(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 12. April 2001 (12.04.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/25290 A1

MANTEL, Matthias; Deutelbacher Strasse 2, 63637 Jossgrund (DE). HEIDE, Wilfried; Am Wurmberg 16, 67251

(51) Internationale Patentklassifikation⁷: A61L 15/00

C08F 8/00.

Ulrich; Steinäckerstrasse 6, 60386 Frankfurt (DE). WEIS-

Freinsheim (DE).

(21) Internationales Aktenzeichen:

PCT/EP00/09019

19

(22) Internationales Anmeldedatum:

15. September 2000 (15.09.2000)

(74) Gemeinsamer Vertreter: BASF AKTIENGE-SELLSCHAFT; 67056 Ludwigshafen (DE).

(25) Einreichungssprache:

(71) Anmelder:

Deutsch

(81) Bestimmungsstaaten (national): BR, CA, JP, MX.

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

09/411,644 4. Oktober 1999 (04.10.1999) U

(84)

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

BASF AKTIENGESELLSCHAFT

[DE/DE]; 67056 Ludwigshafen (DE).

Veröffentlicht:

Mit internationalem Recherchenbericht.

(72) Erfinder: ENGELHARDT, Friedrich; Hünfelderstrasse 20, 60386 Frankfurt (DE). FRENZ, Volker; Siebenmorgenweg 8, 55246 Mainz-Kostheim (DE). HERFERT, Norbert; Obergasse 59a, 63674 Altenstadt (DE). RIEGEL,

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: MECHANICALLY STABLE HYDROGEL-FORMING POLYMERS

(54) Bezeichnung: MECHANISCH STABILE HYDROGEL-FORMENDE POLYMERE

(57) Abstract: The invention relates to a hydrogel-forming polymer with (i) a saline flow conductivity (SFC) of at least 40 x 10⁻⁷ cm³s/g, (ii) an AUL 0.7 psi (4826.5 Pa) of at least 20 g/g and (iii) a frangibility index of at least 60 %. The invention also relates to the production and the use thereof for receiving aqueous liquids.

(57) Zusammenfassung: Hydrogel-formendes Polymer mit: (i) einer Saline Flow Conductivity (SFC) von mindestens 40 x 10⁻⁷ cm³s/g; (ii) einer AUL 0,7 psi (4826,5 Pa) von mindestens 20 g/g; (iii) einem Frangibility-Index von mindestens 60 % deren Herstellung sowie deren Verwendung zur Aufnahme von wässrigen Flüssigkeiten.

Mechanisch stabile hydrogel-formende Polymere

Beschreibung

5

Die vorliegende Erfindung betrifft hydrogel-formende Polymere mit verbesserter mechanischer Stabilität, die eine AUL 0,7 psi von mindestens 20 g/g, eine Saline Flow Conductivity von mindestens 40 x 10⁻⁷ cm³s/g und einen Frangibility-Index von mindestens 60 % 10 aufweisen, deren Herstellung sowie die Verwendung dieser Polymere zur Aufnahme von wäßrigen Flüssigkeiten, insbesondere von Körperflüssigkeiten in Hygieneartikeln für Erwachsene und Babys.

Die hydrogel-formende Polymere zeichnen sich durch ein hohes
15 Aufnahmevermögen für Wasser und wäßrige Lösungen aus und finden
daher als superabsorbierende Polymere bevorzugt Anwendung als
Absorptionsmittel in Hygieneartikeln.

Der zunehmenden Tendenz, Hygieneartikel wie Baby- und Inkonti20 nenz-Windel immer kleiner und dünner gestalten, kann bei Beibehaltung der Gesamtabsorptionskapazität nur dadurch entsprochen
werden, daß man den großvolumigen Fluffanteil reduziert und den
Anteil an hochquellfähigem Hydrogel erhöht. Hierdurch müssen die
superabsorbierenden Polymere zusätzliche Aufgaben bezüglich Flüs25 sigkeitsaufnahme, -transport und -verteilung übernehmen, die vorher der Fluff erfüllt, um eine Leckage des Hygieneartikels aufgrund von Gel-blocking-Phänomenen zu verhindern.

Beispiele für Hygieneartikel mit einem höheren Anteil an hoch30 quellfähigem Hydrogel lehren die US-A-5 149 335, EP-A-532 002,
EP-A-615 736, EP-A-761 191 und US-A-5 562 646. Die Produkte weisen jedoch unbefriedigende Eigenschaften hinsichtlich des Flüssigkeitstransportes in gequollenem Zustand auf.

35 Die US-A-5 599 335 und US-A-5 669 894 beschreiben eine absorbierende Zusammensetzung, die mindestens eine Region mit einem superabsorbierendem Polymer in einer Konzentration von 60 - 100 Gew.-% enthält, wobei das superabsorbierende Polymer einen Saline Flow Conductivity-Wert von mindestens 30 x 10-7 cm³sec/g und eine Performance Under Pressure unter einer Druckbelastung von 0,7 psi (4826,5 Pa) von mindestens 23 g/g aufweist.

Für Hygieneartikel mit hohem Hydrogelanteil werden Hydrogele gefordert, die ein gutes Absorptionsvermögen unter Druckbelastung 45 sowie eine ausreichende Permeabilität in gequollenen Gelzustand aufweisen. Diese Eigenschaften weisen in der Regel stark vernetzte hydrogel-formende Polymere auf.

Durch die starke Vernetzung werden die hydrogel-formenden 5 Polymere jedoch sehr spröde, so daß sie im ungequollenen Zustand unter Einwirkung von mechanischen Kräften, wie sie beispielsweise bei pneumatischen Förderung auftreten z.B. bei der Herstellung des Hygieneartikels, leicht abgerieben oder sogar zerbrochen werden können. Durch den durch mechanische Belastung bedingten 10 Abrieb entstehen zum einen Staubanteile, zum anderen ist eine Verschlechterung der physikalisch-chemischen Produkteigenschaften zu verzeichnen. Feinstaub einer Korngröße kleiner 10 μm ist aus inhalationstoxischen Gründen unerwünscht, Feinstaubanteile kleiner 100 µm verursachen das visuell sichtbare Stauben mit all 15 seinen Folgeerscheinungen und führen zu Handlingsproblemen im Produktions- und Verarbeitungsbetrieb und sind daher ebenfalls unerwünscht. Der erhöhte Feinkornanteil bewirkt auch eine Verschlechterung der Absorptions- und Flüssigkeitsweiterleitungseigenschaften, da die aufgequollenen Feinkornpartikel die Poren in 20 der absorbierenden Struktur verstopfen. Im Falle von oberflächennachvernetzten hydrogel-formenden Polymeren wird darüber hinaus durch den mechanischen Abrieb die höher vernetzte Schale der Polymerpartikel zerstört, der niedrig vernetzte Kern kommt an die Oberfläche, so daß diese Partikel in der absorbierenden Struktur 25 Gel-blocking zeigen.

Es gibt verschiedene Ansätze die stark vernetzten Polymere durch eine zusätzliche Beschichtung gegenüber mechanischen Belastungen zu stabilisieren.

So werden in der EP-A-703 265 hydrophile, hochquellfähige Hydrogele beschrieben, die mit nicht reaktiven, wasserunlöslichen filmbildenden Polymeren beschichtet sind und so eine verbesserte Abriebfestigkeit aufweisen. Als bevorzugte filmbildende Polymere werden Homo- oder Copolymerisate von Vinylestern sowie Homo- oder Copolymerisate von Acryl- oder Methacrylsäureestern eingesetzt.

Die EP 755 964 lehrt die Beschichtung der Hydrogele mit nicht reaktiven, wasserunlöslichen Wachsen für eine verbesserte Abrieb-40 festigkeit. Als bevorzugte Wachse werden Montanwachse und Polyethylenwachse oder Oxidate von Polyethylenwachsen eingesetzt.

Der Nachteil beider Beschichtungen ist eine Hydrophobierung der Teilchenoberfläche, die zu einer Verschlechterung der Flüssig-45 keitsweiterleitung im Hygieneartikel führt. In der WO 94/22940 wird die Beschichtung von hydrogel-formenden Polymeren mit Polyetherpolyolen zur Entstaubung und Erhöhung der Abriebfestigkeit beschrieben. In Kontakt mit wäßrigen Flüssigkeiten kann diese Beschichtung jedoch abgelöst werden und erhöht dann die Viskosität der zu absorbierenden Flüssigkeit, was eine Verschlechterung der Flüssigkeitsaufnahme der absorbierenden Zusammensetzung zur Folge hat.

In der EP-A-690 077 ist die Polymerisation von Ether- und Hydro10 xylgruppen-haltigen Comonomeren wie zum Beispiel Polyethylenglykol(meth)acrylaten oder Polypropylenglykol(meth)-acrylaten zur
Verbesserung der Abriebfestigkeit beschrieben. Um den gewünschten
Effekt zu erzielen, müssen jedoch relativ große Anteile an diesen
Copolymeren eingesetzt werden, die selber keinen Beitrag zur os15 motischen Quellkraft der Hydrogele leisten und daher bezogen auf
das Gewicht eine Verschlechterung der Quellkapazität bewirken.

Der vorliegenden Erfindung lagen daher hydrogel-formende Polymere als Aufgabe zugrunde, die eine hohe mechanische Stabilität, ein 20 hohes Absorptionsvermögen unter Druckbelastung und eine hohe Permeabilität im gequollenen Zustand besitzen, ohne die obengenannten Nachteile aufzuweisen.

Demgemäß wurde gefunden, daß hydrogel-formende Polymere, mit
25 einer AUL 0,7 psi (4826,5 Pa) von mindestens 20 g/g, einer Saline Flow Conductivity von mindestens 40 x 10⁻⁷ cm³s/g und einem Frangibility-Index von mindestens 60 % diese Forderung erfüllen. Die vorliegende Erfindung betrifft weiterhin ein Verfahren zur Herstellung solcher hydrogel-formender Polymere sowie deren Verwendung zur Absorption von wäßrigen Flüssigkeiten, insbesondere von Körperflüssigkeiten in Hygieneartikel für Erwachsene und Babys.

