REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION OCOCO EXAMEN DU BACCALAUREAT SESSION 2018 Session de contrôle Epreuve: Mathématiques Section: Sciences de l'informatique Coefficient de l'épreuve: 3

Le sujet comporte 3 pages numérotées de 1/3 à 3/3.

Exercice 1 (4 points)

On considère la matrice $A = \begin{pmatrix} -1 & -2 & 1 \\ 1 & 1 & 1 \\ 2 & -1 & 1 \end{pmatrix}$

- 1) Calculer det A. En déduire que A est inversible.
- 2) a) Montrer que $A^2 = \begin{pmatrix} 1 & -1 & -2 \\ 2 & -2 & 3 \\ -1 & -6 & 2 \end{pmatrix}$
 - b) Vérifier que $A^3 A^2 = -7 \times I_3$ où I_3 est la matrice unité d'ordre 3.
 - c) En déduire A^{-1} la matrice inverse de A.
- 3) On considère le système (S) suivant $\begin{cases} -x 2y + z = 3 \\ x + y + z = 7 \text{ où } x, y \text{ et } z \text{ sont des réels} \\ 2x y + z = 1 \end{cases}$
 - a) Écrire ce système sous forme matricielle.
 - b) Résoudre alors le système (S).

Exercice 2 (4,5 points)

Une urne contient trois boules blanches et trois boules noires. On tire au hasard, successivement et avec remise, n boules de l'urne (n étant un entier supérieur ou égal à 2)

On considère les événements :

A: « obtenir des boules de couleurs différentes »

B: « obtenir au plus une boule blanche »

C: « obtenir n boules de même couleur »

D: « obtenir une seule boule blanche »

- 1) a) Montrer que $p(C) = \frac{1}{2^{n-1}}$
 - b) Calculer p(D)
- 2) a) Montrer que $p(A) = 1 \frac{1}{2^{n-1}}$ to (2) a solution of all predictions and (1) and
 - b) Montrer que $p(B) = \frac{n+1}{2^n}$
 - c) Vérifier que $p(A \cap B) = p(D)$
- 3) Soit (u_n) la suite définie pour $n \ge 2$ par : $u_n = 2^{n-1} (n+1)$
 - a) Montrer que (u_e) est croissante.
 - b) En déduire que u_n s'annule uniquement pour n=3.
- Pour quelles valeurs de n a-t-on $p(A \cap B) = p(A) \times p(B)$?

Exercice 3 (5,5 points)

- 1) On considère l'équation (E): 5x-26y=1 où x et y sont des entiers relatifs.
 - a) Vérifier que (-5, -1) est une solution de (E).
 - b) En déduire l'ensemble des solutions de (E).
- 2) On assimile chaque lettre de l'alphabet à un entier comme l'indique le tableau ci - dessous

A	В	C	D	E	F	G	H	and a	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12

17	100			- 12		Control of the Land							
	N	0	Р	Q	R	S	T	U	V	W	X	Y	Z
	13	14	15	16	17	18	19	20	21	22	23	24	25

On définit un procédé de codage de la façon suivante :

- à la lettre que l'on veut coder, on associe l'entier n correspondant dans le tableau.
- on calcule le reste de la division euclidienne de 5n+2 par 26 que l'on note m.
- à l'entier m, on associe la lettre correspondante dans le tableau.
- a) Vérifier que la lettre F est « codée » B.
- b) Coder le mot BAC, sachant que le codage s'effectue "lettre par lettre" et dans l'ordre.
- 3) a) Montrer que pour tous entiers n et m, on a :

$$5n+2 \equiv m[26] \Leftrightarrow n \equiv 21m+10[26]$$

- b) En déduire un procédé permettant de reconnaître une lettre « codée »
- c) Reconnaitre le mot dont le code est « UA ».

Exercice 4 (6 points)

- On considère la fonction f définie sur $]1,+\infty[$ par : $f(x) = \frac{x}{\ln x}$.
 - $\lim_{x \to 1^+} f(x)$ et $\lim_{x \to +\infty} f(x)$ a) Calculer les limites suivantes :
 - b) Déterminer $\lim_{x \to \infty} \frac{f(x)}{x}$ et interpréter graphiquement le résultat.
- a) Vérifier que pour tout $x \in]1, +\infty[$, $f'(x) = \frac{\ln x + 1}{(\ln x)^2}$.
 - b) Dresser le tableau de variations de f.
 - c) Montrer que la restriction de f réalise une bijection de $[e, +\infty[$ sur $[e, +\infty[$. On note f⁻¹sa réciproque.
- Tracer les courbes représentatives de f et f⁻¹ dans un repère orthonormé (O,i,j).
- 4) On définit la suite (u_n) par $u_0 = 3$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$
 - a) Montrer, par récurrence, que pour tout $n \in \mathbb{N}$, $u_n \ge e$
 - b) Montrer que la suite (u,) est décroissante.
 - c) En déduire que la suite (u,) est convergente et déterminer sa limite.
- a) Montrer que pour tout $x \ge e$, $f'(x) = \frac{1}{4} \frac{1}{4} \left(1 \frac{2}{\ln x}\right)^2$
 - b) En déduire que pour tout $x \ge e$, $0 \le f'(x) \le \frac{1}{4}$
- a) Montrer, à l'aide de l'inégalité des accroissements finis, que pour tout $n \in \mathbb{N}$,

$$\left|u_{n+1}-e\right| \le \frac{1}{4}\left|u_n-e\right|$$

- b) En déduire que, pour tout $n \in \mathbb{N}$, $|u_n e| \le \frac{1}{4^n}$
- c) Retrouver ainsi la limite de la suite (u,).