

What is claimed is:

1 1. A method for depositing a dielectric layer having a multi-layer
2 structure on a substrate, comprising:
3 forming a first oxidation barrier layer on a surface of a substrate;
4 forming a first dielectric layer on the first oxidation barrier layer;
5 forming a second oxidation barrier layer on the first dielectric layer;
6 and
7 forming a plurality of additional dielectric layers on the second
8 oxidation barrier layer,
9 wherein one of a plurality of additional oxidation barrier layers is
10 disposed between each of the plurality of additional dielectric layers and an
11 adjacent additional dielectric layer.

1 2. The method as claimed in claim 1, wherein each of the
2 oxidation barrier layers is formed of a layer of a material selected from the
3 group consisting of groups III, IV, and V metal electrodes and oxides thereof.

1 3. The method as claimed in claim 2, wherein the metal
2 electrodes are selected from the group consisting of aluminum (Al), tantalum
3 (Ta), titanium (Ti), hafnium (Hf), and zirconium (Zr).

1 4. The method as claimed in claim 2, wherein the metal oxide is
2 selected from the group consisting of aluminum oxide (Al_2O_3), tantalum
3 oxide (TaO), titanium oxide (TiO_2), hafnium oxide (HfO_2), and zirconium
4 oxide (ZrO_2).

1 5. The method as claimed in claim 1, wherein each of the
2 oxidation barrier layers has a thickness of between about tens to hundreds
3 of Å.

1 6. The method as claimed in claim 1, wherein the thickness of
2 each of the oxidation barrier layers is adjustable.

1 7. The method as claimed in claim 2, wherein metal of the
2 oxidation barrier layer is diffused into adjacent dielectric layers, and the
3 metal is terminated by depositing the dielectric layer and performing a
4 thermal process.

1 8. The method as claimed in claim 3, wherein metal of the
2 oxidation barrier layer is diffused into adjacent dielectric layers, and the
3 metal is terminated by depositing the dielectric layer and performing a
4 thermal process.

1 9. The method as claimed in claim 4, wherein metal of the
2 oxidation barrier layer is diffused into adjacent dielectric layers, and the
3 metal is terminated by depositing the dielectric layer and performing a
4 thermal process.

1 10. The method as claimed in claim 7, wherein the thermal
2 process is performed at a temperature lower than about 700°C.

1 11. The method as claimed in claim 8, wherein the thermal
2 process is performed at a temperature lower than about 700°C.

1 12. The method as claimed in claim 9, wherein the thermal
2 process is performed at a temperature lower than about 700°C.

1 13. The method as claimed in claim 1, wherein each of the
2 oxidation barrier layers is deposited by a chemical vapor deposition (CVD)
3 method.

1 14. The method as claimed in claim 1, wherein each of the
2 dielectric layers is deposited by an atomic layer deposition (ALD) method or
3 a CVD method.

1 15. The method as claimed in claim 1, wherein each of the
2 dielectric layers is formed of a material selected from the group consisting of
3 strontium titanate (STO), barium titanate (BTO), barium strontium titanate
4 (BST), lead lanthanum titanate (PLT), lead tantalum zirconium (PLZ), and
5 strontium bismuth tantalite (SBT).