平谷区 2016——2017 学年度第二学期期末质量监控试卷

- 1. 本试卷共三道大题, 26 道小题, 满分 100 分。 2. 在试卷和答题卡上准确填写学校名称、姓名和准考证号。
- 生 3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
 - 4. 在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。
 - 5. 考试结束,将本试卷、答题卡和草稿纸一并交回。
- 一、选择题(本题共 30 分,每小题 3 分) 下面各题均有四个选项,其中只有一个是符合题意的.
- 1. 在平面直角坐标系中,点M(-2,3)在
- A. 第一象限
- B. 第二象限 C. 第三象限
- D. 第四象限
- 2.下列图形即是轴对称图形又是中心对称图形的是

- 3. 若一个多边形的内角和为540°,则这个多边形的边数为
 - A. 4
- B. 5
- **D.7**
- 4. 如图,边长为 1 的方格纸中有一四边形 ABCD(A, B, C, D) 四点均为格点), 则该四边形的面积为

- **B.** 6

- 5. 用配方法解方程 $x^2 4x 7 = 0$ 时,应变形为

- A. $(x-2)^2 = 11$ B. $(x+2)^2 = 11$ C. $(x-4)^2 = 23$ D. $(x+4)^2 = 23$
- 6. 某市乘出租车需付车费y(元)与行车里程x(千米)之间函数关系的图象如图 所示,那么该市乘出租车超过3千米后,每千米的费用是

- A. 1.5 元
- B. 2元
- C. 2.12 元 D. 2.4 元
- 7. 如图,在 $\square ABCD 中$, AB=4, BC=7, $\angle ABC$ 的平分线交 AD 于 点 E,则 DE 的长为

- A. 5 B. 4
- C. 3
- D. 2
- 8.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智

游戏. 如图,是一局象棋残局,已知表示棋子"馬"和"車"的点的坐标分别为(4,3), (-2, 1),则表示棋子"炮"的点的坐标为

- A. (1, 3)
- B. (3, 2) C. (0, 3)
- D. (-3, 3)

9. 己知:如图,折叠矩形 ABCD,使点 B 落在对角线 AC 上的点 F 处,若 BC=8, AB=6,则线 段CE的长度是

D. 6

- A. 3
- B. 4
- C. 5
- 10. 为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划 1

使 30% 左右的人获得折扣优惠. 某市针对乘坐地铁的人群进行了调 查. 调查小组在各地铁站随机调查了该市 1000 人上一年乘坐地铁的 月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说 法正确的是

- ①每人乘坐地铁的月均花费最集中的区域在60-80元范围内;
- ②每人乘坐地铁的月均花费的平均数范围是 40-60 元范围内;
- (3)每人乘坐地铁的月均花费的中位数在100-120元范围内;
- (4)乘坐地铁的月均花费达到100元以上的人可以享受折扣.
- A. (1)(4)
- B(3)(4)
- C(1)(3)
- D(1)(2)

二、填空题(本题共18分,每小题3分)

- 11. 一元二次方程 $x^2 2x = 0$ 的解为_____.
- 12.请写出一个过一三象限且与 y 轴交与点(0,1)的直线表达式 ______
- 13. 如图, 在矩形 ABCD 中, 对角线 AC 与 BD 交于点 0, E 为 CD 4 的中点,连接 OE,若 AB=5,BC=12,则四边形 BCEO 的周长为

- 14. 甲、乙、丙、丁四人参加训练,近期的 10 次百米测试平均成绩都是 13.2 秒,方差分 别为 $s_{\mathbb{H}}^2=0.030$, $s_{\mathbb{L}}^2=0.019$, $s_{\mathbb{H}}^2=0.121$, $s_{\mathbb{L}}^2=0.022$ 则这四人中发挥最稳定的 是________.
- 15. 有一个最多能称 16kg 的弹簧称, 称重时发现, 弹簧的长度 y(cm) 与物体的重量 x(kg)之间有一定的关系. 根据下表请你写出 y 与 x 的函数关系式, 并注明自变量 x 的取值范围______.

重量	x (kg)	0.5	1.0	1.5	2.0	2.5	3.0
长度	y(cm)	5. 5	6.0	6.5	7.0	7.5	8.0

- 16.小明在白纸上作一个菱形,他按如下步骤:
 - (1) 作线段 AB;
 - (2) 作线段 AB 的垂直平分线, 垂足为点 O;
 - (3) 在 MN 上截取 OC=OD;
 - (4) 连接 AC、BC、AD、BD 则四边形 ADBC 即为菱形

请回答:小明这样作菱形的依据是 .

- 三、解答题(本题共 52 分,第 17—24 题,每小题 5 分,第 25,26 题每小题 6 分) 17.解方程: $x^2 + 4x 1 = 0$.
- **18.**一次函数 y = kx + b(k ≠ 0) 的图象经过点(-1, -4)和(2, 2)
- (1) 求该一次函数的表达式。
- (2) 若该函数图像与x轴交于A,与y轴交于B,若点C为x轴上一点,且 $S_{\triangle ABC}=3$,求C点坐标。

19.已知:如图,正方形 ABCD, E, F 分别为 DC, BC 中点. 求证: AE=AF.

