Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/005099

International filing date: 22 March 2005 (22.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-092795

Filing date: 26 March 2004 (26.03.2004)

Date of receipt at the International Bureau: 26 May 2005 (26.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application: 2004年 3月26日

出 願 番 号

 Application Number:
 特願2004-092795

バリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is JP2004-092795

出 願 人

コスモ石油株式会社

Applicant(s):

2005年 5月11日

11)

特許庁長官 Commissioner, Japan Patent Office 【書類名】 特許願 【整理番号】 P 0 4 8 0 5 0 【提出日】 平成16年 3月26日 【あて先】 特許庁長官殿 【国際特許分類】 B01J 35/00 C10G 47/00【発明者】 【住所又は居所】 埼玉県幸手市権現堂1134-2 コスモ石油株式会社 中央研 究所内 【氏名】 桐山 和幸 【発明者】 【住所又は居所】 埼玉県幸手市権現堂1134-2 コスモ石油株式会社 中央研 究所内 【氏名】 藤川 貴志 【発明者】 【住所又は居所】 埼玉県幸手市権現堂1134-2 コスモ石油株式会社 中央研 究所内 【氏名】 加藤 勝博 【発明者】 【住所又は居所】 埼玉県幸手市権現堂1134-2 コスモ石油株式会社 中央研 究所内 【氏名】 橋本 稔 【特許出願人】 【識別番号】 590000455 【氏名又は名称】 財団法人石油産業活性化センター 【特許出願人】 【識別番号】 000105567 【氏名又は名称】 コスモ石油株式会社 【代理人】 【識別番号】 100105647 【弁理士】 【氏名又は名称】 小栗 昌平 【電話番号】 03 - 5561 - 3990【選任した代理人】 【識別番号】 100105474 【弁理士】 【氏名又は名称】 本多 弘徳 【電話番号】 03-5561-3990 【選任した代理人】 【識別番号】 100108589 【弁理士】 【氏名又は名称】 市川 利光 【電話番号】 0.3 - 5.5.61 - 3.9.90【選任した代理人】 【識別番号】 100115107 【弁理士】 【氏名又は名称】 高松 猛

【電話番号】

03-5561-3990

【選任した代理人】

【識別番号】 100090343

【弁理士】

【氏名又は名称】 濱田 百合子 【電話番号】 03-5561-3990

【手数料の表示】

【予納台帳番号】 092740 【納付金額】 21,000円

【その他】 国等の委託研究の成果に係る特許出願(平成15年度新エネルギ

一・産業技術開発機構「石油精製汚染物質低減等技術開発」委託

研究、産業活力再生特別措置法第30条の適用を受けるもの)

【提出物件の目録】

【物件名】 特許請求の範囲 」

 【物件名】
 明細書 1

 【物件名】
 要約書 1

 【包括委任状番号】
 0105199

【書類名】特許請求の範囲

【請求項1】

リン酸化物を担体規準で $1\sim1$ 0質量%含む無機酸化物担体上に、触媒基準、酸化物換算で周期律表第6族金属から選ばれた少なくとも1種を10~30質量%、周期律表第8族金属から選ばれた少なくとも1種を $1\sim1$ 5質量%、炭素を $2\sim1$ 4質量%含み、比表面積が100~400m2/g、細孔容積が0.30~0.60m1/g、平均細孔直径が50~200Aであることを特徴とする軽油の水素化処理触媒。

【請求項2】

前記周期律表第8族金属と周期律表第6族金属の質量比が、酸化物換算で、[8族金属]/[8族金属+6族金属]の値で、0.1~0.25であることを特徴とする請求項1に記載の軽油の水素化処理触媒。

【請求項3】

【請求項4】

前記リン酸化物含む無機酸化物担体が、無機酸化物担体の原料とリン酸化物の原料とを混練する混練法により調製されたことを特徴とする請求項3に記載の軽油の水素化処理触媒の製造方法。

【請求項5】

前記リン酸化物含む無機酸化物担体が、400℃~700℃で0.5~10時間焼成して調製されたことを特徴とする請求項3に記載の軽油の水素化処理触媒の製造方法。

【請求項6】

請求項1又は2に記載の触媒の存在下、水素分圧3~8MPa、温度300~420℃、液空間速度0.3~5hr⁻¹の条件で、軽油留分の接触反応を行うことを特徴とする軽油の水素化処理方法。

【書類名】明細書

【発明の名称】軽油の水素化処理触媒及びその製造方法並びに軽油の水素化処理方法

【技術分野】

 $[0\ 0\ 0\ 1\]$

本発明は、軽油の水素化処理触媒及びその製造方法と、この触媒を用いた軽油の水素化処理方法に関する。詳しくは、軽油を水素化処理する際に、軽油中の硫黄化合物及び窒素化合物を従来のこの種の触媒を使用する場合よりも低減可能である優れた脱硫活性、脱窒素活性を有する触媒及びその製造方法と、この触媒を用いる水素化処理方法に関する。

【背景技術】

[0002]

近年、大気環境改善のために、軽油の品質規制値が世界的に厳しくなる傾向にある。特に軽油中の硫黄化合物は、排ガス対策として期待されている酸化触媒、窒素酸化物(NOx)還元触媒、連続再生式ディーゼル排気微粒子除去フィルター等の後処理装置の耐久性に影響を及ぼす懸念があるため、軽油中の硫黄化合物の低減が要請されている。

このような状況下で、軽油中の硫黄化合物を大幅に低減する超深度脱硫技術の開発が重要視されつつある。軽油中の硫黄化合物の低減化技術として通常、水素化脱硫の運転条件、例之ば、反応温度、液空間速度等を過酷にすることが考えられる。しかし、反応温度を上げると、触媒上に農素質が析出して触媒活性が急速に低下する。また、液空間速度を低下させると、脱硫能は向上するものの精製処理能力が低下するため、設備規模を拡張する必要が生じる。

[0003]

従って、運転条件を過酷にすることなしに軽油の超深度脱硫を達成し得る最も良い方法は、優れた脱硫活性を有する触媒を開発することである。

近年、活性金属の種類、活性金属の含浸方法、触媒担体の改良、触媒細孔構造制御、活性化法等について多くの検討が多方面において進められており、新規深度脱硫の開発成果が報告され、知られている。

例えば、アルミナやシリカ担体に、錯化剤として含窒素配位子を有する有機化合物と、活性金属とからなる溶液を含浸し、200℃以下で乾燥する触媒の製造方法が知られている(特許文献 1 参照)。

