Learning with Massive Data Arguments Grid

CA' FOSCARI UNIVERSITY OF VENICE Department of Environmental Sciences, Informatics and Statistics

Academic Year 2022 - 2023

Student Zuliani Riccardo 875532

Contents

Ι	Lucchese Part	1
1	Introduction	2
2	Cache Awareness2.1 Cache-to-memory Coherence2.2 Matrix Multiplication2.3 Sorting & K-Funnel2.4 Multi-core Hierarchies: key challenge	3 3 4 5 6
3	Shared Memory: Threads 3.1 Performance Metrics	7
4	OpenMP & Cache	9
5	Pattern of Paralleism I 5.1 Decomposition 5.1.1 Task Dependency Graph 5.1.2 Parallelism Degree and Critical Path 5.1.3 Task Interaction Graph 5.2 Mapping 5.3 Prefix-Sum	10 11 11
6	Pattern of Parallelism II - Common Patterns 6.1 Parallelizing Quicksort 6.1.1 Sequential Version 6.1.2 Parallel Version 6.2 Odd-Even Transposition 6.3 Bitonic Sort	14 14 15
7	Large-Scale Data Processing with Map-Reduce	17
8	Vertex Centric Paradigm 8.1 Label Propagation	19 19 19
II	Bruch Part	20
9	Ranking	21

CONTENTS CONTENTS

10 Ranking Loss Function	22
11 Representation and Hypothesis Classes	23
12 Complexity of Ranking Functions	25
13 Retrieval with MIPS: Representation Learning 13.1 Sparse Representation	
14 Retrieval with MIPS: Sparse Vectors	28
15 Retrieval with MIPS: Dense Vectors	29

Part I Lucchese Part

Introduction

- The Moore's Law
- Some advantages of multicores:
 - Power
 - Design cost
 - Defect tollerance
- Sequential VS Parallel computing
 - Sequential computing
 - Parallel Computing
- Clusters
- When is Parallelism Necessary?

Cache Awareness

- Effect of memory latency
- Cache Memory
 - Definition
 - Performance improve in presence of high locality
 - * Temporal locality
 - * Spartial locality
 - Cache hit rateo
 - Other approaches for hiding memory latency
 - * Multi-threading
 - * Pre-fetching
 - * Drawbacks (Bandwidth and cache pollution)

2.1 Cache-to-memory Coherence

- After updating/writing data in cache, when to write to memory?
- Write-Through Policy definition
- Write-Back Policy definition, in case of write data not being in cache
 - Write Allocate
 - Write No Allocate
- Cache-to-cache Coherence in Symmetric Multi-Processors
 - Snooping Protocols
 - Cache controller snoop all the bus transactions
 - * Transaction relevant
 - * Actions to guarantee cache coherence
 - \cdot Update
 - \cdot Invalidate

- Update

- * Pros:
 - Multiple r/w copies are kept coherent after each write, save bandwidth
- * Con: Unnecessary waste
 - · Cache block is update but no longer read
 - · Subsequent writes by the same processor cause multiple updates

- Invalidate

- * Pro:
 - Multiple writes by the same processor do not cause any additional overhead
- * Con:
 - · An access that follows an invalidation causes a miss

- False Sharing

- * Coherent protocols works in term of cache blocks/lines rather single words/bytes
- * Blocks plays an important role in coherence protocol
 - · Small blocks the protocols are more efficient
 - · Large blocks are better for spartial locality
- We want to minimize the cache miss and maximize the cache hit
- External memory model
 - Transfer occur in blocks of size B
 - The cache has size $M \geq B$
 - With M/B entries
- Example of linear scan: $\left\lceil \frac{N}{B} + 1 \right\rceil$ memory scan

2.2 Matrix Multiplication

- Rows in row-wise
- Columns in column-wise
- Each element of matrix C involves $O(1 + \frac{N}{B})$ transfers
- Since there are N^2 elements of C the complexity is $O(N^2 \frac{N^3}{B})$
- Approach to reduce the cost
- Improved Algorithm complexity $O\left(\frac{N^2}{B} + \frac{N^3}{B \cdot \sqrt{M}}\right)$ with block matrices
- Cache Oblivious Algorithm
 - Divide-and-conquer approach

