TOLUIDINE p CH2C6H4NH.C2H2O.

SOLUBILITY IN MIXTURES OF ALCOHOL AND WATER AT 25°. (Holleman and Antusch, 1894.)

Vol. % Alcohol.	Gms. per 100 Gms. Solvent.	Sp. Gr. of Solutions.	Vol. % Alcohol.	Gms. per 100 Gms. Solvent.	Sp. Gr. of Solutions.
100	10.18	0.8074	50	1.92	0.9306
95	10.79	0.8276	45	1.41	0.9380
90	10.62	0.8440	40	0.96	0.9460
85	9.62	0.8576	·35	0.66	0.9544
8o	8.43	0.8685	25	0.31	0.9668
75	7.04	0.8803	20	0.23	0.9725
70	5.81	0.8904	15	0.16	0.9780
65	4.39	0.9021	5	0.13	0.9903
60	3.59	0.9115	Ö	0.12	0.9979
55	2.69	0.9207	•		

See remarks under α acetnaphthalide, p. 13.

TRIPHENYLAMINE, TRIPHENYLPHOSPHINE, etc.

F.-pt. data are given by Pascal (1912) for the following mixtures:

Triphenylamine + Triphenylarsine
Triphenylamine + Triphenylphosphine
Triphenylarsine + Triphenylphosphine
Triphenylarsine + Triphenylphosphine
Triphenylphosphine + Triphenylphosphine + Triphenylphosphine

α and β TRITHIOACETALDEHYDE, (CH₂CHS)₂.

α and β TRITHIOBENZALDEHYDE, (C₆H₅CHS)₈.

SOLUBILITY OF EACH (DETERMINED SEPARATELY) IN SEVERAL SOLVENTS
AT 25°.
(Suyver, 1905.)

Solvent.	Gms. per 100 Gms. Solvent.					
Solvent.	α (CH ₂ CHS) ₃ .	β (CH ₂ CHS) ₂ .	a (C,H,CHS),	β (C.H.CHS).		
Ether	15.58	13.67	1.09	0.37		
Ethyl Alcohol	3.86	3.97	0.20	0.04		
Methyl Alcohol	4.04	3.89	0.17	0.04		
Acetone	20.96	18.31	2.45	1.12		
Chloroform	57 · 59	51.22	11.11	0.20		
Carbon Disulfide	25.50	20.75	5.81	0.22		
Benzene	36.40	26.98	6.08	0.014		
Ethyl acetate	17.52	15.48	2.05	0.93		

Data for the solidification points of mixtures of α and β trithioacetaldehyde are also given. Similar data for mixtures of α and β trithiobenzaldehyde could not be determined on account of decomposition with production of resins.

TROPIC ACID (α Phenylhydracrylic Acid) i and l, C₆H₆.CH(CH₂OH)COOH.

100 gms. sat. solution in H₂O contain 1.975 gms. of the i acid at 20°. (Schlossberg.

100 gms. sat. solution in H₂O contain 2.408 gms. of the l acid at 20°. (1900.)

TURPENTINE OIL

SOLUBILITY IN ETHYL ALCOHOL. (Vezes and Mouline, 1904, 1905-06.)

Spirit of turpentine and absolute alcohol are miscible in all proportions and the mixture may be cooled to a very low temperature without ceasing to be homogeneous. In the case of alcohol containing a small amount of water, the mixture, which is uniform at ordinary temperature, separates into two layers when cooled. The following data were obtained for mixtures of 98 vol. % alcohol (= 0.968 gm. C_2H_0OH per 1 gm. aq. alcohol) and spirits of turpentine and for mixtures of 95 vol. % alcohol (= 0.924 gm. C_2H_0OH per 1 gm. aq. alcohol) and spirits of turpentine.

Results for 98 Vol. % Alcohol.

Results for 95 Vol. % Alcohol.

		A				A	
t° of Separa- tion.	Gms. 98 Vol. % Alcohol per 100 Gms. Mixture.	t° of Separa- tion.	Gms. 98 Vol. % Alcohol per 100 Gms. Mixture.	t° of Separa- tion.	Gms. 95 Vol. % Alcohol per 100 Gms. Mixture.	t° of Separa- tion.	Gms. 95 Vol. % Alcohol per 100 Gms. Mixture.
-35.6	2.7	-20.9	32.9	+20.7	2.4	29.6	48.3
-23	4.8	-26.1	42.6	42.2	3 · 4	23.9	52.8
-20.9	9.5	-30	48.2	53	7.2	16.3	61. 4
— 18.1	13.2	-45.3	58	53.1	10.2	-15.5	76.6
-17.8	16	-79.2	71.9	44	20.3	-24	81.I
-18.8	24.4			37.2	30.6	-63	87.1

Data in regard to the sample of spirits of turpentine which was used, are not given.

URANYL Potassium BUTYRATE UO2(C4H7O2)2.KC4H7O2.

The double salt is decomposed by water at ordinary temperatures and the solution gets richer in uranyl butyrate. The solubility at 29.4° in water containing $KC_4H_7O_2$ is 2.10 gms. $UO_2(C_4H_7O_2) + 0.38$ gm. $KC_4H_7O_2$ per 100 gms. solution. The atomic relation being 1:0.64. (Rimbach, 1904.)

URANYL Ammonium CARBONATE UO2CO2.2(NH4)2CO3.

SOLUBILITY IN WATER. (Giolitti and Vecchiarelli, 1905.)

A large excess of the double carbonate was agitated with water at constant temperature and the clear saturated solutions analyzed.

t°.	Gms. p	er 100 Gms.	Sat. Sol.	Mol. Ratio.		
υ.	Ū.	CO ₂ .	NH ₃ .	U :	CO ₂ :	NH ₃ .
18.6	2.71	1.54	0.795	I	3.08	4.10
36.5	3.09	2.29	1.188	I	4.01	5 · 35
48.3	3.03	2.71	1.35	I	4.95	6.35
62		3.17	1.62			
87.3	3.95	3.96	2.027	I	5.42	7.15

Theoretical molecular ratio for UO₂CO_{3.2}(NH₄)₂CO₃ = 1:3:4.

Thus at the lower temperature, the composition of the dissolved salt is very near the ratio corresponding to the formula.

The author calculates that 6.04 gms. of UO₂CO_{3.2}(NH₄)₂CO₃ are contained in 100 gms. of the sat. solution at 18.6° (a recalculation from the U value, 2.71, indicates that this figure should be 5.26 gms.).

URANYL CHLORIDE UO2C12.3H2O.

100 gms. H₂O dissolve 320 gms. UO₂Cl₂ at 18°.

(Mylius and Dietz, 1901.)

SOLUBILITY OF URANYL AMMONIUM CHLORIDE, U. TETRA METHYL AMMONIUM CHLORIDE, U. CAESIUM CHLORIDE, U. RUBIDIUM CHLORIDE, AND U. POTASSIUM CHLORIDE IN WATER.

(Rimbach, 1904.)

Formula of Double Salt.	t°.	Gms. p	er 100 Gms	Sat. Sol.	Atomic	Relation in Sol.	Solid Phase.
UO2Cl2.2NH4Cl.2H4O	15	40.67UO	+3.51NH	+19.15Cl		.59NH4: 3.59Cl	TOT MOUNTING
UO2Cl2.2N(CH2)4Cl	29.8	19.85 "	+10.44Ch	=41.24°	ı UO ₁ :		Double salt
UO2Cl2.2N(C2H2)4Cl	80.7 27.1	15.02 "	+10.52Cla + 7.81Cla + 7.78Cla	-41.91 -37.15	1UO: 1UO: 1UO:	3.97Cl	44 44
UO2Cla.2CsCl	80.7 29.75		+22.5 Cs	= 37.23† = 56.04‡	1 UO ₂ :	2.07Cs	4
UO,Cl2RbCl.2H4O	24.8 80.3	27.18 " 30.66 "	+16.6 Rb +19.1Rb	+13.8Cl +15.8Cl		1.96Rb: 3.90Cl 1.98Rb: 3.95Cl	
UO2Cla.2KCl.2HaO	0.8	38.57 "	+13.59Cl	+ 3.86K	rUO ₂ :	2.69Cl : 0.69K	1
46	14.9 17.5	33.71 " 37.36 "	+13.51Cl +14.50Cl	+ K + 5.27 K	I UO3:	3.06Cl : 1.06K 2.96Cl : 0.96K	The double salt is decomposed
"	25	35.OI "	+15.26Cl	+ K	z UOz:	3.33Cl : 1.33K	{by water at
44 64	41.5	35.27 "	+15.92Cl +16.56Cl	+ 7.39K + K	ı UO:	3-44Cl : 1-44K 3.71Cl : 1.71K	temperatures below 60°.
44	50 60	34.18 " 34.19 "	+17.25Cl	+ 9.14K	1 UO2:	3.85Cl : r.85K	l l
44 46	71.5 78.5	33.55 " 35.26 "	+17-44Cl +18-24Cl	+ 9.28K + 9.95K	1 UO2:	3.96Cl : 1.96 K 3.95Cl : 1.95 K	Double salt
UO ₂ Cl ₃ .2N(CH ₂) ₄ Cl. † UO ₂ Cl ₃ .N(C ₂ H ₂) ₄ Cl. ‡ UO ₂ Cl ₃ .2CsCl. § =57.9 gms. UO ₂ Cl ₄ .2RbCl ₅ . =65.8 gms. UO ₂ Cl ₄ .2RbCl ₅ .							

URANYL Sodium CHROMATE 2(UO₂)CrO₄.Na₂CrO₄.10H₂O.

100 gms. sat. aqueous solution contain 52.52 gms. 2(UO₂)CrO₄Na₂CrO₄ at 20°.
(Rimbach, 1904.)

URANYL IODATE UO2(IO2)2.

SOLUBILITY OF THE DIFFERENT CRYSTALLINE FORMS IN WATER AT 18°.

(Artmann, 1912-13.)

UO2(IO3)2.H2O	Appearance of Crystals. Type I warty, later prismatic needles	Gms. UO ₂ (IO ₂); per 100 Gms. H ₂ O. O . 1049
/ >	Type II pyramids, sphenoids	0.1214
$UO_2(IO_3)_2.2H_2O$		0.2044

URANYL NITRATE UO2(NO2)2.6H2O.

SOLUBILITY IN WATER. (Wasilieff, 1910.)

ť.	Gms. UO ₁ (NO ₂) per roo Gms. Sat. Sol.	Solid Phas	e. t *.	Gms. UO ₂ (NO ₂) ₂ per 100 Gms. Sat. Sol.	Solid Phase.
– 1.6	10.83	Ice	∸ 2.2	48.77	UO2(NO2)2.6H2O
- 2. I	12.24	et	0	49.46	4
- 2.9	17.19	4	5.5	50.55	u
- 4.4	23.52	u	12.3	52.88	44
- 6	26.20	"	21.1	55.98	."
- 7.9	32.53	"	25.6	57.17	•
-11.2	37.09	4	36.7	61.27	•
– 18. 1	43.12	" +UO ₂ (NO ₂) ₂ .6E	GO 45.2	65.12	•
-12.1	45.53	UO2(NO2)2.6H2	0 51.8	67.76	•

100 gms. abs. acetone dissolve 1.5 gms. UO₁(NO₂)_{2.6}H₂O at 12°. (de Cosinck, 1900.) 100 gms. 85% alcohol dissolve 3.3 gms. UO₂(NO₂)_{2.6}H₂O at 12°. "Data for the densities of uranyl nitrate solutions in water and other solvents are given by de Coninck (1900).

SOLUBILITY OF URANYL NITRATE IN ETHER. (Lebeau, 1911.)

When a large excess of uranyl nitrate is shaken with ether at 7°, two liquid layers are formed. The ethereal layer contains 59 gms. UO2(NO2)2 per 100 gms. of solution and the aqueous layer contains 62.5 gms. per 100 gms. of solution. An elevation of temperature was noted when ether and UO2(NO2)2.6H2O were mixed at room temperature, therefore, indicating that solution is accompanied by combination and elimination of the water of the salt.

URANYL DOUBLE NITRATES.

SOLUBILITY OF URANYL AMMONIUM NITRATE + URANYL NITRATE; U. CAESIUM NITRATE + CAESIUM NITRATE; U. POTASSIUM NITRATE + POTASSIUM NITRATE AND U. RUBIDIUM NITRATE + RUBIDIUM NITRATE IN WATER.

(Rimbach, 1904.)

Formula of Salt.	ť°.	Gms. per 100 Gms. Se	t. Solution.		ic Relation
	• .	TO.	Total Salt.	in S	Solution.
UO2(NO3)2.NH4NO3	0.5	29.71+2.92 NH4	= I		NH4: 3.47 NO2
"	24.9	36.46+3.54 "	=68.95	":1.46	":3.46 "
"	59	44.37 + 2.90 "	=	":0.08	
"	80.7	44.95 + 2.98 "	= 78.95	":I	":3 "
UO2(NO3)2.CsNO3	16	31.39 + 6.59 Cs	= 55.4	":0.44	Cs
UO2(NO3)2.KNO3	0.5	31.98 + 1.72 K	=	":2.37	NO3: 0.37 K
**	13	33.40+2.72 "	=	":2.57	":0.57"
"	25	37.07 + 4.01 " *	= 64.82	":1.60	":0.76"
46	45	42.18+5.16 "	=	":2.84	
46	59	41.65 + 6.03 "	=	":3	":I "
66	8ó.6	43.71+6.38 "	= 80. r	":3.01	":I.OI"
UO2.(NO3)2.RbNO3	25	35.41 + 4.65 Rb†	= 59.60	":ĭ.40	
	8ō	34.66 + 11.01 "	= 69.49	":3	":1.01 "
	• +	23.5NO ₂ .	+ 19.74NO		

URANYL OXALATE UO2.C2O4.3H2O.

100 gms. H₂O dissolve 0.7401 gm. UO₂C₂O_{4.3}H₂O at 25°.

(Dittrich, 1899.)

Equilibrium in the System Uranyl Oxalate, Ammonium Oxalate and Water.
(Colani, 1917.)

Results at 15°.

Results at 50°.

Sat. Se	too Gms.	Solid Phase,	Sat. S	r 100 Gms. Solution.	Solid Phase.
ÚO₁C₃O₄.	(NH ₂) ₂ C ₂ O	4.	ŬO₃C₃O₄.	(NH ₄) ₂ C ₂ O ₄	•
0.47	0	UO ₂ C ₂ O ₄₋₃ H ₂ O	I	0	UO ₂ .C ₂ O _{4.3} H ₂ O
7.19	2.14	" +(NH ₄) ₂ (UO ₂) ₂ (C ₂ O ₄) ₃₋₃ H ₂ O	5.11	1.36	" +(NH ₂) ₂ (UO ₂) ₂ (C ₂ O ₂) ₃
8.78	2.99	$(NH_4)_2(UO_2)(C_2O_4)_2.2H_2O+$ "	19.89	8.52	(NH ₂) ₂ (UO ₂)(C ₂ O ₂) ₂ + "
9.66	6.43	" +(NH ₄) ₂ C ₂ O ₄ .H ₂ O	23.82	15.90	" +(NH ₄) ₂ C ₂ O ₄ .H ₂ O
0	3.69	(NH ₄) ₂ C ₄ O ₄ .H ₄ O	0	9.36	(NH ₄) ₂ C ₂ O ₄ .H ₂ O

Two determinations at 75° are also given.

EQUILIBRIUM IN THE SYSTEM URANYL OXALATE, POTASSIUM OXALATE AND WATER. (Colani, 1916a.)

Results at 15°. Results at 50°.

Gms. per 100 Gms. Sat. Solution.		Solid Phase.	Gms. per Sat. Sc	100 Gms. lution.	Solid Phase.	
UO,C,O,.	K ₂ C ₂ O ₄ .		UO ₂ P ₂ O ₄ .	K ₂ C ₂ O ₄ .		
0.47	0	UO ₂ C ₂ O ₄₋₃ H ₂ O	I	0	UO ₂ C ₂ O ₄₋₃ H ₂ O	
I.34	0.42	" $+K_2(UO_2)_2(C_2O_4)_3.4H_2O$	3.45	I.II	" +K ₁ (UO ₂) ₂ (C ₂ O ₄) ₃₋₄ H ₂ O	
3.89	1.83	$K_1(UO_2)(C_2O_4)_2.3\frac{1}{2}H_2O+$ "	9.82	4.83	$K_2(UO_2)(C_2O_4)_2+$ "	
3.76	1.85	" +K4(UO2)2(C2O4)8.10H2O	9.59	5.61	" $+K_4(UO_2)_2(C_2O_4)_4.10H_2O$	
0.10	24.30	K ₂ C ₂ O ₄ .H ₂ O+ "	I.22	32.65	K ₂ C ₂ O ₄ .H ₂ O+ "	
0	24.09	K ₂ C ₂ O ₄ .H ₂ O	O .	32.75	K ₂ C ₂ O ₄ .H ₂ O	

SOLUBILITY OF URANYL OXALATE IN AQUEOUS SODIUM OXALATE AT 25°. (Dittrich, 1899.)

Gms. Na ₂ C ₂ O ₄	Gms. UO1.C1O4.3H4O
per 100 cc. Solution.	Gms. UO ₂ .C ₂ O _{4.3} H ₂ O per 100 cc. Sat. Solution.
o.67 06	2.0125
0.3353	0.9867
0.2235	0.6059

URANYL Ammonium PROPIONATE 2UO2(C2H4O2)2.NH4C2H5O2.2H2O.

URANYL Potassium PROPIONATE UO2(C3H5O2)2.KC3H5O2.

100 gms. aq. solution contain 16.48 gms. 2UO₂(C₂H₆O₂)₂.NH₄C₂H₆O₂ at 29.8°. 100 gms. aq. solution contain 2.362 gms. UO₂(C₂H₆O₂)₂ + 0.82 gm. KC₂H₆O₂ at 29.4°, atomic relation, 1: 1.29. (Rimbach, 1904.)

URANYL SULFATE UO2SO4.3H2O.

SOLUBILITY IN SEVERAL SOLVENTS. (de Coninck, 1901, 1903.)

Solvent	t°.	Gms. UO ₂ SO ₄ 3H ₂ O per 100 Gms. Solvent.	Solvent.	ť.	Gms. UO ₂ SO ₄ ,- 3H ₂ O per 100 Gms. Solvent.
Water	13.2	18.9	Conc. HBr $(d=1.21)$	12	16.8
Water	15.5	20.5	Conc. HNO ₃	12	9. I
16.2% Alcohol	10	12.3	Conc. H_2SO_4 ($d=1.138$)	13	24.3
85% Alcohol	16	2.6	1 Vol. HCl+1 Vol. HNO ₃	16	18
Conc. HCl	13	30	Selenic Acid $(d=1.4)$	15	27

URANYL Potassium SULFATE UO2SO4.K2SO4.2H2O.

100 gms. sat. aq. solution contain 10.41 gms. UO₂SO₄.K₂SO₄ at 25° and 23.13 gms. at 70.5°. (Rimbach, 1904.)

SOLUBILITY OF UO2SO4.2K2SO4.2H2O + UO2SO4.K2SO.2H2O IN WATER.

t°.	Gms. p	er 100 Gms.	Solution.	Atomic Rela	tion in Sol.	Mol. % in Solid Phase.	
• .	UO2.	K.	SO ₄ .	UO2. K.	SO ₄ .	Mono Salt.	Di Salt.
14	0.85	4.19	5.71	1:35.75	: 18.88	29	7 I
- 50	6.70	8.15	12.37	1: 5.20		76	24
80	14.29	8.54	15.53	1: 4.13	: 3.06	12	88

URANIUM SULFATE (ous) U(SO₄)₂.

SOLUBILITY IN WATER. (Giolitti and Bucci, 1905.)

t°.	Gms. U(SO ₄) ₂ per 100 Gms. Sat. Sol.	Solid Phase.	t°.	Gms. U(SO ₄) ₂ per 100 Gms. Sat. Sol.	Solid Phase.
18	10.17	U(SO ₄) ₂ .8H ₂ O	93	63.2	U(SO ₂) ₂ .8H ₂ O
25.6	13.32	"	24	9.8	U(SO ₄) ₂₋₄ H ₂ O
37	19.98	"	37	8.3	44
48.2	28.72	44	48.2	8. r (7.8)	u
62	36.8	"	63	7.3	u

The determinations were made with difficulty on account of the considerable tendency towards formation of basic sulfate and simultaneous clouding of the solution.

APPROXIMATE SOLUBILITY OF URANIUM SULFATE, IN AQUEOUS SOLUTIONS. (de Coninck, 1903.)

Solvent.	ť.	Gms. U(SO ₄) ₂ .4H ₂ O per 100 Gms. Solvent.	Solvent.	t*.	Gms. U(SO ₂) ₂ .4H ₂ O per 100 Gms. Solvent.
Water	11	23.2	Dilute Selenic Acid (1:4)	11.4	21.7
Dilute HCl (1:4)	9	17.2	Dilute H ₂ SO ₄ (1:4)	10	15.6
Dilute HNO ₃ (1:4)	10.5	18.2	Dilute Alcohol (1:4)	11.3	12.3

URBA CO(NH₂)₂.

In Water.

SOLUBILITY IN WATER AND IN ALCOHOLS. (Campetti, 1902; Speyers, 1902.)

NOTE. — Speyer's original results are in terms of Mols. CO(NH2)2 per 100 mols. H₂O at irregular temperatures.

-			•				
rc. tion.)(NH ₂) ₂ per ms. H ₂ O.	Wt. of rec. Solution.	Gms. CO(NH ₂) ₂ per 100 Gms. CH ₂ OH.		Gms. CO(NH ₂) ₉ per 100 Gms .C ₂ H ₅ OH.	
121	55.9		0.861	13.8	0.8213		
134	66.0	85.0 (C)	o .863	16.0	0.814	3 · 5	
r.46	70.0	108.2 (C)	o.860	20.0	0.800	5.0	

In Methyl Alcohol. In Ethyl Alcohol.

Wt. of t°. Soluti 0 1.1 1.1 10 1.146 20 79.0 0.876 24.0 1.156 30 93.0 0.890 0.804 8.5 30.0 1.165 106.0 40 0.803 10.5 1.173 120.0 0.908 37.0 50 13.0 60 1.180 132.0 0.028 47.0 . . . 1.187 17.5 145.0 70

100 gms. abs. methyl alcohol dissolve 21.8 gms. CO(NH₂)₂ at 19.5°. 100 gms. abs. ethyl alcohol dissolve 5.06 gms. CO(NH₂)₂ at 19.5°. (de Bruyn, 1903.)

SOLUBILITY OF URBA IN ALCOHOLS. (Timofeiew, 1894.)

Alcohol.	ť.	Gms. CO(NH ₂) ₂ per 100 Gms. Solvent.	Alcohol.	t.	Gms. CO(NH ₂) ₂ per 100 Gms. Solvent.
Methyl Alcohol	— 12	11	Isopropyl Alcohol	19.4	5.76
"	0	14.2	"	20	6. 17
"	19	20.9	"•	81	23.46
66	40	36.4	Isobutyl Alcohol	0	1.01
"	62	66.6	"	19	1.65
46	71	107.4	"	41	3.12
Ethyl Alcohol	- 9	2.60	"	60	4.40
* "	ó	3.26	u	80	6.34
"	18	5	"	98	10
"	41	9.45	Isoamyl Alcohol	20	1.18
"	Ġo.	16.3	""	60	3.41
"	81	30.8	. "	80	4.88
Propyl Alcohol	0	1.65	"	83	5.24
• "	20	2.5Ğ	"	9 8	Ğ. 15
"	40	5.12	Capryl Alcohol	19.4	o. 56
"	<u>6</u> 0	7.72	- 1 " "	9 8 '	2
"	80	12.28	Ally Alcohol	19.4	9.37
"	98	18.06	•	7.4	2.01

SOLUBILITY OF URBA IN ETHYL ACETATE CONTAINING SMALL AMOUNTS OF WATER AT 25°. (Lewis and Burrows, 1912.)

(—————————————————————————————————————								
Gms. H ₂ O per 100 Gms. Solvent. (Ethyl Acetate+H ₂ O).	Gms. Urea per 100 Gms. Sat. Sol.	Gms. H _f O per 100 Gms. Solvent. (Ethyl Acetate+H _f O).	Gms. Urea per 100 Gms. Sat. Sol.					
0	0.080	1.677	0.308					
0.652	0. 148	2.006	0.328*					
1.112	0.198	2.138	0.342					
1.638	0. 296	3 - 234	0.343†					

^{*} A second liquid phase was suspected here.

[†] A second liquid phase could be distinguished.

SOLUBILITY OF URBA IN ETHYL ETHER. (Gortner, 1914.)

When 0.3255 gm. urea was extracted in a Soxhlet apparatus with anhydrous ether for 48 hours, the extract was found to contain 0.072 gm. urea. An approximate estimate, based on the volume of liquid and the number of siphonings per hour indicates a solubility of 0.0004 gm. urea per 100 cc. of ether.

100 gms. glycerol dissolve about 50 gms. urea at 15°.

100 gms. pyridine dissolve 0.96 gm. urea at 20-25°.

(Dehn, 1917.)

100 gms. aq. 50% pyridine dissolve 21.53 gms. urea at 20-25°.

Diphenyl UREA.

100 gms. H₂O dissolve 0.015 gm. diphenyl urea (sym or uns.?) at 20-25°.

- " pyridine dissolve 6.85 gms. diphenyl urea (sym or uns.?) at 20-25°.
- " aq. 50% pyridine dissolve 5.3 gms. diphenyl urea (sym or uns.?) at 20-25°. (Dehn, 1917.)

ThioUREA NH2.CS.NH2.

100 gms. H₂O dissolve 9.1 gms. thiourea at 20-25°.

- " pyridine dissolve 12.5 gms. thiourea at 20-25°.
- " aq. 50% pyridine dissolve 41.2 gms. thiourea at 20-25°. (Dehn, 1917.)

Allyl ThioUREA (Thiosinamine) NH2.CS.NH.C2H4.

Potassium Nitrate.

100 cc. H₂O dissolve about 5.9 gms. NH₂.CS.NH.C₂H₄ at 15-20°.

100 cc. 90% alcohol dissolve about 50 gms. NH₂.CS.NH.C₂H₅ at 15-20°.
(Squire and Caines, 1905.)

Phenyl ThioUREA (Phenyl thiocarbamide) CS.NH2.NHC6H8.

SOLUBILITY IN WATER.

(Rothmund, 1900; Biltz, 1903; Hollman and Antusch, 1894; Bogdan, 1902-03.)

One liter aq. solution contains 2.12 gms. CS(NH₂).NHC₆H₆ at 20° (B.), (R.) and 2.4 gms. at 25°. (H. and A.). Bogdan gives 2.547 gms. at 25°.

SOLUBILITY OF PHENYL THIOUREA AT 25° IN AQUEOUS SOLUTIONS OF.

Sodium Nitrate.

	(Bogdan, 1902-03	.)	(Bogdan, 1902-03.	.)	
Gms. Mols. KNO2 per	Gms. 1000 Gm	per s. H ₂ O.	Gms. Mols. NaNO ₂ per	Gms. per 1000 Gms. H ₂ O.		
H ₂ O.	KNO ₃ .	CS(NH ₂) .NHC ₆ H ₄ .	H ₂ O.	NaNO ₃ .	CS(NH ₂) NHC ₂ H ₂ .	
1.045	105.7	2.38	I .024	87 . 14	2.26	
0.5123	51.84	2.48	0.5065	43.10	2.46	
0.2026	20.50	2.54	0.2031	17 . 28	2.51	
0.1007	10.19	2.56	0.0986	8.39	2.53	
0.0503	5.09	2.55	0.0540	4.59	2.54	
0.0333	3.36	2.55	0.0335	2.84	2.54	

SOLUBILITY OF PHENYL THIOUREA IN AQUEOUS SALT SOLUTIONS AT 20°. (Biltz, 1903; Rothmund, 1900.)

Millimols and the Equivalent Gms. CS(NH₂)NHC₂H₃ Dissolved per Liter of Agueous Salt Solution of Concentration:

Salt Solution.			Aqueous Sa	it South	on or Concen	tration:		
omi ooiddon.	0.125 No Millimols.	rmal Gms.	0.25 No Millimols.	rmal Gms.	o.5 Nor Millimols.	mal. Gms.	ı Nor Millimols.	mal Gms.
AICl.	12.95	I .97	12.82	1.96	12.03	1.83	10.69	1.61
NH NO.	14.17	2.15	14.4	2.21	14.53	2.22	14.91	2.27
1(NH ₄)2SO ₄	13.51	2.05	12.84	1.96	11.78	1.79	9.98	1.52
∄BaCl₂	13.12	1.99	12.92	1.97	12.22	ı .86	10.44	1.59
$\frac{1}{2}$ Ba(NO ₃) ₂	13.98	2.13	13.98	2.13	13.90	2.12	• • •	• • •
CsNO ₃	14.53	2.21	14.90	2.27	15.23	2.33	• • •	
Lino,	13.96	2.13	13.96	2.13	13.93	2.12	13.73	2.10
 MgSO₄	13.40	2.04	12.78	1.95	11.54	1.75	9.43	1.43
KC,H,O,	13.40	2.04	12.95	1.97	12.14	1.85	10.74	1.62
KBr	13.50	2.05	13.35	2.04	12.80	1.95	11.76	1.79
KClO ₃	13.86	2.II	13.60	2.06	13.12	1.99	• • •	• • •
KCl	13.40	2.04	12.73	1.94	12.19	1.85	10.54	1.60
Kl	14.12	2.15	14.48	2.2I	14.31	2.18	14.60	2.23
KNO ₃	13.89	2.12	13.85	2.11	13.52	2.05	12.82	1.96
KNO,	14.52	2.21	14.65	2.23	13.80	2.11	12.51	1.92
₹K,SÕ,	13.25	2.03	12.49	1.91	11.11	1.69	8.73	1.33
RbNO ₈	14.22	2.16	14.44	2.19	14.39	2.18	14.22	2.17
Na ₂ CO ₃	13.29	2.04	12.52	1.91	11.05	r .68	8 . 58	1.32
NaClO _s	13.75	2.09	13.65	2.08	13.07	1.98	12.21	1.86
NaClO ₄	14.15	2.15	14.05	2.14	13.58	2.06	12.56	1.92
NaCl	13.28	2.02	12.83	1.95	11.90	1.81	10.02	1.52
NaI	13.98	2.13	14.07	2.14	14.29	2.18	13.96	2.13
NaNO ₃	13.94	2.I2	13.77	2.10	13.32	2.04	12.57	1.92
NaNO ₂	14.34	2.18	13.82	2.11	13.06	1.98	11.52	1.75
₃ Na₂SÕ₄	13.19	2.00	12.35	1.87	10.85	1.63	8.30	1.27

SOLUBILITY OF PHENYL THIOUREA IN ETHYL ALCOHOL SOLUTIONS OF SEVERAL SALTS AT 28°.

(Thorin, 1915.)

Salt.	Normality of Salt in C ₂ H ₆ OH.	Mols. NH ₂ .CS.NHC ₆ H ₆ per 100 Gms. Sat. Sol.	Salt.	Normality of Salt in C ₂ H ₆ OH.	Mols. NH4.CS.NH.C4H4 per 100 Gms. Sat. Sol.
None LiCl " " CaCl- " " "	(pure C.H ₂ OH)	0.2065 0.2274 0.2360 0.2440 0.2494 0.2101 0.2135 0.2194 0.2279	NaI	o.o43 o.o86 o.172 o.343 o.685 o.o22 o.o43 o.o86	0.2102 0.2148 0.2198 0.2271 0.2359 0.2098 0.2194 0.2165 0.2257

SOLUBILITY OF PHENYL THIOUREA IN MIXTURES OF ETHYL ALCOHOL
AND WATER AT 25°.
(Holleman and Antusch, 1894.)

Vol. per cent Alcohol.	Gms. CS(NH ₂) NHC ₄ H ₅ per 100 Gms. Solvent.	Sp. Gr. of Solutions.	Vol. per cent Alcohol.	Gms. CS(NH ₂) NHC ₂ H ₅ per 100 Gms. Solvent.	Sp. Gr. of Solutions.
100	3 · 59		65	3.40	0.9018
95	4 · 44	0.8200	6o	2.80	0.9128
90	4.69	0.8389	50	r .87	0.9317
85	4.99	0.8544	40	1.13	0.9486
80	4 - 70	0.8679	25	0.56	0.9679
75	4 · 45	0.8810	15	0.38	0.9788
70	3.92	0.8915	Ö	0.24	0.9979

See remarks under α acetnaphthalide, p. 13.

SOLUBILITY OF PHENYL THIOUREA IN AQUEOUS SOLUTIONS OF PROPYL AND OF ETHYL ALCOHOL AT 25°. (Bogdan, 1902-03.)

		\ 	,0.,			
In Aq. Propyl Alcohol.			In Aq. Ethyl Alcohol.			
G. Mols. CeH7OH per 1000 Gms. HgO.	Gms. per 100 C ₂ H ₇ OH.	CS(NH ₂) NHC ₆ H ₆ .	G. Mols. C ₂ H ₅ OH per 1000 Gms. H ₂ O.	Gms. per 100 C₂H₅OH.	CS(NH ₂) NHC ₄ H ₄ .	
1.035 0.5448 0.1059 0.05526 0.04854	62.10 32.688 6.354 3.316 2.912	3.587 3.124 2.643 2.599 2.586	1.1010 0.5355 0.1094 0.05018 0.03271	49.60 24.12 4.932 2.26 1.473	3.193 2.931 2.629 2.589 2.577	
In Pro	pyl Alcohol	at o°.				
I.000 0.100	60.06 6.01	1 · 21 1 · 047				

SOLUBILITY OF PHENYL THIOUREA IN AQUEOUS SOLUTIONS OF ACETONE, MANNITOL, CANE SUGAR, DEXTROSE, AND UREA. (Bogdan, 1902-03.)

Aqueous Non Electro-	t°.	Gms. per 1		Aqueous Non Electro-		Gms. per 1	
lyte.	U	Non Elec- trolyte.	CS(NH) NH.C.H.	lyte.	t°.	Non Elec- trolyte.	CS(NHa) NHC ₆ H ₅ .
$(CH_3)_2CO$	25 "	7 - 478	2.667	$C_6H_{12}O_6$	25	180.40	3.042
"		2.513	2.579	""	ű	90.46	2.83
"	"	1.908	2.573	"	"	29.29	2.69
$C_{\mathbf{e}}H_{\mathbf{e}}(OH)_{\mathbf{e}}$	"	182.11	3.04	"	"	18.01	2.654
"	"	91.05	2.78	"	"	9.554	2.603
$C_{12}H_{22}O_{11}$	25	338.6	3 · 457	CO(NH ₂) ₂	"	63.08	3 .306
	ű	170.4	3.015	ü	"	29.93	2.892
46	"	34 . 36	2.634	"	"	6.132	2.618
66	"	18.28	2.596	"	"	4.942	2.605
н	66	10.09	2.572	"	"	2.000	2.572
ĸ	0	342.18	I .420	"	0	60 · 11	1.310
86	"	34.22	1.044	66	"	6.01	1.048

UREIDE OF GLUCOSE CH2OH.(CHOH)4.CH: N.CO.NH2.

100 gms. absolute ethyl alcohol dissolve 0.04 gm. ureide of glucose at 25°.

"85.6%"" 0.73"" ""

methyl alcohol "0.22" ""

(Schoorl, 1903.)

URETHAN (Ethyl Carbamate) NH₂.CO₂.C₄H₄. (See also p. 296.)

SOLUBILITY OF URETHAN IN SEVERAL SOLVENTS.

(Speyers, 1902.)

Interpolated and calculated from the original results which are given in terms of molecules urethan per 100 mols. solvent.

Solubility in Methyl Alcohol. Solubility in Water. Mols. CO(NH₂) OC₂H₅ per 100 Mols. H₂O. Mols. CO(NH₂) OC₂H₅ per 100 Mols. Gms CO(NH₂) OC₂H₃ per Cms Wt. of Wt. of CO(NH₂) OC₂H₂ per z cc. Solur cc. Solut°. 100 Gms. CH₈OH. 100 Gms. H₂O. tion. tion. CH₂OH. 3.61 17.8 31.18 86.76 0.956 1.023 0 41.0 6.0 29.7 · 0.977 114.1 10 1.033 47 - 5 1.042 15.0 74.2 0.989 132 · I 15 1 ·060 I.000 151.7 20 31.0 153.3 54 · 5 62.5 25 1.073 50.0 247 .3 1.013 173.9 65.0 I .024 72.0 200.3 1.078 321.4 30 1.065 380.7 89.0 40 77.0 I .045 247 .7

Solubility in Ethyl Alcohol. Solubility in Propyl Alcohol.

\$° .	Wt. of r cc. Solu- tion.	Mols. CO(NH ₂) OC ₂ H ₅ per roo Mols. C ₂ H ₅ OH.	Gms. CO(NH ₂) OC ₂ H ₅ per 100 Gms. C ₂ H ₅ OH:	Wt. of r cc. Solu- tion.	Mols. CO(NH ₂) OC ₂ H ₅ per 100 Mols. C ₂ H ₇ OH.	Gms. CO(NH ₂) OC ₂ H ₅ per 100 Gms. C ₂ H ₇ OH.
0	0.8914	23.91	46.26	o . 880	19.48	28.9
10	0.930	36.o	69.6	0.906	31.0	46.0
15	0.950	43.0	89.2	0.923	40.0	59 · 3
20	o .968	50.0	96.7	0.942	51.0	75 · 7
25	0.985	59.0	114.1	0.963	·60.0	8g.o
30	I .00I	70.0	135.4	ი.98ვ	68.o	100.9
40	1.035	88.0	170.2	1.025	85.0	126.1

Solubility in Chloroform.

Solubility in Toluene.

*•	Wt. of r cc. Solu-	Mols. CO(NH ₂) OC ₂ H ₅ per	Gms. CO(NH ₂) OC ₂ H ₅ per	Wt. of I cc. Solu-	Mols. CO(NH ₂) OC ₂ H ₅ per 100 Mols.	Gms. CO(NH ₂) OC ₂ H per 100 Gms.
	tion.	100 Mols. CHCls.	roo Gms. CHCla.	tion.	$C_6H_5CH_3$.	C ₆ H ₅ CH ₃ .
0	I .404	27.56	20.6	o .887	1.77	1.71
10	1.340	4 I	30.6	0.874	5.0	4.84
15	1.310	46	34 · 4	0.875	10.0	9.68
20	1.280	53	3 9 . 6	o .883	16.o	15.48
25	I.240	60	44.8	0.902	25.0	24.18
30	1.203	67	50.0	0.927	44.0	42.58
40	1.125	8o	59 · 7	0.995	85.o	82.24

100 gms. sat. solution in liquid CO₂ contain 4 gms. urethan at the critical temperature, 23.5°; at 30.5° the mixture separates with two layers. (Buchner, 1905-06.)

100 gms. pyridine dissolve 21.32 gms. urethan at 20–25°. (Dehn, 1917.) 100 gms. aq. 50% pyridine dissolve 101.1 gms. urethan at 20–25°.

SOLUBILITY OF URETHAN DERIVATIVES IN WATER. (Odaira, 1915.)

Name.	Formula.	t°.	Gms. Cmpd. per roo Gms. H ₂ O.
Detonal (Diethyl Aceturethan)	(C,H ₄),CH.CO.NH.CO.OC,H ₆		0.526
Epronal (Ethylpropyl Aceturethan)	(C,H,)(C,H,)CH.CO.NH.CO.OC,H,	cold	0.143
Dipronal (Dipropyl Aceturethan)	(C ₂ H ₂)CH.CO.NH.CO.OC ₂ H ₄	20	0.040
Probnal (Propylbutyl Aceturethan)	(C,H,)(C,H,)CH.CO.NH.CO.OC,H	20	0.032
Dibnal (Dibutyl Aceturethan)	(C,H _a),CH.CO.NH.CO.OC,H _a		0.008
Oenanthyl Urethan	CH ₄ (CH ₂) ₄ CO.NH.CO.OC ₄ H ₄		0.021
# Isoamyl Urethan	(C ₂ H ₄) ₂ CH.NH.CO.OC ₂ H ₄	20	0.410
a Bromethyl Propyl Aceturea	(C ₂ H ₄)(C ₃ H ₇)CBr.CO.NH.CO.NH ₂	20	0.041

DISTRIBUTION OF URETHAN DERIVATIVES BETWEEN WATER AND OLIVE OIL.

Name.	Formula.	t* .		o cc. Olive Oil Layer.	Dist. Ratio Conc. _{ell} Conc. _{He0}
Ethyl Urethan	NH ₂ COOC ₂ H ₄	ord.	4.52	0.615	0.136(1)
Methyl Urethan	NH ₂ COOCH ₂	ord.	7.50	0.275	0.037(1)
Aceturethan	CH,CONH.COOC,H,	17-20	2.94	0.389	0.132(2)
Epronal	(C ₂ H ₄)(C ₃ H ₇)CH.CO.NH.CO.OC ₂ H ₄	" "	0.076	0.257	3.3(2)
Detonal	(C ₂ H ₂) ₂ CH.CO.NH.CO.OC ₂ H ₄	"	0.122	0.213	1.8(2) 1.7(2)
Veronal (diethylbar-) bituric acid)	CO(NHCO) ₂ C.(C ₂ H ₂) ₂	"	0.326 0.180 0.268	0.549 0.020 0.032	0.11(2) 0.12(2)
(r) Baum	ı, 1899; H. von Meyer, 1909.	(2)	Odaira, 1		

URIC ACID C4H4N4O2.

SOLUBILITY IN WATER. (Blares and Deniges, 1887; at 15° Magnier, 1875.)

*°.	Gms. C ₅ H ₄ N ₄ O ₅ . per 100 Gms. H ₂ O.	ŧ°.	Gms. C ₂ H ₄ N ₄ O ₃ per 100 Gms. H ₂ O.	t°.	Gms. C ₆ H ₄ N ₆ O ₈ per 100 Gms. H ₅ O.
0	0.002	30	0.0088	70	0.0305
10	0.0037	40	0.0122	80	0.0390
15	0.0053	50	0.0170	90	o.o498
20	0.006	бо	0.0230	100	0.0625

One liter of very carefully purified CO₂ free water dissolves 0.0253 gm. uric acid at 18°. Constant agitation and temperature were employed. With finely divided uric acid, saturation was reached after one hour. The amount dissolved was determined by the difference in weight between the amount of sample taken and that remaining undissolved. (His, Jr. and Paul, 1900.)

One liter of pure CO₂ free water dissolves 0.0649 gm. uric acid at 37°. The amount dissolved was determined by difference and only 20–25 minutes agitation allowed for saturation. It is stated that on long contact with water, the uric acid breaks down and the solubility and conductivity increase directly with time.

One liter of water dissolves 0.0645 gm. uric acid at 37°. (Bechhold and Ziegler, 1910.)
One liter of serum dissolves 0.9 gm. uric acid at 37°.

SOLUBILITY OF URIC ACID IN AQUBOUS SOLUTIONS OF ACID AT 18°.

(His, Jr. and Paul, 1900.)

Acid.	Concentration	Gms. Uric Acid	
ACIG.	Normality.	Per cent.	per 1000 cc. Sat Sol.
Hydrochloric	I	3.65	0.0236
- "	3·75 6. 24	13.69	. 0.0263
"	6.24	22.77	0.0375
Sulfuric	I	4.9	0.0227
	3.2	15.67	0.0205
	6.4	31.34	0.0183

Additional data for the solubility of uric acid in aqueous sulfuric acid are given by Tafel (1901). A saturated solution of crystallized uric acid in 80 wt. per cent aqueous H₂SO₄ was prepared by warming to about 120° and allowing to stand. Portions of the clear solution were diluted with increasing amounts of water and the mixtures allowed to stand many days in closed flasks which were frequently shaken. The precipitated uric acid was then filtered off and weighed and the amount remaining in solution calculated by difference. The following results were obtained.

An approximate determination of the solubility of uric acid in alcohol by extraction in a Soxhlet apparatus, gave 0.00008 gms. per 100 cc. A similar determination with ether as solvent, gave negative results.

100 gms. 95% formic acid dissolve 0.04 gm. uric acid at 20°.

pyridine dissolve 0.21 gm. uric acid at 20–25°. (Gortner, 1914.)

(Aschan, 1913.) (Dehn, 1917.) aq. 50% pyridine dissolve 0.75 gms. uric acid at 20-25°.

VALERIC ACID n CH₂(CH₂)₂COOH (n Propyl Acetic Acid).

When valeric acid is shaken with water at 16°, two layers are formed. 100 gms. of the aqueous layer contain 3.4 gms. CH₂(CH₂)₂COOH. 100 gms. of the acid layer contain 90.4 gms. CH₂(CH₂)₂COOH. (Lieben and Rossi, 1871.)

DISTRIBUTION OF VALERIC ACID BETWEEN BENZENE AND 95.8% SULFURIC Acm.

(Gurwitsch, 1914.)

The mixtures were made at o° and brought to equilibrium by shaking for 5 minutes at 18°, and allowing to stand over night.

Gms. Valeric Aci	id per 100 Gms.	Gms. Valeric Acid per 100 Gms.		
Benzene Layer.	H ₂ SO ₄ Layer.	Benzene Layer.	H ₂ SO ₄ Layer.	
7.60	46.4	I	36.7	
4.78	44.8	0.58	35.2	
3.64	43 · 5	0.29	32.7	
2.61	41.4	0.20	30.7	
1.62	39.5	0.04	26 . I	
1.48	38. I	0.007	23.8	

The coefficient of distribution of isovaleric acid between benzene and water at room temperature is, conc. in C₆H₆ + conc. in H₂O = 2.744. (King and Narracott, 1909.) DISTRIBUTION OF VALERAMIDES BETWEEN WATER AND OLIVE OIL AT 15°. (Haitass, 1903.)

Amide.	Formula.	Gms. Cr per re	Ratio Conc	
Amige.		Water Layer.	Olive Oil Layer.	Conc. Ego
Valeramide	CH ₃ (CH ₂) ₃ CONH ₂	0.769	0.241	0.313
Valerethylamide	$CH_3(CH_2)_3CONH(C_2H_5)$	1.020	0.261	0.254
Valerdiethylamide	$CH_3(CH_2)_3CON(C_2H_5)_2$	0.231	1.339	5.797
Valerdimethylamide	$CH_3(CH_2)_3CON(CH_3)_2$	0.011	0.379	0.416
Lactdiethylamide	CH ₃ CHOHCON(C ₂ H ₅) ₂	1.256	0.194	0.154

VANILLIN C4H2.CHO.OCH2.OH, 1.3.4.

100 gms. H₂O dissolve 1 gm. vanillin at 20–25°. 100 gms. pyridine dissolve 316 gms. vanillin at 20–25°.

(Dehn, 1917.)

DISTRIBUTION OF VANILLIN BETWEEN WATER AND ETHER AT 25°.
(Marden, 1914.)

Gms. Vanilli	Dist. Coef.	
HO Layer.	Ether Layer.	Dist. Coer.
0.0164	0.1294	0.108
0.0242	0.1854	0.110
0.0403	0.3310	0.104

Fusion-point data for mixtures of vanillin and orthovanillin are given by Noelting (1910). Qualitative solubilities of orthovanillin in a number of solvents are also reported. Data for the sintering, melting and clear liquid points for mixtures of vanillin and an extensive series of compounds are given by Lehmann (1914).

VERATRINE CarHasNO11.

SOLUBILITY IN SEVERAL SOLVENTS.

Solvent.	t*.	Gms. Veratrine per 100 Gms. Solvent.	Authority.
Water	25	0.057	(U. S. P. VIII.)
Water	20	0.114	(Zalai, 1910.)
3% H ₂ BO ₂ in Aq.			
50% Glycerol	ord.	6	(Baroni & Barlinetto, 1911.)
Aniline	20	37	(Scholtz, 1912.)
Pyridine	20	175	"
Piperidine	20	83	44
Diethylamine	20	271	a
Oil of Sesame	20	1.39	(Zalai, 1910.)

VERATROLE C₄H₄(OCH₂)₂.

F.-pt. data for mixtures of veratrole and p xylene are given by Paterno and Ampola (1897).

VERONAL (Diethylbarbituric Acid) CO<(NHCO)₂>C(C₂H₅)₂. See also p. 742. 100 cc. H₂O dissolve 0.625 gm. veronal at 15-20°. (Squire & Caines, 1905.) 100 cc. 90% alcohol dissolve 11.7 gms. veronal at 15-20°. "
100 cc. ether dissolve 8.7 gms. veronal at 15-20°. "

VESUVIN.

too gms. water pyrid	diss	olve 8.5	gms.	vesuvin a	at 20-25°.	(Dehn, 1917.)
" ag. 50	% ovridine '			66	66	4

WATER HO.

SOLUBILITY OF WATER IN BENZENE, PETROLEUM AND PARAFFINE OIL. (Groschuff, 1911.)

The synthetic, sealed tube method was used and the experiments were made with very great care. The mixtures were first superheated sufficiently to bring all the water into solution and then cooled until a fine mist was formed. The temperature of appearance and disappearance of this fine mist was determined repeatedly. The benzene was of $d_{20}=0.8799$. The petroleum was American water white, of d=0.792. It was freed from H₂O by distilling 3 times from melted Na and boiled at 190–250° at atmospheric pressure. The paraffine oil was first heated to 120–130° and then distilled twice under vacuum over melted Na and once without Na. Its $d_{18}=0.883$ and b.-pt. was 200°–300° at 10 mm. pressure.

Results for:

H ₂ O	+ Benzene.	H ₂ O + Petroleum.				H ₂ O + Paraffine Oil.		
t°.	Gms. H ₂ O per 100 Gms. Sol.	t°.	Gms. H ₂ O per 100 Gms. Sol.	t°.	Gms. H ₂ O per 100 Gms. Sol.	* .,	Gms. H ₂ O per 100 Gms. Sol.	
+ 3	0.030	- 2	0.0012	59	0.031	+16	0.003	
. 23	0.061	+18	0.005	ĞΙ	0.035	50	0.013	
40	0.114	23	0.007	66	0.043	65	0.022	
55	0.184	30	0.008	79	0.063	73	0.030	
66	0.255	36	0.012	85	0.075	77	0.035	
77	0.337	53	0.026	94	0.097	94	0.055	

Observations on the solubility of water in essential oils are given by Umney and Bunker (1912).

XENON Xe.

SOLUBILITY IN WATER. (von Antropoff, 1909–10.)

The results are in terms of the coef. of absorption β , as defined by Bunsen (see p. 227) and modified by Kuenen in respect to the substitution of mass for volume of water.

NitroXYLENES.

100 gms. 95% formic acid dissolve 0.71 gm. trinitro-m-xylene (m. pt. 173°) at 18.5°. (Aschan, 1913.)
F.-pt. data for mixtures of 2.3, dinitro-p-xylene and 2.6, dinitro-p-xylene are given by Blanksma (1913).

XYLENOL 1.3.4, C₆H₈.(CH₈)₂.OH.

MISCIBILITY OF AQUEOUS ALKALINE SOLUTIONS OF XYLENOL WITH SEVERAL ORGANIC COMPOUNDS, INSOLUBLE IN WATER.

(Sheuble, 1907.)

To 5 cc. portions of aq. KOH solution (250 gms. per liter) were added the given amounts of the aq. insoluble compound from a buret and the xylenol, dropwise, until solution occurred. Temperature not stated.

Composition of Homogeneous Solution.

	-		<u>, </u>	
cc. Aq. KOH.		Gms. Xylenol.		
5	2 (= 1.64)	gms.	Octyl Alcohol (1) і
5	5 (=4.10	~ " ·	"	1.7
5	2 (= 1.74	") Toluene	4.I
5 .	3 (= 2.61)	") "	5

(1) The normal secondary octyl alcohol, i.e., the so-called capryl alcohol, CH₂(CH₂)₅.CH(OH)CH₂.

YTTERBIUM CobaltiCYANIDE Yb2(CoC4N4)2.9H2O.

1000 gms. aqueous 10% HCl ($d_{15} = 1.05$) dissolve 0.38 gm. of the salt at 25° (James and Willand, 1916.)

YTTERBIUM OXALATE Yb2(C2O4)2.10H2O.

SOLUBILITY IN WATER AND IN SEVERAL AQUEOUS SOLUTIONS.

Aqueous Solution of:	Per cent Conc. of Aq. Sol.	t*.	Gms. Yb ₂ (C ₂ O ₄) per 100 cc. Solver	at. Authority.
Water		25	0.000334	(Rimbach and Schubert, 1909.)
$(NH_4)_2C_2O_4.H_2O$	3.26	ord.	0.095	(Cleve, 1902.)
Methylamine Oxalate	20	"	5.24*	(Grant and James, 1917.)
Ethylamine Oxalate	20	"	5.86*	66
Triethylamine Oxalate	20	"	2.05*	46
Sulfuric Acid (1 n)	4.9	"	0.372	(Cleve, 1902.)

^{*} The authors do not state whether their figures are for anhydrous or hydrated salt.

YTTERBIUM Dimethyl PHOSPHATE Yb:[(CH:):PO4]6.

100 gms. H₂O dissolve 1.2 gms. Yb₂[(CH₃)₂PO₄]₆ at 25° and 0.25 gm. at 95°. (Morgan and James, 1914.)

YTTERBIUM SULFATE Yb₂(SO₄)₂.8H₂O.

SOLUBILITY IN WATER.

(Cleve, 1902.)

t*.	Gms. Yb ₂ (SO ₄) ₃ per 100 gms. H ₂ O.	t* .	Gms. Yb ₂ (SO ₄) ₈ per 100 Gms. H ₂ O.	t°.	Gms. Yb _z (SO ₄) ₃ per 100 Gms. H _z O.
0	44.2	55	11.5	80	6.92
15.5	34.6	60	10.4	90	5 . 83
35	19.1	70	. 7.22	100	4.67

YTTERBIUM Bromonitrobenzene SULFONATE Yb(C4H2Br.NO2.SO2, 1.4.3)2.-12H₂O.

100 gms. sat. solution in water contain 7.294 gms. of the anhydrous salt at 25°. (Kats and James, 1913.)

YTTRIUM CHLORIDE YCL.

100 gms. alcohol dissolve	61.1 gms. YCl ₂ at 15°.	(Matignon, 1906.)
Ti 14	60.5 gms. YCl ₂ at 20°.	(Matignon, 1909.)
" pyridine dissolve	6.5 gms. YCl ₃ at 15°.	(Matignon, 1906.)

YTTRIUM CobaltiCYANIDE Y₂(CoC₄N₆)₂.9H₂O.

1000 gms. aq. 10% HCl ($d_{15} = 1.05$) dissolve 2.78 gms. of the salt at 25°. (James and Willand, 1916.)

YTTRIUM GLYCOLATE Y(C1H2O2)2.2H2O.

One liter of water dissolves 2.447 gms. of the salt at 20°. (Jantsch and Grünkraut, 1912-1913.)

YTTRIUM IODATE Y(IO₁)_{1.3}H₂O.

100 gms. H₂O dissolve 0.53 gm. yttrium iodate.

(Berlin.)

YTTRIUM MALONATE Y2(C2H2O4)3.8H2O.

SOLUBILITY IN AQUEOUS MALONIC ACID AND AMMONIUM MALONATE SOLUTIONS. (Holmberg, 1907.)

/	C V/CHO		
Solvent.	t°.	Gms. Y ₁ (C ₂ H ₁ O ₄) ₃ per 100 Gms. Solvent.	
1 Gm. Am. Malonate per 10 cc. Solution	20	0.3	
2 Gms. Malonic Acid per 10 cc. Solution	20	2.3	

YTTRIUM Basic NITRATE 3Y2O2.4N2O5.2H2O.

EQUILIBRIUM IN THE SYSTEM YTTRIUM NITRATE, YTTRIUM HYDROXIDE AND WATER AT 25°. (James and Pratt, 1910.)

The determinations were made with very great care. The mixtures were rotated 41 months.

Gms. per 100 Gms.							
d ₂₅ of	н	<u>o. </u>	Solid Phase.	_d₂s of .	H		Solid Phase.
Sat. Sol.	Y(NO ₂) ₃ .	Y ₁ O ₁ as Y(OH) ₁ .	· Cond I made.	Sat. Sol.	Y(NO ₂) ₂ .		
1.0260	3.13	0.014	Y(OH)	1.4867	73.03	0.078	3Y2O24N2O22H2O
1.1106	13.87	0.034	и	1.5587		0.074	"
1.1907	24.94	0.063	ee .	1.6259	103.80	0.075	"
1.2517	33.02	0.160	"+3Y2Os.4N2Os.2H2O	1.6931	122.40	0.080	u
1.3268	44.35	0.114	3Y2Os.4N2Os.2H2O	1.7440	137.10	0.083	" +y(NO ₂) ₃
1.4104	58.61	0.095	"	1.7446	141.6	0	Y(NO ₂),

YTTRIUM OXALATE Y₂(C₂O₄)₃.9H₂O.

One liter H₂O dissolves 0.001 gm. Y₂(C₂O₄)₃ at 25°, determined by the electrolytic method. (Rimbach and Schubert, 1909.)

trotyte method.

100 gms. aqueous ammonium oxalate solution (3.26% (NH_4) $2C_2O_4.H_2O_3$) dissolve 0.01714 gm. $Y_2(C_2O_4)_8.9H_2O$ at room temp.

100 gms. aq. 2.16 n H_3SO_4 dissolve 0.6884 gm. $Y_2(C_2O_4)_8$ at 25°. (Wirth, 1912) 100 gms. aq. 4.32 n H_2SO_4 dissolve 1.4 gms. $Y_2(C_2O_4)_8$ at 25°. "

100 cc. aq. 20% methylamine oxalate dissolve 0.877 gm. yttrium oxalate at

ord. temp.

100 cc. aq. 20% ethylamine oxalate dissolve 1.653 gms. yttrium oxalate at ord.

100 cc. aq. 20% triethylamine oxalate dissolve 1.006 gms. yttrium oxalate at ord. temp. (Grant and James, 1917.)

YTTRIUM Potassium OXALATE Y₂(C₂O₄)_{2.4}K₂C₂O_{4.12}H₂O.

SOLUBILITY IN WATER AT 25°. (Pratt and James, 1911.)

The determinations were made with great care. The mixtures were constantly rotated for 8 weeks.

de of	3ms. per	xoo Gms.		d _m of	Gms. per	100 Gms.	•
Sat.	Н,	0	Solid Phase.	Sat.	H ₂	0.	Solid Phase.
Sol.	Y2(C2O4)2.	K ₂ C ₂ O ₄ .		Sol.	Y,(C,O,),	K4C2O4.	•
1.008	Trace	1.31	Solid Solution	1.174	1.50	27.44	Y2(C2O4)3-4K2C2O4.12H2O
1.035	0.02	5.30	u	1.199	1.49	32.83	"
1.059	0.06	8.88	"	1.222	1.48	37.68	44
1.096	0.27	14.50	44	1.231	1.42	39.12	K ₄ C ₂ O ₄
1.132	0.72	20.27	"	I. 228	1.00	38.77	44
1.166	1.37	26.02 Y	(C ₂ O ₄) ₂₋₄ K ₂ C ₂ O ₄₋₁₂ H ₂ O	1.218	0	37.87	"

YTTRIUM DimethylPHOSPHATE Y₂[(CH₂)₂PO₄]₆.

100 gms. H₂O dissolve 2.8 gms. Y₂[(CH₂)₂PO₄]₆ at 25° and 0.55 gm, at 95°. (Morgan and James, 1914.)

YTTRIUM SULFATE Y₂(SO₄)₂.

SOLUBILITY OF YTTRIUM SULFATE IN AQUEOUS SOLUTIONS OF SODIUM SULFATE AT 25°. (James and Holden, 1913.)

Equilibrium was reached very slowly and it was necessary to rotate the mixtures for 14 months before final equilibrium was reached.

Gms. per 100 Gms.			Gms. per			
H ₂ O.		Solid Phase.	H_{ϵ}	0.	Solid Phase.	
Y2(SO)3.	Na ₂ SO ₄ .	•	Y2(SO4)4.	Na ₂ SO ₄ .		
5.61	1.29	Y ₂ (SO ₄) ₈	1.90	14.89	$Y_2(SO_4)_3$. $Na_2SO_4.2H_2O$	
6.38	3.85	"	1.79	16.51	44	
7.40	Ó. 2I	"	1.86	18.44	46	
8.43	8.53	" +Y2(SO4)2.Na2SO4.2H2O	2.99	19.96	46	
5.86	7.57	Y ₂ (SO ₄) ₂ .Na ₂ SO _{4.2} H ₂ O	3.04	21.05	**	
4.75	7.72	"	2.27	27.14	"	
3.42	10.14	44	1.52	28.22	66	
2.36	11.36	4	ı.Ğı	28.13	"	
2.02	13.42	44	5.38	o Č	Na ₂ SO ₄ .10H ₂ O	

SOLUBILITY OF YTTRIUM SULFONATES IN WATER.

Sulfonate.	Formula.	ŧ°.	Gms. Anhy. Sulfonate per 100 Gms. H ₂ O.
Yttrium Benzene Sulfonate " " " Nitro-	Y(C ₄ H ₄ SO ₂) ₃ .9H ₄ O	15	60.4 (Holmberg, 1907.)
benzene Sulfonate Yttrium Bromonitrobenzene	Y(C ₂ H ₄ .NO ₃ .SO ₃) ₃₋₇ H ₄ O	15	48.3
Sulfonate	Y(C ₄ H ₄ Br.NO ₃ .SO ₃ .1.4.2) ₃ .10H ₄ O	25	3.88 (Katz & James, '13.)

YTTRIUM TARTRATE Y2(C4H4O4)2.5H2O.

SOLUBILITY IN AQUEOUS TARTARIC ACID AND AMMONIUM TARTRATE SOLUTIONS AT 20°. (Holmberg, 1907.)

Aq. Solvent.	Gms. Y ₂ (C ₄ H ₄ O ₄) ₃ per 100 Gms. Sat. Sol.	Aq. Solvent.	Gms. Y ₂ (C ₄ H ₄ O ₂) ₂ per 100 Gms. Sat. Sol.
1 gm. Am. Tartrate per 10 cc.		gms. Tartaric Acid per 10 cc.	
solution	0.6	solution	0.02
2 gms. Am. Tartrate per 10 cc.	1.1 4	gms. Tartaric Acid per 10 cc.	
solution		solution	0.02

ZEIN (Protein from Corn).

SOLUBILITY IN AQUEOUS ALCOHOL SOLUTIONS AT 25°. (Galeotti and Giampalmo, 1908.)

Dry powdered zein was added to the alcohol + water mixtures and the solutions kept at 25° and shaken frequently during 24 hrs. The removed undissolved residue was dried to constant weight and weighed.

vol. % C₁H₂OH in Solvent.	Gms. Zein per 100 Gms. Sat. Sol.	Vol. % C₂H₅OH in Solvent.	Gms. Zein per 100 Gms. Sat. Sol.
10	0.05	60	18.57
20	0.11	70	19.87
30	O. 2I	80	7.81
40	0.51	90	4.51
50	I.43	100	0.02

Similar results are given for the solubility of zein in mixtures of C₂H₅OH + H₂O + CHCl₃ at 20° and C₂H₅OH + H₂O + acetone at 25°.

ZINC ACETATE Zn(C2H2O2)2.2H2O.

SOLUBILITY IN AQUEOUS ETHYL ALCOHOL AT 25°. (Seidell, 1910.)

Wt. % C ₄ H ₂ OH in Solvent.	d_{28} of Sat. Sol.	Gms. Zn- (C ₂ H ₂ O ₂) ₂ .2H ₂ O per 100 Gms. Sat. Sol.	Wt. % C ₄ H ₂ OH in Solvent.	d ₂₅ of Sat. Sol.	Gms. Zn- (C ₂ H ₂ O ₂) ₂ 2H ₂ O per roo Gms. Sat. Sol.
0	1.168	30. 8 0	60	0.920	10.60
10	1.127	27.20	70	0.880	7.80
20	1.090	23.70	8o	0.850	5.50
30	1.055	20.40	90	0.830	4.20
40	1.015	17	95	0.825	4
50	0.970	13.80	100	0.796	1.18*

^{• =} gms. anhydrous salt. The solid phase was Zn(C₂H₂O₂)₂.2H₂O in all cases except this solution.

100 gms. H₂O dissolve 41.6 gms. Zn(C₂H₃O₃)₂.H₂O at 15°, d of sat. sol. = 1.165. (Greenish and Smith, 1902.)
100 cc. anhydrous hydrazine dissolve 4 gms. zinc acetate with separation of a white suspension at ordinary temperature. (Welsh and Broderson, 1915.)

ZINC ARSENATE Zn₃(AsO₄)₂.8H₂O.

100 gms. 95% formic acid dissolve 0.26 gm. Zn₂(AsO₄)₂ at 21°. (Aschan, 1913.)

ZINC ARSENITE Zn₄(AsO₄)₂.

100 gms. 95% formic acid dissolve 0.36 gm. Zn₂(AsO₂)₂ at 21°. (Aschan, 1913.)

ZINC BENZOATE Zn(C7H5O2)2.

SOLUBILITY IN WATER. (Pajetta, 1906.)

t°. 15.9°. 17°. 27.8°. 31.3°. 37.5°. 49.8°. 59.° Gms. Zn(C₇H₅O₂)₂ per 100 gms. aq. solution 2.55 2.49 2.41 2.05 1.87 1.62 1.45

ZINC BROMIDE ZnBr2.2H2O.

SOLUBILITY IN WATER. (Dietz, 1900; see also Etard, 1894.)

t°.	Gms. ZnBr ₂ per 100 Gms. Solution.	Mols. ZnBr ₂ per 100 Mols. H ₂ O.	Solid Phase.	t°.	Gms. ZnBr ₂ per 100 Gms. Solution.	Mols. ZnBr ₂ per 100 Mols.H ₂ O.	Solid Phase.
-15	77.13	27.0	ZnBr ₂ .3H ₂ O	25	82 . 46	37 .6	ZnBr _{2.2} H ₂ O
-10	78.45	29 · I	**	30	84.08	42 . 3	
– 5	80.64	33 · 3	**	37	86.20	50.0	4
- Š	79.06	30.2	ZnBr ₂ .2H ₂ O	35	85 . 45	46.9	ZnBr ₂
0	79 - 55	31.1	44	40	85.53	47 - 4	4
+13	80.76	33.5		60	86.o8	49.5	•
18	81.46	35.I	4	80	86 . 57	51.5	*
				100	87 .05	53.8	4

ZINC BICARBONATE Zn(HCO₂)₂.

SOLUBILITY OF ZINC BICARBONATE IN WATER CONTAINING CARBON DIOXIDE. (Smith, 1918.)

For description of the experimental method see iron bicarbonate, p. 336.

	Results	at 25°.	Results at 30°.		
Atmospheres Pressure of CO ₂ , Calc. by Henry's Law.	Gm. Mols. Free H ₂ CO ₃ per Liter.	Gm. Mols. Zn(HCO ₂) ₂ per Liter.	Gm. Mols. Free H ₂ CO ₃ per Liter.	Gm. Mols. Zn(HCO ₂) ₂ per Liter.	
4.12	0.1390	0.00194	0.1838	0.00215	
5.33	0.1797	0.00211	0.3838	0.00277	
7.64	0.2579	0.00242	0.4038	0.00286	
10.61	0.3580	0.00270	0.4601	0.00308	
12.16	0.4103	0.00278	0.6064	0.00324	
13.29	0.4480	0.00291	0.6257	0.00337	
19.73	0.6657	0.00317	0.7470	0.00352	
20.65	0.6969	0.00319	0.8351	0.00376	
22.56	0.7610	0.00343	1.0840	0.00339	
40.61	1.3701	0.00445	1.1275	0.00429	

The calculated pressures are lower than the actual pressures since Henry's Law does not hold at very high pressures.

"If zinc carbonate were not hydrolytically dissociated, its solubility in pure

"If zinc carbonate were not hydrolytically dissociated, its solubility in pure water at 25°, would be 4.58 × 10⁻⁶ gms. mols. per liter." (Smith, 1918.)

ZINC CARBONATE ZnCO.

Ageno and Valla (1911) report that the solubility of ZnCO₃ in water at 25° is 1.64.10⁻⁴ mols. = 0.206 gm. per liter.

One liter of aq. 5.85% NaCl solution dissolves 0.0586 gm. ZnCO₃ at 14°. One liter of aq. 7.45% NaCl solution dissolves 0.0477 gm. ZnCO₃ at 14°. (Cantoni and Passamanik, 1905.)

ZINC CHLORATE ZnClO.

SOLUBILITY IN WATER. (Meusser, 1902; at 18°, Mylius and Funk, 1897.)

r.	Gms. Zn(ClO ₂); per 100 Gms. Solution.	Mols. Zn(ClO ₂) ₂ per 100 Mol H ₂ O.	s. Solid Phase.	t*.	Gms. Zn(ClO ₃) ₂ per 100 Gms. Solution.	Mols. Zn(ClO ₂); per 100 Mols H ₂ O.	Solid Phase.
— 18	55.62	9.70	$Zn(ClO_2)_3.6H_2O$	30	67.66	16.20	Zn(ClO ₃) ₂₋₄ H ₃ O
0	59.19	80.11	"	40	69.06	17.29	46
8	60.20	11.72	46	55	75 - 44	24	56
15 18	67.32	15.96	"	İce	curve		
18	66.52	15.39	$Zn(ClO_3)_2.4H_2O$	-13	30.27	3 .36	Ice
				- 9	26.54	2.80	4

Sp. Gr. of solution saturated at 18° = 1.916.

ZINC CHLORIDE ZnCl2.

SOLUBILITY IN WATER. (Mylius and Dietz, 1905; see also Dietz, 1900; Etard, 1894.)

t°.	Gms. ZnCl2	per 100 G1			Gms. ZnC	12 per 100 (ms. Solid
• .	Water.	Solution.	Phase.	• .–	Water.	Solution.	Phase.
- 5	14	12.3	Ice	9	360	78.3	OgH. + OgHfc.
-10	25	20.0	"	6	385	79 · 4	ZnCl ₂₋₂ H ₂ O
-40	83	45 · 3	44	6	298	74.9	ZnCl2.14HgO
-62	104	51.0	Ice + ZnCla-4HaO	10	330	76.8	44
- 50	113	53.0	ZnCl2.4H2O	20	368	78.6	**
-40	127	55.9	4	26	423	80.9	.rlH2O+ZnCl2.H2O
-30	160	61.5	$_{4}H_{2}O + _{3}H_{2}O$	26.3	433	81.2	$.11H_2O + ZnCl_2$
-10	189	65.4	ZnCl ₂ .3H ₂ O	0	342	77 - 4	ZnCl ₂ .H ₂ O
0	208	67.5	**	10	364	78.4	"
+ 5	230	69.7	**	20	396	79.8	**
6.	5 252.4			28	436	81.3	ZnCl ₂ .H ₂ O + ZnCl ₂
5	282	73 .8	44	31	477	82 . 7	ZnCla.HaO
0	309	75 · 5	$_{3}H_{2}O + .1_{2}H_{2}O$	25	432	81.2	ZnCla
0	235	70 · I	ZnCl2.2 H2O	40	452	81.9	44
6.	5 252	71.6	.2H2O + .3H2O	60	488	83.0	44
10	272	73 · I	ZnClg-2}HgO	80	543	84.4	44
12.	5 303	75.2	4	100	615	86.o	*
II.	5 335	77.0	$O_{e}H_{1}$. + $O_{e}H_{2}$ C.	262	00	100.0	

SOLUBILITY OF OXYCHLORIDES OF ZINC IN AQUEOUS SOLUTIONS OF ZINC CHLORIDE AT ROOM TEMPERATURE. (Driot, 1910.)

Gms. per 100 Gms. H ₂ O.		Solid Phase.	Gms. per 100	Solid Phase.	
ZnCl2.	ZnO.	Soud Platse.	ZnCl ₂ .	ZnO.	Soud Phase.
8.22	0.0137	ZnCl ₂₋₄ ZnO.6H ₂ O	62.85	0.884	ZnCl _{a.4} ZnO.6H _a O
23.24	0.138	44	96	1.792	"
45.95	0.497	"	124.7	3.213	. "
51.5	0.604	"	144.8	2.64	"
56.9	0.723	"	203	1.59	ZnCl ₂ .ZnO.1 H ₂ O

Results are also given for mixture of the oxychloride and oxide in aqueous zinc chloride solutions at various temperatures.

SOLUBILITY OF ZINC CHLORIDE-AMMONIUM CHLORIDE MIXTURES IN WATER. (Meerburg, 1903.)

Isotherm for o°.		Isotherm for 20°.			Isot	Isotherm for 30°.		
Gms. pe Soli ZnCls.	r 100 Gm ution. NH ₄ Cl.	Solid Phase.	Gms. per Solu ZnCl ₂ .	r 100 Gm ition. NH ₄ Cl.	Solid Phase.	Gms. per Solu ZnCls.	roo Gmation.	Solid
0	22.8	NH _Cl	0.0	26.9	NH4CI	0.0	29.5	NH ₄ Cl
3 · 5	23.0	•	5.1	27 · I	44	9.2	29.4	"
7.1	23.5	44	9.5	27 · 4	44	16.0	29.7	*
10.2	23.9		12.7	27.5	44	20.2	30.1	4
15.1	24.7	**	15.7	27 . 7	**	24.7	30.4	**
18.0	25.3	44	o.81	27.9	44	26.3	30.8	NH ₄ Cl+s
22.4	26.0	**	23.5	29.0	**	27.2	30.2	6
24.2	26 . I	44	. 26.0	29.5	NH4Cl+a	30.1	29.6	44
25.7	26.3	NH4C1+a	29.5	28.1	•	36.8	28.2	**
27 · 5	26.4	a	32.3	27 · 7	44	42 - 4	27.3	44
30.7	25.7	**	35.8	27.0	4	43 .8	27 · 3	4+6
33.9	25.3	**	38.7	26.9	4	45 .0	24 - 4	b
38.8	24 - 4	**	40 - 2	26.6	••	51.2	17.6	"
42.6	24.6	a+b	41.9	26.3	**	61.9	10.4	"
44 · 3	21.3	b	43 - 2	26.0	a+b	66.9	9.2	ZnCls+b
49.2	15.3	**	46.9	21.0	ь	75.6	б.1	ZnClg
52.6	11.9	**	53 · 2	14.5	**	70 . 3	7.6	44
55 · 4	10.0	44	58.4	11.1	"	78.5	3.2	'44
59 · 3	7 · 5	44	62.7	8.7	**	76.9	3.5	44
62 . 1	6.8	"	66.6	7.9	44	79.8	1.6	•
			- 7-Cl	NECI.	'l 7nCl- al	81.6	0.0	

 $a = ZnCl_{2.3}NHCl_{2.}$ $b = ZnCl_{2.2}NH_4Cl_{1.2}$

100 gms. abs. acetone dissolve 43.5 gms. ZnCl₂ at 18°, d_{18} of sat. sol. = 1.14. (Naumann, 1904.) 100 gms. glycerol dissolve 50 gms. ZnCl2 at 15.5°. (Ossendowski, 1907.) 100 cc. anhydrous hydrazine dissolve 8 gms. ZnCl₂ at room temp.

