Exercises for Week 12

The work handed in should be entirely your own. You can consult Dummit and Foote, Artin and/or the class notes but nothing else. To receive full credit, justify your answer in a clear and logical way. Due Nov. 27.

Reading. Read Artin Sections 7.2, 6.12. Review section 5.1 for more background material on special orthogonal groups.

- 1. Let $Aut_{Gp}(G)$ be the set of automorphisms of G preserving the group structure.
 - (a) Show that $Aut_{Gp}(G)$ is a group.
 - (b) Show that conjugation gives rise to a group homomorphism $C: G \to Aut_{Gp}(G)$, $C(g): G \to G, x \mapsto gxg^{-1}$. Determine the kernel of C.
 - (c) The set of automorphisms in $Aut_{Gp}(G)$ that are in the image of C are called *inner automorphisms*. Show that inner automorphisms of a group G constitute a normal subgroup in $Aut_{Gp}(G)$.
- 2. Find all the conjugacy classes and class equations for the groups (a) C_n , (b) D_n , and (c) $H = \{\pm 1, \pm i, \pm j, \pm k\}.$
- 3. Determine the matrices that represent the following rotations of \mathbb{R}^3 :
 - (a) by angle θ about the y-axis.
 - (b) by angle $\pi/4$ about the axis in the direction $(1,1,1)^t$.
- 4. Show that any element $A \in O(3,\mathbb{R}) \backslash SO(3,\mathbb{R})$ has -1 as an eigen-value. Mimic the proof of Euler's theorem to show that any such matrix can be conjugated, via a change of orthonormal basis, to one of the form

$$\begin{pmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta & \cos\theta & 0 \\
0 & 0 & -1
\end{pmatrix}$$

- 5. Let G be the rotational symmetry group of the cube in \mathbb{R}^3 , and let S be the set of four diagonal lines connecting opposite vertices. Determine the stabilizer of one of the diagonals.
- 6. In class we used the counting formula to find the order of the symmetry group of a tetrahedron. Use the same method to find the orders of the octahedron group and icosahedron group.