The relationship between scientific publishing retractions and democracy: An ecological analysis

Ahmad Sofi-Mahmudi

Table of contents

1	Aim		1
2	Prep	paring the data	2
	2.1	Variables	2
	2.2	A quick look at the data	5
	2.3	Missing values	10
	2.4	Multicollinearity	1
	2.5	Multiple imputation	12
3	Ana	lysis 1	3
	3.1	Poisson family regression	14
		3.1.1 Main dataset	14
		3.1.2 Zero-truncated dataset	19
		3.1.3 Outlier-removed dataset	21
	3.2	Linear regression	23
		3.2.1 Main dataset	23
		3.2.2 Zero-truncated dataset	39
		3.2.3 Outlier-removed dataset	46

1 Aim

To determine the relationship between the number of retracted papers and the level of democracy and affecting factors.

2 Preparing the data

2.1 Variables

The variables have come from various sources, as follows:

Table 1: Data sources for each of the variables

Variable	Definition	Data source
Retractions	The number of retracted articles	The Retraction Watch Database: http://retractiondatabase.org/
Democracy	The level of democracy in the country, with a score range of 0 to 10, higher values indicating better democratic settings	Democracy Index by the Economist Intelligence Unit (EIU): https://www.eiu.com/to pic/democracy-index/
Published papers	The number of all published papers for each country	SCImago Journal & Country Rank: https://www.scimagojr.co m/countryrank.php
Campaigns	The number of non-violent mass campaigns	NAVCO: https://dataverse.harvard.edu/ dataset.xhtml?persistentId=doi: 10.7910/DVN/ON9XND
GDP per capita	The total output created through the production of goods and services in a country during a certain period.	Reference (3) The World Bank: https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
HDI	Country's social and economic development.	UNDP: https://hdr.undp.org/data- center/human-development- index#/indicies/HDI
Industry's share of economy in percent	Share of manufacturing in gross domestic product	The World Bank: https://databank.worldbank.org /source/world-development- indicators
Length of executive tenure	As a measure of political (in)stability.	Archigos: http: //ksgleditsch.com/archigos.html

Reference (4)

Variable	Definition	Data source
Location	The continent that each country is	United Nations geoscheme:
	located at.	https://unstats.un.org/unsd/me
		thodology/m49/
Muslim	Estimated proportion of each country	Reference (5)
share of	that is recognized to be Muslim.	
population		
The number	Among 1,000 top universities, based on	Shanghai Ranking:
of top	the Academic Ranking of World	https://www.shanghairanking.co
universities	Universities (ARWU) – commonly known	m/rankings/arwu/2022
	as the Shanghai Ranking.	
Plurality/maj	or Whether the political system is plural or	https://havardhegre.net/iaep/
system	not.	
		Reference (6)

I have stored the cleaned version of all these variables in the *retractions.csv* file. For the dependent variable, I assign 0 to all those countries that were not listed in the Retraction Watch Database. As these countries are almost entirely small countries with low research output, I am also creating a zero-truncated dataset including exclusively countries with at least one retraction.

To perform a sensitivity analysis, it is better to have an outlier-removed dataset.

First, loading the needed packages:

And then, loading the datasets:

```
retractions = read.csv("data/retractions_democracy_data.csv")

# Factoring and releveling regions
retractions$region = relevel(as.factor(retractions$region), ref = 3)

# Factoring two other variables
retractions$ongoing_nonviolent_campaign = as.factor(retractions$ongoing_nonviolent_campaign
retractions$plurality = as.factor(retractions$plurality)

retractions$Income.Group. = NULL

Now, creating the zero-truncated dataset:
trunc_retraction = subset(retractions, retractions!=0)

And outlier-removed one:

Q1 = quantile(retractions$retractions, 0.25)
Q3 = quantile(retractions$retractions, 0.75)
IQR = IQR(retractions$retractions)

no_out_retraction = subset(retractions, retractions > (Q1 - 1.5*IQR) & retractions < (Q3 + 1.5*IQR)</pre>
```

Let us take a quick look at the first rows of the main dataset:

```
kable(head(retractions))
```

							
countils O2023 ab24 gietr	actiobse	:d omann<u>e</u>rdæng d	diong <u>(Cyt2 A2211) No 120 Adalan 1</u> 213	AMONO 1201202	<u>23timekakit</u>	ttdløfsidbyrid	plantity_201 5ngh <i>a</i>
Afgha Ais@si aSouthe@n Asia	2346	2.50538 5	300.05 5 63949 263 1949	1 2	99.3	0	0
Alban ALBur Speithein Eu-	6460	5.880769	2558.9 023 16 7203 5183	3 3	20.5	0	0
rope Algeri ð Z A fri ð sorth óri n Africa	90863	3.67769 2	2246.0 629 799 48 \$494	5 17	99.1	0	0
Ameri ASM ce Rui ynesia Samoa	224	NA 0	11479. 300 8 NA	NA	NA	0	NA

countils O2 (23 and b2 4 giet	ractiobs	ed oream<u>e</u>rdeng	ding <u>CyDP2HPHO1202ddurgtaj</u> y	961261202231f	nekakittıbl əfələ bq	
Andor And Dur Sporther	a 310	NA 0	24620. 4488 15 08 @9153	NA (0.0	NA
Eu-						
rope						
Angol A G Ofri Saub- 1	1525	3.44461 6	1719.3 462 035 2 4. 7 63098	37 (0.0	0
Saharan						
Africa						

2.2 A quick look at the data

First, box plots:

Histograms:

```
hist(log1p(retractions$retractions$retractions$citabledocuments_1996_2021*10000),
        ylab = "Retractions per 10K paper (log1p)",
     breaks = 32)
```


log1p(retractions\$retractions\$retractions\$citabledocuments_1996_2021 * 10

```
hist(retractions$mean_democracy_2008_2021,
        ylab = "Mean Democracy Index score",
     breaks = 32)
```

Histogram of retractions\$mean_democracy_2008_2021

retractions\$mean_democracy_2008_2021

And now scatterplot:

```
ggplot(retractions) +
  aes(x = mean_democracy_2008_2021, y = log1p(retractions/citabledocuments_1996_2021*100
  geom_point() +
  labs(title = "Retractions per 10K paper (log1p) ~ Mean Democracy Index score",
       x = "Mean Democracy Index score",
       y = "Retractions per 10K paper (log1p)") +
       geom_smooth(method = "loess", se = T) + theme_bw()
```

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 74 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 74 rows containing missing values (`geom_point()`).

Retractions per 10K paper (log1p) ~ Mean Democracy Index scc


```
# tiff("Figure 1.tiff", width = 6, height = 3.73, units = "in", res = 300)
```

We can see that there is a negative relationship between the two variables. We will explore this relationship further.