(Welsh and Broderson, 1915.)
When I gm. of zinc as chloride is dissolved in 100 cc. of aq. 10% HCl and shaken with 100 cc. of ether, 0.03 per cent of the metal enters the ethereal layer. (Mylius, 1911.)

ZINC CHROMATES.

Equilibrium in the System Zinc Oxide, Chromium Trioxide and Water at 25°. (Gröger, 1911.)

An excess of ZnO was, in each case, shaken for 3 days at 25°, with gradually increasing concentrations of chromic acid.

Gms. per Liter Sat. Sol.		Solid Phase.	Gms. per Lit		Solid Phase.
ZnO.	CrO ₃ .		ZnQ.	CrO ₃ .	
0.409	0.604	4ZnO.CrO ₃ .3H ₂ O	66. г	151	4ZnO.CrO ₁₋₃ H ₂ O
2.24	4.19	"	83.7	192	" +3ZnO.2CrO3.H2O
5.86	11.5	" +3ZnO.CrO ₃ .2H ₂ O	123	285	3ZnO.2CrO ₃ .H ₂ O
10.7	22.2	3ZnO.CrO ₃ .2H ₂ O	193	450	"
26.7	57 · 5	"	196	4 61	" +ZnO.CrO ₂ .H ₂ O
30.4	66.7	" $+4$ ZnO.CrO ₃₋₃ H ₂ O	202	475	ZnO.CrO ₂ .H ₂ O
32.2	70. 6	4ZnO.CrO ₂ .3H ₂ O	389	940	44

ZINC CINNAMATE Zn(C₄H₅CH:CHCOO)₂.

100 cc. sat. solution in water contain 0.144 gm. zinc cinnamate at 26.5°.
(De Jong, 1909.)

ZINC CYANIDE Zn(CN)2.

100 cc. concentrated Zn(C₂H₂O₂)₂ + Aq. dissolve 0.4 gm. Zn(CN)₂.
100 cc. concentrated ZnSO₄ + Aq. dissolve 0.2 gm. (Joannis, 1882.)
100 gms. H₂O dissolve 0.24 gm. zinc mercuric thiocyanate, ZnHg(CNS)₄ at 15°.
(Robertson, P. W., 1907.)

ZINC FLUORIDE ZnF2.4H2O.

One liter of water dissolves 16 gms. at 18°.

(Dietz, 1900.)

ZINC HYDROXIDE Zn(OH)2.

One liter of water dissolves 0.0042 gm. ZnO at 18°, conductivity method.`

(Dupre and Bialas, 1903.)

One liter of water dissolves 0.01 gm. at 25°.

(Bodländer, 1898.)

SOLUBILITY OF ZINC HYDROXIDE IN AQUEOUS SOLUTIONS OF:

Ammonia and Ammonia Bases at 17°-19°. Sodium Hydroxide at Ord. Temp. (Rubenbauer, 1902.)

Normality	Normality of Dis-	Gms. ZnO	Gms. per 20	cc. Solution	Mol. Dilution of
the Base.	solved Zn.	per 20 cc. Solution.	Na.	Zn.	the NaOH.
0.0942NH ₃	0.0011	0.00185	0.1012	0.0040	4.50
0.236 "	0.0110	0.0180	0.1978	0.0150	2.33
0.707 "	0.059	0.0958	0.4278	0.0442	1.06
0.0944NH2CH3	0.0005	8000.0	0.6670	0.1771	0.70
0 · 472 "	0.0081	0.0132	0.9660	0.9630	0.48
0.944 "	0.03	0.0484	1.4951	0.2481	0.31
0.068 NH ₂ C ₂ H	s o . 0003	0.0005	2.9901	0.3700	0.16
0.51 "	0.0045	0.0074		ı (OH), us	
o.68 "	0.0098	0.0161	· lutions	shaken 5	hours.

SOLUBILITY OF ZINC HYDROXIDE IN AQUEOUS SOLUTIONS OF AMMONIUM HYDROXIDE.

Results of Euler (1903). Results of Bonsdorff (1904) at 25°.

t°.	Normality of Aq. Ammonia.	Mols. Zn per Liter.	Normality of Aq. Ammonia.	Gms. ZnO per Liter.	Normality of Aq. Ammonia.	Gms. ZnO per Liter.
15-17	0.485	0.013-0.010*	0.311	0.85	0.321	0.34
15-17	0.97	0.034	0.825	3.84	0.643	0.845
21	0.253	0.0029	1.287	7.28	1.215	2.70
21	0.259	0.0022*			1.928	5.07
21	0.500	0.0097			2.570	7.01
21	0.518	0.0070			3.213	10.16

Euler states that the higher results of Herz are due to incompletely purified zinc hydroxide and uses material precipitated from the nitrate for his experiments. Different preparations of Zn(OH)₂ containing from 55 to 77 per cent H₂O were used and in the two cases marked * ZnO was used.

Bonsdorff used for his second series of determinations, Zn(OH), precipitated from the nitrate and brought in moist condition into the ammonia solutions.

SOLUBILITY OF ZINC HYDROXIDE IN AQUEOUS POTASSIUM HYDROXIDE SOLUTIONS.

(Klein, 1912.)

The determinations were made by adding aq. ZnSO₄ solution (containing one gm. mol. per liter) to aq. KOH solutions until a permanent precipitate just appeared. The titrations are also recalculated to mols. per liter and correction made for the dilution of the KOH solution by the aq. ZnSO₄.

Normality of Aq. KOH.	cc. ZnSO ₄	Calcu	lated Mols. per Liter o	f Sat. Sol.
	Sol. per 50 cc. Aq. KOH.	Oric Conc. KOH.	Corrected Conc. of KOH.	Conc. of Zn.
I	5.5	t	0.9	0.10
1.78	13.1	1.78	I.42	0.209
2	14.3	2	1.56	0.223
2.22	17.9	2.22	I.63	0.266
2.5	18.8	2.5	1.81	0.272
3 .	24.6	3	2.02	0.330
3.6	29.1	3.6	2.28	o.368
4	34	4	2.38	0.405
6	56 (?)	6	2.78	0.540

SOLUBILITY OF ZINC HYDROXIDE IN ONE PER CENT AQUEOUS SALT SOLUTIONS AT 16°-20°.

(Snyder, 1878.)

The CO₂ free Zn(OH)₂ dissolved is calculated as milligrams Zn per liter of the given salt solution. Additional determinations are also given.

Aq. Salt Solution.	Mgs. Zn per Liter Solution.	Aq. Salt Solution.	Mgs. Zn per Liter Solution.	Aq. Salt Solution.	Mgs. Zn per Liter Solution.
NaCl	51	K ₂ SO ₄	37 · 5	K_2CO_2	0
KCl	43	$MgSO_4$	27	NH₄CÌ	95
$CaCl_{2}$	57 · 5	KNO ₈	17.5	NH ₄ NO ₃	77
MgCL		Ba(NO ₃)	₂ 25	$(NH_4)_2SC$) ₄ 88
BaCl	38				

ZINC IODATE Zn(IO₂)₂,

100 gms. H₂O dissolve 0.87 gm. Zn(IO₂)₂ cold and 1.31 gms. hot.

(Rammelsberg, 1838.)

ZINC IODIDE ZnI.

SOLUBILITY IN WATER. (Dietz, 1900; see also Etard, 1894.)

Gms. ZnI₃ Mols. ZnI₂ Gms. ZnI₂ Mols. ZnI₃ per 100 Gms. per 100 Mols. Solid Phase. Solution. H₂O. Solid Phase. ŧ°. per 100 Gms. Solution. Mols. H₂O. 23.3 ZnI2.2H2O 81.11 ZaIs - 10 80.50 0 24.2 80.77 18 81.20 5 23.7 24.4 81.16 24.3 40 81.66 25 . I 0 82.06 25.8 60 82.37 +10 26.4 83.12 27.8 80 83.05 27.5 22 27 89.52 100 83.62 28.7 50.3

Sp. Gr. of sat. solution of the anhydrous salt at 18° = 2.725.

100 gms. glycerol dissolve 40 gms. ZnI2 at 15.5°. (Ossendowski, 1907.)

ZINC NITRATE Zn(NO₁)₂.

SOLUBILITY IN WATER. (Funk, 1900.)

	Gms.	Mols.			Gms.	Mols.	
t°.	Zn(NO ₂) ₂ per	ZnNO ₃ pe	r Solid Phase.	t°.	Zn(NO ₃) ₃ per		er Solid Phase.
• •	roo Gms. Solution.	Mols. H ₂ O	•		100 Gms. Solution.	100 Mols. H ₂ O	Phase.
-25	40.12		Zn(NO ₂) ₂₋₉ H ₂ O	18	53.50	10.9	Cn(NO ₂) ₂ .6H ₂ O
-22.5	40.75	6.54	**	25	55.90	12.0	
- 20	42.03	6.89	44	36.4	63.63	16.7	-
– 18	43 - 59	7 · 34	*	36	64 . 63	17.4	4
– 18	44 . 63	7 .67	Zn(NO2)26H2O	33.5	6 5 .83	18.3	**
-15	45.26	7.86	**	37	66 . 38	r8.8	Zn(NO ₃) ₃ 3H ₆ O
-13	45.51	7 . 94	44	40	67 . 42	19.7	•
-12	45 - 75	8.or	•	4 I	68.21	20.4	-
0	48.66	9.01	•	43	69.26	21.4	•
+12.5	52.0	10.3	*	45.5	77 - 77	33 · 3	•

ZINC OXALATE ZnC₂O_{4.2}H₂O.

One liter H₂O dissolves 0.0057 gm. ZnC₂O₄ at 9.76°, 0.0064 gm. at 17.92° and 0.00715 gm. at 26.15°. (Kohlrausch, 1908.)

SOLUBILITY OF ZINC OXALATE IN AQUEOUS AMMONIUM OXALATE SOLUTIONS AT 25°. (Kunschert, 1904.)

Mol. Normal (NH₄)₂C₂O₄ 0.05 0.10 0.15 0.20 0.25 Mol. Zn per Liter 0.0022 0.0055 0.01055 0.0174 0.0257

Complex ammonia zinc oxalates are formed. When more than 0.15 free oxalate is present the complex has the formula, $(NH_4)_4Zn(C_2O_4)_3$. In the more dilute solutions it has the composition, $(NH_4)_2Zn(C_2O_4)_2$.

ZINC Ammonium PHOSPHATE ZnNH4PO4.

One liter sat. solution in water contains 0.0136 gm. $ZnNH_4PO_4$ at 10.5° and 0.0145 gm. at 17.5°. (Artmann, 1915.)

ZINC SULFATE ZnSO4.

SOLUBILITY IN WATER. (Cohen, 1900; at 50°; Callender and Barnes, 1897; Etard, 1894; Poggiale, 1843; Mulder.)

t°.	Gms. ZnSO ₄	per 100 Gms		t°.	Gms. ZnSO ₄ p	er 100 Gms.	
t ·.	Solution.	. Water. Phase.		•	Solution.	Water.	Phase.
- 5	28.21	39.30	ZnSO _{4.7} H ₂ O	25	38.94	63.74	ZnSO4.6H3O
0.1	29.54	41.93	*	39	41.22	70.06	6H ₂ O + .7H ₂ O
9.1	32 01	47 .09		50	43 · 45	76.84	ZnSO _{4.6} H ₂ O
15	33.81	50.88	•	70	47 · 5	88.7	$O_2H + O_2Ho$
25	36.67	57.90	**	8o	46.4	86.6	ZnSO ₄ .H ₂ O
35	39.98	66.61	•	90	45 - 5	83.7	44
39	41.21	70.05	•	100	44 · 7	80.8	64
- 5	32.00	47.08	ZnSO4.6H2O	120	41.7	71.5	44
οĪ	33.09	49.48	**	140	38.o	61.3	44
				160	33.0	49.3	84

The Sp. Gr. of a sat. sol. of ZnSO₄ in water at 15° is 1.452. (Greenish and Smith, 1902.) Data for the solubility of ZnSO₄ in water at high pressures are given by Cohen and Sinnige (1909, 1910.)

SOLUBILITY OF ZINC SULFATE — SODIUM SULFATE MIXTURES IN WATER. (Koppel, Gumpery, 1905.)

	Gm: Gm:	s. per 100 s. Solution.	Gms. per 100 Gms H ₂ O.		Mo M	ols. per 100 ols. H ₂ O.	Solid
ŧ°.	ZnSO4.	NasSO4.	ZnSC	NasSO4.	ZnSO₄.	Na ₂ SO	Phase.
0	27 . 19	5 · 33	40.30	7.90	4.50	10.1	ZnSO4.7H2O+
5	27.85	6.27	42.28	9.52	4.71	I.2I	Na ₂ SO ₄ .10H ₂ O
25	17.58	15.63	26.32	23.40	2.94	2.96	ZnNag(SO ₄) ₂₋₄ H ₂ O
30	17.66	15.58	26.47	23 - 44	2.95	2.97	44
35	17.59	15.70	26.36	23.52	2.94	2.98	4
40	17.75	15.72	26.68	23.63	2.98	2.99	•
10	29.16	7.16	45 · 79	11.24	5.11	1.42	1
15	30.70	6.40	48.81	10.17	5 · 45	1.29	
20	32.51	5 . 36	52.34	8.62	5.84	1.09	ZnNa2(SO4)2-4H2O
25	34.36	4.41	56.15	7 - 22	6.27	0.91	+ZnSO _{4.7} H ₄ O
30	36.28	3.80	60.55	6.34	6.76	0.81	
35	38.18	3 . 30	65.25	5 . 64	7 . 28	0.71	j
38	38.83	2.90	66.64	4.98	7 · 44	0.63	ZnNa ₂ (SO ₄) ₂ 4H ₂ O +ZnSO _{4.6} H ₂ O
40	38.26	2 . 78	64 . 89	4.71	7 - 24	0.60	+ZaSO _{4.6H+O}
10	27.91	7.92	43 - 50	12.34	4.85	1 . 565)
15	24.28	10.90	36.92	16.71	4.12	2.I2	7
20	19.14	14.58	28.77	21.95	3.21	2.79	ZnNag(SO ₄) ₃₋₄ H ₃ O +NagSO ₄₋ 10H ₃ O
25	13.31	19.94	19.93	29 .87	2.22	3.785	
30	6.96	27 . 75	10.67	42.51	1.19	5 · 39	J
35	5.61	30.03	8.72	46.61	0.971	5.91	ZnNas(SO4)24H4O
40	5.96	28.65	9.16	43.83	I .O2	5 · 555	+NasSO4

SOLUBILITY OF ZINC SULFATE IN AQUEOUS ETHYL ALCOHOL. (Schiff, 1861.)

Concentration of Alcohol 10 per cent 20 per cent 40 per cent Gms. ZnSO_{4.7}H₂O per 100 Gms. Solution 51.1 39 3.45

100 gms. abs. methyl alcohol dissolve 0.65 gm. ZnSO4 at 18°, 5.90 gms. ZnSO4.7H2O at 18°.

100 gms. 50 per cent methyl alcohol dissolve 15.7 gms. ZnSO.7H₂O at 18°. (de Bruyn, 1892.)
100 gms. glycerol dissolve 35 gms. zinc sulfate at 15.5°. (Ossendowski, 1907.)

ZINC SULFIDE ZnS.

One liter H₂O dissolves 70.6.10⁻⁶ mols. ZnS = 0.0069 gm. at 18°, determined by the conductivity method, assuming complete dissociation and hydrolysis.

(Weigel, 1906, 1907.)

ZINC SULFITE ZnSO2.2H2O.

100 gms. H₂O dissolve 0.16 gm. ZnSO₃.2H₂O.

(Houston and Trichborne, 1890.)

ZINC SULFONATES

SOLUBILITY IN WATER.

		Name.		Formula.	t°.	Gms. Anhy. Salt per 100 Gms. H ₂ O.	Authority.
Zinc	BN	Vaphthalene St	ulfonate	$(C_{10}H_7.SO_3)_2Z_{n.6}H_2O$	25	0.45	(Witt, 1915.)
Zinc	2-	-Phenanthrene		$(C_{14}H_{9}.SO_{3})_{2}Zn.6H_{2}O$	20	0.083	(Sandquist, '12.)
"	3.	- "	"	$(C_{14}H_{9}.SO_{2})_{2}Z_{n.4}H_{2}O$	20	0.19	"
"	10-	- "	4	$(C_1 H_0.SO_3)_2 Zn.6 H_2 O$	20	0.15	44

SOLUBILITY OF ZINC PHENOLSULFONATE, p (C₆H₄.OH.SO₂)₂Zn.8H₂O, IN AQUEOUS ALCOHOL SOLUTIONS AT 25°.

(Seidell, 1910.)

Wt. % C ₂ H ₅ OH in Solvent.	d_{20} of Sat. Sol.	Gms. (C _s H ₄ .OH SO ₂) ₂ Zn.8H ₂ O per roo Gms. Sat. Sol.	Wt. % C ₂ H ₄ OH in Solvent.	d ₂₆ of Sat. Sol.	Gms. (C ₄ H ₄ .OH SO ₂) ₂ Zn.8H ₂ O per 100 Gms. Sat. Sol.
0	1.185	39.8	8o	1.057	40.7
20	1.161	40.7	90	1.047	41.4
40	1.139	42. I	92.3	1.048	41.9
47		42.2	95	1.052	42.9
60	1.106	41.6	100	1.075	48.8

100 gms. H_2O dissolve 37 gms. $(C_6H_4.OH.SO_8)_2Zn.8H_2O$ at 15° and d_{15} of sat. sol. = 1.162. (Greenish and Smith, 1902.)

ZINC TARTRATE C.H.O.Zn.2H.O.

SOLUBILITY IN WATER. (Cantoni and Zachoder, 1905.)

t*.	Gms. C ₄ H ₄ O ₄ .Zn.2H ₂ O per 100 cc. Solution.	t*.	Gms. C4H4O4.Zn.2H4O per 100 cc. Solution.	t*.	Gms. C ₄ H ₄ O ₆ .Zn.2H ₂ O per roo cc. Solution.
15	0.019	40	0.060	65	. 0.100
20	0.022	45	0.073	70	0.088
25	0.036	50	0.087	75	0.078
30	0.041	55	0.116	80	0.059
35	0.055	60	0.104	85	0.041

ZINC VALERATE Zn(C4H3COO)2.2H2O.

SOLUBILITY OF ZINC VALERATE IN AQUEOUS ALCOHOL SOLUTIONS AT 25°. (Seidell, 1910.)

Wt. % C.H.OH in Solvent.	d ₂₆ of Sat. Sol.	Gms. Zn(C ₄ H _e - COO) ₂ .2H ₂ O per 100 Gms. Sat. Sol.	Wt. % C.H.OH in Solvent.	d _m of Sat. Sol.	Gms. Zn(C ₄ H ₂ - COO) ₃ .2H ₂ O per 100 Gms. Sat. Sol.
0	1.004	I.44	85	0.836	2.15
20	0.972	0.75	90	0.827	3.20
40	0.936	0.76	92.3	0.828	5.50
60	0.894	1.15	95-	0.832	8.8o
· 80	0.848	1.70	100	0.844	15.60

ZIRCONIUM SULFATE Zr(SO₄)₂.

SOLUBILITY OF ZIRCONIUM SULFATE IN AQUEOUS SULFURIC ACID AT 37.5°. (Hauser, 1907.)

Gms. per 100 Gms. Sat. Sol.		Solid Phase.	Gms. per 100	Gms. Sat. Sol.	Solid Phase.
ZrO ₂ .	SO ₃ .	Sond Phase.	ZrO ₂ .	SO ₃ .	Sond Phase.
19.5	25.46	Zr(SO ₄) ₂₋₄ H ₂ O	0.15	56.7	Zr(SO ₄) ₂₋₄ H ₂ O
18.8	27	"	0.50	57 · 5	44
16.2	29. I	44	2	59 · 5	44
9.6	32.3	"	4.4	61.4	" +Zr(SO ₄) ₂ .H ₂ SO ₄₋₃ H ₂ O
5.3	34.7	"	4 · 55	61.5	Zr(SO ₄) ₂ .H ₂ SO ₄ .3H ₂ O
3.51	36.01	u	3.33	63.8	44
1.03	38.2	44	1.80	64.2	66
0.46	39.8	44	1.12	66.8	64
0.33	42. I	**	0.96	68.4	46
0.14	46.8	"	0.10	81.5	Zr(SO ₄) ₂ .H ₂ SO ₄ .H ₂ O

Results at 22° show only slight differences from the above figures, hence, the temperature coefficient for this salt is quite small. In an earlier paper Hauser (1905) gives data for the basic sulfate $4ZrO_2.3SO_3.14H_2O$.

A quantitative determination of a solubility consists essentially of two operations; the preparation of the saturated solution and its subsequent analysis. In those cases where these steps are performed separately the method may, in general, be designated as the analytical and in those where they are combined, as the synthetic. In both cases, however, the consideration of first importance is the assurance that final equilibrium between solvent and solute has been reached. Since this point is that at which no further change occurs in the relation between the amount of the compound in solution and that remaining undissolved, the only criterion of saturation is the evidence that the concentration of the solution has not changed during a longer or shorter interval of time, during which those conditions which would tend to promote such a change have been allowed to operate.

Of the conditions which promote most effectively the attainment of equilibrium between a solute and a solvent, the provision for the intimate contact of the two is most important. In other words. only by the thorough mixing which agitation or effective stirring provides can the point of saturation be reached with certainty. the case of the reciprocal solubility of liquids, the point of equilibrium is usually attained within a much shorter period than in the case of solids dissolved in liquids. In the latter case, the necessary disintegration of the solid, incident to its solution in the liquid, is a process which is restricted to the surface layers of the solid, and, therefore, unless a large area, such as a finely divided state provides, is available, and unless that portion of the solvent which has acted upon a given surface area is repeatedly replaced by fresh solvent, the process of solution will be greatly retarded. It is quite evident that, although a solution in contact with even very finely divided solid may promptly become saturated in the immediate vicinity of the solid without stirring, the distribution of the dissolved material to the remainder of the solvent would depend upon diffusion, and since the rate at which this proceeds would diminish as the concentration differences became equalized, the process would take place

at a gradually diminishing rate. If the point of equilibrium is approached from supersaturation, the above remarks apply with equal effect, since only at the surface of the solid can the excess of salt leave the solution and, without other provision than diffusion for successively bringing the entire amount of the solution in contact with the solid, the deposition of the excess of dissolved material can occur only at a very slow rate. The importance of active and continuous agitation of the solid and solution, in effecting saturation, cannot, therefore, be too strongly emphasized. It may in fact be assumed that determinations of the solubility of solids, made without continuous agitation, are always open to the suspicion that the results do not represent the final equilibrium which such data are required to show.

Since solubility is a function of temperature, the accurate control of the temperature in making a solubility determination is another one of the indispensible requisites of accuracy. In general, it may be stated therefore, that every procedure designed for preparing a saturated solution must include provision for the accurate control of the temperature and for active and continuous agitation or stirring of the solution. In the case of the solubility of gases, which will be considered in a separate section, provision for the control of the pressure must also be made.

It is obvious that since the solubilities of various compounds differ, and that of one compound is affected by the presence of another, the accurate determination of this constant for a particular molecular species presupposes that only this one substance is present in the pure solvent. That is, accuracy of results demand that only pure compounds be involved in a given determination, consequently, no effort should be spared to make it certain that the highest possible purity of both solute and solvent has been attained.

Apparatus for the Determination of the Solubility of Solids by the Analytical Method. — The types of apparatus which have been developed for the preparation of saturated solutions of solids in liquids differ principally in respect to whether designed for multiple or single determinations at a given temperature. Examples of the first type are illustrated by Figs. 1 and 2.

It will be noted that in the one case (Fig. 1) the bottles containing the solutions are stationary and the liquid in each and in the constant temperature bath is kept in motion by means of revolving stirrers. This form of apparatus was used by Moody and Leyson (1908) for the determination of the solubility of lime in water and is particularly adapted for relatively slightly soluble compounds for

Fig. 1.

FIG. 2.

which rather large quantities of the saturated solution are needed for accurate analysis. There is also shown in the figure the provision for withdrawing the saturated solution through a filter within the inverted thistle tube. The stirrers in the bottles are fitted with mercury seals to prevent access of air containing carbon dioxide. Other features of the apparatus will be readily understood from the drawing.

A more common type of apparatus, designed for the simultaneous saturation of several solutions at the same temperature, is that illustrated by Fig. 2, in which the bottles containing the solutions are slowly rotated in the constant temperature bath. The form shown is that described by Noyes (1892). This type of apparatus has the advantage that the solid is, to a large extent, kept in suspension in the liquid and, therefore, offers the most favorable opportunity for continuous and uniform contact with the solution. Many examples of this form of apparatus, differing principally in size and in the direction of movement of the containers, are described in the literature.

Of the second type of apparatus, designed for a single determination at a given temperature, many varieties have been developed for particular conditions. Of these, the following examples have been selected as typical of this class and, it is hoped, will illustrate most of their desirable features. They are, in general, adaptations of earlier designs and it is not intended that the name given in connection with each is that of the investigator who deserves the credit for originating the type. The drawings will, for the most part, be readily understood without detailed explanations. The dimensions are not stated, since they can usually be varied to suit the needs of almost any problem.

In Fig. 3 is shown the apparatus used by the Earl of Berkeley (1904) for the very careful determinations of the solubility of inorganic salts in water. The features of particular interest in connection with it are, that the water bath itself is made to serve as the temperature regulating device, and the apparatus for withdrawing and simultaneously filtering the saturated solution is a combination of pipet and pycnometer. This was provided with ground glass caps for each end and the stem was accurately graduated. It was, of course, carefully standardized before use. The flexible iron plate shown was made of a disc from the receiver of a telephone. The apparatus was used for determinations at temperatures between 30° and 90° and the range of variations from the set temperature of the bath was, for 2-3 hour periods, within

about 0.2°. For the inner vessel containing the salt, the range was about 0.05°. At each temperature two determinations of density and solubility were mad; one on the solution obtained by stirring a supersaturated solution in contact with solid salt, and the other on the solution obtained by stirring an unsaturated solution in contact with an excess of salt.

In the case of determinations at the boiling point a special apparatus was required. Two forms, described by the Earl of Berkeley (1904), are shown in Figs. 4 and 5. The first was used for the less soluble salts and consisted of an outer tube A containing water and an inner tube B containing salt and solution. By boiling the water vigorously and closing the side tube C, steam passing through the tube D stirred the solution thoroughly and the temperature rose to the boiling point of the saturated solution and remained constant when saturation was attained. The second form of apparatus (Fig. 5) was devised for use with extremely

soluble salts. In these cases it was found that the larger quantity of steam required for thorough stirring dissolved so much salt that it was necessary to have a very large excess present. In this apparatus the steam was generated in a boiler A and conducted through the tube B to the bottom of the large test tube C containing the excess of salt and solution. The test tube was immersed in the oil

bath D which was vigorously stirred and maintained at a temperature close to that of the boiling point of the saturated solution. When the temperature of the oil bath was below the boiling point, salt dissolved; when above, salt was thrown out of solution. Considerable difficulty was experienced in filling the pycnometer with the saturated solution without introducing errors due to steam bubbles caused by the suction which was applied.

A comparatively simple form of the type of apparatus used by Victor Meyer in 1875 and modified by Reicher and van Deventer (1890) and by Goldschmidt (1895), is described by Hicks (1915) and shown in the accompanying Fig. 6. A glass cylinder A is closed at

each end with large one-hole rubber stoppers. The mixture of salt and solution is contained in this cylinder and is stirred by the rotation of the tube E which is provided with an enlargement at its lower end in which there are two small holes at H and I. The

stirrer rotates in the bearing formed by the hollow wooden cylinder J. The glass rod K carries a rubber stopper L which closes the filtering tube M, in which a platinum cone N supports an asbestos filter O. The siphon P connects the filtering tube with the flask R which is provided with an outlet through the small tube S. The apparatus is immersed in a constant temperature water bath W, to about the level shown After stirring the mixture of salt and solution a sufficient length of time for attainment of saturation, the undissolved salt is allowed to settle and the rubber stopper is withdrawn from the filter tube by means of the glass rod K. Suction is applied through the tube S to hasten the filtering and the clear solution collected, at the temperature of the bath, in the previously weighed flask R.

A similar apparatus was used by Walton and Judd (1911), for determination of the solubility of lead nitrate in pyridine. This is shown in Fig. 7 and consists of a glass test tube fitted with a stirrer which turns in a mercury seal, thus preventing loss of solvent by evaporation or the admission of moisture from the air. To take a sample of the saturated solution, the weighing tube A was introduced into the larger tube through a hole in the stopper. After reaching the temperature of the bath the stirrer was stopped, the end of the small tube B, which was covered with a piece of closely-woven muslin, was dipped below the surface of the solution and the liquid drawn into A by applying suction at C. The tube A was then removed, weighed and the contents analyzed.

An apparatus which was used by Donnan and White (1911), for the determination of equilibrium in the system palmitic acid and sodium palmitate is shown in Fig. 8. The stirring in this case was accomplished by means of a current of dry air, free of carbon dioxide. The apparatus consists of two parts, namely, an inner chamber E, where equilibrium was attained, and an outer case A, designed for isothermal filtration. The whole was immersed in a thermostat to the level W. A side tube B permitted connection with a filter pump. C is a weighing bottle to receive the filtered saturated solution and D a Gooch crucible provided with a paper filter. The cork, closing A, was covered with a plastic layer to render it air-tight. The tube at the lower end of E was closed with a ground glass plug F, the stem of which was enlarged to a small bulb at G and then drawn out to pass easily through H, leaving an air free outlet around it. The small cork I was used to support the stopper when lifted to allow the contents of E to flow down for filtration. The dry air by which the mixture was

stirred was drawn through K by applying suction at H. The preheating of this air was accomplished by drawing it through a thin spiral immersed in the thermostat. The connection between the equilibrium apparatus and preheater was made through a mercury seal, which permitted lifting the apparatus easily without damage to the fragile preheater permanently mounted in the bath. This apparatus provided for the recovery, separately, of

the saturated solution and undissolved solid. These authors also describe an improved electrically heated and controlled constant temperature bath.

Determinations at lower temperatures than can be constantly maintained with the aid of a water bath require special forms of apparatus which permit of temperature control under more or less restricted conditions. An apparatus of this type, which was used by Cohen and Inouye (1910), for determination of the solubility of phosphorus in carbon disulfide, is shown in Fig. 9, and is intended for the range of temperature between -10° and $+10^{\circ}$. The saturating vessel D consists of a glass cylinder to the upper

end of which is cemented a steel collar E, containing a deep channel. A mixture of litharge and glycerol was used as the cementing material for this purpose. The inverted steel cover F fits into the channel of this collar and the seal of the joint is effected, in the usual way, by means of a layer of mercury. The cover F is provided with a brass tube K, to which the pulley M is attached, and

is also pierced by the tightly cemented-in glass tube I. The glass rod G, containing on its lower end the three stirring wings HHH, is cemented into the brass tube K. The saturating vessel is, for stability, tightly fastened in a hole in a block of lead, S, contained in the Dewar cylinder A. An atmosphere of CO_2 in the saturating vessel is provided by introducing CO_2 under pressure through I and allowing the excess to escape through the mercury seal in E. After charging the apparatus, I is closed with a rubber tube and plug and the stirrers HHH set in motion. A Witt stirrer, O, keeps the contents of the bath in rapid circulation. Water is

used in the bath for temperatures above o°, and alcohol for those below o°. The regulation of the temperature is accomplished by addition of ice or solid CO₂ as found necessary and, therefore, requires very close attention on the part of the experimenter.

A novel and simple form of apparatus, which was used by Bahr (1911), for the determination of the solubility of thallium hydroxide at temperatures up to 40° is shown in Fig. 10. As will be seen, this

Fig. 11.

consists of a gas washing flask to the arms of which a Y tube provided with two stop-cocks is sealed. The inside walls of the apparatus were coated with hard paraffin and the required amounts of thallium hydroxide and water introduced. It was then immersed in a water bath and the contents stirred by means of a current of hydrogen, which entered as shown and with A and E closed, passed through D and out at B. When it was desired to

remove a sample of the solution for analysis, B and D were closed and the liquid forced through A into the pycnometer by means of gas pressure entering through E. For temperatures above 40°, the form of apparatus shown in Fig. 11 was used. In this case K represents a copper cylinder with double walls, of which the inner compartment G, contains concentrated salt solution which is stirred by a stream of air (not shown), and the outer compartment contains a layer of heating liquid H. The glass tube L contains the mixture of thallium hydroxide and water which is stirred by means of a current of hydrogen (not shown). When saturation is attained the tube A, of small bore and thick walls and provided with a small asbestos filter, is introduced and the saturated solution forced over into the receptacle B by pressure of hydrogen which enters at C. The heating liquid in B is the same as used in H. The following heating liquids with the boiling points shown were used: Allyl chloride, 46°; Ethylene chloride, 55°; Chloroform, 61°; Methyl alcohol, 66°: Benzene, 80°: Benzene-Toluene mixture, 91°: Water, 100°.

A somewhat more elaborate apparatus, in which the constant temperature is maintained by means of the vapor of a boiling liquid, is shown in Fig. 12. This apparatus was developed by Tyrer (1910) for the very accurate determination of the solubilities of anthraquinone, anthracene and phenanthraquinone in single and mixed organic solvents. The solvent with excess of the solute was placed in A and kept in constant agitation by means of the vertically acting stirrer shown. The tube A is surrounded by a bath of vapor which circulates through the cylinder B, condenses in C, and returns to the boiling flask M. When the solution is saturated it is allowed to settle, and the clear solution run out (by raising the tube D) into a small graduated flask E, which is maintained at the same temperature as the solution A. The temperature of the vapor bath is varied by changing the pressure under which the liquid in the flask M is boiling. For this purpose, the manostat P is provided. The temperature can, with care, be maintained constant to 0.01°. For this purpose the apparatus must be air-tight, the liquid in the boiling flask must not bump (which is entirely prevented by placing a layer of mercury in the flask) and a pure boiling liquid must be used.

Although illustrations of special forms of apparatus designed for securing equilibrium in solubility determinations could be extended far beyond the number given, it is believed that the principal features have been made clear and it will no doubt be possible to

adapt the devices here shown to many other cases for which accurate determinations of solubility may be desired.

Separation of Saturated Solution from Undissolved Solid. — The next point, after the establishment of equilibrium between the

FIG. 12.

solvent and solution, is the matter of successfully separating the saturated solution from the undissolved solid, preparatory to its analysis. There are, undoubtedly, many cases where this is a very serious problem. This is especially so for extremely soluble compounds, which yield viscous solutions as well as for those which do not readily settle out of the solution or cannot be removed by

ordinary filtration. It is, of course, necessary to maintain the mixture at the temperature at which saturation was obtained until the complete separation of the solution and solid has been effected. The operation should, therefore, as a general thing, be conducted in the same bath used for preparing the saturated solution. Several forms of apparatus designed for this purpose are shown in the diagrams given in the preceding pages. For solutions which can be readily separated from the undissolved solid, a graduated pipet to which a stem with a plug of filtering material can be attached and which is adapted to being easily weighed, is the most convenient.

Analysis of the Saturated Solution. — The weight of a known volume of the perfectly clear solution, that is, its specific gravity, should always be determined. This weighed quantity of solution, or a known dilution of it, furnishes a very convenient sample for the determination of the amount of dissolved compound.

In regard to the analysis, the procedure must be selected entirely on the basis of the number and character of the constituents present. In cases of the solubility of single non-volatile compounds, in solvents which can be more or less easily removed by volatilization, the plan in most general use is the evaporation of a known amount of the solution to dryness and weighing the residue. Special forms of apparatus to be used for this purpose have been proposed from time to time. These are, usually, vessels with tubular openings, arranged so that a current of dry air can be drawn over the surface of the heated sample.

In the case of solubility determinations in which the saturated solution contains more than one dissolved compound, the application of the usual gravimetric or volumetric procedures will, of course, be necessary. Where unique methods have been developed, a brief reference to them will usually be found in the body of the book, in connection with the results for the compound in question.

In certain cases, where the direct determination of the amount of the dissolved compound present in the solution would be very difficult or impossible, an indirect method can sometimes be used. For this purpose, a carefully weighed amount of the compound must be used, and, after the period of saturation, the undissolved residue is filtered off under conditions which reduce losses to a minimum and, after drying to its original condition, it is weighed, and the amount which has been dissolved found by subtracting the weight of the undissolved residue from the quantity originally present.

Identification of the Solid Phase. — As already mentioned in the chapter on General Information, the solubility of a compound, which is capable of existing in several forms, depends upon the particular form in which it is present in contact with the saturated solution. The question of the composition of the solid phase is, therefore, of considerable importance for the accurate determination of solubility. Although the identification of the solid phase presents little difficulty in the majority of cases, it sometimes happens that it can be made only by a more or less indirect method. The principal reason for this is that adhering solution can usually not be completely removed from the solid phase and the analysis, consequently, does not give direct information of the required accuracy.

A method which has been used considerably for identifying the solid phase is that known as the *residue method* of Schreinemakers (1893). It is based on the principal that if an analysis is made of both the saturated solution and of a mixture of the saturated solution and the solid phase of unknown composition, the two points so obtained, when plotted on a coördinate system, lie on a line connecting the point representing the composition of the solid phase and the solubility curve of the system. Similar analyses of another saturated solution of the system and of its mixture with the solid phase, locate another such line. Since all lines so determined when extended, pass through the point representing the composition of the solid phase, their intersection locates this point definitely.

Although the original description of this method by Schreinemakers was illustrated by an example drawn on the rectangular system of coördinates, it has been used much more extensively, in a practical way, in connection with the later developed equilateral triangular diagram. In this case, each apex of the triangle represents one of the three components of the system, each point on a leg, a mixture of two, and each point within the triangle a mixture of all three components. When a number of saturated solutions are analyzed, the results correspond to points on the solubility curve of the system. If now some of the solid phase with adhering solution is removed from each mixture and analyzed, it is evident that the results thus obtained, being for samples made up of both the saturated solution and the solid phase, give points which lie on lines connecting the two. The points on the curve for the pure saturated solutions being known, it is necessary only to connect them with the points for the corresponding mixtures of solid phase and saturated

solution, and to prolong the lines to their common intersection. This will necessarily be at the point representing the composition of the pure solid phase.

In applying the residue method of Schreinemakers, if the intersecting lines which fix the point corresponding to the solid phase meet at a very narrow angle, definite information as to its composition may not be secured. For cases such as these, a procedure to which the name "tell-tale" method was given by Kenrick (1908) and which is described in detail by Cameron and Bell (1010), has been developed. This method consists in adding to the mixture a small amount of an entirely different compound which remains wholly in the solution. After equilibrium has been reached, a portion of the saturated solution and of the solid phase with adhering solution are analyzed, and the quantity of the added "tell-tale" compound in each determined. From the result, showing the concentration of the added compound in the saturated solution, and the amount of it found in the mixture of solid and solution, the quantity of solution in contact with the solid can be calculated. composition of the solution is also known, the difference between the composition of the solid plus solution and of the amount of solution known to be present, is the composition of the pure solid.

Transition Temperatures can frequently be accurately determined by relatively simple means, and since such data are useful in establishing fixed points on solubility curves they are valuable adjuncts to directly determined solubility data.

Synthetic Method. — The procedures which have, so far, been mentioned are all classed as analytical methods of solubility determination. In contradistinction to these is the equally useful reverse process, by which the solvent and solute are brought together in previously measured quantities and the temperature ascertained at which the solution is saturated. To this procedure the designation synthetic method of solubility determination has been applied. One of the earliest investigators to use this method extensively was Alexejeff (1886) and it is, therefore, frequently referred to as the Alexejeff synthetic method of solubility determination.

The synthetic method can, of course, be used both for the solubility of solids in liquids and for liquids in liquids, but it is in the latter case that it is of greatest service. Its points of superiority, particularly in the case of the reciprocal solubility of liquids, are that the upper limits of the determinations can be extended far beyond the boiling point temperature and are, in fact, limited only by the resistance of the glass to pressure or to the action of the

liquid. Only small quantities of the solute and solvent are required for a determination. It is applicable to compounds for which quantitative methods of analysis are not available or are of a tedious character. The mixtures, being contained in sealed tubes, are not subject to the action of constituents of the air, nor are losses, due to volatilization, to be feared. Although, in the case of solids, difficulties incident to the supersaturation, resulting from failure of the crystals to separate on cooling, are encountered, with liquids the point of saturation is made instantly and strikingly evident by the beginning of opalescence or clouding which occurs, and errors due to supersaturation are rarely encountered. A sure criterion that supersaturation does not occur rests on the observation of the temperature at which the cloudy solution again clears. If this temperature coincides with the temperature of the beginning of opalescence, it is certain that supersaturation has not occurred. The observation of the temperature of saturation can be repeated as often as desired, and the accuracy of the determination is ordinarily limited only by the care taken in making it.

The limitations of the method, aside from the supersaturation which may occur in the case of solids, are principally those resulting from the low temperature coefficients of solubility possessed by certain compounds, and which usually occur in the vicinity of maxima or minima of solubility curves. Although a "critical clouding" occurs in the vicinity of the so-called critical solution point, this possesses a characteristic appearance which is easily distinguishable from the clouding observed at the saturation point, and errors of observation due to it are not to be apprehended. In fact, it has been pointed out that supersaturation disappears at the critical point, and the synthetic method is ordinarily very accurate in the vicinity of the critical solution temperature.

Since, by the synthetic method the results are necessarily obtained under different pressures, this question has been given consideration from the theoretical and the practical side. Although it is possible that extremely high pressures would exert an influence, the conclusion appears justified that under ordinary conditions, in which pressures of 10 atmospheres are not exceeded, no notable effect would be produced. The solubility curves obtained by this method do not show any abnormalities due to this cause.

In the case of the determination of the solubility of solids by the synthetic method, the operation consists in preparing a mixture of a carefully determined amount of the solvent and of the solid, and subjecting it to gradually increasing temperature and to constant

agitation, while a continual observation of the changes taking place in the solid is made. When all but a few small crystals have dissolved, the change in temperature is regulated much more carefully and note is taken of the point at which the edges of these final crystals begin to change from sharp to rounded, or vice versa, or where the sizes of the particles visibly increase or diminish. Care must, of course, be taken not to allow the last portions of the solid to dissolve; otherwise, on cooling, considerable supersaturation may occur before the solid begins to separate from solution. The method is, naturally, most serviceable where the change in solubility with temperature is considerable, and where convenient methods for the direct analysis of the solution are not available.

The procedure of a determination in the case of the reciprocal solubility of liquids consists in introducing by means of capillary funnels weighed amounts of the two liquids into small glass tubes and sealing the ends. The amount of air space in the tubes should be kept low. Many convenient devices for weighing and introducing the liquids have been described. In the case of very volatile liquids it may be necessary to introduce them in thin walled bulbs. which can be broken after the tube containing the mixture has been sealed. The tube is then placed in a large beaker of water, or higher boiling liquid if necessary, and heat applied until the contents of the tube, on being shaken, become homogeneous. The temperature is then allowed to fall very slowly and an observation made, while the tube is constantly agitated, of the temperature of first appearance of opalescence. This observation can be repeated as many times as desired and the temperatures of appearance and disappearance of the clouding, which usually differ by only a few tenths of a degree, can be ascertained with certainty.

Since, by the synthetic method the data are for irregular intervals of temperature, in order to obtain results for a particular temperature it is necessary to plot the several determinations on coördinate paper and from the solubility curve so obtained, read the value for the temperature in question.

Freezing-point Method. — A modification of the synthetic method, which is applicable particularly to solutions which contain relatively large amounts of the dissolved compound, is that which consists in a determination of the freezing-point of the mixture. This point is, in fact, the temperature at which the separating solid compound is in equilibrium with the solution.

The difference between the freezing-point determination and the observation of the point of growth or diminution of a crystal in a

liquid is that, in the former, the establishment of equilibrium is recognized exclusively by the change of the thermometer. The solution is cooled gradually, during which the thermometer sinks slowly to a point below the freezing temperature. As soon as the first crystal appears, either spontaneously or by intentional introduction (seeding), the thermometer rises suddenly to the freezing-point and remains stationary for some time.

This method can, of course, be used in a large number of cases for the determination of solubility. Those portions of the solubility curves of salts in water for which ice is the solid phase, are practically always determined in this way and it may be said, in general, that for determinations made at low temperatures, the freezing-point method is to be selected whenever possible.

For the practical execution of the method the very well known apparatus of Beckmann is most convenient and satisfactory. The determinations must, of course, be made with all the refinements which have been developed for accurate freezing-point measurements.

The method has been used extensively for the discovery of addition compounds. Its use for this purpose is based upon the principle that if to a pure compound, A, a second, B, is added, the freezing-point of A is lowered; similarly the freezing-point of B is lowered by A, and the two descending curves thus obtained intersect at the eutectic. If, however, a compound, $A_x B_y$ is formed, this also acts as a pure substance and its freezing-point is lowered by either A or B. Hence the freezing-point lines do not meet at a single eutectic but exhibit in this case a maximum, the position of which indicates the composition of the compound.

Volume Change Method. — Still another method, which is a modification of the synthetic, is that designed to indicate the reciprocal solubility of liquids by a determination of the volume changes which occur when two relatively sparingly miscible liquids are shaken together in a closed vessel. The apparatus consists usually of a cylindrical receptacle which is provided with a constricted graduated section either at one end or near the middle. Such volumes of liquids are chosen that the meniscus separating them lies in the constricted graduated tube. The determination consists in superimposing measured volumes of each liquid and noting the position of the meniscus before and after a period of shaking at constant temperature. From the increase or decrease of volume of the two layers, as estimated from the change in position of the meniscus, the reciprocal solubility of the two liquids is calculated. It is to be

noted, however, that the solubility of liquids is in practically all cases reciprocal, and without an analysis of the two layers the true solubility can not usually be deduced.

Titration Method. — A special case of the reciprocal solubility of liquids is that representing equilibrium in ternary systems yielding two liquid layers. Such equilibria are usually determined by relatively simple titration procedures, but for the interpretation and description of the results, special terms have been developed and these require more or less detailed explanation.

When a third liquid is added to a mixture of two others which are miscible to only a slight extent, the added liquid, if soluble in each of the others, will distribute itself between the two and an equilibrium will be reached. If the two layers are then analyzed and the results plotted on coördinate paper, two points, corresponding to the two layers, will be obtained. If more of the third liquid is added, equilibrium will again be established after a short period of shaking and the analysis of the two layers, to which the designation conjugate layers has been given, will fix two more points when plotted on the coördinate paper. The process may be repeated until a considerable number of points have been obtained. When this has been done, it will always be found that these points are the locus of a smooth curve, to which the designation binodal curve has been given. If the pairs of points corresponding to the conjugate layers are connected, the lines so obtained are defined as tie lines. evident that with the continued addition of the third or consolute liquid, a point must finally be reached at which the resulting mixture will no longer separate into two conjugate layers, the tie lines successively determined as above described, will become shorter and shorter until finally the last one is reduced to the point corresponding to the homogeneous mixture of the three components. To this is given the name plait point.

Although for the above example a ternary system made up of three liquids has been taken, there are a large number of salts and other solid compounds which, when dissolved in mixtures of liquids of certain concentrations, cause the latter to separate into conjugate liquid layers. These systems have aroused much interest from time to time and considerable data for them are given in the literature. Since it is usually difficult and frequently impossible to analyze directly a homogeneous mixture of liquids, and thus determine the points on a binodal curve, a simple titration method for this purpose has come into general use. By means of this a homogeneous mixture of known amounts of two of the components is titrated with

the third just to the point of initial separation of the second layer, which is usually very sharply indicated by the appearance of clouding or opalescence. The procedure may also be reversed and the consolute liquid added just to the point of clearing of the cloudy mixture of the other two. By this plan the synthetically derived composition of one of the two conjugate layers and thus of one point on the binodal curve is known. The determination of the tie line and therefore, the identification of the corresponding point on the curve for the conjugate liquid, requires an additional experiment for its location. Several procedures for this purpose have been developed. They usually depend upon the determination of one or more constants of specially prepared pairs of conjugated liquids. such as their specific gravities or refractive indices. In the case of mixtures of which one member can be easily determined analytically, tie lines can be located by the quantitative determination of this member in pairs of conjugated liquids.

In general, the titration method for the determination of the solubility of liquids is applicable to many cases. The facts, that equilibrium is attained so promptly in liquids and that the evidence of the appearance of a second insoluble layer is usually so striking, make it of great value. Refinements have been introduced such as the addition of liquid or solid dyes to the mixture in order to facilitate the detection of the end point, and the development of particular forms of apparatus for measuring and weighing the liquids. The constituents of the mixtures are usually weighed but the volume relations and, therefore, the specific gravities can also be approximately estimated, by using graduated vessels for making the titrations, and measuring in them the volumes of the final mixtures. A very ingenious method for ascertaining indirectly the composition of the liquid mixtures in the case of the system naphthalene, acetone and water, is described on p. 444.

As a usual thing the temperature coefficients are not very great in the case of liquid mixtures and the very accurate control of the temperature is not imperative. When such control is necessary, however, the use of a thermostat does not seriously complicate the determination.

Distribution Coefficients. — As mentioned above, when a third compound is added to a mixture of two liquids which are relatively immiscible, it will dissolve to a certain extent in each and the composition of the two layers represent conjugate points on the binodal curve for the system. The results are, however, of interest from another point of view, namely that of the distribution of the com-

pound between the two solvents. This distribution coefficient is, in many cases, of considerable interest in connection with analytical methods based on shaking out procedures and also in connection with such problems as the molecular state of compounds in solution. their dissociation and other points of theoretical interest. Distribution coefficients have, therefore, been studied to a large extent and much data for them are available. In general, the determinations are made by relatively simple methods. The amount of the compound present in a definite amount of each layer, after equilibrium has been established by adequate agitation, is determined in any manner most convenient. If the total amount of solute is known, and that found in one layer, the amount in the other can, of course, be calculated by difference. The results are usually expressed on the volume basis, since it is the ratio of the amounts present in the same molecular state in equal volumes of the two layers which is a constant, independent of temperature and concentration.

It is evident that when the concentration at the saturation point is considered, the amount of the compound which enters each layer depends upon its solubility in the liquid, consequently the distribution coefficient is the relation of the solubilities of the dissolved substance in the two solvents. Variations from this, aside from changes in molecular state, etc., in one or the other solvent are due to such causes as the reciprocal solubility of the so-called immiscible solvents, which will, of course, be influenced by the presence of the dissolved compound, especially at the higher concentrations. Variations of the coefficient with temperature would result in cases where the solubilities of the compound in the two solvents do not change at the same rate with temperature.

Electrolytic Conductivity Method. — Of the physical properties which can be used for the determination of the concentration of a solution, such as specific gravity, refractive index, etc., the electrolytic conductivity is of particular value in the case of those very sparingly soluble compounds which yield solutions too dilute to be analyzed by gravimetric or volumetric methods. By its use the progress of the saturation can be followed without separating the undissolved solid from the solution, or even removing the portion used for the determination. The special electrical equipment which is required, however, and the need for water of exceptional purity and of vessels of particular qualities, restrict its general use.

The method of calculating the concentration from the conductivity is based on the assumption that at the very great dilutions

involved, complete dissociation occurs. Therefore, the limiting value to which the equivalent conductivity approaches at infinite dilution is, for practical purposes, attained, and $\Lambda = \Lambda_{\infty} = l_{\sigma} + l_{h}$, where l_{α} and l_{k} are the ionic conductivities of the anions and kations. These values are known for all the principally occurring ions. The observed specific conductivity κ is, however, connected with the equivalent conductivity and the concentration η by the equation $\Lambda = \frac{\kappa}{\eta}$, in which η represents the concentration in gram-equivalents per cubic centimeter. Rearrangement and substitution give $\eta = \frac{\kappa}{l_{\alpha} + l_{k}}$. From this equation the solubility of the substance under investigation is calculated by substituting the measured specific conductivity of the solution and the known values of the ionic conductivities.

The Solubility of Gases in Liquids. — When a gas and a liquid are intimately mixed by shaking, a definite amount of the gas will be dissolved by the liquid and, simultaneously, the vapor of the liquid will mix with the gas in the space above the liquid. The partial pressure of the liquid in the gas space is almost exactly the same as that of the pure liquid at the solution temperature, since the influence of the relatively slight amount of dissolved gas is insignificant in by far the most cases. The amount of gas which is dissolved depends both on the nature of the gas and of the liquid and is, furthermore, a function of the temperature, and pressure.

In regard to the influence of pressure, the absorption law of Henry holds for the most part, when the gas solubility is not too great. According to it, the amount of pure gas, which is taken up at constant temperature by a given amount of liquid is proportional to the pressure of the gas.

The temperature acts almost always in the sense that the solubility decreases as the temperature rises.

The solubilities of gases are usually expressed either in terms of the Bunsen "Absorption Coefficient" β , or the Ostwald "Solubility Expression" l. Definitions of these are given on p. 227.

The experimental methods for the determination of the solubility of gases vary according to the nature of the gas. For those which dissolve in relatively large amounts and can be analytically determined with accuracy, the saturated solution may be analyzed by ordinary quantitative methods. Thus, in the case of the solubility of sulfur dioxide in aqueous solutions of salts (see p. 706, results by Fox, 1902), the solutions were saturated by passing a stream of the

gas through them at atmospheric pressure and, when equilibrium was attained, a measured portion of the solution was withdrawn, transferred to an excess of standardized iodine solution and the excess of the latter titrated with thiosulfate. A gravimetric procedure was used by Christoff (1905) for the determination of the solubility of carbon dioxide in aqueous salt solutions. In this case the solutions were weighed before and after the passage of the gas through them and the increase in weight, after applying necessary corrections, taken to represent the solubility at the temperature of the experiment and at atmospheric pressure. The absorption flasks were of special shape and the gas was previously passed through a series of U tubes, containing the same aqueous solution, in order to prevent loss of water from the experimental solution which, otherwise, would have occurred.

In the great majority of cases, however, gas solubility is determined by a method based upon the measurement of the volume of the gas absorbed. The apparatus consists essentially of an absorption flask for the liquid, connected by means of a tube of small bore to a graduated buret in which the gas is measured above mercury, the level of which can be altered by raising or lowering a container connected with the buret by means of a rubber tube. Many forms of this apparatus have been described and the disadvantages of the earlier forms have gradually been remedied. A relatively simple form of this apparatus, but one which embodies the essential features required for accuracy, is that described by McDaniel (1911) for the determination of the solubility of methane, ethane and ethylene in a large number of organic solvents at various temperatures.

This apparatus is shown in Fig. 13. A is an ordinary gas buret and B an absorption pipet of the form first used by Ostwald. "The buret and pipet are connected by means of the glass capillary M sealed directly onto each, so that the whole forms one solid piece of glass apparatus without rubber or cement connections of any kind; thus any possibility of leaks from these extremely troublesome sources is entirely avoided. The whole apparatus is clamped solidly to a rigid support so that it can be taken up in the hands and shaken for the purpose of bringing the gas into intimate contact with the liquid. The pipet and buret are each provided with a three-way stopcock, C and D. These can be turned in such a way as to allow the gas to sweep out the air from the connecting capillary. By the same means the two vessels may also be connected directly with each other as well as separately with the outside air or source

of gas supply. The pipet and buret are each provided with a water jacket, P and Q. The temperature of each is regulated by means of the electrically heated coils K and L." These coils are of manganin wire and are connected in series. The rate of evolution of heat in the jackets was adjusted in the first place by varying the length of the manganin wire, until the temperature was the same in each jacket. Stirring was accomplished by blowing air through the tubes I and J. The differences in temperature between the pipet and buret were never greater than 0.1° .

In carrying out a determination by this method it is, of course, necessary that the solvent be completely free of dissolved air or other gas. This is perhaps the most important part of the determination and a special form of apparatus for the purpose is described by McDaniel (1911) and is shown in Fig. 14. "The liquid was boiled under diminished pressure in the flask C attached directly

to the lower opening of the pipet by means of the rubber stopper as shown in the figure. Connection with the air pump is made at D. During the boiling the lower opening of the inlet tube E is above the surface of the liquid in C, the stopcock B being closed. When the air has been completely expelled, the screw pinchcock F is closed while the air pump is still in operation. The flask C is now raised until the lower end of E reaches nearly to the bottom of the flask. The air pump is now connected at G and the cock H opened so as to make connection with the pipet. B is now opened and the inflow of air through D regulated by gradually opening F in such a manner that the liquid is very slowly forced up into the pipet. In this manner the liquid never comes into contact with the air under full atmospheric pressure but only under greatly diminished pressure. The absorption of air under these conditions can only be inappreciable, especially since the liquid in the flask remains perfectly quiet, and only the lower portion is used."

Having filled the pipet B, Fig. 13, with the air-free solvent as just described, "T is connected with the source of gas supply and the cocks C and D are turned in such a way as to allow the gas to sweep out the air from the capillary, M. The buret is then filled in the usual manner by lowering the leveling tube F, the cock D having been turned so as to connect T with E. Care is taken to keep the entering gas under a slight pressure by keeping the mercury level in F slightly above that in A. This prevents air from entering through any leaks in the train connecting the gas generator with the buret." The gas must be completely saturated with the vapor of the solvent and this, with other than aqueous solvents, may require, in addition to drawing it through some of the solvent in H, that a thin layer be placed in the buret and time allowed for it to saturate the gas sample.

"After again allowing the current of gas to flow through the capillary M for a short time the buret and pipet are connected with each other by turning the three-way cocks D and C in the proper direction. The determination of the amount of absorption is then made as follows: A portion of the gas is passed into the pipet by raising F and opening G, the displaced liquid being caught in a graduated cylinder. The cock C is closed and the gas and liquid in the pipet brought into intimate contact with each other by shaking the whole apparatus. C is now opened to allow gas to enter from the buret to replace that absorbed. This process is repeated until, on opening C, there is no further decrease in the volume of gas in A. The volume absorbed is found by subtracting from the original

volume of gas, the volume remaining in the buret plus the volume in the pipet. The volume of gas in the pipet is equal to the volume of liquid drawn off. The volume of liquid remaining is easily calculated from the known volume of the pipet. The absorption coefficient or 'solubility' is the ratio of the volume of gas absorbed, measured at the temperature of the experiment, to the volume of the saturated liquid. It may be reduced to the coefficient used by Bunsen by dividing by $(1 + \alpha t)$."

In the case of the majority of investigators who have used this method, particularly for determinations at high or low temperatures, the absorption pipet has been kept at the temperature of the experiment and the gas measuring buret at room temperature, the two being connected by means of a flexible capillary which permits the absorption pipet to be independently shaken. This arrangement makes it necessary, in calculating the absorption coefficients, to apply the usual corrections for temperature and vapor pressure to the volume of gas in the buret. This is a complication which in some cases causes uncertainties in regard to the accuracy of the results as finally calculated.

A somewhat more elaborate form of apparatus than that just described was developed by Drucker and Moles (1910) for determinations in cases where the solubility is very small. These authors give results for hydrogen and nitrogen in aqueous solutions of glycerol. The particular feature of the apparatus is that only about one-tenth the usual amount of solvent is employed and solubilities as low as only one-tenth that of nitrogen in water at 25° can be measured.

An apparatus designed for determinations at very high pressures, using a Caillet compression tube, is described by Sander (1911–12). It was used for determination of the solubility of carbon dioxide in water, alcohols, and other organic solvents. The principle involved is that the pure gas is first compressed above mercury in a graduated tube and the volumes corresponding to given pressures noted. Similar readings are then taken for the same gas after a small accurately measured amount of solvent has been introduced into the graduated tube. The difference between the two volumes at the same temperature and pressure, reduced to I kg. per sq. cm. and I cc. of liquid, represents the solubility of the gas in the given solvent.

Finally, attention should be called to the method of determination of gas solubility based on the principle that, for volatile solutes which obey the laws of Dalton and Henry, the amount which is carried away by an inert gas when known volumes are bubbled

through solutions of known strength of volatile solute, can be used to measure the comparative solubilities in solvents of different concentrations. An example of this method is the determination of the solubility of ammonia in aqueous salt solutions by Abegg and Riesenfeld (1902). The very ingenious apparatus consists of a generator for developing a stream of H₂ + O₂ from aqueous NaOH, by means of an electric current measured with the aid of a copper voltmeter, and the volume of gas thus determined. This was passed through a spiral in the vessel containing the ammonia solution of known concentration. The mixed gases passing out of this were received in a third vessel containing 5 cc. of 0.01 n HCl. Electrodes were provided in this vessel and, by means of conductivity measurements, the point determined at which all of the HCl became saturated with NH₂. Since the volume of the H₂ + O₂ required for this purpose was known, the partial pressure of the NH₃ in the mixture could be directly ascertained. Comparative determinations of the vapor pressure of the ammonia in water and a series of salt solutions made in this way were calculated to ammonia solubilities on the basis of the relation that, for two solutions of equal ammonia content, the ammonia pressure is reciprocally proportional to the solubility of the ammonia in them.

```
Alexejew, Wladimir. (Alexejeff.)
(1886) Wied Ann. Physik., 28, 305, 338.
Allen, E. T. and White, W. P.
Abbott, G. A. and Bray, W. C.
   (1909) J.Am.Chem.Soc., 31, 729-763.
Abe, Ryuji.
   (1911) Mem.Coll.Sci.Eng. (Kyoto),
                                                         (1909) Am. Jour. Sci. [4], 27, 1.
  3, 212.
(1911) J.Tok.Chem.Soc., 32, 980.
(1911–12) Mem.Coll.Sci.Eng.
                                                      Altschul.
                                                         (1896) Monatsh.Chem., 17, 575.
                                                      Alluard.
                                                         (1864) Compt.rend., 59, 500.
(1865) Liebig's Ann., 133, 292.
   (Kyoto), 3, 13.
(1912) J.Tok.Chem.Soc., 33, 1087.
                                                       Amadori, M.
Abegg, R.
   (1903) Z.Elektrochem., 9, 550.
                                                         (1912) Atti accad.Lincei, 21, II, 67,
Abegg, R. and Cox, A. J.
                                                                        184, 769, 690.
                                                          (1912a) Atti accad.Lincei, 21, I, 467,
   (1903) Z.physik.Chem., 46, 11.
                                                         667-73.
(1913) Atti accad.Lincei, 22, I, 453,
Abegg, R. and Pick, H.
(1905) Ber., 38, 2573.
(1906) Z.anorg.Chem., 51, 1.
Abegg, R. and Riesenfeld, H.
                                                         609; 22, II, 333.
(1915) Atti accad.Lincei, 24, II, 204.
   (1902) Z.physik.Chem., 40, 84.
                                                       Amadori, M. and Becarelli, R.
                                                          (1912) Atti accad.Lincei, 21, II, 698.
Abegg, R. and Sherrill, M. S.
   Z.Elektrochem., 9, 550.
                                                       Amadori, M. and Pampanini, G.
Abegg, R. and Spencer.
(1905) Z.anorg.Chem., 46, 406.
Acree, S. F. and Slagle, E. A.
                                                          (1911) Atti accad.Lincei, 20, II, 475,
                                                                        572.
                                                       Amat, L.
                                                          (1887) Compt.rend., 105, 809.
   (1909) Am.Chem.Jour., 42, 135.
 Adriani, J. H.
                                                       Anderson.
(1900) Z.physik.Chem., 33, 453-476.
Ageno, F. and Valla, E.
                                                          (1888-89) Proc.Roy.Soc.(Edin.), 16,
                                                                        319.
   (1911) Atti accad.Lincei, 20, II, 706.
(1912) 1st.Ven.[VIII], 14, II, 331.
(1913) Gazz.chim.ital., 43, II, 168.
                                                       Andrae.
                                                          (1884) J.prakt.Chem. [2], 29, 456.
                                                       Andrews, L. W. and Ende, C. (1895) Z.physik.Chem., 17, 136.
d'Agostino, E.
   (1910) Rend.soc.chim.ital.(Roma), 2,
                                                       Anon.
                                                          (1903) Bull.soc.pharm. (Bordeaux),
II, 171.
Aignan, A. and Dugas, E.
                                                          p. 7.
(1904) Pharm.Jour.(Lond.), 72, 77.
   (1899) Compt.rend., 129, 643.
```

¹ The abbreviations of the names of the journals referred to in this index agree, for the most part, with those adopted for Chemical Abstracts. They will, therefore, be readily understood in all but a few cases. One abbreviation which differs from that used in Chemical Abstracts is Proc. k. Akad. Wet. (Amst.) instead of Proc. Acad. Sci. Amsterdam. It refers to the English edition of Verslag koninkl ke Akademie van Wetenschappen te Amsterdam.

Another abbreviation which has been adopted for the present index is the use of "Tables annuelles" for the French title, Tables annuelles de Constantes et Données Numerique de Chemie, de Physique et de Technologie, of the International Tables of Constants and Numerical Data published in Paris under the direction of the general secretary, Professor Marie. Of the three volumes which have been published, Vol. I contains data for the year 1910 and was issued in 1912; Vol. 2 is for the year 1911 and appeared in 1913; and Vol. 3 contains data for 1912 and was issued in 1914.

Anthony, C. G.	Auerbach, F. and Barschall, H.
(1916) Bonfort's Wine and Spirit	(1908) Arb.Kais.Gesundheitsamt.,
Circular, Apr. 10th.	27, 183–230.
von Antropoff, A.	(1908) Chem.Abs., 2, 1125.
(1909–10) Proc.Roy.Soc.(London),	Augé, B.
A 82. 474-82	(1890) Compt.rend., 110, 1139.
A 83, 474-83. Armstrong, H. E. and Eyre, J. V.	
(1910–11) Proc.Roy.Soc.(London),	Bagster, L. S.
	(1911) J.Chem.Soc.(Lond.), 99, 1218.
(A), 84, 123–135. (1913) Proc.Roy.Soc.(London), (A),	Bahr, F.
	(1911) Z.anorg.Chem., 71, 85.
_88, 234.	Bakunin, M. and Angrisani, T.
Armstrong, H. E., Eyre, J. V., Hussey, A. V., and Paddison, W. P.	(1915) Gazz.chim.ital., 45, I, 204.
A. V., and Paddison, W. P.	Ballo, Rezsö.
(1907) Proc.Roy.Soc.(London), (A),	(1910) Z.physik.Chem., 72, 439.
79, 564–576.	Baly.
Ange, see Augé.	(1900) Phil.Mag. [5], 49, 517.
d'Ans, see D'Ans.	Bancroft, W. D.
d'Anselme.	(1895) Phys. Rev., 3, 31, 122, 193,
(1903) Bull.soc.chim. [3], 29, 372.	205.
Archibald, E. H., Wilcox, W. G. and	Banthisch.
Buckley, B. G.	[1884] J.prakt.Chem., [2], 29, 54.
(1908) J.Am.Chem.Soc., 30, 747-60.	(1884) J.prakt.Chem., [2], 29, 54. Barker, T. V.
Arctowski, H.	(1908) J.Chem.Soc.(Lond.), 93, 15.
Arctowski, H. (1894) Z.anorg.Chem., 6, 267, 404.	Barnes, H. T.
(1895) Compt.rend., 121, 123.	(1900) J.Phys.Chem., 4, 19. Barnes, H. T. and Scott.
(1805-6) 7 anorg Chem 11 272-4	Barnes, H. T. and Scott.
(1895-6) Z.anorg.Chem., 11, 272-4. Armit, H. W.	(1898) I.Phys.Chem., 2, 542.
(1907) Jour.Hygiene, 7, 525-51.	Baroni, T. and Barlinetto, V.
	(1911) Giorn.farm.chim., 60, 193.
Arndt, K.	(1911) Giorn.farm.chim., 60, 193. (1911) " Tables annuelles," 2, 474.
(1907) Ber., 40, 427. Arndt, K. and Loewenstein, W.	Barre, M.
	(1909) Compt.rend., 148, 1604-6;
(1909) Z.Elektrochem., 15, 784-90.	149, 292.
Arrhenius, S.	(1910) Compt.rend., 150, 1321, 1599;
(1893) Ź.physik.Chem., 11, 396.	151, 871-3.
Arth, G. and Cretien.	(1911) Ann.chim.phys., [8], 24, 149-
(1906) Bull.soc.chim. [3], 35, 778.	167, 202, 210-223.
Artmann, P.	(1912) Bull.soc.chim. [4], 11, 646.
(1912-13) Z.anorg.Chem., 79, 333.	Basch.
(1915) Z.anal.Chem., 54, 90. Aschan, Ossian.	(1901) Dissertation(Berlin), p. 17.
Aschan, Ossian.	Baskov, A.
(1913) Chem.Ztg., 37, 1117.	(1913) Jour.Russ.Phys.Chem.Soc.,
Asselin, E.	45, 1608.
(1873) Compt.rend., 76, 884.	(1914) Ann.inst.Electrotechnique
(1873) Jahresber.Chem., 1063.	(Petrograd), 11, 143.
Aten, A. H. W.	(1915) J.Russ.Phys.Chem.Soc., 47,
(1905) Z.anorg.Chem., 47, 387.	1533-5.
(1905-06) Z.physik.Chem., 54, 86,	Bassett, H. Jr.
124.	(1908) Z.anorg.Chem., 59, 1-55.
(1909) Z.physik.Chem., 68, 41.	(1917) J.Chem.Soc.(Lond.), 111,
(1912) Proc.k.Akad.Wet. (Amst.), 15,	620-42.
572	Bassett, H. Jr. and Taylor, H. S.
(1912-13) Z.physik.Chem., 81, 268.	(1912) J.Chem.Soc.(Lond.), 101, 576.
(1912–13) Z.physik.Chem., 81, 268. (1913) Z.physik.Chem., 83, 443.	(1914) J.Chem.Soc.(Lond.), 105,
(1914) Z.physik.Chem., 86, 1-35.	1926-41.
(1914a) Z.physik.Chem., 88, 321–379.	Bathrick.
Atkins, W. R. G. and Werner, E. A.	(1896) J.Phys.Chem., 1, 159.
(1912) J.Chem.Soc.(Lond.), 101, 1167.	Battelli and Martinetti.
Aubert, A. B.	(1885) Atti accad.sci.Torino, 20,
(1902) J.Am.Chem.Soc., 24, 690.	844.
Auerbach, F.	Baubigny, H.
(1903) Z.anorg.Chem., 37, 353-77.	(1908) Bull.soc.chim. [4], 3, 772.
(1904) Z.Elektrochem., 10, 163.	(1908) Compt.rend., 146, 1263.
	\- //

Dand D	Delinesi T
Baud, E.	Bellucci, I.
(1909) Bull.soc.chim. [4], 5, 1022.	(1912) Atti accad.Lincei, [5], 21, II,
(1909) Compt.rend., 148, 96.	610.
(1912) Ann.chim.phys. [8], 27, 95-8.	(1913) Gazz.chim.ital., 43, I, 521.
(1912a) Bull.soc.chim. [4], 11, 948.	(1913) Gazz.chim.ital., 43, I, 521. Bellucci, I. and Grassi, L.
(1913a) Compt.rend., 156, 317.	(1913) Gazz.chim.ital., 43, II, 712.
(1913b) Ann.chim.phys. [8], 29, 131-	(1913) Atti accad.Lincei [5], 22, II,
136.	676.
(1913c) Bull.soc.chim. [4], 13, 436.	
	(1914) Gazz.chim.ital., 44, I, 559. Benedicks.
(1913) Ann.chim.phys., [8], 29, 131.	
Baud, E. and Gay, L.	(1900) Z.anorg.Chem., 22, 409. Bennett, R. R.
(1910) Compt.rend., 150, 1688.	Bennett, R. R.
(1911) Bull.soc.chim. [4], 9, 119.	(1912) Pharm. Jour. (Lond.), 89, 146.
Baum, Fritz.	Bergius, F.
(1899) Archiv. exp.Path.u Pharm.,	(1910) Z.physik.Chem., 72, 338-61.
42, 119–137.	Berju and Kosminiko.
Baume, G.	(1904) Landw. Vers. Sta., 60, 422.
(1911) J.chim.phys., 9, 245.	
(rore) Lohim phys. 70 076	Berkeley, Earl of.
(1914) J.chim.phys., 12, 216.	(1904) Phil.Trans.Roy.Soc.(Lond.),
Baume, G. and Borowski, W.	203, A., 189–215.
(1914) J.chim.phys., 12, 276-81.	Berkeley, Earl of, and Appleby, M. P. (1911) Proc.Roy.Soc., 85, 503.
Baume, G. and Georgitses, N.	(1911) Proc.Roy.Soc., 85, 503.
(1912) Compt.rend., 154, 650.	Bernardis, G. B.
(1014) Lchim.phys., 12, 250.	(1912) Atti accad.Lincei [5], 21, II,
Baume, G. and Germann, F. O.	442.
(1911) Compt.rend., 153, 569.	Bernfeld.
(1914) J.chim.phys., 12, 242.	(1898) Z.physik.Chem., 25, 72.
Baume, G. and Pamfil, G. P.	
(TOTT) Compt and TEO TOO	Bertheaume, J.
(1911) Compt.rend., 152, 1095.	(1910) Compt.rend., 150, 1064.
(1914) J.chim.phys., 12, 256.	Berthelot, M.
Baume, G. and Perrot, F. L.	(1904) Ann.chim.phys. [8], 3, 146.
(1911) Compt.rend., 152, 1763-5.	(1904) Compt.rend., 138, 1649.
(1014) L.Chim.DhVs., 12, 225.	Berthelot, M. and Jungfleisch.
Baume, G. and Tykociner, A.	(1872) Ann.chim.phys. [4], 26, 400.
(1914) J.chim.phys., 12, 270-5.	Bertrand.
Baup.	(1868) Monit.Scient. [3], 10, 477.
(1858) Ann.chim.phys. [3], 53, 468.	Beurath, A.
Baxter, G. P., Boylston, A. C. and Hub-	(1012-3) I prakt Chem [2] 87, 423
hard D A	(1912-3) J.prakt.Chem. [2], 87, 423. Bevade, J. (Bewad). (1884) Ber., 17, R., 406.
bard, R. A.	(1994) Don and D
(1906) J.Am.Chem.Soc., 28, 1343.	(1004) Dell., 17, R., 400.
Bechold and Ziegler.	(1005) Dull.80C.Chim. [2], 43, 123.
(1910) Z.angew.Chem., 23, 29.	Bianchini, G.
Beck, K.	(1914) Atti accad.Lincei [5], 23, I,
(1904) Z.physik.Chem., 48, 657. Beck, K. and Stegmüller, Ph.	609.
Beck, K. and Stegmüller, Ph.	Biginelli, P.
(1910) Arb.Kais.Gesundheitsamt.,	(1908) Gazz.chim.ital., 38, I, 559-82.
34, 447.	Billitzer, J.
(1911) Z.Elektrochem., 17, 843-48.	Billitzer, J. (1902) Z.physik.Chem., 40, 535.
Beckmann, E. and Stock, A.	Biltz, W.
(1895) Z.physik.Chem., 17, 130.	(1002) 7 physik Chem 42 42
Rehand D	(1903) Z.physik.Chem., 43, 42. Biltz, W. and Marcus, E.
Behrend, R.	/corr / 7 Cham == -65
(1892) Z.physik.Chem., 10, 265.	(1911) Z.anorg.Chem., 71, 167.
(1893) Z.physik.Chem., 11, 466.	Biltz, W. and Wilke.
Bell.	(1906) Z.anorg.Chem., 48, 299.
(1867) Chem.News., 16, 69.	Birger, Carlson, see Carlson, Birger.
Bell, J. M.	Biron.
(1905) J. Phys. Chem., 0, 544.	(1899) J.Russ.Phys.Chem.Soc., 31,
(1905) J. Phys. Chem., 9, 544. (1911) J.Am.Chem.Soc., 33, 940.	
Bell, J. M. and Buckley, M. L.	Bissell, D. W. and James, C.
	(1916) J.Am.Chem.Soc., 38, 873.
(1912) J.Am.Chem.Soc., 34, 10. Bell, J. M. and Taber, W. C.	Rienfrome I I
(1007) I Dhim Cham II 607 0	Blanksma, J. J. (1910) Chem. Weekblad., 7, 418.
(1907) J.Phys.Chem., 11, 637–8. (1908) J.Phys.Chem., 12, 174.	(1910) Chem Wool-blad a car
	(1912) Chem.Weekblad., 9, 924-7.
C) <u>_</u>

	•
Blanksma, J. J.	Bohr, C.
(1913) Chem. Weekblad., 10, 136.	(1899) Wied.Ann.Physik. [3], 68,
(1914) Chem. Weekblad., 11, 28.	503.
Blarez.	(1910) Z.physik.Chem., 71, 47-50.
(1891) Compt.rend., 112, 434, 939,	Bohr, C. and Bock.
	(1891) Wied.Ann.Physik [2], 44,
Blarez and Deniges.	318.
(1887) Compt.rend., 104, 1847.	Boks.
Bodländer, G.	(1902) Dissertation, Amsterdam.
(1891) Z.physik.Chem., 7, 317, 361.	Bonner, W. D.
(1892) Z.physik.Chem., 9, 734.	(1910) J.Phys.Chem., 14, 738–789.
(1898) Z.physik.Chem., 27, 66.	Bonsdorff, W.
Bodilinder, G. and Eberlein, W.	(1904) Z.anorg.Chem., 41, 180. Bornwater, J. T. and Holleman, A. F.
(1903) Ber., 36, 3948. Bodländer, G. and Fittig, R.	(1912) Rec.trav.chim., 31, 230.
(1901-02) Z.physik.Chem., 39, 597-	Borodowski, W. and Bogojawlenski.
612.	(1904) J.Russ.Phys.Chem.Soc., 36,
Bodländer, G. and Storbeck.	_ 559-60.
(1902) Z.anorg.Chem., 31, 22, 460.	Botta.
Bödtker, E.	(1911) Zentralbl.Min.Geol., p. 123.
(1897) Z.physik.Chem., 22, 510, 570.	Böttger, W.
Boeke, H. E.	(1903) Z.physik.Chem., 46, 521-619.
(1907) Z.anorg.Chem., 50, 335.	(1906) Z.physik.Chem., 56, 83–94.
(1911) N. Jahr. Min., 1, 48, 61.	Boubnoff, N. and Guye, Ph. A.
(1911) Sitzber.k.Akad.Wiss. (Berlin),	(1911) J.chim.phys., 9, 304.
24, 632–8.	Bougault.
Böeseken, J.	(1903) J.pharm.chim. [6], 18, 116.
(1912) Rec.trav.chim., 31, 354–360.	Boulouch, R.
Böeseken, J. and Carriere.	(1902) Compt.rend., 135, 165.
(1915) Rec.trav.chim., 34, 181.	(1906) Compt.rend., 142, 1045. Bourgoin.
Böeseken, J. and Waterman, H.	(1874) Bull.soc.chim. [2], 21, 110.
(1911) Verslag.k.Akad.Wet.(Amst.),	(1878) Ann.chim.phys. [5], 13, 406;
20, 565. (1912) Proc.k.Akad.Wet.(Amst.), 14,	15, 165.
620.	(1884) Bull.soc.chim. [2], 42, 620.
Boericke, F.	Boutaric, A.
(1905) Z.Elektrochem., 11, 57.	(1911) Compt.rend., 153, 876-7.
Bogdan, P.	Bowen, N. L.
(1902-3) Ann.Sci.Univ.Jassy, 2, 47.	(1914) Am. Jour. Sci. [4], 38, 207–264.
(1905) Z.Elektrochem., 11, 825.	Bowen, N. L. and Anderson, Olaf.
(1906) Z.Elektrochem., 12, 490.	(1914) Am. Jour. Sci. [4], 37, 487.
Bogitch, B.	Boyle, Mary.
(1915) Compt.rend., 161, 790-1.	(1909) J.Chem.Soc.(Lond.), 95, 1696.
Bogojawlensky, A. and Winogradow, N.	Boyle, R. W.
(1907) Z.physik.Chem., 60, 433.	(1911) Phil.Mag. [6], 22, 840-854. Bradley, W. P. and Alexander, W. B.
(1916) Sitzber.Natur.Ges.Univ.Dor-	(1912) J.Am.Chem.Soc., 34, 17.
pat., 15, 230-37.	Bramley, A.
Bogojawiensky, A., Winogradow, N.	(1916) J.Chem.Soc.(Lond.), 109,
and Bogolubow.	469–96.
(1906) Sitzber.Natur.Ges. (Dorpat.),	Brand, H.
5.	(1911) Neues Jahrb.Min.Geol.(Beil.
(1916) Sitzber. Natur. Ges. (Dorpat.),	Bd.), 32, 627-700.
15, 216–29.	(1912) Zentralbl.Min.Geol.and Pal.,
Bogorodsky.	26-32.
(1894) J.Russ.Phys.Chem.Soc., 26,	(1913) Neues Jahrb.Min.Geol., I,
209.	9-27.
(1894) Chem. Centralbl., II, 514.	Brandan.
Bogousky.	(1869) Liebig's Ann., 151, 340.
(1905) J.Russ.Phys.Chem.Soc., 37,	Braun, L.
92. Böhling.	(1900) Z.physik.Chem., 33, 732. Brauner, B.
(1884) Z.anal.Chem., 23, 518.	(1898) J.Chem.Soc.(Lond.), 73, 955.
7	88

de Bruyn, C. A. Lobry. (1894) Rec.trav.chim., 13, 116, 150. (1899) Rec.trav.chim., 18, 87. Bray, Wm. C. (1905-06) Z.physik.Chem., 54, 569-608. Bray, W. C. and Connolly, E. L. (1900) Z.physik.Chem., 32, 63, 85, (1910) J.Am.Chem.Soc., 32, 937. (1911) J.Am.Chem.Soc., 33, 1485. Bray, W. C. and MacKay, G. M. T. (1910) J.Am.Chem.Soc., 32, 914, 92, 101. (1903) Rec.trav.chim., 22, 411. de Bruyn, C. A. Lobry, and van Eken-stein, W. A. (1899) Rec.trav.chim., 18, 150. 1207 Bray, Wm. C. and Winninghoff. (1900) Rec.trav.chim., 19, 7. Bubanovic, F.
(1913) Med.K.Vetenskapsakad.No-(1911) J.Am.Chem.Soc., 33, 1663. Breithaupt, J.

