Grafi (I parte)

Progettazione di Algoritmi a.a. 2023-24

Matricole congrue a 1

Docente: Annalisa De Bonis

Grafi non direzionati

- Grafi non direzionati. G = (V, E)
- V = insieme nodi.
- E = insieme archi.
- Esprime le relazioni tra coppie di oggetti.
- Parametri del grafo: n = |V|, m = |E|.

Esempio di applicazione

- Archi: strade (a doppio senso di circolazione)
- · Nodi: intersezioni tra strade
- Pesi archi: lunghezza in km

Grafi direzionati

- Gli archi hanno una direzione
 - L'arco (u,v) è diverso dall'arco (v,u)
 - Si dice che l'arco e=(u,v) lascia u ed entra in v
 - e che u è l'origine dell'arco e v la destinazione dell'arco

Grafi direzionati

• Grafi non direzionati G = (V, E) possono essere visti come un caso particolare degli archi direzionati in cui per ogni arco (u,v) c'è l'arco di direzione opposta (v,u)

Esempio di applicazione

- Archi: strade (a senso unico di circolazione)
- Nodi: intersezioni tra strade
- Pesi archi: lunghezza in km

Alcune applicazione dei grafi

- Rete di amicizia su un social network: ogni utente è un nodo; ogni volta che due utenti diventano amici, si crea un arco del grafo.
- Google maps: i nodi rappresentano città, intersezioni di strade, siti di interesse, ecc. e gli archi rappresentano le connessioni dirette tra i nodi.
 - La rappresentazione mediante un grafo permette di trovare il percorso più corto per andare da un posto all'altro mediante un algoritmo.
- World Wide Web: le pagine web sono i nodi e il link tra due pagine è un arco. Google utilizza questa rappresentazione per esplorare il World Wide Web

World Wide Web

· Web graph.

Nodo: pagina web.

■ Edge: hyperlink da una pagina all'altra.

Ecological Food Web

- · Food web graph.
- Nodo = specie
- Arco dalla preda al predatore.

Reference: http://www.twingroves.dètrict96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

Alcune applicazioni dei grafi

Graph	Nodi	Archi		
trasporto	intersezioni di strade	strade		
trasporto	aeroporti	voli diretti		
comunicazione	computer	cavi di fibra ottica		
World Wide Web	web page	hyperlink		
rete sociale	persone	relazioni		
rete del cibo	specie	preda-predatore		
scheduling	task	vincoli di precedenza		
circuiti	gate	wire		

Terminologia

Consideriamo due nodi u e v di un grafo G connessi dall'arco e = (u,v)

- . Si dice che
 - u e v sono adiacenti
 - u e v sono le estremità dell'arco (u,v)
 - l'arco (u,v) incide sui vertici u e v
 - u è un nodo vicino di v
 - v è un nodo vicino di u
- Dato un vertice u di un grafo G
 - grado di u = numero archi incidenti su u
 - è indicato con deg(u)

Numero di archi di un grafo non direzionato

m = numero di archi di G;

n= numero di nodi di G.

Degree (grado) = numero di vicini di u

1. La somma di tutti i gradi dei nodi di G è 2m: $\sum_{u \in V} deg(u) = 2m$

Dim. Ciascun arco incide su due vertici e quindi viene contato due volte nella sommatoria in alto. L'arco (x,y) è contato sia in deg(x) che in deg(y).

2. Il numero m di archi di un grafo G non direzionato è al più n(n-1)/2.

Dim. Il numero di coppie non ordinate distinte che si possono formare con n nodi è n(n-1)/2.

Posso scegliere il primo nodo dell'arco in n modi e il secondo in modo che sia diverso dal primo nodo, cioè in n-1 modi. Dimezzo in quanto l'arco (u,v) è uguale all'arco (v,u)

Numero di archi di un grafo direzionato

m = numero di archi di G; n= numero di nodi di G

Il numero m di archi di G è al più n²

Dim. Il numero di coppie ordinate distinte che si possono formare con n nodi è n². Posso scegliere il primo nodo dell'arco in n modi e il secondo in altri n modi (se ammettiamo archi con entrambe le estremità uguali).

Graph Representation: Adiacenza Matrix

- Matrice di adiacenza. Matrice nxn con $A_{uv} = 1$ se (u, v) è an arco.
- Spazio proporzionale a n².
- Controllare se (u, v) è un arco richiede tempo $\Theta(1)$.
- Identificare tutti gli archi richiede tempo $\Theta(n^2)$.

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0		1				0	1
8	0	0	1	0	0	0	1	0

Rappresentazione di un grafo: liste di adiacenza

- Liste di adiacenza. Array di liste in cui ogni lista è associata ad un nodo.
- Ad ogni arco corrisponde un elemento della lista.
- Se esiste l'arco (u,v) allora la lista associata ad u contiene v
- In un grafo non direzionato l'arco (u,v) corrisponde ad un elemento della lista associata ad u e ad un elemento della lista associata a $v\rightarrow$ somma lunghezze liste=2m
- In un grafo direzionato l'arco (u,v) corrisponde ad un elemento della lista associata ad u \rightarrow somma lunghezze liste=m
- Spazio proporzionale a m + n.
- Controllare se (u, v) è un arco richiede tempo O(deg(u)).
- Individuare tutti gli archi richiede tempo $\Theta(m + n)$.

Percorsi e connettività

- Def. Un percorso in un grafo non direzionato G = (V, E) è una sequenza P di nodi $v_1, v_2, ..., v_{k-1}, v_k$ con la proprietà che ciascuna coppia di vertici consecutivi v_i, v_{i+1} è unita da un arco in E.
- Def. Un percorso è semplice se tutti i nodi sono distinti.
- Def. Un grafo non direzionato è connesso se per ogni coppia di nodi u e v, esiste un percorso tra u e v.

Applicazione del concetto di percorso

• Esempi:

Web graph. Voglio capire se è possibile, partendo da una pagina web e seguendo gli hyperlink nelle pagine via via attraversate, arrivare ad una determinata pagina

Applicazione del concetto di percorso

In alcuni casi può essere interessante scoprire il percorso più corto, cioe` composto dal minimo numero di archi, tra due nodi.

Esempio:

- Grafo: rete di trasporti dove i nodi sono gli aeroporti e gli archi i collegamenti diretti tra aeroporti.
- Voglio arrivare da Napoli a New York facendo il minimo numero di scali.

Cicli

- Def. Un ciclo è un percorso $v_1, v_2, ..., v_{k-1}, v_k$ in cui $v_1 = v_k, k > 2$.
- Def. Un ciclo $v_1, v_2, ..., v_{k-1}, v_1$ è semplice se i primi k-1 nodi del ciclo sono tutti distinti tra di loro

ciclo (semplice) C = 1-2-4-5-3-1ciclo (non semplice) C' = 1-3-7-8-3-5-2-1

Alberi

- Def. Un grafo non direzionato è un albero (tree) se è connesso e non contiene cicli
- Teorema. Sia G un grafo non direzionato con n nodi. Ogni due delle seguenti affermazioni implica la restante affermazione.

$$-1e2 \longrightarrow 3;1e3 \longrightarrow 2;2e3 \longrightarrow 1$$

- 1. Gè connesso.
- 2. G non contiene cicli.
- 3. G ha n-1 archi.

Alberi con radice

- Albero con radice. Dato un albero T, si sceglie un nodo radice r e si considerano gli archi di T come orientati a partire da r
- Dato un nodo v di T si dice
 - Genitore di v: il nodo che w precede v lungo il percorso da r a v (v viene detto figlio di w)
 - Antenato di v: un qualsiasi nodo w lungo il percorso che va da r a v (v viene detto discendente di w)
- Foglia: nodo senza discendenti

Alberi con radice

- Scegliere un nodo come radice, rende più semplice dimostrare la seguente affermazione
- se G è connesso e non contiene cicli, in altre parole, se G è un albero allora il numero di archi è n-1 (dove n è il numero di nodi).
- Dim.
- Per ogni nodo diverso dalla radice c'e` un arco distinto che lo connette al proprio padre →numero di archi ≥ n-1
- Per ogni arco c'è un nodo distinto (non radice) che è congiunto al padre da quell'arco → numero di archi ≤ n-1
- le due diseguaglianze → numero di archi= n-1

Importanza degli alberi: rappresentano strutture gerarchiche

 Alberi filogenetici. Descrivono la storia evolutiva delle specie animali.

La filogenesi afferma l'esistenza di una specie ancestrale che diede origine a mammiferi e uccelli ma non alle altre specie rappresentate nell'albero (cioè, mammiferi e uccelli condividono un antenato che non è comune ad altre specie nell'albero). La filogenesi afferma inoltre che tutti gli animali discendono da un antenato non condiviso con i funghi, gli alberi e i batteri, e così via.

