Obliczenia Naukowe - Laboratorium 1

Michał Waluś 279695

Październik 2025

1 Zadanie 1

1.1 Epsilon maszynowy

Opis problemu: Używając języka Julia, iteracyjne wyznaczenie epsilona maszynowego *macheps* (najmniejszej liczby większej od 1 reprezentowalnej w arytmetyce zmiennopozycyjnej) dla typów Float16, Float32 i Float64, oraz porównanie wyznaczonych wartości z wartościami zwracanymi przez funkcję wbudowaną eps oraz stałymi zawartymi w pliku float.h dla języka C.

Rozwiązanie: Ustalamy liczbę x=1.0 i iteracyjnie dzielimy ją przez 2, dopóki wartość wyrażenia 1.0+x nie będzie równa 1.0. Epsilon maszynowy to dwukrotność liczby x otrzymanej w ten sposób.

Wyniki:

Wartości zwrócone przez program w języku Julia:

Float16

Calculated macheps: 0.000977

1 + cal. macheps: 1.001

Macheps: 0.000977

Float32

Calculated macheps: 1.1920929e-7

1 + cal. macheps: 1.0000001

Macheps: 1.1920929e-7

Float64

Calculated macheps: 2.220446049250313e-16

1 + cal. macheps: 1.0000000000000002

Macheps: 2.220446049250313e-16

Gdzie "Calculated macheps" to wartość epsilona maszynowego wyznaczona iteracyjnie, a "macheps" to wartość zwrócona przez funkcję eps().

Wartości zawarte w pliku float.h:

Float32 macheps: 1.192093e-07 Float64 macheps: 2.220446e-16

Wnioski: Wyniki wyznaczone iteracyjnie tą metodą są zgodne zarówno z wartościami zwracanymi przez funkcję wbudowaną, jak i ze stałymi z języka C, co dodatkowo potwierdza zgodność typów zmiennopozycyjnych ze standardem IEEE 754.

Dodatkowo, widzimy, że precyzja typu Float64 jest ponad dwukrotnie większe niż typu Float32 (i analogicznie z Float32 w stosunku do Float16), więc możemy zaobserwować, że stosunek długości mantysy do liczby bitów typu jest większy dla bardziej precyzyjnych typów.

Otrzymany wyniki pokazują, że dla wartości bliskich 1.0 typ **Float16** umożliwia dość dokładne obliczenia dla wartości o 4 cyfrach znaczących, za to dla typu **Float32** jest to już 8 cyfr znaczących, a dla **Float64** aż 16, co jest znacząco większą precyzją niż mają niemalże wszystkie rzeczywiste dane, a przy obliczeniach z mniej dokładnych pomiarów (2-3 liczby znaczące), nawet typ **Float16** jest wystarczający.

Ponieważ wartość 1.0 + macheps jest reprezentowana dokładnie, a nie z zaokrągleniem, jest ona równa dwukrotności precyzji arytmetyki.

1.2 Eta

Opis problemu: Używając języka Julia, iteracyjne wyznaczenie liczby maszynowej *eta* - najmniejszej liczby dodatniej, której dokładna reprezentacja jest możliwa dla typów zmiennopozycyjnych Float16, Float32 i Float64 oraz porównanie otrzymanego wyniku z wartościami zwracanymi przez funkcję nextfloat().

Rozwiązanie: Zaczynając od wartości x = 1.0, iteracyjnie dzielimy x przez 2, dopóki wartość wyrażenia x/2 nie będzie równa 0. Otrzymana w ten sposób wartość x to nasza eta.

Wyniki:

Wartości zwrócone przez program w języku Julia:

Float16

Calculated eta: 6.0e-8

Eta: 6.0e-8

Float32

Calculated eta: 1.0e-45

Eta: 1.0e-45

Float64

Calculated eta: 5.0e-324

Eta: 5.0e-324

Gdzie "Calculated eta"to wartość wyznaczona iteracyjnie, a "Eta"to wartość zwrócona przez funkcję nextfloat() dla wartości 0.0 odpowiedniego typu.

