

Kokkedal Industripark 4 DK-2980 Kokkedal Denmark info@eilersen.com

Tel +45 49 180 100 Fax +45 49 180 200

4X50 ETHERNET SYSTEM

Status and weight transfer using EtherNetIP

Applies for:

Software: ETHERNETIP.100609.3v3 Document no.: 0609mu4X50-3v3.DOC

Date: 2015-11-11

Rev.: 3v3

1) Contents

1) Contents	
2) Introduction	
2.1 Introduction	3
2.2 EtherNetIP specification	3
2.3 ATEX (Ex) specification	3
3) Data Exchange	4
3.1 EtherNetIP communication	4
3.2 Data formats	
3.2.1 Unsigned integer format (16 bit)	5
3.2.2 Signed integer format (32 bit)	
3.3 Scaling	
3.4 Measurement time	
3.5 Filtering	7
4) Data Processing	
4.1 Zeroing, calibration and weight calculation	
4.1.1 Zeroing of weighing system	
4.1.2 Corner calibration of weighing system	
4.1.3 Calculation of uncalibrated system weight	
4.1.4 System calibration of weighing system	
5) Installation of System	
5.1 Checklist during installation	
6) Hardware Description	
6.1 4X50 overview	
6.2 4X50 front panel description	. 13
6.2.1 Connection of power	
6.2.2 Connection of loadcells	. 13
6.2.3 Ethernet connector	. 13
6.2.4 SW1 settings	. 13
6.2.5 SWE settings	
6.2.6 Light Emitting Diodes (LEDs)	. 14
6.3 Hardware Selftest	. 15
6.4 Update times	. 16
7) Appendices	. 17
7.1 Appendix A – Setup	. 17
7.2 Appendix B – Allen Bradley connection	. 17
7.3 Appendix C – Omron connection	. 17
7.4 Appendix D – Internal Features	. 17
7.4.1 4050 Ethernet module	. 17
7.4.2 SW2 settings	. 18
7.4.3 Light Emitting Diodes (LEDs)	. 18
7.4.4 4040 communication module	. 18
7.4.5 SW2 settings	. 19
7.4.6 Jumper settings	. 19
7.4.7 Light Emitting Diodes (LEDs)	
7.5 Appendix E – Status Codes	. 21
7.6 Appendix F – Download of new software	
7.6.1 Download procedure	. 22

2) Introduction

2.1 Introduction

This document describes the use of a 4X50 Ethernet system unit from Eilersen Electric. The 4X50 system unit consists internally of a 4050 Ethernet module (with the software listed on the front page) and a 4040 communication module.

The 4X50system unit is connected to X loadcells (1-4). With the program specified on the front page, the 4X50 Ethernet unit is capable of transmitting weight and status for up to 4 loadcells in a single telegram.

It is possible to connect the 4X50 Ethernet unit to an EtherNetIP network, where it will act as a slave. It will then be possible from the EtherNetIP master to read status and weight for each of the connected loadcells. Functions as zeroing, calibration and calculation of system weight(s) must be implemented **outside** the 4X50 in the EtherNetIP master.

By use of DIP-switches it is possible to select measurement time and include one of 15 different FIR filters, which will be used to filter the loadcell signals.

Exchange of data between master and slave takes place as described in the following.

2.2 EtherNetIP specification

The EtherNetIP unit confirms with the following EtherNetIP specifications:

Protocol: EtherNetIP Media: Ethernet

Module type: Slave(/Target)

Communication settings 10MB/s, Half duplex

IP-Address: Fixed (default: 192.168.1.199)

Ethernet connection: RJ45/Cat5

System setup: EEEthSetup software
Software download: RS232 terminal interface

2.3 ATEX (Ex) specification

IMPORTANT: Instrumentation (the 4X50A) <u>must be placed outside the hazardous zone</u> if the load cells are used in hazardous ATEX (Ex) area. Furthermore, only ATEX certified load cells and instrumentation can be used in ATEX applications.

3) Data Exchange

3.1 EtherNetIP communication

Ethernet communication with the 4X50 Ethernet unit uses a single Assembly consisting of 26 bytes data as specified in the EDS file:

Assembly: Assem3 Input Assembly instance: 103 (0x67)

Connection: Connection1 Exclusive Owner

Transfer class Class 1

The data bytes are structured like this:

Lc	Lc		Lc		Lc		Lc		Lc				
Reg	ister	Statı	ıs(0)	Sig	nal((0)		Statu	ıs(3)	Sig	nal(3)	
0	1	2	3	4	5	6	7	20	21	22	23	24	25

The byte order for the individual parts of the telegram is LSB first.. In the following bit 0 will represent the least significant bit in a register.

