Gradient Flow. Accelerated gradient flow.

Daniil Merkulov

Optimization methods. MIPT

• Antigradient $-\nabla f(x)$ indicates the direction of steepest descent at the point x.

- Antigradient $-\nabla f(x)$ indicates the direction of steepest descent at the point x.
- Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the function on the Euclidian ball

$$\min_{\delta x \in \mathbb{R}^n} \nabla f(x_0)^{\top} \delta x$$

s.t.
$$\delta x^{\top} \delta x = \varepsilon^2$$

in Lz Gradient Flow

- Antigradient $-\nabla f(x)$ indicates the direction of steepest descent at the point x.
- Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the function on the Euclidian ball

$$\min_{\delta x \in \mathbb{R}^n} \nabla f(x_0)^\top \delta x$$

s.t. $\partial x \ \partial x = \varepsilon$

The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with
a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

- Antigradient $-\nabla f(x)$ indicates the direction of steepest descent at the point x.
- Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the function on the Euclidian ball

$$\min_{\delta x \in \mathbb{R}^n} \nabla f(x_0)^{\top} \delta x$$

 $\text{s.t. } \delta \boldsymbol{x}^{\top} \delta \boldsymbol{x} = \boldsymbol{\varepsilon}^2$

• The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

- Antigradient $-\nabla f(x)$ indicates the direction of steepest descent at the point x.
- Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the function on the Euclidian ball

$$\min_{\delta x \in \mathbb{R}^n} \nabla f(x_0)^\top \delta x$$
 s.t. $\delta x^\top \delta x = \varepsilon^2$

 $\delta . \iota . \ \sigma x \ \ \sigma x = \varepsilon$

• The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$
$$x_{k+1} - x_k = -\alpha_k \nabla f(x_k)$$

♥ ೧ 0 2

- Antigradient $-\nabla f(x)$ indicates the direction of steepest descent at the point x.
- Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the function on the Euclidian ball

$$\min_{\delta x \in \mathbb{R}^n} \nabla f(x_0)^\top \delta x$$
 s.t. $\delta x^\top \delta x = \varepsilon^2$

 The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

$$x_{k+1} - x_k = -\alpha_k \nabla f(x_k)$$

$$\frac{x_{k+1} - x_k}{\alpha_k} = -\nabla f(x_k)$$

- Antigradient $-\nabla f(x)$ indicates the direction of steepest descent at the point x.
- Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the function on the Euclidian ball

$$\min_{\delta x \in \mathbb{R}^n} \nabla f(x_0)^\top \delta x$$
 s.t. $\delta x^\top \delta x = \varepsilon^2$

• The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$
$$x_{k+1} - x_k = -\alpha_k \nabla f(x_k)$$
$$\frac{x_{k+1} - x_k}{\alpha_k} = -\nabla f(x_k)$$

• The gradient flow is essentially the limit of gradient descent when the step-size α_k tends to zero

- Antigradient $-\nabla f(x)$ indicates the direction of steepest descent at the point x.
- Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the function on the Euclidian ball

$$\min_{\delta x \in \mathbb{R}^n} \nabla f(x_0)^\top \delta x$$
 s.t. $\delta x^\top \delta x = \varepsilon^2$

• The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$
$$x_{k+1} - x_k = -\alpha_k \nabla f(x_k)$$
$$\frac{x_{k+1} - x_k}{\alpha_k} = -\nabla f(x_k)$$

• The gradient flow is essentially the limit of gradient descent when the step-size α_k tends to zero

- Antigradient $-\nabla f(x)$ indicates the direction of steepest descent at the point x.
- Note also, that the antigradient solves the problem of minimization the Taylor linear approximation of the function on the Euclidian ball

$$\min_{\delta x \in \mathbb{R}^n} \nabla f(x_0)^\top \delta x$$

• The gradient descent is the most classical iterative algorithm to minimize differentiable functions. It comes with a plenty of forms: steepest, stochastic, pre-conditioned, conjugate, proximal, projected, accelerated, etc.

