k-NN + DWT

Sebastiár

Introducciói

Introducción Antecedentes

Problema e Hipóti Objetivos

Preliminare

Series de Tiemp

MACE

....

Lift k_NI

Modificación a k-NI Algoritmo Principal

Resultados

Tarea de Pronóstio

Conclusione

Generales

ENHANCING k-NEAREST NEIGHBORS FORECASTING USING DISCRETE WAVELET TRANSFORM

Sebastián Sánchez Maldonado

31/08/2020

Contenido

k-NN + DWT

Sebastiá

Introducción
Introducción

Antecedentes

Problema e Hipóte:
Objetivos

Mot y J

Preliminare

Series de Tiempo

VVI

Lifting

Lift k-NN

Modificación a k-NN Algoritmo Principal

Resultados

Tarea de Pronóstio

Conclusiones

Conclusiones Generales Trabajo Futuro

1 Introducción

- Introducción
- Antecedentes
- Problema e Hipótesis
- Objetivos
- Motivación y Justificación

2 Preliminares

- Series de Tiempo
- Vecinos Más Cercanos
- Transformada Wavelet
- Lifting
- Evolución Diferencial
- 3 Pronóstico Lift k-NN
 - Modificación a k-NN
 - Algoritmo Principal
- 4 Resultados
 - Tarea de Pronóstico
 - Resultados
- 5 Conclusiones
 - Conclusiones Generales
 - Trabajo Futuro

Pronóstico

k-NN + DWT

Introducción

- Tener una representación precisa del futuro permite tomar decisiones más eficientes y mejores en el presente.
- La predicción de demanda eléctrica es un campo particularmente importante y complejo.
- Para realizar el pronóstico, se han utilizado herramientas como k-Vecinos Más Cercanos (k-NN).
- Las series de tiempo pertenecen al Centro Nacional de Control de Energía (CENACE).

Ayudar a Pronosticadores

k-NN + DWT

Introducción
Introducción
Antecedentes
Problema e Hipótesi
Objetivos

Preliminares
Series de Tiempo
NN
WT
Lifting

Lift k-NN

Modificación a k-NN

Algoritmo Principal

Resultados

Tarea de Pronóstico

Conclusiones
Generales

- Las series de tiempo reales pueden ser difíciles de predecir.
- Es posible simplificarlas mediante filtrado.
- La Transformada Discreta Wavelet (DWT) permite separar las series en componentes de frecuencia.
- Existen wavelets son capaces de mejorar el pronóstico, pero no son óptimas para el propósito.
- La evolución de wavelets, a través de lifting, puede permitir hallar mejores wavelets que las estándar para pronóstico.

Antecedentes

k-NN + DWT

Sebastiái

Introducción

Antecedentes

Problema e Hipótes

Objetivos

Mot y Just

Preliminares
Series de Tiempo
NN
WT
Lifting

Lift k-NN Modificación a k-NN

Algoritmo Principal
Resultados

Tarea de Pronóstic Resultados

Conclusiones
Generales
Trabaio Euturo

- Existe bastante trabajo de pronóstico de series de tiempo.
- Fan et al. (2019) usan *k*-NN para pronóstico de demanda eléctrica.
- Wong et al. (2003) son los primeros en usar la DWT en pronóstico.
- Conejo et al. (2005) predicen componentes.
- Flores et al. evolucionan hiperparámetros de k-NN.
- Grasemann y Miikkulainen (2004) son los primeros en evolucionar wavelets con lifting.

Problema e Hipótesis

k-NN + DWT

Sebastiái

Introducción

Problema e Hipótesis Objetivos Mot y Just

Preliminares
Series de Tiempo
NN
WT
Lifting
DE

Lift k-NN Modificación a k-N Algoritmo Principal

Resultados

Tarea de Pronóstio
Resultados

Conclusiones
Generales
Trabaio Euturo

Dada una serie de tiempo de demanda eléctrica y *k*-NN como su predictor, determinar los coeficientes de lifting que definan una wavelet cuasi-óptima para pronóstico.

Hipótesis: Es posible usar la transformada wavelet como reductor de ruido para mejorar los resultados del pronóstico de demanda eléctrica de tiempo corto, usando a *k*-NN como predictor. En particular, es posible definir una wavelet al evolucionar los coeficientes de lifting que mejoren los resultados al compararlos con familias de wavelets estándar.

