# Economics 512 – Empirical Methods Homework 7

Yinshi Gao yzg115

Feb 19, 2019

### Learning By Doing Duopoly.

The exercise below is inspired by the learning-by-doing model of Besanko, Doraszelski, Kryukov, and Satterthwaite (2010, Econometrica).

Two ex-ante identical firms are characterized by their production "know-how"  $\omega \in \{1,\ldots,L\}$  which summarizes the firms accumulated technical knowledge. The marginal cost of production,  $c(\omega)$ , depends on this stock of know-how. In particular, the monopolist faces a learning curve given by

$$c(\omega) = \left\{ \begin{array}{ll} \kappa \omega^{\eta} & \text{if} \quad 1 \leq \omega < l, \\ \kappa l^{\eta} & \text{if} \quad l \leq \omega \leq L, \end{array} \right.$$

where  $\eta = \frac{\ln \rho}{\ln 2}$  for a learning curve with a slope of  $\rho$  percent,  $\kappa$  is the marginal cost with minimal know-how (normalized to be  $\omega = 1$ ), and l < L represents the stock of know-how at which the firm reaches the bottom of its learning curve.

The model is cast in discrete time and has an infinite horizon to avoid end effects. I first describe the product market and then turn to pricing dynamics. Unlike the quality ladder model, the learning-by-doing model cannot be broken down in a static and a dynamic part.

There are two firms. The state space is thus  $\Omega \in \{1, \dots, L\}^2$ . I refer to  $\omega = (\omega_1, \omega_2)$  as the state of the industry and to  $\omega_n$  as the state of firm n.

**Product market.** Each periods, firms compete to make a sale. The probability that firm n makes the sale is

$$D_n(p_1, p_2) = \frac{\exp(v - p_n)}{1 + \sum_{k=1}^{2} \exp(v - p_k)},$$

where v is a quality of the good.

**Pricing dynamics.** Each firm's state  $\omega$  represents its know-how in the present period. Its know-how in the subsequent period,  $\omega'$ , depends on whether or not it makes a sale and on whether or not its stock of know-how depreciates.

The probability that the stock of know-how depreciates is  $\Pr(f=1) = \Delta(\omega) = 1 - (1-\delta)^{\omega}$ , where  $\delta \in [0,1]$ . This specification is conceptually similar to the deterministic "capital-stock" models of depreciation employed in the empirical work on organizational forgetting, where the depreciation of know-how increases as the firm's stock of know-how increases.

The law of motion for each firm's stock of know-how is

$$\omega' = \omega + q - f,$$

where  $q \in \{0,1\}$  indicates whether the monopolist makes a sale and  $f \in \{0,1\}$  represents organizational forgetting. The monopolist's stock of know-how therefore changes according the transition function

$$\Pr(\omega'|\omega, q) = \begin{cases} 1 - \Delta(\omega) & \text{if } \omega' = \omega + q, \\ \Delta(\omega) & \text{if } \omega' = \omega + q - 1, \end{cases}$$

At the upper and lower boundaries of the state space, I take the transition function to be Pr(L|L, q = 1) = 1 and Pr(1|1, q = 0) = 1, respectively.

The Bellman equation for firm n is

$$V_n(\omega) = \max_{p_n} D_n(p_n, p_{-n}(\omega))(p_n - c(\omega_n)) + \beta \sum_{k=0}^{2} D_k(p_n, p_{-n}(\omega)) W_{nk}(\omega),$$

where  $p_{-n}(\omega)$  is the rival's pricing strategy, and

$$W_{n0}(\omega) = \sum_{\omega'_1=1}^{L} \sum_{\omega'_2=1}^{L} V_n(\omega') \Pr(\omega'_1|\omega_1, q_1 = 0) \Pr(\omega'_2|\omega_2, q_2 = 0),$$

$$W_{n1}(\omega) = \sum_{\omega'_1=1}^{L} \sum_{\omega'_2=1}^{L} V_n(\omega') \Pr(\omega'_1|\omega_1, q_1 = 1) \Pr(\omega'_2|\omega_2, q_2 = 0),$$

$$W_{n2}(\omega) = \sum_{\omega'_1=1}^{L} \sum_{\omega'_2=1}^{L} V_n(\omega') \Pr(\omega'_1|\omega_1, q_1 = 0) \Pr(\omega'_2|\omega_2, q_2 = 1)$$

is the expectation of the value function of firm n conditional on the buyer purchasing good  $k \in \{0, 1, 2\}$  (good 0 is the outside good).