Let's also create world heat maps:

map1 = ggplot(retractions) +

geom_map(

```
# Loading the world map
world_map = map_data("world")
world_map = subset(world_map, region != "Antarctica")

# Some modifications are needed
retractions$country_20230124[retractions$country_20230124 == "United States"] = "USA"
retractions$country_20230124[retractions$country_20230124 == "United Kingdom"] = "UK"
retractions$country_20230124[retractions$country_20230124 == "Russian Federation"] = "Russian retractions$country_20230124[retractions$country_20230124 == "Republic of the Congo"] = "Retractions[35, 1] <- "Ivory Coast"</pre>
# Drawing the map
```

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0. i Please use `linewidth` instead.

```
map2 = ggplot(retractions) +
  geom_map(
    dat = world_map, map = world_map, aes(map_id = region),
    fill = "white", color = "#7f7f7f", size = 0.25
  geom map(map = world map, aes(map id = country 20230124, fill = mean democracy 2008_2021
  scale_fill_gradient(low = "white", high = "green", name = "Mean Democracy Index score")
  expand_limits(x = world_map$long, y = world_map$lat) + theme(legend.position="bottom",
        axis.line=element_blank(),
        axis.text=element_blank(),
        axis.ticks=element_blank(),
        axis.title=element_blank(),
        panel.background=element_blank(),
        panel.border=element_blank(),
        panel.grid=element_blank())
figure = ggarrange(map1, map2,
                    ncol = 1, nrow = 2, vjust = 1,
                    align = "hv", common.legend = F, legend = "bottom")
# tiff("Figure 1.tiff", width = 10, height = 10, units = "in", res = 300)
figure
```


#dev.off()

2.3 Missing values

This dataset has many missing values. Let us see their percentage for each variables in both datasets:

In the main dataset:

```
p_missing = unlist(lapply(retractions, function(x) sum(is.na(x))))/nrow(retractions)
kable(sort(p_missing[p_missing > 0], decreasing = TRUE)*100)
```

	X
plurality	35.68465
$mean_democracy_2008_2021$	30.70539
length_of_last_leader_tenure_2015	30.29046
HDI_mean_1990_2021	20.74689
industry_share_mean_1960_2022	15.35270
muslim_proportion	15.35270
$GDP_pc_mean_1960_2022$	13.27801

And in the zero-truncated one:

```
p_missing_trunc = unlist(lapply(trunc_retraction, function(x) sum(is.na(x))))/nrow(retract
kable(sort(p_missing_trunc[p_missing_trunc > 0], decreasing = TRUE)*100)
```

	X
plurality	10.788382
length_of_last_leader_tenure_2015	7.053942
$mean_democracy_2008_2021$	5.809129
HDI_mean_1990_2021	4.564315
industry_share_mean_1960_2022	2.489627
muslim_proportion	2.489627
GDP_pc_mean_1960_2022	2.074689

As we can see, there are many missing values, especially in the main dataset. Therefore, I performed multiple imputation for both datasets.

2.4 Multicollinearity

One problem that may arise in the process of both multiple imputation and regression analysis is high multicollinearity between the variables. Our variables are chosen based on the proposed DAG; however, we should investigate whether there are highly multicollinear variables. To do so, we run a linear regression model and assess the variance inflation factor of the covariates:

```
model_multi = lm(retractions~mean_democracy_2008_2021+ongoing_nonviolent_campaign+region+6

# Checking VIF:
kable(vif(model_multi))
```

	GVIF	Df	$GVIF^(1/(2*Df))$
mean_democracy_2008_2021	4.059375	1	2.014789
ongoing_nonviolent_campaign	1.277929	1	1.130455
region	5.268801	4	1.230875
GDP_pc_mean_1960_2022	3.110690	1	1.763715
HDI_mean_1990_2021	5.993550	1	2.448173
$industry_share_mean_1960_2022$	1.512866	1	1.229986
length_of_last_leader_tenure_2015	1.562382	1	1.249953
muslim_proportion	1.669691	1	1.292165

	GVIF	Df	GVIF^(1/(2*Df))
top_universities_shanghai_2022	1.296451	1	1.138618
plurality	1.153743	1	1.074124

As you can see, HDI, GDP, region, and democracy score are (almost) highly collinear. Removing HDI will almost solve this problem:

```
model_multi = lm(retractions~mean_democracy_2008_2021+ongoing_nonviolent_campaign+region+0

# Checking VIF:
kable(vif(model_multi))
```

GVIF	Df	$\overline{\text{GVIF}}(1/(2*\text{Df}))$
		GVII' (1/(2 D1))
33916	1	1.825901
72779	1	1.128175
35621	4	1.153561
79162	1	1.574536
33694	1	1.110718
07105	1	1.227642
51058	1	1.284935
32764	1	1.132592
53732	1	1.074119
	72779 35621 79162 33694 07105 51058 32764	72779 1 35621 4 79162 1 33694 1 07105 1 51058 1 32764 1

2.5 Multiple imputation

Now, we run multiple imputation using *mice* package for both datasets.

First, we rule out variables that cause problems in the imputation procedure. To do so, we should specify imputation methods manually.

```
# We run the mice code with 0 iterations
imp = mice(retractions, maxit=0)
```

Warning: Number of logged events: 3

```
# Extract predictorMatrix and methods of imputation
predM = imp$predictorMatrix
meth = imp$method
```

```
# Setting values of variables I'd like to leave out to 0 in the predictor matrix
predM[, c("country_20230124")] = 0
predM[, c("ISO")] = 0
predM[, c("region")] = 0
predM[, c("subregion")] = 0
predM[, c("retractions")] = 0
predM[, c("citabledocuments_1996_2021")] = 0
predM[, c("HDI_mean_1990_2021")] = 0
# If you like, view the first few rows of the predictor matrix
# head(predM)
```

We will create 20 datasets, each with 50 iterations.

All set. Now, we move on to the analysis part.

3 Analysis

Since the number of retracted papers is a "count data", I used Poisson family regressions. Because of the different sample size for the number of all papers for each country, I used the number of citable documents as "offset". I also performed linear regression with the proportion of retractions as the dependent variable. Following codes show the results of both regression families for all three datasets.

3.1 Poisson family regression

Poisson regression uses Poisson distribution. This distribution is discrete with a single parameter, the mean, which is usually symbolized as either or . The mean is also understood as a rate parameter. It is the expected number of times that an item or event occurs per unit of time, area, or volume.

In the Poisson distribution, the mean and variance are identical, or at least nearly the same; i.e., Poisson distributions with higher mean values have correspondingly greater variability. This criterion of the Poisson distribution is referred to as the equidispersion criterion. The problem is that when modelling real data, the equidispersion criterion is rarely satisfied. Analysts usually must adjust their Poisson model in some way to account for any under- or overdispersion that is in the data.

Simply put, Poisson overdispersion occurs in data where the variability of the data is greater than the mean. A model that fails to properly adjust for overdispersed data is called an overdispersed model. As such, its standard errors are biased and cannot be trusted. Therefore, some other models have been proposed to consider overdispersion. All these models are based on the original Poisson model. These models are: 1) linear negative binomial (NB1), 2) standard negative binomial (NB2), 3) Poisson inverse Gaussian (PIG), 4) generalized negative binomial (NB-P), and 5) generalized Poisson (GP). The mean-variance relationship for each of these models is illustrated in Table below.

