Logic (PHIL 2080, COMP 2620, COMP 6262) Chapter: Sequents, Semantics, and Propositional Natural Deduction — Conjunction, Implication, Theorems

Introduction

Introduction

- We want to know when one logical formula follows logically from another.
- Suppose we know that "p is true" (technically: it is *interpreted* as true), and we know that $p \to q$ holds as well. Then we can logically conclude that q also holds!
- We can express this with *sequents*: $p, p \rightarrow q \models q$
- These conclusions can be arbitrarily complicated, however!
 I.e., it might not be obvious that the conclusion follows from the premises.

 truth table & interpretations
- Two ways to show validity of sequents: semantics (validity by meaning) and syntactic proof system (validity by following deductive rules; natural deduction introduced soon).

Sequents

Introduction

Sequents

In general, a sequent is of the following form with X a set of formulae and A a single formula:

$$X \models A$$

- Read it: A follows from X; or X entails A.
- For example, "q follows from p and $p \rightarrow q$ "
- We write down: but that just abbreviates:
- Also $X, Y \models A$ abbreviates $X \cup Y \models A$,

$$\underbrace{\{p,p\to q\}}_{X} \models \underbrace{q}_{A}$$

set of formulae single formula

 Sequents
 Natural Deduction
 Conjunction
 Implication
 Theorems
 Summary

 00 ● 0
 000
 0000000
 00000000
 00
 00
 00

Semantically Valid Sequents

Definition:

 $X \models A$ means the sequent is *valid*. This is the case if and only if:

- A is true for every interpretation for which all the formulae in X
 are true. Or, equivalently:
- There is no interpretation that makes X true, but not A.

How to check/test/prove $X \models A$? Create the truth tables! semantics

- Create a table t_X for all formulae in X (all need to be true)
- Create another table t_A for A and check validity criterion.

Yoshihiro Maruyama

5.30

Checking Validity, Example 2

Show
$$(p \lor q) \to r, p \models (p \to r) \land (q \to r)$$

Table t_X for premises:

Table t_A for conclusion:

р	q	r	$p \lor q$	$(p \lor q) \to r$	Х	р	q	r	$p \rightarrow r$	$q \rightarrow r$	Α
0	0	0	0	1	0	0	0	0	1	1	1
0	0	1	0	1	0	0	0	1	1	1	1
0	1	0	1	0	0	0	1	0	1	0	0
0	1	1	1	1	0	0	1	1	1	1	1
1	0	0	1	0	0	1	0	0	0	1	0
1	0	1	1	1	1	1	0	1	1	1	1
1	1	0	1	0	0	1	1	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1

Recall the definition: The sequent is valid if all interpretations that make *X* true also make *A* true!

Checking Validity, Example 2

Show
$$(p \lor q) \to r, p \models (p \to r) \land (q \to r)$$

Table t_X for premises:

Table t_{Δ} for conclusion:

7, 1						7, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10							
	р	q	r	$p \lor q$	$(p \lor q) \to r$	X		р	q	r	$p \rightarrow r$	$q \rightarrow r$	
	0	0	0	0	1	0		0	0	0	1	1	
	0	0	1	0	1	0		0	0	1	1	1	
	0	1	0	1	0	0		0	1	0	1	0	
	0	1	1	1	1	0		0	1	1	1	1	
	1	0	0	1	0	0		1	0	0	0	1	
	1	0	1	1	1	1		1	0	1	1	1	
	1	1	0	1	0	0		1	1	0	0	0	Γ
	1	1	1	1	1	1		1	1	1	1	1	

Only two interpretations exist that make all $x \in X$ true: $x_1 \land x_2 \land ... \land x_n$ is true

Both of them make A true! Thus, $X \models A$.

Natural Deduction

Natural Deduction and Derivations

- Natural deduction is pure syntax manipulation and acts as proof system with a formal notion of proof as a mathematical entity (cf. informal proof in ordinary math).
- Natural Deduction exploits <u>derivations</u> (or formal proofs).
- A derivation is a finite sequence of formulae, which are derived from each other based on elementary formula manipulations ("1-step inference rules")
- atoms w/ connectives truth table w/ interpretations
 Syntax (proof system) vs. semantics is arguably the most important distinction in formal logic.

Syntax of Sequents

- From now on, we write $X \vdash A$ rather than $X \models A$. atoms w/ connectives: natural deduction + derivation
- X ⊢ A means A syntactically follows from X, i.e., you can formally prove the conclusion A using X as assumptions (within the system of natural deduction).
- X = A means A semantically follows from X.
 truth table w/ interpretations
 for all interpretations that make the set of formulae in X true, A is also true

Conjunction

Yoshihiro Maruyama 10.30

The 1-Step Rules: And-Elimination

What are the 1-step rules for dealing with conjunction?

Elimination rule:

$$A \wedge B \vdash A$$

$$A \wedge B \vdash B$$

$$\frac{A \wedge B}{A} {\wedge} E$$

$$\frac{A \wedge B}{B} \wedge E$$

Which reads: If we derived $A \wedge B$, we can derive both A and B.

