T. D. nº 5 Séries temporelles

Processus ARMA et ARIMA

Exercice 1. D'après Bourbonnais et Terraza, Analyse des séries temporelles, Dunod, 2008. Recherche des conditions de stationnarité et d'inversibilité des processus

- a) AR(1): $x_t = 0, 9x_{t-1} + \varepsilon_t$
- b) AR(1): $x_t = -0, 9x_{t-1} + \varepsilon_t$
- c) AR(2): $x_t = 0, 9x_{t-1} 0, 7x_{t-2} + \varepsilon_t$
- d) $AR(1): x_t = x_{t-1} 0, 1x_{t-2} + \varepsilon_t$
- e) $MA(1) : x_t = \varepsilon_t + 0, 8\varepsilon_{t-1}$
- f) MA(1): $x_t = \varepsilon_t 0.8\varepsilon_{t-1}$
- g) $MA(2): x_t = \varepsilon_t + 0, 6\varepsilon_{t-1} 0, 3\varepsilon_{t-2}$
- h) $MA(2): x_t = \varepsilon_t 0, 5\varepsilon_{t-1} + 0, 1\varepsilon_{t-2}$
- i) ARMA(1,1): $x_t = 0.8x_{t-1} + \varepsilon_t 0.7\varepsilon_{t-1}$
- j) ARMA(3,2): $x_t = 2, 5x_{t-1} 0, 5x_{t-2} x_{t-3} + \varepsilon_t + \varepsilon_{t-1} + 2\varepsilon_{t-2}$

Exercice 2. D'après l'énoncé de l'exercice 1 des T.D. de Guillaume Lacôte On considère un processus X vérifiant

(1)
$$\forall t \in \mathbb{Z}, \quad X_t - \frac{7}{2}X_{t-1} + \frac{3}{2}X_{t-2} = \varepsilon_t$$

où ε est un bruit blanc de variance σ_{ε}^2 .

1. Soit $\Phi(X) = 1 - \frac{7}{2}X + \frac{3}{2}X^2$.

Factoriser Φ et décomposer $\phi(\mathbb{X})^{-1}$ en éléments simples.

Développer chaque élément simple en série entière de \mathbb{X} ou de $\frac{1}{\mathbb{X}}$ selon les cas.

- 2. Montrer qu'il existe $(a_k)_{k\in\mathbb{Z}}\in\mathbb{R}^{\mathbb{Z}}$ telle que $Y=(\sum_{k\in\mathbb{Z}}a_k\varepsilon_{t-k})_{t\in\mathbb{Z}}$ existe et vérifie (1).
 - Vérifier que $\forall k < 0, a_k \neq 0$. En déduire que $\forall t \in \mathbb{Z}, \forall k \geqslant 1, \mathbb{C}ov(\varepsilon_t, Y_{t-k}) \neq 0$. En déduire que ε n'est pas l'innovation de X.
- 3. Soit Θ une série entière absolument convergente, et A un processus stationnaire quelconque.

Montrer que le processus $B = \Theta(L)A$ existe et est stationnaire.

Vérifier que $\forall \omega \in \mathbb{R}, f_B(\omega) = |\Theta(\exp(+iw))|^2 f_A(\omega)$, où f_Z désigne la densité spectrale de Z.

4. Montrer qu'il existe un polynôme Φ^* de degré 2, dont toutes les racines sont hors du cercle unité, et un bruit blanc η tels que

$$\forall t \in \mathbb{Z}, \quad \Phi^*(L)Y_t = \eta_t.$$

En déduire qu'il existe $(b_k)_{k\in\mathbb{N}}$ telle que

$$\forall t \in \mathbb{Z}, Y_t = \sum_{k \in \mathbb{N}} b_k \eta_{t-k}$$

et que η est l'innovation de Y.

5. Montrer que la régression linéaire optimale de Y_t sur son passé n'est pas $\frac{7}{2}Y_{t-1} - \frac{3}{2}Y_{t-2}$.

Exercice 3. D'après l'énoncé de l'exercice 2 des T.D. de Guillaume Lacôte On considère un processus stationnaire du second ordre X défini par

$$\forall t \in \mathbb{Z}, \quad X_t = 2X_{t-1} + \varepsilon_t$$

où $(\varepsilon_t)_{t\in\mathbb{Z}}$ est un bruit blanc de variance σ_{ε}^2 .

On suppose que l'observation de X est imprécise et qu'on n'observe que $Y = X + \eta$, où η est un bruit blanc décorrélé de ε et de variance $\sigma_n^2 = \rho \sigma_\varepsilon^2$, $\rho > 0$.

- 1. Montrer que $\varepsilon + (Id 2L)\eta$ est un processus MA(1).
- 2. Montrer que Y est un processus ARMA(1,1), et donner sa représentation canonique.
- 3. Montrer qu'il existe une série absolument convergente $(\sum_{k\in\mathbb{N}} a_k)$ telle que

$$\forall t \in \mathbb{Z}, Y_t = e_t + \sum_{k \in \mathbb{N}^*} a_k Y_{t-k}$$

où e désigne l'innovation de Y.

Justifier l'intérêt d'une telle décomposition.

