

EGZAMIN MATURALNY W ROKU SZKOLNYM 2013/2014

MATEMATYKA POZIOM PODSTAWOWY

ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA

Zadanie 1. (0–1)

	Opis wymagań	Poprawna odpowiedź (1 pkt)	
Obszar standardów		Wersja arkusza A	Wersja arkusza B
Wykorzystanie i interpretowanie reprezentacji	Interpretacja geometryczna układu dwóch równań liniowych z dwiema niewiadomymi (II.8.d)	A	C

Zadanie 2. (0–1)

Wykorzystanie	Stosowanie pojęcia procentu		
i interpretowanie	w obliczeniach (II.1.d)	В	C
reprezentacji			

Zadanie 3. (0–1)

Wykorzystanie i interpretowanie	Posługiwanie się wzorami skróconego mnożenia (II.2.a)	С	A
reprezentacji			

Zadanie 4. (0–1)

Wykorzystanie	Znajomość definicji		
i interpretowanie	logarytmu (II.1.h)	D	C
reprezentacji			

Zadanie 5. (0–1)

Wykorzystanie i interpretowanie	Rozwiązywanie prostych równań wymiernych (II.3.e)	C	В
reprezentacji			

Zadanie 6. (0–1)

Wykorzystanie	Wykorzystanie interpretacji		
i interpretowanie	współczynników we wzorze	В	D
reprezentacji	funkcji liniowej (II.4.g)		

Zadanie 7. (0–1)

Wykorzystanie	Rozwiązywanie zadań		
i interpretowanie	prowadzących do badania	D	\mathbf{A}
reprezentacji	funkcji kwadratowej (II.4.1)		

Kryie	ria oceniania oapowieazi – poziom poastav	vowy	
Zadanie 8. (0–1)			
Wykorzystanie i interpretowanie reprezentacji	Badanie równoległości prostych na podstawie ich równań kierunkowych (II.8.c)	D	A
Zadanie 9. (0–1)			
Użycie i tworzenie strategii	Wykorzystanie pojęcia wartości bezwzględnej (IV.1.f)	D	В
Zadanie 10. (0–1)			
Wykorzystanie i tworzenie informacji	Wyznaczanie miejsca zerowego funkcji kwadratowej (I.4.j)	В	D
Zadanie 11. (0–1) Wykorzystanie i interpretowanie reprezentacji	Wyznaczanie wyrazów ciągu określonego wzorem ogólnym (II.5.a)	A	D
Zadanie 12. (0–1) Wykorzystanie	Wykorzystuje własności	C	n
i interpretowanie reprezentacji	figur podobnych w zadaniach (II.7.b)	C	В
Zadanie 13. (0–1)			
Wykorzystanie i interpretowanie reprezentacji	Badanie, czy dany ciąg jest geometryczny (II.5.b)	D	A
Zadanie 14. (0–1)			
Wykorzystanie i tworzenie informacji	Stosowanie prostych związków między funkcjami trygonometrycznymi kąta ostrego (I.6.c)	A	В
Zadanie 15. (0–1)			
Wykorzystanie i interpretowanie reprezentacji	Posługiwanie się równaniem okręgu	В	С

reprezentacji

 $(x-a)^2 + (y-b)^2 = r^2$ (II.8.g)

Zadanie	16.	(0-1)	١
Lauaine	TO. 1	(V—I <i>)</i>	1

Wykorzystanie i interpretowanie reprezentacji	Znajdowanie związków miarowych w figurach płaskich, w tym	В	C
	z zastosowaniem		
	trygonometrii (II.7.c)		

Zadanie 17. (0–1)

Użycie i tworzenie strategii	Znajdowanie związków		
	miarowych w figurach	\mathbf{A}	D
	płaskich (IV.7.c)		

Zadanie 18. (0–1)

Wykorzystanie	Obliczanie wartości	A	
i interpretowanie	liczbowej wyrażenia		D
reprezentacji	wymiernego dla danej	A	В
	wartości zmiennej (II.2.e)		

Zadanie 19. (0–1)

Modelowanie matematyczne	Wyznaczanie związków		
	miarowych w wielościanach	\mathbf{A}	D
	(III.9.b)		

Zadanie 20. (0–1)

Modelowanie matematyczne	Wyznaczanie związków		
	miarowych w bryłach	C	В
	obrotowych (III.9.b)		

Zadanie 21. (0–1)

Wykorzystanie	Obliczanie potęgi		
i interpretowanie	o wykładniku wymiernym		
reprezentacji	oraz stosowanie praw działań	\mathbf{C}	В
	na potęgach o wykładnikach		
	wymiernych (II.1.g)		

Zadanie 22. (0–1)

` ,				
Wykorzystanie	Obliczanie potęgi			
i interpretowanie	o wykładniku wymiernym	В	\mathbf{A}	
reprezentacji	(II.1.g)			

Zadanie 23. (0–1)

Rozumowanie i argumentacja	Wykorzystanie sumy, iloczynu i różnicy zdarzeń do		
	obliczania	A	D
	prawdopodobieństw zdarzeń		
	(V.10.c)		

Zadanie 24. (0–1)

Użycie i tworzenie strategii	Zliczanie obiektów		
	w prostych sytuacjach	C	C
	kombinatorycznych	C	C
	(IV.10.b)		

Zadanie 25. (0–1)

Modelowanie matematyczne	Obliczanie mediany danych	D	A
	(111.2.0)		

Schemat oceniania zadań otwartych

Zadanie 26. (0–2)

Wykresem funkcji kwadratowej $f(x) = 2x^2 + bx + c$ jest parabola, której wierzchołkiem jest punkt W = (4,0). Oblicz wartości współczynników b i c.

Użycie i tworzenie strategii

Wyznaczanie wzoru funkcji kwadratowej (IV.4.i)

Rozwiązanie (I sposób)

Ze wzorów $x_w = -\frac{b}{2a}$, $y_w = -\frac{\Delta}{4a}$ na współrzędne wierzchołka paraboli otrzymujemy:

$$-\frac{b}{2 \cdot 2} = 4 \text{ i } -\frac{\Delta}{4 \cdot 2} = 0$$
, wifec $b = -16 \text{ i } \Delta = 0$.

