

TEST REPORT

Test report no.: 1-9857/15-01-08-B

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.cetecom.com
ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-00

Applicant

MGI LUXURY GROUP S.A.

Silver Tower, Place de la Gare 2b 2501 Bienne / SWITZERLAND

Phone:

Fax: +41 3 23 29 34 01 Contact: Michel Cover

e-mail: mcover@mgiluxury.com Phone: +41 3 23 29 34 00

Manufacturer

MGI LUXURY GROUP S.A.

Silver Tower, Place de la Gare 2b 2501 Bienne / SWITZERLAND

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 247 Issue 1 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Horological Wrist Watch
Model name: Museum Sport Motion

FCC ID: 2AEYH0001 IC: 20278-0001

Radio Communications & EMC

Frequency: ISM band 2400.0 MHz to 2483.5 MHz

Technology tested: Bluetooth®, LE

Antenna: Integrated antenna

Power supply: 3.0 V DC by battery

Temperature range: -10°C to +55°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorised:	Test performed:		
p.o.			
Stefan Bös Lab Manager	David Lang Lab Manager		

Radio Communications & EMC

Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1	Notes and disclaimer	
	2.2	Application details	
3	Test s	tandard/s	3
	3.1	Measurement guidance	3
4	Test e	nvironment	
5		em	
•		Additional information	
6		aboratories sub-contracted	
7		ption of the test setup	
	7.1	Shielded semi anechoic chamber	
	7.2	Shielded fully anechoic chamber	
	7.3 7.4	Radiated measurements > 12.75 GHzConducted measurements BT system	
		•	
8	Measu	rement uncertainty	10
9	Seque	nce of testing	11
	9.1	Sequence of testing 9 kHz to 30 MHz	11
	9.2	Sequence of testing 30 MHz to 1 GHz	
	9.3	Sequence of testing 1 GHz to 12.75 GHz	
	9.4	Sequence of testing above 12.75 GHz	14
10	Sun	nmary of measurement results	15
11	Add	itional comments	16
12	Mea	surement results	17
	12.1	System gain	17
	12.2	Power spectral density	18
	12.3	DTS bandwidth - 6 dB bandwidth	
	12.4	Occupied bandwidth – 20 dB bandwidth	
	12.5	Maximum output power	
	12.6	Detailed spurious emissions @ the band edge - conducted	28
	12.7	Detailed spurious emissions @ the band edge - radiated	30
	12.8	TX spurious emissions conducted	
	12.9	TX spurious emissions radiated	
	12.10	RX spurious emissions radiated	
	12.11	Spurious emissions radiated < 30 MHz	
13	Obs	ervations	52
Anr	ex A	Document history	52
Anr	ex B	Further information	52
Δnr	ex C	Accreditation Certificate	53

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-9857/15-01-08-B and dated 2015-08-19

2.2 Application details

Date of receipt of order: 2015-04-08
Date of receipt of test item: 2015-04-06
Start of test: 2015-04-08
End of test: 2015-06-09

Person(s) present during the test: -/-

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 1	01.05.2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

3.1 Measurement guidance

DTS: KDB 558074 2014-06 Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

4 Test environment

Temperature:

 T_{nom} +22 °C during room temperature tests T_{max} +55 °C during high temperature tests

T_{min} -10 °C during low temperature tests

Relative humidity content: 52 %

Barometric pressure: not relevant for this kind of testing

V_{nom} 3.0 V DC by battery

Power supply: V_{max} 3.3 V

 $V_{min} \qquad 2.7 \quad V$

5 Test item

Kind of test item	<u>: </u>	Horological Wrist Watch	
Type identification :		Museum Sport Motion	
PMN :		Museum Sport Motion	
HMN	:	HW4	
HVIN	:	Museum Sport Motion	
FVIN	:	-/-	
S/N serial number :		Radiated Sample: Not available! Conducted Sample: Not available!	
HW hardware status	:	4	
SW software status	:	6.0.9	
Frequency band	:	ISM band 2400.0 MHz to 2483.5 MHz (Lowest channel 2402 MHz; highest channel 2480 MHz)	
Type of radio transmission Use of frequency spectrum	:	DSSS (Advertising Mode)	
Type of modulation	:	GFSK	
Number of channels : 40		40	
Antenna : Integrated antenna		Integrated antenna	
Power supply : 3.0 V DC by battery		3.0 V DC by battery	
Temperature range	:	-10°C to +55°C	

