Systèmes triphasés

Etude en régime équilibré

Historique

Le « courant alternatif »

Réseaux alternatifs monophasés à partir de 1890 (puis diphasés)

Historique

Le « courant alternatif »

Les réseaux alternatifs triphasés s'imposent ultérieurement puis s'interconnectent en de vastes réseaux.

Fréquence électrique de 50 Hz (Europe) ou de 60 Hz (U.S.A.)

Avantages du triphasé sur le monophasé :

- ✓ production de l'énergie : alternateurs triphasés performants (rendement)
- ✓ transport de l'électricité : moitié moins de pertes qu'un réseau monophasé
- ✓ utilisation : les moteurs alternatifs triphasés sont simples et économiques

Historique

Choix triphasé / monophasé suite

$$p(t) = v(t) i(t)$$

passe cycliquement par 0

moteur monophasé : impossibilité de démarrer !!!

$$v(t) = \frac{\mathrm{d}\Phi}{\mathrm{d}t} \longrightarrow$$

Couple électromagnétique à valeur moyenne nulle

Préliminaire Systèmes q-phasés

Ensemble de q grandeurs sinusoïdales (tensions, courants, induction...)

Préliminaire Systèmes q-phasés

même valeur efficace

même fréquence

$$e_1 = E\sqrt{2}\cos(\omega t + \theta_0)$$

$$e_2 = E\sqrt{2}\cos\left(\omega t + \theta_0 - m\frac{2\pi}{q}\right)$$

• • •

déphasage

$$e_{k+1} = E\sqrt{2}\cos\left(\omega t + \theta_0 - k.m\frac{2\pi}{q}\right)$$

q grandeurs sinusoïdales

$$e_q = E\sqrt{2}\cos\left(\omega t + \theta_0 - (q-1).m\frac{2\pi}{q}\right)$$

Représentation de Fresnel systèmes q-phasés

q=2 , $système\ biphas\'e\ (différent\ de\ diphas\'e)$

q=3, système triphasé

q=4, système tétraphasé un cas particulier

Système tétraphasé (appelé diphasé)

Paramètre m Différents systèmes triphasés

Déphasage
$$m\frac{2\pi}{3}$$

```
m = 0 Déphasage nul \Longrightarrow Système triph. homopolaire
```

$$m = 1$$
 Déphasage $2\pi/3$ \Longrightarrow Système triph. direct

$$m=2$$
 Déphasage $4\pi/3$ \Longrightarrow Système triph. inverse

Paramètre m Différents systèmes triphasés

Etude restreinte Systèmes triphasés équilibrés

$$E_1 = E_2 = E_3$$
 (même valeur efficace)

et déphasages successifs de $m2\pi_{/3}$ égaux

$$\underline{E}_1 + \underline{E}_2 + \underline{E}_3 = 0$$

Ordre de succession des phases

Ordre de succession des phases

Notations Exemple du système direct

Système **Direct**

Analytique (instantanée)

$$e_1 = E\sqrt{2}\cos(\omega t)$$

$$e_2 = E\sqrt{2}\cos\left(\omega t - \frac{2\pi}{3}\right)$$

$$e_3 = E\sqrt{2}\cos\left(\omega t - \frac{4\pi}{3}\right)$$

Complexe

$$E_1 = E$$

$$\underline{E_1} = E$$

$$\underline{E_2} = E e^{-j\frac{2\pi}{3}}$$

$$\underline{E_3} = E e^{-j\frac{4\pi}{3}}$$

$$E_3 = E e^{-j\frac{4\pi}{3}}$$

Notations Exemple du système direct

Oscillogrammes Exemple du système direct

Base de temps: 2 ms/div

Sensibilités en tension: 100 V/div

Oscillogrammes Exemple du système direct

Groupements

Tensions et courants équilibrées

les 3 courants forment un système équilibré

Groupement étoile

Groupements Relation tension simple-composée

Groupements Relation tension simple-composée

Groupements Relation tension simple-composée

Groupements Groupement étoile

en équilibré, $i_N = 0$ | ligne à 3 fils

Groupement Triangle

V_1	tension simple <u>indisponible</u>
\mathbf{U}_{12}	tension composée (entre deux phases)
I_1	Courant de ligne
J_{12}	Courant de Triangle

Groupements Groupement Triangle, remarque

V₁ tension simple <u>indisponible</u>

mais, avec 3 résistances identiques en étoile

Groupements Relation courants de ligne-triangle

Groupements Relation courants de ligne-triangle

$$I_{1} = J_{12} - J_{31}$$

$$= J_{12} - J_{12} e^{-j^{4}\pi/3}$$

$$= J_{12} \left(1 - e^{-j^{4}\pi/3}\right)$$

$$= 1 - \cos\frac{4\pi}{3} + j\sin\frac{4\pi}{3}$$

$$= \frac{3}{2} - j\frac{\sqrt{3}}{2} = \sqrt{3}\left(\frac{\sqrt{3}}{2} - j\frac{1}{2}\right)$$

$$= \sqrt{3}e^{-j\frac{\pi}{6}}$$

Groupements

Relation courants de ligne-triangle, résumé

Groupements Résumé

On peut grouper des générateurs:

Tension simple V
Tension composée U

Groupements Résumé

On peut grouper des récepteurs:

Groupements

Résumé

Relations étoile-triangle

$$I = J\sqrt{3}$$
 I retarde de $\frac{\pi}{6}$ sur J

$$U = V\sqrt{3}$$
 U avance de $\frac{\pi}{6}$ sur V

Groupements Utilisation particulière

Soient les mêmes 3 résistances placées en étoile ou en triangle :

La puissance en étoile est 3 fois plus faible qu'en triangle (à même U)

