Factorization Batch Algorithm and Prime Numbers Distribution

Shaimaa said soltan¹

¹ Computer Engineer, Toronto, Canada

Affiliation:

Correspondence: Shaimaa Soltan, 3050 Constitution Blvd, Mississauga, ON., L4Y 3X1, Canada. Tel:

1-647-801-6063 E-mail: shaimaasultan@hotmail.com Suggested Reviewers (Optional) Please suggest 3-5 reviewers for this article. We may select reviewers from the list below in case we have no appropriate reviewers for this topic. Name: E-mail: Affiliation: E-mail: Name: Affiliation: Name: E-mail: Affiliation: Name: E-mail: Affiliation: Name: E-mail:

Factorization Batch Algorithm and Prime Numbers Distribution

Abstract

This paper introduces a primary set for Natural numbers that represents the distribution of prime numbers. Using this primary set of Natural numbers, we are going to introduce $O(\sqrt{N})$ batch algorithm to get a set of all prime numbers up until number N. and a batch factorization algorithm for its prime composites.

Keywords: Prime Number, Distribution

1. Introduction

1.1 Pyramid distribution.

In previous paper we showed a pyramid distribution for all natural numbers², and one of the branches or sides of the pyramid was only for natural number 3 and its multipliers. Any number in this branch except natural number 3 for sure is not Prime.

Figure 1. Branch (3) have numbers that are divisible by natural number [3]

And the other two sides for the pyramid include the rest of all natural numbers.

One of the other two sides of the pyramid starts with natural number 1 (Branch (1)), increases with step = 3 (i.e., difference between numbers in this branch = 3)

The other side starts with natural number 2 (Branch (2)) and increases with step = 3 (i.e., difference between numbers in this branch = 3)

Branch (1)	Branch (2)
1	2
4	5
7	8
10	11
13	14
16	17
19	20
22	23
25	26
28	29
31	32
34	35
37	38
40	41
43	44
46	47
49	50
52	53
55	56
58	59
61	62
64	65
67	68
70	71

Figure 2. Pyramid distribution Branch (1) and Branch (2) lists

These two sides or branches (Branch (1) and Branch (2)) include all the prime numbers and some other numbers. As it shows in Figure 2. If we choose numbers only that are highlighted in yellow, we simply will be going to remove all even numbers from both branches.

By this step these two branches now do not have any number that can be divided by 2 or 3.

Now we need to remove any number that is divisible by 5 from these two Branches (Branch (1) and Branch (2)). If we rearrange these two branches and only showed the numbers that are highlighted in Yellow Then we will get a new filtered branch without any even number.

(1)	Branch (2)
	5
	11
	17
	23
	29
	35
	41
	47
	53
	59
	65
	71
	77
	83
	89
	95
	101
	107
	113
	119
	125
	131
	137
	143
	149
	155
	161
	167
	173

Figure 3. Branch (1) and Branch (2) after Filtered out even numbers.

Note (1): These two filter Branches, one starts at 1 with step = 6 and the other one starts at 5 and with step = 6

Note (2): Branch (2) except natural number 5, Branch (2) have the same numbers in Branch (1) but increased by step = 10

Therefore, if we removed any number that is divisible by 5 from Branch (1) we will not going to have any number divisible by 5 in Brach (2) as well, because all numbers in branch (2) are the numbers in branch (1) + 10.

In order to remove all numbers that are divisible by 5. We know that Any number that ends by digit 5 will be divisible by 5.

Therefore, we can refilter Branch (1) to only numbers that ends in digits [1, 7, 3, 9].

Now the new Branch (1) will not be going to have any number that is divisible by 5. And there for Branch (2) will not going to have any number divisible by 5 as well as Branch (2) = Branch (1) +10.

At this stage, by these simple steps we filtered Branch (1) to numbers not divisible by [2, 3, 5].

Branch (1)	Branch (2)		Branch (1)		Punnah (2)
1	11	6+	-	10+	Branch (2)
7	17	6+	1 7	10+	11 17
13	23	6+	13	→ 10+	23
19	29	12+	19	10+	29
31	41	6+	31	→ 10+	41
37	47	6+	37	10+	41 47
43	53	6+	43	10+	53
49	59	12+	43	10+	59
61	71	6+	61	10+	71
67	77	6+	67	10+	77
73	83	6+		10+	83
79	89	12+	73	10+	89
91	101	6+	91	10+	101
97	107	6+	91	10+	101
103	113	6+	103	10+	113
109	119	12+		10+	119
121	131	6+	121	10+	131
127	137	6+	127	10+	137
133	143	6+	133	10+	143
139	149	12+	139	10+	143
151	161	6+	151	10+	161
157	167	6+	157	10+	167
163	173	6+	163	10+	173
169	179	12+	169	10+	179
181	191	6+	181	10+	191
187	197	6+	187	10+	197
193	203	6+	193	10+	203
199	209	12+	193	10+	209
211	221	6+	211	10+	203
247	227	6.	211	40.	227

Figure 4. Branch (1) and Branch (2) after filter out [5]

Note (1): all number in Branch (1) ends in digits [1,7,3,9] in this order.

Note (2): all numbers in Branch (1) if ends in [1,7,3] next number will be by adding 6.

Note (3): all numbers in branch (1) if ends in [9] next number will be by adding 12.

Note (4): all numbers in Branch (2) = 10 + Branch (1)

From these notes Branch (1) is the main Prime numbers distribution Branch.

And by this stage we can reconstruct Branch (1) easily by just these 4 Notes.

To elaborate more about statement "Branch (1) is the main Prime numbers distribution Branch".

Let us see the results of finding the factors using divide by each number in the Branch. You will see in the next Figure how these numbers in branch (1) keeps shown at each factor.

