Rachunek Prawdopodobieństwa I

Data ostatniej aktualizacji: 30 czerwca 2024

1 Krótki Wstęp

Uważny czytelnik zauważy też że poniższe notatki przypominają niezwykłe dydaktyczne prace dr Arkadiusza Męcla, które również gorąco polecam.

Link do omówienia pewniaków na egzamin znajduje się tutaj

2 Aksjomatyka Rachunku Prawdopodobienstwa ´

Definicja 1: Przestrzeń Propabilistyczna

Przestrzenią Propabilistyczną nazywamy trójkę (Ω, \mathcal{F}, P) , gdzie:

- Ω zbiór (nazywany zbiorem zdarzeń elementarnych),
- \mathcal{F} σ -ciało podzbiorów Ω ,
- P nieujemna miara na \mathcal{F} taka, że $P(\Omega)=1$.

Miarę P nazywamy prawdopodobieństwem lub miarą probabilistyczną.

Definicja 2: σ -ciało zbiorów

 \mathcal{F} jest σ -CIAŁEM PODZBIORÓW Ω jeżeli:

- $\Omega \in \mathcal{F}$,
- $A \in \mathcal{F} \Rightarrow A^C := \Omega \backslash A \in \mathcal{F}$,
- $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Definicja 3: Aksjomaty prawdopodobieństwa (Kołmogorowa)

- $\bullet \ \ \underset{A \in \mathcal{F}}{\forall} \ P(A) \geqslant 0,$
- $P(\Omega) = 1$,
- $A_1, A_2, \dots \in \mathcal{F}$ oraz $A_i \cap A_j = \emptyset$, dla $i \neq j \Rightarrow P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$.

Definicja 4

Przyjmujemy następującą terminologię:

• Zbiór Ω to zbiór zdarzeń elementarnych (podstawowych możliwych wyników eksperymentu, oznaczanych $\omega \in \Omega$),

- Elementy \mathcal{F} to zdarzenia,
- Dla $A \in \mathcal{F}$, elementy A to zdarzenia sprzyjające A,
- Zdarzenie A^C to zdarzenie przeciwne,
- Zdarzenie Ø to zdarzenie niemożliwe,
- Zdarzenie Ω to zdarzenie pewne.

Twierdzenie 1: Własności prawdopodobieństwa

Poniżej zakładamy, że wszystkie rozważane zbiory należą do \mathcal{F} .

- 1. $\mathbb{P}(\emptyset) = 0$,
- 2. $\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \mathbb{P}(A_i)$ o ile $A_i \cap A_j = \emptyset$ dla $i \neq j$,
- 3. $0 \leqslant \mathbb{P}(A) \leqslant 1$,
- 4. $A \subseteq B \Rightarrow \mathbb{P}(A) \leqslant \mathbb{P}(B)$,
- 5. $\mathbb{P}(A^C) = 1 \mathbb{P}(A)$,
- 6. $\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) \leqslant \sum_{i=1}^{n} \mathbb{P}(A_i) \text{ dla } n < \infty.$

Twierdzenie 2: Twierdzenie o Ciągłości

Niech $(\Omega, \mathcal{F}, \mathbb{P})$ będzie przestrzenią probabilistyczną oraz $A_i \in \mathcal{F}$ dla $i = 1, 2, \dots$

- 1. Jeżeli $A_1 \subseteq A_2 \subseteq \ldots$ (mówimy, że A_i są wstępujące, ozn. $A_i \nearrow A$) oraz $A = \bigcup_{i=1}^{\infty} A_i$, to $\mathbb{P}(A) = \lim_{n \to \infty} \mathbb{P}(A_n)$.
- 2. Jeżeli $A_1\supseteq A_2\supseteq\dots$ (mówimy, że A_i są zstępujące, ozn. $A_i\searrow A$) oraz $A=\bigcap\limits_{i=1}^\infty A_i$, to $\mathbb{P}(A)=\lim\limits_{n\to\infty}\mathbb{P}(A_n).$

Definicja 5: Prawdopodobieństwo warunkowe

Niech $(\Omega, \mathcal{F}, \mathbb{P})$ będzie przestrzenią probabilistyczną, zaś $B \in \mathcal{F}$ zdarzeniem takim, że $\mathbb{P}(B) > 0$. Prawdopodobieństwem warunkowym pod warunkiem B nazywamy funkcję $\mathbb{P}(\cdot|B): \mathcal{F} \to [0,1]$ określoną dla $A \in \mathcal{F}$ wzorem

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Twierdzenie 3

Jeśli zdarzenia A_1, \ldots, A_n spełniają $\mathbb{P}(A_1 \cap \ldots \cap A_{n-1}) > 0$, to

$$\mathbb{P}(A_1 \cap \ldots \cap A_n) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2 | A_1) \cdot \mathbb{P}(A_3 | A_1 \cap A_2) \cdots \mathbb{P}(A_n | A_1 \cap \ldots \cap A_{n-1}).$$

Twierdzenie 4

Jeżeli $\{H_i\}_{i\in I}$ jest przeliczalnym rozbiciem Ω takim, że dla każdego $i\in I$ mamy $P(H_i)>0$, to dla dowolnego $A\in\mathcal{F}$ zachodzi:

$$\mathbb{P}(A) = \sum_{i \in I} \mathbb{P}(H_i) \cdot \mathbb{P}(A|H_i).$$

Definicja 6: Zdarzenia niezależne

Zdarzenia A i B nazwiemy Niezależnymi, jeśli $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

Definicja 7: Niezależne σ -ciała

σ-ciała \mathcal{G}_1 i $\mathcal{G}_2 \subseteq \mathcal{F}$ nazwiemy NIEZALEŻNYMI, jeśli dla każdego $A \in \mathcal{G}_1$ i $B \in \mathcal{G}_2$ zachodzi $\forall A \in \mathcal{G}_1 \forall B \in \mathcal{G}_2 \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

Definicja 8: π -układ

Rodzinę \mathcal{A} podzbiorów Ω nazwiemy π -UKŁADEM (lub rodziną multiplikatywną), jeżeli dla każdych $A, B \in \mathcal{A}$ zachodzi $A \cap B \in \mathcal{A}$.

Definicja 9: λ -układ

Rodzinę $\mathcal G$ podzbiorów Ω nazwiemy λ -UKŁADEM, jeżeli

- 1. $\Omega \in \mathcal{G}$,
- 2. $\forall_{A,B\in\mathcal{G}}, A\subseteq B\Rightarrow B\setminus A\in\mathcal{G},$
- 3. $\forall_{A_1,A_2,\ldots\in\mathcal{G}}, A_n \nearrow A \Rightarrow A \in \mathcal{G}.$

Twierdzenie 5: Lemat o π - λ układach (o rodzinie multiplikatywnej)

Niech \mathcal{A} będzie π -układem podzbiorów Ω , zaś \mathcal{G} to λ -układ taki, że $\mathcal{A} \subseteq \mathcal{G}$. Wówczas $\sigma(\mathcal{A}) \subseteq \mathcal{G}$.

Twierdzenie 6

Niech Ω - dowolny zbiór, $\mathcal{A}\subset 2^\Omega$ będzie π -układem, $\mathcal{F}=\sigma(A),~\mathbb{P},\mathbb{Q}$ - miary probabilistyczne, t. że

$$\underset{A \in \mathcal{A}}{\forall} \mathbb{P}(A) = \mathbb{Q}(A)$$

to wtedy

$$\underset{B \in \mathcal{F}}{\forall} \mathbb{P}(B) = \mathbb{Q}(B)$$

Twierdzenie 7

Niech Ω_i , \mathcal{F}_i , \mathbb{P}_i , $i=1,\ldots,n$ będą przestrzeniami probabilistycznymi. Możemy zdefiniować:

$$\Omega = \Omega_1 \times \ldots \times \Omega_n,$$

$$\mathcal{F} = \mathcal{F}_1 \otimes \ldots \otimes \mathcal{F}_n = \sigma(A_1 \times \ldots \times A_n | A_1 \in \mathcal{F}_1, \ldots, A_n \in \mathcal{F}_n).$$

Wówczas $\mathbb{P} = \mathbb{P}_1 \otimes \ldots \otimes \mathbb{P}_n$ jest jedyną taką miarą na \mathcal{F} , że zachodzi

$$\forall A_1 \in \mathcal{F}_1, \dots, A_n \in \mathcal{F}_n \quad \mathbb{P}(A_1 \times \dots \times A_n) = \mathbb{P}_1(A_1) \cdot \dots \cdot \mathbb{P}_n(A_n).$$

