Motion Planning for Autonomous Vehicles

FRENET FRAME TRAJECTORY PLANNING

GEESARA KULATHUNGA

Tank date of the second second

APRIL 28, 2023

https://www.mathworks.com/help/nav/ug/highway-trajectory-planning-using-frenet.html

CONTENTS

- Frenet frame
- Curve parameterization of the reference trajectory
- Estimate the position of a given Spline
- The road-aligned coordinate system with a nonlinear dynamic bicycle model
- Frenet frame trajectory tracking using a nonlinear bicycle model
- Transformations from Frenet coordinates to global coordinates
- Polynomial motion planning
- Frenet frame trajectory generation algorithm
- Calculate global trajectories

DIFFERENT SCENARIOS

https:

//autowarefoundation.github.io/autoware.universe/main/planning/behavior_path_planner/

FRENET FRAME

World frame W

Frenent frame F

https: //raw.githubusercontent.com/fjp/frenet/master/docs/images/cart_refpath.svg?sanitize=true, https://caseypen.github.io/posts/2021/01/FrenetFrame/

Let $\mathbf{r}(t) = x(t)i + y(t)j + z(t)k$ be a vector-valued function. That is, for every t, there is unique vector in \mathbf{V}_3 denoted by $\mathbf{r}(t)$ whose components are x(t), y(t), and z(t).

The derivative $\dot{\mathbf{r}}(t)$

$$\frac{d\mathbf{r}}{dt} = \frac{\lim_{h \to 0}}{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$$

Multivariable Calculus: Stewart, James

The vector $\dot{\mathbf{r}}(t)$ is called tangent line to the defined curve \mathbf{r} at point P, provided that $\dot{\mathbf{r}}(t)$ exists and $\dot{\mathbf{r}}(t) \neq 0$

Unit tangent vector

$$\mathbf{t} = \frac{\dot{\mathbf{r}}}{|\dot{\mathbf{r}}|}$$

Example 01

Show that if $|\mathbf{r}(t)| = c$ (a constant), then $\dot{\mathbf{r}}(t)$ is orthogonal to \mathbf{r} for all t.

6

Example 01

Show that if $|\mathbf{r}(t)| = c$ (a constant), then $\dot{\mathbf{r}}$ is orthogonal to \mathbf{r} for all t.

$$\mathbf{r}(t) \cdot \mathbf{r}(t) = |\mathbf{r}(t)|^2 = c^2$$

$$0 = \frac{d}{dt}[\mathbf{r}(t)\cdot\mathbf{r}(t)] = \dot{\mathbf{r}}(t)\cdot\mathbf{r}(t) + \mathbf{r}(t)\cdot\dot{\mathbf{r}}(t) = 2\dot{\mathbf{r}}(t)\mathbf{r}(t)$$

PARAMETERISE A CURVE

Length of a curve

For a considered range, e.g., a and b,

$$L = \int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2} + z'(t)^{2}} dt = \int_{a}^{b} |\dot{\mathbf{r}}(t)| dt$$

PARAMETERISE A CURVE

The Fundamental Theorem of Calculus, 1

If r is continuous on [a,b], then the function defined by

$$s(t) = \int_{a}^{b} r(u)du, \quad a \le t \le b$$

is continuous on [a,b] and differentiable on (a,b), and s'(t) = r(t).

The Arc length function

For a function $\mathbf{r}(t) = x(t)i + y(t)j + z(t)k$, $a \le t \le b$, arc length function s by

$$s(t) = \int_{a}^{t} |\dot{\mathbf{r}}(u)| du = \int_{a}^{t} \sqrt{\left\{ \left(\frac{dx}{du}\right)^{2} + \left(\frac{dy}{du}\right)^{2} + \left(\frac{dz}{du}\right)^{2} \right\}} du$$

Thus, s(t) is **the length of the path** between $\mathbf{r}(a)$ and $\mathbf{r}(t)$. When differentiating both sides,

$$\frac{ds}{dt} = |\dot{\mathbf{r}}(t)|$$

Parameterise a curve with respect to **arc length** is quite useful since the **shape of the curve** does not depend on a **particular coordinate system.**, i.e., the arc length is invariant to reparameterization of a curve.

Example 02

Reparametrize the $\mathbf{r}(t) = costi + sintj + tk$ with respect to arc length measured from (1,0,0) in the direction of increasing t.

Example 02

Reparametrize the $\mathbf{r}(t) = costi + sintj + tk$ with respect to arc length measured from (1,0,0) in the direction of increasing t.

$$\frac{ds}{dt} = |\dot{\mathbf{r}}(t)| = \sqrt{(-sin(t))^2 + cos(t)^2 + 1} = \sqrt{2}$$

Hence,

$$s = s(t) = \int_0^t |\dot{\mathbf{r}}(u)| du = \int_0^t \sqrt{2} du = \sqrt{2}t$$

Example 02

Reparametrize the $\mathbf{r}(t) = costi + sintj + tk$ with respect to arc length measured from (1,0,0) in the direction of increasing t.

$$\frac{ds}{dt} = |\dot{\mathbf{r}}(t)| = \sqrt{(-\sin(t))^2 + \cos(t)^2 + 1} = \sqrt{2}$$

■ Hence,

$$s = s(t) = \int_0^t |\dot{\mathbf{r}}(u)| du = \int_0^t \sqrt{2} du = \sqrt{2}t$$

■ Therefore, $t = s/\sqrt{2}$.

Example 02

Reparametrize the $\mathbf{r}(t) = costi + sintj + tk$ with respect to arc length measured from (1,0,0) in the direction of increasing t.

$$\frac{ds}{dt} = |\dot{\mathbf{r}}(t)| = \sqrt{(-\sin(t))^2 + \cos(t)^2 + 1} = \sqrt{2}$$

■ Hence,

$$s = s(t) = \int_0^t |\dot{\mathbf{r}}(u)| du = \int_0^t \sqrt{2} du = \sqrt{2}t$$

- Therefore, $t = s/\sqrt{2}$.
- Thus,

$$\mathbf{r}(t(s)) = \cos(s/\sqrt{2})i + \sin(s/\sqrt{2})j + s/\sqrt{2}k$$

13 5.

■ Time derivative of curve

$$\dot{\mathbf{r}} = \frac{d\mathbf{r}}{dt} = \frac{d\mathbf{r}}{ds}\frac{ds}{dt} = \mathbf{r}'\dot{s} = \mathbf{r}'|\dot{\mathbf{r}}|, \quad \mathbf{r}' = \frac{d\mathbf{r}}{ds} = \frac{\dot{\mathbf{r}}}{|\dot{\mathbf{r}}|} \rightarrow |\mathbf{r}'| = 1$$

$$\ddot{\mathbf{r}} = \frac{d\dot{\mathbf{r}}}{dt} = \frac{d}{dt}(\mathbf{r}'\dot{s}) = \frac{d\mathbf{r}'}{dt}\dot{s} + \mathbf{r}'\ddot{s} = \dot{s}^2\mathbf{r}'' + \ddot{s}\mathbf{r}'$$

