本节内容

浮点数

加减运算 强制类型转换

加减运算

浮点数的运算 母 强制类型转换

浮点数加减运算步骤:

思考为什么

是小阶向大

阶靠齐?

可以有不同

的舍入规则

- ① 对阶
- ② 尾数加减
- ③ 规格化
- 4 舍入

⑤ 判溢出

 $9.85211 \times 10^{12} + 9.96007 \times 10^{10}$

- ① $9.85211 \times 10^{12} + 0.0996007 \times 10^{12}$
- $29.9517107 \times 10^{12}$
- ③ 如果尾数加减出现类似 0.0099517 × 10¹² 时,需要"左规";如果尾数加减出现类似 99.517107 × 10¹² 时,需要"右规"
- ④ 若规定只能保留6位有效尾数,则 9.9517107 × $10^{12} \rightarrow 9.95171 \times 10^{12}$ (多余的直接砍掉)或者,9.9517107 × $10^{12} \rightarrow 9.95172 \times 10^{12}$ (若砍掉部分非0,则入1)或者,也可以采用四舍五入的原则,当舍弃位 \geq 5时,高位入1
- ⑤ 若规定阶码不能超过两位,则运算后阶码超出范围,则溢出如: 9.85211 × 10⁹⁹ + 9.96007 × 10⁹⁹ = 19.81218× 10⁹⁹ 规格化并用四舍五入的原则保留6位尾数,得 1.98122× 10¹⁰⁰ 阶码超过两位,发生溢出(注: 尾数溢出未必导致整体溢出,也许可以通过③④两步来拯救)

计算机内部,尾

数是定点小数

例:已知十进制数X=-5/256、Y=+59/1024,按机器补码浮点运算规则计算X-Y,结果 用二进制表示,浮点数格式如下:阶符取2位,阶码取3位,数符取2位,尾数取9位

用补码表示阶码和尾数

扩展: 11.011000000 双符号位补码: 11.011 双符号位补码: 11011

0. 转换格式

补码: 1011

59D = 111011B, $1/1024 = 2^{-10} \rightarrow Y = +111011 \times 2^{-10} = +0.111011 \times 2^{-4} = +0.111011 \times 2^{-100}$

X: 11011,11.011000000 Y: 11100,00.111011000

- 1. 对阶
- 2. 尾数加减
- 3. 规格化
- 4. 舍入
- 5. 判溢出

例:已知十进制数X=-5/256、Y=+59/1024,按机器补码浮点运算规则计算X-Y,结果用二进制表示,浮点数格式如下:阶符取2位,阶码取3位,数符取2位,尾数取9位

用补码表示阶码和尾数

0. 转换格式

5D = 101B,
$$1/256 = 2^{-8} \rightarrow X = -101 \times 2^{-8} = -0.101 \times 2^{-5} = -0.101 \times 2^{-101}$$

59D = 111011B, $1/1024 = 2^{-10} \rightarrow Y = +111011 \times 2^{-10} = +0.111011 \times 2^{-4} = +0.111011 \times 2^{-100}$

X: 11011,11.011000000 Y: 11100,00.111011000

- 1. 对阶 使两个数的阶码相等,小阶向大阶看齐,尾数每右移一位,阶码加1
 - ① 求阶差: [Δ*E*]_补=11011+00100=11111, 知Δ*E*=-1
 - ② 对阶: X: 11011,11.011000000 \rightarrow 11100,11.101100000 X = -0.0101 × 2⁻¹⁰⁰
- 2. 尾数加减
- 3. 规格化
- 4. 舍入
- 5. 判溢出

例:已知十进制数X=-5/256、Y=+59/1024,按机器补码浮点运算规则计算X-Y,结果用二进制表示,浮点数格式如下:阶符取2位,阶码取3位,数符取2位,尾数取9位

用补码表示阶码和尾数

0. 转换格式

5D = 101B,
$$1/256 = 2^{-8} \Rightarrow X = -101 \times 2^{-8} = -0.101 \times 2^{-5} = -0.101 \times 2^{-101}$$

59D = 111011B, $1/1024 = 2^{-10} \Rightarrow Y = +111011 \times 2^{-10} = +0.111011 \times 2^{-4} = +0.111011 \times 2^{-100}$
X: 11011,11.011000000 Y: 11100,00.111011000

