Talteori och kryptologi, MA191G, 4,5hp Föreläsningsmaterial

Yohannes T. Aklilu Högskolan i Skövde

Mer verktyg från talteori

- Fermats lilla sats
- Eulers funktion
- Det kinesiska restsatsen

• Ett affint chiffer är ett chiffer med ett klartextalfabet $\mathcal{M} \subseteq \mathbb{Z}_m$, ett kryptoalfabet $\mathcal{C} \subseteq \mathbb{Z}_m$ och chiffreringsfunktioner som är affina modulär funktion

$$e_{(a,b)}: \mathcal{M} \to \mathcal{C},$$

där

$$e_{(a,b)}(x) = ax + b \pmod{m}$$

är bijektiva.

- Paret (a, b) är det hemligt nyckeln.
- Det är ekvivalent med att säga att kongruensen

$$ax + b \equiv c \pmod{m}$$

ska ha en entydig lösning x i \mathcal{M} om $c \in \mathcal{C}$.

• Vad ställer det för krav på nyckeln (a, b)?

- Låt m = 5. Betrakta funktionen $e_{(2,1)}(x) = 2x + 1 \pmod{5}$.
- Då har vi

- Det betyder att $e_{(2,1)}: \mathbb{Z}_5 \to \mathbb{Z}_5$ är bijektiv.
- Om vi istället betraktar m = 6 och funktionen $e_{(2,1)}(x) = 2x + 1 \pmod{6}$, så har vi

 $e_{(2,1)}: \mathbb{Z}_6 \to \mathbb{Z}_6$ är alltså varken injektiv eller surjektiv.

• Ser vi funktionen som $e_{(2,1)}:\mathbb{Z}_6\to\{1,3,5\}$ så blir den förstås surjektiv, men inte injektiv, medan $e_{(2,1)}:\{1,3,5\}\to\{1,3,5\}$ är bijektiv.

Example (exempel fort...)

• Däremot, för $e_{(5,1)}(x) = 5x + 1 \pmod{6}$ har vi

alltså bijektivitet.

Vad är skillnaden mellan de olika fallen?

Observera att

$$ax \equiv b \pmod{m}$$
 (1)

är ekvivalent med att

$$ax + my = b (2)$$

för något heltal y.

- För att kvation (2) ska ha heltalslösning måste gcd(a, m)|b.
- Omvänt, om gcd(a, m)|b, så har också (2) heltalslösning.
- Om gcd(a, m) = 1 så är $[a]_m$ inverterbart och lösningen är $x = a^{-1}b \pmod{m}$, som är entydig.
- Inversen kan beräknas t.ex. genom Euklides algoritm.
- Om gcd(a, m) = d > 1 men d|b så

$$ax \equiv b \pmod{m} \Leftrightarrow cx \equiv e \pmod{k}$$

där a = dc, b = de och m = dk. Lösningen är då $x = c^{-1}e$ (mod k), som är entydig.

 Observera att lösningen då innefattar d olika kongruensklasser modulo m.

Example

Definition (Eulers ϕ -funktion)

Eulers funktion $\phi(n)$ av ett positivt heltal n är antalet positiva heltal, mindre än eller lika med n, som är relativt prima till n, eller med andra ord, de tal som inte har några primtalsfaktorer gemensamma med n. Alternativt

$$\phi(n) = |\{m \in \mathbb{Z}_+ : m \le n \text{ och } \gcd(m, n) = 1\}|,$$

• Euler ϕ -funktion är inte växande

- $\phi(n)$ är också antalet inverterbara kongruensklasser modulo n.
- Egenskaper hos Eulers ϕ -funktion
 - $\phi(p) = p 1$ om p är ett primtal;
 - $\phi(p^n) = p^n p^{n-1} = p^{n-1}(p-1) = p^n(1-\frac{1}{p})$ om p är ett primtal;
 - $\phi(ab) = \phi(a)\phi(b)$ om gcd(a, b) = 1.

Example

$$\phi(72) = \phi(2^3 3^2) = \phi(2^3)\phi(3^2)$$

= $(2^3 - 2^2)(3^2 - 3^1) = (8 - 4)(9 - 3) = 4 \cdot 6 = 24$

Vi har också

$$\phi(2^{3}3^{2}) = 2^{3} \left(1 - \frac{1}{2}\right) 3^{2} \left(1 - \frac{1}{3}\right) = 72 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right)$$
$$= 72 \cdot \frac{1}{2} \cdot \frac{2}{3} = \frac{72}{3} = 24.$$

Generellt

Om n har primtalsdelarna p_1, \ldots, p_k , så gäller

$$\phi(n) = n \cdot \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_k}\right).$$

Betrakta n = 40. Vi har

$$\begin{array}{l} \phi(40)=\phi(2^3\cdot 5)=\phi(2^3)\phi(5)=(2^3-2^2)(5-1)=16. \text{ eller} \\ \phi(40)=40(1-\frac{1}{2})(1-\frac{1}{5})=\frac{40\cdot 1\cdot 4}{10}=16. \end{array}$$

Vilka positiva tal under 40 är relativt prima till 40 då?

De bildar vad vi kallar en reducerad mängd av rester modulo 40.

Definition (Reducerad mängd av rester)

För en reducerad mängd av rester modulo m ska gälla:

- 1 Varje tal i mängden är relativt prima till m;
- 2 Inga par av element i mängden är kongruenta modulo m;
- **3** Mängden har maximalt antal element, dvs $\phi(m)$.

 $\{1,3,5,7\}$ och $\{9,-5,85,167\}$ är båda reducerade mängder av rester modulo 8.

Med andra ord består en reducerad mängd av rester modulo m av en representant för varje inverterbar restklass i \mathbb{Z}_m .

Theorem

 $Om \{r_1, r_2, ..., r_k\}$ är en reducerad mängd av rester, och gcd(a, m) = 1 så är även $\{ar_1, ar_2, ..., ar_k\}$ en reducerad mängd av rester.

Med andra ord, om $A \subset \{0, 1, ..., n-1\}$ är en reducerad mängd av rester modulo n, och $\gcd(a, n) = 1$ så är funktionen

$$E_a(k) = ak \pmod{n}$$

en bijektion $A \rightarrow A$.

Vi kollar vad vi får för rester modulo 10 när vi multiplicerar talen i en reducerad mängd av rester (och övriga rester) modulo 10 upprepade gånger med 3.

Vi ser att $3^4r \mod 10 = r \mod 10$ (dvs $3^4r \equiv r \pmod {10}$) för alla r. Är det en slump?

Theorem

Eulers sats Om
$$m \in \mathbb{Z}_+$$
 och $\gcd(a,m)=1$ så $a^{\phi(m)} \equiv 1 \pmod m.$

Specialfallet av Eulers sats, modulo ett primtal, kallas Fermats lilla sats.

Theorem (Fermats lilla sats.)

Om p är ett primtal, så gäller för alla $a \not\equiv 0 \pmod{p}$ att

$$a^{p-1} \equiv 1 \pmod{p}$$

samt för alla a att

$$a^p \equiv a \pmod{p}$$
.

Example (Potenser exempel, $\phi(10) = 4$.)

	mod 10										
	mod 10										
r^3	mod 10	1	7	3	9	8	4	5	6	2	0
	mod 10										
r^5	mod 10	1	3	7	9	2	4	5	6	8	0
						'					

Bevis för Fermats lilla sats.

Betrakta de första positiva p-1 multipel av a:

$$a, 2a, 3a, \ldots, (p-1)a.$$

Alla de tal ger olika rester då vi delar talen med p, dvs de är kongruent till $1,2,\ldots,p-1\pmod p$ i någon ordning. Om vi tar produkten då får vi

$$a \cdot 2a \cdot 3a \cdots (p-1)a \equiv (1 \cdot 2 \cdot 3 \cdots (p-1)) \pmod{p}$$
.

Detta ger resultat!

Exempel.

Talet 97 är ett primtal.

Alltså är $2^{96} \equiv 1 \pmod{97}$.

Faktiskt också $a^{96} \equiv 1 \pmod{97}$ för alla a sådant att SGD(a, p) = 1.

Att $a^p \equiv a \pmod{p}$ när $a^{p-1} \equiv 1 \pmod{p}$ är inte konstigt: multiplicera bara båda leden med a.

Example

Visa att $2^{340} \equiv 1 \pmod{31}$.

Example

Ange vad klockan är i en 24 timmarsklocka om 5^{10} timmar om vi antar att klockan är 12:00 just nu.

Beräkning av multiplikativ invers

Eulers sats ger ett sätt att beräkna multiplikativ invers i \mathbb{Z}_m . Eftersom $a^{\phi(m)} \equiv 1 \pmod{m}$ så är $a^{\phi(m)-1}$ en multiplikativ invers till a, modulo m.

Antag att gcd(a, m) = 1 och att man vill bestämma $[x]_m$ där $ax \equiv b \pmod{m}$. Vi har då

$$x \equiv a^{\phi(m)}x = a^{\phi(m)-1}ax \equiv a^{\phi(m)-1}b,$$

och problemet har delats upp i att bestämma $\phi(m)$, beräkna potensen $a^{(\phi(m)-1)}$ och multiplicera med b.

Example

Låt oss lösa kongruensen $8x+3\equiv 14\pmod{15}$, eller ekvivalent, $8x\equiv 11\pmod{15}$. Det går att göra med Euklides algoritm, men vi gör det med metoden ovan.

Lösning.

Vi noterar att gcd(8,15) = 1, så det finns lösning.

$$\phi(15) = \phi(3)\phi(5) = 2 \cdot 4 = 8.$$

Alltså är $x \equiv 8^{8-1} \cdot 11$. Då $7 = 111_2 = 4 + 2 + 1$, så har vi

$$8^7 = 8^4 \cdot 8^2 \cdot 8^1 \pmod{15},$$

och då

$$8^2 = 64 = 64 - 4 \cdot 15 = 4 \pmod{15}, \quad 8^4 = 4^2 = 16 = 1 \pmod{15}.$$

så är

$$x = 1 \cdot 4 \cdot 8 \cdot 11 = 32 \cdot 11 = 2 \cdot 11 = 22 = 7 \pmod{15}$$
.

För knappt 2000 år sedan Kineskt matematiken Sun-Tsu frågade:

Example

Det finns några tal i vilken när dividerade med 3 blir resten 2, när dividerade med 5 blir resten 3, och när deviderade med 7 blir resten 2. Vilka kan talen vara?

Rent matematiskt kan vi kan skapa (och lösa) system av kongruenser.

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \end{cases}$$

Hur många lösningar finns det? Vilka är lösningarna?

System av kongruenser

Säg att vi t.ex. vill bestämma alla heltal x sådana att

$$\begin{cases} x \equiv 5 \pmod{14} \\ x \equiv 2 \pmod{15} \\ x \equiv 9 \pmod{49} \end{cases}$$

Kan vi veta om det finns några sådana tal x, och i så fall vilka? Notera att 7 delar både 14 och 49.

$$x \equiv 5 \pmod{14} \implies x \equiv 5 \pmod{7}$$

 $x \equiv 9 \pmod{49} \implies x \equiv 2 \pmod{7}$

Finns inget heltal x som uppfyller båda dessa villkor.

Theorem (Kinesiska resttalssatsen)

Låt m_1, \ldots, m_n vara parvist relativt prima positiva heltal. Kongruenssystemet

$$\begin{cases} x & \equiv a_1 \pmod{m_1} \\ x & \equiv a_2 \pmod{m_2} \\ & \vdots \\ x & \equiv a_n \pmod{m_n} \end{cases}$$

har en **unik** lösning modulo $m = m_1 \cdot m_2 \cdots m_n$.

Två lösningar x och x' uppfyller alltså $x \equiv x' \pmod{m}$.

Hur hittar vi lösningarna till ett system av kongruenser som uppfyller den Kinesiska resttalssatsen?

- $\bullet \text{ Sätt } m = m_1 \cdots m_n.$
- **2** Sätt $M_k = \frac{m}{m_k}$ för $k = 1, \dots, n$
- **3** Så gäller det att $GCD(M_k, m_k) = 1$.
- **4** Beräkna inversen y_k av M_k (mod m_k).
- **6** Sätt $x = a_1 M_1 y_1 + a_2 M_2 y_2 + \cdots + a_n M_n y_n$ och det är en gemensam lösning till ekvationssystemet.

Ekvationssystemet har lösningen

$$a_1M_1y_1 + a_2M_2y_2 + \cdots + a_nM_ny_n \equiv \pmod{m}.$$

Example

Lös ekvationssystemet i Sun-Tsus fråga.