Ensemble Methods on the Ames Housing dataset

```
install_tensorflow() install.packages("tensorflow") library(tensorflow) install_tensorflow() library(tensorflow) tf$constant("Hellow Tensorflow")
```

Predicting house prices using Ensemble methods

Reading in the dataset

```
dataHouse <- read.csv("housing.csv", colClasses = c(MSSubClass = 'factor', MoSold ='factor'))
dataHouse$Id <- NULL</pre>
```

Section 1 - Data Cleaning

Overall structure and summary statistics of variables.

```
summary(dataHouse)
```

```
##
     MSSubClass
                    MSZoning
                                 LotFrontage
                                                    LotArea
                                                                   Street
##
   20
          :536
                 C (all): 10
                                Min.
                                       : 21.00
                                                        : 1300
                                                                  Grvl:
   60
           :299
                 F۷
                           65
                                1st Qu.: 59.00
                                                 1st Qu.:
                                                           7554
                                                                  Pave: 1454
##
##
   50
           :144
                 RH
                           16
                                Median : 69.00
                                                 Median :
                                                           9478
##
   120
           : 87
                 RL
                        :1151
                                Mean
                                       : 70.05
                                                 Mean
                                                        : 10517
##
   30
           : 69
                        : 218
                                3rd Qu.: 80.00
                                                 3rd Qu.: 11602
##
   160
           : 63
                                Max.
                                       :313.00
                                                 Max.
                                                        :215245
##
    (Other):262
                                NA's
                                       :259
##
    Alley
               LotShape LandContour Utilities
                                                     LotConfig
                                                                  LandSlope
   Grvl: 50
              IR1:484
                                     AllPub: 1459
                                                   Corner: 263
                                                                  Gt1:1382
                        Bnk: 63
   Pave: 41
               IR2: 41
                         HLS: 50
                                     NoSeWa: 1
                                                   CulDSac:
                                                             94
                                                                  Mod: 65
##
##
   NA's:1369
               IR3: 10
                         Low: 36
                                                   FR2
                                                             47
                                                                  Sev: 13
##
               Reg:925
                         Lvl:1311
                                                   FR3
##
                                                   Inside:1052
##
##
                                                               HouseStyle
##
    Neighborhood
                   Condition1
                                  Condition2
                                                 BldgType
                                      :1445
  NAmes :225
                        :1260
                                               1Fam :1220
                                                             1Story :726
##
                 Norm
                                Norm
##
   CollgCr:150
                 Feedr
                           81
                                Feedr
                                           6
                                               2fmCon: 31
                                                             2Story :445
                                           2
                                               Duplex: 52
                                                             1.5Fin :154
##
  OldTown:113
                 Artery:
                                Artery:
                           48
## Edwards:100
                           26
                                PosN
                                               Twnhs: 43
                                                             SLvl
                                                                  : 65
                 RRAn
                                           2
                                               TwnhsE: 114
                                                             SFoyer: 37
## Somerst: 86
                 PosN
                           19
                                RRNn
##
   Gilbert: 79
                 RRAe
                        :
                           11
                                PosA
                                           1
                                                             1.5Unf : 14
##
  (Other):707
                  (Other): 15
                                (Other):
                                           2
                                                             (Other): 19
   OverallQual
                     OverallCond
                                      YearBuilt
                                                    YearRemodAdd
                                                                    RoofStyle
          : 1.000 Min.
                           :1.000
                                                   Min.
## Min.
                                    Min.
                                           :1872
                                                          :1950
                                                                  Flat
```

```
1st Qu.: 5.000
                     1st Qu.:5.000
                                     1st Qu.:1954
                                                    1st Qu.:1967
                                                                    Gable :1141
   Median : 6.000
                     Median :5.000
                                     Median:1973
                                                    Median:1994
                                                                    Gambrel: 11
   Mean : 6.099
                                                           :1985
                                                                           : 286
                     Mean
                           :5.575
                                     Mean
                                           :1971
                                                    Mean
                                                                    Hip
   3rd Qu.: 7.000
                     3rd Qu.:6.000
                                     3rd Qu.:2000
                                                    3rd Qu.:2004
##
                                                                    Mansard:
                                                                               7
##
   Max.
         :10.000
                     Max.
                           :9.000
                                     Max.
                                            :2010
                                                    Max.
                                                           :2010
                                                                    Shed
##
                                                 MasVnrType
##
       RoofMatl
                    Exterior1st
                                  Exterior2nd
                                                                MasVnrArea
##
   CompShg: 1434
                   VinylSd:515
                                 VinylSd:504
                                               BrkCmn : 15
                                                              Min.
                                                                    :
##
   Tar&Grv: 11
                   HdBoard:222
                                 MetalSd:214
                                               BrkFace:445
                                                              1st Qu.:
                                                                         0.0
##
   WdShngl:
               6
                   MetalSd:220
                                 HdBoard:207
                                               None
                                                       :864
                                                              Median :
                                                                         0.0
   WdShake:
               5
                   Wd Sdng:206
                                 Wd Sdng:197
                                               Stone :128
                                                              Mean
                                                                    : 103.7
                   Plywood:108
                                 Plywood:142
                                                              3rd Qu.: 166.0
##
   ClvTile:
                                               NA's
                                                       : 8
               1
   Membran:
                   CemntBd: 61
                                 CmentBd: 60
                                                              Max.
                                                                     :1600.0
##
               1
               2
                                                              NA's
##
    (Other):
                   (Other):128
                                 (Other):136
                                                                     :8
   ExterQual ExterCond Foundation BsmtQual
                                                BsmtCond
                                                             BsmtExposure
##
   Ex: 52
              Ex:
                    3
                        BrkTil:146
                                     Ex :121
                                                Fa: 45
                                                             Αv
                                                                :221
##
   Fa: 14
              Fa:
                  28
                        CBlock:634
                                     Fa
                                         : 35
                                                Gd
                                                       65
                                                             Gd
                                                                 :134
                                                    :
   Gd:488
              Gd: 146
                                                             Mn
                                                                 :114
##
                        PConc:647
                                     Gd
                                         :618
                                                 Ро
                                                    :
                                                         2
##
    TA:906
                    1
                        Slab: 24
                                     TA:649
                                                             No
                                                                :953
              Po:
                                                 TA :1311
                        Stone: 6
                                     NA's: 37
                                                             NA's: 38
##
              TA:1282
                                                 NA's: 37
##
                        Wood: 3
##
##
   BsmtFinType1
                   BsmtFinSF1
                                  BsmtFinType2
                                                 {\tt BsmtFinSF2}
                                                                    BsmtUnfSF
##
   ALQ:220
                 Min.
                            0.0
                                  ALQ: 19
                                               Min.
                                                           0.00
                                                                  Min. : 0.0
                                  BLQ :
                                                           0.00
##
   BLQ :148
                 1st Qu.:
                            0.0
                                         33
                                                                  1st Qu.: 223.0
                                               1st Qu.:
                                               Median :
   GLQ :418
                 Median: 383.5
                                  GLO: 14
                                                           0.00
                                                                  Median: 477.5
##
   LwQ : 74
                 Mean
                       : 443.6
                                  LwQ: 46
                                               Mean
                                                          46.55
                                                                  Mean
                                                                       : 567.2
##
   Rec :133
                 3rd Qu.: 712.2
                                  Rec: 54
                                               3rd Qu.:
                                                           0.00
                                                                  3rd Qu.: 808.0
                                                                         :2336.0
##
   Unf :430
                        :5644.0
                                  Unf :1256
                                                       :1474.00
                                                                  Max.
                 Max.
                                               Max.
   NA's: 37
                                  NA's: 38
##
    TotalBsmtSF
                                                                       X1stFlrSF
##
                      Heating
                                  HeatingQC CentralAir Electrical
##
   Min.
               0.0
                     Floor:
                             1
                                  Ex:741
                                            N: 95
                                                        FuseA:
                                                               94
                                                                     Min.
                                                                           : 334
##
   1st Qu.: 795.8
                     GasA :1428
                                  Fa: 49
                                            Y:1365
                                                        FuseF:
                                                                27
                                                                     1st Qu.: 882
##
   Median : 991.5
                     GasW: 18
                                  Gd:241
                                                        FuseP:
                                                                     Median:1087
                                                                 3
                                  Po: 1
         :1057.4
                     Grav :
                             7
                                                                     Mean :1163
##
   Mean
                                                        Mix :
##
    3rd Qu.:1298.2
                     OthW:
                              2
                                  TA:428
                                                        SBrkr: 1334
                                                                     3rd Qu.:1391
##
   Max.
           :6110.0
                     Wall:
                                                        NA's :
                                                                     Max.
                                                                            :4692
##
##
      X2ndFlrSF
                    LowQualFinSF
                                       GrLivArea
                                                     BsmtFullBath
                   Min. : 0.000
                                           : 334
##
          :
               0
                                     Min.
                                                    Min.
                                                           :0.0000
   Min.
    1st Qu.:
                   1st Qu.: 0.000
                                     1st Qu.:1130
                                                    1st Qu.:0.0000
##
   Median :
               0
                   Median : 0.000
                                     Median:1464
                                                    Median :0.0000
   Mean : 347
                   Mean
                             5.845
                                     Mean
                                            :1515
                                                    Mean
                                                           :0.4253
##
    3rd Qu.: 728
                   3rd Qu.:
                             0.000
                                     3rd Qu.:1777
                                                     3rd Qu.:1.0000
##
   Max.
           :2065
                          :572.000
                                     Max.
                                            :5642
                                                            :3.0000
                   Max.
                                                    Max.
##
##
    BsmtHalfBath
                         FullBath
                                         HalfBath
                                                         BedroomAbvGr
##
   Min.
           :0.00000
                      Min.
                             :0.000
                                      Min.
                                             :0.0000
                                                        Min.
                                                               :0.000
   1st Qu.:0.00000
                                      1st Qu.:0.0000
                      1st Qu.:1.000
                                                        1st Qu.:2.000
##
   Median :0.00000
                      Median :2.000
                                      Median :0.0000
                                                        Median :3.000
##
   Mean
           :0.05753
                      Mean
                             :1.565
                                      Mean
                                             :0.3829
                                                        Mean
                                                               :2.866
   3rd Qu.:0.00000
                      3rd Qu.:2.000
##
                                      3rd Qu.:1.0000
                                                        3rd Qu.:3.000
##
   Max.
           :2.00000
                      Max.
                             :3.000
                                      Max.
                                             :2.0000
                                                        Max.
                                                               :8.000
##
```

```
##
     KitchenAbvGr
                     KitchenQual TotRmsAbvGrd
                                                                    Fireplaces
                                                     Functional
##
    Min.
            :0.000
                     Ex:100
                                  Min.
                                          : 2.000
                                                     Maj1:
                                                             14
                                                                  Min.
                                                                          :0.000
    1st Qu.:1.000
                                                                  1st Qu.:0.000
                     Fa: 39
                                   1st Qu.: 5.000
                                                     Maj2:
                                                              5
                     Gd:586
    Median :1.000
                                   Median : 6.000
                                                                  Median :1.000
##
                                                     Min1:
                                                             31
##
    Mean
            :1.047
                     TA:735
                                   Mean
                                          : 6.518
                                                     Min2:
                                                             34
                                                                  Mean
                                                                          :0.613
##
    3rd Qu.:1.000
                                   3rd Qu.: 7.000
                                                     Mod:
                                                             15
                                                                  3rd Qu.:1.000
##
    Max.
            :3.000
                                   Max.
                                          :14.000
                                                     Sev :
                                                              1
                                                                  Max.
                                                                          :3.000
##
                                                     Typ: 1360
##
    FireplaceQu
                   GarageType
                                  GarageYrBlt
                                                 GarageFinish
                                                                 GarageCars
##
    Ex
        : 24
                 2Types: 6
                                Min.
                                        :1900
                                                 Fin :352
                                                               Min.
                                                                       :0.000
##
    Fa
        : 33
                 Attchd:870
                                1st Qu.:1961
                                                 RFn:422
                                                               1st Qu.:1.000
        :380
                                Median:1980
                                                 Unf:605
                                                               Median :2.000
##
    Gd
                 Basment: 19
##
    Po
        : 20
                 BuiltIn: 88
                                        :1979
                                                 NA's: 81
                                                                       :1.767
                                Mean
                                                               Mean
##
    TA
        :313
                 CarPort:
                                3rd Qu.:2002
                                                               3rd Qu.:2.000
##
    NA's:690
                 Detchd:387
                                        :2010
                                Max.
                                                               Max.
                                                                       :4.000
##
                 NA's
                         : 81
                                NA's
                                        :81
                                                 PavedDrive
##
                       GarageQual
                                   GarageCond
                                                               WoodDeckSF
      GarageArea
    Min.
                                                     90
           :
                0.0
                       Ex
                               3
                                    Ex
                                        :
                                            2
                                                             Min.
##
    1st Qu.: 334.5
                          :
                                           35
                                                 P:
                                                     30
                                                             1st Qu.:
                                                                       0.00
                      Fa
                              48
                                    Fa
                                        :
##
    Median: 480.0
                       Gd
                           :
                              14
                                    Gd
                                        :
                                            9
                                                 Y:1340
                                                             Median :
                                                                       0.00
##
    Mean
            : 473.0
                      Po
                               3
                                    Ро
                                            7
                                                             Mean
                                                                     : 94.24
                                                             3rd Qu.:168.00
##
    3rd Qu.: 576.0
                       TΑ
                          :1311
                                    TA
                                       :1326
                                    NA's:
                                           81
                                                                     :857.00
##
    Max.
            :1418.0
                      NA's:
                             81
                                                             Max.
##
##
     OpenPorchSF
                       EnclosedPorch
                                           X3SsnPorch
                                                             ScreenPorch
##
    Min.
           :
              0.00
                      Min.
                              :
                                 0.00
                                         Min.
                                                 :
                                                    0.00
                                                            Min.
                                                                   :
                                                                      0.00
    1st Qu.:
              0.00
                       1st Qu.:
                                 0.00
                                         1st Qu.:
                                                    0.00
                                                            1st Qu.:
                                                                      0.00
##
##
    Median : 25.00
                       Median :
                                 0.00
                                         Median :
                                                    0.00
                                                            Median :
                                                                      0.00
##
                              : 21.95
                                                                    : 15.06
    Mean
            : 46.66
                       Mean
                                         Mean
                                                    3.41
                                                            Mean
##
    3rd Qu.: 68.00
                       3rd Qu.:
                                 0.00
                                         3rd Qu.:
                                                    0.00
                                                            3rd Qu.: 0.00
##
    Max.
            :547.00
                       Max.
                              :552.00
                                         Max.
                                                 :508.00
                                                            Max.
                                                                    :480.00
##
##
       PoolArea
                         PoolQC
                                       Fence
                                                   MiscFeature
                                                                   MiscVal
    Min.
                                2
##
           :
              0.000
                                     GdPrv:
                                             59
                                                   Gar2:
                                                            2
                                                                Min.
                                                                             0.00
                        Ex
                            :
##
    1st Qu.:
               0.000
                                2
                                     GdWo :
                                             54
                                                   Othr:
                                                            2
                                                                1st Qu.:
                                                                             0.00
                        Fa
                            :
                                     MnPrv: 157
              0.000
                                                                Median :
##
    Median :
                        Gd
                           :
                                3
                                                   Shed:
                                                           49
                                                                             0.00
##
               2.759
                        NA's:1453
                                     MnWw : 11
                                                   TenC:
                                                                Mean
                                                                            43.49
##
    3rd Qu.: 0.000
                                     NA's :1179
                                                   NA's:1406
                                                                             0.00
                                                                3rd Qu.:
    Max.
            :738.000
                                                                        :15500.00
##
                                                                Max.
##
##
        MoSold
                        YrSold
                                                                       SalePrice
                                       SaleType
                                                    SaleCondition
##
    6
            :253
                           :2006
                                    WD
                                                    Abnorml: 101
                   Min.
                                           :1267
                                                                    Min.
                                                                            : 34900
##
    7
            :234
                   1st Qu.:2007
                                    New
                                           : 122
                                                    AdjLand:
                                                                4
                                                                     1st Qu.:129975
##
    5
            :204
                   Median:2008
                                    COD
                                               43
                                                    Alloca:
                                                                    Median :163000
                                                               12
##
    4
            :141
                   Mean
                           :2008
                                    ConLD
                                                9
                                                    Family:
                                                               20
                                                                     Mean
                                                                            :180921
    8
            :122
                   3rd Qu.:2009
                                                5
##
                                    ConLI
                                                    Normal:1198
                                                                     3rd Qu.:214000
##
    3
            :106
                   Max.
                           :2010
                                    ConLw
                                                5
                                                    Partial: 125
                                                                    Max.
                                                                            :755000
                                                9
    (Other):400
                                    (Other):
```

