Power Electronics

Chapter 3

Thyristor AC-DC Converters

Thyristor Characteristics

Structure and Symbol

A Simple Circuit

Controlled by firing delay angle

α — relative to supply voltage zero

$$V_{d} = \frac{1}{2\pi} \int_{\alpha}^{\pi} V_{s(max)} \sin \theta \, d\theta$$
$$= \frac{1}{2\pi} V_{s(max)} (1 + \cos \alpha)$$

Thyristor Triggering

Q1: What is time sequence of trigger signals?

Q2: How many switching times in one line frequency?

Q3: When does commutation happens?

Average DC Output Voltage

$$V_{d} = \frac{1}{\pi} \int_{\alpha}^{\pi + \alpha} V_{s(max)} \sin \theta \, d\theta$$
$$= \frac{2}{\pi} V_{s(max)} \cos \alpha$$

Line-commutated converter & Controlled DC voltage

Input Line-Current and its Harmonics * S

$$I_{\rm s1} = 0.9I_{\rm d}$$

$$PF = 0.9 \cos \alpha$$

Operation region?

Two-quadrant

Considering ac-side inductance

 $i_{\rm T1}$ and $i_{\rm T2}$ increase from 0 to $I_{\rm d}$ $i_{\rm T3}$ and $i_{\rm T4}$ decrease from $I_{\rm d}$ to 0

Considering ac-side inductance

$$v_s = V_{s(max)} \sin(\omega t + \alpha) = L_s \frac{di_s}{dt}$$

$$[\omega t = 0, i_s = -I_d]$$

 $[\omega t = u \ (overlap \ angle), \ i_s = I_d]$

• • • • •

Inverting Mode ($\alpha > 90^{\circ}$)

(b)

extinction angle δ

$$\delta = 180 - \alpha - u$$

$$\delta_{\rm min} > 5^{\circ}$$

Rectifying mode:

$$\alpha < 90$$

Inverting mode:

$$\alpha$$
: 90 ~ 180- δ_{\min}

thyristor converter:

a line-frequency AC voltage \rightarrow a controlled DC voltage

AC/DC Conversion: rectifying mode & inverting mode

Thyristor Converter - two-quadrant converter

$$V_d = \frac{3}{\pi} V_{s(max)} \cdot \cos \alpha$$

Starting problem:

In order to start the circuit functioning, two thyristors must be fired at the same time in order to commence current flow.

DC-side voltage waveforms

Input Line-Current and its Harmonics

$$I_{\rm s1} = 0.78I_{\rm d}$$
 PF = 0.955 cos α

AC-side inductance included

$$v_a - v_c = V_{\text{line(max)}} \sin(\omega t + \alpha)$$

$$=2L_{s}\frac{di_{a}}{dt}$$

$$[at = 0, i_a = 0]$$

$$[\omega t = \mathbf{u} , i_{\mathbf{a}} = \mathbf{I}_{\mathbf{d}}]$$

• • • • •

Current Commutation Waveforms

A practical thyristor converter

Realistic load

Continuous-conduction mode

Inverting Mode ($\alpha > 90^{\circ}$)

extinction angle δ

$$\delta = 180 - \alpha - u$$

$$\delta_{\min} > 5^{\circ}$$

Voltage Notching

Thyristor AC-DC

HVDC station

Summary:

- Thyristor AC-DC: controlled DC, two-quadrant
- Analysis according to key waveforms

Key waveforms

DC output: $v_{\rm d}$, $i_{\rm d}$

AC input: v_s , i_s

Devices: $v_{\rm T}$, $i_{\rm T}$

Firing delay angle

Calculations according to waveforms

DC output: $V_{\rm d}$, $I_{\rm d}$

AC input: I_{s1} , ξ , PF

Rectifying & inverting mode

ac-side inductance, extinction angle, voltage notching

Required both for single-phase and three-phase diode rectifiers

The End

