Hodge Theory: Final Exam

Bojin Han*

July 19, 2024

Instruction: You are allowed to use the course materials and all references during the exam. Discussion with other students is also allowed; however, the writing up of your solutions should be done by yourself. Please submit your solutions digitally via email (M.Shen@uva.nl) before the deadline 31 July, 23:00 (Beijing time).

Problem 1.

- (1) Compute $H^p(\mathbb{P}^2_{\mathbb{C}}, \mathcal{O}_{\mathbb{P}^2}(d))$ using Čech cohomology, where $d \in \mathbb{Z}$.
- (2) Compute $\dim_{\mathbb{C}} H^q(\mathbb{P}^n_{\mathbb{C}}, \Omega^p_{\mathbb{P}^n/\mathbb{C}})$, for all $p, q \geq 0$.
- (3) Let $X \subset \mathbb{P}^n_{\mathbb{C}}$ be a smooth hypersurface of degree d. Compute the dimension of $\mathrm{H}^i(X,\mathcal{O}_X)$ for $i=0,1,\ldots,n-1$.

Solution.

(1) We have¹

$$\mathbf{H}^p(\mathbb{P}^n_{\mathbb{C}},\mathcal{O}_{\mathbb{P}^n_{\mathbb{C}}}(d)) = \begin{cases} (\mathbb{C}[T_0,\ldots,T_n])_d & \text{if} & p=0,\ d\geq 0; \\ \left(\frac{1}{T_0\ldots T_n}\mathbb{C}[\frac{1}{T_0},\ldots,\frac{1}{T_n}]\right)_d & \text{if} & p=n,\ d<0; \\ 0 & \text{if} & p,n,d \text{ not as above.} \end{cases}$$

Firstly, we use the standard affine covering of $\mathbb{P}^n_{\mathbb{C}}$ as $\mathcal{U}: \mathbb{P}^n_{\mathbb{C}} = \bigcup D_+(T_i)$. As shown in class, the intersections of $D_+(T_i)$ are still affine spaces, therefore, we may use the ordered Čech complex.

Using the usual ordering $\{0, \ldots, n\}$, the complex has terms

$$\check{\mathscr{E}}^p_{ord}(\mathscr{U},\mathscr{O}_{\mathbb{P}^n_{\mathbb{C}}}(d)) = \bigoplus_{i_0 < \dots < i_p} \left(\mathbb{C} \left[T_0, \dots, T_n, \frac{1}{T_{i_0} \dots T_{i_p}} \right] \right)_d$$

with $\partial(s)_{i_0...i_{p+1}} = \sum_{j=0}^{p+1} (-1)^j s_{i_0...\hat{i}_j...i_{p+1}}$ as the boundary map. Whence

$$\check{\mathscr{E}}_{ord}^0 \to \dots \to \check{\mathscr{E}}_{ord}^p \xrightarrow{\partial} \check{\mathscr{E}}_{ord}^{p+1} \to \dots$$

We may use vector $\alpha \in \mathbb{Z}^{n+1}$ to denote a multiindex, and $T^{\alpha} := T_0^{\alpha_0} T_2^{\alpha_2} \dots T_n^{\alpha_n}$. Taking $N(\alpha) := \{i \in \{0, \dots, n\} \mid \alpha_i < 0\}, \sum \alpha := \sum_{i=1}^n \alpha_i$. The complex thus has the decomposition

^{*}PB22000258, william_han@mail.ustc.edu.cn

 $^{^1\}mathrm{See}$ also [Har13, Theorem 5.1], [Ara12, Theorem 16.2.1] or [Sta18, Tag 01XT]

as follows

$$\check{\mathscr{C}}_{ord}^{p}(\mathscr{U}, \mathscr{O}_{\mathbb{P}^{n}_{\mathbb{C}}}(d)) = \bigoplus_{i_{0} < \dots < i_{p}} \left(\mathbb{C} \left[T_{0}, \dots, T_{n}, \frac{1}{T_{i_{0}} \dots T_{i_{p}}} \right] \right)_{d}$$

$$= \bigoplus_{i_{0} < \dots < i_{p}, N(\alpha) \subset \{0, \dots, n\}, \sum \alpha = d} \mathbb{C}T^{\alpha}$$

$$= : \bigoplus_{i_{0} < \dots < i_{p}, N(\alpha) \subset \{0, \dots, n\}, \sum \alpha = d} \check{\mathscr{C}}^{p}(\alpha).$$

We hence need to calculate the cohomology of the decomposed pieces $\check{\mathscr{C}}^p(\alpha)$. The differential is the same, as

$$\check{\mathscr{C}}^0(\alpha) \to \dots \to \check{\mathscr{C}}^p(\alpha) \xrightarrow{\partial} \check{\mathscr{C}}^{p+1}(\alpha) \dots$$