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$
$$x_{k+1} - x_k = -\alpha_k \nabla f(x_k)$$
$$\frac{x_{k+1} - x_k}{\alpha_k} = -\nabla f(x_k)$$

ullet The gradient flow is essentially the limit of gradient descent when the step-size $lpha_k$ tends to zero

!

$$\frac{dx}{dt} = -\nabla f(x)$$

Gradient Flow

 Simplified analyses. The gradient flow has no step-size, so all the traditional annoying issues regarding the choice of step-size, with line-search, constant, decreasing or with a weird schedule are unnecessary.

Figure 1: ■Source

- Simplified analyses. The gradient flow has no step-size, so all the traditional annoying issues regarding the choice of step-size, with line-search, constant, decreasing or with a weird schedule are unnecessary.
- Analytical solution in some cases. For example, one can consider quadratic problem with linear gradient, which will form a linear ODE with known exact formula.

- Simplified analyses. The gradient flow has no step-size, so all the traditional annoying issues regarding the choice of step-size, with line-search, constant, decreasing or with a weird schedule are unnecessary.
- Analytical solution in some cases. For example, one can consider quadratic problem with linear gradient, which will form a linear ODE with known exact formula.
- Different discretization leads to different methods. We will see, that the continuous-time object is pretty rich in terms of the variety of produced algorithms. Therefore, it is interesting to study optimization from this perspective.

Figure 1: ■Source

Consider Gradient Flow ODE:

$$\frac{dx}{dt} = -\nabla f(x)$$

Explicit Euler discretization:

 $\xrightarrow{x,y,z}$ Gradient Flow

Consider Gradient Flow ODE:

$$\frac{dx}{dt} = -\nabla f(x)$$

Explicit Euler discretization:

$$\frac{x_{k+1} - x_k}{\alpha} = -\nabla f(x_k)$$

Leads to ordinary Gradient Descent method

Consider Gradient Flow ODE:

Explicit Euler discretization:

$$\frac{x_{k+1} - x_k}{\alpha} = -\nabla f(x_k)$$

Leads to ordinary Gradient Descent method

$$\frac{dx}{dt} = -\nabla f(x)$$

$$\frac{x_{k+1} - x_k}{\alpha} = -\nabla f(x_{k+1})$$

Consider Gradient Flow ODE:

Explicit Euler discretization:

$$\frac{x_{k+1} - x_k}{\alpha} = -\nabla f(x_k)$$

Leads to ordinary Gradient Descent method

$$\frac{dx}{dt} = -\nabla f(x)$$

$$\frac{x_{k+1} - x_k}{\alpha} = -\nabla f(x_{k+1})$$
$$\frac{x_{k+1} - x_k}{\alpha} + \nabla f(x_{k+1}) = 0$$

Consider Gradient Flow ODE:

Explicit Euler discretization:

$$\frac{x_{k+1} - x_k}{\alpha} = -\nabla f(x_k)$$

Leads to ordinary Gradient Descent method

$$\frac{dx}{dt} = -\nabla f(x)$$

$$\frac{x_{k+1} - x_k}{\alpha} = -\nabla f(x_{k+1})$$
$$\frac{x_{k+1} - x_k}{\alpha} + \nabla f(x_{k+1}) = 0$$
$$\frac{x - x_k}{\alpha} + \nabla f(x) \Big|_{x = x_{k+1}} = 0$$

Consider Gradient Flow ODE:

