

Data Science Session Housekeeping

- The use of disrespectful language is prohibited in the questions, this is a supportive, learning environment for all - please engage accordingly.
- No question is daft or silly ask them!
- There are Q&A sessions midway and at the end of the session, should you
 wish to ask any follow-up questions. Moderators are going to be
 answering questions as the session progresses as well.
- If you have any questions outside of this lecture, or that are not answered during this lecture, please do submit these for upcoming Academic Sessions. You can submit these questions here: <u>Questions</u>

Data Science Session Housekeeping cont.

- For all non-academic questions, please submit a query:
 www.hyperiondev.com/support
- Report a safeguarding incident:
 <u>www.hyperiondev.com/safeguardreporting</u>
- We would love your feedback on lectures: Feedback on Lectures

Data Cleaning

- ♦ Data cleaning is a crucial step in the data science pipeline
- Ensures data quality and reliability for analysis and modeling
- Common data quality issues include missing data, duplicates, inconsistent formatting, and outliers

Missing Data

Handling Missing Data

Missing data refers to the absence of values in one or more variables in a dataset.

- Identifying missing values:
 - Look for null, NaN, or empty cells in the dataset.
 - Use functions like isnull() or isna() in Pandas

```
# Identify missing values
   df missing.isnull().sum()
 ✓ 0.0s
total_bill
               10
tip
               10
sex
smoker
day
time
                0
size
                0
dtype: int64
```


Understand Missing Data Mechanisms

- MCAR: Missing Completely at Random (missingness unrelated to any variables)
 - > Smoking status is not recorded in a random sample of patients
- MAR: Missing at Random (missingness depends on observed variables)
 - > Smoking status is not documented in female patients because the doctor was to shy to ask
- MNAR: Missing Not at Random (missingness depends on missing values themselves)
 - > Smoking status is not recorded in patients admitted as an emergency, who are also more likely to have worse outcomes from surgery

Techniques for Handling Missing Data

- Deletion: Remove records with missing values (only suitable if missing data is minimal and random).
 - Suitable for random missingness
 - Not the first resort, dropping data means losing some important context or skewing the dataset in some cases

Techniques for Handling Missing Data

- Imputation: Fill in missing values with estimated or calculated values.
 - > Simple imputation: Mean, median, or mode imputation

```
# Simple Imputation: Fill missing values with mean for numeric columns and mode for categorical
# columns

df_imputed = df_missing.copy()

df_imputed['total_bill'] = df_imputed['total_bill'].fillna(df_imputed['total_bill'].mean())

df_imputed['sex'] = df_imputed['sex'].fillna(df_imputed['sex'].mode()[0])
```

- Advanced imputation: K-Nearest Neighbors (KNN), Multiple Imputation by Chained Equations (MICE)
 - We'll get to KNN in another lecture

Duplicates

Dealing with Duplicates

Identify duplicates using functions like duplicated() in Pandas

```
# Show all duplicated rows
df_duplicates[df_duplicates.duplicated(keep=False)]
```

keep = False just marks all duplicates.

	total_bill	tip	sex	smoker	day	time	size
46	22.23	5.00	Male	No	Sun	Dinner	2
92	5.75	1.00	Female	Yes	Fri	Dinner	2
123	15.95	2.00	Male	No	Thur	Lunch	2
158	13.39	2.61	Female	No	Sun	Dinner	2
198	13.00	2.00	Female	Yes	Thur	Lunch	2
202	13.00	2.00	Female	Yes	Thur	Lunch	2
234	15.53	3.00	Male	Yes	Sat	Dinner	2
244	22.23	5.00	Male	No	Sun	Dinner	2
245	15.53	3.00	Male	Yes	Sat	Dinner	2
246	13.39	2.61	Female	No	Sun	Dinner	2
247	5.75	1.00	Female	Yes	Fri	Dinner	2
248	15.95	2.00	Male	No	Thur	Lunch	2

Dealing with Duplicates

 Dropping duplicates is fine and encouraged, it does not cause the data to lost necessary context

```
# Remove duplicate records
df_deduplicated = df_duplicates.drop_duplicates()
```


Data Formatting and Standardization

- Consistent data formatting is essential for accurate analysis and compatibility
- Common formatting issues:
 - Date and time formats: Ensure consistent representation (e.g., YYYY-MM-DD, HH:MM:SS)
 - > **Text case inconsistencies:** Convert text to a consistent case (lowercase or uppercase)
 - Inconsistent value representations: Standardize values (e.g., "Yes"/"No" vs.

