Instructions: Answer Q1 and any 3 from the remaining 4.

 $[7 \times 6]$

- (a) Let $L_1, L_2 \in \mathbf{coNP}$, prove that $L_1 \cup L_2 \in \mathbf{coNP}$.
- (b) Prove that,
 - (i) $L_{\epsilon} = \{ \langle M, x \rangle : \text{Turing machine } M \text{ accepts } x \}$ is NP-hard but not NP-complete.
 - (ii) $L_{NP} = \{ \langle M, x, 1^n, 1^t \rangle : \exists u \in \{0, 1\}^n \text{ such that } M \text{ accepts } \langle x, u \rangle \text{ within } t \text{ steps} \}$ is NP-complete.
- (c) (i) Prove that the following language is **PSPACE**-complete. $SPACE-TMSAT = \{ < M, x, 1^n > : \text{Turing machine } M \text{ accepts } x \text{ using at most } n \text{ cells of work-tape } \}.$
 - (ii) Prove that every language $L \in \mathbf{NL}$ such that $L \neq \emptyset$ or $L \neq \{0,1\}^*$, is \mathbf{NL} -complete under Karp reduction.
- (d) Prove that,
 - (i) $Reg_{=} = \{ \langle r, s \rangle : r \text{ and } s \text{ are regular expressions over } \{0, 1\} \text{ and } L(r) = L(s) \}$ is in **PSPACE**.
 - (ii) P/poly is an uncountable class and there are undecidable languages.
- (e) Show that there is a language A such that $P^A = NP^A$.
- (f) If $3SAT \leq_P \overline{3SAT}$, then prove that PH = NP.
- (g) Give an example of a Σ_n^P -complete problem. Justify the belief that
 - (i) there is no complete problem of PH, and
 - (ii) $PH \neq PSPACE$.
- 2. If $L \in \mathbf{NP}$, then there exists a a two-tape oblivious polynomial time (t(n)) Turing machine M and a polynomial $p: \mathbb{N}_0 \to \mathbb{N}_0$, such that $x \in L$ if and only if $\exists u \in \{0,1\}^{p(|x|)}$ such that M accepts $\langle x, u \rangle$. Answer the following questions with proper explanation where $y = \langle x, u \rangle$. [2 + 3 + 2 + 4]
 - (a) What is the data in a snapshot z_i at the i^{th} step of computation of M on input y?
 - (b) Explain how does the i^{th} snapshot z_i depends on z_{i-1} , $y_{inputpos(i)}$, $z_{prev(i)}$, where inputpos() and prev() have their usual meaning.
 - (c) How does M pre-computes inputpos(i) and prev(i)?
 - (d) $x \in L$ if and only if there exists a string $y = \langle x, u \rangle \in \{0, 1\}^{|x| + p(|x|)}$ and a sequence of snapshots $z_1, \dots, z_{t(n)} \in \{0, 1\}^c$, where c is the length of encoding of each snapshot. What are the conditions to be satisfied by y and the sequence of snapshots?

[5+6]

- (a) If P = coNP, then prove that NP = PH.
- (b) Prove that $dHAMPATH = \{ \langle G, s, d \rangle : G \text{ is a directed graph with a Hamiltonian path from } s \text{ to } d \}$ is NP-complete by reducing 3SAT to dHAMPATH.

- (a) Prove that, if P = NP and a boolean formula ϕ is satisfiable, then there is a polynomial time Turing machine that can generate a satisfying assignment of ϕ .
- (b) Prove that the following language is in NP^{SAT} .

 $\overline{MIN - FORMULA} = \{ \langle \phi \rangle : \text{ Boolean formula } \phi \text{ is not minimal} \}.$

(c) Give a polynomial time alternating algorithm (AP algorithm) for the following language. In which class of the polynomial hierarchy does the language belong to?

 $MIN - FORMULA = \{ \langle \phi \rangle : \phi \text{ is a minimal Boolean formula} \}.$

[5+6]

- (a) Let $\psi = Q_1 x_1 \cdots Q_n x_n \phi(x_1, \cdots, x_n)$ be a quantified Boolean formula with n variables and length m. Give a recursive procedure that uses O(mn) space to determine the truth value of ψ . Explain the space complexity.
- (b) Let $A, B, C \in \{0, 1\}^*$. Prove that, if $A \leq_l B$ and $B \leq_l C$, then $A \leq_l C$, where ' \leq_l ' denotes implicit logspace reduction.