MAT347 Abstract Algebra

Jonah Chen

1 Groups

Groups are generally associated with symmetries. Consider the equilateral triangle:

We know that there are six symmetries of the triangle:

- \bullet Identity transformation (do nothing) denoted as id or e
- ullet Two rotations (A o B o C o A and A o C o B o A)
- ullet Three reflections $A \leftrightarrow B$, $A \leftrightarrow C$, $B \leftrightarrow C$

Note that these symmetries preserve the structure of the triangle, hence the composition of two symmetries must also be a symmetry. Let

- ullet ho be the rotation A o B o C o A
- ullet σ be the reflections $B \leftrightarrow C$

Note that $\rho\sigma$ is the $A\leftrightarrow C$ reflection and $\sigma\rho$ is the $A\leftrightarrow B$ reflection. Hence they may not be commutative.

We also know that all symmetries can be reversed. α has an inverse α^{-1} such that $\alpha\alpha^{-1}=\alpha^{-1}\alpha=e$. These inspires the following definition:

Definition—: A group is a set G with a composition

$$G \times G \to G$$
 (1)

$$(g,h) \mapsto g \cdot h$$
 (2)

Satisfying:

• Associativity: $(g \cdot h) \cdot k = g \cdot (h \cdot k)$

1.1 Cyclic Groups 1 GROUPS

- \bullet Identity: $\exists\, e\in G$ such that $g\cdot e=e\cdot g=g$ for all $g\in G$
- Inverse: $\forall g \in G, \exists g^{-1} \in G \text{ such that } g \cdot g^{-1} = g^{-1} \cdot g = e$

Examples:

- \mathbb{Z} with + is a group. It is associative, e = 0 and $g^{-1} = -g$.
- $\mathbb{Z}/n\mathbb{Z}$ with addition modulo n.
- \bullet If F is a field, it implicitly has two group structures:
 - Additive group: (F,+) is a group. It is associative, e=0 and $g^{-1}=-g$.
 - Multiplicative group: $(F \setminus \{0\}, \times)$ is a group. It is associative, e = 1 and $g^{-1} = 1/g$.
- GL(n,F) "general linear group" contains all invertiable $n \times n$ matrices.
- SL(n,F) "special linear group" contains all invertiable $n \times n$ matrices with determinant 1.
- SO(n, F) "special orthogonal group" = $\{A \in SL(n, F) | A^t = A^{-1}\}$.

1.1 Cyclic Groups

One of the simplest groups is $\mathbb{Z}/n\mathbb{Z}$ for $n \in \mathbb{N}$ with the operation addition modulo n. This is known as the "cyclic group of order n" or C_n . i.e. for n=8, $5+7=4 \pmod 8$, which we denote $\overline{5}+\overline{7}=\overline{4}$.

We know the inverse $\bar{k}^{-1} = \overline{n-k}$ for nonzero k or $\bar{0}^{-1} = \bar{0}$.

Another way to express the cyclic group is $\bar{k} \leftrightarrow e^{2\pi i k/n}$ with multiplication operation. Then,

$$\overline{k+n} = e^{2\pi i(k+n)/n} = e^{2\pi ik/n}e^{2\pi in/n} = e^{2\pi ik/n} = \bar{k}.$$
 (3)

Definition–Order: The **order** of a group G is its cardinality denoted ord(G) or |G|. It could be a finite or infinite ordinal. In particular, $|C_n| = n$.

1.2 QUATERNION GROUP

The quaternion group $\mathbb{H}=\{\pm 1,\pm i,\pm j,\pm k\}$ is a group of order 8 with the multiplication operation. It has

Definition–Subgroup: A **subgroup** of a group G is a subset $H \subseteq G$ such that H is a group.

Definition–Coset: If G is a group and $H \leq G$, consider sets of the form

$$Hg = \{hg|h \in H\} \tag{4}$$

This is a **right coset** of H.

Theorem–Partitioning with Cosets: Consider Hg and Hg' for $g.g' \in G$. There are two cases:

- They might be disjoint: $Hg \cap Hg' = \emptyset$.
- ullet They might intersect. Suppose hg=h'g' for some $h,h'\in H$

$$h^{-1}hg = h^{-1}h'g' (5)$$

$$g = h^{-1}h'g' \in Hg' \tag{6}$$

Similarly, $g' \in Hg$. Consider an arbitrary element of $kg \in Hg$ with $k \in H$. Then, $kg = kh^{-1}h'g' \in Hg'$ i.e. $Hg \leq Hg'$. Similarly, $Hg' \leq Hg$. Thus, Hg = Hg'.

The right cosets of H partition G. In particular,

$$G = \bigsqcup Hg_i \tag{7}$$

For fixed g, if hg = h'g for $h, h' \in H$ then $hgg^{-1} = h'gg^{-1}$ so h = h'. So in Hg, every element can be matched with an element of H. So, |Hg| = |H|.

