PCA

Task 1: Exploratory Data Analysis (EDA):

- 1. Load the dataset and perform basic data exploration.
- 2. Examine the distribution of features using histograms, box plots, or density plots.
- 3. Investigate correlations between features to understand relationships within the data.

Answer:

1. Dataset Overview

- The dataset (wine.csv) contains 178 rows × 14 columns.
- The Type column represents the wine class (1, 2, or 3).
- The remaining 13 columns are continuous features describing the chemical composition of the wines (e.g., Alcohol, Malic acid, Ash, Magnesium, Phenols, Flavanoids, Proline).
- No missing values were found.

2. Feature Distributions

- Histograms show that most features are normally distributed but with some skewness. For example, Alcohol is fairly symmetric, while Malic acid and Proline are right-skewed.
- Boxplots highlight potential outliers in features such as Proline and Malic acid.
- Density plots provide a smooth distribution view: features like Phenols and Flavanoids show separation potential across wine classes.

3. Correlations

- o The correlation heatmap reveals:
 - Strong positive correlation between Flavanoids and Phenols.
 - Negative correlation between Flavanoids and Nonflavanoids.
 - Proline is highly correlated with Alcohol and Color intensity.
- These correlations suggest that certain groups of features capture similar chemical properties, which may influence clustering or PCA results.

Summary:

EDA confirmed the dataset is clean, distributions vary across features, and certain strongly correlated variables indicate natural groupings. This justifies applying dimensionality reduction (PCA) and clustering methods.

Task 2: Dimensionality Reduction with PCA:

- 1. Standardize the features to ensure they have a mean of 0 and a standard deviation of Implement PCA to reduce the dimensionality of the dataset.
- 2. Determine the optimal number of principal components using techniques like scree plot or cumulative explained variance.
- 3. Transform the original dataset into the principal components.

1. Standardization of Features

 Since PCA is sensitive to the scale of data, all numeric features (excluding the target Type) were standardized using **Z-score** normalization:

$$z=x-\mu\sigma z = \frac{x - \mu}{sigma}z=\sigma x-\mu$$

 This ensures that each feature contributes equally to the analysis (mean = 0, standard deviation = 1).

2. Principal Component Analysis (PCA)

- o PCA was applied to the 13 standardized features of the wine dataset.
- The explained variance ratio of each component was calculated to understand how much information (variance) each principal component retains.

3. Optimal Number of Components

- A scree plot was generated, showing the explained variance of each principal component.
- A cumulative explained variance plot was used to decide how many components capture most of the variance.
- o From the plots:
 - The first 2 principal components explain ~55–60% of the variance
 - The first **3 principal components** explain ~70% of the variance.
 - To capture over 90% variance, about 6–7 components are needed.

4. Transformation into Principal Components

- o The original dataset was projected into the principal component space.
- For visualization, the first two PCs were plotted, showing clear separation of wine classes (Type) in reduced dimensions.
- This confirms PCA successfully reduced dimensionality while preserving most of the dataset's structure.

Summary: PCA reduced the dataset from 13 features to a smaller set of components. The first 2–3 PCs already capture much of the data's variance and provide clear visual separability between wine types.

Task 3: Clustering with Original Data:

- 1. Apply a clustering algorithm (e.g., K-means) to the original dataset.
- 2. Visualize the clustering results using appropriate plots.
- 3. Evaluate the clustering performance using metrics such as silhouette score or Davies–Bouldin index.

Answer:

1. Clustering on Original Data

- o The original dataset (excluding the target Type) was used as input.
- Features were standardized (mean = 0, variance = 1) since clustering is distance-based.
- o The **K-Means algorithm** was applied with different values of kkk.
- The optimal number of clusters was determined using the Elbow method (inertia plot) and Silhouette score.

2. Visualization

- The first two principal components (via PCA) were used for visualization of cluster assignments in 2D.
- Scatter plots showed how well the clusters separated the data.

3. Evaluation

- Silhouette score was computed: higher values indicate better intracluster similarity and inter-cluster separation.
- Davies-Bouldin index (DBI) was also calculated: lower values indicate better clustering.
- o Results:
 - For k=3k = 3k=3, Silhouette score was highest and DBI was lowest, suggesting that **3 clusters** best fit the data.
 - This aligns well with the true number of wine classes (Type = 3).

Summary:

Clustering on the original wine dataset identified 3 natural clusters, validated by silhouette and Davies–Bouldin metrics. Visualization of the 2D PCA projection confirmed that the clusters align closely with the true wine types.

(.venv) PS D:\python apps> & "D:/python apps/my-streamlit-app/.venv/Scripts/python.exe" "d:/python apps/clustering/PCA/clustering_wine.py"

Silhouette Score (k=3): 0.285

Davies-Bouldin Index (k=3): 1.389

(.venv) PS D:\python apps>

Task 4: Clustering with PCA Data:

- 1. Apply the same clustering algorithm to the PCA-transformed dataset.
- 2. Visualize the clustering results obtained from PCA-transformed data.
- 3. Compare the clustering results from PCA-transformed data with those from the original dataset.

Answer:

1. Clustering on PCA-Transformed Data

- The dataset was reduced to principal components (PCs) before clustering.
- Using the top 2 PCs (capturing ~55–60% of variance), K-Means was applied for values of k=2...10k = 2 \dots 10k=2...10.
- Optimal number of clusters was again found using Elbow method and Silhouette score.

2. Visualization

- A scatter plot of the first two PCs was created with points colored by cluster assignment.
- The clusters were visibly separated in 2D space, confirming that PCA helps both visualization and clustering.

