Funções de Resumo

Universidade Federal do Ceará - Campus Quixadá

Roberto Cabral rbcabral@ufc.br

05 de Maio de 2023

Auditoria e Segurança de SI

• Uma função de resumo h mapeia uma string de bits de tamanho arbitrário em uma string de n bits.

$$h: \{0,1\}^* \to \{0,1\}^n$$

 Uma função de resumo h mapeia uma string de bits de tamanho arbitrário em uma string de n bits.

$$h: \{0,1\}^* \to \{0,1\}^n$$

• A string de bits gerada é conhecida por digest ou valor de resumo.

• Uma função de resumo h mapeia uma string de bits de tamanho arbitrário em uma string de n bits.

$$h: \{0,1\}^* \to \{0,1\}^n$$

- A string de bits gerada é conhecida por digest ou valor de resumo.
- Funcões de resumo são usadas em várias aplicações criptográficas, como assinatura digital, derivação de chaves, geração de números pseudoaleatórios, dentre outras.

Propriedades de uma função de resumo

• Resistência à primeira pré-imagem: Dada uma função $h:M\to R$ e um valor de resumo $r\in R$, é computacionalmente inviável encontrar uma mensagem $m\in M$ tal que h(m)=r.

Propriedades de uma função de resumo

- Resistência à primeira pré-imagem: Dada uma função $h:M\to R$ e um valor de resumo $r\in R$, é computacionalmente inviável encontrar uma mensagem $m\in M$ tal que h(m)=r.
- Resistência à segunda pré-imagem: Dada uma função $h:M\to R$ e uma mensagem $m_0\in M$, é computacionalmente inviável encontrar uma mensagem $m_1\in M$ tal que $m_0\neq m_1$ e $h(m_0)=h(m_1)$.

Propriedades de uma função de resumo

- Resistência à primeira pré-imagem: Dada uma função $h:M\to R$ e um valor de resumo $r\in R$, é computacionalmente inviável encontrar uma mensagem $m\in M$ tal que h(m)=r.
- Resistência à segunda pré-imagem: Dada uma função $h: M \to R$ e uma mensagem $m_0 \in M$, é computacionalmente inviável encontrar uma mensagem $m_1 \in M$ tal que $m_0 \neq m_1$ e $h(m_0) = h(m_1)$.
- Resistência à colisão: Dada uma função $h:M\to R$, é computacionalmente inviável encontrar duas mensagens $m_0,m_1\in M$ tal que $m_0\neq m_1$ e $h(m_0)=h(m_1)$.

(a) Pré-imagem.

(b) Segunda pré-imagem.

(c) Colisões.

Uma função de resumo resistente a colisões também é resistente à segunda pré-imagem! Entretanto, uma função de resumo ser resistente à colisão não garante que ela seja resistente à primeira pré-imagem

• O oráculo aleatório pode ser visto como uma caixa preta.

- O oráculo aleatório pode ser visto como uma caixa preta.
- Ele recebe como entrada uma cadeia de *bits* de tamanho variado e retorna uma cadeia de *bits* de tamanho arbitrário.

- O oráculo aleatório pode ser visto como uma caixa preta.
- Ele recebe como entrada uma cadeia de *bits* de tamanho variado e retorna uma cadeia de *bits* de tamanho arbitrário.
- Qualquer um pode interagir com ele, seja uma entidade honesta ou um atacante.

- O oráculo aleatório pode ser visto como uma caixa preta.
- Ele recebe como entrada uma cadeia de *bits* de tamanho variado e retorna uma cadeia de *bits* de tamanho arbitrário.
- Qualquer um pode interagir com ele, seja uma entidade honesta ou um atacante.
- O modelo do oráculo aleatório foi introduzido em 1993 por Mihir Bellare e Phillip Rogaway e fornece uma metodologia formal que pode ser usada no projeto e validação de esquemas criptográficos.

• É um problema clássico que demonstra como resultados em probabilidade podem ser contra-intuitivos para o cérebro humano.

• É um problema clássico que demonstra como resultados em probabilidade podem ser contra-intuitivos para o cérebro humano.

Definição

Qual é o menor valor de n para que a probabilidade de duas pessoas em uma sala com n pessoas compartilhem a mesma data de aniversário com probabilidade maior que 50%?

• É um problema clássico que demonstra como resultados em probabilidade podem ser contra-intuitivos para o cérebro humano.

Definição

Qual é o menor valor de n para que a probabilidade de duas pessoas em uma sala com n pessoas compartilhem a mesma data de aniversário com probabilidade maior que 50%?

• Fazendo umas continhas, é possível ver que serão 'aproximadamente' $1,17*\sqrt{365}$.

• É um problema clássico que demonstra como resultados em probabilidade podem ser contra-intuitivos para o cérebro humano.

Definição

Qual é o menor valor de n para que a probabilidade de duas pessoas em uma sala com n pessoas compartilhem a mesma data de aniversário com probabilidade maior que 50%?

- Fazendo umas continhas, é possível ver que serão 'aproximadamente' $1,17*\sqrt{365}$.
- Se estendermos o conceito para funções de resumo, temos que a probabilidade de encontrarmos uma colisão em uma função de resumo gira em torno de raiz quadrada do tamanho da saída da função.

Nível de segurança atingível pelas funções de resumo.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Segunda pré-imagem n	Propriedades	Nível de segurança em <i>bits</i>
	Segunda pré-imagem	n

Construção Merkle-Damgård

 Uma forma de construir funções de resumo é projetar uma função de compressão resistente à colisão com tamanho de entrada fixo e então usar extensão de domínio para criar uma função com tamanho de entrada arbitrário.

Construção Merkle-Damgård

- Uma forma de construir funções de resumo é projetar uma função de compressão resistente à colisão com tamanho de entrada fixo e então usar extensão de domínio para criar uma função com tamanho de entrada arbitrário.
- Esse método foi usado no projeto do MD5, SHA-1 e SHA-2.

