Ranged Polynomial Protocols

Ariel Gabizon
Aztec

(Based on work with Zachary J. Williamson)

```
"traditional" approach (QAP/r1cs/..)
```

```
Program
Constraints in some language
        Polynomials
           Proof
```

Recently.. (similar in spirit to [..,BCGGHJ17,Arya,..]):

 $^{^{1}} https://ethresear.ch/t/using-polynomial-commitments-to-replace-state-roots/7095, plookup$

Ranged polynomials protocols

Preprocessing/inputs: Predefined polynomials

 $g_1, \ldots, g_t \in \mathbb{F}_{< d}[X]$

Range: $H \subset \mathbb{F}$.

Ranged polynomials protocols

Preprocessing/inputs: Predefined polynomials

 $g_1,\ldots,g_t\in\mathbb{F}_{< d}[X]$

Range: $H \subset \mathbb{F}$.

Protocol:

1. \mathcal{P} 's msgs are to ideal party \mathbf{I} . Must be $f_i \in \mathbb{F}_{<\mathbf{d}}[X]$.

Ranged polynomials protocols

Preprocessing/inputs: Predefined polynomials

 $g_1,\ldots,g_t\in\mathbb{F}_{< d}[X]$

Range: $H \subset \mathbb{F}$.

Protocol:

- 1. \mathcal{P} 's msgs are to ideal party \mathbf{I} . Must be $\mathbf{f_i} \in \mathbb{F}_{<\mathbf{d}}[\mathbf{X}]$.
- 2. At end, \mathcal{V} asks \mathbf{I} if some identity holds between $\{\mathbf{f}_1, \ldots, \mathbf{f}_\ell, \mathbf{g}_1, \ldots, \mathbf{g}_t\}$ on \mathbf{H} .

 $D := \max \text{ degree of identity } C \text{ checked in exec with honest } \mathcal{P}.$

$$\mathfrak{d}(\mathbf{P}) \coloneqq \left(\sum_{i \in [t]} \deg(\mathbf{f}_i) + 1\right) + \mathbf{D} - |\mathbf{H}|.$$

²similar statements in Marlin/Fractal/Supersonic

 $D := \max \text{ degree of identity } C \text{ checked in exec with honest } \mathcal{P}.$

$$\mathfrak{d}(\mathbf{P})\coloneqq \left(\sum_{\mathfrak{i}\in[\mathfrak{t}]} \mathsf{deg}(\mathbf{f}_{\mathfrak{i}}) + 1\right) + \mathbf{D} - |\mathbf{H}|.$$

Thm:² Can compile to "real" protocol in Algebraic Group Model, where prover complexity $\mathfrak{d}(\mathbf{P})$.

²similar statements in Marlin/Fractal/Supersonic

 $D := \max \text{ degree of identity } C \text{ checked in exec with honest } \mathcal{P}.$

$$\mathfrak{d}(\mathbf{P}) \coloneqq \left(\textstyle\sum_{\mathfrak{i} \in [\mathfrak{t}]} \mathsf{deg}(\mathbf{f}_{\mathfrak{i}}) + 1\right) + \mathbf{D} - |\mathbf{H}|.$$

Thm:² Can compile to "real" protocol in Algebraic Group Model, where prover complexity $\mathfrak{d}(\mathbf{P})$.

proof sketch: Use [KZG] polynomial commitment scheme. \mathcal{P} commits to all polys and C/Z_H . \mathcal{V} checks identity at random challenge point.

²similar statements in Marlin/Fractal/Supersonic

Given $a, b \in \mathbb{F}^3$, want to check $\{b_1, b_2, b_3\} \stackrel{?}{=} \{\alpha_1, \alpha_2, \alpha_3\}$

Given $a, b \in \mathbb{F}^3$, want to check $\{b_1, b_2, b_3\} \stackrel{?}{=} \{\alpha_1, \alpha_2, \alpha_3\}$

$$\{o_1, o_2, o_3\} - \{u_1, u_2, u_3\}$$

Choose random $\gamma \in \mathbb{F}$. Check

$$(\mathfrak{a}_1+\gamma)(\mathfrak{a}_2+\gamma)(\mathfrak{a}_3+\gamma)\stackrel{?}{=}(\mathfrak{b}_1+\gamma)(\mathfrak{b}_2+\gamma)(\mathfrak{b}_3+\gamma)$$

Given $a, b \in \mathbb{F}^3$, want to check $\{b_1, b_2, b_3\} \stackrel{?}{=} \{\alpha_1, \alpha_2, \alpha_3\}$

Choose random $\gamma \in \mathbb{F}$. Check

$$(\alpha_1+\gamma)(\alpha_2+\gamma)(\alpha_3+\gamma) \stackrel{?}{=} (b_1+\gamma)(b_2+\gamma)(b_3+\gamma)$$

If a, b different as sets then w.h.p products different.

