

Neural Network Training

TensorFlow implementation

Train a Neural Network in TensorFlow

epochs: number of steps

Given set of (x,y) examples How to build and train this in code?

Neural Network Training

Training Details

Model Training Steps Tensor Flow

specify how to compute output given input x and parameters w,b (define model)

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = ?$$

specify loss and cost

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}), \underline{y})$$
 1 example

$$J(\overrightarrow{\mathbf{w}}, b) = \frac{1}{m} \sum_{i=1}^{m} L(f_{\overrightarrow{\mathbf{w}}, b}(\overrightarrow{\mathbf{x}}^{(i)}), y^{(i)})$$

Train on data to minimize $J(\vec{w}, b)$

logistic regression

$$z = np.dot(w,x) + b$$

 $f_x = 1/(1+np.exp(-z))$

logistic loss

$$loss = -y * np.log(f_x)$$
$$-(1-y) * np.log(1-f_x)$$

```
w = w - alpha * dj_dw
b = b - alpha * dj_db
```

neural network

```
model = Sequential([
    Dense(...)
    Dense(...)
    Dense(...)
```

binary cross entropy

```
model.compile(
loss=BinaryCrossentropy())
model.fit(X,y,epochs=100)
```

1. Create the model

define the model

$$f(\vec{x}) = ?$$


```
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense
model = Sequential([
  Dense (units=25, activation='sigmoid'),
  Dense (units=15, activation='sigmoid'),
 Dense (units=1, activation='sigmoid'),
```

2. Loss and cost functions

handwritten digit b classification problem

binary classification

$$L(f(\vec{x}), y) = -y\log(f(\vec{x})) - (1 - y)\log(1 - f(\vec{x}))$$

Compare prediction vs. target

9 logistic loss also Known as binary cross entropy

```
model.compile(loss= BinaryCrossentropy())
regression
(predicting numbers | mean squared error
and not categories)
```

model.compile(loss= MeanSquaredError())

```
J(\mathbf{W}, \mathbf{B}) = \frac{1}{m} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}), \mathbf{y}^{(i)})
\mathbf{W}^{[1]}, \mathbf{W}^{[2]}, \mathbf{W}^{[3]} \quad \vec{b}^{[1]}, \vec{b}^{[2]}, \vec{b}^{[3]} \qquad \qquad + \mathbf{W}, \mathbf{B} \left( \overrightarrow{\mathbf{X}} \right)
```

from tensorflow.keras.losses import
BinaryCrossentropy Keras

from tensorflow.keras.losses import
 MeanSquaredError

3. Gradient descent


```
repeat {
       w_j^{[l]} = w_j^{[l]} - \alpha \frac{\partial}{\partial w_j} J(\vec{w}, b)b_j^{[l]} = b_j^{[l]} - \alpha \frac{\partial}{\partial bj} J(\vec{w}, b)
        Compute derivatives
         for gradient descent
          using "back propagation"
```

model.fit(X,y,epochs=100)

Activation Functions

Alternatives to the sigmoid activation

Demand Prediction Example

Examples of Activation Functions

"No activation function"

Linear activation function

$$\alpha = g(z) = \overrightarrow{w} \cdot \overrightarrow{x} + b$$

$$a_{2}^{[1]} = g(\overrightarrow{w}_{2}^{[1]} \cdot \overrightarrow{x} + b_{2}^{[1]})$$
Sigmoid
$$g(z) = \frac{1}{1+e^{-z}}$$

ReLU Rectified Linear Unit

Activation Functions

Choosing activation functions

Binary classification Sigmoid y=0/1

Regression

Linear activation function y = +/-

Regression

ReLU

Hidden Layer

 $\vec{a}^{[3]} = f(\vec{x})$ Choosing g(z) for hidden layer

Choosing Activation Summary


```
binary classification

activation='sigmoid'

regression y negative/

activation='linear'

regression y > 0

activation='relu'
```


Activation Functions

Why do we need activation functions?

Why do we need activation functions?

