- 1. (Previously presented.) A method of reclaiming a well completion brine comprising the steps of:
 - a. mixing the brine containing metal impurities with an organic chelant for a time sufficient for the chelant to complex a metal and form a complexed metal precipitate; and
- b. removing the complexed metal precipitate from the brine wherein the metal impurities contain iron and further wherein the complexed metal precipitate contains iron.
- 2. (Original.) The method of Claim 1, wherein the organic chelant contains up to about 120 carbon atoms and further contains at least one functional group selected from the group consisting of $-CO_2H$ or $-PO(OH)R^{20}$ or a salt or ester thereof, -C(O)-, -OE, -SE, $-N=C(R^2)R^3$, $EO-N=C(R^2)R^3$, $-N(R^2)R^3$, and a $-N(C(O)R^1)R^2$ group, optionally substituted with a -COOH or $-PO(OH)R^{20}$ or a salt or ester thereof or -SE or -OE group, wherein R^2 and R^3 are independently selected from E or forms, with nitrogen, phosphorous, oxygen or sulfur, a heterocyclic ring; E is R^1 or -H; R^1 is a C_1 - C_{30} alkyl or aralkyl group or a derivative thereof; and R^{20} is either -OH or R^1 .
- 3. (Original.) The method of Claim 2, wherein the organic chelant is further substituted with at least one group selected from $-CO_2H$ or $-PO(OH)R^{20}$ or a salt or ester thereof, -C(O)-, -OE, -SE, $-N=C(R^2)R^3$, $EO-N=C(R^2)R^3$, $-P(R^2)R^3$, $-POR^2R^3$, $-PO_3$, $-OPO_3$, $-SO_3$, $-OSO_3$, $-NO_2$, $-N(R^2)R^3$ or $-N(C(O)R^1)R^2$.
- 4. (Original.) The method of Claim 2, further comprising mixing the brine with an oxidizer.
- 5. (Original.) The method of Claim 4, wherein the oxidizer is a slow reacting oxidizer.
- 6. (Original.) The method of Claim 5, wherein the oxidizer is calcium peroxide or

magnesium peroxide.

- 7. (Original.) The method of Claim 6, wherein the organic chelant is benzoic acid or a salt or ester thereof.
- 8. (Original.) The method of Claim 2, wherein the functional group is -COOH or a salt or ester thereof.
- 9. (Original.) The method of Claim 8, wherein the organic chelant is benzoic acid or a salt or ester thereof.
- 10. (Previously presented.) The method of Claim 8, wherein the organic chelant is further substituted with at least one group selected from -OE, -SE, $-P(R^2)R^3$, $-POR^2R^3$, $-PO_3$, $-OPO_3$, $-SO_3$, $-OSO_3$, $-NO_2$, $-N=C(R^2)R^3$, $EO-N=C(R^2)R^3$, $-N(R^2)R^3$, $-N(CH_2)_2$ and $-N(C(O)R^1)R^2$ optionally substituted with a -COOH or $-PO(OH)R^{20}$ group or a salt or ester thereof or with an -OE or -SE group.
- 11. (Original.) The method of Claim 10, wherein the organic chelant further contains the functional group -NR²R³ optionally substituted with a -COOH or -PO(OH)R²⁰ group or a salt or ester thereof or with an -OE or -SE group.
- 12. (Original.) The method of Claim 11, wherein the organic chelant is nitrilotriacetic acid or a salt or ester thereof.
- 13. (Currently amended.) The method of Claim 10, wherein the organic chelant is an ethylene diamine type of the structural formula:

$$(F)(R^9)A(U)_k(V)_t(C_nH_{2n})A(R^{10})(R^{11})$$
 (I)

or a derivative thereof
wherein A is nitrogen or phosphorus; R⁸, R⁹, R¹⁰ and R¹¹ are independently -(CH₂)_xCOOH or (CH₂)_xPO(OH)R²⁰ or a salt or ester thereof, -(CH₂)_xOE or (CH₂)_xSE (CH₂)_xSE or a derivative
thereof; R⁵ is -H or a C₁-C₃₀ alkyl or aralkyl group or derivative thereof; R¹⁴ is R⁵ or R⁸; F is (CH₂)_xCOOH or -(CH₂)_xPO(OH)R²⁰ or a salt or ester thereof, -OE, -SE, -(CH₂)_xSE or -(CH₂)_xOE

or a derivative thereof; U is -(CH₂CONR¹⁴-)_z; V is -(C_nH_{2n}AR⁸-); n is 1 to 15; x is 1 to 4; and k, z and t are independently 0 to 2.

