2 - Sequencing Technologies

Tuesday afternoon

Bernardo J. Clavijo Richard Smith-Unna Gonzalo Garcia

A brief history of DNA sequencing

- 1953 double helix structure, Watson & Crick
- 1977 rapid DNA sequencing, Sanger
- 1977 first full (5k) genome bacteriophage Phi X
- Late 80s first production 'Sanger' sequencers
- Mid 90s DNA microarrays
- 2001 draft human genome
- 2004 first 454 pyrosequencing machine
- 2006 first Solexa/Illumina sequencer
- 2011 PacBio RS
- 2014 Nanopore

Next Generation Sequencing

Creating and Sequencing Paired Libraries

TGAC Sequencing Platforms

Illumina GAII x 1

Illumina HiSeq x 3

Illumina MiSeq x 3

Roche 454FLX x 2

PacBio RS x 1

Proton x 1

Opgen Argus x 1

Platforms compared

	METHOD	READ LENGTH	NUMBER OF READS	THROUGHPUT	RUN TIME	ACCURACY	APPROX. COST
ILLUMINA HiSeq 2500 High Output	Sequencing by synthesis	Up to 100bp PE	1.5 billion per flowcell	300 Gb	11 days	99.9%	£14,000
ILLUMINA HiSeq 2500 <i>Rapid</i>	Sequencing by synthesis	Up to 150bp P.E	300 million per flowcell	90 Gb	40hours	99.9%	£4,400
ILLUMINA MiSeq	Sequencing by synthesis	Up to 250bp P.E	15 million per flowcell	8.5 Gb	39hours	99.9%	£1,400
454	Pyrosequencing	Up to 400 bp	1 million per plate	400 Mb	10 hours	99.9%	£6,000
PACBIO Standard Run	Real time sequencing	3Kb Upper 5% >6kb	50 000 per SMRT cell	100 Mb	2x55mins	86%	£300
PACBIO Long Run	Real time sequencing	3.5kb Upper 5% >10kb	25 000 per SMRT cell	60 Mb	1 x 120mins	86%	£300
OpGen Argus	Optical Map	150kb -> 2Mb	~2 000 per Map Card	3Gb	120mins	N/A	£500-£1000

The FASTQ file

- 4 lines per read
- Stores sequence and quality

Different Data for different Information

- Illumina paired end: a good and cheap way to get the motifs
- Long mate pairs: a hint at order and distances
- PacBio:
 - Long reads: longer, not very precise, motifs
 - Circular consensus reads: long, expensive, precise motifs
- Others include:
 - Optical maps (good positional information)
 - RNA-seq
 - Fosmid ends
 - Known deletion bins / markers / ESTs

Questions?

