Explorando e classificando bugs comumente encontrados em contratos inteligentes

Ana Julia Bittencourt Fogaça

October 6, 2023

Contents

1	Introdução				
2	Rev	risão bibliográfica	2		
3	Me	todologia	2		
	3.1	Perguntas	2		
	3.2	Categorias dos protocolos	2		
	3.3	Classificação dos bugs	5		
	3.4	Dados coletados	7		
	3.5	Desenvolvimento	9		
	3.6	Categorias	9		
	3.7	Dificuldade	9		

1 Introdução

A tecnologia blockchain, primeiramente introduzida por Satoshi Nakamoto em 2008, é identificada como uma megatendência computacional capaz de revolucionar múltiplos setores industriais[5]. As características distintas de segurança, transparência e rastreabilidade inerentes à blockchain têm incentivado uma ampla gama de setores a explorar seu uso na reestruturação de suas operações fundamentais. A aplicabilidade dessa tecnologia ultrapassa o domínio das criptomoedas, abarcando setores como pagamentos, gerenciamento de identidade, saúde, eleições governamentais e outros[1].

A publicação do whitepaper do Ethereum em 2014 simbolizou um avanço considerável na evolução da tecnologia blockchain[2]. Diferentemente do

Bitcoin, concebido originalmente como uma moeda digital, o Ethereum inaugurou uma funcionalidade disruptiva no campo da tecnologia blockchain: os contratos inteligentes. A inovação trazida pelo Ethereum reside na incorporação de uma máquina virtual capaz de processar códigos em linguagens de programação Turing complete na blockchain, habilitando assim a construção de aplicativos descentralizados. Devido as características inerentes a tecnologia blockchain, como o fato de seu código ser aberto e qualquer pessoa pode interagir com os contratos inteligentes - descentralização, os aplicativos que rodam no Ethereum são sucetíveis a vulnerabilidades que podem ser exploradas por hackers, resultando em grande prejuízo financeiro para os protocolos e usuários dos mesmos. Apenas no primeiro trimestre de 2023, 320 milhões de dólares foram perdidos devido a ataque de hackers no Ethereum[3]. Uma maneira de combater a ação de hackers, é através de incentivos financeiros. Procurando proteger seus usuários, protocolos descentralizados costumam oferecer "Bug Bounties", que são concursos oferecendo recurso financeiro em troca de vulnerabilidades encontradas por "hackers do bem". Devido a demanda crescente pela tecnologia de contrato inteligentes nos últimos anos a projeção de crescimento anual de 2023 a 2030 é de 82.2%[4], o presente artigo tem como objetivo identificar os bugs comumente encontrados nas diferentes categorias de contratos inteligentes e classificálos, identificando possíveis dificuldades na identificação dos mesmos. Para isso, foi feito um estudo com base em competições realizadas entre janeiro a setembro de 2023 retiradas de diferentes plataformas de Bug Bounties.

2 Revisão bibliográfica

O que é EVM, EOA, contracts, transactions (nonce).

3 Metodologia

3.1 Perguntas

• Categorizando bugs

3.2 Categorias dos protocolos

 Liquid Staking: Protocols that enable you to earn staking rewards on your tokens while also providing a tradeable and liquid receipt for your staked position

- Lending: Protocols that allow users to borrow and lend assets
- Dexes: Protocols where you can swap/trade cryptocurrency
- Bridge: Protocols that bridge tokens from one network to another
- CDP: Protocols that mint its own stablecoin using collateralized lending
- Services: Protocols that provide a service to the user
- Yield: Protocols that pay you a reward for your staking/LP on their platform
- RWA: Protocols that involve Real World Assets, such as house tokenization
- Derivatives: Protocols for betting with leverage
- Yield Aggregator: Protocols that aggregated yield from diverse protocols
- Cross Chain: Protocols that add interoperability between different blockchains
- Synthetics: Protocol that created a tokenized derivative that mimics the value of another asset.
- Launchpad: Protocols that launch new projects and coins
- Indexes: Protocols that have a way to track/created the performance of a group of related assets
- Liquidity manager: Protocols that manage Liquidity Positions in concentrated liquidity AMMs
- Insurance: Protocols that are designed to provide monetary protections
- Privacy: Protocols that have the intention of hiding information about transactions
- Infrastructure
- Algo-Stables: Protocols that provide algorithmic coins to stablecoins

