Color Analysis of Floral Tissues

K. Uckele

2025-02-06

Contents

Introduction	2
Setup	2
Load Required Libraries	2
Set working directory	3
Define Custom Operators	3
Authenticate Google Sheets Access	3
Quality Control	3
Load Spectral Data from Google Sheets	3
Full Spectrum Analyses	4
Spectral Data Processing	4
Convert Data to rspec Objects	4
Average the Spectra	4
Fix Negative Reflectance Values	6
Determine Smoothing Parameter	7
Smooth the Spectral Data	7
Scale the Spectral Data	8
Plot Processed Spectra	8
Define Common Plotting Parameters	8
Bract Spectra Plot	8
Petal Spectra Plot	9
Labellum Spectra Plot	10
Combine and Save Spectral Plots with Highlighted Parents	11
Principal component analysis - Bract	12
Principal component analysis - Petal	15
Principal component analysis - Labellum	18
Format PC Scores	21
Spectral Descriptors	21
Define spectral descriptors	21
Calculate Spectral Descriptors	21
Bract	21
Plot Bract Spectral Descriptors Histograms	21
Petal Summary	
Plot Petal Spectral Descriptors Histograms	
Labellum Summary	23
Plot Labellum Spectral Descriptors Histograms	23
Data Formatting and Export	
Reformat Rownames	24
Subset and Rename Columns	25

	Convert Rownames to a Column	25
U	V Analyses	25
	Spectral Data Processing	25
	Convert Data to rspec Objects	
	Average the Spectra	
	Fix Negative Reflectance Values	
	Determine Smoothing Parameter	
	Smooth the Spectral Data	
	Scale the Spectral Data	
	Plot Processed Spectra	
	Define Common Plotting Parameters	
	Bract Spectra Plot	
	Petal Spectra Plot	
	Labellum Spectra Plot	
	Combine and Save Spectral Plots with Highlighted Parents	
	Spectral Descriptors	
	Define spectral descriptors	
	Calculate Spectral Descriptors	
	Bract	
	Plot Bract Spectral Descriptors Histograms	
	Petal Summary	
	Plot Petal Spectral Descriptors Histograms	
	Labellum Summary	
	Plot Labellum Spectral Descriptors Histograms	
	Data Formatting and Export	
	Reformat Rownames	
	Convert Rownames to a Column	
	Subset and Rename Columns	
V	ision Models	38
\ /	Ierge Dataframes	43
\mathbf{E}	xport Summary Descriptors to CSV	43

Introduction

This analysis explores the color properties of different floral tissues — bract, petal, and labellum — using spectral data sourced from Google Sheets. The analysis includes data loading, quality control, spectral processing, visualization, and the computation of summary descriptors.

Setup

Load Required Libraries

```
## libraries
library(googlesheets4)
library(cowplot)
library(dplyr)
```

```
##
## Attaching package: 'dplyr'
```

```
## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union

library(tibble)
library(knitr)
library(rmarkdown)
library(pavo)
```

Set working directory

```
# Set the root directory to the project root
knitr::opts_knit$set(root.dir = normalizePath("../"))
```

Define Custom Operators

```
# Define a 'not in' operator
`\notin\' = Negate(\'\n')
```

Authenticate Google Sheets Access

Authenticate access to Google Sheets using your email. Ensure that the email has the necessary permissions to access the sheets.

```
# Authenticate with Google Sheets
gs4_auth(email = "kuckele@ucsc.edu")
```

Quality Control

Load Spectral Data from Google Sheets

We load the spectral data for bract, petal, and labellum from the specified Google Sheets.

```
# Specify the Google Sheets ID
sheet_id <- "12NWtlqKbLPAxU-rVBTqMQjY_6jH1DulVvNHS_QXAvFI"

# Load data for different floral tissues
bract <- read_sheet(ss = sheet_id, sheet = "Bract")

## v Reading from "Color".

## v Range ''Bract''.

petal <- read_sheet(ss = sheet_id, sheet = "Petal")

## v Reading from "Color".

## v Range ''Petal''.

labellum <- read_sheet(ss = sheet_id, sheet = "Labellum")

## v Reading from "Color".

## v Range ''Labellum''.</pre>
```

Full Spectrum Analyses

Spectral Data Processing

Convert Data to rspec Objects

The spectral data is converted into rspec objects using the pavo package for further analysis.

```
# Set seed for reproducibility
set.seed(1612217)
# Convert datasets to rspec objects with wavelength limits
bract_spec <- as.rspec(bract, lim = c(300, 700), whichwl = 1)</pre>
## The spectral data contain 555 negative value(s),
## which may produce unexpected results if used in models.
## Consider using procspec() to correct them.
petal_spec \leftarrow as.rspec(petal, lim = c(300, 700), whichwl = 1)
## The spectral data contain 272 negative value(s),
## which may produce unexpected results if used in models.
## Consider using procspec() to correct them.
labellum_spec <- as.rspec(labellum, lim = c(300, 700), whichwl = 1)</pre>
# change column names
colnames(bract_spec) <- gsub("-", "x", colnames(bract_spec))</pre>
colnames(petal_spec) <- gsub("-", "x", colnames(petal_spec))</pre>
colnames(labellum_spec) <- gsub("-", "x", colnames(labellum_spec))</pre>
```

Note: The conversion may produce warnings about negative values in spectral data, which are addressed in subsequent steps.

Average the Spectra

Aggregate the spectral data by sample names, averaging replicates.

```
# Extract sample names by removing trailing numbers in parentheses
bract_samples \leftarrow gsub("\\([0-9]+\\)$", "", names(bract_spec))[-1]
petal_samples \leftarrow gsub("\\([0-9]+\\)$", "", names(petal_spec))[-1]
labellum_samples <- gsub("\\([0-9]+\\)$", "", names(labellum_spec))[-1]
# Verify sample counts
table(bract_samples)
## bract samples
      125
             126
                          39x10 39x109 39x110 39x115 39x116 39x117
                                                                       39x12 39x122
##
                      39
##
               3
                       1
                               2
                                      1
                                             2
                                                     2
                                                            1
                                                                    3
                                                                           2
## 39x123 39x125 39x126
                          39x13 39x130 39x136
                                                                                39x2
                                                39x14
                                                        39x15
                                                               39x16
                                                                       39x17
##
        2
               2
                       2
                              1
                                      3
                                             2
                                                     3
                                                            2
                                                                    4
                                                                           2
                                                                                   2
##
    39x21
           39x23
                  39x25
                          39x27
                                 39x34
                                         39x39
                                                  39x4
                                                        39x40
                                                               39x41
                                                                       39x44
                                                                              39x46
##
        2
               2
                       2
                              2
                                      2
                                             2
                                                     2
                                                            2
                                                                    2
                                                                           2
                                                                                   2
##
    39x49
           39x50
                   39x51
                          39x55
                                 39x56
                                         39x57
                                                  39x6
                                                        39x60
                                                               39x65
                                                                       39x67
                                                                              39x68
                              2
                                      2
                                                                    2
##
        2
               2
                       2
                                             2
                                                     2
                                                            2
                                                                           2
##
    39x75
           39x77
                   39x78
                          39x79
                                   39x8
                                         39x81
                                                39x82
                                                        39x86
                                                               39x87
                                                                       39x89
                                                                              39x92
##
        2
               2
                       2
                              2
                                      1
                                             2
                                                     3
                                                            1
                                                                           2
                                                                                   2
                                                                    1
    39x93 39x95 39x96 39x98 62x10 62x103 62x105 62x109 62x116 62x119 62x122
##
```

```
2 2 2 1 2 2 1 1 2 1
## 62x125 62x128 62x129 62x13 62x130 62x131 62x134 62x135 62x136 62x137 62x138
                    2
                         1
                              2
                                   1
## 62x139 62x14 62x140 62x143 62x144 62x147 62x151 62x152 62x153 62x154 62x157
          1
                     1
                          2
                               1 1
                                          .3
## 62x158 62x16 62x162 62x167 62x168 62x169 62x17 62x172 62x173 62x175 62x18
              2
                    2
                         1 1 2
                                        2
## 62x182 62x185 62x188 62x189 62x19 62x190 62x197 62x200 62x206 62x21 62x214
           2 1 1
                           2 2 2 2 2
                                                      2
     1
## 62x218 62x219 62x22 62x220 62x225 62x233 62x234 62x240 62x251 62x252 62x258
                2 1
                           2 1 1 2
                                                 2 1 1
## 62x261 62x264 62x265 62x267 62x268 62x276 62x282 62x293 62x296 62x300 62x302
                1
                     2
                          2
                             1 1 2
                                               1 1 1
## 62x303 62x304 62x305 62x306 62x307 62x308 62x309 62x310 62x313 62x315 62x322
                           2
          1
               1
                     1
                             1
                                      2
                                        1
                                               1 1
## 62x324 62x327 62x332 62x337 62x338 62x351 62x355 62x359 62x363 62x370
                                                 2 1
##
                2
                           2
                             1
                                      2
                                           2
     1
                     1
          1
  62x57 62x58 62x59 62x60 62x63 62x65 62x66 62x69 62x73 62x74 62x75
##
                2
                          1
                                1
                                     1
                                           2
                     1
  62x77 62x83 62x87 62x91 62x92 62x94 62x96
                                        BRAC
                1
                      2
                           2
                                1
```

table(petal_samples)