LcRegister is a word (two bytes) that constitutes a bit register for indication of expected loadcells. Hence bit 0-3 will be ON, if the corresponding loadcell address (LC1-LC4) was expected to be connected. **LcRegister** is always transferred in **16 bit unsigned integer** format.

Furthermore bit 15 will be always ON, while bit 14 will toggle ON and OFF with 1hz (=500ms ON, 500ms OFF)

LcStatus(X) is a word (two bytes) that constitute a register containing the actual status for loadcell **X**. **LcStatus(X)** is always transferred in **16 bit unsigned integer** format. During normal operation this register will be 0, but if an error occurs some bits in the register will be set resulting in an error code. A description of the different error codes can be found in the chapter *STATUS CODES*.

LcSignal(X) is a double word (four bytes) constituting a register containing the actual weight signal from loadcell **X** in either **32 bit signed integer** format. Note that the value is only valid if the corresponding **LcStatus(X)** register is 0 indicating no error present. The resolution of the loadcell signal is scaled as described below.

Since only status and weight for the loadcells are transmitted in the telegram, functions such as status handling, calculation of system weight(s), zeroing and calibration **must** be implemented on the EtherNetIP master. Please refer to the chapter *Data Processing* for an explanation on how this typically can be done.

3.2 Data formats

The EtherNetIP communication can transfer data in the following three data formats. Please refer to other literature for further information on these formats as it is outside the scope of this document.

3.2.1 Unsigned integer format (16 bit)

The following are examples of decimal numbers represented on 16 bit unsigned integer format:

<u>Decimal</u>	Hexadecimal	Binary (MSB first)
0	0x0000	00000000 00000000
1	0x0001	00000000 00000001
2	0x0002	00000000 00000010
200	0x00C8	00000000 11001000
2000	0x07D0	00000111 11010000
20000	0x4E20	01001110 00100000

3.2.2 Signed integer format (32 bit)

The following are examples of decimal numbers represented on 32 bit signed integer format:

<u>Decimal</u>	Hexadecimal	Binary	(MSB firs	<u>t)</u>	
-2000000	0xFECED300	11111110	11001110	11010011	00000000
-200000	0xFFE17B80	11111111	11100001	01111011	10000000
-200000	0xFFFCF2C0	11111111	11111100	11110010	11000000
-20000	0xFFFFB1E0	11111111	11111111	10110001	11100000
-2000	0xFFFFF830	11111111	11111111	11111000	00110000
-200	0xFFFFFF38	11111111	11111111	11111111	00111000
-2	Oxfffffff	11111111	11111111	11111111	11111110
-1	Oxffffffff	11111111	11111111	11111111	11111111
0	0x0000000	00000000	00000000	00000000	00000000
1	0x0000001	0000000	00000000	00000000	00000001
2	0x0000002	00000000	00000000	00000000	00000010
200	0x000000C8	0000000	00000000	00000000	11001000
2000	0x00007D0	0000000	00000000	00000111	11010000
20000	0x00004E20	0000000	00000000	01001110	00100000
200000	0x00030D40	0000000	00000011	00001101	01000000
2000000	0x001E8480	0000000	00011110	10000100	10000000
20000000	0x01312D00	00000001	00110001	00101101	00000000

3.3 Scaling

By use of a DIP-switch it is possible to select the desired scaling of the weight signals. The scaling of the weight signals on the Ethernet is determined by SWE.1-2 as follows, where the table shows how a given weight is represented on the Ethernet depending on switch settings:

Weight [gram]	SWE.1 = OFF SWE.2 = OFF (1 gram)	SWE.1 = ON SWE.2 = OFF (1/10 gram)	SWE.1 = OFF SWE.2 = ON (1/100 gram)	SWE.1 = ON SWE.2 = ON (10 gram)
1,0	1	10	100	0
123,4	123	1234	123400	12
12341	12341	123410	1234100	1234

3.4 Measurement time

By use of DIP-switches it is possible to choose between four different measurement times. All loadcells are sampled/averaged over a measurement period determined by SWE.3 and SWE.4 as follows:

SWE.4	SWE.3	Measurement time
OFF	OFF	20 ms
OFF	ON	100 ms
ON	OFF	200 ms
ON	ON	400 ms

The hereby found loadcell signals (possibly filtered) are used on the Ethernet until new signals are achieved when the next sample period expires.

