Électrocinétique – chapitre 2

TD : circuits électriques avec résistances et sources

I | Circuit simple

On constitue un circuit électrique avec un générateur réel de tension (E,r), entre les bornes duquel on branche une résistance R réglable.

- 1) Faire un schéma normalisé du circuit.
- 2) Flécher les tensions et intensités, en respectant la convention pour chacun.
- 3) Déterminer l'expression de l'intensité du courant qui circule dans le circuit.
- 4) Déterminer l'expression de la puissance absorbée par la résistance.
- 5) Tracer la courbe de P en fonction de R, et montrer que cette courbe passe par un maximum. Déterminer les coordonnées du maximum.

I | Résistances équivalentes

- 1) Exprimer la résistance équivalente à l'association de deux résistances R_1 et R_2 placées en parallèle.
- 2) Que devient cette expression si $R_1 = R_2$?
- 3) Exprimer la résistance équivalente à l'association de_3 résistances R_1 , R_2 et R_3 placées en parallèle.
- 4) Que devient cette expression si $R_1 = R_2 = R_3$?
- 5) Exprimer la résistance équivalente à l'association de n résistances identiques placées en parallèle.

III Association de générateurs

Deux générateurs de tension de forces électromotrices E_1 et E_2 et de résistances internes r_1 et r_2 sont branchés en série. Ils alimentent une résistance R_3 .

- 1) Dessiner le schéma normalisé de ce circuit électrique et flécher les courants et les tensions.
- 2) Écrire l'équation de la maille et en déduire l'expression du courant qui circule dans cette maille.
- 3) Simplifier le schéma en ne faisant apparaître qu'un seul générateur équivalent aux deux générateurs initiaux aux bornes de R_3 .
- 4) Que devient le générateur équivalent lorsque r_1 et r_2 sont nulles?
- 5) Conclusion à retenir : peut—on brancher deux générateurs idéaux de tension en série? Deux générateurs réels?

Les deux générateurs (E_1, r_1) et (E_2, r_2) sont maintenant placés en parallèle. Ils alimentent une résistance R_4 (en parallèle sur l'ensemble des deux générateurs).

- 6) Dessiner le schéma normalisé de ce montage et flécher les courants et les tensions.
- 7) Reproduire le schéma avec des générateurs idéaux (donc r_1 et r_2 nulles) et flécher les courants et les tensions. Que peut-on dire de la tension aux bornes de R_4 ?
- 8) Conclusion à retenir : peut—on brancher deux générateurs idéaux de tension en parallèle? Deux générateurs réels?

IV | Calcul de résistances équivalentes

Exprimer la résistance équivalente entre les points A et B pour chacun des schémas suivants.

V | Conventions

Pour le circuit ci-contre :

- 1) a Flécher les courants et les tensions en convention récepteur pour chaque dipôle.
 - b Exprimer la puissance (notée P(R) pour le dipôle R) associée à chaque dipôle.
 - c En faisant un bilan de puissance reçue par le système, déterminer l'expression du courant I.
- 2) a Reproduire le circuit et flécher les courants et tensions en convention générateur pour chaque dipôle.
 - b Exprimer la puissance associée à chaque dipôle.
 - c En faisant un bilan de puissance, déterminer l'expression du courant I.
- 3) a Reproduire le schéma et flécher les courants et tensions de chaque dipôle en fonction de sa nature (récepteur / générateur).
 - b Exprimer la puissance associée à chaque dipôle.
 - c En faisant un bilan de puissance reçu par le système, déterminer l'expression du courant I.
- 4) Comparer les résultats obtenus aux réponses précédentes

VI | Mesures de tensions et intensités

Dans les circuits ci-dessous, quelles sont les valeurs affichées par les instruments de mesure si ceux-ci sont parfaits? On donne : $E = 5.0 \,\mathrm{V}$; $r_1 = 10\,\Omega$; $R = 20\,\Omega$; $R_1 = 30\,\Omega$; $R_2 = 40\,\Omega$. On rappelle que dans un circuit, les ampèremètres parfaits sont équivalents à des fils alors que les voltmètres parfaits sont équivalents à des interrupteurs ouverts.

VII. Diviseur de tension 3

VII Diviseur de tension

- 1) Écrire la loi des mailles pour le montage ci-contre et en déduire l'expression de l'intensité du courant $I(R_2)$ qui parcourt cette maille.
- 2) En déduire l'expression de la tension U_{BC} , aux bornes de la résistance R_1 .

On ajoute une résistance R_3 qui sera connectée en parallèle avec la résistance R_1 .

VIII Diviseur de courant

- 1) Exprimer les tensions aux bornes de R_1 et R_2 dans le montage ci-contre.
- 2) A partir de la loi des mailles, exprimer $I(R_2)$ en fonction de I, R_1 et R_2 .

On ajoute une résistance R_3 qui sera connectée en parallèle avec la résistance R_1 .

- 3) Est-ce que la valeur de l'intensité $I(R_2)$ va changer?
- 4) Si oui, donner sa nouvelle expression.
- 5) Est-ce que la valeur de l'intensité délivrée par le générateur va changer?
- 6) Si oui, donner sa nouvelle expression.

IX | Calcul d'intensité

En utilisant les lois fondamentales dans l'ARQS (dites lois de Kirchhoff), exprimer l'intensité traversant R dans le circuit cicontre. Faire de même avec un pont diviseur de courant d'une part, et de même avec un diviseur de tension d'autre part.

X | Association de générateurs : application

Deux générateurs de tension (E_1, r_1) et (E_2, r_2) sont placés en parallèle l'un de l'autre. Ils alimentent une résistance R_4 , également placée en parallèle sur les générateurs.

- 1) Dessiner le schéma normalisé de ce montage et flécher les courants et les tensions.
- 2) Exprimer l'intensité du courant qui circule dans R_4 .
- 3) Exprimer la tension aux bornes de R_4 .

XI | Pont de Wheatstone

En électronique, on réalise régulièrement des ponts de mesure pour mesurer indirectement une résistance. On dispose d'un circuit comprenant un générateur de tension qui alimente un pont de Wheatstone composé des résistances R_1 et R_2 . La résistance R_i est inconnue, et la résistance R est variable (il s'agit d'un potentiomètre). On fait évoluer R jusqu'à ce que le voltmètre indique E une tension nulle. Le pont est alors équilibré.

À l'aide des lois de Kirchhoff, déterminer l'expression de la valeur de R_i en fonction des valeurs des autres résistances lorsque le pont est équilibré.

XII Ponts diviseurs de tension

Donner les expressions de U_1 , U_2 , U_3 et U_4 en fonction de E pour les schémas suivants.

XIII Pont diviseur de courant

Exprimer l'intensité I en fonction de I_0 .

