IMAGE FORMING DEVICE

Patent Number:

JP61208578

Publication date:

1986-09-16

Inventor(s):

KOYAMA SHINSUKE; others: 01

Applicant(s)::

SONY CORP

Requested Patent:

☐ JP61208578

Application Number: JP19850050802 19850314

Priority Number(s):

IPC Classification:

G06F15/72

EC Classification:

Equivalents:

Abstract

PURPOSE:To semi-automatically from a logographic type image devoted to an original image by converting a converted grey image data into binary image data by a predetermined threshold. CONSTITUTION:In front of a video camera 10, a logographic type is disposed and picked up by the video camera 10 and this is fed to a digital signal processing circuit 20. From an encoder 21, a brightness component corresponding to a logographic type image is outputted. This brightness component is digitized and the digitized image data is fed to a work station 30 and converted by a grey scale. The image data converted by the grey scale is converted into a binary image data by this designated threshold and displayed on an image plane S of a monitor 50. Accordingly, since the logographic type image only of white and black is displayed on the monitor 50, only by watching this image, a goodness or not of the threshold when converting into the binary data can be judged.

Data supplied from the esp@cenet database - 12

BEST AVAILABLE COPY

THIS PAGE BLANK (USPTO)

19日本国特許庁(JP)

① 特許出願公開

[®] 公 開 特 許 公 報 (A) 昭61 −208578

@Int.Cl.4

識別記号

庁内整理番号

❸公開 昭和61年(1986)9月16日

G 06 F 15/72

6615-5B

審査請求 未請求 発明の数 1 (全6頁)

匈発明の名称 画像作成装置

②特 願 昭60-50802

②出 願 昭60(1985) 3月14日

の発明者 小山 の発明者 北沢 伸介俊彦

東京都品川区北品川6丁目7番35号 ソニー株式会社内東京都品川区北品川6丁目7番35号 ソニー株式会社内

の発 明 者 北 沢 俊 彦 の出 願 人 ソニー株式会社

東京都品川区北品川6丁目7番35号

NAME OF THE PARTY

砂代 理 人 弁理士 伊藤 貞 外1名

明細・音

発明の名称 画像作成装置

特許請求の範囲

カメラ等より出力されたロゴタイプ画像の輝度 成分が A / D 変換され、これが n 階碼 (n は整数) のグレー画像データに変換され、変換さたグレー 画像データが所定のしきい値で 2 値の画像データ に変換されてロゴタイプ画像の輪郭が抽出される ようになされた画像作成変更。

発明の詳細な説明

(産業上の利用分野)

この発明はNAPLPS (North American Presentation Level Protocol Syntax) 方式等のビデオテックス用處宋装置に適用して好適な西像作成装置、特にロゴタイプ西像を自動作成できる西像作成装置に関する。

(発明の概要)

この発明はNAPLPS方式等のビデオテックス用端 末装置に適用して好適な画像作成装置に関し、特 にロゴをピデオカメラ等で穏像して得たロゴタイプ画像のうち、特にその輝度成分を利用してこれをグレー画像に変換し、変換したこのグレー画像を白黒の2億データに変換することにより、ロゴタイプ画像の輪郭を抽出して、ロゴタイプ画像を生成するようにしたものであって、原画に忠実なおのである。

(従来の技術)

ビデオテックス用嶋末装置で、ロゴタイプ画像を撮像するには、端末装置側に設けられたタブレットを使用して手動描画する場合と、ビデオカメラで撮像して得たロゴタイプ画像信号、あるいはVTRからのロゴタイプ画像信号から画像輪郭を抽出して半自動的にロゴタイプ画像を得る場合とが考えられる。

前者の撮像手段では、NAPLPS方式の場合、グラフィックコマンドを選択すると共に、POLYGON (多角形) コマンドや、ARC (円弧) コマンドを指

定した状態で、原画を見ながらタブレットを操作することにより、描画データを形成する必要がある。 そのため、原画に忠実な形状のロゴを形成するのに長時間を要すると共に、忠実な形状を機像するのが中々困難で、熟練を要する。

後者の摄像手段では、次のような欠点を窓起す る。

すなわち、上述したNAPLPS方式のビデオテックスで、例えばビデオカメラの出力画像をもNAPLPSコードに変換できるように構成されている場合には、この出力画像は一旦R、G、Bの原色信号に変換し、これを各々4ビットのデジタル信号に変換して処理する必要がある。この場合、このデジタル画像は最大4096色を含む可能性があり、この4096色の画像は、後述するワークステーションでのカラーパレットテーブルにおいて、16色の画像に変換されることになる。

従って、上述のロゴをビデオカメラで撮像した ものをそのまま、18色の画像データに変換すると、 撮像時の照明状態やその他のノイズ等により、ロ

3

されて、ロゴタイプ画像の形状(輪郭)が抽出される。この 2 値データに基づきロゴタイプ画像が 生成される。

(作用)