また、γーアルミナ担体に、周期律表第8族金属(以下、単に「8族金属」とも記す) 化合物と周期律表第6族金属(以下、単に「6族金属」とも記す)化合物と、リン酸を含む含浸溶液を含浸し、これを200℃以下で乾燥させることを特徴とする触媒の製造方法が知られている(特許文献2参照)。

また、担体に6族金属化合物、リン成分、8族金属化合物、クエン酸からなる溶液を含浸するが、その後乾燥ではなく、焼成を行う発明が知られており(特許文献3参照)、また、6族金属化合物、リン成分、8族金属化合物を担持した担体に有機酸を特定量で含む溶液を含浸し、200℃以下の温度で乾燥する触媒の製造方法が知られている(特許文献4参照)。さらに、6族金属化合物、リン成分、8族金属化合物及び有機酸を含む溶液を用いて担体に含浸担持し、その後、200℃以下の温度で乾燥する触媒の製造方法が知られている(特許文献5参照)。

上記各製造方法で得られる触媒は、脱硫性能を高めているものの、更なる活性の向上が 求められる。

$[0\ 0\ 0\ 4\]$

一方、有機酸を二度用いて含浸させる触媒の製造方法についても提案されている。例えば、酸化物担体に、6 族金属化合物、8 族金属化合物、有機酸、リン酸からなる溶液を含浸し、200℃以下で乾燥させた触媒を得、さらに有機酸の溶液を含浸し、200℃以下で乾燥する触媒の製造方法が知られている(特許文献6参照)。

また、酸化物担体に、6族金属化合物、8族金属化合物、メルカプトカルボン酸、リン酸からなる溶液を含浸させる触媒の製造方法が知られている(特許文献7参照)。この方法は、メルカプトカルボン酸とモリブデン、タングステン、8族金属化合物との配位化合

物を形成させて、触媒担体上に高分散させることを主目的としている。

しかし、この方法では、モリブデン、タングステンが担体上で高分散化することにより、後述する本発明の触媒のような二硫化モリブデンの積層化が困難となり、脱硫活性点として有効なCoMoS相やNiMoS相のタイプII(二硫化モリブデンの2層目以上のエッジ部に存在するCoNi活性点を指し、タイプIIは、二硫化モリブデンの1層目のエッジに存在するCoNi活性点を指し、タイプIIよりも活性が低い)の形成はないと推測される。しかも、メルカプトカルボン酸は、硫黄を含んでおり、8族金属(CoNi) の近傍に存在したり、配位化を形成したりすると、脱硫活性点(CoMoS相、NiMoS相)とならずに、不活性なCoqS和

そして、以上の触媒の製造方法は工程が複雑であり、また得られる触媒が軽油の超深度脱硫を行うのに適さないもの、あるいは超深度脱硫域での効率の低いものや触媒寿命の短いもの等もある。

[0005]

また、酸化物担体上に、コバルト及びニッケルから選択される8族金属の塩及び/又は錯体、及びモリブデン及びタングステンから選択させる6族金属のヘテロポリ酸を含む触媒において、8族金属の濃度が担体に関して2~20質量%、6族金属の濃度が担体に関して5~50質量%であり、実質的に自由水のない触媒が知られている(特許文献8参照)。また、担体上に6族金属及び8族金属を担持した触媒に、ヒドロキシカルボン酸を6族金属と8族金属の金属総モル数の0.3~5.0倍量添加し、次いで200℃以下の温度で乾燥させて得た触媒が知られている(特許文献9参照)。

上記のように開発成果の種々の触媒ないし製造方法が提案されているが、未だ、簡便な方法で製造し得て、しかも運転条件を過酷にせずに軽油の超深度脱硫を実現することができる十分に脱硫活性の高い、かつ触媒寿命の長い触媒が得られる技術は提案されてない。

[0006]

【特許文献1】特開昭61-114737号公報

【特許文献2】特許第2900771号明細書

【特許文献3】特許第2832033号明細書

【特許文献4】特開平4-156948号公報

【特許文献 5 】 特開 2 0 0 3 - 2 9 9 9 6 0 号公報

【特許文献6】特開平4-244238号公報

【特許文献7】特開平6-339635号公報

【特許文献8】特開平6-31176号公報

【特許文献9】特許第3244692号明細書

【発明の開示】

【発明が解決しようとする課題】

[0007]

本発明の目的は、簡便な手段で製造し得て、かつ過酷な運転条件を必要とせずに、軽油中の硫黄化合物を高度に脱硫することができ、同時に窒素化合物を低減することができる 水素化処理触媒、及びその製造方法を提供することである。また、本発明の他の目的は、 この触媒を使用して軽油留分を高効率で水素化処理する方法を提供することである。

【課題を解決するための手段】

[0008]

本発明者は、上記の目的を達成するために検討を行ったところ、リン酸化物を所定量含有する無機酸化物担体に、6族金属化合物、8族金属化合物、有機酸を含む溶液を含浸させて、これらの成分の所定量を担持させ、200℃以下の温度で乾燥させて得られるような特定の組成、物性の触媒は、不活性なコバルト、ニケッル種等の8族金属の金属種を形成しておらず、高活性な脱硫活性金属点(CoMoS相タイプII、NiMoS相タイプII等)が精密に制御されており、これらの結果、脱硫反応及び脱窒素反応を効率的に進行させるので、反応条件を過酷にせずに高度な脱硫反応を容易に達成することができる高活性脱硫触媒であることを知見して本発明を完成した。

[0009]

