Clipping and other geometric algorithms

MIT EECS 6.837 Frédo Durand and Barb Cutler

Final projects

- Rest of semester
 - Weekly meetings with TAs
 - Office hours on appointment
- This week, with TAs
 - Refine timeline
 - Define high-level architecture
- Project should be a whole, but subparts should be identified with regular merging of code

Review of last time?

Last time

- Polygon scan conversion
 - Smart
 - Take advantage of coherence
 - Good for big triangles
 - back to brute force
 - Incremental edge equation
 - Good for small triangles
 - Simpler clipping
- Visibility
 - Painer: complex ordering
 - Z buffer: simple, memory cost
 - Hyperbolic z interpolation

Z interpolation

- X'=X/Z
- Hyperbolic variation

• Z cannot be linearly interpolated image

Integer z-buffer

- Use 1/z to have more precision in the foreground
- Set a near and far plane
 - 1/z values linearly encoded between 1/near and 1/far
- Careful, test direction is reversed

Plan

• Review of rendering pipeline

• 2D polygon clipping

• Segment intersection

Scanline rendering overview

The Graphics Pipeline

Modeling Transformations

Illumination (Shading)

Viewing Transformation (Perspective / Orthographic)

Clipping

Projection (to Screen Space)

Scan Conversion (Rasterization)

Visibility / Display

Input:

Geometric model:

Description of all object, surface, and light source geometry and transformations Lighting model:

Computational description of object and light properties, interaction (reflection)

Synthetic Viewpoint (or Camera):

Eye position and viewing frustum

Raster Viewport:

Pixel grid onto which image plane is mapped

Output:

Colors/Intensities suitable for framebuffer display (For example, 24-bit RGB value at each pixel)

Modeling Transformations

Modeling Transformations

Illumination (Shading)

Viewing Transformation (Perspective / Orthographic)

Clipping

Projection (to Screen Space)

Scan Conversion (Rasterization)

Visibility / Display

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Illumination (Shading) (Lighting)

Modeling Transformations

Illumination (Shading)

Viewing Transformation (Perspective / Orthographic)

• Vertices lit (shaded) according to material properties, surface properties (normal) and light

Local lighting model
 (Diffuse, Ambient, Phong, etc.)

$$L(\omega_r) = k_a + \left(k_d(\mathbf{n} \cdot \mathbf{l}) + k_s(\mathbf{v} \cdot \mathbf{r})^q\right) \frac{\Phi_s}{4\pi d^2}$$

Clipping

Projection (to Screen Space)

Scan Conversion (Rasterization)

Visibility / Display

10

Viewing Transformation

Modeling Transformations

Illumination (Shading)

Viewing Transformation (Perspective / Orthographic)

Clipping

Projection (to Screen Space)

Scan Conversion (Rasterization)

Visibility / Display

 Viewing position is transformed to origin & direction is oriented along some axis (usually z)

$$\begin{array}{c}
 \left(\begin{array}{c} x' \\ y' \\ 4x4 \text{ matrix} \end{array}\right) = \left(\begin{array}{cccc} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ 0 & 0 & 0 & 1 \end{array}\right)$$

MIT EECS 6.837, Cutler and Durand

Clipping

Modeling Transformations

Illumination (Shading)

Viewing Transformation (Perspective / Orthographic)

Clipping

Projection (to Screen Space)

Scan Conversion (Rasterization)

Visibility / Display

• Portions of the object outside the view volume (view frustum) are

MIT E

Clipping – modern hardware

Modeling Transformations

Illumination (Shading)

Viewing Transformation (Perspective / Orthographic)

Clipping

Projection (to Screen Space)

Scan Conversion (Rasterization)

Visibility / Display

Projection

Modeling Transformations

Illumination (Shading)

Viewing Transformation (Perspective / Orthographic)

Clipping

Projection (to Screen Space)

Scan Conversion (Rasterization)

Visibility / Display

Projective transform

Perspective Projection

- 2 conceptual steps:
 - 4x4 matrix
 - Homogenize
 - In fact not always needed

15

• Mordern graphics hardware performs most operations in 2D homogeneous coordinates

When to clip?

- Before perspective transform in 3D space
 - Use the equation of 6 planes
 - Natural, not too degenerate
- In homogeneous coordinates after perspective transform (Clip space)
 - Before perspective divide
 (4D space, weird w values)
 - Canonical, independent of camera
 - The simplest to implement in fact
- In the transformed 3D screen space after perspective division
 - Problem: objects in the plane of the camera

Scan Conversion (Rasterization)

Modeling **Transformations**

> Illumination (Shading)

Viewing Transformation (Perspective / Orthographic)

Clipping

Projection (to Screen Space)

Scan Conversion (Rasterization)

Visibility / Display

- Incremental edge equations
- Interpolate values as we go (color, depth, etc.)
- Screen-space bbox clipping

Visibility / Display

Modeling Transformations

Illumination (Shading)

Viewing Transformation (Perspective / Orthographic)

Clipping

Projection (to Screen Space)

Scan Conversion (Rasterization)

Visibility / Display

• Each pixel remembers the closest object (depth buffer)