Construção Esponja

Definição

A construção esponja é um modo de operação baseado em uma permutação de tamanho fixo e uma regra de preenchimento que constrói uma função que mapeia entradas de tamanho arbitrário em saídas de tamanho variado.

Construção Esponja

Definição

A construção esponja é um modo de operação baseado em uma permutação de tamanho fixo e uma regra de preenchimento que constrói uma função que mapeia entradas de tamanho arbitrário em saídas de tamanho variado.

Cabral (UFC)

• E 1993, o NIST anuncia um algoritmo padrão para funções de resumo criptográfico denominado *Standart Hash Algorithm*.

- E 1993, o NIST anuncia um algoritmo padrão para funções de resumo criptográfico denominado *Standart Hash Algorithm*.
- O algoritmo foi projetado pela NSA e usa a construção Merkle-Damgård.

- E 1993, o NIST anuncia um algoritmo padrão para funções de resumo criptográfico denominado *Standart Hash Algorithm*.
- O algoritmo foi projetado pela NSA e usa a construção Merkle-Damgård.
- Pouco tempo depois, foi anunciada a anulação do algoritmo e, em 1995, outro algoritmo é publicado, o SHA-1.

- E 1993, o NIST anuncia um algoritmo padrão para funções de resumo criptográfico denominado *Standart Hash Algorithm*.
- O algoritmo foi projetado pela NSA e usa a construção Merkle-Damgård.
- Pouco tempo depois, foi anunciada a anulação do algoritmo e, em 1995, outro algoritmo é publicado, o SHA-1.
- O primeiro algoritmo passou a ser chamado pela comunidade como SHA-0.

- E 1993, o NIST anuncia um algoritmo padrão para funções de resumo criptográfico denominado *Standart Hash Algorithm*.
- O algoritmo foi projetado pela NSA e usa a construção Merkle-Damgård.
- Pouco tempo depois, foi anunciada a anulação do algoritmo e, em 1995, outro algoritmo é publicado, o SHA-1.
- O primeiro algoritmo passou a ser chamado pela comunidade como SHA-0.
- A Diferença do SHA-1 para o SHA-0 é apenas uma rotação na etapa inicial do processamento das palavras que compõem um bloco da mensagem.

 Com suspeitas cada vez maiores de vulnerabilidade no SHA-1 e com o advento de novas tecnologias, a NSA projetou em 2001 a versão seguinte da família SHA.

- Com suspeitas cada vez maiores de vulnerabilidade no SHA-1 e com o advento de novas tecnologias, a NSA projetou em 2001 a versão seguinte da família SHA.
- O SHA-2 é composto por quatro algoritmos:

- Com suspeitas cada vez maiores de vulnerabilidade no SHA-1 e com o advento de novas tecnologias, a NSA projetou em 2001 a versão seguinte da família SHA.
- O SHA-2 é composto por quatro algoritmos:
 - SHA-224

- Com suspeitas cada vez maiores de vulnerabilidade no SHA-1 e com o advento de novas tecnologias, a NSA projetou em 2001 a versão seguinte da família SHA.
- O SHA-2 é composto por quatro algoritmos:
 - SHA-224
 - SHA-256

- Com suspeitas cada vez maiores de vulnerabilidade no SHA-1 e com o advento de novas tecnologias, a NSA projetou em 2001 a versão seguinte da família SHA.
- O SHA-2 é composto por quatro algoritmos:
 - SHA-224
 - SHA-256
 - SHA-384

- Com suspeitas cada vez maiores de vulnerabilidade no SHA-1 e com o advento de novas tecnologias, a NSA projetou em 2001 a versão seguinte da família SHA.
- O SHA-2 é composto por quatro algoritmos:
 - SHA-224
 - SHA-256
 - SHA-384
 - SHA-512

- Com suspeitas cada vez maiores de vulnerabilidade no SHA-1 e com o advento de novas tecnologias, a NSA projetou em 2001 a versão seguinte da família SHA.
- O SHA-2 é composto por quatro algoritmos:
 - SHA-224
 - SHA-256
 - SHA-384
 - SHA-512
- O SHA-2 pode ser descrito como duas etapas:

- Com suspeitas cada vez maiores de vulnerabilidade no SHA-1 e com o advento de novas tecnologias, a NSA projetou em 2001 a versão seguinte da família SHA.
- O SHA-2 é composto por quatro algoritmos:
 - SHA-224
 - SHA-256
 - SHA-384
 - SHA-512
- O SHA-2 pode ser descrito como duas etapas:
 - Pré-processamento, onde a mensagem é preenchida e dividida em blocos de 512 bits (ou 1024, dependendo do algoritmo).

- Com suspeitas cada vez maiores de vulnerabilidade no SHA-1 e com o advento de novas tecnologias, a NSA projetou em 2001 a versão seguinte da família SHA.
- O SHA-2 é composto por quatro algoritmos:
 - SHA-224
 - SHA-256
 - SHA-384
 - SHA-512
- O SHA-2 pode ser descrito como duas etapas:
 - Pré-processamento, onde a mensagem é preenchida e dividida em blocos de 512 bits (ou 1024, dependendo do algoritmo).
 - Calculo do valor de resumo.

• Foram recebidas 64 propostas de algoritmos, dentre as quais 51 foram selecionadas para a primeira etapa, em Outubro de 2008.

- Foram recebidas 64 propostas de algoritmos, dentre as quais 51 foram selecionadas para a primeira etapa, em Outubro de 2008.
- Para a segunda etapa, que teve seu início em Julho de 2009, foram selecionados 14 candidatos.

- Foram recebidas 64 propostas de algoritmos, dentre as quais 51 foram selecionadas para a primeira etapa, em Outubro de 2008.
- Para a segunda etapa, que teve seu início em Julho de 2009, foram selecionados 14 candidatos.
- Para a terceira e última etapa, iniciada em 2011, foram selecionados cinco candidatos: BLAKE, Grøstl, JH, Keccak e Skein.