Model Mean Variance

Poisson

Negative binomial (NB1) (1 +) = +Negative binomial (NB2) $(1 +) = +^2$ Poisson inverse Gaussian (PIG) $(1 + ^2) = +^3$ Generalized negative binomial (1 +) = +(NB-P)

Generalized Poisson $(1 +)^2 = +2^{-3} + ^{2-3}$

Table 7: Poisson regression family

3.1.1 Main dataset

In our data, retractions' mean and variance are not identical (mean=180.4, variance=1553568.0, Pearson ² dispersion statistic=8302.9):

```
c(mean(retractions$retractions, na.rm = T), var(retractions$retractions, na.rm = T))
```

[1] 180.3693 1553568.0006

[1] 8302.858

Therefore, our dependent variable is overdispersed. To compensate for that, we should use other members of the family. We start with NB2.

3.1.1.1 Negative binomial type 2 (NB2)

```
fitimp_nb_uni = with(data = imp, gamlss(retractions~mean_democracy_2008_2021+offset(log(ci
kable(summary(pool(fitimp_nb_uni)))
```

parameter	term	estimate	std.error	statistic	df	p.value
mu	(Intercept)	-	0.0307778	-177.0283	228.9942	0
		5.4485437				
mu	$mean_democracy_2008_$	_2021 -	0.0082056	-36.2083	232.7318	0
		0.2971098				
sigma	(Intercept)	3.9937983	0.0276270	144.5612	232.3065	0

This model shows that with each 1 unit increase in the number of retractions, the mean democracy score decreases by a factor of $\exp(-0.297)=0.743$ (P<0.001).

NB2 model seems to have a better fit. Let's take a look at the AIC:

```
mean(sapply(fitimp_nb_uni$analyses, AIC))
```

[1] 1722.333

The AIC is also acceptable (1722.3). What about dispersion statistics?

```
sum(residuals(fitimp_nb_uni$analyses[[1]], type="simple")^2)/fitimp_nb_uni$analyses[[1]]$d
```

[1] 1.58386

I just used the first imputated dataset and it seems we have overdispersion.

Let's try PIG model:

3.1.1.2 Poisson inverse Gaussian (PIG)

```
fitimp_pig_uni = with(data = imp, gamlss(retractions~mean_democracy_2008_2021+offset(log(data)))
kable(summary(pool(fitimp_pig_uni)))
```

parameter	term	estimate	std.error	statistic	df	p.value
mu	(Intercept)	_	0.1630289	_	219.1419	0.0000000
		6.5064524		39.909805		
mu	mean_democracy_2008_	_2021 -	0.0297232	-4.038752	211.0693	0.0000752
		0.1200446				
sigma	(Intercept)	0.3240282	0.1064879	3.042863	226.6041	0.0026199

This model shows that with each 1 unit increase in the number of retractions, the mean democracy score decreases by a factor of $\exp(-0.120)=0.887$ (P<0.001).

Let's assess AIC:

```
mean(sapply(fitimp_pig_uni$analyses, AIC))
```

[1] 1473.47

The AIC (1473.5) is lower than the NB2 model. And now dispersion statistics:

```
sum(residuals(fitimp_pig_uni$analyses[[1]], type="simple")^2)/fitimp_pig_uni$analyses[[1]]
```

[1] 1.018976

It seems we have complete equidispersion. To be sure about this choice, let's perform a log likelihood ratio test:

```
pchisq(2 * (mean(sapply(fitimp_pig_uni$analyses, logLik)) - mean(sapply(fitimp_nb_uni$anal
```

[1] 4.595296e-56

The test confirms that PIG model is better fitted with the data compared with the NB2 model. Therefore, we proceed with the PIG model. In order not to make the model more complex, I do not investigate the fitness of other members of the Poisson family (and there is no need to do so).

Now, let's perform adjusted PIG regression:

```
fitimp_pig_multi = with(data = imp, gamlss(retractions~mean_democracy_2008_2021+offset(log
```

```
Warning in RS(): Algorithm RS has not yet converged
Warning in RS(): Algorithm RS has not yet converged
Warning in RS(): Algorithm RS has not yet converged
Warning in RS(): Algorithm RS has not yet converged
Warning in RS(): Algorithm RS has not yet converged
Warning in RS(): Algorithm RS has not yet converged
Warning in RS(): Algorithm RS has not yet converged
Warning in RS(): Algorithm RS has not yet converged
Warning in RS(): Algorithm RS has not yet converged
Warning in RS(): Algorithm RS has not yet converged
Warning in RS(): Algorithm RS has not yet converged
Warning in RS(): Algorithm RS has not yet converged
Warning in RS(): Algorithm RS has not yet converged
Warning in RS(): Algorithm RS has not yet converged
Warning in RS(): Algorithm RS has not yet converged
Warning in RS(): Algorithm RS has not yet converged
```

Warning in RS(): Algorithm RS has not yet converged

Warning in RS(): Algorithm RS has not yet converged

Warning in RS(): Algorithm RS has not yet converged

Warning in RS(): Algorithm RS has not yet converged

kable(summary(pool(fitimp_pig_multi)))

paramete	er term	estimate	std.error	statistic	df	p.value
mu	(Intercept)	-	0.7377066	-	203.8579	0.0000000
		6.3709102		8.6361028		
mu	$mean_democracy_2008_2021$	-	0.0932492	-	200.0130	0.6295964
		0.0450430		0.4830389		
mu	$ongoing_nonviolent_campaign$					
mu	$GDP_pc_mean_1960_2022$	0.0000014	0.0000125	0.1140758	197.4623	0.9092936
mu	$\operatorname{regionAfrica}$	-	0.3786583	-	224.1035	0.2307102
		0.4550709		1.2017981		
mu	$\operatorname{regionAmericas}$	-	0.3838343	-	221.7722	0.2154046
		0.4768720		1.2423905		
mu	region Europe	-	0.4463945	-	220.2284	0.0694958
				1.8240759		
mu	regionOceania	-	0.5966595	-	223.2317	0.1367206
mu	$industry_share_mean_1960_$	2022 -	0.0103507	-	206.5799	0.5107507
		0.0068191		0.6588111		
mu	length_of_last_leader_tenure					
mu	$muslim_proportion$					
mu	top_universities_shanghai_20			0.3269306	224.4056	0.7440251
mu	plurality1			-	153.1914	0.3881618
		0.2290695		0.8654196		
sigma	(Intercept)	0.2761475	0.1214040	2.2746159	151.9453	0.0243283

In this model, mean democracy score decreases by a factor of $\exp(-0.045)=0.956$ (P=0.630) with each 1 unit increase in the number of retracted papers.

3.1.2 Zero-truncated dataset

For this dataset, I only run the PIG regression models.