すなわち、本発明は、上記目的を達成するために、次の軽油の水素化処理触媒、該触媒の製造方法、及び該触媒を用いた軽油の水素化処理方法を提供する。

- (1) リン酸化物を担体規準で $1\sim1$ 0質量%含む無機酸化物担体上に、触媒基準、酸化物換算で周期律表第6族金属から選ばれた少なくとも1種を $10\sim3$ 0質量%、周期律表第8族金属から選ばれた少なくとも1種を $1\sim1$ 5質量%、炭素を $2\sim1$ 4質量%含み、比表面積が $100\sim400$ m2/g、細孔容積が $0.30\sim0.60$ m 1/g、平均細孔直径が $50\sim200$ Åであることを特徴とする軽油の水素化処理触媒。
- (2)前記周期律表第8族金属と周期律表第6族金属の質量比が、酸化物換算で、[8族金属]/[8族金属+6族金属]の値で、0.1~0.25であることを特徴とする上記(1)に記載の軽油の水素化処理触媒。
- (3)比表面積270~500m²/g、細孔容積0.55~0.90m1/g、平均細孔直径40~180Åであるリン酸化物を担体規準で1~10質量%含む無機酸化物担体上に、周期律表第8族金属から選ばれた少なくとも1種を含む化合物、周期律表第6族金属から選ばれた少なくとも1種を含む化合物、有機酸を含有する溶液を用い、触媒基準、酸化物換算で周期律表第6族金属を10~30質量%、周期律表第8族金属を1~15質量%、炭素を2~14質量%となるように担持させ、200℃以下で乾燥させることを特徴とする上記(1)又は(2)に記載の軽油の水素化処理触媒の製造方法。
- (4)前記リン酸化物含む無機酸化物担体が、無機酸化物担体の原料とリン酸化物の原料とを混練する混練法により調製されたことを特徴とする上記(3)に記載の軽油の水素化処理触媒の製造方法。
- (5)前記リン酸化物含む無機酸化物担体が、400℃~700℃で0.5~10時間 焼成して調製されたことを特徴とする上記(3)に記載の軽油の水素化処理触媒の製造方 法。
- (6)上記(1)又は(2)に記載の触媒の存在下、水素分圧3~8 M P a 、温度300~420 $\mathbb C$ 、液空間速度0.3~5 h r $^{-1}$ の条件で、軽油留分の接触反応を行うことを特徴とする軽油の水素化処理方法。

【発明の効果】

$[0\ 0\ 1\ 0]$

本発明によれば、過酷な運転条件を必要とせずに、軽油中の硫黄化合物を高度に脱硫することができ、同時に窒素化合物も低減することができ、かつ簡便な手段で製造し得る軽油の水素化処理触媒が提供される。この水素化処理触媒は、従来の軽油水素化処理の場合とほぼ同じ水素分圧や反応温度等で、超深度脱硫領域での軽油の脱硫反応及び脱窒素反応に対して、極めて優れた活性を有するものである。また、本発明によれば、上記水素化処理触媒の製造方法、及び上記水素化処理触媒を用いた軽油の水素化処理方法も提供される

【発明を実施するための最良の形態】

$[0\ 0\ 1\ 1\]$

本発明の処理対象油は、例えば、直留軽油、接触分解軽油、熱分解軽油、水素化処理軽油、脱硫処理軽油、減圧蒸留軽油(VGO)等の軽油留分が適している。これらの原料油の代表的な性状例として、沸点範囲が150~560°C、硫黄化合物濃度が5質量%以下のものが挙げられる。

$[0\ 0\ 1\ 2]$

本発明では、無機酸化物担体として、脱硫活性を向上させるために、所定量のリン酸化物を含む無機酸化物担体が用いられる。無機酸化物担体としては、各種無機酸化物を用いることができるが、主成分がアルミナである無機酸化物が好ましい。

担体とするアルミナを主成分とする無機酸化物にリン酸化物を含有させるには、特に調製法を限定するものではないが、脱硫活性の高い触媒が得られる点で、担体の原料であるアルミナゲルとリン酸化物の原料とを混練する混練法によることが好ましく、その際、リン酸化物の原料は水溶液として用いることが好ましい。

酸化物担体中のリン酸化物の含有量は、担体を基準として、1~10質量%である。リン酸化物の含有量が上記範囲であることにより、脱硫活性の高い触媒が得られる。

本発明の触媒で使用するリン酸化物の原料としては、種々の化合物を用いることができる。例えば、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸が挙げられるがオルトリン酸が好ましい。

[0013]

担体に用いるアルミナは、 α -アルミナ、 γ -アルミナ、 δ -アルミナ、アルミナ水和物等の種々のアルミナを使用することができるが、多孔質で高比表面積であるアルミナが好ましく、中でも γ -アルミナが適している。アルミナの純度は、約98質量%以上、好ましくは約99質量%以上のものが適している。アルミナ中の不純物としては、 SO_4^{2-} 、 $C1^-$ 、 Fe_2O_3 、 Na_2O 等が挙げられるが、これらの不純物はできるだけ少ないことが望ましく、不純物全量で2質量%以下、好ましくは1質量%以下で、成分毎では、 SO_4^2 -<1.5質量%、 $C1^-$ 、 Fe_2O_3 、 Na_2O <0.1質量%であることが好ましい。

$[0\ 0\ 1\ 4]$

アルミナには酸化物成分を添加することが好ましく、該酸化物成分としては、ゼオライト、ボリア、シリカ及びジルコニアから選ばれる一種以上が好ましい。これらを複合化させることにより、二硫化モリブデンの積層化が有利になる。このうちゼオライトは、コールカウンター法(1 mass %N a C 1 水溶液、アパーチャー 3 0 μ m、超音波処理 3 分)での測定により平均細孔径が 2 . 5 \sim 6 μ m、好ましくは 3 \sim 4 μ mのものである。また、このゼオライトは粒子径 6 μ m以下のものがゼオライト全粒子に対して占める割合が、約70 \sim 98%、好ましくは約75 \sim 98%、より好ましくは約80 \sim 98%のものである

ゼオライトのこのような特性は、難脱硫性物質の細孔内拡散を容易にするための細孔直径を精密に制御する上で好ましく、例えば平均粒子径が大きすぎたり、大きな粒子径の含有量が多かったりすると、酸化物担体を調製する過程でアルミナ水和物(アルミナ前駆体)とゼオライトの吸着水量や結晶性の違いから、加熱焼成時のアルミナ水和物とゼオライトの収縮率が異なり、酸化物担体の細孔として比較的大きなメゾあるいはマクロポアーが生じる傾向がある。またこれらの大きな細孔は、比表面積を低下させるばかりではなく、残油を処理するような場合には触媒毒となるメタル成分の内部拡散を容易ならしめ、延いては脱硫、脱窒素及び分解活性を低下させる傾向を生じさせる。

$[0\ 0\ 1\ 5]$

本発明では、アルミナに添加させる好ましいゼオライトとしては、フォージャサイトX型ゼオライト、フォージャサイトY型ゼオライト、 β ゼオライト、モルデナイト型ゼオライト、Z S M 系ゼオライト(Z S M -4 、5 、8 、1 1 、1 2 、2 0 、2 1 、2 3 、3 4 、3 5 、3 8 、4 6 等がある)、M C M -4 1 、M C M -2 2 、M C M -4 8 、S S Z -3 3 、U T D -1 、C I T -5 、V P I -6 、T S -1 、T S -2 等が使用でき、特にY型ゼオライト、安定化Y ゼオライト、 β ゼオライトが好ましい。また、ゼオライトは、プロトン型が好ましい。

