Sammanfattning av SF1681 Linjär algebra, fortsättningskurs

Yashar Honarmandi yasharh@kth.se

6 november 2018

Sammanfattning

Detta är en sammanfattning av SF1681 Linjär algebra, fortsättningskurs. Den innehåller förklaringar av centrala begrepp, definitioner och satser som täcks i kursen.

Innehåll

1		ctorrum	1	
	1.1	Definitioner	1	
	1.2	Satser	2	
2	Avbildningar			
		Definitioner	2	
	2.2	Satser	3	
3	Ege	envärden och olika polynom	5	
	3.1	Definitioner	5	
	3.2	Satser	5	

1 Vektorrum

1.1 Definitioner

Kroppar En kropp är något som har definierat multiplikation och addition, och som fungerar som (är isomorft med) \mathbb{R} , \mathbb{C} osv.

Vektorrum Ett vektorrum är en mängd med en operation som gör V till en abelsk grupp och för vilken det finns en kropp k med skalärer och en operation med skalären som uppfyller

- $c(x+y) = cx + cy, c \in \mathbb{R}, x, y \in V.$
- (c+d)x = cx + dx, $c, d \in \mathbb{R}$.
- c(dx) = (cd)x.
- $\bullet \ 1x = x.$

Delrum En delmängd V av ett vektorrum är ett delrum om

- $0 \in V$, där 0 är nollelementet.
- $x, y \in V \implies x + y \in V$.
- $cx \in V$ för alla $c \in \mathbb{R}$.

Inre direkt summa Vi definierar den inre direkta summan

$$\bigoplus_{i=0}^{\infty} V_i = \left\{ \sum_{i=0}^{\infty} a_i, a_i \in V_i \right\}.$$

Yttre direkt summa Den yttre direkte summan av två vektorrum definieras som

$$V \oplus W = \{(x, y), x \in V, y \in W\}.$$

 $\mathbf{Kvotrum}\quad \text{Om } W\subseteq V$ är delrum, kan vi bilda

$$\frac{V}{W} = \{x + W, x \in V\},\,$$

där vi har användt summan

$$x + W = \{x + y, y \in W\}.$$

Dessa kallas för sidoklasser.

Operationer på sidoklasser Till sidoklasser hör operationer

$$(x + W) + (y + W) = x + y + W,$$

 $a(x + W) = (ax) + W.$

Linjärt oberoende mängder S är en linjärt oberoende mängd om

$$\sum a_i x_i = 0 \implies a_i = 0 \forall i,$$

där alla x_i är elementer i S.

Linjärt hölje Det linjära höljet $\operatorname{Span}(S)$ av mängden S är

- \bullet mängden av alla linjärkombinationer av vektorer i S.
- $\bullet\,$ det minsta delrummet som innehåller S.
- $\bullet \ \bigcap_{S\subset W} W.$
- $\sum_{x \in S} \operatorname{Span}(x)$.

Bas En bas B för vektorrummet W är en linjärt oberoende mängd så att $V = \operatorname{Span}(B)$, dvs. att alla vektorer i V är linjärkombinationer av vektorer i B på ett unikt sätt.

1.2 Satser

Operationer på sidoklasser Operationer på sidoklasser är väldefinierade.

Bevis

2 Avbildningar

2.1 Definitioner

Isomorfir En isomorfi är en bijektiv avbildning mellan vektorrum.

Linjära avbildningar En avbildning T är linjär om

$$T(x + y) = T(x) + T(y),$$

$$T(cx) = cT(x), c \in \mathbb{R}.$$

Vi säjer att T respekterar eller bevarar strukturen som vektorrum.

Isomorfir En isomorfi är en linjär och bijektiv avbildning mellan vektorrum.

Matriser för linjära avbildningar Om B är en bas för V och D är en bas för W kan vi ordna en matris för $L:V\to W$ genom

$$L(x_i) = \sum_{j \in I} a_{ji} y_j,$$

där alla $x_i \in B$, alla $y_i \in D$ och I är en mängd av index som det skall summeras över. Linjära kombinationer är per definition ändliga, och därmed summeras det över ett ändligt antal termer även om I är oändlig.

Analytiska funktioner av operatorer $\,$ En analytisk funktion av en operator L definieras som

$$f(L) = \sum a_i L^i.$$

Matrisnorm Normen av en matris definieras som

$$||A|| = \sup_{||x||=1} ||Ax||.$$

2.2 Satser

Basbyte Låt L vara en avbildning från V till W. Låt $]_{B,D}$ vara en avbildning mellan vektorrum från basen B i definitionsmängden till D i målmängden, och låt $P_{A,B}$ vara avbildningen som byter bas från A till B i samma vektorrum. Då gäller det att

$$L_{B,D} = P_{D',D} L_{B',D'} P_{B,B'}$$

Bevis Kommutativt diagram

Koordinater Låt $B = \{x_i\}_{i \in I}$ vara en bas för vektorrummet V. Detta ger en isomorfi

$$V \to k^I \equiv \bigoplus_{i \in I} k,$$

$$x = \sum a_i xi \to \{a_i\}_{i \in I}.$$

Bevis Avbildningen

$$\{a_i\}_{i\in I} \to \sum a_i xi$$

ger en avbildning $k^I \to V$ som är injektiv eftersom B är linjärt oberoende och surjektiv eftersom B spänner upp V.

