MN4528B/MN4528BS

Dual Monostable Multivibrators

Description

The MN4528B/S are retriggerable, resettable monostable multivibrators and have 2 circuits in a package. The monostable pulse over a wide range of widths is determined by the external resistance and capacitance.

A negative going edge of the $\overline{I_0}$ input when I_1 is Low or a positive going edge of the I_1 input when $\overline{I_0}$ is High produces a positive pulse at the O output and a negative pulse at the O output if the $\overline{C_D}$ input is High.

A Low at the \overline{C}_D input forces the O output Low and the \overline{O} output High.

The MN4528B/S are equivalent to MOTOROLA MC14528B.

16-Pin • Plastic DIL Package P- 4 16-Pin • Panaflat Package (SO-16D)

Pin Explanation

 \bar{I}_{0A} , \bar{I}_{0B} : Input (\sum) I_{1A} , I_{1B} : Input (\sum)

 \overline{C}_{DA} , \overline{C}_{DB} : Direct Clear Input

Cext_A, Cext_B: External capacitance connection

 $Cext/Rext_A$, $Cext/Rext_B$: External capacitance, External resistance

 O_A , O_B : Positive output \overline{O}_A , \overline{O}_B : Negative output

■ Logic Diagram (1/2)

Panasonic

-232-

Truth Table

	Input			put	Mode
I,	Īo	Съ	0	Ō	Mode
	Н	Н		7	output pulse
5	I_	Н	L	Н	inhibit
Н	~	Н	L	Н	minon
L		Н			output pulse
×	×	L	L	Н	inhibit

Note) X : don't care

■ Maximum Ratings (Ta=25°C)

Item		Symbol	Ratings	Unit	
Supply Voltage		V_{DD}	-0.5~+18	V	
Input Voltage		V ₁	$-0.5 \sim V_{DD} + 0.5^*$	V	
Output Voltage		V_0	$-0.5 \sim V_{DD} + 0.5^*$	V	
Peak Input · Output Current		$\pm I_1$	max. 10	mA	
Power Dissipation (per package)	Ta=-40~+60°C	T)	max. 400	mW	
	Ta=+60~+85℃	P_{D}	Decrease up to 200mW rating at 8mW/°C		
Power Dissipation (per output terminal)		P_{D}	max. 100	mW	
Operating Ambient Temperature		Topr	-40~+85	°C	
Storage Temperature		Tstg	-65-+150	C	

