CS-E5740 Complex Networks, Answers to exercise set 2

Yangzhe Kong, Student number: 765756

September 28, 2019

Problem 1

a)	Ensemble i	Probability	Average Degree	Average Cluster Coefficient	Diameter
	1	$(1-p)^3$	0	0	0
	2	$p(1-p)^2$	2/3	0	1
	3	$p(1-p)^2$	2/3	0	1
	4	$p(1-p)^2$	2/3	0	1
	5	$p^2(1-p)$	4/3	0	2
	6	$p^2(1-p)$	4/3	0	2
	7	$p^2(1-p)$	4/3	0	2
	8	p^3	2	1	1

Now we can use the derived data on the table to calculate the properties we want to know.

Average Degree

Using
$$p = 1/3$$

Then
$$\langle k \rangle = \sum_{1}^{N} \pi_i \langle k_i \rangle = 2/3$$

- Average Cluster Coefficient

Using
$$p = 1/3$$

Using
$$p = 1/3$$

Then $\langle c \rangle = \sum_{1}^{N} \pi_i \langle c_i \rangle = 1/27$

- Average Diameter

Using
$$p=1/3$$

Using
$$p = 1/3$$

Then $< d^* >= \sum_{1}^{N} \pi_i < d*_i >= 25/27$

b) Still we can use the table from a) to calculate.

Average Degree Then
$$< k >= \sum_{1}^{N} \pi_i < k_i >= p(1-p)^2 * 3 * 2/3 + (1-p)p^2 * 3 * 4/3 + 2 * p^3 = 2p$$

– Average Cluster Coefficient Then
$$< c >= \sum_{1}^{N} \pi_{i} < c_{i} >= p^{3}$$

- Average Diameter Then $< d^* >= \sum_1^N \pi_i < d_i^* >= 1*(1-p)^2p*3+2*(1-p)p^2+1*p^3 = 3p-2p^3$

Problem 2

a) - First Factor

Each node can have maximum N-1 links, thus it can be abstracted as having N-1 independent trails where each trail has the probability of success p.

- Second Factor

If there are k successes (links) in N-1 trails, then p^k is the probability of having k successes.

- Third Factor

Since there are k successes (links) in N-1 trails, then there are N-1-k fails, and $(1-p)^{N-1-k}$ is the probability of having N-1-k successes. Multiplying the second factor and the third factor together formulates the prob-

b) The definition of the Clustering Coefficient of a node is:

ability of having one node that has k links.

 $\frac{\#edges\ between\ its\ neighbors}{\#possible\ edges\ between\ its\ neighbors}$

This actually represent the probability of having an edge between a node's neighbors, in other words, having a link, which is exactly p.

- c) Actually the clustering coefficient of a node only depends on the local connectivity of its neighbors. So even if $k \Longrightarrow \infty$, the clustering coefficient of a node is still p.
- d) The image is shown in Figure 1 and 2.

Figure 1: Properties of ER network with 3 nodes

Figure 2: Properties of ER network with 100 nodes

Problem 3

a) For the WS Network using N=15, m=2p=0.1 total number of links is 30 and the number of rewired links is 3. For the WS Network using N=100, m=2p=0.5, total number of links is 200 and the number of rewired links is 104. Their images are shown in Figure 3 and 4

Figure 3: The WS Network using N=15, m=2p=0.1

Figure 4: The WS Network using N=100, m=2p=0.5

b) The image is shown in Figure 5.

Figure 5: Relative Average Clustering Coefficient and Shortest Path Length