Homework Set 10

Jacob Bailey

May 2, 2020

1 Problem 1

Show that if $h, h': X \to Y$ are homotopic and $k, k': Y \to Z$ are homotopic, then $k \circ h$ and $k' \circ h'$ are homotopic.

There exist two homotopies $H: X \times I \to Y$ between h and h', and $K: Y \times I \to Z$ between k and k'. Consider the map $F: X \times I \to Z$ such that F(x,t) = K(H(x,t),t). Clearly, this is a homotopy between $k \circ h$ and $k' \circ h'$.

2 Problem 2

Let α be a path in X from x_0 to x_1 ; let β be a path in X from x_1 to x_2 . Show that if $\gamma = \alpha * \beta$, then $\hat{\gamma} = \hat{\alpha} * \hat{\beta}$.

$$\begin{split} \widehat{\gamma}([f]) &= [\overline{\alpha * \beta}] * [f] * [\overline{\beta} * \overline{\alpha}] \\ &= [\overline{\beta} * \overline{\alpha}] * [f] * [\alpha * \beta] \\ \\ &= [\overline{\beta}] * [\overline{\alpha}] * [f] * [\alpha] * [\beta] \\ \\ &= [\overline{\beta}] * \widehat{\alpha}([f]) * [\beta] \\ \\ &= \widehat{\beta} \circ \widehat{\alpha}([f]). \end{split}$$

3 Problem 3

Let x_0 and x_1 be points of the path-connected space X. Show that $\pi_1(X, x_0)$ is abelian if and only if for every pair α and β of paths from x_0 to x_1 , we have $\hat{\alpha} = \hat{\beta}$.

For every $\alpha, \beta, \hat{\alpha} = \hat{\beta}$ iplies that for every α, β, f , a loop based at $x_0, \alpha(\hat{f}) = \beta(\hat{f})$. Further, this implies that $[f] \circ [\alpha \circ \beta] = [\alpha \circ \beta] \circ [f]$.

Note that $\alpha \circ \beta$ is an arbitrary loop based at x_0 and passing through x_1 . So, if the group of the path homotopy classes of loops based at x_0 is Abelian, then the right hand side expression holds for arbitrary α, β , and f, therefore for every $\alpha, \beta, \hat{\alpha} = \hat{\beta}$.

Vice versa, if for every $\alpha, \beta, \hat{\alpha} = \hat{\beta}$, then we have shown that the group is commutative when at least one of the terms is a path homotopy class of a loop passing through x_1 . So, take arbitrary $[f], [g] \in \pi_1(X, x_0)$ and take any path α from x_0 to x_1 . Then, $g \circ \alpha \circ \overline{\alpha}$ is a loop based at x_0 passing through x_1 . Then, $[f] \circ [g \circ \alpha \circ \overline{\alpha}] = [g \circ \alpha \circ \overline{\alpha}] \circ [f]$.

4 Problem 4

Show that the maps of Example 3 on page 338 is a covering map. Generalize to the map $p(z) = z^n$.

Example 3: $p: S^1 \to S^1$ given by $p(z) = z^2$ where S^1 is considered as a subspace of the complex plane.

Consider a general map $p(z)=z^n$. If $U=\{z=e^{i\phi}\mid \phi\in(a,b)\subseteq(0,2\pi)\}$. Then, $p^{-1}(U)=\{z=e^{i\phi}\mid \phi\in(a/n+2\pi k/n,b/n+2\pi k/n),k\in\overline{0,n-1}\}$ iis the union of n open intervals in S^1 such that the restriction of p onto each such interval is a homeomorphism of the interval with U. This is also the case if we restrict ϕ to $(-\pi,\pi)$. Overall, ever point of s^1 has such an open neighborhood.

5 Problem 5

Show that if X is path connected, the homomorphism induced by a continuous map is independent of base point, up to isomorphism of the groups involved. More precisely, let $h: X \to Y$ be continuous, with $h(x_0) = y_0$ and $h(x_1) = y_1$. Let α be a path in X from x_0 to x_1 , and let $\beta = h \circ \alpha$. Show that

$$\hat{\beta} \circ (h_{x_0})_* = (h_{x_1})_* \circ \hat{\alpha}.$$

This equation expresses the fact that the following diagram of maps "commutes." $\,$

(See graph in text. That's a bit beyond my own T_EX -ing ability, at the moment.)

$$\hat{\beta} \circ (h_{x_0})([f]) = [\overline{\beta}] * (h_{x_0})([f]) * [\beta]$$

$$= [h \circ \overline{\alpha}] * [h \circ f] * [h \circ \alpha]$$

$$= [h \circ (\overline{\alpha} * f * \alpha)]$$

$$= (h_{x_1})[\overline{\alpha} * f * \alpha]$$

$$= (h_{x_1}) \circ \alpha([f])$$