The Central Limit Theorem (CLT)

Let $X_1, X_2, ..., X_n$ be a sequence of independent and identically distributed (i.i.d) random variables with $E[X] = \mu$, $< \infty$ (finite first moment), and $Var(X) = \sigma^2$ exists.

(CLT) As n becomes large, then the distribution of $\frac{1}{n}\sum_{i=1}^n x_i$ (the sample mean) is approximately a Normal distribution $N\Big(\mu,\frac{\sigma^2}{n}\Big)$.

Useful direct consequence

As a consequence, we also have that

$$\frac{\sum_{i=1}^{n} (x_i - \mu)}{\sqrt{n} \ \sigma} \xrightarrow{L} N(0, 1)$$

Indeed, we have that

$$\sum_{i=1}^{n} (x_i - \mu) \xrightarrow{L} N(0, n\sigma^2)$$

$$\sum_{i=1}^{n} x_i \xrightarrow{L} N(n\mu, n\sigma^2)$$

$$\frac{1}{n} \sum_{i=1}^{n} x_i \xrightarrow{L} N\left(\mu, \frac{\sigma^2}{n}\right)$$

Example 1: Exponential variables

Example 1 Let $y_1,y_2,...,y_n$ be i.i.d exponential realizations of $Y_i \sim \mathcal{E}(\lambda=5)$ and n=1,000. The theoretical mean is $E[Y]=1/\lambda=1/5=0.2$ and the theoretical variance is $Var(Y)=1/5^2$. Then we expect the sample average $\frac{1}{n}\sum_{i=1}^n y_i$ to converge to a Normal distribution $N\Big(E[Y]=\mu=\frac{1}{5},Var(Y)=\frac{\sigma^2}{n}=\frac{1}{25,000}\Big)$

In other words: The mean of the realizations of our Exponential random variables will obey a Normal distribution.

Example 1: Visualization

Example 2: Application 1/3

Example 2 According to a certain maritime organization, the distribution of the length of a specific fish species at maturity in the Mekong delta has mean $\mu=83$ cm. and standard deviation $\sigma=7$ cm. The random variable Y denotes the length of these fishes.

(i) Suppose we sample 25 individuals. What is the probability that the sample average is above $86\ \mathrm{cm}$. ?

(i) From the CLT, we know that the distribution of the sample average $\frac{1}{25}\sum_{i=1}^{25}y_i$ has a Normal distribution

$$N\left(\mu = 83, \frac{\sigma}{\sqrt{n}} = \frac{7}{5}\right).$$

So,
$$P(\overline{y} > 86) = P(Z > \frac{\overline{y} - \mu}{\sigma / \sqrt{n}}) = P(Z > \frac{86 - 83}{1.4}) = P(Z > 2.142857) = 0.01606 \approx 1.6\%$$

$$\begin{array}{ll} pnorm (q=86,\;mean=83,\;sd=7/5,\;lower.tail\;=\;FALSE) \\ \# \; 0.01606 \end{array}$$

Bayesian Questionnaire: Question 3

According to a certain maritime organization, the distribution of the length of a specific fish species at maturity in the Mekong delta has mean $\mu=83$ cm. and standard deviation $\sigma=7$ cm. The random variable Y denotes the length of these fishes.

If
$$Y$$
 had a Normal distribution, we would have $P\Big(\overline{y}>86\Big)=P\Big(Z>\frac{86-83}{7}\Big)$. What is this probability ? You can do it in R or use any other ressource.

A: 25.09 % B: 33.41 % C: 6.54 % D: 60 %

Example 2: Application 1/3

Example 2: Application 2/3

Example 2 (continued) According to a certain maritime organization, the distribution of the length of a specific fish species at maturity in the Mekong delta has mean $\mu=83$ cm. and standard deviation $\sigma=7$ cm. The random variable Y denotes the length of these fishes.

- (ii) Give a 95% Confidence Interval for the sample average length.
- (ii) From the CLT, we know that the distribution of the sample average $\frac{1}{25}\sum_{i=1}^{25}y_i$ has a Normal distribution

$$N\left(\mu = 83, \frac{\sigma}{\sqrt{n}} = \frac{7}{5}\right).$$

So,
$$P\left(-1.96 > Z > 1.96\right) = 95\%$$
 \Leftrightarrow $P\left(\mu - 1.96 * \sigma/\sqrt{n} > \overline{y} > \mu + 1.96 * \sigma/\sqrt{n}\right) = 95\%$ \Leftrightarrow $\left[\mathbf{80.26}, \mathbf{85.74}\right]$

$$c((83 - 1.96*(7/5)), (83 + 1.96*(7/5)))$$

[1] 80.256 85.744

Example 2: Application 3/3

Example 2 (continued) According to a certain maritime organization, the distribution of the length of a specific fish species at maturity in the Mekong delta has mean $\mu=83$ cm. and standard deviation $\sigma=7$ cm. The random variable Y denotes the length of these fishes.

(iii) How many mature tuna must we sample if we want a 95~% confidence that the sample average is within $1~\rm cm.$ from the population mean ?

(iii) From the CLT, we know that the distribution of the sample average $\frac{1}{25}\sum_{i=1}^n y_i$ has a Normal distribution

$$N\left(\mu = 83, \frac{\sigma}{\sqrt{n}} = \frac{7}{\sqrt{n}}\right).$$

So,
$$Z=\frac{\overline{y}-\mu}{\sigma/\sqrt{n}}$$
 \Leftrightarrow $1.96=\frac{1}{7/\sqrt{n}}$ \Leftrightarrow $n=(1.96*7)^2\approx \mathbf{189}$ fishes

So we replace all we know and solve for n, the sample size.