- We recursively split the matrix until at some point the matrix will fit in cache, whatever is its size
- Recursive Data Layout, st however we recursively split the matrix, at some point the data will be in consecutive memory location that can be easily loaded in cache
- Z-Order

Complexity

- Case base: three blocks fit in cache, since successive recursion step do not cause additional misses
 - * Block size $k\sqrt{M} \cdot k\sqrt{M}$ for some constant k
- Three of such blocks fill the cache with M/B misses
- Computational complexity of the block-based multiplication is $\left(\frac{N}{k\sqrt{M}}\right)^3$
- Number of misses: $\left(\frac{N}{k\sqrt{M}}\right)^3 \cdot \frac{M}{B} = O\left(\frac{N^3}{B\sqrt{M}}\right)$
- When N is small, data loading: $O\left(\frac{N^2}{B}\right)$
- Total cost: $O\left(\frac{N^2}{B} + \frac{N^3}{B \cdot \sqrt{M}}\right)$

2.3 Sorting & K-Funnel

- Merge sort
- Cache-aware solution
 - M/B-way merge
 - $-\theta\left(\frac{N}{B}\log_{\frac{M}{B}}\frac{N}{M}\right)$
- First Cache Oblivious Solution
 - 2-way merge sort
 - $-\theta\left(\frac{N}{B}\log_2\frac{N}{M}\right)$
 - Can we rise the vase of the logarithm to M/M
- Cache Oblivious Sort: K-Funnel
 - Definition
 - Description
 - $-\theta\left(\frac{N}{B}\log_{\frac{M}{B}}\frac{N}{M}\right)$ like cache-aware solution

2.4 Multi-core Hierarchies: key challenge

- ullet Good performance for any $M\ \&\ B$ on 2 levels **does not** imply *good performance* at all levels of hierarchy
- Reason: cache is not fully shared, what is **good** for cpu_1 is often **bad** for cpu_2 and cpu_3
- Scheduling of parallel thread has a large impact on cache performance

Shared Memory: Threads

3.1 Performance Metrics

- two metrics:
 - Parallel run time
 - Cost
- When a parallel algorithm is cost optimal

• SpeedUp

- Formula
- Typical success
- Linear speedup
- Super linear speedup
- Using more thread require more overhead

• Efficiency

- Measure of resource usage
- fraction of time the processors are fully used to execute a fraction 1/p of the best sequential algorithm
- Formula

• Amdahl's Law (SpeedUp)

- Parallel execution time T_p cannot be arbitrary reduced by increasing p
- Suppose a fraction f cannot be executed in parallel
- Formula
- The sequential fraction f is an upper bound on the speedup S

• Gustafson's Law (Scalability)

 We can't use a large number of processors in order to process large amount of data

3.1. PERFORMANCE METRICSHAPTER 3. SHARED MEMORY: THREADS

- Sequential part c is constant wrt n
- -T(n,p) the execution time of the parallelizable part over p processors, $perfectly\ parallelizable$
- Formula of the scaled speedup
- If T(n,1) increases monotonically with n and the sequential part c is constant, we can achieve linear scaled speedup

• Scalability

- Ability to increase the speedup proportionally to the processors number
- Keep efficiency E = s/p constant when increasing both the processors number and the problem size, such also are said *scalable*

OpenMP & Cache

- Comparison between matrix multiplication algorithm
 - 1. Strategy: n^2 do not fit in cache
 - 2. Strategy:
 - Pro: cache is better
 - Cons:
 - * Threads are created and destroied many times
 - * Race condition, reading and writing the same memory location
 - $* n + \#t \cdot n + n$
 - 3. Strategy:
 - Pro: cache, 1 row and 1 col fit in cache
 - Con: thread, inner loop takes n^2 times overhead due to thread managment
 - reduction(+:cij), provate so non race condition
 - First strategy besone
 - Second strategy has huge variability since we do not know where the threads will be putted, thus there is the possibility the cache has heavy load already
 - Third strategy worst one
 - 4. Strategy: Swap the initial two inner loop, reduce the number of creation and elimination of threads
 - 5. Strategy:
 - num_thread(num_thread)
 - nowait, when we finish we move forward the next row
 - barrier, deciding how many rows are processed each time
 - best strategy overall

