Lenguajes de Programación

Tarea 4 Lenguajes de Programación

Profesor: Francisco Bórquez

(francisco.borquez@usm.cl)

Álvaro Hernández

(alvaro.hernandezi@alumnos.usm.cl)

Teodoro Saavedra

(teodoro.saavedra@alumnos.usm.cl)

Backtracking o vuelta atrás es una técnica algorítmica que consiste en buscar todas las soluciones de un problema computacional o problemas de satisfacción de restricciones.

Comúnmente esta técnica hace uso de la recursividad. El método de backtracking proporciona una manera sistemática de generar todas las posibles soluciones o posibles combinaciones que pueden llegar a ser solución de un problema.

Veamos un ejemplo simple:

Considerando el conjunto {1, 2, 3}, encontrar todos los subconjuntos que entre sus elementos sumen 4.

Caso Inicial, conjunto vacío

1

Se agrega el primer elemento

=4

=4

Departamento de Informática

Departamento de Informática

Y así sucesivamente hasta que obtenemos el árbol completo.

=4 >4 >4

Como se puede apreciar del árbol de soluciones, este se va generando recursivamente, y si es que se llega a una solución o se deja de cumplir la condición (en este caso, la suma sea =4) sigue con el siguiente nodo hijo en vez de seguir en profundidad. De ahí su nombre "Vuelta atrás".

Esto se lleva, programáticamente, a un retorno de la función (recursiva) a la cual que se llamo.

Por otro lado existen 3 tipos de soluciones:

- Encontrar una única solución, es decir, la primera encontrada.
- Encontrar todas las soluciones.
- Encontrar la mejor solución.

En el caso del ejemplo, si fuera una única solución nos quedaríamos con {1,1,1,1}.

Si fuera la mejor deberíamos aplicar algún criterio que nos permita comprar las soluciones, como por ejemplo que el conjunto sea el mas pequeño o el conjunto con mas elementos, etc.

Existen varios problemas que se pueden resolver con backtracking, algunos de ellos son:

- Sudokus
- El problema de las n-reinas
- Laberintos
- El problema de la mochila
- Coloreo de grafos

(Nota: Se les recomienda investigar un poco sobre estos problema y soluciones)

Deberán aplicar los conceptos de backtracking para buscar una solución a crucigrama.

Por ejemplo:

PAN

POLLO

QUESO

PESCADO

TOMATE

PAN
POLLO
QUESO
PESCADO
TOMATE
PASTEL

Partiré resolviendo las palabras de izquierda a derecha, resolviendo primero Las palabras que van hacia la derecha y luego las que van hacia abajo.

POLLO

QUESO

PESCADO

TOMATE

PASTEL

Primero agregare la palabra PAN, pero esta no calza. Seguiré con Pollo y así sucesivamente

PAN

QUESO

PESCADO

TOMATE

PAN

POLLO

PESCADO

TOMATE

PAN

POLLO

QUESO

TOMATE

PAN

POLLO

QUESO

PESCADO

PASTEL

TOMATE calza.

PAN
POLLO
QUESO
PESCADO
PASTEL

Seguiré con la siguiente palabra y partiré de nuevo probando la palabra PAN.

POLLO

QUESO

PESCADO

PAN

QUESO

PESCADO

PAN

POLLO

PESCADO

PASTEL

PAN

POLLO

QUESO

PASTEL

PESCADO calza.

POLLO

QUESO

PASTEL

PAN

QUESO

PASTEL

POLLO calza.

QUESO PASTEL

QUESO PASTEL

Ahora seguiré con las palabras que van hacia abajo y partiré con QUESO. Pero Queso no cumple la condición de que las letras vayan en las mismas casillas por tanto descarto QUESO y sigo con PASTEL

QUESO

QUESO

Ahora si nos fijamos QUESO no calzara en la ultima palabra, por ende, deberemos retroceder.

QUESO PASTEL

PAN

POLLO

QUESO

PASTEL

Llegamos al estado antes de hacer calzar POLLO, pero sabemos que esta no corresponde a dicho lugar por tanto debemos seguir con las siguientes palabras.

PAN

POLLO

PASTEL

QUESO calza.

POLLO PASTEL

PAN calza.

POLLO

Empezamos de nuevo con las palabras hacia abajo, primero nos fijamos que POLLO no calza por la condición de las letras y PASTEL si calza.

Ahora POLLO si calza y hemos encontrado la solución al crucigrama.

Finalmente ustedes tendrán que programar este procedimiento para cualquier crucigrama del mismo tipo, con solo palabras hacia la derecha y/o hacia abajo.

Éxito!