この様成において、ロゴタイプ画像はその輝度 成分がA/D変換されている。これをグレー画像 に変換しているので、原画撮像時の照明状態やノ イズによってグレー画像に変換した輪郭成分が影響されることはない。従って、これより白黒画像 に対応した2値の画像データに変換すれば、原画 に忠実なロゴタイプ画像データを生成できる。

(実施例)

第1図はこの発明に係る画像作成装置をNAPLPS 方式のピデオテックス用端末装置に適用した場合 の一例を示す系統図である。

この画像作成装置はビデオカメラ10等のロゴタイプ画像信号の入力源、このビデオカメラ10 等より得られたロゴタイプ画像信号をデジタル処 ゴの持つ形状や単純な色構成のロゴ面像が忠実に デジタル化されないことが生ずる。そのため、原 画に忠実なロゴタイプ画像を作成することができ ない

そこで、この発明ではこのような従来の問題点を解決したものであって、原画に忠実なロゴタイプ画像を半自動的に作成できるようにした画像作成装置を提案するものである。

(発明が解決しようとする問題点)

上述の問題点を解決するため、この発明では第1図に示すように、ビデオカメラ10等より出力されたロゴタイプ画像信号がNTSC等のエンコーダ21に供給されて輝度成分が取り出される。この輝度成分がA/D変換されたのち、コン供給されたのワークステーション30では、A/D変換ではロークステーション30では、Cの例ではロー8)のグレー画像データに変換され、この機データに変換でのしまい値を有する2値の画像データに変換

理するデジタル信号処理回路 2 0 及びその出力をコンピュータ処理して目的とするロゴタイプ面像を生成するワークステーション 3 0 とで構成される。 5 0 はこの信号処理時に使用されるモニタ用のテレビジョン受像機である。

ビデオカメラ10はロゴタイプ画像を有する原 画を摄像する他にも使用される。入力源としてい デオカメラを例示すると、ビデオカメラ10より 出力された摄像信号はデジタル信号処理回路20 に供給される。デジタル信号処理回路20に供給される。デジタル信号処理回路20には、この例ではNTSC方式のエンコーダ21を有し、ここで摄像信号がエンコードされ、これがA/D変換され、これがフィールドメモリ23にて1フィールドずつメモリされ、その出力がコネクタ24に供給される。

一方、このデジタル信号処理回路 2 0 にはワークステーション 3 0 の C P U 3 1 より送出された指令データがこのコネクタ 2 4 を介してコントロールロジック 2 5 に供給され、その出力がタイミングパルス形成回路 2 6 に供給されて、これより

得られるタイミングパルスがA/D変換器 2 2 、メモリ 2 3 に夫々供給される。同様に、ロジック回路 2 5 から得られるパルスがエンコーダ 2 1 に供給され、エンコード処理の制御が実行される。

すなわち、CPU31の指令データに基づいて エンコーダ21では、これに入力する撮像信号を R、G、Bの原色信号にエンコードする処理と、 撮像信号の輝度成分(白黒成分)をエンコードす る処理とが選択される。

ワークステーション 3 0 ではコンピュータによって、面像処理、データ変換等が実行される。

すなわち、ワークステーション30にはCPU 31が設けられると共に、コネクタ32を介して 伝送された画像データは1/Oボート33を経て バッファRAM34に一旦取り込まれ、これより 読み出された画像データはNAPLPS用エンコーダ35 に供給されて、NAPLPSコードに変換され、これが NAPLPS用のデコーダ36で再びデコードされて、 これがビデオRAM37に書き込まれる。ビデオ RAM37のデータはカラーパレット38のアド

7

ジョン受像 観 5 0 に供給されることにより、所定 のカラー 画像が表示される。

一方、エンコーグ 3 5 にストアされたNAPLPSコードの画像データはパッファ R A M 4 1 またはフロッピー 4 2 若しくはその双方にストアされると共に、I / Oボート 4 3 を経て出力コネクタ 4 4 に供給される。出力コネクタ 4 4 は電話回線等のデータ回線を経て伝送される。

この発明では、上述したデジタル信号処理回路 20、ワークステーション30を利用してロゴタ イプの画像が処理されて、原画に忠実ロゴの画像 が牛成される。

第2図は面像処理すべきロゴタイプの画像1の 一例である。

第3図はこのロゴタイプの画像1を処理するためのフローチャートの一例を示す。

この例では、ビデオカメラ 1 0 の前面にロゴタ イプが設置されてビデオカメラ 1 0 で攝像され、 これがデジタル信号処理回路 2 0 に供給される。 このとき C P U 3 1 からはエンコーダ 2 1 に攝像 レス指定データとして使用される。

カラーパレット 3 8 は次の目的を達成するため に扱けられている。

すなわち、A/D変換器 2 2 で A/D変換されたR、G及びBの各画像データは失々 4 ピットにデジタル変換されるが、この画像データは最大4096色の色画像データを含む可能性がある。このような画像データはそのままビデオRAM 3 8 に 音き込まれるのではなく、この4096色の画像データが 1 6 色の画像データに対応付けられ、対応付けられた画像データに基づいて画像表示される。