Explicit Euler discretization:

$$\frac{x_{k+1} - x_k}{\alpha} = -\nabla f(x_k)$$

Leads to ordinary Gradient Descent method

$$\frac{dx}{dt} = -\nabla f(x)$$

$$\frac{x_{k+1} - x_k}{\alpha} = -\nabla f(x_{k+1})$$

$$\frac{x_{k+1} - x_k}{\alpha} + \nabla f(x_{k+1}) = 0$$

$$\frac{x - x_k}{\alpha} + \nabla f(x) \Big|_{x = x_{k+1}} = 0$$

$$\nabla \left[\frac{1}{2\pi} ||x - x_k||_2^2 + f(x) \right] = 0$$

$$\nabla \left[\frac{1}{2\alpha} \|x - x_k\|_2^2 + f(x) \right] \Big|_{x = x_{k+1}} = 0$$

Consider Gradient Flow ODE:

Explicit Euler discretization:

$$\frac{x_{k+1} - x_k}{\alpha} = -\nabla f(x_k)$$

Leads to ordinary Gradient Descent method

$$\frac{dx}{dt} = -\nabla f(x)$$

$$\begin{split} \frac{x_{k+1} - x_k}{\alpha} &= -\nabla f(x_{k+1}) \\ \frac{x_{k+1} - x_k}{\alpha} &+ \nabla f(x_{k+1}) = 0 \\ \frac{x - x_k}{\alpha} &+ \nabla f(x) \Big|_{x = x_{k+1}} &= 0 \\ \nabla \left[\frac{1}{2\alpha} \|x - x_k\|_2^2 + f(x) \right] \Big|_{x = x_{k+1}} &= 0 \\ x_{k+1} &= \arg\min_{x \in \mathbb{R}^n} \left[f(x) + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right] \end{split}$$

Consider Gradient Flow ODE:

Explicit Euler discretization:

$$\frac{x_{k+1} - x_k}{\alpha} = -\nabla f(x_k)$$

Leads to ordinary Gradient Descent method

$$\frac{dx}{dt} = -\nabla f(x)$$

$$\begin{split} \frac{x_{k+1} - x_k}{\alpha} &= -\nabla f(x_{k+1}) \\ \frac{x_{k+1} - x_k}{\alpha} &+ \nabla f(x_{k+1}) = 0 \\ \frac{x - x_k}{\alpha} &+ \nabla f(x) \Big|_{x = x_{k+1}} &= 0 \\ \nabla \left[\frac{1}{2\alpha} \|x - x_k\|_2^2 + f(x) \right] \Big|_{x = x_{k+1}} &= 0 \\ x_{k+1} &= \arg\min_{x \in \mathbb{R}^n} \left[f(x) + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right] \end{split}$$

Consider Gradient Flow ODE:

Explicit Euler discretization:

$$\frac{x_{k+1} - x_k}{\alpha} = -\nabla f(x_k)$$

Leads to ordinary Gradient Descent method

$$\frac{dx}{dt} = -\nabla f(x)$$

Implicit Euler discretization:

$$\frac{x_{k+1} - x_k}{\alpha} = -\nabla f(x_{k+1})$$

$$\frac{x_{k+1} - x_k}{\alpha} + \nabla f(x_{k+1}) = 0$$

$$\frac{x - x_k}{\alpha} + \nabla f(x) \Big|_{x = x_{k+1}} = 0$$

$$\nabla \left[\frac{1}{2\alpha} \|x - x_k\|_2^2 + f(x) \right] \Big|_{x = x_{k+1}} = 0$$

$$x_{k+1} = \arg\min_{x \in \mathbb{R}^n} \left[f(x) + \frac{1}{2\alpha} ||x - x_k||_2^2 \right]$$

Proximal operator

$$\operatorname{prox}_{\alpha f}(x_k) = \arg\min_{x \in \mathbb{R}^n} \left[\alpha f(x) + \frac{1}{2} \|x - x_k\|_2^2 \right]$$

1. Simplest proof of monotonic decrease of GF:

$$\frac{d}{dt}f(x(t)) = \nabla f(x(t))^{\top} \frac{dx(t)}{dt} = -\|\nabla f(x(t))\|_{2}^{2} \leqslant 0.$$

If f is bounded from below, then f(x(t)) will always converge as a non-increasing function which is bounded from below. It is straightforward, that GF converges to the stationary point, where $\nabla f = 0$ (potentially including minima, maxima and saddle points).