5.1 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-9857/15-01-01_AnnexA

1-9857/15-01-01_AnnexB 1-9857/15-01-01_AnnexD

6 Test laboratories sub-contracted

None

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signalling equipment as well as measuring receivers and analysers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

k ne	calibration / calibrated not required (k, ev, izw, zw not required)	EK zw	limited calibration cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analysers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

 $SS = U_R + CL + AF$

(SS-signal strength; U_R-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

 $SS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB\mu V/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	45	Switch-Unit	3488A	HP	2719A14505	300000368	g		
2	45	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	26.01.2015	26.01.2016
3	45	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw		
4	45	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw		
5	45	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw		
6	45	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	22.04.2014	22.04.2016

7.2 Shielded fully anechoic chamber

 $SS = U_R + CA + AF$

(SS-signal strength; U_R-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $SS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB\mu V/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	20.05.2015	20.05.2017
2	n.a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev		
3	n.a.	Switch / Control Unit	3488A	HP	*	300000199	ne		
4	90	Active Loop Antenna 10 kHz to 30 MHz	6502	Kontron Psychotech	8905-2342	300000256	k	13.06.2013	13.06.2015
5	90	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev		
6	90	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne		
7	90	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	06.03.2015	06.03.2016
8	90	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne		

7.3 Radiated measurements > 12.75 GHz

 $SS = U_R + CA + AF$

(SS-signal strength; U_R-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

 $\overline{SS[dB\mu V/m]} = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB\mu V/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	A026	Std. Gain Horn Antenna 12.4 to 18.0 GHz	639	Narda	8402	300000787	k	22.07.2013	22.07.2015
2	A029	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	8205	300002442	k	19.07.2013	19.07.2015
3	A029	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	22.01.2015	22.01.2016
4	A029	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev		

7.4 Conducted measurements BT system

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + (11.7) [dB] = 17.7 [dBm] (58.88 mW)

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	n.a.	Power Supply DC	NGPE 40/40	R&S	388	400000078	vIKI!	22.01.2015	22.01.2017
2	n. a.	Power Sensor 50 Ohms, 10 MHz - 18 GHz, 1 nW - 20 mW	NRV-Z1	R&S	833894/012	300002681	k	25.08.2014	25.08.2016
3	n.a.	Directional Coupler	101020010	Krytar	70215	300002840	ev		
4	n.a.	DC-Blocker	8143	Inmet Corp.	none	300002842	ne		
5	n. a.	CBT (Bluetooth Tester + EDR Signalling)	CBT 1153.9000K35, CBT-B55, CBT-K55	R&S	100313	300003516	vIKI!	26.08.2014	26.08.2016
6	n. a.	Signal Analyzer 30GHz	FSV30	R&S	103170	300004855	k	01.10.2014	01.10.2015

8 Measurement uncertainty

Measurement uncertainty					
Test case	Uncertainty				
Antenna gain	± 3 dB				
Carrier frequency separation	± 21.5 kHz				
Number of hopping channels	-/-				
Time of occupancy	According BT Core specification				
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative				
Maximum output power	± 1 dB				
Detailed conducted spurious emissions @ the band edge	± 1 dB				
Band edge compliance radiated	± 3 dB				
Spurious emissions conducted	± 3 dB				
Spurious emissions radiated below 30 MHz	± 3 dB				
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB				
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB				
Spurious emissions radiated above 12.75 GHz	± 4.5 dB				
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB				

9 Sequence of testing

9.1 Sequence of testing 9 kHz to 30 MHz

Setup

- The equipment was set up to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 meter.
- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axces (0° to 360°).
- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK (QPK / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

9.2 Sequence of testing 30 MHz to 1 GHz

Setup

- The equipment was set up to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 10 or 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

•

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 to 3 meter.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions

•

- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- The final measurement will be done with QP (Quasi-Peak / see ANSI C 63.4) detector with an EMI receiver
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

9.3 Sequence of testing 1 GHz to 12.75 GHz

Setup

- The equipment was set up to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 meter.
- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions

- The final measurement will be performed with minimum the six highest peaks according the requirements of the ANSI C63.4.
- According to the maximum found antenna polarisation and turntable position of the premeasurement the software maximizes the peaks by rotating the turntable position (0° to 360°). This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps). This procedure is repeated for both antenna polarisations.
- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS (RMS / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

9.4 Sequence of testing above 12.75 GHz

Setup

- The equipment was set up to simulate a typical usage like descripted in the user manual or described by manufacturer.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 0.5 meter
- The EUT was set into operation.

