

Prof. Dr. Florian Künzner

Technical University of Applied Sciences Rosenheim, Computer Science

CA 8 – Memory 1

The lecture is based on the work and the documents of Prof. Dr. Theodor Tempelmeier

Computer Science

Goal

Goal

Summary

CA::Memory 1 - Hardware

- Memory types
- Memory chips
- Memory modules
- Modern memory modules

Computer Science

Summary

Memory types

RAM vs ROM

RAM - Random access memory

Memory types

RAM vs ROM

RAM - Random access memory

- For **read and write** access

- For **read only** memory access

Technische Hochschule Rosenheim Technical University of Applied Sciences

Memory types

RAM vs ROM

RAM - Random access memory

- For **read and write** access
- Usage: **programs and data**
- It is (usually) a volatile memory (data are lost when power is switched off)
- Very fast access time
- High power consumption
- Expensive

ROM - Read only memory

- For **read only** memory access
- Usage: **firmware** (BIOS, UEFI)
- It is a non-volatile memory (remembers the data even if power is switched off)
- Usually slower than RAM
- Low power consumption
- Cheaper than RAM
- Example: EPROM, EEPROM

Summary

RAM vs ROM

RAM - Random access memory

- For **read and write** access
- Usage: programs and data
- It is (usually) a volatile memory (data are lost when power is switched off)
- Very fast access time
- High power consumption
- Expensive

- For **read only** memory access
- Usage: **firmware** (BIOS, UEFI)
- It is a non-volatile memory (remembers the data even if power is switched off)
- Usually slower than RAM
- Low power consumption
- Cheaper than RAM
- Example: EPROM, EEPROM

Memory types

RAM vs ROM

RAM - Random access memory

- For **read and write** access
- Usage: programs and data
- It is (usually) a **volatile** memory (data are lost when power is switched off)
- Very fast access time

- For **read only** memory access
- Usage: **firmware** (BIOS, UEFI)
- It is a **non-volatile** memory (remembers the data even if power is switched off)
- Usually **slower than RAM**

Memory types

RAM vs ROM

RAM - Random access memory

- For **read and write** access
- Usage: programs and data
- It is (usually) a **volatile** memory (data are lost when power is switched off)
- Very fast access time
- **High power** consumption

- For **read only** memory access
- Usage: **firmware** (BIOS, UEFI)
- It is a **non-volatile** memory (remembers the data even if power is switched off)
- Usually **slower than RAM**
- Low power consumption

Memory modules

CAMPUS Rosenheim **Computer Science**

Memory types

RAM vs ROM

RAM - Random access memory

Bits and bytes

- For **read and write** access
- Usage: programs and data
- It is (usually) a **volatile** memory (data are lost when power is switched off)
- Very fast access time
- **High power** consumption
- **Expensive**

- For **read only** memory access
- Usage: **firmware** (BIOS, UEFI)
- It is a **non-volatile** memory (remembers the data even if power is switched off)
- Usually **slower than RAM**
- Low power consumption
- **Cheaper** than RAM

Bits and bytes

Memory types

RAM vs ROM

RAM - Random access memory

- For **read and write** access
- Usage: programs and data
- It is (usually) a **volatile** memory (data are lost when power is switched off)
- Very fast access time
- **High power** consumption
- **Expensive**

- For **read only** memory access
- Usage: **firmware** (BIOS, UEFI)
- It is a **non-volatile** memory (remembers the data even if power is switched off)
- Usually **slower than RAM**
- Low power consumption
- **Cheaper** than RAM
- Example: EPROM, EEPROM

Goal Memory types Bits and bytes Memory chips Memory modules Summary

CAMPUS Rosenheim Computer Science

Memory types

It's all about RAM!

