3-1 测得某放大电路中三个MOS管的三个电极的电位如表所示, 它们的开启电压也在表中。试分析各管的工作状态 (截止区、恒流区、可变电阻区),并填入表内。

管号	$U_{ m GS~(th)}$ /V	$U_{ m S}/{ m V}$	$U_{ m G}/{ m V}$	$U_{ m D}/{ m V}$	工作状态
T_1	4	-5	1	3	
T_2	-4	3	3	10	
T_3	-4	6	0	5	

知识点: N沟道增强型MOS管,

夹断区: S端夹断, $U_{GS} < U_{GS(th)}$

可变电阻区: S端开启, D端开启, U_{GS} > U_{GS(th)}, U_{GD} > U_{GS(th)}

恒流区: S端开启, D端夹断, U_{GS} > U_{GS(th)}, U_{GD} < U_{GS(th)}

P沟道增强型MOS管,

夹断区: S端夹断, U_{GS} > U_{GS(th)}

可变电阻区: S端开启, D端开启, U_{GS} < U_{GS(th)}, U_{GD} < U_{GS(th)}

恒流区: S端开启, D端夹断, U_{GS} < U_{GS(th)}, U_{GD} > U_{GS(th)}

3-1 测得某放大电路中三个MOS管的三个电极的电位如表所示, 它们的开启电压也在表中。试分析各管的工作状态 (截止区、恒流区、可变电阻区),并填入表内。

管号	$U_{\mathrm{GS}~(\mathrm{th})}$ /V	$U_{ m S}/{ m V}$	$U_{ m G}/{ m V}$	$U_{ m D}/{ m V}$	工作状态
T_1	4	- 5	1	3	
T_2	-4	3	3	10	
T_3	-4	6	0	5	

解答: 必要条件: N沟FET $U_{DS}>0$,而P沟FET $U_{DS}<0$ 满足 / $U_{GS}/>$ / $U_{GS(th)}$ / 与 / $U_{GD}/<$ / $U_{GS(th)}$ /,恒流区 满足 / $U_{GS}/<$ / $U_{GS(th)}$ / 与 / $U_{GD}/<$ / $U_{GS(th)}$ /,夹断区 满足 / $U_{GS}/>$ / $U_{GS(th)}$ / 与 / $U_{GD}/>$ / $U_{GS(th)}$ /,可变电阻区

3-2 在如图所示电路中,已知增强型MOS管的开启电压 U_{GS} (th) 均为2V,试判断各管的工作状态。

知识点: N沟道增强型MOS管,

夹断区: S端夹断, U_{GS} < U_{GS(th)}

可变电阻区: S端开启, D端开启, U_{GS} > U_{GS(th)}, U_{GD} > U_{GS(th)}

恒流区: S端开启,D端夹断, $U_{GS} > U_{GS(th)}$, $U_{GD} < U_{GS(th)}$

P沟道增强型MOS管,

夹断区: S端夹断, U_{GS} > U_{GS(th)}

可变电阻区: S端开启, D端开启, U_{GS} < U_{GS(th)}, U_{GD} < U_{GS(th)}

恒流区: S端开启,D端夹断, $U_{GS} < U_{GS(th)}, U_{GD} > U_{GS(th)}$

3-2 在如图所示电路中,已知增强型MOS管的开启电压 U_{GS} (th) 均为2V,试判断各管的工作状态。

解答:

图(a)和(c)中增强型管都采用了自给偏压方式,使得(a)中P沟FET的 U_{DS} 不可能小于0,而(c)中 N沟FET的 U_{DS} 不可能大于0,因而FET均处于夹断区。

图(b)电路 合上电源时, $V_{\rm GS}=V_{\rm DS}$ =10V,使得 $U_{\rm GS}>U_{\rm GS~(th)}$ 且 $U_{\rm GD}$ =0V < $U_{\rm GS~(th)}$,因而FET处于恒流区。

3-3 已知 电路中场效应管的转移特性如图(b)所示。 求解电路的 Q 点和 A_n 。

解: 1) 求 Q 点:

$$U_{GSO} = V_{GG} = 3V$$
.

从转移特性查得,当 $U_{GSQ}=3V$ 时

$$I_{DQ} = 1 \,\mathrm{mA}$$

因此管压降 $U_{DSQ} = V_{DD} - I_{DQ} R_D = 5V$

3-3 已知 电路中场效应管的转移特性如图(b)所示。 求解电路的 Q 点和 A_{u} 。

解:

(2) 求电压放大倍数:

$$g_{\mathbf{m}} = \frac{2}{U_{\text{GS(th)}}} \sqrt{I_{\text{DQ}} I_{\text{DO}}} = 2 \,\text{mA/V}$$

$$\dot{A}_{u} = -g_{\mathbf{m}} R_{\text{D}} = -20$$

电阻 R_{G1} 的数值。2)漏极电流 I_{DQ} 的数值。3) $\dot{A}_{u1} = \frac{\dot{U}_{o1}}{\dot{U}_i} = ?\dot{A}_{u2} = \frac{\dot{U}_{o2}}{\dot{U}_i} = ?1$

3-4 在如图所示放大电路中,FET的 I_{DSS} =2.4mA, $U_{GS \text{ (off)}}$ =-6V,各电容器的 _ 容量足够大。若要求 U_{GS} =-1.8V,试求:

电阻 R_{G1} 的数值。2)漏极电流 I_{DQ} 的

$$I_{DQ} = I_{DSS} \left[1 - \frac{U_{GSQ}}{U_{GS(dO)}} \right]^2 = 1.18 \text{ mA}$$

解: 1) 已求得的数据代人式:

$$U_{\rm GSQ} = V_{\rm DD} \frac{R_{\rm G2}}{R_{\rm G1} + R_{\rm G2}} - I_{\rm DQ} R_{\rm S}$$

得

$$-1.8 = 24 \times \frac{1}{R_{c1} + 1} - 1.18 \times 5.1$$

$$R_{G1} = 4.7 \text{ M}\Omega$$

(b) $I_{DQ} = 1.18 \text{ mA}$

(c)
$$g_{\rm m} = \frac{2}{|U_{\rm GS(off)}|} \sqrt{I_{\rm DSS} I_{\rm DQ}} = 0.56 \text{ mS}$$

$$A_{m1} = \frac{\dot{U}_{ol}}{\dot{I}L} = \frac{g_m R_S}{1 + g_m R_S} = 0.74$$

$$\dot{A}_{u2} = \frac{\dot{U}_{o2}}{\dot{U}_{c}} = -\frac{g_{m}R_{D}}{1+g_{m}R_{S}} = -0.74$$