

Redes de Computadores e Sistemas Distribuídos

Material 05 – Endereçamento IP

Professor: Paulemir Soares

Cursos: Sistemas de Informação / Sistemas para Internet

Sumário

- Introdução A Mudança para o IPv6
- Modelo Ampulheta com IP ao centro
- Esquema de Endereçamento IP
- Classes
- Máscaras
- Notação CIDR Classless Inter-Domain Routing
- Endereços Especiais: Rede, Broadcast, Loopback.
- Roteadores e Princípios
- Notação IPv6

- É importante entender a mudança que está ocorrendo.

O sucesso do IPv4 é incrível — o protocolo tem acomodado as mudanças de tecnologia de hardware, redes heterogêneas e de escala extremamente larga.

Quando o IPv4 foi definido, apenas alguns computadores existiam nas redes. Os projetistas decidiram usar endereço de 32 bits para o IP, pois isso permite que a Internet inclua mais de 1 milhão de redes.

E aí chega a IoT – Internet of Things (Internet das Coisas)

Acesso à internet no Brasil

Edição de 2020 da pesquisa TIC Domicílios indica aumento do uso da banda larga

https://g1.globo.com/economia/tecnologia/noticia/2021/08/18/uso-da-internet-no-brasil-cresce-e-chega-a-81percent-da-populacao-diz-pesquisa.ghtml

- •Última data de atualização: 2022-12-03 06:00 UTC
- •Endereços IPv4 totais nesta fase: 6.005.504
- •Endereços IPv4 alocados nesta fase: 5.839.616
- •Endereços IPv4 pré-aprovados a serem atribuídos: 14.080
- •Endereços revogados / devolvidos em quarentena: 14.080
- •Endereços IPv4 disponíveis nesta fase: 6.656
- •Reservado para Infraestrutura Crítica: 131072
- •Endereços IPv4 alocados para infraestrutura crítica: 7.936
- •Endereços IPv4 disponíveis para infraestrutura crítica: 123.136

Fonte: https://www.lacnic.net/1077/3/lacnic/fases-de-esgotamento-do-ipv4

Enquanto no IPv4 temos 32 bits que nos possibilitam cerca de 4 bilhões de combinações (2³²), no IPv6 temos mais de 340 undecilhões de endereços possíveis. Para se ter uma ideia do que isto representa, se convertêssemos cada IPv6 possível em um cm², poderíamos envolver toda a superfície do planeta Terra com 7 camadas de endereços.

Modelo Ampulheta com IP ao Centro

 Como o IP é central para todas as comunicações realizadas pela Internet, substituí-lo requer uma mudança na Internet inteira.

Modelo Ampulheta com IP ao Centro

No AndroidBuscar endereço IP.

Normalmente exibido em informação de Status

No IOS

Abra os Ajustes e toque em "Wi-Fi". Ao lado da rede que estiver conectado no momento, toque no "i" para visualizar as informações sobre a conexão atual. Na área "Endereço IPv4

Modelo Ampulheta com IP ao Centro

- 1. Conectar na rede Wifi-Uniesp
- 2. Acessar o endereço www.meuip.com

MeulP.COM: Uma página Simples, Leve e Rápida. Pra quem é objetivo e só quer descobrir seu IP.

O meu IP é: 187.64.78.61

IP Reverso: bb404e1e.virtua.com.br

O QUE É MEU IP?

IP significa Internet Protocol e é um número que seu computador (ou roteador) recebe quando se conecta à Internet. É através desse número que seu computador é identificado e pode enviar e receber dados.

O IP é definido pelo seu provedor de Internet e pode ser estático (não mudar) ou dinâmico (mudando de tempos em tempos).

Esquema de Endereçamento IP

- O IP especifica que para cada host é atribuído um número exclusivo conhecido como endereço do protocolo Internet, endereço IP ou endereço Internet.
- O IPv4 usa endereços de 32 bits e o IPv6 usa endereços de 128 bits.
- Ao enviar um pacote através da Internet, o remetente deve especificar seu próprio endereço IP (endereço de origem), bem como o endereço do destinatário (endereço de destino).

Para resumir:

- Um endereço IP é um número binário atribuído ao host e usado durante toda a comunicação com o host.
- O IPv4 usa endereços de 32 bits e o IPv6 usa endereços de 128 bits.

Esquema de Endereçamento IP

Formato

Número binário de 32 bits	Notação decimal pontilhada equivalente
10000001 00110100 00000110 00000000	129.52.6.0
11000000 00000101 00110000 00000011	192.5.48.3
00001010 00000010 00000000 00100101	10.2.0.37
10000000 00001010 00000010 00000011	128.10.2.3
10000000 10000000 11111111 00000000	128.128.255.0

Figura 21.3 Exemplos de números binários de 32 bits e seus equivalentes na notação decimal pontilhada usados com o IPv4.

Esquema de Endereçamento IP

Propriedades

- a) A cada computador é atribuído um endereço único (isto é, um único endereço nunca é atribuído a mais de um computador).
- b) Embora as atribuições do número de rede devam ser coordenadas globalmente, os sufixos podem ser atribuídos localmente sem uma coordenação global.

Classes

Figura 21.2 As cinco classes do endereço IPv4 no esquema original classful.