Linear Example

$$a^{[1]} = \underbrace{w_1^{[1]} x}_{1} + b_1^{[1]}$$

$$a^{[2]} = w_1^{[2]} a^{[1]} + b_1^{[2]}$$

$$= w_1^{[2]} (w_1^{[1]} x + b_1^{[1]}) + b_1^{[2]}$$

$$\vec{a}^{[2]} = (\underbrace{\vec{w}_1^{[2]} \vec{w}_1^{[1]}}_{1}) x + \underbrace{w_1^{[2]} b_1^{[1]}}_{1} + b_1^{[2]}$$

$$\vec{a}^{[2]} = w x + b$$

$$\vec{a}^{[2]} = w x + b$$

 $f(x) = wx + b$ linear regression

Example

$$\vec{a}^{[4]} = \vec{w}_1^{[4]} \cdot \vec{a}^{[3]} + b_1^{[4]}$$

all linear (including output)

Gequivalent to linear regression

$$\vec{a}^{[4]} = \frac{1}{1 + e^{-(\vec{\mathbf{w}}_1^{[4]} \cdot \vec{a}^{[3]} + b_1^{[4]})}}$$

output activation is sigmoid (hidden layers still linear)
4 equivalent to logistic regression

Don't use linear activations in hidden layers

Multiclass Classification

Multiclass

MNIST example

$$x^{2}$$
 $y = 7$

multiclass classification problem: target y can take on more than two possible values

Multiclass classification example

Multiclass Classification

Softmax

Logistic regression (2 possible output values) $z = \vec{w} \cdot \vec{x} + b$

$$a_1 = g(z) = \frac{1}{1+e^{-z}} = P(y=1|\vec{x})$$

Softmax regression (N possible outputs) y=1,2,3,...,N

$$z_{j} = \overrightarrow{w}_{j} \cdot \overrightarrow{x} + b_{j} \quad j = 1, ..., N$$

$$parameters \quad w_{1}, w_{2}, ..., w_{N}$$

$$a_{j} = \frac{e^{z_{j}}}{\sum_{k=1}^{N} e^{z_{k}}} = P(y = j | \overrightarrow{x})$$

$$note: \quad a_{1} + a_{2} + ... + a_{N} = 1$$

Softmax regression (4 possible outputs) y=1,2,3,4

$$\mathbf{x} \ z_1 = \ \overrightarrow{\mathbf{w}}_1 \cdot \overrightarrow{\mathbf{x}} + b_1$$

$$\alpha_{1} = \frac{e^{-1}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}} + e^{z_{4}}}$$

$$= P(y = 1|\vec{x}) 0.30$$

$$\bigcirc z_2 = \overrightarrow{w}_2 \cdot \overrightarrow{x} + b_2$$

$$a_{2} = \frac{e^{z_{2}}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}} + e^{z_{4}}}$$
$$= P(y = 2|\vec{x}) \quad 0.2.0$$

$$\square z_3 = \overrightarrow{w}_3 \cdot \overrightarrow{x} + b_3$$

$$a_3 = \frac{e^{z_3}}{e^{z_1} + e^{z_2} + e^{z_3} + e^{z_4}}$$
$$= P(y = 3|\vec{x}) \quad 0.15$$

$$a_4 = \frac{e^{z_4}}{e^{z_1} + e^{z_2} + e^{z_3} + e^{z_4}}$$
$$= P(y = 4|\vec{x}) \text{ 0.35}$$

Cost

Logistic regression

$$z = \overrightarrow{w} \cdot \overrightarrow{x} + b$$

$$a_1 = g(z) = \frac{1}{1 + e^{-z}} = P(y = 1 | \overrightarrow{x})$$

$$a_2 = 1 - a_1 = P(y = 0 | \overrightarrow{x})$$

$$|\cos z| = -y \log a_1 - (1 - y) \log(1 - a_1)$$

$$|f| = 1$$

 $J(\vec{w}, b) = average loss$

Softmax regression

$$a_{1} = \frac{e^{z_{1}}}{e^{z_{1}} + e^{z_{2}} + \dots + e^{z_{N}}} = P(y = 1 | \vec{x})$$

$$\vdots$$

$$a_{N} = \frac{e^{z_{N}}}{e^{z_{1}} + e^{z_{2}} + \dots + e^{z_{N}}} = P(y = N | \vec{x})$$

