12:11 PM

Tuesday, 30 January 2024

Numerical Methods (MA 204)

Module-II: Numerical Integration and ODE

Dr. Santanu Manna Department of Mathematics, IIT Indore

Email ID: santanu@iiti.ac.in

Date	Lecture	Topic
30 Jan	Lecture-1	Numerical integration, composite rules, error formulae
31 Jan	Lecture-2	Rectangular Rule
		Quadrature Formula
01 Feb	Lecture-3	Trapezoidal Rule
		Simpson's 1/3
		Simpson's 3/8
06 Feb	Lecture-4	Numerical solution of ordinary differential equations
		Linear, Non-linear, IVP, BVP, order of convergence
		Picard's method of successive approximation
07 Feb	Lecture-5	Taylor's method
		Euler and Modified Euler's Methods
08 Feb	Lecture-6	Runge-Kutta (RK) methods up to 4th order
13 Feb	Lecture-7	
14 Feb	Lecture-8	Multi-step methods:
		Predictor-corrector methods,
15 Feb	Lecture-9	Euler's predictor-corrector method,
		Error in Euler's predictor-corrector method,

- 1. E. Kreyszig, *Advanced Engineering Mathematics*, John Wiley & Sons, 2020, ISBN: 9781119455929.
- 2. S. S. Sastry, *Introductory Methods of Numerical Analysis*, PHI Learning, ISBN-978-81-203-4592-8, 2012.
- 3. S. D. Conte and Carle de Boor, *Elementary Numerical Analysis An Algorithmic Approach*, SIAM, 2018, ISBN: 978161197520
- 4. S. Dey and S. Gupta, Numerical Methods, McGraw Hill, 2013, ISBN: 9781259062582

How integration applies to the real world?

- ☐ Integration was used to design the PETRONAS Towers making it stronger
- ☐ Many differential equation were used in the designing of the Sydney Opera House
- ☐ Finding areas under curved surface, Centers of mass, displacement and velocity, and fluid flow are other uses of integration

What is Definite Integral?

☐ The definite integral of the function f(x) from ato **b** is the area bounded by y=f(x), y=0, x=a and x=b.

Why Numerical Integration?

- \square If the function f(x) is not given explicitly but the values are given at discrete points.
- ☐ Definite integral of some complicated functions e.g. $\int e^{-x^2} dx$ is very difficult to carry out.

Difficulties in definite integral

Methodology For Numerical Integration

- \square Let us suppose that the functional values are known at x=a,
- x=b and (n-1) internal points in (a, b), namely $x=x_i$, i=1(1)n-1. \square Let us assume that $a=x_0 \le x_1 \le x_2 ... \le x_n = b$. These points on the x-axis are called pivotal or nodal points.
- \square Thus there are (n+1) nodal points, and n sub-intervals [x_i , x_{i+1}], i=1(1)n-1.
- \square Evaluation of the integral to approximate the function f(x) by
- a polynomial and integrate it. ☐ Approximating the function by a single polynomial globally over
- the entire domain $a \le x \le b$, it is approximated in piecewise manner. \square We fit the polynomial P(x) over k sub-intervals passing through the points (x_i, y_i) , i=0(1)k and evaluate the integral

$$I_1 = \int_{x_k}^{x_k} f(x) dx = \int_{x_k}^{x_k} P(x) dx.$$

Obviously it covers k intervals, (x_i, x_{i+1}) , i=0(1)k. The process is repeated for next k intervals and so on until the entire domain is covered.