3.5 Filtering

By use of DIP-switches it is possible to include one of 15 different FIR filters, which will be used to filter the loadcell signals. Thus it is possible, to send the unfiltered loadcell signals achieved over the selected measurement period through one of the following FIR filters, before the results are transmitted on the Ethernet:

SWE.5	SWE.6	SWE.7	SWE.8	No.	<u>Taps</u>	<u>Taps</u> <u>Frequency</u>			<u>Damping</u>	
						Tavg= 20ms	Tavg= 100ms	Tavg= 200ms	Tavg = 400ms	
OFF	OFF	OFF	OFF	0	-	-	-	-	-	-
ON	OFF	OFF	OFF	1	7	12.0 Hz	2.4 Hz	1.2 Hz	0.6 Hz	-60dB
OFF	ON	OFF	OFF	2	9	10.0 Hz	2.0 Hz	1.0 Hz	0.5 Hz	-60dB
ON	ON	OFF	OFF	3	9	12.0 Hz	2.4 Hz	1.2 Hz	0.6 Hz	-80dB
OFF	OFF	ON	OFF	4	12	8.0 Hz	1.6 Hz	0.8 Hz	0.4 Hz	-60dB
ON	OFF	ON	OFF	5	12	10.0 Hz	2.0 Hz	1.0 Hz	0.5 Hz	-80dB
OFF	ON	ON	OFF	6	15	8.0 Hz	1.6 Hz	0.8 Hz	0.4 Hz	-80dB
ON	ON	ON	OFF	7	17	6.0 Hz	1.2 Hz	0.6 Hz	0.3 Hz	-60dB
OFF	OFF	OFF	ON	8	21	6.0 Hz	1.2 Hz	0.6 Hz	0.3 Hz	-80dB
ON	OFF	OFF	ON	9	25	4.0 Hz	0.8 Hz	0.4 Hz	0.2 Hz	-60dB
OFF	ON	OFF	ON	10	32	4.0 Hz	0.8 Hz	0.4 Hz	0.2 Hz	-80dB
ON	ON	OFF	ON	11	50	2.0 Hz	0.4 Hz	0.2 Hz	0.1 Hz	-60dB
OFF	OFF	ON	ON	12	64	2.0 Hz	0.4 Hz	0.2 Hz	0.1 Hz	-80dB
ON	OFF	ON	ON	13	67	1.5 Hz	0.3 Hz	0.15 Hz	0.075 Hz	-60dB
OFF	ON	ON	ON	14	85	1.5 Hz	0.3 Hz	0.15 Hz	0.075 Hz	-80dB
ON	ON	ON	ON	15	100	1.0 Hz	0.2 Hz	0.10 Hz	0.05 Hz	-60dB

NOTE: With all switches OFF no filtering is performed.

4) Data Processing

4.1 Zeroing, calibration and weight calculation

Calculation of system weight(s) is done by addition of the weight registers for the loadcells belonging to the system. This is explained below. **Note** that the result is only valid if all status registers for the loadcells in question indicate <u>no</u> errors. It should also be noted that it is up to the master to ensure the usage of consistent loadcell data when calculating the system weight (the used data should come from the same telegram).

4.1.1 Zeroing of weighing system

Zeroing of a weighing system (all loadcells in the specific system) should be performed as follows, taking into account that no loadcell errors may be present during the zeroing procedure:

- 1) The weighing arrangement should be empty and clean.
- 2) The EtherNetIP master verifies that no loadcell errors are present, after which it reads and stores the actual weight signals for the loadcells of the actual system in corresponding zeroing registers:

```
LcZero[x]=LcSignal[x]
```

3) After this the uncalibrated gross weight for loadcell **X** can be calculated as:

```
LcGross[X] = LcSignal[X] - LcZero[X]
```


4.1.2 Corner calibration of weighing system

In systems where the load is not always placed symmetrically the same place (for example a platform weight where the load can be placed randomly on the platform when a weighing is to take place), a fine calibration of a systems corners can be made, so that the weight indicates the same independent of the position of the load. This is done as follows:

- 1) Check that the weighing arrangement is empty. Zero the weighing system.
- 2) Place a known load (CalLoad) directly above the loadcell that is to be corner calibrated.
- 3) Calculate the corner calibration factor that should be multiplied on the uncalibrated gross weight of the loadcell in order to achieve correct showing as:

```
CornerCalFactor[x] = (CalLoad) / (LcGross[x])
```

After this the determined corner calibration factor is used to calculate the calibrated gross weight of the loadcell as follows:

```
LcGrossCal[x] = CornerCalFactor[x] * LcGross[x]
```

4.1.3 Calculation of uncalibrated system weight

Based on the loadcell gross values (LcGross[x] or LcGrossCal[x]), whether they are corner calibrated or not, a uncalibrated system weight can be calculated as either:

```
Gross = LcGross[X1] + LcGross[X2] + ...

Or:
Gross = LcGrossCal[X1] + LcGrossCal[X2] + ...
```


4.1.4 System calibration of weighing system

Based on the uncalibrated system weight a system calibration can be made as follows:

- 1) Check that the weighing arrangement is empty. Zero the weighing system.
- 2) Place a known load (CalLoad) on the weighing arrangement.
- 3) Calculate the calibration factor that should be multiplied on the uncalibrated system weight in order to achieve correct showing as:

```
CalFactor = (CalLoad) / (Actual Gross)
```

After this the determined calibration factor is used to calculate the calibrated system weight as follows:

```
GrossCal = CalFactor * Gross
```

If the determined calibration factor falls outside the interval 0.9 to 1.1 it is very likely that there is something wrong with the mechanical part of the system. This does not however apply to systems that do not have a loadcell under each supporting point. For example on a three legged tank with only one loadcell, you should get a calibration factor of approximately 3 because of the two "dummy" legs.

5) Installation of System

5.1 Checklist during installation

During installation of the system the following should be checked:

- 1. All hardware connections are made as described below.
- 2. Setup IP Address etc. with EEEthSetup as describe below.
- 3. If necessary the EtherNetIP master should be configured to communicate with the 4X50 Ethernet unit using the supplied EDS file.
- 4. Set the scaling/resolution of the weight signal by use of SWE.1 as described earlier.
- 5. Set the desired measurement time by use of SWE.3-SWE.4 as described earlier.
- 6. Select the desired filter by use of SWE.5-SWE.8 as described earlier.
- 7. The loadcells are mounted mechanically and connected to BNC connectors in the front panel of the 4X50 unit.
- 8. The 4X50 Ethernet unit is connected to the EtherNetIP network using theRS45 Ethernet connector in the front panel.
- 9. Power (24VDC) is applied at the 2 pole power connectors in the front panel of the 4X50 unit as described in the hardware section, and the EtherNetIP communication is started.
- 10. Verify that the MS lamp and the NS lamp both end up green .
- 11. Verify that the TxLC lamp (yellow) is lit (turns on after approx. 5 seconds).
- 12. Verify that the TxBB lamp (green) are lit (after 10 seconds).
- 13. Verify that NONE of the 1, 2, 3, 4 or D1 lamps (red) are lit.
- 14. Verify that the 4X50 Ethernet system unit has found the correct loadcells (LcRegister), and that no loadcell errors are indicated (LcStatus(x)).
- 15. Verify that every loadcell gives a signal (LcSignal(x)) by placing a load directly above each loadcell one after the other (possibly with a known load).

The system is now installed and a zero and fine calibration is made as described earlier. Finally verify that the weighing system(s) returns a value corresponding to a known actual load.

Note that in the above checklist no consideration has been made on which functions are implemented on the EtherNetIP master.

6) Hardware Description

6.1 4X50 overview

The following figure is an overview of a 4X50 Ethernet system unit with 4 loadcell connections (i.e. a 4450 system unit):

6.2 4X50 front panel description

This chapter describes the connections, DIP-switch settings and lamp indications that are available on the front panel of the 4X50 system unit.

6.2.1 Connection of power

The 4X507 system unit is powered by applying +24VDC on the green two pole connectors (J2 and J3) as specified on the front panel of the 4X50 system unit. This powers the entire 4X50 system unit including the loadcells.