Objetivo General

k-NN + DWT

Introducción
Introducción
Antecedentes
Problema e Hipóte
Objetivos

Preliminares
Series de Tiempo
NN
WT
Lifting

Lift k-NN

Modificación a k-N Algoritmo Principal

Resultados

Tarea de Pronósti

Resultados

Conclusione

Conclusiones Generales Trabajo Futuro Definir un esquema de lifting con suficiente capacidad de representación, obteniendo sus coeficientes a través de evolución que resulte en una descomposición de señales que, junto con *k*-NN, mejore los resultados del pronóstico realizados con o sin ayuda de la transformada wavelet.

Motivación

k-NN + DWT

- El porcentaje de investigadores en el área de computación que hacen pronóstico es pequeño, comparado con áreas más populares.
- Mejorar los resultados que se han obtenido en investigaciones previas.
- Hasta donde se sabe, presentar el primer trabajo que evolucione coeficientes de lifting para pronóstico.

Justificación

k-NN + DWT

Sebastiá

Introducción
Introducción
Antecedentes
Problema e Hipótes
Objetivos

Preliminares
Series de Tiempo
NN
WT
Lifting
DE

Lift k-NN

Modificación a k-N Algoritmo Principal

Resultados Tarea de Pronósti

Conclusione

Conclusiones Generales Trabaio Futuro

- Las wavelets que se usan para pronosticar no son las óptimas.
- El resultado de esta investigación permite mejorar los resultados de investigaciones previas de demanda eléctrica en tiempo corto.

Series de Tiempo

k-NN + DWT

Sebastiá

Introducción Introducción Antecedentes Problema e Hipóte Objetivos Mot y Just

Preliminares
Series de Tiempo
NN
WT
Lifting
DF

Lift k-NN Modificación a k-NN

Resultados

Tarea de Pronósti

Conclusiones

Conclusiones Generales Trabaio Futuro

- Las series de tiempo son una secuencia de observaciones cronológicas de una variable de interés.
- Un pronóstico es una predicción de eventos futuros.
- \blacksquare El horizonte de pronóstico τ determina qué tan a futuro se realizan los pronósticos.
- El intervalo de pronóstico determina qué tan frecuente se deben realizar nuevos pronósticos.

Series de Tiempo

k-NN + DWT

Sebastiá

Introducción
Introducción
Antecedentes
Problema e Hipóte
Objetivos
Mot y Just

Preliminares
Series de Tiempo
NN
WT

Lift k-NN

Modificación a k-NI Algoritmo Principal

Resultados

Tarea de Pronóstio

Conclusione

Conclusiones Generales Trabajo Futuro Sea y una serie de tiempo de longitud T. Se usa $\hat{y}_t(t-\tau)$ para denotar el pronóstico de la muestra y_t realizado en el instante $t-\tau$.

El error nunca será 0 y se define como:

$$e_t(\tau) = y_t - \hat{y}_t(y - \tau).$$

Proceso de Pronóstico

k-NN + DWT

Series de Tiempo

k-NN + DWT

- Surge originalmente para clasificar de manera no paramétrica.
- Se tiene un conjunto de tuplas $(x_1, \theta_1), (x_2, \theta_2), \dots (x_n, \theta_n),$ donde las x_i 's son las mediciones y las θ_i 's son las clases asociadas a ellas.
- Cuando llegue un nuevo individuo a clasificar, su clase será la de aquél que se encuentre más cercano a él.

k-NN + DWT

Sebastiár

Introducció

Introduccio

Problema e Hipót

Objetivos

Mot v Just

reillillillare

Series de Tien

NN

W

DE

LIIC K-IVIV

Algoritmo Principa

Resultados

Resultados

Conclusione

Generale

Trabaio Eutur

k-NN + DWT

Sebastiár

Introducción

Introducció

Doubless - Ulada

.....

reliminare'

Series de Tiem

NN

WT

Lift

Lift k-NN

Modificación a k-N Algoritmo Principal

Resultados

Tarea de Pronóstio

Conclusione

Conclusi Generale

rabaio Eutur

k-NN

k-NN + DWT

Sebastiá

Introducción Introducción Antecedentes Problema e Hipótes Objetivos

Preliminare

Series de Tiempo NN WT Lifting

_ift_k-N

Modificación a k-N Algoritmo Principal

Resultados

Tarea de Pronóstio Resultados

Conclusione

Conclusiones Generales Trabaio Futuro

- Se ordenan las tuplas en base a la distancia con el nuevo individuo.
- Se toman las *k* primeras tuplas con el nuevo orden.
- Cada una de ellas emite un voto para su clase.
- Se asigna la clase que tuvo más votos.