Wnioski: Wartości wyznaczone tą metodą są zgodne z wartościami zwracanymi przez funkcję wbudowaną. Dla kolejnych typów liczba eta maleje bardzo szybko, co obrazuje bardzo duży wzrost precyzji obliczeń dla większych typów - o ile wartości rzędu 10^{-8} można napotkać relatywnie często dla rzeczywistych danych, tak liczby mniejsze od 10^{-45} są bardzo rzadkie, a mniejsze od 10^{-300} nie pojawiają się prawie nigdy, co obrazuje, że typ Float32 nadaje się do większości obliczeń na realnych danych o bardzo małych wartościach, a przy użyciu typu Float64 precyzji może zabraknać tylko dla danych specjalnie dobranych w tym celu.

Ponieważ eta jest równa najmniejszej dodatnej liczbie mającej dokładną reprezentację w arytmetyce zmiennopozycyjnej, jest ona równa liczbie MIN_{sub} .

1.3 floatmin

Opis problemu: Sprawdzenie wartości zwracanych przez funkcję wbudowaną floatmin() dla typów Float32 oraz Float64 w języku Julia i porównanie ich z liczba MIN_{nor} .

Rozwiązanie: Wyznaczamy wartości MIN_{nor} dla liczby zmiennopozycyjnych 32- i 64-bitowych zgodnych z IEEE 754.

32 bit:
$$2^{c_{min}} = 2^{-126} \approx 1.17549 \cdot 10^{-38}$$

64 bit:
$$2^{c_{min}} = 2^{-1022} \approx 2.22507 \cdot 10^{-308}$$

Wyniki:

Wyniki zwrócone przez program w języku Julia:

Float32 floatmin: 1.1754944e-38

Float64 floatmin: 2.2250738585072014e-308

Wnioski: Wartości zwracane przez funkcję floatmin() są równe liczbie MIN_{nor} , czyli funkcja ta nie zwraca najmniejszej dodatniej wartości możliwej do zapisania przy użyciu typu zmiennopozycyjnego, w przeciwieństwie do tego co mogliby oczekiwać użytkownicy.

1.4 MAX

Opis problemu: Używając języka Julia iteracyjnie wyznaczyć wartość liczby MAX dla typów zmiennopozycyjnych Float16, Float32 i Float64, porównanie otrzymanych wyników dla tych zwracanych przez funkcję floatmax() oraz z wartościami zawartymi w pliku nagłówkowym float.h dla języka C.

Rozwiąznie: Najpierw wyznaczamy iteracyjnie najmniejszą taką liczbę α , że $1.0 - \alpha \neq 1.0$, robimy to w sposób podobny do wyznaczania macheps w 1.1, czyli zaczynając od $\alpha = 1.0$ dzielimy ją przez 2, dopóki nie zajdzie $1.0 - \frac{\alpha}{2} - 1.0$. Następnie wyliczamy $x = 1.0 - \alpha$, otrzymując liczbę której wszystkie bity mantysy to jedynki. Finalnie iteracyjnie podwajamy x dopóki funkcja isinf() nie zwróci wartości true dla 2x.

Wyniki:

Wyniki zwrócone przez program w języku Julia:

Calculated Float16 max: 6.55e4

Float16 max: 6.55e4

Calculated Float32 max: 3.4028235e38

Float32 max: 3.4028235e38

Calculated Float64 max: 1.7976931348623157e308

Float64 max: 1.7976931348623157e308

Gdzie "Calculated [float] max"to obliczona wartość, a "[float] max"to wartość zwrócona przez funkcję floatmax().

Wartości z pliku float.h:

Float32 max: 3.402823e+38 Float64 max: 1.797693e+308

Wnioski: Obliczona wartość jest zgodna z wartością zwracaną przez funkcję i zawartą w języku C, co jest kolejnym dowodem na zgodność implementacji typów w języku Julia ze standardem IEEE 754.

Wartość MAX dla 16-bitowych liczb jest relatywnie mała i może zostać przekroczona dla wielu rzeczywistych danych. Dla Float32 ta wartość jest już duża większa i dla większości obliczeń powinna być wystarczająco, za to wartość 64-bitowego MAX jest zdecydowanie większa od nawet liczby atomów we Wszechświecie i nawet dla ekstremalnie dużych rzeczywistych danych powinna zachowywać wysoką precyzję.

1.5 Wnioski nt. arytmetyki float

Typ Float16 pozwala na zapisywanie liczb do 4 cyfr znaczących i w relatywnie niewielkim zakresie od około $6 \cdot 10^{-8}$ do $6, 5 \cdot 10^{4}$ i powinnien być tylko używany, gdy bardzo nam zależy na oszczędzaniu pamięci, a dane są odpowiedniej wielkości.

