Exploring Weather Trends

Soner Nefşioğulları - Udacity Data Analyst Nanodegree Candidate

First, an SQL query is written to see which cities are listed in the spesific country.

```
SELECT *

FROM city_list

WHERE country = 'Turkey';
```

Second, query for extracting the city level data. Then exported to CSV.

```
SELECT *
FROM city_data
WHERE city = 'Istanbul';
```

Third, a query for extracting global data. Then exported to CSV.

```
SELECT *
FROM global_data;
```

In [1]:

```
%matplotlib inline
#to be able to see output of plotting commands directly below the code
cell that produced it
import pandas as pd #to be able to read and make additional analysis
import matplotlib.pylab as pl #to be able to plot the graphs
```

In [2]:

```
istanbul = pd.read_csv("results_istanbul.csv", sep=',') #reading full txt
file
istanbul.head() #shows the first 5 row of the dataframe
```

Out[2]:

year	city	country	avg_temp

0	1743 year	Istanbul city	Turkey country	10.37 avg temp
		Istanbul		15.04
2	1745	Istanbul	Turkey	6.20
3	1746	Istanbul	Turkey	NaN
4	1747	Istanbul	Turkey	NaN

In [3]:

```
global_ = pd.read_csv("results_global.csv", sep=',') #reading full txt fi
le
global_.head()
```

Out[3]:

	year	avg_temp
0	1750	8.72
1	1751	7.98
2	1752	5.78
3	1753	8.39
4	1754	8.47

Let's check whether if we have "null" values in dataframe

```
In [4]:
```

```
global_.isnull().values.any()
```

Out[4]:

False

In [5]:

```
istanbul.isnull().sum().sum()
```

Out[5]:

4

There are 4 "NaN" values in istanbul dataframe.

In [6]:

```
nan_rows = istanbul[istanbul.isnull().any(1)]
nan_rows
```

Out[6]:

	year	city	country	avg_temp
3	1746	Istanbul	Turkey	NaN
4	1747	Istanbul	Turkey	NaN

5	year	Istanbul	FOUNTLY	avg_temp
6	1749	Istanbul	Turkey	NaN

Since dataframes start from different years, it is better to set beginning year equal for upcoming comparison.

```
In [7]:
```

```
istanbul = istanbul[istanbul['year']>1749]
```

In [8]:

```
istanbul.head()
```

Out[8]:

	year	city	country	avg_temp
7	1750	Istanbul	Turkey	13.83
8	1751	Istanbul	Turkey	14.14
9	1752	Istanbul	Turkey	9.48
10	1753	Istanbul	Turkey	13.42
11	1754	Istanbul	Turkey	13.58

What about ending years?

In [9]:

```
global_.tail()
```

Out[9]:

	year	avg_temp
261	2011	9.52
262	2012	9.51
263	2013	9.61
264	2014	9.57
265	2015	9.83

In [10]:

```
istanbul.tail()
```

Out[10]:

	year	city	country	avg_temp
266	2009	Istanbul	Turkey	14.95

267	2010 year	Istanbul City	Turkey	15.60 avg temp
268	2011	Istanbul	Turkey	13.65
269	2012	Istanbul	Turkey	14.97
270	2013	Istanbul	Turkey	16.02

Make ending years equal:

```
In [12]:
```

```
global_=global_[global_['year']<2014]</pre>
```

In [13]:

```
global_.tail()
```

Out[13]:

	year	avg_temp
259	2009	9.51
260	2010	9.70
261	2011	9.52
262	2012	9.51
263	2013	9.61

Calculate moving average taking last 5 years' average of the average temperatures. Iterate it for each year.

In [14]:

```
istanbul['mov_avg_ist'] = istanbul.avg_temp.rolling(window=5).mean()
istanbul.head()
```

Out[14]:

	year	city	country	avg_temp	mov_avg_ist
7	1750	Istanbul	Turkey	13.83	NaN
8	1751	Istanbul	Turkey	14.14	NaN
9	1752	Istanbul	Turkey	9.48	NaN
10	1753	Istanbul	Turkey	13.42	NaN
11	1754	Istanbul	Turkey	13.58	12.89

```
In [17]:
```

```
global_['mov_avg_glob'] = global_.avg_temp.rolling(window=5).mean()
```

```
In [18]:
```

```
global_.head()
```

Out[18]:

	year	avg_temp	mov_avg_glob
0	1750	8.72	NaN
1	1751	7.98	NaN
2	1752	5.78	NaN
3	1753	8.39	NaN
4	1754	8.47	7.868

In [24]:

```
del global_['avg_temp']
```

In [25]:

```
compare = pd.merge(istanbul, global_, how='left', on='year')
```

In [27]:

compare.head()

Out[27]:

	year	city	country	avg_temp	mov_avg_ist	mov_avg_glob
0	1750	Istanbul	Turkey	13.83	NaN	NaN
1	1751	Istanbul	Turkey	14.14	NaN	NaN
2	1752	Istanbul	Turkey	9.48	NaN	NaN
3	1753	Istanbul	Turkey	13.42	NaN	NaN
4	1754	Istanbul	Turkey	13.58	12.89	7.868

In [32]:

```
compare = compare.drop(compare.index[:4])
```

In [34]:

compare.head()

Out[34]:

	year	city	country	avg_temp	mov_avg_ist	mov_avg_glob
4	1754	Istanbul	Turkey	13.58	12.890	7.868
5	1755	Istanbul	Turkey	13.36	12.796	7.796
6	1756	Istanbul	Turkey	14.10	12.788	7.970
7	1757	Istanbul	Turkey	13.90	13.672	8.618
Ω	175Ω	letanhul	Turkov	10 10	12 <i>I</i> U8	፬ ጋ፬፬

```
vear city country avg temp mov avg ist mov avg glob
```

In [71]:

```
pl.figure(figsize=(15,9)) #setting figure size
pl.plot('year', 'mov_avg_ist', data=compare, color='blue', linewidth=4, la
bel='Istanbul')
pl.plot('year', 'mov_avg_glob', data=compare, color='green', linewidth=4,
label='global')
pl.xlabel("Year", fontsize=15)
pl.ylabel("Average Temperature(C)", fontsize=15)
pl.legend(loc='upper left', fontsize=15)
```

Out[71]:

<matplotlib.legend.Legend at 0xbe1f49dc18>

Takeaways

- Istanbul is hot city compared to global average temperature.
- Average temperature of Istanbul is always greater than average global for all years between 1750 and 2013. In addition, the difference seems to stayed constant over time, although there is slight convergence in 1980s.
- Average temperatures fluctuating yearly for both istanbul and global. The fluctiations looks like same between 1750 and 1850. After this time, istanbul temperature has ups and downs while global average is more upward-flat compared to istanbul.
- The overall average is constant until 1900. However, after 1900 both istanbul and global average temperatures are beginning to incerease.
- There is a dramatic increase for both istanbul and global average temperature after 2000.