Data Formatting and Standardization

- Techniques for standardizing data:
 - Convert date/time columns using to_datetime()
 - Convert text case using str.lower() or str.upper()
 - Map inconsistent values to standardized representations

```
df['sex'] = df['sex'].str.upper()
  df['smoker'] = df['smoker'].str.title()
  df.head()
✓ 0.0s
  total_bill
                                         time size
             ait
            1.01 FEMALE
                              No Sun
                                       Dinner
      10.34
            1.66
                   MALE
                              No Sun
                                       Dinner
                   MALE
            3.50
                                       Dinner
                                       Dinner
                              No Sun Dinner
```


Outliers

Outliers

 Outliers are data points that significantly deviate from the rest of the data distribution

Identifying Outliers

Visual inspection using plots like box plots, scatter plots, or

histograms

Identifying Outliers

- Statistical methods like z-score or interquartile range (IQR)
 - Much less common given how good box plot already show outliers

```
# Identify outliers using z-score
from scipy import stats

z_scores = np.abs(stats.zscore(df['total_bill']))
threshold = 2.5
outliers_zscore = np.where(z_scores > threshold)

outliers_zscore

    0.0s
(array([ 59, 102, 156, 170, 182, 197, 212]),)
```


Handling Outliers

- * Removal: Remove outliers if they are erroneous or irrelevant to the analysis
 - > Use when outliers are clearly erroneous or irrelevant to the analysis
 - Be cautious, as removing outliers may result in loss of information

```
# Removal: Remove outliers
df_removed = df[~((df['total_bill'] < (Q1 - 1.5 * IQR)) | (df['total_bill'] > (Q3 + 1.5 * IQR)))]
df_removed.shape

$\square 0.0s$

MagicPython
(235, 9)
```


Handling Outliers

- Transformation: Apply mathematical transformations (e.g., logarithmic, square root) to reduce the impact of outliers
 - Use when outliers are valid but have a skewed distribution
 - > Helps to reduce the impact of outliers while preserving the data

Handling Outliers

- Winsorization: Replace extreme values with the nearest non-outlier values
 - Use when outliers are valid but need to be treated to reduce their influence
 - > Maintains the overall distribution shape while limiting the extreme values

Iterative Data Cleaning

Iterating

- Data cleaning is an iterative process that may require multiple rounds
- Continuously assess and refine the cleaned data based on analysis results and feedback
- Integrate data cleaning with data analysis and modeling for optimal results

Libraries

fuzzywuzzy

- Provides string matching and similarity scoring functions
- ❖ Key features:
 - > Ratio: Calculates the similarity ratio between two strings
 - > Partial Ratio: Calculates the similarity ratio considering substrings
 - > **Token Set Ratio:** Calculates the similarity ratio considering common tokens

fuzzywuzzy

!pip3 install fuzzywuzzy python-Levenshtein

from fuzzywuzzy import fuzz

```
fuzz.ratio("apple", "appel")

v 0.0s
80
```

```
fuzz.partial_ratio("apple", "app")

v  0.0s
```

```
# Gives a 100 if every token in the first string is in the second string fuzz.token_set_ratio("apple orange", "orange apple")

✓ 0.0s

100
```

 \prod_{\square} | HyperionDev

chardet

- Detects the encoding of a given byte string
- Key features:
 - Supports various encodings (e.g., UTF-8, ISO-8859-1, etc.)
 - > Provides confidence scores for detected encodings

```
!pip3 install chardet
```

import chardet

```
\bigcap_{\square} HyperionDev
```

```
byte_string = b"Hello, World!"
encoding = chardet.detect(byte_string)
encoding

< 0.0s
{'encoding': 'ascii', 'confidence': 1.0, 'language': ''}</pre>
```

Data Preprocessing

Data preprocessing is a crucial step in the data science pipeline, going beyond basic cleaning to ensure data quality and suitability for machine learning.

