

Práctica 1 - 2 Filtros en Weka

Juan Carlos Fernández Caballero (jfcaballero@uco.es)
Introducción al Aprendizaje Automático (IAA)

3º de Grado de Ingeniería Informática
Especialidad en Computación

Curso 2019-2020

Índice de contenidos

Filtros

Ejercicios

Entregables

Bibliografía

Filtros

Ejercicios

Filtros supervisados vs No supervisados

- De forma general, **los filtros persiguen lo siguiente**: Transformar los datos para un mejor aprendizaje y adaptación de los $modelos \longrightarrow Preprocesado.$
- Ejemplos de algunas **operaciones sobre los datos** son: discretizar, normalizar, eliminar valores, sustituir valores.
- Los hay de 2 tipos, supervisados y no supervisados [1]:

Filtros supervisados

- Tienen en cuenta el ultimo atributo del dataset a la hora de hacer un tratamiento sobre los datos.
- En clasificación será la clase asignada a un patrón. En caso de regresión, el valor de salida a predecir.

Filtros 0000000

Filtros supervisados vs No supervisados

Entregables

Filtros no supervisados

- No tienen en cuenta el ultimo atributo del dataset a la hora de hacer un tratamiento sobre los datos.
- Por defecto toman el último atributo como clase o valor numérico de salida para regresión (ignore class \rightarrow false), aplicándose el filtro a todos los patrones y atributos (menos al último atributo).
- Si gueremos cargar una serie de datos a los que aplicar filtros en su totalidad, indicar en el filtro ignore class \rightarrow true.

Filtros para transformación de los datos

Filtros para transformación de los datos:

Objetivos

Filtros

0000000

- Reemplazar datos perdidos.
- Reducir el tamaño de los datos para su procesamiento.
- Eliminar datos repetitivos o que no aportan información.

Algunos filtros para transformación de los datos:

- filters/unsupervised/attribute/Normalize
- filters/unsupervised/attribute/ReplaceMissingValues
- filters/unsupervised/attribute/NominalToBinary. Se explica a continuación...

Filtros para transformación de los datos

filters/unsupervised/attribute/NominalToBinary

- La opción BinaryAttributesNominal=True hace que los atributos binarios resultantes pongan un valor '0' como ausencia y no como valor numérico.
- IMPORTANTE: Si el atributo nominal solo tiene 2 valores, pasa a ser numérico con valores 0 y 1, a no ser que se configure la opción transformAllValues=True.

filters/supervised/attribute/NominalToBinary

- @attribute miAtributo {1,2,3}
- Para el caso de que los valores nominales sean un conjunto de números y no cadenas, podría usarse también el filtro supervisado.
- Este filtro transformaría los "N" valores numéricos del atributos nominal a "N-1" valores (consultar ayuda de Weka para ver cómo).

Filtros para selección de características (atributos)

Entregables

Filtros para selección de características (atributos):

Objetivos

- Reducir el coste computacional asociado al aprendizaje, eliminando atributos irrelevantes o redundantes.
- Mejorar la calidad del modelo y expresarlo de forma más comprensible, eliminando atributos que son perjudiciales para el aprendizaje.
- A esto se le llama reducción de dimensionalidad

Algunos filtros:

filters/unsupervised/attributes/RemoveUseless

Filtros para selección de patrones (instancias)

Filtros para selección de patrones (instancias):

Objetivos

- Reducir el número de patrones de las clases más numerosas.
- Incrementar el número de patrones de las clases minoritarias, introduciendo patrones sintéticos
- Eliminar instancias problemáticas.
- Extraer instancias representativas de las clases.

Algunos filtros:

- filters/supervised/instance/SpreadSubsample
- filters/supervised/instance/ClassBalancer
- filters/supervised/instance/Resample
- filters/unsupervised/instance/Resample; en que se diferenciará del supervised?
- filters/unsupervised/instance/RemovePercentage

Filtros

Filtros

Ejercicios

Ejercicios

- Cargue la base de datos Iris (disponible en Moodle). Observe los atributos.
 - 1.1 ¿Cuántos atributos caracterizan los datos de esta base de datos?
 - 1.2 ¿Se trata de regresión o clasificación?

Ejercicios

- **1.3** ¿Cuál es el rango de valores del atributo petalwidth?¿Y su media? ¿y su desviación típica?
- **1.4** Utilizando el entorno *Weka Explorer* → *Visualize*, determinar que atributo permite discriminar linealmente entre la clase irissetosa y las otras dos clases.
- **1.5** ¿Es posible separar linealmente la clase iris-versicolor de la clase iris-virginica?
- **1.6** ¿Con qué dos atributos te quedarías para discriminar entre las tres clases del problema?
- **1.7** ¿Que diferencia hay entre instancias *Distinct* y *Unique*? Fabríquese una base de datos pequeña propia para poner un ejemplo.

- **2.** Cargue la base de datos *audiology* (disponible en Moodle).
 - 2.1 Aplique el filtro filters/unsupervised/attribute/NominalTo-**Binary** y describa como quedan ahora los atributos.
 - 2.2 ¿Podría saber con antelación el número de atributos finales al aplicar este filtro?
 - **2.3** ¿Que ha pasado con algunos atributos nominales?
- 3. Particione una base de datos usando filters/supervised/instance/StratifiedRemoveFolds
 - **3.1** Divida el dataset en train y test mediante un 3-fold.
 - **3.2** Divida el dataset en *train* y *test* mediante un *3-holdOut* con un 75 % train v 25 % test.

Entregables

•00

Filtros

Ejercicios

- Elija 3 filtros No Supervisados de los que aparecen listados, expliquelos y describa cómo quedan los datos antes y después al aplicarlos sobre una o varias bases de datos.
 - Consulte el UCI Machine Learning Repository para una descripción de la base de datos y la transformación a .arff
 - Si no puede aplicar un filtro elegido en ninguna base de datos describa por qué, y construyase una base de datos ficticia y pequeña donde si pueda aplicarlo.
 - Use capturas de pantalla, salidas de Weka y todo lo que considere necesario para sus ejercicios.
 - La puntuación variará en función de la argumentación y dificultad de los filtros elegidos.
 - 1.1 filters/unsupervised/attribute/Normalize
 - 1.2 filters/unsupervised/attribute/ReplaceMissingValues
 - 1.3 filters/unsupervised/attributes/NominalToBinary
 - 1.4 filters/unsupervised/intance/RemoveDuplicates
 - 1.5 filters/unsupervised/instance/Resample.
 - 1.6 filters/unsupervised/attribute/Remove
 - 1.7 filters/unsupervised/attributes/RemoveUseless

Entregables

- Elija 3 filtros Supervisados de los que aparecen listados, expliquelos y describa cómo quedan los datos antes y después al aplicarlos sobre una o varias bases de datos.
 - Consulte el UCI Machine Learning Repository para una descripción de la base de datos y la transformación a .arff
 - Si no puede aplicar un filtro elegido en ninguna base de datos describa por qué, y construyase una base de datos ficticia y pequeña donde si pueda aplicarlo.
 - Use capturas de pantalla, salidas de Weka y todo lo que considere necesario para sus ejercicios.
 - La puntuación variará en función de la argumentación y dificultad de los filtros elegidos.
 - 2.1 filters/supervised/attribute/Discretize
 - 2.2 filters/supervised/attribute/NominalToBinary
 - 2.3 filters/supervised/instance/SpreadSubsample
 - 2.4 filters/supervised/instance/ClassBalancer
 - 2.5 filters/supervised/instance/Resample

Bibliografía adicional a la de la asignatura y al material de Moodle

Filtros

Filtros

