

planetmath.org

Math for the people, by the people.

ideal completion of a poset

 ${\bf Canonical\ name} \quad {\bf Ideal Completion Of APoset}$

Date of creation 2013-03-22 17:03:01 Last modified on 2013-03-22 17:03:01

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771)
Entry type Definition
Classification msc 06A12
Classification msc 06A06
Related topic LatticeOfIdeals
Defines ideal completion

Let P be a poset. Consider the set Id(P) of all order ideals of P.

Theorem 1. Id(P) is an algebraic dcpo, such that P can be embedded in.

Proof. We shall list, and when necessary, prove the following series of facts which ultimately prove the main assertion. For convenience, write $P' = \operatorname{Id}(P)$.

- 1. P' is a poset with \leq defined by set theoretic inclusion.
- 2. For any $x \in P$, $\downarrow x \in P'$.
- 3. P can be embedded in P'. The function $f: P \to P'$ defined by $f(x) = \downarrow x$ is order preserving and one-to-one. If $x \leq y$, and $a \leq x$, then $a \leq y$, hence $\downarrow x \subseteq \downarrow y$. If $\downarrow x = \downarrow y$, we have that $x \leq y$ and $y \leq x$, so x = y, since \leq is antisymmetric.
- 4. P' is a dcpo. Suppose D is a directed set in P'. Let $E = \bigcup D$. For any $x,y \in E, x \in I$ and $y \in J$ for some ideals $I,J \in D$. As D is directed, there is $K \in D$ such that $I \subseteq K$ and $J \subseteq K$. So $x,y \in K$ and hence there is $z \in K \subseteq E$ such that $x \leq z$ and $y \leq z$. This shows that E is directed. Next, suppose $x \in E$ and $y \leq x$. Then $x \in I$ for some $I \in D$, so $y \in I \subseteq E$ as well. This shows that E is a down set. So E is an ideal of P: $\bigvee D = E \in P'$.
- 5. For every $x \in P$, $\downarrow x$ is a compact element of P'. If $\downarrow x \leq \bigvee D$, where D is directed in P', then $\downarrow x \subseteq \bigcup D$, or $x \in \bigcup D$, which implies $x \in I$ for some ideal $I \in D$. Therefore $\downarrow x \subseteq I$, and $\downarrow x$ is way below itself: $\downarrow x$ is compact.
- 6. P' is an algebraic dcpo. Let $I \in P'$. Let $C = \{ \downarrow x \mid x \in I \}$. For any $x, y \in I$, there is $z \in I$ such that $x \leq z$ and $y \leq z$. This shows that $\downarrow x \leq \downarrow z$ and $\downarrow y \leq \downarrow z$ in C, so that C is directed. It is easy to see that $I = \bigvee C$. Since I is a join of a directed set consisting of compact elements, P' is algebraic.

This completes the proof.

Definition. Id(P) is called the *ideal completion* of P. Remarks.

- In general, the ideal completion of a poset is not a complete lattice. It is complete in the sense of being directed complete. This is different from another type of completion, called the MacNeille completion of P, which is a complete lattice.
- If P is an upper semilattice, then so is Id(P). In fact, the join of any non-empty family of ideals exists. Furthermore, if P has a bottom element 0, then Id(P) is a complete lattice.

Proof. Let S be a non-empty family of ideals in P. Let A be the set of P consisting of all finite joins of elements of those ideals in S, and $B = \downarrow A$. Clearly, B is a lower set. For every $a, b \in B$, we have $c, d \in A$ such that $a \leq c$ and $b \leq d$. Since c and d are both finite joins of elements of those ideals in S, so is $c \vee d$. Since $a \leq c \vee d$ and $b \leq c \vee d$, B is directed. If I is any ideal larger than any of the ideals in S, clearly $A \subseteq I$, since I is directed. So $B = \downarrow A \subseteq \downarrow I = I$. Therefore, $B = \bigvee S$.

If $0 \in P$, then $\langle 0 \rangle$, the bottom of $\mathrm{Id}(P)$, is the join of the empty family of ideals in P. By http://planetmath.org/CriteriaForAPosetToBeACompleteLatticethis entry, $\mathrm{Id}(P)$ is a complete lattice.

• If P is a lower semilattice, then so is Id(P).

Proof. Let I,J be two ideals in P and $K=I\cap J$. By definition, I and J are non-empty, so let $a\in I$ and $b\in J$. As P is a lower semilattice, $c:=a\wedge b$ exists and $c\leq a$ and $c\leq b$. So $c\in I\cap J$, and that $K=I\cap J$ is non-empty. If $x\leq y\in K$, then $x\leq y\in I$ or $x\in I$. Similarly $x\in J$. Therefore $x\in I\cap J=K$ and K is a lower set. If $r,s\in K$, then there is $u\in I$ and $v\in J$ such that $r,s\leq u,v$. So $r,s\leq u\wedge v$ and K is directed. This means that $I\cap J\in \mathrm{Id}(P)$.

References

G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, D. S. Scott, *Continuous Lattices and Domains*, Cambridge University Press, Cambridge (2003).