In the claims:

1-4. (cancelled)

5. (currently amended) A <u>co-polymer according to claim 1, comprising a first repeating unit of the formula</u>

A¹ is hydrogen, or C₁-C₁₈alkyl,

A² is hydrogen, or C₁-C₁₈alkyl,

A³ is hydrogen, or C₁-C₁₈alkoxy, or C₁-C₁₈alkyl,

A⁴ is hydrogen, or C₁-C₁₈alkyl,

 $\underline{A^5}$ is hydrogen, $\underline{C_1}$ - $\underline{C_{18}}$ alkyl, di($\underline{C_1}$ - $\underline{C_{18}}$ alkyl)amino, or $\underline{C_1}$ - $\underline{C_{18}}$ alkoxy,

A⁶ is hydrogen, or C₁-C₁₈alkyl,

A⁷ is hydrogen, C₁-C₁₈alkyl or C₁-C₁₈alkoxy,

comprising and an additional repeating unit T which is selected from the group consisting of

$$\begin{bmatrix} R^{17} \\ R^{16} \end{bmatrix}_s \begin{bmatrix} R^{17} \\ R^{16} \end{bmatrix}_s \begin{bmatrix} R^{17} \\ R^{16} \end{bmatrix}_s$$

$$R^{17}$$

$$R^{18}$$

$$R^{18}$$

$$R^{18}$$

$$R^{19}$$

$$R$$

p is an integer from 1 to 10,

q is an integer from 1 to 10,

s is an integer from 1 to 10,

 R^{14} and R^{15} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, or C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by G,

 R^{16} and R^{17} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl, or C_2 -

 C_{20} heteroaryl which is substituted by G, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, C_7 - C_{25} aralkyl, or -CO- R^{28} ,

 R^{18} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by -O-;

 R^{19} and R^{20} are independently of each other C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl which is substituted by G, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl, or

R¹⁹ and R²⁰ together form a group of formula =CR¹⁰⁰R¹⁰¹, wherein

 R^{100} and R^{101} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl, or C_2 - C_{20} heteroaryl which is substituted by G, or

R¹⁹ and R²⁰ form a ring, which can optionally be substituted, and

D, E and G are as defined in claim 2

D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR²⁵-; -SiR³⁰R³¹-; -POR³²-; -CR²³=CR²⁴-; or -C≡C-; and E is -OR²⁹; -SR²⁹; -NR²⁵R²⁶; -COR²⁸; -COR²⁷; -CONR²⁵R²⁶; -CN; -OCOOR²⁷; or halogen; G is E, or C₁-C₁₈alkyl, wherein

 R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_4 - C_{18} alkyl, or C_4 - C_{18} alkyl; or C_4 - C_{18} alkyl; or C_4 - C_{18} alkyl which is interrupted by -O-; or

 R^{25} and R^{26} together form a five or six membered ring, R^{27} and R^{28} are independently of each other H; C_6-C_{18} aryl; C_6-C_{18} aryl which is substituted by C_1-C_{18} alkyl, or C_1-C_{18} alkyl; or

 R^{29} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O_{-1}$

 R_{10}^{30} and R_{10}^{31} are independently of each other C_{11} - C_{18} alkyl, C_{61} - C_{18} aryl, or C_{61} - C_{18} aryl, which is substituted by C_{11} - C_{18} alkyl, and

 R^{32} is C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl.

6. (currently amended) A <u>co-polymer</u> according to claim 5, wherein T is selected from the group consisting of

 \boldsymbol{R}^{18} is $\boldsymbol{C}_1\text{-}\boldsymbol{C}_{18}\text{alkyl},$ and

 R^{19} and R^{20} are independently of each other C_1 - C_{18} alkyl_, especially C_4 - C_{42} alkyl, which can be interrupted by one or two oxygen atoms, or

 R^{19} and R^{20} form a five or six membered carbocyclic ring, which optionally can be substituted by C_1 - C_4 alkyl.

