Assignment Project Exam Help Bayesian Learning

https://powcoder.com

Probability Spaces

Assignment Project Exam Help Random Variables

- Conditates in powcoder.com
- ML and Conditional Probabilities Add WeChat powcoder
- Bayes Theorem and Concept Learning

Assignment Project Exam Help Suppose that (Ω, \mathcal{E}, P) is a probability space, \mathcal{E} is a family of subsets of Ω known as events, and P is a probability. The elements of Ω are elementary events. In many last positive parameters assumption unless a special statement says otherwise.

Example

Rough water that P_1 in the post of the property elementary events: $(1,1),(1,2),\ldots,(6,6)$.

https://powcoder.com Add We Chat powcoder

An event in the previous example is a subset of $\{1,\ldots,6\} \times \{1,\ldots,6\}$, And significant of $\{1,\ldots,6\} \times \{1,\ldots,6\}$, example

• throws that have the same number of both dice:

• throws such that the sum of the numbers is greater than 8:

$$B = \{(2,0),(3,5),(3,6),(4,4),(4,5),(4,4),(4,5),(4,5),(4,4),(4,5),(4,5),(4,4),(4,5)$$

Note that Ω consists of 36 elementary events and there are $2^{36}\approx 10^{12}$ events in this very simple probability space

Assignment Project Exam Help $P(V) = \frac{|V|}{|\Omega|}$.

https://powcoder.com

Example

We have

and

$$P(B) = \frac{18}{36} = \frac{1}{2}$$

Assignment Project Exam Help or closed sets by repeatedly taking countable unions and intersections.

Definition Let $(\Omega, \mathcal{E}, \mathcal{E})$ be a probability space. Condense of \mathbb{R} is a random variable if $X^{-1}(U) \in \mathcal{E}$ for every Borel subset of \mathbb{R} .

Definition

Assignment Project Exam Help

$$X:\begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ p_1 & p_2 & \cdots & p_n \end{pmatrix},$$

where x_1 https://pow.coder.com (x_1, x_2) for $1 \leqslant i \leqslant n$. We always have $p_1 + \cdots + p_n = 1$.

The expected of the expectation of the expectation

Assignment Project Exam Help A random variable X whose distribution is:

https://powcoder.com

where p + q = 1 is said to have a Bernoulli distribution with parameter p. Note that F[X] = p and var(X) pq.

p o vi o data

Example

Actors a continuo per proper to the standar Filelp

We refer to a random variable with this distribution as a *binomial random* variable. Note that

$$Add _{q^n + \binom{1}{1}q^{n-1}p} WeChat_{p^k} powcoder _{k} + \cdots + \binom{n}{k}q^{n-k}p^k p^k \cdots + \binom{n}{p^n} = (q+p)^n = 1.$$

Example cont'd

Assignment Project Exam Help The expectation of a binomial variable is

 $\frac{\text{https://powcoder.com}}{\text{The variance of a random variable } X \text{ is}}$

 $A dd \overline{WeChat} \underbrace{powcoder}_{\text{In the case of a binomial variable the variance is } E[X^2] - (E[X])^2 \\ = E[X^2] - (E[X])^2 \\ = E[X^2] - (E[X])^2 \\ = P[X^2] - (E[X])^2 - (E[X$

The Characteristic Function of an Event

Assignment Project (Examy Help

Add WeChat powcoder

Note that $E(1_A) = P(A)$ and $var(1_A) = P(A)(1 - P(A))$.

The event $A \wedge B$ takes place when both A and B occur; the event $A \vee B$ A B is sufficient to B of B of B occur. Exam B is a sufficient to B occur.

Example

The event $S \wedge B$ takes place when the result of throwing the dice results in a pair of hintes $S_{\bullet,n}$ who exists of the pairs:

(4,4),(5,5),(6,6)

Therefore A(dd) We Chat powcoder

Definition

If B is an event such that P(B) > 0 one can define the probability of an

Assignment Project_{P(A|B)} = Project_{P(B)}.

Example https://powcoder.com

The probability of the event S conditioned on B is

Add We Chât powcoder

and

$$P(B|S) = \frac{P(S \wedge B)}{P(S)} = \frac{\frac{1}{12}}{\frac{1}{6}} = \frac{1}{2}.$$

Definition

and

Note that B and S are independent events because $P(B \land S) = \frac{1}{12} = P(B)P(S)$.

• The product rule or the Bayes theorem:

Assignment Project Exam Help

• The sum rule:

https://powcoder.com

• The total probability rule: if A_1, \ldots, A_n are mutually exclusive and $\sum_{i=1}^n P(A_i) = 1$, then

Add WeChat powcoder
$$P(B) = \sum_{i=1}^{P(B|A_i)P(A_i)} P(A_i).$$

Assignment Project Exam Help In ML we are often interested in determining the best hypothesis from some space H given the observed data S.

