Dynamic Programming Longest Common Subsequence

ANINDITA KUNDU

LECTURER

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY

Longest Common Subsequence

A subsequence is a sequence that appears in the <u>same relative order</u>, but not necessarily <u>contiguous</u>.

```
For example:

X = "abcdefg"

"abc", "abg",

"bdf", "aeg",

"acefg", .. etc are subsequences of X.
```

Longest Common Subsequence

Given two sequences

$$X = \langle x_1, x_2, ..., x_m \rangle$$

 $Y = \langle y_1, y_2, ..., y_n \rangle$

A subsequence of a given sequence is just the given sequence with zero or more elements left out.

A common subsequence $Z = \langle z_1, z_2, ..., z_k \rangle$ of X and Y

Z is a subsequence of both X and Y

Example:

$$X = A B C B D A B$$

 $Y = B D C A B A$

Goal: Find the Longest Common Subsequence (LCS)

- Define c[i, j] to be the length of an LCS of the sequences X_i and Y_j .
 - Goal: Find c[m, n]
 - Basis: c[i, j] = 0 if either i = 0 or j = 0
 - Recursion: How to define c[i, j] recursively?

- Finding an LCS of $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$
 - If $x_m = y_n$, then we must find an LCS of X_{m-1} and Y_{n-1} .
 - Appending $x_m = y_n$ to this LCS yields an LCS of X and Y.
 - If $x_m \neq y_n$, then we must solve two subproblems:
 - Finding an LCS of X_{m-1} and Y
 - Finding an LCS of X and Y_{n-1}
 - ◆ Whichever of these two LCSs is longer is an LCS of *X* and *Y*.

• The recursive formula is

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x[i] = y[j], \\ \max\{c[i,j-1],c[i-1,j]\} & \text{if } i,j > 0 \text{ and } x[i] \neq y[j] \end{cases}$$

Case 1: $x_i = y_j$

- Recursively find LCS of X_{i-1} and Y_{i-1} and append X_i
- So c[i, j] = c[i 1, j 1] + 1 if i, j > 0, and $x_i = y_j$

Case 2: $x_i \neq y_j$

- Recursively find LCS of X_{i-1} and Y_i
- Recursively find LCS of X_i and Y_{j-1}
- Take the longer one
- So $c[i, j] = \max\{c[i, j 1], c[i 1, j]\}$ if i, j > 0, and $x_i \neq y_j$

Dependencies among Sub-problems

- An order for solving the sub-problems (*i.e.*, filling in the array) that respects the dependencies is row major order:
 - do the rows from top to bottom
 - inside each row, go from left to right

```
LCS-LENGTH(X, Y)
                                5 The algorithm calculates the values of
     m \leftarrow length[X]
 2 n \leftarrow length[Y]
                                    each entry of the array c[m, n].
 3 for i \leftarrow 1 to m
                                \odot Each c[i, j] is calculated in constant time,
            do c[i, 0] \leftarrow 0
                                    and there are m \cdot n elements in the array.
    for j \leftarrow 0 to n
            do c[0, j] \leftarrow 0 \subseteq So the running time is O(m \cdot n).
     for i \leftarrow 1 to m
 8
            do for j \leftarrow 1 to n
                     do if x_i = y_i
10
                            then c[i, j] \leftarrow c[i-1, j-1] + 1
11
                                   b[i, j] \leftarrow " \setminus "
12
                            else if c[i-1, j] \ge c[i, j-1]
                                      then c[i, j] \leftarrow c[i-1, j]
13
14
                                             b[i, j] \leftarrow "\uparrow"
15
                                      else c[i, j] \leftarrow c[i, j-1]
16
                                             b[i, j] \leftarrow "\leftarrow"
17
      return c and b
```

We'll see how LCS algorithm works on the following example:

$$X = ABCG$$

$$Y = BDCAG$$

$$LCS(X, Y) = BCG$$

$$X = A B C G$$

 $Y = B D C A G$

	j	0	1	2	3	4	5
i		y_j	В	D	C	A	G
0	\mathcal{X}_{i}						
1	A						
2	В						
3	C						
4	\mathbf{G}						

$$X = ABCG;$$
 $m = |X| = 4$
 $Y = BDCAG;$ $n = |Y| = 5$
Allocate array: $c[5, 4]$

	j	0	1	2	3	4	5
i		y_j	В	D	C	A	G
0	\mathcal{X}_{i}	0	0	0	0	0	0
1	\mathbf{A}	0					
2	В	0					
3	C	0					
4	G	0					

for
$$i = 0$$
 to m $c[i, 0] = 0$
for $j = 1$ to n $c[0, j] = 0$

							L L
	j	0	1	2	3	4	5 E
i		y_j	(B)	D	C	A	G
0	x_i	0	0	0	0	0	0
1	A	0	• 0				
2	В	0					
3	C	0					
4	\mathbf{G}	0					

