Fundamentos Físicos y Tecnológicos

Tema 4. Dispositivos Semiconductores

Isabel M. Tienda Luna

Departamento de Electrónica y Tecnología de Computadores Universidad de Granada

isabelt@ugr.es

Grado en Informática - Doble Grado en Informática y Matemáticas Curso 2021-2022

- Introducción
- 2 Modelo atómico
- Materiales sólidos
- Semiconductores
- La unión PN
- 6 El Transistor MOSFET

- Introducción
- 2 Modelo atómico
- Materiales sólidos
- Semiconductores
- 6 La unión PN
- 6 El Transistor MOSFET

Introducción

- Los dispositivos semiconductores son componentes electrónicos que hacen uso de las propiedades electrónicas de los materiales semiconductores.
- Usan la conducción eléctrica en sólidos y no en gases o la emisión termoiónica en condiciones de vacío.
- Se fabrican individualmente o formando partes de circuitos integrados en obleas.
- Como veremos, el uso de semiconductores es útil debido a que su comportamiento puede manipularse se forma sencilla añadiendo impurezas.
- Los semiconductores pueden ser excelentes sensores ya que su conductividad puede controlarse por distintos mecanismos (campos eléctricos os magnéticos, luz, calor o deformaciones mecánicas).
- Los dispositivos semiconductores son las piezas básicas de las puertas lógicas, partes fundamentales de la electrónica digital.
- Son claves en amplificadores y osciladores en electrónica analógica.
- Son elementos de traducción entre circuitos digitales y analógicos.

- Introducción
- 2 Modelo atómico
- Materiales sólidos
- 4 Semiconductores
- La unión PN
- 6 El Transistor MOSFET

Un poco de historia....

Modelo atómico actual

ullet Energía cinética + Energía potencial = Energía total

Ecuación de Schroedinger dependiente del tiempo

$$-\frac{\hbar^2}{2m}\nabla^2\Psi(r,t)+V(r)\Psi(r,t)=j\hbar\frac{\partial}{\partial t}\Psi(r,t) \qquad \mbox{(1)}$$

donde:

- $-\frac{\hbar^2}{2m} \nabla^2$ es el operador energía cinética y m es la masa de la partícula.
- $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2} + \frac{\partial^2}{\partial z^2}$
- ullet V(r) es la energía potencial en la posición r
- \bullet $\Psi(r,t)$ es la función de onda

Ecuación de Schroedinger independiente del tiempo

$$-\frac{\hbar^2}{2m}\nabla^2\Psi(r,t) + V(r)\Psi(r,t) = E\Psi(r,t) \tag{2}$$

- Introducción
- 2 Modelo atómico
- Materiales sólidos
- 4 Semiconductores
- La unión PN
- 6 El Transistor MOSFET

Enlaces Iónicos

• Los electrones están fuertemente ligados a los átomos ⇒ aislantes.

Enlaces Metálicos

- Los electrones exteriores están desligados de los átomos, formando una nube electrónica distribuida en todo el sólido y que sirve de unión entre los núcleos atómicos.
- Los electrones exteriores no están ligados a ningún átomo en concreto, por lo que pueden moverse libremente bajo la acción de un campo eléctrico ⇒ conductores.

Enlaces Covalentes

- Los electrones de la capa más externa de cada átomo se comparten con otros átomos, formando un enlace entre ellos.
- Cada par de electrones forma un enlace entre átomos.
- Por ejemplo, el silicio tiene cuatro electrones en su capa más externa ⇒ forma cuatro enlaces covalentes con otros tantos átomos de silicio.
- En principio (cierto a T = 0 K), los electrones que forman el enlace se comparten por dos átomos y no pueden desplazarse por el cristal bajo la acción de un campo eléctrico ⇒ aislante.
- Al aumentar T, se rompen algunos enlaces liberándose electrones que pueden moverse bajo la acción de un campo eléctrico ⇒ conductor

Bandas de energía

Cuando una serie de átomos se unen para formar un sólido los niveles de energía de los átomos individuales forman bandas continuas de energía.

Clasificación de materiales

- Aislantes
- Semiconductores
- Conductores

- Introducción
- 2 Modelo atómico
- Materiales sólidos
- 4 Semiconductores
- La unión PN
- 6 El Transistor MOSFET

Portadores: electrones y huecos

 Al aumentar T, se rompen algunos enlaces liberándose electrones que pueden moverse bajo la acción de un campo eléctrico ⇒ Formación de par electrón-hueco.

