МАТЕМАТИЧЕСКИЙ АНАЛИЗ, 2-й семестр

Лектор: Петросян Наталия Семеновна, к. ф.-м. н., доцент, кафедра прикладной математики

Основные разделы курса:

Интегральное исчисление функций одной переменной Дифференциальное исчисление функций нескольких переменных Дифференциальные уравнения

Контрольные мероприятия 2-го семестра:

1-й модуль —

- 1) контрольная работа «Интегралы»,
- 2) контрольная работа «Приложения определенных интегралов» 2-й модуль
 - 1) контрольная работа «Функции нескольких переменных»,
 - 2) контрольная работа «Дифференциальные уравнения».

Экзамен

Учебные пособия

- 1. Задачи и контрольные вопросы по математике. Второй семестр: контрольные задания / Н.С. Петросян, Н.Н. Холщевникова, Л.Б. Шуманская ; Министерство образования и науки Российской Федерации, Московский государственный технологический университет "СТАНКИН". 2-е изд., перераб. и доп. Москва : МГТУ "СТАНКИН", 2008. 93 с.; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=4638437.
- 2. Задачи и контрольные вопросы по математике для студентов 3 семестра : контрольные задания / А.В. Боголюбов, О.К. Иванова ; Министерство образования и науки Российской Федерации, Московский государственный технологический университет "СТАНКИН". 2-е изд., перераб. и доп. Москва : ГОУ ВПО МГТУ «Станкин», 2008. 102 с.; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=463847
- 3. Консевич, Н.Н. Интегральное исчисление функции одной переменной / Н.Н. Консевич, Н. Холщевникова; мин. обр. и науки РФ; моск. гос. тех. универ. «СТАНКИН». Москва: ФГБОУ ВО МГТУ «СТАНКИН»: Янус-К, 2005. 69 с. То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=463770

- 4. Боголюбов, А.В. Дифференциальные уравнения. 3-й семестр / А.В. Боголюбов; мин. обр. и науки РФ; моск. гос. тех. универ. «СТАНКИН» . Москва: ФГБОУ ВО МГТУ «СТАНКИН»: Янус-К, 2005. 80 с. 300 экз. То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=463756
- 5. Кадымов, В.А. Обыкновенные дифференциальные уравнения. Методы решения: учебное пособие / В.А. Кадымов, О.К. Иванова, Е.А. Яновская; под ред. Л.А. Уваровой; Министерство образования и науки Российской Федерации, Московский государственный технологический университет "СТАНКИН", Кафедра прикладной математики. Москва: Янус-К, 2016. 92 с.: ил. ISBN 978-5-8037-0702-8; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=452901

Учебники

- 1. Пискунов Н.С. Дифференциальное и интегральное исчисления для втузов. Т. 1, 2.
- 2. Бугров Я.С., Никольский С.М. Высшая математика. Дифференциальное и интегральное исчисление: Учебник для вузов.

- 3. Бугров Я.С., Никольский С.М. Высшая математика. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного: Учебник для вузов.
- 4. Кудрявцев, Л.Д. Краткий курс математического анализа: учебник: в 2-х т. / Л.Д. Кудрявцев. 3-е изд., перераб. Москва: Физматлит, 2009. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной. Ряды. 400 с. ISBN 978-5-9221-0184-4; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=82814
- 5. Ильин, В.А. Основы математического анализа: учебник / В.А. Ильин, Э.Г. Позняк. 7-е изд., стер. Москва: Физматлит, 2009. Ч. І. 647 с. (Курс высшей математики и математической физики. Вып. 1). ISBN 978-5-9221-0902-4; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=76686
- 6. Ильин, В.А. Основы математического анализа. В 2-х частях : учебник / В.А. Ильин, Э.Г. Позняк. 5-е изд. Москва : Физматлит, 2009. Ч. II. 464 с. (Курс высшей математики и математической физики. Вып. 2). ISBN 978-5- 9221-0537-8 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=83225

Лекция 1

ГЛАВА 1. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ

§ 1. Первообразная. Теорема об общем виде первообразной. Неопределенный интеграл и его свойства

Определение 1. Функция F(x) называется *первообразной* функции f(x) на данном промежутке I, если F'(x) = f(x) для всех x из этого промежутка.