Importanza degli alberi: rappresentano strutture gerarchiche

- File system. Un file system tipicamente consiste di file organizzati in gruppi chiamati directory.
 - Una directory può contenere file e altre directory,
 - Un file system gerarchico è organizzato secondo una struttura gerarchica ad albero con radice
 - nodi interni: directory
 - foglie: file

Progettazione di Algoritmi a.a. 2023-24 A. De Bonis

Visite di grafi

Connettività

- Problema della connettività tra s e t. Dati due nodi s e t, esiste un percorso tra s e t?
- Problema del percorso più corto tra s e t. Dati due nodi s e t, qual è la lunghezza del percorso più corto tra s e t
- · Applicazioni.
- Attraversamento di un labirinto.
- Erdős number.
- Minimo numero di dispositivi che devono essere attraversati dai dati in una rete di comunicazione per andare dalla sorgente alla destinazione
- Minimo numero di scali in un viaggio aereo

Breadth First Search (visita in ampiezza)

- BFS. Esplora il grafo a partire da una sorgente s muovendosi in tutte le possibile direzioni e visitando i nodi livello per livello (N.B.: il libro li chiama layer e cioè strati).
- I layer sono descritti di seguito

- . BFS algorithm.
- $L_0 = \{ s \}.$
- L_1 = tutti i vicini di s.
- L_2 = tutti i nodi che non appartengono a L_0 o L_1 , e che sono uniti da un arco ad un nodo in L_1 .
- L_{i+1} = tutti i nodi che non appartengono agli strati L_0 , L_1 ,..., L_i e che sono uniti da un arco ad un nodo in L_i .

distanza tra u e v= lunghezza del percorso piu` corto tra u e v

 Teorema. Per ogni i, L_i consiste di tutti i nodi a distanza i da s. Di conseguenza, c'è un percorso da s a t se e solo t appare in qualche livello.

L₁: livello dei nodi a distanza 1 da s L₂: livello dei nodi a distanza 2 da s

...

L_{n-1}: livello dei nodi a distanza n-1 da s

Il teorema si puo` dimostrare in modo molto semplice usando l'induzione

Teorema. Per ogni i, L_i consiste di tutti i nodi a distanza i da s. Di conseguenza, c'è un percorso da s a t se e solo t appare in L_i , per un certo $i \in \{0,1,...,j\}$.

Dim. per induzione sull'indice del layer:

Base induttiva: per j=0, la tesi è vera perche' L_0 ={s} e s è l'unico nodo a distanza 0 da se stesso

Passo induttivo: Supponiamo vera la tesi fino ad un certo j e dimostriamo che è vera per j+1. Assumiamo quindi che per i=0,1,...,j, il layer L_i consista di tutti i nodi a distanza i da s.

•

Per def. di L_{j+1} , un nodo u è in L_{j+1} se e solo se valgono le seguenti 1 e 2:

- 1. u non appartiene a $L_0, L_1, ..., L_j$
- 2. u è unito da un arco ad un nodo di Lj

un nodo u soddisfa la 1 e la 2 \leftarrow > la distanza di u da s è j+1 (ricordiamo che stiamo assumendo l'ipotesi induttiva)

dimostrazione nelle prossime slide

un nodo u soddisfa sia la 1 che la $2 \leftarrow \rightarrow$ la distanza di u da s è j+1

dim.

- · è immediato vedere che vale l'implicazione >
- vediamo perche':
- per la 2 esiste un arco da un certo nodo z di L_j ad u e siccome per ipotesi induttiva, z è a distanza j da s allora esiste un percorso di lunghezza j+1 da s ad u
- per la 1 il vertice u non è in $L_0 \cup L_1 \cup ... \cup L_j$ e di conseguenza u è a distanza > j da s (infatti per ipotesi induttiva tutti i nodi a distanza $\le j$ da s sono in $L_0 \cup L_1 \cup ... \cup L_j$)
- le affermazioni in rosso implicano che esiste un percorso da s ad u di j+1 archi e questo è il piu` corto possibile \rightarrow la distanza da u ad s è j+1

- dimostriamo che vale l'implicazione
- Supponiamo che u sia a distanza j+1 da s e dimostriamo che valgono la 1 e la 2.
- Per ipotesi induttiva la 1 deve essere necessariamente soddisfatta (infatti per ipotesi induttiva $L_0,L_1,...,L_j$ contengono solo nodi a distanza $\leq j$ da s)
- Dimostriamo che vale anche la 2.
- Sia P un percorso di j+1 archi da s ad u. Questo percorso esiste dal momento che la distanza da s di u è proprio j+1. Indichiamo con v il predecessore di u lungo P (P termina con l'arco (v,u)).
- Il sottopercorso P' di P che arriva fino a v ha lunghezza j e di conseguenza la distanza di v da s è ≤ j.
- Se la distanza di v da s fosse «j allora esisterebbe un percorso da s ad u con meno di j+1 archi contraddicendo l'ipotesi che la distanza di u da s e` j+1
- Quindi la distanza da s a v e proprio j e per ipotesi induttiva v si trova in L_j
 → u è unito da un arco ad un nodo di L_j