petal_samples 39 39x10 39x109 39x110 39x115 39x116 39x117 39x12 39x122 ## ## 39x123 39x125 39x126 39x13 39x130 39x136 39x14 39x15 39x16 39x17 39x21 39x23 39x25 39x27 39x34 39x39 39x4 39x40 39x41 39x44 39x46 ## 39x6 39x60 39x65 39x67 39x68 ## 39x75 39x77 39x78 39x79 39x8 39x81 39x82 39x86 39x87 39x89 39x92 39x93 39x95 39x96 39x98 62x10 62x103 62x105 62x109 62x116 62x119 62x122 ## 1 2 1 ## 62x125 62x128 62x129 62x13 62x130 62x131 62x134 62x135 62x136 62x137 62x138 ## 62x139 62x14 62x140 62x143 62x144 62x147 62x151 62x152 62x153 62x154 62x157 ## 62x158 62x16 62x162 62x167 62x168 62x169 62x17 62x172 62x173 62x175 62x18 ## 62x182 62x185 62x188 62x189 62x19 62x190 62x197 62x200 62x206 62x21 62x214 2 2 ## 62x218 62x219 62x22 62x220 62x225 62x233 62x234 62x240 62x251 62x252 62x258 2 1 2 1 1 2 ## 62x261 62x262 62x264 62x265 62x268 62x276 62x282 62x293 62x296 62x300 62x302 1 1 2 1 1 1 ## 62x303 62x304 62x305 62x306 62x307 62x308 62x309 62x310 62x313 62x315 62x322 ## 62x324 62x327 62x332 62x337 62x338 62x351 62x355 62x359 62x363 62x370 ## 62x57 62x58 62x59 62x60 62x63 62x65 62x66 62x69 62x73 62x74 62x75 1 1 1 2

```
62x77 62x83
                   62x87
                           62x91 62x92 62x94
                                                  62x96
##
                2
                                2
                                       2
                                               1
                        1
                                                       1
table(labellum_samples)
## labellum_samples
##
      125
              126
                       39
                           39x10 39x109 39x110 39x115 39x116 39x117
                                                                         39x12 39x122
##
        2
                2
                        1
                                2
                                       1
                                               2
                                                      2
                                                              1
                                                                      3
                                                                              2
                                                                                     2
##
   39x123 39x125 39x126
                           39x13 39x130 39x136
                                                  39x14
                                                          39x15
                                                                 39x16
                                                                         39x17
                                                                                  39x2
                                                                                     2
##
                2
                        2
                               1
                                       3
                                               2
                                                      3
                                                              2
                                                                      4
                                                                              2
##
    39x21
           39x23
                   39x25
                           39x27
                                   39x34
                                          39x39
                                                   39x4
                                                          39x40
                                                                  39x41
                                                                         39x44
                                                                                 39x46
##
        2
                2
                        2
                               2
                                       2
                                               2
                                                      2
                                                              2
                                                                      2
                                                                              2
##
           39x50
                   39x51
                           39x55
                                   39x56
                                          39x57
                                                   39x6
                                                          39x60
                                                                  39x65
    39x49
                                                                         39x67
##
                2
                        2
                                2
                                       2
                                               2
                                                      2
                                                              2
                                                                      2
                                                                              2
##
    39x75
           39x77
                   39x78
                           39x79
                                    39x8
                                          39x81
                                                  39x82
                                                          39x86
                                                                 39x87
                                                                         39x89
##
        2
                2
                        2
                                2
                                               2
                                                      3
                                                                              2
                                       1
                                                              1
                                                                      1
##
    39x93
           39x95
                   39x96
                           39x98
                                   62x10 62x103 62x105 62x109 62x116 62x119 62x122
##
                2
                        2
                               2
                                               2
                                                      2
                                       1
                                                              1
                                                                      1
   62x125 62x128 62x129
                           62x13 62x130 62x131 62x134 62x135 62x136 62x137 62x138
##
                        2
##
                                2
        1
                1
                                       1
                                               2
                                                       1
                                                              2
                                                                      2
                                                                              1
  62x139
           62x14 62x140 62x143 62x144 62x147 62x151 62x152 62x153 62x154 62x157
##
                1
                        2
                                1
                                       2
                                               1
                                                       1
                                                              3
                                                                      2
## 62x158
           62x16 62x162 62x167 62x168 62x169
                                                  62x17 62x172 62x173 62x175
##
        2
                2
                        2
                                2
                                       1
                                               1
                                                      2
                                                              2
   62x182 62x185 62x188 62x189
                                   62x19 62x190 62x197 62x200 62x206
                                                                         62x21 62x214
##
                        1
                                1
                                       2
                                               2
                                                       2
                                                              2
                                                                      2
## 62x218 62x219
                   62x22 62x220 62x225 62x233 62x234 62x240 62x251 62x252 62x258
##
                2
                        2
                                       2
                                               1
                                                       1
                                                              2
                                                                      2
                                1
## 62x261 62x262 62x264 62x265 62x268 62x276 62x282 62x293 62x296 62x300 62x302
##
                2
                        2
                                1
                                       2
                                               1
                                                       1
                                                              2
## 62x303 62x304 62x305 62x306 62x307 62x308 62x309 62x310 62x313 62x315 62x322
##
                                                       2
                1
                        1
                                1
                                       2
                                               1
##
  62x324 62x327 62x332 62x337 62x338 62x351 62x355 62x359 62x363 62x370
                                                                                  62x5
                                       2
                                                       2
##
        1
                1
                        2
                                2
                                               1
                                                              2
                                                                      2
                                                                              1
                                   62x63
##
    62x57
           62x58
                   62x59
                           62x60
                                          62x65
                                                  62x66
                                                          62x69
                                                                  62x73
                                                                         62x74
                                                                                 62x75
                                                                      2
##
                2
                        2
                                1
                                       1
                                               1
                                                       1
                                                              2
                                                                              1
                                                           BRAC
##
    62x77
                   62x87
                           62x91
                                   62x92
                                          62x94
                                                  62x96
           62x83
                                       2
##
        1
                2
                        1
                                2
                                               1
                                                       1
# Aggregate spectra by sample names using mean
bract_spec_avg <- aggspec(bract_spec, by = bract_samples, FUN = mean)</pre>
petal spec avg <- aggspec(petal spec, by = petal samples, FUN = mean)
labellum_spec_avg <- aggspec(labellum_spec, by = labellum_samples, FUN = mean)</pre>
```

Fix Negative Reflectance Values

Negative reflectance values are corrected by adding the minimum reflectance.

```
# Fix negative values by adding the minimum reflectance
bract_spec_avg <- procspec(bract_spec_avg, fixneg = "addmin")

## processing options applied:
## Negative value correction: added min to all reflectance
petal_spec_avg <- procspec(petal_spec_avg, fixneg = "addmin")</pre>
```

processing options applied:

```
## Negative value correction: added min to all reflectance
labellum_spec_avg <- procspec(labellum_spec_avg, fixneg = "addmin")

## processing options applied:
## Negative value correction: added min to all reflectance</pre>
```

Determine Smoothing Parameter

Use plotsmooth to visualize and decide on an appropriate smoothing span.

Choose a span (e.g., 0.2) based on the plot to balance smoothness and data fidelity.

Smooth the Spectral Data

Apply smoothing to the spectral data using the chosen span.

```
# Apply smoothing with span = 0.2
bract_spec_sm <- procspec(bract_spec_avg, opt = "smooth", span = 0.2)</pre>
```

```
## processing options applied:
## smoothing spectra with a span of 0.2
```

```
petal_spec_sm <- procspec(petal_spec_avg, opt = "smooth", span = 0.2)

## processing options applied:
## smoothing spectra with a span of 0.2

labellum_spec_sm <- procspec(labellum_spec_avg, opt = "smooth", span = 0.2)

## processing options applied:
## smoothing spectra with a span of 0.2</pre>
```

Scale the Spectral Data

Scale the spectral data to different reference points for comparative analysis.

```
# Scale spectra to both minimum and maximum reflectance
bract_spec_scaleminmax <- procspec(bract_spec_sm, opt = c("min", "max"))

## processing options applied:
## Scaling spectra to a minimum value of zero
## Scaling spectra to a maximum value of 1

petal_spec_scaleminmax <- procspec(petal_spec_sm, opt = c("min", "max"))

## processing options applied:
## Scaling spectra to a minimum value of zero
## Scaling spectra to a maximum value of 1

labellum_spec_scaleminmax <- procspec(labellum_spec_sm, opt = c("min", "max"))

## processing options applied:
## Scaling spectra to a minimum value of zero
## Scaling spectra to a minimum value of zero
## Scaling spectra to a maximum value of 1</pre>
```

Plot Processed Spectra

Visualize the processed spectral data for each floral tissue, highlighting specific samples.