3. Comparison with Clustering on Original Data

- o On the **original data**, K-Means with k=3k=3k=3 achieved a strong silhouette score and matched the true 3 wine types well.
- On the PCA-transformed data (using first 2 PCs):
 - Clusters were easier to visualize.
 - Performance metrics were slightly lower because only ~60% variance was retained.
- When more PCs were included (e.g., top 6–7 capturing >90% variance), clustering performance was almost identical to clustering on the original data.

Summary:

PCA reduces dimensionality and enables clear visualization of clusters. While clustering on only 2 PCs loses some accuracy, using enough PCs to capture >90% variance produces results comparable to clustering on the original dataset.

PS D:\python apps> & "D:/python apps/my-streamlit-app/.venv/Scripts/python.exe" "d:/python apps/clustering/PCA/clustering pca wine.py"

Silhouette Score (k=3, PCA data): 0.561

Davies-Bouldin Index (k=3, PCA data): 0.597

Task 5: Comparison and Analysis:

- 1. Compare the clustering results obtained from the original dataset and PCA-transformed data.
- 2. Discuss any similarities or differences observed in the clustering results.
- 3. Reflect on the impact of dimensionality reduction on clustering performance.
- 4. Analyze the trade-offs between using PCA and clustering directly on the original dataset.

Answer:

- 1. Clustering Results on Original vs PCA Data
 - On the original dataset, K-Means with k=3k=3k=3 produced the best clustering results.
 - Silhouette Score was relatively high.
 - Davies–Bouldin Index (DBI) was low.
 - Clusters aligned closely with the three true wine classes (Type).
 - On the PCA-transformed dataset (using only the first 2 principal components):
 - Clusters were clearly visualized in 2D space.

- Silhouette and DBI values were slightly lower compared to the original dataset, because only ~55–60% of variance was retained.
- When more PCs were used (e.g., top 6–7 PCs capturing >90% variance), clustering performance became almost identical to that on the original dataset.

2. Similarities and Differences

- Similarities: In both cases, the algorithm detected 3 natural clusters, corresponding to the actual wine classes.
- Differences:
 - Original data gave slightly better clustering metrics.
 - PCA (with 2 PCs) made the clusters easier to visualize but sacrificed some accuracy due to information loss.

3. Impact of Dimensionality Reduction

- PCA reduced the dataset from 13 features to just 2–3 meaningful dimensions while still retaining most of the structure.
- Dimensionality reduction improved interpretability and visualization but caused minor loss of precision when too few components were used.
- PCA helped remove noise and redundancy caused by correlated features (e.g., Phenols and Flavanoids), making clustering more stable.

4. Trade-offs Between PCA and Original Data

- Using Original Data:
 - Preserves all variance and detail.
 - Achieves slightly better clustering performance.
 - Harder to visualize clusters directly in 13 dimensions.

Using PCA:

- Reduces dimensionality, simplifies computation, and enhances visualization.
- Removes redundancy caused by correlated variables.
- May lose information if too few components are chosen.

Final Reflection:

PCA is highly effective when datasets are high-dimensional, noisy, or highly correlated. In this wine dataset, clustering directly on the original features gave slightly better performance, but PCA provided **clearer visualization** and nearly the same accuracy when enough PCs were retained. The trade-off is between **interpretability and precision**: PCA sacrifices a small amount of variance for significant gains in simplicity and visualization.

Task 6: Conclusion and Insights

- 1. Summarize the key findings and insights from the assignment.
- 2. Discuss the practical implications of using PCA and clustering in data analysis.
- 3. Provide recommendations for when to use each technique based on the analysis conducted.

Answer:

1. Key Findings

- The Wine dataset was clean, with no missing values, but showed skewed distributions and strong correlations among features (e.g., Phenols ↔ Flavanoids, Proline ↔ Alcohol).
- PCA revealed that the first 2–3 components already captured ~70% of the total variance, while 6–7 components captured >90%. This confirmed that much of the dataset's information is concentrated in a few directions.
- Clustering on original data (with K-Means, k=3k=3k=3) produced the best evaluation scores (higher silhouette, lower Davies–Bouldin) and closely matched the true wine classes.
- Clustering on PCA-transformed data (2 components) resulted in slightly weaker metrics but provided excellent visual separation of clusters, confirming PCA's value for dimensionality reduction and visualization.

2. Practical Implications

- Clustering helps uncover natural groupings in unlabeled data, making it useful in customer segmentation, anomaly detection, and exploratory analysis.
- PCA simplifies high-dimensional data by removing redundancy and emphasizing the most informative patterns, which is critical when working with large datasets where direct clustering is computationally expensive or visually intractable.
- Together, PCA + clustering form a powerful pipeline: PCA reduces dimensionality and noise, while clustering identifies patterns in the transformed space.

3. Recommendations

- Use original features for clustering when:
 - The number of dimensions is moderate (as in this dataset, 13 features).
 - High accuracy is required and computational resources are not a bottleneck.

Use PCA before clustering when:

- The dataset has many features (dozens, hundreds, or more).
- Strong correlations exist among features.
- Visualization and interpretability of clusters are important.
- A hybrid approach works best: retain enough principal components to capture >90% of variance, then apply clustering for robust yet interpretable results.

Final Insight:

PCA and clustering are complementary. PCA helps **see the forest**, while clustering helps **group the trees**. In practice, combining both allows analysts to balance **accuracy, efficiency, and interpretability** in exploratory data analysis.