Branch(1)/37	Branch(1)/31	Branch(1)/19	Branch(1)/13	Branch(1)/7	Branch (1)	Branch (2)	Branch(2) /11	Branch(2) /17	Branch(2) /23	Branch(2) /29	Branch(2) /41	Branch(2) /47
					1	11	1					
				1	7	17	1.545454545	1				
			1	1.85714286	13	23	2.090909091	1.352941176	1			
		1	1.461538462	2.71428571	19	29	2.636363636	1.705882353	1.260869565	1		
	1	1.631578947	2.384615385	4.42857143	31	41	3.727272727	2.411764706	1.782608696	1.413793103	1	
1	1.193548387	1.947368421	2.846153846	5.28571429	37	47	4.272727273	2.764705882	2.043478261	1.620689655	1.146341463	1
1.162162162	1.387096774	2.263157895	3.307692308	6.14285714	43	53	4.818181818	3.117647059	2.304347826	1.827586207	1.292682927	1.127659574
1.324324324	1.580645161	2.578947368	3.769230769	7	49	59	5.363636364	3.470588235	2.565217391	2.034482759	1.43902439	1.255319149
1.648648649	1.967741935	3.210526316	4.692307692	8.71428571	61	71	6.454545455	4.176470588	3.086956522	2.448275862	1.731707317	1.510638298
1.810810811	2.161290323	3.526315789	5.153846154	9.57142857	67	77	7	4.529411765	3.347826087	2.655172414	1.87804878	1.638297872
1.972972973	2.35483871	3.842105263	5.615384615	10.4285714	73	83	7.545454545	4.882352941	3.608695652	2.862068966	2.024390244	1.765957447
2.135135135	2.548387097	4.157894737	6.076923077	11.2857143	79	89	8.090909091	5.235294118	3.869565217	3.068965517	2.170731707	1.893617021
2.459459459	2.935483871	4.789473684	7	13	91	101	9.181818182	5.941176471	4.391304348	3.482758621	2.463414634	2.14893617
2.621621622	3.129032258	5.105263158	7.461538462	13.8571429	97	107	9.727272727	6.294117647	4.652173913	3.689655172	2.609756098	2.276595745
2.783783784	3.322580645	5.421052632	7.923076923	14.7142857	103	113	10.27272727	6.647058824	4.913043478	3.896551724	2.756097561	2.404255319
2.945945946	3.516129032	5.736842105	8.384615385	15.5714286	109	119	10.81818182	7	5.173913043	4.103448276	2.902439024	2.531914894
3.27027027	3.903225806	6.368421053	9.307692308	17.2857143	121	131	11.90909091	7.705882353	5.695652174	4.517241379	3.195121951	2.787234043
3.432432432	4.096774194	6.684210526	9.769230769	18.1428571	127	137	12.45454545	8.058823529	5.956521739	4.724137931	3.341463415	2.914893617
3.594594595	4.290322581	7	10.23076923	19	133	143	13	8.411764706	6.217391304	4.931034483	3.487804878	3.042553191
3.756756757	4.483870968	7.315789474	10.69230769	19.8571429	139	149	13.54545455	8.764705882	6.47826087	5.137931034	3.634146341	3.170212766
4.081081081	4.870967742	7.947368421	11.61538462	21.5714286	151	161	14.63636364	9.470588235	7	5.551724138	3.926829268	3.425531915
4.243243243	5.064516129	8.263157895	12.07692308	22.4285714	157	167	15.18181818	9.823529412	7.260869565	5.75862069	4.073170732	3.553191489
4.405405405	5.258064516	8.578947368	12.53846154	23.2857143	163	173	15.72727273	10.17647059	7.52173913	5.965517241	4.219512195	3.680851064
4.567567568	5.451612903	8.894736842	13	24.1428571	169	179	16.27272727	10.52941176	7.782608696	6.172413793	4.365853659	3.808510638
4.891891892	5.838709677	9.526315789	13.92307692	25.8571429	181	191	17.36363636	11.23529412	8.304347826	6.586206897	4.658536585	4.063829787
5.054054054	6.032258065	9.842105263	14.38461538	26.7142857	187	197	17.90909091	11.58823529	8.565217391	6.793103448	4.804878049	4.191489362
5.216216216	6.225806452	10.15789474	14.84615385	27.5714286	193	203	18.45454545	11.94117647	8.826086957	7	4.951219512	4.319148936
5.378378378	6.419354839	10.47368421	15.30769231	28.4285714	199	209	19	12.29411765	9.086956522	7.206896552	5.097560976	4.446808511
5.702702703	6.806451613	11.10526316	16.23076923	30.1428571	211	221	20.09090909	13	9.608695652	7.620689655	5.390243902	4.70212766
5.864864865	7	11.42105263	16.69230769	31	217	227	20.63636364	13.35294118	9.869565217	7.827586207	5.536585366	4.829787234
6.027027027	7.193548387	11.73684211	17.15384615	31.8571429	223	233	21.18181818	13.70588235	10.13043478	8.034482759	5.682926829	4.957446809
6.189189189	7.387096774	12.05263158	17.61538462	32.7142857	229	239	21.72727273	14.05882353	10.39130435	8.24137931	5.829268293	5.085106383
6.513513514	7.774193548	12.68421053	18.53846154	34.4285714	241	251	22.81818182	14.76470588	10.91304348	8.655172414	6.12195122	5.340425532
6.675675676	7.967741935	13	19	35.2857143	247	257	23.36363636	15.11764706	11.17391304	8.862068966	6.268292683	5.468085106
6.837837838	8.161290323	13.31578947	19.46153846	36.1428571	253	263	23.90909091	15.47058824	11.43478261	9.068965517	6.414634146	5.595744681
7	8.35483871	13.63157895	19.92307692	37	259	269	24.45454545	15.82352941	11.69565217	9.275862069	6.56097561	5.723404255
7.324324324	8.741935484	14.26315789	20.84615385	38.7142857	271	281	25.54545455	16.52941176	12.2173913	9.689655172	6.853658537	5.978723404
7.486486486	8.935483871	14.57894737	21.30769231	39.5714286	277	287	26.09090909	16.88235294	12.47826087	9.896551724	7	6.106382979
7.648648649	9.129032258	14.89473684	21.76923077	40.4285714	283	293	26.63636364	17.23529412	12.73913043	10.10344828	7.146341463	6.234042553
7.810810811	9.322580645	15.21052632	22.23076923	41.2857143	289	299	27.18181818	17.58823529	13	10.31034483	7.292682927	6.361702128

Figure 5. Primary List distributions.

