### Rotman

### Master of Management Analytics

### A GUIDE TO FINDING THE DIGI-AD PARTNER

### By GMT+8

Rachel Goh

Bingtian He

Chun Wing Yuen

Pin Chien Wang



### **Business Problem**

How can MMA identify the manufacturers with national brands that have the capacity (revenue) and inclination to participate in their digital advertising scheme?

To answer the business problem, we broke it down to the following analytical questions

Which of those manufacturers have the budget to partner with MMA?

Which of these manufacturers have shown an inclination for marketing schemes? Which of the manufacturers that are suitable to cater to the needs of the customer segments?

Who are the manufacturers we would recommend?



### Data Sources & Methodology

R Python Thinkcell

Microsoft Excel SAS Enterprise Miner

Models

Generalized Linear Regression Cluster Analysis

### **Overview of Data Sources**

### O. Transaction/Demographic Dataset (Raw)

### 1. Manufacturer Dataset (6433\*20)

Aggregated data with rows of unique manufacturer ID

| Aggregated Variables | Description                                          |
|----------------------|------------------------------------------------------|
| STORE_NUM            | Number of entered store                              |
| REACHED_CSTMR_NUM    | Number of reached-out customers                      |
| TOTAL_REV            | Total revenue                                        |
| TOTAL_QTY_SOLD       | Total quantity of product sold                       |
| UNIQ_PROD_NUM        | Number of unique departments                         |
| UNIQ_DEPART_NUM      | The department with the most number of products sold |
|                      |                                                      |

### 2. Customer Dataset (2500\*13)

Aggregated data with rows of unique Customer ID

| Aggregated Variables | Description                               |
|----------------------|-------------------------------------------|
| MEAN_BASKET_PAY      | Mean payment for each purchase            |
| MEAN_BASKET_QUANT    | Mean number of products for each purchase |
| RECENCY              | How many days until last day of purchase  |
| FREQUENCY            | Number of purchase within 2 years         |
| MONETARY             | Total purchase amount                     |
|                      |                                           |

## Which are the manufacturers that have the budget to partner with MMA?

From a total of 6433 manufacturers, we had narrowed down the Top 50 based on their revenue to approximate their financial capacity to participate in an extensive digital advertising campaign with MMA



Ranking of highest budget manufacturers

## Which of these manufacturers have shown an inclination for marketing schemes?

By running a model on the transaction data, coupon issued by the manufacturer and sales volume of the product for each manufacturer, also taking effect of discount of loyalty program and no. of MMA sales points into account

The model uses the variable coupon discount from the transaction data to proxy the manufacturers' attitude towards marketing and promotion.



| Manufacturer ID        | β_1   |  |  |  |  |  |
|------------------------|-------|--|--|--|--|--|
| Linear relationship    |       |  |  |  |  |  |
| 1208                   | 56.29 |  |  |  |  |  |
| Quadratic Relationship |       |  |  |  |  |  |
| 1251                   | 0.39  |  |  |  |  |  |
| 217                    | 0.28  |  |  |  |  |  |
| 693                    | 1.45  |  |  |  |  |  |

# Which of these manufacturers are suitable to cater to the needs of the customer segments?

Defined the top 20% high-value customers using the RFM model and inspected their consuming preferences to find the most favored manufacturers.

Why High value? The 80:20 Rule = 20% of the customers contribute to 80% of revenue!



### WHO ARE THE FINAL MANUFACTURERS WE WOULD RECOMMEND?

- Based on the previous analyses that had filtered the manufacturers out based on their financial capacity, their inclination towards participating in such marketing schemes and the suitability of their product offering to cater to customer needs, we had identified the four manufactures which we want to recommend, which are:
- Manufacturers with the following IDs: 317, 693, 1208, and 1251 respectively.
- Some of the key characteristics of these manufactures are displayed below:
  - Number of entered stores and number of reached-out customers convey the reach and influence of the manufacturers, with 1208 and 317 edging out the other two manufacturers
  - Number of departments provides insight into how prolific are the manufacturers' product offerings, with 693 being a clear leader and 317 second in place
  - Number of commodity supports the insight that 693 has a breadth of commodities to sell, with 317 being a close second



### **MANUFACTURER ANALYSIS**

### THE DESCRIPTION OF FINAL MANUFACTURER WE FOUND

What's more, we want tell you more details about the sales condition of four manufactures.





