May 17, 2023

[]: import pandas as pd

```
import pandas_datareader as pdr
     import numpy as np
     from statsmodels.api import OLS
     from statsmodels.tools import add_constant
[]: ff5_month = pdr.get_data_famafrench('F-F_Research_Data_5_Factors_2x3',_
      ⇔start='1963-07', end='2023-03')[0]
     ff5_month = ff5_month
     mom_month = pdr.get_data_famafrench('F-F_Momentum_Factor', start='1927-01', u
      →end='2023-03')[0]
     mom_month = mom_month
     ff5_month = ff5_month.reset_index()
     mom_month = mom_month.reset_index()
     ff5mom_month = ff5_month.merge(mom_month, on='Date', how='left')
     ff5mom_month = ff5mom_month.set_index('Date')
    /var/folders/sg/4dp480wd1cjd288xvby34rpr0000gn/T/ipykernel 30017/1568211615.py:1
    : FutureWarning: The argument 'date_parser' is deprecated and will be removed in
    a future version. Please use 'date_format' instead, or read your data in as
    'object' dtype and then call 'to_datetime'.
      ff5_month = pdr.get_data_famafrench('F-F_Research_Data_5_Factors_2x3',
    start='1963-07', end='2023-03')[0]
    /var/folders/sg/4dp480wd1cjd288xvby34rpr0000gn/T/ipykernel_30017/1568211615.py:1
    : FutureWarning: The argument 'date_parser' is deprecated and will be removed in
    a future version. Please use 'date_format' instead, or read your data in as
    'object' dtype and then call 'to_datetime'.
      ff5_month = pdr.get_data_famafrench('F-F_Research_Data_5_Factors_2x3',
    start='1963-07', end='2023-03')[0]
    /var/folders/sg/4dp480wd1cjd288xvby34rpr0000gn/T/ipykernel_30017/1568211615.py:3
    : FutureWarning: The argument 'date_parser' is deprecated and will be removed in
    a future version. Please use 'date_format' instead, or read your data in as
    'object' dtype and then call 'to_datetime'.
      mom_month = pdr.get_data_famafrench('F-F_Momentum_Factor', start='1927-01',
    end='2023-03')[0]
    /var/folders/sg/4dp480wd1cjd288xvby34rpr0000gn/T/ipykernel_30017/1568211615.py:3
    : FutureWarning: The argument 'date_parser' is deprecated and will be removed in
```

```
a future version. Please use 'date_format' instead, or read your data in as
    'object' dtype and then call 'to_datetime'.
      mom_month = pdr.get_data_famafrench('F-F_Momentum_Factor', start='1927-01',
    end='2023-03')[0]
[]: ff5_daily = pdr.get_data_famafrench('F-F_Research_Data_5_Factors_2x3_daily',__
      ⇒start='1963-07-01', end='2023-03-31')[0]
    ff5_daily = ff5_daily
    mom_daily = pdr.get_data_famafrench('F-F_Momentum_Factor_daily',__
      ⇔start='1926-11-03', end='2023-03-31')[0]
    mom_daily = mom_daily
    ff5_daily = ff5_daily.reset_index()
    mom daily = mom daily.reset index()
    ff5mom_daily = ff5_daily.merge(mom_daily, on='Date', how='left')
    ff5mom_daily = ff5mom_daily.set_index('Date')
    /var/folders/sg/4dp480wd1cjd288xvby34rpr0000gn/T/ipykernel_30017/3591460299.py:1
    : FutureWarning: The argument 'date_parser' is deprecated and will be removed in
    a future version. Please use 'date format' instead, or read your data in as
    'object' dtype and then call 'to_datetime'.
      ff5 daily = pdr.get_data_famafrench('F-F_Research_Data_5_Factors_2x3_daily',
    start='1963-07-01', end='2023-03-31')[0]
    /var/folders/sg/4dp480wd1cjd288xvby34rpr0000gn/T/ipykernel_30017/3591460299.py:3
    : FutureWarning: The argument 'date_parser' is deprecated and will be removed in
    a future version. Please use 'date_format' instead, or read your data in as
    'object' dtype and then call 'to_datetime'.
