Лекция 12. Вероятностные компьютеры

21 декабря 2015 г.

Теория алгоритмов 2015

Определение

Вероятностная машина Тьюринга (ВМТ) недетерминированная машина Тьюринга, в которой переходы по веткам определяются вероятностым образом.

Сразу хочется ввести классы сложности, связанные с такими задачами. Например, обозначить задачи, которые можно посчитать на ВМТ за полином. Назовем этот класс PP и определим следующим образом:

Определение

 $L \subset PP$: $\exists M, w \in L \Leftrightarrow P(M(w) = 1) > 0.5$ и машина M -полиномиальная.

То есть, мы берем слово, загружаем его в ВМТ, эта машина говорит нам "да"или "нет". Для тех слов которые лежат в этом языке ВМТ должна говорить "да"с вероятностью больше чем 0.5.

На самом деле это плохое определение, так как при таком определении $NP \subset PP$. Чтобы это доказать, возьмем NP-полную задачу SAT $F(x_1,...,x_n)$ и воспользуемся следующим вероятностным алгоритмом M_{sat} :

Алгоритм

Шаг
$$1: x_i = \begin{cases} 1, & p = 1/2 \\ 0, & p = 1/2 \end{cases}$$
 Шаг $2: C$ читаем $F(x_i)$ Шаг $3: if (F(x_i) = 0)$ return $\begin{cases} 1, & p = 1/2 \\ 0, & p = 1/2 \end{cases}$ else return $1;$

Теорема

 $NP \subset PP$

Доказательство

Оценим вероятность того что $w \not\subset SAT$. Так как мы будем всегда попадать в if $(F(x_i) = 0)$, то P(M(w) = 1) = 0.5 Допустим, что теперь $w \subset SAT$. Пусть есть k кортежей, которые удовлетворяют условию, тогда рассмотрим следующие вероятности:

$$P(M(v) = 1 \mid noвезло) = 1$$

 $P(noвезло) = \frac{k}{2^n}$

$$P(M(v) = 1 \mid$$
 не повезло $) = 1$

$$P($$
не повезло $) = 1$

Используя формулу полной вероятности получаем:

$$P(M(w) = 1) = \frac{k}{2^n} + (1 - \frac{k}{2^n})\frac{1}{2} > 0.5$$

Это и доказывает, что SAT лежит в PP

Замечание

Если алгоритм M_{sat} выдает на выходе 1, это еще ничего не значит. Что бы это что-то значило, нужно провести статистически важное число испытаний. Другими словами, провести экспоненциальное число испытаний.

Теорема

 $PP \subset PSPACE$

Доказательство

Нам надо показать: $L \subset PP \to L \subset PSPACE$

Возьмем какой нибудь язык

$$L \subset PP o \exists M, w \in L \Leftrightarrow P(M(w) = 1) > 0.5$$
 и машина M - полиномиальная

Хотим построить другую машину M' - обычную ДМТ, которая вычисляет M'(w,M) = P(M(w) = 1). Это можно сделать полным перебором с возвратом в классе PSPACE.

Продолжение доказательства,

M' - полиномиальна. Это означает, что количество ветвлений в любом случае будет не больше чем полином. Перебор в глубину будет не более чем полиномиальный \to полиномиальной памяти хватит чтобы сохранить одно состояние перебора. M' работает за полиномиальную память $\to L \subset PSPACE$

Замечание

В иерархии классов PP лежит где-то между NP и PSPACE

Введем правильное определение

Определение

 $L \subset BPP$: $\exists M, w \in L \Leftrightarrow P(M(w) = 1) > \frac{2}{3}$ и машина M - полиномиальная.

Замечание

На самом деле вместо $\frac{2}{3}$ можно взять любое число больше $\frac{1}{2}$. Потому что при k испытаниях вероятность ошибки изменится экспоненциально, а сложность запуска полиномиально.

Рассмотрим этот момент подробнее

Допустим у нас есть $P(M(w)=1) \geq \frac{1}{2} + k$. Надо перейти к $P(M(w)=1) \geq \frac{2}{3}$. Рассмотрим на примере 2-ух монет. Есть 2 монеты:

Первая:

0.5 + p - веротятность выпадения орла 0.5 - p - веротятность выпадения решки

Соответствует случаю, когда $w \subset L$

Вторая:

0.5 - р - веротятность выпадения орла

0.5 + p - веротятность выпадения решки

Соответствует случаю, когда $w \not\subset L$

Как понять с какой монетой мы имеем дело?

Замечание

Кидая достаточное количество раз монетку мы можем сделать веротяность ошибки сколь угодно маленькую. Вероятность ошибиться падает экспоненциально

Замечание

Возникает вопрос: BPP = PP?(например мы можем запустить алгоритм Монте-Карло, подождать полиномиально долгое число бросков и получить ответ). Поэтому возможно BPP = PP, но до сих пор не известно. Тем не менее многие задачи из BPP со временем оказывались в P (важный пример - проверка простоты).

Существует хороший пример задачи, про которую известно, что она лежит в BPP и на сегодняшний день неизвестно лежит ли в P. Это задача о проверке полинома на тождественное равенство нулю.

Задача

 $P(x_1,...,x_n)$ - полином от п пемененных, задан в виде произведения полиномов или как определитель полиномиальной матрицы.

Иначе говоря, полином задан таким образом, что мы не можем посчитать его коэффиценты (так как это будет полиномиальная задача).

Задача: проверить равен ли полином P нулю тождественно.

Замечание

Никто пока не придумал детерминированного полиномиального алгоритма решения данной задачи.

Лемма Шварца-Зиппеля

Пусть есть ненулевой полином $F(x_1,...,x_n)$. d - его степень. S - конечное случайное подмножество R^n . R - случайно выбранный элемент S. Тогда $P(F(R)=0) \leq \frac{d}{|S|}$ (маловероятно).

Доказательство

Будем доказывать индукцией по n.

База индукции. n=1

 $F(x_1)$ - полином от одной переменной. У него максимум d корней. Сколько бы точек мы не взяли, максимум точек будет $d o P(F(R)=0) = rac{d}{|S|}$ и в частности $P(F(R)=0) \leq rac{d}{|S|}$

Продолжение доказательства

Шаг индукции

F можно представить в виде:

 $F(x_1,...,x_n) = \sum_{i=1}^d x_1^i \cdot F_i(x_2,...,x_n)$ (берем x_1 и всюду выносим за скобки)

F
eq 0
ightarrow (из условия $) \exists i: F_i \neq 0$

Выберем i - максимальное из таких чисел: $i=\mathsf{max}_j\mathsf{F}_j\neq 0$.

Fi - ненулевой полином и x_1^i тоже не нулевой.

Выбираем случайное $R \subset S$ и оценим вероятность того, что F(R) = 0.

Продолжение доказательства

Это может быть только в 2 случаях: когда $F_i=0$ или когда $\mathbf{x}_1^i=0$

$$1) P(F_i(R) = 0) \leq \frac{d-i}{|s|}$$
 (так как можно применить предположение индукции)

2)
$$P(x_1^i(R) = 0) \le \frac{i}{|s|}$$

Так как выполняется либо (1) либо (2) получаем:

$$P(F(R) = 0) \le \frac{d}{|s|}$$

Про *BPP* также известны следующие утверждения:

Замечание

 $BPP \subset PP$ $BPP \subset \sum^{2} P \cap {}^{2}P$ $P \cap BPP$