

Neural Inverse Rendering for General Reflectance Photometric Stereo

ICML | 2018

Thirty-fifth International Conference on Machine Learning

Tatsunori Taniai (RIKEN AIP) Takanori Maehara (RIKEN AIP)

Introduction

Images observed under Surface normals varying illuminations (3D orientations)

Challenges

Complex unknown non-linearity: Real objects have various reflectance properties (BRDFs) that are complex and unknown.

Lack of training data: Deeply learning complex relations of surface normals and BRDFs is promising, but accurately measuring ground truth of surface normals and BRDFs is difficult.

Permutation invariance: Permuting input images should not change the resulting surface normals.

Our physics-embedded auto-encoder

Physics-based unsupervised learning

Two-stream physics-embedded network

- Global observation blending (Φ) provides global information to enrich feature maps in IRNet.
- Specularity input (S_i) gives a hint to IRNet to promote recovery of complex specular reflections.

Loss function

Image reconstruction loss

 $L = \frac{1}{M} \sum_{i=1}^{M} \left\| \hat{\boldsymbol{I}}_i - \boldsymbol{I}_i \right\|_1$

Minimize intensity differences btw synthesized \hat{I}_i and observed I_i images.

Initialize network parameters randomly.

+ $\lambda_t \| \overline{N} - \overline{N'} \|_2^2$

Least squares (LS) prior

Constrain the output normals \overline{N} to be close to prior normals N' obtained by the LS method.

No pre-training

Directly optimize randomly-

initialized network parameters

for a given test scene images.

PS as inverse imaging process

Reflectance (rendering) equation

$$I = s \rho(\overline{\boldsymbol{n}}, \overline{\boldsymbol{\ell}}, \overline{\boldsymbol{v}}) \max(0, \boldsymbol{\ell}^T \overline{\boldsymbol{n}})$$

I: Pixel intensity (known)

s: {0,1} cast shadow (known) $\overline{\boldsymbol{v}}$: view direction (known)

ℓ: lighting (known)

 ρ : BRDF (unknown)

 \overline{n} : surface normal (unknown)

General BRDF Diffuse reflect.

Test-time learning with early-stage weak supervision

Compute LS solution N'. **Repeat** Adam's iterations

- Run PSNet to produce a normal map \overline{N} .
- Run IRNet to reconstruct all input images as $\{\hat{I}_i\}$ (deep image prior [Dmitry+18])
- Compute the loss and update network parameters. Terminate the prior $(\lambda_t \leftarrow 0)$ if iterations > 50 (because the prior has low accuracy)

Until convergence (1000 iterations)

Experiments

Real-world scene benchmark (mean angular errors in degrees) [Shi+18]

- Each scene is provided 96 images with known lightings.
- Santo et al. (2017) use a supervised DNN method pre-trained on synthetic data.
- Others are classical physics-based unsupervised methods.

Analysis of network architecture and early-stage weak supervision