1. Simplest proof of monotonic decrease of GF:

$$\frac{d}{dt}f(x(t)) = \nabla f(x(t))^{\top} \frac{dx(t)}{dt} = -\|\nabla f(x(t))\|_{2}^{2} \leqslant 0.$$

If f is bounded from below, then f(x(t)) will always converge as a non-increasing function which is bounded from below. It is straightforward, that GF converges to the stationary point, where $\nabla f=0$ (potentially including minima, maxima and saddle points).

2. If we additionaly have convexity:

$$f(x) \ge f(y) + \nabla f(y)^{\top} (x - y)$$
 \Rightarrow $\nabla f(y)^{\top} (x - y) \le f(x) - f(y)$

1. Simplest proof of monotonic decrease of GF:

$$\frac{d}{dt}f(x(t)) = \nabla f(x(t))^{\top} \frac{dx(t)}{dt} = -\|\nabla f(x(t))\|_{2}^{2} \leqslant 0.$$

If f is bounded from below, then f(x(t)) will always converge as a non-increasing function which is bounded from below. It is straightforward, that GF converges to the stationary point, where $\nabla f=0$ (potentially including minima, maxima and saddle points).

2. If we additionaly have convexity:

$$f(x) \geqslant f(y) + \nabla f(y)^{\top} (x - y)$$
 \Rightarrow $\nabla f(y)^{\top} (x - y) \leqslant f(x) - f(y)$

3. Finally, using convexity:

$$\frac{d}{dt} [\|x(t) - x^*\|^2] = -2(x(t) - x^*)^{\mathsf{T}} \nabla f(x(t)) \leqslant -2 [f(x(t)) - f^*]$$

⊕ O Ø

1. Simplest proof of monotonic decrease of GF:

$$\frac{d}{dt}f(x(t)) = \nabla f(x(t))^{\top} \frac{dx(t)}{dt} = -\|\nabla f(x(t))\|_{2}^{2} \leqslant 0.$$

If f is bounded from below, then f(x(t)) will always converge as a non-increasing function which is bounded from below. It is straightforward, that GF converges to the stationary point, where $\nabla f=0$ (potentially including minima, maxima and saddle points).

2. If we additionaly have convexity:

$$f(x) \geqslant f(y) + \nabla f(y)^{\top} (x - y)$$
 \Rightarrow $\nabla f(y)^{\top} (x - y) \leqslant f(x) - f(y)$

3. Finally, using convexity:

$$\frac{d}{dt} [\|x(t) - x^*\|^2] = -2(x(t) - x^*)^{\top} \nabla f(x(t)) \le -2 [f(x(t)) - f^*]$$

4. Leading to, by integrating from 0 to t, and using the monotonicity of f(x(t)):

$$f(x(t)) - f^* \leqslant \frac{1}{t} \int_0^t \left[f(x(u)) - f^* \right] du \leqslant \frac{1}{2t} ||x(0) - x^*||^2 - \frac{1}{2t} ||x(t) - x^*||^2 \leqslant \frac{1}{2t} ||x(0) - x^*||^2.$$

 $J \to \min_{x,y,z}$ Gradient Flow

⊕ ೧ ⊘

1. Simplest proof of monotonic decrease of GF:

$$\frac{d}{dt}f(x(t)) = \nabla f(x(t))^{\top} \frac{dx(t)}{dt} = -\|\nabla f(x(t))\|_{2}^{2} \leqslant 0.$$

If f is bounded from below, then f(x(t)) will always converge as a non-increasing function which is bounded from below. It is straightforward, that GF converges to the stationary point, where $\nabla f=0$ (potentially including minima, maxima and saddle points).

