DATA ANLYSIS :

Jiyoon Kim

DATA ANALYSIS

Method 1

Linear regression 2

Correlation 3

K-Means 4

1. Methode

Data collection

- 1. Pulling from a rest API.
- 2. Pulling from an SQLite database.
- 3. Reading from a .csv file

Data Cleaning Techniques

- Dropping NaNs
- Dropping Duplicates (there were no duplicates)
- Dropping Few negative values
- Converting strange characters converted tot NaNs and dropping
- Leaving Outliers for further analysis

EDA conclusions(dataset to use for the final version)

We decided that df4 would be the best dataset to use for the final regression model.

4	Experiment Tracking	Гablе						
5	train, test = train_test_split(mydf, test_size=0.2, random_state=42)							
6								
7	Experiment #	NaN drop	Dupli drop	Neg drop	object -> float	BMI feature	IQR-clip	IQR-drop
8	DF1	X	X	x	х			
9	DF2	Х	X	x	х	x		
10	DF3	Х	X	x	х	х	X	
11	DF4	X	X	X	х	x		X

2.LinearRegressions

LINEAR REGRESSIONS AND SPLIT DATASETS USING SKLEARN

THE RESULT OF F4

```
品
     D ~
              train, test = train_test_split(df, test_size=0.2, random_state=42)
              X = train[['genetic', 'length', 'mass', 'exercise', 'smoking', 'alcohol', 'sugar', 'bmi']]
y = train.lifespan
              regr = LinearRegression()
              regr.fit(X, y)
score = regr.score(test[['genetic', 'length', 'mass', 'exercise', 'smoking', 'alcohol', 'sugar', 'bmi']],test.lifespan)
              print(f'coefficient of determination(R\N{SUPERSCRIPT TWO}) vanilla:', score)
              a1=score
           ✓ 0.0s
                                                                                                                                                     Python
          coefficient of determination(R2) vanilla: 0.9820618333051058
```


3. The correlation with lifespan

negative relation

negative relation

lifespan - bmi

correlation matrix view

- Genetic shows strong correlation with lifespan
- Secondly exercise, has correlation with lifespan
- Smoking and alcohol has negative correlation with lifespan
- Other variables have also some negative correlation

implements the leibow method of selecting the optimal number of clusters by litting the K-illeans model with a range of values for \mathbb{N}_{Φ} .

