Cyclic terms, CSP, MMSNP

Antoine Mottet (j.w. Manuel Bodirsky, Florent Madelaine)

- ightharpoonup A set $\mathscr A$ of finitary operations on A is a clone if:
 - every projection π_i^n is in \mathscr{A} ,
 - \[
 \mathcal{A}\] is closed under composition.

- \blacktriangleright A set \mathscr{A} of finitary operations on A is a clone if:
 - every projection π_i^n is in \mathscr{A} ,
- **▶** *𝒜*
 - \blacktriangleright the smallest clone on $\{0,1\}$, containing only projections,

- ightharpoonup A set $\mathscr A$ of finitary operations on A is a clone if:
 - every projection π_i^n is in \mathscr{A} ,
 - ▶ *𝒰* is closed under composition.
- **▶** *P*:
 - \blacktriangleright the smallest clone on $\{0,1\}$, containing only projections,
 - equations satisfied in \(\mathscr{P} \) are satisfied in every clone (aka boring equations).

- ▶ A set \mathscr{A} of finitary operations on A is a clone if:
 - every projection π_i^n is in \mathscr{A} ,
 - \[
 \mathcal{A}\] is closed under composition.
- **▶** *P*:
 - \blacktriangleright the smallest clone on $\{0,1\}$, containing only projections,
 - equations satisfied in \(\mathscr{P} \) are satisfied in every clone (aka boring equations).
- ► A clone 𝒜 can be:

- ▶ A set \mathscr{A} of finitary operations on A is a clone if:
 - every projection π_i^n is in \mathscr{A} ,
 - \[
 \mathcal{A}\] is closed under composition.
- **▶** *P*:
 - \blacktriangleright the smallest clone on $\{0,1\}$, containing only projections,
 - equations satisfied in \(\mathscr{P} \) are satisfied in every clone (aka boring equations).
- ► A clone A can be:
 - ▶ the set of all term operations of a universal algebra **A** (always),

- ► A set 𝒜 of finitary operations on A is a clone if:
 - every projection π_i^n is in \mathscr{A} ,
 - \[
 \mathcal{A}\] is closed under composition.
- **▶** *P*:
 - \blacktriangleright the smallest clone on $\{0,1\}$, containing only projections,
 - equations satisfied in P are satisfied in every clone (aka boring equations).
- ► A clone A can be:
 - ▶ the set of all term operations of a universal algebra A (always),
 - ▶ the set Pol(A) of polymorphisms of a relational structure A (sometimes),

- ightharpoonup A set $\mathscr A$ of finitary operations on A is a clone if:
 - every projection π_i^n is in \mathscr{A} ,
 - ▶ 𝒜 is closed under composition.
- **▶** 𝒯:
 - \blacktriangleright the smallest clone on $\{0,1\}$, containing only projections,
 - equations satisfied in \(\mathscr{P} \) are satisfied in every clone (aka boring equations).
- ► A clone A can be:
 - ▶ the set of all term operations of a universal algebra **A** (always),
 - ▶ the set Pol(A) of polymorphisms of a relational structure A (sometimes),
 - shown in a beautiful picture (never).

▶ $f: A^n \to A$ is cyclic if it satisfies

$$f(x_1,\ldots,x_n)\approx f(x_2,\ldots,x_n,x_1)$$

▶ $f: A^n \to A$ is cyclic if it satisfies

$$f(x_1,\ldots,x_n)\approx f(x_2,\ldots,x_n,x_1)$$

ightharpoonup clonoid homomorphism: a map $\xi: \mathscr{A} \to \mathscr{B}$ such that

$$\xi(f\circ(\pi_{i_1},\ldots,\pi_{i_n}))=\xi(f)\circ(\pi_{i_1},\ldots,\pi_{i_n})$$

 $ightharpoonup f: A^n \to A$ is cyclic if it satisfies

$$f(x_1,\ldots,x_n)\approx f(x_2,\ldots,x_n,x_1)$$

▶ clonoid homomorphism: a map $\xi: \mathscr{A} \to \mathscr{B}$ such that

$$\xi(f\circ(\pi_{i_1},\ldots,\pi_{i_n}))=\xi(f)\circ(\pi_{i_1},\ldots,\pi_{i_n})$$

Theorem (Barto-Kozik + Barto-Opršal-Pinsker)

Let A be a finite relational structure. Then exactly one of the following holds:

- (+) Pol(A) contains a cyclic operation,
- (-) there exists a clonoid homomorphism $\operatorname{Pol}(\mathcal{A}) o \mathscr{P}$.