上記のボリア、シリカ、ジルコニアは、一般に、この種の触媒担体成分として使用されるものを使用することができる。

上記のゼオライト、ボリア、シリカ、及びジルコニアは、それぞれ単独で、あるいは2種以上を組合せて使用できる。

$[0\ 0\ 1\ 6]$

これらの酸化物成分の添加量は、一般に、酸化物担体中に、アルミナが70質量%より多く98.5質量%であり、リン酸化物が1質量%から10質量%であるのに対し、酸化物成分が0.5質量%から20質量%未満であり、好ましくは、アルミナが $75\sim98.5$ 質量%、リン酸化物が $1\sim10$ 質量%であるのに対し、酸化物成分が $0.5\sim15$ 質量%であり、より好ましくは、アルミナが $80\sim98.5$ 質量%、リン酸化物が $1\sim10$ 質量%であるのに対して、酸化物成分が $0.5\sim10$ 質量%である。

これらの酸化物成分の添加量が上記の範囲であれば、細孔直径の制御を好適に行うこと

ができ、またブレンステッド酸点やルイス酸点を十分に付与でき、6族金属、特にモリブ デンを高分散できる。

$[0\ 0\ 1\ 7\]$

本発明における無機酸化物担体は、400 $\mathbb{C} \sim 700$ \mathbb{C} $\mathbb{C} 0$. $5 \sim 10$ 時間焼成して調製される。

本発明の触媒は、後述するように、無機酸化物担体に活性成分を担持させた後は、200℃以下で乾燥だけで調製するため、触媒の機械特性(側面破壊強度や最密充填かさ密度等)は無機酸化物担体の焼成で得ることとなり、400℃未満で0.5時間未満の焼成では十分な機械強度を得ることができず、700℃を超えると高温度下で10時間を超える長時間の焼成を行っても、この効果が飽和するばかりでなく、焼き締めにより、無機酸化物担体の比表面積、細孔容積、平均細孔直径と言った特性を却って低下してしまう。

[0018]

無機酸化物担体の比表面積、細孔容積、平均細孔直径は、炭化水素油に対する水素化脱硫活性の高い触媒にするために、比表面積 $270 \sim 500 \, \text{m}^2 / \text{g}$ 、細孔容積 $0.55 \sim 0.90 \, \text{m} \, 1 / \text{g}$ 、平均細孔直径 $40 \sim 180 \, \text{A}$ である必要がある。この理由については次の通りである。

$[0\ 0\ 1\ 9\]$

含浸溶液中で6族金属と8族金属は錯体を形成していると考えられるため、担体の比表面積が270m²/g未満では、含浸の際、錯体の嵩高さのために金属の高分散化が困難となり、その結果、得られる触媒を硫化処理しても、上記の活性点(CoMoS相、NiMoS相等)形成の精密な制御が困難になると推測される。比表面積が500m²/g以下であれば、細孔直径が極端に小さくならないため、触媒の細孔直径も小さくならず、好ましい。細孔直径が小さいと、硫黄化合物の触媒細孔内拡散が不十分となり、脱硫活性が低下する。

細孔容積が0.55ml/g以上では、通常の含浸法で触媒を調製する場合、細孔容積内に入り込む溶媒が少量とならないため、好ましい。溶媒が少量であると、活性金属化合物の溶解性が悪くなり、金属の分散性が低下し低活性な触媒となる。活性金属化合物の溶解性を上げるためには、硝酸等の酸を多量に加える方法があるが、余り加えすぎると担体の低表面積化が起こり、脱硫性能低下の主原因となる。細孔容積が0.9ml/g以下であれば、比表面積が小さくならず、活性金属の分散性が良くなり、脱硫活性の高い触媒となるため、好ましい。

平均細孔直径が40 A以上では、活性金属を担持した触媒の細孔直径も小さくならず、好ましい。触媒の細孔直径が小さいこと、硫黄化合物の触媒細孔内への拡散が不十分となり、脱硫活性が低下する。平均細孔直径が180 A以下であれば、触媒の比表面積が小さくならず、好ましい。触媒の比表面積が小さいと、活性金属の分散性が悪くなり、脱硫活性の低い触媒となる。また、上記の平均細孔直径の条件を満たす細孔の有効数を多くするために、触媒の細孔分布すなわち平均細孔径±15 Aの細孔を有する細孔の割合は、30~90%、好ましくは35~85%とする。90%以下では、脱硫される化合物が特定の硫黄化合物に限定されず、満遍なく脱硫することができるため好ましい。一方、30%以上では、軽油の脱硫に寄与しない細孔が増加せず、その結果、脱硫活性が大幅に低下することがないため好ましい。

[0020]

本発明の触媒に含有させる6族金属は、モリブデン、タングステンが好ましく、より好ましくは、モリブデンである。

6族金属の含有量は、触媒基準、酸化物換算で、10~30質量%である。10質量%以上では、6族金属に起因する効果を発現させるのに十分であり、好ましい。また、30質量%以下では、6族金属の含浸(担持)工程で6族金属化合物の凝集が生じず、6族金属の分散性が良くなり、また、効率的に分散する6族金属含有量の限度を超えず、触媒表面積が大幅に低下しない等により、触媒活性の向上がみられ、好ましい。

$[0\ 0\ 2\ 1]$

8族金属は、コバルト、ニッケルが好ましい。

8族金属の含有量は、触媒基準、酸化物換算で、 $1\sim15$ 質量%、好ましくは、 $3\sim8$ 質量%である。1質量%以上では、8族金属に帰属する活性点が十分に得られるため好ましい。また、15質量%以下では、8族金属の含有(担持)工程で8族金属化合物の凝集が生じず、8族金属の分散性が良くなること加え、不活性なコバルト、ニッケル種等の8族金属種である $C\circ gS_8$ 種、 Ni_3S_2 種等の前駆体である $C\circ O$ 種、NiO種等や担体の格子内に取り込まれた $C\circ A$ ピネル種、NiAピネル種等が生成しないと考えられるため、触媒能の向上が見られ、好ましい。また、8族金属としてコバルトとニッケルを使用するときは、 $C\circ / (Ni+C\circ)$ のモル比が $0.6\sim1$ の範囲、より好ましくは、 $0.7\sim1$ の範囲になるように使用することが望ましい。この比が0.6以上では、Ni上でコーク前駆体が生成せず、触媒活性点がコークで被覆されず、その結果活性が低下しないため、好ましい。

[0022]

8族金属と6族金属の上記した含有量において、8族金属と6族金属の最適質量比は、好ましくは、酸化物換算で、[8族金属]/[8族金属+6族金属]の値で、 $0.1\sim0.2$ 5である。この値が0.1以上では、脱硫の活性点と考えられるCoMoS相、NiMoS相等の生成が抑制されず、脱硫活性向上の度合いが高くなるため、好ましい。0.25以下では、上記の不活性なコバルト、ニッケル種等(CogS4種、NigS2種等)の生成が抑制され、触媒活性が向上されるので好ましい。