Goal Memory types Bits and bytes Memory chips Memory modules Summary

CAMPUS Rosenheim Computer Science

Memory types

SRAM vs DRAM

Property

SRAM - Static RAM

Memory types

SRAM vs DRAM

Property

Construction

SRAM - Static RAM

Complex

DRAM - Dynamic RAM

+ Simple

Summary

Memory types

SRAM vs DRAM

Property

Construction

Realisation of a bit - 4..6 transistors

SRAM - Static RAM

- Complex

- + Simple
- + 1 transistor + 1 capacitor

Memory types

SRAM vs DRAM

Memory modules

Property

Construction

Realisation of a bit - 4..6 transistors

Speed

SRAM - Static RAM

- Complex
- + Faster

- + Simple
- + 1 transistor + 1 capacitor
- Slower

SRAM vs DRAM

Property

Construction

Realisation of a bit - 4..6 transistors

Speed

Size (capacity)

SRAM - Static RAM

- Complex
- + Faster
- Small

- + Simple
- + 1 transistor + 1 capacitor
- Slower
- + Large

SRAM vs DRAM

Property

Construction

Realisation of a bit

Speed

Size (capacity)

Cost

SRAM - Static RAM

- Complex
- 4..6 transistors
- + Faster
- Small
- Expensive

- + Simple
- + 1 transistor + 1 capacitor
- Slower
- + Large
- + Cheap

SRAM vs DRAM

Property

Construction

Realisation of a bit

Speed

Size (capacity)

Cost

Used for

SRAM - Static RAM

- Complex
- 4..6 transistors
- + Faster
- Small
- Expensive

Cache memory

DRAM - Dynamic RAM

- + Simple
- + 1 transistor + 1 capacitor
- Slower
- + Large
- + Cheap

Main memory

SRAM vs DRAM

Property

Construction

Realisation of a bit

Speed

Size (capacity)

Cost

Used for

Density

SRAM - Static RAM

- Complex
- 4..6 transistors
- + Faster
- Small
- Expensive

Cache memory

Less dense

DRAM - Dynamic RAM

- + Simple
- + 1 transistor + 1 capacitor
- Slower
- + Large
- + Cheap

Main memory

+ Highly dense

SRAM vs **DRAM**

Property

Construction

Realisation of a bit

Speed

Size (capacity)

Cost

Used for

Density

Charge leakage

SRAM - Static RAM

- Complex
- 4..6 transistors
- + Faster
- Small
- Expensive

Cache memory

- Less dense
- + Not present

DRAM - Dynamic RAM

- + Simple
- + 1 transistor + 1 capacitor
- Slower
- + Large
- + Cheap

Main memory

- + Highly dense
- Present: refresh required

SRAM vs DRAM

Property

Construction

Realisation of a bit - 4..6 transistors

Speed

Size (capacity)

Cost

Used for

Density

Charge leakage

Power consumption + Low

SRAM - Static RAM

- Complex
- + Faster
- Small
- Expensive

Cache memory

- Less dense
- + Not present

DRAM - Dynamic RAM

- + Simple
- + 1 transistor + 1 capacitor
- Slower
- + Large
- + Cheap

Main memory

- + Highly dense
- Present: refresh required
- High

Computer Science

Orders of magnitudes for bits and bytes

Bits:

Bits (decimal)					
Symbol	Power	Num bits	Name		
1 kbit	10 ³	1.000	kilobit		
1 Mbit	10 ⁶	1.000.000	megabit		
1 Gbit	10 ⁹	1.000.000.000	gigabit		
1 Tbit	10^{12}	1.000.000.000.000	terabit		

Bits (binary)					
Symbol	Power	Num bits	Name		
1 Kibit	2^{10}	1.024	kibibit		
1 Mibit	2^{20}	1.048.576	mebibit		
1 Gibit	2^{30}	1.073.741.824	gibibit		
1 Tibit	2^{40}	1.099.511.627.776	tebibit		

Bytes:

				1 KiB			
				1 GiB			
						1.099.511.627.776	

Summary

Computer Science

Orders of magnitudes for bits and bytes

Bits:

