Runtime Enforcement of Reactive Systems using Synchronous Enforcers

<u>Srinivas Pinisetty</u>^{1,2}, Partha Roop³, Steven Smyth⁵, Stavros Tripakis^{1,4}, Reinhard von Hanxleden⁵

Aalto University, Finland University of Gothenburg, Sweden University of Auckland, New Zealand University of California, Berkeley Kiel University, Germany

SPIN 2017, Santa Barbara, USA

Runtime verification and enforcement

Runtime verification

- Does σ satisfy φ ?
- Output: stream of verdicts.

Runtime enforcement

- Input: stream of events.
- Modified to satisfy the property.
- Output: stream of events.

Enforcer for φ operating at runtime

• φ : any regular property (defined as automaton).

- φ : any regular property (defined as automaton).
- An enforcer behaves as a function $E: \Sigma^* \to \Sigma^*$.
 - Input $(\sigma \in \Sigma^*)$: any sequence of events over Σ (Event emitter is a black-box).
 - Output $(o \in \Sigma^*)$: a sequence of events such that $o \models \varphi$.

Enforcer for φ operating at runtime

- φ : any regular property (defined as automaton).
- An enforcer behaves as a function $E: \Sigma^* \to \Sigma^*$.
 - Input $(\sigma \in \Sigma^*)$: any sequence of events over Σ (Event emitter is a black-box).
 - Output $(o \in \Sigma^*)$: a sequence of events such that $o \models \varphi$.

Power of the enforcement mechanism (what can an enforcer do)?

Enforcer for φ operating at runtime

- φ : any regular property (defined as automaton).
- An enforcer behaves as a function $E: \Sigma^* \to \Sigma^*$.
 - Input $(\sigma \in \Sigma^*)$: any sequence of events over Σ (Event emitter is a black-box).
 - Output $(o \in \Sigma^*)$: a sequence of events such that $o \models \varphi$.

Power of the enforcement mechanism (what can an enforcer do)?

Blocking/halting, delaying, and deleting events not suitable for reactive systems!

• Focus on runtime enforcement for safety critical reactive systems.

- Focus on runtime enforcement for safety critical reactive systems.
- Specifically reactive systems designed/developed using synchronous programming paradigm.

- Focus on runtime enforcement for safety critical reactive systems.
- Specifically reactive systems designed/developed using synchronous programming paradigm.
- Bi-directional: monitor and enforce both the inputs and the outputs of a reactive system.

- Focus on runtime enforcement for safety critical reactive systems.
- Specifically reactive systems designed/developed using synchronous programming paradigm.
- Bi-directional: monitor and enforce both the inputs and the outputs of a reactive system.

Applications: Medical devices, automotive, etc.

- Given property φ (to enforce) defined as automaton.
- Automatically synthesize an enforcer.

- Given property φ (to enforce) defined as automaton.
- Automatically synthesize an enforcer.
 - Bi-directional enforcement (monitor and enforce both inputs and outputs).

- Given property φ (to enforce) defined as automaton.
- Automatically synthesize an enforcer.
 - Bi-directional enforcement (monitor and enforce both inputs and outputs).
 - Enforcer cannot halt the system or delay events, and must react instantaneously when an error is observed.

Enforcer for φ operating at runtime

- Given property φ (to enforce) defined as automaton.
- Automatically synthesize an enforcer.
 - Bi-directional enforcement (monitor and enforce both inputs and outputs).
 - Enforcer cannot halt the system or delay events, and must react instantaneously when an error is observed.

Enforcer should satisfy soundness, monotonicity, transparency, instantaneity, and causality constraints.

Outline

- Introduction
- 2 Specifying Properties
- Formal Problem Definition
- Condition for Enforceability
- **5** Enforcement Algorithm
- 6 Application to SCCharts
- Conclusion

Outline

- Introduction
- 2 Specifying Properties
- Formal Problem Definition
- 4 Condition for Enforceability
- 5 Enforcement Algorithm
- 6 Application to SCCharts
- Conclusion

Synchronous program

- $I = \{i_1, \dots, i_n\}, O = \{o_1, \dots, o_n\}.$
- Input alphabet $\Sigma_I = 2^I$, output alphabet $\Sigma_O = 2^O$ and $\Sigma = \Sigma_I \times \Sigma_O$.