As you see in the previous Figure Branch (1) numbers keeps shown in the distribution even if we are dividing by different number. We will get only natural numbers when we have Branch Factors.

To get only prime numbers from this Branches, we can use this method of dividing by each number in branch (1) and remove all numbers that give us natural numbers. And the list will be getting shorter each time to get closer to Prime numbers list.

Or we can use matrix.

If we add both Branches to our matrix (data frame columns names and row index) we can construct a true false matrix that we can find from it all the factors for these numbers in branch (2) and branch (1). And also, if we filter the rows for rows that have only two true maximum we get our prime numbers list as well of course also [2,3,5] primes.

Also Note that numbers now ordered as two numbers ends with digit [1], one number ends with digit [1] and the numbers after it by 10. Then two numbers end with digit [7], one number end with digit [7] and the number after it by 10. Then two numbers end by digit [3] one number ends by digit [3] and the number after it by 10. Then two numbers end by digit [9] and the number after it by 10.

```
{1,11,7,17,13,23,19,29,31,41,37,47,43,53,49,59,....}
```

, at 9 D12	1	11	7	17	13	23	19	29	31	41	37	47	43	53	49	59	61	71	67	77	73	
1	TRUE	FALSE																				
11	TRUE	TRUE	FALSE																			
7	TRUE	FALSE	TRUE	FALSE																		
17	TRUE	FALSE	FALSE	TRUE	FALSE																	
13	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE																
23	TRUE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE															
19	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE														
29	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE													
31	TRUE	FALSE	TRUE	FALSE																		
41	TRUE	FALSE	TRUE	FALSE																		
37	TRUE	FALSE	TRUE	FALSE																		
47	TRUE	FALSE	TRUE	FALSE																		
43	TRUE	FALSE	TRUE	FALSE																		
53	TRUE	FALSE	TRUE	FALSE																		
49	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE											
59	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE														
61	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE															
71	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE																
67	TRUE	FALSE	TRUE	FALSE	FALSE																	
77	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE																
73	TRUE	FALSE	TRUE																			
83	TRUE	FALSE																				
79	TRUE	FALSE																				
89	TRUE	FALSE																				
91	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE																
101	TRUE	FALSE																				
97	TRUE	FALSE																				
107	TRUE	FALSE																				
103	TRUE	FALSE																				
113	TRUE	FALSE																				
109	TRUE	FALSE																				
119	TRUE	FALSE	TRUE	TRUE	FALSE																	
121	TRUE	TRUE	FALSE																			
131	TRUE	FALSE																				
127	TRUE	FALSE																				
133	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE														
139	TRUE	FALSE																				
151	TRUE	FALSE																				
157	TRUE	FALSE																				
163	TRUE	FALSE																				
169	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE																

Figure 6. Factorization and prime number data frame matrix.

D6 , at 9 D12	1	11	7	17	13	23	19	29	31	41	37	47	43	53	49	59	61	71	67	77	73
169	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE															
181	TRUE	FALSE																			
187	TRUE	TRUE	FALSE	TRUE	FALSE																
193	TRUE	FALSE																			
199	TRUE	FALSE																			
211	TRUE	FALSE																			
217	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE											
223	TRUE	FALSE																			
229	TRUE	FALSE																			
241	TRUE	FALSE																			
247	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE													
253	TRUE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE														
259	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE															
271	TRUE	FALSE																			
277	TRUE	FALSE																			
287	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE										
283	TRUE	FALSE																			
289	TRUE	FALSE	FALSE	TRUE	FALSE																
301	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE															
307	TRUE	FALSE																			
313	TRUE	FALSE																			
319	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE												
329	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE															
331	TRUE	FALSE																			
337	TRUE	FALSE																			
343	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE										
349	TRUE	FALSE																			
361	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE													
367	TRUE	FALSE																			
353	TRUE	FALSE																			
359	TRUE	FALSE																			
371	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE															
377	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE												
383	TRUE	FALSE																			
389	TRUE	FALSE																			
401	TRUE	FALSE																			
407	TRUE	TRUE	FALSE	TRUE	FALSE																
413	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE											
419	TRUE	FALSE																			
431	TRUE	FALSE																			
437	TRUE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE													

Figure 7. Factorization and prime number data frame matrix.

This is the full matrix for factoring and finding the primes but in order to find all primes less than number [N] we do not need to use modules for all numbers in the list we only need to construct smaller matrix from [N] rows and M columns] where M in Branch (1) list and \leq sqrt(n).

Given number N. Get list of prime number up until number N.

- 0- Initiate Branch (1) & Branch (2) (two sequence lists (+6, +12, +10)) up until number <= given number N
- 1- Construct data frame matrix M of [A, B], where A (row names) = Branch lists, and B (columns name) <= sqrt(N) and B (column name) in Branches list.
- 2- Calculate (row name) mod (column name) on data frame M.
- 3- filter the data frame matrix for rows that only have exactly one True value.
- 4- return filtered Data frame Matrix M.

And as our branch list is limited list and its length approximate N/4.

And we use matrix operations, and we only need to loop on column names to apply Mod function, then our algorithm $\leq O(\sqrt{N})$

2. Infinite number of primes (Factorization Graph Algorithm)

1- As we explained in this paper the separation of numbers into three branches will separate one full branch for multiples of 3 in one branch (3).

And based on this separation, The other two branches (branch (2) and branch (1)) will only have numbers that ends with [1,3,5,7,9] and after removing any number that ends with digit 5, the new left with only numbers that ends with digit [1,3,7,9].

This also can be achieved by just adding 12 to any number ends with digit 9 this will skip any number ends with digit 5 in the branch (1) and Branch (2).