() Thèse, Univ. of Geneve., 38, belinst, 2, No. 33. (1913) Chem. Abs., 7, 2886. No. 446. Bube, Kurt. Briegleb. (1856) Liebig's Ann., 97, 95. Brinton, Paul H. M. P. (1910) Z.anal.Chem., 45, 525-96. Büchner, E. H. (1916) J.Am.Chem.Soc., 38, 2365. (1865) Sitzber.k.Akad.Wiss.(Wein), 52, 2, 644. (1905-06) Z.physik.Chem., 54, 665-Brissemoret, M. (1898) J. pharm.chim. [6], 7, 176-8. Brönsted, J. N. (1906) Z. physik. Chem., 55, 377. 88. Büchner, E. H. and Karsten, B. J. (1909) 7th Int. Congress Applied (1908-9) Proc.k.Akad.Wet.(Amst.), Chem., 10, 110.

(1911) Z.physik.Chem., 77, 132.

(1912) Z.physik.Chem., 80, 208, 214.

Brown, J. C.

(1907) Proc.Chem.Soc., 23, 233. 11, 504. Büchner, E. H. and Prins, Ada. (1912-13) Z.phys.Chem., 81, 113-120 Bugarszky, S. (1910) Z.physik.Chem., 71, 753. J.Chem. Soc.(Lond.), (1907) Bunsen, Robert.
(1877) "Gasometrische Methoden," 1826-31. Brown, O. W. 2nd Ed. (1898) J.Phys.Chem., 2, 51. Bunsen-Heurich. Browning and Hutchins. (1892) Z.physik.Chem., 9, 438. (1900) Z.anorg.Chem., 22, 380. Bylert, V. Bruner, L.) These, Amsterdam. (1898) Z.physik.Chem., 26, 147. Cabot, G. L. Bruner, L. and Zawadski, J., et al. (1909) Bull.Internat.acad.Sci. (1897) J.Soc.Chem.Ind., 16, 417. Cra-Cady, H. P. covie, [3], 9, A, 267-312, 377. (1910) Z.anorg.Chem., 67, 454-5. (1898) J.Phys.Chem., 2, 168, 206. (1910) Chem. Abs., 4, 980, 2758. Caille. Bruni, G. (1909) Compt.rend., 148, 1461. (1898) Gazz.chim.ital., 28, II, 508-Calcagni, G. 529. (1899) Atti accad.Lincei, [5], 8, II, (1912) Gazz.chim.ital., 42, II, 653, 661. (1912a) Atti accad.Lincei, [5], 21, II, 141. (1900) Gazz.chim.ital., 30, I, 25-35. Bruni, G. and Berti, P. Calcagni, G. and Mancini, G. (1910) Atti accad.Lincei, [5], 19, II, (1900) Gazz.chim.ital., 30, II, 324. Bruni, G. and Finzi, F. Calcagni, G. and Marotta, D. (1905) Gazz.chim.ital., 35, II, 111-(1912) Gazz.chim.ital., 42, II, 669-Bruni, G. and Gorni, F. 680. (1899) Atti accad.Lincei, [5], 8, II, 188. (1900) Atti accad.Lincei, [5], 9, II, 326. (1912) Atti accad.Lincei, [5], 21, II, 93, 243, 284. (1913) Gazz.chim.ital., 43, II, 380. (1913) Atti accad.Lincei, [5], 22, II, Bruni, G. and Meneghini. (1909) Z.anorg.Chem., 64, 193. (1910) Gazz.chim.ital., 40, I, 682. 373, 443 de Bruyn, C. A. Lobry. (1890) Rec.trav.chim., 9, 188. (1892) Z.physik.Chem., 10, 782-789. (1892) Rec.trav.chim., 11, 29, 112-(1914) Gazz.chim.ital., 44, I, 487. Callender and Barnes. (1897) Proc.Roy.Soc., 62, 149. Calvert, H. T. (1901) Z.physik.Chem., 38, 521-540. 156.

Calzolari, F.	Cantoni, H. and Zachoder.
(1912) Gazz.chim.ital., 42, II, 85–92.	(1905) Bull.soc.chim., [3], 33, 747.
() Acc.sc.med.e.nat.di Ferora,	Cap and Garot.
85, 150. Cambi, L.	(1854) J.pharm.chim., [3], 26, 81. Capin, J.
(1912) Atti accad.Lincei, [5], 21, I,	(1912) Pharm.Jour.(Lond.), 88, 65,
776, 791.	from (1911) Bull.soc.
(1912) Atti accad.Lincei, [5], 21, II,	pharm. (Bordeaux), 414. Carlinfanti, E. and Levi-Malvano, M.
839. Cambi, L. and Speroni, G.	(1909) Gazz.chim.ital., 39, II, 353-
(1915) Atti accad.Lincei, [5], 24, I,	75·
736.	Carlson, Birger.
Cameron, F. K.	(1910) Klason-Festschrift, 247-66
(1898) J.Phys.Chem., 2, 413.	(Stockholm). (1910) "Tables annuelles," 1, 379.
(1901) J.Phys.Chem., 5, 556. Cameron, F. K. and Bell, J. M.	Carnelly.
(1905) J.Am.Chem.Soc., 27, 1512.	(1873) Liebig's Ann., 166, (116?),
(1906) J.Am.Chem.Soc., 28, 1220,	155.
1222. (1906a) J.Phys.Chem., 10, 210.	(1873) J.Chem.Soc.(Lond.), [2], 11,
(1907) J.Phys.Chem., 11, 363.	Carnelly and Thomson.
(1907) J.Phys.Chem., 11, 363. (1910) J.Am.Chem.Soc., 32, 869.	(1888) J.Chem.Soc.(Lond.), 53, 799.
Cameron, F. K., Bell, J. M., and Kobin-	Caro.
son, W. O. (1907) J.Phys.Chem., 11, 396–420.	(1874) Arch.Pharm., [3], 4, 145. Carpenter.
Cameron, F. K. and Breazeale, J. F.	(1886) J.Soc.Chem.Ind., 5, 286.
(1903) J.Phys.Chem., 7, 574.	Carr, F. H. and Pyman, F. L.
(1903) J.Phys.Chem., 7, 574. (1904) J.Phys.Chem., 8, 335.	(1914) J.Chem.Soc.(Lond.), 105,
Cameron, F. K. and Patten, H. E.	1602–11. Carrara and Minozzi.
(1911) J.Phys.Chem., 15, 67. Cameron, F. K. and Robinson, W. O.	(1807) Gazz.chim.ital., 27, II, 055,
(1907) J.Phys.Chem., 11, 577, 641,	(1897) Gazz.chim.ital., 27, II, 955. Carveth, H. R.
691.	(1898) J.Phys.Chem., 2, 213. Caspari, W. A.
(1907a) J.Phys.Chem., 11, 273-8. (1909) J.Phys.Chem., 13, 157, 251.	(1915) J.Chem.Soc.(Lond.), 107,
Cameron, F. K. and Seidell, A.	162–171.
(1901) Bull. No. 18, Division of Soils,	Cassuto, L.
U. S. Dept. Agr.	(1913) Nuovo cimento, 6, 1903.
(1901a) J.Phys.Chem., 5, 643. (1902) J.Phys.Chem., 6, 50.	Cavazzi, A. (1916) Gazz.chim.ital., 46, II, 122-35
Campetti, A.	(1917) Gazz.chim.ital., 47, II, 49-63.
(1901) Atti accad.Lincei., [5], 10, II,	Centnerszwer, M.
99–102.	(1899) Z.physik.Chem., 29, 715.
(1902) Z.physik.Chem., 41, 109, (abstract).	(1910) Z.physik.Chem., 72, 437.
(1917) Atti accad.sci.Torino, 52,	Centnerszwer, M. and Teletow, I. (1903) Z.Elektrochem., 9, 799.
114-21.	de Cesaris, P.
Campetti, A. and Del Grosso, C.	(1911) Atti accad.Lincei, [5], 20, I,
(1913) Nuovo cimento, [6], 6, 379-	597, 749.
417 (1913) Mem.R.accad.Sci.(Torino),	Chancel and Parmentier.
[II], 61, 187.	(1885) Compt.rend., 100, 473, 773.
(1911) "Tables annuelles," 2, 433.	Chandler, E. E. (1908) J.Am.Chem.Soc., 30, 696.
Cantoni, H. and Basadonna.	Chattaway, F. D. and Lambert, Wm. J.
(1906) Bull.soc.chim., [3], 35, 731. Cantoni, H. and Diotalevi, D.	(1915) J.Chem.Soc.(Lond.), 107,
(1905) Bull.soc.chim., [3], 33, 27-36.	1768, 1776.
Cantoni, H. and Goguelia, G.	Chavanne, G. and Vos, J.
(1905) Bull.soc.chim., [3], 33, 13.	(1914) Compt.rend., 158, 1582. Chikashigi, M.
Cantoni, H. and Jolkowsky. (1907) Bull.soc.chim. [4], 1, 1181.	(1911–12) Mem.Coll.Sci.Eng.(Kyoto),
Cantoni, H. and Passamanik.	3, 197-206.
(1905) Ann.chim.anal.appl., 10, 258.	(1911) Z.anorg.Chem., 72, 109.
—	^^

Obligation M. and Wassachi W.	de Caminale Cashanan
Chikashigi, M. and Yamanchi, Y.	de Coninck, Oechsner.
(1916) Mem.Coll.Sci.Kyoto, 1, 341–7. Chilesotti, A.	(1893) Compt.rend., 116, 758. (1894) Compt.rend., 118, 471.
(1908) Atti accad.Lincei, [5], 17, II,	(1900) Compt.rend., 130, 1304; 131,
475.	1219.
Christensen.	(1901) Bull.acad.roy.(Belgique), 350.
(1885) J.prakt.Chem., [2], 31, 166. Christoff, A.	(1903) Ann.chim.phys., [7], 28, 7.
Christoff, A.	(1903) Ann.chim.phys., [7], 28, 7. (1905) Chem.Centralbl., 76, II, 883.
(1905) Z.physik.Chem., 53, 321.	(1905) Bull.acad.roy.(Belgique), pp.
(1906) Z.physik.Chem., 55, 627.	257, 359.
(1912) Z.physik.Chem., 79, 459.	(1906) Compt.rend., 142, 571.
Christy, S. B.	Conroy.
(1901) Elektrochem.Ztschr., 7, 205.	(1898) J.Soc.Chem.Ind., 17, 104. Cooper, H. C., Shaw, R. I., and Loomis,
Chugaev, L. and Khlopin, W. (1914) Z.anorg.Chem., 86, 159.	N. E.
Cingolani, M.	(1909) Am.Chem.Jour., 42, 461.
(1908) Gazz.chim.ital., 38, I, 305.	(1909) Ber., 42, 3991.
(1908) Atti accad.Lincei., [5], 17, I,	Copisarow, M.
265.	(1915) Chem. News., 112, 247.
Ciusa, R. and Bernardi, A.	Coppadoro, A.
(1910) Gazz.chim.ital., 40, II, 159.	(1909) Gazz.chim.ital., 39, II, 625.
Classen, H.	(1911) Rend.soc.chim.ital., [2], 3a,
(1911) Z.Ver.Zuckerind.,61, 489–509.	207.
Cleve. (1866?) K. Svenska Vetenskaps-	(1912) Gazz.chim.ital., 42, I, 240. (1912) Atti accad.Lincei, [5], 21, II,
Akad.Handl.(Stockholm),	842.
10, 9, 7.	(1913) Gazz.chim.ital., 43, I, 138.
(1874) Bull.soc.chim., [2], 21, 344.	de Coppet, L. C.
(1885) Bull.soc.chim., [2], 43, 166.	(1872) Ann.chim.phys., [4], 25, 528,
Cleve, Astrid.	532.
(1902) Z.anorg.Chem., 32, 157.	(1883) Ann.chim.phys., [5], 30, 417.
Cloez.	(1899) Ann.chim.phys., [7], 16, 275.
(1903) Bull.soc.chim. [3], 29, 167.	Corliss, Harry P.
Clowes, F. and Biggs, J. W. H.	(1914) J.Phys.Chem., 18, 681.
(1904) J.Soc.Chem.Ind., 23, 358. Cocheret, D. H.	Cossa, A. (1868) Ber., 1, 138.
(1911) Dissertation, Leiden.	(1869) Z.anal.Chem., 8, 145.
(1911) "Tables Annuelles"2, 439,	Costachescu, N.
444•	(1910) Ann.Sci.Univ.(Jassy), 7, 1.
Cohen, Ernst.	Coste, J. H.
(1900) Z.physik.Chem., 34, 189, 622.	(1917) I.Soc.Chem.Ind., 36, 846–53.
(1903) Z.Elektrochem., 9, 433.	(1918) J.Soc.Chem.Ind., 37, 170.
(1909) Z.Elektrochem., 15, 600.	Cottrell, et al.
Cohen, E. and Inouye, K.	(1901) Sitzber.k.Akad.Wiss.(Berlin),
(1910) Z.physik.Chem., 72, 411-424.	p. 1035. Couch, J. F.
(1910) Chem. Weekblad., 7, 277. Cohen, E., Inouye, K. and Euwen, C.	(1917) Am. Jour. Pharm., 89, 243-51.
(1910) Z.physik.Chem., 75, 257.	Courtonne, H.
(1910) Z.physik.Chem., 75, 257. Cohen, E. and Sinnige, L. R.	(1877) Ann.chim.phys., [5], 12, 569.
(1910) Trans.FaradaySoc., 5, 269.	(1882) Compt.rend., 95, 922.
Cohn, E.	Cowper, R.
(1895) Z.physik.Chem., 18, 61.	(1882) J.Chem.Soc.(Lond.), 41, 254.
Colani, A.	Creighton, H. J. M., and Ward, W. H.
(1913) Compt.rend., 156, 1075, 1908.	(1915) J.Am.Chem.Soc., 37, 2333.
(1916) Bull.soc.chim., [4], 19, 405. (1916a) Compt.rend., 163, 123–5.	Croft.
(1917) Compt.rend., 165, 111-3,	(1842) Phil.Mag., [3], 21, 356.
234–6.	Crompton, H. and Walker, M.
Colson, A.	(1912) J.Chem.Soc.(Lond.), 101, 958.
(1907) Compt.rend., 145, 1167.	Crompton, H. and Whiteley, M. A.
Comanducci, E.	(1895) J.Chem.Soc.(Lond.), 67, 327.
(1912) Rend.soc.chim.ital., [2], 4,	Crookes, Wm.
313.	(1864) J.Chem.Soc.(Lond.), 2, 134.

Crowell, R. D. Dawson, H. M. and McCrae, J. (1901a) J.Chem.Soc. (Lond.), 79, 493. (1918) J.Am.Chem.Soc., 40, 455. J.Chem.Soc.(Lond.), 79, Cuno, E. (1901b) (1908) Ann.physik., [4], 25, 346–76. 1069. (1908-09) Ann.physik., [4], 28, 663-4. Dehn, Wm. M. (1917) J.Am.Chem.Soc., 39, 1400. (1917a) J.Am.Chem.Soc., 39, 1378. De Jong (see de Jong). (1907) Ber.physik.Ges., 5, 735-8. Curtis, H. A. and Titus, E. Y. (1915) J.Phys.Chem., 19, 740. Delange, Leon.
(1908) Bull.soc.chim., [4], 3, 910-5. Curtius and Jay. (1889) J.prakt.Chem., [2], **39,** 39. Dahms, A Delepine. (1892) J.pharm.chim., [5], 25, 496. (1895) Bull.soc.chim., [3], 13, 353. (1895) Wied.Ann.Physik., **54**, 486–519. (1896) Wied.Ann.der Physik., **60**, 122. (1899) Ann.chim.phys., [7], 18, 140. Dakin, H. D., Janney, N. W. and Wakemann, A. J. (1908) Bull.soc.chim., [4], 3, 904. Demarcay. (1883) Compt.rend., 96, 1860. Demassieux, N. (1913) J.Biol.Chem., 14, 241. van Damm, W. and Donk, A. D. (1913) Compt.rend., 156, 892. (1914) Compt.rend., 158, 183, 702. (1911) Chem. Weekblad, 8, 848. Dancer. Denham, H. G. (1917) J.Chem.Soc.(Lond.), 111, 39. Derick, C. G. and Kamm, O. (1862) J.Chem.Soc.(Lond.), 15, 477. D'Àns, J (1908) Ber., 41, 1776–7. (1909) Z.anorg.Chem., 62, 129–167. (1916) J.Am.Chem.Soc., 38, 415. Dernby, K. G. (1918) Medd.k. Vetenkapsakad. Nobel (1909a) Z.anorg.Chem., 63, 225-9. (1909b) Z.anorg.Chem., 65, 228. inst., 3, No. 18. (1909c) Z.anorg.Chem., 61, 91-5. Derrien. (1913) Z.anorg. Chem., 80, 235. (1900) Compt.rend., 130, 722. D'Ans, J. and Fritsche, O. (1909) Z.anorg.Chem., 65, 231. D'Ans, J. and Schreiner, O. Deszathy. (1893) Monatsh.Chem., 14, 249. De Visser, L. E. O. (1910) Z.anorg.Chem., 67, 437. (1898) Řec.trav.chim., 17, 182, 346. (1910a) Z.physik.Chem., 75, 95-107. D'Ans, J., Shepherd, L. D'Arey and Gunther, P. Dewey, F. P. (1910) J.Am.Chem.Soc., 32, 318. Dhar, N. and Datta, K. (1906) Z.anorg.Chem., 49, 356-61. D'Ans, J. and Siegler, R. (1913) Z.Elektrochem., 19, 584. Diacon. (1913) Z.physik.Chem., 82, 35-44. Davidsohn, J. and Wrage, W. (1866) Jahrsber.Chem., 61. Dibbits. (1915) Chem.Rev.Fett.Harz.Ind., 22, (1874) Z.anal.Chem., 1**3,** 139. 9-14. (1874) J.prakt.Chem., [2], 10, 417, Davis, H. S. (1916) J.Am.Chem.Soc., 38, 1169. Dawson, H. M. 439. Dieterich. (1890) Pharm.Centrh., 31, 395. (1901) J.Chem.Soc.(Lond.), 79, 242. Dietz. (1902) J.Chem.Soc.(Lond.) 81, 1086-(1898) Pharm.Ztg., 43, 290. 1097. (1904) J.Chem.Soc.(Lond.), **85**, 467. (1906) J.Chem.Soc.(Lond.), **89**, 1668. (1899) Z.anorg.Chem., 20, 260. (1899) Ber., 32, 95. (1900) Wiss.Abt.p.t.Reichanstalt, 3, (1908) J.Chem.Soc.(Lond.), 93, 1310. (1909) Z.physik.Chem., 69, 110-122. Dimroth, O. and Mason, F. A. J.Chem.Soc.(Lond.), (1909a) (1913) Liebig'sAnn., 399, 108. 370-81. (1909b) J.Chem.Soc.(Lond.), 95, 874. Dawson, H. M. and Gawler, R. Ditte, A. (1875) Compt.rend., 80, 1164. (1902) J.Chem.Soc.(Lond.), 81, 524. Dawson, H. M. and Goodson, E. E. (1877) Compt.rend., 85, 1069. (1881) Compt.rend., 92, 242, 718. (1904) J.Chem.Soc.(Lond.), 85, 796. Dawson, H. M. and Grant. (1901) J.Chem.Soc.(Lond.), 81, 512. Dawson, H. M. and McCrae, J. (1881) Ann.chim.phys., [5], 24, 226. 1896) Compt.rend., 123, 1282. 1897) Compt.rend., 124, (1898) Ann.chim.phys., [7], 14, 294. (1900) J.Chem.Soc.(Lond.), Dittmar. (1888) J.Soc.Chem.Ind., 7, 730. 1239-62.

District O	
Dittrich, C. (1899) Z.physik.Chem., 29, 485.	Duboin, A.
(1899) Z.physik.Chem., 29, 485.	(1906) Compt.rend., 142, 395, 573,
Ditz, H. and Kanhauser, F.	. 887, 1338.
(1916) Z.anorg.Chem., 98, 128–40.	Dubois and Pade.
Divers.	(1885) Bull.soc.chim., [2], 44.
(1870) J.Chem.Soc.(Lond.), 23, 171.	Dubowitz, H.
(1899) J.Chem.Soc.(Lond.), 75, 86.	(1911) Seifensieder Ztg., 38, 1164,
Doerinckel, F.	1208.
(1907) Metallurgie, 8, 201-9, 408.	() Vegnesceti lapok., 6, 397.
Dolezalek, F. and Finckli, K.	Dubrisay, René.
(1996) 7 and Cham at ago a	(total) Compt and Tractor
(1906) Z.anorg.Chem., 51, 320-7.	(1911) Compt.rend., 153, 1077.
Dolgolenko, W.	(1912) Compt.rend., 154, 431.
(1907) Jour. Russ. Phys. Chem. Soc. 39,	Dubroca, M.
841.	(1904) J.chim.phys., 2, 447.
Dolinski, J. H.	(1907) J.chim.phys., 5, 463–87.
(1905) Ber., 38, 1835.	Dukelski, M. P.
Donath, E.	(1907) J.chim.phys., 5, 463-87. Dukelski, M. P. (1906) Z.anorg.Chem., 50, 42.
(1911) Chem.Ztg., 35, 773-4.	(1907) Z.anorg.Chem., 53, 327-337;
Donk, A. D.	
(1908) Chem. Weekblad, 5, 529, 629,	54, 45-9. (1907) J.Russ.Phys.Chem.Soc., 39,
767.	975–88.
(1916) Chem. Weekblad, 13, 92-97.	(1909) Z.anorg.Chem., 62, 114-8.
Donk, M. G.	Dunn.
(1905) Bull. No. 90, Bureau Chem.	(1882) Chem. News, 45, 272.
U. S. Dept. Agr.	Dunningham, A. C.
Donnan, F. G. and Burt, B. C.	(1912) J.Chem.Soc.(Lond.), 101,
(1903) J.Chem.Soc.(Lond.), 83, 335. Donnan, F. G. and Thomas, J. S.	431-43.
Donnan, F. G. and Thomas, I. S.	431-43. (1914) J.Chem.Soc.(Lond.), 105,
(1911) J.Chem.Soc.(Lond.), 99, 1788.	368-79, 733, 2630.
Donnan, F. G. and White, A. S.	Dunnington and Long.
(rorr) I Cham Son (Land) on 1660	
(1911) J.Chem.Soc.(Lond.), 99, 1669.	(1899) Am.Chem.Jour., 22, 217.
van Dorp, G. C. A.	Dunstan, W. R. and Umney, J. C.
(1910) Z.physik.Chem., 73, 284-289.	(1892) J.Chem.Soc.(Lond.), 61, 391.
(1911) Chem. Weekblad., 8, 269.	Dupre and Bialas.
(1912) 8th Internat.Cong.Appl.	(1903) Z.angew.Chem., 16, 55.
Chem., 22, 239.	Dutilh, H.
(1913-14) Z.physik.Chem., 86, 109.	(1912) Verh.k.Akad.Wet.(Amst.), [11]
Dott, D. B.	4, 60.
(1906) Pharm. Jour. (Lond.), 76, 345.	(1912) "Tables annuelles," 3, 336.
(1907) Pharm. Jour. (Lond.), 78, 79.	Ebelmen.
(1910) Pharm. Jour. (Lond.), 85, 795.	(1852) Liebig's.Ann., [3], 5, 189.
(1910) Pharm Jour (Lond.), 05, 795.	Eder.
(1912) Pharm. Jour. (Lond.), 88, 424.	
Doumer and Deraux.	(1876) Dingler polyt. J., 221, 89, 189.
(1895) J. pharm.chim., [6], 1, 50.	(1878) J.prakt.Chem., [2], 17, 45.
Doyer, J. W.	(1880) Sitzber.k.Akad.Wiss.(Wien),
(1890) Z.physik.Chem., 6, 481.	82, Abt. II, 1284.
Draper.	Efremov, N. N.
(1887) Chem.News., 55, 169.	(1912) Ann.Inst.Polytechnic (Petro-
Dreyer, F.	grad), 18, 391.
	(1913) J.Russ.Phys.Chem.Soc., 45,
(1913) Ann.Inst.Polyt.(Petrograd),	348-62.
20, 326.	(1915) Bull.acad.sci.Petrograd, 1309-
Dreyer, F. and Rotarski.	36.
(1905–06) Z.physik.Chem., 54, 356.	(1916) Bull.acad.sci.Petrograd, 21-46.
Driot.	
(1910) Compt.rend., 150, 1426.	Eggink, B. G.
Drucker, K.	(1908) Z.physik.Chem., 64, 492.
	Ehlert, H. and Hempel, W.
(1901) Z.anorg.Chem., 28, 362.	(1912) Z.Elektrochem., 18, 727.
(1912) Z.Elektrochem., 18, 246.	(1912) Z.Elektrochem., 18, 727. van Ekenstein, W. A. and de Bruyn,
(1912) Z.Elektrochem., 18, 246. Drucker, K. and Moles, E.	
(1912) Z.Elektrochem., 18, 246.	(1912) Z.Elektrochem., 18, 727. van Ekenstein, W. A. and de Bruyn,
(1912) Z.Elektrochem., 18, 246. Drucker, K. and Moles, E. (1910) Z.physik.Chem., 75, 405.	(1912) Z.Elektrochem., 18, 727. van Ekenstein, W. A. and de Bruyn, C. A. Lobry. (1896) Rec.trav.chim., 15, 225.
(1912) Z.Elektrochem., 18, 246. Drucker, K. and Moles, E.	(1912) Z.Elektrochem., 18, 727. van Ekenstein, W. A. and de Bruyn, C. A. Lobry.

Emich.	Fastert, C.
(1884) Monatsh.Chem., 3, 336.	(1912) Kali, [6], 454.
Emmerling. (1869) Liebig's Annalen, 150, 257.	(1912) Neue. Jahrb. Min. Geol. (Beil. Bd.), 33, 286.
von Ende, C. L.	Faucon, A.
(1901) Z.anorg.Chem., 26, 148.	(1909) Compt.rend., 148, 1189.
Engel.	(1910) Ann.chim.phys., [8], 19, 70-
(1886) Compt.rend., 102, 114.	_ 152.
(1887) Compt.rend., 104, 507, 913. (1888) Ann.chim.phys., [6], 13, 348-	Fauzer.
	(1888) Math.u.Natur.Wiss.Ber.(Un-
385. (1889) Ann.chim.phys., [6], 17, 347.	garn), 6, 154. de Fazi, R.
(1891) Bull.soc.chim., [3], 6, 17.	(1916) Gazz.chim.ital., 46, I. 345.
Enell.	(1916) Gazz.chim.ital., 46, I, 345. Fedotieff, P. P.
(1899) Pharm.Centralh., 38, 181.	(1904) Z.physik.Chem., 49, 168.
(1899) Z.anal.Chem., 38, 386.	(1910–11) Z.anorg.Chem., 69, 26.
Engfeldt, N. O.	(1911-12) Z.anorg.Chem., 73, 178.
(1913) Farmaceutisk Revy, No. 8. (1913) Apoth.Ztg., 28, 182.	Fedotieff, P. P. and Iljinsky.
(1913) Pharm. Jour. (Lond.). 00, 760.	(1913) Z.anorg.Chem., 80, 119. Fedotieff, P. P. and Koltunoff, J. (1914) Z.anorg.Chem., 85, 251.
(1913) Pharm. Jour. (Lond.), 90, 769. English, S. and Turner, W. E. S.	(1914) Z.anorg.Chem., 85, 251.
(1915) J.Chem.Soc.(Lond.), 107,	Feit, W. and Przibylla, K.
774-83.	(1909) Z.Kali, 3, 393-8. Fenton, H. J. H. (1898) J.Chem.Soc.(Lond.), 73, 479.
Enklaar, J. E.	Fenton, H. J. H.
(1901) Rec.trav.chim., 20, 183.	(1898) J.Chem.Soc.(Lond.), 73, 479. Ferchland.
Ennis, A. J. (1914) J.Chem.Soc.(Lond.), 105,	(1902) Z.anorg.Chem., 30, 133.
350-64.	Field.
Eppel.	(1859) J.Chem.Soc.(Lond.), 11, 6.
_ (1899) Dissertation, Heidelberg.	Filehne, Wm.
Erdmann.	(1907) Beitrage Chem.Physiol u.
(1893) Ber., 26, 2439.	Pathol., 10, 304.
Erdmann and Bedford.	Findlay, Alex.
(1904) Ber., 37, 1184. Etard.	(1901) J.Chem.Soc.(Lond.), 85, 403.
(1877) Compt.rend., 84, 1090.	Findlay, Alex. (1902) J.Chem.Soc.(Lond.), 81, 1217.
(1884) Compt.rend., 98 , 1434.	(1904) J.Chem.Soc.(Lond.), 85, 403
(1804) Annohim ohim [7] a F26	(1904) J.Chem.Soc.(Lond.), 85, 403. (1908) Chem.News, 96, 163.
570; 3, 275.	(1908) Analyst, 33, 391.
570; 3, 275. von Buler, H. (1003) Ber., 36, 2879, 3400.	Findlay, Alex. and Creighton, H. J. M.
(1903) Ber., 36 , 2879, 3400. (1904) Z.physik.Chem., 49 , 315.	(1910) J.Chem.Soc.(Lond.), 97, 536-
(1916) Z.physik.Chem., 97, 291.	6I.
von Euler, H. and Löwenhamn, B.	(1911) Biochem. Jour., 5, 294.
(1916) Z.Elektrochem., 22, 199–254.	Findlay, A. and Hickmans, E. M. (1907) J.Chem.Soc.(Lond.), 91, 905.
(1916) Chem. Abs., 10, 3021.	(1909) J.Chem.Soc.(Lond.), 95, 1389.
(1917) Chem.Abs., 11, 915.	Findlay, A. and Howell, O. R.
Euwes, P. C. J. (1909) Rec.trav.chim., 28, 298.	(1914) J. Chem. Soc. (Lond.), 105, 291-
Ewers, Erich.	98.
(1910) Milchwirschaft.Zentr., 6 (3?),	(1915) J.Chem.Soc.(Lond.), 107,
155.	282-4.
van Eyk, see Van Eyk.	Findlay, Alex. and King, G.
Fahrion, W. (1916) Chem.Umschau, 23, 34-5.	(1913) J.Chem.Soc.(Lond.), 103, 1170. (1914) J.Chem.Soc.(Lond.), 105, 1297.
Falciola, P.	
(1910) Gazz.chim.ital., 40, II, 218.	Findlay, Alex., Morgan, I. and Morris, I. P.
(1910) Seifens Ztg., 38, 506.	(1914) J.Chem.Soc.(Lond.), 105,
Farmer, R. C.	779-82.
(1901) J.Chem.Soc.(Lond.), 79, 865.	Findlay, Alex. and Shen, B.
(1903) J.Chem.Soc.(Lond.), 83, 1446.	(1911) J.Chem.Soc.(Lond.), 99, 1313.
Farmer, R. C. and Warth, F. J.	(1912) J.Chem.Soc.(Lond.), 101,
(1904) J.Chem.Soc.(Lond.), 85, 1713.	1459–68.

Findlay, Alex. and Williams, T. de Forcrand, R. (1913) J.Chem.Soc.(Lond.), 103, 636. Fischer, Emil. (1911) Compt.rend., 152, 1210. (1912) Compt.rend., 154, 133. (1906) Ber., 39, 4144-5. Fisher, V. M. 1912) Compt.rend., 155, 118, 1767. de Forcrand, and Fonzes-Diacon. (1914) J.Russ.Phys.Chem.Soc., 46, (1902) Ann.chim.phys., [7], 26, 253. Fisher, V. M. and Miloszewski, F. Formanek. (1887) Chem. Centralbl., 18, 270. Förster. (1910) Kosmos (Lemberg), 35, 538-(1892) Ber., 25. Foster, B. and Neville, H. A. D. (1910) Chem.Zentr., II, 1048. Flaschner, O. (1908) Z.physik.Chem., 62, 493-8. (1910) Proc.Chem.Soc., 26, 236. Fox, Chas. J. J. (1902) Z.physik.Chem., 41, 458. (1903) Z.anorg.Chem., 35, 130. (1909) J.Chem.Soc.(Lond.), 95, 878-(1909) J.Chem.Soc.(Lond.), 95, 668-85. Flaschner, O. and MacRwan, B.
(1908) J.Chem.Soc.(Lond.), 93, 1000.
Flaschner, O. and Rankin, I. G.
(1909) Sitzber, k.Akad. wiss.(Wien), 89. (1909a) Trans.Faraday Soc., 5, 68. Fox, Chas. J. J. and Gauge, A. J. H. (1910) J.Chem.Soc.(Lond.), 97, 377-118, IIb, 695-722. (1910) Monatsh.Chem., 31, 23-50. 85. Fraenckel, F. (1907) Z.anorg.Chem., 55, 223-32. Flawitzki, F. (1909) J.Russ.Phys.Chem.Soc., 41, Francois, M. 739. (1900) Compt.rend., 130, 1024 Flückiger. Frankforter, G. B. and Cohen, Lillian. (1887) Arch.Pharm., [3], 25, 542. (1914) J.Am.Chem.Soc., 36, 1103-34. (1916) J.Am.Chem.Soc., 38, 1139. Fock. (1897) Z.Kryst.Min., 28, 365, 397. Fokin, S. J. Frankforter, G. B. and Frary, F. C. (1913) J.Phys.Chem., 17, 402-473. Frankforter, G. B. and Temple, S. (1912) J.Russ.Phys.Chem.Soc., 44, 163. (1915) J.Am.Chem.Soc., 37, 2697-Fonda, G. (1910) Dissertation, Karlsruhe. 2716. Fontein, F. (1910) Z.physik.Chem., 73, 212-251. Fraps, G. S. (1901) Am.Chem.Jour., 27, 290. Fonzes-Diacon. (1895) J.pharm.chim., [6], 1, 59. Foote, H. W. Free, E. E. (1908) J.Am.Chem.Soc., 30, 1366-74. Fresenius. (1903) Am.Chem.Jour., 30, 341. (1903) Z.physik,Chem., 46, 81. (1846) Liebig's Annalen, **59,** 118. (1890) Z.anal.Chem., 29, 418. (1904) Am.Chem.Jour., 32, 252. (1907) Am.Chem.Jour., 37, 124. (1891) Z.anal.Chem., 30, 672. Freundlich, H. and Posnjak, E. (1910) J.Am.Chem.Soc., 32, 618-22. (1912) Z.physik.Chem., 79, 174. (1912) J.Am.Chem.Soc., 34, 880. Freundlich, H. and Richards, M. B. (1915) J.Am.Chem.Soc., 37, 290, (1912) Z.physik.Chem., 79, 692. 1200. Freundlich, H. and Seal, A. N. Foote, H. W. and Andrew, I. A. (1912) Z.Chem.Ind.Koll., 11, 258. (1905) Am.Chem.Jour., 34, 153, 165. Foote, H. W. and Chalker, W. C. Friedel. (1869) Liebig's Ann., 149, 96. (1908) Am.Chem.Jour., 39, 564, 567. Foote, H. W. and Haigh, F. L. Friedel and Gorgeu. (1911) J.Am.Chem.Soc., 33, 459.

Foote, H. W. and Levy. (1908) Compt.rend., 127, 590. Friedel and Lachburg. (1907) Am. Chem. Jour., 37, 119. Foote, H. W. and Saxon, Blair. (1869) Bull.soc.chim., [2], 12, 92. Friedländer, T. (1914) J.Am.Chem.Soc., 36, 1695. Foote, H. W. and Walden, P. T. (1901) Z.physik.Chem., 38, 389. Friedrich, K. (1907) Metallurgie, 4, 480, 671. (1908) Metallurgie, 5, 114. (1914) Metallurgie u.Erz., 11, 196– (1911) J.Am.Chem.Soc., 33, 1032. Forbes, G. S. (1911) J.Am.Chem.Soc., 33, 1937. de Forcrand, R. (1909) Compt.rend., 149, 719. Fronmüller. (1909a) Compt.rend., 149, 1344. (1878) Ber., 11, 92.

Fujimura, T.
(1914) Mem.Col.Sci.Kyoto, 1, 63-68.
Fulda, W. van Ginneken, P. J. H. Z. Ver. Zuckerind, 62, 421-39. Ginsberg, A. S. (1909) Arb. Kais. Gesundheitsamt, 30, (1906) Ann. Inst. Polyt. (Petrograd), 6, 81. 493 (1908) Z.anorg.Chem., 59, 346. (1909) Z.anorg.Chem., 61, 122. Giolitti, F. and Bucci, G. Funk, R. (1899) Z.anorg.Chem., 20, 412. (1900) Wiss. Abh.p.t. Reichanstalt, 3, (1905) Gazz.chim.ital., 35, II, 162-9. Giolitti, F. and Vecchiarelli, V. (1900a) Ber., 33, 3697. Furcht, M. and Lieben, A. (1905) Gazz.chim.ital., 35, II. 170. (1909) Sitzber.k.akad.Wiss (Wien), Giran, H. 118, IIb, 383. (1903) Jour.physique, [4], 2, 807. (1903a) Ann.chim.phys., [7], 30, 249. (1906) Compt.rend., 142, 398. (1908) Compt.rend., 146, 270, 1270. (1909) Monatsh.Chem., 30, 555. Fürth. (1888) Monatsh.Chem., 9, 311. Galeotti, G. (1913) Bull.soc.chim., [4], 13, 1050. (1906) Z.physiol.Chem., 48, 473. Galeotti, C. and Giampalmo, G. (1908) Z.Chem.Ind.Kolloide, 3, 118-Giraud, H. (1885) Bull.soc.chim., [2], 43, 552. von Girsewald, C. and Wolokitin, A. (1909) Ber., 42, 856-9. Giua, M. Garelli, F. (1894) Gazz.chim.ital., 24, II, 263. Garelli, F. and Calzolari, F. (1914) Ber., 47, 1718-23. (1915) Gazz.chim.ital., 45, I, 339, (1899) Gazz.chim.ital., 29, 264. 557; II, 32, 348. Garside. (1916) Gazz.chim.ital., 46, I, 289; II, (1875) Chem. News, 31, 245. 274. Gaudechon, H. (1916) Atti accad.Lincei, [5], 25, I, (1910) Compt.rend., 150, 467. 99-105. Gaus. Gladstone. (1854) J.Chem.Soc.(Lond.), 6, 11. Glauser, R. Th. (1910) Z.anorg.Chem., 66, 437. (1900) Z.anorg.Chem., 25, 236. Gay-Lussac. (1819) Ann.chim.phys., 11, 314. Gazarolli and Thurnbalk. Glowezynski, Z. (1914) Kolloidchem.Beihefte, 6, 147-(1881) Liebig's Ann., 209, 184. Geffcken, G. 176. Gniewosz, St. and Walfisz, Al. (1887) Z.physik.Chem., 1, 70. (1904) Z.physik.Chem., 49, 271, 296. Geiger. (1904) Dissertation (Berlin). Göckel. Gemsky, N. (1897) Chem.Zentralbl., II, 401. yanrb.Min.Ge Bd.), 36, 513-58. von Georgievics, G. (1913) Z.physik Godeffroy. (1914) Neues Jahrb.Min.Geol.(Beil. (1876) Ber., 9, 1337, 1369. (1886) Z.öster.Apoth.Ver., No. 9. Goldblum, H. and Stoffella, G. (1910) J.chim.phys., 8, 154. Goldblum, H. and Terlikowski, F. (1913) Z.physik.Chem., **84**, 358. (1913) Monatsh.Chem., **34**, 734. (1915) Z.physik.Chem., 90, 54. (1915) Monatsh.Chem., 36, 400. (1912) Bull.soc.chim., [4], 11, 146-Gerard. (1901) Ann.chim.anal., 6, 59. Goldschmidt, H. (1895) Z.physik.Chem., 17, 154. (1898) Z.physik.Chem., 25, 95. Gerardin. (1865) Ann.chim.phys., [4], 5, 129, Goldschmidt, H. and Cooper, H. C. 134, 147, 158. (1898) Z.physik.Chem., 26, 715 Gerlach. (1869) Z.anal.Chem., 8, 250, 281. (1889) Z.anal.Chem., 28, 473. Gibbs, H. D. Goldschmidt, H. and Eckardt, M. (1906) Z.physik.Chem., 56, 389. Goldschmidt, H. and Sunde, E. (1906) Z.physik.Chem., 56, 15. Goodwin, W. L. (1882) Ber., 15, 3039. van der Goot, Tetta Polak. (1908) Philippine J.Sci., 3, A 357. Gill, H. W. (1914) J.Chem.Met.Soc.(S. Africa), van Ginneken, P. J. H. (1913) Z.physik.Chem., 84, 419-450. Gordon, V. (1911) Verslag.k.Akad.Wet.(Amst.), (1895) Z.physik.Chem., 18, 1-16. 20, 337.

Guthrie, A.
(1901) J.Soc.Chem.Ind., 20, 224.
Haber, F. and van Ordt, G.
(1904) Z.anorg.Chem., 38, 387. Gore. (1870) Proc.Roy.Soc., 18, 158. Gori, G. (1913) Boll.chim.farm., 52, 891-5. (1915) Chem. Abs., 9, 1827. Hager. Gortner, R. A. (1914) Biochem. Bull., 3, 468-9. Gothe, E. (1875) Chem.Zentralbl., 135. (1903) "Handbuch de Pharmaceutischen Praxis." 3rd. Ed. (1915) Chem.Ztg., 39, 305-7. Gott, B. S. and Muir, M. P. Hahn. (1877) Wyandotte Silver Smelting (1888) J.Chem.Soc.(Lond.), 53, 138. Works. Grahmann, W.
(1913) Z.anorg.Chem., 81, 257-314.
Grant, A. J. and James, C.
(1917) J.Am.Chem.Soc., 39, 934.
Green, W. F. Halban, Hans v. (1913) Z.physik.Chem., 84, 129, 145. Halberstadt. (1884) Ber., 17, 2965. Hamberg. (1908) J.Phys.Chem., 12, 655-60. (1885) J. prakt.Chem., [2], 33, 433. Greenish, H. G. Hamberger, Anna. (1900) Pharm. Jour. (Lond.), 65, 190-(1906) Z.anorg.Chem., 50, 427. Hamburger, E. Greenish, H. G. and Smith, F. A. U. (1911) Arch.ges.Physiol.(Pfluger's), (1901) Pharm. Jour. (Lond.), 66, 774-143, 187. 777, 806-811. von Hammel, A. (1915) Z.physik.Chem., 90, 121. Hampshire, C. H. and Pratt, W. R. (1913) Pharm.Jour.(Lond.), 91, 140. (1902) Pharm. Jour. (Lond.), 68, 510-532 (1903) Pharm.Jour.(Lond.), 71, 881. Grehant, N. (1894) Compt.rend., 118, 594. Hanausek. (1887) J.pharm.chim., [5], 15, 509. Hantzsch, A Gröger, Max. Verh.d. Vers. Deutsch Ntf.u. (1911) Z.anorg.Chem., 70, 135. (1901) Groschuff, E. (1901) Ber., 34, 3318. (1903) Ber., 36, 1791, 4351. (1908) Z.anorg.Chem., 58, 102, 113. (1910) Chem.Weekblad., 7, 687. Artze, 150-2. (1902) Chem. Zentrbl., II, 922. (1911) Ber., 44, 2006. Hantzsch, A. and Sebalt, F. (1899) Z.physik.Chem., 30, 258-99. Hantzsch, A. and Vagt, A. (1901) Z.physik.Chem., 38, 705-742. Harkins, W. D. (1911) J.Am.Chem.Soc., 33, 1807-(1911) Z.Elektrochem., 17, 348. Grube, G. (1914) Z.Elektrochem., 20, 342. Gruttner, G. (1914) Ber., 47, 3259. 1827. Harkins, W. D. and Clark, Geo. L. (1915) J.Am.Chem.Soc., 37, 1816. Harkins, W. D. and Paine, H. M. (1916) J.Am.Chem.Soc., 38, 2709. Harkins, W. D. and Pearce, W. T. Gudzeit, F. (1908) Z.physiol.Chem., 56, 150-179. (1909) Z.physiol.Chem., 60, 27, 38-68. Guerini, B. (1912) Thesis, Lausanne. (1916) J.Am.Chem.Soc., 38, 2694, 2717. Guerin, G. Harkins, W. D. and Winninghoff, W. J. (1913) J.pharm.chim., [7], 7, 438. (1913) Pharm.Jour.(Lond.), 90, 769. (1911) J.Am.Chem.Soc., 33, 1827-36. Harrass, Paul. Guertler. (1903) Arch.internat.Pharmacodyamie (1904) Z.anorg.Chem., 40, 337. et Therapie, 11, 431-463. Guild, Ed. J. Hartley, H.
(1908) J.Chem.Soc.(Lond.), 93, 741-5.
Hartley, H. and Barrett, W. H. (1907) Pharm. Jour. (Lond.), 78, 357. Guntz, A. and Guntz, Jr., A. A. (1914) Ann.chim., 2, 101. J.Chem.Soc.(Lond.), (1909) Gurwitsch, L. 1178-85. (1914) Z.physik.Chem., 87, 329. Hartley, H., Drugman, J., Vlieland, C. Guthrie. A., and Bourdillon, Robt. (1875) Phil.Mag., [4], 49, 210. (1876) Phil.Mag., [5], 1, 366. (1878) Phil.Mag., [5], 6, 40. (1884) Phil.Mag., [5], 18, 30, 504. (1913) J.Chem.Soc.(Lond.), 103, 1749. Hartley, H., Jones, B. M. and Hutchinson, G. A. (1908) J.Chem.Soc.(Lond.), 93, 825.

77. H 77 1 (74	** ***
Hartley, H. and Thomas.	Herz, W.
(1906) J.Chem.Soc.(Lond.), 89, 1028. Haslam.	(1910c) Z.anorg.Chem., 67 , 365. (1911) Z.anorg.Chem., 70 , 70, 170.
(1886) Chem.News., 53, 87.	(1911a) Z.anorg.Chem., 71, 206.
Hasselblatt, M.	(1911b) Z.anorg.Chem., 72, 106.
(1913) Z.physik.Chem., 83, 1-39.	(1911-12) Z.anorg.Chem., 73, 274.
Hatcher, R. A.	(1917) Z.Elektrochem., 23, 23-4.
(1902) Am. Jour. Pharm., 74, 136.	Herz, W. and Anders, G.
Hatcher, W. H. and Skirrow, F. W.	(1907) Z.anorg.Chem., 52, 164-72,
(1917) J.Am.Chem.Soc., 39, 1939–1977.	271-8.
v. Hauer. (1858) J.prakt.Chem., 74, 433.	Herz, W. and Bulla, A.
Hauser, O.	(1909) Z.anorg.Chem., 63, 282-4. (1911) Z.anorg.Chem., 71, 255.
(1905) Z.anorg.Chem., 45, 194.	Herz, W. and Fischer, H.
(1907) Z.anorg.Chem., 54, 196–212.	(1904) Ber., 37, 4747.
Hauser, O. and Wirth, F.	_ (1905) Ber., 38, 1140.
(1908) Z.anal.Chem., 47, 389.	Herz, W. and Knoch.
(1909) J.prakt.Chem., [2] 79, 358-68.	(1904) Z.anorg.Chem., 41, 319.
(1909a) Z.angew.Chem., 22, 484.	(1905) Z.anorg.Chem., 45, 263-8.
(1912) Z.anorg.Chem., 78, 75-94. Heath, W. P.	Herz, W. and Kuhn, F.
(1915) Privately Printed, Atlanta,	(1908) Z.anorg.Chem., 58, 159-67. (1908) Z.anorg.Chem., 60, 152-62.
Ga.	Herz, W. and Kurzer, A.
Hehner, O. and Mitchell, C. A.	(1910) Z.Elektrochem., 16, 240, 869.
(1897) J.Am.Chem.Soc., 19, 40.	Herz, W. and Lewy.
van der Heide.	(190 <u>5)</u> Z.Elektrochem., 11, 818.
(1893) Z. physik.Chem., 12, 418.	Herz, W. and Muhs, G.
Heintz.	(1903) Ber., 36, 3717.
(1854) Pogg.Annalen, 92, 588.	Herz, W. and Paul, W.
Heise, G. W. (1912) J.Phys.Chem., 16, 373.	(1913) Z.anorg.Chem., 82, 431. (1914) Z.anorg.Chem., 85, 214.
Helff, A.	Herz, W. and Rathmann, W.
(1893) Z.physik.Chem., 12, 217.	(1913) Z.Elektrochem., 19, 553, 887.
Hellwig.	Herzfeld.
(1900) Z.anorg.Chem., 25, 166-183.	(1892) Z.Ver.Zuckerind., 181.
Hempel, W.	(1897) Z.Ver.Zuckerind., 34, 820.
(1901) Z.angew.Chem., 14, 865.	von Hevesy, Geo.
Hempel, W. and Tedesco, H. (1911) Z.angew.Chem., 24, 2469.	(1900) Z.physik.Chem., 73, 537. (1909) Z.Elektrochem., 15, 529.
Henderson, W. N. and Taylor, H. S.	(1911) Phys.Ztschr., 12, 1214.
(1916) J.Phys.Chem., 20, 670.	(1912) J.Phys.Chem., 16, 429.
Hendrixon, W. S.	von Hevesy, G. and Rona, E.
_ (1897) Z.anorg.Chem., 13, 73.	(1915) Z.physik.Chem., 80, 303.
Henkel, H.	Hicks, W. B.
(1905) Dissertation, Berlin.	(1915) J.Am.Chem.Soc., 37, 844.
(1912) Landolt & Bornstein's,	Hildebrand, J. H., Ellefson, E. T. and
"Tabellen," 4th Ed., 602.	Beebe, C. W.
Henry. (1884) Compt.rend., 99, 1157.	(1917) J.Am.Chem.Soc., 39, 2302. Hill, A. E.
Herold, J.	(1908) J.Am.Chem.Soc., 30, 68-74.
(1905) Z.Elektrochem, 11, 417.	(1917) J.Am.Chem.Soc., 39, 218-31.
Herrmann, Gottfried.	Hill, A. E. and Simmons, J. D.
_ (1911) Z.anorg.Chem., 71, 257-302.	(1909) J.Am.Chem.Soc., 31, 821-39. (1909) Z.physik.Chem., 67, 594-617.
Herz, W.	(1909) Z.physik.Chem., 67, 594-617.
(1898) Ber., 31, 2671.	Hill, A. E. and Zink, W. A. H.
(1900) Z.anorg.Chem., 25, 155.	(1909) J.Am.Chem.Soc., 31, 44. Hill, C. A. and Cocking, T. T.
(1902) Z.anorg.Chem., 30, 281. (1903) Z.anorg.Chem., 33, 355.	(1912) Pharm. Jour. (Lond.), 89, 155.
(1903) Z.anorg.Chem., 34, 205.	Hill, J. Rutherford.
(1905) Dissertation (Berlin).	(1900) Pharm. Jour. (Lond.), 64, 185.
(1910) Z.anorg.Chem., 68, 69, 165.	Hilpert, S.
(1910a) Z.anorg.Chem., 66, 93, 358.	(1916) Z.angew.Chem., 29, I, 57-9.
(1910b) Z.anorg.Chem., 65, 341-4.	(1916) Chem.Abs., 10, 1924.
. • 7	98
•	•

Hinrichsen, F. W. and Sachsel, E. Holleman, A. F. and Antusch, A. C. (1904-05) Z.physik.Chem., 50, 81-99. His, W. Jr. and Paul, T. (1900) Z.physiol.Chem., 31, 1-42, (1894) Rec.trav.chim., 13, 293 Holleman, A. F. and de Bruyn, B. R. (1900) Rec.trav.chim., 19, 83, 191, 64-78. Hissink, D. J. Holleman, A. F. and Caland, P. (1911) Ber., 44, 2506. Holleman, A. F., Hartogs, J. C., and (1900) Z.physik.Chem., 32, 557. Hitchcock, F. R. M. (1895) J.Am.Chem.Soc., 17, 529. van't Hoff, J. H. (1901) Sitzber.k.Akad.Wiss.(Berlin), van der Linden, T. (1911) Ber., 44, 705.
Holleman, A. F. and Huisinga, J.
(1908) Rec.trav.chim., 27, 275.
Holleman, Kohlrausch and Rose.
(1893) Z.physik.Chem., 12, 129, p. 1035. (1905) Z.anorg.Chem., 47, 247. (1912) "Untersuchungen über die Bildungsverhaltnisse der 241. Holleman, A. F. and van der Linden, T. Ozeanischen Salzablager-(1911) Rec.trav.chim., 30, 318. Holleman, A. F. and Pollak, J. J. ungen, inbesondere des Staasfurter Salzlagers." von J. H. van't Hoff et al (1910) Rec.trav.chim., 29, 429 Herausgegeben von H. Holleman, A. F. and Rinkes, I. J. (1911) Rec.trav.chim., 30, 55. Holleman, A. F. and Sluiter, C. H. (1906) Rec.trav.chim., 25, 212. Precht & E. Cohn. (Leipzig, 1912). van't Hoff, J. H. and Goldschmidt, H. (1895) Z.physik.Chem., 17, 508. Holleman, R. (1903) Z.physik.Chem., 43, 129-159. van't Hoff, J. H. and Meyerhoffer, W. (1898) Z.physik.Chem., 27, 75. (1905-06) Z.physik.Chem., 54, 98-(1899) Z.physik.Chem., 30, 64-88. HO. Holmberg, O. (1907) Z.anorg.Chem., 53, 83-134. Holt, A. and Bell, N. M. (1914) J.Chem.Soc.(Lond.), 105, 633. van't Hoff, J. H. and Kenrick, F. B. (1912) "Ozeanischen Salzablagerungen," pp. 37-40. Hoffmann, Fr. and Langbeck, K. (1905) Z.physik.Chem., 51, 303, 393, Holty, J. G. (1905) J.Phys.Chem., 9, 764. **Homfray, I. F.** (1910) J.Chem.Soc.(Lond.), 97, 1669. Hofmann, K. A., Höbold, K. and Quoos. (1911-12) Liebig's Ann., 386, 304-Hooper. Hofmann, K. A. and Höbold, K. (1882) Pharm.J.(Lond.), [3], 13, 258. (1911) Ber., 44, 1776. Hofmann, K. A., Kirmireuther, K. and Horiba, S. (1911-12) Mem.Coll.Sci.Eng.(Kyoto), Thal, A. 3, 63-78. (1914-16) Mem.Coll.Sci.(Kyoto), 1, (1910) Ber., 43, 188. Hofman, K. A., Roth, R., Höbold, K. 49-55. Horn, D. W. and Metzler, A. (1910) Ber., 43, 2628. Höglund, A. T. (1912) Z.Ver.Zuckerind., 1118–1127. (1907) Am.Chem.Jour., 37, 471. Horn, D. W. and Van Wagener. (1903) Am.Chem.Jour., 30, 347. Hoitsema, C. (1895) Z.physik.Chem., 17, 651. Houston and Trichborne. (1890) Brit.Med.Jour., 1063. (1898) Rec.trav.chim., 17, 310. Howe, Jas. L. (1894) J.Am.Chem.Soc., 16, 388. **Hudson**, C. S. (1904) J.Am.Chem.Soc., 26, 1072. (1908) J.Am.Chem.Soc., 30, 1767–83. (1898a) Z.physik.Chem., 27, 315. Holde, D. (1910) Z.Elektrochem., 16, 442. Holland, A. (1897) Ann.chim.anal., 2, 243. Hudson, C. S. and Yanovsky, E. Holleman, A. F. (1917) J.Am.Chem.Soc., 39, 1037. (1893) Z.physik.Chem., 12, 135. (1896) Rec.trav.chim., 15, 159. (1898) Rec.trav.chim., 17, 247, 324. (1910) Rec.trav.chim., 29, 396. (1913) Rec.trav.chim., 32, 136. (1914) Rec.trav.chim., 33, 6-29. Huecke. (1884) J.prakt.Chem., [2], 29, 49. Hüfner, G. (1895) Archiv.anat.u.physiol., 209-212. (1906-07) Z.physik.Chem., 57, 615-Holleman, A. F. and van den Arend, J. E. 622 (1909) Rec.trav.chim., 28, 411. (1907) Z.physik.Chem., 59, 416,

_-:-

Hüfner, G. and Kulz. Jaeger, F. M. and Menke, J. B. (1895) J.prakt.Chem., 28, 256. Hulett, G. A. (1912) Z.anorg.Chem., 75, 241-260. (1912) Proc.k.Akad.Wet.(Amst.), 14, (1901) Z.physik.Chem., 37, 406. Hulett, G. A. and Allen, L. E. 724. Jäenecke, E. (1908) Z.physik.Chem., 64, 343. (1902) J.Am.Chem.Soc., 24, 674. (1912) Z.physik.Chem., 80, 1. Jakowkin, A. A. Hunt. (1870) Am.Jour.Sci., [2], 40, 154. (1895) Z.physik.Chem., 18, 588. (1896) Z.physik.Chem., 20, 38. (1899) Z.physik.Chem., 29, 630. James, C. and Holden, H. C. Hilttig, Gustav, F. (1914) Z.physik.Chem., 87, 144. Illingworth, B. and Howard, A. (1884) Phil.Mag., [5], 18, 124. Imadsu, A. (1913) J.Am.Chem.Soc., 35, 559. James, C. and Pratt, L. A. (1911-12)Mem.Coll.Sci.Eng.(Ky-(1910) J.Am.Chem.Soc., 32, 873. James, C. and Robinson, J. E. <u>o</u>to), **3,** 257–63. Inglis, J. K. H. (1913) J.Am.Chem.Soc., 35, 754. James, C. and Whittemore, C. F. (1903) J.Chem.Soc.(Lond.), 83, 1010. Irving and Young. (1912) J.Am.Chem.Soc., 34, 1168. James, C., Whittemore, C. F. a (1888) J.Chem.Soc.(Lond.), 56, 344. James, C., Whittemore, C. F. a Holden, H. C. (1914) J.Am.Chem.Soc., 36, 1854. James, C. and Willand, P. S. Isaac, Florence. C. F. and (1908) J.Chem.Soc.(Lond.), 93, 398, 927. (1910) Proc. Roy. Soc. (Lond.), 84, A, 348. (1913) Proc.Roy.Soc.(Lond.), 88, 205. (1916) J.Am.Chem.Soc., 38, 1499. Jantsch, G. (1912) Z.anorg.Chem., 76, 321. van Itallie, E. J. (1908) Z.anorg.Chem., 60, 358-65. Jantsch, G. and Grünkraut, A. van Iterson-Rotgans, J. W. (1913) Chem. Weekblad., 10, 920-37. (1914) Z.physik. Chem., 87, 305. (1912-13) Z.anorg.Chem., 79, 309-Jaques, A. (1910) Trans.FaradaySoc., 5, 235. Iwaki, J. (1914) Mem.Coll.Sci.(Kyoto), 1, 81-8. Jarry, R. (1897) Compt.rend., 124, 288–91. Iwig and Hecht. (1899) Ann.chim.phys., [7], 17, 342. (1886) Liebig's Ann., 233, 167. Jellinek, K. Jackson, R. F. (1911) Z.anorg.Chem., 70, 86-134. 1914) J.Am.Chem.Soc., 36, 2350. Jensen, H. R. (1914) Bull.BureauStandards, 2, 331-(1913) Pharm. Jour. (Lond.), 90, 658-Jacobs, W. (1917) Chem. Weekblad., 14, 208-12. Jo, Inohiko. (1911) Mem.coll.sci.Eng.(Kyoto), 3. Jacobson, C. A. and Holmes, A. (1916) J.Biol.Chem., 25, 29-53. 41-9, 212. (1912) Tokyo Chem.Soc., 33, No. 7, Jaeger, A July. (1901) Z.anorg.Chem., 27, 25. Joannis, A. Jaeger, F. M. (1882) Ann.chim.phys., [5], 26, 489. (1906) Ann.chim.phys., [8], 7, 41. (1904) Z.Kryst.Min., 38, 583. (1905) Proc.k.Akad.Wet.(Amst.), 7, Tohnson. 665. (1886) Chem. News., 54, 75. (1906) Proc.k.Akad.Wet.(Amst.), 8, Johnston, J. 618. (1915) J.Am.Chem.Soc., 37, 2001-(1907) Z.Kryst.Min., 42, 236-76. 2020. (1907) Rec.trav.chim., 26, 329. (1908) Proc.k.Akad.Wet.(Amst.), 436. Johnston, J. and Williamson, E. D. (1916) J.Am.Chem.Soc., 38, 975-83. (1912) 8th Int.Cong.Appl.Chem., 2, Tolin. 139 Jaeger, F. M. and Doornbosch, H. J. D. (1889) Arch.anat.u.physiol., 262. (1912) Z.anorg.Chem., 75, 261. Jaeger, F. M. and van Klooster, H. S. Jones, B. M. (1908) J.Chem.Soc.(Lond.), 93, 1744. (1912) Z.anorg.Chem., 78, 245. Jones, Grinnel, and Hartman, M. L. (1915) J.Am.Chem.Soc., 37, 241. (1916) Trans.Am.Electrochem.Soc., Jaeger, F. M. and van Kregten, J. R. N. (1912) Proc.k.Akad.Wet.(Amst.), 14, 733. **30,** 295–326.

Kendall, J. (1912) Phil.Mag. [6], 23, 958. (1914) J.Am.Chem.Soc., 36, 1722. Jones, H. C. (1907) Carnegie Publication No. 60, Washington, D.C. (1914) J.Am.Chem.Soc., 36, 1722. (1914a) J.Am.Chem.Soc., 36, 1222. (1916) J.Am.Chem.Soc., 38, 1309. Kendall, J. and Booge, J. E. (1916) J.Am.Chem.Soc., 38, 1712. Kendall, J. and Carpenter, C. D. (1914) J.Am.Chem.Soc., 36, 2502. Kendall, J. and Gibbons, W. A. (1915) J.Am.Chem.Soc., 37, 149. Jones, H. O. (1907-98) Proc.Cambridge Phil.Soc., 14, 27-9. Jones, W. J. (1911) J.Chem.Soc.(Lond.), 99, 392. de Jong, A. W. K.
(1909) Rec.trav.chim., 28, 343. (1912) Rec.trav.chim., 31, 256. Keppish. Jörgensen. (1879) J.prakt.Chem., [2], 20, 195. (1884) J.prakt.Chem., [2], 30, 1. · (1888) Monatsh.Chem., 9, 589. Kernot, G., d'Agostino, E. and Pelle-(1890) J.prakt.Chem., [2], 42, 208. grino, M. (1908) Gazz.chim.ital., 38, I, 532-54. Kernot, G. and Pomilio, M. Toulin. (1873) Ann.chim.phys., [4], 30, 260. (1912) Rend.accad.sci.fis.nat.(Nap-Journiaux, M. (1912) Bull.soc.chim.(Paris), [4], 11, oli), [3], 17, 353-8. Ketner. 129, 516, 546-52. (1901-02) Z.physik.Chem., 39, 645. Keyes, D. B. and Hildebrand, J. H. Joyner, R. A. (1912) Z.anorg.Chem., 77, 108. (1917) J.Am.Chem.Soc., 39, 2129. Keyes, D. B. and James, C. Jungfleisch, E. (1912) Compt.rend., 155, 801. Jungfleisch, E. and Landrieu, Ph. (1914) J.Am.Chem.Soc., 36, 634. (1914) Ann.chim., 2, 1-56, 333. King, Chas. A. and Narracott, P. (1909) Analyst, 34, 436-8. King, H. and Orton, K. P. J. 1914a) Compt.rend., 158, 1306-11. Jürgens. (1911) J.Chem.Soc.(Lond.), 99, 1381. King, Harold and Pyman, F. L. (1914) J.Chem.Soc.(Lond.), 105, (1885) Jahresber.Chem., 1722. Just, G. (1901) Z.physik.Chem., 37, 342-367. Jüttner, F. 1238-59. (1901) Z.physik.Chem., 38, 56-75. Kachler, M. J. (1870) Bull.soc.chim., 13, 460. Kirschner, A. (1912) Ž.physik.Chem., 79, 247. Klaus. Kahlenberg, L. and Brewer, R. K. (1905) Phys.Ztschr., 6, 820. (1908) J.Phys.Chem., 12, 283-9 Klein, O. Kahlenberg, L. and Krauskopf, F. C. (1912) Z.anorg.Chem., 74, 158. (1908) J.Am.Chem.Soc., 30, 1104-15. Kahlenberg, L. and Wittich, W. J. (1909) J.Phys.Chem., 13, 421-5. Kleven. (1872) Chem.Centralbl., 434. Klobbie, E. A. Kahlukow, I. and Sachanow, A. (1897) Z.physik.Chem., 24, 623. (1909) J.Russ.Phys.Chem.Soc., 41, van Klooster, H. S. (1910-11) Z.anorg.Chem., 69, 122, Karandeeff, B. 135-57 (1909) Zentralbl. Min. Geol., p. 728. (1912-13) Z.anorg.Chem., 79, 223-9. (1910) Z.anorg.Chem., 68, 188. (1917) J.Phys.Chem., 21, 513-18. Karl, G. Klose, G. (1910) Z.anorg.Chem., 68, 57. (1907) Archiv.Internat.Pharmacody-Karplus. namie et Therapie, 17, (1907) Dissertation, Berlin. Landolt & Börnstein's "Tabellen" 4th Ed., p. 563. 459-63. Knietsch, R. (1901) Ber., 34, 4099. Karsten. Knopp. Ann.der Chem.u.Pharm. (1864-5)(1904) Z.physik.Chem., 48, 97-108. Suppl.Bd., 3, 170. Karsten, B. J. Knox, Joseph. (1907) Z.anorg.Chem., 53, 367. Katz, S. H. and James, C. (1909) J.Chem.Soc.(Lond.), 95, 1760. Kobayashi, M. (1913) J.Am.Chem.Soc., 35, 872. Mem.Coll.Sci.Eng.(Ky-(1911-12) Kendall, oto), 3, 218. (1911) Proc. Roy. Soc. (Lond.), A, 85, de Kock, A. C. (1904) Z.physik.Chem., 48, 131. 200-19.