If $N(\alpha) = \{0, ..., n\}$, which implies $\sum \alpha \le n$, the complex will be

$$0 \to \ldots \to 0 \to \check{\mathscr{C}}^n(\alpha) = \mathbb{C}T^\alpha \to 0.$$

Therefore, the cohomology is

$$\mathbf{H}^{p}\left(\check{\mathscr{C}}^{-}(\alpha)\right) = \begin{cases} \mathbb{C}T^{\alpha} = \left(\frac{1}{T_{0}\dots T_{n}}\mathbb{C}\left[\frac{1}{T_{0}},\dots,\frac{1}{T_{n}}\right]\right)_{d}, & p = n; \\ 0, & \text{else.} \end{cases}$$

Noticing we can just suppose $\sum \alpha = d < 0$, for $\left(\frac{1}{T_0...T_n}\mathbb{C}[\frac{1}{T_0},\ldots,\frac{1}{T_n}]\right)_d = 0$, if d > -n.

If $N(\alpha) = \emptyset$, we may consider the Čech complex of $\operatorname{Spec} \mathbb{C} =: \mathbb{A}_{\mathbb{C}}$, with covering of n+1 sheets $\mathscr{V} : \bigcup_{i \in \{0, \dots, n+1\}} \mathbb{A}_{\mathbb{C}}$. We can show the cohomology of this covering is exactly the one of $\check{\mathscr{C}}^{-}(-)$ by sending the summand of $\check{\mathscr{C}}^{p}(\mathscr{V})_{i_{0},\dots i_{p}}$ to certain $\check{\mathscr{C}}^{p}(\alpha)^{2}$. Therefore, they have exactly the same cohomology as follows

$$\mathbf{H}^{p}\left(\check{\mathscr{E}}^{-}(\alpha)\right) = \begin{cases} \mathbb{C}T^{\alpha}, & p = 0; \\ 0, & \text{else.} \end{cases}$$

Notice that this case implies $\sum \alpha = d \ge 0$.

* * *

If $N(\alpha)$ is neither empty nor equal to $\{0, \ldots, n\}$, we may show this complex is acyclic; hence the cohomology is zero. We will show it by defining a homotopy between identity and zero as follows³. Take $i \notin N(\alpha)$

$$h(s)_{i_0,\dots,i_p} = \begin{cases} 0 & p \notin \{0,\dots,n-1\} \\ 0 & i \in \{i_0,\dots,i_p\}; \\ s_{i,i_0,\dots,i_p} & i < i_0; \\ (-1)^q s_{i_0,\dots,i_{q-1},i,i_q,\dots,i_p} & i_{q-1} < i < i_q; \\ (-1)^{p+1} s_{i_0,\dots,i_p,i} & i_p < i. \end{cases}$$

One can show it's a homotopy between id and 0.

 $^{^2}$ This is a bit ambiguous, for closer discussion, see the section Čech cohomology of [Sta18]

 $^{^3\}mathrm{Very}$ classic proof with topological intuition.

$$\check{\mathcal{E}}^{p-1}(\alpha) \xrightarrow{\partial} \check{\mathcal{E}}^{p}(\alpha) \xrightarrow{\partial} \check{\mathcal{E}}^{p+1}(\alpha)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Therefore, the only two contributors of the cohomology are as above.

(2) Use the Euler sequence with maximal wedge product⁴

$$0 \to \Omega_{\mathbb{p}}^p \to \mathcal{O}(-p)^{\binom{n+1}{p}} \to \Omega_{\mathbb{p}}^{p-1}.$$

Hence, using 1, we have $H^q\left(\mathbb{P}^n_{\mathbb{C}},\Omega^p\right)=H^{q-1}\left(\mathbb{P}^n_{\mathbb{C}},\Omega^{p-1}\right)$. Thus use 1 again,

$$\mathbf{H}^q\left(\mathbb{P}^n_{\mathbb{C}},\Omega^p_{\mathbb{P}}\right) = \begin{cases} \mathbb{C}, & p=q \leq n \\ 0, & \text{otherwise} \end{cases}$$

(3) We have an exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}^n}(-d) \to \mathcal{O}_{\mathbb{P}^n} \to \mathcal{O}_X \to 0$$

where the left map is multiplication by f. Then one can take cohomology of this to compute $H^i(X, \mathcal{O}_X)$. We get

$$\cdots \to \operatorname{H}^i(\mathcal{O}_{\mathbb{P}^n}(-d)) \to \operatorname{H}^i(\mathcal{O}_{\mathbb{P}^n}) \to \operatorname{H}^i(\mathcal{O}_X) \to \operatorname{H}^{i+1}(\mathcal{O}_{\mathbb{P}^n}(-d)) \to \cdots$$

If 0 < i < n, then by 1.1, we have $\dim H^i(\mathcal{O}_{\mathbb{P}^n}(l)) = 0$, so we get $\dim H^i(\mathcal{O}_X(k)) = 0$ for 0 < i < n - 1. It remains to compute $H^0(\mathcal{O}_X)$ and $H^{n-1}(\mathcal{O}_X)$.

