Design of Portfolio of Stocks to Track an Index

Konstantinos Benidis and Daniel P. Palomar 2018-08-14

Contents

1	Comparison with other packages	1
2	Usage of the package	1
3	Explanation of the algorithms 3.1 learnGraphTopology: Learning the topology of graph	1
R	References	

- Comparison with other packages 1
- Usage of the package 2
- Explanation of the algorithms 3
- learnGraphTopology: Learning the topology of graph

The goal of learnGraphTopology() is to estimate the Laplacian matrix generated by the weight vector of graph, w.

Algorithm 1

- 1. Choose initial values for \mathbf{w} , \mathbf{U} , $\mathbf{\Lambda}$, and $\boldsymbol{\beta}$, and compute $\mathcal{L}\mathbf{w}^{(0)}$
- 2. Define the number of components K and tunning parameters, α , α_1 , α_2 , ρ
- 3. Set j = 0, while not converged do
- 4. Set i = 0, while not converged do
- 5. Update $\mathbf{w}, \mathbf{w}^{(i+1)} \leftarrow f_{\mathbf{w}}(\mathbf{w}^{(i)}, \mathbf{U}^{(i)}, \mathbf{\Lambda}^{(i)}, \beta, n, \mathbf{K})$ 6. Update $\mathbf{U}, \mathbf{U}^{(i+1)} \leftarrow f_{\mathbf{U}}(\mathbf{w}^{(i+1)}, n, K)$
- 7. Update Λ , $\Lambda^{(i+1)} \leftarrow f_{\Lambda}(\alpha_1, \alpha_2, \beta, \mathbf{w}^{(i+1)}, \mathbf{U}^{(i+1)}, n, K)$
- 8. $i \leftarrow i + 1$
- 9. $\beta \leftarrow \beta(\rho+1)$
- 10. Repeat steps 4-9 until convergence
- 11. Compute $\mathcal{L}\mathbf{w}^{(i)}$
- 12. $j \leftarrow j + 1$
- 13. Repeat steps 3 12 until convergence
- 14. Return $\mathcal{L}\mathbf{w}^{(i)}$

References