Colle 4 filière PCSI Vendredi 17 octobre 2025

Planche 1

- 1. Définition de l'injectivité. Description des racines *n*-ièmes de l'unité. Énoncé et démonstration.
- 2. Déterminer l'ensemble des complexes z tels que $1 \overline{z} = |z|$.
- 3. On pose $P = \{z | \operatorname{Im}(z) > 0\}$ et $f : P \to \mathbb{C}, z \mapsto \frac{z-i}{z+i}$. Déterminer l'image directe f(P), démontrer que $f_{|P|}^{|f(P)|}$ est bijective et déterminer sa réciproque.

Planche 2

- 1. Définition d'une image réciproque. Caractérisation de la bijectivité à l'aide de composées. Énoncé et démonstration.
- 2. Soit $z \in U_7$. En admettant $1 + z + z^2 + z^3 + z^4 + z^5 + z^6 = 0$ si $z \ne 1$, calculer

$$\frac{z}{1+z^2} + \frac{z^2}{1+z^4} + \frac{z^3}{1+z^6}$$

3. On pose $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x$ si $x \in \mathbb{Q}$ et 1 - x si $x \notin \mathbb{Q}$. Montrer que f est bijective et déterminer sa réciproque.

Planche 3

- 1. Énoncer le théorème de D'Alembert-Gauss. Images directe et réciproque d'une union et d'une intersection. Énoncé et démonstration.
- 2. Soit $f: E \to F$ une application, $A \subset E$ et $B \subset F$. montrer que

$$f(A \cap f^{-1}(B)) = f(A) \cap B$$

3. Soit $u \in \mathbb{C} \setminus \{1\}$ et $z \in \mathbb{C} \setminus \mathbb{R}$. Montrer l'équivalence

$$\frac{z-u\overline{z}}{1-u}\iff |u|=1$$

Bonus

Montrer que l'image d'un cercle ou d'une droite par une homographie $z \mapsto (az+b)/(cz+d)$ est un cercle ou une droite (éventuellement privé d'un point).