SRSML24: STM Machine Learning Module

Steven R. Schofield

April 20, 2025

Overview

This module provides tools for machine learning analysis of scanning tunnelling microscopy (STM) data, including autoencoder models, clustering tools, and STM-specific preprocessing.

Getting the Code

Clone the repository from GitHub:

```
git clone https://github.com/srschofield/SRSML24.git
```

Installation

It is recommended to create a clean Python environment using conda. The following steps assume you are working on a macOS system with Apple Silicon:

```
# create and activate environment
conda create --name srsml24 python=3.8 -y
conda activate srsml24

# install packages
pip install -r requirements-macos.txt
```

Known Working Configuration

This module has been tested and is known to work with the following configuration on macOS 15.0.1 (Apple Silicon, M3 Pro chip):

- python==3.8
- tensorflow-macos==2.16.2
- tensorflow-metal==1.1.0
- numpy==1.24.3
- pandas==1.5.3
- matplotlib==3.7.1

- scikit-learn==1.3.0
- scipy==1.10.1
- opencv-python==4.8.1.78
- Pillow==9.5.0
- joblib==1.3.2
- jupyter==1.0.0
- ipykernel==6.29.3
- keras-core==0.1.6
- spiepy==0.1.6
- access2thematrix==0.1.3

These packages can be installed using the requirements-macos.txt file. The Python version is critical: other versions may cause compatibility issues with TensorFlow or other packages on Apple Silicon.

Python Files

- data_prep.py Functions for data preparation, including slicing STM images into windows and saving them in efficient formats.
- model.py Defines convolutional autoencoder and UNET-style models.
- utils.py Utility functions for loading/saving models, feature arrays, and results.

Example Data and Scripts

- example_data/ Example STM data and latent feature arrays.
- examples/ Scripts demonstrating usage of the module, including training and inference workflows.

License

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0). You are free to:

- Share copy and redistribute the material in any medium or format
- Adapt remix, transform, and build upon the material

Under the following terms:

• **Attribution** — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

- NonCommercial You may not use the material for commercial purposes.
- ShareAlike If you remix, transform, or build upon the material, you must distribute your contributions under the same license.

To view a copy of this license, visit: https://creative commons.org/licenses/by-nc-sa/4.0/

Parameter Summary

Parameter	Description	
General		
job_name	Label for the run, it will be the folder name for output.	
verbose	If True, enables more detailed print output.	
Matrix data file processing		
flatten_method	Method used to flatten STM images before analysis. Options	
	are 'none', 'iterate_mask', 'poly_xy'.	
<pre>pixel_density</pre>	All images will be converted to this pixel density (px/nm).	
pixel_ratio	Images that have ratio of fast/slow scan direction less than this	
	will be discared. Setting to 1 means only complete (square)	
	images are kept.	
data_scaling	Multiplicative factor for z-height data. Setting to 1.e9 means	
	that the range 0–1 (used for training) corresponds to 1 nm.	
Window generation		
window_size	Side length of square image windows (in pixels).	
window_pitch	Spacing between adjacent windows during tiling.	
Data saving		
(Should remain defaults but options can be useful for examining data manually.)		
save_windows	If True, saves image windows as .npy files (True).	
together	If True, saves windows per image in a single file (True).	
save_jpg	If True, saves full STM images as JPGs (False).	
collate	If True, flattens directory structure into one folder. (False).	
save_window_jpgs	If True, saves image windows as JPGs. (False)	
Autoencoder		
model_name	Label used to save and load the trained autoencoder model.	
batch_size	Number of windows per training batch.	
buffer_size	Size of shuffle buffer.	
<pre>learning_rate</pre>	Learning rate for the optimizer.	
epochs	Number of training epochs.	
Clustering		
cluster_model_name	Name used when saving the clustering model.	
cluster_batch_size	Number of latent vectors per clustering batch.	
cluster_buffer_size	Size of buffer for clustering shuffle.	
num_clusters	Number of clusters to form using KMeans.	
n_init	Number of initializations for KMeans.	
max_iter	Max iterations for KMeans convergence.	
reassignment_ratio	Fraction of centroids reassigned each step.	

Parameter	Description
Image prediction	
<pre>predict_window_pitch</pre>	Window spacing during prediction step.
mtrx_train_data_limit	Max number of training MTRX files to use.
mtrx_test_data_limit	Max number of validation MTRX files to use.
train_data_limit	Limit on number of training windows.
test_data_limit	Limit on number of validation windows.