<sup>\*</sup>The department types here are the main types.



<sup>\*</sup>The commodity types here are the top5 main commodity.

### **Customer Segmentation**

By segmenting customers from the demographic data, it is possible to identify **3** main customer segments that frequent MMA grocery store, which enables MMA to personalize their digital ads







### "The Singles"

- No kids
- Spends larger amounts per purchase compared to other segments
- Not a frequent spender
- Largely from middle-income group

### "The Family"

- Have at least 1 child
- Household size avg. 3-5
- Spends more and frequently
- Mostly people from 25-34, 35-44, 45-54

### "The Middlings"

- Mostly without children, but some households have 1-2 children
- Spends lesser than other segments on purchases
- Consist of people from middle-income groups, with some under the middleincome threshold

### RECOMMENDATIONS

### Rotman

Partner with the following manufacturers with IDs: 1208, 317, 1251, 693 which have been singled out for their:

- large trade promotion budget
- inclination for the exposure additional digital ad promises
- Existing manufacturing capacity of products that the customers usually buy

Capitalize on the drugs (Candy, Syrup, Cocoa Mixes, etc.) as these are in high demand by customers and also command high margin

### Personalize the advertisements by customer segments in the following priority:

- The Singles Primary Target Group, due to their inclination for high spending but low spending frequency. Ads targeted at this segment should be focused on frequency and personalized to motivate increased number of purchases to capture greater revenue.
  - ✓ Ex: promote dinner packages that is served for one and convenient to eat at home
- The Fam Second Priority. Personalize family-oriented promotions on drugs (e.g., promotions that expound on the positive effect of a drug commodity like syrups has on family welfare).
  - ✓ Ex: boost sales via ad promotion in festivals, ex: easter goods, baking tools
- The Middlings Tailor seasonal promotions or flash sales for this segment, which are composed primarily of middle-income to lowerincome groups.

### EXPECTED OUTCOME

864.71 USD

Per manufacturer spend to participate in the digital ad program

283%

Percentage increase in expected revenue for manufacturers and MMA

Note: View Appendix for the model

### Rotman

### **APPENDIX**

Subtitle

Here's where it changes.

### Outline

- The predictive analysis includes:
  - Considering the methodology
    - To decide on a set of candidate models (and list out the tuning parameters of each method)
    - To find the "best model" with the best tuning parameters by resampling method
  - Test-train split the available data
  - Use chosen model to make predictions
  - Calculate relevant metrics on the test data



### Overview

Source data: transactions.csv

Analytical tool: R

Data processing

Filter for transactions of national manufacturers

Aggregate transaction data for each product

Sum of COUPON\_MATCH\_DISC

Sum of RETAIL\_DISC

COUNT\_STORE\_ID

Modelling

Generalized Linear Model (GLM)

Cross-validation

Link function

Assumption tests

Prediction

Example (raw dataset)

| Manufacturer | Product ID | QUANTITY | COUPON_MATCH_DISC | RETAIL_DISC | STORE_ID |
|--------------|------------|----------|-------------------|-------------|----------|
| 4            | 76741      | 1        | 0.1               | 12          | 56494    |
| 6            | 15852      | 2        | 0.5               | 19          | 11022    |
| 6            | 15852      | 1        | 0.1               | 4           | 72744    |
| 1            | 54497      | 1        | 0.5               | 7           | 75695    |
| 7            | 29325      | 5        | 0.1               | 6           | 18208    |
| 6            | 98525      | 3        | 0.4               | 19          | 57438    |
| 8            | 58148      | 2        | 0                 | 18          | 59317    |
| 9            | 43264      | 2        | 0                 | 4           | 23295    |