Twierdzenie 8

Niech $(A_i) \in \mathcal{F}$ niezależne π - układy, takie że

$$\bigvee_{A_i \in \mathcal{A}_i} \mathbb{P}(A_1 \cap \dots \cap A_n) = \prod_{i=1}^n \mathbb{P}(A_i)$$

Wtedy $\sigma(A_1), ..., \sigma(A_n)$ niezależne

Twierdzenie 9: Twierdzenie 0-1 (Twierdzenie Kołmogorowa)

Niech $G_1, G_2, \dots \sigma$ -ciała niezależne

 $G_R = \bigcap_{i=1}^{\infty} \sigma(G_i, G_{i+1}, \dots)$

Wtedy

 $\forall_{B \in G_R} \mathbb{P}(B) = 0 \text{ albo } \mathbb{P}(B) = 1$

Prostym wnioskiem z tego twierdzenia jest to, że jeśli A_i są niezależne, to $\mathbb{P}(\limsup A_n) \in \{0,1\}$

Twierdzenie 10: Lemat Borela-Cantellego

Niech $(\Omega, \mathcal{F}, \mathbb{P})$ będzie przestrzenią probabilistyczną, $A_1, A_2, \ldots \in \mathcal{F}$. Wówczas:

- 1. Jeśli $\sum\limits_{i=1}^{\infty}\mathbb{P}(A_i)<\infty$, to prawdopodobieństwo zajścia nieskończenie wielu spośród zdarzeń A_i wynosi 0.
- 2. Jeśli A_i są <u>niezależne</u> oraz $\sum_{i=1}^{\infty} \mathbb{P}(A_i) = \infty$, to $\mathbb{P}(\limsup A_n) = 1$, to prawdopodobieństwo zajścia nieskończenie wielu spośród zdarzeń A_i wynosi 1.

Definicja 10: Przestrzeń stanów

Parę (E, \mathcal{B}) , gdzie E to zbiór, a B to σ -ciało jego podzbiorów, nazywamy przestrzenią stanów.

Definicja 11: Zmienna losowa

Zmienną losową o wartościach w przestrzeni stanów (E, \mathcal{B}) nazywamy dowolną funkcję mierzalną $X:(\Omega,\mathcal{F})\to (E,\mathcal{B}).$

Równoważnie:

 $X: \Omega \to \mathbb{R}$ jest zmienną losową wtedy i tylko wtedy, gdy dla każdego $a \in \mathbb{R} \{X \neq a\} = X^{-1}((-\infty, a]) \in \mathcal{F}.$

Twierdzenie 11

Jeżeli $\mathcal A$ to dowolna rodzina podzbiorów E, taka że $\sigma(\mathcal A)=\mathcal B$, to dla każdego $X:\Omega\to E$ zachodzi

$$X$$
 jest zmienną losową $\Leftrightarrow \bigvee_{A \in \mathcal{A}} X^{-1}(A) \in \mathcal{F}.$

Wynikają z tego nastepujące wnioski:

1. $X:\Omega\to\mathbb{R}$ jest zmienną losową wtedy i tylko wtedy, gdy dla każdego $a\in\mathbb{R}$ $\{X\neq a\}=X^{-1}((-\infty,a])\in\mathcal{F}.$

2. $X: \Omega \to \mathbb{R}^n$ jest wektorem losowym wtedy i tylko wtedy, gdy X_1, \ldots, X_n są rzeczywistymi zmiennymi losowymi.

Twierdzenie 12

Jeżeli $X: \Omega \to \mathbb{R}^n$ to wektor losowy, zaś $\phi: \mathbb{R}^n \to \mathbb{R}^m$ to funkcja borelowska, to $\phi(X)$ jest wektorem losowym.

Definicja 12: Rozkład zmiennej losowej

Rozkład zmiennej losowej $X:\Omega\to(E,\mathcal{B})$ to miara probabilistyczna μ_X na (E,\mathcal{B}) dana wzorem

$$\mu_X(A) = P(X \in A) = P(\{\omega \in \Omega : X(\omega) \in A\}), \text{ dla } A \in \mathcal{B}$$

Definicja 13: Rozkład Dyskretny

Rozkład μ nazywamy dyskretnym jeżeli istnieje zbiór przeliczalny $S \subseteq \mathbb{R}^n$ taki, że $\mu(S) = 1$.

Definicja 14: Rozkłady Dyskretne - przykłady

1. Rozkład skupiony w punkcie (delta Diraca):

$$\delta_a(A) = \begin{cases} 1, & \text{jeśli } a \in A, \\ 0, & \text{jeśli } a \notin A. \end{cases}$$

Jest to rozkład zmiennej X takiej, że $\mathbb{P}(X = a) = 1$.

2. Rozkład Bernoulliego z parametrami $n \ge 0, p \in [0, 1]$:

$$\mu = \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} \delta_k.$$

Jest to rozkład zmiennej X takiej, że $\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \delta_k$ dla $k=0,1,\ldots$

3. Rozkład Poissona z parametrem $\lambda > 0$:

$$p_s = \frac{\lambda^s}{s!} e^{-\lambda}, \quad S = \{0, 1, 2, \dots\}.$$

Definicja 15: Rozkład ciągły i Gęstość rozkładu

Rozkład prawdopodobieństwa μ na \mathbb{R}^n nazwiemy CIĄGŁYM jeśli istnieje funkcja borelowska

 $f: \mathbb{R}^n \to \mathbb{R}$ taka, że

$$\bigvee_{A \in \mathcal{B}(\mathbb{R}^n)} \mu(A) = \int_A f(x) \, dx$$

Funkcję f nazywamy GĘSTOŚCIĄ. Jeżeli X jest wektorem losowym i μ_X jest rozkładem ciągłym o gęstościf, to mówimy też, że f jest gęstością X. Oznacza to, że

$$\mathbb{P}(X \in A) = \int_{A} f(x) \, dx$$

Czasami stosowane jest oznaczenie $f(x) = \frac{d\mu(x)}{dx}$.

Własności gęstości:

- 1. $\int_{\mathbb{R}^n} f(x) \, dx = 1$.
- 2. f = 0 prawie wszędzie, tzn. $\lambda^n(\{x \in \mathbb{R}^n | f(x) < 0\}) = 0$.
- 3. Funkcja f jest wyznaczona jednoznacznie z dokładnością do zbioru miary zero.

Definicja 16: Rozkłady Ciągłe - Przykłady

1. Rozkład jednostajny na zbiorze $A\subseteq\mathbb{R}^n$. Załóżmy, że $A\in\mathcal{B}(\mathbb{R}^n)$ oraz $0<\lambda(A)<\infty$. Wówczas funkcja

$$g(x) = \frac{\mathbf{1}_A(x)}{\lambda(A)}$$

jest gestością prawdopodobieństwa.

2. Rozkład wykładniczy z parametrem $\lambda>0$ to rozkład o gęstości

$$g(x) = \lambda e^{-\lambda x} \cdot \mathbf{1}_{\mathbb{R}^+}(x).$$

Ten rozkład oznaczamy $\text{Exp}(\lambda)$.

3. Rozkład gaussowski/Normalny z parametrami a, σ^2 , oznaczany $N(a, \sigma^2)$ (gdzie a - wartość oczekiwana/wektor średni, a σ^2 - wariancja/macierz kowariancji) to rozkład o gęstości

$$g(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right).$$

Na \mathbb{R}^d , $a \in \mathbb{R}^d$, Q macierz $d \times d$ dodatnio określona, gęstość ma postać:

$$g(x) = \frac{1}{\left(\sqrt{2\pi}\right)^d \sqrt{\det Q}} \exp\left(-\frac{1}{2}(x-a)^T Q^{-1}(x-a)\right), \quad x \in \mathbb{R}^d$$

4. Rozkład Gamma $\Gamma(r,\lambda),\ r>0,\ \lambda>0.$ Gęstość:

$$g(x) = \frac{1}{\Gamma(r)\lambda^r} x^{r-1} e^{-\lambda x} \mathbf{1}_{(0,\infty)}(x),$$

gdzie Γ oznacza funkcję Gamma Eulera: $\Gamma(r) = \int_0^\infty x^{r-1} e^{-x} dx$.