Exercice 4. D'après l'énoncé de l'exercice 3 des T.D. de Guillaume Lacôte

Étant donné un processus stationnaire X, si $\rho_X(1)$ est élevée alors X_t est « assez » corrélé avec X_{t-1} et X_{t-1} avec X_{t-2} ; par conséquent il semble naturel que X_t soit « relativement » corrélé avec X_{t-2} , c'est-à-dire que $\rho_X(2)$ ne soit « pas trop » faible.

L'objet de cet exercice est de déterminer précisément le domaine de $(\rho_X(1); \rho_X(2))$. On définit à cet effet :

$$R = \{(x, y) \in [-1; 1]^2 / y \geqslant 2x^2 - 1\}$$

1. Soit X un processus stationnaire quelconque (du second ordre). Montrer que $(\rho_X(1); \rho_X(2)) \in R$.

2. On se donne réciproquement $(\rho_1; \rho_2) \in R$ et on cherche X stationnaire tel que $(\rho_X(1); \rho_X(2)) = (\rho_1; \rho_2)$.

On considère pour cela le processus X défini par :

$$\forall t \in Z, X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \varepsilon_t$$

- où $(\varepsilon_t)_{t\in Z}$ est un bruit blanc de variance σ_{ε}^2 .
 - (i) On note $\Phi(X) = 1 \phi_1 X \phi_2 X^2$. Donner une condition nécessaire et suffisante sur $(\phi_1; \phi_2)$ pour que X soit stationnaire.
 - (ii) On note P l'ensemble des $(\phi_1; \phi_2)$ tel que les racines de Φ sont hors du disque unité; déterminer P. Que peut-on dire de ε si $(\phi_1; \phi_2) \in P$?
 - (iii) Calculer $(\rho_X(1); \rho_X(2))$, et en déduire l'expression de $(\phi_1; \phi_2)$ en fonction de $(\rho_X(1); \rho_X(2))$.
 - (iv) Conclure.

Exercice 5. D'après l'énoncé de l'exercice 4 des T.D. de Guillaume Lacôte On considère un processus X stationnaire du second ordre, et on note pour $k \in \mathbb{N}$

$$\Gamma_k = \mathbb{C}ov\left(\left(\begin{array}{c} X_{t-1} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \end{array}\right)\right)$$

1. Justifier que Γ_k est indépendante de $t \in \mathbb{Z}$ et qu'elle est positive. Que dire de X si $|\Gamma_k| = 0$?

On se note désormais $k \in \mathbb{N}$ et on supposera que $|\Gamma_k| > 0$.

- 2. Calculer les coefficients a_1, \ldots, a_k de la régression de $X_t^* = \mathbb{EL}(X_t | 1, X_{t-1}, \ldots, X_{t-k})$ sur $< 1, X_{t-1}, \ldots, X_{t-k} >$.
- 3. Calculer σ_k^2 , la variance de l'erreur de la prévision $X_t X_t^*$.
- 4. (i) Montrer que $|\Gamma_{k+1}| = \sigma_k^2 |\Gamma_k|$.
 - (ii) Montrer que $(\sigma_l^2)_{l\in\mathbb{N}^*}$ est décroissante. En déduire qu'elle admet une limite finie lorsque $l\to +\infty$, et que cette limite est $\sigma_\infty^2 = \mathbb{V}ar\left(X_t - \mathbb{EL}(X_t|1,X_{t-1},\dots)\right)$ la variance de l'innovation du processus X.
 - (iii) Montrer que $\frac{1}{l} \log |\Gamma_l| \to \log \sigma_{\infty}^2$ quand $l \to +\infty$.
- 5. Application : on considère un processus du second ordre X vérifiant $X = (Id \theta L)\varepsilon$ pour $\theta \in]-1;+1[$, où ε est un bruit blanc de variance σ_{ε}^2 .
 - (i) Montrer que X est stationnaire et calculer γ_X .
 - (ii) Calculer $|\Gamma_k|$.
 - (iii) Vérifier que ε est l'innovation de X et que $\frac{1}{k} \log |\Gamma_k| \to \log \sigma_{\varepsilon}^2$ quand $k \to +\infty$.

Exercice 6. D'après l'énoncé de l'exercice 1 des T.D. de Guillaume Lacôte On considère deux processus stationnaires du second ordre X et Y vérifiant

$$\forall t \in \mathbb{Z}, \quad Y_t = \phi_1 Y_{t-1} + aX_t + U_t, \quad X_t = \phi_2 X_{t-1} + V_t$$

où U et V sont deux bruits blancs décorrélés de variance respectives σ_U^2 et σ_V^2 . On suppose en outre que $0 < |\phi_1| < 1$ et $0 < |\phi_2| < 1$.

- 1. Soit $W = (Id \phi_1 L)(Id \phi_2 L) \circ Y$. Montrer que W est stationnaire et calculer γ_W . En déduire que W est un processus MA que l'on déterminera. Application numérique :a=1,5, $\phi_1 = 0, 4, \phi_2 = 0, 6, \sigma_U^2 = 0,016$ et $\sigma_V^2 = 0,036$.
- 2. Montrer que Y est un processus ARMA que l'on déterminera.
- 3. Déterminer la prévision optimale $Y_t^* = \mathbb{EL}(Y_t|Y_{t-1},...)$ et la variance de l'erreur de prévision $Y_t Y_t^*$.