There are 45 categorical features, and 35 numerical features. Of which, 19 features have missing values.

colMeans(is.na(dataHouse))

MSSubClass MSZoning LotFrontage LotArea Street

```
##
    0.000000000
                  0.0000000000
                                0.1773972603
                                               0.000000000
                                                             0.000000000
##
           Alley
                      LotShape
                                 LandContour
                                                  Utilities
                                                                LotConfig
   0.9376712329
                  0.000000000
##
                                0.000000000
                                               0.000000000
                                                             0.000000000
##
       LandSlope
                  Neighborhood
                                  Condition1
                                                 Condition2
                                                                 BldgType
##
   0.000000000
                  0.000000000
                                0.000000000
                                               0.000000000
                                                             0.000000000
      HouseStyle
                   OverallQual
                                                             YearRemodAdd
##
                                 OverallCond
                                                  YearBuilt
   0.000000000
                  0.000000000
                                0.000000000
                                               0.000000000
                                                             0.000000000
##
##
       RoofStyle
                      RoofMatl
                                 Exterior1st
                                                Exterior2nd
                                                               MasVnrType
##
   0.000000000
                  0.000000000
                                0.000000000
                                               0.000000000
                                                             0.0054794521
##
      MasVnrArea
                     ExterQual
                                   ExterCond
                                                 Foundation
                                                                 BsmtQual
##
   0.0054794521
                  0.000000000
                                0.000000000
                                               0.000000000
                                                             0.0253424658
                  BsmtExposure
                                                             BsmtFinType2
##
        BsmtCond
                                BsmtFinType1
                                                 BsmtFinSF1
                  0.0260273973
                                                             0.0260273973
##
   0.0253424658
                                0.0253424658
                                               0.000000000
                     BsmtUnfSF
##
      BsmtFinSF2
                                 TotalBsmtSF
                                                    Heating
                                                                HeatingQC
##
   0.000000000
                  0.000000000
                                0.000000000
                                               0.000000000
                                                             0.000000000
##
      CentralAir
                    Electrical
                                   X1stFlrSF
                                                  X2ndFlrSF
                                                             LowQualFinSF
   0.000000000
                                               0.000000000
##
                  0.0006849315
                                0.000000000
                                                             0.000000000
##
                  BsmtFullBath
                                BsmtHalfBath
                                                   FullBath
       GrLivArea
                                                                 HalfBath
   0.000000000
                  0.000000000
                                0.000000000
                                               0.000000000
                                                             0.000000000
##
##
   BedroomAbvGr
                  KitchenAbvGr
                                 KitchenQual
                                               TotRmsAbvGrd
                                                               Functional
##
   0.000000000
                  0.000000000
                                0.000000000
                                               0.000000000
                                                             0.000000000
##
      Fireplaces
                                                GarageYrBlt
                                                             GarageFinish
                   FireplaceQu
                                  GarageType
   0.000000000
                  0.4726027397
                                0.0554794521
                                               0.0554794521
                                                             0.0554794521
##
                    GarageArea
      GarageCars
                                                 GarageCond
                                                               PavedDrive
##
                                  GarageQual
   0.000000000
                  0.000000000
##
                                0.0554794521
                                               0.0554794521
                                                             0.000000000
##
      WoodDeckSF
                   OpenPorchSF
                               EnclosedPorch
                                                 X3SsnPorch
                                                              ScreenPorch
##
   0.000000000
                  0.000000000
                                0.000000000
                                               0.000000000
                                                             0.000000000
##
        PoolArea
                        PoolQC
                                        Fence
                                                MiscFeature
                                                                  MiscVal
##
   0.000000000
                  0.9952054795
                                0.8075342466
                                               0.9630136986
                                                             0.000000000
                        YrSold
##
                                    SaleType SaleCondition
                                                                SalePrice
          MoSold
                                0.000000000
   0.000000000
                  0.0000000000
                                               0.000000000
                                                             0.000000000
```

Variables with Missing values %: LotFrontage(17.7%), Alley(93.8%), MasVnrType (0.6%), MasVnrArea (0.6%), BsmtQual (2.5%), BsmtCond (2.5%), BsmtExposure (2.6%), BsmtFinType1 (2.5%), BsmtFinType2 (2.6), Electrical (0.06%), FireplaceQu (47.3%), GarageType (5.5%), GarageYrBlt (5.5%), GarageFinish (5.5%), GarageQual (5.5%), GarageCond (5.6%), PoolQC (99.5%), Fence (80.8%), MiscFeature (96.3%).

```
which(colMeans(is.na(dataHouse)) >= 0.30)
##
         Alley FireplaceQu
                                 PoolQC
                                              Fence MiscFeature
##
                                     72
                                                              74
             6
                        57
                                                 73
dataHouse$Alley <- NULL
dataHouse$FireplaceQu <- NULL
dataHouse$PoolQC <- NULL
dataHouse$Fence <- NULL
dataHouse$MiscFeature <- NULL
NROW(dataHouse[!complete.cases(dataHouse),])/NROW(dataHouse) * 100
```

[1] 25.06849

Around 25% rows have one or more missing values now. Imputing missing values using Random Forests

```
#install.packages("missForest")
library(missForest)
## Warning: package 'missForest' was built under R version 3.6.3
## Loading required package: randomForest
## Warning: package 'randomForest' was built under R version 3.6.3
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## Loading required package: foreach
## Warning: package 'foreach' was built under R version 3.6.3
## Loading required package: itertools
## Warning: package 'itertools' was built under R version 3.6.3
## Loading required package: iterators
## Warning: package 'iterators' was built under R version 3.6.3
set.seed(1)
tempVar <- dataHouse$SalePrice</pre>
dataHouse$SalePrice <- NULL
data_Imp <- missForest(dataHouse)</pre>
##
     missForest iteration 1 in progress...done!
    missForest iteration 2 in progress...done!
##
     missForest iteration 3 in progress...done!
data_Imp$00Berror
         NRMSE
                       PFC
## 0.008078283 0.039729589
dataHouse <- data_Imp$ximp</pre>
dataHouse$SalePrice <- tempVar</pre>
```

Section 2 - Data Exploration

Histogram of dataHouse\$SalePrice

Eyeballing the distribution, we can see that the distribution is postively skewed, with most of the houses being in the lower price range.

```
# Log transformation of target variable
dataHouse$SalePrice <- log(dataHouse$SalePrice)

plot(SalePrice ~ ., data= dataHouse)</pre>
```


Visually observing the plots, the following variables seems like they might be correlated: OverallQual, TotalBsmtSF, X1stFlrSF, GrLivArea, TotRmsAbvGrd.

Section 3 - Creating Predictive Models

library(caret)

```
## Warning: package 'caret' was built under R version 3.6.3

## Loading required package: lattice

## Loading required package: ggplot2

## Warning: package 'ggplot2' was built under R version 3.6.3

## ## Attaching package: 'ggplot2'

## The following object is masked from 'package:randomForest':

## ## margin
```

```
# Train test split
train.index <- createDataPartition(dataHouse$SalePrice, p = 0.8, list = FALSE)
data_train <- dataHouse[train.index, ]
data_test <- dataHouse[-train.index, ]</pre>
```

Lasso Linear Regression Model

```
lasso <- train(
   SalePrice ~., data = data_train, method = "glmnet",
   trControl = trainControl("cv", number = 10),
   tuneGrid = expand.grid(alpha = 1, lambda = 10^seq(-3, 3, length = 100)))</pre>
```

Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, : ## There were missing values in resampled performance measures.

