TRADE		U.S. 1	PATENT DOCUMENTS			RCA.	
j Sheet	of 1	GROU	PART UNIT: 1645 1671	EXAMINE	R: Not yet assigned Smith	00 3	
STAT	EMANT BY APPLICANT	APPLI	APPLICANT: Bauer et al.			200	
	RMATION DISCLOSURE	FILING	G DATE: September 17, 2001	CONFIRM	CONFIRMATION NO.: 7680		
FORM PTO	1449/A and B (Modified)	APPLI	CATION NO.: 09/954,987	ATTY. DO	CKET NO.: C01041.	700)6 US	

Ditaining 5	Cite	Cite	Cite	U.S. Patent Doc	ument	Name of Patentee or Applicant of Cited	Date of Publication or of issue
	No.	Number	Kind Code	Document Document	of Cited Document MM-DD-YYYY		

FOREIGN PATENT DOCUMENTS

		Foreign Patent Document		ment	N (D)	Date of Publication of	
Examiner's Initials	Cite No.	Office/ Country	Number	Kind Code	Name of Patentee or Applicant of Cited Document (not necessary)	Cited Document MM-DD- YYYY	Translation (Y/N)
					·.		

OTHER ART — NON PATENT LITERATURE DOCUMENTS

Translation
(Y/N)
<u></u>

)	/	<u> </u>	
EXAMINER	M	1	X -	DATE CONSIDERED $7/2/6$

#EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

[NOTE - Must provide a copy of any patent, publication, other information listed, even if it was previously submitted to, or cited by, the U.S. Patent Office in an earlier application, unless the earlier application is identified by the IDS and is relied upon for an earlier filing date under 35 U.S.C. §120, and the copy was provided in the earlier application.]

^{*}a copy of this reference is not provided as it was previously cited by or submitted to the office in a prior application, Serial No. ___, filed ___, and relied upon for an earlier filing date under 35 U.S.C. 120 (continuation, continuation-in-part, and divisional applications).

FEB 0 6 2003 6		
FORM PTO 1449/A and B (Modified)	APPLICATION NO.: 09/954,987	ATTY. DOCKET NO.: C01041.70016.US
TRADENIA INFORMATION DISCLOSURE	FILING DATE: September 17, 2001	CONFIRMATION NO.: 7680
STATEMENT BY APPLICANT	APPLICANT: Bauer et al.	
Sheet 1 of 1	GROUP ART UNIT: 1631	EXAMINER: Carolyn L. Smith

U.S. PATENT DOCUMENTS

Examiner's Initials	Cite No.	U.S. Patent Docu	ıment	Name of Patentee or Applicant of Cited Document	Date of Publication or of issue	
		Number	Kind Code		of Cited Document MM-DD-YYYY	
			1			

FOREIGN PATENT DOCUMENTS

		Foreign Patent Document		ment	N	Date of Publication of	
Examiner's Initials	Cite No.	Office/ Country	Number	Kind Code	Name of Patentee or Applicant of Cited Document (not necessary)	Cited Document MM-DD- YYYY	Translation (Y/N)
	1						

OTHER ART — NON PATENT LITERATURE DOCUMENTS

Examiner's	Cite	Include name of the author (in CAPITAL LETTERS) title of the article (when appropriate), title of						
Initials	No	the item (book, magazine, journal, serial, symposium, catalog, etc.), date, relevant page(s), volume-						
		issue number(s), publisher, city and/or country where published.		j				
15	C43	CHUAN T-H et al., Toll-like receptor 9 mediates CpG-DNA signaling. J Leukoc Biol. 2002						
		Mar;71(3):538-44.						
	C44	GENBANK Accession No. AF348140, Mus musculus toll-like receptor 9 (Tlr9), mRNA, complete						
		cds. April 5, 2001.	<u> </u>					
	C45	HOSHINO K et al., Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to						
		lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol. 1999 Apr						
		1;162(7):3749-52.						
	C46	KOPP EB et al. The Toll-receptor family and control of innate immunity. Curr Opin Immunol. 1999		\supset				
		Feb;11(1):13-8.						
V	C47	MUZIO M et al., Toll-like receptors. Microbes Infect. 2000 Mar;2(3):251-5.						
			3 2	$\overrightarrow{\Box}$				
EXAMINER		DATE CONSIDERED / /	2 ಟ	ᄁ				
		12/03	Š	U				

#EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

[NOTE - Must provide a copy of any patent, publication, other information listed, even if it was previously submitted to, or cited by, the U.S. Patent Office in an earlier application, unless the earlier application is identified by the IDS and is relied upon for an earlier filing date under 35 U.S.C. §120, and the copy was provided in the earlier application.]

^{*}a copy of this reference is not provided as it was previously cited by or submitted to the office in a prior application, Serial No. ___, filed ___, and relied upon for an earlier filing date under 35 U.S.C. 120 (continuation, continuation-in-part, and divisional applications).

FORM PTO-	1449/A a	nd B (Modifie	ed)	APPLIC/	ATION NO.: 09/954,987	ATTY. DOC	CKET NO.: C01041.70016.US		
ONFOR	MATI	ON DISC	CLOSURE	FILING I 2001	DATE: September 17,	CONFIRMA	TION NO.: 7680		,
FEB 0 7 20	BAIK	I BY API	PLICANT	APPLICA	ANT: Bauer et al.				
Speet FRADEM	REC.	of	1	— GROUP	ART UNIT: 1631	EXAMINER	: Carolyn L. Smith	l	
,		_		U.S. I	PATENT DOCUMENTS				
Examiner's Initials	Cite No.		.S. Patent Docum	nent Kind	Name of Patentee or Applica Document	ant of Cited	Date of Publication of Cited Do	cument	sue
		<u> </u>	Number	Code	2 ordanioni		MM-DD-YYYY		
				-			RECEIVE	D	
							FEB 1 0 200	13	
						TE	CH CENTER 160	0/2900	
	!			FOREIG	N PATENT DOCUMENTS				
Examiner's	Cite	Foreign Patent Document		Name of Patentee or Applica Document	ant of Cited	Date of Publication of	Transla		
Initials	No.	Office/ Country	Number	Kind Code	(not necessary)		Cited Document MM-DD-YYYY	(Y/N	1)
		· · · ·			PATENT LITERATURE DOCU				
F:	_ ^·				LL LETTERS) title of the article (visium, catalog, etc.), date, relevant	page(s), volume		Translat (Y/N	
Examiner's Initials	Cite No	(book, m	agazine, journar,	publisher	, city and/or country where publish	ica.			
					, city and/or country where publish Toll protein PRO286; 2 August				

#EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered.