- Payments: Protocols that offer the ability to pay/send/receive cryptocurrency
- Leveraged Farming: Protocols that allow you to leverage yield farm with borrowed money
- Staking Pool: Refers to platforms where users stake their assets on native blockchains to help secure the network and earn rewards. Unlike Liquid Staking, users don't receive a token representing their staked assets, and their funds are locked up during the staking period, limiting participation in other DeFi activities
- NFT Marketplace: Protocols where users can buy/sell/rent NFTs
- NFT Lending: Protocols that allow you to collateralize your NFT for a loan
- Options: Protocols that give you the right to buy an asset at a fixed price
- Options Vault: Protocols that allow you to deposit collateral into an options strategy
- Prediction Market: Protocols that allow you to wager/bet/buy in future results
- Decentralized Stablecoin: Coins pegged to USD through decentralized mechanisms
- Farm: Protocols that allow users to lock money in exchange for a protocol token
- Uncollateralized Lending:Protocol that allows you to lend against known parties that can borrow without collaterall
- Reserve Currency: OHM forks: Protocols that uses a reserve of valuable assets acquired through bonding and staking to issue and back its native token
- RWA Lending: Protocols that bridge traditional finance and blockchain ecosystems by tokenizing real-world assets for use as collateral or credit assessment, enabling decentralized lending and borrowing opportunities.
- Gaming: Protocols that have gaming components

- Oracle: Protocols that connect data from the outside world (off-chain) with the blockchain world (on-chain)
- P2P File distributoin system
- DAO: A decentralized autonomous organization (DAO) is an emerging form of legal structure that has no central governing body and whose members share a common goal to act in the best interest of the entity.
 Popularized through cryptocurrency enthusiasts and blockchain technology, DAOs are used to make decisions in a bottom-up management approach.

Fonte: https://defillama.com/categories

3.3 Classificação dos bugs

- O1: We cannot access the source code of the project.
- O2: Bugs that occur in off-chain components
- O3: Smart contracts are written in another language
- C3: Erroneous state updates.
 - C3-1: Missing state update.
 - C3-2: Incorrect state updates, e.g., a state update that should not be there.
- C5: Privilege escalation and access control issues.
 - C5-1: Users can update privileged state variables arbitrarily (caused by lack of ID-unrelated input sanitization).
 - C5-2: Users can invoke some functions at a time they should not be able to do so.
 - $-\,$ C5-3: Privileged functions can be called by anyone or at any time.
 - C5-4: User funds can get locked due to missing/wrong withdraw code
 - C5-6: Privileged users can profit unfarly
- C6: Erroneous accounting.
 - C6-1: Incorrect calculating order.

- C6-2: Returning an unexpected value that deviates from the expected semantics specified for the contract.
- C6-3: Calculations performed with incorrect numbers (e.g., x = a + b = > x = a + c, incorrect precisions).
- C6-4: Other accounting errors (e.g., x = a + b = > x = a b).
- C7: Broken business logic
 - C7-1: Unexpected or missing function invocation sequences (e.g., external calls to dependent contracts, exploitable sequences leading to malicious fund reallocation or manipulation).
 - C7-2: Unexpected environment or contract conditions (e.g., Chain-Link returning outdated data or significant slippage occurring).
 - C7-3: A given function is invoked multiple times unexpectedly.
 - C7-4: Unexpected function arguments.
- C8: Contract implementation-specific bugs. These bugs are difficult to categorize into the above categories.
- C9: Lack of signature replay protection, e.g missing nonce, hash collision
- C10: Missing check. Missing Check refers to a critical oversight in a smart contract's code where a necessary condition or validation is not properly implemented.
- C11: lack of segregation between users funds
- C12: Data validation Data validation vulnerabilities arise when a
 smart contract does not adequately verify or sanitize inputs, especially
 those from untrusted sources. This lack of validation can lead to unintended and potentially harmful consequences within the contracts
 operations.
- C13: Whitelit/Blacklist Match Whitelist/Blacklist Match refers to a
 potential vulnerability where a smart contract improperly handles addresses based on predefined lists.
- C14: Arrays Array refers to a data structure that holds multiple elements under a single variable name. Vulnerabilities related to arrays can arise when developers do not properly handle array indices or fail to validate user inputs.

- C15: DoS: Denial of Service (DoS) vulnerabilities occur when an attacker can exploit a contract in a way that makes it unresponsive or significantly less efficient. This category includes cases that are not well described by another class and where the primary consequence is contract shut-down or operational inefficiency.
- C16: Grielf Attack: A gas griefing attack happens when a user sends the amount of gas required to execute the target smart contract, but not its sub calls. In most cases, this results in uncontrolled behavior that could have a dangerous impact on the business logic.