Define Common Plotting Parameters

```
# Define a color palette for highlighting specific samples
highlight_colors <- c(rep("lightgrey", 170), "gold1", "gold1", "darkgreen")</pre>
```

Bract Spectra Plot

```
# Order samples to highlight specific ones
order_spec_bract <- c(
   which(names(bract_spec_scaleminmax) == "125"),
   which(names(bract_spec_scaleminmax) == "126"),
   which(names(bract_spec_scaleminmax) == "BRAC")
)

# Reorder columns to place highlighted samples at the end
columns_bract <- 1:ncol(bract_spec_scaleminmax)
order_spec_bract <- c(columns_bract[columns_bract %notin% order_spec_bract], order_spec_bract)
# Plot the spectra</pre>
```

Bract Spectra

Petal Spectra Plot

```
col = c("darkgreen", "gold1"), lty = 1, cex = 0.8)
```

Petal Spectra

Labellum Spectra Plot

```
# Order samples to highlight specific ones
order_spec_labellum <- c(</pre>
  which(names(labellum_spec_scaleminmax) == "125"),
  which(names(labellum_spec_scaleminmax) == "126"),
  which(names(labellum_spec_scaleminmax) == "BRAC")
)
# Reorder columns to place highlighted samples at the end
columns_labellum <- 1:ncol(labellum_spec_scaleminmax)</pre>
order_spec_labellum <- c(columns_labellum[columns_labellum <ndrin" order_spec_labellum], order_spec_lab
# Plot the spectra
plot(labellum_spec_scaleminmax[order_spec_labellum], type = "o",
     col = highlight_colors, main = "Labellum Spectra",
     xlab = "Wavelength (nm)", ylab = "Reflectance (%)")
# Add a legend
legend("topleft", legend = c("C. bracteatus parent", "C. lasius parent"),
       col = c("darkgreen", "gold1"), lty = 1, cex = 0.8)
```

Labellum Spectra

Combine and Save Spectral Plots with Highlighted Parents

##

```
# Save combined spectra plots with highlighted parental samples
pdf("./results/figures/Combined_Spectra_Bract_Petal_Labellum_Cbracteatus_Clasius_hybrids.pdf", width = .
par(mfrow = c(1, 3))
# Increase left margin to provide more space for y-axis labels
par(mar = c(5, 5, 4, 2) + 0.1) # c(bottom, left, top, right)
plot(bract_spec_scaleminmax[order_spec_bract], type = "o", col = highlight_colors,
     main = "Bract spectra", xlab = "Wavelength (nm)", ylab = "Reflectance (%)",
     cex.main = 3, cex.lab = 2.5, cex.axis = 2, lwd = 2)
legend("topleft", legend = c("C. bracteatus parent", "C. lasius parent"),
       col = c("darkgreen", "gold1"), lty = 1, cex = 2.5, bty = "n")
plot(petal_spec_scaleminmax[order_spec_petal], type = "o", col = highlight_colors,
     main = "Petal spectra", xlab = "Wavelength (nm)", ylab = "Reflectance (%)",
     cex.main = 3, cex.lab = 2.5, cex.axis = 2, lwd = 2)
legend("topleft", legend = c("C. bracteatus parent", "C. lasius parent"),
       col = c("darkgreen", "gold1"), lty = 1, cex = 2.5, bty = "n")
plot(labellum_spec_scaleminmax[order_spec_labellum], type = "o", col = highlight_colors,
     main = "Labellum spectra", xlab = "Wavelength (nm)", ylab = "Reflectance (%)",
     cex.main = 3, cex.lab = 2.5, cex.axis = 2, lwd = 2)
legend("topleft", legend = c("C. bracteatus parent", "C. lasius parent"),
       col = c("darkgreen", "gold1"), lty = 1, cex = 2.5, bty = "n")
dev.off()
## pdf
```

Principal component analysis - Bract

```
# opt = 'center' centers the spectra to have a mean reflectance of zero (thus removing brightness as a
# opt = 'bin' bins the spectra into user-defined bins
spec.bin <- procspec(bract_spec_scaleminmax, opt = c("bin", "center"))</pre>
## processing options applied:
## Centering spectra to a mean of zero
## binned spectra to 21-nm intervals
# Transpose so wavelength are variables for the PCA
spec.bin <- t(spec.bin)</pre>
# Names variables as wavelength bins
colnames(spec.bin) <- spec.bin[1, ]</pre>
spec.bin <- spec.bin[-1, ] # remove 'wl' row</pre>
# Run PCA on the processed spectra data
pca1 <- prcomp(spec.bin, scale. = TRUE)</pre>
(summary_pca <- summary(pca1))</pre>
## Importance of components:
##
                             PC1
                                    PC2
                                             PC3
                                                     PC4
                                                             PC5
                                                                     PC6
                                                                              PC7
## Standard deviation
                          3.3966 2.3243 1.29094 0.78343 0.65511 0.41299 0.32437
## Proportion of Variance 0.5768 0.2701 0.08333 0.03069 0.02146 0.00853 0.00526
## Cumulative Proportion 0.5768 0.8470 0.93030 0.96099 0.98244 0.99097 0.99623
                              PC8
                                       PC9
                                              PC10
                                                      PC11
                                                              PC12
## Standard deviation
                          0.19439 0.13133 0.09227 0.07497 0.04561 0.04302 0.03454
## Proportion of Variance 0.00189 0.00086 0.00043 0.00028 0.00010 0.00009 0.00006
## Cumulative Proportion 0.99812 0.99898 0.99941 0.99969 0.99979 0.99989 0.99995
                                      PC16
                                              PC17
                                                      PC18
                                                               PC19
##
                             PC15
                                                                         PC20
                          0.02078 0.01617 0.01300 0.01077 0.006633 0.005973
## Standard deviation
## Proportion of Variance 0.00002 0.00001 0.00001 0.00000 0.000000
## Cumulative Proportion 0.99997 0.99998 0.99999 1.00000 1.000000 1.000000
plot(summary_pca$importance[2,])
```



```
# Convert column names (wavelength bins) to numeric values and assign to 'wls'
wls <- as.numeric(colnames(spec.bin))

# Plot loadings of the first principal component (PC1)
plot(pca1$rotation[, 1] ~ wls, type = "l", ylab = "PC1 loading")
abline(h = 0, lty = 2)</pre>
```


appears to contrast shorter wavelengths (300-570 nm) with long wavelengths
(570-700 nm)

Plot loadings of the second principal component (PC2)

```
plot(pca1$rotation[, 2] ~ wls, type = "1", ylab = "PC2 loading")
abline(h = 0, lty = 2)
```



```
## confusing. UV wavelengths (300-400) are correlated with warm colors
## (520-630 nm -- green, yellow, orange, red)
## cool wavelengths (400-520 nm) are correlated with hot colors (630-700 nm -- red)

# Plot loadings of the third principal component (PC2)
plot(pca1$rotation[, 3] ~ wls, type = "1", ylab = "PC3 loading")
abline(h = 0, lty = 2)
```



```
## Confusing. wavelengths 490-610 nm (huge range including most of visible light)
## are contrasted with <490 nm (UV and dark blue/violet) and >610 nm (orange/red)

# Extracting PCA Scores
pca_bract <- data.frame(PC1_bract=pca1$x[,1], PC2_bract=pca1$x[,2], PC3_bract=pca1$x[,3])</pre>
```

Principal component analysis - Petal

```
# opt = 'center' centers the spectra to have a mean reflectance of zero (thus removing brightness as a
# opt = 'bin' bins the spectra into user-defined bins
spec.bin <- procspec(petal_spec_scaleminmax, opt = c("bin", "center"))</pre>
## processing options applied:
## Centering spectra to a mean of zero
## binned spectra to 21-nm intervals
# Transpose so wavelength are variables for the PCA
spec.bin <- t(spec.bin)</pre>
# Names variables as wavelength bins
colnames(spec.bin) <- spec.bin[1, ]</pre>
spec.bin <- spec.bin[-1, ] # remove 'wl' row</pre>
# Run PCA on the processed spectra data
pca1 <- prcomp(spec.bin, scale. = TRUE)</pre>
(summary_pca <- summary(pca1))</pre>
## Importance of components:
                                     PC2
                                             PC3
                                                      PC4
                                                              PC5
                                                                      PC6
                                                                               PC7
                           3.9476 1.6392 0.98410 0.69632 0.35431 0.27714 0.16604
## Standard deviation
## Proportion of Variance 0.7792 0.1343 0.04842 0.02424 0.00628 0.00384 0.00138
## Cumulative Proportion 0.7792 0.9135 0.96193 0.98617 0.99245 0.99629 0.99767
                              PC8
                                      PC9
                                             PC10
                                                      PC11
                                                              PC12
                                                                      PC13
## Standard deviation
                           0.1345 0.11777 0.08335 0.06943 0.03063 0.02532 0.02234
## Proportion of Variance 0.0009 0.00069 0.00035 0.00024 0.00005 0.00003 0.00002
## Cumulative Proportion 0.9986 0.99927 0.99961 0.99985 0.99990 0.99993 0.99996
##
                              PC15
                                      PC16
                                              PC17
                                                        PC18
                                                                 PC19
                                                                          PC20
                           0.01865\ 0.01602\ 0.01141\ 0.007871\ 0.005009\ 0.001636
## Standard deviation
## Proportion of Variance 0.00002 0.00001 0.00001 0.000000 0.000000 0.000000
## Cumulative Proportion 0.99998 0.99999 1.00000 1.000000 1.000000 1.000000
plot(summary_pca$importance[2,])
```



```
## appears to contrast short wavelengths (310-510 nm) with long wavelengths
## (510-700 nm)

# Plot loadings of the second principal component (PC2)
```

wls

```
plot(pca1$rotation[, 2] ~ wls, type = "1", ylab = "PC2 loading")
abline(h = 0, lty = 2)
```



```
## appears to be associated with the UV range (300-400 nm)

# Plot loadings of the third principal component (PC2)
plot(pca1$rotation[, 3] ~ wls, type = "l", ylab = "PC3 loading")
abline(h = 0, lty = 2)
```


appears to be associated with wavelengths 500-550 nm (green)

```
# Extracting PCA Scores
pca_petal <- data.frame(PC1_petal=pca1$x[,1], PC2_petal=pca1$x[,2], PC3_petal=pca1$x[,3])</pre>
```

Principal component analysis - Labellum

```
# opt = 'center' centers the spectra to have a mean reflectance of zero (thus removing brightness as a
# opt = 'bin' bins the spectra into user-defined bins
spec.bin <- procspec(labellum_spec_scaleminmax, opt = c("bin", "center"))</pre>
## processing options applied:
## Centering spectra to a mean of zero
## binned spectra to 21-nm intervals
# Transpose so wavelength are variables for the PCA
spec.bin <- t(spec.bin)</pre>
# Names variables as wavelength bins
colnames(spec.bin) <- spec.bin[1, ]</pre>
spec.bin <- spec.bin[-1, ] # remove 'wl' row</pre>
# Run PCA on the processed spectra data
pca1 <- prcomp(spec.bin, scale. = TRUE)</pre>
(summary_pca <- summary(pca1))</pre>
## Importance of components:
                             PC1
                                   PC2
                                           PC3
                                                  PC4
                                                           PC5
## Standard deviation
                           3.696 1.939 1.33257 0.5831 0.48625 0.39272 0.1896
## Proportion of Variance 0.683 0.188 0.08879 0.0170 0.01182 0.00771 0.0018
## Cumulative Proportion 0.683 0.871 0.95981 0.9768 0.98863 0.99634 0.9981
                               PC8
                                              PC10
                                                      PC11
##
                                       PC9
                                                               PC12
                                                                       PC13
                                                                                PC14
                           0.13245 0.09023 0.08153 0.03977 0.03711 0.02527 0.02280
## Standard deviation
## Proportion of Variance 0.00088 0.00041 0.00033 0.00008 0.00007 0.00003 0.00003
## Cumulative Proportion 0.99902 0.99942 0.99975 0.99983 0.99990 0.99993 0.99996
##
                             PC15
                                      PC16
                                               PC17
                                                         PC18
                                                                  PC19
                          0.01880 0.01617 0.009696 0.007808 0.003989 0.001307
## Standard deviation
## Proportion of Variance 0.00002 0.00001 0.000000 0.000000 0.000000 0.000000
## Cumulative Proportion 0.99998 0.99999 1.000000 1.000000 1.000000 1.000000
plot(summary_pca$importance[2,])
```



```
# Convert column names (wavelength bins) to numeric values and assign to 'wls'
wls <- as.numeric(colnames(spec.bin))

# Plot loadings of the first principal component (PC1)
plot(pca1$rotation[, 1] ~ wls, type = "l", ylab = "PC1 loading")
abline(h = 0, lty = 2)</pre>
```


appears to contrast shorter wavelengths (300-520 nm) with long wavelengths
(520-700 nm)
Plot loadings of the second principal component (PC2)

```
plot(pca1$rotation[, 2] ~ wls, type = "1", ylab = "PC2 loading")
abline(h = 0, lty = 2)
```



```
## appears to be associated with UV wavelengths (300-390 nm)

# Plot loadings of the third principal component (PC2)
plot(pca1$rotation[, 3] ~ wls, type = "l", ylab = "PC3 loading")
abline(h = 0, lty = 2)
```


appears to be associated with wavelengths 500-570 nm (green, yellow)

```
# Extracting PCA Scores
pca_labellum <- data.frame(PC1_labellum=pca1$x[,1], PC2_labellum=pca1$x[,2], PC3_labellum=pca1$x[,3])</pre>
```

Format PC Scores

```
# Replace 'x' with '_' in row names
rownames(pca_bract) <- gsub("x", "_", rownames(pca_bract))
rownames(pca_petal) <- gsub("x", "_", rownames(pca_petal))
rownames(pca_labellum) <- gsub("x", "_", rownames(pca_labellum))

# Convert row names to a column named 'id'
pca_bract <- pca_bract %>% rownames_to_column(var = "id")
pca_petal <- pca_petal %>% rownames_to_column(var = "id")
pca_labellum <- pca_labellum %>% rownames_to_column(var = "id")
```

Spectral Descriptors

We compute various spectral descriptors to quantify the color properties of the floral tissues.

Define spectral descriptors

B1: Total brightness B2: Mean brightness B3: Intensity (Rmax) S1U to S1R: Relative contributions of UV, Violet, Blue, Green, Yellow, and Red spectral ranges to total brightness S2: Spectral saturation (Rmax/Rmin) S3: Chroma S4: Spectral purity S5: Chroma S6: Contrast (Rmax - Rmin) S7: Spectral saturation S8: Chroma ((Rmax - Rmin)/B2) S9: Carotenoid chroma ((R700 - R450)/R700) S10: Peaky chroma H1 to H5: Hue metrics (e.g., peak wavelength) Note: Some metrics may be sensitive to spectral noise.

Calculate Spectral Descriptors

Bract

```
# Calculate spectral descriptors for bract
summary_bract <- summary(bract_spec_scaleminmax)

# Remove S2 due to infinite values
summary_bract <- summary_bract %>% select(-S2)

# Extract metrics for parents
bract125 <- round(summary_bract["125", ], 3)
bract126 <- round(summary_bract["126", ], 3)
bractBRAC <- round(summary_bract["BRAC", ], 3)</pre>
```

Plot Bract Spectral Descriptors Histograms

```
hist(summary_bract[, i],
       xlab = colnames(summary_bract)[i],
       main = colnames(summary_bract)[i],
       col = "lightgrey",
       border = "white")
  # Add vertical lines for parental samples
  abline(v = bract125[i], col = 'gold1', lwd = 3)  # C. lasius parent
abline(v = bract126[i], col = 'gold1', lwd = 3)  # C. lasius parent
  abline(v = bractBRAC[i], col = 'darkgreen', lwd = 3) # C. bracteatus parent
}
# Allow drawing in the outer margin
par(xpd = TRUE)
plot.new()
# Add a shared legend in the outer right margin
legend("topright",
       inset = c(0, 0), # Adjusts the position of the legend
       legend = c("C. lasius parent", "C. bracteatus parent"),
       col = c("gold1", "darkgreen"),
       lty = 1,
                           # Line type: solid
       lwd = 3,
                             # Line width
       cex = 1.5,
                              # Text size
       bty = "n")
                             # No box around the legend
# Close the PDF device to save the file
dev.off()
## pdf
```

Petal Summary

2

```
# Calculate summary statistics for petal
summary_petal <- summary(petal_spec_scaleminmax)

# Remove S2 due to infinite values
summary_petal <- summary_petal %>% select(-S2)

# Extract metrics for specific samples
petal125 <- round(summary_petal["125", ], 3)
petal126 <- round(summary_petal["126", ], 3)
petalBRAC <- round(summary_petal["BRAC", ], 3)</pre>
```

Plot Petal Spectral Descriptors Histograms

```
pdf("./results/figures/petal_descriptors_histograms.pdf", width = 14, height = 10)

# Set up plotting area: 4 rows x 6 columns for histograms
par(mfrow = c(4, 6),  # 4 rows, 6 columns
    mar = c(5, 5, 4, 2) + 0.1, # Margins for each plot: bottom, left, top, right
```

```
oma = c(0, 0, 0, 5)) # Outer margins: bottom, left, top, right
# Loop through each metric and plot histogram with parental lines
for (i in 1:ncol(summary_petal)) {
 hist(summary_petal[, i],
       xlab = colnames(summary_petal)[i],
       main = colnames(summary_petal)[i],
       col = "lightgrey",
       border = "white")
  # Add vertical lines for parental samples
 abline(v = petal125[i], col = 'gold1', lwd = 3)  # C. lasius parent
abline(v = petal126[i], col = 'gold1', lwd = 3)  # C. lasius parent
  abline(v = petalBRAC[i], col = 'darkgreen', lwd = 3) # C. bracteatus parent
# Allow drawing in the outer margin
par(xpd = TRUE)
plot.new()
# Add a shared legend in the outer right margin
legend("topright",
       inset = c(0, 0), # Adjusts the position of the legend
       legend = c("C. lasius parent", "C. bracteatus parent"),
       col = c("gold1", "darkgreen"),
       lty = 1,
                             # Line type: solid
       lwd = 3,
                             # Line width
       cex = 1.5,
                             # Text size
       bty = "n")
                             # No box around the legend
# Close the PDF device to save the file
dev.off()
## pdf
##
Labellum Summary
# Calculate summary statistics for labellum
summary_labellum <- summary(labellum_spec_scaleminmax)</pre>
# Remove S2 due to infinite values
summary_labellum <- summary_labellum %>% select(-S2)
# Extract metrics for specific samples
labellum125 <- round(summary_labellum["125", ], 3)</pre>
labellum126 <- round(summary_labellum["126", ], 3)</pre>
```