Multiclass Classification

Neural Network with Softmax output

Neural Network with Softmax output

25 units 15 units 10 units

logistic regression $a_{1}^{[3]} = g\left(z_{1}^{[3]}\right) \quad a_{2}^{[3]} = g\left(z_{2}^{[3]}\right)$ softmax $\vec{a}_{1}^{[3]} = \left(a_{1}^{[3]}, ..., a_{10}^{[3]}\right) = g\left(z_{1}^{[3]}, ..., z_{10}^{[3]}\right)$

1

specify the model

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = ?$$

2 specify loss and cost $L(f_{\vec{w},b}(\vec{x}), y)$

Train on data to minimize $J(\vec{w}, b)$

MNIST with softmax

```
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense
model = Sequential([
  Dense (units=25, activation='relu'),
  Dense (units=15, activation='relu'),
  Dense (units=10, activation='softmax')
from tensorflow.keras.losses import
  SparseCategoricalCrossentropy.
model.compile(loss= SparseCategoricalCrossentropy() )
model.fit(X,Y,epochs=100)
Note: better (recommended) version later.
  Don't use the version shown here!
```


Multiclass Classification

Improved implementation of softmax

Numerical Roundoff Errors

option 1

$$x = \frac{2}{10,000}$$
option 2
$$x = \left(1 + \frac{1}{10,000}\right) - \left(1 - \frac{1}{10,000}\right) = \frac{1}{10,000}$$

Numerical Roundoff Errors

More numerically accurate implementation of logistic loss:

Logistic regression:

$$a = g(z) = \frac{1}{1 + e^{-z}}$$

Original loss

model.compile(loss=BinaryCrossEntropy()

Dense(units=1, activation='sigmoid')

Dense (units=15, activation='relu'), linear

Dense (units=25, activation='relu'),

 $loss = -y \log(a) - (1-y)\log(1-a) \xrightarrow{\text{model.complie}(1005-b)} \text{model.compile}(loss=BinaryCrossEntropy(from_logits=True})$

model = Sequential([

More accurate loss (in code)

$$loss = -y \log \left(\frac{1}{1 + e^{-z}}\right) - (1 - y) \log(1 - \frac{1}{1 + e^{-z}})$$

More numerically accurate implementation of softmax

Softmax regression

$$(a_{1},...,a_{10}) = g(z_{1},...,z_{10})$$

$$Loss = L(\vec{a},y) = \begin{cases} -\log(\vec{a}) & \text{if } y = 1 \\ -\log(\vec{a}) & \text{if } y = 10 \end{cases}$$

model.compile(loss=SparseCategoricalCrossEntropy())

More Accurate

$$L(\vec{a}, y) = \begin{cases} -\log \frac{e^{z_1}}{e^{z_1} + \dots + e^{z_{10}}} & \text{if } y = 1 \\ -\log \frac{e^{z_{10}}}{e^{z_{10}}} & \text{if } y = 10 \end{cases}$$

model.compile(loss=SparseCategoricalCrossEntropy(from_logits=True))

MNIST (more numerically accurate)

```
import tensorflow as tf
model
           from tensorflow.keras import Sequential
           from tensorflow.keras.layers import Dense
           model = Sequential([
             Dense (units=25, activation='relu'),
             Dense (units=15, activation='relu'),
             Dense (units=10, activation='linear') ])
loss
           from tensorflow.keras.losses import
             SparseCategoricalCrossentropy
          model.compile(...,loss=SparseCategoricalCrossentropy(from logits=True) )
fit
          model.fit(X,Y,epochs=100)
                                    not az ... a 10
predict
           f x = tf.nn.softmax(logits)
```

logistic regression (more numerically accurate)

```
model
          model = Sequential([
            Dense (units=25, activation='sigmoid'),
            Dense (units=15, activation='sigmoid'),
            Dense (units=1, activation='linear')
          from tensorflow.keras.losses import
            BinaryCrossentropy
          model.compile(..., BinaryCrossentropy(from logits=True))
 loss
          model.fit(X,Y,epochs=100)
          logit = model(X)
 fit
 predict
          f x = tf.nn.sigmoid(logit)
```


