

Forecasting Natural Gas Demand using Hierarchical Frameworks

June 28, 2023

Colin Quinn
Richard Povinelli

info@marquetteenergyanalytics.com (414) 765-2839

309 N. Water St. Suite 400 Milwaukee, WI 53202

International Symposium On Forecasting 2023

Colin Quinn

Milwaukee, Wisconsin

Marquette University Computer Science Applied Statistics

MarquetteEnergyAnalytics

Agenda

- Natural gas consumption, demand, and forecasting
- Coherent forecasts, aligned decision making
- Natural gas consumption data organized hierarchically
- Hierarchical forecasting framework
 - Cross-sectional
 - Temporal
 - Cross-temporal
- Cross-temporal reconciliation of natural gas demand forecasts
- Results
 - Next steps

Natural gas consumption, demand, and forecasting

- Natural gas is a fossil fuel energy source extracted for sale and consumption
 - Residential, commercial, and industrial uses
- Gas consumption data can be hierarchically organized to improve demand forecasting
- Typical forecast horizons
 - Operational: hourly, daily
 - Strategic: monthly, yearly, multi-year

http://www.virginiaplaces.org/transportation/gaspipeline.html https://www.rva.gov/public-utilities/natural-gas-utility

909

Coherent forecasts, aligned decision making

 Gas distribution utilities rely on demand forecasts to support decision making at different levels and functions

Level	Horizon	Scope	Forecasts	Methods	Information
Operational	Short	Local	Way too many	Statistical	Univariate/Hard
Tactical	Medium	Regional	\$	\$	\$
Strategic	Long	Global	Few, expensive	Experts	Multivariate/Soft

- Forecasts supporting decision-making should be aligned
 - Coherent forecasts allow aligned decisions
 - Ex: Daily -> Monthly
- Challenge: forecasts at individual levels rarely align and provide conflicting intra-level results

Natural gas consumption data organized hierarchically

- Two approaches to organizing data hierarchically
 - 1. Cross-sectional
 - Temporal
- Example: gas consumption data organized geographically
 - Locked to the time of analysis

Problem Statement

900

Natural gas consumption data organized hierarchically

- Two approaches to organizing data hierarchically
 - Cross-sectional

2. Temporal Ex: low ← → high frequency Locked to the unit of analysis State of Virginia- Single Service Area H₂₃ H₂₄

Hierarchical Time Series Forecasting

In general, forecasts are not coherent

- Forecast reconciliation is the process of adjusting forecasts to make them coherent
- Base forecasts at each level can be estimated uniquely
- Current domain
 - Early developments statistical or judgmental forecasting
 - Bottom Up, Top Down, Middle Out
 - Past decade linear combination approaches
 - Exploit information from the complete hierarchy to produce more accurate forecasts
 - In development nonlinear combination approaches

Hierarchical framework for natural gas demand forecasting

- Optimal forecast reconciliation (Hyndman et al., 2019)
 - Minimizes the forecast error of the set of coherent forecasts

$$b = (A, B, C)'$$

$$y = (y_{tot}, y_A, y_B, y_C)$$

$$y = Sb$$

Summation matrix

$$S = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• \hat{y}_h : h step ahead forecasts for y

Cross-temporal hierarchy for gas demand forecasting

Forecast coherency in a natural gas distribution company setting

$$b = (A_{Hourly}, B_{Hourly}, C_{Hourly})'$$
 $y = Sb$

$$\begin{bmatrix} y_{tot_{Daily}} \\ y_{tot_{Hourly}} \\ y_{A_{Daily}} \\ y_{A_{Hourly}} \\ y_{B_{Daily}} \\ y_{B_{Hourly}} \\ y_{C_{Daily}} \\ y_{C_{Hourly}} \end{bmatrix} = S * \begin{bmatrix} A_{Hourly} \\ B_{Hourly} \\ C_{Hourly} \end{bmatrix}$$

Cross-temporal hierarchy for gas demand forecasting

Ω

Our cross-temporal Hierarchy

- Cross-temporal approach
 - Aspects locked by time and unit of analysis
- Unbiased quality maintained
- Advantages
 - 1. Point forecasts are reconciled across all levels of the hierarchy
 - In our case, reconciled across planning horizons and gas service areas
 - 2. Intra-hierarchy level interactions and correlations taken into account
 - Plan from long- to short-term horizons
 - 3. Ad hoc adjustments
 - Base forecasts
 - 4. Forecast uncertainty
- Construction of S and G is nontrivial and computationally demanding

 $\tilde{y}_h = SG\hat{y}_h$ $G = \left(S'W_h^{-1}S\right)^{-1}S'W_h^{-1}$

 The proposed method is evaluated using Average Relative Mean Squared Error (AvgRelRMSE)

$$RelRMSE = \frac{RMSE_{Hierarchial}}{RMSE_{Base}}$$

$$AvgRelRMSE = \sqrt{\sum_{i=1}^{n} RelRMSE}$$

• AvgRelRMSE < 1

n = number of time series

- Error evaluated over 3-year period
- Total level
- Base forecasts 2-years
- Errors measured across time are calculated using the geometric mean

	AvgRelRMSE		
Unit of Analysis	Reconciliation method	AvgRelRMSE	
	Base	1.000	
Tomporal	MinT	0.973	
Temporal	Bottom Up	0.986	
	Top Down	0.991	
	Base	1.000	
Spatial	MinT	0.961	
Spatial	Bottom Up	0.977	
	Top Down	0.984	
	Base	1.000	
Cross tomporal	MinT	0.927	
Cross-temporal	Bottom Up	0.939	
	Top Down	0.942	

- Total level
- Grouped by Unit of Analysis
- AvgRelRMSE < 1
- Cross-temporal approach shows promise
 - Temporal results averaged geometric mean
- Bottom up and Top Down

Next steps

- Feasibility of hierarchical forecasting in deep-temporal natural gas demand setting
 - Include more hierarchies (res, non res, ...)
 - Estimation of variance-covariance matrix W
- Different levels of gas distribution organization and time horizon of concern
 - Hourly, daily, monthly
- Improve base forecasts over 6-parameter model

Questions?

Thank you.

colin.o.quinn@marquette.edu richard.povinelli@marquette.edu

info@marquetteenergyanalytics.com (414) 765-2839

309 N. Water St. Suite 400 Milwaukee, WI 53202