RAW SEQUENCE LISTING

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) no errors detected.

Application Serial Number:	10/549,943
Source:	IFWO.
Date Processed by STIC:	04/05/2007
· · · · · · · · · · · · · · · · · · ·	

ENTERED

IFWO

RAW SEQUENCE LISTINGPATENT APPLICATION: **US/10/549,943**DATE: 04/05/2007

TIME: 07:50:22

```
4 <110> APPLICANT: Genencor International, Inc.
      5
              Jones, Brian E.
      6
              Grant, William D.
      7
              Heaphy, Shaun
              Grant, Susan
     10 <120> TITLE OF INVENTION: Novel Bacillus 029cel Cellulase
     13 <130> FILE REFERENCE: GC796-2-PCT
C--> 15 <140> CURRENT APPLICATION NUMBER: US/10/549,943
C--> 16 <141> CURRENT FILING DATE: 2005-09-20
     18 <150> FRIOR APPLICATION NUMBER: US 60/466,831
     19 <151> PRIOR FILING DATE: 2003-04-29
     21 <160> NUMBER OF SEQ ID NOS: 3
     23 <170> SOFTWARE: FastSEQ for Windows Version 4.0
     25 <210> SEQ ID NO: 1
     26 <211> LENGTH: 3410
     27 <212> TYPE: DNA
     28 <213> ORGANISM: Bacillus sp.
     30 <220> FEATURE:
     31 <221> NAME/KEY: misc_feature
    32 <222> LOCATION: (1)...(3410)
     33 <223> OTHER INFORMATION: isolated from environmental sample from Sonachi Lake, Kenya
    35 <400> SEQUENCE: 1
    36 atcaacacgc tggaaagtaa tttcaagggt aaggccatcg gttgccgccg gggtagaaat
                                                                                60
    37 gtgcggttgg atttcgttga gcggcgtcgc cggcgttcca ccgagggcat agcgcagcag
                                                                               120
    38 gttggcgatg ccaccggtga ggccttcggg gccgcctacg atgttgtgct cagccgccca
                                                                               180
    39 tgcgatgtag ccgtccggct cgggttcgct cgcgggggtg aagaagacaa tgtcgtcgag
                                                                               240
    40 ataaaggttg cegetteege teteaaegee geegaggttg aattggattt egeaaattet
                                                                               300
    41 cgttaggtcc agcacggaat cgccgacgag gtcggctatg ggaatctgaa tgcgcccata
                                                                               360
    42 gggttgggta cgcggaaggg acacgtaggg acccactttg tcattgggcg agacgagccg
                                                                               420
    43 gacaaagatt tggtgcgccg cctgcgaggg gccttggagg gcgagagaaa ggtacgtgag
                                                                               480
    44 ggcgctgatg tcgtgcgtgg gaccgtctcc ccagttgtcg agattgagcc caaatccggc
                                                                               540
    45 ccaccatccg gcgatagtgt agctccaatg gtagtgacgc tcaccctcga agccqccqct
                                                                               600
    46 ggagagttee tgeaageegt egeceeaaat geeegtgatg agegttgeet egteaeggta
                                                                               660
    47 gatcacaagt teggeggegg gtgeeggggg aagategeet tgagtgatea egagagtgge
                                                                               720
    48 ggtggcgctg ccttcgtgat tagggtcggt aatggtggcg acgaccgtgt agctaccggg
                                                                               780
    49 ccccactggc gcatgggtgg aaccgttgta ggtaaaggag acgtcaagcc ccacgggatg
                                                                               840
    50 ggtctcggca agagcggcct tgggggtgcc gtcgaaaacg tgttccaaat tggagagcgt
                                                                               900
    51 gatggtggcg ggtgccttga gcacagtcac agaaacagtg gattgcacgg gatcgtgcgc
                                                                               960
    52 tgccgtgtct gcaggtgtga agaccacgct gtaaaaacgg gttccggcgg acggtgcaag
                                                                              1020
    53 gccggacagg acaaaggcaa agtcgccggg gacggcggct actccgccgc tcaggccggc
                                                                              1080
    54 ctccgcaagg gtttgcccga aggtgatggg tgcggctgtg ggccacatct ccacaaggcc
                                                                              1140
    55 ggtgtccccc tcgtcacgca ccggcatgag ggcggagagg agatgaatgt aactggcttg
                                                                              1200
    56 gtaattgatg tegggetegg tgattteeca tgagttetee ggeeaaaaac catteeaate
                                                                              1260
```