Best tuned coefficients:

```
coeffs <- as.matrix(coef(lasso$finalModel, lasso$bestTune$lambda))
coeffs</pre>
```

```
##
                                     1
## (Intercept)
                         7.276627e+00
## MSSubClass160
                         -9.153581e-02
## MSSubClass180
                         0.00000e+00
## MSSubClass190
                         0.000000e+00
## MSSubClass20
                         2.841034e-02
## MSSubClass30
                        -4.184269e-02
## MSSubClass40
                         0.000000e+00
## MSSubClass45
                         0.000000e+00
## MSSubClass50
                         0.000000e+00
## MSSubClass60
                         0.000000e+00
## MSSubClass70
                         0.000000e+00
## MSSubClass75
                         0.000000e+00
## MSSubClass80
                         0.000000e+00
## MSSubClass85
                         0.000000e+00
## MSSubClass90
                         0.000000e+00
## MSZoningFV
                         3.904708e-02
## MSZoningRH
                         0.000000e+00
## MSZoningRL
                         4.004596e-02
## MSZoningRM
                         0.000000e+00
## LotFrontage
                         0.00000e+00
## LotArea
                         1.352954e-06
## StreetPave
                         5.237496e-02
## LotShapeIR2
                         0.000000e+00
## LotShapeIR3
                        -9.447559e-02
## LotShapeReg
                         0.00000e+00
## LandContourHLS
                         0.000000e+00
## LandContourLow
                         0.000000e+00
## LandContourLvl
                         0.000000e+00
## UtilitiesNoSeWa
                        -3.322919e-02
```

##	LotConfigCulDSac	3.811951e-02
##	LotConfigFR2	0.000000e+00
##	LotConfigFR3	0.000000e+00
##	LotConfigInside	0.000000e+00
##	LandSlopeMod	0.000000e+00
##	LandSlopeSev	0.000000e+00
##	NeighborhoodBlueste	0.000000e+00
##	NeighborhoodBrDale	0.000000e+00
##	NeighborhoodBrkSide	4.369358e-04
##	NeighborhoodClearCr	2.440725e-02
##	NeighborhoodCollgCr	0.000000e+00
##	NeighborhoodCrawfor	1.176998e-01
##	NeighborhoodEdwards	-3.605538e-02
##	NeighborhoodGilbert	0.000000e+00
##	NeighborhoodIDOTRR	-8.028385e-02
##	NeighborhoodMeadowV	-6.511095e-02
##	NeighborhoodMitchel	0.000000e+00
##	NeighborhoodNAmes	0.000000e+00
##	NeighborhoodNoRidge	5.332634e-02
##	NeighborhoodNPkVill	0.000000e+00
##	NeighborhoodNridgHt	1.140510e-01
##	NeighborhoodNWAmes	0.000000e+00
##	NeighborhoodOldTown	-3.192463e-02
##	NeighborhoodSawyer	0.000000e+00
##	NeighborhoodSawyerW	0.000000e+00
##	NeighborhoodSomerst	4.725641e-02
##	NeighborhoodStoneBr	1.330543e-01
##	NeighborhoodSWISU	0.000000e+00
##	NeighborhoodTimber	0.000000e+00
##	NeighborhoodVeenker	3.015219e-02
##	Condition1Feedr	-1.228277e-02
##	Condition1Norm	2.783237e-02
##	Condition1PosA	0.000000e+00
##	Condition1PosN	0.000000e+00
##	Condition1RRAe	0.000000e+00
##	Condition1RRAn	0.000000e+00
##	Condition1RRNe	0.000000e+00
##	Condition1RRNn	0.000000e+00
##	Condition2Feedr	0.000000e+00
##	Condition2Norm	0.000000e+00
##	Condition2PosA	0.000000e+00
##	Condition2PosN	-4.758618e-01
	Condition2RRAe	0.000000e+00
##		0.000000e+00
##	Condition2RRAn	
##	Condition2RRNn	0.000000e+00
##	BldgType2fmCon	0.000000e+00
##	BldgTypeDuplex	0.000000e+00
##	BldgTypeTwnhs	-2.758086e-02
##	BldgTypeTwnhsE	-1.867469e-02
##	HouseStyle1.5Unf	0.000000e+00
##	HouseStyle1Story	0.000000e+00
##	HouseStyle2.5Fin	0.000000e+00
##	HouseStyle2.5Unf	0.000000e+00
##	HouseStyle2Story	0.000000e+00

##	HouseStyleSFoyer	0.000000e+00
##	HouseStyleSLvl	0.000000e+00
##	OverallQual	7.049432e-02
##	OverallCond	2.831610e-02
##	YearBuilt	7.839586e-04
##	YearRemodAdd	9.272254e-04
##	RoofStyleGable	-2.644506e-03
##	RoofStyleGambrel	0.000000e+00
##	RoofStyleHip	0.000000e+00
##	RoofStyleMansard	0.000000e+00
##	RoofStyleShed	0.000000e+00
##	RoofMatlCompShg	0.000000e+00
##	RoofMatlMembran	0.000000e+00
##	RoofMatlMetal	0.000000e+00
##	RoofMatlRoll	0.000000e+00
##	RoofMatlTar&Grv	0.000000e+00
##	RoofMatlWdShake	0.000000e+00
##	RoofMatlWdShngl	5.974352e-02
##	Exterior1stAsphShn	0.000000e+00
##	${\tt Exterior1stBrkComm}$	0.000000e+00
##	Exterior1stBrkFace	3.886782e-02
##	Exterior1stCBlock	0.000000e+00
##	${\tt Exterior1stCemntBd}$	0.000000e+00
##	${\tt Exterior1stHdBoard}$	-5.692639e-03
##	${\tt Exterior1stImStucc}$	0.000000e+00
##	${\tt Exterior1stMetalSd}$	0.000000e+00
##	Exterior1stPlywood	0.000000e+00
##	Exterior1stStone	0.000000e+00
##	Exterior1stStucco	0.000000e+00
##	${\tt Exterior1stVinylSd}$	0.000000e+00
##	Exterior1stWd Sdng	-1.033213e-02
##	${\tt Exterior1stWdShing}$	0.000000e+00
##	${\tt Exterior2ndAsphShn}$	0.000000e+00
##	${\tt Exterior2ndBrk\ Cmn}$	0.000000e+00
##	${\tt Exterior2ndBrkFace}$	0.000000e+00
##	Exterior2ndCBlock	0.000000e+00
##	${\tt Exterior2ndCmentBd}$	0.00000e+00
##	${\tt Exterior2ndHdBoard}$	0.000000e+00
##	${\tt Exterior2ndImStucc}$	0.000000e+00
##	${\tt Exterior2ndMetalSd}$	0.000000e+00
##	Exterior2ndOther	0.000000e+00
##	Exterior2ndPlywood	0.000000e+00
##	Exterior2ndStone	0.000000e+00
##	Exterior2ndStucco	-4.102236e-02
##	Exterior2ndVinylSd	0.000000e+00
##	Exterior2ndWd Sdng	0.000000e+00
##	Exterior2ndWd Shng	0.000000e+00
##	MasVnrTypeBrkFace	0.000000e+00
##	MasVnrTypeNone	0.000000e+00
##	MasVnrTypeStone	3.420891e-03
##	MasVnrArea	1.505733e-05
##	ExterQualFa	-6.924633e-03
##	ExterQualGd	0.00000e+00
##	ExterQualTA	-6.947233e-03

##	ExterCondFa	-2.405911e-02
##	ExterCondGd	0.000000e+00
##	ExterCondPo	0.000000e+00
##	ExterCondTA	0.000000e+00
##	FoundationCBlock	0.000000e+00
##	FoundationPConc	1.422058e-02
##	FoundationSlab	-3.276404e-02
##	FoundationStone	0.000000e+00
##	FoundationWood	0.000000e+00
##	BsmtQualFa	0.000000e+00
##	BsmtQualGd	0.000000e+00
##	BsmtQualTA	-1.399450e-02
##	${\tt BsmtCondGd}$	0.000000e+00
##	BsmtCondPo	0.000000e+00
##	BsmtCondTA	0.000000e+00
##	BsmtExposureGd	4.772708e-02
##	BsmtExposureMn	0.000000e+00
##	BsmtExposureNo	-4.829930e-03
##	BsmtFinType1BLQ	0.000000e+00
##	BsmtFinType1GLQ	1.047856e-02
##	BsmtFinType1LwQ	0.000000e+00
##	BsmtFinType1Rec	0.000000e+00
##	BsmtFinType1Unf	-2.868208e-02
##	BsmtFinSF1	0.000000e+00
##	BsmtFinType2BLQ	-2.790412e-02
##	BsmtFinType2GLQ	0.000000e+00
##	BsmtFinType2LwQ	0.000000e+00
##	BsmtFinType2Rec	0.000000e+00
##	BsmtFinType2Unf	0.000000e+00
##	BsmtFinSF2	0.000000e+00
##	BsmtUnfSF	0.000000e+00
##	TotalBsmtSF	2.773587e-05
##	HeatingGasA	0.000000e+00
##	HeatingGasW	3.210388e-02
##	HeatingGrav	-9.300081e-02
##	${\tt HeatingOthW}$	0.000000e+00
##	HeatingWall	0.000000e+00
##	${\tt HeatingQCFa}$	0.000000e+00
##	${\tt HeatingQCGd}$	0.000000e+00
##	${\tt HeatingQCPo}$	0.000000e+00
##	${\tt HeatingQCTA}$	-1.484642e-02
##	CentralAirY	7.121859e-02
##	ElectricalFuseF	0.000000e+00
##	ElectricalFuseP	0.000000e+00
##	ElectricalMix	0.000000e+00
##	ElectricalSBrkr	0.000000e+00
##	X1stFlrSF	3.309808e-07
##	X2ndFlrSF	0.00000e+00
##	${\tt LowQualFinSF}$	0.00000e+00
##	GrLivArea	1.969026e-04
##	BsmtFullBath	4.148992e-02
##	${\tt BsmtHalfBath}$	0.00000e+00
##	FullBath	2.378506e-02
##	HalfBath	1.509926e-02

##	BedroomAbvGr	0.000000e+00
##	KitchenAbvGr	-3.777305e-02
##	KitchenQualFa	0.00000e+00
##	KitchenQualGd	0.00000e+00
##	KitchenQualTA	-1.885371e-02
##	TotRmsAbvGrd	5.294280e-03
##	FunctionalMaj2	-1.052601e-01
##	FunctionalMin1	0.00000e+00
##	FunctionalMin2	0.00000e+00
##	FunctionalMod	-6.941289e-03
##	FunctionalSev	-1.711373e-01
##	FunctionalTyp	2.555149e-02
##	Fireplaces	2.758108e-02
##	${\tt GarageTypeAttchd}$	0.00000e+00
##	${\tt GarageTypeBasment}$	0.00000e+00
##	${\tt GarageTypeBuiltIn}$	0.00000e+00
##	${\tt GarageTypeCarPort}$	0.00000e+00
##	${\tt GarageTypeDetchd}$	-4.766737e-03
##	GarageYrBlt	0.00000e+00
##	${\tt GarageFinishRFn}$	0.00000e+00
##	${\tt GarageFinishUnf}$	-1.346648e-02
##	GarageCars	6.953160e-02
##	GarageArea	0.00000e+00
##	GarageQualFa	0.00000e+00
##	GarageQualGd	1.742896e-02
##	GarageQualPo	0.00000e+00
##	GarageQualTA	0.00000e+00
##	GarageCondFa	-3.960323e-02
##	GarageCondGd	0.000000e+00
##	GarageCondPo	0.00000e+00
##	GarageCondTA	0.00000e+00
##	PavedDriveP	0.00000e+00
##	PavedDriveY	1.910285e-02
	WoodDeckSF	7.947326e-05
	OpenPorchSF	1.083448e-06
##	EnclosedPorch	0.00000e+00
##	X3SsnPorch	0.00000e+00
##	ScreenPorch	1.837631e-04
##	PoolArea	-2.301343e-04
##	MiscVal	0.000000e+00
##	MoSold10	0.000000e+00
##	MoSold11	0.000000e+00
##	MoSold12	0.000000e+00
##	MoSold2	0.000000e+00
##	MoSold3	0.000000e+00
##	MoSold4	0.000000e+00
##	MoSold5	0.000000e+00
##	MoSold6	0.000000e+00
##	MoSold7	0.000000e+00
##	MoSold8	0.000000e+00
##	MoSold9	0.000000e+00
##	YrSold	0.000000e+00
##	SaleTypeCon	0.000000e+00 0.000000e+00
##	SaleTypeConLD	0.00000e+00

```
## SaleTypeConLI
                         0.000000e+00
## SaleTypeConLw
                         0.000000e+00
## SaleTypeCWD
                         0.000000e+00
## SaleTypeNew
                         7.025603e-02
## SaleTypeOth
                         0.000000e+00
## SaleTypeWD
                         0.000000e+00
## SaleConditionAdjLand 0.000000e+00
## SaleConditionAlloca
                         0.000000e+00
## SaleConditionFamily
                         0.000000e+00
## SaleConditionNormal
                         3.169134e-02
## SaleConditionPartial
                         0.000000e+00
```

coeffs[coeffs[,1] ==0,]