Synchronous program

- $I = \{i_1, \dots, i_n\}, O = \{o_1, \dots, o_n\}.$
- Input alphabet $\Sigma_I = 2^I$, output alphabet $\Sigma_O = 2^O$ and $\Sigma = \Sigma_I \times \Sigma_O$.
- A reaction is of the form (x_i, y_i) , where $x_i \in \Sigma_I$ and $y_i \in \Sigma_O$.
- During each reaction, the program reacts to a set of inputs received from the environment to produce a set of outputs.

Synchronous program

- $I = \{i_1, \dots, i_n\}, O = \{o_1, \dots, o_n\}.$
- Input alphabet $\Sigma_I = 2^I$, output alphabet $\Sigma_O = 2^O$ and $\Sigma = \Sigma_I \times \Sigma_O$.
- A reaction is of the form (x_i, y_i) , where $x_i \in \Sigma_I$ and $y_i \in \Sigma_O$.
- During each reaction, the program reacts to a set of inputs received from the environment to produce a set of outputs.
- ullet Execution of a program ${\mathcal P}$ is an infinite sequence of reactions.

Synchronous program

- $I = \{i_1, \dots, i_n\}, O = \{o_1, \dots, o_n\}.$
- Input alphabet $\Sigma_I = 2^I$, output alphabet $\Sigma_O = 2^O$ and $\Sigma = \Sigma_I \times \Sigma_O$.
- A reaction is of the form (x_i, y_i) , where $x_i \in \Sigma_I$ and $y_i \in \Sigma_O$.
- During each reaction, the program reacts to a set of inputs received from the environment to produce a set of outputs.
- ullet Execution of a program ${\cal P}$ is an infinite sequence of reactions.

Example: $I = \{A, B\}$ and $O = \{R\}$

- $\Sigma_{I} = \{00, 01, 10, 11\}$
- $\Sigma_{0} = \{0, 1\}$

Properties

Safety properties

- $\Sigma = \Sigma_I \times \Sigma_O$, property $\varphi \subseteq \Sigma^*$.
- Prefix-closed properties (all prefixes of all words in $\mathcal{L}(\varphi)$ are also in $\mathcal{L}(\varphi)$).
- Property φ defined as a deterministic and complete safety automaton (SA) $\mathcal{A}_{\varphi} = (Q, q_0, q_v, \Sigma, \rightarrow)$.
- All the locations in Q except q_v (i.e., $Q \setminus \{q_v\}$) are accepting locations.

Properties

Safety properties

- $\Sigma = \Sigma_I \times \Sigma_O$, property $\varphi \subseteq \Sigma^*$.
- Prefix-closed properties (all prefixes of all words in $\mathcal{L}(\varphi)$ are also in $\mathcal{L}(\varphi)$).
- Property φ defined as a deterministic and complete safety automaton (SA) $\mathcal{A}_{\varphi} = (Q, q_0, q_v, \Sigma, \rightarrow)$.
- All the locations in Q except q_{ν} (i.e., $Q \setminus \{q_{\nu}\}$) are accepting locations.

Example: Property defined as SA

$$I = \{A, B\} \text{ and } O = \{R\}$$

$$(00,0) \mid (01,0) \mid (00,1) \mid (10,0) \mid (10,1) \qquad \Sigma$$

$$(11,1) \mid (11,0) \mid (01,1) \qquad q_{v}$$

"A and B cannot happen simultaneously, and also B and R cannot happen simultaneously."

RE preliminaries (1)

- Consider $\sigma \in (x_1, y_1) \cdot (x_2, y_2) \cdots (x_n, y_n) \in \Sigma^*$.
 - σ_I : Projection on inputs $\sigma_I = x_1 \cdot x_2 \cdots x_n \in \Sigma_I$.
 - σ_O : Projection on outputs is $\sigma_O = y_1 \cdot y_2 \cdots y_n \in \Sigma_O$.

RE preliminaries (1)

- Consider $\sigma \in (x_1, y_1) \cdot (x_2, y_2) \cdots (x_n, y_n) \in \Sigma^*$.
 - σ_I : Projection on inputs $\sigma_I = x_1 \cdot x_2 \cdots x_n \in \Sigma_I$.
 - σ_O : Projection on outputs is $\sigma_O = y_1 \cdot y_2 \cdots y_n \in \Sigma_O$.
- \mathcal{A}_{φ_i} : From \mathcal{A}_{φ_i} , \mathcal{A}_{φ_i} is obtained by ignoring outputs on the transitions.

