תרגיל 11־ טורים ב' וחזרה כללית

חדו"א: סדרות וטורים

טורים

1

חקרו את התכנסות הטורים הבאים באמצעות מבחני ההשוואה

$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^4+5}}{n^2+37n} .1$$

$$\sum_{n=1}^{\infty} \frac{\cos^2(n)}{n^2+1}$$
 .2

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{-n}$$
 .3

$$\sum_{n=1}^{\infty} \frac{n!}{(n+2)!}$$
 .4

2

חקרו את התכנסות הטורים הבאים (ניתן להשתמש בכל משפטי ההתכנסות שלמדנו)

$$\sum_{n=1}^{\infty} \frac{3^n n!}{n^n} .1$$

,(
$$n\in\mathbb{N}$$
 לכל $\left(1+rac{1}{n}
ight)^n< e$ נ רמז: זכרו כי $\sum_{n=1}^\infty\sqrt{n}\left(\sqrt[n]{e}-1
ight)$.2

$$\sum_{n=1}^{\infty} \frac{1}{5^n} \cdot \frac{2 \cdot 4 \cdot \ldots \cdot 2n}{1 \cdot 3 \cdot \ldots \cdot (2n-1)} .3$$

$$\sum_{n=1}^{\infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n^2}} \cdot 4$$

$$\sum_{n=1}^{\infty} \frac{3^n}{2^n n}$$
 .5

3

הראו כי טור **חיובי** $\sum_{n=1}^\infty$ תמיד מתכנס או מתכנס במובן הרחב ל־ $+\infty$. רעז: הראו קוזס כי סדרת הסכושים הראו כי טור חיובי $\frac{\infty}{n}$ מיד מתכנס או מתכנס במובן הרחב ל־ $+\infty$. רעז: הראו קוזס כי סדרת הסכושים הראו כי טור מוניטונית עולה. חקרו בנפרד את השקרה בו סדרה זו חסושה והשקרה בו אינה חסושה.

4

נתון טור חיובי $S_n=a_1+\ldots+a_n$ מתכנס גם כן, כאשר הראו כי הטור סיור הראו כי הטור הראו כי הטור $\sum_{n=1}^\infty a_n\cdot S_n$ מתכנס גם כן, כאשר היובי הראו כי הטור.

5

תהא $\sum\limits_{n=1}^{\infty} \frac{a_n}{n}$ סדרה חיובית. הראו כי אם הטור $\sum\limits_{n=1}^{\infty} a_n^2$ מתכנס, אז גם הטור $\sum\limits_{n=1}^{\infty} a_n^2$ מתכנס. (רמז: תרגיל 10, שאלה $\{a_n\}_{n=1}^{\infty}$ איז מחכנס. (רמז: תרגיל 10, שאלה $\{a_n\}_{n=1}^{\infty}$ מתכנס. (רמז: איז מחכנס. (רמז: מרגיל 10, שאלה $\{a_n\}_{n=1}^{\infty}$ מתכנס. (רמז: תרגיל 10, שאלה $\{a_n\}_{n=1}^{\infty}$ מוז: תרגיל 10, שאלה $\{a_n\}_$

6

ע"י $\{b_n\}_{n=1}^\infty$ מדרה חדשה גדיר נגדיר ($a_n\}_{n=1}^\infty$ וחיובית יורדת וחיובית (מונה סדרה מונוטונית יורדת וחיובית וחיובית ו

$$b_{\mathfrak{n}}=\mathfrak{a}_{2^{\mathfrak{m}}}$$

 $.2^{\mathfrak{m}}>\mathfrak{n}$ ש־ המספר הקטן הוא המספר $\mathfrak{m}\in\mathbb{N}$ כאשר