Theorem–Lagrange: If $|G| < \infty$ and $H \le G$, then |H| |G|

Definition–Index: For $H \leq G$, the **index** of H in G is [G:H] = |G|/|H|.

If |G| = 13, the only subgroups or G are $\{e\}, G$.

If $G=\mathbb{Z}$ and $H=2\mathbb{Z}$ (even numbers). Then H+0=H is one coset, and H+1= the odd integers is another coset. So, $\mathbb{Z}=(2\mathbb{Z})\sqcup(2\mathbb{Z}+1)$.

Same for Left Cosets Interaction of left and right cosets?

Consider the triangle group with rotations e, ρ, ρ^2 and reflections $\sigma_A, \sigma_B, \sigma_C$ Consider the subgroup $H = \{e, \sigma_A\}$.

$$He = \{e, \sigma_A\} \tag{8}$$

$$H\rho = \{\rho, \sigma_B\} \tag{9}$$

$$H\rho^2 = \{\rho^2, \sigma_C\} \tag{10}$$

$$eH = \{e, \sigma_A\} \tag{11}$$

$$\rho H = \{\rho, \sigma_C\} \tag{12}$$

$$\rho^2 H = \{\rho^2, \sigma_B\} \tag{13}$$

Note that the left and right cosets are different. They are the same if the group is commutative.

Definition–Action: An **action** of a group G on a set X is a map

$$G \times X \to X$$
 (14)

$$(g,x) \mapsto gx \tag{15}$$

such that

$$(gh)x = g(hx) \tag{16}$$

$$ex = x \tag{17}$$

If G is a group, it acts on itself. This is called a "left translation" or "left regular action".

How about the right action $(g,x)\mapsto xg$. The second condition may not be true

$$(gh, x) = xgh (18)$$

$$(g,(hx)) = (g,xh) = xhg \tag{19}$$

which is not true. Instead, let $(g,x) = xg^{-1}$. Then,

$$(gh, x) = x(gh)^{-1} = xh^{-1}g^{-1}$$
(20)

$$(g,(h,x)) = (g,xh^{-1}) = xh^{-1}g^{-1}$$
(21)

This is the definition of the right action.

There is a third action of G on itself by $(g,x)=gxg^{-1}$. This action is called conjugation.

Take the following example: Let G = SO(3) and let $X = S^2$. G acts on X by rotation. Let $H = \begin{cases} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{cases}$ be the subgroup of rotations that fixes the z-axis.

H also acts on X ??

Definition–Orbit: If G acts on X, the **orbit** of $x \in X$ is the set $Gx = \{gx | g \in G\}$. i.e. the set of all points x is taken to by elements of G.

The orbits of $H \approx SO(2)$ on the sphere are the lines of latitude (and the north and south poles).

H fixes the north pole, thus every coset gH takes the north pole to a point. Suppose gH and g'H are cosets such that $gHN=g'HN \implies gN=g'N \implies (g')^{-1}gN=N \implies (g')^{-1}g\in H \implies gH...$ so the points ofn the sphere are in 1-1 correspondence with the left cosets of H.

Definition–Stabilizer: If G acts on X and $x \in X$, the "stabilizer" of x in G is $\{g \in G | gx = x\}$

Definition–Centralizer: If $A \subset G$, the **centralizer** of A in G is $C_G(A) = \{g \in G | ga = ag \forall a \in A\}$

- If G is abelian, then $C_G(A) = G$ for any A.
- In the triangle group, $C_G(\{\rho\}) = \{e, \rho, \rho^2\}$

Definition–Center: The **center** of G is $Z(G)=\{g\in G|gg'=g'g\forall g'\in G\}=C_G(G)$

Proposition: For any $A \subset G$, $C_G(A) \leq Z(G)$ (is a subgroup).

Consider the regular n-gon ($n \ge 3$), what are its rigid motion symmetries?

- There are always n rotations by $\frac{2\pi}{n}$ about the origin.
- When n is even, there are n/2 reflections in each pair of edges, and each pair of vertices. When n is odd, there are n reflections in each pair of (edge, vertex). There are always n reflections.
- Write ρ for clockwise rotation by $\frac{2\pi}{n}$. Fix one vertex and let σ be the reflection that fixes that vertex.
- Note that $\rho\sigma = \sigma\rho^{-1}$. To show this, it suffices to find where two of the vertices gets mapped.

Proposition: The symmetries are $e, \rho, \rho^2, \dots, \rho^{n-1}, \sigma, \sigma\rho, \sigma\rho^2, \dots, \sigma\rho^{n-1}$

Definition–dihedral group: The group of symmetries of the regular n-gon is D_{2n} , the **dihedral group** of order 2n.

Given $H \leq G$ we write G/H as the set of left cosets

$$G/H = \{gH|g \in G\} \tag{22}$$

$$H \setminus G = \{ Hg | g \in G \} \tag{23}$$

Both of these are called " $G \mod H$ ". In general, the two are different.