Float32 pozwala już na zapisanie liczb z 8 cyframi znaczącymi o wielkościach od 10^{-45} do 10^{38} , co pozwala na stosunkowo dokładne obliczenia na liczbach z przedziału od 10^{-30} do 10^{30} , co powinno być wystarczające do większości zastosowań.

W kontraście do tego, typ Float64, pozwala na obliczenia z nawet 16 cyframi precyzji na przedziale 10^{-300} do 10^{300} i powinien być wystarczający do niemalże wszystkich rzeczywistych zastosowań.

2 Zadanie 2

Opis problemu: Sprawdzenie poprawności metody Kahana na obliczanie epsilona maszynowego, za pomocą wyrażenia $3(\frac{4}{3}-1)-1$ za pomocą języka Julia dla typów Float16, Float32 oraz Float64.

Roziązanie: Obliczenie wyrażenia $3(\frac{4}{3}-1)-1$.

Wyniki:

Wyniki zwrócone przez program:

Float16

Kahan's method: -0.000977

Macheps: 0.000977

Float32

Kahan's method: 1.1920929e-7

Macheps: 1.1920929e-7

Float64

Kahan's method: -2.220446049250313e-16

Macheps: 2.220446049250313e-16

Gdzie "Kahan's method"to wartość wyliczona z ww. wyrażenia, a "Macheps"to rzeczywista wartość epsilona maszynowego (patrz 1.1).

Wnioski: Metoda Kahana daje wynik prawdziwy pod względem wartości, ale dla liczb 16- i 64-bitowych z niewłaściwym znakiem. Oznacza to, że w zależności od liczby bitów mantysy $3(\frac{4}{3}-1)$ może być równe $1.0+\epsilon$ lub $1.0-\epsilon$, gdzie ϵ to epsilon maszynowy.

3 Zadanie 3

Opis problemu: Używając języka Julia, sprawdzenie, że liczby zmiennopozycyjne typu Float64 są równomiernie rozmieszczone w przedziale [1,2] z krokiem $\delta=2^{-52}$, a także sprawdzenie jak

Rozwiązanie: Tworzymy funkcję nextFloat() wyznaczającą kolejną liczbę zmiennopozycyjną (tak jak w 1.1) oraz funkcję prevFloat() wyznaczającą poprzednią liczbę pozycyjną (tak jak w 1.4). Z pomocą tych funkcji i funkcji wbudowanej bitstring() możemy sprawdzić wielkość kroku oraz zapis w formacie binarnym ostatniej liczby mającej tą samą cechę, co pierwsza liczba w przedziale.

Dodatkowo używając funkcji, która zaczyna od x = nextFloat(start) (gdzie start to początek przedziału) i count = 2, iteracyjnie wykonując $x = 2 \cdot x - start$ (czyli podwajając wartość części ułamkowej mantysy), dopóki x < 2, jednocześnie podwajając count, możemy zliczyć ilość liczb zmienno przecinkowych w danym przedziale.

Obie te metody zakładają, że dla każdego ciągu 52 bitów, istnieje liczba zmiennopozycyjna o takiej części ułamkowej mantysy i jest właściwie interpretowana, ale sprawdzenie tego na standardowym komputrze wymagałoby kilku miesięcy obliczeń.

Wyniki:

Wyniki zwrócone przez program w języku Julia:

```
Representation of 1.0:
Representation of nextFloat(1.0):
Step: -52.0
Representation of prevFloat(2.0):
Representation of 2.0:
Step: -52.0
Number of Float64 numbers in [0.5, 1.0): 4503599627370496, log2: 52.0
Representation of 0.5:
Representation of nextFloat(0.5):
Step: -53.0
Representation of prevFloat(1.0):
Representation of 1.0:
Step: -53.0
Number of Float64 numbers in [2.0, 4.0): 4503599627370496, log2: 52.0
Representation of 2.0:
Representation of nextFloat(2.0):
Step: -51.0
Representation of prevFloat(4.0):
Representation of 4.0:
Step: -51.0
```

Gdzie "log2"to logarytm o podstawie 2 z ilości liczb, "Representation"to liczba przedstawiona w formie binarnej, a "Step"oznacza logarytm o podstawie 2 z róźnicy pomiędzy dwiema poprzednimi liczbami.