Premeasurement

• The antenna is moved spherical over the EUT in different polarisations of the antenna.

- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and RMS (RMS / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

10	Summary of measurement results				
	\boxtimes	No deviations from the technical specifications were ascertained			
		There were deviations from the technical specifications ascertained			
		This test report is only a partial test report.			

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15	See table	2015-09-01	-/-
Kr-resung	RSS 247, Issue 1	below.	2015-09-01	- /-

The content and verdict of the performed test cases are listed below.

Test specification clause	Test case	Guideline	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (4))	Antenna gain	-/-	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(e) RSS - 247 / 5.2 (2)	Power spectral density	KDB 558074 DTS clause: 10.6	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(a)(2) RSS - 247 / 5.2 (1)	DTS bandwidth – 6 dB bandwidth	KDB 558074 DTS clause: 8.1	Nominal	Nominal	GFSK	\boxtimes				-/-
RSS Gen clause 4.6.1	Occupied bandwidth	-/-	Nominal	Nominal	GFSK					-/-
§15.247(b)(3) RSS - 247 / 5.4 (4))	Maximum output power	KDB 558074 DTS clause: 9.1.1	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	-/-	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	KDB 558074 DTS clause: 13.3.2	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	TX spurious emissions conducted	KDB 558074 DTS clause: 11.1 & 11.2 11.3	Nominal	Nominal	GFSK	\boxtimes				-/-
15.247(d) RSS - 247 / 5.5	TX spurious emissions radiated	-/-	Nominal	Nominal	GFSK					-/-
§15.109 RSS-Gen	RX spurious emissions radiated	-/-	Nominal	Nominal	-/-					-/-
§15.209(a) RSS-Gen	TX spurious emissions radiated < 30 MHz	-/-	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.107(a) §15.207	Conducted emissions < 30 MHz	-/-	Nominal	Nominal	GFSK			\boxtimes		-/-

Note:

C Compliant; NC Not compliant; NA Not Applicable; NP Not Performed;

11 Additional comments

The Bluetooth $^{\rm @}$ word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by Cetecom ICT Services GmbH is under license.

Reference documents:	None	
Special test descriptions:	None	
Configuration descriptions:	static	sts: were performed with LE packets (37 byte payload) and PRBS pattern. tandby tests: BT enabled, TX Idle
Test mode:		Bluetooth LE Test mode enabled (EUT is controlled over CBT)
		Special software is used. EUT is transmitting pseudo random data by itself

12 Measurement results

12.1 System gain

Measurement:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal Bluetooth® devices, the GFSK modulation is used.

Measurement parameters:

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	3 MHz			
Video bandwidth:	3 MHz			
Span:	5 MHz			
Trace-Mode:	Max hold			
Test setup:	See sub clause 7.2			
Measurement uncertainty	See sub clause 8			

Limits:

FCC	IC	
Antenna Gain		
6 dBi		

Results:

Tnom	V _{nom}	lowest channel 2402 MHz	middle channel 2440 MHz	highest channel 2480 MHz
Conducted power [dBm] Measured with GFSK modulation		-8.3	-5.6	-5.1
Radiated power [dBm] Measured with GFSK modulation		-10.7	-8.2	-6.9
Gain [dBi] Calculated		-2.4	-2.6	-1.8

12.2 Power spectral density

Description:

Measurement of the power spectral density of a digital modulated system.

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	3 kHz		
Video bandwidth:	10 kHz		
Span:	≥ EBW		
Trace-Mode:	Max Hold		

Limits:

FCC	IC
Power Spec	etral Density

For digitally modulated systems the transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0-second duration.

Results:

Modulation	Power spectral density			
Frequency	2402 MHz	2440 MHz	2480 MHz	
[dBm / 3kHz]	-19.9 -18.1 -17.2			
Measurement uncertainty		± 1.5 dB		

Plots:

Plot 1: lowest channel

Plot 2: mid channel

Plot 3: highest channel

12.3 DTS bandwidth - 6 dB bandwidth

Description:

Measurement of the 6 dB bandwidth of the modulated signal.