IMPORTANT: The used power supply must be stable and free of transients. It may therefore be necessary to use a separate power supply dedicated to the weighing system, and not connected to any other equipment.

NOTE: If the loadcells are to be placed inside an EX area, then the 4X50 system unit itself **MUST** be placed outside the EX area, and the 4X50 system unit **MUST** be supplied as follows:

- 1) The 2 pole connector (J3), located to the right above the 4 pole DIP-switch block, <u>MUST</u> be powered by a 4051A power supply (+24VDC ATEX approved) from Eilersen Electric.
- 2) The 2 pole connector (J2), located to the left above the RJ45 Ethernet connector, **MUST** be powered by a separate +24VDC, that has **NO** connection to the ATEX approved +24VDC from the above mentioned 4051A power supply.

6.2.2 Connection of loadcells

The loadcells must be connected to the available BNC connectors in the front panel of the 4X50 system unit. The loadcells are connected starting with the connector marked 1 and continuing onwards in rising order. Thus if three loadcells are to be connected, they should be connected to the BNC connectors marked 1, 2 and 3.

6.2.3 Ethernet connector

The front panel of the 4X50 system unit is equipped with a <u>standard</u> Ethernet RJ47 connector for Cat5 cables.

6.2.4 SW1 settings

The front panel of the 4X50 system unit is equipped with a 4 pole DIP switch block named SW1. These switches are mounted on the 4040 communication module, and they are **ONLY** read during power-on.

<u>SWITCH</u>	<u>FUNCTION</u>
Sw1.1-Sw1.4	Reserved for future use

6.2.5 SWE settings

The front panel of the 4X50 system unit is equipped with a 8 pole DIP switch block named SWE. This DIP switch block has the following function:

<u>SWITCH</u>	<u>FUNCTION</u>
SWE.1- SWE.2	Scaling Used to select the desired scaling as described above.
SWE.3- SWE.4	Measurement time Used to select the desired measurement time as described above.
SWE.5-SWE.8	Filtering Used to select the desired filter as described above.

6.2.6 Light Emitting Diodes (LEDs)

The front panel of the 4X50 system unit is equipped with a number of status lamps (light emitting diodes). These have the following functionality:

<u>LED</u>	FUNCTION
Ethernet con- nector (RJ45)	Link Ethernet is connected.
Yellow	
Ethernet con- nector (RJ45)	Activity Ethernet data is received or transmitted.
Green	
MS	Module Status LED
(Green/Red)	The 4050 Module Status LED, that can be lit/flashing in different colors depending on the status of the module. The function of the MS LED is given in the table below.
NS	Network Status LED
(Green/Red)	The 4050 Network Status LED, that can be lit/flashing in different colors depending on the status of the network. The function of the NS LED is given in the table below.
D1	Reserved for future use
(Red)	
TX	RS232 TX
	RS232 data is transmitted
RX	RS232 RX
	RS232 data is received
TxLC	4040 communication with loadcells
(Yellow)	4040 communication module is communicating with loadcells.
TxBB (Right)	4040 communication with 4050 Ethernet module (internal)
(Green)	4040 communication module is transmitting to 4050 Ethernet module.
1	Status for loadcell 1
(Red)	Bad connection, loadcell not ready or other error detected.
2	Status for loadcell 2
(Red)	Bad connection, loadcell not ready or other error detected.
3	Status for loadcell 3

Version: 2015-11-11, rev.: 3v3

(Red)	Bad connection, loadcell not ready or other error detected.
4	Status for loadcell 4
(Red)	Bad connection, loadcell not ready or other error detected.

The MS and NS LED's can in conjunction with the table below be used for error finding.

Light emit- ting di- ode	Color	Status	Description
MS	Green	ON	Normal Operation. Communication performed normally.
		Flash- ing	Standby State. The unit needs supervision.
	Red	ON	Unrecoverable fault. A timer error, memory error or other system error. The unit may need replacing.
		Flash- ing	Recoverable fault. Configuration error, DIP-switch not set correct, IP-Address error or similar error. Correct error and restart unit.
		OFF	No power. The power is disconnected or the unit is being restarted.
NS	Green	ON	On-Line, Connection OK. The unit is On-Line and a connection with the master has been established.
		Flash- ing	On-Line, No Connection. The unit is On-Line but no connection to the master has been established.
	Red	ON	Critical Communication Error. The unit has detected an error that makes it impossible to communicate on the network
		Flash- ing	Communication Time-Out. One or more I/O connections are in the Time-Out state.
		OFF	No power/Off-line. The device may not be powered.

