CLAIMS

What is claimed is:

1	1.	A heat sink, comprising:	
2	a base st	ructure comprising a protruding thermal interface having an	
3	arcuate surface adapted to contact a processor assembly, wherein the arcuate		
4	surface is adapted to accommodate a bent configuration of the base structure		
5	induced by a mounting load applied to the base structure.		
1	2.	The heat sink set forth in claim 1, wherein the arcuate surface is	
2	substantially flat in the bent configuration.		
1	3.	The heat sink set forth in claim 1, comprising a plurality of heat	
2	transfer membe	rs extending from the base structure.	
1	4.	The heat sink set forth in claim 1, wherein the arcuate surface	
2	comprises a semi-spherical surface.		
1	5.	The heat sink set forth in claim 1, wherein the arcuate surface	
2	comprises a semi-cylindrical surface.		
1	6.	The heat sink set forth in claim 1, comprising a plurality of spring	
2	loaded fasteners	s coupled to the base structure.	

1	7. The heat sink set forth in claim 1, comprising a threaded fastener
2	coupled to the base structure, wherein the threaded fastener comprises a dry
3	lubricant.
1	8. The heat sink set forth in claim 7, wherein the dry lubricant
2	comprises a molybdenum disulfide plating.
1	9. The heat sink set forth in claim 1, wherein the protruding thermal
2	interface comprises copper.
1	10. A system, comprising:
2	a circuit board comprising a plurality of chip contacts;
3	a processor package comprising a plurality of contacts aligned with the
4	plurality of chip contacts;
5	a heat sink comprising an arcuate surface extending from a base structure
6	of the heat sink, wherein the processor package is compressively
7	mounted between the circuit board and the arcuate surface.
1	11. The system set forth in claim 10, wherein the arcuate surface
2	comprises a curvature substantially flattened by a bent configuration of the base
3	structure.

1	12. The system set forth in claim 11, wherein the bent configuration is		
2	induced by a mounting load applied to the heat sink.		
1	13. The system set forth in claim 10, further comprising an electrical		
2	interposer disposed between the processor package and the circuit board, wherein		
3	the electrical interposer comprises a compressible electrical contact extending from		
4	the plurality of contacts to the plurality of chip contacts.		
1	14. The system set forth in claim 10, wherein the processor package		
2	comprises a heat spreader, a substrate having the plurality of contacts, and a		
3	processor disposed between the heat spreader and the substrate.		
1	15. The system set forth in claim 14, wherein the heat spreader		
2	overhangs a perimeter of the processor.		
1	16. The system set forth in claim 10, comprising a plurality of spring-		
2	loaded mounting fasteners coupled to the heat sink.		
1	17. The system set forth in claim 10, comprising a plurality of threaded		
2	mounting fasteners coupled to the heat sink, wherein threads of the plurality of		
3	threaded mounting fasteners comprises a dry lubricant coating.		
1	18. The system set forth in claim 10, comprising a thermal interface		
2	material disposed between the arcuate surface and the processor package.		

1	19.	A method of processor mounting, comprising:
2	alignir	ng an arcuate surface of a heat sink adjacent a surface of a processor
3		assembly; and
4	compr	essively mounting the processor assembly between the arcuate
5		surface and a circuit board.
1	20.	The method set forth in claim 19, wherein aligning the arcuate
2	surface compr	rises centering a convex boss structure with a heat spreader of the
3	processor asse	embly.
1	21.	The method set forth in claim 19, wherein compressively mounting
2	comprises ben	ading the heat sink in a curvature opposite the arcuate surface.
1	22.	The method set forth in claim 19, wherein compressively mounting
2	comprises sub	estantially flattening the arcuate surface.
1	23.	The method set forth in claim 19, comprising positioning a thermal
2	interface mate	erial between the arcuate surface and the surface of the processor
3	assembly.	