3.1.2.1 Poisson inverse Gaussian (PIG)

```
fit_truncimp_pig_uni = with(data = trunc_imp, gamlss(retractions~mean_democracy_2008_2021+
kable(summary(pool(fit_truncimp_pig_uni)))
```

parameter	term	estimate	std.error	statistic	df	p.value
mu	(Intercept)	-	0.1968214	-	143.3171	0.0000000
		6.2956290		31.986506		
mu	$mean_democracy_2008_$	_2021 -	0.0354537	-3.209007	133.6756	0.0016676
		0.1137712				
sigma	(Intercept)	0.4897032	0.1189476	4.116967	125.5763	0.0000691

This model shows that with each 1 unit increase in the number of retractions, the mean democracy score decreases by a factor of $\exp(-0.114)=0.892$ (P=0.002) (compared with $\exp(-0.120)=0.887$ in main dataset).

Let's assess AIC:

```
mean(sapply(fit_truncimp_pig_uni$analyses, AIC))
```

[1] 1418.264

The AIC is 1418.3. And now dispersion statistics:

```
sum(residuals(fit_truncimp_pig_uni$analyses[[1]], type="simple")^2)/fit_truncimp_pig_uni$a
```

[1] 0.9352772

It seems we have underdispersion which seems accepatble.

Now, let's perform adjusted PIG regression:

```
fit_truncimp_pig_multi = with(data = trunc_imp, gamlss(retractions~mean_democracy_2008_202
```

Warning in RS(): Algorithm RS has not yet converged Warning in RS(): Algorithm RS has not yet converged Warning in RS(): Algorithm RS has not yet converged Warning in RS(): Algorithm RS has not yet converged Warning in RS(): Algorithm RS has not yet converged Warning in RS(): Algorithm RS has not yet converged Warning in RS(): Algorithm RS has not yet converged Warning in RS(): Algorithm RS has not yet converged Warning in RS(): Algorithm RS has not yet converged Warning in RS(): Algorithm RS has not yet converged Warning in RS(): Algorithm RS has not yet converged Warning in RS(): Algorithm RS has not yet converged Warning in RS(): Algorithm RS has not yet converged Warning in RS(): Algorithm RS has not yet converged Warning in RS(): Algorithm RS has not yet converged Warning in RS(): Algorithm RS has not yet converged Warning in RS(): Algorithm RS has not yet converged Warning in RS(): Algorithm RS has not yet converged Warning in RS(): Algorithm RS has not yet converged Warning in RS(): Algorithm RS has not yet converged

kable(summary(pool(fit_truncimp_pig_multi)))

paramete	er term est	timate	std.error	statistic	df	p.value
mu	(Intercept)	_	0.7366929	-	133.03862	0.0000000
				7.8156017		
mu	$mean_democracy_2008_2021$	-	0.1001790	-	127.34147	0.2665336
	0.1	117974		1.1159766		
mu	ongoing_nonviolent_campaign013	057710	0.3413557	0.8957550	146.32049	0.3718549
mu	GDP_pc_mean_1960_2022 0.0	000130	0.0000184	0.7064840	142.87025	0.4810377
mu	regionAfrica	-	0.4063496	-	146.34304	0.4995349
	0.2	750600		0.6769048		
mu	$\operatorname{regionAmericas}$	-	0.3752653	-	144.83967	0.6660427
	0.1	622912		0.4324706		
mu	regionEurope	-	0.4464423	-	144.66939	0.0919291
mu	regionOceania 0.0					
mu	industry_share_mean_1960_202	22 -	0.0104073	-	144.59211	0.1135721
	0.0	165683		1.5919844		
mu	$length_of_last_leader_tenur$ @.@					
mu	muslim_proportion 0.0					
mu	top_universities_shanghai_2022	003319	0.0064697	0.0512969	146.40912	0.9591589
mu	plurality1	-	0.2714264	-	96.04896	0.3495890
	0.2	551337		0.9399737		
sigma	(Intercept) 0.3	131166	0.1249357	2.5062229	117.40103	0.0135719

In this model, mean democracy score decreases by a factor of $\exp(-0.112)=0.894$ (compared with $\exp(-0.045)=0.956$ from the main dataset) with each 1 unit increase in the number of retracted papers.

3.1.3 Outlier-removed dataset

Also for this dataset, I only run the PIG regression models.

3.1.3.1 Poisson inverse Gaussian (PIG)

```
fit_nooutimp_pig_uni = with(data = no_out_imp, gamlss(retractions~mean_democracy_2008_2021
kable(summary(pool(fit_nooutimp_pig_uni)))
```

parameter	term	estimate	std.error	statistic	df	p.value
mu	(Intercept)	-	0.2358225	-	158.6149	0.0000000
		6.5155447		27.629015		
mu	mean_democracy_2008	_2021 -	0.0450876	-2.485593	140.8637	0.0141032
		0.1120694				
sigma	(Intercept)	0.7291663	0.1452664	5.019511	183.1767	0.0000012

This model shows that with each 1 unit increase in the number of retractions, the mean democracy score decreases by a factor of $\exp(-0.112)=0.894$ (P=0.014) (compared with $\exp(-0.120)=0.887$ in the main dataset).

Let's assess AIC:

```
mean(sapply(fit_nooutimp_pig_uni$analyses, AIC))
```

[1] 912.4588

The AIC is 912.5. And now dispersion statistics:

```
sum(residuals(fit_nooutimp_pig_uni$analyses[[1]], type="simple")^2)/fit_nooutimp_pig_uni$a
```

[1] 0.8677551

It seems we have overdispersion which seems accepatble.

Now, let's perform adjusted PIG regression:

```
fit_nooutimp_pig_multi = with(data = no_out_imp, gamlss(retractions~mean_democracy_2008_20
kable(summary(pool(fit_nooutimp_pig_multi)))
```

paramete	r term estimate	std.error	statistic	df	p.value
mu	(Intercept) -	0.7981126	-	151.3446	0.0000000
	6.3264538		7.9267685		
mu	$mean_democracy_2008_2021 \qquad -$	0.1057899	-	132.6747	0.7774194
	0.0299660		0.2832595		
mu	$ongoing_nonviolent_campaign 0.13104323$	0.4031503	0.7700162	183.6942	0.4422794
mu	$GDP_pc_mean_1960_2022 \ 0.0000035$	0.0000115	0.3038908	164.4666	0.7615952

paramete	er term	estimate	std.error	statistic	$\overline{\mathrm{df}}$	p.value
mu	regionAfrica	-	0.4249574	-	183.6200	0.2637990
		0.4763300		1.1208889		
mu	$\operatorname{regionAmericas}$	-	0.4894351	-	176.5678	0.3010160
		0.5076896		1.0372969		
mu	regionEurope	-	0.5775942	-	176.3726	0.0998827
		0.9554074		1.6541153		
mu	regionOceania	-	0.6545162	-	182.5658	0.1204243
		1.0212320		1.5602852		
mu	industry_share_mean_1960_1	2022 -	0.0118116	-	166.1885	0.4233176
		0.0094807		0.8026602		
mu	length_of_last_leader_tenure	<u>0.2092</u> 577	0.0181583	0.5098327	158.9141	0.6108760
mu	$muslim_proportion$	-	0.0055576	-	166.2980	0.9925452
		0.0000520		0.0093574		
mu	top_universities_shanghai_20	- 22	0.1143096	-	183.2453	0.6247280
		0.0560104		0.4899887		
mu	plurality1	-	0.3084402	-	103.6765	0.4474196
		0.2352238		0.7626235		
sigma	(Intercept)	0.5056055	0.1468534	3.4429278	169.6405	0.0007249

In this model, mean democracy score decreases by a factor of $\exp(-0.030)=0.970$ (compared with $\exp(-0.045)=0.956$ from the main dataset) with each 1 unit increase in the number of retracted papers.

3.2 Linear regression

For this part, I used the number of retractions per 10K articles.

3.2.1 Main dataset

```
full.impdata = complete(imp, 'long', include = TRUE) %>%
  mutate(retraction_prop = retractions/citabledocuments_1996_2021*10000)
new_imp = as.mids(full.impdata)
```

Let's run the model and assess its fitness:

0.0020381

	SSQ	df1	df2	F value	Pr(>F)	eta2	partial.eta2
$mean_democracy_2008_2021$	448.3614	1	1535.118	0.3117	0.576729	0.002038	0.002038
Residual	219545.6545	NA	NA	NA	NA	NA	NA

 $\frac{x}{2}$

kable(summary(pool(fitimp_linear_uni)))

term	estimate	std.error	statistic	df	p.value
(Intercept)	11.6120829	5.9657105	1.9464711	151.1184	0.0534530
$mean_democracy_2008_$	2021-0.4572615	0.9681643	-0.4722974	140.0494	0.6374496

This model shows with each 1 unit increase in democracy score, the number of retracted papers per 10K article decreases by 0.457 unit.

Now, let's check the model fitness:

```
kable(mi.anova(mi.res=new_imp, formula="retraction_prop~mean_democracy_2008_2021"))
```

Univariate ANOVA for Multiply Imputed Data (Type 2)

lm Formula: retraction_prop~mean_democracy_2008_2021
R^2=0.002

ANOVA Table

SSQ df1 df2 F value Pr(>F) eta2 mean_democracy_2008_2021 448.3614 1 1535.118 0.3117 0.57673 0.00204 Residual 219545.6545 NA NA NA NA NA NA

partial.eta2

mean_democracy_2008_2021 0.00204 Residual NA

As we can see, the model fitness seems not to be good enough with R-squared of 0.002. Let's confirm this by exploring the plots:

```
plot(fitimp_linear_uni$analyses[[1]])
```


Fitted values Im(retraction_prop ~ mean_democracy_2008_2021)

Theoretical Quantiles Im(retraction_prop ~ mean_democracy_2008_2021)

Im(retraction_prop ~ mean_democracy_2008_2021)

We can clearly see the signs of non-normality of the residuals. We have two other options: using the log or using square-root of the dependent variable. Let's start with square-root:

3.2.1.1 Square-root method

```
kable(mi.anova(mi.res=new_imp, formula="sqrt(retraction_prop)~mean_democracy_2008_2021"))
```

x 0.019306

	SSQ	df1	df2	F value	Pr(>F)	eta2	partial.eta2
mean_democracy_2008_2021	24.80904	1	691.8318	3.7527	0.053128	0.019306	0.019306
Residual	1260.23513	NA	NA	NA	NA	NA	NA

 $\frac{x}{2}$

Univariate ANOVA for Multiply Imputed Data (Type 2)

lm Formula: sqrt(retraction_prop)~mean_democracy_2008_2021

 $R^2=0.0193$

ANOVA Table

SSQ df1 df2 F value Pr(>F) eta2 mean_democracy_2008_2021 24.80904 1 691.8318 3.7527 0.05313 0.01931 Residual 1260.23513 NA NA NA NA NA NA partial.eta2

mean_democracy_2008_2021 0.01931 Residual NA

Fitted values Im(sqrt(retraction_prop) ~ mean_democracy_2008_2021)

Theoretical Quantiles Im(sqrt(retraction_prop) ~ mean_democracy_2008_2021)

Im(sqrt(retraction_prop) ~ mean_democracy_2008_2021)

The plots, the F-test and R-squared all showing fitting improvements. Let's check log version.

3.2.1.2 Log method

Since we have zeros in this dataset, we cannot use log. We have two options in this regards:

- Adding 1: $\log(y + 1)$
- Adding half the minimum non-0 value: $\log(y + \min(y[y>0])/2)$

X
0.0373222

	SSQ	df1	df2	F value	Pr(>F)	eta2	partial.eta2
mean_democracy_2008_2021	12.84921	1	644.3777	7.5071	0.006316	0.037322	0.037322
Residual	331.42907	NA	NA	NA	NA	NA	NA

 $\frac{x}{2}$

3.2.1.2.1 Adding 1 to log

We can use either log1p function or log(y+1). Here, I use log(y+1):

plot(fitimp_linear_uni_log1\$analyses[[1]])

```
kable(mi.anova(mi.res=new_imp, formula="log(retraction_prop+1)~mean_democracy_2008_2021"))
Univariate ANOVA for Multiply Imputed Data (Type 2)
lm Formula: log(retraction_prop+1)~mean_democracy_2008_2021
R^2=0.0373
ANOVA Table
                               SSQ df1
                                            df2 F value Pr(>F)
                                                                   eta2
mean_democracy_2008_2021 12.84921
                                     1 644.3777 7.5071 0.00632 0.03732
Residual
                         331.42907 NA
                                             NA
                                                     NA
                                                             NA
                         partial.eta2
mean_democracy_2008_2021
                              0.03732
Residual
                                   NA
  fitimp_linear_uni_log1 = with(data = new_imp,
                 lm(log(retraction_prop+1)~mean_democracy_2008_2021))
```


Fitted values Im(log(retraction_prop + 1) ~ mean_democracy_2008_2021)

Theoretical Quantiles Im(log(retraction_prop + 1) ~ mean_democracy_2008_2021)

Fitted values lm(log(retraction_prop + 1) ~ mean_democracy_2008_2021)

The fitness is clearly better than the previous models. Now, let's check other options.

3.2.1.2.2 Adding half the minimum non-0 value to log

kable(mi.anova(mi.res=new_imp, formula="log(retraction_prop + min(retraction_prop[retraction_prop)

Univariate ANOVA for Multiply Imputed Data (Type 2)

x 0.0289004

	SSQ	df1	df2	F value	Pr(>F)	eta2	partial.eta2
mean_democracy_2008_2021	21.8318	1	491.1434	5.5157	0.019242	0.0289	0.0289
Residual	733.5830	NA	NA	NA	NA	NA	NA

 $\frac{x}{2}$

lm Formula: log(retraction_prop + min(retraction_prop[retraction_prop>0])/2)~mean_democracy
R^2=0.0289

......

