Annotated slides from Tuesday

MA313 : Linear Algebra I

Week 2: Subspaces and Spans

Dr Niall Madden

13 and 16 September, 2022

https://commons.wikimedia.org/wiki/File:Projectivisation_F5P^1.svg. Incnis Mrsi, via Wikimedia Commons

These slides are based on ones by Tobias Rossmann.

V

Outline

- 1 Announcements
- 2 Part 1: Vector Spaces
 - Eg: \mathbb{R}^n is a vector space
 - Eg: Polynomials
- 3 Part 2: Not everything is a vector space
- 4 Part 3: Subspaces
- 5 Part 4: More examples of subspaces
 - Polynomials
 - Functions
- 6 Part 5: Linear combinations
 - Building subspaces
 - Definition
- 7 Part 6: Spans
 - Examples
 - Linking spans and subspaces
- 8 Part 7: Exercises

Assignment 1

- ► The first assignment has opened. Deadline is Monday, 19 September.
- ▶ It contributes 3% to the final grade for MA313.
- ► Topics: addition of vectors, matrix-vector multiplication, matrix-matrix multiplication, solving linear systems by row-reduction.
- ➤ System still has a few glitches. We are working to fix them. Don't worry about time-out errors.

Communications skills

DRAFT: will be edited later

- 1. Later this week: list of topics will be posted.
- 2. End of Week 3: confirm your topic.
- 3. End of Week 7: progress report due. Will include scope, outline of structure, and major sources.
- 4. Week 12: submission of essay and slides and presentations.

Tutorials start in Week 3. When:

https://forms.office.com/r/Oya9Bp8qBU

	Mon	Tue	Wed	Thu	Fri
9 – 10					
10 – 11				`	
11 – 12					
12 – 1				(??)	Lecture
1 – 2		Lecture			
2 – 3				-	
3 – 4					
4 – 5					

Everyone who attended Friday's class was available

Mostly likely Thursday at 12. Perhaps Tues at 10 too.

MA313 Week 2: Subspaces and Spans

Start of ...

PART 1: Definition of a Vector Space

See Section 4.1 of the text-book:

 $https://search.\ library.\ nuigalway.\ ie/permalink/f/\\ 1pmb9lf/353GAL_ALMA_DS5192067630003626$

Definition of a vector space (1/2)

A vector space consists of

- ightharpoonup a (non-empty!) set V, whose elements we call **vectors**,
- ▶ an operation called **addition** which assigns a vector

$$u + v \in V$$

to any two vectors $u, v \in V$, and

▶ an operation called **scalar multiplication** which assigns a vector

$$cu \in V$$

to each scalar $c \in \mathbb{R}$ and vector $u \in V$ such that the axioms on the following slides are satisfied.

Definition of a vector space (2/2)

We require that the following conditions **V1–V8** are satisfied for all vectors $u, v, w \in V$ and scalars $c, d \in \mathbb{R}$:

- V1. u + v = v + u (commutativity of addition)
- V2. (u+v)+w=u+(v+w) (associativity of addition)
- V3. There exists $\mathbf{0} \in V$, called the **zero vector** such that $u + \mathbf{0} = u$ for all $u \in V$,
 - V4. For each $u \in V$, there exists $-u \in V$ such that $u + (-u) = \mathbf{0}$
 - V5. c(u+v) = cu + cv (distributivity I)
 - V6. (c+d)u = cu + du (distributivity II)
 - $\forall 7. \ c(du) = (cd)u \quad \checkmark$
- **5**V8. 1u = u

Example (\mathbb{R}^n is a vector space.)

We define

$$\mathbb{R}^n = \left\{ \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} : x_1, \dots, x_n \in \mathbb{R} \right\}$$

with addition defined as
$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} := \begin{bmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{bmatrix}$$
 and

scalar multiplication defined as $c \begin{bmatrix} x_1 \\ \vdots \end{bmatrix} := \begin{bmatrix} cx_1 \\ \vdots \\ \vdots \end{bmatrix}$.

$$\begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} := \begin{bmatrix} CX_1 \\ \vdots \\ CX_n \end{bmatrix}$$

Then \mathbb{R}^n is a vector space. The proof is a quite tedious, but quite easy.

It would take too long to show that \mathbb{R}^n satisfies each of the 8 axioms. So we'll just verify the three of them.

V1.
$$u+v=v+u$$
 (commutativity of addition)

We'll do this for IR^3 . Write u as | Scalar u addition.