RE preliminaries (2)

Input SA (obtained by projecting on inputs)

Given property $\varphi \subseteq \Sigma^*$, defined as SA $\mathcal{A}_{\varphi} = (Q, q_0, q_v, \Sigma, \rightarrow)$;

• $\mathcal{A}_{\varphi_I} = (Q, q_0, q_v, \Sigma_I, \to_I)$ is obtained from \mathcal{A}_{φ} by ignoring outputs on the transitions.

RE preliminaries (2)

Input SA (obtained by projecting on inputs)

Given property $\varphi \subseteq \Sigma^*$, defined as SA $\mathcal{A}_{\varphi} = (Q, q_0, q_v, \Sigma, \rightarrow)$;

- $\mathcal{A}_{\varphi_I} = (Q, q_0, q_v, \Sigma_I, \to_I)$ is obtained from \mathcal{A}_{φ} by ignoring outputs on the transitions.
- Every transition $q \xrightarrow{(x,y)} q'$ in \mathcal{A}_{φ} is replaced with transition $q \xrightarrow{x}_{l} q'$ in $\mathcal{A}_{\varphi_{l}}$.

RE preliminaries (2)

Input SA (obtained by projecting on inputs)

Given property $\varphi \subseteq \Sigma^*$, defined as SA $\mathcal{A}_{\varphi} = (Q, q_0, q_v, \Sigma, \rightarrow)$;

- $\mathcal{A}_{\varphi_I} = (Q, q_0, q_v, \Sigma_I, \to_I)$ is obtained from \mathcal{A}_{φ} by ignoring outputs on the transitions.
- Every transition $q \xrightarrow{(x,y)} q'$ in \mathcal{A}_{φ} is replaced with transition $q \xrightarrow{x}_{l} q'$ in $\mathcal{A}_{\varphi_{l}}$.

Example: SA (left) and its input SA (right)

• $I = \{A, B\}$, and $O = \{R\}$,

$$(00,0) \mid (01,0) \mid (00,1) \mid (10,0) \mid (10,1) \qquad \Sigma_{I}$$

$$A_{\varphi}: \qquad A_{\varphi_{I}}: \qquad A_{\varphi_{$$

"A and B cannot happen simultaneously and also B and R cannot happen simultaneously".

RE preliminaries (Edit functions)

$$(00,0) \mid (01,0) \mid (00,1) \mid (10,0) \mid (10,1) \xrightarrow{\Sigma_I} \qquad 00 \mid 01 \mid 10 \xrightarrow{\Sigma_I} \qquad A_{\varphi_I} : \qquad A_$$

$$\mathsf{editl}_{\mathcal{A}_{arphi_I}}(q) = \{x \in \Sigma_I : q \overset{\mathsf{x}}{\to}_I \ q' \land q' \neq q_v\}.$$

Example:
$$\mathsf{editl}_{\mathcal{A}_{\omega_1}}(q_0) = \{00, 01, 10\}.$$

RE preliminaries (Edit functions)

$$(00,0) \mid (01,0) \mid (00,1) \mid (10,0) \mid (10,1) \xrightarrow{\Sigma_{I}} 00 \mid 01 \mid 10 \xrightarrow{\Sigma_{I}} A_{\varphi}: A_{\varphi_{I}}: A_{\varphi_$$

$$\operatorname{\sf editl}_{\mathcal{A}_{\varphi_{\sf I}}}(q) = \{x \in \Sigma_{\sf I} : q \stackrel{x}{\to}_{\sf I} \ q' \land q' \neq q_{\sf V}\}.$$

Example: $\operatorname{editl}_{\mathcal{A}_{\varphi_1}}(q_0) = \{00, 01, 10\}.$

$$\mathsf{editO}_{\mathcal{A}_{\varphi}}(q, x) = \{ y \in \Sigma_O : q \xrightarrow{(x, y)} q' \land q' \neq q_v \}.$$

