## HAZARDOUS AREA MONITORING FOR INDUSTRIAL POWER PLANT POWERED BY IOT

#### **INTRODUCTION**

#### **Project Overview**

- Through this, we can monitor the temperature parameters of the hazardous areas in industrial plants.
- The area is integrated with smart beacon devices which will be broadcasting the temperature of that particular area.
- Every person working in those areas will be given smart wearable devices which will be acting as beacon scanners.
- Whenever the person goes near the beacon scanners he can view the temperature on his wearable device and if the temperature is high, he will receive the alerts to the mobile through SMS using API.
- Through this wearable device, the data is sent to the cloud and through the dashboard, the admins of that particular plant can view the data and take necessary precautions if required.

#### **Purpose**

- In some industrial plants, there are some areas which are to be monitored time to time. Sometimes the conditions may become critical which may lead to loss of property and also human loss.
- To monitor the conditions, we can integrate the smart devices in the areas which are needed to be monitored. Every device will be acting as a beacon and it is connected to temperature sensors. We can broadcast the temperature data along with the location of that particular area through beacons.
- The persons who generally monitor these places will be given a wearable device which will be acting as a beacon scanner. Whenever the person enters the desired area then he can view the required parameters and can be alerted, these are sent to cloud.
- Industrial accidents are as old as industry itself and so are preventive measures. The Standards for Explosive Areas or Atmospheres have also has evolved diversely worldwide, based on the local needs

of the industries for the overall safe operation of the plants. Explosion and an fire are two of the major constituents of these mishaps. Depending upon the environment, these can be termed 'Accidents' or fade away as simply the 'incidents' or 'Near Misses' in the safety officers' statistics. The first step to logically is to start defining and understanding some of the terms used in the whole scope of the loss prevention in accidents due to explosion and fire.

- FIRE is a rapid oxidation-reduction reaction (combustion) which results in the production of heat and generally visible light.
- EXPLOSION is a violent and sudden expansion of gases produced by rapid combustion; that very strong force when shut in a small space and a generally associated with a loud, sharp noise and a supersonic shock wave.

#### LITERATURE SURVEY

#### **Existing problem:**

Hazardous Area Monitoring for Industrial Plant powered by IoT is a project report that focuses on the necessity of the monitoring of hazardous areas in industrial plants. Industrial plants are the ones that contain both hazardous and non-hazardous areas. The monitoring of the hazardous areas in industrial plants is important from time to time. If the damage that occurs in hazardous areas can result in the loss of property or lives

## References:

| S.N | TITLE                                                                                   | AUTHORS                                   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|-----------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   |                                                                                         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1   | Design and Implementation of Real-Time Mobile?based Water Temperature Monitoring System | PaulBb.Bbokingto Jr,<br>Orven E.Lllantos. | The objective of this research is to design and develop a real-time mobile-based water temperature monitoring system capable of decreasing the reliance on manpower at the monitoring site to reduce the cost and to assess fish production cycle and fish growout system. The system implementation resulted in a monitoring system that collects the current water temperature from the core?controller in real-time. Also, the system provides and displays information that includes normal range, maximum, minimum, average and findings of the collected temperatures. The results obtained in this study has shown the ability of data acquisition in the remote and real-time detection of water temperature accurately and efficiently. It provides decision support to help and guide fisher folks in avoiding distress to fish and obtaining the optimum water temperature range. |