Rendering Pipeline vs. ray casting

Ray Casting

For each pixel
For each object

Send pixels to the scene Discretize first

Rendering Pipeline

For each triangle For each pixel

Project scene to the pixels
Discretize last

+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	-			+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	4					+	+	+	+	+
+	+	+	+	+	+	+	+	-						+	+	+	+	+
+	+	+	+	+	+	+	+	-	=		=		+	+	+	+	+	+
+	+	+	+	+	+	+	-				>	+	+	+	+	+	+	+
+	+	+	+	+	+	-		-	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Rendering Pipeline vs. ray casting

Ray Casting

For each pixel
For each object

- Depth complexity: no calculation for hidden part
- Whole scene must be in memory
- Very atomic computation
- More general, more flexible
 - Primitive, lighting effects, adaptive antialiasing

Rendering Pipeline

For each triangle For each pixel

- Coherence: geometric transforms for vertices only
- Arithmetic intensity: the amount of computation increases in the depth of the pipeline
 - Good bandwidth/computation ratio
- Harder to get global illumination (shadows, interreflection, etc.)

What they use

- Games: pipeline
- Flight simulation: pipeline
- Movies: Both pipeline and ray tracing
- CAD-CAM & design: pipeline during design, anything for final image
- Architecture: ray-tracing, pipeline, but do complex lighting simulation (cf. later lectures)
- Virtual reality: pipeline
- Visualization: mostly pipeline, ray-tracing for highquality eye candy, interactive ray-tracing is starting

The infamous half pixel

- I refuse to teach it, but it's an annoying issue you should know about
- Do a line drawing of a rectangle from [top, right] to [bottom,left]
- Do we actually draw the columns/rows of pixels?

The infamous half pixel

- Displace by half a pixel so that top, right, bottom, left are in the middle of pixels
- Just change the viewport transform

Plan

• Review of rendering pipeline

• 2D polygon clipping

• Segment intersection

Scanline rendering overview

Polygon clipping

Polygon clipping

Polygon clipping

• Clipping is symmetric

Polygon clipping is complex

• Even when the polygons are convex

Polygon clipping is nasty

When the polygons are concave

Naïve polygon clipping?

- N*m intersections
- Then must link all segment
- Not efficient and not even easy

Weiler-Atherton Clipping

- Strategy: "Walk" polygon/window boundary
- Polygons are oriented (CCW)

Weiler-Atherton Clipping

• Compute intersection points

Weiler-Atherton Clipping

- Compute intersection points
- Mark points where polygons enters clipping window (green here)

Clipping

While there is still an unprocessed entering intersection

Walk" polygon/window boundary

Walking rules

- Out-to-in pair:
 - Record clipped point
 - Follow polygon boundary (ccw)
- In-to-out pair:
 - Record clipped point
 - Follow window boundary (ccw)

Walking rules

- Out-to-in pair:
 - Record clipped point
 - Follow polygon boundary (ccw)
- In-to-out pair:
 - Record clipped point
 - Follow window boundary (ccw)

- Out-to-in pair:
 - Record clipped point
 - Follow polygon boundary (ccw)
- In-to-out pair:
 - Record clipped point
 - Follow window boundary (ccw)

- Out-to-in pair:
 - Record clipped point
 - Follow polygon boundary (ccw)
- In-to-out pair:
 - Record clipped point
 - Follow window boundary (ccw)

While there is still an unprocessed entering intersection

Weiler-Atherton Clipping

• Importance of good adjacency data structure (here simply list of oriented edges)

Robustness, precision, degeneracies

- What if a vertex is on the boundary?
- What happens if it is "almost" on the boundary?
 - Problem with floating point precision
- Welcome to the real world of geometry!

Clipping

- Many other clipping algorithms:
- Parametric, general windows, region-region, One-Plane-at-a-Time Clipping, etc.

Constructive Solid Geometry (CSG)

- Sort of generalized clipping
- Boolean operations
- Very popular in CAD/CAM
- CSG tree

Ari Rappoport, Steven Spitz 97 MIT EECS 6.837, Cutler and Durand

Plan

• Review of rendering pipeline

• 2D polygon clipping

• Segment intersection

Scanline rendering overview

Line segment intersection

- N segments in the plane
- Find all intersections

Maximum complexity?

- N²
- (always N^2 if we take full lines)

Intersection between 2 segments

- Compute line equation for the 4 vertices
- If different signs
- Line intersection

Naïve algorithm

• N² intersection:

```
For (I=0; I<N; I++)
   For (J=I+1; J<N; J++)
   Compute intersection segments I and J</pre>
```


Taking advantage of coherence 1

- Sort in x
- Test only overlapping segments

Taking advantage of coherence 1

```
Sort segments by xmin into queue Q
List ActiveSegments =empty
While Q not empty
   L= Q.next() //pick next segment
   ActiveSegment->removeSegmentsBefore(L.xmin)
   For all segments Li in Active segments
       Compute Intersection between L and Li
   ActiveSegments->insert(L)
```

Taking advantage of coherence 1

```
Sort segments by xmin into queue Q
List ActiveSegments =empty
While Q not empty
   L= Q.next() //pick next segment
   ActiveSegment->removeSegmentsBefore(L.xmin) //easier if sorted
   For all segments Li in Active segments
       Compute Intersection between L and Li
   ActiveSegments->insert(L) //keep sorted by xmax
```

MIT EECS 6.837, Cutler and Durand

What have we achieved?