k-NN + DWT

Sebastián

Introducción

Introducción

Problema e Hinót

Objectives

Mot v Jus

reminiare

Series de Tiem

IVIV

WT

Lift

LITT K-ININ

Algoritmo Principal

Resultados

Resultados

Conclusiones

Conclusi

rabajo Futuro

Pronóstico k-NN

k-NN + DWT

Sebastiá

Introducción
Introducción
Antecedentes
Problema e Hipótes
Objetivos
Mot y Just

Preliminares
Series de Tiempo
NN
WT
Lifting
DE

Lift k-NN

Modificación a k-N Algoritmo Principal

Resultados

Tarea de Pronósti Resultados

Conclusione

Conclusiones Generales Trabajo Futuro

- En lugar de mediciones, cada individuo x_i se compone por un segmento de la serie de tiempo.
- En lugar de clases, θ_i es el valor encontrado en la última posición de x_i más τ .
- No se emiten votos, se promedian los θ_i de los k más cercanos.

k-NN + DWT

Introducción
Introducción
Antecedentes
Problema e Hipóte:
Objetivos
Mot v Just

Preliminares
Series de Tiempo
NN

Lifting

Lift k-NN

Modificación a k-NI Algoritmo Principal

Resultados Tarea de Pronóst

Conclusiones Generales

- Separa una señal en diferentes componentes de frecuencia.
- Se puede implementar como un banco de filtros.
- Las aproximaciones resultan de aplicar el pasa-bajas. Los detalles resultan de aplicar el pasa-altas.
- La transformación inversa de una reconstrucción perfecta.

k-NN + DWT

Sebastiái

Introducción Introducción Antecedentes Problema e Hipóte: Objetivos Mot y Just

Preliminares

NN

WT

DE

Modificación a k-NI

Resultados

Conclusione

Conclusiones Generales Sean y la señal original, H el filtro pasa-bajas, G el filtro pasa-altas, s las aproximaciones y ρ los detalles, la DWT de y se expresa como:

$$s[n] = \left(\sum_{i=1}^{\xi} y[n-i]H[i]\right) \downarrow_2$$

$$\rho[n] = \left(\sum_{i=1}^{\xi} y[n-i]G[i]\right) \downarrow_2.$$

k-NN + DWT

Sebastiái

Introducción

Antecedentes Problema e Hipót

Objetivos

- - - -

Series de Tiemp

wT

Lifei

Life L N

Modificación a k-NI Algoritmo Principal

Resultados

Tarea de Pronósti Resultados

Conclusione

Generales
Trabajo Futuro

Si se itera varias veces, para un nivel de descomposición I:

$$s_{l}[n] = \left(\sum_{i=1}^{\xi} s_{l-1}[n-i]H[i]\right) \downarrow_{2}$$

$$\rho_I[n] = \left(\sum_{i=1}^{\xi} s_{I-1}[n-i]G[i]\right) \downarrow_2.$$

k-NN + DWT

k-NN + DWT

Transformada Estacionaria Wavelet (SWT)

k-NN + DWT

Introducción
Introducción
Antecedentes
Problema e Hipótes
Objetivos
Mot y Just

Preliminare Series de Tiemp

WT Lifting

Lift k-NN

Modificación a k-NI Algoritmo Principal

Resultados

Tarea de Pronósti

Conclusione

Conclusiones Generales

- Hay problemas de divisibilidad con la DWT.
- La SWT sólo requiere divisibilidad por 2 en la señal original.
- Las aproximaciones y detalles tienen el mismo número de muestras que la señal original.
- Es la versión usada para pronóstico.

k-NN + DWT

Sebastiá

Introducción
Introducción
Antecedentes
Problema e Hipóte
Objetivos
Mot y Just

Preliminares
Series de Tiempo
NN
WT
Lifting

lift k-NI

Modificación a k-N

Resultados

Tarea de Pronóstio

Conclusione

Conclusiones Generales

- Es una forma de aplicar la transformada wavelet.
- Puede representar más wavelets que usando la DWT.
 - Daubechies y Sweldens (1998) probaron que tiene propiedades que lo hacen idóneo para evolución.

k-NN + DWT

Sebastiái

Introducción Introducción Antecedentes Problema e Hipóte Objetivos Mot y Just

Preliminares
Series de Tiempo
NN
WT
Lifting

Lift k-NN Modificación a k-NI

Resultados

Tarea de Pronóstio

Conclusione Conclusiones Generales El lifting se define en 3 pasos:

