ENUNCIADOS, CON POSIBLES RESPUESTAS, de los ejercicios de hoy 19/12.

1. Demostrar que $z=e^{2\pi i/125}$ es un cero del polinomio $x^{100}+x^{75}+x^{50}+x^{25}+1$.

Respuesta:

Decir que un cierto z es un cero del polinomio $x^{100} + x^{75} + x^{50} + x^{25} + 1$ es lo mismo que decir que z^{25} es un cero de $p(x) = x^4 + x^3 + x^2 + x + 1$:

lo que resulta al evaluar en z el primero, es lo mismo que resulta al evaluar en $w=z^{25}$ el segundo.

El polinomio p(x) cumple $p(x)(x-1)=x^5-1$, luego sus ceros son todos los $w\neq 1$ que cumplen $w^5=1$; y para el $z=e^{2\pi \mathbf{i}/125}$ dado, se tiene: $w=z^{25}=e^{2\pi \mathbf{i}/5}$ \Rightarrow $w^5=1\neq w$, luego p(w)=0.

2. Hallar todos los polinomios P(x) en $\mathbb{Z}_3[x]$ mónicos (con coeficiente principal 1) de grado 3 tales que x = 1 es un cero simple de P y $P(0) \neq 0$.

Respuesta:

x=1 es un cero simple de un polinomio P(x) si y sólo si P(x)=(x-1)Q(x) con $Q(1)\neq 0$. Para que P sea de grado 3, mónico y con $P(0)\neq 0$, deberá ser $Q(x)=x^2+ax+b$, con $b=Q(0)\neq 0$.

Si los coeficientes están en \mathbb{Z}_3 , eso nos deja pocas posibilidades: $Q(x)=x^2+ax\pm 1$, y los que cumplen además la condición $Q(1)\neq 0$ son sólo estos cuatro: $Q(x)=x^2+1$, x^2+x-1 , $x^2-x\pm 1$.

3. Sean los conjuntos de números complejos

$$A = \{x+iy \ : \ x>0, \ y>0\} \quad \text{y} \quad B = \{x+iy \ : \ x<0, \ y\in \mathbb{R}\}.$$

Demostrar que $f(z) = iz^2$ cumple f(A) = B y estudiar si $f: A \longrightarrow B$ es biyectiva.

Respuesta:

 $z\in A \Leftrightarrow \arg(z)\in (0,\pi/2)$, y la imagen de A por la función $w=z^2$ es por lo tanto el semiplano $\arg(w)\in (0,\pi)$; al multiplicar por \mathbf{i} , eso se convierte en $\arg(\mathbf{i}w)\in (\pi/2,3\pi/2)$, lo que equivale a la afirmación $\Re(\mathbf{i}w)<0$, que es la definición del B que nos dan. Esto prueba que f(A)=B.

Además, la función es inyectiva en A, porque $\mathbf{i}z_1^2 = \mathbf{i}z_2^2$ si y sólo si $z_1 = \pm z_2$, y no hay dos números opuestos en A, que es sólo el "primer cuadrante" del plano \mathbb{C} .