■ Time derivative of curve

$$\dot{\mathbf{r}} = \frac{d\mathbf{r}}{dt} = \frac{d\mathbf{r}}{ds}\frac{ds}{dt} = \mathbf{r}'\dot{s} = \mathbf{r}'|\dot{\mathbf{r}}|, \quad \mathbf{r}' = \frac{d\mathbf{r}}{ds} = \frac{\dot{\mathbf{r}}}{|\dot{\mathbf{r}}|} \rightarrow |\mathbf{r}'| = 1$$

$$\ddot{\mathbf{r}} = \frac{d\dot{\mathbf{r}}}{dt} = \frac{d}{dt}(\mathbf{r}'\dot{s}) = \frac{d\mathbf{r}'}{dt}\dot{s} + \mathbf{r}'\ddot{s} = \dot{s}^2\mathbf{r}'' + \ddot{s}\mathbf{r}'$$

■ tangent vector

$$\mathbf{t} = \mathbf{r}' = \frac{\dot{\mathbf{r}}}{|\dot{\mathbf{r}}|}$$

■ Time derivative of curve

$$\dot{\mathbf{r}} = \frac{d\mathbf{r}}{dt} = \frac{d\mathbf{r}}{ds}\frac{ds}{dt} = \mathbf{r}'\dot{s} = \mathbf{r}'|\dot{\mathbf{r}}|, \quad \mathbf{r}' = \frac{d\mathbf{r}}{ds} = \frac{\dot{\mathbf{r}}}{|\dot{\mathbf{r}}|} \rightarrow |\mathbf{r}'| = 1$$

$$\ddot{\mathbf{r}} = \frac{d\dot{\mathbf{r}}}{dt} = \frac{d}{dt}(\mathbf{r}'\dot{s}) = \frac{d\mathbf{r}'}{dt}\dot{s} + \mathbf{r}'\ddot{s} = \dot{s}^2\mathbf{r}'' + \ddot{s}\mathbf{r}'$$

■ tangent vector

$$\mathbf{t} = \mathbf{r}' = \frac{\dot{\mathbf{r}}}{|\dot{\mathbf{r}}|}$$

normal vector

$$\mathbf{n} = \frac{\mathbf{t}'}{|\mathbf{t}'|}$$

■ Time derivative of curve

$$\dot{\mathbf{r}} = \frac{d\mathbf{r}}{dt} = \frac{d\mathbf{r}}{ds}\frac{ds}{dt} = \mathbf{r}'\dot{s} = \mathbf{r}'|\dot{\mathbf{r}}|, \quad \mathbf{r}' = \frac{d\mathbf{r}}{ds} = \frac{\dot{\mathbf{r}}}{|\dot{\mathbf{r}}|} \rightarrow |\mathbf{r}'| = 1$$

$$\ddot{\mathbf{r}} = \frac{d\dot{\mathbf{r}}}{dt} = \frac{d}{dt}(\mathbf{r}'\dot{s}) = \frac{d\mathbf{r}'}{dt}\dot{s} + \mathbf{r}'\ddot{s} = \dot{s}^2\mathbf{r}'' + \ddot{s}\mathbf{r}'$$

■ tangent vector

$$\mathbf{t} = \mathbf{r}' = \frac{\dot{\mathbf{r}}}{|\dot{\mathbf{r}}|}$$

normal vector

$$\mathbf{n} = \frac{\mathbf{t}'}{|\mathbf{t}'|}$$

t,n, b: an orthogonal triplet of vectors

$$|\mathbf{t}| = |\mathbf{n}| = 1$$
$$0 = (\mathbf{t} \cdot \mathbf{t})' = 2\mathbf{t} \cdot \mathbf{t}'$$
$$\mathbf{t} \perp \mathbf{t}' \to \mathbf{t} \perp \mathbf{n}$$
$$|\mathbf{b}|^2 = |\mathbf{t} \times \mathbf{n}|^2 = |\mathbf{t}|^2 |\mathbf{n}|^2$$

t,n, b: an orthogonal triplet of vectors

$$|\mathbf{t}| = |\mathbf{n}| = 1$$
$$0 = (\mathbf{t} \cdot \mathbf{t})' = 2\mathbf{t} \cdot \mathbf{t}'$$
$$\mathbf{t} \perp \mathbf{t}' \to \mathbf{t} \perp \mathbf{n}$$
$$|\mathbf{b}|^2 = |\mathbf{t} \times \mathbf{n}|^2 = |\mathbf{t}|^2 |\mathbf{n}|^2$$

In Frenent-Serret Frame, **t,n**, **b** are selected as an orthonormal basis along the curve, i.e., $\{\mathbf{e}_i\}_{i=1}^3 = (\mathbf{t,n,b})$. Hence, expansion of vector function \mathbf{r} in the basis

$$\mathbf{r} = \sum_{i=1}^{3} (\mathbf{r} \cdot \mathbf{e}_i) \cdot \mathbf{e}_i$$

t,n, b: an orthogonal triplet of vectors

$$|\mathbf{t}| = |\mathbf{n}| = 1$$
$$0 = (\mathbf{t} \cdot \mathbf{t})' = 2\mathbf{t} \cdot \mathbf{t}'$$
$$\mathbf{t} \perp \mathbf{t}' \to \mathbf{t} \perp \mathbf{n}$$
$$|\mathbf{b}|^2 = |\mathbf{t} \times \mathbf{n}|^2 = |\mathbf{t}|^2 |\mathbf{n}|^2$$

In Frenent-Serret Frame, **t,n, b** are selected as an orthonormal basis along the curve, i.e., $\{\mathbf{e}_i\}_{i=1}^3 = (\mathbf{t,n,b})$. Hence, expansion of vector function \mathbf{r} in the basis

$$\mathbf{r} = \Sigma_{i=1}^3 (\mathbf{r} \cdot \mathbf{e}_i) \cdot \mathbf{e}_i$$

lacksquare Expansion of the derivative of the basis lacksquare

$$\mathbf{e}_i' = \Sigma_{j=1}^3 (\mathbf{e}_i' \cdot \mathbf{e}_j) \cdot \mathbf{e}_j$$

■ Also,

$$0 = (\mathbf{e}_{i} \cdot \mathbf{e}_{j})' = \mathbf{e}_{i}' \cdot \mathbf{e}_{j} + \mathbf{e}_{i} \cdot \mathbf{e}_{j}' \rightarrow \mathbf{e}_{i}' \cdot \mathbf{e}_{j} = -\mathbf{e}_{i} \cdot \mathbf{e}_{j}', \quad \mathbf{e}_{i} \cdot \mathbf{e}_{i}' = 0$$

$$a_{ij} = \mathbf{e}_{i}' \cdot \mathbf{e}_{j}, \quad a_{ji} = a_{ij}, \quad a_{ii} = 0$$

$$a_{ij} = \begin{pmatrix} 0 & k & \alpha \\ -k & 0 & \tau \\ -\alpha & -\tau & 0 \end{pmatrix}$$

■ Also,

$$0 = (\mathbf{e}_{i} \cdot \mathbf{e}_{j})' = \mathbf{e}_{i}' \cdot \mathbf{e}_{j} + \mathbf{e}_{i} \cdot \mathbf{e}_{j}' \rightarrow \mathbf{e}_{i}' \cdot \mathbf{e}_{j} = -\mathbf{e}_{i} \cdot \mathbf{e}_{j}', \quad \mathbf{e}_{i} \cdot \mathbf{e}_{i}' = 0$$

$$a_{ij} = \mathbf{e}_{i}' \cdot \mathbf{e}_{j}, \quad a_{ji} = a_{ij}, \quad a_{ii} = 0$$

$$a_{ij} = \begin{pmatrix} 0 & k & \alpha \\ -k & 0 & \tau \\ -\alpha & -\tau & 0 \end{pmatrix}$$