Die erfindungsgemäßen Polymere sind erhältlich, indem man ein hydrogel-formendes Polymer mit einer Saline Flow Conductivity

35 (SFC) von mindestens 40 x 10⁻⁷ cm³s/g und einer AUL 0,7 psi (4826,5 Pa) von mindestens 20 g/g auf einen Restfeuchtigkeitsgehalt von mindestens 3 Gew.-%, bevorzugt 4 Gew.-% und insbesonders 5 Gew.-% bezogen auf das hydrogel-formende Polymer einstellt.

40 Unter Restfeuchtigkeitsgehalt ist die Feuchtigkeitsmenge zu verstehen, die während 3 h bei 105°C verdampft. Bevorzugt handelt es sich bei dem Restfeuchtigkeitsgehalt um Wasser. Der Zusatz geringer Mengen bis zu 20 Gew.-% eines wassermischbaren organischen Lösungsmittels im Gemisch mit Wasser ist möglich, hat jedoch in der Regel keinen verbesserten Effekt gegenüber reinem Wasser.

4

Polymere mit einer SFC ≥40 x 10⁻⁷ cm⁻³s/g und einer AUL 0,7 psi ≥20 g/g sind allgemein bekannt und beispielsweise in der US-A-5 599 335 und US-A-5 669 894 beschrieben. Bei diesen Polymeren handelt es sich um oberflächennachvernetzte Hydrogele. Die 5 Oberflächennachvernetzung bedingt den hohen Vernetzungsgrad des Polymers und damit die eingangs geschilderten Probleme.

Die Grundpolymere, welche anschließend oberflächennachvernetzt werden, sind vernetzte Polymere mit Säuregruppen, die überwiegend 10 in Form ihrer Salze, in der Regel Alkali- oder Ammoniumsalzen vorliegen. Derartige Polymere quellen bei Kontakt mit wässrigen Flüssigkeiten zu Gelen auf.

Derartige Grundpolymere sind beispielsweise Pfropf(co)polymere

15 von einem oder mehreren hydrophilen Monomeren auf eine geeignete
Pfropfgrundlage, vernetzte, Säuregruppen-tragende Cellulose- oder
Stärkeether und -ester, vernetzte Carboxymethylcellulose, oder in
wäßrigen Flüssigkeiten quellbare Naturprodukte mit Säuregruppen,
wie beispielsweise Alginate und Carrageenane.

20

Geeignete Pfropfgrundlagen können natürlichen oder synthetischen Ursprungs sein. Beispiele sind Stärke, Cellulose oder Cellulosederivate sowie andere Polysaccharide und Oligosaccharide, Polyvinylalkohol, Polyalkylenoxide, insbesondere Polyethylenoxide und

25 Polypropylenoxide, Polyamine, Polyamide sowie hydrophile Polyester. Geeignete Polyalkylenoxide haben beispielsweise die Formel

30

worin

35 R¹ und R² unabhängig voneinander Wasserstoff, Alkyl, Alkenyl oder Acryl,

X Wasserstoff oder Methyl und

40 n eine ganze Zahl von 1 bis 10000 bedeuten.

 R^1 und R^2 bedeuten bevorzugt Wasserstoff, (C_1-C_4) -Alkyl, (C_2-C_6) -Alkenyl oder Phenyl.

45 Bevorzugt sind Polymere, die durch vernetzende Polymerisation oder Copolymerisation von Säurengruppen tragenden monoethylenisch ungesättigten Monomeren oder deren Salzen erhalten werden. Ferner

ist es möglich, diese Monomere ohne Vernetzer zu (co)polymerisieren und nachträglich zu vernetzen.

Solche Säuregruppen tragenden Monomere sind beispielsweise monothylenisch ungesättigte C₃- bis C₂₅-Carbonsäuren oder Anhydride wie Acrylsäure, Methacrylsäure, Ethacrylsäure, α-Chloracrylsäure, Crotonsäure, Maleinsäure, Maleinsäureanhydrid, Itaconsäure, Citraconsäure, Mesaconsäure, Glutaconsäure, Aconitsäure und Fumarsäure. Weiterhin kommen monoethylenisch ungesättigte Sulfonoder Phosphonsäuren in Betracht, beispielsweise Vinylsulfonsäure, Allylsulfonsäure, Sulfoethylacrylat, Sulfoethylmethacrylat, Sulfopropylacrylat, Sulfopropylmethacrylat, 2-Hydroxy-3-acryloxy-propylsulfonsäure, 2-Hydroxy-3-methacryloxypropylsulfonsäure, Vinylphosphonsäure, Allylphosphonsäure, Styrolsulfonsäure und
2-Acrylamido-2-methylpropansulfonsäure. Die Monomeren können allein oder in Mischung untereinander eingesetzt werden.

Bevorzugt eingesetzte Monomere sind Acrylsäure, Methacrylsäure, Vinylsulfonsäure, Acrylamidopropansulfonsäure oder Mischungen

20 dieser Säuren, z.B. Mischungen aus Acrylsäure und Methacrylsäure, Mischungen aus Acrylsäure und Acrylamidopropansulfonsäure oder Mischungen aus Acrylsäure und Vinylsulfonsäure.

Zur Optimierung von Eigenschaften kann es sinnvoll sein, zusätzliche monoethylenisch ungesättigte Verbindungen einzusetzen, die keine Säuregruppe tragen, aber mit den säuregruppentragenden Monomeren copolymerisierbar sind. Hierzu gehören beispielsweise die Amide und Nitrile von monoethylenisch ungesättigten Carbonsäuren, z.B. Acrylamid, Methacrylamid und N-Vinylformamid,
30 N-Vinylacetamid, N-Methyl-N-vinylacetamid, Acrylnitril und Methacrylnitril. Weitere geeignete Verbindungen sind beispielsweise Vinylester von gesättigten C₁- bis C₄-Carbonsäuren wie Vinylformiat, Vinylacetat oder Vinylpropionat, Alkylvinylether mit mindestens 2 C-Atomen in der Alkylgruppe, wie z.B. Ethylvinyl35 ether oder Butylvinylether, Ester von monoethylenisch ungesättigten C₃- bis C₆-Carbonsäuren, z.B. Ester aus einwertigen C₁- bis C₁₈-Alkoholen und Acrylsäure, Methacrylsäure oder Maleinsäure, Halbester von Maleinsäure, z.B. Maleinsäuremonomethylester, N-

40 Acrylsäure- und Methacrylsäureester von alkoxylierten einwertigen, gesättigten Alkoholen, z.B. von Alkoholen mit 10 bis 25 C-Atomen, die mit 2 bis 200 Mol Ethylenoxid und/oder Propylenoxid pro Mol Alkohol umgesetzt worden sind, sowie Monoacrylsäureester und Monomethacrylsäureester von Polyethylenglykol oder

Vinyllactame wie N-Vinylpyrrolidon oder N-Vinylcaprolactam,

45 Polypropylenglykol, wobei die Molmassen (M_n) der Polyalkylenglykole beispielsweise bis zu 2000 betragen können. Weiterhin

geeignete Monomere sind Styrol und alkylsubstituierte Styrole wie Ethylstyrol oder tert.-Butylstyrol.

Diese keine Säuregruppen tragenden Monomere können auch in
5 Mischung mit anderen Monomeren eingesetzt werden, z.B. Mischungen aus Vinylacetat und 2-Hydroxyethylacrylat in beliebigem Verhältnis. Diese keine Säuregruppen tragenden Monomere werden der Reaktionsmischung in Mengen zwischen 0 und 50 Gew.-%, vorzugsweise kleiner 20 Gew.-% zugesetzt.

10

Bevorzugt werden vernetzte Polymere aus Säuregruppen tragenden monoethylenisch ungesättigten Monomeren, die gegebenenfalls vor oder nach der Polymerisation in ihre Alkali- oder Ammoniumsalze überführt werden, und aus 0 - 50 Gew.-% bezogen auf ihr Gesamtge
15 wicht keine Säuregruppen tragenden monoethylenisch ungesättigten Monomeren.

Bevorzugt werden vernetzte Polymere aus monoethylenisch ungesättigten C₃-C₁₂-Carbonsäuren und/oder deren Alkali- oder 20 Ammoniumsalzen. Insbesondere werden vernetzte Polyacrylsäuren bevorzugt, deren Säuregruppen zu 25 - 100 % als Alkali- oder Ammoniumsalze vorliegen.

Als Vernetzer können Verbindungen fungieren, die mindestens 2
25 ethylenisch ungesättigte Doppelbindungen aufweisen. Beispiele für Verbindungen dieses Typs sind N,N'-Methylen-bisacrylamid, Polyethylenglykoldiacrylate und Polyethylenglykoldimethacrylate, die sich jeweils von Polyethylenglykolen eines Molekulargewichts von 106 bis 8500, vorzugsweise 400 bis 2000, ableiten, Trimethylolpropantriacrylat, Trimethylolpropantrimethacrylat, Ethylenglykoldiacrylat, Propylenglykoldiacrylat, Butandioldiacrylat, Butandioldimethacrylat, Hexandioldiacrylat, Hexandioldimethacrylat, Allylmethacrylat, Diacrylate und Dimethacrylate von Blockcopolymerisaten aus Ethylenoxid und Propylenoxid, zweifach bzw.