Now we want to ask, is $H \setminus G$ a group?

- The most naive idea is to reuse multiplication in G, i.e. $Hg \cdot Hg' = Hgg'$, but it only sometimes works.
- ullet This formula means: $hg\cdot h'g'=h''gg'.$ For any $h,h'\in H,\exists h''$ s.t. this holds.
- Trick: $hg \cdot h'g' = hgh'eg' = hgh'(g^{-1}g)g' = h(ghg^{-1})gg'$. Now we can ask if $ghg^{-1} \in H$ (for every $h' \in H$)

Definition–Normal Subgroup: A subgroup $H \leq G$ is **normal** if $ghg^{-1} \in H \forall g \in G, h \in H$, which is abbreviated as $gHg^{-1} = H$. $H \leq G$ means H is a normal subgroup of G

• Notice that if $gHg^{-1} = H$ then gH = Hg. So H is normal, the left and right cosets must be the same.

Definition–Quotient Group: If $H \subseteq G$, then G/H is called the quotient group.

1.3 Homomorphisms

Definition–Homomorphism: If G,K are groups, a **homomorphism** is a map $\varphi:G\to K$ such that $\varphi(gg')=\varphi(g)\varphi(g')\,\forall g,g'\in G.$

Observations: IF $\varphi: G \to K$ is a homomorphism and $g \in G$, then

- 1. $\varphi(g) = \varphi(eg) = \varphi(e)\varphi(g)$, so $\varphi(e) = e$ (the identity element of K)
- 2. $e = \varphi(e) = \varphi(gg^{-1}) = \varphi(g)\varphi(g^{-1})$, so $\varphi(g^{-1}) = \varphi(g)^{-1}$

Examples

- $G=\mathbb{Z}$ and $\varphi:\mathbb{Z}\to\mathbb{Z}, \varphi(n)=2n$ is a homomorphism, as $\varphi(n+m)=2(n+m)=2n+2m=\varphi(n)+\varphi(m)$
- $G = \mathbb{Z}, K = \mathbb{R}$ and $\varphi : \mathbb{Z} \to \mathbb{R}, \varphi(n) = n$. This mapping is called an **inclusion** as $Z \subset \mathbb{R}$.
- If G is a group and $g_0 \in G$, then $C_{g_0} : G \to G, g \mapsto g_0 g g_0^{-1}$ is a homomorphism.
- A linear transformation $T: V \to W$ if V, W are vector spaces (the additive group).
- Note that $\varphi: g \mapsto g^{-1}$ is **only** a homomorphism if G is abelian.

Definition–Kernel/Image: If $\varphi: G \to G'$ is a homomorphism, then the **kernel** of φ is

$$\ker(\varphi) = \{ g \in G | \varphi(g) = e \}. \tag{24}$$

The **image** of φ is

$$\operatorname{im}(\varphi) = \{ \varphi(g) | g \in G \} \subseteq G' \tag{25}$$

Theorem-: $\ker(\varphi) \leq G$ and $\operatorname{im}(\varphi) \leq G' \ker(\varphi) \leq G$

Proof. Since
$$\varphi(e) = e$$
, $e \in \ker(\varphi)$, and $e \in \operatorname{im}(\varphi)$. So both are nonempty. Suppose $g, h \in \ker(\varphi)$, $e = \varphi(e) = \varphi(hh^{-1}) = \varphi(h)\varphi(h^{-1}) \dots$

- Suppose $N \subseteq G$ and then define $G \to G/N, g \mapsto Ng$. We claim this is a homomorphism. Proof is simple $\varphi(gg') = Ngg', \ \varphi(g)\varphi(g') = NgNg' = NgN(g^{-1}gg') = N(gNg^{-1})gg' = NNgg' = Ngg'$
- This map is called the (natural) **projection** of G onto G/N. Sometimes written $\Pi_{G/N}$ or $\operatorname{proj}_{G/N}$.
- $\operatorname{im}(\Pi_{G/N}) = G/N$ and $\ker(\Pi_{G/N}) = N$.
- Any homomorphism is related to this one, so this could be considered as the "generic homomorphism".

Definition–Isomorphism: If $\varphi:G\to H$ is a homomorphism, and $\ker(\varphi)=\{e\}$ then φ is injective. If $\varphi(G)=H$ then φ is surjective. Thinking of G and H as sets, there is an inverse $\varphi^{-1}:H\to G$ such that $\varphi^{-1}\circ\varphi=1_G$ and $\varphi\circ\varphi^{-1}=1_H$. It is easy to check that φ^{-1} is also a homomorphism. In this case, φ is an **isomorphism**

• Suppose we have an injective homomorphism $\varphi: G \to H$ where $\ker(\varphi) = \{e\}$. Then, we can consider $\varphi: G \to \operatorname{im}(\varphi) < H$. Sometimes we say $\varphi: G \to H$ is an **isomorphism into** H, as opposed to an isomorphism **onto** H or between G and H.

