	JUNAID GIRKAR
	MACHINE LEARNING G0004190057
	ASSIGNMENT-1 TE COMPS A-4
Q1	Enplain radial basis junction in detail.
ANS .	Radial basis kernel is a kernel function
	that is used in machine learning to find
	non-linear classifier or regression line.
	kernel function is used to convert or
	transjourn n-dimensional to m-dimensional
	input where m is much higher than n.
	then find the dot product in higher
	dimentional efficiently. The main idea to
	use kernel is - A Vlinear classifier or
	regression curve in higher dimensions becomes
	a Unon- linear classifier ox regression eur ve
	in lower dimension.
	mathematical defination of Radial Basis Kernel:
	() () ()
	K(n, n') = enp(-1 n-n' 1)
	$2\sigma^2$
	where n and n' is vector point in any jimed
	dimensional space. But i) we empand the
	above emponential empression, it will go upto
	injinite power of n and n', as emparasion
1	of en contains injinite terms up to injinite power of n hence it involves terms up to injinite
	power of n hence it involves terms upper infinite
Sundaram ®	FOR EDUCATIONAL USE

powers in infinite dimensions.

If we apply any of the algorithm like perceptron algorithm or linear regression on this kernel, actually we would be applying our algorithm to new infinite - dimentional data point we have created. Hence it will give the hyperplane of infinite dimension; which will give very strong non-linear classifier or regression clave after returning to our original dimension.

a, n'inf + a2 n'inf-1 + a3 n'inf-2 + ... + aint n + c.

So although we are applying linear classification/
regression, it will give a non-linear
classifier ox regression line, that will help
to be a polynomial or infinite power. And
being a polynomial or infinite power, radial
basis kernel is a very powerful kernel,
which can give curve fitting to any complem dataset.
The main motive of this kernel is to do
calculations in any d-dimentional space where
d>1, so we can get a quadratic, cubic or
polynomial equation of large degree for our
classification / regression line. Since readial
bias kernel uses emponent as we know the
emponents of en gives a polynomial equation of
infinite power, so using this kernel, we can
make classification line infinitely powerful too.

Consider the following emamples:

If a circle of radius R is inscribed inside a square with side length dR, then the area of circle will be πR^2 and the area of square will be $(2R)^2 \cdot 80$ ratio of circle area to area of square will be πR^2 . It also means that if we pick a grandom point (n,y) both m and y axe between (1,-1), probability of this xandom point lies inside the unit circle is given as proposition between area of unit circle & squaxe $P(n^2 + y^2 < 1) = Area(circle) = \frac{\pi}{4}$ Area(square) 4 So i) un you pick N points at random inside square appronimately NT/4 of these points. Should jall inside a wicker M (no. of points inside the circle) = NTI

So supposing, we pick "N" standom points, out
of which "m" of those fall inside the circle,
we can then calculate. To by:-

TC = 4 M

Sundaram

Q3	Write a short note on:
1)	Maxkov Random jields:-
	Maxkov Random model is a model which uses the
	unidirected graph. Unidirected graphical models
	represent edges represent the potential between
	two variables, syntatically, jactoxization
	distribution probabilities bétween variable. In each
	individual variable connected with edges xepxesent
	a certain clique in graph; means probability
	distribution a graph con jactorize an individual
	elique potential junction.
	Just as we had CPD's jox Bayesian networks
	ue have to incorporate relationship between
	nodes in Markov networks. However there are 2
	exucial difference between the tables and CPD's.
	A) (B) (c) dique in graph theory it is a
	subset of vertices of an
	subset o vertices o an our controlled graph.
	$P(A,B,C,D,E) \propto \phi(A,B) \phi(B,C) \phi(B,D) \phi(C,E) \phi(D,E)$
	clique 1
	P(x) = 1 TC cique $\phi_c(N_c)$ 2 (Potential Junethous)
	2 (Potential Junetion)
	Such that it includes subgraph in every vertices
	in a clique is adjacent. So clique in this graph
	such that it includes subgraph in every vertices in a clique is adjacent so clique in this graph adjust adjacently one by one.
(Sundaram)	FOR EDUCATIONAL USE

 \mathcal{S}

P(A,B,C,D,E) ~ \$ (A,B) + (B,GD) \$ (●C,D,E)

Some undirected graphic model has Markon Random field. In MRF, certain paths between A and c

do not need to be acyclic.

Independence properties such as Maxkov properties:

• Any two subsets if variables are conditionally independent given a separating subset.

• If we take 'A' as a subset and 'c' as one subset then there is a work between them so there is no way to go between 'A' and 'c' without getting through the subset. So we are

	using (A, B) then B, C, D, E. Therefore A and C one separating subset.
2	sey oxganizing Maps: - (80M)
	It is a type of Artificial Newal Network which is inspired by biological models of newal systems from 1970's. It jollows an unsupervised learning approach and has trained its
	algorithm. som is used fox clustering and mapping techniques to map mutidimensional
	jox easy intexpretation. Som has 2 layers: input layer and output layer. The axchitecture of som with 2 clusters and n input leature
	any sample is given below.
	ALGORITHM: 1) Weight Initialization 2) For 1 to n number of epochs 2) Select a sining angulate
(Aundaram)	3) Select training emample. FOR EDUCATIONAL USE

	4) compute winning vector
	s) update the winding vector
	G) Repeat steps 3,4,5 for all training enample. 7) Clustering the test sample.
	7) Clustering the test sample.
	•
	Lets say an input data of size (m,n) where
	Lets say an input data of size (m,n) where in is number of training enamples and in is number of features in each enample.
	is number of features in each enample.
	First it initializes the weights of size (n,c)
	where c is the number of clusters. Then
	itexating over the input data, you each training enample, it updates the winning vector.
	enample, it updates the winning vector.
	weight updation rule is given by:
	Wij = Wij (old) + x(t) * (nik - wij (old))
1	
	11
_	