Medidas de Posição ou de Tendência Central ML205 - Estatística I

João Luis Gomes Moreira

DMAT/CCT/UFRR

24 de fevereiro de 2021

Conteúdo

- Medidas de Tendência Central
 - Médias
 - Mediana
 - Quartis
 - Decis
 - Percentis
 - Moda
- 2 Obtenção das Medidas de Posição
 - Cálculando as Medidas
 - Formulário

Médias Mediana Quartis Decis Percentis Moda

Medidas de Posição ou de Tendência Central

Representam os fenômenos por seus valores médios, em torno dos quais tendem a concentrar-se os dados.

Médias Mediana Quartis Decis Percentis Moda

Média Aritmética

A média aritmética é a mais comum dentre as médias.

Assim, se não for considerado o contexto onde os outros tipos de médias melhor se enquadrem, ela virá sempre à mente quando se falar em média.

Média Aritmética - Dados não agrupados.

Para dados não agrupados, a média aritmética é calculada por :

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
 com $n = \sum_{i=1}^{n} F_i$

Médias

Média Aritmética - Dados não agrupados

Exemplo: Determinar a média aritmética dos valores 3, 7, 8, 10, 11 :

$$\bar{x} = \frac{\sum x}{n} = \frac{3+7+8+10+11}{5}$$

$$\bar{x} = 7,8$$

Média Aritmética - Dados agrupados...

Para dados agrupados, a média aritmética é calculada por :

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i . F_i}{n} \qquad \text{com } n = \sum_{i=1}^{n} F_i$$

Média Aritmética - Dados agrupados...

Exemplo: Determinar a média aritmética da distribuição abaixo:

$$\bar{x} = \frac{\sum x_i . F_i}{n} = \frac{1 + 6 + 15 + 40}{19}$$

$$\bar{x} = 2, 6$$

Média Aritmética - Dados agrupados.

Exemplo: Seja agora o exemplo abaixo:

Renda Familiar					
(milhares de reais)	2 ⊢ 4	4 ⊢ 6	6 ⊢ 8	8 ⊢ 10	10 ⊢ 12
Número de Familias	5	10	14	8	3

Consideremos aqui x_i = Ponto Médio da Classe.

Então transformamos a distribuição de frequência acima em:

Média Aritmética - Dados agrupados

Com a distribuição de frequência redefinida, aplicamos a fórmula:

$$\bar{x} = \frac{\sum x_i . F_i}{n} = \frac{3.5 + 5.10 + 7.14 + 9.8 + 11.3}{40}$$

$$\bar{x} = 6,7$$
 ou seja, $\bar{x} = R\$6.700,00$

Média Geral

Sejam k séries de médias, calculamos a Média Geral por:

$$\bar{X}_{G} = \frac{n_{1}.\bar{x}_{1} + n_{2}.\bar{x}_{2} + \dots + n_{k}.\bar{x}_{k}}{n_{1} + n_{2} + \dots + n_{k}} = \frac{\sum_{i=1}^{k} n_{i}.x_{i}}{\sum_{i=1}^{k} n_{i}}$$

Média Geométrica

Usada quando os dados se apresentam como uma progressão geométrica, é calculada por:

$$\bar{M}_G = \sqrt[n]{\prod_{i=1}^n x_i^{F_i}} = \sqrt[n]{x_1^{F_1}.x_2^{F_2}.\cdots x_n^{F_n}} \qquad \text{com } n = \sum_{i=1}^n F_i$$

Média Harmônica

Usada em séries de valores que são inversamente proporcionais, por exemplo, cálculo de velocidade média, tempo médio de escoamento de estoque, dentre outros. É calculada por:

$$\bar{M}_h = \frac{n}{\frac{F_1}{x_1} + \frac{F_2}{x_2} + \dots + \frac{F_n}{x_n}} = \frac{n}{\sum_{i=1}^n \frac{F_i}{X_i}}$$
 com $n = \sum_{i=1}^n \frac{F_i}{X_i}$

$$com n = \sum_{i=1}^{n} F_i$$

Mediana

Mediana

Estando os valores em ordem crescente, é o elemento que ocupa a posição central.