Примеры.

1)
$$f(x) = 2x$$
, $F_1(x) = x^2$, $F_2(x) = x^2 + 5$.

2)
$$f(x) = \cos x$$
, $F_1(x) = \sin x$, $F_2(x) = \sin x + 10$.

Первообразная определена неединственным образом.

Разыскание для функции всех ее первообразных называется *интегрированием* функции и составляет одну из основных задач интегрального исчисления.

Теорема 1 (*об общем виде первообразной*). Если функция F(x) есть первообразная функции f(x) на промежутке I , то и функция F(x)+C, где C - произвольная постоянная, также является первообразной функции f(x) на I. Обратно, любая первообразная функции f(x) на промежутке I представляется в виде F(x)+C.

Доказательство. По определению первообразной $\left(F(x)+C\right)'=F'(x)+C'=F'(x)=f(x)$. Следовательно, функция F(x)+C является первообразной функции f(x) наряду с функцией F(x). Пусть теперь $\Phi(x)$ — другая первообразная функции f(x) на промежутке I. Рассмотрим функцию $g(x)=\Phi(x)-F(x)$. Тогда $g'(x)=\Phi'(x)-F'(x)=f(x)-f(x)=0 \ \forall x\in I$, следовательно, $g(x)=C,C=\mathrm{const}$, т.е. $\Phi(x)=F(x)+C$.

Определение 2. Совокупность всех первообразных функций f(x) на промежутке I называется *неопределенным интегралом* функции f(x) на I и обозначается символом $\int f(x) dx$, т.е.

$$\int f(x)dx = F(x) + C,$$

где F(x) - какая-нибудь первообразная функции f(x), а C - произвольная постоянная.

Читается: неопределенный интеграл функции f(x) по dx.

Терминология:

-знак неопределенного интеграла,

f(x) – подынтегральная функция,

f(x)dx-подынтегральное выражение,

х-переменная интегрирования.

Можно записать $\int 2x dx = x^2 + C$, $\int \cos x dx = \sin x + C$.

Основные свойства неопределенного интеграла:

a)
$$\left(\int f(x) dx \right)' = f(x),$$

 $d\left(\int f(x) dx \right) = f(x) dx;$

6)
$$\int F'(x)dx = F(x) + C,$$
$$\int dF(x) = F(x) + C;$$

B)
$$\int Af(x)dx = A\int f(x)dx, A \neq 0;$$

$$\Gamma \int \int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx.$$

Теорема 2. Если функция f(x) непрерывна на промежутке I, то f(x) имеет первообразную на промежутке I.

Доказательство далее.

Замечание. Если производная любой элементарной функции снова является элементарной функцией, то первообразная элементарной функции не обязательно будет элементарной функцией. Например, неопределенные интегралы

$$\int e^{-x^2} dx$$
, $\int \frac{\sin x}{x} dx$, $\int \frac{\cos x}{x} dx$, $\int \frac{dx}{\ln x}$

и другие не выражаются через элементарные функции. Операция взятия неопределенного интеграла приводит к появлению новых функций, не являющихся элементарными.

§ 2. Таблица основных интегралов

$$1. \int 0 dx = C.$$

2.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C(n \neq -1),$$

(в частности,
$$\int dx = x + C$$
, $\int \frac{dx}{\sqrt{x}} = 2\sqrt{x} + C$, $\int \frac{dx}{x^2} = -\frac{1}{x} + C$).

$$3. \int \frac{dx}{x} = \ln|x| + C.$$

4.
$$\int a^x dx = \frac{a^x}{\ln a} + C(a > 0, a \ne 1); \int e^x dx = e^x + C$$

$$5. \int \sin x dx = -\cos x + C.$$

$$6. \int \cos x dx = \sin x + C.$$

$$7. \int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C.$$

$$8. \int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C.$$

9.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C(a \neq 0).$$

10.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C(a \neq 0).$$

11.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C(a > 0).$$

12.
$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C(a \neq 0).$$

Чтобы убедиться в справедливости этих формул, достаточно продифференцировать правые части.

