- 1. Fie curba de ecuație $y=2x^3+4x$. Aflați $m\in\mathbb{R}$ știind că dreapta de ecuație y=mx+4 este tangentă la curbă.
 - a) m = 10; b) m = -1; c) m = 8; d) m = 2; e) m = 12; f) m = -6.

Soluție. Eliminând y din sistemul liniar $\begin{cases} y=2x^3+4x \\ y=mx+4 \end{cases}$, rezultă $2x^3+4x=mx+4$. Este necesar şi suficient ca ecuația $f(x)\equiv 2x^3+(4-m)x-4=0$ sa aibă o radacină multiplă reală. Din relațiile lui Viéte rezultă $x_1+x_2+x_3=0$ și $x_1x_2x_3=2$. Folosind condiția $x_1=x_2$, obținem $x_3=-2x_1$ și $-2x_1^3=2$. Avem deci $x_1=-1$. Deoarece f(-1)=0, avem m=10.

Altfel. După obținerea rădăcinii duble $x_1 = -1$, calculăm $x_3 = -2x_1 = 2$, iar din a doua relație Viéte obținem

$$x_1x_2 + x_2x_3 + x_3x_1 = \frac{4-m}{2} \Leftrightarrow -3 = \frac{4-m}{2} \Leftrightarrow m = 10.$$

- 2. Fie N numărul de soluții reale ale ecuației $2^x = x^2$. Decideți dacă:
 - a) N=0; b) N=3; c) ecuația are numai soluții întregi; d) N=4; e) N=1; f) N=2.

Soluție. Observam ca x = 0 nu este solutie deci distingem cazurile x < 0 și x > 0.

- 1. Considerăm mai intâi x < 0. Notăm y = -x > 0 și deci $1 = y^2 2^y$. Funcția $f: (0, +\infty) \to \mathbb{R}, f(y) = y^2 \cdot 2^y 1$ este strict crescătoare ca produs a două funcții strict crescătoare minus o funcție constantă și deci injectivă. Cum $\lim_{x \searrow 0} f(0) = -1 < 0$ și f(1) = 1 > 0, rezultă f are soluție unică, $y_1 \in (0, 1)$. Deci ecuația dată are o singură soluție în intervalul $(-\infty, 0), x_1 = -y_1 < 0$.
- 2. Pentru x>0, Se observă că ecuația admite soluțiile $x_2=2$ și $x_3=4$. Verificăm că acestea sunt singurele soluții strict pozitive. Ecuația se rescrie $x\ln 2=2\ln x$. Fie $g:(0,+\infty)\to\mathbb{R}, g(x)=x\ln 2-2\ln x$, deci $g'(x)=\ln 2-\frac{2}{x}$. Avem $g'(x_0)=0 \Rightarrow x_0=\frac{2}{\ln 2}$. Pe de altă parte, avem $\lim_{x\to 0}g(x)=+\infty$ și $\lim_{x\to +\infty}g(x)=+\infty$, iar g(2)=0,g(4)=0. Dar $x_0\in(2,4)$ este singura radacină a derivatei g', deci, folosind șirul lui Rolle, se deduce că $x_2=2$ și $x_3=4$ sunt singurele soluții ale ecuației g(x)=0 în intervalul $(0,+\infty)$. Concluzionăm că ecuația $2^x=x^2$ are 3 rădăcini reale, $x_1\in(-\infty,0), x_2=2$ și $x_3=4$.
- 3. Să se calculeze $\lim_{x\to 0} \frac{1}{x} \int_{x+3}^{2x+3} t\sqrt{t^3+9} \ dt$.
 - a) 14; b) ∞ ; c) 10; d) 20; e) 18; f) 0.