Para: 5, 7, 8, 10, 14, 15

temos n par \Rightarrow mediana é a média dos elementos de

ordens
$$\frac{n}{2}$$
 e $\frac{n}{2} + 1$, ou seja, 8 e 10

Logo,
$$\tilde{x} = 9$$

Para: 5, 7, 9, 11, 15, 17, 19

temos *n* ímpar \Rightarrow mediana é o elemento de ordem $\frac{n+1}{2}$

Logo,
$$\tilde{x} = 11$$

Quartis

Quartis vem de Quartos, então os Quartis dividem um conjunto de dados em Quartos, mais especificamente em quatro quartos, ou ainda, em quatro partes iguais.

Figura: Representação dos Quartis em relação à Porcentagem de Dados da Amostra

Decis

Decis vem de Décimos, então os Decis dividem um conjunto de dados em Décimos, mais especificamente em dez décimos, ou ainda, em dez partes iguais.

Figura: Representação dos Decis em relação à Porcentagem de Dados da Amostra

Percentis

Percentis vem de Porcentos, então os Percentis dividem um conjunto de dados em Porcentos, mais especificamente em cem porcentos, ou ainda, em cem partes iguais.

Figura: Representação dos Percentis em relação à Porcentagem de Dados da Amostra

Médias Mediana Quartis Decis Percentis Moda

Moda

Em relação aos valores das classes em uma distribuição, Moda (ou valor modal) é o valor mais frequente da distribuição, ou seja, é o valor que está na moda. Podem existir mais de um valor modal em uma distribuição de frequência.

Cálculo da Mediana......

Exemplo: Dada a distribuição de frequência (tipo A) :

x_i	F_i	F_{ac}
1	1	1
2	3	4
3	5	9
4	2	11
\sum	11	

n=11, n é ímpar $\Rightarrow \tilde{x}=x_{\frac{n+1}{2}}=x_6\Rightarrow 6^{
m o}$ elemento da distribuição.

Cálculo da Mediana.....

Exemplo: Dada a distribuição de frequência (tipo A) :

Xi	F_i	F_{ac}	
1	1	1	
2	3	4	
3	5	9	← Contém o 6º elemento
4	2	11	
\sum	11		

Verificamos pela F_{ac} que o 6° elemento se encontra na linha onde $x_i = 3$, ou seja, $\tilde{x} = 3$.

Cálculo da Mediana.....

Exemplo: Dada a distribuição de frequência (tipo A) :

Xi	Fi	F_{ac}
82	5	5
85	10	15
87	15	30
89	8	38
90	4	42
$\overline{\sum}$	42	

$$n = 42$$
, $n \in par \Rightarrow \tilde{x} = \frac{x_{\frac{n}{2}} + x_{\frac{n}{2} + 1}}{2} = \frac{x_{21} + x_{22}}{2}$

Cálculo da Mediana....

Exemplo: Dada a distribuição de frequência (tipo A) :

F_{ac}	F_i	x_i	
5	5	82	
15	10	85	
30	15	87	
38	8	89	
42	4	90	
	11	$\overline{\sum}$	
	5 15 30 38	5 5 10 15 15 30 8 38	82 5 5 85 10 15 87 15 30 89 8 38

Verificamos pela F_{ac} que $x_{21} = x_{22} = 87$. Logo, $\tilde{x} = 87$.

Cálculo da Mediana...

Exemplo: Dada a distribuição de frequência (tipo B) :

Classes	Fi	F_{ac}
35 ⊢ 45	5	5
45 ⊢ 55	12	17
55 ⊢ 65	18	35
65 ⊢ 75	14	49
75 ⊢ 85	6	55
85 ⊢ 95	3	58
$\overline{\sum}$	58	

1° Passo: Calcula-se a ordem $\frac{n}{2}$ (para n par ou ímpar), no caso, $n=58 \Rightarrow \frac{n}{2}=29 \Rightarrow 29^\circ$ elemento.