Wnioski:

W obrębie każdego z tych przedziałów znajduje się dokładnie 2⁵² liczb (zakładając przedział prawostronnie otwarty), gdzie część ułamkowa mantysy pierwszej składa się z samych 0, a ostatniej z samych 1. Zarówno na początku jak i na końcu przedziału pozostaje taki sam.

Porównanie uzyskanych wyników jest przedstawione w Tabeli 1, gdzie postać ogólna, to forma w jakiej może zostać zapisana każda liczba z przedziału, dla δ takiej samej jak w drugiej kolumnie.

Przedział	$\operatorname{Krok}(\delta)$	Postać ogólna
[0.5, 1.0]	2^{-53}	$0.5 + k\delta, k = 0, 1, \dots, 2^{52}$
[1.0, 2.0]	2^{-52}	$1.0 + k\delta, k = 0, 1, \dots, 2^{52}$
[2.0, 4.0]	2^{-51}	$2.0 + k\delta, k = 0, 1, \dots, 2^{52}$

Tabela 1: Porównanie uzyskanych wyników dla zadanych przedziałów

4 Zadanie 4

Opis problemu: Znalezienie eksperymentalnie w języku Julia, najmniejszą liczbę x typu Float64, taką że 1 < x < 2 i $x \cdot (\frac{1}{x}) \neq 1$

Rozwiązanie: Iterujemy po kolejnych liczbach zmiennopozycyjnych, zaczynając od 1.0, dopóki nie znajdziemy najmniejszej spełniającej.

Wyniki:

Wyniki zwrócone przez program:

Gdzie value to obliczona wartość $x \cdot (1/x)$

Wnioski: Wyrażenia, które matematycznie się redukują, nie zawsze będą miały tą własność gdy wyliczone w kodzie, zatem przed wyliczaniem powinniśmy maksymalnie uprościć wszelkie wyrażenia algebraiczne.

5 Zadanie 5

Opis problemu: Używając języka Julia i typów Float32 i Float64, obliczenie iloczynu skalarnego wektorów x i y na cztery sposoby:

- 1. "w przód od najmniejszego do największego indeksu
- 2. "w tvł w odwrotnej kolejności niż "w przód"
- 3. od największego do najmniejszego, dodając dodatnie i ujemne składniki osobno
- 4. odwrotnie niż w 3.

oraz porównanie uzyskanych wartości z rzeczywistą wartością: $-1.00657107000000 \cdot 10^{-11}$

$$x = [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957]$$

y = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049]

Rozwiązanie: Dla 1. i 2. policzenie sumy z użyciem pętli, dla 3. i 4. wyliczenie najpierw $x_i y_i$ dla wszystkich współrzędnych, podzielenie na dwie tablice, posortowanie ich (odpowiednio, w zależności od punktu), obliczenie sum tablic i dodanie ich.

Otrzymane wyniki:

Wyniki zwrócone przez program:

Float32 forward: -0.4999443 Float32 backward: -0.4543457 Float32 from biggest: -0.5 Float32 from smallest: -0.5

Float64 forward: 1.0251881368296672e-10 Float64 backward: -1.5643308870494366e-10

Float64 from biggest: 0.0 Float64 from smallest: 0.0

Dla Float32, wszystkie wyniki są blisko -0.5, co jest około 10 rzędów wielkości większe niż prawdziwa wartość.

Dla Float64 otrzymany wynik w metodzie 1 ma przeciwny znak, a zarówno w metodach 1. i 2. otrzymany wynik róźni się o rząd wielkości. Dla metod 3. i 4. program zwrócił 0.

Wnioski: Wartość iloczynu skalarnego jest znacznie mniejsza niż wartości składowych wektorów, w związku z czym tracimy precyzję odejmując liczby mające podobne wartości. Lepszy wynik otrzymalibyśmy, gdybyśmy dodawali składniki x_iy_i w kolejności od największych względem wartości, wtedy mniejsze składniki byłyby bardziej zauważalne.

6 Zadanie 6

Opis problemu: Używając języka Julia, dla kolejnych wartości $x=8^{-1},8^{-2},8^{-3},\ldots$ obliczenie wartości funkcji:

$$f(x) = \sqrt{x^2 + 1} - 1$$
$$g(x) = \frac{x^2}{\sqrt{x^2 + 1} + 1}$$

Rozwiązanie: Wyliczenie wartości funkcji dla pierwszych 180 wartości (liczba wyznaczona eksperymentalnie, dla której obie funkcje zwracają 0).

