MATH410: Advanced Calculus I

James Zhang*

 $January\ 26,\ 2024$

These are my notes for UMD's MATH410: Advanced Calculus I. These notes are taken live in class ("live- T_EX "-ed). This course is taught by Lecturer Anna Szczekutowicz.

Contents

1	Set Theory Preliminaries	2
2	The Completeness Axiom	3

^{*}Email: jzhang72@terpmail.umd.edu

§1 Set Theory Preliminaries

This section covers the foundation of analysis, which is just the set of real numbers. It covers basic definitions such as \in , \notin , \emptyset , \subseteq , =, \cap , \cup , \setminus , so for example

Definition 1.1. Intersection of A and B is $C = A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

Some quantifiers include $\forall, \exists, \exists!$ and some number sets include $\mathbb{R}, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{Q}^C$.

Definition 1.2. The real numbers \mathbb{R} satisfies 3 groups of axioms: Refer to the notes on Canvas for the Consequences of all of the following axioms.

- 1. Field (+, *)
 - Commutativity of Addition
 - Associativity
 - Additive Identity
 - Additive Inverse
 - Commutativty of Multiplication
 - Associativity of Multiplication
 - Multiplicative Identity
 - Multiplicative Inverse
 - Distributive Property

The set of integers \mathbb{Z} is not a field because it fails under the multiplicative inverse.

2. Positivity

There is a subset of \mathbb{R} denoted by \mathcal{P} , called the set of positive numbers for which:

- If x and y are positive, then x + y and xy are both positive.
- For each $x \in \mathbb{R}$, eaxctly one of the following 3 alternatives is true: $x \in \mathcal{P}$, $-x \in \mathcal{P}$, or x = 0

3. Completeness

Definition 1.3. Absolute value is defined as

$$|x| = \begin{cases} x \text{ if } x \ge 0\\ -x \text{ if } x < 0 \end{cases}$$

Definition 1.4. Triangle Inequality is $\forall a, b \in \mathbb{R}, |a+b| \leq |a| + |b|$

Proof. Assume without loss of generality, $a \geq b$. We will proceed with proof by cases.

Case 1: Assume $a \ge b \ge 0$. Then |a+b| = a+b by the definition of absolute value since $a \ge 0, b \ge 0 \implies |a+b| = a+b = |a| + |b|$.

Case 2: Now assume $a \ge 0 \ge b$ and $a + b \ge 0$. Note since $b \le 0$ then $b \le |b|$. Then

$$|a + b| = a + b \le |a| + |b|$$

by the definition of absolute value and our above note.

Case 3: Now consider $a \ge 0 \ge b$ and a + b < 0. So

$$|a+b| = -(a+b) = -a - b \le |a| + |b|$$

Case 4: Now consider $0 \ge a \ge b$ so a + b < 0. Therefore,

$$|a+b| = -(a+b) = -a + -b = |a| + |b|$$

§2 The Completeness Axiom

Definition 2.1. A subset S of \mathbb{R} is said to be **bounded above** if $\exists r \in \mathbb{R}$ such that $s \leq r \ \forall \ s \in S$

The definition of **bounded below** is similar.

Definition 2.2. The least upper bound, if it exists, is called the **supremum** of S. We denote it as the "sup" of S. Similarly, the largest lower bound is called the **infemum** and is denoted as the "inf" of S.

Definition 2.3. Let $S \subseteq R$ where $S \neq \emptyset$. If S hs a largest (smallest), the element is a max (min).

Example 2.4

Find the sup of (0,1) and prove it.

Proof. Let us prove that the sup(0,1) = 1. First, let us show that we have an upperbound. If $x \in (0,1)$, then $x \leq 1$. By definition of upperbound, 1 is an upper bound. Note that we can find many other upper bounds.

On the contrary, assume x < 1 is an upper bound. Now consider the average $\frac{1+x}{2}$.

$$\frac{x+1}{2} < \frac{1+1}{2} = 1$$

Therefore, we have showed that $0 < \frac{x+1}{2} < 1 \implies \frac{x+1}{2}(0,1)$. But, $\frac{1+x}{2} > \frac{x+x}{2} \implies \frac{1+x}{2} > x$. This is a contradiction. Since x is an upper bound, and we found $\frac{1+x}{2} \in (0,1)$ where $\frac{1+x}{2} > x$, so x is not a supremum.

Theorem 2.5

Suppose $S \in \mathbb{R}, S \neq \emptyset$ that is bounded above. Then a supremum exists. Every nonsempty subset S of \mathbb{R} that is bounded below has a lower bound.

Note 2.6. Let c be a positive number. $\exists!$

Definition 2.7. The Archimedian Property is a result of the completeness axiom. Suppose there is a small $\epsilon > 0$ and c is an arbitrary large number.

- 1. $\exists n \in \mathbb{N}$ such that c < n, which just means that you can always find a natural number than any large number
- 2. $\exists m \in \mathbb{N}$ such that $\frac{1}{m} < \epsilon$, which just means you can always find smaller rational numbers.