Pattern of Paralleism I

- Need to design something quite specific for the problem
 - Decomposition technique, generate enough sub-problem to be executed in parallel
 - Mapping, how is going to execute want maximizing the load balancing

5.1 Decomposition

- Data-Input Decomposition
- Data-Output Decomposition
- Exploratory
 - Find the best solution, exploring such space
 - Exploratory decomposition, solution space partitioned and each partition is explored independently
 - Only one task will find the solution the others become useless
 - * Look for a valid solution, tasks are forced to end
 - * Look for the best solution, subtree are associated with an expected of the solution, most promising task are explored first
 - * Task works in parallel, exploration order could be different

5.1.1 Task Dependency Graph

- Model decomposition and they control dependencies
- Not unique for a given problem
 - Node = Task
 - Edges = Task/Data Dependencies
 - Node Labels = Task Computational Cost

5.1.2 Parallelism Degree and Critical Path

- Parallelism Degree: number of tasks that can be executed in parallel
- Direct Path in a TDG: sequence of tasks in the TDG liked by a dependency relation (not in parallel)
- Critical Path: longest direct path in the TDG (bottleneck, minimum execution time)
- Average Parallelism Degree, work/length of the critical path

5.1.3 Task Interaction Graph

- Data Dependencies task exchange data with others in a decomposition
 - Node = Task
 - Edges = Task/Data Dependencies
 - Node Labels = Task Computational Cost
 - Edges Labels = Amount of data exchanged

5.2 Mapping

- TDG: loading balance and minimizing waiting time
- TIG: minimizes interaction/communication between tasks
- Mapping Guidelines
 - Independent task to different processors
 - Task in Critical Path assigned as early as possible
 - Minimizing communication cost by scheduling dense subgraphs of the TIG to the same processor
 - Conflict: tasks to the same processors reduce the communication cost but does not produce any performance improvement

5.3 Prefix-Sum

- Algorithm
- Naive way to parallelize
- Analysis of the speedup
- Exclusive Prefix Sum
 - UpSweep Pass
 - * Complexity
 - * Each node holds the sum of its children

- DownSweep Pass
 - * Every Node should have the sum of all the leaves preceding it (before it left most child)
 - * Root = 0
 - * Left child = Parent
 - * Right child = Parent + UpSweep value of its sibling
- $O(\log N)$ Steps and O(N) summations
- Large parallelism degree cna be exploited

Pattern of Parallelism II - Common Patterns

• Pipelines

- Special kind of task-parallelism
- The computation is divided into stages that are executed sequentially
- Asymptotically a pipeline achieves a speedup equal to the number of stages

• Single Program Multiple Data Embarrassingly Parallel

- Problem that can be solved with a large set of complexity independent sub-tasks (data-parallel)

• Task Pool

- Task List is stored in a shared data structures
- Fixed number of threads
- Each one pick a task and execute it, thus synchronization
- A thread can generate a new task

• Dynamic Task Creation

- Each task can dynamically create new tasks
- Useful for
 - * Improve parallelism degree
 - * Split a long task into smaller ones
 - * Adapt to non uniform resources
- A task queue has to be shared among a pool of threads, master-worker perform centralized load balancing
 - * Remove centralization and favour data exchange among neighbors
 - * Push-Sender Initialized worker that generates a new task sends it to an other worker
 - * Pull-Receiver Initialized when a worker is idle, it asks to other worker for a job to execute (work stealing)