##	MSSubClass180	MSSubClass190	MSSubClass40
##	0	OPTRABLISHER	0-0000001
##	MSSubClass45	MSSubClass50	MSSubClass60
##	O	0	nasubciassoo 0
	•	•	•
##	MSSubClass70	MSSubClass75	MSSubClass80
##	Mag1- al 05	0 00	MQ7
##	MSSubClass85	MSSubClass90	MSZoningRH
##	0 MQ7 : DM	0	0
##	MSZoningRM	LotFrontage	LotShapeIR2
##	0	0	0
##	LotShapeReg	LandContourHLS	LandContourLow
##	0	0	0
##	LandContourLvl	LotConfigFR2	LotConfigFR3
##	0	0	0
##	LotConfigInside	LandSlopeMod	LandSlopeSev
##	0	0	0
##	NeighborhoodBlueste	NeighborhoodBrDale	NeighborhoodCollgCr
##	0	0	0
##	${ t NeighborhoodGilbert}$	${ t Neighborhood Mitchel}$	NeighborhoodNAmes
##	0	0	0
##	NeighborhoodNPkVill	NeighborhoodNWAmes	NeighborhoodSawyer
##	0	0	0
##	${\tt NeighborhoodSawyerW}$	${ t NeighborhoodSWISU}$	NeighborhoodTimber
##	0	0	0
##	Condition1PosA	Condition1PosN	Condition1RRAe
##	0	0	0
##	Condition1RRAn	Condition1RRNe	Condition1RRNn
##	0	0	0
##	Condition2Feedr	Condition2Norm	Condition2PosA
##	0	0	0
##	Condition2RRAe	Condition2RRAn	Condition2RRNn
##	0	0	0
##	BldgType2fmCon	${ t BldgTypeDuplex}$	HouseStyle1.5Unf
##	0	0	0
##	HouseStyle1Story	HouseStyle2.5Fin	HouseStyle2.5Unf
##	0	0	0
##	HouseStyle2Story	HouseStyleSFoyer	${\tt HouseStyleSLvl}$
##	0	0	0
##	D = = £C+==1 = C===h===1	RoofStyleHip	RoofStyleMansard
	RoofStyleGambrel	ROOLDCYLEHILP	noorstyremansard

##	RoofStyleShed	RoofMatlCompShg	RoofMatlMembran
##	0	0	0
##	RoofMatlMetal	RoofMatlRoll	RoofMatlTar&Grv
##	0	0	0
##	${\tt RoofMatlWdShake}$	Exterior1stAsphShn	Exterior1stBrkComm
##	0	0	0
##	Exterior1stCBlock	Exterior1stCemntBd	Exterior1stImStucc
##	0	0	0
##	Exterior1stMetalSd	Exterior1stPlywood	Exterior1stStone
##	0	0	0
##	Exterior1stStucco	Exterior1stVinylSd	Exterior1stWdShing
##	0	0	0
##	Exterior2ndAsphShn	Exterior2ndBrk Cmn	Exterior2ndBrkFace
##	Exteriorznaksphshii 0	O	Exteriorzhabikrace
	· ·	•	•
##	Exterior2ndCBlock	Exterior2ndCmentBd	Exterior2ndHdBoard
##	0	0	0
##	Exterior2ndImStucc	Exterior2ndMetalSd	Exterior2ndOther
##	0	0	0
##	Exterior2ndPlywood	Exterior2ndStone	Exterior2ndVinylSd
##	0	0	0
##	Exterior2ndWd Sdng	Exterior2ndWd Shng	${ t MasVnrTypeBrkFace}$
##	0	0	0
##	MasVnrTypeNone	ExterQualGd	ExterCondGd
##	0	0	0
##	ExterCondPo	${\tt ExterCondTA}$	FoundationCBlock
##	0	0	0
##	FoundationStone	FoundationWood	BsmtQualFa
##	0	0	Dbmoquair a
##	BsmtQualGd	BsmtCondGd	BsmtCondPo
	DSIIICQUALGQ O		_
##	· ·	0	0
##	BsmtCondTA	BsmtExposureMn	BsmtFinType1BLQ
##	0	0	0
##	${\tt BsmtFinType1LwQ}$	${\tt BsmtFinType1Rec}$	BsmtFinSF1
##	0	0	0
##	${\tt BsmtFinType2GLQ}$	${\tt BsmtFinType2LwQ}$	${\tt BsmtFinType2Rec}$
##	0	0	0
##	${\tt BsmtFinType2Unf}$	${\tt BsmtFinSF2}$	${\tt BsmtUnfSF}$
##	0	0	0
##	${ t Heating Gas A}$	${\tt HeatingOthW}$	${ t Heating Wall}$
##	0	0	0
##	${\tt HeatingQCFa}$	${\tt HeatingQCGd}$	${\tt HeatingQCPo}$
##	0	0	0
##	ElectricalFuseF	ElectricalFuseP	ElectricalMix
##	0	0	0
##	ElectricalSBrkr	X2ndFlrSF	LowQualFinSF
##	0	0	0
##	BsmtHalfBath	BedroomAbvGr	KitchenQualFa
##	0	0	•
	· ·	· ·	0 Functional Mino
##	KitchenQualGd	FunctionalMin1	FunctionalMin2
##	0	0	0
##	GarageTypeAttchd	GarageTypeBasment	GarageTypeBuiltIn
##	0	0	0
##	GarageTypeCarPort	GarageYrBlt	GarageFinishRFn
##	0	0	0

##	GarageArea	GarageQualFa	${ t Garage QualPo}$
##	0	0	0
##	${ t GarageQualTA}$	${\tt GarageCondGd}$	${\tt GarageCondPo}$
##	0	0	0
##	${ t GarageCondTA}$	PavedDriveP	${\tt EnclosedPorch}$
##	0	0	0
##	X3SsnPorch	MiscVal	MoSold10
##	0	0	0
##	MoSold11	MoSold12	MoSold2
##	0	0	0
##	MoSold3	MoSold4	MoSold5
##	0	0	0
##	MoSold6	MoSold7	MoSold8
##	0	0	0
##	MoSold9	YrSold	SaleTypeCon
##	0	0	0
##	${ t SaleTypeConLD}$	${ t SaleTypeConLI}$	${\tt SaleTypeConLw}$
##	0	0	0
##	${ t SaleTypeCWD}$	${\tt SaleTypeOth}$	${ t SaleTypeWD}$
##	0	0	0
##	${\tt SaleConditionAdjLand}$	${\tt SaleConditionAlloca}$	SaleConditionFamily
##	0	0	0
##	${\tt SaleConditionPartial}$		
##	0		

Some variables lambda values were reduced to zero, which means they weren't used in the model for prediction. The lasso models automatically carry out variable selection. Variables shown above were the ones which were reduced to 0.

```
predictions <- predict(lasso,data_test)
RMSE(predictions, data_test$SalePrice)</pre>
```

```
## [1] 0.1167734
```

[1] 0.1237117

```
Ridge Linear Regression Model

set.seed(1)

ridge <- train(
    SalePrice ~., data = data_train, method = "glmnet",
    trControl = trainControl("cv", number = 10),
    tuneGrid = expand.grid(alpha = 0, lambda = 10^seq(-3, 3, length = 100)))

## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, :
## There were missing values in resampled performance measures.

predictions <- predict(ridge,data_test)
RMSE(predictions, data_test$SalePrice)</pre>
```

```
set.seed(1)
enet <- train(</pre>
  SalePrice ~., data = data_train, method = "glmnet",
  trControl = trainControl("cv", number = 10),
 tuneGrid = expand.grid(alpha = seq(0,1, length=10), lambda = 10^seq(-3, 3, length = 100)))
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, :
## There were missing values in resampled performance measures.
predictions <- predict(enet,data_test)</pre>
RMSE(predictions, data_test$SalePrice)
## [1] 0.1179759
Random Forest Models
set.seed(1)
m_rf <- train(SalePrice ~ ., data = data_train, method = "rf", importance = TRUE,
              trControl = trainControl(method = "cv", number = 10), tuneGrid = expand.grid(mtry = c(2,
predictions <- predict(m_rf,data_test)</pre>
RMSE(predictions, data_test$SalePrice)
## [1] 0.1331681
varImp(m_rf)
## rf variable importance
##
     only 20 most important variables shown (out of 255)
##
##
##
                   Overall
## GrLivArea
                    100.00
## X1stFlrSF
                     90.38
## OverallQual
                     86.70
## TotalBsmtSF
                     85.92
## LotArea
                     83.21
## BsmtFinSF1
                     79.45
## GarageArea
                     78.14
## X2ndFlrSF
                     76.74
## Fireplaces
                     70.22
## GarageCars
                     69.94
## LotFrontage
                     66.37
## OverallCond
                     65.92
## ExterQualTA
                     63.80
## TotRmsAbvGrd
                     63.62
```

```
## YearBuilt
                       62.88
## BsmtQualGd
                       60.58
## HalfBath
                       58.87
## GarageYrBlt
                       58.66
## GarageFinishUnf
                       58.38
## YearRemodAdd
                       58.05
listRFImp <- varImp(m_rf)$importance</pre>
listRFImp$Var <- row.names(listRFImp)</pre>
row.names(listRFImp) <- NULL</pre>
listRFImp <- listRFImp[order(listRFImp$Overall, decreasing = TRUE),][1:20,2]</pre>
#as.data.frame(coeffs[coeffs[,1] !=0,])
coeffsDF <- as.data.frame(coeffs)</pre>
coeffsDF$Var <- row.names(coeffsDF)</pre>
row.names(coeffsDF) <- NULL</pre>
coeffsDF <- coeffsDF[coeffsDF$Var %in% listRFImp,]</pre>
coeffsDF
```

```
##
                                 Var
## 20
        0.000000e+00
                         LotFrontage
## 21
        1.352954e-06
                             LotArea
        7.049432e-02
                         OverallQual
## 86
## 87
        2.831610e-02
                         OverallCond
## 88
        7.839586e-04
                           YearBuilt
## 89
        9.272254e-04
                        YearRemodAdd
## 137 -6.947233e-03
                         ExterQualTA
## 148
       0.000000e+00
                          BsmtQualGd
## 161
       0.000000e+00
                          BsmtFinSF1
## 169
       2.773587e-05
                         TotalBsmtSF
## 184
       3.309808e-07
                           X1stFlrSF
## 185
       0.000000e+00
                           X2ndFlrSF
## 187
       1.969026e-04
                           GrLivArea
## 191
       1.509926e-02
                            HalfBath
## 197
       5.294280e-03
                        TotRmsAbvGrd
## 204
       2.758108e-02
                          Fireplaces
## 210
       0.000000e+00
                         GarageYrBlt
## 212 -1.346648e-02 GarageFinishUnf
## 213 6.953160e-02
                          GarageCars
## 214 0.00000e+00
                          GarageArea
```

By examining the filtered DF, we can see what the Lasso Regression model determined for the top 20 variables that the Random Forest model deemed important. Of the 20 that were identified important by RF, 5 were totally ignored by Lasso, and the one that most important in RF 'GrLivArea', was one of the important in Lasso but not the most important.

