

物理不可克隆函数概述及应用

组会分享

分享人: 时 林

时间: 2021.09.28

目录 CONTENTS

- 什么是物理不可克隆函数
- ・ PUF的属性、类型 ・ RO PUF
- Challenge-Response Pairs

SECOND 2

- 传统物联网安全机制的限制
- · PUF技术的相关应用

日 日 3

- CRO PUF
- 共享密钥生成原理
- ・ 密钥共享协议 ・ 安全性分析

FOURT 4

- · PUF的研究前景
- ・论文总结

当前PUF的 应用

PUF密钥 共享

总结与展望

当前PUF的 应用

> PUF密钥 共享

总结与展望

什么是物理不可克隆函数

世上没有两片完全相同的树叶。

——戈特弗里德·威廉·莱布尼茨

那么世界上是否存在两个完全相同的芯片?

不可能

物理不可克隆函数

没有两个物体是完全一样的,即使采用相同的工艺来制造它们。虽然我们通常不希望制造过程中产生差异,但是为了安全目的,可以利用和这些差异的相关作用来唯一地识别物理对象。为了便于实现这种作用,可以在集成电路(IC)上实现所谓的物理不可克隆函数(Physical Unclonable Function, PUF)。

不可克隆函数

随机性物理差异具有**难以克隆或伪造的天然特征**,因为完全控制物理介质中的微米和纳米级制造差异是非常困难的,并且即使可能实现,也是非常昂贵的。

当前PUF的 应用

> PUF密钥 共享

总结与展望

PUF的类型

The time delay $T_1 == T_2$?

PUF主要实现

	PUF类型	PUF具体实现	
PUF	非电子PUF	光学PUF	
		纸PUF	
		CD PUF	
	模拟电路PUF	基于涂层的PUF	
		基于阈值电压的PUF	
		基于电阻的PUF	
	数字电路PUF	基于存储的PUF	基于仲裁器的PUF
			基于环形振荡器的PUF
			毛刺PUF
		基于延迟的PUF	触发器的PUF
			SRAM PUF
			蝴蝶PUF
			锁存PUF

当前PUF的 应用

> PUF密钥 共享

总结与展望

PUF的属性

↑ PUF概念 --- 片间汉明距离 片内汉明距离

PUF的输入一般称为激励;输出一般称为响应。

对两个不同 PUF 实体输入一个特定的激励后,其产生的两个响应之间的距离或者差异。

对一个**单一**的 PUF 重复两次输入一个特定的激励后 , 其产生的响应之间的差异。

从PUF实现方法的归类总结,可以看出PUF并不是一个单纯的的数学概念,而是嵌入了物理实体,包含诸多属性有输入输出功能的函数。为了更好地理解PUF的基本特性,这里给出PUF的常见的基本属性[1]。

可计算性 不可预测性 唯一性 轻量级属性 鲁棒性 不可克隆性 防篡改

当前PUF的 应用

> PUF密钥 共享

总结与展望

Challenge-Response Pairs

挑战应答方式": Challenge-Response, 是零知识证明的方式。

Challenge Response Pair:特定PUF产生的激励响应对(CRP),并且满足唯一标识。

基于挑战/应答的身份认证

PUF产生的Challenge Response Pair

当前PUF的 应用

> PUF密钥 共享

总结与展望

RO PUF

基本环形振荡器(Ring-Oscillator,RO)结构

RO PUF基本工作原理

传统RO PUF

可配置的RO PUF

当前PUF的 应用

PUF密钥 共享

总结与展望

当前PUF的 应用

PUF密钥 共享

总结与展望

传统物联网安全机制的限制

传统的安全机制

- 在EEPROM中存储密钥;
- 在电池支持的SRAM中存储密钥;
- 结合密码算法实现信息加密和认证;

传统技术局限性

当前PUF的 应用

PUF密钥 共享

总结与展望

PUF技术的相关应用

芯片制作差异产生的天然特征

——芯片 "指纹"

$$C_i \longrightarrow R_{Ci}$$

当前PUF的发展

当前,物理不可克隆函数在工业界已有了相关的应用,但仍有着限制和挑战。

PUF的应用

当前存在的限制

身份认证

ᄔᅄ

• 密钥生成器/种子

片唯一密钥,并且无法 在另一个设备中克隆。

PUF为每个设备生成芯

安全协议

面临的挑战

PUF具有不可克隆性和唯一性的特点,同样的 PUF在不同的设备上指纹是不同的,想要在不 同的设备利用PUF生成相同的密钥进行共享, 这与PUF的唯一性原则相悖。

当前PUF的 应用

PUF密钥 共享

总结与展望

当前PUF的 应用

PUF密钥 共享

总结与展望

级间交叉的PUF

CRO PUF

传统的RO PUF中反相器固定排列,通过Challenge对得到的Response情况有限,不能很好的利用所有的反相器。所以为了提高PUF结构的灵活性,CRO PUF引入了配置位S来对每两列反相器之间的连接进行配置,极大的增加了反相器组合的可能性。

CRO PUF设计图

当前PUF的 应用

PUF密钥 共享

总结与展望

共享密钥生成原理

延迟矩阵模型

带有k个反相器的n行CRO PUF的延迟模型如下所示:

$$Delay_{RO} = \begin{pmatrix} d_{11} & d_{12} & \cdots & d_{1j} & \cdots & d_{1k} \\ d_{21} & d_{22} & \cdots & d_{2j} & \cdots & d_{2k} \\ \vdots & \vdots & & \vdots & & \vdots \\ d_{i1} & d_{i2} & \cdots & d_{ij} & \cdots & d_{ik} \\ \vdots & \vdots & & \vdots & & \vdots \\ d_{n1} & d_{n2} & \cdots & d_{nj} & \cdots & d_{nk} \end{pmatrix}$$

