Uncommon Neural Architectures for Common Data Science Problems

Samiran Roy Senior Lead Data Scientist at Envestnet | Yodlee, Masters at IIT Bombay

LinkedIn: samiranroy

Slides: http://bit.ly/NeuralPPT

Tentative outline

Philosophy (7 Mins)

Deep Learning Review (10 Mins)

Semantic Hashing (10 Mins)

Siamese Networks (10 Mins)

Multi-Modal Deep Learning (10 Mins)

Q&A (5 Mins)

Mentimeter

Data Scientist: Two Perspectives

Implements research papers

Chases state of the art benchmarks

Seeks fundamental understanding

Looks for tools and libraries

Chases buzzwords

Models are a black box

INCREASING RATE OF CHANGE

FREQUENCY OF KEY TECHNOLOGICAL DEVELOPMENTS

Job Trends from Indeed.com

- "Data Scientist"

ML Arxiv Papers per Year

We should be great at one thing

We should be great at one thing

We should be very good at all the basic things

We should be great at one thing

We should be very good at all the basic things

We should keep an eye on everything

We should be great at one thing

We should be very good at all the basic things

We should keep an eye on everything

Keeping a strong focus on the underlying mathematics

Deep Learning Review

Can a 1 hidden layer neural network represent any arbitrary function?

Deep Learning Review

Can a 1 hidden layer neural network represent any arbitrary function?

Yes! Universal Approximation Theorem

Learnability

Can a 1 hidden layer neural network *learn* any arbitrary function?

Overfitting

Deep Learning Review

Deep Learning Review

 W

 W

How do you escape local minima in higher dimensional non-convex spaces?

W

Uncommon Neural Architectures for Common Data Science Problems

Architecture Design

Setting:

Supervised, Unsupervised, Semi-Supervised, Weakly Supervised, Self-Supervised, Reinforcement Learning, Active Learning, Transfer Learning, Meta Learning, etc..

Architecture Design

Problem Statement: Unbound/ Substantial Number of Classes

Problem Statement: One Shot Learning

Problem Statement: One Shot Learning

Siamese Neural Networks - Resources

https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf

https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf

https://medium.com/mlreview/implementing-malstm-on-kaggles-quora-question-pairs-competition-8b3 1b0b16a07

https://towardsdatascience.com/image-similarity-using-triplet-loss-3744c0f67973

Siamese Networks for Intent Detection

ACH debit mcdonalds purchase samiran roy 20/08 Sand Lake Rd, Orlando, FL ACH debit MCDNLDS purchase samiran roy 20/08 Sand Lake Rd, Orlando, FL ACH debit Central Florida Pkwy mcdonalds

ACH credit mcdonalds purchase samiran roy 20/08 Sand Lake Rd, Orlando, FL ACH debit H&M purchase samiran roy 20/08 Sand Lake Rd, Orlando, FL Refund Mcdonalds samiran roy 20/08 Sand Lake Rd, Orlando, FL

Approximate Similarity Search

Semantic Hashing

Semantic Hashing

Dataset	LabelMe	Web
# datapoints	2× 10 ⁴	1.29×10^7
Gist vector dim.	512	384
Method	Time (s)	Time (s)
Spill tree - Gist vector	1.05	-
Brute force - Gist vector	0.38	10 0
Brute force - 30 bit binary	4.3× 10 ⁻⁴	0.146
" - 30 bit binary, M/T	2.7× 10 ⁻⁴	0.074
Brute force - 256 bit binary	1.4×10^{-3}	0.75
" - 256 bit binary, M/T	4.7× 10 ⁻⁴	0.23
Sem. Hashing - 30 bit binary	6× 10 ⁻⁶	6× 10 ⁻⁶

Autoencoders - Reconstructed Images

Autoencoders

Autoencoders

https://www.youtube.com/watch?v=shzwCxwqono

Semantic Hashing - Resources

https://www.cs.utoronto.ca/~rsalakhu/papers/semantic_final.pdf

https://www.youtube.com/watch?v=uaaqyVS9-rM&t=442s

https://arxiv.org/pdf/1708.03436.pdf

https://github.com/erikbern/ann-benchmarks

Multi-Modal Deep Learning

Flickr

dog dogs

Chocolate Lab

Labrador Retriever

Frisbee game lazy
energy chair man

Dana Point summer

hot games exercising

Word Embeddings

Vector Arithmetic

Male-Female

Verb tense

Country-Capital

Number of Parameters

Layer (type)	Output	Shape	Param #	Connected to
convolution2d_11 (Convolution2D)	(None,	32, 76L, 76L)	832	convolution2d_input_6[0][0]
activation_21 (Activation)	(None,	32, 76L, 76L)	0	convolution2d_11[0][0]
maxpooling2d_11 (MaxPooling2D)	(None,	32, 38L, 38L)	0	activation_21[0][0]
convolution2d_12 (Convolution2D)	(None,	64, 34L, 34L)	51264	maxpooling2d_11[0][0]
activation_22 (Activation)	(None,	64, 34L, 34L)	0	convolution2d_12[0][0]
maxpooling2d_12 (MaxPooling2D)	(None,	64, 17L, 17L)	0	activation_22[0][0]
dropout_11 (Dropout)	(None,	64, 17L, 17L)	0	maxpooling2d_12[0][0]
flatten_6 (Flatten)	(None,	18496)	0	dropout_11[0][0]
dense_11 (Dense)	(None,	100)	1849700	flatten_6[0][0]
activation_23 (Activation)	(None,	100)	0	dense_11[0][0]
dropout_12 (Dropout)	(None,	100)	0	activation_23[0][0]
dense_12 (Dense)	(None,	2)	202	dropout_12[0][0]
activation_24 (Activation)	(None,	2)	0	dense_12[0][0]

Total params: 1901998

Flickr tagging: generate tags given images

Given

Generated

Given

Generated

dog, cat, pet, kitten, puppy, ginger, tongue, kitty, dogs, furry

insect, butterfly, insects, bug, butterflies, lepidoptera

sea, france, boat, mer, beach, river, bretagne, plage, brittany

graffiti, streetart, stencil, sticker, urbanart, graff, sanfrancisco

portrait, child, kid, ritratto, kids, children, boy, cute, boys, italy

canada, nature, sunrise, ontario, fog, mist, bc, morning

Flickr tagging: find images given tags

© MIT 6.S191: Introduction to Deep Learning, introtodeeplearning.com

Flickr tagging: multimodal arithmetic

- day + night =

-box + bowl =

Caption Generation

http://arxiv.org/abs/1411.4555 "Show and Tell: A Neural Image Caption Generator"

We were barely able to catch the breeze at the beach , and it felt as if someone stepped out of my mind . She was in love with him for the first time in months , so she had no intention of escaping . The sun had risen from the ocean , making her feel more alive than normal . She 's beautiful , but the truth is that I do n't know what to do . The sun was just starting to fade away , leaving people scattered around the Atlantic Ocean . I d seen the men in his life , who guided me at the beach once more .

Source: https://github.com/ryankiros/neural-storyteller

Multi Modal Deep Learning - Resources

https://www.youtube.com/watch?v=6QewMQT4iMM

https://arxiv.org/abs/1505.00487

https://arxiv.org/abs/1605.05396

http://soundnet.csail.mit.edu/

Thanks!

https://www.youtube.com/watch?v=cQ54GDm1eL0