RAW SEQUENCE LISTING DATE: 04/05/2007 PATENT APPLICATION: US/10/549,943 TIME: 07:50:22

```
57 aaggtagget tittgeaegg gitggteteg gategeetga atgetteege tgtattiggg
                                                                          1320
 58 cattgggacc cgcccgaaaq aaaaccaqqa qcqqqaccgt agagtgaagt gagggcattg
                                                                          1380
 59 teccagteeg gecategegg aaccaatggt ggtagattte attggetgea eggteagege.
                                                                          1440
 60 cgctggcata catgttgcta agatagacca tgcccattgg gttcactccg tggagatagt
                                                                          1500
 61 geaggtagee categoggea tegegatgeg eggeegegte ggeggggttg ageceaagee
                                                                          1560
 62 tecgtacece etegaagaaa aageeageet gagaetttgt tttgttegag eeceaegtgt
                                                                          1620
 63 aatcctgatc cttcaggtag gegeggtagg egteggtetg gttattccat geacegagaa
                                                                          1680
 64 actocccaco gtttatagaa googocatoo qqttqcqqat qtcqqcaqaq acqctagqcq
                                                                          1740
 65 tcgctcccgg gagggtcgtg tagtgggcga gagctttttg tagctcacct tgaaagggga
                                                                          1800
 66 agaaatacca ccactgcacg ggctccatat cgagatagcg cacatcgaag aaatcgcgat
                                                                          1860
 67 agacegeace gecegtgege tegaagagea tggeggegge cateacaegg ttggetageg
                                                                          1920
 68 tatcgtgggc attgcgcgag gggctcacgg aagcaaatcc ggtgttgtcg aaaggcacat
                                                                          1980
 69 gaggatggac catggtccaa ttccatgcgg cgatggcagc ggattcgagg gtgacggcat
                                                                          2040
 70 aategeteat geetacgete teaaagacag tegeceegag ggegaaageg geggeageea
                                                                          2100
 71 tggcagtggc ctcggtcgag acggggccgt agtaacgcgg atgggtgtcg gtgctcggcg
                                                                          2160
 72 ggctggcgct ctggtgcccc gtcacggaaa ctttcccgag aatagccccg ctcggctcct
                                                                          2220
 73 gcatgcgtaa gagccagtcc attccccatt tqacttcgtc aagcaggtcg gggacaccgt
                                                                          2280
 74 tgccggattc cgggatgcca aaatcatcgg taaagacgtc aggccgccct tgataggcaa
                                                                          2340
 75 ggagcagete caggatgaeg egeceegtee actegetgta ettgttgaaa tegecegeat
                                                                          2400
 76 cgaaccaacc gccgctgaga tcgcgctcca aggaggcatt ccccatatcc cagatggggc
                                                                          2460
 77 ggctggcgac gtcctgcggg tgagaagcgg catcggccca gttcgcgtgg gcgtagggca
                                                                          2520
 78 cctccttggc aaacccggag cgctgataga agaacatgcg cacggcctcg cgcaggacaa
                                                                          2580
 79 categtaaac ateegegeea atggegaaac tateggaatg agtgttgttg geaggategt
                                                                          2640
 80 ggatgcggta gtggccgggc tcggcaacta ccgtaaaatc aaaccaccac acgcggtctc
                                                                          2700
 81 ccgattgaat atggatggcg ccgccgttcc acgggaccgg tgagccggag aaaaccacga
                                                                          2760
                                                                          2820
 82 cgccatcgtt cacgcgacgg acctccagcg ttgcgccggg gctgtagctc tcggcgctgt
 83 tecagecaat etgegggteg gegateaceg ceaeettggt ggeateggeg gggtaacega
                                                                          2880
 84 attggtcgat gcggatttta tcggtgtggg tggaggcgac gagggcggag ctgcccatga
                                                                          2940
 85 gcagcaagaa aaagcccgct gtcggcccga taccaaaaaa acgaataggg agagaaaaat
                                                                          3000
 86 tcatagcagg atgtggatac ggaaaggggg aaaacggtgc aaagacccaa gcccaacgct
                                                                          3060
 87 tggcgaaaac tggatggttg gtttatcaag aaaagcgctt ttgagccaaa agctgcgggc
                                                                          3120
 88 aateettatt gegttteaca atatttteac ategteggeg geacgaettt tegatgggeg
                                                                          3180
 89 acttgacago gtattototo aggogogagg otgoaaacot tatgaaaaaa ggooogogoa
                                                                          3240
 90 gcgatctgtc cccqqtcaaa atccaqtcaa qqtttqttca aqqqtttqaq qtctqataqa
                                                                          3300
 91 ggcacagtcg agccatcagc agtcgcattg agtagggttg ttggagaaag tgtgcaaatg
                                                                          3360
 92 accgctgccg aaggaactgt ggagacaaaa agcatatttt cctcgccaag
                                                                          3410
 94 <210> SEQ ID NO: 2
 95 <211> LENGTH: 1746
 96 <212> TYPE: DNA
 97 <213> ORGANISM: Bacillus sp.
 99 <220> FEATURE:
100 <221> NAME/KEY: misc_feature
101 <222> LOCATION: (1)...(1746)
102 <223> OTHER INFORMATION: isolated from environmental sample from Sonachi Lake, Kenya
104 <400> SEQUENCE: 2
105 atgaattttt ctctccctat tcgttttttt ggtatcgggc cgacageggg ctttttcttg
                                                                             60
106 ctgctcatgq gcaqctccqc cctcqtcqcc tccacccaca ccqataaaat ccqcatcqac
                                                                            120
.107 caatteggtt acceegeega tgeeaceaag gtggeggtga tegeegaeee geagattgge
                                                                            180
108 tggaacagcg ccgagagcta caqccccqqc qcaacqctqq agqtccqtcq cqtqaacqat
                                                                            240
```

