《数字信号处理》小测验

2023年12月11日

姓 名:	学号:
成 绩:	
一、填空题	(每空2分,共22分,其中第5、8小题为4分)
1、已知某序	$M_{x(n)} = \{2,1,-1,4\}$, 如果用单位采样序列来表示该序列,则可表
示为	n)=2S(n)+S(n-1)-S(n-2)+4S(n-3)
2、序列 x(n)	$h = A\sin(\frac{13}{5}\pi n)$ 的周期为。
3、某系统T	$[x(n)] = x(n^2)$,则其线性性为
时不变性为时变(时变或时不变)。	
4、用 FFT :	算法对 512 点的复序列进行频谱计算,则需要的乘法次数为2304
次,需要的加法次数为次。	
5、设采用技	安频率抽取的基 2-FFT 算法对序列 $\{x(0),x(1),\cdots,x(15)\}$ 进行频谱分析,
则该序列的序号应该重新排列依次为084122106141	
9 5 13	3 11 7 15
V	•
6、请写出	判断一个 LTI 系统的稳定性的三种方法:有界输入有界输出
	单位冲激响应满足绝对可和 和
收敛域 ROO	C包含单位圆。
二、某因果	的线性时不变系统,其输入输出关系由如下方程给出:
	$y(n) + \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) - \frac{1}{2}x(n-1)$
(1)	4 8 2
(2)	设有系统输入为 $x(n) = \delta(n) + 0.5\delta(n-1)$,求系统输出;(6分)
(3)	画出系统函数零极点图; (2分)
(4)	大致画出该系统的幅度-频率响应并分析其滤波特性; (6分)
(5)	系统是否稳定?为什么?(3分)

(1) (12) =
$$\frac{1}{1+2}$$
 (12) + $\frac{3}{4}$ $\frac{1}{2}$ (12) + $\frac{1}{8}$ $\frac{1}{2}$ (12) = $\frac{1}{2}$ (12) - $\frac{1}{2}$ (12) - $\frac{1}{2}$ (12) = $\frac{1}{2}$ (12) - $\frac{1}{2}$ (12) = $\frac{1}{2}$ (13) = $\frac{1}{2}$ (14) 图 $\frac{1}{2}$ (15) = $\frac{1}{2}$ (15) = $\frac{1}{2}$ (16) = $\frac{1}{2}$ (17) $\frac{1}{2}$ (18) = $\frac{1}{2}$ (18) (18) $\frac{1}{2}$ (19) = $\frac{1}{2}$ (19) $\frac{1}{2}$ (1

- (1) x₁(n)与x₂(n)的线性卷积; (10分)
- (2) $x_1(n)$ 与 $x_2(n)$ 的 6 点圆周卷积。(10 分)

(1)
$$\chi_{1}(n) = \begin{cases} 1, \frac{1}{2}, -\frac{1}{2}, \frac{1}{4}, -\frac{1}{2}, \frac{1}{2} \end{cases}$$

 $\chi_{2}(n) = \begin{bmatrix} 1, 1, 1, 0, 0, 0, 0 \end{bmatrix}$
 $\chi_{1}(n) \neq \chi_{2}(n) = \begin{cases} \frac{1}{2} & \chi_{1}(n) \cdot \chi_{2}(n-m) \end{cases}$
 $\chi_{1}(n) \neq \chi_{2}(n) = \begin{cases} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \end{cases}$

- 四、设有离散序列 $x(n) = \{1,0,2,-1\}$,采用按频率抽取的基 2-FFT 算法进行频谱计算,试求:
 - (1) 画出相应的信号流图; (8分)
 - (2) 根据上述信号流图求出其频谱值 X(k), 并写出求解过程。(8分)

12)
$$\chi(10) = 3$$
 $\chi(0) = 2$
 $\chi(11) = -1$ $\chi(1) = 4-j$
 $\chi(12) = 2$ $\chi(2) = 4$
 $\chi(13) = 4-j$ $\chi(3) = 4+j$
 7 $\chi(14) = \left[2, -1-j, 4, -1+j\right]$

设 $x(n)=R_4(n)$,将该序列以8为周期进行周期延拓,得到周期序列 $\tilde{x}(n)$, 求: (1) $\tilde{x}(n)$ 的傅里叶级数 $\tilde{X}(k)$; (7分)

(2) x(n) 的傅里叶变换 $X(e^{j\omega})$ 。(7分)

(2)
$$x(n)$$
 的傅里叶变换 $X(e^{j\omega})$ 。 (7分)
$$\frac{N-1}{2} \times (n) \times N = \frac{2}{2} e^{-j\frac{2\pi}{8}n/k} = 1 + e^{-j\frac{2\pi}{4}k} + e^{-j\frac{2\pi}{4}k} + e^{-j\frac{2\pi}{4}k} + e^{-j\frac{2\pi}{4}k}$$

$$\chi(k) = n = 0$$
 $\chi(k) = n = 0$
 $\chi(k) = n = 0$

(1)
$$\chi(e^{jw}) = \frac{3}{2} \chi(n) e^{-jwn} = 1 + e^{-jw} + e^{-2jw} + e^{-3jw}$$

六、模拟数据以 10.24kHz 速率抽样,且计算了 1024 个抽样的离散傅里叶变换 (DFT), 试求: (1) 频谱抽样之间的频率间隔; (3分)

- (2) 上述数据经处理后又进行了离散傅里叶反变换, 离散傅里叶反变换后抽样 点的间隔是多少? (3分)
- (3) 整个 1024 点的时宽是多少? (3分)

$$\frac{1}{1} = \frac{1}{f_5} = \frac{1}{10240} = 97.66 / 45$$