Text Classification (Part III)

[DAT640] Information Retrieval and Text Mining

Krisztian Balog University of Stavanger

August 27, 2019

Recap

- Implementing a text classification model using scikit-learn
 - GitHub: code/text_classification.ipynb
- Word counts used as features
- Document-term matrix is huge, but most of the values are zeros; stored as a sparse matrix

	t_1	t_2	t_3	 t_m
d_1	1	0	2	0
$d_1 \\ d_2$	0	1	0	2
d_3	0	0	1	0
d_n	0	1	0	0

Discussion

Question

What are possible shortcomings of using raw term frequencies?

Zip's law

- Given some corpus of natural language utterances, the frequency of any word is inversely proportional to its rank in the frequency table
 - \circ Word number n has a frequency proportional to 1/n

English language

- Most frequent words
 - the (7%)
 - o of (3.5%)
 - o and (2.8%)
- Top 135 most frequent words account for half of the words used

Term weighting

- Intuition #1: terms that appear often in a document should get high weights
 - E.g., The more often a document contains the term "dog," the more likely that the document is "about" dogs
- Intuition #2: terms that appear in many documents should get low weights
 - E.g., stopwords, like "a," "the," "this," etc.
- How do we capture this mathematically?
 - Term frequency
 - Inverse document frequency

Term frequency (TF)

- We write $c_{t,d}$ for the raw count of a term in a document
- **Term frequency** $tf_{t,d}$ reflects the importance of a term (t) in a document (d)
- Variants
 - \circ Binary: $tf_{t,d} \in \{0,1\}$
 - Raw count: $tf_{t,d} = c_{t,d}$
 - \circ L1-normalized: $tf_{t,d} = \frac{c_{t,d}}{|d|}$
 - where |d| is the length of the document, i.e., the sum of all term counts in d: $|d|=\sum_{t\in d}c_{t,d}$
 - \circ L2-normalized: $tf_{t,d} = \frac{c_{t,d}}{||d||}$
 - where $||d|| = \sqrt{\sum_{t \in d} (c_{t,d})^2}$
 - \circ Log-normalized: $tf_{t,d} = 1 + \log c_{t,d}$
 - o ...
- By default, when we refer to TF we will mean the L1-normalized version

Inverse document frequency (IDF)

- Inverse document frequency idf_t reflects the importance of a term (t) in a collection of documents
 - The more documents that a term occurs in, the less discriminating the term is between documents, consequently, the less "useful"

$$idf_t = \log \frac{N+1}{n_t}$$

- \circ where N is the total number of documents in the collection and n_t is the number of documents that contain t
- o Log is used to "dampen" the effect of IDF

Term weighting (TF-IDF)

• Combine TF and IDF weights by multiplying them:

$$\mathsf{tfidf}_{t,d} = tf_{t,d} \cdot idf_t$$

- Term frequency weight measures importance in document
- o Inverse document frequency measures importance in collection

Exercise #1 (paper-based)

Create document-term matrix using TF-IDF weighting from a set of documents.

Code

 $\bullet \ \, \mathsf{GitHub} \colon \, \mathsf{code/text_feature_extraction.ipynb}$

Text classification

Text classification

- Formally: Given a training sample of documents X and corresponding labels y, $((X,y) = \{(x_1,y_1), \dots (x_n,y_n)\})$, build a model f that can predict the class y' = f(x) for an unseen document x
- Two popular classification models:
 - Naive Bayes
 - SVM

Exercise #2 (coding)

- Compare two machine learning models and different term weighting schemes
 - Naive Bayes and SVM
 - Raw term count, TF weighting, and TF-IDF weighting
- Complete the TODOs and fill out the results table
 GitHub: exercises/lecture_04/exercise_2.ipynb (make a local copy)

Assignment 1B