- Foram recebidas 64 propostas de algoritmos, dentre as quais 51 foram selecionadas para a primeira etapa, em Outubro de 2008.
- Para a segunda etapa, que teve seu início em Julho de 2009, foram selecionados 14 candidatos.
- Para a terceira e última etapa, iniciada em 2011, foram selecionados cinco candidatos: BLAKE, Grøstl, JH, Keccak e Skein.
- Em 2012, Keccak foi escolhido como o vencedor.

- Foram recebidas 64 propostas de algoritmos, dentre as quais 51 foram selecionadas para a primeira etapa, em Outubro de 2008.
- Para a segunda etapa, que teve seu início em Julho de 2009, foram selecionados 14 candidatos.
- Para a terceira e última etapa, iniciada em 2011, foram selecionados cinco candidatos: BLAKE, Grøstl, JH, Keccak e Skein.
- Em 2012, Keccak foi escolhido como o vencedor.
- O Keccak baseia-se na construção esponja e foi criado por Guido Bertoni et al. [?].

- Foram recebidas 64 propostas de algoritmos, dentre as quais 51 foram selecionadas para a primeira etapa, em Outubro de 2008.
- Para a segunda etapa, que teve seu início em Julho de 2009, foram selecionados 14 candidatos.
- Para a terceira e última etapa, iniciada em 2011, foram selecionados cinco candidatos: BLAKE, Grøstl, JH, Keccak e Skein.
- Em 2012, Keccak foi escolhido como o vencedor.
- O Keccak baseia-se na construção esponja e foi criado por Guido Bertoni et al. [?].
- O processo de padronização teve fim em Agosto de 2015, culminando no documento FIPS 202 [?].

0.1

Construção Esponja

 A Construção Esponja foi criada por Guido Bertoni, Joan Daemen, Michaël Peeters e Gilles Van Assche.

- A Construção Esponja foi criada por Guido Bertoni, Joan Daemen, Michaël Peeters e Gilles Van Assche.
- É uma função de mapeamento que recebe como entrada dados de comprimento variável e gera como saída uma mensagem também de comprimento variável.

- A Construção Esponja foi criada por Guido Bertoni, Joan Daemen, Michaël Peeters e Gilles Van Assche.
- É uma função de mapeamento que recebe como entrada dados de comprimento variável e gera como saída uma mensagem também de comprimento variável.
- Baseia-se em uma permutação de comprimento fixo, uma regra de preenchimento e uma taxa de bits r.

- A Construção Esponja foi criada por Guido Bertoni, Joan Daemen, Michaël Peeters e Gilles Van Assche.
- É uma função de mapeamento que recebe como entrada dados de comprimento variável e gera como saída uma mensagem também de comprimento variável.
- Baseia-se em uma permutação de comprimento fixo, uma regra de preenchimento e uma taxa de bits r.
- A função esponja pode ser usada para modelar ou implementar a maioria das primitivas criptográficas, incluindo função hash, códigos de autenticação de mensagens, cifra de fluxo, cifra de bloco, gerador de números pseudoaleatórios e autenticação.

05 de Maio de 2023

Fase de Inicialização

Fase de Inicialização

Fase de Absorção

Fase de Inicialização

Fase de Absorção

Fase de extração

05 de Maio de 2023

Fase de inicialização: O estado é inicializado com zeros e a mensagem é dividida em k blocos de r bits.

Cabral (UFC)

Fase de Absorção: é aplicada uma operação XOR entre um bloco m_i com os primeiros r bits do estado atual. Então, o estado é atualizado por meio de uma permutação P.

Fase de extração: os primeiros r bits do estado são usados como saída;

0.2

Família SHA-3

Família SHA-3

 A família SHA-3 é composta por quatro funções de resumo e duas funções com saída variável (XOF - Extendable-Output Function).

Família SHA-3

 A família SHA-3 é composta por quatro funções de resumo e duas funções com saída variável (XOF - Extendable-Output Function).

Funções	Taxa de bits (r)	Capacidade (c)	Nível de segurança
SHA-3 ₂₂₄	1,152	448	112
SHA-3 ₂₅₆	1,088	512	128
SHA-3 ₃₈₄	832	768	192
SHA-3 ₅₁₂	576	1,024	256
SHAKE ₁₂₈	1,344	256	$\min(d/2, 128)$
SHAKE ₂₅₆	1,088	512	$\min(d/2, 256)$

Nas funções XOF, d representa o número de bits produzidos.

Funções com saída variável (XOF)

• Uma função com saída variável mapeia uma cadeia de bits de tamanho arbitrário em uma cadeia de bits de tamanho variável d.

Funções com saída variável (XOF)

 Uma função com saída variável mapeia uma cadeia de bits de tamanho arbitrário em uma cadeia de bits de tamanho variável d.

$$XOF: \{0,1\}^* \times d \in \mathbb{N} \longrightarrow \{0,1\}^d$$

Funções com saída variável (XOF)

• Uma função com saída variável mapeia uma cadeia de bits de tamanho arbitrário em uma cadeia de bits de tamanho variável d.

$$XOF: \{0,1\}^* \times d \in \mathbb{N} \longrightarrow \{0,1\}^d$$

Cabral (UFC)

Funções de Resumo

0.3

Função de Permutação ${\cal P}$

O estado S é composto por r+c=1600 bits e pode ser representado por uma matriz de 5 \times 5 \times 64 bits.

O estado S é composto por r+c=1600 bits e pode ser representado por uma matriz de 5 \times 5 \times 64 bits.

$$S = \begin{bmatrix} s_0 & s_1 & s_2 & s_3 & s_4 \\ s_5 & s_6 & s_7 & s_8 & s_9 \\ s_{10} & s_{11} & s_{12} & s_{13} & s_{14} \\ s_{15} & s_{16} & s_{17} & s_{18} & s_{19} \\ s_{20} & s_{21} & s_{22} & s_{23} & s_{24} \end{bmatrix}; S[x, y] = s_{5x+y} \text{ para } 0 \le x, y < 5.$$

$$P: S \longrightarrow S'$$

$$P: S \longrightarrow S'$$

 θ

l

ρ

$$\chi$$

77

Etapas de mapeamento

Entrada: Estado S e i_r o índice da rodada.

