Chinese Remainder Theorem

Theorem 2.15 (Chinese Remainder Theorem) Let m_1, \ldots, m_n be pairwise relatively prime positive integers and let b_1, \ldots, b_n be any integers. Then the system of linear congruences in one variable given by

$$\left\{egin{array}{ll} x & \equiv & b_1 \mod m_1 \ x & \equiv & b_2 \mod m_2 \ & dots \ x & \equiv & b_n \mod m_n \end{array}
ight.$$

has a unique solution modulo $m_1 \cdots m_n$.

Proof. We first construct a solution. Let $M = m_1 \cdots m_n$ and, for each i, $M_i = M/m_i$. Note that $(M_i, m_i) = 1$ for every i. Thus,

$$M_i x_i \equiv 1 \bmod m_i$$

has a solution **T**_i. Define

$$x = b_1 M_1 x_1 + \dots + b_n M_n x_n.$$

Since

$$m_i \mid M_j$$
 for all $j \neq i$,

we see that

$$x = b_1 M_1 x_1 + \dots + b_i M_i x_i + \dots + b_n M_n x_n \equiv b_i \pmod{m_i}.$$

To see the uniqueness, Let x' be another solution. Then $x \equiv x' \mod m_i$ for each i. Noting that all m_i 's are pairwise relatively prime, we have that $x \equiv x' \mod M$, i.e., the solution x is unique.

Donald Hazlewood and Carol Hazlewood Wed Jun 5 14:35:14 CDT 1996