

Sciences physiques et chimiques en laboratoire - classe de 1ère de la série STL D'une image à l'autre

Notions et contenus	Capacités
Typologie d'images.	- Identifier les éléments constitutifs d'une chaîne de production d'image.
Fonctions de l'image.	- Reconnaître la fonction d'une image donnée.
	- Distinguer « image enregistrée » et « image fabriquée ».
Aspect historique de l'image.	- Identifier quelques formats d'enregistrements d'images couramment
	utilisés et les comparer selon un ou deux critères.
Droits d'auteurs, droit à l'image.	- Donner le sens des expressions « profondeur de champ »,
_	« perspective », « luminosité », «monochrome/polychrome »,
Perception des images.	« contraste », « résolution », « niveaux de gris » et les utiliser de
	manière appropriée pour décrire une image.
	- Identifier et commenter la nature de l'information contenue dans une
	image scientifique simple.
	- Repérer sur une échelle temporelle quelques périodes ou dates clés
	pour l'image et les associer à un support : peintures rupestres,
	peintures à l'huile, photographie, cinéma, télévision, vidéo, etc.
	- Adopter un comportement citoyen par rapport au droit d'auteur et au
	droit à l'image.
	- Exploiter un modèle simplifié de l'œil pour expliquer l'accommodation.
	- Comparer la courbe de sensibilité spectrale de l'œil humain à celle de
	certains animaux.
	- Citer des applications faisant appel à la persistance rétinienne.
	- Expliquer la condition de perception spatiale : de la vision
	stéréoscopique à l'image en trois dimensions.

Images photographiques

Notions et contenus	Capacités
Chambre noire et sténopé.	- Mettre en œuvre expérimentalement des systèmes optiques
Système optique : objet optique	imageurs ; identifier le rôle des éléments essentiels en les désignant ;
et image optique.	caractériser objet et image optiques.
Lumière du jour et lumières	- Expliciter les phénomènes physiques mis en œuvre dans l'éclairage
artificielles.	artificiel.
Lumière émise et lumière reçue.	- Établir un schéma fonctionnel simple d'une chaîne d'éclairage artificiel
Réflexions spéculaire et diffuse.	électriquement sécurisée.
-	- Distinguer flux lumineux et éclairement lumineux.
Filtres optiques.	- Distinguer réflexion spéculaire et réflexion diffuse.
	- Distinguer contraste et luminosité d'une image.
	- Réaliser, interpréter et exploiter l'histogramme d'une image numérisée.
	- Analyser expérimentalement l'effet d'un filtre sur le spectre d'un
	rayonnement.
Faisceaux lumineux : déviation,	- Illustrer expérimentalement et distinguer différents phénomènes
déformation, aberrations.	associés à la déviation d'un faisceau lumineux ; indiquer les
	applications associées.
	- Réaliser expérimentalement un faisceau lumineux cylindrique.
Systèmes optiques centrés ;	- Exploiter les notions de foyers, distance focale pour caractériser un
stigmatisme; conjugaison	système optique.
objet/image.	- Exploiter les propriétés d'une lentille mince convergente pour prévoir
	qualitativement la position et la taille d'une image.
Lentilles minces convergentes.	- Utiliser les relations de conjugaison pour prévoir la position et la taille
Association de lentilles minces.	d'une image obtenue à travers une lentille mince convergente ; réaliser
	une simulation numérique.
	- Déterminer expérimentalement la position et la taille d'une image.
	- Illustrer expérimentalement et corriger des aberrations optiques.
	- Comparer expérimentalement quelques caractéristiques d'un système
	optique réel et de son modèle simplifié.
Appareil photographique	- Illustrer expérimentalement le principe de mise au point automatique.
numérique : mise au point,	- Associer l'éclairement et l'énergie reçus au nombre d'ouverture et au
ouverture, temps de pose.	temps de pose.

