MA 101 (Mathematics I)

Multivariable Calculus: Hints / Solutions of Practice Problem Set - 2

1. Examine whether the set $\{(x,x):x\in\mathbb{R}\}$ is (a) open (b) closed in \mathbb{R}^2 .

Solution: We have $(0,0) \in S = \{(x,x) : x \in \mathbb{R}\}$. If possible, let $(0,0) \in S^0$. Then there exists r > 0 such that $B_r((0,0)) \subseteq S$. Since $(\frac{r}{2},0) \in B_r((0,0))$ but $(\frac{r}{2},0) \notin S$, we get a contradiction. Hence $(0,0) \notin S^0$. Therefore S is not an open set in \mathbb{R}^2 .

Again, let $((x_n, x_n))$ be any sequence in S such that $(x_n, x_n) \to (x, y) \in \mathbb{R}^2$. Then $x_n \to x$ and $x_n \to y$. Hence x = y and so $(x, y) \in S$. Therefore S is a closed set in \mathbb{R}^2 .

2. Examine whether the set $\{(x,y) \in \mathbb{R}^2 : 0 < x < y\}$ is (a) open (b) closed in \mathbb{R}^2 .

Solution: We have already shown in Ex.25 of Practice Problem Set - 1 that $S = \{(x,y) \in \mathbb{R}^2 : 0 < x < y\}$ is an open set in \mathbb{R}^2 .

Again, since $\left(\frac{1}{2n}, \frac{1}{n}\right) \in S$ for all $n \in \mathbb{N}$ and $\left(\frac{1}{2n}, \frac{1}{n}\right) \to (0, 0) \notin S$, S is not a closed set in \mathbb{R}^2 .

3. Examine whether the set $(0,1) \times \{0\}$ is (a) open (b) closed in \mathbb{R}^2 .

Solution: We have $(\frac{1}{2},0) \in (0,1) \times \{0\}$. If possible, let $(\frac{1}{2},0) \in ((0,1) \times \{0\})^0$. Then there exists r > 0 such that $B_r((\frac{1}{2},0)) \subseteq (0,1) \times \{0\}$. Since $(\frac{1}{2},\frac{r}{2}) \in B_r((\frac{1}{2},0))$ but $(\frac{1}{2},\frac{r}{2}) \notin (0,1) \times \{0\}$, we get a contradiction. Hence $(\frac{1}{2},0) \notin ((0,1) \times \{0\})^0$. Therefore $(0,1) \times \{0\}$ is not an open set in \mathbb{R}^2 .

Again, since $\left(\frac{1}{n+1},0\right) \in (0,1) \times \{0\}$ for all $n \in \mathbb{N}$ and $\left(\frac{1}{n+1},0\right) \to (0,0) \notin (0,1) \times \{0\}$, $(0,1) \times \{0\}$ is not a closed set in \mathbb{R}^2 .

4. If $f: \mathbb{R}^m \to \mathbb{R}$ is continuous, then show that $\{\mathbf{x} \in \mathbb{R}^m : f(\mathbf{x}) > 0\}$ is an open set in \mathbb{R}^m .

Solution: Let (\mathbf{x}_n) be any sequence in $\mathbb{R}^m \setminus S$, where $S = \{\mathbf{x} \in \mathbb{R}^m : f(\mathbf{x}) > 0\}$ and let $\mathbf{x}_n \to \mathbf{x} \in \mathbb{R}^m$. Since f is continuous at \mathbf{x} , $f(\mathbf{x}_n) \to f(\mathbf{x})$. Also, since $\mathbf{x}_n \in \mathbb{R}^m \setminus S$ for all $n \in \mathbb{N}$, $f(\mathbf{x}_n) \leq 0$ for all $n \in \mathbb{N}$ and hence it follows that $f(\mathbf{x}) \leq 0$. Thus $\mathbf{x} \in \mathbb{R}^m \setminus S$ and therefore $\mathbb{R}^m \setminus S$ is a closed set in \mathbb{R}^m . Consequently S is an open set in \mathbb{R}^m .

5. If $f: \mathbb{R}^m \to \mathbb{R}$ is continuous, then show that $\{\mathbf{x} \in \mathbb{R}^m : f(\mathbf{x}) \geq 0\}$ and $\{\mathbf{x} \in \mathbb{R}^m : f(\mathbf{x}) = 0\}$ are closed sets in \mathbb{R}^m .

