curs 2

Logică Matematică și Computațională

FMI · Denisa Diaconescu · An universitar 2018/2019

PRELIMINARII - CONTINUARE

Definiție.

O funcție este un triplet (A, B, R), unde A și B sunt mulțimi, iar $R \subseteq A \times B$ este o relație cu proprietatea că pentru orice $a \in A$ există un unic $b \in B$ cu $(a, b) \in R$.

Vom nota o funcție (A, B, R) prin $f: A \to B$, simbolul f având semnificația: fiecărui element $x \in A$ îi corespunde un singur element $f(x) \in B$ a.î. $(x, f(x)) \in R$.

Spunem că $f: A \to B$ este definită pe A cu valori în B, A se numește domeniul de definiție al funcției f și B domeniul valorilor lui f.

Definiţie.

O funcție parțială de la A la B este o funcție $f:C\to B$, unde C este o submulțime a lui A.

Notaţie.

- · B^A este mulțimea funcțiilor de la A la B.
- · Fie $f: A \to B$ o funcţie, $X \subseteq A$ şi $Y \subseteq B$.
 - \cdot f(A) este imaginea lui f.
 - $f(X) = \{f(x) \mid x \in X\}$ este imaginea directă a lui X prin f(X)
 - $f^{-1}(Y) = \{x \in X \mid f(x) \in Y\}$ este imaginea inversă a lui Y prin f.

3

Definiţie.

Fie $f: A \rightarrow B$ o funcţie.

- f este injectivă dacă pentru orice $x_1, x_2 \in A$, $x_1 \neq x_2$ implică $f(x_1) \neq f(x_2)$ (sau, echivalent, $f(x_1) = f(x_2)$ implică $x_1 = x_2$).
- f este surjectivă dacă pentru orice $y \in B$ există $x \in A$ a.î. f(x) = y (sau, echivalent, f(A) = B).
- · f este bijectivă dacă f este injectivă și surjectivă.

Definiție.

Fie $f: A \to B$ şi $g: B \to C$ două funcţii. Compunerea lor $g \circ f$ este definită astfel:

$$g \circ f : A \to C$$
, $(g \circ f)(x) = g(f(x))$ pentru orice $x \in A$.

Funcţia identitate a lui A este funcţia $1_A: A \to A$, $1_A(x) = x$.

4

Definiție.

O funcție $f:A\to B$ este inversabilă dacă există $g:B\to A$ astfel încât $g\circ f=1_A$ și $f\circ g=1_B$.

Exerciţiu.

O funcție este bijectivă ddacă este inversabilă.

Definiție.

Spunem că A este echipotentă cu B dacă există o bijecție $f:A\to B$. Notăm acest fapt prin $A\sim B$.

Exerciţiu.

A este echipotentă cu B ddacă B este echipotentă cu A. De aceea, spunem de obicei că A şi B sunt echipotente.

FUNCŢIA CARACTERISTICĂ

Definiţie.

Fie A, T mulţimi a.î. $A \subseteq T$. Funcţia caracteristică a lui A în raport cu T este definită astfel:

$$\chi_A: T \to \{0,1\}, \quad \chi_A(x) = \begin{cases} 1, & \text{dacă } x \in A \\ 0, & \text{dacă } x \notin A \end{cases}$$

Proprietăți.

Dacă $A, B \subseteq T$ și $x \in T$ atunci

$$\chi_{A \cap B}(x) = \min\{\chi_A(x), \chi_B(x)\} = \chi_A(x) \cdot \chi_B(x)$$

$$\chi_{A \cup B}(x) = \max\{\chi_A(x), \chi_B(x)\} = \chi_A(x) + \chi_B(x) - \chi_A(x) \cdot \chi_B(x)$$

$$\chi_{\overline{A}}(x) = 1 - \chi_A(x).$$

FAMILII DE MULŢIMI

Fie I o mulţime nevidă.

Definiţie.

Fie A o mulţime. O familie de elemente din A indexată de I este o funcţie $f:I\to A$. Notăm cu $(a_i)_{i\in I}$ familia $f:I\to A$, $f(i)=a_i$ pentru orice $i\in I$. Vom scrie şi $(a_i)_i$ sau (a_i) atunci când I este dedusă din context.

Definiție.

Dacă fiecărui $i \in I$ îi este asociată o mulțime A_i , obținem o familie (indexată) de mulțimi $(A_i)_{i \in I}$.

Fie $(A_i)_{i \in I}$ o familie de submulţimi ale unei mulţimi T. Reuniunea şi intersecţia familiei $(A_i)_{i \in I}$ sunt definite astfel:

$$\bigcup_{i \in I} A_i = \{x \in T \mid \text{ există } i \in I \text{ a.î. } x \in A_i\}$$

$$\bigcap_{i \in I} A_i = \{x \in T \mid x \in A_i \text{ pentru orice } i \in I\}$$

PRODUSUL CARTEZIAN AL UNEI FAMILII DE MULŢIMI

Fie I o mulţime nevidă şi $(A_i)_{i \in I}$ o familie de mulţimi.

Definiție.