Given $a, b \in \mathbb{F}^3$, want to check $\{b_1, b_2, b_3\} \stackrel{?}{=} \{\alpha_1, \alpha_2, \alpha_3\}$

Choose random $\gamma \in \mathbb{F}$. Check

$$(\alpha_1+\gamma)(\alpha_2+\gamma)(\alpha_3+\gamma) \stackrel{?}{=} (b_1+\gamma)(b_2+\gamma)(b_3+\gamma)$$

If a, b different as sets then w.h.p products different.

Multiset equality check - polynomial version

Given f, $g \in \mathbb{F}_{< d}[X]$, want to check $\{f(x)\}_{x \in H} \stackrel{?}{=} \{g(x)\}_{x \in H}$ as multisets

Multiplicative subgroups:

$$H = \left\{\alpha, \alpha^2, \dots, \alpha^n = 1\right\}.$$

 L_i is i'th lagrange poly of H:

$$L_{i}(\alpha^{i}) = 1, L_{i}(\alpha^{j}) = 0, j \neq i$$

Reduces to:

$$H = \left\{\alpha, \alpha^2, \dots, \alpha^n\right\}.$$

$$\mathcal{P} \text{ has sent } \mathbf{f}, \mathbf{g} \in \mathbb{F}_{\!\!\!<\!\! \mathbf{n}}[\mathbf{X}].$$

Wants to prove:

$$\prod_{i \in [n]} f(\alpha^i) = \prod_{i \in [n]} g(\alpha^i)$$

Checking products with H-ranged protocols [GWC19]

- 1. \mathcal{P} computes \mathbf{Z} with $\mathbf{Z}(\alpha) = 1$, $\mathbf{Z}(\alpha^i) = \prod_{j < i} f(\alpha^j) / g(\alpha^j)$.
- 2. Sends **Z** to **I**.

Checking products with H-ranged protocols [GWC19]

- 1. \mathcal{P} computes Z with $Z(\alpha) = 1$, $Z(\alpha^i) = \prod_{j < i} f(\alpha^j)/g(\alpha^j)$.
- 2. Sends Z to I.
- 3. \mathcal{V} checks following identities on \mathbf{H} .
 - 3.1 $L_1(X)(Z(X)-1)=0$
 - 3.2 $Z(X)f(X) = Z(\alpha \cdot X)g(X)$

Checking products with H-ranged protocols [GWC19]

- 1. \mathcal{P} computes Z with $Z(\alpha) = 1$, $Z(\alpha^i) = \prod_{j < i} f(\alpha^j)/g(\alpha^j)$.
- 2. Sends Z to I.
- 3. \mathcal{V} checks following identities on \mathbf{H} .
 - 3.1 $L_1(X)(Z(X)-1)=0$
 - 3.2 $Z(X)f(X) = Z(\alpha \cdot X)g(X)$

We get $\mathfrak{d}(P) = n + 2n - |H| = 2n$.

Integer M < n. Given $f \in \mathbb{F}_{n}[X]$, want to check $f(x) \in [1..M]$ for each $x \in H$.

Integer M < n. Given $f \in \mathbb{F}_{< n}[X]$, want to check $f(x) \in [1..M]$ for each $x \in H$. (most?) common SNARK operation

Simplyfing assumption: $[1..M] \subset \{f(x)\}_{x \in H}$ Protocol:

1. $\mathcal P$ computes "sorted version of f": $s \in \mathbb F_{n}[X]$ with $\{s(x)\}_{x \in H} = \{f(x)\}_{x \in H}$, $s(\alpha^i) < s(\alpha^{i+1})$.

- 1. \mathcal{P} computes "sorted version of \mathbf{f} ": $\mathbf{s} \in \mathbb{F}_{n}[\mathbf{X}]$ with $\{\mathbf{s}(\mathbf{x})\}_{\mathbf{x} \in \mathbf{H}} = \{\mathbf{f}(\mathbf{x})\}_{\mathbf{x} \in \mathbf{H}}, \ \mathbf{s}(\alpha^i) < \mathbf{s}(\alpha^{i+1})$.
- 2. \mathcal{P} sends \mathbf{s} to \mathbf{I} .

- 1. \mathcal{P} computes "sorted version of \mathbf{f} ": $\mathbf{s} \in \mathbb{F}_{n}[\mathbf{X}]$ with $\{\mathbf{s}(\mathbf{x})\}_{\mathbf{x}\in\mathbf{H}} = \{\mathbf{f}(\mathbf{x})\}_{\mathbf{x}\in\mathbf{H}}, \ \mathbf{s}(\alpha^i) < \mathbf{s}(\alpha^{i+1})$.
- 2. \mathcal{P} sends \mathbf{s} to \mathbf{I} .
- 3. ${oldsymbol {\cal V}}$ checks that
 - 3.1 Mutli-set equality between s and f.