Pseudocodice (schema dell'algoritmo)

```
1. BFS(s)
2. L_0 = \{ s \}
3 For(i=0;i≤n-2;i++)
4. L_{i+1} = \emptyset;
5. Foreach nodo u in Li
6. Foreach nodo v adiacente ad u
7. if (v non appartiene ad L_0,...,L_{i+1})
8. L_{i+1}=L_{i+1} \cup \{v\}
9. EndIf
10. Endforeach
11. Endforeach
12. Endfor
```

 Occorre un modo per capire se un nodo è gia stato visitato in precedenza. Il tempo di esecuzione dipende dal modo scelto, da .come è implementato il grafo e da come sono rappresentati gli insiemi Li che rappresentano i livelli

Esempio di esecuzione di BFS

G

а

$$L_0 = \{1\}$$

a.
$$L_1=\{2,3\}$$

c.
$$L_3 = \{6\}$$

Breadth First Search Tree (Albero BFS)

 Proprietà. L'algoritmo BFS produce un albero che ha come radice la sorgente s e come nodi tutti i nodi del grafo raggiungibili da s.

L'albero si ottiene in questo modo:

- Consideriamo il momento in cui un vertice v viene scoperto, cioè il momento in cui visitato per la prima volta.
 - Ciò avviene durante l'esame dei vertici adiacenti ad un un certo vertice u di un certo livello L_i (linea 6).
 - In questo momento, oltre ad aggiungere v al livello L_{i+1} (linea 8), aggiungiamo l'arco (u,v) e il nodo v all'albero

Breadth First Search Tree

- Proprietà. Si consideri un'esecuzione di BFS su G = (V, E), e sia (x, y) un arco di G. I livelli di x e y differiscono di al più di 1.
- Dim. Sia L_i il livello di x ed L_j quello di y. Supponiamo senza perdere di generalità che x venga scoperto prima di y cioè che $i \le j$. Consideriamo il momento in cui l'algoritmo esamina gli archi incidenti su x.
- Caso 1. Il nodo y è stato già scoperto:
 Siccome per ipotesi y viene scoperto dopo x allora sicuramente y viene inserito
 a) o nel livello i dopo x, se y è adiacente a qualche nodo nel livello i-1 (es. x=2, y=3).
 - b) o nel livello i+1, se è adiacente a qualche nodo del livello i esaminato nel For each

alla linea 5 prima di x). (es. x=3,y=5)

Quindi in questo caso si ha j= i oppure j=i+1.

• Caso 2. Il nodo y non è stato ancora scoperto: Siccome tra gli archi incidenti su x c'è anche (x,y) allora y viene inserito in questo momento in L_{i+1} . Quindi in questo caso j=i+1. (es. x=2, y=5)

Implementazione di BFS con liste di adiacenza e array Discovered

- Ciascun insieme L_i è rappresentato da una lista L[i]
- · Usiamo un array di valori booleani Discovered per associare a ciascun nodo il valore vero o falso a seconda che sia già stato scoperto o meno
- Durante l'algoritmo costruiamo anche l'albero BFS

18. Endwhile

```
BFS(s):
1.
    Poni Discovered[s] = true e Discovered[v] = false per tutti gli altri v
    Inizializza L[O] in modo che contenga solo s
3.
    Poni il contatore dei livelli i = 0
    Inizializza il BFS tree T con un albero vuoto
5.
6.
    While i<=n-2
7.
         Inizializza L[i+1] con una lista vuota //nodi raggiungibili da L[i]
         Foreach u \in L[i] //L[i] è vuota se non ci sono altri nodi raggiungibili
8.
9.
          Foreach arco (u, v) incidente su u
10.
           If Discovered[v] = false
11.
             Poni Discovered[v] = true
              Aggiungi v alla lista L[i+1]
12.
13.
             Aggiungi l'arco (u, v) all'albero T
14.
          Endif
15.
         Endfor
16.
      EndFor
    i=i+1
17.
```

