Exercice 1.

Soit f la fonction définie sur \mathbb{R} par $f(x) = 2x - e^{x-1}$.

1. La fonction f est deux fois dérivables sur \mathbb{R} et pour tout réel x on a $f'(x) = 2 - e^{x-1}$ et $f''(x) = -e^{x-1}$.

Pour tout réel x on a $e^{x-1} > 0$ donc $-e^{x-1} < 0$ ce qui montre que f''(x) < 0 et ainsi f est concave sur \mathbb{R} .

- 2. On a (T_1) : y = f'(1)(x-1) + f(1) avec f'(1) = 1 et f(1) = 1 donc (T_1) : y = x.
- 3. f étant concave sur \mathbb{R} , sa courbe représentative est située en dessous de chacune de ses tangentes comme par exemple (T_1) .

On en déduit donc que pour tout réel $x, f(x) \leq -x - 3$ soit $2x - e^{x-1} \leq x$.

Exercice 2.

1. f est dérivable sur [-2; 2] et pour tout réel x de cet intervalle :

$$f'(x) = 1e^x + xe^x$$
$$= (x+1)e^x$$

Pour tout réel x de l'intervalle [-2; 2], $e^x > 0$ donc f'(x) est du signe de x + 1. Or $x + 1 = 0 \iff x = -1$. On en déduit le tableau de variation de f sur [-2; 2]:

x	-2		-1	α	2
signe de $f'(x)$		_	0	+	
variations de f	-2e ⁻²		$-e^{-1}$	_0_	$ eq 2e^2 $

- Sur l'intervalle [-2; -1], le maximum de f est $-2e^{-2} < 0$ donc l'équation f(x) = 0 n'admet pas de solution dans cet intervalle.
- Sur l'intervalle [-1; 2], la fonction f est continue, strictement croissante à valeurs dans $[-e^{-1}; 2e^2]$. Or $0 \in [-e^{-1}; 2e^2]$ donc d'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une solution unique α dans l'intervalle [-1; 2].
- On en déduit donc que l'équation f(x) = 0 admet une unique solution α dans l'intervalle [-2:2].

Or f(1) < 5 et f(2) > 5 donc $1 < \alpha < 2$.

2. (a) Voici le tableau complété:

	m	Condition $f(m) < 5$	a	b	Condition $b-a > 10^{-1}$
Initialisation			1	2	Vraie
Étape 1	1.5	Faux	1	1.5	Vraie
Étape 2	1.25	Vraie	1.25	1.5	Vraie
Étape 3	1.375	Faux	1.25	1.375	Vraie
Étape 4	1.3125	Vraie	1.3125	1.375	Faux

(b) Grâce à cet algorithme, on obtient un encadrement de α : 1,3125 < α < 1,375.

Exercice 3.

1. (a) f est dérivable sur $[0 ; +\infty[$ en tant que produit de deux fonctions dérivables sur $[0 ; +\infty[$. Pour tout réel t positif,

$$f'(t) = Q'(t)e^{at} + aQ(t)e^{at}$$
$$= (Q'(t) + aQ(t))e^{at}$$

Or
$$Q'(t) = -aQ(t)$$
 donc $f'(t) = 0$.

- (b) $f(0) = Q(0)e^{a \times 0}$ donc f(0) = Q(0) = 5.
- (c) $\forall t \in [0; +\infty[, f'(t) = 0 \text{ donc } f \text{ est constante sur } [0; +\infty[: \text{pour tout réel } t \text{ positif on a} f(t) = f(0) = 5. \text{ Or } f(t) = Q(t)e^{at} \text{ donc } Q(t) = \frac{f(t)}{e^{at}} \text{ soit } Q(t) = \frac{5}{e^{at}} = 5e^{-at}.$
- 2. (a) Calculons la limite de Q en $+\infty$.

$$\lim_{\substack{t \to +\infty \\ T \to -\infty}} -0,35t = -\infty \\ \lim_{\substack{t \to +\infty \\ T \to -\infty}} e^T = 0$$

$$\Rightarrow \lim_{\substack{t \to +\infty \\ t \to +\infty}} e^{-0,35t} = 0 \text{ d'où } \lim_{\substack{t \to +\infty \\ t \to +\infty}} Q(t) = 0.$$

(b) Q est dérivable sur $[0 ; +\infty[$ et pour tout réel t positif :

$$Q'(t) = 5 \times (-0.35)e^{-0.35t} = -1.75e^{-0.35t}$$
.

On a -1,75 < 0 et pour tout réel t positif, $e^{-0,35t} > 0$ donc par produit Q'(t) < 0 ce qui démontre que la fonction Q est strictement décroissante sur $[0; +\infty[$.

t	0	t_0	$+\infty$
Variation de Q	5	2.5	→ 0

- (c) La fonction Q est continue sur $[0; +\infty[$ car dérivable sur $[0; +\infty[$. Elle est strictement décroissante sur $[0; +\infty[$ à valeurs dans]0; 5]. Or $2, 5 \in]0; 5]$ donc d'après le corollaire du théorème des valeurs intermédiaires, l'équation Q(t) = 40 admet une solution unique t_0 dans l'intervalle $[0; +\infty[$.
 - On localise t_0 à l'unité : $1 < t_0 < 2$.
 - On localise t_0 à 10^{-1} : $1, 9 < t_0 < 2$.
 - On localise t_0 à $10^{-1} : 1,98 < t_0 < 1,99$.

On prend $t_0 \simeq 1,98$ par exemple (1,99 fonctionne aussi). Or 0,98 heure est égale à environ 59 minutes donc t_0 est environ égale à 1 heure et 59 minutes.