Bits (decimal)					
Symbol	Power	Num bits	Name		
1 kbit	10 ³	1.000	kilobit		
1 Mbit	10 ⁶	1.000.000	megabit		
1 Gbit	10 ⁹	1.000.000.000	gigabit		
1 Tbit	10^{12}	1.000.000.000.000	terabit		

Bits (binary)					
Symbol	Power	Num bits	Name		
1 Kibit	2^{10}	1.024	kibibit		
1 Mibit	2^{20}	1.048.576	mebibit		
1 Gibit	2^{30}	1.073.741.824	gibibit		
1 Tibit	2^{40}	1.099.511.627.776	tebibit		

Bytes:

Bytes (decimal)					
Symbol	Power	Num bytes	Name		
1 kB	10 ³	1.000	Kilobyte		
1 MB	10^{6}	1.000.000	Megabyte		
1 GB	10^{9}	1.000.000.000	Gigabyte		
1 TB	10^{12}	1.000.000.000.000	Terabyte		

Bytes (binary)					
Symbol	Power	Num bytes	Name		
1 KiB	2^{10}	1.024	Kibibyte		
1 MiB	2^{20}	1.048.576	Mebibyte		
1 GiB	2^{30}	1.073.741.824	Gibibyte		
1 TiB	2^{40}	1.099.511.627.776	Tebibyte		

Summary

Memory types Bits and bytes Memory chips Memory modules Summary

CAMPUS Rosenheim

Computer Science

Memory modules and chips - overview

Computer Science

Memory chips

Arrangement of memory cells: (within a memory chip) Linear Arrangement:

- To address 1-out-of-2ⁿ memory cells, *n* address lanes are required.
- Problem: Address lanes are expensive (takes place on the chip)

Memory modules

CAMPUS Rosenheim

Computer Science

Memory chips

Arrangement of memory cells: (within a memory chip) **Linear Arrangement:**

Bits and bytes

- To address 1-out-of- 2^n memory cells, naddress lanes are required.

Memory chips

Arrangement of memory cells: (within a memory chip) Linear Arrangement:

- To address 1-out-of-2ⁿ memory cells, *n* address lanes are required.
- Problem: Address lanes are expensive (takes place on the chip)

Memory chips

Arrangement of memory cells: (within a memory chip)

Linear Arrangement:

- To address 1-out-of- 2^n memory cells, naddress lanes are required.
- Problem: Address lanes are expensive (takes place on the chip)

Matrix Arrangement:

Memory modules

- To address 1-out-of-2ⁿ memory cells, only n/2 address lanes are required.

Memory chips

Arrangement of memory cells: (within a memory chip)

Linear Arrangement:

- To address 1-out-of-2ⁿ memory cells, *n* address lanes are required.
- Problem: Address lanes are expensive (takes place on the chip)

Matrix Arrangement:

- To address 1-out-of- 2^n memory cells, only n/2 address lanes are required.
- The address is usually transferred in two steps:
 - 1. Row address
 - 2: Column address
- Only half the address lanes are required

Computer Science

Memory chips

Arrangement of memory cells: (within a memory chip)

Linear Arrangement:

- To address 1-out-of- 2^n memory cells, n address lanes are required.
- Problem: Address lanes are expensive (takes place on the chip)

Matrix Arrangement:

- To address 1-out-of- 2^n memory cells, only n/2 address lanes are required.
- The address is usually transferred in two steps:
 - 1: Row address
 - 2: Column address
- Only half the address lanes are required

Computer Science

Memory chips

Arrangement of memory cells: (within a memory chip)

Linear Arrangement:

- To address 1-out-of- 2^n memory cells, naddress lanes are required.
- Problem: Address lanes are expensive (takes place on the chip)

Matrix Arrangement:

- To address 1-out-of-2ⁿ memory cells, only n/2 address lanes are required.
- The address is usually transferred in two steps:
 - 1: Row address
 - 2: Column address