Kofler, M.	Koppel, J. and Blumenthal, R.
(1913) Monatsh.Chem., 34, 389.	(1907) Z.anorg.Chem., 53, 228-67.
(1913) Sitzber.k.Akad.Wiss.(Wien)	Koppel, J. and Cahn, M. _ (1908) Z.anorg.Chem., 60, 53-112.
Abt., Ha, 122, 1473–80. Köhler.	Koppel-Gumpery.
(1879) Z.anal.Chem., 18, 242.	(1905) Z.physik.Chem., 52, 413.
Köhler.	Koppei, J. and Holtkamp, H.
(1897) Z.Ver.Zuckerind., 47, 447.	(1910) Z.anorg.Chem., 67, 274.
Kohlrausch, Fr. (1879) Wied.Ann., 1.	Koppel-Wetzel. (1905) Z.physik.Chem., 52, 395.
(1891) Ber., 24, 3561.	Korreng, E.
(1891) Wied.Ann., 44, 577. (1897) Sitzber.k.Akad.Wiss.(Berlin),	(1914) Neues Jahrb. Min. Geol. (Beil
	Bd.), 37, 51-124.
90.	(1915) Z.anorg.Chem., 91, 194.
(1903) Z.physik.Chem., 44, 197. (1904–05) Z.physik.Chem., 50, 355–6.	Krasnicki. (1887) Monatsh.Chem., 8, 597.
(1908) Z.physik.Chem., 64, 121-69.	Kremann, R.
Eouirausch, F. and Rose, F.	(1904) Monatsh.Chem., 25, 1242-
(1893) Z.physik.Chem., 12, 129, 135,	I 324.
241. Kohn, M.	(1905) Monatsh Chem., 26, 143.
	(1906) Monatsh.Chem., 27, 91-107, 125-80, 627.
(1909) Z.anorg.Chem., 63, 337-9. Kohn, M. and O'Brien.	(1907) Monatsh.Chem., 28, 8, 895,
(1898) J.Soc.Chem.Ind., 17, 100.	1125.
Kohn, M. and Klein, A.	(1908) Jahrber.k.geol.Reichsanstalt
(1912) Z.anorg.Chem., 77, 254. Kohnstamm and Cohn.	(Wien), 58 , 662.
(1808) Wied Ann., 65, 344.	(1909) "The Use of Thermic Analysis for the Detection of Chemical
(1898) Wied.Ann., 65, 344. Kohnstamm, Ph. and Timmermans, J.	Compounds," Sammlung
(1913) Proc.k.Akad.Wet.(Amst.), 1021.	Chem. u. ChemTechn. Vor-
Kolb.	träge, XIV, 6-7, pp. 213-288
(1872) Bull.soc.ind.Mulhouse, 222.	(F. Enke, Stuttgart).
de Kolossovsky, N.	(1910) Monatsh.Chem., 31, 843, 855. (1910a) Monatsh.Chem., 31, 275.
(1911) Bull.soc.chim.(Paris), [4], 9, 632-7.	(1911) Monatsh.Chem., 32, 600.
(1911) Bull.soc.chim.(Belg.), 25, 183,	(1911) Monatsh.Chem., 32, 609. () Sitzber.k.Akad.Wiss.(Wien),
235.	_ 120, IIb, 329.
Kolthoff, I. M.	Kremann, R. et al.
(1917) Chem.Weekblad., 14, 1081.	(1908) Monatsh.Chem., 29, 863-91. Kremann, R. and Borjanovics, V.
Konig.	(1916) Monatsh.Chem., 37, 59-84.
(1894) Monatsh.Chem., 15, 23.	Kremann, R., Daimer and Beunesch.
de Koninck, L. L. (1907) Bull.soc.chim.(Belg.), 21, 141.	(1911) Monatsh.Chem., 32, 620.
Konowalow, D.	Kremann, R. and Ehrlich.
(1898) Jour.Russ.Phys.Chem.Soc.,	(1908) Jahrber.k.geol.Reichsanstalt (Wien), 58 , 569.
[4], 30, 367.	Kremann, R. and Hofmeier, F.
(1898) Chem.Zentralbl., II, 659.	(1908) Monatsh.Chem., 29, 1111.
(1899a) Jour. Russ. Phys.Chem.Soc.,	(1910) Monatsh.Chem., 31, 201.
31, 910. (1899b) Jour.Russ.Phys.Chem.Soc.,	Kremann, R. and Hüttinger, K. (1908) Jahrber.k.Geol.Reichsanstalt
31, 985.	(Wien), 58 , 637.
(1900) Chem.Zentralbl., 1, 646.	Kremann, R. and Janetzky, E.
(1900b) Chem.Zentralbl., I, 938.	(1912) Monatsh.Chem., 33, 1055-62.
(1903) Ann.Phys.(Wied.), [4], 10, 375. Koopal, S. A.	Kremann, R. and Kerschbaum, F.
(1911) Dissertation, Leyden, p. 128.	(1907) Z.anorg.Chem., 56, 218-22. Kremann, R. and Klein, H.
(1911) "Tables annuelles," 2, 463.	(1913) Monatsh.Chem., 34, 1291.
Koppel, J.	Kremann, R. and Kropsch, R.
(1901-02) Z.physik.Chem., 42, 8.	(1914) Monatsh.Chem., 35, 561, 823,
(1904) Z.anorg.Chem., 41, 377.	841.
(1905) Z.physik.Chem., 52 , 405.	Kremann, R. and Noss, F.
(1906) Ber., 39, 3738,	(1912) Monatsh.Chem., 33, 1205.
8a	7 2

Kremann, R. and Rodemund, H. Kurnakov, H. and Kviot, I. (1914) Monatsh.Chem., 35, 1065-(1913) Ann.Inst.Polyt.(Petrograd), 1086. 20, 664. Kurnakov, N. S. and Solovev, V. (1914) Z.anorg.Chem., 86, 373. (1916) J.Russ.Phys.Chem.Soc., 48, Kremann, R. and Rodinis, O. Tays. N. S. and Wrzesnewsky.

J. B. (1906) Monatsh.Chem., 27, 125-180. Kremann, R. and Schoulz, R. (1912) Monatsh.Chem., 33, 1063, (1912) Z.anorg.Chem., 74, 89. 1081. (1912) Z.anorg. Chem., 74, 69.

Kurnakov, N. S. and Zemcznzny.
(1907) Z.anorg. Chem., 52, 186.

Küster, F. W.
(1890) Z.physik. Chem., 5, 601.
(1891) Z.physik. Chem., 8, 577.
(1895) Z.physik. Chem., 17, 357.

Küster, F. W. and Dahmer, Geo. Kremann, R. Wischo, F. and Paul, R. (1915) Monatsh.Chem., 36, 915. Kremann, R. and Zitek, A.
(1909) Monatsh.Chem., 30, 311-40. Kremers. (1852) Pogg.Ann., 85, 248. (1854) Pogg.Ann., 92, 497. (1905) Z.physik.Chem., 51, 240. Küster, F. W. and Heberlein, E. (1905) Z.anorg.Chem., 43, 56. Küster, F. W. and Kremann, R. (1855) Pogg.Ann., 94, 271; 95, 468. (1856) Pogg.Ann., 99, 47. (1856a)_Pogg.Ann., 97, 5. (1858) Pogg.Ann., 103, 57, 133, 165. (1858) Pogg.Ann., 104, 133. (1860) Pogg.Ann., 111, 60. Kreusler and Herzhold. (1904) Z.anorg.Chem., 41, 19. Küster and Thiel. (1899) Z.anorg.Chem., 21, 116. (1903) Z.anorg.Chem., 33, 139. Küster, F. W. and Würfel, Walter. (1884) Ber., 17, 34. Krug, W. H. and Cameron, F. K. (1900) J.Phys.Chem., 4, 188. Krug, W. H. and McElroy, K. P. (1904-5) Z.physik.Chem., 50, 70. (1892) J.Anal.Ch., 6, 184. van der Laan, F. H. (1907) Rec.trav.chim., 26, 29. Lachaud, M. and Lepierre, C. Krusemann, H. D. (1876) Ber., 9, 1467. Krüss, G. and Nilson, L. F. (1891) Bull.soc.chim., [3], 6, 230-5. Ladenburg, A. (1902) Ber., 35, 1256. (1887) Ber., 20, 1696. Kruyt, H. R. Ladenburg, A. and Doctor, G. (1899) Ber., 32, 50. Ladenburg, A. and Herz, W. (1908) Z.physik.Chem., 64, 513. (1908-09) Z.physik.Chem., 65, 497. (1912) Z.physik.Chem., 79, 667. Krym, V. (1898) Ber., 31, 937. Ladenburg, A. and Sobecki. (1910) Ber., 43, 2375. (1909) J.Russ.Phys.Chem.Soc., 382-5; Chem.Zentr., II, 681. Kulisch. Lai De, R. (1917) J.Chem.Soc.(Lond.), 111, 55. Lami, Pio. (1893) Monatsh.Chem., 14, 567. Kultascheff. (1908) Chem.Zentr., II, 755. (1903) Z.anorg.Chem., 35, 187. (1908) Boll.chim.farm., 47, 435-441. Kumpf. (1882) Wied.Ann.Beibl., 6, 276. Lamouroux, F. Kunheim and Zimmerman. (1899) Compt.rend., 128, 998. (1884) Dingler.polyt.J., 252, 478. Lamy. Kunschert, F.
(1904) Z.anorg.Chem., 41, 338.
Kuriloff, B. (1863) Ann.chim.phys., [3], **67**, 408. (1878) Ann.chim.phys., [5], **14**, 145. Landau, M. (1893) Monatsh.Chem., 14, 712. (1910) Z.physik.Chem., 73, 200-11. Landolt and Börnstein. (1897) Z.physik.Chem., 24, 441-467. (1897a) Z.physik.Chem., 23, 93, 547, 673 (1898) Z.physik.Chem., 25, 419-440. Kurnakov, N. S. and Efrenov, N. N. (1912) Physikalisch-Chemische Tabellen, 4th Ed. Langheld, K. and Oppmann, F. (1912) Jour.Russ.Phys.Chem.Soc., 44, 1992-2000. (1912) Ann.Inst.Polyt.(Petrograd), (1912) Ber., 45, 3753. Lassaigne. 18, 105. (1876) J.chim.med., 12, 177. Kurnakov, J., Krotkov, D. and Oksman, von Laszczynski, St. (1894) Ber., 27, 2285. Laurie, A. P. (1915) Jour. Russ. Phys. Chem. Soc., **47,** 558–88. (1912) Proc.Roy.Soc.(Edin.), 31, 388.

Lautz, H.
(1913) Z.physik.Chem., 84, 633.
Laws, B. G. and Sidgwick, N. V. Ley, H. and Heimbuchen. (1904) Z.Elektrochem., 10, 303. Ley, H. and Schaefer, K. (1911) J.Chem.Soc.(Lond.), 99, 2088. Leather, J. W. and Mukerji, J. M. (1906) Ber., 39, 1263. Lichty, D. M. (1913) Mem. Dept. Agr. (India), Chem. (1903) J.Am.Chem.Soc., 25, 474. Ser., 3, 177-204.

Leather, J. W. and Sen, J. N.

(1909) Mem.Dept.Agr.(India), Chem. Lidoff. (1893) Bull.soc.chim., [3], 10, 356. Lieben and Rossi. Ser., 1, 117-131. (1871) Liebig's Ann., 1**59, 60.** (1914) Mem. Dept. Agr. (India), Chem. Liebermann, C (1902) Ber., 35, 1094. Ser., 3, 205-34. (1903) Ber., 36, 180. Lebeau, P. Limbosch, H. (1906) Ann.chim.phys., [8], **9,** 482–4. 1911) Compt.rend., 152, 440. (1909) Bull.soc.chim.Belg., 23, 179-(1911) Compt. rend., 152, 440.

Lebedew, P.
(1911) Z.anorg. Chem., 70, 302, 316.

LeBlanc, M. and Novotny, K.
(1906) Z.anorg. Chem., 51, 181-201.

LeBlanc, M. and Noyes, A. A.
(1890) Z.physik. Chem., 6, 386.

LeBlanc, M. and Schmandt, W.
(1911) Z.physik. Chem., 77, 621-30. 200. Lincoln, A. T. (1900) J.Phys.Chem., 4, 176. (1904) J.Phys.Chem., 8, 251. van der Linden, T. (1912) Ber., 45, 237. (1916) Arch.Suikerind, 24, 1113–28. (1917) Chem.Abs., 11, 3122. Linebarger, C. E. Lecat. (1892) Am. Chem. Jour., 14, 380. (1909) These, Brussels. LeChatelier. (1894) Am.Chem.Jour., 16, 214. (1894) Compt.rend., 118, 350, 709, (1895) Am.Jour.Sci., 49, 48-53. Lindner, J. (1912) Monatsh.Chem., 33, 645. 800. (1897) Compt.rend., 124, 1094. de Leeuw, H. L. Linhart, G. A. (1915) J.Am.Chem.Soc., 37, 258-274. Little, W. G. (1911) Z.physik.Chem., 77, 311. van Leeuwen, J. Docters. (1909) Biochem. Jour., 4, 30. Lloyd, S. J. (1918) J.Phys. Chem., 22, 300-3. (1897) Z.physik.Chem., 23, 44. Lefort. (1878) Ann.chim.phys., [5], 15, 326. Lehmann, M. Locke. (1914) Chem.Ztg., 38, 389, 402. (1901) Am.Chem.J., 26, 174. Leidie. (1902) Am.Chem.J., 27, 459. (1882) Compt.rend., 95, 87. Loewel. (1890) Compt.rend., 111, 107. Lenher, V. and Merrill, H. B. (1851) Ann.chim.phys., [3], 33, 382. (1855) Ann.chim.phys., [3], 43, 413. (1917) J.Am.Chem.Soc., 39, 2630. (1888) J.Anal.Chem., 2, 243. Leopold, G. H. (1909) Z.physik.Chem., 66, 361. Longi. (1910) Z.physik.Chem., 71, 51. (1883) Gazz.chim.ital., 13, 87. Lepierre, C. and Lachaud, M. Longuimine. (1862) Liebig's Ann., 121, 123. (1891) Compt.rend., 113, 196. Lord, R. C. Lespieau. (1894) Bull.soc.chim., [3], 11, 72. (1907) J.Phys.Chem., 11, 182. Lorenz, R., Jabs, A. and Eitel, W. (1913) Z.anorg.Chem., 83, 39. Levi, M. G. (1901) Gazz.chim.ital., 31, II, 523. (1902) Z.physik.Chem., 41, 110. Lorenz and Ruckstuhl. (1906) Z.anorg.Chem., 51, 70. Levi-Malvano, M. (1906) Z.anorg.Chem., 48, 446. Lothian, J. (1909) Pharm.Jour.(Lond.), 82, 292. (1905) Atti accad.Lincei, [5], 14, II, 502-10. Louise, E. Lewis, G. N. and Burrows, G. H. (1909) Compt.rend., 149, 284-6. (1912) J.Am.Chem.Soc., 34, 1525. (1911) J.pharm.chim., [7], 3, 377–385. (1911) J.pharm.chim., [7], 4, 193-7. Lewis, G. N. and Storch, H. (1911) Ann.fals., 4, 302-5. (1917) J.Am.Chem.Soc., 39, 2551. Lewis, W. K. Löwel. (1851) Ann.chim.phys., [3], 33, 382. (1914) J.Ind.Eng.Chem., 6, 308.

McLauchlan, W. H. Löwenherz, R. (1894) Z.physik.Chem., 13, 479. (1895) Z.physik.Chem., 18, 82. (1898) Z.physik.Chem., 25, 395–410. (1903) Z.physik.Chem., 44, 600-633. Maclaurin. (1893) J.Chem.Soc.(Lond.), 63, 729. Magnanini, G. Lubarsch. (1901) Gazz.chim.ital., 31, II, 542. (1889) Wied.Ann.Physik., [2], 37, 525. Magnier. Lubavin. (1875) Bull.soc.chim., [2], 23, 483. · von Mailfert. (1892) J.Russ.Ph, Chem.Soc., 24, de Lucchi, G.

(1910) Russ.min., 32, 21.

(1910) "Tables annuelles," 1, 381, 403. (1894) Compt.rend., 119, 951. Maigret. (1905) Bull.soc.chim. [3], 33, 631. Lumiere, A. and L. and Seyewetz, A. Mallet. (1902) Bull.soc.chim., [3], 27, 1213. (1897) Am.Chem.Jour., 19, 807. Malvano, L. (1906) Z.anorg. Chem., 48, 446. Malvano, L. and Mannino. Lumsden, J. S. (1902) J.Chem.Soc.(Lond.), 81, 355. (1905) J.Chem.Soc.(Lond.), 89, 90. Lundén, Harold. (1908) Atti accad.Lincei, [5], 17, II, (1905–6) Z.physik.Chem., **54**, 564. (1913) Medd.K.Vetenskapsakad. Mameli, E. and Mannessier, A (1913) Nobelinst., 2, No. 15. (1913) Gazz.chim.ital., 43, II, 594. (1913) Chem.Abs., 7, 2887. Manchot and Zechentmayer. (1906) Liebig's Ann., 350, 368. Mandelbaum, R. Luther, R. and Leubner, A. (1912) J.prakt.Chem., [2], 85, 314. (1912a) Z.anorg.Chem., 74, 389. (1909) Z.anorg.Chem., 62, 370-82. Lutz, O. Manuelli, A. (1916) Ann.chim.applicata, 5, 13-24. (1902) Ber., 35, 2462. (1910) Ber., 43, 2637. van Maarseveen, G. (Goldschmidt, H.) (1898) Z.physik.Chem., 25, 90-99. Mar. (1892) Am.J.Sci., [3], 43, 521. Marc, R. (1906) Z.anorg.Chem., 48, 425. Maass, O. and McIntosh, D. (1907) Z.anorg.Chem., 53, 301. Marchionneschi, M. (1912) J.Am.Chem.Soc., 34, 1279. (1913) J.Am.Chem.Soc., 35, 538. Maben. (1907) Apoth.Ztg., 22, 544. (1907) Boll.chim.farm., 387. (1883-84) Pharm. Jour. (Lond.), [3], 14, 505.

MacAdam, D. J., Jr. and Pierle, C. A.
(1912) J.Am.Chem.Soc., 34, 604. Marckwald, W. Marckwald, W.
(1902) Ber., 35, 1599.
(1904) Ber., 37, 1041.

Marden, J. W.
(1914) J.Ind.Eng.Chem., 6, 315-20.
(1916) J.Am.Chem.Soc., 38, 310.

Marden, J. W. and Dover, Mary V.
(1916) J.Am.Chem.Soc., 38, 1239.
(1917) J.Am.Chem.Soc., 38, 1239. MacArthur, C. G. (1916) J. Phys.Chem., 20, 495. McBride, R. S. (1910) J.Phys.Chem., 14, 189-200. McCaughey, W. J.
(1909) J.Am.Chem.Soc., 31, 1261.
McCoy, H. N. and Smith, H. J. (1917) J.Am.Chem.Soc., 39, 4. Marie, C. and Marquis, R. (1911) J.Am.Chem.Soc., 33, 468-473. McCoy, H. N. and Test, Chas. D. (1903) Compt.rend., 136, 684. Marignac. (1911) J.Am.Chem.Soc., 33, 473-6. McCrae, J. and Wilson, W. E. (1903) Z.anorg.Chem., 35, 11. (1853) Ann.chim.phys., [3], 39, 184. (1861) J.prakt.Chem., 83, 202. (1866) Ann.chim.phys., [4], 8, 65. M'David, J. W. Marino. Proc. Roy. Soc. (1909–10) (Edin-(1905) Gazz.chim.ital., 35, II, 351. burgh), 30, 440-7. Markwald. (1899) Ber., 32, 1089. Marsh, J. E. and Struthers, R. de J. F. McDaniel, A. S. (1911) J.Phys.Chem., 15, 587-610. McDermott, F. Alex. (1905) J.Chem.Soc.(Lond.), 87, 1879. (1911) J.Ám.Chem.Soc., 33, 1963. Marshal, A McDonnell, C. C. and Smith, C. M. (1906) J.Chem.Soc.(Lond.), 89, 1381. (1916) J.Am.Chem.Soc., 38, 2366. Marshall. (1891) J.Chem.Soc.(Lond.), 59, 771. Marshall, H. and Bain, D. McIntosh, D. (1903) J.Phys.Chem., 7, 350. Mackenzie. (1910) J.Chem.Soc.(Lond.), 97, 1074-

1085.

(1877) Wied.Ann. Physik., [2], 1, 450.

Marshall, H. and Cameron, A. T. Mayer. (1907) J.Chem.Soc.(Lond.), 91, 1522. (1856) Liebig's Ann., 98, 193. Mayer, O. (1906) Atti accad.Lincei, [5], 15, I, (1903) Ber., 36, 1741. 192; II, 459. (1906a) Atti accad.(Lincei), [5], 15, Mazatto. (1891) Nuovo.cimento, [3], 29, 21. Meerburg, P. A. 192. (1902) Z.physik.Chem. 40, 647. (1903) Z.anorg.Chem., 37, 203. (1904) Chem.Weekblad., 1, 474. (1906a) Gazz.chim.ital., 36, II, 880-893. (1908) Atti accad.Lincei, [5], 17, I, (1905) Z.anorg.Chem., 45, 1, 324. (1908) Z.anorg.Chem., 59, 136–42. (1909) van Bemmlen Festschrift, pp. (1909) Gazz.chim.ital., 39, I, 251-84. Mascarelli, L. and Ascoli, U. (1907) Gazz.chim.ital., 37, I, 125. Mascarelli, L. and Constantino, A. 356-60. (1911) Chem. Zentralbl., I, 1036. (1909) Atti accad.Lincei, [5], 18, II, Meerum-Terwogt. (1905) Z.anorg.Chem., 47, 203. 104. (1910) Gazz.chim.ital., 40, I, 4. Mascarelli, L. and Pestalozza, U. Mees, C. E. K. and Piper, C. W. (1912) Photogr. Jour., 33, 227. Photogr. Jour., 36, 234. (1907) Atti accad. Lincei, [5],16, II, 574. (1908) Gazz.chim.ital., 38, I, 51. Photogr. Jour., 52, 221-37. Meineke. (1908) Atti accad.Lincei, [5], 17, I, (1891) Liebig's Ann., 261, 360. 601*−*9. Melcher, A. C. (1909) Gazz.chim.ital., 39, I, 218-(1910) J.Am.Chem.Soc., 32, 50-66. 231. Meldrum, R. Mascarelli, L. and Sanna, G. (1913) Chem. News., 108, 199. (1915) Atti accad.Lincei, [5], 24, II, Mellor, J. W. (1901) J.Chem.Soc.(Lond.), 79, 225. Massink, A. Meneghini, D. (1916) Z.physik.Chem., 12, 351-80. (1917) Chem.Weekblad., 14, 756. (1912) Gazz.chim.ital., 42, II, 474. Menge, Otto. Massol and Maldes. (1911) Z.anorg.Chem., 72, 169-218. (1901) Compt.rend., 133, 287. Menke, J. B. Masson, I. (1912) Z.anorg.Chem., 77, 283. (1912-13) Proc. Roy. Soc. (Edin.), 33, 64-8. **J. Orme.** Menschutkin, B. N. (see pp. 379 and 391). (1905)Mem.St.Petersburg Polyt.Inst., Masson, J. J. Orme. (1911) J.Chem.Soc.(Lond.), 99, 1132. (1912) J.Chem.Soc.(Lond.) 101, 103. 4, 75-101. (1906) Mem.St.Petersburg Polyt.Inst., Mathers, F. C. and Schluederberg, C. G. 5, 355-388. (1907) Z.anorg.Chem. 52, 9, 155; 53, (1908) J.Am.Chem.Soc., 30, 211. Mathews, J. H. and Benger, E. B. (1914) J.Phys.Chem., 18, 264. 26. (1907a) Z.anorg.Chem., 54, 89-96. (1908) Mem.St.Petersburg Polyt.Inst., Mathews, J. H. and Ritter, P. A. (1917) J.Phys.Chem., 21, 269-74. 9, 200-222. (1909) Mem.St. Petersburg Polyt.Inst., Mathews, J. H. and Spero, S. (1917) J.Phys.Chem., 21, 402-6. 11, 261, 567; 12, 1. (1909) Z.anorg.Chem., 61, 106, 113. Matignon, C. (1910) Mem.St. Petersburg Polyt. Inst., (1906) Ann.chim.phys., [8], 8, 249, 388, 407. 7th Internat.Cong.Appl. 13, 1, 263, 411, 565; 14, 251. (1911)Mem.St.Petersburg Polyt.Inst., (1909) Chem., 2, 53-57. 15, 65, 397, 613, 647, 757. (1912)Mem.St.Petersburg Polyt.Inst., (1909a) Compt.rend., 148, 550. Menzies, A. W. C. and Dutt, N. N. Matteoschat, A. (1914) Z.ges.Schiess.u.Sprengstoffw., (1911) J.Am.Chem.Soc., 33, 1266. **9,** 105–6. Menzies, A. W. C. and Humphrey, E.C. Matthes, F. (1911) Neues Jahrb. Min. Geol. (Beil. (1912) 8th Int.Congr.Appl.Chem., 2, Menzies, A. W. C. and Potter, P. D. Bd.), 31, 342-85. Maumee. (1912) J.Am.Chem.Soc., 34, 1452. (1864) Compt.rend., 58, 81.

Merriman, R. W. (1913) J.Chem.Soc.(Lond.), 103, 1774. Mescherzerski. (1882) Z.anal. Chem., 21, 399. Metzner. (1894) Compt.rend., 119, 683. van Meurs, C. J. (1916) Z.physik.Chem., 91, 313-46. Meusser, A. (1902) Ber., 35, 1303, 1422. (1905) Z.anorg.Chem., 44, 80. Meyer, J. (1909) Z.Elektrochem., 15, 266. (1911<u>)</u> Ber., 44, 2969. Meyer, H. von. (1901) Archiv.exp.Pathol.u.Pharmakol., 46, 334. (1909) 7th Int.Cong.Appl. Chem. Sec., 4, A2, 44. Meyer, Hans von and Beer, R. (1913) Monatsh.Chem., 34, 1202.

Meyer, Hans von, Brod, L. and Soyka, W.
(1913) Monatsh.Chem., 34, 1125. Meyer, R. J. (1914) Z.anorg.Chem., 86, 285. Meyer, Victor. (1875) Ber., 8, 998. Meyerhoffer, W. (1904) Landolt and Börnstein "Tabellen," 4th Ed., 1912, p. 486.
(1905) Z.physik.Chem., 53, 513-603.
(1912) Landolt and Börnstein "Tabellen," 4th Ed., p. 481.

Meyerhoffer, W. und Saunders.

(1900) Z. physik Chem. 28, 466, 27. (1899) Z.physik.Chem., 28, 466; 31, 382. Michael, Arthur. (1901) Ber., 34, 3641, 3656. Michael, Arthur and Garner, W. W. (1903) Ber., 36, 904. Michel and Kraft. (1854) Ann.chim.phys., [3], 41, 471. (1858) Ann.chim.phys., [3], 41, 478. Miczynski, Z. N. (1886) Monatsh.Chem., 7, 255-72. Middelberg, W. (1903) Z.physik.Chem., 43, 305-353. Miers, H. A. and Isaac, F. (1907) Proc.Roy.Soc.(Lond.), 79, A, 332 (1908) Trans. Roy. Soc. (Lond.), 209, A, 364. (1908a) J.Chem.Soc.(Lond.), 93, 931. Milbauer, J. (1912-13) J.prakt.Chem., [2], 87, 398. Milikau, J.
(1916) Z.physik.Chem., 92, 59-80.
Miller, W. Lash and McPherson, R. H. (1908) J. Phys. Chem., 12, 70 ills, W. H., Parker, H. Prowse, R. W. Mills, and (1914) J.Chem.Soc.(Lond.),105,1541.

Mills, R. V. and Wells, R. C. (1918)Bull.U.S.Geol.Survey, No. 693, p. 72. Miolati, A (1892) Z.physik.Chem., 9, 651, Mitscherlich. (1832) Pogg.Ann., 25, 301. Moissan, H. (1882) Bull.soc.chim., [2], 37, 296. (1885) Ann.chim.phys., [6], 4, 136. Moissan, H. and Siemens, F. (1904) Compt.rend., 138, 657, 1300. (1904) Bull.soc.chim., [3], 31, 1010. (1904) Ber., 37, 2088. Moles, E. and Jimeno, E. (1913) Anales.soc.espan.fis.quim., 11, Moles, E. and Marquina, M. (1914) Anales.soc.espan.fis.quim., 12, 383-93. Mönkemeyer. (1906) N. Jahrb. Min, Geol. (Beil. Bd.), 22, I. Moody, G. T. and Leyson, L. F. (1908) J.Chem.Soc.(Lond.), 93, 1767. Moore, B. and Roaf, H. E. (1904) Proc.Roy.Soc.(Lond.), 382-412. Moore, B., Wilson, F. P. and Hutchinson, L. (1909) Biochem. Jour., 4, 347. Moore, T. S. and Winmill, T. F. (1912) J.Chem.Soc.(Lond.),101,1662. Morey, Geo. W. (1917) J.Am.Chem.Soc., 39, 1173-1229. Morgan, J. L. R. and Benson, H. K. (1907) J.Am.Chem.Soc., 29, 1176. (1907) Z.anorg.Chem., 55, 356. Morgan, J. C. and James, C. (1914) J.Am.Chem.Soc., 36, 10-16. Morell, R. S. and Hanson, E. K. (1904) J.Chem.Soc.(Lond.), 85, 1520. Morse, H. (1902) Z.physik.Chem., 41, 708-734. Moser, L. (1909) Z.anorg.Chem., 61, 384. Moufgang, E. (1911) Wochschr.Brau., 28, 434-6. (1911) J.Soc.Chem.Ind., 30, 1210. Muchin, G.
(1913) "Solubility of Calcium Iodide in Organic Solvents," Pamphlet, 45 pp. and 12 charts, Kharkoff, 1913. (Reprint in the Russian language received from author.)
See also Trav.sco.sci.physic. Chem.Univ.Kharkoff 39 fasc.,

24, 1-49, 1913.

(1876) J.Chem.Soc.(Lond.),29, 857.

Muir.

Mulder, G. J. Nanty, T. (1864) Scheikundige Verhandelingen (1911) Compt.rend., 152, 606. Narbutt, J. V. (1905) Z.physik.Chem., 53, 704-712. en Onderzoekingen, Vol. 3, Pt. 2, Bijdragen tot de Geschiedenis van Het Scherkungig Gebonden Nasini, R. and Ageno, I. Water, Rotterdam, 1864. (1910) Z.physik.Chem., 69, 482. Mulder, Gay-Lussac, Etard.
(1894) Ann.chim.phys., [7], 2, 528. (1911) Gazz.chim.ital., 41, I, 131. Naumann, Alex. Mueller, J. H. (1917) J.Biol.Chem., 30, 39-40. Mueller, P. and Abegg, R. (1904) Ber., 37, 3600, 4328. (1909) Ber., 42, 3789. (1910) Ber., 43, 313. (1906) Z.physik.Chem., 57, 514. (1914) Ber., 47, 1370. Müller, C. Naumann, Alex. and Rucker, A. (1905) Ber., 38, 2293. Naumann, Alex, and Schier, A. (1910) N. Jahrb. Min. Geol. (Beil. Bd.), 30, 1. (1912-13) Z.physik.Chem., 81, 483-(1914) Ber., 47, 249. Neave, G. B. (1912) Analyst., 37, 399. Nernst, W. (1889) Z.physik.Chem., 4, 379. (1891) Z.physik.Chem., 8, 110. Müller. (1887) Compt.rend., 104, 992. (1889) Wied.Ann.Physik., [2], 37, 29. (1892) Ann.chim.phys., [6], 27, 409. Müller, H. Newth. (1912) J.Chem.Soc.(Lond.),101,2400. Müller, W. (1900) J.Chem.Soc.(Lond.), 77, 776. Nicol, W. W. J. (1891) Phil.Mag.(Lond.), [5], 31, 369, (1903) Apoth.Ztg., 18, 208, 249, 257. Muraro, F. (1908) Gazz.chim.ital., 38, I, 427; II, 386. Nicolardot. (1916) Conne Nichols, J. B. (1918) J.Am.Chem.Soc., 40, 402. von Niementowski, S. and von Rosz-kowski, T. (1916) Compt.rend., 163, 355-7. Muthmann and Kuntze. (1894) Z.Kryst.Min., 23, 368. Muthmann and Rölig. (1898) Z.anorg.Chem., 16, 455. (1898) Ber., 31, 1728. Mylius, F. Noelting, F. (1901) Ber., 34, 2208. (1910) Ann.chim.phys., [8], 19, 486. (1911) Ber. 44, 1315. (1911) Z.anorg.Chem., 70, 209. Mylius, F. and Dietz. Nordenskjold and Lindstrom. (1869) Pogg.Ann., 136, 314. Noss, F (1901) Ber., 34, 2774. (1905) Z.anorg.Chem., 44, 217. (1912) Dissertation, Graz. (1912) Landolt and Börnstein "Tab-(1905) Ber., 38, 921. ellen," 4th Ed., p. 467. Noyes, A. A. (1890) Z.physik.Chem., 6, 248. (1892) Z.physik.Chem., 9, 606, 623. Noyes, A. A. and Abbott, C. G. Mylius, F. and Förster. (1889) Ber., 22, 1100. (1892) Ber., 25, 70. Mylius, F. and Funk, R. (1895) Z.physik.Chem., 16, 130.

Noyes, A. A. and Boggs, C. R.

(1911) J.Am.Chem.Soc., 33, 1650.

Noyes, A. A. and Chapin, E. S. (1897) Ber., 30, 1718. (1900) Wiss.Abh.p.t.Reichsanstalt, 3, 451. (1900) Ber., 33, 3686. Mylius, F. and von Wrochem, J. (1898) Z.physik.Chem., 27, 443. (1899) J.Am.Chem.Soc., 21, 513. (1900) Wiss. Abh.p.t. Reichsanstalt, 3, Noyes, A. A. and Clement. 462. (1894) Z.physik.Chem., 13, 413.

Noyes, A. A. and Farrel, F. S.

(1911) J.Am.Chem.Soc., 33, 1654.

Noyes, A. A. and Hall, F. W.

(1917) J.Am.Chem.Soc., 39, 2529. (1900) Ber., 33, 3689. Nacken, R. (1907a) Nachr.kgl.Ges.Wissenschaft (Göttingen), 602. (1907b) Jahrb. Min. Geol. (Beil. Bd.),24, Noyes, A. A. and Kohr, D. A. (1907c) Zentralbl. Min. Geol., 262, 301. (1902) J.Am.Chem.Soc., 24, 1144. (1910) Sitzber.kgl.preuss.Akad.Wis., (1902-03) Z.physik.Chem., 42, 336-1016–26. Noyes, A. A. and Sammet, G. V. Nagornow, N. N. (1911) Ž.physik.Chem., 75, 578. (1903) Z.physik.Chem., 43, 526.

Noyes, A. A. and Schwartz, D. (1898) Z.physik.Chem., 27, 279-284. (1898) J.Am.Chem.Soc., 20, 744. Oswald, M. (1914) Ann.chim., 1, 57-79. 1912) Compt.rend., 155, 1504. 205. Oudemans, A. C. Jr. (1872) Z.anal.Chem., 11, 287. Padoa, M. Noyes, A. A. and Seidenslicker. (1912) 8th Int.Cong.Appl.Chem., 2, (1898) Z.physik.Chem., 27, 359. Noyes, A. A. and Stewart, M. A. (1911) J.Am.Chem.Soc., 33, 1658. Noyes, A. A. and Whitcomb, W. H. (1905) J.Am.Chem.Soc., 27, 756. (1904) Atti accad.Lincei, [5], 13, I, 723; II, 31. Padoa, M. and Rotondi, G. Odaira, I. (1915) Mem.Coll.Sci.(Kyoto), 1, 324, (1912) Atti accad.Lincei, [5], 21, II, 330. Oddo, B. 626. (1913) Gazz.chim.ital., 43, II, 275. Padoa, M. and Tibaldi. (1903) Atti accad.Lincei, [5], 12, II, Okada, K. (1914) Mem. Coll. Sci. (Kyoto), 1, 95-160. de Paepe, Desiré.
(1911) Bull.soc.chim.Belg., 25, 174. 103. Olie, Jr., J. (1906) Z.anorg.Chem., 51, 29-70. (1907) Z.anorg.Chem., 53, 273-80. Pajetta, R. (1906) Gazz.chim.ital., 36, II, 67, 155, 300. Olivari, F. (1907) Pharm. Jour. (Lond.), 79, 315. (1908) Atti accad.Lincei, [5], 17, II, Palazzo and Batelli. 512, 584, 717. (1909) Atti accad.Lincei, [5], 18, II, (1883) Atti accad.sci.Torino, 19, 514. Panfiloff. 96. (1893) J.Russ.Phys.Chem.Soc., 25, (1911) Atti accad.Lincei, [5], 20, I, 162. 470-4. (1912) Atti accad.Lincei, [5], 21, I, (1893) Chem.Centralbl., II, 910. (1893a) J.Russ.Phys.Chem.Soc., 25, 718. 262. Ordway. (1894) Z.anorg.Chem., 5, 490. (1865) Am. Jour. Sci., [2], 40, 173. Parker, E. G. Orloff. (1914) J.Phys.Chem., 18, 653. (1902) J.Russ.Phys.Chem.Soc., 37, Parmentier. 949. (1887) Compt.rend., 104, 686. (1892) Compt.rend., 114, 1002. Orton, K. J. P. and King, H. (1911) J.Chem.Soc.(Lond.), 99, 1192. Parravano, N. (1909) Gazz.chim.ital., 39, II, 58. Osaka, Y. (1903-8) Mem.Coll.Sci.Eng.(Kyoto), Parravano, N. and Calcagni, G. (1908) Atti accad.Lincei, [5], 17, I, 1, 93, 265, 290. (1909) 7th Int.Cong.Appl.Chem., 731-8. 4 A, 308. Mem.Coll.Sci.Eng.(Kyoto), (1910) Z.anorg.Chem., 65, 1. (1910) Parravano, N. and de Cesaris, P. 2, 21-35. (1910) Nature (London), 84, 248. (1910-11) Mem. Coll. Sci. Eng. (Kyoto), (1912) Att accad.Lincei, [5], 21, I, 535. (1912a) Atti accad.Lincei, [5], 21, I, 3, 58. (1911) J.Tok.Chem.Soc., 32, 870. 800. (1912b) Gazz.chim.ital., 42, II, 1-Osaka, Y. and Abe, R. Parravano, N. and Fornaini, M. (1911) Mem.Coll.Sci.Eng.(Kyoto), 3, (1907) Gazz.chim.ital., 37, II, 521. (1911) J.Tok.Chem.Soc., 32, 446. (1907) Atti accad.Lincei, [5], 16, II, Osborne, T. and Harris, I. F. (1905) Am. Jour. Physiol., 14, 151-465.
Parravano, N. and Mieli, A.
(1908) Atti accad.Lincei, [5], 17, II, 171 Osipoff and Popoff. 33-4. (1908) Gazz.chim.ital., 38, II, 536. (1903) J.Russ.Phys.Chem.Soc., 35, 637. Ossendowski, A. M. Parsons, Chas. L. and Corliss, H. P. (1910) J.Am.Chem.Soc., 32, 1367. (1907) Pharm.J.(Lond.), 79, 575 Parsons, C. L. and Corson, H. P. (1910) J.Am.Chem.Soc., 32, 1383. Parsons, C. L. and Perkins, C. L. (1910) J.Am.Chem.Soc., 32, 1387. (1907) J.pharm.chim., [6], 26, 162. Ost. (1878) J.prakt.Chem., [2], 17, 232.

Parsons, C. L. and Whittemore, C. F.	Pelabon.
(1911) J.Am.Chem.Soc., 33, 1933.	(1908) Compt.rend., 146, 975.
Partheil and Ferie (1903) Archiv.Pharm., 241, 554.	(1909) Ann.chim.phys. [8], 17, 526– 66.
Partheil and Hübner.	(1913) Compt.rend., 156, 705-7.
(1903) Archiv.Pharm., 241, 413.	Pelet-Jolivet.
Partington, J. R. (1911) J.Chem.Soc.(Lond.), 99, 315.	(1909) Revue gen.mat.col., p. 249. Pellini, G.
Pascal, P.	(1906) Gazz.chim.ital., 36, II, 461.
(1909) Ann.chim.phys., [8], 16, 374. (1912) Bull.soc.chim., [4], 11, 323,	(1906a) Atti accad.Lincei, [5], 15, I, 629.
596, 1033.	(1909) Atti accad.Lincei, [5], 18, I,
(1913) Bull.soc.chim., [4], 13, 746.	703; II, 21, 280.
(1914) Bull.soc.chim., [4], 15, 454. Pascal, P. and Normand, L.	(1910) Atti accad.Lincei, [5], 19, I, 331.
(1913) Bull.soc.chim., [4], 13, 154-	Pellini, G. and Amadori, M.
202, 879. Paterno, E. and Ampola, G.	(1912) Atti accad.Lincei, [5], 21, I, 294.
(1897) Gazz.chim.ital., 27, I, 481-	Pellini, G. and Coppola, A.
_ 536.	(1913) Atti accad.Lincei, [5], 23, I,
Paterno, E. and Mieli, A. (1907) Atti accad.Lincei, [5], 16, II,	147. Pellini, G. and Pedrina, S.
153.	(1908) Atti accad.Lincei, [5], 17, II,
(1907) Gazz.chim.ital., 37, II, 330. Paterno, E. and Salimei, G.	78. Pellini, G. and Vio, G.
(1913) Gazz.chim.ital., 43, II, 245.	(1906) Atti accad.Lincei, [5], 15, II,
Patrick and Aubert.	46-53.
(1874) Trans.Kansas Acad.Sci., 19. Patten, H. E. and Mott, W. R.	Pelouze. (1869) Compt.rend., 68, 1179; 69, 56.
(1904) J.Phys.Chem., 8, 153.	Penny.
Patterson, A. M. (1906) J.Am.Chem.Soc., 28, 1734.	(1855) Phil.Mag., [4], 10, 401. Perman, E. P.
Paul, T.	(1901) J. Chem.Soc.(Lond.), 79, 718.
(1894) Z.physik.Chem., 14, 111.	(1002) I.Chem.Soc.(Lond.), 81, 480.
(1896) Z.physik.Chem., 25, 95. (1901) Arch.Pharm., 239, 64.	(1903) J.Chem.Soc.(Lond.), 83, 1168. Pettersson, O. and Sondén, K.
(1915) Z.Elektrochem., 21, 543.	(1889) Ber., 22, 1439.
(1917) Z.Elektrochem., 23, 65-86. Paul, Th., Ohlmüller, W., Heise, R.	Pfanni, M. (1911) Monatsh.Chem., 32, 250.
and Auerbach, Fr.	Pfaundler and Schnegg.
(1906) Arb.Kaiserl.Gesundheitsamt.,	(1875) Sitzber.k.Akad.Wis.(Wien).,
23, 333–388. Pawlewski, Br.	71, 11, 351. Pfeiffer, H.
(1893) Anzeiger Akad. Wiss. Krakau,	(1892) Z.physik.Chem., 9, 469.
p. 379.	Pfeiffer, Geo. J.
(1898) Ber., 30, 2806. (1899) Ber., 32, 1040.	(1897) Z.anorg.Chem., 15, 194-203. Pfeiffer, P. and Modelski, J. v. (1912) Z.physiol.Chem., 81, 331-3.
(1900) Ber., 33, 1223.	(1912) Z.physiol.Chem., 81, 331-3.
Pawlewski, Br. and Filemonowicz. (1888) Ber., 21, 2973.	Pfeiffer, P. and Würgler.
Payen.	(1915) Ber., 48, 1939. (1916) Z.physiol.Chem., 97, 128–47.
(1852) Compt.rend., 34, 356.	Phelps, I. K. and Palmer, H. E. (1917) J.Am. Chem. Soc., 39, 140.
Pearce, J. N. and Fry, E. J. (1914) J.Phys.Chem., 18, 667.	Philip, James C.
Pearce, J. N. and Moore, T. E.	(1903) J.Chem.Soc.(Lond.), 83, 814.
(1913) Am.Chem.Jour., 50, 218. Peddle, C. J. and Turner, W. E. S.	(1905) J.Chem.Soc.(Lond.), 87, 992. (1913) J.Chem.Soc.(Lond.), 103, 284.
(1913) J.Chem.Soc.(Lond.), 103,	Philip, J. C. and Bramley, A.
Pelabon.	(1915) J.Chem.Soc.(Lond.), 107,
(1897) Compt.rend., 124, 35.	377-387, 1832. Philip, J. C. and Garner, F. B.
(1904) J.chim.phys., 2, 320.	(1909) J.Chem.Soc.(Lond.), 95,
(1907) Compt.rend., 145, 118.	1466–73.

Philip, J. C. and Smith, S. H. Porlezza, C. 87, (1905) J.Chem.Soc.(Lond.), (1914) Atti accad.Lincei, [5], 23, II, 1735-1751. 509, 597. Pickering, S. U. (1890) J.Chem.Soc.(Lond.), 57, 331. Power, F. B. (1882) Am.Jour.Pharm., 54, 97-99. (1890-91) Proc.Roy.Soc.(Lond.), 49, Power, F. B. and Tutin. (1905) J.Chem.Soc.(Lond.), 87, 24. (1893) J.Chem.Soc.(Lond.), 63, 141, Pratolongo, U. (1913) Atti accad.Lincei, [5], 22, I, 463, 909, 998. (1893a) Ber., 26, 2307. 388. (1895) J.Chem.Soc.(Lond.), 67, 669. (1912) Landolt and Börnstein, (1914) Atti accad.Lincei, [5], 23, I, 46. Landolt and Börnstein, "Tabellen," 4th Ed., p. 471. Pratt, L. A. and James, C. (1911) J.Am.Chem.Soc., 33, 488. (1915)J.Chem.Soc.(Lond.), 107, Precht, H. and Wittgen, B. 942-54. (1881) Ber., 14, 1667. Pictet, Raoul. (1882) Ber., 15, 1666. (1894) Compt.rend., 119, 642. Presse, C. H. Pictet, R. and Altschul, M. (1874) Ber., 7, 599. (1895) Z.physik.Chem., 16, 18. Prins, Ada. (1894) Compt.rend., 119, 678-82. (1909) Z.physik.Chem., 67, 689-722. Prunier. (1847) J.pharm.chim., [3], 12, 237. (1879) J.pharm.chim., [4], 29, 136. Pina de Rubies, S. Puckner, W. A. and Hilpert, W. S. (1913) Anales soc.espan.fis.quin., 11, (1909) J.Am.Med.Assoc., 52, 311. 422-35. Puckner, W. A. and Warren, L. E. (1914) Anales soc.espan.fis.quin., 12, (1910) Proc.Am.Pharm.Assoc., 58, 343-9. (1914) Archiv.sci.physique,naturelle 1007. (1910) Lab.Reports Am.Med.Assoc., (Madrid), [4], 38, 414-22. 3, 123. Puschin, N. A. and Baskow, A. (1913) Z.anorg.Chem., 81, 347-63. (1915) Chem. Zentralbl., I, 521. Pinnow, J. (1911) Z.anal.Chem., 50, 162. Puschin, N. A. and Glagoleva, A. A. (1915) Z.anal.Chem., 54, 321-345. (1914) Ann.Inst.Electrotechnique (Petrograd), 11, 284. (1915) J.Russ.Phys.Chem.Soc., 47, (1907) Z.physik.Chem., **58,** 350. Pleissner, M. 100-13 (1907) Arb. Kais. Gesundheitsamt, 26, Pushin, N. A. and Grebenschikov, I. V. 384-443. (1913) J.Russ.Phys.Chem.Soc., 45, 741-5. Pushin, N. and Kriger, J. Plotnikow, W. A. (1911) Ann.inst.Polytech.Kiev., 11, (1913) Ann.Inst.Electrotechnique 310. (1915) J.Russ.Phys.Chem.Soc., 47, (Petrograd), 9, 235. 1062-4. (1914) J.Russ.Phys.Chem.Soc., 46, Poggiale. Pushin, N. A. and Mazarovich, G. M. (1843) Ann.chim.phys., [3], 8, 467. (1914) J.Russ.Phys.Chem.Soc., 46, 1366-72. (1852) J.prakt.Chem., 56, 216. (1860) Sitzber.k.Akad.Wiss.(Wien), (1914) Ann. Inst. Electrotechnique (Petrograd), 10, 205. 41, 627. Quercigh, E. Pollacci. (1912) Atti accad. (Lincei), [5], 21, I, (1896) L'Orosi, 19, 217. 417, 786. Pollitzer, F. (1914) Atti accad. (Lincei), [5], 23, I, (1909) Z.anorg.Chem., 64, 121-48. 449, 825. Poma, G. (1909) Atti accad.Lincei, [5], 18, I. Rabe, W. O. 133-8. (1901) Z.physik.Chem., 38, 175-184. (1902) Z.anorg.Chem., 31, 156. (1910) Gazz.chim.ital., 40, I, 197. Poma, G. and Gabbi, G. Rack, G. (1912) Gazz.chim.ital., 42, II, 8. (1914) Centr.Min.Geol., 326-8. (1911) Atti accad.Lincei, [5], 20, I, Radan. 464-70. (1889) Liebig's Ann., 251, 129.

Raffo, M. and Rossi, G.	Richards, T. W. and Churchill.
(1915) Gazz.chim.ital., 45, 1, 45. Rammelsberg.	(1899) Z.physik.Chem., 28, 314. Richards, T. W. and Faber, H. B.
(1838) Pogg.Ann., 43, 665; 44, 575.	(1899) Am.Chem.Jour., 21, 167-172
(1841) Pogg.Ann., 52, 81, 96.	Richards, T. W. and Kelley.
(1892) J.prakt.Chem., [2], 45, 153. Ramstedt, Eva.	(1911) J.Am.Chem.Soc., 33, 847.
Ramstedt, Eva.	Richards, T. W., McCaffrey and Bisbee
(1911) Radium, 8, 253-6. Rankin, G. A. and Merwin, H. E.	(1901) Z.anorg.Chem., 28, 85.
(1916) J.Am.Chem.Soc., 38, 568.	Richards, T. W. and Meldrum, W. B (1917) J.Am.Chem.Soc., 39, 1821-2
Rankin, G. A. and Wright.	Riedel.
(1915) Am. Jour. Sci., [4], 39, 1-79.	(1906) Z.physik.Chem., 56, 243.
Raoult.	Riesenfeld, E. H.
(1874) Ann.chim., [5], 1, 262.	(1902) Z.physik.Chem., 41, 346.
Raupenstrauch, G. A. (1885) Monatsh.Chem., 6, 585.	(1903) Z.physik.Chem., 45, 461. Riley, W. A.
Rebiere, G.	(1911) Jour.Inst.Brewing, 17, 124.
(1915) Bull.soc.chim., [4], 17, 268,	(1911) "Tables annuelles," 2, 428.
	Rimbach, E.
Regnault and Willejean.	(1897) Ber., 30, 3079.
(1887) Chem.Centralbl., 18, 252.	(1902) Ber., 35, 1300.
Reich. (1891) Monatsh.Chem., 12, 464.	(1904) Ber., 37, 463. (1905) Ber., 38, 1553-7, 1570.
Reichel, H.	Rimbach, E. and Korten, F.
(1909) Biochem. Ztschr., 22, 156.	(1907) Z.anorg.Chem., 52, 407.
Reicher, L. T. and van Deventer, C. M.	Rimbach, E. and Schubert, A.
(1890) Z.physik.Chem., 5, 560.	(1909) Z.physik.Chem., 67, 183-200.
Reid.	Rindell, A.
(1887–88) Proc.Roy.Soc.(Edin.), 15,	(1910) Z.physik.Chem., 70, 452-8. Ringer, W. E.
Reid, H. S. and McIntosh, D.	(1902) Z.anorg.Chem., 32, 212.
(1916) J.Am.Chem.Soc., 38, 615-25.	(1902) Rec.trav.chim., 21, 374.
Reinders, W. (1900) Z.physik.Chem., 32, 494, 514.	Ritzel, A.
(1900) Z.physik.Chem., 32, 494, 514.	(1911) Z.Kryst.Min., 49, 152.
(1906) Z.physik.Chem., 54, 609.	Robertson, B. (1908) J.Biol.Chem., 5, 147-54.
(1914) Proc.k.Akad.Wet.(Amst.), 16, 1065.	Robertson, P. W.
(1915) Z.anorg.Chem., 93, 202.	(1907) Chem.News, 95, 253.
Reinders, W. and de Lange, S.	Robinet.
(1912-13) Z.anorg.Chem., 79, 230.	(1864) Compt.rend., 58 , 608.
(1912) Proc.k.Akad.Wet.(Amst.), 15,	Robinson, F. W.
Reinders, W. and Lely, Jr. D.	(1909) J.Chem.Soc.(Lond.), 95, 1353-9
(1912) Proc.k.Akad.Wet.(Amst.), 15,	Robinson, W. O. and Waggaman, W.H.
486.	(1909) J.Phys.Chem., 13, 673-8.
Reinitzer, D.	Rodt, V.
(1913) Z.angew.Chem., 26, 456.	(1916) Mitt.k.Materials prufungs-
Reissig (1863) Liebig's Ann., 127, 33.	amt, 33, 426– 33. (1916) Chem.Zentr., I, 1270.
Refers. I. W.	Rodwell.
Retgers, J. W. (1893) Z.anorg.Chem., 3, 253, 344.	(1862) J.Chem.Soc.(Lond.), 15, 59.
(1893) Rec.trav.chim., 12, 229.	Roelofsen.
Rex.	(1894) Am.Chem.Jour., 16, 466.
(1906) Z.physik.Chem., 55, 355.	Rogier and Fiore.
Reychler, A. (1910) J.chim.phys., 8, 618.	(1913) Bull.sci.Pharmacologique, 20,
Reynolds, J. E. and Werner, E. A.	Rohland, P.
(1903) J.Chem.Soc.(Lond.), 83, 5.	(1897) Z.anorg.Chem., 15, 412.
Richards, T. W.	(1898) Z.anorg.Chem., 18, 328.
_ (1897) Z.anorg.Chem., 3, 455.	Roloff, M.
Richards, T. W. and Archibald, E. H.	(1894) Z.physik.Chem., 13, 341.
(1901-02) Proc.Am.Acad., 37, 345. (1902) Z.physik.Chem., 40, 385-98.	(1895) Z.physik.Chem., 17, 325-56. (1895) Z.physik.Chem., 18, 572-84.
_	
. 81	12

Roozeboom, H. W. B.	Rüdorff.
(1884) Rec.trav.chim., 3, 29–87.	(1872) Pogg.Ann., 145, 608.
(1885) Rec.trav.chim., 4, 69.	(1873) Ber., 6 , 482.
(1887) Rec.trav.chim., 6, 342.	(1885) Ber., 18, 1160.
(1888) Z.physik.Chem., 2, 459, 518.	Ruer.
(1889) Rec.trav.chim., 8, 1-146.	(1906) Z.anorg.Chem., 49, 365.
(1890) Z.physik.Chem., 5, 201.	Ruff, Otto.
(1891) Z.physik.Chem., 8, 532.	(1909) Ber., 42, 4029.
(1891) Rec.trav.chim., 10, 271.	Ruff, Otto and Fischer, G.
(1892) Z.physik.Chem., 10, 477.	(1002) Ber 26, 418-428
	(1903) Ber., 36, 418-428. Ruff, O. and Hecht, L.
(1893) Rec.trav.chim., 12, 205.	(1911) Zanorg.Chem., 70, 61.
(1899) Proc.k.Akad.Wet.(Amst.), 1,	Ruff, Otto and Geisel, E.
466.	
Roscoe.	(1906) Ber., 39, 838. Ruff, Otto and Plato, W.
(1866) J.Chem.Soc.(Lond.), 19, 504.	
Roscoe and Dittmar.	(1903) Ber., 36, 2358-2365. Ruff, O. and Schiller, E.
(1859) Liebig's Annalen, 112-234.	(rott) Zonorg Chom. To 647
Rosenbladt.	(1911) Z.anorg.Chem., 72, 341.
(1886) Ber., 19, 2531.	Ruff, O. and Winterfeld.
Rosenheim, A. and Bertheim, A.	(1903) Ber., 36, 2437.
(1903) Z.anorg.Chem., 34, 430.	Rupert, F. F.
Rosenheim, A. and Davidsohn, L.	(1909) J.Am.Chem.Soc., 31, 866.
(1903) Z.anorg.Chem., 37, 315.	(1910) J.Am.Chem.Soc., 32, 748.
Rosenheim, A. and Grünbaum.	Rutten and van Bemmelen.
(1909) Z.anorg.Chem., 61, 187.	(1902) Z.anorg.Chem., 30, 386.
Rosenheim, A. and Pritze, M.	Ryd, S.
(1908) Ber., 41, 2708.	(1917) Z.Elektrochem., 23, 19–23.
(1909) Z.anorg.Chem., 63, 275-81. Rosenheim, A., Stadler and Jakobsohn.	S
Rosenheim, A., Stadler and Jakobsohn.	(1905) Apoth.Ztg., 20, 1031.
(1906) Ber., 39, 2841.	Sackur, O.
Rosenheim, A. and Weinheber, M.	(1911-2) Z.physik.Chem., 78, 553-
(1910-11) Z.anorg.Chem., 69, 263.	568.
Roshdestwensky, A. and Lewis W. C.	(1913) Z.physik.Chem., 83, 297-314.
McC.	Sackur, O. and Fritzmann, E.
(1911) J.Chem.Soc.(Lond.), 99, 2144.	(1909) Z.Elektrochem., 15, 842-6.
(1912) J.Chem.Soc.(Lond.), 101,	Sackur, O. and Taegener, W.
2098.	(1912) Z.Elektrochem., 18, 722.
van Rossem, C.	Sahmen, R.
(1908) Z.physik.Chem., 62, 681-712.	(1905–06) Z.physik.Chem., 54, 111–
Rössler.	120.
(1873) J.prakt.Chem., [2], 7, 14.	Sakabe, S.
Roth.	(1914) Mem.Coll.Sci.(Kyoto), 1, 57-
(1897) Z.physik.Chem., 24, 123.	61.
Rothmund, V.	Salkowski, H.
(1898) Z.physik.Chem., 26, 459, 475.	(1885) Ber., 18, 321.
(1900) Z.physik.Chem., 33, 406. (1908) Z.Elektrochem., 14, 532.	(1901) Ber., 34, 1947.
(1908) Z.Elektrochem., 14, 532.	Salkower, B.
(1910) Z.physik.Chem., 69, 523-546.	(1916) Am. J. Pharm., 88, 484.
(1912) Nernst.Festschrift, 391-4.	Salzer.
(1912) Chem.Zentr., II, 1261.	(1886) Liebig's Ann., 232, 114.
Rothmund, V. and Wilsmore, N. T. M.	Sammet, V.
(1898) Z.physik.Chem., 26, 475.	Sammet, V. (1905) Z.physik.Chem., 53, 644-48.
(1902) Z.physik.Chem., 40, 623.	Sander, W.
Rotinjanz, L. and Rotarski, T.	(1911-12) Z.physik.Chem., 78, 513-
(1906) J.Russ.Phys.Chem.Soc., 38,	549
782.	Sandonnini, C.
Rozsa, M.	(1911) Atti accad.Lincei, [5], 20, I
(1911) Z. Elektrochem, 17, 935.	173, 253.
Rubenbauer.	(1911) Gazz.chim.ital., 41, II, 146.
(1902) Z.anorg.Chem., 30, 334.	(1911) Atti accad.Lincei, [5], 20, II
Rúdorff.	62, 497, 572, 588, 646.
(1862) Pogg.Ann., 116, 63.	62, 497, 572, 588, 646. (1911a) Atti accad.Lincei, [5], 20, I
(1869) Ber., 2, 70.	457, 760.

Sandonnini, C.	Schaefer, W.
(1912) Atti accad.Lincei, [5], 21, I,	(1914) Neues Jahrb. Min. Geol., I, 15- 24.
208-13, 479. (1912a) Atti accad.Lincei, [5], 21, II,	von Schéele, C.
19/, 524, 035. (1012h) Atti Ist Ven - 71, 552	(1899) Ber., 32, 415. Scheffer, F. E. C.
197, 524, 635. (1912b) Atti Ist. Ven., 71, 553. (1913) Atti accad. Lincei, [5], 22, I,	(1911) Proc.k.Akad. Wet. (Amst.), 13,
030; 11, 21.	829; 14, 195. (1912) Z.physik.Chem., 76, 161.
(1914) Atti accad.Lincei, [5], 23, I, 962.	(1912) Z.physik.Chem., 76 , 161. (1912a) Proc.k.Akad.Wet.(Amst.),
(1914) Gazz.chim.ital., 44, I, 296, 382	15, 380.
Sandonnini, C. and Aureggi, P. C.	Scheibler, C.
(1912) Atti accad.Lincei, [5], 21, I, 493.	(1872) Ber., 5, 343. (1883) J.pharm.chim., [5], 8, 540.
Sandonnini, C. and Scarpa, G.	(1891) Ber., 24, 434.
(1911a) Átti accad.Lincei, [5], 20, II,	Schenck, R. and Rassbach, W.
62.	(1908) Ber., 41, 2917.
(1911b) Atti accad.Lincei, [5], 20, II,	Scheuble, R.
497. (1912) Atti accad.Lincei, [5], 21, II,	(1907) Liebig's Ann., 351, 473–80.
77–84.	Scheuer, Otto. (1910) Z.physik.Chem., 72, 525-35.
(1913) Atti accad.Lincei, [5], 22, II,	Schiavor, G.
21, 163, 518.	(1902) Gazz.chim.ital., 32, II, 532.
Sandquist, H.	Schick, K.
(1911) Liebig's Ann., 379, 85.	(1903) Z.physik.Chem., 42, 163.
(1912) Liebig's Ann., 392, 76. Ark.Kem.Min.Geol., 4, 8-81.	Schierholz.
Saposchinikow, Gelvich et al.	(1890) Sitzber.k.Akad.Wiss.(Wien.), 101, 2b, 4.
(1903) J.Russ.Phys.Chem.Soc., 35,	Schiff.
1073-94.	(1859) Liebig's Ann., 100, 326,
(1904) Z.physik.Chem., 49, 688-96.	(1860) Liebig's Ann., 113, 350.
Savorro, Eglie.	(1861) Liebig's Ann., 118, 365.
(1914) Atti accad.sci.(Torino), 48,	Schiff and Monsacchi.
948–59. (1914) Chem.Abs., 8, 340.	(1896) Z.physik.Chem., 21, 277. Schindelmeiser.
Sborgi, U.	(1901) Chem.Ztg., 25, 129.
(1913) Atti accad.Lincei, [5], 22, I,	Schlamp, A.
91, 636, 716, 798.	(1894) Z.physik.Chem., 14, 272.
(1915) Atti accad.Lincei, [5], 24, I, 1225.	Schloesing. (1871) Compt.rend., 73, 1273.
Sborgi, U. and Mecacci, F.	(1872) Compt.rend., 74, 1552; 75, 70.
(1915) Atti accad.Lincei, [5], 24, I,	Schlossberg, J.
443-8.	(1900) Ber., 33, 1082.
(1916) Atti accad.Lincei, [5], 25, II,	Schmidlin, J. and Lang, R.
327, 386, 455. Scaffidi, V.	(1910) Ber., 43, 2813.
(1907) Z.physik.Chem., 52, 42.	(1912) Ber., 45, 905. Scholl, R. and Steinkopf.
Scarpa, G.	(1906) Ber., 30, 4393.
(1912) Atti accad.Lincei, [5], 21, II,	(1906) Ber., 39, 4393. Scholtz, M.
720.	(1901) Ber., 34, 1623. (1912) Arch.Pharm., 250, 418.
(1915) Atti accad.Lincei, [5], 24, I,	(1912) Arch.Pharm., 250, 418.
741, 955; 11, 476. Scarpa, O.	Schöne. (1873) Ber., 6, 1224.
(1904) J.chim.phys., 2, 449.	Schönfeld.
Schachner, Paul.	(1885) Liebig's Ann., 95, 5.
(1910) Biochem.Centralbl., 9, 610.	Schoorl, N.
Schaefer, G. L.	(1903) Rec.trav.chim., 22, 40.
(1910) Am. Jour. Pharm., 82, 175.	Schrefeld.
(1910) Pharm.Jour.(Lond.), 84, 757. (1912) Am.Jour.Pharm., 84, 389.	(1894) Z.Ver.Zuckerind, 44, 971. Schreinemakers, F. A. H.
(1913) Am. Jour. Pharm., 85, 441.	(1802) Z.physik.Chem., o. 65, 77
Schäfer, H.	(1897) Z.Dhysik.Chem., 22, 417-41
(1905) Z.anorg.Chem., 45, 310.	(1898) Z.physik.Chem., 25, 543-67.
0.	

Schreinemakers, F. A. H.	Schreinemakers, F. A. H. and Hoenen,
(1808) Z.physik.Chem., 26, 237-54.	P. H. J.
(1898c) Z.physik.Chem., 27, 95-122. (1899) Z.physik.Chem., 29, 577.	(1909) Chem. Weekblad., 6, 51.
(1899) Z.physik.Chem., 29, 577.	Schreinemakers, F. A. H. and Van der
(1900) Proc.k.Akad.Wet.(Amst.), 2,	Horn van den Bos, J. L. M.
(1900) Z.physik.Chem., 33, 79.	(1912) Z.physik.Chem., 79, 551.
(1903) Z.anorg.Chem., 37, 207.	Schreinemakers, F. A. H. and Jacobs,
(1903) Z.anorg.Chem., 37, 207. (1906) Z.physik.Chem., 55, 89.	W.
(1907) Z.physik.Chem., 59, 041.	(1910) Chem. Weekblad., 7, 215.
(1908-09) Z.physik.Chem., 65, 555,	Schreinemakers, F. A. H. and Massink,
575. (1908) Chem.Weekblad., 5, 847.	(1910) Chem. Weekblad., 7, 214.
(1909) Z.physik.Chem., 66, 687–98.	Schreinemakers, F. A. H. and Mei-
(1909) Chem. Weekblad., 6, 131, 140.	jeringh, D. J.
(1909-10) Z.physik.Chem., 68, 83-	(1908) Chem. Weekblad., 5, 811. Schreinemakers, F. A. H. and Van
IO3.	Schreinemakers, F. A. H. and Van
(1910) Arch.neer.sc.ex.nat., [2], 15,	Provije, D. J. (1913) Proc.k.Akad.Wet., 15, 1326.
81, 117. (1910) Z.physik.Chem., 69, 557–68.	Schreinemakers, F. A. H. and Thonus,
(1010a) Z.physik.Chem., 71, 109-16.	J. C.
(1910b) Chem. Weekblad., 7, 333.	(1912) Proc.k.Akad.Wet.(Amst.), 15,
(1911) Proc.k.Akad.Wet.(Amst.), 13,	472.
1163.	Schröder.
Schreinemakers, F. A. H. and de Baat, W. C.	(1893) Z.physik.Chem., 11, 449.
(1908) Chem. Weekbl., 5, 465-72.	Schroeder, J. (1905) Z.anorg.Chem., 44, 6.
(1908-9) Z.physik.Chem., 65, 586.	(1908) J.prakt.Chem., [2], 77, 267-8.
(1909) Z.physik.Chem., 67, 551–60.	Schükarew, A.
(1910) Chem. Weekblad., 7, 259.	(1901) Z.physik.Chem., 38, 543.
(1910a) Arch.neer.sc.ex.nat., [2], 15,	Schukow. (1900) Z.Ver.Zuckerind, 50, 313.
415. (1914) Proc.k.Akad.Wet.(Amst.), 17,	Schuler.
533, 781.	(1879) Sitzb.k.Akad.Wis.(Berlin),79,
(1915) Proc.k.Akad.Wet.(Amst.), 17,	302.
IIII.	Schultz.
(1915) Verslag.k.Akad.Wet.(Amst.),	(1860) Zeit.Chem., [2], 5, 531. (1861) Pogg.Ann., 113, 137.
23, 1097; May. (1917) Chem.Weekblad., 14, 141,	Schulze.
203, 244.	(1881) J.prakt.Chem., [2], 24, 168.
(1917) Chem. Weekblad., 14, 262-7,	Schweissinger.
288.	(1884-85) Pharm.Ztg.
Schreinemakers, F.A.H. and Cocheret, D. H.	Schweitzer.
(1905) Chem.Weekblad., 2, 771–778.	(1890) Z.anal.Chem., 29, 414. Schwicker.
Schreinemakers, F. A. H. and Cocheret,	(1889) Ber., 22, 1731.
D. H., Filippo, H. and de	Sedlitzky.
Waal, A. J. C.	(1887) Monatsh.Chem., 8, 563.
(1901) Z.physik.Chem., 59, 645.	Seidell, A.
Schreinemakers, F. A. H. and Deuss, J. J. B.	(1902) Am.Chem.Jour., 27, 52.
(1912) Z.physik.Chem., 79, 554.	(1907) J.Am.Chem.Soc., 29, 1088-95. (1908) Trans.Am.Electrochem.Soc.,
Schreinemakers, F. A. H. and Van	13. 319–320.
Dorp, W. A. Jr.	13, 319-329. (1909) J.Am.Chem.Soc., 31, 1164.
(1906) Chem. Weekblad., 3, 557-561.	(1010) Bull No.67 Hygienic Labora-
(1907) Z.physik.Chem., 59, 641–69.	tory, U. S. Public Health
Schreinemakers, F. A. H. and Figee, T. (1911) Chem. Weekblad., 8, 683–8.	Service. (1910a) Proc.Am.Pharm.Assoc., 58,
Schreinemakers, F. A. H. and Filippo,	1031.
A. Jr.	(1912) Am.Chem.Jour., 48, 453-67.
(1906) Chem. Weekblad., 3, 157-165.	Seidell, A. and Smith, J. G.
(1906) Chem.Zentralbl., 77, I, 1321.	(1904) J.Phys.Chem., 8, 493.
Ω 1	' E

Self, P. A. W. and Greenish, H. G. Sinnige, L. R. (1907) Pharm. Jour. (Lond.), 78, 327. (1909) Z.physik.Chem., 67, 432-45. Seliwanow, Th. Sisley, P. (1914) Z.anorg.Chem., 85, 337. (1902) Bull.soc.chim., [3], 27, 905. Skirrow, F. W. Sehnal, J. (1909) Compt.rend., 148, 1394. (1902) Z.physik.Chem., 41, 144. Skinner, S. Serullas. (1892) J.Chem.Soc.(Lond.), 6z, 342.) Ann.chim.phys., 22, 118. Skossareswky, M. and Tchitchinadze, N. Sestini. (1890) Gazz.chim.ital., 20, 313. Setschenow. (1916) J.chim.phys., 14, 153-175. (1892) Ann.chim.phys., [6], 25, 226. Skrabal, A Setterburg. (1882) Liebig's Annalen, 211, 104. Soubert and Eiten. (1917) Monatsh.Chem., 38, 25-9. Slade, R. E. (1912) Z.Elecktrochem., 18, 1. (1892) Z.anorg.Chem., 2, 434. Sloan and Mallet. Seyler, C. A. (1882) Chem. News., 46, 194. (1908) Analyst, 33, 454-7. Seyler, C. A. and Lloyd, P. V. Slothouwer, J. H. (1914) Rec.trav.chim., 33, 327. Smirnoff, Wladimer. (1907) Z.physik.Chem., 58, 373, 667. (1909) J.Chem.Soc.(Lond.), 95,1347-Shad, H. and Bornemann, K. (1916) Metall u.Erz., 13, 251-62. (1912) Landolt and Börnstein "Tab-ellen," 4th Ed., p. 481. Sharwood, W. J. (1903) J.Am.Chem.Soc., 25, 576. Smith and Bradbury. Sherrill, M. S. (1891) Ber., 24, 2930. (1903) Z.physik.Chem., 43, 705-740. Sherrill, M. S. and Eaton, F. M. Smith, A. and Carson, C. M. (1908) Z.physik.Chem., 61, 200. (1907) J.Am.Chem.Soc., 29, 1643. Sherrill, M. S. and Russ, D. E. Smith, A. and Bastlack, H. E. (1916) J.Am.Chem.Soc., 38, 1500, (1907) J.Am.Chem.Soc., 29, 1657-61. 1265. Shiomi, T. Smith, A., Holmes, W. B. and Hall, E.S. (1908) Mem.Coll.Sci.Eng.(Kyoto), 1, Sidgwick, N. V. (1905) J.Am.Chem.Soc., 27, 805. Smith, A. and Menzies, A. W. C. (1909) J.Am.Chem.Soc., 31, 1183-91. (1910) Proc.Chem.Soc.(Lond.), 26, Smith, C. and Watts, C. H. 60-i. (1910) J.Chem.Soc.(Lond.), 97, 568. Smith, F. Hastings. (1911) J.Chem.Soc.(Lond.), 99, 1123. (1915) J.Chem.Soc.(Lond.), 107, 672. Sidgwick, N. V., Pickford, P. and Wils-(1917) J.Am.Chem.Soc., 39, 1309. don, B. H. (1911) J.Chem.Soc.(Lond.),99,1122-Smith, G. McP. and Ball, T. R. (1917) J. Am. Chem. Soc., 39, 217. Smith, Herbert, J. (1918) J.Am.Chem.Soc., 40, 879–885. Sidgwick, N. V., Spurrell, W. J. and Davies, T. É. Smith, W. R. J.Chem.Soc.(Lond.), (1915)107, (1909) J.Am.Chem.Soc., 31, 245. 1202-13. Smits, A. Siebeck. (1903) Z.Elecktrochem, 9, 663. (1909) Scand. Arch.f. Physiol., 21, 368. Smits, A. and Bokhorst, S. C. Sieger, W. (1915) Z.physik.Chem., 89, 374. Dissertation, Delft, 156. (1912) "Tables, annuelles," 3, 337. Sieverts, A. and Co-workers. (1909) Ber., 42, 338. Smits, A. and Kettner, A. (1912) Proc.k.Akad.Wet.(Amst.), 15, 685. Smits, A. and de Leeuw, H. L. (1910) Ber., 43, 893. (1910) Proc.k.Akad.Wet.(Amst.), 13, (1912) Ber., 45, 221. Sieverts, A. and Bergner, E. Smits, A. and Maarse, J. (1911) Proc.k.Akad.Wet.(Amst.), 14, (1912) Ber., 45, 2576. Sill, H. F. (1905) Z.physik.Chem., 51, 577-602. 192. Smits, A. and de Mooy.
(1910) Verslag.Akad.Wet.(Amst.), (1916) J.Am.Chem.Soc., 38, 2632. Sims. (1861) Liebig's Ann., 118, 340. 19, 293.

