Process Overview

06 April 2024 05:29

1) objective:

Forecasting number of antidiabetic dung pour briphions

2) checking for through visualizations 'found' of 'Seasonality'

3) checking for Stationarity

ADF Statistic -> Should be lus f p-value < 0.05

own is not Stationary

4) so me apply transformations to make it stationary

fried (i) 1st diff -> again not stationary

(ii) Seasonal diff -> m=12

Now it is stationary

f d=1, D=1, m=12

6) Ophinizing the model
to get the best possible Combination of parameters
through 'AIC' criterian

Minimum
$$g \rightarrow p=2, q=3, p=1, Q=3$$

AlC

7) Residuals Analysis

(No Heteroskedasticity peroblem)
Disteribution: Normal (flistogram + Density
in Normal 9-9 plot: Stonaight line
ix) Corvelagram:
No significant co-efficients after lag o just like white-noise
So, with this analysis, residuals seem to closely resemble white noise
Ljung-Box test: to check whither the Independent ?? ruiduals Convulated
Forucashing of Compatibion Actual haive SARIMA (Best performing values seasonal model)

Since the SARIMA model achieves the lowest MAPE, we can conclude that the SARIMA(2,1,3)(1,1,3)12 model should be used to forecast the monthly number of antidiabetic drug prescriptions.