DB1 Auswendiglernen

Felix Pojtinger

June 26, 2021

Contents

DB1 Auswendiglernen	2
Aufbau eines DBMS	2
Typen von Daten	2
Programmaufbau	2
Erweitertes Programm-Modell	2
Definition DBMS	2
Effizienz-Typen	
Services	3
Metadaten	3
Interne Dateistruktur	3
Hintergrundprozesse	3
Logging	4
Datenbank vs. Schema	4
Verwendungszwecke für Views	4
Keys	4
Definition Candidate Key	4
Definition Primary Key	4
Definition Foreign Key	
Skripte	5
Restartfähige Skripte	5
Delta-Skripte	5
Mengenoperationen	
Typen von Multi-Tabellen-Abfragen:	5
Optimierung von Additiven Mengenoperationen	5
Inner- vs Outer-Join	
Weitere Joins	6
Modellierung	6
Datenbankentwurfsablauf	6
Abbildungsprozess	6
Grundsätze der Modellbildung	
Anforderungsdokument	
ER-Modell	

	Redundanz-Anomalien										7
	Normalformen										7
	Ablauf des Schemaentwurfs .										7
	Indizierung										8
Weite	ere Services										8
	Authorisierungsdienst										8
	Mehrnutzerbetrieb										8
	Zuverlässigkeit										8
	Transaktionen/ACID										9
	Transaktionskontrolle										9
	Konsistenzsicherung										9
	Parallelitätssteuerung										9
	Möglichkeiten der Einbindung										9
	Impedance Mismatch										10
	Definition Cursor										10

DB1 Auswendiglernen

"The true courage is to admit that the light at the end of the tunnel is probably the headlight of another train approaching" - Slavoj Žižek, The Courage of Hopelessness

Mehr Details unter https://github.com/pojntfx/uni-db1-notes.

Aufbau eines DBMS

Typen von Daten

- Persistent: Über mehrere Programabläufe verfügbar
- Temporär: Nur während der Laufzeit verfügbar

Programmaufbau

Applikation \rightarrow DBMS \rightarrow Datenbank

${\bf Erweitertes\ Programm-Modell}$

- Präsentationsschicht (temporäre Daten)
- Logik-Schicht (temporäre Daten)
- Daten-Zugriffs-Schicht (temporäre Daten)
- API zwischen App und DBMS
- DBMS (persistente Daten)
- Datenbank (persistente Daten)

Definition DBMS

• Sammelt Daten

- Verwaltet Daten
- Definitiert Struktur (Modell)
- Definition, Manipulation & Abfrage von Daten
- Services

Effizienz-Typen

Entwickler:

- Effiziente Modellierung
- Einfache Sprache
- Gutes Tooling

Admins:

- Effiziente Ressourcennutzung
- Einbindung in Systemverwaltung
- Monitoring
- Anpassung
- Zugriffssteuerung

Services

SMARASTD:

- Service to ensure Data Integrity
- Multi-User Support
- Authorization Service
- Recovery Service
- Access via Network
- Storage, Query & Manipulation of Data
- Transactional Support
- Data Dictionary & System Catalog

Metadaten

- Data Dictionary: Metadaten der DB-Objekte
- System Catalog: Status und Konfiguration

Interne Dateistruktur

- n Datendateien (n = 1...MAXDATAFILES)
- Control-Files
- Logfiles

Hintergrundprozesse

- DBWR (Database Write-Prozess): Lesen & Schreiben auf Daten-Dateien
- LGWR (Log Write-Prozess): Logging aller Veränderungen

- **PMON** (Process-Monitor): Garbage Collector; führt in konsistenten Zustand nach Abbruch von z.B. einer Transaktion
- **SMON** (System-Monitor): Consistency Check; führt in konsistenten Zustand nach Crash von DBMS, OS oder Hardware
- ARCH (Archiv-Prozess): Archivierung von Daten

Logging

Notwendig für ...

- Konsistenz
- Wiederherstellbarkeit

Log-Dateien sind ...

- Groß: Ineffizienter Zugriff
- Wichtig: Verlust muss vermieden werden
- \rightarrow Round-Robin-Prozess mit Archiv-Prozess

Datenbank vs. Schema

- Datenbank: Objekte zusammen von DBMS verwaltet
- Schema: Objekte zusammen von DBMS betrachtet

Verwendungszwecke für Views

- Trennung der Anwendungsschicht vom Unternehmensmodell (menhir)
- Sicherheit
- Zugriffsstrukturen
- Vereinfachte Schemaevolutionen
- Einfügen und Löschen einschränken
- \rightarrow Am besten immer nur via Views auf Daten zugreifen

Keys

Definition Candidate Key

Ein Key is eine Menge von Spalten.