Stąd
$$(-16)^2 - 4 \cdot 2 \cdot c = 0$$
, czyli $c = 32$.

Rozwiązanie (II sposób)

Wzór funkcji f doprowadzamy do postaci kanonicznej

$$f(x) = 2\left(x^2 + \frac{b}{2}x\right) + c = 2\left(x^2 + 2 \cdot \frac{b}{4}x + \frac{b^2}{16}\right) + c - \frac{b^2}{8} = 2\left(x + \frac{b}{4}\right)^2 + c - \frac{b^2}{8}.$$

Wierzchołek wykresu funkcji f ma zatem współrzędne $\left(-\frac{b}{4},c-\frac{b^2}{8}\right)$. Otrzymujemy układ równań

$$-\frac{b}{4} = 4 \text{ i } c - \frac{b^2}{8} = 0.$$

Stad
$$b = -16$$
 i $c = \frac{b^2}{8} = \frac{16^2}{8} = 32$.

Schemat oceniania I i II sposobu rozwiązania

- obliczy współczynnik b: b = -16 i na tym zakończy lub dalej popełnia błędy albo
 - zapisze układ dwóch równań z niewiadomymi b i c, np.: $-\frac{b}{4} = 4$ i $c \frac{b^2}{8} = 0$, i nie rozwiąże go lub rozwiąże go z błędem.

Rozwiązanie (III sposób)

Ponieważ $x_w = 4$ oraz $y_w = 0$, więc parabola ma z osią Ox dokładnie jeden punkt wspólny, zatem wzór funkcji można zapisać w postaci kanonicznej $f(x) = 2(x-4)^2$.

Stąd
$$f(x) = 2x^2 - 16x + 32$$
, zatem $b = -16$ i $c = 32$.

Schemat oceniania III sposobu rozwiązania

Zadanie 27. (0–2)

Rozwiąż równanie $9x^3 + 18x^2 - 4x - 8 = 0$.

Wykorzystanie i tworzenie	Rozwiązywanie równań wielomianowych metodą rozkładu
informacji	na czynniki (I.3.d)

Rozwiązanie (I sposób – metoda grupowania)

Przedstawiamy lewą stronę równania w postaci iloczynu, stosując metodę grupowania wyrazów $9x^2(x+2)-4(x+2)=0$ lub $x(9x^2-4)+2(9x^2-4)=0$, stąd $(x+2)(9x^2-4)=0$.

Zatem x = -2 lub $x = -\frac{2}{3}$ lub $x = \frac{2}{3}$.

Schemat oceniania I sposobu rozwiązania

Rozwiązanie (II sposób – metoda dzielenia)

Stwierdzamy, że liczba -2 jest pierwiastkiem wielomianu $9x^3 + 18x^2 - 4x - 8$. Dzielimy ten wielomian przez dwumian (x+2) i otrzymujemy iloraz $(9x^2-4)$. Obliczamy

pierwiastki trójmianu $(9x^2-4)$: $x_1=-\frac{2}{3}$ oraz $x_2=\frac{2}{3}$. Zatem x=-2 lub $x=-\frac{2}{3}$ lub $x=\frac{2}{3}$. albo

Stwierdzamy, że liczba $-\frac{2}{3}$ jest pierwiastkiem wielomianu $9x^3 + 18x^2 - 4x - 8$. Dzielimy ten wielomian przez dwumian $\left(x + \frac{2}{3}\right)$ i otrzymujemy iloraz $(9x^2 + 12x - 12)$. Obliczamy wyróżnik trójmianu $(9x^2 + 12x - 12)$: $\Delta = 12^2 - 4 \cdot 9 \cdot (-12) = 576$. Stąd pierwiastkami

trójmianu są liczby
$$x_1 = \frac{-12 - 24}{18} = -2$$
 oraz $x_2 = \frac{-12 + 24}{18} = \frac{2}{3}$. Zatem $x = -2$ lub $x = -\frac{2}{3}$ lub $x = \frac{2}{3}$.

albo

Stwierdzamy, że liczba $\frac{2}{3}$ jest pierwiastkiem wielomianu $9x^3+18x^2-4x-8$. Dzielimy ten wielomian przez dwumian $\left(x-\frac{2}{3}\right)$ i otrzymujemy iloraz $(9x^2+24x+12)$. Obliczamy wyróżnik trójmianu: $\Delta=24^2-4\cdot9\cdot12=144$. Stąd pierwiastkami trójmianu są liczby $x_1=\frac{-24-12}{18}=-2$ oraz $x_2=\frac{-24+12}{18}=-\frac{2}{3}$. Zatem x=-2 lub $x=-\frac{2}{3}$ lub $x=\frac{2}{3}$.

Schemat oceniania II sposobu rozwiązania

Zdający otrzymuje1 pkt gdy:

- podzieli wielomian $9x^3 + 18x^2 4x 8$ przez dwumian (x+2), otrzyma iloraz $(9x^2 4)$ i na tym poprzestanie lub dalej popełni błąd albo
- podzieli wielomian $9x^3 + 18x^2 4x 8$ przez dwumian $\left(x \frac{2}{3}\right)$, otrzyma iloraz $(9x^2 + 24x + 12)$ i na tym poprzestanie lub dalej popełni błąd albo
- podzieli wielomian $9x^3 + 18x^2 4x 8$ przez dwumian $\left(x + \frac{2}{3}\right)$, otrzyma iloraz $(9x^2 + 12x 12)$ i na tym poprzestanie lub dalej popełni błąd albo
 - podzieli wielomian $8x^3 + 12x^2 2x 3$ przez trójmian kwadratowy, np. $(9x^2 4)$, i na tym poprzestanie lub dalej popełni błąd.

Uwaga

Jeżeli w zapisie rozwiązania występuje jedna usterka, to za takie rozwiązanie zdający może otrzymać co najwyżej **1 punkt**.