|   | D : (                   | T                     | T                                    |
|---|-------------------------|-----------------------|--------------------------------------|
| 2 | Design of an Industrial | Long Zhoa, Igor       | The Internet of Things (IoT) idea    |
|   | IOT based Monitoring    | matsuo, Wei-jen lee , | enables things to communicate        |
|   | System for power        | Yuhao Zhou.           | by sharing data across wired or      |
|   | substations             |                       | wireless connections. The term       |
|   |                         |                       | "Industrial Internet of Things"      |
|   |                         |                       | (IIoT) refers to the integration of  |
|   |                         |                       | data collection, transmission,       |
|   |                         |                       | and processing through a real-       |
|   |                         |                       | time network. In several             |
|   |                         |                       | applications, IIoT is currently      |
|   |                         |                       | involved in the creation of smart    |
|   |                         |                       | grids. Low-latency                   |
|   |                         |                       | communication needs to be            |
|   |                         |                       | taken into account for the           |
|   |                         |                       | majority of control and              |
|   |                         |                       | monitoring applications since        |
|   |                         |                       | the operation of power systems       |
|   |                         |                       | is particularly time-critical. IoT's |
|   |                         |                       | real-time capacity is seen as a      |
|   |                         |                       | crucial component for                |
|   |                         |                       | applications that monitor and        |
|   |                         |                       | manage power supplies. As a          |
|   |                         |                       |                                      |
|   |                         |                       | result, system operators may         |
|   |                         |                       | make better judgments for both       |
|   |                         |                       | technical and financial-related      |
|   |                         |                       | issues by using the real-time        |
|   |                         |                       | monitoring system. This              |
|   |                         |                       | research presents a fast IIoT-       |
|   |                         |                       | based monitoring system is           |
|   |                         |                       | created and put into use for a       |
|   |                         |                       | power system substation with         |
|   |                         |                       | recording capabilities. An FPGA-     |
|   |                         |                       | embedded controller is used in       |
|   |                         |                       | this system because of the high      |
|   |                         |                       | processing speed and                 |
|   |                         |                       | dependability of FPGAs. The IoT      |
|   |                         |                       | platform also offers real?time       |
|   |                         |                       | remote visualization for system      |
|   |                         |                       | administrators. The primary goal     |
|   |                         |                       | of this study is to present a real-  |
|   |                         |                       |                                      |

|                             |                                                   | world application that was put to use and tested in a power substation. The system uses a single high-resolution time source as the reference for steady-state and transient situations and combines the capabilities of an IoT platform with the requirements of high-speed real-time applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T: The Case<br>tion?Centric | Michael Frey, Martine s. lenders, Peter kietzmann | Sensors are typically used in industrial production plants to monitor or record operations, and actuators are used to enable corrective actions in the event of errors, failures, or harmful situations. Embedded controllers connect these "things" to local networks, which are now made possible by the Internet of Things (IoT). These local networks are frequently wireless low-power networks that connect to a cloud via the global Internet. Under the industrial IoT, interconnected sensors and actuators form a crucial subsystem that typically operates in challenging circumstances. How to interconnect vital industrial components in a secure and safe way is now up for discussion. In this study, we examine ICN's potential to offer limited controllers in industrial safety systems a secure and reliable networking solution. Hazardous gas sensing is demonstrated here. Compare |

|   |                                                                                                   |                                          | with IP-based techniques like CoAP and MQTT in common industrial settings, such as refineries. Based on our research, information centric networking should be implemented in a safety?critical industrial IoT due to the content-centered security model and improved DoS resistance. Evaluation of the RIOT operating system's crypto efforts for content security reveals their viability in typical deployment settings.                                                                                                                                                                                                                                                                                                                                              |
|---|---------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | Data-Driven Monitoring and Safety Control of Industrial Cyber-Physical Systems: Basics and Beyond | Yuchen jiang, Shen<br>yin, Okyay kayanak | The overall safety and stability of the system have begun to face new threats as a result of the expanding size and complexity of systems, inadequate information flow, and the exploitation of existing knowledge. These difficulties, along with the strategic and practical requirements of creating ICPSs for safety-critical systems like the intelligent factory and the smart grid, serve as the driving forces behind this effort. It explores the state of the art in ICPS monitoring and control research and examines new developments in monitoring, fault diagnosis, and control strategies based on data-driven realisation, which can fully exploit the wealth of data available from prior observations. and those that are continuously gathered online. |

|   |                                                                            |                                                | The primary challenges to be addressed for the monitoring and safety control tasks are summarized as the practical requirements in the usual ICPS applications. As a guide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---|----------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | Industrial Internet of Things for Safety Management Applications: A Survey | Sudip misra,<br>Chandana roy, Thilo<br>sauter. | The Industrial Internet of Things (IIoT) connects all of the actors who are involved in an industrial environment in order to increase operational and management efficiencies. Data can travel over a communication network that is frequently complicated and heterogeneous thanks to this bridging. It allows for prompt decision-making that has an impact on a variety of organisational areas, including business, operations, maintenance, safety, stock, and logistics. Despite the abundance of works in the IIoT field addressing the aforementioned aspects, very few works address safety in industries. Industrial safety is a crucial area that has room for improvement in the context of IIoT?based solutions for industrial safety management, especially whenever it is linked to human safety. We give a thorough overview of through this examination of of the industrial safety problems that are common. The safety aspects of several IIoT application domains, including healthcare, transportation, manufacturing, |