Gradient Boosted Trees Model

```
set.seed(1)
```

```
gbm <- train(
   SalePrice ~., data = data_train, method = "gbm",
   trControl = trainControl("cv", number = 10), preProc = "nzv")</pre>
```

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1483	nan	0.1000	0.0145
##	2	0.1372	nan	0.1000	0.0119
##	3	0.1276	nan	0.1000	0.0094
##	4	0.1190	nan	0.1000	0.0083
##	5	0.1115	nan	0.1000	0.0079
##	6	0.1056	nan	0.1000	0.0060
##	7	0.0995	nan	0.1000	0.0057
##	8	0.0943	nan	0.1000	0.0051
##	9	0.0895	nan	0.1000	0.0042
##	10	0.0852	nan	0.1000	0.0039
##	20	0.0560	nan	0.1000	0.0018
##	40	0.0325	nan	0.1000	0.0002
##	60	0.0240	nan	0.1000	0.0002
##	80	0.0200	nan	0.1000	0.0000
##	100	0.0181	nan	0.1000	-0.0000
##	120	0.0170	nan	0.1000	-0.0000
##	140	0.0161	nan	0.1000	-0.0000
##	150	0.0157	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1466	nan	0.1000	0.0162
##	2	0.1321	nan	0.1000	0.0131
##	3	0.1203	nan	0.1000	0.0108
##	4	0.1085	nan	0.1000	0.0106
##	5	0.0991	nan	0.1000	0.0099
##	6	0.0926	nan	0.1000	0.0057
##	7	0.0858	nan	0.1000	0.0058
##	8	0.0789	nan	0.1000	0.0064
##	9	0.0738	nan	0.1000	0.0052
##	10	0.0687	nan	0.1000	0.0049
##	20	0.0388	nan	0.1000	0.0019
##	40	0.0212	nan	0.1000	0.0002
##	60	0.0169	nan	0.1000	-0.0002
##	80	0.0148	nan	0.1000	-0.0000
##	100	0.0135	nan	0.1000	-0.0001
##	120	0.0127	nan	0.1000	-0.0000
##	140	0.0120	nan	0.1000	-0.0000
##	150	0.0117	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.1449	nan	0.1000	0.0186
##	2	0.1291	nan	0.1000	0.0155
##	3	0.1154	nan	0.1000	0.0136
##	4	0.1040	nan	0.1000	0.0114
##	5	0.0938	nan	0.1000	0.0093
##	6	0.0856	nan	0.1000	0.0080
##	7	0.0780	nan	0.1000	0.0076
##	8	0.0719	nan	0.1000	0.0053

##	9	0.0655	nan	0.1000	0.0063
##	10	0.0602	nan	0.1000	0.0044
##	20	0.0320	nan	0.1000	0.0011
##	40	0.0175	nan	0.1000	0.0001
##	60	0.0140	nan	0.1000	0.0000
##	80	0.0124	nan	0.1000	0.0000
##	100	0.0112	nan	0.1000	0.0000
##	120	0.0101	nan	0.1000	0.0000
##	140	0.0094	nan	0.1000	-0.0000
##	150	0.0091	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.1482	nan	0.1000	0.0139
##	2	0.1373	nan	0.1000	0.0114
##	3	0.1272	nan	0.1000	0.0093
##	4	0.1195	nan	0.1000	0.0068
##	5	0.1125	nan	0.1000	0.0073
##	6	0.1058	nan	0.1000	0.0065
##	7	0.1001	nan	0.1000	0.0060
##	8	0.0947	nan	0.1000	0.0048
##	9	0.0901	nan	0.1000	0.0044
##	10	0.0854	nan	0.1000	0.0040
##	20	0.0567	nan	0.1000	0.0015
##	40	0.0335	nan	0.1000	0.0005
##	60	0.0245	nan	0.1000	0.0002
##	80	0.0203	nan	0.1000	0.0001
##	100	0.0180	nan	0.1000	0.0000
##	120	0.0167	nan	0.1000	-0.0000
##	140	0.0158	nan	0.1000	0.0000
##	150	0.0155	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1472	nan	0.1000	0.0166
##	2	0.1326	nan	0.1000	0.0136
##	3	0.1205	nan	0.1000	0.0114
##	4	0.1096	nan	0.1000	0.0105
##	5	0.1006	nan	0.1000	0.0079
##	6	0.0926	nan	0.1000	0.0079
##	7	0.0866	nan	0.1000	0.0047
##	8	0.0800	nan	0.1000	0.0057
##	9	0.0740	nan	0.1000	0.0058
##	10	0.0691	nan	0.1000	0.0043
##	20	0.0406	nan	0.1000	0.0015
##	40	0.0230	nan	0.1000	0.0002
##	60	0.0182	nan	0.1000	0.0001
##	80	0.0161	nan	0.1000	-0.0001
##	100	0.0148	nan	0.1000	-0.0001
##	120	0.0140	nan	0.1000	-0.0001
##	140	0.0133	nan	0.1000	-0.0000
##	150	0.0133	nan	0.1000	-0.0000
##	100	0.0129	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1438	nan	0.1000	0.0176
##	2	0.1438		0.1000	0.0170
##	2	0.1204	nan	0.1000	0.0103

##	3	0.1149	nan	0.1000	0.0135
##	4	0.1034	nan	0.1000	0.0106
##	5	0.0937	nan	0.1000	0.0076
##	6	0.0844	nan	0.1000	0.0092
##	7	0.0770	nan	0.1000	0.0064
##	8	0.0705	nan	0.1000	0.0060
##	9	0.0647	nan	0.1000	0.0053
##	10	0.0596	nan	0.1000	0.0044
##	20	0.0322	nan	0.1000	0.0011
##	40	0.0178	nan	0.1000	0.0011
##	60	0.0143		0.1000	-0.0001
	80	0.0143	nan	0.1000	
##			nan		-0.0000
##	100	0.0118	nan	0.1000	-0.0000
##	120	0.0110	nan	0.1000	-0.0000
##	140	0.0103	nan	0.1000	-0.0001
##	150	0.0101	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.1466	nan	0.1000	0.0140
##	2	0.1356	nan	0.1000	0.0115
##	3	0.1262	nan	0.1000	0.0095
##	4	0.1183	nan	0.1000	0.0082
##	5	0.1117	nan	0.1000	0.0067
##	6	0.1051	nan	0.1000	0.0068
##	7	0.0992	nan	0.1000	0.0056
##	8	0.0936	nan	0.1000	0.0054
##	9	0.0887	nan	0.1000	0.0042
##	10	0.0842	nan	0.1000	0.0043
##	20	0.0565	nan	0.1000	0.0018
##	40	0.0338	nan	0.1000	0.0005
##	60	0.0254	nan	0.1000	0.0002
##	80	0.0217	nan	0.1000	0.0000
##	100	0.0197	nan	0.1000	-0.0000
##	120	0.0183	nan	0.1000	0.0000
##	140	0.0175	nan	0.1000	-0.0000
##	150	0.0171	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1440	nan	0.1000	0.0162
##	2	0.1287	nan	0.1000	0.0140
##	3	0.1164	nan	0.1000	0.0118
##	4	0.1069	nan	0.1000	0.0098
##	5	0.0985	nan	0.1000	0.0068
##	6	0.0909	nan	0.1000	0.0075
##	7	0.0841	nan	0.1000	0.0063
##	8	0.0783	nan	0.1000	0.0054
##	9	0.0727	nan	0.1000	0.0056
##	10	0.0679	nan	0.1000	0.0036
##	20	0.0401		0.1000	0.0043
##	40	0.0230	nan	0.1000	0.0017
##	60	0.0230	nan	0.1000	0.0001
##	80	0.0157	nan	0.1000	-0.0000
##	100	0.0157	nan	0.1000	-0.0000
			nan		
##	120	0.0137	nan	0.1000	-0.0001

##	140	0.0130	nan	0.1000	-0.0000
##	150	0.0130	nan nan	0.1000	-0.0000
##	130	0.0127	liali	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1417	nan	0.1000	0.0175
##	2	0.1417	nan	0.1000	0.0173
##	3	0.123	nan	0.1000	0.0103
##	4	0.1128	nan	0.1000	0.0124
##	5	0.0921	nan	0.1000	0.00112
##	6	0.0844	nan	0.1000	0.0031
##	7	0.0044	nan	0.1000	0.0076
##	8	0.0704	nan	0.1000	0.0062
##	9	0.0646	nan	0.1000	0.0050
##	10	0.0597	nan	0.1000	0.0043
##	20	0.0327	nan	0.1000	0.0014
##	40	0.0189	nan	0.1000	0.0001
##	60	0.0150	nan	0.1000	-0.0000
##	80	0.0132	nan	0.1000	0.0000
##	100	0.0121	nan	0.1000	-0.0000
##	120	0.0113	nan	0.1000	-0.0000
##	140	0.0105	nan	0.1000	-0.0000
##	150	0.0102	nan	0.1000	-0.0000
##	200	0.0102		0.1000	0.000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1449	nan	0.1000	0.0140
##	2	0.1341	nan	0.1000	0.0113
##	3	0.1254	nan	0.1000	0.0087
##	4	0.1170	nan	0.1000	0.0081
##	5	0.1102	nan	0.1000	0.0074
##	6	0.1038	nan	0.1000	0.0063
##	7	0.0977	nan	0.1000	0.0054
##	8	0.0923	nan	0.1000	0.0046
##	9	0.0874	nan	0.1000	0.0046
##	10	0.0831	nan	0.1000	0.0035
##	20	0.0555	nan	0.1000	0.0017
##	40	0.0330	nan	0.1000	0.0004
##	60	0.0248	nan	0.1000	0.0002
##	80	0.0214	nan	0.1000	0.0000
##	100	0.0195	nan	0.1000	0.0000
##	120	0.0183	nan	0.1000	-0.0000
##	140	0.0175	nan	0.1000	-0.0001
##	150	0.0171	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	0.1430	nan	0.1000	0.0155
##	2	0.1298	nan	0.1000	0.0135
##	3	0.1185	nan	0.1000	0.0113
##	4	0.1091	nan	0.1000	0.0083
##	5	0.1002	nan	0.1000	0.0096
##	6	0.0919	nan	0.1000	0.0081
##	7	0.0853	nan	0.1000	0.0056
##	8	0.0794	nan	0.1000	0.0053
##	9	0.0737	nan	0.1000	0.0058
##	10	0.0690	nan	0.1000	0.0043