      mom_daily = pdr.get_data_famafrench('F-F_Momentum_Factor_daily',
    start='1926-11-03', end='2023-03-31')[0]
[]: ff5mom_month.dropna(inplace=True)
[]: ff5mom_month
[]:
             Mkt-RF
                      SMB
                                         CMA
                            HML
                                  RMW
                                               RF
                                                   Mom
    Date
    1963-07
              -0.39 -0.41 -0.97 0.68 -1.18 0.27
                                                     0.90
               5.07 -0.80 1.80 0.36 -0.35
    1963-08
                                             0.25
                                                     1.01
              -1.57 -0.52 0.13 -0.71 0.29
    1963-09
                                             0.27
                                                     0.19
    1963-10
              2.53 -1.39 -0.10 2.80 -2.01
                                             0.29
                                                     3.12
              -0.85 -0.88 1.75 -0.51 2.24
    1963-11
                                             0.27
                                                     -0.74
    2022-11
               4.60 -2.67 1.38 6.01 3.11 0.29
                                                    -2.01
    2022-12
              -6.41 -0.16 1.32 0.09 4.19 0.33
                                                     4.52
    2023-01
              6.65 4.43 -4.05 -2.62 -4.53 0.35
                                                   -15.98
              -2.58 0.69 -0.78 0.90 -1.41
    2023-02
                                             0.34
                                                     0.20
    2023-03
               2.51 -7.01 -9.01 1.92 -2.29 0.36
                                                    -2.52
```

[717 rows x 7 columns]

```
[]: # calculate rolling variance
     rolling_variance_daily = ff5mom_daily.rolling(22, min_periods=22).var()
     rolling_variance = rolling_variance_daily.resample('M').last().

drop(columns=['RF'])
[]: rolling_variance = rolling_variance ** -1
[]: rolling_variance = rolling_variance.reset_index()
[]: rolling_variance
[]:
               Date
                        Mkt-RF
                                      SMB
                                                 HML
                                                            RMW
                                                                        CMA
         1963-07-31
                      4.469762
                                47.760330
                                           26.396983 45.127324
                                                                 31.593416
         1963-08-31 11.500977
     1
                                29.715197
                                           25.290679
                                                      75.218573
                                                                 43.235757
     2
         1963-09-30
                      6.484129
                                19.019860
                                           28.526971
                                                      34.794397
                                                                 35.608309
     3
         1963-10-31
                      5.835389
                                12.909608
                                            8.586850 16.207967
                                                                 11.664752
                                                      10.765115 12.213660
     4
         1963-11-30
                      0.669356
                                 4.814682 12.504567
     712 2022-11-30
                                 4.052429
                                            0.814639
                                                       1.621913
                                                                   1.123394
                      0.314242
     713 2022-12-31
                                                                  2.285861
                      0.545313
                                 5.844314
                                            1.208067
                                                       2.663494
     714 2023-01-31
                      0.855394
                                 4.766012
                                            2.212627
                                                       3.374825
                                                                  2.648352
     715 2023-02-28
                      0.895622
                                 2.863532
                                            1.117726
                                                       3.761771
                                                                   1.721952
     716 2023-03-31
                      0.683783
                                 2.484213
                                            0.885675
                                                       3.738393
                                                                   2.976488
             Mom
     0
          12.978512
     1
          20.963409
     2
          13.757862
     3
          10.592710
     4
          1.562705
     . .
          0.196801
     712
    713
          0.578830
     714
           0.673593
     715
           0.368082
     716
           1.439367
     [717 rows x 7 columns]
[]: row_sums = rolling_variance.iloc[:, 1:].sum(axis=1)
     # Divide each entry by the sum of other entries in the row
     weighted_df = rolling_variance.iloc[:, 1:].div(row_sums, axis=0)
```

```
# Concatenate the 'Date' column with the weighted DataFrame
    weights = pd.concat([rolling variance['Date'], weighted_df], axis=1)
    weights.index = weights.Date
    weights = weights.drop(columns='Date')
    weights = weights.shift(1)
[]: weights = weights.reset_index()
[]: weights['Date'] = weights['Date'].dt.strftime('%Y-%m')
[]: weights = weights.dropna()
[]: weights.index = weights.Date
    weights = weights.drop(columns=['Date'])
[]: weights
[]:
               Mkt-RF
                            SMB
                                     HML
                                               RMW
                                                         CMA
                                                                Mom
    Date
    1963-08 0.026554 0.283737 0.156820 0.268094 0.187691 0.077103
    1963-09 0.055850 0.144301 0.122815 0.365272 0.209959 0.101801
    1963-10 0.046921 0.137634 0.206431 0.251784 0.257674 0.099556
    1963-11 0.088687 0.196203 0.130505 0.246332 0.177283 0.160990
    1963-12 0.015738 0.113206 0.294017 0.253118 0.287177 0.036744
    2022-11 0.031721 0.378612 0.147422 0.167967 0.210137 0.064141
    2022-12 0.038683 0.498858 0.100283 0.199659 0.138291 0.024226
    2023-01 0.041545 0.445251 0.092037 0.202919 0.174149 0.044098
    2023-02 0.058868 0.327994 0.152271 0.232253 0.182258 0.046356
    2023-03 0.083479 0.266904 0.104181 0.350627 0.160500 0.034308
    [716 rows x 6 columns]
[]: factor_returns = ff5mom_month[1:]
[]: weights.index = factor_returns.index
[]: excess_returns = (weights * ff5mom_month[['Mkt-RF', 'SMB', 'HML', 'RMW', 'CMA', 'Mom_
      ']]).sum(axis=1)
[]: def estimate_models(excess_returns, ff5):
        # CAPM Model
        X = add_constant(ff5[['Mkt-RF']].loc[excess_returns.index])
        capm_model = OLS(excess_returns, X).fit()
        # FF3 Model
        X = add_constant(ff5[['Mkt-RF', 'SMB', 'HML']].loc[excess_returns.index])
```

```
ff3_model = OLS(excess_returns, X).fit()
        # Carhart Model
        X = add_constant(ff5[['Mkt-RF', 'SMB', 'HML', 'RMW', 'CMA']].