Zadanie 28. (0–2)

Udowodnij, że każda liczba całkowita k, która przy dzieleniu przez 7 daje resztę 2, ma tę własność, że reszta z dzielenia liczby $3k^2$ przez 7 jest równa 5.

Rozumowanie i argumentacja	Przeprowadzenie dowodu algebraicznego z zastosowaniem
	wzorów skróconego mnożenia (V.2.a)

I sposób rozwiązania

Ponieważ liczba całkowita k przy dzieleniu przez 7 daje resztę 2, więc k=7m+2, gdzie m jest liczbą całkowitą. Wtedy

$$3k^2 = 3(7m+2)^2 = 3(49m^2 + 28m + 4) = 3 \cdot 49m^2 + 3 \cdot 28m + 12 = 7(3 \cdot 7m^2 + 3 \cdot 4m + 1) + 5.$$

Dwa pierwsze składniki tej sumy są podzielne przez 7, natomiast 12 = 7 + 5. To oznacza, że reszta z dzielenia liczby $3k^2$ przez 7 jest równa 5. To kończy dowód.

Schemat oceniania

II sposób rozwiązania

Ponieważ liczba całkowita k przy dzieleniu przez 7 daje resztę 2, więc $k \equiv 2 \pmod{7}$. Stąd wynika, że $k^2 \equiv 4 \pmod{7}$. Ponadto $3 \equiv 3 \pmod{7}$, więc z własności kongruencji $3k^2 \equiv 3 \cdot 4 \pmod{7} \equiv 12 \pmod{7} \equiv 5$. To kończy dowód.

Schemat oceniania

Uwaga

Zdający nie musi używać formalnego zapisu relacji kongruencji. Wystarczy wniosek: jeśli liczba *k* przy dzieleniu przez 7 daje resztę 2, to jej kwadrat przy dzieleniu przez 7 daje resztę 4.

Zadanie 29. (0–2)

Na rysunku przedstawiono fragment wykresu funkcji f, który powstał w wyniku przesunięcia wykresu funkcji określonej wzorem $y = \frac{1}{x}$ dla każdej liczby rzeczywistej $x \neq 0$.

- a) Odczytaj z wykresu i zapisz zbiór tych wszystkich argumentów, dla których wartości funkcji *f* są większe od 0.
- b) Podaj miejsce zerowe funkcji g określonej wzorem g(x) = f(x-3).

Wykorzystanie	Odczytywanie z wykresu funkcji jej własności; szkicowanie
i interpretowanie	na podstawie wykresu funkcji $y = f(x)$ wykresów funkcji
reprezentacji	y = f(x+a), $y = f(x-a)$, $y = f(x)+a$, $y = f(x)-a$ (IV.4.b,d)

Rozwiązanie

- a) Zapisujemy zbiór wszystkich argumentów, dla których f(x) > 0:(2,3).
- b) Z rysunku wynika, że miejscem zerowym funkcji f jest liczba 3. Zatem miejscem zerowym funkcji g jest liczba 3+3=6, ponieważ wykres funkcji g otrzymujemy przesuwając wykres funkcji f o 3 jednostki w prawo.

Schemat oceniania

Zdający otrzymuje1 pkt gdy:

• zapisze zbiór wszystkich argumentów, dla których f(x) > 0: (2,3) lub 2 < x < 3 i na tym poprzestanie lub błędnie zapisze miejsce zerowe funkcji g albo

• poprawnie zapisze miejsce zerowe funkcji g: x = 6 i na tym poprzestanie lub błędnie zapisze zbiór argumentów, dla których f(x) > 0.

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki

W rozwiązaniu podpunktu a) akceptujemy zapisy: (3, 2), $x \in (3, 2)$.

Zadanie 30. (0–2)

Ze zbioru liczb $\{1, 2, 3, 4, 5, 6, 7, 8\}$ losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A, polegającego na wylosowaniu liczb, z których pierwsza jest większa od drugiej o 4 lub 6.

Modelowanie matematyczne	Zliczanie obiektów w prostych sytuacjach
	kombinatorycznych; stosowanie twierdzenia znanego jako
	klasyczna definicja prawdopodobieństwa do obliczania
	prawdopodobieństw zdarzeń (III.10.b,d)

Rozwiązanie I sposób "metoda klasyczna"

Zdarzeniami elementarnymi są wszystkie pary (a, b) liczb z podanego zbioru. Jest to model klasyczny. Obliczamy liczbę wszystkich zdarzeń elementarnych: $|\Omega| = 8 \cdot 8 = 64$. Wypisujemy zdarzenia elementarne sprzyjające zajściu zdarzenia A, polegającego na wylosowaniu dwóch liczb, z których pierwsza jest większa od drugiej o 4 lub 6 i zliczamy je:

$$A = \{ (5, 1), (6, 2), (7, 1), (7, 3), (8, 2), (8, 4) \}$$

Zatem |A| = 6.

Zapisujemy prawdopodobieństwo zajścia zdarzenia *A*: $P(A) = \frac{6}{64} = \frac{3}{32}$.

Rozwiązanie II sposób "metoda tabeli"

Zdarzeniami elementarnymi są wszystkie pary (a,b) liczb z podanego zbioru. Jest to model klasyczny. Budujemy tabelę ilustrującą sytuację opisaną w zadaniu.

2.	1	2	3	4	5	6	7	8
1								
2								
3								
4								
5	X							
6		X						
7	X		X					
8		X		X				

Obliczamy liczbę wszystkich zdarzeń elementarnych: $|\Omega| = 8 \cdot 8 = 64$. Zliczamy, oznaczone krzyżykami, zdarzenia elementarne sprzyjające zajściu zdarzenia A, polegającego na wylosowaniu dwóch liczb, z których pierwsza jest większa od drugiej o 4 lub 6: |A| = 6.

Obliczamy prawdopodobieństwo zajścia zdarzenia *A*: $P(A) = \frac{6}{64} = \frac{3}{32}$.