Definition–Automorphism: If G is a group, an **automorphism** of G is an isomorphism $\varphi:G\to G$.

Examples:

- If $G = \mathbb{Z}, n \mapsto -n$ is the only automorphism apart from the identity.
- If G is abelian, $q \mapsto q^{-1}$ is an automorphism.
- If F is a field, and G = GL(n, F) then $g \mapsto (g^t)^{-1}$ (transposed inverse) is an automorphism.
- If we fix $g_0 \in G$ then the conjugation $C_{q_0} : G \to G$ where $C_{q_0}(g) = g_0 g g_0^{-1}$ is an automorphism.

Definition–Automorphism Group: Alt(G) is the **group** of automorphisms of G.

Definition–Inner/Outer Automorphisms: The inner automorphisms of G are

$$\operatorname{Inn}(G) = \{ \varphi \in \operatorname{Alt}(G) | \varphi = C_{q_0} \text{ for some } g_0 \in G \}.$$
 (26)

If an element of Alt(G) that is not inner is **outer**.

- It is easy to show that $Inn(G) \leq Alt(G)$.
- Observe that if G is abelian, then $Inn(G) = {id}$
- In general, $\{id\} \leq Inn(G) \leq Alt(G)$.
- The map

$$G \to \text{Alt}(G)$$
 (27)

$$g \to C_g$$
 (28)

is a homomorphism. Its image is Inn(G) and its kernel is Z_G (the center).

Definition–Fiber: If p is a projection, then $p^{-1}(x)$ is the **fiber** over x

- If $N \triangleleft G$, the projection $\pi: G \to G/N$ is a homomorphism. The fibers of π is the cosets gN = Ng, and they are all the same size.
- Suppose $\varphi: G \to H$ is a homomorphism, and $N = \ker(\varphi) \subseteq G$. The fibers of φ is the cosets of G/N.
- We have $\varphi:G\to H$ and $\pi:G\to G/N$. Wouldn't it be nice if $G/N\to H$ "induced by φ " were a homomorphism? Well, it is.

Theorem–(First) Isomorphism: If $\varphi:G\to H$ is a homomorphism, and $N=\ker(\varphi)$, then there is a homomorphism $\bar{\varphi}:G/N\to H$ such that $\bar{\varphi}\circ\pi=\varphi$. Moreover, $\ker(\bar{\varphi})=\{eN\}$, the trivial subgroup of G/N, so $\bar{\varphi}$ is injective. So, $\bar{\varphi}:G/N\to \operatorname{im}(\varphi)$ is an isomorphism.

• This theorem suggests that you can construct an isomorphism from an arbitrary homomorphism. First, φ factors through G/N, then we can include it into H.

$$G \to^{\pi} G/N \to^{\bar{\varphi}} \operatorname{im}(\varphi) \to^{\operatorname{inclusion}} H$$
 (29)

Theorem–(Third) Isomorphism: $N \subseteq G$ and $H \subseteq G$, then $N \subseteq H \implies N \subseteq G$.

Theorem-:

$$G/H \cong G/N / H/N \tag{30}$$

Proof. Define $\varphi: G \to G/N/H/N$ by

$$\varphi(g) = (gN)H/N \tag{31}$$

We need to show φ is a homomorphism. Let

$$\varphi(gg') = gg'N H/N \tag{32}$$

$$= gNg'N H/N \tag{33}$$

$$= gN H/N \cdot g'N H/N \tag{34}$$

$$=\varphi(g)\varphi(g')\tag{35}$$

(36)

We will then ask what is $\ker(\varphi)$. Suppose $\varphi(g) = H/N$, so $gN \ H/N = H/N$. But g is a representation for gN, so gH/N for this to be in H/N we want $g \in H$ so $\ker(\varphi) = H$. An arbitrary element of $G/N \ H/N$ is $gN \ H/N$ for some $g \in G$, so $\operatorname{im}(\varphi) = G/N \ H/N$.

• $G = \mathbb{Z}, H = 3\mathbb{Z}, K = 4\mathbb{Z}$. By the second isomorphism theorem, $\mathbb{Z}/3\mathbb{Z} \cong 4\mathbb{Z}/12\mathbb{Z}$, and also $Z/4\mathbb{Z} \cong 3\mathbb{Z}/12\mathbb{Z}$.

Definition–Equivilence Class: Being in the same coset of a subgroup H is an equivalence relation. So, the large group is a disjoint union of equivalence classes (cosets) of H.

- The cosets of \mathbb{Z} in \mathbb{R} is $r + \mathbb{Z}$ for $r \in [0, 1)$.
- Homomorphism $\varphi: \mathbb{R} \to \mathbb{C}^{\times}, t \mapsto e^{2\pi i t}$. Then, $\ker(\varphi) = \mathbb{Z}$. Observe tat φ is **onto** the unit circle, by the first isomorphism theorem, $\mathbb{R}/\ker(\varphi) = \mathbb{R}/\mathbb{Z} \cong S^1$.
- $\mathbb{Z}^2 \triangleleft \mathbb{R}^2$

Theorem–Fourth Isomorphism Theorem/Lattice Theorem: Consider a lattice of subgroups with $N \leq G$. In G/N, the subgroup lattice has the same structure as the subgroup lattice of G that contains N.

