Image Segmentation

Remember:

Samples not just squares

Sensors introduce noise

Quantization can hurt

Questions?

Geometric resolution

144x144

72x72

36x36

18x18

9x9

4x4

Overview

What is image segmentation?

Types of segmentation algorithms

- 1. Thresholding, region labelling and growing algorithms
 - (connected components, region growing, watershed)
- 2. Statistical Segmentation
 - (k-means, mean shift)
- 3. Graph based methods
 - (Merging algorithms, split/merge)
- 4. Edge based methods
 - (Intelligent Scissors, Snakes)

Overview

What is image segmentation?

Types of segmentation algorithms

- 1. Thresholding, region labelling and growing algorithms
 - (connected components, region growing, watershed)
- 2. Statistical Segmentation
 - (k-means, mean shift)
- 3. Graph based methods
 - (Merging algorithms, splitting algorithms, split/merge)
- 4. Edge based methods
 - (Intelligent Scissors, Snakes)

What is Image Segmentation?

- Segmentation partitions an image into regions of interest (ROI).
- The first stage in many automatic image analysis systems.
- A complete segmentation of an image I is a finite set of non-overlapping regions $R_1, ..., R_N$, such that

$$I = \bigcup_{i=1}^{N} R_i$$
 and $R_i \cap R_j = \phi \ \forall i \neq j$.

Where is the ...?

[Emerging Images, Mitra et al., Siggraph Asia, 2009]

Kanizsa Triangle

Illusory Contours: Kanizsa, G. (1955), Rivista di Psicologia 49(1): 7-30

The Cup?

Gestalt Factors

These factors make intuitive sense, but are very difficult to realize algorithmically

Slide from S.Lazebnik

color texture

gradient

Combinations... 20+

http://vision.ece.ucsb.edu/segmentation

How to Segment?

How to Segment?

Exclude Dark Pixels?

```
I = imread('BlobsIP.png');
figure;
imshow(I)
--> [244 767 3]
figure;
imhist( I(:,:,1) )
figure;
imshow(I(:,:,1) > 20)
```

Histogram

gray-levels [0,255]

Harder Example

Segmentation Philosophies

Binary vs. Multi--label

Supervised vs Unsupervised

Exact vs. Oversegmented

Topdown vs. Bottomup

... they lie on the same object ... they are locally coherent

Boundary-vs. PixeHbased

Pixel-Based

Edge- Based (e.g., Snakes/Active Contours)

Overview

What is image segmentation?

Types of segmentation algorithms

- 1. Thresholding, region labelling and growing algorithms
 - (connected components, region growing, watershed)
- 2. Statistical Segmentation
 - (k-means, mean shift)
- 3. Graph based methods
 - (Merging algorithms, split/merge)
- 4. Edge based methods
 - (Intelligent Scissors, Snakes)

Overview

What is image segmentation?

Types of segmentation algorithms

- 1. Thresholding, region labelling and growing algorithms
 - (connected components, region growing, watershed)
- 2. Statistical Segmentation
 - (k-means, mean shift)
- 3. Graph based methods
 - (Merging algorithms, splitting algorithms, split/merge)
- 4. Edge based methods
 - (Intelligent Scissors, Snakes)

Thresholding

- Thresholding is a simple segmentation process.
- Thresholding produces a binary image B.
- It labels each pixel in or out of the region of interest by comparison of the greylevel with a threshold T:

$$B(x, y) = 1 if I(x, y) \ge T$$
$$0 if I(x, y) < T.$$

Basic Thresholding Algorithm

```
for x=1:X

for y=1:Y

B(x,y) = (I(x,y) >= T);

end

end
```


Segmentation Performance

 To analyze performance, we need to know the true classification of each test.

 We need to do the segmentation by hand on some example images.

ground truth

ROC Curve

 An ROC (receiver operating characteristic) curve characterizes the performance of a binary classifier.

- A binary classifier distinguishes between two different types of thing, e.g.,
 - Healthy/afflicted patients cancer screening
 - Pregnancy tests
 - Foreground/background image pixels
 - Object detection

Classification Error

- Binary classifiers make errors.
- Two types of input to a binary classifier:
 - Positives
 - Negatives
- Four possible outcomes in any test:

ROC Explained

ROC Explained

$$TPR = TP/P = TP/(TP+FN)$$

ROC Explained

$$TPR = TP/P = TP/(TP+FN)$$

 $FPR = FP/N = FP/(FP+TN)$

ROC Curve

[wikipedia]

Wouldn't it be nice...

Real Measurement Distributions

Classification Outcomes

- As we change the threshold, FP and TP change.
- Notice that:
 - FP + TN = N (the total number of negatives)
 - TP + FN = P (total positives)

How to evaluate performance?

The ROC Curve

- Characterizes the error trade-off in binary classification tasks.
- It plots the TP fraction against FP fraction.
- TP fraction (sensitivity) is $\frac{\text{True positive count}}{P}$
- FP fraction (1-specificity) is $\frac{\text{False positive count}}{N}$

Properties of ROC curves

 An ROC curve always passes through (0,0) and (1,1).

What is the ROC curve of a perfect system?

 What if the ROC curve is a straight line from (0,0) to (1,1)?

How to select a threshold?

Operating points

- Choose an operating point by assigning relative costs and values to each outcome:
 - V_{TN} value of true negative
 - V_{TP} value of true positive
 - C_{FN} cost of false negative
 - *C_{FP}* cost of false positive
- Choose the point on the ROC curve with gradient

$$\beta = \frac{N V_{TN} + C_{FP}}{P V_{TP} + C_{FN}}$$

• For simplicity, we often set $V_{TN} = V_{TP} = 0$.

Classification outcomes