Salida: Estado S atualizado.

Etapa de mapeamento θ

Etapas de mapeamento ho e π

Etapa de mapeamento χ

Etapa de mapeamento ι

Etapa de mapeamento ι

1: return S

• Neste etapa, é aplicada uma operação XOR de cada elemento i com a paridade da coluna i-1 e a paridade da coluna i+1 rotada um bit.

ullet Neste etapa, é aplicada uma operação XOR de cada elemento i com a paridade da coluna i-1 e a paridade da coluna i+1 rotada um bit.

	s_0	s_1	s_2	s_3	s_4
	s_5	s_6	s_7	s_8	s_9
S =	s_{10}	s_{11}	s_{12}	s_{13}	s_{14}
ĺ	s_{15}	s_{16}	s_{17}	s_{18}	s_{19}
	s_{20}	s_{21}	s_{22}	s_{23}	s_{24}

ullet Neste etapa, é aplicada uma operação XOR de cada elemento i com a paridade da coluna i-1 e a paridade da coluna i+1 rotada um bit.

	s_0	s_1	s_2	s_3	s_4
	s_5	s_6	s_7	s_8	s_9
S =	s_{10}	s_{11}	s_{12}	s_{13}	s_{14}
	s_{15}	s_{16}	s_{17}	s_{18}	s_{19}
	s_{20}	s_{21}	s_{22}	s_{23}	s_{24}

$$P_{i-1}$$

Cabral (UFC) Funções de Resumo

• Neste etapa, é aplicada uma operação XOR de cada elemento i com a paridade da coluna i-1 e a paridade da coluna i+1 rotada um bit.

$$S = \begin{bmatrix} s_0 & s_1 & s_2 & s_3 & s_4 \\ s_5 & s_6 & s_7 & s_8 & s_9 \\ s_{10} & s_{11} & s_{12} & s_{13} & s_{14} \\ s_{15} & s_{16} & s_{17} & s_{18} & s_{19} \\ s_{20} & s_{21} & s_{22} & s_{23} & s_{24} \end{bmatrix}$$

$$P_{i-1}$$
 \oplus P'_{i+1} $=$ $\mathsf{ROT}(P_{i+1},1)$

Cabral (UFC) Funções de Resumo 05 de Maio de 2023

• Neste etapa, é aplicada uma operação XOR de cada elemento i com a paridade da coluna i-1 e a paridade da coluna i+1 rotada um bit.

	s_0	s_1	s_2	s_3	s_4
	s_5	s_6	s_7	s_8	s_9
S =	s_{10}	s_{11}	s_{12}	s_{13}	s_{14}
	s_{15}	s_{16}	s_{17}	s_{18}	s_{19}
	s_{20}	s_{21}	s_{22}	s_{23}	s_{24}

$$s_{12}$$
 \oplus P_{i-1} \oplus P'_{i+1} $=$ $s_{12'}$
$$P'_{i+1} = \mathsf{ROT}(P_{i+1}, 1)$$

Cabral (UFC) Funções de Resumo 05 de Maio de 2023

• Neste etapa, é aplicada uma operação XOR de cada elemento i com a paridade da coluna i-1 e a paridade da coluna i+1 rotada um bit.

	s_0	s_1	s_2	s_3	s_4
	s_5	s_6	s_7	s_8	s_9
S =	s_{10}	s_{11}	$s_{12'}$	s_{13}	s_{14}
	s_{15}	s_{16}	s_{17}	s_{18}	s_{19}
	s_{20}	s_{21}	s_{22}	s_{23}	s_{24}

$$s_{12}$$
 \oplus P_{i-1} \oplus P'_{i+1} $=$ $s_{12'}$

 $\begin{array}{|c|c|} \hline P'_{i+1} & = & \mathsf{ROT}(P_{i+1}, 1) \\ \hline \end{array}$

Cabral (UFC) Funções de Resumo

Etapas de mapeamento

Entrada: Estado S e i_r o índice da rodada.

Salida: Estado S atualizado.

Etapa de mapeamento θ

1:
$$C_y = s_{0+y} \oplus s_{5+y} \oplus s_{10+y} \oplus s_{15+y} \oplus s_{20+y}$$

2:
$$D_x = C_{(x-1) \mod 5} \oplus (\mathsf{ROT}(C_{(x+1) \mod 5}, 1))$$

3:
$$s_{5x+y} = s_{5x+y} \oplus D_x$$

Etapas de mapeamento ρ e π

Etapa de mapeamento χ

Etapa de mapeamento ι

Etapa de mapeamento ι

4: return S

para
$$0 \le y < 5$$

para $0 \le x < 5$
para $0 < x, y < 5$

$$P: S \longrightarrow S'$$

 χ

 π

	s_0	s_1	s_2	s_3	s_4
S =	s_5	s_6	s_7	s_8	s_9
	s_{10}	s_{11}	s_{12}	s_{13}	s_{14}
	s_{15}	s_{16}	s_{17}	s_{18}	s_{19}
	s_{20}	s_{21}	s_{22}	s_{23}	s_{24}

$$S = \begin{bmatrix} s_0 & s_1 & s_2 & s_3 & s_4 \\ s_5 & s_6 & s_7 & s_8 & s_9 \\ s_{10} & s_{11} & s_{12} & s_{13} & s_{14} \\ s_{15} & s_{16} & s_{17} & s_{18} & s_{19} \\ s_{20} & s_{21} & s_{22} & s_{23} & s_{24} \end{bmatrix}$$

$$s_{0'} = \mathsf{ROT}(s_0, 0)$$

 Nesta etapa, cada palavra do estado será rodada uma quantidade fixa de bits.

$$S = \begin{bmatrix} s_0 & s_1 & s_2 & s_3 & s_4 \\ s_5 & s_6 & s_7 & s_8 & s_9 \\ s_{10} & s_{11} & s_{12} & s_{13} & s_{14} \\ s_{15} & s_{16} & s_{17} & s_{18} & s_{19} \\ s_{20} & s_{21} & s_{22} & s_{23} & s_{24} \end{bmatrix}$$