For Example: - when the number is 19, we add 12 instead of 6 then next number in the branch will be 31 instead of 25.

2- any number in branch (2) can be produced from branch (1) by only adding 10 to the number in branch (1)

For example:

Branch (1) =
$$\{1,7,13,19,25,31,....\}$$
 by adding 10 to each number we get Branch (2)
Branch (2) = $\{11,17,23,29,35,41,\}$

3- Any number in branch (1) we can reproduce it from number 7.

For example: -

$$11 = 7 + 4$$

 $13 = 11 + 2 = 7 + 4 + 2$
 $17 = 13 + 4 = 7 + 4 + 2 + 4$
 $19 = 17 + 2 = 7 + 4 + 2 + 4 + 2$
 $23 = 19 + 4 = 7 + 4 + 2 + 4 + 2 + 4$

A	В	С	D
	ocation	7	
1	1	7	1
2	2	13	1
3	3	19	2:
4	4	25	2
5	5	31	3
6	6	37	4
7	7	43	4
8	8	49	5
9	9	55	5
10	10	61	6
11	11	67	7
12	12	73	7
13	13	79	8
14	14	85	8
15	15	91	9
16	16	97	10
17	17	103	10
18	18	109	11
19	19	115	11
20	20	121	12
21	21	127	13
22	22	133	13
23	23	139	14
24	24	145	14
25	25	151	15
26	26	157	16
27	27	163	16
28	28	169	17
29	29	175	17
30	30	181	18
-			

4- Any number in branch (1) will be at index number = (N-1)/6

For example: - to get number at index 31 in branch (1) then (N-1)/6 = 31 therefor N = 6 * 31 + 1 = 187To get number at index 1000 in branch (1) then (N-1)/6 = 1000 therefor N = 6 * 1000 + 1 = 60001

- 5- As all numbers in branch (1) and branch (2) are based on only number 7, and repeated operations +4 and +2
- 6- All primes and composite primes numbers Ends by digit [1,3,7,9]
- 7- Branch (1) and Branch (2) have all primes and their composite primes (as in figure 5.)
- 8- If we know a Prime number at index [I]; therefore, we will have its composite primes in the same branch at index = I + N * M where N is our prime number and M is the order of the next composite prime for N.

For example: - If we have prime number at index = I = 1 then N = I * 6 + 1 = 7 and if M = 1 Then first composite for N = 7 will be at index [I] = I + N * M = 1 + 7 * 1 = 8, And as long we know its index, we can get this first composite number = I * 6 + 1 = 8 * 6 + 1 = 49If M = 2 the new get the second composite for N = 7 will be at index [I] = I + N * M = 1 + 7 * 2 = 15So, we can get second composite for prime Number N = 7 at index = 15 * 6 + 1 = 91

Same will be for N =13 its index I = (N-1)/6; therefor any number at index = I + 13 * M = 2 + 13 * M And those composites index can be calculated by setting $M = \{1,2,3,4,5,6,7,8,9 \dots\}$ and from the index we can get the composite number itself.

- 9- The same index and composite concept are correct for branch (2) but index [I] for branch (2) = (N-5)/6 10- Based on these points.
 - A) Nothing will prevent us from adding 4 or 2 to 7 forever (i.e., repeat +4 +2 up until infinity);
 - B) All prime numbers end by digit [1,3,7,9]
 - C) once will have a prime number we know its index and we know its composites and their indexes as will.

For example, if we know 19, we know it index = 3 and it will have composites at = 3 + 19 * M and its composite numbers are 6 * (3 + 19 * M) + 1 where $M = \{1,2,3,4,5,6,7,8,...\}$

a prime Number N; is at index I; and its composite numbers are = 6 * (I + N * M) + 1;

$$wher~M = \{1,2,3,4,5,6,7,8,9,...\} \\ if~a~prime~Number~N~at~branch~(1)~; its~index~I = \frac{N-~1}{6} \\$$

if a prime Number N at branch (2); its index $I = \frac{N-5}{6}$

D) so, it is like trees of composites and each tree its parent node is the prime number itself. and as we can reproduce each number from [7] by +4 and +2; so, all composite trees will be linked by edges to the main tree for composites of [7] from this algorithm we can get factors by only match the edges of the graph, if both

from this algorithm we can get factors by only match the edges of the graph, if both Prime numbers have the same Edge added number, they are prime factors.

for example, edge I_7+15 and edge $I_{13}+15$ will lead to number 91 which is factor of 13*7.

Edge I_7+22 and edge $I_{19}+22$ will lead to number 133 which is factored by 7 * 19.

Get parent node for each composite tree.

For I = 1 to range (1000):

Node value = I * 6 + 1

 $Edge\ value = "I" + str(I) + " + " + str\ (Node\ Value\ + I)$

This factorization tree algorithm prove that we have infinite number of prime numbers and its composites.

- 1- Nodes that have all edges directions coming out from the node towards other nodes are prime node numbers the rest of the nodes are composite prime node numbers.
- 2- Number of coming in edges towards a node = number of prime factors
- 3- Prime node factors = coming in edges super script for example: if the edge description is $I_{19}+41$ then the node has factor of 19. if the edge is I_7+22 then the node has factor of 7.

Node [91] has 2 coming in edges from $I_{7 \text{ and }} I_{13}$; so, it has two factors 13 * 7 = 91.

And based on this algorithm we have infinite number of primes as we can all the time generate new number without any stop condition (7+4+2+4+2+4+2+4+2+...).

3. Represent any Natural number in the form of N+1/2

Another number classification for the natural numbers into another three classes based on the reminder of dividing the number by 6.

