Practice Problems

Book: PRINCIPLES OF SOFT COMPUTING, 2ND ED by S. N. Sivanandam, S. N. Deepa

Dr Dayal Kumar Behera

Example 1: Activation Function

 Obtain the output of the neuron Y for the network shown in Figure 3 using activation functions as: (i) binary sigmoidal and (ii) bipolar sigmoidal.

Figure 3 Neural net.

Example 1: Activation Function

Solution: The given network has three input neurons with bias and one output neuron. These form a single-layer network. The inputs are given as $[x_1, x_2, x_3] = [0.8, 0.6, 0.4]$ and the weights are $[w_1, w_2, w_3] = [0.1, 0.3, -0.2]$ with bias b = 0.35 (its input is always 1).

Example 1: Activation Function

The net input to the output neuron is

$$y_{in} = b + \sum_{i=1}^{n} x_i w_i$$

 $\{n=3, \text{ because only } \}$

3 input neurons are given]

$$= b + x_1w_1 + x_2w_2 + x_3w_3$$

$$= 0.35 + 0.8 \times 0.1 + 0.6 \times 0.3$$

$$+0.4 \times (-0.2)$$

$$= 0.35 + 0.08 + 0.18 - 0.08 = 0.53$$

(i) For binary sigmoidal activation function,

$$y = f(y_{in}) = \frac{1}{1 + e^{-y_{in}}} = \frac{1}{1 + e^{-0.53}} = 0.625$$

(ii) For bipolar sigmoidal activation function,

$$y = f(y_{in}) = \frac{2}{1 + e^{-y_{in}}} - 1 = \frac{2}{1 + e^{-0.53}} - 1$$
$$= 0.259$$

Example 2: Perceptron (AND Function)

- Find the new weights after epoch-1 to classify AND function with bipolar input and targets using perceptron learning algorithm/rule.
- Set initial weight w1=w2=b=0. learning rate = 1 and threshold = 0.

Architecture

Figure 1 Perceptron network for AND function.

First training sample

For the first training sample, x1 = 1, X2 = 1 and t = 1, with weights and bias, w1 = 0, w2 = 0 and b=0. learning rate $\alpha = 1$.

Calculate the net input

$$y_{in} = b + x_1 w_1 + x_2 w_2$$

= 0 + 1 \times 0 + 1 \times 0 = 0

 The output y is computed by applying activations over the net input calculated:

$$y = f(y_{in}) = \begin{cases} 1 & \text{if } y_{in} > 0 \\ 0 & \text{if } y_{in} = 0 \\ -1 & \text{if } y_{in} < 0 \end{cases}$$

Here we have taken $\theta = 0$. Hence, when, $y_{in} = 0$, y = 0.

Check whether t = y. Here, t = 1 and y = 0, so
 t ≠ y, hence weight updation takes place:

$$w_i(\text{new}) = w_i(\text{old}) + \alpha x_i$$

 $w_1(\text{new}) = w_1(\text{old}) + \alpha t x_1 = 0 + 1 \times 1 \times 1 = 1$
 $w_2(\text{new}) = w_2(\text{old}) + \alpha x_2 = 0 + 1 \times 1 \times 1 = 1$
 $b(\text{new}) = b(\text{old}) + \alpha t = 0 + 1 \times 1 = 1$

Here, the change in weights are

$$\Delta w_1 = \alpha t x_1;$$

 $\Delta w_2 = \alpha t x_2;$
 $\Delta b = \alpha t$

Weight and Bias updates

	· —				C Ludwal	-	-		W	eight	s
Input		Target	et Net input	Calculated output .	Wei	w_1	w_2	ь			
x _l	<i>x</i> ₂	1	(t)	(y_{in})	(y)	Δw_1	Δw_2	Δb	(0	0	0)
EPO	CH-1										
1	1	1	1	0	0	1	1	1	1	1	1
1	-1	1	-1	1	1	-1	1	-1	0	2	0
-1	1	1	-1	2	1	+1	-1	-1	1	1	-1
-1	-1	1	-1	-3	-1	0	0	0	1	-1	- 1
EPO	CH-2								<u> </u>		
1	1	1	1	1	1	0	0	0	Į	1	-1
1	l	1	-1	-1	- ·1	0	0	0	1	1	-1
_î	1	1	-1	-1	-1	0	0	0	I	1	-1
-1	_1	ì	-1	-3	-1	0	0	0	1	1	-1

Example 3: Perceptron (OR Function)

- Find the new weights after epoch-1 to classify OR function with bipolar input and targets using perceptron learning algorithm/rule.
- Set initial weight w1=w2=b=0. learning rate = 1 and threshold = 0.

