Física II – IS 2° Semest. 2025

Daniel Cariatore

Universidad Nacional del Sur

Propiedades de las cargas eléctricas

 Benjamín Franklin (1706-1790) descubrió que existen dos tipos de cargas eléctricas, a las que dio el nombre de positiva y negativa.

- Los electrones tienen carga negativa y los protones positiva.
- la carga eléctrica es conservativa.
- Robert Millikan (1868-1953), descubrió que la carga eléctrica \mathbf{q} está cuantizada, $(q = \pm Ne)$
- El **electrón** (del griego elektron "ámbar") es una partícula subatómica con una **carga eléctrica elemental negativa**: $e^- = -1,60218 \times 10^{-19}$ [C]

Ley de Coulomb (Fuerza de Coulomb)

Balanza de Torsión

Los **experimentos de Coulomb** (1785) permitieron generalizar la magnitud de *Fuerza electrostática*:

$$|\vec{F}_e| = \frac{1}{4\pi\epsilon_o} \frac{|q_1||q_2|}{r_{12}^2}$$

- q_1 y q_2 cargas
- ϵ_o es la **permitividad del vacío** $\epsilon_o = 8.85423 \times 10^{-12} [C^2/N \cdot m^2]$
- r distancia entre las cargas

El átomo de hidrógeno

Carga y masa de electrones, protones y neutrones

Partícula	Carga (C)	Masa (kg)
Electrón (e)	$-1.602\ 176\ 5 \times 10^{-19}$	$9.109 \ 4 \times 10^{-31}$
Protón (p)	$+1.602\ 176\ 5 \times 10^{-19}$	$1.672 62 \times 10^{-27}$
Neutrón (n)	0	$1.67493 imes 10^{-27}$

Hidrógeno

$$|\vec{F}_e| = \frac{1}{4\pi\epsilon_o} \frac{|e^+||e^-|}{r_o^2} \qquad |\vec{F}_g| = G \frac{|m_e||m_p|}{r_o^2}$$

$$|\vec{F}_g| = G \frac{|m_e||m_p}{r_o^2}$$

$$\frac{F_e}{F_g} \approx 2 \times 10^{39}$$

$$\langle r_o \rangle = 5.33 \times 10^{-11} \ [m]$$

 $G = 6.6743 \times 10^{-11} \ [N \cdot m^2/kg^2]$

Forma vectorial de la Ley de Coulomb

La Fuerza siempre es una cantidad Vectorial

Cargas de igual signo: Fuerza Repulsiva

$$\vec{\mathbf{F}}_{12} = \frac{1}{4\pi\epsilon_o} \frac{q_1 q_2}{r_{12}^2} \hat{\mathbf{r}}_{12}$$

Cargas de distinto signo: Fuerza Atractiva

$$\vec{\mathbf{F}}_{12} = \frac{1}{4\pi\epsilon_o} q_1 q_2 \frac{(\vec{\mathbf{r}}_1 - \vec{\mathbf{r}}_2)}{|\vec{\mathbf{r}}_1 - \vec{\mathbf{r}}_2|^3}$$

Forma vectorial de la Ley de Coulomb

Representación de la Fuerza Eléctrostática o Fuerza de Coulomb

$$\vec{\mathbf{F}}_{12} = \frac{1}{4\pi\epsilon_o} q_1 q_2 \frac{(\vec{\mathbf{r}}_1 - \vec{\mathbf{r}}_2)}{|\vec{\mathbf{r}}_1 - \vec{\mathbf{r}}_2|^3}$$

Principio de Superposición

La fuerza resultante es igual a la suma vectorial de las fuerzas ejercidas por las otras cargas individuales.

$$\sum \vec{\mathbf{F}}_{q_3} = \vec{\mathbf{F}}_{31} + \vec{\mathbf{F}}_{32} + \dots + \vec{\mathbf{F}}_{3n}$$