Computer Science

Memory chips

Arrangement of memory cells: (within a memory chip)

Linear Arrangement:

- To address 1-out-of- 2^n memory cells, n address lanes are required.
- Problem: Address lanes are expensive (takes place on the chip)

Matrix Arrangement:

- To address 1-out-of- 2^n memory cells, only n/2 address lanes are required.
- The address is usually transferred in two steps:
 - 1: Row address
 - 2: Column address
 - Only half the address lanes are required

Summary

Summary

Memory chips

Chip types:

Terminology: Description

Type Unit

Memory modules

Memory chips

Chip types:

Terminology:

Description

Type Unit

Chip with x mega that provides 1 bit per address $\times M \times 1$ bit

Memory chips

Chip types:

Terminology:

Description

Type Unit

Chip with x mega that provides 1 bit per address $xM \times 1$ bit Chip with x mega that provides 2 bit per address $xM \times 2$ 2 bit

Type

Unit

CAMPUS Rosenheim Computer Science

Memory chips

Chip types:

Terminology:

Description

Chip with x mega that provides 1 bit per address $\times M \times 1$ bit

Chip with x mega that provides 2 bit per address $xM \times 2$ 2 bit

Chip with x mega that provides 4 bit per address $\times M \times 4$ nibble

256 41 . 4 = 1024 MI 61 + B = 128 MB

Unit

Type

CAMPUS Rosenheim

Computer Science

Memory chips

Chip types:

Terminology:

Description

Chip with x mega that provides 1 bit per address $\times M \times 1$ bit Chip with x mega that provides 2 bit per address $\times M \times 2$ 2 bit Chip with x mega that provides 4 bit per address $\times M \times 4$ nibble Chip with x mega that provides 8 bit per address $\times M \times 8$ byte

Memory chips

Chip capacity:

On these chips: K means Ki, M means Mi, G means Gi, ... xK/xM/xG denotes the number of chip cell rows inside the chip

Chip capacity = xM x number of bits per chip

- 16M x 1: 16Mi x 1 = 16 Mibit => 16Mi/8 = 2 MiB
- 16M x 2: 16Mi x 2 = 32 Mibit => 32Mi/8 = 4 MiB
- 1G x 4: 1Gi x 4 = 4 Gibit => 4Gi/8 = 512 MiB
- 1G x 8: 1Gi x 8 = 8 Gibit => 8Gi/8 = 1 GiB

Memory chips

Chip capacity:

On these chips: K means Ki, M means Mi, G means Gi, ... xK/xM/xG denotes the number of chip cell rows inside the chip

Chip capacity = xM x number of bits per chip

- 16M x 1: 16Mi x 1 = 16 Mibit => 16Mi/8 = 2 MiB
- 16M x 2: 16Mi x 2 = 32 Mibit => 32Mi/8 = 4 MiB
- 1G x 4: 1Gi x 4 = 4 Gibit => 4Gi/8 = 512 MiB
- 1G x 8: 1Gi x 8 = 8 Gibit => 8Gi/8 = 1 GiB

Memory modules

CAMPUS Rosenheim **Computer Science**

Memory chips

Chip capacity:

On these chips: K means Ki, M means Mi, G means Gi, ... xK/xM/xG denotes the number of chip cell rows inside the chip

Chip capacity $= xM \times number of bits per chip$

- $16M \times 1: 16Mi \times 1 = 16 \text{ Mibit} => 16Mi/8 =$ 2 MiB
- $16M \times 2$: $16Mi \times 2 = 32 \text{ Mibit} => 32Mi/8 =$ 4 MiB

Memory chips

Chip capacity:

On these chips: K means Ki, M means Mi, G means Gi, ... xK/xM/xG denotes the number of chip cell rows inside the chip