DATE CONSIDERED

Include copy of this form with next communication to applicant.

*a copy of this reference is not provided as it was previously cited by or submitted to the office in a prior application, Serial No. ___, filed ___, and relied upon for an earlier filing date under 35 U.S.C. 120 (continuation, continuation-in-part, and divisional applications).

[NOTE - Must provide a copy of any patent, publication, other information listed, even if it was previously submitted to, or cited by, the U.S. Patent Office in an earlier application, unless the earlier application is identified by the IDS and is relied upon for an earlier filing date under 35 U.S.C. §120, and the copy was provided in the earlier application.]

EXAMINER

FORM PTO-1449/A and B (Modified)	APPLICATION NO.: 09/954,987	ATTY. DOCKET NO.: C1041/7016
INFORMATION DISCLOSURE	FILING DATE: September 17, 2001	
STATEMENT BY APPLICANT DE JAN 0 8 2002	APPLICANT: Lipford et al.	
Sheet 3	GROUP ART UNIT: 1645- / (3/	EXAMINER: unknown Smith
RADEMAR		

U.S. PATENT DOCUMENTS

Examiner's	Cite	U.S. Patent Document		Name of Patentee or Applicant of Cited	Date of Publication or of Issue	
Initials#	No.	Number	Kind Code	Document	of Cited Document MM-DD-YYYY	
CS	A1	5,567,604		Rando et al.	10-22-1996	
	A2	5,663,153		Hutcherson et al.	09-02-1997	
	A3	5,723,335		Hutcherson et al.	. 03-03-1998	
	A4	6,013,639		Peyman et al.	01-11-2000	
	A5	6,121,434	<u> </u>	Peyman et al.	09-19-2000	
	A6	6,194,388	B1	Krieg et al.	02-27-2001	
	A7	6,207,646	B1	Krieg et al.	03-27-2001	
	A8	6,214,806	B1	Krieg et al.	04-10-2001	
	A9	6,218,371	B1	Krieg et al.	04-17-2001	
4	A10	6,239,116	B1	Krieg et al.	05-29-2001	

FOREIGN PATENT DOCUMENTS

Examiner's	Cite No.	Foreign Patent Document		ient	Name of Patentee or Applicant of Cited	Date of	TC . 1 .*
Initials#		Office/ Country	Number	Kind Code	Document (not necessary)	Publication of Cited Document MM-DD-YYYY	Translation (Y/N)
CS	B1	EPO	EP1142472	A1		10-10-2001	
1	B2	WIPO	WO94/29469	A2		12-22-1994	
	В3	WIPO	WO96/24380	A1		08-15-1996	
	B4	WIPO	WO96/2555	A1		02-01-1996	
	B5	WIPO	WO97/00957	A1		01-09-1997	
	В6	WIPO	WO98/18810	A1		05-07-1998	
	В7	WIPO	WO98/29430	A1		07-09-1998	
	В8	WIPO	WO98/32462	A1		07-30-1998	
	B9	WIPO	WO98/37919	A1		09-03-1998	
	B10	WIPO	WO98/40100	A1		09-17-1998	
	B11	WIPO	WO98/50547	A2		11-12-1998	
	B12	WIPO	WO98/52581	A1		11-26-1998	
	B13	WIPO	WO99/20756	A2		04-29-1999	
	B14	WIPO	WO99/51259	A2		10-14-1999	
	B15	WIPO	WO99/56755	A1		11-11-1999	
	B16	WIPO	WO99/58118	A2		11-18-1999	
	B17	WIPO	WO99/61056	A2		12-02-1999	
	B18	WIPO	WO00/06588	A1		02-10-2000	
	B19	WIPO	WO00/14217	A2		03-16-2000	
	B20	WIPO	WO00/67023	A1		11-09-2000	
	B21	WIPO	WO01/22972	A2		04-05-2001	
1/	B22	WIPO	WO01/22990	A2		04-05-2001	
V	B23	WIPO	WO01/32877	A2		05-10-2001	
4	B24	WIPO	WO01/55386	A1		08-02-2001	

	U	
1	П	
1		
	<	
	$\underline{\mathbb{m}}$	
	U	

FORM PTO-1449/A and B (Modified)
OIPE
INFORMATION DESCLOSURE
STATEMENT BY APPLICANT
E JAN 0 8 2002
Sheet 2 c 3

APPLICATION NO.: 09/954,987	ATTY. DOCKET NO.: C1041/7016
FILING DATE: September 17, 2001	
APPLICANT: Lipford et al.	
GROUP ART UNIT: 1645 /63/	EXAMINER: unknown Smith