Source: GeeksForGeeks

Importance

- Improved data quality: Addresses complex issues beyond basic cleaning
- Enhanced model performance: Optimizes data for learning algorithms
- Reduced computational complexity: Reduces dimensionality and creates efficient representations

Feature Scaling

- Purpose: Ensure fair comparison and contribution of features
- Techniques:
 - > Standardization (Z-score normalization): Transforms features to have zero mean and unit varia $X' = \frac{X \mu}{X}$
 - ➤ Min-max scaling: Scales features to a specific range, typically 0 to 1

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$

- > Robust scaling: Uses robust statistics (median and interquartile range) to scale features
 - (X-median)/IQR

Considerations

- Standardization: Good default, assumes Gaussian distribution
- Min-max scaling: Suitable for bounded features or non-Gaussian data
- * Robust scaling: Recommended when outliers are present

Nominal vs. Ordinal

- Nominal: Categories without inherent order (e.g., color)
- Ordinal: Categories with meaningful order (e.g., size)

Encoding Nominal variables

- One-hot encoding: Creates binary dummy variables for each category
 - Increases dimensionality, which may impact model performance

Index	Animal		Index	Dog	Cat	Sheep	Lion	Horse
0	Dog	One-Hot code	0	1	0	0	0	0
1	Cat		1	0	1	0	0	0
2	Sheep		2	0	0	1	0	0
_	Опсер		2	U	U	1	U	U
3	Horse		3	0	0	0	0	1
4	Lion		4	0	0	0	1	0

Encoding Nominal variables

- Binary encoding: Assigns unique binary codes to categories
 - > Useful when the number of categories is large, and one-hot encoding leads to high dimensionality

	City
0	Delhi
1	Mumbai
2	Hyderabad
3	Chennai
4	Bangalore
5	Delhi
6	Hyderabad
7	Mumbai
8	Agra

	City_0	City_1	City_2	City_3
0	0	0	0	1
1	0	0	1	0
2	0	0	1	1
3	0	1	0	0
4	0	1	0	1
5	0	0	0	1
6	0	0	1	1
7	0	0	1	0
8	0	1	1	0

Encoding Ordinal variables

- Label encoding: Assigns numerical labels based on order
 - Maintains ordinal information but implies linear relationships between categories
 - May not be appropriate if the ordinal relationship is not linear

De	egree
0	1
1	4
2	2
3	3
4	3
5	4
6	5
7	1
8	1

Encoding Ordinal variables

- Ordinal encoding: Assigns numerical labels based on order
 - > Preserves ordinal information without implying linear relationships
 - > Suitable when the ordinal relationship between categories is meaningful

1	Degree
0	1
1	4
2	2
3	3
4	3
5	4
6	5
7	1
8	1

Handling High-Cardinality

Handling High-Cardinality

The Curse of Dimensionality:

As the number of features grows, the amount of data we need to accurately be able to distinguish between these features (in order to give us a prediction) and generalize our model (learned function) grows EXPONENTIALLY.

