

Chapitre II – Les polynômes du second degré

Bacomathiques -- https://bacomathiqu.es

TABLE DES MATIÈRES			
I - Fonctions polynômiales du second degré		 	1
1. Définition			
2. Représentation graphique		 	1
II - Recherche de racines		 	3
1. Définition		 	3
2. Discriminant		 	3
3. Racines évidentes		 	4
4. Somme et produit de racines		 	5
5. Forme factorisée		 	6
III - Étude des fonctions polynômiales du second degré		 	7
1. Signe		 	7
2. Variations		 	7
3. Axe de symétrie	 •	 	8

I - Fonctions polynômiales du second degré

1. Définition

À RETENIR 💡

Définition

Soit f une fonction. f est une **fonction polynômiale du second degré** si elle est de la forme $f: x \mapsto ax^2 + bx + c$ avec $a \ne 0$, b et c réels qui sont les **coefficients** de f.

2. Représentation graphique

À RETENIR 💡

Parabole

Soit f une fonction polynômiale du second degré. Alors la courbe représentative de f (notée \mathscr{C}_f) est une **parabole**.

À LIRE 00

Parité d'une fonction

On voit sur la représentation ci-dessus que la courbe est symétrique par rapport à l'axe des ordonnées : la fonction f représentée est **paire** (i.e. pour tout $x \in D_f$, f(-x) = f(x)).

Inversement si une fonction f est symétrique par rapport à l'axe des abscisses, elle est dite **impaire** (i.e. pour tout $x \in D_f$, f(-x) = -f(x)).

Chaque coefficient d'une fonction du second degré a un rôle dans le tracé de sa parabole.

À RETENIR 💡

Rôle des coefficients dans la représentation graphique

Soit f de la forme $f(x) = ax^2 + bx + c$ (avec $a \ne 0$, b et c réels). Alors on a :

- *a* et *b* contrôlent **l'allure générale** de la courbe (son orientation, son inclinaison, ...).
- *c* contrôle l'éloignement de la courbe par rapport à **l'axe des abscisses**.

À LIRE 🍑

Rien que le signe de *a* peut changer toute l'allure de la courbe :

- Si a < 0, la fonction est croissante puis décroissante.
- Si a > 0, la fonction est décroissante puis croissante.

II - Recherche de racines

1. Définition

À RETENIR 💡

Définition

Soient f une fonction polynômiale du second degré et $x_0 \in \mathbb{R}$. On dit que x_0 est **une racine** de f si $f(x_0) = 0$.

À LIRE 00

Autrement dit, résoudre l'équation f(x) = 0 revient à rechercher les racines de f. Pour cela il existe beaucoup de méthodes et nous en détaillerons certaines par la suite.

2. Discriminant

À RETENIR 💡

Définition

Soit f une fonction polynômiale du second degré de la forme $f(x) = ax^2 + bx + c$ (avec $a \neq 0$, b et c réels). On appelle **discriminant** de f le réel suivant :

$$\Delta = b^2 - 4ac$$

À RETENIR 💡

Propriétés

Plusieurs propriétés découlent du signe de Δ :

- Si Δ < 0 alors f n'admet pas de racine réelle.
- Si $\Delta = 0$ alors f admet une unique racine réelle : $x_0 = \frac{-b}{2a}$. Si $\Delta > 0$ alors f admet deux racines réelles : $x_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

À LIRE 00

Exemple

Résolvons l'équation $x^2 = 4$ pour $x \in \mathbb{R}$.

On a $x^2 = 4 \iff x^2 - 4 = 0$. Il s'agit en fait de chercher les racines de la fonction du second degré définie pour tout $x \in \mathbb{R}$ par $f(x) = x^2 - 4$.

On identifie les coefficients : a = 1, b = 0 et c = -4; puis on calcule le discriminant $\Delta = b^2 - 4ac = 0 - 4 \times 1 \times -4 = 16$.

Comme $\Delta > 0$, on a deux racines réelles : $x_1 = \frac{-b - \sqrt{\Delta}}{2a} = -2$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = 2$.

Donc l'ensemble des solutions est $S = \{-2, 2\}$.

3. Racines évidentes

À RETENIR 🦞

Recherche des racines rationnelles

Soit f une fonction polynômiale du second degré de la forme $f(x) = ax^2 + bx + c$ (avec $a \neq 0$, b et c réels). On note D_c l'ensemble des diviseurs de c et D_a l'ensemble des diviseurs de a. Alors :

Pour trouver une éventuelle racine rationnelle de f, on calcule $f\left(\frac{p}{q}\right)$ pour tout $p \in D_c$ et $q \in D_a$, jusqu'à tomber sur 0.

À LIRE 🍑

Exemple

Utilisons cette méthode pour déterminer les éventuelles racines rationnelles de la fonction f définie sur \mathbb{R} par $f(x) = 4x^2 - 1$.

On a ici a = 4, b = 0 et c = -1; la liste des diviseurs de c est : -1 et 1.

La liste des diviseurs de a est : 4, 2, 1, -1, -2 et -4. Il ne reste qu'à tester :

$$- f\left(\frac{-1}{4}\right) = f\left(\frac{1}{-4}\right) \neq 0$$
$$- f\left(\frac{-1}{2}\right) = f\left(\frac{1}{2}\right) = 0 \text{ U}$$

-
$$f\left(\frac{-1}{2}\right) = f\left(\frac{1}{-2}\right) = 0$$
 Une racine!
- $f\left(\frac{-1}{1}\right) = f(-1) \neq 0$

$$- f\left(\frac{-1}{1}\right) - f(-1) \neq 0$$
$$- f\left(\frac{-1}{-1}\right) = f(1) \neq 0$$

-
$$f\left(\frac{-1}{-2}\right) = f\left(\frac{1}{2}\right) = 0$$
 Une racine!