* * *

Since $H^0(X, \mathcal{O}_X(-d)) = H^1(X, \mathcal{O}_X(-d)) = 0$, We have

$$0 \to \mathrm{H}^0(\mathcal{O}_{\mathbb{P}^n}) \to \mathrm{H}^0(\mathcal{O}_X) \to 0$$

so dim $\mathrm{H}^0(\mathcal{O}_X)=1.$

Moreover, we have

$$0 \to \mathrm{H}^0(\mathcal{O}_{\mathbb{P}^n}) \to \mathrm{H}^0(\mathcal{O}_X) \to 0$$

so $H^0(\mathcal{O}_X) = 1$. But twisting will give

$$0 \to \mathrm{H}^0(\mathcal{O}_{\mathbb{P}^n}(-d+k)) \to \mathrm{H}^0(\mathcal{O}_{\mathbb{P}^n}(k)) \to \mathrm{H}^0(\mathcal{O}_X(k)) \to 0$$

So for k < d, we have $H^0(\mathcal{O}_X(k)) \simeq H^0(\mathcal{O}_{\mathbb{P}^n}(k))$.

* * *

To compute dim $H^{n-1}(X, \mathcal{O}_X)$, we can use Serre duality, dim $H^{n-1}(X, \mathcal{O}_X) = \dim H^0(X, \mathcal{O}_X \otimes \omega_X) = \dim H^0(X, \mathcal{O}_X \otimes \omega_X)$, and then adjunction formula,

$$\begin{split} \dim \mathrm{H}^0(X,\mathcal{O}_X\otimes\omega_X) &= \dim \mathrm{H}^0(X,\mathcal{O}_X\otimes\mathcal{O}(-n-1+d)) \\ &= \dim \mathrm{H}^0(\mathbb{P}^n_\mathbb{C},\mathcal{O}_{\mathbb{P}^n}(-n-1+d)) \\ &= C^n_{d-1} = \begin{pmatrix} d-1\\ n \end{pmatrix}, \end{split}$$

which has been calculated in 1.1^5 .

⁴For detailed calculation, see [Ara12, Proposition 17.1.4].

⁵If d-1 < 0 or n > d-1, it's defined to be zero.

* * *

The isomorphism $\mathrm{H}^0(X,\mathcal{O}_X\otimes\mathcal{O}(-n-1+d))=\mathrm{H}^0(\mathbb{P}^n_{\mathbb{C}},\mathcal{O}_{\mathbb{P}^n}(-n-1+d))$ is nothing but the similar proof as above.⁶

Problem 2. Let $X \subseteq \mathbb{P}^4_{\mathbb{C}}$ be a smooth hypersurface of degree 3.

- (1) Compute the Betti numbers $b_i = \dim_{\mathbb{Q}} H^i(X, \mathbb{Q})$.
- (2) Show that the Hodge structure of $H^3(X,\mathbb{Z})$ is given by a Hodge decomposition of the form

$$\mathrm{H}^3(X,\mathbb{Z})\otimes\mathbb{C}=\mathrm{H}^{1,2}(X)\oplus\mathrm{H}^{2,1}(X).$$

(3) Let $\Lambda = \mathrm{H}^3(X,\mathbb{Z})$ and $V = \mathrm{H}^{1,2}(X)$. Show that the inclusion $\Lambda \subset V$ induced by

$$H^3(X,\mathbb{Z}) \subset H^3(X,\mathbb{C}) \longrightarrow H^{1,2}(X)$$

defines a complex torus $A = V/\Lambda$. Show that A can be polarized via the intersection bilinear form (with the correct sign) on $H^3(X, \mathbb{Z})$.

(4) Now assume that $Y \subseteq \mathbb{P}^4_{\mathbb{C}}$ is a smooth projective hypersurface of degree 5. Let $F^{\bullet}H^3(X,\mathbb{C})$ be the Hodge filtration and let $V = H^3(X,\mathbb{C})/F^2H^3(X,\mathbb{C})$. The natural map $\Lambda := H^3(X,\mathbb{Z}) \longrightarrow V$ gives rise to a lattice in V. What goes wrong if one uses the same method as above to polarize V/Λ ?