Soluţie. Funcţia continuă $f: \mathbb{R} \to \mathbb{R}$, $f(t) = t\sqrt{t^3 + 9}$ admite primitive F. Deci $\lim_{x\to 0} \frac{1}{x} \int_{x+3}^{2x+3} f(t) dt = \lim_{x\to 0} \frac{F(2x+3)-F(x+3)}{x}$, deci folosind regula l'Hospital (cazul 0/0), rezultă

$$\lim_{x \to 0} \frac{2f(2x+3) - f(x+3)}{1} = 2f(3) - f(3) = 3\sqrt{3^3 + 9} = 18.$$

- 4. Fie $e_1 = (1, -1, 0)$ și $e_2 = (1, 1, 0)$. Să se precizeze pentru care din vectorii e_3 de mai jos, vectorii e_1, e_2, e_3 sunt liniar independenți în \mathbb{R}^3 .
 - a) $e_3 = (2, -2, 0)$; b) $e_3 = (-2, 2, 0)$; c) $e_3 = (0, 0, 1)$; d) $e_3 = (5, 5, 0)$;
 - e) $e_3 = (0,0,0)$; f) $e_3 = (2,3,0)$.

Soluţie. Dacă $e_3 = (a, b, c)$, atunci condiţia $\begin{vmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ a & b & c \end{vmatrix} \neq 0$ implică $c \neq 0$, deci răspunsul corect este (0, 0, 1).

- 5. Soluțiile x_1, x_2, x_3 ale ecuației $x^3 3x 10 = 0$ satisfac condițiile
 - a) $x_1 = x_2 \in \mathbb{C} \backslash \mathbb{R}, x_3 \in \mathbb{C}$; b) $x_1, x_2, x_3 \in \mathbb{C} \backslash \mathbb{R}$; c) $x_1, x_2, x_3 \in \mathbb{R}$;
 - d) $x_1 \in \mathbb{R}, x_2, x_3 \in \mathbb{C} \setminus \mathbb{R}$; e) $x_1, x_2 \in \mathbb{R}, x_3 \in \mathbb{C} \setminus \mathbb{R}$; f) $x_1 = x_2 \in \mathbb{R}, x_3 \in \mathbb{C}$.

Soluţie. Pentru ecuaţia $f(x) = x^3 - 3x - 10 = 0$, întocmim şirul lui Rolle. Avem $f'(x) = 3x^2 - 3$ şi deci $f'(x) = 0 \Leftrightarrow x \in \{-1, 1\}$. Dar

$$\lim_{x \to -\infty} f(x) = -\infty < 0, \lim_{x \to \infty} f(x) = \infty, \quad f(-1) = -8 < 0, f(1) = -12 < 0,$$

deci $x_1 \in \mathbb{R}$ şi $x_2, x_3 \in \mathbb{C} \setminus \mathbb{R}$ (unde numerotarea celor trei radacini este aleatoare).

- 6. Să se determine parametrul $m \in \mathbb{R}$ dacă graficul funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 2(m+1)x^2 + (m^2 + 2m + 2)x 2m$, intersectează axa Ox în trei puncte distincte.
 - a) $m \in (-\infty, -2 2\sqrt{2}) \cup (-2 + 2\sqrt{2}, \infty)$; b) $m \neq 1$;
 - c) $m \in (-2 2\sqrt{2}, -2 + 2\sqrt{2});$
 - d) $m \in (-\infty, -2 2\sqrt{2}) \cup (-2 + 2\sqrt{2}, 1) \cup (1, \infty);$
 - e) nu există m; f) $m \neq -2 + 2\sqrt{2}$.

Soluţie. Rezolvăm ecuaţia f(x)=0. Se observa ca x=m este soluţie, deci $f(x)=(x-m)(x^2-mx-2x+2)=(x-m)(x^2-x(m+2)+2)$. Graficul intersectează axa Ox in trei puncte distincte dacă ecuaţia f(x)=0 are 3 rădăcini distincte. Avem $x_1=m$ (o radacină) iar pentru $x^2-x(m+2)+2=0$ impunem condiţiile: $\triangle>0$ şi $x_1=m$ să nu fie radacină. Obţinem $\triangle=(m+2)^2-8>0 \Leftrightarrow (m+2)^2>8 \Leftrightarrow |m+2|>2\sqrt{2} \Leftrightarrow m\in (-\infty,-2-2\sqrt{2})\cup (-2+2\sqrt{2},\infty)$. Pe de altă parte, x=m nu este rădăcina pentru ecuaţia de grad 2 d.n.d. $f(m)\neq x^2-x(m+2)+2 \Leftrightarrow m\neq 1$. Deci soluţia finală este $m\in (-\infty,-2-2\sqrt{2})\cup (-2+2\sqrt{2},1)\cup (1,\infty)$.