Class(1)= $\{1,4,7,10,13,16,19,22,25,\ldots\}$

 $Class(2) = \{2,5,8,11,14,17,20,23,26,...\}$

 $Class(3) = \{3,6,9,12,15,18,21,24,27,30,33,...\}$

Class (1):

To represent the number in the form of N + 1/2

If Odd number add 1/3 and if even number subtract 1/6

```
_____
1/6 : List start by 1
Start Time 1681729992.311811 2023-04-17 07:13:12.311811
i = 7; i/6 = 1.166666666666666667; i/6 + 1/2 - 1/6 = i/6 + 2/6 = i/6 + 1/3 = 1.5
i = 13; i/6 = 2.1666666666666665; i/6 + 1/2 - 1/6 = i/6 + 2/6 = i/6 + 1/3 = 2.5
i = 19; i/6 = 3.1666666666666665; i/6 + 1/2 - 1/6 = i/6 + 2/6 = i/6 + 1/3 = 3.5
i = 22; i/6 = 3.666666666666665; i/6 - 1/6 = 3.5
i = 25; i/6 = 4.166666666666667; i/6 + 1/2 - 1/6 = i/6 + 2/6 = i/6 + 1/3 = 4.5
i = 31; i/6 = 5.1666666666666667; i/6 + 1/2 - 1/6 = i/6 + 2/6 = i/6 + 1/3 = 5.5
i = 43; i/6 = 7.1666666666666667; i/6 + 1/2 - 1/6 = i/6 + 2/6 = i/6 + 1/3 = 7.5
i = 106; i/6 = 17.66666666666668; i/6 - 1/6 = 17.5
```

Class(2):

To represent the number in the form of N + 1/2If Odd number subtract 1/3 and if even number add 1/6

```
_____
2/6 :List start by 2
i = 20; i/6 = 3.333333333333335; i/6 + 1/6 = 3.5
```

Class(3):

To represent the number in the form of N + 1/2If Even number subtract 1/2

```
3/6 : List by 3
i = 3; i/6 = 0.5;
i = 6; i/6 = 1.0; i/6 - 1/2 = 0.5
i = 9; i/6 = 1.5;
i = 12; i/6 = 2.0; i/6 - 1/2 = 1.5
i = 15 ; i/6 = 2.5;
i = 18; i/6 = 3.0; i/6 - 1/2 = 2.5
i = 21; i/6 = 3.5;
i = 24; i/6 = 4.0; i/6 - 1/2 = 3.5
i = 27; i/6 = 4.5;
i = 30; i/6 = 5.0; i/6 - 1/2 = 4.5
i = 33 ; i/6 = 5.5;
i = 36; i/6 = 6.0; i/6 - 1/2 = 5.5
i = 39; i/6 = 6.5;
i = 42; i/6 = 7.0; i/6 - 1/2 = 6.5
i = 45; i/6 = 7.5;
i = 48; i/6 = 8.0; i/6 - 1/2 = 7.5
i = 51; i/6 = 8.5;
i = 54; i/6 = 9.0; i/6 - 1/2 = 8.5
i = 57; i/6 = 9.5;
i = 60; i/6 = 10.0; i/6 - 1/2 = 9.5
i = 63; i/6 = 10.5;
i = 66; i/6 = 11.0; i/6 - 1/2 = 10.5
i = 69; i/6 = 11.5;
i = 72; i/6 = 12.0; i/6 - 1/2 = 11.5
i = 75; i/6 = 12.5;
i = 78; i/6 = 13.0; i/6 - 1/2 = 12.5
i = 81; i/6 = 13.5;
i = 84; i/6 = 14.0; i/6 - 1/2 = 13.5
i = 87; i/6 = 14.5;
i = 90; i/6 = 15.0; i/6 - 1/2 = 14.5
i = 93; i/6 = 15.5;
i = 96; i/6 = 16.0; i/6 - 1/2 = 15.5
i = 99; i/6 = 16.5;
i = 102; i/6 = 17.0; i/6 - 1/2 = 16.5
i = 105; i/6 = 17.5;
i = 108; i/6 = 18.0; i/6 - 1/2 = 17.5
i = 111 ; i/6 = 18.5;
i = 114; i/6 = 19.0; i/6 - 1/2 = 18.5
i = 117; i/6 = 19.5;
```

$$Z(-1) = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 \dots$$
 \rightarrow (1)

separate Z(-1) into three other Series into our three classes

$$Z1(-1) = +1 + 4 + 7 + 10 + 13 + 16 + 19 + 22 + 25 + 28 + 31 + 34 + 37 + 40 \dots$$

$$Z2(-1) = +2 + 5 + 8 + 11 + 14 + 17 + 20 + 23 + 26 + 29 + 32 + 35 + 38 + 41 \dots$$

$$Z3(-1) = +3 + 6 + 9 + 12 + 15 + 18 + 21 + 24 + 27 + 30 + 33 + 36 + 39 + 42 \dots$$
 \rightarrow (4)

Note that Class (3) is actually half the original series Z (-1) for the full numbers.

$$\frac{3}{6} * Z(-1) = \frac{3}{6} * (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 \dots)$$

$$\frac{1}{2} * Z(-1) = \left(\frac{3}{6} + \frac{6}{6} + \frac{9}{6} + \frac{12}{6} + \frac{15}{6} + \frac{18}{6} + \frac{21}{6} + \frac{24}{6} + \frac{27}{6} + \frac{30}{6} + \frac{33}{6} + \frac{36}{6} + \frac{39}{6} + \frac{42}{6} \dots\right)$$

$$\frac{1}{2} * Z(-1) = \frac{Z3(-1)}{6}$$

3.2 Full Zeta function series Z(-1) and its relationship with -N/2

$$E1 = \left(-\frac{1}{2}\right) \left(1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + \dots\right)$$

$$E1 = \sum_{1}^{\infty} 1 * \left(-\frac{1}{2}\right) = -\frac{N}{2}$$

$$E1 = \left(-\frac{1}{2}\right) + \left(-\frac{1}{2}\right) +$$

in E1 replace each $\left(-\frac{1}{2}\right) = -1 + \left(+\frac{1}{2}\right)$

$$E1 = \left(-1\right) + \left(+\frac{1}{2}\right) + \dots$$

$$E1 + \frac{1}{2} = -\frac{N}{2} + \frac{1}{2} = \left(+\frac{1}{2}\right) + \left(-1\right) + \left(-1\right) + \left(+\frac{1}{2}\right) + \left(-1\right) + \left(-1\right) + \left(+\frac{1}{2}\right) + \left(-1\right) + \left(-1\right) + \left(-1\right) + \left(+\frac{1}{2}\right) + \left(-1\right) + \left(-1\right)$$