Wyniki: Wyniki zwrócone przez program:

n=1, f(x)=0.0077822185373186414, g(x)=0.0077822185373187065n=2, f(x)=0.00012206286282867573, g(x)=0.00012206286282875901n=3, f(x)=1.9073468138230965e-6, g(x)=1.907346813826566e-6n=4, f(x)=2.9802321943606103e-8, g(x)=2.9802321943606116e-8n=5, f(x)=4.656612873077393e-10, g(x)=4.6566128719931904e-10n=6, f(x)=7.275957614183426e-12, g(x)=7.275957614156956e-12n=7, f(x)=1.1368683772161603e-13, g(x)=1.1368683772160957e-13

```
n=8, f(x)=1.7763568394002505e-15, g(x)=1.7763568394002489e-15
n=9, f(x)=0.0, g(x)=2.7755575615628914e-17
n=10, f(x)=0.0, g(x)=4.336808689942018e-19
n=166, f(x)=0.0, g(x)=7.466108948025751e-301
n=167, f(x)=0.0, g(x)=1.1665795231290236e-302
n=168, f(x)=0.0, g(x)=1.8227805048890994e-304
n=169, f(x)=0.0, g(x)=2.848094538889218e-306
n=170, f(x)=0.0, g(x)=4.450147717014403e-308
n=171, f(x)=0.0, g(x)=6.953355807835e-310
n=172, f(x)=0.0, g(x)=1.086461844974e-311
n=173, f(x)=0.0, g(x)=1.69759663277e-313
n=174, f(x)=0.0, g(x)=2.65249474e-315
n=175, f(x)=0.0, g(x)=4.144523e-317
n=176, f(x)=0.0, g(x)=6.4758e-319
n=177, f(x)=0.0, g(x)=1.012e-320
n=178, f(x)=0.0, g(x)=1.6e-322
n=179, f(x)=0.0, g(x)=0.0
n=180, f(x)=0.0, g(x)=0.0
```

Gdzie $x=8^{-n}$. Dla czytelności większość wyników ze środka została wycięta.

Dla funkcji f(x) już dla n=9 program zwraca 0, jest to spowodowane tym, że wartości $\sqrt{x^2+1}$ są bardzo bliskie 1 dla małych x i odejmując te dwie liczby od siebie tracimy precyzję. Dla kontrastu dodając te dwie liczby do siebie otrzymujemy coś bliskiego dwukrotności dowolnej z nich i tracimy niewiele precyzji, co pozwala funkcji g(x) zwracać sensowne wyniki nawet w okolicach n=165, a 0 dopiero, gdy wartość spadnie poniżej liczby maszynowej eta (patrz 1.2).

Wnioski: Formy wyrażeń algebraicznych, które są bardziej skomplikowane dla ludzi, jeśli dobrze dobrane, potrafią zwracać znacznie lepsze resultaty podczas obliczeń za pomocą komputera.

7 Zadanie 7

Opis problemu: Używając języka Julia i liczb typu Float64, przybliżenie wartości pochodnej funkcji $f(x) = \sin x + \cos 3x$ w punkcie $x_0 = 1$, używając wzoru

$$f'(x_0) \approx \tilde{f}'(x) = \frac{f(x_0 + h) - f(x_0)}{h},$$

a następnie porównanie różnicy między wartością rzeczywistą, dla $h=2^{-n}$, gdzie $n=0,1,2,\ldots,54$.

Rozwiązanie: Wyznaczamy dokładną wartość pochodnej:

$$f'(x_0) = \cos x - 3\sin 3x$$

i używamy jej do obliczenia wartości dokładnej, którą porównujemy z wartością przybliżoną.