Остановимся на формуле 3 . Пусть $x \in I \subset (0, +\infty)$. Тогда $\ln |x| + C = \ln x + C$,

Остановимся на формуле 3. Пусть
$$x \in I \subset (0, +\infty)$$
. Тогда $\ln |x| + C = \ln x + C$,
$$\left(\ln x + C\right)' = \frac{1}{x}. \qquad \text{Пусть} \qquad x \in I \subset (-\infty, 0). \qquad \text{Тогда} \qquad \ln |x| + C = \ln (-x) + C,$$

$$\left(\ln (-x) + C\right)' = \frac{-1}{-x} = \frac{1}{x}.$$

§ 3. Замена переменной в неопределенном интеграле: подведение под знак дифференциала, метод подстановки

Вспомним формулу дифференцирования сложной функции:

$$(G(\omega(x)))' = G'(\omega(x))\omega'(x).$$

Обозначим G'(t) = g(t), тогда получим

$$(G(\omega(x)))' = g(\omega(x))\omega'(x).$$

Сформулируем интегральную версию этой формулы.

Утверждение. Если $\int g(t)dt = G(t) + C$, то $\int g(\omega(x))\omega'(x)dx = G(\omega(x)) + C$ где $g(t), \omega(x), \omega'(x)$ — непрерывные функции.

Таким образом, если при нахождении неопределенного интеграла $\int f(x)dx$ мы замечаем, что функцию f(x) можно представить в виде $f(x) = g(\omega(x))\omega'(x)$, и интеграл $\int g(t)dt$ нам известен, то

$$\int f(x)dx = \int g(\omega(x))\omega'(x)dx = G(\omega(x)) + C.$$

Такая замена переменной носит название *подведения под знак дифференциала*, в связи с тем, что $\omega'(x)dx = d\omega(x) = dt$. При этом в интеграле также применяется запись

$$\int f(x)dx = \int g(\omega(x))\omega'(x)dx = \int g(\omega(x))d\omega(x) = \int g(t)dt = G(t) + C = G(\omega(x)) + C.$$
 Примеры.

1.
$$\int \sin^3 x \cos x dx = \int \sin^3 x d \sin x = \left| \sin x = t \right| = \int t^3 dt = \frac{t^4}{4} + C = \frac{\sin^4 x}{4} + C.$$

2.
$$\int \frac{\ln x}{x} dx = \int \ln x d \ln x = \left| t = \ln x \right| = \int t dt = \frac{t^2}{2} + C = \frac{\ln^2 x}{2} + C.$$

3.
$$\int e^{tg^{2}x} \frac{\sin x}{\cos^{3}x} dx = \int e^{tg^{2}x} tg x \frac{dx}{\cos^{2}x} = \int e^{tg^{2}x} tg x d tg x = |tg x = t| =$$

$$= \int e^{t^{2}t} dt = \int \frac{1}{2} e^{t^{2}} dt^{2} = |y = t^{2}| = \frac{1}{2} \int e^{y} dy = \frac{1}{2} e^{y} + C = \frac{1}{2} e^{t^{2}} + C = \frac{1}{2} e^{tg^{2}x} + C.$$

В других случаях в подынтегральное выражение f(x)dx непосредственно подставляют вместо x дифференцируемую функцию x = s(t) от новой переменной t и получают выражение

$$f(x)dx = f(s(t))s'(t)dt = g(t)dt.$$

Если
$$t = \omega(x)$$
 — обратная функция для $x = s(t)$, то
$$\int f(x)dx = \int g(t)dt = G(t) + C = G(\omega(x)) + C.$$

Такой метод замены переменной называют также подстановкой.