Solution: Let (\mathbf{x}_n) be any sequence in $S_1 = {\mathbf{x} \in \mathbb{R}^m : f(\mathbf{x}) \ge 0}$ and let $\mathbf{x}_n \to \mathbf{x} \in \mathbb{R}^m$. Since f is continuous at \mathbf{x} , $f(\mathbf{x}_n) \to f(\mathbf{x})$. Also, since $\mathbf{x}_n \in S_1$ for all $n \in \mathbb{N}$, $f(\mathbf{x}_n) \ge 0$ for all $n \in \mathbb{N}$ and hence it follows that $f(\mathbf{x}) \ge 0$. Thus $\mathbf{x} \in S_1$ and therefore S_1 is a closed set in \mathbb{R}^m .

Again, let (\mathbf{x}_n) be any sequence in $S_2 = \{\mathbf{x} \in \mathbb{R}^m : f(\mathbf{x}) = 0\}$ and let $\mathbf{x}_n \to \mathbf{x} \in \mathbb{R}^m$. Since f is continuous at \mathbf{x} , $f(\mathbf{x}_n) \to f(\mathbf{x})$. Also, since $\mathbf{x}_n \in S_2$ for all $n \in \mathbb{N}$, $f(\mathbf{x}_n) = 0$ for all $n \in \mathbb{N}$ and hence it follows that $f(\mathbf{x}) = 0$. Thus $\mathbf{x} \in S_2$ and therefore S_2 is a closed set in \mathbb{R}^m . 6. Using Ex.2 in the Practice Problem Set - 2, show that $\{(x,y,z) \in \mathbb{R}^3 : x^2 + 2z < 3|y|\}$ is an open set in \mathbb{R}^3 and $\{(x,y,z) \in \mathbb{R}^3 : \sin(xyz) = |xy|\}$ is a closed set in \mathbb{R}^3 .

Solution: If $f(x, y, z) = 3|y| - x^2 - 2z$ and $g(x, y, z) = \sin(xyz) - |xy|$ for all $(x, y, z) \in \mathbb{R}^3$, then we know that both $f : \mathbb{R}^3 \to \mathbb{R}$ and $g : \mathbb{R}^3 \to \mathbb{R}$ are continuous. Hence by Ex.2(a) of Practice Problem Set - 2, $\{(x, y, z) \in \mathbb{R}^3 : x^2 + 2z < 3|y|\} = \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) > 0\}$ is an open set in \mathbb{R}^3 and by Ex.2(b) of Practice Problem Set - 2, $\{(x, y, z) \in \mathbb{R}^3 : \sin(xyz) = |xy|\} = \{(x, y, z) \in \mathbb{R}^3 : g(x, y, z) = 0\}$ is a closed set in \mathbb{R}^3 .

- 7. Let $f: S \subseteq \mathbb{R}^m \to \mathbb{R}^k$ be continuous and let $g: \mathbb{R}^m \to \mathbb{R}^k$ be such that $g(\mathbf{x}) = f(\mathbf{x})$ for all $\mathbf{x} \in S$.
 - (a) Show that g need not be continuous on S.
 - (b) If S is an open set in \mathbb{R}^m , then show that g is continuous on S.

Solution: (a) Let f(x,y) = 1 for all $(x,y) \in S = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ and $g(x,y) = \begin{cases} 1 & \text{if } (x,y) \in S, \\ 2 & \text{if } (x,y) \in \mathbb{R}^2 \setminus S. \end{cases}$

Then $f: S \to \mathbb{R}$ is continuous (as a constant function) and f(x,y) = g(x,y) for all $(x,y) \in S$. However, g is not continuous at $(1,0) \in S$, since $\left(1 + \frac{1}{n}, 0\right) \to (1,0)$ but $g\left(1 + \frac{1}{n}, 0\right) = 2 \to 2 \neq 1 = g(1,0)$.

