This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10123512 A

(43) Date of publication of application: 15.05.98

(51) Int. CI

G02F 1/1335

(21) Application number: 08341800

(22) Date of filing: 20.12.96

(30) Priority:

28.08.96 JP 08226939

(71) Applicant:

SANYO ELECTRIC CO LTD

(72) Inventor:

YOSHII SHOICHI KANETANI KYOICHI

(54) LIGHT SOURCE FOR LIQUID CRYSTAL DISPLAY DEVICE AND COLOR LIQUID CRYSTAL DISPLAY DEVICE USING IT

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a light source emitting light extremely close to parallel by two-dimensionally arranging plural pieces of light emission elements of red or green or blue on a substrate and subjecting the light from the light emission elements to parallel convergion with an optical element.

SOLUTION: The light source 20a is constituted so that a red light emitting diode 21R, a green light emitting diode 21G and a blue light emitting diode 21B as the light emission element are arranged two-dimensionally on an insulative substrate 22. A micro-lens array 23a as the optical element is also mounted thereon with the arrangement of these light emitting diodes 21. This micro-lens array 23a is constituted so as to emit the light at different angles according to respective color components. The light outgoing from the light emission points of the light emitting diodes 21 are made parallel luminous flux at the prescribed angle by the micro-lens array 23a, and lighting light with a small dispersed angle and the angles according to respective color components is obtained. The heat from the light emitting diodes 21 is radiated from a heat sink 24 loaded on the rear surface of the substrate 22.

COPYRIGHT: (C)1998,JPO

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-123512

(43)公開日 平成10年(1998) 5月15日

(51) Int.Cl.⁶

識別記号

G 0 2 F 1/1335

530

FΙ

G 0 2 F 1/1335

530

審査請求 未請求 請求項の数6 OL (全 6 頁)

(21)出願番号

特願平8-341800

(22)出願日

平成8年(1996)12月20日

(31) 優先権主張番号 特願平8-226939

(32)優先日

平8 (1996) 8 月28日

(33)優先権主張国

日本(JP)

(71)出願人 000001889

三洋電機株式会社

大阪府守口市京阪本通2丁目5番5号

(72)発明者 ▲吉▼居 正一

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 金谷 経一

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(74)代理人 弁理士 鳥居 洋

(54) 【発明の名称】 液晶表示装置用光源及びそれを用いたカラー液晶表示装置

(57)【要約】

【課題】 この発明は、平行に極めて近い光を出射する 液晶表示装置用光源を提供することをその目的とする。

【解決手段】 この発明の光源は、基板22上に複数の 赤色と緑色及び青色の発光ダイオード21 R、21 G、 21 Bを2次元的に配列すると共に、各発光ダイオード 21 R、21G、21 Bからの光を発光ダイオードの前 面に配置されたマイクロレンズアレイ23a子にて各色 成分に応じて異なる角度で出射させることを特徴とす る。

【特許請求の範囲】

【請求項1】 赤色又は緑色若しくは青色の発光素子を複数個基板上に2次元的に配列すると共に、その発光素子からの光を発光素子の前面に配置された光学素子にて平行収束させることを特徴とする液晶表示装置用光源。

1

【請求項2】 基板上に複数の赤色と緑色及び青色の発 光素子をランダムに2次元的に配列すると共に、その発 光素子からの光を発光素子の前面に配置された光学素子 にて平行収束させることを特徴とする液晶表示装置用光 源。

【請求項3】 基板上に複数の赤色と緑色及び青色の発 光素子を2次元的に配列すると共に、各発光素子からの 光を発光素子の前面に配置された光学素子にて各色成分 に応じて異なる角度で出射させることを特徴とする液晶 表示装置用光源。