Specifically, if $N \leq G$, and $N \leq H < G$, we write $\bar{H} = H/N$. Including $\bar{G} = G/N$ and $\bar{N} = \bar{e} = N/N$. Then, the lattice of \bar{H} s in \bar{G} has the same lattice structures as the part of the lattice for G consisting

of subgroups that are intermediate between N and G. Moreover,

$$H \le K \iff \bar{H} \le \bar{K}$$
 (37)

$$H \le K \iff \bar{H} \le \bar{K}$$
 (38)

$$[H:K] = [\bar{H}:\bar{K}] \text{ if } K \le H \tag{39}$$

$$\overline{H \cap K} = \overline{H} \cap \overline{K} \tag{40}$$

$$\overline{\langle H, K \rangle} = \langle \bar{H}, \bar{K} \rangle \tag{41}$$

If G, G' are groups, consider the cartesian product $G \times G' = \{(g, g') | g \in G, g' \in G'\}$. Note that $|G \times G'| = |G||H|$. There is an obvious way to turn this into a group by

$$(g,g')(h,h') = (gh,g'h')$$
 (42)

$$(g,g')^{-1} = (g^{-1},g'^{-1})e = (e,e)$$
(43)

In $G \times G'$, the subset $G_0 =: \{(g,e) | g \in G\} \cong G$ is a subgroup. Likewise, $G'_0 =: \{(e,g') | g' \in G'\} \cong G'$. Also notice that G_0 and G'_0 commute. So, $(G \times G')/G_0 \cong G'$.

1.4 Symmetric Groups

Definition–Symmetric Group: The symmetric group S_n is the group of permutation of n elements, with composition as the operation.

- $|S_n| = n!$
- A cycle is a permutation that cycles through some subset of $\{1,\ldots,n\}$, denoted as

$$(a_1 a_2 \dots a_k), \quad k \le n \text{ and } a_i \text{ are distinct.}$$
 (44)

Represents the permutation $a_1 \to a_2 \to \cdots \to a_k \to a_1$.

- Note that these are ambiguous, as $(a_1 a_2 \dots a_k)$ is the same as $(a_2 a_3 \dots a_k a_1)$. So by convention, we often start with the smallest number first so they are unique.
- k is the length of the cycle, it is also called a k-cycle.
- Every permutation can be written as a product of disjoint cycles. If given a permutation, we will start from 1 and write a cycle until we get back to 1. Then, we will start from the next number that hasn't been included yet and repeat until we get to the end.
- If $\sigma = (1\,3\,6)(4\,5)$, then $\sigma^{-1} = (4\,5)^{-1}(1\,3\,6)^{-1} = (4\,5)(1\,6\,3) = (1\,6\,3)(4\,5)$. We will order the cycles by their first element, and omit 1-cycles.
- Two disjoint cycles (i.e. without any numbers in common) will commute.
- If cycles are not disjoint, like $\sigma = (1\,4\,2)(2\,3\,5)(3\,4\,7) \in S_7$ will not commute.
 - $-1 \rightarrow 4$
 - $-4 \rightarrow 7$
 - $-7 \rightarrow 3 \rightarrow 5$
 - $-5 \rightarrow 2 \rightarrow 1$
 - $-2 \rightarrow 3$
 - $-3 \rightarrow 4 \rightarrow 2$

So $\sigma = (1475)(23)$.

- Any k-cycle is a product of 2-cycles. Thus, every element in the symmetric group can be written as a product of 2-cycles so S_n is generated by 2-cycles. For example, if k=4 and $\sigma=(a\,b\,c\,d)$, then $\sigma=(a\,d)(a\,c)(a\,b)$.
- We can ask what is the minimum number of 2-cycles needed to generate any $\sigma \in S_n$. In general, this is a very difficult question to answer. However, the **parity** of the number of 2-cycles in a product equalling σ is well-defined.
- If $\sigma = (a_1 b_1)(a_2 b_2) \dots (a_k b_k)$ is a product of 2-cycles, then σ is **even** if k is even, and **odd** if k is odd.
- Warning: a k-cycle is even if k is odd, and odd if k is even.
- To make odd and even well defined, we need to know that the parity of a permutation is independent of the way we write the cycles.

Proof. Given $\sigma \in S_n$ is a k-cycle. Define $\Delta = \prod_{1 \leq i < j \leq n} (j-i)$. If $\tau \in S_n$, it acts on Δ with

$$\tau \cdot \Delta = \prod_{1 \le i < j \le n} (\tau(j) - \tau(i)). \tag{45}$$

These two products are the same up to a factor of ± 1 , you have to multiply by -1 for each pair i < j for which $\tau(i) > \tau(j)$.