35 mehrfach mit Acrylsäure oder Methacrylsäure veresterte mehrwertige Alkohole, wie Glycerin oder Pentaerythrit, Triallylamin,

- wertige Alkohole, wie Glycerin oder Pentaerythrit, Triallylamin, Dialkyldiallylammoniumhalogenide wie Dimethyldiallylammoniumchlorid und Diethyldiallylammoniumchlorid, Tetraallylethylendiamin, Divinylbenzol, Diallylphthalat, Polyethylenglykoldivinylether von
- 40 Polyethylenglykolen eines Molekulargewichts von 106 bis 4000, Trimethylolpropandiallylether, Butandioldivinylether, Pentaery-thrittriallylether, Umsetzungsprodukte von 1 Mol Ethylenglykoldiglycidylether mit 2 Mol Pentaerythritoltriallylether oder Allylalkohol, und/oder Divinyl-
- **45** ethylenharnstoff. Vorzugsweise setzt man wasserlösliche Vernetzer ein, z.B. N,N'-Methylenbisacrylamid, Polyethylenglykoldiacrylate und Polyethylenglykoldimethacrylate, die sich von Additionspro-

dukten von 2 bis 400 Mol Ethylenoxid an 1 Mol eines Diols oder Polyols ableiten, Vinylether von Additionsprodukten von 2 bis 400 Mol Ethylenoxid an 1 Mol eines Diols oder Polyols, Ethylenglykoldiacrylat, Ethylenglykoldimethacrylat oder Triacrylate und 5 Trimethacrylate von Additionsprodukten von 6 bis 20 Mol Ethylenoxid an 1 Mol Glycerin, und/oder Divinylharnstoff.

Als Vernetzer kommen außerdem Verbindungen in Betracht, die mindestens eine polymerisierbare ethylenisch ungesättigte Gruppe und 10 mindestens eine weitere funktionelle Gruppe enthalten. Die funktionelle Gruppe dieser Vernetzer muß in der Lage sein, mit den funktionellen Gruppen, im wesentlichen den Säuregruppen der Monomeren, zu reagieren. Geeignete funktionelle Gruppen sind beispielsweise Hydroxyl-, Amino-, Epoxi- und Aziridinogruppen. 15 Verwendung finden können z.B. Hydroxyalkylester der oben genannten monoethylenisch ungesättigten Carbonsäuren, z.B. 2-Hydroxyethylacrylat, Hydroxypropylacrylat, Hydroxybutylacrylat, Hydroxyethylmethacrylat, Hydroxypropylmethacrylat und Hydroxybutylmethacrylat, Allylpiperidiniumbromid, N-Vinylimidazole wie z.B. 20 N-Vinylimidazol, 1-Vinyl-2-methylimidazol und N-Vinylimidazoline wie N-Vinylimidazolin, 1-Vinyl-2-methylimidazolin, 1-Vinyl-2ethylimidazolin oder 1-Vinyl-2-propylimidazolin, die in Form der freien Basen, in quaternisierter Form oder als Salz bei der Polymerisation eingesetzt werden können. Außerdem eignen sich 25 Dialkylaminoalkylacrylate und Dialkylaminoalkylmethacrylate wie Dimethylaminoethylacrylat, Dimethylaminoethylmethacrylat,

als Salz eingesetzt. Weiterhin kann z.B. auch Glycidyl(meth)acry30 lat eingesetzt werden. Die Vernetzer sind in der Reaktionsmischung beispielsweise von 0,001 bis 20 und vorzugsweise von 0,01
bis 14 Gew.-% vorhanden.

Diethylaminoethylacrylat und Diethylaminoethylmethacrylat. Die basischen Ester werden vorzugsweise in quaternisierter Form oder

Die Polymerisation wird wie allgemein üblich durch einen Initiator ausgelöst. Auch eine Initiierung der Polymerisation durch
Einwirkung von Elektronenstrahlen auf die polymerisierbare,
wäßrige Mischung ist möglich. Die Polymerisation kann allerdings
auch in Abwesenheit von Initiatoren der obengenannten Art durch
Einwirkung energiereicher Strahlung in Gegenwart von Photoinitiatoren ausgelöst werden. Als Polymerisationsinitiatoren können sämtliche unter den Polymerisationsbedingungen in Radikale
zerfallende Verbindungen eingesetzt werden, z.B. Peroxide, Hydroperoxide, Wasserstoffperoxid, Persulfate, Azoverbindungen und die

sogenannten Redoxkatalysatoren. Bevorzugt ist der Einsatz von 45 wasserlöslichen Initiatoren. In manchen Fällen ist es vorteilhaft, Mischungen verschiedener Polymerisationsinitiatoren zu verwenden, z.B. Mischungen aus Wasserstoffperoxid und Natrium- oder

Kaliumperoxodisulfat. Mischungen aus Wasserstoffperoxid und Natriumperoxodisulfat können in jedem beliebigen Verhältnis verwendet werden. Geeignete organische Peroxide sind beispielsweise Acetylacetonperoxid, Methylethylketonperoxid, tert.-Butyl-5 hydroperoxid, Cumolhydroperoxid, tert.-Amylperpivalat, tert.-Butylperpivalat, tert.-Butylperneohexanoat, tert.-Butylperisobutyrat, tert.-Butyl-per-2-ethylhexanoat, tert.-Butylperisononanoat, tert.-Butylpermaleat, tert.-Butylperbenzoat, Di-(2-ethylhexyl)peroxidicarbonat, Dicyclohexylperoxydicarbonat, Di-(4-tert.-10 butylcyclohexyl)peroxidicarbonat, Dimyristilperoxidicarbonat, Diacetylperoxydicarbonat, Allylperester, Cumylperoxyneodecanoat, tert.-Butylper-3,5,5-trimethylhexanoat, Acetylcyclohexylsulfonylperoxid, Dilaurylperoxid, Dibenzoylperoxid und tert.-Amylperneodekanoat. Besonders geeignete Polymerisationsinitiatoren sind 15 wasserlösliche Azostarter, z.B. 2,2'-Azobis-(2-amidinopropan)dihydrochlorid, 2,2'-Azobis-(N,N'-dimethylen)isobutyramidin-dihydrochlorid, 2-(Carbamoylazo)isobutyronitril, 2,2'-Azobis[2-(2'imidazolin-2-y1)propan]dihydrochlorid und 4,4'-Azobis-(4-cyanovaleriansäure). Die genannten Polymerisationsinitiatoren werden 20 in üblichen Mengen eingesetzt, z.B. in Mengen von 0,01 bis 5, vorzugsweise 0,1 bis 2,0 Gew.-%, bezogen auf die zu polymerisierenden Monomeren.

Als Initiatoren kommen außerdem Redoxkatalysatoren in Betracht.

25 Die Redoxkatalysatoren enthalten als oxidierende Komponente mindestens eine der oben angegebenen Perverbindungen und als reduzierende Komponente beispielsweise Ascorbinsäure, Glukose, Sorbose, Ammonium- oder Alkalimetall-hydrogensulfit, -sulfit, -thiosulfat, -hyposulfit, -pyrosulfit oder -sulfid, Metallsalze, wie Eisen-II-ionen oder Natriumhydroxymethylsulfoxylat. Vorzugsweise verwendet man als reduzierende Komponente des Redoxkatalysators Ascorbinsäure oder Natriumsulfit. Bezogen auf die bei der Polymerisation eingesetzte Menge an Monomeren verwendet man beispielsweise 3·10-6 bis 1 Mol-% der reduzierenden Komponente des Redoxkatalysatorsystems und 0,001 bis 5,0 Mol-% der oxidierenden Komponente des Redoxkatalysators.

Wenn man die Polymerisation durch Einwirkung energiereicher Strahlung auslöst, verwendet man üblicherweise als Initiator

40 sogenannte Photoinitiatoren. Hierbei kann es sich beispielsweise um sogenannte α-Spalter, H-abstrahierende Systeme oder auch um Azide handeln. Beispiele für solche Initiatoren sind Benzophenon-Derivate wie Michlers-Keton, Phenanthren-Derivate, Fluoren-Derivate, Anthrachinon-Derivate, Thioxanton-Derivate, Cumarin-Derivate, Benzoinether und deren Derivate, Azoverbindungen wie die oben genannten Radikalbildner, substituierte Hexaarylbisimidazole oder Acylphosphinoxide. Beispiele für Azide sind: 2-(N,N-Dime-

thylamino)-ethyl-4-azidocinnamat, 2-(N,N-Dimethylamino)-ethyl-4-azidonaphthylketon, 2-(N,N-Dimethylamino)-ethyl-4-azidobenzoat, 5-Azido-1-naphthyl-2'-(N,N-dimethylamino)ethylsulfon, N-(4-Sulfo-nylazidophenyl)maleinimid, N-Acetyl-4-sulfonylazidoanilin,

- 5 4-Sulfonylazidoanilin, 4-Azidoanilin, 4-Azidophenacylbromid, p-Azidobenzoesäure, 2,6-Bis(p-azidobenzyliden)cyclohexanon und 2,6-Bis-(p-azidobenzyliden)-4-methylcyclohexanon. Die Photo-initiatoren werden, falls sie eingesetzt werden, üblicherweise in Mengen von 0,01 bis 5 Gew.-%, bezogen auf die zu polymerisieren10 den Monomeren angewendet.
- Ferner gibt es Vernetzer, die mindestens zwei gegenüber Säuregruppen reaktive Gruppen aufweisen. Diese Vernetzer können vor,
 während oder nach der radikalischen Polymerisation zugesetzt wer15 den. Die Umsetzung kann bei Raumtemperatur oder auch bei erhöhten
 Temperaturen bis zu 200°C, abhängig von der Reaktivität des
 Vernetzers, erfolgen. Davon abhängig handelt es sich um eine
 nachträgliche Vernetzung von Polymeren, die durch die Polymerisation der obengenannten monoethylenisch ungesättigten Säuren und
 20 gegebenenfalls monoethylenisch ungesättigten Comonomere hergestellt wurden und die ein Molekulargewicht größer 5000, bevorzugt
 größer 50000 aufweisen, oder eine parallel zum Kettenwachstum
 stattfindende Vernetzung.
- 25 Die geeigneten funktionellen Gruppen wurden bereits oben genannt, d.h. Hydroxyl-, Amino-, Epoxi-, Isocyanat-, Ester-, Amido- und Aziridinogruppen. Beispiele für solche Vernetzer sind Ethylenglykol, Diethylenglykol, Triethylenglykol, Tetraethylenglykol, Polyethylenglykol, Glycerin, Polyglycerin, Propylenglykol, Polypopylenglykol, Blockcopolymerisate aus Ethylenoxid und Propylenoxid, Ethanolamin, Sorbitanfettsäureester, ethoxylierte Sorbitanfettsäureester, Trimethylolpropan, Pentaerythrit, 1,3-Butandiol, 1,4-Butandiol, Polyvinylalkohol, Sorbit, Polyglycidylether wie
- Ethylenglykoldiglycidylether, Polyethylenglykoldiglycidylether,
 35 Glycerindiglycidylether, Glycerinpolyglycidylether, Diglycerinpolyglycidylether, Polyglycerinpolyglycidylether, Sorbitpolyglycidylether, Pentaerythritpolyglycidylether, Propylenglykoldiglycidylether und Polypropylenglykoldiglycidylether, Polyaziridinverbindungen wie 2,2-Bishydroxymethylbutanol-tris{3-(1-aziridi-
- 40 nyl)-propionat], 1,6-Hexamethylendiethylenharnstoff, Diphenylmethan-bis-4,4'-N,N'-diethylenharnstoff, Halogenepoxyverbindungen wie Epichlorhydrin und α -Methylepifluorhydrin, Polyisocyanate wie 2,4-Toluylendiisocyanat und Hexamethylendiisocyanat, Alkylencarbonate wie 1,3-Dioxolan-2-on und 4-Methyl-1,3-dioxolan-2-on,
- 45 weiterhin Bisoxazoline und Oxazolidone, Polyamidoamine sowie deren Umsetzungsprodukte mit Epichlorhydrin, ferner polyquaternäre Amine wie Kondensationsprodukte von Dimethylamin mit