- (b) Let $\mathbf{x}_0 \in S$ and $\varepsilon > 0$. Since S is an open set in \mathbb{R}^m , there exists r > 0 such that $B_r(\mathbf{x}_0) \subseteq S$. Since f is continuous at \mathbf{x}_0 , there exists s > 0 such that $||f(\mathbf{x}) f(\mathbf{x}_0)|| < \varepsilon$ for all $\mathbf{x} \in S \cap B_s(\mathbf{x}_0)$. If $\delta = \min\{r, s\} > 0$, then $B_\delta(\mathbf{x}_0) \subseteq B_r(\mathbf{x}_0) \subseteq S$ and $B_\delta(\mathbf{x}_0) \subseteq B_s(\mathbf{x}_0)$. Hence for all $\mathbf{x} \in B_\delta(\mathbf{x}_0)$, we have $g(\mathbf{x}) = f(\mathbf{x})$ and $||g(\mathbf{x}) g(\mathbf{x}_0)|| < \varepsilon$. Therefore g is continuous at \mathbf{x}_0 . Since $\mathbf{x}_0 \in S$ is arbitrary, g is continuous on S.
- 8. Let $f: \mathbb{R}^m \to \mathbb{R}$ be continuous such that $\lim_{\|\mathbf{x}\| \to \infty} f(\mathbf{x}) = 1$. Show that f is bounded on \mathbb{R}^m . Solution: Since $\lim_{\|\mathbf{x}\| \to \infty} f(\mathbf{x}) = 1$, there exists r > 0 such that $|f(\mathbf{x}) 1| < 1$ for all $\mathbf{x} \in \mathbb{R}^m$ with $\|\mathbf{x}\| > r$. Hence $|f(\mathbf{x})| = |f(\mathbf{x}) 1 + 1| \le |f(\mathbf{x}) 1| + 1 < 2$ for all $\mathbf{x} \in \mathbb{R}^m$ with $\|\mathbf{x}\| > r$. Again, since $S = \{\mathbf{x} \in \mathbb{R}^m : \|\mathbf{x}\| \le r\}$ is a closed and bounded subset of \mathbb{R}^m and since $f: \mathbb{R}^m \to \mathbb{R}$ is continuous, f(S) is a bounded subset of \mathbb{R} . Hence there exists K > 0 such that $|f(\mathbf{x})| \le K$ for all $\mathbf{x} \in S$. If $M = \max\{2, K\}$, then M > 0 and $|f(\mathbf{x})| \le M$ for all $\mathbf{x} \in \mathbb{R}^m$. Consequently f is bounded on \mathbb{R}^m .
- 9. State TRUE or FALSE with justification: There exists a continuous function $f: \mathbb{R} \to \mathbb{R}^2$ such that $f(\cos n) = (n, \frac{1}{n})$ for all $n \in \mathbb{N}$.

Solution: Since $(\cos n)$ is a bounded sequence in \mathbb{R} , by Bolzano-Weierstrass theorem in \mathbb{R} , there exists a strictly increasing sequence (n_k) in \mathbb{N} and $\alpha \in \mathbb{R}$ such that $\cos n_k \to \alpha$. If $f: \mathbb{R} \to \mathbb{R}^2$ is continuous, then $(n_k, \frac{1}{n_k}) = f(\cos n_k) \to f(\alpha)$ in \mathbb{R}^2 and consequently the sequence (n_k) converges in \mathbb{R} , which is not true, since (n_k) is unbounded. Hence it follows that no continuous function $f: \mathbb{R} \to \mathbb{R}^2$ can exist satisfying $f(\cos n) = (n, \frac{1}{n})$ for all $n \in \mathbb{N}$. Therefore the given statement is FALSE.

10. State TRUE or FALSE with justification: There exists a continuous function from $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$ onto \mathbb{R}^2 .

Solution: We know that $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\} = B_1[(0,0)]$ is a closed and bounded set in \mathbb{R}^2 and \mathbb{R}^2 is not bounded. Hence there cannot exist any continuous function from $B_1[(0,0)]$ onto \mathbb{R}^2 .

11. If $f: \mathbb{R}^2 \to \mathbb{R}^2$ is continuous, then does there exist a sequence $((x_n, y_n))$ in \mathbb{R}^2 such that $x_n^2 + y_n^2 = \frac{1}{2}$ and $f(x_n, y_n) = (n, \frac{1}{n})$ for all $n \in \mathbb{N}$? Justify.