- Eindeutigkeit: Es gibt keine zwei Zeilen mit demselben Candidate Key
- Irreduzibilität: Nimmt man eine oder mehrere Spalten aus dem Key, so ist dieser nichtmehr eindeutig.

Definition Primary Key

Ein gewählter Candidate Key (oft der mit der kleinsten Anzahl von Spalten).

Definition Foreign Key

Es werden zwei Tabellen A und B betrachtet.

Der Foreign Key, welcher B aus A referenziert, ist ein Candidate Key von B (meist der Primary Key).

Skripte

Restartfähige Skripte

- 1. Löschen Constraints
- 2. Löschen Objekte
- 3. Anlegen Objekte
- 4. Anlegen Constraints

Delta-Skripte

Bei einer Erweiterung des Modells dürfen bestehende Daten nicht ungültig werden.

- alter table: Neue Spalte einfügen
- update: Default-Werte für alte Zeilen einfügen (falls not null)
- insert: Fehlende Zeilen anlegen (falls not null)
- alter table: Foreign Key-Constraint hinzufügen
- alter table: not null-Constraint hinzufügen

Mengenoperationen

Typen von Multi-Tabellen-Abfragen:

- Additive Mengenoperationen: Mehrere Teilabfragen (in etc.)
- Multiplikative Mengenoperationen: Kartesisches Produkt (join etc.)

Optimierung von Additiven Mengenoperationen

Wenn Abfragen über mehrere Tabellen gemacht werden, so müssen alle Abfragen fertig sein, damit verglichen werden kann. Deshalb union all verwenden (Vorsicht: Duplikate werden nicht entfert!)

Inner- vs Outer-Join

- Inner Join: Zeilen in linker Tabelle, für welche in der rechten Tabelle keine entsprechenden Zeilen existieren, werden nicht dargestellt.
- Outer Join (+): Zeilen in Tabelle A, für welche in Tabelle B keine entsprechende Zielen existieren, werden mit null gefüllt.
 - Left Outer Join: Rechts kann null-Werte haben
 - Right Outer Join: Links kann null-Werte haben
 - Full Outer Join: Beide könnten null-Werte haben

Weitere Joins

- Builk Join (Kartesisches Produkt)
- Restricted Join (mit zwei Where-Bedingungen)
- Natural Join (min. ein Attribut gleich)
- Semi Join (nur Attribute einer Tabelle im select-Statement)
- Multiple Join (z.B. join aus drei Tabellen)
- Auto Join (Tabelle mit sich selbst joinen; z.B. Stückliste)

Modellierung

Datenbankentwurfsablauf

- 1. **Input:** Reale Welt
- 2. Anforderungen analysieren
- 3. Entwurf (konzeptionell) erstellen
- 4. Entwurf (logischen) erstellen
- 5. Implementieren
- 6. Output: System

Dabei wird nebenläufig kontinuierlich getestet.

Abbildungsprozess

- Realwelt
 - Vielschichtig
 - Unikate
 - Umfangreiche Beziehungen

• Semantisches Datenmodell

- Zusammenfassung zu Gruppen, abstrahiert
- Integritätsbedingungen
- Explizit modellierte Beziehungen

• Relationales Datenbankmodell

- Einfach
- Tabellen
- Implizit modellierte Beziehungen

Grundsätze der Modellbildung

SSRWKV:

- Syntaktische & semantische Richtigkeit
- Systematischer Aufbau
- Relevanz
- Wirtschaftlichkeit
- Klarheit
- Vergleichbarkeit

Anforderungsdokument

Ein gutes Anforderungsdokument sollte die Eigenschaften haben ...

- Korrektheit
- Vollständigkeit
- Konsistenz
- Einfachkeit
- Eindeutig

Ein gutes Anforderungselement sollte bestehen aus ...