Пример 4. Найти $\int x(2x+1)^{2017} dx$.

◄ Сделаем подстановку t = 2x + 1. Тогда x = (t - 1)/2, $dx = \frac{1}{2}dt$,

$$\int x (2x+1)^{2017} dx = \int \frac{t-1}{2} t^{2017} \frac{dt}{2} = \frac{1}{4} \int t^{2018} dt - \frac{1}{4} \int t^{2017} dt = \frac{t^{2019}}{4 \cdot 2019} - \frac{t^{2018}}{4 \cdot 2018} + C = \frac{(2x+1)^{2019}}{4 \cdot 2019} - \frac{(2x+1)^{2018}}{4 \cdot 2018} + C.$$

Пример 5. $\int \sin x dx = -\cos x + C,$

$$\int \sin(x+1)dx = \int \sin(x+1)d(x+1) = -\cos(x+1) + C,$$

$$\int \sin(2x)dx = \frac{1}{2}\int \sin(2x)d(2x) = -\frac{1}{2}\cos 2x + C,$$

$$\int \sin(2x+1)dx = \frac{1}{2}\int \sin(2x+1)d(2x+1) = -\frac{1}{2}\cos(2x+1) + C.$$

§ 4. Метод интегрирования по частям

Теорема. Пусть функции u(x) и v(x) имеют непрерывные производные u'(x) и v'(x). Тогда

$$\int u(x)v'(x)dx = u(x)v(x) - \int v(x)u'(x)dx,$$

или, короче,

$$\int udv = uv - \int vdu.$$

Эти формулы носят название формул интегрирования по частям.

Доказательство. По формуле дифференцирования произведения

$$(u(x)v(x))' = u'(x)v(x) + u(x)v'(x).$$

Возьмем неопределенный интеграл от обеих частей этого равенства:

$$\int (u(x)v(x))' dx = \int u'(x)v(x)dx + \int u(x)v'(x)dx,$$

ИЛИ

$$u(x)v(x) = \int u'(x)v(x)dx + \int u(x)v'(x)dx,$$

откуда

$$\int u(x)v'(x)dx = u(x)v(x) - \int v(x)u'(x)dx.$$

Формулы интегрирования по частям применяются к интегралам вида

$$\int x^n e^{\alpha x} dx, \int x^n \cos \beta x dx, \int x^n \sin \beta x dx, \int x^n \ln x dx, n \in \mathbb{N};$$
$$\int e^{\alpha x} \cos \beta x dx, \int e^{\alpha x} \sin \beta x dx \text{ и т.д.}$$

Примеры.

1. Найти $\int xe^x dx$.

$$\blacktriangleleft \int xe^x dx = \begin{vmatrix} u = x, \\ du = dx \\ dv = e^x dx \end{vmatrix} = xe^x - \int e^x dx = xe^x - e^x + C. \blacktriangleright$$

2. Найти $\int x \sin x dx$.

$$\blacktriangleleft \int x \sin x dx = \begin{vmatrix} u = x, \\ du = dx \\ dv = \sin x dx \\ v = -\cos x \end{vmatrix} = -x \cos x + \int \cos x dx = -x \cos x + \sin x + C. \blacktriangleright$$

3. Найти $\int \arctan x dx$.

$$\blacktriangleleft \int \operatorname{arctg} x dx = \begin{vmatrix} u = \operatorname{arctg} x, \\ du = \frac{dx}{1+x^2} \\ dv = dx \\ v = x \end{vmatrix} = x \cdot \operatorname{arctg} x - \int \frac{x dx}{1+x^2} = x \cdot \operatorname{arctg} x - \frac{1}{2} \ln(1+x^2) + C$$

Действительно,

$$\int \frac{xdx}{1+x^2} = \frac{1}{2} \int \frac{2xdx}{1+x^2} = \frac{1}{2} \int \frac{d(x^2+1)}{x^2+1} = \frac{1}{2} \ln(x^2+1) + C.$$