W szczególności,

$$g(x) = \frac{\mathbf{1}_{(a,b)}(x)}{b-a}$$

zadaje rozkład jednostajny na odcinku (a, b)

Przykład 1: Egzamin poprawkowy 2009

Pomimo użycia wartości oczekiwanej i wariancji, kluczem do tego zadania jest znajomość własności rozkładu normalnego, dlatego dałem je tutaj

Zadanie 1. Niech X, Y - niezależne zmienne losowe, $X, Y \sim N(0, 1)$

- a) znaleźć gęstość X + 2Y + 1
- b) znaleźć gęstość (X + Y, X + 2Y)

Rozwiązanie Zadania 1.

a) Przypomnijmy, że liniowy obraz (X,Y), gdzie X i Y mają rozkład normalny, ma rozkład normalny, więc

$$\mathbb{E}X + 2Y + 1 = \mathbb{E}X + 2\mathbb{E}Y + \mathbb{E}1 = 0 + 2 \cdot 0 + 1 = 1$$

$$Var(X + 2Y + 1) = Var(X + 2Y) = VarX + Var2Y = VarX + 2^2 \cdot VarY = 1 + 4 \cdot 1 = 5$$

Alternatywnie, możemy znaleźć parametry poprzez własności rozkładu normalnego X+2Y+1:

$$X \sim N(0,1) \qquad Y \sim N(0,1)$$

$$X \sim N(0,1) \qquad 2Y \sim N(2 \cdot 0, 2^2 \cdot 1) = N(0,4)$$

$$X \sim N(0,1) \qquad 2Y + 1 \sim N(0+1,4) = N(1,4)$$

$$X + 2Y + 1 \sim N(0+1,1+4) = N(1,5)$$

Tak czy siak, otrzymujemy

$$g_{X+2Y+1}(z) = \frac{1}{\sqrt{2\pi \cdot 5}} \exp\left(-\frac{(x-1)^2}{2 \cdot 5}\right)$$

b) Korzystamy z przypadku wielowymiarowego. Ponieważ X,Y - niezależne, łatwo liczymy

$$\mathbb{E}(X+Y) = \mathbb{E}X + \mathbb{E}Y = 0 + 0 = 0 \qquad \mathbb{E}(X+2Y) = 0 \implies a = [0,0]$$

$$\text{Var}(X+Y) = \text{Var}X + \text{Var}Y = 1 + 1 = 2$$

$$\text{Var}(X+2Y) = \text{Var}X + 4\text{Var}(Y) = 5$$

$$\text{Cov}(X+Y,X+2Y) = \text{Cov}(X,X+2Y) + \text{Cov}(Y,X+2Y) =$$

$$= \text{Cov}(X,X) + \text{Cov}(X,2Y) + \text{Cov}(Y,X) + \text{Cov}(Y,2Y) = \text{Var}X + 0 + 0 + 2\text{Var}Y =$$

$$-1 + 2 \cdot 1 - 3$$

Mamy więc że

$$Q = \begin{bmatrix} \operatorname{Var}(X+Y) & \operatorname{Cov}(X+Y,X+2Y) \\ \operatorname{Cov}(X+Y,X+2Y) & \operatorname{Var}(X+2Y) \end{bmatrix}$$
$$Q = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \implies Q^{-1} = \begin{bmatrix} 5 & -3 \\ -3 & 2 \end{bmatrix}, \det Q = 1$$

Podstawiamy do wzoru:

$$g_{(X+Y,X+2Y)}(x,y) = \frac{1}{\left(\sqrt{2\pi}\right)^d \sqrt{\det Q}} \exp\left(-\frac{1}{2}((x,y) - a)^T Q^{-1}((x,y) - a)\right) =$$
$$= \frac{1}{2\pi} \exp\left(-\frac{1}{2}\left(5x^2 - 6xy + 2y^2\right)\right)$$

Twierdzenie 13

Jeżeli X_1, \ldots, X_n są zmiennymi losowymi, to następujące warunki są równoważne:

- 1. X_1, \ldots, X_n są niezależne,
- 2. $\mu(X_1,\ldots,X_n)=\mu_{X_1}\otimes\ldots\otimes\mu_{X_n}$
- 3. Dla każdego $t_1, \ldots, t_n \in \mathbb{R}$ zachodzi

$$F_{X_1,...,X_n}(t_1,...,t_n) = F_{X_1}(t_1) \cdot ... \cdot F_{X_n}(t_n)$$

Definicja 17: Dystrybuanta

Dystrybuantą wektora losowego $X=(X_1,\ldots,X_n)$ o wartościach w \mathbb{R}^n nazywamy funkcję $F_X:\mathbb{R}^n\to[0,1],$ daną wzorem

$$F_X(t_1,\ldots,t_n) = \mathbb{P}(X_1 \leqslant t_1, X_2 \leqslant t_2,\ldots,X_n \leqslant t_n).$$

W szczególności dystrybuantą zmiennej losowej X jest funkcja $F_X: \mathbb{R} \to [0,1]$ dana wzorem $F_X(t) = \mathbb{P}(X \leq t)$. Uwaga: W starszych podręcznikach czasami definiuje się $F_X(t) = \mathbb{P}(X < t)$.

Twierdzenie 14

Jeżeli X i Y to n-wymiarowe wektory losowe, to

$$F_X = F_Y \iff \mu_X = \mu_Y.$$

Uwaga: X i Y nie muszą być określone na tej samej przestrzeni probabilistycznej.

Twierdzenie 15: Własności dystrybuanty zmiennej losowej

Niech $X:\Omega\to\mathbb{R}$ będzie zmienną losową, zaś $F=F_X$ jej dystrybuantą. Wówczas:

- 1. Dla każdego $t \in \mathbb{R}$, $F(t) \in [0, 1]$,
- 2. F jest niemalejąca,
- 3. F jest prawostronnie ciągła: Dla każdego $t_0 \in \mathbb{R}$, $\lim_{t \to t_0^+} F(t) = F(t_0)$,
- 4. $\lim_{t \to \infty} F(t) = 1 \text{ oraz } \lim_{t \to -\infty} F(t) = 0.$

Twierdzenie 16

Jeżeli F jest dystrybuantą zmiennej losowej $X,\,F'$ istnieje prawie wszędzie oraz

$$\int_{\mathbb{R}} F'(x) \, dx = 1,$$

to F' jest gęstością zmiennej losowej X.

Twierdzenie 17

Jeśli X jest zmienną losową o wartościach w \mathbb{R}^d o gęstości g_X , zaś $\varphi : \mathbb{R}^d \to \mathbb{R}^d$ jest funkcją klasy C^1 i różnowartościową, to $\varphi(X)$ ma gęstość daną wzorem

$$g_{\varphi(X)}(x) = \mathbf{1}_{\operatorname{Im}\varphi(x)} \cdot g_X(\varphi^{-1}(x)) \cdot \left| \det D\varphi^{-1}(x) \right|$$

Definicja 18: Rozkłady Brzegowe

Jeśli $X=(X_1,\ldots,X_n)$ jest wektorem losowym o wartościach w \mathbb{R}^n o rozkładzie μ , to rozkłady zmiennych losowych X_1,X_2,\ldots,X_n , tj.

$$\mu_{X_i}(A) = \mu(\mathbb{R} \times \ldots \times \mathbb{R} \times A \times \mathbb{R} \times \ldots \times \mathbb{R})$$
 dla $A \in \mathscr{B}(\mathbb{R})$ na *i*-tym miejscu

nazywamy ROZKŁADAMI BRZEGOWYMI. Na odwrót, rozkład wektora X nazywamy rozkładem łącznym zmiennych X_1,\ldots,X_n .

Twierdzenie 18

Jeśli rozkład wektora losowego $X=(X_1,\ldots,X_n)$ ma gęstość g, to rozkłady brzegowe również mają gęstości wyrażone wzorami:

$$g_{X_i}(x_i) = \int_{\mathbb{R}^{n-1}} g(x_1, \dots, x_d) dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_n.$$

Definicja 19: Niezależne wektory losowe

Wektory losowe $X_1, \ldots, X_n : \Omega \to \mathbb{R}^m$ nazwiemy NIEZALEŻNYMI jeżeli σ -ciała $\sigma(X_1), \ldots, \sigma(X_n)$ są niezależne.

