Задачи третей трети семестра

Бугрий Илья М3134

08.01.2024

1. Задачи третей трети семестра

1) • Любой $P_i \in \left\{P_i(x_1...x_n)\right\}_{i=1}^n$ однозначно задается набором коэффициентов, который можно представить в виде вектора ξ из арифметического векторного пространства F

$$\xi = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix} \tag{1}$$

- Преобразование $P_i(x) o \widetilde{P}_i(x) \Longleftrightarrow \xi o \widetilde{\xi} \Rightarrow$ все преобразования существующие на данных полиномах, должны существовать на векторах в арифметическом векторном пространстве \Rightarrow мы можем только:
 - Прибавлять к вектору (полиному) другой вектор (полином) $\xi + \xi'$
 - Умножать вектор (полином) на скаляр $\lambda \xi$
- Рассмотрим умножение на скаляр: $\widetilde{P}_i(x) = \lambda \cdot P_i(x)$

$$\forall x \in U: \widetilde{P}_i(x) = \lambda \cdot P_i(x) = \lambda \cdot 0 = 0 \Rightarrow \text{инвариантность сохраняется} \tag{2}$$

• Рассмотрим сложение с вектором, который однозначно задает

полином
$$P_j \in \left\{P_i(x_1...x_n)\right\}_{i=1}^n$$

$$\forall x \in U: \widetilde{P}_i(x) = P_j(x) + P_i(x) = 0 + 0 = 0 \Rightarrow \text{инвариантность сохраняется} \qquad (3)$$

- Пусть $X = \left\{P_i(x_1...x_n)\right\}_{i=1}^n$
- По определению

$$P(x) = \sum_{i=1}^{n} \xi_i x_i \tag{4}$$

• Пусть

$$M = \left\{ \xi \in F \mid \forall x \in U : \sum_{i=1}^{n} \xi_i x_i = 0 \right\}$$
 (5)

• Определим φ как функцию, которая по полиному дает его коэффиценты в F, тогда

$$\varphi(X) \subseteq M \tag{6}$$

• Рассмотрим преобразование из ξ' в m

$$\forall \xi : \xi \in M \quad \text{if } \xi \notin \varphi(X) : \forall \xi' \in \varphi(x) : m = \xi + (-\xi') + \xi' \tag{7}$$

$$\forall x \in U: \sum_{i=1}^{n} m_i x_i = 0 \tag{8}$$

- Таким образом, мы можем заменить строку из СЛАУ, на другую строку не присутствующую в данной СЛАУ, если такая существует.
- Расмотрим добавление вектора $\xi : \xi \notin M$. По определению М

$$\forall l \in \varphi(X) : \nexists x \in U : \sum_{i=1}^{n} (\xi_i + l_i) x_i = 0$$

$$\tag{9}$$

2)
$$a_{ij}^{(k)} = a_{ij}^{(0)} - \sum_{l=1}^{k-1} a_{lj}^{(l-1)} \frac{a_{i1}^{(l-1)}}{a_{ll}^{(l-1)}} \tag{10}$$

- 3) Докажем, что $L\cong M$ iff $|\dim L|=|\dim M|$ (где L,M линейные пространства)
 - →
 - Пусть φ изоморфизм $\beta(L) = \left\{e_i\right\}_{i=1}^n, \beta(M) = \left\{e_i'\right\}_{i=1}^m$ базисы
 - Изоморфизм сохраняет все свойства, формулируемые в терминах линейных комбинаций ⇒ базис переходит в базис
 - Вследствии биективности φ : $|\beta(L)| = |\varphi(\beta(L))| = |\beta(M)|$
 - ←
 - Определим биекцию $\sigma:\beta(L)\to\beta(M)$
 - Определим линейное отображение $\varphi:L o M$, так что

$$\varphi(l) = \sum_{i} a_i \sigma(e_i), \tag{11}$$

- $\bullet \ \varphi(L) = \varphi(\operatorname{span}(\beta(L))) = \operatorname{span}(\varphi(\beta(L))) = \operatorname{span}(\sigma(\beta(L))) = \operatorname{span}(\beta(M)) = M$
- $\,arphi$ изоморфизм, так как разложение по базису единственно, а σ биективно а) $\,n \neq \infty$
 - Базис $\mathbb{K}[x]$ многочленов не выше n, множество