Smits, A. and Postma, S.	Stepano, A.
(1914) Proc.k.Akad.Wet.(Amst.), 17,	(1910) J.Russ.Phys.Chem.Soc., 42,
183.	489.
Smolensky, S.	(1910) Liebig's Ann., 373, 219.
(1911-12) Z.anorg.Chem., 73, 293.	Stiassny. (1891) Monatsh.Chem., 12, 601.
Sneider. (1866) Pogg.Ann., 127, 624.	Stich, C.
Snell, J. F.	(1903) Pharm.Ztg., 48, 343.
(1898) J.Phys.Chem., 2, 474, 484.	(1903) Pharm. Jour. (Lond.), 70, 700.
Snyder.	Stock, A.
(1878) Ber., 11, 936.	(1904) Ber., 37, 1432.
Soch, C. A.	(1910) Ber., 43, 156, 1227. Stock, A. and Kuss, E.
(1898) J.Phys.Chem., 2, 43.	Stock, A. and Kuss, E.
Sommer, F. (1014) 7 anorg Chem. 86, 85	(1917) Ber., 50, 159–164. Stoermer, R. and Heymann, P.
(1914) Z.anorg.Chem., 86, 85. Sosman, R. B. and Merwin, H. E.	(1913) Ber., 46, 1255.
(1916) J.Wash.Acad.Sci., 6, 532-537.	Stolba.
Souchay and Leussen.	(1865) J.prakt.Chem., 94, 406. (1867) J.prakt.Chem., 101, 1. (1872) Z.anal.Chem., 11, 199.
(1856) Liebig's Ann., 99, 33.	(1867) J.prakt.Chem., 101, 1.
Spencer, J. F. (1912) Z.physik.Chem., 80, 701.	(1872) Z.anal.Chem., 11, 199.
	(1877) Chem.Centralbl., 418, 578.
(1913) Z.physik.Chem., 83, 293. Spencer and LePla.	(1883) Chem.Centralbl., 293. (1889) Chem.Techn.Cent., Anz., 7,
(1909) Z.anorg.Chem., 65, 14.	459.
Speyers, C. L.	Stolle.
(1902) Am.J.Sci., [4], 14, 294.	(1900) Z.Ver.Zuckerind., 50, 331.
Spielrein, C.	Stoltzenberg, H.
(1913) Compt.rend., 157, 46.	(1912) Ber., 45, 2248.
Spring and Romanoff.	(1914) Z.physik.Chem., 92, 461–94.
(1896) Z.anorg.Chem., 13, 34. Squire, P. W. and Caines, C. M.	Stortenbecker, W. (1888) Rec.trav.chim., 7, 152.
(1905) Pharm. Jour. (Lond.), 74, 720,	(1889) Z.physik.Chem., 3, 11.
784.	(1897) Z.physik.Chem., 22, 62.
v. Stackelberg, E. F.	(1000) Z.physik.Chem., 34, 100.
(1896) Z.physik.Chem., 20, 337-58.	(1902) Rec.trav.chim., 21, 407.
van der Stadt, E.	(1907) Rec.trav.chim., 26, 245.
(1902) Z.physik.Chem., 41, 353.	Straub, Jan.
Stanley, H. (1904) Chem. News, 89, 193.	(1911) Z.physik.Chem., 77, 332.
Stark, G.	Strömholm, D.
(1911) Z.anorg.Chem., 70, 174.	(1900) Ber., 33, 835. (1903) Z.physik.Chem., 44, 721–32.
Steger.	(1908) Z.anorg.Chem., 57, 72–103.
(1903) Z.physik.Chem., 43, 595.	Struve.
Stern, Otto.	(1870) Z.anal.Chem., 9, 34.
(1912-13) Z.physik.Chem., 81, 468.	(1899) J.prakt.Chem., [2], 61, 457.
Staronka, W. (1910) Anzeiger akad.Wis.Krakau.	Sudborough, J. J. and Lakhumalani, I. V.
Ser.A., 372–98.	
(1910) Chem.Zentralbl., 81, 1741.	(1917) J.Chem.Soc.(Lond.), 111, 44.
Stasevich, N.	Sudhaus, Käthe.
(1913) J.Russ.Phys.Chem.Soc., 45,	(1914) Neues Jahrb.Min.Geol.(Beil. Bd.), 37, 1–50.
912-30.	Sulc. 50.
Steele and Johnson. (1904) J.Chem.Soc.(Lond.), 85, 116.	(1900) Z.anorg.Chem., 25, 401.
Steiner, P.	Stiss, J.
(1894) Ann.der.Physik.(Wiederman),	(1913) Z.Kryst.Min., 51, 262.
52, 275.	Suyver, J. F.
Steinwehr.	(1905) Rec.trav.chim., 24, 381, 397.
(1902) Ann.der Physik.(Drude), [4],	Swan, Clifford, M.
9, 1050.	(1899) "Chemistry Thesis," Mass.
Stepanow, A. (1907) Z.ges.Schiess, u.Sprengstoffw.,	Inst. Technology, (un-
2, 43-6.	published). (1911) J.Am.Chem.Soc., 33, 1814.
به رب رب - ۵-	. 1911/ J.:

Swinne, R.	Tilden, W. A.
(acce) 7 showile Cham Co acc	(1994) I Cham San /I and) are ass
(1913) Z.physik.Chem., 84, 348.	(1884) J.Chem.Soc.(Lond.), 45, 269
Szathmary de Szachmar, L. v.	409.
(rore) 7 Forb Ind P. ors	Tilden and Shenstone.
(1910) Z.Farb.Ind., 7, 215.	THOSE AND SECURIORS.
(1910) Chem.Abs., 4, 1381.	(1883) Proc.Roy.Soc.(Lond.), 35, 345
de Szyszkowski, Bohdan.	(1884) Phil Trans 22-21
UE SZYSZEOWSKI, DOLIGALI.	(1884) Phil.Trans., 23-31. (1885) Proc. Roy. Soc. (Lond.), 38,
(1915) Medd.K.Vetenskapsakad, No-	(1885) Proc. Roy. Soc. (Lond.), 38,
belinst., 3, Nos. 3, 4, 5.	221
М-1 - ТГ О	331. Timofeiew, Wladimir.
Taber, W. C.	ilmorelew, windimir.
(1906) J.Phys.Chem., 10, 593.	(1890) Z.physik.Chem., 6, 147.
(1900) Jil Injoichenin, 20, 353.	(1995) Compt and and are
(1906) Bull., 33, Bureau of Soils, U. S.	(1891) Compt.rend., 112, 1137, 1224.
Dept. Agr.	(1894) Dissertation (Kharkhov.)
	Timefalow and Manutan
Tafel, J.	Timofeiew and Kravtzov.
(1901) Ber., 34, 263.	(1915) Chem.Abs., 9, 2896.
Takenchi, J.	_ (1917) Chem.Abs., 11, 788.
(1915) Mem.Coll.Sci.(Kyoto), 1,249-	Timmermans, J.
55.	(1907) Z.physik.Chem., 58, 129–213.
Tamm, O.	(1910) Proc.k.Akad.Wet.(Amst.) 13,
(1910) Z.physik.Chem., 74, 499.	523.
Tarugi, N.	(1911) "Recherches expérimentales
	sur les phénomènes de
(1904) Gazz.chim.ital., 34, I, 329.	sur les phénomènes de
(1914) Gazz.chim.ital., 44, 1, 131.	demixtion des mélanges
Tarugi, N. and Checchi, Q.	liquides " (Thése) Brux-
Tatugi, 11. and Checom, Q.	idaides (Luese) Diaz-
(1901) Gazz.chim.ital., 31, II, 439.	elles. Avril, 1911.
	(1912) Bull.soc.chim.(Belg.), 26, 382.
445.	(1912) Duli.soc.cimi.(Deig.), 20, 302.
Taverne, H. J.	Tinkler, C. K.
(1900) Rec.trav.chim., 19, 109.	(1913) J.Chem.Soc.(Lond.), 103, 2176.
(1900) Receitaviennii, 19, 109.	
Taylor, H. S. and Henderson, W. N.	Titherby, A. W.
(1915) J.Am.Chem.Soc., 37, 1692.	(1912) Pharm.Jour.(Lond.), 88, 94.
M-1-0 B	
Taylor, S. F.	Tobler.
(1897) J.Phys.Chem., 1, 301, 468,	(1855) Liebig's Ann., 95, 193.
720.	Tower.
Tcherniac, J. (1916) J.Chem.Soc.(Lond.),109,1239.	_ (1906) Z.anorg.Chem., 50, 382.
(resc) I Chara See (Land) reason	
(1916) J.Chem.Soc.(Lond.),109,1239.	Traube.
Tetta Polak van der Goot.	(1884) Ber., 17, 2304.
(1913) Z.physik.Chem., 84, 419–50.	Traube, I.
Than.	(1909) Ber., 42, 2185, 4185–8.
(1862) Liebig's Ann., 123, 187.	Trautz and Anschütz.
Thiel.	(1906) Z.physik.Chem., 56, 238.
	Treadwell and Reuter.
(1903) Z.physik.Chem., 43, 656.	
Thilo.	(1898) Z.anorg.Chem., 17, 185.
	Treis, K.
(1892) Chem.Ztg., 16, 11, 1688.	(res A) Neuro Taba Mia (Pail Pd.)
Thin, R. G. and Cumming, Alex. C.	(1914) Neues. Jahr. Min. (Beil. Bd.), 37,
	766-818.
(1915) J.Chem.Soc.(Lond.), 107,	
361-6.	Trevor.
	(1891) Z.physik.Chem., 7, 470.
Thomas.	Tentha W
(1896) Compt.rend., 123, 943.	Truthe, W.
Thomas T. C. and Dula A	(1912)Z.anorg.Chem., 76, 129-173.
Inomas, J. S. and Kule, A.	Tsakalotos, D. E.
Thomas, J. S. and Rule, A. (1917) J.Chem.Soc.(Lond.), 111,	(acce) Dull acception following
1060 85	(1909) Bull.soc.chim., [4], 5, 397-409.
1063–85.	(1910) Jour.chim.phys., 8, 343.
Thompson, M. de K.	(rore) Bull see shim (4) ar alm
(rosa) Mat Cham Fra 9 are say	(1912) Bull.soc.chim., [4], 11, 287.
(1910) Met.Chem.Eng., 8, 279, 324.	(1913) Bull.soc.chim., [4], 13, 282.
(1910) Proc.Am.Acad., 45, 431–52.	(TOTA) I chim phase 12 467-2
	(1914) J.chim.phys., 12, 461-3.
Thonus, J. C.	Tsakalotos, D. E. and Guye, P. A.
(1913) Verslag.k.Akad.Wet.(Amst.),	
	(1910) J.chim.phys., 8, 340.
22, 570-2.	Tschugaeff, L. A. and Chlopin W.
Thorin, E. G.	(Chugaev, L. and Khlopin, W.)
	(Amegant) To and Truching M.)
(1915) Z.physik.Chem., 89, 687.	(1914) Z.anorg.Chem., 86, 159.
Tichomirow, W.	Tschugaeff, L. A. and Kiltinovic, S. S.
(zoon) I Duce Dhou Cham Coo	(rore) I Cham Con (I and I)
(1907) J.Russ.Phys.Chem.Soc., 39,	(1916) J.Chem.Soc.(Lond.) 109, 1286.
731-43.	Tuchschmidt, C. and Follenius, O.
(1908) Chem.Zentralbl., I, 11.	
(1900) Unein.Zentraidi., I. II.	(1871) Ber., 4, 583.
	(/-/) 47 0-0-
_	18

Turner, W. E. S. and Bissett, C. C.	Vanstone, E.
(1913) J.Chem.Soc.(Lond.),103,1904.	(1909) J.Chem.Soc.(Lond.), 95, 597.
Tutton, A. E. H. (1897) J.Chem.Soc.(Lond.), 71, 850.	(1913) J.Chem.Soc.(Lond.), 103, 1828.
(1907) Proc.Roy.Soc.(Lond.), 79,	(1914) J.Chem.Soc.(Lond.), 105,
_ (A) 351-82.	1491-1503.
Tyrer, Dan.	Van't Hoff see van't Hoff.
(1910) Jour.Chem.Soc.(Lond.), 97, 1778–1788.	Van Wyk, H. J. (1902) Z.anorg.Chem., 32, 115.
(1910a) Jour.Chem.Soc.(Lond.), 97,	(1905) Z.anorg.Chem., 47, 1-52.
621-632.	Varenne and Pauleau.
(1911) Proc.Chem.Soc.(Lond.), 27,	(1881) Compt.rend., 93, 1016. Vasiliev, A. M. (Wasilieff).
Uhlig, J.	(1909) J.Russ.Phys.Chem.Soc., 41,
(1913) Centr.Min.Geol., 417-22.	748-53; 953-7.
Ullik. (1867) Liebig's Ann., 144, 244.	(1910) J.Russ.Phys.Chem.Soc., 42,
Umney, J. C. and Bunker, S. W.	423, 562-81. (1910) Chem.Zentralbl.,II, 1527.
(1912) Perf. Essent. Oil Record, 3,	(1910) "Tables annuelles," 1, 381.
101; 4, 38.	(1911) J. Russ. Phys. Chem. Soc.
Unkovskaja, V. (1913) J.Russ.Phys.Chem.Soc., 45,	(1912) Chem.Abs., 6, 577. (1912) J.Russ.Phys.Chem.Soc., 44,
1099.	1076.
U. S. P., VIII.	Vaubel.
(1907) U. S. Pharmacopœia, 8th,	(1895) J.prakt.Chem., [2], 52, 72. (1896) Z.physik.Chem., 25, 95.
decennial revision. Usher, F. L.	(1899) Lprakt.Chem., [2], 50, 30,
(1908) Z.physik.Chem., 62, 622-5.	(1903) J.prakt.Chem., [2], 67 , 472.
(1910) J.Chem.Soc.(Lond.), 97, 66-	Vesterberg, A.
78. Usso.	(1912) 8th Inter.Congr.Appl.Chem.,
(1904) Z.anorg.Chem., 38, 419.	2, 238, 255. Vezes, M. and Mouline, M.
Uyeda, K.	(1904) Bull.soc.chim., [3], 31, 1043.
(1909–10) Mem.Coll.Sci.Eng.(Ky-	(1905–06)Proc.verb.soc.phys.nat. (Bordeaux), 123.
oto), 2, 245–261. (1912–13) Mem.Coll.Sci.Eng.(Ky-	Viala, F.
oto), 5, 147–50.	(1914) Bull.soc.chim., [4], 15, 5.
(1912) 8th Int.Cong.Appl.Chem., 22,	Vignon, Leo. (1891) Bull.soc.chim., [3], 6, 387, 656.
Valenta.	(1891) Compt.rend., 113, 133.
(1894) Monatsh.Chem., 15, 250.	Virck.
Valeton, J. J. P.	(1862) Chem.Centralbl., 402. Voerman, G. L.
(1910) Verslag k.Akad.Wet.(Amst.), 18, 755.	(1906) Chem.Zentralbl., 77, I, 125.
Valeur, A.	(1907) Rec.trav.chim., 26, 293.
(1917) Compt.rend., 164, 818-20.	Vogel, Fritz.
Van de Moer, J.	(1903) Z.anorg.Chem., 35, 389. Vogel.
(1891) Rec.trav.chim., 10, 47. Vandevelde, A. J. J.	(1867) Neues Repert. Pharm., 16, 557.
(1911) Bull.soc.chim.(Belg.), 25, 210.	(1874) Neues Repert.Pharm., 23, 335.
Van Eyk, C.	Volkhouskii. (1910) J.Russ.Phys.Chem.Soc., 41,
(1899) Z.physik.Chem., 30, 430.	1763; 42, 1180.
(1900) Proc.k.Akad.Wet.(Amst.), 2, 480.	Vortisch, E.
(1901) Proc.k.Akad.Wet.(Amst.), 3,	(1914) Neues Jahrb.Min.Geol.(Beil. Bd.), 38, 185-272.
98.	(1914a) Neues Jahrb.Min.Geol.(Beil.
(1905) Z.physik.Chem., 51, 721.	Bd.), 38, 513-24.
(1905) Chem.News., 91, 295. Van Name, R. S. and Brown, W. G.	Vulpius. (1893) Pharm. Centralh., 34, 117.
(1917) Am. Jour. Sci., [4], 44, 105-23.	de Waal, A. J. C.
Van Slyke, L. L. and Winter, O. B.	(1910) Dissertation, Leyden.
(1913) Science, 38, 639.	(1910) "Tables annuelles."

777. 4 1. H 7. L	97.1.1
Waddell, John.	Weisberg.
(1898) J.Phys.Chem., 2, 236.	(1896) Bull.soc.chim., [3], 15, 1097.
(1899) J.Phys.Chem., 3, 160.	Wells, H. L.
(1900) J.Phys.Chem., 4, 161.	(1892) Am. Jour.Sci., [3], 44, 221.
(1900) J.Phys.Chem., 4, 161. Waentig, P. and McIntosh, D. (1916) Trans.Roy.Soc.(Canada), 9,	Wells, H. L. and Wheeler, H. L.
(1916) Trans. Roy. Soc. (Canada), 9,	(1892) Am. Jour. Sci., [3], 43, 475.
203-9.	Wells, R. C.
Wagner.	(1915) J. Wash. Acad. Sci., 5, 617-22.
(1867) Z.anal.Chem., 6, 167.	(1915) J.Am.Chem.Soc., 37, 1704. Wells, R. C. and McAdam, D. J., Jr.
Wagner, C. L.	wells, R. C. and McAdam, D. J., Jr.
(1910) Z.physik.Chem., 71, 430.	(1907) J.Am.Chem.Soc., 29, 721-7.
Wagner, K. L. and Zerner, E.	Welsh, T. W. B. and Broderson, H. J.
(1911) Monatsh.Chem., 31, 833.	(1915) J.Am.Chem.Soc., 37, 816.
Wagemmann, K.	Wempe, G.
(1912) Metallurgie, 9, 518, 537.	(1912) Z.anorg.Chem., 78, 298-327.
Walden, P. T.	Wenger.
(1905) Am.Chem.Jour., 34, 149. (1906) Z.physik.Chem., 55, 712.	(1892) Am.Chem.Jour., 16, 466.
(1906) Z.physik.Chem., 55, 712.	Wenger, Paul.
Walden, P. T. and Centnerszwer, M.	(1911) Dissertation, Genéve.
(1902-03) Z.physik.Chem., 42, 454.	(1911) "Tables annuelles," 2, 411.
Walker, J.	Wentzel.
(1890) Z.physik.Chem., 5, 195.	() Dammer's "Handbuch," II,
Walker, J. and Fyffe, W. A.	2, 858.
(1903) J.Chem.Soc.(Lond.), 83, 179. Walker, J. and Wood, J. K.	Wenze.
waiker, J. and Wood, J. K.	(1891) Z.angew.Chem., 5, 691.
(1898) J.Chem.Soc.(Lond.), 73, 620.	Werner, E. A.
Wallace.	(1912) J.Chem.Soc.(Lond.), 101, 2169. Wester, D. H. and Bruins, A.
(1855) J.Chem.Soc.(Lond.), 7, 80.	Wester, D. H. and Bruins, A.
Wallace.	(1914) Pharm. Weekblad, 51, 1443-6.
(1909) Z.anorg.Chem., 63, 1.	Wheeler, H. L.
Waller, A. D.	(1892) Am. J.Sci., [3], 44, 123.
(1904-05) Proc.Roy.Soc.(Lond.), 74,	(1893) Am. J.Sci., [3], 45, 267.
Walton, J. H. Jr., and Judd, R. C.	(1893) Am.J.Sci., [3], 45, 267. (1893a) Z.anorg.Chem., 3, 432.
waiton, J. H. Jr., and Judd, R. C.	wherry, E. I. and Ianovsky, E.
(1911) J.Am.Chem.Soc., 33, 1036. Walton, J. H., and Lewis, H. A.	(1918) J.Am.Chem.Soc., 40, 1072.
waiton, J. H., and Lewis, H. A.	Whipple, G. C. and Whipple. M. C.
(1916) J.Am.Chem.Soc., 38, 633.	(1911) J.Am.Chem.Soc., 33, 362.
Wartha.	Whitby, G. S.
(1885) Z.anal.Chem., 24, 220.	(1910) Z.anorg.Chem., 67, 107-9.
Warynski, T. and Kourapatwinska, S.	Whitney, W. R. and Melcher, A. C.
(1916) J.chim.phys., 14, 328-35. Washburn, E. W. and Macinnes. (1911) Z.Elektrochem., 17, 503.	(1903) J.Am.Chem.Soc., 25, 78.
(vors) 7 Elektrockers are see	Wibaut, J. P.
(1911) Z.Elektrochem., 17, 503.	(1909) Chemisch Weekblad, 6, 401.
Washburn, E. W. and Read, J. W.	(1913) Rec.trav.chim., 32, 269.
(1915) Proc.Nat.Acad.Sci.(U. S. A.),	Wigand, A.
1, 191–5.	(1910) Z.physik.Chem., 75, 235.
Wasilieff (see Vasiliev).	Wildeman.
Wedekind, E. and Paschke, F.	(1893) Z.physik.Chem., 11, 421.
(1910) Z.physik.Chem., 73, 127.	Willstaetter.
Wegscheider, R.	(1904) Ber., 37, 3753.
(1907) Liebig's Ann., 351, 87.	Wilsmore.
Wegscheider, R. and Walter, H.	(1900) Z.physik.Chem., 35, 305.
(1905) Monatsh.Chem., 26, 685.	Wingard, A.
(1907) Monatsh.Chem., 28, 633-72.	(1917) Svensk.Farm.Tidskrift, 21,
Weigel, O.	
(1906) Nachr.kgl.Ges.Göttingen, p.	289~93. (1017) Chem Abs. 11, 2748.
525–48.	(1917) Chem.Abs., 11, 2748.
(1907) Z.physik.Chem., 58, 293–300.	Winkler, L. W.
	(1887) J.prakt.Chem., [2], 34, 177;
Weiller, P.	36, 177.
(1911) Chem.Ztg., 35, 1063-5.	(1891) Ber., 24, 3609.
von Weimarn, P. P. (1911) Z.physik.Chem., 76, 218.	(1899) Chem.Ztg., 23, 687. (1901) Ber., 34, 1409, 1421.

Winkler, L. W. (1905) Landolt and Börnstein "Tabellen," 3rd Ed., p. 604. (1906) Z.physik.Chem., 55, 350. (1912) Landolt and Börnstein "Tabellen," 4th Ed., p. 597, 601. Winteler, F. (1900) Z.Elektrochem., 7, 360. Winterstein, E. (1909) Arch.exp.Path.u.Pharm., 62, 14. Wirth, F. (1908) Z.anorg.Chem., 58, 219. (1912) Z.anorg.Chem., 76, 174-200. (1912-13) Z.anorg.Chem., 79, 357. (1914) Z.anorg.Chem., 87, 1-12. Wirth, F. and Bakke, B. (1914) Z.anorg.Chem., 87, 29, 47. Witt, O. N. (1915) Ber., 48, 767. v. Wittorff, N. (1904) Z.anorg.Chem., 41, 83. Wolfmann. (1897) Oster.Ung.Z.Zuckerind., 25, 997. Wolters. (1910) N.Jahrb.Min.Geol.(Beil.Bd.), 30, 57. Wood, J. K. and Scott, J. D. (1908) J.Chem.Soc.(Lond.), 93, 412. Wood, J. K. and Scott, J. D. (1907) J.Chem.Soc.(Lond.), 97, 1573. Wood, T. B. and Jones, H. O. (1907-08) Proc.Cambridge Phil.Soc. 14, 171-6. Worden, E. C. (1907) J.Soc.Chem.Ind., 26, 452. Worley, F. P. (1905) J.Chem.Soc.(Lond.), 87, 1107. Woudstra, H. W. (1912) 8th Int.Cong.Appl.Chem., 12, 251. Wright and Thomson.	Wroth, B. B. and Reid, E. E. (1916) J.Am.Chem.Soc., 38, 2322. Wrzesnewsky, J. B. (1912) Z.anorg.Chem., 74, 95. Wuite, J. P. (1913-14) Z.physik.Chem., 86, 349-82. Würfel. (1896) Dissertation, Marburg. Würgler, J. (1914) Dissertation, Zürich. Wuth, B. (1902) Ber., 35, 2415. van Wyk, see Van Wyk. Wyrouboff, G. (1869) Ann.chim.phys., [4], 16, 292. (1901) Bull.soc.chim., [3], 25, 105, 121. Yamamoto. (1908) J.Coll.Sci.(Tokyo), 25, XI. Young, S. W. (1897) J.Am.Chem.Soc., 19, 851. Young, S. W. and Burke, W. E. (1904) J.Am.Chem.Soc., 26, 1417. (1906) J.Am.Chem.Soc., 28, 321. Zaayer, H. G. (1886) Rec.trav.chim., 5, 316. Zaharia, A. (1899) Bul.soc. de scünte din Bucuresci (Roumania), 8, 53-61. Zalai, D. (1910) Gyógyszereszi Értesito (Budapest), 18, 366. (1910) "Tables annuelles," 1, 410. Zambonini, F. F. (1913) Atti accad.Lincei, [5], 22, I, 523. Zawidzki, V. (1904) Z.physik.Chem., 47, 721. Zemcznzy. (1908) Z.anorg.Chem., 57, 267.
(1912) 8th Int.Cong.Appl.Chem., 12,	Zemcznzny.
(1910) J.chim.phys., 8, 197.	•

Acenaphthene, 1, 2, 16	Alizarin, 20
bromo, 2	Allantoin, 20
chloro, 2	Allocinnamic acids, 254
iodo, 2	Allyl alcohol ETT E24 647
Acetaldehyde, 2	Allyl alcohol, 511, 534, 647
phenyl hydrazone, 2	isothiocyanic ester, 443
	mustard oil, 77
trithio, 732	thio urea, 738
Acetamide, 2	Aloin, 20
tribromo, 2	Alums, 30-32, 67, 180, 249, 582, 587,
trichloro, 2	4,713
Acetanilide, 3, 4	Aluminium bromide, 21-24
chloro and bromo, 4	chloride, 25–27
nitro, 4, 79	fluoride, 27
oxymethyl, 13	hydroxide, 28
Acetanisidine, 13	oxide, 28, 210
Acetic acid, 5-8, 84, 89, 366, 500, 626	rubidium alum, 582
chloro, 5, 9–11	sulfate, 29, 31
cyano, II	sulfide, 29
esters, 12	thallium alum, 713
Acetic anhydride, 5	Aminopropionic acid, 19
Acetins, mono, di and tri, 13	
	Aminosuccinic acid, 692
Acetnaphthalide, 13	Ammonia, 33–38, 70, 436
Acetone, 13-15, 50, 125, 197, 248, 444,	Ammonium acetate, 39
480, 511, 525, 534, 648, 695	acid oxalate, 59
phenyl hydrazone, 487	acid sulfate, 64
Acetphenetidine, 477	antimony sulfide, 69
Acetophenol, 89	arsenates, 39
Acetophenone, 9, 10, 16, 84	alum, 30
amino, 730	benzoate, 39
Acetotoluidine, 732	bicarbonate, 41–43
Aceturethan, 742	bismuth citrate, 150
Acetyl acetone, 16	borates, 40
Acetyldiphenylamine, 283	
Acetylene, 16, 17, 438	bromide, 40, 99, 504 bromide, propyl, benzyl, etc., 41
bi iodide, 17	bromide, tetraethyl, 41
Acetylsalicylic acid, 101, 593	bromide, tetramethyl, 41
Acetyl tribromophenol, 486	cadmium bromide, 41, 167–8
Aconitic acid, 17	cadmium chloride, 170-1
	cadmium iodides, 177
According, 17	
Acrylic acid, trichloro, 18	cadmium sulfate, 67
Actinium, 18	calcium ferrocyanide, 51
Adipic acid, 18	calcium sulfate, 214
Adipinic acid, 18	carbonate, 13, 41
Adonitol, dibenzal, 698	cerium sulfate, 241, 243
Agaric acid, 18	cerium nitrate, 241
Air, 19	chloride, 43, 44-50, 60, 107, 109, 274,
Alanine, 19, 20	337-8, 353, 643, 751
phenyl, 486	chloride carnellite, 48
Albumin, 20	chloride, ethyl and methyl, 50
Alcohol (Ethyl), 2, 12, 65, 66, 71, 72,	chromates, 51
125, 126, 160, 163, 235, 239, 245,	chromium alum, 32
247, 248, 286–294, 296, 298–300,	chromium sulfate, 67
313, 404-5, 438-9, 466-7, 501, 509-	citrates, 51
10, 530, 533, 571, 574, 628, 636,	cobalt chlorides, 256
671	cohalt malonate, 259
7/1	Condit materiate, 233

67 copper chloride, 265-6, 270 copper sulfate, 273, 557 didymium nitrate, 281 fluoboride, 51 fluosilicate, 62 formate, 52 glycyrrhizate, 307 indium sulfate, 67 iodate, 52 iodide phenyl trimethyl, 55 iodide tetra amyl, 55 iodide tetra methyl, 54, 55 iodide tetra methyl, 54, 55 iodide tetra propyl, 54, 55 iodid	
copper sulfate, 273, 557 didymium nitrate, 281 fluoboride, 51 fluosilicate, 62 formate, 52 glycyrrhizate, 307 indium sulfate, 67 iodate, 52 iodide, 52 iodide phenyl trimethyl, 55 iodide tetra amyl, 55 iodide tetra ethyl, 53, 55 iodide tetra propyl, 54, 5	
didymium nitrate, 281 fluoboride, 51 fluosilicate, 62 formate, 52 glycyrrhizate, 307 indium sulfate, 67 iodate, 52 iodide, 52 iodide phenyl trimethyl, 55 iodide tetra amyl, 53, 55 iodide tetra ethyl, 53, 55 iodide tetra propyl, 54, 55 iodide tetra propyl	
fluoboride, 51 fluosilicate, 62 formate, 52 glycyrrhizate, 307 indium sulfate, 67 iodate, 52 iodide, 52 iodide phenyl trimethyl, 55 iodide tetra amyl, 55 iodide tetra ethyl, 53, 55 iodide tetra propyl, 54, 55 iodide tetra prop	
fluosilicate, 62 formate, 52 glycyrrhizate, 307 indium sulfate, 67 iodate, 52 iodide, 52 iodide phenyl trimethyl, 55 iodide tetra amyl, 55 iodide tetra ethyl, 53, 55 iodide tetra propyl, 54, 55 iodide tetra propyl propionate, 736 vanadite, 75 vanadite, 69 zinc chloride, 751 zinc sv	
formate, 52 glycyrrhizate, 307 indium sulfate, 67 iodate, 52 iodide, 52 iodide phenyl trimethyl, 55 iodide tetra amyl, 55 iodide tetra amethyl, 54, 55 iodide tetra methyl, 54, 55 iodide tetra propyl, 54, 55 iodide tetra propyl, 54, 55 iodomercurate, 55 iron alum, 67 iron chloride, 337 iron sulfate, 67 lanthanum nitrate, 347 lanthanum sulfate, 348 lead chloride, 353 lead cobalticyanide, 43 lead sulfate, 67 lithium sulfate, 68 lithium tartrate, 69 magnesium arsenate, 39 magnesium sulfate, 68 mangasium sulfate, 68 manganese molybdate, 59 manganese molybdate, 59 manganese phosphate, 62 tetroxolate, 59 thorium oxalate, 60, 722 thorium oxalate, 60, 722 trinitrate, 57 urate, 70 urate, 70 uraty, carbonate, 43, 733–4 uranyl oxalate, 735 uranyl propionate, 736 vanadate, meta, 70 vanadium sulfate, 69 zinc chloride, 751 zinc oxalate, 754 zinc sulfate, 69 zinc chloride, 751 zinc oxalate, 69 zinc chloride, 72 alcohol, 72 Amyl ammonium iodide, tetra, 55 ammonium perchlorates, 44 benzene, 84 benzene, 84 benzene (iso), 90 bromide (iso), 292 butyrate, 70 Amylene, 72, 73	
glycyrrhizate, 307 indium sulfate, 67 iodate, 52 iodide, 52 iodide phenyl trimethyl, 55 iodide tetra amyl, 55 iodide tetra ethyl, 53, 55 iodide tetra methyl, 54, 55 iodide tetra propyl, 54, 55 ioridium chlorides, 55, 335 iran alum, 67 iran propionate, 735 uranyl orale, 70 vanadium sulfate, 69 zinc chloride, 751 zinc sulfate, 69 zinc chloride, 751 zinc sulfate, 69 zinc chloride, 751 zinc sulfate, 69 zinc chloride, 751 zinc sulfate, 69 zinc chloride, 751 zinc sulfate, 69 zinc chloride, 751 zinc sulfate, 69 zinc chloride, 751 zinc sulfate, 69 zinc chloride, 751 zinc sulfate, 69 zinc chloride, 751 zinc sulfate, 69 zinc chloride, 751 zinc sulfate, 69 zinc chloride, 751 zinc sulfate, 69 zinc chloride, 751 zinc sulfate, 69 zinc chloride, 751 zinc sulfate, 69 zinc chloride, 751 zinc sulfate, 69 zinc chloride, 751 zinc sulfate, 69 zinc chloride, 751 zinc sulfate, 69 zinc chloride, 751 zinc sulf	
indium sulfate, 67 iodate, 52 iodide, 52 iodide phenyl trimethyl, 55 iodide tetra amyl, 55 iodide tetra ethyl, 53, 55 iodide tetra methyl, 54, 55 iodide tetra propyl, 54, 55 iodide tetra propyl, 54, 55 iodomercurate, 55 iron alum, 67 iron chlorides, 55, 335 iron alum, 67 lanthanum nitrate, 347 lanthanum sulfate, 68 lithium sulfate, 68 lithium sulfate, 68 magnesium phosphate, 61 magnesium sulfate, 68 manganese molybdate, 59 manganese phosphate, 62 manganese phosphate, 62 thorium oxalate, 60, 722 thorium oxalate, 724 trinitrate, 57 urate, 70 uranyl carbonate, 43, 733–4 uranyl nitrate, 735 uranyl oxalate, 735 uranyl oxalate, 735 uranyl oxalate, 735 uranyl carbonate, 43, 733–4 uranyl nitrate, 735 uranyl oxalate, 735 uranyl oxalate, 735 uranyl carbonate, 43, 733–4 uranyl nitrate, 735 uranyl oxalate, 70 vanadium sulfate, 69 zinc chloride, 751 zinc oxalate, 754 zinc sulfate, 69, 273 Amygdalin, 70 Amylamine, 72 hydrochloride (iso), 72 Amyl ammonium iodide, tetra, 55 ammonium perchlorates, 44 benzene, 84 benzene, 84 benzene (iso), 90 bromide (iso), 292 butyrate, 70 Amylene, 72, 73	
iodate, 52 iodide, 52 iodide phenyl trimethyl, 55 iodide tetra amyl, 55 iodide tetra ethyl, 53, 55 iodide tetra propyl, 54, 55 iodide tetra propyl, 54, 55 iodide tetra propyl, 54, 55 iodide tetra propyl, 54, 55 iodide tetra propyl, 54, 55 iodide tetra propyl, 54, 55 iodide tetra propyl, 54, 55 iodide tetra propyl, 54, 55 iodide tetra propyl, 54, 55 iodide tetra propyl, 54, 55 iodide tetra propyl, 54, 55 iodide tetra propyl, 54, 55 iodide tetra methyl, 54, 55 iodide tetra propyl, ropionate, 735 uranyl nitrate, 735 uranyl nitrate, 79 vanadite, 75 vanadite, 69 zinc chloride, 751 zinc sulfate, 69 zinc sulfate, 69, 273 Amygdalin, 70 Amylamine, 72 hydrochloride (iso), 72 Amyl ammonium iodide, tetra, 55 ammonium perchlorates, 44 benzene (iso), 90 bromide (iso), 90 bromide (iso), 90 bromide (iso), 90 bromide (iso), 90 bromide (iso), 90 bromide (iso), 90 bromide (iso), 92 butyrate, 70 Amylamirate, 736 vanadite, 736 vanadite, 736 vanadite, 736 vanadite, 736 vanadite, 736 vanadi	
iodide, 52 iodide phenyl trimethyl, 55 iodide tetra amyl, 55 iodide tetra ethyl, 53, 55 iodide tetra methyl, 54, 55 iodide tetra propyl, 54, 55 iodide tetra methyl, 53, 55 iodide tetra propyl, 54, 55 iodide tetra methyl, 53, 55 iodide tetra propyl, 54, 55 iodide tetra propyl, 54, 55 iodide tetra propyl, 54, 55 iodide tetra propyl, 54, 55 iodide tetra propyl, 54, 55 iodide tetra methyl, 53, 55 iodide tetra propyl, 54, 55 iodide tetra ethyl, 53, 55 iodide tetra ethyl, 53, 55 iodide tetra ethyl, 54,	
iodide phenyl trimethyl, 55 iodide tetra amyl, 55 iodide tetra amyl, 55 iodide tetra methyl, 54, 55 iodide tetra propyl, xalate, 735 vanadium sulfate, 69 zinc chloride, 75, 2 zinc sulfate, 69, 273 Amyl acetate, 12, 70, 71 alcohol, 71, 72 alcohol, 150, 71, 72, 291 Amylamine, 72 hydrochloride (iso), 72 Amyl ammonium iodide, tetra, 55 ammonium perchlorates, 44 benzene, 84 benzene, 84 benzene, 84 benzene, 84 benzene (iso), 90 bromide (iso), 90 bromide (iso), 292 butyrate, 70 Amylene, 72, 73	
iodide tetra amyl, 55 iodide tetra ethyl, 53, 55 iodide tetra methyl, 54, 55 iodide tetra propyl, 54, 55 iodomercurate, 55 iridium chlorides, 55, 335 iron alum, 67 iron chloride, 337 iron sulfate, 67 lanthanum nitrate, 347 lanthanum sulfate, 348 lead cobalticyanide, 43 lead sulfate, 67 lithium sulfate, 68 lithium tartrate, 69 magnesium arsenate, 39 magnesium phosphate, 61 magnesium sulfate, 68 manganese molybdate, 59 manganese molybdate, 59 manganese phosphate, 62 uranyl carbonate, 43, 733-4 uranyl nitrate, 735 uranyl oxalate, 736 vanadate, meta, 70 vanadium sulfate, 69 zinc chloride, 751 zinc oxalate, 754 zinc phosphate, 754 zinc sulfate, 69, 273 Amyl acetate, 12, 70, 71 alcohol, 71, 72 alcohol, iso, 71, 72, 291 Amylamine, 72 hydrochloride (iso), 72 Amyl ammonium iodide, tetra, 55 ammonium perchlorates, 44 benzene, 84 benzene, 84 benzene (iso), 90 bromide (iso), 292 butyrate, 70 Amylene, 72, 73	
iodide tetra ethyl, 54, 55 iodide tetra methyl, 54, 55 iodide tetra propyl, 54, 55 iodomercurate, 55 iridium chlorides, 55, 335 iron alum, 67 iron chloride, 337 iron sulfate, 67 lanthanum nitrate, 347 lanthanum sulfate, 348 lead chloride, 353 lead cobalticyanide, 43 lead sulfate, 67 lithium sulfate, 68 lithium tartrate, 69 magnesium arsenate, 39 magnesium ferrocyanide, 389 magnesium sulfate, 68 mangasium sulfate, 69 mangasium sulfate, 69 mangasium sulfate, 69 mangasium sulfate, 69 mangasium sulfate, 69 mangasium sulfate, 69 mangasium sulfate, 69 alcohol, 72, 72 alcohol, 72, 72 alcohol, 71, 72 alcohol, 71, 72 alcohol, 71, 72 alcohol, 71, 72 alcohol, 71, 72 alcohol, 71, 72 alcohol, 72 Amyl ammonium iodide, tetra, 55 ammonium perchlorates, 44 benzene, 84 benzene (iso), 90 bromide (iso), 292 butyrate, 70 Amylene, 72, 73	
iodide tetra methyl, 54, 55 iodide tetra propyl, 4, 55 iodide tetra propyl, 54, 55 iodide tetra propyl, 54, 55 iodide tetra propyl 54, 55 iodide tetra propyl 54, 55 ivanadite, 75 iodide tetra propyl 54, 55 iodide tetra propyl 54, 55 iodide tetra propyl 54, 55 iodide tetra propyl 54, 55 iodide tetra propyl 54, 55 iodide tetra propyl 54, 55 iodide tetra propyl 54, 55 iodide tetra propyl 54, 55 iodide tetra propyl 54, 55 iodide tetra propyl 54, 55 iodide tetra propyl 54, 55 iodide tetra propyl 54, 55 iodide tetra propyl 54 iodide tetra propyl 56 iodide tetra propyl 56 iodide tetra propyl 56 iodide tetra propyla for surally propionate, 736 vanadite, 69 zinc chloride, 751 zinc oxalate, 754 zinc sulfate, 69, 273 Amygdalin, 70 Amylacetate, 12, 70, 71 alcohol, 71, 72 alcohol, 150, 71, 72, 291 Amylamine, 72 hydrochloride (iso), 72 Amylamine, 72 hydrochloride (iso), 72 Amylamine, 72 hydrochloride (iso), 90 benzene, 84 benzene (iso), 90 benzene, 84 benzene (iso), 90 benzene, 84 benzene, 84 benzene, 84 benzene, 754 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride,	
iodide tetra propyl, 54, 55 iodomercurate, 55 iridium chlorides, 55, 335 iron alum, 67 iron chloride, 337 iron sulfate, 67 lanthanum nitrate, 347 lanthanum sulfate, 348 lead chloride, 353 lead cobalticyanide, 43 lead sulfate, 67 lithium sulfate, 68 lithium tartrate, 69 magnesium arsenate, 39 magnesium ferrocyanide, 389 magnesium sulfate, 68 mangaesium sulfate, 68 mangaese molybdate, 59 manganese phosphate, 62 uranyl propionate, 736 vanadate, meta, 70 vanadium sulfate, 69 zinc chloride, 751 zinc oxalate, 754 zinc phosphate, 754 zinc phosphate, 12, 70, 71 alcohol, 71, 72 alcohol, iso, 71, 72, 291 Amyl ammonium iodide, tetra, 55 ammonium perchlorates, 44 benzene (iso), 90 bromide (iso), 292 butyrate, 70 Amylene, 72, 73	
iodomercurate, 55 iridium chlorides, 55, 335 iron alum, 67 iron chloride, 337 iron sulfate, 67 lanthanum nitrate, 347 lanthanum sulfate, 348 lead chloride, 353 lead cobalticyanide, 43 lead sulfate, 67 lithium sulfate, 68 lithium tartrate, 69 magnesium arsenate, 39 magnesium ferrocyanide, 389 magnesium sulfate, 68 mangasium sulfate, 68 mangasium sulfate, 68 mangasium sulfate, 69 magnesium phosphate, 61 magnesium sulfate, 69 manganese molybdate, 59 manganese phosphate, 62 vanadium sulfate, 69 zinc chloride, 751 zinc oxalate, 754 zinc sulfate, 69, 273 Amygdalin, 70 Amyl acetate, 12, 70, 71 alcohol, 71, 72 alcohol, iso, 71, 72, 291 Amylamine, 72 hydrochloride (iso), 72 Amyl ammonium iodide, tetra, 55 ammonium perchlorates, 44 benzene, 84 benzene, 84 benzene (iso), 90 bromide (iso), 292 butyrate, 70 Amylene, 72, 73	
iridium chlorides, 55, 335 iron alum, 67 iron chloride, 337 iron sulfate, 67 lanthanum nitrate, 347 lanthanum sulfate, 348 lead chloride, 353 lead cobalticyanide, 43 lead sulfate, 67 lithium sulfate, 68 lithium tartrate, 69 magnesium arsenate, 39 magnesium ferrocyanide, 389 magnesium sulfate, 68 mangasium sulfate, 69 magnesium perchloride, 751 zinc chloride, 751 zinc phosphate, 754 zinc sulfate, 69, 273 Amygdalin, 70 Amyl acetate, 12, 70, 71 alcohol, 71, 72 alcohol, 1so, 71, 72, 291 Amylamine, 72 hydrochloride (iso), 72 Amyl ammonium iodide, tetra, 55 ammonium perchlorates, 44 benzene, 84 benzene, 84 benzene (iso), 90 bromide (iso), 292 butyrate, 70 Amylene, 72, 73	
iron alum, 67 iron chloride, 337 iron sulfate, 67 lanthanum nitrate, 347 lanthanum sulfate, 348 lead chloride, 353 lead cobalticyanide, 43 lead sulfate, 67 lithium sulfate, 68 lithium tartrate, 69 magnesium arsenate, 39 magnesium ferrocyanide, 389 magnesium sulfate, 68 magnesium sulfate, 68 magnesium sulfate, 69 magnesium sulfate, 69 magnesium sulfate, 69 magnesium sulfate, 69 magnesium sulfate, 69 magnesium sulfate, 69 magnesium sulfate, 68 manganese molybdate, 61 magnese molybdate, 59 manganese phosphate, 62 manganese phosphate, 62 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 751 zinc chloride, 754 zinc sulfate, 69, 273 Amygdalin, 70 Amylamine, 72 hydrochloride (iso), 72 Amylamine, 72 hydrochloride (iso), 72 Amylamine, 72 hydrochloride (iso), 90 benzene, 84 benzene, 84 benzene (iso), 90 bromide (iso), 90 bromide (iso), 292 butyrate, 70 Amylene, 72, 73	
iron chloride, 337 iron sulfate, 67 lanthanum nitrate, 347 lanthanum sulfate, 348 lead chloride, 353 lead cobalticyanide, 43 lead sulfate, 67 lithium sulfate, 68 lithium tartrate, 69 magnesium arsenate, 39 magnesium phosphate, 61 magnesium sulfate, 68 manganese molybdate, 59 manganese phosphate, 62 iron sulfate, 754 zinc phosphate, 754 zinc sulfate, 69, 273 Amyl adin, 70 Amyl acetate, 12, 70, 71 alcohol, 71, 72 alcohol, iso, 71, 72, 291 Amylamine, 72 hydrochloride (iso), 72 Amyl ammonium iodide, tetra, 55 ammonium perchlorates, 44 benzene, 84 benzene (iso), 90 bromide (iso), 292 butyrate, 70 Amylene, 72, 73	
lanthanum nitrate, 347 lanthanum sulfate, 348 lead chloride, 353 lead cobalticyanide, 43 lead sulfate, 67 lithium sulfate, 68 lithium tartrate, 69 magnesium arsenate, 39 magnesium ferrocyanide, 389 magnesium phosphate, 61 magnesium sulfate, 68 manganese molybdate, 59 manganese phosphate, 62 Zinc sulfate, 69, 273 Amygdalin, 70 Amyl acetate, 12, 70, 71 alcohol, 71, 72 alcohol, iso, 71, 72, 291 Amylamine, 72 hydrochloride (iso), 72 Amyl ammonium iodide, tetra, 55 ammonium perchlorates, 44 benzene, 84 benzene (iso), 90 bromide (iso), 292 butyrate, 70 Amylene, 72, 73	
lanthanum nitrate, 347 lanthanum sulfate, 348 lead chloride, 353 lead cobalticyanide, 43 lead sulfate, 67 lithium sulfate, 68 lithium tartrate, 69 magnesium arsenate, 39 magnesium ferrocyanide, 389 magnesium phosphate, 61 magnesium sulfate, 68 manganese molybdate, 59 manganese phosphate, 62 Zinc sulfate, 69, 273 Amygdalin, 70 Amyl acetate, 12, 70, 71 alcohol, 71, 72 alcohol, iso, 71, 72, 291 Amylamine, 72 hydrochloride (iso), 72 Amyl ammonium iodide, tetra, 55 ammonium perchlorates, 44 benzene, 84 benzene (iso), 90 bromide (iso), 292 butyrate, 70 Amylene, 72, 73	
lead chloride, 353 lead cobalticyanide, 43 lead sulfate, 67 lithium sulfate, 68 lithium tartrate, 69 magnesium arsenate, 39 magnesium phosphate, 61 magnesium sulfate, 68 manganese molybdate, 59 manganese phosphate, 62 Amyl ammonium iodide, tetra, 55 ammonium perchlorates, 44 benzene (iso), 90 bromide (iso), 292 butyrate, 70 Amylene, 72, 73	
lead cobalticyanide, 43 lead sulfate, 67 lithium sulfate, 68 lithium tartrate, 69 magnesium arsenate, 39 magnesium ferrocyanide, 389 magnesium phosphate, 61 magnesium sulfate, 68 manganese molybdate, 59 manganese phosphate, 62 alcohol, 71, 72 alcohol, 97, 72 alcohol, 90 hydrochloride (iso), 72 Amyl ammonium iodide, tetra, 55 ammonium perchlorates, 44 benzene (iso), 90 bromide (iso), 292 butyrate, 70 Amylene, 72, 73	
lead sulfate, 67 lithium sulfate, 68 lithium tartrate, 69 magnesium arsenate, 39 magnesium ferrocyanide, 389 magnesium phosphate, 61 magnesium sulfate, 68 manganese molybdate, 59 manganese phosphate, 62 alcohol, iso, 71, 72, 291 Amylamine, 72 hydrochloride (iso), 72 Amyl ammonium iodide, tetra, 55 ammonium perchlorates, 44 benzene, 84 benzene (iso), 90 bromide (iso), 292 butyrate, 70 Amylene, 72, 73	
lithium sulfate, 68 lithium tartrate, 69 magnesium arsenate, 39 magnesium ferrocyanide, 389 magnesium nitrate, 59 magnesium phosphate, 61 magnesium sulfate, 68 manganese molybdate, 59 manganese phosphate, 62 Amylamine, 72 hydrochloride (iso), 72 Amyl ammonium iodide, tetra, 55 ammonium perchlorates, 44 benzene, 84 benzene (iso), 90 bromide (iso), 292 butyrate, 70 Amylene, 72, 73	
magnesium arsenate, 39 magnesium ferrocyanide, 389 magnesium nitrate, 59 magnesium phosphate, 61 magnesium sulfate, 68 manganese molybdate, 59 manganese phosphate, 62 magnesium tartrate, 69 magnesium ferrocyanide, 389 mammonium perchlorates, 44 benzene, 84 benzene (iso), 90 bromide (iso), 90 benzene, 84 benzene (iso), 90 bromide (iso), 292 butyrate, 70 Amylene, 72, 73	
magnesium arsenate, 39 magnesium ferrocyanide, 389 magnesium nitrate, 59 magnesium phosphate, 61 magnesium sulfate, 68 manganese molybdate, 59 manganese phosphate, 62 Amyl ammonium iodide, tetra, 55 ammonium perchlorates, 44 benzene (iso), 90 bromide (iso), 292 butyrate, 70 Amylene, 72, 73	
magnesium ferrocyanide, 389 magnesium nitrate, 59 magnesium phosphate, 61 magnesium sulfate, 68 manganese molybdate, 59 manganese phosphate, 62 manganese phosphate, 62 manganesium ferrocyanide, 389 menzene, 84 benzene (iso), 90 bromide (iso), 292 butyrate, 70 Amylene, 72, 73	
magnesium nitrate, 59 benzene, 84 benzene (iso), 90 benzene (iso), 90 benzene (iso), 90 benzene (iso), 292 benzene (iso), 292 benzene (iso), 292 benzene, 70 benzene, 70 benzene, 72 benzene, 73 benzene, 84 benzene, 78 benzene, 84 benzene, 78 benzene, 84 benzene, 78 benzene, 84 benzene, 78 benzene, 84 benzene, 79 benzene, 84 benzene, 79 benzene, 84 benzene, 79 benzene, 84 benze	
magnesium phosphate, 61 benzene (iso), 90 magnesium sulfate, 68 bromide (iso), 292 manganese molybdate, 59 butyrate, 70 manganese phosphate, 62 Amylene, 72, 73	
magnesium sulfate, 68 bromide (iso), 292 manganese molybdate, 59 butyrate, 70 manganese phosphate, 62 Amylene, 72, 73	
manganese molybdate, 59 butyrate, 70 manganese phosphate, 62 Amylene, 72, 73	
manganese phosphate, 62 Amylene, 72, 73	
manganese sulfate, 68, 404 hydrate, 73	
manarinia karanida 196	
malubdata tates EF	
nickel sulfate, 68, 273 formate, 70, 71 mickel sulfate, 68, 273 malonic acid, 399	
mitrata AF FF 60	
oleate, 59 propionate, 70 Andromedotoxine, 73	
oxalate, 59, 376, 735 Anethol, 13, 73	
palmitate, 60 Aniline 21, 72-80, 88, 80, 442	
perchiorate, 43, 44 bromo, 21, 79	
perchlorate derivatives, 44 dimethyl, 21, 123, 132	
periodate, 52 ethyl. 79	
permanganate, 62 hydrochloride, 74, 78	
persultate, 69 methyl, 21, 79, 292	
phosphates, 60, 61, 62 nitro, 4, 78, 79, 80	
phosphites, 62 nitro methyl, tetra, 79	
phosphomolybdate, 55 nitroso, 79 picrate, 62 nitroso dimethyl, 77, 79	
platinum bromide, 41 propyl, 79 platinum chloride, 498 sulfate, 80	
platinous nitrita compounda 400	
ruthenium nitrosochloride s87	
salicylate. 62	
selenate, 62 Anisidine, 80	
silico fluoride, 62 Anisole, 80, 84, 89	
sodium phosphates, 62 nitro, 80, 42I	
sodium sulfate, 68 Anthracene, 81, 82	
sodium sulfite, 69 Anthraflavine, 83	

Anthraquinone, 82, 83	Barium acetate, benzoate, 104
hydroxy, 83	borates, 105
Anthrarufine, 83	bromate, 105
Antimony, 83, 705, 712	bromide, 99, 105, 106
ammonium sulfide, 69	butyrate, 106
lithium sulfide, 366, 373	cadmium chloride, 171
penta chloride, 94	camphorates, 106
penta fluoride, 94	cinnamates, 112
potassium sulfide, 500-1	citrates, 112
potassium tartrate, 96	caproate, 107
selenides, 95	carbonate, 107, 108, 111, 509, 557
sodium sulfide, 627–8	chlorate, 108
sulfide, 277, 365 tri bromide, 83–88	chloride, 45, 99, 108–111, 643
	chromate, III, II2
tri chloride, 88–94	cyanide, 112
tri fluoride, 95	ferrocyanide, 112
tri iodide, 95	fluoride, III, II2
tri oxide, 95	formate, 113
tri phenyl, 95	glycerolphosphates, 119
tri sulfide, 95	hydroxide, 105, 109, 113, 114
Antipyrine, 4, 96 Apomorphine, hydrochloride, 97, 442	iodate, 114
	iodide, 106, 111, 112, 114
Arabidic acid oz	iodide mercuric cyanide, 423
Arachidic acid, 97 Arbutin, 97	iodomercurate, 115
Argon, 97	iso caproate, 107 iso succinate, 120
Aribitol, monobenzal, 698	laurate, 120
Arsenic, 98, 705, 712	malate, 115
pentoxide, 100	malonate, 115
sulfide (ous), 101	molybdate, 115
tri bromide, 98	myristate, 120
tri chloride, 98	nitrate, 45, 55, 109, 113, 115-7, 166,
tri iodide, 95, 98	542
tri oxide, 39, 98-100, 629, 642	nitrite, 117, 118
tri oxide, 39, 98-100, 629, 642 Asparagine, 101	oxalate, 118, 119
Asparaginic acid, 101	oxide, 106, 111, 119
Aspirin, 101, 593	phenanthrene sulfonates, 122
Astrakanit, 641, 668	palmitate, 120
Atropine, 101, 102	perbromide, 106
methyl bromide, 102	perchlorate, 108
Auric, Aurous, (see Gold)	periodide, 115
Azelaic acid, 102	persulfate, 122
Azoanisol, 103	picrate, 119
phenetol, 103	potassium ferrocyanide, 112
Azobenzene, 16, 88, 102, 103, 123, 133,	propionate, 119
166	salicylate, 119
amino, 103	salicylate, dinitro, 119
hydroxy, 103	silicate, 119
Azobenzoic acid ethyl ester, 103	stearate, 120
Azonaphthalana 200	succinate, 120
Azonaphthalene, 103	sulfate, 111, 120, 121, 509, 557
Azotoluene 103	sulfite, 122
Azoruanical 103	sulfonates, 122
Azoxybenzene 103	tartrate, 122, 123 truxilate, 123
Azorybenzoic acid ethyl ester 102	Behenic acid, 123
Azovyobenetol 102	methyl ester, 123
Azoxyphenetol, 103	Benzalaniline, 123
Barbituric acid, diethyl, 744	Benzalazine, 123
Barium acetate, 104	Benzaldehyde, 10, 84, 89, 123, 287
amyl sulfate, 121, 122	trithio, 732
arsenate, 104	hydroxy, 10
benzene sulfonates, 122	nitro, 10, 123, 124
•	

5	D 16 1 11 1
Benzaldoxime, 124	Benzosulfonic acids, amino, 136
nitro, 124	Benzoyl chloride, 21, 27, 84, 89, 146
Benzalic compounds of alcohols, 698	Benzoyl phenyl carbinol, 145
Benzamide, 124	phenyl hydrazine, 487
Benzanilide, 124	tetra hydroquinaldine, 146
chloro, 124	Benzyl acetate, 288
Benzaniline, 103	acetone, di, 9
Benzazonaphthalene, 103	alcohol, 288 Rengulamina hydrochlorida 747
Benzene, 2, 5, 9, 10, 21, 77, 79, 83, 90,	Benzylamine, hydrochloride, 147
103, 124, 125–132, 135, 287, 482,	Benzylaniline 122 145 147
576, 581, 702 bromo, 14, 21, 90, 129, 288, 436, 572	Benzylaniline, 123, 145, 147 Benzyl carbamide, 226
bromochloro, etc., 129	chloride, 80
bromo, chloro, iodo, 85	chloride, nitro, 128, 147
bromo nitro, 23, 24, 26	ethyl ether, 288
	Benzylidene aniline, 124, 145
chloro, 5, 90, 129, 130 chloro, bromo, iodo and fluoro, 128	naphthylamines, 147
chloronitro, 22, 23, 25, 77, 128	Benzylidenes, chloro nitro, 147
disulfone chlorides, 130	Benzyl phenol, 147
dibromo, 21, 91	Beryllium acetate, 147
dichloro, 91	fluorides, 148
ethyl, 85, 90	hydroxide, 148
fluoro, 90	laurate, 148
fluoronitro, 85	meta vanadate, 149
hexahydro, 280	myristate, 148
iodo, 90	oxalate, 148
isoamyl, 90	palmitate, 148
mixed halogen substituted, 129, 130	phosphate, 148
nitro, 1, 4, 5, 21, 22, 25, 77, 79, 90, 91,	stearate, 148
103, 128, 131, 132, 288, 303, 408, 421	sulfate, 148, 149
nitro chloro, etc., 129, 130	Betaine, 149
nitroso, 77, 131	salts, 149
propyl, 85, 91	Betol, 149
sulfonic acid, 84, 89	Bismuth, 150
tri nitro, 478 Renzhydrol 128 122	ammonium citrate, 150
Benzhydrol, 128, 132 Benzil, 2, 9, 10, 88, 103, 124, 132, 136	chloride, 150 citrate, 150
Benzine, 133	double nitrates, 151
Benzoic acid, 5, 9, 10, 77, 84, 89, 128,	hydroxide, 151
133-145	iodide, 151
amino, 137, 138	nitrate, 151
amino nitro, 138	oxide, 152
bromo, chloro and iodo, 139, 140	oxychloride, 150
chloro, 136, 139	salicylate, 152
dinitro oxy, 145	selenide, 152
fluoro, 136, 140	sulfide, 152
halogen substituted, 139	telluride, 152
iodo, 140	triphenyl, 152
isopropyl, 279	Borax, 629-631 (see Sodium tetra-
methoxy, 80	borate)
methyl, 141	Boric acid, 40, 153-57, 189, 367, 630
methyl esters, 140	tetra, 157
nitro, 136, 141-5, 590 nitro chloro, and bromo, 145	Boric anhydride, 157
Renzoic aldebyde nitro a	Borneol, 224
Benzoic aldehyde, nitro, 2 anhydride, 145	Boron trifluoride, 157
Benzoin, 103, 124, 133, 145	Brassidic acid, 158 Brassidinic acid, 122
Benzonitrile, 21, 84, 90	Brassidinic acid, 123 Bromal hydrate, 158
Benzophenone, 10, 13, 22, 27, 84, 88,	Bromethyl propyl aceturea, 742
89, 103, 146, 166	Bromine, 15, 150, 158-62
tetra methyl diamido, 440	Bromoform, 128, 162
Benzoquinone, 10	Brucine, 162
Benzosulfonazole, 587-8	perchlorate, 162

Brucine, sulfate, 163	Caesium alum, fluoride, 27, 183
tartrate, 163	gold chloride, 181, 308 hydroxide, 183
Butter lat, 302	
Butadiene, diphenyl, 163, 254	iodate, 183
Butane, 163	iodides, 183-4
Butyl acetate, 12, 163	iridium chlorides, 182
alcohol, iso, 291	iron chloride, 340
alcohols, 164, 165	lead bromides, 181
ammonium perchlorate, 44	mercuric bromide, 181
bromide, iso, 292	mercuric chlorides, 182
chloral, 165	nitrate, 184
chloral hydrate, 165	oxalate, 185
formate, 163	perchlorate, 181
malonic acid, 399	periodate, 183
sulfine perchlorate, 698	permanganate, 185
Butyric acid, 102, 146, 165-6, 224	platinum chloride, 182, 498
trichloro, 166	selenate, 185
Butyric aldehyde, 163	sulfate, 185
• • • •	tartrate, dihydroxy, 186
Cacodylic acid, 167	telluracid oxalate, 185
Cadmium ammonium bromide, 41,	tellurium bromide, 712
167-168	tellurium chloride, 182, 712
ammonium chloride, 170-1	thallium chloride, 182
ammonium iodides, 177	uranyl chloride, 734
barium chloride, 171	uranyl nitrate, 735
bromide, 167	Caffeine, 186-187
caesium sulfate, 186	Calcite, 192, 193
chlorate, 169	Calcium acetate, 187-8
chloride, 111, 167, 169-174	ammomium ferrocyanide, 51
cinnamates, 174	ammonium sulfate, 67, 214
cyanide, 175	benzoate, 188
fluoride, 170, 175	bitartrate, 222
hydroxide, 175	borates, 188-9
iodide, 167, 170, 175, 176, 177	bromide, 99, 189
magnesium chloride, 171	bromide mercuric cyanide, 423
nitrate, 178	butylacetate, 188
oxalate, 60, 178	butyrates, 190
potassium bromide, 168	camphorates, 190
potassium chlorides, 173-4	caproate, 190
potassium iodides, 178	caprylate, 190
potassium sulfate, 179	carbonate, 191-5, 218
rubidium bromide, 168	chlorate, 196
rubidium chloride, 172	chloride, 99, 111, 119, 121, 170, 189,
rubidium sulfate, 587	195-202, 641
silicate, 178	chloride acetamidate, 198
sodium bromide, 169	chloride acetic acidate, 198
sodium chloride, 174	chloride alcoholates, 199
sodium iodide, 178	chromates, 199
sodium sulfate, 180	cinnamates, 200
sulfate, 170, 178, 179	citrate, 200
sulfide, 180	ethyl acetate, 188
Caesium alum, 32, 180	fluoride, 167, 189, 19 8, 201
bicarbonate, 181	formate, 201
bromide, 181	glycerophosphate, 201
carbonate, 181	heptoate, 20I
chlorate, 181	hydroxide, 200-5, 215
chloraurate, 181	iodate, 206
chloride, 182, 183	iodide, 198, 201, 206
chromates, 181, 183	iodo mercurate, 206
cobalt malonate, 259	lactate, 206
dihydroxy tartrate, 186	magnesium chloride, 196
double sulfates, 186	malates, 206–207
fluoboride, 181	malonate, 207

Calcium acetate, methyl acetate, 188	Cellose, 696
methyl pentanate, 190	Cephaeline salts, 240
nitrate, 203, 207-9, 222	Cerium acetate, 241
nitrite, 209	ammonium nitrate, 241
oenanthate, 201	ammonium sulfate, 241
oleate, 209	butyrates, 241
oxalate, 209-10	chloride (ous), 242
oxide, 157, 189, 198, 210	citrate, 242
pelargonate, 212	cobalticyanide, 242
perbromide, 189 periodide, 206	dimethyl phosphate, 242
phenanthrene sulfonates, 220	double nitrates, 242 double sulfates, 243
phosphates, 210, 211, 212	fluoride, 242
potassium ferrocyanide, 200	formate, 241
potassium sulfate, 218	glycolate, 242
propionate, 212	iodate, 242
propyl acetate, 188	malonate, 242
rubidium sulfate, 218	oxalate, 242
salicylate, 213	propionate, 241
selenate, 213	selenate, 243
silicate, 119, 198, 201, 213	sulfate, 243–4
sodium thiosulfate, 222	sulfonates, 244
succinates, 213	tartrate, 244
sulfate, 195, 198, 203, 212, 214–20	tungstate, 244
sulfate anhydrite, 214	Cesium, (see Caesium)
sulfide, 213, 220	Cetyl alcohol, 9, 244, 574
sulhte, 220	Chloral formamide, 245
tartrate, 221-2	hydrate, 96, 244-5
thiosulfate, 208, 222	Chlorine, 15, 150, 160, 239, 245-7
titanate, 213	dioxide, 247
valerates, 223	monoxide, 247
Calomel, 413 (see also Mercurous	trioxide, 247
chloride)	Chloro acetic acid esters, 12
Camphene, 10, 128, 223 Camphor, 8, 9, 136, 166, 223-5, 593	Chloroform, 14, 15, 77, 126, 131, 247
benzoyl, 224	248, 289, 435, 571
bromo, 225, 593	Cholesterol, 248-9
chloro, 225	acetate, 248
Camphoric acid, 190, 225, 368, 383, 508,	digitonide, 248
633, 678	stearic acid ester, 249
anhydride, 225	Cholesteryl benzoate, 103
Camphoroxime, 225	isobutyrate, 103
Cane sugar (see Sugar)	propionate, 103
Cantharidine, 226	Choline perchlorate, 249
Caoutchouc, 226	Chromic acid, 51, 250, 372, 584, 651
Capryl alcohol, 239, 278, 481, 745	Chromium alums, 249
Carbamides, 226	ammonium alum, 32
Carbazol, 128, 227	ammonium sulfate, 67
Carbinol (see Methyl alcohol)	caesium alum, 180
Carbon dioxide, 227-234, 438	chlorides, 249, 250
disulfide, 5, 128, 235	double salts, 250
monoxide, 235–238 oxysulfide, 238	nitrates, 250
tetrachloride tag and agg and gra	sulfates, 250
tetrachloride, 125, 239, 288, 435, 572 Carmine, 239	thiocyanate, 250
Carnallite, 388, 641	potassium cyanide, 531 potassium thiocyanate, 531
Carnellite, ammonium chloride, 48	rubidium alum, 582
potassium chloride, 48	thallium alum, 713
Carvacrol, 239	trioxide, 183, 250
Carvoxime, 240	Chrysarobin, 250
Cascarilla oil, 468	Chrysene, 250
Casein, 240	Cineole, 251
Catechol, 240	Cinchona alkaloids, 251
	• •

Cinchanidina are	Conjunity
Cinchonidine, 251	Copper action 262-2
salts, 252 Cinchonine, 251	Copper acetate, 262-3 ammonium chloride, 265-6, 270
salts, 252	ammonium sulfate, 273, 557
Cinchotine salts, 252	bromide, 167, 263
Cinnamic acid, 9, 10, 136, 252-254	caesium sulfate, 186
bromo, 253, 254	carbonate, 263-4
chloro, 254	chlorate, 264
methoxy, 254	chloride, 109, 111, 150, 264-270,
Cinnamic aldehydes, chloro and bromo,	274
254 Ciana and idams and a 750 and	chloride (ous), 170, 183, 198
Cinnamylidene, 123, 147, 163, 254	cyanide, 270, 531
acetophenone, 16	hydroxide, 270 iodate, 271
Citric acid, 51, 254-55 Cobalt acetate, 256	iodide, 177, 271
amines, 255	manganese sulfate, 403
ammonium chlorides, 256	nitrate, 271, 360
ammonium sulfate, 67	oxalate, 272
bismuth nitrate, 151	oxide, 270, 272
bromide, 256	potassium carbonate, 264
caesium sulfate, 186	potassium chloride, 267–8, 270
cerium nitrate, 242	potassium sulfate, 274, 557
chlorate, 256	rubidium sulfate, 587
chloride, 45, 256–8	sodium sulfate, 276
citrates, 258	sulfate, 63, 272-7, 403, 454
double salts, 255 fluoride, 258	sulfide, 95, 277
gadolinium nitrate, 304	sultonates, 277 thallium sulfate, 720
iodate, 258	tartrate, 277
iodide, 258	thiocyanate, 278
lanthanum cyanide, 346	Cotton seed oil, 294, 436, 468
lanthanum nitrate, 347	Coumarin, 132, 278
lead cyanide, 357	Cream of tartar, 564-566
malate, 259	Cresol, 9, 10, 77, 128, 251, 278, 279
malonates, 259	trinitro, 279
neodymium cyanide, 449	Crotonic acid, 9, 10, 279
neodymium nitrate, 449	chloro, 279
nitrate, 259	Cryolite, 28 Cumidine, pseudo, 279
oxalate, 259 perchlorate, 256	Cuminic acid, 279
potassium citrate, 258	Cyanimide, 279
potassium sulfate, 557	Cyanogen, 280
praseodymium nitrate, 568	Cyclohexane, 5, 86, 91, 128, 280
rubidium nitrite, 259	Cyclohexanol, 280
rubidium sulfate, 587	Cyclohexanone, 280
samarium nitrate, 594	Cymene, 85, 91
sultate, 259–60	pseudo, 86
sulfide, 260	Cryptopines, methyl, 279
thallium cyanide, 717	Cytisine, 280
ytterbium cyanide, 746 yttrium cyanide, 746	Detonal, 742
Cocaine, 261	Dextrin, 281
hydrochloride, 261	Diacetyl morphine, 442
perchlorate, 261	Diacetyl racemic ether, 281
Cocaline, 302	tartaric ether, 281
Codeine, 261	Diamine mercuric chloride, 419
phosphate, 261	Dibenzyl, 103, 123, 133, 145, 147, 281
sulfate, 261	acetone, 9
Colchicine, 262	hydrazine, 147
salts, 262	Dibnal, 742
Collidine, 262	Dicyandiamidine, 279
Congo red, 262 Coniine, 262	Didymium ammonium nitrate, 281 potassium sulfate, 281
	-
82	ō

Didymium sulfate, 281	Ethyl acetate, 10, 12, 77, 160, 247,
sulfonates, 281	285-6, 290, 313
Diethylamine (see Ethyl amine), 281	Ethyl alcohol (see Alcohol)
Diethylbarbituric acid, 742, 744	amine, di, 128
Diethyldiacetyl tartrate, 131	amine hydrochloride, 296
Diethylene ether, 302	amine, tri, 102, 111, 133, 224, 405
Diethylketone, 289	amines, 294-6
Diethyl oxalate, 10	ammonium bromide, tetra, 41
Dihydro naphthoic acids, 447	ammonium chloride, tetra, 50
Dimethoxystilbene, 103	ammonium iodide, tetra, 53, 55
Dimethylamine (see Methylamine), 437	ammonium perchlorates, 44
malonate, 10	benzene, 90
oxalate, 9, 10	benzoate, 10
pyrone, 5, 9, 10, 21, 132, 136, 143, 166, 253, 279, 304, 346, 400, 448,	bromide, 160, 290, 296, 436, 572 butyrate, 290, 296
484, 486, 495, 575	carbamate, 296, 741-2
succinate, 5, 9, 10	chloracetate, 12
terephthalate, 10	diacetyl tartrate, di, 300
urea, 484	dichlor acetate, 12
xanthine, 721	Ethylene, 301
Dionin, 281, 442	bromides, 5, 22, 79, 103, 128, 131,
Diphenyl, 86, 91, 128, 282	280, 281, 283, 300, 301, 431
acetylene, 123, 254	chlorides, 128, 291, 296
amine, 130, 132, 282-3	cyanide, 302, 693
amine blue, 283	tetraphenyl, 302
amine, hexanitro, 283	Ethyl ether (see ether)
butadiene, 123	formate, 299
imide, 227	Ethylidene chloride, 291, 296
hydrazine, 123	Ethyl iodide, 296
methylamine, 283	ketone, di, 300
oxide, 282	malonic acid, 399
selenide, 283	methyl ketone, 299, 534, 649
sulfide, 283	morphine, 281, 442 morphine hydrochloride, 443
telluride, 283	morphine hydrochloride, 443
urea, 738	piperidine, 496
Dipyridyl 77, 132	propionate, 290, 300
Dipropulazophenetal 102	succinimide, 693
Dipropylazophenetol, 103 Double mercuric chlorides, 420	sulfine perchlorate, 698
Dulcitol, dibenzal, 698	sulfonium iodide, tri, 699
Dyes, 283	sulfon methanes, 435 trichlor acetate, 12
Dysprosium oxalate, 283	
, ,	Ethyl urethan, 742
Edestin, 283	valerates, 300 Eucaine and salts, 202
Egg albumin, 20	Eucaine and salts, 302 Eucalyptole, 251
Elaterin, 284	Europium sulfonate, 302
Emetine and salts, 284	Europium sunonate, 302
Epronal, 742	Foto 202
Erbium dimethyl phosphate, 284	Fatty acids 468
oxalate, 284	Fatty acids, 468 Ferric (see Iron)
sulfate, 284	Ferrous (see Iron)
sulfonate, 284	Fluorene, 132, 145, 303
Erusic acid, 123, 158, 284	Fluorenone, 132
Erythritol, 284, 698	Fluorescein, 303
dibenzyl, 698	Formaldehyde, 303
Eserine, 492	Formamide, 5, 166, 303
Ethane, 285	Formanilides, chloro, 303
Ethane, diphenyl, 88	Formic acid, 5, 126, 130, 303, 304
Ether, ethyl, 5, 10, 15, 16, 83, 128, 131,	Fruit sugar, 695-7
247, 248, 282, 289–290, 295, 297–9,	Fumaric acid, 304
313, 323, 425, 541	Furfuralazine, 123
petroleum, 477	Furfurol, 304
82	? 9

	(7.1. 1
Gadolinium cobalticyanide, 304	Hydrazobenzene, 103, 123, 145, 147
dimethyl phosphate, 305	Hydriodic acid, 312
double nitrates, 304	Hydrobenzene, 103, 147
glycolate, 304	tetra, 87
oxalate, 304-5	Hydrobenzoic acids, hexa, 140
sodium sulfate, 305	Hydrobenzoin, 133
sulfate, 305	Hydrobromic acid, 15, 160, 248, 313
sulfonates, 305	Hydrochloric acid, 247, 248, 298, 313-5,
Galactose, 305, 695-7	517, 649
Gallic acid, 305-6	Hydrocinnamic acid, 253, 570
Germanium dioxide, 306	Hydrocyanic acid, 315
	Hydrofluoric acid, 315
potassium fluoride, 535	
sulfide, 306	Hydrogen, 316–21
Glass, 306	peroxide, 321-2
Glaserite, 559, 641	selenide, 322
Globulin, 306	sulfide, 37, 313, 315, 322–3 Hydroquinol, 15, 77, 103, 224, 251, 254,
Glucoheptose, 696	
Glucose, 306, 695-97	323-4
Glutaminic acid, 306	chloro and bromo, 324
hydrochloride, 307	diacetyl chloro and bromo, 324
Glutaric acid, 307	Hydroquinone (see Hydroquinol)
Glycerol, 75, 125	Hydroxy benzaldehyde, 123
Glycine, 111, 307	benzoic acids, 140, 141
•Glycocoll, 307	benzoic acid, dinitro, 145
trimethyl, 149	Hydroxylamine, 324
Glycolic acid, 307	hydrochloride, 324
phenyl, 307	Hyoscine hydrobromide, 325
Glycyrrhizic acid, 307	Hyoscyamine, 324
Gold, 308, 705, 712	Hypophosphoric acid, 490
caesium chloride, 181	, popoop
	Iditol, tribenzal, 698
chloride, 308	Indan carboxylic acid, nitro, 325
double chlorides, 308	
lithium chloride, 369	Indigo, 325
phosphorus trichloride, 308	Indium ammonium sulfate, 67
Grape sugar, 695–97	caesium alum, 180
Guaiacol, 251, 309	iodate, 325
carbonate, 309	Inositol, iso, 325
Guanidine, triphenyl, 2, 309	Iodic acid, 325, 536, 654
Gulose, 697	Iodine, 55, 95, 98, 150, 160, 184, 206,
Gun cotton, 465	247, 271, 325-34, 429, 537, 713
	Iodoeosine, 335
Helianthin, 309	Iodoform, 335
Helium, 309-310	Iodol, 335
Helium, 309–310 Hemoglobin, 309	Iridium ammonium chlorides, 55, 335
Heptane, 239, 278, 291, 310, 436, 481	caesium chlorides, 182
Heptoic acid, 310	chloride, 335
Heroine, 442	double salts, 335
Hexahydrobenzene, 280	double salts, 335 potassium chloride, 526
Hexamethylene, 280	rubidium chlorides, 585
	Iron ammonium sulfate (alum), 67
tetramine, 310 Hevane 78 121 201 210 426	bicarbonate, 336
Hexane, 78, 131, 291, 310, 436	bromide (ous), 335
Hexanitrodiphenylamine, 283	
Hippuric acid, 310–11	caesium alum, 180
Holocaine hydrochloride, 311	caesium chloride, 340
Homatropine hydrobromide, 311	caesium sulfate, 186
Hydrastine, 311	carbonate (ous), 336
Hydrastinine hydrochloride, 311	chloride, 150, 267, 270, 336–40
Hydrazides, 312	fluoride, 652
Hydrazine, 312	formate 340
Hydrazine, 312 dibenzyl, 147	hydroxide, 341, 342
nitráte, 312	nitrate, 341
perchlorate, 312	oleate, 342
sulfate, 312	oxalate, 342
, 0	940

