МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ Кафедра методов оптимального управления

Распределение ресурсов в условиях неполной информации

Курсовая работа

Журавлёв Георгий Алексеевич студента 3 курса, специальность «экономическая кибернетика»

Научный руководитель: канд. физ.-мат. наук доцент Н.М. Дмитрук

ОГЛАВЛЕНИЕ

	C	ノ
введение		٠
ГЛАВА 1 ЗАДАЧА ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ		4
1.1 Постановка задачи		4
1.2 Универсальные планы		2
1.3 Двойственные универсальные планы		,
1.4 Решение задачи		,
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ		(

ВВЕДЕНИЕ

Задача оптимального распределения ресурсов - это центральная для экономики задача, которая решает проблему наилучшего выбора с точки зрения некоторого критерия варианта использования ограниченных ресурсов. Это общее понятие исследования операций, теории оптимального функционирования социалистической экономики и вообще всех тех разделов экономической науки, которые связаны с материально-вещественной, производственной стороной экономики. Имеется в виду распределение наличных ресурсов по разным работам, технологическим применениям, направлениям конечного использования для получения наибольших результатов. Значение этой проблемы определяется, во-первых, ограниченностью ресурсов (дефицитность ресурсов) и во-вторых, тем, что эффективность ресурсов в разных направлениях (как в производстве, так и в потреблении) может быть различна. Последнее означает, что общая эффективность зависит не только от количества ресурсов, но и от их распределения.

Возьмем каноническую задачу линейного программирования [1, с.35]:

$$c'x \longrightarrow max$$

$$Ax = b$$

$$x \ge 0,$$
(0.1)

Существует множество методов решения такой задачи. Симплекс метод, численные методы и др. Но такая модель оказывается совершенно неадекватной в реальности, ведь множество параметров не может быть строго фиксированными, ведь на систему как изнутри, так и изве действует множество факторов. Отсюда в таких задачах появляются случайные величины, ограниченные на каком-то промежутке (исходя из условия задачи и/или здравого смысла).

В прошлой работе был рассмотрел подход при котором поставленная задача решалась в трех различных постановках (максимизация дохода, минимизация дисперсии по доходу, минимизация рисков). Использованный подход имел недостаток в виде использования случайных величин и теории вероятности в целом.

В данной работе внимание будет сосредоточенно на задачах линейного программирования с интервальными коэффициентами. Данный подход даст возможность свести исходную задачу к разрешимым детерменированным задачам линейного программирования.

Γ . Π A B A 1

ЗАДАЧА ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

1.1 Постановка задачи

Предметом нашего внимания будет задача каноническая задача линейного программирования

$$c'x \longrightarrow max$$

$$Ax = b$$

$$x \ge 0,$$
(1.1)

с векторной неизвестной $x \in R^n$ и неопределенными матричными коэффициентами $A \in R^{m,n}, b \in R^m, c \in R^n$ из заданных замкнутых интервалов

$$|A - A_0| \le \Delta A, \quad |b - b_0| \le \Delta b, \quad |c - c_0| \le \Delta c \tag{1.2}$$

Требуется для множества задач (1.1), (1.2) определить понятие решения и разработать методы его нахождения.

1.2 Универсальные планы

Введём в рассмотрение неотрицательный m-вектор ϵ , характеризующий точность выполнения равенства Ax = b. Назовем вектор $x \in R^n$ ϵ -планом задачи (1.1), если $x \ge 0$ и $|Ax - b| \le \epsilon$ для всех допустимых A, b.

Согласно теореме 1.1 [1, с.13] вектор x будет ϵ -планом тогда и только тогда, когда удовлетворяет неравенствам

$$-Ax + \overline{b} < \epsilon, \quad \overline{A}x - b < \epsilon, \quad x > 0 \tag{1.3}$$

Используя (1.3) и нижнию оценку линейной формы c'x по допустимым коэффициентам, сформируем аппроксимирующую задачу ЛП

$$c'x \longrightarrow max$$

$$-\underline{A}x - \epsilon \le -\overline{b}$$

$$\overline{A}x - \epsilon \le \underline{b}$$

$$x > 0$$

$$(1.4)$$

с неизвестным вектором x. В аппроксимирующей задаче присутствует неизвестная невязка ϵ . Если задать невязку достаточно большой (по норме), то теряется аппроксимативный смысл неравенств (1.4), если малой - то неравенства (1.4) станут несовместными. Поэтому необходимо ввести вспомогательную задачу ЛП для определения минимальной невязки

$$\epsilon_{m+1} \longrightarrow \min$$

$$-\underline{A}x - \epsilon \le -\overline{b}$$

$$\overline{A}x - \epsilon \le \underline{b}$$

$$e'\epsilon - \epsilon_{m+1} \le 0$$

$$x \ge 0, \epsilon \ge 0$$
(1.5)

Здесь $x, \epsilon, \epsilon_{m+1}$ - неизвестные, e - вектор из R^m с единичными координатами, $e'\epsilon$ - сумма координат (норма) невязки.

Во вспомогательной задаче форма ограничена снизу нулем и ограничения совместны, следовательно она имеет [3, с.176] хотя бы один оптимальный план $(\hat{x}, \hat{\epsilon}, \hat{\epsilon}_{m+1})$. Таким образом решение вспомогательной задачи (1.5) дает универсальный план \hat{x} , минимальную невязку $\hat{\epsilon}$ и ее норму $\hat{\epsilon}_{m+1}$.

1.3 Двойственные универсальные планы

1.4 Решение задачи

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1 Л.Т. Ащепков, Д.В. Давыдов Универсальные решения интервальных задач Институт прикладной математики ДВО-РАН. М. Наука, 2006. 151с.
- $2\,$ Базара М., Шетти К. Нелинейное программирование. Теория и алгоритмы: Пер. с англ. М.: Мир, 1982
- 3 Васильев Ф.П., Иваницкий А. Ю. Линейное программирование. М.: Факториал, 1998