- Split: Separar la señal y en las muestras pares y_e e impares y_o .
- Predict: Se interpolan los impares a partir de los pares:

$$P(y_e)[n] = \alpha(y_e[n-1] + y_e[n]).$$

Se obtiene el error, que corresponde a los detalles:

$$\rho[n] = y_o[n] - P(y_e)[n].$$

Update: Se interpolan los pares a partir de los detalles:

$$U(\rho)[n] = \beta(\rho[n] + \rho[n+1]).$$

Se hace la actualización, que corresponde a las aproximaciones:

$$s[n] = y_e[n] + U(\rho)[n].$$

k-NN + DWT

k-NN + DWT

Lifting Redundante

k-NN + DWT

Sebastiár

Introducción

Introduccion

Antecedentes

Problema e Hipót

Objetivos

Mot y Jus

Preliminar

Series de Tiempo

NN

WT

Lifting

1.00

Modificación a k-N

Resultados

Tarea de Pronóstico

Conclusions

Conclusi

Generales

Evolución Diferencial (DE)

k-NN + DWT

Sebastiá

Introducción Introducción Antecedentes Problema e Hipóte: Objetivos Mot y Just

Preliminares
Series de Tiempo
NN
WT
Lifting

Litt k-NN Modificación a k-NI

Resultados Tarea de Pronóstio

Conclusiones

Conclusiones Generales Trabaio Futuro

- Intenta hallar el mínimo global evaluando una población que cambia de generación en generación.
- Se empieza con una población de vectores aleatoria.
- Se genera un nuevo vector mediante la mutación.
- El vector mutado se mezcla con otro predefinido en la cruza.
- La selección consiste en comparar el vector resultante con el original y elegir al mejor.

Modificación a k-NN

k-NN + DWT

Sebastiái

Introducción Introducción Antecedentes Problema e Hipóte: Objetivos Mot y Just

Preliminares
Series de Tiempo
NN
WT
Lifting

Lift k-NI

Modificación a k-NN Algoritmo Principal

Resultados Tarea de Pronós

Conclusiones Conclusiones Generales

- **E**xiste la necesidad de reducir los tiempos de k-NN.
- El consumo de energía eléctrica tiende a ser similar a las mismas horas.
- Sólo se busca en horas cercanas a la de interés.
- Los hiperparámetros de k-NN se eligieron mediante una búsqueda de malla.

Algoritmo Principal

k-NN + DWT

Sebastiár

Introducción

Introduction

Problema e Hipóto

Objetivos

Mot y Jus

reliminare[°]

Series de Tiempo

NN

MACE

VVI

1.16. L. N

LIIC K-IVIV

Modificación a k-N

Algoritmo Principal

Resultados

Tarea de Pronóstio

. . .

Conclusio Generales

Generales

Tarea de Pronóstico

k-NN + DWT

Sebastiái

Introducción Introducción Antecedentes Problema e Hipótes Objetivos Mot y Just

Preliminares
Series de Tiempo
NN
WT
Lifting
DE

Lift k-NN

Modificación a k-NN Algoritmo Principal

Tarea de Pronóstico

Resultados

Conclusiones Generales Trabajo Futuro

- Siete series de tiempo de 35,421 muestras, tomadas cada 15 minutos.
- Las últimas 92 son usadas como conjunto de prueba.
- Después de pronosticar las siete series, se suman los pronósticos y se obtiene el pronóstico de una octava.
- La medida de error usada es el Error Porcentual Absoluto Medio (MAPE):

$$E = \frac{1}{T} \sum_{t=1}^{T} \left| \frac{y_t - \hat{y}_t}{y_t} \right|.$$

El valor a vencer es de 0.6475397.

k-NN + DWT

Resultados

- Los hiperparámetros ganadores de k-NN fueron M=61 y k=5
- Al usar k-NN con algunas wavelets estándar, ganó Daubechies de orden 2.
- Se evolucionaron 5 coeficientes de lifting, convergiendo después de 49 iteraciones.
- El mejor esquema en error fue el propuesto.

