Practical 1 SSR

Soumarya Basak

14/04/2022

```
####### Practical 1 ########
library(readxl)
library(readr)
library(tidyverse)
## -- Attaching packages -----
                                                  ----- tidyverse 1.3.1 --
## v ggplot2 3.3.5
                    v dplyr 1.0.7
## v tibble 3.1.6
                     v stringr 1.4.0
           1.1.4
                     v forcats 0.5.1
## v tidyr
## v purrr
            0.3.4
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
library(dplyr)
library(ggplot2)
library(olsrr)
## Warning: package 'olsrr' was built under R version 4.1.3
##
## Attaching package: 'olsrr'
## The following object is masked from 'package:datasets':
##
##
      rivers
###### Data set #######
df<- read.csv("C:\\Users\\souma\\Dropbox\\Mstat_CU\\Sem 2\\Regression_analysis_1\\Data Sets\\cigaratte_
colnames(df)<- c("Index","y_var","x_var")</pre>
plot(df$x_var,df$y_var,pch=16,col="blue",
    xlab="Per capita cigeratte consumption",ylab = "Deaths due to lung cancer",
    main="Cigeratte consumption VS Deaths due to lung cancer Plot ")
```

Cigeratte consumption VS Deaths due to lung cancer Plot

(a)

ssr1<- lm(y_var~x_var,df)
summary(ssr1)

```
##
## Call:
## lm(formula = y_var ~ x_var, data = df)
##
## Residuals:
##
                1Q Median
                                ЗQ
                                       Max
## -158.90
           -52.79
                   -17.46
                            52.21
                                   170.36
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 98.42920
                          59.30799
                                     1.660
                                             0.1314
## x_var
                0.19568
                           0.09343
                                     2.094
                                             0.0657 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 102.7 on 9 degrees of freedom
## Multiple R-squared: 0.3277, Adjusted R-squared: 0.253
## F-statistic: 4.387 on 1 and 9 DF, p-value: 0.06571
```

For the F test, the p value is more than 0.05, so the parameters the insignificant.

Both the parameters are not significant

Regression Plot

This is due to the influential observation

The residuals

```
res<- residuals(ssr1)</pre>
cbind("Residuals"=res)
##
        Residuals
## 1
       -83.478964
## 2
       -44.090230
## 3
        -7.787881
      -158.900543
## 4
## 5
        47.860008
## 6
       142.516357
## 7
       -57.349386
       -48.226377
## 8
## 9
       -17.463937
## 10
        56.557660
## 11 170.363293
```

STandardize Residuals

```
res_std<- rstandard(ssr1)
cbind("Standaredize_Residuals"=res_std)
##
      {\tt Standaredize\_Residuals}
## 1
                  -0.89544653
## 2
                  -0.46154959
## 3
                  -0.08047462
                  -2.28633046
## 4
## 5
                   0.48868724
## 6
                  1.77978693
## 7
                  -0.60956366
                  -0.49261973
## 8
## 9
                  -0.17891785
## 10
                   0.57921016
                   1.75221345
## 11
plot(abs(res_std),type='h',
     ylab = "Absolute(std_Residuals)",ylim = c(0,3),
     main="Visualization of Standardize Residuals")
abline(h=0)
abline(h=2,lty=2,col='magenta')
```

Visualization of Standardize Residuals

So we can see from the plot that there are 3 oulier values for Y_var

Studentize Residuals

```
res_stu<-rstudent(ssr1)</pre>
cbind("Studentize_Residuals"=res_stu)
##
      {\tt Studentize\_Residuals}
## 1
                -0.88455745
## 2
                -0.44039638
## 3
                -0.07589952
                -3.32934087
## 4
## 5
                 0.46697601
## 6
                 2.08444722
## 7
                -0.58694596
                -0.47083750
## 8
## 9
                -0.16898616
## 10
                 0.55655620
## 11
                 2.03523182
plot(abs(res_stu),type='h',
     ylab = "Absolute(stud_Residuals)",ylim = c(0,4),
     main="Visualization of Studentize Residuals"
abline(h=2,col='magenta',lty=2)
abline(h=0)
```

Visualization of Studentize Residuals

So studentize residual says that there are three outliers in y_var

```
df[which(abs(res_stu)>=2),]
```

To find the y outliers

```
## 4 United States 190 1280
## 6 Great Britain 465 1145
## 11 Finland 350 415
```

Leverage

```
lev<-hatvalues(ssr1)
cbind("Leverage"=lev)</pre>
```

```
##
       Leverage
## 1 0.17634086
## 2 0.13518996
## 3 0.11244867
## 4 0.54223194
## 5 0.09101591
## 6 0.39233234
## 7 0.16113488
## 8 0.09172282
## 9 0.09707913
## 10 0.09638538
## 11 0.10411810
plot(lev,type='h',
     ylab="Leverage", main="Visualization of Leverages"
abline(h=(2/11),col='magenta',lty=2)
```

