# **Assignment -2**

## Part-A

- 1-echo "Hello, World!" : It will print Hello world! In terminal
- 2- name= "Productive": Here we are only taking name variable in this

And initialize to Productive it will do nothing

- 3- touch file.txt : command to create a empty file
- 4- Is -a: command to list out all the directory including hidden (.) files.
- 5-rm file.txt : command to remove file.txt on a particular location.
- 6- cp file1.txt file2.txt : command to copy file1.txt content Into file2.txt

7-mv file.txt/path/to/directory: command to move file.txt to particulat location(directory)

- 8- chmod 755 script.sh: is used to change the permissions of the file script.sh.
  - 7: means all owner
  - 5:read and excute by groups
  - 5:read and excute by other.

The owner can read, write, and execute the script.

Group members and others can only read and execute the script.

- 9- grep "pattern" file.txt: is used to search for a specific text pattern inside a file.
- 10-KILL PID: is used to terminate a process.
- kill → Command to send a signal to a process.
- PID → Process ID (a unique number assigned to a running process).
- 11- first it will create a directory which is mydir and go to mydir and create a empty file.txt and print Hello, World and redirect it in file.txt and display file.txt content which is: Hello, World!

12- ls -l | grep ".txt": is used to list all .txt files in the current directory with detailed information.

Is  $-1 \rightarrow$  Lists files in long format (shows permissions, size, owner, etc.).

 $| \rightarrow$  Pipes the output of Is -I to the grep command.

grep ".txt" → Filters only lines containing .txt, showing details of .txt files.

13: cat file1.txt file2.txt | sort | uniq

cat file1.txt file2.txt

Concatenates (cat) and displays the contents of both file1.txt and file2.txt.

• | sort

Pipes (|) the output to sort, which arranges the lines in alphabetical order.

• | uniq

Filters out duplicate lines, keeping only unique occurrences

14: Is -I | grep "^d"

Is -I

Lists files and directories in long format (showing permissions, owner, size, etc.).

• | grep "^d"

Filters the output to show only directories.

^d → Regex pattern where:

- ^ → Matches the beginning of the line.
- d → Matches lines where the first character is "d" (indicating a directory).

15- grep -r "pattern" /path/to/directory/

is used to search for a specific pattern recursively in all files within a directory and its subdirectories.

16- cat file1.txt file2.txt | sort | uniq -d

is used to find duplicate lines that appear in both file1.txt and file2.txt.

### 17- chmod 644 file.txt:

is used to set file permissions for file.txt

 $chmod \rightarrow Change file mode (permissions).$ 

644 → Numeric mode that sets specific read and write permissions.

6: rw \_

4: r

4: r \_ \_

18- cp -r source directory destination directory

This command is used to copy a directory and all its contents (including subdirectories and files) to another location.

- cp → Copy files and directories.
- -r (Recursive) → Copies directories and their contents recursively.
- source directory → The directory you want to copy.
- destination directory → The target location where the copy will be placed.

## 19- find /path/to/search -name "\*.txt"

This command is used to search for .txt files within a specified directory (/path/to/search) and its subdirectories.

## 20- chmod u+x file.txt

This command is used to add execute (x) permission for the owner (user) of the file file.txt.

## 21- echo \$PATH

This command displays the system's \$PATH environment variable, which defines where the system looks for executable files.

| Part -B                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------|
| 1. Is is used to list files and directories in a directory.                                                                          |
| True                                                                                                                                 |
| 2. mv is used to move files and directories.                                                                                         |
| True                                                                                                                                 |
| 3. cd is used to copy files and directories.                                                                                         |
| False                                                                                                                                |
| 4. pwd stands for "print working directory" and displays the current directory.                                                      |
| True                                                                                                                                 |
| 5. grep is used to search for patterns in files.                                                                                     |
| True                                                                                                                                 |
| 6. chmod 755 file.txt gives read, write, and execute permissions to the owner, and read and execute permissions to group and others. |
| True                                                                                                                                 |
| 7. mkdir -p directory1/directory2 creates nested directories, creating directory2 inside directory1 if directory1 does not exist.    |
| True                                                                                                                                 |
| 8. rm -rf file.txt deletes a file forcefully without confirmation.                                                                   |
| False                                                                                                                                |
|                                                                                                                                      |
|                                                                                                                                      |