それ故、エンコーダ 3 5 にはこの 1 6 色に対応付けられた画像データがNAPLPSコードの状態でストアされると共に、少なくとも 1 6 色のカラー画像を再現できるカラーパレット 3 8 が設けられ、このカラーパレット 3 8 のアドレスがビデオ R A M 3 7 にストアされた画像データで指定される。

カラーパレット38より読み出された特定の色 が指定された画像データはD/A変換器39でア ナログ信号に変換され、これがモニタ用のテレビ

8

信号を白黒画像状態のままでエンコード処理すべ き指令信号が送出される。すなわち、ロゴタイパス のは他処理モードが選択されると、プログラムが指 タートし、ステップ 6 1 において、上述した指令 信号が送出されてカラーエンコード処理からられ エンコード処理に切り換えられ、エンコーダ 2 1 からはロゴタイプ画像に対応した輝度成分が出力 される。この輝度成分がステップ 6 2 でデジタル 化され、デジタル化された画像データがワークス テーション 3 0 に送出される。

この画像データはステップ 6 3 でパッファ R A M 3 4 に取りこまれると共に、ステップ 6 4 で n 階 個のグレースケールに変換される。この例では B 階間のグレースケールを使用した場合であって、このように 8 階間のグレースケールを使用するのは、ロゴタイプ画像 1 が白黒で構成されているとは限らず、複数の色に着色されている場合があるからである。

8 階間のグレースケールをもって画像データを 変換したのちは、ステップ 6 5 において、グレー スケール変換後の画像データがテレビジョン受像 概50でモニタされる。このモニタ画像を見なか、 ら、白黒変換用の処理が実行される。そのため、 第2図に示すモニタ画面上には上述ののとせ、スケール2が同時に要示される。グレースケール2が同時に要示される。グレースケール2はこの例では、左側が白で右側に向かして全黒となるように要示される。そして、かっソルKはキーボード(図示せず)のキーを操作してグレースケール2の任意のレベルが指定される。

さて、ステップ66でカーソルドを移動する。カーソルドの移動位置はグレースケールに変換された画像データのしきい値を指定するためであり、これによって、グレースケールで変換された画像データはこの指定されたしきい値によって、2値の画像データに変換される。この場合、カーソルドを基準としてこのカーソルドよりも左側(レベル大)が1で、その右側が0となるように2値変換される(ステップ67)。

11

に示すようにロゴタイプ画像1の表示位置にカーソルドを移動して、このロゴタイプのグレースケールそのものから、2値データ変換用のしきい値を選択してもよい。

なお、上述ではビデオカメラで撮像したロゴタイプの画像を2値データに変換する例を示したが、ロゴタイプ画像の入力手段としては、この他に VTRなどの画像信号を利用することができる。

(発明の効果)

以上説明したようにこの発明によれば、カメラなどより出力されたロゴタイプ画像の輝度成分をA/D変換して、これをn階碼(nは整数)のグレー画像データに変換し、変換したグレー画像データを所定のしきい値で2値の画像データに変換することにより、ロゴタイプ画像の輪郭を抽出するようにしたものである。

従って、この構成によれば、ロゴタイプ画像の 輝度成分だけをグレー画像に変換しているので、 原画撮像時の照明状態やノイズによってグレー画 2 値変換後の画像データはステップ 6 8 において、テレビジョン受像 概 5 0 の画面 S 上に表示される。従って、白黒のみのロゴタイプ画像がこのモニタ上に表示されるから、この画像を見るだけで 2 値データに変換したときのしきい値を いでき、ステップ 6 9 で、もしこのしきい値を りに変換される。以下同様な手頃で 2 値データに変換される。

しきい値の修正を必要としないときには、ステップ70に移って色指定の有無がチェックされ、 色指定がないときにはステップ72でロゴタイプ の2値データがNAPLPSコードに変換される。色指 定があるときには、ステップ71で色指定された のち、色指定された状態でロゴタイプの2値デー タがNAPLPSコードに変換されて、ロゴタイプ画像 の形成プログラムが終了する。

なお、上述ではグレースケールから2値データ に変換する場合グレースケール2上にカーソルド を移動してしきい値の設定を実行したが、第2図

1 2

像に変換した輪郭成分が影響されることはなく、 原画に忠実なロゴタイプ画像データを極めて簡単 に生成することができる。

また、ロゴタイプの画像生成はしきい値を設定するだけであるから半自動的である。従って、従来のようにタプレットを使用して行う場合よりも忠実なロゴ画像をNAPLPSコードに、極めて短時間に生成できる特徴を有する。

図面の簡単な説明

第1図はこの発明に係る画像作成装置をNAPLPS 方式のビデオテックス用端末装置に適用した場合 の一例を示す系統図、第2図はロゴタイプ画像と グレースケールとの関係を示す図、第3図はロゴ タイプ画像作成の一例を示すフローチャートである。

10はビデオカメラ、20はデジタル信号処理 回路、30はワークステーション、50はモニク、 21はカラー、白黒切り換え可能なエンコーダ、 Kはカーソルである。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

MALL TEXT

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)