EE402 - Discrete Time Systems

Spring 2018

Lecture 10

Lecturer: Asst. Prof. M. Mert Ankarali

10.0.1 Reachability & Controllability of DT-LTI Systems

For LTI a discrete time state-space representation

$$x[k+1] = Ax[k] + Bu[k]$$
$$y[k] = Cx[k] + Du[k]$$

- A state x_r is said to be m-step **reachable**, if there exist an input sequence, $u[k], k \in \{0, 1, \dots m-1\}$, that transfers the state vector x[k] from the origin (i.e. x[0] = 0) to the state x_r in m number of steps, i.e. $x[m] = x_r$.
- A state x_d is said to be m-step **controllable**, if there exist an input sequence, $u[k], k \in \{0, 1, \dots m-1\}$, that transfers the state vector x[k] from the initial state x_c (i.e. $x[0] = x_c$) to the origin in m number of steps, i.e. x[m] = 0.

Note that

- the set \mathcal{R}_m of all m-step reachable states is a linear (sub)space: $\mathcal{R}_m \subset \mathbb{R}^n$
- the set \mathcal{C}_m of all m-step controllable states is a linear (sub)space: $\mathcal{C}_m \subset \mathbb{R}^n$

Let's characterize \mathcal{R}_m and then try to generalize the reachability concept. When x[0] = 0, the solution of x[m] is given by

$$x[m] = \begin{bmatrix} A^{m-1}B \mid A^{m-2}B \mid \cdots \mid AB \mid B \end{bmatrix} \begin{bmatrix} u[0] \\ u[1] \\ \vdots \\ u[m-2] \\ u[m-1] \end{bmatrix}$$

Let

$$\mathbf{R}_{m} = \begin{bmatrix} A^{m-1}B \mid A^{m-2}B \mid \cdots \mid AB \mid B \end{bmatrix}$$

$$\mathbf{U}_{m} = \begin{bmatrix} u[0] \\ u[1] \\ \vdots \\ u[m-2] \\ u[m-1] \end{bmatrix}$$

10-2 Lecture 10

then if a state x_r is reachable at k steps, it should satisfy the following equation for some \mathbf{U}_m .

$$\mathbf{M}_m \mathbf{U}_m = x_m$$

In order this matrix equation to have a solution x_r should be in the range space of \mathbf{M}_m .

$$x_r \in \text{Ra}(\mathbf{M}_m)$$

Thus m-step reachable sub-space is simply equal to range space of \mathcal{R}_k

$$Ra(\mathbf{R}_m) = \mathcal{R}_m$$

Theorem: For k < n < l

$$\mathcal{R}_k \subset \mathcal{R}_n = \mathcal{R}_l$$
$$Ra(\mathbf{R}_k) \subset Ra(\mathbf{R}_n) = Ra(\mathbf{R}_l)$$

Proof: It is fairly easy to observe that

$$\mathcal{R}_i \subset \mathcal{R}_{i+1}$$

 $\operatorname{Ra}(\mathbf{R}_i) \subset \operatorname{Ra}(\mathbf{R}_{i+1})$

since we add a new column (or columns for multi-input systems) to \mathbf{R}_i , thus it can only increase the dimension of the range-space. Thus we can conclude that

$$\mathcal{R}_k \subset \mathcal{R}_n \subset \mathcal{R}_l$$
$$\operatorname{Ra}(\mathbf{R}_k) \subset \operatorname{Ra}(\mathbf{R}_n) \subset \operatorname{Ra}(\mathbf{R}_l)$$

In order prove $\mathcal{R}_n = \mathcal{R}_l$, we simply use the Cayley-Hamilton theorem. Based on Cayley-Hamilton theorem

$$A^{n} = -a_{1}A^{n-1} - \dots - a_{n-1}A - a_{n}I$$

$$A^{n}B = -a_{1}A^{n-1}B - \dots - a_{n-1}AB - a_{n}B$$

which shows that A^nB is linearly dependent to previous columns and thus

$$\mathcal{R}_n = \mathcal{R}_l$$

 $\operatorname{Ra}(\mathbf{R}_n) = \operatorname{Ra}(\mathbf{R}_l)$

This theorem shows that if x_r is reachable in n steps then it is reachable for l > n steps, similarly if it is not reachable in n steps then it is reachable for l > n steps. In this context, the sub-space of states reachable in n-steps, \mathcal{R}_n is referred as the reachable subspace of (A, N), and will be denoted simply by \mathcal{R} and $\mathbf{R} = \mathbf{R}_k$ will be system wide the reachability matrix. The system is termed a (fully) reachable system if

$$rank(\mathbf{R}) = n$$
$$Ra(\mathbf{R}) = \mathcal{R} = \mathbb{R}^n$$