

Sardar Patel Institute of Technology

Duration: 1 Hr.

Branch: COMP

Semester: IV

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

Mid Semester Examination March 2020

Max. Marks: 20

Class: S.E.

Course Code:CE41

Name of the Course: Design and Analysis of Algorithms

Instruction:

(1) All questions are compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

Questions	Max. Marks	CO-BL-PI
backtracking	4M	5-2-2.1.2
and $m=15$, describe the bounding functions for sum of subset problem.	4M	5-3-2.2.3
Evaluate the following recurrence relation using Master's theorem i) $T(n) = 2^n T(n/2) + n^n$ ii) $T(n)=3T(n/3) - n$	3M	1-5-2.4.1
Use a recursion tree method to determine a good asymptotic upper bound on the recurrence $T(n) = T(n/2) + n^2$. Use the substitution method to verify your answer.	6M	1-3-1.3.1
Explain the strassen's matrix multiplication method and state its time complexity. OR Sort the following numbers using Quicksort. [2,1,5,4,3,6,7,8]. state time	3M 3M	2-2-2.2.4
	Define Backtracking, Write and Elaborate general iterative algorithm for backtracking Construct a state space tree to solve sum of subset problem for a subset $w = \{3,5,6,7\}$ and $m = 15$, describe the bounding functions for sum of subset problem. Evaluate the following recurrence relation using Master's theorem i) $T(n) = 2^n T(n/2) + n^n$ ii) $T(n) = 3T(n/3) - n$ Use a recursion tree method to determine a good asymptotic upper bound on the recurrence $T(n) = T(n/2) + n^2$. Use the substitution method to verify your answer. Explain the strassen's matrix multiplication method and state its time complexity. OR	Define Backtracking, Write and Elaborate general iterative algorithm for backtracking Construct a state space tree to solve sum of subset problem for a subset $w = \{3, 5, 6, 7\}$ and $m = 15$, describe the bounding functions for sum of subset problem. Evaluate the following recurrence relation using Master's theorem i) $T(n) = 2^n T(n/2) + n^n$ 3M ii) $T(n) = 3T(n/3) - n$ Use a recursion tree method to determine a good asymptotic upper bound on the recurrence $T(n) = T(n/2) + n^2$. Use the substitution method to verify your answer. Explain the strassen's matrix multiplication method and state its time complexity. OR Sort the following numbers using Quicksort, [2, 1, 5, 4, 3, 6, 7, 8] a state time.