

HEALTH DATA HUB

Création d'un générateur de données de synthèse 11.03.2021

Sommaire

1 Approche théorique

2 Implémentation et utilisation

3 Comment introduire du réalisme?

4 Aperçu des résultats

1. Approche théorique (1/2)

Un point de départ: le schéma formel

joint_va	target	source
ETA_NUM_EPMSI + RHAD_NUI	T_HADaaB	T_HADaaFI
ETA_NUM_EPMSI + RHAD_NUI	T_HADaaB	T_HADaaFL
ETA_NUM_EPMSI + RHAD_NUI	T_HADaaB	T_HADaaFM
ETA_NUM_EPMSI + RHAD_NUI	T_HADaaB	T_HADaaFP
ETA_NUM_EPMSI => ETA_NUI	T_HADaaE	T_HADaaGJ

Du schéma formel aux liens entre les tables

Des liens à la matrice d'adjacence

1. Approche théorique (2/2)

De la matrice d'adjacence, un graphe

Du graphe, un arbre

2. Implémentation (configuration du générateur)

```
[BASE]

| base_name = SNDS |
| #choose a root for every connected component of the data base which contains more than 2 tables |
| roots = IR_BEN_R |
| #fill only one parameter of n_beneficiaires, volume_beneficiaires (which is indicated in Mo) |
| n_beneficiaires = 10 |
| #volume_beneficiaires = 8000 |
| export_path = test_snds |
| #path2resources = src/resources |
| SCHEMA MODIFIER] |
| #the following format is expected: table:variable:property:new value. Note that table, variable and property can be given as globstrings |
| # eg *:NY_DATE:type:datetime will convert the variable MY_DATE's type to "datetime" in ALL the tables |
| modifier1 = IR_BEN_R:BEN_IDT_ANO:length:4
```

4. Implémentation (ressources: schéma, nomenclatures)

2. Implémentation

Génération colonne par colonne

2. Implémentation - exemple: génération de T_MCOaaB

ETA_NUM	RSA_NUM	AGE_ANN	 DGN_PAL
9000325451	151242	65	 X34018
9000646567	135868	42	 S2200

Générés aléatoirement

3. Comment introduire du réalisme? (1/2)

Premier levier: La cohérence temporelle

On peut s'assurer que l'**ordre** des dates est cohérent, par exemple qu'une sortie d'hospitalisation a bien lieu après l'entrée correspondante.

→ comment trouver les couples de variables qui se correspondent?

Notre proposition: une recherche du **plus proche voisin**, avec une distance calculée à partir du nom de la variable et de sa description

Pour
$$x_1 = (var_1, desc_1)$$
 et $x_2 = (var_2, desc_2)$:

$$d(x_1, x_2) = \frac{1}{Z} Levenshtein(var_1, var_2) + 1 - \frac{\langle bow(desc_1), bow(desc_2) \rangle}{||bow(desc_1)||_2.||bow(desc_2)||_2}$$

9

3. Comment introduire du réalisme? (2/2)

Deuxième levier: statistiques descriptives

Plutôt que de générer nos colonnes aléatoirement, on peut utiliser des données en open data pour se rapprocher des distributions réelles, par exemple des médicaments.

 \triangle En revanche, introduire des corrélations est beaucoup plus difficile:

- les données de corrélation ne sont pas toujours en open data
- les corrélations sont souvent au niveau du parcours du patient, et pas au niveau tabulaire

4. Aperçu

4. Aperçu (Remarques)

Repo Gitlab: https://gitlab.com/healthdatahub/synthetic-generator

Limites:

- Pas de cohérence médicale
- Temps de traitement assez conséquent sur de grands volumes de bénéficiaires

Prochaines étapes:

- Prise en compte de plus de bases
- API
- Amélioration des performances (notamment en termes de vitesse)

MERCI POUR VOTRE ATTENTION