Example 3: Perceptron (OR Function)

Example 4: Perceptron

• Find weights required to perform the following classification using perceptron network. Assume learning rate α as 1 and initial weights as 0 and threshold θ = 0.2.

		Input			
x 1 ·	<i>x</i> ₂	<i>x</i> 3	x 4	b	Target (t)
· 1	1	1	1	1	1
-1	1	-1	-I	1	1
1	1	1	-1	1	-1
1	-1	-1	1	1	-1

Activation

Since the threshold $\theta = 0.2$, so the activation function is

$$y = \begin{cases} 1 & \text{if } y_{in} > 0.2 \\ 0 & \text{if } -0.2 \le y_{in} \le 0.2 \\ -1 & \text{if } y_{in} < -0.2 \end{cases}$$

The net input is given by

$$y_{in} = b + x_1 w_1 + x_2 w_2 + x_3 w_3 + x_4 w_4$$

Weight updates during Training

							•		•••		•			We	ights	-	
	I	puts	;		Target	Net input	Output		Weigh	it char	iges		$(w_1$	w_2	w_3	w4	<i>b</i>)
$(x_{l}$	x_2	<i>x</i> 3	<i>x</i> 4	b)	(t)	(y_{in})	(y)	$(\Delta w_1$	Δw_2	Δw_3	Δw_4	Δb)	(0	0	0	0	0)
EPC	CH	-1				_											_
(1	ı	_ ı	1	1)	1	0	0	I	1	1	1	1	1	1	1	1	1
(i	1	-1	-1	1)	1	-1	-1	-1	1	-1	-1	1	0	2	0	0	2
(1	1	1	-1	1)	-1	4	1	-1	-1	1	1	-1	-1	1	-1	1	1
(1	-1	-1	1	1)	1	1	1	-1	1	1	-1	-1	-2	2	0	0	0
EPC	OCH	-2															
(1	1	_ ı	1	1)	1	0	0	1	1	1	1	1	- i	3	1	1	1
(- 1	1	-1	-1	1)	1	3	1	0	0	0	0	0	-1	3	1	1	i
(1	1	1	-1	I)	-1	4	1	-1	-1	-1	1	-1	-2	2	0	2	0
(1	-1	-1	1	1)	-1	-2	-1	0	0	0	0	0	-2	2	0	2	0
EPC	CH	-3															
(1	$\overline{1}$	_ i	I	1)	I	2	1	0	0	0	0	0	-2	2	0	2	0
(-I	1	-1	-1	1)	1	2	1	0	0	0	0	0	-2	2	0	2	0
(1	1	1	-1	1)	-1	-2	1	0	0	0	0	0	-2	2	0	2	0
<u>(I</u>	_1	-1	1	1)	1	-2	-1	0	0	0	0	0	-2	2	0	2	0

Model for Testing

Example 5: ADALINE

- Find the new weights and total squared error after epoch-1 to classify OR function with bipolar input and targets using ADALINE network.
- Set initial weight w1=w2=b=0.1. learning rate = 0.1.

			-
t	1	*2	x_1
<u> </u>	1	1	1
1	1	-1	1
ı	1	1	-1
-1	1	-1	<u>-1</u>

Architecture

ADALINE: OR

For the first input sample, X1 = 1, X2 = 1, t = 1, we calculate the net input as

$$y_{in} = b + \sum_{i=1}^{n} x_i w_i = b + \sum_{i=1}^{2} x_i w_i$$

= $b + x_1 w_1 + x_2 w_2$
= $0.1 + 1 \times 0.1 + 1 \times 0.1 = 0.3$

Weight Updates

$$(t-y_{in}) = (1-0.3) = 0.7$$

$$w_i(\text{new}) = w_i(\text{old}) + \alpha(t - y_{in})x_i$$

$$\Delta w_1 = \alpha(t - y_{in})x_1$$
$$\Delta w_2 = \alpha(t - y_{in})x_2$$
$$\Delta b = \alpha(t - y_{in})$$

$$w_1(\text{new}) = w_1(\text{old}) + \Delta w_1 = 0.1 + 0.1 \times 0.7 \times 1$$

 $= 0.1 + 0.07 = 0.17$
 $w_2(\text{new}) = w_2(\text{old}) + \Delta w_2 = 0.1$
 $+ 0.1 \times 0.7 \times 1 = 0.17$
 $b(\text{new}) = b(\text{old}) + \Delta b = 0.1 + 0.1 \times 0.7 = 0.17$

