# **Basic Discrete Structures**

Sets, Functions, Sequences, Matrices, and Relations (Lecture – 3)

Dr. Nirnay Ghosh

# Floor & Ceiling Functions

The *floor function* assigns to the real number x the largest integer that is less than or equal to x. The value of the floor function at x is denoted by  $\lfloor x \rfloor$ . The *ceiling function* assigns to the real number x the smallest integer that is greater than or equal to x. The value of the ceiling function at x is denoted by  $\lceil x \rceil$ .

- Floor function: same value throughout the interval [n, n + 1), namely n, and then it jumps up to n + 1 when x = n + 1.
- <u>Ceiling function</u>: same value throughout the interval (n, n + 1], namely n + 1, and then jumps to n + 2 when x is a little larger than n + 1.
- A useful approach for considering statements about the floor function is to let  $x = n + \mathcal{E}$ , where n is the integer, and  $\mathcal{E}$  is the fractional part of x, satisfies the inequality  $0 \le \mathcal{E} < 1$ .
- Similarly, when considering statements about the ceiling function, it is useful to write  $x = n \mathcal{E}$ , where n is an integer and  $0 \le \mathcal{E} < 1$ .

#### **TABLE 1** Useful Properties of the Floor and Ceiling Functions.

(n is an integer, x is a real number)

- (1a)  $\lfloor x \rfloor = n$  if and only if  $n \le x < n + 1$
- (1b)  $\lceil x \rceil = n$  if and only if  $n 1 < x \le n$
- (1c)  $\lfloor x \rfloor = n$  if and only if  $x 1 < n \le x$
- (1d)  $\lceil x \rceil = n$  if and only if  $x \le n < x + 1$

(2) 
$$x-1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x+1$$

- (3a)  $\lfloor -x \rfloor = -\lceil x \rceil$
- (3b)  $\lceil -x \rceil = -\lfloor x \rfloor$
- (4a) |x + n| = |x| + n
- (4b)  $\lceil x + n \rceil = \lceil x \rceil + n$

# Floor & Ceiling Functions

- In Figure 10(a), the floor function is shown. Note that this function has the same value throughout the interval [n, n + 1), namely n, and then it jumps up to n + 1 when x = n + 1.
- In Figure 10(b), the graph of the ceiling function is shown. Note that this function has the same value throughout the interval (n, n + 1], namely n + 1, and then jumps to n + 2 when x is a little larger than n + 1.



FIGURE 10 Graphs of the (a) Floor and (b) Ceiling Functions.

$$\lfloor \frac{1}{2} \rfloor = 0$$
,  $\lceil \frac{1}{2} \rceil = 1$ ,  $\lfloor -\frac{1}{2} \rfloor = -1$ ,  $\lceil -\frac{1}{2} \rceil = 0$ ,  $\lfloor 3.1 \rfloor = 3$ ,  $\lceil 3.1 \rceil = 4$ ,  $\lfloor 7 \rfloor = 7$ ,  $\lceil 7 \rceil = 7$ .

- **Recall:** The cardinality of a finite set is defined by the number of elements in the set.
- **Definition 1:** The sets A and B have **the same cardinality** if there is a one-to-one correspondence between elements in A and B. When A and B have the same cardinality, we say |A| = |B|.
  - In other words if there is a *bijection* from *A* to *B*.
  - Recall bijection is one-to-one and onto.

#### • Definition 2:

If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write  $|A| \le |B|$ . Moreover, when  $|A| \le |B|$  and A and B have different cardinality, we say that the cardinality of A is less than the cardinality of B and we write |A| < |B|.

- **Definition:** A set that is either finite or has the same cardinality as the set of positive integers  $Z^+$  is called **countable.** A set that is not countable is called **uncountable** or **infinite.**
- An infinite set is countable if and only if it is possible to list the elements of the set in a sequence (indexed by the positive integers).
- One-to-one correspondence f from the set of positive integers to a set S can be expressed in terms of a sequence  $a_1, a_2, \ldots, a_n, \ldots$ , where  $a_1 = f(1), a_2 = f(2), \ldots, a_n = f(n), \ldots$

• <u>Hilbert's Paradox</u>: something impossible with finite sets may be possible with infinite sets.



- **Theorem:** The set of integers **Z** is countable.
- **<u>Definition</u>**: A rational number can be expressed as the ratio of two integers p and q such that  $q \neq 0$ .
  - <sup>3</sup>/<sub>4</sub> is a rational number
  - $\sqrt{2}$  is not a rational number.
- **Theorem**: The positive rational numbers are countable.
- Proof: The positive rational numbers are countable since they can be arranged in a sequence:  $r_1$ ,  $r_2$ ,  $r_3$ ,.
  - First row: q = 1
  - Second row: q = 2, etc.
  - Constructing the list:
    - First list p/q with p + q = 2.
    - Next list p/q with p + q = 3 and so on.



- **Theorem:** The set of real numbers is an uncountable set.
- **Proof**: We will be using proof by contradiction. Suppose that the real numbers are countable. Then every subset of the reals is countable, in particular, the interval [0,1] is countable. This implies the elements of this set can be listed say  $r_1$ ,  $r_2$ ,  $r_3$ , ... where
  - $r_1 = 0.d_{11}d_{12}d_{13}d_{14}...$
  - $r_2 = 0.d_{21}d_{22}d_{23}d_{24}...$
  - $r_3 = 0.d_{31}d_{32}d_{33}d_{34}....$

Where, the  $d_{ij} \varepsilon \{0,1,2,3,4,5,6,7,8,9\}$ .

• Use Cantor's diagonalization argument to contradict the supposition!