Expansion of the derivative of the basis e'

$$\begin{aligned} \mathbf{e}_i' &= \Sigma_{j=1}^3 (\mathbf{e}_i' \cdot \mathbf{e}_j) \cdot \mathbf{e}_j = \Sigma_{j=1}^3 \alpha_{ij} \cdot \mathbf{e}_j \\ \Rightarrow \mathbf{e}_1' &= k \mathbf{e}_2 + \alpha \mathbf{e}_3, \ \mathbf{e}_2' = -k \mathbf{e}_1 + \tau \mathbf{e}_3, \ \mathbf{e}_3' = -\alpha \mathbf{e}_1 - \tau \mathbf{e}_2, \end{aligned}$$

■ Also,

$$0 = (\mathbf{e}_{i} \cdot \mathbf{e}_{j})' = \mathbf{e}_{i}' \cdot \mathbf{e}_{j} + \mathbf{e}_{i} \cdot \mathbf{e}_{j}' \rightarrow \mathbf{e}_{i}' \cdot \mathbf{e}_{j} = -\mathbf{e}_{i} \cdot \mathbf{e}_{j}', \quad \mathbf{e}_{i} \cdot \mathbf{e}_{i}' = 0$$

$$a_{ij} = \mathbf{e}_{i}' \cdot \mathbf{e}_{j}, \quad a_{ji} = a_{ij}, \quad a_{ii} = 0$$

$$a_{ij} = \begin{pmatrix} 0 & k & \alpha \\ -k & 0 & \tau \\ -\alpha & -\tau & 0 \end{pmatrix}$$

■ Expansion of the derivative of the basis e'

$$\mathbf{e}'_i = \sum_{j=1}^3 (\mathbf{e}'_i \cdot \mathbf{e}_j) \cdot \mathbf{e}_j = \sum_{j=1}^3 a_{ij} \cdot \mathbf{e}_j$$

$$\Rightarrow \mathbf{e}'_1 = k\mathbf{e}_2 + \alpha \mathbf{e}_3, \ \mathbf{e}'_2 = -k\mathbf{e}_1 + \tau \mathbf{e}_3, \ \mathbf{e}'_3 = -\alpha \mathbf{e}_1 - \tau \mathbf{e}_2,$$

Expansion of the derivative of the Frenet-Serret frame $\mathbf{e}_1 = \mathbf{t}, \mathbf{e}_2 = \mathbf{n}, \mathbf{e}_3 = \mathbf{b}$ $\Rightarrow \mathbf{t}' = k\mathbf{n} + \alpha \mathbf{b}, \mathbf{n}' = -k\mathbf{t} + \tau \mathbf{b}, \mathbf{b}' = -\alpha \mathbf{t} - \tau \mathbf{n},$

■ Also,

$$0 = (\mathbf{e}_{i} \cdot \mathbf{e}_{j})' = \mathbf{e}_{i}' \cdot \mathbf{e}_{j} + \mathbf{e}_{i} \cdot \mathbf{e}_{j}' \rightarrow \mathbf{e}_{i}' \cdot \mathbf{e}_{j} = -\mathbf{e}_{i} \cdot \mathbf{e}_{j}', \quad \mathbf{e}_{i} \cdot \mathbf{e}_{i}' = 0$$

$$a_{ij} = \mathbf{e}_{i}' \cdot \mathbf{e}_{j}, \quad a_{ji} = a_{ij}, \quad a_{ii} = 0$$

$$a_{ij} = \begin{pmatrix} 0 & k & \alpha \\ -k & 0 & \tau \\ -\alpha & -\tau & 0 \end{pmatrix}$$

■ Expansion of the derivative of the basis e'

$$\mathbf{e}'_i = \sum_{j=1}^3 (\mathbf{e}'_i \cdot \mathbf{e}_j) \cdot \mathbf{e}_j = \sum_{j=1}^3 a_{ij} \cdot \mathbf{e}_j$$

$$\Rightarrow \mathbf{e}'_1 = k\mathbf{e}_2 + \alpha \mathbf{e}_3, \ \mathbf{e}'_2 = -k\mathbf{e}_1 + \tau \mathbf{e}_3, \ \mathbf{e}'_3 = -\alpha \mathbf{e}_1 - \tau \mathbf{e}_2,$$

■ Expansion of the derivative of the Frenet-Serret frame $\mathbf{e}_1 = \mathbf{t}, \mathbf{e}_2 = \mathbf{n}, \mathbf{e}_3 = \mathbf{b}$

$$\Rightarrow$$
t' = k **n** + α **b**, **n**' = $-k$ **t** + τ **b**, **b**' = $-\alpha$ **t** - τ **n**,

■ Since $\mathbf{t}' = \|\mathbf{t}'\| \mathbf{n}$

$$\mathbf{t}' = k\mathbf{n} + \alpha \mathbf{b} \rightarrow \alpha = 0, \quad k = ||\mathbf{t}'||$$

$$\mathbf{n}' = -k\mathbf{t} + \tau \mathbf{b}$$

$$\mathbf{b}' = \alpha \mathbf{t} - \tau \mathbf{n} = -\tau \mathbf{n}$$

■ Since $\mathbf{t}' = \|\mathbf{t}'\| \mathbf{n}$

$$\mathbf{t}' = k\mathbf{n} + \alpha\mathbf{b} \rightarrow \alpha = 0, \quad k = ||\mathbf{t}'||$$

$$\mathbf{n}' = -k\mathbf{t} + \tau\mathbf{b}$$

$$\mathbf{b}' = \alpha\mathbf{t} - \tau\mathbf{n} = -\tau\mathbf{n}$$

■ Also,

$$\mathbf{t} \cdot \mathbf{n}' = -k \cdot \mathbf{t} \cdot \mathbf{t} + \tau \cdot \mathbf{t} \cdot \mathbf{b} \to k = -\mathbf{t} \cdot \mathbf{n}'$$
$$0 = (\mathbf{n} \cdot \mathbf{t})' = \mathbf{n}' \cdot \mathbf{t} + \mathbf{n} \cdot \mathbf{t}'$$

Frenent-Serret formular

$$\frac{d}{ds} \begin{pmatrix} \mathbf{t} \\ \mathbf{n} \\ \mathbf{b} \end{pmatrix} = \begin{pmatrix} 0 & k & 0 \\ -k & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} \mathbf{t} \\ \mathbf{n} \\ \mathbf{b} \end{pmatrix},$$

the curvature $k(s) = -\mathbf{t} \cdot \mathbf{n}' = \mathbf{n} \cdot \mathbf{t}' = \frac{\mathbf{t}'}{\|\mathbf{t}'\|} \cdot \mathbf{t}' = \|\mathbf{t}'\|$

A parametrization $\mathbf{r}(t)$ is smooth on an interval I, if $\dot{\mathbf{r}}(t)$ is continuous and $\dot{\mathbf{r}}(t) \neq 0$ on I, the smooth curve has no **corners** or **cusps**.

■ The curvature of a curve is

$$k = \|\mathbf{t}'\| = \left\|\frac{d\mathbf{t}}{ds}\right\|$$

where t unit tangent vector.