Measurement:

Measurement parameter				
According to DTS clause: 8.1				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	100 kHz			
Video bandwidth:	300 kHz			
Span: 40 MHz				
Measurement procedure:	Using 3 marker (max + 2x-6dB)			
Trace-Mode:	Max hold (allow trace to stabilize)			

Limits:

FCC	IC		
DTS bandwidth -	DTS bandwidth – 6 dB bandwidth		
	Systems using digital modulation techniques may operate in the 2400–2483.5 MHz band. The minimum 6 dB bandwidth shall be at least 500 kHz.		

Results:

Modulation	6 dB BANDWIDTH [kHz]				
Frequency	2402 MHz	2440 MHz	2480 MHz		
GFSK	730	720	730		
Measurement uncertainty		± 10 kHz			

Plots:

Plot 1: lowest channel

Plot 2: mid channel

Plot 3: highest channel

12.4 Occupied bandwidth - 20 dB bandwidth

Description:

Measurement of the 20 dB bandwidth of the modulated signal. EUT in single channel mode.

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	2 s		
Resolution bandwidth:	10 kHz		
Video bandwidth:	30 kHz		
Span:	3 MHz		
Trace-Mode:	Max Hold		

Limits:

FCC	IC	
Occupied bandwidth – 20 dB bandwidth		
No restriction – only necessary for further measurements and IC emission designator.		

Results:

Modulation	20	dB BANDWIDTH [kl	łz]
Frequency	2402 MHz	2440 MHz	2480 MHz
GFSK	1072	1056	1096
Measurement uncertainty		± 10 kHz	

Plots:

Plot 1: lowest channel

Plot 2: mid channel

Plot 3: highest channel

12.5 Maximum output power

Description:

Measurement of the maximum output power conducted and radiated. EUT in single channel mode.

Measurement:

Measurement parameter		
According to DTS 9.1.1		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	3 MHz	
Video bandwidth:	10 MHz	
Span:	9 MHz	
Trace-Mode:	Max Hold	
Test setup:	See sub clause 7.2	
Measurement uncertainty	See sub clause 8	

Limits:

FCC	IC	
Maximum output power		
[Conducted: 0.125 W – antenna gain max. 6 dBi] Systems using more than 75 hopping channels: Conducted: 1.0 W – antenna gain max. 6 dBi		

Results:

Modulation	Maximum (output power conduc	eted [dBm]
Frequency	2402 MHz	2440 MHz	2480 MHz
GFSK	-8.2	-5.6	-5.1
Measurement uncertainty		± 1.5 dB	

Modulation	Maximum ou	tput power radiated -	EIRP [dBm]
Frequency	2402 MHz	2440 MHz	2480 MHz
GFSK *1	-10.0	-7.4	-6.9
Measurement uncertainty		± 3 dB	

Note:

^{*1 –} Values calculated with max. antenna gain.

12.6 Detailed spurious emissions @ the band edge - conducted

Description:

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel.

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	100 kHz	
Video bandwidth:	100 kHz	
Span:	Lower Band Edge: 2395 – 2405 MHz higher Band Edge: 2478 – 2489 MHz	
Trace-Mode:	Max Hold	

Limits:

FCC	IC
Band edge comp	pliance conducted

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

Result:

Scenario	Band edge compliance conducted [dB]
Modulation	GFSK
Lower band edge – hopping off	> 20 dB
Upper band edge – hopping off	> 20 dB
Measurement uncertainty	± 1.5 dB

Plots:

Plot 1: Lower band edge

Plot 2: Upper band edge

12.7 Detailed spurious emissions @ the band edge - radiated

Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit channel is channel 00 for the lower restricted band and channel 39 for the upper restricted band. Measurement distance is 3m.

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	1 MHz	
Video bandwidth:	10 Hz	
Span:	Lower Band: 2300 – 2400 MHz Upper Band: 2480 – 2500 MHz	
Trace-Mode:	Max Hold	
Test setup:	See sub clause 7.2	
Measurement uncertainty	See sub clause 8	

Limits:

FCC	IC	
Band edge compliance radiated		

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).