Frequency-based Encoding

- * Replaces categories with occurrence count
- Useful when the frequency of categories is informative

Target Encoding

- Replaces categories with mean/median of target variable
- Captures the relationship between categories and the target variable

	class	Marks
0	Α,	50
1	В	30
2	C	70
3	В	80
4	С	45
5	Α	97
6	А	80
7	Α	68

	class
0	65.000000
1	57.689414
2	59.517061
3	57.689414
4	59.517061
5	79.679951
6	79.679951
7	79.679951

Hashing

- Applies hash function to reduce dimensionality
- Useful when the number of categories is extremely large

	Month
0	January
1	April
2	March
3	April
4	Februay
5	June
6	July
7	June
8	September

	col_0	col_1	col_2	col_3	col_4	col_5
0	0	0	0	0	1	0
1	0	0	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	1	0	0
4	0	0	0	1	0	0
5	0	1	0	0	0	0
6	1	0	0	0	0	0
7	0	1	0	0	0	0
8	0	0	0	0	1	0

Feature Engineering

 Create informative features that improve model performance and interpretability

Techniques

- Interaction features: Combine existing features to capture interactions
- Polynomial features: Generate higher-order terms to capture non-linear relationships
- Domain-specific features: Apply domain knowledge to create meaningful features

Interaction Features

Interaction features
penguins['bill_volume'] = penguins['bill_length_mm'] * penguins['bill_depth_mm']

Polynomial Features

Correlation Heatmap of Polynomial Features												- 1.0				
bill_length_mm -	1	-0.24			1	0.66	0.95	0.82	-0.23	0.19	0.49					
bill_depth_mm -	-0.24	1	-0.58	-0.47	-0.22	0.57	-0.4	-0.43	1	0.81	0.19	-0.59	-0.52	-0.48		- 0.8
flipper_length_mm -			1			0.083				0.0056		1		0.87		
body_mass_g -	0.6	-0.47	0.87	1	0.59	0.11		0.94	-0.46	0.043		0.87	0.99	1		- 0.6
bill_length_mm^2 -	1	-0.22	0.65		1	0.67	0.95	0.82	-0.21	0.2	0.49	0.65	0.62			
bill_length_mm bill_depth_mm -	0.66		0.083	0.11	0.67	1	0.48	0.34		0.77	0.53	0.08	0.099	0.099		- 0.4
bill_length_mm flipper_length_mm -	0.95	-0.4			0.95	0.48			-0.39	0.13				0.77		- 0.2
bill_length_mm body_mass_g -	0.82	-0.43	0.88	0.94	0.82	0.34	0.93	1	-0.42	0.1		0.89	0.95	0.94		- 0.2
bill_depth_mm^2 -	0.23	1	-0.57	-0.46	-0.21	0.58	-0.39	-0.42	1	0.81	0.2	-0.57	-0.51	-0.47		- 0.0
bill_depth_mm flipper_length_mm -	0.19	0.81	0.0056	0.043	0.2	0.77	0.13	0.1	0.81	1		0.002	0.028	0.034		
bill_depth_mm body_mass_g -	0.49	0.19	0.55		0.49	0.53			0.2	0.62		0.55				0.2
flipper_length_mm^2 -						0.08				0.002		1				
flipper_length_mm body_mass_g -		-0.52		0.99		0.099		0.95	-0.51	0.028				0.99		0.4
body_mass_g^2 -		-0.48	0.87			0.099		0.94	-0.47	0.034			0.99	1		
	bill_length_mm -	bill_depth_mm -	flipper_length_mm -	- body_mass_g	bill_length_mm^2 -	bill_length_mm bill_depth_mm -	bill_length_mm flipper_length_mm -	bill_length_mm body_mass_g -	bill_depth_mm^2 -	bill_depth_mm flipper_length_mm -	bill_depth_mm body_mass_g -	flipper_length_mm^2 -	flipper_length_mm body_mass_g -	body_mass_g^2 -		

Challenge

Skewed class distribution leads to biased models and poor minority class performance

Techniques

- Undersampling: Reduce majority class instances
 - > Random undersampling: Remove majority instances

Techniques

- Oversampling: Increase minority class instances
 - > Random oversampling: Duplicate minority instances
 - > **SMOTE:** Generate synthetic minority instances

 \bigcap_{\square} HyperionDev

Considerations

- Oversampling may lead to overfitting, especially with random oversampling
- Undersampling may discard potentially useful data

Questions and Answers

Thank you for attending