► Cyclic?

► Cyclic? Too strong for infinite structures:

 $\mathscr{A} = \text{clone}$ generated by all injective operations on A.

 \mathscr{A} contains no cyclic operation and $\mathscr{A} \not\to \mathscr{P}$.

Cyclic? Too strong for infinite structures:

 ∅ = clone generated by all injective operations on A.

 ∅ contains no cyclic operation and Ø → 𝒯.
 Pseudo-cyclic:

$$e_1 f(x_1,\ldots,x_n) \approx e_2 f(x_2,\ldots,x_n,x_1)$$

for unary e_1, e_2 .

Cyclic? Too strong for infinite structures:

 ∅ = clone generated by all injective operations on A.

 ∅ contains no cyclic operation and Ø → 𝒯.
 Pseudo-cyclic:

$$e_1 f(x_1,\ldots,x_n) \approx e_2 f(x_2,\ldots,x_n,x_1)$$

for unary e_1, e_2 .

► Clonoid homomorphisms: required to be uniformly continuous.

▶ **Goal:** find other structures \mathcal{A} for which the cyclic term theorem holds.

¹A countable structure \mathcal{A} is ω-categorical if Aut(\mathcal{A}) acts with finitely many orbits on \mathcal{A}^n , for all $n \geq 1$.

- ▶ **Goal:** find other structures \mathcal{A} for which the cyclic term theorem holds.
- ▶ $Pol(\mathbb{Q}; <, \neq)$:

¹A countable structure \mathcal{A} is ω-categorical if Aut(\mathcal{A}) acts with finitely many orbits on \mathcal{A}^n , for all $n \geq 1$.

- ▶ **Goal:** find other structures \mathcal{A} for which the cyclic term theorem holds.
- ▶ $Pol(\mathbb{Q}; <, \neq)$:
 - no pseudo-cyclic,

¹A countable structure \mathcal{A} is ω-categorical if Aut(\mathcal{A}) acts with finitely many orbits on \mathcal{A}^n , for all $n \geq 1$.

- ▶ **Goal:** find other structures A for which the cyclic term theorem holds.
- ightharpoonup Pol(\mathbb{Q} ; <, \neq):
 - no pseudo-cyclic,
 - no uniformly continuous clonoid homomorphism to \mathscr{P} (because other non-boring equations are satisfied).

¹A countable structure \mathcal{A} is ω-categorical if Aut(\mathcal{A}) acts with finitely many orbits on \mathcal{A}^n , for all $n \geq 1$.

- ▶ **Goal:** find other structures A for which the cyclic term theorem holds.
- ightharpoonup Pol(\mathbb{Q} ; <, \neq):
 - no pseudo-cyclic,
 - ▶ no uniformly continuous clonoid homomorphism to 𝒯 (because other non-boring equations are satisfied).
 - The structure is even ω -categorical¹, the next best thing after being finite.

¹A countable structure \mathcal{A} is ω-categorical if Aut(\mathcal{A}) acts with finitely many orbits on \mathcal{A}^n , for all $n \geq 1$.

- ▶ Goal: find other structures A for which the cyclic term theorem holds.
- $ightharpoonup Pol(\mathbb{Q};<,\neq)$:
 - no pseudo-cyclic,
 - no uniformly continuous clonoid homomorphism to \mathscr{P} (because other non-boring equations are satisfied).
 - The structure is even ω -categorical¹, the next best thing after being finite.
- ▶ **Here:** structures \mathcal{B} for which the set $\{\mathcal{A} \mid \mathcal{A} \text{ finite}, \mathcal{A} \to \mathcal{B}\}$ has a nice logical description.

¹A countable structure \mathcal{A} is ω-categorical if Aut(\mathcal{A}) acts with finitely many orbits on \mathcal{A}^n , for all $n \geq 1$.