• Example (processed dataset)

| Manufacturer | Product no. | SUM_QUANTITY | SUM_COUPON_MATCH_DISC | SUM_RETAIL_DISC | COUNT_STORE_ID |
|--------------|-------------|--------------|-----------------------|-----------------|----------------|
| 4            | 1           | 1            | 0.1                   | 12              | 1              |
| 6            | 2           | 6            | 1                     | 42              | 3              |
| 1            | 1           | 1            | 0.5                   | 7               | 1              |
| 7            | 1           | 5            | 0.1                   | 6               | 1              |
| 8            | 1           | 2            | 0                     | 18              | 1              |
| 9            | 1           | 2            | 0                     | 4               | 1              |



### Regression

### Model decision

- Fit a regression model to aggregate transaction data of all products for each manufacturer (6433 manufacturers in total)
  - To investigate the relationship of product sales of a product by the promotion expense and reach rate (number of stores that transact the products)

| Dependent variables                                                                                | Independent variable                                                                                                          |  |  |  |  |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| $SUM\_QUANTITY(Y_{predict} - Discrete)$                                                            | SUM_COUPON_MATCH_DISC $(X_1$ – $Continuous)$<br>SUM_RETAIL_DISC $(X_2$ – $Continuous)$<br>COUNT_STORE_ID $(X_3$ – $Discrete)$ |  |  |  |  |
| $g(\mu) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$ , where $g(\mu)$ is the link function |                                                                                                                               |  |  |  |  |

Model: Negative-binomial Generalized Linear Model Justification:

- Count dependent variable
- Over-dispersion observed (non-linear relationship in the chart)
  - → Poisson regression model (common for count data) will yield biased parameter estimation and underestimated standard error, leading to invalid conclusions
  - $\rightarrow$  remediated by adding a multiplicative random effect  $\theta$  to represent unobserved heterogeneity







### Modelling in R

- · R is the analytical tool used for data management and data analysis of the case
- MASS and caret are the core packages that derives most of the metrics related to the regression model

### Procedure:



- GLM model fitting: MASS.glm.nb is used to fit generalized linear models, the output is a description of the predictors and the error distribution
- Cross-validation: To partition the complete dataset into the training set and the testing set
  - 10-fold cross-validation: To partition the data into 10 subsets of similar size then conduct 10 times of training and validation.
  - In each validation, 9 subsets will be employed for model training, and the remaining one would be left for testing purpose. Repeat validation 10 times.
     Prediction error (NRMSE) will be generated by then
- Link function selection
  - The train function selects the link function which returns the best accuracy,
  - Link functions available for glm.nb on R:
    - Identity link  $g(\mu) = \mu$
    - Square root link  $g(\mu) = \sqrt{\mu}$
    - Log link  $g(\mu) = \log(\mu)$  (Canonical link)



### Tests of the model

- Multiple tests will be placed against each model to check any breach of the assumptions
  - Variance inflation factor (VIF) for identify the degree of multicollinearity (Rule of thumb: Less than 5)
  - Likelihood test for statistical significance of Coupon discount invested as a predictor to the model
    - · Run a model removing variable "coupon discount", applying GLM (Negative binomial distribution)
    - Compare with the complete model (Significance: Less than 0.05)
  - Likelihood test for model assumption "the conditional means are not equal to the conditional variances"
    - · Run a model remaining variables unchaged, applying GLM (Poisson distribution)
    - Compare with the complete model (Significance: Less than 0.05)

|              | Likelihood test<br>For significance |                                                | VIF of the variables                           |                                                            | Likelihood test for model assumption |
|--------------|-------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------------------|--------------------------------------|
| Manufacturer | P-value                             | Coupon discount invested for the product $X_1$ | Discount offered by Loyalty card program $X_2$ | No. of stores completed transactions for the product $X_3$ | P-value                              |
| 1251         | 1.09E-08                            | 1.33939487                                     | 1.50437781                                     | 1.83223613                                                 | 0                                    |
| 1208         | 7.47E-06                            | 1.09944852                                     | 1.23755729                                     | 1.34732379                                                 | 0                                    |
| 317          | 0.04107905                          | 1.78183421                                     | 1.9392302                                      | 1.44290026                                                 | 0                                    |
| 693          | 0.00207167                          | 1.00039269                                     | 2.03093391                                     | 2.03133569                                                 | 0                                    |