Schemat oceniania I i II sposobu rozwiązania

Zdający otrzymuje 1 pkt gdy

- - obliczy liczbę wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A, polegającemu na wylosowaniu dwóch liczb, z których pierwsza jest większa od drugiej o 4 lub 6: |A| = 6 i na tym zakończy lub dalej popełni błędy.

III sposób rozwiązania "metoda drzewka"

Rysujemy drzewo, z uwzględnieniem wszystkich gałęzi, które prowadzą do sytuacji sprzyjającej zdarzeniu A.

Obliczamy prawdopodobieństwo zajścia zdarzenia A:

$$P(A) = \frac{1}{8} \cdot \frac{1}{8} + \frac{1}{8} \cdot \frac{1}{8} + \frac{1}{8} \cdot \frac{2}{8} + \frac{1}{8} \cdot \frac{2}{8} = \frac{6}{64} = \frac{3}{32}.$$

Schemat oceniania III sposobu rozwiązania

<u>Uwagi</u>

- 1. Akceptujemy przybliżenia dziesiętne otrzymanego wyniku, o ile są wykonane poprawnie oraz wynik zapisany w postaci 9,375%.
- 2. Jeżeli otrzymany wynik końcowy jest liczbą większą od 1, to zdający otrzymuje **0 punktów** za całe rozwiązanie.
- 3. Jeżeli zdający stosuje różne modele probabilistyczne do obliczenia $|\Omega|$ i |A|, to otrzymuje **0 punktów**.
- 4. Akceptujemy sytuację, gdy zdający zapisuje liczby z losowania w odwrotnej kolejności konsekwentnie w całym swoim rozwiązaniu. Wtedy za całe rozwiązanie może otrzymać **2 punkty**.
- 5. Jeżeli zdający zapisze tylko odpowiedź $P(A) = \frac{6}{64}$, to otrzymuje **2 punkty**, jeśli natomiast zapisze tylko odpowiedź $P(A) = \frac{3}{32}$, to otrzymuje **1 punkt**.

Zadanie 31. (0–2)

Środek S okręgu opisanego na trójkącie równoramiennym ABC, o ramionach AC i BC, leży wewnątrz tego trójkąta (zobacz rysunek).

Wykaż, że miara kąta wypukłego ASB jest cztery razy większa od miary kąta wypukłego SBC.

Rozumowanie i argumentacja	z wykorzystaniem związków miarowych w figurach płaskich
	(V.7.c)

Rozwiązanie

Przyjmijmy oznaczenia jak na rysunku i poprowadźmy promień SC okręgu.

Z założenia wynika, że kąt wpisany ACB oraz kąt środkowy ASB leżą po tej samej stronie cięciwy AB.

Z twierdzenia o kącie środkowym i wpisanym opartych na tym samym łuku wynika, że $|\Box ACB| = \frac{1}{2}\alpha$. Trójkąt ABC jest równoramienny (ramionami są AC i BC), więc prosta CS

zawiera dwusieczną kąta ACB, zatem $\square SCB| = \frac{1}{2} \square ACB| = \frac{1}{2} (\frac{1}{2}\alpha) = \frac{1}{4}\alpha$. Odcinki SC i SB to promienie okręgu, więc trójkąt BCS jest równoramienny. Stąd wynika, że $\beta = |\square SBC| = |\square SCB| = \frac{1}{4}\alpha$, co kończy dowód.

Schemat oceniania

 wykorzysta twierdzenie o kącie środkowym i wpisanym oraz wykorzysta równość kątów SBC i SCB lub równość kątów SCA i SAC i nie uzasadni tezy albo

• wykorzysta twierdzenie o kącie środkowym i wpisanym oraz uzasadni równość kątów *SBC* i *SAC*, korzystając z równoramienności trójkątów *ABC* i *ABS*, i nie uzasadni tezy.

Zdający otrzymuje2 pkt gdy uzasadni, że kat *ASB* jest cztery razy większy od kata *SBC*.

Uwaga

Jeżeli zdający w przedstawionym rozumowaniu rozważy wyłącznie szczególny przypadek, np. trójkąt równoboczny, to otrzymuje **0 punktów**.

Zadanie 32. (0–4)

Pole powierzchni całkowitej prostopadłościanu jest równe 198. Stosunki długości krawędzi prostopadłościanu wychodzących z tego samego wierzchołka prostopadłościanu to 1:2:3. Oblicz długość przekątnej tego prostopadłościanu.

Użycie i tworzenie strategii	Wyznaczanie związków miarowych w wielościanach
	(IV.9.b)

Rozwiązanie

Przyjmijmy oznaczenia jak na rysunku.

Pole P_c powierzchni całkowitej prostopadłościanu jest równe $P_c=2xy+2xz+2yz$. Możemy przyjąć, że x:y:z=1:2:3. Wtedy y=2x oraz z=3x. Zatem

$$P_c(x) = 2 \cdot x \cdot 2x + 2 \cdot x \cdot 3x + 2 \cdot 2x \cdot 3x = 4x^2 + 6x^2 + 12x^2 = 22x^2$$
.

Ponieważ $P_c = 198$, więc otrzymujemy równanie

$$22x^2 = 198$$

Stad $x^2 = 9$, wiec x = 3.

Z twierdzenia Pitagorasa zastosowanego dla trójkątów ABD i BDH otrzymujemy

$$p^2 = x^2 + y^2$$
 oraz $d^2 = p^2 + z^2$.

Stad

$$d^2 = x^2 + y^2 + z^2$$
.

Zatem

$$d = \sqrt{x^2 + y^2 + z^2} = \sqrt{x^2 + (2x)^2 + (3x)^2} = \sqrt{14x^2} = x\sqrt{14} = 3\sqrt{14}.$$

Schemat oceniania

- zapisze długości krawędzi prostopadłościanu wychodzących z jednego wierzchołka w zależności od jednej zmiennej, np.: x, 2x, 3x
 albo
 - zapisze długość przekątnej prostopadłościanu w zależności od długości jego krawędzi: $d = \sqrt{x^2 + y^2 + z^2}$.