- Los huecos también participan en el proceso de conducción: $\sigma = qn\mu_n + qp\mu_p$. (σ es la conductividad, n es la concentración de electrones, p la de huecos y μ_n y μ_p las movilidades de electrones y huecos.)
- En general, un semiconductor tiene pocos portadores libres por eso su conductividad es baja.
- ¿Qué puedo hacer para aumentar la conductividad? Incrementar el número de portadores.

Tipos de Semiconductores

- Intrínsecos
- Extrínsecos (dopados)
 - Tipo P (con impurezas aceptadoras, materiales de la columna III)

2 Tipo N (con impurezas donadoras, materiales de la columna V)

- Introducción
- 2 Modelo atómico
- Materiales sólidos
- 4 Semiconductores
- La unión PN
- 6 El Transistor MOSFET

Unión PN

Unión PN

Unión PN

¿Se puede hacer algo para modificar la barrera que ven electrones y huecos?

- Es un dispositivo de dos terminales.
- Símbolo

Relación voltaje/intensidad:

$$I_d = I_S \left(e^{\frac{qV_d}{k_B T}} - 1 \right) \tag{3}$$

donde I_d es la intensidad que atraviesa del diodo, I_S es la corriente inversa de saturación, q es la carga del electrón, V_d la diferencia de potencial entre los extremos del diodo, k_B la constante de Boltzmann y T la temperatura.

• Tipos de diodos: Zener, LEDs,...

¿Cómo se trabaja en un circuito con diodos? Hay que hacer aproximaciones.

- Modelo 1. Suponemos que hay una tensión a partir de la cual el diodo conduce (V_{γ}) y una vez que entra en conducción puede conducir cualquier valor de corriente. El diodo se comportan entonces como una fuente de tensión de valor V_{γ}
- Modelo 2. Suponemos que hay una tensión a partir de la cual el diodo conduce (V_{γ}) como en el modelo anterior. Sin embargo, consideramos que existe una resistencia asociada (r_d) , de manera que el diodo se comporta en conducción como una fuente de tensión V_{γ} en serie con esa resistencia.

Característica de transferencia: es la representación de la salida de un circuito en función de la entrada. (No confundir con función de transferencia)

Característica de transferencia: es la representación de la salida de un circuito en función de la entrada. (No confundir con función de transferencia)

- Introducción
- 2 Modelo atómico
- Materiales sólidos
- Semiconductores
- 6 La unión PN
- 6 El Transistor MOSFET

El transistor de efecto campo

- Es un dispositivo electrónico de tres terminales llamados puerta (G, gate), drenador (D, drain) y fuente (S, source).
- La corriente fluye entre la fuente y el drenador y se controla con la tensión aplicada en la puerta.
- Sus aplicaciones fundamentales son:
 - Digitales: conmutadores.
 - ② Analógicas: amplificadores.
- El más importante es el MOSFET (Metal oxide semiconductor field effect transistor).
- Tipos:
 - n-MOSFET
 - p-MOSFET

Tipos de MOSFET

Flujo de portadores en el MOSFET

La unión Metal-Aislante-Semiconductor (MIS) se comporta como un condensador:

- Para caracterizar el comportamiento del dispositivo definimos una tensión umbral (V_T) es la diferencia de potencial entre puerta y sustrato a la que comienza a formarse el canal).
- Distinguimos las siguientes regiones de comportamiento en función de la polarización drenador-fuente:
 - $V_G V_S = V_{GS} < V_T$. No hay canal.
 - lacksquare $V_{GS}>V_T$ y $V_{DS}<(V_{GS}-V_T)$. Hay canal en toda la zona entre D y S.
 - § $V_{GS} > V_T$ y $V_{DS} > (V_{GS} - V_T)$. Hay canal pero no ocupa toda la zona entre D y S.

- **Objetivo**: que los electrones circulen desde S a D $\Rightarrow V_D > V_S$.
- En corte: $V_G V_S = V_{GS} < V_T$.
- Si $V_G V_S = V_{GS} < V_T \Rightarrow No$ hay capa de inversion en S.
- Si $V_G V_S = V_{GS} < V_T \Rightarrow$ Como $V_D > V_S \Rightarrow V_G V_D = V_{GD} < V_T \Rightarrow$ No hay capa de inversion en D.
- Como no hay capa de inversión ni en S ni en D, no hay canal entre ellos.