Example: $\operatorname{editO}_{\mathcal{A}_{\omega}}(q_0, 01) = \{0\}.$

RE preliminaries (Edit functions)

$$(00,0) \mid (01,0) \mid (00,1) \mid (10,0) \mid (10,1) \xrightarrow{\Sigma_{I}} \qquad 00 \mid 01 \mid 10 \xrightarrow{\Sigma_{I}} \qquad A_{\varphi_{I}} : \qquad A_{\varphi_{$$

$$\operatorname{\sf editl}_{\mathcal{A}_{\varphi_{\sf I}}}(q) = \{x \in \Sigma_{\sf I} : q \stackrel{x}{\to}_{\sf I} \ q' \land q' \neq q_{\sf V}\}.$$

Example: $\operatorname{editl}_{\mathcal{A}_{\varphi_1}}(q_0) = \{00, 01, 10\}.$

$$\mathsf{editO}_{\mathcal{A}_{\varphi}}(q,x) = \{ y \in \Sigma_O : q \xrightarrow{(x,y)} q' \land q' \neq q_v \}.$$

Example: $\operatorname{editO}_{\mathcal{A}_{\wp}}(q_0, 01) = \{0\}.$

- nondet-editl_{$A_{(q)}$}(q): An element chosen randomly from editl_{$A_{(q)}$}(q).
- nondet-edit $O_{\mathcal{A}_{co}}(\sigma, x)$: An element chosen randomly from edit $O_{\mathcal{A}_{co}}(q, x)$.

Outline

- Introduction
- Specifying Properties
- Formal Problem Definition
- 4 Condition for Enforceability
- 5 Enforcement Algorithm
- 6 Application to SCCharts
- Conclusion

Enforcer for φ

Given property φ (defined as SA):

What can an enforcer do?

- CAN edit an input-output event when necessary.
- CANNOT delay, block, suppress events.

Formal problem definition

Preliminaries (recall)

- I: set of inputs, O: set of outputs.
- $\Sigma_I = 2^I$, $\Sigma_O = 2^O$, and $\Sigma = \Sigma_I \times \Sigma_O$.
- Event (reaction): (x_i, y_i) where $x_i \in \Sigma_i$ and $y_i \in \Sigma_O$.
- Word σ : $(x_0, y_0) \cdot (x_1, y_1) \cdots \in \Sigma^*$.
- Property φ : $\varphi \subseteq \Sigma^*$.

Given φ , synthesize an enforcer $\mathcal{E}_{\varphi}: \Sigma^* \to \Sigma^*$ that satisfies:

- Soundness
- Monotonicity
- Transparency
- Instantaneity
- Causality

Introduction Specifying Properties Formal Problem Definition Condition for Enforceability Enforcement Algorithm Application to SCCharts Conclusion

Soundness

Output is correct (satisfies φ)

$$\forall \sigma \in \Sigma^* : E_{\varphi}(\sigma) \models \varphi.$$

Introduction Specifying Properties Formal Problem Definition Condition for Enforceability Enforcement Algorithm Application to SCCharts Conclusion

Monotonicity

Modify output only by appending new events

$$\forall \sigma, \sigma' \in \Sigma^* : \sigma \preccurlyeq \sigma' \implies E_{\varphi}(\sigma) \preccurlyeq E_{\varphi}(\sigma')$$

Transparency

Change only when necessary

$$\forall \sigma \in \Sigma^*, \forall x \in \Sigma_I, \forall y \in \Sigma_O: \\ E_{\varphi}(\sigma) \cdot (x, y) \models \varphi \implies E_{\varphi}(\sigma \cdot (x, y)) = E_{\varphi}(\sigma) \cdot (x, y).$$

Transparency

Change only when necessary

$$\forall \sigma \in \Sigma^*, \forall x \in \Sigma_I, \forall y \in \Sigma_O: \\ E_{\varphi}(\sigma) \cdot (x, y) \models \varphi \implies E_{\varphi}(\sigma \cdot (x, y)) = E_{\varphi}(\sigma) \cdot (x, y).$$

Lemma (Transparency is stronger)

Transparency
$$\Longrightarrow$$
 $(\forall \sigma \in \Sigma^* : \sigma \models \varphi \Rightarrow E_{\varphi}(\sigma) = \sigma).$

