UNIVERSITY OF WISCONSIN-LA CROSSE Department of Computer Science

CS 225 Discrete Computational Structures Fall 2014 Final Exam (Practice) 16 December 2014

- Do not turn the page until instructed to do so. This booklet contains 12 pages including the cover page.
- This is a closed-book exam. All you need is the exam and a writing utensil.
- You have exactly 120 minutes.
- You will not necessarily finish all questions, so do your best ones first. The maximum possible is 100.
- Good luck!

PROBLEM	SCORE
1	10
2	10
3	10
4	10
5	15
6	20
7	5
8	10
9	10
TOTAL	100

NAME: ANSWER KEY

1. (10 pts.) LOGICAL PRINCIPLES.

(a) (2 pts.) Write the *negation* of the following expression, using *only* the connectives \sim and \wedge in your final answer:

$$(p \land q) \to (r \lor \sim s)$$

Answer: $(p \land q) \land (\sim r \land s)$ (also acceptable: $(p \land q) \land (\sim r \land \sim \sim s)$)

(b) (2 pts.) Write the negation of the following expression, without using the connective \rightarrow in your final answer:

$$\exists x \in D, \forall y \in D, P(y) \to (Q(x,y) \to R(x))$$

Answer: $\forall x \in D, \exists y \in D, P(y) \land (Q(x,y) \land \sim R(x))$

(c) (6 pts.) For each of the following, assume we have a finite domain:

$$D = \{a, b\}$$

i. Write the following expression in pure propositional form, without any quantifiers:

$$\forall x \in D, \exists y \in D, F(x) \to G(y)$$

Answer: $((F(a) \to G(a)) \lor (F(a) \to G(b))) \land ((F(b) \to G(a)) \lor (F(b) \to G(b)))$

ii. Write a quantificational statement that is equivalent to the following expression:

$$(P(a,a) \land P(a,b)) \lor (P(b,a) \land P(b,b))$$

Answer: $\exists x \in D, \forall y \in D, P(x, y)$

2. (10 pts.) LOGICAL VALIDITY

(a) (5 pts.) Is the following a tautology, a contradiction, or neither? Use a **full** truth-table to answer the question, and indicate which of the three possibilities is true, and why.

$$(p \lor q) \to ((\sim p \to q) \land (\sim q \to p))$$

Answer: The expression is a **tautology**, as shown by the truth-table below, where the final column for the main connective is entirely True:

p	q	p V q	~p	~q	$\sim p \longrightarrow q$	\sim q \rightarrow p	$(\sim p \rightarrow q) \land (\sim q \rightarrow p)$	$(p \ \lor \ q) \rightarrow ((\sim p \rightarrow q) \ \land \ (\sim q \rightarrow p))$
Т	T	Т	F	F	T	T	T	T
Т	F	Т	F	Т	T	T	T	T
F	Т	Т	T	F	T	Т	T	T
F	F	F	Т	Т	F	F	F	T

(b) (5 pts.) Show that the argument form below is *invalid*, by giving a diagram for the truth-sets of the predicates contained in it such that the argument fails.

$$\forall x, P(x) \to Q(x)$$

$$\forall x, Q(x) \to R(x)$$

$$\exists x, \sim P(x) \land \sim Q(x)$$

$$\therefore \exists x, \sim R(x)$$

Answer: The first two premises require that the truth set of P be a subset of the truth set of Q, and the set for Q be a subset of that for R. Then, in order to make the third premise true, but the conclusion false, we must ensure that some object exists that has neither property P nor property Q (the object a), while also guaranteeing that every object has property R. Such a diagram is as follows, where the truth set for R is the entire domain D:

3. (10 pts.) LOGICAL PROOFS.