     →loc[excess_returns.index])
        carhart model = OLS(excess returns, X).fit()
        print(ff5.columns)
        # FF5 Model
        X = add_constant(ff5[['Mkt-RF', 'SMB', 'HML', 'RMW', 'CMA', 'Mom
                                                                      ']].
     →loc[excess_returns.index,:])
        ff5 model = OLS(excess returns, X).fit()
        return capm_model, ff3_model, carhart_model, ff5_model
    factor_returns = ff5mom_month[['Mkt-RF','SMB','HML','RMW','CMA','Mom
                                                                      [['
    capm_model, ff3_model, carhart_model, ff5_model =_
     ⇔estimate_models(excess_returns, factor_returns)
   Index(['Mkt-RF', 'SMB', 'HML', 'RMW', 'CMA', 'Mom '], dtype='object')
[]: print(capm_model.summary())
    print(ff3_model.summary())
    print(carhart_model.summary())
    print(ff5_model.summary())
                             OLS Regression Results
    ______
   Dep. Variable:
                                        R-squared:
                                                                       0.005
                                     У
   Model:
                                                                       0.004
                                   OLS
                                        Adj. R-squared:
   Method:
                          Least Squares F-statistic:
                                                                       3.909
   Date:
                       Tue, 16 May 2023
                                        Prob (F-statistic):
                                                                      0.0484
   Time:
                              20:49:56
                                                                     -1038.9
                                       Log-Likelihood:
   No. Observations:
                                   717
                                        AIC:
                                                                       2082.
   Df Residuals:
                                        BIC:
                                                                       2091.
                                   715
   Df Model:
                                     1
   Covariance Type:
                             nonrobust
                           std err
                                                 P>|t|
                                                           Γ0.025
                                                                      0.975]
                   coef
                                                 0.000
                            0.039
                                                                       0.415
   const
                 0.3390
                                       8.730
                                                            0.263
   Mkt-RF
                -0.0170
                            0.009
                                      -1.977
                                                 0.048
                                                           -0.034
                                                                      -0.000
   ______
   Omnibus:
                                45.404
                                        Durbin-Watson:
                                                                       1.758
   Prob(Omnibus):
                                 0.000
                                        Jarque-Bera (JB):
                                                                    150.744
   Skew:
                                 0.194
                                        Prob(JB):
                                                                    1.85e-33
   Kurtosis:
                                 5.213
                                        Cond. No.
                                                                        4.57
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

========	=======		=====	=====	=========		
Dep. Variab	le:		У	R-sq	uared:		0.381
Model:			OLS	Adj.	R-squared:		0.378
Method:		Least Squ	ares	F-st	atistic:		146.0
Date:		Tue, 16 May	2023	Prob	(F-statistic)	:	9.25e-74
Time:		20:4	19:56	Log-	Likelihood:		-869.18
No. Observa	tions:		717	AIC:			1746.
Df Residual	s:		713	BIC:			1765.
Df Model:			3				
Covariance Type:		nonro	bust				
========				=========			
	coei	std err		t	P> t	[0.025	0.975]
const	0.2563	 3 0.031		 3.280	0.000	0.195	0.317
Mkt-RF	-0.0008	0.007	-(0.114	0.909	-0.015	0.013
SMB	0.0669	0.010	(6.345	0.000	0.046	0.087
HML	0.2034	0.010	19	9.493	0.000	0.183	0.224
0. 1)							
Omnibus:).245		in-Watson:		1.826
Prob(Omnibus):		0.000 Jarque-Bera (JB):					207.771

0.105 Prob(JB):

7.64e-46

Notes

Skew:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

Dep. Variable:		y R	-squared:		0.627		
Model:		OLS A	dj. R-squared	:	0.624		
Method:	Least Sq	uares F	-statistic:		238.7		
Date:	Tue, 16 May	2023 P	rob (F-statis	tic):	1.90e-149		
Time:	ne: 20:49:56 Log-			:	-687.65		
No. Observations:		717 A	IC:		1387.		