Visualization of Leverages

From the image it is clear that there are two 2 x outlier as two values are more than $\frac{2p}{n}=\frac{2}{11}$

```
# arrange in decreasing order
cbind("Leverage"=lev[order(-lev)])
```

To Identify the **x** outliers

```
## Leverage
## 4 0.54223194
## 6 0.39233234
## 1 0.17634086
## 7 0.16113488
## 2 0.13518996
## 3 0.11244867
## 11 0.10411810
## 9 0.09707913
## 10 0.09638538
## 8 0.09172282
## 5 0.09101591
```

so the 4th and 6th obsns are x-outliers

DFBETA

```
db<-dfbetas(ssr1)
##
      (Intercept)
                        x_var
## 1 -0.39641388 0.284880021
## 2 -0.15955137 0.099653248
## 3 -0.02276883 0.011823905
## 4
     2.04443096 -3.305819823
## 5 0.08143844 -0.005062287
## 6 -0.83095128 1.468068127
## 7 -0.24573243 0.169824513
## 8 -0.08980784 0.014092928
## 9 -0.03991472 0.013969157
## 10 0.12913805 -0.043327210
## 11 0.54932238 -0.247128933
par(mfrow=c(1,2))
plot(db[,1],type='h',
     ylab = "DFBETAs in Intercept")
abline(h=0)
abline(h=2/(sqrt(11)),lty=2, col="magenta")
abline(h=-2/(sqrt(11)),lty=2,col="magenta")
plot(db[,2],type='h',
     ylab = "DFBETAs in X_var coeeffecient")
abline(h=0)
abline(h=2/(sqrt(11)),lty=2,col="magenta")
abline(h=-2/(sqrt(11)),lty=2,col="magenta")
mtext("Visuals ofDFBETA's",side =3,line = -1 ,outer = TRUE)
```

Visuals of DFBETA's

so, is clear that there are 2 influencial observation

```
print(which( abs(db[,1]) >2/(sqrt(11)) ) )

## 4 6
## 4 6
paste(" ")

## [1] " "
which( abs(db[,2]) >2/(sqrt(11)) )

## 4 6
```

4 6 ## 4 6

SO, for the 4th and 6th obs the DFBETa is high

DFFIT

$$\label{eq:range} \begin{split} \operatorname{range} &= \frac{2}{\sqrt{(11)}} \\ \operatorname{d_fit} &< \operatorname{-dffits}(\operatorname{ssr1}) \\ \operatorname{cbind}("DEFIT" = \operatorname{d_fit}) \end{split}$$

```
## DEFIT
## 1 -0.40928777
## 2 -0.17412279
## 3 -0.02701590
```

```
-3.62349834
## 5
       0.14776620
       1.67488461
## 6
      -0.25724494
## 7
      -0.14962375
## 9
     -0.05541014
## 10 0.18177033
## 11 0.69382767
### Standardization of DFFIT
v<- var(d_fit)*( (length(d_fit)-1)/length(d_fit) ) # variance of DFFIT</pre>
std_d_fit <- (d_fit - mean(d_fit))/sqrt(v)</pre>
plot(abs(std_d_fit),type='h', ylim = c(0,3),
     ylab = "Absolute(standarize_DFFIT)",
     main = "Visualization of Standardize DEFITs")
abline(h=0)
abline(h=2,lty=2,col='magenta')
```

Visualization of Standardize DEFITs

So there are 2 values which act like a outlier as have high DFFIT values

```
cbind("DFFIT"=d_fit[order(-abs(d_fit))])
```

To identify the outlier

```
##
           DFFIT
## 4
     -3.62349834
## 6
      1.67488461
## 11 0.69382767
## 1
     -0.40928777
## 7 -0.25724494
## 10 0.18177033
## 2
     -0.17412279
     -0.14962375
## 8
## 5
      0.14776620
## 9 -0.05541014
## 3 -0.02701590
```

The 4th and 6th observations have higher DFFIT values, so they may be some Influential observation

Cook's Distance

```
cd<- cooks.distance(ssr1)</pre>
cbind("Cook_d"=cd)
##
            Cook_d
## 1 0.0858330926
## 2 0.0166506223
## 3 0.0004102502
     3.0959049540
## 5 0.0119561965
## 6 1.0225722645
## 7 0.0356866335
     0.0122532866
## 9 0.0017208916
## 10 0.0178924695
## 11 0.1784101215
plot(cd,type='h',ylab = "Cook's Distance",
     main = "Visualization of Cook's Distance")
abline(h=0)
```

