FORMAL LANGUAGES AND AUTOMATA, 2025 FALL SEMESTER

Lec 13. Pumping Lemma for Context-Free Languages

Eunjung Kim

PUMPING LEMMA

PUMPING LEMMA FOR CFL

Let A be a context-free language. Then there exists a number p (the pumping length) such that any string $w \in A$ of length at least p, w can be written as w = uvxyz such that the following holds:

- $|vy| \geq 1,$
- $|vxy| \leq p$,
- $uv^ixy^iz \in A$ for every $i \geq 0$.

PUMPING LEMMA

Proof idea: For a sufficiently long string w and its parse tree, some variable is used at least twice.

Figure 2.35 from Sipser 2012.

PUMPING LEMMA FOR CFL, PROOF

There exists a context-free grammar $G = (V, \Sigma, S, R)$ with L(M) = A.

- Let *b* be the max number of symbols in the rhs of a rule.
- In any parse tree in this grammar, an internal node has $\leq b$ children.
- Any parse tree has $\leq b^h$ leaves, where h is the height of a parse tree in G.
- Let $p := b^{|V|+1}$.
- If $w \in A$ has length at least p, then its parse tree has $\geq p = b^{|V|+1}$ leaves, and height at least |V| + 1.
- Choose a parse tree τ yielding w with minimum number of nodes.
- Take a longest root-to-leaf path Q in τ ; has length at least |V|+1.
- Q has at least |V| + 2 nodes; only the last node is a terminal, the other $\geq |V| + 1$ nodes are variables.

PUMPING LEMMA FOR CFL, PROOF

Let X be a variable which occurs twice in the last |V| + 1 variables on Q. Rewrite w = uvxyz, where vxy is the yield of the first X, and x is the yield of the second X.

- $|vy| \ge 1$: if $vy = \epsilon$, then replacing the subtree rooted at the first X by the subtree rooted at the second X leads to a parse tree with strictly smaller number of nodes. Contradicts the choice of τ .
- $|vxy| \le p$: the subtree rooted at the first X has height at most |V| + 1 by the choice of X. It has $\le b^{|V|+1}$ leaves, thus its yield vxy has length $\le b^{|V|+1} = p$.
- $uv^i x y^i z \in A$: replacing the subtree rooted at the second X by the one rooted at the first X (or vice versa). Such a parse tree is a outcome of applying the substitution rule applied for the first X to the second X (or vice versa).

USING PUMPING LEMMA FOR PROVING NON-CFL

PUMPING LEMMA FOR CFL, RESTATED

Let A be a context-free language. Then

- 1 there exists p such that
- 2 for any string $w \in A$ of length at least p,
- there exists a rewriting of w as w = uvxyz with $|vy| \ge 1$ and $|vxy| \le p$ such that
- 4 for any $i \ge 0$, it holds that $uv^i x y^i z \in A$.

USING PUMPING LEMMA FOR PROVING NON-CFL

We use the contraposition of Pumping lemma for proving A is NOT CFL.

SYNTAX FOR NON-CFL

- **I** For every positive number p, (" $\forall p$ ")
- **1** there exists $w \in A$ of length at least p such that (" $\exists w \in A$ ")
- 3 for every split w = uvxyz with $|vy| \ge 1$ and $|vxy| \le p$
- 4 there exists $i \ge 0$ with $uv^i x y^i z \notin A$ (" $\exists i$ ").

If one can establish the above for a language *A*, then by (the contrapositive of) Pumping Lemma, we have proved that *A* is not CFL.

USING PUMPING LEMMA FOR PROVING NON-CFL

- **1** $A = \{a^n b^n c^n \mid n \ge 0\}$
- **2** $B = \{a^i b^j c^k \mid 0 \le i \le j \le k\}$
- **3** $C = \{ww \mid w \in \{0,1\}^*\}$

$$A = \{a^nb^nc^n \mid n \ge 0\}$$

$$B = \{a^i b^j c^k \mid 0 \le i \le j \le k\}$$

$$C = \{ww \mid w \in \{0, 1\}^*\}$$

MEMBERSHIP TEST FOR CFL

MEMBERSHIP TEST FOR CFL

- Input: a CFL A with a representation as PDA or CFG, a string $w \in \Sigma^*$.
- Question: $w \in A$?

POLYNOMIAL-TIME ALGORITHM FOR MEMBERSHIP TEST

- Convert a representation (PDA, CFG) of CFL A into CFG of Chomsky Normal Form.
- **2** CYK (Cocke–Younger–Kasami) algorithm: fill in a $n \times n$ table to test if $w \in A$ for a string w of length $n \ge 1$.

Converting PDA to CFG takes poly(|P|) steps, where |P| is the length of the description of PDA P.

CHOMSKY NORMAL FORM

CHOMSKY NORMAL FORM

A context-free grammar (V, Σ, S, R) is in Chomsky Normal Form if every rule is one of the following form

- \coprod *X* → *YZ* for variables *X* ∈ *V* and *Y*, *Z* ∈ *V* \ {*S*}.
- 2 $X \rightarrow a$ for a terminal $a \in \Sigma$.
- $\mathbf{S} \rightarrow \epsilon$.

Remark: If $\epsilon \notin A$ for CFL A, then there is no ϵ -rule (i.e. a production rule whose body is ϵ). If $\epsilon \in A$, then $S \to \epsilon$ must be one of the production rule, and there is no other ϵ -rule.

Remark: one can convert any CFG G into Chomsky Normal Form in time $O(|G|^2)$.

Fix a grammar $G = (V, \Sigma, S, R)$ in Chomsky Normal Form.

INPUT: a string $w \in \Sigma^*$.

QUESTION: is $w \in L(G)$?

Fix a grammar $G = (V, \Sigma, S, R)$ in Chomsky Normal Form.