- Partner Selection
 - * Random
 - * Global Round Robin (GRR)
 - · Global variable points to the next worker
 - · A worker that needs a partner reads and increments the global variable
 - · Implement a GRR
 - * Local Round Robin (LRR)
 - · Every processor keeps a private pointer to the next available worker
 - · No overhead due to sharing a global variable
 - · Approximate a GRR

6.1 Parallelizing Quicksort

6.1.1 Sequential Version

- Divide-and-conquer, sort a sequence by recursively dividing it into smaller subsequences
- Divide: a sequence is partitioned into two nonempty subsequences such that each element of the first subsequence is smaller than or equal to each element of the second subsequence
- Conquer: subsequences are sorted by recursively applying quicksort
- \bullet This is accomplished by selecting the pivot and using this element to partition the sequence into two parts one with elements less than or equal to x and the other with elements greater than the pivot

• Issues:

- Insufficient parallelism degree
- Load imbalance
 - * Sub-arrays depends on the pivot selection
 - * Their length varies and it is difficult to control
 - * Different length lead to different workloads and imbalance
 - * Wors case, one task get N elements

6.1.2 Parallel Version

- Assign sub-arrays to processors
- Pick a pivot
- Local arrangement we divide each sub-arrays in a smaller and a greater part respect the pivot

- Global arrangement merge the the left and right part of each sub-arrays in two bigger sub-arrays
- Recursion of the two new sub-arrays until each process can use a sequential algorithm to sort its sub-array
- Note
 - Higher parallelism degree
 - Load balance is still sensitive to pivot selection

6.2 Odd-Even Transposition

- Based on the bubble sort, which compares every 2 consecutive numbers in the array and swap them if first is greater than the second to get an ascending order array
- Repeat n/2 times:
 - Compare-exchange odd elements with their immediate neighbour
 - Compare-exchange even elements with their immediate neighbour
- Sequential: $O(n^2)$
- Parallel cost when p = n/2: $O(n^2)$
- Complexity of sorting not optimal: $O(n \log n)$
- Generalized assign batches of n/p elements to each processor
- Local sort on n/p elements
- Algorithm across batches with p phases
- Total cost
- $p = O(\log n)$ parallel is cost optimal $O(n \log n)$
- Drawback: increasing p need to increase exponentially n to have scalability

6.3 Bitonic Sort

- Bitonic Sequence
 - $-x_1,...,x_j$ is monotonically increasing
 - $-x_{j+1},...,x_n$ is monotonically decreasing
- Bitonic Split
 - Comparator [i:j]
 - n/2 comparator of the kind [i:i+n/2] for $1 \le i \le n/2$ to a bitonic sequence

- proof

• Bitonic Merge

- Recursive bitonic split until sequence is sorted in increasing order
- $-\log n$ stages, each one perform n/2 compare/swap
- complexity and parallel time

• Bitonic Sort for non-Bitonic Sequence

- Ascendingly & Descendingly by recursively invoking bitonic sort
- $-\log N$ bitonic merge phases
- Sequential complexity
- Parallel Complexity (not optimal)
- Can be parallelized very easily, it exploit a large parallelism degree

Large-Scale Data Processing with Map-Reduce

- Everything is build o top key value pairs
 - $map(k_1, v_1) \rightarrow list(k_2, v_2)$
 - $reduce(k_2, list(v_2), \rightarrow list(k_3, v_3))$
- All in parallel we have a set of mappers and a set of reducers
 - $map(k_1, v_1) \rightarrow list(k_2, v_2)$
 - shuffle
 - $reduce(k_2, list(v_2), \rightarrow list(k_3, v_3))$

• Coordination: master data structures

- task status: idle, in-progress, completed
- Idle get scheduled as workers become available
- When a map task is completed, it send the master the location and sizes of its R intermediate files, one for each reducer
- Master pushes this info to reducers
- Master ping workers periodically to detect failures

• Failures

- Map Worker Failures
 - * Map task completed or in progress are reset to idle
 - * Reduce workers are notified when task is rescheduled on another worker
- Reduce Worker Failures
 - * Only in progress tasks are reset to idle
 - * A different reducer may take the idle task over
- Master Failure
 - * Map Reduce task is aborted and client is notified

• How many Map and Reduce jobs?

