

CECS 303: Networks and Network Security PKI

Chris Samayoa

Week 15 – 1st Lecture 4/26/2022

Course Information

- CECS 303
- Networks and Network Security 3.0 units
- Class meeting schedule
- TuTH 5:00PM to 7:15PM
- Lecture Room: VEC 402
- Lab Room: ECS 413
- Class communication
- chris.samayoa@csulb.edu
- Cell: 562-706-2196
- Office hours
- Thursdays 4pm-5pm (VEC-404)
- Other times by appointment only

PKI

- Asymmetric Encryption
- Need for Trusted Authorities
- Digital Certificates
- Certificate Authorities
- Chain of Trust

PKI

- Public Key Infrastructure (PKI)
 - Framework for encrypting communications between two nodes
 - Server-to-server
 - Client-to-client
 - Server-to-client
 - Most common form uses private and public key combination (asymmetric)
 - Allows for encrypted messaging
 - Allows for digital signatures to verify authenticity
 - PKI Certificates verify the owner (authentication) of a private key to allow for a trusted relationship
- Why use PKI?
 - Authentication
 - Signatures
 - Encryption
 - Data integrity
 - > e.g. signed applications

- PKI
 - Asymmetric Encryption
 - Need for Trusted Authorities
 - Digital Certificates
 - Certificate Authorities
 - Chain of Trust

Asymmetric Encryption

- Public key can be used by anyone to encrypt data
- Private key can be used by specific entity to decrypt data
- Common uses?
 - SSH algorithms
 - SSL/TLS
 - S/MIME encrypted email
 - Code signing
 - Bitcoin/Blockchain
 - Signal private messenger
 - Digital signatures
 - Authenticating nodes connecting to a wireless network
 - Authenticating connections to your VPN
 - Smart card authentication
- Powers PKI

PKI (cont'd)

Decrypt: $D(K_{priv^c}C) = M$

Sign:

 $S = E(K_{orb} M)$

ALICE

Encrypt: C = E(K_{oute} M)

Verify: $D(K_{pub^n}S) = M$

SSH

SSL / TLS

S/MIME encrypted email

Code Signing

Bitcoin / Blockchain

Signal Private Messenger

Public Key Infrastructure

RSA, Diffie-Hellman, ECC

PKI (cont'd)

- Symmetric encryption is faster than asymmetric encryption
 - Asymmetric is often used just to send a symmetric key instead of a whole message

- PKI
 - Asymmetric Encryption
 - Need for Trusted Authorities
 - Digital Certificates
 - Certificate Authorities
 - Chain of Trust

PKI Problem

- How do you know that the public key you received comes from the entity you are trying to communicate with?
 - Major potential for MitM attack

PKI Solution

Trusted third party

- PKI
 - Asymmetric Encryption
 - Need for Trusted Authorities
 - Digital Certificates
 - Certificate Authorities
 - Chain of Trust

Digital Certificates

- Verify the identify of a device or user and enable encrypted connections
 - aka X.509 certificates or PKI certificates
 - ➤ IETF RFC 5280
 - https://datatracker.ietf.org/doc/html/rfc5280
- Features
 - Mechanism for authentication
 - Hold information about a particular entity
 - Issued by trusted third party
 - Tamper-resistant
 - Authenticity of document can be proved
 - Trackable back to issuer
 - Set expiration date
 - Is presented for validation
 - Authenticating connections to your VPN
 - Smart card authentication

Digital Certificates (cont'd)

- Major Components
 - Digital Certificates
 - Electronic identification for websites and organizations
 - Can be self-created or obtained through a trusted thirdparty issuer
 - Certificate Authority (CA)
 - Vet organizations requesting certificates
 - Issue certificates
 - > Establish "trusted" relationships
 - Certificate Revocation Lists (CRLs)
 - Mechanism to track revoked certificates

- PKI
 - Asymmetric Encryption
 - Need for Trusted Authorities
 - Digital Certificates
 - Certificate Authorities
 - Chain of Trust

Certificate Authority

- Overview
 - Responsible for creating and issuing digital certificates, including
 - Vetting methods for certificate requestors
 - Scope of certificate(s)
 - Parameters specified within certificate(s)
- Certificate creation process
 - Private key generated and used to compute corresponding public key
 - CA requests identifying attributes of the private key owner and vets the information
 - Public key and vetted attributed are encoded into a Certificate Signing Request (CSR)
 - CSR is signed by key owner to prove possession of specific private key
 - Issuing CA validates the request and signs the certificate with the CA's own private key
 - Note that each CA also has its own public and private keys
 - Establishes need for CA hierarchies
- As long as CA is deemed trustworthy by end users, they can be used to verify the owner of a particular public key

Certificate Authority (cont'd)

- PKI
 - Asymmetric Encryption
 - Need for Trusted Authorities
 - Digital Certificates
 - Certificate Authorities
 - Chain of Trust

PKI Chain of Trust

Chain of Trust

- Types of entities
 - Root CA
 - Self-signed certificate -> "trust anchor"
 - Must be trusted for entire process to work
 - Very closely guarded often kept "offline"
 - Expire every 15-20 years
 - Intermediate CA
 - Responsible for issuing certificates
 - To other intermediate CAs
 - To end-entity
 - Provides extra level of security between end-entity servers and root CA
 - End-entity Certificate
 - Does not guarantee that subject is trustworthy
 - Certificates are typically issued for organizations (not employees)
 - Parameters specified within certificate(s)

Typical Trust Model

Digital Certificate Risks

- What happens if private keys are compromised?
 - End-entity
 - Communication to that server can no longer be authenticated
 - Certificate needs to be revoked
 - New certificate needs to be issued
 - Intermediate CA
 - All end-entity certificates issued by the CA must be revoked and reissued
 - New asymmetric keys
 - New certificate must be issued by root CA (or other authority)
 - Root CA
 - All child CA certificates and end-entity certificates issued by those child CAs must be reissued
 - Root CA must be re-established

Certificate Revocation Lists

- Each CA must issue its own certificate revocation lists
 - Part of the standard for X.509 certificates
- Consumers must check CRLs for them to be effective
 - Slows down authentication process
 - Slower for each part of the hierarchy checked
- Were not commonly used before
- Have grown in usage by consumers
 - Due to internet security concerns

Check CRL

Browser Lists - Chrome

Browser Lists - Firefox

TLS