(a) (5 pts.) Prove the conclusion $(q \land m)$ from the set of premises below. Each line of your proof should either be a premise, or justified using one of the logical equivalences or proof rules included on the final page of the exam.

$$\mathbf{P} = \{r \lor (t \land s), \, r \to q, \, t \to q, \, r \to m, \, s \to m\}$$

1. $r \vee (t \wedge s)$

[Premise]

2. $(r \lor t) \land (r \lor s)$

[1, Distributive Law]

3. $r \lor t$

[2, Specialization]

4. $r \rightarrow q$

[Premise]

5. $t \rightarrow q$

[Premise]

6. q

[3, 4, 5, Division into Cases]

7. $r \vee s$

[2, Specialization]

8. $r \rightarrow m$

[Premise]

9. $s \to m$

[Premise]

10. m

[7, 8, 9, Division into Cases]

11. $q \wedge m$

[6, 10, Conjunction]

(b) (5 pts.) Prove the conclusion R(a) from the premises below. Each step of your proof should be justified by some logical principle.

i.
$$\forall x, Q(x) \to R(x) \lor Z(x)$$

ii.
$$\forall x, S(x) \to Q(x)$$

iii.
$$S(a) \wedge \sim Z(a)$$

1. S(a)

[Premise iii, Specialization]

Q(a)

[Premise ii, 1, ∀MP]

3. $R(a) \vee Z(a)$

[Premise i, 2, \forall MP]

4. $\sim Z(a)$

[Premise iii, Specialization]

5. R(a)

[3, 4, Elimination]

4. (10 pts.) LOGICAL TRANSLATION.

Translate the following into symbolic logical form. Use only standard connectives $(\sim, \land, \lor, \rightarrow, \leftrightarrow)$ and quantifiers (\exists, \forall) , along with standard set theoretic and mathematical notation.

If you use any non-standard predicates, you must define them precisely.

(a) Every negative integer is less than every positive integer.

$$\forall x \in \mathbf{Z}^-, \, \forall y \in \mathbf{Z}^+, \, x < y$$

(b) Every integer is the sum of two integers.

$$\forall x \in \mathbf{Z}, \exists y \in \mathbf{Z}, \exists z \in \mathbf{Z}, x = y + z$$

(c) The sum of any two integers is an integer.

$$\forall x \in \mathbf{Z}, \forall y \in \mathbf{Z}, \exists z \in \mathbf{Z}, x + y = z$$

(d) Every positive real number has a square root that is also a positive real number.

$$\forall x \in \mathbf{R}^+, \exists y \in \mathbf{R}^+, y = \sqrt{x}$$

(e) The square root of any negative real number is not a real number.

$$\sim \exists x \in \mathbf{R}^-, \exists y \in \mathbf{R}, y = \sqrt{x}$$

5. (15 pts.) LOGIC, SETS, AND PREDICATES

(a) (10 pts.) Write out the definitions of each of the following sets, in set-builder form, assuming that all sets referenced are subsets of a common domain D. For full points, you should use logical expressions to define the sets.

i.
$$(A \cup B)^c$$

$$\{x \in D \mid x \notin A \land x \notin B\}$$

ii.
$$A - (B \cup C)$$

$$\{x \in D \mid x \in A \land (x \notin B \land x \notin C)\}$$

iii.
$$(A \times B)^c$$

$$\{(x,y) \in D \times D \,|\, x \notin A \lor y \notin B\}$$

(b) (5 pts.) Draw a diagram for the truth-sets of the contained predicates on which all of the following expressions are **true**:

$$\forall x \in D, P(x) \to Q(x)$$

$$\forall x \in D, \sim Q(x) \to \sim R(x)$$

$$\exists x \in D, P(x) \land R(x)$$

$$\exists x \in D, P(x) \land \sim R(x)$$

6. (20 pts.) RELATIONS BETWEEN SETS

(a) (5 pts.) Use an element argument to show that, for any sets A, B, and C:

if
$$B \subseteq C$$
, then $A \times B \subseteq A \times C$

Proof: Assume that $B \subseteq C$, and consider an arbitrary pair $(x, y) \in A \times B$. By definition of the cross-product, $x \in A \land y \in B$. But then, since $y \in B$ and $B \subseteq C$, we have $y \in C$. Therefore, $x \in A \land y \in C$, and by definition of the cross-product again, $(x, y) \in A \times C$.

Thus, since (x, y) was an arbitrary element of $A \times B$, we can conclude that every such pair is an element of $A \times C$, which means that $A \times B \subseteq A \times C$, if $B \subseteq C$, as required. \square

(b) (5 pts.) Use an element argument to show that, for any sets A and B:

if
$$A \subseteq B$$
, then $B^c \subseteq A^c$

Proof: Assume that $A \subseteq B$ and consider an arbitrary element $x \in B^c$. By definition of set complement, $x \notin B$, and therefore, by definition of subset, $x \notin A$. Thus, $x \in A^c$, by definition of set complement.

