Zadanie klasyfikacji dla klas uporządkowanych Ordinal classification problem

Warsztaty Badawcze 2 Karol Saputa, Małgorzata Wachulec, Aleksandra Wichrowska

Plan prezentacji

- Opis zagadnienia
- Metody rozwiązania
- Metryki
- Przykład dla omawianych metod Wine Quality

Czym jest klasyfikacja klas uporządkowanych?

Klasyczny problem klasyfikacji wieloklasowej:

Rozpoznawanie choroby

VS.

Problem klasyfikacji klas uporządkowanych:

Ocena jakości wina

Możliwe rozwiązania

 Zastosowanie zwykłego algorytmu klasyfikacji wieloklasowej

 Zamiana zmiennej celu na zmienną numeryczną i dopasowanie modelu regresyjnego

 Zamiana jednego problemu klasyfikacji m-klasowej na m-1 problemów klasyfikacji binarnej |good - average| ≠ |good - bad|

m-1 zadań klasyfikacji binarnej

- 1. Nowe zmienne celu (ozn. y):
 - Czy wino jest lepsze niż "złe"/ "średnie"/ "dobre"?
- Użycie klasyfikatora zwracającego dla każdej obserwacji:
 - P(y > "złe")
 - P(y > "średnie")
 - \circ P(y > "dobre")
- 3. Wyliczenie prawdopodobieństw przynależenia do każdej z kategorii:
 - \circ P(K1) = 1 P(y > "złe")
 - P(K2) = P(y > "zle") P(y > "średnie")
 - P(K3) = P(y > "srednie") P(y > "dobre")
 - $\circ P(K4) = P(y > "dobre")$

Źródło: Frank, E., & Hall, M. (2001). A Simple Approach to Ordinal Classification. *Machine Learning: ECML 2001 Lecture Notes in Computer Science*, 145–156. doi: 10.1007/3-540-44795-4_13

Uporządkowana regresja logistyczna

Problem zdefiniowany następująco:

- m liczba klas
- y prawdziwe etykiety
- $y^* = X\beta + \epsilon$, $E\epsilon = 0$
- t₁, ..., t_{m-1} granice rozdzielające poszczególne klasy

Współczynniki β oraz t_1, \ldots, t_{m-1} są estymowane z danych tak, aby zachodziła zależność:

$$y = \begin{cases} 1 & \text{if } -\infty < y^* \le t_1 \\ 2 & \text{if } t_1 < y^* \le t_2 \\ \vdots & \vdots \\ m & \text{if } t_{m-1} < y^* < \infty \end{cases}$$

Przykład dla 4 klas:

Uporządkowana regresja logistyczna

P-stwo, że obserwacja przynależy do klasy k:

$$P(y_i = k | x_i) = P(t_{k-1} \le y_i^* < t_k | x_i)$$

Po podstawieniu $y_i^* = \beta x_i + \epsilon_i$:

$$P(y_i = k|x_i) = P(t_{k-1} \le \beta x_i + \epsilon_i < t_k | x_i)$$

$$P(y_i = k | x_i) = P(t_{k-1} - \beta x_i \le \epsilon_i < t_k - \beta x_i | x_i)$$

$$P(y_i = k | x_i) = F(t_k - \beta x_i) - F(t_{k-1} - \beta x_i)$$

gdzie F to dystrybuanta ε

Dla 4 klas dostajemy:

$$P(y_i = 1 | x_i) = F(t_1 - \beta x_i)$$

$$P(y_i = 2 | x_i) = F(t_2 - \beta x_i) - F(t_1 - \beta x_i)$$

$$P(y_i = 3 | x_i) = F(t_3 - \beta x_i) - F(t_2 - \beta x_i)$$

$$P(y_i = 4 | x_i) = 1 - F(t_3 - \beta x_i)$$

Miary oceny klasyfikacji

Podstawowe miary:

- accuracy (ACC)
- mean absolute error (MAE)
- mean squared error (MSE)

Inne miary:

- Accuracy within (ACC1, ACC2, itd.)
- Normalized Distance Performance Measure (NDPM)

Accuracy within (ACC1, ACC2, itd.)

$$\qquad \text{ACC within 1 (ACC1)} \qquad \underline{\sum_{i=1}^{N} \mathbb{1}(|y_i - \widehat{y_i}| \in \{0,1\})}_{N}$$

• ACC within 2 (ACC2)
$$\frac{\sum_{i=1}^{N}\mathbb{1}(|y_i-\widehat{y_i}|\in\{0,1,2\})}{N}$$

itd.

