Observation:

Our recursive descent parser encodes state information in its run-time stack, or call stack.

Using recursive procedure calls to implement a stack abstraction may not be particularly efficient.

This suggests other implementation methods:

- explicit stack, hand-coded parser
- stack-based, table-driven parser

Now, a predictive parser looks like:

Rather than writing code, we build tables.

Building tables can be automated!

Table-driven parsers

A parser generator system often looks like:

This is true for both top-down (LL) and bottom-up (LR) parsers

Input: a string w and a parsing table M for G

```
tos \leftarrow 0
Stack[tos] \leftarrow EOF
Stack[++tos] ← Start Symbol
token \leftarrow next\_token()
repeat
   X ← Stack[tos]
   if X is a terminal or EOF then
       if X = token then
           pop X
           token ← next_token()
       else error()
   else /* X is a non-terminal */
       if M[X, token] = X \rightarrow Y_1 Y_2 \cdots Y_k then
           pop X
           push Y_k, Y_{k-1}, \cdots, Y_1
       else error()
until X = EOF
```

What we need now is a parsing table M.

Our expression grammar: Its parse table:

1	$\langle goal \rangle$	••-	$\langle expr \rangle$
1	\goai/	—	\ - /
2	$\langle expr \rangle$::=	$\langle \text{term} \rangle \langle \text{expr'} \rangle$
3	$\langle \operatorname{expr'} \rangle$::=	$+\langle \mathrm{expr} \rangle$
4			$-\langle \mathrm{expr} \rangle$
5			ε
6	$\langle \text{term} \rangle$::=	⟨factor⟩⟨term'⟩
7	$\langle \text{term}' \rangle$::=	$*\langle term \rangle$
8			$/\langle \text{term} \rangle$
9			ε
10	⟨factor⟩	::=	num
11			id
!	!		

	id	num	+		*	/	\$ [†]
⟨goal⟩	1	1	_	_	_	_	_
⟨expr⟩	2	2	_	_	_	_	_
$\langle \exp r' \rangle$	_	_	3	4	_	_	5
⟨term⟩	6	6	_	_	_	_	_
⟨term'⟩	_	_	9	9	7	8	9
\langle factor \rangle	11	10	_	-	_	_	

 $^{^{\}dagger}$ we use \$ to represent EOF

FIRST

For a string of grammar symbols α , define FIRST(α) as:

- the set of terminal symbols that begin strings derived from α : $\{a \in V_t \mid \alpha \Rightarrow^* a\beta\}$
- If $\alpha \Rightarrow^* \epsilon$ then $\epsilon \in \mathsf{FIRST}(\alpha)$

FIRST(α) contains the set of tokens valid in the initial position in α To build FIRST(X):

- 1. If $X \in V_t$ then FIRST(X) is $\{X\}$
- 2. If $X \to \varepsilon$ then add ε to FIRST(X)
- 3. If $X \rightarrow Y_1 Y_2 \cdots Y_k$:
 - (a) Put $FIRST(Y_1) \{\epsilon\}$ in FIRST(X)
 - (b) $\forall i: 1 < i \leq k$, if $\epsilon \in \mathsf{FIRST}(Y_1) \cap \cdots \cap \mathsf{FIRST}(Y_{i-1})$ (i.e., $Y_1 \cdots Y_{i-1} \Rightarrow^* \epsilon$) then put $\mathsf{FIRST}(Y_i) - \{\epsilon\}$ in $\mathsf{FIRST}(X)$
 - (c) If $\varepsilon \in \text{FIRST}(Y_1) \cap \cdots \cap \text{FIRST}(Y_k)$ then put ε in FIRST(X)

Repeat until no more additions can be made.

FOLLOW

For a non-terminal A, define FOLLOW(A) as

the set of terminals that can appear immediately to the right of A in some sentential form

Thus, a non-terminal's FOLLOW set specifies the tokens that can legally appear after it.

A terminal symbol has no FOLLOW set.

To build FOLLOW(A):

- 1. Put \$ in FOLLOW($\langle goal \rangle$)
- 2. If $A \rightarrow \alpha B\beta$:
 - (a) Put $FIRST(\beta) \{\epsilon\}$ in FOLLOW(B)
 - (b) If $\beta = \varepsilon$ (i.e., $A \to \alpha B$) or $\varepsilon \in \mathsf{FIRST}(\beta)$ (i.e., $\beta \Rightarrow^* \varepsilon$) then put $\mathsf{FOLLOW}(A)$ in $\mathsf{FOLLOW}(B)$

Repeat until no more additions can be made

LL(1) grammars

Previous definition

A grammar G is LL(1) iff. for all non-terminals A, each distinct pair of productions $A \to \beta$ and $A \to \gamma$ satisfy the condition $\mathsf{FIRST}(\beta) \cap \mathsf{FIRST}(\gamma) = \emptyset$.

What if $A \Rightarrow^* \epsilon$?

Revised definition

A grammar G is LL(1) iff. for each set of productions $A \rightarrow \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_n$:

- 1. $FIRST(\alpha_1), FIRST(\alpha_2), \dots, FIRST(\alpha_n)$ are all pairwise disjoint
- 2. If $\alpha_i \Rightarrow^* \epsilon$ then $FIRST(\alpha_j) \cap FOLLOW(A) = \emptyset, \forall 1 \leq j \leq n, i \neq j$.

If G is ε -free, condition 1 is sufficient.