 $s_{0'}$

$$S' =$$

$$S = \begin{bmatrix} s_0 & s_1 & s_2 & s_3 & s_4 \\ s_5 & s_6 & s_7 & s_8 & s_9 \\ s_{10} & s_{11} & s_{12} & s_{13} & s_{14} \\ s_{15} & s_{16} & s_{17} & s_{18} & s_{19} \\ s_{20} & s_{21} & s_{22} & s_{23} & s_{24} \\ \hline & s_{1'} & = \mathsf{ROT}(s_1, 1) \\ \hline s_{0'} \\ \end{bmatrix}$$

$$S' =$$

 Nesta etapa, cada palavra do estado será rodada uma quantidade fixa de bits.

$$S = \begin{bmatrix} s_0 & s_1 & s_2 & s_3 & s_4 \\ s_5 & s_6 & s_7 & s_8 & s_9 \\ \hline s_{10} & s_{11} & s_{12} & s_{13} & s_{14} \\ \hline s_{15} & s_{16} & s_{17} & s_{18} & s_{19} \\ \hline s_{20} & s_{21} & s_{22} & s_{23} & s_{24} \end{bmatrix}$$

*s*_{0′} *s*_{1′}

$$S' =$$

$$S' =$$

	s_0	s_1	s_2	s_3	s_4
	s_5	s_6	s_7	s_8	s_9
S =	s_{10}	s_{11}	s_{12}	s_{13}	s_{14}
	s_{15}	s_{16}	s_{17}	s_{18}	s_{19}
	s_{20}	s_{21}	s_{22}	s_{23}	s_{24}

$$s_{0'}$$
 $s_{1'}$ $s_{2'}$

$$S' =$$

$$S = \begin{bmatrix} s_0 & s_1 & s_2 & s_3 & s_4 \\ s_5 & s_6 & s_7 & s_8 & s_9 \\ s_{10} & s_{11} & s_{12} & s_{13} & s_{14} \\ s_{15} & s_{16} & s_{17} & s_{18} & s_{19} \\ s_{20} & s_{21} & s_{22} & s_{23} & s_{24} \\ \hline & s_{3'} & = \mathsf{ROT}(s_3, 28) \\ \hline s_{0'} & s_{1'} & s_{2'} \\ \hline \end{bmatrix}$$

$$S' =$$

	s_0	s_1	s_2	s_3	s_4
	s_5	s_6	s_7	s_8	s_9
S =	s_{10}	s_{11}	s_{12}	s_{13}	s_{14}
	s_{15}	s_{16}	s_{17}	s_{18}	s_{19}
	s_{20}	s_{21}	s_{22}	s_{23}	s_{24}

$$S' =$$

$$S = \begin{bmatrix} s_0 & s_1 & s_2 & s_3 & s_4 \\ s_5 & s_6 & s_7 & s_8 & s_9 \\ s_{10} & s_{11} & s_{12} & s_{13} & s_{14} \\ s_{15} & s_{16} & s_{17} & s_{18} & s_{19} \\ s_{20} & s_{21} & s_{22} & s_{23} & s_{24} \\ \hline & & & & & & & \\ \hline s_{4'} & & & & & & \\ \hline s_{0'} & s_{1'} & s_{2'} & s_{3'} \\ \hline \end{bmatrix}$$

$$S' =$$

	s_0	s_1	s_2	s_3	s_4
	s_5	s_6	s_7	s_8	s_9
S =	s_{10}	s_{11}	s_{12}	s_{13}	s_{14}
	s_{15}	s_{16}	s_{17}	s_{18}	s_{19}
	s_{20}	s_{21}	s_{22}	s_{23}	s_{24}

30' 31' 32' 33' 34'		$s_{0'}$	$s_{1'}$	$s_{2'}$	$s_{3'}$	$s_{4'}$
-----------------------------	--	----------	----------	----------	----------	----------

$$S' =$$

$$S = \begin{bmatrix} s_0 & s_1 & s_2 & s_3 & s_4 \\ s_5 & s_6 & s_7 & s_8 & s_9 \\ s_{10} & s_{11} & s_{12} & s_{13} & s_{14} \\ s_{15} & s_{16} & s_{17} & s_{18} & s_{19} \\ s_{20} & s_{21} & s_{22} & s_{23} & s_{24} \end{bmatrix}$$

	$s_{0'}$	$s_{1'}$	$s_{2'}$	$s_{3'}$	$s_{4'}$
	$s_{5'}$	$s_{6'}$	$s_{7'}$	$s_{8'}$	$s_{9'}$
S' =	$s_{10'}$	$s_{11'}$	$s_{12'}$	$s_{13'}$	$s_{14'}$
	$s_{15'}$	$s_{16'}$	$s_{17'}$	$s_{18'}$	$s_{19'}$
	$s_{20'}$	$s_{21'}$	$s_{22'}$	$s_{23'}$	$s_{24'}$

 $P: S \longrightarrow S'$

	s_0	s_1	s_2	s_3	s_4
S =	s_5	s_6	s_7	s_8	s_9
	s_{10}	s_{11}	s_{12}	s_{13}	s_{14}
	s_{15}	s_{16}	s_{17}	s_{18}	s_{19}
	s_{20}	s_{21}	s_{22}	s_{23}	s_{24}

• Esta etapa consiste em embaralhar as palavras no estado.

	s_0	s_1	s_2	s_3	s_4
$S = \int_{0}^{\infty}$	s_5	s_6	s_7	s_8	s_9
	s_{10}	s_{11}	s_{12}	s_{13}	s_{14}
	s_{15}	s_{16}	s_{17}	s_{18}	s_{19}
	s_{20}	s_{21}	s_{22}	s_{23}	s_{24}

$$\boxed{s_{0'}} = \pi(s_0) = \boxed{s_0}$$

Cabral (UFC) Funções de Resumo

• Esta etapa consiste em embaralhar as palavras no estado.