Instantaneity

Length preserving (cannot delay, insert and suppress events)

$$\forall \sigma \in \Sigma^* : |\sigma| = |E_{\varphi}(\sigma)|$$

Causality

Input from the env. \rightarrow Output from the program

$$\begin{aligned} \forall \sigma \in \Sigma^*, \forall x \in \Sigma_I, \forall y \in \Sigma_O, \\ \exists x' \in \mathsf{editl}_{\varphi_I}(E_\varphi(\sigma)_I), \exists y' \in \mathsf{editO}_\varphi(E_\varphi(\sigma), x') : \\ E_\varphi(\sigma \cdot (x, y)) = E_\varphi(\sigma) \cdot (x', y'). \end{aligned}$$

Outline

- Introduction
- Specifying Properties
- Formal Problem Definition
- 4 Condition for Enforceability
- 5 Enforcement Algorithm
- 6 Application to SCCharts
- Conclusion

Enforceable safety properties

Enforceability

Let $\varphi \subseteq \Sigma^*$ be a property. We say that φ is *enforceable* iff an enforcer E_{φ} for φ exists.

Enforceable safety properties

Enforceability

Let $\varphi \subseteq \Sigma^*$ be a property. We say that φ is *enforceable* iff an enforcer E_{φ} for φ exists.

A non-enforceable safety property

- $I = \{A\}, O = \{B\}.$
- Consider any input word of length greater than 1 (e.g., $(0,1) \cdot (1,1)$).

Enforceable safety properties

Enforceability

Let $\varphi \subseteq \Sigma^*$ be a property. We say that φ is *enforceable* iff an enforcer E_{φ} for φ exists.

A non-enforceable safety property

- $I = \{A\}, O = \{B\}.$
- Consider any input word of length greater than 1 (e.g., $(0,1) \cdot (1,1)$).

Condition for enforceability

A property φ defined as SA $A_{\varphi} = (Q, q_0, q_v, \Sigma, \rightarrow)$ is enforceable iff

$$\forall q \in Q, q \neq q_v \implies \exists (x,y) \in \Sigma : q \xrightarrow{(x,y)} q' \land q' \neq q_v$$

Transformation of non-enforceable properties

Transformation algorithm

```
1: sub(\mathcal{A}_{\varphi}) \leftarrow \mathcal{A}_{\varphi} = (Q, q_0, q_v, \Sigma, \rightarrow)
2: while \exists q \in Q \setminus \{q_v\} : \forall (x, y) \in \Sigma, q \xrightarrow{(x, y)} q_v \text{ do}
3: for all q \in Q \setminus \{q_v\} \text{ do}
4: if \forall (x, y) \in \Sigma, q \xrightarrow{(x, y)} q_v \text{ then}
5: if q = q_0 \text{ then}
6: RETURN(NONE)
7: else
8: remove(q)
9: end if
10: end for
11: end for
12: end while
13: RETURN(sub(\mathcal{A}_{\varphi}))
```

- Transformation algorithm is complete.
- Some behaviors excluded (i.e., $\mathcal{L}(sub(\mathcal{A}_{\varphi})) \subseteq \mathcal{L}(\mathcal{A}_{\varphi})$).
- Removal of behaviors done minimally.

Transformation of non-enforceable properties (Examples)

A non-enforceable property that **can** be transformed into an enforceable property

Transformation of non-enforceable properties (Examples)

A non-enforceable property that **can** be transformed into an enforceable property

A non-enforceable property that **cannot** be transformed into an enforceable property

Outline

- Introduction
- Specifying Properties
- Formal Problem Definition
- 4 Condition for Enforceability
- 5 Enforcement Algorithm
- 6 Application to SCCharts
- Conclusion

Enforcement algorithm (1)

```
Input: A_{\varphi} = (Q, q_0, q_v, \Sigma, \rightarrow). A_{\varphi_I} = (Q_I, q_{0_I}, q_{v_I}, \Sigma_I, \rightarrow_I) (Obtained from A_{\varphi} by ignoring outputs.)
```

Online algorithm

initialize tick/time, automata current states;

while True do

READ-input-channels;

EDIT-input-if-necessary;

READ-output-channels (after invoking program);

EDIT-output-if-necessary;

UPDATE-automata-current-states;

end

Enforcement algorithm (2)

