TEAM3 ZMZ (20200453), 引き(20201501)

NFA 10: letter (letter | digit)*

digit= 011/213/415/61/1819. letter: albld -- |z|A|B(C|-- |Z

NFA INT : zero ((- | E) non-zero (zero | non-zero)*)

non-zero: 112131415/617/819

NFA STRING: " (letter | zero | non-zero |) * "

letter: a|b|c| -- |Z| A|B|C| -- |Z | non-zero: 1|2|31415|617|819

$$T_1 = \varepsilon - closure(\delta(T_0, letter)) = \{B,C,b,E,G,T\}, \xi - closure(\delta(T_0, digit)) = \emptyset$$

$$T_2 = \varepsilon - closure (S(T_1, letter)) = 10, E, G, H, I, J)$$

$$\mathcal{E}$$
 - closure $\{S(T_3, \text{letter})\} = \{D, E, G, H, I, J\} = T_2$

letter digit To Ti Ø Ti Tz T3 Tz Tz T3 T3 Tz T3	letters (T) digit stort, (T) letter digit s (T) letter.

letter

	, e	2		
	_	7	nz	
To	Ti	T ₂	T3	
T_i	ø	Ø	T3	
(T2)	Ø	Ø	Ø	
(T3)	Ø	T4	T5	
(Ty)	Ø	T4	Ts	
(T5)	φ	Ty	T5	

8

"(letter | zevol non-zevol)"

letter -> L, non-Zero ->NZ, Zero -> Z.

$$\mathcal{E}$$
-closure $(\mathcal{E}(T_0, L)) = \emptyset$, \mathcal{E} -closure $(\mathcal{E}(T_0, Z)) = \emptyset$

$$\mathcal{E}$$
 - closure $(\mathcal{E}(T_i, ")) = \mathcal{E}$ - closure $(P) = \{P\} = T_2$

$$\varepsilon$$
-closure $(\delta(T_i, Z)) = \varepsilon$ -closure $(J) = \{J, M, N, O, D, E, F, G, H\} = T_4$

$$\mathcal{E}$$
-closure $(f(T_1, 1)) = \mathcal{E}$ -closure $(L) = \{L, M, N, O, D, E, F, G, H\} = T_5$
 \mathcal{E} -closure $(f(T_1, 1)) = \mathcal{E}$ -closure $(L) = \{L, M, N, O, D, E, F, G, H\} = T_6$

$$\mathcal{E}$$
-closure $(J(T_2, ")) = \emptyset$ \mathcal{E} -closure $(J(T_3, ")) = \mathcal{E}$ -closure $(J(T_2, L)) = \emptyset$ \mathcal{E} -dosure $(J(T_1, L)) = \mathcal{E}$ -closure $(J(T_1, L)) = \mathcal{E}$ -c

$$\mathcal{E}$$
-dosure $(\mathcal{S}(T_2, L)) = \emptyset$ \mathcal{E} -closure $(\mathcal{S}(T_3, I)) = \mathcal{E}$ -closure $(\mathcal{S}(T_2, L)) = \emptyset$ \mathcal{E} -closure $(\mathcal{S}(T_3, L)) = \mathcal{E}$ -closure $(\mathcal{S}(T_2, L)) = \mathcal{E}$ -closure $(\mathcal{S}(T_3, L)) = \mathcal{E}$ -closure $(\mathcal{S}($

$$\mathcal{E}$$
-closure $(\mathcal{S}(T_2, Z)) = \emptyset$ \mathcal{E} -closure $(\mathcal{S}(T_3, Z)) = \mathcal{E}$ -closure $(\mathcal{S}(T_3, Z)) = \emptyset$ \mathcal{E} -closure $(\mathcal{S}(T_3, Z)) = \mathcal{E}$ -closure $(\mathcal{S}(T_3, Z)) = \mathcal{E}$ -closure $(\mathcal{S}(T_3, NZ)) = \mathcal{E}$ -closure $(\mathcal{S}(T_3, NZ$

$$\varepsilon$$
 - closure $(\delta(T_3, \xi)) = \varepsilon$ - closure $(T) = T_4$
 ε - closure $(\delta(T_3, N_Z)) = \varepsilon$ - closure $(T) = T_4$

$$\varepsilon - closure (\delta(T_s, N_Z)) = \varepsilon - closure(k) = T_s$$

$$\varepsilon - closure (\delta(T_s, N_Z)) = \varepsilon - closure(k) = T_s$$

$$\mathcal{E}$$
-closure $(\mathcal{S}(T_4, 11)) = \mathcal{E}$ - closure $(P) = T_2$.
 \mathcal{E} - closure $(\mathcal{S}(T_4, L)) = \mathcal{E}$ - closure $(I) = T_3$
 \mathcal{E} - closure $(\mathcal{S}(T_4, Z)) = \mathcal{E}$ - closure $(J) = T_4$.
 \mathcal{E} - closure $(\mathcal{S}(T_4, NZ)) = \mathcal{E}$ - closure $(K) = T_5$

$$\varepsilon$$
-closure $(G(T_4, N_{\overline{e}})) = \varepsilon$ -closure(K)=Ts

$$\varepsilon$$
- closure($S(T_s, L)$)= ε - closure(P)= T_s
 ε - closure($S(T_s, L)$)= ε - closure(T_s)= T_s

$$\varepsilon$$
 - closure $(\delta(T_5, L)) = \varepsilon$ - ε -

$$e - closure(S(T_5,N_5)) = E - closure(J) = T_4$$

 $e - closure(S(T_5,N_5)) = E - closure(K) = T_5.$

$$\varepsilon$$
 - closure $(S(T_5,NZ))=\varepsilon$ - closure $(K)=T_5$.
 ε - closure $(S(T_5,NZ))=\varepsilon$ - closure $(L)=T_6$.

e- closure
$$(S(T_6, 11)) = E$$
- closure(P) = T_2

$$\varepsilon$$
-closure($\delta(T_6, L)$)= ε -closure(P)= T_2
 ε -closure($\delta(T_6, L)$)= ε -closure(I)= T_3

$$\varepsilon$$
 - closure $(s(T_i, Z)) = \varepsilon$ - closure $(I) = T_3$

$$\varepsilon$$
 - closure $(S(T_k, Z)) = \varepsilon$ - closure $(I) = T_3$
 ε - closure $(S(T_k, Z)) = \varepsilon$ - closure $(J) = T_4$

$$\varepsilon$$
- closure $(S(T_k, Z)) = \varepsilon$ -closure $(J) = T_{\psi}$
 ε - closure $(S(T_k, NZ)) = \varepsilon$ -closure $(K) = T_{\psi}$

$$\varepsilon$$
-closure $(\delta(T_6, NZ)) = \varepsilon$ -closure $(K) = T_5$

T. T. \$\frac{1}{\psi}\$ \[\text{T}_1 \] \ \frac{\psi}{\psi}\$ \[\text{T}_2 \] \ \frac{\psi}{\psi}\$ \[\text{T}_3 \] \ \text{T}_2 \] \[\text{T}_3 \] \[\text{T}_4 \] \[\text{T}_2 \] \[\text{T}_3 \] \[\text{T}_5 \] \[\text{T}_2 \] \[\text{T}_3 \] \[\text{T}_6 \] \[\text{T}_2 \] \[\text{T}_3 \]	7 N-7 P P P P P P P P P P P P P P P P P P P	Ø	
	To NZ Z	Z NZ NZ	⊃NZ