Solution: If possible, let there exist a sequence $((x_n, y_n))$ in \mathbb{R}^2 such that $x_n^2 + y_n^2 = \frac{1}{2}$ and $f(x_n, y_n) = (n, \frac{1}{n})$ for all $n \in \mathbb{N}$. Then $\|(x_n, y_n)\| = \sqrt{x_n^2 + y_n^2} = \frac{1}{\sqrt{2}}$ for all \mathbb{N} and so $((x_n, y_n))$ is a bounded sequence in \mathbb{R}^2 . Hence by the Bolzano-Weierstrass theorem in \mathbb{R}^2 , there exist $(x, y) \in \mathbb{R}^2$ and a convergent subsequence $((x_{n_k}, y_{n_k}))$ of $((x_n, y_n))$ such that $(x_{n_k}, y_{n_k}) \to (x, y)$. Since f is continuous at (x, y), $(n_k, \frac{1}{n_k}) = f(x_{n_k}, y_{n_k}) \to f(x, y) \in \mathbb{R}^2$. Consequently the sequence (n_k) converges in \mathbb{R} , which is not true, since (n_k) is unbounded. Hence it follows that there cannot exist any sequence $((x_n, y_n))$ in \mathbb{R}^2 such that $x_n^2 + y_n^2 = \frac{1}{2}$ and $f(x_n, y_n) = (n, \frac{1}{n})$ for all $n \in \mathbb{N}$.

12. Examine whether $\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^4+y^2}$ exist (in \mathbb{R}) and find its value if it exist (in \mathbb{R}).

Solution: Let $((x_n, y_n))$ be any sequence in $\mathbb{R}^2 \setminus \{(0, 0)\}$ such that $(x_n, y_n) \to (0, 0)$. Then $x_n \to 0$ and $y_n \to 0$. Since $\left|\frac{x_n^3 y_n}{x_n^4 + y_n^2}\right| = \left|\frac{x_n^2 y_n}{x_n^4 + y_n^2}\right| |x_n| \le \frac{1}{2}|x_n| \to 0$, it follows that $\frac{x_n^3 y_n}{x_n^4 + y_n^2} \to 0$. Therefore $\lim_{(x,y)\to(0,0)} \frac{x^3 y}{x^4 + y^2} = 0$.

13. Examine whether $\lim_{(x,y)\to(0,0)}\frac{|x|}{y^2}e^{-|x|/y^2}$ exists (in \mathbb{R}) and find its value if it exists (in \mathbb{R}).

Solution: Let $f(x,y) = \frac{|x|}{y^2}e^{-|x|/y^2}$ for all $(x,y) \in \mathbb{R}^2$ with $y \neq 0$. We have $(0,\frac{1}{n}) \to (0,0)$ and $(\frac{1}{n^2},\frac{1}{n}) \to (0,0)$. Also, $f(0,\frac{1}{n}) \to 0$ and $f(\frac{1}{n^2},\frac{1}{n}) \to \frac{1}{e}$. Since $\lim_{n \to \infty} f(0,\frac{1}{n}) \neq \lim_{n \to \infty} f(\frac{1}{n^2},\frac{1}{n})$, $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist (in \mathbb{R}).

14. Examine whether $\lim_{(x,y)\to(0,0)} \frac{x^3+y^2}{x^2+y}$ exists (in \mathbb{R}) and find its value if it exists 9in \mathbb{R}).

Solution: Let $f(x,y) = \frac{x^3 + y^2}{x^2 + y}$ for all $(x,y) \in \mathbb{R}^2$ with $x^2 + y \neq 0$. We have $(\frac{1}{n},0) \to (0,0)$ and $(\frac{1}{n},\frac{1}{n^3}-\frac{1}{n^2}) \to (0,0)$. Also, $f(\frac{1}{n},0) = \frac{1}{n} \to 0$ and $f(\frac{1}{n},\frac{1}{n^3}-\frac{1}{n^2}) = 1 + \frac{1}{n}(\frac{1}{n}-1)^2 \to 1$. Since $f(\frac{1}{n},0) \neq f(\frac{1}{n},\frac{1}{n^3}-\frac{1}{n^2})$, $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist (in \mathbb{R}).

15. Examine whether $\lim_{(x,y)\to(0,0)} \frac{\sqrt{x^2y^2+1}-1}{x^2+y^2}$ exist (in \mathbb{R}) and find its values if it exists (in \mathbb{R}).

Solution: Let $((x_n, y_n))$ be any sequence in $\mathbb{R}^2 \setminus \{(0, 0)\}$ such that $(x_n, y_n) \to (0, 0)$. Then $x_n \to 0$ and $y_n \to 0$. Since $0 \le \frac{\sqrt{x_n^2 y_n^2 + 1} - 1}{x_n^2 + y_n^2} = \frac{x_n^2 y_n^2}{(x_n^2 + y_n^2) \left(\sqrt{x_n^2 y_n^2 + 1} + 1\right)} \le \frac{x_n^2 y_n^2}{x_n^2 + y_n^2} \le y_n^2 \to 0$, it follows that $\frac{\sqrt{x_n^2 y_n^2 + 1} - 1}{x_n^2 + y_n^2} \to 0$. Therefore $\lim_{(x,y) \to (0,0)} \frac{\sqrt{x_n^2 y_n^2 + 1} - 1}{x_n^2 + y_n^2} = 0$.

16. Examine whether $\lim_{(x,y)\to(0,0)} \frac{x^3y^2+y^6}{x^6+y^4}$ exists (in \mathbb{R}) and find its value if it exists (in \mathbb{R}).

Solution: Let $f(x,y) = \frac{x^3y^2 + y^6}{x^6 + y^4}$ for all $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$. We have $(\frac{1}{n},0) \to (0,0)$ and $(\frac{1}{\sqrt[3]{n}}, \frac{1}{\sqrt{n}}) \to (0,0)$. Also, $f(\frac{1}{n},0) \to 0$ and $f(\frac{1}{\sqrt[3]{n}}, \frac{1}{\sqrt{n}}) \to \frac{1}{2}$. Since $\lim_{(x,y)\to(0,0)} f(\frac{1}{n},0) \neq \lim_{(x,y)\to(0,0)} f(\frac{1}{\sqrt[3]{n}}, \frac{1}{\sqrt{n}})$, $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist (in \mathbb{R}).

17. Examine whether $\lim_{(x,y,z)\to(0,0,0)} \frac{(x+y+z)^2}{x^2+y^2+z^2}$ exists (in \mathbb{R}) and find its value if it exists (in \mathbb{R}).

Solution: Let $f(x, y, z) = \frac{(x+y+z)^2}{x^2+y^2+z^2}$ for all $(x, y, z) \in \mathbb{R}^3 \setminus \{(0, 0, 0)\}$. We have $\left(\frac{1}{n}, 0, 0\right) \to (0, 0, 0)$ and $\left(\frac{1}{n}, \frac{1}{n}, 0\right) \to (0, 0, 0)$. Also, $f\left(\frac{1}{n}, 0, 0\right) = 1 \to 1$ and $f\left(\frac{1}{n}, \frac{1}{n}, 0\right) = 2 \to 2$. Since $\lim_{n \to \infty} f\left(\frac{1}{n}, 0, 0\right) \neq \lim_{n \to \infty} f\left(\frac{1}{n}, \frac{1}{n}, 0\right)$, $\lim_{(x, y, z) \to (0, 0, 0)} f(x, y, z)$ does not exist (in \mathbb{R}).

18. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} x+y & \text{if } x \neq y, \\ 1 & \text{if } x = y. \end{cases}$ Examine whether $\lim_{(x,y)\to(0,0)} f(x,y)$ exists (in \mathbb{R}).

Solution: We have $\left(\frac{1}{n},0\right) \to (0,0)$ and $\left(\frac{1}{n},\frac{1}{n}\right) \to (0,0)$. Also, $f\left(\frac{1}{n},0\right) = \frac{1}{n} \to 0$ and $f\left(\frac{1}{n},\frac{1}{n}\right) = 1 \to 1$. Since $\lim_{n \to \infty} f\left(\frac{1}{n},0\right) \neq \lim_{n \to \infty} f\left(\frac{1}{n},\frac{1}{n}\right)$, $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist (in \mathbb{R}).

19. Show that $\lim_{x\to 0} \left(\lim_{y\to 0} \frac{x^2y^2}{x^2y^2 + (x-y)^2} \right) = 0 = \lim_{y\to 0} \left(\lim_{x\to 0} \frac{x^2y^2}{x^2y^2 + (x-y)^2} \right)$ but that $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2y^2 + (x-y)^2}$ does not exist (in \mathbb{R}).