|   |                                                                                     |                                  | and mining, are then categorized and thoroughly examined. Finally, we review the research gaps in several fields and suggest new lines of investigation. To secure people's safety and reduce hazards, we explore a variety of technologies, prototypes, systems, models, methodologies, and applications. This research's main goal is to investigate, synthesize, and acknowledge the applicability of previous studies to safety management using the IIoT. M.                                                                                                                                                                                              |
|---|-------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 | Two compact robots for remote inspection of hazardous areas in nuclear power plants | J. Savall, A. Avello, L. Briones | Two mobile robots for the inspection of radioactive areas in nuclear power plants are described. Robicen III is a compact pneumatic robot of 3 kg designed for the inspection of radioactive cylindrical tanks. With a novel locomotive mechanism based on pneumatic actuators and suction pads, it is able to climb vertical walls at speeds close to 110 mm/s. MonoCaRob is a rail-guided autonomous robot for inspection in the drywell of BWR power plants. Copper rails and brushes provide a rugged and robust means for power supply and communications. A video camera and a variety of sensors can be carried by the robot during drywell inspections |

| 7 Applications of Wireless Sensor Networks in the Oil, Gas and Resources Industries | Mohammad reza akhondi, Alex talevski, Simon carlsen. | The work focuses on networks that monitor the production process, to either prevent or detect health and safety issues or to enhance production. WSN applications offer great opportunities for production optimization where the use of wired counterparts may prove to be prohibitive. They can be used to remotely monitor pipelines, natural gas leaks, corrosion, H2S, equipment condition, and real-time reservoir status. Data gathered by such devices enables new insights into plant operation and innovative solutions that aids the oil, gas and resources industries in improving platform safety, optimizing operations, preventing problems, tolerating errors, and reducing operating costs. In this paper, we survey a number of WSN applications in oil, gas and resources industry operations. |
|-------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| 8 | Wireless goes process automation - challenges in hazardous areas | Stephan schultz | Wireless is predicted to be one of the fastest growing technologies in the area of automation technology in the upcoming years. It is obvious that the ongoing trend towards wireless transmission of data like e.g. WLAN, Bluetooth, ZigBee is entering the hazardous areas of the chemical, petrochemical or pharmaceutical industry too. There is unfortunately not the one and only technology covering all needs. The applied wireless solution need to be selected carefully based on the demands of the application. Beside all mentioned challenges in the field of wireless functions what are the specifics when wireless enters the hazardous area? Could a wireless signal become an ignition source? What are the limits for the radiated power? How could wireless technology be implemented in the hazardous area? What is the best and most effective way to install it? The presentation discusses these questions and will explain solutions with the advantages and disadvantages. The Pros and Cons of available and future explosion protection techniques will be discussed with the necessary background information and standards. |
|---|------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| 9  | A reliable Internet of A | Wazir zada khan,    | Anomaly detection systems         |
|----|--------------------------|---------------------|-----------------------------------|
|    | reliable Internet of     | Wazir zada khan,    | deployed for monitoring in oil    |
| 10 | Self-powered wireless    | Andres gomez, Marie | A self-sustainable wireless       |
|    | sensor nodes for         | francicne lagadec,  | sensor node for the monitoring    |
|    | monitoring radioactivity | Michele magno       | radiation in contaminated and     |
|    | in contaminated areas    |                     | poorly accessible areas is        |
|    | using unmanned aerial    |                     | presented. The node is designed   |
|    | vehicles                 |                     | to work in collaboration with an  |
|    |                          |                     | unmanned aerial vehicle used      |
|    |                          |                     | for two essential mission steps:  |
|    |                          |                     | air-deploying the wireless sensor |
|    |                          |                     | nodes at suitable locations and   |
|    |                          |                     | acquiring data logs via ultra-low |
|    |                          |                     | power, short-range radio          |
|    |                          |                     | communication in fly-by mode,     |
|    |                          |                     | after a wake-up routine. The      |
|    |                          |                     | system allows for the use of off- |
|    |                          |                     | the-shelf components for          |
|    |                          |                     | defining mission, drop-zone and   |
|    |                          |                     | trajectory, for compressing data, |
|    |                          |                     | and for communication             |
|    |                          |                     | management. The node is           |
|    |                          |                     | equipped with a low-power         |
|    |                          |                     | nuclear radiation sensor and it   |
|    |                          |                     | was designed and implemented      |
|    |                          |                     | with self-sustainability in mind  |
|    |                          |                     | as it will be deployed in         |
|    |                          |                     | hazardous, inaccessible areas.    |
|    |                          |                     | To this end, the proposed node    |
|    |                          |                     | uses a combination of             |
|    |                          |                     | complementary techniques: a       |
|    |                          |                     | low-power microcontroller with    |
|    |                          |                     | non-volatile memory, energy       |
|    |                          |                     | harvesting, adaptive power        |
|    |                          |                     | management and duty cycling,      |
|    |                          |                     | and a nano-watt wake-up radio.    |
|    |                          |                     | Experimental results show the     |
|    |                          |                     | power consumption efficiency of   |
|    |                          |                     | the solution, which achieves      |
|    |                          |                     | 70uW in sleep mode and 500uW      |