- Take advantage of locality and coherence
- Maintain working set
- Still O(n²)
- But much better on average

• Can we do better?

Can we do better?

- We have taken advantage of the coherence in x
- We have maintained a local view of the world at discrete events in x
- Do the same in y as well

Maintain segments sorted in y

Events

- New segment
- End of segment
- Change of y sorting

New segment

- Just insert at y1
- Use balanced binary trees

End of segment

- Just remove
- Potentially re-balance the tree

Intersection

- Where can intersection occur?
- Intersection must be between segments adjacents in y
- Fort each pair of adjacent segments, always maintain next intersection

- Maintain event queue
 - New segment for each x1
 - Insert in binary tree
 - Compute potential new intersection
 - Add ending event
 - End of segment
 - simply remove
 - compute new intersections
 - Change of y sorting
 - report intersection
 - swap two segments
 - compute new intersections

- Maintain event queue
 - New segment for each x1
 - Insert in binary tree
 - Compute potential new intersection
 - Add ending event
 - End of segment
 - simply remove
 - compute new intersections
 - Change of y sorting
 - report intersection
 - swap two segments
 - compute new intersections

- Maintain event queue
 - New segment for each x1
 - Insert in binary tree
 - Compute potential new intersection
 - Add ending event
 - End of segment
 - simply remove
 - compute new intersections
 - Change of y sorting
 - report intersection
 - swap two segments
 - compute new intersections

- Maintain event queue
 - New segment for each x1
 - Insert in binary tree
 - Compute potential new intersection
 - Add ending event
 - End of segment
 - simply remove
 - compute new intersections
 - Change of y sorting
 - report intersection
 - swap two segments
 - compute new intersections

- Maintain event queue
 - New segment for each x1
 - Insert in binary tree
 - Compute potential new intersection
 - Add ending event
 - End of segment
 - simply remove
 - compute new intersections
 - Change of y sorting
 - report intersection
 - swap two segments
 - compute new intersections

- Maintain event queue
 - New segment for each x1
 - Insert in binary tree
 - Compute potential new intersection
 - Add ending event
 - End of segment
 - simply remove
 - compute new intersections
 - Change of y sorting
 - report intersection
 - swap two segments
 - compute new intersections

- Maintain event queue
 - New segment for each x1
 - Insert in binary tree
 - Compute potential new intersection
 - Add ending event
 - End of segment
 - simply remove
 - compute new intersections
 - Change of y sorting
 - report intersection
 - swap two segments
 - compute new intersections

Output sensitive

- The running time depends on the output
- Hopefully linear in the output
 - + smaller complexity in the input
- In our case time O(n log n + k log n)
 - Where k is the number of intersections
- Space: O(n)

• The optimal bound is time $O(n \log n + k)$

Other strategy?

• Grid!

Ref

- De Berg, M. M. van Kreveld, M. Overmars. O. Schwarzkopf. *Computational Geometry: Algorithms and Applications*. Ed. 2. Springer
- O'Rourke, Joseph. *Computational Geometry in C.* Ed. 2.

Questions?

• Rendering this line drawing involved the intersection of all stroke segments

Plan

• Review of rendering pipeline

• 2D polygon clipping

• Segment intersection

Scanline rendering overview

Scan Line rasterization

- Draw one scanline at a time
- Maintain ordered slices of triangles
- Advantage, does not require whole model and whole image in memory

Scan Line: Principle

- Proceed row by row
- Maintain Active Edge List (AEL) (EdgeRecList)
- Edge Table (ET) for new edges at y (EdgeRecTable)

Precompute: Edge Table

- One entry per scan line (where edge begins)
- Each entry is a linked list of Edges, sorted by x

yend: y of top edge endpoint

x**curr**, x: current x intersection, delta wrt y

Initialization: events

• Edge Table

List of Edges,
sorted by x
yend
xcurr, delta wrt

- Active edge list (AEL)
 - Will be maintained
 - Store all active edges intersecting scanline

Edge table $_{\rm Ordered\ by\ }x$

When Does AEL Change State?

- When a vertex is encountered
 - When an edge begins
 - All such events pre-stored in Edge Table
 - When and edge ends
 - Can be deduced from current Active Edge List

When Does AEL Change State?

- When a vertex is encountered
- When two edges change order along a scanline
 - I.e., when edges cross each other!
 - How to detect this efficiently?

Scanline algorithm summary

- Initialize Raster, Polygons, Edge Table, AEL
- For each scanline y
 - Update Active Edge List (insert edges from EdgeTable[y])
 - Assign raster of pixels from AEL
 - Update AEL (delete, increment, resort)

Other sweep algorithms

- Sweep is a very general principle:
 - Maintain a slice
 - Update at events
 - Works well if events are predictable locally in the slice (regular)
- Applied to many problems
 - E.g. construction of weird visibility data structures in
 4.5D