GAMES 101 大作业

次表面散射

陈涛

求表面所有点对出射点的贡献

Figure 1: Scattering of light in (a) a BRDF, and (b) a BSSRDF.

蒙特卡洛方法求积分 \$? 采样?

$$L_o(x_o, \vec{\omega}_o) = \int_A \int_{2\pi} S(x_i, \vec{\omega}_i; x_o, \vec{\omega}_o) L_i(x_i, \vec{\omega}_i) (\vec{n} \cdot \vec{\omega}_i) d\omega_i dA(x_i).$$

来自: Jensen, Henrik Wann, et al. <u>"A practical model for subsurface light transport."</u> SIGGRAPH 2001.

Normalized Diffusion

$$S(x_i, w_i; x_o, w_o) = C F_t(x_i, w_i) R(|x_o - x_i|) F_t(x_o, w_o)$$
 (1)

$$R(r) = \frac{e^{-r/d} + e^{-r/(3d)}}{8\pi dr} .$$

Fresnel transmit

如何求d?

来自: Christensen, Per H., and Brent Burley. <u>"Approximate reflectance profiles for efficient subsurface scattering."</u> Technical Report 15-04, Pixar, 2015.

dmfp as parameter

$$egin{aligned} lpha^{'} = \sigma_{s}^{'}/\sigma_{t}^{'} & \sigma_{s}^{'} = \sigma_{s} imes (1-g) & \sigma_{t}^{'} = \sigma_{s}^{'} + \sigma_{a} \end{aligned}$$

平均散射距离
$$l_dpprox 1/\sigma_{tr}$$
,而 $\sigma_t^{'}=rac{\sigma_{tr}}{\sqrt{3(1-lpha^{'})}}$ 。 A $rac{}{}$ A $rac{}{}$ Q $rac{}{}$ ffuse color

Material	σ_s' [mm ⁻¹]			$\sigma_a \ [\mathrm{mm}^{-1}]$			Diffuse Reflectance			n
	R	G	В	R	G	В	R	G	В	'/
Apple	2.29	2.39	1.97	0.0030	0.0034	0.046	0.85	0.84	0.53	1.3
Chicken1	0.15	0.21	0.38	0.015	0.077	0.19	0.31	0.15	0.10	1.3
Chicken2	0.19	0.25	0.32	0.018	0.088	0.20	0.32	0.16	0.10	1.3
Cream	7.38	5.47	3.15	0.0002	0.0028	0.0163	0.98	0.90	0.73	1.3
Ketchup	0.18	0.07	0.03	0.061	0.97	1.45	0.16	0.01	0.00	1.3
Marble	2.19	2.62	3.00	0.0021	0.0041	0.0071	0.83	0.79	0.75	1.5

来自: https://zhuanlan.zhihu.com/p/21247702

投射采样法

- 确定球面半径Rm,入射点必须在球体内。
- 在[0,Rm]中,以某种分布方式采样r。
- 以P圆心,r为半径,法线N为对称轴,作一个圆柱面,与物体表面相交。入射点就在这条交线上。
- 随机一个角度,确定入射点。 Pdf? 项目最难处

$$\frac{R_d(\|\mathbf{P}_{\text{hit}} - \mathbf{P}\|)}{\operatorname{pdf}_{\text{disk}}(r)} \frac{1}{|\mathbf{V} \cdot \mathbf{N}_{\text{hit}}|}$$
(1)

来自: King, Alan, et al. "BSSRDF importance sampling." SIGGRAPH Talks, 2013.

Inverse Sampling

Recall S_r

$$S_r = \rho_{eff} \frac{e^{-r/d} + e^{-r/(3d)}}{8\pi dr} = \rho_{eff} S_r'$$
 (16)

 S_r' satisfies: (integration in polar coordinates is always 1)

$$\int \int_{D} S'_{r}(r) \, dA = \int_{0}^{\infty} \int_{0}^{2\pi} S'_{r}(r) r \, dr d\phi = \int_{0}^{\infty} S(r)' 2\pi r \, dr = 1$$
(17)

