Section 1.5 – Length of Curves

Length of a curve y = f(x)

We assume that f has a continuous derivative at every point of [a, b]. Such function is called **smooth**, and its graph is a **smooth curve** because it doesn't have any breaks, corners, or cusps.

Definition

If f' is continuous on [a, b], then the length (arc length) of the curve y = f(x) from the point A = (a, f(a)) to the point B = (b, f(b)) is the value of the integral

$$L = \int_{a}^{b} \sqrt{1 + \left[f'(x) \right]^{2}} dx = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx} \right)^{2}} dx$$

Example

Find the length of the curve $y = \frac{4\sqrt{2}}{3}x^{3/2} - 1$, $0 \le x \le 1$

$$\frac{dy}{dx} = \frac{4\sqrt{2}}{3} \frac{3}{2} x^{1/2} = 2\sqrt{2}x^{1/2}$$

$$\left(\frac{dy}{dx}\right)^2 = \left(2\sqrt{2}x^{1/2}\right)^2 = 8x$$

$$L = \int_0^1 \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

$$= \int_{0}^{1} (1+8x)^{1/2} dx$$

$$= \frac{1}{8} \int_{0}^{1} (1+8x)^{1/2} d(1+8x)$$

$$= \frac{1}{8} \left[\frac{2}{3} (1+8x)^{3/2} \right]_{0}^{1}$$

$$= \frac{1}{12} \left[(1+8(1))^{3/2} - (1+8(0))^{3/2} \right]$$

$$= \frac{1}{12} \left[(9)^{3/2} - (1)^{3/2} \right]$$

$$= \frac{1}{12} [27-1]$$

$$= \frac{1}{12} (26)$$

$$= \frac{13}{6} \approx 2.17 \ unit$$

Example

Find the length of the graph of $f(x) = \frac{x^3}{12} + \frac{1}{x}$, $1 \le x \le 4$

$$a = \frac{1}{12}, \quad m = 3, \quad b = 1, \quad n = -1$$

1. $m + n = 3 - 1 = 2$

2. $abmn = \frac{1}{12}(1)(3)(-1) = -\frac{1}{4}$

$$L = \left(\frac{x^3}{12} - \frac{1}{x}\right)_1^4$$

$$= \left(\frac{4^3}{12} - \frac{1}{4}\right) - \left(\frac{1}{12} - \frac{1}{1}\right)$$

$$=\frac{72}{12}$$

$$=6$$
 unit

Discontinuities in $\frac{dy}{dx}$

Formula for the length of x = g(y), $c \le y \le d$

If g' is continuous on [c, d], the length of the curve x = g(y) from the point A = (g(c), c) to the point B = (g(d), d) is the value of the integral

$$L = \int_{C}^{d} \sqrt{1 + \left[g'(y)\right]^{2}} dy = \int_{C}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy$$

Example

Find the length of the curve $y = \left(\frac{x}{2}\right)^{2/3}$ from x = 0 to x = 2.

$$\frac{dy}{dx} = \frac{2}{3} \left(\frac{x}{2}\right)^{-1/3} \left(\frac{1}{2}\right)$$

$$= \frac{1}{3} \left(\frac{2}{x}\right)^{1/3} \qquad \boxed{x \neq 0} \quad (CP)$$

$$y = \left(\frac{x}{2}\right)^{2/3} \rightarrow y^{3/2} = \frac{x}{2} \qquad \text{Raised both sides to the power } 3/2$$

$$x = 2y^{3/2}$$

$$\frac{dx}{dy} = 2\left(\frac{3}{2}\right)y^{1/2} = 3y^{1/2} \qquad \Rightarrow \begin{cases} x = 0 & \Rightarrow y = 0 \\ x = 2 & \Rightarrow y = \left(\frac{2}{2}\right)^{2/3} = 1 \end{cases}$$

$$\frac{dx}{dy} = 2\left(\frac{3}{2}\right)y^{1/2} = 3y^{1/2} \qquad \Rightarrow \begin{cases} x = 0 \\ x = 2 \end{cases} \Rightarrow$$

$$L = \int_{c}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy = \int_{0}^{1} \sqrt{1 + \left(3y^{1/2}\right)^{2}} dy$$