A parametrization $\mathbf{r}(t)$ is smooth on an interval I, if $\dot{\mathbf{r}}(t)$ is continuous and $\dot{\mathbf{r}}(t) \neq 0$ on I, the smooth curve has no **corners** or **cusps**.

■ The curvature of a curve is

$$k = \|\mathbf{t}'\| = \left\|\frac{d\mathbf{t}}{ds}\right\|$$

where t unit tangent vector.

■ The curvature is easier to compute if it is expressed in terms of t,

$$\frac{d\mathbf{t}}{dt} = \frac{d\mathbf{t}}{ds} \frac{ds}{dt}$$

A parametrization $\mathbf{r}(t)$ is smooth on an interval I, if $\dot{\mathbf{r}}(t)$ is continuous and $\dot{\mathbf{r}}(t) \neq 0$ on I, the smooth curve has no **corners** or **cusps**.

■ The curvature of a curve is

$$k = \|\mathbf{t}'\| = \left\|\frac{d\mathbf{t}}{ds}\right\|$$

where t unit tangent vector.

■ The curvature is easier to compute if it is expressed in terms of t,

$$\frac{d\mathbf{t}}{dt} = \frac{d\mathbf{t}}{ds} \frac{ds}{dt}$$

Hence,

$$k = \left\| \frac{d\mathbf{t}}{ds} \right\| = \left\| \frac{d\mathbf{t}/dt}{ds/dt} \right\|$$

A parametrization $\mathbf{r}(t)$ is smooth on an interval I, if $\dot{\mathbf{r}}(t)$ is continuous and $\dot{\mathbf{r}}(t) \neq 0$ on I, the smooth curve has no **corners** or **cusps**.

■ The curvature of a curve is

$$k = \|\mathbf{t}'\| = \left\|\frac{d\mathbf{t}}{ds}\right\|$$

where t unit tangent vector.

■ The curvature is easier to compute if it is expressed in terms of t,

$$\frac{d\mathbf{t}}{dt} = \frac{d\mathbf{t}}{ds} \frac{ds}{dt}$$

■ Hence,

$$k = \left\| \frac{d\mathbf{t}}{ds} \right\| = \left\| \frac{d\mathbf{t}/dt}{ds/dt} \right\|$$

■ But $ds/dt = ||\dot{\mathbf{r}}(t)||$,

$$k(t) = \left\| \frac{\dot{\mathbf{t}}(t)}{\dot{\mathbf{r}}(t)} \right\|$$

Example 03

Show that the curvature of a circle of radius a is 1/a, assume that center of the circle is at the origin.

Example 03

■ Let $\mathbf{r}(t) = a\cos(t)i + a\sin(t)j$

Example 03

- \blacksquare Let $\mathbf{r}(t) = a\cos(t)i + a\sin(t)j$
- Hence, $\dot{\mathbf{r}}(t) = -asin(t)i + acos(t)j$ and $\|\dot{\mathbf{r}}(t)\| = a$

Example 03

- \blacksquare Let $\mathbf{r}(t) = a\cos(t)i + a\sin(t)j$
- Hence, $\dot{\mathbf{r}}(t) = -asin(t)i + acos(t)j$ and $\|\dot{\mathbf{r}}(t)\| = a$
- That is, $\mathbf{t}(t) = \frac{\dot{\mathbf{r}}(t)}{\|\dot{\mathbf{r}}(t)\|} = -sin(t)i + cos(t)j$ and $\dot{\mathbf{t}}(t) = -cos(t)i sin(t)j$

Example 03

- Let $\mathbf{r}(t) = a\cos(t)i + a\sin(t)j$
- Hence, $\dot{\mathbf{r}}(t) = -asin(t)i + acos(t)j$ and $||\dot{\mathbf{r}}(t)|| = a$
- That is, $\mathbf{t}(t) = \frac{\dot{\mathbf{r}}(t)}{\|\dot{\mathbf{r}}(t)\|} = -\sin(t)i + \cos(t)j$ and $\dot{\mathbf{t}}(t) = -\cos(t)i - \sin(t)i$
- Therefore, $\|\dot{\mathbf{t}}(t)\| = 1$. Thus,

$$k(t) = \frac{\left\|\dot{\mathbf{t}}(t)\right\|}{\left\|\dot{\mathbf{r}}(t)\right\|} = \frac{1}{a}$$

Curvature

The curvature can be formed using the vector function of a curve ${f r}$

$$k(t) = \frac{|\dot{\mathbf{r}}(t) \times \ddot{\mathbf{r}}(t)|}{|\dot{\mathbf{r}}(t)|^3}$$

■ Since $\mathbf{t}(t) = \frac{\dot{\mathbf{r}}(t)}{|\dot{\mathbf{r}}(t)|}$ and $|\dot{\mathbf{r}}(t)| = \frac{ds}{dt}$,

$$\dot{\mathbf{r}}(t) = |\dot{\mathbf{r}}(t)|\mathbf{t} = \frac{ds}{dt}\mathbf{t}$$

Curvature

The curvature can be formed using the vector function of a curve ${f r}$

$$k(t) = \frac{|\dot{\mathbf{r}}(t) \times \ddot{\mathbf{r}}(t)|}{|\dot{\mathbf{r}}(t)|^3}$$

■ Since $\mathbf{t}(t) = \frac{\dot{\mathbf{r}}(t)}{|\dot{\mathbf{r}}(t)|}$ and $|\dot{\mathbf{r}}(t)| = \frac{ds}{dt}$,

$$\dot{\mathbf{r}}(t) = |\dot{\mathbf{r}}(t)|\mathbf{t} = \frac{ds}{dt}\mathbf{t}$$

■ Using the product rule

$$\ddot{\mathbf{r}}(t) = \frac{d^2s}{dt^2}\mathbf{t} + \frac{ds}{dt}\dot{\mathbf{t}}$$

Curvature

The curvature can be formed using the vector function of a curve ${f r}$

$$k(t) = \frac{|\dot{\mathbf{r}}(t) \times \ddot{\mathbf{r}}(t)|}{|\dot{\mathbf{r}}(t)|^3}$$

■ Since $\mathbf{t}(t) = \frac{\dot{\mathbf{r}}(t)}{|\dot{\mathbf{r}}(t)|}$ and $|\dot{\mathbf{r}}(t)| = \frac{ds}{dt}$,

$$\dot{\mathbf{r}}(t) = |\dot{\mathbf{r}}(t)|\mathbf{t} = \frac{ds}{dt}\mathbf{t}$$

■ Using the product rule

$$\ddot{\mathbf{r}}(t) = \frac{d^2s}{dt^2}\mathbf{t} + \frac{ds}{dt}\dot{\mathbf{t}}$$

■ Since $\mathbf{t} \times \mathbf{t} = 0$

$$\dot{\mathbf{r}}(t) \times \ddot{\mathbf{r}}(t) = \left(\frac{ds}{dt}\right)^2 (\mathbf{t} \times \dot{\mathbf{t}})$$

Curvature

The curvature can be formed using the vector function of a curve ${f r}$

$$k(t) = \frac{|\dot{\mathbf{r}}(t) \times \ddot{\mathbf{r}}(t)|}{|\dot{\mathbf{r}}(t)|^3}$$

