Computer Vision

Paulo Dias

Summary

- Morphological operations
 - Dilation, erosion
 - Opening, closing
- Segmentation
 - Thresholding
 - Region growing

Summary

- Morphological operations
 - Dilation, erosion
 - Opening, closing
- Segmentation
 - Thresholding
 - Region growing

- Morphological mathematics operates on images as a set of points
- Modify in a control way the structure/morphology of an image
- Typically used in binary images
- Can be used in graylevel ou colour image as well
- Used in Image Processing for
 - Filtering
 - Segmentation
 - Object description

Main idea

Main idea

Erosion

Dilation

Burger and Burge

Structuring element

Neighbourhood

Burger and Burge

- Main Morphological operations
 - Dilation
 - Erosion

Basic Operations

- OpeningClosing

Composed Operations

Morphological operations - Dilation

Dilation

- gradually enlarge the boundaries of regions
- small holes and gaps are filled

0	1	0	0	0
0	1	0	0	0
0	1	0	0	0
0	1	1	1	0
0	0	0	0	0

Original image

0	1	1	0	0
0	1	1	0	0
0	1	1	0	0
0	1	1	1	1
0	0	0	0	0

	1-4	
1)	ıaı	ınn

0	1	1	0	0
0	1	1	0	0
0	1	1	0	0
0	1	1	1	1
0	0	0	0	0

 $I \oplus X$

Morphological operations - Dilation

$$I \equiv \{(1,1),(2,1),(2,2)\}, H \equiv \{(\mathbf{0},\mathbf{0}),(\mathbf{1},\mathbf{0})\}$$

$$I \oplus H \equiv \{ (1,1) + (\mathbf{0},\mathbf{0}), (1,1) + (\mathbf{1},\mathbf{0}), (2,1) + (\mathbf{0},\mathbf{0}), (2,1) + (\mathbf{1},\mathbf{0}), (2,2) + (\mathbf{0},\mathbf{0}), (2,2) + (\mathbf{1},\mathbf{0}) \}$$

Morphological operations - Dilation

Morphological operations - Erosion

Erosion

- Dual of the dilation operation
- Erode away the boundaries of regions of foreground
- holes and gaps are increased

0	1	0	0	0
0	1	0	0	0
0	1	0	0	0
0	1	1	1	0
0	0	0	0	0

Original image

*		
1	1	
Struct	uri	ng
elen	her	nt

0	1	0	0	0
0	1	0	0	0
0	1	0	0	0
0	1	1	1	0
0	0	0	0	0

Erosion

111				
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	1	1	0	0
0	0	0	0	0

 $I \ominus X$

Morphological operations - Erosion

$$I \equiv \{(1,1),(2,1),(2,2)\}, H \equiv \{(\mathbf{0},\mathbf{0}),(\mathbf{1},\mathbf{0})\}$$

$$I\ominus H\equiv\{\,(1,1)\,\}\mbox{ because}$$

$$(1,1)+(\mathbf{0},\mathbf{0})=(1,1)\in I\quad\mbox{and}\quad (1,1)+(\mathbf{1},\mathbf{0})=(2,1)\in I$$

Morphological operations - Erosion

05:00

Dilation and Erosion are dual operations

Typical structuring elements

Summary

- Morphological operations
 - Dilation, erosion
 - Opening, closing
- Segmentation
 - Thresholding
 - Region growing

Morphological operations - Opening

Opening

- Erosion followed by dilation
- Idempotent operation
 - Results will not change applied multiple time
- Union of all objects that fit in Structuring Element

- Circular kernel:
 - · Smooth edges of object
 - Broke thin connections

IOX =	I	X)	\bigoplus	X
$I \cup \Lambda$ —		Λ	\Box	Λ

*			
	1	1	
	_	turin	0
е	ler	nent	t

0

0

0

*					
	0	1	1	0	0
	0	1	1	0	0
	0	0	0	0	0
	0	1	1	1	0
	0	0	1	1	0

Morphological operations - Opening

- Opening example
 - Circular structuring element
 - Radius of structuring element must be larger than subsets to remove

