3 parse araph:

sparse graph is a graph in which the number of edges is close to the minimal number of edges.

- · Graphs are sparse when only a small fraction of the possible number of vertex pairs actually have edges defined between them.
- · Graphs are usually sparse due to application-specific constraints.
- · Road networks must be sparse because of road junctions

Dinse

Dense Graph

Dense graph is a graph in which the number of edges is close to the maximal number of edges.

Types of Graphs

Dense Vs. Sparse

edges between nodes)

sparse graphs (few edges between nodes)

- . If the graph has a vertices (nodes)
 - · Maximum no. of edges is n.
- . In dense graphs number of edges is close to n2.
- · In sperse graphs number of edges is close to n.
- * A dense graph is a graph where the number of edges is relatively large compared to number of nodes.

When is a graph a dense graph?

He could use

* Examples of

- Dense Graphs:
 - · Each node is connected to at least Rs% of other hodes
 - Sparse Graphs:
 - · Each node is connected to only a constant number of other nodes.

Memory Requirements or space Complexity

Adjacency List-O(|V|+|E|)

Adjacency matrix - O(1417)

	A	В	C	7
A		1	1	
o ·			1	
۷				

Reachability

$$V = \{ A, B, C \}$$

Given a node u in V, find all the nodes v in V that are reachable from u.

Example:

Reachable (u) = Reachable (A) = { B, c}

Reachability Algorithms

Two algorithms

- -BFS (Breadth First Search (BFS))
 - Explore the nodes in an orderly manner
 - Look at the nodes that are elosest to source
 - Then look at their neighbors. (Uses queue)

- Depth First Search (DFS)

- Explore the nodes by going deeper and deeper into the graph

 Use backtracking to try different Paths (
 - try different Paths (stack)

Scanned with CamScanner

DFS Seafuence = ACEFDB