- 7. Să se găsească $1 = \lim_{n \to \infty} \left(n + 2 \sqrt{n^2 + n + 3} \right)$.
 - a) l = -1; b) nu există; c) $l = \frac{3}{2}$; d) $l = \infty$; e) l = 0; f) l = 1.

Soluție. Raționalizând, obținem

$$\lim_{n \to \infty} \frac{(n+2)^2 - (n^2 + n + 3)}{n + 2 + \sqrt{n^2 + n + 3}} = \lim_{n \to \infty} \frac{3n + 1}{n + 2 + \sqrt{n^2 + n + 3}} = \lim_{n \to \infty} \frac{n\left(3 + \frac{1}{n}\right)}{n\left(1 + \frac{2}{n} + \sqrt{1 + \frac{1}{n} + \frac{3}{n^2}}\right)} = \frac{3}{2}.$$

8. Primitivele $\int \frac{\mathrm{d}x}{\sin^2 x \cdot \cos^2 x}$ sunt

a)
$$x + \lg x + C$$
; b) $\lg x - \operatorname{ctg} x + C$; c) $x + \operatorname{ctg} x + C$; d) $\lg x + \operatorname{ctg} x + C$; e) $\frac{1}{\cos^2 x} + C$; f) $\frac{1}{\sin^2 x} + C$.

Soluție. Folosind formula $\sin^2 x + \cos^2 x = 1$, putem scrie

$$\int \frac{dx}{\sin^2 x \cos^2 x} = \int \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x} dx = \int \frac{1}{\cos^2 x} dx + \int \frac{1}{\sin^2 x} dx = \operatorname{tg} x - \operatorname{ctg} x + C.$$

- 9. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \cos(x-1) + e^{x^2}$. Să se calculeze f'(1).
 - a) 1; b) 0; c) e^2 ; d) 2e; e) e; f) $\frac{1}{e}$.

Soluţie. Avem $f'(x) = -\sin(x-1) + 2xe^{x^2}$, deci f'(1) = 2e.

- 10. Să se rezolve inecuația $\frac{1-x}{x} > 0$.
 - a) (0,1); b) (-1,0); c) [-1,1]; d) nu are soluții; e) [0,1); f) $(-\infty,0) \cup (1,\infty)$.

Soluţie. Avem $\frac{1-x}{x} > 0 \Leftrightarrow (x-1) \cdot \frac{1}{x} < 0 \Leftrightarrow x \in (0,1)$.

- 11. Pe mulțimea \mathbb{R}^3 se definește legea de compoziție $(x_1, y_1, z_1) \star (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 \cdot z_2)$. Găsiți elementul neutru.
 - a) (1,0,1); b) (0,1,0); c) (0,1,1); d) (1,1,0); e) (1,0,0); f) (0,0,1).

Soluţie. Aratăm că există $(e_1, e_2, e_3) \in \mathbb{R}^3$ astfel încât pentru orice $(x, y, z) \in \mathbb{R}^3$ avem $(e_1, e_2, e_3) \star (x, y, z) = (x, y, z) \star (e_1, e_2, e_3) = (x, y, z)$, adică $e_1 + x = x, e_2 + y = y, e_3 z = z \Rightarrow e_1 = 0, e_2 = 0, e_3 = 1$, deci elementul neutru este (0, 0, 1).

- 12. Funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \left\{ \begin{array}{cc} x^2 + x + 1, & x > 0 \\ ax + b, & x \leq 0 \end{array} \right.$ este continuă, dacă a) $a = 1, \ b \in \mathbb{R}; \ \text{b)} \ a = -1, \ b = 2; \ \text{c)} \ a = 1, \ b = 2; \ \text{d)} \ a = 1, \ b > 1;$

 - e) a = b = -1; f) $a \in \mathbb{R}, b = 1$.

