Evaluating at $S_0 \simeq N$ gives the familiar SIR \mathcal{R}_0 value, $\mathcal{R}_0^{SIR} = \frac{\beta}{r}$. If $\frac{\beta}{r} > 1$ the epidemic grows (if unchecked) as long as there is a sufficiently large fraction of susceptibles, $s_t = \frac{S_t}{N} > \frac{1}{\mathcal{R}_0^{SIR}}$. In contrast, if $\mathcal{R}_0^{SIR} < 1$ the epidemic would die out on its own.

I define the effective reproduction number \mathcal{R}_t in the NSIR model analogously. Define

$$\sigma_{it}(G) \equiv rac{\sum_{j \in C_G(i)} \mathbf{1}_{x_{jt}=I}}{\# C_G(i)},$$

corresponding to the agent i's probability of infection from one of her social contacts in graph G at time t. Using (1), in the (no-intervention) NSIR model we have,

$$\begin{aligned} \frac{d(I_t + E_t)}{dt} &= p\beta I_t s_t + (1 - p)\beta \sum_{i \in S_t} \sigma_{it}(G) - rI_t = \\ &= rI_t \left(p \frac{\beta}{r} s_t + (1 - p) \frac{\beta}{r} \frac{S_t}{I_t} \frac{\sum_{i \in S_t} \sigma_{it}(G)}{S_t} - 1 \right) \end{aligned}$$

The number of infected agents (exposed plus infectious) would grow if the expression in the brackets is positive. Hence, for $s_t \simeq \frac{S_t}{N}$, define the NSIR model effective reproduction number \mathcal{R}_t^{NSIR} as

$$\frac{\beta}{r} \left[p \frac{S_t}{N} + (1 - p) \frac{S_t}{I_t} \frac{\sum_{i \in S_t} \sigma_{it}(G)}{S_t} \right]$$
 (6)

At p=1 this expression equals \mathcal{R}_t^{SIR} but in general, including at t=0, the NSIR model reproduction number \mathcal{R}_t^{NSIR} differs from \mathcal{R}_t^{SIR} and depends on the graph G. For example, [9] emphasize the importance of the ratio between the second and first moment of the degree distribution for the infection growth rate.

2.3.2 Population vs. network transmission. I next compare the reproduction numbers for the SIR model (p = 1) and the network-only transmission NSIR model (p = 0) for given values of I_t and S_t . Using (6), for p = 0 we have

$$\mathcal{R}_{t}^{NSIR} = \frac{\beta S_{t}}{rI_{t}} \frac{\sum_{i \in S_{t}} \sigma_{it}(G)}{S_{t}}$$
(7)

where

$$\frac{\sum_{i \in S_t} \sigma_{it}(G)}{S_t} \equiv \bar{\sigma}_t(G)$$

is the average chance of infection across all susceptible nodes $i \in S_t$ at time t, given the set \mathcal{I}_t of infectious agents i with $x_{it} = I$. Comparing (5) and (7), observe that

$$\mathcal{R}_{t}^{NSIR} \gtrless \mathcal{R}_{t}^{SIR} \Leftrightarrow \bar{\sigma}_{t}(G) \gtrless \frac{I_{t}}{N}$$
(8)

Intuitively, the standard SIR model assumes a *uniform* chance of infection for each susceptible agent which is proportional to the population infection rate $\frac{I_t}{N}$. In contrast, in the networkaugmented NSIR model an individual's chance of infection is *heterogeneous* and is a function of the social network G. The average time-t infection probability in the network, $\bar{\sigma}_t(G)$ determines the reproduction number \mathcal{R}_t^{NSIR} . For example, consider the first infection, $I_0 = 1$ of some agent i_0 , at which $\mathcal{R}_0^{SIR} \simeq \frac{\beta}{r}$. In contrast, the value of the NSIR effective reproduction number