ÉQUATIONS DIFFÉRENTIELLES

1 Équations différentielles homogènes du premier ordre

On considère l'équation différentielle homogène du premier ordre suivante :

$$(E_0)$$
 $a(t)y'(t) + b(t)y(t) = 0$

où a et b sont deux fonctions définies sur un intervalle $J \subset \mathbb{R}$.

Théorème (Ensemble des solutions de (E_0)).

S'il existe un intervalle $I \subset J$ sur lequel les fonctions a et b sont continues et où la fonction a ne s'annule pas, alors l'ensemble des solutions de (E_0) sur I est :

$$S_0 = \left\{ \begin{array}{ccc} I & \longrightarrow & \mathbb{R} \\ & & -\int \frac{b(t)}{a(t)} dt \ ; k \in \mathbb{R} \end{array} \right\}$$

Conseil méthode : ici, nous voulons démontrer une égalité entre deux ensembles S_0 et l'ensemble de droite noté par exemple B. On procède par double inclusion : $S_0 \subset B$ et $B \subset S_0$. Démontrer par exemple que $S_0 \subset B$ revient à démontrer que tous les éléments de S_0 sont dans B.

Preuve:

Dans toute la preuve, on note $F(t)=\int \frac{b(t)}{a(t)}\mathrm{d}t$ une primitive de $\frac{b}{a}$ sur I. (F est bien définie sur I par continuité des fonctions a et b et puisque a ne s'annule pas sur I). On a : $\forall\,t\in I,\,F'(t)=\frac{b(t)}{a(t)}$.

Considérons sur I la fonction $z:t\longmapsto y_0(t)e^{F(t)}$. z est dérivable sur I et

$$\forall t \in I, \ z'(t) = y'_0(t)e^{F(t)} + y_0(t)F'(t)e^{F(t)}$$

$$= y'_0(t)e^{F(t)} + y_0(t)\frac{b(t)}{a(t)}e^{F(t)}$$

$$= \frac{e^{F(t)}}{a(t)} (a(t)y'_0(t) + b(t)y_0(t))$$

$$= \frac{e^{F(t)}}{a(t)} \times 0 = 0$$

On en déduit donc que la fonction z est constante égale à $k \in \mathbb{R}$ sur I.

Ainsi,
$$\forall t \in I$$
, $z(t) = y_0(t)e^{F(t)} = k$ ce qui donne $y_0(t) = ke^{-F(t)} = ke^{-\int \frac{b(t)}{a(t)}} dt$.

 \supset Soit y la fonction définie sur I par $y(t) = ke^{-F(t)}$ avec $k \in \mathbb{R}$. y est dérivable sur I et

$$\forall t \in I, \ y'(t) = -kF'(t)e^{-F(t)} = -F'(t)y(t) = -\frac{b(t)}{a(t)}y(t)$$

Ainsi, $\forall t \in I$, $a(t)y'(t) + b(t)y(t) = a(t)\left(-\frac{b(t)}{a(t)}y(t)\right) + b(t)y(t) = -b(t)y(t) + b(t)y(t) = 0$ Donc $y \in S_0$.

$\mathbf{2}$ Solution générale d'une équation différentielle du premier ordre

Théorème (Ensemble des solutions de (E)).

Soient (E) a(t)y'(t) + b(t)y(t) = c(t) et (E₀) a(t)y'(t) + b(t)y(t) = 0où a, b et c sont trois fonctions définies et continues sur un intervalle I de $\mathbb{R} \ avec \ \forall t \in I, \ a(t) \neq 0.$

Soit y_p une solution particulière de (E).

Alors:

$$S = \{y_p + y_0; y_0 \in S_0\}$$

où S_0 est l'ensemble des solutions de (E_0) .

Preuve:

Définissons pour tout $t \in I$, $y_0(t) = y(t) - y_p(t)$. y_0 est dérivable sur I et $\forall t \in I$, $y_0'(t) = y'(t) - y_p'(t)$. Ainsi,

$$\forall t \in I, \ a(t)y_0'(t) + b(t)y_0(t) = a(t)\left(y'(t) - y_p'(t)\right) + b(t)\left(y(t) - y_p(t)\right)$$
$$= \left(a(t)y'(t) + b(t)y(t)\right) - \left(a(t)y_p'(t) + b(t)y_p(t)\right)$$
$$= c(t) - c(t) = 0$$

On en déduit que $y_0 \in S_0$. Ainsi, on a bien $y = y_0 + y_p$ avec $y_0 \in S_0$. Cela signifie que $y \in \{y_p + y_0; y_0 \in S_0\}.$

On a démontré que $S \subset \{y_p + y_0; y_0 \in S_0\}$

 \supset Soit $f \in \{y_p + y_0; y_0 \in S_0\}$. Pour tout $t \in I$, on a $f(t) = y_p(t) + y_0(t)$ avec $y_0 \in S_0$. f est dérivable sur I et $\forall t \in I$, $f'(t) = y'_p(t) + y'_0(t)$. Ainsi,

$$\forall t \in I, \ a(t)f'(t) + b(t)f(t) = a(t)\left(y_p'(t) + y_0'(t)\right) + b(t)\left(y_p(t) + y_0(t)\right) \\ = \left(a(t)y_p'(t) + b(t)y_p(t)\right) + \left(a(t)y_0'(t) + b(t)y_0(t)\right) \\ = c(t) + 0 = c(t)$$

Donc $f \in S$. L'inclusion $\{y_p + y_0; y_0 \in S_0\} \subset S$ est démontrée.