

Data Structure

ENCS₂₀₅

School of Engineering & Technology (SOET)

K.R. MANGALAM University

UNIT-2

Session 22: Stack ADT and Uses

Data Structure

Unit2

RECAP

https://www.geeksforgeeks.org/data-structure-meaning/

Session 22 Outlook

- Background
- Basic Introduction of stack
- Operations of stack
- Working of Stack
- Uses

Key Learning Outcomes

- > Students should be able to recall stack terminology and ADT operations.
- ➤ Student should be able to Understand stack structure vs. other data structures. Differentiate implementations and expression representations.
- > Apply array-based stack operations and conversion algorithms.
- > Students should evaluate efficiency of stack operations and algorithms. Evaluate impact of stack structure on complexity.

Data Structure

Stack of Books

Stack

Examples

Box of Tennis Balls (Closed at 1 end)

Stack of Clothes.

Trains in a railway yard.

Goods in a cargo.

Type: LIFO / FILO

Stack of Plates

Stack of Chairs

Background

"stack n.

The set of things a person has to do in the future. "I haven't done it yet because every time I pop my stack something new gets pushed." If you are interrupted several times in the middle of a conversation, "My stack overflowed" means "I forget what we were talking about."

-The Hacker's Dictionary

Friedrich L. Bauer

German computer scientist

who proposed "stack method

of expression evaluation"

in 1955

Structure of Stack?

A structure is like a stack of plates—items can only be added or removed from the top.

Fig 1 : Stack Data Structure

https://www.javatpoint.com/applications-of-stack-in-data-structure

Stack?

Stack?

- A Stack is a linear data structure that holds a linear, ordered sequence of elements. It is an abstract data type.
- A stack is basically a container where items are inserted and removed from one end, called the top of the stack..

Some key points related to stack:

Real-world Analogy

Limited Capacity

Order of Operations(LIFO) or (FILO).

Abstract Data Type

https://dev.to/ogwurujohnson/demystifying-the-javascript-call-stack-1ppc

Types of Stack

Fixed Size Stack:

Fixed size and cannot grow or shrink dynamically.

Dynamic Size Stack:

- Can grow or shrink dynamically.
- When the stack is full, it automatically increases its size to accommodate the new element, and when the stack is empty, it decreases its size.
- This type of stack is implemented using a linked list, as it allows for easy resizing of the stack.

REPRESENTATION OF A STACK

Array Representation of Stacks

Linked List Representation of Stacks

Stack Operations

push() to insert an element into the stack
pop() to remove an element from the stack

peek() or top() returns the topmost element of the Stack without deleting it from the Stack.

Is Empty() returns true if stack is empty else false.

size() returns the size of stack.

Please Refer:

https://www.youtube.com/watch?v=HRDHgKrYHgU

Stack Operations Push & Pop

Operation on Stack

https://prepinsta.com/data-structures/introduction-to-stacks-in-data-structures/

Conditions in Stack

- Overflow
- Underflow

(a) Underflow

(b) Overflow

https://www.geeksforgeeks.org/dsa/stack-data-structure/

PUSH Operation

Algorithm:

Step-1: If TOP = Max-1

Print "Overflow"

Goto Step 4

Step-2: Set TOP= TOP + 1

Step-3: Set Stack[TOP] = ELEMENT

Step-4: END

Fig: Push operation

Pop Operations

Algorithm:

Step 1: START

Step 2: if top==-1

then Write "Stack is Underflow"

Step 3: otherwise

print "deleted element"

top=top-1;

Step 4: END

Top of Peek Operation

Algorithm:

Step-1: If TOP = NULL

PRINT "Stack is Empty"

Goto Step 3

Step-2: Return Stack[TOP]

Step-3: END

isEmpty Operation

Algorithm:

- Check for the value of top in stack.
- If (top == -1), then the stack is empty so return true.
- Otherwise, the stack is not empty so return false.

isFull Operation

Algorithm:

- Check for the value of top in stack.
- If (top == capacity-1), then the stack is full so return true.
- Otherwise, the stack is not full so return false.

Code for push & pop operation

```
void newstack(stack <int> ss)
{
    stack <int> sg = ss;
    while (!sg.empty())
    {
       cout << '\t' << sg.top();
       sg.pop();
    }
    cout << '\n';
}</pre>
```

Complete code here

Complexity Analysis of Operations on Stack Data Structure

Operations	Time Complexity	Space Complexity
push()	O(1)	O(1)
pop()	O(1)	O(1)
top() or peek()	O(1)	O(1)
isEmpty()	O(1)	O(1)
isFull()	O(1)	O(1)

1. Which among the following represents a stack?

a: People waiting at a counter, where the action of popping is when someone has been served at the counter

b: A hand of bangles where pushing is wearing a new bangle

c: A pile of plates at a dinner party

d: People going around a merry-go-round

2. What is the time complexity of push operation in a stack? What is the time complexity of pop operation in a stack?

```
a: O(n), O(n)
```

b: O(1), O(n)

c: O(n), O(1)

d: O(1), O(1)

3. Consider these operations on an empty stack: push(3), push(5), pop(), push(10), push(11), pop(), push(100). What will be the stack configuration (first number is top of the stack, last is the bottom)

a: 100,10,3

b: 3,5,10,11,100

c: 3,10,100

d: None of the above

- 4. Consider a stack initially empty. Perform the following operations:
- a) Push 5, Push 10, Push 15
- b) Pop an element
- c) Push 20

What is the final state of the stack?

Answers:

- 1. Correct Option: C
- 2. Correct Option : d
- 3. Correct Option :A

Review

- **1.Definition**: Stack is a Last In, First Out (LIFO) data structure.
- **2.Operations**: Push (adds to top), Pop (removes from top), Peek (returns top without removal), Is Empty, Size.
- **3.Implementation**: Can be implemented using arrays, linked lists, or dynamic arrays (vectors in C++).
- **4.Applications**: Used in expression evaluation, function call management, backtracking, undo mechanisms, parsing, browser history, text editors.
- **5.Complexity**: O(1) time complexity for push, pop, peek, is Empty, and size operations.