Modos de funcionamiento del n-MOSFET: lineal

- **Objetivo**: que los electrones circulen desde S a D $\Rightarrow V_D > V_S$.
- En lineal: $V_{GS} > V_T$ y $V_{DS} < (V_{GS} V_T)$.
- Si $V_G V_S = V_{GS} > V_T \Rightarrow$ Hay capa de inversion en S.
- Si $V_D-V_S<(V_G-V_S-V_T)\Rightarrow V_T< V_G-V_D=V_{GD}\Rightarrow$ Hay capa de inversion en D.
- Como hay capa de inversión en S y en D, hay canal entre ellos y los electrones van desde S a D.

4 D > 4 A > 4 B > 4 B >

Modos de funcionamiento del n-MOSFET: saturación

- **Objetivo**: que los electrones circulen desde S a D $\Rightarrow V_D > V_S$.
- En saturación: $V_{GS} > V_T$ y $V_{DS} > (V_{GS} V_T)$.
- Si $V_G V_S = V_{GS} > V_T \Rightarrow$ Hay capa de inversion en S.
- Si $V_D-V_S>(V_G-V_S-V_T)\Rightarrow V_T>V_G-V_D=V_{GD}\Rightarrow$ No hay capa de inversion en D.
- La capa de inversión que hay en S se hace cada vez más estrecha al acercamos a D. A pesar de que el canal no ocupa toda la zona entre S y D, los electrones van de S a D.

Región de Corte:

- Ocurre si $V_{GS} \leq V_T$
- El transistor está OFF porque no hay canal.
- No hay conducción entre drenador y fuente ($I_D = 0$).
- $I_G = 0$.
- Corriente de fuga.

2 Región lineal, óhmica o triodo:

- Ocurre si $V_{GS} > V_T$ y $V_{DS} < (V_{GS} V_T)$.
- El transistor está ON.
- $I_G = 0$.
- Hay conducción entre drenador y fuente:

$$I_{D} = \frac{k}{2} \left[2 \left(V_{GS} - V_{T} \right) V_{DS} - V_{DS}^{2} \right]$$
 (4)

Nota: k es la transconductancia de valor $k=\mu C_{ox}\frac{W}{L}$ donde μ es la movilidad de los portadores, C_{ox} la capacidad del óxido de puerta y W y L son la anchura y longitud del canal respectivamente.

Región de Corte:

- Ocurre si $V_{GS} \leq V_T$
- El transistor está OFF porque no hay canal.
- No hay conducción entre drenador y fuente ($I_D = 0$).
- $I_G = 0$.
- Corriente de fuga.

2 Región lineal, óhmica o triodo:

- Ocurre si $V_{GS} > V_T$ y $V_{DS} < (V_{GS} V_T)$.
- El transistor está ON.
- $I_G = 0$.
- Hay conducción entre drenador y fuente:

$$I_{D} = \frac{k}{2} \left[2 \left(V_{GS} - V_{T} \right) V_{DS} - V_{DS}^{2} \right]$$
 (5)

Nota: k es la transconductancia de valor $k=\mu C_{ox}\frac{W}{L}$ donde μ es la movilidad de los portadores, C_{ox} la capacidad del óxido de puerta y W y L son la anchura y longitud del canal respectivamente.

Región de saturación:

- Ocurre si $V_{GS} > V_T$ y $V_{DS} > (V_{GS} V_T)$.
- El transistor está ON.
- $I_G = 0$.
- Hay conducción entre drenador y fuente:

$$I_D = \frac{k}{2} \left(V_{GS} - V_T \right)^2 \tag{6}$$

Región de Corte:

- Ocurre si $V_{GS} \geq V_T$ ($|V_{GS}| \leq |V_T|$)
- El transistor está OFF porque no hay canal.
- $I_G = 0$.
- No hay conducción entre drenador y fuente ($I_D = 0$).

Región lineal u óhmica:

- Ocurre si $V_{GS} < V_T$ ($|V_{GS}| > |V_T|$) y $V_{SD} < (V_{SG} |V_T|)$ ($|V_{DS}| < (|V_{GS}| |V_T|)$).
- El transistor está ON.
- $I_G = 0$.
- Hay conducción entre drenador y fuente:

$$I_D = \frac{k}{2} \left[2 \left(V_{SG} - |V_T| \right) V_{SD} - V_{SD}^2 \right] \tag{7}$$

Modos de funcionamiento del p-MOSFET

Región de saturación:

- Ocurre si $V_{GS} < V_T \ (|V_{GS}| > |V_T|)$ y $V_{SD} > (V_{SG} |V_T|) \ (|V_{DS}| > (|V_{GS}| |V_T|)).$
- El transistor está ON.
- $I_G = 0$.
- Hay conducción entre drenador y fuente:

$$I_D = \frac{k}{2} (V_{SG} - |V_T|)^2$$
 (8)

- $V_{DD} = 15V$
- $R_D = 1k\Omega$
- $V_i = 15V$
- $V_T = 2V$
- $k = 40 \cdot 10^{-6} \frac{A}{V^2}$

- $V_{DD} = 15V$
- \bullet $R_D = 1k\Omega$
- $V_i = 15V$
- $V_T = 2V$
- $k = 40 \cdot 10^{-6} \frac{A}{V^2}$

- $V_{DD} = 15V$
- $R_D = 1k\Omega$
- $V_i = 15V$
- $V_T = 2V$
- $k = 40 \cdot 10^{-6} \frac{A}{V^2}$

- $V_{DD} = 15V$
- \bullet $R_D = 1k\Omega$
- $V_i = 15V$
- $V_T = 2V$
- $k = 40 \cdot 10^{-6} \frac{A}{V^2}$

Ocomenzamos calculando V_{GS} para saber si el transistor está conduciendo o no.

$$V_{GS} = V_G - V_S \Rightarrow \text{necesitamos } V_G \text{ y } V_S$$

- ¿Cuánto vale V_G ? A la puerta sólo tenemos conectada una fuente, de manera que $V_G = V_i = 15V$.
- ¿Cuánto vale V_S ? La fuente está conectada a tierra, por tanto $V_S = 0V$.
- Entonces $V_{GS} V_T = 15V 2V = 13V > 0 \Rightarrow$ nMOSFET ON.
- ¿Lineal o Saturación?

- Suponemos saturación.
 - Resolvemos usando la ecuación para la intensidad I_D en saturación:

$$I_D = \frac{k}{2} (V_{GS} - V_T)^2$$

$$I_D = \frac{40 \cdot 10^{-6} \frac{A}{V^2}}{2} (15V - 2V)^2$$

$$I_D = 3.38 \cdot 10^{-3} A$$

- 3 Compruebo si mi suposición es correcta.
 - Para comprobar si la suposición que hice es correcta tengo que ver si se cumple la condición de saturación:

$$V_{DS} > (V_{GS} - V_T) = 15V - 2V = 13V$$

• ¿Cuánto vale V_{DS} ? $V_{DS} = V_D - V_S \Rightarrow$ necesito saber V_D . Para calcular V_D aplico la ley de Ohm a la resistencia R_D :

$$\begin{array}{rcl} V_{DD} - V_D & = & I_D R_D \\ & V_D & = & V_{DD} - I_D R_D \\ & V_D & = & 15V - 3,38 \, 10^{-3} A \, 1k\Omega \\ & V_D & = & 11,62V \\ & V_{DS} & = & V_D - V_S = 11,62V - 0V = 11,62V \end{array}$$

• Como $V_{DS} = 11,62V < (V_{GS} - V_T) = 13V$ SUPOSICIÓN INCORRECTA $\stackrel{\sim}{\sim}$

Supongo lineal.

• Resolvemos utilizando la ecuación para I_D en la región lineal:

$$\begin{split} I_D & = & \frac{k}{2} \left[2 \left(V_{GS} - V_T \right) V_{DS} - V_{DS}^2 \right] \\ I_D & = & \frac{40 \cdot 10^{-6} \frac{A}{V^2}}{2} \left[2 \left(15V - 2V \right) V_{DS} - V_{DS}^2 \right] \end{split}$$

- ullet Para calcular I_D necesito V_{DS}
- ¿Cuánto vale V_{DS} ? $V_{DS} = V_D V_S \Rightarrow$ necesito saber V_D . Para calcular V_D aplico la ley de Ohm a la resistencia R_D :

$$\begin{array}{rcl} V_{DD} - V_D & = & I_D R_D \\ & V_D & = & 15 V - I_D 10^3 \Omega \end{array}$$

- Supongo lineal.
 - Sustituyendo la expresión de I_D en la fórmula para V_D queda:

$$V_{D} = 15V - \frac{40 \cdot 10^{-6} \frac{A}{V^{2}}}{2} \left[2 \left(15V - 2V \right) V_{D} - V_{D}^{2} \right] 10^{3} \Omega$$

• La ecuación anterior tiene dos soluciones:

$$V_{DS1} = 64,33V$$

 $V_{DS2} = 11,68V$

• ¿Son las dos soluciones correctas? Una solución será correcta si está de acuerdo con mi suposición. En este caso, si cumple que $V_{DS} < V_{GS} - V_T = 13V$. Por tanto, sólo V_{DS2} es correcta.