Solution: Let $f(x,y) = \frac{x^2y^2}{x^2y^2 + (x-y)^2}$ for all $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$. Then $\lim_{y \to 0} f(x,y) = \frac{0}{x^2} = 0$ for each $x \in \mathbb{R} \setminus \{0\}$ and $\lim_{x \to 0} f(x,y) = \frac{0}{y^2} = 0$ for each $y \in \mathbb{R} \setminus \{0\}$. Consequently $\lim_{x \to 0} \left(\lim_{y \to 0} f(x,y)\right) = 0 = \lim_{y \to 0} \left(\lim_{x \to 0} f(x,y)\right)$. Again, we have $\left(\frac{1}{n},0\right) \to (0,0)$ and $\left(\frac{1}{n},\frac{1}{n}\right) \to (0,0)$. Also, $f\left(\frac{1}{n},0\right) = 0 \to 0$ and $f\left(\frac{1}{n},\frac{1}{n}\right) = 1 \to 1$. Since $\lim_{n \to \infty} f\left(\frac{1}{n},0\right) \neq \lim_{n \to \infty} f\left(\frac{1}{n},\frac{1}{n}\right)$, $\lim_{(x,y) \to (0,0)} f(x,y)$ does not exist (in \mathbb{R}).

20. Show that $\lim_{(x,y)\to(0,0)} \frac{1}{3x^2+y^4} = \infty$.

Solution: Let $((x_n, y_n))$ be any sequence in $\mathbb{R}^2 \setminus \{(0,0)\}$ such that $(x_n, y_n) \to (0,0)$. Then $x_n \to 0$, $y_n \to 0$ and hence $3x_n^2 + y_n^4 \to 0$. If r > 0, then there exists $n_0 \in \mathbb{N}$ such that $3x_n^2 + y_n^4 < \frac{1}{r}$ for all $n \ge n_0$ and so $\frac{1}{3x_n^2 + y_n^4} > r$ for all $n \ge n_0$. Therefore $\frac{1}{3x_n^2 + y_n^4} \to \infty$ and consequently $\lim_{(x,y)\to(0,0)} \frac{1}{3x^2 + y^4} = \infty$.

21. Let I be an open interval in \mathbb{R} and let $F: I \to \mathbb{R}^m$ be a differentiable function such that $F(t) \cdot F'(t) = 0$ for all $t \in I$. Show that ||F(t)|| is constant for all $t \in I$.

Solution: Since F is differentiable, the function $t \mapsto \|F(t)\|^2 = F(t) \cdot F(t)$ from I to \mathbb{R} is also differentiable and $\frac{d}{dt} \big(\|F(t)\|^2 \big) = F'(t) \cdot F(t) + F(t) \cdot F'(t) = 2 F(t) \cdot F'(t) = 0$ for all $t \in I$. Hence there exists $c \in \mathbb{R}$ such that $\|F(t)\|^2 = c$ for all $t \in I$. Clearly $c \geq 0$ and so $\|F(t)\| = \sqrt{c}$ for all $t \in I$.

MA 101 (Mathematics I)

Multivariable Calculus: Hints / Solutions of Practice Problem Set - 3

- 1. If $f(x,y) = e^x(x\cos y y\sin y)$ for all $(x,y) \in \mathbb{R}^2$, then show that $f_{xx}(x,y) + f_{yy}(x,y) = 0$ for all $(x,y) \in \mathbb{R}^2$.
- 2. If $f(x,y) = x^2 \tan^{-1} \left(\frac{y}{x}\right)$ for all $(x,y) \in \mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R} : x \neq 0\}$, then find $\frac{\partial^2 f}{\partial x \partial y}(1,1)$.
- 3. If $f(x,y,z) = \frac{1}{\sqrt{x^2+y^2+z^2}}$ for all $(x,y,z) \in \mathbb{R}^3 \setminus \{(0,0,0)\}$, then show that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$ at each point of $\mathbb{R}^3 \setminus \{(0,0,0)\}.$
- 4. Find all $\mathbf{u} \in \mathbb{R}^2$ with $\|\mathbf{u}\| = 1$ for which the directional derivative $D_{\mathbf{u}}f(0,0)$ exists, if for all $(x,y) \in \mathbb{R}^2$,
 - (a) $f(x,y) = \sqrt{|x^2 y^2|}$