54 dBµV/m AVG

Result:

Scenario	Band edge compliance radiated [dBµV/m]
Modulation	GFSK
Lower restricted band	< 54 AVG / < 74 PP
Upper restricted band	< 54 AVG / < 74 PP
Measurement uncertainty	± 3 dB

Plots:

Plot 1: Lower restricted band

Plot 2: Upper restricted band

12.8 TX spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 19 and channel 39.

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	100 kHz		
Video bandwidth:	300 kHz or 500 kHz		
Span:	9 kHz to 25 GHz		
Trace-Mode:	Max Hold		

Limits:

FCC	IC			
TX spurious emissions conducted				

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

Results:

	TX s	purious emissions condu	ucted	
f [MHz]	amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2402		30 dBm		Operating frequency
No critical peaks found! All detected emissions are more than 6 dB below the limit!		-20 dBc	-20 dBc	
2440		30 dBm		Operating frequency
No critical peaks found! All detected emissions are more than 6 dB below the limit!		-20 dBc		complies
2480		30 dBm		Operating frequency
No critical peaks found! All detected emissions are more than 6 dB below the limit!		-20 dBc		complies
Measureme	ent uncertainty		± 3 dB	

Plots:

Plot 1: lowest channel

Plot 2: mid channel

Plot 3: highest channel

12.9 TX spurious emissions radiated

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 19 and channel 39.

Measurement:

Measurement parameter				
Detector:	Peak / Quasi Peak / RMS			
Sweep time:	Auto			
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz			
Video bandwidth:	3 x RBW			
Span:	30 MHz to 26 GHz			
Trace-Mode:	Max Hold			
Measured Modulation:	GFSK			
Test setup:	See sub clause 7.2 and 7.1			
Measurement uncertainty	See sub clause 8			

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC	IC			
TX spurious emissions radiated				

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

§15.209				
Frequency (MHz)	Field strength (dBµV/m) Measurement dist			
30 - 88	30.0	10		
88 – 216	33.5	10		
216 – 960	36.0	10		
Above 960	54.0	3		

Results:

TX spurious emissions radiated [dBμV/m]								
2402 MHz 2440 MHz			2480 MHz					
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
For emissi	For emissions below 1 GHz, please For emissions below 1 GHz, please			For emissions below 1 GHz, please				
take a look at the table below the		take a look at the table below the		take a look at the table below the				
	1 GHz plot.		1 GHz plot.		1 GHz plot.			
18093.0	Peak	34.5	21314.8	Peak	34.8	2552.2	Peak	36.5
-/-	-/-	-/-	-/-	-/-	-/-	18012.9	Peak	34.3
						-/-	-/-	-/-
Measurement uncertainty ± 3 dB								

Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)

Plots:

Plot 1: 30 MHz to 1 GHz, lowest channel, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.479800	9.55	30.00	20.45	1000.0	120.000	101.0	٧	10	14.0
39.691500	10.45	30.00	19.55	1000.0	120.000	170.0	٧	100	14.0
749.514900	19.31	36.00	16.69	1000.0	120.000	101.0	٧	170	22.7
800.009850	26.50	36.00	9.50	1000.0	120.000	101.0	Н	170	22.7
864.005850	28.87	36.00	7.13	1000.0	120.000	101.0	Н	171	23.6
895.983900	29.18	36.00	6.82	1000.0	120.000	98.0	Н	170	24.1

Plot 2: 1 GHz to 12.75 GHz, lowest channel, vertical & horizontal polarization

Carrier suppressed with a 2.4 GHz-band rejection filter.

Plot 3: 12 GHz to 18 GHz, lowest channel, vertical & horizontal polarization

Date: 9.JUN.2015 17:43:42

Plot 4: 18 GHz to 26 GHz, lowest channel, vertical & horizontal polarization

Date: 9.JUN.2015 17:33:10

Plot 5: 30 MHz to 1 GHz, mid channel, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
33.834150	9.35	30.00	20.65	1000.0	120.000	101.0	Н	10	13.7
38.485200	9.50	30.00	20.50	1000.0	120.000	170.0	٧	-9	14.0
43.039350	9.73	30.00	20.27	1000.0	120.000	101.0	٧	100	13.9
597.162300	17.40	36.00	18.60	1000.0	120.000	170.0	Н	100	20.6
784.031100	26.31	36.00	9.69	1000.0	120.000	98.0	Н	-10	22.7
896.013750	29.22	36.00	6.78	1000.0	120.000	98.0	Н	171	24.1

Plot 6: 1 GHz to 12.75 GHz, mid channel, vertical & horizontal polarization

Carrier suppressed with a 2.4 GHz-band rejection filter.