Multi-label Classification

Classification with multiple outputs

Multi-label Classification

Is there a car?
$$yes$$
 yes yes

Multi-label Classification

Alternatively, train one neural network with three outputs

Additional Neural Network Concepts

Advanced Optimization

Gradient Descent

Adam Algorithm Intuition

Adam: Adaptive Moment estimation not just one &

$$w_{1} = w_{1} - \alpha_{1} \frac{\partial}{\partial w_{1}} J(\overrightarrow{w}, b)$$

$$\vdots$$

$$w_{10} = w_{10} - \alpha_{10} \frac{\partial}{\partial w_{10}} J(\overrightarrow{w}, b)$$

$$b = b - \alpha_{11} \frac{\partial}{\partial b} J(\overrightarrow{w}, b)$$

Adam Algorithm Intuition

If w_j (or b) keeps moving in same direction, increase α_j .

If w_j (or b) keeps oscillating, reduce α_j .

MNIST Adam

model

compile

```
d=10-3=0.001
```

```
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-3),
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))
```

fit

```
model.fit(X,Y,epochs=100)
```


Additional Neural Network Concepts

Additional Layer Types

Dense Layer

Each neuron output is a function of all the activation outputs of the previous layer.

$$\vec{a}_1^{[2]} = g\left(\vec{w}_1^{[2]} \cdot \vec{a}^{[1]} + b_1^{[2]}\right)$$

Convolutional Layer

Each Neuron only looks at part of the previous layer's inputs.

Why?

- Faster computation
- Need less training data (less prone to overfitting)

Convolutional Neural Network

Stanford

Backprop Intuition (Optional)

What is a derivative?

Derivative Example

Cost function
$$J(\omega) = \omega^2$$

Say $w = 3$ $J(\omega) = 3^2 = 9$
If we increase w by a tiny amount $\varepsilon = 0.001$ how does $J(w)$ change?
 $w = 3 + 0.001$ 0.002 If $\omega = 0.001$

$$J(w) = w^{2} = 9.006001$$

$$9.012004$$

$$9.012$$

$$\frac{\partial}{\partial w}J(w) = 6$$

$$\frac{\partial}{\partial w}J(w) = 6$$

Informal Definition of Derivative

```
If w \uparrow \varepsilon causes J(w) \uparrow k \times \varepsilon then
\frac{\partial}{\partial w} J(w) = k
Gradient descent repeat {
w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(\overrightarrow{w}, b)
}
```

If derivative is small, then this update step will make a small update to w_j If the derivative is large, then this update step will make a large update to w_j

