ALG 11

Dynamické programování

Úloha batohu neomezená

Úloha batohu 0/1

Úloha batohu / Knapsack problem

Máme N předmětů, každý s váhou Vi a cenou Ci (i = 1, 2, ..., N) a batoh s kapacitou váhy K.

Máme naložit batoh těmito předměty tak, aby kapacita K nebyla překročena a obsah měl maximální cenu.

Neomezená varianta -- Každý předmět lze použít libovolněkrát.

0/1 varianta

-- Každý předmět lze použít nejvýše jednou.

Schematický batoh s kapacitou 10

Předměty s uvedenou cenou, váha ~ výška

Několik možných konfigurací

Neomezená úloha batohu Batoh s kapacitou 10 **Příklad** N = 430 Váha 2 3 4 9 14 30 Cena Některé možnosti naplnění a odpovídajíci ceny 14 30 16 **-**|16⊦ **45** 41 46 42 43 44 41 48 46

Neomezená úloha batohu

Použijeme K+1 batohů, o kapacitách 0, 1, 2, 3, ..., K. Hodnotu optimálního naplnění batohu s kapacitou K lze získat jako maximum z hodnot

- -- (optimalní naplnění batohu o kapacitě K V1) + C1,
- -- (optimalní naplnění batohu o kapacitě K V2) + C2,
- -- (optimalní naplnění batohu o kapacitě K VN) + CN.

Optimální naplnění batohu o kapacitě K - Vi (i = 1..N) je stejnou úlohou, jen s menšími daty. Hodnoty předpočítáme standardně metodou DP do 1D tabulky.

Neomezenou úlohu batohu lze přímo vyjádřit jako úlohu nalezení nejdelší cesty v DAG. Postup řešení je identický.

Neomezená úloha batohu -- převod na DAG

DAG:

Uzly: Kapacity 0, 1, 2, 3, ..., K.

Hrany: Z uzlu X vedou hrany po řadě do uzlů X+V1, X+V2, ..., V+VN,

jsou po řadě ohodnoceny cenami C1, C2, ..., CN.

Příklad

K = 10, N = 4, Vi = (2, 3, 4, 6), Ci = (9, 14, 16, 30), i = 1..4.

Neomezená úloha batohu -- jako DAG

Neomezená úloha batohu

Nejdelší cesta odpovídá optimálnímu naplnění batohu. Dvě hrany s cenou 9 a jedna hrana s cenou 30, celkem cena = 48.

Batoh optimálně naplníme dvěma předměty s váhou 2 a cenou 9 a jedním předmětem s váhou 6 a cenou 30.

Neomezená úloha batohu -- asymptotická složitost

DAG obsahuje K+1 uzlů a méně než K*N hran. Má tedy V = $\Theta(K)$ uzlů a E = O(K*N) hran. Asymptotická složitost hledání nejdelší cesty je $\Theta(V+E)$, máme tedy pro neomezenou úlohu batohu asymptotickou složitost O(K + K*N) = O(K*N).

Neomezená úloha batohu -- Asymptotická složitost

Zdánlivá nesrovnalost

- 1. Literatura: NP těžký problém, není znám efektivní algoritmus.
- 2. ALG OI: DP řeší úlohu v čase v O(N*K), tedy efektivně?

Délka výpočtu DP je lineárně závislá na velikosti kapacity K.

Příklad

Velkou kapacitu 2⁶⁴ lze zadat velmi krátkým zápisem Kapacita = 18446744073709551616.

N = 3. Položky (váha, cena): (2, 345), (3, 456), (5, 678). Data lze zapsat do cca 100 bitů < 16 Bytů < "dva longy" Výpočet pomocí DP potrvá přes 584 roky za předpokladu, že za 1 sec vyplní 10⁹ prvků tabulky.

Délka výpočtu DP je exponenciálně závislá na délce řetězce definujícího kapacitu K.

Každý předmět lze použít nejvýše 1 krát.

