UNIVERSIDAD NACIONAL JORGE BASADRE GROHMANN

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA EN INFORMÁTICA Y SISTEMAS

<u>SÍLABO</u>

MATEMÁTICA IV

INFORMACIÓN GENERAL:

1.1 Facultad : Ingeniería

1.2 Escuela Profesional : Ingeniería en Informática y Sistemas

1.2. Número de Horas semanales : 05 horas
1.3 Horas Teóricas : 03 horas,
1.4. Horas prácticas : 02 horas,
1.5. Duración del curso : 17 semanas

1.6. Fecha de inicio : 1 de setiembre del 2016

1.7. Ciclo de estudios : IV 1.8. Año Académico : 2016 1.9. Régimen de estudios : Flexible

1.10. Nombre del docente : Dr. Hartman Arnaldo Cevallos Columbus.

Horarios:

Sección Única: MARTES de 6:00 pm a 8:00 pm; JUEVES de 6:00 pm a 9:00 pm.

Aula: Tercer Piso del Pabellón de la Escuela de Ing. Metalúrgica – Ciudad Universitaria UNJBG.

2 DESCRIPCIÓN DE LA ASIGNATURA:

Esta asignatura brinda al estudiante conocimiento de los métodos de solución de las Ecuaciones diferenciales ordinarias (EDO) de Primer orden y de orden "n" ésimo, lineales. Mediante la Transformada de Laplace, solucionar una EDO de primer orden y de "n" orden; como así mismo resolver un sistema de EDO lineales. También conocer una sucesión y series, sus criterios de convergencia y series especiales. Resolver las ecuaciones diferenciales en derivadas parciales de las ecuaciones del calor, de la onda.

El presente curso es regular en todas las carreras de Ingeniería; y brinda al estudiante una sólida formación académica para desarrollar ejercicios y problemas que encuentre en asignaturas de su especialidad.

La comprensión de los contenidos requiere de conocimientos de Matemáticas elementales, en especial de Cálculo Diferencial e Integral de una variable Real en una variable Real.

Los temas a tratar constituyen un instrumento fácil y efectivo para la solución de muchos problemas de la Ciencia e Ingeniería.

3 OBJETIVOS

3.1. **OBJETIVOS GENERALES**

- 3.1.1. Aplicar las EDO Lineales de primer orden y "n" ésimo orden
- 3.1.2. Explicar las definiciones y propiedades fundamentales de las condiciones de EDO con valores iniciales y de frontera.
- 3.1.3. Mediante el uso de la Transformada de Laplace, resolver problemas relacionados con su especialidad.
- 3.1.4. Aplicar las ecuaciones de calor y de la onda a los problemas propios de su carrera profesional.

3.2. **OBJETIVOS ESPECIFICOS**

- 3.2.1. Aplicar los métodos de solución de una EDO Lineal, mediante la separación de variables; factor integrante; homogéneas y no homogéneas; la ecuación de Euler Bessel y Riccati
- 3.2.2. Aplicar los métodos de coeficientes indeterminados para hallar la solución de una EDO Lineal con coeficientes constantes y variables.
- 3.2.3. Mediante el conocimiento de la sucesiones y series, resolver problemas afines en Series de Fourier.

ESTRATEGIA METODOLÓGICA:

4. ESTRATEGIA METODOLÓGICA:

El cumplimiento de los objetivos formulados y el desarrollo de los contenidos se harán a través de:

- 4.1. La parte teórica se desarrollará aplicando en forma combinada los métodos: inductivo, deductivo y analítico; buscando siempre la participación del estudiante durante y después de la exposición magistral del profesor.
- 4.2. El alumno tendrá participación en el curso a través de prácticas dirigidas, asesoradas por el profesor, así como la participación directa durante la clase.

5. MEDIOS Y MATERIALES:

Se empleará los materiales propios de un salón de clase.

6. REQUISITOS PARA LA APROBACIÓN DE LA ASIGNATURA

El alumno deberá cumplir con los siguientes requisitos:

- 6.1. Tener una asistencia regular a clases del 80%
- 6.2. Rendir los exámenes en las fechas previstas, que serán fijados por el profesor y los estudiantes, de manera que serán impostergables
- 6.3. Por la inasistencia a 4 sesiones de clases en forma continua o alternada, los estudiantes no tienen derecho al examen programado; salvo que sea debidamente justificado ante la Dirección de Escuela.
- 6.4. La nota aprobatoria par la asignatura es mayor o igual a 10,5 (escala vigesimal de 0 a 20).

7. PROCEDIMIENTO DE LA EVALUACIÓN:

- 7.1. Se tomará un examen por cada unidad
- 7.2. La inasistencia a los exámenes se calificará con nota cero (0) respectivamente
- 7.3. La nota final se obtendrá de la media aritmética de los exámenes parciales
- 7.4. La evaluación se rige por escala vigesimal de 00 a 20; siendo la nota final aprobatoria mayor o igual a 11. La fracción 10,5 sólo se considerará como 11 para efecto de la Nota Final.