- 1. 对阶 使两个数的阶码相等,小阶向大阶看齐,尾数每右移一位,阶码加1
 - ① 求阶差: [Δ*E*]_补=11011+00100=11111, 知Δ*E*=-1
 - ② 对阶: X: 11011,11.011000000 \rightarrow 11100,11. 101100000 X = -0.0101 × 2⁻¹⁰⁰
- 尾数加减 -Y: 11100,11.000101000
 X-Y: 11100, 10.110001000
 规格化

- 4. 舍入
- 5. 判溢出

例:已知十进制数X=-5/256、Y=+59/1024,按机器补码浮点运算规则计算X-Y,结果 用二进制表示,浮点数格式如下:阶符取2位,阶码取3位,数符取2位,尾数取9位

用补码表示阶码和尾数

0. 转换格式

5D = 101B,
$$1/256 = 2^{-8} \Rightarrow X = -101 \times 2^{-8} = -0.101 \times 2^{-5} = -0.101 \times 2^{-101}$$

59D = 111011B, $1/1024 = 2^{-10} \Rightarrow Y = +111011 \times 2^{-10} = +0.111011 \times 2^{-4} = +0.111011 \times 2^{-100}$
X: 11011,11.011000000 Y: 11100,00.111011000

- 1. 对阶 使两个数的阶码相等,小阶向大阶看齐,尾数每右移一位,阶码加1
 - ① 求阶差: [Δ*E*]_补=11011+00100=11111, 知Δ*E*=-1
 - ② 对阶: X: 11011,11.011000000 \rightarrow 11100,11.101100000 X = -0.0101 × 2⁻¹⁰⁰
- 2. 尾数加减 -Y: 11100,11.000101000 11.101100000 X-Y: 11100, 10.110001000 + 11.000101 $= (-0.0101 \times 2^{-100}) - (+0.111011 \times 2^{-100})$ $= (-0.0101 - 0.111011) \times 2^{-100}$ 10.110001000 3. 规格化 $= -1.001111 \times 2^{-100}$ X-Y: $11100, 10.110001000 \rightarrow 11101, 11.011000100$ $= -0.1001111 \times 2^{-011}$
- 4. 舍入 无舍入
- 5. 判溢出 常阶码,无溢出,结果真值为2⁻³×(-0.1001111)₂

浮点数的加减运算-舍入

有的计算机可能会把浮点数的尾数部分单独拆出去计算(24bit→32bit),算完了经过舍入(32bit→24bit)再拼回浮点数

"0"舍"1"入法:类似于十进制数运算中的"四舍五入"法,即在尾数右移时,被移去的最高数值位为0,则舍去;被移去的最高数值位为1,则在尾数的末位加1。这样做可能会使尾数又溢出,此时需再做一次右规。

恒置"1"法: 尾数右移时,不论丢掉的最高数值位是"1"还是"0",都使右移后的尾数末位恒置"1"。这种方法同样有使尾数变大和变小的两种可能。

浮点数加减运算步骤:

1. 对阶

2. 尾数加减 如: 加减结果为11100,10.110001011

3. 规格化

0舍1入: 11100,10.110001011 → 11101,11.011000101 1

4. 舍入

→ 11101,11.0110001**10** 1

5. 判溢出

恒置1:11100,10.110001011 → 11101,11.011000101 1 → 11101,11.011000101 1

右规时就会面 临舍入的问题

强制类型转换

类型	16位机器	32位机器	64位机器
char	8	8	8
short	16	16	16
int	16	32	32
long	32	32	64
long long	64	64	64
float	16	32	32
double	64	64	64

char \rightarrow int \rightarrow long \rightarrow double float \rightarrow double

范围、精度从小到大, 转换过程没有损失

32位

int: 表示整数,范围 -2 31 ~ 2 31 -1,有效数字32位

float:表示整数及小数,范围 \pm [2⁻¹²⁶ \sim 2¹²⁷ \times (2-2⁻²³)],有效数字23+1=24位

int → float: 可能损失精度

float → int: 可能溢出及损失精度

本节回顾

