7

Performing Basic Process Control

Objectives

After completing this lesson, you should be able to:

- Describe a process and its attributes
- Manage processes

Agenda

- Describing a Process and Its Attributes
- Managing Processes

Process: Overview

- A process, also known as a task, is the running form of a program or a shell script.
- Programs and scripts are stored on disk and processes run in memory.
- Processes have a parent/child relationship.
- A running process can spawn one or more child processes, or fork multiple independent processes.
- Multiple processes can run in parallel.

Attributes of a Process

- The kernel assigns a unique identification number to each process called a process ID or PID.
 - The kernel uses this PID to track, control, and manage the process.
 - Every child PID has an owning Parent Process ID (PPID).
- Each process is further associated with a UID and a GID.
 - UIDs and GIDs indicate the process's owner.
 - Generally, the UID and GID associated with a process are the same as the UID and GID of the user who started the process.

Process States

- The s, stat, and state output specifiers describe the state of a process.
- A process may be in any one of the following states:
 - D: Uninterruptible sleep (usually IO)
 - R: Running or runnable (on run queue)
 - S: Interruptible sleep (waiting for an event to complete)
 - T: Stopped, either by a job control signal or because it is being traced
 - Z: Defunct ("zombie") process, terminated but not reaped by its parent
- For more information about the ps command process state options, see the ps man page.

Process Subsystems

- Each time you boot a system, execute a command, or start an application, the system activates one or more processes.
- A process, as it runs, uses the resources of the various subsystems:
 - Disk I/O
 - Network
 - Memory
 - CPU

Agenda

- Describing a Process and Its Attributes
- Managing Processes

Listing System Processes

 The process status (ps) command lists the processes that are associated with your shell.

```
$ ps [options]
```

- For each process, the ps command displays the PID, the terminal identifier (TTY), the cumulative execution time (TIME), and the command name (CMD).
- List the currently running processes on the system owned by the logon user using the ps command.

```
$ ps
PID TTY TIME CMD
1001 pts/1 0:00 bash
1004 pts/1 0:00 ps
```

For more information about the ps command options, see the ps man page.

Listing All Processes

Use the ps -ef command to list the full-format of all the processes currently scheduled to run on the system.

\$ ps -ef less							
UID	PID	PPID	С	STIME	TTY	TIME	CMD
root	0	0	0	Feb 13	?	00:00:18	sched
root	1	0	0	Feb 13	?	00:00:01	/etc/init -
root	2	0	0	Feb 13	?	00:00:00	pageout
root	3	0	0	Feb 13	?	00:17:47	fsflush
root	9	1	0	Feb 13	?	00:00:00	svc.configd
(output truncated)							

Listing All Processes

UID: The username of the owner of the process PID: The unique process identification number of the process PPID: The parent process identification number of the process C: Processor Utilization STIME: The time the process started (hh:mm:ss) TTY: The controlling terminal for the process. Note: system processes (daemons) display a question mark (?), indicating the process started without the use of a terminal. TIME: The cumulative execution time for the process (hh:mm:ss) CMD: The command name, options, and arguments \$ ps -ef | less CMD UID PID PPID STIME TTY TIME 00:00:18 /usr/lib/power/powerd 216 Oct 23 root

Listing Process Trees in Oracle Linux

• The process tree (pstree) command lists the running processes, rooted at either systemd or PID.

```
$ pstree [-options] [PID | user ]
```

For more information about the pstree command options, see the pstree man page.

Listing Process Trees in Oracle Solaris

• The process tree (ptree) command lists the running processes, rooted at either svc.startd or PID.

```
$ ptree [PID | user ]
```

```
$ ps -f
UID PID PPID C STIME TTY TIME CMD
oracle 1770 1769 0 14:47 pts/1 0:00 ps -f
oracle 1769 1766 0 14:47 pts/1 0:00 /usr/bin/bash
$ ptree 1766
1766 /usr/bin/gnome-terminal -x /bin/sh -c cd '/home/oracle' && exec $S
1769 /usr/bin/bash
1771 ptree 1769
```

For more information about the ptree command, see the ptree man page.

Quiz

Which of the following is not a process attribute?

- a. UID
- b. GID
- c.PS
- d. PID

Terminating a Process

- There might be times when you need to terminate an unwanted process.
- A process might have entered an endless loop, or it might be hung.
- You can kill or stop any process that you own.
- You can use the following two commands to terminate one or more processes:

```
- kill PID [PID ...]
- pkill -l [ processname | regex pattern ]
```

- The kill and pkill commands send signals to processes directing them to terminate.
- Each signal has a number/value, name, and an associated event.
- For more information about signal values:
 - In Oracle Linux, use man 7 signal.
 - In Oracle Solaris, use man -s3c signal.

Terminating a Process: kill Command

- You can terminate any process by sending the appropriate signal to the process.
- The kill command sends a Termination signal (SIGTERM signal 15) by default to one or more processes.

```
$ kill [-signal] PID [PID ...]
```

Note: The kill command terminates only those processes that you own.

Common Signals and Their Uses

- HUP (<u>Hangup</u> SIGHUP signal 1) is sent to all of the subordinate child processes when the parent process is terminated.
- To terminate a command-line command you usually use a Ctrl + C keyboard command, which sends an Interrupt (SIGINT signal 2), causing it to be interrupted.
- In place of the exit command used to exit a terminal session, you can use a Ctrl + D keyboard command, which sends a Quit (SIGQUIT signal 3) to quit the terminal session.
- To stop the command-line command execution, you can use a Ctrl + Z keyboard command to send a Stop (SIGTSTP signal 19) to stop/suspend the foreground execution.

Terminating a Process: kill Command

Use the kill command to terminate the dtmail process.

Terminating a Process: pgrep and pkill Commands

One can use the pgrep processname command to identify the ProcessName or a regex_pattern to be killed, and then use the pkill command to kill them.

```
$ sleep 500 &
[1] 4378
$ pgrep sleep
4378
$ pgrep -l sleep
4378 sleep
$ pkill sleep
[1] + Terminated sleep 500
```

- The pkill command requires you to specify the ProcessName or a regex_pattern instead of the PID of the process.
- For more information about the pgrep and pkill command options, see the pgrep man page.

Terminating a Process: pkill Command

Use the pkill command to terminate the dtmail process.

```
# pkill dtmail
# pgrep -l mail
215 ? 00:00:03 sendmail
```

Forcefully Terminating a Process: Signal 9 (SIGKILL)

- Some processes ignore the default Termination signal (SIGTERM signal 15) that the kill command sends.
- If a process does not respond to the Termination signal 15, you can force it to terminate by sending the Kill signal (SIGKILL signal 9) with either the kill or pkill commands.

```
$ kill -9 PID
or
$ pkill -9 [ processname | regex_pattern ]
```

Note: Sending the Termination signal 15 does not necessarily kill a process gracefully. Only if the signal is caught by the process, it cleans itself up in an orderly fashion and dies. If not, it just dies.

Quiz

Ordinary users can only kill processes they own.

- a. True
- b. False

Summary

In this lesson, you should have learned how to:

- Describe a process and its attributes
- Manage system process

Practice 7: Overview

This practice covers the following topics:

7-1: Controlling System Processes

