

Utilizing In-Store Sensors for Revisit Prediction

Sundong Kim and Jae-Gil Lee

Korea Advanced Institute of Science and Technology

https://github.com/kaist-dmlab/revisit

While You Are Shopping

Collecting Data with Wi-Fi APs

Retail Analytics

- Provide a dashboard, as well as consultancy services
- Data-driven monitoring examples:

Related Works & Our Study

Indoor Tracking

- Interior design, Museum
- Visitor locations →
 Measure interests →
 Display plan

Prediction (x)

Predictive Analytics

- Next location
- Customer life-time value
- Churn (On-line)

Off-line Revisit (x)

Revisit Studies

- Marketing, tourism
- Questionnaire
- Qualitative Factors

Mobility (x)

To Discover the Relation between

Customer Revisit and their Mobility

Revisit in Offline Market

- More than 85% of retail purchases still happen offline. [Link]
- Retaining customer is very important. [Article]
 (5% more retention → 25-95% more profit)

Research Questions

RQ1: How to predict customer revisits?

→ Using a GBT model with carefully designed features.

RQ2: How much effect of trajectory has on prediction performance?

→ Accuracy improves by 5-12% compared to LBs.

Outline

- Introduction
- Prediction Framework <<
- Features
- Performances
- Conclusion

Our Framework

Multi-level Trajectories

Multi-level descriptions of the customer visit

Outline

- Introduction
- Prediction Framework
- Features <<
- Performances
- Conclusion

Feature Engineering

Considered feature groups:

- Overall statistics
- Travel distance/speed/acceleration
- Area preference
- Entrance and exit pattern
- Heuristics
- Statistics of each area
- Time of visit
- Upcoming events
- Store accessibility
- Group movement

Feature value & revisit rate (1)

Feature value & revisit rate (2)

- AVG IA time: Average Interarrival time

"Sale" for first-fime visitors

Number of days left for sales:

- Feature with non-linear relationship

Effect of clearance sale

(a) First-time visitors: Prone to special events. (b) All visitors: Indifferent to events.

Outline

- Introduction
- Prediction Framework
- Features
- Performances <<
- Conclusion

Mobility Data from In-Store Sensors

- 7 Flagship stores
- 110K-2M visits/store
- 220-990 days collected
- Avg. traj length = 6.56

Shop ID	A_GN	A_MD	E_GN	E_SC	L_GA	L_MD	O_MD
Location	Seoul, Korea						
Length (days)	222	220	300	373	990	747	698
# sensors	16	27	40	22	14	11	27
Data size	15GB	77GB	148GB	99GB	164GB	242GB	567GB
# visits > 60s	0.11M	0.33M	0.18M	0.27M	1.06M	1.72M	2.01M
Revisit rate	11.73%	31.99%	21.18%	36.55%	21.22%	32.98%	48.73%

Results: Prediction Accuracy

Store	Accuracy (First)	Accuracy (All)
A_GN	0.6336	0.6689
A_MD	0.6930	0.7412
E_GN	0.6663	0.7050
E_SC	0.6818	0.7288
L_GA	0.7173	0.7789
L_MD	0.6799	0.7991
O_MD	0.6645	0.7599

Accuracy of 7 stores using a XGBoost Classifier.

Effectiveness of the Feature Set

- Baseline 1 (LB): By only knowing the number of visits
- Baseline 2: By knowing the number of visits & date of the visit
- By utilizing features derived from Wi-Fi signals, we achieved significant performance improvement on revisit prediction.

(a) On all visitors

(b) On first-time visitors

Data Collection Period

- To find the right amount of data to study revisit
- To maintain sensors for securing enough profit
- \rightarrow Find the minimum sufficient amount of data T to predict revisit without accuracy loss

Impact on Prediction Accuracy

1) On all visitors

- ∴ # Regular customers ↑
- ∴ Accuracy gradually increases. ∴ Accuracy reaches a plateau.

0.8Accuracy 0.7 0.6 $A_GN - A_MD - E_GN$ $E_SC \longrightarrow L_GA - - - L_MD$ 0.5360 480 600 Data collection period (days)

2) On first-time visitors

- ∴ Cover longer timeframe

Robustness on Missing Customers

 Over 95% of the performance is maintained with a very small fraction of the dataset (e.g., 0.5% for L_MD)

(b) On first-time visitors

Real Behavior vs. Collected Data

Significantly different!

 $p_x = \text{Wi-Fi turn on rate (39.2\%)}$

 p_{v} : Ratio of customers with companion (Observed at the spot)

 p_{yo} : Ratio of customers with companion (To be observed in the data)

Conclusions

 Goal: To discover the relation between customer revisit and their mobility

Data:

Customer mobility data captured in seven stores

Findings:

- Prediction models using handcrafted features
- Predictive powers of each feature groups
- Performance improvement by utilizing indoor trajectories
- Predictive powers by collecting longer period
- Robustness on missing data

Thank you!

Scan me for details © (Paper, Slides, Datasets, Tutorial)