in E1 replace each
$$\left(+\frac{1}{2}\right) = \left(+\frac{1}{3} + \frac{1}{6} - \frac{0}{2}\right)$$
 and each $(-1) = \left(-\frac{1}{6} - \frac{1}{3} - \frac{1}{2}\right)$

$$E1 + \frac{1}{2} = -\frac{N}{2} + \frac{1}{2} = \left(+\frac{1}{3} + \frac{1}{6} - \frac{0}{2} \right) + \left(-\frac{1}{6} - \frac{1}{3} - \frac{1}{2} \right) + \left(+\frac{1}{3} + \frac{1}{6} - \frac{0}{2} \right) + \left(-\frac{1}{6} - \frac{1}{3} - \frac{1}{2} \right) + 1 - 1 \dots$$

$$Z(-1) = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 \dots$$

$$\frac{Z(-1)}{6} = +\frac{1}{6} + \frac{2}{6} + \frac{3}{6} + \frac{4}{6} + \frac{5}{6} + \frac{6}{6} + \frac{7}{6} + \frac{8}{6} + \frac{9}{6} + \frac{10}{6} + \frac{11}{6} + \frac{12}{6} + \frac{13}{6} + \frac{14}{6} + \frac{15}{6} \dots$$

Add both E1 and Z (-1)/6

$$\frac{Z(-1)}{6} + E1 + \frac{1}{2} = \frac{Z(-1)}{6} - \frac{N}{2} + \frac{1}{2}$$

$$= \left(+\frac{1}{6} + \frac{1}{3} + \frac{2}{6} + \frac{1}{6} + \frac{3}{6} - \frac{0}{2} \right) + \left(\frac{4}{6} - \frac{1}{6} + \frac{5}{6} - \frac{1}{3} + \frac{6}{6} - \frac{1}{2} \right)$$

$$+\left(\frac{7}{6}+\frac{1}{3}+\frac{8}{6}+\frac{1}{6}+\frac{9}{6}-\frac{0}{2}\right)+\left(\frac{10}{6}-\frac{1}{6}+\frac{11}{6}-\frac{1}{3}+\frac{12}{6}-\frac{1}{2}\right)$$

$$+\left(\frac{13}{6}+\frac{1}{3}+\frac{14}{6}+\frac{1}{6}+\frac{15}{6}-\frac{0}{2}\right)+\left(\frac{16}{6}-\frac{1}{6}+\frac{17}{6}-\frac{1}{3}+\frac{18}{6}-\frac{1}{2}\right)...$$

$$+\left(\frac{19}{6}+\frac{1}{3}+\frac{20}{6}+\frac{1}{6}+\frac{21}{6}-\frac{0}{2}\right)+\left(\frac{22}{6}-\frac{1}{6}+\frac{23}{6}-\frac{1}{3}+\frac{24}{6}-\frac{1}{2}\right)$$

$$+\left(\frac{25}{6}+\frac{1}{3}+\frac{26}{6}+\frac{1}{6}+\frac{27}{6}-\frac{0}{2}\right)+\left(\frac{28}{6}-\frac{1}{6}+\frac{29}{6}-\frac{1}{3}+\frac{30}{6}-\frac{1}{2}\right)....$$

$$= 3 + 9 + 15 + 21 + 27 + 33 + 39 + 45 + \cdots$$

$$= 3 + 9 + 15 + 21 + 27 + 33 + 39 + 45 + \cdots = 3 * (1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + \cdots)$$

3.3 Full Zeta function series Z(-1) and our classification classes

$$Z(-1) = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 \dots$$

separate Z(-1) into three other Series

$$Z1(-1) = +1 + 4 + 7 + 10 + 13 + 16 + 19 + 22 + 25 + 28 + 31 + 34 + 37 + 40 \dots$$

$$Z2(-1) = +2 + 5 + 8 + 11 + 14 + 17 + 20 + 23 + 26 + 29 + 32 + 35 + 38 + 41 \dots$$
 \rightarrow (3)

$$Z3(-1) = +3 + 6 + 9 + 12 + 15 + 18 + 21 + 24 + 27 + 30 + 33 + 36 + 39 + 42 \dots$$

$$Z(-1) = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 \dots$$

separate Z(-1) into three other Series

$$Z1(-1) = +1 + 4 + 7 + 10 + 13 + 16 + 19 + 22 + 25 + 28 + 31 + 34 + 37 + 40 \dots$$

$$Z2(-1) = +2 - 5 + 8 + 11 + 14 + 17 + 20 + 23 + 26 + 29 + 32 + 35 + 38 + 41 \dots$$

$$Z3(-1) = +3 + 6 + 9 + 12 + 15 + 18 + 21 + 24 + 27 + 30 + 33 + 36 + 39 + 42 \dots$$

we can rewrite Equation number (1) as

$$Z(-1) = \frac{3}{3} + \frac{6}{3} + \frac{9}{3} + \frac{12}{3} + \frac{15}{3} + \frac{18}{3} + \frac{21}{3} + \frac{24}{3} + \frac{27}{3} + \frac{30}{3} + \frac{33}{3} + \frac{36}{3} + \frac{39}{3} + \frac{42}{3} + \cdots$$

$$Z(-1) = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 ...$$

$$Z(-1) = \frac{6}{6} + \frac{12}{6} + \frac{18}{6} + \frac{24}{6} + \frac{30}{6} + \frac{36}{6} + \frac{42}{6} + \frac{48}{6} + \frac{54}{6} + \frac{60}{6} + \frac{66}{6} + \frac{72}{6} + \frac{78}{6} + \frac{84}{6} ... \rightarrow (5)$$