- $V_{DD} = 15V$
- $R_D = 40k\Omega$
- $R_S = 5k\Omega$
- $R_1 = 150k\Omega$
- $R_2 = 100k\Omega$
- $V_T = 2V$
- $k = 40 \cdot 10^{-6} \frac{A}{V^2}$

- ① Comenzamos calculando V_G para saber si el MOSFET conduce o no. Para ello, tenemos en cuenta que:
 - $I_G = 0$
 - La parte de la izquierda del circuito es un divisor de tensión:

$$\begin{array}{lcl} I_1 & = & \dfrac{15V}{150k\Omega+100k\Omega} \\ V_G & = & I_1100k\Omega = \dfrac{15V}{250k\Omega}100k\Omega = 6V \end{array}$$

- Como $V_G V_T > 0 \Rightarrow \mathsf{nMOSFET}$ ON
- ¿Pero no era V_{GS} ? ¿Por qué uso V_{G} ?
- ¿Lineal o Saturación?

- Suponemos saturación:
 - Ecuaciones generales:

$$V_{DD} = I_D R_D + V_{DS} + I_D R_S$$

$$V_G = V_{GS} + I_D R_S$$

- Saturación: $I_D = \frac{k}{2} (V_{GS} V_T)^2$
- Sustituimos:

$$15V = I_D 45k\Omega + V_{DS} \tag{9}$$

$$6V = V_{GS} + I_D 5k\Omega \tag{10}$$

$$I_D = 20 \cdot 10^{-6} \frac{A}{V^2} \left(V_{GS}^2 + 4 - 4V_{GS} \right)$$
 (11)

Despejando e gualando:

$$\begin{array}{lcl} \frac{6-V_{GS}}{R_S} & = & 20\cdot 10^{-6} \left(V_{GS}^2 + 4 - 4V_{GS}\right) \\ & & & V_{GS}^2 + 6V_{GS} - 56 = 0 \\ V_{GS_1} & = & 5,06V \Rightarrow I_D = 0,18mA \Rightarrow V_{DS} = 6,54V \\ V_{GS_2} & < & 0 \Rightarrow \text{IMPOSIBLE} \end{array}$$

- Comprobamos que la suposición es correcta:
 - $iV_{DS} > V_{GS} V_T$?
 - $6.54V > 5.06V 2V = 3.06V \Rightarrow$

Pintar la característica de transferencia para el circuito del Ejemplo 6

- $V_{DD} = 15V$
- $R_D = 0.1k\Omega$
- $V_T = 2V$
- $k = 40 \cdot 10^{-3} \frac{A}{V^2}$

Ecuaciones generales

- $V_{DD} = I_D R_D + V_{DS}$
- $V_{GS} = V_i$
- $V_{DS} = V_o \Rightarrow V_{DD} = I_D R_D + V_o$

Transistores en la industria

- Escalado: ¿Por qué es importante? Mismas prestaciones en menor espacio o mayores prestaciones en el mismo espacio.
- Ley de Moore. (¿Límite entre 3nm-0.3nm?)

Transistores en la industria

• Evolución: 10 μm en 1971 (Intel 4004), 3 μm en 1975 (Intel 8085), 1.5 μm en 1982 (Intel 80286), 1 μm en 1985 (Intel 80386)...., 65 nm en 2006 (Intel Pentium 4, Pentium D, Celeron, Core, Core 2, Xbox 360 con Falcon), 45 nm en 2008 (Intel Core i7 y i5 750, Xenon en Xbox 360S, PlayStation 3 Slim,..), 32 nm en 2010 (Intel Core i3 y i5 Arrandale y Clarkdale, i7 980x, ..), 22 nm en 2011 (Intel Ivy Bridge (2011), Intel Hasswell (2013)), 14 nm en 2014 (Intel Core M, XBox One), 10 nm en 2016 (Apple A11, Galaxy S8), 7 nm en 2018 (Apple A12), 5 nm en 2020 (Apple A14), 3 nm en 2022

Transistores en la industria

- Problemas: en el control de la fabricación, en el control de las características de los dispositivos, problemas de modelado, aumenta la conducción subumbral, aumentan las fugas entre óxido y puerta, aumento del calor (problemas de disipación),...
- Soluciones: dispositivos multipuerta, strain, nuevos materiales, high K, etc...

Mat. III-V