ANOVA Table

SSQ df1 df2 F value Pr(>F) eta2
mean_democracy_2008_2021 21.8318 1 491.1434 5.5157 0.01924 0.0289
Residual 733.5830 NA NA NA NA NA NA NA
partial.eta2
mean_democracy_2008_2021 0.0289
Residual NA

Fitted values $Im(log(retraction_prop + min(retraction_prop[retraction_prop > 0])/2) \sim me$

Theoretical Quantiles Im(log(retraction_prop + min(retraction_prop[retraction_prop > 0])/2) ~ me

Fitted values Im(log(retraction_prop + min(retraction_prop[retraction_prop > 0])/2) ~ me

Im(log(retraction_prop + min(retraction_prop[retraction_prop > 0])/2) ~ me

It seems the first methods had a better fit. Therefore, we proceed with that.

The results of the unadjusted model:

kable(summary(pool(fitimp_linear_uni_log1)))

term	estimate	std.error	statistic	df	p.value
(Intercept)	1.9057740	0.2300245	8.285091	158.1861	0.000000
mean_democracy_2008_2021	-0.1020186	0.0370683	-2.752178	153.0152	0.006636

And the adjusted model:

term	estimate	std.error	statistic	df	p.value
(Intercept)	2.0914519	0.5333387	3.9214330	103.90824	0.0001581
$mean_democracy_2008_2021$	-	0.0671030	-	82.73702	0.6233577
	0.0330780		0.4929443		
ongoing_nonviolent_campaign1	0.2648944	0.2590495	1.0225625	223.49853	0.3076203
GDP_pc_mean_1960_2022	-	0.0000080	-	93.81957	0.7129362
	0.0000030		0.3690309		

term	estimate	$\operatorname{std.error}$	statistic	$\mathrm{d}\mathrm{f}$	p.value
regionAfrica	-	0.2234373	-	221.59688	0.0008199
0	0.7580364		3.3926129		
regionAmericas	-	0.2567860	-	207.46553	0.0009272
0	0.8628296		3.3601113		
regionEurope	-	0.2793362	-	195.58007	0.0035291
0	0.8249688		2.9533189		
regionOceania	-	0.2869346	-	217.52891	0.0000005
1	1.4823076		5.1660126		
industry_share_mean_1960_20220	0.0052842	0.0076063	0.6947097	138.09903	0.4884044
length_of_last_leader_tenure_201	50017707	0.0127343	0.1390493	66.71407	0.8898301
muslim_proportion	-	0.0030276	-	110.70922	0.6529626
0	0.0013651		0.4508734		
top_universities_shanghai_2022 (0.0036081	0.0040808	0.8841558	223.23298	0.3775634
plurality1	-	0.2003378	-	82.21041	0.9936532
0	0.0015985		0.0079789		

Let's check the fitness of the model:

```
kable(mi.anova(mi.res=new_imp, formula="log(retraction_prop+1)~mean_democracy_2008_2021+on
```

Univariate ANOVA for Multiply Imputed Data (Type 2)

 $\label{log:compact} $$\lim \ Formula: \ \log(\text{retraction_prop+1}) \sim \text{mean_democracy_2008_2021+ongoing_nonviolent_campaign+GDP}_{R^2=0.1853}$$

ANOVA Table

	SSQ	df1	df2	F value	Pr(>F)		
mean_democracy_2008_2021	12.84921	1	564.0018	8.3351	0.00404		
ongoing_nonviolent_campaign	4.98916	1	2008619.3989	4.0398	0.04444		
GDP_pc_mean_1960_2022	0.47485	1	883.6735	0.1692	0.68091		
region	41.18374	4	15323.2798	8.0677	0.00000		
industry_share_mean_1960_2022	1.06767	1	483.2553	0.4788	0.48930		
<pre>length_of_last_leader_tenure_2015</pre>	0.79542	1	516.1536	0.3146	0.57510		
muslim_proportion	0.89419	1	333.1986	0.2942	0.58793		
top_universities_shanghai_2022	0.98882	1	184806.1450	0.7847	0.37570		
plurality	0.54089	1	1043.7284	0.2330	0.62941		
Residual	280.49432	NA	NA	NA	NA		
eta2 partial.eta2							

mean_democracy_2008_2021 0.03732 0.04380

x 0.1852686

	SSQ	df1	df2	F value	$\Pr(>F)$	eta2	p
$mean_democracy_2008_2021$	12.8492137	1	564.0018	8.3351	0.004038	0.037322	
$ongoing_nonviolent_campaign$	4.9891640	1	2008619.3989	4.0398	0.044438	0.014492	
GDP_pc_mean_1960_2022	0.4748538	1	883.6735	0.1692	0.680910	0.001379	
region	41.1837400	4	15323.2798	8.0677	0.000002	0.119623	
industry_share_mean_1960_2022	1.0676738	1	483.2553	0.4788	0.489305	0.003101	
length_of_last_leader_tenure_2015	0.7954232	1	516.1536	0.3146	0.575105	0.002310	
muslim_proportion	0.8941946	1	333.1986	0.2942	0.587932	0.002597	
top_universities_shanghai_2022	0.9888172	1	184806.1450	0.7847	0.375699	0.002872	
plurality	0.5408880	1	1043.7284	0.2330	0.629409	0.001571	
Residual	280.4943164	NA	NA	NA	NA	NA	

 $\frac{x}{2}$

ongoing_nonviolent_campaign	0.01449	0.01748
GDP_pc_mean_1960_2022	0.00138	0.00169
region	0.11962	0.12803
industry_share_mean_1960_2022	0.00310	0.00379
<pre>length_of_last_leader_tenure_2015</pre>	0.00231	0.00283
muslim_proportion	0.00260	0.00318
top_universities_shanghai_2022	0.00287	0.00351
plurality	0.00157	0.00192
Residual	NA	NA

And plots:

plot(fitimp_linear_multi_log1\$analyses[[1]])

Fitted values | (log(retraction_prop + 1) ~ mean_democracy_2008_2021 + ongoing_nonvi

Theoretical Quantiles
|(log(retraction_prop + 1) ~ mean_democracy_2008_2021 + ongoing_nonvi

Fitted values
|(log(retraction_prop + 1) ~ mean_democracy_2008_2021 + ongoing_nonvi

\(\log(\text{rection_prop + 1}) \simeq \text{mean_democracy_2008_2021 + ongoing_nonvi}\)

3.2.2 Zero-truncated dataset

For this one and the next dataset, I only use the log(y+1) method.