	s_0	s_1	s_2	s_3	s_4
$S = \frac{1}{2}$	s_5	s_6	s_7	s_8	s_9
	s_{10}	s_{11}	s_{12}	s_{13}	s_{14}
	s_{15}	s_{16}	s_{17}	s_{18}	s_{19}
	s_{20}	s_{21}	s_{22}	s_{23}	s_{24}

$$S' =$$

	s_0	s_1	s_2	s_3	s_4
$S = \frac{1}{2}$	s_5	s_6	s_7	s_8	s_9
	s_{10}	s_{11}	s_{12}	s_{13}	s_{14}
	s_{15}	s_{16}	s_{17}	s_{18}	s_{19}
	s_{20}	s_{21}	s_{22}	s_{23}	s_{24}

$$\boxed{s_{10'}} = \pi(s_1) = \boxed{s_1}$$

$$s_0$$

$$S' =$$

• Esta etapa consiste em embaralhar as palavras no estado.

	s_0	s_1	s_2	s_3	s_4
$S = \frac{1}{2}$	s_5	s_6	s_7	s_8	s_9
	s_{10}	s_{11}	s_{12}	s_{13}	s_{14}
	s_{15}	s_{16}	s_{17}	s_{18}	s_{19}
	s_{20}	s_{21}	s_{22}	s_{23}	s_{24}

$$S' = \boxed{s_1}$$

$S = \frac{1}{2}$	s_0	s_1	s_2	s_3	s_4
	s_5	s_6	s_7	s_8	s_9
	s_{10}	s_{11}	s_{12}	s_{13}	s_{14}
	s_{15}	s_{16}	s_{17}	s_{18}	s_{19}
	s_{20}	s_{21}	s_{22}	s_{23}	s_{24}

$$s_{20'} = \pi(s_2) = s_2$$

$$s_0$$

$$S' = \boxed{s_1}$$

• Esta etapa consiste em embaralhar as palavras no estado.

	s_0	s_1	s_2	s_3	s_4
S =	s_5	s_6	s_7	s_8	s_9
	s_{10}	s_{11}	s_{12}	s_{13}	s_{14}
	s_{15}	s_{16}	s_{17}	s_{18}	s_{19}
	s_{20}	s_{21}	s_{22}	s_{23}	s_{24}

 s_0

$$S' = \boxed{s_1}$$

• Esta etapa consiste em embaralhar as palavras no estado.

	s_0	s_1	s_2	s_3	s_4
$S = \int_{0}^{1}$	s_5	s_6	s_7	s_8	s_9
	s_{10}	s_{11}	s_{12}	s_{13}	s_{14}
	s_{15}	s_{16}	s_{17}	s_{18}	s_{19}
	s_{20}	s_{21}	s_{22}	s_{23}	s_{24}

$$s_{5'} = \pi(s_3) = s_3$$

 s_0

$$S' = s_1$$

• Esta etapa consiste em embaralhar as palavras no estado.

	s_0	s_1	s_2	s_3	s_4
S =	s_5	s_6	s_7	s_8	s_9
	s_{10}	s_{11}	s_{12}	s_{13}	s_{14}
	s_{15}	s_{16}	s_{17}	s_{18}	s_{19}
	s_{20}	s_{21}	s_{22}	s_{23}	s_{24}

$$g' = \begin{bmatrix} s_0 \\ s_3 \\ s_1 \end{bmatrix}$$

• Esta etapa consiste em embaralhar as palavras no estado.

	s_0	s_1	s_2	s_3	s_4
S =	s_5	s_6	s_7	s_8	s_9
	s_{10}	s_{11}	s_{12}	s_{13}	s_{14}
	s_{15}	s_{16}	s_{17}	s_{18}	s_{19}
	s_{20}	s_{21}	s_{22}	s_{23}	s_{24}

$$s_{15'} = \pi(s_4) = s_4$$

$$S' = \begin{bmatrix} s_0 \\ s_3 \\ s_1 \end{bmatrix}$$

	s_0	s_1	s_2	s_3	s_4
S =	s_5	s_6	s_7	s_8	s_9
	s_{10}	s_{11}	s_{12}	s_{13}	s_{14}
	s_{15}	s_{16}	s_{17}	s_{18}	s_{19}
	s_{20}	s_{21}	s_{22}	s_{23}	s_{24}

$$S' = \begin{bmatrix} s_0 \\ s_3 \\ s_1 \\ s_4 \\ s_2 \end{bmatrix}$$

$$S = \begin{bmatrix} s_0 & s_1 & s_2 & s_3 & s_4 \\ s_5 & s_6 & s_7 & s_8 & s_9 \\ s_{10} & s_{11} & s_{12} & s_{13} & s_{14} \\ s_{15} & s_{16} & s_{17} & s_{18} & s_{19} \\ s_{20} & s_{21} & s_{22} & s_{23} & s_{24} \end{bmatrix}$$

	s_0	s_6	s_{12}	s_{18}	s_{24}
	s_3	s_9	s_{10}	s_{16}	s_{22}
S' =	s_1	s_7	s_{13}	s_{19}	s_{20}
	s_4	s_5	s_{11}	s_{17}	s_{23}
	s_2	s_8	s_{14}	s_{15}	s_{21}

$$S = \begin{bmatrix} s_0 & s_1 & s_2 & s_3 & s_4 \\ s_5 & s_6 & s_7 & s_8 & s_9 \\ s_{10} & s_{11} & s_{12} & s_{13} & s_{14} \\ s_{15} & s_{16} & s_{17} & s_{18} & s_{19} \\ s_{20} & s_{21} & s_{22} & s_{23} & s_{24} \end{bmatrix}$$

	$s_{0'}$	$s_{1'}$	$s_{2'}$	$s_{3'}$	$s_{4'}$
S' =	$s_{5'}$	$s_{6'}$	$s_{7'}$	$s_{8'}$	$s_{9'}$
	$s_{10'}$	$s_{11'}$	$s_{12'}$	$s_{13'}$	$s_{14'}$
	$s_{15'}$	$s_{16'}$	$s_{17'}$	$s_{18'}$	$s_{19'}$
	$s_{20'}$	$s_{21'}$	$s_{22'}$	$s_{23'}$	$s_{24'}$

Etapas de mapeamento

Entrada: Estado S e i_r o índice da rodada.

