Resolução – Lista 5 (Projeto e Análise de Algoritmos)

Fevereiro - 2023 / Leticia Bossatto Marchezi - 791003

Questão 1

Mostre que todo subcaminho de um caminho ótimo é sempre ótimo, ou seja, que o problema do caminho mínimo tem subestrutura ótima. Porque isso é importante?

Resolução:

Uma solução ótima para o caminho mínimo é uma solução com valor mínimo da soma dos pesos do caminho total.

Tomando um grafo com caminho mínimo ótimo P composto por 3 subcaminhos P_{ab} , $P_{b,c}$ e $P_{c,d}$. Ou seja, isso implica que a soma dos pesos

$$w(P) = w(P'_{a,b}) + w(P_{b,c}) + w(P_{c,d})$$
(1.1)

é o mínimo entre os caminhos possíveis.

Supondo que haja um caminho $P'_{a,b}$ tal que $w(P'_{a,b}) < w(P_{a,b})$. Por consequência, o caminho mínimo é na verdade com caminho $P'_{a,b}$ de tal forma que o peso total é minimizado para um caminho P':

$$w(P) = w(P'_{a,b}) + w(P_{b,c}) + w(P_{c,d})$$
(1.2)

Dessa forma, contradiz-se que a solução mínima é P, já que a somatória dos pesos de P tem valor superior ao caminho P'. Assim, um caminho ótimo precisa ter subcaminhos ótimos.

Questão 2

Explique como o algoritmo de Dijkstra utiliza programação dinâmica para resolver o problema de encontrar caminhos mínimos em grafos

Resolução:

O algoritmo de Dijkstra pode ser utilizado para resolver o problema de menores caminhos em grafos utilizando programação dinâmica por três fatores:

- O algoritmo não recalcula os caminhos mínimos em toda iteração, esses valores são armazenados em uma fila de prioridades.
- O algoritmo constrói a solução ótima a partir das soluções dos subproblemas que são menores.
- Utilizando a estratégia Bottom-Up é possível realizar a reversão de recursão.

Todos esses fatores possibilitam a implementação do algoritmo no paradigma da programação dinâmica.

Questão 3

Mostre o passo a passo do algoritmo de Dijkstra para encontrar a árvore de caminhos mínimos no grafo a seguir. Mostre a fila Q em cada iteração, bem como a ordem de acesso aos vértices e a atualização dos valores de $\lambda(v)$.

Lembre-se que G é um dígrafo, ou seja, A é vizinho de B, mas B não é vizinho de A (por causa da aresta direcionada).

Resolução:

Solução usando métodos de iteração abaixo seguindo Fila, Ordem de acesso e Mapa de predecessores.

Fila de prioridade

	s	a	b	С	d	t
λ^0(v)	0	00	00	00	00	00
λ^1(v)		7	4	9	7	00
λ^2(v)		5		7	7	00
λ^3(v)				7	7	11
λ^4(v)					7	10
λ^5(v)						10

Figure 1: Fila de prioridade

Ordem de acesso aos vértices

u	V'	λ(ν)	π(v)
s	{a,b,c,d}	$\lambda(a) = \min(\lambda(a), \lambda(s) + w(s, a)) = \min\{\infty, 7\} = 7$	$\pi(a) = s$
		$\lambda(b) = \min(\lambda(b), \lambda(s) + w(s,b)) = \min\{\infty, 4\} = 4$	$\pi(b) = s$
		$\lambda(c) = \min(\lambda(c),\lambda(s) + w(s,c)) = \min\{\infty, 9\} = 9$	$\pi(c) = s$
		$\lambda(d) = \min(\lambda(d),\lambda(s) + w(s,d)) = \min\{\infty, 7\} = 7$	$\pi(d) = s$
b	{a,c}	$\lambda(a) = \min(\lambda(a), \lambda(b) + w(b,a)) = \min\{7, 5\} = 5$	$\pi(a) = b$
		$\lambda(c) = \min(\lambda(c), \lambda(b) + w(b,c)) = \min\{9, 7\} = 7$	$\pi(c) = b$
a	{t}	$\lambda(t) = \min(\lambda(t), \lambda(a) + w(a,t)) = \min\{\infty, 11\} = 11$	$\pi(t) = a$
С	{t}	$\lambda(t) = \min(\lambda(t), \lambda(c) + w(c,t)) = \min\{11, 10\} = 10$	$\pi(t) = c$
d	{c,t}	$\lambda(c) = \min(\lambda(c), \lambda(d) + w(d,c)) = \min\{7, 8\} = 7$	
		$\lambda(t) = \min(\lambda(t), \lambda(d) + w(d,t)) = \min\{10, 11\} = 10$	
t	{}		

Figure 2: Ordem de acesso aos vértices

Mapa de predecessores

v	s	a	b	С	d	t
π(v)		b	s	b	s	С
λ(v)	0	5	4	7	7	10

Figure 3: Mapa de predecessores

Questão 4

Analise a complexidade do algoritmo de Dijkstra com estruturas de dados estáticas

Resolução:

Para uma estrutura de dados estática temos um vetor de estático de N elementos e uma matriz de adjacências. Com isso pode-se construir o grafo G = (V,E).