##	20	0.0399	nan	0.1000	0.0019
##	40	0.0226	nan	0.1000	0.0002
##	60	0.0183	nan	0.1000	0.0001
##	80	0.0162	nan	0.1000	-0.0001
##	100	0.0149	nan	0.1000	-0.0000
##	120	0.0140	nan	0.1000	-0.0001
##	140	0.0134	nan	0.1000	-0.0000
##	150	0.0131	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	0.1399	nan	0.1000	0.0170
##	2	0.1248	nan	0.1000	0.0145
##	3	0.1124	nan	0.1000	0.0127
##	4	0.1011	nan	0.1000	0.0114
##	5	0.0919	nan	0.1000	0.0079
##	6	0.0838	nan	0.1000	0.0076
##	7	0.0762	nan	0.1000	0.0074
##	8	0.0698	nan	0.1000	0.0064
##	9	0.0648	nan	0.1000	0.0048
##	10	0.0598	nan	0.1000	0.0045
##	20	0.0324	nan	0.1000	0.0012
##	40	0.0186	nan	0.1000	0.0001
##	60	0.0148	nan	0.1000	0.0001
##	80	0.0132	nan	0.1000	-0.0001
##	100	0.0120	nan	0.1000	-0.0000
	120	0.0111	nan	0.1000	-0.0000
##	120				
## ##	140	0.0103	nan	0.1000	-0.0000
##	140	0.0103	nan	0.1000	-0.0000
## ##	140	0.0103	nan	0.1000 0.1000 StepSize	-0.0000 -0.0000 Improve
## ## ##	140 150 Iter 1	0.0103 0.0100 TrainDeviance 0.1470	nan nan	0.1000 0.1000 StepSize 0.1000	-0.0000 -0.0000 Improve 0.0143
## ## ## ##	140 150 Iter 1 2	0.0103 0.0100 TrainDeviance	nan nan ValidDeviance	0.1000 0.1000 StepSize	-0.0000 -0.0000 Improve
## ## ## ##	140 150 Iter 1	0.0103 0.0100 TrainDeviance 0.1470	nan nan ValidDeviance nan	0.1000 0.1000 StepSize 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0089
## ## ## ## ##	140 150 Iter 1 2	0.0103 0.0100 TrainDeviance 0.1470 0.1351	nan nan ValidDeviance nan nan	0.1000 0.1000 StepSize 0.1000 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0089 0.0079
## ## ## ## ##	140 150 Iter 1 2 3 4 5	0.0103 0.0100 TrainDeviance 0.1470 0.1351 0.1252 0.1172 0.1099	nan nan ValidDeviance nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0089 0.0079 0.0073
## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6	0.0103 0.0100 TrainDeviance 0.1470 0.1351 0.1252 0.1172	nan nan ValidDeviance nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0089 0.0079 0.0073 0.0060
## ## ## ## ## ##	140 150 Iter 1 2 3 4 5	0.0103 0.0100 TrainDeviance 0.1470 0.1351 0.1252 0.1172 0.1099	nan nan ValidDeviance nan nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0089 0.0079 0.0073
## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7	0.0103 0.0100 TrainDeviance 0.1470 0.1351 0.1252 0.1172 0.1099 0.1034 0.0979 0.0927	nan nan ValidDeviance nan nan nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0089 0.0079 0.0073 0.0060 0.0049 0.0049
## ## ## ## ## ## ## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7 8	0.0103 0.0100 TrainDeviance 0.1470 0.1351 0.1252 0.1172 0.1099 0.1034 0.0979 0.0927 0.0886	nan nan ValidDeviance nan nan nan nan nan nan nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0089 0.0079 0.0073 0.0060 0.0049 0.0049 0.0037
## ## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7 8 9	0.0103 0.0100 TrainDeviance 0.1470 0.1351 0.1252 0.1172 0.1099 0.1034 0.0979 0.0927 0.0886 0.0838	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0089 0.0079 0.0073 0.0060 0.0049 0.0049 0.0037 0.0046
## ## ## ## ## ## ## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7 8	0.0103 0.0100 TrainDeviance 0.1470 0.1351 0.1252 0.1172 0.1099 0.1034 0.0979 0.0927 0.0886	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0089 0.0079 0.0073 0.0060 0.0049 0.0049 0.0037
## ## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40	0.0103 0.0100 TrainDeviance 0.1470 0.1351 0.1252 0.1172 0.1099 0.1034 0.0979 0.0927 0.0886 0.0838 0.0562 0.0335	Nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0089 0.0079 0.0073 0.0060 0.0049 0.0049 0.0037 0.0046 0.0020 0.0007
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.0103 0.0100 TrainDeviance 0.1470 0.1351 0.1252 0.1172 0.1099 0.1034 0.0979 0.0927 0.0886 0.0838 0.0562 0.0335 0.0253	Nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0079 0.0073 0.0060 0.0049 0.0049 0.0037 0.0046 0.0020 0.0007 0.0002
## # # # # # # # # # # # # # # # # # #	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.0103 0.0100 TrainDeviance 0.1470 0.1351 0.1252 0.1172 0.1099 0.1034 0.0979 0.0927 0.0886 0.0838 0.0562 0.0335 0.0253 0.0218	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0089 0.0079 0.0073 0.0060 0.0049 0.0037 0.0046 0.0020 0.0007 0.0002 0.0001
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.0103 0.0100 TrainDeviance 0.1470 0.1351 0.1252 0.1172 0.1099 0.1034 0.0979 0.0927 0.0886 0.0838 0.0562 0.0335 0.0253	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0089 0.0079 0.0073 0.0060 0.0049 0.0037 0.0046 0.0020 0.0007 0.0002 0.0001 0.0000
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.0103 0.0100 TrainDeviance 0.1470 0.1351 0.1252 0.1172 0.1099 0.1034 0.0979 0.0927 0.0886 0.0838 0.0562 0.0335 0.0253 0.0253 0.0218 0.0200 0.0187	Nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0089 0.0079 0.0073 0.0060 0.0049 0.0037 0.0046 0.0020 0.0007 0.0002 0.0001
#########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.0103 0.0100 TrainDeviance 0.1470 0.1351 0.1252 0.1172 0.1099 0.1034 0.0979 0.0927 0.0886 0.0838 0.0562 0.0335 0.0253 0.0218 0.0200 0.0187 0.0178	Nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0089 0.0079 0.0073 0.0060 0.0049 0.0037 0.0046 0.0020 0.0007 0.0002 0.0001 0.0000 -0.0000
##########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.0103 0.0100 TrainDeviance 0.1470 0.1351 0.1252 0.1172 0.1099 0.1034 0.0979 0.0927 0.0886 0.0838 0.0562 0.0335 0.0253 0.0253 0.0218 0.0200 0.0187	Nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0089 0.0079 0.0073 0.0060 0.0049 0.0037 0.0046 0.0020 0.0007 0.0002 0.0001 0.0000
#######################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.0103 0.0100 TrainDeviance 0.1470 0.1351 0.1252 0.1172 0.1099 0.1034 0.0979 0.0927 0.0886 0.0838 0.0562 0.0335 0.0253 0.0253 0.0218 0.0200 0.0187 0.0178	Nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0089 0.0079 0.0073 0.0060 0.0049 0.0037 0.0046 0.0020 0.0007 0.0002 0.0001 0.0000 -0.0000 0.0000
#########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	0.0103 0.0100 TrainDeviance 0.1470 0.1351 0.1252 0.1172 0.1099 0.1034 0.0979 0.0927 0.0886 0.0838 0.0562 0.0335 0.0253 0.0253 0.0218 0.0200 0.0187 0.0178 0.0174	Nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0089 0.0079 0.0073 0.0060 0.0049 0.0037 0.0046 0.0020 0.0007 0.0002 0.0001 0.0000 -0.0000 0.0000 Improve
##########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1	0.0103 0.0100 TrainDeviance 0.1470 0.1351 0.1252 0.1172 0.1099 0.1034 0.0979 0.0927 0.0886 0.0838 0.0562 0.0335 0.0253 0.0253 0.0218 0.0200 0.0187 0.0178 0.0174	Nan	0.1000 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0089 0.0079 0.0073 0.0060 0.0049 0.0037 0.0046 0.0020 0.0007 0.0002 0.0001 0.0000 -0.0000 0.0000 Improve 0.0162
#########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2	0.0103 0.0100 TrainDeviance 0.1470 0.1351 0.1252 0.1172 0.1099 0.1034 0.0979 0.0927 0.0886 0.0838 0.0562 0.0335 0.0253 0.0253 0.0218 0.0200 0.0187 0.0178 0.0174	Nan	0.1000 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0089 0.0079 0.0073 0.0060 0.0049 0.0037 0.0046 0.0020 0.0007 0.0002 0.0001 0.0000 -0.0000 -0.0000 Improve 0.0162 0.0132
##########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1	0.0103 0.0100 TrainDeviance 0.1470 0.1351 0.1252 0.1172 0.1099 0.1034 0.0979 0.0927 0.0886 0.0838 0.0562 0.0335 0.0253 0.0253 0.0218 0.0200 0.0187 0.0178 0.0174	Nan	0.1000 0.1000	-0.0000 -0.0000 Improve 0.0143 0.0108 0.0089 0.0079 0.0073 0.0060 0.0049 0.0037 0.0046 0.0020 0.0007 0.0002 0.0001 0.0000 -0.0000 0.0000 Improve 0.0162

##	5	0.1012	nan	0.1000	0.0080
##	6	0.0938	nan	0.1000	0.0066
##	7	0.0865	nan	0.1000	0.0068
##	8	0.0799	nan	0.1000	0.0066
##	9	0.0741	nan	0.1000	0.0053
##	10	0.0690	nan	0.1000	0.0049
##	20	0.0409	nan	0.1000	0.0013
##	40	0.0240	nan	0.1000	0.0004
##	60	0.0190	nan	0.1000	0.0000
##	80	0.0168	nan	0.1000	-0.0001
##	100	0.0153	nan	0.1000	0.0000
##	120	0.0141	nan	0.1000	-0.0001
##	140	0.0133	nan	0.1000	-0.0000
##	150	0.0130	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1426	nan	0.1000	0.0173
##	2	0.1279	nan	0.1000	0.0148
##	3	0.1148	nan	0.1000	0.0130
##	4	0.1041	nan	0.1000	0.0096
##	5	0.0948	nan	0.1000	0.0079
##	6	0.0854	nan	0.1000	0.0086
##	7	0.0783	nan	0.1000	0.0071
##	8	0.0720	nan	0.1000	0.0059
##	9	0.0659	nan	0.1000	0.0055
##	10	0.0607	nan	0.1000	0.0047
##	20	0.0337	nan	0.1000	0.0011
##	40	0.0195	nan	0.1000	0.0002
##	60	0.0156	nan	0.1000	0.0000
##	80	0.0137	nan	0.1000	-0.0000
##	100	0.0124	nan	0.1000	-0.0001
##	120	0.0114	nan	0.1000	-0.0001
##	140	0.0106	nan	0.1000	-0.0000
##	150	0.0103	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1516	nan	0.1000	0.0149
##	2	0.1396	nan	0.1000	0.0123
##	3	0.1303	nan	0.1000	0.0093
##	4	0.1218	nan	0.1000	0.0083
##	5	0.1140	nan	0.1000	0.0080
##	6	0.1066	nan	0.1000	0.0069
##	7	0.1008	nan	0.1000	0.0055
##	8	0.0951	nan	0.1000	0.0051
##	9	0.0900	nan	0.1000	0.0050
##	10	0.0852	nan	0.1000	0.0044
##	20	0.0571	nan	0.1000	0.0019
##	40	0.0337	nan	0.1000	0.0006
##	60	0.0247	nan	0.1000	0.0001
##	80	0.0208	nan	0.1000	0.0001
##	100	0.0187	nan	0.1000	0.0000
##	120	0.0174	nan	0.1000	0.0000
##	140	0.0167	nan	0.1000	-0.0000
##	150	0.0164	nan	0.1000	0.0000

шш					
##	Iter	TrainDeviance	ValidDeviance	C+onCiro	Improve
##	1	0.1497	nan	StepSize 0.1000	0.0165
##	2	0.1351	nan	0.1000	0.0103
##	3	0.1224	nan	0.1000	0.0148
##	4	0.1224	nan	0.1000	0.0110
##	5	0.1021	nan	0.1000	0.0080
##	6	0.0940	nan	0.1000	0.0000
##	7	0.0864	nan	0.1000	0.0078
##	8	0.0805	nan	0.1000	0.0058
##	9	0.0748	nan	0.1000	0.0057
##	10	0.0703	nan	0.1000	0.0047
##	20	0.0410	nan	0.1000	0.0017
##	40	0.0226	nan	0.1000	0.0002
##	60	0.0178	nan	0.1000	0.0000
##	80	0.0161	nan	0.1000	0.0000
##	100	0.0148	nan	0.1000	-0.0000
##	120	0.0139	nan	0.1000	-0.0001
##	140	0.0133	nan	0.1000	-0.0000
##	150	0.0130	nan	0.1000	0.0000
##		0.0200		0.1000	
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1468	nan	0.1000	0.0206
##	2	0.1300	nan	0.1000	0.0145
##	3	0.1163	nan	0.1000	0.0129
##	4	0.1043	nan	0.1000	0.0115
##	5	0.0942	nan	0.1000	0.0097
##	6	0.0854	nan	0.1000	0.0080
##	7	0.0774	nan	0.1000	0.0065
##	8	0.0715	nan	0.1000	0.0056
##	9	0.0660	nan	0.1000	0.0044
##	10	0.0608	nan	0.1000	0.0051
##	20	0.0324	nan	0.1000	0.0014
##	40	0.0178	nan	0.1000	0.0002
##	60	0.0144	nan	0.1000	-0.0000
##	80	0.0131	nan	0.1000	-0.0000
##	100	0.0119	nan	0.1000	-0.0000
##	120	0.0110	nan	0.1000	-0.0001
##	140	0.0105	nan	0.1000	-0.0001
##	150	0.0101	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1459	nan	0.1000	0.0140
##	2	0.1347	nan	0.1000	0.0116
##	3	0.1249	nan	0.1000	0.0089
##	4	0.1162	nan	0.1000	0.0084
##	5	0.1095	nan	0.1000	0.0063
##	6	0.1028	nan	0.1000	0.0062
##	7	0.0964	nan	0.1000	0.0061
##	8	0.0915	nan	0.1000	0.0050
##	9	0.0872	nan	0.1000	0.0046
##	10	0.0828	nan	0.1000	0.0042
##	20	0.0558	nan	0.1000	0.0019
##	40	0.0331	nan	0.1000	0.0006

