Bài tập Toán rời rạc

Nguyễn Đức Huy

Ngày 28 tháng 5 năm 2021

1 Bài 2

Vì $\min(\deg(V)) \geq \frac{n}{2}$ nên $\forall x,y \in V$, $\deg(x) + \deg(y) \geq n$

Giả sử G có một đường đi dài nhất là $x_0 \to x_1 \to \ldots \to x_q$ có độ dài q

Nếu q=n-1 thì đường đi trên chính là đường đi Hamilton

Nếu $q \le n - 2$ thì $deg(x_0) + deg(x_q) \ge n \ge q + 2$

Gọi $G' = \langle V', E' \rangle$ là đồ thị con của G có $V' = \{x_0, x_1, \dots, x_q\}$

Đặt deg'(x) là bậc của x trong G'

Vì đường đi $x_0 \to x_1 \to \ldots \to x_q$ là dài nhất nên:

$$deg'(x_0) = deg(x_0)$$

$$deg'(x_q) = deg(x_q)$$

Giả sử $deg(x_0) = k$ và x_0 kề với k đỉnh là $x_1, x_{i_2}, x_{i_3}, \dots, x_{i_k}$

 $\Rightarrow deg(x_q) \ge q - k + 2$

Chia $V'=A\cup B$ với $A=\{x_0,x_{i_2-1},x_{i_3-1},\ldots,x_{i_k-1}\},\,B=V'\setminus A$

Vì $|B| = q + 1 - k < deg(x_q)$ nên x_q phải kề với ít nhất 1 đỉnh thuộc A. Gọi đỉnh đó là đỉnh x_{j-1}

Vậy chu trình $x_0 \to x_j \to \ldots \to x_q \to x_{j-1} \to \ldots \to x_0$ là chu trình Hamilton của G'

Lại có $q \leq n-2$ nên tồn tại đỉnh y của G và nằm ngoài chu trình trên.

Nếu G không liên thông thì không thể có chu trình Hamilton được, nên chắc là G liên thông nhưng thầy quên nói.

Mặt khác, nếu G liên thông thì đỉnh y sẽ phải kề với ít nhất 1 đỉnh trong chu trình trên, do đó sẽ tạo ra đường đi có độ dài $\geq q+1 \Rightarrow$ mâu thuẫn với giả thiết

Nên rõ ràng q = n - 1 và đường đi dài nhất trong G là $x_0 \to x_1 \to \ldots \to x_{n-1}$

Chứng minh tương tự như trên, suy ra $\exists j, 1 \leq j \leq n$ để $x_0 \to x_j \to \ldots \to x_{n-1} \to x_{j-1} \to \ldots \to x_0$ là chu trình Hamilton của G

2 Bài 1

Vì bài 1 em dùng kết quả của bài 2 nên em viết xuống dưới này

Giả sử $V = \{x_0, x_1, \dots, x_{n-1}\}$

Không mất tính tổng quát, giả sử $deg(x_0) \le deg(x_1) \le \ldots \le deg(x_{n-1})$

Trường hợp $deg(x_0) \geq \frac{n}{2}$, khi đó thì ta dùng kết quả của bài 2 ở trên.

Với $deg(x_0) \leq \frac{n-1}{2}$

Gọi $G' = \langle V', E' \rangle$ là đồ thị con của G có $V' = \{x_1, x_2, \dots, x_{n-1}\}$

Đặt deg'(x) là bậc của x trong G'

Ta có:

$$|E'| = m - deg(x_0) > C_{n-1}^2 + 1 - \frac{n-1}{2} = \frac{(n-1)(n-3)}{2} + 1$$

Giả sử $deg'(x_i) = min(deg'(V'))$

Gọi $G'' = \langle V'', E'' \rangle$ là đồ thị con của G' có $V'' = \{x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_{n-1}\}$

Dễ thấy:

$$|E''| \le C_{n-2}^2 = \frac{(n-2)(n-3)}{2}$$

Suy ra:

$$deg'(x_i) = |E'| - |E''| > \frac{(n-1)(n-3)}{2} + 1 - \frac{(n-2)(n-3)}{2} = \frac{n-3}{2} + 1 = \frac{n-1}{2}$$

 $\Rightarrow \min(deg'(V')) > \frac{n-1}{2} \Rightarrow V'$ có chu trình Hamilton

Lại có:

$$|E'| \le C_{n-1}^2$$

Nên:

$$deg(x_0) = |E| - |E'| > 1$$

Nghĩa là x_0 kề với ít nhất 2 đỉnh trong V' và tạo thành chu trình Hamilton của V