- 1. \mathcal{P} computes "sorted version of f": $s \in \mathbb{F}_{n}[X]$ with $\{s(x)\}_{x \in H} = \{f(x)\}_{x \in H}, \ s(\alpha^i) < s(\alpha^{i+1})$.
- 2. \mathcal{P} sends \mathbf{s} to \mathbf{I} .
- 3. \mathcal{V} checks that
 - 3.1 Mutli-set equality between s and f.
 - $3.2 \mathbf{s}(\alpha) = 1$
 - $3.3 \ \mathbf{s}(\alpha^n) = \mathbf{M}$

- 1. \mathcal{P} computes "sorted version of \mathbf{f} ": $\mathbf{s} \in \mathbb{F}_{<\mathbf{n}}[\mathbf{X}]$ with $\{\mathbf{s}(\mathbf{x})\}_{\mathbf{x}\in\mathbf{H}} = \{\mathbf{f}(\mathbf{x})\}_{\mathbf{x}\in\mathbf{H}}, \ \mathbf{s}(\alpha^i) < \mathbf{s}(\alpha^{i+1})$.
- 2. \mathcal{P} sends s to I.
- 3. \mathcal{V} checks that
 - 3.1 Mutli-set equality between s and f.
 - $3.2 \mathbf{s}(\alpha) = 1$
 - $3.3 \ \mathbf{s}(\alpha^n) = \mathbf{M}$
 - 3.4 For each $x \in H \setminus \{1\}$,

Simplyfing assumption: $[1..M] \subset \{f(x)\}_{x \in H}$ Protocol:

- 1. \mathcal{P} computes "sorted version of \mathbf{f} ": $\mathbf{s} \in \mathbb{F}_{<\mathbf{n}}[\mathbf{X}]$ with $\{\mathbf{s}(\mathbf{x})\}_{\mathbf{x}\in\mathbf{H}} = \{\mathbf{f}(\mathbf{x})\}_{\mathbf{x}\in\mathbf{H}}, \ \mathbf{s}(\alpha^i) < \mathbf{s}(\alpha^{i+1})$.
- 2. \mathcal{P} sends \mathbf{s} to \mathbf{I} .
- 3. \mathcal{V} checks that
 - 3.1 Mutli-set equality between s and f.
 - 3.2 $s(\alpha) = 1$
 - 3.3 $s(\alpha^{n}) = M$
 - 3.4 For each $x \in H \setminus \{1\}$,

$$(s(x \cdot \alpha) - s(x))^2 = s(x \cdot \alpha) - s(x)$$

We get $\mathfrak{d}(\mathbf{P}) = 3\mathbf{n}$

Simplyfing assumption: $[1..M] \subset \{f(x)\}_{x \in H}$ Protocol:

- 1. \mathcal{P} computes "sorted version of f": $s \in \mathbb{F}_{n}[X]$ with $\{s(x)\}_{x \in H} = \{f(x)\}_{x \in H}, \ s(\alpha^i) < s(\alpha^{i+1})$.
- P sends s to I.
 V checks that
 - 3.1 Mutli-set equality between s and f.
 - $3.2 \quad \mathbf{s}(\alpha) = 1$
 - 3.3 $s(\alpha^n) = M$ 3.4 For each $x \in H \setminus \{1\}$,

$$(s(x \cdot \alpha) - s(x))^2 = s(x \cdot \alpha) - s(x)$$

We get $\mathfrak{d}(\mathbf{P}) = 3\mathbf{n}$

To remove assumption use preprocessed "table poly" \mathbf{t} with $\{\mathbf{t}(\mathbf{x})\}_{\mathbf{x}\in\mathbf{H}}=[1..M]$ increased $\mathfrak{d}(\mathbf{P})$ by 2M

Simplyfing assumption: $[1..M] \subset \{f(x)\}_{x \in H}$ Protocol:

- 1. \mathcal{P} computes "sorted version of f": $s \in \mathbb{F}_{n}[X]$ with $\{s(x)\}_{x \in H} = \{f(x)\}_{x \in H}, \ s(\alpha^i) < s(\alpha^{i+1})$.
- P sends s to I.
 V checks that
 - 3.1 Mutli-set equality between s and f.
 - $3.2 \quad \mathbf{s}(\alpha) = 1$
 - 3.3 $s(\alpha^n) = M$ 3.4 For each $x \in H \setminus \{1\}$,

$$(s(x \cdot \alpha) - s(x))^2 = s(x \cdot \alpha) - s(x)$$

We get $\mathfrak{d}(\mathbf{P}) = 3\mathbf{n}$

To remove assumption use preprocessed "table poly" \mathbf{t} with $\{\mathbf{t}(\mathbf{x})\}_{\mathbf{x}\in\mathbf{H}}=[1..M]$ increased $\mathfrak{d}(\mathbf{P})$ by 2M