ÜBUNGEN ZUR "EICHFELDTHEORIE" ABGABE: 18.05.2015

Aufgabe 15. (8 Punkte) Sei $\pi: \gamma_{1,n+1} \to \mathbb{C}P^n$ das tautologische Bündel und $\iota: \gamma_{1,n+1} \to \underline{\mathbb{C}}^{n+1}$

die Einbettung in das triviale Vektorbündel von Rang n+1 aus Aufgabe 8.

(a) Man zeige, dass

$$\nabla_{X}^{\gamma_{1,n+1}}(s) := p_{\pi(s)}(X(\iota(s))), \ s \in \Gamma(U, \gamma_{1,n+1}), \ X \in \Gamma(U, T\mathbb{C}P^{n})$$

eine kovariante Ableitung auf $\gamma_{1,n+1}$ definiert. Hierbei ist X(-) die flache Ableitung vektorwertiger Funktionen und für einen Untervektorraum $V\subseteq \mathbb{C}^{n+1}$ bezeichnet $p_V\colon \mathbb{C}^{n+1}\to \mathbb{C}^{n+1}$ die orthogonale Projektion. Analog definiere man auf $\gamma_{1,n+1}^{\perp}$ eine kovariante Ableitung $\nabla^{\gamma_{1,n+1}^{\perp}}$.

Man zeige, dass dann

$$(\nabla_X f)(s) := \nabla_X^{\gamma_{1,n+1}^{\perp}}(f(s)) - f(\nabla_X^{\gamma_{1,n+1}} s),$$

wobei $f \in \Gamma(U, \operatorname{Hom}(\gamma_{1,n+1}, \gamma_{1,n+1}^{\perp})), s \in \Gamma(U, \gamma_{1,n+1})$ und $X \in \Gamma(U, T\mathbb{C}P^n)$, eine kovariante Ableitung auf $\operatorname{Hom}(\gamma_{1,n+1}, \gamma_{1,n+1}^{\perp})$ definiert.

(b) Man identifiziere $\mathbb{C}^n \cong \mathfrak{u}(1+n)/(\mathfrak{u}(1)\times\mathfrak{u}(n))$ mit dem Untervektorraum der Matrizen in $\mathfrak{u}(1+n)$ der Form

$$\begin{pmatrix} 0_1 & v \\ -\bar{v}^t & 0_n \end{pmatrix}$$

und zeige, dass dies $\mathbb{C}P^n \cong U(1+n)/U(1) \times U(n)$ die Struktur eines reduktiven homogenen Raums gibt. Unter Verwendung des Isomorphismus $\operatorname{Hom}(\gamma_{1,n+1},\gamma_{1,n+1}^{\perp}) \cong T\mathbb{C}P^n$ aus Aufgabe 9 vergleiche man nun die dem Zusammenhang aus Beispiel 2.1.20 zugeordnete kovariante Ableitung auf $T\mathbb{C}P^n$ mit der kovarianten Ableitung aus (a).