Educación y

Ciencias Humanas

Práctica calificada 1

Curso: Lógica y Argumentación

Sección: 8

Nombre y apellidos: Carla Viviana Mejia Zamora.

Parte I. Sintaxis y semántica de LC

[6 puntos]

Desarrolla los siguientes:

A) Indica cuáles de las siguientes secuencias de símbolos son mal formadas. Además, debes indicar qué error se comete en cada una de ellas (0.75 puntos c/u).

a.
$$\neg \left(\neg R \land \neg \left(\neg P \neg \left(\neg S \lor \neg (Q \equiv T) \right) \right) \right)$$

b. $\left(\left(\neg P \lor \neg (T \equiv \neg S) \right) \supset \left((Q < \neg R) \lor \neg Q \right) \right)$

b.
$$(\neg P \lor \neg (T \equiv \neg S)) \supset ((Q < \neg R) \lor \neg Q)$$

c.
$$\neg (\neg (R \lor (\neg (\neg (S \equiv Q) \land P))) \supset (S \lor \neg T))$$

c.
$$\neg (\neg (R \lor (\neg (\neg (S \equiv Q) \land P))) \supset (S \lor \neg T))$$

d. $(((P \land \neg Q) \equiv \neg R) \supset (\neg S \equiv \neg (P \lor T)))$

Secuencia mal formada	Error cometido	
а	Seguido de la letra oracional P debe haber un operador diádico no la negación. $\Big(\neg P \neg \Big(\neg S \lor \neg (Q \equiv T) \Big) \Big)$	
b	El operador diádico empleado en esta formula es incorrecto. $(Q < \neg R)$	
С	Es incorrecto porqué la negación está introduciendo paréntesis $\left(\left((\neg(S\equiv Q)\land P)\right)\right)$	

B) Construye el árbol sintáctico de la fórmula bien formada. Además, señala cuál es su operador principal, cuál es su grado de complejidad y cuántas subfórmulas tiene. (1.75 puntos)

C) Elabora un modelo y un contramodelo para la fórmula bien formada. Debes consignar el cálculo lineal de valores de la fila correspondiente (1 punto c/u):

Considera las siguientes reglas extra para el conector ∝ que se añaden a la LC:

Reglas de formación extra

rf5. Si ϕ y ψ son fbf's, entonces $(\phi \# \psi)$ es una fbf.

Reglas de interpretación extra

ri7.
$$U(\phi \# \psi) = V \operatorname{sii} U(\phi) = F \operatorname{y} U(\psi) = V$$

A continuación, desarrolla los siguientes ítems:

A) Crea la tabla de verdad compartida por ϕ y ψ . Debes consignar, como mínimo, todos los valores de los conectores lógicos. (2 puntos)

			φ	ψ
P	Q	R		
٧	٧	٧		
٧	٧	F		
٧	F	٧		
٧	F	F		
F	٧	٧		
F	٧	F		
F	F	٧		
F	F	F		

- A) Responde las siguientes preguntas (2 puntos c/u):
 - i. $\iota(\phi \supset \neg(\neg \psi \land \phi))$ es tautológica? De no serlo, señala un contraejemplo.

Respuesta: No es tautológica

Tabla para el contraejemplo (de no ser tautológica)

P	Q	R	$(\phi \supset \neg(\neg \psi \land \phi))$

ii. $\{\neg \psi, \neg(\phi \supset \neg \psi)\}$ es consistente? De serlo, señala un ejemplo.

Respuesta:

Tabla para el ejemplo (de ser consistente)

P	Q	R	$ eg\psi$	$\neg(\phi \supset \neg\psi)$

Respuesta:

Tabla para el contraejemplo (de ser inválido)

P	Q	R	$(\neg \phi \land \neg \psi)$	$(\phi \equiv \psi)$	$\neg(\neg\phi\supset\psi)$

Parte III. Propiedades de la LC

[6 puntos]

Considera las siguientes afirmaciones:

- a. $(\phi \supset \neg \chi)$ implica a $(\phi \land \neg \chi)$.
- b. Si ψ es tautológica e implica a ω , entonces $\phi : (\psi \land \omega)$ es válido.

A continuación, señala si expresan propiedades cumplidas por cualquier fórmula en LC o no. Justifica tu respuesta. (3 puntos c/u)

	¿Expresa una propiedad de la LC?	Justificación
a.	No	Esta afirmación no expresa una propiedad válida en LC. Ya que, no debe darse lo siguiente V – F, sin embargo, en este caso en la primera parte nos puede salir una verdadera, y en la segunda falsa. Entonces no va a implicar. No hay la certeza de que (v -f) no se dé, por lo tanto, no va a cumplir en todas las fórmulas.
b.	Sí	Ya que al ser ψ tautología, significa que todos sus valores van a ser verdaderos y nos dice que implica a ω entonces todos sus valores de esta van a ser verdaderos también, ya que no debe darse (v – f) por lo que en la segunda formula al ser conclusión ambas al estar en disyunción van a ser verdaderas, no hay manera de que sea falso. La conclusión siempre será verdadera. Así, el argumento es válido.