Fitted values I(log(retractions/citabledocuments_1996_2021 * 10000 + 1) ~ mean_democ

Theoretical Quantiles I(log(retractions/citabledocuments_1996_2021 * 10000 + 1) ~ mean_democ

Fitted values
ı(log(retractions/citabledocuments_1996_2021 * 10000 + 1) ~ mean_democ

Leverage \(\llog(\text{retractions/citabledocuments} \) \(\llog(\text{retractions/citabledocuments} \) \(\llog(\text{retractions} + 1) \) \(\text{mean_democ} \)

And fitness tests:

```
kable(mi.anova(mi.res=trunc_imp, formula="log(retractions/citabledocuments_1996_2021*10000
```

Univariate ANOVA for Multiply Imputed Data (Type 2)

lm Formula: $log(retractions/citabledocuments_1996_2021*10000+1) \sim mean_democracy_2008_2021 R^2=0.0711$

x 0.071069

	SSQ	df1	df2	F value	Pr(>F)	eta2	partial.eta2
mean_democracy_2008_2021	10.37433	1	451.4755	9.6191	0.002046	0.071069	0.071069
Residual	135.60111	NA	NA	NA	NA	NA	NA

 $\frac{x}{2}$

......

ANOVA Table

SSQ df1 df2 F value Pr(>F) eta2
mean_democracy_2008_2021 10.37433 1 451.4755 9.6191 0.00205 0.07107
Residual 135.60111 NA NA NA NA NA NA NA
partial.eta2
mean_democracy_2008_2021 0.07107

mean_democracy_2008_2021 0.07107 Residual NA

The fitness of model seems satisfactory. Here is the results of the unadjusted model:

kable(summary(pool(fit_truncimp_linear_uni_log1)))

term	estimate	std.error	statistic	df	p.value
(Intercept)	2.5828428	0.2144465	12.044228	119.3842	0.0000000
$mean_democracy_2008_202$	1-0.1126113	0.0355596	-3.166833	109.4047	0.0019973

Now, let's perform the full model:

fit_truncimp_linear_multi_log1 = with(data = trunc_imp, lm(log(retractions/citabledocument
kable(summary(pool(fit_truncimp_linear_multi_log1)))

term	estimate	std.error	statistic	df	p.value
(Intercept)	3.2155655	0.4763111	6.7509780	120.83355	0.0000000
$mean_democracy_2008_2021$	-	0.0623950	-	92.30232	0.0268606
	0.1403551		2.2494604		
ongoing_nonviolent_campaign1	0.1755619	0.2271682	0.7728276	146.27234	0.4408715
GDP pc mean 1960 2022	0.0000129	0.0000083	1.5637076	111.68544	0.1207154

term	estimate	std.error	statistic	df	p.value
regionAfrica	_	0.2041441	_	145.38393	0.1538509
	0.2926486		1.4335392		
regionAmericas	0.0541502	0.2443008	0.2216538	142.38046	0.8249010
regionEurope	-	0.2471175	-	133.54870	0.0128917
	0.6228892		2.5206201		
regionOceania	0.3628350	0.4093236	0.8864257	144.16607	0.3768644
industry_share_mean_1960_202	2 -	0.0073186	-	127.23480	0.0567380
	0.0140723		1.9228152		
length_of_last_leader_tenure_2	015 -	0.0105537	-	90.54233	0.9109817
	0.0011832		0.1121134		
muslim_proportion	0.0015086	0.0027472	0.5491660	126.61325	0.5838588
top_universities_shanghai_2022	_	0.0033608	-	146.40583	0.7895138
	0.0008988		0.2674308		
plurality1	-	0.1919484	-	68.37610	0.5393190
	0.1184219		0.6169464		

Let's check the fitness of the model:

```
kable(mi.anova(mi.res=trunc_imp, formula="log(retractions/citabledocuments_1996_2021*10000
```

Univariate ANOVA for Multiply Imputed Data (Type 2)

 $lm\ Formula: \ log(retractions/citabledocuments_1996_2021*10000+1) \\ ~mean_democracy_2008_2021+ong \\ R^2=0.1894$

0.08061

ANOVA Table

mean_democracy_2008_2021

	SSQ	df1	df2	F value	Pr(>F)			
mean_democracy_2008_2021	10.37433	1	4.051607e+02	10.1248	0.00158			
ongoing_nonviolent_campaign	0.07817	1	1.116252e+09	0.0990	0.75303			
GDP_pc_mean_1960_2022	1.41333	1	5.070027e+02	1.2482	0.26443			
region	11.38836	4	5.770112e+04	3.5290	0.00694			
industry_share_mean_1960_2022	2.95219	1	2.390161e+03	3.3192	0.06860			
<pre>length_of_last_leader_tenure_2015</pre>	0.22273	1	1.537175e+03	0.1296	0.71893			
muslim_proportion	0.40139	1	2.243990e+03	0.3605	0.54828			
top_universities_shanghai_2022	0.08448	1	3.272903e+05	0.0975	0.75484			
plurality	0.73569	1	3.082045e+02	0.4300	0.51248			
Residual	118.32476	NA	NA	NA	NA			
eta2 partial.eta2								

0.07107

0.1894201

	SSQ	df1	df2	F value	$\Pr(>F)$	eta2 j
$mean_democracy_2008_2021$	10.3743323	1	4.051607e + 02	10.1248	0.001576	0.071069
ongoing_nonviolent_campaign	0.0781742	1	1.116252e + 09	0.0990	0.753034	0.000536
GDP_pc_mean_1960_2022	1.4133330	1	5.070027e + 02	1.2482	0.264428	0.009682
region	11.3883628	4	5.770112e + 04	3.5290	0.006938	0.078016
industry_share_mean_1960_2022	2.9521890	1	2.390161e+03	3.3192	0.068598	0.020224
length_of_last_leader_tenure_2015	0.2227289	1	1.537175e + 03	0.1296	0.718928	0.001526
muslim_proportion	0.4013872	1	2.243990e+03	0.3605	0.548282	0.002750
top_universities_shanghai_2022	0.0844802	1	3.272903e+05	0.0975	0.754845	0.000579
plurality	0.7356940	1	3.082045e+02	0.4300	0.512477	0.005040
Residual	118.3247605	NA	NA	NA	NA	NA

 $\frac{x}{2}$

ongoing_nonviolent_campaign	0.00054	0.00066
GDP_pc_mean_1960_2022	0.00968	0.01180
region	0.07802	0.08780
industry_share_mean_1960_2022	0.02022	0.02434
<pre>length_of_last_leader_tenure_2015</pre>	0.00153	0.00188
muslim_proportion	0.00275	0.00338
top_universities_shanghai_2022	0.00058	0.00071
plurality	0.00504	0.00618
Residual	NA	NA

And plots:

plot(fit_truncimp_linear_multi_log1\$analyses[[1]])

Fitted values
ı(log(retractions/citabledocuments_1996_2021 * 10000 + 1) ~ mean_democ

Theoretical Quantiles I(log(retractions/citabledocuments_1996_2021 * 10000 + 1) ~ mean_democ

Fitted values
\(\text{l(log(retractions/citabledocuments_1996_2021 * 10000 + 1) \) \(\text{mean_democ} \)

