Completeness

Allen Williams

October 24th 2017

Problem. 1. $\{\frac{1}{n} \mid n \in N\}$

Give 3 upper bounds for this set: 1, 2, 3 Give 3 lower bounds for this set: 0, -1, -2

Maximum: 1

Minimum: No Minimum

Supremum: 1 Infimum: 0

Problem. 2. If $A, B \subset R$ and we define $C = A + B = \{a + b \mid a \in A, b \in B\}$ then if A and B have suprema, then C has a supremum and $\sup C = \sup A + \sup B$

Proof. let a_0 and b_0 denote sup A and sup B Then for all $a \in A$, $a \le a_0$ and for all $b \in B$, $b \le b_0$. An arbitrary element in C can be written a+b for some $a \in A$ and $b \in B$. Since $a \le a_0$ for all $a \in A$ and $b \le b_0$ for all $b \in B$, $b \le a_0 + b_0$ for all $a \in A$ and $b \in B$ and $a_0 + b_0$ is an upper bound for the set C.

To show that a_0+b_0 is the least upper bound for C, recall that if a_0+b_0 is the least upper bound for C then for all $\epsilon>0$ there exists an element $c\in C$ such that $a_0+b_0-\epsilon< c$, that is for some $a\in A$ and $b\in B$, $a_0+b_0< a+b+\epsilon$, for all $\epsilon>0$. Fix $\epsilon>0$ and rewrite as $a_0+b_0<(a+\frac{\epsilon}{2})+(b+\frac{\epsilon}{2})$. It must be shown that there exist $a\in A$ and $b\in B$ for which this is true. Since $a_0=\sup A$ then for all $\epsilon_1>0$ there exists an $a\in A$ such that $a+\epsilon_1>a_0$. Take $\epsilon_1=\frac{\epsilon}{2}$, which is justified since if $\epsilon>0$ then $\frac{\epsilon}{2}>0$. Then there exists an $a\in A$ such that $a+\frac{\epsilon}{2}>a_0$. Also since $b_0=\sup B$, for all $\epsilon_2>0$ there exists a $b\in B$ such that $b+\epsilon_2>b_0$. Take $\epsilon_2=\frac{\epsilon}{2}$, then there exists a $b\in B$ such that $b+\epsilon_2>b_0$. Take $\epsilon_2=\frac{\epsilon}{2}$, then there exist a $a\in A$ and $b\in B$ such that $a_0+b_0<(a+\frac{\epsilon}{2})+(b+\frac{\epsilon}{2})$. Rewriting the right side and recalling that a+b was an element $c\in C$, we see that $a_0+b_0< c+\epsilon$ for some $c\in C$. Since ϵ was arbitrary the result holds for all $\epsilon>0$ proving that $a_0+b_0=\sup C$, that is $\sup A+\sup B=\sup C$.

Problem. 3. Let $m \in R$ be a lower bound for a set $S \subset R$. Then m is the greatest lower bound if and only if for all $\epsilon > 0$ there exists an $s \in S$ such that $m + \epsilon > s$.

Proof. First to show that if m is a lower bound for S and for all $\epsilon > 0$ there exists an $s \in S$ such that $m + \epsilon > s$, then m is the greatest lower bound for S, let m be a lower bound for S with that property. Now let n be another lower bound for S and assume for contradiction that n > m. Chose $\epsilon = n - m$. Since n > m, n - m > 0 and there exists an $s \in S$ such that n > s. Then n cannot be a lower bound for S which contradicts our assumption that it was. Then if n is another lower bound for S, n must be less than or equal to m, that is, m is the greatest lower bound for S.

To prove the other direction it must be shown that if m is the greatest lower bound for S then for all $\epsilon > 0$ there exists an $s \in S$ such that $m + \epsilon > s$. Let m be the greatest lower bound for S and fix $\epsilon > 0$. Since $\epsilon > 0$ and m is the greatest lower bound for S, $m + \epsilon$ cannot be a lower bound for S. Then it is false that for all $s \in S$, $s \ge m + \epsilon$, so there exists an $s \in S$ such that $m + \epsilon > s$. Since ϵ was arbitrary that result holds for all $\epsilon > 0$.

Problem. 4. The statements "For all $r \in R$ there exists an $n \in N$ such that n > r" and "For all a > 0 in R and $b \in R$, there exists an $n \in N$ such that na > b" are equivalent.

Proof. To show that the first statement implies the second observe that any real number r can be written as $r \cdot a \cdot \frac{1}{a}$ for any a > 0. Then for all $r \in R$ and a > 0 there exists an $n \in N$ such that na > ra. Since the product of two real numbers is a real number and every real number can be expressed as the product of two real numbers, in other words ra is a real number whenever r is real and a is real and greater than 0, and there is no real number which cannot be expressed in this form. Then it is justifiable to let b = ra and say for all $b \in R$ and a > 0 in R there exists an $n \in N$ such that na > b as required.

To prove the other direction fix a>0 and $b\in R$. Since there exists an $n\in N$ such that na>b, let n be that particular n. Then $n>\frac{b}{a}$. The sets $\{\frac{b}{a}\mid b\in R, a>0\}$ and $\{r\mid r\in R\}$ are exactly equal so every $\frac{b}{a}$ corresponds to exactly one r and there are no $r\in R$ that cannot be written $\frac{b}{a}$ for some $b\in R$ and a>0. So for all $r\in R$ there exists an $n\in N$ such that n>r. QED