10

Epichlorhydrin, Homo- und Copolymere von Diallyldimethylammoniumchlorid sowie Homo- und Copolymerisate von Dimethylaminoethyl-(meth)acrylat, die gegebenenfalls mit beispielsweise Methylchlorid quaterniert sind.

5

Weitere geeignete Vernetzer sind polyvalente Metallionen, die in der Lage sind, ionische Vernetzungen auszubilden. Beispiele für solche Vernetzer sind Magnesium-, Calcium-, Barium- und Aluminiumionen. Diese Vernetzer werden beispielsweise als Hydro-10 xyde, Carbonate oder Hydrogencarbonate der wäßrigen polymerisierbaren Lösung zugesetzt.

Weitere geeignete Vernetzer sind multifunktionelle Basen, die ebenfalls in der Lage sind, ionische Vernetzungen auszubilden, 15 beispielsweise Polyamine oder deren quaternierte Salze. Beispiele für Polyamine sind Ethylendiamin, Diethylentriamin, Triethylentetramin, Tetraethylenpentamin, Pentaethylenhexamin und Polyethylenimine sowie Polyvinylamine mit Molmassen von jeweils bis zu 4 000 000.

20

Die Vernetzer werden den Säuregruppe tragenden Polymeren oder Salzen in Mengen von 0,1 bis 25 Gew.-% bevorzugt von 0,1 bis 15 Gew.-%, bezogen auf die Menge des eingesetzten Polymers zugesetzt.

25

Die vernetzten Polymere werden vorzugsweise neutralisiert eingesetzt. Die Neutralisation kann jedoch auch nur teilweise erfolgt sein. Der Neutralisationsgrad beträgt bevorzugt 25 bis 100 %, insbesondere 50 bis 100 %. Als Neutralisationsmittel können

- 30 Alkalimetallbasen oder Ammoniak bzw. Amine eingesetzt werden. Vorzugsweise werden Natronlauge oder Kalilauge verwendet. Die Neutralisation kann jedoch auch mit Hilfe von Natriumcarbonat, Natriumhydrogencarbonat, Kaliumcarbonat oder Kaliumhydrogencarbonat oder anderen Carbonaten oder Hydrogencarbonaten vorge-
- 35 nommen werden. Darüberhinaus sind prim., sek. und tert. Amine einsetzbar.

Als technische Verfahren zur Herstellung dieser Produkte können alle Verfahren Anwendung finden, die üblicherweise bei der Her40 stellung von Superabsorbern eingesetzt werden, wie sie z.B. im Kapitel 3 in "Modern Superabsorbent Polymer Technology", F.L. Buchholz und A.T. Graham, Wiley-VCH, 1998 erläutert sind.

Bevorzugt ist die Polymerisation in wäßriger Lösung als soge-45 nannte Gel-Polymerisation. Dabei werden 10 bis 70 gew.-%ige wäßrige Lösungen der Monomere und gegebenenfalls einer geeigneten

11

Propfgrundlage in Gegenwart eines Radikalinitiators unter Ausnutzung des Trommsdorff-Norrish-Effektes polymerisiert.

Die Polymerisationsreaktion kann im Temperaturbereich zwischen 0 und 150°C, vorzugsweise zwischen 10 und 100°C, sowohl bei Normaldruck als auch unter erhöhtem oder erniedrigtem Druck durchgeführt werden. Wie üblich kann die Polymerisation auch in einer Schutzgasatmosphäre, vorzugsweise unter Stickstoff, ausgeführt werden.

10

Durch mehrstündiges Nachheizen der Polymerisatgele im Temperaturbereich 50 bis 130°C, vorzugsweise 70 bis 100°C, können die Qualitätseigenschaften der Polymerisate noch verbessert werden.

15 Die Oberflächennachvernetzung kann in an sich bekannter Weise mit getrockneten, gemahlenen und abgesiebten Polymerpartikeln geschehen.

Hierzu werden Verbindungen, die mit den funktionellen Gruppen der 20 Polymere unter Vernetzung reagieren können, vorzugsweise in Form einer wasserhaltigen Lösung auf die Oberfläche der Hydrogel-Partikel aufgebracht. Die wasserhaltige Lösung kann wassermischbare organische Lösungsmittel enthalten. Geeignete Lösungsmittel sind Alkohole wie Methanol, Ethanol, i-Propanol oder Aceton.

25

30

Geeignete Oberflächennachvernetzungsmittel sind beispielsweise

- Di- oder Polyglycidylverbindungen wie Phosphonsäurediglycidylether oder Ethylenglykoldiglycidylether, Bischlorhydrinether von Polyalkylenglykolen,
- Alkoxysilylverbindungen,
- Polyaziridine, Aziridin-Einheiten enthaltende Verbindungen 35 auf Basis von Polyethern oder substituierten Kohlenwasserstoffen, beispielsweise Bis-N-aziridinomethan,
 - Polyamine oder Polyamidoamine sowie deren Umsetzungsprodukte mit Epichlorhydrin,

40

45

- Polyole wie Ethylenglykol, 1,2-Propandiol, 1,4-Butandiol, Glycerin, Methyltriglykol, Polyethylenglykole mit einem mittleren Molekulargewicht Mw, von 200-10000, Di- und Polyglycerin, Pentaerythrit, Sorbit, die Oxethylate dieser Polyole sowie deren Ester mit Carbonsäuren oder der Kohlensäure wie Ethylencarbonat oder Propylencarbonat,

- Kohlensäurederivate wie Harnstoff, Thioharnstoff, Guanidin, Dicyandiamid, 2-Oxazolidinon und dessen Derivate, Bisoxazolin, Polyoxazoline, Di- und Polyisocyanate,

PCT/EP00/09019

- 5 Di- und Poly-N-methylolverbindungen wie beispielsweise Methylenbis(N-methylolmethacrylamid) oder Melamin-Formaldehyd-Harze,
- Verbindungen mit zwei oder mehr blockierten Isocyanat-Gruppen
 wie beispielsweise Trimethylhexamethylendiisocyanat blockiert mit 2,2,3,6-Tetramethyl-piperidinon-4.

Bei Bedarf können saure Katalysatoren wie beispielsweise p-Toluolsulfonsäure, Phosphorsäure, Borsäure oder Ammoniumdi-15 hydrogenphosphat zugesetzt werden.

Besonders geeignete Oberflächennachvernetzungsmittel sind Polyole wie 1,2-Propandiol oder 1,4-Butandiol, und Kohlensäurederivate wie Ethylencarbonat oder 2-Oxazolidinon.

20

Das Aufbringen der Vernetzerlösung erfolgt bevorzugt durch Aufsprühen einer Lösung des Vernetzers in herkömmlichen Reaktionsmischern oder Misch- und Trocknungsanlagen. Nach Aufsprühen der Vernetzerlösung kann ein Temperaturbehandlungsschritt nachfolgen,

- 25 bevorzugt in einem nachgeschalteten Trockner, bei einer Temperatur zwischen 80 und 230°C, bevorzugt 120 210°C, und besonders bevorzugt zwischen 160 und 190°C, über einen Zeitraum von 5 Minuten bis 6 Stunden, bevorzugt 10 Minuten bis 2 Stunden und besonders bevorzugt 10 Minuten bis 1 Stunde, wobei sowohl
- 30 Spaltprodukte als auch Lösungsmittelanteile entfernt werden können. Die Trocknung kann aber auch im Mischer selbst erfolgen, durch Beheizung des Mantels oder Einblasen eines vorgewärmten Trägergases.
- 35 Bedingt durch den Temperaturbehandlungsschritt der Oberflächennachvernetzung werden hydrogel-formende Polymere mit sehr geringem Restfeuchtigkeitsgehalt erhalten, typischerweise beträgt der
 Restfeuchtigkeitsgehalt kleiner 1 Gew.-%, oft sogar kleiner
 0,5 Gew.-%. Man nimmt an, daß der geringe Restfeuchtigkeitsgehalt
- **40** die Sprödigkeit der hydrogel-formenden Polymere erhöht, so daß diese Produkte nur eine geringe mechanische Stabilität aufweisen.

dieser Produkte beträchtlich.

Erfindungsgemäß steigert die Erhöhung des Restfeuchtigkeitsgehaltes auf mindestens 3 Gew.-%, bevorzugt mindestens 4 Gew.-% und 45 mehr bevorzugt von mindestens 5 Gew.-% die mechanische Stabilität

Bei Verwendung von Oberflächennachvernetzungsmitteln mit einer höheren Reaktivität beispielsweise Ethylenglykoldiglycidylether und dessen Mischungen ist es möglich durch schonendere Temperaturen direkt bei Erreichen eines Restfeuchtigkeitsgehaltes von min5 destens 3 Gew.-% die Umsetzung zu beenden.