Visualization of Cook's Distance

All the above measures indicates theat the 4^{th} and 6^{th} obsn are influential observation

Next step

so we remove the 6th and 4th obsn.

```
df_ot < -df[-c(4,6),]
ssr1_updated<-lm(y_var~x_var,df_ot)</pre>
summary(ssr1_updated)
##
## Call:
## lm(formula = y_var ~ x_var, data = df_ot)
##
## Residuals:
##
       Min
                1Q Median
                                ЗQ
                                       Max
   -90.360 -26.351 -10.490 -1.119 160.746
##
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -34.0013
                           94.9690 -0.358
                                              0.731
                 0.5380
## x_var
                            0.2339
                                     2.300
                                              0.055 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
## Multiple R-squared: 0.4304, Adjusted R-squared: 0.349
## F-statistic: 5.288 on 1 and 7 DF, p-value: 0.05502
the parameters are insignificant and even the R<sup>2</sup> value is very low
#plot(df_ot$x_var, df_ot$y_var, pch=19, col='blue')
#abline(ssr1_updated, col='red')
```

The fit is again too bad, even the parameters are insignificant. So we don't need to model the response variable with the regrassor.

Now we remove the 11 th obsn with high cooks distance

Residual standard error: 73.5 on 7 degrees of freedom

```
df_{ott} < -df[-c(4,6,11),]
ssr1_updated_2<-lm(y_var~x_var,df_ott)</pre>
summary(ssr1_updated_2)
##
## Call:
## lm(formula = y_var ~ x_var, data = df_ott)
## Residuals:
##
      Min
               1Q Median
                                30
                                       Max
## -65.203 -14.507
                   1.373 16.925 54.596
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -37.7487
                           48.8416 -0.773 0.46894
                                     4.111 0.00628 **
## x_var
                 0.4960
                            0.1207
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 37.79 on 6 degrees of freedom
## Multiple R-squared: 0.738, Adjusted R-squared: 0.6943
## F-statistic: 16.9 on 1 and 6 DF, p-value: 0.00628
#plot(df_ott$x_var,df_ott$y_var,pch=19,col='blue')
#abline(ssr1_updated_2, col='red')
```

So for the last model fits well, have higher \mathbb{R}^2 values but the intercept is statistically insignificant. And so,

Model without Intercept

```
ssr1_updated_3<- lm(y_var~ 0 +x_var,df_ott)
summary(ssr1_updated_3)

##
## Call:
## lm(formula = y_var ~ 0 + x_var, data = df_ott)
##
## Residuals:
## Min 1Q Median 3Q Max</pre>
```

```
## -57.21 -18.99 -11.26 16.62 58.10
##
## Coefficients:
        Estimate Std. Error t value Pr(>|t|)
##
## x_var 0.40629
                    0.03204
                              12.68 4.39e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 36.69 on 7 degrees of freedom
## Multiple R-squared: 0.9583, Adjusted R-squared: 0.9523
## F-statistic: 160.8 on 1 and 7 DF, p-value: 4.39e-06
plot(df_ott$x_var,df_ott$y_var,pch=19,col='blue',xlim = c(100,650),ylim = c(0,300),
     xlab = "Per capita cigeratte consumption",ylab = "Deaths due to lung cancer",
     main = " Final Regression fit on the data")
abline(ssr1_updated_3,col='red')
```

Final Regression fit on the data

The Model

 $lung_cancer = (0.40629) \times cigaratte_consumption$

Problem2

Data Input

```
library(tidyverse)
library(readr)
library(readxl)
library(ggplot2)
library(dplyr)
df2<- read.csv("C:\\Users\\souma\\Dropbox\\Mstat_CU\\Sem 2\\Regression_analysis_1\\Data Sets\\star_ligh
colnames(df2)<-c("sl no","x_var","y_var")</pre>
head(df2)
##
     sl no x_var y_var
## 1
         1 4.37 5.23
## 2
         2 4.56 5.74
## 3
         3
           4.26 4.93
## 4
         4 4.56 5.74
         5 4.30 5.19
         6 4.46 5.46
## 6
plot(df2$x_var,df2$y_var,col="green3",pch=18,
     xlab = "log(surface temperature)",ylab = "log(light intensity)",
     main = " Surface temperature VS light intensity plot")
```