Enforcer

```
1: t ← 0
 2: q \leftarrow q_0
 3. while true do
 4: x_t \leftarrow \text{read\_in\_chan()}
 5: if \exists q' \in Q : q \xrightarrow{x_t} q' \land q' \neq q_V then
 6: x'_t \leftarrow x_t
       else
       x'_t \leftarrow \text{nondet-editl}_{A_{co}}(q)
        end if
        ptick(x'_t)
10:
      y_t \leftarrow \text{read\_out\_chan()}
11:
      if \exists a' \in Q : a \xrightarrow{(x'_t, y_t)} a' \land a' \neq a_y then
12:
13:
      y_t' \leftarrow y_t
14.
        else
        y'_t \leftarrow \text{nondet-editO}_{\mathcal{A}_{ia}}(q, x'_t)
15:
        end if
16:
17: release((x'_t, y'_t))
18: q \leftarrow q' where q \xrightarrow{(x'_t, y'_t)} q' \land q' \neq q_v
      t \leftarrow t + 1
19.
```

20: end while

Enforcement algorithm (3)

Definition (E_{φ}^*)

Let $\sigma = (x_1, y_1) \cdots (x_k, y_k) \in \Sigma^*$ be a word received by the algorithm, and let $E_{\varphi}^*(\sigma) = (x_1', y_1') \cdots (x_k', y_k')$, where (x_t', y_t') is the pair of events output by the enforcement algorithm in Step 17, for t = 1, ..., k.

Theorem (Correctness of the enforcement algorithm)

Given any safety property φ defined as SA \mathcal{A}_{φ} that satisfies enforceability condition, the function E_{φ}^* defined above is an enforcer for φ , that is, it satisfies soundness, transparency, monotonicity, instantainety, and causality constraints.

Outline

- Introduction
- Specifying Properties
- Formal Problem Definition
- 4 Condition for Enforceability
- 5 Enforcement Algorithm
- 6 Application to SCCharts
- Conclusion

Application to the SCCharts synchronous language

Example: Property and its enforcer

Results

Examples	Tick (LoC)	#: Properties	Enf. (LoC)	Time (ms)	Time w/ Enf. (ms)	Incr. (%)
ABRO	23	1	21	0.001208	0.001565	29.55
ABO	28	1	21	0.000998	0.001368	37.10
Reactor	32	2	32	0.001587	0.002137	34.61
Faulty Heart Model	43	2	40	0.001346	0.001869	38.85
Simple Heart Model	76	2	40	0.002175	0.002825	29.86
Traffic Light	171	3	41	0.004039	0.004707	16.53
Pacemaker	271	2	35	0.007302	0.008318	13.91
FHM + Pacemaker	314	2	35	0.009195	0.010306	12.08

Outline

- Introduction
- Specifying Properties
- Formal Problem Definition
- 4 Condition for Enforceability
- 5 Enforcement Algorithm
- 6 Application to SCCharts
- Conclusion

Conclusion and Future Work

Conclusion

- Introduced bi-directional RE framework for reactive systems (modelled using the synchronous approach).
 - Formalize bi-directional RE problem.
 - Enforceability conditions (characterize set of safety properties which can be enforced).
 - Enforcer synthesis algorithm.
- Implemented the proposed enforcer synthesis algorithm for the SCCharts synchronous language.
- Applicability of the proposed approach by enforcing policies over a synchronous pacemaker model.

Introduction Specifying Properties Formal Problem Definition Condition for Enforceability Enforcement Algorithm Application to SCCharts Conclusion

Conclusion and Future Work

Conclusion

- Introduced bi-directional RE framework for reactive systems (modelled using the synchronous approach).
 - Formalize bi-directional RE problem.
 - Enforceability conditions (characterize set of safety properties which can be enforced).
 - Enforcer synthesis algorithm.
- Implemented the proposed enforcer synthesis algorithm for the SCCharts synchronous language.
- Applicability of the proposed approach by enforcing policies over a synchronous pacemaker model.

Future Work

- Practical setting of implantable pacemakers.
- Enforce other regular properties, discrete-time, etc.

Introduction Specifying Properties Formal Problem Definition Condition for Enforceability Enforcement Algorithm Application to SCCharts Conclusion

Conclusion and Future Work

Conclusion

- Introduced bi-directional RE framework for reactive systems (modelled using the synchronous approach).
 - Formalize bi-directional RE problem.
 - Enforceability conditions (characterize set of safety properties which can be enforced).
 - Enforcer synthesis algorithm.
- Implemented the proposed enforcer synthesis algorithm for the SCCharts synchronous language.
- Applicability of the proposed approach by enforcing policies over a synchronous pacemaker model.

