

A secure client-server mobile chat application implementing elliptic curve integrated encryption system (ECIES) and other security features.

Daniel Furnivall

School of Computing Science Sir Alwyn Williams Building University of Glasgow G12 8QQ

A dissertation presented in part fulfilment of the requirements of the Degree of Master of Science at The University of Glasgow

1st April 2022

Abstract

abstract goes here

Education Use Consent

would help future students.	
that you are under no obligation to sign this declaration	but doing so
Glasgow students and to be distributed in an electronic format	. Please note
I hereby give my permission for this project to be shown to other	r University of

Name:	Signatura	
maine.	Signature:	

Acknowledgements

acknowledgements go here

Contents

1	Inti	roduct	cion	1
	1.1	Why a	are secure chat applications needed?	1
		1.1.1	Family & friends	1
		1.1.2	Whistleblowers & journalists	1
		1.1.3	Political dissidents	1
		1.1.4	Crime	1
		1.1.5	Data security	1
	1.2	Existi	ing applications in this field	1
		1.2.1	Telegram	1
		1.2.2	Whatsapp	1
		1.2.3	Signal	1
	1.3	Issues	s	1
		1.3.1	Closed source	1
		1.3.2	Tradeoffs between security and usability features	1
		1.3.3	Nation state control	1
2	Ana	alysis/l	Requirements	2
3	Des	sign &	Implementation	3
	3.1	Tools	Used	3
		3.1.1	Client	3
		3.1.2	Server	3
		3.1.3	Report	3
	3.2	Encry	ption Implementation	3
		3.2.1	Asymmetric component	3
		3.2.2	Symmetric component	3

В	Sec	ond ar	ppendix	7
	A.1	Section	on of first appendix	6
A	Firs	st appo	endix	6
5	Con	clusio	on	5
4	Eva	luatio	n & Testing	4
	3.5			3
	3.4			3
		3.3.2	Existing user persistence and reconnection flow	3
		3.3.1	Storage of self-destruct duration	3
	3.3	Persis	stence and storage considerations	3
		3.2.4	Storage of encryption keypair	3
		3.2.3	Difficulties	3

Chapter 1: Introduction

Secure messaging apps intro

1.1	Whv	are	secure	chat	app	lica	tions	need	ed?
-----	-----	-----	--------	------	-----	------	-------	------	-----

- 1.1.1 Family & friends
- 1.1.2 Whistleblowers & journalists
- 1.1.3 Political dissidents
- 1.1.4 Crime
- 1.1.5 Data security

1.2 Existing applications in this field

- 1.2.1 Telegram
- 1.2.2 Whatsapp
- 1.2.3 Signal
- 1.3 Issues
- 1.3.1 Closed source
- 1.3.2 Tradeoffs between security and usability features
- 1.3.3 Nation state control

Chapter 2: Analysis/Requirements

Chapter 3: Design & Implementation

3.1 Tools Used

There are two primary components to the overall system - one or more clients applications which communicate with a central server.

3.1.1 Client

The final client application was written entirely in Kotlin (v1.6.10) using the Android Studio IDE.

BouncyCastle

Room ORM

3.1.2 Server

3.1.3 Report

This dissertation was written entirely using Vim with the VimTex plugin.

3.2 Encryption Implementation

- 3.2.1 Asymmetric component
- 3.2.2 Symmetric component
- 3.2.3 Difficulties
- 3.2.4 Storage of encryption keypair

3.3 Persistence and storage considerations

- 3.3.1 Storage of self-destruct duration
- 3.3.2 Existing user persistence and reconnection flow
- 3.4
- 3.5

Chapter 4: Evaluation & Testing

Chapter 5: Conclusion

Appendix A: First appendix

A.1 Section of first appendix

Appendix B: Second appendix

Bibliography