# Анализ данных. Домашнее задание

Задача состоит в работе с реальными данными о работе системы кондиционирования одного из распределительных центров крупной торговой сети.

# Описание исходных данных

Система кондиционирования состоит множества практически одинаковых устройств, каждое из которых имеет определенный набор параметров.

| Устройство       | Тип                             | Контроллер    |  |  |
|------------------|---------------------------------|---------------|--|--|
| 111 CT AG        | Центральный холодильный агрегат | AK-PC551-0161 |  |  |
| 11CT G OVZ +5/+8 | Холодильная горка               | EKC202B-013x  |  |  |
| 12CT G GSR +2/+4 | Холодильная горка               | EKC202B-013x  |  |  |
| 13CT G PBP -1/+1 | Холодильная горка               | EKC202B-013x  |  |  |
| 15CT G MSO -1/+1 | Холодильная горка               | EKC202B-013x  |  |  |
| 16CT G MSO -1/+1 | Холодильная горка               | EKC202B-013x  |  |  |
| 17CT G GSR +2/+4 | Холодильная горка               | EKC202B-013x  |  |  |
| 18CT G PTO -1/+1 | Холодильная горка               | EKC202B-013x  |  |  |
| 19CT G GSR +2/+4 | Холодильная горка               | EKC202B-013x  |  |  |
| 20CT G GSR +2/+4 | Холодильная горка               | EKC202B-013x  |  |  |
| 21CT G GSR +2/+4 | Холодильная горка               | EKC202B-013x  |  |  |
| 22CT G GSR +2/+4 | Холодильная горка               | EKC202B-013x  |  |  |
| 23CT V MSO -1/+1 | Холодильная горка               | EKC202B-013x  |  |  |
| 24CT V GSR +2/+4 | Холодильная горка               | EKC202B-013x  |  |  |
| 25CT V GSR +2/+4 | Холодильная горка               | EKC202B-013x  |  |  |
| 26CT G MLK +2/+4 | Холодильная горка               | EKC202B-013x  |  |  |
| 27CT G MLK +2/+4 | Холодильная горка               | EKC202B-013x  |  |  |
| 28CT G MLK +2/+4 | Холодильная горка               | EKC202B-013x  |  |  |
| 29CT G MLK +2/+4 | Холодильная горка               | EKC202B-013x  |  |  |
| 30CT G GSR +2/+4 | Холодильная горка               | EKC202B-013x  |  |  |
| 34CT G TRT +2/+4 | Холодильная горка               | EKC202B-013x  |  |  |
| 52CT K PTO -1/+1 | -                               | EKC202D-022x  |  |  |
| 53K VOP POD PTO  | -                               | EKC202D-022x  |  |  |
| 54K VOP FAS GSR  | -                               | EKC202D-022x  |  |  |
| 55CT K GSR +2/+4 | -                               | EKC202D-022x  |  |  |
| 56CT K COF +5/+8 | -                               | EKC202D-022x  |  |  |
| 57K VOP CXM      | -                               | EKC202D-022x  |  |  |
| Gazoanalyzator   | Газоанализатор                  |               |  |  |

#### Параметры холодильных установок:

| Параметр           | Описание                                  | Тип            |  |
|--------------------|-------------------------------------------|----------------|--|
| ЕКС состояние      | Состояние установки                       | Категориальная |  |
| u69 Sair Темп degc | Температура воздуха внутри установки      | Непрерывная    |  |
| u09 S5 Темп degc   | Температура воздуха на входе в испаритель | Непрерывная    |  |

### Параметры центрального холодильного агрегата:

| Параметр                    | Описание                                | Тип            |  |
|-----------------------------|-----------------------------------------|----------------|--|
| Cond Requested Cap %        | Запрошенная производительность          | Непрерывная    |  |
|                             | вентиляторов конденсатора               |                |  |
| Cond Ctrl Status            | Режим управления конденсатором          | Категориальная |  |
| Cond Running Cap %          | Текущая производительность вентиляторов | Непрерывная    |  |
|                             | конденсатора                            |                |  |
| Cond Ctrl Pressure Bar      | Давление конденсации                    | Непрерывная    |  |
| Cond Reference Bar          | Уставка давления конденсации            | Непрерывная    |  |
| Comp A Ctrl Status          | Режим управления компрессором           | Категориальная |  |
| Comp A Pressure Bar         | Давление на входе в компрессор          | Непрерывная    |  |
| Comp A Reference Bar        | Уставка давления на входе в компрессор  | Непрерывная    |  |
| Comp A Capacity %           | Производительность компрессоров         | Непрерывная    |  |
| Comp 1A Status              | Статус компрессора 1                    | Категориальная |  |
| Comp 2A Status              | Стасус компрессора 2                    | Категориальная |  |
| Peregrev u69 Sair Темп degc | Перегрев                                | Непрерывная    |  |
| Датч нар воздуха degc       | Температура наружного воздуха           | Непрерывная    |  |