[0023]

[0024]

[0025]

本発明の触媒を得るには、前記した成分からなり、前記した物性を有する無機酸化物担

体に、前記した6族金属を少なくとも1種を含む化合物、前記した8族金属を少なくとも1種を含む化合物、有機酸を含有する溶液を用い、6族金属、8族金属、炭素を上記した含有量となるように担時させ、乾燥する方法によるが、具体的には、例えば、無機酸化物を、これらの化合物等を含有する溶液に含浸し、乾燥する方法により行う。

[0026]

上記の含浸溶液中に使用する6族金属を含む化合物としては、三酸化モリブデン、モリブドリン酸、モリブデン酸アンモニウム、モリブデン酸等が挙げられ、好ましくは、三酸化モリブデン、モリブドリン酸である。これらの化合物の上記含浸溶液中の添加量は、得られる触媒中に上記した範囲内で6族金属が含有する量とする。

[0027]

8 族金属を含む化合物としては、炭酸コバルト、炭酸ニッケル、クエン酸コバルト、クエン酸ニッケル、硝酸コバルト 6 水和物、硝酸ニッケル 6 水和物等が挙げられ、好ましくは、炭酸コバルト、炭酸ニッケル、クエン酸コバルト、クエン酸ニッケル化合物である。特に好ましくは、クエン酸コバルト、クエン酸ニッケル化合物である。

上記のクエン酸コバルトとしては、クエン酸第一コバルト(Co_3 ($C_6H_5O_7$) $_2$)、クエン酸水素コバルト($CoHC_6H_5O_7$)、クエン酸コバルトオキシ塩(Co_3 ($C_6H_5O_7$)、クエン酸ニッケルとしては、クエン酸第一ニッケル(Ni_3 ($C_6H_5O_7$) $_2$)、クエン酸水素ニッケル($NiHC_6H_5O_7$)、クエン酸ニッケルオキシ塩(Ni_3 ($C_6H_5O_7$)・NiO)等が挙げられる。

これらのコバルトとニッケルのクエン酸化合物の製造は、例えば、コバルトの場合、クエン酸の水溶液に炭酸コバルトを溶かすことにより得られる。このような製法で得られたクエン酸化合物の水分を除去しないで、そのまま、触媒調製に用いてもかまわない。

これらの化合物の上記含浸溶液中への添加量は、得られる触媒中に上記した範囲内で8 族金属が含有される量とする。

[0028]

有機酸としては、クエン酸一水和物、無水クエン酸、イソクエン酸、リンゴ酸、酒石酸、シュウ酸、コハク酸、グルタン酸、アジピン酸、安息香酸、フタル酸、イソフタル酸、サリチル酸、マロン酸等が挙げられ、好ましくはクエン酸一水和物である。これらの有機酸は、硫黄を実質的に含まない化合物を使用することが重要である。

有機酸としてクエン酸を使用する場合は、クエン酸単独であってもよいし、上記したコバルトやニッケル等の8族金属とのクエン酸化合物であってもよい。

有機酸の添加量は、得られる触媒中に前記の炭素含有量で炭素が残る量とすることが重要であり、また 8 族金属に対して有機酸の添加量をモル比で、有機酸/ 8 族金属=0.2~1.2 とすることが適している。このモル比が 0.2 以上では、 8 族金属に帰属する活性点が十分に得られるため好ましい。また、 1.2 以下では、含浸液が高粘度とならないため、担持工程に時間を要することがなく、活性金属が担体ペレットの内部まで含浸されるため、活性金属の分散状態は良好となり好ましい。

さらに、6 族金属と8 族金属の総量に対して有機酸の添加量は、モルで、有機酸/[6 族金属+8 族金属]が0.35以下、好ましくは、0.3以下となることが適している。0.35以下では、金属と錯体化しきれない余剰な有機酸が触媒表面に残ることがなく、好ましい。触媒表面上に余剰な有機酸が残っていると、硫化工程で原料油とともい流れ出す場合があるので好ましくない。

[0029]

なお、上記の6族金属、8族金属の化合物が含浸溶液に十分に溶解しない場合には、これらの化合物とともに酸[硝酸、有機酸(クエン酸、リンゴ酸、酒石酸等)]を使用してもよく、好ましくは有機酸の使用であり、有機酸を用いる場合は、得られる触媒中にこの有機酸による炭素が残存することがあるため、触媒中の炭素含有量が上記範囲内となるようにすることが重要である。

[0030]

上記の含浸溶液において、上記の各成分を溶解させるために用いる溶媒は、水である。

溶媒の使用量は、少なすぎれば、担体を十分に浸漬することができず、多すぎれば、溶解した活性金属の一部が担体上に担持しきれず、含浸溶液容器のへりなどに付着してしまい、所望の担持量が得られないため、担体100gに対して、 $50\sim90$ gが好ましい。上記溶媒に上記成分を溶解させて含浸溶液を調製するが、このとき温度は、0Cを超え10C以下でよく、この範囲であれば、上記溶媒に各成分を良好に溶解させることができる

$[0\ 0\ 3\ 1]$

このようにして調製した含浸溶液を、上記の無機酸化物に含浸させて、これらの溶液中の上記の各成分を上記の無機酸化物担体に担持させる。含浸条件は、種々の条件を採ることができるが、通常、含浸温度は、好ましくは0℃を超え100℃未満が適している。含浸時間は、15分~3時間、好ましくは、20分~2時間、さらに好ましくは、30分~1時間である。なお、温度が高すぎると、含浸中に乾燥が起こり、分散度が偏ってしまう。また、含浸中は攪拌することが好ましい。

[0032]

含浸溶液を含浸させた担持は、常温~約80℃、窒素気流中、空気気流中、あるいは真空中で、水分をある程度 [LOI(Loss on ignition)が50%以下となるように]除去し、その後、空気気流中、窒素気流中、あるいは真空中で200℃以下、5時間~20時間の乾燥を行う。乾燥を200℃以下の温度で行うと、金属と錯体化していると思われる有機酸が触媒表面上から脱離せず、その結果、得られる触媒を硫化処理したときに上記の活性点と考えられるCoMoS相、NiMoS相の形成の精密制御が容易になるため、好ましい。ただし、真空中で乾燥を行う場合は、圧力760mmHg換算で上記の温度範囲になるようにして乾燥を行うことが好ましい。

[0033]