Classes

Classe	Gama de Endereços	Nº de Endereços por Rede
A	0.0.0.1 até 127.255.255.255	16 777 216
В	128.0.0.0 até 191.255.255.255	65 536
C	192.0.0.0 até 223.255.255.255	256
D	224.0.0.0 até 239.255.255.255	Multicast

Máscaras

Ela é responsável por marcar o limite da rede usando a operação lógica *and*. Exemplo:

Utilizando o IPv4, considere o seguinte prefixo de rede de 32 bits:

10000000 00001010 00000000 00000000

Ele tem o valor decimal pontilhado 128.10.0.0. Considere também uma máscara de 32 bits que tem 16 bits 1 seguidos por 16 bits 0, que pode ser representada em decimal pontilhado como 255.255.0.0:

11111111 11111111 00000000 00000000

Agora, considere o endereço de destino de 32 bits 128.10.2.3, que tem um equivalente binário de:

10000000 00001010 00000010 00000011

Um *and* lógico do endereço de destino e a máscara de endereço extraem os 16 bits de alta ordem, o que produz o resultado binário:

10000000 00001010 00000000 00000000

que é igual ao prefixo de rede 128.10.0.0.

Notação CIDR - Classless Inter-Domain Routing

Quando o esquema de endereçamento CIDR foi criado, os projetistas queriam tornar mais compreensível para um ser humano a especificação de uma máscara via notação decimal.

Formato:

ddd.ddd.ddd.ddd / m onde *ddd* é o valor decimal para um octeto do endereço e *m* é o número de bits 1 na máscara.

192.5.48.69 / 26

26 bits para a rede e 6 para o número de hosts

Máscara de 26 bits.

192.5.48.0 - 63 192.5.48.64 - 127 192.5.48.128 - 191 192.5.48.192 - 256

Notação CIDR - Classless Inter-Domain Routing

Figura 21.6 Ilustração de endereçamento CIDR IPv4 para um exemplo do prefixo /28.

Pergunta:

128.211.0.17 e 128.211.0.30 Ambos sendo /28 estão na mesma Rede?

Endereços Especiais: Rede, Broadcast, Loopback.

Além de atribuir um endereço para cada computador, é conveniente ter endereços que possam ser atribuídos a redes ou conjuntos de computadores.

O IP define um conjunto de formas de endereços especiais que são *reservados*. Ou seja, endereços especiais nunca são atribuídos a hosts.

Endereços Especiais: Rede, Broadcast, Loopback.

Rede

O IP reserva o endereço de host 0 e usa-o para designar uma rede. Assim, o endereço 128.211.0.16 / 28 denota uma rede, pois os bits além do 28º são zeros.

Broadcast

Às vezes, é conveniente enviar uma cópia de um pacote para todos os hosts em uma rede física. Para simplificar a difusão, o IPv4 define um *endereço de broadcast direcionado* para cada rede física. Quando um pacote é enviado para o endereço de broadcast direcionado de rede, uma única cópia do pacote viaja através da Internet até que atinja a rede especificada. O pacote é então entregue a todos os hosts da rede.

Loopback

O IP define um *endereço de loopback* usado para testar aplicações de rede. Os programadores costumam usar o loopback para depuração preliminar após uma aplicação de rede ter sido criada. Para executar um teste de loopback, um programador deve ter dois aplicativos que têm como objetivo comunicarem-se através de uma rede. Cada aplicativo inclui o código necessário para interagir com o software de protocolo TCP/IP.

Roteadores e Princípios

- I. Um computador com várias conexões de rede (por exemplo, um roteador) deve ter um endereço IPv4 para cada conexão.
- II. Um computador host conectado a várias redes é chamado de *multihomed*. O *multihoming* é por vezes utilizado para melhorar a confiabilidade se uma rede falha, o host ainda pode estar na Internet através da segunda conexão.

Capítulo 21 IP: endereçamento da Internet

Figura 21.8 Um exemplo de endereços IPv4 atribuídos a dois roteadores.

Notação IPv6

 Também como o IPv4, o IPv6 separa cada endereço em um prefixo que identifica a rede e um sufixo que identifica um computador particular na rede.

Notação IPv6

• Para facilitar suas representação, algumas regras de nomenclatura foram definidas: Zeros a esquerda em cada duocteto podem ser omitidos.

Assim, 2001:0DB8:00AD:000F:0000:0000:0000:0001 pode ser representado por: 2001:DB8:AD:F:0:0:0:1

• Blocos vazios contínuos podem ser representados pelos caracteres :: (quatro pontos) UMA ÚNICA VEZ dentro do endereço (o que vem antes do primeiro dois pontos representa os primeiros bits e o que vem após o segundo dois pontos representa os últimos bits do endereço).

Assim, 2001:0DB8:00AD:000F:0000:0000:0000:0001 pode ser representado por: 2001:DB8:AD:F::1

Notação IPv6

• Endereços Especiais

Tipo	Objetivo
unicast	O endereço corresponde a um único computador. Um datagrama enviado para o endereço é roteado pelo caminho mais curto até o computador
multicast	O endereço corresponde a um grupo de computadores, e a filiação ao grupo pode mudar a qualquer momento. IPv6 entrega uma cópia do datagrama para cada membro do grupo
anycast	O endereço corresponde a um grupo de computadores que compartilham um prefixo em comum. Um datagrama enviado para o endereço é entregue para exatamente um dos computadores (p.ex., o computador mais próximo do remetente)

Figura 21.10 Os três tipos de endereços IPv6.

