Devoir 4 (complet)

Remise : le mercredi 6 décembre (au début de la démo)

1. Faites le problème 8.32 de B&B (le canoteur économe).

Do the problem 8.32 in the Brassard and Bratley book.

2. Une application $\rho: A \times A \to A$ est fixée une fois pour toutes, où A est l'ensemble $\{a,b,c,\ldots,y,z\}$ des 26 lettres de l'alphabet. Donnez un algorithme utilisant la technique de la programmation dynamique et résolvant le problème suivant :

ÉVALUATION

DONNÉE: $\sigma_1, \ldots, \sigma_n \in A$

DÉCIDER: s'il existe un parenthésage complet de $\sigma_1 * \sigma_2 * \cdots * \sigma_n$ qui permet, en remplaçant à répétition $(\alpha * \beta)$ où $\alpha \in A$ et $\beta \in A$ par $\rho(\alpha, \beta)$ dans un ordre prescrit par le parenthésage, d'obtenir tout simplement à la fin la lettre a.

Indice. Pensez à un tableau dont chaque entrée est un ensemble de lettres de A.

A total function $\rho: A \times A \to A$ is specified once and for all, where $A = \{a, b, c, \dots, y, z\}$. Give a dynamic programming algorithm that solves the following problem:

ÉVALUATION

DONNÉE: $\sigma_1, \ldots, \sigma_n \in A$

DÉCIDER: if there exists a complete bracketing of $\sigma_1 * \sigma_2 * \cdots * \sigma_n$ that leaves a in the end when $(\alpha * \beta)$ for $\alpha, \beta \in A$ is systematically replaced with $\rho(\alpha, \beta)$ according to the bracketing. Hint. Think of a table with subsets of A as entries.

3. Donnez en Python (et imprimez papier et placez sur Studium) un algorithme de retour arrière qui résout le problème suivant :

MêmeGraphe

DONNÉE: matrices d'adjacence symétriques $A, B \in \{0, 1\}^{m \times m}$

DÉCIDER: si A et B représentent le même graphe non orienté.

Indice. A et B représentent le même graphe si et seulement si une permutation σ de l'ensemble $\{1,2,\ldots,m\}$ existe telle que pour tout $i,j\in\{1,2,\ldots,m\},\,A(i,j)=B(\sigma(i),\sigma(j)).$

Give (and print and upload on Studium) a Python backtracking algorithm to solve:

SAMEGRAPH

DONNÉE: symmetric adjacency matrices $A, B \in \{0, 1\}^{m \times m}$

DÉCIDER: if A and B represent the same undirected graph.

Hint. A and B represent the same graph iff a permutation σ of the set $\{1, 2, ..., m\}$ exists such that for all $i, j \in \{1, 2, ..., m\}$, $A(i, j) = B(\sigma(i), \sigma(j))$.

4. Deux ensembles $A, B \subseteq \mathbb{N}$ de taille k vous sont donnés. On vous promet que, ou bien, $A \cap B = \emptyset$, ou bien, $A \cap B$ est le singleton $\{s\}$ et $s = \max A = \max B$. Voici un algorithme de Monte Carlo qui cherche à déterminer si $\max A = \max B$:

tirer au hasard $a_1 \in A, a_2 \in A, b_1 \in B, b_2 \in B$ si $\max\{a_1, a_2\} = \max\{b_1, b_2\}$ alors retourner VRAI sinon retourner FAUX

- (a) Cet algorithme est-il faux-biaisé? vrai-biaisé? ni l'un ni l'autre?
- (b) Calculez en fonction de k la probabilité d'erreur de cet algorithme.

(c) En répétant l'algorithme, est-il possible de réduire la probabilité d'erreur à moins de 1% lorsque k=2? k=10? k=100? (Si oui, combien faut-il de répétitions dans chacun des cas?)

Two sets $A, B \subseteq \mathbb{N}$ of size k are given. You are promised that either $A \cap B = \emptyset$, or $A \cap B$ is the singleton $\{s\}$ and $s = \max A = \max B$. Here is a Monte Carlo algorithm that tries to determine whether $\max A = \max B$:

```
draw a_1 \in A, a_2 \in A, b_1 \in B, b_2 \in B at random if \max\{a_1, a_2\} = \max\{b_1, b_2\} then return TRUE else return FALSE
```

- (a) Is this algorithm false-biased? true-biaised? neither?
- (b) Compute as a function of k the error probability of this algorithm.
- (c) By repeating the algorithm, is it possible to reduce the error probability to less than 1% when k=2? k=10? (If so, give in each case the number of repetitions needed.)