2. If we additionaly have convexity:

$$f(x) \geqslant f(y) + \nabla f(y)^{\top} (x - y)$$
 \Rightarrow $\nabla f(y)^{\top} (x - y) \leqslant f(x) - f(y)$

3. Finally, using convexity:

$$\frac{d}{dt} [\|x(t) - x^*\|^2] = -2(x(t) - x^*)^{\top} \nabla f(x(t)) \le -2 [f(x(t)) - f^*]$$

4. Leading to, by integrating from 0 to t, and using the monotonicity of f(x(t)):

$$f(x(t)) - f^* \leqslant \frac{1}{t} \int_0^t \left[f(x(u)) - f^* \right] du \leqslant \frac{1}{2t} ||x(0) - x^*||^2 - \frac{1}{2t} ||x(t) - x^*||^2 \leqslant \frac{1}{2t} ||x(0) - x^*||^2.$$

 $J \to \min_{x,y,z}$ Gradient Flow

⊕ ೧ ⊘

1. Simplest proof of monotonic decrease of GF:

$$\frac{d}{dt}f(x(t)) = \nabla f(x(t))^{\top} \frac{dx(t)}{dt} = -\|\nabla f(x(t))\|_{2}^{2} \leqslant 0.$$

If f is bounded from below, then f(x(t)) will always converge as a non-increasing function which is bounded from below. It is straightforward, that GF converges to the stationary point, where $\nabla f=0$ (potentially including minima, maxima and saddle points).

2. If we additionaly have convexity:

$$f(x) \geqslant f(y) + \nabla f(y)^{\top} (x - y)$$
 \Rightarrow $\nabla f(y)^{\top} (x - y) \leqslant f(x) - f(y)$

3. Finally, using convexity:

$$\frac{d}{dt} [\|x(t) - x^*\|^2] = -2(x(t) - x^*)^{\top} \nabla f(x(t)) \le -2 [f(x(t)) - f^*]$$

4. Leading to, by integrating from 0 to t, and using the monotonicity of f(x(t)):

$$f(x(t)) - f^* \leqslant \frac{1}{t} \int_{-t}^{t} \left[f(x(u)) - f^* \right] du \leqslant \frac{1}{2t} \|x(0) - x^*\|^2 - \frac{1}{2t} \|x(t) - x^*\|^2 \leqslant \frac{1}{2t} \|x(0) - x^*\|^2.$$

We recover the usual rates in $\mathcal{O}\left(\frac{1}{n}\right)$, with $t = \alpha n$.

Convergence analysis. PL case.

1. The analysis is straightforward. Suppose, the function satisfies PL-condition:

$$\|\nabla f(x)\|^2 \ge 2\mu (f(x) - f^*) \quad \forall x$$

Convergence analysis. PL case.

1. The analysis is straightforward. Suppose, the function satisfies PL-condition:

$$\|\nabla f(x)\|^2 \ge 2\mu(f(x) - f^*) \quad \forall x$$

2. Then

$$\frac{d}{dt} [f(x(t)) - f(x^*)] = \nabla f(x(t))^{\top} \dot{x}(t) = -\|\nabla f(x(t))\|_2^2 \leqslant -2\mu [f(x(t)) - f^*]$$

Convergence analysis. PL case.

1. The analysis is straightforward. Suppose, the function satisfies PL-condition:

$$\|\nabla f(x)\|^2 > 2\mu(f(x) - f^*) \quad \forall x$$

2. Then

$$\frac{d}{dt} [f(x(t)) - f(x^*)] = \nabla f(x(t))^{\top} \dot{x}(t) = -\|\nabla f(x(t))\|_2^2 \leqslant -2\mu [f(x(t)) - f^*]$$

3. Finally,

$$f(x(t)) - f^* \le \exp(-2\mu t) [f(x(0)) - f^*],$$

Accelerated Gradient Flow

Remember one of the forms of Nesterov Accelerated Gradient

$$x_{k+1} = y_k - \epsilon \nabla f(y_k)$$

$$y_k = x_k + \frac{k-1}{k+2} (x_k - x_{k-1})$$

The corresponding ¹ ODE is:

$$\ddot{X}_t + \frac{3}{t}\dot{X}_t + \nabla f(X_t) = 0$$

¹A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights, Weijie Su, Stephen Boyd, Emmanuel J.