- Make M and R larger than the number of nodes in the cluster
- #Mappers is determined by the #input split
- Many mappers/reducers improve the load balance and speed recovery but increase overhead management
- $-R \leq M$
 - * System has a maximum capacity of parallel reducers, executed in waves
 - * Shuffling of the first wave is done in parallel by mappers
 - * Shuffling of other waves done later

• Combiners

- Map tasks on the same node will produce many pairs with the same key
- We can pre-aggregate information after mapper
- $combine(k_2, list(v_2)) \rightarrow list(k_3, v_3)$

• Partition Function

- Inputs are created by continuous split of the input
- For reducer, intermediate(k,v) pairs with the same key end up at the same reducer
- Hash default partitioning function

• Is Map Reduce so good?

- Map reduce is not for performance
 - * Mapper writes to disk, huge overhead
 - * Shuffle bottleneck
- Little coding time
 - * Override two functions
 - * Not everything can be implemented in terms of map reduce
- Fault tolerance

Vertex Centric Paradigm

- Each node knows about its neighbours (graph structure may change)
- Each node may hold some additional custom info
- Pros:
 - Easy to design
 - Large parallelism
 - Can be implemented over map reduce
- Con: local view may lead to sub-optimal results

8.1 Label Propagation

- (X, C_{min}) , meaning that X belongs to the connected component with id C_{min} , initially X belongs only to itself
- Each node knows its neighbours
- Iterative algorithm
- Algorithm
- O(d) with d is the diameter

8.2 Hash-To-Min

- List of (X, C), meaning that X knows about nodes in the set C, initially X knows C=X plus its neighbours
- Algorithm
- $O(\log d)$ with d is the diameter

Part II Bruch Part

Ranking

• Ranking Dataset

- Explicit Feedback: human assessors are presented with a query and a ranked list, and are asked to grade each document with respect to the query, challenge
- Implicit Feedback: as user interact with a ranking system, collect signals that are indicative of relevance, challenge

• Ranking Metrics

- Ranking as a classification or regression, problem: we do not care on label value, we care only if a document is relevant or not
- Rank correlation (kendall's τ), pairwise classification if the documents are correctly ordered, problem: the bottom and the upper part are equally weighted
- Reciprocal rank at K, position of the first relevant document over the top k position
- **Precision at rank K**, fraction of documents in the top -k set having $y_i > 0$
- Average Precision at rank K, gain (tells us if it is a good document) and discount (intuitively it is the probability of been visited)

• Learning to Rank / Ml framework

- Input space
- Output space
- Hypothesis space
- Loss function

• Learning to Rank proprieties

- Feature based
- Discriminative training

Ranking Loss Function

• Point Wise Losses

- 1. Input space: feature vector of each single document
- 2. Output space: relevance of each single document
- 3. Hypothesis space: feature vector as input and predict the relevance degree (document)
- 4. Loss function: measure the accurate prediction of the ground truth
- Ranking as ordinal regression
- Ranking as binary classification, sigmoid

• Pair Wise Losses

- 1. Input space: pair of documents as feature vectors
- 2. Output space: pairwise preferences between each doc pair
- 3. Hypothesis space: bivariate functions, pair of docs as input and output the relative order
- 4. Loss function: measure the inconsistency between the obtained order and the ground truth
- Ranking as preference learning: ranknet, ranking sym
- From ranknet to lambda-rank

• List Wise Losses

- 1. Input space: group of documents associated with the query
- 2. Output space: relevance degree of all the documents associated to the query, ranked list of all the documents
- 3. Hypothesis space: Multivariate functions h, operate on a group of docs and predict their relevance
- 4. Loss function: can we use greatient descent?
- Listnet

• NDCG Consistency

Representation and Hypothesis Classes

• Gradient Boosting Decision Trees

- Weak learner
- We can not use gradient descend in a linear function, not differentiable
- So regression, with loss MSE