Surface temperature VS light intensity plot


```
ssr2<- lm(y_var~x_var,df2)</pre>
summary(ssr2)
##
## Call:
## lm(formula = y_var ~ x_var, data = df2)
##
## Residuals:
                1Q Median
##
      Min
                                3Q
                                        Max
## -1.1052 -0.5067 0.1327 0.4423 0.9390
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 6.7935 1.2365 5.494 1.75e-06 ***
               -0.4133
                            0.2863 -1.444
## x_var
                                               0.156
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.5646 on 45 degrees of freedom
## Multiple R-squared: 0.04427,
                                    Adjusted R-squared: 0.02304
## F-statistic: 2.085 on 1 and 45 DF, p-value: 0.1557
Note that, the p-value for f statistics is 0.15 which is larger than 0.05, which implies that both the regression
```

Regression Model with Insignificant coeefiecient

influence.measures(ssr2)

```
## Influence measures of
##
    lm(formula = y_var ~ x_var, data = df2) :
##
##
       dfb.1_ dfb.x_vr
                          dffit cov.r
                                        cook.d
                                                 hat inf
     -0.00899 0.01325
                        0.06490 1.061 2.14e-03 0.0222
     -0.18113 0.19664
                        0.29979 0.981 4.37e-02 0.0373
     -0.00645
              0.00467 -0.02726 1.068 3.80e-04 0.0219
              0.19664
                        0.29979 0.981 4.37e-02 0.0373
     -0.18113
      0.00460 -0.00158
                        0.04542 1.064 1.05e-03 0.0213
## 6
     -0.06129
              0.07045
                        0.15240 1.035 1.17e-02 0.0271
     -0.26466
              0.25483 -0.29879 1.082 4.46e-02 0.0781
     -0.08146
              0.08815
                        0.13148 1.067 8.75e-03 0.0387
      0.03403 -0.02464
                        0.14390 1.026 1.04e-02 0.0219
## 10 -0.00491
              0.00723
                        0.03543 1.067 6.41e-04 0.0222
      0.35179 -0.34450
                        0.36509 1.266 6.73e-02 0.1941
## 12 -0.04503
              0.05373
                        0.13957 1.037 9.79e-03 0.0250
## 13 -0.06631
              0.07492
                        0.14727 1.042 1.09e-02 0.0287
## 14 -0.33620
              0.31667 -0.43877 0.914 9.00e-02 0.0444
## 15 -0.02756  0.01409 -0.20319  0.983  2.02e-02  0.0214
      0.03205 -0.03892 -0.10897 1.049 6.01e-03 0.0244
## 17 -0.10405  0.08409 -0.31389  0.892  4.60e-02  0.0229
      0.06634 -0.08055 -0.22556 0.979 2.49e-02 0.0244
## 19 -0.07999 0.06465 -0.24131 0.959 2.82e-02 0.0229
```

```
## 21 -0.02307  0.01179 -0.17007 1.007 1.44e-02 0.0214
## 22 -0.02908  0.01487 -0.21438  0.974  2.24e-02  0.0214
## 23 0.04556 -0.05532 -0.15490 1.027 1.20e-02 0.0244
## 24 0.01288 -0.01445 -0.02725 1.077 3.80e-04 0.0296
## 25 -0.00169 0.00234 0.00990 1.070 5.01e-05 0.0225
## 26 0.02537 -0.03080 -0.08625 1.058 3.78e-03 0.0244
## 27 -0.01285 0.00657 -0.09474 1.049 4.55e-03 0.0214
## 28 0.00383 -0.00529 -0.02238 1.069 2.56e-04 0.0225
## 29 -0.06635  0.05480 -0.18356 1.006 1.67e-02 0.0234
## 30 0.66619 -0.65257 0.69067 1.198 2.34e-01 0.1983
## 31 0.02623 -0.03622 -0.15322 1.022 1.17e-02 0.0225
## 32 -0.04066  0.04414  0.06730  1.081  2.31e-03  0.0373
## 33 -0.02928  0.03401  0.07773  1.063  3.07e-03  0.0263
## 34 0.90125 -0.88258 0.93533 1.107 4.13e-01 0.1941
## 35 -0.06459  0.05220 -0.19485  0.996  1.87e-02  0.0229
## 36 -0.20279 0.21667
                        0.29561 1.011 4.29e-02 0.0460
## 37 -0.03295 0.03619
                        0.05957 1.077 1.81e-03 0.0337
## 38 -0.02928 0.03401
                        0.07773 1.063 3.07e-03 0.0263
## 39 -0.04776 0.05244
                       0.08634 1.072 3.79e-03 0.0337
## 40 -0.05638 0.06727
                        0.17476 1.017 1.52e-02 0.0250
## 41 0.01680 -0.02320 -0.09815 1.050 4.88e-03 0.0225
## 42 -0.01163  0.01350  0.03086  1.073  4.87e-04  0.0263
## 43 -0.06381 0.07114 0.12910 1.053 8.42e-03 0.0306
## 44 -0.04262 0.04951
                        0.11315 1.051 6.48e-03 0.0263
## 45 -0.12909 0.14064 0.21955 1.024 2.39e-02 0.0361
## 47 0.03878 -0.04708 -0.13184 1.039 8.75e-03 0.0244
there are 4 influencial observation 11,20,30,34
df2_updated<-df2[-c(11,20,30,34),]
plot(df2_updated$x_var, df2_updated$y_var,col="green3",pch=18,
     xlab = "log(surface temperature)",ylab = "log(light intensity)",
    main = " Surface temperature VS light intensity plot \n(after removing Influencial observation) \n
```

