Exploratory Data Analysis on Olympics Games

Olympics is a popular sporting event. It first began in 1896 - Athens, Greece. The 5 rings in the logo represent the five continents: Europe, Africa, Asia, the Americas, and Oceanica.

This Project is an Exploratory Data Analysis using Python and visualize past Olympics data and answer specific questions. Some specific Python libraries such as Numpy, Pandas, Matplotlib and Seaborn to make sense of our data and extract useful information. Results are visualized using different charts and graphs.

Downloading the Dataset

Datasets used in this projects are athelete_events.csv and noc_regions.csv obtained from https://www.kaggle.com/datasets?fileType=csv

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

```
#loading datasets
athletes_df = pd.read_csv("athlete_events.csv")
regions_df = pd.read_csv("noc_regions.csv")
```

```
#Joining the 2 dataframes
athletes_df = athletes_df.merge(regions_df, how='left',on="NOC")
```

```
athletes_df.rename(columns = {'region' : 'Region' , 'notes' : 'Notes'}, inplace=True)
athletes_df.describe()
```

	ID	Age	Height	Weight	Year
count	271116.000000	261642.000000	210945.000000	208241.000000	271116.000000
mean	68248.954396	25.556898	175.338970	70.702393	1978.378480
std	39022.286345	6.393561	10.518462	14.348020	29.877632
min	1.000000	10.000000	127.000000	25.000000	1896.000000
25%	34643.000000	21.000000	168.000000	60.000000	1960.000000
50%	68205.000000	24.000000	175.000000	70.000000	1988.000000
75%	102097.250000	28.000000	183.000000	79.000000	2002.000000
max	135571.000000	97.000000	226.000000	214.000000	2016.000000

```
#Check for NULL values
```

nan_values = athletes_df.isna()

nan_columns=nan_values.any()

nan_columns

#Note: The columns which donot have any NULL values are represented by FALSE whereas co

ID False Name False False Sex True Age True Height Weight True Team False NOC False False Games False Year Season False City False Sport False Event False Medal True True Region Notes True dtype: bool

```
#Total no. of NULL values present in each column of dataframe
```

athletes_df . isnull() . sum()

ID 0 Name 0 0 Sex Age 9474 Height 60171 Weight 62875 Team 0 NOC 0 Games 0 Year 0
Season 0
City 0
Sport 0
Event 0
Medal 231333
Region 370
Notes 266077
dtype: int64

Query-1: Print the list of column names containing NULL values or missing values

```
null_columns=list(athletes_df.columns[athletes_df.isna().any()])
print(null_columns)
```

```
['Age', 'Height', 'Weight', 'Medal', 'Region', 'Notes']
```

Query-2: Details Of India (First 5 rows)

ath.	athletes_df.query('''Team == 'India' ''').head(5)													
	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City	Sport	E
505	281	S. Abdul Hamid	М	NaN	NaN	NaN	India	IND	1928 Summer	1928	Summer	Amsterdam	Athletics	Ath I m Hu
506	281	S. Abdul Hamid	М	NaN	NaN	NaN	India	IND	1928 Summer	1928	Summer	Amsterdam	Athletics	Athl N m Hu
895	512	Shiny Kurisingal Abraham- Wilson	F	19.0	167.0	53.0	India	IND	1984 Summer	1984	Summer	Los Angeles	Athletics	Ath Wor m
896	512	Shiny Kurisingal Abraham- Wilson	F	19.0	167.0	53.0	India	IND	1984 Summer	1984	Summer	Los Angeles	Athletics	Athl Wor 4 > m
897	512	Shiny Kurisingal Abraham- Wilson	F	23.0	167.0	53.0	India	IND	1988 Summer	1988	Summer	Seoul	Athletics	Athl Wor m

Query-3: Details Of Japan (First 5 rows)

```
athletes_df.query(''' Team == 'Japan' ''').head(5)
      ID
                     Age Height Weight
                                         Team NOC
                                                                               City
          Name Sex
                                                      Games
                                                             Year
                                                                   Season
                                                                                       Sport
         Isao Ko
                                                       1936
625 362
                  M 24.0 177.0
                                   75.0 Japan JPN
                                                             1936 Summer
                                                                              Berlin
                                                                                     Athletics
                                                    Summer
```