Solution.

(1) By Lefschetz hyperplane theorem, we may deduce $H^i(X, \mathbb{Q}) \simeq H^i(\mathbb{P}^3_{\mathbb{C}}, \mathbb{Q})$ for all $i \neq 3$. Using cell complex, we may see

$$\dim \mathbf{H}^{i}\left(\mathbb{P}^{3}_{\mathbb{C}}, \mathbb{Q}\right) = \begin{cases} 1, & i \leq 6 \text{ is even;} \\ 0, & i \leq 6 \text{ is odd;} \\ 0, & i > 6; \end{cases}$$

Therefore,

$$b_i = \begin{cases} 1, & i \neq 3 & \land & i \leq 6 \text{ is even;} \\ 0, & i \neq 3 & \land & i \leq 6 \text{ is odd;} \\ 0, & i \neq 3 & \land & i > 6; \\ ?, & i = 3 \end{cases}$$

We only need to deduce b_3 as follows.

* * *

As is known in our class⁷, the Euler characteristic number of the complex projective hypersurface $c_3(X) = \chi(X) = \sum_i (-1)^i b_i$; and⁸ $c(X) = \frac{(1+h)^{4+1}}{1+3h}$. Consequently,

$$c_3(X) = \left(\frac{\left(1+h\right)^{4+1}}{1+3h}\right)_{\text{deg}=3} = \left(\left(1+5h+10h^2+10h^3\right)\left(1-3h+9h^2-27h^3\right)\right)_{\text{deg}=3} = -2h^3.$$

Using $h^3 = \deg X = 3$, we deduce $\chi(X) = c_3(X) = -6$. Thus $b_3 = 4 - c_3 = 4 + 6 = 10^9$.

⁶Another proof may be the remark after [Ara12, Corollary 17.3.3]

 $^{^7}$ Theorem 4.5.12

⁸Example 4.5.10, (4)

 $^{^9\}mathrm{Moreover},$ the middle hodge numbers are 0 5 5 0.

- (2) We only need to show that $H^{3,0}(X) = H^3(X, \mathcal{O}_X) = 0$, which has been shown in problem 1.3.
- (3) Since $\dim_{\mathbb{R}} H^3(X,\mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{R} = b_3 = 10 = h^{1,2} + h^{2,1} = 2h^{1,2} = \dim_{\mathbb{R}} H^{1,2}(X)$. By using $\bar{\alpha}^{p,q} = \alpha^{q,p}$, we may see $H^3(X,\mathbb{Z})$ can be included in $H^{1,2}(X)$. Therefore, $H^3(X,\mathbb{Z})$ is necessarily a lattice.

* * *

Following the example 3.3.6, one wants to show there exists a positive definite Hermitian form $H: H^{1,2}(X) \times H^{1,2}(X) \to \mathbb{C}$, such that the imaginary part of H restricted to $H^3(X,\mathbb{Z}) \times H^3(X,\mathbb{Z})$ is precisely

$$E: H^3(X,\mathbb{Z}) \times H^3(X,\mathbb{Z}) \to \mathbb{Z}: (\alpha,\beta) \mapsto \int_X \alpha \cup \beta.$$

Taking $\omega, \tau \in \mathrm{H}^{1,2}(X)$, $H(\omega, \tau) := 2\mathrm{i} \int_X \omega \wedge \bar{\tau}$ is indeed a positive definite Hermitian form on $\mathrm{H}^{1,2}(X)$, since there locally exist $f_I \in \mathscr{C}^{\infty}$, such that $\omega = \sum f_I \mathrm{d} z^{I_1} \wedge \mathrm{d} \bar{z}^{I_2}$. Whence $\int_X \omega \wedge \bar{\omega} = \int_X \sum |f_I|^2 (-1) \mathrm{d} z^{I_1} \wedge \mathrm{d} \bar{z}^{I_1} \wedge z^{I_2} \mathrm{d} \bar{z}^{I_2} = -(-2\mathrm{i})^3 \int_X \sum |f_I|^2 = -8\mathrm{i} \int_X \sum |f_I|^2$.

* *

Now let $\alpha = \alpha^{1,2} + \alpha^{2,1}$, $\beta = \beta^{1,2} + \beta^{2,1} \in H^3(X, \mathbb{Z})$. We have

$$\mathfrak{I}H(\alpha^{1,2},\beta^{1,2}) = \mathfrak{I}2i \int_{X} \alpha^{1,2} \wedge \overline{\beta^{1,2}}$$

$$= \frac{1}{2i} \left(2i \int_{X} \alpha^{1,2} \wedge \beta^{2,1} + 2i \int_{X} \alpha^{2,1} \wedge \beta^{1,2} \right)$$

$$= \int_{X} \alpha^{1,2} \wedge \beta^{2,1} + \int_{X} \alpha^{2,1} \wedge \beta^{1,2}.$$

Meanwhile, since $E(\alpha, \beta) = \int_X \alpha \wedge \beta = \int_X \alpha^{1,2} \wedge \beta^{2,1} + \int_X \alpha^{2,1} \wedge \beta^{1,2}$, we deduce A can be polarized.