$$\beta = \left\{ x^i \right\}_{i=0}^n \tag{12}$$

$$|\beta| = n + 1 \tag{13}$$

Базис К*[x]

$$\beta^* = \left\{ f^i \right\}_{i=0}^n : f^i(x_k) = \delta_{ik} \tag{14}$$

- Очевидно $|\beta| = |\beta^*| \Rightarrow \mathbb{K}[x] \cong \mathbb{K}^*[x]$
- b) $n = \infty$
 - По определению базис $\mathbb{K}[x]$ счетен, так как $\exists f: f(x^i) = i+1$
 - По определению любые $p(x), \xi(x) \in \mathbb{K}[x]$ представимы в виде суммы $p(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2 + \dots$ и $\xi(x) = \beta_1 + \beta_2 x + \beta_3 x^2 + \dots$, где отличны от нуля лишь элементы конечных множеств $\{\alpha_1, \alpha_2...\alpha_m\}$ и $\{\beta_1, \beta_2, ...\beta_l\}$
 - Таким образом мы можем построить изоморфизм между $\mathbb{K}[x]$ и множеством функционалов

$$P = \left\{ f_{p(x)} \mid f_{p(x)}(\xi(x)) = \sum_{i=1}^{\max\{m,l\}} \alpha_i \beta_i \quad p(x), \xi(x) \in \mathbb{K}[x] \right\}$$
 (15)

- По определению $|P| = |\mathbb{K}[x]|$ и $P \subseteq \mathbb{K}^*[x]$
- Рассмотрим функционал $g:g(p(x))=\sum_{i=1}^\infty b_i \alpha_i$, то есть функционал, который представим **бесконечной** последовательностью b_i .
- $\forall p(x) \in \mathbb{K}[x]: g(p(x)) \neq \infty$, так как коффиценты любого полинома с какого-то моменты равны нулю, значит сумма конечна.
- $g \notin P$ так как любой функционал из P представим как конечная последовательность коэффициентов. $g \in \mathbb{K}^*[x]$ по определению $\Rightarrow P \subset \mathbb{K}^*[x] \Rightarrow |P| < |\mathbb{K}^*[x]| \Rightarrow |\mathbb{K}[x]| < |\mathbb{K}^*[x]| \Rightarrow$ невозможно установить изоморфизм.

- 4) Определим $f_{(a,b)}((c,d)) = (a,b)\cdot(c,d)$
 - Покажем линейность: $\forall x,y \in \mathbb{C}: x \cdot y \in \mathbb{C}$

•
$$f_{(a,b)}(\alpha(c,d)) = f_{(a,b)}((\alpha c, \alpha d)) = (a,b) \cdot (\alpha c, \alpha d) =$$

$$= (\alpha ac - \alpha bd, \alpha bc + \alpha ad) = \alpha (ac - bd, bc + ad) = \alpha f_{(a,b)}((c,d))$$
(16)

•
$$f_{(a,b)}((c_1,d_1)+(c_2,d_2)) = (a,b)\cdot(c_1+c_2,d_1+d_2) =$$

$$= (a(c_1+c_2)-b(d_1+d_2),b(c_1+c_2)+a(d_1+d_2)) =$$

$$= (ac_1-bd_1,bc_1+ad_1)+(ac_2-bd_2,bc_2+ad_2) =$$

$$= f_{(a,b)}((c_1,d_1))+f_{(a,b)}((c_2,d_2))$$

$$(17)$$

• Матрица оператора:

- Смысл оператора: так как $r_1e^{i\alpha_1}\cdot r_2e^{i\alpha_2}=r_1r_2e^{i(\alpha_1+\alpha_2)}$, то умножая на комплексное число (a,b)мы увеличиваем норму числа (c,d) на норму (a,b), а потом поворачиваем вектор отвечающий числу (c,d) на угол вектора, который отвечает числу (a,b)
- 5) SO(n) это множество поворотов векторов в пространстве \mathbb{R}^n (поворот, есть преобразование, которое сохраняет длину вектора).
 - Любой поворот задается осью вращения (двумерной плоскостью) и углом поворота
 - В п-мерном пространстве существует $\binom{n}{2}$ независимых (попарно-ортогональных) плоскостей
 - Если мы выбрали плоскость поворота, то любый поворот задается одним базовым умноженным на константу
 - dim $SO(n) = \frac{n(n-1)}{2}$
- 6) Матрица, однозначно задающая $g_{\mu\nu}$ в базисе $\{e_1,e_2\}$ выглядит так : A =