Training

_			Net						Weights		
- kı	nputs	_ Targe			We	ight chang	ges	w_1	w ₂	ь	Error
x_1	x ₂]		y _{in_}	$(t-y_{in})$	Δw_1	Δw_2	Δb	(0.1	0.1	0.1)	$(t-y_{in})^2$
EPO	EPOCH-1										
1	1 1	1 1	0.3	0.7	0.07	0.07	0.07	0.17	0.17	0.17	0.49
ì	-1	1 1	0.17	0.83	0.083	-0.083	0.083	0.253	0.087	0.253	0.69
-1	1	1 1	0.087	0.913	-0.0913	0.0913	0.0913	0.1617	0.1783	0.3443	0.83
-1	-1	i -1	0.0043	-1.0043	0.1004	0.1004	-0.1004	0.2621	0.2787	0.2439	1.01
EP	OCH-	2		_							
1		1 1	0.7847	0.2153	0.0215	0.0215	0.0215	0.2837	0.3003	0.2654	0.046
1	_	1 1	0.2488	0.7512	0.7512	-0.0751	0.0751	0.3588	0.2251	0.3405	0.564
-l		1 1	0.2069	0.7931	-0.7931	0.0793	0.0793	0.2795	0.3044	0.4198	0.629
-1	_	1 -1	-0.1641	-0.8359	0.0836	0.0836	-0.0836	0.3631	0.388	0.336	0.699
	OCH-			_							
1		1 1	1.0873	-0.0873	-0.087	-0.087	-0.087	0.3543	0.3793	_ , _	0.0076
1		1 1	0.3025	+0.6975	0.0697	-0.0697	0.0697	0.4241	0.3096		0.487 .
-1	_	1 1	0.2827	0.7173	-0.0717	0.0717	0.0717	0.3523	0.3813		0.515
1	_	1 -1	-0.2647	-0.7353	0.0735	0.0735	-0.0735	0.4259	0.4548	0.3954	0.541
	OCH-										
I	-	1 1	1.2761	-0.2761	-0.0276	-0.0276	-0.0276			0.3678	0.076
1	_	1 1	0.3389	0.6611	0.0661	-0.0661	0.0661	0.4644	0.3611	0.4339	0.437
-1	_	1 1	0.3307	0.6693	-0.0669	0.0669	0.0699	0.3974	0.428	0.5009	0.448
-1	_	I -1	-0.3246	-0.6754	0.0675	0.0675	-0.0675	0.465	0.4956	0.4333	0.456
	OCH-			1							
1	_	1 1	1.3939	-0.3939	-0.0394	-0.0394	-0.0394		-		0.155
1	-1	1 1	0.3634	0.6366	0.0637	-0.0637	0.0637	0.4893			0.405
-!		1 1	0.3609	0.6391	-0.0639	0.0639				0.5215	0.408
<u>-1</u>	<u>-1</u>	1 – l	-0.3603	-0.6397	0.064	0.064	-0.064	0.4893	0.5204	0.4575	0.409

Total Squared Error

<u> </u>	
Epoch 1	3.02
Epoch 2	1.938
Epoch 3	1.5506
Epoch 4	1.417
Epoch 5	1.377

It can be noticed that as training goes on, the error value gets minimized. Hence, training may be continued for further minimization of error.

Model for Testing

MADALINE

Delta Rule

new
$$w_{ij} = w_{ij} + \Delta w_{ij}$$
 $x_i = w_{ij}$ $w_{ij} = y_{i}$ w_{ij}

Generalized Delta Rule

new sold +
$$\Delta w_{ij}$$
 x_i w_{ij} w_{ij} y_{ij} $\Delta w_{ij} = \eta S_j x_i$ w_{ij} w_{i

Generalized Delta Rule

In case of sigmoid or logistic activation (Busary)
$$\phi(x) = \frac{1}{1+e^{-\lambda x}} \text{ where } \lambda = \text{steepness}$$

$$\text{parameter}$$

$$\text{vet } \lambda = 1,$$

$$\phi(x) = \frac{1}{1+e^{-\lambda x}}$$

$$\phi(x) = \phi(x) \cdot (1-\phi(x))$$

Generalized Delta Rule

to ease of linear activation

$$\phi'(n) = n$$

$$\phi'(n) = \frac{d}{dn}(n) = 1$$

$$S_{j} = e_{j} \phi'(n) = e_{j} \cdot 1 = e_{j}$$

$$Wij = Wij + 2e_{j}n_{i}$$
Note# when we use linear activation function, the generalized delta reule becomes suipple delta reule.