Máme vybrat vhodnou podmnožinu předmětů splňující zadání úlohy. Každé podmnožině lze přiřadit charakteristický vektor z hodnot 0/1 délky N. Pozice ve vektoru odpovídá předmětu, 0 resp. 1 odpovídá nepřítomnosti resp. přítomnosti předmětu v této podmnožině. Binárních vektorů délky N je celkem 2^N, systematické probírání všech možných podmnožin bude mít exponenciální asymptotickou složitost, nehodí se.

DP poskytuje (pro relativně nevelké kapacity) výhodnější postup.

0/1 úloha batohu

Příklad

Všech 16 podmnožin čtyř předmětů a jejich ceny

N = 4 Váha Cena 2 9

3 14

4 16

6 30

9-

Batoh s kapacitou 10

0/1 úloha batohu -- řešení

Použijeme K+1 batohů, o kapacitách 0, 1, 2, 3, ..., K. Použijeme N+1 souborů předmětů.

Soubor 0 neobsahuje žádný předmět.

Soubor 1 obsahuje předmět 1.

Soubor 2 obsahuje předměty 1 a 2.

Soubor 3 obsahuje předměty 1, 2, 3.

Soubor N obsahuje předměty 1, 2, 3, ..., N.

Na pořadí předmětů nezáleží, je ale zafixované.

Pro každou kapacitu a pro každý soubor budeme řešit stejnou úlohu metodou DP, v pořadí od menších hodnot k větším.

0/1 úloha batohu -- řešení

Označme symbolem U(x, y) úlohu se souborem předmětů 1, 2, ..., x a s kapacitou batohu y a symbolem Opt(x, y) optimální řešení této úlohy.

Pro řešení U(x,y) použijeme optimální řešení úloh U(x-1, _):

Buď do Opt(x, y) zahrneme předmět x nebo jej nezahrneme. V prvním případě použijeme hodnotu řešení pro batoh s kapacitou menší o velikost váhy Vx, tedy hodnotu Opt(x-1, y-Vx), ke které přičteme cenu Cx předmětu x.

V druhém případě beze změny použijeme hodnotu Opt(x-1, y). Z obou hodnot vybereme tu výhodnější a dostáváme tak:

$$Opt(x, y) = max(Opt(x-1, y), Opt(x-1, y-Vx) + Cx).$$

Dále zřejmě platí Opt(0, y) = Opt(x, 0) = 0, pro x = 0..N, y = 0..K.

0/1 úloha batohu -- řešení

Pro x = 1..N, y = 0..K:

Opt(x, y) = max(Opt(x-1, y), Opt(x-1, y-Vx) + Cx).Opt(0, y) = Opt(x, 0) = Opt(0, 0) = 0.

Pokud y-Vx < 0, položíme Opt(x, y-Vx) = $-\infty$ (a netabelujeme).

Hodnoty Opt(x,y) tabelujeme ve 2D tabulce velikosti $(N+1)\times(K+1)$ s řádkovým indexem x (předměty) a sloupcovým indexem y (kapacity menších batohů).

Pro rekonstrukci optimálního řešení použijeme tabulku předchůdců stejné velikosti jako tabulku pro Opt(x, y). Předchůdce leží vždy v předchozím řádku x-1, stačí registrovat buď pozici y (beze změny) nebo pozici y-Vx (přidán předmět x).

Příklad

N = 4 Kapacita = 10

Váha 2 3 4 6

Cena 9 14 16 30

14

16

30

ı			
ı			
ı			
ı			
ı			
ı			
		ч	

A 1/-	\											
Opt()	Opt(x, y) 0 1 0 0 0 1 0 0 2 0 0 3 0 0 4 0 0	2	3	4	5	6	7	8	9	10		
	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	9	9	9	9	9	9	9	9	9
	2	0	0	9	14	14	23	23	23	23	23	23
	3	0	0	9	14	16	23	25	30	30	39	39
	4	0	0	9	14	16	23	30	30	39	44	46

D	Pred(x, y)												
Pre	ea	(x , y)	0	1	2	3	4	5	6	7	8	9	10
		0											
		1	0	1	0	1	2	3	4	5	6	7	8
		2	0	1	2	0	1	2	3	4	5	6	7
		3	0	1	2	3	0	5	2	3	4	5	6
		4	0	1	2	3	4	5	0	7	2	3	4

Vyjádření jako optimální cesty v DAG

Uzly DAG budou jednotlivé hodnoty Opt(x, y), x = 0..N, y = 0..K, celkem bude mít DAG (N+1)*(K+1) uzlů. Do uzlu Opt(x, y) povede hrana

- -- Opt(x-1, y) --> Opt(x, y) ohodnocená 0 (žádný přidaný předmět),
- a pokud y-Vx ≥ 0, také hrana
 Opt(x-1, y-Vx) --> Opt(x, y)
 ohodnocená cenou Cx (cenou přidaného předmětu x).

V takto zkonstruovaném DAG hledáme nejdelší (= nejcennější) cestu standardní DP metodou.

Jaké je topologické uspořádání tohoto DAG?

0/1 úloha batohu - topologické uspořádání DAG

DAG můžeme uvažovat nakreslený formálně do DP tabulky, přičemž uzel Opt(x, y) leží v buňce s indexy x a y. Pak hrany DAG vedou vždy pouze z předchozího řádku do následujícího řádku. Pokud tento DAG procházíme shora po řádcích, to jest ve stejném pořadí, v němž vyplňujeme DP tabulku, respektujeme jeho topologické uspořádání.

V tomto případě není nutno uzly DAG v topologickém uspořádání uvažovat v jedné přímce, "tabulkové" uspořádání je přehlednější.

0/1 úloha batohu -- rekonstrukce optimálního řešení pomocí tabulky předchůdců

		0	1	2	3	4	5	6	7	8	9	10
Pred(x, y)	0											
X	1	0	1	0	1	2	3	4	5	6	7	8
þ	2	0	1	2	0	1	2	3	4	5	6	7
7	3	0	1	2	3	0	5	2	3	4	5	6
	4	0	1	2	3	4	5	0	7	2	3	4
_		(0,0)	(0,1)	0.2	0,3	0.4	0,5	0,6	0.7	(0,8)	(0,9)	0,10
		, T	_ 🛶					_ 🕌 _			9 0	6,19
	9	1 1,										Ţ
		(1,0)	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)	(1,8)	(1,9)	(1,10)
	14		14		0	14	0	_	0	14 0	•	0
	- ! ==		0								14	
		2,0	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)	(2,8)	(2,9)	2,10
	16			16 0	0	16 0	16 0	16 0	0	0	0	0
			•			7						
		3,0	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)	(3,8)	(3,9)	3,10
	20		30		30 (O) (S	30 0 43	0	0	0	0	0	0
	30		0	0								
		4,0	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)	(4,8)	(4,9)	4,10

Asymptotická složitost

Tabulka ... Velikost ... $(N+1)^*(K+1) \in \Theta(N^*K)$ Vyplnění jedné buňky ... $\Theta(1)$ Vyplnění tabulky ... $\Theta(N^*K^*1) = \Theta(N^*K)$. Rekonstrukce optimálního řešení $\Theta(N)$. Celkem ... $\Theta(N^*K + N) = \Theta(N^*K)$.

DAG Uzlů ... $(N+1)*(K+1) \in \Theta(N*K)$. Hran ... nejvýše 2*(N+1)*(K+1), $tj \in O(N*K)$. Nalezení optimální cesty ... $\Theta(uzlů+hran) = \Theta(N*K)$.

Řešení obou variant úlohy batohu, neomezené i 0/1, má asymptotickou složitost ⊕(N*K).

Přitom zárověň platí:

Asymptotická složitost DP řešení je exponenciální vzhledem k délce řetězce definujícího kapacitu K.