Chip capacity = $xM \times number of bits per chip$

- 16M x 1: 16Mi x 1 = 16 Mibit => 16Mi/8 = 2 MiB
- 16M x 2: 16Mi x 2 = 32 Mibit => 32Mi/8 = 4 MiB
- 1G x 4: 1Gi x 4 = 4 Gibit => 4Gi/8 = 512 MiB
- 1G x 8: 1Gi x 8 = 8 Gibit => 8Gi/8 = 1 GiB

Memory modules

CAMPUS Rosenheim **Computer Science**

Memory chips

Chip capacity:

On these chips: K means Ki, M means Mi, G means Gi, ... xK/xM/xG denotes the number of chip cell rows inside the chip

Chip capacity $= xM \times number of bits per chip$

- $16M \times 1: 16Mi \times 1 = 16 \text{ Mibit} => 16Mi/8 =$ 2 MiB
- $16M \times 2$: $16Mi \times 2 = 32 \text{ Mibit} => 32Mi/8 =$ 4 MiB
- $1G \times 4$: $1Gi \times 4 = 4 Gibit => 4Gi/8 = 512 MiB$
- $1G \times 8: 1Gi \times 8 = 8 Gibit => 8Gi/8 =$ 1 GiB

Technische Hochschule Rosenheim Technical University of Applied Sciences

Questions?

All right? \Rightarrow

Question? \Rightarrow

and use chat

speak after | ask you to

Memory modules

The memory chips on a memory module are usually arranged in a matrix layout.

[image source: samsung.com]

Memory address is divided into:

- Chip select address
- Chip address (inside the chip)

Memory modules

The memory chips on a memory module are usually arranged in a matrix layout.

Memory modules

[image source: samsung.com]

Memory address is divided into:

- Chip select address
- Chip address (inside the chip)

Goal Memory types Bits and bytes Memory chips Memory modules Summary

CAMPUS Rosenheim

Computer Science

Memory modules - hardware layout

Data bus width = bits per chip * num chips pw rou

Address calculations:

Nr. Descriptions Calc Results

Memory types Bits and bytes Memory chips Memory modules Summary

CAMPUS Rosenheim

Computer Science

Memory modules - hardware layout

Data bus width = bits per chip * num chips

Address calculations:

Nr. Descriptions

(1) Number of bits to address the module capacatiy

Calc

log₂ (module capacity)

Results

number of bits

Memory types Bits and bytes Memory chips Memory modules Summary

CAMPUS Rosenheim

Computer Science

Memory modules - hardware layout

Data bus width = bits per chip * num chips

Address calculations:

Nr. Descriptions

- (1) Number of bits to address the module capacativ
- (2) Number of address lanes/bits for chip select

Calc

log₂(module capacity)
log₂(num. rows)

Results

number of bits number of bits/address lanes

Memory types Bits and bytes Memory chips Memory modules Summary

CAMPUS Rosenheim

Computer Science

Memory modules - hardware layout

Row capacity = Chip capacity * num chips

Data bus width = bits per chip * num chips

Address calculations:

Nr. Descriptions

- (1) Number of bits to address the module capacativ
- (2) Number of address lanes/bits for chip select
- (3) Number of address lanes/bits for chip address

Calc

log₂(module capacity) log₂(num. rows) log₂(num. chip cell rows)

Results

number of bits/address lanes number of bits/address lanes Memory types Bits and bytes Memory chips Memory modules Modern memory modules

CAMPUS Rosenheim

Computer Science

Memory modules - hardware layout Module capacity = row capacity * number of rows

Row capacity = Chip capacity * num chips

Summary

Data bus width = bits per chip * num chips

Address calculations:

Nr. Descriptions

- (1) Number of bits to address the module capacativ
- (2) Number of address lanes/bits for chip select
- (3) Number of address lanes/bits for chip address
- (4) Number of bits to address the bytes inside the word

Calc

log₂(module capacity)

 $log_2(num. rows)$

log₂(num. chip cell rows)

log₂(num. bytes per word)