7. (currently amended) A co-polymer according claim 5, comprising a repeating unit of the formula

$$A^{1}$$

$$A^{2}$$

$$A^{3}$$

$$A^{4}$$

$$A^{3}$$

$$A^{4}$$

$$A^{5}$$

$$A^{2}$$

$$A^{1}$$

$$A^{3}$$

$$A^{4}$$

$$A^{5}$$

$$A^{4}$$

$$A^{6}$$

$$A^{7}$$

$$A^{1}$$

$$A^{3}$$

$$A^{4}$$

$$A^{6}$$

$$A^{7}$$

$$A^{1}$$

$$A^{3}$$

$$A^{4}$$

$$A^{5}$$

$$A^{4}$$

$$A^{5}$$

$$A^{5}$$

$$A^{4}$$

$$A^{5}$$

$$A^{5}$$

$$A^{4}$$

$$A^{5}$$

$$A^{5}$$

$$A^{4}$$

$$A^{5}$$

$$A^{5}$$

$$A^{5}$$

$$A^{4}$$

$$A^{5}$$

$$A^{5}$$

$$A^{5}$$

$$A^{5}$$

$$A^{5}$$

$$A^{5}$$

$$A^{5}$$

$$A^{7}$$

$$A^{1}$$

$$A^{1}$$

$$A^{2}$$

$$A^{4}$$

$$A^{5}$$

$$A^{5}$$

$$A^{5}$$

$$A^{5}$$

$$A^{5}$$

$$A^{5}$$

$$A^{7}$$

$$A^{1}$$

$$A^{1}$$

$$A^{2}$$

$$A^{4}$$

$$A^{5}$$

$$A^{7}$$

$$A^{1}$$

$$A^{1}$$

$$A^{2}$$

$$A^{3}$$

$$A^{4}$$

$$A^{5}$$

$$A^{7}$$

$$A^{1}$$

$$A^{2}$$

$$A^{5}$$

$$A^{5$$

-and as a repeating unit T in an amount <u>up</u> to 99.5 mol%, wherein the sum of the <u>first</u> repeating unit(s) and the repeating unit(s) T co-monomer is 100 mol%,

wherein-

A¹-is hydrogen, or C₁-C₁₈alkyl,

A²-is hydrogen, or C₄-C₄₈alkyl,

A³-is hydrogen, or C₁-C₁₈alkoxy, or C₁-C₁₈alkyl,

A⁴ is hydrogen, or C₁-C₁₈alkyl,

A⁵⁻is hydrogen, C₄-C₄₈alkyl, di(C₄-C₄₈alkyl)amino, or C₄-C₄₈alkoxy,

A⁶-is-hydrogen, or C₁-C₁₈alkyl,

A⁷ is hydrogen, C₁-C₁₈alkyl or C₁-C₁₈alkoxy, and

$$R^{16}$$
 R^{16}
 R^{16}
 R^{17}
 R^{17}

T is a group of formula

or R^{13} R^{20} , wherein s is one or two, R^{16} and R^{17} are independently of each other C_{1} -

C₁₈alkyl, which can be interrupted by one or two oxygen atoms, C₁-C₁₈alkoxy, which can be interrupted by one or two oxygen atoms

and R^{19} and R^{20} are independently of each other C_1 - C_{18} alkyl, which can be interrupted by one or two oxygen atoms.

8-9. (cancelled

- **10.** (**previously presented**) An optical device or a component therefore, comprising a substrate and a polymer according to claim 5.
- **11. (original)** An optical device according to claim 10, wherein the optical device comprises an electroluminescent device.
- **12.** (previously presented) An optical device according to claim 11, wherein the electroluminescent device comprises

- (a) a reflective or transmissive anode
- (b) a reflective or transmissive cathode
- (c) an emissive layer comprising the polymer located between the electrodes, and optionally
- (d) a charge injecting layer for injecting positive charge carriers, and
- (e) a charge injecting layer for injecting negative charge carriers.

13-19. (cancelled).