(4) In this case, we have $\dim H^{3,0}(X) = \dim H^3(X, \mathcal{O}_X) = \dim H^0(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(-4-1+5)) \neq 0$. Therefore, things turn difficult, since the Hermitian form H as below have different sign when calculation over $H^{2,1}(X)$ and $H^{3,0}(X)$. Thence, we cannot say H is positive definite. ¹⁰

Problem 3. Let V be a complex vector space of dimension g and $\Lambda \subset V$ a lattice in V. Set $X = V/\Lambda$.

- (1) Show that the following are equivalent to each other.
 - (a) There is a polarization on the Hodge structure $V_{\mathbb{Z}} := H^1(X, \mathbb{Z})$.
 - (b) There is a positive definite Hermitian form $H: V \times V \longrightarrow \mathbb{C}$ whose imaginary part is integral on $\Lambda \times \Lambda$.
 - (c) There is a divisor $\Theta \subset X$ which is ample.
- (2) Assume that X is polarizable. Show that $X^{\vee} = \overline{V}^*/\Lambda^*$ is also polarizable.
- (3) Assume that $\Lambda' \subset V$ is another lattice such that $\Lambda_{\mathbb{Q}} = \Lambda'_{\mathbb{Q}}$. Show that $X = V/\Lambda$ is algebraic if and only if $X' = V/\Lambda'$ is algebraic.

Solution.

(1) As a polarization on $V_{\mathbb{Z}}$ naturally gives out a positive definite Hermitian form H with $\mathfrak{I}H\colon \mathrm{H}^1(X,\mathbb{Z})\times\mathrm{H}^1(X,\mathbb{Z})\to\mathbb{Z}^{11}$, we deduce (a) \Longrightarrow (b).

 $^{^{10}}$ This variety is known as quintic threefold, with middle Hodge number 1 101 101 1.

¹¹Here, \mathfrak{I} is the symbol for taking the imaginary part.

* * *

Since $X = V/\Lambda$ is a complex torus, we have seen in theorem 3.3.3 that

- (b) There is a positive definite Hermitian form $H: V \times V \longrightarrow \mathbb{C}$ whose imaginary part is integral on $\Lambda \times \Lambda$;
- (b') Let α be a multiplicator of H, then the space of global sections of $\mathcal{L}(H,\alpha)^{\otimes n}$ defines an embedding $X \hookrightarrow (\mathcal{L}(H,\alpha)^{\otimes n})^{\vee}$

are equivalent. Moreover, (b') equals to $\mathcal{L} := \mathcal{L}(H, \alpha)$ is an ample line bundle. When given a section α , we may choose $\Theta := \{\alpha = 0\}$ to be the divisor, which is definitely an ample divisor. Consequently, we deduce (b) \implies (c).

* * *

If there exists an ample divisor X, then the associated line bundle L is ample. We may thus suppose there exist n such that $\varphi_{L^n} \colon X \to |L|^\vee$ is an embedding. Then by theorem 3.3.3 we may notice $c_1(L)$ is positive definite. Therefore, by definition there is a polarization. This gives out (c) \Longrightarrow (a).

(2) Let's first define the concept of isogeny. An isogeny of a complex torus X to a complex torus X' is by definition a surjective homomorphism $X \to X'$ with finite kernel. Obviously, a homomorphism $X \to X'$ is an isogeny if and only if it is surjective and dim $X = \dim X'$. It is also worth noticing that if there exists an isogeny from X to Y, there also exist an isogeny from Y to X. So it makes sense to say X and Y are isogenous.

* * *

We may deduce an isomorphism between X^{\vee} and $\operatorname{Pic}^{0}(X)$, for there exists a canonical homomorphism $\tau \colon \bar{V}^{*} \to \operatorname{Hom}(\Lambda, \mathbb{C}_{1}^{*}) \simeq \operatorname{Pic}^{0} \colon l \mapsto \exp(2\pi \mathrm{i}(l \mid -))$ with kernel $\Lambda^{*}.^{12}$ Given a line bundle L over X, we may define the homomorphism $\phi_{L} \colon X \to X^{\vee} \colon x \mapsto t_{x}^{*}L \otimes L^{-1}$, where t_{x} is the translation map $p \mapsto x + p$. This is well-defined, recalling Pic^{0} is the kernel of c_{1} .