Thus, since x was an arbitrary element of B^c , we can conclude that every such object is an element of A^c , which means that $B^c \subseteq A^c$, if $A \subseteq B$, as required.

(c) (5 pts.) Give a counter-example showing that the following is $not\ always$ true for sets A and B:

if
$$A - B = \emptyset$$
, then $A = B$

Answer: Whenever A is a proper subset of B, we can produce a counter-example. For instance, let our sets be:

$$A = \{1, 2\}$$

 $B = \{1, 2, 3\}$

In such a case, $A - B = \emptyset$, but $A \neq B$.

(d) (5 pts.) Give a counter-example showing that the following is *not always* true for sets A, B, and C:

if
$$A \subseteq B$$
, then $C - A \subseteq C - B$

Answer: Again, we can produce a counter-example whenever A is a proper subset of B, as long as there exists some element in C - A that is not in C - B. For example:

$$A = \{1, 2\}$$

$$B = \{1, 2, 3\}$$

$$C = \{1, 2, 3, 4\}$$

In such a case, we have the set differences:

$$C - A = \{3, 4\}$$

 $C - B = \{4\}$

Clearly, $A \subseteq B$, but $C - A \not\subseteq C - B$.

7. (10 pts.) USING INDUCTION.

Prove that for all integers $n \ge 1$, $\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$

Proof: We first prove that the property holds for base case n = 1:

$$\sum_{i=1}^{1} \frac{1}{i(i+1)} = \frac{1}{1 \cdot 2} = \frac{1}{2} = \frac{1}{1+1}$$

For our inductive hypothesis, we assume the property holds for any value $k \geq 1$, that is:

$$\sum_{i=1}^{k} \frac{1}{i(i+1)} = \frac{k}{k+1}$$

Finally, we show that the property holds for value (k+1), proving that:

$$\sum_{i=1}^{k+1} \frac{1}{i(i+1)} = \frac{k+1}{k+2}$$

To see this, we can reason as follows:

$$\sum_{i=1}^{k+1} \frac{1}{i(i+1)} = \sum_{i=1}^{k} \frac{1}{i(i+1)} + \frac{1}{(k+1)(k+2)}$$

So, by the inductive hypothesis:

$$\sum_{i=1}^{k+1} \frac{1}{i(i+1)} = \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$$

$$= \frac{k(k+2)}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)}$$

$$= \frac{k^2 + 2k + 1}{(k+1)(k+2)}$$

$$= \frac{(k+1)^2}{(k+1)(k+2)}$$

$$= \frac{k+1}{k+2}$$

8. (15 pts.) FUNCTIONS AND RELATIONS

(a) (2 pts.) Write out the definition of the following function in set-builder form:

$$f: \mathbf{R} \to \mathbf{R}$$
 such that $\forall x \in \mathbf{R}, f(x) = x^2$

Answer: $\{(x,y) \in \mathbf{R} \times \mathbf{R} \mid y = x^2\}$

- (b) (2 pts.) Circle the true statements below:
 - i. The function f of the last question is 1:1.
 - ii. The function f of the last question is onto.

Answer: Neither of the properties are true. The function is not 1 : 1 because, e.g., f(1) = 1 = f(-1). It is not onto, since there are no real inputs that generate negative real outputs.

- (c) (4 pts.) Let S be the set of all binary strings, i.e. those strings formed using '0' and '1'. Let c be the function that concatenates strings; i.e., for any two strings, it works like the '+' operator in Java, creating a new string that is the concatenation of its inputs.
 - i. What is the domain of the function c?

Answer: The domain is the set of all possible pairs of binary strings: $S \times S$

ii. What is the co-domain of the function c?

Answer: The co-domain is just the set of binary strings again: S

- (d) (2 pts.) Circle the true statements below:
 - i. The function c of the last question is 1:1.
 - ii. The function c of the last question is onto.

Answer: The function is not 1:1 because, e.g., c(0, 01) = 001 = c(00, 1). If we allow the empty string, then the function is onto; if there is no empty string allowed, then it is not (since we cannot form a single-digit string by concatenating two others).