RAW SEQUENCE LISTING DATE: 04/05/2007 PATENT APPLICATION: US/10/549,943 TIME: 07:50:22

```
300
109 ggcgtcgtgg ttttctccgg ctcaccggtc ccgtggaacg gcggcgccat ccatattcaa
110 tegggagace gegtgtggtg gtttgatttt aeggtagttg eegageeegg ceactaeege
                                                                           360
111 atccacgate etgecaacaa caeteattee gatagttteg ceattggege ggatgtttae
                                                                           420
112 gatgttgtcc tgcgcgaggc cgtgcgcatg ttcttctatc agcgctccgg gtttgccaag
                                                                           480
113 gaggtgeeet aegeeeaege gaactgggee gatgeegett eteaeeegea ggaegtegee
                                                                           540
114 agccgcccca tctgggatat ggggaatgcc tccttggagc gcgatctcag cggcggttgg
                                                                           600
115 ttcgatgcgg gcgatttcaa caagtacagc gagtggacgg ggcgcgtcat cctggagctg
                                                                           660
                                                                           720
116 ctccttgcct atcaagggcg gcctgacgtc tttaccgatg attttggcat cccggaatcc
117 ggcaacggtg teccegaeet gettgaegaa gteaaatggg gaatggaetg getettaege
                                                                           780
118 atgcaggage egageggge tatteteggg aaagttteeg tgaeggggea ecagagegee
                                                                           840
119 agcccgccga gcaccgacac ccatccgcgt tactacggcc ccgtctcgac cgaggccact
                                                                           900
120 gccatggctg ccgccgcttt cgccctcggg gcgactgtct ttgagagcgt aggcatgagc
                                                                           960
121 gattatgccg tcaccctcga atccgctgcc atcgccgcat ggaattggac catggtccat
                                                                          1020
                                                                          1080
122 ceteatgtge etttegacaa caeeggattt getteegtga geecetegeg caatgeeeae
123 gatacgetag ceaacegtgt gatggeegee gecatgetet tegagegeae gggeggtgeg
                                                                          1140
124 gtctatcgcg atttcttcga tgtgcgctat ctcgatatgg agcccgtgca gtggtggtat
                                                                          1200
125 ttcttcccct ttcaaqqtqa qctacaaaaa qctctcqccc actacacqac cctcccqqqa
                                                                          1260
126 gcgacgccta gcgtctctgc cgacatccgc aaccggatgg cggcttctat aaacggtggg
                                                                          1320
127 gaqtttctcg gtgcatggaa taaccagacc gacgcctacc gcgcctacct gaaggatcag
                                                                          1380
128 gattacacgt ggggctcgaa caaaacaaag tetcaggetg getttttett egagggggta
                                                                          1440
129 cggaggettg ggeteaacce cgccgacgcg gccgcgcate gcgatgccgc gatgggetac
                                                                          1500
130 ctgcactatc tccacggagt gaacccaatg ggcatggtct atcttagcaa catgtatgcc
                                                                          1560
131 ageggegetg acegtgeage caatgaaate taccaccatt ggtteegega tggeeggaet
                                                                          1620
132 gggacaatge ceteaettea etetaeggte eegeteetgg ttttettteg ggegggteee
                                                                          1680
133 aatgcccaaa tacagcggaa gcattcaggc gatccgagac caacccgtgc aaaaagccta
                                                                          1740
134 ccttga
                                                                          1746
136 <210> SEQ ID NO: 3
137 <211> LENGTH: 581
138 <212> TYPE: PRT
139 <213> ORGANISM: Bacillus sp.
141 <220> FEATURE:
142 <221> NAME/KEY: VARIANT
143 <222> LOCATION: (1)...(581)
144 <223> OTHER INFORMATION: isolated from environmental sample from Sonachi Lake, Kenya
146 <400> SEQUENCE: 3
147 Met Asn Phe Ser Leu Pro Ile Arg Phe Phe Gly Ile Gly Pro Thr Ala
148
                                         10
149 Gly Phe Phe Leu Leu Met Gly Ser Ser Ala Leu Val Ala Ser Thr
150
151 His Thr Asp Lys Ile Arg Ile Asp Gln Phe Gly Tyr Pro Ala Asp Ala
            35
                                40
153 Thr Lys Val Ala Val Ile Ala Asp Pro Gln Ile Gly Trp Asn Ser Ala
154
155 Glu Ser Tyr Ser Pro Gly Ala Thr Leu Glu Val Arg Arg Val Asn Asp
                        70
                                             75
157 Gly Val Val Val Phe Ser Gly Ser Pro Val Pro Trp Asn Gly Gly Ala
                    85
                                         90
159 Ile His Ile Gln Ser Gly Asp Arg Val Trp Trp Phe Asp Phe Thr Val
                100
                                    105
```