Surface temperature VS light intensity plot (after removing Influencial observation)


```
ssr2_updated<- lm(y_var~x_var,df2_updated)
summary(ssr2_updated)</pre>
```

```
##
## Call:
## lm(formula = y_var ~ x_var, data = df2_updated)
##
## Residuals:
##
                1Q Median
                               3Q
                                      Max
  -0.8097 -0.3088 -0.0267 0.2866 0.9078
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                                  -2.200
## (Intercept) -4.0565
                           1.8441
                                            0.0335 *
## x_var
                 2.0467
                           0.4202
                                    4.871 1.7e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4058 on 41 degrees of freedom
## Multiple R-squared: 0.3666, Adjusted R-squared: 0.3511
## F-statistic: 23.73 on 1 and 41 DF, p-value: 1.697e-05
plot(df2_updated$x_var,df2_updated$y_var,col="green3",pch=18,
     xlab = "log(surface temperature)",ylab = "log(light intensity)",
     main = " Surface temperature VS light intensity plot \n(after removing Influencial observation) \n
abline(ssr2_updated)
```

Surface temperature VS light intensity plot (after removing Influencial observation)

The \mathbb{R}^2 is still too low

influence.measures(ssr2_updated)

```
## Influence measures of
##
    lm(formula = y_var ~ x_var, data = df2_updated) :
##
                dfb.x vr
##
        dfb.1
                            dffit cov.r
                                          cook.d
                                                   hat
                          0.13224 1.038 8.80e-03 0.0235
## 1
      0.019135 -0.014733
     -0.212058 0.218403
                          0.28649 1.039 4.06e-02 0.0555
      0.092908 -0.089463
                          0.13730 1.071 9.55e-03 0.0404
##
                          0.28649 1.039 4.06e-02 0.0555
##
     -0.212058
                0.218403
## 5
      0.107682 -0.101916
                          0.20123 1.020 2.01e-02 0.0313
     -0.069875
                0.074959
                          0.16789 1.033 1.41e-02 0.0290
##
      1.958271 -1.941804
                          2.01108 1.124 1.74e+00 0.3435
## 8
      0.012766 -0.013127 -0.01683 1.117 1.45e-04 0.0594
## 9
                          0.49547 0.834 1.10e-01 0.0404
      0.335272 -0.322841
      0.012929 -0.009955
                          0.08935 1.058 4.06e-03 0.0235
## 12 -0.044465
                0.050198
                          0.17727 1.015 1.56e-02 0.0253
## 13 -0.071409
                0.075440
                          0.14077 1.055 1.00e-02 0.0326
## 14 -0.117267
                0.115812 -0.12436 1.269 7.91e-03 0.1752
## 15 -0.124623
                0.118616 -0.21642 1.016 2.32e-02 0.0332
      0.030585 -0.035905 -0.16194 1.023 1.31e-02 0.0245
## 17 -0.292884
               0.284074 -0.39008 0.960 7.27e-02 0.0495
      0.062883 -0.073819 -0.33295 0.873 5.12e-02 0.0245
## 21 -0.091667  0.087248 -0.15919  1.048  1.28e-02  0.0332
```

```
## 22 -0.135792  0.129246 -0.23581  1.004  2.74e-02  0.0332
## 23 0.043059 -0.050547 -0.22798 0.973 2.53e-02 0.0245
## 24 0.073213 -0.076931 -0.13381 1.062 9.06e-03 0.0347
## 25 0.003317 -0.001886 0.04271 1.072 9.33e-04 0.0233
## 26 0.024501 -0.028762 -0.12972 1.042 8.48e-03 0.0245
## 27 -0.016826  0.016015 -0.02922  1.085  4.37e-04  0.0332
## 28 -0.000232 0.000132 -0.00298 1.076 4.55e-06 0.0233
## 29 -0.087059 0.084596 -0.11294 1.097 6.50e-03 0.0530
## 31 -0.014681 0.008349 -0.18902 0.999 1.76e-02 0.0233
## 32 0.079406 -0.081782 -0.10728 1.102 5.87e-03 0.0555
## 33 -0.025667 0.027851 0.07036 1.071 2.53e-03 0.0276
## 35 -0.112197  0.108822 -0.14943  1.082  1.13e-02  0.0495
## 36 -0.139064  0.142153  0.16807  1.126  1.44e-02  0.0817
## 37 0.042018 -0.043542 -0.06240 1.096 1.99e-03 0.0453
## 38 -0.025667 0.027851 0.07036 1.071 2.53e-03 0.0276
## 39 0.012734 -0.013196 -0.01891 1.100 1.83e-04 0.0453
## 40 -0.057136  0.064503  0.22778  0.978  2.53e-02  0.0253
## 41 -0.008558  0.004867 -0.11019  1.049  6.14e-03  0.0233
## 42 -0.001349  0.001464  0.00370  1.080  7.01e-06  0.0276
## 43 -0.053111 0.055562 0.09103 1.079 4.22e-03 0.0371
## 44 -0.044089 0.047840 0.12085 1.053 7.39e-03 0.0276
## 45 -0.120480 0.124308 0.16731 1.080 1.42e-02 0.0519
## 46 0.010786 -0.011704 -0.02957 1.079 4.48e-04 0.0276
## 47 0.036764 -0.043158 -0.19466 1.000 1.87e-02 0.0245
```

