

DSC 10, Spring 2018 Lecture 21

Correlation

sites.google.com/eng.ucsd.edu/dsc-10-spring-2018

Credit: Anindita Adhikari and John DeNero

Review: Choosing a Sample Size

Designing your sample

- You want to estimate what proportion of voters will vote for Candidate A in an upcoming election.
- How many people should you sample at random in order to get a 95% confidence interval with a width of 0.03 or less?

Control the Width of 95% CI

- Suppose you want a width of no more than 0.03
- 95% CI is Mean ± 2 SDs of the sample proportion
- Total width = 4 SDs of the sample proportion
 - = $4 \times (\text{population SD})/\sqrt{(\text{sample size})} \le 0.03$
- Solve for sample size

sample size \geq (4 x (population SD) / 0.03)²

Bound the Population SD

Problem: We don't know the population SD.

Fact: SD of population of 0's and 1's is always ≤ 0.5

sample size
$$\geq (4 \times (0.5) / 0.03)^2$$

 $\geq (4 \times (population SD) / 0.03)^2$

Choose a sample size of at least $(4 \times (0.5) / 0.03)^2 = 4445$.

Prediction

Prediction Problems

- Predicting one characteristic based on another:
 - Or Given my height, how tall will my kid be as an adult?
 - O Given my education level, what is my income?
 - O Given my income, how much does my car cost?
- Two characteristics: one is known, one is unknown
- Have some data for which we know both characteristics
- To predict, need an association

Correlation

Relation Between Two Variables

- Association
- Trend
 - Positive association
 - Negative association
- Pattern
 - Any discernible "shape"
 - Linear
 - Non-linear

Visualize then quantify

Association

This scatter plot shows that people are generally

- A. Willing to pay more for cars that accelerate faster
- B. Willing to pay more for certain cars because they accelerate faster
- C. Not willing to pay more for cars that accelerate faster
- D. More than one of the above

The Correlation Coefficient r

- Measures linear association
- Based on standard units
- $-1 \le r \le 1$
 - \circ r = 1: scatter is perfect straight line sloping up
 - \circ *r* = -1: scatter is perfect straight line sloping down
- *r* = 0: No linear association; *uncorrelated*

Definition of r

Correlation Coefficient r = average of product of

x in standard units and y in standard units

Measures how clustered the scatter is around a straight line

r: average of product of standard units

X	У	x (standard units)	y (standard units)	product of standard units
1	2	-1.46385	-0.648886	0.949871
2	3	-0.87831	-0.162221	0.142481
3	1	-0.29277	-1.13555	0.332455
4	5	0.29277	0.811107	0.237468
5	2	0.87831	-0.648886	-0.569923
6	7	1.46385	1.78444	2.61215

• Then calculate the average = 0.617

Question: $y = x^2$

This scatter plot shows

- A. association and correlation
- B. association but not correlation
- C. correlation but not association
- D. neither association nor correlation

Linear Regression

Graph of Averages

A visualization of x and y pairs

- Group each x value with other nearby x values
- Average the corresponding y values for each group
- For each x value, produce one predicted y value

If the association between x and y is linear, then points in the graph of averages tend to fall on the regression line

Regression to the Mean

$$y_{\text{\tiny Correlation}} = r \times x_{\text{\tiny (Su)}}$$

- If r = 0.6, and the given x is 2 standard units, then:
 - The given x is 2 SDs above average
 - The prediction for y is 1.2 SDs above average

On average (though not for each individual),
 regression predicts y to be closer to the mean than x is

Discussion Question

A course has a midterm (average 70; standard deviation 10) and a really hard final (average 50; standard deviation 12)

If the scatter diagram of midterm & final scores for students has a typical oval shape with **correlation 0.75**, then what is the average final exam score for students who scored **90 on the midterm**?

A. 76

B. 90

C. 68

D. 82

E. 67.5

Discussion Question: Solution

A course has a midterm (average 70; standard deviation 10) and a really hard final (average 50; standard deviation 12)

If the scatter diagram of midterm & final scores for students has a typical oval shape with **correlation 0.75**, then what is the average final exam score for students who scored **90 on the midterm**?

- 1. (90 70)/10 = 2 standard units on midterm,
- 2. estimate 0.75 * 2 = 1.5 standard units on final
- 3. estimated final score = 1.5 * 12 + 50 = 68 points

(Demo)

Slope & Intercept

Regression Line Equation

In original units, the regression line has this equation:

$$\left(\frac{\text{estimate of } y - \text{ average of } y}{\text{SD of } y}\right) = r \times \left(\frac{\text{the given } x - \text{ average of } x}{\text{SD of } x}\right)$$

$$\text{y in standard units}$$

$$\text{x in standard units}$$

Lines can be expressed by slope & intercept

$$y = \text{slope} \times x + \text{intercept}$$

Regression Line

Slope and Intercept

estimate of y = slope * x + intercept

slope of the regression line =
$$r \cdot \frac{SD \text{ of } y}{SD \text{ of } x}$$

intercept of the regression line = average of y - slope · average of x

(Demo)