RAW SEQUENCE LISTING DATE: 04/05/2007 PATENT APPLICATION: US/10/549,943 TIME: 07:50:22

161 162		Ala	Glu 115	Pro	Gly	His	Tyr	Arg 120	Ile	His	Asp	Pro	Ala 125	Asn	Asn	Thr
163				Ser	Phe	Ala			Ala	Àsp	Val	_		Val	Val	Leu
164		130			_		135	_,	_	~ 7	_	140	~-7	_,		_
		GIU	АТА	Val	Arg		'nпе	Pne	Tyr	GIŅ		ser	GIY	Pne	Ala	_
	145	**- 7	D	. .		150		_			155			_	•	160
	GIU	vai	Pro	Tyr		HIS	Ата	Asn	Trp		Asp	Ala	Ala	ser		Pro
168	~1 ~	7.~~	7707	77.	165	7	Desa	-1-		170	3 4-4	~1. -	7	7.7.a	175	T
170	GIII	Asp	vaı	Ala	ser	Arg	PIO	тте	_	Asp	met	GIY	ASI		ser	ьeu
	C1.,	7~~	7 an	180 Leu	602	~1··	C1	Tres	185	7 ~~	71-	<u>ما</u>	7 an	190	7	T
172	Giu	Arg	195	цец	Ser	Gry	Gry	200	FIIE	Asp	на	Gry	205	Pne	ASII	цур
	ጥኒም	Ser		Trp	Thr	Glv	Ara		TlΔ	T.A11	Glu	T.011		T.OU	λla	Тагт
174	-1-	210	014	115	1111	OLY	215	Val	110	Lcu	Giu	220	пси	пси	ALG	1 y L
	Gln		Ara	Pro	Asp	Val		Thr	Asp	Asp	Phe		Tle	Pro	Glu	Ser
	225	1	5		- LOP	230					235	011			014	240
177	Gly	Asn	Gly	Val	Pro	Asp	Leu	Leu	Asp	Glu	Val	Lvs	Trp	Glv	Met	
178	•		•		245	-			-	250		_		4	255	_
17.9	Trp	Leu	Leu	Arg	Met	Gln	Glu	Pro	Ser	Gly	Ala	Ile	Leu	Gly.	Lys	Val
180	_			260					265	•				270		
181	Ser	Val	Thr	Gly	His	Gln	Ser	Ala	Ser	Pro	Pro	Ser	Thr	Asp	Thr	His
182			275					280					285			
183	Pro	Arg	Tyr	Tyr	Gly	Pro	Val	Ser	Thr	Glu	Ala	Thr	Ala	Met	Ala	Ala
184		290					295					300				
		Ala	Phe	Ala	Leu		Ala	Thr	Val	Phe		Ser	Val	Gly	Met	Ser
	305					310			_	_	315	_	_	•		320
	Asp	Tyr	Ala	Val		Leu	Glu	Ser	Ala		Ile	Ala	Ala	\mathtt{Trp}		\mathtt{Trp}
188	m1		**- 7	••	325			_	-1	330	_	_,	~7	-1	335	_
	Inr	Met	vaı	His	Pro	His	vai	Pro		Asp	Asn	Thr	GIY		Ala	Ser
190	17-1	Com	Dwa	340	7 ~~~	7 ~~	77.	774 ~	345	mla so	T	7.7	7	350	7747	14 - L
191	val	ser	355	Ser	Arg	ASII	Ата	360	Asp	TILL	Leu	Ата	365	Arg	vai	Met