More Derivative Examples

$$w = 3$$

$$w = 2$$

$$J$$

$$w = -3$$

$$J(w) = w^2 = 9$$

w ↑ 0.001

$$J(w) = J(3.001) = 9.006001$$

 $J(w) \uparrow (6) \times 0.001$

$$\frac{\partial}{\partial w}J(w)=6$$

$$J(w) = w^2 = 4$$

$$J(w) = J(2.001) = 4.004001$$

$$J(w) \uparrow 4 \times 0.001$$

$$\frac{\partial}{\partial w}J(w)=4$$

$$J(w) = w^2$$

$$J(w) = w^2 = 9$$

$$\frac{\partial}{\partial w}J(w) = -6$$

 $J(w) \downarrow 6 \times 0.001$

Even More Derivative Examples

$$w = 2$$

$$J(w) = w^{2} = 4$$

$$J(w) = w^{3} = 8$$

$$J(w) = w = 2$$

$$\frac{\partial}{\partial w}J(w)=2w=4$$

$$J(w) = w^3 = 8$$

$$J(w) = w = 2$$

$$J(w) = \frac{1}{w} = \frac{1}{2} = 0.5$$

Even More Derivative Examples

$$w = 2$$

$$J(w) = w^{2} = 4$$

$$J(w) = w^{3} = 8$$

$$\frac{\partial}{\partial w}J(w) = 3w^{2} = 12$$

$$J(w) = w = 2$$

$$\frac{\partial}{\partial w}J(w) = 1$$

$$J(w) = \frac{1}{w} = \frac{1}{2} = 0.5$$

$$\frac{\partial}{\partial w}J(w) = \frac{1}{2} = 1$$

$$w \uparrow 0.001, \qquad J(w) = 4.004001$$

$$J(w) \uparrow 4 \times \varepsilon$$

$$w \uparrow \varepsilon \qquad J(w) = 8.012006$$

$$J(w) \uparrow 12 \times \varepsilon$$

$$w \uparrow \varepsilon \qquad J(w) = 2.001$$

$$J(w) \uparrow 1 \times \varepsilon$$

$$-0.25 \times 0.001$$

$$w \uparrow \varepsilon \qquad 0.5 - 0.00025$$

$$J(w) = 0.49975$$

$$J(w) \uparrow (-\frac{1}{2}) \times \varepsilon$$

 $J(w) \uparrow (-\frac{1}{4}) \times \varepsilon$

A note on derivative notation

If J(w) is a function of one variable (w),

$$\frac{d}{dw}J(w)$$

If $J(w_1, w_2, ..., w_n)$ is a function of more than one variable,

$$\frac{\partial}{\partial w_i} J(w_1, w_2, ..., w_n) = \frac{\partial J}{\partial w_i}$$
 or $\frac{\partial}{\partial w_i} J$

"partial derivative"

notation used in these courses

Small Neural Network Example

forward prop

$$W = 2 \quad b = 8 \quad x = -2 \quad y = 2$$

$$\alpha = Wx + b \quad \text{linear activation } \alpha = g(z) = Z$$

$$J(W,b) = \frac{1}{2}(\alpha - y)^2$$

how do we find the derivatives of J? $\frac{\partial J}{\partial J}$

Computing the Derivatives

$$a = 2$$
 $b = 8$ $x = -2$ $y = 2$ $a = wx + b$ $J = \frac{1}{2}(a - y)^2$

$$w = 2.001 \quad c = -4.002$$

$$w \uparrow 0.001 \quad c \downarrow 2 \times 0.001$$

$$c \uparrow -2 \times 0.001$$

$$J \uparrow -4 \times 0.001$$

$$\frac{\partial J}{\partial w} = \frac{\partial c}{\partial w} \times \frac{\partial J}{\partial c}$$

$$c \uparrow 0.001 \quad a \uparrow 0.001 \quad J \uparrow 0.002$$

$$\frac{\partial J}{\partial c} = \frac{\partial a}{\partial c} \times \frac{\partial J}{\partial a}$$

$$b \uparrow 0.001 \quad a \uparrow 0.001 \quad J \uparrow 0.002$$

$$\frac{\partial J}{\partial b} = \frac{\partial a}{\partial b} \times \frac{\partial J}{\partial a}$$

$$\frac{\partial J}{\partial a} = 2$$

$$a \uparrow 0.001 \quad d \uparrow 0.001$$

$$\alpha = 4.001 \quad d = 2.001$$

$$J \uparrow 0.002$$

$$\frac{\partial J}{\partial a} = \frac{\partial d}{\partial a} \times \frac{\partial J}{\partial d}$$

$$\frac{\partial J}{\partial a} = \frac{\partial d}{\partial a} \times \frac{\partial J}{\partial d}$$

$$\frac{\partial J}{\partial a} = \frac{\partial d}{\partial a} \times \frac{\partial J}{\partial d}$$

$$\frac{\partial J}{\partial a} = \frac{\partial d}{\partial a} \times \frac{\partial J}{\partial d}$$

$$\frac{\partial J}{\partial a} = \frac{\partial d}{\partial a} \times \frac{\partial J}{\partial d}$$

$$\frac{\partial J}{\partial a} = \frac{\partial d}{\partial a} \times \frac{\partial J}{\partial d}$$

$$\frac{\partial J}{\partial a} = \frac{\partial d}{\partial a} \times \frac{\partial J}{\partial d}$$

$$\frac{\partial J}{\partial a} = \frac{\partial d}{\partial a} \times \frac{\partial J}{\partial d}$$

$$\frac{\partial J}{\partial a} = \frac{\partial d}{\partial a} \times \frac{\partial J}{\partial d}$$

$$\frac{\partial J}{\partial a} = \frac{\partial d}{\partial a} \times \frac{\partial J}{\partial d}$$

$$\frac{\partial J}{\partial d} = \frac{\partial d}{\partial a} \times \frac{\partial J}{\partial d}$$

