Autovectores: Ejemplos

L. A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

24 de septiembre de 2020

Agenda de Ejemplos Autovectores/Autovalores

Reflexión respecto al plano

Rotaciones y proyecciones

¿ Qué presentamos ?

Para la discusión

Reflexión respecto al plano

Reflexión respecto al plano xy. Si $\mathbb{R}: \mathbf{V}^3 \to \mathbf{V}^3$ es tal que $\mathbb{R} |\psi\rangle = \left|\tilde{\psi}\right\rangle$, una reflexión en el plano xy. Esto es

$$\mathbb{R}\left|i\right\rangle = \left|i\right\rangle; \quad \mathbb{R}\left|j\right\rangle = \left|j\right\rangle; \quad \mathbb{R}\left|k\right\rangle = -\left|k\right\rangle\,,$$

con $|\mathrm{i}\rangle\,, |\mathrm{j}\rangle\,, |\mathrm{k}\rangle$ vectores unitarios cartesianos. Cualquier vector en el plano xy será autovector de $\mathbb R$ con un autovalor $\lambda=1$, mientras que cualquier otro vector $|\psi\rangle\in \mathbf V^3$, que no esté en el plano, cumple con $|\psi\rangle=c\,|\mathrm{k}\rangle$ y también será autovector de $\mathbb R$ pero esta vez con un autovalor $\lambda=-1$.

1. La rotaciones de un vector en el plano pueden verse de dos maneras.

- 1. La rotaciones de un vector en el plano pueden verse de dos maneras.

- 1. La rotaciones de un vector en el plano pueden verse de dos maneras.
 - 1.1 Se considera el plano como un espacio vectorial $real~{\bf V}^2$ con una base cartesiana: $|{\bf i}\rangle=(1,0)$, $|{\bf j}\rangle=(0,1)$, esto es: $\mathbb{R}~|{\bf a}\rangle=\lambda~|{\bf a}\rangle~\Rightarrow~$ el ángulo de rotación $=n\pi$, con n entero.
 - 1.2 Igualmente si consideramos el plano complejo unidimensional, expresemos cualquier vector en el plano en su forma polar $|z\rangle=r\mathrm{e}^{i\theta}$ por lo cual: $\mathbb{R}\,|z\rangle=r\mathrm{e}^{i(\theta+\alpha)}=\mathrm{e}^{i\alpha}\,|z\rangle$, si queremos $\lambda=\mathrm{e}^{i\alpha}$ reales, necesariamente $\alpha=n\pi$ con n entero.

- 1. La rotaciones de un vector en el plano pueden verse de dos maneras.
 - 1.1 Se considera el plano como un espacio vectorial $real~{\bf V}^2$ con una base cartesiana: $|{\bf i}\rangle=(1,0)$, $|{\bf j}\rangle=(0,1)$, esto es: $\mathbb{R}~|{\bf a}\rangle=\lambda~|{\bf a}\rangle~\Rightarrow~$ el ángulo de rotación $=n\pi$, con n entero.
 - 1.2 Igualmente si consideramos el plano complejo unidimensional, expresemos cualquier vector en el plano en su forma polar $|z\rangle=r\mathrm{e}^{i\theta}$ por lo cual: $\mathbb{R}\,|z\rangle=r\mathrm{e}^{i(\theta+\alpha)}=\mathrm{e}^{i\alpha}\,|z\rangle$, si queremos $\lambda=\mathrm{e}^{i\alpha}$ reales, necesariamente $\alpha=n\pi$ con n entero.
- 2. Dado $P_{\psi}=|\psi\rangle\,\langle\psi|$ y con una ecuación de autovalores para un $|\varphi\rangle$ arbitrario

- 1. La rotaciones de un vector en el plano pueden verse de dos maneras.
 - 1.1 Se considera el plano como un espacio vectorial $real\ \mathbf{V}^2$ con una base cartesiana: $|\mathrm{i}\rangle=(1,0)$, $|\mathrm{j}\rangle=(0,1)$, esto es: $\mathbb{R}\,|a\rangle=\lambda\,|a\rangle\,\Rightarrow\,$ el ángulo de rotación $=n\pi$, con n entero.
 - 1.2 Igualmente si consideramos el plano complejo unidimensional, expresemos cualquier vector en el plano en su forma polar $|z\rangle=r\mathrm{e}^{i\theta}$ por lo cual: $\mathbb{R}\,|z\rangle=r\mathrm{e}^{i(\theta+\alpha)}=\mathrm{e}^{i\alpha}\,|z\rangle$, si queremos $\lambda=\mathrm{e}^{i\alpha}$ reales, necesariamente $\alpha=n\pi$ con n entero.
- 2. Dado $P_{\psi}=|\psi\rangle\,\langle\psi|$ y con una ecuación de autovalores para un $|\varphi\rangle$ arbitrario
 - 2.1 Si $P_{\psi} | \varphi \rangle = \lambda | \varphi \rangle \Rightarrow P_{\psi} | \varphi \rangle = (| \psi \rangle \langle \psi |) | \varphi \rangle \Rightarrow | \varphi \rangle \propto | \psi \rangle$, entonces, $| \varphi \rangle$ es colineal con $| \psi \rangle$.

