Name-Vasu Kalariya Rou-PE29 Sub -550

Nat Assignment - I

Jitte: Design of Pars 1 of & Pars Assembler

g 2 pass assembler pseda machine

Objective: Design suitable data structure & implement pass I of a pass assembler psedo machine. Subjet should consist of a few instruction from each cateogry. In few assembler directive

Theory:

Anembler: It branslate assembly too language program to binary language. Input for assembler is language generated by compiler. For Pass I assembler defines symbols & literals & save them in symbolic opcode table. It assigns machine address to symbolic labels.

It performs assembler service required by pseduo operations & saves. files for future use

→ Design specification of Assembler

It separates label, memonic, opcode & operand from instruction statement.

If label is present, it made entry in symbol table thus builds symbol table

Performs LC processing & constructs IC.

→ Synthesis Phase.
It obtains machine code corresponding to memorics from opcode table

It obtains address of memory operand from symbol table Synthesizes a machine instruction -> Algorithm for Pars 1 1 /ocentr=0 (default value) a while next statement is not an END statement a) It lable is present then this label = symbol in Cabel field Enter (this - label, loccontr) in SYMTAB. (b) It a START or ORIGIN statement then locentr = value specified in operand field (C) It an EQU statement then (i) this addr = value of < address spec > (ii) Correct the symtat entry for this label to (this label, this add) (d) If a declaration statement then (i) code = code of the declaration statement (1) size = size of memory area required by DC/DS (111) locentr = locentr + size. (iv) Generate IC (DL, code) (e) It an imperative statement then (1) code = machine opcode from OPTAB (ii) locentr = locentr + instruction length from OPTAB (iii) It operand is a symbol then.

this entry = SYMTAB entry number of operand

Generate IC (IS, code) (S, this -entry) 3 Processing of END Statement (b) Generate IC (c) Go to Pars II.

Input: ALPI intermediate code generated by Pars L

Output:

0	0-	- 0	0
U	MI	H	0

Monemonic	OP-code		
Start	01 , AD		
MOUER	01, IS		
SUB	02, IS		
MOUER	04, IS		
ORIGIN	03, AD		
MOWER	04, IS		
DS	OL, DL		
DC	02,DL		
END	02,AD		

Symtobol Table

Sym-id.	Sym-name	Sym_addr.	leigth
	A1	301	3
2	LOOP	401	1
3	B1	304	1

Entermidiale from	(After Pars	1) / final	output.
Add. (LC value)	Opiode	Operands	Operand &
	(AD,01)		(c, 400)
400	(IS, O4)	1	(5,01)
401	(IS, 02)	2	(s, o1)
402	(IS, 04)	2	(5,03)
	(AD, 03)		(0,300)
300	(05,04)	2	(5, OL)
301	(DL, 02)		(c, 3)
304	(OL,01)		(C,3)
305	(AD, 02)		

Conclusion: The function of Pars I in assembler are schedu Studied along with errors coming in each pars.

Platform: Linux (JAVA)