

Art of Problem Solving 2016 Romanian Masters in Mathematic

$8 \mathrm{th}~\mathrm{RMM}~2016$

Day 1	February 26, 2016
1	Let ABC be a triangle and let D be a point on the segment $BC, D \neq B$ and $D \neq C$. The circle ABD meets the segment AC again at an interior point E . The circle ACD meets the segment AB again at an interior point F . Let A' be the reflection of A in the line BC . The lines $A'C$ and DE meet at P , and the lines $A'B$ and DF meet at Q . Prove that the lines AD, BP and CQ are concurrent (or all parallel).
2	Given positive integers m and $n \ge m$, determine the largest number of dominoes $(1 \times 2 \text{ or } 2 \times 1 \text{ rectangles})$ that can be placed on a rectangular board with m rows and $2n$ columns consisting of cells $(1 \times 1 \text{ squares})$ so that: (i) each domino covers exactly two adjacent cells of the board; (ii) no two dominoes overlap; (iii) no two form a 2×2 square; and (iv) the bottom row of the board is completely covered by n dominoes.
3	A cubic sequence is a sequence of integers given by $a_n = n^3 + bn^2 + cn + d$, where b, c and d are integer constants and n ranges over all integers, including negative integers. (a) Show that there exists a cubic sequence such that the only terms of the sequence which are squares of integers are a_{2015} and a_{2016} . (b) Determine the possible values of $a_{2015} \cdot a_{2016}$ for a cubic sequence satisfying the condition in part (a).
Day 2	February 27, 2016
4	Let x and y be positive real numbers such that: $x+y^{2016} \ge 1$. Prove that $x^{2016}+y>1-\frac{1}{100}$
5	A hexagon convex $A_1B_1A_2B_2A_3B_3$ it is inscribed in a circumference Ω with radius R . The diagonals A_1B_2 , A_2B_3 , A_3B_1 are concurrent in X . For each $i=1,2,3$ let ω_i tangent to the segments XA_i and XB_i and tangent to the arc A_iB_i of Ω that does not contain the other vertices of the hexagon; let r_i the radius of ω_i .

Art of Problem Solving

2016 Romanian Masters in Mathematic

(a) Prove that $R \ge r_1 + r_2 + r_3$ (b) If $R = r_1 + r_2 + r_3$, prove that the six points of tangency of the circumferences ω_i with the diagonals A_1B_2 , A_2B_3 , A_3B_1 are concyclic

6

A set of n points in Euclidean 3-dimensional space, no four of which are coplanar, is partitioned into two subsets \mathcal{A} and \mathcal{B} . An \mathcal{AB} -tree is a configuration of n-1 segments, each of which has an endpoint in \mathcal{A} and an endpoint in \mathcal{B} , and such that no segments form a closed polyline. An \mathcal{AB} -tree is transformed into another as follows: choose three distinct segments A_1B_1 , B_1A_2 , and A_2B_2 in the \mathcal{AB} -tree such that A_1 is in \mathcal{A} and $|A_1B_1| + |A_2B_2| > |A_1B_2| + |A_2B_1|$, and remove the segment A_1B_1 to replace it by the segment A_1B_2 . Given any \mathcal{AB} -tree, prove that every sequence of successive transformations comes to an end (no further transformation is possible) after finitely many steps.