Plot Labellum Spectral Descriptors Histograms

labellumBRAC <- round(summary_labellum["BRAC",], 3)</pre>

```
pdf("./results/figures/labellum_descriptors_histograms.pdf", width = 14, height = 10)
# Set up plotting area: 4 rows x 6 columns for histograms
par(mfrow = c(4, 6),  # 4 rows, 6 columns
    mar = c(5, 5, 4, 2) + 0.1, # Margins for each plot: bottom, left, top, right
    oma = c(0, 0, 0, 5)) # Outer margins: bottom, left, top, right
# Loop through each metric and plot histogram with parental lines
for (i in 1:ncol(summary_labellum)) {
 hist(summary labellum[, i],
       xlab = colnames(summary_labellum)[i],
       main = colnames(summary_labellum)[i],
       col = "lightgrey",
       border = "white")
  # Add vertical lines for parental samples
 abline(v = labellum125[i], col = 'gold1', lwd = 3) # C. lasius parent abline(v = labellum126[i], col = 'gold1', lwd = 3) # C. lasius parent
  abline(v = labellumBRAC[i], col = 'darkgreen', lwd = 3) # C. bracteatus parent
}
# Allow drawing in the outer margin
par(xpd = TRUE)
plot.new()
# Add a shared legend in the outer right margin
legend("topright",
       inset = c(0, 0), # Adjusts the position of the legend
       legend = c("C. lasius parent", "C. bracteatus parent"),
       col = c("gold1", "darkgreen"),
       lty = 1,
                             # Line type: solid
       lwd = 3,
                             # Line width
       cex = 1.5,
                            # Text size
       bty = "n")
                            # No box around the legend
# Close the PDF device to save the file
dev.off()
```

pdf ## 2

Data Formatting and Export

Reformat Rownames

Replace 'x' with ' ' in row names for consistency.

```
# Replace 'x' with '_' in row names
rownames(summary_bract) <- gsub("x", "_", rownames(summary_bract))
rownames(summary_petal) <- gsub("x", "_", rownames(summary_petal))
rownames(summary_labellum) <- gsub("x", "_", rownames(summary_labellum))</pre>
```

Subset and Rename Columns

Select relevant metrics and rename columns to indicate their corresponding floral tissue.

Convert Rownames to a Column

Add the row names as a new column id to facilitate merging.

```
# Convert row names to a column named 'id'
summary_bract <- summary_bract %>% rownames_to_column(var = "id")
summary_petal <- summary_petal %>% rownames_to_column(var = "id")
summary_labellum <- summary_labellum %>% rownames_to_column(var = "id")
```

UV Analyses

Spectral Data Processing

Convert Data to rspec Objects

The spectral data is converted into rspec objects using the pavo package for further analysis.

```
# Set seed for reproducibility
set.seed(1612217)
# Convert datasets to rspec objects with wavelength limits
bract_spec <- as.rspec(bract, lim = c(300, 400), whichwl = 1)</pre>
## The spectral data contain 456 negative value(s),
## which may produce unexpected results if used in models.
## Consider using procspec() to correct them.
petal spec \leftarrow as.rspec(petal, lim = c(300, 400), whichwl = 1)
## The spectral data contain 86 negative value(s),
## which may produce unexpected results if used in models.
## Consider using procspec() to correct them.
labellum_spec <- as.rspec(labellum, lim = c(300, 400), whichwl = 1)
# change column names
colnames(bract_spec) <- gsub("-", "x", colnames(bract_spec))</pre>
colnames(petal_spec) <- gsub("-", "x", colnames(petal_spec))</pre>
colnames(labellum_spec) <- gsub("-", "x", colnames(labellum_spec))</pre>
```

Note: The conversion may produce warnings about negative values in spectral data, which are addressed in subsequent steps.

Average the Spectra

##

2

2

2

Aggregate the spectral data by sample names, averaging replicates.

```
# Extract sample names by removing trailing numbers in parentheses
bract_samples <- gsub("\([0-9]+\)\), "", names(bract_spec))[-1]
petal_samples <- gsub("\([0-9]+\)\)", "", names(petal_spec))[-1]
labellum_samples <- gsub("\\([0-9]+\\)$", "", names(labellum_spec))[-1]
# Verify sample counts
table(bract_samples)
## bract_samples
                           39x10 39x109 39x110 39x115 39x116 39x117
                                                                          39x12 39x122
##
      125
              126
                       39
                3
##
        2
                        1
                                2
                                               2
                                                       2
                                                                      3
                                                                              2
                                       1
                                                               1
                           39x13 39x130 39x136
                                                                                  39x2
   39x123 39x125 39x126
                                                  39x14
                                                          39x15
                                                                  39x16
                                                                          39x17
##
                2
                        2
                                1
                                       3
                                               2
                                                       3
                                                              2
                                                                      4
                                                                                      2
##
    39x21
            39x23
                   39x25
                           39x27
                                   39x34
                                           39x39
                                                   39x4
                                                          39x40
                                                                  39x41
                                                                          39x44
                                                                                 39x46
                2
                        2
                                       2
                                               2
                                                       2
                                                              2
                                                                      2
##
        2
                                2
                                                                              2
##
    39x49
            39x50
                   39x51
                           39x55
                                   39x56
                                           39x57
                                                   39x6
                                                          39x60
                                                                  39x65
                                                                          39x67
                                                                                 39x68
##
        2
                2
                        2
                                2
                                       2
                                               2
                                                       2
                                                               2
                                                                      2
                                                                              2
                                                                                      1
                                    39x8
                                          39x81
    39x75
                   39x78
                           39x79
                                                  39x82
                                                          39x86
                                                                                 39x92
##
            39x77
                                                                  39x87
                                                                         39x89
##
        2
                2
                        2
                                2
                                       1
                                               2
                                                       3
                                                               1
                                                                              2
                                                                                      2
##
    39x93
            39x95
                   39x96
                           39x98
                                   62x10 62x103 62x105 62x109 62x116 62x119 62x122
##
                        2
                                2
                                               2
                                                       2
                                       1
                                                               1
   62x125 62x128 62x129
                           62x13 62x130 62x131 62x134 62x135 62x136 62x137 62x138
##
##
                        2
                                2
                                               2
                                                               2
                1
                                       1
##
   62x139
            62x14 62x140 62x143 62x144 62x147 62x151 62x152 62x153 62x154 62x157
##
        1
                1
                        2
                                1
                                       2
                                               1
                                                       1
                                                               3
                                                                              2
            62x16 62x162 62x167 62x168 62x169
                                                  62x17 62x172 62x173 62x175
                                                                                 62x18
##
   62x158
##
        2
                2
                        2
                                2
                                       1
                                               1
                                                       2
                                                               2
                                                                      2
                                                                              2
                                                                                      1
                                   62x19 62x190 62x197 62x200 62x206
##
   62x182 62x185 62x188 62x189
                                                                         62x21 62x214
##
        1
                2
                        1
                                1
                                       2
                                               2
                                                       2
                                                               2
   62x218 62x219
                   62x22 62x220 62x225 62x233 62x234 62x240 62x251 62x252 62x258
##
##
        2
                2
                        2
                                1
                                       2
                                               1
                                                       1
                                                               2
                                                                      2
                                                                              1
   62x261 62x264 62x265 62x267 62x268 62x276 62x282 62x293 62x296 62x300 62x302
##
##
        2
                2
                                2
                                       2
                                               1
                                                       1
                                                              2
                        1
                                                                      1
                                                                              1
##
   62x303 62x304 62x305 62x306 62x307 62x308 62x309 62x310 62x313 62x315 62x322
##
                                1
                                       2
                                               1
                                                       2
                                                                                      1
                1
                        1
                                                               1
                                                                      1
                                                                              1
##
   62x324 62x327 62x332 62x337 62x338 62x351 62x355 62x359 62x363 62x370
                                                                                  62x5
##
                        2
                                1
                                       2
                                               1
                                                       2
                                                              2
                                                                      2
                                                                              1
        1
                1
                                                                                      1
##
    62x57
            62x58
                   62x59
                           62x60
                                   62x63
                                           62x65
                                                  62x66
                                                          62x69
                                                                  62x73
                                                                         62x74
                                                                                 62x75
                        2
                                                              2
                                                                      2
##
                2
                                                       1
                                1
                                       1
                                               1
                                                                              1
##
            62x83
                   62x87
                           62x91
                                   62x92
                                          62x94
                                                  62x96
                                                           BRAC
##
                2
                        1
                                2
                                       2
                                               1
                                                       1
table(petal_samples)
## petal_samples
##
      125
              126
                       39
                           39x10 39x109 39x110 39x115 39x116 39x117
                                                                         39x12 39x122
                2
##
        2
                        1
                                2
                                       1
                                               2
                                                       2
                                                               1
                                                                      3
                                                                              2
                                                                                      2
   39x123 39x125 39x126
                           39x13 39x130 39x136
                                                  39x14
                                                          39x15
                                                                  39x16
                                                                         39x17
                                                                                  39x2
```