Residual Plot

```
res2<- residuals(ssr2)
plot(res2, type='b', ylab="Residuals", main="Residual plot")
abline(h=0)</pre>
```

Residual plot

#plot(density(res2))

cbind(res2)

```
##
             res2
## 1
       0.24267057
## 2
       0.83119831
## 3
      -0.10279285
       0.83119831
## 4
## 5
       0.17373930
## 6
       0.50986792
      -0.55638047
## 7
## 8
       0.36533134
## 9
       0.53720715
## 10
       0.13267057
## 11
       0.37896317
## 12
       0.48746880
## 13
       0.47813400
## 14 -1.08611882
## 15 -0.76039374
## 16 -0.38666423
## 17 -1.10519197
## 18 -0.78666423
## 19 -0.86519197
## 20 0.53896317
## 21 -0.64039374
## 22 -0.80039374
```

```
## 23 -0.54666423
## 24 -0.08773296
## 25 0.03680361
## 26 -0.30666423
## 27 -0.36039374
## 28 -0.08319639
## 29 -0.65932501
## 30 0.69483014
## 31 -0.56319639
## 32 0.19119831
## 33 0.26573488
## 34 0.93896317
## 35 -0.70519197
## 36 0.73599654
## 37 0.17879919
## 38 0.26573488
## 39 0.25879919
## 40 0.60746880
## 41 -0.36319639
## 42 0.10573488
## 43 0.40640007
## 44 0.38573488
## 45 0.62706527
## 46 0.02573488
## 47 -0.46666423
```

Standardize Residuals

```
res2_std <- rstandard(ssr2)

plot(abs(res2_std),type = 'h', main = "Visualization of Stadardize Residuals",
        ylab="Absolute(std_residuals)",
        ylim = c(0,2.5))
abline(h=2,col='magenta',lty=2)
abline(h=0)</pre>
```

Visualization of Stadardize Residuals

ordering in decreasing order

after ordering the standardize residuals, from increasing to decreasig order in absolute values
res2_std[order(-abs(res2_std))]

```
##
             17
                          14
                                       34
                                                    19
##
   -1.98019464 -1.96777866
                              1.85243838 -1.55018182
                                                        1.50038693
                                                                     1.50038693
##
             22
                          18
                                       30
                                                    15
                                                                 36
                                                                              35
   -1.43295112 -1.41054001
                              1.37442043 -1.36133881
                                                         1.33453895 -1.26350661
##
##
             29
                          21
                                       45
                                                    40
                                                                 20
                              1.13116891
   -1.18159009 -1.14650188
                                           1.08956114
                                                         1.06329630
                                                                    -1.02625224
##
             31
                          23
                                        9
                                                                 12
                                                                              13
   -1.00889125
                -0.98020444
                              0.96203147
                                           0.91548130
                                                        0.87432813
                                                                     0.85922888
##
##
             47
                                       43
                                                    16
                                                                 44
                                                                               8
                          11
##
   -0.83675925
                 0.74763947
                              0.73101644
                                          -0.69331406
                                                        0.69233200
                                                                     0.65990504
##
             41
                          27
                                                                 38
                                       26
                                                    33
                                                                              39
   -0.65061791 -0.64521571 -0.54986887
                                           0.47695132
                                                        0.47695132
                                                                     0.46627870
##
##
                          32
                                                                 10
                                                                              42
                                       37
                                                     5
##
    0.43463770
                0.34512996
                              0.32214264
                                           0.31103457
                                                        0.23762103
                                                                     0.18977709
##
                          24
                                       28
                                                    25
  -0.18408161 -0.15773325 -0.14903524
                                           0.06592876
```