Here: structures $\mathcal B$ for which the set $\{\mathcal A \mid \mathcal A \text{ finite}, \mathcal A \to \mathcal B\}$ has a nice logical description.

Here: structures $\mathcal B$ for which the set $\{\mathcal A\mid \mathcal A \text{ finite}, \mathcal A\to \mathcal B\}$ has a nice logical description.

Definition (CSP)

 $\mathsf{CSP}(\mathcal{B}) := \{ \mathcal{A} \mid \mathcal{A} \; \mathsf{finite}, \mathcal{A} \to \mathcal{B} \}.$

- ightharpoonup CSP(K_3) = all finite 3-colourable graphs,
- $ightharpoonup CSP(\mathbb{Q},<)=$ all finite directed acyclic graphs.

Here: structures $\mathcal B$ for which the set $\{\mathcal A\mid \mathcal A \text{ finite}, \mathcal A\to \mathcal B\}$ has a nice logical description.

Definition (CSP)

 $\mathsf{CSP}(\mathcal{B}) := \{ \mathcal{A} \mid \mathcal{A} \; \mathsf{finite}, \mathcal{A} \to \mathcal{B} \}.$

- $ightharpoonup CSP(K_3) = all finite 3-colourable graphs,$
- ► $CSP(\mathbb{Q}, <)$ = all finite directed acyclic graphs.

Building structures with given CSPs:

Theorem (Cherlin, Shelah, Shi)

Let \mathfrak{F} be a finite set of finite connected graphs. There exists an ω -categorical \mathcal{B} such that $\mathcal{A} \to \mathcal{B}$ iff $\forall \mathcal{F} \in \mathfrak{F}, \ \mathcal{F} \not\to \mathcal{A}$.

Example: there exists an ω -categorical graph ${\mathcal B}$ such that

$$CSP(B) = \{A \mid A \text{ is finite and triangle-free}\}.$$

$$\exists \bullet, \bullet \forall x, y, z(\bullet(x) \lor \bullet(x)) \land \neg(\bullet(x) \land \bullet(x))$$
$$\neg(E(x, y) \land E(y, z) \land E(z, x) \land \bullet(x) \land \bullet(y) \land \bullet(z))$$
$$\neg(E(x, y) \land E(y, z) \land E(z, x) \land \bullet(x) \land \bullet(y) \land \bullet(z))$$

$$\exists \bullet, \bullet \forall x, y, z(\bullet(x) \lor \bullet(x)) \land \neg(\bullet(x) \land \bullet(x))$$
$$\neg(E(x, y) \land E(y, z) \land E(z, x) \land \bullet(x) \land \bullet(y) \land \bullet(z))$$
$$\neg(E(x, y) \land E(y, z) \land E(z, x) \land \bullet(x) \land \bullet(y) \land \bullet(z))$$

▶ \mathcal{A} satisfies $\Phi_{\text{No-mono-tri}}$ iff there exists a colouring \mathcal{A}^* of \mathcal{A} such that \mathcal{A}^* contains no monochromatic triangle.

$$\exists \bullet, \bullet \forall x, y, z(\bullet(x) \lor \bullet(x)) \land \neg(\bullet(x) \land \bullet(x))$$
$$\neg(E(x, y) \land E(y, z) \land E(z, x) \land \bullet(x) \land \bullet(y) \land \bullet(z))$$
$$\neg(E(x, y) \land E(y, z) \land E(z, x) \land \bullet(x) \land \bullet(y) \land \bullet(z))$$

- ▶ \mathcal{A} satisfies $\Phi_{\text{No-mono-tri}}$ iff there exists a colouring \mathcal{A}^* of \mathcal{A} such that \mathcal{A}^* contains no monochromatic triangle.
- ► Cherlin-Shelah-Shi: There exists an ω -categorical graph \mathcal{B} such that $\mathsf{CSP}(\mathcal{B}) = \{\mathcal{A} \mid \mathcal{A} \models \Phi_{\mathsf{No-mono-tri}}\}.$

$$\exists \bullet, \bullet \forall x, y, z(\bullet(x) \lor \bullet(x)) \land \neg(\bullet(x) \land \bullet(x))$$
$$\neg(E(x, y) \land E(y, z) \land E(z, x) \land \bullet(x) \land \bullet(y) \land \bullet(z))$$
$$\neg(E(x, y) \land E(y, z) \land E(z, x) \land \bullet(x) \land \bullet(y) \land \bullet(z))$$