Seguindo a iteração explicada no exercício 3 acima e no livro texto disponibilizado pelo professor, temos que:

- Inicialização dos $\lambda(v) = \mathcal{O}(n)$.
- Inserção dos vértices na fila é $\mathcal{O}(n)$.
- Loop While executado n vezes.

- A função ExtractMin tem custo $\mathcal{O}(n)$.
- for loop para atualizar os valores de $\lambda(v) = \mathcal{O}(n)$.

Sendo assim, com os custos $\mathcal{O}()$ acima conseguimos calcular a complexidade do algoritmo.

$$T(n) = \mathcal{O}(n) + \mathcal{O}(n^2) + \mathcal{O}(1) * \mathcal{O}(m)$$

$$\tag{4.1}$$

Dessa maneira, percebemos que para uma estrutura de dados estáticas a complexidade do algoritmo é $\mathcal{O}(n)$.

Questão 5

Analise a complexidade do algoritmo de Dijkstra com estruturas de dados dinâmicas.

Resolução:

Para uma estrutura de dados dinâmica temos uma fila de prioridades Q representada por um heap dinâmico, assim temos o grafo G = (V,E).

Com isso, os passos para o algoritmo ocorrer são:

- Inicialização do $\lambda(n) = \mathcal{O}(n)$.
- Inserção dos vértices na fila $Q = \mathcal{O}(\log n)$
- Loop while executado N vezes $\mathcal{O}(n)$.
- Função ExtractMin $\mathcal{O}(\log n)$.
- Atualização do valor de $\lambda(v) = \mathcal{O}(1)$ executado d(u) vezes.
- Decrease é $\mathcal{O}(\log n)$

Assim, temos que custos \mathcal{O} possibilitando calcular a complexidade do algoritmo:

$$T(n) = \mathcal{O}(n) + \mathcal{O}(\log n) + \mathcal{O}(n\log n) + \mathcal{O}(m\log n) \Rightarrow \tag{5.1}$$

$$T(n) = \mathcal{O}((n+m)\log n)). \tag{5.2}$$

Como em grafos conexos m > n - 1 temos que a complexidade do algoritmo é igual a $\mathcal{O}(m \log n)$.

Questão 6

Demonstre que o algoritmo de Dijkstra é ótimo, ou seja, sempre retorna os caminhos mínimos em grafos com pesos não negativos.

Resolução:

O algoritmo de Dijkstra se baseia no teorema em que $\lambda(v) = d(s, v)$ sendo d a menor distância possível de s até v. Adicionando um vértice a tal que $\lambda(a) \neq d(s, a)$.

Deve existir um caminho P_{sa} , caso contrário $\lambda(a) = \infty$. Logo, existe um caminho mínimo P_{sa}^* .

Assumindo que há um vértice y, sendo o primeiro vértice de P_{sa}^* e seja x seu predecessor.

Assim, $\lambda(y) = d(s,x) + w(x,y) = d(s,y)$. Como y antecede a, então vale $d(s,y) \leq d(s,a)$. Mas, por ter

escolhido a para entrar em S, então $\lambda(a) \leq \lambda(y)$. Logo, $\lambda(a) = \lambda(y)$.

Porém, chegamos na contradição

$$\lambda(y) = d(s, y) = d(s, a) = \lambda(a) \tag{6.1}$$

Assim, o algoritmo mantém sua corretude quando suas propriedades são mantidas.

Questão 7

Explique como o algoritmo Floyd-Warshall utiliza programação dinâmica para encontrar caminhos mínimos entre todos os pares de vértices em um grafo e porque essa estratégia funciona.

Resolução:

O algoritmo de Floyd-Marshall utiliza programação dinâmica ao construir uma matriz de distância entre vértices que são atualizadas a cada iteração do algoritmo, buscando os melhores caminhos armazenando os cálculos das distâncias mínimas e os predecessores dos vértices, assim evitando a necessidade de recalcular trajetórias inteiras a partir de um ponto, já que para novas iterações são comparados o custo passado do caminho com o custo da nova aresta mais o percurso até seu vértice.

Questão 8

Dada a matriz de custos a seguir, implemente o algoritmo Floyd-Warshall para obter as distâncias mínimas entre cada par de vértices (pode ser em qualquer linguagem de programação).

Resolução:

A função Floyd Warshall implementa o algoritmo para cálculo de distância mínima entre vértices e o resultado pode ser conferido no output:

```
1 graph = [[0, 2, float('inf'), 1, 8],
       [6, 0, 3, 2, float('inf')],
[float('inf'),float('inf'), 0, 4, float('inf')],
       [float('inf'), float('inf'), 2, 0, 3],
       [3, float('inf'), float('inf'), float('inf'), 0]]
7 def FloydWarshall(W):
       D=[[0]*n]*n
10
       D = W
       for k in range(n):
11
         for i in range(n):
12
13
           for j in range(n):
             D[i][j] = min(D[i][j], D[i][k]+D[k][j])
14
15
16
17 print("Matriz de distância mínima entre os vértices:")
18 FloydWarshall(graph)
Matriz de distância mínima entre os vértices:
[[0, 2, 3, 1, 4],
 [6, 0, 3, 2, 5],
[10, 12, 0, 4, 7],
[6, 8, 2, 0, 3],
 [3, 5, 6, 4, 0]]
```

Figure 4: Algoritmo em Python para algoritmo Floyd Warshall