

Fundamentals of Computer Vision

Dr. Venkataramana Veeramsetty
NVIDIA DLI Instructor & Faculty@CAIDL
Assistant Professor
Dept. of EEE
SR Engineering College

.vvr.research@gmail.com ataramana Veeramsetty)

December 19, 2020

Computer Vision Problems

- Image Classification
 - You might take as input say a 64 by 64 image and by 64 image try to figure out, is that a cat?
- Object Detection
- ect Detection

 If you're building a self-driving car, maybe you don't just need to figure out that there are other cars in this image. But instead, you need to figure • If you're building a self-driving car, maybe you out the position of the other cars in this picture ₹so that your car can avoid them.
- Neural style transfer
 - Paint one image (Content Image) In another image style

Why Convolution Operation Required

- Consider 64 X 64 gray scale image, number features in input matrix are 4096
- Consider 64 X 64 RGB image, number of features in input matrix are 12288
- Consider 1000 X 1000 RGB image, number of features in input matrix are 30,00,000
- Consier FCN, with first hidden layer has 1000 hidden units. then size of the weight matrix is $30,00,000 \times 1000$ size.

Problems and Approach

- It is difficult to get enough data to prevent neural network form over fitting
- Need more computation time
- Need more memory

/enkataramana Veeramsetty To avoid these problem, use convolution operation which is fundamental building block for convolutional Neural Network (CNN)

Vertical Edge Detection

horizontal edges

Table 1: Gray Scale Image

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

Email: dr.vvr.research@gmail.com Dr. Venkataramana Veeramsetty)

Table 2: Filter for Vertical Edge Detection

1	0	-1
1	0	-1

3(1)	0(0)	1(-1)	2	7	4
1(1)	5(0)	8(-1)	9	3	1
2(1)	7(0)	2(-1)	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

Email: dr.vvr.research@gmail.com Dr. Venkataramana Veeramsetty)

Table 4: Output

Table 5 : Output Image after Convolution

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Python: conv_forward

Tensorflow: tf.nn.conv2d

keras: Conv2D

Email: (Dr. Ve

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
		П			

		_	_
0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0
	П	П	
	- 11	ш	

₩ S

0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

=

Dr. Ven

Multiple Edge Detector

Table 6: Vertical Edge Filter

1	0	-1
1	0	-1
1	0	-1

Table 7: Horizontal Edge Filter

1	1	1
0	0	0
-1	-1	-1

nail: dr.vvr.research@gmail.com r. Venkataramana Veeramsetty)

Email: (Dr. Vei

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

	1	1	1
*	0	0	0
	-1	-1	-1

0	0	0	0
30	10	-10	-30
30	10	-10	-30
0	0	0	0

om ty)

Sobel filter

Table 8: Sobel filter for Vertical Edge Detection

1	0	-1
2	0	-2
1	0	-1

nail : dr.vvr.research@gmail.com r. Venkataramana Veeramsetty)

Table 9: Sobel filter for Horizontal Edge Detection

1	2	1
0	0	0
-1	2	-1

Scharr filter

Table 10 : Scharr	filte	r for	Vertic	cal Edge De	etection	r. Venkataramana
	3	0	-3			ram
	10	0	-10			ana
	3	0	-3			Veer
				•		ams
Table 11 : Scharr	filter	for I	Horizo	ntal Edge [Detection	etty)
				_		

nail : dr.vvr.research@gmail.con

3	10	3
0	0	0
-3	-10	-3

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

w_1	w ₂	w_3
W_4	w ₅	w_6
w ₇	w ₈	w_9

n=number of pixels in input image f=number of pixels in filter o=number of pixels in output image o=n-f+1 ch@gmail.com

For example

f input image size is 6×6 and filter size is 3×3 neans n=6, f=3

Number of parameters in one layer

If you have 10 filters that are 3 x 3 x 3 in one layer of a neural network, how many parameters does that layer have?

Padding

In order to build deep neural network one modification to the basic convolutional operation that needs to be use in padding
 Limitations of standard convolution operation

- Can not detect edges or other feature without shrinking input image
- Throwing away a lot of the information near the edge of the image

Table 12: Padding one layer (p=1)

0	0	0	0	0	0	0	0
0	3	0	1	2	7	4	0
0	1	5	8	9	3	1	0
0	2	7	2	5	1	3	0
0	0	1	3	1	7	8	0
0	4	2	1	6	2	8	0
0	2	4	5	2	3	9	0
0	0	0	0	0	0	0	0

Finding output image size

n=number of pixels in input image
f=number of pixels in filter
o=number of pixels in output image
p=number of layers in padding o=n+2p-f+1
For example
if input image size is 6 X 6, filter size is 3 X 3 and padding with one layer means n=6, f=3, p=1Then output image size is (n+2p-f+1) X $(n+2p-f+1) = (6+2*1-3+1) \times (6+2*1-3+1) = 6$

Valid and Same Convolutions

$$n X n * f X f = n-f+1 X n-f+1$$

 Valid Convolutions: No padding
 X n * f X f = n-f+1 X n-f+1
 Same Convolutions: Pad such that size of the convolutions is a size of the convolutions. input and output size must be same

n X n * f X f = n+2*p-f+1 X n+2*p-f+1In order to keep input image size same as output image size, padding parameter p is designed based filter size (f)

Striding Convolutions

2 3 7 4 6 2 9 6 6 9 8 7 4 3 3 4 8 3 8 9 7 7 8 3 6 6 3 4 4 2 1 8 3 4 6 3 2 4 1 9 8 3 0 1 3 9 2 1 4

*

3 4 4 1 0 2 -1 0 3

=

91		

6 6 9 8 7 4 3 3 4 8 3 8 9 7 7 8 3 6 6 3 4 4 2 1 8 3 4 6

3 9 2

*

3 4 4 1 0 2 -1 0 3

91	100	

nail:dr.vvr.research@gmail.com r. Venkataramana Veeramsetty)

Striding parameter s=2

2	3	7	4	6	2		l
6	6	9	8		4	3	
3	4	8	3	8	9	7	
7	8	3	6	6	3	4	
4	2	1	8	3	4	6	
3	2	4	1	9	8	3	
0	1	3	9	2	1	4	
2	3	7	4	6	2	9	
6	6	9	8	7	4	3	
3	4	8	3	8	9	7	
7	8	3	6	6	3	4	
4	2	1	8	3	4	6	
3	2	4	1	9	8	3	

3 9 2 1 4

1

	3	4	4
*	1		2
	-1	0	3

91	100	83

3	4	4
1	0	2
-1		2

91	100	83
69		

Striding parameter s=2

	3	4	4
*	1	0	2
	-1	0	3

=

91	100	83
69	91	

3
1
.1

91	100	83
69	91	127

Striding parameter s=2

3	4	4
1	0	2
-1	0	3

91	100	83
69	91	127
44		

2	3	7	4	6	2	9
6	6	9	8	7	4	3
3	4	8	3	8	9	7
7	8	3	6	6	3	4
1	2	1	0	2	1	6

3	4	4
1	0	2
-1	0	3

91	100	83
69	91	12
44	72	

Striding parameter s=2

	,	,	-		_	,
6	6	9	8	7	4	3
3	4	8	3	8	9	7
7	8	3	6	6	3	4
4	2	1	8	3	4	6
3	2	4	1	9	8	3
$\overline{}$		_	_	_		

3	4	4
1	0	2
-1	0	3

91	100	83
59	91	127
14	72	74

Finding output image size

n=number of pixels in input image f=number of pixels in filter o=number of pixels in output image p=number of layers in padding s=striding parameter $o=\frac{n+2p-f}{s}+1$ if that fraction is integer o=floor($\frac{n+2p-f}{s}+1$) if that fraction is not integer

nail : dr.vvr.research@gmail.com r. Venkataramana Veeramsetty)

For example if input image size is 7 X 7, filter size is 3 X 3, padding with no layer and striding parameter s=2 means n=6, f=3, p=0, s=2 Then output image size is (n+2p-f+1) X (n+2p-f+1) = (7+2*0-3)/2+1) X (7+2*0-3)/2+1) = 3 X 3

