Sorbonne Université Cryptologie, cryptographie algébrique 4M035 - 2021/22 Alain Kraus

Correction du partiel du 1er avril 2022

Exercice 1

1) On a $n = 11 \times 23$ et $\varphi(n) = 220$. Déterminons l'inverse de 147 modulo 220. Pour cela, on vérifie avec l'algorithme d'Euclide que l'on a le tableau suivant :

	1	2	73	
220	147	73	1	0
1	0	1	-2	
0	1	-1	3	

On en déduit que l'on a

$$-2 \times 220 + 3 \times 147 = 1$$
.

Par suite, 3 est l'inverse cherché. Le message secret que Bob souhaite envoyer à Alice est donc 5^3 mod. 253 i.e. 125 mod. 253.

2.1) On a $n = 3 \times 29$. On a $7 \equiv 1 \mod 3$, donc 7 est un carré modulo 3 et d'après la loi de réciprocité quadratique, on a les égalités des symboles de Legendre

$$\left(\frac{7}{29}\right) = \left(\frac{29}{7}\right) = 1.$$

Parce que 7 est un carré modulo 3 et 29, c'est donc un carré modulo n.

2.2) Soit S l'ensemble des solutions de l'équation $x^2 = 7$ dans $\mathbb{Z}/n\mathbb{Z}$. Les quatre messages décryptés possibles sont les éléments de S. Modulo 3, les racines carrées de 7 sont ± 1 . Modulo 29, les racines carrées de 7 sont ± 6 . On est ainsi amené à résoudre les deux systèmes de congruences

$$\begin{cases} x \equiv 1 \mod 3 \\ x \equiv 6 \mod 29 \end{cases}$$
 et
$$\begin{cases} x \equiv 1 \mod 3 \\ x \equiv -6 \mod 29. \end{cases}$$

On obtient comme solutions particulières respectivement x = 64 et x = 52. En tenant compte des solutions opposées, on en déduit que l'on a

$$S = \left\{ \overline{23}, \overline{35}, \overline{52}, \overline{64} \right\}.$$

Exercice 2

- 1) Il s'agit du polynôme $1 + X + X^2 \in \mathbb{F}_2[X]$.
- 2) On vérifie que f n'a pas de racines dans \mathbb{F}_2 . Par ailleurs, on a

$$f = (X^2 + X + 1)(X^3 + X^2) + 1.$$

(On peut par exemple obtenir cette égalité en remarquant que l'on a $f = X^2(X^3+1)+1$ et que $X^3+1=(X+1)(X^2+X+1)$.) Ainsi, f n'est pas divisible par l'unique polynôme de degré 2 de $\mathbb{F}_2[X]$, donc f est irréductible sur \mathbb{F}_2 . Le cardinal de K est $2^5=32$.

- 3) Parce que l'ordre de K^* est 31, tout élément distinct de 1 est un générateur de K^* , en particulier tel est le cas de α .
- 4.1) On a $\alpha^5 + \alpha^2 = 1$ d'où $\alpha^2(1 + \alpha^3) = 1$. Par suite, on a $1 + \alpha^3 = \alpha^{-2}$. On a $\alpha^{31} = 1$, d'où $\alpha^{-2} = \alpha^{29}$, puis $\alpha = 29$.
- 4.2) On a $(1+\alpha)^{32}=1+\alpha$. Par ailleurs, on a $(1+\alpha)^2=1+\alpha^2=\alpha^5$. On en déduit les égalités $1+\alpha=\alpha^{80}=\alpha^{18}$, d'où b=18.
- 4.3) D'après les deux questions précédentes, on a donc $C = \alpha^{522}$. On a $522 \equiv 26$ mod. 31, d'où n = 26.

