# CARTESIAN, CYLINDRICAL, SPHERICAL COORDINATES

Consider point M and the reference frame  $\Re = (O; \vec{u}_x, \vec{u}_y, \vec{u}_z)$ . All velocities and displacements in this chapter are calculated in the  $\Re$  reference frame.

## I. CARTESIAN COORDINATES

Point M is identified by Cartesian coordinates (x, y, z).



$$-\infty < x, y, z < \infty$$

$$O\overline{M} = x\overline{u}_x + y\overline{u}_y + z\overline{u}_z$$

$$-\frac{dOM}{dt} = \frac{dt}{dt} = xu_x + yu_y + zu_z = \frac{dx}{dt}u_x + \frac{dy}{dt}u_y + \frac{dz}{dt}u_z$$

The elementary displacement is:  $dl = MM^{\top} = dxu_x^{\top} + dyu_y^{\top} + dzu_z^{\top}$ . It is used to calculate elementary surfaces and volumes.

We deduce that:  $d\tau = dx dy dz$ .

 $x = cte : dS_x = dy dz$ 

 $y = cte : dS_v = dx dz$ 

 $z = cte : dS_z = dx dy$ 

#### II. CYLINDRICAL COORDINATES

The point M is marked by the cylindrical coordinates  $(r, \theta, z)$ .

Cylindrical coordinates are used whenever distance from the Oz axis plays an important role in the exercise.



$$\begin{split} &0 \leq r < \infty, 0 \leq \theta \leq 2\pi, -\infty < z < +\infty \\ &OM = r\overline{u}_r + z\overline{u}_z \\ &\begin{cases} x = r\cos\theta \\ y = r\sin\theta \\ z = z \end{cases} \\ &v = \frac{\mathrm{d}OM}{\mathrm{d}t} = \frac{\mathrm{d}t}{\mathrm{d}t} = ru_r + r\theta u_\theta + zu_z = \frac{\mathrm{d}r}{\mathrm{d}t} u_r + r\frac{\mathrm{d}\theta}{\mathrm{d}t} u_\theta + \frac{\mathrm{d}z}{\mathrm{d}t} u_z \end{split}$$

The elementary displacement is:  $\mathrm{d}l = MM^{\top} = \mathrm{d}ru_r^{-} + r\mathrm{d}\theta u_{\theta}^{-} + \mathrm{d}zu_z^{-}$ . It is used to calculate elementary surfaces and volumes.

We deduce:  $d\tau = (dr)(rd\theta)(dz)$ .

r = cte:  $dS_r = rd\theta dz$   $\theta = cte$ :  $dS_\theta = dr dz$ z = cte:  $dS_z = dr rd\theta$ 

We often need the elementary volume between cylinders of radius r and radius r + dr.

$$\pi (r + dr)^{2} H - \pi r^{2} H = \pi_{r}^{2} \left( 1 + \frac{dr}{r} \right)^{2} H - \pi r^{2} H = \pi_{r}^{2} \left( 1 + \frac{2dr}{r} \right) H - \pi r^{2} H = 2 \pi r dr H$$

The elementary volume between cylinders of radius r and radius r+dr is the area of the cylinder of radius r and height H multiplied by dr:  $d\tau = 2\pi r dr H$ 

#### III. SPHERICAL COORDINATES

The point M s marked by the cylindrical coordinates  $(r, \theta, \phi)$ .

Spherical coordinates are used whenever distance from the center plays an important role in the exercise.



Terrestrial geography:

 $\bar{u}_r$  is directed vertically upwards from the location.

 $\bar{u}_{\theta}$  faces south.

 $u_{\phi}$  faces east.

 $\theta$  is called colatitude.  $\phi$  is the longitude.

$$\boxed{ \begin{aligned} 0 &\leq r < \infty, 0 \leq \theta \leq \pi, 0 \leq \phi \leq 2\pi \\ O\overline{M} &= r\overline{u}_r \\ \begin{cases} x &= r\sin\theta\cos\phi \\ y &= r\sin\theta\sin\phi \\ z &= r\cos\theta \end{aligned}}$$

$$\overset{-}{v} = \frac{\mathrm{d}OM}{\mathrm{d}t} = \frac{\mathrm{d}T}{\mathrm{d}t} = \overset{-}{ru_r} + r\theta\overset{-}{u_\theta} + r\sin\theta\overset{-}{\phi}u_\phi = \frac{\mathrm{d}r}{\mathrm{d}t}u_r + r\frac{\mathrm{d}\theta}{\mathrm{d}t}u_\theta + r\sin\theta\frac{\mathrm{d}\phi}{\mathrm{d}t}u_\phi$$

The elementary displacement is:  $\mathrm{d}l = MM^- = \mathrm{d}ru_r^- + r\mathrm{d}\theta u_\theta^- + r\sin\theta\mathrm{d}\phi u_\phi^-$ . It is used to calculate elementary surfaces and volumes.

We deduce:  $d\tau = (dr)(rd\theta)(r\sin\theta d\phi)$ .

 $r = cte : dS_r = (rd\theta)(r\sin\theta d\phi)$ 

 $\theta = cte : dS_{\theta} = (dr)(r \sin\theta d\phi)$ 

 $\phi = cte : dS_{\phi} = dr r d\theta$ 

We often need the elementary volume between spheres of radius r and radius r + dr.

$$\frac{4}{3}\pi(r+dr)^3 - \frac{4}{3}\pi r^3 = \frac{4}{3}\pi r^3 \left(1 + \frac{dr}{r}\right)^3 - \frac{4}{3}\pi r^3 = \frac{4}{3}\pi r^3 \left(1 + \frac{3dr}{r}\right) - \frac{4}{3}\pi r^3 = 4\pi r^2 dr$$

The elementary volume between spheres of radius r and radius r + dr is the area of the sphere of radius r multiplied by dr:  $d\tau = 4\pi r^2 dr$ 

## IV. VECTOR PRODUCT WITH A DIRECT ORTHONORMAL BASIS

Exercises often involve calculating  $\bar{u}_z \wedge \bar{u}_\theta$  in the exercises.

A mnemonic is to write the 6 unit vectors in sequence:  $\bar{u}_r$ ,  $\bar{u}_\theta$ ,  $\bar{u}_z$ ,  $\bar{u}_r$ ,  $\bar{u}_\theta$ ,  $\bar{u}_z$ .

If three unit vectors follow, then  $\bar{u}_3=\bar{u}_1{}^\wedge\bar{u}_2:\bar{u}_r=\bar{u}_\theta{}^\wedge\bar{u}_z$  or  $\bar{u}_\theta=\bar{u}_z{}^\wedge\bar{u}_r$ 

If not, enter a negative sign:  $\bar{u}_z \wedge \bar{u}_\theta = -\bar{u}_r$ 

It's very convenient to use without having to use all three fingers of your hand all the time!!!!