Actually, ϕ_L is isogeny iff the Hermitian form $c_1(L)$ is nondegenerate. Thence, $c_1(L)$ is nondegenerate iff ker ϕ_L is finite. For calculation reasons, we may notice that the following diagram is commute.

$$\begin{array}{c}
V \xrightarrow{\phi_H} \bar{V}^* \\
\downarrow \\
X \xrightarrow{\tau \circ \phi_L} X^\vee
\end{array}$$

where $\phi_H: V \to \bar{V}^*: v \mapsto H(v, -), H$ is the Hermitian form such that $\mathfrak{I}H = c_1(L)$.

* * *

If a complex torus is isogenous to a complex Abelian variety, then this complex torus is a complex Abelian variety. The proof is simply noticing if $f: Y \to X$ is isogeny, then we may transplant the polarization L over X to f^*L over Y, since $\ker f$ is finite and $\ker \phi_{f^*L} = \ker$. Therefore, if X is an Abelian variety, X^{\vee} is the same.¹³

(3) We only need to show there exists a polarization over X'. We may take $E \in \bigwedge \Lambda^*$ to be an alternating bilinear form, H to be a positive definite Hermitian form as a polarization

 $^{^{12}}$ We use Theorem 3.2.15 (the Appell-Humbert) here.

¹³Some parts of this solution can be found at [LB13, Section 2.4 and 4.1].

of X. Since $\Lambda \otimes_{\mathbb{Z}} \mathbb{Q} = \Lambda' \otimes_{\mathbb{Z}} \mathbb{Q}$, we may choose the bases of Λ and Λ' as $\{e_1, \ldots, e_g\}$ and $\{e'_1, \ldots, e'_g\}$. And a diagonal matrix $M = \operatorname{diag}\left(\left|\frac{e_1}{e'_1}\right|, \ldots, \left|\frac{e_g}{e'_g}\right|\right)$. Then we may define E' as an alternating bilinear form as E'(-, -) := E(M-, M-). It's easy to see that with H'(M-, M-) is a polarization.

Problem 4. Let $S \subseteq \mathbb{P}^4_{\mathbb{C}}$ be the intersection of a hyperplane and a degree 4 hypersurface. Assume that S is smooth. Let X be the blow-up of $\mathbb{P}^4_{\mathbb{C}}$ with center S. Compute all the Hodge numbers $h^{p,q}(X)$.

Solution.

Above all, we know that $\dim_{\mathbb{C}} X = 4$, therefore $\dim H^p(X,\mathbb{C}) = 0$, for all p > 8. And, in these circumstances, we have isomorphism not only on $H^i(X,\mathbb{Z})$, but also on the Hodge classes $H^{p,q}(X)^{14}$, following we use \simeq in the means of isomorphism of Hodge structure.

We have the following diagram.

$$E \stackrel{j}{\longleftrightarrow} X$$

$$\downarrow^{\eta} \qquad \downarrow^{\rho}$$

$$S \stackrel{}{\longleftrightarrow} \mathbb{P}^{4}_{\mathbb{C}}$$

By using the blow up formula (Proposition 4.5.7 and [Voi03, Theorem 1.29]), we have

$$H^{k}(X) = H^{k}(\mathbb{P}^{4}_{\mathbb{C}}) \oplus j_{*} \Big(\eta^{*} H^{k-2}(S) \oplus \xi \eta^{*} H^{k-4}(S) \oplus \ldots \oplus \xi^{c-1} \eta^{*} H^{k-2c}(S) \Big),$$

$$H^{p,q}(X) = H^{p,q}(\mathbb{P}^{4}_{\mathbb{C}}) \oplus j_{*} \Big(\eta^{*} H^{p-1,q-1}(S) \oplus \xi \eta^{*} H^{p-2,q-2}(S) \oplus \ldots \oplus \xi^{c-1} \eta^{*} H^{p-c,q-c}(S) \Big).$$

where ξ is $c_1(\mathcal{O}_E(1))\in \mathrm{H}^2\left(E,\mathbb{Z}\right)$ and $c=\dim \mathbb{P}_{\mathbb{C}}^4-\dim S-1=1.$

Accordingly $H^{p,q}(X) = H^{p,q}(\mathbb{P}^4_{\mathbb{C}}) \oplus j_*(\eta^* H^{p-1,q-1}(S))$, which means $h^{p,q}(X) = h^{p,q}(\mathbb{P}^4_{\mathbb{C}}) + h^{p-1,q-1}(S)$. Since $\dim_{\mathbb{C}} S = 2$, we only need to calculate the hodge number $h^{p,q}(S)$, with $p+q \leq 4$. By duality, one only need $p+q \leq 2$.

