GATE-All BRANCHES Engineering Mathematics

Multivariable calculus

Lecture No.- 02

Topics to be Covered

Topic

Change the order of integration

Topic

Change the variables

Topic

Question based on change of variables

Topic: Double integration

#Q. Illustration

 $\iint x^2 dx dy$ where A is the region in the Ist quadrant bounded by

Hyperbola

$$xy = 16$$

$$x = 8$$

$$x = y$$

$$y = 0$$

$$I = \int_{0}^{4} \int_{0}^{2} x^{2} dy dx$$

$$I = \int_{0}^{4} x^{2} dx \int_{0}^{2} dy$$

$$I = \int_{0}^{4} x^{2} dx \left[x\right]$$

$$= \int_{0}^{4} x^{2} dx \left[x\right]$$

$$= \int_{0}^{4} x^{3} dx$$

$$I = \int_{0}^{4} x^{2} dx \left[x\right]$$

$$= \int_{0}^{4} x^{2} dx \left[x\right]$$

Topic: Double integration

#Q. The value of the integral $\int_0^1 \int_y^1 x^2 e^{xy} dx dy$ is

$$\frac{e+2}{2}$$

$$\frac{e-1}{2}$$

$$\frac{e+1}{2}$$

Topic: Double integration

#Q. The value of the integral $\int_{y=0}^{1} \int_{x=y}^{1} \frac{x}{\left(x^2+y^2\right)} dx dy$ is

- **A** π/4
- **C** π/3

- B π/2
- D π/5

#Q. The solution of
$$\int_{11}^{a} \frac{dxdy}{xy}$$
 is

A ln (ab)

B ln (a/b)

ln (a) + ln (b)

D ln (a) ln (b)

#Q.
$$I = \int_{y=0}^{2} \int_{x=y/2}^{1} e^{x^2} dxdy$$

V Plat The Limits V SECOND Step

Check The strop

$$y = 0$$

$$y = 2$$

$$x = \frac{y}{2}$$

$$x = 1$$

fields medal 202 V constant value

If
$$x=0$$
Where region

 $x=x$
 $x=1$
 $y=0$
 $x=y/2$
 $x=1$
 $y=0$
 $x=y/2$
 $y=0$
 y

CHANGE The Order of Integration.
(A) Plat The Limits
(B) find The start. Henizontal
(C) Horizontal -> vertical Vertical
y constant = x constant x variable (D) Change The element dydx = dxdy
(D) Change The element
dydz = dzdy

$$I = \int_{x=0}^{8} \int_{y=\frac{x}{4}}^{2} f(x,y) dy \, dx$$

leads to I = $\int_r^s \int_p^q f(x, y) dx dy$. What is q?

#Q.
$$\iint cos(x + y) dxdy$$
 over the region enclosed by $y = x$, $y = \pi$, $x = 0$

$$= \int_{0}^{\pi} \int_{0}^{\pi} \frac{1}{2\pi} \int_{0}^{\pi} \frac{1}{2\pi}$$

$$=\int_{0}^{\pi}$$

$$= \int_{0}^{\pi} \int_{0}^{\gamma} \cos(x+y) dx$$

$$= \int_{0}^{\pi} \left[8m(x+y)\right]_{0}^{\gamma} = \chi$$

$$= \int_{0}^{\pi} \left[8m2y - 8my\right]$$

$$= (-2)$$

Sm(180+8)

$$= \int_{y=0}^{\pi} \int_{x=y}^{\pi} \frac{smy}{(\pi-y)} dx dy$$

$$=\int_{y=0}^{\pi}\frac{8my}{(\pi-y)}\int_{y}^{\pi}dx$$

$$=\int_{\lambda}^{\pi} tony dy = 2$$

$$\int_{x=0}^{x=0} \int_{y=0}^{y=0} \frac{dy}{(\pi - y)} dy$$

#Q.

The value of the integral
$$\int_{y=0}^{\pi} \int_{x=y}^{\pi} \frac{\sin x}{x} dx dy$$
 is equal to
$$= \int_{x=0}^{\pi} \int_{y=0}^{x} \frac{\sin x}{x} dx dy dx$$

$$=\int_{0}^{\pi} \frac{8mx}{x} \left[\int_{y=0}^{x} dy \right]$$

$$=\int_{0}^{\pi} \frac{8mx}{x} \left[\int_{y=0}^{x} dy \right]$$

$$=\int_{0}^{\pi}\int_{-\infty}^{8mx}\left(x-0\right)=\int_{0}^{\pi}\int_{-\infty}^{8mx}dx=2$$

#Q. The value of integral
$$\int_{0}^{2\pi} \int_{0}^{x} e^{x+y} dx dy$$
 is

$$\frac{1}{2}(e-1)$$

$$\frac{1}{2}(e^2-e)$$

$$\frac{1}{2}(e^{2}-1)^{2} = \begin{cases} 2\pi dx & e^{4} \\ e^{2} dx & e^{4} \end{cases}$$

$$= \begin{cases} 2\pi dx & e^{4} \\ e^{2} dx & e^{4} \end{cases}$$

$$= \begin{cases} 2\pi e^{2} - e^{2} \\ e^{2} - e^{4} \end{pmatrix} dx$$

$$= \begin{cases} 2\pi e^{2} - e^{4} \\ e^{2} - e^{4} \end{pmatrix} dx$$

= \(\frac{2}{\text{Z}} \text{Z} \text{

#Q. The double integral $\int_0^a \int_0^y f(x,y) dx dy$ is equivalent to

$$\int_0^x \int_0^y f(x,y) dx dy$$

$$\int_0^a \int_x^y f(x,y) dx dy$$

$$\int_0^a \int_x^a f(x,y) dy dx$$

$$\int_0^a \int_0^a f(x,y) dx dy$$

#Q. Let $I = c \iint_R xy^2$ dx dy, where R is the region shown in the figure

and $c = 6 \times 10^{-4}$. The value of I equals _____.

(Give the answer up to two decimal places)

THANK - YOU