

# **Basic Approaches for Missing Values**

#### We will now discuss a few simple approaches to deal with missing values

- We cannot easily assess them on our traffic data
- ...Since we do not know the ground truth of each missing value

## Therefore, we will initially use partially synthetic data

- We will start from a time series without any missing value, then remove values artificially
- ...And measure the accuracy of our filling approaches via the Root MSE

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=0}^{n} (\tilde{x}_i - \hat{x}_i)^2}$$

Where  $ilde{x}_i$  is a value from the filled series and  $\hat{x}_i$  the ground truth

#### **The Benchmark Dataset**

#### Our benchmark dataset consists of twitter volume related to amazon.com



- There are a few anomalies, but we are not concerned with them
- Then series has a seasonal/periodic component

#### The Benchmark Dataset

#### We now introduce some missing values

First, we draw some starting points at random

```
In [3]: np.random.seed(42) # seed (to get reproducible results)
    mv_num = 30 # number of intervals with missing values
    mv_starts = np.random.choice(range(len(data1.index)), mv_num, replace=False)
    mv_starts.sort()
    mv_starts[:4]
Out[3]: array([ 88, 123, 169, 304])
```

Then, we clear values over increasingly long intervals:

```
In [4]: data1_mv = data1.copy()
    for i in range(mv_num):
        data1_mv.iloc[mv_starts[i]:mv_starts[i]+i+1] = np.NaN
```

■ The first interval contains 1 missing value, the second 2, the third 3...

## **The Benchmark Dataset**

#### Let's have a look at the results around one of the "holes"

```
In [7]: idx, pad = 10, 20
        nab.plot series(data1 mv.iloc[mv starts[idx]-pad:mv starts[idx]+mv num+pad+1], figsize=figsize)
        plt.plot(data1.iloc[mv starts[idx]-1:mv starts[idx]+idx+2]);
         80
         60
         40
         20
```

■ The orange part corresponds to the removed values

# Forward/Backward Filling

# The easiest approach for missing values consists in replicating nearby observations

- Forward filling: propagate forward the last valid observation
- Backward filling: propagate backward the next valid observation

#### An important observation:

- When filling missing values, we have access to the whole series
- ...So we can reason both forward and backwards

## Forward/backward filling are simple methods, but they can work well

- Rationale: most time series have a certain "inertia"
- ...I.e.: a strong level of local correlation
- For this reason, the last observation is a good predictor for the next one
- ...Remember the persistence predictor?

## Forward/Backward Filling

## Forward and backward filling are pre-implemented in pandas

They are available through the fillna method:

```
DataFrame.fillna(..., method=None, ...)
```

- fillna replaces NaN Values in a DataFrame Or Series
- The method parameter can take the values:
  - "pad" or "ffill": these correspond to forward filling
  - "backfill" or "bfill": these correspond to backward filling

They are generally applied to datasets with a dense index

■ Remember that our benchmark dataset already has a dense index

#### We can finally test forward/backward filling

```
In [8]: ffseries = data1_mv.fillna(method='ffill')
bfseries = data1_mv.fillna(method='bfill')
```

We can check the corresponding MSE:

```
In [9]: from sklearn.metrics import mean_squared_error
    rmse_ff = np.sqrt(mean_squared_error(data1, ffseries))
    rmse_bf = np.sqrt(mean_squared_error(data1, bfseries))
    print(f'RMSE for forwad filling: {rmse_ff:.2f}, for backward filling {rmse_bf:.2f}')
RMSE for forwad filling: 3.18, for backward filling 6.45
```

- In this case forward filling seems to work better
- The results are of course application-dependent

Let's have a close look at forward filling around some of the missing values

```
In [10]: idx, pad = 0, 20
         nab.plot series(data1.iloc[mv starts[idx]-pad:mv starts[idx]+mv num+pad+1], figsize=figsize)
         plt.plot(ffseries.iloc[mv starts[idx]-1:mv starts[idx]+idx+2]);
          70
          60
          50
          30
          20
          10
```