Twierdzenie 19

Niech X_1, \ldots, X_n będą zmiennymi o rozkładach dyskretnych skupionymi odpowiednio na zbiorach S_{X_1}, \ldots, S_{X_n} (tzn. $\mathbb{P}(X_i \in S_{X_i}) = 1$). Wówczas

$$\forall s_1,...,s_n \in S$$

 X_1, \dots, X_n są niezależne $\iff \mathbb{P}(X_1 = s_1, \mathbb{P}(X_2 = s_2), \dots, X_n = s_n) = \prod_{k=1}^n \mathbb{P}(X_k = s_k)$

Twierdzenie 20

Niech X_1, \ldots, X_n będą zmiennymi losowymi o rozkładach ciągłych z gęstościami odpowiednio g_1, g_2, \ldots, g_n . Wtedy i tylko wtedy, gdy rozkład łączny ma gęstość g_X spełmniającą:

$$g_X(x_1, ..., x_n) = g_1(x_1) \cdot \cdot g_n(x_n)$$

niezależności lącznej. Istnieją zmienne losowe parami niezależne, które nie są niezależne łącznie

Mówimy tu o

Definicja 20: Wartość oczekiwana

Niech X będzie zmienną losową o wartościach rzeczywistych, określoną na pewnej przestrzeni probabilistycznej $\Omega, \mathcal{F}, \mathbb{P}$. Mówimy, że X ma wartość oczekiwaną jeżeli

$$\int_{\Omega} |X(\omega)| \, \mathbb{P}(d\omega) < \infty.$$

Wtedy wartością oczekiwaną (albo wartością średnią) zmiennej losowej X nazywamy liczbę

$$\mathbb{E}X := \int_{\Omega} X(\omega) \, \mathbb{P}(d\omega)$$

Własności:

- 1. Jeśli X i Y mają wartości oczekiwane, to dla dowolnych $\alpha, \beta \in \mathbb{R}$ wartość oczekiwana $\mathbb{E}(\alpha X + \beta Y)$ istnieje oraz $\mathbb{E}(\alpha X + \beta Y) = \alpha \mathbb{E}X + \beta \mathbb{E}Y$.
- 2. Jeśli $X \ge 0$ prawie na pewno, to $\mathbb{E}X \ge 0$.
- 3. Jeśli $\mathbb{E}|X|=0$, to X=0 prawie na pewno.
- 4. $|\mathbb{E}X| \leq \mathbb{E}|X|$.
- 5. Jeśli $0\leqslant X\leqslant Y$ prawie na pewno i $\mathbb{E}Y$ istnieje, to istnieje również $\mathbb{E}X$ oraz $0\leqslant \mathbb{E}X\leqslant \mathbb{E}Y.$
- 6. Jeśli X i Y są niezależne, to $\mathbb{E}XY = \mathbb{E}X\mathbb{E}Y$
- 7. $\mathbb{E}|XY| \leq \sqrt{\mathbb{E}X^2\mathbb{E}Y^2}$.
- 8. Twierdzenie o zbieżności monotonicznej: Jeśli (X_n) jest ciągiem niemalejącym i $X_n \ge 0$ prawie na pewno, to $\mathbb{E}\lim_{n\to\infty} X_n = \lim_{n\to\infty} \mathbb{E} X_n$.
- 9. **Lemat Fatou**: Jeśli $X_n \ge 0$ prawie na pewno, to $\mathbb{E} \liminf_{n \to \infty} X_n \le \liminf_{n \to \infty} \mathbb{E} X_n$.
- 10. Twierdzenie Lebesgue'a o zbieżności zmajoryzowanej: Jeśli ciąg (X_n) jest taki, że $|X_n| \leq Y$ prawie na pewno, $\mathbb{E}Y < \infty$, oraz istnieje granica $X = \lim_{n \to \infty} X_n$ prawie na pewno, to X ma wartość oczekiwaną oraz $\mathbb{E}X = \lim_{n \to \infty} \mathbb{E}X_n$.
- 11. Niech X będzie zmienną losową o wartościach w przestrzeni mierzalnej (E, \mathcal{B}) i niech $\varphi : E \to \mathbb{R}$ będzie funkcją mierzalną z (E, \mathcal{B}) w $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Wtedy

$$\mathbb{E}\varphi(X) = \int_{E} \varphi(x) \, \mu(dx),$$

gdzie μ oznacza rozkład X. Przy czym prawa strona równości jest dobrze określona wtedy i tylko wtedy, gdy lewa strona jest dobrze określona.

12. X jest zmienną losową o wartościach w (E,\mathcal{B}) , a $\varphi:E\to\mathbb{R}$ mierzalna względem odpowiednich σ -ciał, to

$$\mathbb{E}\varphi(X) = \sum_{k=1}^{\infty} \varphi(x_k) p_k,$$

o ile szereg jest zbieżny bezwzględnie.

13. Jeśli X jest wektorem losowym w \mathbb{R}^d o rozkładzie ciągłym z gęstością g, a $\varphi: \mathbb{R}^d \to \mathbb{R}$ funkcją borelowską, to

$$\mathbb{E}\varphi(X) = \int_{\mathbb{R}^d} \varphi(x)g(x) \, dx,$$

o ile $\int_{\mathbb{R}^d} |\varphi(x)| g(x) dx < \infty$.

14. Jeśli $X \ge 0$ prawie na pewno, to dla każdego $p \ge 1$

$$\mathbb{E}X^p = \int_0^\infty pt^{p-1} \mathbb{P}(X > t) \, dt$$

15. Jeśli Xjest zmienną losową o dystrybu
ancie $F,\,X\geqslant 0$ prawie na pewno, to

$$\mathbb{E}X = \int_0^\infty \mathbb{P}(X > t) dt = \int_0^\infty (1 - F(t)) dt$$

Przykład 2: Egzamin 2023

Zadanie 2. Wektor losowy (X,Y) ma gęstość $g(x,y) = Ce^{-x}y\mathbf{1}_{\{0 \le y \le x\}}$

- a) wyznaczyć stałą C
- a) Obliczyć $\mathbb{P}(2Y \leqslant X)$
- a) Obliczyć $\mathbb{E}((X+Y)^2|X)$

Rozwiązanie Zadania 2.

a) Chcemy skorzystać z tego że całka z gęstości wynosi 1. Liczymy całkę:

$$\int_{\mathbb{D}^2} g(x, y) =$$

Z warunku indykatora odczytujemy granice całkowania:

$$= \int_0^\infty \int_0^x Ce^{-x}y \, dy \, dx = \int_0^\infty Ce^{-x} \frac{x^2}{2} \, dx = \frac{C}{2} \int_0^\infty x^2 e^{-x} \, dx =$$

Następującą całkę możemy policzyć oczywiście przez części, możemy też zauważyć, że jest to funkcja gamma Eulera $\Gamma(z)=\int\limits_0^\infty t^{z-1}e^{-t}\,dt$, a wiemy że dla $z\in\mathbb{N},$ $\Gamma(z+1)=z!$. Mamy więc

$$= \frac{C}{2}\Gamma(3) = \frac{C}{2} \cdot 2! = C \implies C = 1$$

b) $\mathbb{P}(2Y \leqslant X) = \mathbb{P}\left(Y \leqslant \frac{X}{2}\right) = \int_0^\infty e^{-x} \frac{x^2}{8} \, dx = \frac{1}{8} \int_0^\infty e^{-x} x^2 \, dx = \frac{1}{8} \int_0^\infty e^{-x} x$

Zauważmy, że jest to ta sama całka co w podpunkcie a)

$$=\frac{1}{8}\cdot 2=\frac{1}{4}$$

c) dokończyć

Definicja 21: Wariancja

Niech X będzie zmienną losową rzeczywistą, taką że $\mathbb{E} X$ istnieje. Wariancję X nazywamy wielkością

$$Var X = \mathbb{E}(X - \mathbb{E}X)^2,$$

o ile $\mathbb{E}(X - \mathbb{E}X)^2 < \infty$.

Własności:

1. Zmienna losowa X ma wariancję (skończoną), wtedy i tylko wtedy, gdy $\mathbb{E}X^2 < \infty$. Popadto

$$Var X = \mathbb{E}X^2 - (\mathbb{E}X)^2.$$

- 2. $Var(aX) = a^2 Var X, a \in \mathbb{R};$
- 3. $Var X \ge 0$;
- 4. $Var X = 0 \Leftrightarrow X = Const p.n.$;
- 5. $Var(X + a) = Var X, a \in \mathbb{R}$.
- 6. Jeśli zmienne losowe X_1, \ldots, X_n są niezależne o skończonej wariancji, to

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var} X_i.$$

Definicja 22: (Kowariancja i korelacja)

Niech X i Y będą zmiennymi losowymi o skończonej wariancji.

a) Kowariancję X i Y nazywamy liczbą

$$Cov(X, Y) = \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y) = \mathbb{E}XY - \mathbb{E}X\mathbb{E}Y.$$

b) Współczynnikiem korelacji zmiennych X i Y nazywamy

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var} X \operatorname{Var} Y}}.$$

jeśli żadna ze zmiennych X i Y nie jest stała (Var X>0 i Var Y>0). W przeciwnym wypadku kładziemy $\rho(X,Y)=0$.

Przykład 3: Egzamin Zerowy 2024

Zadanie 3. Wektor losowy (X, Y) ma gęstość

$$g(x,y) = \begin{cases} Cye^{-x^2y} & \text{jeśli } x \geqslant 1, y \geqslant 0 \\ 0 & \text{w przeciwnym przypadku} \end{cases}$$

gdzie C jest pewną dodatnią stałą.

