Canny边缘检测器

J.Canny, "A Computational Approach to Edge Detection", *IEEE Trans. on PAMI*, 8(6),1986.

John Canny
CS Division, University of California, Berkeley
BID: The Berkeley Institute of Design

Canny边缘检测器

- J. Canny, "A Computational Approach to Edge Detection", *IEEE Trans. on PAMI*, 8(6), 1986.
- 也许是最常用的边缘检测方法
- 一个优化的方案
 - 噪声抑制
 - 边缘增强
 - 边缘定位

Canny边缘检测算法

• 算法基本过程:

け算图像梯度 梯度非极大值抑制 双阈值提取边缘点

幅值大小M(x,y) 方向Theta(x,y)

NMS:
Non-Maxima Suppression

计算图像梯度: 高斯函数的一阶导数

- 高斯函数的一阶导数(Derivative of Gaussian)
- 可以很近似地满足以下三条边缘检测最优准则:
 - 好的边缘检测性能: Good detection 对边缘的响应大于对噪声的响应
 - 好的定位性能: Good localization 其最大值应接近边缘的实际位置
 - 低的错误检测率: Low false positives 在边缘附近只有一个极大值点

计算图像梯度: 高斯函数的一阶导数

(1) 求图像与高斯平滑滤波器卷积:

$$S(x,y) = G(x,y;\sigma) * I(x,y)$$

O 代表对图像的平滑程度

(2) 使用一阶有限差分计算偏导数的两个阵列:

$$D_x(x,y) \approx (S(x,y+1) - S(x,y) + S(x+1,y+1) - S(x+1,y))/2$$

$$D_y(x,y) \approx (S(x,y) - S(x+1,y) + S(x,y+1) - S(x+1,y+1))/2$$

相当于与模版进行卷积运算:

OF MARRIED TO SERVICE WOULD

计算图像梯度: 高斯函数的一阶导数

(3) 幅值和方位角:

$$M(x,y) = \sqrt{D_x(x,y)^2 + D_y(x,y)^2}$$

$$\theta(x, y) = \arctan(D_v(x, y)/D_x(x, y))$$

M 代表梯度幅值的大小,在存在边缘的图像位置处,M 的值变大,图像的边缘特征被"增强"

模式识别国家重点空验室

如何检测边缘?

局部极值周围存在相近数 值的点

National Laboratory of Pattern Recognition

Institute of Automation, Chinese Academy of Sciences

模式识别国家重点实验室

中国科学院自动化研究所

非极大值抑制 NMS

- 非极大值抑制 (NMS: Non-Maxima Suppression)
- 主要思想: 由梯度幅值图像M(x,y), 仅保留极大值。

(严格地说,保留梯度方向上的极大值点。)

得到的结果为N(x,y),具体过程:

- 初始化N(x,y) = M(x,y)
- 对于每个点,在梯度方向和反梯度方向各找n个像素点。 若M(x,y)不是这些点中的最大点,则将N(x,y)置零,否则保持N(x,y)不变。
- N(x,y) 单像素宽度:
 - 问题:额外的边缘点,丢失的边缘点

非极大值抑制 NMS

- 在梯度方向的沿线上检测该点是否为局部极大值
- 简化的情形,只使用4个方向: {0,45,90,135}
- 得到的结果N(x, y)包含边缘的宽度为1个像素

对NMS结果进行二值化

- 对上述得到的N(x,y)使用阈值进行二值化
- 使用大的阈值,得到:
 - 少量的边缘点
 - 许多空隙
- 使用小的阈值,得到:
 - 大量的边缘点
 - 大量的错误检测

使用双阈值检测边缘

- 两个阈值T1, T2: T2 >> T1
 - -由T1得到 E1(x,y), 低阈值边缘图: 更大的误检测率
 - -由T2得到 E2(x,y), 高阈值边缘图: 更加可靠
- 边缘连接:

边缘连接

- 将E2(x, y)中相连的边缘点输出为一幅边缘 图像E(x, y)
- 对于E(x, y)中每条边,从端点出发在 E1(x, y)中寻找其延长的部分,直至与 E(x, y)中另外一条边的端点相连,否则认 为E1(x, y)中没有它延长的部分
- 将E(x,y)作为结果输出

Canny算子: 流程

原始图像

原始图像经过Gauss平滑

Canny算子: 流程

梯度幅值图像

梯度幅值经过非极大值抑制

Canny算子: 流程

高阈值边缘图像

Canny输出边缘图像

低阈值边缘图像

使用Canny算子需要注意的问题

- Canny算子的优点:
 - 参数较少
 - 计算效率
 - 得到的边缘连续完整
- 参数的选择:
 - Gauss滤波的尺度
 - 双阈值的选择(LOW=HIGH*0.4)

渐增高斯滤波模版的尺寸

National Laboratory of Pattern Recognition

Institute of Automation, Chinese Academy of Sciences

模式识别国家重点实验室

中国科学院自动化研究所

渐增双阈值的大小,保持low = high*0.4

National Laboratory of Pattern Recognition

Institute of Automation, Chinese Academy of Sciences

模式识别国家重点实验室

中国科学院自动化研究所

National Laboratory of Pattern Recognition

Institute of Automation, Chinese Academy of Sciences

模式识别国家重点实验室 中国科学院自动化研究所

模式识别国家重点实验室 中国科学院自动化研究所

边缘检测小结

- 边缘检测是计算机视觉中最基本的问题之一
- 没有一种统一的方法可以解决所有的边缘分割问题:
 - 抑制噪声的能力
 - 定位精度
 - 计算的复杂程度
- 困难的原因
 - 让计算机理解图像: 从数值矩阵到语义概念
 - 实际问题的复杂性: 噪声, 光照, 阴影...

图像特征分割的困难?

National Laboratory of Pattern Recognition

Institute of Automation, Chinese Academy of Sciences

模式识别国家重点实验室

中国科学院自动化研究所

推荐文献阅读

- J.Canny, "A Computational Approach to Edge Detection", *IEEE Trans. on PAMI*, 8(6),1986.
- F. A. Pellegrino, W. Vanzella, and V. Torre, Edge Detection Revisited, *IEEE TRANS. on SYSTEMS, MAN, AND CYBERNETICS*, VOL. 34, NO. 3, JUNE 2004