$$Z(-1) = \frac{3}{3} + \frac{6}{3} + \frac{9}{3} + \frac{12}{3} + \frac{15}{3} + \frac{18}{3} + \frac{21}{3} + \frac{24}{3} + \frac{27}{3} + \frac{30}{3} + \frac{33}{3} + \frac{36}{3} + \frac{39}{3} + \frac{42}{3} + \cdots$$

$$A = Z2(-1) - Z1(-1) \rightarrow (7)$$

$$\frac{Z2(-1)}{2} = \frac{Z1(-1)}{2} + \frac{1}{2} + \frac{1}$$

$$B = Z3(-1) - Z1(-1) \rightarrow (8)$$

$$C = Z3(-1) - Z2(-1) - (9)$$

$$\frac{Z3(-1)}{2} = \frac{Z2(-1)}{2} + \frac{1}{2} + \frac{1}$$

$$Z(-1) = Z1(-1) + Z2(-1) + Z3(-1)$$

$$Z2(-1) = \frac{1}{2} * (Z1(-1) + Z3(-1))$$

We can represent any Natural number in term fractions

$$for \ each \ element \ ; \ Z2(-1) = \frac{1}{2} * \left(\frac{1}{Z1(-1)} + \frac{1}{Z3(-1)} \right) * \left(Z1(-1) * Z3(-1) \right)$$

$$N = \frac{1}{2} * \left(\frac{1}{N-1} + \frac{1}{N+1}\right) * (N-1)(N+1)$$

$$N = \frac{1}{2} * \left(\frac{1}{N-1} + \frac{1}{N+1}\right) * (N^2 - 1)$$

For example

$$5 = \frac{1}{2} * \left(\frac{1}{6} + \frac{1}{4}\right) * (4 * 6)$$

$$8 = \frac{1}{2} * \left(\frac{1}{9} + \frac{1}{7}\right) * (7 * 9)$$

$$3 = \frac{1}{2} * \left(\frac{1}{4} + \frac{1}{2}\right) * (2 * 4)$$

$$38 = \frac{1}{2} * \left(\frac{1}{39} + \frac{1}{37}\right) * (37 * 39)$$

$$1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + \dots = \frac{1}{2} * \left(\frac{1}{0} + \frac{1}{2}\right) * (0 * 2) + \frac{1}{2} * \left(\frac{1}{1} + \frac{1}{3}\right) * (1 * 3)$$

$$+\frac{1}{2}*\left(\frac{1}{2}+\frac{1}{4}\right)*\left(2*4\right)+\frac{1}{2}*\left(\frac{1}{3}+\frac{1}{5}\right)*\left(3*5\right)+\frac{1}{2}*\left(\frac{1}{4}+\frac{1}{6}\right)*\left(4*6\right)+\frac{1}{2}*\left(\frac{1}{5}+\frac{1}{7}\right)*\left(5*7\right)$$

$$+\frac{1}{2}*\left(\frac{1}{6}+\frac{1}{8}\right)*\left(6*8\right)+\frac{1}{2}*\left(\frac{1}{7}+\frac{1}{9}\right)*\left(7*9\right)+\frac{1}{2}*\left(\frac{1}{8}+\frac{1}{10}\right)*\left(8*10\right)+\cdots.$$

$$1 + 3 + 5 + 7 + 9 + \dots = \frac{1}{2} * (\frac{1}{2} + \frac{1}{0}) * (0 * 2) + \frac{1}{2} * (\frac{1}{2} + \frac{1}{4}) * (2 * 4)$$

$$+\frac{1}{2}*\left(\frac{1}{4}+\frac{1}{6}\right)*\left(4*6\right)+\frac{1}{2}*\left(\frac{1}{6}+\frac{1}{8}\right)*\left(6*8\right)+\frac{1}{2}*\left(\frac{1}{8}+\frac{1}{10}\right)*\left(8*10\right)+\cdots$$

$$1 + 3 + 5 + 7 + \dots = \frac{1}{2} * (2 + 4 + 4 + 6 + 6 + 8 + 8 + 10 + \dots)$$

$$1 + 3 + 5 + 7 + \dots = \frac{1}{2} * (2) + \frac{1}{2} * (+4 + 4 + 6 + 6 + 8 + 8 + 10 + \dots)$$

$$1 + 3 + 5 + 7 + \dots = 1 + \frac{1}{2} * (+4 + 4 + 6 + 6 + 8 + 8 + 10 + \dots)$$

$$1+3+5+7+\cdots = 1+(+2+2+3+3+4+4+5+5+\cdots)$$

$$1 + 3 + 5 + 7 + \dots = (1 + 2) + (2 + 3) + (3 + 4) + (4 + 5) + (5 + 6) + \dots$$

$$2 + 4 + 6 + 8 + 10 + \dots = \frac{1}{2} * \left(\frac{1}{1} + \frac{1}{3}\right) * (1 * 3) + \frac{1}{2} * \left(\frac{1}{3} + \frac{1}{5}\right) * (3 * 5)$$

$$+\frac{1}{2}*\left(\frac{1}{5}+\frac{1}{7}\right)*\left(5*7\right)+\frac{1}{2}*\left(\frac{1}{7}+\frac{1}{9}\right)*\left(7*9\right)+\frac{1}{2}*\left(\frac{1}{9}+\frac{1}{11}\right)*\left(9*11\right)+\cdots$$

$$2+4+6+8+10+\cdots = \frac{1}{2}*\left((1+3)+\frac{1}{2}*\left(3+5\right)+\frac{1}{2}*\left(5+7\right)+\frac{1}{2}*\left(7+9\right)+\frac{1}{2}*\left(9+11\right)+\cdots$$

$$2+4+6+8+10+\cdots = \frac{1}{2}*((1+3)+\frac{1}{2}*(3+5)+\frac{1}{2}*(5+7)+\frac{1}{2}*(7+9)+\frac{1}{2}*(9+11)+\cdots$$

$$2+4+6+8+10+\cdots = \frac{1}{2}+\frac{3}{2}+\frac{3}{2}+\frac{5}{2}+\frac{5}{2}+\frac{7}{2}+\frac{7}{2}+\frac{9}{2}+\frac{9}{2}+\frac{11}{2}+\cdots$$

$$2+4+6+8+10+\cdots = \frac{1}{2}+3+5+7+9+11+\cdots$$

$$Z1(-1) + Z2(-1) + Z3(-1) = \frac{3}{2} * (Z1(-1) + Z3(-1))$$

For example

$$1+2+3=\frac{3}{2}*(1+3)$$

$$4+5+6=\frac{3}{2}*(4+6)$$

$$7 + 8 + 9 = \frac{3}{2} * (7 + 9)$$

$$10 + 11 + 12 = \frac{3}{2} * (10 + 12)$$

And recursively each result from adding three elements will use the same relation.