	Δla	Δla		Met	T.211	Dhe	Glu		Thr	Glv	Gl v	7 J =		Тиг	λνα	Λαn
194	лια	370	AIG	1466	шец	FIIC	375	rra	1111	Gry	Gry	380	vai	TYT	Arg	тэр
	Phe		Asp	Val	Ara	Tvr		Asp	Met	Glu	Pro		Gln	Trp	Trn	Tvr
	385				5	390		-101			395		0			400
		Phe	Pro	Phe	Gln		Glu	Leu	Gln	Lvs		Leu	Ala	His	Tvr	
198					405	1				410					415	
199	Thr	Leu	Pro	Gly	Ala	Thr	Pro	Ser	Val	Ser	Ala	Asp	Ile	Arq		Ara
200				420					425			•		430		
201	Met	Ala	Ala [.]	Ser	Ile	Asn	Gly	Gly	Glu	Phe	Leu	Gly	Ala	Trp	Asn	Asn
202			435				_	440				_	445	_		•
203	Gln	Thr	Asp	Ala	Tyr	Arg	Ala	Tyr	Leu	Lys	Asp	Gln	Asp	Tyr	Thr	Trp
204		450					455					460				
205	Gly	Ser	Asn	Lys	Thr	Lys	Ser	Gln	Ala	Gly	Phe	Phe	Phe	Glu	Gly	Val
206						470				•	475					480
	Arg	Arg	Leu	Gly		Asn	Pro	Ala	Asp		Ala	Ala	His	Arg	_	Ala
208					485	_				490					495	
209	Ala	Met	Gly	Tyr	Leu	His	Tyr	Leu	His	Gly	Val	Asn	Pro	Met	Gly	Met

RAW SEQUENCE LISTING

DATE: 04/05/2007 TIME: 07:50:22

PATENT APPLICATION: US/10/549,943

210				500					505					510		
211	Val	Tyr	Leu	Ser	Asn	·Met	Tyr	Ala	Ser	Gly	Ala	Asp	Arg	Ala	Ala	Asn
212			515					520					525			
213	Glu	Ile	Tyr	His	His	Trp	Phe	Arg	Asp	Gly	Arg	Thr	Gly	Thr	Met	Pro
214		530					535					540				
215	Ser	Leu	His	Ser	Thr	Val	Pro	Leu	Leu	Val	Phe	Phe	Arg	Ala	Gly	Pro
216	545					550					555					560
217	Asn	Ala	Gln	Ile	Gln	Arg	Lys	His	Ser	Gly	Asp	Pro	Arg	Pro	Thr	Arg
218					565					570					575	
219	Ala	Lys	Ser	Leu	Pro											
220				580												

VERIFICATION SUMMARY

DATE: 04/05/2007

PATENT APPLICATION: US/10/549,943

TIME: 07:50:23

Input Set : A:\796_2_PCT_SeqListing.TXT Output Set: N:\CRF4\04052007\J549943.raw

L:15 M:270 C: Current Application Number differs, Replaced Current Application Number L:16 M:271 C: Current Filing Date differs, Replaced Current Filing Date