is greater than or equal to the finish time of

steps: Print the soll] array.

previously selected activity, then add it to the soll am

Step 5: Select the next activity in act[] array.

Teacher's Signature: __

* Activity selection Problem Example

Let's try to trace the steps of above algorithm

using an example:

In the table below, we have 6 activities with corresponding start and end time, the objective is to compute an execution schedule nowing maximum number of non-conflicting activities.

Start Time (s)	Finish Time (3)	Activity Name
5	9	al
1	2	a2
3	4	a3
0	6	a4
5	7	a5
8	9	a6

Ancwer Stepl: Sort the given activities in ascending order to their finishing time.

The table after we have sorted it:

Start	thire (8)	Finish Time (7)	Activity Name
2		2	a2
2		4	a3
5		6	a4
ر د		7	a5
5		9	· al
8		9	a6

Expt. No.

Page No.

Step 2: Select the first activity from sorted array act []
a a la la colon autous ten o colon
Step 3 : Repeat the steps 4 and 5 for the remaining activities
144 01511
Subly is selected actioning
in variables than ex gained to the thinks
the previously selected activity, then was if to see
Stons: Select the next activity in act!
Con the dola given in the above table,
A. Select activity a3. since the start time of a3 is
greater than the timen time of as. (i.e s(as) > f(az))
we add as to the solution set. Thus sol = { a2, a3].
B. select at. since s(a(4) < f(a3)), it is not added to the
solution set. C. Select a5. Since s (a5) > f(a3), a5 gets added to
solution set. Thus sol = { a2, a3, a5}
D. Select al. Since s(a1) < f (a5), at is not added to the
colubion set
E. selected a6. a6 is added to the solution set since
s(a6) > f(a5). Thus sol = fa2, a3, a5, a6 3.
17 100 March 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Hence, the execution schedule of maximum of
Hence, the execution schedule of maximum of non-conflicting activities will be:
OUTPUT:
(1,2)
(3,4)
(5,1)
(8,9)
Teacher's Signature :
leactier 5 Signature :

In the abone diagram, the selected activities have been highlighted in grey.

Time complexity malyers
following are the scenarios for computing the time
complexity of orthirty selection regovithm.

- · Case 1: when a given set of activities are already sorted according to their finishing time, then there is no sorting mechanism involved, in such a case the complexity of the algorithm will be the
- · Case 2: when a given set of aethnities is unsorted, then we will have to use the sort L) method defined in bits (stolc++ neader file for sorting the aethnities hist. The time complexity of this method will be o (negn), which is also defines complexity of the algorithm.

* leal-	life Applications of Activity Selection Problem sing are some of the real-life applications of this
Follow	sing are some of the real-wife applications of this
proble	em:
· Sched	uling multiple combetting events in a noom, such
	each event has its prom start and end time.
· Schedu	ling manufacturing of multiple products on the same
maelin	ling manufacturing of multiple products on the same
time	,
· Activit	y selection is one of the most well-known generic
proble	ches used in Operations Research for dealing with
"Geal	life business problems. Teacher's Signature: