TÜV SÜD Product Service GmbH Äußere Frühlingstraße 45 94315 Straubing Germany Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de

1 Attachment Report Exposure of Humans to RF Fields

Rules and specifications:	IC RSS-Gen Issue 4, section 3.2
Guide:	IC RSS-102 Issue 5, section 2.5

Exposure of Humans to RF Fields	Applicable	Declared by applicant	Measured	Exemption
The antenna is				
detachable				
The conducted output power (CP in watts) is measured at the antenna connector:				
CP=				
The effective isotropic radiated power (EIRP in watts) is calculated using				
\Box the numerical antenna gain: $G = \dots$				
$EIRP = G \cdot CP \Rightarrow EIRP = \dots$				
$EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP = \dots $				
with:				
Distance between the antennas in m: $D = \dots m$				
□ not detachable				
A field strength measurement is used to determine the effective isotropic radiated power (EIRP in watts) given by1:				
$EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP =$ 1.3 μW				
with:				
Field strength in V/m: $FS = 2074.91 \mu V/m$				
Distance between the two antennas in m: $D = 3 \text{ m}$				
Selection of output power				
The output power TP is the higher of the conducted or effective isotropic radiated power (e.i.r.p.):				
$TP=$ 1.3 μW				

If an open area test site is used for field strength measurement, the effect due to the metal ground reflecting plane should be subtracted from the maximum field strength value in order to reference it to free space, before calculating TP.

¹ The conversion formula is valid only for properly matched antennas. In other cases the transmitter output power may have to be measured by a terminated measurement when applying the exemption clauses.

TÜV SÜD Product Service GmbH Äußere Frühlingstraße 45 94315 Straubing Germany

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de

Exposure of Humans to	Applicable	Declared by applicant	Measured	Exemption	
Separation distance between the user and the	transmitting device is				
☐ less than or equal to 20 cm ☐ greater than 20 cm					
Transmitting device is					
in the vicinity of the human head	☐ body-worn				

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de

SAR evaluation	on												
SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in the table. For controlled use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for routine evaluation in the table are multiplied by a factor of 5. For limb-worn devices where the 10 gram value applies, the exemption limits for routine evaluation in the table are multiplied by a factor of 2.5. If the operating frequency of the device is between two frequencies located in the table, linear interpolation shall be applied for the applicable separation distance. For test separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine evaluation is required. For medical implants devices, the exemption limit for routine evaluation is set at 1 mW. The output power of a medical implants device is defined as the higher of the conducted or e.i.r.p to determine whether the device is exempt													
from the SA Frequency	R eval		emptior	n limits ((mW) ² a	t separa	ition dist	ance of					
(MHz)	≤5 mm	10 mm	15 mm	20 mm	25 mm	30 mm	35 mm	40 mm	45 mm	≥50 mm			
≤300 ³	71	101	132	162	193	223	254	284	315	345			
450	52	70	88	106	123	141	159	177	195	213			
835	17	30	42	55	67	80	92	105	117	130			
1900	7	10	18	34	60	99	153	225	316	431			
2450	4	7	15	30	52	83	123	173	235	309			
3500	2	6	16	32	55	86	124	170	225	290			
5800	1	6	15	27	41	56	71	85	97	106			
Carrier frequency: f =MHz													
Distance:					. mm								
Transmitte	er outpu	ıt power	: TP	=		. mW							
Limit:			TP_{limit}	_{it} =		. mW							
☐ SAR evalu	uation is	docum	ented in	test rep	oort no.								

² The excemption limit in the table are based on measurements and simulations on half-wave dipole antennas at separaton distances of 5 mm to 25 mm from a flat phantom, providing a SAR value of approximately 0.4 W/kg for 1 g of tissue. For low frequencies (300 MHz to 835 MHz), the exemption limits are derived from alinear fit. For high frequencies (1900 MHz and above), the exemption limits are derived from athird order polynomial fit.

³ Transmitters operating between 3 kHz and 10 MHz, meeting the exemption from routine SAR evaluation, shall demonstrate compliance to the instantaneous limits in IC RSS-102, issue 5, section 4.

TÜV SÜD Product Service GmbH Äußere Frühlingstraße 45 94315 Straubing Germany Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de

Exposure of Humans to RF Fields (continued)	Applicable	Declared by applicant	Measured	Exemption
RF exposure evaluation				
RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:				
 below 20 MHz⁴ and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance). between 3 kHz and 10 MHz exposure limits apply as following: 				
□ In a uncontrolled environment the basic restriction for the instantaneous internal electric field strength is equal to or less than 2.7 · 10-4 f V/m _{rms} at any part of the body where f is in Hz. The instantaneous RF field strength is equal or less than 83 V/m _{rms} and equal or less than 90 A/m _{rms} .				
In a controlled environment the basic restriction for the instantaneous internal electric field strength is equal to or less than 1.35 ⋅ 10-4 f V/m _{rms} at any part of the body where f is in Hz. The instantaneous RF field strength is equal or less than 170 V/m _{rms} and equal or less than 180 A/m _{rms} .				
at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $4,49/f^{0.5}$ W (adjusted for tune-up tolerance, where f is in MHz.				
at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance).				
at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \cdot 10^{-2} f^{0.6834}$ W (adjusted for tune-up tolerance), where f is in MHz.				
at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).				
In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.				
Carrier frequency: f = 13.56 MHz	_			
Transmitter output power: TP = 1.3 μW				
Limit: $TP_{limit} = 1000 \text{ mW}$				\boxtimes
RF exposure evaluation is documented in test report no				

⁴ Transmitters operating between 3 kHz and 10 MHz, meeting the exemption from routine RF Exposure evaluation, shall demostrate compilance tot he instanteneous limits in IC RSS-102, issue 5, section 4.