20. 在平面直角坐标 xOy 中,直线 $y = kx - 3(k \neq 0)$ 与直线 $y = mx(m \neq 0)$ 的一个交点为 A

(1, -2), 与x轴交于点B.

- (1) 求m的值和点B的坐标;
- (2) 不解不等式,直接写kx-3 < mx的解集.

21. 列方程解应用题。

《算学宝鉴》全称《新集通证古今算学宝鉴》,完成于明嘉靖三年(1524年),王文素著,全书 12 本 42 卷,近 50 万字,代表了我国明代数学的最高水平.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:"直田积八百六十四步,之云阔不及长十二步,问长阔各几何?"

译文:一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的各是多少步?

- 22.如图,在 \triangle ABC 中,D 为 AB 边上一点,F 为 AC 的中点,过点 C 作 CE//AB 交 DF 的延长线 于点 E,连结 AE.
- (1) 求证: 四边形 ADCE 为平行四边形;
- (2) 若 $EF=2\sqrt{2}$, $\angle FCD=30$ °, $\angle AED=45$ °, 求 DC 的长.

- 23. 已知关于 x 的一元二次方程 x^2 -(m+2)x+2m=0.
 - (1) 求证: 方程总有两个实数根;
 - (2) 若方程的一个根为1, 求方程的另一个根.

24. 阅读下列材料:

人口老龄化已经成为当今世界主要问题之一. 我国在上世纪 90 年代初就进入了老龄化社会,全国 60 岁及以上户籍老年人口 2012 年底达到 1.94 亿人,占户籍总人口的 14.3%; 2013年底达到 2.02 亿人,占户籍总人口的 14.8%. 2014年底全国 60 岁及以上户籍老年人口达到 2.10 亿人,占户籍总人口的 15.5%. 2015年底全国 60 岁及以上户籍老年人口比 2014年底增加了 0.12 亿人,占户籍总人口的 16.1%; 2016年底全国 60 岁及以上户籍老年人口达到 2.31 亿人,占户籍总人口的 16.7%.

人口快速老龄化以及带来的一系列养老难题,成为中国和北京等大城市必须应对的艰巨挑战.

根据以上材料回答下列问题:

25. 正方形 ABCD 中,对角线 AC 与 BD 交于点 O,点 P 是正方形 ABCD 对角线 BD 上的一个动点(点 P 不与点 B,O,D 重合),连接 CP 并延长,分别过点 D,B 向射线 CP 作

垂线,垂足分别为点 M, N.

- (1) 补全图形, 并求证: DM=CN;
- (2) 连接 OM, ON, 判断 △OMN 的形状并证明。

小朋在解决问题 (2) 时遇到了困难,通过向其他同学请教,小朋得到了以下建议:

建议一:观察现有图形,借助于所证关系线段所在三角形全等的证明来解决问题;

建议二:延长 MO 交 BN 于点 G,借助构造全等三角形来解决问题;

如果你是小明,能够顺利的解决以上问题吗?

26. 在平面直角坐标系 xOy 中,有如下定义:若直线 l 和图形 W 相交于两点,且这两点的距离等于定值 k,则称直线 l 与图形 W 成"k 相关",此时称直线与图形 W 的相关系数为 k.

若图形 W 是由 A(-2,-1), B(2,-1), C(2,1), D(-2,1) 顺次连线而成的矩形:

- (1) 如图 1, 直线 y=x 与图形 W 相交于点 M, N. 直线 y=x 与图形 W 成 "k 相关"则 k 值即为线段 MN 的长度,则 k=______;
- (2)若一条直线经过点(0, 1)且与 W 成 " $\sqrt{5}$ 相关",请在图 2 中画出一条满足 题意的直线,并求出它的解析式;
 - (3) 若直线 $y = mx + b (m \neq 0)$ 与直线 $y = \sqrt{3}x$ 平行且与图形 W 成" k 相关",当 k \geq 2 时,求 b 的取值范围;

数学试卷参考答案及评分标准

2017. 7

一、选择题(本题共30分,每小题3分)

题号	1	2	3	4	5	6	7	8	9	10
答案	В	D	В	С	A	В	С	A	С	A

二、填空题(本题共18分,每小题3分)

题号	11	12	13	14	15	16
答案	$x_1 = 0, x_2 = 2$	答案不唯 一如 y=x+1	27	乙	$y = x + 5, 0 \le x \le 16$	对角线互相平分的四边形是平行四边形;对角线互相垂直的平行四边形

 解	'/\c	

题(本题共52分,第17-24题每小题5分;第

25-26 题 $x^2 + 4x - 1 = 0$

每小题6分)

17.
$$\mathbf{m}$$
: $x^2 + 4x = 1$

$$x^2 + 4x + 4 = 5$$

$$(x+2)^2 = 5$$

$$x_1 = -2 + \sqrt{5}, x_2 = -2 - \sqrt{5}$$

18. (1)

∵一次函数 $y = kx + b(k \neq 0)$ 的图象经过点(-1, -4)和(2, 2)

$$\therefore \begin{cases} -k+b=-a \\ 2k+b=2 \end{cases}$$

解得: $\begin{cases} k = 2 \\ b = -2 \end{cases}$

(2) : y=2x-2A(1,0) B (0, -2)

C (-2, 0) 或 (4, 0)

19.