We will consider how (a b) with a < b affect Δ . If neither i nor j is equal to a or b, the term is unaffected. Note that

- If i < a, then $i < \tau(a) = b$ and $i < \tau(b) = a$. So $(i \, a)$ or $(i \, b)$ are unaffected.
- Likewise, for j > b then (a j) or (b j) are unaffected.

The only pairs that will be affected are ones (a i), (i b) with a < i < b and (a b). If a < i < b, then both (a i) and (i b) will change sign, so the product will be unaffected. (a b) will change sign, so Δ will change sign under a transposition.

If $\sigma \in S_n$, write it as any product of k transpositions. If $\sigma \cdot \Delta = \Delta$ then there must be an even number of transpositions. If $\sigma \cdot \Delta = -\Delta$ then there must be an odd number of transpositions. Thus, the parity of σ is independent of the way we write it.

Definition–Sign: The sign of $\sigma \in S_n$ is

$$\operatorname{sgn}(\sigma) = (-1)^k,\tag{46}$$

if σ is a product of k transpositions.

- Note that $\operatorname{sgn}(\sigma\tau) = (-1)^k (-1)^l = (-1)^{k+l} = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau)$.
- Thus, $\operatorname{sgn}: S_n \to \{\pm 1\}$ is a homomorphism.
- $\ker(\operatorname{sgn}) = A_n \le S_n$ is the alternating group of k elements which contains all the even permutations. Note that

$$S_n/A_n \cong \{\pm 1\} \quad [S_n : A_n] = 2 \quad |A_n| = \frac{n!}{2}$$
 (47)

- for $n>5,\ A_n$ has no normal subgroups. What are the possible cycle types in A_5 ? There is $(a\,b\,c\,d\,e),(a\,b)(c\,d),(a\,b\,c)$
- Let $\sigma \in S_n$ with $a \to b \to c \to \cdots$, and suppose $\tau \in S_n$ takes $a \to a', b \to b', c \to c', \ldots$ Consider the conjugation $\tau \sigma \tau^{-1}$.

$$\tau \sigma \tau^{-1}(a') = \tau \sigma(a) = \tau(b) = b' \tag{48}$$

$$\tau \sigma \tau^{-1}(b') = \tau \sigma(b) = \tau(c) = c' \tag{49}$$

(50)

So $\tau\sigma\tau^{-1}$ takes $a'\to b'\to c'\to \cdots$. Conjugating by τ "relabels" what σ by replacing a with a',\ldots

1.5 Simple Group 1 GROUPS

1.5 Simple Group

One way we study groups is to write it as a chain of normal subgroups $G_0 = \{e\} \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_r = G$, where G_{i+1}/G is a simple group $\forall i=0,\ldots,r-1$. A decomposition like this is called a **Jordan-Holder Series** (composition series), and the quotients are called the **composition factors**. However, the same G may have different composition series.

Theorem–Jordan-Holder: Any two Jordan-Holder series for G have the same length. Moreover, the composition factors are the same (but perhaps in different orders).

Example: Suppose H,K are both normal subgroups of G. Apply 2nd isomorphism theorem. Note, $H\subseteq Norm_G(K)=G$ and $K\subseteq Norm_G(H)=G$. Thus, $HK/K\cong H/H\cap K$ and $HK/H\cong K/H\cap K$. In this example there are two composition series

$$\{e\} \triangleleft H \cap K \triangleleft H \triangleleft HK \triangleleft G \tag{51}$$

$$\{e\} \triangleleft H \cap K \triangleleft K \triangleleft HK \triangleleft G \tag{52}$$

Every group has a Jordan-Holder series. In genera, a group G is not determined by its Jordan-Holder series. However, if G is simple, then its Jordan-Holder series is $\{e\} \triangleleft G$.

Definition–Solvable: If the composition factor G_{i+1}/G_i of G are all **abelian**, we say G is solvable.

If G acts on a set X, then each $g \in G$ permutes the element of X. So there is a map $G \to S_X$ (the symmetric group of X). It is easy to show that this map is a homomorphism. So, we will allow ourselves to go between group actions and Homomorphisms into S_X .

Suppose $H \leq G$ and let X = G/H be the coset space. So, G acts on X by left multiplication $g(xH) \mapsto gxH$. If n = [G:H] = |X|, the action amounts to a homomorphism $\varphi: G \to S_n$.

Our first observation is that G acts **transitively**. For any $x,y\in X,\,\exists\,g\in G$ s.t. gx=y. i.e. the orbit of any $x\in X$ is X.

What is $\ker \varphi$? We know that if $h \in \ker \varphi$, that hxH = xH. Then consider $h', h'' \in H$ then

$$hxh' = xh'' \tag{53}$$

$$hx = xh''h'^{-1} \tag{54}$$

$$h = xh''h'^{-1}x^{-1} (55)$$

$$\ker \varphi = \bigcap_{x \in G} x H x^{-1} \tag{56}$$

If $H=\{e\}$, then G/H=G, so $\ker \varphi=\{e\}$. then φ is injective. By the first isomorphism theorem, $G\cong \operatorname{im} \varphi=S_n$.

