

Scalable Machine Learning: Distributed Training Methods for Large Models and Datasets

Presentation by:

Mohamed STIFI

Overview

01 distributed training

02 Experimental Environment

03 Experimental Results

04 Results Analysis

distributed training

What is distributed training

Vertical scaling

No code change

1x Server 8GB RAM 4GB GPU Memory 1x Server 64GB RAM 32GB GPU Memory

Horizontal scaling

Minimal code change (thanks to PyTorch)

1x Server 8GB RAM 4GB GPU Memory **4x Servers** 8GB RAM 4GB GPU Memory (x2)

Data Parallelism vs Model Parallelism

Data parallelism

Model parallelism

Shared model

Data Parallelism

If the model can fit within a single GPU, then we can distribute the training on multiple servers (each containing one or multiple GPUs), with each GPU processing a subset of the entire dataset in parallel and synchronizing the gradients during backpropagation. This option is known as Data Parallelism.

Types of Data Parallelism

Multi-Server, Multi-GPU

Model Parallelism

If the model cannot fit within a single GPU, then we need to "break" the model into smaller layers and let each GPU process a part of the forward/backward step during gradient descent. This option is known as Model Parallelism.

Types of Model Parallelism

Layer-wise Parallelism

Types of Model Parallelism

Algorithm

```
Algorithm 1 Algorithm for Distributed Training in Machine Learning
Require: Number of GPUs world size, Dataset D, Number of Epochs num epochs,
   Learning Rate LR
Ensure: Trained Model M
 1: Set Up the Environment:
                                        ▶ Import libraries and define global variables
 2: Initialize the Distributed Data Parallel (DDP) Environment:
      Define and execute functions:
        setup(rank, world_size): Initialize process group
        cleanup(): Destroy process group
 6: Define a Model:
      Implement architecture with Model(nn.Module)
      For model parallelism, manually assign layers to devices
      create_model(): Return an instance of the model
10: Create a Dataloader:
      Partition dataset D across GPUs using DistributedSampler
11:
      create_dataloader(rank, world_size):
12:
        Partition D, create mini-batches, and return dataloader instances
13:
14: Implement the Training Loop:
      Define helper functions:
15:
         train(model, iterator, optimizer, criterion, rank): Single training
16:
   step
        evaluate (model, iterator, criterion, rank): Single evaluation step
17:
      Define main training function main_train(rank, world_size):
        a. Setup distributed process groups with setup(rank, world_size)
19:
        b. Create model and dataloaders
20:
        c. Wrap model with DistributedDataParallel (DDP)
21:
        d. Define loss criterion and optimizer
        e. Train for num epochs, compute metrics
        f. Evaluate on test set after training
24:
        g. Cleanup environment with cleanup()
26: Main Execution:
      Define execution function:
        Set world_size (number of GPUs)
28:
        Use multiprocessing.spawn() to start distributed processes
      Ensure algorithm supports model and data parallelism
```

Experimental Environment

Experimental Environment

Experimental Environment

Models:

- VGG11
- MLP
- NBoW
- CNN
- Seq2Seq
- ConvAutoEncoder

metrics:

- Training Time
- Evaluation Time
- Loss
- Accuracy

Experimental Results

VGG11

Training and Validation Accuracy

VGG11

Training and Validation Loss

VGG11

Training and Validation Time

MLP

Training and Validation Accuracy

MLP

Training and Validation Loss

MLP

Training and Validation Time

CNN

Training and Validation Accuracy

CNN

Training and Validation Loss

CNN

Training and Validation Time

NBoW

Training and Validation Loss

NBoW

Training and Validation Time

Seq 2 Seq

Training and Validation Loss

Seq 2 Seq

Training and Validation Time

Convolutional Autoencoder

Training and Validation Loss

Convolutional Autoencoder

Training and Validation Time

Results Analysis

Results Analysis

Metric	Training and Validation Accuracy	Training and Validation Loss	Training and Validation Time
Distributed improves the metric	VGG11, MLP (Hybrid Parallelism)	VGG11, MLP (Hybrid Parallelism)	VGG11, NBoW, Seq2Seq, ConvAutoencoder, CNN, MLP (Data Parallelism)
Distributed has no change on the metric	NBoW, Seq2Seq, ConvAutoencode r	NBoW, Seq2Seq, ConvAutoencode r	_
Distributed deteriorates the metric	CNN	CNN	_

Conclusion

Thank You