Uwaga: klasyczne ACC to 'ACC within 0'

Normalized Distance Performance Measure (NDPM)

$$NDPM = \frac{2C^- + C^u}{2C}$$

System's ranking

Rank	Item
1	Item A
2	Item B
3	Item C
4	Item D
5	Item E

User's ranking

Rank	Item
1	Item A
2	Item B
2 <i>Cu</i>	Item C
4	Item E
5	Item D

C - liczba preferencji użytkownika przeciwstawnych względem preferencji systemu

C^u - liczba sytuacji, kiedy system rozróżnia przedmioty, a użytkownik traktuje je równoważnie.

C - liczba par preferencji użytkownika

Rezultaty uzyskane w artykule - poprawa dokładności

Wykonany eksperyment

- przekształcenie wartości numerycznych na kategoryczne przedziały dla 29 zbiorów danych
- wykorzystanie drzew decyzyjnych do rozwiązania podzadań klasyfikacji

Wyniki

 Zaproponowana metoda C4.5-ORD dla większości testowanych zbiorów danych uzyskuje lepsze wyniki niż klasyczne drzewa

	C4.5-ORD	C4.5	C4.5-1PC
$\overline{\text{C4.5-ORD}}$	-	4 (0)	6 (4)
C4.5	$23 \ (18)$	_	15 (11)
C4.5-1PC	22 (16)	14(7)	_

Tabela pokazuje jak często model w danej kolumnie osiąga istotnie wyższe wyniki niż modele w poszczególnych wierszach

Uzyskana w artykule poprawa wyników

Na zbiorach na których uzyskano istotnie wyższe wyniki dla proponowanej metody (oznaczone czarnymi kropkami) różnica wynosiła kilka punktów. Proponowany wzrost dokładności jest więc stosunkowo niewielki, choć łatwy w uzyskaniu.

Table 2. Experimental results for target value discretized into five bins: percentage of correct classifications, and standard deviation

Dataset	C4.5-ORD	C4.5	C4.5-1PC
Abalone	48.08 ± 0.48	46.34±0.73 •	49.55 ± 0.65 \circ
Ailerons	59.24 ± 0.30	$56.97 \pm 0.35 \bullet$	$55.58 {\pm} 0.34 \bullet$
Delta Ailerons	56.00 ± 0.33	$55.54 \pm 0.50 \bullet$	$56.77 {\pm} 0.15 \circ$
Elevators	50.34 ± 0.28	$47.76 \pm 0.29 \bullet$	50.72 ± 0.33 \circ
Delta Elevators	50.01 ± 0.38	$47.63 \pm 0.42 \bullet$	50.34 ± 0.29
2D Planes	75.37 ± 0.11	75.37 ± 0.06	75.29 ± 0.07
Pole Telecom	95.05 ± 0.12	95.05 ± 0.10	94.94 ± 0.07

Wykorzystanie metod dla zbioru Wine-Quality

Ocena jakości wina w skali 2-5 na podstawie parametrów chemicznych

- 1. Uporządkowana regresja logistyczna
- funkcja polr proportional odds logistic regression

```
library(MASS)
m1 <- polr(Class ~ ., data = train_ds, Hess=TRUE)
m1_pred <- predict(m1, test_ds)</pre>
```

- 2. Implementacja metody z artykułu
 - wykorzystanie lasów losowych (ranger) do określenie pomocniczych prawdopodobieństw
 - możliwość zastosowania różnych modeli

Analiza wstępnych wyników

- dla małej liczby klas naturalnie występują wysokie wartości ACC1
- klasyczna regresja logistyczna uzyskuje istotnie większe wartości MSE
- dla implementacji artykułu istotny jest wybór metody rozwiązywania podzadań
- potrzeba wykonania dokładniejszych testów

Wartości metryk uzyskane dla zbioru Wine-Quality

MSE	ACC	ACC1	
0.61	0.53	0.96	
0.62	0.52	0.96	
0.37	0.69	0.98	
0.61	0.54	0.96	4
	0.61	0.61 0.53 0.62 0.52 0.37 0.69	0.61 0.53 0.96 0.62 0.52 0.96 0.37 0.69 0.98 0.61 0.54 0.96

Przydatne linki (i źródła)

- https://www.cs.waikato.ac.nz/~eibe/pubs/ordinal_tech_report.pdf?fbclid=lwAR3d5m6JC3eZRnvajE-j QQ-d727b-r3rl021MWQTBb01LxCimW0s6uFfLc4
- 2. http://www.cs.uu.nl/docs/vakken/b3dar/ordinal-dict.pdf
- 3. https://link.springer.com/chapter/10.1007/978-3-642-01818-3 25
- 4. Jak to zrobić w Pythonie?
 - a. https://github.com/sarvothaman/ordinal-classification/blob/master/ordinal-classification.ipynb
 - b. https://pythonhosted.org/mord/