$$= \int_{0}^{1} \sqrt{1 + 9y} dy$$

$$= \int_{0}^{1} (1 + 9y)^{1/2} dy$$

$$= \frac{1}{9} \frac{2}{3} (1 + 9y)^{3/2} \Big|_{0}^{1}$$

$$= \frac{2}{27} \Big[(1 + 9)^{3/2} - (1 + 0)^{3/2} \Big]$$

$$= \frac{2}{27} \Big[10^{3/2} - 1 \Big]$$

$$\approx 2.27 \ unit \Big|$$

Example

Find the arc length function for the curve $f(x) = \ln(x + \sqrt{x^2 - 1})$ on the interval $[1, \sqrt{2}]$

$$y = \ln\left(x + \sqrt{x^{2} - 1}\right) \to x + \sqrt{x^{2} - 1} = e^{y}$$

$$\left(\sqrt{x^{2} - 1}\right)^{2} = \left(e^{y} - x\right)^{2}$$

$$x^{2} - 1 = e^{2y} - 2xe^{y} + x^{2}$$

$$2xe^{y} = e^{2y} + 1 \implies x = \frac{e^{2y} + 1}{2e^{y}} \left(\frac{e^{y}}{e^{y}}\right) = \frac{e^{y} + e^{-y}}{2}$$

$$y = \ln\left(x + \sqrt{x^{2} - 1}\right) \iff x = \frac{e^{y} + e^{-y}}{2} = g(y)$$

$$x = 1 \implies y = 0$$

$$x = \sqrt{2} \implies y = \ln(\sqrt{2} + 1)$$

$$L = \int_{0}^{\ln(\sqrt{2} + 1)} \sqrt{1 + g'(y)^{2}} dy$$

$$= \int_{0}^{\ln(\sqrt{2} + 1)} \sqrt{1 + \left(\frac{e^{y} - e^{-y}}{2}\right)^{2}} dy$$

$$= \frac{1}{2} \int_{0}^{\ln(\sqrt{2} + 1)} \sqrt{e^{2y} + 2 + e^{-2y}} dy$$

$$= \frac{1}{2} \int_{0}^{\ln(\sqrt{2} + 1)} \sqrt{e^{y} + e^{-y}} dy$$

$$= \frac{1}{2} \int_{0}^{\ln(\sqrt{2} + 1)} \left(e^{y} + e^{-y}\right) dy$$

$$= \frac{1}{2} \left(e^{y} - e^{-y}\right) \left| \frac{\ln(\sqrt{2} + 1)}{0} \right|$$

$$= \frac{1}{2} \left(\sqrt{2} + 1 - \frac{1}{\sqrt{2} + 1} - 1 + 1\right)$$

$$f'(x) = \frac{1 + x(x^2 - 1)^{-1/2}}{x + \sqrt{x^2 - 1}}$$
$$= \frac{\sqrt{x^2 - 1} + x}{x\sqrt{x^2 - 1} + x^2 - 1}$$

$$a = \frac{1}{2}$$
, $m = 1$, $b = \frac{1}{2}$, $n = -1$

1
$$m = -n$$
 1

1.
$$m = -n$$
 $\sqrt{ }$
2. $abmn = -\frac{1}{4}$ $\sqrt{ }$

$$L = \frac{1}{2} \left(e^{y} - e^{-y} \right) \begin{vmatrix} \ln(\sqrt{2} + 1) \\ 0 \end{vmatrix}$$

$$= \frac{1}{2} \left(\sqrt{2} + 1 - \frac{1}{\sqrt{2} + 1} - 1 + 1 \right)$$

$$= \frac{1}{2} \left(\frac{3 + 2\sqrt{2} - 1}{\sqrt{2} + 1} \right)$$

$$= \frac{1}{2} \left(\frac{2 + 2\sqrt{2}}{\sqrt{2} + 1} \right)$$

$$= \frac{1}{2} \left(\frac{3 + 2\sqrt{2} - 1}{\sqrt{2} + 1} \right)$$

$$= \frac{1}{2} \left(\frac{2 + 2\sqrt{2}}{\sqrt{2} + 1} \right)$$

$$= 1 \quad unit$$

The differential Formula for Arc length

If y = f(x) and if f' is continuous on [a, b], then by the Fundamental Theorem of Calculus, we can define a new function