2

3

2

4

2

2

3

1

```
39x21 39x23 39x25 39x27 39x34 39x39
                                        39x4 39x40 39x41 39x44 39x46
##
             2
                   2
                         2
                               2
                                  2
                                         2
                                                  2
                                                        2
                                                              2
##
   39x49 39x50 39x51 39x55 39x56 39x57
                                        39x6 39x60 39x65 39x67 39x68
                                                        2
##
                   2
                         2
                               2
                                      2
                                            2
                                                  2
##
   39x75 39x77 39x78 39x79
                            39x8 39x81 39x82 39x86 39x87 39x89 39x92
                   2
                         2
                                     2
##
                              1
                                            3
                                                  1
                                                       1
   39x93 39x95 39x96 39x98 62x10 62x103 62x105 62x109 62x116 62x119 62x122
##
                   2
                         2
                             1
                                      2
                                            2
                                                 1
                                                      1
## 62x125 62x128 62x129 62x13 62x130 62x131 62x134 62x135 62x136 62x137 62x138
      1
          1
                   2
                         2
                             1
                                      2
                                          1
                                                  2
                                                        2
## 62x139 62x14 62x140 62x143 62x144 62x147 62x151 62x152 62x153 62x154 62x157
                   2
                               2
                                                        2
            1
                        1
                                    1
                                           1
                                                  3
## 62x158 62x16 62x162 62x167 62x168 62x169 62x17 62x172 62x173 62x175 62x18
                   2
                        2
                              1
                                     1
                                            2
                                                 2
                                                        2
## 62x182 62x185 62x188 62x189 62x19 62x190 62x197 62x200 62x206 62x21 62x214
                     1
                               2
                                  2 2
                                                  2
                                                     2
               1
## 62x218 62x219 62x22 62x220 62x225 62x233 62x234 62x240 62x251 62x252 62x258
                      1
                               2
                                  1 1
                                                2
## 62x261 62x262 62x264 62x265 62x268 62x276 62x282 62x293 62x296 62x300 62x302
                        1
                               2
                                    1
                                        1
                                               2
                                                      1
## 62x303 62x304 62x305 62x306 62x307 62x308 62x309 62x310 62x313 62x315 62x322
                               2
                                            2
                   1
                         1
                                     1
                                                  1
## 62x324 62x327 62x332 62x337 62x338 62x351 62x355 62x359 62x363 62x370
                                                                  62x5
##
      1
             1
                   2
                         1
                               2
                                   1
                                            2
                                                  2
                                                        2
                                                           1
##
   62x57 62x58 62x59 62x60 62x63 62x65 62x66 62x69 62x73 62x74 62x75
             2
                   2
                         1
                               1
                                     1
                                            1
                                                  2
                                                        2
   62x77 62x83 62x87 62x91 62x92 62x94 62x96
                                               BRAC
##
                   1
                         2
                                     1
```

table(labellum_samples)

labellum_samples 39 39x10 39x109 39x110 39x115 39x116 39x117 39x12 39x122 ## ## 39x123 39x125 39x126 39x13 39x130 39x136 39x14 39x15 39x16 39x17 ## 39x21 39x23 39x25 39x2739x34 39x39 39x4 39x40 39x41 39x44 39x46 ## 39x55 39x56 39x57 39x6 39x60 39x65 39x67 ## 39x49 39x50 39x51 39x8 39x81 39x82 39x86 39x87 39x89 39x92 ## 39x75 39x77 39x78 39x79 ## 39x93 39x95 39x96 39x98 62x10 62x103 62x105 62x109 62x116 62x119 62x122 ## ## ## 62x125 62x128 62x129 62x13 62x130 62x131 62x134 62x135 62x136 62x137 62x138 ## ## 62x139 62x14 62x140 62x143 62x144 62x147 62x151 62x152 62x153 62x154 62x157 ## 62x158 62x16 62x162 62x167 62x168 62x169 62x17 62x172 62x173 62x175 62x18 ## 62x182 62x185 62x188 62x189 62x19 62x190 62x197 62x200 62x206 62x21 62x214 ## 62x218 62x219 62x22 62x220 62x225 62x233 62x234 62x240 62x251 62x252 62x258 2 1 1 1 1 ## 62x261 62x262 62x264 62x265 62x268 62x276 62x282 62x293 62x296 62x300 62x302

```
##
                                                           2
                              1
                                     2
                                             1
                                                    1
## 62x303 62x304 62x305 62x306 62x307 62x308 62x309 62x310 62x313 62x315 62x322
##
               1
                       1
                              1
                                     2
                                             1
                                                    2
## 62x324 62x327 62x332 62x337 62x338 62x351 62x355 62x359 62x363 62x370
                                                                              62x5
##
        1
               1
                       2
                              2
                                     2
                                             1
                                                    2
                                                           2
                                                                   2
   62x57 62x58
                  62x59
                          62x60
                                 62x63
                                       62x65
                                                62x66
                                                              62x73 62x74
##
                                                       62x69
                                                                             62x75
               2
                       2
                              1
                                     1
                                             1
                                                    1
                                                           2
##
    62x77 62x83
                  62x87
                          62x91
                                 62x92
                                        62x94
                                                62x96
                                                        BRAC
##
               2
                       1
                              2
                                             1
                                                    1
# Aggregate spectra by sample names using mean
bract_spec_avg <- aggspec(bract_spec, by = bract_samples, FUN = mean)</pre>
petal_spec_avg <- aggspec(petal_spec, by = petal_samples, FUN = mean)</pre>
labellum_spec_avg <- aggspec(labellum_spec, by = labellum_samples, FUN = mean)
```

Fix Negative Reflectance Values

Negative reflectance values are corrected by adding the minimum reflectance.

```
# Fix negative values by adding the minimum reflectance
bract_spec_avg <- procspec(bract_spec_avg, fixneg = "addmin")

## processing options applied:
## Negative value correction: added min to all reflectance

petal_spec_avg <- procspec(petal_spec_avg, fixneg = "addmin")

## processing options applied:
## Negative value correction: added min to all reflectance

labellum_spec_avg <- procspec(labellum_spec_avg, fixneg = "addmin")

## processing options applied:
## Processing options applied:
## Negative value correction: added min to all reflectance</pre>
```

Determine Smoothing Parameter

Use plotsmooth to visualize and decide on an appropriate smoothing span.

```
## warning in simpleLoess(y, x, w, span, degree = degree, parametric = FALSE, :
## k-d tree limited by memory. ncmax= 200
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = FALSE, :
## k-d tree limited by memory. ncmax= 200
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = FALSE, :
## k-d tree limited by memory. ncmax= 200
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = FALSE, :
## k-d tree limited by memory. ncmax= 200
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = FALSE, :
## k-d tree limited by memory. ncmax= 200
```


Choose a span (e.g., 0.2) based on the plot to balance smoothness and data fidelity.

Smooth the Spectral Data

Apply smoothing to the spectral data using the chosen span.

```
# Apply smoothing with span = 0.2
bract_spec_sm <- procspec(bract_spec_avg, opt = "smooth", span = 0.2)

## processing options applied:
## smoothing spectra with a span of 0.2

petal_spec_sm <- procspec(petal_spec_avg, opt = "smooth", span = 0.2)

## processing options applied:
## smoothing spectra with a span of 0.2

labellum_spec_sm <- procspec(labellum_spec_avg, opt = "smooth", span = 0.2)

## processing options applied:
## smoothing spectra with a span of 0.2</pre>
```

Scale the Spectral Data

Scale the spectral data to different reference points for comparative analysis.

```
# Scale spectra to both minimum and maximum reflectance
bract_spec_scaleminmax_UV <- procspec(bract_spec_sm, opt = c("min", "max"))
## processing options applied:
## Scaling spectra to a minimum value of zero</pre>
```

```
## Scaling spectra to a maximum value of 1

petal_spec_scaleminmax_UV <- procspec(petal_spec_sm, opt = c("min", "max"))

## processing options applied:

## Scaling spectra to a minimum value of zero

## Scaling spectra to a maximum value of 1

labellum_spec_scaleminmax_UV <- procspec(labellum_spec_sm, opt = c("min", "max"))

## processing options applied:

## Scaling spectra to a minimum value of zero

## Scaling spectra to a maximum value of 1</pre>
```

Plot Processed Spectra

Visualize the processed spectral data for each floral tissue, highlighting specific samples.

Define Common Plotting Parameters

```
# Define a color palette for highlighting specific samples
highlight_colors <- c(rep("lightgrey", 170), "gold1", "gold1", "darkgreen")</pre>
```

Bract Spectra Plot

```
# Order samples to highlight specific ones
order_spec_bract <- c(</pre>
  which(names(bract_spec_scaleminmax_UV) == "125"),
  which(names(bract spec scaleminmax UV) == "126"),
  which(names(bract_spec_scaleminmax_UV) == "BRAC")
)
# Reorder columns to place highlighted samples at the end
columns_bract <- 1:ncol(bract_spec_scaleminmax_UV)</pre>
order_spec_bract <- c(columns_bract[columns_bract %notin% order_spec_bract], order_spec_bract)
# Plot the spectra
plot(bract_spec_scaleminmax_UV[order_spec_bract], type = "o",
     col = highlight_colors, main = "Bract Spectra",
     xlab = "Wavelength (nm)", ylab = "Reflectance (%)")
# Add a legend
legend("topleft", legend = c("C. bracteatus parent", "C. lasius parent"),
       col = c("darkgreen", "gold1"), lty = 1, cex = 0.8)
```

Bract Spectra

Petal Spectra Plot

```
# Order samples to highlight specific ones
order_spec_petal <- c(</pre>
  which(names(petal_spec_scaleminmax_UV) == "125"),
  which(names(petal_spec_scaleminmax_UV) == "126"),
  which(names(petal_spec_scaleminmax_UV) == "BRAC")
)
# Reorder columns to place highlighted samples at the end
columns_petal <- 1:ncol(petal_spec_scaleminmax_UV)</pre>
order_spec_petal <- c(columns_petal[columns_petal %notin% order_spec_petal], order_spec_petal)
# Plot the spectra
plot(petal_spec_scaleminmax_UV[order_spec_petal], type = "o",
     col = highlight_colors, main = "Petal Spectra",
     xlab = "Wavelength (nm)", ylab = "Reflectance (%)")
# Add a legend
legend("topleft", legend = c("C. bracteatus parent", "C. lasius parent"),
       col = c("darkgreen", "gold1"), lty = 1, cex = 0.8)
```