Kärna och injektivitet En linjär avbildning är injektiv om och endast om $ker(L) = \{0\}.$

Bevis

$$L(x) = L(y) \implies L(x - y) = 0 \implies x - y \in \ker(L).$$

Alltså kan alla element i kärnan skrivas som differansen av två element på detta sättet, och det enda som garanterar injektivitet är om bara identiteten finns i kärnan.

Kvotavbildning Om $W\subseteq V$ är ett delrum , ger $x\to x+W$ en linjär kvotavbildning från V till $\frac{V}{W}$.

Bevis Vi har

$$x + y \rightarrow x + y + W = x + W + y + W,$$

$$ax \rightarrow ax + W = a(x + W),$$

och beviset är klart.

Isomorfisatsen

$$\operatorname{Im}(L) \cong \frac{V}{\ker(L)}$$

Bevis Avbildningen $\Phi(x + \ker(L)) = L(x)$ ger en väldefinierad avbildning från $\frac{V}{\ker(L)}$ till $\operatorname{Im}(L)$ eftersom $x + \ker(L) = y + \ker(L)$ implicerar L(x) = L(y) ty L är linjär. Φ är injektiv eftersom $\ker(\Phi) = \{x + \ker(L) : L(x) = 0\} = \{\ker(L)\}$. Φ är surjektiv eftersom y = L(x) för något x ger $y = \Phi(x + \ker(L))$, och alltså finns det för alla $y \in \operatorname{Im}(L)$ ett x så att $y = \Phi(x + \ker(L))$.

Dimensionssatsen Om V är ändligdimensionellt är rank $L+\dim(\ker(L)) = \dim(V)$.

Bevis

Faktorisering med kvotrum Om $U \subseteq \ker(L)$ finns det en unik avbildning $\Phi : \frac{V}{U} \to W$ sådan att $L = \Phi \circ \Psi$.

Bevis Definiera $\Phi(x+U) = L(x)$.

Norm av potenser av matriser

$$\left\|A^i\right\| \le \left\|A\right\|^i$$

Bevis

Konvergens av funktioner av matriser En funktion f av en matris konvergerar om

$$f(||A||) = \sum a_i ||A||^i$$

konvergerar.

3 Egenvärden och olika polynom

3.1 Definitioner

Egenvektorer x är en egenvektor till L om det finns ett $\lambda \in k$ så att

$$Lx = \lambda x$$
.

 λ kallas det motsvarande egenvärdet.

Karakteristiskt polynom $Om\ V$ är ändligdimensionellt ges det karakteristiska polynomet av

$$p_L(x) = \det(xI - L) \in k[x],$$

där I är identitetsavbildningen.

Minimalpolynom Om A är en matris, är minimalpolynomet $q_A(x) \in k[x]$ det moniska polynomet av lägst grad så att $q_A(A) = 0$.

Diagonaliserbarhet En operator är diagonaliserbar om det finns en bas så att operatorns matris i den basen är diagonal.

Samtidig diagonaliserbarhet Två operatorer L_1 och L_2 är samtidigt diagonaliserbara om båda är diagonaliserbara och det finns en gemensam bas av egenvektorer.

3.2 Satser

Karakteristiska polynom och egenvärden Om lambda är ett egenvärde till L så är $p_L(\lambda) = 0$.

Bevis Ez

Existens av minimalpolynom Om V är ändligdimensionellt, har L ett karakteristiskt polynom.

Bevis Betrakta matrisen A för L i någon bas. Det gäller att mängden $\{A^0, A^1, \ldots, A^{n^2}\}$ är linjärt beroende, och därmed finns det koefficienter a_0, \ldots, a_n så att

$$\sum a_i A^i = 0.$$

Cayley-Hamiltons sats $p_L(L) = 0$.

Bevis Om matrisen för L är diagonal så är det uppenbart, ty

$$A^{i} = \begin{bmatrix} \lambda_{1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_{n} \end{bmatrix} \implies p_{A}(A) = \begin{bmatrix} p_{A}(\lambda_{1}) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & p_{A}(\lambda_{n}) \end{bmatrix}.$$

I övrigt oklart.

Korrolar q_L är en faktor i p_L .

Multipliciteter och diagonaliserbarhet Om L är diagonaliserbar, är den geometriska multipliciteten lika med den algebraiska multipliciteten för alla L:s egenvärden.

Bevis

Konjugerade matriser Alla matriser är konjugerade med en övertriangulär matris med matrisens egenvärden på diagonalen.

Samtidig diagonaliserbarhet och kommutativitet Låt V vara ett ändligdimensionellt vektorrum och L_1, L_2 två operatorer på detta. Då går det att diagonalisera L_1 och L_2 om de kommuterar.

Bevis

Kommutativitet och egenrum Låt L_1 och L_2 kommutera och E_1 vara egenrum till L_1 . Då är $L_2(E_1) \subset E_1$.

Bevis

Jordans normalform Om en operator har karakteristiskt polynom

$$p_L(x) = \prod (x - \lambda_i),$$

finns det en bas så att matrisen för L är på formen

$$\left[\begin{array}{cccc} \Lambda_1 & 0 & \dots & 0 \\ 0 & \Lambda_2 & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & \Lambda_i \end{array}\right],$$

 med

$$\Lambda_i = \left[egin{array}{cccc} \lambda_i & 1 & \dots & 0 \\ 0 & \lambda_i & \dots & dots \\ dots & \dots & \ddots & 1 \\ 0 & \dots & 0 & \lambda_i \end{array}
ight].$$

En sådan matris är på Jordans normalform.

Bevis