Rozwiązanie, w którym jest istotny postęp2 pkt Zdający

• zapisze pole powierzchni całkowitej prostopadłościanu jako funkcję jednej zmiennej, np.: $P_c(x) = 2 \cdot x \cdot 2x + 2 \cdot x \cdot 3x + 2 \cdot 2x \cdot 3x$

albo

• zapisze długość przekątnej prostopadłościanu jako funkcję jednej zmiennej, np.: $d = \sqrt{x^2 + (2x)^2 + (3x)^2}$.

Uwagi

- 1. Jeżeli zdający odgadnie długość jednej z krawędzi prostopadłościanu i obliczy długość przekątnej tego prostopadłościanu, to otrzymuje maksymalnie **2 punkty**.
- 2. Jeżeli zdający błędnie uzależni długości krawędzi od jednej zmiennej, przyjmując: x, $\frac{1}{2}x$,
- $\frac{1}{3}x$, i konsekwentnie oblicza długość przekątnej tego prostopadłościanu, to otrzymuje maksymalnie **3 punkty**. Inne, niepoprawne interpretacje stosunków długości krawędzi, stanowią podstawę do przyznania za rozwiązanie **0 punktów**.

Zadanie 33. (0–5)

Turysta zwiedzał zamek stojący na wzgórzu. Droga łącząca parking z zamkiem ma długość 2,1 km. Łączny czas wędrówki turysty z parkingu do zamku i z powrotem, nie licząc czasu poświęconego na zwiedzanie, był równy 1 godzinę i 4 minuty. Oblicz, z jaką średnią prędkością turysta wchodził na wzgórze, jeżeli prędkość ta była o 1 km/h mniejsza od średniej prędkości, z jaką schodził ze wzgórza.

Modelowanie matematyczne	Rozwiązywanie zadań umieszczonych w kontekście praktycznym
	prowadzących do równań kwadratowych (III.3.b)

Rozwiązanie (I sposób)

Niech v oznacza średnią prędkość, wyrażoną w km/h, z jaką turysta schodził ze wzgórza, a *t* czas wyrażony w godzinach, w jakim zszedł ze wzgórza. Wówczas zależność między tą prędkością, czasem i przebytą drogą możemy zapisać w postaci

$$v \cdot t = 2.1$$

Średnia prędkość, z jaką turysta wchodził na wzgórze, jest zatem równa v-1, natomiast czas,

w jakim wszedł, jest równy $1\frac{4}{60} - t = 1\frac{1}{15} - t$. Możemy więc zapisać drugie równanie

$$\left(v-1\right)\cdot\left(\frac{16}{15}-t\right)=2,1.$$

Stąd otrzymujemy

$$\frac{16}{15}v - v \cdot t - \frac{16}{15} + t = \frac{21}{10}.$$

Po podstawieniu $v \cdot t = \frac{21}{10}$ otrzymujemy

$$\frac{16}{15}v - \frac{21}{10} - \frac{16}{15} + t = \frac{21}{10},$$
$$t = \frac{79}{15} - \frac{16}{15}v.$$

Podstawiając $t = \frac{79}{15} - \frac{16}{15}v$ w równaniu $v \cdot t = \frac{21}{10}$, otrzymujemy równanie kwadratowe z niewiadoma v

$$v\left(\frac{79}{15} - \frac{16}{15}v\right) = \frac{21}{10},$$

$$\frac{16}{15}v^2 - \frac{79}{15}v + \frac{21}{10} = 0,$$

$$32v^2 - 158v + 63 = 0,$$

$$\Delta = (-158)^2 - 4 \cdot 32 \cdot 63 = 16900, \ \sqrt{\Delta} = \sqrt{16900} = 130$$

$$v_1 = \frac{158 - 130}{2 \cdot 32} = \frac{28}{2 \cdot 32} = \frac{7}{16}, \ v_2 = \frac{158 + 130}{2 \cdot 32} = \frac{288}{2 \cdot 32} = \frac{9}{2}.$$

Pierwsze z rozwiązań równania nie spełnia warunków zadania, gdyż wtedy prędkość, z jaką turysta wchodziłby na wzgórze, byłaby ujemna, a to niemożliwe. Drugie rozwiązanie spełnia warunki zadania, gdyż wtedy v-1=4,5-1=3,5.

Odpowiedź: Średnia prędkość, z jaka turysta wchodził na wzgórze jest równa 3,5 km/h.

Rozwiązanie (II sposób)

Niech v oznacza średnią prędkość, wyrażoną w km/h, z jaką turysta schodził ze wzgórza. Wówczas czas, w jakim zszedł ze wzgórza, wyrażony w godzinach jest równy $\frac{2,1}{v}$. Ponieważ łączny czas wejścia i zejścia był równy 1 godzinę i 4 minuty, czyli $1\frac{4}{60} = 1\frac{1}{15} = \frac{16}{15}$ godziny, więc czas, w jakim wchodził, był równy $\frac{16}{15} - \frac{2,1}{v}$ godziny. Stąd z kolei wynika, że średnia prędkość, z jaką wchodził, była równa $\frac{2,1}{15} - \frac{2,1}{v}$ km/h. Otrzymujemy w ten sposób równanie

z niewiadomą v

$$\frac{2,1}{\frac{16}{15} - \frac{2,1}{v}} = v - 1,$$

$$\frac{21}{10} \cdot \frac{30v}{32v - 63} = v - 1,$$

$$\frac{63v}{32v - 63} = v - 1,$$

$$63v = (v - 1)(32v - 63),$$

$$63v = 32v^2 - 95v + 63,$$

$$32v^2 - 158v + 63 = 0,$$

$$\Delta = (-158)^2 - 4 \cdot 32 \cdot 63 = 16900, \ \sqrt{\Delta} = \sqrt{16900} = 130$$

$$v_1 = \frac{158 - 130}{2 \cdot 32} = \frac{28}{2 \cdot 32} = \frac{7}{16}, \ v_2 = \frac{158 + 130}{2 \cdot 32} = \frac{288}{2 \cdot 32} = \frac{9}{2}.$$

Pierwsze z rozwiązań równania nie spełnia warunków zadania, gdyż wtedy prędkość, z jaką turysta wchodziłby na wzgórze, byłaby ujemna. Drugie rozwiązanie spełnia warunki zadania, gdyż wtedy v-1=4,5-1=3,5.

