6. (a)	Schedule the set of jobs in the	following to obtain maximum
	profit and find out the total pr	rofit. Assume each job takes 2
	Hrs.	/

Job No.	1	2	3	4	5	6	7	8
Profit	15	18	4	25	3	4	10	6
Dead line	7	5	6	2 ,	. 4	2	3	4

(b) Define dis-joint set data structure. Discuss the tree based algorithms FIND-SET(x) and UNION(x,y).

7. (a) Consider the following instance of travelling salesperson problem.

	1	2	3	4
1	0	5	10	15
2	4	0 ,	5	6
3	2	8	0	7
4	10	4	5	0

Find the tour of the travelling salesperson and minimum cost of the tour with starting vertex 1.

- b) Write the algorithm for n-queens problem. Explain it for 4 queens. [4]
- 8. a) Write an algorithm to merge two sorted array A (increasing order) and B (decreasing order) to a single sorted array C in decreasing order.
 - b) Write prim's algorithm to find out minimum cost spanning tree. Explain its time complexity.

XXXXX

[4

[4

[4

5th Sem (Regular & Back)
D&AA (CS-3001/CS-502)
(CSE, IT)

AUTUMN END SEMESTER EXAMINATION-2015

5th Semester B.Tech & B.Tech Dual Degree

DESIGN & ANALYSIS OF ALGORITHM (CS-3001/CS-502)

(Regular-2013 & Back of Previous Admitted Batches)

Full Marks: 60

Time: 3 Hours

Answer any SIX questions including Question No. 1 which is compulsory.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable and all parts of a question should be answered at one place only.

1. Answer the following questions:

 $[2 \times 10]$

(a) What is the time complexity of the following recursive algorithm?

(b) Justify the following whether true or false.

I.
$$n! = O(n^n)$$

II.
$$2^{2n} = O(2^n)$$

(c) The solution to the recurrence relation: $T(n)=7T(n/2)+n^2$ is

i)
$$\theta(n^2)$$

ii)
$$\theta(n^{\log^7})$$

iii)
$$\theta(n \log n)$$

iv)
$$\theta(n^2 \log n)$$

(d) Write down the nature of dataset such that insertion sort and quick sort will have same run time behavior.

- (e) Show that an n-element heap has height [log n].
- (f) What do you mean by principle of optimality? Discuss with a suitable example.
- (g) Define Big-Oh Notation.
- (h) Match the following pairs
 - A. Quick Sort Algorithm

P. GREDY

- B. Bellmanford Algorithm
- Q. Divide and Conquer
- C. Floyd'-Warshall Algorithm
- R. Dynamic Programming

- D. N-Queer. Problem
- S. Backtracking
- (i) What is the difference between fractional knapsack and 0/1 knapsack problem? Which one gives more profit?
- (i) Consider the following graph.

Among the following sequences, which are possible breadth first traversals of the above graph if the first symbol of each sequence is considered as start vertex.

-) MBTHAEC
- ii) HMBACET
- iii) HABMCET

[4

- iv) TAMEBHC
- 2. (a) Insertion sort can be expressed as a recursive procedure as follows. In order to sort A[1...n], we recursively sort A[1..n-1] and then insert A[n] into the sorted array A[1..n-1]. Write the procedure and a recurrence for the running time of this recursive version of insertion sort.

(b) Solve the following recurrence

$$T(n) = \begin{cases} 2T\left(\frac{n}{4}\right) + \sqrt{n} & \text{if } n > 1\\ 1 & \text{if } n = 1 \end{cases}$$

- 3. (a) Find an optimal parenthesization matrix-chain multiplication whose sequence of dimensions are 2×6 , 6×5 , 5×4 and 4×3 .
 - (b) Find an optimal Huffman code for the following set of frequencies a:40 b:20 c:15 d:30 e:75

[4

[4

[4

4. (a) Write master theorem.

(b) Use suitable shortest path algorithm to find out shortest path between a to c and a to e. [4]

- 5. (a) Determine an LCS of <a, b, b, a, b, a, b, a> and <b, a, b, a, a, b, a, a, b, a, a, b>
 - (b) Traverse the following graph by DFS technique with 's' as start vertex. [4

- i) Draw the DFS tree/forest.
- ii) Find out the DFS sequence.