- a) Czy X i Y są niezależne?
- b) Obliczyć wartość oczekiwaną i wariancję zmiennej losowej X
- c) Obliczyć kowariancję zmiennych X i Y

Rozwiązanie Zadania 3.

Przypomnijmy, że

Zmienne X i Y są niezależne
$$\iff g_X \cdot g_Y = g(x,y)$$

Łatwo zauważyć jednak że nie da się policzyć wzorów na gęstości brzegowe. Musimy więc kombinować, w tym celu znajdźmy najpierw C:

$$\int_{\mathbb{R}^2} g(x,y) = C \cdot \int_{1}^{\infty} \frac{1}{x^2} \int_{0}^{\infty} yx^2 e^{-x^2 y} \, dy \, dx =$$

Oczywiście możemy policzyć powyższą całkę przez części, możemy też zauważmy, że przekształciliśmy wewnętrzną całkę do postaci gdzie jest całką z gęstości rozkładu wykładniczego $Exp(x^2)$, czyli jest jego wartością oczekiwaną, z wiemy że $\mathbb{E}Exp(\lambda)=\frac{1}{\lambda^2}$. Otrzymujemy więc że

 $=C \cdot \int_{1}^{\infty} \frac{1}{r^4} dx = \frac{C}{3} \implies C = 3$

Policzyliśmy C, pomińmy podpunkt a) i przejdźmy do podpunktu b)

b) Skorzystamy z tej samej sztuczki na poradzenie sobie z trudną całką

$$\mathbb{E}X = \int_{\mathbb{R}^2} x \cdot g(x, y) = \int_1^\infty \int_0^\infty 3y x e^{-x^2 y} \, dy \, dx = 3 \cdot \int_1^\infty \frac{1}{x} \int_0^\infty y x^2 e^{-x^2 y} \, dy \, dx = 3 \cdot \int_1^\infty \frac{1}{x^2} \, dx = \frac{3}{2}$$

Do obliczenia wariancji potrzebujemy jeszcze $\mathbb{E} X^2$

$$\mathbb{E}X^{2} = \int_{\mathbb{R}^{2}} x^{2} \cdot g(x, y) = \int_{1}^{\infty} \int_{0}^{\infty} 3y x^{2} e^{-x^{2}y} \, dy \, dx =$$

tutaj znowu sztuczka z wartością oczekiwaną rozkładu wykładniczego

$$=3\cdot\int_1^\infty\frac{1}{x^2}\,dx=3$$

Otrzymujemy

$$Var X = \mathbb{E}X^2 - (\mathbb{E}X)^2 = 3 - \frac{9}{4} = \frac{3}{4}$$

c) Przypomnijmy, że $\text{Cov}(X,Y) = \mathbb{E}XY - \mathbb{E}X \cdot \mathbb{E}Y$. Liczymy więc brakujące rzeczy

$$\mathbb{E}Y = \int_{\mathbb{R}^2} y \cdot g(x, y) = \int_1^{\infty} \int_0^{\infty} 3y^2 e^{-x^2 y} \, dy \, dx = \int_1^{\infty} \frac{1}{x^2} \int_0^{\infty} 3x^2 y^2 e^{-x^2 y} \, dy \, dx =$$

$$= 3 \cdot \int_1^{\infty} \frac{1}{x^2} \mathbb{E}(Exp(x^2))^2 \, dx = 3 \cdot \int_1^{\infty} \frac{1}{x^2} \cdot \frac{2}{x^4} \, dx = \frac{6}{5}$$

$$\mathbb{E}XY = \int_{\mathbb{R}^2} xy \cdot g(x, y) = \int_1^{\infty} \int_0^{\infty} 3y^2 x e^{-x^2 y} \, dy \, dx = \int_1^{\infty} \frac{1}{x} \int_0^{\infty} 3y^2 x^2 e^{-x^2 y} \, dy \, dx =$$

$$= 3 \cdot \int_1^{\infty} \frac{1}{x} \cdot \frac{2}{x^4} \, dx = \frac{3}{2}$$

Tak więc

$$Cov(X,Y) = \frac{3}{2} - \frac{6}{5} \cdot \frac{3}{2} = -\frac{3}{10}$$

Wrócimy teraz do pozostawionego podpunktu a). Gdyby X i Y był niezależne, to Cov(X, Y) = 0. Widzimy jednak że tak nie jest, więc X i Y nie są niezależne.

Definicja 23: (Macierz kowariancji)

Jeśli $X=(X_1,\ldots,X_d)$ jest wektorem losowym o wartościach w \mathbb{R}^d , przy czym zmienne losowe X_i mają skończoną wariancję, to macierz

$$(\operatorname{Cov}(X_i, X_j))_{i,j=1}^d$$

nazywamy macierzą kowariancji wektora X.

Twierdzenie 21: Wielowymiarowy rozkład Gaussa

Zmienne losowe X_1, \ldots, X_d o łącznym rozkładzie Gaussa są niezależne wtedy i tylko wtedy, gdy są nieskorelowane.

Twierdzenie 22: Nierówności związane z wartością oczekiwaną

1. (Nierówność Höldera) Niech X,Y będą zmiennymi losowymi, $p,q\geqslant 1$, takimi że $\frac{1}{p}+\frac{1}{q}=1$, wtedy

$$\mathbb{E}|XY| \leq (\mathbb{E}|X|^p)^{\frac{1}{p}} (\mathbb{E}|Y|^q)^{\frac{1}{q}} = \|X\|_p \|Y\|_q.$$

2. (Nierówność Jensena) Niech X będzie zmienną losową, taką że $\mathbb{E}|X| < \infty$ i niech $\varphi : \mathbb{R} \to \mathbb{R}$ będzie funkcją wypukłą. Ponadto zakładamy, że $\mathbb{E}|\varphi(X)| < \infty$. Wtedy

$$\varphi(\mathbb{E}X) \leqslant \mathbb{E}\varphi(X).$$

3. (Nierówność Minkowskiego) Niech $p \ge 1$, wtedy

$$||X + Y||_p \le ||X||_p + ||Y||_p$$
.

4. (Nierówność Markowa) Jeśli $X \ge 0$, $\varepsilon > 0$, to

$$\mathbb{P}(X \geqslant \varepsilon) \leqslant \frac{\mathbb{E}X}{\varepsilon}.$$

5. (Nierówność Czebyszewa) Jeśli X jest zmienną losową o skończonej wariancji, to dla każdego $\varepsilon>0$

$$\mathbb{P}(|X - \mathbb{E}X| \ge \varepsilon) \le \frac{\operatorname{Var} X}{\varepsilon^2}.$$

Twierdzenie 23: Słabe prawo wielkich liczb

Niech X_1, X_2, \ldots będą nieskorelowanymi zmiennymi losowymi o tym samym rozkładzie o skończonej wariancji. Oznaczmy $S_n = \frac{1}{n} \sum_{i=1}^n X_i$. Wtedy dla każdego $\varepsilon > 0$ zachodzi

$$\lim_{n \to \infty} \mathbb{P}\left(\left|\frac{S_n}{n} - \mathbb{E}X_1\right| > \varepsilon\right) = 0.$$

Definicja 24: Rodzaje zbieżności

Niech X, X_1, X_2, \ldots będą zmiennymi losowymi o wartościach w przestrzeni (E, ρ) , określonymi na tej samej przestrzeni probabilistycznej $(\Omega, \mathcal{F}, \mathbb{P})$. Mówimy, że

1. ciąg X_n zbiega do X PRAWIE NA PEWNO przy $n \to \infty$ (piszemy: $X_n \xrightarrow{\text{p.n.}} X$), jeżeli

$$P\left(\left\{\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)=X(\omega)\right\}\right)=1;$$

2. ciąg X_n zbiega do X WEDŁUG PRAWDOPODOBIEŃSTWA $(X_n \xrightarrow{P} X)$, jeżeli

$$\forall \varepsilon > 0 \lim_{n \to \infty} P(\rho(X_n, X) > \varepsilon) = 0;$$

3. niech $0 . Ciąg <math>X_n$ zbiega do X WEDŁUG p-TEGO MOMENTU, jeżeli

$$\lim_{n \to \infty} E\rho(X_n, X)^p = 0.$$

Stosowane w zasadzie, gdy (E, ρ) jest przestrzenią Banacha i wtedy mówimy, że X_n zbiega do X w L^p , jeżeli $E\|X_n\|^p < \infty$, $E\|X\|^p < \infty$, oraz $\lim_{n\to\infty} E\|X_n - X\|^p = 0$. Piszemy: $X_n \xrightarrow{L^p} X$.