- 14. (Previously presented.) The method of Claim 13, wherein the organic chelant is selected from the group consisting of ethylene diamine tetra acetic acid; hydroxyethylenediamine triacetic; O, O'-bis(2-aminoethy!) ethyleneglycol—N,N,N',N'-tetraacetic acid; and N-(glycylglycyl)-1,2-diaminoethane-N',N',N'',N''-tetraacetic acid.
- 15. (Original.) The method of Claim 8, wherein the organic chelant further contains the functional group -N(COR¹)R² group optionally substituted with a -COOH or -PO(OH)R²⁰ group or a salt or ester thereof or with an -OE or SE group.
- 16. (Cancelled.)
- 17. (Cancelled.)
- 18. (Original.) The method of Claim 15, wherein the organic chelant contains from ten to one hundred twenty carbon atoms.
- 19. (Original.) The method of Claim 18, wherein the organic chelant contains a counter ion selected from the group consisting of ionic forms of sodium, potassium, cesium, ammonium, monoethanolamine, diethanolamine, triethanolamine, N-propylamine, isopropylamine, 2-amino-2-methyl-1,3-propane diol, 2-amino-2-methyl-1-propanol, 2-amino-2-ethyl-1,3-propane diol, tris(hydroxymethyl) aminomethane, group II metals, and a Group 3-7 transition metal.
- 20. (Original.) The method of Claim 8, wherein the organic chelant is substituted with at least one -OE, -SE, -POR²R³, -PO₃, -OPO₃, -SO₃, or -OSO₃ group.
- 21. (Original.) The method of Claim 20, wherein the organic chelant is substituted with an -OE group.
- 22. (Previously presented.) The method of Claim 21, wherein the organic chelant is zinc di-(12-hydroxy-9-octadecenoate).

- 23. (Original.) The method of Claim 8, wherein the organic chelant is substituted with a $P(R^2)R^3$ or $-POR^2R^3$ group.
- 24. (Cancelled.)
- 25. (Original.) The method of Claim 23, wherein the organic chelant is of the formula (HOOCCH₂)₂PCH₂CH₂P(CH₂COOH)₂ or a salt or ester thereof.
- 26. (Original.) The method of Claim 8, wherein the organic chelant is selected from the group consisting of benzoic acid; benzene-1,2-dicarboxylic acid; benzene-1,3,5-tricarboxylic acid; nonyl-1,3-dicarboxylic acid; and 1-hydroxy-2-napthoic acid and salts thereof.
- 27. (Original.) The method of Claim 2, wherein the organic chelant contains at least one $N(R^2)R^3$, -N=C(R²)R³, EO-N=C(R²)R³ or a -N(C(O)R¹)R² group wherein R² and R³ independently may be substituted with a -COOH, -PO(OH)R²⁰, -SE or -OE group or a salt or ester thereof.
- 28. (Original.) The method of Claim 27, wherein the organic chelant is N,N'-dimethyl-N,N'-dilauroylethylenediamine or a salt thereof.
- 29. (Original.) The method of Claim 27, wherein the organic chelant is 1, 2-diaminobenzene or a salt thereof.
- 30. (Original.) The method of Claim 27, wherein the organic chelant is iminobis (methylenephosphonic acid) or a salt or ester thereof.
- 31. (Original.) The method of Claim 27, wherein the organic chelant is further substituted with at least one group selected from -OE, -SE, -PO₃, -OPO₃, -OSO₃, or -NO₂.
- 32. (Original.) The method of Claim 31, wherein the organic chelant is substituted with an -OE group.
- 33. (Original.) The method of Claim 32, wherein the organic chelant is 8-hydroxy quinoline or a salt thereof.