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City	Sport	
629	363	Kazumi Abe	М	28.0	178.0	67.0	Japan	JPN	1976 Winter	1976	Winter	Innsbruck	Bobsleigh	B _t Me
630	364	Kazuo Abe	М	25.0	166.0	69.0	Japan	JPN	1960 Summer	1960	Summer	Roma	Wrestling	V Ligh F
631	365	Kinya Abe	М	23.0	168.0	68.0	Japan	JPN	1992 Summer	1992	Summer	Barcelona	Fencing	Fencir Foil, In
632	366	Kiyoshi Abe	М	25.0	167.0	62.0	Japan	JPN	1972 Summer	1972	Summer	Munich	Wrestling	V Feath∈ F

Query-4: Top 10 participating Countries along with number of participants from each country

```
#Query : Top 10 participating Countries along with number of participants from each cou
Top_ten = athletes_df.Team.value_counts().sort_values(ascending=False).head(10)
print(Top_ten)
```

United State	es 17847			
France	11988			
Great Brita:	in 11404			
Italy	10260			
Germany	9326			
Canada	9279			
Japan	8289			
Sweden	8052			
Australia	7513			
Hungary	6547			
Name: Team,	dtype: int64			

Query-5: Plot for top 10 countries

```
plt.figure(figsize=(16,8))
plt.title('Total participation by each of the Top 10')
plt.xlabel('Countries')
plt.ylabel('Participants')
sns.barplot(x=Top_ten.index , y=Top_ten , palette='Set3');
```


Query-6: Age distribution of the participants

```
plt.figure(figsize=(16,8))
plt.title('Age distribution of the countries')
plt.xlabel('Age')
plt.ylabel('Number Of Participants')
plt.hist(athletes_df.Age , bins = np.arange(10,80,2) , color='dodgerblue' , edgecolor='
```


Query-7: Print all sports played in Winter Olympics

```
Winter_sports = athletes_df[athletes_df.Season == 'Winter'].Sport.unique()
print('Winter Olympics Sports =>\n')
print(Winter_sports)
```

```
Winter Olympics Sports =>
['Speed Skating' 'Cross Country Skiing' 'Ice Hockey' 'Biathlon'
 'Alpine Skiing' 'Luge' 'Bobsleigh' 'Figure Skating' 'Nordic Combined'
 'Freestyle Skiing' 'Ski Jumping' 'Curling' 'Snowboarding'
 'Short Track Speed Skating' 'Skeleton' 'Military Ski Patrol' 'Alpinism']
Query-8: Print all sports played in Summer Olympics
 Summer_sports = athletes_df[athletes_df.Season == 'Summer'].Sport.unique()
 print('Summer Olympics Sports =>\n')
 print(Summer_sports)
Summer Olympics Sports =>
['Basketball' 'Judo' 'Football' 'Tug-Of-War' 'Athletics' 'Swimming'
 'Badminton' 'Sailing' 'Gymnastics' 'Art Competitions' 'Handball'
 'Weightlifting' 'Wrestling' 'Water Polo' 'Hockey' 'Rowing' 'Fencing'
 'Equestrianism' 'Shooting' 'Boxing' 'Taekwondo' 'Cycling' 'Diving'
 'Canoeing' 'Tennis' 'Modern Pentathlon' 'Golf' 'Softball' 'Archery'
 'Volleyball' 'Synchronized Swimming' 'Table Tennis' 'Baseball'
 'Rhythmic Gymnastics' 'Rugby Sevens' 'Trampolining' 'Beach Volleyball'
 'Triathlon' 'Rugby' 'Lacrosse' 'Polo' 'Cricket' 'Ice Hockey' 'Racquets'
 'Motorboating' 'Croquet' 'Figure Skating' 'Jeu De Paume' 'Roque'
 'Basque Pelota' 'Alpinism' 'Aeronautics']
 #Male & Femal Participants
 Gender_count = athletes_df.Sex.value_counts()
 Gender_count
     196594
М
      74522
Name: Sex, dtype: int64
 # Pie Plot for Male and Female athletes
 plt.figure(figsize=(16,8))
 plt.title('Gender Distribution')
 plt.pie(Gender_count , labels = Gender_count.index , autopct='%1.1f%%' , startangle=60
```