OTHER ART — NON PATENT LITERATURE DOCUMENTS

Include name of the author (in CAPITAL LETTERS) title of the article (when appropriate), title of the limititals with the limititals of the author (in CAPITAL LETTERS) title of the article (when appropriate), title of the limititals of the limi	Examiner's		UTHER ART — NON PATENT LITERATURE DOCUMENTS Include nome of the outbox (in CADITAL LETTERS) title of the outbox (in CADITAL LETTERS).			_
ADEREM A et al., Toll-like receptors in the induction of the imate immune response. Nature. 2000 ADEREM A et al., Toll-like receptors in the induction of the imate immune response. Nature. 2000 AGRAWAL A et al., Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature. 1998 Aug 20;394(6695):744-51. C3 AGRAWAL A et al., Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature. 1998 Aug 20;394(6695):744-51. C4 AGRAWAL A et al., Transposition mediated by RAG1 and RAG2 and its implications for the evolution. Proc Natl Acad Sci USA. 2001 Jul 31;98(16):9237-42. C4 CHAUDHARY PM et al., Cloning and characterization of two Toll/Interlukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans. Blood. 1998 Jul 191(11):4020-7. C5 CHUANG THE et al., Cloning and characterization of a sub-family of human toll-like receptors: https://disposition.org/10.1913/372-8. DEMOULN IJB et al., A single tyrosine of the interlukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. Mol Cell Biol. 1996 Sep;16(9):4710-6. C7 DU X et al., Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine News. 2009 Sep;1(3):362-71. C8 EDEN CS et al., Host resistance to mucosal gram-negative infection. Susceptibility of lipopolysaccharide nonresponder mice. J Immunol. 1988 May 1;140(9):3180-5. C9 EARON DT et al. The instructive role of innate immunity in the acquired immune response. Science. 1996 Apt 5;272(528):50-3. C10 HACKER H et al., CPLD-NA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific activation of mitogen-activated protein kinases by CpG-DNA controls interlukin-12 release from antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 1998 Nov 2;17(2):6320-40. HACKE		Cite	item (hook magazine journal serial symposium catalog etc.) data relevant page(s) volume issue			
ADEREM A et al., Toll-like receptors in the induction of the innate immune response. Nature. 2000 Aug 17,406(6797):782-7. C2 AGRAWAL A et al., Transposition mediated by RAGI and RAG2 and its implications for the evolution of the immune system. Nature. 1998 Aug 20;394(6995):744-51. C3 BAUER S et al., Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA. 2001 Jul 31;981(6):9237-42. C4 TIL3 and TIL4: evidence for a multi-gene receptor family in humans. Blood. 1998 Jun 1;91(11):4020-7. C5 CHUANG TH et al., Cloning and characterization of two Toll/Interleukin-1 receptor-like genes 1;91(11):4020-7. C5 CHUANG TH et al., Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw. 2000 Sep;11(3):372-8. DEMOULIN JB et al., A single tyrosine of the interleukin-9 (II-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. Mol Cell Biol. 1996 Sep;16(9):4710-6. C7 BUX et al., Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw. 2000 Sep;11(3):362-71. C8 EDEN C5 et al., Host resistance to mucosal gram-negative infection. Susceptibility of lipopolysaccharide nonresponder mice. J Immunol. 1988 Nay 1;140(9):3180-5. C9 FEARON DT et al., The instructive role of innate immunity in the acquired immune response. Science. 1996 App; 527(52588):50-3. C10 HACKER H et al., Cell type-specific activation of mitogen-activated protein MBD1, Mol Cell Biol 20:51071.18 (2000). HACKER H et al., C9G-DNA-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells: EMBO J. 1999 Dec 15;18(24):697-82. HACKER H et al., C9G-DNA-specific activation of mitogen-activated protein kinases by CpG-DNA values activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 1998 Nov	IIIIIIIII	No			/1N)	
Aug 17;406(6797):782-7. C2 AGRAWAL A et al., Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. <i>Nature</i> . 1998 Aug 20;394(6695):744-51. C3 BAUER S et al., Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. <i>Proc Natl Acad Sci USA</i> . 2001 Jul 31;98(16):9237-42. C4 CHAUDHARY PM et al., Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans. <i>Blood</i> . 1998 Jun 1;91(11):4020-7. C5 CHUNDR TH et al., Cloning and characterization of a sub-family of human toll-like receptors: https://dx.ntr.r. htt.R8 and htt.R9. <i>Eur Cytokine Netw.</i> 2000 Sep;1 (13):372-8. DEMOULIN JB et al., A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. <i>Mol Cell Biol.</i> 1996 Sep;16(9):4710-6. C5 DDU X et al., Three novel mammalian toll-like receptors: gene structure, expression, and evolution. <i>Eur Cytokine Netw.</i> 2000 Sep;11(3):362-71. C6 EDEN CS et al., Host resistance to mucosal gram-negative infection. Susceptibility of lipopolysaccharide nonresponder mice. <i>J Immunol.</i> 1988 May 1;140(9):3180-5. C7 EFARON DT et al., The instructive role of innate immunity in the acquired immune response. <i>Science.</i> 1996 Apr 5;272(5258):50-3. C10 FUITAN et al., Mechanism of transcriptional regulation by methyl-CpG binding Protein MBD1, <i>Mol Cell Biol.</i> 20:5107-18 (2000). C11 HACKER H et al., CpG-DNA-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells. <i>EMBO J.</i> 1999 Dec 15;18(24):6973-82. HACKER H et al., CpG-DNA-specific activation of antigen-presenting cells. <i>EMBO J.</i> 1998 Nov 2:17(21):6230-40. HACKER H et al., Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAP)6. <i>J Exp Med.</i> 2000 Aug 2:192(3):545-80. C15 HEFM					т	\dashv
AGRAWAL A et al., Transposition mediated by RAGI and RAG? and its implications for the evolution of the immune system. <i>Nature</i> , 1998 Aug 20;394(6695);744-51. C3 BAUER S et al., Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. <i>Proc Natl Acad Sci USA</i> . 2001 Jul 31;98(16):9237-42. C4 CHAUDHARY PM et al., Cloning and characterization of two Toll/Interfeukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans. <i>Blood</i> . 1998 Jun 191(11):4020-7. C5 CHUANG TH et al., Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. <i>Eur Cytokine Netw.</i> 2000 Sep;11(3):372-8. DEMOULIN JB et al., A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. <i>Mol Cell Biol.</i> 1996 Sep;16(9):4710-6. C7 DU X et al., Three novel mammalian toll-like receptors: gene structure, expression, and evolution. <i>Eur Cytokine Netw.</i> 2000 Sep;11(3):362-71. C8 EDEN CS et al., Host resistance to mucosal gram-negative infection. Susceptibility of lipopolysaccharide nonresponder mice. <i>J Immunol.</i> 1988 May 1;140(9):3180-5. C9 FEARON DT et al., The instructive role of innate immunity in the acquired immune response. <i>Science.</i> 1996 Apr 5;27(22588)-50-3. C10 FUJITA N et al., Mechanism of transcriptional regulation by methyl-CpG binding Protein MBDI, Mol Cell Biol. 20:5107-18 (2000). HACKER H et al., CpG-DNA-specific activation of mitigen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells. <i>EMBO J.</i> 1999 Dee 15;18(24):697-82. HACKER H et al., CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. <i>EMBO J.</i> 1998 Nov 2;17(21):630-40. HEMMI Het al., A Toll-like receptor recognizes bacterial DNA. <i>Nature</i> . 2000 Dee 7;408(6813):740-5. C15 HEFMAN Het al., A Toll-like receptor recognizes b	$ C\rangle$	C1		İ	-	١