* * *

Supposing $S = H \cap Y$, with H the hyperplane and Y the hypersurface and dim Y = 3, we may firstly calculate $H^p(S)$ by using Lefschetz hyperplane theorem. Therefore, we have the following diamond

We only need to calculate the middle Hodge number $h^{0,2}$, $h^{1,1}$ and $h^{2,0}$. Since, supposing $S \stackrel{j'}{\hookrightarrow} Y$, we have

$$0 \to \mathcal{O}_{\mathbb{P}}(-4) \upharpoonright_{Y} \to \mathcal{O}_{Y} \to j'_{*}\mathcal{O}_{S} \to 0.$$

It induces the long exact sequence as follows:

¹⁴[Voi03, Theorem 1.29]

$$0 \longrightarrow \mathrm{H}^1(\mathcal{O}_{\mathbb{P}}(-4) \upharpoonright_Y) = 0 \longrightarrow \mathrm{H}^1(\mathcal{O}_Y) \longrightarrow \mathrm{H}^1(j'_*\mathcal{O}_S) \xrightarrow[]{\mathrm{limiting}} \bullet$$

$$0 \longrightarrow H^{1}(\mathcal{O}_{\mathbb{P}}(-4) \upharpoonright_{Y}) = 0 \longrightarrow H^{1}(\mathcal{O}_{Y}) \longrightarrow H^{1}(j_{*}'\mathcal{O}_{S}) \xrightarrow{\qquad \qquad } \bullet$$

$$\bullet \xrightarrow{\text{min}} H^{2}(\mathcal{O}_{\mathbb{P}}(-4) \upharpoonright_{Y}) = 0 \longrightarrow H^{2}(\mathcal{O}_{Y}) \longrightarrow H^{2}(\mathcal{O}_{Y}) \xrightarrow{\qquad \qquad } \bullet$$

$$\bullet \xrightarrow{\text{min}} H^{3}(\mathcal{O}_{\mathbb{P}}(-4) \upharpoonright_{Y}) = 0 \longrightarrow H^{3}(\mathcal{O}_{Y}) \longrightarrow H^{3}(\mathcal{O}_{Y}) \longrightarrow \dots$$

•
$$H^3(\mathcal{O}_Y) \longrightarrow H^3(\mathcal{O}_Y) \longrightarrow H^3(\mathcal{O}_Y) \longrightarrow H^3(\mathcal{O}_Y) \longrightarrow \dots$$

Whence $h^{0,2}(S) = h^{2,0}(S) = \dim H^2(j'_*\mathcal{O}_S) = \dim H^2(\mathcal{O}_Y) = 0$, by vanishing theorems. Thus $h^{1,1}(S) = b_2$, the Betti number. By using the similar argument as solution , say $\chi(S) = b_0 - b_1 + b_2$ $b_2 - b_3 + b_4$, we deduce $b_2 = \chi(S) - 2$. Hence, we would like to calculate $\chi(S) = c_2(S)$.

Moreover, as the method of normal bundle shown in class, we use

$$0 \to \mathcal{T}_S \to \mathcal{T}_{\mathbb{P}} \upharpoonright_S \to \mathcal{N}_{S/\mathbb{P}} \to 0$$

and $\mathcal{N}_{S/\mathbb{P}} \simeq \mathcal{N}_{Y/\mathbb{P}} \oplus \mathcal{N}_{S/Y} \simeq \mathcal{O}_Y(4) \oplus \mathcal{O}_Y(1)$, to deduce the Chern class is nothing but

$$c(S) = \frac{c(\mathcal{T}_{\mathbb{P}})}{c(\mathcal{O}_{Y}(4) \oplus \mathcal{O}_{Y}(1))} = \frac{(1+h)^{4+1}}{(1+h)(1+4h)},$$

where $h \in H^2(S, \mathbb{Z})$ is the restriction of the hyperplane class to S.

It follows that $c_2(S) = 6h^2 = 6 \times 4 = 24$. Thus $c_2(S) = 22$.

Whence the diamond of S is

Hence the diamond of X is

Problem 5. Let $\tau_1 = i$ and $\tau_2 = \frac{-1+\sqrt{3}i}{2}$. Let $E_1 = E_{\tau_1}$ and $E_2 = E_{\tau_2}$.

(1) Compute explicitly the Mumford-Tate group of E_1 .

- (2) Find all homomorphisms $f: E_1 \longrightarrow E_2$.
- (3) Show that there is a nonzero homomorphism between two CM elliptic curves if and only if their Mumford-Tate groups are isomorphic.