Die bevorzugte Erhöhung der Restfeuchtigkeit erfolgt nach der Abreaktion des Oberflächennachvernetzungsmittels, d.h. nach dem Temperaturbehandlungsschritt. Bevorzugt erfolgt die Erhöhung der 10 Restfeuchtigkeit durch Aufsprühen von Wasser in dem Trockner nachgeschalteten Kühl- oder Mischaggregaten. Besonders bevorzugt ist das Aufsprühen von Wasser in einem dem Oberflächennachvernetzungs-Trockner nachgeschalteten Kühler, so daß die Abkühlung des heißen Produktes und die Erhöhung der Restfeuchte in einem 15 Schritt erfolgen kann. Die Temperatur des hydrogel-formenden Polymeren sollte bei dem Aufsprühen des Wassers maximal 100°C betragen, bevorzugt maximal 80°C und besonders bevorzugt maximal 60°C betragen. Optional können auch zwei oder mehrere hintereinander geschaltete Kühler verwendet werden, so daß zum Beispiel in 20 dem ersten Kühler das heiße Produkt zunächst auf eine Temperatur unter 100°C heruntergekühlt wird und anschließend im zweiten Kühler das Aufsprühen von Wasser und eine weitere Absenkung der Produkttemperatur erfolgt.

25 Bei dem Aufsprühen von Wasser auf hydrogel-formende Polymerteilchen kann es leicht zu unerwünschten Agglomerationen kommen. In einer bevorzugten Ausführung der vorliegenden Erfindung wird daher eine wäßrige Tensidlösung oder -dispersion zur Erhöhung der Restfeuchtigkeit aufgesprüht. Geeignet sind hierbei alle nichtionischen, anionischen, kationischen oder amphoteren Tenside mit einem HLB-Wert größer gleich 3 (Definition des HLB-Wertes: siehe W.C. Griffin, J. Soc. Cosmetic Chem. 5 (1954) 249).

Geeignete nichtionische Tenside sind beispielsweise die Anlagerungsprodukte von Ethylenoxid, Propylenoxid oder Mischungen aus
Ethylenoxid und Propylenoxid an Alkylphenole, aliphatische Alkohole, Carbonsäuren und Amine. Beispielsweise eignen sich mit
Ethylenoxid und/oder Propylenoxid alkoxylierte C₈- bis C₁₂-Alkylphenole. Handelsübliche Produkte dieser Art sind beispielsweise

40 Octylphenole bzw. Nonylphenole, die jeweils mit 4 bis 20 Mol
Ethylenoxid pro Mol Phenol umgesetzt sind. Andere nichtionische
Tenside sind ethoxylierte C₁₀- bis C₂₄-Fettalkohole oder ethoxylierte C₁₀- bis C₂₄-Fettsäuren sowie ethoxylierte C₁₀- bis
C₂₄-Fettamine oder ethoxylierte C₁₀- bis C₂₄-Fettsäureamide. Außerdem eignen sich partiell mit C₁₀- bis C₂₄-Fettsäuren partiell veresterte mehrwertige C₃- bis C₆-Alkohole. Diese Ester können zu-

sätzlich mit 2 bis 20 Mol Ethylenoxid umgesetzt sein. Als Fett-

alkohole, die zur Herstellung der Tenside alkoxylierte werden, eignen sich beispielsweise Palmitylalkohol, Stearylalkohol, Myristylalkohol, Laurylalkohol, Oxoalkohole sowie ungesättigte Alkohole, wie Oleylalkohol. Die Fettalkohole werden dabei zu einem solchen Grad ethoxyliert bzw. propoxyliert oder mit Ethylenoxid und Propylenoxid umgesetzt, daß die Reaktionsprodukte in Wasser löslich sind. Im allgemeinen setzt man 1 Mol der oben angegebenen Fettalkohole mit 2 bis 20 Mol Ethylenoxid und gegebenenfalls bis zu 5 Mol Propylenoxid so um, daß man Tenside erhält,

10 die einen HLB-Wert von mehr als 8 haben.

C₃- bis C₆-Alkohole, die partiell verestert und gegebenenfalls ethoxyliert werden, sind beispielsweise Glycerin, Sorbit, Mannit und Pentaerythrit. Diese mehrwertigen Alkohole werden mit C₁₀- bis 15 C₂₄-Fettsäure, z.B. Ölsäure, Stearinsäure oder Palmitinsäure, partiell verestert. Die Veresterung mit den Fettsäuren erfolgt dabei

tiell verestert. Die Veresterung mit den Fettsäuren erfolgt dabei höchstens bis zu einem solchen Grad, daß noch mindestens eine OH-Gruppe des mehrwertigen Alkohols unverestert bleibt. Geeignete Veresterungsprodukte sind beispielsweise Sorbitanmonooleat,

20 Sorbitantristearat, Manitmonooleat, Glycerinmonooleat und Glycerindioleat. Die genannten Fettsäureester mehrwertiger Alkohole, die noch mindestens eine freie OH-Gruppe enthalten, können zur Modifizierung noch mit Ethylenoxid, Propylenoxid oder Mischungen aus Ethylenoxid und Propylenoxid umgesetzt werden. Pro

25 Mol Fettsäureester verwendet man vorzugsweise 2 bis 20 Mol der genannten Alkylenoxide. Der Ethoxylierungsgrad hat bekanntlich einen Einfluß auf den HLB-Wert der nichtionischen Tenside. Durch geeignete Wahl der Alkoxylierungsmittel und der Menge an alkoxylierungsmittel kann man Tenside mit HLB-Werten in dem Bereich von 30 3 bis 20 in technisch einfacher Weise herstellen.

Eine weitere Gruppe geeigneter Substanzen sind Homopolymere des Ethylenoxids, Blockcopolymere von Ethylenoxid und Alkylenoxiden, vorzugsweise Propylenoxid sowie polyfunktionelle Blockcopolymere,

35 die beispielsweise durch sequentielle Addition von Propylenoxid und Ethylenoxid an Diamine gebildet werden.

Desweiteren geeignet sind Alkylpolyglykoside, wie APG[®], Glucopan[®] und Plantaren[®] der Fa. Henkel.

Die nichtionischen Tenside können entweder allein oder auch in Mischung miteinander verwendet werden.

40

Geeignete anionische Tenside sind C_8 - bis C_{24} -Alkylsulfonate, die 45 vorzugsweise in Form der Alkalisalze eingesetzt werden, C_8 - bis C_{24} -Alkylsulfate, die vorzugsweise in Form der Alkali- oder Trial-kanolammoniumsalze eingesetzt werden, wie z.B. Triethanolammoni-

umlaurylsulfat, Sulfonbernsteinsäurediester, z.B. das Natriumsalz von Sulfobernsteinsäuredi-(2-ethylhexyl)-ester, Sulfobernsteinsäurehalbester, wie beispielsweise Natriumlaurylsulfosuccinat oder Dinatriumfettalkoholpolyglykolethersulfosuccinat, Cg- bis C24-Alkylarylsulfonsäuren sowie die Schwefelsäurehalbester von Anlagerungsprodukten von Ethylenoxid an Alkylphenole oder Fettalkohole.

Beispiele für geeignete kationische Tenside sind die Salze von

10 Fettaminen, z.B. Kokosfettammoniumacetat, quarternäre Fettsäureaminoester, z.B. Difettsäureisopropylesterdimethyl-ammoniummethosulfat, quarternäre Fettsäureaminoamide, z.B. N-Undecylensäurepropylamido-N-trimethyl-ammoniummethosulfat, Anlagerungsprodukte
von Alkylenoxiden an Fettamine bzw. Salze von Fettaminen, wie

15 z.B. Pentaoxethylstearylammoniumacetat oder ethoxyliertes Methyloleinamin-Methosulfat sowie langkettige Alkylbenzyldimethylammoniumverbindungen, wie C10- bis C22-Alkylbenzyldimethylammoniumchlorid.

20 Beispiele für geeignete amphotere Tenside sind Verbindungen, die im gleichen Molekül mindestens ein quarternäres Ammoniumkation und mindestens ein Carboxylat- oder Sulfatanion tragen, wie beispielsweise Dimethylcarboxymethyl-Fettsäurealkylamidoammoniumbetaine oder 3-(3-Fettsäureamido-propyl)dimethylammonium-2hydroxypropansulfonate.

Die ionischen Tenside können allein oder auch in Mischung miteinander verwendet werden.

30 Die Tenside werden in Mengen von 0,001 bis 2,0, vorzugsweise 0,01 bis 0,5 Gew.-%, bezogen auf hydrogel-formendes Polymer, angewendet. Bevorzugt ist hierbei der Einsatz von nichtionischen oder anionischen Tensiden, besonders bevorzugt der Einsatz von nichtionischen Tensiden, wie die partiell mit (C₁₀-C₂₄)-Fettsäuren versesterten mehrwertigen (C₃-C₆)-Alkohole, die mit 2 - 20 Mol Ethylenoxid umgesetzt sind oder die zuvor genannten Veresterungsprodukte, die nicht mit Ethylenoxid umgesetzt sind.

In einer weiteren bevorzugten Ausführung der vorliegenden Erfin40 dung wird dem aufzusprühenden Wasser zur Erhöhung des Restfeuchtegehaltes der hydrogel-formenden Polymerpartikel ein Ethanolamin
der allgemeinen Formel (I) als Plastifizierhilfsmittel zugesetzt

$$(HOCH2CH2)xNR(3-x)$$
 (I), in der

16

x eine Zahl 1, 2 oder 3 bedeuten.

Die Konzentration des Ethanolamins der Formel I beträgt hierbei 0,001 bis 20 Gew.-% bezogen auf hydrogel-formendes Polymer,

- 5 bevorzugt 0,01 bis 10 Gew.-%, und besonders bevorzugt 0,5 bis 5 Gew.-%. Ein besonders bevorzugtes Ethanolamin der Formel (I) ist Triethanolamin. Gegebenenfalls kann der wäßrigen Ethanolamin-Lösung noch ein Tensid zugesetzt werden, um eine zu starke Agglomeration der hydrogel-formenden Polymerpartikel beim Aufsprühen
- 10 der Lösung zu verhindern. Hierfür geeignete Tenside sind bereits oben aufgeführt worden.