- ▶ \mathcal{A} satisfies $\Phi_{\text{No-mono-tri}}$ iff there exists a colouring \mathcal{A}^* of \mathcal{A} such that \mathcal{A}^* contains no monochromatic triangle.
- ► Cherlin-Shelah-Shi: There exists an ω -categorical graph \mathcal{B} such that $\mathsf{CSP}(\mathcal{B}) = \{\mathcal{A} \mid \mathcal{A} \models \Phi_{\mathsf{No-mono-tri}}\}.$
- ▶ More generally, we consider formulas with:
 - existential unary second-order quantifiers,
 - universal first-order quantifiers,
 - ▶ a conjunction of forbidden patterns.

Let \mathcal{B} be ω -categorical and such that CSP(\mathcal{B}) \in MMSNP. Then:

- (-) There is a uniformly continuous clonoid homomorphism from $Pol(\mathcal{B})$ to \mathcal{P} , or
- (+) Pol(\mathcal{B}) contains a pseudo-cyclic operation.

Let \mathcal{B} be ω -categorical and such that $\mathsf{CSP}(\mathcal{B}) \in \mathsf{MMSNP}$. Then:

- (-) There is a uniformly continuous clonoid homomorphism from $Pol(\mathcal{B})$ to \mathscr{P} , or
- (+) Pol(\mathcal{B}) contains a pseudo-cyclic operation.

A by-product of the proof gives the following corollary:

Corollary

The logic MMSNP has a P/NP-complete dichotomy.

Let \mathcal{B} be ω -categorical and such that $\mathsf{CSP}(\mathcal{B}) \in \mathsf{MMSNP}$. Then:

- (-) There is a uniformly continuous clonoid homomorphism from $Pol(\mathcal{B})$ to \mathscr{P} , or
- (+) Pol(\mathcal{B}) contains a pseudo-cyclic operation.

A by-product of the proof gives the following corollary:

Corollary

The logic MMSNP has a P/NP-complete dichotomy.

▶ Only focus on particular structures C_{Φ} , for particular MMSNP sentences Φ .

Let \mathcal{B} be ω -categorical and such that CSP(\mathcal{B}) \in MMSNP. Then:

- (-) There is a uniformly continuous clonoid homomorphism from $Pol(\mathcal{B})$ to \mathscr{P} , or
- (+) Pol(\mathcal{B}) contains a pseudo-cyclic operation.

A by-product of the proof gives the following corollary:

Corollary

The logic MMSNP has a P/NP-complete dichotomy.

- ▶ Only focus on particular structures C_{Φ} , for particular MMSNP sentences Φ .
- ▶ Make a bet: if $Pol(C_{\Phi})$ has a cyclic operation, it has a very regular one.

Definition

 $f: B^k \to B$, a group $\mathscr G$ acting on B. f is canonical (wrt $\mathscr G$) if for every finite subset $S \subseteq B$ of B and $\alpha_1, \ldots, \alpha_k \in \mathscr G$, there exists $\beta \in \mathscr G$ such that $\beta \circ f|_S = f \circ (\alpha_1, \ldots, \alpha_k)|_S$.

Definition

 $f: B^k \to B$, a group $\mathscr G$ acting on B. f is canonical (wrt $\mathscr G$) if for every finite subset $S \subseteq B$ of B and $\alpha_1, \ldots, \alpha_k \in \mathscr G$, there exists $\beta \in \mathscr G$ such that $\beta \circ f|_S = f \circ (\alpha_1, \ldots, \alpha_k)|_S$.

In our case, we only care about the following consequence:

"the colour of the output only depends on the colours of the inputs" (colour-canonical)

Definition

 $f: B^k \to B$, a group $\mathscr G$ acting on B. f is canonical (wrt $\mathscr G$) if for every finite subset $S \subseteq B$ of B and $\alpha_1, \ldots, \alpha_k \in \mathscr G$, there exists $\beta \in \mathscr G$ such that $\beta \circ f|_S = f \circ (\alpha_1, \ldots, \alpha_k)|_S$.