### R output

### Descriptive statistics

|              |                           | Sales volume | of products | Confidence in | terval of t test |
|--------------|---------------------------|--------------|-------------|---------------|------------------|
| Manufacturer | Product no. (Sample size) | Sample mean  | Sample S.D. | Lower         | Upper            |
| 1251         | 685                       | 82.3328467   | 259.599439  | 62.8579254    | 101.807768       |
| 1208         | 445                       | 114.024719   | 536.924774  | 64.0020345    | 164.047404       |
| 317          | 669                       | 76.9028401   | 278.341513  | 55.7727858    | 98.0328944       |
| 693          | 977                       | 44.8433982   | 192.855487  | 32.7354177    | 56.9513786       |

### Variables

- Y Total Sales volume of the product
- $\cdot$   $X_1$  Coupon discount invested for the product
- X<sub>2</sub> Discount offered by Loyalty card program
- X<sub>3</sub> No. of stores completed transactions for the product

### Metrics of the regression models

|   |                  |               |                 | Coefficie | nt estima |        |                 |         | ard error |        |                  | Z-\                   | /alue    |         |                 | P-va           | lue            |              |
|---|------------------|---------------|-----------------|-----------|-----------|--------|-----------------|---------|-----------|--------|------------------|-----------------------|----------|---------|-----------------|----------------|----------------|--------------|
| N | lanufac<br>turer | Link function | (Interce<br>pt) | $X_1$     | $X_2$     | $X_3$  | (Interce<br>pt) | $X_1$   | $X_2$     | $X_3$  | (Interce<br>pt). | <i>X</i> <sub>1</sub> | $X_2$    | $X_3$   | (Interce<br>pt) | $X_1$          | $X_2$          | $X_3$        |
|   | 1251             | sqrt          | 1.2200          | 0.3854    | (0.0007)  | 0.2419 | 0.0335          | 0.0958  | 0.0032    | 0.0050 | 36.3778          | 4.0226                | (0.2331) | 48.3320 | 9.54E-<br>290   | 5.76E-<br>05   | 0.81572<br>166 | 0            |
|   | 1208             | identity      | (0.9859)        | 56.2850   | 0.5761    | 2.0107 | 0.1479          | 15.3035 | 0.0544    | 0.1030 | (6.6660)         | 3.6779                | 10.5883  | 19.5257 | 2.63E-11        | 0.00023<br>515 | 3.38E-<br>26   | 6.64E-<br>85 |
|   | 317              | eart          |                 | 0.2777    |           |        | 0.0297          |         |           | 0.0040 |                  | 1.7984                |          |         | 0               | 838            | 4.71E-<br>09   | 0            |
|   | 693              | sqrt          | 1.2639          | 1.4477    | 0.0248    | 0.2234 | 0.0266          | 0.5851  | 0.0038    | 0.0044 | 47.5745          | 2.4742                | 6.4486   | 50.9938 | 0               | 0.01335<br>255 | 1.13E-<br>10   | 0            |