■ However, $|\mathbf{t}| = 1$ for all \mathbf{t} , and \mathbf{t} and $\dot{\mathbf{t}}$ are orthogonal each other

$$|\dot{\mathbf{r}}(t)\times\ddot{\mathbf{r}}(t)| = \left(\frac{ds}{dt}\right)^2|\mathbf{t}\times\dot{\mathbf{t}}| = \left(\frac{ds}{dt}\right)^2|\mathbf{t}||\dot{\mathbf{t}}| = \left(\frac{ds}{dt}\right)^2|\dot{\mathbf{t}}|$$

Curvature

The curvature can be formed using the vector function of a curve ${f r}$

$$k(t) = \frac{|\dot{\mathbf{r}}(t) \times \ddot{\mathbf{r}}(t)|}{|\dot{\mathbf{r}}(t)|^3}$$

■ However, $|\mathbf{t}| = 1$ for all \mathbf{t} , and \mathbf{t} and $\dot{\mathbf{t}}$ are orthogonal each other

$$|\dot{\mathbf{r}}(t)\times\ddot{\mathbf{r}}(t)| = \left(\frac{ds}{dt}\right)^2|\mathbf{t}\times\dot{\mathbf{t}}| = \left(\frac{ds}{dt}\right)^2|\mathbf{t}||\dot{\mathbf{t}}| = \left(\frac{ds}{dt}\right)^2|\dot{\mathbf{t}}|$$

■ Thus,

$$|\dot{\mathbf{t}}| = \frac{|\dot{\mathbf{r}}(t) \times \ddot{\mathbf{r}}(t)|}{\left(\frac{ds}{dt}\right)^2} = \frac{|\dot{\mathbf{r}}(t) \times \ddot{\mathbf{r}}(t)|}{|\dot{\mathbf{r}}(t)|^2}$$

Curvature

The curvature can be formed using the vector function of a curve ${f r}$

$$k(t) = \frac{|\dot{\mathbf{r}}(t) \times \ddot{\mathbf{r}}(t)|}{|\dot{\mathbf{r}}(t)|^3}$$

■ However, $|\mathbf{t}| = 1$ for all \mathbf{t} , and \mathbf{t} and $\dot{\mathbf{t}}$ are orthogonal each other

$$|\dot{\mathbf{r}}(t) \times \ddot{\mathbf{r}}(t)| = \left(\frac{ds}{dt}\right)^2 |\mathbf{t} \times \dot{\mathbf{t}}| = \left(\frac{ds}{dt}\right)^2 |\mathbf{t}| |\dot{\mathbf{t}}| = \left(\frac{ds}{dt}\right)^2 |\dot{\mathbf{t}}|$$

■ Thus,

$$|\dot{\mathbf{t}}| = \frac{|\dot{\mathbf{r}}(t) \times \ddot{\mathbf{r}}(t)|}{\left(\frac{ds}{dt}\right)^2} = \frac{|\dot{\mathbf{r}}(t) \times \ddot{\mathbf{r}}(t)|}{|\dot{\mathbf{r}}(t)|^2}$$

■ That is,

$$k = \frac{|\dot{\mathbf{t}}(t)|}{|\dot{\mathbf{r}}(t)|} = \frac{|\dot{\mathbf{r}}(t) \times \ddot{\mathbf{r}}(t)|}{|\dot{\mathbf{r}}(t)|^3}$$

Example 04

Find the curvature of the trajectory $\mathbf{r}(t) = ti + t^2j + t^3k$ when t = 0.

Example 04

Find the curvature of the trajectory $\mathbf{r}(t) = ti + t^2j + t^3k$ when t = 0.

$$\begin{split} \mathbf{r}(t) &= ti + t^2 j + t^3 k, \quad , \dot{\mathbf{r}}(t) = 1i + 2tj + 3t^2 k, \quad \ddot{\mathbf{r}}(t) = 0i + 2j + 6tk \\ \dot{\dot{\mathbf{r}}}(t) &\times \ddot{\mathbf{r}}(t) = \begin{vmatrix} i & j & k \\ 1 & 2t & 3t^2 \\ 0 & 2 & 6t \end{vmatrix} = 6t^2 i - 6tj + 2k \\ |\dot{\mathbf{r}}(t) \times \ddot{\mathbf{r}}(t)| &= 2\sqrt{9t^4 + 9t^2 + 1} \\ k(t) &= \frac{|\dot{\mathbf{r}}(t) \times \ddot{\mathbf{r}}(t)|}{|\dot{\mathbf{r}}(t)|^3} = \frac{2\sqrt{9t^4 + 9t^2 + 1}}{(1 + 4t^2 + 9t^4)^{3/2}} \end{split}$$

Special form of k(t) for a plane curve with equation y = f(x)

■ Let x be the parameter, that is

$$\mathbf{r}(x) = xi + f(x)j$$

■ Also,

$$\dot{\mathbf{r}}(x) = i + \dot{f}(x)j, \quad \ddot{\mathbf{r}}(x) = \ddot{f}(x)j$$

■ Since $i \times j = k$ and $j \times j = 0$

$$\dot{\mathbf{r}}(x) \times \ddot{\mathbf{r}}(x) = \ddot{f}(x)k, \quad |\dot{\mathbf{r}}(x)| = \sqrt{1 + (\dot{f}(x))^2}$$

■ Hence,

$$k(x) = \frac{|\ddot{f}(x)|}{[1 + (\dot{f}(x))^2]^{3/2}}$$

Example 05

If a curve is defined in parametric form by the equations x = x(t) and y = y(t), i.e., $\mathbf{r}(t) = x(t)i + y(t)j$, derive a general expression for curvature.

Example 05

If a curve is defined in parametric form by the equations x = x(t) and y = y(t), i.e., $\mathbf{r}(t) = x(t)i + y(t)j$, derive a general expression for curvature.

$$k(t) = \frac{|\dot{x}\ddot{y} - \dot{y}\ddot{x}|}{(\dot{x}^2 + \dot{y}^2)^{3/2}}$$

Example 06

Find the curvature of the parabola $y = x^2$ at points (0,0), (1,1), and (2,4).

Example 06

Find the curvature of the parabola $y = x^2$ at points (0,0), (1,1), and (2,4).

30

Since $\dot{\mathbf{y}} = 2x$ and $\ddot{\mathbf{y}} = 2$

$$k(x) = \frac{|\dot{\mathbf{r}}(t) \times \ddot{\mathbf{r}}(t)|}{|\dot{\mathbf{r}}(t)|^3}$$
$$= \frac{|\ddot{\mathbf{y}}|}{\left[1 + (\dot{\mathbf{y}})^2\right]^{3/2}} = \frac{2}{(1 + 4x^2)^{3/2}}$$