The 1-Step Rules: And-Introduction

What are the 1-step rules for dealing with conjunction?

Introduction rule:

$$\frac{A, B \vdash A \land B}{A \land B} \land I$$

Which reads: If we derived A and we derived B, we can derive $A \wedge B$.

Proof Syntax / Notation: Overview

- How to write down proofs?
- There are many different notations that describe the same thing
- We introduce two:
 - Tree-like representation of the applied rules (just since it's another standard)
 - list-like representation (only use that one!)

Yoshihiro Maruyama 13.30

Proof Syntax / Notation: Tree- and List-like Representations

• Assume we want to prove
$$p \land q \vdash q \land p$$

In the tree-like format:

$$\frac{\frac{\mathsf{leaf}}{p \land q}}{q} \land E \qquad \frac{\frac{\mathsf{leaf}}{p \land q}}{p} \land E$$

$$\frac{q \land p \text{ root}}{q} \land E \qquad \frac{\mathsf{leaf}}{p} \land E \qquad \frac{\mathsf{leaf}}{p}$$

- Leaves are assumptions, root is conclusion
- Advantages: Makes the proof structure obvious
- In exercises, etc: Do not use it, unless we ask you to!

Proof Syntax / Notation: Tree- and List-like Representations

- Assume we want to prove $p \land q \vdash q \land p$
- In the list format: A: assumption; E: elimination; I: introduction

Note: Each line represents a sequent! (Sequence of sequents.)

ANU Notes - https://users.cecs.anu.edu.au/~iks/ LogicNotes/sequent-calculus.html

The 1-Step Rules (Based on Sequents): Derivation Rules

Derivation Rules as considered so far:

$$\frac{A \wedge B}{A} \wedge E \qquad \qquad \frac{A \wedge B}{B} \wedge E \qquad \qquad \frac{A \quad B}{A \wedge B} \wedge I$$

Re-written in terms of sequents:

$$\frac{X \vdash A \land B}{X \vdash A} \land E \qquad \frac{X \vdash A \land B}{X \vdash B} \land E \qquad \frac{X \vdash A \qquad Y \vdash B}{X, \ Y \vdash A \land B} \land I$$

→ I.e., now we see how premises accumulate!

The 1-Step Rules (Based on Sequents): Accumulation of Assumptions, Example

$$\frac{X \vdash A \qquad Y \vdash B}{X, Y \vdash A \land B} \land I$$

Yoshihiro Maruyama 16.30

Implication

Yoshihiro Maruyama 17.30

The 1-Step Rules: Implication-Elimination and -Introduction

Elimination rule:

$$A, A \rightarrow B \vdash B$$

$$\frac{A \to B}{B} \to E$$

Introduction rule:

$$A \vdash B \Rightarrow A \rightarrow B$$

if we can derive B using A:

then we can derive
$$A \rightarrow B$$
 and discharge A :

$$\begin{bmatrix}
A \\
\vdots \\
B \\
A \\
A
\end{bmatrix} \Rightarrow I$$

$$A \\
\vdots \\
B$$

The 1-Step Rules: Implication-Elimination and -Introduction (Based on Sequents)

Derivation Rules as considered so far:

$$A \rightarrow B \qquad A \rightarrow E$$

$$\vdots \\ \frac{B}{A \to B} \to I$$

[A]

Re-written in terms of sequents:

Introduction rule

$$\frac{X \vdash A \to B \qquad Y \vdash A}{X, Y \vdash B} \to E$$
Elimination rule

$$\underbrace{\frac{X, A \vdash B}{X \vdash A \to B}}_{\text{Has side effect of}} \to I$$

removing the assumption A

• We say that A gets discharged, and annotate that in the proof.

Yoshihiro Maruyama 19.30

The 1-Step Rules: Deduction Equivalence

$$X \vdash A \rightarrow B$$
 iff $X, A \vdash B$
deduction equivalence (or deduction theorem)

Why does this hold?

• If
$$X, A \vdash B$$
, then $X \vdash A \rightarrow B$:
$$\frac{X, A \vdash B}{X \vdash A \rightarrow B} \rightarrow I$$

• If
$$X \vdash A \to B$$
, then $X, A \vdash B$: $X \vdash A \to B \qquad A \vdash A \atop X, A \vdash B \to B$

(That's the $\rightarrow E$ rule with Y substituted by A)

The 1-Step Rules: Implication-Introduction and -Elimination, Example 1

- Assumption α_2 is a new one, which was not given in the original sequent, so we need to eliminate it later on.
- In the last step, we discharge assumption α_2 .

Yoshihiro Maruyama 22.30

The 1-Step Rules: Implication-Introduction and -Elimination, Example 1 (cont'd)

The proof of $p \to q \vdash (p \land r) \to q$ in a tree-like structure:

$$\frac{\rho \to q}{q} \frac{\frac{\left[\rho \land r\right]^{(1)}}{\rho} \land E}{q} \to E}{\frac{\left(\rho \land r\right) \to q}{} \to I(1)}$$

Here, we denote discharged assumptions by $[\dots]^{(n)}$, where we number each assumption so that they can be distinguished from each other, i.e., so that we know which rule discharged which assumption(s).