evolution of the immune system. <i>Mature</i> . 1998 Aug 20;394(6695):744-51. C3 BAUERS et al., Human TLR9 confers responsiveness to bacterial DNA via species-specific CPG motif recognition. <i>Proc Natl Acad Sci USA</i> . 2001 Jul 31;98(16):9237-42. C4 TLJ and TLL4: evidence for a multi-gene receptor family in humans. <i>Blood</i> . 1998 Jun 1;91(11):4020-7. C5 CHUNG TH et al., Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. <i>Eur Cytokine Netw</i> . 2000 Sep;11(3):372-8. DEMOULIN Be et al., a Single tyrosine of the interteukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. <i>Mol Cell Biol</i> . 1996 Sep;16(9):4710-6. C6 DU X et al., Three novel mammalian toll-like receptors: gene structure, expression, and evolution. C7 Eur Cytokine Netw. 2000 Sep;11(3):362-71. C8 EDENC SC et al., Host resistance to mucosal gram-negative infection. Susceptibility of lipopolysaccharide nonresponder mice. <i>J Immunol</i> . 1988 May 1;140(9):3180-5. C9 FEARON DT et al., The instructive role of innate immunity in the acquired immune response. <i>Science</i> . 1996 Apr 5;272(5258):50-3. C10 FUITA N et al., Mechanism of transcriptional regulation by methyl-CpG binding Protein MBDI, <i>Mol Cell Biol</i> 20:5107-18 (2000). C11 HACKER H et al., Cell type-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells. <i>EMBO J</i> . 1999 Dec 15;18(24):6973-82. HACKER H et al., CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activation with the second process of the second process		<u> </u>		<u> </u>	+-	\dashv
BAUER S et al., Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA. 2001 Jul 31;98(6):9327-42. CHAUDHARY PM et al., Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL1 evidence for a multi-gene receptor family in humans. Blood. 1998 Jun 1;91(11):4020-7. C5 CHUANG TH et al., Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw. 2000 Sep;11(3):372-8. DEMOULIN IB et al., A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by 1L-9. Mol Cell Biol. 1996 Sep;16(9):4710-6. C7 DUX et al., Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw. 2000 Sep;11(3):362-71. C8 EDEN C5 et al., Host resistance to mucosal gram-negative infection. Susceptibility of lipopolysaccharide nonresponder mice. J Immunol. 1988 May;1;14(9):3180-5. C9 FEARON D7 et al., The instructive role of innate immunity in the acquired immune response. Science. 1996 Apr 5;272(5258):50-3. C10 FUITA N et al., Mechanism of transcriptional regulation by methyl-CpG binding Protein MBD1, Mol Cell Biol D:5107-18 (2000). C11 HACKER H et al., CG-DNA-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells. EMBO J. 1999 Dec 15;18(24):6973-82. HACKER H et al., CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 1998 Nov 2;17(21):6230-40. HACKER H et al., Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med. 2000 Aug 21;192(4):595-600. C14 HEMMI H et al., A Toll-like receptor recognizes bacterial DNA. Nature. 2000 Dec 7;408(6813):740-5. C15 HOFFMANN JA et al., Phylogenetic p		C2			1	
motif recognition. Proc Natl Acad Sci USA. 2001 Jul 31;98(16):9237-42. CHAUDHARY PM et al., Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans. Blood. 1998 Jun 1;91(11):4020-7. CHUANG TH et al., Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw. 2000 Sep;11(3):372-8. DEMOULIN JB et al., A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. Mol Cell Biol. 1996 Sep;16(9):4710-6. C7 DU X et al., Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Ew Cytokine Netw. 2000 Sep;11(3):362-71. C8 IDEN CS et al., Host resistance to mucosal gram-negative infection. Susceptibility of lipopolysaccharide nonresponder mice. J Immunol. 1988 May 1;140(9):3180-5. C9 FEARON DT et al., The instructive role of innate immunity in the acquired immune response. Science. 1996 Apr 5;27(2):528):50-3. C10 FUITA N et al., Mechanism of transcriptional regulation by methyl-CpG binding Protein MBD1, Mol Cell Biol 20:5107-18 (2000). C11 HACKER H et al., Cell type-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells. EMBO J. 1999 Dec 15;18(24):6973-82. HACKER H et al., CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 1998 Nov 2;17(21):6230-40. HACKER H et al., CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 1998 Nov 2;17(21):6230-40. HACKER H et al., Toll-like receptor recognizes bacterial DNA. Nature. 2000 Dec 7;408(6813):740-5. C13 HEMMI H et al., A Toll-like receptor recognizes bacterial DNA. Produced DNA. Produced DNA. Produced DNA. Produced DNA.	- 			 		\dashv
CHAUDHARY PM et al., Cloning and characterization of two Toll/Interleukin-1 receptor-like genes 1,91(11):4020-7. C3 TIL3 and TIL4: evidence for a multi-gene receptor family in humans. Blood. 1998 Jun 1,91(11):4020-7. C5 CHUANG TH et al., Cloning and characterization of a sub-family of human toll-like receptors: https://dx.doi.org/10.1016/j.1016.000.000.000.000.000.000.000.000.00		C3			1	ŀ
TIL3 and TIL4: evidence for a multi-gene receptor family in humans. Blood. 1998 Jun 1,191(11)4020-7. C5 CHUANG TH et al., Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw. 2000 Sep;11(3):372-8. DEMOULIN JB et al., A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. Mol Cell Biol. 1996 Sep;16(9):4710-6. C7 DU X et al., Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw. 2000 Sep;11(3):362-71. C8 IDEN CS et al., Host resistance to mucosal gram-negative infection. Susceptibility of lipopolysaccharide nonresponder mice. J. Immunol. 1988 May 1;14(09):3180-5. C9 FEARON DT et al., The instructive role of innate immunity in the acquired immune response. Science. 1996 Apr 5;272(2528):50-3. FUJITA N et al., Mechanism of transcriptional regulation by methyl-CpG binding Protein MBD1, Mol Cell Biol 20:5107-18 (2000). HACKER H et al., Cell type-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells. EMBO J. 1999 Dec 15;18(24):6973-82. HACKER H et al., CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med. 2000 Aug 21;192(4):595-600. C14 HEMMI H et al., A Toll-like receptor receptor-associated factor (TRAF)6. J Exp Med. 2000 Aug 21;192(4):595-600. C15 HOFFMANN JA et al., Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313-8. C16 JANEWAY CA Jr., Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1893;54 Pt 1:1-13. C17 KIRSCHNING C) et al., Human				<u></u>	+	Ⅎ