|  | in active mode. Finally, simulations based on actual field measurements confirm the solution's self-sustainability and illustrate the impact of different sampling rates and that of the |
|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | wake?up rad                                                                                                                                                                              |

#### **Problem Statement Definition:**

 People who are working in industry are in chance of affecting by hazardous gases, high temperature, high humidity, fire explosion. Sometimes the conditions may become critical which may lead to loss of property and human loss.

#### **IDEATION & PROPOSED SOLUTION**

**Empathy Map Canvas:** 



## **Empathy Map Canvas link:**

https://app.mural.co/invitation/mural/projectibm0 869/1661404288660?sender=u6331f1a5887a461 6360c1130&key=a02a5684-bd11-47a7-b65ddcfe49499397

### **Ideation & Brainstorming:**



### Ideation & Brainstorming link:

https://app.mural.co/invitation/mural/projectib m0869/1663321767283?sender=u6331f1a588 7a4616360c1130&key=68f3b754-da6c-450eafab-b3b2732f4b26

## **Proposed Solution:**

| S.No. | Parameter                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Problem Statement (Problem to be solved) | Difficulty in continuous manual monitoring of temperature and communication in hazardous areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2     | Idea / Solution description              | The hazardous area is integrated with smart temperature beacons which will be sensing and broadcasting the temperature of that particular area. Every person working in those areas will be given smart wearable devices which will be acting as beacon scanners. Whenever the person goes near the beacons, he can view the temperature on his wearable device and if the temperature is high, he will receive the alerts to the mobile through SMS using API. Through this wearable device, the data is sent to the cloud database and through which the dashboard, the admins of that particular plant can view the data and take necessary actions if required. |
| 3     | Novelty / Uniqueness                     | Smart wearable devices are used.  Advanced monitoring through beacons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4     | Social Impact / Customer Satisfaction    | Due to safe environment, workers can work efficiently.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|   |                                | More focus on work without any fear.                                                                                                                           |
|---|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | Business Model (Revenue Model) | Can be implemented in different hazardous areas.  Can make the wearables more advanced and customizable to ones need.                                          |
| 6 | Scalability of the Solution    | By increasing the number of devices, this can be implemented in a commercial level.  In future, other elements like radiation and gases can also be monitored. |

## Problem Solution fit:

# 1. CUSTOMER SEGMENT(S) Who is your customer? 1. Industrialist. 2. Power plants. 3. Nuclear plants. 4. Government. 5. People around nuclear facilities & Industries.

#### 6. CUSTOMER CONSTRAINTS

What constraints prevent your customers from taking action or limit their choices of solutions?

- 1.Network connection
- 2.Maintenance 3.Power consumption

#### 5. AVAILABLE SOLUTIONS

Which solutions are available to the customers when they face problem the or need to get the job done? What have they tried in the past? What pros & cons do these solutions have?

Hazard monitoring system in industry using embedded systems.

Pros:

Automatic monitoring and controlling industrial parameters Cons:

No backup and storage

#### 2. JOBS-TO-BE-DONE / PROBLEM

Which jobs-to-be-done (or problems) do you address for your customers? There could be more than one; explore different sides

- 1. Placing the beacons
- 2. Login to the app
- 3. Monitoring the Updates from the app

#### 9. PROBLEM ROOT CAUSE

What is the real reason that this problem exists?--

- Occurrence of industrial accidents
- 2.Lose of human lives
- 3.Damage to properties

#### 7. BEHAVIOUR

What does your customer do to address the problem and get the job done?