So the desired PDF is proportional to S_r

Assume $PDF = cS_r$,

$$\iint_{D} PDF \, dA = \int_{0}^{\infty} \int_{0}^{2\pi} c \, S_{r} \, r \, dr d\phi = \int_{0}^{\infty} c S_{r} 2\pi r \, dr = c \rho_{eff} \int_{0}^{\infty} S_{r}' 2\pi r \, dr = c \rho_{eff} = 1 \quad (18)$$

$$c = 1/\rho_{eff}$$

So the PDF is $cS_r=S_r^\prime$

And the CDF is:

$$\begin{split} CDF &= \int \int_D S_{\rm r}' \mathrm{d}A \\ &= \int_0^r \int_0^{2\pi} r S_{\rm r}' \mathrm{d}r \mathrm{d}\phi \\ &= \int_0^r 2\pi r S_{\rm r}' \mathrm{d}r \\ &= \frac{1}{4} (4 - e^{-r/d} - 3e^{-r/(3d)}) \\ &= 1 - \frac{1}{4} e^{-r/d} - \frac{3}{4} e^{-r/(3d)} \end{split}$$

However, the CDF is not analytically invertible

2. Precompute the $CDF^{-1}(r)$ when d=1 , and multiply ${\bf d}$ in rendering.

$$\begin{split} CDF &= 1 - \frac{1}{4}e^{-r/d} - \frac{3}{4}e^{-r/(3d)} \\ &\stackrel{d=1}{=} 1 - \frac{1}{4}e^{-r} - \frac{3}{4}e^{-r/3} \end{split}$$

 $CDF^{-1}: \xi => r$

Multiple Importance Sampling

$$\int_0^{R_{max}} p_1(r) \ 2\pi \ r \ dr = 1$$

$$\int_0^{R_{max}} c \ \frac{e^{-r/d}}{8\pi \ d \ r} 2\pi \ r \ dr = \int_0^{R_{max}} \frac{c}{4d} e^{-r/d} \ dr = \frac{-c}{4} (e^{\frac{-R_{max}}{d}} - 1) = 1$$

$$c = \frac{4}{1 - e^{\frac{-R_{max}}{d}}} \implies p_1(r) = \frac{4}{1 - e^{\frac{-R_{max}}{d}}} \frac{e^{-r/d}}{8\pi \ d \ r} = \frac{1}{1 - e^{\frac{-R_{max}}{d}}} \frac{e^{-r/d}}{2\pi \ d \ r}$$

$$egin{aligned} P_1(r) &= \int_0^r p_1(r') \ 2\pi \ r' \ dr' \ &= \int_0^r rac{1}{1-e^{rac{-R_{max}}{d}}} rac{e^{-r'/d}}{d} dr' \ &= rac{-1}{1-e^{rac{-R_{max}}{d}}} (e^{rac{-r}{d}} - 1) \end{aligned}$$

$$r = \log(1 - \xi(1 - e^{\frac{-R_{max}}{d}})) \times -d$$

$$p_2(r) = rac{e^{rac{-r}{3d}}}{2\pi \; d \; r} rac{1}{3 \left(1 - e^{rac{-R_{max}}{3d}}
ight)},$$

$$r = \log(1 - \xi(1 - e^{\frac{-R_{max}}{3d}})) \times -3d$$

策略1

策略2

确定Rm 以w1,w2为权值随机产生策略 根据策略采样出对应的r

$$pdf_{disk} = P_1(r) + P_2(r)$$

策略1: $pdf_{strategy} = w1 / (w1 + w2)$
策略2: $pdf_{strategy} = w2 / (w1 + w2)$

随机一个channel 计算pdf_{channel} = 1/3

$$w_1 = 1 - e^{rac{-R_{max}}{d}} \ w_2 = 3(1 - e^{rac{-R_{max}}{3d}})$$

来自: http://shihchinw.github.io/2015/10/bssrdf-importance-sampling-of-normalized-diffusion.html

出射Fresnel transmit

$$S(x_i, w_i; x_o, w_o) = C F_t (|x_o - x_i|) F_t(x_o, w_o)$$
 (1)

图像周围有黑边,符合原理,因为掠射角的Reflect很高,Transmit很小。要想得到更好的效果,需要配合反射模型。此次项目简单的忽略出射Ft。

最终效果

谢谢!