Przy czym, jeżeli $p\geqslant 1$, to wystarczy zakładać, że $E\|X_n\|^p<\infty$. Jeżeli zachodzi $\lim_{n\to\infty} E\|X_n-X\|^p=0$, to warunek $E\|X\|^p<\infty$ jest automatycznie spełniony.

Twierdzenie 24

Następujące warunki są równoważne:

- (i) $X_n \xrightarrow{\text{p.n.}} X$;
- (ii) $\forall \varepsilon > 0 \lim_{N \to \infty} P\left(\bigcap_{n=N}^{\infty} \{\rho(X_n, X) \leqslant \varepsilon\}\right) = 1;$

(iii)
$$\forall \varepsilon > 0 \lim_{N \to \infty} P\left(\bigcup_{n=N}^{\infty} \{\rho(X_n, X) > \varepsilon\}\right) = 0.$$

Twierdzenie 25: Riesza

Niech X, X_1, X_2, \ldots będą zmiennymi losowymi o wartościach w (E, ρ) . Jeżeli ciąg X_n zbiega według prawdopodobieństwa do X przy $n \to \infty$, to istnieje podciąg X_{n_k} taki, że X_{n_k} zbiega do X prawie na pewno, gdy $k \to \infty$.

Twierdzenie 26

Ciąg $(X_n)_{n\in\mathbb{N}}$ zbiega w L^p $(p \ge 1)$ wtedy i tylko wtedy, gdy X_n zbiega według prawdopodobieństwa oraz rodzina $\{|X_n|^p\}_{n\in\mathbb{N}}$ jest jednostajnie całkowalna.

Twierdzenie 27

Niech X_1, X_2, \ldots będzie ciągiem niezależnych zmiennych losowych o wartościach w przestrzeni Banacha $F, \|\cdot\|$. Niech $S_n = \sum_{i=1}^n X_i$. Wówczas

 S_n zbiega prawie na pewno przy $n \to \infty \iff S_n$ zbiega wg. prawdopodobieństwa.

Twierdzenie 28: Nierówność Lévy'ego-Ottavianiego

Niech X_1, X_2, \ldots będzie ciągiem niezależnych zmiennych losowych o wartościach w przestrzeni Banacha $F, \|\cdot\|$. Niech $S_n = \sum_{i=1}^n X_i$. Wtedy dla każdego $j \in \mathbb{N}$ i t > 0 zachodzi

$$\mathbb{P}\left(\max_{k \le j} \|S_k\| > 3t\right) \le 3 \max_{k \le j} P(\|S_k\| > t).$$

Twierdzenie 29: Kołmogorowa o 2 szeregach

Jeśli X_1, X_2, \ldots są niezależnymi zmiennymi losowymi o wartościach rzeczywistych, o skończonej wariancji takimi, że

$$\sum_{i=1}^{\infty} \operatorname{Var}(X_i) < \infty \text{ oraz } \sum_{i=1}^{\infty} \mathbb{E}X_i < \infty,$$

to szereg $\sum_{i=1}^{\infty} X_n$ zbiega prawie na pewno.

Twierdzenie 30: Kołmogorowa o 3 szeregach

Niech X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi o wartościach rzeczywistych.

1. Jeśli istnieje c > 0 takie, że szeregi

$$\sum_{n=1}^{\infty} \mathbb{E}|X_n|^c, \quad \sum_{n=1}^{\infty} Var(X_n)^c, \quad \sum_{n=1}^{\infty} \mathbb{P}(|X_n| > c)$$

są zbieżne, to szereg $\sum_{n=1}^{\infty} X_n$ jest zbieżny prawie na pewno.

2. Na odwrót: Jeśli szereg $\sum_{n=1}^{\infty} X_n$ zbiega prawie na pewno, to dla każdego c>0 szeregi w powyższym wzorze są zbieżne.

Przykład 4: Egzamin Zerowy 2024

Zadanie 4. Niech $X_1, X_2, ...$ będą niezależnymi zmiennymi losowymi o tym samym rozkładzie o gęstości

$$g(x) = \begin{cases} \frac{1}{4}|x|^{-\frac{3}{2}} \text{ jeśli } |x| > 1\\ 0 \text{ jeśli } |x| \leqslant 1 \end{cases}$$

Dla jakich wartości parametru p > 0 szereg

$$\sum_{n=1}^{\infty} \frac{X_n}{n^p}$$

zbiega prawie na pewno?

Rozwiązanie Zadania 4. Chcemy skorzystać z Twierdzenia o 3 szeregach. Dobierzmy

c=1 i zacznijmy od policzenia

$$\mathbb{P}\left(\left|\frac{X_n}{n^p}\right| > c\right) = \mathbb{P}\left(\left|\frac{X_n}{n^p}\right| > 1\right) = \mathbb{P}(|X_n| > n^p) = \int_{n^p}^{\infty} \frac{1}{4} x^{\frac{3}{2}} \, dx + \int_{-\infty}^{-n^p} -\frac{1}{4} x^{\frac{3}{2}} \, dx = n^{-\frac{p}{2}}$$

Tak więc

$$\sum_{n=1}^{\infty} \mathbb{P}\left(\left|\frac{X_n}{n^p}\right| > 1\right) = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{p}{2}}}$$

Powyższy szereg jest zbieżny wtedy i tylko wtedy gdy $\frac{p}{2} > 1 \implies p > 2$ Idąc dalej, zauważmy że przedział niezerowej gęstości jest symetryczny, więc

$$\mathbb{E}\left|\frac{X_n}{n^p}\right|^1 = 0 \implies \sum_{n=1}^{\infty} \left|\frac{X_n}{n^p}\right|^1 = \sum_{n=1}^{\infty} 0 = 0$$

Obliczmy teraz wariancję

$$\operatorname{Var}\left(\frac{X_n}{n^p}\mathbf{1}_{\left|\frac{X_n}{n^p}\right|>1}\right)^1 = \mathbb{E}\frac{X_n^2}{n^{2p}}\mathbf{1}_{\left|\frac{X_n}{n^p}\right|>1} - 0 = \frac{1}{n^{2p}}\left(2\int_1^{n^p} x^2 \cdot \frac{1}{4} \cdot x^{-\frac{3}{2}} \, dx\right) = \frac{1}{3}\left(\frac{n^{\frac{3}{2}p} - 1}{n^{2p}}\right)$$

Wstawiając do naszego szeregu

$$\sum_{n=1}^{\infty} \operatorname{Var} \left(\frac{X_n}{n^p} \mathbf{1}_{\left| \frac{X_n}{n^p} \right| > 1} \right)^1 = \sum_{n=1}^{\infty} \frac{1}{3} \left(\frac{n^{\frac{3}{2}p} - 1}{n^{2p}} \right)$$

Widzimy, że ten szereg będzie zbieżny wtedy i tylko wtedy gdy p > 2, założenia twierdzenia o 3 szeregach zostały więc spełnione, więc dla p > 2 ten szereg ejst zbieżny prawie na pewno.

Twierdzenie 31: Mocne prawo wielkich liczb

Niech X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi o tym samym rozkładzie, takim samym jak zmienna losowa X, o skończonej wartości oczekiwanej $\mathbb{E}X$. Wówczas

$$\frac{X_1 + X_2 + \ldots + X_n}{n} \xrightarrow{\text{p.n.}} \mathbb{E}X \quad \text{dla} \quad n \to \infty.$$

Przykład 5: Random zadanie z konsów

Zadanie 5. Niech X_i, Y_i będą niezależnymi zmienny losowymi o rozkładzie jdnostajnym na okręgu o środku w zerze i promieniu $\sqrt{5}$. Zbadaj zbieżność prawie na pewno, według prawdopodobieństwa i w L^1 szeregu

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 Y_i Y_{i+1}$$

Rozwiązanie Zadania 5. Chcemy skorzystać z MPWL. Nie mamy jednak od razu spełnionych założeń dla naszego szeregu, wyrazy $X_i^2 Y_i Y_{i+1}$ nie są niezależne, ale możemy je pogrupować tak aby były. Załóżmy BSO, że n - parzyste. Wtedy:

$$\begin{split} \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} Y_{i} Y_{i+1} &= \frac{X_{1}^{2} Y_{1} Y_{2} + X_{3}^{2} Y_{3} Y_{4} \ldots + X_{n-1}^{2} Y_{n-1} Y_{n}}{\frac{n}{2}} \cdot \frac{1}{2} + \\ &+ \frac{X_{2}^{2} Y_{2} Y_{3} + X_{4}^{2} Y_{4} Y_{5} \ldots + X_{n}^{2} Y_{n} Y_{n+1}}{\frac{n}{2}} \cdot \frac{1}{2} \end{split}$$