Exercice 3

- 1) On a $8^{44}=2^{132}$ et $132=11\times 12$. Par ailleurs, on vérifie que l'on a $2^{12}\equiv 1$ mod. 45. Il en résulte que $8^{44}\equiv 1$ mod. 45. L'entier 45 est composé, d'où le résultat.
- 2) On a $n \equiv 1 \mod 4$ et $n \equiv 2 \mod 3$. D'après la loi de réciprocité quadratique, on en déduit que l'on a

$$\left(\frac{3}{n}\right) = \left(\frac{n}{3}\right) = -1.$$

Parce que n est pseudo-premier d'Euler en base 3, on a donc

$$3^{\frac{n-1}{2}} \equiv -1 \mod n.$$

Par ailleurs, on a $n-1 \equiv 0 \mod 4$, donc il existe $s \geq 2$ et un entier t impair tels que $n-1=2^st$. On obtient

$$3^{2^{s-1}t} \equiv -1 \mod n$$

ce qui montre que n est pseudo-premier fort en base 3 (Définition 2.6).

3) On a $2^4 \equiv 1 \mod 5$. On a $n \ge 2$ d'où $2^{2^n} \equiv 1 \mod 5$, puis $F_n \equiv 2 \mod 5$. D'après la loi de réciprocité quadratique, on a donc les égalités des symboles de Jacobi

$$\left(\frac{5}{F_n}\right) = \left(\frac{F_n}{5}\right) = \left(\frac{2}{5}\right) = -1.$$

En utilisant par exemple le corollaire 2.4, avec h = 1, $N = 2^n$ et a = 5, on en déduit l'équivalence annoncée. On peut aussi utiliser le corollaire 2.3 d'où l'on avait déduit le test de Pepin.

4) Supposons $p \geq 3$ et que 2 soit un générateur de $\mathbb{F}_{M_p}^*$. On a $M_p - 1 = 2^p - 2$ d'où $\frac{M_p - 1}{2} = 2^{p-1} - 1$. On a $2^{p-1} \equiv 1 \mod p$, d'où la congruence (qui a été établie dans la démonstration du lemme 2.5 concernant les entiers pseudo-premiers)

$$2^{\frac{M_p-1}{2}} \equiv 1 \text{ mod. } M_p.$$

On en déduit que l'on a $\frac{M_p-1}{2}=M_p-1$ i.e. $M_p=1$, d'où une contradiction. Par ailleurs, 2 est un générateur de \mathbb{F}_3^* . L'ensemble cherché est donc le singleton $\{2\}$.

Exercice 4

- 1.1) On a $284^2-123^2=161\times 407\equiv 0$ mod. N. On vérifie que $\operatorname{pgcd}(N,161)=23$ d'où l'on déduit que $N=23\times 37.$
- 1.2) L'exposant du groupe $(\mathbb{Z}/n\mathbb{Z})^*$ est $\lambda(n)$ où λ est la fonction de Carmichael (voir le chapitre I page 7). D'après la question précédente, on obtient (Lemme 1.3 ou la formule (5) page 8)

$$\lambda(n) = \text{ppcm}(22, 36) = 396.$$

- 2) On utilise l'algorithme p-1 de Pollard qui se trouve à la page 4 du chapitre III, avec l'entier B=3. On a B!=6 et $\operatorname{pgcd}(2^6-1,77)=7$, d'où $77=7\times 11$ comme attendu.
- 3) Calculons les premiers termes de la suite $(x_i)_{i\in\mathbb{N}}$ définie par $x_0=3$ et par l'égalité $x_{i+1}=f(x_i)$ mod. 1339. On a

$$x_0 = 3$$
, $x_1 = 10$, $x_2 = 101$.

On a $pgcd(x_2 - x_1, 1339) = 13$ d'où $1339 = 13 \times 103$. Par ailleurs, 103 est un premier, car il n'est pas divisible par un nombre premier plus petit que 10, c'est donc la décomposition cherchée.

4) Posons p = 191. L'entier p est un nombre premier, car il n'est pas divisible par un nombre premier plus petit que 14. On a p ≡ 3 mod. 4 et 2p + 1 = 383, qui n'est pas divisible par un nombre premier plus petit que 20, est aussi un nombre premier. D'après la question 2 de l'exercice 6 du chapitre II, l'entier 2¹⁹¹ − 1 est donc divisible par 383.