On a deux racines rationnelles : $-\frac{1}{2}$ et $\frac{1}{2}$.

Pas besoin d'aller plus loin car on a trouvé deux racines et un polynôme du second degré n'admet que deux racines maximum.

Signalons de plus que l'on aurait pu s'arrêter après avoir trouvé la première racine car f est une fonction paire.

4. Somme et produit de racines

À RETENIR 💡

Relations

Soit f une fonction polynômiale du second degré de la forme $f(x) = ax^2 + bx + c$ (avec $a \neq 0$, b et c réels) admettant deux racines réelles x_1 et x_2 . Alors :

- La somme $S = x_1 + x_2$ des racines vaut également $-\frac{b}{a}$. Le produit $P = x_1 \times x_2$ des racines vaut également $\frac{c}{a}$.

À LIRE 🍑

Exemple

Il peut être très utile de combiner cette méthode avec celle des racines évidentes! Par exemple, cherchons les solutions de l'équation $x^2 + 2x + 1 = 0$.

Il faut donc chercher les racines de la fonction de degré 2 définie pour tout $x \in \mathbb{R}$ par $f(x) = x^2 + 2x + 1$.

On a a=1, b=2 et c=1. Avec la méthode des racines évidentes, on trouve une racine $x_1=-1$.

Or, on a $x_1 \times x_2 = \frac{c}{a} \iff x_2 = -1$. La deuxième racine vaut aussi -1.

On dit que -1 est racine double.

5. Forme factorisée

À RETENIR 💡

Définition

Soit f une fonction polynômiale du second degré de la forme $f(x) = ax^2 + bx + c$ (avec $a \ne 0$, b et c réels) admettant deux racines réelles x_1 et x_2 . Alors :

f admet une **forme factorisée** qui vaut $f(x) = a(x - x_1)(x - x_2)$ pour tout $x \in \mathbb{R}$.

À LIRE 00

Exemple

Chercher les racines de la fonction définie pour tout $x \in \mathbb{R}$ par $f(x) = x^2 - 6x + 9$.

Avec une identité remarquable, on factorise $f: f(x) = (x-3)^2$.

Cela correspond à la forme factorisée de f et elle nous permet d'en déduire que 3 est une racine double de f.

Une propriété découle immédiatement de cette méthode :

À RETENIR 💡

Propriété

Si c = 0, alors $-\frac{b}{a}$ et 0 sont racines.

III - Étude des fonctions polynômiales du second degré

1. Signe

À RETENIR 💡

Signe d'une fonction du second degré

Soit f une fonction polynômiale du second degré de la forme $f(x) = ax^2 + bx + c$ (avec $a \ne 0$, b et c réels) admettant deux racines réelles x_1 et x_2 . On suppose ici que $x_1 < x_2$, alors :

- Si a < 0: f(x) < 0 sur $] \infty$; $x_1[\cup]x_2$; $+\infty[$ et f(x) > 0 sur $]x_1; x_2[$.
- Si a > 0: f(x) > 0 sur] $-\infty$; $x_1[\cup]x_2$; $+\infty[$ et f(x) < 0 sur] x_1 ; $x_2[$.

À LIRE 👀

Si $x_1 = x_2$ ou si f n'admet pas de racine, alors f est du signe de a.

2. Variations

À RETENIR 🕴

Forme canonique

Soit f une fonction polynômiale du second degré de la forme $f(x) = ax^2 + bx + c$ (avec $a \neq 0$, b et c réels), alors pour tout $x \in \mathbb{R}$, on peut écrire f de la forme :

$$f(x) = a(x - \alpha)^2 + \beta$$
 avec $\alpha = -\frac{b}{2a}$ et $\beta = f(\alpha)$.

Cette forme est appelée **forme canonique** de f et elle possède de nombreuses propriétés intéressantes.

À RETENIR 💡

Sommet de la parabole

Soit S le sommet de la parabole \mathcal{C}_f . Alors les coordonnées de S sont (α, β) . Si a < 0, ce sommet est un maximum et si a > 0, ce sommet est un minimum.

À LIRE 00

Cela veut tout simplement dire que:

- Si a < 0, le maximum de f est atteint en α et vaut β (donc pour tout $x \in \mathbb{R}$, $f(x) \le \beta$).
- Si a > 0, le minimum de f est atteint en α et vaut β (donc pour tout $x \in \mathbb{R}$, $f(x) \ge \beta$).

Avec les remarques données précédemment, on peut en déduire les variations de la fonction f.

À RETENIR 🕴

Sens de variation

- Si a < 0: f est strictement croissante sur $]-\infty; \alpha]$ et est strictement décroissante sur $]\alpha; +\infty]$.
- Si a > 0: f est strictement décroissante sur $]-\infty;\alpha]$ et est strictement croissante sur $]\alpha;+\infty]$.

3. Axe de symétrie

À RETENIR 💡

Axe de symétrie

Soit f une fonction polynômiale du second degré de la forme $f(x) = ax^2 + bx + c$ (avec $a \neq 0$, b et c réels). On note \mathcal{C}_f sa courbe représentative. Alors :

 \mathscr{C}_f possède un axe de symétrie : la droite \mathscr{D} d'équation $x = -\frac{b}{2a}$.

À LIRE 👀

En fait, \mathcal{D} est juste la droite verticale passant par le sommet de la parabole.