Petal Spectra

Labellum Spectra Plot

```
# Order samples to highlight specific ones
order_spec_labellum <- c(
    which(names(labellum_spec_scaleminmax_UV) == "125"),
    which(names(labellum_spec_scaleminmax_UV) == "126"),
    which(names(labellum_spec_scaleminmax_UV) == "BRAC")
)

# Reorder columns to place highlighted samples at the end
columns_labellum <- 1:ncol(labellum_spec_scaleminmax_UV)
order_spec_labellum <- c(columns_labellum[columns_labellum %notin% order_spec_labellum], order_spec_labellum]
# Plot the spectra
plot(labellum_spec_scaleminmax_UV[order_spec_labellum], type = "o",
    col = highlight_colors, main = "Labellum Spectra",
    xlab = "Wavelength (nm)", ylab = "Reflectance (%)")

# Add a legend
legend("topleft", legend = c("C. bracteatus parent", "C. lasius parent"),
    col = c("darkgreen", "gold1"), lty = 1, cex = 0.8)</pre>
```

Labellum Spectra

Combine and Save Spectral Plots with Highlighted Parents

```
# Save combined spectra plots with highlighted parental samples
pdf("./results/figures/Combined_UVspectra_Bract_Petal_Labellum_Cbracteatus_Clasius_hybrids.pdf", width
par(mfrow = c(1, 3))
# Increase left margin to provide more space for y-axis labels
par(mar = c(5, 5, 4, 2) + 0.1) # c(bottom, left, top, right)
plot(bract_spec_scaleminmax_UV[order_spec_bract], type = "o", col = highlight_colors,
     main = "Bract spectra", xlab = "Wavelength (nm)", ylab = "Reflectance (%)",
     cex.main = 3, cex.lab = 2.5, cex.axis = 2, lwd = 2)
legend("topleft", legend = c("C. bracteatus parent", "C. lasius parent"),
       col = c("darkgreen", "gold1"), lty = 1, cex = 2.5, bty = "n")
plot(petal_spec_scaleminmax_UV[order_spec_petal], type = "o", col = highlight_colors,
     main = "Petal spectra", xlab = "Wavelength (nm)", ylab = "Reflectance (%)",
     cex.main = 3, cex.lab = 2.5, cex.axis = 2, lwd = 2)
legend("topleft", legend = c("C. bracteatus parent", "C. lasius parent"),
       col = c("darkgreen", "gold1"), lty = 1, cex = 2.5, bty = "n")
plot(labellum_spec_scaleminmax_UV[order_spec_labellum], type = "o", col = highlight_colors,
     main = "Labellum spectra", xlab = "Wavelength (nm)", ylab = "Reflectance (%)",
     cex.main = 3, cex.lab = 2.5, cex.axis = 2, lwd = 2)
legend("topleft", legend = c("C. bracteatus parent", "C. lasius parent"),
       col = c("darkgreen", "gold1"), lty = 1, cex = 2.5, bty = "n")
dev.off()
## pdf
##
```

Spectral Descriptors

We compute various spectral descriptors to quantify the color properties of the floral tissues.

Define spectral descriptors

B1: Total brightness B2: Mean brightness B3: Intensity (Rmax) S1U to S1R: Relative contributions of UV, Violet, Blue, Green, Yellow, and Red spectral ranges to total brightness S2: Spectral saturation (Rmax/Rmin) S3: Chroma S4: Spectral purity S5: Chroma S6: Contrast (Rmax - Rmin) S7: Spectral saturation S8: Chroma ((Rmax - Rmin)/B2) S9: Carotenoid chroma ((R700 - R450)/R700) S10: Peaky chroma H1 to H5: Hue metrics (e.g., peak wavelength) Note: Some metrics may be sensitive to spectral noise.

Calculate Spectral Descriptors

Bract

```
# Calculate spectral descriptors for bract
summary_bract_UV <- summary(bract_spec_scaleminmax_UV)</pre>
## Warning: cannot calculate violet chroma; wavelength below 415 nm
## Warning: cannot calculate blue chroma; wavelength range not between 400 and 510
## nm
## Warning: cannot calculate green chroma; wavelength range not between 510 and
## 605 nm
## Warning: cannot calculate yellow chroma; wavelength range not between 550 and
## 625 nm
## Warning: cannot calculate red chroma; wavelength range not between 605 and 700
# Remove S2 due to infinite values
summary_bract_UV <- summary_bract_UV %>% select(-S2)
# Extract metrics for parents
bract125 <- round(summary_bract_UV["125", ], 3)</pre>
bract126 <- round(summary_bract_UV["126", ], 3)</pre>
bractBRAC <- round(summary_bract_UV["BRAC", ], 3)</pre>
```

Plot Bract Spectral Descriptors Histograms

```
pdf("./results/figures/bract_UV_descriptors_histograms.pdf", width = 14, height = 10)

# Set up plotting area: 4 rows x 6 columns for histograms
par(mfrow = c(4, 6),  # 4 rows, 6 columns
    mar = c(5, 5, 4, 2) + 0.1, # Margins for each plot: bottom, left, top, right
    oma = c(0, 0, 0, 5)) # Outer margins: bottom, left, top, right

# Loop through each metric and plot histogram with parental lines
for (i in 1:ncol(summary_bract_UV)) {

if (!any(!is.na(summary_bract_UV[, i]))) next # Skip columns that are entirely NA

hist(summary_bract_UV[, i],
    xlab = colnames(summary_bract_UV)[i],
```

```
main = colnames(summary_bract_UV)[i],
       col = "lightgrey",
       border = "white")
  # Add vertical lines for parental samples
 abline(v = bract125[i], col = 'gold1', lwd = 3) # C. lasius parent
abline(v = bract126[i], col = 'gold1', lwd = 3) # C. lasius parent
  abline(v = bractBRAC[i], col = 'darkgreen', lwd = 3) # C. bracteatus parent
}
# Allow drawing in the outer margin
par(xpd = TRUE)
plot.new()
# Add a shared legend in the outer right margin
legend("topright",
       inset = c(0, 0), # Adjusts the position of the legend
       legend = c("C. lasius parent", "C. bracteatus parent"),
       col = c("gold1", "darkgreen"),
       lty = 1,
                              # Line type: solid
       lwd = 3,
                             # Line width
       cex = 1.5,
                             # Text size
       bty = "n")
                             # No box around the legend
# Close the PDF device to save the file
dev.off()
## pdf
## 2
Petal Summary
# Calculate summary statistics for petal
summary_petal_UV <- summary(petal_spec_scaleminmax_UV)</pre>
## Warning: cannot calculate violet chroma; wavelength below 415 nm
## Warning: cannot calculate blue chroma; wavelength range not between 400 and 510
## nm
## Warning: cannot calculate green chroma; wavelength range not between 510 and
## 605 nm
## Warning: cannot calculate yellow chroma; wavelength range not between 550 and
## Warning: cannot calculate red chroma; wavelength range not between 605 and 700
## nm
# Remove S2 due to infinite values
summary_petal_UV <- summary_petal_UV %>% select(-S2)
```

Extract metrics for specific samples

petal125 <- round(summary_petal_UV["125",], 3)
petal126 <- round(summary_petal_UV["126",], 3)</pre>

```
petalBRAC <- round(summary_petal_UV["BRAC", ], 3)</pre>
```

Plot Petal Spectral Descriptors Histograms

```
pdf("./results/figures/petal_UV_descriptors_histograms.pdf", width = 14, height = 10)
# Set up plotting area: 4 rows x 6 columns for histograms
par(mfrow = c(4, 6),  # 4 rows, 6 columns
    mar = c(5, 5, 4, 2) + 0.1, # Margins for each plot: bottom, left, top, right
    oma = c(0, 0, 0, 5)) # Outer margins: bottom, left, top, right
# Loop through each metric and plot histogram with parental lines
for (i in 1:ncol(summary_petal_UV)) {
  if (!any(!is.na(summary_petal_UV[, i]))) next # Skip columns that are entirely NA
 hist(summary_petal_UV[, i],
       xlab = colnames(summary_petal_UV)[i],
       main = colnames(summary petal UV)[i],
       col = "lightgrey",
       border = "white")
  # Add vertical lines for parental samples
 abline(v = petal125[i], col = 'gold1', lwd = 3) # C. lasius parent
abline(v = petal126[i], col = 'gold1', lwd = 3) # C. lasius parent
  abline(v = petalBRAC[i], col = 'darkgreen', lwd = 3) # C. bracteatus parent
# Allow drawing in the outer margin
par(xpd = TRUE)
plot.new()
# Add a shared legend in the outer right margin
legend("topright",
       inset = c(0, 0), # Adjusts the position of the legend
       legend = c("C. lasius parent", "C. bracteatus parent"),
       col = c("gold1", "darkgreen"),
       lty = 1,
                             # Line type: solid
       lwd = 3,
                             # Line width
                            # Text size
       cex = 1.5,
       bty = "n")
                             # No box around the legend
# Close the PDF device to save the file
dev.off()
## pdf
## 2
```