3.4 Dados coletados

Foi feito a curadoria de 470 bugs classificados com severidade alta

Plataforma	Protocolo	Categoria do protocolo	N de auditores	Descrição
Sherlock	Perennial V2	Derivatives	4	Oracle request tim
Sherlock	Perennial V2	Derivatives	1	Invalid oracle vers
Sherlock	Perennial V2	Derivatives	4	Protocol fee from
Sherlock	Perennial V2	Derivatives	3	PythOracle:if price
Sherlock	Perennial V2	Derivatives	4	Vault.sol: settleing
Sherlock	Perennial V2	Derivatives	1	Keepers will suffer
Sherlock	Blueberry	Leverage Farming	1	Stable BPT valuat
Sherlock	Blueberry	Leverage Farming	2	CurveTricryptoOr
Sherlock	Blueberry	Leverage Farming	2	CurveTricryptoOr
Sherlock	Blueberry	Leverage Farming	1	CVX/AURA distr
Sherlock	Blueberry	Leverage Farming	1	wrong bToken's ex
Code4Arena	Arbitrum Foundation	DAO	3	Signatures can be
Code4Arena	PoolTogether	Yield	1	Too many rewards
Code4Arena	PoolTogether	Yield	16	rngComplete funct
Sherlock	Tokensoft	Launchpad	24	"Votes" balance ca
Sherlock	Bond Options	Options	14	All funds from Tel
Sherlock	Bond Options	Options	4	All funds can be s
Sherlock	Symmetrical	Derivatives	2	liquidatePartyA re
Sherlock	Symmetrical	Derivatives	2	liquidatePositions
Sherlock	Cooler Update	Lending	3	Can steal gOhm b
Sherlock	Cooler Update	Lending	10	At claimDefaulted
Sherlock	Cooler Update	Lending	2	Clearinghouse doe
Sherlock	Cooler Update	Lending	20	isCoolerCallback
Sherlock	GFX Labs	Dexes	6	Lack of segregatio
Sherlock	GFX Labs	Dexes	4	Users' funds could
Code4Arena	PoolTogether	Yield	$\overline{2}$	A malicious user of
Code4Arena	PoolTogether	Yield	5	'amountOut' is repre
Code4Arena	PoolTogether	Yield	39	'Vault.mintYieldFe
Code4Arena	PoolTogether	Yield	10	Delegated amount
Code4Arena	PoolTogether	Yield	8	Resetting delegation
Code4Arena	PoolTogether	Yield	3	
Code4Arena Code4Arena	PoolTogether	Yield	5	requireVaultCollaterali Increasing reserves
Code4Arena	PoolTogether	Yield	$\frac{3}{2}$	'Vault' is not com
Sherlock	Dinari	RWA	$\frac{2}{4}$	Bypass the blackli
Sherlock	Unstopabble	Dexes	1	Wrong accounting
Sherlock	Unstopabble	Dexes		
Sherlock	Unstopabble	Dexes	$\frac{1}{7}$	reduce _{marginby} amou Vault: The attack
Sherlock	Unstopabble	Dexes Dexes		
Sherlock	-		6	reduce _{position} does
	Unstopabble	Dexes	3	Leverage calculati
Sherlock	Unstopabble 8	Dexes	11	Vault: _update _{del}
Sherlock	Unstopabble	Dexes	6	Adversary manipu
Sherlock	Unstopabble	Dexes	$\frac{2}{2}$	Interested calcula
Code4Arena	Nouns DAO	DAO	5	User can steal tok
Sherlock	Hubble Exchange	Dexes, Derivatives	11	ProcessWithdraw
Sherlock	Hubble Exchange	Dexes, Derivatives	11	Failed withdrawal
Sherlock	Hubble Exchange	Dexes, Derivatives	1	Rogue validators
Sherlock	Symmetrical	Derivatives	13	setSymbolsPrice()

- 3.5 Desenvolvimento
- 3.6 Categorias
- 3.7 Dificuldade

Referências

- [1] Blockchain Adoptions in the Maritime Industry: A Conceptual Framework. URL: https://www.tandfonline.com/doi/epdf/10.1080/03088839.2020.1825855?needAccess=true (visited on 10/06/2023).
- [2] Ethereum Whitepaper. URL: https://ethereum.org (visited on 10/02/2023).
- [3] Here's How Much Was Lost to Crypto Hacks and Exploits in Q1 2023 / Bitcoin Insider. URL: https://www.bitcoininsider.org/article/211488/heres-how-much-was-lost-crypto-hacks-and-exploits-q1-2023 (visited on 10/01/2023).
- [4] Smart Contracts Market Size, Share, & Trends [2023 Report]. URL: https://www.grandviewresearch.com/industry-analysis/smart-contracts-market-report (visited on 10/02/2023).
- [5] Technology Tipping Points and Societal Impact. URL: https://www3.weforum.org/docs/WEF%5C_GAC15%5C_Technological%5C_Tipping%5C_Points%5C_report%5C_2015.pdf (visited on 10/06/2023).