

planetmath.org

Math for the people, by the people.

$L^1(G)$ has an approximate identity

Canonical name L1GHasAnApproximateIdentity

Date of creation 2013-03-22 17:42:40 Last modified on 2013-03-22 17:42:40 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 9

Author asteroid (17536)

Entry type Theorem
Classification msc 46K05
Classification msc 43A20
Classification msc 22D05
Classification msc 22A10

Defines $L^1(G)$ has an identity element iff G is discrete

Let G be a locally compact topological group. In general, the Banach *-algebra $L^1(G)$ (http://planetmath.org/L1GIsABanachAlgebraparent entry) does not have an identity element. In fact:

- $L^1(G)$ has an identity element if and only if G is discrete.

When G is discrete the identity element of $L^1(G)$ is just the Dirac delta, i.e. the function that takes the value 1 on the identity element of G and vanishes everywhere else.

Nevertheless, $L^1(G)$ has always an approximate identity.

Theorem - $L^1(G)$ has an approximate identity $(e_{\lambda})_{{\lambda} \in \Lambda}$. Moreover the approximate identity $(e_{\lambda})_{{\lambda} \in \Lambda}$ can be chosen to the following:

- $\bullet \|e_{\lambda}\|_1 = 1,$
- $e_{\lambda} \in C_c(G)$

where $C_c(G)$ stands for the space of continuous functions $G \longrightarrow \mathbb{C}$ with compact support.