k-NN + DWT

Sebastiár

Introducciór

Problema e Hipóto

Objetivos

Mot y Jus

reliminare

Series de Tiempo

NN

WT

DE

Lift k-N

Modificación a k-N Algoritmo Principal

Tesuitados

Tarea de Pronóstic Resultados

Conclusiones

Conclusiones Generales Trabaio Eutur

k-NN + DWT

Sebastiár

Introducción

Antecedentes

Objetives

Mot y Jus

reliminare

Series de Tiempo

NN

Liftir

Lift k-N

Modificación a k-N

Algoritmo Principa

Tarea de Pronóstio

Resultados

Conclusiones

Conclusiones Generales

k-NN + DWT

Sebastiái

Introducción

Introducción

Problema e Hipót

Objetivos

Mot y Jus

Preliminar

Series de Tiempo

NN

Lifti

LITT K-ININ

Algoritmo Principal

Taras do Propácti

Resultados

C---l.....

conclusiones

Conclusiones Generales Trabaio Euturo

k-NN + DWT

Sebastiár

Introducción
Introducción
Antecedentes
Problema e Hipótes
Objetivos

Preliminares
Series de Tiempo
NN
WT

Lift k-N

Modificación a k-N Algoritmo Principal

Resultados

Tarea de Pronóstio

Resultados

Conclusiones

Conclusiones

	Daubechies wavelets				
Time Series	Order 1	Order 2	Order 3	Order 4	Order 5
	(db1)	(db2)	(db3)	(db4)	(db5)
1st	2.3227990	1.9160500	2.1322805	2.3481188	2.5712097
2nd	2.2085885	1.7996213	2.0864264	2.1306598	2.1306258
3rd	2.0944288	2.0321481	2.5594039	3.0444270	3.5019938
4th	2.7364407	1.4411677	1.2768998	1.3060665	1.5089668
5th	2.7606201	1.7703327	2.0083601	2.0965425	2.2691137
6th	1.8296414	1.5238273	1.5241821	1.8209926	2.2528962
7th	2.0423074	1.6897004	1.9228182	2.2751868	2.5963218
Main	1.4018464	0.7121444	1.0288592	1.2334200	1.4569735

k-NN + DWT

Sebastiái

Introducción
Antecedentes
Problema e Hipóte:
Objetivos

Series de Tiempo

NN WT

DE

Modificación a k-

Modificación a k-NI Algoritmo Principal

Resultados

Tarea de Pronóst Resultados

Conclusiones

Conclusiones Generales Trabaio Futuro

	Schemes				
Time Series	k-NN	k-NN + db2	k-NN + lifting		
1st	1.8636617	1.9160500	1.8255230		
2nd	1.8258686	1.7996213	1.7646766		
3rd	1.8999023	2.0321481	1.8286672		
4th	2.7630127	1.4411677	1.5363824		
5th	1.7102076	1.7703327	1.6357255		
6th	1.5633339	1.5238273	1.5222299		
$7 \mathrm{th}$	1.8226193	1.6897004	1.5631419		
Main	0.6374744	0.7121444	0.6337626		

Conclusiones Generales

k-NN + DWT

Sebastiá

Introducción Introducción Antecedentes Problema e Hipóte Objetivos Mot y Just

Preliminares
Series de Tiempo
NN
WT

Lift k-NN

Modificación a k-NI Algoritmo Principal

Resultados

Tarea de Pronóstico

Resultados

Conclusiones Conclusiones Generales

- Fue posible definir un método de pronóstico basado en k-NN y lifting que mejoró resultados de investigaciones anteriores.
- El esquema propuesto mejoró los resultados de esquemas sin wavelets o usando wavelets estándar.
- Hasta donde se sabe y en el momento en que se escribió la tesis, se pudo realizar el primer experimento exitoso de evolución de wavelets para pronóstico.
- Se pudieron comprobar algunas propiedades atribuidas al lifting.

Trabajo Futuro

k-NN + DWT

Sebastiá

Introducción Introducción Antecedentes Problema e Hipótes Objetivos Mot y Just

Preliminares
Series de Tiempo
NN
WT
Lifting
DE

Litt k-NN Modificación a k-NN

Resultados Tarea de Pronósti

Conclusiones

Conclusiones Generales Trabaio Futuro

- Pronosticar cada componente con esquemas que realicen un ajuste a una señal.
- Probar con más métodos de pronóstico.
- Realizar tareas de evolución que consideren más parámetros.
- Usar este esquema en series de tiempo de otras naturalezas.

K-ININ + DVV

Jebastiai

Introducción

Problema e Hipótes

OLD III

Objetivos

Mot y Jus

'reliminare

Series de Tiempo

NN

WT

LIII

Lift k-NN

Modificación a k-NN

agoritmo i imel

Taroa do Propóstio

Tarea de Pronóstico

Conclusiones

Conclusi

Trabaio Eutur

Fin