Delta Rule vs. Generalized Delta Rule

```
Note#

De Ha Rule - uses linear activation function

Generalized Delta Rule - uses sigmoid activation
```

Back Propagation NN

Forward Pass

Forward Pass

Error

Error associated with output unit Y_k $e_k = t_k - y_k$ t_k : tanget y_k : computed

output $e_k^2 = (t_k - y_k)^2$

. squared error is minimized by the use of steepest descent/Gradient descent method.

Error

. Fore easy mathematical descivation, error of Kth output neuron can be written as

. Fore one training sample, error associated with output layer

Fore "T" training samples, total error in the predration $E_{k} = \underbrace{\frac{1}{2}}_{k} \underbrace{\frac{1}{2}}_{k$

Backward Pass (Back Propagation of Error)

Local Gradient / Error correction term/ Back-propagated error from the output unit \$ (k = 1 to p)

change in weights and bias as per the Generalized Delta Rule (Steepest descent

$$w_{jk} = w_{jk} + \Delta w_{jk}$$

where $w_{jk} = 2 S_k Z_j$

This Sx is proof output layer is propagated to each hidden unit. (backwards)

Backward Pass

Backward Pass

```
Note# modified Greneralized De Ha Rule with
     momentum constant
         Wik = Wik + & DWjk + DWjk
                            DWIK = 2 Sk Zj
                                       d: momentum term
    7: Learning rate of tearning But unstable.

71, higher rate of learning But unstable.

71, Slower rate of learning, But Stube.
    of with &, higher bearing + stable.

(Rottek convergence) + (less illetron)
```

Backward Pass

Hidden Layer weight updates

$$(t+1) \quad (t) \quad (t-1) \quad (t)$$

$$\forall ij = \forall ij + d \Delta \forall ij + \Delta \forall ij$$

$$\Delta \forall ij = \eta S_{j}^{(h)} x_{i}$$

$$hidden Layer$$

$$local pradient$$

Practice Problem

Using back-propagation network, find the new weights for the given NN. It is presented with the input pattern [0, 1] and the target output is 1. Use a learning rate = 0.25 and binary sigmoidal activation function.

Practice Problem

Forward Pass (Hidden Layer Calculation)

$$Zin2 = 1 \cdot v_{01} + x_{1} \cdot v_{11} + x_{2} \cdot v_{2}$$

$$= 1 \cdot 0.3 + 0.6.6 + 1 \times -0.1 = 0.2$$

$$= 1 \cdot v_{02} + x_{1} \cdot v_{12} + x_{2} \cdot v_{22}$$

$$= 1 \cdot 0.5 + 0 \times -0.3 + 1 \times 0.4 = 0.9$$

Forward Pass (Hidden Layer Calculation)

Applying activation function to calculate the output of disolder layer.

$$Z_{1} = f\left(Z_{1}^{-1}\right) = \frac{1}{1+e^{-2i\pi t}} = \frac{1}{1+e^{-0.2}} = 0.5498$$

$$Z_{2} = f\left(Z_{1}^{-1}\right) = \frac{1}{1+e^{-2i\pi t}} = \frac{1}{1+e^{-0.2}} = 0.7109$$

Forward Pass (Output Layer Calculation)

sutput uput
$$\begin{cases} y_{in1} = 1 - \omega_{01} + z_{1} - \omega_{11} + z_{2} \omega_{21} \\ = 1 - 0 - 2 + 0 - 5498 \cdot 0 - 4 + 0 - 7109 * 0 - 1 = 6 - 691 \end{cases}$$

sutput sutput $\begin{cases} y_{i} = f(y_{in1}) = \frac{1}{1 + e^{-3}\omega_{11}} = \frac{1}{1 + e^{-3}\omega_{11}}$

Backward Pass (Output Layer Calculation)

Local Local
$$S_1 = (t_1 - y_1) f'(y_{in1})$$

Synon subject $s_1 = (t_1 - y_1) f'(y_{in1})$
 $s_2 = (t_1 - y_1) f'(y_{in1})$
 $s_3 = (t_1 - y_1) f'(y_{in1})$
 $s_4 = (t_1 - y_1) f'(y_{in1})$

Backward Pass (Output Layer Calculation)

