МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «СТАТИСТИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ»

Тема: Обработка выборочных данных. Нахождение точечных оценок параметров распределения

Студент гр. 5381	Лянгузов А. А
Преподаватель	 Середа В.И.

Санкт-Петербург 2019

Цель работы.

Получение практических навыков нахождения точечных статистических оценок параметров распределения.

Задание.

Для заданных выборочных данных вычислить с использованием метода моментов и условных вариант точечные статистические оценки математического ожидания, дисперсии, среднеквадратического отклонения, асимметрии и эксцесса исследуемой случайной величины. Полученные результаты содержательно проинтерпретировать.

Основные теоретические положения.

Математическим ожиданием дискретной случайной величины называется сумма произведений ее возможных значений на соответствующие им вероятности:

$$M(X) = \sum_{i=1}^{n} x_i n_i$$

Дисперсией случайной величины называется математическое ожидание квадрата ее отклонения от ее математического ожидания:

$$D(X) = M(X - M(X))^{2}$$

Среднеквадратическим отклонением случайной величины X (стандартом) называется квадратный корень из ее дисперсии:

$$\sigma = \sqrt{D(X)}$$

Асимметрией, или коэффициентом асимметрии, называется числовая характеристика, определяемая выражением:

$$As = \frac{m_3}{S^3}$$
 ,где

 m_3 - центральный эмпирический момент третьего порядка;

S-исправленная выборочная дисперсия.

Центральным моментом порядка К случайной величины X называется математическое ожидание величины:

$$M(X - M(X))^k = m_k$$

Исправленная выборочная дисперсия определяется по формуле:

$$S^2 = \frac{N}{N-1}D_B,$$

$$D_B = \frac{1}{N} \sum_{i=1}^{k} (x_i - \bar{x})^2 n_i$$
 -выборочная дисперсия.

Эксцессом называется численная характеристика случайной величины, которая определяется выражением:

$$Ex = \frac{m_4}{S^4} - 3$$

Для нормального закона $\frac{m_4}{S^4} = 3$. Отсюда следует, что для нормального закона E=0. Смысл термина «эксцесс» состоит в том, что он показывает, как быстро уменьшается плотность распределения вблизи её максимального значения.

Мода дискретной случайной величины — это наиболее вероятное значение этой случайной величины. Модой непрерывной случайной величины называется ее значение, при котором плотность вероятности максимальна.

$$M_o(X) = x_{M_o} + h \frac{(m_2 - m_1)}{(m_2 - m_1) + (m_2 - m_3)}$$

где

 $x_{M_{\it o}}$ - начало модального интервала;

h - длина частичного интервала (шаг);

 m_1 - частота предмодального интервала;

 m_2 - частота модального интервала:

 m_3 - частота послемодального интервала.

 $\it Meдианa$ случайной величины X — это такое ее значение Me , для которого выполнено равенство

$$\begin{split} &P(X < Me) = P(X > Me) \\ &M_e(X) = x_{M_e} + h \frac{0.5n - S_{M_e - 1}}{n_{M_e}} \end{split}$$

где

 $^{x}M_{\mathfrak{e}}$ - начало медианного интервала;

h - длина частичного интервала (шаг);

n - объем совокупности;

 S_{M_e-1} - накопленная частота интервала, предшествующая медианному;

Экспериментальные результаты.

В ходе выполнения лабораторной работы №1 был получен интервальный ряд представленный в таблице 1.

Ширина интервала: 35.

Интервалы	Частоты	Середины
[340; 375)	12	357,5
[375; 410)	12	392,5
[410; 445)	27	427,5
[445; 480)	23	462,5
[480; 515)	21	497,5
[515; 550)	9	532,5
[550; 585)	3	567,5

Таблица 1. Для величины v.

Количество интервалов определено по формуле Стерджесса:

$$N = 1 + 3.31 * log(107) \approx 7$$

Ширина интервала: 35.

Размер выборки: 107.

 $^{^{}n}M_{\varepsilon}$ - частота медианного интервала.

Обработка результатов эксперимента.

Найдем условные моменты по формуле:

$$\widetilde{M}_l = \frac{1}{N} \sum_{i=1}^k \widetilde{x}_i^l n_i$$

$$\widetilde{x}_i = \frac{1}{h}(x_i - C),$$

где h-длина интервала;

 $C = x_4$ - ложный ноль.

Результаты вычислений представлены в таблице 2.

x_i	n_i	$ ilde{n}_i$	u_i	$u_i * \tilde{n}_i$	$u_i^2 * \tilde{n}_i$	$u_i^3 * \tilde{n}_i$	$u_i^4 * \tilde{n}_i$	$(u_i+1)^4*\tilde{n}_i$
357.5	12	0.11214	-3	-0.336448	1.009345	-3.02803	9.08411	1.7943925
392.5	12	0.11214	-2	-0.224299	0.448598	-0.89719	1.79439	0.1121495
427.5	27	0.25233	-1	-0.252336	0.252336	-0.25233	0.25233	0.0000000
462.5	23	0.21495	0	0	0	0	0	0.2149533
497.5	21	0.19626	1	0.196261	0.196261	0.196261	0.19626	3.1401869
532.5	9	0.08411	2	0.168224	0.336449	0.672897	1.34579	6.8130841
567.5	3	0.02803	3	0.084112	0.252336	0.757009	2.27102	7.1775701

Таблица 2. Для величины v.

Таким образом, условные моменты будут равны:

M_1	M_2	M_3	M_4	$\sum (u_i + 1)^4 * \tilde{n}_i$
-0.36448598	2.49532710	-2.55140187	14.94392523	19.25233643

Проверим правильность вычислений:

$$M4 + 4 * M3 + 6 * M2 + 4 * M1 + 1 = 19.25233643$$

Таким образом, можно сделать вывод, что вычисления проведены верно.

1) Вычислим статистическую оценку математического ожидания:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{k} x_i n_i = 449.74299065$$

2) Вычислим статистическую оценку несмещённой дисперсии:

$$D_B = \frac{1}{N} \sum_{i=1}^{k} (x_i - \bar{x})^2 n_i = 2894.03441349$$

3) Найдем исправленную выборочную дисперсию:

$$S^2 = \frac{N}{N-1} * D_B = 2921.33662493$$

$$S = \sqrt{S^2} = 54.04939061$$

4) Отсюда следует, что несмещённое среднеквадратическое отклонение:

$$\sigma = S = 54.04939061$$

5)Вычислим ассиметрию:

$$As = \frac{m_3}{S^3} = 0.02180169$$

6) Вычислим эксцесс:

$$Ex = \frac{m_4}{S^4} = -0.68595634$$

Выводы.

В работе были найдены точечные статистические оценки параметров распределения. Дисперсия и среднеквадратическое отклонение характеризуют разброс значений относительно математического ожидания. Из полученного значения асимметрии можно сделать вывод, что мода смещена влево относительно середины распределения, так как $A_s>0$. Коэффициент эксцесса отрицательный, следовательно пик распределения около математического ожидания очень гладкий.

Литература.

- 1. Середа В.И. Курс лекций по статическим методам обработки экспериментальных данных. Лекция 2, 03.03.2019
- 2. Егоров В.А. и др. Анализ однородных статистических данных: учеб. пособие: СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2005