Studentize Residual

```
res2_stu<- rstudent(ssr2)
plot(abs(res2_stu), type = 'h',</pre>
```

```
main = "Visualization of Studentize Residuals",
   ylab="Absolute(stud_residuals)" ,
   ylim=c(0,2.5))
abline(h=2,col='magenta',lty=2)
abline(h=0)
```

Visualization of Studentize Residuals


```
# arranged in decreasing order in absolute values
res2_stu[order(-abs(res2_stu))]
                                                                              2
##
                                      34
            17
                         14
                                                   19
   -2.04939273 -2.03532888
                              1.90584720 -1.57550504
                                                        1.52218503
                                                                    1.52218503
            22
                                      30
                                                                36
##
                         18
                                                   15
                                                                             35
   -1.45041761 -1.42667524
                              1.38851971
                                                        1.34654294
##
                                         -1.37473341
                                                                   -1.27215850
##
            29
                         21
                                      45
                                                                20
##
   -1.18694552 -1.15062098
                              1.13477943
                                           1.09188565
                                                        1.06487784 -1.02687315
                                                                12
##
                         23
                                                    6
                                                                             13
   -1.00909609 -0.97976810
                              0.96121811
                                          0.91380172
                                                       0.87199716
                                                                    0.85668474
##
##
            47
                         11
                                      43
                                                                44
                 0.74392041
                              0.72717900
                                         -0.68925846
                                                       0.68827163
                                                                    0.65571202
##
   -0.83392273
##
            41
                         27
                                      26
                                                   33
                                                                38
                                                                             39
   -0.64639564
               -0.64097816 -0.54556080
                                          0.47281869
                                                       0.47281869
                                                                    0.46218659
##
##
                         32
                                                                10
                                                                             42
                0.34172621
##
    0.43068622
                              0.31891110
                                          0.30789035
                                                       0.23511352
                                                                    0.18773174
##
             3
                         24
                                      28
                                                   25
                                                                46
## -0.18209335 -0.15601395 -0.14740637
                                          0.06519525
                                                       0.04567494
```

Leverage

```
lev2<- hatvalues(ssr2)

plot(lev2,type='h',
    main = "Visualization of Leverages",
    ylab="Leverage")
abline(h=2/47,col='magenta',lty=2)</pre>
```

Visualization of Leverages


```
lev2[order(-lev2)]
                                  20
                      11
                                             34
                                                                    36
## 0.19834440 0.19410341 0.19410341 0.19410341 0.07805447 0.04597716 0.04440927
                                  32
                                              2
                                                                    37
## 0.03865181 0.03734096 0.03734096 0.03734096 0.03608151 0.03371684 0.03371684
##
                       24
                                  13
                                              6
                                                         33
                                                                    38
## 0.03055537 0.02960436 0.02870476 0.02705977 0.02631438 0.02631438 0.02631438
                       46
                                             40
           44
                                  12
                                                         16
                                                                    18
## 0.02631438 0.02631438 0.02497782 0.02497782 0.02438666 0.02438666 0.02438666
                                  29
                                                                    35
##
           26
                       47
                                             17
                                                         19
## 0.02438666 0.02438666 0.02335854 0.02292159 0.02292159 0.02292159 0.02253604
                      31
                                                                     3
                                  41
                                             10
## 0.02253604 0.02253604 0.02253604 0.02220190 0.02220190 0.02191917 0.02191917
           15
                      21
                                  22
                                             27
## 0.02137941 0.02137941 0.02137941 0.02137941 0.02130230
```

```
which(lev2>(2/47))

## 7 11 14 20 30 34 36

## 7 11 14 20 30 34 36
```

Dfbeta

Visualization of DFBETAs

Intercept

Slope coefficient


```
which( abs(b[,1])> 2/sqrt(47))
```

11 14 20 30 34

```
## 11 14 20 30 34
which(abs(b[,2]) > 2/sqrt(47))
## 11 14 20 30 34
## 11 14 20 30 34
```