Wyniki:

n	$\tilde{f}'(x_0)$	$f'(x_0)$	$ \tilde{f}'(x_0) - f'(x_0) $
0	2.0179892252685967	0.11694228168853815	1.9010469435800585
1	1.8704413979316472	0.11694228168853815	1.753499116243109
2	1.1077870952342974	0.11694228168853815	0.9908448135457593
3	0.6232412792975817	0.11694228168853815	0.5062989976090435
4	0.3704000662035192	0.11694228168853815	0.253457784514981
5	0.24344307439754687	0.11694228168853815	0.1265007927090087
6	0.18009756330732785	0.11694228168853815	0.0631552816187897
7	0.1484913953710958	0.11694228168853815	0.03154911368255764
8	0.1327091142805159	0.11694228168853815	0.015766832591977753
9	0.1248236929407085	0.11694228168853815	0.007881411252170345
10	0.12088247681106168	0.11694228168853815	0.0039401951225235265
11	0.11891225046883847	0.11694228168853815	0.001969968780300313
12	0.11792723373901026	0.11694228168853815	0.0009849520504721099
13	0.11743474961076572	0.11694228168853815	0.0004924679222275685
14	0.11718851362093119	0.11694228168853815	0.0002462319323930373
15	0.11706539714577957	0.11694228168853815	0.00012311545724141837
16	0.11700383928837255	0.11694228168853815	6.155759983439424e-5
17	0.11697306045971345	0.11694228168853815	3.077877117529937e-5
18	0.11695767106721178	0.11694228168853815	1.5389378673624776e-5
19	0.11694997636368498	0.11694228168853815	7.694675146829866e-6
20	0.11694612901192158	0.11694228168853815	3.8473233834324105e-6
21	0.1169442052487284	0.11694228168853815	1.9235601902423127e-6
22	0.11694324295967817	0.11694228168853815	9.612711400208696e-7
23	0.11694276239722967	0.11694228168853815	4.807086915192826e-7
24	0.11694252118468285	0.11694228168853815	2.394961446938737e-7
25	0.116942398250103	0.11694228168853815	1.1656156484463054e-7
26	0.11694233864545822	0.11694228168853815	5.6956920069239914e-8
27	0.11694231629371643	0.11694228168853815	3.460517827846843e-8
28	0.11694228649139404	0.11694228168853815	4.802855890773117e-9
29	0.11694222688674927	0.11694228168853815	5.480178888461751e-8
30	0.11694216728210449	0.11694228168853815	1.1440643366000813e-7
31	0.11694216728210449	0.11694228168853815	1.1440643366000813e-7
32	0.11694192886352539	0.11694228168853815	3.5282501276157063e-7
33	0.11694145202636719	0.11694228168853815	8.296621709646956e-7
34	0.11694145202636719	0.11694228168853815	8.296621709646956e-7
35	0.11693954467773438	0.11694228168853815	2.7370108037771956e-6
36	0.116943359375	0.11694228168853815	1.0776864618478044e-6
37	0.1169281005859375	0.11694228168853815	1.4181102600652196e-5
38	0.116943359375	0.11694228168853815	1.0776864618478044e-6
39	0.11688232421875	0.11694228168853815	5.9957469788152196e-5
40	0.1168212890625	0.11694228168853815	0.0001209926260381522
41	0.116943359375	0.11694228168853815	1.0776864618478044e-6
42	0.11669921875	0.11694228168853815	0.0002430629385381522
43	0.1162109375	0.11694228168853815	0.0007313441885381522
44	0.1171875	0.11694228168853815	0.0002452183114618478
45	0.11328125	0.11694228168853815	0.003661031688538152
46	0.109375	0.11694228168853815	0.007567281688538152
47	0.109375	0.11694228168853815	0.007567281688538152

48	0.09375	0.11694228168853815	0.023192281688538152
49	0.125	0.11694228168853815	0.008057718311461848
50	0.0	0.11694228168853815	0.11694228168853815
51	0.0	0.11694228168853815	0.11694228168853815
52	-0.5	0.11694228168853815	0.6169422816885382
53	0.0	0.11694228168853815	0.11694228168853815
54	0.0	0.11694228168853815	0.11694228168853815

Dla n=28 otrzymane wartości są najbardziej zbliżone do siebie, co spowodowane jest zmniejszaniem wartości h, co powoduje lepsze przybliżenie wartości pochodnej, jednak dla co raz większych n, wartość h zaczyna się zbliżać do epsilona maszynowego i wartość 1+h oddala się od prawdziwej. Dodatkowo, anomalia jest widoczna dla n=52, gdzie wartość przybliżenia wynosi -0.5.

Wnioski: Podczas pisania programu należy zwrócić uwagę, by wartości na których się operuje nie stały się zbyt małe w porównaniu do stałych lub innych zmiennych, co skutkuje zmniejszeniem dokładności przybliżenia, zamiast poprawienia.