Die erfindungsgemäßen hydrogel-formenden Polymere zeigen eine verbesserte mechanische Stabilität, die durch den Frangibility-

- 15 Index charakterisiert werden kann. So beträgt der Frangibility-Index für die erfindungsgemäßen hydrogel-formenden Polymere mindestens 60 %, bevorzugt mindestens 70 %, insbesondere mindestens 80 % und ganz besonders bevorzugt mindestens 90 %.
- 20 Die erfindungsgemäßen hydrogel-formenden Polymere weisen weiterhin eine hohe Absorptionskapazität unter Druckbelastung auf. so beträgt die AUL 0,7 psi (4826,5 Pa) mindestens 20 g/g, bevorzugt mindestens 22 g/g und besonders bevorzugt mindestens 24 g/g. Die erfindungsgemäßen hydrogel-formenden Polymere weisen darüber hin-
- 25 aus eine hohe Permeabilität im gequollenen Zustand auf. So beträgt die Saline Flow Conductivity mindestens 40×10^{-7} cm³s/g, bevorzugt mindestens 50×10^{-7} cm³s/g, insbesondere mindestens 60×10^{-7} cm³s/g, und ganz besonders bevorzugt mindestens 80×10^{-7} cm³s/g.

30

Weiterhin betrifft die vorliegende Erfindung Hygieneartikel, umfassend

(A) eine obere flüssigkeitsdurchlässige Abdeckung

- (B) eine untere flüssigkeitsundurchlässige Schicht
- (C) einen zwischen (A) und (B) befindlichen Kern, enthaltend
- 40 (C1) 10 100 Gew.-% des erfindungsgemäßen hydrogel-formenden Polymers
 - (C2) 0 90 Gew.-% hydrophiles Fasermaterial
- **45** (D) gegebenenfalls eine sich unmittelbar oberhalb und unterhalb des Kerns (C) befindende Tissueschicht und

17

(E) gegebenenfalls eine sich zwischen (A) und (C) befindende Aufnahmeschicht.

Unter Hygieneartikel sind dabei sowohl Inkontinenzeinlagen und 5 Inkontinenzhosen für Erwachsene als auch Windeln für Babys zu verstehen.

Bei der flüssigkeitsdurchlässigen Abdeckung (A) handelt es sich um die Schicht, die direkten Hautkontakt hat. Das Material sind 10 übliche synthetische und halbsynthetische Fasern oder Filme wie Polyester, Polyolefine, Rayon oder natürliche Fasern wie Baumwolle. Bei nichtgewebten Materialien, sind die Fasern in der Regel durch Bindemittel wie Polyacrylate verbunden. Bevorzugte Materialien sind Polyester, Rayon und deren Blends, Polyethylen und Polypropylen.

Die flüssigkeitsundurchlässige Schicht (B) besteht in der Regel aus einer Folie aus Polyethylen oder Polypropylen.

- 20 Der Kern (C) enthält neben dem erfindungsgemäßen hydrogel-formenden Polymer (C1) hydrophiles Fasermaterial (C2). Unter hydrophil ist zu verstehen, daß sich wässrige Flüssigkeiten schnell über die Faser verteilen. Für gewöhnlich ist das Fasermaterial Cellulose, modifizierte Cellulose, Rayon, Polyester wie Polyethylen-
- 25 terephthalat. Besonders bevorzugt werden Cellulosefasern wie Zellstoff. Die Fasern haben in der Regel einen Durchmesser von 1 200 μ m, bevorzugt 10 10 μ m. Darüberhinaus haben die Fasern eine Mindestlänge von 1 mm.
- 30 Der Anteil des hydrophilen Fasermaterials bezogen auf die Gesamtmenge des Kern beträgt bevorzugt 10 80 Gew.-%, besonders bevorzugt 40 70 Gew.-%.

Der Aufbau und die Form von Windeln ist allgemein bekannt und 35 beispielsweise in der EP-A-0 316 518 und EP-A-0 202 127 beschrieben.

Die nachfolgenden Beispiele sollen die Erfindung näher erläutern.

40 Beschreibung der Testmethoden:

CRC (Centrifuge Retention Capacity):

Zu Bestimmung der CRC werden 0,2 g hydrogel-formendes Polymer

45 (Kornfraktion 106 - 850 µm) in einem 60 x 85 mm großen Teebeutel eingewogen, der anschließend verschweißt wird. Der Teebeutel wird dann in einem Überschuß von 0,9 gew-%iger Kochsalzlösung gegeben

(mindestens 0,83 l Kochsalz-Lösung / 1 g hydrogel-formendes Polymer). Nach 30 Minuten Quellzeit wird der Teebeutel aus der Kochsalz-Lösung genommen und bei 250 G drei Minuten zentrifugiert. Durch Wägung des zentrifugierten Teebeutels wird die von dem hydrogel-formenden Polymer festgehaltene Flüssigkeitsmenge ermittelt.

AUL 0,7 psi (4826,5 Pa)

10 Die Meßzelle zur Bestimmung der AUL 0,7 psi (4826,5 Pa) ist ein Plexiglas-Zylinder mit einem Innendurchmesser von 60 mm und einer Höhe von 50 mm, der an der Unterseite einen angeklebten Edelstahl-Siebboden mit einer Maschenweite von 36 µm besitzt. Zu der Meßzelle gehört weiterhin eine Plastikplatte mit einem Durch-15 messer von 59 mm und ein Gewicht, welches zusammen mit der Plastikplatte in die Meßzelle hineingestellt werden kann. Das Gewicht der Plastikplatte und des Gewichts beträgt zusammen 1345 g. Zur Durchführung der Bestimmung der AUL 0,7 psi (4826,5 Pa) wird das Gewicht des leeren Plexiglas-Zylinders und der Plastik-20 platte gemessen und als W_0 notiert. Dann werden 0,900 \pm 0,005 g hydrogel-formendes Polymer (Korngrößenverteilung: 150 - 800 μm) in den Plexiglas-Zylinder eingewogen und möglichst gleichmäßig auf dem Edelstahl-Siebboden verteilt. Anschließend wird die Plexiglasplatte vorsichtig in den Plexiglaszylinder hineingelegt, die 25 gesamte Einheit gewogen und das Gewicht als Wa notiert. Nun wird das Gewicht auf die Plastikplatte in dem Plexiglas-Zylinder gestellt. In die Mitte einer Petrischale mit einem Durchmesser von 200 mm und einer Höhe von 30 mm wird eine keramische Filterplatte mit einem Durchmesser von 120 mm und der Porosität 0 30 gelegt und soviel 0,9 gew.-%ige Natriumchlorid-Lösung eingefüllt, daß die Flüssigkeitsoberfläche mit der Filterplattenoberfläche abschließt, ohne das die Oberfläche der Filterplatte benetzt wird. Anschließend wird ein rundes Filterpapier mit einem Durchmesser von 90 mm und einer Porengröße <20 μm (Schwarzband 589 von 35 Schleicher & Schüll) auf die keramische Filterplatte gelegt. Der hydrogel-formendes Polymer enthaltende Plexiglaszylinder wird mit Plastikplatte und Gewicht nun auf das Filterpapier gestellt und dort für 60 Minuten belassen. Nach dieser Zeit wird die komplette Einheit aus der Petrischale vom Filterpapier herausgenommen und 40 anschließend das Gewicht aus dem Plexiglaszylinder entfernt. Der gequollenes Hydrogel enthaltende Plexiglaszylinder wird zusammen

mit der Plastikplatte ausgewogen und das Gewicht als Wb notiert.

AUL 0,7 psi = $[W_b-W_a] / [W_a-W_0]$

Die AUL 0,7 psi (4826,5 Pa) berechnet sich gemäß:

19

SFC (Saline Flow Conductivity):

Die Testmethode zur Bestimmung der SFC wird in der US-A-5 599 335 beschrieben.

5

Frangibility-Index:

Der Frangibility-Index stellt ein Maß zur Charakterisierung der mechanischen Stabilität der hydrogel-formenden Polymer-Partikel

10 dar. Zur Durchführung des Tests werden in eine zylindrische Porzellanmühle mit einem Innendurchmesser von 7,2 cm, einer inneren Höhe von 8,8 cm und einem Fassungsvermögen von ca. 360 mL 20 g hydrogel-formendes Polymer (gesamtes Kornspektrum) eingewogen. Es werden dann 127 g Porzellankörper (Abmessung: Durchmesser: 1,25 cm, Höhe: 1,25 cm, Gewicht: 5,3 g) hinzugegeben, die Mühle verschlossen und für 15 Minuten bei 150 Upm auf entsprechenden Walzenantrieb gerollt. Von dem hydrogel-formenden Polymer wird vor und nach dieser Behandlung die SFC bestimmt, so daß der Frangibility-Index wie folgt ermittelt werden kann:

20

Fragibility-Index = [SFC]_{nach} Kugelmühlentest x 100 % / [SFC]_{vor} Kugelmühlentest

Restfeuchtigkeitsgehalt:

25

10,000 g ± 0,01 g hydrogel-formendes Polymer werden in eine dicht abdeckbare Schale mit einem Innendurchmesser von 50 - 90 mm und einer Randhöhe von 20 - 30 mm eingewogen und gleichmäßig verteilt, so daß die Oberflächenbeladung der Schale mit hydrogel-

- 30 formendem Polymer nicht mehr als 0,3 g/cm² beträgt. Das Gewicht der hydrogel-formendes Polymer enthaltenden Schale und das Gewicht des zur Abdeckung der Schale vorgesehenen Deckels werden als M1 notiert. Die Schale mit dem hydrogel-formenden Polymer und der Deckel werden dann getrennt voneinander in einen auf 105 °C ±
- 35 2 °C vorgeheizten Trockenofen gestellt und dort 3 Stunden lang belassen. Nach dieser Zeit wird die Schale mit dem Deckel verschlossen und 30 Minuten in einen Exsikkator gestellt, um auf Raumtemperatur abzukühlen. Die Schale wird dann aus dem Exsikkator herausgenommen und innerhalb von 2 Minuten gewogen, das
- **40** Gewicht wird als M2 notiert. Der Restfeuchtigkeitsgehalt berechnet sich gemäß

Restfeuchtigkeitsgehalt = $[(M1 - M2)/(M1 - M0)] \times 100 \%$

20

mit M0 = Gewicht der leeren Schale und des Deckels; zur Bestimmung von M0 werden Schale und Deckel im Trockenschrank bei 105 °C getrocknet und anschließend im Exsikkator auf Raumtemperatur abgekühlt.