DFFITS

Visualization for standardize DFFITs


```
std_bb[order(-abs(std_bb))]
## 34 30 20 14 17 7
```

```
3.55430797 2.58179878 1.91379261 -1.90755967 -1.41119877 -1.35115466
##
                          19
                                       18
                                                     4
                                                                  2
             11
    1.28768706 -1.12269183 -1.06008356
                                                        1.02813491 -1.01564281
##
                                           1.02813491
##
             36
                          15
                                       35
                                                    29
                                                                 21
##
    1.01148174 -0.97117773 -0.93801183 -0.89315170 -0.83950986 -0.77923141
##
             31
                          45
                                       47
                                                    16
                                                                 41
##
   -0.77254839
                 0.70917297 -0.68757705 -0.59666494 -0.55364135 -0.54009057
                                                                  9
##
             40
                          26
                                        6
                                                    13
                                                                     0.39125337
##
    0.53114630 -0.50636028
                              0.44224025
                                          0.42187961
                                                        0.40845479
                                                                 24
##
              8
                          43
                                       44
                                                     3
                                                                              28
##
    0.35910312
                 0.34964221
                              0.28623834 -0.27186396 -0.27182607 -0.25247749
##
             39
                          33
                                       38
                                                    46
                                                                 25
                                                                              32
    0.17966122
                0.14545127
                              0.14545127 -0.13366455 -0.12416226
##
                                                                     0.10401035
                                                                  5
##
                          37
                                       42
                                                    10
    0.09445067 \quad 0.07327967 \quad -0.04083795 \quad -0.02268845 \quad 0.01704376
```

Cook's Distance

Vosualization of Cook's Diatance


```
cd[order(-cd)]
                          30
                                        20
## 4.132486e-01 2.336906e-01 1.361546e-01 8.997550e-02 6.731445e-02 4.599398e-02
              7
                                         2
                           4
                                                     36
                                                                   19
## 4.458315e-02 4.366058e-02 4.366058e-02 4.291566e-02 2.818711e-02 2.486654e-02
##
             45
                          22
                                        15
                                                     35
                                                                   29
## 2.394800e-02 2.242922e-02 2.024341e-02 1.872580e-02 1.669607e-02 1.520594e-02
                          23
                                        31
##
             21
                                                      6
                                                                   13
                                                                                 9
## 1.435823e-02 1.200820e-02 1.173372e-02 1.165485e-02 1.090914e-02 1.037046e-02
                           8
                                        47
                                                     43
## 9.791721e-03 8.754312e-03 8.750756e-03 8.421488e-03 6.476989e-03 6.007649e-03
             41
                          27
                                        39
                                                     26
## 4.879765e-03 4.547379e-03 3.793181e-03 3.778877e-03 3.073919e-03 3.073919e-03
##
             32
                           1
                                        37
                                                      5
                                                                   10
## 2.310193e-03 2.144696e-03 1.810543e-03 1.052847e-03 6.410336e-04 4.866670e-04
              3
                          24
                                        28
                                                     25
## 3.796996e-04 3.795101e-04 2.560500e-04 5.010681e-05 2.882967e-05
```

The more model

```
df2 \text{ ott} \leftarrow df2[-c(11,14,20,30,34),]
ssr3<- lm(y_var~x_var,df2_ott)</pre>
summary(ssr3)
##
## Call:
## lm(formula = y_var ~ x_var, data = df2_ott)
##
## Residuals:
##
        Min
                       Median
                                              Max
                  1Q
                                     30
##
   -0.81089 -0.32092 -0.01575 0.28938 0.89870
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -3.8378
                             2.0339 -1.887 0.066451 .
## x_var
                 1.9974
                             0.4625
                                      4.319 0.000101 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4105 on 40 degrees of freedom
## Multiple R-squared: 0.318, Adjusted R-squared: 0.3009
## F-statistic: 18.65 on 1 and 40 DF, p-value: 0.0001006
```

Here the p value fro f statistics is less than 0.05, so the coefficients are not equals. But the p value for intercept is 0.066 which is larger than 0.05, so the intercept term is statistically insignificant, so we need to drop it from the model.

Model without intercept

```
ssr3_updated<- lm(y_var~ 0+x_var, data = df2_ott)</pre>
summary(ssr3_updated)
##
## Call:
## lm(formula = y_var ~ 0 + x_var, data = df2_ott)
##
## Residuals:
##
       Min
                1Q Median
                                   3Q
                                          Max
## -0.81944 -0.38446 0.06802 0.33211 0.77681
##
## Coefficients:
        Estimate Std. Error t value Pr(>|t|)
##
## x_var 1.12516 0.01485 75.79 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
\#\# Residual standard error: 0.4231 on 41 degrees of freedom
## Multiple R-squared: 0.9929, Adjusted R-squared: 0.9927
## F-statistic: 5744 on 1 and 41 DF, p-value: < 2.2e-16
```

The regression plot

The Final Regression Plot (After removing Influential Observations)

The residual standard deviation is very low for the model and the adjusted R-squared is 0.99 which is too good, so our models fits well here.

After deleting 4 obsn the model is good