

Industrial issues of Hybrid/Heterogeneous Critical Systems

L.Rioux, A. Koudri

Hybrid Critical Systems for THALES

- Safety critical missions
 - Failure have could have catastophic consequences
- Timing critical missions
 - Timing failure may have strong impact on the functional capabilities of the system

Safety critical missions

A software-intensive avionics system

- Automated navigation (guidance for related devices: AP / FD / ATH)
- Lateral and vertical trajectory optimizations
- Fuel consumption and forecast
- Flight data display

A safety-critical, hard-real time, embedded system

- Strict latency on processing and communications
- Strict jitter constraints
- Dimensioning of buses, FIFOs and CPU power

Generic FMC

Data /Ráfárance

THALES

Generic FMC

Timing critical missions

Radar: Front-end processing

Radar application

Radar: Back-end processing

Receiver RF/Video

Pulse Detection/ primary parameters

Pulse extraction

Pulse extraction

Pulse extraction

Pulse extraction

Pulse extraction

Pulse parameters change from system to system according to the type of Receiver

MMI

=> Take into account data structure change

The informatio

System Architecture

Heterogenous Model of Computations

• Timing exchange issues? How to analyse the global system?

THALES

Conventional architecture

According to IEEE, a system is:

« a combination of components that act together to perform a function not possible with any of the individual parts »

Real-time embedded systems are inherently heterogeneous, mixing:

- Analog and digital parts
- Hardware and Software parts
- Data-dominated and Control-dominated parts
- Synchronous and Asynchronous behaviour (GALS)

Real-Time embedded interacts with the environment

Environment could be multi-physics (then heterougenous).

THALES

Increase of the numbers of antennas

Example: New Beam forming

Increase of the data sampling rate

Migration from Analog to Digital technology

◆ Example: Digital receiver

What the impact is the architecture?

- Is timing processing enough?
- Timing processing / synchronisation still maintained ?
- Response time still valid?
- Hardware architecture still valid ?

THALES

(MDE) Engineering Issues

System Engineering

Doors

UML

Matlab

Word

Design Space Exploration

Implicit Choices Lack of Traceability

Semantic Gap

Decision Making Cultural and Technological Breakpoints Verification and Validation

Hardware / Software Engineering

VHDL

Java C++

SystemC

MBE Efforts: For<mark>maliza</mark>tion. Actio<mark>n Lan</mark>guage

ES<mark>L Effo</mark>rts: Raise Abstractions, Verification Libraries

Heterogeneity in Engineering

THALES

Heterogeneous systems are inherently complex

- Abstraction (vertical approach), hierarchy (horizontal approach)
- and domains (analytical approach)

Improve the modeling of heterogeneity

- Enable the explanation of the Heterogeneous execution semantics
- Enable inter-connections of different execution semantics.
- Enable the refinements and the mapping of execution semantics between abstract levels
- → Precise modeling and formal representation

Need to improve the early verification of models

- Support for both simulation and formal verification
 - Formal methods are strongly required to optimise the heterogeneous system
- Ease the implementation of the system
- Ease the architecture exploration and reuse.
- → Verification methods (global versus composition).

THALES

Industrial companies like THALES is facing difficulties to design efficiently « Hybrid Systems »

- High Overcost
- Limited capabilities of reuse.
- High difficulties to identify the adequate architecture

Current MDE standards and pratices do meet our requirement to design, verify and optimise these systems

- Non Adequate modeling language
 - Need to be more precise (formal)
- Non adequate analysis techniques
 - Able to integrate « heterogenous hypothesis »
- Non Adequate model transformation / refinement techniques.
 - Especially between abstraction levels.

THALES