Soluție. Cum f este continuă pe $(-\infty,0) \cup (0,\infty)$ este suficient să punem condițiile pentru continuitate în 0, adică

$$\lim_{x \searrow 0} (x^2 + x + 1) = \lim_{x \nearrow 0} (ax + b) = f(0) \Rightarrow \begin{cases} b = 1 \\ a \in \mathbb{R}. \end{cases}$$

- 13. Să se determine o funcție polinomială P, de grad cel mult doi, care verifică condițiile P(1) = 1, P'(1) = 10, P''(1) = 2.
 - a) $-x^2 + 2x + 2$; b) $x^2 2x + 2$; c) $x^2 + x + 1$; d) $x^2 + x + 2$; e) $-x^2 + 2x$; f) $-x^2 2x 2$.

Soluție. Avem $f = ax^2 + bx + c$, unde $a, b, c \in \mathbb{R}$. Condițiile din enunț se rescriu:

$$\begin{cases} a+b+c=1 \\ 2a+b=0 \\ 2a=2 \end{cases} \Rightarrow \begin{cases} a=1 \\ b=-2 \\ c=2. \end{cases}$$

- 14. Să se calculeze $\lim_{x\to 0} \frac{\sin^2 x}{x^2 + x^2 \cos x}$.
 - a) ∞ ; b) 0; c) 1; d) limita nu există; e) $\frac{1}{2}$; f) 2.

Soluţie. Avem
$$\lim_{x \to 0} \frac{\sin^2 x}{x^2 (1 + \cos x)} = \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 \frac{1}{1 + \cos x} = 1^2 \cdot \frac{1}{2} = \frac{1}{2}.$$

- 15. Să se rezolve inecuația $\ln e^x + xe^{\ln x} < 2$.
 - a) $x \in (0,1)$; b) x > 0; c) nu are soluții; d) $x \in (0,e)$; e) $x \in (-2,1)$; f) x > 1.

Soluție. Avem x>0. Folosind egalitatea $\ln e^x=x$ inecuația se rescrie $x+x^2-2<0$, deci $x\in$ $(-2,1) \cap (0,\infty) = (0,1).$

- 16. Suma numerelor naturale n ce satisfac inegalitatea $\left(1+\frac{1}{n}\right)\cdot C_n^2 < 8$ este
 - a) 10; b) 6; c) 7; d) 5; e) 8; f) 9.

Soluție. Existența fracției din enunț conduce la restricția n>0, iar existența combinărilor cere $n\in\mathbb{N}$, n > 2. Inecuatia se rescrie

$$\frac{n+1}{n}\frac{(n-1)n}{2} < 8 \Leftrightarrow n^2 - 17 < 0 \Leftrightarrow n \in [-\sqrt{17}, \sqrt{17}].$$

Deci $n\in[-\sqrt{17},\sqrt{17}]\cap\{2,3,4,5,\dots\}=\{2,3,4\}.$ Soluția căutată este prin urmare 2+3+4=9.

- 17. Matricea $A = \begin{pmatrix} a & 1 & 1 \\ 1 & -1 & a \\ 2 & 1 & 3 \end{pmatrix}$ cu $a \in \mathbb{R}$, este inversabilă pentru
 - a) $a \in \mathbb{R} \setminus \{-1, 0\}$; b) $a \in \{-1, 0\}$; c) $a \in \mathbb{R}$; d) $a \neq 0$; e) $a \neq -1$; f) nu există.

Soluție. Determinantul matricei A se obține (spre exemplu) adunând în prealabil a dolua linie a acestuia la celelalte două linii:

$$\det A = \begin{vmatrix} a & 1 & 1 \\ 1 & -1 & a \\ 2 & 1 & 3 \end{vmatrix} = \begin{vmatrix} a+1 & 0 & a+1 \\ 1 & -1 & a \\ 3 & 0 & a+3 \end{vmatrix} = -(a+1)a.$$

Prin urmare condiția ca A să fie inversabilă este det $A \neq 0 \Leftrightarrow a \in \mathbb{R} \setminus \{-1,0\}$.

- 18. Suma pătratelor soluțiilor ecuației $x^2 4x + 1 = 0$ este
 - a) 14; b) 12; c) -12; d) 16; e) 10; f) 4.

Soluţie. Avem $x_1 + x_2 = 4$, $x_1x_2 = 1$ şi deci $x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 = 14$.