Forward prop

Back prop

 $J = \frac{1}{2}d^2$

Computing the Derivatives

$$w = 2$$
 $b = 8$ $x = -2$ $y = 2$ $a = wx + b$ $J = \frac{1}{2}(a - y)^2$

$$\frac{\partial J}{\partial w} = -\frac{1}{4}$$

$$\frac{\partial J}{\partial c} = 2$$

$$\frac{\partial J}{\partial b} = 2$$

$$\frac{\partial J}{\partial a} = 2$$

$$\frac{\partial J}{\partial a} = 2$$

$$\frac{\partial J}{\partial d} = -\frac{1}{2} \left((2 \times -2 + 8) - 2 \right)^2 = 1.996002$$

$$\frac{\partial J}{\partial d} = -\frac{1}{4}$$

Backprop is an efficient way to compute derivatives

Compute $\frac{\partial J}{\partial a}$ once and use it to compute both $\frac{\partial J}{\partial w}$ and $\frac{\partial J}{\partial b}$.

If N nodes and P parameters, compute derivatives in roughly N + P steps rather than $N \times P$ steps.

N	P	N+P	NXP
10,000	100,000	1.1 × 105	109

Neural Network Example

$$x = 1 \quad y = 5 \qquad w^{[1]} = 2, b^{[1]} = 0 \qquad \text{ReLU activation}$$

$$x = 1 \quad y = 5 \qquad w^{[2]} = 3, b^{[2]} = 1 \qquad g(z) = \max(0, z)$$

$$a^{[1]} = g(w^{[1]} x + b^{[1]}) = w^{[1]} x + b^{[1]} = 2xx1 + 0 = 2$$

$$a^{[2]} = g(w^{[2]} a^{[1]} + b^{[2]}) = w^{[2]} a^{[1]} + b^{[2]} = 3x2 + 1 = 7$$

$$f(w, b) = \frac{1}{2} (a^{[2]} - y)^2 = \frac{1}{2} (7 - 5)^2 = 2$$

$$t^{[1]} = 2 \quad z^{[1]} = 2 \quad a^{[1]} = 2 \quad t^{[2]} = 6 \quad z^{[2]} = 7 \quad a^{[2]} = 7 \quad f = 2$$

$$w^{[1]} \times x \quad 6 \quad t^{[1]} + b^{[1]} \quad 6 \quad y^{[2]} \times a^{[1]} \quad 2 \quad t^{[2]} + b^{[2]} \quad 2 \quad y^{[2]} = 1$$

$$2 \quad w^{[1]} \rightarrow 0 \quad b^{[1]} \rightarrow 0 \quad b^{[1]}$$

Neural Network Example

$$x = 1 \ y = 5$$

$$w^{[1]} = 2, b^{[1]} = 0$$

$$\overset{\vec{X}}{\longrightarrow} \boxed{\bigcirc \vec{a}^{[1]}} \bigcirc \overset{\vec{a}^{[2]}}{\longrightarrow}$$

$$w^{[2]} = 3, b^{[2]} = 1$$

$$g(z) = \max(0, z)$$

$$a^{[1]} = g(w^{[1]}x + b^{[1]}) = w^{[1]}x + b^{[1]} = 2 \times 1 + 0 = 2$$

$$a^{[2]} = g(w^{[2]}a^{[1]} + b^{[2]}) = w^{[2]}a^{[1]} + b^{[2]} = 3 \times 2 + 1 = 77.003$$

$$J \uparrow (3.0.001) \xrightarrow{\partial J} (3.0.001) = 0$$

$$J(w, b) = \frac{1}{2}(a^{[2]} - y)^2 = \frac{17.003}{2}(7 - 5)^2 = 2 \times 2.006005$$