210, 342 phosphates, 342 potassium sulfate, 345, 558 rubidium alum, 582 rubidium sulfate, 587 sodium sulfate, 584 sulfonates, 345 thallium alum, 713 thallium cyanide, 717 thicoyanate, 345 Isoamyl alcohol, 574 urethan, 742 Isobehenic acid, 123 Isobutyl acetate, formate, etc., 163 alcohols, 164-5, 574 Isobutyria acid, 165-6 Isobutyric acid, 165-6 Isobutyric acid, 165-6 Isobutyric acid, 165-6 Isobutyria acid, 165-7 Isophthalic acid, 490 Isophthalic acid, 490 Isophthalic acid, 490 Isophthalic acid, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695-97 Lanthanum ammonium nitrate, 347 bromate, 351 bromide, 150, 351-2 caproate, 352 caproate, 352 carbonate, 352 carbon	Iron ammonium sulfate (alum), oxide,	Lead, benzoate, 351
potassium sullate, 345, 558 rubidium alum, 582 rubidium sullate, 587 sodium sullate, 587 sodium sullate, 587 sodium sullate, 29, 64, 179, 343-45 sulfonates, 345 sulfonates, 345 sulfonates, 345 thallium alum, 713 thallium cyanide, 717 thiocyanate, 345 lsobutyl acetate, formate, etc., 163 alcohols, 164-5, 574 urethan, 742 lsobutyl acetate, formate, etc., 163 alcohols, 164-5, 574 lsobutylamine hydrochloride, 165 lsobutyric acid, 165-6 lsoputylaciacid, 165-6 lsoputylacid, 165-6 lsoputylacid, 165-6 lsoputylacid, 357 sulforide, 573 chloride, 573 chloride, 573 chloride, 573 iodide, 573 ltaconic acid, 345 kieserite, 641 krypton, 345 kieserite, 641 krypton, 345 kieserite, 641 krypton, 345 lactoise, 695-97 lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 cibalicyanide, 346 dimethyl phosphate, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 349 Lauric acid, 349 Lead, 349, 705, 712 acetate, 349-750 ammonium chloride, 353 ammonium cobalticyanide, 43 ammonium sullate, 67	210, 342	borate, 351
potassium sullate, 345, 558 rubidium alum, 582 rubidium sullate, 587 sodium sullate, 587 sodium sullate, 587 sodium sullate, 29, 64, 179, 343-45 sulfonates, 345 sulfonates, 345 sulfonates, 345 thallium alum, 713 thallium cyanide, 717 thiocyanate, 345 lsobutyl acetate, formate, etc., 163 alcohols, 164-5, 574 urethan, 742 lsobutyl acetate, formate, etc., 163 alcohols, 164-5, 574 lsobutylamine hydrochloride, 165 lsobutyric acid, 165-6 lsoputylaciacid, 165-6 lsoputylacid, 165-6 lsoputylacid, 165-6 lsoputylacid, 357 sulforide, 573 chloride, 573 chloride, 573 chloride, 573 iodide, 573 ltaconic acid, 345 kieserite, 641 krypton, 345 kieserite, 641 krypton, 345 kieserite, 641 krypton, 345 lactoise, 695-97 lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 cibalicyanide, 346 dimethyl phosphate, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 349 Lauric acid, 349 Lead, 349, 705, 712 acetate, 349-750 ammonium chloride, 353 ammonium cobalticyanide, 43 ammonium sullate, 67	phosphates, 342	bromate, 351
rubidium sulfate, 587 rubidium sulfate, 587 sodium sulfate, 344 sulfate, 29, 64, 179, 343-45 sulfonates, 345 sulfonates, 346 choride, 46, 111, 150, 170, 198, 270, 339, 351, 353-56 chromate, 353, 357 schoride, 46, 111, 150, 170, 198, 270, 339, 351, 353-56 chromate, 353, 357 sulforate, 353 chloride, 46, 111, 150, 170, 198, 270, 339, 351, 355-56 chromate, 353, 357 sulforate, 353 sulfonate, 353 sulfonate, 353 sulfonate, 353 sulfonate, 353 sulfonate, 353 sulfonate, 355 ferricyanide, 357 fluorochoride, 355 formate, 353 sulfonate, 353 sulfonate, 357 fluorochoride, 352 hydroxide, 358 hydroxide, 358 hydroxide, 358 hydroxide, 358 hydroxide, 358 hydroxide, 358 hydroxide, 358 hydroxide, 359 hydroxide	potassium chloride, 339-40	bromide, 150, 351-2
rubidium sullate, 587 sodium sullate, 29, 64, 179, 343-45 sulfonates, 245 sulfonates, 345 sulfonates, 345 sulfonates, 345 sulfonates, 345 thallium alum, 713 thallium alum, 713 thallium alum, 713 thallium alum, 713 chromate, 345 lsobuty alcohol, 574 urethan, 742 lsobehenic acid, 123 lsobethenic acid, 123 lsobutyric acid, 165-6 lsobutyric acid, 165-6 lsobutyric acid, 165-6 lsobutyric acid, 165-6 lsobutyric acid, 165-6 lsobutyric acid, 490 lsopropyl ancohol, 511, 533, 571 amine, 573 chloride, 573 chloride, 573 iodide, 573 ltaconic acid, 345 lactose, 695-97 ltanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 citrate, 346 citrate, 346 cobalticyanide, 346 molybdate, 346 molybdate, 346 molybdate, 346 molybdate, 347 oxalate, 349 tungstate, 349 tungstate, 349 tungstate, 349 tungstate, 349 tungstate, 349 Lacric acid, 349 Lead, 349, 705, 712 acetate, 349-350 ammonium cobalticyanide, 43 ammonium cobalticyanide, 43 ammonium sulfate, 67	potassium sulfate, 345, 558	
sodium sulfate, 344 sulfate, 29, 64, 179, 343-45 sulface, 277, 342, 345 sulface, 277, 342, 345 sulfaces, 345 sulfonates, 345 soamyl alcohol, 574 urethan, 742 laobehenic acid, 123 laobutyl acetate, formate, etc., 163 alcohols, 164-5, 574 Isobutylamine hydrochloride, 165 laoerusic acid, 123 laopentane, 77, 476 lsophthalic acid, 490 lsopropyl acohol, 511, 533, 571 amine, 573 bromide, 573 chloride, 573 iodide, 573 ltaconic acid, 345 Kainite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695-97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 cobalticyanide, 346 dimethyl phosphate, 347 double sulfates, 348 glycolate, 346 iodate, 346 malonate, 346 molybdate, 347 oxalate, 347 sulfate, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 tartrate, 349 Luric acid, 349 Lead, 349, 705, 712 acetate, 349-350 ammonium chloride, 353 ammonium sulfate, 67		caprate, 352
sullfate, 29, 64, 179, 343-45 sullfonates, 377, 342, 345 sullfonates, 346 sullfonates, 357 fluorochoride, 357 fluorochoride, 351, 356, 357 fluorochoride, 351, 356, 357 fluorochoride, 351, 356, 357 fluorochoride, 352 supplied, 356 sorales, 359 myristate, 352 soldied, 351, 356, 357, 358, 359 sulfonate, 352 soldied, 351, 356, 357, 358, 359 sulfonate, 352 soldied, 351, 356, 357, 358, 359 sulfonate,		
sulfide, 277, 342, 345 sulfonates, 345 thallium cyanide, 717 thiocyanate, 345 Isoamyl alcohol, 574 urethan, 742 Isobehenic acid, 123 Isobutylamine hydrochloride, 165 Isobutyric acid, 165–6 Isoerusic acid, 123 Isopentiane, 77, 476 Isophthalic acid, 490 Isopropyl acohol, 511, 533, 571 amine, 573 bromide, 573 chloride, 573 iodide, 573 Itaconic acid, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695–97 Lanthanum ammonium nitrate, 347 bromate, 346 cobalticyanide, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 molohate, 346 molohate, 347 sulfate, 348 sulfonates, 348 sulfonates, 348 tartrate, 349 tungstate, 349 tungstate, 349 Lead, 349, 705, 712 acetate, 349-350 ammonium cobalticyanide, 43 ammonium sulfate, 67		caprylate, 352
sulfonates, 345 thallium alum, 713 thallium cyanide, 717 thiocyanate, 345 Isoamyl alcohol, 574 urethan, 742 Isobehen, 742 Isobehen, 742 Isobutyl acetate, formate, etc., 163 alcohols, 164–5, 574 Isobutylamine hydrochloride, 165 Isobutyric acid, 165–6 Isobutyric acid, 165–6 Isobutyric acid, 165–6 Isobutyric acid, 165–6 Isobutylamine hydrochloride, 165 Isobutylamine hydrochloride, 352 Isophalia (1, 23 Isophalia (1, 23 Isophalia (1, 23 Isophalia (1, 23 Isophalia (1, 23 Isophalia (1, 23 Isophalia (1, 23 Isophalia (1, 23 Isophalia (1, 23 Isophalia (1, 23 Isophalia (1, 25 Isobutylamine hydrochloride, 352 Isobutylamine hydrochloride, 352 Isobutylamine hydrochloride, 355 Isobutylamine hydrochloride, 355 Isobutylamine hydrochloride, 355 Isobutylamine hydroxide, 354 Isobutylamine hydroxide, 354 Isobutylamine hydroride, 355 I		carbonate, 352–3
thallium alum, 713 thallium cyanide, 717 thiocyanate, 345 Isoamyl alcohol, 574 urethan, 742 Isobehenic acid, 123 Isobutyla acetate, formate, etc., 163 alcohols, 164–5, 574 Isobutyric acid, 165–6 Isobutyric acid, 123 Isopentiane, 77, 476 Isophthalic acid, 490 Isopropyl accholo, 511, 533, 571 amine, 573 bromide, 573 chloride, 573 iodide, 573 Itaconic acid, 345 Kainite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695–97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 citrate, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 molybdate, 346 molybdate, 347 sulfate, 348 sulfonates, 348 tartrate, 349 tungstate, 349 tungstate, 349 Luric acid, 349 Lead, 349, 705, 712 acetate, 349–350 ammonium chloride, 353 ammonium sulfate, 67		
thallium cyanide, 717 thiocyanate, 345 Isoamyl alcohol, 574 urethan, 742 Isobhenic acid, 123 Isobutyl acetate, formate, etc., 163 alcohols, 164–5, 574 Isobutylamine hydrochloride, 165 Isobutyric acid, 165–6 Isobutyric acid, 123 Isopentane, 77, 476 Isophthalic acid, 490 Isopropyl acohol, 511, 533, 571 amine, 573 chloride, 573 ciodide, 573 iodide, 573 Itaconic acid, 345 Kainite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Cattose, 695–97 Lanthanum ammonium nitrate, 347 bromate, 346 cibalicyanide, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 molybdate, 347 oxalate, 347 sulfate, 348 sulfonates, 348 tartrate, 249 Luric acid, 349 Lead, 349, 705, 712 acetate, 349 Laurde and place and		
thiocyanate, 345 Isoamyl alcohol, 574 urethan, 742 Isobehenic acid, 123 Isobutyl acetate, formate, etc., 163 alcohols, 164–5, 574 Isobutylamine hydrochloride, 165 Isobutyric acid, 165–6 Isobutyric acid, 165–6 Isobutyric acid, 123 Isopentane, 77, 476 Isophthalic acid, 490 Isopropyl accohol, 511, 533, 571 amine, 573 chloride, 573 iodide, 573 Itaconic acid, 345 Kainite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695–97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 citrate, 346 dimethyl phosphate, 348 double nitrates, 348 glycolate, 346 molybdate, 347 oxalate, 347 oxalate, 347 oxalate, 347 sulfate, 348 sulfonates, 348 tungstate, 349 Luric acid, 349 Lead, 349, 705, 712 acetate, 349-350 ammonium cobalticyanide, 43 ammonium sulfate, 67		339, 351, 353-50
lsoamyl alcohol, 574 urethan, 742 Isobehenic acid, 123 Isobutyl acetate, formate, etc., 163 alcohols, 164-5, 574 Isobutylamine hydrochloride, 165 Isobutyric acid, 165-6 Isoerusic acid, 123 Isopentane, 77, 476 Isophthalic acid, 490 Isopropyl acohol, 511, 533, 571 amine, 573 chloride, 573 chloride, 573 chloride, 573 Itaconic acid, 345 Kainite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695-97 Lanthanum ammonium nitrate, 347 bromate, 346 cibrate, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 molybdate, 347 oxalate, 347 sulfate, 348 sulfonates, 348 tartrate, 349 Lauric acid, 349 Lauric acid, 349 Lead, 349, 705, 712 acetate, 349-350 ammonium cobalticyanide, 43 ammonium sulfate, 67	thamum cyanide, 717	citrota 253, 357
urethan, 742 Isobehenic acid, 123 Isobutyl acetate, formate, etc., 163 alcohols, 164-5, 574 Isobutylamine hydrochloride, 165 Isobutyric acid, 165-6 Isobutyric acid, 165-6 Isobutyric acid, 165-6 Isoputylamine hydrochloride, 165 Isoputylamine hydrochloride, 165 Isoputylamine hydrochloride, 165 Isoputylamine hydrochloride, 165 Isoputylamine hydrochloride, 165 Isoputylamine hydrochloride, 165 Isoputylamine hydrochloride, 165 Isoputylamine hydrochloride, 165 Isoputylamine hydrochloride, 165 Isoputylamine hydrochloride, 165 Isoputylamine hydrochloride, 165 Isoputylamine hydrochloride, 165 Isoputylamine hydrochloride, 165 Isoputylamine hydrochloride, 165 Isoputylamine hydrochloride, 165 Isoputylamine hydrochloride, 165 Isoputylamine hydrochloride, 358 Isopentane, 77, 476 Isophthalic acid, 490 Isopropyl acohol, 511, 533, 571 amine, 573 bromide, 573 chloride, 351, 356, 357 iduorochloride, 352 hexyl chloride, 352 hexyl chl	Inocyanate, 345	diphonyl diamlohamil ara
Isobehenic acid, 123 Isobutylamine hydrochloride, 165 Isobutylamine hydrochloride, 165 Isobutylamine hydrochloride, 165 Isoperusic acid, 123 Isopentane, 77, 476 Isophthalic acid, 490 Isopropyl acohol, 511, 533, 571 amine, 573 bromide, 573 chloride, 573 ciodide, 573 Itaconic acid, 345 Kainite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695-97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 drichly phosphate, 348 double nitrates, 347 double sulfates, 348 double nitrates, 347 sulfate, 346 molybdate, 347 oxalate, 347 sulfate, 348 tartrate, 349 Lauric acid, 349 Lead, 349, 705, 712 accetate, 349 Lauric acid, 349 Lead, 349, 705, 712 accetate, 349-350 ammonium cobalticyanide, 43 ammonium sulfate, 67		double cyanides 257
lsobutyl acetate, formate, etc., 163 alcohols, 164–5, 574 Isobutylamine hydrochloride, 165 Isobutyric acid, 165–6 Isoperusic acid, 123 Isopentane, 77, 476 Isophthalic acid, 490 Isopropyl accohol, 511, 533, 571 amine, 573 bromide, 573 iodide, 574 Kainite, 641 Keratin, 345 Kieserite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695–97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 citrate, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 molybdate, 347 oxafate, 347 sulfate, 348 sulfonates, 348 tartrate, 349 Lauric acid, 357 Hovor chloride, 356 formate, 358 heptylate, 352 hexyl chloride, 352 hexyl chloride, 355 odide, 357 sofoate, 358 iodide, 357, 365 oxalate, 352 nitrate, 116, 360–2 Lead nonylate, 352 nexyl chloride, 355 oxales, 351 sofo, 357 sofoa phyroxide, 358 hyposulfate, 356 sofoate, 358 hyposulfate, 356 oxales, 351, 356, 357, 358, 359 laurate, 352 noitrate, 352 no		ferricumide 257
alcohols, 164–5, 574 Isobutylamine hydrochloride, 165 Isobutyric acid, 165–6 Isoerusic acid, 123 Isopentane, 77, 476 Isophthalic acid, 490 Isopropyl accohol, 511, 533, 571 amine, 573 bromide, 573 chloride, 573 iodide, 573 iodide, 573 Itaconic acid, 345 Kainite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Catcose, 695–97 Lanthanum ammonium nitrate, 347 bromate, 346 cobalticyanide, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 malonate, 346 malonate, 346 malonate, 346 molybdate, 347 oxalate, 347 oxalate, 347 sulfate, 348 sulfonates, 348 tungstate, 349 Lauric acid, 349 Lead, 349, 705, 712 accetate, 349-350 ammonium cobalticyanide, 43 ammonium sulfate, 67 ammonium sulfate, 67 ammonium sulfate, 67 ammonium sulfate, 67 ammonium sulfate, 67 ammonium sulfate, 67 ammonium sulfate, 67		fluoride 251 256 257
Isobutylamine hydrochloride, 165 Isobutyric acid, 165–6 Isoerusic acid, 123 Isopentane, 77, 476 Isophthalic acid, 490 Isopropyl alcohol, 511, 533, 571 amine, 573 bromide, 573 chloride, 573 iodide, 573 iodide, 573 itaconic acid, 345 Kainite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695–97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 cobalticyanide, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 malonate, 346 malonate, 346 malonate, 346 malonate, 346 molybdate, 347 oxalate, 348 glycolate, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 tartrate, 349 Lauric acid, 349 Lead, 349, 705, 712 acetate, 349, 705, 712 acetate, 349, 705, 712 acetate, 349 ammonium cobalticyanide, 43 ammonium sulfate, 67 Isophthalic acid, 123 hexyl chloride, 352 hexyl chloride, 352 hexyl chloride, 352 hexyl chloride, 352 hexyl chloride, 352 hexyl chloride, 352 hexyl chloride, 352 hexyl chloride, 352 hexyl chloride, 352 hexyl chloride, 352 hexyl chloride, 352 hexyl chloride, 352 hexyl chloride, 352 hydroxide, 358 hyposulfate, 365 oidate, 358 hyposulfate, 365 oodate, 358 hyposulfate, 352 hexyl chloride, 352 hydroxide, 352 hydroxide, 352 hydroxide, 352 hydroxide, 358 hyposulfate, 365 oodate, 358 hyposulfate, 365 potassium sulfate, 367 potassium sulfate, 367 potassium sulfate, 367 potassium sulfate, 367 potassium sulfate, 367 potassium sulfate, 367 potassium sulfate, 367 potassium sulfate, 367 sulfate, 357 sofa2 persulfate, 352 nitrate, 116, 360–2 Lead nonylate, 352 oxalate, 352 potassium sulfate, 367 sulfate, 352	alcohole 164-E E74	fluoro chloride 256
Isobutyric acid, 165-6 Isoperus acid, 123 Isopentane, 77, 476 Isophthalic acid, 490 Isopropyl acohol, 511, 533, 571 amine, 573 bromide, 573 ciboride, 573 iodide, 573 Itaconic acid, 345 Kainite, 641 Keratin, 345 Kieserite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Cactose, 695-97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 cobalticyanide, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 malonate, 347 oxalate, 347 sulfate, 348 sulfonates, 348 tungstate, 348 tungstate, 348 tungstate, 349 Lauric acid, 349 Lead, 349, 705, 712 acetate, 349-750 ammonium cobalticyanide, 43 ammonium sulfate, 67 heptylate, 352 hexyl bromide, 352 hexyl chloride, 358 hyposulfate, 365 iodate, 358 hyposulfate, 352 hexyl chloride, 352 hexyl chloride, 352 hexyl chloride, 352 hexyl chloride, 358 hyposulfate, 352 hexyl chloride, 352 hexyl chloride, 358 hyposulfate, 352 hexyl chloride, 358 hyposulfate, 352 nodate, 358 populate, 359 potassium ferricyanide, 357 potassium ferricyanide, 357 potassium ferricyanide, 357 potassium iddide, 357 potassium ferricyanide, 352 sulfate, 357, 362 persulfate, 365 sulfate, 357, 362 persu	Isobutylamine hydrochloride, 165	formate 258
Isopentane, 77, 476 Isophthalic acid, 490 Isoppropyl acohol, 511, 533, 571 amine, 573 bromide, 573 chloride, 573 chloride, 573 Itaconic acid, 345 Kainite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695-97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 cibalticyanide, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 malonate, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 tartrate, 349 Lunric acid, 349 Lead, 349, 705, 712 acetate, 349, 705, 712 acetate, 349, 705, 712 acetate, 349, 705, 712 acetate, 349, 705, 712 acetate, 349, 705, 712 acetate, 349, 705, 712 acetate, 349, 705, 712 acetate, 349, 705, 712 acetate, 349, 705, 712 acetate, 349, 705, 712 acetate, 366 ammonium sulfate, 67 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 66	Isobutyric acid 165-6	hentylate 252
Isopentane, 77, 476 Isophthalic acid, 490 Isopropyl accholo, 511, 533, 571 amine, 573 bromide, 573 iodide, 573 itaconic acid, 345 Kainite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695–97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 cobalticyanide, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 malonate, 346 molybdate, 347 sulfate, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 349 tungstate, 349 Lauric acid, 349 Lead, 349, 705, 712 acetate, 349 ammonium cobalticyanide, 43 ammonium sulfate, 67 hexyl chloride, 352 hydroxide, 358 hyposulfate, 355 hydroxide, 358 hyposulfate, 355 iodate, 351, 356, 357, 358, 359 laurate, 352, 360 malate, 352 nitrate, 116, 360–2 Lead nonylate, 352 oxalet, 352 oxalet, 362 oxides, 351, 356, 357, 358, 359 laurate, 352, 360 malate, 352 oxalet, 369 myristate, 352 oxalet, 362 oxides, 351, 356, 357, 358, 359 laurate, 352, 360 malate, 358 hyposulfate, 365 iodate, 358 hyposulfate, 365 iodate, 358 hyposulfate, 365 iodate, 351, 356, 357, 358, 359 laurate, 352, 360 malate, 352 oxalet, 362 oxides, 351, 356, 357, 362 palmitate, 352 oxalet, 362 oxides, 351, 356, 357, 362 palmitate, 352 oxalet, 362 oxides, 351, 356, 357, 362 palmitate, 352 oxalet, 362 peroxide, 362 peroxide, 362 peroxide, 362 peroxide, 358 hyposulfate, 365 iodate, 351, 356, 357, 358, 359 laurate, 352, 360 malate, 359 myristate, 316, 360–2 Lead nonylate, 352 oxales, 362 peroxide, 362 peroxide, 362 peroxide, 362 peroxide, 362 peroxide, 362 potassium chloride, 357 potassium sulfate, 357 potassium chloride, 357 potassium sulfate, 365 phosphate, 357, 362 palmitate, 352, 360, 362 proxides, 351, 356, 357, 362 palmitate, 365 phosphate, 357, 362 palmitate, 352, 360, 362 proxide, 351 sulfate, 357 potassium chloride, 357 potassium sulfate, 367 potassium sulfate, 367 potassium chloride, 353 sulfate, 357 potassium chloride, 357 potassium chloride, 357 potassium chloride, 357 p		hervi bromide, 252
Isopropyl acohol, 511, 533, 571 amine, 573 bromide, 573 iodide, 573 iodide, 573 itaconic acid, 345 Kainite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695-97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 citrate, 346 citrate, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 malonate, 347 oxalate, 367 persulfate, 352 persulfate, 352 potassium ferricyanide, 357 potassium sulfate, 357 potassium sulfate, 359 potassium sulfate, 359 potassium sulfate, 359 potassium sulfate, 359 potassium sulfate, 359 potassium sulfate, 364 stearate, 352, 360, 362 succinate, 359 potassium sulfate, 357 sulface, 357, 362 persulfate, 355 potassium sulfate, 357 sulface, 357, 362 potassium sulfate, 357 sulface, 357 socalate, 362 persulfate, 365 potassium sulfate, 357 potassium sulfate, 359 potassium sulfate, 364 stearate, 352, 360, 362 persulfate, 355 potassium sulfate, 359 potassium sulfate, 359 potassium sulfate, 365 sulface, 357 socalate, 359 myristate, 352 oxalate, 352 potassium sulfate, 365 potassium ferricyanide, 357 potassium sulfate, 365 sulface, 357 socalate, 352 potassium sulfate, 365 potassium ferricyanide, 357 potassium sulfate, 365 sulface, 367 sulface, 358 sufonate, 359 myristate, 352 oxalate, 352 potassium sulfate, 365 potassium ferricyanide, 357 potassium sulfate, 365 sulface, 357 socalate, 352 potassium sulfate, 365 sulface, 357 socalate, 362 persulfate, 365 potassium sulfate, 365 sulface, 357 sulface, 357 socalate, 352 potassium sulfate, 365 sulface, 357 sulface, 357 socalate, 352 potassium sulfate, 365 sulface, 357 sulface, 357 socalate, 362 potas		hexyl chloride, 352
lsopropyl acchol, 511, 533, 571 amine, 573 bromide, 573 chloride, 573 ltaconic acid, 345 Kainite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695–97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 citrate, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 malonate, 346 molybdate, 347 sulfate, 348 sulfonates, 348 sulfonates, 348 sulfonates, 349 tungstate, 349 Lauric acid, 349 Lead, 349, 705, 712 acetate, 349-350 ammonium cobalticyanide, 43 ammonium sulfate, 67 hyposulfate, 355 iodate, 358 iodide, 351, 356, 357, 358, 359 laurate, 352 nitrate, 352 nitrate, 352 oxalete, 352 oxides, 351, 356, 357, 362 palmitate, 352 oxides, 351, 356, 357, 362 palmitate, 352 oxides, 351, 356, 357, 362 palmitate, 352 oxides, 351, 356, 357, 362 persulfate, 365 phosphate, 357 potassium iodide, 355 sulfonates, 365 sulfonates, 365 sulfonates, 365 sulfonates, 365 tetraphenyl, 352, 362 tetracyclohexyl, 352 Lecithin, 366 Lignoceric acid, 97, 366 Lignoceric acid, 97, 366 Lignoceric acid, 97, 366 Lignoceric acid, 97, 366 Lignoceric acid, 97, 366 Lime (see Calcium hydroxide) Linseed oil, 468 Lithium, 37, 366 acetate, 366 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 68 anmonium sulfate, 68 anmonium sulfate, 69	Isophthalic acid, 400	hydroxide, 358
amine, 573 bromide, 573 chloride, 573 iodide, 573 ltaconic acid, 345 Kainite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695–97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 cobalticyanide, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 iodate, 346 moloybdate, 346 moloybdate, 346 moloybdate, 346 moloybdate, 346 moloybdate, 346 sulfonates, 347 oxalate, 347 sulfate, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 tartrate, 349 Lauric acid, 340 Lauric acid,	Isopropyl acohol, 511, 533, 571	hyposulfate, 365
bromide, 573 chloride, 573 liddide, 573 litaconic acid, 345 Kainite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695-97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 citrate, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 molybdate, 346 molybdate, 347 sulfate, 346 molybdate, 347 sulfate, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 tartrate, 349 tungstate, 349 Lauric acid, 349 Lauric ac		iodate, 358
chloride, 573 Itaconic acid, 345 Kainite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695-97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 cobalticyanide, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 malonate, 346 tratrate, 349 Lauric acid, 340 Lauric acid, 340 Lauric acid, 340 Lauric acid, 340 Lauric acid, 340 Lauric acid, 340 Lauric acid, 340 Lauric acid, 340 Lauric acid, 340 Lauric acid, 340 Lauric acid, 340 Lauric acid, 340 La	bromide, 573	iodide, 351, 356, 357, 358, 359
iodide, 573 Itaconic acid, 345 Kainite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695-97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 citrate, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 malonate, 346 tungstate, 347 oxalate, 347 sulfate, 348 sulfonates, 348 tartrate, 349 Lead, 349, 705, 712 acetate, 349-350 ammonium cobalticyanide, 43 ammonium sulfate, 67 malate, 359 myristate, 352 nitrate, 116, 360-2 Lead nonylate, 352 oxalate, 352, 360, 362 peroxide, 362 persulfate, 355 phosphate, 357, 362 potassium chloride, 355 potassium iodide, 357 potassium iodide, 357 potassium iodide, 357 sulfate, 359, poxilate, 362 persulfate, 362 persulfate, 362 persulfate, 362 succinate, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 365 sulfonates, 365 tartrate, 366 tetraphenyl, 352, 360, 362 succinate, 363 sulfate, 357, 362 succinate, 365 sulfonates, 365 tartrate, 366 tetraphenyl, 352, 360, 362 succinate, 365 sulfonates, 365 tartrate, 366 tetraphenyl, 352, 362 tetracyclohexyl, 352 Lecithin, 366 Lignoceric acid, 97, 366 Lignoceric acid, 97, 366 Lignoceric acid, 97, 366 Lignoceric acid, 97, 366 Lignoceric acid, 97, 366 Lime (see Calcium hydroxide) Linseed oil, 468 Lithium, 37, 366 acetate, 366 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 69 antimony sulfide, 366, 373	chloride, 573	
Rainite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695-97 Lanthanum ammonium nitrate, 347 bromate, 346 cobalticyanide, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 malonate, 346 malonate, 346 malonate, 346 malonate, 347 oxalate, 347 sulfate, 348 sulfonates, 348 tartrate, 349 tungstate, 349 Lauric acid, 349 Lead, 349, 705, 712 acetate, 349-350 ammonium sulfate, 67 myristate, 352 nitrate, 116, 360-2 Lead nonylate, 352 oxalate, 352 oxides, 351, 356, 357, 362 persulfate, 362 persulfate, 365 phosphate, 357, 362 persulfate, 355 phosphate, 357, 362 persulfate, 365 phosphate, 357, 362 persulfate, 365 subforates, 356 suscinate, 362 succinate, 363 sulfate, 357, 362 potassium iodide, 359 potassium sulfate, 357 potassium iodide, 357 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 potassium iodide, 359 potassium iodide, 359 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 365 sulfonates, 365 sulfonates, 365 tartrate, 366 tetraphenyl, 352, 360, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 succinate, 363 sulfate, 357, 362 sulfate, 357, 362 sulfate, 357, 362 sulfate, 357, 362 sulfate, 357, 362 sulfate, 357, 362 sulfate, 357, 362 sulfate, 357, 362 sulfate, 357, 362	iodide, 573	
Kainite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695-97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 citrate, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 malonate, 346 molybdate, 347 oxalate, 347 oxalate, 347 sulfate, 364 sulfonates, 348 sulfonates, 348 tartrate, 349 tungstate, 349 Lad, 349, 705, 712 acetate, 349-350 ammonium cobalticyanide, 43 ammonium sulfate, 67	Itaconic acid, 345	
Kannte, 641 Krypton, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695-97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 cobalticyanide, 348 double nitrates, 348 double nitrates, 348 glycolate, 346 iodate, 346 malonate, 346 malonate, 346 molyddate, 347 sulfate, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 tartrate, 349 Lauric acid, 349 Lead, 349, 705, 712 acetate, 349-350 ammonium cobalticyanide, 43 ammonium sulfate, 67 Lad dinentyl, 352 oxalate, 357, 362 peroxide, 362 persulfate, 365 phosphate, 357, 362 potassium iodide, 357 potassium iodide, 357 potassium sulfate, 358 stearate, 352 oxalate, 362 peroxide, 362 peroxide, 362 peroxide, 362 peroxide, 362 potassium iodide, 355 sulfate, 357, 362-65 sulfate, 357, 362-65 sulfate, 357, 362-65 sulfate, 357, 362-65 sulfate, 357, 362-65 sulfate, 357, 362 potassium iodide, 359 potassium sulfate, 364 stearate, 352 oxalate, 362 peroxide, 362 peroxide, 362 peroxide, 362 peroxide, 362 peroxide, 362 potassium iodide, 357 potassium sulfate, 357 sulfate, 357, 362-65 sulfate, 357, 362-65 sulfate, 357, 362 succinate, 363 sulfate, 357, 362-65 sulfate, 357, 362-65 sulfate, 357, 362 terarte, 363 sulfate, 357, 362-65 sulfate, 357 potassium iodide, 358 sulfate, 357, 362 succinate, 363 sulfate, 357, 362-65 sulfate, 357 potassium iodide, 358 sulfate, 357, 362-65 sulfate, 357 sulfate, 357 potassium iodide, 359 potassium iodide, 359 potassium sulfate, 68 terracyclohexyl, 352 Lecithin, 366 Ligroin, 366 Ligr		nitrate, 116, 360–2
Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 Lactose, 695-97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 citrate, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 malonate, 346 malonate, 346 malonates, 347 oxalate, 347 oxalate, 347 oxalate, 347 oxalate, 347 oxalate, 347 oxalate, 349 Lauric acid, 349 Lead, 349, 705, 712 acetate, 349 ammonium sulfate, 67 Krypton, 345 oxalate, 352, 360, 362 peroxide, 362 phosphate, 365 phosphate, 357, 362 potassium chloride, 355 potassium iodide, 359 potassium sulfate, 360, 362 succinate, 363 sulfate, 357, 362-65 sulfade, 357, 362-65 sulfade, 357, 362-65 sulfade, 357, 362-65 sulfade, 95, 277, 345, 356, 365 sulfonates, 365 tartrate, 366 tetraphenyl, 352, 362 tetracyclohexyl, 352 Lecithin, 366 Lignoceric acid, 97, 366 Lignoceric acid, 97, 366 Lignoceric acid, 97, 366 Lignoceric acid, 97, 366 acetate, 366 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfide, 366, 373	Kainite, 641	Lead nonylate, 352
Kieserite, 641 Krypton, 345 Cactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695-97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 cobalticyanide, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 molybdate, 346 molybdate, 347 sulfate, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 tartrate, 349 tungstate, 349 Lead, 349, 705, 712 acetate, 349 Lead, 349, 705, 712 acetate, 349 ammonium sulfate, 67 oxides, 351, 356, 357, 362 peroxide, 362 peroxide, 362 peroxide, 362 peroxide, 362 peroxide, 362 peroxide, 362 peroxide, 362 peroxide, 362 peroxide, 362 peroxide, 362 peroxide, 362 potassium chloride, 357 potassium iodide, 359 potassium sulfate, 364, 558 stearate, 352, 360, 362 succinate, 363 sulfate, 377, 362-65 sulfide, 357, 362 succinate, 363 sulfate, 377, 362-65 sulfide, 357, 362 succinate, 363 sulfate, 377, 362-65 sulfide, 357, 362 succinate, 363 sulfate, 377, 362-65 sulfide, 357, 362 succinate, 363 sulfate, 377, 362-65 sulfide, 357, 362 succinate, 363 sulfate, 377, 362-65 sulfide, 357, 362 succinate, 363 sulfate, 377, 362-65 sulfide, 357, 362 succinate, 363 sulfate, 377, 362-65 sulfide, 357, 362 succinate, 363 sulfate, 377, 362-65 sulfide, 95, 277, 345, 356, 365 sulfonates, 365 tartrate, 366 tetraphenyl, 352, 362 tetracyclohexyl, 352 Lecithin, 366 Leonite, 641 Leucine, 366 Lignoceric acid, 97, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 acetate, 366 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 69 antimony sulfide, 366, 373		
Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695-97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 cobalticyanide, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 malonate, 346 malonate, 346 molybdate, 347 oxalate, 347 sulfate, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 365 tartrate, 366 tetraphenyl, 352, 362 tetracyclohexyl, 352 Lecithin, 366 Leonite, 641 Leucine, 366 Lignoceric acid, 97, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Lime (see Calcium hydroxide) Linseed oil, 468 Lithium, 37, 366 acetate, 366 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 69 antimony sulfide, 366, 373	Kieserite, 641	oxides, 351, 356, 357, 362
Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695-97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 cobalticyanide, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 malonate, 346 malonate, 346 molybdate, 347 oxalate, 347 sulfate, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 365 tartrate, 366 tetraphenyl, 352, 362 tetracyclohexyl, 352 Lecithin, 366 Leonite, 641 Leucine, 366 Lignoceric acid, 97, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Lime (see Calcium hydroxide) Linseed oil, 468 Lithium, 37, 366 acetate, 366 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 69 antimony sulfide, 366, 373	Krypton, 345	palmitate, 352, 360, 362
Lactic acid, 125, 346 trichloro, 346 Lactose, 695-97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 citrate, 346 cobalticyanide, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 iodate, 346 molybdate, 347 oxalate, 347 sulfate, 348 sulfonates, 348 sulfonates, 348 sulfonates, 365 tartrate, 366 tetraphenyl, 352, 362 tetracyclohexyl, 352 tetracyclohexyl, 352 Lecithin, 366 Leonite, 641 Leucine, 366 Lignoceric acid, 97, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Lime (see Calcium hydroxide) Linseed oil, 468 Lithium, 37, 366 acetate, 366 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 69 antimony sulfide, 366, 373		peroxide, 362
trichloro, 346 Lactose, 695-97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 cobalticyanide, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 iodate, 346 molybdate, 347 oxalate, 347 sulfate, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 tartrate, 349 tungstate, 349 Lead, 349, 705, 712 acetate, 349 Lead, 349, 705, 712 ammonium cobalticyanide, 43 ammonium sulfate, 67 potassium chloride, 357 potassium chloride, 357 potassium chloride, 357 potassium chloride, 357 potassium chloride, 357 potassium chloride, 357 potassium chloride, 359 potassium chloride, 358 stearate, 352, 360, 362 succinate, 363 sulfate, 357, 362-65 sulfide, 95, 277, 345, 356, 365 sulfonates, 365 tartrate, 366 tetraphenyl, 352, 362 tetracyclohexyl, 352 Lecithin, 366 Lignoceric acid, 97, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Lime (see Calcium hydroxide) Linseed oil, 468 Lithium, 37, 366 acetate, 366 ammonium sulfate, 68 ammonium sulfate, 68 ammonium tartrate, 69 antimony sulfide, 357		persulfate, 365
trichloro, 346 Lactose, 695–97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 cobalticyanide, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 iodate, 346 molybdate, 347 oxalate, 347 sulfate, 348 sulfonates, 348 sulfonates, 365 tartrate, 366 tetraphenyl, 352, 362 tetracyclohexyl, 352 tetracyclohexyl, 352 Lecithin, 366 Leonite, 641 Leucine, 366 Lignoceric acid, 97, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Lime (see Calcium hydroxide) Linseed oil, 468 Lithium, 37, 366 acetate, 349 ammonium cobalticyanide, 43 ammonium sulfate, 67	Lactic acid, 125, 346	phosphate, 357, 362
Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 cobalticyanide, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 iodate, 346 malonate, 346 malonate, 346 molybdate, 347 oxalate, 347 sulfate, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 sulfonates, 348 tartrate, 349 Lauric acid, 349 Lead, 349, 705, 712 acetate, 349, 350 ammonium cobalticyanide, 43 ammonium sulfate, 67 potassium iodide, 359 potassium sulfate, 359 succinate, 362 sucinate, 357, 362–65 sulfade, 95, 277, 345, 356, 365 sulfonates, 365 tartrate, 366 tetraphenyl, 352, 362 tetracyclohexyl, 352 Lecithin, 366 Leonite, 641 Leucine, 366 Lignoceric acid, 97, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 acetate, 366 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 69 antimony sulfide, 366, 373		potassium chloride, 355
bromate, 346 citrate, 346 cobalticyanide, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 malonate, 346 molybdate, 347 oxalate, 347 sulfate, 347 sulfate, 347 sulfate, 347 sulfate, 347 sulfate, 347 sulfate, 348 sulfonates, 348 tartrate, 349 tungstate, 349 Lead, 349, 705, 712 acetate, 349 ammonium cobalticyanide, 43 ammonium sulfate, 67 potassium sulfate, 364, 558 stearate, 352, 360, 362 sulfate, 357, 362–65 sulfate, 357, 362–65 sulfate, 357, 362–65 sulfate, 357, 362–65 sulfate, 357, 362–65 sulfate, 357, 362–65 sulfate, 357, 362–65 sulfate, 357, 362–65 sulfate, 365 tetraphenyl, 352, 362 tetracyclohexyl, 352 Lecithin, 366 Leonite, 641 Leucine, 366 Ligroin, 366 Ligroin, 366 Lime (see Calcium hydroxide) Linseed oil, 468 Lithium, 37, 366 acetate, 366 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 68 anmonium sulfate, 366, 373	Lactose, 695-97	
citrate, 346 cobalticyanide, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 iodate, 346 malonate, 346 molybdate, 347 sulfate, 347 sulfate, 348 sulfonates, 365 tartrate, 366 tetraphenyl, 352, 362 tetracyclohexyl, 352 Lecithin, 366 Leonite, 641 Leucine, 366 sulfonates, 348 Leucine, 366 Lignoceric acid, 97, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Lime (see Calcium hydroxide) Lauric acid, 349 Lead, 349, 705, 712 acetate, 349 Lead, 349, 705, 712 acetate, 349 ammonium cobalticyanide, 43 ammonium sulfate, 67 ammonium sulfate, 67		potassium iodide, 359
cobalticyanide, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 iodate, 346 iodate, 346 malonate, 346 molybdate, 347 oxalate, 347 sulfate, 348 sulfonates, 348 sulfonates, 365 tartrate, 366 tetraphenyl, 352, 362 tetracyclohexyl, 352 Lecithin, 366 Leonite, 641 Leucine, 366 sulfonates, 348 Lecithin, 366 Leonite, 641 Leucine, 366 Lignoceric acid, 97, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Lime (see Calcium hydroxide) Lauric acid, 349 Lead, 349, 705, 712 acetate, 349-350 ammonium cobalticyanide, 43 ammonium sulfate, 67 ammonium sulfate, 67 anionium sulfate, 68 ammonium sulfate, 68 animonium sulfate, 366, 373		potassium sultate, 364, 558
dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 iodate, 346 malonate, 346 molybdate, 347 oxalate, 347 sulfate, 348 sulfonates, 365 tartrate, 366 tetraphenyl, 352, 362 tetracyclohexyl, 352 Lecithin, 366 Leonite, 641 Leucine, 366 Lignoceric acid, 97, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 acetate, 349 Lauric acid, 349 Lead, 349, 705, 712 acetate, 349-350 ammonium cobalticyanide, 43 ammonium sulfate, 67 ammonium sulfate, 68 ammonium sulfate, 68 animonium sulfate, 68 animonium sulfate, 68 animonium sulfate, 366, 373		
double nitrates, 347 double sulfates, 348 glycolate, 346 iodate, 346 malonate, 346 molybdate, 347 oxalate, 347 sulfate, 347 sulfate, 347 sulfate, 347 sulfate, 347 sulfate, 347 sulfate, 347 lecithin, 366 Leonite, 641 Leucine, 366 Lignoceric acid, 97, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 actate, 349 Lauric acid, 349 Lead, 349, 705, 712 acetate, 349-350 ammonium cobalticyanide, 43 ammonium sulfate, 67 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 68 animonium sulfate, 68 animonium sulfate, 68		
double sulfates, 348 glycolate, 346 sidate, 346 malonate, 346 molybdate, 347 coxalate, 347 sulfate, 348 sulfonates, 352 Lecithin, 366 Leonite, 641 Leucine, 366 sulfonates, 348 Leucine, 366 Lignoceric acid, 97, 366 Ligroin, 366 Ligroin, 366 Lime (see Calcium hydroxide) Lauric acid, 349 Lead, 349, 705, 712 acetate, 349 Lead, 349, 705, 712 acetate, 349-350 ammonium cobalticyanide, 43 ammonium sulfate, 67 ammonium sulfate, 67 sulfonates, 365 tartrate, 366 Lecithin, 366 Ligroin, 366 Ligroin, 366 Lime (see Calcium hydroxide) Linseed oil, 468 Lithium, 37, 366 acetate, 366 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 68 animonium sulfate, 68 animonium sulfate, 68	dimetnyi phosphate, 348	sulfate, 357, 302-05
glycolate, 346 iodate, 346 malonate, 346 molybdate, 347 coxalate, 348 sulfonates, 348 tartrate, 349 tungstate, 349 Lead, 349, 705, 712 acetate, 349-350 ammonium cobalticyanide, 43 ammonium sulfate, 67 tartrate, 346 tetraphenyl, 352, 362 tetracyclohexyl, 352 Lecithin, 366 Leonite, 641 Leucine, 366 Lignoceric acid, 97, 366 Ligroin, 366 Ligroin, 366 Lime (see Calcium hydroxide) Linseed oil, 468 Lithium, 37, 366 acetate, 366 ammonium sulfate, 68 ammonium sulfate, 68 ammonium tartrate, 69 antimony sulfide, 366, 373		suinde, 95, 277, 345, 350, 305
iodate, 346 malonate, 346 malonate, 347 oxalate, 347 sulfate, 348 sulfonates, 348 tartrate, 349 tungstate, 349 Lead, 349, 705, 712 acetate, 349-350 ammonium cobalticyanide, 43 ammonium sulfate, 67 tetraphenyl, 352, 362 tetracyclohexyl, 352 Lecithin, 366 Leonite, 641 Leucine, 366 Lignoceric acid, 97, 366 Ligroin, 366 Ligroin, 366 Lime (see Calcium hydroxide) Linseed oil, 468 Lithium, 37, 366 acetate, 366 ammonium sulfate, 68 ammonium sulfate, 68 ammonium tartrate, 69 antimony sulfide, 366, 373		
malonate, 346 molybdate, 347 oxalate, 347 sulfate, 348 sulfonates, 348 tartrate, 349 Lauric acid, 349 Lead, 349, 705, 712 acetate, 349-350 ammonium cobalticyanide, 43 ammonium sulfate, 67 tetracyclohexyl, 352 Lecithin, 366 Lignoite, 366 Lignoite, 366 Ligroin, 366 Lime (see Calcium hydroxide) Linseed oil, 468 Lithium, 37, 366 acetate, 366 ammonium sulfate, 68 ammonium sulfate, 68 ammonium sulfate, 69 antimony sulfide, 366, 373	grycolate, 340	
molybdate, 347 oxalate, 347 sulfate, 348 sulfonates, 348 tartrate, 349 Lauric acid, 349 Lead, 349, 705, 712 acetate, 349–350 ammonium chloride, 353 ammonium cobalticyanide, 43 ammonium sulfate, 67 Lecithin, 366 Leucine, 366 Lignoceric acid, 97,	malanate 246	tetraphenyi, 352, 302
oxalate, 347 sulfate, 348 sulfonates, 348 tartrate, 349 Lauric acid, 349 Lead, 349, 705, 712 acetate, 349–350 ammonium chloride, 353 ammonium sulfate, 67 Leonite, 641 Leonite, 364 Lignoceric acid, 97, 366 Ligroin, 366 Lime (see Calcium hydroxide) Linseed oil, 468 Lithium, 37, 366 acetate, 366 ammonium sulfate, 68 ammonium sulfate, 68 anmonium sulfate, 69 antimony sulfide, 366, 373	maluhate, 340	Logithin 266
sulfate, 348 sulfonates, 348 tartrate, 349 Lignoceric acid, 97, 366 Ligroin, 366 Ligroin, 366 Ligroin, 366 Lime (see Calcium hydroxide) Linseed oil, 468 Lead, 349, 705, 712 acetate, 349-350 ammonium chloride, 353 ammonium cobalticyanide, 43 ammonium sulfate, 67 Leucine, 366 Lignoceric acid, 97, 366 Lime (see Calcium hydroxide) Linseed oil, 468 Lithium, 37, 366 acetate, 366 ammonium sulfate, 68 ammonium sulfate, 68 ammonium tartrate, 69 antimony sulfide, 366, 373	ovalate 347	
sulfonates, 348 tartrate, 349 Ligroin, 366 Ligroin, 366 Ligroin, 366 Lime (see Calcium hydroxide) Lauric acid, 349 Lead, 349, 705, 712 acetate, 349-350 ammonium chloride, 353 ammonium cobalticyanide, 43 ammonium sulfate, 67 Lime (see Calcium hydroxide) Linseed oil, 468 Lithium, 37, 366 acetate, 366 ammonium sulfate, 68 ammonium tartrate, 69 antimony sulfide, 366, 373		
tartrate, 349 tungstate, 349 Lauric acid, 349 Lead, 349, 705, 712 acetate, 349-350 ammonium chloride, 353 ammonium cobalticyanide, 43 ammonium sulfate, 67 Ligroin, 366 Lime (see Calcium hydroxide) Linseed oil, 468 Lithium, 37, 366 acetate, 366 ammonium sulfate, 68 ammonium sulfate, 68 ammonium tartrate, 69 antimony sulfide, 366, 373		
tungstate, 349 Lauric acid, 349 Lead, 349, 705, 712 acetate, 349–350 ammonium chloride, 353 ammonium cobalticyanide, 43 ammonium sulfate, 67 Lime (see Calcium hydroxide) Linseed oil, 468 Lithium, 37, 366 acetate, 366 ammonium sulfate, 68 ammonium sulfate, 68 ammonium tartrate, 69 antimony sulfide, 366, 373		
Lauric acid, 349 Lead, 349, 705, 712 Lithium, 37, 366 acetate, 349-350 ammonium chloride, 353 ammonium cobalticyanide, 43 ammonium sulfate, 67 Linseed oil, 468 acetate, 366 ammonium sulfate, 68 ammonium sulfate, 68 ammonium tartrate, 69 antimony sulfide, 366, 373	tungstate. 340	
Lead, 349, 705, 712 acetate, 349-350 ammonium chloride, 353 ammonium cobalticyanide, 43 ammonium sulfate, 67 ammonium sulfate, 67 antimony sulfide, 366, 373	Lauric acid. 340	
acetate, 349-350 acetate, 366 ammonium chloride, 353 ammonium sulfate, 68 ammonium cobalticyanide, 43 ammonium tartrate, 69 ammonium sulfate, 67 antimony sulfide, 366, 373		Lithium, 37, 366
ammonium chloride, 353 ammonium sulfate, 68 ammonium cobalticyanide, 43 ammonium tartrate, 69 ammonium sulfate, 67 antimony sulfide, 366, 373	acetate, 349-350	acetate, 366
ammonium cobalticyanide, 43 ammonium tartrate, 69 ammonium sulfate, 67 antimony sulfide, 366, 373	ammonium chloride, 353	ammonium sulfate, 68
ammonium sulfate, 67 antimony sulfide, 366, 373	ammonium cobalticyanide, 43	
	· •	

Lithium hisarhanata 260	Mamasium bramida abasulbudassi
Lithium, bicarbonate, 369	Magnesium, bromide phenylhydrazi-
bichromate, 372	nates, 379, 382 cadmium chloride, 171
borate, 367	
bromate, 367 bromide, 100, 367	caesium sulfate, 186
	calcium chloride, 196
camphorate, 368	camphorate, 383
carbonate, 368-9	carbonate, 13, 384–86
chloraurate 260	cerium nitrate, 242
chloraurate, 369	chloride 46 III IZO IO6 IO8 and
chloride, 100, 111, 183, 198, 270, 356,	chloride, 46, 111, 170, 196, 198, 339,
370-1	356, 371, 387–8, 641
chromate, 372	cinnamate, 389
citrate, 372	chromate, 389
fluoride, 27, 373	ferrocyanides, 389 fluoride, 389
formate, 373	
gold chloride, 308, 369 hippurate, 373	fluosilicate, 396
nippurate, 373	gadolinium nitrate, 304 hydroxide, 385, 389, 390
hydroxide, 367, 371-3	hypophoenhate 205
hypophosphate, 377	hypophosphate, 395 iodate, 390
iodate, 374	iodide, 390
iodide, 373, 374	iodide alcoholates, 391, 392
iodo mercurate, 374	iodide anilinates, 391, 392
laurate, 374, 375	iodide compounds, 391, 393, 394
mercuric iodide, 374	Magnesium iodide etherates, 391, 392
molybdate, 375	iodo mercurate, 394
myristate, 374, 375	lanthanum nitrate, 347
nitrate, 117, 376	laurate, 394
nitrite, 376	mercuric iodide, 394
oleate, 374	myristate, 394
oxalate, 60, 376	neodymium nitrate, 449
oxide, 378	nitrate, 395
palmitate, 374, 375	oleate, 395
permanganate, 377	oxalate, 60, 395
phosphate, 377	oxide, 28, 210, 378, 395
potassium sulfate, 377	palmitate, 394
salicylate, 377	phosphate, 395
silicate, 119, 213, 367, 378 sodium sulfate, 377	platinic cyanide, 389
stearate, 374, 375	potassium ferrocyanide, 389
	potassium chloride, 388
sulfate, 29, 64, 121, 179, 220, 259,	potassium chromate, 389
274, 343, 365, 369, 376, 377, 378	potassium sulfate, 396, 397
sultoantimonate, 366, 373	praseodymium nitrate, 568
tartrates, 378	rubidium sulfate, 587
Lutidine, 574	salicylate, 395
Lyxose, 696	samarium nitrate, 594
	silicate, 213, 378, 396
Magnesium, 378	sodium sulfate, 668
acetate, 378	stearate, 394
ammonium arsenate, 39	succinate, 396
ammonium ferrocyanide, 389	sulfate, 273, 388, 396-7, 480, 641, 668
ammonium nitrate, 59	sulfite, 397
ammonium phosphate, 61	sulfonates, 397
ammonium sulfate, 68	Maleic acid, 304, 398
benzoate, 379	Malaminic acid, 398
bicarbonate, 385–86	Malonic acid, 299, 398-9
bismuth nitrate, 151	Malonic acids, substituted, 399
bromate, 379	Maltose, 695-7
bromide, 379	Mandelic acid, 398-400
bromide alcoholates, 379, 381	butyl esters, 400
bromide anilinates, 379, 381	methyl esters, 400
bromide compounds, 379, 382-3	Manganese ammonium molybdate, 59
bromide etherate, 379–80	ammonium phosphate, 62

36	Management and de con co
Manganese ammonium molybdate, am-	Mercury, oxide, 429–30
monium sultate, 68, 404	potassium chloride, 410, 420
bismuth nitrate, 151	potassium iodide, 425, 541
borate, 400	rubidium chloride, 412
bromide, 400	selenite, 430 sodium chloride, 411
caesium sulfate, 186	
carbonate, 401	sodium iodide, 656
cerium nitrate, 242	strontium iodide, 682
chloride, 47, 111, 170, 198, 356, 371,	sulfate, 430–1
388, 401	sulfide, 431
cinnamate, 401	zinc thiocyanate, 752
copper sulfate, 403	Mesitylene, 86, 92, 292
fluosilicate, 401	Meta arsenic acid, 98
hydroxide, 401–2	Methacetin, 13
hypophosphite, 402	Methane, 432-3
iodomercurate, 402	diphenyl, 86, 92, 433
lanthanum nitrate, 347	triphenyl, 88, 282, 309, 433-4
mercuric iodide, 402	Methoxybenzoic acid, 80
neodymium nitrate, 449	Methoxycinnamic acid, 103
nitrate, 402	Methoxystilbene, di, 677
oxalate, 402	Methyl acetate, 12, 247, 435
oxide, 402	alcohol, 5, 37, 72, 128, 160, 235, 247,
potassium chloride, 401	248, 280, 286, 299, 313, 315, 323,
potassium vanadate, 405	425 426 EDI ETO E74
praseodymium nitrate, 568	435, 436, 501, 510, 574
rubidium sulfate, 587	amines, 437, 438
	amine chloroplatinates, 438
samarium nitrate, 594	amine hydrochloride, 438
silicate, 119, 213, 396, 402	ammonium bromide, tetra, 41
sodium sulfate, 404	ammonium chloride, tetra, 50
sulfate, 274-5, 378, 403-5	ammonium iodide, tetra, 54, 55
sulfide, 405	ammonium perchlorates, 44
titanate, 402	aniline, 21, 292
Mannitol, 166, 405, 698	aniline, di, 132
tribenzal, 698	anisate, 10
Mannose, 695-7	benzoate, 10, 21
Matico oil, 468	benzoic acids, 730
Mellibose, 696	Methylene blue, 439
Mellitic acid, hexamethyl, 431	bromide, 21, 439
Menthane, 431	Methyl butyrate, 438
Menthol, 128, 131, 224, 245, 431	carbinol, tri, 227
Menthyl mandelates, 400	chloride, 315, 439
Mercury, 378, 598	cinnamate, 9, 10
acetate, 406	cryptopines, 279
ammonium iodide, 55	ether, 37, 248, 301, 315, 438
barium iodide, 115	ethyl ketone, 299, 534, 649
benzoate, 406	hexyl carbinol, 574
bromide, 131, 158, 351, 406-8	iodide, 436, 439
caesium bromide, 181	iso thiocyanate, 443
caesium chlorides, 182	malonic acid, 399
calcium iodide, 206	mellitic acid, hexa, 431
chloride, 47, 80, 110, 182, 268,	mustard oil, 223
409-21, 526	orange, 309, 439
cinnamate, 422	oxalate, 439
cyanide, 422–4	phenyl carbamide, 226
diphenyl, 95, 152, 430	phenyl picramides, 492
double cyanides, 423	picric acid, 495
fulminate, 424	piperidines, 496
iodide, 170, 177, 408, 421, 424-9, 616	propionate, 439
iodide diamine, 429	propyl azo phenol, 103
lithium iodide, 374	pyridines, 574
magnesium iodide, 394	pyridines, tri, 262
manganese iodide, 402	pyridine zinc chloride, 574
nitrate, 429	salicylate, 251, 439
	· J · · · · · · · · · · · · · · · · · ·

	>** • • • • • • • • • • • • • • • • • •
Methyl butyrate, succinic acid, 711-2	Nickel bromate, carbonate, 451
sulfate, 440	carboxyl, 451
sulfine perchlorate, 698	cerium nitrate, 242
sulfone methanes, 435	chlorate, 451
toluate, 10	chloride, 47, 452
urea, 484	citrate, 452
urethan, 431, 742	gadolinium nitrate, 304
valerate, 438	hydroxide, 452
Michler's ketone, 440	iodate, 452
Milk sugar, 695-97	iodide, 453
Molybdenum trioxide, 440	lanthanum nitrate, 347
Molybdic acid 440	
Molybdic acid, 440	malate, 453
Morphine, 441	neodymium nitrate, 449
acetate, 442	nitrate, 453
hydrochloride, 442	oxalate, 453
perchlorate, 442	perchlorate, 451
salts, 442	potassium citrate, 452
sulfate, 442	potassium sulfate, 455, 557
tartrate, 442	praseodymium nitrate, 568
Mustard oil, 443	rubidium sulfate, 587
Myristic acid, 443	samarium nitrate, 594
	sodium sulfate, 454
Naphthalene, 5, 9, 13, 21, 79, 86, 92,	sulfate, 453–5
98, 123, 128, 130-2, 166, 223-4,	sulfide, 455
251, 279, 282-3, 300-1, 324, 431,	thallium sulfate, 720
433-4, 443-7	Nicotine, 456
bromo, 87, 92	Nigella oil, 468
chloro, 87, 92	Niobium potassium fluoride, 456
dihydro, 446	Nitric acid, 224, 395, 456-7, 542
nitro, 86, 92, 224, 283, 408, 421, 446	oxide, 438, 461, 465
picrate, 126	Nitrocellulose, 465
sulfonic acid, 446	
Naphthoic acid, 447	Nitrogen, 457–461 oxide (ic), 461
Naphthoic acids dibydro 447	
Naphthoic acids, dihydro, 447	oxide (ous), 462-5
Naphthols, 10, 128, 224, 251, 283, 301,	tetroxide, 465
446, 447, 448, 593, 703,	Nitrophenyl chloroform, 248
picrate, 447	Nitrosobenzene, 131
Naphthyl acetate, 10	Nitrosopiperidine, 496
amine, 79, 224, 240, 283, 309, 446,	Nitrosyl chloride, 247
448	Nitrous oxide, 462-5
amine sulfonic acids, 448	Novocaine, 466
benzoate, 448	hydrochloride, 466
hydrazones of sugars, 697	_
salicylate, 149	Octane, 466
Narceine, 448	Octyl alcohol, 239, 278, 481, 745
Narcotine, 449	Oenanthyl urethane, 742
Neodymium chloride, 449	Oils, 302, 468
cobalticyanide, 449	baldo leaves, 468
dimethyl phosphate, 450	castor, oleic, olive, etc., 249
double nitrates, 449	cotton seed, 294, 436
glycolate, 449	helianthus annus, 468
molybdate, 449	olive, 468
nitrate, 450	turpentine, 440, 733
oxalate, 449-50	Oleic acid, 248, 466-7
sulfonates, 450	~
tungstate, 450	Olein, tri, 467
Neon, 450	Orthovanillin, 744
Neurine perchlorate, 450	Osmic acid, 468
	Oxalic acid, 59, 185, 348, 376, 468-9,
Nickel ammonium sulfate, 68, 273	549-51, 661
bismuth nitrate, 151	Oxybenzoic acids, 140, 141, 251
Nickel bromate, 451	Oxybenzoic acid, dinitro, 145
bromide, 451	
caesium sulfate, 186	Oxygen, 470-3
· · · · · · · · · · · · · · · · · · ·	21

Ozokerite paraffin, 475	Phenyl hydrazines, 484, 486-7
Ozone, 473-4	hydrazine, di, 163
	hydrazones of sugars, 697
Palladium chloride, 474	methane, di. 433
Palmitic acid, 97, 248, 443, 467, 474-5,	methane, tri, 282, 309, 433-4, 704
677	methyl amine hydrochloride, 438
acetic ester, 446	methyl carbamide, 226
acid cetyl ester, 475	piperidines, di, 497
	propiolic acid 570
Palmitin, tri, 467, 475	propiolic acid, 570
Papaverine, 475	propionic acid, 254, 570
Paraffin, 283, 446, 475	salicylate, 10, 251, 593
Paraformaldehyde, 303	selenide, dibromo, 487
Paraldehyde, 2, 128, 301	selenium bromide, di, 596
Para morphine, 721	telluride, dibromo, 487
Pentane, 476	tellurium bromide, di, 596
iso, 77, 131, 282	thiocarbamide, 738–9, 740
Peptone, 476	thio urea, 738-740
Perchloric acid, 476	trimethyl ammonium iodide, 55
Perseitol, dibenzal, 698	Phloroglucinol, 487
Petroleum, 294	Phosphomolybdic acid, 488
benzine, 133	Phosphoric acid, 224, 489-90
ether, 477	Phosphorus, 488–9
Phenacetin, 477	acid, 489
Phenanthraquinone, 477-8	sulfides, 489
Phenanthrene, 128, 132, 145, 223, 282,	triiodide, 95, 98
_. 283, 443, 478-79	Phthalic acids, 490
picrate, 479	Phthalic acids, nitro, 491
Phenetidine, acet, 477	Phthalic anhydride, 491
Phenetol, 86, 93, 292	Phthalide, 2, 309
dinitro, 80	carboxylic acid, 492
Phenol, 9, 10, 15, 76, 78, 79, 83, 86, 93,	Phthalimide, 492
102, 123, 124, 127, 131-3, 135, 146,	Phthalonic acid, 492
156, 224, 227, 251, 280, 283, 295,	Phthalyl hydroxylamine 324
	phenyl hydrazides, 312, 487
300, 301, 310, 315, 373, 397, 423,	Physostigmine, 492
433, 445, 446, 448, 466, 479-84,	
536, 682, 704	salicylate, 492
dinitro, 4, 303	sulfate, 492
Phenols, amino, 136, 251	Phytosterol, 248
acetyl tribromo, 486	Picramides, methyl phenyl, 492
bromo, 484, 486	Picric acid, 5, 81, 240, 279, 301, 303
chloro, 15, 77, 79, 283, 486	309, 446–8, 484, 486, 492–5, 731
iodo, 486	methyl, 495
nitro, 15, 77, 128, 251, 446, 484–6	Picrotoxine, 495
nitroso, 486	Picoline, 574
tribromo, 132	Pilocarpine, 496
Phenolate of phenyl ammonium, 484	hydrochloride, 496
Phenolphthalein, 486	mitrate, 496
Phenyl acetic acid, 9, 12	Pinacolin, 496
alanine, 486	Pimelic acid, 495
amine, di, 21, 80, 128, 282-3	Pinene, 293
amine, tri, 282	hydrochloride, 496
anisyl ketone, 10	Pipecoline, 496
benzoate, 10	Piperidine, 280, 496
carbinol, tri, 227	propyl, 262
diacetylene, di, 163	Piperidines, di phenyl. 497
dibromo propionic acid, 570	Piperidine hydrochloride, 496
Phenylene diamines, 486	methyl, 496
Phenyl ether, 132	Piperine, 496, 497
ethylene, tetra, 302	Piperonal, 9, 10, 136
glycolic acid, 307	nitro, 10
glyoxal phenyl hydrazone, 307	Piperonilic aldehyde, 2
guanidine, tri, 2, 309	Platinates, chloro, of hydrocarbon sul-
hydracrylic acid, 732	fines, 499
ary and and and 100	444

Platino amines, 499	Potassium chromium alum, cobalt mal-
Platinous nitrite ammonium com-	onate, 259
pounds, 499	cobalt sulfate, 557
Platinum alloys, 497	copper carbonate, 264
ammonium bromide, 41,	copper chloride, 267-8, 270
bromide, 497	copper sulfate, 274, 557
caesium chloride, 182	
	cyanate, 531
chlorides, 499	cyanide, 270, 531
double chlorides, 498	dichromate, 527–30
magnesium cyanide, 389	didymium sulfate, 281
potassium bromide, 497	dihydroxy tartrates, 566
Ponceau, 499	dipropyl malonate, 512
Potasammonium, 500	ethyl sulfate, 563–4
Potassium, 37, 500	ferricyanide, 531–2
acetate, 500	ferrocyanide, 531-2
acid sulfates, 560	ferrosulfate, 558
alum, 30, 31	fluoboride, 502
amyl sulfate, 564	fluoride, 27, 112, 242, 507, 526, 532-4
antimony sulfide, 500-1	fluotitanate, 568
antimony tartrate of	
antimony tartrate, 96	formate, 535
arsenate, 501	germanium fluoride, 535
barium ferrocyanide, 112	gold chloride, 308 hippurate, 311
benzoate, 502	hippurate, 311
beryllium fluoride, 148	hydroxide, 501, 502, 507, 509, 526,
bicarbonate, 508–9	hydroxide, 501, 502, 507, 509, 526, 529, 534-6, 555, 558
bioxalate, 551	hypophosphate, 555
bisulfate, 560, 563	hypophosphite, 555
bitartrate, 564-6	iodate, 536
bitartrate, dimethyl ester, 566	iodide, 100, 177, 326, 425, 504, 505,
borates, 502	507, 518, 519, 526, 534, 536,
bromate, 503	E27-AT
bromide, 100, 167, 263, 480, 504-7	537-41 iodide mercuric cyanide, 423
bromide mercuric cyanide 422	iodomercurate Est
bromide, mercuric cyanide, 423	iodomercurate, 541
butyrate, 508	iridium chloride, 526
cadmium bromide, 168	iron chloride, 339–40
cadmium chlorides, 173-4	iron sulfate, 345
cadmium iodides, 178	lanthanum sulfate, 348
cadmium sulfate, 179	lead chloride, 355
calcium ferrocyanide, 200	lead cobalticyanide, 357
calcium sulfate, 218	lead ferricyanide, 357
camphorates, 508	lead iodide, 359
carbonate, 13, 35, 264, 353, 369,	lead sulfate, 364, 558
508-12, 544, 557	lithium sulfate, 377
carbonyl ferrocyanide, 531	lithium tartrate, 378
cerium sulfate, 243	magnesium chloride, 388
chlorate, 512–15, 714	magnesium chromate, 389
chloride 45 48 100 111 121 170	
chloride, 45, 48, 109, 111, 121, 170,	magnesium ferrocyanide, 389
174, 183, 196, 198, 267, 270, 274,	magnesium sulfate, 396, 397
307, 339, 340, 356, 371, 388, 410,	manganese chloride, 401
480, 504, 505, 507, 509, 512, 516- 26, 531, 543, 552, 637, 641, 643, 668, 672	manganese sultate, 405
26, 531, 543, 552, 637, 641, 643,	mercuric cyanide, 423
668, 672	mercuric chloride, 410–11, 420
chloride, carnellite, 48	mercuric iodide, 425, 541
chloride mercuric cyanide, 423	meta borate, 502
chloro iridate, 526	meta phosphate, 502, 526, 534, 555
chloro platinate, 498	methyl sulfate, 564
	molybdate, 529, 530, 541
chromate, 353, 526–30, 559 Potassium chromium alum, 249	nickel citrate, 452
chromium molybdate, 250	nickel sulfate, 455, 557
chromithiocyanate, 531	niobium fluoride, 456
	nitrate AE EE 116 117 208 260
chromocyanide, 531	nitrate, 45, 55, 116, 117, 208, 360, 376, 480, 506, 509, 519, 520, 521,
citrate, 530	5/0, 400, 500, 509, 519, 520, 521,
cobalt citrate, 258	541, 542-8, 552, 643, 657, 659, 718
82	6

Potassium chromium alum, nitrite, 548-9 oxalate, 60, 549-52, 735	Praseodymium chloride, oxalate, 568 sulfate, 569 sulfonates, 569
perborates, 502	tungstate, 569
perchlorate, 515, 554	Probnal, 742
periodate, 536	Propione, 300
permanganate, 552-4	Propiolic acid, phenyl, 570
persulfate, 563 phosphates, 526, 534, 554–5	Propionic acid, 303, 315, 436, 569-70 acid, amino, 19
phosphomolybdate, 555	acid, iodo, 570
picrate, 554, 719	acid, phenyl, 570
platinum bromide, 497	aldehyde, 570
platinum chloride, 498	Propionitrile, 571
pyrophosphate, 526, 534, 555	Propyl acetate, 12, 571
rubidium perchlorate, 583	alcohol, 5, 128, 511, 571-2, 574, 636,
rubidium nicrosochloride, 587	647
selenate, 556	alcohol, iso, 533
silicate, 378, 556	ammonium iodine, tetra, 54, 55
sodium carbonate, 512	ammonium perchlorates, 44
sodium sultate, 668, 559	amine hydrochloride, 573
sodium sulfite, 564	amines, 572-3
sodium tartrate, 566	anisole, 73
sodium thiosultate, 568	benzene, 91
stannate, 556 stannous chloride, 522	bromide, 293, 573
strontium sulfate, 558	butyrate, 571
succinate, 691	chloride, 573 Propylene, 573
sulfate, 31, 45, 64, 121, 149, 166, 179,	Propyl formate, 571
220, 259, 274, 365, 378, 388, 397,	iodide, 573
405, 480, 509, 512, 522, 526, 529,	malonic acid, 399
530, 534, 541, 544, 552, 556-62,	piperidine, 262, 496
643, 668, 719	propionate, 571
sulfide, 564	sulfine perchlorate, 698
sulfoantimonate, 500-I	Pseudo cumidine, 279
sultonates, 564	Pyrene, 573
tantalum fluoride, 710	Pyridinamino succinic acids, 575
tartrate, 564–566	Pyridine, 21, 127, 136, 258, 279, 439,
tellurate, 566	446, 484, 486, 574 Pyridines, methyl, ethyl, etc., 574
telluric acid oxalate, 552 tellurium bromide, 712	
tetroxalate, 552	trimethyl, 262 Pyrocatechol, 15, 77, 146, 224, 251,
thiocyanate, 70, 566-7	324, 446, 575
thiosulfate, 568	Pyrogaliol, 15, 224, 575
titanium fluoride, 568	Pyrone, dimethyl (see Dimethylpy-
thorium sulfate, 724	rone
tungstate, 530, 541, 562	Pyrophosphoric acid, 490
uranyl butyrate, 733	Pyrotartaric acid, 307, 711-2
uranyl carbonate, 512	Pyroxylin, 465
uranyl chloride, 734	
uranyl nitrate, 735	Quinaldine, benzoyl tetrahydro, 146
uranyl oxalate, 735	Quinidine, 251, 575
uranyl propionate, 736	salts, 575
uranyl sulfate, 736 vanadate, 568	sulfate, 576
	Quinine, 128, 251, 576, 577
yttrium oxalate, 747 zinc cyanide, 532	glycerophosphate, 578
zinc sulfate, 557	hydrochloride, 578
zinc vanadate, 568	pyrotartrates, 579 salicylate, 578
Praseodymium chloride, 568	salts, 577-8
dimethyl phosphate, 569	sulfate, 578
double nitrates, 568	tannates, 579
glycolate, 568	Quinhydrone, 575
molybdate, 568	Quinol, 132, 448

Quinoline, 484, 486	Saccharin, 587-8
ethiodide, 579	Salicin, 588
J	Salicylamide, 588
Radium emanations, 579-80	Salicylates, methyl and phenyl, 251
Rape oil, 468	Salicylic acid, 15, 136, 251, 480, 575,
Raffinose, 695-97	588-93
Resorcinol, 15, 77, 131, 146, 224, 251,	aldehyde, 10
283. 324. 446. 484. 405. 575.	Salol, 9, 96, 149, 224, 225, 245, 309, 431,
283, 324, 446, 484, 495, 575, _ 580-1, 654	448, 593
Retene, 145	Samarium chloride, 594
Rhamnitol, dibenzal, 698	dimethyl phosphate, 594
Rhamnose, 696	double nitrates, 594
Rhodium salts, 581	glycolate, 594
sodium nitrite, 660	oxalate, 594
Rosolic acid, 582	sodium sulfate, 594
Rosaniline, 581	sulfate, 594
hydrochloride, 582	sulfonates, 595
Rubidium alum, 32, 582	Santonin, 593
bicarbonate, 582	Scandium oxalate, 595
bromide, 582 bromiodide, 585	sulfate, 595
bromiodide, 585	Schönite, 641
cadmium bromide, 168	Scopolamine hydrobromide, 325
cadmium chloride, 172	Sebacic acid, 595
caesium nitrosochloride, 587	Selenic acid, 596
calcium sulfate, 218	Selenious acid, 597
carbonate, 582	anhydride, 597
chlorate, 583	Selenium, 334, 408, 421, 596, 720
chloride, 183, 270, 356, 371, 412, 583	bromide, diphenyl, 596
chromate, 584	dioxide, 597
cobalt nitrite, 259	Silica, 210, 362, 378, 395, 402, 556, 597
dichromate, 584	Silicon, 598
dihydroxy tartrate, 587	iodides, 598
double sulfates, 587	tetraphenyl, 302, 362, 598, 729
fluoboride, 582	Silicotungstic acid, 598
fluoride, 27, 584	Silver, 598, 705, 712
fluosilicate, 586	acetate, 598-9, 622
hydroxide, 536, 584-5	acetyl propionate, 617
hydroxide, 536, 584–5 gold chloride, 308	arsenate, 600
iodate, 585	arsenite, 600
iodide, 585	benzoate, 600
iridate, 585	borate, 600
mercuric chloride, 412	bromate, 601
molybdate, 585	bromide, 351, 367, 507, 582, 601-4
nitrate, 586	butyrate, 604
perchlorate, 583	caproates, 605
periodate, 585	carbonate, 605
periodides, 585	chloroacetate, 599-600
permanganate, 554, 586	chlorate, 605
platinum chloride, 498	chloride, 183, 198, 270, 356, 371, 388,
potassium perchlorate, 583	583, 604-12
ruthenium nitrosochloride, 587	chromate, 612
selenate, 586	citrate, 613
silicotungstate, 586	cyanide, 531, 613
sulfate, 220, 587	dichromate, 613
tellurate, 586 telluric acid oxalate, 586	ethyl methyl acetate, 600
	ferricyanide, 613
tellurium bromide, 712	fluoride, 613–4
tellurium chloride, 584, 712	fulminate, 614
thallium chloride, 584	heptoate, 614
thiocyanate, 567	iodate, 614–5
uranyl chloride, 734	iodide, 271, 359, 374, 537, 604, 605,
uranyl nitrate, 735	611, 615-0
Ruthenium salts, 587	isobutyrate, 604
Ω.	•0