The pricing strategy of firm n is given by

$$p_n(\omega) = \arg\max_{p_n} D_n(p_n, p_{-n}(\omega))(p_n - c(\omega_n)) + \beta \sum_{k=0}^{2} D_k(p_n, p_{-n}(\omega))W_{nk}(\omega).$$

Let  $h_n(p_n) = D_n(p_n, p_{-n}(\omega))(p_n - c(\omega_n)) + \beta \sum_{k=0}^2 D_k(p_n, p_{-n}(\omega))W_{nk}(\omega)$  denote the maximand on the RHS of the Bellman equation.  $h_n(p_n)$  is strictly quasi-concave and the price choice  $p_n(\omega)$  is therefore unique. It is found by numerically solving  $\frac{\partial h_n}{\partial p_n} = 0$  or, equivalently,

$$0 = 1 - (1 - D_n(p_n, p_{-n}(\omega))) (p_n - c(\omega_n)) - \beta W_{nn}(\omega)$$
$$+\beta \sum_{k=0}^{2} D_k(p_n, p_{-n}(\omega)) W_{nk}(\omega).$$

**Equilibrium.** The primitives are symmetric. I therefore restrict attention to symmetric Markov perfect equilibria (MPE). Such a MPE is characterized by a value function  $V(\omega)$  and a policy function  $p(\omega)$  such that, if  $V(\omega)$  is firm 1's value function, then firm 2's value function is given by  $V_2(\omega_1, \omega_2) = V(\omega_2, \omega_1)$ . Similarly, if  $p(\omega)$  is firm 1's policy function, then firm 2's policy function is given by  $p_2(\omega_1, \omega_2) = p(\omega_2, \omega_1)$ . Existence of a symmetric MPE in pure strategies follows from the arguments in Doraszelski and Satterthwaite (2010) provided that prices are bounded.

**Algorithm.** To compute the MPE, Pakes and McGuire (1995) suggest an algorithm that essentially adapts value function iteration to dynamic games. The algorithm proceeds as follows:

- 1. Make initial guesses for the value and policy functions (or, more precisely,  $L \times L$  matrices),  $\mathbf{V}^0$  and  $\mathbf{p}^0$ , choose a stopping criterion  $\epsilon > 0$ , and initialize the iteration counter to l = 1.
- 2. For all states  $\omega \in \Omega$  compute

$$p^{l+1}(\omega) = \arg\max_{p_1} D_1(p_1, p_2^l(\omega_2, \omega_1))(p_1 - c(\omega_1)) + \beta \sum_{k=0}^{2} D_k(p_1, p_2^l(\omega_2, \omega_1)) W_k^l(\omega)).$$

and

$$V^{l+1}(\omega) = D_1(p_1^{l+1}(\omega), p_2^l(\omega_2, \omega_1))(p_1^{l+1}(\omega) - c(\omega_1)) + \beta \sum_{k=0}^{2} D_k(p_1^{l+1}(\omega), p_2^l(\omega_2, \omega_1))W_n^l(\omega).$$

where

$$\begin{split} W_0^l(\omega) &= \sum_{\omega_1'=1}^L \sum_{\omega_2'=1}^L V^l(\omega') \Pr(\omega_1'|\omega_1, q_1 = 0) \Pr(\omega_2'|\omega_2, q_2 = 0), \\ W_1^l(\omega) &= \sum_{\omega_1'=1}^L \sum_{\omega_2'=1}^L V^l(\omega') \Pr(\omega_1'|\omega_1, q_1 = 1) \Pr(\omega_2'|\omega_2, q_2 = 0), \\ W_2^l(\omega) &= \sum_{\omega_1'=1}^L \sum_{\omega_2'=1}^L V^l(\omega') \Pr(\omega_1'|\omega_1, q_1 = 0) \Pr(\omega_2'|\omega_2, q_2 = 1). \end{split}$$

3. If 
$$\max_{\omega \in \Omega} \left| \frac{V^{l+1}(\omega) - V^l(\omega)}{1 + |V^{l+1}(\omega)|} \right| < \epsilon \quad \land \quad \max_{\omega \in \Omega} \left| \frac{p^{l+1}(\omega) - p^l(\omega)}{1 + |p^{l+1}(\omega)|} \right| < \epsilon$$

then stop; else increment the iteration counter l by one and go to step 2.

Unlike value function iteration for single-agent dynamic programming problems, there is no guarantee that the above algorithm converges. If it fails to converge, a trick that often works is to go through an additional dampening step before returning to step 2. This dampening step assigns

$$\mathbf{V}^{l+1} \leftarrow \lambda \mathbf{V}^{l+1} + (1-\lambda)\mathbf{V}^{l},$$
  
$$\mathbf{p}^{l+1} \leftarrow \lambda \mathbf{p}^{l+1} + (1-\lambda)\mathbf{p}^{l}$$

for some  $\lambda \in (0,1)$ .

**Parameterization.** The number of know-how levels is L=30, the slope of the learning curve is  $\rho=0.85$ , the marginal cost of production with minimal know-how is  $\kappa=10$ , the learning curve flattens out at l=15 units of know-how, the quality of the good is v=10, the depreciation probability is  $\delta=0.03$ , and the discount factor is  $\beta=\frac{1}{1.05}$ , which corresponds to a yearly interest rate of 5%.

#### Exercise.

1. Compute and plot the value and policy function of an MPE (in three dimensions, with firm states on x and y axis and the policy (or value) on the z (vertical) axis).

#### V plot:



p plot:



2. Starting from state (1,1), plot the distribution of states (a three dimensional plot) after 10, 20, and 30 periods.

Distribution after 10 periods



## Distribution after 20 periods



Distribution after 30 periods



3. Compute and plot the the stationary distribution of states.