Plot 7: 12 GHz to 18 GHz, mid channel, vertical & horizontal polarization

Date: 9.JUN.2015 17:45:59

Plot 8: 18 GHz to 26 GHz, mid channel, vertical & horizontal polarization

Date: 9.JUN.2015 17:31:23

Plot 9: 30 MHz to 1 GHz, highest channel, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
33.988950	14.57	30.00	15.43	1000.0	120.000	101.0	٧	-9	13.7
43.573500	9.61	30.00	20.39	1000.0	120.000	101.0	٧	170	13.9
784.003800	28.44	36.00	7.56	1000.0	120.000	101.0	Н	170	22.7
800.014950	28.41	36.00	7.59	1000.0	120.000	98.0	Н	170	22.7
832.008900	28.68	36.00	7.32	1000.0	120.000	98.0	Н	-10	23.2
864.021600	28.58	36.00	7.42	1000.0	120.000	98.0	Н	171	23.6

Plot 10: 1 GHz to 12.75 GHz, highest channel, vertical & horizontal polarization

Carrier suppressed with a 2.4 GHz-band rejection filter.

Plot 11: 12 GHz to 18 GHz, highest channel, vertical & horizontal polarization

Date: 9.JUN.2015 17:47:49

Plot 12: 18 GHz to 26 GHz, highest channel, vertical & horizontal polarization

Date: 9.JUN.2015 17:28:44

12.10 RX spurious emissions radiated

Description:

Measurement of the radiated spurious emissions in idle/receive mode. The EUT is detached so all oscillators are active.

Measurement:

Measurement parameter					
Detector:	Peak / Quasi Peak / RMS				
Sweep time:	Auto				
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz				
Video bandwidth:	3 x RBW				
Span:	30 MHz to 25 GHz				
Trace-Mode:	Max Hold				
Test setup:	See sub clause 7.2 and 7.1				
Measurement uncertainty	See sub clause 8				

Limits:

FCC			IC		
RX Spurious Emissions Radiated					
Frequency (MHz)	Field strength (dBµV/m)		Measurement distance		
30 - 88	30.0		10		
88 – 216	33.5		10		
216 – 960	36.0		36.0		10
Above 960	54	1.0	3		

Results:

RX spurious emissions radiated [dBμV/m]						
F [MHz]	Detector	Level [dBµV/m]				
For emissions below 1 GHz, please take a look at the table below the 1 GHz plot.						
19068.0	Peak	34.4				
-/-	-/-	-/-				
Measurement uncertainty	±3 dB					

Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)

Plots:

Plot 1: 30 MHz to 1 GHz, RX / idle – mode, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
39.467850	10.13	30.00	19.87	1000.0	120.000	101.0	Н	190	14.0
85.999350	12.04	30.00	17.96	1000.0	120.000	101.0	٧	280	9.5
832.010100	29.30	36.00	6.70	1000.0	120.000	98.0	Н	170	23.2
847.995600	29.56	36.00	6.44	1000.0	120.000	98.0	Н	170	23.4
864.027450	29.97	36.00	6.03	1000.0	120.000	98.0	Н	-10	23.6
896.023800	29.85	36.00	6.15	1000.0	120.000	98.0	Н	170	24.1

Plot 2: 1 GHz to 12.75 GHz, RX / idle – mode, vertical & horizontal polarization

Plot 3: 12 GHz to 18 GHz, RX / idle – mode, vertical & horizontal polarization

Plot 4: 18 GHz to 26 GHz, RX / idle – mode, vertical & horizontal polarization

Date: 9.JUN.2015 17:35:23

12.11 Spurious emissions radiated < 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channel is channel 19. This measurement is representative for all channels and modes. If critical peaks are found channel 00 and channel 39 will be measured too. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

Measurement:

Measurement parameter						
Detector:	Peak / Quasi peak					
Sweep time:	Auto					
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz					
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz					
Span:	9 kHz to 30 MHz					
Trace-Mode:	Max Hold					
Test setup:	See sub clause 7.2					
Measurement uncertainty	See sub clause 8					

Limits:

FCC		IC				
TX spurious emissions radiated < 30 MHz						
Frequency (MHz)	Field strength (dBµV/m)		Measurement d	istance		
0.009 – 0.490	2400/F(kHz)		300			
0.490 – 1.705	24000/F(kHz)		24000/F(kHz)		30	
1.705 – 30.0	3	30				

Results:

TX spurious emissions radiated < 30 MHz [dBμV/m]						
F [MHz]	Detector	Level [dBµV/m]				
All detected peaks more than 10 dB below limit.						
Measurement uncertainty ± 3 dB						

Plot:

Plot 1: 9 kHz to 30 MHz, TX mode

13 Observations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2015-06-19
-A	Editorial changes (Measurement uncertainty added / Sequence of testing added / FCC IC, IC ID, Model name changed)	2015-08-19
-B	Editorial changes; Conducted results added	2015-09-01

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard
EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

PMN Product marketing name HMN Host marketing name

HVIN Hardware version identification number FVIN Firmware version identification number

Accreditation Certificate Annex C

Front side of certificate

Back side of certificate

DAkkS

Deutsche Akkreditierungsstelle GmbH

Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium

CETECOM ICT Services GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken

die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Beruichen durchzuführen:

Drahtgebundene Kommunikation einschließlich xDSL VoIP und DECT Akustik

Akustik
Funk einschließlich WLAN
Short Range Devices (SRD)
RFID
WIMAx und Richtfunk
Mobilfunk (SØM) / DCS, Over the Air (OTA) Performance)
Elektromagnetische Verträglichkeit (EMV) einschließlich Automotive
Forduktsicherheit
SAR und Hearing Aid Compatibility (HAC)
Umweltsimulation
Smart Card Terminals
Bluetooth
WI-FI- Services

Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 07.03.2014 mit der Akkreditierungsnurmen PP-I-12076 b. und ist giltig 17.01.2018. Sie besteht aus diesem Deckblart, de Rückseite des Deckblart, sie mit der folgenden noblage mit Ingesem 7.7 seiten.

Registrierungsnummer der Urkunde: D-PL-12076-01-00

Frankfurt om Main, 07.03.2014

Deutsche Akkreditierungsstelle GmbH

Standort Berlin Spittelmarkt 10 10117 Berlin

Standort Frankfurt am Main Gartenstraße 6 60594 Frankfurt am Main

Standort Braunschwei Bundesallee 100 38116 Braunschweig

Die auszugsweise Veröffentlichung der Aktreditionungsurkunde bezarf der verhanigen schriftlichen Zustimmung der Deutsche Aktreditionungsstelle GmbH (DAMG). Ausgenammen davon ist die sepan Weltz veroreitung des Deutscht sittes durch die umpering generate Kunformitällsbewartungsstelle in unweis höhrer form.

Die Akkreditierung erfolgte gemößt des Grachten über din Akkreditierungsstells (Akkstellec) vom 31. Juli 2008 (Roßi. I. S. 2675) sowie der Verordrung (Roß) Nr. 7655/2008 des Europaischen Parlament und des Battes vom S. Ist 2008 (Bred. I. S. 2675) sowie der Verordrung (Roß) Nr. 7655/2008 des Europaischen Parlament im Zusammenhang mit der Vermanktung von Produkten (Abl. L. 128 vom S. Juli 2008, S. 30). Die Dakks ist Unterverbeisen der Wildlichsellun Akkstemman ung aggenste tigen Arveit pung der Europeen en operation for Auszeitstein (EA, das Hebrastiens) Acceptation (Inc.) and der International Laberatory Auszeitschlich (Co.), das Hebrastiens (Asc.). Die Unterzeichner eisers Abkommen orkomen ihre Akkreditierungen gegenstellig an.

Der aktuelle Stund der VRiglindschaft kann folgenden Websetten ertnommen werden: FA: www.insrepean-actuell teilon.org IBAC www.inschap IBAC www.inschap

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

http://www.cetecom.com/eu/de/cetecom-group/europa/deutschland-saarbruecken/akkreditierungen.html