- 1.By finding the right beacons, smart wearables
- 2.Find the right place for installation or find the place where problem occurs
- 3. Note caution period
- 4. Maintaining the place regularly

#### 3. TRIGGERS

What triggers customers to act?
With the huge usage of electrical equipment and appliances, industries are prone to fatal accidents which leads to loss of human lives injuries and damage to propedies. This calls for a monitoring system that can give early alerts to avoid such hazards.

#### 10. YOUR SOLUTION

Continuous monitoring of the hazardous areas and sending the information through smart wearable devices to the workers and notifying them through mobile application, the accidents can be avoided.

#### 8. CHANNELS of BEHAVIOUR

#### ONLINE

- Network connectivity
   Cloud storage
- 3.Mobile application

#### OFFLINE

- 1.Beacons
- 2. Wearable devices

#### 4. EMOTIONS: BEFORE / AFTER

How do customers feel when they face a problem or a job and afterwards?

- 1.Insecure >Confident in work
- 2. More manual security >Less manual security
- 3. Constantly monitoring for early signs of hazards > Concentrating only in work

Refer: <a href="https://github.com/IBM-EPBL/IBM-Project-333-1658292404/blob/main/Project%20design%20%26%20planning/Project%20Design%20Phase%201/Problem%20solution%20fit.pdf">https://github.com/IBM-EPBL/IBM-Project-333-1658292404/blob/main/Project%20design%20%26%20planning/Project%20Design%20Phase%201/Problem%20solution%20fit.pdf</a>

#### **REQUIREMENT ANALYSIS**

### **Functional requirement:**

Following are the functional requirements of the proposed solution.

| FR No. | Functional Requirement (Epic) | Sub Requirement (Story / Sub-Task)                                        |
|--------|-------------------------------|---------------------------------------------------------------------------|
| FR-1   | Temperature sensors           | To detect the temperature of a particular area                            |
| FR-2   | Beacons                       | To broadcast the data                                                     |
| FR-3   | Smart wearables               | To notify the users about the temperature of the area                     |
| FR-4   | Mobile Application            | To alert the users if the temperature is increased beyond a certain limit |
| FR-5   | Alarm                         | To alert the workers in the nearby sectors                                |
| FR-6   | Cloud storage                 | To store and access the data                                              |

### Non-Functional requirements:

Following are the non-functional requirements of the proposed solution.

| NFR No. | Non-Functional Requirement | Description                                                                               |
|---------|----------------------------|-------------------------------------------------------------------------------------------|
| NFR-1   | Usability                  | Availability of user-friendly wearable devices                                            |
| NFR-2   | Security                   | It will be safe for the workers by installing the devices in the industry                 |
| NFR-3   | Reliability                | Data are saved in the secured server so they don't provide any loopholes for the hackers. |
| NFR-4   | Performance                | No server crash or server down                                                            |
| NFR-5   | Availability               | Information is available through wearable devices and mobile application                  |
| NFR-6   | Scalability                | Easily accessible with high reliability.                                                  |

#### **PROJECT DESIGN**

**Data Flow Diagram:** 



## **Solution & Technical Architecture:**

The Deliverable shall include the architectural diagram as below and the information as per the table  $1\ \&$  table 2

**Technical Architecture:** 



**Table-1: Components & Technologies:** 

| S. No | Component           | Description                                           | Technology                                              |
|-------|---------------------|-------------------------------------------------------|---------------------------------------------------------|
| 1.    | User Interface      | Web UI, Mobile App, SMS service and Wearable devices  | Node-RED, Fast SMS and<br>MIT App inventor              |
| 2.    | Application Logic-1 | Getting input from smart beacons                      | Embedded C and Python                                   |
| 3.    | Application Logic-2 | Process data in cloud                                 | IBM Watson IOT platform,<br>Cloudant DB and<br>Node-RED |
| 4.    | Application Logic-3 | Display data to the user                              | Web UI, Fast SMS and<br>Mobileapplication               |
| 5.    | Database            | Real time database                                    | Cloudant DB                                             |
| 6.    | Cloud Database      | Database Service on Cloud                             | IBM Cloudant                                            |
| 7.    | External API-1      | To send SMS to user                                   | Fast SMS API                                            |
| 8.    | External API-2      | Language for the website is written to be dynamic     | Google translate API                                    |
| 9.    | External API-3      | To access time                                        | World time API                                          |
| 10.   | Smart Beacon        | To monitor the area and update the stats in the cloud | Node MCU and Sensors                                    |

| 11. | Infrastructure   | Application Deployment on | IBM Cloud |
|-----|------------------|---------------------------|-----------|
|     | (Server / Cloud) | Cloud                     |           |

