8.16 Find i(t) for t > 0 in the circuit of Fig. 8.70.

Figure 8.70 For Prob. 8.16.

8.20 The switch in the circuit of Fig. 8.74 has been closed for a long time but is opened at t = 0. Determine i(t) for t > 0.

Figure 8.74 For Prob. 8.20.

8.24 The switch in Fig. 8.77 moves from position A to position B at t = 0 (please note that the switch must connect to point B before it breaks the connection at A, a make-before-break switch). Determine i(t) for t > 0.

Figure 8.77 For Prob. 8.24.

8.32 For the circuit in Fig. 8.80, find v(t) for t > 0.

Figure 8.80 For Prob. 8.32.

8.50 For the circuit in Fig. 8.97, find i(t) for t > 0.

Figure 8.97

For Prob. 8.50.

8.56 In the circuit of Fig. 8.102, find i(t) for t > 0.

Figure 8.102

For Prob. 8.56.

8.65 Determine the differential equation for the op amp circuit in Fig. 8.110. If $v_1(0^+) = 2$ V and $v_2(0^+) = 0$ V, find v_o for t > 0. Let R = 100 k Ω and C = 1 μ F.

Figure 8.110

For Prob. 8.65.

8.70 For the circuit in Fig. 8.115, use *PSpice* or *MultiSim* to obtain v(t) for 0 < t < 4 s. Assume that the capacitor voltage and inductor current at t = 0 are both zero.

Figure 8.115

For Prob. 8.70.

8.76 Find the dual of the circuit in Fig. 8.120.

Figure 8.120 For Prob. 8.76.