Gender Distribution

Query-9: Total Medals

```
total_medals=athletes_df.Medal[athletes_df.Medal != 'NaN'].count()
medals=athletes_df.Medal.value_counts()
print('Total Medals : {}'.format(total_medals))
medals
```

Total Medals : 39783

Gold 13372 Bronze 13295 Silver 13116

Name: Medal, dtype: int64

Query-10: Female Participants in Olympics

 $female_participants = athletes_df[(athletes_df.Sex == 'F') \& (athletes_df.Season == 'Suparticipants=female_participants.groupby('Year').count().reset_index() participants$

	Year	Sex
0	1900	33
1	1904	16
2	1906	11
3	1908	47
4	1912	87

```
Year
          Sex
5 1920
         134
6 1924
         244
7 1928
         404
8 1932
         347
9 1936
         468
10 1948
         628
11 1952 1497
12 1956
13 1960 1435
14 1964 1348
15 1968 1777
16 1972 2193
17 1976 2172
18 1980 1756
19 1984 2447
20 1988 3543
21 1992 4124
22 1996 5008
23 2000 5431
24 2004 5546
25 2008 5816
26 2012 5815
27 2016 6223
```

```
female_Olympics = athletes_df[(athletes_df.Sex == 'F') & (athletes_df.Season == 'Summer
sns.set(style="darkgrid")
plt.figure(figsize=(16,8))
sns.countplot(x='Year' , data = female_Olympics , palette="Spectral")
plt.title('Women Participation');
```


1900 1904 1906 1908 1912 1920 1924 1928 1932 1936 1948 1952 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012 2016 Year

Query-11: First 5 Gold Medals Atheletes

gold_athletes=athletes_df[athletes_df.Medal == 'Gold']
gold_athletes.head()

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City	S
3	4	Edgar Lindenau Aabye	М	34.0	NaN	NaN	Denmark/Sweden	DEN	1900 Summer	1900	Summer	Paris	Tug-Of-
42	17	Paavo Johannes Aaltonen	М	28.0	175.0	64.0	Finland	FIN	1948 Summer	1948	Summer	London	Gymnas
44	17	Paavo Johannes Aaltonen	М	28.0	175.0	64.0	Finland	FIN	1948 Summer	1948	Summer	London	Gymnas
48	17	Paavo Johannes Aaltonen	М	28.0	175.0	64.0	Finland	FIN	1948 Summer	1948	Summer	London	Gymnas
60	20	Kjetil Andr Aamodt	М	20.0	176.0	85.0	Norway	NOR	1992 Winter	1992	Winter	Albertville	AI Sk

Take only the values that are different from NaN
gold_athletes=gold_athletes[np.isfinite(gold_athletes['Age'])]

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	Ci
3	4	Edgar Lindenau Aabye	М	34.0	NaN	NaN	Denmark/Sweden	DEN	1900 Summer	1900	Summer	Par
42	17	Paavo Johannes Aaltonen	М	28.0	175.0	64.0	Finland	FIN	1948 Summer	1948	Summer	Londo

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	Ci
44	17	Paavo Johannes Aaltonen	М	28.0	175.0	64.0	Finland	FIN	1948 Summer	1948	Summer	Londo
48	17	Paavo Johannes Aaltonen	М	28.0	175.0	64.0	Finland	FIN	1948 Summer	1948	Summer	Londo
60	20	Kjetil Andr Aamodt	М	20.0	176.0	85.0	Norway	NOR	1992 Winter	1992	Winter	Albertvil
270981	135503	Zurab Zviadauri	М	23.0	182.0	90.0	Georgia	GEO	2004 Summer	2004	Summer	Athir
271009	135520	Julia Zwehl	F	28.0	167.0	60.0	Germany	GER	2004 Summer	2004	Summer	Athir
271016	135523	Ronald Ferdinand "Ron" Zwerver	М	29.0	200.0	93.0	Netherlands	NED	1996 Summer	1996	Summer	Atlan
271049	135545	Henk Jan Zwolle	М	31.0	197.0	93.0	Netherlands	NED	1996 Summer	1996	Summer	Atlan
271076	135553	Galina Ivanovna Zybina (- Fyodorova)	F	21.0	168.0	80.0	Soviet Union	URS	1952 Summer	1952	Summer	Helsin