Original image

After erosion

After dilation

Opening with different structuring elements

Opening

05:00

Morphological operations - Closing

Closing

- Dilation followed by erosion
- Dual to opening
- Idempotent operation
 - Results will not change applied multiple time

$$I \bullet X = (I \oplus X) \ominus X$$

0	1	1	0	0
0	1	1	0	0
0	1	0	0	0
0	1	1	1	0
0	0	1	1	0

ucturing	0
lement	0

Closing

Morphological operations - Closing

Closing example

Original image

After closing

Morphological operations - Closing

05:00

- Edge detection with morphology (outlining)
 - Since erosion results in an isotropic contraction of images, can be used for edge detection:

$$Edge = I - (I \ominus X)$$

- Erosion of objects and then subtraction from original (using 3x3 or 5x5 structuring element)
- Size of structuring element will have impact of contour thickness

Edge detection with morphology (outlining)

$$I'=I\ominus H_n$$

$$B = I \cap \overline{I'} = I \cap \overline{(I \ominus H_n)}$$

Finger Question

Which method is more adequate to ensure you do not loose any pixel in a binary region you wish to segment?

- 1. Open
- 2. Close
- 3. Dilation
- 4. Erosion

Finger Question

When timer ends...

Which method is more adequate to ensure you do not loose any pixel in a binary region you wish to segment?

1. Open

03:00

- 2. Close
- 3. Dilation
- 4. Erosion

Summary

- Morphological operations
 - Dilation, erosion
 - Opening, closing
- Segmentation
 - Thresholding
 - Region growing

Segmentation

Segmentation means dividing image in regions

Often applied before image analysis

 Typical approach is to group pixels with similar properties

Segmentation

Examples

Burger and Burge

Segmentation

No segmentation methods that can be used in every case

No "perfect" segmentation method

- Typical segmentation are based in:
 - pixel intensity
 - regions
 - edges

Summary

- Morphological operations
 - Dilation, erosion
 - Opening, closing
- Segmentation
 - Thresholding
 - Region growing

- Thresholding
 - Oldest segmentation method
 - Appropriate when object of interest have homogeneous intensity different from background
 - Not easy to find the adequate value

- Oldest segmentation approach
- Appropriate whenever the intensity of the objects of interest is homogeneous and they are different from the background

Example: OCR (Optical Character Recognition)

- If the threshold value is unknown, analyze the histogram to choose an adequate threshold value
- For a bimodal histogram, the threshold value corresponds to the valley between the peaks

- This approach can produce "classification errors", depending on the image histogram and the intensity values of the objects
- The *thresholding* can be applied to image sub-regions

- Several approaches for threshold selection
 - Global
 - Variable
 - Local depends on properties of neighbouring pixels
 - Adaptive depends on spatial coordinates
 - Otsu's method based on probabilistic analysis obtained from histogram

Summary

- Morphological operations
 - Dilation, erosion
 - Opening, closing
- Segmentation
 - Thresholding
 - Region growing

Segmentation – Region growing

- Grow region by aggregation of pixels starting at a seed point
- All neighbouring pixels that comply the rule are labelled as belonging to the region
- A problem is to obtain "good" seed pixels
- Seed can be obtained using
 - Histograms
 - Interactively

– ...

Segmentation – Region growing

Flood-Filling

(a) Original

breadth-first

Segmentation – Region growing

Flood-Filling

Finger Question

Which method is more adequate to ensure you do not loose any pixel in a binary region you wish to segment?

- 1. Open
- 2. Close
- 3. Dilation
- 4. Erosion

Finger Question

When timer ends...

Which method is more adequate to ensure you do not loose any pixel in a binary region you wish to segment?

1. Open

03:00

- 2. Close
- 3. Dilation
- 4. Erosion

