MA2108S (Mathematical Analysis I) Pointers

Jia Cheng

January 2021

Definitions and Formula 1

Point Set Topology 2

2.1**Definitions**

- \bullet Metric Space M
- Open ball $B(p,r) = \{q \in M : d(p,q) < r\}$
- Boundary of S: $bd(S) = \{ p \in S : \forall r > 0, \exists q \in S, \exists q' \in S^c, q, q' \in B(p, r) \}$
- Limit points of S: $lim(S) = \{ p \in S : \forall r > 0, \exists q \in S, q \neq p, q \in B(p, r) \}$
- Interior of S: $int(S) = \{ p \in S : \exists r > 0, B(p,r) \subseteq S \}$

2.2Equivalence of definitions of closed set

The following definitions of a closed set are equivalent.

- 1. $bd(S) \subseteq S$
- 2. $lim(S) \subseteq S$

Proof: Suppose $bd(S) \subseteq S$. Let $x \in lim(S)$ and fix some arbitrary $r \in \mathbb{R}^+$. If $x \in S$, we are done. Otherwise, $x \notin S$. As x is a limit point, $\exists q \in S, q \neq x$ such that $q \in B(x, r)$. Now, notice that x is a boundary point of S, since x itself is not in S, and q is in S, and both $x, q \in B(x, r)$.

But by our initial assumption, we have $x \in bd(S) \subseteq S$. Contradiction.

Hence, $x \in S$ and $\lim(S) \subseteq S$.

Conversely, suppose $\lim(S) \subseteq S$.

Let $x \in bd(S)$ and fix some arbitrary $r \in \mathbb{R}^+$. If $x \in S$, we are done.

Otherwise, $x \notin S$. As x is a boundary point, $\exists q \in S, q' \in S^c$ such that both are in B(x,r). In particular, $q \neq x$ since $x \notin S$. This says that x is a limit point of S.

Our initial supposition says that $x \in lim(S) \subseteq S$. Again, we have a contradiction.