8. PROGRAMA GENERAL:

PRIMERA UNIDAD : ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN.

SEGUNDA UNIDAD : ECUACIONES DIFERENCIALES DE ORDEN "n" ÉSIMO

TERCERA UNIDAD : SOLUCIÓN DE ECUACIONES DIFERENCIALES POR TRANSFORMADA DE

LAPLACE.

CUARTA UNIDAD : SUCESIONES Y SERIES – SERIES DE FOURIER – ECUACIONES

DIFERENCIALES EN DERIVADAS PARCIALES.

9. **PROGRAMA CALENDARIZADO:**

SEM	HORAS	CAP.	CONTENIDO TEMATICO	AVANCE (%)
				Acumulado
		ı	ECUACIONES DIFERENCIALES ORDINARIAS(EDO) DE	
5 S			PRIMER ORDEN	
			1.1 Concepto de una EDO- Orden y Grado.	
			Problema de Valor Inicial y en la Frontera.	30 %
		30 %	1.2 Teorema de unicidad y existencia.	
			1.3 Métodos de solución de una EDO de Primer	
			Orden: Separación de variables. Transformación	
			de variables. Ecuaciones homogéneas.	
			1.4 EDO exactas. Factor integrante. Ecuación de	
			Bernoulli- EDO inmediatamente integrables.	
			Ecuación de Clairaut	
			1.5 Aplicaciones de EDO de primer orden a:	
			Química y mezclas químicas.	
			1.6 Aplicaciones a circuitos eléctricos. Trayectorias	
			ortogonales.	
			1.7 Crecimiento y decaimiento.	
			PRIMER EXAMEN PARCIAL	
		II	ECUACIONES DIFERENCIALES DLINEALES DE ORDEN	
			"n" ÉSIMO	60 %
4 S		30 %	2.1. Concepto. Como obtener una solución complementaria: ecuación auxiliar, raíces repetidas,	
			raíces imaginarias.	
			2.2. Independencia lineal y wronskianos.	

		2.3. Como obtener una solución particular: método de	
		los coeficientes indeterminados. Método	
		aniquilador.	
		2.4. Método de variación de parámetros. La Ecuación de	
		Euler. Aplicaciones. Sistema de Ecuaciones Diferenciales Ordinarias Lineales.	
		Diferenciales Ordinarias Lineales.	
		SEGUNDO EXAMEN PARCIAL	
	III	SOLUCIÓN DE ECUACIONES DIFERENCIALES POR	
		TRANSFORMADAS DE LAPLACE	
4 S	30 %		90 %
		3.1. Introducción y definición de la Transformada de	
		Laplace y propiedades. 3.2. Uso de la Tabla de la Transformada de Laplace.	
		3.3. La función Salto Unidad de Heaviside, función	
		impulso y la función Delta de Dirac.	
		3.4. Aplicaciones de la Transformada de Laplace a EDO	
		3.5. La Transformada inversa de Laplace.	
		3.6. Métodos de la Transformada Inversa de Laplace.	
		TERCER EXAMEN PARCIAL	
	IV	SUCESIONES Y SERIES – SERIES DE FOURIER –	
		ECUACIONES DIFERENCIALES EN DERIVADAS	100 %
3 S		PARCIALES	
	10 %		
		4.4 Considerate annual deday Critarian de	
		4.1. Sucesiones: concepto, propiedades. Criterios de convergencia.	
		4.2. Series: concepto, propiedades y criterios de	
		convergencias. Series especiales.	
		4.3. Series de Fourier: Concepto y Series d Fourier del	
		seno y coseno.	
		4.4. La ecuación del calor y de la onda.	
		CUARTO EXAMEN PARCIAL	
l			

9. BIBLIOGRAFÍA:

BÁSICA

a. MURRAY R. Spiegel : "Ecuaciones Diferenciales Aplicadas" Primera

Edición 1983. PHH PRENTICE HALL

a. Eduardo Espinoza Ramos : "Análisis Matemático IV" Lima-Perú 2002. 3ra.

Edición.

b. ZILL, D. – WRIGHT, W. : "Cálculo de varias Variables" Tomo II. Edit. Mc Graw

Hill; Cuarta Edición, 2011.

c. Dennis G. Zill- Warren S. Wright: "Ecuaciones diferenciales con aplicaciones"

Grupo Editorial Iberoaméricana, Impreso en Mexico.

COMPLEMENTARIA

c. Leithold, Luis : "El Cálculo con Geometría Analítica"

Edit. Karla. México 1998. 6ta. Edición.

d. AYRES, Frank Jr. : "Ecuaciones Diferenciales". Edit. Mc Graw Hill- 1991

e. Kreyszig, Erwin : "Matemáticas Avanzadas para Ingeniería"

Vol. I y II. Editorial Limusa México 2000.

f. EDWARDS, C – PENNEY, D. : "Ecuaciones diferenciales y problemas con valores

en la frontera. Edit.: PEARSON Prentice Hall

Tacna, setiembre del 2016.