- Deep Learning for AI Final Exam Notes
- ANN (Artificial Neural Networks)
- Theory

1. Forward Propagation

- Data moves from input layer → hidden layer → output layer.
- Each layer applies weights, biases, and activation functions to pass data forward.

2. Backward Propagation

- Error is calculated at output.
- The error is propagated backward through the network to adjust weights.

3. Weight Adaptation

- Gradient Descent is used to minimize the loss by updating weights.
- Weight Update Formula:

sql

CopyEdit

New Weight = Old Weight − (Learning Rate × ∂Loss/∂Weight)

4. Activation Functions

Function Usage

Sigmoid / Softmax Used in **output layers** (classification).

ReLU / Leaky ReLU Used in **hidden layers** (to avoid vanishing gradients).

- **Sigmoid**: squashes output between 0 and 1 (good for binary outputs).
- Softmax: converts outputs into probability distribution (multi-class).
- **ReLU**: fast and avoids vanishing gradient.
- Leaky ReLU: allows small gradient even for negative values (fixes dying ReLU problem).

5. Loss Functions

- Loss measures the error between prediction and actual output.
- Common losses:
 - Binary Crossentropy (binary classification)
 - Categorical Crossentropy (multi-class classification)
 - MSE (regression)

6. Optimizers

- Algorithms that adjust learning rate/steps.
- Common types:
 - SGD (Stochastic Gradient Descent)
 - Adam (Adaptive learning rate optimizer)

7. Overfitting

- When model memorizes training data but fails on unseen data.
- Solutions:
 - o Dropout
 - Early stopping
 - Regularization (L1, L2 penalties)

8. Regularization Techniques

- Dropout: Randomly drops neurons during training to prevent dependency.
- Early Stopping: Stops training when validation loss stops improving.

9. Parameter Calculation

• Formula:

SCSS

CopyEdit

(Input nodes × Output nodes) + (Bias nodes × Output nodes)

Helps calculate total trainable parameters between layers.

1. Convolution Layer

• Applies filters (kernels) to extract features (edges, textures) from input images.

2. Pooling Layer

- Reduces spatial size of features (downsampling).
- Types:
 - Max pooling (most common)
 - Average pooling

3. Stride

- Number of pixels by which filter moves over input.
- Larger stride → smaller output size.

4. Padding

- Adding zeros around the input to preserve spatial dimensions.
- Needed for:
 - Edge/corner pixels
 - Same input-output size

5. Output Dimension Formula

mathematica

CopyEdit

Output Size = (Input Size - Kernel Size + 2 × Padding) / Stride + 1

Transfer Learning (Optional Alternative for CNN Part)

- Pre-trained Models: VGG16, VGG19, ResNet50, InceptionV3
- Load pre-trained model → add custom output layers → train on your data.

RNN (Recurrent Neural Networks)

Theory

1. Why ANN is not suitable for sequence/text

• ANN cannot remember order or context (no memory).

2. RNN Architecture

Has loops that allow information to persist (memory of past).

3. Drawbacks of RNN

- Short-term memory: cannot remember long sequences.
- Vanishing gradient: training becomes difficult for long sequences.

4. Advanced Architectures

- **LSTM**: Long Short-Term Memory solves vanishing gradient problem.
- **GRU**: Gated Recurrent Units simpler, faster version of LSTM.

final Tip

- Focus mainly on running codes correctly in Kaggle simple structure wins.
- Memorize key theory bullet points.
- Practice formula for output size and parameter counts.
- Understand activation choices clearly (hidden layer = ReLU, output = Sigmoid/Softmax).