ANÁLISE MATEMÁTICA B

Mestrado Integrado em Engenharia Mecânica 1º ano

Séries de potências

Uma série infinita do tipo

$$\sum_{n=0}^{+\infty} a_n (x-a)^n = a_0 + a_1 (x-a) + a_2 (x-a)^2 + a_3 (x-a)^3 + \cdots$$

é designada por série de potências em x ou simplesmente série de potências. As constantes a_0, a_1, a_3, \cdots são chamadas de coeficientes da série de potências e a constante a é designada por centro. Uma série de potências em x centrada em a=0 toma a forma

$$\sum_{n=0}^{+\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$$

obtemos assim a ideia generalizada de um polinômio em x. Note que x é uma quantidade que pode variar tornando possível a soma da série ou não, isto é, convergente ou divergente. Por exemplo para x=a, a série $\sum_{n=0}^{+\infty} a_n (x-a)^n$ é convergente e a sua soma é a_0 .

Vejamos o seguinte exemplo:

$$\sum_{n=0}^{+\infty} \left(\frac{2}{3}\right)^n \left(x - \frac{1}{2}\right)^n$$

Para x = 1, obtemos

$$\sum_{n=0}^{+\infty} \left(\frac{2}{3}\right)^n \left(\frac{1}{2}\right)^n = \sum_{n=0}^{+\infty} \left(\frac{1}{3}\right)^n \to \text{ s\'erie convergente}$$

Para x = 3, obtemos

$$\sum_{n=0}^{+\infty} \left(\frac{2}{3}\right)^n \left(\frac{5}{2}\right)^n = \sum_{n=0}^{+\infty} \left(\frac{5}{3}\right)^n \to \text{s\'erie divergente}$$

Organizando as ideias:

- Pensemos numa série de termos quaisquer, representada por $\sum u_n$, com u_n positivo, negativo ou nulo. Uma série de funções é representada por $\sum u_n(x)$ e uma série de potências por $\sum_{n=0}^{+\infty} a_n(x-a)^n$, como caso particular destas séries temos as séries de potências de x, $\sum_{n=0}^{+\infty} a_n x^n$
- Como os critérios de convergência só se aplicam às séries de termos positivos, em qualquer dos casos acima indicados passamos à série dos módulos. Se a série dos módulos for convergente a série dos termos quaisquer (minorante), também é convergente.
- No caso das séries de potências, pretendemos saber para que valores de x as séries são convergentes. Ao conjunto I de valores de x, para os quais uma série é convergente, chama-se intervalo de convergência.

Dada uma série de potências o seu intervalo de convergência *I* tem uma das seguintes formas:

- I é um intervalo limitado com centro a e pontos extremos a R e a + R onde R é um número real positivo e designa o raio de convergência da série de potências.
- $I =]-\infty, +\infty[$ e neste caso $R = +\infty.$
- I consiste em um único número a e neste caso R=0.

Teorema Dada uma série de potências $\sum_{n=0}^{+\infty} a_n (x-a)^n$, verifica-se uma das seguintes condições:

- i) A série converge para x = a;
- ii) A série converge (absolutamente) para todo o número real x;
- iii) Existe um número real positivo (R) tal que a série é absolutamente convergente para todos os valores de x para os quais |x a| < R e divergente para todos os valores de x para os quais |x a| > R.

O raio de convergência da série de potências assume o valor

- i) R = 0
- ii) $R = +\infty$
- iii) A série de potências converge num intervalo centrado em a e de raio R. No caso da série convergir nos pontos x = a R e x = a + R o intervalo é fechado.

Para determinarmos o raio de convergência de uma série vamos usar a série de módulos e aplicar um dos critérios de estudo da natureza das séries:

- Critério D'Alembert (ou critério da Razão)
- Critério de Cauchy (ou critério da Raíz)

Seja $\sum_{n=0}^{+\infty} a_n$ uma série dada de termos não-nulos.