Cross - Correlation

Flip filter and DO

Filter

Ì	3	4	4
	1	0	2
	-1	0	3

3 2 4 0 0 4 -1 1 3

convolution operation

=

nail : dr.vvr.research@gmail.com r. Venkataramana Veeramsetty)

Convolution Over Volume

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

1		-1
1		-1
1		-1
1	0	-1
1	0	-1
1	0	-1

-15	-12	0	24
-30	-6	6	9
0	-6	-12	-21
-9	-6	-9	-48

nail: dr.vvr.research@gmail.com r. Venkataramana Veeramsetty)

D(1,1)=R(1,1)*fR(1,1)+G(1,1)*fG(1,1)+B(1,1)*fB(1,1)

Email: dr.vvr.research@gmail.com Dr. Venkataramana Veeramsetty)

0 -1

=

		554	25
-15	-12	0	24
-30	-6	6	9
0	-6	-12	-21
-9	-6	-9	-48

-21	-33	6	12
30	51	27	-9
12	15	-3	-21
-21	-18	3	6

1 3 8

$$nXnXn_c$$
 . $fXfXn_cXn_f$

$$= \frac{n+2p-f}{s} + 1 \times \frac{n+2p-f}{s} + 1 \times n_{\text{f}}$$

One Layer of Convolutional Neural Network

Relu Activation Function

output= max (0,z)
Whereas for Leaky Relu
Dutput= max(0.1z,z)

f' = Number of rows and columns in filter in layer 1p' = Padding size in layer 1 s' =Striding size in layer 1 n_c =Number of channels of image n_f^l =Number of Filters Image size= $n_H^{l-1}Xn_W^{l-1}Xn_C$ Filter size= $f^{\dagger}Xf^{\dagger}Xn_c$ Output size= $n_H^I X n_W^I X n_c$ Where $n_H^l = n_W^l = \frac{n_H^{l-1} + 2p^l - f^l}{f^l} + 1$ Number of activations = $n_H^l * n_M^l * n_c$

Email : dr.vvr.research@gmail.con Dr. Venkataramana Veeramsetty

Weights= $f' * f' * n_c * n_f'$

Simple Convolutional Neural Network

- Convolution Layer
- Pooling Layer
- Fully Connected Layer

Other than convolution layers, ConvNet also uses Pooling layers. The main purposes of using this pooling layer in ConvNet are

- To reduce the size of representation
- To speedup the computation
- It detects some of the features more robust
- No parameters to learn

Max Pooling

Max Pooling: f=3 and S=3

9	9
8	9

Average Pooling

Average Pooling: f=3 and S=3

5.3 5.6 3.7 5.3 nail : dr.vvr.research@gmail.com r. Venkataramana Veeramsetty)

Hyper Parameters

f: Filter Size
s: Striding
n: Size of image in previous layer n_c : Number of channels
Size of Pooling Output: $\frac{n+2p-f}{s}+1$ X $\frac{n+2p-f}{s}+1$

 n_c

In pooling padding is usually zero. (p=0)

LENET

Number of parameters in convolution layer having filter size f, number of filters n_f and number of $n_{\rm e}$ (f*f* n_c +1)* n_f

1X1 convolutions

Inception Network

nail : dr. r. Venka

Computation Cost

nail: dr.vvr.research@gmail.com r. Venkataramana Veeramsetty)

cost=5*5*192*28*28*32=12.04.22.400

Computation Cost

nail : ‹
r. Ven

(1 X 1 X 192 X 28 X 28 X 16) + (5 X 5 X 16 X 28 X 28 X 32) = 2408448 + 10035200 = 12443648

Computation Cost

Transfer Learning

nail : dr.vvr.research@gmail.com r. Venkataramana Veeramsetty)

Object Detection

Data Augmentation

- Flip
- Rotation
- Scale
- Crop
- Translate
- Noise

Email: dr.vvr.research@gmail.com Dr. Venkataramana Veeramsetty)

