LAB 8

Write a C program to simulate the following contiguous memory allocation techniques

first fit. best fit, worst fit


```
of Cinden Placed != -1) 3
                       allocation[1) = index placed;
                        occupied Lindex Placed ]= 1
                       block: re (index Pland ) == procensize li);
          puny ("In Process No. It Process Size It Block no. In").
for (int i=0; ic process; 1++) {
               painty ("1.d 1+1+1+1 1+1+1+" i+1
              of (allocation [] 1=-1)
                 print) ("-1.d In", allocation[1] + 1);
           3 print (" Not Allocated In")}
 int main () }
         Put i , blocks , procons;
        penity ("Enter the no. of blocks;"):
scant (".1.d", & blocks);
      Int blocksize [blocks]
perint ("In Entersine of each blocks: ")3

For (int 1=0; is blocks; 1++)

Scan (":/d" & process);

perint ("In Enter size of each process: ");

for (i=0; is process is i++)

Scan (":/d" & process size (i);

worth to (blocksize, blocks, processize, process);

return 0.
return o;
```

	n. E. :
	Output:
	Enter no. of blocks: 3
	Enter sice of each black: 5 & 1
	Extr. No. of prouns: 2
3	Enter size of each prounts: 2
1	Process No. Process size Block No.
	11-1 9/3/ by style of by String
	2 4 (-4(3) (1-40)
	Compatible (of de /10 tradeoutling (11 p. 4 1))
6.	#11 bort lit:
*	#indude (stodio, h)
	# 0.12. UAN 10
	road Restlit (int blocksmal), int blocks int processme (),
	int processes but in 2
1	(at processes (at m) !
T	ist monusied (blocks);
	en l'at 150 ; 14 processes 144) [
	allocation (1) = -1;
	allocation (1) = -1;
	Por (it is a or it blocks ; it +) {
	occupied [i] = 0;
	5 (M) mar makes
	for ("it 1=0; 1< preciones; 1 + +) {-
	· L · Ouere and c - 1:
144	for (The J=0) < blacks: J++) {
1 10 400	1 (Chlocksize () >= power Size [] Eq ! orapied()) {
	1 Colored Jan Books are Colored
	1) (index Placel == -1)
	index Placed = j)
	else of Charlesine (j) < Hocksine [index Placed]
	indep Placed =)
	\$ 100 miles
	J
	SC Conduction of 15-17
	if (index Placed !=-1)

allocation [1] = index Placed: occupied Circles Placed] = 1; 1 point ("In Process No It Process Size It Block no. In") for Cat 1=05 i (puseen; i++) } int noin (2) and is Clared and 131 131 1 int p.m.;) point ("Enter the number of pewerner and blocks;");
scan (".o.l.d. 'l.d. '' & p. (m); Int processive [p], blocksize [m]; pently ("Enter the person size: "); for (j=0; j<p; j++)

scan ("!d" & passen Stre (j)).

puit ("Enter the Block Size: "):

es ()=0; <m; j++) scanf ("-1.d", & Hocks no (1)); Put block = Size of Chlocksize)/ size of (blocksize (0)); int proces = sire of (peroces sire) / sire of (peroces sire to)

Bet jit (block sire blocks, perocen sire, processes, m);

III "C:\Users\ysrmo\OneDrive - Base PU College\Desktop\4thsem\CN\CN_LAB\OS\bin\Debug\OS.exe"

```
Memory Management Scheme - First Fit
Enter the number of blocks:5
Enter the number of files:5
Enter the size of the blocks:
Block 1:100
Block 2:200
Block 3:300
Block 4:400
Block 5:500
Enter the size of the files:
File 1:150
File 2:200
File 3:300
File 4:450
File 5:500
File no:
                File size:
                                Block_no:
                                                 Block_size:
                                                                 Fragment
                150
                                                 200
                                                                 50
                                2
2
3
4
5
                200
                                3
                                                 300
                                                                 100
                                4
                300
                                                 400
                                                                 100
                                5
                                                                 50
                450
                                                 500
                                0
                                                                 -1
                500
                                                 7551792
```