$$s(x) = \int_{a}^{x} \sqrt{1 + \left[f'(t) \right]^{2}} dt$$

$$\frac{ds}{dx} = \sqrt{1 + \left[f'(t) \right]^{2}} = \sqrt{1 + \left(\frac{dy}{dx} \right)^{2}} \implies ds = \sqrt{1 + \left(\frac{dy}{dx} \right)^{2}} dx$$

$$= \sqrt{(dx)^{2} + (dx)^{2} \frac{(dy)^{2}}{(dx)^{2}}}$$

$$ds = \sqrt{dx^{2} + dy^{2}}$$

Example

Find the arc length function for the curve $f(x) = \frac{x^3}{12} + \frac{1}{x}$ taking $A = \left(1, \frac{13}{12}\right)$ as the starting point **Solution**

$$1 + \left[f'(x) \right]^2 = \left(\frac{x^2}{4} + \frac{1}{x^2} \right)^2$$

$$s(x) = \int_1^x \sqrt{1 + \left[f'(t) \right]^2} dt = \int_1^x \left(\frac{t^2}{4} + \frac{1}{t^2} \right) dt$$

$$= \left(\frac{t^3}{12} - \frac{1}{t} \right)_1^x$$

$$= \left(\frac{x^3}{12} - \frac{1}{x} \right) - \left(\frac{1}{12} - 1 \right)$$

$$= \frac{x^3}{12} - \frac{1}{x} + \frac{11}{12}$$

$$|s(4)| = \frac{4^3}{12} - \frac{1}{4} + \frac{11}{12} = \frac{6}{4} \quad unit$$

Exercises Section 1.5 – Length of Curves

Find the length of the curve of

1.
$$y = \frac{1}{3}(x^2 + 2)^{3/2}$$
 from $x = 0$ to $x = 3$

2.
$$y = (x)^{3/2}$$
 from $x = 0$ to $x = 4$

3.
$$x = \frac{y^{3/2}}{3} - y^{1/2}$$
 from $y = 1$ to $y = 9$

4.
$$x = \frac{y^3}{6} + \frac{1}{2y}$$
 from $y = 2$ to $y = 3$

5.
$$f(x) = x^3 + \frac{1}{12x}$$
 for $\frac{1}{2} \le x \le 2$

6.
$$f(x) = \frac{1}{5}x^5 + \frac{1}{12x^3}$$
 $1 \le x \le 2$

7.
$$y = \frac{1}{3}x^{1/2} - x^{3/2}, \quad 0 \le x \le \frac{1}{3}$$

8.
$$y = \frac{1}{3}x^3 + \frac{1}{4x}, \quad 1 \le x \le 2$$

9.
$$y = 2e^x + \frac{1}{8}e^{-x}$$
 $0 \le x \le \ln 2$

10.
$$y = e^{2x} + \frac{1}{16}e^{-2x}$$
 $0 \le x \le \ln 3$

11.
$$y = \ln(\cos x)$$
 $0 \le x \le \frac{\pi}{4}$

12.
$$f(y) = 2e^{\sqrt{2}y} + \frac{1}{16}e^{-\sqrt{2}y}$$
 $0 \le y \le \frac{\ln 2}{\sqrt{2}}$