INPUT: a string $w \in \Sigma^*$.

QUESTION: is $w \in L(G)$?

Observation:

Suppose $X \Rightarrow^* w$. Then in any derivation of w, the first production rule applied is

- of the form $X \to a$ for some $a \in \Sigma_{\epsilon}$ if $|w| \le 1$, and
- of the form $X \to YZ$ for $X, Y, Z \in V$ if $|w| \ge 2$.

Fix a grammar $G = (V, \Sigma, S, R)$ in Chomsky Normal Form.

INPUT: a string $w \in \Sigma^*$.

QUESTION: is $w \in L(G)$?

Observation:

Suppose $X \Rightarrow^* w$. Then in any derivation of w, the first production rule applied is

- of the form $X \to a$ for some $a \in \Sigma_{\epsilon}$ if $|w| \le 1$, and
- of the form $X \to YZ$ for $X, Y, Z \in V$ if $|w| \ge 2$.

Observation: if $w = \epsilon$, then $w \in L(G)$ if and only if there is a rule $S \to \epsilon$.

We may assume that $|w| \ge 1$. Let $w = w_1 \cdots w_n$ for $w_i \in \Sigma$.

TABULATION

For each pair i, j with $1 \le i \le j \le n$, we compute the set $W_{i,j} \subseteq V$ of variables which generates the substring $w[i,j] := w_i \cdots w_j$ of w. That is,

$$W_{ij,} = \{X \in V : X \Rightarrow_G^* w[i,j]\}.$$

We may assume that $|w| \ge 1$. Let $w = w_1 \cdots w_n$ for $w_i \in \Sigma$.

TABULATION

For each pair i, j with $1 \le i \le j \le n$, we compute the set $W_{i,j} \subseteq V$ of variables which generates the substring $w[i,j] := w_i \cdots w_j$ of w. That is,

$$W_{ij,} = \{X \in V : X \Rightarrow_G^* w[i,j]\}.$$

• For i = j: $X \in W_{i,i}$ if and only if there is a rule $X \to w_i$ in G.

We may assume that $|w| \ge 1$. Let $w = w_1 \cdots w_n$ for $w_i \in \Sigma$.

TABULATION

For each pair i, j with $1 \le i \le j \le n$, we compute the set $W_{i,j} \subseteq V$ of variables which generates the substring $w[i,j] := w_i \cdots w_j$ of w. That is,

$$W_{ij,} = \{X \in V : X \Rightarrow_G^* w[i,j]\}.$$

- For i = j: $X \in W_{i,j}$ if and only if there is a rule $X \to w_i$ in G.
- For i < j: $X \Rightarrow^* w[i,j]$ (i.e. $X \in W_{i,k}$) if and only if
 - **II** there is a rule $X \rightarrow YZ$ in G such that
 - 2 $Y \Rightarrow^* w[i, k]$ and $Z \Rightarrow^* w[k+1, j]$ for some k with $i \le k < j$, or equivalently

$$Y \in W_{i,k}$$
 and $Z \in W_{k+1,i}$

We may assume that $|w| \ge 1$. Let $w = w_1 \cdots w_n$ for $w_i \in \Sigma$.

TABULATION

For each pair i, j with $1 \le i \le j \le n$, we compute the set $W_{i,j} \subseteq V$ of variables which generates the substring $w[i,j] := w_i \cdots w_j$ of w. That is,

$$W_{ij,} = \{X \in V : X \Rightarrow_G^* w[i,j]\}.$$

- For i = j: $X \in W_{i,j}$ if and only if there is a rule $X \to w_i$ in G.
- For i < j: $X \Rightarrow^* w[i,j]$ (i.e. $X \in W_{i,k}$) if and only if
 - 1 there is a rule $X \rightarrow YZ$ in G such that
 - 2 $Y \Rightarrow^* w[i, k]$ and $Z \Rightarrow^* w[k+1, j]$ for some k with $i \le k < j$, or equivalently

$$Y \in W_{i,k}$$
 and $Z \in W_{k+1,j}$

• Compute the set of variables W_{ij} in a non-decreasing order of j - i.

CYK ALGORITHM, EXAMPLE

Consider the following rules of a grammar *G* in CNF:

- $\bullet \ S \to AB \mid BC$
- $A \rightarrow BA \mid a$
- ullet $B \rightarrow CC \mid b$
- ullet $C o AB \mid a$

We want to check if $baaba \in L(G)$.

TESTING EMPTINESS OF CFL A

GENERATING VARIABLE

Let $G = (V, \Sigma, S, R)$ be a context-free grammar.

We say that a symbol $\gamma \in V \cup \Sigma \cup \{\epsilon\}$ is generating if there is a string $w \in \Sigma^*$ such that $\gamma \Rightarrow_G^* w$.

Note that $L(G) \neq \emptyset$ if and only if S is generating.

Algorithm: we compute the set of generating symbols by induction on the length of a shortest derivation of a string in Σ^* .

- Base: mark each symbol $\Sigma \cup \{\epsilon\}$ as "generating" (by length-0 derivation).
- 2 Induction: mark a (variable / terminal) symbol X as "generating" if there is a rule $X \to \alpha$ with $\alpha \in (V \cup \Sigma)^*$ such that all symbols in α are generating (of max shortest derivation length at most n-1.

TESTING EMPTINESS OF CFL A

GENERATING VARIABLE

Algorithm: Apply the above procedure until no more variable is marked as "generating".

Observation: A symbol X (in V) is marked as "generating" if and only if X is indeed generating in G.

- Forward implication clear; every symbol marked at *i*-th round admits a
 parse tree rooted at it of height ≤ *i*.
- Backward implication: if not, consider a variable X with a parse tree of smallest height...