##	60	0.0247	nan	0.1000	0.0001
##	80	0.0207	nan	0.1000	0.0000
##	100	0.0186	nan	0.1000	-0.0000
##	120	0.0176	nan	0.1000	-0.0001
##	140	0.0166	nan	0.1000	0.0000
##	150	0.0162	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1437	nan	0.1000	0.0157
##	2	0.1297	nan	0.1000	0.0138
##	3	0.1177	nan	0.1000	0.0121
##	4	0.1083	nan	0.1000	0.0088
##	5	0.0985	nan	0.1000	0.0092
##	6	0.0901	nan	0.1000	0.0076
##	7	0.0837	nan	0.1000	0.0061
##	8	0.0774	nan	0.1000	0.0058
##	9	0.0720	nan	0.1000	0.0048
##	10	0.0677	nan	0.1000	0.0041
##	20	0.0402	nan	0.1000	0.0014
##	40	0.0223	nan	0.1000	0.0002
##	60	0.0175	nan	0.1000	0.0001
##	80	0.0154	nan	0.1000	-0.0001
##	100	0.0140	nan	0.1000	0.0000
##	120	0.0131	nan	0.1000	-0.0000
##	140	0.0124	nan	0.1000	-0.0000
##	150	0.0121	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## ##	Iter 1	TrainDeviance 0.1405	ValidDeviance nan	StepSize 0.1000	Improve 0.0181
				_	_
##	1	0.1405	nan	0.1000	0.0181
## ##	1 2	0.1405 0.1245	nan nan	0.1000 0.1000	0.0181 0.0149
## ## ##	1 2 3	0.1405 0.1245 0.1113	nan nan nan	0.1000 0.1000 0.1000	0.0181 0.0149 0.0125
## ## ## ##	1 2 3 4	0.1405 0.1245 0.1113 0.1007	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0181 0.0149 0.0125 0.0092
## ## ## ##	1 2 3 4 5	0.1405 0.1245 0.1113 0.1007 0.0906	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0181 0.0149 0.0125 0.0092 0.0097
## ## ## ## ##	1 2 3 4 5	0.1405 0.1245 0.1113 0.1007 0.0906 0.0822	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0181 0.0149 0.0125 0.0092 0.0097 0.0076
## ## ## ## ##	1 2 3 4 5 6 7	0.1405 0.1245 0.1113 0.1007 0.0906 0.0822 0.0758	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0181 0.0149 0.0125 0.0092 0.0097 0.0076 0.0055
## ## ## ## ## ##	1 2 3 4 5 6 7 8	0.1405 0.1245 0.1113 0.1007 0.0906 0.0822 0.0758 0.0698	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0181 0.0149 0.0125 0.0092 0.0097 0.0076 0.0055 0.0052
## ## ## ## ## ##	1 2 3 4 5 6 7 8	0.1405 0.1245 0.1113 0.1007 0.0906 0.0822 0.0758 0.0698 0.0643	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0181 0.0149 0.0125 0.0092 0.0097 0.0076 0.0055 0.0052
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	0.1405 0.1245 0.1113 0.1007 0.0906 0.0822 0.0758 0.0698 0.0643 0.0595	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0181 0.0149 0.0125 0.0092 0.0097 0.0076 0.0055 0.0052 0.0052
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	0.1405 0.1245 0.1113 0.1007 0.0906 0.0822 0.0758 0.0698 0.0643 0.0595 0.0325	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0181 0.0149 0.0125 0.0092 0.0097 0.0076 0.0055 0.0052 0.0052 0.0041 0.0010
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	0.1405 0.1245 0.1113 0.1007 0.0906 0.0822 0.0758 0.0698 0.0643 0.0595 0.0325 0.0183	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0181 0.0149 0.0125 0.0092 0.0097 0.0076 0.0055 0.0052 0.0052 0.0041 0.0010 0.0002
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	0.1405 0.1245 0.1113 0.1007 0.0906 0.0822 0.0758 0.0698 0.0643 0.0595 0.0325 0.0183 0.0146	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0181 0.0149 0.0125 0.0092 0.0097 0.0055 0.0052 0.0052 0.0041 0.0010 0.0002
## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.1405 0.1245 0.1113 0.1007 0.0906 0.0822 0.0758 0.0698 0.0643 0.0595 0.0325 0.0183 0.0146 0.0130	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0181 0.0149 0.0125 0.0092 0.0097 0.0055 0.0052 0.0052 0.0041 0.0010 0.0002 -0.0001
## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.1405 0.1245 0.1113 0.1007 0.0906 0.0822 0.0758 0.0698 0.0643 0.0595 0.0325 0.0183 0.0146 0.0130	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0181 0.0149 0.0125 0.0092 0.0097 0.0055 0.0052 0.0052 0.0041 0.0010 0.0002 -0.0001 0.0000
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.1405 0.1245 0.1113 0.1007 0.0906 0.0822 0.0758 0.0698 0.0643 0.0595 0.0325 0.0183 0.0146 0.0130 0.0118	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0181 0.0149 0.0125 0.0092 0.0097 0.0055 0.0052 0.0052 0.0041 0.0010 0.0002 -0.0001 -0.0000
## ## # # # # # # # # # # # # # # # #	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.1405 0.1245 0.1113 0.1007 0.0906 0.0822 0.0758 0.0698 0.0643 0.0595 0.0325 0.0183 0.0146 0.0130 0.0118 0.0109 0.0101	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0181 0.0149 0.0125 0.0092 0.0097 0.0055 0.0052 0.0052 0.0041 0.0010 0.0002 -0.0001 0.0000 -0.0001 -0.0001
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.1405 0.1245 0.1113 0.1007 0.0906 0.0822 0.0758 0.0698 0.0643 0.0595 0.0325 0.0183 0.0146 0.0130 0.0118 0.0109 0.0101	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0181 0.0149 0.0125 0.0092 0.0097 0.0055 0.0052 0.0052 0.0041 0.0010 0.0002 -0.0001 0.0000 -0.0001 -0.0001
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.1405 0.1245 0.1113 0.1007 0.0906 0.0822 0.0758 0.0698 0.0643 0.0595 0.0325 0.0183 0.0146 0.0130 0.0118 0.0109	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0181 0.0149 0.0125 0.0092 0.0097 0.0076 0.0055 0.0052 0.0052 0.0041 0.0010 0.0002 -0.0001 -0.0000 -0.0001 -0.0001
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.1405 0.1245 0.1113 0.1007 0.0906 0.0822 0.0758 0.0643 0.0595 0.0325 0.0183 0.0146 0.0130 0.0118 0.0109 0.0101 0.0098 TrainDeviance 0.1433 0.1325	nan	0.1000 0.1000	0.0181 0.0149 0.0125 0.0092 0.0097 0.0076 0.0052 0.0052 0.0041 0.0010 0.0002 -0.0001 -0.0000 -0.0001 -0.0001 -0.0000 Improve 0.0140 0.0113
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.1405 0.1245 0.1113 0.1007 0.0906 0.0822 0.0758 0.0698 0.0643 0.0595 0.0325 0.0183 0.0146 0.0130 0.0118 0.0109 0.0101 0.0098 TrainDeviance 0.1433	nan	0.1000 0.1000	0.0181 0.0149 0.0125 0.0092 0.0097 0.0076 0.0055 0.0052 0.0052 0.0041 0.0010 0.0002 -0.0001 -0.0000 -0.0001 -0.0001 -0.0000 Improve 0.0140
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.1405 0.1245 0.1113 0.1007 0.0906 0.0822 0.0758 0.0698 0.0643 0.0595 0.0325 0.0183 0.0146 0.0130 0.0118 0.0109 0.0101 0.0098 TrainDeviance 0.1433 0.1325 0.1229 0.1148	nan	0.1000 0.1000	0.0181 0.0149 0.0125 0.0092 0.0097 0.0076 0.0052 0.0052 0.0041 0.0010 0.0002 -0.0001 -0.0000 -0.0001 -0.0001 -0.0000 Improve 0.0140 0.0113
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 120 140 150 Iter 1 2 3 4 5	0.1405 0.1245 0.1113 0.1007 0.0906 0.0822 0.0758 0.0698 0.0643 0.0595 0.0325 0.0183 0.0146 0.0130 0.0118 0.0109 0.0101 0.0098 TrainDeviance 0.1433 0.1325 0.1229 0.1148 0.1071	nan	0.1000 0.1000	0.0181 0.0149 0.0125 0.0092 0.0097 0.0076 0.0055 0.0052 0.0052 0.0041 0.0010 0.0002 -0.0001 -0.0000 -0.0001 -0.0001 -0.0000 Improve 0.0140 0.0113 0.0090 0.0073 0.0073
######################################	1 2 3 4 5 6 6 7 8 9 10 20 40 60 80 120 140 150 Iter 1 2 3 4	0.1405 0.1245 0.1113 0.1007 0.0906 0.0822 0.0758 0.0698 0.0643 0.0595 0.0325 0.0183 0.0146 0.0130 0.0118 0.0109 0.0101 0.0098 TrainDeviance 0.1433 0.1325 0.1229 0.1148	nan	0.1000 0.1000	0.0181 0.0149 0.0125 0.0092 0.0097 0.0076 0.0055 0.0052 0.0052 0.0041 0.0010 0.0002 -0.0001 -0.0000 -0.0001 -0.0001 -0.0000 Improve 0.0140 0.0113 0.0090 0.0073

##	7	0.0957	nan	0.1000	0.0053
##	8	0.0900	nan	0.1000	0.0052
##	9	0.0851	nan	0.1000	0.0045
##	10	0.0810	nan	0.1000	0.0040
##	20	0.0540	nan	0.1000	0.0012
##	40	0.0320	nan	0.1000	0.0005
##	60	0.0239	nan	0.1000	0.0003
##	80	0.0203	nan	0.1000	-0.0001
##	100	0.0187	nan	0.1000	-0.0000
##	120	0.0174	nan	0.1000	0.0000
##	140	0.0166	nan	0.1000	-0.0001
##	150	0.0163	nan	0.1000	-0.0001
##	100	0.0100	nan	0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improvo
##	1	0.1414		0.1000	Improve 0.0163
##	2		nan		
		0.1284	nan	0.1000	0.0134
##	3	0.1167	nan	0.1000	0.0112
##	4	0.1065	nan	0.1000	0.0107
##	5	0.0986	nan	0.1000	0.0071
##	6	0.0901	nan	0.1000	0.0084
##	7	0.0835	nan	0.1000	0.0067
##	8	0.0779	nan	0.1000	0.0053
##	9	0.0729	nan	0.1000	0.0048
##	10	0.0674	nan	0.1000	0.0054
##	20	0.0385	nan	0.1000	0.0016
##	40	0.0219	nan	0.1000	0.0003
##	60	0.0176	nan	0.1000	0.0000
##	80	0.0154	nan	0.1000	-0.0000
##	100	0.0142	nan	0.1000	-0.0000
##	120	0.0133	nan	0.1000	-0.0000
##	140	0.0125	nan	0.1000	-0.0000
##	150	0.0122	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	${\tt Improve}$
##	1	0.1394	nan	0.1000	0.0193
##	2	0.1239	nan	0.1000	0.0151
##	3	0.1110	nan	0.1000	0.0127
##	4	0.0997	nan	0.1000	0.0117
##	5	0.0905	nan	0.1000	0.0082
##	6	0.0820	nan	0.1000	0.0083
##	7	0.0742	nan	0.1000	0.0074
##	8	0.0681	nan	0.1000	0.0058
##	9	0.0624	nan	0.1000	0.0060
##	10	0.0582	nan	0.1000	0.0038
##	20	0.0314	nan	0.1000	0.0013
##	40	0.0185	nan	0.1000	0.0001
##	60	0.0146	nan	0.1000	0.0000
##	80	0.0130	nan	0.1000	-0.0000
##	100	0.0118	nan	0.1000	-0.0000
##	120	0.0110	nan	0.1000	-0.0000
##	140	0.0103	nan	0.1000	-0.0000
##	150	0.0100	nan	0.1000	-0.0000
##				-	
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	-			- · · I · · · · ·	1

##	1	0.1495	nan	0.1000	0.0143
##	2	0.1376	nan	0.1000	0.0118
##	3	0.1283	nan	0.1000	0.0090
##	4	0.1202	nan	0.1000	0.0084
##	5	0.1127	nan	0.1000	0.0072
##	6	0.1057	nan	0.1000	0.0066
##	7	0.0994	nan	0.1000	0.0057
##	8	0.0941	nan	0.1000	0.0046
##	9	0.0894	nan	0.1000	0.0046
##	10	0.0851	nan	0.1000	0.0041
##	20	0.0581	nan	0.1000	0.0008
##	40	0.0341	nan	0.1000	0.0006
##	60	0.0255	nan	0.1000	0.0002
##	80	0.0215	nan	0.1000	0.0001
##	100	0.0195	nan	0.1000	-0.0000
##	120	0.0182	nan	0.1000	0.0001
##	140	0.0173	nan	0.1000	-0.0001
##	150	0.0170	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1464	nan	0.1000	0.0168
##	2	0.1325	nan	0.1000	0.0129
##	3	0.1202	nan	0.1000	0.0103
##	4	0.1106	nan	0.1000	0.0094
##	5	0.1009	nan	0.1000	0.0097
##	6	0.0926	nan	0.1000	0.0077
##	7	0.0855	nan	0.1000	0.0074
##	8	0.0798	nan	0.1000	0.0053
##	9	0.0746	nan	0.1000	0.0047
##	10	0.0696	nan	0.1000	0.0049
##	20	0.0403	nan	0.1000	0.0014
##	40	0.0226	nan	0.1000	0.0003
##	60	0.0179	nan	0.1000	0.0001
##	80	0.0158	nan	0.1000	-0.0001
##	100	0.0148	nan	0.1000	-0.0000
##	120	0.0138	nan	0.1000	-0.0000
##	140	0.0130	nan	0.1000	-0.0000
##	150	0.0128	nan	0.1000	-0.0000
##	200	0.0120		0.1000	
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1453	nan	0.1000	0.0184
##	2	0.1297	nan	0.1000	0.0155
##	3	0.1155	nan	0.1000	0.0130
##	4	0.1041	nan	0.1000	0.0108
##	5	0.0940	nan	0.1000	0.0092
##	6	0.0851	nan	0.1000	0.0079
##	7	0.0778	nan	0.1000	0.0064
##	8	0.0708	nan	0.1000	0.0071
##	9	0.0652		0.1000	0.0054
##	10	0.0603	nan	0.1000	0.0034
##	20	0.0803	nan	0.1000	0.0049
##	40	0.0325	nan	0.1000	0.0014
##	60	0.0151	nan	0.1000	0.0001
			nan		
##	80	0.0131	nan	0.1000	-0.0000