- Critério D'Alembert (ou critério da Razão):
 - Se $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|<1$, então a série é absolutamente convergente.
 - Se $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|>1$ ou se $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=+\infty$, então a série é divergente.
 - Se $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=1$, então o teste nada conclui.

Seja $\sum_{n=0}^{+\infty} a_n$ uma série dada.

- Critério de Cauchy (ou critério da Raíz):
 - Se $\lim_{n\to\infty} \sqrt[n]{|a_n|} < 1$, então a série é absolutamente convergente.
 - Se $\lim_{n\to\infty} \sqrt[n]{|a_n|} > 1$ ou se $\lim_{n\to\infty} = \sqrt[n]{|a_n|} + \infty$, então a série é divergente.
 - Se $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, então o teste nada conclui.

Consideremos a série de potências $\sum_{n=0}^{+\infty} a_n (x-a)^n$ e apliquemos à série dos módulos o critério D'Alembert ou o critério de Cauchy:

a) Critério D'Alembert:

$$\lim_{n \to \infty} \frac{|a_{n+1}||x - a|^{n+1}}{|a_n||x - a|^n} < 1 \Leftrightarrow \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}|x - a| < 1$$

Fazendo, $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \frac{1}{R}$ e substituindo na última expressão obtemos

$$\frac{1}{R}|x-a| < 1 \Leftrightarrow |x-a| < R \Leftrightarrow a-R < x < a+R.$$

R é o raio de convergência correspondente ao intervalo de convergência centrado em a

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|.$$

b) Critério de Cauchy:

$$\lim_{n\to\infty}\sqrt[n]{|a_n(x-a)^n|}<1\Leftrightarrow \lim_{n\to\infty}\sqrt[n]{|a_n|}|x-a|<1$$

Fazendo, $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{R}$ e substituindo na na última expressão btemos

$$\frac{1}{R}|x-a| < 1 \Leftrightarrow |x-a| < R \Leftrightarrow a-R < x < a+R.$$

R é o raio de convergência correspondente ao intervalo de convergência centrado em a

$$R=\lim_{n\to\infty}\sqrt[n]{|a_n|}.$$

Nota: Para os extremos do intervalo de convergência, x = a - R ou x = a + R, necessitamos de fazer o estudo das séries numéricas obtidas.

Exemplos: Determine o raio e o intervalo de convergência de cada uma das seguintes séries de potências:

a)

$$\sum_{n=0}^{+\infty} (-1)^n \frac{n}{3^n} x^n = 0 - \frac{1}{3}x + \frac{2}{9}x^2 - \frac{3}{27}x^3 + \cdots$$

Para x=0 a série é convergente. Para $x\neq 0$, vamos usar o critério D'Alembert com

$$a_n = (-1)^n \frac{n}{3^n} x^n$$
 e $a_{n+1} = (-1)^{n+1} \frac{n+1}{3^{n+1}} x^{n+1}$.

Assim,

$$\lim_{n\to+\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to+\infty}\frac{n+1}{3n}|x|=|x|\lim_{n\to+\infty}\frac{n+1}{3n}=\frac{|x|}{3},$$

donde a série converge para $\frac{|x|}{3} < 1 \Leftrightarrow -3 < x < 3$. A série é divergente para x < -3 ou x > 3.

É necessário fazer estudo da natureza da série para $|x| = 3 \Leftrightarrow x = -3$ ou x = 3.

$$|a_n| = \left| (-1)^n \frac{n}{3^n} x^n \right| = \frac{n}{3^n} |x|^n = \frac{n}{3^n} 3^n = n,$$

Como $\lim_{n\to+\infty} a_n \neq 0$ a série diverge nos pontos |x|=3.