- 1. La rotaciones de un vector en el plano pueden verse de dos maneras.
 - 1.1 Se considera el plano como un espacio vectorial $real\ \mathbf{V}^2$ con una base cartesiana: $|\mathrm{i}\rangle=(1,0)$, $|\mathrm{j}\rangle=(0,1)$, esto es: $\mathbb{R}\,|a\rangle=\lambda\,|a\rangle\,\Rightarrow\,$ el ángulo de rotación $=n\pi$, con n entero.
 - 1.2 Igualmente si consideramos el plano complejo unidimensional, expresemos cualquier vector en el plano en su forma polar $|z\rangle=r\mathrm{e}^{i\theta}$ por lo cual: $\mathbb{R}\,|z\rangle=r\mathrm{e}^{i(\theta+\alpha)}=\mathrm{e}^{i\alpha}\,|z\rangle$, si queremos $\lambda=\mathrm{e}^{i\alpha}$ reales, necesariamente $\alpha=n\pi$ con n entero.
- 2. Dado $P_{\psi}=|\psi\rangle\,\langle\psi|$ y con una ecuación de autovalores para un $|\varphi\rangle$ arbitrario
 - 2.1 Si $P_{\psi} | \varphi \rangle = \lambda | \varphi \rangle \Rightarrow P_{\psi} | \varphi \rangle = (| \psi \rangle \langle \psi |) | \varphi \rangle \Rightarrow | \varphi \rangle \propto | \psi \rangle$, entonces, $| \varphi \rangle$ es colineal con $| \psi \rangle$.
 - 2.2 Si ahora el $|\varphi\rangle$ es ortogonal a $|\psi\rangle$, $\langle\psi|\varphi\rangle=0 \Rightarrow \lambda=0$,

- 1. La rotaciones de un vector en el plano pueden verse de dos maneras.
 - 1.1 Se considera el plano como un espacio vectorial $real\ \mathbf{V}^2$ con una base cartesiana: $|\mathrm{i}\rangle=(1,0)$, $|\mathrm{j}\rangle=(0,1)$, esto es: $\mathbb{R}\,|a\rangle=\lambda\,|a\rangle\,\Rightarrow\,$ el ángulo de rotación $=n\pi$, con n entero.
 - 1.2 Igualmente si consideramos el plano complejo unidimensional, expresemos cualquier vector en el plano en su forma polar $|z\rangle=r\mathrm{e}^{i\theta}$ por lo cual: $\mathbb{R}\,|z\rangle=r\mathrm{e}^{i(\theta+\alpha)}=\mathrm{e}^{i\alpha}\,|z\rangle$, si queremos $\lambda=\mathrm{e}^{i\alpha}$ reales, necesariamente $\alpha=n\pi$ con n entero.
- 2. Dado $P_{\psi}=|\psi\rangle\,\langle\psi|$ y con una ecuación de autovalores para un $|\varphi\rangle$ arbitrario
 - 2.1 Si $P_{\psi} | \varphi \rangle = \lambda | \varphi \rangle \Rightarrow P_{\psi} | \varphi \rangle = (| \psi \rangle \langle \psi |) | \varphi \rangle \Rightarrow | \varphi \rangle \propto | \psi \rangle$, entonces, $| \varphi \rangle$ es colineal con $| \psi \rangle$.
 - 2.2 Si ahora el $|\varphi\rangle$ es ortogonal a $|\psi\rangle$, $\langle\psi|\varphi\rangle=0 \ \Rightarrow \ \lambda=0$,
 - 2.3 Entonces el espectro del operador $P_{\psi}=|\psi\rangle\,\langle\psi|$ es 0 y 1. El primero es degenerado y el segundo es simple.

¿ Qué presentamos ?

Que la ecuación de autovalores puede aplicarse a una variedad de situaciones

- 1. Reflexiones
- 2. Rotaciones
- 3. Proyectores

Para la discusión

Dada la siguiente representación matricial de un operador en la base canónica: $< u^i | \mathbb{M} | u_j > = M^i_j = \begin{pmatrix} 2 & i\sqrt{2} \\ -i\sqrt{2} & 3 \end{pmatrix}$, Con $|u_1>=\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $|u_2>=\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

- 1. Encuentre los autovectores $\{|\varphi_1\rangle, |\varphi_2\rangle\}$ para ese operador en la base canónica.
- 2. Encuentre las representaciones matriciales de los operadores proyección sobre los auto espacios, $\mathbb{P}_{|\varphi_i>}=|\varphi_i><\varphi^i|$, en esa misma base canónica.
- 3. Encuentre las representaciones matriciales de los operadores proyección sobre los complementos ortogonales de los autoespacios $U_m^n = |\varphi_m> < \varphi^n|$ en esa misma base y con ella calcule $M = M_i^i U_i^j$.