- $\bullet \quad In formations an forderungen \\$
- Bearbeitungsanforderungen
- Funktionale Anforderungen
- Dynamische Anforderungen

ER-Modell

- Atribut: Datenelement
- Entität: Gruppierungselement
- Beziehung: Verknüpfung (n:m-Beziehungen via schwacher Entität)
- Kardinalität: Maximale Anzahl an Elementen in Beziehung

Redundanz-Anomalien

Folgende Anomalien treten durch Redundanzen auf:

- Änderungsanomalie
- Löschanomalie
- Einfügeanomalie

Normalformen

- Erste Normalform: Spalten sind nicht weiter auftrennbar
- Zweite Normalform: Alle Attribute hängen vom Schlüssel ab (keine funktionalen Abhängigkeiten)
- **Dritte Normalform**: Beziehungen werden über Foreign Key-Constraints abgebildet (keine transitiven Abhängkeiten)

Ablauf des Schemaentwurfs

- 1. Erheben von Infos
- 2. Identifikation der Attribute

- 3. Formalisierung von Infos
- 4. Gruppierung der Attribute

Indizierung

Problemfelder von Indizes

- Im temporären Speichern funktionieren Indizes nicht mehr
- Falsche Anwendung von Indizes kann sogar langsamer als keine Indizes sein. Ohne Indizes werden immer alle Zeilen einer Tabelle evaluiert; bei Indizes wird immer von einer Position ausgehend, bis die where-Clause eintritt, evaluiert. Letztere Strategie besitzt damit auch einen Overhead, welcher teuerer als die Ersparnis durch das frühere Abbrechen nach dem Eintreten der where-Clause sein kann.

Spaltenwahl für Indizes Bei der Erstellung eines Indexes sollte immer die Spalte mit der höchsten Selektivität (>0,8) zuerst angeben werden, welche sich mit folgender Formel berechnen lässt:

$$Selektivität = 1 - \frac{n - distinct(n)}{n}$$

n: Anzahl von Elementen

distinct(n): Anzahl von eindeutigen Elementen

Weitere Services

Authorisierungsdienst

Nutzt eine Allowlist.

- Beschränkung von Nomen (i.e. "Nutzer x darf auf Tabelle products zugreifen"): **Objektprivilegien**
- Beschränkung von Prädikaten (i.e. "Nutzer x darf updatenen"): Systemprivilegien

Mehrnutzerbetrieb

- Sichtbarkeit von Daten
- Änderbarkeit von Daten
- Trennung in Anwender und Admins
- Schonung von Ressources
- Einfache Verwaltung

Zuverlässigkeit

Daten dürfen weder physisch noch semantisch fehlerhaft sein, weshalb folgende Dinge existieren müssen:

• Transaktionen

• Virtueller Single-User-Betrieb

Transaktionen/ACID

Aktionen werden entweder vollständig oder gar nicht ausgeführt.

- Atomicy: Alles oder nichts
- Consistency: Zustand 1 \rightarrow Zustand 2 (Unterbrechung: Zustand 2 = Zustand 1)
- Isolation: Virtueller Single-User-Betrieb
- Durability: Zustand 2 bleibt erhalten, egal was passiert

Transaktionskontrolle

- begin: Start einer Transaktion (SQL: Nicht definiert)
- end: Ende einer Transaktionen (SQL: commit)
- undo: Verwerfen offener Transaktionen (SQL: rollback)
- redo: Wiederherstellung abgeschlossener Transaktionen (SQL: Nicht definiert)
- savepoint: Sub-Transaktionen (SQL only)

Konsistenzsicherung

- Constraints: In Tabellen
- Transaktionen: In Ablaufebene
- Trigger: In Prozedualen Erweiterungen

Parallelitätssteuerung

Verhindern von ...

- Lost Update: Verlorengegangenen Änderungen
- Dirty Read/Write: Zugriff auf "schmutzige" Daten

Umsetzung durch ...

- Lese-, Schreib- und Exklusiv-Sperren (Funktionale Sperr-Ebene)
- Table-, Page- und Row-Level-Sperren (Physische Sperr-Ebene)
- ightarrow Z.B. durch select ... for update of ...

Möglichkeiten der Einbindung

- Low Code-Umgebungen (z.B. LibreOffice Base, IFTTT)
- Embedding
- APIs

${\bf Impedance\ Mismatch}$

- too_many_rows: Mehr als ein Datensatz
- no_data_found: Null Datensätze (nicht streng genommen ein Impendance Mismatch)

Definition Cursor

Ergebnis einer Abfrage wird in einer Tabelle abgelegt, von welcher dann $n\text{-}\mathrm{mal}$ gefetched werden kann.