ECE 316 – Project 1

Multiplier

Hardware Implementation

Project Description

- Design a multiplier for unsigned binary numbers that multiplies a 4bit number by a 16-bit number to give a 20-bit result
- Use a 4-bit array-multiplier to speed operation
 - You are not allowed to use the built-on multiply operation
- Show operation in ModelSim
- Demonstrate operation on DE1 board

- Extra Credit:
 - Implement a clock divider and use the internal clock. Setup as a 1 Hz clock

Due Dates

- Part A ModelSim design and simulation March 29th
- Part B Demo Complete system on DE1 Apr 5th

Architecture

General Operation

- Load 8-bit LSB for A (multiplier)
- Load 8-bit MSB for A (multiplier)
- Load 4-bit value B (multiplicand)
- Start=1 starts multiplier control machine
- Start=0 multiplier control running
- Output Done and Result Hold here

Controller Operation

- 1. On Start signal, Start=1
 - Load A into Accumulator (lower 16 bits, upper 8-bits=0), Load=1
- 2. Multiply B by Acc[3:0] to get 8-bit output
- 3. Add result of 2 to upper 8-bits of Accumulator
- 4. Store result in Accumulator (upper 8-bits), Add=1
- 5. Shift Accumulator Right by 4-bits, Shift4=1
- 6. Repeat 2-5 x 4
- 7. Done, Done=1

Input/Output

Pin/Bus	I/O	Size	Name	DE1
Din	Input	8-bit	8-bit Data in	SW0-SW7
Start	Input	1-bit	Start signal	SW9
LoadA-LSB	Input	1-bit	Load LSB for multiplier	PB0
LoadA-MSB	Input	1-bit	Load MSB for multiplier	PB1
LoadB	Input	1-bit	Load multiplicand	PB2
CLOCK	Input	1-bit	Manual Clock (falling-edge)	PB3
Done	Output	1-bit	Calculation Done	LED9
Result	Output	6x7-bit	6-digit 7-segment output	HEX5-HEX0
Overflow	Output	1-bit	Overflow result (>999,999)	LED8

4x4 Array Multiplier

				X_3 Y_3	X_2 Y_2	X_1 Y_1	$egin{array}{c} X_0 \ Y_0 \end{array}$	Multiplicand Multiplier
			X_3Y_1 C_{12}	$X_{3}Y_{0}$ $X_{2}Y_{1}$ C_{11}	$X_{2}Y_{0} \ X_{1}Y_{1} \ C_{10}$	$X_1Y_0 \\ X_0Y_1$	X_0Y_0	Partial product 0 Partial product 1 First row carries
		$C_{13} \ X_3 Y_2 \ C_{22}$	$S_{13} \ X_2 Y_2 \ C_{21}$	$S_{12} \ X_1 Y_2 \ C_{20}$	S_{11} X_0Y_2	S_{10}	_	First row sums Partial product 2 Second row carries
1 3 2	$C_{23} X_3 Y_3 C_{32}$	$S_{23} \ X_2 Y_3 \ C_{31}$	$S_{22} \ X_1 Y_3 \ C_{30}$	$S_{21} X_0 Y_3$	S ₂₀	_		Second row sums Partial product 3 Third row carries
C_{33} P_7	S_{33} P_6	S_{32} P_5	S_{31} P_4	S_{30} P_3	P_2	P_1	P_0	Third row sums Final product

4x4 Array-Multiplier

