Enoncé:

Transformez la grammaire suivante sous FNC : $G < \{a,b\}, \{S,A,B,D\}, S, P > où$ $P = \{ S \rightarrow ASA / aB / E$ $A \rightarrow B / S / aD$ $B \rightarrow b / E$ $D \rightarrow BD / bD \}$

Solution:

Il faut d'abord rendre G propre

1. Rendre G propre

1.1. Réduire G (0.5 pt)

Toutes les variables sont accessibles mais la variable D est non productive, il faut donc la supprimer. P devient comme suit :

$$P = \{ S \rightarrow ASA / aB / E \\ A \rightarrow B / S / aD \\ B \rightarrow b / E \\ D \rightarrow BD / bD \}$$

$$P = \{ S \rightarrow ASA / aB / E \\ A \rightarrow B / S \\ B \rightarrow b / E \}$$

1.2. Rendre G E-libre

Il faut supprimer $S \rightarrow E$ et $B \rightarrow E$

1.2.1. Supprimer B $\rightarrow \epsilon$ (0.5 pt)

P = {
$$S \rightarrow ASA / aB / \epsilon / a$$

 $A \rightarrow B / S / \epsilon$
 $B \rightarrow b$ }

1.2.2. Supprimer A \rightarrow E (0.5 pt)

1.2.3. Supprimer $S \rightarrow \varepsilon$ (0.5 pt)

$$P = \{ S' \rightarrow S / E$$

$$S \rightarrow ASA / aB /a / AS / SA / AA / A$$

$$A \rightarrow B / S / E$$

$$B \rightarrow b \}$$

1.2.4. Supprimer A \rightarrow E (0. 5 pt)

$$P = \{ S' \rightarrow S / E$$

$$S \rightarrow ASA / aB /a/ AS/ SA/ AA/ A$$

$$A \rightarrow B / S$$

$$B \rightarrow b \}$$

1.3. Rendre G sans cycle

If y a un cycle $S \rightarrow A \rightarrow S$

Supprimer S \rightarrow A (0.5 pt)

P = {
$$S' \rightarrow S / E$$

 $S \rightarrow ASA / aB / a / AS / SA / AA / B / S$
 $A \rightarrow B / S$
 $B \rightarrow b$ }

Maintenant la grammaire G est propre

Avant de commencer la transformation de G sous FNC il faut supprimer les règles unitaires (du type $A \rightarrow B$).

2. Supprimer les règles unitaires

2.1.1. Supprimer A \rightarrow S (0.25 pt)

$$P = \{ S' \rightarrow S / E$$

$$S \rightarrow ASA / aB /a / AS / SA / AA / B$$

$$A \rightarrow B / ASA / aB /a / AS / SA / AA / B$$

$$B \rightarrow b \}$$

2.2. Supprimer A \rightarrow B (0.25 pt)

$$P = \{ S' \rightarrow S / E$$

 $S \rightarrow ASA / aB /a / AS / SA / AA / B$
 $A \rightarrow b / ASA / aB /a / AS / SA / AA$

 $B \rightarrow b$ }

2.3. Supprimer $S \rightarrow B$ (0.25 pt)

Groupe: 1CS1

P = {
$$S' \rightarrow S / E$$

 $S \rightarrow ASA / aB /a / AS / SA / AA / b$
 $A \rightarrow b / ASA / aB /a / AS / SA / AA$
 $B \rightarrow b$ }

2.4. Supprimer S' \rightarrow S (0.25 pt)

P = { S'
$$\rightarrow$$
 ASA / aB /a/ AS/ SA/ AA/ b / ϵ
S \rightarrow ASA / aB /a/ AS/ SA/ AA/ b
A \rightarrow b / ASA / aB /a/ AS/ SA/ AA
B \rightarrow b }

Maintenant la grammaire est prête à être mise sous FNC

3. Transformation sous FNC

Il suffit d'ajouter les règles $X \rightarrow a$ et de remplacer a par X là ou a n'apparait pas seule (0.5 pt)

$$P = \{ S' \rightarrow ASA / XB / a / AS / SA / AA / b / E$$

$$S \rightarrow ASA / XB / a / AS / SA / AA / b$$

$$A \rightarrow b / ASA / XB / a / AS / SA / AA$$

$$B \rightarrow b$$

$$X \rightarrow a \}$$

Ajouter la règle $T \rightarrow SA$ et remplacer SA par T dans les règles de longueur supérieure à 2 (0.5 pt)

$$P = \{ S' \rightarrow AT / XB / a / AS / SA / AA / b / E$$

$$S \rightarrow AT / XB / a / AS / SA / AA / b$$

$$A \rightarrow b / AT / XB / a / AS / SA / AA$$

$$B \rightarrow b$$

$$X \rightarrow a \}$$

La grammaire G est maintenant sous FNC