В холодильных установках хранятся продукты, центральный холодильный агрегат обеспечивает установки хладагентом. Внешний вид холодильной установки представлен ниже. Это там, где лежит колбаса и йогурты с ценниками.





#### Постановка задачи

Все визуализации должны быть подписаны, минимум заголовок и легенда (если требуется).

1. Загрузите исходный датасет

```
pd.read_csv()
```

2. Сделайте необходимые преобразования при загрузке датасета, чтобы данные выглядели корректно.

https://pandas.pydata.org/docs/reference/api/pandas.read csv.html, корректно обработайте разделители, NA значения, кодировку, исключите ненужные строки, определите заголовок, при необходимости игнорируйте ошибки в кодировке или подправьте исходный файл.

3. Очистите заголовки колонок от ненужной информации, оставьте только имя устройства и название параметра:

Если при загрузке датасета у вас получились многоуровневые заголовки, можно удалить незначащие уровни методом df.columns.droplevel():

```
      data.columns[:4]

      MultiIndex([(
      'Name', ...),

      ('10СТ G PBP -1/+1: --- EKC состояние', ...),
      ( '10СТ G PBP -1/+1: u09 S5 Temn', ...),

      ( '11СТ G OVZ +5/+8: u69 Sair Temn', ...)],

      )
      data.columns = data.columns.droplevel([1,2,3])

      data.columns[:4]

      Index(['Name', '10СТ G PBP -1/+1: u99 S5 Temn', '11СТ G OVZ +5/+8: u69 Sair Temn'],

      dtype='object')
```

Для переименования индексов можно использовать метод df.rename(columns={<исходное имя>: <новое имя>})

4. Выведите в консоль информацию о датасете: его размер, название колонок, их типы данных

df.info()

5. Преобразуйте колонку со временем в формат datetime, сделайте ее индексом и отсортируйте (даже если датасет уже отсортирован)

```
pd.to_datetime(), df.index = df[<колонка>], df.sort_index()
```

- 6. Посчитайте количество пропусков в каждой колонке и визуализируйте их df.isna().sum(), для визуализации можно использовать модуль missingno и метод matrix(df)
- 7. Как оптимизировать типы данных в колонках? Насколько меньше станет размер датафрейма после оптимизации типов?

Приведите к типу int колонки с целыми значениями, используйте df.astype().

Приведите к типу category колонки с категориальными признаками (признаки, которые принимают ограниченное количество значений, например до 10).

Сравните замеры получившихся датасетов, оригинальный датасет не перезаписывайте.

8. Дайте табличное и графическое статистическое описание признакам, содержащим параметр «Sair» для устройств 21СТ, 22СТ,..., 30СТ.

df.describe(), sns.boxplot().



Можно создать отдельный список колонок, которые вы будете анализировать, например «col\_Sair». Для его создания можно использования list comprehension



9. Ресемплируйте датасет по медианному значению за 4 минуты, отобразите на линейном графике значение признаков col\_Sair. График должен быть читабельным, иметь заголовок и легенду, можете выбрать другое значение ресэмплирования, чтобы график лучше читался.

Используйте любые модули (df.plot(), sns, plt, plotly). Ресемплированный датасет сохранять не нужно, просто отобразить.

10. Постройте для 2-3 признаков из col\_Sair сглаженный график поведения признаков во времени, чтобы был виден тренд

## df.rolling()



11. Постройте на одном графике три графика: оригинальный, ресемплированный и сглаженный.

Параметры ресемплирования и сглаживания выберите любые. Подберите временной интервал, чтобы разница была видна.