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{19}$$

- Найдем выражение вектора e_1' в базисе $\{e_1,e_2\}$. Для этого найдем проекцию e_1' на $\{e_1,e_2\}$

$$\begin{aligned} & \operatorname{proj}_{e_1} e_1' = \cos \left(\frac{\pi}{3} - \frac{\pi}{6} \right) \, \|e_1'\| \, \left(\frac{e_1}{\|e_1\|} \right) = \cos \left(\frac{\pi}{6} \right) \, \|e_1'\| \, e_1 = \frac{\sqrt{3}}{2} e_1 \\ & \operatorname{proj}_{e_2} e_1' = \sin \left(\frac{\pi}{3} - \frac{\pi}{6} \right) \, \|e_1'\| \, \left(\frac{e_2}{\|e_2\|} \right) = \sin \left(\frac{\pi}{6} \right) \, \|e_1'\| \, e_2 = \frac{1}{2} e_2 \end{aligned} \tag{20}$$

$$e_1' = \frac{\sqrt{3}}{2}e_1 + \frac{1}{2}e_2 \tag{21}$$

• Аналогично найдем проекцию e_2' на $\{e_1,e_2\}$

$$\operatorname{proj}_{e_1} e_2' = \cos\left(\frac{\pi}{3}\right) \|e_2'\| \left(\frac{e_1}{\|e_1\|}\right) = \cos\left(\frac{\pi}{3}\right) \|e_2'\| e_1 = \frac{1}{2}e_1$$

$$\operatorname{proj}_{e_2} e_2' = \sin\left(\frac{\pi}{3}\right) \|e_2'\| \left(\frac{e_2}{\|e_2\|}\right) = \sin\left(\frac{\pi}{3}\right) \|e_2'\| e_2 = \frac{\sqrt{3}}{2}e_2$$

$$(22)$$

$$e_2' = \frac{1}{2}e_1 + \frac{\sqrt{3}}{2}e_2 \tag{23}$$

• Найдем матрицу перехода от базиса $\{e_1,e_2\}$ к $\{e_1',e_2'\}$

$$B = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \qquad B^{-1} = \begin{pmatrix} \sqrt{3} & -1 \\ -1 & \sqrt{3} \end{pmatrix}$$
 (24)

- В старом базисе $g_{\mu\nu}a^{\mu}b^{\nu}=a^T\cdot A\cdot b$
- В новом базисе $B^{-1}\cdot x=x'\Rightarrow x=B\cdot x'\Rightarrow g_{\mu\nu}a^\mu b^\nu=a^T\cdot B^T\cdot A\cdot B\cdot b\Rightarrow$ матрица соответствующая $g'_{\mu\nu}$

$$A' = B^T \cdot A \cdot B = B \cdot A \cdot B = \begin{pmatrix} 1 & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & 1 \end{pmatrix}$$
 (25)

• Чтобы найти третью точку для построения окружности в новом базисе решим уравнение

$$g_{\mu\nu}(\alpha e_1' + e_2', \alpha e_1' + e_2') = 1$$

$$\alpha^{2} \left(g_{\mu\nu}(e'_{1}, e'_{1}) + g_{\mu\nu}(e'_{2}, e'_{2}) + 2 \cdot g_{\mu\nu}(e'_{1}, e'_{2}) \right) = 1$$

$$\alpha^{2} \left(2 + \sqrt{3} \right) = 1 \Rightarrow \alpha = \sqrt{\frac{1}{2 + \sqrt{3}}}$$
(26)

• Найдем координаты вектора $v'={lpha \choose 1}$ в старом базисе

$$v = B \cdot v' = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ 1 \end{pmatrix} \approx \begin{pmatrix} 0.94 \\ 1.12 \end{pmatrix}$$
 (27)

2. Дополнительные задачи

1) • Докажем универсальное с-во свободной абелевой группы G с базисом $A=\{a_1...a_n\}$: Определим искомый гоморфизм как:

$$\hat{\phi}(x \in G) = \hat{\phi}\left(\sum_{i} n_{i} a_{i}\right) = \sum_{i} n_{i} \hat{\phi}(a_{i}) = \sum_{i} n_{i} \phi(a_{i}) \quad n_{i} \in \mathbb{Z}$$
 (28)