Salida: Estado S atualizado.

Etapa de mapeamento heta

1:
$$C_y = s_{0+y} \oplus s_{5+y} \oplus s_{10+y} \oplus s_{15+y} \oplus s_{20+y}$$

2:
$$D_x = C_{(x-1) \mod 5} \oplus (\mathsf{ROT}(C_{(x+1) \mod 5}, 1))$$

$$3: \ s_{5x+y} = s_{5x+y} \oplus D_x$$

Etapas de mapeamento ρ e π

4:
$$B_{(16x+10y) \mod 25} = (\mathsf{ROT}(s_{5x+y}, r_{5x+y}))$$

Etapa de mapeamento χ

Etapa de mapeamento ι

5: return S

$$\text{para } 0 \leq y < 5$$

para
$$0 \le x < 5$$

$$para 0 \le x, y < 5$$

para
$$0 \le x, y < 5$$

 Nesta etapa uma função não linear é aplicada entre elementos da mesma linha.

 Nesta etapa uma função não linear é aplicada entre elementos da mesma linha.

$$\begin{bmatrix} s'_0 & = & s_0 \\ = & s_1 \\ = & s_1 \\ \oplus & \left(\neg \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \land \begin{bmatrix} s_2 \\ s_3 \end{bmatrix} \right)$$

$$\begin{bmatrix} s'_2 & = & s_2 \\ = & s_2 \\ \oplus & \left(\neg \begin{bmatrix} s_3 \\ s_4 \end{bmatrix} \land \begin{bmatrix} s_4 \\ s_0 \end{bmatrix} \right)$$

$$\begin{bmatrix} s'_4 & = & s_4 \\ = & s_4 \\ \oplus & \left(\neg \begin{bmatrix} s_0 \\ s_0 \end{bmatrix} \land \begin{bmatrix} s_1 \\ s_1 \end{bmatrix} \right)$$

Etapas de mapeamento

Entrada: Estado S e i_r o índice da rodada. **Salida:** Estado S atualizado.

Etapa de mapeamento θ

1:
$$C_y = s_{0+y} \oplus s_{5+y} \oplus s_{10+y} \oplus s_{15+y} \oplus s_{20+y}$$

2:
$$D_x = C_{(x-1) \mod 5} \oplus (\mathsf{ROT}(C_{(x+1) \mod 5}, 1))$$

$$3: \ s_{5x+y} = s_{5x+y} \oplus D_x$$

Etapas de mapeamento ρ e π

4:
$$B_{(16x+10y) \mod 25} = (\mathsf{ROT}(s_{5x+y}, r_{5x+y}))$$

Etapa de mapeamento χ

5: for all
$$(x,y)$$
 tal que $0 \le x,y < 5$ do

6:
$$T = (B_{5x+(y+2) \mod 5}) \wedge (\neg B_{5x+(y+1) \mod 5})$$

7:
$$s_{5x+y} = B_{5x+y} \oplus T$$

Etapa de mapeamento ι

8: return S

para
$$0 \le y < 5$$

para $0 \le x < 5$

$$para \ 0 \le x,y < 5$$

para
$$0 \le x, y < 5$$

$$para \ 0 \le x,y < 5$$

 Nesta etapa, uma operação XOR é aplicada entre o primeiro elemento do estado e uma constante.

Etapa de mapeamento ι

 Nesta etapa, uma operação XOR é aplicada entre o primeiro elemento do estado e uma constante.

$$\begin{bmatrix} s_0' \end{bmatrix} = \begin{bmatrix} s_0 \end{bmatrix} \oplus \begin{bmatrix} \mathsf{const} \end{bmatrix}$$

Pseudocódigo da permutação ${\cal P}$

Entrada: Estado S e i_r o índice da rodada.

Salida: Estado S atualizado.

Etapa de mapeamento θ

1:
$$C_y = s_{0+y} \oplus s_{5+y} \oplus s_{10+y} \oplus s_{15+y} \oplus s_{20+y}$$

2:
$$D_x = C_{(x-1) \mod 5} \oplus (\mathsf{ROT}(C_{(x+1) \mod 5}, 1))$$

3:
$$s_{5x+y} = s_{5x+y} \oplus D_x$$

Etapas de mapeamento ρ e π

4:
$$B_{(16x+10y) \mod 25} = (\mathsf{ROT}(s_{5x+y}, r_{5x+y}))$$

Etapa de mapeamento χ

5: for all
$$(x,y)$$
 tal que $0 \le x,y < 5$ do

6:
$$T = (B_{5x+(y+2) \mod 5}) \wedge (\neg B_{5x+(y+1) \mod 5})$$

$$7: s_{5x+y} = B_{5x+y} \oplus T$$

Etapa de mapeamento ι

8:
$$s_0 = s_0 \oplus rc(i_r)$$

9: return
$$A$$

 $\mathrm{para}\ 0 \leq y < 5$

 $\text{para } 0 \leq x < 5$

 $\text{para } 0 \leq x,y < 5$

para 0 < x, y < 5

Cabral (UFC)

Permutação ${\cal P}$

Permutação ${\cal P}$

Cabral (UFC)

Oportunidades de otimização

• No pseudocódigo apresentado, além das 25 palavras que representam o estado S, são usadas outras 25 palavras para armazenar o estado após as etapas de mapeamento ρ e π .

Oportunidades de otimização

- No pseudocódigo apresentado, além das 25 palavras que representam o estado S, são usadas outras 25 palavras para armazenar o estado após as etapas de mapeamento ρ e π .
- A maioria das arquiteturas de 64 bits possuem apenas 16 registradores de propósito geral.

Oportunidades de otimização

- No pseudocódigo apresentado, além das 25 palavras que representam o estado S, são usadas outras 25 palavras para armazenar o estado após as etapas de mapeamento ρ e π .
- A maioria das arquiteturas de 64 bits possuem apenas 16 registradores de propósito geral.
- Uma estratégia para acelerar a execução dessa função é processar as etapas de ρ , π e χ de forma modular.