每一行的**延迟向量** $D_{RO} = \{D_1, D_2, ..., D_i, ..., D_n\}$, 其中 $D_i = \sum_{j=1}^k d_{ij}$ 。 选择信号 $S = \{S_1, S_2, ..., S_j, ..., S_{k-1}\}$, S_j 控制着第j和第j+1列反相器之间的**连接路径**。

实例:

以两个CRO PUF为例,每个CRO PUF 都包含四个4层反相器,相应的延迟模型分别由矩阵A和矩阵B表示。

在这种情况下,两个CRO PUF的Response都是{0,1,1}。

 $C_A = \{\{4,2\},\{2,3\},\{3,1\}\}$ 同样的,假设challenge是: $C_B = \{\{1,2\},\{2,4\},\{4,3\}\}$

A和B的延迟向量变成:

保持A中的选择信号S不变,调整B中的S2和S4,路径延迟模型变成:

$$A = \begin{pmatrix} 3 & 6 & 8 & 5 \\ 9 & 7 & 4 & 5 \\ 5 & 4 & 6 & 5 \\ 2 & 5 & 6 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 6 & 5 \\ 5 & 6 & 3 & 7 \\ 8 & 1 & 5 & 5 \\ 3 & 6 & 4 & 2 \end{pmatrix} \qquad D_A = \{22,25,20,16\}$$

$$D_B = \{17,21,19,15\}$$

这种情况下,两个CRO PUF的Response都是{0,1,0}。

当前PUF的 应用

> PUF密钥 共享

总结与展望

共享密钥生成原理

延迟矩阵建模

采用机器学习的方法对延迟矩阵进行建模。

计数器中的数字计数可以由公式给定: $Counts = \frac{1}{c \cdot W}$

在已知延迟矩阵的情况下,通过设置不同的配置位 S_i 和激励,从而使得多方生成相同的输出。

当前PUF的 应用

PUF密钥 共享

总结与展望

密钥共享协议

当前PUF的 应用

PUF密钥 共享

总结与展望

安全性分析

建模攻击

没有可访问的接口能够读取芯片内部生成的响应(response), 因而无法获取CRPs,无法进行机器学习建模。

密钥共享协议的安全分析

——Scyther协议分析工具

Scyther给出的两种可能的攻击方法均假设了攻击者知道原始的PUF模型或预先训练好的PUF模型。

测信道攻击

动态的改变RO反相器的配置数据,从而生成持续更新的密钥, 使得每个RO都没有固定的物理位置。

当前PUF的 应用

PUF密钥 共享

总结与展望

总结与展望

Summary and Prospect

当前PUF的 应用

> PUF密钥 共享

总结与展望

PUF的研究前景

PUF领域的相关研究已经有了很大的进展。无论是在如RFID、智能卡等资源有限设备中,还是在相对成熟的密码学应用中;无论是在硬件安全领域的认证应用中,还是在软件的密钥生成等算法协议中,PUF都凭借其具有不可克隆性、防篡改、轻量级等良好的属性,发挥着不可替代的作用。

形式化定义

在现实安全应用中,PUF的形式化定义是PUF的设计、开发与应用正确性的基础与保证。然而目前提出的PUF实现方法的一些形式化定义都或多或少存在一些问题[1],要么被限制太多,即不包括某些类型的PUF,要么太虚拟化,甚至假设某些PUF的属性。从这个意义上讲,如何给出PUF及其属性的严格的形式化定义,仍需要进一步深入的研究。

系统设计方法

在过去的几年间,虽然人们提出了大量的PUF实现方法,但是通过总结比较发现,这些实现方法的设计都是在孤立的条件下提出的。换句话说,PUF实现方法的设计都具有临时性。那么是否可以提出PUF实现方法的系统设计方法,以便人们根据具体的情况来设计实现PUF。

轻量级界限

在RFID传感器网络节点等资源有限的设备中,基于轻量级属性的PUF可以实现大量的应用。但是,前人的工作只是在广泛的意义上提出了PUF的轻量级属性,并没有给出PUF轻量级属性的具体界限。虽然有大量的PUF的实现方法和应用,但在这方面却很少有研究。所以使用什么样的理论来考虑、解决这个问题,将是一个全新的研究方向。

当前PUF的 应用

> PUF密钥 共享

总结与展望

论文总结

ICC.2021:Communication Security in VANETs based on the Physical Unclonable Function.

ISSCC.2021:Unified In-Memory Dynamic TRNG and Multi-Bit Static PUF Entropy Generation for Ubiquitous Hardware Security.

IDC.2021:On the Security of Strong Memristor-based Physically Unclonable Functions.

DATE.2020:Reliable and Lightweight PUF-based Key Generation using Various Index Voting Architecture.

CASES.2020: The Shift PUF: Technique for Squaring the Machine Learning Complexity of Arbiter-based PUFs: Work-in-Progress.

ICCE.2020:Embedded Systems Authentication and Encryption Using Strong PUF Modeling.

DSN.2019:DeviceVeil: Robust Authentication for Individual USB Devices Using Physical Unclonable Functions