【請求項4】 赤色の画像を変調する赤色用表示パネルと、この赤色用表示パネルに赤色光を照射する請求項1に記載の光源と、緑色の画像を変調する緑色用表示パネルと、この緑色用表示パネルに緑色光を照射する請求項1に記載の光源と、青色の画像を変調する青色用表示パネルと、この青色用表示パネルに青色光を照射する請求項1に記載の光源と、前記各表示パネルを透過した映像光を合成する光学手段と、を備えてなるカラー液晶表示装置。

【請求項5】 赤色光を出射する請求項1に記載の光源と、緑色光を出射する請求項1に記載の光源と、青色光を出射する請求項1に記載の光源と、前記3個の光源からの光を合成し、各色成分に応じて異なる角度で出射する色合成手段と、各色成分を集束させるマイクロレンズアレイと、このマイクロレンズアレイで集束される色成分に対応する画素部を有する液晶パネルと、を備えてなるカラー液晶表示装置。

【請求項6】 基板上に複数の赤色と緑色及び青色の発光素子を2次元的に配列すると共に、各発光素子からの光を発光素子の前面に配置された光学素子にて各色成分に応じて異なる角度で出射させる光源と、各色成分を集束させるマイクロレンズアレイと、このマイクロレンズアレイで集束される色成分に対応する画素部を有する液晶パネルと、を備えてなるカラー液晶表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、投写型カラー液 晶表示装置等に用いて好適な液晶表示装置用光源及びそ の光源を用いたカラー液晶表示装置に関する。

[0002]

【従来の技術】図8は、カラー画像をスクリーン上に投 写する投写型カラー液晶表示装置の内部構造を示した概 略構成図である。図8に示すように、この投写型カラー 液晶表示装置は、光源1から白色光が出射され、この光 が2枚のダイクロイックミラー2、3にて赤色用と緑色 用と青色用の3つの光路に分割される。各光路上には、液晶パネル4、5、6が配置されており、各パネル4、5、6上に形成された画像上を光が通過して得られる赤色(R)、緑色(G)、青色(B)の映像光は、2枚のミラー7、8及び2枚のダイクロイックミラー9、10によって一つの出射光路上に集められる。これにより、赤色画像、緑色画像、青色画像の重ね合わせがなされ、この重ね合わせにより形成されたカラー画像は投写レンズ11を経てスクリーン12上に投影される。

10 [0003]

【発明が解決しようとする課題】上記した従来の投写型カラー液晶表示装置においては、図9に示すように、光源1としてメタルハライドランプやキセノンランプなどのランプ1aとリフレクタ1bとを組み合わせたものが用いられている。

【0004】ところで、投写型カラー液晶表示装置は、 光源1の光を平行光として液晶パネル4 (5、6)を照 射するように構成されているが、従来のメタルハライド ランプやキセノンランプなどのランプ1aにあっては、 20 アーク長が2mm前後あり、このアーク長に比例して、 現状では6~8度の拡がり角を持って光が広がる。

【0005】しかしながら、光源1からの光が広がると、色ずれや色ムラの原因となるなどの問題があった。 さらに、投写レンズ11を含めた光の利用率が低下する という問題もあった。

【0006】また、特開平8-190095号公報(IPC:G02F 1/1335)には、ホログラムカラーフィルタを用いた液晶表示装置用の平行光源が提案されている。この光源は、微小集束レンズアレイと各微小レンズの焦点又はその軸外れ位置に配置された白色微小一次光源とからなり、液晶表示装置に入射させるほぼ平行な光を発生するものである。

【0007】しかしながら、上記した光源は、白色光であり、カラー液晶表示装置に用いるためには、ホログラムカラーフィルタなどにより白色光を赤、緑、青の3原色に分離する必要があり、部品点数が多くなる難点がある。また、白色光を3色の光に分離するので、液晶表示装置に与えられる光は光源から出射された光の1/3であり、高輝度化にも限界があった。

40 【0008】この発明は、上述した従来の問題点に鑑みなされたものにして、平行に極めて近い光を出射する液晶表示装置用光源を提供することをその目的とする。

【0009】また、この発明は、光源からの光の利用率を向上させ、高輝度化が図れるカラー液晶表示装置を提供することを目的とする。

[0010]

30

【課題を解決するための手段】この発明の光源は、赤色 又は緑色若しくは青色の発光素子を複数個基板上に2次 元的に配列すると共に、その発光素子からの光を発光素 50 子の前面に配置された光学素子にて平行収束させること 3

(3)

10

20

を特徴とする。

【0011】また、この発明の光源は、基板上に複数の 赤色と緑色及び青色の発光素子をランダムに2次元的に 配列すると共に、その発光素子からの光を発光素子の前 面に配置された光学素子にて平行収束させることを特徴 とする。

【0012】更に、この発明の光源は、基板上に複数の 赤色と緑色及び青色の発光素子を2次元的に配列すると 共に、各発光素子からの光を発光素子の前面に配置され た光学素子にて各色成分に応じて異なる角度で出射させ ることを特徴とする。

【0013】発光ダイオードなどで構成される発光素子は、広い色再現範囲で均一な表示ができる点光源であるので、その前面に光学素子を配置することで、分散角を小さくでき、平行に極めて近い照明光を得ることができるとともに、光の利用効率が向上する。

【0014】また、この発明は、赤色の画像を変調する 赤色用表示パネルと、この赤色用表示パネルに赤色光を 照射する上記に記載の光源と、緑色の画像を変調する緑 色用表示パネルと、この緑色用表示パネルに緑色光を照 射する上記に記載の光源と、青色の画像を変調する青色 用表示パネルと、この青色用表示パネルに青色光を照射 する上記に記載の光源と、前記各表示パネルを透過した 映像光を合成する光学手段と、を備えてなる。

【0015】上記した光源をそれぞれ赤、緑、青の光源として用いることで、平行に極めて近い照明光をそれぞれの表示パネルに与えることができ、色ずれ、色ムラを解消できると共に、光の利用率が向上する。また、光を直接表示パネルに与えることができるので、光分離手段などによる光の損失を無くすことができ、さらに光の利用率の高いカラー液晶表示装置を提供することができる。

【0016】また、この発明のカラー液晶表示装置は、赤色光を出射する上記に記載の光源と、緑色光を出射する上記に記載の光源と、青色光を出射する上記に記載の光源と、前記3個の光源からの光を合成し、各色成分に応じて異なる角度で出射する色合成手段と、各色成分を集束させるマイクロレンズアレイと、このマイクロレンズアレイで集束される色成分に対応する画素部を有する液晶パネルと、を備えてなる。

【0017】また、この発明のカラー液晶表示装置は、 基板上に複数の赤色と緑色及び青色の発光素子を2次元 的に配列すると共に、各発光素子からの光を発光素子の 前面に配置された光学素子にて各色成分に応じて異なる 角度で出射させる光源と、各色成分を集束させるマイク ロレンズアレイと、このマイクロレンズアレイで集束さ れる色成分に対応する画素部を有する液晶パネルと、を 備えてなる。

【0018】上記したカラー液晶表示装置においては、 1枚の液晶パネルによりカラー表示を行える。 [0019]

【発明の実施の形態】以下、この発明をその実施の形態を示す図に基づいて説明する。図1は、この発明の第1の実施の形態に係る光源を示す概略平面図、図2は同概略側面図である。

4

【0020】図に示すように、この発明の光源20は、複数の発光素子としての発光ダイオード21が絶縁性基板22上に2次元的に配置されている。そして、この発光ダイオード21の配置に合わせて光学素子としてのマイクロレンズアレイ23が装着されている。各発光ダイオード21は色再現範囲で均一な表示ができる点光源であり、発光ダイオード21の発光点から出射された光がマイクロレンズアレイ23により平行光東化されることにより、分散角が小さくなり平行に極めて近い照明光が得られる。

【0021】また、絶縁性基板21の裏面には、ヒートシンク24が装着されており、発光ダイオード21の熱をこのヒートシンク24から放熱するように構成されている。

【0022】上記した光源20を2インチ相当の液晶パネルを照射するメタルハイライドランプ200W程度の照明光として用いる場合には、30mm×40mm程度の絶縁基板22上に約1mmピッチ程度で、1000~1500の発光ダイオード21を2次元的に配置すればよい。

【0023】上記した光源20を3板式の投写型カラー 液晶表示装置に用いる場合には、赤色の画像が表示され る液晶パネルを照射させる光源として、赤色発光ダイオ ードを2次元的に配置したものを、緑色の画像が表示さ 30 れる液晶パネルを照射させる光源として、緑色発光ダイ オードを2次元的に配置したものを、青色の画像が表示 される液晶パネルを照射させる光源として、青色発光ダ イオードを2次元的に配置したものを、それぞれ用意す るとよい。

【0024】図3は、この発明の第2の実施の形態に係る光源を示す概略側面図である。

【0025】図3に示すように、この発明の光源20aは、発光素子としての赤色発光ダイオード21R、緑色発光ダイオード21R、緑色発光ダイオード21Bが40 絶縁性基板22上に2次元的に配置されている。そして、この発光ダイオード21R、21G、21Bの配置に合わせて光学素子としてのマイクロレンズアレイ23aが装着されている。このマイクロレンズアレイ23aは各色成分に応じて異なる角度で光を出射させるように構成されている。各色発光ダイオード21R、21G、21Bは色再現範囲で均一な表示ができる点光源であり、発光ダイオード21R、21G、21Bの発光点から出射された光がマイクロレンズアレイ23aにより所定の角度で平行光束化されることにより、分散角が小さく色成分に応じた角度を有する照明光が得られる。

30

【0026】また、絶縁性基板22の裏面には、ヒートシンク24が装着されており、発光ダイオード21R、21G、21Bの熱をこのヒートシンク24から放熱するように構成されている。

【0027】上記した光源20aを2インチ相当の液晶パネルを照射するメタルハイライドランプ200W程度の照明光として用いる場合には、30mm×40mm程度の絶縁基板22上に約1mmピッチ程度で、1000~1500の発光ダイオード21R、21G、21Bを2次元的に配置すればよい。

【0028】図4は、この発明の第3の実施の形態を示す概略平面図である。この実施の形態では、発光ダイオード21(21R、21G、21B)を1行づつ半ピッチずつずらして配置し、またマイクロレンズアレイ23(23a)は亀甲状に構成している。このように構成することで、周期性による光のムラを低減することができる。

【0029】なお、上記したこの発明の光源20で白色 光源を得る場合には、赤、青、緑の発光ダイオード21 をランダムに2次元的に配置し、マイクロレンズアレイ 23の全面に拡散板を設けて赤、緑、青を合成するよう に構成すればよい。

【0030】次に、この発明の光源を用いた投写型カラー液晶表示装置の実施の形態を図5に従い説明する。

【0031】図5に示すように、絶縁性基板上に赤色発 光ダイオードを2次元的に配置し、その上にマイクロレ ンズアレイを装着した光源20(R)を用意する。この 光源20(R)上に赤色用画像が表示される液晶パネル 26を装着する。そして、赤色発光ダイオードから出射 され、マイクロレンズアレイで平行光に光束された光 は、液晶パネル26上に形成された画像上を通過して赤 色(R)の映像光としてダイクロプリズム27に与えら れる。

【0032】また、絶縁性基板上に緑色発光ダイオードを2次元的に配置し、その上にマイクロレンズアレイを装着した光源20(G)を用意する。この光源20

(G) 上に緑色用画像が表示される液晶パネル25を装着する。そして、緑色発光ダイオードから出射され、マイクロレンズアレイで平行光に光束された光は液晶パネル25上に形成された画像上を通過して緑色(G)の映像光としてダイクロプリズム27に与えられる。

【0033】さらに、絶縁性基板上に青色発光ダイオードを2次元的に配置し、その上にマイクロレンズアレイを装着した光源20(B)を用意する。この光源20

(B)上に緑色用画像が表示される液晶パネル24を装着する。そして、青色発光ダイオードから出射され、マイクロレンズアレイで平行光化された光は液晶パネル24上に形成された画像上を通過して青色(B)の映像光としてダイクロプリズム27に与えられる。

【0034】赤色(R)、緑色(G)、青色(B)の映

6

像光は、ダイクロイックプリズム27によって一つの出射光路上に集められる。これにより、赤色画像、緑色画像、青色画像の重ね合わせがなされ、この重ね合わせにより形成されたカラー画像は投写レンズ28を経てスクリーン12上に投影される。

【0035】上記した各光源20(R)、20(G)、20(B)の光の強度は、発光ダイオードに与える電流を制御することにより行えばよい。

【0036】次に、この発明の光源を用いた投写型カラ 10 一液晶表示装置の他の実施の形態を図6に従い説明す ス

【0037】図6に示すように、絶縁性基板上に赤色発光ダイオードを2次元的に配置し、その上にマイクロレンズアレイを装着した光源20(R)を用意する。そして、赤色発光ダイオードから出射され、マイクロレンズアレイで平行光に光束された光源20(R)からの光は、色合成手段30としての、ダイクロイックミラー30a及びダイクロイックミラー30bに与えられる。ダイクロイックミラー30aは、青色光を反射し、赤色光及び緑色光を透過する。また、ダイクロイックミラー30bは赤色光を反射し、緑色光及び青色光を透過する性質を有する。光源20(R)から出射された赤色光は、ダイクロイックミラー30bで反射され、所定の角度でマイクロレンズアレイ31方向へ案内される。

【0038】また、絶縁性基板上に緑色発光ダイオードを2次元的に配置し、その上にマイクロレンズアレイを装着した光源20(G)を用意する。そして、緑色発光ダイオードから出射され、マイクロレンズアレイで平行光に光束され光源20(G)からの光は、色合成手段30に与えられる。光源20(G)から出射された緑色光は、ダイクロイックミラー30a、30bを透過し、マイクロレンズアレイ31に与えられる。

【0039】さらに、絶縁性基板上に青色発光ダイオードを2次元的に配置し、その上にマイクロレンズアレイを装着した光源20(B)を用意する。そして、青色発光ダイオードから出射され、マイクロレンズアレイで平行光化された光源20(B)からの光は、色合成手段30に与えられる。光源20(B)から出射された青色光は、ダイクロイックミラー30aで反射され、所定の角40度でマイクロレンズアレイ31方向へ案内される。

【0040】即ち、光源20(R)、20(G)、20(B)から出射された光は2枚のダイクロイックミラー30a、30bからなる色合成手段30で集光され、各色に応じた分散角でマイクロレンズアレイ31に出射されるように、ダイクロイックミラー30a、30bの角度が調整されている。

【0041】色合成手段30により出射された赤色光(R)、緑色光(G)、青色光(B)の角度は互いに異なっており、これら各色成分はマイクロレンズアレイ3 101により相異なる位置に集束される。液晶パネル32

8

は、マイクロレンズアレイ31で集束される位置にそれぞれその色成分に対応する画素部が形成されている。従って、マイクロレンズアレイ31により集束された赤色成分は液晶パネル32の赤(R)画素部、緑色成分は液晶パネル32の春(G)画素部、青色成分は液晶パネル32の青(B)画素部を通る。そして、これら液晶パネル32の各画素部を通過し、液晶パネル32で変調され形成された映像が図示しない投射レンズで拡大され、スクリーン上に投影される。

【0042】この発明の光源を用いた投写型カラー液晶表示装置の更に他の実施の形態を図7に従い説明する。

【0043】図7に示す投写型カラー液晶表示装置は、 図3に示す光源20aを用いたものである。前述したよ うに、光源20aの、赤色発光ダイオード21R、緑色 発光ダイオード21G及び青色発光ダイオード21Bか ら出射された各光は、マイクロレンズアレイ23aによ り各色成分に応じて異なる角度で液晶パネル31の前面 に設けられたマイクロレンズアレイ31に向かって出射 される。マイクロレンズアレイ23aから出射された赤 色光 (R)、緑色光 (G)、青色光 (B) の角度は互い に異なっており、これら各色成分はマイクロレンズアレ イ31により相異なる位置に集束される。前述したよう に、液晶パネル32は、マイクロレンズアレイ31で集 束される位置にそれぞれその色成分に対応する画素部が 形成されている。従って、マイクロレンズアレイ31に より集束された赤色成分は液晶パネル32の赤(R)画 素部、緑色成分は液晶パネル32の緑(G)画素部、青 色成分は液晶パネル32の青 (B) 画素部を通る。そし て、これら液晶パネル32の各画素部を通過し、液晶パ ネル32で変調され形成された映像が図示しない投射レ ンズで拡大され、スクリーン上に投影される。

【0044】なお、上記した実施の形態においては、発 光素子として、発光ダイオードを用いたが、有機又は無 機EL (エレクトロルミネッセンス)、半導体レーザな ど他の発光素子を用いることもできる。

【0045】また、上記した実施の形態においては、表示パネルとして液晶パネルを用いた投写型カラー液晶表示装置について説明したが、液晶表示装置以外にも、例えば複数の微小鏡面素子が配置されてなる鏡面反射型変調器 (DMD) を表示パネルとして用いた投写型表示装置に対しても適用可能である。

[0046]

【発明の効果】以上説明したように、この発明の液晶表示装置用光源に用いる発光ダイオードなどで構成される発光素子は、広い色再現範囲で均一な表示ができる点光源であるので、その前面に光学素子を配置することで、分散角を小さくでき、平行に極めて近い照明光を得ることができるとともに、光の利用効率を向上させることができる。

*【0047】また、この発明の光源を用いたカラー液晶表示装置は、平行に極めて近い照明光をそれぞれの表示パネルに与えることができ、色ずれ、色ムラを解消できると共に、光の利用率が向上する。また、赤、緑、青の光をそれぞれ直接表示パネルに与えることができるので、光分離手段などによる光の損失を無くすことができ、光の利用率の高いカラー液晶表示装置を提供することができる。

【図面の簡単な説明】

10 【図1】この発明の第1の実施の形態に係る光源を示す 概略平面図である。

【図2】この発明の第1の実施の形態に係る光源を示す 概略側面図である。

【図3】この発明の第2の実施の形態に係る光源を示す 概略側面図である。

【図4】この発明の第3の実施の形態に係る光源を示す 概略平面図である。

【図5】この発明の実施の形態にかかる投射型液晶表示 装置装置を示す概略構成図である。

20 【図6】この発明の他の実施の形態にかかる投射型液晶 表示装置装置を示す概略構成図である。

【図7】この発明の更に他の実施の形態にかかる投射型 液晶表示装置装置を示す概略構成図である。

【図8】カラー画像をスクリーン上に投写する投写型カラー液晶表示装置の内部構造を示した概略構成図である。

【図9】従来の光源を示す概略構成図である。

【符号の説明】

20 光源

30 20a光源

21 発光ダイオード

21R 赤色発光ダイオード

21G 緑色発光ダイオード21B 青色発光ダイオード

22 絶縁性基板

23 マイクロレンズアレイ

24 ヒートシンク

20(R) 赤色用光源

20 (G) 緑色用光源

20(B) 青色用光源

24、25、26 液晶パネル

27 ダイクロイックプリズム

28 投写レンズ

29 スクリーン

30 色合成手段

30a ダイクロイックミラー

30b ダイクロイックミラー

31 マイクロレンズアレイ

・ 32 液晶パネル

40