ı(log(retractions/citabledocuments_1996_2021 * 10000 + 1) ~ mean_democ

3.2.3 Outlier-removed dataset

Fitted values I(log(retractions/citabledocuments_1996_2021 * 10000 + 1) ~ mean_democ

Theoretical Quantiles I(log(retractions/citabledocuments_1996_2021 * 10000 + 1) ~ mean_democ

Fitted values
ı(log(retractions/citabledocuments_1996_2021 * 10000 + 1) ~ mean_democ

Leverage \(\text{l(log(retractions/citabledocuments_1996_2021 * 10000 + 1) ~ mean_democ

And fitness tests:

```
kable(mi.anova(mi.res=no_out_imp, formula="log(retractions/citabledocuments_1996_2021*1000
```

Univariate ANOVA for Multiply Imputed Data (Type 2)

lm Formula: $log(retractions/citabledocuments_1996_2021*10000+1) \sim mean_democracy_2008_2021 R^2=0.028$

 $\frac{x}{0.0280077}$

	SSQ	df1	df2	F value	Pr(>F)	eta2	partial.eta2
mean_democracy_2008_2021	8.850627	1	327.2999	4.1096	0.043451	0.028008	0.028008
Residual	307.156248	NA	NA	NA	NA	NA	NA

 $\frac{x}{2}$

......

ANOVA Table

SSQ df1 df2 F value Pr(>F) mean_democracy_2008_2021 8.85063 1 327.2999 4.1096 0.04345 0.02801 Residual 307.15625 NA NANANANApartial.eta2 ${\tt mean_democracy_2008_2021}$ 0.02801 Residual NA

The fitness of model seems satisfactory. Here is the unadjusted model:

kable(summary(pool(fit_nooutimp_linear_uni_log1)))

term	estimate	std.error	statistic	df	p.value
(Intercept)	1.7501439	0.2796534	6.258261	109.1480	0.0000000
$mean_democracy_2008_20$	21 -0.0994243	0.0485203	-2.049125	106.5616	0.0429065

Let's perform the full model:

fit_nooutimp_linear_multi_log1 = with(data = no_out_imp, lm(log(retractions/citabledocument
kable(summary(pool(fit_nooutimp_linear_multi_log1)))

term	estimate	std.error	statistic	df	p.value
(Intercept)	2.0979962	0.5614815	3.7365365	119.99883	0.0002871
mean_democracy_2008_2021	-	0.0763754	-	94.76160	0.7345355
	0.0259751		0.3400979		
ongoing_nonviolent_campaign1	0.2610470	0.3618907	0.7213422	182.50780	0.4716221
GDP_pc_mean_1960_2022	-	0.0000078	-	128.25760	0.8275443
	0.0000017		0.2182974		

term estimate	std.error	statistic	df	p.value
regionAfrica -	0.2681066	-	182.25760	0.0052861
0.7568720		2.8230266		
regionAmericas -	0.3339062	-	139.52211	0.0082977
0.8941707		2.6779101		
regionEurope -	0.3747565	-	146.03555	0.0063830
1.0370882		2.7673652		
regionOceania -	0.3480209	-	157.85689	0.0000159
1.5500490		4.4538959		
$industry_share_mean_1960_20220.0032029$	0.0085678	0.3738347	120.81063	0.7091825
$length_of_last_leader_tenure_20 \textcolor{red}{\textbf{05}}0033646$	0.0129660	0.2594971	97.28107	0.7958001
muslim_proportion -	0.0036931	-	69.88310	0.5071167
0.0024624		0.6667667		
top_universities_shanghai_2022 0.0199356	0.0630839	0.3160174	178.81135	0.7523578
plurality1 0.0089557	0.2541518	0.0352376	59.25903	0.9720087

Let's check the fitness of the model:

ongoing_nonviolent_campaign

```
kable(mi.anova(mi.res=no_out_imp, formula="log(retractions/citabledocuments_1996_2021*1000
```

Univariate ANOVA for Multiply Imputed Data (Type 2)

lm Formula: $log(retractions/citabledocuments_1996_2021*10000+1) \sim mean_democracy_2008_2021+on_R^2=0.1528$

0.00429

.....

ANOVA Table SSQ df1 df2 F value Pr(>F) mean_democracy_2008_2021 308.3893 4.4045 0.03666 8.85063 ongoing_nonviolent_campaign 1.15285 GDP_pc_mean_1960_2022 0.27102 1 2265.3414 0.0716 0.78906 region 34.09214 4 6042.2096 5.6266 0.00016 industry_share_mean_1960_2022 0.58478 1 783.8643 0.1761 0.67487 length_of_last_leader_tenure_2015 1 885.8535 0.2210 0.63839 0.63428 muslim_proportion 237.0915 0.5518 0.45833 1.70532 1 top_universities_shanghai_2022 27885.7316 0.0966 0.75597 0.18304 596.8350 0.2821 0.59556 plurality 0.82629 1 Residual 267.70653 NA NANANAeta2 partial.eta2 mean_democracy_2008_2021 0.02801 0.03200

0.00365

x 0.1528459

	SSQ	df1	df2	F value	$\Pr(>F)$	eta2	p
mean_democracy_2008_2021	8.8506272	1	308.3893	4.4045	0.036657	0.028008	
ongoing_nonviolent_campaign	1.1528488	1	1414618.3656	0.8028	0.370255	0.003648	
GDP_pc_mean_1960_2022	0.2710238	1	2265.3415	0.0716	0.789061	0.000858	
region	34.0921368	4	6042.2096	5.6266	0.000162	0.107884	
industry_share_mean_1960_2022	0.5847768	1	783.8643	0.1761	0.674869	0.001851	
length_of_last_leader_tenure_2015	0.6342803	1	885.8535	0.2210	0.638393	0.002007	
muslim_proportion	1.7053214	1	237.0915	0.5518	0.458335	0.005396	
top_universities_shanghai_2022	0.1830447	1	27885.7316	0.0966	0.755968	0.000579	
plurality	0.8262863	1	596.8350	0.2821	0.595557	0.002615	
Residual	267.7065296	NA	NA	NA	NA	NA	

 $\frac{x}{2}$

GDP_pc_mean_1960_2022	0.00086	0.00101
region	0.10788	0.11296
industry_share_mean_1960_2022	0.00185	0.00218
<pre>length_of_last_leader_tenure_2015</pre>	0.00201	0.00236
muslim_proportion	0.00540	0.00633
top_universities_shanghai_2022	0.00058	0.00068
plurality	0.00262	0.00308
Residual	NA	NA

And plots:

```
plot(fit_nooutimp_linear_multi_log1$analyses[[1]])
```


Fitted values
ı(log(retractions/citabledocuments_1996_2021 * 10000 + 1) ~ mean_democ

Theoretical Quantiles I(log(retractions/citabledocuments_1996_2021 * 10000 + 1) ~ mean_democ

Fitted values I(log(retractions/citabledocuments_1996_2021 * 10000 + 1) ~ mean_democ

ı(log(retractions/citabledocuments_1996_2021 * 10000 + 1) ~ mean_democ