	- Établir expérimentalement la relation entre l'éclairement et le nombre
Angle de champ.	d'ouverture.
Grandissement.	- Illustrer expérimentalement le principe d'un appareil à visée « réflex ».
	- Mesurer un angle de champ et un grossissement.
Profondeur de champ.	- Relier l'angle de champ et le grandissement à la distance focale de
Grossissement.	l'objectif et à la taille du capteur.
	- Comparer expérimentalement le grossissement et l'angle de champ de
	différents objectifs.
	- Illustrer expérimentalement l'effet du diaphragme d'ouverture sur la
	profondeur de champ.
	- Mesurer le grossissement d'un système optique.
	- Distinguer zoom optique et zoom numérique.
Photographie numérique :	- Mettre en œuvre expérimentalement une photodiode ou un
Photo détecteurs.	phototransistor.
	- Expliquer le principe des capteurs photosensibles CCD d'un appareil
Photographie argentique.	photographique numérique.
	- Réaliser une activité expérimentale pour relier l'éclairement reçu par
Capteur : sensibilité et	un capteur et la grandeur électrique mesurée.
résolution.	- Interpréter l'image argentique par un procédé photochimique.
	- Comparer la sensibilité d'un capteur numérique et celle d'une pellicule
	argentique à une norme.
	- Relier la sensibilité à la résolution et à la surface du capteur.

Image et vision

Notions et contenus	Capacités
Spectroscopie : prisme et	- Réaliser expérimentalement et décrire les spectres de différentes
réseaux.	sources lumineuses dont une source laser.
	- Distinguer spectres d'émission et spectres d'absorption, spectres
Spectres visibles.	continus et spectres de raies.
	- Identifier, en utilisant une banque de données, un élément chimique à partir de son spectre d'émission ou d'absorption.
	- Exploiter la courbe d'intensité spectrale d'un spectre lumineux.
	- Relier la longueur d'onde d'une radiation monochromatique à sa fréquence.
	- Mesurer des longueurs d'onde du spectre visible.
Perception des couleurs.	- Expliciter le rôle de chacun des deux types de cellules photosensibles de l'œil.
Couleur des objets.	 Exploiter les courbes de sensibilité relative de l'œil en vision diurne et en vision nocturne.
•	- Interpréter la couleur d'un objet comme l'effet de l'interaction de la matière dont il est constitué avec la lumière incidente.
	- Citer les paramètres physiques intervenant dans la perception des couleurs : teinte, luminosité et saturation.
Synthèses additive et	- Illustrer expérimentalement les synthèses additive et soustractive des
soustractive des couleurs.	couleurs.
Systèmes chromatiques.	- Illustrer expérimentalement le principe du système RVB.
Filtres.	- Exploiter un logiciel dédié pour déterminer les caractéristiques d'une
	couleur : composantes (R, V, B) ou teinte, luminosité, saturation (T, L, S).
	- Interpréter la pureté d'une couleur dans le diagramme chromatique (CIE 1931).
	- Citer des procédés de production d'images faisant appel à la synthèse additive ou à la synthèse soustractive.

Pigments et colorants. Colorants naturels et artificiels.	- Distinguer couleur pigmentaire et couleur structurelle.
Colorants natureis et artificiels.	- Citer les phénomènes physiques pouvant intervenir dans la perception des couleurs structurelles.
	- Illustrer expérimentalement l'effet des pigments sur la lumière blanche.

