

Scale Invariant Feature Transform

Feature Descriptor

Pratik Jain

Photo by <u>fotografierende</u> from <u>Pexels</u>

Photo by **Ana Arantes** from **Pexels**

Blob Detection

Image generated from: http://weitz.de/sift/index.html

Blob Detection

Image generated from: http://weitz.de/sift/index.html

Edge Detection

Image taken from https://towardsdatascience.com/sift-scale-invariant-feature-transform-c7233dc6of37

Edge Detection Take 2 (LoG)

Coming to the point

- Edge = ripple
- Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian response will achieve a maximum at the center of the blob, provided the scale of the Laplacian is "matched" to the scale of the blob

Image taken from here

Blob Detection

Images from <u>Kristen Grauman's</u> slides

Blob Detection

Images from <u>Kristen Grauman's</u> slides

From LoG to DoG

We can approximate the Laplacian with a difference of Gaussians; more efficient to implement.

$$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
(Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

(Difference of Gaussians)

Image from Kristen Grauman's slides

The Scale Space

$$D(x, y, \sigma) =$$

$$L(x, y, k\sigma) - L(x, y, \sigma)$$

$$L(x, y, \sigma) =$$

$$G(x, y, \sigma) * I(x, y)$$

Image taken from:

CS 763 Ajit Rajwade

Octave = doubling of σ_0 . Within an octave, the adjacent scales differ by a constant factor k. If an octave contains s+1 images, then $k=2^{(1/s)}$. The first image has scale σ_0 , the second image has scale $k\sigma_0$, the third image has scale $k^2\sigma_0$, and the last image has scale $k^s\sigma_0$. Such a sequence of images convolved with Gaussians of increasing σ constitute a so-called scale space.

Scale Space Extrema detection

 Extract local extrema (i.e., minima or maxima) in DoG pyramid.

-Compare each point to its 8 neighbors at the same level, 9 neighbors in the level above, and 9 neighbors in the level below (i.e., 26 total).

Image taken from:

<u>CS 763</u> Ajit Rajwade

Initial Points Detection

<u>Ajit Rajwade</u>

CS 763

Image taken from here (Wikipedia)

Interpolation using by fitting a Taylor expansion to fit a 3D quadratic surface (in x,y, and σ)

$$z_0 = [x, y, \sigma]^T$$
 $z = [\delta x, \delta y, \delta \sigma]^T$

$$D(z_0 + z) \approx D(Z_0) + \left(\frac{\partial D}{\partial z}\Big|_{z_0}\right)^T z + \frac{1}{2} z^T \left(\frac{\partial^2 D}{\partial z^2}\Big|_{z_0}\right) z$$

Finding the maxima or minima

$$\frac{\partial D(z_0 + z)}{\partial z} = 0$$

 $(\delta x, \delta y, \delta \sigma)$

 (x,y,σ)

Distinctive Image Features from <u>Scale-Invariant</u> Key points David G. Lowe

$$D(z_0 + z) \approx D(Z_0) + \left(\frac{\partial D}{\partial z}\Big|_{z_0}\right)^T z + \frac{1}{2} z^T \left(\frac{\partial^2 D}{\partial z^2}\Big|_{z_0}\right) z$$

$$\frac{\partial D(z_0 + z)}{\partial z} = 0 + \left(\frac{\partial D}{\partial z}\Big|_{z_0}\right) + \frac{1}{2} \times 2 \times \left(\frac{\partial^2 D}{\partial z^2}\Big|_{z_0}\right) \hat{z} = 0$$

$$\left(\frac{\partial^2 D}{\partial z^2}\bigg|_{z_0}\right)\hat{z} = -\left(\frac{\partial D}{\partial z}\bigg|_{z_0}\right) \qquad \hat{z} = -\left(\frac{\partial^2 D}{\partial z^2}\bigg|_{z_0}\right)^{-1} \left(\frac{\partial D}{\partial z}\bigg|_{z_0}\right)$$

$$D(z_0 + z) \approx D(Z_0) + \left(\frac{\partial D}{\partial z}\Big|_{z_0}\right)^T z + \frac{1}{2}z^T \left(\frac{\partial^2 D}{\partial z^2}\Big|_{z_0}\right) z \qquad \hat{z} = -\left(\frac{\partial^2 D}{\partial z^2}\Big|_{z_0}\right)^{-1} \left(\frac{\partial D}{\partial z}\Big|_{z_0}\right)$$

$$D(z_0 + \hat{z}) \approx D(Z_0) + \left(\frac{\partial D}{\partial z}\Big|_{z_0}\right)^T \hat{z} + \frac{1}{2} \left(-\left(\frac{\partial^2 D}{\partial z^2}\Big|_{z_0}\right)^{-1} \left(\frac{\partial D}{\partial z}\Big|_{z_0}\right)\right)^T \left(\frac{\partial^2 D}{\partial z^2}\Big|_{z_0}\right) \hat{z}$$

$$D(z_0 + \hat{z}) \approx D(Z_0) + \left(\frac{\partial D}{\partial z}\Big|_{z_0}\right)^T \hat{z} - \frac{1}{2} \left(\frac{\partial D}{\partial z}\Big|_{z_0}\right)^T \left(\left(\frac{\partial^2 D}{\partial z^2}\Big|_{z_0}\right)^{-1}\right)^T \left(\frac{\partial^2 D}{\partial z^2}\Big|_{z_0}\right) \hat{z}$$