#### **Table-2: Application Characteristics:**

| S.<br>No | Characteristics           | Description                                                                                                                                            | Technology                     |
|----------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 1.       | Open-Source<br>Frameworks | The Node-RED open-source frameworks are usedto build the web application as well as to communicate with the mobile application and to handle alert SMS | Node-RED framework             |
| 2.       | Scalable<br>Architecture  | The 3 – tier architecture used with a separate user interface, application tier and data tier makes it easily scalable                                 | IBM Watson Studio              |
| 3.       | Availability              | The web application is highly available as it is deployed in cloud                                                                                     | IBM Cloud                      |
| 4.       | Performance               | The performance of the website is improved with caching and security                                                                                   | IBM Cloud Internet<br>Services |

## **User Stories:**

| User Type  | Functional<br>Requireme<br>nt (Epic) | User<br>Story<br>Number | User Story / Task                                                                                          | Acceptance criteria                                                   | Priority | Release  |
|------------|--------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------|----------|
| Technician | Installation                         | USN-1                   | As a user, I must install the smart beacons at points to ensure the entire area of the plant is covered.   | A beacon can be found in every area of the plant.                     | High     | Sprint-1 |
|            | Data<br>Gathering                    | USN-2                   | The beacons obtain the temperature of their respective area using sensors.                                 | The temperature of areas within the plant is obtained.                | High     | Sprint-1 |
|            | Data Sync                            | USN-3                   | The beacons send their data to the cloud in the real time which is in turn sent to nearby wearable devices | Data is sent to the cloud successfully and synced with other devices. | High     | Sprint-1 |

|                         |                                      |                         | and the administrator's dashboard                                                                                 |                                                                    |          |          |
|-------------------------|--------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------|----------|
| Mobile<br>User          | Registration                         | USN-4                   | As a user, I can register for<br>the application by entering<br>my email, password and<br>confirming my password. | I can access my account/<br>dashboard.                             | High     | Sprint-1 |
|                         |                                      | USN-5                   | As a User, I will receive confirmation email once I have registered for the application.                          | I can receive<br>confirmation email &<br>click confirm             | High     | Sprint-1 |
|                         | Login                                | USN-6                   | As a User, I can login to the application by entering email & password                                            | I can register and access<br>my account                            | High     | Sprint-1 |
|                         | Dashboard                            | USN-7                   | As a User, I can monitor the temperature and humidity.                                                            | I can access the account<br>for monitoring the<br>hazardous area   | Medium   | Sprint-2 |
| End User                | Alerting<br>through<br>message       | USN-8                   | I can receive message in the form of visual notification and voice message.                                       | I can detect the hazard and receive notification                   | High     | Sprint-1 |
|                         | SMS<br>Notification                  | USN-9                   | I can get the alert message if the area has any Hazards.                                                          | I can be alerted through the SMS notification                      | Medium   | Sprint-2 |
| Web User                | Monitoring                           | USN-10                  | As a Web User, I can detect<br>the hazard through the<br>website.                                                 | I can monitor the hazards like temperature, humidity, toxic gases. | High     | Sprint-1 |
| User Type               | Functional<br>Requireme<br>nt (Epic) | User<br>Story<br>Number | User Story / Task                                                                                                 | Acceptance criteria                                                | Priority | Release  |
| Customer care executive | Maintenanc<br>e                      | USN-11                  | As an executive, I manage a team of representatives offering customer support.                                    | I need a team of workers to manage the data.                       | Low      | Sprint-3 |
| Administrat<br>or       | Admin<br>Dashboard                   | USN-12                  | As an Administrator, I can able to access the data through the cloud.                                             | I can access the data<br>sent by the beacon<br>sensor              | High     | Sprint-2 |
|                         | Dashboard<br>Customizati<br>on       | USN-13                  | As an Administrator, I can customize the dashboard to suit their personal requirements and priorities.            | The admin can customize the UI for their dashboard.                | Medium   | Sprint-2 |