 - (a) f(x,y) = |x| |y| |x| |y|. (b) f(x,y) = |x| |y| |x| |y|. (c) $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ (d) $f(x,y) = \begin{cases} \frac{x}{y} & \text{if } y \neq 0, \\ 0 & \text{if } y = 0. \end{cases}$
- 5. State TRUE or FALSE with justification for each of the following statements.
 - (a) If $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous such that $f_x(0,0)$ exists (in \mathbb{R}), then $f_y(0,0)$ must exist (in \mathbb{R}).
 - (b) If $f: \mathbb{R}^2 \to \mathbb{R}$ is such that for each $\mathbf{u} \in \mathbb{R}^2$ with $\|\mathbf{u}\| = 1$, the directional derivative of f at (0,0) along **u** is 0, then f must be continuous at (0,0).
- 6. Let the height H(x,y) of a hill from the ground (considered as the xy-plane) at the point (x,y)be given by $H(x,y) = 1000 - 0.005x^2 - 0.01y^2$. We assume that the positive x-axis points east and the positive y-axis points north. Consider a person situated at the point (60, 40, 966) on the hill.
 - (a) If the person starts walking due south, then will (s)he start to ascend or descend the hill?
 - (b) If the person starts walking north-west, then will (s)he start to ascend or descend the hill?
 - (c) If the person starts climbing further, in which direction will (s)he find it most difficult to climb?
- 7. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} \frac{x^2y(x-y)}{x^2+y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ Examine whether $f_{xy}(0,0) = f_{yx}(0,0)$.
- 8. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} \frac{xy(x^2 y^2)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ Determine all the points of \mathbb{R}^2 where $f_{xy}: \mathbb{R}^2 \to \mathbb{R}$ and $f_{yx}: \mathbb{R}^2 \to \mathbb{R}$ are continuous.

- 9. Let $f(x,y) = x + y^2 + xy$ for all $(x,y) \in \mathbb{R}^2$. Using directly the definition of differentiability, show that $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable and also find $f'(x_0, y_0)$, where $(x_0, y_0) \in \mathbb{R}^2$.
- 10. Let S be a nonempty open subset of \mathbb{R}^m and let $g: S \to \mathbb{R}^m$ be continuous at $\mathbf{x}_0 \in S$. If $f: S \to \mathbb{R}$ is such that $f(\mathbf{x}) - f(\mathbf{x}_0) = g(\mathbf{x}) \cdot (\mathbf{x} - \mathbf{x}_0)$ for all $\mathbf{x} \in S$, then show that f is differentiable at \mathbf{x}_0 .
- 11. The directional derivatives of a differentiable function $f: \mathbb{R}^2 \to \mathbb{R}$ at (0,0) in the directions of $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$ and $\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$ are 1 and 2 respectively. Find $f_x(0,0)$ and $f_y(0,0)$.
- 12. Examine the differentiability of f at $\mathbf{0}$, where
 - (a) $f: \mathbb{R}^m \to \mathbb{R}$ satisfies $|f(\mathbf{x})| < ||\mathbf{x}||^2$ for all $\mathbf{x} \in \mathbb{R}^n$.
 - (b) $f: \mathbb{R}^m \to \mathbb{R}$ is defined by $f(\mathbf{x}) = ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{R}^n$.
 - (c) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \sqrt{|xy|}$ for all $(x,y) \in \mathbb{R}^2$.
 - (d) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by f(x,y) = ||x| |y|| |x| |y| for all $(x,y) \in \mathbb{R}^2$.

 - (d) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \left| |x| |y| \left| |x| |y| \right| \text{ for all } (e)$ $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ (f) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \begin{cases} \frac{y}{|y|} \sqrt{x^2 + y^2} & \text{if } y \neq 0, \\ 0 & \text{if } y = 0. \end{cases}$ (g) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \begin{cases} \sqrt{x^2 + y^2} & \text{if } y > 0, \\ x & \text{if } y = 0, \\ -\sqrt{x^2 + y^2} & \text{if } y < 0. \end{cases}$ (h) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \begin{cases} 1 & \text{if } y < x^2 < 2y, \\ 0 & \text{otherwise.} \end{cases}$ (i) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \begin{cases} x & \text{if } |x| < |y|, \\ -x & \text{if } |x| \geq |y|. \end{cases}$ (j) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \begin{cases} \frac{\sin(x^2y^2)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ (k) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \begin{cases} \frac{\sin^2 x + x^2 \sin \frac{1}{x}}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$
- 13. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ Show that f is differentiable at (0,0) although neither $f_x: \mathbb{R}^2 \to \mathbb{R}$ nor $f_y: \mathbb{R}^2 \to \mathbb{R}$ is contin-

uous at (0,0).

