Universidad de la República Facultad de Ingeniería Instituto de Matemática y Estadística

Matemática Discreta 2 Curso 2021

PRÁCTICO 2: Máximo Común Divisor y Mínimo Común Múltiplo.

Ejercicio 1. Sean $a, b, c \in \mathbb{N}$. Probar las siguentes afirmaciones

a.
$$mcd(ca, cb) = c mcd(a, b)$$
.

e.
$$mcd(a, b) = mcd(a - b, b)$$

b. Si
$$c|a$$
 y $c|b$ entonces

f. Si
$$a, b$$
 son primos entre sí entonces

 $mcd(a - b, a + b) = 1 \circ 2.$

$$\mathbf{c}. \ \mathrm{mcd}(b, a + bc) = \mathrm{mcd}(a, b).$$

d. Si a es par y b impar entonces

$$mcd(a, b) = mcd(a/2, b).$$

mcd(a/c, b/c) = mcd(a, b)/c.

Ejercicio 2. Sean $a,b,c\in\mathbb{N}$ tales que a y b son primos entre sí. Probar o dar contraejemplos que

a. Si
$$a|(bc)$$
 entonces $a|c$.

b. Si
$$a|c$$
 y $b|c$ entonces $ab|c$.

c. ¿Valen las partes anteriores si $mcd(a, b) \neq 1$?

Ejercicio 3. Demostrar las siguientes afirmaciones:

- **a**. Se define la *sucesión de Fibonacci* como $F_0 = 0$, $F_1 = 1$ y $F_{n+2} = F_{n+1} + F_n$. Demostrar que dos términos consecutivos de la sucesión de Fibonacci son coprimos.
- **b**. Demostrar que mcd(7k+3,12k+5)=1 para todo $k \in \mathbb{N}$.
- **c**. Sean $a,b,c,d \in \mathbb{N}$ tales que (ad-bc)|a y (ad-bc)|c. Probar que $\operatorname{mcd}(an+b,cn+d)=1$ para todo $n \in \mathbb{N}$.

Ejercicio 4. En cada caso, hallar $a, b \in \mathbb{N}$ que verifiquen las condiciones dadas.

a.
$$a + b = 122$$
 y $mcd(a, b) + mcm(a, b) = 1802$.

b.
$$ab = 22275$$
 y $mcd(a, b) = 15$.

c.
$$a + b = 1271$$
 y mcm $(a, b) = 330 \cdot \text{mcd}(a, b)$.

d.
$$ab = 1008 \text{ y } mcm(a, b) = 168.$$

Ejercicio 5. Hallar mcd(a, b) sabiendo que $mcd(a, b) \cdot mcm(a, b) = 48$ y $a^2 = b^2 + 28$.

Ejercicio 6. Consideremos el conjunto de todos los números formados por un numero par de unos, es decir el conjunto

¿Cuales elementos de este conjunto son cuadrados perfectos?