Odpowiedź: Średnia prędkość, z jaką turysta wchodził na wzgórze jest równa 3,5 km/h.

Schemat oceniania I i II sposobu rozwiązania

 oznaczy prędkość średnią, wyrażoną w km/h, z jaką turysta schodził ze wzgórza oraz czas wyrażony w godzinach, w jakim schodził ze wzgórza, i zapisze zależność między średnią prędkością i czasem, w jakim turysta wchodził na wzgórze, np.:

v – średnia prędkość (w km/h), z jaką turysta schodził ze wzgórza

t – czas (w h), w jakim turysta schodził ze wzgórza

$$\left(v-1\right)\cdot\left(\frac{16}{15}-t\right)=2,1$$

albo

• oznaczy prędkość średnią, wyrażoną w km/h, z jaką turysta wchodził na wzgórze oraz czas wyrażony w godzinach, w jakim wchodził na wzgórze, i zapisze zależność między średnią prędkością i czasem, w jakim turysta schodził ze wzgórza, np.:

v – średnia prędkość (w km/h), z jaką turysta wchodził na wzgórze

t − czas (w h), w jakim turysta wchodził na wzgórze

$$(v+1)\cdot\left(\frac{16}{15}-t\right)=2,1$$

Uwaga

Zdający nie otrzymuje punktu, jeśli zapisze jedynie $v \cdot t = 2,1$.

Rozwiązanie, w którym jest istotny postęp2 pkt

Zdający

 zapisze układ równań z dwiema niewiadomymi v, t – odpowiednio prędkość i czas schodzenia turysty ze wzgórza, np.;

$$\begin{cases} (v-1) \cdot \left(\frac{16}{15} - t\right) = 2,1\\ v \cdot t = 2,1 \end{cases}$$

albo

 zapisze układ równań z dwiema niewiadomymi v, t – odpowiednio prędkość i czas wchodzenia turysty na wzgórze, np.;

$$\begin{cases} (v+1) \cdot \left(\frac{16}{15} - t\right) = 2, 1\\ v \cdot t = 2, 1 \end{cases}$$

albo

 oznaczy prędkość średnią (w km/h), z jaką turysta schodził ze wzgórza, i uzależni od tej wielkości prędkość średnią (w km/h), z jaką turysta wchodził na wzgórze, oraz czas, w jakim turysta wchodził na wzgórze, np.:

v – średnia prędkość (w km/h), z jaką turysta schodził ze wzgórza

v-1 to średnia prędkość (w km/h), z jaką turysta wchodził na wzgórze

$$\frac{2,1}{v-1}$$
 to czas (w h), w jakim turysta wchodził na wzgórze

albo

 oznaczy prędkość średnią (w km/h), z jaką turysta schodził ze wzgórza, i uzależni od tej wielkości czas (w h), w jakim turysta schodził ze wzgórza, oraz czas, w jakim turysta wchodził na wzgórze, np.:

v – średnia prędkość (w km/h), z jaką turysta schodził ze wzgórza

$$\frac{2,1}{v}$$
 to czas (w h), w jakim turysta schodził ze wzgórza

$$\frac{16}{15} - \frac{2,1}{v}$$
 to czas (w h), w jakim turysta wchodził na wzgórze

albo

 oznaczy prędkość średnią (w km/h), z jaką turysta schodził ze wzgórza, i uzależni od tej wielkości prędkość średnią (w km/h), z jaką turysta wchodził na wzgórze, oraz czas, w jakim turysta schodził ze wzgórza, np.:

v – średnia prędkość (w km/h), z jaką turysta schodził ze wzgórza

v-1 to średnia prędkość (w km/h), z jaką turysta wchodził na wzgórze

 $\frac{2.1}{v}$ to czas (w h), w jakim turysta schodził ze wzgórza.

Uwaga

Jeśli zdający wprowadza tylko jedną niewiadomą na oznaczenie jednej z czterech wielkości: czas wchodzenia, czas schodzenia, prędkość wchodzenia, prędkość schodzenia, to **2 punkty** otrzymuje wtedy, gdy uzależni od wprowadzonej zmiennej dwie z pozostałych trzech wielkości.

Pokonanie zasadniczych trudności zadania3 pkt Zdający

 zapisze równanie z jedną niewiadomą, gdy v, t – odpowiednio prędkość i czas schodzenia turysty ze wzgórza, np.;

$$v\left(\frac{79}{15} - \frac{16}{15}v\right) = 2,1$$

albo

 zapisze równanie z jedną niewiadomą, gdy v, t – odpowiednio prędkość i czas wchodzenia turysty na wzgórze, np.;

$$v\left(\frac{16}{15}v - \frac{47}{15}\right) = 2,1$$

albo

• oznaczy prędkość średnią (w km/h), z jaką turysta schodził ze wzgórza, i uzależni od tej wielkości prędkość średnią (w km/h), z jaką turysta wchodził na wzgórze, oraz czas, w jakim turysta wchodził na wzgórze i zapisze równanie z jedną niewiadomą, np.:

$$\frac{2,1}{v-1} + \frac{2,1}{v} = \frac{16}{15}$$

Uwaga

Zdający nie musi zapisywać układu równań, może bezpośrednio zapisać równanie z jedną niewiadoma.

 rozwiąże równanie z niewiadomą inną niż średnia prędkość schodzenia bezbłędnie i nie obliczy średniej prędkości schodzenia

albo

 rozwiąże równanie z niewiadomą v (średnia prędkość schodzenia) z błędem rachunkowym.