Cálculo da Mediana..

Exemplo: Dada a distribuição de frequência (tipo B) :

Classes	Fi	F_{ac}	
35 ⊢ 45	5	5	•
45 ⊢ 55	12	17	
55 ⊢ 65	18	35	\leftarrow Classe M_D
65 ⊢ 75	14	49	
75 ⊢ 85	6	55	
85 ⊢ 95	3	58	
\sum	58		•

2º Passo: Pela F_{ac} identifica-se a classe que contém a Mediana (Classe M_D), que no caso é a classe $55 \vdash 65$.

Cálculo da Mediana.

3º Passo: Utiliza-se a fórmula:

$$\tilde{x} = I_{M_D} + \frac{(\frac{n}{2} - \sum F).h}{F_{M_D}}$$

onde:

 I_{M_D} = limite inferior da classe M_D

n= tamanho da amostra, ou seja, o número de elementos da distribuição

 $\sum F$ = soma das frequências anteriores à classe M_D

 $h = \text{amplitude da classe } M_D$

 F_{M_D} = frequência da classe M_D

Cálculo da Mediana

Exemplo: Dada a distribuição de frequência (tipo B):

3° Passo:
$$\tilde{x}=55+\dfrac{(\dfrac{58}{2}-17).10}{18}\Rightarrow \tilde{x}=61,67.$$

João Luis Gomes Moreira Medidas de Posição ou

Cálculo do 1º Quartil

1º Passo: Calcula-se $\frac{n}{4}$

 2° Passo: Identifica-se a classe Q_1 pela Fac

3º Passo: Utiliza-se a fórmula:

$$Q_1 = I_{Q_1} + \frac{(\frac{n}{4} - \sum F).h}{F_{Q_1}}$$

onde:

 $I_{Q_1} =$ limite inferior da classe Q_1

n = tamanho da amostra

 $\sum F =$ soma das frequências anteriores à classe Q_1

h= amplitude da classe Q_1

 $F_{Q_1} =$ frequência da classe Q_1

Cálculo do 2º Quartil

1º Passo: Calcula-se $\frac{n}{2}$

 2° Passo: Identifica-se a classe Q_2 pela Fac

3º Passo: Utiliza-se a fórmula:

$$Q_2 = I_{Q_2} + \frac{(\frac{n}{2} - \sum F).h}{F_{Q_2}}$$

onde:

 $I_{Q_2}=$ limite inferior da classe Q_2

n = tamanho da amostra

 $\sum F$ = soma das frequências anteriores à classe Q_2

 $h = \text{amplitude da classe } Q_2$

 $F_{Q_2} =$ frequência da classe Q_2

Cálculo do 3º Quartil

1° Passo: Calcula-se $\frac{3n}{4}$

 2° Passo: Identifica-se a classe Q_3 pela Fac

3º Passo: Utiliza-se a fórmula:

$$Q_3 = I_{Q_3} + \frac{(\frac{3n}{4} - \sum F).h}{F_{Q_3}}$$

onde:

 $I_{Q_3} =$ limite inferior da classe Q_3

n = tamanho da amostra

 $\sum F$ = soma das frequências anteriores à classe Q_3

 $h = \text{amplitude da classe } Q_3$

 F_{Q_3} = frequência da classe Q_3

Cálculo dos Decis

1° Passo: Calcula-se $\frac{i.n}{10}$, com $i = 1, 2, \dots, 9$

2º Passo: Identifica-se a classe D_i pela Fac

3º Passo: Utiliza-se a fórmula:

$$D_i = I_{D_i} + \frac{(\frac{i.n}{10} - \sum F).h}{F_{D_i}}$$

onde:

