Microcontroladores: Laboratorio 1

1st Hector Pereira

Ingeniería en Mecatrónica Universidad Tecnológica (UTEC)

Fray Bentos, Uruguay

2nd Mateo Lecuna

Ingeniería en Mecatrónica Universidad Tecnológica (UTEC)

Fray Bentos, Uruguay

2nd Mateo Sanchez

Ingeniería en Mecatrónica Universidad Tecnológica (UTEC) Maldonado, Uruguay

hector.pereira@estudiantes.utec.edu.uy mateo.lecuna@estudiantes.utec.edu.uy mateo.sanchez@estudiantes.utec.edu.uy

Resumen— KEYWORDS

I. Introducción

II. MARCO TEÓRICO

II-A. Microcontrolador ATmega328P

- Características principales (arquitectura AVR, memoria, periféricos).
- Uso de puertos GPIO para control de actuadores (motores, LEDs, relés).
- Temporizadores y su aplicación en control de tiempos.
- Comunicación serial USART (principios de transmisión y recepción de datos).

II-B. Entradas y Salidas Digitales

- Concepto de GPIO.
- Uso de pulsadores como entradas digitales (debouncing si es necesario).
- Uso de LEDs como indicadores de estado.

II-C. Automatización y Máquinas de Estado

- Qué es una máquina de estados finitos.
- Cómo se representan los estados y transiciones en un proceso automatizado (ejemplo: espera → alimentación → posicionado → punzonado → descarga → fin de ciclo).

II-D. Control de Procesos con Cinta Transportadora y Punzonadora

- Principios básicos de una cinta transportadora en automatización.
- Funcionamiento de un actuador lineal/solenoide como punzón.
- Diferentes modos de operación según carga (ligera, media, pesada).

II-E. Comunicación Serial (USART/UART)

- Definición y funcionamiento de UART.
- Ejemplos de comandos y monitoreo remoto.
- Aplicaciones en sistemas embebidos para interacción con el usuario o con PC.

II-F. Conversión Digital-Analógica (DAC R-2R)

- Concepto de DAC y su importancia.
- Explicación del arreglo de resistencias R-2R.
- Uso de una Look-Up Table (LUT) para generar señales analógicas periódicas.

II-G. Matrices de LEDs

- Principio de funcionamiento de una matriz de LEDs.
- Multiplexado y desplazamiento de mensajes.
- Ejemplo de uso en displays.

II-H. Plotter y Control de Movimiento

- Concepto de plotter y su uso en ingeniería.
- Control de motores paso a paso o conmutados mediante relés/MOSFETs.
- Señales de control enviadas desde el microcontrolador a un PLC.

III. METODOLOGÍA

III-A. Materiales

IV. RESULTADOS

V. CONCLUSIONES

VI. APENDICE

VI-A. Carpeta de laboratorio

Enlace de acceso a la carpeta de Google Drive con simulaciones y evidencias del laboratorio.