Candes

How to model stochasticity in the continuous process? A simple idea would be: $\frac{dx}{dt} = -\nabla f(x) + \xi$ with variety of options for ξ , for example $\xi \sim \mathcal{N}(0, \sigma^2) \sim \sigma^2 \mathcal{N}(0, 1)$.

Therefore, one can write down Stochastic Differential Equation (SDE) for analysis:

$$dx(t) = -\nabla f(x(t)) dt + \sigma dW(t)$$

Here dW(t) is called Wiener process. It is interesting, that one could analyze the convergence of the stochastic process above in two possible ways:

• Watching the trajectories of x(t)

How to model stochasticity in the continuous process? A simple idea would be: $\frac{dx}{dt} = -\nabla f(x) + \xi$ with variety of options for ξ , for example $\xi \sim \mathcal{N}(0, \sigma^2) \sim \sigma^2 \mathcal{N}(0, 1)$.

Therefore, one can write down Stochastic Differential Equation (SDE) for analysis:

$$dx(t) = -\nabla f(x(t)) dt + \sigma dW(t)$$

Here dW(t) is called Wiener process. It is interesting, that one could analyze the convergence of the stochastic process above in two possible ways:

- Watching the trajectories of x(t)
- Watching the evolution of distribution density function of $\rho(t)$

How to model stochasticity in the continuous process? A simple idea would be: $\frac{dx}{dt} = -\nabla f(x) + \xi$ with variety of options for ξ , for example $\xi \sim \mathcal{N}(0, \sigma^2) \sim \sigma^2 \mathcal{N}(0, 1)$.

Therefore, one can write down Stochastic Differential Equation (SDE) for analysis:

$$dx(t) = -\nabla f(x(t)) dt + \sigma dW(t)$$

Here dW(t) is called Wiener process. It is interesting, that one could analyze the convergence of the stochastic process above in two possible ways:

- Watching the trajectories of x(t)
- Watching the evolution of distribution density function of $\rho(t)$

How to model stochasticity in the continuous process? A simple idea would be: $\frac{dx}{dt} = -\nabla f(x) + \xi$ with variety of options for ξ , for example $\xi \sim \mathcal{N}(0, \sigma^2) \sim \sigma^2 \mathcal{N}(0, 1)$.

Therefore, one can write down Stochastic Differential Equation (SDE) for analysis:

$$dx(t) = -\nabla f(x(t)) dt + \sigma dW(t)$$

Here dW(t) is called Wiener process. It is interesting, that one could analyze the convergence of the stochastic process above in two possible ways:

- Watching the trajectories of x(t)
- Watching the evolution of distribution density function of $\rho(t)$
- Fokker-Planck equation

$$\frac{\partial \rho}{\partial t} = \nabla \left(\rho(t) \nabla f \right) + \frac{\sigma^2}{2} \Delta \rho(t)$$

• Francis Bach blog

♥ 0 ∅

- Francis Bach blog
- Off convex Path blog

- Francis Bach blog
- Off convex Path blog
- Stochastic gradient algorithms from ODE splitting perspective

- Francis Bach blog
- Off convex Path blog
- Stochastic gradient algorithms from ODE splitting perspective
- NAG-GS: Semi-Implicit, Accelerated and Robust Stochastic Optimizer

- Francis Bach blog
- Off convex Path blog

Stochastic Gradient Flow

- Stochastic gradient algorithms from ODE splitting perspective
- NAG-GS: Semi-Implicit, Accelerated and Robust Stochastic Optimizer
- Introduction to Gradient Flows in the 2-Wasserstein Space

 $f \to \min_{x,y,z}$

େ ପ୍ର