C5 CHUANG TH et al., Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw. 2000 Sep;11(3):372-8. DEMOULIN B et al., A Single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. Mol Cell Biol. 1996 Sep;16(9):4710-6. C7 DUX et al., Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw. 2000 Sep;11(3):362-71. C8 DED CS et al., Host resistance to mucosal gram-negative infection. Susceptibility of lipopolysaccharide nonresponder mice. J Immunol. 1988 May 1;140(9):3180-5. C9 FEARON DT et al, The instructive role of innate immunity in the acquired immune response. Science. 1996 Apr 5;272(528):50-3. C10 Mol Cell Biol 20:3107-18 (2000). C11 HACKER H et al., Cell type-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells. EMBO J. 1999 Dec 15;18(24):6973-82. HACKER H et al., CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 1998 Nov 2;17(21):6230-40. HACKER H et al., Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med. 2000 Aug 21;192(4):595-600. C14 HEMMIH et al., A Toll-like receptor recognizes bacterial DNA. Nature. 2000 Dec 7;408(6813):740-5. C15 HOFFMANN JA et al., Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313-8. C16 JANEWAY CA Jr., Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13. C18 KIEG AM et al., CpG moitrs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(522):546-9. C20 MACKER L et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides. J Clin Immunost. 1996 Sep 1;98(5):1119-29		CA		 		
C5 hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw. 2000 Sep;11(3):372-8. DEMOULIN JB et al., A Single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. Mol Cell Biol. 1996 Sep;16(9):4710-6. C7 Eur Cytokine Netw. 2000 Sep;11(3):362-71. C8 DDL X et al., Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw. 2000 Sep;11(3):362-71. C8 EDEN CS et al., Host resistance to mucosal gram-negative infection. Susceptibility of lipopolysaccharide nonresponder mice. J Immunol. 1988 May 1;140(9):3180-5. C9 FEARON DT et al. The instructive role of innate immunity in the acquired immune response. Science. 1996 Apr 5;272(5258):50-3. C10 FUJITA N et al., Mechanism of transcriptional regulation by methyl-CpG binding Protein MBD1, Mol Cell Biol 20:5107-18 (2000). HACKER H et al., Cell type-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells. EMBO J. 1998 Nov 2;17(2):6230-40. HACKER H et al., CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 1998 Nov 2;17(2):6230-40. HACKER H et al., Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med. 2000 Aug 21;192(4):595-600. C14 Start Res Res Res Responsible responsible receptor recognizes bacterial DNA. Nature. 2000 Dec 7;408(6813):740-5. C15 HOFMANN JA et al., Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313-8. C16 Syring Harb Symp Quant Biol. 1989;54 Pt 11-13. C17 KIRSCHNING C1 et al., Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998 Dec 7;188(11):2091-7. C18 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(5522):546-2. C1	1	~		二	,	F
DEMOULIN JB et al., A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. Mol Cell Biol. 1996 Sep;16(9):4710-6. C7	- 	 		<u> </u>	→	-L
DEMOULIN JB et al., A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. Mol Cell Biol. 1996 Sep;16(9):4710-6. C7		C5		 	Z	
C6 activation, antiapoptotic activity, and growth regulation by IL-9. Mol Cell Biol. 1996 Sep;16(9):4710-6. C7 DU X et al., Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw. 2000 Sep;11(3):362-71. C8 EDEN Cs et al., Host resistance to mucosal gram-negative infection. Susceptibility of lipopolysaccharide nonresponder mice. J Immunol. 1988 May 1;140(9):3180-5. C9 FEARON DT et al, The instructive role of innate immunity in the acquired immune response. Science. 1996 Apr 5;272(5258):50-3. C10 FUITA N et al., Mechanism of transcriptional regulation by methyl-CpG binding Protein MBD1, Mol Cell Biol 20:5107-18 (2000). C11 HACKER H et al., Cell type-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells. EMBO J. 1999 Dec 15;18(24):6973-82. HACKER H et al., CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 1998 Nov 2;17(21):6230-40. HACKER H et al., Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med. 2000 Aug 21;192(4):595-600. C14 HEMMI H et al., A Toll-like receptor recognizes bacterial DNA. Nature. 2000 Dec 7;408(6813):740-5. C15 HOFFMANN JA et al., Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313-8. C16 Syring Harb Symp Quant Biol. 1989;54 Pt 1:1-13. C17 KIRSCHNING CJ et al., Human 10l-like receptor 2 confers responsiveness to bacterial ippoplysaccharide. J Exp Med. 1998 Dec 7;188(11):2091-7. C18 KIREG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C10 MANZEL L et al., Lack of immune stimulation by immobilized CpG-0igodeoxynucleotides. J Clin Junest. 19				-Fi		┵
C8 Ib/Den Cet al., rich restrainte to induces a grain-legative micetion. Size in incention. Size in ince	ļ	00		30		ř
C8 Ib/Den Cet al., rich restrainte to induces a grain-legative micetion. Size in incention. Size in ince		Co		<u></u>	20	4
C8 Ib/Den Cet al., rich restrainte to induces a grain-legative micetion. Size in incention. Size in ince				8	13	_1
C8 Ib/Den Cet al., rich restrainte to induces a grain-legative micetion. Size in incention. Size in ince		C7		123		Í
C8 Ib/Den Cet al., rich restrainte to induces a grain-legative micetion. Size in incention. Size in ince				S.		ן'
C9 FEARON DT et al, The instructive role of innate immunity in the acquired immune response. Science. 1996 Apr 5;272(5258):50-3.		C8				
C10 Science. 1996 Apr 5;272(5258):50-3. C10 FUJITA N et al., Mechanism of transcriptional regulation by methyl-CpG binding Protein MBD1, Mol Cell Biol 20:5107-18 (2000). C11 HACKER H et al., Cell type-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells. EMBO J. 1999 Dec 15;18(24):6973-82. HACKER H et al., CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 1998 Nov 2;17(21):6230-40. HACKER H et al., Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med. 2000 Aug 21;192(4):595-600. C14 HEMMI H et al., A Toll-like receptor recognizes bacterial DNA. Nature. 2000 Dec 7;408(6813):740-5. C15 HOFFMANN JA et al., Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):131-8. C16 JANEWAY CA JT., Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13. C17 KIRSCHNING CJ et al., Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998 Dec 7;188(11):2091-7. C18 KRIEG AM et al., Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C20 MACFARLANE DE et al., Antivation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. MACFARLANE DE et al., Antivation by immobilized CpG-oligodeoxynucleotides.	ļ				<u> </u>	4