$$6 + 15 + 24 = \frac{3}{2} * (6 + 24)$$

$$1+2+3+4+5+6+7+8+9=\frac{3}{2}*(6+24)$$

$$11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 = \frac{3}{2} * (36 + 54)$$

$$21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 = \frac{3}{2} * (66 + 84)$$

$$31 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 = \frac{3}{2} * (96 + 114)$$

Each set of 9 terms have the same sum result + 90

$$\frac{3}{2} * (6 + 24) = 45 = \frac{1}{2} * 90$$

$$\frac{3}{2} * (36 + 54) = \frac{3}{2} * (6 + 24) + 90 = 45 + 90 = \frac{3}{2} * 90$$

$$\frac{3}{2}*(66+84) = \frac{3}{2}*(6+24) + 90*2 = 45 + 90*2 = \frac{5}{2}*90$$

$$\frac{3}{2} * (96 + 114) = \frac{3}{2} * (6 + 24) + 90 * 3 = \frac{7}{2} * 90$$

To get the full sum

We need to add (10 + 20 + 30 + 40 + 50 + 60 + 70 + 80 + 90) and (100 + 120 + 130 + 140 + 150 + 160 + 170 + 180 + 190) and

So, we need to add.

(450 + 4500 + 45000 + ...) until the end of the range = $45 * (10) ^n =$

$$(10+20+30+40+50+60+70+80+90) = \frac{90}{2} * 10$$

$$(100 + 120 + 130 + 140 + 150 + 160 + 170 + 180 + 190) = \frac{90}{2} * 10^{2}$$

Therefore, the full some =

$$1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + \cdots$$

$$= \frac{90}{2} (1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + \cdots + 10 + 10^{2} + 10^{3} + 10^{4} + 10^{5} + \cdots)$$

$$Z(-1) = \frac{90}{2} (1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + \dots + 10 + 10^2 + 10^3 + 10^4 + 10^5 + \dots)$$

$$Z(-1) = \frac{90}{2} \left(3 + 5 + 7 + 9 + 11 + 13 + 15 + \dots \right) + \frac{90}{2} * \left(1 + 10 + 10^2 + 10^3 + 10^4 + 10^5 + \dots \right)$$

$$Z(-1) = \frac{90}{2} \left(3 + 5 + 7 + 9 + 11 + 13 + \cdots \right) + \frac{90}{2} * \frac{1 - 10}{1 - 10} * \left(1 + 10 + 10^2 + 10^3 + 10^4 + \cdots \right) \right)$$

$$Z(-1) = \frac{90}{2} \left(3 + 5 + 7 + 9 + 11 + 13 + \dots \right) + \frac{10}{2} * (1 - 10) * (1 + 10 + 10^2 + 10^3 + 10^4 \dots)$$

$$(1-r)*(1+r+r^2+r^3+r^4+r^5....+r^n) = 1-r^{n+1}$$

$$Z(-1) = \frac{90}{2} \left(3 + 5 + 7 + 9 + 11 + 13 + \dots \right) + \frac{90}{2} * (10^{\infty} - 1)$$

$$2 + 4 + 6 + 8 + 10 + \dots = \frac{1}{2} + 3 + 5 + 7 + 9 + 11 + \dots$$

$$1 + 3 + 5 + 7 + \dots = \frac{1}{2} * (2 + 4 + 4 + 6 + 6 + 8 + 8 + 10 + \dots)$$

$$1+3+5+7+\cdots = \frac{1}{2}*(2)+\frac{1}{2}*(+4+4+6+6+8+8+10+\cdots)$$

$$1 + 3 + 5 + 7 + \dots = 1 + \frac{1}{2} * (+4 + 4 + 6 + 6 + 8 + 8 + 10 + \dots)$$

$$1+3+5+7+\cdots = 1+(+2+2+3+3+4+4+5+5+\cdots)$$

$$1+3+5+7+\cdots = (1+2)+(2+3)+(3+4)+(4+5)+(5+6)+\cdots$$

Conclusion

First, we showed a primary sequence list of natural numbers that we can use to get a distinct list of prime numbers, and we showed how these numbers are the primary list of prime numbers. Then showed how this distribution can be used to get next most likely prime number based on the described distribution. And how

we introduced $O(\sqrt{N})$ batch algorithm to get list of prime numbers up until natural number [N].

Then we showed a classification for all natural numbers that allowed us to represent any number in the form of N+1/2.

Also, we showed a factorization graph algorithm based on this classification. Then we showed how one of these three classes is the same as original Zeta function series * 3/6. And this specific class that give us all the time reminder of 0.5 if we divide by 6.

Then we showed how we can represent any number in term of fractions and how this gave us relation between Odd and even natural numbers and their reciprocals.

References

[1] A. O. L. Atkin, D. J. Bernstein, prime sieves using binary quadratic forms, mathematics of computation volume 73, number 246, pages 1023–1030 s 0025-5718(03)01501-1 article electronically published on December 19, 2003.

[2] S. Soltan, Step Pyramid Distribution for Prime Numbers, Journal of Mathematics Research Vol. 14, No. 1 (2022), DOI:10.5539/jmr.v14n1p55

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).