### Estimation

- · The form of the model equation for negative binomial regression depends on the link function employed
  - Square root link function:  $\sqrt{\mu} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$
  - Identity function:  $\mu = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$
  - Canonical link:  $\log_e \mu = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$

| Manufacturer | Link<br>function | Model equation                                                                     |
|--------------|------------------|------------------------------------------------------------------------------------|
| 1251         | sqrt             | $\sqrt{\hat{Y}} = 1.219985602 + 0.385401092X_1 + -0.000744203X_2 + 0.241942128X_3$ |
| 1208         | identity         | $\hat{Y} = -0.985945863 + 56.28500803X_1 + 0.576124135X_2 + 2.010677011X_3$        |
| 317          | sqrt             | $\sqrt{\hat{Y}} = 1.147922227 + 0.277749251X_1 + 0.011319076X_2 + 0.211844968X_3$  |
| 693          | sqrt             | $\sqrt{\hat{Y}} = 1.263870995 + 1.447667153X_1 + 0.024815195X_2 + 0.223352136X_3$  |



### **Application Regression model**

### Sales quantity prediction

- Assume  $X_1 \& X_3 \&$  metrics related to revenue calculation remains constant
  - Predictor variable (Input) Budget of coupon promotion to evenly allocate to the in-scope product
  - Distribution cost per coupon \$0.5<sup>1</sup>
  - Budget allocation for coupon promotion 10% of total revenue<sup>2</sup>
  - Budget allocation for sponsorship to ad space 10% of total revenue<sup>2</sup>

ROI

Calculation:

Revenue -COGS - cost of coupon promotion -sponsorship fee

COGS + cost of coupon promotion + sponsorship fee

- ROI threshold set to 50% No budget allocation to the products with calculated ROI less than 50%
- COGS set to 40% For ROI calculation

Sample data from 1 manufacturer (for demonstration only)

| Estimated quantity | ROI estimation     | Quantity increment | Estimated revenue | Product ID | $X_2$  | $X_3$ | Unit price |
|--------------------|--------------------|--------------------|-------------------|------------|--------|-------|------------|
| 31                 | 93%                | 29                 | 263.19            | 992939     | 0      | 2     | 8.49       |
| 28                 | 93%                | 26                 | 237.72            | 1054115    | -2     | 1     | 8.49       |
| 42                 | 77%                | 35                 | 264.18            | 941853     | 0      | 6     | 6.29       |
| 36                 | 77%                | 4                  | 226.44            | 1103550    | -1.7   | 4     | 6.29       |
| 28                 | 72%                | 26                 | 153.72            | 278211     | -5.5   | 1     | 5.49       |
| 164                | 67%                | 87                 | 834.76            | 895702     | -21.5  | 32    | 5.09       |
| 158                | 66%                | 113                | 788.42            | 868430     | 0      | 31    | 4.99       |
| 45                 | 59%                | 33                 | 224.55            | 5995638    | -17    | 7     | 4.99       |
| 28                 | 51%                | 27                 | 106.12            | 9418274    | -2.02  | 1     | 3.79       |
| (omit calculation) | 49% (not in-scope) | (omit calculation) | 665.19            | 1087851    | 0      | 33    | 3.89       |
| (omit calculation) | 49% (not in-scope) | (omit calculation) | 1147.55           | 904105     | 0      | 50    | 3.89       |
| (omit calculation) | 49% (not in-scope) | (omit calculation) | 800.73            | 832007     | -51.25 | 40    | 3.69       |

<sup>1,</sup> B. of A. (2022, September 7). Cost Per Click (CPC) Rates 2022. Business of Apps. Retrieved October 17, 2022, from https://www.businessofapps.com/ads/cpc/research/cpc-rates/





### **Application Regression model**

### Sales quantity prediction

Sample data from manufacturer 1251

| Total revenue                   | 86,470.86 |
|---------------------------------|-----------|
| 5% of revenue                   | 4,323.54  |
| Budget on coupon promotion (%)  | 10%       |
| Budget on coupon promotion (\$) | 432.35    |

- Budget allocated to the products with ROI estimation >50%
- Calculation of budget allocated to each in-scope products:

$$Budget\ of\ each\ product = \frac{coupon\ promotion\ budget}{count\ of\ products with\ ROI > 50\%}$$