Zauważmy że wyrazy pogrupowane w tych sumach są już niezależne i o tym samym rozkładzie, więc

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 Y_i Y_{i+1} \to \mathbb{E} X_1^2 Y_1 Y_2 + \mathbb{E} X_2^2 Y_2 Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_2 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_3 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_1 + \mathbb{E} X_2^2 Y_2 \mathbb{E} Y_1 = \mathbb{E} X_1^2 Y_1 \mathbb{E} Y_1 + \mathbb{E} X_2^2 Y_1 = \mathbb{E} X_1^2 Y_1 + \mathbb{E} X_2^2 Y_1 = \mathbb{E} X_1^2 Y_1 + \mathbb{E} X_2^2 Y_1 = \mathbb{E} X_1^2 Y_1 + \mathbb{E} X_2^2 Y_1$$

Czy wiemy coś o wartościach oczekiwanych? Tak, skoro te zmienne leżą jednostajnie na okręgu, to widać, że $\mathbb{E}Y_i=0$, więc

$$= \mathbb{E}X_1^2 Y_1 \cdot 0 + \mathbb{E}X_2^2 Y_2 \cdot 0 = 0$$

Tak więc szereg jest zbieżny do 0 prawie na pewno do, jest też więc zbieżny do 0 według prawdopodobieństwa.

Zastanówmy się teraz nad zbieżnością w L^1 . Okazuje się, że prościej jest udowodnić mocniejszą zbieżność w L^2 , czy

$$\mathbb{E}\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}Y_{i}Y_{i+1}-0\right|^{2}\to0$$

Zauważmy, że to wyrażenie można rozpisać

$$\mathbb{E} \left| \frac{1}{n} \sum_{i=1}^{n} X_i^2 Y_i Y_{i+1} \right|^2 = \frac{1}{n^2} \mathbb{E} \left(\sum_{i=1}^{n} X_i^4 Y_i Y_{i+1} + \sum_{1 \leq i \leq j \leq n}^{n} X_i^2 Y_i Y_{i+1} X_j^2 Y_j Y_{j+1} \right) =$$

$$= \frac{1}{n^2} \left(\sum_{i=1}^{n} \mathbb{E} X_i^2 Y_i Y_{i+1} + \sum_{1 \leq i \leq j \leq n}^{n} \mathbb{E} X_i^2 Y_i Y_{i+1} X_j^2 Y_j Y_{j+1} \right)$$

Skupmy się na wyrazie $\mathbb{E} X_i^2 Y_i Y_{i+1} X_j^2 Y_j Y_{j+1}$ i zauważmy, że zawsze Y_{j+1} będzie zmienną niezależną od reszty iloczynu, więc

$$\mathbb{E}X_i^2 Y_i Y_{i+1} X_i^2 Y_j Y_{j+1} = \mathbb{E}X_i^2 Y_i Y_{i+1} X_i^2 Y_j \mathbb{E}Y_{j+1} = \mathbb{E}X_i^2 Y_i Y_{i+1} X_i^2 Y_j \cdot 0 = 0$$

Nasza suma się więc redukuje:

$$\frac{1}{n^2} \left(\sum_{i=1}^n \mathbb{E} X_i^4 Y_i Y_{i+1} + \sum_{1 \le i \le j \le n}^n \mathbb{E} X_i^2 Y_i Y_{i+1} X_j^2 Y_j Y_{j+1} \right) = \frac{1}{n^2} \left(\sum_{i=1}^n \mathbb{E} X_i^4 Y_i Y_{i+1} \right)$$

Co z kolei zbiega do 0, tak więc szereg jest zbieżny w L^2 , więc też w L^1

Twierdzenie 32: de'Moivre'a-Laplace'a

Niech S_n będzie zmienną losową o rozkładzie Bernoulliego B(n,p), gdzie q=1-p. Wtedy dla każdego $t\in\mathbb{R}$ zachodzi

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{S_n - np}{\sqrt{npq}} \leqslant t\right) = \Phi(t),$$

gdzie Φ jest dystrybuantą rozkładu normalnego standardowego.

Alternatywnie:

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{S_n - \mathbb{E}S_n}{\sqrt{\operatorname{Var}S_n}} \leqslant t\right) = \Phi(t),$$

Twierdzenie 33: Ogólne Centralne Twierdzenie Graniczne

Jeśli X_1, X_2, \ldots są niezależnymi zmiennymi losowymi o tym samym rozkładzie, mającym skończoną i niezerową wariancję, to

$$\lim_{n \to \infty} \left(\frac{\sum_{i=1}^{n} X_i - n \mathbb{E} X_1}{\sqrt{n \operatorname{Var} X_1}} \leqslant t \right) = \Phi(t).$$

Twierdzenie 34: Przybliżenie Poissona

Niech $S_n \sim B(n, p)$, oznaczmy $\lambda = np$. Wtedy dla każdego $B \in \mathcal{B}(\mathbb{R})$ zachodzi oszacowanie

$$\left| \mathbb{P}(S_n \in B) - \sum_{\substack{k \in B \\ k=0}}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} \right| \leqslant \frac{\lambda^2}{n}.$$

Czasami równoważnie przyjmujemy

$$\mathbb{P}(S_n \in B) \sim \sum_{\substack{k \in B \\ k=0}}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda}$$

Przykład 6: Egzamin 2023

Zadanie 6. Dane są trzy urny. W pierwszej znajduje się 100 kul, wśród nich jedna zielona i 99 niebieskich, zaś w każdej z pozostałych urn znajduje się 50 kul białych i 50 kul czarnych. Gracz powtarza 900 razy następujący eksperyment: wybiera losowo jedną z urn (każdą z prawdopodobieństwem 1/3), następnie zwraca ją do urny. Obliczyć w przybliżeniu

- (a) prawdopodobieństwo, że kulę białą wylosowano ponad 310 razy
- (b) prawdopodobieństwo, że kulę zieloną wylosowano co najmniej 3 razy

Rozwiązanie Zadania 6.

(a) Określmy zmienną losową:

$$X_i = \begin{cases} 1 & \text{ jeśli } i\text{-ta wylosowana kula będzie biała} \\ 0 & \text{ w.p.p.} \end{cases}$$

Zauważmy, że $\mathbb{P}(X_i=1)=\frac{1}{3}\cdot 0+\frac{1}{3}\cdot \frac{1}{2}+\frac{1}{3}\cdot \frac{1}{2}=\frac{1}{3}$. Chcemy policzyć $\mathbb{P}\left(\sum\limits_{i=1}^{900}>310\right)$. Korzystamy z Tw. dM-L, z $n=900, p=\frac{1}{3}, q=1-p=\frac{2}{3}$:

$$\mathbb{P}\left(\sum_{i=1}^{900} X_i > 310\right) = \mathbb{P}\left(\frac{\sum\limits_{i=1}^{900} X_i - 900 \cdot \frac{1}{3}}{\sqrt{900 \cdot \frac{1}{3} \cdot \frac{2}{3}}} > \frac{310 - 900 \cdot \frac{1}{3}}{\sqrt{900 \cdot \frac{1}{3} \cdot \frac{2}{3}}}\right) \sim 1 - \phi\left(\frac{\sqrt{2}}{2}\right)$$

(b) Określmy zmienną losową:

$$Y_i = \begin{cases} 1 & \text{ jeśli } i\text{-ta wylosowana kula będzie zielona} \\ 0 & \text{ w.p.p.} \end{cases}$$

Zauważmy, że mamy małą ilość zdarzeń oraz znacznie mniejsze prawdopodobieństwo względem poprzedniego podpunktu ($\mathbb{P}(Y_i=1)=\frac{1}{300}$). Korzystamy więc z przybliżenia Poissona z $\lambda=np=900\cdot\frac{1}{300}=3$:

$$\mathbb{P}(Y \geqslant 3) = 1 - \mathbb{P}(Y \leqslant 3) = 1 - \sum_{k=0}^{2} \mathbb{P}(Y_k) \sim 1 - \sum_{k=0}^{2} \frac{3^k}{k!} e^{-3} = 1 - e^{-3} \left(1 + 3 + \frac{3^2}{2!} \right)$$

Definicja 25: Warunkowa wartość oczekiwana

Niech X będzie zmienną losową określoną na przestrzeni probabilistycznej (Ω, \mathcal{F}, P) , taką że $E|X| < \infty$, i niech \mathcal{G} będzie σ -ciałem, $\mathcal{G} \subset \mathcal{F}$. Warunkową wartością oczekiwaną X warunkowo względem \mathcal{G} nazywamy zmienną losową Y spełniającą warunki:

- 1. Y jest \mathcal{G} -mierzalna,
- 2. Dla każdego $A \in \mathcal{G}$, $E[Y\mathbf{1}_A] = E[X\mathbf{1}_A]$.