C10 C11 C11 C12 C13 C14 C15 C15 C15 C15 C16 C17 C18 C18 C18 C18 C19	1	C9				-
C11 Mol Cell Biol 20:5107-18 (2000). C11 HACKER H et al., Cell type-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells. EMBO J. 1999 Dec 15;18(24):6973-82. HACKER H et al., CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 1998 Nov 2;17(21):6230-40. HACKER H et al., Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med. 2000 Aug 21;192(4):595-600. C14 HEMMI H et al., A Toll-like receptor recognizes bacterial DNA. Nature. 2000 Dec 7;408(6813):740-5. C15 HOFFMANN JA et al., Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313-8. C16 ANEWAY CA Jr., Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13. C17 KIRSCHNING CJ et al., Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998 Dec 7;188(11):2091-7. C18 KRIEG AM et al., Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C20 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. MAOZEL L et al., Lack of immune stimulation by immobilized CpG-oligodeoxynucleotides.						
C11 HACKER H et al., Cell type-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells. EMBO J. 1999 Dec 15;18(24):6973-82. HACKER H et al., CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 1998 Nov 2;17(21):6230-40. HACKER H et al., Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med. 2000 Aug 21;192(4):595-600. HEMMI H et al., A Toll-like receptor recognizes bacterial DNA. Nature. 2000 Dec 7;408(6813):740-5. C15 HOFFMANN JA et al., Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313-8. C16 JANEWAY CA Jr., Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13. C17 KIRSCHNING CJ et al., Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998 Dec 7;188(11):2091-7. C18 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C10 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31.		C10				1
controls interleukin-12 release from antigen-presenting cells. EMBO J. 1999 Dec 15;18(24):6973-82. HACKER H et al., CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 1998 Nov 2;17(21):6230-40. HACKER H et al., Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med. 2000 Aug 21;192(4):595-600. C14 HEMMI H et al., A Toll-like receptor recognizes bacterial DNA. Nature. 2000 Dec 7;408(6813):740-5. C15 HOFFMANN JA et al., Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313-8. C16 JANEWAY CA Jr., Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13. KIRSCHNING CJ et al., Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998 Dec 7;188(11):2091-7. C18 KRIEG AM et al., Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C20 LIANG H et al., Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. C21 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31.						
HACKER H et al., CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 1998 Nov 2;17(21):6230-40. HACKER H et al., Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med. 2000 Aug 21;192(4):595-600. C14		CH				
C12 activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 1998 Nov 2;17(21):6230-40. HACKER He al., Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med. 2000 Aug 21;192(4):595-600. C14 HEMMI H et al., A Toll-like receptor recognizes bacterial DNA. Nature. 2000 Dec 7;408(6813):740-5. HOFFMANN JA et al., Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313-8. C15 HOFFMANN JA et al., Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313-8. C16 JANEWAY CA Jr., Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13. C17 KIRSCHNING CJ et al., Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998 Dec 7;188(11):2091-7. C18 KRIEG AM et al., Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C10 LIANG H et al., Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31.			controls interleukin-12 release from antigen-presenting cells. <i>EMBO J.</i> 1999 Dec 15;18(24):6973-82.			
2;17(21):6230-40. HACKER H et al., Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med. 2000 Aug 21;192(4):595-600. C14 HEMMI H et al., A Toll-like receptor recognizes bacterial DNA. Nature. 2000 Dec 7;408(6813):740-5. C15 HOFFMANN JA et al., Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313-8. C16 JANEWAY CA Jr., Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13. C17 KIRSCHNING CJ et al., Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998 Dec 7;188(11):2091-7. C18 KRIEG AM et al., Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C20 KRIEG AM et al., Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31.						7
HACKER H et al., Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med. 2000 Aug 21;192(4):595-600. C14 HEMMI H et al., A Toll-like receptor recognizes bacterial DNA. Nature. 2000 Dec 7;408(6813):740-5. C15 HOFFMANN JA et al., Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313-8. C16 JANEWAY CA Jr., Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13. C17 KIRSCHNING CJ et al., Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998 Dec 7;188(11):2091-7. C18 KRIEG AM et al., Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C20 LIANG H et al., Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31. MANZEL L et al., Lack of immune stimulation by immobilized CpG-oligodeoxynucleotide.	1	C12	activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 1998 Nov			
C13 marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med. 2000 Aug 21;192(4):595-600. C14 HEMMI H et al., A Toll-like receptor recognizes bacterial DNA. Nature. 2000 Dec 7;408(6813):740-5. C15 HOFFMANN JA et al., Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313-8. C16 JANEWAY CA Jr., Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13. C17 KIRSCHNING CJ et al., Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998 Dec 7;188(11):2091-7. C18 KRIEG AM et al., Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C10 LIANG H et al., Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. C21 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31.			2;17(21):6230-40.			
21;192(4):595-600. C14 HEMMI H et al., A Toll-like receptor recognizes bacterial DNA. Nature. 2000 Dec 7;408(6813):740-5. C15 HOFFMANN JA et al., Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313-8. C16 Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13. C17 KIRSCHNING CJ et al., Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998 Dec 7;188(11):2091-7. C18 KRIEG AM et al., Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C20 LIANG H et al., Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. C21 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31.					T	1