Theorem–Cayley: Any group G with |G| = n is isomorphic to a subgroup of S_n .

Proof. We already proved it!

Another example is to let G act on itself by conjugation. In this case, φ with $g \cdot x = gxg^{-1} = C_g(x)$. This is not a transitive action unless G is trivial. The orbits of conjugation are the **conjugacy classes** of G. They are disjoint (because conjugacy is an equivalence relation).

Note that $geg^{-1}=e, \forall g.$ If $z\in Z(G),$ then $gzt^{-1}=zgg^{-1}=z\,\forall g,$ then the conjugacy classes contain a single element.

1.5 Simple Group 1 GROUPS

If G is abelian, Z(G) = G and every element is its own conjugacy class.

Because conjugacy is an equivalence relation, G is a disjoint union of all conjugacy classes.

If $Z(G) = \{e, z_1, \dots, z_k\}$ and g_1, \dots, g_m are representatives from the non-central conjugacy classes. Let's write $C(g_i) = \{gg_ig^{-1}|g \in G\}$. So,

$$G = Z(G) \sqcup \left(\bigsqcup C(g_i) \right) \tag{57}$$

SO

$$|G| = |Z(G)| + \sum_{i} |C(g_i)|$$
 (58)

This is called the **Class Equation**.

Theorem-Orbit-Stabilizer: If G acts on X, for each $x \in X$, write $G \cdot x$ for its orbit. Then,

$$|G \cdot x| = [G : G_x] = [G : \operatorname{Stab}(x)] \tag{59}$$

The point is that two things in the same coset of G_x has the same effect on x.

Under conjugation,

$$Stab(x) = G_x = \{ g \in G | gxg^{-1} = x \} = Z(x), \tag{60}$$

the centralizer of x. So the class equation can be rewritten as

$$|G| = |Z(G)| + \sum_{i} [G : Z(g_i)]$$
 (61)

Definition–p-group: Suppose p is prime, G is a p-group if $|G| = p^k$ for some $k \ge 1$.

Theorem—: If G is a non-trivial p-group, then it has a non-trivial center.

Proof. Suppose |G| = 1. Then

$$|G| = |Z(G)| + \sum_{i} [G : Z(g_i)]$$
 (62)

Claim $Z(g_i) < G$, otherwise $g_i \in Z(G)$. By Lagrange's theorem $|Z(g_i)| |G| = p^k$. So $|Z(g_i)| = p^l$ for some l < k. Then,

$$p^{k} = |G| = |Z| + \sum_{i} [G : Z(g_{i})]$$
(63)

(64)

Since |Z| = 1, the RHS is not divisible by p so this is a contradiction.

1.5 Simple Group 1 GROUPS

Corollary: Suppose p is prime. If $|G| = p^2$, then G is abelian.

Proof. We know Z(G) is a non-trivial subgroup so $1 \neq |Z(G)||p^2$. So |Z(G)| = p or p^2 . If $|Z(G)| = p^2$, then G is abelian by definition. If |Z(G)| = p, then |G/Z(G)| = p hence $G/Z(G) \cong C_p$. So $x \notin Z(G)$, then $G/Z(G) = \{\bar{e}, \bar{x}, \bar{x}^2, \dots \bar{x}^{p-1}\}$ where $\bar{x} =: xZ(G)$. Also, $\bar{x}^p = \bar{e} \in G/Z(G)$. Note that $\operatorname{ord}(x)$ is either p or p^2 .

- If $|\langle x \rangle| = p^2$ so $\langle x \rangle = G$ and G is cyclic hence abelian.
- If ord(p), then $G = \bigcup_{k=0}^{p-1} x^k Z(G)$. Recall |Z(G)| = p, so Z(G) is cyclic. Then,

$$Z(G) = \{e, z, z^2, \dots, z^{p-1}\}\tag{65}$$

so

$$G = \{x^i z^j | 0 \le i, j < p\} \tag{66}$$

These elements commute. $x^i z^j x^m z^n = x^i x^m z^j z^n = x^{i+m} z^{j+n}$

Note we need to be careful with the steps in this proof. Just because $\bar{x}^p=\bar{e}$ doesn't mean there is a representative $x\in\bar{x}$ that is order p.

- Now we consider the rotations of a tetrahedron. A easy way to think about this is to identify a "top" vertex, which is well defined (4 possibilities). Then, we fix the top and we have 3 rotations (like of the triangle). So, there are 12 rotations.
- Apart from e, there are two non-trivial rotations that fix any particular vertex. This only accounts for 8 rotations, and e, so we are missing 3 rotations.
- The other rotations does not fix any vertices and are like $(1\,2)(3\,4)$. Then, 2,3,4 goes with 1 so we have 3 rotations. This accounts for all 12.
- In summary, we have e, and 8 rotations in the form $(a\,b\,c)$ and 3 rotations in the form $(a\,b)(c\,d)$. This is A_4 .
- The rigid motions are S_4 .