证明: : 四边形 ABCD 为正方形,

C $\therefore AB=AD, \ \angle B=\angle D=90^{\circ}, \ DC=CB. \ \cdots 2$ $:: E \setminus F$ 为 $DC \setminus BC$ 中点, $\therefore DE = \frac{1}{2}DC, BF = \frac{1}{2}BC.$ $\therefore DE=BF$. :: 在 $\triangle ADE$ 和 $\triangle ABF$ 中, AD = AB $\angle D = \angle B$, DE = BF, $\therefore \triangle ADE \cong \triangle ABF (SAS)$. $\therefore AE=AF$. 20. (1) : 直线 $y = kx - 3(k \neq 0)$ 与直线 $y = mx(m \neq 0)$ 的一个交点为 A (1, -2) ∴k-3=-2 k=1y=x-3 $\therefore B (3, 0)$ m=-2v=-2x(2) x < 121.解: 设矩形长为 x 步, 宽为 (x-12) 步 x (x-12) x^2 -12x-864=0 解得 x1=36 *x*2=-24(舍) $\therefore x-12=24$ 答: 该矩形长 36 步, 宽 24 步 (1) CE/AB , \therefore \angle 22. $DAF = \angle ECF$

∵F 为 AC 的中点,∴AF=CF.			•••••	• • • • • • • • • • • • • • • • • • • •	•••••	1
··· 在 ^ DAF	和	Δ	ECF	中		ı
$\begin{cases} \angle DAF = \angle ECF \\ AF = CF \\ \angle AFD = \angle CFE \end{cases}$						
∴△ <i>DAF</i> ≌△ECF (<i>SAS</i>)			•••••	•••••		2
z.	AD	=CE				
∵CE//AB,					>	
∴ 四边形 ADCE 为平行四边形.					•••••	·····3
(2) 如图, 过点 <i>F</i> 作 <i>FH</i> ⊥ <i>DC</i> ∃	F点 <i>H</i> .	۸O)			4
∵ 四边形	ADCE	为	平	行 四	边 邢	
\therefore AE//DC, DF= EF=2 $\sqrt{2}$, :	∠ FDC	= ∠ /	<i>AED</i> =45 °.	A	
在 Rt △ <i>DFH</i> 中 , ∠ <i>DHF</i> =90)°, DF=	$2\sqrt{2}$, Z	<i>FDC</i> =45°,		F.
∴ 在 Rt <i>△CFH</i> 中, ∠ <i>FHC</i> =90°,	, <i>FH</i> =2 ,		H=2 =30°,		D H	
由 勾 股 定	理	,		得	HC=	$2\sqrt{3}$
$\therefore DC = DH + HC = 2 + 2\sqrt{3}$				•••••	•••••	5

23. (1) $x^2-(m+2)x+2m=0$

25.解: (1): 正方形 ABCD

<i>∴BC</i> = <i>CD</i> , ∠ <i>BCD</i> =90°		1
$:DM \perp CP$, $BN \perp CP$		
$\therefore \angle DMC = \angle BNC = 90^{\circ}$		
$\therefore \angle DCM + \angle BCN = 90^{\circ}$		
$\angle NBC + \angle BCN = 90^{\circ}$		
$\therefore \angle DCM = \angle NBC$		
∴ △MCD≌△BCN		
\therefore DM=CN		2
(2)补全图形如右图.	3	
△0MN 为等腰直角三角形	4	
证明: : 正方形 <i>ABCD</i>		AD
\therefore OD=OC, \angle BCO =	∠ODC=45 °	a F
$\therefore \triangle MCD \cong \triangle BCN$		
$\therefore DM = CN, \ \angle BCN = \angle CDM$	1	В С
$\therefore \angle OCN = \angle ODM$		
∴ △OMD≌△ONC ····	<u></u>	••5
∴OM=ON, ∠MOD=∠NOC		
$\therefore \angle MON = \angle DOC = 90^{\circ}$		
∴△OMN 为等腰直角三角形 ···		••6

(2)符合题意的直线如下图所示.

直线 a, b, c, d 都是符合题意的.....2 对应解析式分别为:

$$y = 2x + 1$$
; $y = \frac{1}{2}x + 1$; $y = -2x + 1$; $y = -\frac{1}{2}x + 1$4

(3) 设符合题意的直线的解析式为 $y = \sqrt{3}x + b$. 由题意可知符合题意的临界直线分别经 过点(-1,1),(1,-1).

分别代入可求出 $b_1 = 1 + \sqrt{3}, b_2 = -1 - \sqrt{3}$.

$$\therefore -1 - \sqrt{3} \le b \le 1 + \sqrt{3}$$