Es wird mindestens eine Doppelbestimmung durchgeführt, als Restfeuchtegehalt wird das arithmetische Mittel der Einzelmessungen angegeben.

10 Beispiel 1

- In einem 40 1-Plastikeimer werden 6,9 kg reine Acrylsäure mit 23 kg entionisiertem Wasser verdünnt. Zu dieser Lösung fügt man 62 g Pentaerythritoltriallylether unter Rühren hinzu, und inertisiert den verschlossenen Eimer durch Durchleiten von 15 Stickstoff. Die Polymerisation wird dann durch Zugabe von 0,4 g Wasserstoffperoxid, gelöst in 40 ml entionisiertem Wasser, und 0,2 g Ascorbinsäure, gelöst in 40 ml entionisiertem Wasser, gestartet. Nach Beendigung der Reaktion wird das Gel mechanisch zerkleinert, und mit soviel Natronlauge versetzt 20 bis ein Neutralisierungsgrad von 75 mol% bezogen auf die eingesetzte Acrylsäure erreicht wird. Das neutralisierte Gel wird dann auf einem Walzentrockner getrocknet, mit einer Stiftmühle gemahlen, und schließlich bei 200 - 850 µm abge-25 siebt.
- b) Das unter a) hergestellte Grundpolymer wurde in einem Lödige-Labormischer mit, bezogen auf Grundpolymer, 10,2 Gew.-% Vernetzer-Lösung, zusammengesetzt aus 49 Gewichtsanteilen Methanol, 49 Gewichtsanteilen entionisiertem Wasser und 2 Gewichtsanteilen 2-Oxazolidinon besprüht. Anschließend wurde das feuchte Produkt in einen zweiten vorgeheizten Lödige-Labormischer überführt und bei 195°C für 60 Minuten getempert. Das getrocknete und auf Raumtemperatur abgekühlte Produkt wurde bei 850 µm abgesiebt.
 - c) Das nach b) erhaltene oberflächennachvernetzte Polymer wurde nach dem Temperungsschritt in einen dritten Lödige Labormischer überführt und auf ca. 80°C abgekühlt. Bei ca.
- 75 80°C wurde das Polymer mit 4 Gew.-% entionisiertem Wasser, bezogen auf eingesetztes Polymer, besprüht und weiter auf Raumtemperatur abgekühlt. Die unerwünschten Grobanteile ≥850 μm wurden durch Sieben abgetrennt und der Frangibility-Index des Produktes bestimmt.

Beispiel 2

Oberflächenvernetztes Polymer gemäß Beispiel 1 b), wurde nach dem Temperungsschritt in einen dritten Lödige Labormischer überführt 5 und auf ca. 60°C abgekühlt. Bei ca. 55-60°C wurde das Polymer mit 6 Gew.-% entionisiertem Wasser bezogen auf eingesetztes Polymer besprüht und weiter auf Raumtemperatur abgekühlt. Die Grobanteile ≥850 µm wurden durch Sieben abgetrennt.

10 Beispiel 3

Oberflächenmodifiziertes Polymer gemäß Beispiel 1b, wurde nach dem Temperungsschritt in einen dritten Lödige Labormischer überführt und auf ca. 60°C abgekühlt. Bei ca. 55-60°C wurde das Polymer mit 5,15 Gew.-% bezogen auf eingesetztes Polymer einer Lösung aus 96,4 Gewichtsteilen entionisiertem Wasser und 3,6 Gewichtsteilen Sorbitanmonococoat besprüht und weiter auf Raumtemperatur abgekühlt. Die Grobanteile ≥850 µm wurden durch Sieben abgetrennt.

20 Beispiel 4

Oberflächenmodifiziertes Polymer gemäß Beispiel 1b, wurde nach dem Temperungsschritt in einen dritten Lödige Labormischer überführt und auf ca. 60°C abgekühlt. Bei ca. 55-60°C wurde das Polyzer mit 6,65 Gew.-% bezogen auf eingesetztes Polymer einer Lösung aus 60,1 Gewichtsteilen entionisiertem Wasser, 37,6 Gewichtsteilen Triethanolamin und 2,3 Gewichtsteilen Sorbitanmonococoat besprüht und weiter auf Raumtemperatur abgekühlt. Die Grobanteile ≥850 µm wurden durch Sieben abgetrennt.

Tabelle 1: Anwendungstechnische Daten der Polymere vor der mechanischen Beanspruchung in der Kugelmühle

35	Beispiel	Restfeuchte [Gew%]	SFC [10 ⁻⁷ cm ³ s/g]	AUL 0,7 psi [g/g]	CRC [g/g]
	Beispiel la	4,3	-	12,0	35,0
	Beispiel 1b	0,3	71	25,8	25,9
	Beispiel 1c	3,3	77	25,0	25,2
40	Beispiel 2	5,2	86	23,6	24,3
	Beispiel 3	4,4	84	24,0	25,2
	Beispiel 4	3,4	85	22,8	24,9

Tabelle 2: Anwendungstechnische Daten der Polymere nach der mechanischen Beanspruchung in der Kugelmühle (siehe Test zum Frangibility-Index)

10	Beispiel	Frangibi- lity-Index [%]	SFC [10 ⁻⁷ cm ³ s/g]	AAP 0,7 psi [g/g]	CRC [g/g]	Anteil >850 µm [Gew%]
	Beispiel 1b	39,4	28	21,9	25,5	-
	Beispiel 1c	63,6	49	23,5	25,0	14,7
	Beispiel 2	77,9	67	23,4	24,1	21,5
	Beispiel 3	82,1	69	23,7	25,1	3,1
	Beispiel 4	91,8	78	22,5	24,9	5,3

Die erfindungsgemäßen Polymere der Beispiele 1c, 2, 3 und 4 zeigen einen deutlich höheren Frangibility-Index als das nichterfindungsgemäße Polymer des Beispiels 1b.

Patentansprüche

1. Hydrogel-formendes Polymer mit

5

- (i) einer Saline Flow Conductivity (SFC) von mindestens $40 \times 10^{-7} \text{ cm}^3\text{s/g}$
- (ii) einer AUL 0,7 psi (4826,5 Pa) von mindestens 20 g/g

10

- (iii) einem Frangibility-Index von mindestens 60 %.
- Hydrogel-formendes Polymer nach Anspruch 1, dadurch gekenn-zeichnet, daß es eine Saline Flow Conductivity (SFC) von mindestens 50 x 10⁻⁷ cm³s/g besitzt.
 - Hydrogel-formendes Polymer nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß es eine AUL 0,7 psi (4826,5 Pa) von mindestens 22 g/g besitzt.

20

- 4. Hydrogel-formendes Polymer nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß es einen Frangibility-Index von mindestens 70 % besitzt.
- 25 5. Verfahren zur Herstellung von hydrogel-formenden Polymeren gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man das oberflächennachvernetzte Polymer auf einen Restfeuchtigkeitsgehalt von mindestens 3 Gew.-% einstellt.

30

- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Zugabe von Wasser in einem dem Oberflächennachvernetzungs-Trockner nachgeschalteten Kühler erfolgt.
- 35 7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß dem zuzugebenden Wasser ein Tensid mit einem HLB-Wert ≥3 zugesetzt wird.
- Verfahren nach den Ansprüchen 5 bis 7, dadurch gekennzeich net, daß dem zuzugebenden Wasser ein Ethanolamin der allgemeinen Formel (I)

(HOCH₂CH₂)_xNR_(3-x) (I), in der

24

R Wasserstoff, Methyl oder C2- bis C20-Alkyl und

x eine Zahl 1, 2 oder 3 bedeuten,

als Plastifizierhilfsmittel zugesetzt wird.

5

- 9. Verwendung der hydrogel-formenden Polymere gemäß einem oder mehreren der Ansprüche 1 bis 4 in Hygieneartikeln.
- 10. Hygieneartikel umfassend

10

- (a) eine obere flüssigkeitsdurchlässige Abdeckung
- (B) eine untere flüssigkeitsundurchlässige Schicht
- 15 (C) einen zwischen (A) und (B) befindlichen Kern, enthaltend
 - (C1) 10 100 Gew.-% eines hydrogel-formenden Polymers gemäß einem oder mehreren der Ansprüche 1 bis 4.
- 20 (C2) 0 90 Gew.-% hydrophiles Fasermaterial
 - (D) gegebenenfalls eine sich unmittelbar oberhalb und unterhalb des Kerns (C) befindende Tissueschicht und
- 25 (E) gegebenenfalls eine sich zwischen (A) und (C) befindende Aufnahmeschicht.

30

35

WO 01/25290

25

Mechanisch stabile hydrogel-formende Polymere

Zusammenfassung

5

Hydrogel-formendes Polymer mit

(i) einer Saline Flow Conductivity (SFC) von mindestens $40 \times 10^{-7} \text{ cm}^3\text{s/g}$

10

- (ii) einer AUL 0,7 psi (4826,5 Pa) von mindestens 20 g/g
- (iii) einem Frangibility-Index von mindestens 60 %
- 15 deren Herstellung sowie deren Verwendung zur Aufnahme von wäßrigen Flüssigkeiten.