12. Отобразите гистограмму по количеству одновременно включенных устройств. Признак состояния представлены в виде «<устройство>: --- EKC состояние», если признак принимает значение 0, то считаем устройство включенным.

EKCstate\_Map = data[[col for col in data.columns if col.find(\_\_\_\_\_\_\_]].applymap(lambda x: 1 if x==0 else 0) ТУТ МОЖНО ПОКРАСИВЕЕ СДЕЛАТЬ

EKCstate\_Map.sum(axis=1).value\_counts().sort\_index().plot.bar(figsize=(5,5),title='Количество одновременно включенных горок')



13. Постройте для нескольких признаков состояния устройств гистограммы, которые покажут распределение этих устройств по состояниям.



Используйте любой plt.bar или sns.barplot() и plt.subplots()

- Постройте матрицу корреляции для признаков col\_Sair
   Получение таблицы с корреляцией: df.corr(), отрисовку удобно делать через sns.heatmap()
- 15. Творческое: сформулируйте гипотезу (вопрос) и проверьте ее (ответьте на него), подтвердив выводы визуализацией или статистиками.

Например, можно задаться вопросом, как ведет себя температура **u09 S5** в устройстве при разных состояниях устройства.

```
cols = ['11CT G OVZ +5/+8: u09 S5 Temn',
       '11CT G OVZ +5/+8: --- ЕКС состояние']
data['11CT G OVZ +5/+8: --- EKC состояние'].value_counts()
11CT G OVZ +5/+8: --- EKC состояние
11.0
       19682
        5180
0.0
14.0
         909
4.0
         353
10.0
          19
Name: count, dtype: int64
states = data['11CT G OVZ +5/+8: --- EKC состояние'].value_counts()
```

Только на основании графиков сделать выводы сложно:

```
for state in [11.0, 0.0, 14.0, 4.0]:
   (
      data[data['11CT G OVZ +5/+8: --- EKC состояние']==state]
      ['11CT G OVZ +5/+8: u09 S5 Temn'][:100]
      .plot(figsize=(10,1), marker='.')
   plt.title(f"Температура в устройстве при состоянии \{state\}")
   plt.show()
                           Температура в устройстве при состоянии 11.0
 10
  0
-10
                                                        60
                                                                                        100
                           Температура в устройстве при состоянии 0.0
10
 0
                  100
                                          300
                                                       400
                                                                   500
                                                                                600
                                                                                            700
                          Температура в устройстве при состоянии 14.0
10
 0
                    500
                                        1000
                                                            1500
                                                                                 2000
                           Температура в устройстве при состоянии 4.0
11
10
                1000
                           2000
                                       3000
                                                   4000
                                                               5000
                                                                           6000
                                                                                       7000
```

Но статистика говорит о том, что температура в режимах, отличных от 0.0 или растет или меняется незначительно.

```
df_stats = pd.DataFrame(columns = states.index)

for state in states.index:
    df = data[data['11CT G OVZ +5/+8: --- EKC состояние']==state].copy()
    df['index_diff'] = df['index'].diff()
    df['temp_diff'] = df['11CT G OVZ +5/+8: u09 S5 Temn'].diff()
    df_stats[state] = df.query("index_diff==1.0")['temp_diff'].describe()

df_stats
```

| 11CT G OVZ +5/+8: ЕКС состояние | 11.0         | 0.0         | 14.0       | 4.0        | 10.0      |
|---------------------------------|--------------|-------------|------------|------------|-----------|
| count                           | 16768.000000 | 2244.000000 | 764.000000 | 208.000000 | 18.000000 |
| mean                            | 2.754904     | -7.349211   | 1.105471   | 0.229760   | 0.111111  |
| std                             | 2.457571     | 4.557101    | 1.728369   | 0.193457   | 0.347595  |
| min                             | -18.720000   | -21.220000  | -10.110000 | 0.000000   | -0.280000 |
| 25%                             | 1.000000     | -10.890000  | 0.330000   | 0.000000   | 0.000000  |
| 50%                             | 2.000000     | -8.470000   | 0.670000   | 0.280000   | 0.000000  |
| 75%                             | 4.390000     | -3.890000   | 1.500000   | 0.345000   | 0.000000  |
| max                             | 11.500000    | 4.610000    | 10.610000  | 0.670000   | 1.390000  |