Plug budget of each product into model equation

$$\begin{split} &\sqrt{\hat{Y}}\\ &= 1.219985602 + 0.385401092\beta_1 + -0.000744203\beta_2\\ &+ 0.241942128\beta_3 \end{split}$$

Sample data from 1 manufacturer (for demonstration only)

| Estimated quantity | ROI estimation     | Quantity increment | Estimated revenue | Product ID | $X_2$  | $X_3$ | Unit price |
|--------------------|--------------------|--------------------|-------------------|------------|--------|-------|------------|
| 31                 | 93%                | 29                 | 263.19            | 992939     | 0      | 2     | 8.49       |
| 28                 | 93%                | 26                 | 237.72            | 1054115    | -2     | 1     | 8.49       |
| 42                 | 77%                | 35                 | 264.18            | 941853     | 0      | 6     | 6.29       |
| 36                 | 77%                | 4                  | 226.44            | 1103550    | -1.7   | 4     | 6.29       |
| 28                 | 72%                | 26                 | 153.72            | 278211     | -5.5   | 1     | 5.49       |
| 164                | 67%                | 87                 | 834.76            | 895702     | -21.5  | 32    | 5.09       |
| 158                | 66%                | 113                | 788.42            | 868430     | 0      | 31    | 4.99       |
| 45                 | 59%                | 33                 | 224.55            | 5995638    | -17    | 7     | 4.99       |
| 28                 | 51%                | 27                 | 106.12            | 9418274    | -2.02  | 1     | 3.79       |
| (omit calculation) | 49% (not in-scope) | (omit calculation) | 665.19            | 1087851    | 0      | 33    | 3.89       |
| (omit calculation) | 49% (not in-scope) | (omit calculation) | 1147.55           | 904105     | 0      | 50    | 3.89       |
| (omit calculation) | 49% (not in-scope) | (omit calculation) | 800.73            | 832007     | -51.25 | 40    | 3.69       |

<sup>1,</sup> B. of A. (2022, September 7). Cost Per Click (CPC) Rates 2022. Business of Apps. Retrieved October 17, 2022, from https://www.businessofapps.com/ads/cpc/research/cpc-rates/





### **Model for Expected Outcome**

### Input for outcome estimate

| Link function                   | $oldsymbol{eta}_0$ | $oldsymbol{eta_1}$ | $eta_2$            | $oldsymbol{eta_3}$ |
|---------------------------------|--------------------|--------------------|--------------------|--------------------|
| SQRT                            | 1.2199856          | 0.38540109         | -0.0007442         | 0.24194213         |
|                                 |                    |                    |                    |                    |
| Total revenue                   | 86,470.86          |                    | COGS (%)           | 40%                |
| 5% of revenue                   | 4,323.54           |                    | ROI threshold      | 50%                |
| Budget on coupon promotion (%)  | 10%                |                    | Budget on fee      | 10%                |
| Budget on coupon promotion (\$) | 432.35             |                    | Fee                | 432.35             |
| Coupon rate                     | 0.5                |                    | Coupon no.         | 864                |
|                                 |                    |                    |                    |                    |
|                                 |                    |                    | Distribution rate  |                    |
|                                 |                    |                    | (Unit fee to MM&A) | 0.5                |

### Results

| Estimated revenue of product with ROI > threshold  | 13,052.56 |
|----------------------------------------------------|-----------|
| Historical revenue of product with ROI > threshold | 3,406     |
| Percentage increase                                | 283%      |
| Investment on digital ad program                   | 864.71    |

### Reference

- 1, B. of A. (2022, September 7). Cost Per Click (CPC) Rates 2022. Business of Apps. Retrieved October 17, 2022, from https://www.businessofapps.com/ads/cpc/research/cpc-rates/
- <sup>2</sup>Lesonsky, R. (2019, July 9). How to Get the Most From Your Marketing Budget. U.S. Small Business Administration. Retrieved October 17, 2022, from https://www.sba.gov/blog/how-get-most-your-marketing-budget