Conclusão: A série converge no intervalo aberto]-3,3[.

b)

$$\sum_{n=0}^{+\infty} \frac{(x-4)^n}{n!} = 1 + (x-4) + \frac{1}{2}(x-4)^2 + \cdots; \quad I =]-\infty, +\infty[.$$

c)

$$\sum_{n=0}^{+\infty} (n!)(x+1)^n = 1 + (x+1) + 2(x+1)^2 + 6(x+1)^3 + \cdots; \quad I = \{-1\}.$$

Seja $f(x)=\sum_{n=0}^{\infty}a_n(x-a)^n$ uma função com domínio igual ao intervalo de convergência da série de potências. No caso de termos uma soma finita sabemos que é possível diferenciar termo a termo, pelo que neste caso temos

$$f(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + a_3(x - a)^3 + \cdots$$

somos levados a pensar que podemos determinar a derivada de f, diferenciando termo a termo a expressão acima, isto é,

$$D_x f(x) = D_x a_0 + D_x a_1 (x - a) + D_x a_2 (x - a)^2 + D_x a_3 (x - a)^3 + \cdots$$

= 0 + a_1 + 2a_2 (x - a) + 3a_3 (x - a)^2 + \cdots

De modo análogo podemos pensar que a integral $\int f(x)dx$ pode ser obtida através da integração termo a termo, ou seja

$$\int f(x)dx = \int a_0 dx + \int a_1(x-a)dx + \int a_2(x-a)^2 dx + \int a_3(x-a)^3 dx + \cdots$$
$$= \left[a_0(x-a) + \frac{a_1}{2}(x-a)^2 + \frac{a_2}{3}(x-a)^3 + \frac{a_3}{4}(x-a)^4 + \cdots \right] + C$$

Prova-se que estes "cálculos" são possíveis no intervalo]a-R,a+R[, onde R é o raio de convergência da série.

Observemos que ao diferenciarmos ou integrarmos uma série do tipo

$$\sum_{n=0}^{+\infty} a_n (x-a)^n$$
 obtemos novas séries de potências:

$$\sum_{n=0}^{+\infty} D_x[a_n(x-a)^n] = \sum_{n=1}^{+\infty} na_n(x-a)^{n-1}$$

ou

$$\sum_{n=0}^{+\infty} \int a_n (x-a)^n dx = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} (x-a)^{n+1} + C$$

Se $f(x)=\sum_{n=0}^{\infty}a_n(x-a)^n$, onde a série de potências tem raio de convergência R, podemos estabelecer as seguintes propriedades da função f e da série de potências $\sum_{n=0}^{+\infty}a_n(x-a)^n$:

Propriedades:

I) A função f é contínua no intervalo]a-R,a+R[.

II) As três séries de potências

$$\sum_{n=0}^{+\infty} a_n (x-a)^n,$$

$$\sum_{n=0}^{+\infty} D_x [a_n (x-a)^n] = \sum_{n=1}^{+\infty} n a_n (x-a)^{n-1}$$

$$\sum_{n=0}^{+\infty} \int a_n (x-a)^n dx = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} (x-a)^{n+1}$$

têm todas o mesmo raio de convergência R.

III) Para |x - a| < R,

$$f'(x) = D_x \left[\sum_{n=0}^{+\infty} a_n (x-a)^n \right] = \sum_{n=1}^{+\infty} n a_n (x-a)^{n-1}.$$

IV) Para |x - a| < R,

$$\int f(x)dx = \int \left[\sum_{n=0}^{+\infty} a_n (x-a)^n \right] dx = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} (x-a)^{n+1} + C.$$

V) Para |x - a| < R,

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} \left[\sum_{n=0}^{+\infty} a_n (x-a)^n \right] dx$$
$$= \sum_{n=0}^{+\infty} \int_{a}^{b} a_n (x-a)^n dx$$
$$= \sum_{n=0}^{+\infty} \frac{a_n}{n+1} (b-a)^{n+1}.$$

Vejamos alguns exemplos ilustrativos da aplicação das propriedades dadas.