In our case, we only care about the following consequence:

"the colour of the output only depends on the colours of the inputs" (colour-canonical)

Definition

 $f \colon B^k \to B$, a group $\mathscr G$ acting on B. f is canonical (wrt $\mathscr G$) if for every finite subset $S \subseteq B$ of B and $\alpha_1, \ldots, \alpha_k \in \mathscr G$, there exists $\beta \in \mathscr G$ such that $\beta \circ f|_S = f \circ (\alpha_1, \ldots, \alpha_k)|_S$.

In our case, we only care about the following consequence:

"the colour of the output only depends on the colours of the inputs" (colour-canonical)

We view this behaviour as an operation on a finite set.

We view this behaviour as an operation on a finite set.

Theorem (Bodirsky-Pinsker-Pongrácz)

Let $\mathscr C$ be a clone consisting of canonical functions with respect to a homogeneous structure. Then:

- (+) & contains a cyclic operation, or
 - (-) there exists a clone homomorphism $\mathscr{C} \to \mathscr{P}$.

Theorem (Hubička-Nešetřil, 2016)

There is a linear order < on \mathcal{C}_{Φ} such that $\mathsf{Aut}(\mathcal{C}_{\Phi},<)$ is oligomorphic and extremely amenable.

Theorem (Hubička-Nešetřil, 2016)

There is a linear order < on \mathcal{C}_{Φ} such that $\operatorname{Aut}(\mathcal{C}_{\Phi},<)$ is oligomorphic and extremely amenable.

Theorem (Bodirsky-Pinsker-Tsankov, 2010)

Suppose that $\mathscr{G} := \operatorname{Aut}(\mathcal{B})$ is oligomorphic and extremely amenable. For every $f : B^k \to B$, there exists a function $g \in \overline{\mathscr{G}f\mathscr{G}}$ that is canonical with respect to \mathscr{G} .

$$\blacktriangleright \ \Phi = \Phi_{\text{No-mono-tri}}$$

$$\blacktriangleright \ \Phi = \Phi_{\text{No-mono-tri}}$$

- $\blacktriangleright \ \Phi = \Phi_{\text{No-mono-tri}}$
- \blacktriangleright $\mathscr{C} = \text{clone on } \{ \bullet, \bullet \}, \text{ no cyclic operation.}$

- $\blacktriangleright \ \Phi = \Phi_{\text{No-mono-tri}}$
- \blacktriangleright \mathscr{C} = clone on $\{ \bullet, \bullet \}$, no cyclic operation.
- ▶ The relation $N \subseteq (\mathcal{C}_{\Phi})^2$ is invariant under $Pol(\mathcal{C}_{\Phi})$.

- $lackbox{ } \Phi = \Phi_{ ext{No-mono-tri}}$
- \blacktriangleright $\mathscr{C} = \text{clone on } \{ \bigcirc, \bigcirc \}, \text{ no cyclic operation.}$
- ▶ The relation $N \subseteq (\mathcal{C}_{\Phi})^2$ is invariant under $Pol(\mathcal{C}_{\Phi})$.
- ▶ So $Pol(\mathcal{C}_{\Phi}) = \mathscr{C}!$

- ▶ In general, $\mathscr{C} \subseteq \text{Pol}(\mathcal{C}_{\Phi})$ and N is not invariant under $\text{Pol}(\mathcal{C}_{\Phi})$.
- ▶ But some almost-bipartite simple graph is.
- Forces canonizations of a single function to have the same image under a clonoid homomorphism $\mathscr{C} \to \mathscr{P}$.

- ▶ In general, $\mathscr{C} \subseteq \mathsf{Pol}(\mathcal{C}_{\Phi})$ and N is not invariant under $\mathsf{Pol}(\mathcal{C}_{\Phi})$.
- But some almost-bipartite simple graph is.
- Forces canonizations of a single function to have the same image under a clonoid homomorphism $\mathscr{C} \to \mathscr{P}$.

Theorem

- Φ MMSNP formula. One of the following holds:
- (-) There is a uniformly continuous clonoid homomorphism from $Pol(\mathcal{C}_{\Phi})$ to \mathscr{P} , or
- (+) $Pol(\mathcal{C}_{\Phi})$ contains a pseudo-cyclic operation.