Primeros Resultados según Matriz de Confusión

Medidas de desempeño de clasificadores.

Como es sabido, la *matriz de confusión* mide el rendimiento de un clasificador. y se expresa en el caso de que solo existan dos clases como:

		Predicción					
		Positivo	Negativo				
al	Positivo	Positivo Verdadero (TP)	Falso Negativo (FN)				
Real	•<	Falso Positivo (FP)	Negativo Verdadero (TN)				

Las medidas más inmediatas de evaluación del modelo son:

Exactitud: $Acc = \frac{TP+TN}{TP+TN+FP+FN}$ Tasa de error: $Err = \frac{FP+FN}{TP+TN+FP+FN} = 1 - Acc$

Sin embargo, cuando existe un claro desequilibrio entre clases, como es el caso de los tuits de odio, se utilizarán los indicadores clásicos en clasificación binaria:

- 1. Precisión (precision)
- 2. Exhaustividad (recall)
- **Precisión** (p) es el porcentaje de los *tuits* clasificados *correctamente* como de odio - TP -del total de los asignados a dicha clase por el clasificador - TP+FP -(% de aciertos).

$$p = \frac{TP}{TP + FP}$$

Exhaustividad (r) es el porcentaje de los tuits de la clase odio existentes en el fichero que han sido clasificados correctamente.

$$r = \frac{TP}{TP + FN}$$

Proceso seguido.

Según lo que se deduce del conjunto inicial de muestra, el contenido de los tuits utilizados para etiquetado es el siguiente

Clase	Frecuencia	%	
Odio	204	0,2%	
Neutro	99.946	99,8%	
Total	100.150	100%	

Donde se aprecia claramente que estamos en un clarísimo desequilibrio de clases (0,2% frente a 99,8%).

El proceso que se ha seguido para la obtención del conjunto de entrenamiento parte del conjunto S (muestra) que se filtra mediante una lista de vocabulario obteniendo un nuevo conjunto R de mucha menor cardinalidad que se etiqueta manualmente, produciendo el conjunto de entrenamiento T, a partir del cual se procederá a la estimación de los modelos de clasificación como muestra la Figura 1.

Seguidamente se procede a la prueba de los modelos (Bayes, K-NN, Redes Neuronales,...) a fin de seleccionar el más adecuado.

Resultados obtenidos.

En nuestro caso, los resultados son los siguientes:

1. Matriz de confusión:

Predicción				Predicción						
		Odio	Neutro					Odio	Neutro	
R	Odio	32	172	2	204	R	Odio	0,032%	0,172%	0,204%
Real	Neutro	20	99.926	99.9	946	Real	Neutro	0,020%	99,776%	99,796%
		52	100.098	100.150				0,052%	99,948%	100%
				TP		32	0,0329	%		
				TN	9	9.926	99.7769	%		

TP	32	0,032%
TN	99.926	99,776%
FP	20	0,020%
FN	172	0,172%
Total	100.150	100%

2. Medidas de desempeño:

Exactitud(Acc)	99,81%	Precisión (p)	61,5%
Error(Err)	0,19%	Exhaustividad (r)	15,7%
		F	25.0%

Puede verse que, como era de esperar, el error es muy pequeño, sin embargo, el rendimiento del clasificador es bastante pobre sobre todo debido a su baja exhaustividad, lo que implica que el 84% de los tuits de odio originales no son detectados.

La Figura 2 muestra gráficamente los diferentes conceptos.

Figura 2

Conclusión.

Si los resultados mostrados anteriormente son correctos, es claro que, como consecuencia del gigantesco desequilibrio existente entre las clases - 2: 1000 - , la *exhaustividad* de la clasificación es muy pequeña: solamente el 16% de los tuits de odio son clasificados correctamente y la precisión tampoco puede decirse que sea muy elevada.

Es preciso analizar más en detalle los resultados y ver dónde está el fallo, si en el filtro o en el clasificador.

Figura 3: Filtrado de Tuits

Para ello es preciso ver

- 1º Cuántas instancias de odio (φ·TP) pasan el filtro y
- 2º Cuántos de los que pasan se clasifican erróneamente.

Todo ello en los dos posibles métodos de clasificación:

1. Sin filtrado previo:

Figura 4: Clasificación sin Filtrado Previo

2. Con filtrado previo y posterior clasificación:

Figura 5: Clasificación con Filtrado Previo