# **Identify the Incorrect Commands:**

1. chmodx is used to change file permissions.: incorrect

Usechmod to change file permission

2. cpy is used to copy files and directories. :incorrect

Use cp to copy file and directories

3. mkfile is used to create a new file. :incorrect

Use touch file name to create a new file

4. catx is used to concatenate files.: incorrect

Use cat to concatenate files.

5. rn is used to rename files.: incorrect

Use my oldname newname to rename files.

## Part C

Question 1: Write a shell script that prints "Hello, World!" to the terminal.

```
cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment

cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment$ nano pro.sh

cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment$ bash pro.sh

Hello, World!

cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment$
```

Question 2: Declare a variable named "name" and assign the value "CDAC Mumbai" to it. Print the value of the variable.

```
cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment

cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment$ nano pro.sh

cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment$ bash pro.sh

CDAC Mumbai

cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment$ _
```

Question 3: Write a shell script that takes a number as input from the user and prints it.

# cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment\$ nano pro1.sh cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment\$ bash pro1.sh Enter a number: 4 The number is: 4 cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment\$

Question 4: Write a shell script that performs addition of two numbers (e.g., 5 and 3) and prints the result.

```
cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment

cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment$ cat pro2.sh

#!/bin/bash

# Define two numbers

num1=5

num2=3

# calculate addition

sum=$((num1 + num2))

# Print the result

echo "The sum of $num1 and $num2 is: $sum"

cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment$ bash pro2.sh

The sum of 5 and 3 is: 8

cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment$ _
```

Question 5: Write a shell script that takes a number as input and prints "Even" if it is even, otherwise prints "Odd".

## cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment

```
cdac@DESKTOP-MPFQCG0:~/LinuxAssignment$ cat pro3.sh
#!/bin/bash
# Take a number
echo "Enter a number: "
read number
# Check if the number is even or odd
if (( number % 2 == 0 )); then
   echo "Even"
else
   echo "Odd"
fi
cdac@DESKTOP-MPFQCG0:~/LinuxAssignment$ bash pro3.sh
Enter a number:
cdac@DESKTOP-MPFQCG0:~/LinuxAssignment$ bash pro3.sh
Enter a number:
Odd
cdac@DESKTOP-MPFQCG0:~/LinuxAssignment$ _
```

Question 6: Write a shell script that uses a for loop to print numbers from 1 to 5.

## cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment

Question 7: Write a shell script that uses a while loop to print numbers from 1 to 5.

## cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment

```
cdac@DESKTOP-MPFQCG0:~/LinuxAssignment$ cat whileloop.sh
#!/bin/bash
num=1
while ((num<=5))
do
        echo "$num"
        ((num++))
done

cdac@DESKTOP-MPFQCG0:~/LinuxAssignment$ bash whileloop.sh
1
2
3
4
5
cdac@DESKTOP-MPFQCG0:~/LinuxAssignment$
</pre>
```

Question 8: Write a shell script that checks if a file named "file.txt" exists in the current directory. If it does, print "File exists", otherwise, print "File does not exist".

Question 9: Write a shell script that uses the if statement to check if a number is greater than 10 and prints a message accordingly.

# 

```
cdac@DESKTOP-MPFQCG0:~/LinuxAssignment$ cat grt.sh
#!/bin/bash
# Take user input
read -p "Eneter a number": num
    if [ "$num" -gt 10 ]; then
   echo "The number is greater than 10."
else
   echo "The number is 10 or less."
fi
cdac@DESKTOP-MPFQCG0:~/LinuxAssignment$ bash grt.sh
Eneter a number:11
The number is greater than 10.
cdac@DESKTOP-MPFQCG0:~/LinuxAssignment$ bash grt.sh
Eneter a number:4
The number is 10 or less.
dac@DESKTOP-MPFQCG0:~/LinuxAssignment$
```

Question 10: Write a shell script that uses nested for loops to print a multiplication table for numbers from 1 to 5. The output should be formatted nicely, with each row representing a number and each

column representing the multiplication result for that number.

## cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment

Question 11: Write a shell script that uses a while loop to read numbers from the user until the user enters a negative number. For each positive number entered, print its square. Use the break statement to exit the loop when a negative number is entered.

```
cdac@DESKTOP-MPFQCG0: ~/LinuxAssignment
cdac@DESKTOP-MPFQCG0:~/LinuxAssignment$ cat posi.sh
#!/bin/bash
while true; do
   read -p "Enter a number (negative to exit): " num
   if [ "$num" -lt 0 ]; then
       echo "Negative number entered. Exiting..."
       break
    fi
   square=$((num * num))
   echo "Square of $num is: $square"
done
cdac@DESKTOP-MPFQCG0:~/LinuxAssignment$ bash posi.sh
Enter a number (negative to exit): 4
Square of 4 is: 16
Enter a number (negative to exit): 3
Square of 3 is: 9
Enter a number (negative to exit): 2
Square of 2 is: 4
Enter a number (negative to exit): -1
Negative number entered. Exiting...
cdac@DESKTOP-MPFQCG0:~/LinuxAssignment$ _
```

## Part-E

1. Consider the following processes with arrival times and burst times:

Calculate the average waiting time using First-Come, First-Served (FCFS) scheduling.

| Process | Arrival Time | Burst Time |

| P1 | 0 | 5 |
|----|---|---|
| P2 | 1 | 3 |
| Р3 | 2 | 6 |

| Date//         | - Par  | JE _   |          | Page No.:               |       |
|----------------|--------|--------|----------|-------------------------|-------|
| cfs.           | 747    |        | vist Tim | e. WT                   | *     |
| Pı             | 0      | - XX   | 5        | 0 19                    |       |
| P <sub>2</sub> | 2 1/2  | 531    | 31       | 4                       | 45-12 |
| P.3            | 2      | - of   | 6.       | 6.9                     |       |
|                | 219    | 16     | 8        | $AWT = \frac{0+4+6}{3}$ | = \$3 |
| Gantt          | chart; |        |          | trock that              | P     |
| Pı             | P2 P3  | 19 0   | 9 19     | 19 9 9 8                | 4     |
| 6              | 5 8    | 191 11 | 9.1.     | b d # -                 |       |

2. Consider the following processes with arrival times and burst times:

| Process | Arrival Time | Burst Time |

Calculate the average turnaround time using Shortest Job First (SJF) scheduling.



3. Consider the following processes with arrival times, burst times, and priorities (lower number indicates higher priority):

Calculate the average waiting time using Priority Scheduling.