9. (10 pts.) FUNCTIONS AND RELATIONS, II

Define the relation R on pairs of positive integers as follows:

$$\forall (x_1, y_1), (x_2, y_2) \in \mathbf{Z}^+ \times \mathbf{Z}^+, (x_1, y_1) \ R \ (x_2, y_2) \ \text{if and only if:} \ x_1 y_2 = x_2 y_1$$

Prove that R is an equivalence relation.

Answer: We prove that the relation R is reflexive, symmetric, and transitive in turn.

Reflexive: for any arbitrary single pair $(x_1, y_1) \in \mathbf{Z}^+ \times \mathbf{Z}^+$, it is obvious that $x_1y_1 = x_1y_1$, and so $(x_1, y_1) R(x_1, y_1)$. Since the pair is arbitrary, this means the relation R is reflexive.

Symmetric: Consider arbitrary pairs (x_1, y_1) , $(x_2, y_2) \in \mathbf{Z}^+ \times \mathbf{Z}^+$ such that (x_1, y_1) R (x_2, y_2) ; by definition, $x_1y_2 = x_2y_1$. But therefore $x_2y_1 = x_1y_2$, and so (x_2, y_2) R (x_1, y_1) . Since the pairs were arbitrary, this means relation R is symmetric.

Transitive: Consider arbitrary pairs (x_1, y_1) , (x_2, y_2) , $(x_3, y_3) \in \mathbf{Z}^+ \times \mathbf{Z}^+$ such that (x_1, y_1) R (x_2, y_2) and (x_2, y_2) R (x_3, y_3) ; by definition, $x_1y_2 = x_2y_1$ and $x_2y_3 = x_3y_2$. Thus, we have:

$$x_1y_2 = x_2y_1$$

$$\frac{x_1y_2}{y_1} = x_2$$

Therefore, we have

$$x_2y_3 = x_3y_2$$

$$\frac{x_1 y_2}{y_1} y_3 = x_3 y_2$$

$$x_1y_2y_3 = x_3y_2y_1$$

$$x_1y_3 = x_3y_1$$

and so $(x_1, y_1) R (x_3, y_3)$. Since the pairs were arbitrary, this means relation R is transitive.

Theorem 2.1.1 Logical Equivalences

Given any statement variables p, q, and r, a tautology \mathbf{t} and a contradiction \mathbf{c} , the following logical equivalences hold.

1. Commutative laws: $p \wedge q \equiv q \wedge p$ $p \vee q \equiv q \vee p$

2. Associative laws: $(p \land q) \land r \equiv p \land (q \land r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$

3. Distributive laws: $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$ $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$

4. Identity laws: $p \wedge \mathbf{t} \equiv p$ $p \vee \mathbf{c} \equiv p$

5. Negation laws: $p \lor \sim p \equiv \mathbf{t}$ $p \land \sim p \equiv \mathbf{c}$

6. Double negative law: $\sim (\sim p) \equiv p$

7. Idempotent laws: $p \wedge p \equiv p$ $p \vee p \equiv p$

8. Universal bound laws: $p \lor \mathbf{t} \equiv \mathbf{t}$ $p \land \mathbf{c} \equiv \mathbf{c}$

9. De Morgan's laws: $\sim (p \land q) \equiv \sim p \lor \sim q$ $\sim (p \lor q) \equiv \sim p \land \sim q$

10. Absorption laws: $p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$

11. Negations of \mathbf{t} and \mathbf{c} : $\sim \mathbf{t} \equiv \mathbf{c}$ $\sim \mathbf{c} \equiv \mathbf{t}$

Modus Ponens	$p \rightarrow q$		Elimination	a. $p \vee q$	b. $p \vee q$
	p			$\sim q$	$\sim p$
	• q			• p	• q
Modus Tollens	$p \rightarrow q$		Transitivity	$p \rightarrow q$	
	$\sim q$			$q \rightarrow r$	
	• ~p			• $p \rightarrow r$	
Generalization	a. p	b. q	Proof by	$p \lor q$	
	• $p \vee q$	• $p \vee q$	Division into Cases	$p \rightarrow r$	
Specialization	a. $p \wedge q$	b. $p \wedge q$		$q \rightarrow r$	
	• p	• q		• r	
Conjunction	р		Contradiction Rule	$\sim p \rightarrow c$	
	q			• p	
	• $p \wedge q$				