* V_{DD} + 0.5V should be under 18V

\blacksquare DC Characteristics $(V_{SS}\!=\!0V)$

Item	V _{DD} Sym-		Conditions		Ta=-40℃		Ta=25℃		Ta=85°C		T 1 14
nem	(V)	bol	Conditions		min.	max.	min.	max.	min.	max.	Unit
Outre Proces	5					20	_	20		150	
Quiescent Power Supply Current	10	I_{DD}	V _I =V _{SS} or	V_{DD}		40	_	40	—	300	μA
	15				_	80	-	80	—	600	
_	5		$V_{\rm I} = V_{\rm SS}$ or $V_{\rm DD}$		_	0.05	_	0.05	_	0.05	
Output Voltage Low Level	10	Vol				0.05	_	0.05	_	0.05	V
Low Love	15		$ I_0 < 1\mu A$		-	0.05	-	0.05	_	0.05	
	5		$V_{l} = V_{SS}$ or V_{DD} $ I_{O} < 1 \mu A$		4.95	_	4.95		4.95		
Output Voltage High Level	10	Voh			9.95	_	9.95	_	9.95	_	v
	15				14.95	_	14.95		14.95	_	
_	5	VIL	I _O < 1 \(\mu \)A	Vo=0.5V or 4.5V	_	1.5	_	1.5	_	1.5	
Input Voltage Low Level	10			Vo=1V or 9V		3		3	_	3	V
	15			$V_0 = 1.5 \text{V or } 13.5 \text{V}$	_	4	_	4		4	1
	5	V _{IH}	I _O < 1 µA	$V_0 = 0.5 V \text{ or } 4.5 V$	3.5		3.5	_	3.5	_	
Input Voltage High Level	10			Vo=1V or 9V	7	_	7	_	7	-	V
	15			$V_0 = 1.5 \text{V or } 13.5 \text{V}$	11	_	11		11	_	
	5		$V_0 = 0.4 V$	$V_I = 0$ or $5V$	0.52		0.44	_	0.36	_	
Output Current Low Level	10	$I_{\rm OL}$	$V_0 = 0.5 V$,	$V_l = 0 \text{ or } 10 \mathrm{V}$	1.3		1.1	_	0.9		mA
	15		$V_0=1.5V$,	$V_i = 0$ or $15\mathrm{V}$	3.6		3		2.4	_	
Output Current High Level	5		$V_0 = 4.6 V$	V _I =0 or 5V	0.52	_	0.44		0.36	_	
	10	-1_{OH}	$V_0 = 9.5 V$	$V_I{=}0\ or\ 10\mathrm{V}$	1.3	_	1.1	_	0.9		mA
	15		$V_0 = 13.5 V$, V ₁ =0 or 15V	3.6	_	3		2.4	_	
Output Current High Level	5	$-I_{OH}$	$V_0 = 2.5 V$	V1=0 or 5V	1.7		1.4	_	1.1	_	mA
Input Leakage Current	15	$\pm I_1$	V ₁ =0 or 15	V		0.3	_	0.3		1	μA

Item	$\mathbf{V}_{\mathrm{DD}}\left(\mathbf{V}\right)$	Symbol	min.	typ.	max.	Unit
	5			60	180	
Output Rise Time	10	t _{TI.H}	_	30	90	ns
	15		_	20	60	
	5		_	60	180	
Output Fall Time	10	t _{THL}	_	30	90	ns
•	15		_	20	60	
	5		_	155	465	
Propagation Delay Time	10	tplH	_	60	180	ns
$I_0, I_1 \rightarrow O$	15		_	40	120	
D 1 00	5		_	140	420	
Propagation Delay Time	10	t _{PHL}	_	50	150	ns
I_0 , $I_1 \rightarrow \overline{O}$	15		_	35	105	
	5		_	105	315	
Propagation Delay Time	10	tPHL		40	120	ns
$C_D \rightarrow O$	15		_	30	90	
	5		_	120	360	
Propagation Delay Time	10	t _{PLH}		50	150	ns
$C_D \rightarrow \widetilde{O}$	15			35	105	
	5			25	75	
Minimum Pulse Width	10	twiol.	_	15	45	ns
Ι ₀	15		_	10	30	
	5			25	75	
Minimum Pulse Width	10	twill		15	45	ns
I ₁	15	CWITE		10	30	
	5	 	_	30	90	
Minimum Pulse Width	10	twcdL	_	15	45	ns
C_{D}	15	- Nebe	_	10	30	
	5		_	235		
Output Pulse Width	10	t _{woH}		155	_	ns
$(Rt = 5 k\Omega, Ct = 15pF)$	15	7,,011	_	140	_	
	5			5.45		<u> </u>
Output Pulse Width	10	t _{wo} H	_	4.95	_	μs
$(Rt = 10k\Omega, Ct = 1000pF)$	15	- 500	_	4.85	_	
Input Capacitance		Cı	 		7.5	pF
External Timing Resistance	-	Rt	5		1000	kΩ
External Timing Capacitance (Note)	· · · · · · · · · · · · · · · · · · ·	Ct	_		10	μF

(Note) It is recommended to use the silicon diode (cathode toward V_{DD}) in parallel with R_t when C_t is large capacity (ranging from $0.1\mu F$ to $10\mu F$).

• Dynamic Signal Waveforms

Waveforms showing minimum $\overline{1}_0$, 1_1 and O pulse widths, set-up and recovery times; set-up and recovery times are shown as positive values but may be specified as negative values.

