Weitere Aufgaben zu Vorlesung 04

Bestandsführung und Servicegrade bei Unsicherheit

Aufgabe 1: Simulation einer (s, q)-Politik

Ein Fachgeschäft für High-End-Grafikkarten steuert seinen Bestand mittels einer (s,q)-Politik bei kontinuierlicher Überwachung die durchgehend stattfindet. Die Eckdaten der Politik sind:

- Bestellpunkt (Meldebestand) \boldsymbol{s} : 50 Grafikkarten
- Bestellmenge \boldsymbol{q} : 150 Grafikkarten
- Wiederbeschaffungszeit *L*: 3 Wochen (deterministisch)

Zu Beginn (Ende Woche 0) sind die Bestände wie folgt:

- Physischer Bestand I_0^P : 70 Grafikkarten
- Bestellbestand (offene Bestellungen) I_0^O : 0 Grafikkarten

Geplante wöchentliche Nachfragen:

Woche (t)	1	2	3	4	5	6
Nachfrage d_t	20	25	30	35	20	40

Ihre Aufgaben:

1. Bestandsentwicklung verfolgen: Füllen Sie die folgende Tabelle aus, um die Entwicklung aller relevanten Bestandsgrößen über 6 Wochen zu verfolgen. Eine Bestellung wird am Ende der Woche ausgelöst, in der der disponible Bestand den Meldebestand s erreicht oder unterschreitet. Der Wareneingang erfolgt L=3 Wochen später zu Beginn der entsprechenden Woche.

Woche	Nach-	Disp.	Bestel-	Disp.	Phys.	Bestellbe-	
(t)	frage d_t	Bestand	lung?	Bestand	Bestand	stand	stand
		(Anfang)	(Menge)	(Ende)	(Ende)	(Ende)	(Ende)
0	-	-	-	70	70	0	0
1	20	70	?	?	?	?	?
2	25	?	?	?	?	?	?
3	30	?	?	?	?	?	?
4	35	?	?	?	?	?	?
5	20	?	?	?	?	?	?
6	40	?	?	?	?	?	?

i Lösung

Woche (t) Nachfrage \$0	d_t\$ Disp	. Bestand (A) Beste	llung? (E) Disp.
Bestand (E) Phys. Best	and (E)	Bestellbestand (E)	Fehlbestand (E)
	0	-	-	Θ
70	70		0	Θ
	1	20	70	150
200	50		150	0
	2	25	200	0
175	25		150	0
	3	30	175	0
145	0		150	5
	4	35	145	Θ
110	_ 110		0	0
00	5	20	110	0
90	90	40	0	0
	6	40	90	150
200	50		150	Θ

Aufgabe 2: Sicherheitsbestand für Laufschuhe

Ein Sportartikelhändler verkauft ein beliebtes Modell von Laufschuhen. Die wöchentliche Nachfrage ist annähernd normalverteilt mit einem **Mittelwert von 100 Paaren** und einer **Standardabweichung von 30 Paaren**. Die Wiederbeschaffungszeit vom Hersteller beträgt konstant **2 Wochen**. Es wird eine kontinuierliche Bestandsüberwachung angewendet.

Ihre Aufgaben:

- 1. **Nachfrage im Risikozeitraum:** Berechnen Sie den Erwartungswert und die Standardabweichung der Nachfrage während der Wiederbeschaffungszeit.
- 2. Sicherheitsbestand und Bestellpunkt: Der Händler strebt einen Zyklus-Servicegrad (α -Servicegrad) von 98% an. Bestimmen Sie den dafür notwendigen Sicherheitsfaktor z, den Sicherheitsbestand SS und den Bestellpunkt s.
- 3. **Erwartete Fehlmenge:** Wie hoch ist die erwartete Fehlmenge pro Bestellzyklus (E(B)) bei dem in Teil 2 ermittelten Bestellpunkt?
- 4. **Mengen-Servicegrad:** Wenn der Händler eine fixe Bestellmenge von q = 500 Paaren verwendet, welchen Mengen-Servicegrad (β -Servicegrad oder "Fill Rate") erreicht er damit?

i Lösung

- 1. Nachfrage während der WBZ:
 - Erwartungswert (mu_L): 200.00 Paare
 - Standardabweichung (sigma_L): 42.43 Paare
- 2. Bestellpunkt für alpha = 98.0%:
 - Benötigter z-Wert (Sicherheitsfaktor): 2.054
 - Sicherheitsbestand (SS): 2.054 * 42.43 = 87.13 Paare
 - Bestellpunkt (s): 200.00 + 87.13 = 287.13 Paare
 - -> Der Meldebestand sollte auf 288.0 Paare gesetzt werden.
- 3. Erwartete Fehlmenge pro Zyklus E(B):
 - $-G_u(z=2.054) = 0.0484 2.054 * 0.02 = 0.0073$
 - E(B) = 42.43 * 0.0073 = 0.3115 Paare
- 4. Resultierender beta-Servicegrad:
 - beta = 1 (0.3115 / 500) = 0.9994 oder 99.94%

Mit dieser Politik werden 99.94% der gesamten Nachfrage direkt aus dem Lager bedient.