C14 HEMMI H et al., A Toll-like receptor recognizes bacterial DNA. Nature. 2000 Dec 7;408(6813):740-5. C15 HOFFMANN JA et al., Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313-8. C16 JANEWAY CA Jr., Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13. C17 KIRSCHNING CJ et al., Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998 Dec 7;188(11):2091-7. C18 KRIEG AM et al., Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C20 LIANG H et al., Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. C21 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31.		C13	marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med. 2000 Aug			
C15 HOFFMANN JA et al., Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313-8. C16 JANEWAY CA Jr., Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13. C17 KIRSCHNING CJ et al., Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998 Dec 7;188(11):2091-7. C18 KRIEG AM et al., Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C20 LIANG H et al., Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. C21 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31.	1		21;192(4):595-600.	ļ		
C15 HOFFMANN JA et al., Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313-8. C16 JANEWAY CA Jr., Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13. C17 KIRSCHNING CJ et al., Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998 Dec 7;188(11):2091-7. C18 KRIEG AM et al., Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C20 LIANG H et al., Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. C21 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31. C22 MANZEL L et al., Lack of immune stimulation by immobilized CpG-oligodeoxynucleotide.		C14	HEMMI H et al., A Toll-like receptor recognizes bacterial DNA. Nature. 2000 Dec 7;408(6813):740-			٦
21;284(5418):1313-8. C16 JANEWAY CA Jr., Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13. C17 KIRSCHNING CJ et al., Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998 Dec 7;188(11):2091-7. C18 KRIEG AM et al., Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C20 LIANG H et al., Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. C21 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31.	<u> </u>	C14	5.			l
21;284(5418):1313-8. C16 JANEWAY CA Jr., Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13. C17 KIRSCHNING CJ et al., Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998 Dec 7;188(11):2091-7. C18 KRIEG AM et al., Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C20 LIANG H et al., Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. C21 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31.		015	HOFFMANN JA et al., Phylogenetic perspectives in innate immunity. Science. 1999 May	1		1
C16 Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13. C17 KIRSCHNING CJ et al., Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998 Dec 7;188(11):2091-7. C18 KRIEG AM et al., Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C20 LIANG H et al., Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. C21 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31. C22 MANZEL L et al., Lack of immune stimulation by immobilized CpG-oligodeoxynucleotide.		C13	21;284(5418):1313-8.			1
C16 Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13. C17 KIRSCHNING CJ et al., Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998 Dec 7;188(11):2091-7. C18 KRIEG AM et al., Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C20 LIANG H et al., Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. C21 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31. C22 MANZEL L et al., Lack of immune stimulation by immobilized CpG-oligodeoxynucleotide.		016	JANEWAY CA Jr., Approaching the asymptote? Evolution and revolution in immunology. Cold		1	٦
C17 KIRSCHNING CJ et al., Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998 Dec 7;188(11):2091-7. C18 KRIEG AM et al., Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C20 LIANG H et al., Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. C21 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31.		C16	Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13.			
C17 lipopolysaccharide. J Exp Med. 1998 Dec 7;188(11):2091-7. C18 KRIEG AM et al., Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C20 LIANG H et al., Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. C21 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31.		017				٦
C18 KRIEG AM et al., Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C20 LIANG H et al., Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. C21 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31. C22 MANZEL L et al., Lack of immune stimulation by immobilized CpG-oligodeoxynucleotide.		017				
bacterial DNA. Immunol Today. 2000 Oct;21(10):521-6. C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C20 LIANG H et al., Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. C21 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31. C22 MANZEL L et al., Lack of immune stimulation by immobilized CpG-oligodeoxynucleotide.				!	1	٦
C19 KRIEG AM et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546-9. C20 LIANG H et al., Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. C21 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31. C22 MANZEL L et al., Lack of immune stimulation by immobilized CpG-oligodeoxynucleotide.		C18				
6;374(6522):546-9. C20 LIANG H et al., Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. C21 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31. C22 MANZEL L et al., Lack of immune stimulation by immobilized CpG-oligodeoxynucleotide.				<u> </u>		٦
C20 LIANG H et al., Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996 Sep 1;98(5):1119-29. C21 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31. C22 MANZEL L et al., Lack of immune stimulation by immobilized CpG-oligodeoxynucleotide.	i i	C19	· ·			
Invest. 1996 Sep 1;98(5):1119-29. C21 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol. 1998 Feb 1;160(3):1122-31. MANZEL L et al., Lack of immune stimulation by immobilized CpG-oligodeoxynucleotide.				 	+	\dashv
C21 MACFARLANE DE et al., Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. <i>J Immunol</i> . 1998 Feb 1;160(3):1122-31. MANZEL L et al., Lack of immune stimulation by immobilized CpG-oligodeoxynucleotide.		C20	• • • • • • • • • • • • • • • • • • • •		1	
quinacrine, chloroquine, and structurally related compounds. <i>J Immunol</i> . 1998 Feb 1;160(3):1122-31. MANZEL L et al., Lack of immune stimulation by immobilized CpG-oligodeoxynucleotide.		-		 	+	\dashv
MANZEL L et al., Lack of immune stimulation by immobilized CpG-oligodeoxynucleotide.		C21				
		 		-	+	\dashv
Milliselise Mucleic Acia Di ug Dev. 1999 Oct, 9(3).437-04.	7/	C22				
	v		Annisonse muciele Acia Di ug Dev. 1777 Ove,7(3).737-07.	L	—	