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

	j	0	1	2	3	4	5
i	_	y_j	В	D	C	A	G
0	\mathcal{X}_{i}	0	0	0	0	0	0
1	A	0	0	0	0		
2	В	0					
3	C	0					
4	G	0					

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

	j	0	1	2	3	4	5
i	,	y_j	В	D	C	A	5 E
0	x_i	0	0	0	0 、	0	0
1	(A)	0	0	0	0	1	
2	В	0					
3	C	0					
4	\mathbf{G}	0					

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

	j	0	1	2	3	4	5 E
i	3	y_j	В	D	C	A	$\left(\mathbf{G}\right)$
0	x_i	0	0	0	0	0	0
1	A	0	0	0	0	1 -	1
2	В	0					
3	C	0					
4	\mathbf{G}	0					

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

	j	0	1	2	3	4	5 E
i		y_j	$\left(\mathbf{B}\right)$	D	C	A	G
0	\mathcal{X}_{i}	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	$oxed{B}$	0	1				
3	C	0					
4	\mathbf{G}	0					

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

	j	0	1	2	3	4	5 E
i		y_j	В	D	C	A	$\frac{5}{\mathbf{G}}$
0	\mathcal{X}_i	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	\bigcirc B	0	1	1	1	→ 1	
3	C	0					
4	G	0					

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

ABCG

BDCAG

	j	0	1	2	3	4	5 B
i	r	y_j	В	D	C	A	(G)
0	x_i	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	B	0	1	1	1	1	1
3	C	0					
4	\mathbf{G}	0					

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

	j	0	1_		3	4	5 E
i		y_j	B	D	C	A	G
0	\mathcal{X}_{i}	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	\bigcirc	0	1 -	→ 1			
4	\mathbf{G}	0					

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

	j	0	1	2	3	4	5 E
i	,	y_j	В	D	(C)	A	G
0	\mathcal{X}_{i}	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	\bigcirc	0	1	1	2		
4	\mathbf{G}	0					

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

ABCG

BDCAG

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

	j	0	1	2	3	4	5
i	ſ	y_j	B	D	C	A	G
0	\mathcal{X}_i	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	1
3	C	0	,1	1	2	2	2
4	G	0	1				

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

	j	0	1	2	3	4	5 E
i		y_j	В	D	C	A	G
0	x_i	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	1
3	C	0	1	1	2	2	2
4	G	0	1 -	1	2 -	2	

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

ABCG

BDCAG

	j	0	1	2	3	4	5 D
i		y_j	В	D	C	A	G
0	\mathcal{X}_{i}	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	1
3	C	0	1	1	2	2 \	2
4	G	0	1	1	2	2	3

if
$$(x_i == y_j)$$

 $c[i, j] = c[i-1, j-1] + 1$
else $c[i, j] = max(c[i-1, j], c[i, j-1])$

Another LCS Example

How to Find Actual LCS

So far, we have just found the *length* of LCS, but not LCS itself.

We can modify this algorithm to make it output an LCS of X and Y.

Each c[i, j] depends on c[i-1, j-1], or c[i-1, j] and c[i, j-1].

For each c[i, j] we can say how it was acquired.

For example, here
$$c[i, j] = c[i-1, j-1] + 1 = 2+1=3$$

How to Find Actual LCS

Remember that

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- So we can start from c[m, n] and go backwards
- Whenever c[i, j] = c[i-1, j-1]+1, remember x[i], because x[i] is a part of LCS
- When i=0 or j=0 (i.e. we reached the beginning), output remembered letters in reverse order

Finding LCS: Example

	j	0	1	2	3	4	5
i		y_j	В	D	C	A	G
0	\mathcal{X}_{i}	0	0	0	0	0	0
1	A	0 🔪	0	0	0	1	1
2	В	0	1+	- 1 ×	1	1	2
3	C	0	1	1	2 ←	- 2	2
4	G	0	1	1	2	2	3

Finding LCS: Example

LCS (reversed order): G C B

LCS (straight order): B C G

Finding LCS: Algorithm

```
PRINT-LCS(b, X, i, j)
   if i = 0 or j = 0
                        Trace backwards from b[m, n]
      then return
  if b[i, j] = "
abla"
      then PRINT-LCS(b, X, i-1, j-1)
           print x_i
   elseif b[i, j] = "\uparrow"
      then PRINT-LCS(b, X, i - 1, j)
   else PRINT-LCS(b, X, i, j - 1)
```

Thank You