Math 170S: Homework 6

Owen Jones

11/21/2023

Problem 1.

- 1. $H_0: \mu = 3.4$ liters.
- 2. $H_1: \mu > 3.4$ liters.
- 3. Let $T := \frac{\overline{x} \mu}{\frac{s}{3}} \sim t^{(8)}$
- 4. Graph below shows t distribution with 8 degrees of freedom. Shaded region descibes $C:=\{\overline{x}|\overline{x}>3.5033\}$

5.
$$\overline{x} = \frac{1}{9} \sum_{i=1}^{9} x_i = 3.55, s_x = \sqrt{\frac{\sum_{i=1}^{9} (x_i - \overline{x})^2}{8}} = 0.167 \Rightarrow T = \frac{\overline{x} - \mu}{\frac{s_x}{3}} = 2.80$$

- 6. We choose to reject the null in favor of the alternative hyppothesis.
- 7. $p value = P(\overline{x} > 3.55|H_0) = 0.0115 < 0.05$

Problem 2. Let
$$Z := \frac{Y - np}{\sqrt{np(1-p)}} = \frac{Y - 0.08 \cdot 100}{\sqrt{100 \cdot 0.08(1 - 0.08)}} \approx \mathcal{N}(0, 1)$$
 by CLT.
Let $z_{\alpha} := |\frac{6 - 0.08 \cdot 100}{\sqrt{100 \cdot 0.08(1 - 0.08)}}|$. Want to find α s.t $P(Z < -z_{\alpha}) = \alpha$. $z_{\alpha} = 0.737 \Rightarrow \alpha = 0.230$

Without normal approximation $P(Y \le 6|p=0.08) = \sum_{k=0}^{6} {100 \choose k} 0.08^k 0.92^{100-k} = 0.3032 \Rightarrow \alpha = 0.3032$

Problem 3.

1. Let
$$Z := \frac{Y - np}{\sqrt{np(1-p)}} = \frac{Y - 0.75 \cdot 192}{\sqrt{192 \cdot 0.75(1 - 0.75)}} \approx \mathcal{N}(0, 1)$$
 by CLT.
Let $z_{\alpha} := \frac{152 - 0.75 \cdot 192}{\sqrt{192 \cdot 0.75(1 - 0.75)}} = 1.33$. $\alpha = P(Y \ge 152 | p = 0.75) \approx P(Z > z_{\alpha}) = 0.091$

2. Let
$$Z := \frac{Y - np}{\sqrt{np(1-p)}} = \frac{Y - 0.08 \cdot 192}{\sqrt{192 \cdot 0.08(1-0.08)}} \approx \mathcal{N}(0,1)$$
 by CLT.
Let $z_{\beta} := \frac{152 - 0.08 \cdot 192}{\sqrt{192 \cdot 0.08(1-0.08)}} = 36.34$. $\beta = P(Y < 152|p = 0.08) \approx P(Z < z_{\beta}) = 1$

1

Let
$$W := \sum_{i=1}^{15} [sgn(X_i - Y_i)]R_i = 54$$

Let
$$Z := \frac{W}{\sqrt{\frac{n(n+1)(2n+1)}{2}}} \approx \mathcal{N}(0,1)$$

Problem 4. We choose
$$H_0: m = 0$$
 and $H_1: m > 0$
Let $W := \sum_{i=1}^{15} [sgn(X_i - Y_i)] R_i = 54$
Let $Z := \frac{W}{\sqrt{\frac{n(n+1)(2n+1)}{6}}} \approx \mathcal{N}(0,1)$
 $P(W \ge 54|H_0) \Leftrightarrow P(Z \ge \frac{54}{\sqrt{\frac{15(16)(31)}{6}}} |H_0) = 0.0625$, so we would fail to reject H_0 at an $\alpha = 0.05$.