WEST Search History

DATE: Monday, September 09, 2002

Set Name	Query	Hit Count	
side by side		•	result set
DB = USP	T, $JPAB$, $EPAB$, $DWPI$, $TDBD$; $PLUR = YES$; $OP = OR$		
L4	liposome\$ same DOTAP same cholesterol	120	L4
L3	L1 and cholesterol	. 4	L3
L2	L1 anc cholesterol	34214	L2
L1	sandwich\$ adj3 liposome\$	6	L1

END OF SEARCH HISTORY

WEST

Generate Collection

Print

L1: Entry 3 of 6

File: USPT

Jul 7, 1998

DOCUMENT-IDENTIFIER: US 5776487 A

TITLE: Liposome reagents for immunoassays

Other Reference Publication (13):

Kenji Hosoda, et al., "Homogenous Immunoassay for X.sub.2 Plasmin Inhibitor (X.sub.2 PI) and X.sub.2 PI-Plasmin Complex. Application of a <u>Sandwich Liposome</u> Immune Lysis Assay (LILA) Technique," Journal of Immunological Methods, 121 (1989) 121-128.

Generate Collection Print

L4: Entry 117 of 120

File: USPT

Nov 23, 1993

DOCUMENT-IDENTIFIER: US 5264618 A

TITLE: Cationic lipids for intracellular delivery of biologically active molecules

Detailed Description Text (62):

According to one aspect of the invention, the CLs are combined with other lipids in formulations for the preparation of lipid vesicles or liposomes for use in intracellular delivery systems. The formulations preferably are prepared from a mixture of positively charged lipids, negatively charged lipids, neutral lipids and cholesterol or a similar sterol. The positively charged lipid can be one of the cationic lipids of the invention alone, a mixture of these, or one of the cationic lipids of the invention in combination with the cationic lipids DOTMA, DOTAP, or analogues thereof. Neutral and negatively charged lipids can be any of the natural or synthetic phospholipids or mono--, di-, or triacylglycerols. The natural phospholipids are typically those from animal and plant sources, such as phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, phosphatidylserine, or phosphatidylinositol. Synthetic phospholipids typically are those having identical fatty acid groups, including, but not limited to, dimyristoylphosphatidylcholine, dioleoylphosphatidylcholine, dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine and the corresponding synthetic phosphatidylethanolamines and phosphatidylglycerols. The neutral lipid can be phosphatidylcholine, cardiolipin, phosphatidylethanolamine, mono-, di- or triacylglycerols, or analogues thereof. The negatively charged lipid can be phosphatidylglycerol, phosphatidic acid or a similar phospholipid analog. Other additives such as cholesterol, glycolipids, fatty acids, sphingolipids, prostaglandins, gangliosides, neobee, niosomes, or any other natural or synthetic amphophiles can also be used in liposome formulations, as is conventionally known for the preparation of liposomes.