VELOCITY AND ACCELERATION IN FRENENT-SERRET FRAME

■ Derivative of $\mathbf{r}(s)$ with respect to time:

$$\dot{\mathbf{r}} = \dot{s}\mathbf{r}', \quad v = \dot{s}, \quad \mathbf{t} = \mathbf{r}' \to \mathbf{v} = v\mathbf{t}$$

$$\ddot{\mathbf{r}} = \dot{s}^2\mathbf{r}'' + \ddot{s}\mathbf{r}', \quad a = \ddot{s} = \dot{v}, \quad \mathbf{t}' = \mathbf{r}''$$

$$\to \mathbf{a} = a\mathbf{t} + v^2\mathbf{t}'$$

https://www.youtube.com/watch?v=aFCMIt63pgc

VELOCITY AND ACCELERATION IN FRENENT-SERRET FRAME

■ Derivative of $\mathbf{r}(s)$ with respect to time:

$$\dot{\mathbf{r}} = \dot{s}\mathbf{r}', \quad v = \dot{s}, \quad \mathbf{t} = \mathbf{r}' \to \mathbf{v} = v\mathbf{t}$$

$$\ddot{\mathbf{r}} = \dot{s}^2\mathbf{r}'' + \ddot{s}\mathbf{r}', \quad a = \ddot{s} = \dot{v}, \quad \mathbf{t}' = \mathbf{r}''$$

$$\to \mathbf{a} = a\mathbf{t} + v^2\mathbf{t}'$$

$$\mathbf{a} = a\mathbf{t} + v^2k\mathbf{n} = a\mathbf{t} + (v^2/r_c)\mathbf{n}$$

https://www.youtube.com/watch?v=aFCMIt63pgc

FRENET FRAME

Frenet frame F coordinate built on a curve, which is composed of **five components**: location of the curve $\vec{r}(s)$, corresponding tangential vector \vec{t}_r , the perpendicular distance to the reference location d(t), and corresponding tangential and normal vectors $\vec{t}_x \ \vec{n}_x$

where the moving reference frame is given by tangential vector $\vec{t}_r = [cos\psi_r(s)sin_r\psi(s)]$ and normal vector

 $\vec{n}_r = [-sin\psi_r(s) cos_r\psi(s)]$ around a curve, namely, center line. [1]. Werling, M., Ziegler, J., Kammel, S., Thrun, S. (2010, May). Optimal trajectory generation for dynamic street scenarios in a frenet frame. In 2010 IEEE International Conference on Robotics and Automation (pp. 987-993). IEEE.

FRENET FRAME

Car location in the Cartesian coordinates \vec{x} and moving point in the moving reference curve, depicted \vec{r} , and the offset between \vec{x} and \vec{r} is given by d(t) at time t. Therefore, the following relationship can be built.

$$\vec{x}(s(t), d(t)) = \vec{r}(s(t)) + d(t)\vec{n}_r(s(t)),$$
 (1)

where s denotes the arc length of the center line, and \vec{t}_x and \vec{n}_x are the tangential and normal vector of the resulting trajectory.

33 5!

CURVE PARAMETERIZATION OF THE REFERENCE TRAJECTORY

As the first step, it is required to calculate the initial reference trajectory

```
Algorithm 1 Generate reference trajectory
 1: procedure GETTARGETTRAJ(x,t)
       spline \leftarrow getCubicSpline < 2D > (x,t)
 2:
                                                      ▶ get arc length along the reference trajectory
       s \leftarrow getS(spline, \delta s)
 3:
                                                           > reference trajectory pose and curvature
 4:
       r_x, r_y, r_{vaw}, r_k
       for s_i \leftarrow s_0 to s_n do
 5:
           r_x, r_y << \leftarrow getPositionVector(spline, s_i)
 6.
           r_{vaw} << \leftarrow getYaw(spline, s_i)
 7:
           r_b \ll etCurvature(spline.s_i)
 8:
       end for
 9:
10: end procedure
```

where yaw angle is determined by $atan2(\dot{y},\dot{x})$ and the curvature is determined by $\frac{\ddot{y}\cdot\dot{x}-\ddot{x}\cdot\dot{y}}{(\dot{x}^2+\dot{y}^2)^{3/2}}$.

ESTIMATE THE POSITION OF A GIVEN SPLINE

For a given *slipne* and time index t, the position is determined as follows:

```
Algorithm 2 Get position given time index
 1: procedure GETPOSITION(t, slipne)
       a_i,b_i,c_id_i
                                                                   ▶ depicted the spline coefficients
                                                                          ▶ knok vector of the spline
 3.
       t_i
 4:
       if t_d < t_0 or (t_d > t_n) then
                                                                        ▶ when given time is invalid
 5:
           none
     end if
 6.
                                            > get the closet index, namely knok, of the polynomial
 7.
     i \leftarrow getIndex(t_d)
    dt \leftarrow t_d - t_i
       position \leftarrow a_i + b_i dt + c_i dt^2 + d_i dt^3
10: end procedure
```

We seek transformations

$$[s, \dot{s}, \ddot{s}, d, \dot{d}, \ddot{d}, d', d''] \rightarrow [\vec{x}, \psi, k, v_x, a_x]$$
 (2)

- s longitudinal displacement
- \bullet $\dot{s} = \frac{ds}{dt}$ longitudinal velocity
- $\ddot{s} = \frac{d^2s}{dt^2}$ longitudinal acceleration
- d lateral displacement
- \blacksquare $\dot{d} = \frac{dd}{dt}$ lateral velocity
- \blacksquare $\ddot{d} = \frac{d\dot{d}}{dt}$ lateral acceleration
- d' = $\frac{dd}{ds}$ the first derivative of the lateral displacement with respect to the longitudinal coordinate
- $d'' = \frac{dd'}{ds}$ the second derivative of the lateral displacement with respect to the longitudinal coordinate

We seek transformations

$$[s,\dot{s},\ddot{s},d,\dot{d},\ddot{d},d',d''] \rightarrow [\vec{x},\psi,k,v_x,a_x] \tag{3}$$

- \blacksquare \vec{x} the current position of the vehicle
- \blacksquare ψ the orientation in the global coordinate system
- k the curvature
- \blacksquare v_x linear velocity in the Cartesian coordinate system
- $\blacksquare a_x = \frac{dv_x}{dt}$ acceleration

THE ROAD-ALIGNED COORDINATE SYSTEM WITH A NON-LINEAR DYNAMIC BICYCLE MODEL

where x and y are the vehicle coordinates in the global coordinate system, yaw angle, wheelbase, longitudinal velocity in the vehicle coordinate system, and steering angle of the front wheel are given by ψ , l,v, and δ , respectively. Vehicle curvature is given by $k = \frac{tan(\delta)}{l}$ whilst rode curvature is given by $k_r = \frac{1}{\rho_s}$

Lima, P. F., Mårtensson, J., Wahlberg, B. (2017, December). Stability conditions for linear time-varying model predictive control in autonomous driving. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (pp. 2775-2782). IEEE.

FRENET FRAME TRAJECTORY TRACKING USING A NON-LINEAR BICYCLE MODEL

THE VEHICLE MODEL IN THE TIME DOMAIN

$$\dot{x} = \frac{dx}{dt} = v_x cos(\psi),$$

$$\dot{y} = \frac{dy}{dt} = v_x sin(\psi),$$

$$\dot{\psi} = \frac{d\psi}{dt} = \frac{v}{l} tan(\delta)$$
(4)

By considering the mentioned vehicle model, the following set of expressions can be derived.

$$\dot{e}_y = \dot{d}(t) = v_x sin(e_\psi),$$

$$\dot{e}_\psi = \dot{\psi} - \dot{\psi}_s,$$

$$\dot{e}_\psi = \dot{\psi} - \dot{\psi}_s,$$

$$\dot{e}_\psi = \dot{\psi} - \dot{\psi}_s,$$

$$\omega = \frac{v_x cos(e_\psi)}{k_r (1/k_r - d(t))} = \frac{v_x cos(e_\psi)}{1 - k_r d(t)} = \frac{\rho_s v cos(e_\psi)}{\rho_s - e_y},$$

$$\omega = \frac{v_x cos(e_\psi)}{(\frac{1}{k_r} - d(t))}$$
 (5)

where ρ_s is the radius of curvature of the road ψ_s is the road heading angle.