## PROJECT PLANNING & SCHEDULING Sprint Planning & Estimation:

| Sprint   | Functional<br>Requirement (Epic) | User Story Number | User Story / Task                                                                                                                             |
|----------|----------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Sprint-1 | User Installation                | USN-1             | As a user, I must install the smart beacons at points to ensure the entire area of the plant is covered.                                      |
| Sprint-1 | Data Gathering                   | USN- 2            | As a user, I can monitor the beacons obtain the temperature of their respective area using sensors.                                           |
| Sprint-2 | Data Sync                        | USN- 3            | The beacons send their data to the cloud in the real time which is in turn sent to nearby wearable devices and the administrator's dashboard. |
| Sprint-1 | User Registration                | USN- 1            | As a user, I can register for the application by entering my email, password and confirming my password.                                      |
| Sprint-3 |                                  | USN-2             | As a User, I can login to the application by entering email & password.                                                                       |
| Sprint-1 | User Confirmation                | USN- 1            | As a User, I will receive confirmation email once I have registered for the application.                                                      |
| Sprint-2 |                                  | USN-2             | As a User, I will receive OTP once I have registered for the application.                                                                     |
| Sprint-3 | User Dashboard                   | USN-1             | As a User, I can access the dashboard through the application and make use of available resources.                                            |
| Sprint-3 |                                  | USN-2             | As a User, I can monitor the temperature and humidity.                                                                                        |
| Sprint-3 | SMS Notification                 | USN-1             | As a User, I can receive message in the form of visual notification.                                                                          |
| Sprint-3 | Alerting through Message         | USN-2             | As a User, I can get the alert message if the area has any hazards.                                                                           |
| Sprint-4 | Maintenance                      | USN-1             | As an executive, I manage a team of representatives offering customer support.                                                                |
| Sprint-4 | Admin Dashboard                  | USN-1             | AS an Admin, I can receive information about the situation and can alert the concerned authorities.                                           |
| Sprint-4 |                                  | USN-2             | As an Admin, I must allot particular person to look after the atmospheric changes.                                                            |
| Sprint-4 |                                  | USN-3             | As an Administrator, I can customize the dashboard to suit their personal requirements and priorities.                                        |

## **Sprint Delivery Schedule:**

| Sprint   | Total<br>Story<br>Points | Duration | Sprint Start<br>Date | Sprint End<br>Date<br>(Planned) | Story Points<br>Completed (as on<br>Planned End Date) | Sprint Release Date<br>(Actual) |
|----------|--------------------------|----------|----------------------|---------------------------------|-------------------------------------------------------|---------------------------------|
| Sprint-1 | 20                       | 6 Days   | 24 Oct 2022          | 29 Oct 2022                     | 20                                                    | 29 Oct 2022                     |
| Sprint-2 | 20                       | 6 Days   | 31 Oct 2022          | 05 Nov 2022                     | 20                                                    | 05 Nov 2022                     |
| Sprint-3 | 20                       | 6 Days   | 07 Nov<br>2022       | 12 Nov 2022                     | 20                                                    | 12 Nov 2022                     |
| Sprint-4 | 20                       | 6 Days   | 14 Nov<br>2022       | 19 Nov 2022                     | 20                                                    | 19 Nov 2022                     |

## **Reports from JIRA:**



#### **CODING & SOLUTIONING**

#IBM Watson IOT Platform

```
#pip install wiotp-sdk import
wiotp.sdk.device import time
import random
myConfig = {
"identity": {
"orgId": "7v14xw",
"typeId": "Sowmi",
"deviceId":"1"
},
"auth": {
"token": "Sowmi@12"
}
}
def myCommandCallback(cmd): print("Message received from IBM IoT
Platform: %s" % cmd.data['command']) m=cmd.data['command'] client =
wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
client.connect() while True: temp=random.randint(-20,125)
hum=random.randint(0,100)
myData={'temperature':temp,'humidity':hum}
client.publishEvent(eventId="status", msgFormat="json",
data=myData, qos=0, onPublish=None) print("Published data
Successfully: %s", myData) client.commandCallback =
myCommandCallback
  if(temp>50):
```

print("Temperature Alert")

if(hum>50): print("Humidity

Alert") time.sleep(5)

client.disconnect() CODE:



## **TESTING Test Cases:**

| Section               | Total cases | Not tested | Fail | pass |
|-----------------------|-------------|------------|------|------|
| Print Engine          | 12          | 0          | 0    | 12   |
| Client<br>Application | 30          | 0          | 0    | 30   |
| Security              | 2           | 0          | 0    | 2    |

| Outsource Shipping | 3 | 0 | 0 | 3 |
|--------------------|---|---|---|---|
|                    |   |   |   |   |

| Exception<br>Reporting | 7 | 0 | 0 | 7 |
|------------------------|---|---|---|---|
| Final Report<br>output | 4 | 0 | 0 | 4 |
| Version Control        | 3 | 0 | 0 | 3 |

#### Drive\_link:

https://docs.google.com/spreadsheets/d/1q-Ql\_2pZTLpML1IrLcqdkIZJ2LUMR8GA/edit?usp=sharing&ouid=100753412618769947141&rtpof=true&sd=true

### **User Acceptance Testing**

#### **Purpose of this test:**

The purpose of this document is to briefly explain the test coverage and open issues of the web UI which provides "Hazardous area monitoring for Industrial power plant powered by IOT" at the time of the release to User Acceptance Testing (UAT).

#### **Defect Analysis:**

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved.

| Resolution     | Severity 1 | Severity 2 | Severity 3 | Severity 4 | Severity 5 |
|----------------|------------|------------|------------|------------|------------|
| By design      | 7          | 3          | 2          | 1          | 13         |
| Duplicate      | 2          | 0          | 3          | 0          | 5          |
| External       | 2          | 1          | 0          | 1          | 4          |
| Fixed          | 8          | 2          | 4          | 7          | 21         |
| Not reproduced | 0          | 0          | 0          | 0          | 0          |
| Skipped        | 0          | 0          | 1          | 1          | 2          |
| Won't fix      | 0          | 2          | 1          | 1          | 4          |
| Totals         | 19         | 8          | 11         | 11         | 49         |

The above is the number test cases taken and the error rectification list in out project

#### **Performance Metrics:**



## RESULT: Web Page



#### **Mobile App**



#### **ADVANTAGES:**

IoT technology is an effective concept that contributes to measuring the temperature and humidity ratio within any industrial premises. It helps the authorities in maintaining a proper ambiance required for the workers to work under certain environmental conditions by keeping real-time control on the IoT-powered solution. The temperature and humidity monitoring helps analyze the situation and maintains a favorable environment as required.

#### **DISADVANTAGES:**

They rely heavily on the internet and are unable to function effectively without it.

With the complexity of systems, there are many ways for them to fail.

#### **CONCLUSION:**

This system measures the Temperature and Humidity in industrial power plants and alerts the workers in case of any danger through Mobile app. This system helps the workers to work more efficiently. The data is stored in cloud and can be accessed by higher authorities. This system reduces manual monitoring.

#### **FUTURE SCOPE:**

The Internet of Things (IoT) has risen to prominence as a global technology. It has grown in popularity in a short period. Moreover, advances in Artificial Intelligence and Machine Learning have made IoT device automation easy. In general, AI and machine learning programs are paired with IoT devices to provide proper automation. As a result, the Internet of Things (IoT) has broadened its field of application across various industries.

#### SourceCode:

```
1 #IBM Watson IOT Platform
2 #pip install wiotp-sdk
3 import wiotp.sdk.device
4 import time
5 import random
6 myConfig = {
      "identity": {
7
          "orgId": "hj5fmy",
8
          "typeId": "NodeMCU",
9
            "deviceId":"12345"
10
11
   },
  "auth": {
12
            "token": "12345678"
13
14 }
15
16
   def myCommandCallback(cmd):
17
       print("Message received from
                                         IBM
18
                                              IoT
  Platform:%s" % cmd.data['command'])
```

```
19
        m=cmd.data['command']
20
21
       client=wiotp.sdk.device.DeviceClient(con
  fig=myConfig,
                               logHandlers=None)
       client.connect()
22
23
   while True:
24
        temp=random.randint(-20,125)
25
        hum=random.randint(0,100)
26
       myData={'temperature':temp,
27
  'humidity':hum}
28
  client.publishEvent(eventId="status",msgForma
  t="json",
                   data=myData,
                                           qos=0,
  onPublish=None)
   print("Published data Successfully: %s",
29
 myData)
   client.commandCallback = myCommandCallback
30
31 time.sleep(2)
   client.disconnect()
32
```

## GitHub & Project Demo Link:

https://github.com/IBM-EPBL/IBM-Project-333-

1658292404