■ This is the first (and shortest) gap

## Let's have a close look at forward filling around some of the missing values

```
In [11]: idx, pad = mv num / / 2, 20
         nab.plot series(data1.iloc[mv starts[idx]-pad:mv starts[idx]+mv num+pad+1], figsize=figsize)
         plt.plot(ffseries.iloc[mv_starts[idx]-1:mv_starts[idx]+idx+2]);
          30
          20
```

■ This is an intermediate-length gap

Let's have a close look at forward filling around some of the missing values

```
In [12]: | idx, pad = mv_num-1, 20
         nab.plot series(data1.iloc[mv starts[idx]-pad:mv starts[idx]+mv num+pad+1], figsize=figsize)
         plt.plot(ffseries.iloc[mv_starts[idx]-1:mv_starts[idx]+idx+2]);
          70
          60
          50
           40
          30
          20
          10
```

■ This is the longest gap

## Forward/Backward Filling on the Traffic Data

#### Let's now consider the traffic data

We will limit ourselves to forward filling:

```
In [13]: ddata2 = data2.resample('5min').mean()
    ddata2_ff = ddata2.fillna(method='ffill')
```

data2 contains the traffic series

#### We now isolate the filled values

This is needed so that we can highlight them in the forthcoming plots

```
In [14]: ddata2_ffonly = ddata2_ff.copy()
    ddata2_ffonly[~ddata2['value'].isnull()] = np.nan
```

ffseries and bfseries now contain only the filled values

## Forward/Backward Filling on the Traffic Data

## Let us have a look at the results of forward filling:



# Forward/Backward Filling on the Traffic Data

#### Forward filling works reasonably for small gaps

```
In [17]: mask = (ddata2_ff.index >= '2015-09-02 01:00') & (ddata2_ff.index < '2015-09-03 00:00')</pre>
          nab.plot series(ddata2 ff[mask], show markers=True, figsize=figsize)
          plt.scatter(ddata2_ffonly.index[mask], ddata2_ffonly[mask], marker='.', c='tab:orange');
           17.5
           15.0
           12.5
           10.0
           7.5
           5.0
           2.5
```

# Forward/Backward Filling with our Series

## ...But it is not particularly effective for larger gaps

```
In [18]: mask = (ddata2_ff.index >= '2015-09-08 18:00') & (ddata2_ff.index < '2015-09-09 18:00')</pre>
         nab.plot series(ddata2 ff[mask], show markers=True, figsize=figsize)
         plt.scatter(ddata2_ffonly.index[mask], ddata2_ffonly[mask], marker='.', c='tab:orange');
          12
          10
```

# (Geometric) Interpolation

## A few more options are available via the interpolate method

```
DataFrame/Series.interpolate(method='linear', ...)
```

The method parameter determines how NaNs are filled:

- "linear" uses a linear interpolation, assuming uniformly spaced samples
- "time" uses a linear interpolation, but supports non-uniformly spaced samples
- "nearest" uses the closest value
- "polynomial" uses a polynomial interpolation
- Even "ffill" and "bfill" are available

Both "polynomial" and "spline" require to specify the additional parameter order

■ E.g. df.interpolate(method='polynomial', order='3')

## (Geometric) Interpolation

#### Let us check the performance of some approaches

- "linear" and "time" are equivalent in this case (we have uniformly-spaced samples)
- "polynomial" is the most complex, and in this case also the worst

All perform worse than forward filling (at least in this case)!

## **Curve Interpolation on Traffic Data**

## On real data, we cannot (easily) compare interpolation methods

- This is because typically we have no ground truth
- For now, we will settle for a visual inspection



#### **Considerations**

## All these methods for dealing with missing values:

- Work ok for small gaps, but loose effectiveness as the gap size grows
- This is true even for the more advanced filling methods!
- Better methods just degrade a bit more slowly

#### MSE comparisons can be very effective:

- But requires access to ground truth!
- An idea: make your ground truth by artificially removing values
- ...Then comparing filling methods based on their performance on the artificial gaps

## MSE is not everything

- Every filling method makes mistakes: it's important not to make the wrong ones
- Think about how you plan to use your (filled) time series
- Can you expect the series to have uniform variance?