FORM PTO-1449/A and B (Visibility)	APPLICATION NO.: 09/954,987	ATTY. DOCKET NO.: C1041/7016
INFORMATION DISCOSURE	FILING DATE: September 17, 2001	
STATEMENT BY APPEICANT	APPLICANT: Lipford et al.	
Sheet 3 of all	GROUP ART UNIT: 1645 1631	EXAMINER: Unknown Smith

1 /	C23	MEANS TK et al., Human toll-like receptors mediate cellular activation by Mycobacterium		
0)		tuberculosis. J Immunol. 1999 Oct 1;163(7):3920-7.		
1	C24	MEDZHITOV R et al., A human homologue of the Drosophila Toll protein signals activation of		
	02.	adaptive immunity. <i>Nature</i> . 1997 Jul 24;388(6640):394-7.		
	C25	MEDZHITOV R et al., Innate immunity: the virtues of a nonclonal system of recognition. Cell. 1997		-
	C23	Oct 31;91(3):295-8.		
		MUZIO M et al., The human toll signaling pathway: divergence of nuclear factor kappaB and		
1	C26	JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J Exp		
1		Med. 1998 Jun 15;187(12):2097-101.		
	C27	MUZIO M et al., Toll-like receptors: a growing family of immune receptors that are differentially		
	027	expressed and regulated by different leukocytes. J Leukoc Biol. 2000 Apr;67(4):450-6.	777	
	C28	OHKI I et al., Solution structure of the methyl-CpG-binding domain of the methylation-dependent		
	C28	transcriptional repressor MBD1. EMBO J. 1999 Dec 1;18(23):6653-61.	171	
	C20	POLTORAK A et al., Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in		
l 1	C29	Tlr4 gene. Science. 1998 Dec 11;282(5396):2085-8.	m	
	C20	QURESHI ST et al., Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4)		
	C30	Med. 1999 Feb 15;189(4):615-25.		
	C21	ROCK FL et al., A family of human receptors structurally related to Drosophila Toll. Proc New Acad		
	C31	Sci USA. 1998 Jan 20;95(2):588-93.	4 1	
	600	STRATFORD-PERRICAUDET LD et al., Widespread long-term gene transfer to mouse skeletal		
	C32	muscles and heart. J Clin Invest. 1992 Aug;90(2):626-30.		
		TAKEUCHI O et al., TLR6: A novel member of an expanding toll-like receptor family. Gene. 1999		
	C33	Apr 29;231(1-2):59-65.		
	 	WAGNER H, Bacterial CpG DNA activates immune cells to signal infectious danger. Adv Immunol.		
1	C34	1999;73:329-68.		
		YAMAMOTO S et al., DNA from bacteria, but not from vertebrates, induces interferons, activates	 	
	C35	natural killer cells and inhibits tumor growth. <i>Microbiol Immunol</i> . 1992;36(9):983-97.		
		YAMAMOTO T et al., Lipofection of synthetic oligodeoxyribonucleotide having a palindromic	 	
	C36	sequence of AACGTT to murine splenocytes enhances interferon production and natural killer		
		activity. <i>Microbiol Immunol</i> . 1994;38(10):831-6.		
 		YI AK et al., CpG motifs in bacterial DNA activate leukocytes through the pH-dependent generation		
4	C37	of reactive oxygen species. J Immunol. 1998 May 15;160(10):4755-61.		
		or reactive oxygen species. o immunot. 1776 triay 13,100(10).4733-01.	1 1	

EXAMINER	Pall	2	DATE CONSIDERED	7/2	-/03
	70 1				/

#EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

[NOTE - Must provide a copy of any patent, publication, other information listed, even if it was previously submitted to, or cited by, the U.S. Patent Office in an earlier application, unless the earlier application is identified by the IDS and is relied upon for an earlier filing date under 35 U.S.C. §120, and the copy was provided in the earlier application.]