 $u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$ and $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$. Thun | distinct u addition.

 $u+v = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} u_1+v_1 \\ u_2+v_2 \\ u_3+v_3 \end{bmatrix} = \begin{bmatrix} v_1+u_1 \\ v_2+u_2 \\ v_3+u_3 \end{bmatrix}$

We down addition

 $u = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} v_1+u_1 \\ v_2+u_2 \\ v_3+u_3 \end{bmatrix} = \begin{bmatrix} v_1+u_1 \\ v_2+u_2 \\ v_3+u_3 \end{bmatrix}$

Eg: \mathbb{R}^n is a vector space

V3. There exists $\mathbf{0}$, called the **zero vector**, such that $u + \mathbf{0} = u$ for all $u \in V$.

we'll again do this for
$$\mathbb{R}^3$$
.

$$\overrightarrow{O} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \quad \text{flun},$$

$$u + \overrightarrow{O} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} u_1 + 0 \\ u_2 + 0 \\ u_3 + 0 \end{bmatrix} = \underbrace{\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}}_{==0} = \underbrace{\begin{bmatrix} u_1 \\ u_3 \\ u_3 \end{bmatrix}}_{==0} =$$

Eg: \mathbb{R}^n is a vector space

V4. For each $u \in V$, there exists $-u \in V$ such that $u + (-u) = \mathbf{0}$.

(These notes were added after class.)
Let's write the vector u as [11]

And the zero vector is

$$0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

The we can see there is a vector, -u, with

The u + (-u) =
$$\begin{bmatrix} u_1 - u_1 \\ u_2 - u_2 \\ \vdots \\ u_{n-u_n} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

For an integer $n \ge 0$, let \mathbb{P}_n consist of all polynomials

$$p(t) = a_0 + a_1 t + \cdots + a_n t^n$$

of degree at most n, where $a_0, \ldots, a_n \in \mathbb{R}$.

We can add polynomials in \mathbb{P}_n in the usual way:

$$(a_0 + a_1t + \dots + a_nt^n) + (b_0 + b_1t + \dots + b_nt^n)$$

= $(a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n$.

Also,

$$cp(t) = ca_0 + ca_1t + \cdots + ca_nt^n,$$

where $c \in \mathbb{R}$.

Claim: These operations turn \mathbb{P}_n into a vector space.

The reasoning again just boils down to to properties of real numbers.

Example

Function spaces Let \mathbb{D} be an arbitrary set.

Let *V* be the set of **all** functions $f: \mathbb{D} \to \mathbb{R}$.

Given $f,g\in V$ and $c\in\mathbb{R}$, we define $f+g\in V$ and $cf\in V$ via

$$(f+g)(x):=f(x)+g(x)$$

and

$$(cf)(x) := cf(x)$$

for $x \in \mathbb{D}$.

Claim: These operations turn V into a vector space.

Part 2: Not everything is a vector space

MA313
Week 2: Subspaces and Spans

Start of ...

PART 2: Not everything is a vector space

Part 2: Not everything is a vector space

So far, all of the examples we have looked at correspond to vector spaces. But not every set equipped with addition and scalar multiplication is a vector space.

Here are a few examples of things that are not vector spaces.

1. The set of vectors in $\ensuremath{\mathbb{R}}^2$ with strictly positive entries.

This set does not include the zero vector.

no vector. Not a vector space

2. The set of vectors in \mathbb{R}^2 with non-negative entries.

If
$$u \in V$$
, then $-u \notin V$.

 $\{u \in V, \text{ then } -u \notin V\}$.

 $\{u \in V, \text{ then } -u \notin V\}$.

 $\{u \in V, \text{ then } -u \notin V\}$.

Part 2: Not everything is a vector space

3. The set of polynomials of degree **exactly** 3.

Ey V includes
$$1+2x+3x^2+4x^3$$

and $1+\frac{1}{8}x^3$.

But not $1+52x^3-8x^4$ too high.

or $1+\frac{1}{3}x^2$ r not degree 3

Cont include the zero vector. But also because addition is not closed.

Ey If $\Gamma(x) = 1+2x+3x^2+4x^3$
 $q(x) = 1-2x+3x^2-4x^3$
 $\Gamma+9 = 2+6x^2$: not cubic

MA313 Week 2: Subspaces and Spans

Start of ...

PART 3: Subspaces

Finished Leve Tresday