Implementazione di BFS per grafo implementato con liste di adiacenza

```
1.
     BFS(s):
2.
     Poni Discovered[s] = true e Discovered[v] = false per tutti gli altri v
                                                                                   O(n)
3.
     Inizializza L[O] in modo che contenga solo s
                                                                O(1)
4.
     Poni il contatore dei livelli i = 0
5.
     Inizializza il BFS tree T con un albero vuoto
     While i<=n-2
6.
                                          n volte
                                                                          O(n)
                                                     n-1 volte
         Inizializza L[i+1] con una lista vuota
7.
         Foreach u \in L[i] Sul totale di tutte le iterazioni del while, al più n volte
8.
           Foreach arco (u, v) incidente su u
9.
                                                   Sul totale di tutte le
10.
           If Discovered[v] = false then
                                                   iterazioni del While al più
                                                                                      O(m)
                                                   2m volte.
11.
             Poni Discovered[v] = true
              Aggiungi v alla lista L[i+1]
12.
              Aggiungi l'arco (u, v) all'albero T
13.
                                                  Foreach più esterno viene eseguito al più
14.
           Endif
                                                  n volte in quanto ogni nodo raggiungibile
         Endfor
                                                  da s appartiene ad una sola lista Li
15.
                                                  Foreach più interno viene eseguito al piu`
       Endfor
16.
                            Algoritmo è
                                                  \sum deg(u) \le 2m \text{ volte}
17.
       i=i+1
                               O(n+m)
     Endwhile
18.
```

Breadth First Search Tree

- Proprietà. Si consideri un'esecuzione di BFS su G = (V, E), e sia (x, y) un arco di G. I livelli di x e y differiscono di al più di 1.
- Dim. Sia L_i il livello di x ed L_j quello di y. Supponiamo senza perdere di generalità che x venga scoperto prima di y cioè che $i \le j$. Consideriamo il momento in cui l'algoritmo esamina gli archi incidenti su x.
- Caso 1. Il nodo y è stato già scoperto:
 Siccome per ipotesi y viene scoperto dopo x allora sicuramente y viene inserito
 a) o nel livello i dopo x, se y è adiacente a qualche nodo nel livello i-1 (es. x=2, y=3).
 - o nel livello i+1, se è adiacente a qualche nodo del livello i esaminato nel For each alla linea 5 prima di x). Quindi in questo caso si ha j= i oppure j=i+1. (es. x=3,y=5)
- Caso 2. Il nodo y non è stato ancora scoperto: Siccome tra gli archi incidenti su x c'è anche (x,y) allora y viene inserito in questo momento in L_{i+1} . Quindi in questo caso j=i+1. (es. x=2, y=5)

Implementazione di BFS con coda FIFO

L'algoritmo BFS si presta ad essere implementato con un coda Ogni volta che viene scoperto un nodo u, il nodo u viene inserito nella coda Vengono esaminati gli archi incidenti sul nodo al front della coda

```
BFS(s)
    Inizializza Q con una coda vuota
    Inizializza il BFS tree T con un albero vuoto
    Poni Discovered[s] = true e Discovered[v] = false per tutti gli altri v
    Inserisci s in coda a Q con una enqueue
    While(Q non è vuota)
      estrai il front di Q con una deque e ponilo in u
6.
      Foreach arco (u,v) incidente su u
       If(Discovered[v]=false)
8.
9.
         poni Discovered[v]= true
         aggiungi v in coda a Q con una enqueue
10.
         aggiungi (u,v) al BFS tree T
11.
      Endif
12.
13. Endfor
14. Endwhile
```

(svolto in classe)

Dimostrare per esercizio che il tempo di esecuzione è O(n+m)

Esempio di esecuzione di BFS con coda FIFO

elementi della coda durante l'esecuzione (front = elemento più a sinistra)

all'inizio Q= 1

dopo I iterazione del while Q = 2 3
dopo II iterazione del while Q = 3 4 5
dopo III iterazione del while Q = 4 5 7 8
dopo IV iterazione del while Q = 5 7 8
dopo V iterazione del while Q = 7 8 6
dopo VI iterazione del while Q = 8 6
dopo VII iterazione del while Q = 6
dopo VIII iterazione del while Q è vuota

- Viene estratta la sorgente e vengono inseriti i nodi del livello 1.
- Poi man mano vengono estratti i nodi del livello 1 ed inseriti quelli del livello 2.
- Quando non ci sono piu` elementi del livello 1, cominciano ad essere estratti i nodi del livello 2 e via via inseriti quelli del livello 3 e così via.