

Trabalho Computacional — Matemática Discreta I — 2019/1

Professor: Francisco Duarte Moura Neto

Estagiários Docentes: Gustavo Barbosa Libotte e Vinícius Magno de Oliveira Coelho

e-mail do trabalho: iprjmatdisc1@gmail.com

Calculadora Financeira

Resumo

Descreve-se o projeto computacional previsto na programação da disciplina, e as regras que o regem.

Formação dos grupos

O presente trabalho deverá ser realizado em grupos de três alunos (dois grupos devem ter dois alunos). Apenas os dois primeiros grupos que se apresentem com dois membros através do e-mail acima poderão permanecer com dois membros. Todos os outros deverão ter três membros. Os grupos deverão ser formados até o dia 26 de abril, por e-mail.

É importante enfatizar que todos os membros do grupo deverão participar ativamente da elaboração do trabalho.

Etapas do trabalho

O projeto é constituído por três etapas principais:

- 1. Construção de um código-fonte em Python implementando um algoritmo que satisfaça as condições apresentadas na seção Descrição do problema;
- 2. Redação de um relatório que disserte sobre os pontos principais do algoritmo criado, dificuldades encontradas durante o processo de implementação do código e os resultados obtidos com a aplicação da interface gráfica em alguns exemplos. Um template com as principais seções que o relatório deve conter será enviado em breve.
- 3. Prova oral, com duração prevista de 20 a 30 minutos por grupo, para arguição sobre o projeto.

Sobre a avaliação do trabalho

A pontuação da arguição será individual. A nota do projeto será a média da avaliação do relatório, do código-fonte, e a arguição individual.

Dúvidas

As dúvidas devem ser tiradas com os estagiários-docentes. Para marcar reunião, envie um e-mail para combinar dia e hora com antecedência;

Descrição do problema

Para a compra de bens de consumos duráveis com valores elevados, tais como automóvel ou residência, torna-se necessária a utilização de uma instituição financeira que será a intermediária entre o comprador e o vendedor, realizando financiamento a curto, médio ou longo prazo, a depender do contexto. Estas instituições financeiras utilizam calculadoras financeiras onde são inseridos o valor do bem de consumo, a taxa de juros aplicado às parcelas, o número de parcelas e qual sistema de financiamento é utilizado. Os sistemas de financiamento que são comumente utilizados nestas operações são o Sistema de Amortização Constante (SAC) e o Sistema Price (comumente chamado de Tabela Price).

Suponha que você deseja fazer o financiamento de um bem de consumo que tenha o custo de R\$ 9.000,00 durante 12 meses com a taxa de juros de 2% ao mês. Utilizando as informações do valor do financiamento, a duração, a taxa de juros ao mês e o sistema de financiamento desejado constróem-se as Tabelas 1 e 2, que utilizam, respectivamente, o sistema SAC e Price para calcular os valores das respectivas parcelas mensais.

Tabela 1- Exemplo de financiamento utilizando o SAC

Parcela	Valor da Prestação	Amortização	Juros	Saldo devedor
0				R\$ 9.000,00
1	R\$ 930,00	R\$ 750,00	R\$ 180,00	R\$ 8.250,00
2	R\$ 915,00	R\$ 750,00	R\$ 165,00	R\$ 7.500,00
3	R\$ 900,00	R\$ 750,00	R\$ 150,00	R\$ 6.750,00
:	:	:	÷	:
12	R\$ 765,00	R\$ 750,00	R\$ 15,00	R\$ 0,00

Tabela 2- Exemplo de financiamento utilizando a Tabela Pri	ice
--	-----

Parcela	Valor da Prestação	Amortização	Juros	Saldo devedor
0				R\$ 9.000,00
1	R\$ 851,04	R\$ 671,04	R\$ 180,00	R\$ 8.328,96
2	R\$ 851,04	R\$ 684,46	R\$ 166,58	R\$7.644,51
3	R\$ 851,04	R\$ 698,15	R\$ 152,89	R\$ 6.946,36
÷	:	:	÷	:
12	R\$ 851,04	R\$ 834,35	R\$ 16,69	R\$ 0,00

A partir das informações expostas anteriormente, crie uma interface gráfica utilizando a linguagem de programação Python, que tenha as funcionalidades de uma calculadora financeira. A calculadora financeira deverá conter, pelo menos, a opção de se escolher o sistema de financiamento desejado, disponibilizar para o usuário o valor das parcelas, da amortização, dos juros e o saldo devedor. Outras funcionalidades que o grupo desejar incluir, são bem-vindas (por exemplo: inserir dados cadastrais do cliente, calcular juros totais, salvar simulações, editar simulações salvas, enviar por e-mail, impressão da simulação, limitação do valor do financiamento em função do rendimento do usuário, inclusão de parcelas de amortização semestral (ou outra periodicidade), etc)

Um exemplo: a calculadora da Caixa Econômica Federal

http://www8.caixa.gov.br/siopiinternet-web/simulaOperacaoInternet.do?method=inicializarCasoUso

Referência bibliográfica

M. Summerfield, Rapid GUI Programming with Python and Qt: the definitive guide to PyQt programming, Prentice Hall, Upper Saddle River, 2007.

Datas e prazos

- 24 de abril de 2019: entrega da proposta de trabalho aos alunos;
- 26 de abril: prazo limite para a formação dos grupos, por e-mail;
- 16 de junho: prazo limite para o envio do relatório e código-fonte, por e-mail;
- 19, 24 e 25 de junho: prova oral durante o horário da aula. Havendo necessidade, outros horários serão agendados.