

General Requirements for Element Interpolation Functions

 In addition, as part of the completeness criterion, the element interpolation functions must satisfy the following relation:

$$\sum_{i=1}^{N_{dof}} N_i = 1$$

where N_{dof} = number of element degrees of freedom associated with a given primary dependent variable.

V.N. Kaliaki

Approach Involving Matrix Inversion

- The polynomial is next evaluated at each of the nodes in the element.
- The number of nodes corresponds to the number of (unknown) generalized coordinates appearing in the polynomial.
- This gives the following general result:

$$\hat{\phi_n^{(e)}} = A\alpha$$

V N. Kaliakin

Approach Involving Matrix Inversion

• Inverting A gives the following expression:

$$\alpha = \mathbf{A}^{-1}\hat{\mathbf{\phi}}_{n}^{(e)}$$

• Then, upon substitution

$$\hat{\phi}^{(e)} = \chi \alpha = \chi \mathbf{A}^{-1} \hat{\mathbf{\varphi}}_{\mathbf{n}}^{(e)} = \mathbf{N} \hat{\mathbf{\varphi}}_{\mathbf{n}}^{(e)}$$

V.N. Kaliakin

Approach Involving Matrix Inversion

Remarks

- $\bullet\,$ For some types of elements $A^{\text{-}1}$ may not exist for all orientations of the element in the global coordinate system.
- For large values of N_{dof} the analytic determination of A⁻¹ may require a substantial computational effort. This effort is, however, lessened by the availability of software capable of carrying out symbolic arithmetic operations.

V.N. Kaliakin

PINERALLY

Approach Involving Matrix Inversion

Remarks

 In developing element interpolation functions using generalized coordinates, it is not always an easy task to satisfy spatial isotropy (see Section 7.5.2 in textbook).

V.N. Kallakin

Approach Involving Matrix Inversion

- It is thus desirable to develop a procedure by which the interpolation functions can be written down directly, thus avoiding the potential pitfalls and excessive computational effort associated with the aforementioned approach.
- Such a direct approach is particularly useful when *higher-order* elements are required.

V.N. Kaliakin

Breavane

Approach Involving Matrix Inversion

- Higher-order elements maintain the interelement continuity of lower order elements, but employ a higher-order approximation (e.g., more terms in the polynomial).
- Relatively small numbers of higher-order elements are typically capable of more accurate representations than the linear ones discussed in the previous chapters.

V.N. Kaliakin

Approach Involving Matrix Inversion

 As will be discussed in *Chapter 10*, the boundary edges and surfaces of such elements can also be curved, thus allowing for more accurate representations of element domains.

V.N. Kaliaki

Approach Involving Matrix Inversion

- As compared to the basic linear elements, higherorder elements are, however, more expensive to formulate; as a result, the cost-effectiveness of various elements represents an area of on-going dispute.
- Since the optimal choice of element type is very often problem-dependent, it follows that no single element is exclusively preferred.

akin