Transformations from Frenent coordinates to GLOBAL COORDINATES

The next step is to derive with respect to s, i.e., $\frac{d(\cdot)}{ds} = \frac{d(\cdot)}{dt} \frac{dt}{ds} = \frac{d(\cdot)}{dt} \frac{1}{\dot{s}}$. Using eq 1 and $\vec{n}_r(s) = -\Big(cos_r\psi_r(s) \ sin_r\psi(s)\Big)\dot{\psi}_r = -k_r\dot{s}\vec{t}_r$ where $\vec{n}_r = -sin(\psi)i + cos(\psi)j$ and $\dot{\psi} = \dot{s}k_r$

$$d = [\vec{x} - \vec{r}(s)]^{\top} \vec{n}_{r}$$

$$\dot{d} = [\dot{\vec{x}} - \dot{\vec{r}}(s)]^{\top} \vec{n}_{r} + [\vec{x} - \vec{r}(s)]^{\top} \dot{\vec{n}}_{r}$$

$$= v_{x} \vec{t}_{x}^{\top} \vec{n}_{r} - \dot{s} \underbrace{\vec{t}_{r}^{\top} \vec{n}_{r}}_{=0} - k_{r} \dot{s} \underbrace{[\vec{x} - r(s)]^{\top} \vec{t}_{r}}_{=0} = v_{x} sin(e_{\psi})$$
(6)

note: sin(a-b) = sin(a)cos(b) - cos(a)sin(b)

The velocity of the robot v_x can be expressed as

$$\begin{aligned} v_{x} &= \|\dot{x}\|_{2} = \left\| (1 - k_{r}d(t))\dot{s}\vec{t}_{r} + \dot{d}\vec{n}_{r} \right\|_{2} = \left\| \begin{bmatrix} \vec{t}_{r} & \vec{n}_{r} \end{bmatrix} \begin{bmatrix} 1 - k_{r}d & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{s} \\ \dot{d} \end{bmatrix} \right\|_{2} \\ &= \left\| \begin{bmatrix} 1 - k_{r}d & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{s} \\ \dot{d} \end{bmatrix} \right\|_{2} = \sqrt{[1 - k_{r}d(t)]^{2}\dot{s}^{2} + \dot{d}^{2}} \end{aligned} \tag{7}$$

$$e'_{y} = \frac{\dot{e}_{y}}{\dot{s}} = \frac{v_{x}sin(e_{\psi})}{v_{x}cos(e_{\psi})} (1 - d(t)k_{r}) = \left(1 - d(t)k_{r}\right)tan(e_{\psi})$$

$$e'_{\psi} = \frac{\frac{v_{x}}{k} - \frac{v_{x}cos(e_{\psi})}{1/k_{r} - d(t)}}{\frac{v_{x}cos(e_{\psi})}{1 - k_{r}d(t)}} = \frac{k(\rho_{s} - d(t))}{\rho_{s}cos(e_{\psi})} - \frac{1}{\rho_{s}} = \frac{k(\rho_{s} - d(t))}{\rho_{s}cos(e_{\psi})} - \psi'_{s}, \qquad (8)$$

$$\psi'_{s} = \frac{\dot{\psi}_{s}}{\dot{s}} = \frac{\frac{v_{x}cos(e_{\psi})k_{r}}{1 - d(t)k_{r}}}{\frac{v_{x}cos(e_{\psi})k_{r}}{1 - d(t)}} = \frac{1}{\rho_{s}}$$

$$e'_{y} = d' = \frac{d}{ds}d = \frac{dt}{ds}\frac{d}{dt}d = \frac{1}{\dot{s}}\dot{d} = \frac{v_{x}}{\dot{s}}sin(e_{\psi}) = sin(e_{\psi})\sqrt{[1 - k_{r}d(t)]^{2} + d'^{2}}$$

$$d'^{2} = \left([1 - k_{r}d(t)]^{2} + d'^{2}\right)sin^{2}(e_{\psi})$$

$$\Rightarrow d'^{2}[1 - sin^{2}(e_{\psi})] = [1 - k_{r}d(t)]^{2}sin^{2}(e_{\psi})$$

$$d' = \left(1 - d(t)k_{r}\right)tan(e_{\psi})$$
(9)

In additionally, $[\vec{x} - r(\vec{s})]^{\top} \vec{t}_r = 0$ at all times, so that differentiation with respect to time gives

$$[\vec{x} - r(\vec{s})]^{\top} \vec{t}_r + [\vec{x} - r(\vec{s})]^{\top} \dot{\vec{t}}_r = 0, \quad \dot{\vec{t}}_r = \vec{n}_r \dot{s} k_r$$

$$v_x \vec{t}_x^{\top} \vec{t}_r - \dot{s} \vec{t}_r^{\top} \vec{t}_r + d(t) \dot{s} k_r = 0$$

$$\frac{v_x cos(e_{\psi})}{\dot{s}} - 1 + k_r d = 0 \Rightarrow v_x = \dot{s} \frac{1 - k_r d}{cos(e_{\psi})}$$

$$(10)$$

If s_x is the arc length of the trajectory \vec{x}

$$\frac{d}{ds} = \frac{ds_x}{ds} \frac{d}{ds_x} = \frac{ds_x}{dt} \frac{dt}{ds} \frac{d}{ds_x} = \frac{v_x}{\dot{s}} \frac{d}{ds_x} = \frac{1 - k_r d}{\cos(e_\psi)} \frac{d}{ds_x} \tag{11}$$

Hence, the second derivative of d can be calculated as

$$d'' = -[k_r d(t)]' tan(e_{\psi}) + \frac{1 - k_r d}{\cos^2(e_{\psi})} \left[\frac{de_{\psi}}{ds} \right]$$

$$= -[k_r d(t)]' tan(e_{\psi}) + \frac{1 - k_r d}{\cos^2(e_{\psi})} \left[e'_{\psi} \right]$$

$$= -[k'_r d(t) + k_r d'] tan(e_{\psi}) + \frac{1 - k_r d}{\cos^2(e_{\psi})} \left[\frac{k(\rho_s - d(t))}{\rho_s \cos(e_{\psi})} - \frac{1}{\rho_s} \right]$$

$$= -[k'_r d(t) + k_r d'] tan(e_{\psi}) + \frac{1 - k_r d}{\cos^2(e_{\psi})} \left[k \frac{(1 - k_r d)}{\cos(e_{\psi})} - k_r \right]$$
(12)

Time differentiating velocity more time yields the last unknown $a_x := \dot{v}_x$

$$a_{x} = \dot{v}_{x} = \ddot{s} \frac{1 - k_{r}d}{\cos(e_{\psi})} + \dot{s} \frac{d}{ds} \frac{1 - k_{r}d}{\cos(e_{\psi})} \dot{s} = \ddot{s} \frac{1 - k_{r}d}{\cos(e_{\psi})} + \frac{\dot{s}^{2}}{\cos(e_{\psi})} \left[[1 - k_{r}d] tan(e_{\psi})e'_{\psi} - [k'_{r}d + k_{r}d'] \right]$$
(13)

For high-speed driving $\dot{d}=\frac{dd}{dt}=\frac{ds}{dt}\frac{dd}{ds}=\dot{s}d$ and $\ddot{d}=d''\dot{s}^2+d'\ddot{s}$

POLYNOMIAL MOTION PLANNING

The Quntic polynomial is generated to represent the motion of the vehicle

$$x(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + a_5 t^5$$

$$y(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + a_5 t^5$$
(14)

The objective is to minimize the square of the jerk,

$$C = \frac{1}{2} \int_0^T (\frac{d^3 x}{dt^3})^2 + (\frac{d^3 y}{dt^3})^2 dt$$
 (15)

FRENET FRAME TRAJECTORY GENERATION

Optimal lateral trajectory generation

where green being the optimal trajectory, black the valid, and gray the invalid alternatives

[1]. Werling, M., Ziegler, J., Kammel, S., Thrun, S. (2010, May). Optimal trajectory generation for dynamic street scenarios in a frenet frame. In 2010 IEEE International Conference on Robotics and Automation (pp. 987-993). IEEE.