13.
$$y = \frac{x^3}{3} + x^2 + x + 1 + \frac{1}{4x + 4}$$
 $0 \le x \le 2$

14.
$$y = \frac{x^3}{3} + x^2 + x + 1 + \frac{1}{4x + 4}$$
 $0 \le x \le 4$

15.
$$y = \ln(e^x - 1) - \ln(e^x + 1)$$
 $\ln 2 \le x \le \ln 3$

16.
$$f(x) = \frac{2}{3}x^{3/2} - \frac{1}{2}x^{1/2}$$
 $1 \le x \le 4$

17.
$$f(x) = x^3 + \frac{1}{12x}$$
 $1 \le x \le 4$

18.
$$f(x) = \frac{1}{8}x^4 + \frac{1}{4x^2}$$
 $1 \le x \le 10$

19.
$$f(x) = \frac{1}{4}x^4 + \frac{1}{8x^2}$$
 $3 \le x \le 8$

20.
$$f(x) = \frac{1}{10}x^5 + \frac{1}{6x^3}$$
 $1 \le x \le 7$

21.
$$f(x) = \frac{3}{10}x^{1/3} - \frac{3}{2}x^{5/3}$$
 $0 \le x \le 12$

22.
$$f(x) = x^{1/2} - \frac{1}{3}x^{3/2}$$
 $2 \le x \le 9$

23.
$$y = x^{1/2} - \frac{1}{3}x^{3/2}$$
 $1 \le x \le 4$

24.
$$x = y^{2/3}, 1 \le y \le 8$$

25.
$$y = 2x + 4$$
 $-2 \le x \le 2$

26.
$$y = \frac{x^3}{6} + \frac{1}{2x}$$
 $x \in [1, 2]$

27.
$$f(x) = x^{1/2} - \frac{1}{3}x^{3/2}$$
 $1 \le x \le 3$

28.
$$y = \frac{3}{4}x^{4/3} - \frac{3}{8}x^{2/3} + 5, \quad 1 \le x \le 8$$

29.
$$y = \ln x - \frac{1}{8}x^2$$
; $1 \le x \le 2$

30.
$$y = \frac{1}{2}x^2 - \frac{1}{4}\ln x; \quad 1 \le x \le 3$$

31. Find the length of the curve
$$y = \int_{-2}^{x} \sqrt{2t^4 - 1} dt$$
 $-2 \le x \le -1$

32. Find the length of the curve
$$x = \int_0^y \sqrt{\sec^4 t - 1} \ dt - \frac{\pi}{4} \le y \le \frac{\pi}{4}$$

- 33. Find the length of the curve y = 3 2x $0 \le x \le 2$. Check your answer by finding the length of the segment as the hypotenuse of a right triangle.
- 34. The profile of the cables on a suspension bridge may be modeled by a parabola. The central span of the Golden Gate Bridge is 1280 m long and 152 m high. The parabola $y = 0.00037x^2$ gives a good fit to the shape of the cables, where $|x| \le 640$, and x and y are measured in meters. Approximate the length of the cables that stretch between the tops of the two towers.

35. Find a curve through the origin in the xy-plane whose length from x = 0 to x = 1 is

$$L = \int_0^1 \sqrt{1 + \frac{1}{4}e^x} \ dx$$

- **36.** Confirm that the circumference of a circle of radius a is $2\pi a$
- 37. Electrical wires suspended between two towers form a caternary modeled by the equation

$$y = 20\cosh\frac{x}{20}, \quad -20 \le x \le 20$$

Where *x* and *y* are measured in meters. The towers are 40 meters apart. Find the length of the suspended cable.

69

38. A barn is 100 feet long and 40 feet wide. A cross section of the roof is the inverted caternary $y = 31 - 10\left(e^{x/20} + e^{-x/20}\right)$. Find the number of square feet of roofing on the barn.

39. A cable for a suspension bridge has the shape of a parabola with equation $y = kx^2$. Let h represent the height of the cable from it lowest point to its highest point and let 2w represent the total span of the bridge.

Show that the length C of the cable is given by $C = 2 \int_0^w \sqrt{1 + \frac{4h^2}{w^4}x^2} dx$

- **40.** Find the total length of the graph of the astroid $x^{2/3} + y^{2/3} = 4$
- **41.** Find the arc length from (0, 3) clockwise to $(2, \sqrt{5})$ along the circle $x^2 + y^2 = 9$
- **42.** Find the arc length from (-3, 4) clockwise to (4, 3) along the circle $x^2 + y^2 = 25$. Show that the result is one-fourth the circumference of the circle.
- **43.** $y = \ln x$ between x = 1 and x = b > 1 that

$$\int \frac{\sqrt{x^2 + a^2}}{x} dx = \sqrt{x^2 + a^2} - a \ln \left(\frac{a + \sqrt{x^2 + a^2}}{x} \right) + C$$

Use any means to approximate the value of b for which the curve has length 2.