Hessian matrix

$$D(z_0 + \hat{z}) \approx D(Z_0) + \left(\frac{\partial D}{\partial z}\Big|_{z_0}\right)^T \hat{z} - \frac{1}{2} \left(\frac{\partial D}{\partial z}\Big|_{z_0}\right)^T \left(\left(\frac{\partial^2 D}{\partial z^2}\Big|_{z_0}\right)^{-1}\right)^T \left(\frac{\partial^2 D}{\partial z^2}\Big|_{z_0}\right) \hat{z}$$

$$D(z_0 + \hat{z}) \approx D(Z_0) + \left(\frac{\partial D}{\partial z}\Big|_{z_0}\right)^T \hat{z} - \frac{1}{2} \left(\frac{\partial D}{\partial z}\Big|_{z_0}\right)^T \hat{z}$$

$$D(z_0 + \hat{z}) \approx D(Z_0) + \frac{1}{2} \left(\frac{\partial D}{\partial z} \Big|_{z_0} \right)^T \hat{z} \qquad z = (\delta x, \delta y, \delta \sigma)$$

$$z_0 = (x, y, \sigma)$$

Distinctive Image Features from <u>Scale-Invariant</u> Key points David G. Lowe

Feature Point Localization (Summary)

For Every extrema point we calculate
$$\hat{z}$$

$$A = \begin{bmatrix} \frac{\partial D}{\partial x} & \frac{\partial D}{\partial y} & \frac{\partial D}{\partial \sigma} \end{bmatrix}^T$$

$$\hat{z} = [\delta x, \delta y, \delta \sigma]^T = -\left(\frac{\partial^2 D}{\partial z^2}\Big|_{z_0}\right)^{-1} \left(\frac{\partial D}{\partial z}\Big|_{z_0}\right)^T$$
Dist
$$\hat{z} = [\delta x, \delta y, \delta \sigma]^T = -\left(\frac{\partial^2 D}{\partial z^2}\Big|_{z_0}\right)^{-1} \left(\frac{\partial D}{\partial z}\Big|_{z_0}\right)^T$$
If $\delta x, \delta y$ are greater than 0.5 then we change z_0 . E.g. if $\delta x > 0.5$, $x = x + 1$

Distinctive Image Features from Scale-Invariant Key points David G. Lowe

If δx , δy are greater than 0.5 then we change z_0 . E.g. if $\delta x >$ 0.5, x = x + 1Again \hat{z} will be calculated at that point.

If a pixel keeps on oscillating, we discard it saying its unstable.

Pixel value at that point is calculated

$$D(z_0 + \hat{z}) \approx D(Z_0) + \frac{1}{2} \left(\frac{\partial D}{\partial z} \Big|_{z_0} \right)^T \hat{z} \qquad z = (\delta x, \delta y, \delta \sigma)$$

$$z = (\delta x, \delta y, \delta \sigma)$$
$$z_0 = (x, y, \sigma)$$

If this D is less than 0.03 it is discarded saying it's a low contrast point. (All pixels are normalized between [0,1])

After Feature Point Localization and thresholding

Image taken from here (Wikipedia)

Removing points on the edges

The principal curvatures can be computed from a 2x2 Hessian matrix, H, computed at the location and scale of the key point

$$\mathbf{H} = \left[\begin{array}{cc} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{array} \right]$$

 α and β are eigen values of the matrix

$$\frac{\operatorname{Tr}(\mathbf{H})^2}{\operatorname{Det}(\mathbf{H})} = \frac{(\alpha + \beta)^2}{\alpha\beta} = \frac{(r\beta + \beta)^2}{r\beta^2} = \frac{(r+1)^2}{r},$$

Keep only values that follow this condition

$$\frac{\operatorname{Tr}(\mathbf{H})^2}{\operatorname{Det}(\mathbf{H})} < \frac{(r+1)^2}{r}.$$

After removal of edges points

Image taken from here (Wikipedia)

Rotational Invariance

Repeatability Rate

 $r = \frac{\textit{No. of corresponding points detected in common region}}{\textit{Total no. of points detected in common region}}$

Good Detector But we also need good descriptor

Orientation Assignment

$$m(x,y) = \sqrt{(L(x+1,y) - L(x-1,y))^2 + (L(x,y+1) - L(x,y-1))^2}$$

$$\theta(x,y) = \tan^{-1}((L(x,y+1) - L(x,y-1))/(L(x+1,y) - L(x-1,y)))$$

 $\sigma = 1.5 * scale of image$

Histogram of gradient orientation – the bin-counts are weighted by gradient magnitudes and a Gaussian weighting function. Usually, 36 bins are chosen for the Image taken from: orientation.

> **CS** 763 Ajit Rajwade

Descriptor for Each feature

The next step is to compute a descriptor for the local image region that is highly distinctive yet is as invariant as possible to remaining variations, such as change in illumination or 3D viewpoint.

In order to achieve orientation invariance, the coordinates of the descriptor and the gradient orientations are

rotated relative to the key point orientation.

Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation at each image sample point in a region around the keypoint location, as shown on the left. These are weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

Distinctive Image Features from **Scale-Invariant** Key points: David G. Lowe

SIFT Descriptor

Object Detection

Figure 12: The training images for two objects are shown on the left. These can be recognized in a cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown on the right. A parallelogram is drawn around each recognized object showing the boundaries of the original training image under the affine transformation solved for during recognition. Smaller squares indicate the keypoints that were used for recognition.