Solution.

- (1) Since $i = \sqrt{-1}$ is imaginary quadratic, we have in subsection 5.2.5 the Mumford-Tate group of E_1 is $\mathbb{Q}(i)^{\times} = \operatorname{Spec}\left(\mathbb{Q}\left[x,y,\frac{1}{x^2-y^2}\right]\right)$.

 (2) There exists a bijection between all homomorphisms f between E_1 and E_2 and all \mathbb{C} -linear
- (2) There exists a bijection between all homomorphisms f between E_1 and E_2 and all \mathbb{C} -linear endomorphism F of \mathbb{C} with $F(\tau_1) \in \mathbb{Z}[\tau_2]$. It's the same as choosing an arbitrary complex number α such that $\alpha \in \mathbb{Z}[\tau_2]$ and $\alpha i \in \mathbb{Z}[\tau_2]$. As we know, there does not exist such a homomorphism.
- (3) Take $E_3 := E_{\tau_3}$, $E_4 := E_{\tau_4}$ be two CM elliptic curves, with $\sqrt{-d_3} = \tau_3$ and $\sqrt{-d_4} = \tau_4$, where $d_3, d_4 \in \mathbb{Z}_{>0}$. As we showed in 1, we may deduce MT $(E_3) = \mathbb{Q}(\tau_3)^{\times}$ and MT $(E_4) = \mathbb{Q}(\tau_3)^{\times}$. As shown in 2, a homomorphism between E_3 and E_4 is equal to a complex number $\alpha \in \mathbb{Z}[\tau_4]$ such that $\alpha \tau_3 \in \mathbb{Z}[\tau_4]$. Moreover, in such case, α must be real or purely imaginary. We may suppose α is real. Then since $\alpha \tau_3 \in \mathbb{Z}\tau_4$, we have $\alpha \in \mathbb{Q}$.

* * *

Take $\tau_4/\tau_3 = \mu$. If such $\alpha \in \mathbb{R}$ exists, then $\sqrt{d_4/d_3} = \mu = \alpha \in \mathbb{Q}$ and we will have a homomorphism of group between $\mathbb{Z}[\tau_3]$ and $\mathbb{Z}[\tau_4]$.

We have the following commutative diagram,

$$y \longmapsto y' = \mu y$$

$$\mathbb{Q}[x, y, z] \xrightarrow{t} \mathbb{Q}[x', y', z']$$

$$\underset{\text{ev}_3}{\text{ev}_4} \qquad \qquad \underset{\text{ev}_4}{\text{ev}_4}$$

$$\mathbb{Q}\left[x, y, \frac{1}{x^2 + (\tau_3 y)^2}\right] \xrightarrow{\exists} \mathbb{Q}\left[x', y', \frac{1}{x'^2 + (\tau_4 y')^2}\right]$$

Therefore there exists a homomorphism of \mathbb{Q} -group from E_4 to E_3 , as the functority of Spec. By using μ^{-1} , we have the inverse homomorphism from E_3 to E_4 .

* * *

If there is an isomorphism between two MT groups, it means the existence of ring homomorphism

$$t' : \mathbb{Q}\left[x, y, \frac{1}{x^2 + (\tau_3 y)^2}\right] \to \mathbb{Q}\left[x', y', \frac{1}{x'^2 + (\tau_4 y')^2}\right].$$

Considering the image of x and y under t', we have $\frac{1}{t'(x)-d_4t'(y)^2}=\frac{1}{t'(x)-t'(\tau_3y)^2}$. It follows that $-d_4t'(y)^2\equiv t'\big(\tau_3^2\big)t'(y)^2$. Since t' is isomorphism, $t'(1)^2\tau_3^2=t'\big(\tau_3^2\big)\equiv -d_4=\tau_4^2$. Therefore, $(\tau_4/\tau_3)^2=t'(1)^2\in\mathbb{Q}^2$. Take $t'(1)=:\alpha$, then, α will introduce a homomorphism of elliptic curves.

Thank you for reading. 15

¹⁵and also for the splendid class!

REFERENCE 10

Reference

- [Ara12] Donu Arapura. Algebraic geometry over the complex numbers. Springer, 2012.
- [Har13] Robin Hartshorne. Algebraic geometry, volume 52. Springer Science & Business Media, 2013.
- [LB13] Herbert Lange and Christina Birkenhake. <u>Complex abelian varieties</u>, volume 302. Springer Science & Business Media, 2013.
- [Sta18] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2018.
- [Voi03] Claire Voisin. <u>Hodge Theory and Complex Algebraic Geometry II: Volume 2</u>, volume 77. Cambridge University Press, 2003.