EXERCÍCIOS RESOLVIDOS

Exercício1: Para os circuitos abaixo, calcule o valor da resistência equivalente considerando:

a)R1 = 100Ω e R2= 100Ω

- Série:
 - \circ Req = $100\Omega + 100\Omega$
 - \circ Req = 200Ω
- Paralelo:
 - \circ Req = $(100\Omega * 100\Omega) / (100\Omega + 100\Omega)$
 - \circ Req = 10.000Ω / 200Ω
 - \circ Req = 50Ω

b)R1 = 100 Ω e R2=150 Ω

- Série:
 - \circ Req = $100\Omega + 150\Omega$
 - \circ Req = 250 Ω
- Paralelo:
 - \circ Req = $(100\Omega * 150\Omega) / (100\Omega + 150\Omega)$
 - \circ Req = 15.000 Ω /250 Ω
 - \circ Req = 60Ω

c)R1 = 1500 Ω e R2=3,3 K Ω

- Série:
 - \circ Req = 1.500 Ω +3,3 Ω
 - \circ req = 1.503,3 Ω
- Paralelo:
 - \circ Req = $(1.500\Omega * 3.3\Omega) / (1.500 + 3.3\Omega)$
 - \circ Req = 4.950 Ω / 1503,3
 - \circ Req = 3,29 Ω

d)R1 = 100 M Ω e R2=1 Ω

- Série:
 - \circ Req = $100\Omega + 1\Omega$
 - \circ Req = 101Ω
- Paralelo:
 - $\circ \quad \text{Req} = (100\Omega * 1\Omega) / (100\Omega + 1\Omega)$
 - \circ Req = $100\Omega / 101\Omega$
 - \circ Req = 0,99 Ω

e)R1 = 100 M Ω e R2=200M Ω

- Série:
 - \circ Req = $100\Omega + 200\Omega$
 - \circ Req = 300Ω
- Paralelo:
 - \circ Req = $(100\Omega * 200\Omega) / (100\Omega + 200\Omega)$
 - \circ Req = $20.000\Omega / 300\Omega$
 - \circ Req = 66,66 Ω

Exercício2: Repetir o exercício anterior para os circuitos abaixo. Calcular o valor da resistência equivalente considerando:

a)R1 = 100 Ω , R2=100 Ω e R3=100 Ω

- Série:
 - \circ Req = $100\Omega + 100\Omega + 100\Omega$
 - \circ Req = 300Ω
- Paralelo:
 - \circ Req = 1/($(1/100\Omega) + (1/100\Omega) + (1/100\Omega)$
 - \circ Req = 1 / (0,01 Ω + 0,01 Ω + 0,01 Ω)
 - \circ Req = 1 / 0,03 Ω
 - \circ Req = 33,33 Ω

b)R1 = $1K\Omega$, $R2=2,2K\Omega$ e $R3=3,3K\Omega$

- Série:
 - \circ Req = $1K\Omega + 2.2K\Omega + 3.3K\Omega$
 - \circ Req = 6,5K Ω
- Paralelo:
 - \circ Req = 1 / ((1/1K Ω) + (1/2,2K Ω) + (1/3,3K Ω)
 - \circ Req = 1 / (1KΩ + 0,45KΩ + 0,30KΩ)
 - \circ Req = 1 / 1,75K Ω
 - \circ Req = 0,57K Ω

Exercício 3: No circuito apresentado na figura a seguir, onde V = 12 V, $R1 = 50 \Omega$, $R2 = 20 \Omega$, $R3 = 20 \Omega$, Qual a corrente medida pelo amperímetro A colocado no circuito.

Req1 = (20Ω * 20Ω) / (20Ω + 20Ω)Req1 = 400Ω / 40ΩReq1 = 10Ω

Req1 – 1052

 $Req2 = 50\Omega + 10\Omega$

Req2 = 60Ω

 $i = 12V / 60\Omega$

i = 0,2A

Exercício 4: Repetir o exercício anterior considerando V = 5 V, R1 = 150Ω , R2 = $1,5 K\Omega$ e R3 = $2,2 K\Omega$.

Req1 = (1,5KΩ * 2,2KΩ) / (1,5KΩ + 2,2KΩ)

Req1 = $3.3K\Omega / 3.7K\Omega$

Req1 = 0.89K Ω

 $Req1 = 890\Omega$

 $Req2 = 150 \Omega + 890\Omega$

 $Req2 = 1.040\Omega$

 $i = 5V / 1.040\Omega$

i = 0,0048A

Exercício 5: Para os exercícios 3 e 4 calcule:

- a) A queda de tensão (voltagem) sobre R2 e R3
- b)A Potência total dissipada pelo circuito
 - Exercício 3
 - a) A queda de tensão (voltagem) sobre R2 e R3
 - \circ VR2 = 0,2A * 20 Ω
 - \circ VR2 = 4V
 - \circ VR3 = 0,2A * 20 Ω
 - \circ VR3 = 4V
 - b)A Potência total dissipada pelo circuito
 - \circ P = 12V * 0,2A
 - \circ P = 2,4W
 - Exercício 4
 - a) A queda de tensão (voltagem) sobre R2 e R3
 - \circ VR2 = 0,0048A * 1,5K Ω
 - \circ VR2 = 0,0048A * 1500 Ω
 - \circ VR2 = 7,2V

- \circ VR3 = 0,0048A * 2,2K Ω
- \circ VR3 = 0,0048A * 2.200 Ω
- \circ VR3 = 10,56V
- b)A Potência total dissipada pelo circuito
 - \circ P = 5 * 0,0048A
 - \circ P = 0,024W

Exercício 6: Considere que uma saída do Arduino pode fornecer no máximo 40mA a 5 Volts. Qual o valor mínimo de resistência que poderíamos conectar nesta saída?

 $R = 5V / 20 * 10 \land -3A$

R = 5V / 0.04A

 $R = 125\Omega$

Exercício 7: Considere que iremos conectar um sensor no Arduino cuja corrente máxima seria de 15 mA. Qual o valor do resistor a ser conectado para proteger o Arduino e o sensor?

Arduino:

 $R = 5V / 40 * 10 ^ -3A$

R = 5V / 0.04A

 $R = 125\Omega$

Sensor:

 $R = 5V / 15 * 10^{-3}A$

R = 5V / 0.015A

 $R = 333,33\Omega$

Req = $125\Omega + 333,33\Omega$

 $Req = 458,33\Omega$

Exercício 8: Para todos os resistores deste trabalho, determine as cores de cada um.

Vermelho, preto, marrom, dourado
Verde, preto, preto, dourado
Vermelho, verde, marrom, dourado
Azul, preto, preto, dourado
Marrom, verde, vermelho, dourado
Laranja, preto, cinza, dourado
Marrom, preto, marrom,, dourado
Marrom, preto, cinza, dourado
Laranja, preto, marrom, dourado
Azul, azul, preto, dourado
Laranja, laranja, preto, dourado
Azul, preto, cinza, dourado
Verde, roxo, marrom, dourado

10Ω	Marrom, preto, preto, dourado
60Ω	Azul, preto, preto, dourado
890Ω	Cinza, branco, marrom, dourado
1.040Ω	Marrom, preto, vermelho, dourado
125Ω	Marrom, laranja, marrom, dourado
333,33Ω	Laranja, laranja, marrom, dourado
458,33Ω	Amarelo, azul, marrom, dourado