| Date Priority (Nonpresemptive. Page No.: |                           |                          |                               |                  |            |                               |                                                                                   |  |
|------------------------------------------|---------------------------|--------------------------|-------------------------------|------------------|------------|-------------------------------|-----------------------------------------------------------------------------------|--|
|                                          | Proc                      | 288                      | TA                            | 78               | CT         | TAT                           | ωT                                                                                |  |
|                                          | P                         | 1                        | 0                             | 6                | 6          | 6                             | 0                                                                                 |  |
|                                          | P.                        | 2                        | 1                             | 4                | 10         | 9                             | S                                                                                 |  |
|                                          | P                         | 3                        | 2                             | 7                | 19         | 14                            | 10                                                                                |  |
|                                          | P                         | 4                        | 3                             | 2                | 12         | 9                             | 7                                                                                 |  |
|                                          |                           |                          | Tretain H                     | of should        | supt he    | 12 selb a                     |                                                                                   |  |
|                                          | 18- TT=TW                 |                          |                               |                  |            |                               |                                                                                   |  |
|                                          |                           |                          |                               |                  | b/c        | 10 = 70                       | S+10+7 = 22                                                                       |  |
|                                          |                           |                          |                               |                  |            |                               | ¥s.s                                                                              |  |
|                                          |                           |                          |                               |                  |            |                               |                                                                                   |  |
|                                          |                           |                          |                               |                  |            | - 4                           | 2 1143                                                                            |  |
|                                          | Pojertit                  | (Pres                    | emp five                      | e la r           | B 49 2     |                               |                                                                                   |  |
|                                          | Process                   | (Proc                    | emp five                      | CT               | TAT        |                               | wT                                                                                |  |
|                                          | -                         | Crack Control            |                               |                  | -          | rate grow                     | WT ment                                                                           |  |
|                                          | Process                   | Crack Control            |                               | CT               | 12-6       |                               | 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          |  |
|                                          | Process Pi                | AT O                     | BT                            | CT 120           | 12-9       | A PM                          | 126-C                                                                             |  |
|                                          | Process<br>Pr             | AF<br>140                | BT<br>6                       | CT 120           | S-1<br>19: | 1=4                           | 126=6<br>426=6<br>4=4=0                                                           |  |
|                                          | Process<br>Pi<br>P2<br>P3 | AF                       | BT 16 84 8194                 | 13<br>CL         | S-1<br>19: | 12 = 19<br>12 = 19<br>12 = 19 | 4 - 2 = 2                                                                         |  |
|                                          | Process Pi P2 P3 P4       | 6 1<br>2 2<br>2 3<br>2 3 | 87<br>6<br>84<br>8194<br>11 2 | 120<br>120<br>CL | S-1<br>19: | 1=12<br>1=12<br>1=12=17       | $\frac{d}{(4-5)^{2}}$ $\frac{(4-5)^{2}}{(4-4)^{2}}$ $\frac{(4-4)^{2}}{(4-4)^{2}}$ |  |
|                                          | Process Pi P2 P3 P4       | 6 1<br>2 2<br>2 3<br>2 3 | BT 16 84 8194                 | 120<br>120<br>CL | S-1<br>19: | 12 = 19<br>12 = 19<br>12 = 19 | $\frac{(4-5-5)}{(4-5-6)}$ $\frac{(4-5-5)}{(4-4-6)}$                               |  |

4. Consider the following processes with arrival times and burst times, and the time quantum for Round Robin scheduling is 2 units:

# | Process | Arrival Time | Burst Time |

| P1 | 0 | 4 | - 1 |
|----|---|---|-----|
| P2 | 1 | 5 | - 1 |
| P3 | 2 | 2 | 1   |
| P4 | 3 | 3 | 1   |

Calculate the average turnaround time using Round Robin scheduling.

| 94 Round Rot                  | sin   |            |            |               |  |
|-------------------------------|-------|------------|------------|---------------|--|
| Date/ Process                 | TA 0  | 78         | CT 10      | TAT Page No.: |  |
| P 2                           | 1     | S          | LY         | L3            |  |
| P3                            | 2     | 2          | 6          | 4             |  |
| Py                            | 3     | 3          | 13         | 10 .          |  |
|                               |       |            |            |               |  |
|                               |       |            |            |               |  |
| P <sub>1</sub> P <sub>2</sub> | P3 P4 | 3 10<br>B1 | P2 P4      | PS 14         |  |
|                               |       | TAT =      | 10413 + 4+ | 10 = 37<br>4  |  |
|                               |       |            |            | ==            |  |

5. Consider a program that uses the fork() system call to create a child process. Initially, the parent process has a variable x with a value of 5. After forking, both the parent and child processes increment the value of x by 1. What will be the final values of x in the parent and child processes after the fork() call?

Ames fork () System call in operating System duplicating the povent process therever, the child process gots a separate copy of the parents memory space, any changes made by the child a will not affect the parant fricus first fock contes X=S same for boths parent & child A new child process is created. Bothe parent of child have their own copy of x After increment x >x+1. The child process changes x to 6 The parent process changes its own COPY X 40 6. Since they are running in diff memory space These Charles and industriated killing duker as a requirement ric. its susternance prophential Dr. A. P. J. Andrew Katarin hitra