Produsul cartezian al familiei $(A_i)_{i \in I}$ se definește astfel:

$$\prod_{i \in I} A_i = \left\{ f : I \to \bigcup_{i \in I} A_i \mid f(i) \in A_i \text{ pentru orice } i \in I \right\}$$

$$= \left\{ (x_i)_{i \in I} \mid x_i \in A_i \text{ pentru orice } i \in I \right\}.$$

Pentru orice $j \in I$, funcția $\pi_j : \prod_{i \in I} A_i \to A_j, \pi_j((x_i)_{i \in I}) = x_j$ se numește proiecție canonică a lui $\prod A_i$. π_j este surjectivă.

Exercițiu.

Fie I, J mulțimi nevide. Atunci

$$\bigcup_{i \in I} A_i \times \bigcup_{j \in J} B_j = \bigcup_{(i,j) \in I \times J} A_i \times B_j \ \Si \ \bigcap_{i \in I} A_i \times \bigcap_{j \in J} B_j = \bigcap_{(i,j) \in I \times J} A_i \times B_j.$$

Fie $n \ge 1$ un număr natural, $I = \{1, ..., n\}$ și $A_1, ..., A_n \subseteq T$.

$$(x_i)_{i \in I} = (x_1, \dots, x_n)$$
, un *n*-tuplu (ordonat)

$$\cdot \bigcup_{i \in I} A_i = \bigcup_{i=1}^n A_i \ \text{si} \bigcap_{i \in I} A_i = \bigcap_{i=1}^n A_i$$

$$\prod_{i \in I} A_i = \prod_{i=1}^n A_i = A_1 \times \cdots \times A_n \text{ si } A^n = \underbrace{A \times \cdots \times A}_n$$

Definiție.

O relație n-ară între A_1, \ldots, A_n este o submulțime a produsului cartezian $\prod_{i=1}^n A_i$. Dacă R este o relație n-ară, spunem că n este aritatea lui R.

O relație n-ară pe A este o submulțime a lui A^n .

BUNĂ ORDONARE ȘI INDUCȚIE

Principiul bunei ordonări.

Orice submulțime nevidă a lui N are un cel mai mic element.

Principiul inducției.

Fie $S \subseteq \mathbb{N}$ astfel încât:

- (i) $0 \in S$ şi
- (ii) pentru orice $n \in \mathbb{N}$, dacă $n \in S$, atunci $n + 1 \in S$.

Atunci $S = \mathbb{N}$.

Demonstrație. Fie $S \subseteq \mathbb{N}$ a.î. (i) și (ii) sunt adevărate. Presupunem că $S \neq \mathbb{N}$, deci $\mathbb{N} \setminus S \neq \emptyset$. Fie n_0 cel mai mic element din $\mathbb{N} \setminus S$. Din (i) rezultă că $n_0 \neq 0$. Deoarece $n_0 - 1 \in S$, din (ii) rezultă că $n_0 \in S$. Am obținut o contradicție. Prin urmare, $S = \mathbb{N}$.

Observație.

Principul bunei ordonări și principiul inducției sunt echivalente.

PRINCIPIUL INDUCŢIEI (FORMA TARE)

Principiul inducției (forma tare).

Fie $S \subseteq \mathbb{N}$ astfel încât:

- (i) $0 \in S$ şi
- (ii) pentru orice $n \in \mathbb{N}$, dacă $\{0, 1, ..., n\} \subseteq S$, atunci $n + 1 \in S$. Atunci $S = \mathbb{N}$

Demonstrație. Aplicăm Principiul inducției pentru

$$S' = \{ n \in \mathbb{N} \mid \{0, \dots, n\} \subseteq S \}.$$

Obţinem $S' = \mathbb{N}$. Rezultă că, pentru orice $n \in \mathbb{N}$, $\{0, \dots, n\} \subseteq S$, deci $n \in S$. Prin urmare, $S = \mathbb{N}$.

PRINCIPIUL INDUCŢIEI

Fie $P: \mathbb{N} \to \{0,1\}$ un predicat (o proprietate). P(n) = 1 înseamnă că P(n) este adevărat.

Principiul inducției.

- · Pasul iniţial. Verificăm că P(0) = 1.
- · Ipoteza de inducție. Presupunem că P(n) = 1, unde $n \in \mathbb{N}$.
- · Pasul de inducție. Demonstrăm că P(n + 1) = 1.

Concluzie: P(n) = 1 pentru orice $n \in \mathbb{N}$.

Principiul inducției (forma tare).

- · Pasul iniţial. Verificăm că P(0) = 1.
- · Ipoteza de inducţie. Pres. că P(k) = 1 pentru orice $k \le n$, unde $n \in \mathbb{N}$.
- · Pasul de inducție. Demonstrăm că P(n + 1) = 1.

Concluzie: P(n) = 1 pentru orice $n \in \mathbb{N}$.

MULŢIMI NUMĂRABILE

Definiție.

O mulțime A este numărabilă dacă este echipotentă cu N.

O mulțime finită sau numărabilă se numește cel mult numărabilă.

Propoziţie.

- (i) Orice submulţime infinită a lui № este numărabilă.
- (ii) Reuniunea unei familii cel mult numărabile de mulțimi numărabile este mulțime numărabilă.
- (iii) ℤ și ℚ sunt numărabile.
- (iv) Produsul cartezian al unei familii cel mult numărabile de mulțimi numărabile este mulțime numărabilă.

Demonstrație. Exercițiu.

Beautiful Dance Moves

Pe data viitoare!

Conținutul tehnic al acestui curs se regăsește în cursul de Logică Matematică și Computațională al prof. Laurențiu Leuștean din anul universitar 2017/2018.