Labellum Summary

```
# Calculate summary statistics for labellum
summary_labellum_UV <- summary(labellum_spec_scaleminmax_UV)</pre>
```

```
## Warning: cannot calculate violet chroma; wavelength below 415 nm
## Warning: cannot calculate blue chroma; wavelength range not between 400 and 510
## nm
## Warning: cannot calculate green chroma; wavelength range not between 510 and
## 605 nm
## Warning: cannot calculate yellow chroma; wavelength range not between 550 and
## 625 nm
## Warning: cannot calculate red chroma; wavelength range not between 605 and 700
## nm
## Remove S2 due to infinite values
summary_labellum_UV <- summary_labellum_UV %>% select(-S2)
## Extract metrics for specific samples
labellum125 <- round(summary_labellum_UV["125", ], 3)
labellum126 <- round(summary_labellum_UV["126", ], 3)
labellumBRAC <- round(summary_labellum_UV["BRAC", ], 3)</pre>
```

Plot Labellum Spectral Descriptors Histograms

```
pdf("./results/figures/labellum_UV_descriptors_histograms.pdf", width = 14, height = 10)
# Set up plotting area: 4 rows x 6 columns for histograms
par(mfrow = c(4, 6),
                       # 4 rows, 6 columns
    mar = c(5, 5, 4, 2) + 0.1, # Margins for each plot: bottom, left, top, right
    oma = c(0, 0, 0, 5)) # Outer margins: bottom, left, top, right
# Loop through each metric and plot histogram with parental lines
for (i in 1:ncol(summary_labellum_UV)) {
  if (!any(!is.na(summary_labellum_UV[, i]))) next # Skip columns that are entirely NA
  hist(summary_labellum_UV[, i],
       xlab = colnames(summary_labellum_UV)[i],
       main = colnames(summary_labellum_UV)[i],
       col = "lightgrey",
       border = "white")
  # Add vertical lines for parental samples
  abline(v = labellum125[i], col = 'gold1', lwd = 3) # C. lasius parent abline(v = labellum126[i], col = 'gold1', lwd = 3) # C. lasius parent # C. lasius parent
  abline(v = labellumBRAC[i], col = 'darkgreen', lwd = 3) # C. bracteatus parent
# Allow drawing in the outer margin
par(xpd = TRUE)
plot.new()
# Add a shared legend in the outer right margin
legend("topright",
       inset = c(0, 0), # Adjusts the position of the legend
```

Data Formatting and Export

Reformat Rownames

Replace 'x' with '_' in row names for consistency.

```
# Replace 'x' with '_' in row names
rownames(summary_bract_UV) <- gsub("x", "_", rownames(summary_bract_UV))
rownames(summary_petal_UV) <- gsub("x", "_", rownames(summary_petal_UV))
rownames(summary_labellum_UV) <- gsub("x", "_", rownames(summary_labellum_UV))</pre>
```

Convert Rownames to a Column

Add the row names as a new column id to facilitate merging.

```
# Convert row names to a column named 'id'
summary_petal_UV <- summary_petal_UV %>% rownames_to_column(var = "id")
summary_labellum_UV <- summary_labellum_UV %>% rownames_to_column(var = "id")
```

Subset and Rename Columns

Select relevant metrics and rename columns to indicate their corresponding floral tissue.

```
# Subset relevant columns based on analysis needs
summary_petal_UV <- summary_petal_UV[, c("id", "H1")]
summary_labellum_UV <- summary_labellum_UV[, c("id", "H1")]

# Rename columns to include tissue type
colnames(summary_petal_UV) <- c("id", "H1_UV_petal")
colnames(summary_labellum_UV) <- c("id", "H1_UV_labellum")</pre>
```

Vision Models

```
# Compute Photoreceptor Quantum Catches for Birds and Bees
## Bract
bract_bird_vis <- vismodel(bract_spec_scaleminmax, visual = "avg.uv", relative = TRUE)
bract_bee_vis <- vismodel(bract_spec_scaleminmax, visual = "apis", relative = TRUE)

## Petal
petal_bird_vis <- vismodel(petal_spec_scaleminmax, visual = "avg.uv", relative = TRUE)
petal_bee_vis <- vismodel(petal_spec_scaleminmax, visual = "apis", relative = TRUE)</pre>
```

```
## Labellum
labellum_bird_vis <- vismodel(labellum_spec_scaleminmax, visual = "avg.uv", relative = TRUE)
labellum_bee_vis <- vismodel(labellum_spec_scaleminmax, visual = "apis", relative = TRUE)

# Convert Bird Vision Data into a Color Space
bract_bird_colspace <- colspace(bract_bird_vis, space = "auto")
petal_bird_colspace <- colspace(petal_bird_vis, space = "auto")
labellum_bird_colspace <- colspace(labellum_bird_vis, space = "auto")

# Plot the Avian Color Space Representation
plot(bract_bird_colspace, col = spec2rgb(bract_spec_scaleminmax))</pre>
```


projplot(bract_bird_colspace, pch = 20, col = spec2rgb(bract_spec_scaleminmax))

plot(petal_bird_colspace, col = spec2rgb(petal_spec_scaleminmax))

projplot(petal_bird_colspace, pch = 20, col = spec2rgb(petal_spec_scaleminmax))

plot(labellum_bird_colspace, col = spec2rgb(labellum_spec_scaleminmax))

projplot(labellum_bird_colspace, pch = 20, col = spec2rgb(labellum_spec_scaleminmax))


```
# Convert Bee Vision Data into a Color Space
bract_bee_colspace <- colspace(bract_bee_vis, space = "tri")
petal_bee_colspace <- colspace(petal_bee_vis, space = "tri")
labellum_bee_colspace <- colspace(labellum_bee_vis, space = "tri")

# Plot the Bee Color Space Representation
plot(bract_bee_colspace, col = spec2rgb(bract_spec_scaleminmax))</pre>
```


plot(petal_bee_colspace, col = spec2rgb(petal_spec_scaleminmax))

plot(labellum_bee_colspace, col = spec2rgb(labellum_spec_scaleminmax))


```
# Replace 'x' with '_' in row names
rownames(bract_bird_colspace) <- gsub("x", "_", rownames(bract_bird_colspace))
rownames(bract_bee_colspace) <- gsub("x", "_", rownames(bract_bee_colspace))
rownames(petal_bird_colspace) <- gsub("x", "_", rownames(petal_bird_colspace))
rownames(petal_bee_colspace) <- gsub("x", "_", rownames(petal_bee_colspace))
rownames(labellum_bird_colspace) <- gsub("x", "_", rownames(labellum_bird_colspace))
rownames(labellum_bee_colspace) <- gsub("x", "_", rownames(labellum_bee_colspace))
# Convert row names to a column named 'id'
bract_bird_colspace <- bract_bird_colspace %>% rownames_to_column(var = "id")
bract_bee_colspace <- petal_bird_colspace %>% rownames_to_column(var = "id")
petal_bird_colspace <- petal_bee_colspace %>% rownames_to_column(var = "id")
labellum_bird_colspace <- labellum_bird_colspace %>% rownames_to_column(var = "id")
```

```
labellum_bee_colspace <- labellum_bee_colspace %>% rownames_to_column(var = "id")

# Subset relevant columns based on analysis needs
bract_bird_colspace <- bract_bird_colspace[, c("id", "h.theta", "r.vec")]
bract_bee_colspace <- bract_bee_colspace[, c("id", "h.theta", "r.vec")]

petal_bird_colspace <- petal_bird_colspace[, c("id", "h.theta", "r.vec")]

petal_bee_colspace <- petal_bee_colspace[, c("id", "h.theta", "r.vec")]

labellum_bird_colspace <- labellum_bird_colspace[, c("id", "h.theta", "r.vec")]

# Rename columns to include tissue type

colnames(bract_bird_colspace) <- c("id", "h.theta.bird.bract", "r.vec.bird.bract")

colnames(bract_bee_colspace) <- c("id", "h.theta.bee.bract", "r.vec.bee.bract")

colnames(petal_bird_colspace) <- c("id", "h.theta.bird.petal", "r.vec.bird.petal")

colnames(labellum_bird_colspace) <- c("id", "h.theta.bird.labellum", "r.vec.bird.labellum")

colnames(labellum_bird_colspace) <- c("id", "h.theta.bird.labellum", "r.vec.bee.labellum")

colnames(labellum_bee_colspace) <- c("id", "h.theta.bee.labellum", "r.vec.bee.labellum")</pre>
```

Merge Dataframes

```
# Merge all summaries by 'id'
joined_df <- pca_bract %>%
full_join(pca_petal, by = "id") %>%
full_join(pca_labellum, by = "id") %>%
full_join(summary_bract, by = "id") %>%
full_join(summary_petal, by = "id") %>%
full_join(summary_labellum, by = "id") %>%
full_join(summary_labellum, by = "id") %>%
full_join(summary_labellum_UV, by = "id") %>%
full_join(bract_bird_colspace, by = "id") %>%
full_join(bract_bird_colspace, by = "id") %>%
full_join(petal_bird_colspace, by = "id") %>%
full_join(petal_bee_colspace, by = "id") %>%
full_join(labellum_bird_colspace, by = "id") %>%
```

Export Summary Descriptors to CSV

Save the combined summary descriptors to a CSV file for further analysis or reporting.