Df Residuals:		711 B	IC:		1415.		
Df Model:		5					
Covariance Type:	nonr	obust					
=======================================							
C	coef std err	•	t P> t	[0.025	0.975]		
const 0.1	.278 0.025	5.1	58 0.000	0.079	0.176		

Mkt-RF	0.0338	0.006	5.696	0.000	0.022	0.045
SMB	0.1211	0.009	14.013	0.000	0.104	0.138
HML	0.0810	0.011	7.312	0.000	0.059	0.103
RMW	0.2110	0.012	18.069	0.000	0.188	0.234
CMA	0.2556	0.017	15.129	0.000	0.222	0.289
========	========		.=======		:======:	
Omnibus:		90.	299 Durb	in-Watson:		1.754
Prob(Omnibu	s):	0.	000 Jarqı	ıe-Bera (JB):		416.154
Skew:		-0.	468 Prob	(JB):		4.30e-91
Kurtosis:		6.	613 Cond	. No.		5.19
========	========		========		:=======	========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

ULS Regression Results								
Dep. Variable:			У	_	ıared:		0.705	
Model:			OLS	Adj.	R-squared:		0.703	
Method: Lea		east Squa	res	F-sta	atistic:		282.9	
Date:	Tue,	16 May 2	2023	Prob	(F-statistic):		1.79e-184	
Time:		20:49	:56	Log-I	Likelihood:		-603.15	
No. Observations:			717	AIC:			1220.	
Df Residuals:			710	BIC:			1252.	
Df Model:			6	210.			1202.	
	nonrob	_						
Covariance Type:		попгор	oust					
					D> +		0.075]	
	coef 	std err 		t 	P> t 	[0.025	0.975]	
const 0.0	787	0.022	3	.524	0.000	0.035	0.123	
Mkt-RF 0.0)453	0.005	8	.479	0.000	0.035	0.056	
SMB 0.1	184	0.008	15	.396	0.000	0.103	0.133	
HML 0.1	172	0.010	11	.493	0.000	0.097	0.137	
RMW O.1	1974	0.010	18	.921	0.000	0.177	0.218	
CMA 0.2	2292	0.015	15	.132	0.000	0.199	0.259	
Mom O.O	723	0.005	13	.737	0.000	0.062	0.083	
Omnibus:		84.	243	Durbi	in-Watson:		1.731	
Prob(Omnibus):		0.	000	Jarqı	ıe-Bera (JB):		458.715	

Notes:

Skew:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

-0.353 Prob(JB):

6.854 Cond. No.

2.46e-100

5.35

```
[]: import matplotlib.pyplot as plt
     def get_rets(series):
         return np.log(((1 + series/100).cumprod()))
     # calculate log cumulative returns
     portfolio_cum_returns = get_rets(excess_returns)
     market_cum_returns = get_rets(factor_returns['Mkt-RF'])
     capm_cum_returns = get_rets(capm_model.predict())
     ff3_cum_returns = get_rets(ff3_model.predict())
     carhart_cum_returns = get_rets(carhart_model.predict())
     ff5_cum_returns = get_rets(ff5_model.predict())
     dt_index = excess_returns.index.to_timestamp()
     # plot
     plt.figure(figsize=(12, 8))
     plt.plot(dt_index, list(portfolio_cum_returns), label='Volatility-Managedu
      →Portfolio')
     plt.plot(dt_index, list(market_cum_returns), label='Market')
     plt.plot(dt_index, list(capm_cum_returns), label='capm', alpha=0.5)
     plt.plot(dt_index, list(ff3_cum_returns), label='ff3', alpha=0.5)
     plt.plot(dt_index, list(carhart_cum_returns), label='carhart', alpha=0.5)
     plt.plot(dt_index, list(ff5_cum_returns), label='ff5', alpha=0.5)
     plt.xlabel('Date')
     plt.ylabel('Log Cumulative Returns')
     plt.title('Log Cumulative Returns')
     plt.legend()
     plt.show()
```


- (b) It seems that the aggregat portfolio outperforms each composite portfolio. Significant alphas.
- (c) The volatility-managed portfolio produces alpha because it seeks to reduce risk by adjusting portfolio weights based on the volatility of the underlying assets. By doing this, the portfolio maintains a more stable performance during periods of high market volatility, which in turn leads to better risk-adjusted returns compared to the market.

However, the cumulative returns suggest that the volatility-managed portfolio does not beat the market since the turn of the century. This can be due to a few reasons: - Changing market conditions since the turn of the century, especially apparent with the effective flatline around 2008 - During periods of strong market performance, higher-risk assets tend to deliver better returns, resulting in this risk-averse strategy underperforming - During periods of low volatilty this portfolio is less effective