Abteilung Maschinelles Lernen Institut für Softwaretechnik und theoretische Informatik Fakultät IV, Technische Universität Berlin Prof. Dr. Klaus-Robert Müller Email: klaus-robert.mueller@tu-berlin.de

Exercise Sheet 11

Exercise 1: Activation Maximization (20 P)

Consider the linear model $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$ mapping some input \mathbf{x} to an output $f(\mathbf{x})$. We would like to interpret the function f by building a prototype \mathbf{x}^{\star} in the input domain which produces a large value f. Activation maximization produces such interpretation by optimizing

$$\max_{\boldsymbol{x}} [f(\boldsymbol{x}) - \Omega(\boldsymbol{x})].$$

- (a) Find the prototype \mathbf{x}^* obtained by activation maximization subject to the penalty $\Omega(\mathbf{x}) = \lambda \|\mathbf{x}\|^2$.
- (b) Find the prototype \mathbf{x}^* obtained by activation maximization subject to the penalty $\Omega(\mathbf{x}) = -\log p(\mathbf{x})$ with $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ where $\boldsymbol{\mu}$ and Σ are the mean and covariance.
- (c) Find the prototype \boldsymbol{x}^* obtained when the data is generated as (i) $\boldsymbol{z} \sim \mathcal{N}(0, I)$ and (ii) $\boldsymbol{x} = A\boldsymbol{z} + \boldsymbol{c}$, with A and \boldsymbol{c} the parameters of the generator. Here, we optimize f w.r.t. the code \boldsymbol{z} subject to the penalty $\Omega(\boldsymbol{z}) = \lambda \|\boldsymbol{z}\|^2$.

Exercise 2: Layer-Wise Relevance Propagation (30 P)

We would like to test the dependence of layer-wise relevance propagation (LRP) on the structure of the neural network. For this, we consider the function $y = \min(a_1, a_2)$, where $a_1, a_2 \in \mathbb{R}^+$ are the input activations. This function can be implemented as a ReLU network in multiple ways. Two examples are given below.

- (a) Show that these two networks implement the 'min' function on the relevant domain.
- (b) We consider the LRP- γ propagation rule:

$$R_j = \sum_{k} \frac{a_j \cdot (w_{jk} + \gamma w_{jk}^+)}{\sum_{j} a_j \cdot (w_{jk} + \gamma w_{jk}^+)} R_k$$

where ()⁺ denotes the positive part. For each network, give for the case $a_1 = a_2$ an analytic solution for the scores R_1 obtained by application this propagation rule at each layer. More specifically, express R_1 as a function of the input activations.

Exercise 3: Neuralization (20 P)

Consider the one-class SVM that predicts for every new data point x the 'inlierness' score:

$$f(\boldsymbol{x}) = \sum_{i=1}^{M} \alpha_i k(\boldsymbol{x}, \boldsymbol{u}_i)$$

where $(\boldsymbol{u}_i)_{i=1}^M$ is the collection of support vectors, and $\alpha_i > 0$ are their weightings. We use the Gaussian kernel $k(\boldsymbol{x}, \boldsymbol{x}') = \exp(-\gamma \|\boldsymbol{x} - \boldsymbol{x}'\|^2)$.

Because we are typically interested in the degree of anomaly of a particular data point, we can also define the score $o(\mathbf{x}) = -\frac{1}{\gamma} \log f(\mathbf{x})$ which grows with the degree of anomaly of the data point.

(a) Show that the outlier score o(x) can be rewritten as a two-layer neural network:

$$h_i = \|\boldsymbol{x} - \boldsymbol{u}_i\|^2 - \gamma^{-1} \log \alpha_i$$
 (layer 1)

$$o(\boldsymbol{x}) = -\frac{1}{\gamma} \log \sum_{i=1}^{M} \exp(-\gamma h_i)$$
 (layer 2)

(b) Show that the layer 2 converges to a min-pooling (i.e. $o(x) = \min_{i=1}^{N} \{h_i\}$) in the limit of $\gamma \to \infty$.

Exercise 4: Programming (30 P)

Download the programming files on ISIS and follow the instructions.