Cilore inamiameta 604	TOR
Silver, isovalerate, 624	507, 512, 517, 519, 521-2, 526,
laurate, 617	544-5, 548, 562, 583, 611, 632, 635,
levulinate, 617	637, 639-49, 661, 669-71, 690
malate, 617	chromates, 649-52
methyl ethyl acetate, 600	cinnamate, 652
myristate, 617	citrate, 652
nitrate, 57, 546, 548, 599, 617–9	copper sulfate, 276
nitrite, 118, 209, 376, 549, 619–20, 660	cyanide, 270, 531, 613, 649
önanthylate, 614	dichromate, 650-2
oxalate, 620	diethyl barbiturate, 629
oxide, 620–1	dihydrogen phosphate, 663
palmitate, 617	ferrocyanide, 532, 652
permanganate, 621	fluoride, 27, 175, 357, 534, 632, 649,
phosphate, 621	652
propionate, 621	fluosilicate, 652
propyl (di) acetate, 600	fluozirconate, 676
salicylate, 621	
	formate, 653 gadolinium sulfate, 305
selenides, 95, 152	
sodium cyanide, 613	glycerophosphate, 653
stearate, 617	gold chloride, 308 hydrogen arsenate, 629
succinate, 621	hydrogen arsenate, 629
sulfate, 219, 378, 562, 621-3	hydrogen phosphate, 662
sulfide, 29, 95, 101, 277, 365, 611, 624	hydrosulfite, 673
sultonates, 624	hydroxide, 109, 113, 536, 585, 627,
tartrate, 624	629, 630, 632, 643, 649, 651-4,
thallium cyanide, 613	663, 670
thiocyanate, 567, 605, 624	iodate, 654
valerates, 624-5	iodide, 177, 616, 632, 634, 649, 652,
vanadate, 625	654–6
Sodammonium, 625	iodide mercuric cyanide, 423
Sodium, 37, 625	iodomercurate, 656
acetate, 500, 626-7	iron sulfate, 344
acid phosphate, 663	lanthanum sulfate, 348
alum, 32	lithium sulfate, 377
ammonium phosphates, 62	lithium tartrate, 378
ammonium sulfate, 68	magnesium sulfate, 668
ammonium sulfite, 69	manganese sulfate, 404
antimony sulfide, 627-8	mercuric chloride, 411
arsenates, 628-9	mercury iodide, 656
benzoate, 187, 629	meta borate, 502, 631
beryllium fluoride, 148	meta phosphate, 631
biborate, 630-1	meta vanadate, 676
bicarbonate, 43, 634, 637–8	molybdate, 440, 656
bisulfate, 670, 672	nickel sulfate, 454
borate, 367	nitrate, 55, 58, 109, 116-7, 208, 222,
borate (tetra), 629–31	360, 376, 509, 519, 545-6, 548, 618,
bromate, 631	632, 635, 644-5, 656-61
bromide, 99, 167, 604-5, 631-2, 634-5	nitrite, 649, 659-60
cacodylate, 633	nitrophenol, 662
cadmium bromide, 169	oleate, 480, 660
cadmium chloride, 174	oxalate, 552, 660-I
cadmium iodide, 178	palmitate, 661
cadmium sulfate, 180	perchlorate, 639
caesium sulfate, 186	phenolate, 662
calcium thiosulfate, 222	phenol sulfonate, 674
camphorates, 633	phosphate, 662
carbonate, 13, 218, 509, 512, 633-7,	phosphate fluoride, 664
647, 655	phosphites, 664
cerium sulfate, 243	picrate, 664
chlorate, 639	potassium carbonate, 512
chloride, 45, 49, 109-11, 121, 166,	potassium sulfate, 559, 668
170, 174, 183, 196-8, 267-8, 270,	potassium tartrate, 566
274, 339, 356, 371, 388, 411, 480,	potassium thiosulfate, 568
• · · · · · · · · · · · · · · · · · · ·	

Sodium, pyrophosphate, 631, 649, 664	Strontium acetate, iodide mercuric cy-
rhodonitrite, 660	anide, 423
salicylate, 187, 590, 665	iodomercurate, 682
samarium sulfate, 594 selenate, 665	malate, 683 malonate, 683
silicate, 119, 213, 378, 396, 631, 665	mercuric, iodide, 682
silver cyanide, 613	molybdate, 683
stannate, 665	nitrate, 361, 546, 548, 659, 681, 683
succinates, 665-6	nitrite, 620, 683–4 oxalate, 684
sulfate, 121, 179, 218, 220, 259–60, 274, 365, 378, 397, 405, 522, 526,	oxide, 157, 198, 680, 684
274, 365, 378, 397, 405, 522, 526, 559, 562, 623, 632, 637, 641, 649,	periodide, 682
651-2, 656, 658, 660-1, 667-72,	permanganate, 684
747 sulfide, 455, 672	potassium sulfate, 558
sulfite, 673	salicylate, 684 silicate, 378, 665
sulfoantimonate, 627–8	succinate, 685
sulfonates, 673–4	sulfate, 378, 562, 672, 680, 685-6
tartrate, 566, 674	tartrate, 686
tellurates, 674	tungstate (di), 686
tetraborate, 367, 629–31 tetrachromate, 650	Strychnine, 687 salts, 688-9
tetraiodofluorescein, 335	Suberic acid, 689
thiocyanate, 567	Succinic acid, 136, 480, 666, 690-2
thiosulfate, 208, 222, 628, 674-5	acid, amino, 692
thorium sulfate, 725	acid, bromo, 692
trichromate, 650 tungstate, 656, 665, 672, 675	acid, chloro, 692 acids, pyridinamino, 575
uranyl chromate, 734	acid nitrile, 102, 133, 135, 224, 299,
uranyl oxalates, 661	405, 445, 618, 649, 693
urate, 676	Succinimide, 693
yttrium sulfate, 747 zinc sulfate, 755	Sucrose (see Sugar) Sugar, 166, 187, 198, 205, 397, 512,
zirconium fluoride, 676	548, 627, 636, 648, 672, 693-8
Sorbitols, benzal, 698	Sulfanilic acid, 698
Sorbose, 697	Sulfine chloroplatinates, 499
Sparteine, 676	Sulfonal, 435, 448, 593
sulfate, 676 Stannous, stannic (see Tin)	Sulfonium perchlorates, 698 iodide, triethyl, 699
Stearic acid, 97, 248, 446, 467-8, 475,	Sulfur, 76, 127, 130, 150, 160, 247,
676-7	334, 421, 446, 489, 564, 596, 672,
Stearin, tri, 225, 467, 475, 677	699-705, 720, 729
Stilbene, 88, 103, 123, 133, 147, 280, 677	dioxide, 160, 224, 247, 315, 436, 438, 705-8
Strontium acetate, 677	Sulfuric acid, 5, 9, 10, 16, 124, 136,
ammonium sulfate, 68	145, 146, 278, 279, 484, 486, 575,
benzoate, 678	708-9, 726, 731
bromate, 678	Sulfon methanes, ethyl, and methyl, 435
bromide, 100, 678 camphorate, 678	Sulfur trioxide, 708–9 Sulfuryl chloride, 247, 708
carbonate, 649, 678-9	"Superphosphates," 212
chlorate, 679	Syngenite, 218
chloride, 100, 111, 119, 170, 198,	Tackbardeles 206 642
356, 371, 388, 526, 649, 679, 680 chromate, 680	Tachhydrite, 196, 641 Talitol, tribenzal, 698
cinnamate, 681	Tannic acid, 710
fluoride, 680, 681	Tantalum potassium fluoride, 710
formate, 681	Tartaric acid, 480, 481, 710-11
glycerophosphate, 681 hydroxide, 678, 680-2	Telluric acid, 712 Telluric acid caesium oxalate, 185
hyposulfate, 365	acid potassium oxalate, 552
iodate, 682	acid rubidium oxalate, 586
iodide, 682	Tellurium, 334, 596, 705, 712, 720
Q.	10

Tellurium, bromide, diphenyl, 596	Thorium ammonium ovalate nitroben-
caesium chloride, 182	Thorium ammonium oxalate, nitroben- zene sulfonate, 725
chromium alum, 249	oxalate, 722-3
double salts, 712	picrate, 723
rubidium chloride, 584	potassium sulfate, 724
tetra iodide, 713	selenate, 723
Terephthalic acid, 490	sodium sulfate, 725
Terpin hydrate, 712	sulfate, 723–5
Tetra hydrobenzene, 89	Thoulet solution, 541
iodo pyrrol, 335	Thulium bromo nitrobenzene sulfo-
Tetronal, 435	nate, 725
Thallium alum, 32, 713	oxalate, 725
bisulfate, 720	Thymol, 5, 10, 146, 227, 251, 446, 484,
bromate, 713, 716	495, 593, 725-6
bromide, 713	Tin, 334, 705, 712, 726
caesium chloride, 182	chloride, 170, 198, 247, 270, 356, 371,
carbonate, 713	388, 401, 522, 713, 726-7
chloride, 111, 150, 170, 183, 198, 270,	diphenyl, 430
339, 356, 371, 388, 526, 583, 611, 649, 680, 713, 715–8	hydroxide, 728
649, 680, 713, 715–8	iodide, 728–9
chlorate, 714	oxalate, 729
chromate, 717	potassium chloride (ous), 522
cyanide, 717	sulfate, 729
double cyanides, 717	sulfide (ous), 95
double sulfates, 720	tetraphenyl, 598, 729
fluoride, 717	triphenyl, 95
hydroxide, 717	Titanium potassium fluoride, 568
iodate, 718	silicate, 119
iodide, 713, 718	Tolane, 103, 123, 147
mercuric cyanide, 423	Toluene, 21, 87, 88, 93, 239, 247, 278,
nitrate, 547, 548, 619, 659, 718	293, 301, 313, 481, 704, 729-30,
oxalate, 718	745
perchlorate, 714	bromo, 128, 227, 293, 301, 484, 572,
phosphate, 718	693, 726, 730
picrate, 719	chloro, 87, 93
platinum chloride, 498	chloro nitro, 730
rubidium chloride, 584	dinitro, I
selenate, 719	nitro, 24, 26, 27, 77, 79, 87, 93, 128,
silver cyanide, 613	132, 283, 293, 300, 303, 408, 421,
sulfate, 31, 719–20	446, 465, 478, 729–30
sulfide, 720	sulfonamines, 729
sulfite, 720	sulfochloride, 730
thiocyanate, 716, 720 vanadates, 721	trinitro, 1, 16, 224, 495, 575 Toluic acids, 9, 10, 12, 136, 575, 730,
Thallo thallic chloride, 717	
Thebaine, 721	731 Toluidines, 79, 136, 224, 240, 283, 293,
Theobromine, 187, 721	324, 431, 446, 448, 484, 486, 581,
Theorin, 721	721-2
Theophylline, 721	731–2 Tolyl carbamide, 226
Thiocarbamide (thiourea), 70	Trehalose, 696
diodo di, 226	Tribenzylamine, 730
Thiophene, 128	Triethylamine, 102, 111 (see Ethyl-
carbonic acids, 721	amine)
Thiophenylazine, 123	Trimethylamine, 437 (see Methyl-
Thiosinamine, 738	amines)
Thiourea (thiocarbamide), 70, 738	Trimethylethylene, 72
Thorium ammonium oxalate, 60, 722	Triolein, 467
ammonium sulfate, 724	Trional, 435
borate, 722	Trioxymethylene, 303
chloro acetates, 721	Tripalmitin, 467, 475
chloro oxalate, 723	Triphenylamine, 282, 732
emanations, 721	
011111111111111111111111111111111111111	Triphenyl arsine, 732
hippurate, 722	Triphenyl arsine, 732 Triphenylbismuthine, 732

Triphenyl phosphine, 732 guanidine, 2 stibene, 732 Tristearin, 467, 475, 677 Trithioacetaldehyde, 732 Triphiobenzaldehyde, 732 Tropaeolin, 309 Tropic acid, 732 Tungsten trioxide, 675 Turpentine, 294, 440, 733	Xanthine, dimethyl, 721 Xanthone, 132 Xenon, 745 Xylenes, 2, 5, 21, 88, 94, 128, 281, 294, 301, 484, 581, 693, 705, 730, 744 nitro, 745 Xylenol, 745 Xylidene, 79, 484 Xylitol, dibenzal, 698 Xylose, 696
Ulexine, 280 Uranyl ammonium carbonate, 43, 733-4 ammonium oxalate, 735 ammonium propionate, 736 caesium chloride, 734 chloride, 733-4 double nitrates, 735 iodate, 734 nitrate, 734-5 oxalate, 661, 735-6 potassium butyrate, 733 potassium carbonate, 512 potassium chloride, 734 potassium oxalate, 735 rubidium chloride, 736 rubidium chloride, 734 sodium chromate, 736 sodium oxalates, 661 sulfate, 736 tetra methyl ammonium chloride, 734 Uranium sulfate, 736 Urea, 279, 484, 486, 737-8 diphenyl, 738 Urethan, 80, 128, 283, 296, 421, 446,	Ytterbium benzene sulfonate, 746 cobalticyanide, 746 dimethyl phosphate, 746 oxalate, 746 sulfate, 746 Yttrium chloride, 746 cobalticyanide, 746 dimethyl phosphate, 747 glycolate, 746 hydroxide, 747 iodate, 746 malonate, 746 nitrate, 747 potassium oxalate, 747 sodium sulfate, 747 sulfonates, 748 tartrate, 748 Zein, 748 Zinc, 150, 712 acetate, 748 ammonium chloride, 751 ammonium oxalate, 754
484, 593, 730, 741-2 derivatives, 742	ammonium phosphate, 754 ammonium sulfate, 69, 273
methyl, 431	arsenite, 748
Uric acid, 742-3 Ureide of glucose, 741	benzoate, 749 bicarbonate, 749
	bismuth nitrate, 151
Valeramides, 744	bromide, 749
Valeric acid, 743 Vanadium ammonium sulfate, 69	caesium sulfate, 186 carbonate, 749
caesium alum, 180	cerium nitrate, 242
rubidium alum, 582	chlorate, 750
thallium alum, 713	chloride, 111, 150, 170, 198, 270,
Vanillic aldehyde, 2 Vanillin, 9, 10, 744	339, 356, 388, 401, 680, 713, 727, 750-1
Vaselin, 5	chromates, 751
Veratrine, 744	cinnamate, 752
Veratrol, 730, 744	cyanide, 531, 752
Veronal, 742, 744 Vesuvin, 744	fluoride, 652, 752
Vesuvin, 744 Vinyl sulfine perchlorate, 698	gadolinium nitrate, 304 hydroxide, 752–3
•••	10date, 753
Water, 5, 125, 131, 133, 138-42, 144, 164-6, 227, 235, 245, 248, 280,	iodide, 753 lanthanium nitrate, 347
282, 285, 287, 294-5, 297, 299,	mercuric thiocyanate, 752
302, 468, 487, 589, 593, 729, 730,	neodymium nitrate, 449
745	nitrate, 395, 754
Weldmint oil, 468	oxalate, 60, 754

Zinc, oxychlorides, 750
phenol sulfonate, 756
potassium cyanide, 532
potassium sulfate, 557
potassium vanadate, 568
praseodymium nitrate, 568
rubidium sulfate, 587
samarium nitrate, 594
silicate, 178, 378
sodium sulfate, 755

Zinc, sulfate, 274-5, 404, 754-5 sulfide, 277, 345, 365, 624, 755 sulfite, 755 sulfonates, 755-6 tartrate, 756 thallium cyanide, 717 thallium sulfate, 720 valerate, 756 Zirconium sodium fluoride, 676 sulfate, 756

Table Showing the Volume Number and Corresponding Year

(Those journals marked (*) were examined page by page for solubility data. In last number recorded for each journal is that

Am. Chem. Jour. (*)		1000	1001	1902	1903	1004	1905	1906
Am. Jour. Pharm. (*).	······································							
Am. Jour. Pharm. (*).	Am. Chem. Jour. (*)	23-4	25-6	27-8	20-30	21-2	22-4	25-6
Am. Jour. Sci. (†)	Am Jour Pharm (*)		_					
Analyst (†)	Am Jour Sci (t)							
Ann. Chem. (Liebig's) (†)	Analyst (†)							
Ann. chim. phys.¹ (*)	Ann Chem (Liebig's) (t)							
Ann. chim. anal. (†)	Ann chim phys 1 (*)	1717—2T		-		18 T-2		
Ann. Physik (Wied.) (†)	Ann chim anal (†)							
Arth accad. Lincei (*)		[4] T-2				-		
Atti accad. Lincei (*)	Arch Pharm (t)							
Ber. (*)	Atti accad. Lincei (*)	is o						
Biochem, J. (†) Bull. soc. chim. (*) Isl23 25 27 29 31 33 35 35 35 35 35 35				t l	_			
Bull. soc. chim. (*)	Riochem T (t)		_					
Bull. soc. chim. belg. (*)	Bull soc. chim. (*)							
Chem. Abs. (*). Chem. News (†). Chem. Weekblad (*). Chem. Weekblad (*). Chem. Ztg	Bull soc chim belg (*)				-			
Chem. News (†)	Chem. Abs. (*)							
Chem. Weekblad (*). Chem. Ztg		_	_					1
Chem. Ztg	Chem. Weekblad (*)		-	-				
Compt. rend. (†)								
Elektrochem. Z. (†)						_	-	
Gazz. chim. ital. (*)	Elektrochem, Z. (†)						•	
Intern. Congr. Appl. Chem. (†) J. Am. Chem. Soc. (*) J. Biol. Chem. (†) J. Chem. Soc. (Lond.) (*) 77 79 81 83 85 87 89 J. Chim. phys. (*) J. Ind. Eng. Chem. (*) J. Phys. Chem. (*) J. Phys. Chem. (*) J. Physique (†) Soc. Chem. (†) Mem. Coll. Sci. Eng. Kyoto² (*) Monatsh. Chem. (†) Phil. Mag. (†) Phil. Mag. (†) Phil. Mag. (†) Proc. Roy. Soc. Edinburgh (†) Proc. Roy. Soc. (Lond.) (†) 10 11 21 22 23 24 25 26 27 28 24 25 26 27 27 23 4 5 6 7 8 9 10 10 11 12 21 22 23 24 25 26 27 27 23 24 25 26 27 27 23 24 25 26 27 27 27 27 27 27 27 27 27	Gazz, chim. ital. (*)	30	31	32	-	34	35	36
J. Am. Chem. Soc. (*)	Intern. Congr. Appl. Chem. (†)		-	-		-		
J. Biol. Chem. (†)	I. Am. Chem. Soc. (*)	22						28
J. Chem. Soc. (Lond.) (*)			- 1		-		-	I-2
J. chim. phys. (*)	J. Chem. Soc. (Lond.) (*)	77	79	8r	83	85	87	89
J. Ind. Eng. Chem. (*). J. pharm. chim. (†). J. Phys. Chem. (*). J. Physique (†). J. phys. Chem. Soc. J. physique (†). J. phys. Chem. Soc. J. physique (†). J. physik. Chem. (†). J. physik. Chem. (†). J. physik. Chem. (†). J. physik. Chem. (*). J. physik. Chem. (*	J. chim. phys. (*)	,			Ī		3	4
J. pharm. chim. (†)	J. Ind. Eng. Chem. (*)							
J. physique (†)	J. pharm. chim. (†)	10 I I - I 2	13-14	15-16	17-18	19-20	21-22	23-24
J. prakt. Chem. (†)	J. Phys. Chem. (*)		5	6	7	8	9	ΪΟ
J. Russ. Phys. Chem. Soc. 32 33 34 35 36 37 38 J. Soc. Chem. Ind. (†)	J. physique (†)	, ^[3] 9	10	[4] I	2	3	4	5
J. Soc. Chem. Ind. (†)	J. prakt. Chem. (†)	19)6I-2	63-4	65-6	67-8		71-2	73-4
Mem. Coll. Sci. Eng. Kyoto* (*) Monatsh. Chem. (†)	J. Russ. Phys. Chem. Soc	32		34	35	36	37	38
Monatsh. Chem. (†)	J. Soc. Chem. Ind. (†)	19	20	21	22	23	24	25
Pharm. Jour. (Lond.) (*) 64-5 66-7 68-9 70-1 72-3 74-5 76-7 Philippine J. Sci. (A) (†)								••••
Philippine J. Sci. (A) (†) Store		_				25	20	
Phil. Mag. (†)	Pharm. Jour. (Lond.) (*)	04-5	00-7	08-9	70-I	72-3	74-5	
Phys. Rev. (†)	Philippine J. Sci. (A) (†)	let	16					
Proc. k. Akad. Wet. (Amst.) (*) 2 3 4 5-6 6-7 7-8 8-9 Proc. Roy. Soc. Edinburgh (†) 23 23-24 24 24-25 25 25-26 26-27 Proc. Roy. Soc. (Lond.) (†) 66-7 68-9 69-71 71-2 73-5 76(A) 77-8(A) Rec. trav. chim. (*) 19 20 21 22 23 24 25 Trans. Am. Electrochem. Soc. (†) 19 20 21 22 23 24 25 Trans. Am. Electrochem. Soc. (†) 19 20 21 24 23 24 25 25 26-29 29-33 33-37 38-42 43-48 48-51 25 26-29 29-33 33-37 38-42 43-48 48-51 25 26-29 29-33 34 35-6 37 38-9 40 41-2 25 physik. Chem. (*) 32-35 36-39 39-42 42-46 47-50 50-54 54-57								
Proc. Roy. Soc. Edinburgh (†). Proc. Roy. Soc. (Lond.) (†) 66-7 68-9 69-71 71-2 73-5 76(A) 77-8(A) Rec. trav. chim. (*) 19 20 21 22 23 24 25 Trans. Am. Electrochem. Soc. (†) 1-2 3-4 5-6 7-8 9-10 Z. anal. Chem. (*) 39 40 41 42 43 44 45 Z. angew. Chem. (†) 13 14 15 16 17 18 19 Z. anorg. Chem. (*) 22-25 26-29 29-33 33-37 38-42 43-48 48-51 Z. Elektrochem. (*) 33 34 35-6 37 38-9 40 41-2 Z. physik. Chem. (*) 32-35 36-39 39-42 42-46 47-50 50-54 54-57			-1			1	_	
Proc. Roy. Soc. (Lond.) (†) 66-7 68-9 69-71 71-2 73-5 76(A) 77-8(A) Rec. trav. chim. (*) 19 20 21 22 23 24 25 Trans. Am. Electrochem. Soc. (†) Z. anal. Chem. (*) 39 40 41 42 43 44 45 Z. angew. Chem. (†) 13 14 15 16 17 18 19 Z. anorg. Chem. (*) 22-25 26-29 29-33 33-37 38-42 43-48 48-51 Z. Elektrochem. (*) 6-7 7 8 9 10 11 12 Z. Kryst. Min. 33 34 35-6 37 38-9 40 41-2 Z. physik. Chem. (*) 32-35 36-39 39-42 42-46 47-50 50-54 54-57					٠ ١			
Rec. trav. chim. (*) 19 20 21 22 23 24 25 Trans. Am. Electrochem. Soc. (†) 1-2 3-4 5-6 7-8 9-10 Z. anal. Chem. (*) 39 40 41 42 43 44 45 Z. angew. Chem. (†) 13 14 15 16 17 18 19 Z. anorg. Chem. (*) 22-25 26-29 29-33 33-37 38-42 43-48 48-51 Z. Elektrochem. (*) 6-7 7 8 9 10 11 12 Z. Kryst. Min. 33 34 35-6 37 38-9 40 41-2 Z. physik. Chem. (*) 32-35 36-39 39-42 42-46 47-50 50-54 54-57			Y	· · · I		- 1	25-20	
Trans. Am. Electrochem. Soc. (†) I-2 3-4 5-6 7-8 9-10 Z. anal. Chem. (*) 39 40 41 42 43 44 45 Z. angew. Chem. (†) 13 14 15 16 17 18 19 Z. anorg. Chem. (*) 22-25 26-29 29-33 33-37 38-42 43-48 48-51 Z. Elektrochem. (*) 6-7 7 8 9 10 11 12 Z. Kryst. Min 33 34 35-6 37 38-9 40 41-2 Z. physik. Chem. (*) 32-35 36-39 39-42 42-46 47-50 50-54 54-57			- 1	- 1				
Z. anal. Chem. (*)								
Z. angew. Chem. (†)						٠ ١		-
Z. anorg. Chem. (*)			•	•				
Z. Elektrochem. (*)	Z. angew. Chem (*)		- '				_	
Z. Kryst. Min	7 Flortmohem (*)		- 1					
Z. physik. Chem. (*)					-			
						1		-
2. physiol. Chem. (1/								
	2. physiol. Chem. (1)	30-1	31-4	34-7	3/-40	40-43	43-40	4/-50

¹ Changed to Ann. chim. in 1914.

² Changed to Mem. Coll. Sci. (Kyoto) in 1914.

of Publication of Fifty Chemical and Related Periodicals.

the case of those marked (†), the tables of contents only were searched. The of the last complete volume examined.)

1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917
37-8	39-40	41-2	43-4	45-6	47-8	49-50				
79	80	8r	82	83	84	85	86	87	88	89
23-4	25-26	27-8	29-30	31-2	33-4	35-6	37–8	39-40	41-2	43-
32	33	_34	35	36	37	38	39	40		
	358–64	364-71	371-78	378–86	386-94	395-402	402-4	1		1
10-12	13-15	16–18	19-21	22-24	25-27	28-30	1-2	3-4		l
12	13	14	15	16	17	18	19	20		ı
22-24	25-27	28–30	31-33	34-36	37-40	40-43	43-46	46–48	48-	ı
245	246	247	248	249	250	251	252	253		1
16	17	18	19	20	21	22	23	24	25	1
40	41	42	43	44	45 6	46	47 8	48		
2 [4] _I	3	4	5	5	111	7		.9	10	ļ
21	3 22	5	7	9	26	13	15	17	19	ł
71 I	22	23	24 4	25 5	6	27 7	8	9	10	11
95-6	97-8	3 99-100		103-4	105-6	107-8	109-10	111-12		
4	5	6	7	***	0	10	11	12	13	14
31	32	33	34	35	36	37	38	39	-3	
144-5	146-7	148-0	150-1	152-3	154-5	156-7	158-9		162-3	
13-14	14-15	15-16	16-17	17-18	18-19	19-20	20-21	21-22		l
37	38	39	40	41	42	43	44	45	46	Ì
		7th			8th					!
20	30	31	32	33	34	35	36	37	38	39
2-3	4-5	5-7	7-8	9-11	11-13	13-16	16–1g	20-23	24-28	
91	93	95	97	99	101	103	105	107	100	111
5	6	7	8	9	10	11	12	13	14	l
		I	. 2	3	4	5	6	7	8	9
25-26	27-28	29-30	[7] 1-2	3-4	5–6	7-8	9-10	11-12	13-14	1
II	12	13	14	15	16	17	18	19	20	21
6	7_	8	9	[5] [`2	3	_ 4			
75-6	77-8	79-80	81-2	83-4	85-7	87-9	89-90	91-2		
39	40	41	42	43	44	45	46	47		۔ ا
26	27	28	29	30	31	32	33	34	35	36
• : : :	• • • • •	1-2	2-3	3-4	4-5		w series V			
28	29	30	31	32	33 88–9	34	35	36		1
78-9	80-1	82-3	84-5	86-7 6		90-1 8	92-3	94-5		
2	3	4	5 19–20	21-2	7	l °	9	10	II	12
13-14	15-16	17-18			24-25	(e) _{I-2}	2-4	ا ۸ــــــــــــــــــــــــــــــــــــ		
24-25	26-27 10-11	28-29 11-12	30-31	32-33 13-14	34-35 14-15	15-16	3-4 16-17	5-6	7-	
9-10 27-28	28-20	29-30	30-31	31-32	32-33	33-34	•	17-		
70(A)		82-2(A)			86-7(A)	88-0(A)	34- 89-91(A)	01-		
26	27	28	29	30	31	32		_		
11-12	13-14	15-16	17-18	19-20	21-22	23-24	33 25-26	34 27–28	29-30	21-
46	47	48	49	50	51	52	53	54	-9 30	٠-
20	21	22	23	24	25	26	27	28		
52-56	56-60	61-65	65-69	69-73	73-79	79-84	84-90	90-93		
13	14	15	16	17	18	19 4	20	21		1
42-4	44-5	46	47	48-0	50	51-2	53			l
57-61	61-65	65–68	68-75	75-78	78–81	81–86	86–89	89-90		1
50-54	55-58	59-64		70-76	77-82	83-88	89–9 <u>3</u>	93-95		l
					1	1 - 1				I

D. VAN NOSTRAND COMPANY

25 PARK PLACE NEW YORK

SHORT-TITLE CATALOG

OF

Publications and Importations

OF

SCIENTIFIC AND ENGINEERING BOOKS

This list includes

the technical publications of the following English publishers:

SCOTT, GREENWOOD & CO. JAMES MUNRO & CO., Ltd.
CONSTABLE&COMPANY, Ltd. TECHNICAL PUBLISHING CO.
BENN BROTHERS, Ltd.

for whom D. Van Nostrand Company are American agents.

SHORT-TITLE CATALOG

OF THE

Publications and Importations

OF

D. VAN NOSTRAND COMPANY 25 PARK PLACE, N. Y.

All Prices in this list are NET.
All bindings are in cloth unless otherwise noted.

Abbott, A. V. The Electrical Transmission of Energy8vo,	*\$ 5	00
— A Treatise on Fuel. (Science Series No. o.)16mo.		75
Testing Machines. (Science Series No. 74.)16mo,	0	75
Abraham, Herbert. Asphalts and Allied Substances8vo,		00
Adam, P. Practical Bookbinding. Trans. by T. E. Maw12m0,		50
Adams, H. Theory and Practice in Designing8vo,		50
Adams, H. C. Sewage of Sea Coast Towns8vo,		50
Adams, J. W. Sewers and Drains for Populous Districts8vo,		50
Addyman, F. T. Practical X-Ray Work		00
Adler, A. A. Theory of Engineering Drawing 8vo,	_	00
Principles of Parallel Projecting-line Drawing 8vo,	*I	00
Aikman, C. M. Manures and the Principles of Manuring 8vo,	2	50
Aitken, W. Manual of the Telephone8vo,	*8	QO
d'Albe, E. E. F.; Contemporary Chemistry12mo,	*1	25
Alexander, J. Colloid Chemistry	1	00
Alexander, J. H. Elementary Electrical Engineering12mo,	2	50
Allan, W. Strength of Beams Under Transverse Loads. (Science Series		
No. 19.)16mo,	0	75
Theory of Arches. (Science Series No. 11.)		• -
Allen, H. Modern Power Gas Producer Practice and Applications. 12mo,	*2	50
Anderson, J. W. Prospector's Handbook12mo,	1	50
Andés, L. Vegetable Fats and Oils8vo,		00
— Animal Fats and Oils. Trans. by C. Salter8vo,	*5	00
Drying Oils, Boiled Oil, and Solid and Liquid Driers8vo,	_	00
—— Iron Corrosion, Anti-fouling and Anti-corrosive Paints. Trans. by	•	-
C. Salter	*6	00
Oil Colors, and Printers' Ink. Trans. by A. Morris and H.	·	-
Robson	*4	00
— Treatment of Paper for Special Purposes. Trans. by C. Salter.	7	-
12mo,	*,	00
Andrews, E. S. Reinforced Concrete Construction12mo,		00
— Theory and Design of Structures8vo.		50
Further Problems in the Theory and Design of Structures8vo,	*2	50
- The Strength of Materials8vo,		00
Elastic Stresses in Structures8vo,		00
Andrews, E. S., and Heywood, H. B. The Calculus for Engineers. 12mo,	*2	00

Annual Reports on the Progress of Chemistry. Twelve Volumes now ready. Vol. I., 1904, Vol. XII., 19148vo, each,	*2 00
Argand, M. Imaginary Quantities. Translated from the French by A. S. Hardy. (Science Series No. 52.)	
A. S. Hardy. (Science Series No. 52.)	0 75
(Science Series No. 1.)	0 75
F. B. DeGress	*2 UO
Asch, W., and Asch, D. The Silicates in Chemistry and Commerce 8vo,	*6 00
Ashe, S. W., and Keiley, J. D. Electric Railways. Theoretically and	
Practically Treated. Vol. I. Rolling Stock12mo,	*2 50
Ashe, S. W. Electric Railways. Vol. II. Engineering Preliminaries and	•
Direct Current Sub-Stations	*2 50 *2 00
Ashley, R. H. Chemical Calculations	*2 00
Atkins, W. Common Battery Telephony Simplified12mo,	*I 25
Atkinson, A. A. Electrical and Magnetic Calculations8vo,	*1 50
Atkinson, J. J. Friction of Air in Mines. (Science Series No. 14.). 16mo,	o 75
Atkinson, J. J., and Williams, Jr., E. H. Gases Met with in Coal Mines. (Science Series No. 13.)	0 75
Atkinson, P. The Elements of Electric Lighting12mo,	1 00
— The Elements of Dynamic Electricity and Magnetism12mo,	2 00
Power Transmitted by Electricity	2 00
Auchincloss, W. S. Link and Valve Motions Simplified	*I 50
Austin, E. Single Phase Electric Railways	*5 00.
Ayrton, H. The Electric Arc8vo,	5 50
——————————————————————————————————————	5 50
Bacon, F. W. Treatise on the Richards Steam-Engine Indicator 12mo,	1 00
Bailey, R. D. The Brewers' Analyst	*5 00
Baker, A. L. Quaternions8vo,	*I 25
— Thick-Lens Optics	* 1 50
Baker, G. S. Ship Form, Resistance and Screw Propulsion8vo,	*4 50
Baker, I. O. Levelling. (Science Series No. 91.)16mo.	0 75.
Baker, M. N. Potable Water. (Science Series No. 61.)16mo,	0 75
—— Sewerage and Sewage Purification. (Science Series No. 18.).16mo, Baker, T. T. Telegraphic Transmission of Photographs	0 75. *I 25
Bale, G. R. Modern Iron Foundry Practice. 12mo.	- ~5
Vol. I. Foundry Equipment, Materials Used	*3 00
Ball, J. W. Concrete Structures in Railways	*2 50
— Natural Sources of Power. (Westminster Series.)	*5 00 *2 00
Ball, W. V. Law Affecting Engineers	*3 50
Bankson, Lloyd. Slide Valve Diagrams. (Science Series No. 108.)	3 30
16mo,	0 75
Barham, G. B. Development of the Incandescent Electric Lamp. 8vo, Barker, A. F. Textiles and Their Manufacture. (Westminster Series.) 8vo,	2 50 2 00
Barker, A. F., and Midgley, E. Analysis of Woven Fabrics8vo.	3 50
Barker, A. H. Graphic Methods of Engine Design	2 00
	*0

Demand 7 II Mr. News Military of Auto-	
Barnard, J. H. The Naval Militiaman's Guide	I 00
Barnard, J. H. The Naval Militiaman's Guide16mo, leather Barnard, Major J. G. Rotary Motion. (Science Series No. 90.)16mo,	0 75
Barnes, J. B. Elements of Military Sketching16mo.	*0 75
Barrus, G. H. Engine Tests8vo,	_
	*4 00
Barwise, S. The Purification of Sewage	3 50
Baterden, J. R. Timber. (Westminster Series.) 500,	*2 00
Bates, E. L., and Charlesworth, F. Practical Mathematics and	
Geometry12m0,	
Part I. Preliminary and Elementary Course	*I 50
Part II. Advanced Course	*I 5º
— Practical Mathematics12mo,	*2 00
— Practical Geometry and Graphics12mo,	
Fractical Geometry and Graphics	2 00
Batey, J. The Science of Works Management12mo,	*2 00
Steam Boilers and Combustion	*2 00
Bayonet Training Manual16mo,	0 30
· ·	0 30
Beadle, C. Chapters on Papermaking. Five Volumes12mo, each,	*2 00
Beaumont, R. Color in Woven Design8vo,	*6 00
Finishing of Textile Fabrics8vo,	*5 00
Standard Cloths 8vo,	*6 oo
Beaumont, W. W. The Steam-Engine Indicator8vo,	2 50
Bechhold, H. Colloids in Biology and Medicine. Trans. by J. G.	2 34
Decimoid, it. Contoids in Biology and Medicine. Italia. by J. C.	_
Bullowa8vo,	5 00
Beckwith, A. Pottery	ი რი
•	•
Bedell, F., and Pierce, C. A. Direct and Alternating Current Manual.	
800.	2 00
Beech, F. Dyeing of Cotton Fabrics8vo,	5 00
— Dyeing of Woolen Fabrics	*3 50
	3 30
Beggs, G. E. Stresses in Railway Girders and Bridges(In Press.)	
Begtrup, J. The Slide Valve8vo,	*2 00
Bender, C. E. Continuous Bridges. (Science Series No. 26.)16mo,	0 75
— Proportions of Pins used in Bridges. (Science Series No. 4.)	0 /3
16mo,	0 75
Bengough, G. D. Brass. (Metallurgy Series.)(In Press.)	
Bennett, H. G. The Manufacture of Leather8vo,	*5 00
Bernthsen, A. A Text - book of Organic Chemistry. Trans. by G.	•
M'Gowan12m0,	*3 00
Bersch, J. Manufacture of Mineral and Lake Pigments. Trans. by A. C.	
Wright8vo,	6 00
Wright	
Bertin, L. E. Marine Boilers. Trans. by L. S. Robertson8vo,	5 00
Beveridge, J. Papermaker's Pocket Book	*4 00
Binnie, Sir A. Rainfall Reservoirs and Water Supply8vo,	*3 00
Dime, O. W. Manual of Descript Detring	•
Binns, C. F. Manual of Practical Potting8vo,	8 00
— The Potter's Craft :	*2 00
Birchmore, W. H. Interpretation of Gas Analysis12mo,	*1 :5
Dising D. C. The Coloring and Its Applications	*
Blaine, R. G. The Calculus and Its Applications12m0,	*1 75
Blaine, R. G. The Calculus and Its Applications	*1 75 *4 00
Blaine, R. G. The Calculus and Its Applications	
Blaine, R. G. The Calculus and Its Applications	*4 00
Blaine, R. G. The Calculus and Its Applications	*4 00 I 00
Blaine, R. G. The Calculus and Its Applications	*4 00

Bloch, L. Science of Illumination. Trans. by W. C. Clinton 8vo,	*2	50
Blok, A. Illumination and Artificial Lighting12mo,	2	00
Blücher, H. Modern Industrial Chemistry. Trans. by J. P. Millington.		
১ ১ ১ ১ ১ ১ ১ ১ ১ ১ ১ ১ ১ ১ ১ ১ ১ ১ ১	*7	50
Elyth, A. W. Foods: Their Composition and Analysis8vo,	7	50
Poisons: Their Effects and Detection8vo,	. 8	50
Böckmann, F. Celluloid12mo,	*2	50
Bodmer, G. R. Hydraulic Motors and Turbines 12mo,	5	00
Boileau, J. T. Traverse Tables8vo,	5	00
Bonney, G. E. The Electro-platers' Handbook12mo,		50
Booth, N. Guide to the Ring-spinning Frame		00
Booth, W. H. Water Softening and Treatment8vo,	*2	50
—— Superheaters and Superheating and Their Control 8vo,	*1	50
Bottcher, A. Cranes: Their Construction, Mechanical Equipment and		
Working. Trans. by A. Tolhausen	*10	
Bottler, M. Modern Bleaching Agents. Trans. by C. Salter12110,	_	50
Bottone, S. R. Magnetos for Automobilists		00
Electro-Motors, How Made and How Use		00
Boulton, S. B. Preservation of Timber. (Science Series No. 82).16mo,		75
Bourcart, E. Insecticides, Fungicides and Weedkillers 8vo,	*6	00
Bourgougnon, A. Physical Problems. (Science Series No. 113.).16mo,	0	75
Bourry, E. Treatise on Ceramic Industries. Trans. by A. B. Searle.		
8vo (In Press.)		
Bowie, A. J., Jr. A Practical Treatise on Hydraulic Mining 8vo,	5	00
Bowls, O. Tables of Common Rocks. (Science Series No. 125.).16mo,	ō	75
Bowser, E. A. Elementary Treatise on Analytic Geometry 12mo,	I	75
Elementary Treatise on the Differential and Integral Calculus . 12mo,		25
— Elementary Treatise on Analytic Mechanics		00
Elementary Treatise on Hydro-mechanics	_	50
—— A Treatise on Roofs and Bridges		25
Boycott, G. W. M. Compressed Air Work and Diving8vo,		25
Bradford, G. Whys and Wherefores of Navigation		00
—— Sea Terms and Phrases		
Bragg, E. M. Marine Engine Design	*2	00
Design of Marine Engines and Auxiliaries	*3	00
Brainard, F. R. The Sextant. (Science Series No. 101.)16mo,		
Brassey's Naval Annual for 1915. War Edition 8vo,	4	00
Briggs, R., and Wolff, A. R. Steam-Heating. (Science Series No.		
68.)		75
Bright, C. The Life Story of Sir Charles Tilson Bright 8vo,		50
Telegraphy, Aeronautics and War	0	00
Brislee, T. J. Introduction to the Study of Fuel. (Outlines of Industrial Chemistry.)8vo,	**	00
Broadfoot, S. K. Motors: Secondary Batteries. (Installation Manuals	3	00
Series.)12mo,	*0	75
Broughton, H. H. Electric Cranes and Hoists	Ū	/3
Brown, G. Healthy Foundations. (Science Series No. 80.)16mo,	0	75
Brown, H. Irrigation		00
Brown, H. Rubber8vo,		00
W. A. Portland Cement Industry8vo,	3	00
Brown, Wm. N. Dipping, Burnishing, Lacquering and Bronzing	*	
Brass Ware		50
— Handbook on Japanning12mo,	2	00

Brown, Wm. N. The Art of Enamelling on Metal	*2 00
House Decorating and Painting	*2 00
History of Decorative Art12mo	*0 50
Workshop Wrinkles8vo,	*I 00
Browne, C. L. Fitting and Erecting of Engines	*1 50
Browne, K. E. Water Meters. (Science Series No. 81)16mo,	0 75
Bruce, E. M. Detection of Common Food Adulterants12mo,	1 25
Brunner, R. Manufacture of Lubricants, Shoe Polishes and Leather	
Dressings. Trans. by C. Salter	*3 50
Buel, R. H. Safety Valves. (Science Series No. 21.)16mo,	0 75
Bunkley, J. W. Military and Naval Recognition Book16mo,	I 00
Burley, G. W. Lathes. Their Construction and Operation12mo,	2 00
- Machine and Fitting Shop Practice	2 00
Testing of Machine Tools	2 00
Burnside, W. Bridge Foundations12m0,	*2 00
Burstall, F. W. Energy Diagram for Gas. With Text8vo,	1 50
—— Diagram. Sold separately	*I 00
Burt, W. A. Key to the Solar Compass	2 50
Buskett, E. W. Fire Assaying12mo,	*1 25
Butler, H. J. Motor Bodies and Chassis8vo,	*3 00
Byers, H. G., and Knight, H. G. Notes on Qualitative Analysis 8vo,	*I 50
Dietal Tri Ail was STEP ail Tri Ai . Missan en Ammunia maniani	- 30
Cain, W. Brief Course in the Calculus12mo,	*1 75
Elastic Arches. (Science Series No. 48.)16mo,	o 75
— Maximum Stresses. (Science Series No. 38.)16mo,	o 75
Practical Designing Retaining of Walls. (Science Series No. 3.)	
16 m 0,	o 75
Theory of Steel-concrete Arches and of Vaulted Structures.	
(Science Series No. 42.)16mo,	0 75
— Theory of Voussoir Arches. (Science Series No. 12.)16mo,	o 75
Symbolic Algebra. (Science Series No. 73.)	o 75
Calvert, G. T. The Manufacture of Sulphate of Ammonia and	4 00
Crude Ammonia	4 00 5 00
Carpenter, F. D. Geographical Surveying. (Science Series No. 37.).16mo,	5 00
Carpenter, R. C., and Diederichs, H. Internal Combustion Engines. 8vo,	*
Carter, H. A. Ramie (Rhea), China Grass	*5 00 *3 00
Carter H R. Modern Flax Hemp, and Jute Spinning Syn	*3 50
Carter, H. R. Modern Flax, Hemp, and Jute Spinning8vo, — Bleaching, Dyeing and Finishing of Fabrics8vo,	*1 25
Cary, E. R. Solution of Railroad Problems with the Slide Rule. 16mo,	*I 00
Casler, M. D. Simplified Reinforced Concrete Mathematics12mo,	00 1*
Cathcart, W. L. Machine Design. Part I. Fastenings8vo,	*3 00
Cathcart, W. L., and Chaffee, J. I. Elements of Graphic Statics 8vo,	*3 00
Short Course in Graphics	-
	1 50
Caven, R. M., and Lander, G. D. Systematic Inorganic Chemistry. 12mo,	*2 00 *4 00
Chalkley, A. P. Diesel Engines	4 00
Chalmers, T. W. The Production and Treatment of Vegetable Oils,	7 70
Chambers' Mathematical Tables	7 50
Chambers' Mathematical Tables	1 75
Chambers, G. F. Astronomy	*I 50
Chappel, E. Five Figure Mathematical Tables8vo,	*2 00 *3 00
Charnock, Mechanical Technology	*6 00
omagonetos, at amountainment and an amountainment and amountainment and an amountainment and amountain	5 00

Chatley, H. Principles and Designs of Aeroplanes. (Science Series	
No. 126.) 16mo,	_0 75
How to Use Water Power	*1 50 *1 25
Child, C. D. Electric Arc	*2 00
Christian. M. Disinfection and Disinfectants. Trans. by Chas.	- 00
Christian, M. Disinfection and Disinfectants. Trans. by Chas. Salter	2 50
Christie, W. W. Boiler-waters, Scale, Corrosion, Foaming8vo,	*3 00
Chimney Design and Theory8vo,	*3 00
- Furnace Draft. (Science Series No. 123.)16mo,	0 75
Water: Its Purification and Use in the Industries	*2 00
Church's Laboratory Guide. Rewritten by Edward Kinch8vo,	*1 50
Clapham, J. H. Woolen and Worsted Industries8vo,	2 00
Clapperton, G. Practical Papermaking8vo,	2 50
Clark, A. G. Motor Car Engineering.	
Vol. I. Construction.	*4 00
Vol. II. Design8vo,	*3 50
Clark, C. H. Marine Gas Engines. New Edition	2 00
Clark, J. M. New System of Laying Out Railway Turnouts12mo, Clarke, J. W., and Scott, W. Plumbing Practice.	I 00
Vol. I. Lead Working and Plumbers' Materials8vo.	*4 00
Vol. II. Sanitary Plumbing and Fittings(In Press.)	-
Vol. III. Practical Lead Working on Roofs(In Press.)	
Clarkson, R. P. Elementary Electrical Engineering (In Press.)	
Clausen-Thue, W. A B C Universal Commercial Telegraphic Code. Sixth Edition	
Clerk, D., and Idell, F. E. Theory of the Gas Engine. (Science Series	
No. 62.)16mo,	0 75
Clevenger, S. R. Treatise on the Method of Government Surveying.	
16mo, morocco,	2 50
Clouth, F. Rubber, Gutta-Percha, and Balata8vo,	*6 00
Cochran, J. Concrete and Reinforced Concrete Specifications8vo,	*2 50
Treatise on Cement Specifications	*I 00 *2 50
Coffin, J. H. C. Navigation and Nautical Astronomy12mo,	-
Colburn, Z., and Thurston, R. H. Steam Boiler Explosions. (Science	8 00
Series No. 2.)16mo,	o 75
Cole, R. S. Treatise on Photographic Optics12mo,	I 50
Coles-Finch, W. Water, Its Origin and Use	*5 00
Collins, C. D. Drafting Room Methods, Standards and Forms8vo,	2 00
Collins, J. E. Useful Alloys and Memoranda for Goldsmiths, Jewelers.	
16mo,	0 50
Collins, S. Hoare. Plant Products and Chemical Fertilizers8vo,	3 00
Collis. A. G. High and Low Tension Switch-Gear Design 8vo.	*3 50
Switchgear. (Installation Manuals Series.)12m0,	*0 50
Colver, E. D. S. High Explosives	12 50
Comstock, D. F., and Troland, L. T. The Nature of Electricity and Matter	*
Coombs, H. A. Gear Teeth. (Science Series No. 120.)16mo,	*2 00 0 75
Cooper, W. R. Primary Batteries	*6 00
Copperthwaite, W. C. Tunnel Shields	*9 00
Corfield W. H. Dwelling Houses. (Science Series No. 50.)16mo,	9 75
— Water and Water-Supply. (Science Series No. 17.)16mo,	0 75

Cornwall, H. B. Manual of Blow-pipe Analysis	*2 50 *3 00
Cowell, W. B. Pure Air, Ozone, and Water12mo,	*2 50
Craig, J. W., and Woodward, W. P. Questions and Answers About Electrical Apparatus12mo, leather,	1 50
Craig, T. Motion of a Solid in a Fuel. (Science Series No. 49.). 16mo,	0 75
- Wave and Vortex Motion. (Science Series No. 43.)16mo,	0 75
Cramp, W. Continuous Current Machine Design8vo,	*2 50
Creedy, F. Single Phase Commutator Motors8vo,	*2 00
Crehore, A. C. Mystery of Matter and Energy8vo,	1 00
Crocker, F. B. Electric Lighting. Two Volumes. 8vo.	
Vol. I. The Generating Plant	3 00
Vol. II. Distributing Systems and Lamps	
Crocker, F. B., and Arendt, M. Electric Motors8vo,	*2 50
Crocker, F. B., and Wheeler, S. S. The Management of Electrical Ma-	
chinery	*I 00
Protection12m0,	4 00
Cross, C. F., Bevan, E. J., and Sindall, R. W. Wood Pulp and Its Applica-	
tions. (Westminster Series.)8vo,	*2 00
Crosskey, L. R. Elementary Perspective8vo,	1 25
Crosskey, L. R., and Thaw, J. Advanced Perspective 8vo,	I 50
Culley, J. L. Theory of Arches. (Science Series No. 87.)16mo,	0 75
Cushing, H. C., Jr., and Harrison, N. Central Station Management	*2 00
Dadourian, H. M. Analytical Mechanics12mo,	*3 00
Danby, A. Natural Rock Asphalts and Bitumens8vo,	*2 50
Davenport, C. The Book. (Westminster Series.)8vo,	*2 00
Davey, N. The Gas Turbine8vo,	*4 00
Davies, F. H. Electric Power and Traction8vo,	*2 00
Foundations and Machinery Fixing. (Installation Manual Series.)	
16mo,	*I 00
Deerr, N. Sugar Cane	9 00
Deite, C. Manual of Soapmaking. Trans. by S. T. King	*
De la Coux, H. The Industrial Uses of Water. Trans. by A. Morris. 8vo,	*5 00
Del Mar, W. A. Electric Power Conductors	*2 00
Denny, G. A. Deep-level Mines of the Rand4to,	*10 00
—— Diamond Drilling for Gold.	*5 00
De Roos, J. D. C. Linkages. (Science Series No. 47.)16mo,	0 75
Derr, W. L. Block Signal OperationOblong 12mo,	* 1 50
— Maintenance-of-Way Engineering (In Preparation.)	*
Desaint, A. Three Hundred Shades and How to Mix Them8vo, De Varona, A. Sewer Gases. (Science Series No. 55.)16mo,	*9 00
Devey, R. G. Mill and Factory Wiring. (Installation Manuals Series.)	o 75
	*I 00
Dibdin, W. J. Purification of Sewage and Water8vo,	6 50
Dichmann, Carl. Basic Open-Hearth Steel Process12mo,	-
Dieterich, K. Analysis of Resins, Balsams, and Gum Resins8vo,	*3 50 *3 50
Dilworth, E. C. Steel Railway Bridges	*4 00
Dinger, Lieut. H. C. Care and Operation of Naval Machinery12mo,	*3 00
Dixon, D. B. Machinist's and Steam Engineer's Practical Calculator.	-
16mo, morocco,	1 25

Draper, C. H. Elementary Text-book of Light, Heat and Sound 12mo, 200 Draper, E. G. Navigating the Ship 12mo, 12mo, 150 Draper, E. G. Navigating the Ship 12mo, 12mo, 150 Dron, R. W. Mining Formulas 12mo, 150 Dubbel, H. High Power Gas Engines 8vo, 50 Dumesny, P., and Noyer, J. Wood Products, Distillates, and Extracts 8vo, 50 Duncan, W. G., and Penman, D. The Electrical Equipment of Collieries. 8vo, 50 Dunkley, W. G. Design of Machine Elements. Two volumes 8vo, each, 200 Dunkley, W. G. Design of Machine Elements. Two volumes 8vo, each, 200 Duthie, A. L. pacorative Glass Processes. (Westminster Series.) 8vo, 200 Duthie, A. L. Decorative Glass Processes. (Westminster Series.) 8vo, 200 Dyke, A. L. Dyke's Automobile and Gasoline Engine Encyclopedia 8vo, 200 Dyson, S. S. Practical Testing of Raw Materials 8vo, 50 Opson, S. S., and Clarkson, S. S. Chemical Works 8vo, 90 Ceck, J. Light, Radiation and Illumination. Trans. by Paul Hogner, 8vo, Eddy, L. C. Laboratory Manual of Alternating Currents 12mo, 150 Edgeumbe, K. Industrial Electrical Measuring Instruments 8vo, 150 Edgeumbe, K. Industrial Electrical Measuring Instruments 8vo, 150 Edglem, P. Inventions and Patents 8vo, 150 Edglem, T. Switches and Switchgear. Trans. by Ph. Laubach. 8vo, 90 Celder, C. W., and Storer, F. H. Compendious Manual of Qualitative Chemical Analysis 9vo, 100 Elict, C. W., and Storer, F. H. Compendious Manual of Qualitative Chemical Analysis 9vo, 100 Elict, C. W., and Storer, F. H. Compendious Manual of Qualitative Chemical Analysis 9vo, 100 Elict, C. W., and Storer, F. H. Compendious Manual of Qualitative Chemical Analysis 9vo, 100 Elict, C. W., and Storer, F. H. Compendious Manual of Qualitative Chemical Analysis 9vo, 100 Elict, C. W., and Storer, F. H. Compendious Manual of Qualitative Chemical Analysis 9vo, 100 Elict, C. W., and Storer, F. H. Compendious Manual of Qualitative 9vo, 100 Elict, C. W., and Storer, F. H. Compendious Manual of Qualitative 9vo, 100 Elict, C. W., and Storer, F. H. Compendious Manual of Qualitative 9vo, 100 Elict, C.	Dommett, W. E. Motor Car Mechanism12mo, Dorr, B. F. The Surveyor's Guide and Pocket Table-book.	*2 00
Draper, C. H. Elementary Text-book of Light, Heat and Sound 12mo, Heat and the Principles of Thermo-dynamics 12mo, 12mo, 150 Draper, E. G. Navigating the Ship. 12mo, 12mo, 150 Bron, R. W. Mining Formulas. 12mo, 100 Bubbel, H. High Power Gas Engines. 8vo, 8vo, 500 Dumesny, P., and Noyer, J. Wood Products, Distillates, and Extracts. 8vo, Duncan, W. G., and Penman, D. The Electrical Equipment of Collieries. 8vo, 500 Dunstan, A. E., and Thole, F. B. T. Textbook of Practical Chemistry. 12mo, 510 Durham, H. W. Saws. 8vo, 250 Duthie, A. L. Decorative Glass Processes. (Westminster Series.) 8vo, 250 Duthie, A. L. Dyke's Automobile and Gasoline Engine Encyclopedia. 8vo, 270 Dyke, A. L. Dyke's Automobile and Gasoline Engine Encyclopedia. 8vo, 270 Dyson, S. S. Practical Testing of Raw Materials 8vo, 500 Dyson, S. S., and Clarkson, S. S. Chemical Works. 8vo, 900 Deck, J. Light, Radiation and Illumination. Trans. by Paul Hogner, 8vo, 250 Eddy, L. C. Laboratory Manual of Alternating Currents 12mo, 150 Edgcumbe, K. Industrial Electrical Measuring Instruments 8vo, 150 Edgcumbe, K. Industrial Electrical Measuring Instrumen	· · · · · · · · · · · · · · · · · · ·	2 00
— Heat and the Principles of Thermo-dynamics		
Draper, E. G. Navigating the Ship		_
Bron, R. W. Mining Formulas		1 50
Dumesny, P., and Noyer, J.: Wood Products, Distillates, and Extracts. Syo, *5 00 Duncan, W. G., and Penman, D. The Electrical Equipment of Collieries. Byo, *5 00 Dunkley, W. G. Design of Machine Elements. Two volumes. Syo, each, Dunstan, A. E., and Thole, F. B. T. Textbook of Practical Chemistry. Lizmo, *1 40 Durham, H. W. Saws		
Duncan, W. G., and Penman, D. The Electrical Equipment of Collieries. 870, *5 00 Dunkley, W. G. Design of Machine Elements. Two volumes. 870, each, Dunstan, A. E., and Thole, F. B. T. Textbook of Practical Chemistry. 12m0, *1 40 Durham, H. W. Saws		*5 00
Duncan, W. G., and Penman, D. The Electrical Equipment of Collieries.		
Svo, 2	•	*5 00
Dunkley, W. G. Design of Machine Elements. Two volumes. \$vo,each, Durstan, A. E., and Thole, F. B. T. Textbook of Practical Chemistry. 12mo, *1 40 Durham, H. W. Saws		
Dunstan, A. E., and Thole, F. B. T. Textbook of Practical Chemistry. 12m0, 2 50	-	
Durham, H. W. Saws 8v0 2 50		2 00
Durtham, H. W. Saws 8vo, 2 50 Duthie, A. L. Decorative Glass Processes. (Westminster Series.) 8vo, 2 00 Dwight, H. B. Transmission Line Formulas 8vo, 2 00 Dyke, A. L. Dyke's Automobile and Gasoline Engine Encyclopedia 8vo, 4 00 Dyson, S. S. Practical Testing of Raw Materials 8vo, *5 00 Dyson, S. S., and Clarkson, S. S. Chemical Works 8vo, *9 00 Eccles, W. H. Wireless Telegraphy and Telephony 12m0, *8 80 Eck, J. Light, Radiation and Illumination Trans. by Paul Hogner, *2 50 Eddy, H. T. Maximum Stresses under Concentrated Loads 8vo, *2 50 Eddy, L. C. Laboratory Manual of Alternating Currents 12m0, *5 50 Eddgumbe, K. Industrial Electrical Measuring Instruments 8vo, 5 00 Eddgumbe, K. Industrial Electrical Measuring Instruments 8vo, 5 00 Edler, R. Switches and Switchgear. Trans. by Ph. Laubach 8vo, 4 00 Eissler, M. The Metallurgy of Gold 8vo, 6 25 — The Metallurgy of Silver 8vo, 8vo, 6 25 — A Handbook on Modern Explosives 8vo, 8vo, <t< td=""><td></td><td>_</td></t<>		_
Duthie, A. L. Decorative Glass Processes. (Westminster Series.) 8vo, 42 00 Dwight, H. B. Transmission Line Formulas. 8vo, 400 Dyke, A. L. Dyke's Automobile and Gasoline Engine Encyclopedia 8vo, 400 Dyson, S. S. Practical Testing of Raw Materials. 8vo, 45 00 Dyson, S. S., and Clarkson, S. S. Chemical Works. 8vo, 49 00 Eccles, W. H. Wireless Telegraphy and Telephony. 12mo, 8vo, 25 00 Eddy, H. T. Maximum Stresses under Concentrated Loads. 8vo, 15 00 Eddy, L. C. Laboratory Manual of Alternating Currents. 12mo, 05 05 Eddeman, P. Inventions and Patents. 12mo, 05 05 Eddeman, P. Inventions and Patents. 12mo, 05 06 Edgcumbe, K. Industrial Electrical Measuring Instruments. 8vo, 40 00 Edissler, M. The Metallurgy of Gold. 8vo, 90 00 — The Metallurgy of Silver. 8vo, 400 — The Metallurgy of Argentiferous Lead. 8vo, 500 Ekin, T. C. Water Pipe and Sewage Discharge Diagrams folio, 300 Electric Light Carbons, Manufacture of 8vo, 100 Eliot, C. W., and Storer, F. H. Compendious Manual of Qualitative Chemical Analysis. 12mo, 100 Ellis, G. Modern Technical Drawing. 8vo, 420 Ennis, Wm. D. Linseed Oil and Other Seed Oils 8vo, 420 Ennis, Wm. D. Linseed Oil and Other Seed Oils 8vo, 450 — Flying Machines To-day 12mo, 8vo, 450 — Flying Machines To-day 12mo, 8vo, 450 — Vapors for Heat Engines 12mo, 8vo, 450 — Flying Machines To-day 12mo, 8vo, 450 Ermen, W. F. A. Materials Used in Sizing 8vo, 4200 Ermin, M. The Universe and the Atom 12mo, 8vo, 400 Evans, C. A. Macadamized Roads (In Press.) Ewing, A. J. Magnetic Induction in Iron 8vo, 4vo Faircild, J. F. Graphical Compass Conversion Chart and Tables. 6vo, 750 Fairie, J. Notes on Lead Ores. 12mo, 500		-
Dwight, H. B. Transmission Line Formulas	Durham, H. W. Saws	
Dyke, A. L. Dyke's Automobile and Gasoline Engine Encyclopedia 8vo, Dyson, S. S. Practical Testing of Raw Materials 8vo, *5 00 Dyson, S. S., and Clarkson, S. S. Chemical Works 8vo, *9 00 4 00 Eccles, S. S., and Clarkson, S. S. Chemical Works 8vo, *9 00 8vo, *2 50 Eccles, W. H. Wireless Telegraphy and Telephony 12mo, *8 80 8vo, *2 50 Eddy, I. Light, Radiation and Illumination. Trans. by Paul Hogner, 8vo, Eddly, L. C. Laboratory Manual of Alternating Currents 12mo, 0 50 8vo, *2 50 Eddmy, L. C. Laboratory Manual of Alternating Currents 12mo, 5 00 1 50 Edelman, P. Inventions and Patents 12mo, 5 00 1 50 Edgcumbe, K. Industrial Electrical Measuring Instruments 12mo, 7 50 8vo, 5 00 Edisler, R. Switches and Switchgear. Trans. by Ph. Laubach 8vo, 8vo, 9 00 8vo, 9 00 — The Metallurgy of Solver 8vo, 9 00 8vo, 9 00 — The Metallurgy of Argentiferous Lead 8vo, 6 25 8vo, 6 25 — A Handbook on Modern Explosives 8vo, 6 25 8vo, 5 00 Ekin, T. C. Water Pipe and Sewage Discharge Diagrams folio, 8vo, 1 00 8vo, 1 00 Eliot, C. W., and Storer, F. H. Compendious Manual of Qualitative Chemical Analysis 12mo, 7 50 1 25 Ellis, C. Hydrogenation of Oils 8vo, 1 2mo, 7 50 8vo, 9 — Ultraviolet Light, Its Applications in Chemical Arts 12mo, 7 50 8vo, 9		
Dyson, S. S. Practical Testing of Raw Materials		
Dyson, S. S., and Clarkson, S. S. Chemical Works		•
Eccles, W. H. Wireless Telegraphy and Telephony		
Eck, J. Light, Radiation and Illumination. Trans. by Paul Hogner, 8v0, *2 50 Eddy, H. T. Maximum Stresses under Concentrated Loads. 8v0, 1 50 Eddy, L. C. Laboratory Manual of Alternating Currents. 12m0, 50 Edelman, P. Inventions and Patents. 12m0, *1 50 Edgcumbe, K. Industrial Electrical Measuring Instruments. 8v0, 5 00 Edler, R. Switches and Switchgear. Trans. by Ph. Laubach. 8v0, *4 00 8v0, 4 00 Eissler, M. The Metallurgy of Gold. 8v0, 9 00 8v0, 4 00 — The Metallurgy of Argentiferous Lead. 8v0, 6 25 8v0, 5 00 — A Handbook on Modern Explosives. 8v0, 5 00 8v0, 5 00 Ekin, T. C. Water Pipe and Sewage Discharge Diagrams. folio, 8 00, 1 00 8v0, 5 00 Elliot, C. W., and Storer, F. H. Compendious Manual of Qualitative Chemical Analysis. 12m0, 8v0, 7 50 8v0, 8v0, 7 50 Ellis, C. Hydrogenation of Oils. 8v0, 7 50 8v0, 8v0, 8v0, 8v0, 8v0, 8v0, 8v0, 8v0,	Dyson, S. S., and Clarkson, S. S. Chemical Works	*g 00
Eck, J. Light, Radiation and Illumination. Trans. by Paul Hogner, 8v0, *2 50 Eddy, H. T. Maximum Stresses under Concentrated Loads. 8v0, 1 50 Eddy, L. C. Laboratory Manual of Alternating Currents. 12m0, 50 Edelman, P. Inventions and Patents. 12m0, *1 50 Edgcumbe, K. Industrial Electrical Measuring Instruments. 8v0, 5 00 Edler, R. Switches and Switchgear. Trans. by Ph. Laubach. 8v0, *4 00 8v0, 4 00 Eissler, M. The Metallurgy of Gold. 8v0, 9 00 8v0, 4 00 — The Metallurgy of Argentiferous Lead. 8v0, 6 25 8v0, 5 00 — A Handbook on Modern Explosives. 8v0, 5 00 8v0, 5 00 Ekin, T. C. Water Pipe and Sewage Discharge Diagrams. folio, 8 00, 1 00 8v0, 5 00 Elliot, C. W., and Storer, F. H. Compendious Manual of Qualitative Chemical Analysis. 12m0, 8v0, 7 50 8v0, 8v0, 7 50 Ellis, C. Hydrogenation of Oils. 8v0, 7 50 8v0, 8v0, 8v0, 8v0, 8v0, 8v0, 8v0, 8v0,	Factor W H Windows Colomonby and Colombons	*0 00
Eddy, H. T. Maximum Stresses under Concentrated Loads. 8vo, 1 50 Eddy, L. C. Laboratory Manual of Alternating Currents. 12mo, 0 50 Edelman, P. Inventions and Patents. 12mo, 1 50 Edgcumbe, K. Industrial Electrical Measuring Instruments. 8vo, 5 00 Edler, R. Switches and Switchgear. Trans. by Ph. Laubach. 8vo, 4 00 Eissler, M. The Metallurgy of Gold. 8vo, 9 00 — The Metallurgy of Silver. 8vo, 6 25 — A Handbook on Modern Explosives. 8vo, 5 00 Ekin, T. C. Water Pipe and Sewage Discharge Diagrams folio, 3 00 Electric Light Carbons, Manufacture of 8vo, 1 00 Eliot, C. W., and Storer, F. H. Compendious Manual of Qualitative Chemical Analysis. 12mo, 1 25 — Ultraviolet Light, Its Applications in Chemical Arts. 12mo, 1 00 Ellis, G. Modern Technical Drawing. 8vo, 4 00 — Applied Thermodynamics 8vo, 4 00 — Applied Thermodynamics 8vo, 4 50 — Flying Machines To-day 12mo, 1 2mo, 1 50 — Vapors for Heat Engines 12mo, 1 2mo, 1 50 Ermen, W. F. A. Materials Used in Sizing 8vo, 2 00 Ermen, W. F. A. Materials Used in Sizing 8vo, 2 00 Evans, C. A. Macadamized Roads (In Press.) Ewing, A. J. Magnetic Induction in Iron 8vo, 4 00 Fairchild, J. F. Graphical Compass Conversion Chart and Tables. 55 Faircie, J. Notes on Lead Ores. 12mo, 55		8 80
Eddy, H. T. Maximum Stresses under Concentrated Loads 8vo, 1 50 Eddy, L. C. Laboratory Manual of Alternating Currents 12m0, 50 Edelman, P. Inventions and Patents 12m0, 12m0, 15 50 Edgcumbe, K. Industrial Electrical Measuring Instruments 8vo, 5 60 Edler, R. Switches and Switchgear. Trans. by Ph. Laubach 8vo, 4 60 Eissler, M. The Metallurgy of Gold 8vo, 9 60 — The Metallurgy of Silver 8vo, 4 60 — The Metallurgy of Argentiferous Lead 8vo, 6 25 — A Handbook on Modern Explosives 8vo, 5 60 Ekin, T. C. Water Pipe and Sewage Discharge Diagrams folio, 8vo, 1 60 Electric Light Carbons, Manufacture of 8vo, 1 60 Electric Light Carbons, Manufacture of 8vo, 7 50 — Ultraviolet Light, Its Applications in Chemical Arts 12m0, 1 60 Ennis, Wm. D. Linseed Oils 8vo, 1 60 Ennis, Wm. D. Linseed Oil and Other Seed Oils 8vo, 4 60 — Applied Thermodynamics 8vo, 4 50 — Flying Machines To-day 12m0, 1 2m0, 1 50 — Vapors for Heat Engines 12m0, 1 2m0, 1 60 Evans, C. A. Macadamized Roads 1 7 6 Fairchild, J. F. Graphical Compass Conversion Chart and Tables 5 Fairie, J. Notes on Lead Ores 12m0, 1 2m0, 5 6		*2 50
Eddy, L. C. Laboratory Manual of Alternating Currents		
Edgcumbe, K. Industrial Electrical Measuring Instruments	Eddy, L. C. Laboratory Manual of Alternating Currents12mo,	
Edler, R. Switches and Switchgear. Trans. by Ph. Laubach. 8vo, \$4 00 Eissler, M. The Metallurgy of Gold. 8vo, 9 00 The Metallurgy of Silver. 8vo, 4 00 The Metallurgy of Argentiferous Lead. 8vo, 6 25 A Handbook on Modern Explosives. 8vo, 5 00 Ekin, T. C. Water Pipe and Sewage Discharge Diagrams folio, *3 00 Electric Light Carbons, Manufacture of 8vo, 1 00 Eliot, C. W., and Storer, F. H. Compendious Manual of Qualitative Chemical Analysis. 12mo, *1 25 Ellis, C. Hydrogenation of Oils 8vo, 7 50 Ultraviolet Light, Its Applications in Chemical Arts 12mo, (In Press.) Ellis, G. Modern Technical Drawing 8vo, *2 00 Ennis, Wm. D. Linseed Oil and Other Seed Oils 8vo, 4 00 Applied Thermodynamics 8vo, 4 50 Flying Machines To-day 12mo, *1 50 Ermen, W. F. A. Materials Used in Sizing 8vo, 2 00 Erwin, M. The Universe and the Atom 12mo, *2 00 Evans, C. A. Macadamized Roads (In Press.) Ewing, A. J. Magnetic Induction in Iron 8vo, 4 00 Fairchild, J. F. Graphical Compass Conversion Chart and Tables 050 Fairce, J. Notes on Lead Ores 12mo, *0 50	Edelman, P. Inventions and Patents	-
— The Metallurgy of Silver 8vo, 6 25 — The Metallurgy of Argentiferous Lead 8vo, 6 25 — A Handbook on Modern Explosives 8vo, 5 00 Ekin, T. C. Water Pipe and Sewage Discharge Diagrams folio, *3 00 Electric Light Carbons, Manufacture of 8vo, 1 00 Eliot, C. W., and Storer, F. H. Compendious Manual of Qualitative 1 25 Chemical Analysis 1 2mo, *1 25 Ellis, C. Hydrogenation of Oils 8vo, 7 50 — Ultraviolet Light, Its Applications in Chemical Arts 1 2mo, 7 50 Ellis, G. Modern Technical Drawing 8vo, *2 00 Ennis, Wm. D. Linseed Oil and Other Seed Oils 8vo, *4 00 — Applied Thermodynamics 8vo, *4 50 — Flying Machines To-day 12mo, *1 50 — Vapors for Heat Engines 12mo, *1 00 Ermen, W. F. A. Materials Used in Sizing 8vo, *2 00 Erwin, M. The Universe and the Atom 12mo, *2 00 Evans, C. A. Macadamized Roads (In Press.) Ewing, A. J. Magnetic Induction in Iron 8vo, *4 00 Fairie, J. Notes on Lead Ores 12mo, *0 50	Edgcumbe, K. Industrial Electrical Measuring Instruments8vo,	
— The Metallurgy of Silver 8vo, 6 25 — The Metallurgy of Argentiferous Lead 8vo, 6 25 — A Handbook on Modern Explosives 8vo, 5 00 Ekin, T. C. Water Pipe and Sewage Discharge Diagrams folio, *3 00 Electric Light Carbons, Manufacture of 8vo, 1 00 Eliot, C. W., and Storer, F. H. Compendious Manual of Qualitative 1 25 Chemical Analysis 1 2mo, *1 25 Ellis, C. Hydrogenation of Oils 8vo, 7 50 — Ultraviolet Light, Its Applications in Chemical Arts 1 2mo, 7 50 Ellis, G. Modern Technical Drawing 8vo, *2 00 Ennis, Wm. D. Linseed Oil and Other Seed Oils 8vo, *4 00 — Applied Thermodynamics 8vo, *4 50 — Flying Machines To-day 12mo, *1 50 — Vapors for Heat Engines 12mo, *1 00 Ermen, W. F. A. Materials Used in Sizing 8vo, *2 00 Erwin, M. The Universe and the Atom 12mo, *2 00 Evans, C. A. Macadamized Roads (In Press.) Ewing, A. J. Magnetic Induction in Iron 8vo, *4 00 Fairie, J. Notes on Lead Ores 12mo, *0 50	Edler, R. Switches and Switchgear. Trans. by Ph. Laubach8vo,	•
— The Metallurgy of Argentiferous Lead	The Metalluram of Cilman	-
— A Handbook on Modern Explosives 8vo, 5 00 Ekin, T. C. Water Pipe and Sewage Discharge Diagrams folio, *3 00 Electric Light Carbons, Manufacture of 8vo, 1 00 Eliot, C. W., and Storer, F. H. Compendious Manual of Qualitative 1 2mo, *1 25 Chemical Analysis 12mo, *1 25 Ellis, C. Hydrogenation of Oile 8vo, 7 50 — Ultraviolet Light, Its Applications in Chemical Arts 12mo, *2 00 Ennis, G. Modern Technical Drawing 8vo, *2 00 Ennis, Wm. D. Linseed Oil and Other Seed Oils 8vo, *4 00 — Applied Thermodynamics 8vo, *4 50 — Flying Machines To-day 12mo, *1 50 — Vapors for Heat Engines 12mo, *1 00 Ermen, W. F. A. Materials Used in Sizing 8vo, *2 00 Erwin, M. The Universe and the Atom 12mo, *2 00 Evans, C. A. Macadamized Roads (In Press.) *2 00 Ewing, A. J. Magnetic Induction in Iron 8vo, *4 00 Fairchild, J. F. Graphical Compass Conversion Chart and Tables 0 50 Faircie, J. Notes on Lead Ores 12mo, *0 50 <	The Metallurgy of Argentiferous Toad	•
Ekin, T. C. Water Pipe and Sewage Discharge Diagrams folio, *3 00 Electric Light Carbons, Manufacture of 8vo, 1 00 Eliot, C. W., and Storer, F. H. Compendious Manual of Qualitative 1 2mo, *1 25 Chemical Analysis 12mo, *1 25 Ellis, C. Hydrogenation of Oils 8vo, 7 50 — Ultraviolet Light, Its Applications in Chemical Arts 12mo, *2 00 Ennis, G. Modern Technical Drawing 8vo, *2 00 Ennis, Wm. D. Linseed Oil and Other Seed Oils 8vo, *4 50 — Applied Thermodynamics 8vo, *4 50 — Flying Machines To-day 12mo, *1 50 — Vapors for Heat Engines 12mo, *1 00 Ermen, W. F. A. Materials Used in Sizing 8vo, *2 00 Erwin, M. The Universe and the Atom 12mo, *2 00 Evans, C. A. Macadamized Roads (In Press.) *2 00 Ewing, A. J. Magnetic Induction in Iron 8vo, *4 00 Fairchild, J. F. Graphical Compass Conversion Chart and Tables 0 50 Faircie, J. Notes on Lead Ores 12mo, *0 50		_
Electric Light Carbons, Manufacture of	·	•
Eliot, C. W., and Storer, F. H. Compendious Manual of Qualitative Chemical Analysis		
Chemical Analysis		- 00
Ellis, C. Hydrogenation of Oils 8vo, 7 50 — Ultraviolet Light, Its Applications in Chemical Arts 12mo, (In Press) Ellis, G. Modern Technical Drawing 8vo, *2 00 Ennis, Wm. D. Linseed Oil and Other Seed Oils 8vo, *4 00 — Applied Thermodynamics 8vo, *4 50 — Flying Machines To-day 12mo, *1 50 — Vapors for Heat Engines 12mo, *1 00 Ermen, W. F. A. Materials Used in Sizing 8vo, *2 00 Erwin, M. The Universe and the Atom 12mo, *2 00 Evans, C. A. Macadamized Roads (In Press.) *2 00 Ewing, A. J. Magnetic Induction in Iron 8vo, *4 00 Fairchild, J. F. Graphical Compass Conversion Chart and Tables 0 50 Fairie, J. Notes on Lead Ores 12mo, *0 50		** 25
— Ultraviolet Light, Its Applications in Chemical Arts	Ellis C. Hydrogenation of Oils 8vo.	_
Ellis, G. Modern Technical Drawing	Ultraviolet Light. Its Applications in Chemical Arts12mo.	, ,,
Ellis, G. Modern Technical Drawing	(In Press)	
	Ellis, G. Modern Technical Drawing8vo,	*2 00
	Ennis, Wm. D. Linseed Oil and Other Seed Oils8vo,	*4 00
	—— Applied Thermodynamics8vo,	*4 50
Ermen, W. F. A. Materials Used in Sizing 8vo, 2 00 Erwin, M. The Universe and the Atom 12mo, 2 00 Evans, C. A. Macadamized Roads (In Press.) 2 Ewing, A. J. Magnetic Induction in Iron 8vo, 4 00 Fairchild, J. F. Graphical Compass Conversion Chart and Tables 0 50 Fairie, J. Notes on Lead Ores 12mo, 5 0		* 1 50
Ermen, W. F. A. Materials Used in Sizing 8vo, 2 00 Erwin, M. The Universe and the Atom 12mo, 2 00 Evans, C. A. Macadamized Roads (In Press.) 2 Ewing, A. J. Magnetic Induction in Iron 8vo, 4 00 Fairchild, J. F. Graphical Compass Conversion Chart and Tables 0 50 Fairie, J. Notes on Lead Ores 12mo, 5 0	Vapors for Heat Engines	*I 00
Evans, C. A. Macadamized Roads		*2 00
Ewing, A. J. Magnetic Induction in Iron		*2 00
Fairchild, J. F. Graphical Compass Conversion Chart and Tables 0 50 Fairie, J. Notes on Lead Ores	Evans, C. A. Macadamized Roads (In Press.)	•
Fairie, J. Notes on Lead Ores12m0, *0 50	Ewing, A. J. Magnetic Induction in Iron8vo,	*4 00
Fairie, J. Notes on Lead Ores12m0, *0 50	Fairchild, I. F. Graphical Compass Conversion Chart and Tables	0 50
	Fairie, J. Notes on Lead Ores	
	Notes on Pottery Clays12mo,	

