Selecting eigenvectors by inspection

TOTAL POINTS 6

Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

The transformation $T=\begin{bmatrix}2&0\\0&2\end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix}2\\0\end{bmatrix}$, the magenta vector $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ and the orange vector $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

- **~**

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

- **~**

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

- **~**

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

- None of the above
- Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

The transformation $T = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$, the magenta vector $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and the orange vector $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$, respectively.

✓ Correct

This eigenvector has eigenvalue 3, which means that it stays in the same direction but triples in size.

- $\square \quad \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- **~**

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

- None of the above.
- Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the
 same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are
 eigenvectors.

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

The transformation $T=\begin{bmatrix}1&2\\0&1\end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix}1\\0\end{bmatrix}$, the magenta vector $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and the orange vector $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

 $Well \ done! \ This \ eigenvector \ has \ eigenvalue \ 1-which \ means \ that \ it \ is \ unchanged \ by \ this \ transformation.$

- $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- None of the above
- Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

The transformation $T = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, the magenta vector $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and the orange vector $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$, respectively.

 $\label{thm:condition} Which of the three original vectors are eigenvectors of the linear transformation $T ?$ Select all correct answers.$

None of the three original vectors remain on the same span after the linear transformation. In fact, this linear transformation has no eigenvectors in the plane.

 Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the
same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

The transformation $T=\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$, the magenta vector $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ and the orange vector $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation $T\!\!?$

~

This eigenvector has eigenvalue -1, which means that it reverses direction but has the same size.

~

This eigenvector has eigenvalue -1, which means that it reverses direction but has the same size.

~

This eigenvector has eigenvalue -1, which means that it reverses direction but has the same size.

None of the above

Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are

1/1 point

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

The transformation $T=\begin{bmatrix}2&1\\0&2\end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix}2\\0\end{bmatrix}$, the magenta vector $\begin{bmatrix}3\\2\end{bmatrix}$ and the orange vector $\begin{bmatrix}1\\2\end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation $T \! ?$	
Correct This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.	

None of the above.