Semaine du 18/11 au 22/11

1 Cours

Primitives et intégrales

Primitives Définition. Théorème fondamental de l'analyse. Application au calcul d'intégral.

Intégrales Linéarité, positivité, croissance, relation de Chasles, inégalité triangulaire. Une intégrale d'une fonction continue de signe constant est nulle **si et seulement si** cette fonction est nulle.

Méthodes de calcul Intégration par parties. Changement de variable.

Équations différentielles linéaires

Notion d'équation différentielle Exemples. Ordre d'une équation différentielle. Problème de Cauchy. Équations différentielles linéaires homogènes et avec second membre. Structure de l'ensemble des solutions (solution particulière + solution de l'équation homogène). Principe de superposition.

EDL du premier ordre Solution d'une EDL homogène. Solution d'une EDL avec second membre. Méthode de variation de la constante. Unicité de la solution d'un problème de Cauchy.

2 Méthodes à maîtriser

- ▶ Passer éventuellement en complexes pour le calcul d'intégrales et de primitives faisant intervenir les fonctions sin et cos.
- ▶ Étudier des suites d'intégrale (sens de variation, limite).
- ► Faire attention à l'ordre des bornes lorsque l'on parle de positivité ou de croissance de l'intégrale.
- ► Intégrer par parties.
- ► Changement de variables.
- ► Employer les techniques de calcul d'intégrales pour le calcul de primitives.
- ▶ Résoudre une EDL d'ordre un avec second membre :
 - 1. Résoudre l'équation homogène.
 - 2. Rechercher une solution particulière (utilisation éventuelle de la méthode de variation de la constante).
 - 3. En déduire l'ensemble des solutions de l'équation avec second membre.
 - 4. Prise en compte d'une condition initiale éventuelle.

3 Questions de cours

▶ BCCP 42

- 1. Résoudre l'équation différentielle (H): 2xy'-3y=0 sur \mathbb{R}_{+}^{*} .
- 2. Résoudre l'équation différentielle (E): $2xy'-3y=\sqrt{x}$ sur \mathbb{R}^*_{\perp} .
- 3. L'équation (E) admet-elle des solutions sur \mathbb{R}_+ ?
- ▶ Déterminer la limite de la suite de terme général $I_n = \int_0^1 \frac{(1-x)^n e^x}{n!} dx$. Déterminer une relation de récurrence liant I_n et I_{n+1} . En déduire que $\lim_{n \to +\infty} \sum_{k=0}^n \frac{1}{k!} = e$.
- ▶ Déterminer la limite de la suite de terme général $I_n = \int_0^1 \frac{t^n}{1+t} dt$. Déterminer une relation de récurrence liant I_n et I_{n+1} . En déduire que $\lim_{n \to +\infty} \sum_{k=1}^n \frac{(-1)^{k+1}}{k} = \ln 2$.
- ightharpoonup Soit f une fonction continue sur $\mathbb R$ et T-périodique. Montrer que

$$\forall a \in \mathbb{R}, \int_{a}^{a+T} f(t) dt = \int_{0}^{T} f(t) dt$$