6.3 Hardware Selftest

During power-on the 4X50 ethernet system unit will perform a hardware selftest. The test will cause the light emitting diodes D1, MS and NS to flash shortly one at a time.

6.4 Update times

The 4X50 Ethernet system unit samples the loadcell signals over a period of 20 ms, 100 ms, 200 ms or 400 ms. The hereby found loadcell signals are used in the EtherNetIP communication until new signals are achieved when the next sample period expires. Update times across the EtherNetIP communication depends on the specific EtherNetIP configuration (switches, number of units, master scan times etc.) and are beyond the scope of this document.

Version: 2015-11-11, rev.: 3v3

7) Appendices

7.1 Appendix A – Setup

The MAC address of the module is preset to a unique value within the Eilersen Electric A/S range. The default settings for IP address etc. are

DHCP: Disabled

IP Address: 192.168.1.199 Subnet mask: 255.255.255.0 Gateway: 192.168.1.254

These defaults can be altered by the EEEthSetup software- please refer to the separate users guide for further details.

7.2 Appendix B - Allen Bradley connection

To connect the module to an Allen Bradley (Rockwell Automation) PLC using the Logix 5000 software the following must be observed:

- 1. Use the "ETHERNET MODULE Generic Ethernet Module
- 2. Set connection format to "SINT"
- 3. Set "Input" "Assembly instance to 103, "Size" 26 (8-bit)
- 4. Set "Output" "Assembly instance to 102, "Size" 2 (8-bit)
- 5. Set "Configuration" "Assembly instance to 101, "Size" 1 (8-bit)

7.3 Appendix C - Omron connection

The supplied EDS file can be used in the Omron configurator.

But please beware that the terms "input" and "output" may be confusing in the Omron configurator. These terms are always from the PLC's point of view. So the data from the 4x50 module to the PLC is referred to as "input" even though it is actually an output from the 4x50.

The data from the 4x50 module is found the input assembly 103.

The output and the confirmation assemblies (101 and 102) are not used

7.4 Appendix D – Internal Features

7.4.1 4050 Ethernet module

This chapter describes possible connections, DIP-switch settings and jumper settings that are available internally on the 4050 Ethernet module. These will normally be set from Eilersen Electric and should only be changed in special situations.

7.4.2 SW2 settings

The 4050 Ethernet module is internally equipped with a 8 pole DIP switch block named SW2. This DIP switch block has the following function:

<u>SWITCH</u>	<u>FUNCTION</u>
Sw2.1-Sw2.8	Reserved for future use

7.4.3 Light Emitting Diodes (LEDs)

The 4050 Ethernet module is internally equipped with 4 LEDs. These LEDs have the following functionality:

<u>SWITCH</u>	FUNCTION
D4	RS485 RX
(Yellow)	Data is received from 4040.
D8	RS485 Enable
(Red)	Transmission to the 4040 is enabled.
D9	RS485 TX
(Green)	Data is transmitted to the 4040.
D10	Power
(Red)	3.3 VDC internal power supply is on.

7.4.4 4040 communication module

For information on jumper settings, DIP-switch settings, LED status lamps etc. on the 4040 communication module that is not covered in the above, please refer to the separate documentation that describes the 4040 communication module and its specific software.

7.4.5 SW2 settings

The 4040 communication module is internally equipped with a 8 pole DIP switch block named SW2. Please note that these switches are **ONLY** read during power-on. This DIP switch block has the following function when the 4040 communication module is equipped with standard program:

Sw2.1	Sw2.2	Sw2.3	Number of loadcells
OFF	OFF	OFF	1
ON	OFF	OFF	1
OFF	ON	OFF	2
ON	ON	OFF	3
OFF	OFF	ON	4
ON	OFF	ON	5
OFF	ON	ON	6
ON	ON	ON	6

<u>SWITCH</u>	<u>FUNCTION</u>
Sw2.4-Sw2.8	Reserved for future use

7.4.6 Jumper settings

The 4040 communication module is internally equipped with 4 jumpers named P2, P3, P4 and P5. In this system these jumpers must be set as follows:

<u>JUMPER</u>	POSITION
P2	OFF (Loadcell connected to 4040 NOT accessible using SEL1)
Р3	OFF (Loadcell connected to 4040 NOT accessible using SEL6)
P4	OFF (Loadcell connected to 4040 NOT accessible using SEL1)
P5	OFF (Loadcell connected to 4040 NOT accessible using SEL6)

Page: 20

7.4.7 Light Emitting Diodes (LEDs)

The 4040 communication module is internally equipped with a number of status lamps (light emitting diodes). The lamps have the following functionality when the 4040 communication module is equipped with standard program:

<u>LED</u>	FUNCTION
D11	Reserved for future use
(Red)	
D12	Reserved for future use
(Red)	
D13	Reserved for future use
(Red)	
D14	Reserved for future use
(Red)	

7.5 Appendix E – Status Codes

Status codes for the connected loadcells are shown as a 4 digit hex number. If more than one error condition is present the error codes are OR'ed together.

CODE	CAUSE
(Hex)	
0001	Reserved for future use
0002	Reserved for future use
0004	Reserved for future use
0008	Reserved for future use
0010	Power failure
	Supply voltage to loadcells is to low.
0020	New loadcell detected or loadcells swapped
	Power the system off and back on. Then verify that all parameters are acceptable.
0040	No answer from loadcell
	Bad connection between loadcell and loadcell module?
	Bad connection between loadcell module and communication module?
0800	No answer from loadcell
	Bad connection between communication module and master module?
0100	Reserved for future use
0200	Reserved for future use
0400	Reserved for future use
0800	No loadcell answer
	Bad connection between loadcell and loadcell module?
	Bad connection between loadcell module and communication module?
	Bad connection between communication module and master module?
	Bad setting of DIP switches on loadcell or communication module?
1000	Reserved for future use
2000	Reserved for future use
4000	Reserved for future use
8000	Reserved for future use

Please note that the above listed status codes are valid when the 4040 communication module is equipped with standard program.

7.6 Appendix F – Download of new software

It is possible to download new software to the 4X50 Ethernet module by connecting the RS232 connector to a COM port on a PC, and then using a terminal emulation program as well as the "Flash Loader Demonstrator" program from STMicroelectronics. The step-by-step procedure for downloading new software to the 4X50 Ethernet module is described in the following.

7.6.1 Download procedure

- 1) The RS232 connector on the 4X50 module is connected to a COM port on a PC.
- 2) A terminal emulation program (like HyperTerminal or RealTerm) is started and the serial settings are set to:

Baudrate: 9600
Databits: 7
Parity: Even
Stopbits: 1
Flow control: None

3) When the 4X50 is powered the following will be displayed (or press "Enter" one or more times until the main menu is displayed):

4) Then press "3" to reset the module and switch to Download mode causing the following to be displayed:

Now resseting for download. Close program and start Flash Loader

- 5) Without pressing any keys close down the terminal program while leaving the 4x50 module powered and connected to the PC.
- 6) Start the "Flash Loader Demonstrator" program from STMicroelectronics. If the program has not yet been installed on the PC, install it by running the supplied "Flash_Loader_Demonstrator_v2.2.0_Setup.exe" file and following the standard installation instructions.
- 7) Once the "Flash Loader Demonstrator" is started the following screen should appear:

8) Click the "Next" button to open the connection. Once the connection is established the following screen will appear:

9) Click the "Next" button to proceed and the following screen will appear:

10) Ensure target indicates "STM32_High-density_384K" and click the "Next" button to proceed causing the following screen to appear:

11) Select "Erase" and ensure "All" is selected. Perform an erase of the original program by clicking the "Next" button. Once the erase operation has been completed the following screen will appear:

12) Click the "Back" button in order to return to the following screen where the "Erase" option was selected:

13) Now select "Download to device" and click the "..." button and use the new file selection window to select the desired hex file to be downloaded. Select "Erase necessary pages" so the window appears as follows:

14) Click the "Next" button to start the download and verify process. Once the download and verify process has been completed the screen will appear as follows:

- 15) Click the "Close" button to terminate the "Flash Loader Demonstrator" program.
- 16) Remove power from the 4X50 module.
- 17) Start the terminal emulation program again with the same settings as specified under 2.
- 18) Apply power to the 4X50 module and verify that the indicated program ID appearing in the terminal program matches the new program that has been downloaded.

Version: 2015-11-11, rev.: 3v3