

جامعـــة Princess Sumaya الأميــرة سميّــة الأميــرة سميّــة for Technology للتكنولوجيا

PHYSICS LAB

(20147)

Experiment No. 4 Static Equilibrium Composition of Concurrent Forces

Name:	Reg.No. ()
Partner name:	Class ()
Date / / 2021	Mark ()

Composition of Concurrent forces

1. Objectives:		
2. Apparatus:		
3. Data:	Sample:	

a) Complete the following table:

No.	\mathbf{F}_1		\mathbf{F}_2		F ₃		Equilibrant Force E		Resultant force from calculations R	
	Value gm	Angle θ ₁	Value gm	Angle θ ₂	Value gm	Angle θ_3	Value gm	Angle φ	Value gm	Angle θ
1.										
2.										
3.										

Theoretical Calculations:		
No. 1		
110. 1		
No.2		

b) Calculate the resultant force R for each case in the above table theoretically by using

components method. Write your results in the table.

No.3			
No.3			
No.3			
No.3			
No.3			
No.3		 	
	No.3		

c) Find the resultant force for one case from the above table using the graphical method.

Case no. ____

Scale: 1cm = cm

 $\mathbf{F_1} = \mathbf{cm}$

 $\mathbf{F}_2 =$ cm

 $\mathbf{F}_3 = \mathbf{cm}$

The result:

R= cm, R= gm.

Θ=

4. Questions:

1. A force has an x- component of 5.5 N, and a y- component of -3.5 N. Which diagram in the figure gives the direction of the force?

The answer is _____