- $a_n = rac{1}{2^n}$ ו מ $a_n = rac{1}{n}$ ו־ מתאימים לסדרות הערכים b_1, b_2, \dots, b_{10} ו- .1
 - $n\in\mathbb{N}$ לכל $\mathfrak{a}_{\mathfrak{n}}\geq \mathfrak{b}_{\mathfrak{n}}$ 2. הראו כי
- , והסיקו את מהצורה N מהצורה N, עבור N מהצורה הסכום החלקי ה־Nי של הNי של החלקי רשמו את בור N מהצורה N מהצורה N ממנו את גבול סדרת הסכומים החלקיים.
 - . מתכנס. $\sum\limits_{n=1}^{\infty}2^{n}a_{2^{n}}$ סדרה איז גם $\sum\limits_{n=1}^{\infty}a_{n}$ איז גם הטור סדרה $\{a_{n}\}_{n=1}^{\infty}$ מתכנס. 4
 - lpha < 1 מתבדר לכל מתבדר מהסעיף הקודם כי הטור בי מתבדר לכל .5

סדרות הנדסיות וחשבוניות

7

האם קיים מספר $x\in\mathbb{R}$ כך שהאיברים ל $x^2,x-2,-12,-2^x-10$ מהווים את ארבעת האיברים כל $x\in\mathbb{R}$ כך שהאיברים אלה הם ארבעת האיברים הראשונים של סדרה הנדסית? האם קיים x כך שאיברים אלה הם ארבעת האיברים הראשונים של

8

נתונה סדרה הנדסית $N\in\mathbb{N}$. מצאו אינימלי כך שסכום N האיברים הראשונים בסדרה גדול מ־16. מנונה סדרה הנדסית זה גדול מ־17? האם קיים N כך שסכום זה גדול מ־17?

9

תהא יחס העבונית. חשבו את סדרה הנדסית מהווים a_2, a_4, a_5 מהווים כי האיברים את את קבועה, ונניח לא קבועה, ונניח כי האיברים a_{2}, a_{4}, a_{5} מהווים מדרה חשבונית. חשבו את יחס הסדרה. מתקיים $a_{n+2}=a_{n+1}+a_n$ מתקיים מתקיים היכיחו כי לכל

10

יהא $x=x_0+10\cdot x_1+\ldots+10^nx_n$ ויהיו $x_0,x_1,\ldots x_n$ ספרות, כך ש־ $0\leq x_i\leq 9$ שכרות, כך ש־ $0\leq x_i\leq 9$ ספרות, כך ש־ $0\leq x_i\leq 9$ ספרות, מנסופית על מנת לחשב את ההצגה העשרונית של המספר בנוסחת סכום סדרה חשבונית אינסופית על מנת לחשב את ההצגה העשרונית של המספר בנוסחת

11

נתונה סדרה חשבונית עם איבר האון מי מדרה $a_n=a_1+(n-1)d$ היא סדרה חשבונית עם איבר ראשון . $a_n=a_1+(n-1)d$ והפרש $2d^2$ והפרש $2a_1d+d^2$

12

בדקו האם הסדרות הבאות חשבוניות או הנדסיות ורשמו את איברן הכללי ואת סכום עשרת האיברים הראשונים שלהן.

$$5, -6, -17, \dots$$
 .1

$$,21,14,9\frac{1}{3},\ldots$$
 .2

$$,2.5,-12.5,62.5,\ldots$$
 3

גבולות של סדרות

13

השתמשו באינדוקציה על מנת להוכיח את אי השווין

$$n! < \left(\frac{n+1}{2}\right)^n$$

 $n\in\mathbb{N}$ לכל $\left(rac{n+2}{n+1}
ight)^{n+1}>2$ כדי להוכיח כי $\left(1+rac{1}{n}
ight)^n$ לכל השתמשו בפונוטוניות הסדרה $\left(1+rac{1}{n}
ight)^n$

14

נתונה סדרה $\left\{ a_{n}\right\} _{n=1}^{\infty}$ לפי נוסחת הנסיגה

$$\cdot egin{cases} a_1=5 \ a_{n+1}=rac{a_n+\sqrt{2a_n-1}}{2} & n>1 \end{cases}$$
לכל

הוכיחו כי הסדרה מונוטונית יורדת וחסומה מלרע ע"י 1. חשבו את גבולה.

