Multifractal eigenstates on quasicrystals

Nicolas Macé, Anuradha Jagannathan¹, Pavel Kalugin¹, Rémy Mosseri², Frédéric Piéchon¹

¹Laboratoire de Physique des Solides, *Université Paris-Sud* ²LPTMC, *Université Pierre et Marie Curie*

19 octobre 2017

OVERVIEW

Quasicrystals : ordered, aperiodic materials \rightarrow Bloch's theorem fails. **Today's goal** : construct non-interacting tight-binding electronic eigenstates from geometrical *height fields*.

Pioneering work (reverse engineered toy model):

■ Self-similar ground-state wave function for electrons on a 2D Penrose lattice Sutherland, PRB 34 (6), 1986

Breakthrough (reasonable toy model):

■ Electrons in deterministic quasicrystalline potentials and hidden conserved quantities *Kalugin, Katz, J. Phys. A* 47 (31), 2014

A "pedagogical" version of the previous paper:

Critical eigenstates and their properties in one-and two-dimensional quasicrystals
Macé, Jagannathan, Kalugin, Mosseri, Piéchon, PRB 96 (4), 2017

Many thanks to Michel Duneau, Jean-Noël Fuchs, Jean-Marc Luck, Fric Akkermans.

PERIODIC, QUASIPERIODIC AND RANDOM

A random tiling:

PERIODIC, QUASIPERIODIC AND RANDOM

Two copies of the tiling:

PERIODIC, QUASIPERIODIC AND RANDOM

 \rightarrow no overlap \rightarrow no order

PERIODIC, QUASIPERIODIC AND RANDOM

Perfect long range order : periodic

PERIODIC, QUASIPERIODIC AND RANDOM

Long range order: quasiperiodic

(see Chap. 2 of [Grimm, Baake 13])

HoMgZn alloy in its icosahedral phase (see doi:10.1038/nmat1244)

A 2D hydrogen-bonded quasicrystal (see doi:10.1038/nature12993)

- Numerous metallic and soft-matter quasicrystals have been synthetized
- only one natural example example is known: the Khatyrka meteorite (see doi:10.1126/science.1170827).

FIBONACCI WORD FROM ABOVE

(Infinite) Fibonacci word : ABAABABAABAAB...

 $A \leftrightarrow horizontal step, B \leftrightarrow vertical step$

FIBONACCI WORD FROM ABOVE

(Infinite) Fibonacci word : ABAABABAABAAB...

 $A \leftrightarrow horizontal step, B \leftrightarrow vertical step$

FIBONACCI WORD FROM ABOVE

(Infinite) Fibonacci word : ABAABABAABAAB...

 $A \leftrightarrow horizontal step, B \leftrightarrow vertical step$

FIBONACCI WORD FROM ABOVE

(Infinite) Fibonacci word : ABAABABAABAAB...

 $A \leftrightarrow horizontal step, B \leftrightarrow vertical step$

(Infinite) Fibonacci word : ABAABABAABAAB...

 $A \leftrightarrow horizontal step, B \leftrightarrow vertical step$

FIBONACCI WORD FROM ABOVE

(Infinite) Fibonacci word : ABAABABAABAAB...

 $A \leftrightarrow horizontal step, B \leftrightarrow vertical step$

FIBONACCI WORD FROM ABOVE

(Infinite) Fibonacci word : ABAABABAABAAB...

 $A \leftrightarrow horizontal step, B \leftrightarrow vertical step$

(Infinite) Fibonacci word: ABAABABAABAAB...

 $A \leftrightarrow horizontal step, B \leftrightarrow vertical step$

FIBONACCI WORD FROM ABOVE

(Infinite) Fibonacci word : ABAABABAABAAB...

 $A \leftrightarrow horizontal step, B \leftrightarrow vertical step$

(Infinite) Fibonacci word : ABAABABAABAAB...

 $A \leftrightarrow horizontal step, B \leftrightarrow vertical step$

FIBONACCI WORD FROM ABOVE

(Infinite) Fibonacci word : ABAABABAABAAB...

 $A \leftrightarrow horizontal step, B \leftrightarrow vertical step$

FIBONACCI WORD FROM ABOVE

(Infinite) Fibonacci word : ABAABABAABAAB...

 $A \leftrightarrow horizontal step, B \leftrightarrow vertical step$

FIBONACCI WORD FROM ABOVE

(Infinite) Fibonacci word : ABAABABAABAAB...

 $A \leftrightarrow horizontal step, B \leftrightarrow vertical step$

QUASIPERIODICITY OF THE FIBONACCI WORD

CUT-AND-PROJECT

Quasiperiodic tiling \Leftrightarrow non-periodic tiling constructed with the cut-and-project algorithm.

The cut-and-project algorithm:

- **1** choose a hypercubic lattice (here \mathbb{Z}^2)
- 2 choose a "physical plane" E_{\parallel} (here a slope)
- \blacksquare select points by translating the unit hypercube along E_{\parallel}
- **4** project them onto E_{\parallel} .

FRACTAL DIMENSIONS

■ $M(L) \propto L^d$ for a non-fractal d-dimensional object...What happens for a fractal one?

A Sierpiński triangle

$$M(L) \sim L^{d_0}$$
, with $d_0 = \log 3 / \log 2$

- \blacksquare d_0 is the Hausdorff fractal dimension
- $1 < d_0 \simeq 1.58 < 2$, signature of a fractal object
- Scaling of the q^{th} moment of a distribution \rightarrow generalized fractal dimension d_a .

FRACTALITY OF THE FIBONACCI SPECTRUM

[Kohmoto et al. 83]

Fractality of the E=0 eigenstate

 D_0 probes the fractality of the tiling :

$$D_0 = 1$$

 $D_{q>0}$ probes the fractality of the state :

$$0 < D_{q>0} < 1$$

HEIGHT FIELD AND STATE

Nicolas Macé

Power-law decay on the Fibonacci chain

B3 CHAIN AND HEIGHT FUNCTION