Results

number of bits/address lanes number of bits/address lanes number of bits

Memory modules - hardware layout

Row capacity = Chip capacity * num chips

Data bus width = bits per chip * num chips

Address calculations:

Nr. Descriptions

- (1) Number of bits to address the module capacatiy
- (2) Number of address lanes/bits for chip select
- (3) Number of address lanes/bits for chip address
- (4) Number of bits to address the bytes inside the word

Calc

log₂(module capacity)

log₂(num. rows)

log₂(num. chip cell rows)

 $log_2(num. bytes per word)$

Results

number of bits/address lanes number of bits/address lanes number of bits

Address calculation relationship:

Number of bits to address the module capacatiy: $(1) = \sum_{i=2}^{4} (i) = (2) + (3) + (4)$

Prof. Dr. Florian Künzner, SoSe 2021

CA 8 – Memory 1

Slide 14 of 26

Memory modules - example

Example:

28 67

Mbil

Design a memory module with: 2 GiB capacity and a 32 bit data bus

Data bus width = 4.8 =

Use chips of type 256M x 4 Module capacity = $10^{10} \cdot 2 = 20^{10}$ Addresses 256M x 4 178 MIS Chip 256M x 4 select decoder

Row capacity =

128 MiD. 8 = 1024 MB = 1 Gil

Address calculations:

Nr. Descriptions

- (1) Number of bits to address the module capacativ
- (2) Number of address lanes/bits for chip select
- (3) Number of address lanes/bits for chip address
- (4) Number of bits to address the bytes inside the word

32 517

Computer Science

Memory modules - example (solution)

Example:

- Design a memory module with: 2 GiB capacity and a 32 bit data bus
- Use chips of type 256M x 4

= 128 MiB chip capacity

* 8 num chips

= 1 GiB

Data bus width = 4 bits per chip * 8 num chips = 32 bit (4 byte)

Address calculations:

Descriptions

- (1)Number of bits to address the module capacativ
- (2)Number of address lanes/bits for chip select
- (3)Number of address lanes/bits for chip address
- Number of bits to address the bytes inside the word

Calc

$$log_2(2 GiB = 2^{31})$$

$$log_2(2)$$

$$log_2(256 Mi = 2^{28})$$

log₂(4bytes)

Result

- 31 bits
- 1 lanes/bits
- 28 lanes/bits
- 2 bits

Computer Science

Memory modules - formats

SIMM (single inline memory module):

Memory modules - formats

SIMM (single inline memory module):

SO-SIMM (small outline SIMM):

Modern memory modules Memory chips Memory modules Memory types Summary

CAMPUS Rosenheim

Computer Science

Memory modules - formats

SIMM (single inline memory module):

SO-SIMM (small outline SIMM):

Computer Science

Memory modules - formats

SIMM (single inline memory module):

DIMM (dual inline memory module):

SO-DIMM (small outline DIMM):

Computer Science

Memory modules - interleaving

Problem:

After a **memory cell** is read in a DRAM, the cell **needs to be refreshed** and this takes some time.

Idea:

Distribute consecutive addresses evenly across the chip rows.

- Reduces the problem of waiting until the refresh is complete
- Accelerates memory access in an effect similar to pipelining
- But due to the increased capacities of the individual chips, a memory module has only one or two chip rows. -> Solution:

Computer Science

Memory modules - interleaving

Problem:

After a memory cell is read in a DRAM, the cell needs to be refreshed and this takes some time.

Idea:

Distribute consecutive addresses evenly across the chip rows.

- Reduces the problem of waiting until the refresh is complete
- Accelerates memory access in an effect similar to pipelining
- But due to the increased capacities of the individual chips, a memory module has only one or two chip rows. -> Solution:

SDRAM

Computer Science

Memory modules - interleaving

Problem:

After a memory cell is read in a DRAM, the cell needs to be refreshed and this takes some time.

Idea:

Distribute consecutive addresses evenly across the chip rows.