<u>Uwagi</u>

1. Zdający może pominąć jednostki, o ile ustalił je w toku rozwiązania i stosuje je konsekwentnie.

2. Jeżeli zdający oznaczy przez v prędkość, z jaką turysta wchodził na wzgórze i zapisze, że v-1 oznacza prędkość, z jaką turysta schodził ze wzgórza i konsekwentnie do przyjętych oznaczeń rozwiąże zadanie, to może otrzymać co najwyżej **3 punkty**.

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki

Przykład 1.

Jeśli zdający przedstawi następujące rozwiązanie:

v - prędkość, z jaką turysta schodził ze wzgórza, t - czas, w którym turysta schodził ze wzgórza i zapisze:

$$v-1 = \frac{2,1}{\frac{16}{15} - t}$$

$$\begin{cases} v \cdot t = 2,1 \\ (v-1)\frac{16}{15} - t = 2,1 \end{cases}$$

i na tym zakończy, to takie rozwiązanie kwalifikujemy do kategorii **Rozwiązanie, w którym jest istotny postęp** i przyznajemy **2 punkty**, mimo że w drugim równaniu układu zdający nie ujął wyrażenia $\frac{16}{15}-t$ w nawias. Zapis równania $v-1=\frac{2,1}{\frac{16}{15}-t}$ wskazuje na poprawną

interpretację zależności między wielkościami.

Przykład 2.

Jeśli zdający przedstawi następujące rozwiązanie:

v - prędkość, z jaką turysta schodził ze wzgórza, t - czas, w którym turysta schodził ze wzgórza i zapisze:

$$v-1 = \frac{2,1}{\frac{16}{15}-t} \qquad \begin{cases} v = \frac{2,1}{t} \\ v-1 = \frac{2,1}{\frac{16}{15}-t} \end{cases} \qquad \frac{2,1}{t}-1 = \frac{2,1}{\frac{15}{16}-t}, \qquad \frac{2,1}{t}-1 = \frac{2,1}{-t} \end{cases}$$

i na tym zakończy, to takie rozwiązanie kwalifikujemy do kategorii **Pokonanie zasadniczych** trudności zadania i przyznajemy 3 punkty, mimo że w równaniu $\frac{2,1}{t}-1=\frac{2,1}{\frac{15}{16}-t}$ zdający

przestawił liczby w liczniku i mianowniku ułamka $\frac{16}{15}$ lub nawet pominął ten ułamek.

Przykład 3.

Jeśli zdający otrzyma inne równanie kwadratowe, np. $-32v^2 + 158v + 63 = 0$ zamiast równania $32v^2 - 158v + 63 = 0$ (np. w wyniku złego przepisania znaku), konsekwentnie jednak rozwiąże otrzymane równanie kwadratowe, odrzuci rozwiązanie niespełniające

warunków zadania i pozostawi wynik, który może być realną prędkością poruszania się turysty, to takie rozwiązanie kwalifikujemy do kategorii **Rozwiązanie pełne** i przyznajemy **5 punktów**.

Zadanie 34. (0–4)

Kąt *CAB* trójkąta prostokątnego *ACB* ma miarę 30°. Pole kwadratu *DEFG* wpisanego w ten trójkąt (zobacz rysunek) jest równe 4. Oblicz pole trójkąta *ACB*.

Użycie i tworzenie strategii	Wykorzystanie własności figur podobnych w zadaniach
	(IV.7.b)

I sposób rozwiazania

Niech a oznacza długość boku kwadratu DEFG. Zatem a = 2.

Trójkat ADE to "połowa trójkata równobocznego" o boku AD i wysokości AE, więc

$$|AD| = 2a = 4 \text{ oraz } |AE| = \frac{|AD|\sqrt{3}}{2} = \frac{4\sqrt{3}}{2} = 2\sqrt{3}.$$

Trójkat GBF to "połowa trójkata równobocznego" o boku BG i wysokości FG, więc

$$|BG| = 2|BF| \text{ oraz } |FG| = \frac{|BG|\sqrt{3}}{2}.$$

Zatem
$$2 = \frac{|BG|\sqrt{3}}{2}$$
, wiec $|BG| = \frac{4}{\sqrt{3}}$ oraz $|BF| = \frac{1}{2}|BG| = \frac{1}{2} \cdot \frac{4}{\sqrt{3}} = \frac{2}{\sqrt{3}}$.

Trójkat ACB jest "połowa trójkata równobocznego" o boku AB. Obliczamy

$$|AB| = |AE| + |EF| + |BF| = 2\sqrt{3} + 2 + \frac{2}{\sqrt{3}} = 2\sqrt{3} + 2 + \frac{2}{3}\sqrt{3} = \frac{8}{3}\sqrt{3} + 2.$$

Pole trójkata ACB jest wiec równe

$$P_{ACB} = \frac{1}{2} \cdot \frac{\left|AB\right|^2 \sqrt{3}}{4} = \frac{\sqrt{3}}{8} \left(\frac{8}{3}\sqrt{3} + 2\right)^2 = \frac{\sqrt{3}}{8} \left(\frac{64}{3} + \frac{32}{3}\sqrt{3} + 4\right) = \frac{19}{6}\sqrt{3} + 4.$$

Uwaga

Podany sposób rozwiązania polega na rozwiązaniu trójkątów prostokątnych *ADE* i *BGF*. Tak samo możemy postąpić rozwiązując inną parę trójkątów prostokątnych: *ADE* i *DCG* lub *DCG* i *BGF*.

Schemat oceniania I sposobu rozwiązania

i poprawnie obliczy długość jednego z odcinków: |AD| = 4, $|AE| = 2\sqrt{3}$, $|BG| = \frac{4}{\sqrt{3}}$

$$|BF| = \frac{2}{\sqrt{3}}, |CD| = \sqrt{3}, |CG| = 1.$$

Pokonanie zasadniczych trudności zadania......3 pkt Zdający poprawnie obliczy długość jednego z boków trójkąta *ACB*:

$$|AB| = \frac{8}{3}\sqrt{3} + 2 \text{ lub } |BC| = \frac{4}{\sqrt{3}} + 1 \text{ lub } |AC| = \sqrt{3} + 4.$$

Rozwiązanie pełne4 pkt

Zdający obliczy pole trójkąta *ACB*: $P_{ACB} = \frac{19}{6}\sqrt{3} + 4$.

