Linear Regression how best fit the data set

import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn import preprocessing, svm from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression

In [1]:

```
#Step-1 : Importing all the required libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing, svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [2]:

```
#Step-2: Reading the Dataset
df=pd.read_csv(r"C:\Users\thara\Downloads\bottle.csv.zip")
df
```

```
C:\Users\smb06\AppData\Local\Temp\ipykernel_1480\2023639601.py:2: DtypeWar
ning: Columns (47,73) have mixed types. Specify dtype option on import or
set low_memory=False.
    df=pd.read_csv(r"C:\Users\smb06\Downloads\bottle.csv.zip")
```

Out[2]:

	Cst	_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Sainty	O2ml_L	STheta
0		1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900
1		1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600
In [3]:	F.F.1	1	3	054.0 056.0	19- 4903CR- HY-060- 0930-	10	10.460	33.4370	NaN	25.65400
#Taking	<pre>df = df[['Salnty','T_degC']] 05400560- #Taking only selected two attr@d@ee from dataset df.columns = ['sal','Temp']</pre>									
3 In [4]:		1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300
df.head	f.head()									
Out[4]:	al T	1 Temp	5	054.0 056.0	HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300
0 33.44	0 1	10.50								
1 33.44 2 33.43 864858 3 33.42 4 33.42	37 1 20 1		864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055
864859	3	4404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072
864860	3	4404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911
864861	3	4404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426

In [5]: Cst_Cnt Btl_Cnt Sta_ID Depth_ID Depthm T_degC Salnty O2ml_L STheta

#Step-3: Exploring the Data Scatter - plotting the data scatter
sns.lmplot(x="sal",y="Temp",data=d£0,order=2,ci=None)
1611SR093.4 MX-310- 45 47.500 20.0000 5.774 04.45007

C864862: 34404 864863 093.4 MX-310-026.4 2239- 15 17.533 33.3880 5.774 24.15297

09340264-<seaborn.axisgrid.FacetGrid at 08x2694228c6d0>

In [6]:

#step 4: Dta cleaning - eliminating NON and missing input numbers
df.fillna(method='ffill',inplace=True)

C:\Users\smb06\AppData\Local\Temp\ipykernel_1480\477090421.py:2: SettingWi
thCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method='ffill',inplace=True)

In [7]:

```
#step 5:Training our model
X=np.array(df['sal']).reshape(-1, 1)
y=np.array(df['Temp']).reshape(-1, 1)
#separating the data into independent and dependent variables and convert
#how each dataframe contains only one coloumn
```

In [8]:

```
X_train,X_test,y_train,y_test = train_test_split(X, y, test_size = 0.25)
# Splitting the data into training data and test data
regr = LinearRegression()
regr.fit(X_train, y_train)
print(regr.score(X_test, y_test))
```

0.20261084321690104

In [9]:

```
#step-6: Exploring Our Results
y_pred = regr.predict(X_test)
plt.scatter(X_test, y_test, color = 'k')
plt.show()
# Data scatter of predicted values
```


In [10]:

```
# Step-7: Working with a smaller Dataset
df500 = df[:][:500]
# Selecting the 1st 500 rows of the data
sns.lmplot(x = "sal", y = "Temp", data = df500, order = 1, ci = None)
```

Out[10]:

<seaborn.axisgrid.FacetGrid at 0x2692a651290>

In [11]:

```
df500.fillna(method = 'ffill', inplace = True)
X = np.array(df500['sal']).reshape(-1, 1)
y = np.array(df500['Temp']).reshape(-1, 1)
df500.dropna(inplace = True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25)
regr = LinearRegression()
regr.fit(X_train, y_train)
print("Regression:",regr.score(X_test, y_test))
y_pred = regr.predict(X_test)
plt.scatter(X_test, y_test, color = 'b')
plt.scatter(X_test, y_pred, color = 'k')
plt.show()
```

Regression: 0.8596803793967002

In [12]:

```
#Step-8: Evaluation of model
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
#Train the model
model = LinearRegression()
model.fit(X_train, y_train)
#Evaluating the model on the test set
y_pred = model.predict(X_test)
r2 = r2_score(y_test, y_pred)
print("R2 score:",r2)
```

R2 score: 0.8596803793967002

#step9:conclusion

Dataset we have taken is poor for Linear Model, but with the smaller data works well with Linear Model.

In []: