## Конспект по топологии I семестр (лекции Иванова Сергея Владимировича)

Тамарин Вячеслав

20 декабря 2019 г.

# Оглавление

| 1 | Оби  | цая топология                                              | 5   |
|---|------|------------------------------------------------------------|-----|
|   | 1.1  | Метрические пространства                                   | 5   |
|   | 1.2  | Топологические пространства                                | 5   |
|   | 1.3  | Внутренность, замыкание, граница                           | 5   |
|   | 1.4  | Подпространства                                            | 5   |
|   | 1.5  | Сравнение топологий                                        | 5   |
|   | 1.6  | База топологии                                             | 5   |
|   | 1.7  | Произведение топологических пространств                    | 5   |
|   |      | 1.7.1 Произведение параметризуемых метрических пространств | 6   |
|   | 1.8  | Непрерывность                                              | 8   |
|   |      | 1.8.1 Непрерывность в метрических пространствах            | 9   |
|   |      | 1.8.2 Липшицевы отображения                                | 9   |
|   |      | 1.8.3 Композиция непрерывных отображений                   | .0  |
|   | 1.9  | Аксиомы                                                    | .0  |
|   |      | 1.9.1 Аксиомы счетности                                    | .(  |
|   |      | 1.9.2 Сеперабельность                                      | . 1 |
|   | 1.10 | Аксиомы отделимости                                        | . 1 |
|   |      | 1.10.1 Факторизация                                        | .2  |
|   | 1.11 | Многообразия                                               | .3  |
|   |      | 1.11.1 Классификация многообразий                          |     |
|   |      | 1.11.2 Эйлерова характеристика                             | [5  |

OГЛAВЛEНИЕ

## Глава 1

## Общая топология

- 1.1 Метрические пространства
- 1.2 Топологические пространства
- 1.3 Внутренность, замыкание, граница
- 1.4 Подпространства
- 1.5 Сравнение топологий
- 1.6 База топологии
- 1.7 Произведение топологических пространств

**Def 1.** X, Y - топологические пространства.

Топология произведения на  $X \times Y$  – топология, база которой равна

$$\{A \times B \mid A \subset X, B \subset Y \text{ - открыты.}\}.$$

 $X \times Y$  с такой топологией – произведение X и Y.

#### **Theorem 1.** Определение 1 корректно.

Доказательство. 1. Все пространство открыто

2. Пересечение двух множеств из базы = объединение множеств базы.

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D).$$

Получили объединение открытого в X и в Y, а значит принадлежит базе.

**Theorem 2.**  $A \cap X$  – замкнуто,  $B \cap Y$  – замкнуто. Тогда  $A \times B$  – замкнуто в  $X \times Y$ .



Рис. 1.1: Пересечение

Доказательство. Докажем, что дополнение открыто.

$$(X \times Y) \setminus (A \times B) = X \times (Y \setminus B) \cup (X \setminus A) \times Y.$$

 $Y\setminus B$  открыто в Y, а  $X\setminus A$  открыто в X. Тогда объединение произведений с X и Y есть объединение открытых в  $X\times Y$ .

Practice. Для любых  $A \subset X$ ,  $B \subset Y$ :

- 1.  $Int(A \times B) = Int(A) \times Int(B)$
- 2.  $Cl(A \times B) = Cl(A) \times Cl(B)$
- 3.  $A \times B$  как произведение подпространств равно  $A \times B$  как подпространство произведения.

#### 1.7.1 Произведение параметризуемых метрических пространств

Здесь все также, только топология задается метрикой.  $d_X, d_Y$  - метрики.

#### Theorem 3.

$$d((x,y),(x',y')) = \max\{d_X(x,x'),d_Y(y,y')\}.$$

d - метрика на  $X \times Y$ . Произведение метризуемых пространств метризуемо.

Доказательство. 1. Проверим, что d - метрика. Очевидно, что  $d((x,y),(x',y'))=0 \iff d_X(x,x')=d_Y(y,y')=0 \iff x=y \land x'=y'$ . Также значение не зависит от порядка. Осталось проверить неравенство треугольника.

$$d(p, p') + d(p', p'') \stackrel{?}{\geq} d(p, p'') \stackrel{\text{HYO}}{=} d_X(x, x'').$$
  
 $d_X(x, x') + d_X(x', x'') \geq d_X(x, x'').$ 

2.  $\Omega_d \subset \Omega_{X \times Y}$ 

$$B_r((x,y)) = B_r^X(x) \times B_r^Y(y).$$

А это базовое множество, которое мы представили через базовые множества X и Y.

3.  $\Omega_{X\times Y}\subset\Omega_d$  Рассмотрим  $W\in\Omega_{X\times Y}$ .

$$\exists A \subset X, \ B \subset Y$$
- открытые,  $(x,y) \in A \times B \subset W$ .

$$\exists r_1 > 0 : B_{r_1}^X(x) \subset A.$$



Рис. 1.2: Произведение метрических пространств

$$\exists r_2 > 0 : B_{r_2}^Y(y) \subset B.$$

Теперь возьмем  $r = \min(r_1, r_2)$ 

$$B_r^{X\times Y}((x,y))=B_r^X(x)\times B_r^Y(y)\subset A\times B\subset W.$$

Statement (Согласование метрик).

$$d_1((x,y),(x',y')) = d_X(x,x') + d_Y(y,y').$$
  
$$d_2((x,y),(x',y')) = \sqrt{d_X(x,x')^2 + d_Y(y,y')^2}.$$

Доказательство. Проверим неравенство треугольника для второй метрики (для первого - очевидно).

$$d_2((x,y),(x'',y'')) \stackrel{?}{\leq} d_2((x,y),(x',y')) + d_2((x',y'),(x'',y''))$$

$$\sqrt{(a+b)^2 + (c+d)^2} \leq \sqrt{a^2 + c^2} + \sqrt{b^2 + d^2}$$

#### **Def 2.** Бесконечное произведение пространств

 $\{X_i\}_{i\in I}$  - семейство топологических пространств.  $\Omega_i$  - топология.

Множество  $\prod_{i \in I} X_i = \{\{x_i\}_{i \in I} \mid \forall i, x_i \in X_i\}.$ 

Тогда рассмотрим отображение  $p_i: X \mapsto X_i$  - проекция.

Тихоновская топология на X – топология с предбазой

$$\left\{p_i^{-1}(U)\right\}_{i\in I,\ U\in\Omega}.$$



Рис. 1.3: Неравенство треугольника

Tasks. 1. Счетное произведение метризуемых – метризуемо. Сначала можно разобраться с отрезком  $[0,1]^{\mathbb{N}} = \prod_{i \in \mathbb{N}} [0,1]$ .

2. Канторовское множество  $\approx \{0,1\}^{\mathbb{N}}$ 

### 1.8 Непрерывность

X,Y - топологические пространства,  $\Omega_1,\Omega_2$  - топологии,  $f:X\to Y$ .

**Def 3.** f – непрерывна, если  $\forall U \subset \Omega_Y : f^{-1}(U) \subset \Omega_X$ .

Note.

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B).$$

**Exs.** 1. Тождественное отображение непрерывно.  $id_X: X \to X$ 

- 2. Константа тоже непрерывна.  $Const_{y_0}: X \to Y, \ \forall x \in X \quad x \mapsto y_0$
- 3. Если X дискретно,  $\forall f: X \to Y$  непрерывно.
- 4. Если Y антидискретно,  $\forall f: X \to Y$  непрерывно.

**Def 4.**  $f: X \to Y, \ x_0 \in Y \ f$  непрерывна в точке  $x_0$ , если

 $\forall$  окрестности  $U \ni y_0 = f(x_0) \exists$  окрестность  $V \ni x_0 : f(U) \subset V$ .

**Theorem 4.** f - непрерывна тогда и только тогда, когда  $\forall x_0 \in X : f$  - непрерывна в точке  $x_0$ .

Доказательство.  $\Rightarrow$ )  $y_0 \in U$ .

$$\begin{cases} f^{-1}(U) \text{ открыт } V := f^{-1}(U) \\ x_0 \in f^{-1}(U) & f(V) \subset U \end{cases}.$$

<del>(=)</del>

 $U \subset Y$  - открыто, хотим доказать, что  $f^{-1}(U)$  - открыто. Достаточно доказать, что  $\forall x \in f^{-1}(x)$ - внутренняя.

$$\exists V\ni x: f(V)\subset U \Leftrightarrow x\in V\subset f^{-1}(U).$$

Тогда x - внутренняя точка  $f^{-1}(U)$ .

#### 1.8.1 Непрерывность в метрических пространствах

**Theorem 5.** X, Y - метрические пространства.  $f: X \to Y, x_0 \in X$ .

Tогда f – непрерывна в точка  $x_0$  тогда и только тогда, когда

$$\forall \varepsilon > \exists \delta > 0 : f(B_{\delta}) \subset B_{\varepsilon}(f(x)).$$

Или можем записать альтернативную формулировку непрерывности:

$$\forall \varepsilon \exists \delta : \forall x' \in X \land d(x, x') < d \Rightarrow d(f(x), f(x')) < \varepsilon.$$

Доказательство.  $\Rightarrow$ ) Так как f – непрерывна в точке x, существует окрестность  $V \ni x : f(v) \subset B_{\varepsilon}(f(x))$ . Так как V открыто,  $\exists \delta > 0 : B_{\delta} \subset V$ .

 $\Leftarrow$ ) Рассмотрим  $U \ni f(x)$ . Тогда  $\exists \varepsilon > 0 : B_{\varepsilon}(f(x)) \subset U :$ 

$$\exists \delta > 0 : f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x)) \subset U$$
. Можем взять  $V := B_{\delta}(x)$ .

#### 1.8.2 Липшицевы отображения

**Def 5.** X, Y – метрические пространства.

 $f:X\to Y$  – липшицево, если  $\exists c>0 \forall x,x'\in X:d_Y(f(x),f(x'))\leq cd_X(x,x')$ . C – константа Липшица данного отображения.

Corollary. Все липшицевы отображения непрерывны.

Доказательство. Рассмотрим  $\delta = \frac{\varepsilon}{c}$ .

$$d_X(x, x') < \delta \Rightarrow d_Y(f(x), f(x')) \le C\delta = \varepsilon.$$

Ex. X – метрика,  $x0 \in X$ .  $f: X \to \mathbb{R}$ ,  $f(x) = d(x, x_0)$ 

$$|f(x) = f(y)| = f(y) - f(x) = d(y, x_0) - d(x, x_0) \le d(x, y).$$

Получили, что липшицево с константой 1.

Task.  $A \subset X$ 

$$f(x) = dist(x, A) := \inf\{d(x, y) \mid y \in A\}.$$

Доказать, что X тоже липшицево с константой 1.

**Ех.**  $d: X \times X \to \mathbb{R}$  – непрерывна.

П

#### 1.8.3 Композиция непрерывных отображений

**Theorem 6.** Композиция непрерывных отображений непрерывна.

#### 1.9 Аксиомы

#### 1.9.1 Аксиомы счетности

**Def 6.**  $X = (X, \Omega)$  База в точке  $x \in X$  – такое множество  $\Sigma_x \subset \Omega$ , что:

- 1.  $\forall V \in \Sigma_x : x \in V$
- 2.  $\forall U \not\ni x \exists V \in \Sigma_x : V \subset U$

Designation. Счетное множество – не более, чем счетное.

**Def 7.** Пространство X удовлетворяет первой аксиоме сетности (1AC), если для любой точки  $x \in X$  существует счетная база в этой точке.

**Def 8.** Пространство X удовлетворяет второй аксиоме счетности (2AC), если у него есть счетная база топологии.

Theorem 7.  $2AC \Rightarrow 1AC$ 

Доказательство. Пусть  $\Sigma$  – база топологии,  $x \in X$ . Пусть . . .

**Theorem 8.** Все метрические пространства удовлетворяют второй аксиоме счетности.

Statement.  $\mathbb{R}$  имеет счетную базу.

**Theorem 9.** Если X и Y имеют счетную базу, то  $X \times Y$  тоже имеет счетную базу.

**Theorem 10.** Если X имеет счетную базу, то любое его подпространство тоже имеет счетную базу.

Corollary.  $\mathbb{R}^n$  имеет счетную базу.

Practice. 1AC тоже наследуется подпространствами и произведениями.

**Def 9.** Топологические свойство – наследственное, если оно сохраняется при замене пространства на любое подпространство.

Ех. Дискретность, антидискретность, 1АС, 2АС – наследственные свойства.

**Theorem 11.** Линделёф Если X удовлетворяет 2AC, то из любого открытого покрытия можно выбрать счетное подпокрытие.

Доказательство. Пусть  $\Lambda$  – множество тех элементов базы, которые содержатся хотя бы в одном из элементов покрытия.  $\Lambda$  – счетное покрытие.

Каждому  $U \in A$  сопоставим V из исходного покрытия, для которого  $U \subset V$ .

Все такие V образуют искомое счетное покрытие.

#### 1.9.2 Сеперабельность

**Def 10.** Всюду плотное множество – множество, замыканние которого есть все пространство.

**Def 11.** Множество всюду плотно тогда и только тогда, когда оно не пересекается с любым непустым открытым множеством.

 $\mathbf{E}\mathbf{x}$ .  $\mathbb{Q}$  всюду плотно в  $\mathbb{R}$ 

**Def 12.** Топологическое пространство сепарабельно, если в нем есть счетное всюду плотное множество.

**Property.** X, Y – сепарабельны  $\Longrightarrow X \times Y$  тоже.

Note. Сепарабельность – не наследственное свойство.

#### Theorem 12.

- Счетная база  $\Longrightarrow$  сепарабельность.
- Для метризуемых пространств сеперабельность  $\Longrightarrow$  счетная база

### 1.10 Аксиомы отделимости

**Def 13.** X обладает свойтсвом  $T_1$ , если для любой различных точек  $x,y \in X$  существует такое открытое U, что  $x \notin U \land y \notin U$ .

**Theorem 13.**  $T_1 \iff$  любая точка является замкнутым множеством.

**Def 14.** X – хаусдорфово, если для любых  $x, y \in X$  существуют окрестности  $U \ni x \land V \ni y : U \cap V = \emptyset$ .

**Def 15.** X хаусдорфово  $\iff$  Диагональ  $\Delta := \{(x,x) \mid x \in X\}$  замкнута в  $X \times X$ 

**Def 16.** X – регулярно, если

- обладает  $T_1$
- $\forall$  замкнутого  $A \subset X \ \forall x \in X \setminus A \ \exists$  открытые  $U,V:A \subset U \land x \in V \land U \cap V = \varnothing$  Другое название  $T_3$ -пространство

**Def 17.** X – нормально, если

- обладает T<sub>1</sub>
- $\forall A, B \in X (A \cap B = \emptyset)$   $\exists$  открытые  $U, V : A \subset U, B \subset V \land U \cap V = \emptyset$

Другое название  $T_4$ -пространство

Statement.  $T_4 \Rightarrow T_3 \Rightarrow T_2 \Rightarrow T_1$ 

Practice. Свойства  $T_1 - T_3$  наследуются подпространствами и произведениям.

Нормальность не наследственная.

**Def 18.** Все метрические пространства нормальны.

Доказательство. Хороший метод.

$$f: X \to Y$$

$$f(x) = \frac{d(x,A)}{d(x,A) + d(x,B)}.$$

Она корректна, непрерывна, и принимает значение ноль на A и единице B.

**Lemma** (Урысон). X – нормально,  $A, B \subset X$  – замкнуты,  $A \cap B = \emptyset$ . Тогда существует непрерывна функция  $f: X \to [0,1]: f \upharpoonright_A = 0 \land f \upharpoonright_B = 1$ 

#### 1.10.1 Факторизация

**Ex.** Склеим в квадрате ABCD стороны  $\vec{AB}$  и  $\vec{DC}$  по аффинной биекции между ними, сохраняющей отученное направление. Получим цилиндр  $S^1 \times [0,1]$ .

 $\mathbf{E}\mathbf{x}$ . Если склеить  $\vec{AB}$  и  $\vec{CD}$ , получи **лента Мебиуса**.

**Def 19.** ПУсть X – топологическое пространство.  $\Gamma$  – подгруппа группы Homeo(X) – группы всех гомеоморфизмов из X в себя.

Введем отношение эквивалентности  $\sim$  на X :

$$a \sim b \iff \exists g \in \Gamma : g(a) = b.$$

Фактор пространство  $X/\sim$  обозначается X/F или  $X\backslash F$ 

**Theorem 14.** Пусть  $p: X \to X/\sim -$  каноническая проекция.  $f: X \to Y$  переводит эквивалентные точки в равные:

$$\forall x, y \in X : x \sim y \Longrightarrow f(x) = f(y).$$

Тогда

- 1.  $\exists \overline{f}: X/\sim \to Y: f = \overline{f} \circ p$ .
- 2.  $\overline{f}$  непрерывно тогда и только тогда, когда f непрерывно.

Доказательство.

- 1. Определим  $\overline{f([x])} = f(x)$  для всех  $x \in X$
- 2. По непрерывности композиции, если  $\overline{f}$  непрерывна, то f тоже.
- 3. В обратную сторону по определению фактортопологии. (провеим определение непрерывности)

**Theorem 15.**  $[0,1]/\{1,0\} \cong S^1$ 

**Theorem 16.** X – замкнуто, Y – хаусдорфово.  $f: X \to Y$  – непрерывно и сюрьективно. Тогда

$$X/\sim \cong Y$$
.

 $\Gamma \partial e \sim -$ эквивалентность .

Theorem 17.  $D^n/S^{n-1} \cong S^n$ 

Доказательство. Вместо  $D^n$  возьмем B – замкнутый шар радиуса  $\pi$  сс цетром в  $0 \in \mathbb{R}^n$ . По прошлой теореме 16 достаточно построить сюрьективный гомеоморфизм  $f: B \to S^n$ , отображающий край шара в одну точку, а в остальном инъективен. Сойдет такое

$$f(x) = \left(\frac{1}{|x|}\sin(|x|)\cos(|x|)\right), f(0) = (0_{\mathbb{R}_{n-1}}, 1).$$

### 1.11 Многообразия

**Designation.** Здесь и далее  $n \in \mathbb{N} \cup 0$ 

**Def 20.** n-мерное многообразие — хаусдорфово топологическое пространство со счетной базой, обладающее свойством локальной евклидовости: у любой точки xinM есть окрестность, гомеоморфная  $\mathbb{R}^n$ .

Число n – размерность многообразия.

**Theorem 18.** При  $m \neq n$  никакие непустые открытые подмножества  $\mathbb{R}^n$  и  $\mathbb{R}^m$  не гомеоморфны.

Corollary. Многообразие размерности n Не гомеоморфно многообразию размерности m.

- Ех. 0-мерные многообразия не более чем счетные дискретные пространства.
- $\mathbf{Ex.}$  Любое открытое подмножество  $\mathbb{R}^n$  или любого многообразия многообразие той же размерности.
- **Ex.** Сфера  $S^n$  n-мерное многообразие
- **Ех.** Проективное пространство  $\mathbb{R}P^n = S^n/\{id, -id\}$  моногообразие

Practice. В диске  $D^n$  склеим противоположные точки границы. Полученное пространство гомеоморфно  $\mathbb{R}P^n$ .

**Def 21.** n-мерное многообразие с краем – хаусдорфово пространство M со счетной базой и такое, что у каждой точки есть окрестность, гомеоморфная либо  $\mathbb{R}^n$ , либо  $\mathbb{R}^n_+$ .

Множество точек, у которых нет окрестностей первого вида, называются краем M и обозначаются  $\partial M$ .

**Def 22.** Поверхность – двумерное многообразие.

#### Theorem 19.

- Пусть дан правильный 2n угольник  $D^2$  с границей разбитой на части), стороны которого разбиты на пары и ориентированы. Склеим кажу пару сторон по естественному отображению с учетом ориентации. Тогда получится двумерное многообразие.
- Пусть дан m-угольник некоторые 2n сторон (2n < m) которого разбиты на пары, ориентированы и склеены аналогично. Тогда получается двумерное многообразие.

Note. Можно брать и несколько многоугольников и склеивать из между собой.

#### 1.11.1 Классификация многообразий

Note. Любое многообразие локально линейно связно. Следовательно, компоненты линейной связности совпадают с комнопнентами связности и открыты. Будем исследовать только связные многообразия.

**Theorem 20.**  $\Pi cmb \ M$  – непустое связное 1-мерное многообразие. Тогда

- 1. M компактно. без края  $\Longrightarrow M \cong S^1$
- 2. M некомпактно, без края  $\Longrightarrow M \cong \mathbb{R}$
- 3. M -

**Def 23.** Пусть  $p \in \mathbb{N}$ . Сфера с p ручками строится так: берем сфер  $S^2$ , вырезаем p непересекающихся дырок  $D^2$ . Далее берем p торов с такими же дырками и приклеиваем по дыркам торы к сфере.

Def 24. Сфера с пленками – аналогично, только приклеиваем ленты Мебиуса.

Practice. Cathf c jlyjq пленкой –  $\mathbb{R}P^3$ , сфера с двумя пленками – бутылка Клейна.

Statement. Поверхность - связное двумерное многообразие.

**Theorem 21.** Компактная поверхность без края гомеоморфна сфере или сфере с ручками или сфере с пленками.

- Поверхности разного типа, сферы с разным числом ручек, сферы с разным числом пленок попарно не гомеоморфны.
- Компактная поверхность с краем гомеоморфна одному из этих цилиндров с несколькими дырками.

Поверхности с разным числом дырок негомеоморфны.

#### 1.11.2 Эйлерова характеристика

**Def 25.** ПУсть M — компактная поверхность, разбитая вложенныам связным графом на областидиски (замыкание области гомеоморфно диску, граница — цикл в графе). Эйлерова характеристика M — целое число:

$$\chi(M) = V - E + F.$$

**Theorem 22.** Эйлерова характеристика – топологический инвариант.

Exs.

- $\chi(S^2) = 2$
- $\chi(T^2) = 0$
- $\chi$ (бутылки Клейна) = 0
- ullet При вырезании дырки  $\chi$  уменьшается на 1
- $\chi$ (сферы с n дырками) =  $2 n, \chi$ (тора с дыркой) = -1
- $\chi(A \cap B) = \chi(A) + \chi(B) \chi(A \cup B)$
- $\chi$ ( сферы с р ручками) = 2-2p
- $\chi$ ( сферы с q пленками) = 2-q