##	100	0.0121	nan	0.1000	-0.0001
##	120	0.0121	nan	0.1000	-0.0001
##	140	0.0113		0.1000	-0.0001
##	150	0.0100	nan	0.1000	-0.0000
##	150	0.0103	nan	0.1000	-0.0000
##	Ttom	TrainDarriance	ValidDeviance	C+onCino	Tmmmorro
	Iter 1	TrainDeviance 0.1444		StepSize 0.1000	Improve 0.0134
##	2		nan		
##		0.1332	nan	0.1000	0.0115
##	3	0.1237	nan	0.1000	0.0089
##	4	0.1158	nan	0.1000	0.0076
##	5	0.1086	nan	0.1000	0.0073
##	6	0.1024	nan	0.1000	0.0056
##	7	0.0965	nan	0.1000	0.0052
##	8	0.0914	nan	0.1000	0.0051
##	9	0.0865	nan	0.1000	0.0044
##	10	0.0822	nan	0.1000	0.0036
##	20	0.0552	nan	0.1000	0.0019
##	40	0.0329	nan	0.1000	0.0003
##	60	0.0246	nan	0.1000	0.0001
##	80	0.0209	nan	0.1000	0.0001
##	100	0.0189	nan	0.1000	0.0000
##	120	0.0176	nan	0.1000	0.0001
##	140	0.0168	nan	0.1000	-0.0000
##	150	0.0165	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1419	nan	0.1000	0.0163
##	2	0.1286	nan	0.1000	0.0136
##	3	0.1166	nan	0.1000	0.0105
##	4	0.1062	nan	0.1000	0.0113
##	5	0.0982	nan	0.1000	0.0090
##	6	0.0901	nan	0.1000	0.0079
##	7	0.0837	nan	0.1000	0.0058
##	8	0.0780	nan	0.1000	0.0051
##	9	0.0721	nan	0.1000	0.0056
##	10	0.0675	nan	0.1000	0.0039
##	20	0.0397	nan	0.1000	0.0013
##	40	0.0228	nan	0.1000	0.0002
##	60	0.0182	nan	0.1000	0.0001
##	80	0.0161	nan	0.1000	0.0000
##	100	0.0149	nan	0.1000	-0.0000
##	120	0.0138	nan	0.1000	-0.0000
##	140	0.0131	nan	0.1000	-0.0000
##	150	0.0127	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	0.1395	nan	0.1000	0.0185
##	2	0.1243	nan	0.1000	0.0160
##	3	0.1113	nan	0.1000	0.0129
##	4	0.0995	nan	0.1000	0.0107
##	5	0.0901	nan	0.1000	0.0083
##	6	0.0824	nan	0.1000	0.0073
##	7	0.0755	nan	0.1000	0.0066
##	8	0.0692	nan	0.1000	0.0060

```
##
        9
                  0.0639
                                                0.1000
                                                           0.0053
                                       nan
##
       10
                  0.0593
                                                0.1000
                                                           0.0043
                                       nan
                  0.0322
                                                0.1000
                                                           0.0014
##
       20
                                       nan
##
       40
                  0.0186
                                                0.1000
                                                           0.0000
                                       nan
##
       60
                  0.0149
                                       nan
                                                0.1000
                                                          -0.0001
##
                                                          -0.0001
       80
                  0.0133
                                                0.1000
                                       nan
##
                                                          -0.0000
      100
                  0.0122
                                       nan
                                                0.1000
##
      120
                  0.0114
                                       nan
                                                0.1000
                                                          -0.0001
                                                0.1000
##
      140
                  0.0107
                                                          -0.0000
                                       nan
      150
                                                          -0.0000
##
                  0.0103
                                       nan
                                                0.1000
##
##
                            ValidDeviance
   Iter
           TrainDeviance
                                              StepSize
                                                          Improve
                                                           0.0185
##
        1
                  0.1430
                                                0.1000
                                       nan
##
        2
                  0.1269
                                       nan
                                                0.1000
                                                           0.0145
##
        3
                                                0.1000
                                                           0.0124
                  0.1141
                                       nan
##
        4
                  0.1016
                                                0.1000
                                                           0.0119
                                       nan
##
        5
                  0.0917
                                                0.1000
                                                           0.0102
                                       nan
        6
##
                  0.0835
                                                0.1000
                                                           0.0073
                                       nan
##
        7
                  0.0765
                                                0.1000
                                                           0.0071
                                       nan
##
        8
                  0.0704
                                       nan
                                                0.1000
                                                           0.0050
##
        9
                  0.0647
                                       nan
                                                0.1000
                                                           0.0052
##
       10
                  0.0600
                                                0.1000
                                                           0.0044
                                       nan
##
       20
                  0.0326
                                                           0.0014
                                                0.1000
                                       nan
##
       40
                  0.0189
                                                0.1000
                                                          -0.0001
                                       nan
       60
##
                  0.0148
                                       nan
                                                0.1000
                                                           0.0001
##
       80
                  0.0132
                                       nan
                                                0.1000
                                                          -0.0000
##
      100
                  0.0121
                                                0.1000
                                                          -0.0001
                                       nan
##
                                                0.1000
      120
                  0.0112
                                                          -0.0000
                                       nan
##
      140
                  0.0106
                                                0.1000
                                                          -0.0000
                                       nan
##
      150
                  0.0103
                                                0.1000
                                                          -0.0000
                                       nan
```

```
predictions <- predict(gbm,data_test)
RMSE(predictions, data_test$SalePrice)</pre>
```

[1] 0.1209606

Comparison of Models

```
compare=resamples(list(L=lasso, R=ridge, E=enet, RF = m_rf, G = gbm))
```

```
summary(compare)
```

```
##
## Call:
## summary.resamples(object = compare)
##
## Models: L, R, E, RF, G
## Number of resamples: 10
##
## MAE
##
                                 Median
                                                       3rd Qu.
            Min.
                    1st Qu.
                                              Mean
                                                                    Max. NA's
## L 0.07816799 0.08674583 0.09519405 0.09323783 0.09970306 0.1044491
```

```
## R 0.07670146 0.08862596 0.09988095 0.09506917 0.10156409 0.1050569
## E 0.07775151 0.08623393 0.09583900 0.09346221 0.10033290 0.1035560
                                                                          0
## RF 0.07920558 0.09219023 0.09596471 0.09733000 0.10128513 0.1146040
## G 0.08507741 0.08999805 0.09521986 0.09332114 0.09617522 0.1026588
                                                                          0
## RMSE
##
                   1st Qu.
                             Median
                                          Mean
                                                 3rd Qu.
           Min.
## L 0.09778152 0.1217666 0.1452775 0.1518799 0.1575893 0.2695698
## R 0.09841857 0.1292656 0.1474946 0.1518827 0.1600506 0.2393770
                                                                      0
## E 0.09687368 0.1229803 0.1459079 0.1492083 0.1521539 0.2525771
                                                                      0
## RF 0.10259145 0.1415651 0.1510390 0.1487340 0.1570593 0.1860757
                                                                      0
## G 0.10774435 0.1236806 0.1367302 0.1358157 0.1487888 0.1598050
                                                                      0
##
## Rsquared
##
          Min.
                  1st Qu.
                             Median
                                         Mean
                                                3rd Qu.
                                                             Max. NA's
## L 0.6420894 0.8496630 0.8959360 0.8551290 0.9138795 0.9399385
## R 0.6854652 0.8461922 0.8879079 0.8569824 0.8995269 0.9405751
## E 0.6622618 0.8557042 0.8957389 0.8610559 0.9161265 0.9415999
## RF 0.7961990 0.8514791 0.8764924 0.8746620 0.9014009 0.9420880
                                                                     0
## G 0.8360557 0.8629792 0.8821800 0.8849289 0.9137745 0.9309447
```

Of the 5 models ran over the same dataset, the Gradient Boosted Trees model performed well producing the minimum RMSE compared to other models. The Ridge regression model performed the worst of them all.

Neural Networks with Dropout

```
# Convert Year columns to numeric
cols <- c("YearBuilt", "YearRemodAdd", "GarageYrBlt", "YrSold")</pre>
data train[cols] <- sapply(data train[cols], as.numeric)</pre>
data_test[cols] <- sapply(data_test[cols],as.numeric)</pre>
# Train validation split
train.index <- createDataPartition(data_train$SalePrice, p = 0.9, list = FALSE)
data_nn_train <- data_train[train.index, ]</pre>
data_nn_validation <- data_train[-train.index, ]</pre>
# Test set
data_nn_test <- data_test
# Separating and log transforming the target variable
data_nn_train_y <- data_nn_train$SalePrice</pre>
data_nn_train$SalePrice <- NULL</pre>
data_nn_test_y <- data_nn_test$SalePrice</pre>
data nn test$SalePrice <- NULL
data_nn_validation_y <- data_nn_validation$SalePrice</pre>
data nn validation$SalePrice <- NULL
# Scaling the data
```

ind <- sapply(data_nn_train, is.numeric) # Only for numeric</pre>

```
col_means_train <- lapply(data_nn_train[ind], mean)</pre>
col_stddevs_train <- lapply(data_nn_train[ind], sd)</pre>
data_nn_train[ind] <- lapply(data_nn_train[ind], scale)</pre>
# Scaling validation and testing data using mean and sd
data_nn_validation[ind] <- scale(data_nn_validation[ind], center = col_means_train, scale = col_stddevs
data_nn_test[ind] <- scale(data_nn_test[ind], center = col_means_train, scale = col_stddevs_train)</pre>
# One Hot Encoding
library("mltools")
## Warning: package 'mltools' was built under R version 3.6.3
library("data.table")
## Warning: package 'data.table' was built under R version 3.6.3
data_nn_train = as.data.frame(one_hot(as.data.table(data_nn_train)))
data_nn_validation = as.data.frame(one_hot(as.data.table(data_nn_validation)))
data_nn_test = as.data.frame(one_hot(as.data.table(data_nn_test)))
library("tfruns")
runs <- tuning_run("house_train.R",</pre>
                  flags = list(
                  nodes_hlayer1 = c(600, 500, 400),
                  nodes_hlayer2 = c(500, 250, 100),
                  learning_rate = c(0.01, 0.05, 0.001, 0.0001),
                  batch_size=c(10,20,50,75),
                  epochs=c(30,50,100),
                  activation=c("relu","sigmoid","tanh"),
                  dropout1=c(0.3, 0.4, 0.5),
                  dropout2=c(0.2, 0.3, 0.4)),
                  sample = 0.01
)
#runs
#view_run(runs$run_dir[9])
runsHouse <- runs[order(runs$metric_val_loss, decreasing = FALSE),][1,]</pre>
```

Best performing with params: nodes_hlayer1 = 400, nodes_hlayer2 = 500, batch_size = 10, activation = sigmoid, learning rate = 10^{-4} , epochs = 50 dropout1 = 0.4, dropout2 = 0.4.

The model doesn not overfit since the difference between error is little with the training error = 0.4511 and validation error = 0.0249.

Model Testing

```
# Combine validation and training data
data_nn_train_all <- rbind(data_nn_train, data_nn_validation)</pre>
data_nn_train_all_y <- c(data_nn_train_y, data_nn_validation_y)</pre>
set.seed(1)
model <- keras_model_sequential()</pre>
model %>%
  layer_dense(units = 900, activation = runsHouse$flag_activation, input_shape = dim(data_nn_train)[2])
  layer_dense(units = runsHouse$flag_nodes_hlayer1, activation = runsHouse$flag_activation) %>%
  layer_dropout(runsHouse$flag_dropout1) %>%
  layer_dense(units = runsHouse$flag_nodes_hlayer2, activation = runsHouse$flag_activation) %>%
  layer_dropout(runsHouse$flag_dropout2) %>%
  layer_dense(units = 1)
model %>%
  compile(optimizer = optimizer_adam(lr = runsHouse$flag_learning_rate), loss = 'mse')
set.seed(123)
model %>%
  fit(as.matrix(data_nn_train_all), as.matrix(data_nn_train_all_y), batch_size = runsHouse$flag_batch_s
      validation_data = list(as.matrix(data_nn_test), as.matrix(data_nn_test_y)))
predictions <- model %>% predict(as.matrix(data_nn_test))
cat('RMSE:', RMSE(predictions, as.matrix(data_nn_test_y)))
```

Compared with the Gradient Boosted Trees model which had the RMSE = 0.136, this neural network was not able outperform the GBM by having a slightly worse RMSE.

RMSE: 0.130623