Proposition: A_5 is simple. $A_5 \triangleleft S_5$ with index 2, so $|A_5| = 60$.

Proof. We will enumerate the conjugacy classes of S_5

- $(abcde) \in A_5$
- $(abcd) \notin A_5$
- $(abc) \in A_5$
- $(abc)(de) \notin A_5$
- $(ab)(cd) \in A_5$
- $(ab) \notin A_5$
- $e \in A_5$

There are 24 elements in the conjugacy class of (a b c d e). However, 24 does not divide 60 so it is not a conjugacy class of A_5 .

Consider the centralizer $Z_{A_5}(abcde) \geq \langle (abcde) \rangle$ which has order 5. But $Z_{A_5}(abcde) \leq Z_{S_5}(abcde)$ so $Z_{A_5}(abcde) = \langle (abcde) \rangle$

So there are two A_5 conjugate classes of 5-cycles, each with 12 elements.

There are 20 3-cycles in S_5 . Are they all conjugate in A_5 ? If $(a \, b \, c)$ is conjugate to $(x \, y \, z)$ by $\sigma \in S_5$, then it is also conjugate by $\sigma(d \, e)$ If $\sigma \notin A_5$ then $\sigma(d \, e) \in A_5$ so there is one conjugate class of 20 3-cycles.

There are 15 double transpositions.

If we have a normal subgroup, it is a union of the conjugacy classes, so if A_5 has a normal subgroup it must be a combination of 1 + 15, 20, 12, 12 but there is no combination (apart from 1) that divides 60. Hence, A_5 is simple.

2 Sylow Theorems

Theorem—: Suppose $|G| = p^{\alpha}n$ where $p \not| n$. Then, a subgroup $P \leq G$ is a Sylow p-subgroup if $|P| = p^{\alpha}$. We'll write $n_p(G)$ for the number of Sylow p-subgroups of G.

- 1. Sylow p-subgroups exist.
- 2. Suppose P is a Sylow p-subgroup of G and $Q \leq G$ s.t. $|Q| = p^r$ for some r > 0. Then, $\exists g \in G$ s.t. $gQg^{-1} \subseteq P$. In particular, all Sylow p-subgroups of G are conjugate.
- 3. $n_p(G) \equiv 1 \mod p$ and $n_p(G) = [G : \operatorname{Norm}_G(P)]$ for any Sylow p-subgroup. Hence $n_p(G)||G|$. It actually also divides n = |G|/|P|.

Before proving the theorem we will consider the following example: Let $G = S_3$. The Sylow 2 subgroups are $\{e, (12)\}, \{e, (13)\}, \{e, (23)\}$ we know $n_2(S_3) = 3 \equiv 1 \mod 2$. The only Sylow 3 subgroup is A_3 , so $n_3(S_3) = 1$.

Lemma 1: If G is abelian and p | |G|, then G contains an element of order p.

Proof. If |G| = p then G is cyclic and every non-trivial element has order p. If |G| > p, and $x \in G$ with order $p^r m$ where $p \nmid m$. If $r \neq 0$, then $x^{p^{r-1}m}$ has order p. This reduces us to the case where $p \nmid \operatorname{ord}(x), \forall x \in G$. We will use induction.

- Assume the result is true for all groups smaller than G.
- If $p \nmid \operatorname{ord}(x) = |\langle x \rangle| < |G|$. As G is abelian, then $N =: \langle x \rangle \triangleleft G$.
- By induction G/N contains an element of order p.
- i.e. $\exists y = y_0 N \in G/N \text{ s.t. } y^p = e = N \text{. so } y_0^p \in N$
- We claim that $\langle y_0^p \rangle < \langle y_0 \rangle$ since otherwise $y_0 \in N$ which has order 1.
- This means $p \mid |y_0|$ otherwise $\langle y_0^p \rangle = \langle y_0 \rangle$. This is a contradiction.
- This means a suitable power of y_0 must have order p.

Lemma 2: If $P \in \text{Syl}_n(G)$ and Q is a non-trivial p-subgroup of G. Then, $Q \cap \text{Norm}_G(P) = Q \cap P$.

Proof. Let $H = Q \cap \text{Norm}_G(P) \ge Q \cap P$. We need to show that $H \le Q \cap P$. But $H \le Q$ so we only need to show that $H \le P$.

 $H \leq N_G(P) \implies HP$ is a subgroup. The result will follow if we can argue that HP is a p-group. We know that

$$|HP| = \frac{|H||P|}{|H \cap P|} \tag{67}$$

Since $|H|, |P|, |H \cap P|$ are all powers of P. So $HP \geq P$ but |HP| can't be bigger than |P|.