本発明においては、上記のようにして、リン酸化物を所定量含む無機酸化物担体に、所定量の6族金属、8族金属、農素を担持させ、所定温度で乾燥させて得た触媒は、その比表面積が100~400m²/g、好ましくは150~350m²/gであり、細孔容積が0.30~0.60m1/g、好ましくは0.30~0.50m1/g、平均細孔直径が50~200Å、好ましくは50~180Å、より好ましくは50~150Åである。触媒の比表面積、細孔容積、及び平均細孔直径の各物性が上記範囲であるときに、所望の触媒活性が得られ、所期の目的を達成できる。触媒の上記各物性を上記範囲にすることは、触媒調製に当って、用いるリン酸化物を含む無機酸化物担体の上記各物性を上記した担体に関する上記各物性の範囲内で選択し、6族金属、8族金属などの必要担持成分の担持量を上記範囲内で制御し、必要担持成分を担持した後の乾燥条件を上記範囲内で制御することによって容易に達成できる。

$[0\ 0\ 3\ 4\]$

また、本発明において、触媒の形状は、特に限定されず、通常、この種の触媒に用いられている形状、例えば、円柱状、三葉状、四葉状等を採用することができる。触媒の大きさは直径が約 $1\sim2$ mm、長さは約 $2\sim5$ mmが好ましい。

触媒の機械的強度は、側面破壊強度(SCS:Side Crush Strength)で約21bs/mm以上が好ましい。SCSが約21bs/mm以上であれば、反応装置に充填した触媒が破壊され、反応装置内で差圧が発生し、水素化処理運転の続行が不可能となることはない。

触媒の最充填かさ密度(CBD:Compacted Bulk Density)は、0.6~1.2g/mlが好ましい。

また、触媒中の活性金属の分散状態は、触媒中で活性金属が均一に分布しているユニフォーム型がこの好ましい。

[0035]

本発明の水素化処理は、水素分圧3~8MPa、温度300~420℃、液空間速度0.3~5 h r ⁻¹の条件で、以上の触媒と硫黄化合物を含む軽油留分とを接触させて脱硫を行い、軽油留分中の難脱硫物質を含む硫黄化合物を減少させる方法である。

本発明の水素化処理方法を商業規模で行う場合には、本発明の触媒を固定床、移動床あるいは流動床式の触媒層を反応装置内に形成し、この反応装置内に原料油を導入し、上記の条件で水素化処理を行えばよい。

最も一般的には、固定床式触媒床を反応装置内に形成し、原料油を反応装置の上部より 導入し、固定床を上から下に通過させ、反応装置の下部から生成物を流出させるものであ る。

また、本発明の触媒を、単独の反応装置に充填して行う一段の水素化処理方法であって もよいし、いくつかの反応装置に充填して行う多段連続水素化処理方法であってもよい。

さらに、本発明の触媒は、使用前(即ち、本発明の水素化処理方法を行う前)、反応装置中で硫化処理して活性化する。この硫化方法は、 $200 \% \sim 400 \%$ 、好ましくは、 $250 \sim 350 \%$ 、常圧あるいはそれ以上の水素雰囲気下で、硫黄化合物を含む石油蒸留物、それにジメチルジスルフィドや二硫化炭素等の硫化剤を加えてもの、あるいは硫化水素を用いて行う。

【実施例】

[0036]

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例に何ら限定されるものではない。

[0037]

実施例1

シリカとアルミナ水和物とオルトリン酸を混練し、押出成形後、600 C で 2 時間焼成して直径 1/16 インチの柱状成形物のリン酸化物ーシリカーアルミナ複合担体(リン酸化物ーシリカ/アルミナ質量比=4/1/95、細孔容積0.70 m $^2/g$ 、比表面積 38 m $^2/g$ 、平均細孔直径 62 Å)を得た。

イオン交換水20.1gに、硝酸コバルト6水和物7.98gとクエン酸1水和物3.84gとモリブデン酸アンモニウム11.09gを投入し、80Cに加温して10分間攪拌して含浸溶液を得た。

ナス型フラスコ中に、上記のリン酸化物ーシリカーアルミナ複合担体30.0gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約25℃で3時間浸漬した。

この後、窒素気流中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒Aを得た。

[0038]

実施例2

SiO₂/Al₂O₃モル比6のSHYゼオライト粉末(平均粒子径3.5 μ m 、粒子径6 μ m以下のものがゼオライト全粒子の87%)とアルミナ水和物とオルトリン酸を混練し、押出成形後、600℃で2時間焼成して直径1/16インチの柱状成形物のリン酸化物ーゼオライトーアルミナ複合担体(リン酸化物/ゼオライト/アルミナ質量比:4/7/89、細孔容積0.70m1/g、比表面積412m²/g、平均細孔直径63Å)を得た。

イオン交換水38.9gに、炭酸コバルト5.44gとクエン酸1水和物12.81gと三酸化モリブデン15.07gを投入し、80℃に加温して10分間攪拌して含浸溶液を得た。

ナス型フラスコ中に、上記のゼオライトーアルミナ複合担体50.0gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約25℃で3時間浸漬した。

この後、窒素気流中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒Bを得た。

[0039]

実施例3

SiO $_2$ /Al $_2$ O $_3$ モル比 $_6$ のSHYゼオライト粉末(平均粒子径 $_3$. $_5$ μm、粒子径 $_6$ μm以下のものがゼオライト全粒子の $_8$ 7%)とアルミナ水和物とオルトリン酸を混練し、押出成形後、 $_6$ 00℃で2時間焼成して直径1/16インチの柱状成形物のリン酸化

物ーゼオライトーアルミナ複合担体(リン酸化物/ゼオライト/アルミナ質量比:4/7/89、細孔容積0.70ml/g、比表面積412m 2 /g、平均細孔直径63Å)を得た。

イオン交換水34.98gに、クエン酸第1コバルト16.07g、モリブドリン酸27.59gを投入し、80 \mathbb{C} に加温して10分間攪拌して含浸溶液を得た。

ナス型フラスコ中に、上記のゼオライトーアルミナ複合担体50.0gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約25℃で3時間浸漬した。

この後、窒素気流中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒Cを得た。

[0040]

比較例1

イオン交換水21. 6 gに、炭酸コバルト3. 3 1 gと、モリブドリン酸11. 4 1 gと、オルトリン酸1. 1 7 gを溶解させた含浸用の溶液を調製した。

ナス型フラスコ中に、 γ ーアルミナ担体(細孔容積 0 . 6 9 m 1 \angle g 、比表面積 3 6 4 m 2 \angle g 、平均細孔直径 6 4 Å) 3 0 . 0 gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約 2 5 $\mathbb C$ で 1 時間浸漬した。