FRENET FRAME TRAJECTORY GENERATION

Optimal longitudinal tracking of a target position in blue

where green being the optimal trajectory, black the valid, and gray the invalid alternatives in each replanning step

[1]. Werling, M., Ziegler, J., Kammel, S., Thrun, S. (2010, May). Optimal trajectory generation for dynamic street scenarios in a frenet frame. In 2010 IEEE International Conference on Robotics and Automation (pp. 987-993). IEEE.

FRENET FRAME TRAJECTORY GENERATION ALGORITHM

```
Algorithm 3 Frenet frame trajectory generation algorithm
 1: procedure FRENETTRAJGEN(vr. vr. do. do. so)
         frenet\ paths \leftarrow \Pi
         for d_i \leftarrow D_{min} to D_{max}, D_{width} do
              f p ← FrenetPath() // placeholder for lat and log trajectories
              for t_i \leftarrow T_{min} to T_{max}, \Delta T do
                  lat \leftarrow generateQuinticPolynomial(d_0, \dot{d}_0, \ddot{d}_0, d_i, 0.0, 0.0, t_i)
                  for t_i \leftarrow 0 to t_i, \Delta T do
                       fp.t << \leftarrow t_i
                   end for
                  for t \leftarrow 0 to f p.t do
11-
                       fp.d << \leftarrow lat.get d(t)
                       fp.\dot{d} << \leftarrow lat.get \ ddot(t)
12
                       fp.\ddot{d} << \leftarrow lat.get \ dddot(t)
13.
                   end for
14.
                  for v_t \leftarrow v_T - \Delta V to v_T + \Delta V, D_S do
15:
                       fps = copy(fp) // copy the lat trajectory and adding lon trajectory into fps
16:
17:
                       lon \leftarrow generateQuarticPolynomial(s_0, v_x, \dot{v}_x, v_t, 0.0, t_i)
                       for t \leftarrow 0 to f p.t do
18
                            fps.s << \leftarrow lon.get s(t)
19:
20.
                            fps.\dot{s} << \leftarrow lon.get\_sdot(t)
                            fps.\ddot{s} << \leftarrow lon.get \ sddot(t)
21.
                       end for
22
                       J_d \leftarrow \sum_{i=0}^{fp.t} fps. \overset{\dots}{d}^2(t_i)
                       J_s \leftarrow \sum_{i=0}^{f p.t} f p s. \ddot{s}^2(t_i)
24:
                       fps.c_d \leftarrow k_j \cdot J_d + k_t \cdot t_i + k_d \sum_{i=0}^{fp.t} \cdot fps.d(t_i)^2
25.
                       fps.c_v \leftarrow k_j \cdot J_s + k_t \cdot t_i + k_d \sum_{i=0}^{fp.t} (v_T - fps.s(t_i))^2
                       f p s. c_f \leftarrow k_{lat} f p s. c_d + k_{lon} f p s. c_v
27:
                       frenet paths << fps
28:
                   end for
30-
              end for
         end for
```

32: end procedure

CALCULATE GLOBAL TRAJECTORIES

After Frenet trajectories are estimated, the following algorithm can be utilized to transform the franent frame to the cartesian coordinate system.

■ The position

$$x, y \to s, d$$

$$\vec{x}(s(t), d(t)) = \vec{r}(s(t)) + d(t)\vec{n}_r(s(t)),$$

The velocity

$$\begin{split} \dot{s}, \dot{d} &\rightarrow v_x, \psi \\ \dot{d} &= v_x sin(\psi - \psi_r) \\ \dot{s} &= \frac{v cos(\psi - \psi_r)}{1 - \kappa_r d} \\ v &= \sqrt{\dot{s}^2 (1 - \kappa_r d)^2 + \dot{d}^2} \\ \psi &= arccos(\frac{\dot{s}(1 - \kappa_r d)}{v} + \psi_r) \end{split}$$

CALCULATE GLOBAL TRAJECTORIES

■ The acceleration

$$\begin{split} \ddot{s} &= 0 \text{ for small } \Delta v \\ \ddot{d} &= d'' \dot{s}^2 + d' \ddot{s} \\ d'' &= -(\kappa_r' d + \kappa_r d') tan(\theta - \theta_r) + \frac{1 - \kappa_r d}{cos^2 \Delta \theta} (\kappa_x \frac{1 - \kappa_r d}{cos \Delta \theta} - \kappa_r) \\ d' &= (1 - \kappa_r d) tan \Delta \theta \\ \kappa_r' &= \frac{(x'^2 + y'^2)(x'y'' + y'x''') - 3(x'y' - y'x'')(x'x'' + y'y'')}{(x'^2 + y'^2)^3} \end{split}$$

where x' and y' are the parameterization of curve to the arc segment s

CALCULATE GLOBAL TRAJECTORIES

```
Algorithm 4 Calculate global trajectories
 1: procedure CALGLOBALTRAJ(frenet_paths,spline)
 2:
        for fp \leftarrow frenet \ paths_0 to frenet \ paths_m do
 3.
            for i \leftarrow 0 to len(fp.s) do
                 x_i, y_i \ll extPositionVector(spline.s_i)
 4:
                 vaw_i << \leftarrow getYaw(spline, s_i)
 5:
                 d_i \leftarrow f p.d_i
 6.
                 f p.x << \leftarrow x_i + d_i \cdot cos(vaw_i + \pi/2)
                 f p. v << \leftarrow v_i + d_i \cdot sin(vaw_i + \pi/2)
            end for
            for i \leftarrow 0 to len(fp.x) - 1 do
10:
                 \delta x \leftarrow f p.x_{i+1} - f p.x_i
11:
                 \delta v \leftarrow f p_i v_{i+1} - f p_i v_i
12.
                 f p.vaw << \leftarrow atan2(\delta v.\delta x)
13:
                 fp.ds << \leftarrow hypotenuse(\delta x, \delta y)
14:
            end for
15.
                              > set the last fp.yaw and fp.ds as before the last values that calculated
16:
17:
            for i \leftarrow 0 to len(fp.vaw) - 1 do
                 fp.k \ll \frac{fp.yaw_{i+1} - fp.yaw_i}{fp.ds_i}
18.
            end for
19:
        end for
20:
        returnfrenet\_paths
21.
22: end procedure
```