- Reduces the problem of waiting until the refresh is complete

Computer Science

Memory modules - interleaving

Problem:

After a memory cell is read in a DRAM, the cell needs to be refreshed and this takes some time.

Idea:

Distribute consecutive addresses evenly across the chip rows.

- **Reduces** the problem of waiting until the refresh is complete
- Accelerates memory access in an effect similar to pipelining

Memory modules - interleaving

Problem:

After a **memory cell** is read in a DRAM, the cell **needs to be refreshed** and this takes some time.

Idea:

Distribute consecutive addresses evenly across the chip rows.

- Reduces the problem of waiting until the refresh is complete
- Accelerates memory access in an effect similar to pipelining
- But due to the increased capacities of the individual chips, a memory module has only one or two chip rows. -> Solution:

SDRAM

Technische Hochschule Rosenheim Technical University of Applied Sciences

Questions?

All right? \Rightarrow

Question? \Rightarrow

and use chat

speak after I ask you to

Modern memory modules

Overview of various terms in the memory area

Memory modules

CAMPUS Rosenheim

Computer Science

SDRAM

Memory modules

CAMPUS Rosenheim

SDRAM

- Synchronous means there as a clock pulse

SDRAM

- Synchronous means there as a clock pulse
- Dynamic means there is a refresh necessary

SDRAM

- Synchronous means there as a clock pulse
- Dynamic means there is a refresh necessary
- Memory is divided into several equally sized and independent banks: allows interleaving within chips
- Chips can accept new commands before finishing the previous one (for another bank).

Memory modules

SDRAM

- Synchronous means there as a clock pulse
- Dynamic means there is a refresh necessary
- Memory is divided into several equally sized and independent banks: allows interleaving within chips
- Chips can accept new commands before finishing the previous one (for another bank).

Memory modules

ECC

Computer Science

ECC: error checking and correction

ECC

ECC: error checking and correction

- ECC memory can detect and correct the most common kinds of internal data corruption
- Allows the detection and correction of single bit errors
- Some do also detect double bit errors
- Application area: Scientific and financial computing applications which operate on sensitive data

ECC

ECC: error checking and correction

- ECC memory can detect and correct the most common kinds of internal data corruption
- Allows the detection and correction of single bit errors
- Some do also detect double bit errors
- Application area: Scientific and financial computing applications which operate on sensitive data

ECC

ECC: error checking and correction

- ECC memory can detect and correct the most common kinds of internal data corruption
- Allows the detection and correction of single bit errors
- Some do also detect double bit errors
- Application area: Scientific and financial computing applications which operate on sensitive data

ECC

ECC: error checking and correction

- ECC memory can detect and correct the most common kinds of internal data corruption
- Allows the detection and correction of single bit errors
- Some do also detect double bit errors
- Application area: Scientific and financial computing applications which operate on sensitive data

DDR-SDRAM: double data rate SDRAM

- Transfers data at almost double the transfer rate
- Data is transferred on rising and falling edges.
- DDR4-RAM is state of the art for computers
- DDR5-RAM is approaching into the market in 2020/2021

Memory modules

CAMPUS Rosenheim

DDR-SDRAM

DDR-SDRAM: double data rate SDRAM

- Transfers data at almost double the transfer rate

DDR-SDRAM: double data rate SDRAM

- Transfers data at almost double the transfer rate of
- Data is transferred on rising and falling edges.
- DDR4-RAM is state of the art for computers
- lacksquare DDR5-RAM is approaching into the market in 2020/2021

DDR-SDRAM: double data rate SDRAM

- Transfers data at almost double the transfer rate
- Data is transferred on rising and falling edges.
- DDR4-RAM is state of the art for computers
- DDR5-RAM is approaching into the market in 2020/2021

DDR-SDRAM: double data rate SDRAM

- Transfers data at almost double the transfer rate
- Data is transferred on rising and falling edges.
- DDR4-RAM is state of the art for computers
- DDR5-RAM is approaching into the market in 2020/2021