Future Work

- Practical setting of implantable pacemakers.
- Enforce other regular properties, discrete-time, etc.

Implantable pacemakers

Adverse events

[Ref.]: Alemzadeh, H., Iyer, R.K., Kalbarczyk, Z., Raman, J., "Analysis of Safety-Critical Computer Failures in Medical Devices", Security and Privacy, IEEE, vol.11, no.4. pp.14,26. July-Aug, 2013.

Approaches to enhance pacemaker software

- Two key CS related initiatives: http://cybercardia.cs.stonybrook.edu, and Marta Kwiatkowska's group in Oxford.
- Model-based approach: Modeling and verification of a dual chamber implantable pacemaker, Jiang, Pajic, Moarref, Alur, Mangaram. TACAS 2012
- Testing: Heart-on-a-chip: A closed-loop testing platform for implantable pacemakers Jiang, Radhakrishnan, Sampath, Sarode, Mangharam. CyPhy 2013
- Requirements-Centric Closed-Loop Validation of Implantable Cardiac Devices.
 Weiwei Ai, Nitish Patel and Partha Roop. DATE '16.
- Except the work of Ai et al., others consider a static model of the heart during closed-loop testing / model checking.
- Focus of the current work is on *run-time enforcement*, where a dynamically evolving heart model and a pacemaker can be used for run-time verification and enforcement.

When input σ satisfies φ

Transparency': $\forall \sigma \in \Sigma^* : \sigma \in \varphi \Rightarrow E_{\varphi}(\sigma) = \sigma$

Transparency' means that when the input sequence σ satisfies φ , then σ will be the output of the enforcer.

$\mathsf{Lemma} \; (\mathit{Transparency} \; \Longrightarrow \; \mathit{Transparency}')$

$$(\forall \sigma \in \Sigma^*, \forall x \in \Sigma_I, \forall y \in \Sigma_O : E_{\varphi}(\sigma) \cdot (x, y) \models \varphi \implies E_{\varphi}(\sigma \cdot (x, y)) = E_{\varphi}(\sigma) \cdot (x, y))$$

$$\Longrightarrow$$

$$(\forall \sigma \in \Sigma^* : \sigma \in \varphi \Rightarrow E_{\varphi}(\sigma) = \sigma).$$

Example (Transparency is stronger)

• $I = \{A, B\}$, $O = \{O\}$, Property φ : A and B cannot happen simultaneously.

σ	$E_{arphi}(\sigma)$	TR	TR'
(01, -)	(01, -)	✓	✓
$(01,-)\cdot(11,-)$	$(01, -) \cdot (10, -)$	✓	✓
$(01,-)\cdot (11,-)\cdot (01,-)$	$(01,-)\cdot (10,-)\cdot (10,-)$	Х	✓
$(01,-)\cdot (11,-)\cdot (01,-)$	$(01,-)\cdot (10,-)\cdot (01,-)$	1	✓

Results

Examples	Tick (LoC)	φ : in-out	Enf. (LoC)	Time (ms)	Time w/ Enf. (ms)	Incr. (%)
Null	0	0-0	0	0.000654	0.000752	14.98
ABRO	23	1-0	21	0.001208	0.001565	29.55
ABO	28	1-0	21	0.000998	0.001368	37.10
Reactor	32	1-1	32	0.001587	0.002137	34.61
Faulty Heart Model	43	1-1	40	0.001346	0.001869	38.85
Simple Heart Model	76	1-1	40	0.002175	0.002825	29.86
Traffic Light	171	0-3	41	0.004039	0.004707	16.53
Pacemaker	271	1-1	35	0.007302	0.008318	13.91
FHM + Pacemaker	314	1-1	35	0.009195	0.010306	12.08

Example

$$I = \{A\}, O = \{R\}$$

t	х	x'	у	y'	Loc	EnfAct	
0	ϵ	ϵ	ϵ	ϵ	<i>I</i> ₀	-	
1	0	0	1	0	10	fwd _I , edt _O	
2	1	1	0	0	I_1	fwd ₁ , fwd ₀	
3	1	0	0	0	I_1	edt_I , fwd_O	
4	0	0	1	1	<i>I</i> ₀	fwd ₁ , fwd ₀	