Fairley, W., and Andre, Geo. J. Ventilation of Coal Mines. (Science		
Series No. 58.)	a	75
Fairweather, W. C. Foreign and Colonial Patent Laws8vo,	_	00
Fanning, J. T. Hydraulic and Water-supply Engineering 8vo,		00
Fay, I. W. The Coal-tar Dyes8vo,	_	00
Fernbach, R. L. Glue and Gelatine8vo,	*3	00
Findlay, A. The Treasures of Coal Tar12mo,	_	00
Firth, J. B. Practical Physical Chemistry12mo,		25
Fischer, E. The Preparation of Organic Compounds. Trans. by R. V.	•	-3
Stanford12m0,	*1	50
Fish, J. C. L. Lettering of Working Drawings Oblong 8vo,	I	00
Fisher, H. K. C., and Darby, W. C. Submarine Cable Testing8vo,	*3	50
Fleischmann, W. The Book of the Dairy. Trans. by C. M. Aikman.		
870,	4	50
Fleming, J. A. The Alternate-current Transformer. Two Volumes. 8vo.		
Vol. I. The Induction of Electric Currents		50
Vol, II. The Utilization of Induced Currents		50
Propagation of Electric Currents8vo,	*3	00
— A Handbook for the Electrical Laboratory and Testing Room. Two		
Volumes		50
Fleury, P. Preparation and Uses of White Zinc Paints8vo,		75
Flynn, P. J. Flow of Water. (Science Series No. 84.)12m0,		75
— Hydraulic Tables. (Science Series No. 66.)	0	75
Foster, H. A. Electrical Engineers' Pocket-book. (Seventh Edition.)		
12mo, leather,	_	00
Engineering Valuation of Public Utilities and Factories 8vo,		00
— Handbook of Electrical Cost Data 8vo (In Press.)	3	•
Fowle, F. F. Overhead Transmission Line Crossings12mo,	*1	50
— The Solution of Alternating Current Problems 8vo (In Press.)	-	50
Fox, W. G. Transition Curves. (Science Series No. 110.)16mo,	0	75
Fox, W., and Thomas, C. W. Practical Course in Mechanical Draw-		
ing	I	25
Fove. J. C. Chemical Problems. (Science Series No. 60.)16mo.	0	75
- Handbook of Mineralogy. (Science Series No. 86.)16mo,		75
Francis, J. B. Lowell Hydraulic Experiments4to,		00
Franzen, H. Exercises in Gas Analysis	-1	00
Manuals Series	*-	
Manuals Series.)		00
Frith, J. Alternating Current Design		50
Fritsch, J. Manufacture of Chemical Manures. Trans. by D. Grant.	_	-
8vo,	*5	00
Frye, A. I. Civil Engineers' Pocket-book 12mo, leather,		00
Fuller, G. W. Investigations into the Purification of the Ohio River.	-	
4to,	*10	00
Furnell, J. Paints, Colors, Oils, and Varnishes8vo.		
Gairdner, J. W. I. Earthwork		
Gant, L. W. Elements of Electric Traction 8vo	*2	۲A

Garcia, A. J. R. V. Spanish-English Railway Terms8vo,	*4 50
Gardner, H. A. Paint Researches, and Their Practical Applications, 8vo.	*5 00
Garforth, W. E. Rules for Recovering Coal Mines after Explosions and	•
Fires 12mo, leather.	1 50
Fires	*6 00
Gaudard, J. Foundations. (Science Series No. 34.)16mo,	0 75
Gear, H. B., and Williams, P. F. Electric Central Station Distribution	
Systems8vo,	*3 50
Geerligs, H. C. P. Cane Sugar and Its Manufacture8vo,	*6 00
Chemical Control in Cane Sugar Factories4to,	5 00
Geikie, J. Structural and Field Geology 8vo,	*4 00
Mountains. Their Growth, Origin and Decay8vo,	*4 00
— The Antiquity of Man in Europe8vo,	*3 00
Georgi, F., and Schubert, A. Sheet Metal Working. Trans. by C.	-
Salter8vo,	3 50
Gerhard, W. P. Sanitation, Watersupply and Sewage Disposal of Country	
Houses	*2 00
Gas Lighting. (Science Series No. 111.)	0 75
—- Household Wastes. (Science Series No. 97.)16mo,	o 75
House Drainage. (Science Series No. 63.)	0 75
— Sanitary Drainage of Buildings. (Science Series No. 93.)16mo,	0 75
Gerhardi, C. W. H. Electricity Meters8vo,	*7 20
Geschwind, L. Manufacture of Alum and Sulphates. Trans. by C.	•
Salter	*5 00
Gibbings, A. H. Oil Fuel Equipment for Locomotives8vo,	*2 50
Gibbs, W. E. Lighting by Acetylene	*1 50
Gibson, A. H. Hydraulics and Its Application	*5 00
— Water Hammer in Hydraulic Pipe Lines	*2 00
· · · · · · · · · · · · · · · · · · ·	*3 50
Gilbreth, F. B. Motion Study	*2 00
·	*1 00
Gillmore, Gen. Q. A. Roads, Streets, and Pavements12mo,	1 25
Godfrey, E. Tables for Structural Engineers16mo, leather,	*2 50
Golding, H. A. The Theta-Phi Diagram	*2 00
Goldschmidt, R. Alternating Current Commutator Motor8vo,	*3 00
Goodchild, W Precious Stones. (Westminster Series.)8vo,	*2 00
Goodell, J. M. The Location, Construction and Maintenance of	
Roads8vo,	I 50
Goodeve, T. M. Textbook on the Steam-engine	2 00
Gore, G. Electrolytic Separation of Metals8vo,	*3 50
Gould, E. S. Arithmetic of the Steam-engine	I 00
Calculus. (Science Series No. 112.)16mo,	0 75
High Masonry Dams. (Science Series No. 22.)16mo,	0 75
Gould, E. S. Practical Hydrostatics and Hydrostatic Formulas. (Science	ce
Series No. 117.)16mo.	0 75

Gratacap, L. P. A Popular Guide to Minerals	*2 00
Gray, J. Electrical Influence Machines	2 00
— Marine Boiler Design	*I 25
Greenhill, G. Dynamics of Mechanical Flight	*2 50 *3 00
Gregorius, R. Mineral Waxes. Trans. by C. Salter12mo, Grierson, R. Some Modern Methods of Ventilation8vo,	*3 00
	-
Griffiths, A. B. A Treatise on Manures	3 00 *3 50
Dental Metallurgy	*5 00
Grossman, J. Ammonia and Its Compounds	*I 25
Groth, L. A. Welding and Cutting Metals by Gases or Electricity.	3
(Westminster Series)8vo,	*2 00
Grover, F. Modern Gas and Oil Engines8vo,	*3 00
Gruner, A. Power-loom Weaving8vo,	*3 50
Grunsky, C. E. Topographic Stadia Surveying	2 00
	*15 00
Gunther, C. O. Integration	*1 25
Gurden, R. L. Traverse Tablesfolio, half morocco,	*7 50
Guy, A. E. Experiments on the Flexure of Beams8vo,	*I 25
•	
Haenig, A. Emery and Emery Industry8vo.	*2 50
Hainbach, R. Pottery Decoration. Trans. by C. Salter12m0,	*3 50
Hale, W. J. Calculations of General Chemistry12mo,	*1 25
Hall, C. H. Chemistry of Paints and Paint Vehicles12mo,	*2 00
Hall, G. L. Elementary Theory of Alternate Current Working 8vo.	2 00
Hall, R. H. Governors and Governing Mechanism12mo,	*2 50
Hall, W. S. Elements of the Differential and Integral Calculus 8vo.	*2 25
Descriptive Geometry	*3 50
Haller, G. F., and Cunningham, E. T. The Tesla Coil	*I 25
Halsey, F. A. Slide Valve Gears	I 50
—— The Use of the Slide Rules, (Science Series No. 114.)16mo.	0 75
— Worm and Spiral Gearing. (Science Series No. 116.)16mo,	0 75
Hancock, H. Textbook of Mechanics and Hydrostatics8vo,	1 50
Hancock, W. C. Refractory Materials. (Metallurgy Series.) (In Press.)	
Hardy, E. Elementary Principles of Graphic Statics 12mo,	*1 50
Haring, H. Engineering Law.	_
Vol. I. Law of Contract	*4 00
Harper, J. H. Hydraulic Tables on the Flow of Water16mo,	*2 00
Harris, S. M. Practical Topographical Surveying(In Press.)	
Harrison, W. B. The Mechanics' Tool-book12mo,	1 50
Hart, J. W. External Plumbing Work8vo, ——Hints to Plumbers on Joint Wiping8vo,	*3 50
Principles of Hot Water Supply	*3 50 *3 50
Sanitary Plumbing and Draininge8vo,	*3 50
Haskins, C. H. The Galvanometer and Its Uses 16mo,	1 50
Hatt, J. A. H. The Coloristsquare 12mo,	* 1 50
Hausbrand, E. Drying by Means of Air and Steam. Trans. by A. C.	
Wright12m0,	*2 50
— Evaporating, Condensing and Cooling Apparatus. Trans. by A. C.	•-
Wright8vo,	*6 00

Hausmann, E. Telegraph Engineering8vo,	*3 00	
Hausner, A. Manufacture of Preserved Foods and Sweetmeats. Trans. by A. Morris and H. Robson	*3 50	
Hawkesworth, J. Graphical Handbook for Reinforced Concrete Design.	3 30	
· · · · · · · · · · · · · · · · · · ·	^k 2 50	
• •	*2 50	
	*2 00	
· · · · · · · · · · · · · · · · · · ·	*2 00	
Heath, F. H. Chemistry of Photography8vo. (In Press.)		
Heather, H. J. S. Electrical Engineering	*3 50	
Heaviside, O. Electromagnetic Theory. Vols. I and II8vo, each,	*6 00	
voi: 222::::::::::::;	*3 50	
Steam-Engine and Other Steam Motors. Two Volumes.	• •	
	*3 50	,
· · · · · · · · · · · · · · · · · · ·	*5 00	
	*I 00	
	*1 00)
Heermann, P. Dyers' Materials. Trans. by .A C. Wright12mo,	*2 50)
Hellot, Macquer and D'Apligny. Art of Dyeing Wool, Silk and Cotton. 8vo,	*2 00)
Henrici, O. Skeleton Structures8vo,	1 50)
Hering, C., and Getman, F. H. Standard Tables of Electro-Chemical		
Equivalents12m0,	*2 OQ	-
Hering, D. W. Essentials of Physics for College Students8vo,	*I 75	
Hering-Shaw, A. Domestic Sanitation and Plumbing. Two Vols. 8vo,	*5 00	
Hering-Shaw, A. Elementary Science	*2 00	
Herington, C. F. Powdered Coal as Fuel8vo,	3 00).
Herrmann, G. The Graphical Statics of Mechanism. Trans. by A. P. Smith	2 00	
Herzfeld, J. Testing of Yarns and Textile Fabrics8vo.		
(New Edition in Prepara Hildebrandt, A. Airships, Past and Present8vo,	tion.)	•
Hildenbrand, B. W. Cable-Making. (Science Series No. 32)16mo,	0 75	
Hilditch, T. P. A Concise History of Chemistry	*I 50	
Hill, J. W. The Purification of Public Water Supplies. New Edition.	•	
(In Press.)		
Interpretation of Water Analysis		
Hill, M. J. M. The Theory of Proportion	*2 50	
Hillhouse, P. A. Ship Stability and Trim	4 50	
Hiroi, I. Plate Girder Construction. (Science Series No. 95.) 16mc,	0 75	
— Statically-Indeterminate Stresses	*2 00	•
Hirshfeld, C. F. Engineering Thermodynamics. (Science Series No. 45.)	0 75	
Hoar, A. The Submarine Torpedo Boat12mo,	*2 00	,
Hobart, H. M. Heavy Electrical Engineering	*4 ₀ 50 *2 ₀₀	
—— Design of Static Transformers12mo,		
	*2 00 *2 50	
Electric Propulsion of Ships	*2 50	
	•	

Hobart, J. F. Hard Soldering, Soft Soldering and Brazing12mo,	, * 1 0
Hobbs, W. R. P. The Arithmetic of Electrical Measurements12mo,	
Hoff, J. N. Paint and Varnish Facts and Formulas12mo,	, *15¢
Hele, W. The Distribution of Gas8vo,	, * 8 5
Holley, A. L. Railway Practicefolio,	6 00
Hopkins, N. M. Model Engines and Small Boats12mo,	1 2
Hopkinson, J., Shoolbred, J. N., and Day, R. E. Dynamic Electricity.	
(Science Series No. 71.)	0 7
Horner, J. Practical Ironfounding8vo,	*2 00
Gear Cutting, in Theory and Practice8vo,	*3 00
Horniman, Roy. How to Make the Railways Pay For the War8vo,	3 00
Houghton, C. E. The Elements of Mechanics of Materials12mo,	*2 00
Houstoun, R. A. Studies in Light Production	2 00
Hovenden, F. Practical Mathematics for Young Engineers12mo,	*1 50
Howe, G. Mathematics for the Practical Man	*I 25
Howorth, J. Repairing and Riveting Glass, China and Earthenware.	
8vo, paper,	*o 50
Hoyt, W. E. Chemistry by Experimentation8vo,	*0 70
Hubbard, E. The Utilization of Wood-waste8vo,	*2 50
Hübner, J. Bleaching and Dyeing of Vegetable and Fibrous Materials.	
(Outlines of Industrial Chemistry.)8vo,	*5 oo
Hudson, O. F. Iron and Steel. (Outlines of Industrial Chemistry.).8vo,	*2 00
Humphrey, J. C. W. Metallography of Strain. (Metallurgy Series.)	
· (In Press.)	
Humphreys, A. C. The Business Features of Engineering Practice .8vo.	*I 25
Hunter, A. Bridge Work8vo. (In Press.)	_
Hurst, G. H. Handbook of the Theory of Color8vo,	*3 50
— Dictionary of Chemicals and Raw Products8vo,	*5 00
Lubricating Oils, Fats and Greases8vo,	*5 00
Soaps8vo,	*6 00
Hurst, G. H., and Simmons, W. H. Textile Soaps and Oils8vo,	3 50
Hurst, H. E., and Lattey, R. T. Text-book of Physics8vo,	*3 00
Also published in three parts.	
Part I. Dynamics and Heat	*I 25
Part II. Sound and Light	*I 25
Part III. Magnetism and Electricity	*1 50
Hutchinson, R. W., Jr. Long Distance Electric Power Transmission.	
12mo,	*3 00
Hutchinson, R. W., Jr., and Thomas, W. A. Electricity in Mining. 12mo,	
(In Press.)	
Hutchinson, W. B. Patents and How to Make Money Out of Them.	
12M0,	1 00 6 00
Hutton, W. S. The Works' Manager's Handbook8vo, Hyde, E. W. Skew Arches. (Science Series No. 15.)16mo,	0 75
Hyde, F. S. Solvents, Oils, Gums, Waxes	*2 00
myuc, r. S. Sulvents, Ulis, Guins, Waxes	•
Industian Cails (Caianas Carios No	o 75
Induction Coils. (Science Series No. 53.)	* ₂ 50
Ingle H Manual of Agricultural Chemistry 8vo (In Press)	- •

0 75

Kennedy, R. Electrical Installations. Five Volumes4to,	15 00
Single Volumeseach,	3 50
Flying Machines; Practice and Design	*2 50
Principles of Aeroplane Construction8vo,	*2 00
Kennelly, A. E. Electro-dynamic Machinery8vo,	1 50
Kent, W. Strenth of Materials. (Science Series No. 41.)16mo,	0 75
Kershaw, J. B. C. Fuel, Water and Gas Analysis8vo,	*2 50
Electrometallurgy. (Westminster Series.)8vo,	*2 00
— The Electric Furnace in Iron and Steel Production 12mo,	
Electro-Thermal Methods of Iron and Steel Production 8vo,	*3 00
Kinzbrunner, C. Alternate Current Windings8vo,	*1 50
Continuous Current Armatures	*1 50
— Testing of Alternating Current Machines8vo,	*2 00
Kinzer, H., and Walter, K. Theory and Practice of Damask Weaving,	4 00
Kirkaldy, A W., and Evans, A. D. History and Economics of	4 00
Transport8vo,	*3 00
Kirkaldy, W. G. David Kirkaldy's System of Mechanical Testing 4to,	10 00
Kirkbride, J. Engraving for Illustration8vo,	*I 00
Kirkwood, J. P. Filtration of River Waters4to,	7 50
Kirschke, A. Gas and Oil Engines12mo,	*1 50
Klein, J. F. Design of a High-speed Steam-engine8vo,	*5 00
Physical Significance of Entropy	*I 50
Klingenberg, G. Large Electric Power Stations	* 5 ∞
Knight, RAdm. A. M. Modern Seamanship8vo,	*6 50
—— Pocket Edition 12mo, fabrikoid,	3 00
Knott, C. G., and Mackay, J. S. Practical Mathematics 8vo,	2 50
Knox, G. D. Spirit of the Soil12mo,	*1 25
Knox, J. Physico-Chemical Calculations12mo,	*1 25
Fixation of Atmospheric Nitrogen. (Chemical Monographs.).12mo,	*I 00
Koester, F. Steam-Electric Power Plants4to,	*5 00
— Hydroelectric Developments and Engineering	*5 00
Koller, T. The Utilization of Waste Products8vo, —— Cosmetics8vo,	*5 00 *2 50
Koppe, S. W. Glycerine	*3 50
Kozmin, P. A. Flour Milling. Trans. by M. Falkner8vo,	7 50
Kremann, R. Application of the Physico-Chemical Theory to Tech-	, 30
nical Processes and Manufacturing Methods. Trans. by H.	
E. Potts8vo.	*3 00
Kretchmar, K. Yarn and Warp Sizing8vo,	*5 00
Laffargue, A. Attack in Trench Warfare16mo,	
Lallier, E. V. Elementary Manual of the Steam Engine12mo,	0 50 *2 00
Lambert, T. Lead and Its Compounds8vo,	*3 50
Bone Products and Manures8vo,	*3 50
Lamborn, L. L. Cottonseed Products8vo,	*3 00
— Modern Soaps, Candles, and Glycerin 8vo,	*7 50
Lamprecht, R. Recovery Work After Pit Fires. Trans. by C. Salter,	-
840.	*5 00
Lancaster, M. Electric Cooking, Heating and Cleaning8vo,	*I 00
Lanchester, F. W. Aerial Flight. Two Volumes. 8vo.	
Vol. I. Aerodynamics	*6 00
Vol. II. Accodonetics	*6 oo

	_	
Lanchester, F. W. The Flying Machine	*3 0	
Industrial Engineering: Present and Post-War Outlook12mo,	1 0	
Lange, K. R. By-Products of Coal-Gas Manufacture12mo,	2 5	50
Larner, E. T. Principles of Alternating Currents12mo.	*I 2	15
La Rue, B. F. Swing Bridges. (Science Series No. 107.)16mo,	0 7	75
Lassar-Cohn. Dr. Modern Scientific Chemistry. Trans. by M. M.		
Pattison Muir	*2 0	ν.
Latimer, L. H., Field, C. J., and Howell, J. W. Incandescent Electric	~ `	,,
Lighting. (Science Series No. 57.)16mo,		
Lighting. (Science Series No. 57.)	_0 7	-
Latta, M. N. Handbook of American Gas-Engineering Practice 8vo,	*4 5	
—— American Producer Gas Practice	*6 o	
Laws, B. C. Stability and Equilibrium of Floating Bodies8vo,	*3 5	60
Lawson, W. R. British Railways. A Financial and Commercial		
Survey8vo,	2 0	ю
Leask, A. R. Breakdowns at Sea12mo,	2 0	ю
	2 0	
—— Refrigerating Machinery	10 0	
Pocket Edition	5 0	
— Danger Angle	2 5	
Le Doux, M. Ice-Making Machines. (Science Series No. 46.).16mo,	0 7	
Leeds, C. C. Mechanical Drawing for Trade Schoolsoblong 4to,	*2 0	-
— Mechanical Drawing for High and Vocational Schools4to,	*I 2	5
Lefévre, L. Architectural Pottery. Trans. by H. K. Bird and W. M.		
Binns	*7 0	
	*2 5	50
Lemstrom, S. Electricity in Agriculture and Horticulture8vo,	*1 5	50
Letts, E. A. Fundamental Problems in Chemistry8vo,	*2 0	00
Le Van, W. B. Steam-Engine Indicator. (Science Series No. 78).16mo,	0 7	, 2
Lewes, V. B. Liquid and Gaseous Fuels. (Westminster Series.)8vo,	*2 0	-
— Carbonization of Coal		_
Carbonization of Coal	*5 °	
Lewis, L. P. Railway Signal Engineering8vo,	*3 5	60
Lewis Automatic Machine Rifle; Operation of16mo,	*o 6	òo
Licks, H. E. Recreations in Mathematics12mo,	*1 2	25
	*15 0	_
———— Spanish Edition	*15 0	
French Edition8vo,	*15 0	00
— Terminal Index	*2 5	
Lieber's Appendixfolio,	*15 0	00
— — Handy Tables	*2 5	
- Bankers and Stockbrokers' Code and Merchants and Shippers'	- 0	,-
• • · · · · · · · · · · · · · · · · · ·	*	
Blank Tables		
100,000,000 Combination Code8vo,		
—— Engineering Code 8vo,	*12 5	50
Livermore, V. P., and Williams, J. How to Become a Competent Motor-		
man12mo,	*I 0	20
Livingstone, R. Design and Construction of Commutators8vo,	*3 0	
— Mechanical Design and Construction of Generators8vo,	*3 5	
Lloyd, S L. Fertilizer Materials	2 0	ю
Lobben, P. Machinists' and Draftsmen's Handbook8vo,	2 5	60
Lockwood, T. D. Electricity, Magnetism, and Electro-telegraph8vo,		•
Electrical Measurement and the Galvanometer12mo,	0 7	
	- 7	•

P 4		
Ledge, O. J. Elementary Mechanics	1	50
Signalling Across Space without Wires8vo,		00
Loewenstein, L. C., and Crissey, C. P. Centrifugal Pumps	*4	50
Lomax, J. W. Cotton Spinning12mo,	1	50
Lord, R. T. Decorative and Fancy Fabrics8vo,	*3	50
Loring, A. E. A Handbook of the Electromagnetic Telegraph.		
(Science Series No. 39.) 16mo,	0	75
Low, D. A. Applied Mechanics (Elementary)16mo,	0	80
Lubschez, B. J. Perspective	*1	50
Lucke, C. E. Gas Engine Design8vo,	*3	00
—— Power Plants: Design, Efficiency, and Power Costs. 2 vols.		
(In Preparation.)		
Luckiesh, M. Color and Its Application8vo,	_	00
— Light and Shade and Their Applications	*2	50
Lange, G. Coal-tar and Ammonia. Three Volumes8vo, —— Technical Gas Analysis8vo,	*4	50
Manufacture of Sulphuric Acid and Alkali. Four Volumes8vo,	7	J.
Vol. I. Sulphuric Acid. In three parts	*18	00
Vol. I. Supplement8vo,		
Vol. II. Salt Cake, Hydrochloric Acid and Leblanc Seda. In two		
parts(In Press.)		
Vol. III Ammonia Soda(In Press.)		
Vol. IV Electrolytic Methods		
Technical Chemists' Handbook		00
— Technical Methods of Chemical Analysis. Trans. by C. A. Keane		
in collaboration with the corps of specialists. Vol. I. In two parts8vo,	*	
Vol. II. In two parts		
Vol. III. In two parts		
The set (3 vols.) complete		
Luquer, L. M. Minerals in Rock Sections8vo,		
	•	J-
MacBride, J. D. A Handbook of Practical Shipbuilding,	_	
MacBride, J. D. A Handbook of Practical Shipbuilding, 12mo, fabrikoid,	2	00
Macewen, H. A. Food Inspection	*2	50
12mo, fabrikoid, Macewen, H. A. Food Inspection	*2 *2	50 50
Macewen, H. A. Food Inspection	*2 *2	50
Macewen, H. A. Food Inspection	*2 *2 *2	50 50
Macewen, H. A. Food Inspection	*2 *2 *2 4	50 50 00
Macken, H. A. Food Inspection	*2 *2 *2 *4 8	50 50 00
Macken, H. A. Food Inspection	*2 *2 *2 *4 8	50 50 00 00 50
Macken, H. A. Food Inspection	*2 *2 *2 4 8	50 50 00 50
Macken, H. A. Food Inspection	*2 *2 *2 4 8	50 50 00 50
Mackenzie, N. F. Notes on Irrigation Works	*2 *2 *2 4 8	50 50 00 50 75 75
Macewen, H. A. Food Inspection	*2 *2 *2 4 8	50 50 00 50 75 75
Macewen, H. A. Food Inspection	*2 *2 *2 4 8 0 *2 *1	50 50 00 50 75 75 75
Macewen, H. A. Food Inspection	*2 *2 *2 4 8 0 *2 *1 4	50 50 00 50 75 75 75
Macewen, H. A. Food Inspection	*2 *2 *2 4 8 0 *2 *1 4 *1	50 50 00 50 75 75 75

Marsh, C. F. Concise Treatise on Reinforced Concrete8vo, —— Reinforced Concrete Compression Member Diagram. Mounted on	*2 *1.	•
Cloth Boards	1.	50
Marshall, W. J., and Sankey, H. R. Gas Engines. (Westminster Series.)	•	
Martin, G. Triumphs and Wonders of Modern Chemistry8vo, — Medern Chemistry and Its Wonders8vo,	*3 *3	00 00
Martin, N. Properties and Design of Reinforced Concrete 12mo,	*2	
Martin, W. D. Hints to Engineers	*1	50
Massie, W. W., and Underhill, C. R. Wireless Telegraphy and Telephony.	*1	00
Mathot, R. E. Internal Combustion Engines8vo,		œ.
Maurice, W. Electric Blasting Apparatus and Explosives 8vo,	*3	50
Shot Firer's Guide 8vo.	*1	50
Maxwell, F. Sulphitation in White Sugar Manufacture12mo,	3	75
Maxwell, J. C. Matter and Motion. (Science Series No. 36.). 16mo,	0	75
Maxwell, W. H., and Brown, J. T. Encyclopedia of Municipal and Sani-	·	13
tary Engineering	*10	00
Mayer, A. M. Lecture Notes on Physics8vo,		00
Mayer, C., and Slippy, J. C. Telephone Line Construction8vo,		00
McCullough, E. Practical Surveying12mo,	*2	
		00
McCullough, R. S. Mechanical Theory of Heat 8vo,		50
McGibbon, W. C. Indicator Diagrams for Marine Engineers8vo.	*3	50 50
— Marine Engineers' Drawing Bookoblong 4to.	*2	50
McGibbon, W. C. Marine Engineers Pocketbook	*4	50
Industrial Alcohol		00 50
- Manufacture of Varnishes and Kindred Industries. Three Volumes.	•	J -
8vo.		
Vol. I. Oil Crushing, Refining and Boiling.		
Vol. II. Varnish Materials and Oil Varnish Making		00
McKay, C. W. Fundamental Principles of the Telephone Business.		00
8vo. (In Press.)		
McKillop, M., and McKillop, A. D. Efficiency Methodst2mo, McKnight, J. D., and Brown, A. W. Marine Multitubular Boilers	I	50
McMaster, J. B. Bridge and Tunnel Centres. (Science Series No. 20.)	2	50
16mo,	o	75
McMechen, F. L. Tests for Ores, Minerals and Metals 12mo,		00
McPherson, J. A. Water-works Distribution8vo,		50
Merde, A. Modern Gas Works Practice8vo,		52
Melick, C. W. Dairy Laboratory Guide12mo, "Mentor." Self-Instruction for Students in Gas Supply. 12mo.	*I	25
Elementary		50
Advanced	2	50
H. E. Schenck	1	00
Merivale, J. H. Notes and Formulae for Mining Students12mo,	I	50
Merritt, Wm. H. Field Testing for Gold and Silver16mo, leather,	2	00

Mertens. Tactics and Technique of River Crossings. Translated by	
W. Kruger	2 50
Robson8vo,	*2 50
Miessner, B. F. Radio Dynamics	*2 00
Miller, G. A. Determinants. (Science Series No 105.)16mo, Miller, W. J. Introduction to Historical Geology12mo,	*2 00
Milroy, M. E. W. Home Lace-making	*1 00
Mills, C. N. Elementary Mechanics for Engineers8vo,	*I 00
Mitchell, C. A. Mineral and Aerated Waters8vo,	*3 00
Mitchell, C. A., and Prideaux, R. M. Fibres Used in Textile and Allied Industries	3 5 0
Mitchell, C. F., and G. A. Building Construction and Drawing. 12mo.	• •
Elementary Course	*1 50
Advanced Course	*2 50
Monckton, C. C. F. Radiotelegraphy. (Westminster Series.)8vo,	*2 00
Monteverde, R. D. Vest Pocket Glossary of English-Spanish, Spanish-	_
English Technical Terms	*I 00 I*
Moore, E. C. S. New Tables for the Complete Solution of Ganguillet and	1 00
Kutter's Formula8vo.	*6 oo
Moore, Harold. Liquid Fuel for Internal Combustion Engines8vo,	5 00
Morecroft, J. H., and Hehre, F. W. Short Course in Electrical Testing.	
8vo,	*1 50
Morgan, A. P. Wireless Telegraph Apparatus for Amateurs12mo,	*I 50
Moses, A. J. The Characters of Crystals	*2 00 *3 50
Moss, S. A. Elements of Gas Engine Design. (Science Series No.	3 50
121.1 1000	0 75
The Lay-out of Corliss Valve Gears. (Science Series No. 119.) 16mo,	0 75
Mulford, A. C. Boundaries and Landmarks12mo,	*I 00
Mullin, J. P. Modern Moulding and Pattern-making12mo,	2 50
Munby, A. E. Chemistry and Physics of Building Materials. (West-	_ 0
minster Series.)	*2 00
Murphy, J. G. Practical Mining16mo,	I 00
Murray, J. A. Soils and Manures. (Westminster Series.)8vo,	*2 00
Nasmith, J. The Student's Cotton Spinning8vo,	4 50
Recent Cotton Mill Construction	2 50
Neave, G. B., and Heilbron, I. M. Identification of Organic Compounds.	_ 5
I2mo,	*I 25
Neilson, R. M. Aeroplane Patents8vo,	*2 00
Nerz, F. Searchlights. Trans. by C. Rodgers8vo,	*3 00
Neuberger, H., and Noalhat, H. Technology of Petroleum. Trans. by	
J. G. McIntosh	*10 00
Newall, J. W. Drawing, Sizing and Cutting Bevel-gears 8vo, Newbigin, M. I., and Flett, J. S. James Geikie, the Man and the	1 50
Geologist	3 50 *6 50
Newell, F. H., and Drayer, C. E. Engineering as a Career. 12mo, cloth,	*1 00
paper,	0 75
Nicol, G. Ship Construction and Calculations8vo,	
Nipher, F. E. Theory of Magnetic Measurements12mo,	1 00

Misbet, H. Grammar of Textile Design8vo,	# FO
Nolan, H. The Telescope. (Science Series No. 51.)16mo,	7 50 0 75
Norie, J. W. Epitome of Navigation (2 Vols.)octavo,	15 00
— A Complete Set of Nautical Tables with Explanations of Their	15 00
Use	6 50
North, H. B. Laboratory Experiments in General Chemistry12mo,	*1 00
Mortin, in. D. Dapotatory Experiments in General Chemistry12mo,	1 03
O'Connor, H. The Gas Engineer's Pocketbook 12mo, leather,	3 50
Ohm, G. S., and Lockwood, T. D. Galvanic Circuit Translated by	
William Francis (Science Series No. 102.)16mo,	0 75
Olsen, J. C. Text-book of Quantitative Chemical Analysis8vo,	3 5 0
Olsson, A. Motor Control, in Turret Turning and Gun Elevating. (U.S.	
Navy Electrical Series, No. 1.)12mo, paper,	*0 50
Ormsby, M. T. M. Surveying12mo,	2 00
Oudin, M. A. Standard Polyphase Apparatus and Systems8vo,	*3 00
Owen, D. Recent Physical Research8vo,	3 00
Owen, D. Accent Injanual Academica	
Pakes, W. C. C., and Nankivell, A. T. The Science of Hygiene 8vo,	*I 75
Palaz, A. Industrial Photometry. Trans. by G. W. Patterson, Jr 8vo,	*4 00
Palmer, A. R. Electrical Experiments	•
	0 75
Magnetic Measurements and Experiments	0 75
Pamely, C. Colliery Manager's Handbook8vo,	*10 00
Parker, P. A. M. The Control of Water8vo,	
Parr, G. D. A. Electrical Engineering Measuring Instruments8vo,	*3 50
Parry, E. J. Chemistry of Essential Oils and Artificial Perfumes.	
Foods and Drugs. Two Volumes.	*9 00
Vol. I. Monograghs on Essential Oils.	9 00
Vol. II. Constituents of Essential Oils, Analysis	
and Coste, J. H. Chemistry of Pigments	*5 00
Parry, L. Notes on Alloys8vo,	*3 50
Metalliferous Wastes8vo,	*2 50
— Analysis of Ashes and Alloys	*2 50
Parry, L. A. Risk and Dangers of Various Occupations8vo,	*3 50
Parshall, H. F., and Hobart, H. M. Armature Windings4to,	*7 50
Electric Railway Engineering4to,	*7 50
Parsons, J. L. Land Drainage8vo,	*1 50
Parsons, S. J Malleable Cast Iron8vo,	*2 50
Partington, J. R. Higher Mathematics for Chemical Students12mo,	*2 00
- Textbook of Thermodynamics8vo,	*4 00
— The Alkali Industry8vo,	3 00
Passmore, A. C. Technical Terms Used in Architecture8vo,	*3 50
Patchell, W. H. Electric Power in Mines 8vo,	*4 00
Paterson, G. W. L. Wiring Calculations	*2 50
Electric Mine Signalling Installations12mo,	*1 50
Patterson, D. The Color Printing of Carpet Yarns	*3 50
Color Matching on Textiles	*3 50
Textile Color Mixing	*3 50
Paulding, C. P. Condensation of Steam in Covered and Bare Pipes 8vo,	*2 00
- Transmission of Heat through Cold-storage Insulation12mo,	*1 00
Payne, D. W. Iron Founders' Handbook8vo,	*4 00
Peddie, R. A. Engineering and Metallurgical Books12mo,	*1 50
Peirce, B. System of Analytic Mechanics4to,	10 00
— Linnear Associative Algebra4to,	3 00
Pendred, V The Railway Locomotive. (Westminster Series.)8vo,	
a charter, v The Manway Locomotive. (Westminster Series.) 8v0,	* 2 00

Perkin, F. M. Practical Methods of Inorganic Chemistry12mo,	*I 00
Perrin, J. Atoms	*2 50 *1 00
Perrine, F. A. C. Conductors for Electrical Distribution	*3 50
Petit, G. White Lead and Zinc White Paints8vo,	*2 00
Petit, R. How to Build an Aeroplane. Trans. by T. O'B. Hubbard, and	- 00
J. H. Ledeboer	* 1 50
Pettit, Lieut. J. S. Graphic Processes. (Science Series No. 76.) 16mo,	0 75
Philbrick, P. H. Beams and Girders. (Science Series No. 88.) 16mo,	
Phillips, J. Gold Assaying8vo,	*3 75
—— Dangerous Goods	3 50
Phin, J. Seven Follies of Science	*I 50
Pickworth, C. N. The Indicator Handbook. Two Volumes12mo, each,	I 50
Logarithms for Beginners	0 50
— The Slide Rule	1 50
Pilcher, R. B., and Butler-Jones, F. What Industry Owes to Chemical Science	1 50
Plattner's Manual of Blow-pipe Analysis. Eighth Edition, revised. Trans.	- 50
by H. B. Cornwall8vo.	*4 00
Plympton, G. W. The Aneroid Barometer. (Science Series No. 35.)	•
16MA.	o 75
— How to Become an Engineer. (Science Series No. 100.)16mo, — Van Nostrand's Table Book. (Science Series No. 104.)16mo,	0 75
Pochet, M. L. Steam Injectors. Translated from the French. (Science	o 75
Series No. 20.)	0 75
Series No. 29.)	9 75
leather,	I 00
Polleyn, F. Dressings and Finishings for Textile Fabrics8vo,	*3 50
Pope, F. G. Organic Chemistry	2 50
Pope, F. L. Modern Practice of the Electric Telegraph	1 50 *3 50
	*2 50
Porritt, B. D. The Chemistry of Rubber. (Chemical Monographs,	•
No. 3.)	*1 00
Porter, J. R. Helicopter Flying Machine	1 50
trial Chemistry)	*2 50
Practical Compounding of Oils, Tallows and Grease8vo,	*3 50
Pratt, K. Boiler Draught	*I 25
High Speed Steam Engines8vo.	*2 00
Pray, T., Jr. Twenty Years with the Indicator8vo,	2 50
Steam Tables and Engine Constant8vo,	2 00
Prelini, C. Earth and Rock Excavation8vo,	*3 00
—— Graphical Determination of Earth Slopes8vo,	*2 00
Tunneling. New Edition	*3 00
—— Dredging. A Practical Treatise	*3 00
Prescott, A. B. Organic Analysis	5 00
Prescott, A. B., and Johnson, O. C. Qualitative Chemical Analysis8vo,	*3 50
Prescott, A. B., and Sullivan, E. C. First Book in Qualitative Chemistry.	•
Didagon F. B. D. Dockland in Married Chamber.	*1 50
Prideaux, E. B. R. Problems in Physical Chemistry8vo, — The Theory and Use of Indicators8vo,	*2 00 5 00
Primrose, G. S. C. Zinc. (Metallurgy Series.)	5 00

Reinhardt, C. W. Lettering for Draftsmen, Engineers, and Students.

oblong 4to, boards,

Reinhardt, C. W. The Technic of Mechanical Drafting,	*
oblong, 4to, boards, Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and	*I 00
H. Robson	*2 50
Reiser, N. Faults in the Manufacture of Woolen Goods. Trans. by A.	*
Morris and H. Robson	*2 50 *5 00
	*5 00
Renwick, W. G. Marble and Marble Working	5 00
Rey, Jean. The Range of Electric Searchlight Projectors8vo,	*4 00 *4 50
Reynolds, O., and Idell, F. E. Triple Expansion Engines. (Science	
Series No. 99.)	° 75
Phase C W Rritish Pottery Marks	*1 25 3 50
Rhead, G. W. British Pottery Marks	5 00
Rice, J. M., and Johnson, W. W. A New Method of Obtaining the Differ-	3 00
ential of Functions12mo,	0 50
Richards, W. A. Forging of Iron and Steel	1 50
Richards, W. A., and North, H. B. Manual of Cement Testing 12mo,	*I 50
Richardson, J. The Modern Steam Engine8vo,	*3 50
Richardson, S. S. Magnetism and Electricity12mo,	*2 00
Rideal, S. Glue and Glue Testing8vo,	*5 00
Riesenberg, F. The Men on Deck12mo,	3 00
— Standard Seamanship for the Merchant Marine. 12mo (In Press.)	
Rimmer, E. J. Boiler Explosions, Collapses and Mishaps	*I 75
Rings, F. Reinforced Concrete in Theory and Practice12mo,	*4 5C
Reinforced Concrete Bridges	*5 00
Ripper, W Course of Instruction in Machine Drawingfolio,	*6 oo
Roberts, F. C. Figure of the Earth. (Science Series No. 79.)16mo,	0 75
Roberts, J., Jr. Laboratory Work in Electrical Engineering8vo,	*2 00
Robertson, L. S. Water-tube Boilers8vo,	2 00
Robinson, J. B. Architectural Composition8vo,	*2 50
Robinson, S. W. Practical Treatise on the Teeth of Wheels. (Science	
Series No. 24.)16mo,	c 75
	0 75
Wrought from Bridge Members. (Science Series No. 60.)16mo,	o 75
Robson, J. H. Machine Drawing and Sketching8vo,	*2 00
Roebling, J. A. Long and Short Span Railway Bridgesfolio.	25 00
Rogers, A. A Laboratory Guide of Industrial Chemistry8vo,	2 .00
Elements of Industrial Chemistry12mo, —— Manual of Industrial Chemistry8vo,	*3 00
	*5 00
Rogers, F. Magnetism of Iron Vessels. (Science Series No. 30.)	
·	0 75
Rohland, P. Colloidal and Crystalloidal State of Matter. Trans. by	*
W. J. Britland and H. E. Potts	*I 25
Rollinson, C. AlphabetsOblong, 12mo,	*I 00
Rose, J. The Pattern-makers' Assistant8vo,	2 50
— Key to Engines and Engine-running	2 50
Rose, T. K. The Precious Metals. (Westminster Series.) 8vo,	*2 00
Rosenhain, W. Glass Manufacture. (Westminster Series.) 8vo.	*2 00
— Physical Metallurgy, An Introduction to. (Metallurgy Series.) 8vo.	*
Roth, W. A. Physical Chemistry8vo,	*3 50 *2 00
	_ ~

Rowan, F. J. Practical Physics of the Modern Steam-boiler8vo,	*3 00
and Idell, F. E. Boiler Incrustation and Corrosion. (Science Series No. 27.)	0 75
Roxburgh, W. General Foundry Practice. (Westminster Series.).8vo,	*2 00
Ruhmer, E. Wireless Telephony. Trans. by J. Erskine-Murray8vo,	*4 50
Russell, A. Theory of Electric Cables and Networks	*3 00
Rust, A. Practical Tables for Navigators and Aviators8vo,	3 50
Rutley, F. Elements of Mineralogy12mo,	*1 25
Sandeman, E. A. Notes on the Manufacture of Earthenware12mo,	3 50
Sanford, P. G. Nitro-explosives8vo,	*4 00
Saunders, C. H. Handbook of Practical Mechanics16mo,	I 00
leather,	1 25
Sayers, H. M. Brakes for Tram Cars 8vo, Scheele, C. W. Chemical Essays 8vo,	*I 25 *2 50
Scheithauer, W. Shale Oils and Tars	*4 00
Scherer, R. Casein. Trans. by C. Salter8vo,	*3 50
Schidrowitz, P. Rubber, Its Production and Industrial Uses8vo,	*6 oo
Schindler, K. Iron and Steel Construction Works	*2 00
Schmall, C. N. First Course in Analytic Geometry, Plane and Solid.	
12mo, half leather,	*I 75
- and Shack, S. M. Elements of Plane Geometry12m0,	1 25
Schmeer, L. Flow of Water8vo,	*3 00
Schumann, F. A Manual of Heating and Ventilation12mo, leather,	1 50
Schwarz, E. H. L. Causal Geology8vo,	*3 00
Schweizer, V. Distillations of Resins	5 00
Scott, A. H. Reinforced Concrete in Practice12mo,	2 00
Scott, W. W. Qualitative Analysis. A Laboratory Manual. New	
Edition	2 50 *6 00
Scribner, J. M. Engineers' and Mechanics' Companion . 16mo, leather,	1 50
Scudder, H. Electrical Conductivity and Ionization Constants of	•
Organic Compounds8vo,	*3 00
Seamanship, Lectures on	2 00
Searle, A. B. Modern Brickmaking	
Cement, Concrete and Bricks	*6 50
Searle, G. M. "Sumners' Method." Condensed and Improved.	
(Science Series No. 124.)15mo,	0 75
Seaton, A. E. Manual of Marine Engineering	8 00
Seaton, A. E., and Rounthwaite, H. M. Pocket-book of Marine Engineering	
neering	5 00
Gutta Percha. Trans. by J. G. McIntosh	*6 oo
Seidell, A. Solubilities of Inorganic and Organic Substances8vo, Seligman, R. Aluminum. (Metallurgy Series.)(In Press.)	3 00
Sellew, W. H. Steel Rails.	*10 00
Railway Maintenance Engineering	*2 50
Senter. G. Outlines of Physical Chemistry	*2 50
Text-book of Inorganic Chemistry	*3 00
Sever, G. F., and Townsend, F. Laboratory and Factory Tests in Elec-	*1 00
trical Engineering8vo,	*2 50

Sewall, C. H. Wireless Telegraphy	*2 00 *1 00 *3 00
Sexton, A. H. Fuel and Refractory Materials12m0,	*2 50
— Chemistry of the Materials of Engineering12mo,	*3 00
— Alloys (Non-Ferrous)8vo,	*3 00
Sexton, A. H., and Primrose, J. S. G. The Metallurgy of Iron and Steel.	•
8vo,	*6 50
Seymour, A. Modern Printing Inks8vo,	*2 50
Shaw, Henry S. H. Mechanical Integrators. (Science Series No. 83.)	
Shaw, S. History of the Staffordshire Potteries	0 75 2 50
— Chemistry of Compounds Used in Porcelain Manufacture8vo,	*6 00
Shaw, T. R. Driving of Machine Tools12mo,	*2 00
— Precision Grinding Machines	_5 ∞
Shaw, W. N. Forecasting Weather	*3 50
	*2 50 *2 50
Sheldon, S., and Hausmann, E. Electric Traction and Transmission	- 30
Engineering12m0,	*2 50
Physical Laboratory Experiments, for Engineering Students8vo,	*1 25
Sherriff, F. F. Oil Merchants' Manual and Oil Trade Ready Reckoner,	
Shields, J. E. Notes on Engineering Construction12mo,	3 50
Shreve, S. H. Strength of Bridges and Roofs	1 50
Shunk, W. F. The Field Engineer12mo, fabrikoid,	3 50
Simmons, W. H., and Appleton, H. A. Handbook of Soap Manufacture,	2 50
. \$70 ,	*4 00
Simmons, W. H., and Mitchell, C. A. Edible Fats and Oils8vo,	*3 50
Simpson, G. The Naval Constructor12mo, fabrikoid,	*5 00
Simpson, W. Foundations8vo. (In Press.)	
Sinclair, A. Development of the Locomotive Engine. 8vo, half leather,	5 00
Sindall, R. W. Manufacture of Paper. (Westminster Series.)8vo,	*2 00
Sindall, R. W., and Bacon, W. N. The Testing of Wood Pulp8vo,	*2 50
Sloane, T. O'C. Elementary Electrical Calculations12mo,	*2 00
Smallwood, J. C. Mechanical Laboratory Methods. (Van Nostrand's Textbooks.)	*3 00
Smith, C. A. M. Handbook of Testing, MATERIALS	*2 50 *1 25
Smith, C. F. Practical Alternating Currents and Testing8vo,	*3 50
—— Practical Testing of Dynamos and Motors 8vo,	*3 00
	I 50
Smith, F. E. Handbook of General Instruction for Mechanics 12mo,	1 30
Smith, G. C. Trinitrotoluenes and Mono- and Dinitrotoluenes, Their Manufacture and Properties	2 00
Smith H G Minerals and the Microscope 12mo.	*I 25
Smith, T. C. Manufacture of Paint	*5 00
Smith, R. H. Principles of Machine Work	_
— Advanced Machine Work	*3 00 *0 50
Smith, W. Chemistry of Hat Manufacturing12mo, Snell, A. T. Electric Motive Power8vo,	*3 50 *4 00
Snow, W. G. Pocketbook of Steam Heating and Ventilation. (In Press.)	4 00
Snow, W. G., and Nolan, T. Ventilation of Buildings. (Science Series	
No. 5.)	0 75
Soddy, F. Radioactivity8vo,	*3 00
•	-

Solomon, M. Electric Lamps. (Westminster Series.)8vo,	*2		
Somerscales, A. N. Mechanics for Marine Engineers12mo,	*2		
— Mechanical and Marine Engineering Science8vo,	*5	00	
Sothern, J. W. The Marine Steam Turbine870,	12	50	
— Verbal Notes and Sketches for Marine Engineers	*12	50	
Sothern, J. W., and Sothern, R. M. Elementary Mathematics for			
Marine Engineers12m0,	*1	50	
Simple Problems in Marine Engineering Design12mo,	_		
Souster, E. G. W. Design of Factory and Industrial Buildings 8vo,	4	00	•
Southcombe, J. E. Chemistry of the Oil Industries. (Outlines of In-			
dustrial Chemistry.)8vo,	*3	00	
Soxhlet, D. H. Dyeing and Staining Marble. Trans. by A. Morris and			
H. Robson8vo,	*2	50	
Spangenburg, L. Fatigue of Metals. Translated by S. H. Shreve.			
(Science Series No. 23.)	0	75	
Specht, G. J., Hardy, A. S., McMaster, J. B., and Walling. Topographical			
Surveying. (Science Series No. 72.)	O	75	
Spencer, A. S. Design of Steel-Framed Sheds8vo,	* 3	50	
Speyers, C. L. Text-book of Physical Chemistry8vo,	*1	50	
Spiegel, L. Chemical Constitution and Physiological Action. (Trans.			
by C. Luedeking and A. C. Boylston.)12mo,	*1	25	
Sprague, E. H. Hydraulics12mo,		co	
Elements of Graphic Statics8vo,	2	co	
——Stability of Masonry12mo,	2	00	
— Elementary Mathematics for Engineers	2	00	
——Stability of Arches	2	00	
Strength of Structural Elements12m0,		00	
Moving Loads by Influence Lines and Other Methods12mo,	2	00	
Stahl, A. W. Transmission of Power. (Science Series No. 28.) . 16mo,			
Stahl, A. W., and Woods, A. T. Elementary Mechanism 12mo,	*2	00	
Staley, C., and Pierson, G. S. The Separate System of Sewerage 8vo,	*3	00	
Standage, H. C. Leatherworkers Manual8vo,		50	
— Sealing Waxes, Wafers, and Other Adhesives8vo,	*2	50	
— Sealing Waxes, Wafers, and Other Adhesives		50	
Stanley, H. Practical Applied Physics(In Press.)			
Stansbie, J. H. Iron and Steel. (Westminster Series.)8vo,	*2	00	
Steadman, F. M. Unit Photography12mo,		00	
Stecher, G. E. Cork. Its Origin and Industrial Uses12mo,		00	
Steinheil, A., and Voit, E. Applied Optics8vo,		00	
Steinman, D. B. Suspension Bridges and Cantilevers. (Science Series	•	•	
No. 127.)	0	75	
Melan's Steel Arches and Suspension Bridges		00	
Stevens, E. J. Field Telephones and Telegraphs	_	20	
Stevens, H. P. Paper Mill Chemist			
Stevens, J. S. Theory of Measurements	*1	25	
Stevenson, J. L. Blast-Furnace Calculations12mo, leather,	*2	00	
Stewart, G. Modern Steam Traps 12m0,	*1	75	
Stiles, A. Tables for Field Engineers12mo,		00	
Stodola, A. Steam Turbines. Trans. by L. C. Loewenstein8vo,		00	
Stone, H. The Timbers of Commerce8vo,	_	50	
Stopes, M. Ancient Plants8vo,		00	
— The Study of Plant Life		00	
Sudborough, J. J., and James, T. C. Practical Organic Chemistry. 12mo,		00	
Suffling, E. R. Treatise on the Art of Glass Painting		50	
	3		

Sullivan, T. V., and Underwood, N. Testing and Valuation of Building and Engineering Materials	*1 4	00 00
— Essentials of Drafting		50
Swinburne, J., Wordingham, C. H., and Martin, T. C. Electric Currents.	*2	
(Science Series No. 109.)16m9, Swoope, C. W. Lessons in Practical Electricity12m0,	•2	75 00
Tailfer, L. Bleaching Linen and Cotton Yarn and FabricsSvo,	7	00
Tate, J. S. Surcharged and Different Forms of Retaining-walls. (Science	_	75
Series No. 7.)		75 50
Masonry in Civil Engineering8vo,		50
Templeton, W. Practical Mechanic's Workshop Companion.		
Tenney, E. H. Test Methods for Steam Power Plants. (Van Nostrand's Textbooks.)		00
Nostrand's Textbooks.)	₹2	50
1 erry, H. L. India Rubber and its manufacture. (westminster Series.) 8vo.	*2	00
Thayer, H. R. Structural Design. 8vo.	-	•
Vol. I. Elements of Structural Design	*2	00
Vol. II. Design of Simple Structures		00
Thiess, J. B., and Joy, G. A. Toll Telephone Practice	*2	50
Thom, C., and Jones, W. H. Telegraphic Connectionsoblong, 12mo,	_	50
Thomas, C. W. Paper-makers' Handbook. (In Press.) Thomas, J. B. Strength of Ships 8vo,		50
Thomas, Robt. G. Applied Calculus		50
— Oil Field Development		50
Thompson, S. P. Dynamo Electric Machines. (Science Series No. 75.)	-	75
Thompson, W. P. Handbook of Patent Law of All Countries16mo,		50
Thomson, G. Modern Sanitary Engineering12mo,	*3	00
Thomson, G. S. Milk and Cream Testing12mo,		25
— Modern Sanitary Engineering, House Drainage, etc8vo,		00
Thornley, T. Cotton Combing Machines		50 50
—— Cotton Spinning. 8vo. First Year		50
Second Year		50
Third Year	*2	50
Thurso, J. W. Modern Turbine Practice	*4	00
16 m 0,	0	75
Tillmans, J. Water Purification and Sewage Disposal. Trans. by Hugh S. Taylor	*2	00
Tinney, W. H. Gold-mining Machinery8vo,	*3	00
Titherley, A. W. Laboratory Course of Organic Chemistry8vo,	*2	00

Tizard, H. T. Indicators(In Press.)	
Toch, M. Chemistry and Technology of Paints8vo,	*4 00
— Materials for Permanent Painting	*2 00
Tod, J., and McGibbon, W. C. Marine Engineers' Board of Trade	*2 00
Examinations	8 00
Tonge, J. Coal. (Westminster Series.)8vo,	*2 00
Townsend, F. Alternating Current Engineering	*o 75
Townsend, J. S. Ionization of Gases by Collision	*1 25
Transactions of the American Institute of Chemical Engineers, 8vo. Vol. I. to X., 1908-19178vo, each,	6 00
Traverse Tables. (Science Series No. 115.)16mo,	0 75
morocco,	I 00
Treiber, E. Foundry Machinery. Trans. by C. Salter12m0,	2 00
Trinks, W., and Housum, C. Shaft Governors. (Science Series No. 122.)	0 75
Trowbridge, W. P. Turbine Wheels. (Science Series No. 44.)16mo,	0 75
Tucker, J. H. A Manual of Sugar Analysis	3 50
Tunner, P. A. Treatise on Roll-turning. Trans. by J. B. Pearse.	
8vo, text and folio atlas,	10 00
Turnbull, Jr., J., and Robinson, S. W. A Treatise on the Compound Steam-engine. (Science Series No. 8.)16mo,	0.75
Turner, H. Worsted Spinners' Handbook12mo,	° 75 *3 00
Turrill, S. M. Elementary Course in Perspective	*I 25
Twyford, H. B. Purchasing8vo,	*3 00
— Storing, Its Economic Aspects and Proper Methods8vo,	3 50
Underhill, C. R. Solenoids, Electromagnets and Electromagnetic Wind-	_
ings	*2 00
Underwood, M., and Sumvan, I. V. Chemistry and rechnology of	
Printing Inks8vo,	*3 00
Printing Inks	*3 00 2 00
Urquhart, J. W. Electro-plating12mo,	•
Printing Inks8vo,	2 00
Urquhart, J. W. Electro-plating	2 00 2 00
Urquhart, J. W. Electro-plating	2 00 2 00
Urquhart, J. W. Electro-plating	2 00 2 00
Urquhart, J. W. Electro-plating	2 00 2 00 *4 00
Urquhart, J. W. Electro-plating	2 00 2 00 *4 00 *3 00
Urquhart, J. W. Electro-plating	2 00 2 00 *4 00 *3 00 1 00 2 50
Urquhart, J. W. Electro-plating. 12mo, — Electrotyping 12mo, Usborne, P. O. G. Design of Simple Steel Bridges 8vo, Vacher, F. Food Inspector's Handbook 12mo, Van Nostrand's Chemical Annual. Fourth issue 1918 fabrikoid, 12mo, — Year Book of Mechanical Engineering Data (In Press.) Van Wagenen, T. F. Manual of Hydraulic Mining 16mo, Vega, Baron Von. Logarithmic Tables 8vo, Vincent, C. Ammonia and its Compounds. Trans. by M. J. Salter 8vo,	2 00 2 00 *4 00 *3 00 1 00 2 50 *2 50
Vacher, F. Food Inspector's Handbook Van Nostrand's Chemical Annual. Fourth issue 1918 fabrikoid, 12m0, — Year Book of Mechanical Engineering Data. (In Press.) Van Wagenen, T. F. Manual of Hydraulic Mining 16m0, Vega, Baron Von. Logarithmic Tables 8v0, Volk, C. Haulage and Winding Appliances 8v0,	2 00 2 00 *4 00 *3 00 1 00 2 50
Urquhart, J. W. Electro-plating	2 00 2 00 *4 00 *3 00 1 00 2 50 *2 50
Vacher, F. Food Inspector's Handbook Van Nostrand's Chemical Annual. Fourth issue 1918 fabrikoid, 12m0, — Year Book of Mechanical Engineering Data. (In Press.) Van Wagenen, T. F. Manual of Hydraulic Mining 16m0, Vega, Baron Von. Logarithmic Tables 8v0, Volk, C. Haulage and Winding Appliances 8v0, Von Georgievics, G. Chemical Technology of Textile Fibres. Trans. by C. Salter 8v0,	2 00 2 00 *4 00 *3 00 1 00 2 50 *2 50
Printing Inks	2 00 2 00 *4 00 *3 00 1 00 2 50 *2 50 *4 00
Printing Inks	2 00 2 00 *4 00 *3 00 1 00 2 50 *2 50 *4 00
Printing Inks	2 00 2 00 *4 00 *3 00 1 00 2 50 *2 50 *4 00

Wabner, R. Ventilation in Mines. Trans. by C. Salter8vo,	*5 00
Wade, E. J. Secondary Batteries8vo,	*4 00
Wadmore, T. M. Elementary Chemical Theory	*I 50
Wagner, E. Preserving Fruits, Vegetables, and Meat12mo,	*2 50
Wagner, J. B. A Treatise on the Natural and Artificial Processes of	
Wood Seasoning8vo,	3 00
Waldram, P. J. Principles of Structural Mechanics	*3 00
Walker, F. Dynamo Building. (Science Series No. 98.)16mo,	0 75
Walker, J. Organic Chemistry for Students of Medicine8vo,	*3 00
Walker, S. F. Steam Boilers, Engines and Turbines8vo,	3 00
Refrigeration, Heating and Ventilation on Shipboard12mo,	*2 50
Electricity in Mining8vo,	*4 50
— Electric Wiring and Fitting8vo,	2 50
Wallis-Tayler, A. J. Bearings and Lubrication8vo,	*1 50
- Aerial or Wire Ropeways8vo,	*3 00
Preservation of Wood	4 00
Refrigeration, Cold Storage and Ice Making8vo,	5 50
— Sugar Machinery	*2 50
waish, J. J. Chemistry and Physics of Mining and Mine Ventuation, 12mo.	*2 00
Wanklyn, J. A. Water Analysis	2 00
Wansbrough, W. D. The A B C of the Differential Calculus12mo,	*2 50
Slide Valves	*2 00
Waring, Jr., G. E. Sanitary Conditions. (Science Series No. 31.).16mo,	0 75
Sewerage and Land Drainage	*6 00
Modern Methods of Sewage Disposal12m0,	2 00
How to Drain a House12mo,	1 25
Warnes, A. R. Coal Tar Distillation	*5 00
Warren, F. D. Handbook on Reinforced Concrete12mo,	*2 50
Watkins, A. Photography. (Westminster Series.)8vo,	*3 50
Watson, E. P. Small Engines and Boilers12mo,	
Watt, A. Electro-plating and Electro-refining of Metals8vo.	1 25
	*4 50
— Electro-metallurgy	1 00
The Art of Soap Making	3 ∞
Leather Manufacture8vo,	*4 00
Paper-Making 8vo,	3 00
Webb, H. L. Guide to the Testing of Insulated Wires and Cables. 12mo,	1 00
Webber, W. H. Y. Town Gas. (Westminster Series.)8vo,	*2 00
Wegmann, Edward. Conveyance and Distribution of Water for	
Water Supply	5 00 *6 00
sheep.	*7 50
Weisbach, J., and Herrmann, G. Mechanics of Air Machinery8vo,	*3 75
Wells, M. B. Steel Bridge Designing8vo,	*2 50
Wells, Robt. Ornamental Confectionery12mo,	3 00
Weston, E. B. Loss of Head Due to Friction of Water in Pipes. 12mo,	*1 50
Wheatley, O. Ornamental Cement Work8vo,	*2 25
Whipple, S. An Elementary and Practical Treatise on Bridge Building.	
8 v 0,	3 00
White, C. H. Methods of Metallurgical Analysis. (Van Nostrand's	0 50
Textbooks.)12m0,	2 50

White, G. F. Qualitative Chemical Analysis12mo,	*1	25
White, G. T. Tootned Gearing12mo,	*2	00
White, G. T. Tootned Gearing	1	50
Whitelaw, John. Surveying	4	50
Whittaker, C. M. The Application of the Coal Tar Dvestuffs8vo.		00
Widmer, E. J. Military Balloons8vo,		00
Wilcox, R. M. Cantilever Bridges. (Science Series No. 25.)16mo,		75
Wilda, H. Steam Turbines. Trans. by C. Salter		00
— Cranes and Hoists. Trans. by C. Salter	*2	
Wilkinson, H. D. Submarine Cable Laying and Repairing8vo,	*6	
	*3	
Williamson, J. Surveying8vo, Williamson, R. S. On the Use of the Barometer4to,		
	15	50
Practical Tables in Meteorology and Hypsometery4to,	•	20
Wilson, F. J., and Heilbron, I. M. Chemical Theory and Calculations.	ak	
12M0,		25
Wilson, J. F. Essentials of Electrical Engineering8vo, Wimperis, H. E. Internal Combustion Engine8vo,		50
Wimperis, H. E. Internal Combustion Engine	*3	
- Application of Power to Road Transport	*1	50
—— Primer of Internal Combustion Engine12mo,	*1	
Winchell, N. H., and A. N. Elements of Optical Mineralogy8vo,	*3	
Winslow, A Stadia Surveying. (Science Series No. 77.)16mo,	0	75
Wisser, Lieut. J. P. Explosive Materials. (Science Series No. 70.)		
16mo,	0	75
Modern Gun Cotton. (Science Series No. 89.) 16mo,	0	75
Wolff, C. E. Modern Locomotive Practice8vo,	*4	20
Wood, De V. Luminiferous Aether. (Science Series No. 85.)16mo, Wood, J. K. Chemistry of Dyeing. (Chemical Monographs No. 2.)	0	75
Wood, J. K. Chemistry of Dyeing. (Chemical Monographs No. 2.)		
12 m 0,	*1	00
Worden, E. C. The Nitrocellulose Industry. Two Volumes8vo,		
— Technology of Cellulose Esters. In 10 volumes. 8vo.		
Vol. VIII. Cellulose Acetate	*5	00
Vol. VIII. Cellulose Acetate	*5	00
Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chem-		00 <i>•</i>
Vol. VIII. Cellulose Acetate. Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.)	*1 *3	00 <i>•</i>
Vol. VIII. Cellulose Acetate. Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.)	*1 *3	00 <i>•</i> 50
Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.)	*1 *3 *2	00· 50 50
Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.)	*1 *3 *2	00 <i>•</i> 50 50 50
Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.)	*1 *3 *2 *1 *6	00· 50 50
Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.) 12100, Wright, A. C. Analysis of Oils and Allied Substances 8vo, — Simple Method for Testing Painters' Materials 8vo, Wright, F. W. Design of a Condensing Plant 12mo, Wright, H. E. Handy Book for Brewers 8vo, Wright, J. Testing, Fault Finding, etc., for Wiremen. (Installation	*1 *3 *2 *1 *6	00+ 50 50 50 50
Vol. VIII. Cellulose Acetate Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.) Wright, A. C. Analysis of Oils and Allied Substances. 8vo, — Simple Method for Testing Painters' Materials. 8vo, Wright, F. W. Design of a Condensing Plant. 12mo, Wright, H. E. Handy Book for Brewers. 8vo, Wright, J. Testing, Fault Finding, etc., for Wiremen. (Installation Manuals Series.) 16mo, Wright, T. W. Elements of Mechanics 8vo.	*1 *3 *2 *1 *6 *0 *2	50 50 50 50 00
Vol. VIII. Cellulose Acetate Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.) Wright, A. C. Analysis of Oils and Allied Substances. 8vo, — Simple Method for Testing Painters' Materials. 8vo, Wright, F. W. Design of a Condensing Plant. 12mo, Wright, H. E. Handy Book for Brewers. 8vo, Wright, J. Testing, Fault Finding, etc., for Wiremen. (Installation Manuals Series.) 16mo, Wright, T. W. Elements of Mechanics 8vo.	*1 *3 *2 *1 *6 *0 *2	50 50 50 50 50 00
Vol. VIII. Cellulose Acetate Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.) Wright, A. C. Analysis of Oils and Allied Substances. 8vo, — Simple Method for Testing Painters' Materials. 8vo, Wright, F. W. Design of a Condensing Plant. 12mo, Wright, H. E. Handy Book for Brewers. 8vo, Wright, J. Testing, Fault Finding, etc., for Wiremen. (Installation Manuals Series.) 16mo, Wright, T. W. Elements of Mechanics 8vo.	*1 *3 *2 *1 *6 *0 *2	50 50 50 50 00
Vol. VIII. Cellulose Acetate. Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.)	*1 *3 *2 *1 *6 *0 *2 *3	50 50 50 50 00 50
Vol. VIII. Cellulose Acetate. Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.)	*1 *3 *2 *1 *6 *0 *2 *3 *2	50 50 50 50 50 00
Vol. VIII. Cellulose Acetate. Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.)	*1 *3 *2 *1 *6 *0 *2 *3 *2	50 50 50 50 00 50 50 00
Vol. VIII. Cellulose Acetate Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.) Wright, A. C. Analysis of Oils and Allied Substances. 8vo, — Simple Method for Testing Painters' Materials. 8vo, Wright, F. W. Design of a Condensing Plant. 12mo, Wright, H. E. Handy Book for Brewers. 8vo, Wright, J. Testing, Fault Finding, etc., for Wiremen. (Installation Manuals Series.) 16mo, Wright, T. W. Elements of Mechanics. 8vo, Wright, T. W., and Hayford, J. F. Adjustment of Observations. 8vo, Wright, T. W., and Sparagen, W. Handbook of Engineering Mathematics 8vo, Yoder, J. H., and Wharen, G. B. Locomotive Valves and Valve Gears, 8vo,	*1 *3 *2 *1 *6 *0 *2 *3 *2 *3	50 50 50 50 00 50 50 00
Vol. VIII. Cellulose Acetate. Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.)	*1 *3 *2 *1 *6 *0 *2 *3 *2 *3 *4	50 50 50 50 50 50 50 50 00
Vol. VIII. Cellulose Acetate. Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.)	*1 *3 *2 *1 *6 *0 *2 *3 *2 *3 *4 3	50 50 50 50 50 50 60 60 60 60
Vol. VIII. Cellulose Acetate. Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.)	*1 *3 *2 *1 *6 *0 *2 *3 *2 *3 *4 3	50 50 50 50 50 50 50 50 00
Vol. VIII. Cellulose Acetate Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.)	*1 *3 *2 *1 *6 *0 *2 *3 *4 3 3	50 50 50 50 50 50 60 60 60 60
Vol. VIII. Cellulose Acetate. Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.)	*1 *3 *2 *1 *6 *0 *2 *3 *2 *3 *4 3 3	50 50 50 50 50 60 50 60 60 60 60
Vol. VIII. Cellulose Acetate. Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.)	*1 *3 *2 *1 *6 *0 *2 *3 *4 *3 3 3 *2 *2 *3 *4 *3 *3 *4 *4 *4 *4 *4 *4 *4 *4 *4 *4 *4 *4 *4	50 50 50 50 50 50 60 60 60 60
Vol. VIII. Cellulose Acetate. Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.)	*1 *3 *2 *1 *6 *0 *2 *3 *4 *3 3 3 *2 *2	50 50 50 50 50 50 60 60 60
Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.)	*13**2**1**6 *0**2*******************************	00.50 50 50 50 50 50 60 60 60 60 60 60
Wren, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.)	*13**2**1**6 *0**2**3**3**3**3**3**3**3**3**3**3**3**3*	00.50 50 50 50 50 50 60 60 60 60 60 60
Wright, A. C. Analysis of Oils and Allied Substances	*13**2**1**6 *0**2**3 *2**3 *3**4 *3**3 *4**12	00- 50- 50- 50- 50- 00- 00- 50- 00- 00-
Wright, A. C. Analysis of Oils and Allied Substances	*13*2*16*6 *0*2*3 *2 *3*4*3 3 *2 *82*4 *12 4	00- 50- 50- 50- 50- 50- 60- 60- 60- 60- 60- 60- 60- 60- 60- 6
Wright, H. Organometallic Compounds of Zinc and Magnesium. (Chemical Monographs No. 1.) Wright, A. C. Analysis of Oils and Allied Substances. 8vo, — Simple Method for Testing Painters' Materials. 8vo, Wright, F. W. Design of a Condensing Plant. 12mo, Wright, H. E. Handy Book for Brewers. 8vo, Wright, J. Testing, Fault Finding, etc., for Wiremen. (Installation Manuals Series.). 16mo, Wright, T. W. Elements of Mechanics. 8vo, Wright, T. W., and Hayford, J. F. Adjustment of Observations. 8vo, Wynne, W. E., and Sparagen, W. Handbook of Engineering Mathematics 8vo, Yoder, J. H., and Wharen, G. B. Locomotive Valves and Valve Gears, Young, R. B. The Banket. 8vo, Young, R. B. The Banket. 8vo, Youngson. Slide Valve and Valve Gears. 8vo, Zahner, R. Transmission of Power. (Science Series No. 40.) 16mo, Zeidler, J., and Lustgarten, J. Electric Arc Lamps. 8vo, Zeuner, A. Technical Thermodynamics. Trans. by J. F. Klein. Two Volumes. 8vo, Zimmer, G. F. Mechanical Handling and Storing of Materials 4to, — Mechanical Handling of Material and Its National Importance During and After the War. 4to, Zipser, J. Textile Raw Materials. Trans. by C. Salter. 8vo,	*132**16 *022**** *3 *4 *3 3 *4 *82 *45	00- 50- 50- 50- 50- 00- 00- 50- 00- 00-
Wright, A. C. Analysis of Oils and Allied Substances	*13**2**6**6***3**********3********3********	00- 50- 50- 50- 50- 50- 60- 60- 60- 60- 60- 60- 60- 60- 60- 6

D. VAN NOSTRAND COMPANY

are prepared to supply, either from their complete stock or at short notice,

Any Technical or Scientific Book

In addition to publishing a very large and varied number of SCIENTIFIC AND ENGINEERING BOOKS, D. Van Nostrand Company have on hand the largest assortment in the United States of such books issued by American and foreign publishers.

All inquiries are cheerfully and carefully answered and complete catalogs sent free on request.

25 PARK PLACE

New York