Backward Pass (Output Layer Calculation)

$$\Delta \omega_{01} = 2.8.1 = 0.25 + 0.1191 + 1 = 0.02978$$

$$\Delta \omega_{11} = 2.8.21 = 0.25 + 0.1191 + 0.5498$$

$$= 0.0164$$

$$\Delta \omega_{21} = 2.8.22 = 0.25 + 0.1191 + 0.7109$$

$$= 0.02117$$

Output Layer Updated Weight

 $W_{01} (new) = W_{01} (old) + \Delta W_{01} = -0.2 + 0.0298 + 8$ $W_{01} (new) = W_{01} (old) + \Delta W_{01} = 0.4 + 0.0164 = 0.4164$ $W_{21} (new) = W_{21} (old) + \Delta W_{21} = 0.1 + 0.02117 = 0.12117$

Backward Pass (Hidden Layer Calculation)

Backward Pass (Hidden Layer Calculation)

$$\begin{cases} 8_{in1} = 8_{1} \cdot \omega_{11} = 0 - 1191 \times 0.4 = 0.04764 \\ 8_{in2} = 8_{1} \cdot \omega_{21} = 0 - 1191 \times 0.0 = 0.01191 \end{cases}$$

$$\begin{cases} 8_{in2} = 8_{1} \cdot \omega_{21} = 0 - 1191 \times 0.0 = 0.01191 \\ 8_{1} = 8_{1} \cdot (2in1) = 8_{1} \cdot (2in1) = 8_{1} \cdot (2in1) = 0.04764 + 0.5496 (1 - 0.5498) \\ = 0.04764 + 0.5496 (1 - 0.5498) = 0.0118 \end{cases}$$

$$\begin{cases} 8_{1} = 8_{1} \cdot \omega_{21} = 0 - 1191 \times 0.0 = 0.01191 \\ = 0.01191 \times 0.0118 \end{cases}$$

$$\begin{cases} 8_{1} = 8_{1} \cdot \omega_{21} = 0 - 1191 \times 0.0 = 0.01191 \\ = 0.01191 \times 0.01191 \end{cases}$$

$$\begin{cases} 8_{1} = 8_{1} \cdot \omega_{21} = 0 - 1191 \times 0.0 = 0.01191 \\ = 0.01191 \times 0.01191 \end{cases}$$

$$\begin{cases} 8_{1} = 8_{1} \cdot \omega_{21} = 0 - 1191 \times 0.0 = 0.01191 \\ = 0.01191 \times 0.01191 \end{cases}$$

$$\begin{cases} 8_{1} = 8_{1} \cdot \omega_{21} = 0 - 1191 \times 0.0 = 0.01191 \\ = 0.01191 \times 0.01191 \end{cases}$$

Backward Pass (Output Layer Calculation)

$$\Delta V_{01} = 2 S_{1} \cdot 1 = 0.25 * 0.0118 = 0.00295$$

$$\Delta V_{11} = 2 S_{1} \cdot 2 = 0.25 * 0.0118 * 0 = 0$$

$$\Delta V_{21} = 2 S_{1} \cdot 2 = 0.25 * 0.0118 * 1 = 0.00295$$

$$\Delta V_{21} = 2 S_{2} \cdot 2 = 0.25 * 0.00245 * 1 = 0.0006125$$

$$\Delta V_{02} = 2 S_{2} \cdot 2 = 0.25 * 0.00245 * 0 = 0$$

$$\Delta V_{12} = 2 S_{2} \cdot 2 = 0.25 * 0.00245 * 1 = 0.0006125$$

$$\Delta V_{22} = 2 S_{2} \cdot 2 = 0.25 * 0.00245 * 1 = 0.0006125$$

Hidden Layer Updated Weight

Derivative of activation function f()

Bisary Segmond function | Logistic function

$$f(n) = \frac{1}{1+e} \lambda x$$

where $\lambda = \text{steepness parameter}$

Derivative of this function

$$f'(n) = \lambda f(n) [1-f(n)]$$

Bipolar Segmond

$$f'(n) = \frac{2}{1+e} \lambda x = -1 = \frac{1-e}{1+e} \lambda x$$

$$f'(n) = \frac{2}{1+e} (1+f(n)) (1-f(n))$$

Derivative of activation function f()

Hyperbolic tangent function
$$h(n) = \frac{e^{2} - e^{2}}{e^{2} + e^{2}} = \frac{1 - e^{2}}{1 + e^{2}}$$

$$h'(n) = (1 + h(n)) (1 - h(n))$$

$$(Hyperbolic tangent function is closely related to bipolar tenseignore)$$