• Докажем с-во гомоморфизма:

$$x+y=\sum_{i}n_{i}a_{i}+\sum_{i}m_{i}a_{i}=\sum_{i}(n_{i}+m_{i})a_{i}$$

$$\hat{\phi}(x+y)=\sum_{i}(n_{i}+m_{i})\phi(a_{i})=\sum_{i}n_{i}\phi(a_{i})+\sum_{i}m_{i}\phi(a_{i})=\hat{\phi}(x)+\hat{\phi}(y)$$
 (29)

• Пусть существует другой гомоморфизм $\varphi:G \to H.$ По условию он является продолжением ϕ на $G \Rightarrow \forall i: \varphi(a_i) = \phi(a_i) = \hat{\phi}(a_i).$ Но так как любое отображение $f:G \to H$ однозначно задается значениями на $\{a_1...a_n\}$, то $\varphi=\hat{\phi}$

• Пусть универсальное свойство выполняется, тогда

$$\exists ! \hat{\phi} \quad \mathbf{u} \ \exists \sum_{i} n_{i} \notin \mathbb{Z} : \hat{\phi} \Biggl(\sum_{i} n_{i} a_{i} \Biggr) = \sum_{i} n_{i} \phi(a_{i}) \tag{30}$$

• Но в H не существует элемента, который можно представить нецелым набором коэффициентов (в группе есть только сложение, а при сложении любых двух элементов группы с целыми коэффициентами получается элемент с целыми коэффициентами) \Rightarrow противоречие

2) • Докажем, что любое преобразование $f \in PSL(2,\mathbb{C})$ не являющееся тождественным, фиксирует не более 2-х точек.

$$\frac{az+b}{cz+d} = z$$

$$cz^2 + (d-a)z - b = 0$$
 (31)

- Случай 1: $c \neq 0$. Тогда полином от z (выше) имеет 1 или 2 решения (основная теорема алгебры). $z = \infty$ не является фиксированной точкой, так как $f(\infty) = \frac{a}{c}$
- Случай 2: c = 0.

$$(d-a)z - b = 0 (32)$$

- Случай 2.1: a=d и b=0 приводит к тожедественному преобразованию (не подходит)
- Случай 2.2: a=d и $b\neq 0\Rightarrow$ нет корней
- Случай 2.3: $a \neq d \Rightarrow z = \frac{b}{a-d}$
- Для точек (x_1, x_2, x_3) определим $g \in PSL(2, \mathbb{C})$:

$$g(z) = \frac{z - x_1}{z - x_3} \cdot \frac{x_2 - x_3}{z - x_1} \tag{33}$$

- Прямой проверкой убеждаемся, что $g(x_1)=0$ и $g(x_2)=1$ и $g(x_3)=\infty$
- Докажем единственность g: пусть существует $p \in PSL(2,\mathbb{C}): p \neq g$, которое переводит точки (x_1,x_2,x_3) в $(0,1,\infty)$. Тогда:
 - $(g^{-1}\circ p)\in PSL(2,\mathbb{C})$ фиксирует точки (x_1,x_2,x_3) , но из доказанного выше следует, что любое преобразование из $PSL(2,\mathbb{C})$ фиксирующее более 2 точек является тождественным $\Rightarrow g=p$
 - Аналогичное док-во для $(p \circ g^{-1})$
- Любое $f\in PSL(2,\mathbb{C})$ однозначно задается $x\in\mathbb{C}^4\Rightarrow PSL(2,\mathbb{C})\cong\mathbb{C}^4\Rightarrow PSL(2,\mathbb{C})\ncong\mathbb{C}^3$
- 3) Пусть B билинейное симметричное скалярное произведение.
 - $\forall l, m \in L : l \neq m : B(l+m, l+m) = B(l, l+m) + B(m, l+m) =$ = B(l, l) + B(l, m) + B(m, l) + B(m, m) = (34) $= 2B(l, m) + B(l, l) + B(m, m) \Rightarrow$

$$\Rightarrow B(l,m) = \frac{B(l+m,l+m) - B(l,l) - B(m,m)}{2} =$$

$$= \frac{Q(l+m) - Q(l) - Q(m)}{2}$$
(35)

$$l = m : B(l, l) = \frac{B(2l, 2l) - 2B(l, l)}{2} = \frac{4Q(l) - 2Q(l)}{2} = Q(l)$$
 (36)