D'où la possibilité d'avoir deux tensions d'alimentation pour le même appareil Exemple : démarrage étoile-triangle des moteurs assynchrones (obsolète)

Aspect puissances puissance instantanée

Pour une phase:

$$a_1 = \sqrt{2} A \cos(\omega t)$$

$$b_1 = \sqrt{2} B \cos(\omega t - \varphi)$$

$$p_{1} = a_{1} b_{1}$$

$$= 2 A B \cos(\omega t) \cos(\omega t - \varphi)$$

$$= AB \left[\cos \varphi + \cos(2 \omega t - \varphi)\right]$$
Terme constant Terme fluctuant

puissance instantanée pour une phase

puissance instantanée en triphasé équilibré

Puissance instantanée en triphasé équilibré

Comparaison transport monophasé et triphasé pertes

Puissance instantanée

$$p = P = 3AB \cos \varphi$$

$$p = 3VI\cos\varphi$$
$$= \sqrt{3} UI\cos\varphi$$

$$\mathbf{A} = \mathbf{U}$$

$$\mathbf{B} = \mathbf{J}$$

$$p = 3UJ\cos\varphi$$
$$= \sqrt{3}UI\cos\varphi$$

Aspect puissances Puissance instantanée

$$p = \sqrt{3}UI\cos\varphi$$

Formule valable quelque soit le couplage

 ϕ est l'argument de Z

Φ est aussi toujours le déphasage de I sur V.

Aspect puissances Les autres puissances

$$p = \sqrt{3}UI\cos\varphi$$

	Expression.	RAPPEL : Expression en monophasé.
Active	$P = \sqrt{3}UI\cos\varphi$	$P = VI\cos\varphi$
Réactive	$Q = \sqrt{3}UI\sin\varphi$	$Q = VI \sin \varphi$
Apparente	$S = \sqrt{3}UI$	S = VI
Facteur de puissance	$k = \frac{P}{S} = \cos \varphi$	$k = \frac{P}{S} = \cos \varphi$

Aspect puissances Théorème de Boucherot

Idem monophasé et seulement pour les régimes sinusoïdaux de même fréquence

Mesure des puissances Méthode à 3 wattmètres

 P^{x} Courant pris en compte xy Tension prise en compte

Mesure des puissances Méthode à 3 wattmètres

Puissance active

$$P = P_{1N}^1 + P_{2N}^2 + P_{3N}^3$$

Puissance réactive

$$Q = Q_1 + Q_2 + Q_3$$

en sinus uniquement — avec
$$Q_i = \sqrt{(V_i I_i)^2 - (P_{1N}^1)^2}$$

quels que soient les déséquilibres tension et courant

Méthode à 2 wattmètres

$$\begin{vmatrix} P_{1N'}^1 = \langle i_1 \ v_{1N'} \rangle = \langle i_1 \ v_{1N} \rangle + \langle i_1 \ v_{NN'} \rangle \\ P_{2N'}^2 = \langle i_2 \ v_{2N'} \rangle = \langle i_2 \ v_{2N} \rangle + \langle i_2 \ v_{NN'} \rangle \\ P_{3N'}^3 = \langle i_3 \ v_{3N'} \rangle = \langle i_3 \ v_{3N} \rangle + \langle i_3 \ v_{NN'} \rangle \end{aligned}$$

Vrai en équilibré ou en 3 fils quelconque (quelque soit le potentiel N')

$$P = P_{1N}^{1} + P_{2N}^{2} + P_{3N}^{3} + (v_{NN'}(i_1 + i_2 + i_3))$$

Mesure des puissances Méthode à 2 wattmètres

$$P = P_{1N'}^1 + P_{2N'}^2 + P_{3N'}^3$$

(quelque soit le potentiel N')

Prenons N' sur L3

2 watmètres suffisent

Mesure des puissances Méthode à 2 wattmètres

 P_{33}^3 indique toujours 0

N' devient L3

$$P = P_{13}^1 + P_{23}^2$$

Vrai

quels que soient les déséquilibres sur ligne 3 fils

Méthode à 2 wattmètres, remarque

Méthode à 2 wattmêtres, remarque

Méthode à 2 wattmêtres, remarque

$$P_{13}^1 = UI \cos \left(\varphi - \frac{\pi}{6} \right)$$

$$P_{23}^2 = UI \cos \left(\varphi + \frac{\pi}{6} \right)$$

$$=\sqrt{3}UI\cos \varphi$$

Comme démontré précédemment en régime quelconque!

Méthode à 2 wattmêtres, remarque

Méthode à 2 wattmètres, puissance réactive

$$P_{13}^1 = UI \cos \left(\varphi - \frac{\pi}{6} \right)$$

$$P_{23}^2 = UI \cos \left(\varphi + \frac{\pi}{6} \right)$$

$$= UI \sin \varphi$$

$$Q = \sqrt{3} \left(P_{13}^{1} - P_{23}^{2} \right)$$

Seulement si courants et tensions équilibrés

Mesure directe de Q

$$P_{23}^1 = U_{23} I_1 \cos \left(U_{23}, I_1 \right)$$

$$= UI \cos\left(\frac{\pi}{2} - \varphi\right)$$

$$=UI\sin\varphi$$

$$Q = \sqrt{3} P_{23}^1$$

Sur ligne totalement équilibrée i et ν

Systèmes triphasés

Tensions et courants

SimplesComposés

Puissance en triphasé

- Non fluctuante
- •Indépendante étoile-triangle

$$P = \sqrt{3}UI\cos\varphi$$

$$Q = \sqrt{3}UI\sin\varphi$$

Attention: ϕ est le déphasage de I sur V.

Mesures de puissance

- Divers montages
- Attention aux déséquilibres