"Best" means in this context, the most probable hypothesis given

- the https://powcoder.com
- any initial knowledge of prior probabilities of hypotheses in H.

Assignment or Propositie Envantabilities phypotheses before seeing the data S.

• "Posterior probabilities" mean probabilities of hypotheses after seeing the https://powcoder.com

If no prior knowledge exist all hypotheses have the same probability.

In ML we are interested to compute P(h|S) that h holds given the

observed training dat WeChat powcoder

Bayes' Theorem in ML

Assignment Project Exam Help

https://
$$pow^{P(h|S)} = \frac{P(S|h)P(h)}{coder.com}$$

Note that:

- P(h|S) increases with P(h) and with P(S|h).
 P(h|S) ceueses with P(S) hearte the move/probable Chart S will be observed independent of h, the less evidence S provides for h.

Learning Scenario

Asside grant the observed data of the Example Help

Any such maximally probabile hypothesis is called a maximum a posteriori hypothesis, MAP.

hmap is https://powcoder.com

$$h_{MAP} = \operatorname{argmax}_{h \in H} P(h|S)$$

 $= \operatorname{argmax}_{h \in H} P(S|h) P(h)$

because P(S) is a constant.

Maximum Likelihood Hypothesis

Assignment Project Exam Help

```
In some cases we assume that every hypothesis of H is apriori equally probable, that is P(h_i) \neq P(h_i) for all h_i \in H. Composition h_{MAP} = \operatorname{argmax}_{h \in H} P(S|h).
```

```
Add WeChat powcoder
```

Example

A sedia direction of the hypotheses: Exam Help

- h₀: patient has no cancer;
- h_1 : National has caricer powered an imperfect diagnosis test that has two outcomes; \oplus and \oplus .

$$Add \stackrel{P(\oplus|h_1) = 0.98}{\text{Wheteles hat poweroder}} \stackrel{P(\oplus|h_0) = 0.03}{\text{Poweroder}}$$

Prior knowlege: Only 0.08% of population has cancer; 99.2% does not.

Example (cont'd)

Assignment Project the Exeans calcle p The MAP hypothesis is obtained as

https:///powcoder.com

$$Ad_{(e)}^{P(e)} = 0.008 * 0.008 * 0.0078 * 0.008 * 0.008 * 0.0078 * 0.008 * 0.0078 * 0.008 * 0.008 * 0.0078 * 0.008 * 0.0078 * 0.008 * 0.0078 * 0.008 * 0.0078 * 0.008 * 0.0078 * 0.008 * 0.0078 * 0.008 * 0.0078 * 0.008 * 0.0078 * 0.008 * 0.0078 * 0.008 *$$

The MAP hypothesis is h_0 ; the patient has no cancer.

Brute-Force Bayes Concept Learning

Assignment Project Exam Help

• For each hypothesis $h \in H$ calculate the posterior probablity:

https://powcoder.com

Output the hypothesis h_{MAP} with

Assignment Project Exam Help

- Training data is $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$, where $y_i = f(x_i)$ for $1 \le i \le m$ and it is noise-free.
- The heteps the power der.com
- We have no apriori reason to believe that any hypothesis is more probable than the other

Assignment Project Exam Help

- $\bullet \ P(h) = \frac{1}{|H|};$
- The probability of 8 given h is 1 if S is consistent with h and 0 otherwise PS://POWCOGER.COM

$$\mathbf{Add}^{P(S|h)} = \begin{cases} 1 & \text{if } y_i = h(x_i) \text{ for } 1 \leq i \leq m \\ \mathbf{Charpowcoder} \end{cases}$$

Aessi, springer the property that is xogitant with p of p is inconsistent with p then $P(h|S) = \frac{0 \cdot P(h)}{P(S)} = 0$.

• If *S* is consistent with *h* then

$$\frac{\text{https://powcoder.com}}{P(h|S)} = \frac{|H|}{P(S)} = \frac{|VS_{H,S}|}{|VS_{H,S}|} = \frac{1}{|VS_{H,S}|}$$

Since the hypotheses are mutually exclusive (that is, $P(h_i \wedge h_j) = 0$ if $j \neq j$), by the total probability law: Assignment Project Exam Help $P(S) = \sum_{h_i \in H} P(S|J_i)P(h_i)$

https://powcoder.com

$$Add \stackrel{=}{Weesh} hat powcoder$$

Note that under this setting every consistent hypothesis is a MAP hypothesis.