Memory modules

DDR-SDRAM

DDR-SDRAM: double data rate SDRAM

- Transfers data at almost double the transfer rate
- Data is transferred on rising and falling edges.
- DDR4-RAM is state of the art for computers
- DDR5-RAM is approaching into the market in 2020/2021

	DDR3	DDR4	DDR5
Data transfer rate	17 GiB/s	25,6 GiB/s	51,2 GiB/s
Max module capacity	16 GiB	64 GiB	128 GiB

Memory types Bits and bytes Memory chips Memory modules Modern memory modules Summary

CAMPUS Rosenheim

Computer Science

Multi-channel memory architecture

- [source: wikipedia.com]
- Adds multiple channels from the memory to the controller
- Increase data transfer rate of DRAM memory modules with the memory controller
- Dual/Triple/Quad-channels are possible
- Dual-channel: theoretically doubles the data transfer rate
- New Intel processors (like Intel Core i7-9800X) supports quad-channel memory architecture

Memory types Bits and bytes Memory chips Memory modules Modern memory modules Summary

CAMPUS Rosenheim

Computer Science

Multi-channel memory architecture

- [source: wikipedia.com]
- Adds multiple channels from the memory to the controller
- Increase data transfer rate of DRAM memory modules with the memory controller
- Dual/Triple/Quad-channels are possible
- Dual-channel: theoretically doubles the data transfer rate
- New Intel processors (like Intel Core i7-9800X) supports quad-channel memory architecture

oal Memory types Bits and bytes Memory chips Memory modules Modern memory modules Summary

CAMPUS Rosenheim

Computer Science

Multi-channel memory architecture

- [source: wikipedia.com]
- Adds multiple channels from the memory to the controller
- Increase data transfer rate of DRAM memory modules with the memory controller
- Dual/Triple/Quad-channels are possible
- Dual-channel: theoretically doubles the data transfer rate
- New Intel processors (like Intel Core i7-9800X) supports quad-channel memory architecture

Al Memory types Bits and bytes Memory chips Memory modules Modern memory modules Summary

CAMPUS Rosenheim

Computer Science

Multi-channel memory architecture

- [source: wikipedia.com]
- Adds multiple channels from the memory to the controller
- Increase data transfer rate of DRAM memory modules with the memory controller
- Dual/Triple/Quad-channels are possible
- Dual-channel: theoretically doubles the data transfer rate
- New Intel processors (like Intel Core i7-9800X) supports quad-channel memory architecture

Memory chips Modern memory modules Memory types Memory modules Summary

CAMPUS Rosenheim

Computer Science

Multi-channel memory architecture

- [source: wikipedia.com]
- Adds multiple channels from the memory to the controller
- **Increase data transfer rate** of DRAM memory modules with the memory controller
- Dual/Triple/Quad-channels are possible
- Dual-channel: theoretically doubles the data transfer rate

Modern memory modules Memory chips Memory modules Memory types Summary

CAMPUS Rosenheim

Computer Science

Multi-channel memory architecture

- [source: wikipedia.com]
- Adds multiple channels from the memory to the controller
- **Increase data transfer rate** of DRAM memory modules with the memory controller
- Dual/Triple/Quad-channels are possible
- Dual-channel: theoretically doubles the data transfer rate
- New Intel processors (like Intel Core i7-9800X) supports quad-channel memory architecture

CAMPUS Rosenheim Computer Science

Technische Hochschule Rosenheim Technical University of Applied Sciences

Questions?

All right? \Rightarrow

Question? \Rightarrow

and use chat

speak after I ask you to

Summary and outlook

Summary

- Memory types
- Memory chips
- Memory modules
- Modern memory modules

CAMPUS Rosenheim

Computer Science

Summary and outlook

Summary

- Memory types
- Memory chips
- Memory modules
- Modern memory modules

Outlook

- MMU
- Virtual memory