15

חשבו את הגבולות הבאים לפי הגדרת הגבול

$$\lim_{n\to\infty}\frac{2n}{n^3+1}=0$$
 .1

$$\lim_{n\to\infty} \frac{15n^2+1}{5n^2-4} = 3$$
 .2

 $\lim_{n \to \infty} x_n \leq \lim_{n \to \infty} y_n$ סדרות מתכנסות כך ש־ $x_n \leq y_n$ לכל ער סדרות מתכנסות סדרות מתכנסות יהיו $\{a_n\}_{n=1}^\infty$

17

חשבו את הגבולות הבאים

- , $\lim_{n \to \infty} \left(\frac{2n}{n+1} \frac{2n^2}{n^2+1} \right)$.1
 - , $\lim_{n \to \infty} \frac{n + \arctan(n)}{\sqrt{n^2 + 5n + 3}}$.2
- $. \left(1+rac{1}{n}
 ight)^n, \; \left(1+rac{1}{n}
 ight)^{n+1}$ והסדרות אלמדנו לגבי והסדרות באי השתמשו באי השתמשו באי השוויון שלמדנו לגבי והסדרות וווו $\lim_{n \to \infty} n \left(e^{rac{1}{n}}-1
 ight)$.3

18

 $\lim_{n \to \infty} a_n = 0$ נתונה סדרה $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 0$ המקיימת $\{a_n\}_{n=1}^\infty$ הוכיחו

המספר e

19

הוכיחו את הגבולות הבאים

- , $\lim_{n\to\infty}\left(1-\frac{1}{n}\right)^n=\frac{1}{e}$.1
- $\lim_{n\to\infty} (1+\frac{2}{n})^n = e^2$.2

20

הראו כי הסדרה e^2 . רעז: אי־השוויון $\alpha_n = \left(1+\frac{1}{2}\right)\cdot\left(1+\frac{1}{4}\right)\cdot\ldots\cdot\left(1+\frac{1}{2^n}\right)$ רעז: אי־השוויון כי הסדרה $\left(1+\frac{1}{2^n}\right)^n < e$. רעז: אי־השוויון $\left(1+\frac{1}{n}\right)^n < e$

התכנסות במובן הרחב

21

 $-\infty$ או ל־ $+\infty$ הרחב במובן מתכנסת מתכנסת כי הראו כי הראו ל־ $\{\alpha_n\}_{n=1}^\infty$ מתכנסת ולא חסומה. הרחב ל

22

יהיו b_n מתכנסת במובן הרחב ל־ $a_n \geq b_n$ לכל ש־ $a_n \geq b_n$ סדרות כך ש־הרחב ל $a_n > a_n = a_n$ מתכנסת במובן הרחב ל- $a_n > a_n$ מתכנסת במובן הרחב ל- $a_n > a_n$

הוכיחו התכנסות במובן הרחב של הסדרות הבאות

- , $a_n = n n^3$.1
 - , $a_n = \frac{\sqrt{n}-1}{2}$.2
- , $a_n = \frac{1}{\sin\left(\frac{1}{n^2}\right)}$.3
- $.a_n = (1.00001)^n$.4

24

בדקו מי מהסדרות הבאות מתכנסות לגבול סופי, מי מהן מתכנסת במובן הרחב, ומי מהן לא מתכנסת

- , $a_n = 1 + (-2) + 3 + (-4) + \ldots + n \cdot (-1)^{n+1}$.1
 - , $a_n = \left(1 + \frac{1}{n}\right)^{n^2}$.2
 - , $a_n = \ln\left(\sin\left(\frac{1}{n}\right)\right)$.3
- $\frac{1}{2n+1}<\frac{1}{2n}$ רמז: נסו להגדיל במעט את הערך a_n ע"י שימוש באי־השוויון . $a_n=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots+\frac{(-1)^{n+1}}{n}$.4 כדי לקבל חסס עליון על ערכי . $a_n=1$

25

תהא $\{a_n\}_{n=1}^\infty$ סדרה חיובית המקיימת כי הגבול $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$ קיים וגדול מ־1. הראו כי $\{a_n\}_{n=1}^\infty$ מתכנסת במובן הרחב ל־ $+\infty$