Algorithm Design - Homework 1

Sapienza University of Rome

Marco Costa, 1691388

December 4, 2019

Problem

Given as input the number of boxes k, the number of different rewards n as well as the cost c_i (which is guaranteed to be integer) of every box, design an algorithm to find the expected optimal reward.

Solution

```
Algorithm 1 Get optimal expected value (O(n^2 \times k))
```

```
1: M \leftarrow matrix(k, n + 1)

2: for i in (k - 1, ..., 0) do

3: for j in (n + 1, ..., 0) do

4: r \leftarrow 0

5: if i = k - 1 then

6: r \leftarrow j \cdot \frac{j+1}{n+1} + \frac{1}{n+1} \sum_{h=j+1}^{n} h - c[i]

7: else

8: r \leftarrow M[i + 1, j] \cdot \frac{j+1}{n+1} + \frac{1}{n+1} \sum_{h=j+1}^{n} M[i + 1, h] - c[i]

9: M[i, j] \leftarrow \max(j, r)

10: return M[0, 0]
```

Algorithm 2 Get optimal expected value $(O(n \times k))$

```
1: M \leftarrow matrix(k, n+1)
 2: a \leftarrow vector(n+1)
 3: for i in (k-1,...,0) do
            for j in (n + 1, ..., 0) do
 4:
                  r \leftarrow 0
 5:
                 \begin{array}{l} \textbf{if} \ i=k-1 \ \textbf{then} \\ r \leftarrow j \cdot \frac{j+1}{n+1} + \frac{1}{n+1} \cdot \frac{n \cdot (n+1) - j \cdot (j+1)}{2} - c[i] \end{array}
 6:
 7:
 8:
                       r \leftarrow M[i+1,j] \cdot \frac{j+1}{n+1} + \frac{1}{n+1} \cdot a[j] - c[i]
 9:
                  M[i,j] \leftarrow \max(j,r)
10:
                  if j = n then
11:
                        a[j] \leftarrow 0
12:
                  else
13:
                       a[j] \leftarrow a[j+1] + M[i, j+1]
14:
15: return M[0,0]
```

First problem

Find the complete graph G of minimum weight given a weighted tree T, such that T is the unique minimum spanning tree of G.

Solution

Insert edges that are not in the tree so as to obtain the complete graph. These edges must have a greater weight than those of the tree, so that T is the only MST of G. Since Kruskal's algorithm uses the Union-Find structures for representing the cuts, we use this structures to solve the problem. Let's define with V the set of nodes of T and with E the set of edges of T.

Algorithm 3 Find complete graph

```
1: for v \in V do
        v.initializeUnionFindSingleton()
 3: T.sortEdgesByAscendingWeights()
                                                                                            (O(n \log n))
 4: G \leftarrow \emptyset
                                                                                            (O(n^2))
 5: for e \leftarrow (v_1, v_2) \in E do
        G.addEdge(e)
 6:
 7:
        set_1 \leftarrow v_1.findComponents()
        set_2 \leftarrow v_2.findComponents()
 8:
        for u \in set_1 do
9:
             for v \in set_2 do
10:
                 \hat{e} \leftarrow (u, v)
11:
                 if \hat{e} \notin E then
12:
                     \hat{e}.setWeight(e.getWeight() + 1)
13:
                     G.addEdge(\hat{e})
14:
15:
        union(set_1, set_2)
16: return G
```

Cost: Let's define E' = set of edges of the graph G, the cost is $O(|E'| + |V| \log |V|)$, but $|E'| = \frac{|V|(|V|-1)}{2}$ and |V| = n, so $|E'| + |V| \log |V| = \frac{n^2 - n}{2} + n \log n$ and the cost is $O(n^2)$

Second problem

Find the total weight of the complete graph G of minimum weight given a weighted tree T, such that T is the unique minimum spanning tree of G.

Solution

This problem is quite similar to the previous one, but in this case there is no need to create all the edges of the graph.

Algorithm 4 Find weight of the complete graph

```
1: for v \in V do
         v.initializeUnionFindSingleton()
 3: T.sortEdgesByAscendingWeights()
                                                                                              (\boldsymbol{O}(n\log n))
 4: w_{total} \leftarrow 0
                                                                                               (\mathbf{O}(n))
 5: for e \leftarrow (v_1, v_2) \in E do
         w_{total} \neq = e.getWeight()
 6:
         set_1 \leftarrow v_1.findComponents()
 7:
         set_2 \leftarrow v_2.findComponents()
 8:
         w_{total} \neq = (set_1.size() \times set_2.size() - 1) \times (e.getWeight() + 1)
 9:
10:
         union(set_1, set_2)
11: return w_{total}
```

Cost: $O(|V| \log |V| + |E|) = O(n \log n + (n-1)) = O(n \log n)$, given by ordering the edges.

First Problem

Model the problem as a flow problem in a graph G, only consisting of regular vertices, one source, one sink, and capacitated edges to find out how many chocolates Federico should actually make every week. Give a formal definition of your network, and also draw a small example, e.g. for |F| = 4.

Solution

Example:

Second Problem Solution

Problem

Solution

In order to prove that this problem is **NP-HARD**, we need to find a well-know **NP-HARD** algorithm s.t. $\alpha \leq_p EX4$. We can do it with the **SUBSET SUM** problem. We can use a reduction from the problem above: given a set of integers $S = x_1, x_2, ..., x_n$ and a target integer γ , there exists a subset $S' \in S$ s.t. $\sum_{x_i \in S'} x_i = K$ So, we construct an instance of the EX4 problem with n jobs, each having

earliest start time 0 (so $s_j = 0$ for all $j \in S'$). For $j \in J$, job j has length $l_j = x_j$ and deadline $d_j = \gamma$. This instance solves the scheduling problem because we can arrange the jobs in any order and they will always meet their deadline. Now we need to prove