この後、窒素気流中で風乾し、マッフル炉中120℃で約1時間乾燥させ、500℃で4時間焼成し、触媒aを得た。

$[0 \ 0 \ 4 \ 1]$

比較例2

イオン交換水 21.4g に、クエン酸第一コバルト 7.69g と、モリブドリン酸 12 . 91g と、オルトリン酸 1.46g を溶解させた含浸用の溶液を調製した。

ナス型フラスコ中に、 γ ーアルミナ担体(細孔容積 0 . 6 9 m 1 / g 、比表面積 3 6 4 m 2 / g 、平均細孔直径 6 4 $^{\rm A}$) 3 0 . 0 g を投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約 2 5 $\mathbb C$ で 1 時間浸漬した。

この後、窒素気流中で風乾し、マッフル炉中120℃で約1時間乾燥させ、触媒bを得た。

[0042]

上記で得られた各触媒の化学性状及び物理性状を表1に示した。

[0043]

【表 1】

			化学性	比状	•	物理性状			
	担持金属量								
触媒	Co0	MoO ₃	P ₂ O ₅	С	P_2O_5/MoO_3	SA	PV	MPD	MPD±15Å
						m ² /g	ml/g	A	%
A	5. 1	22. 4	O	5. 3	0. 12	306	0. 41	65	83
В	4.9	22	0	5. 1	0. 12	316	0.4	66	85
С	5, 9	26, 8	0, 7	5. 1	0. 12	281	0.36	61	84
а	5.	20	2. 7	0	0. 14	250	0. 48	75	81
b	5	22	2.8	5. 1	0. 12	230	0. 44	85	83

[0044]

(直留軽油の水素化処理反応)

上記の実施例及び比較例で調製した触媒A、B、C、a、bを用い、以下の要領にて、下記性状の直留軽油の水素化処理を行った。

先ず、触媒を高圧流通式反応装置に充填して固定床式触媒層を形成し、下記の条件で前処理の触媒の硫化を行った。

次に、反応温度に加熱した原料油と水素含有ガスとの混合流体を、反応装置の上部より 導入して、下記の条件で水素化反応を進行させ、生成油とガスの混合流体を、反応装置の 下部より流出させ、気液分離器で生成油を分離した。

[0045]

触媒の硫化:原料油による液硫化を行った。

圧力(水素分圧); 4.9MPa

雰囲気;水素及び原料油(液空間速度 $1.5 h r^{-1}$ 、水素/オイル比 $200 m^3$ (n o r m a 1) / k 1)

温度 ;常温約22℃で水素及び原料油を導入し、20℃/hrで昇温し、 300 ℃にて24hr維持、次いで反応温度である350℃まで20℃/hrで昇温

[0046]

水素化反応条件:

反応温度 ;350℃

圧力(水素分圧); 4.9 MPa 液空間速度; 1.3 hr⁻¹

水素/オイル比 ; 200m³ (normal)/kl

[0047]

原料油の性状:

油種 ;中東系直留軽油

密度(15/4℃);0.8623

蒸留性状 ; 初留点が186.0℃、50%点が316.0℃、

90%点が355.5℃、終点が371.5℃

 硫黄成分
 ; 1. 74質量%

 窒素成分
 ; 210質量ppm

 動物度(0200%)
 ; 7000%

動粘度(@30℃);7.026cSt

流動点 ; 0.0℃くもり点 ; 4.0℃セタン指数 ; 55.4

[0048]

反応結果について、以下の方法で解析した。

350℃で反応装置を運転し、6日経過した時点で生成油を採取し、その性状を分析した。

(1) 脱硫率(HDS)(%):

原料中の硫黄分を脱硫反応によって硫化水素に転換することにより、原料油から消失した硫黄分の割合を脱硫率と定義し、原料油及び生成油の硫黄分析値から以下の式により算出した。これらの結果は、表2の通りであった。

(2) 脱硫反応速度定数(ks):

生成油の硫黄分(Sp)の減少量に対して、1.3次の反応次数を得る反応速度式の定数を脱硫反応速度定数(ks)とする。

なお、反応速度定数が高い程、触媒活性が優れていることを示している。これらの結果は、表2の通りであった。

[0049]

脱硫率 $(\%) = ((Sf - Sp) / Sf) \times 100$

脱硫反応速度定数=[1/0.3]×(1/(Sp)^{0.3}-1/(Sf)0.3)×(LHSV)

式中、Sf:原料油中の硫黄分(質量%)

Sp: 反応生成油中の硫黄分(質量%)

LHSV: 液空間速度 (hr⁻¹)

脱硫比活性(%)=各脱硫反応速度定数/比較触媒 a の脱硫反応速度定数×100

[0050]

【表 2】

触媒	反応温度 350℃							
	硫黄分(質量 ppm)	脱硫率 (%)	速度定数	比活性	窒素分(質量 ppm)			
A	10	99. 9	30.8	224	<1			
В	8	100.0	33. 1	241	<1			
С	4	100. 0	41.5	306	<1			
a	97	99. 4	13. 7	100	22			
b	15	99. 9	27. 3	200	<1			

[0051]

表2から明らかなように、本発明の製造法による触媒A~Cを用いれば、超深度脱硫領域を容易に達成できることが判る。

また、以上の結果から明らかなように、本発明の触媒は、従来の軽油水素化処理の場合とほぼ同じ水素分圧や反応温度等で、超深度脱硫領域での軽油の脱硫反応及び脱窒素反応に対して、極めて優れた活性を有することが判る。

[0052]

実施例4

アルミナ水和物とオルトリン酸を混練し、押出成形後、600℃で2時間焼成して直径 1/16 インチの柱状成形物のリン酸化物一アルミナ複合担体(リン酸化物/アルミナ質量比=3/97、細孔容積0.7 m 1/g、比表面積187 m 2/g、平均細孔直径98 Å)を得た。

イオン交換水 20.3 g に、硝酸コバルト 6 水和物 9.3 g と 9

ナス型フラスコ中に、上記のリン酸化物ーアルミナ複合担体30.0gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約25℃で3時間浸漬した。

この後、窒素雰囲気中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒Dを得た。

$[0\ 0\ 5\ 3]$

イオン交換水20.3gに、炭酸コバルト3.8gと、モリブドリン酸13.4gと、オルトリン酸1.5gを溶解させた含浸用の溶液を調製した。

ナス型フラスコ中に、 γ ーアルミナ担体(細孔容積 0.7 m l /g、比表面積 187 m 2 /g、平均細孔直径 98 Å) $30.0 \text{ g を投入し、そこえ上記の含浸溶液の全量をピペットで添加し、約 <math>25 \text{ C}$ で 1 時間浸漬した。