Lumière et énergie

Notions et contenus	Capacités
Interaction rayonnement-	- Déterminer expérimentalement quelques caractéristiques d'un
matière : émission et	photorécepteur, d'un photoémetteur.
absorption, diffusion.	- Interpréter les échanges d'énergie entre lumière et matière à l'aide du
	modèle corpusculaire de la lumière.
Le photon.	- Appliquer le modèle corpusculaire de la lumière pour expliquer le
Quantification des niveaux	principe d'un photoémetteur et d'un photorécepteur.
d'énergie.	principe à un priotoemetteur et à un priotorecepteur.
Sensibilité lumineuse relative de	- Exploiter la courbe de sensibilité de l'œil. Interpréter les anomalies de
l'œil.	la vision des couleurs (daltonisme).
Grandeurs photométriques :	- Déterminer expérimentalement la puissance lumineuse et le flux
flux, éclairement.	lumineux de différentes sources de lumière.
, colair office	- Associer le flux énergétique d'un faisceau à un flux de photons dans le
Sensibilité des capteurs à	cas d'une lumière monochromatique.
l'éclairement.	- Illustrer expérimentalement l'anisotropie des sources lumineuses
	artificielles.
Réflexion, absorption,	- Illustrer expérimentalement deux modes de détection du
transmission, diffusion.	rayonnement : compteurs de photons, capteurs d'énergie.
	- Mesurer un éclairement lumineux ; donner des ordres de grandeur
Luminescences.	d'éclairement dans différentes situations courantes.
	- Déterminer expérimentalement les caractéristiques de quelques
	sources ou de quelques capteurs : efficacité énergétique, rendement
	quantique et sensibilité spectrale.
	- Caractériser un matériau optique par ses coefficients de réflexion, de
	transmission et d'absorption.
	- Interpréter deux phénomènes de luminescence parmi la
	chimiluminescence, la fluorescence, la phosphorescence et
	l'électroluminescence, à partir de l'interaction rayonnement-matière.
Sources « laser » :	- Citer différents types de laser et leurs usages dans différent domaines.
directivité,	- Énoncer les deux propriétés physiques spécifiques d'un faisceau
monochromaticité, puissance.	laser.
	- Mettre en évidence expérimentalement les propriétés d'un faisceau
	produit par différentes sources laser.
	- Comparer la puissance surfacique d'une lumière émise par un laser et celle d'une autre source de lumière.
	 Utiliser une source laser en respectant les règles de sécurité. Mesurer une distance avec une source laser.
	- iviesurer une distance avec une source laser.

Images et information

Notions et contenus	Capacités	ı
Information :	- Identifier les éléments d'une chaîne de transmission d'informations.	l
Sources d'information, signaux,	- Caractériser une transmission numérique par son débit binaire.	ĺ
débit.	- Citer quelques modes de liaison possibles entre divers équipements	ĺ
Chaîne de transmission	vidéo, leurs avantages et leurs limites.	l
d'informations.		l

Image numérique.	- Définir le pixel et estimer ses dimensions dans le cas de l'appareil
	photo numérique, d'un écran vidéo.
Traitement d'image.	- Expliquer le principe du codage en niveaux de gris et en couleurs
	RVB.
	- Énoncer qu'une image numérique est associée à un tableau de
	nombres.
	- Déterminer expérimentalement la résolution d'un convertisseur
	analogique/numérique.
	- Effectuer une opération simple (filtrage) de traitement d'image à l'aide
	d'un logiciel approprié.
	- Interpréter le chronogramme de sortie d'un capteur CCD.
Milieux et canaux de	- Citer l'ordre de grandeur du débit binaire d'une transmission par câble
transmission : câbles, fibres,	coaxial, par fibre optique et par transmission hertzienne.
faisceaux hertziens.	- Expliquer le principe de propagation de la lumière dans une fibre
	optique.
	- Mesurer l'ouverture numérique d'une fibre optique.
	- Mettre en œuvre un dispositif de transmission de données par fibre optique.
	- Montrer expérimentalement le phénomène de réflexion à l'extrémité
	d'un câble de transmission et sa conséquence sur le signal.
Reconstitution de l'image avec	- Expliquer le principe de reconstitution des couleurs par une
divers imageurs.	imprimante, un écran numérique ou un vidéoprojecteur.
Stockage et mémorisation des	- Relier la capacité mémoire nécessaire au stockage d'une image
images.	numérisée, non compressée, et sa définition.
	- Citer deux formats de fichiers images en précisant leurs principales
	caractéristiques.
	- Réaliser une conversion de formats de fichiers images à l'aide d'outils
	logiciels adaptés.