Taką zmienną losową Y oznaczamy przez $\mathbb{E}(X|\mathcal{G})$.

Własności gdy $\mathbb{E}X^2 < \infty$:

1. Dla dowolnych $\alpha, \beta \in \mathbb{R}, X, Y \in L^2(\Omega, \mathcal{F}, P)$

$$\mathbb{E}(\alpha X + \beta Y | \mathcal{G}) = \alpha \mathbb{E}(X | \mathcal{G}) + \beta \mathbb{E}(Y | \mathcal{G}) \quad P.n.$$

- 2. Jeśli $X \ge 0$ p.n., to $\mathbb{E}(X|\mathcal{G}) \ge 0$ p.n.
- 3. Jeśli $X_1 \geqslant X_2$, to $\mathbb{E}(X_1|\mathcal{G}) \geqslant \mathbb{E}(X_2|\mathcal{G})$ p.n.
- 4. $X_n \nearrow X$ p.n. to $\mathbb{E}(X_n|\mathcal{G}) \nearrow \mathbb{E}(X|\mathcal{G})$
- 5. Nierówność Jensena $\varphi : \mathbb{R} \to \mathbb{R}$ wypukła, $\mathbb{E}|\varphi(X)| \leq \infty$. Wtedy

$$\varphi(\mathbb{E}(X|\mathcal{G})) \leqslant \mathbb{E}(\varphi(X)|\mathcal{G})$$

- 6. Jeśli X jest \mathcal{G} -mierzalne to $(X|\mathcal{G}) = X$ p.n.
- 7. Jeżeli $H \subset \mathcal{G}$, to $\mathbb{E}(\mathbb{E}(X|\mathcal{G})|H) = \mathbb{E}(X|H)$ p.n.
- 8. Jeżeli wszystkie zbiory z σ -ciała \mathcal{G} mają prawdopodobieństwo 0 lub 1 (np. $\mathcal{G} = \{\emptyset, \Omega\}$), to $\mathbb{E}(X|\mathcal{G}) = \mathbb{E}X$ p.n.
- 9. Jeżeli σ -ciała $\sigma(X)$ i \mathcal{G} są niezależne, to $\mathbb{E}(X|\mathcal{G}) = \mathbb{E}X$ p.n.
- 10. Jeżeli Y jest zmienną losową \mathcal{G} -mierzalną oraz $\mathbb{E}|X| < \infty$ i $\mathbb{E}|XY| < \infty$, to $\mathbb{E}(XY|\mathcal{G}) = Y\mathbb{E}(X|\mathcal{G})$ p.n.

Twierdzenie 35

Niech (X,Y) będzie wektorem losowym o wartościach w $\mathbb{R}^k \times \mathbb{R}^n$ i o rozkładzie ciągłym z gęstością g. Niech

$$f_{X|Y}(x|y) = \begin{cases} \frac{g(x,y)}{\int_{\mathbb{R}^k} g(x,y)dx} & \text{jeśli } \int_{\mathbb{R}^k} g(x,y)dx > 0\\ 0 & \text{w.p.p.} \end{cases}$$

Wtedy dla każdej borelowskiej funkcji $\psi: \mathbb{R}^k \to \mathbb{R}$, takiej że $\mathbb{E}|\psi(X)| < \infty$ zachodzi

$$\mathbb{E}(\psi(X)|Y=y) = \int_{\mathbb{R}^k} \psi(x) f_{X|Y}(x|y) dx$$

Równoważnie, używając innego zapisu:

$$\mathbb{E}(\psi(X)|Y) = \int_{\mathbb{R}^k} \psi(x) f_{X|Y}(x|Y) dx = \frac{\int_{\mathbb{R}^k} \psi(x) g(x,Y) dx}{\int_{\mathbb{R}^k} g(x,Y) dx} \quad \text{p.n.}$$

Przykład 7: Egzamin 2023

Zadanie 7. Wektor losowy ma gęstość $g(x,y) = Cxy^2 \mathbf{1}_{\{0 \le x \le y \le 1\}}$

- (a) Wyznaczyć stałą C
- (b) Obliczyć $\mathbb{P}(Y \geqslant \frac{1}{2})$
- (c) Obliczyć $\mathbb{E}((X+Y)^3|Y)$

Rozwiązanie Zadania 7.

(a) Liczymy całkę po gęstości:

$$\int_{\mathbb{R}^2} g(x,y) = \int_0^1 \int_0^y Cxy^2 \, dx \, dy = C \int_0^1 y^2 \int_0^y x \, dx \, dy = \frac{C}{10} \implies C = 10$$

(b)

$$\mathbb{P}(Y\geqslant \frac{1}{2}) = 10 \int_{\frac{1}{2}}^{1} \int_{0}^{y} xy^{2} \, dx \, dy = \frac{31}{32}$$

(c) mamy wzór

$$\mathbb{E}(X|Y) = \int_{\mathbb{R}} g_{X|Y}(x|Y) \, dx$$

Liczymy więc jego poszczególne elementy

1. Gęstość względem Y

$$g_Y(y) = \int_{\mathbb{D}} g_{(x,y)} dx = 10 \int_0^y xy^2 dx = 10 \frac{y^4}{2} \mathbf{1}_{y \in (0,1)} = 5y^4 \mathbf{1}_{y \in (0,1)}$$

2. Gęstość warunkowa

$$g_{X|Y}(x|y) = \frac{g_{(x,y)}(x,y)}{g_Y(y)} = \frac{10xy^2 \mathbf{1}_{\{0 \leqslant x \leqslant y \leqslant 1\}}}{5y^4 \mathbf{1}_{y \in (0,1)}} = \frac{2x}{y^2} \mathbf{1}_{\{0 \leqslant x \leqslant y \leqslant 1\}}$$

3. Warunkowa wartość oczekiwana

$$\mathbb{E}((X+Y)^3|Y) = \int_{\mathbb{R}} (x+y)^3 \cdot g_{X|Y}(x|y) \, dx = \frac{49}{10} Y^3 \cdot \mathbf{1}_{\{Y \in (0,1)\}}$$

Przykład 8: Egzamin 2023

Zadanie 8. W urnie znajduje się losowa liczba kul (oznaczmy ją przez N), Jedna z nich jest

biała, pozostałe zielone. Gracz losuje kule z urny bez zwracania do momentu wyciągnięcia kuli białej. Niech T oznacza liczbę przeprowadzonych losowań. Zakładając, że $\mathbb{P}(N=n)=\frac{9n}{4n+1}$ dla $n=1,2,3,\ldots$

- a) wyznaczyć rozkład zmiennej T
- b) wyznaczyć $\mathbb{E}(N|T)$

wsk. Jeśli Z ma rozkład geometryczny z parametrem p, to $\mathbb{E}Z = \frac{1}{n}$

Rozwiązanie Zadania 8.

a) Mamy

$$\mathbb{P}(T=k) = \sum_{n=k}^{\infty} \mathbb{P}(T=k|N=n) \cdot \mathbb{P}(N=n) =$$

$$= \sum_{n=k}^{\infty} \frac{n-1}{n} \cdot \frac{n-2}{n-1} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{n-k+1}{n-k+2} \cdot \frac{1}{n-k+1} \cdot \frac{9n}{4^{n+1}} =$$

$$= 9 \sum_{n=k}^{\infty} \frac{1}{4^{n+1}} = \frac{3}{4^k}$$

b) Przypomnijmy wzór $\mathbb{E}(N=n|T=k)=\sum\limits_{n=k}^{\infty}n\cdot\mathbb{P}(N=n,T=k).$ Liczymy więc

$$\mathbb{P}(N=n, T=k) = \frac{\mathbb{P}(T=k, N=n) \cdot \mathbb{P}(N=n)}{\mathbb{P}(T=k)} = \frac{\frac{9}{4^{n+1}}}{\frac{3}{4^k}} = \frac{3}{4^{n-k+1}}$$

podstawiamy do wzoru:

$$\mathbb{E}(N=n|T=k) = \sum_{n=k}^{\infty} n \cdot \mathbb{P}(N=n, T=k) = \sum_{n=k}^{\infty} \frac{3n}{4^{n-k+1}} = \sum_{n=0}^{\infty} \frac{3(n+k)}{4^{n+k-k+1}} =$$

$$= 3\sum_{n=0}^{\infty} n4^{-n-1} + 3k\sum_{n=0}^{\infty} n4^{-n-1} = \frac{1}{3} + k = \frac{1}{3} + T$$