20

25

30

35

40

inter inal Application No PCT/EP 00/09019

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 COSF 8/00 A61L15/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\begin{array}{ll} \mbox{Minimum documentation searched (classification system followed by classification symbols)} \\ \mbox{IPC 7} & \mbox{C08F} & \mbox{A61L} & \mbox{C08K} \\ \end{array}$

Documentation searched other than minimum documentation to the extent that such documents are included. In the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

PAJ, WPI Data, EPO-Internal

Category °	Citation of document, with indication, where appropriate, of the relevant passages	, Relevant to claim No.
Y	WO 99 34841 A (THE PROCTER & GAMBLE COMPANY) 15 July 1999 (1999-07-15) page 8 -page 9 page 16 -page 17; claims 1-57	1-10
Υ . · ·	US 5 599 335 A (S. A. GOLDMAN) 4 February 1997 (1997-02-04) cited in the application claims 1-40	1-10
Y	EP 0 610 013 A (NIPPON SHOKUBAI CO., LTD.) 10 August 1994 (1994-08-10) page 4, line 18 -page 5, line 48 page 6, line 51 -page 7, line 31 page 10; claims 1-12 -/	1-10

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international filing date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filing date but later than the priority date claimed	 *T* tater document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. *&* document member of the same patent family
Date of the actual completion of the International search . 22 December 2000	Date of mailing of the international search report 05/01/2001
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Permentier, W

Inter anal Application No
PCT/EP 00/09019

		PC1/EP 00/09019
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Industrial Na
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP 0 509 708 A (THE DOW CHEMICAL COMPANY) 21 October 1992 (1992-10-21) page 3, line 33 - line 57 page 4, line 13 -page 5, line 56; claims 1-10	1-10
Α	EP 0 450 922 A (NIPPON SHOKUBAI KAGAKU KOGYO CO., LTD.) 9 October 1991 (1991-10-09) page 4, line 13 -page 5, line 13; claims 1-27	1
A	WO 98 06364 A (THE PROCTER & GAMBLE COMPANY) 19 February 1998 (1998-02-19) claims 1-10	1
A	WO 93 05080 A (THE DOW CHEMICAL COMPANY) 18 March 1993 (1993-03-18) claims 1-23	1
A	WO 95 27739 A (HOECHST CELANESE CORPORATION) 19 October 1995 (1995-10-19) page 8, line 15 -page 9, line 16 page 10, line 20 -page 12, line 21 page 19, line 1 -page 21, line 20; claims 1-26	1
Α	DATABASE WPI Section Ch, Week 8522 Derwent Publications Ltd., London, GB; Class A14, AN 1980-70361C XP002156254 & JP 55 108407 A (NIPPON SHOKUBAI KAGAKU KOGYO CO., LTD.), 20 August 1980 (1980-08-20) abstract	1
Α	DATABASE WPI Section Ch, Week 8837 Derwent Publications Ltd., London, GB; Class A14, AN 1982-53209E XP002156255 & JP 57 080403 A (TOA GOSEI CHEM. IND. LTD.), 20 May 1982 (1982-05-20) abstract	1
A .	US 4 056 502 A (J. R. GROSS) 1 November 1977 (1977-11-01) claims 1-13	

...formation on patent family members

Inter anal Application No
PCT/EP 00/09019

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9934841	A 15-07-1999	AU 1501099 BR 9813716 EP 1045707	A 17–10–2000
US 5599335	A 04-02-1997	AU 704179 AU 1934095 CA 2183965 EP 0752892 JP 9510889 WO 9526209 US 5562646 US 5669894 ZA 9502518	17-10-1995 A 05-10-1995 A 15-01-1997 T 04-11-1997 A 05-10-1995 A 08-10-1996 A 23-09-1997
EP 610013	A 10-08-1994	JP 6220227 DE 69409021 DE 69409021 US 5475062	D 23-04-1998 T 08-10-1998
EP 509708	A 21-10-1992	AT 161549 AU 1487992 CA 2066010 DE 69223674 DE 69223674 DK 509708 ES 2110470 FI 921668 JP 5156034 KR 195778 MX 9201747 NO 921492 US 5633316	22-10-1992 16-10-1992 16-10-1998 17 09-07-1998 17 31-08-1998 17 16-02-1998 18 A 16-10-1992 19 A 22-06-1993 10 B 15-06-1999 10 A 01-08-1993 11 A 16-10-1992
EP 450922	A 09-10-1991	AT 181841 AU 637470 AU 7389291 BR 9101312 CA 2038779 CN 1056504 CS 9100860 DE 69131406 DE 69131406 FI 911522 HU 60309 JP 2539956 JP 4214736 PL 289709 PT 97232 TR 25457	B 27-05-1993 A 03-10-1991 A 26-11-1991 A 03-10-1991 A B 27-11-1991 A B 27-11-1991 D 12-08-1999 T 13-01-2000 A 03-10-1991 A 28-08-1992 B 02-10-1996 A 05-08-1992 A 16-12-1991 A 31-01-1992
WO 9806364	A 19-02-1998	JP 2915354 JP 10077354 AU 3809697 EP 0955981	A 24-03-1998 A 06-03-1998
W0 9305080	A 18-03-1993	AU 663336 AU 2590592 CA 2116035	A 05-04-1993

...formation on patent family members

Inter Inal Application No PCT/EP 00/09019

Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
WO 9305080 A	B05080 A EP 0603292 A JP 6510557 T		29-06-1994 24-11-1994	
WO 9527739 A	19-10-1995	CA 2187633 A CN 1148395 A EP 0755413 A JP 10500712 T US 5597873 A	19-10-1995 23-04-1997 29-01-1997 20-01-1998 28-01-1997	
JP 55108407 A	20-08-1980	JP 1292339 C JP 60017328 B	16-12-1985 02-05-1985	
JP 57080403 A	20-05-1982	JP 1494714 C JP 63042641 B	20-04-1989 24-08-1988	
US 4056502 A	01-11-1977	US B494440 I	17-02-1976	

Inter nales Aktenzeichen PCT/EP 00/09019

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C08F8/00 A61L15/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK \ 7 \quad C08F \quad A61L \quad C08K$

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

PAJ, WPI Data, EPO-Internal

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle	Betr. Anspruch Nr.
1	WO 99 34841 A (THE PROCTER & GAMBLE COMPANY) 15. Juli 1999 (1999-07-15) Seite 8 -Seite 9 Seite 16 -Seite 17; Ansprüche 1-57	1-10
,	US 5 599 335 A (S. A. GOLDMAN) 4. Februar 1997 (1997-02-04) in der Anmeldung erwähnt Ansprüche 1-40	1-10
(EP 0 610 013 A (NIPPON SHOKUBAI CO., LTD.) 10. August 1994 (1994-08-10) Seite 4, Zeile 18 -Seite 5, Zeile 48 Seite 6, Zeile 51 -Seite 7, Zeile 31 Seite 10; Ansprüche 1-12	1-10

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie	
Besondere Kategorien von angegebenen Veröffentlichungen: 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist 'E' ätteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist 'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen Im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) 'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht 'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist	*T* Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatun oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindt kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindt kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist	
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts	
22. Dezember 2000	05/01/2001	
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040. Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Permentier, W	

Inter males Aktenzeichen
PCT/EP 00/09019

03013
Betr. Anspruch Nr.
1-10
1
1
1
1
1
1

1 .

Angaben zu Veröffentlichung zu, die zur selben Patentfamilie gehören

Inter nales Aktenzeichen
PCT/EP 00/09019

					100/09019
Im Recherchenberich angeführtes Patentdokun		Datum der Veröffentlichung		tglied(er) der atentfamilie	Datum der Veröffentlichung
WO 9934841	A	15-07-1999	AU BR EP	1501099 A 9813716 A 1045707 A	26-07-1999 17-10-2000 25-10-2000
US 5599335	A	04-02-1997	AU CA EP JP WO US US ZA	704179 B 1934095 A 2183965 A 0752892 A 9510889 T 9526209 A 5562646 A 5669894 A 9502518 A	15-04-1999 17-10-1995 05-10-1995 15-01-1997 04-11-1997 05-10-1995 08-10-1996 23-09-1997 08-02-1996
EP 610013	Α	10-08-1994	JP DE DE US	6220227 A 69409021 D 69409021 T 5475062 A	09-08-1994 23-04-1998 08-10-1998 12-12-1995
EP 509708	A	21-10-1992	AT AU CA DE DK ES FI JP KR MX NO US	161549 T 1487992 A 2066010 A 69223674 D 69223674 T 509708 T 2110470 T 921668 A 5156034 A 195778 B 9201747 A 921492 A 5633316 A	15-01-1998 22-10-1992 16-10-1992 05-02-1998 09-07-1998 31-08-1998 16-02-1998 16-10-1992 22-06-1993 15-06-1999 01-08-1993 16-10-1992 27-05-1997
EP 450922	A	09-10-1991	AT AU BR CA CN CS DE FI HU JP PL PT TR	181841 T 637470 B 7389291 A 9101312 A 2038779 A 1056504 A,B 9100860 A 69131406 D 69131406 T 911522 A 60309 A 2539956 B 4214736 A 289709 A 97232 A 25457 A	15-07-1999 27-05-1993 03-10-1991 26-11-1991 03-10-1991 27-11-1991 12-11-1991 12-08-1999 13-01-2000 03-10-1991 28-08-1992 02-10-1996 05-08-1992 16-12-1991 31-01-1992 01-05-1993
WO 9806364	A	19-02-1998	JP JP AU EP	2915354 B 10077354 A 3809697 A 0955981 A	05-07-1999 24-03-1998 06-03-1998 17-11-1999
WO 9305080	Α	18-03-1993	AU AU CA	663336 B 2590592 A 2116035 A	05-10-1995 05-04-1993 18-03-1993

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Interr hales Aktenzeichen
PCT/EP 00/09019

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		itglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9305080	Α		EP JP	0603292 A 6510557 T	29-06-1994 24-11-1994
WO 9527739	A	19-10-1995	CA CN EP JP US	2187633 A 1148395 A 0755413 A 10500712 T 5597873 A	19-10-1995 23-04-1997 29-01-1997 20-01-1998 28-01-1997
JP 55108407	Α	20-08-1980	JP JP	1292339 C 60017328 B	16-12-1985 02-05-1985
JP 57080403	Α	20-05-1982	JP JP	1494714 C 63042641 B	20-04-1989 24-08-1988
US 4056502	Α	01-11-1977	US	B494440 I	17-02-1976