• Neural Network and Pre-Trained Transformer

- Representing word as vectors:
 - * Skip-grap
 - * Continuous Bag of words
- Learning word embedding: word2vec
- Context Embedding
 - * Bert (Bidirectional Encoder Representation for Transformers)
 - · Tokenization
 - · Input Encoding, wordpiece
 - · Model Architecture, deep bidirectional transformer: self-attention and feed-forward
 - · Masked Language Model, predict missing word by random masking
 - · Next Sentence Prediction: sentence consecutively or not
 - · Pre-train and fine tuning
 - * MonoBert
 - · Training identical as the Bert
 - · Data fro training and fine tuning are specific tot he target language
 - * DuoBert
 - · Multilingual corpus
 - · Language identification
 - · Tokenization and input encoding

- \cdot Multilingual model architecture
- \cdot Multilingual MLM and NSP
- \cdot Pretrained and fine tuning

Complexity of Ranking Functions

- Knowledge Distillation: given a large model find a smaller more efficient model that is just as effective
 - Pruning nodes in trees
 - Discarding Redundant Tree in Forest: n trees, impact score, discard tree with lowest impact score, repeat until reach p% is removed
 - Learning a NN from a tree: lambda-mart
- Early Exit Algorithm: perform approximate inference with partial evaluation instead
 - Placing exit points in decision tree: decide to discard a doc at an exit point given a score/rank threshold
 - Placing exit point in layed NN: cascade transformer
- Ranking cascade: apply mode complex models to progressively smaller set of documents
 - Less sophisticated ranking functions are cheap but less accurate
 - More sophisticated ranking functions are expensive but more accurate

Retrieval with MIPS: Representation Learning

13.1 Sparse Representation

- Term Matching
 - TF-IDF
 - -BM25
 - TF-IDF and BM25 ans inner product of vectors
 - Learning term importance
 - Learning term Frequencies
 - Vocabulary miss match problem
 - SPLADE (Supervised Progressive Learning for Approximate Dictionary based Entity extraction)
 - * Seed terms: start with an initial seed
 - * Progressive learning: expand the dictionary terms
 - * Contextual extraction: it consider the contextual info to improve extraction accuracy
 - * Supervised learning: classifier for entity extraction
 - * Approximate matching: account for variations in entity names by allowing approximate matching

- Document Expansion

- * Anticipating queries from text
- * **Doc2Query**: automatically generates queries that are representative of the information contained in the doc
 - · Pre-trained with LM: bert
 - · Fine-tune with D-Q pairs: doc and human generated query, helps the model learn to generate queries that are relevant given docs
 - · Masked language model objective: mask word in both doc and query and train the model to predict those
 - · Joint D-Q encoding: capture the relationship between the model and the desired query representation

· Generation and ranking: multiple candidates queries and ranks according to the doc

13.2 Dense Representation

- Cross-Encoders vs Bi-Encoders
- Representing words as vectors
 - Skip-gram
 - Continuous bag of words
- Sentence BERT
 - Pretrained Transformer model: BERT
 - Siamese of triplet network architecture
 - Contrastive objective for fine tuning
 - Sentence Embedding
 - Semantic sentence similarity
- Deep Passage Retrieval
- How to find non relevant document: ANCE

Retrieval with MIPS: Sparse Vectors

- The Inverted Index
 - TAAT-Retrieval
 - DAAT-Retrieval
- Dynamic Pruning for TAAT-Early termination
 - Upper Bound
 - Threshold
- Dynamic Pruning for DAAT
 - Assumption: non negativity and zipfian's distribution of items
 - Concepts: upperbound and threshold
 - Max Score
 - WAND

Retrieval with MIPS: Dense Vectors

- Quantization
 - Distance approximation
 - Query execution
- Product Quantization
 - Subspace quantization
 - Query execution
- IVFPQ
- Clustering methods Two Step Approximate MIPS
- Graph metods
 - Voronoi Regions
 - Delaunay Graph
 - Approximate the Delaunay Graph