Матрица вероятностей перехода однородной цепи Маркова имеет вид

70 0 0 7 0 0 3

				0	•	0	_	~ /	
	- 1	0	7	3	0	0	0	0	i
$\frac{1}{10}$, I	0	8	2	0	0	0	0	
	<u>-</u>	9	0	0	0	0	1	0	
	.U	3	1	3	0	1	0	2	
	- (0	0	0	4	0	0	6	
	'	$\sqrt{3}$	0	0	0	0	7	0/	

Bap. 14 (838120)

- 1. Определить матрицу вероятностей перехода за два шага.
- 2. Выделить классы сообщающихся состояний.

вектором финальных вероятностей.

- 3. Есть ли невозвратные состояния? 4. Найти период в каждом из классов.
- 5. Вычислить финальные вероятности в каждом классе. 6. Смоделировать траектории цепи Маркова длины 10,
- 50, 100 и 1000 шагов, начинающиеся в различных состояниях для каждого случая. 7. Вычислить процент времени нахождения ЦМ В

каждом из состояний. Сравнить результат

C