Exemplo 1: Determine $D_x(1 + 2x + 3x^2 + 4x^3 + 5x^4 + \cdots)$.

- Observemos que $1 + 2x + 3x^2 + 4x^3 + 5x^4 + \cdots = \sum_{n=0}^{n-1} (n+1)x^n$ representa uma série de potências cujo raio de convergência é R = 1.
- Pelas propriedades II e III temos,

$$D_x(1+2x+3x^2+4x^3+5x^4+\cdots)=0+2+6x+12x^2+20x^3+\cdots$$

•
$$D_x \left[\sum_{n=0}^{+\infty} (n+1)x^n \right] dx = \sum_{n=1}^{+\infty} n(n+1)x^{n-1} \text{ para } |x| < 1.$$

Exemplo 2: Determine
$$\int (1 + 2x + 3x^2 + 4x^3 + 5x^4 + \cdots) dx$$
 para $|x| < 1$.

Usando a propriedade IV obtemos,

$$\int (1+2x+3x^2+4x^3+5x^4+\cdots)dx = (x+x^2+x^3+x^4+x^5+\cdots)+C$$

•

$$\int \left[\sum_{n=0}^{+\infty} (n+1)x^n \right] dx = \sum_{n=0}^{+\infty} x^{k+1} + C \quad \text{para} \quad |x| < 1.$$

Exemplo 3: A série de potências $\sum_{n=0}^{\infty} x^n$ é convergente no intervalo

] -1,1[. Reparemos que a soma $1+x+x^2+x^3+\cdots$ para |x|<1 representa uma série geométrica cuja soma é possível ser calculada. No intervalo |x|<1,

$$\sum_{n=0}^{+\infty} x^n = 1 + x + x^2 + x^3 + \dots + x^n + \dots = \frac{1}{1-x}.$$

Observemos que a soma da série é dada por

$$S = \lim_{n \to \infty} \left(1 \times \frac{1 - x^n}{1 - x} \right) = \frac{1}{1 - x}.$$

pois $\lim_{n\to\infty} x^n = 0$, quando $x \in]-1,1[$.

Exemplo 4: Sabendo que $\frac{1}{1-x} = 1 + x + \cdots + x^n \cdots = \sum_{n=0}^{+\infty} x^n$ quando

|x| < 1, determine a representação em série de potências de x das seguintes funções:

- a) $\frac{1}{1+x}$
- b) $\frac{1}{1+x^2}$
- c) $\frac{1}{3-x}$
- d) $\frac{2}{x^2 4x + 3}$
- e) $\frac{1}{(1-x)^2}$

Exemplo 5: Seja
$$f(x)=\sum_{n=1}^{+\infty}(-1)^{n+1}\frac{(x-2)^n}{\sqrt{n}}$$
 para $|x-2|<1$. Determine $f'(x)$ como uma série infinita.

Para |x - 2| < 1,

$$f'(x) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{n(x-2)^{n-1}}{\sqrt{n}}$$
$$= \sum_{n=1}^{+\infty} (-1)^{n+1} \sqrt{n} (x-2)^{n-1}$$

Exemplo 6: Seja
$$f(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{(x+3)^{2n}}{(2n)!}$$
, determine uma

representação de $\int_{-2}^{x} f(t)dt$ como uma série de potências.

Pelo critério D'Alembert a série de potências dada tem raio de convergência $R=+\infty$, pelo que f(x) é definida para todos os valores de x. Assim, temos que

$$\int_{-3}^{x} f(t)dt = \sum_{n=0}^{+\infty} \int_{-3}^{x} (-1)^n \frac{(t+3)^{2n}}{(2n)!} dt$$

$$= \sum_{n=0}^{+\infty} \frac{(-1)^n (x+3)^{2n+1}}{(2n)!(2n+1)}$$

$$= \sum_{n=0}^{+\infty} \frac{(-1)^n (x+3)^{2n+1}}{(2n+1)!}$$