Pseudocódigo modular

Entrada: Estado S depois da etapa de mapeamento θ .

Salida: Estado S depois de processado pelas etapas ρ, π e χ .

- 1: $T_0' = s_0 \ll 0$
- 2: $T_1' = s_6 \ll 44$
- 3: $T_2' = s_{12} \ll 43$
- 4: $T_3' = s_{18} \ll 21$
- 5: $T_4' = s_{24} \ll 14$
- 6: $s_0 = T_0' \oplus (\neg T_1' \wedge T_2')$
- 7: $s_{12} = T_1' \oplus (\neg T_2' \wedge T_3')$
- 8: $s_{24} = T_2' \oplus (\neg T_3' \wedge T_4')$
- 9: $s_6 = T_3' \oplus (\neg T_4' \wedge T_0')$
- 10: $s_{18} = T_4' \oplus (\neg T_0' \wedge T_1')$
- 11: return A

Pseudocódigo modular

Entrada: Estado S depois da etapa de mapeamento θ .

Salida: Estado S depois de processado pelas etapas ρ , π e χ .

1:
$$T'_0 = s_0 \ll 0$$
 $T''_0 = s_3 \ll 28$
2: $T'_1 = s_6 \ll 44$ $T''_1 = s_9 \ll 20$
3: $T'_2 = s_{12} \ll 43$ $T''_2 = s_{10} \ll 3$
4: $T'_3 = s_{18} \ll 21$ $T''_3 = s_{16} \ll 45$
5: $T'_4 = s_{24} \ll 14$ $T''_4 = s_{22} \ll 61$
6: $s_0 = T'_0 \oplus (\neg T'_1 \wedge T'_2)$ $s_{16} = T''_0 \oplus (\neg T''_1 \wedge T''_2)$
7: $s_{12} = T'_1 \oplus (\neg T'_2 \wedge T'_3)$ $s_3 = T''_1 \oplus (\neg T''_2 \wedge T''_3)$
8: $s_{24} = T'_2 \oplus (\neg T'_3 \wedge T'_4)$ $s_{10} = T''_2 \oplus (\neg T''_3 \wedge T''_4)$
9: $s_6 = T'_3 \oplus (\neg T'_4 \wedge T'_0)$ $s_{22} = T''_3 \oplus (\neg T''_4 \wedge T''_0)$
10: $s_{18} = T'_4 \oplus (\neg T''_0 \wedge T''_1)$ $s_9 = T''_4 \oplus (\neg T''_0 \wedge T''_1)$

Cabral (UFC)

11: return A

Pseudocódigo modular

Entrada: Estado S depois da etapa de mapeamento θ .

Salida: Estado S depois de processado pelas etapas ρ , π e χ .

1:
$$T_0' = s_0 \ll 0$$
 $T_0'' = s_3 \ll 28$ $T_0''' = s_1 \ll 1$...
2: $T_1' = s_6 \ll 44$ $T_1'' = s_9 \ll 20$ $T_1''' = s_7 \ll 6$...
3: $T_2' = s_{12} \ll 43$ $T_2'' = s_{10} \ll 3$ $T_2''' = s_{13} \ll 25$...
4: $T_3' = s_{18} \ll 21$ $T_3'' = s_{16} \ll 45$ $T_3''' = s_{19} \ll 8$...
5: $T_4' = s_{24} \ll 14$ $T_4'' = s_{22} \ll 61$ $T_4''' = s_{20} \ll 18$...
6: $s_0 = T_0' \oplus (\neg T_1' \wedge T_2')$ $s_{16} = T_0'' \oplus (\neg T_1'' \wedge T_2'')$ $s_7 = T_0''' \oplus (\neg T_1''' \wedge T_2''')$...
7: $s_{12} = T_1' \oplus (\neg T_2' \wedge T_3')$ $s_3 = T_1'' \oplus (\neg T_2'' \wedge T_3'')$ $s_{19} = T_1''' \oplus (\neg T_2''' \wedge T_3''')$...

8:
$$s_{24} = T'_2 \oplus (\neg T'_3 \wedge T'_4)$$
 $s_{10} = T''_2 \oplus (\neg T'''_3 \wedge T''_4)$ $s_1 = T'''_2 \oplus (\neg T'''_3 \wedge T''_4)$...
9: $s_6 = T'_3 \oplus (\neg T'_4 \wedge T'_0)$ $s_{22} = T''_3 \oplus (\neg T''_4 \wedge T''_0)$ $s_{13} = T'''_3 \oplus (\neg T''_4 \wedge T''_0)$...

9:
$$s_6 = T_3'' \oplus (\neg T_4' \wedge T_0')$$
 $s_{22} = T_3'' \oplus (\neg T_4'' \wedge T_0'')$ $s_{13} = T_3''' \oplus (\neg T_4''' \wedge T_0'')$.

10:
$$s_{18} = T_4' \oplus (\neg T_0' \wedge T_1')$$
 $s_9 = T_4'' \oplus (\neg T_0'' \wedge T_1'')$ $s_{20} = T_4''' \oplus (\neg T_0''' \wedge T_1''') \dots$

11: return A

• Redução do número de registradores usados.

- Redução do número de registradores usados.
- Melhora significativa na localidade temporal dos dados.

- Redução do número de registradores usados.
- Melhora significativa na localidade temporal dos dados.
- Aumento do paralelismo.

- Redução do número de registradores usados.
- Melhora significativa na localidade temporal dos dados.
- Aumento do paralelismo.

- Redução do número de registradores usados.
- Melhora significativa na localidade temporal dos dados.
- Aumento do paralelismo.

Comparação de desempenho entre as duas versões

Implementação	Ciclos por bytes
Não Otimizada	24,09
Versão Modular	8,99

Funções de Resumo

Universidade Federal do Ceará - Campus Quixadá

Roberto Cabral rbcabral@ufc.br

05 de Maio de 2023

Auditoria e Segurança de SI