LL(1) grammars

Provable facts about LL(1) grammars:

- 1. No left-recursive grammar is LL(1)
- 2. No ambiguous grammar is LL(1)
- 3. Some languages have no LL(1) grammar
- 4. A ε -free grammar where each alternative expansion for A begins with a distinct terminal is a *simple* LL(1) grammar.

Example

- $S \rightarrow aS \mid a \text{ is not LL(1)}$ because $FIRST(aS) = FIRST(a) = \{a\}$
- $S \rightarrow aS'$ $S' \rightarrow aS' \mid \varepsilon$ accepts the same language and is LL(1)

LL(1) parse table construction

Input: Grammar *G*

Output: Parsing table M

Method:

- 1. \forall productions $A \rightarrow \alpha$:
 - (a) $\forall a \in \mathsf{FIRST}(\alpha)$, add $A \to \alpha$ to M[A, a]
 - (b) If $\epsilon \in \mathsf{FIRST}(\alpha)$:
 - i. $\forall b \in \mathsf{FOLLOW}(A)$, add $A \to \alpha$ to M[A,b]
 - ii. If $\$ \in \mathsf{FOLLOW}(A)$ then $\mathsf{add}\, A \to \alpha$ to M[A,\$]
- 2. Set each undefined entry of *M* to error

If $\exists M[A,a]$ with multiple entries then grammar is not LL(1).

Note: recall $a, b \in V_t$, so $a, b \neq \varepsilon$

Example

Our long-suffering expression grammar:

$$S o E \ E o TE' \ T' o *T \mid /T \mid \epsilon \ E' o +E \mid -E \mid \epsilon \mid F o \mathrm{id} \mid \mathrm{num}$$

FIRST	FOLLOW		
$\{\mathtt{num},\mathtt{id}\}$	{\$}		
$\{\mathtt{num},\mathtt{id}\}$	{\$}		
$\{\epsilon,+,-\}$	{\$ }		
$\{\mathtt{num},\mathtt{id}\}$	$\{+,-,\$\}$		
$\{oldsymbol{\epsilon},*,/\}$	$\{+, -, \$\}$		
$\{\mathtt{num},\mathtt{id}\}$	$\{+,-,*,/,\$\}$		
$\{\mathtt{id}\}$			
$\{\mathtt{num}\}$			
$\{*\}$			
$\{/\}$			
{+}	_		
$\{-\}$	_		

	id	num	+	_	*	/	\$
S	$S \rightarrow E$	$S \rightarrow E$	_	_	_	_	_
E	$E \rightarrow TE'$	$E \rightarrow TE'$	_			_	
E'	_	_	$E' \rightarrow +E$	$E' \rightarrow -E$	_	_	$E' \rightarrow \varepsilon$
T	$T \rightarrow FT'$	$T \rightarrow FT'$	_	_	_	_	_
T'	_	_	$T' \rightarrow \varepsilon$	$T' \rightarrow \varepsilon$	$T' \rightarrow *T$	$T' \rightarrow /T$	$T' \rightarrow \varepsilon$
\overline{F}	$F o exttt{id}$	$F o \mathtt{num}$	_	_	_	_	_

Building the tree

Again, we insert code at the right points:

```
tos \leftarrow 0
Stack[tos] \leftarrow EOF
Stack[++tos] ← root node
Stack[++tos] ← Start Symbol
token \leftarrow next token()
repeat
   X \leftarrow Stack[tos]
    if X is a terminal or EOF then
       if X = token then
           pop X
           token \leftarrow next\_token()
           pop and fill in node
       else error()
   else /* X is a non-terminal */
       if M[X, token] = X \rightarrow Y_1 Y_2 \cdots Y_k then
           pop X
           pop node for X
           build node for each child and
           make it a child of node for X
           push n_k, Y_k, n_{k-1}, Y_{k-1}, \dots, n_1, Y_1
       else error()
until X = EOF
```

A grammar that is not LL(1)

Left-factored:

$$\langle \operatorname{stmt} \rangle ::= \operatorname{if} \langle \operatorname{expr} \rangle \operatorname{then} \langle \operatorname{stmt} \rangle \langle \operatorname{stmt}' \rangle | \dots \langle \operatorname{stmt}' \rangle ::= \operatorname{else} \langle \operatorname{stmt} \rangle | \varepsilon$$

Now,
$$FIRST(\langle stmt' \rangle) = \{\epsilon, else\}$$

Also, $FOLLOW(\langle stmt' \rangle) = \{else, \$\}$
But, $FIRST(\langle stmt' \rangle) \cap FOLLOW(\langle stmt' \rangle) = \{else\} \neq \emptyset$

On seeing else, conflict between choosing

$$\langle \operatorname{stmt}' \rangle ::= \operatorname{else} \langle \operatorname{stmt} \rangle \text{ and } \langle \operatorname{stmt}' \rangle ::= \epsilon$$

 \Rightarrow grammar is not LL(1)!

The fix:

Put priority on $\langle stmt' \rangle ::= else \langle stmt \rangle$ to associate else with closest previous then.

Error recovery

Key notion:

- For each non-terminal, construct a set of terminals on which the parser can synchronize
- When an error occurs looking for A, scan until an element of SYNCH(A) is found

Building SYNCH:

- 1. $a \in FOLLOW(A) \Rightarrow a \in SYNCH(A)$
- 2. place keywords that start statements in SYNCH(A)
- 3. add symbols in FIRST(A) to SYNCH(A)

If we can't match a terminal on top of stack:

- 1. pop the terminal
- 2. print a message saying the terminal was inserted
- 3. continue the parse

(i.e.,
$$SYNCH(a) = V_t - \{a\}$$
)