14. Let $f(x,y) = \begin{cases} (x^2 + y^2) \cos\left(\frac{1}{x^2 + y^2}\right) & \text{if } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$

Examine whether $f: \mathbb{R}^2 \to \mathbb{R}$ is continuously differentiable.

15. Let $\alpha \in \mathbb{R}$ and $\alpha > 0$. If $f(x,y) = |xy|^{\alpha}$ for all $(x,y) \in \mathbb{R}^2$, then determine all values of α for which $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable at (0,0).

16. Determine all the points of \mathbb{R}^2 where $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable, where for all $(x,y) \in \mathbb{R}^2$,

(a)
$$f(x,y) = |xy|$$
 (b) $f(x,y) = (xy)^{\frac{1}{3}}$

(a)
$$f(x,y) = |xy|$$
 (b) $f(x,y) = (xy)^{\frac{2}{3}}$ (c) $f(x,y) = |x| \sin(x^2 + y^2)$ (d) $f(x,y) = \begin{cases} x^2 + y^2 & \text{if both } x, y \in \mathbb{Q}, \\ 0 & \text{otherwise.} \end{cases}$

17. State TRUE or FALSE with justification for each of the following statements.

(a) If
$$S = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$$
 and if $f(x,y) = |xy|$ for all $(x,y) \in S$, then $f: S \to \mathbb{R}$ is differentiable.

(b) There exists a function $f: \mathbb{R}^2 \to \mathbb{R}$ which is differentiable only at (1,0).

18. Let
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 be differentiable at $(0,0)$ and let $\lim_{x\to 0} \frac{f(x,x)-f(x,-x)}{x} = 1$. Find $f_y(0,0)$.

- 19. Let $f: \mathbb{R}^m \to \mathbb{R}$ be differentiable at **0** and let $f(\alpha \mathbf{x}) = \alpha f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^m$ and for all $\alpha \in \mathbb{R}$. Show that $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$.
- 20. Let $f: \mathbb{R}^m \to \mathbb{R}$ be differentiable at **0** and $f(\mathbf{0}) = 0$. Show that there exist $\alpha > 0$ and r > 0such that $|f(\mathbf{x})| \leq \alpha ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{R}^m$ with $||\mathbf{x}|| < r$.
- 21. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be such that f_x exists (in \mathbb{R}) at all points of $B_{\delta}((x_0, y_0))$ for some $(x_0, y_0) \in \mathbb{R}^2$ and $\delta > 0$, f_x is continuous at (x_0, y_0) and $f_y(x_0, y_0)$ exists (in \mathbb{R}). Show that f is differentiable at (x_0, y_0) .
- 22. Let $f, g: S \subseteq \mathbb{R}^m \to \mathbb{R}$ be differentiable at $\mathbf{x}_0 \in S^0$. Show that
 - (a) $f + g : S \to \mathbb{R}$ is differentiable at \mathbf{x}_0 and $\nabla (f + g)(\mathbf{x}_0) = \nabla f(\mathbf{x}_0) + \nabla g(\mathbf{x}_0)$.
 - (b) $fg: S \to \mathbb{R}$ is differentiable at \mathbf{x}_0 and $\nabla (fg)(\mathbf{x}_0) = g(\mathbf{x}_0)\nabla f(\mathbf{x}_0) + f(\mathbf{x}_0)\nabla g(\mathbf{x}_0)$.
 - (c) if $g(\mathbf{x}_0) \neq 0$, then $\frac{f}{g}: S \to \mathbb{R}$ is differentiable at \mathbf{x}_0 and $\nabla \left(\frac{f}{g}\right)(\mathbf{x}_0) = \frac{g(\mathbf{x}_0)\nabla f(\mathbf{x}_0) f(\mathbf{x}_0)\nabla g(\mathbf{x}_0)}{g(\mathbf{x}_0)^2}$.
- 23. Using the linearization of a suitable function at a suitable point, find an approximate value of $((3.8)^2 + 2(2.1)^3)^{\frac{1}{5}}.$
- 24. Show that the maximum error in calculating the volume of a right circular cylinder is approximately $\pm 8\%$ if its radius can be measured with a maximum error of $\pm 3\%$ and its height can be measured with a maximum error of $\pm 2\%$.