<u>Uwaga</u>

Jeżeli zdający zapisze wynik w innej, równoważnej postaci, to otrzymuje 4 punkty, np.:

$$P_{ACB} = \frac{\sqrt{3}}{8} \left(\frac{8}{3} \sqrt{3} + 2 \right)^2, \ P_{ACB} = \frac{1}{2} \left(4 + \sqrt{3} \right) \cdot \left(1 + \frac{4\sqrt{3}}{3} \right).$$

II sposób rozwiązania

Niech a oznacza długość boku kwadratu DEFG. Zatem a = 2.

Trójkąt ADE to "połowa trójkąta równobocznego" o boku AD, więc |AD| = 2a = 4. Zatem pole tego trójkąta jest równe

$$P_{ADE} = \frac{1}{2} \cdot \frac{|AD|^2 \sqrt{3}}{4} = \frac{4^2 \sqrt{3}}{8} = 2\sqrt{3}$$
.

Trójkąt GBF to także "połowa trójkąta równobocznego" o boku BG, więc |BG| = 2|BF|

Zatem $2 = \frac{|BG|\sqrt{3}}{2}$, więc $|BG| = \frac{4}{\sqrt{3}}$. Pole trójkąta GBF jest więc równe

$$P_{GBF} = \frac{1}{2} \cdot \frac{\left|BG\right|^2 \sqrt{3}}{4} = \frac{\left(\frac{4}{\sqrt{3}}\right)^2 \sqrt{3}}{8} = \frac{2}{3}\sqrt{3}.$$

Trójkąt DGC również jest "połową trójkąta równobocznego" o boku DG. Ponieważ |DG| = a = 2, więc pole tego trójkąta jest równe

$$P_{DCG} = \frac{1}{2} \cdot \frac{|DG|^2 \sqrt{3}}{4} = \frac{2^2 \sqrt{3}}{8} = \frac{\sqrt{3}}{2}.$$

Obliczamy pole trójkąta ACB

$$P_{ACB} = P_{ADE} + P_{GBF} + P_{DCG} + P_{DEFG} = 2\sqrt{3} + \frac{2}{3}\sqrt{3} + \frac{\sqrt{3}}{2} + 4 = \frac{19}{6}\sqrt{3} + 4.$$

Schemat oceniania II sposobu rozwiązania

Rozwiązanie, w którym jest istotny postęp2 pkt Zdający obliczy pole jednego z trójkątów *ADE*, *GBF*, *DCG*:

$$P_{ADE} = 2\sqrt{3}$$
, $P_{GBF} = \frac{2}{3}\sqrt{3}$, $P_{DCG} = \frac{\sqrt{3}}{2}$.

Pokonanie zasadniczych trudności zadania......3 pkt Zdający obliczy pole każdego z trójkątów *ADE*, *GBF*, *DCG*:

$$P_{ADE} = 2\sqrt{3}$$
, $P_{GBF} = \frac{2}{3}\sqrt{3}$, $P_{DCG} = \frac{\sqrt{3}}{2}$.

Rozwiązanie pełne4 pkt

Zdający obliczy pole trójkąta *ACB*: $P_{ACB} = \frac{19}{6}\sqrt{3} + 4$.

III sposób rozwiązania

Niech a oznacza długość boku kwadratu DEFG. Zatem a=2. Zauważmy, że trójkąt ACB jest podobny do trójkąta DCG

Trójkąt *DCG* to "połowa trójkąta równobocznego" o boku *DG* długości 2, więc jego pole jest równe

$$P_{DCG} = \frac{1}{2} \cdot \frac{|DG|^2 \sqrt{3}}{4} = \frac{2^2 \sqrt{3}}{8} = \frac{\sqrt{3}}{2}.$$

Wysokość CM tego trójkąta obliczymy wykorzystując wzór na jego pole

$$P_{DCG} = \frac{1}{2} \cdot |DG||CM| = \frac{1}{2} \cdot 2|CM| = |CM|,$$

więc $|CM| = \frac{\sqrt{3}}{2}$. Zatem wysokość *CN* trójkąta *ACB* opuszczona na *AB* jest równa

$$|CN| = |CM| + |MN| = \frac{\sqrt{3}}{2} + 2.$$

Skala podobieństwa trójkąta ACB do trójkąta DCG jest więc równa

$$\frac{|CN|}{|CM|} = \frac{\frac{\sqrt{3}}{2} + 2}{\frac{\sqrt{3}}{2}} = 1 + \frac{4}{\sqrt{3}}.$$

Ponieważ stosunek pól figur podobnych równy jest kwadratowi skali ich podobieństwa, więc

$$\frac{P_{ACB}}{P_{DCG}} = \left(1 + \frac{4}{\sqrt{3}}\right)^2 = 1 + \frac{8}{\sqrt{3}} + \frac{16}{3} = \frac{19}{3} + \frac{8}{\sqrt{3}}.$$

Stąd i z obliczonego wcześniej pola trójkąta DCG otrzymujemy

$$P_{ACB} = \left(\frac{19}{3} + \frac{8}{\sqrt{3}}\right) P_{DCG} = \left(\frac{19}{3} + \frac{8}{\sqrt{3}}\right) \frac{\sqrt{3}}{2} = \frac{19}{6}\sqrt{3} + 4.$$

Schemat oceniania III sposobu rozwiązania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania
Zdający obliczy długość boku kwadratu: 2.
Rozwiązanie, w którym jest istotny postęp
Pokonanie zasadniczych trudności zadania
$\frac{ CN }{ CM } = 1 + \frac{4}{\sqrt{3}}, \frac{P_{ACB}}{P_{DCG}} = \left(1 + \frac{4}{\sqrt{3}}\right)^{2}.$ Rozwiązanie pełne
Zdający obliczy pole trójkąta ACB : $P_{ABC} = \frac{19}{6}\sqrt{3} + 4$.