この後、窒素気流中で風乾し、マッフル炉中120 $\mathbb C$ で約1時間乾燥させ、500 $\mathbb C$ で 4時間焼成し、触媒 $\mathbb C$ を得た。

$[0\ 0\ 5\ 4]$

	化学性状					物理性状			
		担持金	属量						
触媒	CoO	MoO ₃	P ₂ O ₅	С	P ₂ O ₅ /MoO ₃	SA	PV	MPD	MPD±15Å
:						m ² /g	ml/g	Å	%
D	5. 5	22. 5	0	3. 3	0, 13	132	0. 45	132	80
С	5.4	22. 3	2. 9	3. 4	0. 13	134	0. 44	133	79

[0055]

(減圧軽油の水素化処理反応)

上記の実施例4及び比較例3で調製した触媒D、cを用い、以下の要領にて、下記性状の減圧軽油の水素化処理を行なった。

先ず、触媒を高圧流通式反応装置に充填して固定床式触媒層を形成し、下記の条件で前処理の触媒の硫化を行った。

次に、反応温度に加熱した原料油と水素含有ガスとの混合流体を、反応装置の上部より 導入して、下記の条件で水素化反応を進行させ、生成油とガスの混合流体を、反応装置の 下部より流出させ、気液分離器で生成油を分離した。

[0056]

触媒の硫化:原料油による液硫化を行った。

圧力(水素分圧); 4.9MPa

雰囲気;水素及び原料油(液空間速度 0. 6 6 h r $^{-1}$ 、水素/オイル比 5 0 0 m 3 (n o r m a 1) / k 1)

温度 ; 常温約22℃で水素及び原料油を導入し、25℃/hrで昇温し、290℃にて15hr維持、次いで320℃で15hr維持した後、反応温度である360℃まで20℃/hrで昇温

[0057]

水素化反応条件:

反応温度 ; 3 6 0 ℃

圧力(水素分圧); 4.9 M P a 液空間速度; 0.66 h r ⁻¹

水素/オイル比 ;500m³(normal)/kl

[0058]

原料油の性状:

油種 ; 中東系減圧軽油

密度(15/4℃);0.9185

蒸留性状 ; 初留点が349.0℃、50%点が449.0℃、

90%点が529.0℃、終点が556.0℃

硫黄成分; 2. 4 5 質量%窒素成分; 6 5 0 質量 p p m

流動点 ; 35℃アスファルテン; < 1000ppm

アニリン点 ;82℃

[0059]

反応結果について、以下の方法で解析した。

360℃で反応装置を運転し、6日経過した時点で生成油を採取し、その性状を分析した。

(1) 脱硫率(HDS)(%):

原料中の硫黄分を脱硫反応によって硫化水素に転換することにより、原料油から消失し

た硫黄分の割合を脱硫率と定義し、原料油及び生成油の硫黄分析値から以下の式により算出した。これらの結果は、表3の通りであった。

(2) 脱硫反応速度定数(ks):

生成油の硫黄分(Sp)の減少量に対して、1.5次の反応次数を得る反応速度式の定数を脱硫反応速度定数(ks)とする。

なお、反応速度定数が高い程、触媒活性が優れていることを示している。これらの結果は、表4の通りであった。

$[0\ 0\ 6\ 0\]$

脱硫率 $(\%) = ((Sf - Sp) / Sf) \times 100$

脱硫反応速度定数= $2\times(1/(Sp)^{0.5}-1/(Sf)^{0.5})\times(LHSV)$

式中、Sf:原料油中の硫黄分(質量%)

Sp: 反応生成油中の硫黄分(質量%)

LHSV: 液空間速度(hr⁻¹)

脱硫比活性(%)=触媒 D の脱硫反応速度定数/比較触媒 c の脱硫反応速度定数× 1 0 0

$[0\ 0\ 6\ 1]$

【表4】

触媒	反応温度 360℃								
ſ	硫黄分(質量ppm)	脱硫率 (%)	速度定数	比活性					
D	540	97.8	4. 9	1 6 5					
c	1240	94.9	3. 0	100					

[0062]

表4から明らかなように、本発明の製造法による触媒Dを用いれば、減圧軽油についても高度な脱硫を達成できることが判る。

$[0\ 0\ 6\ 3\]$

以上の結果から明らかなように、本発明の触媒は、従来の軽油水素化処理の場合とほぼ同じ水素分圧や反応温度等で、軽油の脱硫反応及び脱窒素反応に対して、極めて優れた活性を有することが判る。

【書類名】要約書

【課題】 簡便な手段で製造し得て、かつ過酷な運転条件を必要とせずに、軽油中の硫黄化合物を高度に脱硫することができ、同時に窒素化合物を低減することができる軽油の水素化処理触媒、その製法、それを用いた軽油の水素化処理法を提供すること。

【解決手段】 一定量のリン酸化物を含む無機酸化物担体上に、一定量の周期律表第6族金属の少なくとも1種、周期律表第8族金属の少なくとも1種、及び炭素を含み、一定の比表面積、細孔容積、及び平均細孔直径を有する軽油の水素化処理触媒、その製法、それを用いた軽油の水素化処理法。

【選択図】 なし

【書類名】 出願人名義変更届 【整理番号】 P 0 4 8 0 5 0 【あて先】 特許庁長官殿 【事件の表示】 特願2004- 92795 【出願番号】 【承継人】 【識別番号】 000105567 【氏名又は名称】 コスモ石油株式会社 【承継人代理人】 【識別番号】 100105647 【弁理士】 【氏名又は名称】 小栗 昌平 【選任した代理人】 【識別番号】 100105474 【弁理士】 【氏名又は名称】 本多 弘徳 【選任した代理人】 【識別番号】 100108589 【弁理士】 【氏名又は名称】 市川 利光 【選任した代理人】 【識別番号】 100115107 【弁理士】 【氏名又は名称】 高松 猛 【選任した代理人】 【識別番号】 100090343 【弁理士】 【氏名又は名称】 濱田 百合子 【手数料の表示】 【予納台帳番号】 0 9 2 7 4 0 【納付金額】 4,200円

【提出物件の目録】

【包括委任状番号】

0105199

出願人履歴

5 9 0 0 0 0 4 5 5 19951102 住所変更 5 9 1 0 3 8 3 4 7

東京都港区虎ノ門四丁目3番9号 財団法人石油産業活性化センター 000105567 19900828 新規登録

東京都港区芝浦1丁目1番1号コスモ石油株式会社