The 1-Step Rules: Implication-Introduction and -Elimination, Example 2

$$(p \land q) \rightarrow r \vdash p \rightarrow (q \rightarrow r)$$

$$\alpha_1$$

$$(1) \quad (p \wedge q) \to r$$

$$\alpha_2$$

$$\alpha_3$$
 α_2, α_3

$$(3) q$$

$$(4) p \wedge q$$

$$\alpha_1, \alpha_2, \alpha_3$$

$$(5)$$
 r

$$\alpha_{1}, \alpha_{2}$$

(6)
$$q \rightarrow r$$

$$5[\alpha_3] \rightarrow I$$

$$lpha_{
m 1}$$

(7)
$$p \rightarrow (q \rightarrow r)$$
 $6[\alpha_2] \rightarrow I$

$$\begin{array}{|c|c|c|c|c|}
\hline
X \vdash A \to B & Y \vdash A \\
\hline
X, Y \vdash B
\end{array}$$

 $A := alpha_2 (p)$

B := q -> r

 $X := alpha_1 ((p&q) -> r)$

 $\frac{X,A \vdash B}{X \vdash A \to B} \to I$

no need to write this

$$\alpha_1, \alpha_2, \alpha_3$$
 (n-2)

$$\alpha_1, \alpha_2, \alpha_3$$
 (n-1)

1)
$$q \rightarrow r$$

$$q \rightarrow r$$
 (n-2)[α_3] $\rightarrow l$

$$lpha_{ extsf{1}}$$

$$p \rightarrow (q - q)$$

$$[0.1)[lpha_3]
ightarrow 0$$

$$lpha_{ extsf{1}}$$

(n)
$$p \rightarrow (q \rightarrow r)$$
 (n-1)[α_2] $\rightarrow I$

$$(n-1)[\alpha_2] \rightarrow$$

Vacous Discharge: Discharging Non-existent Assumptions

 We can "discharge" assumptions that are not there; this happens if the conclusion does not depend on its assumption.

$$p \vdash q \rightarrow p$$

$$\begin{array}{cccc}
\alpha_1 & (1) & p & A \\
-\alpha_2 & (2) & q & A \\
\alpha_1 & (2) & q \to p & 1[] \to I
\end{array}$$

$$\frac{X,A \vdash B}{X \vdash A \to B} \to I$$

$$\alpha_1, \alpha_2$$
 (n-1) p
 α_1 (n) $q \to p$ (n-1)[α_2] $\to I$

- We call such a discharge a vacuous discharge.
- I.e., whenever we "would remove" some assumption α from a set of assumptions X, but $\alpha \notin X$, we write $i[] \rightarrow I$ instead of $i[\alpha] \rightarrow I$

onal Yoshihiro Maruyama

Excursion: ⊢ vs. →: An Often Asked Question in Previous Courses

- \vdash and \rightarrow seem to be of a very related nature: E.g., compare $A, B \vdash C$ with $A \land B \rightarrow C$
- So what's the difference?
- $\bullet \rightarrow$ is a logical connective, whereas \vdash is not.
- ⊢ is a relation between formulae and cannot be used within a formula.
 X ⊢ A: whenever any x in X is true, A must also be true
- They are linked by the deduction theorem: $X, A \vdash B$ if and only if $X \vdash A \rightarrow B$. In particular: $A \vdash B$ if and only if $\vdash A \rightarrow B$

Theorems

Yoshihiro Maruyama 27.30

Unconditionally True Formulas

- Sequents that do not depend on anything are called *theorems*!
- Thus, A is a theorem if " \vdash A", e.g., \vdash $p \rightarrow (q \rightarrow p)$.
- Another (slightly more complex) example:

- Thus, we get $\vdash p \rightarrow (q \rightarrow (p \land q))$, so its formula is a theorem.
- Note that A in \vdash A is a tautology!

Summary

Yoshihiro Maruyama 29.30

 Sequents
 Natural Deduction
 Conjunction
 Implication
 Theorems
 Summary

 0000
 000
 00000000
 000000000
 00
 0€

Content of this Lecture

- Sequents and their semantics truth table w/ interpretations
 - What does X ⊨ A mean? A semantically follows from X
- The most important basics of Natural Deduction!
 - How can proofs be written? tree-like format or list-like format
 - What does X ⊢ A mean? A syntaxly follows from X
 - Every logical connective comes with two 1-step rules:
 Introduction and Elimination
 - What's a theorem? ⊢A, where A is a theorem that doesn't depend on any
- ightarrow The Logic Notes sections: other formulae
 - 3. More about propositional logic: Truth Tables
 - 2. Propositional natural deduction: Conjunction
 - 2. Propositional natural deduction: Implication
 - 2. Propositional natural deduction: Counting assumptions (except Contraction, which you should look up!)

Yoshihiro Maruyama 30.30