- 34. (Original.) The method of Claim 32, wherein the organic chelant is substituted with a -SO₃ or a -OSO₃ group.
- 35. (Original.) The method of Claim 27, wherein the organic chelant is substituted with a -SO₃ or a -OSO₃ group.
- 36. (Original.) The method of Claim 35, wherein the organic chelant is 1-aminobenzene-2-sulfonic acid or a salt thereof.
- 37. (Original.) The method of Claim 27, wherein the organic chelant is a nitrogen, phosphorous, oxygen or sulfur containing heterocyclic ring.
- 38. (Original.) The method of Claim 37, wherein the organic chelant is porphine or derivatives thereof or salts thereof.
- 39. (Previously presented.) The method of Claim 27, wherein the organic chelant is selected from the group consisting of ethylenediaminetetraacetic acid, 1,2-dimethylenedinitrilotetraacetic acid; DL-1-alkylethylenedinitrilotetraacetic acid N,N'-diamide; 1,2-dimethylethylenedinitrilotetraacetic acid N,N'-diamide; 1,2-phenylenedinitrilotetraacetic acid; N,N-dimethyl-2-aminophenol; and 4-phenyl-8-mercaptoquinoline and salts thereof.
- 40. (Cancelled.)
- 41. (Original.) The method of Claim 2, wherein the functional group is -OE or -SE.
- 42. (Original.) The method of Claim 41, wherein the organic chelant is N-hydroxy-N-nitrosobenzenamine or a salt thereof.
- 43. (Original.) The method of Claim 41, wherein the organic chelant further contains at least one group selected from -PO₃, -OPO₃, -SO₃, -OSO₃, or -NO₂.
- 44. (Original.) The method of Claim 43, wherein the organic chelant contains a -SO₃ or -OSO₃ group.

- 45. (Original.) The method of Claim 44, wherein the organic chelant is 1-hydroxybenzene-2-sulfonic acid or a salt thereof.
- 46. (Original.) The method of Claim 41, wherein the organic chelant contains a -PO₃ or -OPO₃ group.
- 47. (Original.) The method of Claim 43, wherein the organic chelant is 4-nitro-1,2-dihydroxy benzene or a salt thereof.
- 48. (Original.) The method of Claim 2, wherein the organic chelant is a diketone having the structural formula:

$$R^{12}C(O)(C_nH_{2n}Y_w)_x(R^6)_y Y_w (C_nH_{2n})_zC(O)R^{13}$$

or derivative thereof

wherein R^{12} and R^{13} are independently –H or a C_1 - C_{30} alkyl or aralkyl group optionally substituted with a –COOH or –PO(OH) R^{20} or a salt or ester thereof, -N(R^2) R^3 , -SE or -OE group; R^6 is C_nH_{2n} or a derivative thereof; Y is –O, -S, -P or –N; n is 1 to 30, w is 0 or 1, and x, y and z are independently 0 to 5.

- 49. (Original.) The method of Claim 48, wherein the organic chelant is pentane-2,4-dione or octadecane-2,4-dione.
- 50. (Original.) The method of Claim 3, wherein the organic chelant is a dioxime having the structural formula:

$$R^{2}C(=N-OE)(C_{n}H_{2n}Y_{w})_{x}(R^{6})_{y}Y_{w}(C_{n}H_{2n})_{z}C(=N-OE)R^{3}$$

or a derivative thereof;

wherein R^2 and R^3 are independently selected from R^1 , -(CH₂)₈OE, -(CH₂)₈SE or - (CH₂)₅COOH or -(CH₂)₅PO(OH) R^{20} or a salt or ester thereof; R^1 is -H or a C₁-C₃₀ alkyl or aralkyl group or derivative thereof; R^6 is C_nH_{2n} or a derivative thereof; E is R^1 or -H; Y is -O, -S, -P or -N; s is 1 to 4, n is 0 to 5, w is 0 or 1 and x, y and z are independently 0 to 5.

- 51. (Original.) The method of Claim 50, wherein the organic chelant is 2,3-butanedionedioxime.
- 52. (Original.) The method of Claim 1, further comprising mixing the brine with an oxidizer.
- 53. (Original.) The method of Claim 52, wherein the oxidizer is a slow reacting oxidizer.
- 54. (Previously presented.) The method of Claim 1, further comprising adding to the brine an absorbent or defoamer.
- 55. (Original.) The method of Claim 54, wherein the absorbent is activated carbon.
- 56. (Cancelled.)
- 57. (Previously presented.) The method of Claim 52, further comprising adding to the brine an absorbent or defoamer.