 I_{D_i} = limite inferior da classe D_i

n = tamanho da amostra

 $\sum F$ = soma das frequências anteriores à classe D_i

 $h = \text{amplitude da classe } D_i$

 F_{D_i} = frequência da classe D_i

Cálculo dos Percentis

1° Passo: Calcula-se $\frac{i.n}{100}$, com $i=1,2,\cdots,99$

 2° Passo: Identifica-se a classe P_i pela Fac

3º Passo: Utiliza-se a fórmula:

$$P_i = I_{P_i} + \frac{(\frac{i.n}{100} - \sum F).h}{F_{P_i}}$$

onde:

 I_{P_i} = limite inferior da classe P_i

n = tamanho da amostra

 $\sum F$ = soma das frequências anteriores à classe P_i

 $h = \text{amplitude da classe } P_i$

 F_{P_i} = frequência da classe P_i

Cálculo da Moda...

Exemplo: Dada a distribuição de frequência (tipo A) :

Verificamos que o número mais frequente, mais comum na distribuição, ou ainda, que ocorre mais vezes é o número 248.

Assim, a moda neste caso é 248. Em escrita matemática,

$$Mo = 248$$

Cálculo da Moda..

Exemplo: Dada a distribuição de frequência (tipo B) :

Classes	F_i
0 ⊢ 1	3
1 ⊢ 2	10
2 ⊢ 3	17
3 ⊢ 4	8
4 ⊢ 5	5
\sum	43

Cálculo da Moda.

1º Passo: Identifica-se a Classe Modal (classe com maior frequência)

2º Passo: Utiliza-se a fórmula:

$$Mo = I_{Mo} + rac{\Delta_1}{\Delta_1 + \Delta_2}.h$$

onde:

 I_{Mo} = limite inferior da classe modal

 $\Delta_1=$ diferença entre a frequência da classe modal e a imediatamente anterior

 $\Delta_2 = \mbox{diferença}$ entre a frequência da classe modal e a imediatamente posterior

h = amplitude da classe modal

Cálculo da Moda

Exemplo: Dada a distribuição de frequência (tipo B) :

F_i	
3	•
10	
17	← Classe Modal
8	
5	
43	•
	3 10 17 8 5

Utilizando a fórmula, temos:

$$Mo = 2 + \frac{7}{7+9}.1 = 2,44$$

Formulário.

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
 ou $\bar{x} = \frac{\sum_{i=1}^{n} x_i.F_i}{n}$

$$\bar{X}_{\mathsf{G}} = \frac{\sum_{i=1}^{k} n_{i}.x_{i}}{\sum_{i=1}^{k} n_{i}}$$

$$\bar{M}_{\mathsf{G}} = \sqrt[n]{\prod_{i=1}^{n} x_i^{\mathsf{F}_i}}$$

$$\bar{M}_{h} = \frac{n}{\sum_{i=1}^{n} \frac{F_{i}}{X_{i}}}$$

Formulário

$$\tilde{x} = I_{M_D} + \frac{(\frac{n}{2} - \sum F).h}{F_{M_D}} \qquad Q_1 = I_{Q_1} + \frac{(\frac{n}{4} - \sum F).h}{F_{Q_1}}$$

$$Q_2 = I_{Q_2} + \frac{(\frac{n}{2} - \sum F).h}{F_{Q_2}} \qquad Q_3 = I_{Q_3} + \frac{(\frac{3n}{4} - \sum F).h}{F_{Q_3}}$$

$$D_i = I_{D_i} + \frac{(\frac{i.n}{10} - \sum F).h}{F_{D_i}} \qquad P_i = I_{P_i} + \frac{(\frac{i.n}{100} - \sum F).h}{F_{P_i}}$$

$$Mo = I_{Mo} + \frac{\Delta_1}{\Delta_1 + \Delta_2}.h$$

Cálculando as Medidas Formulário

That's all, Folks !!!