Порождение признаков с помощью локально-аппроксимирующих моделей.*

 $\it Cadues~A.~A.^1, \Phi amxy$ ллин $\it M.~\Phi.^1,~Mompehro~A.~\Pi.^1,~Cmpu$ эсов $\it B.~B.^1$ sadiev.aa@phystech.edu

¹Московский физико-технический институт (МФТИ)

Рассматриваются методы определения вида деятельности человека по измерениям акселерометра. Статья посвящена исследованию проблемы порождения признаков с использованием локально-аппроксимирующий моделей. В работе строится набор локально-аппроксимирующих моделей и проверяется корректность применения гипотезы о простоте выборки для порожденных признаков. Также внимание уделено выбору оптимального способа порождения признаков временного ряда. В контексте данной работе предполагается метод построения метрического пространства описаний элементарных движений.

Ключевые слова: временной ряд, многоклассовая классификация, локальноаппроксимирующая модель, метрическое пространство.

1 Введение

Работа посвящена поиску оптимальных признаков для задачи классификации видов деятельности человека. Исследование проводится с целью автоматизации порождения признаков слабоструктуированных данных, таких как временные ряды. Оптимальный выбор признаков должен удовлетворять выборкам временных рядов с различными частотами. Также предлагаемый в данной работе метод должен обеспечивать минимальное расхождение в точности задачи классификации с различными множествами ответов.

Проблема оптимального порождения признаков решается множеством способов: в работе [1] выделяются фундаментальные периоды временных рядов, в [3] [2] внимание уделено сегментации временного ряда различными способами. Также стоит отметить использование сплайнов в порождении признаков временнго ряда [6], в статье [7] предложен новый метод с использованием кубических сплайнов, которые дают гладкую кривую и приемлемое качество аппроксимации. Помимо классических методов применяются нейронные сети, а именно построение нейронной сети оптимальной структуры для решения задачи классификации. в работе [5] используются два алгоритма на нейронных сетях для получения решения задачи классификации.

В данной работе задача решается с помощью построения библиотеки локально-аппроксимирующих моделей исходной выборки. Предлогаемый метод не дает наилучшую точность среди уже имеющихся спрособов, однако является универсальным для данных с различными параметрами выборок.

Вычислительный эксперимент проводится на данных временных рядов акселерометра WISDM с целью решения задачи классификации.

2 Постановка задачи

Пусть задана выборка $\mathfrak{D} = \{(\mathbf{s}_i, y_i) | i = 1, ..., m; \ \mathbf{s}_i = [\mathbf{s}_i(1), ..., \mathbf{s}_i(T)] \in \mathbf{S} \subset \mathbb{R}^{n \times m} \}$, где $\mathbf{s}_i(t) \in \mathbb{R}^n, y_i \in Y$ - пространство ответов, $|Y| = K \in \mathbb{N}, m$ - количество элементов в выборке. Поставим задачу многоклассовой классификации временных рядов. Временные ряды

^{*}Работа выполнена при финансовой поддержке РФФИ, проект №00-00-00000. Научный руководитель: Стрижов В. В. Задачу поставил: Эксперт И. О. Консультант: Мотренко А. П.

являются объектами сложной структуры. Поэтому процесс классификации разбивают на два основных этапа: первый - порождение признакового описания (создание пространства признаков), второй - сама классификация. Формально задача классификации состоит в определении отображения $f: \mathbf{S} \to Y$. В силу вышесказанного отображение будем искать в виде суперпозиции: $f(\mathbf{s}) = g(h(\mathbf{s}), \mathbf{w})$, где $h: \mathbf{S} \to \Phi$. $\Phi \subset \mathbb{R}^p$ - пространство признаков, \mathbf{w} - вектор параметров модели. Чтобы определить качество работы классификатора, задается функция потерь $\mathcal{L}(f(\mathbf{s}_i), y_i)$), выражающая величину ошибки классификации отображения f на объекте \mathbf{s}_i данной выборки \mathfrak{D} . Таким образом, для решения нашей задачи нужно найти отображение f, минимизирующая суммарную фунцию потерь на выборке \mathfrak{D} .

Как было определено выше, функция f является суперпозицией отображений $g(.,\mathbf{w})$ и h(s). Рассмотрим подробней функцию $h: \mathbf{S} \to \Phi$: она порождает признаковое описание объектов \mathbf{s}_i из данной выборки \mathfrak{D} . Есть множество способов определить h, например, с помощью алгоритмов AR, DFT, SSA, SEMOR и т. д. Поэтому будем рассматривать модели $h_j \in \mathcal{H}$, где $j \in \{1, \dots, r\}$, где r - количество моделей в наборе \mathcal{H} . Эти функции создают признаковое описание объекта \mathbf{s}_i (каждая свое), т. е. $h_j(\mathbf{s}_i) = \boldsymbol{\varphi}^{(ij)} = [\boldsymbol{\varphi}_1^{(ij)}, \dots, \boldsymbol{\varphi}_p^{(ij)}]^T \in \Phi$. Допустим на первом этапе каким-либо образом получено подмножество $\mathcal{P} \subset \mathcal{H}$ алгоритмов из заданного набора. Подмножеству \mathcal{P} соответствует признаковое описание, полученное конкатенацией признаков алгоритмов из \mathcal{P} . Тогда на втором этапе имеем классическую задачу многоклассовой классификации:

$$\mathbf{w}_{opt} = \underset{\mathbf{w} \in \mathbb{R}^p}{\min} \mathcal{L}[g(\mathcal{P}, \mathbf{w})] \tag{1}$$

В итоге, объединяя два этапа, получаем задачу вида:

$$\mathcal{P}_{opt} = \underset{\mathcal{P} \subset \mathcal{H}}{\operatorname{arg \, min}} \min_{\mathbf{w} \in \mathbb{R}^p} \mathcal{L} \left[g(\mathcal{P}, \mathbf{w}) \right]$$
 (2)

3 Заключение

Желательно, чтобы этот раздел был, причём он не должен дословно повторять аннотацию. Обычно здесь отмечают, каких результатов удалось добиться, какие проблемы остались открытыми.

Литература

- [1] Anastasia Motrenko and Vadim Strijov. Extracting fundamental periods to segment biomedical signals. *IEEE J. Biomedical and Health Informatics*, 20(6):1466–1476, 2016.
- [2] В. В. Стрижов М. Е. Карасиков. Классификация временных рядов в пространстве параметров порождающих моделей. Информ. и её примен., 10(4):121–131, 2016.