13224 rows × 17 columns

Query-12: Gold Medalists beyond age of 60

```
print("Number of Gold Medalists beyond age of 60 = {}\n".format(gold_athletes[gold_athl
# Sport events in which they won Gold
sporting_event=gold_athletes[gold_athletes['Age']>60].Sport
sporting_event
```

Number of Gold Medalists beyond age of 60 = 6

104003 Ar	t Competitions
105199	Roque
190952	Archery
226374	Archery
233390	Shooting
261102	Archery
Name: Sport,	dtype: object

Query-13: Plot for the Sporting Event

```
plt.figure(figsize=(16,8))
plt.tight_layout
```

```
sns.countplot(x=sporting_event)
plt.title("Gold Medals won v/s Athletes over age of 60");
```


Query-14: Total Gold Medals from each Country

```
gold_athletes.Region.value_counts().reset_index(name='Medal')
```

	index	Medal
0	USA	2627
1	Russia	1599
2	Germany	1293
3	UK	657
4	Italy	567
92	Grenada	1
93	Jordan	1
94	Vietnam	1
95	Ivory Coast	1
96	Tajikistan	1

97 rows × 2 columns

Plot for Gold Medals won by each of Top 6 countries

```
total_gold=gold_athletes.Region.value_counts().reset_index(name='Medal').head(6)
graph=sns.catplot(x = "index",y = "Medal", data = total_gold, kind = "bar",height=6,pal
graph.set_xlabels("Top 6 Countries")
graph.set_ylabels("No. Of Medals");
```


Rio Olympics

```
max_year = athletes_df.Year.max()
print("Most recent Year of Olympics present in dataset : {}\n".format(max_year))
team_names = athletes_df[(athletes_df.Year == max_year) & (athletes_df.Medal == 'Gold')
# Gold Medals won by each Country in Rio Olympics
team_names.value_counts().reset_index(name="Medals")
```

Most recent Year of Olympics present in dataset : 2016

	index	Medals
0	United States	137
1	Great Britain	64
2	Russia	50
3	Germany	47
4	China	44
60	Ethiopia	1
61	Armenia	1
62	Individual Olympic Athletes	1
63	Turkey	1
64	Slovenia	1

```
rio_gold_team_names=team_names.value_counts().head(30)
plt.figure(figsize=(16,8))
sns.barplot(x=rio_gold_team_names, y=rio_gold_team_names.index, palette="icefire")
plt.ylabel(None)
plt.xlabel('Countrywise Medals for year 2016');
```


Height v/s Weight of Olympics Medalists Plot

```
gold_athletes_df=athletes_df[athletes_df.Medal == 'Gold']
gold_athletes=gold_athletes_df[gold_athletes_df['Height'].notnull() & gold_athletes_df[
silver_athletes_df=athletes_df[athletes_df.Medal == 'Silver']
silver_athletes=silver_athletes_df[silver_athletes_df['Height'].notnull() & silver_athl
bronze_athletes_df=athletes_df[athletes_df.Medal == 'Bronze']
bronze_athletes=bronze_athletes_df[bronze_athletes_df['Height'].notnull() & bronze_athl
frames=[gold_athletes , silver_athletes , bronze_athletes]
resultant=pd.concat(frames)
plt.figure(figsize=(12,10))
axis=sns.scatterplot(x="Height" , y="Weight", data=resultant,hue='Sex')
plt.title("Height v/s Weight of Olympics Medalists")
```

Text(0.5, 1.0, 'Height v/s Weight of Olympics Medalists')

Conclusion

This project helped me to understand how to analyze and visualize past Olympics data f use of Python libraries and their associated functions for creating interesting visuali

Some Useful Links & References for the Project

https://pandas.pydata.org/

https://seaborn.pydata.org/tutorial/color_palettes.html

https://pandas.pydata.org/pandas-docs/version/0.20/merging.html