Tema 1:

Fundamentos de diseño y evaluación de computadores

Departament d'Arquitectura de Computadors

Facultat d'Informàtica de Barcelona

Universitat Politècnica de Catalunya

"I think there's a world market for about 5 computers."

(Thomas J. Watson, Chairman of the Board, IBM, circa 1943)

"In the future, computers may weigh no more than 1.5 tonnes."

- Popular mechanics, 1949

"There is no reason for any individual to have a computer in his home." (Ken Olson, President, Digital Equipment Corporation, 1977)

Índice

- Introducción
- Coste
- Rendimiento
- Consumo
- **■** Fiabilidad

Evolución de los computadores

	CRAY 1	Lenovo T61	Iphone 5s
Año (instalación)	1976	2008	2013
СРИ	Custom (circuitos discretos)	Intel Core 2 Duo T7300 (Merom)	Apple A7
Características	Procesador vectorial Sin Cache MP SRAM	2 cores IA32 segmentado L1I (2×32KB) & L1D(2×32KB) + L2 (4MB) MMX, SSE(1,2,3,3S),EM64T,VT-x	2 Custom ARMv8-A cores L1I(2x64KB) & L1D (2x64KB) + L2 (1MB) + L3 (4MB)
Consumo	115.000 W	100 W (CPU 35W)	2 W
Dimensiones	Ø: 262,89 cm − 143,51 Alt: 195,58 − 48,26	3,0 × 34,0 × 24,0 cm	0,76 x 12,4 x 5,9 cm
Peso	5.500 Kg	2,5 Kg	0,112 Kg
Coste	8,86 millones dólares (IPC acumulado España 910,7%)	1.500€	700€
Memoria	8 MB	2 GB	1 GB
Disco	2,5 GB (1 millón \$, 1976)	120 GB (50€, abril 2010)	64 GB
Rendimiento	160 MFLOPS (pico), 50 MFLOPS sostenido	10 GFLOPS (linpack)	1 GFLOPS (linpack)
Frecuencia	80 MHz	2 GHz	1,4GHz
	Refrigerado con freón	Portátil	Pasiva

¡32años!

j5 años!

Tipos de computadores

	Empotrados	Móviles	Sobremesa	Servidor	Supercomputador
Coste del sistema	1-100.000€	100-1000€	300-2500€	10K-1M€	1M-????€
Precio CPU	0,01-100€	10-100€	50-500€	200-10.000€	200-2.000€
Puntos críticos en el diseño del sistema	Precio, consumo, rendimiento en aplicaciones específicas	Precio, consumo, rendimiento en aplicaciones específicas	Coste/rendimiento, rendimiento gráficos	Throughput, disponibilidad, escalabilidad	Rendimiento en coma flotante, capacidad almacenamiento
Aplicaciones	Automóvil, Electrodomésti cos, Lectores Blue Ray, Wearables	Teléfonos, Tabletas, PDAs, 	Portátiles, Estaciónes de trabajo, Desarrollo software, Ofimática, Ocio,	Servidor web, Bases de Datos,	Geofísica, Meteorología, Diseño de aviones,
#cores	1-2	1-4	1-8	8-10.000	1.280-3.120.000 (1)
Memoria	Mbytes	Gbytes	Gbytes	Tbytes	Pbytes
Disco	Gbytes	Gbytes	Tbytes	Pbytes	Pbytes

Tipos de computadores

Diseño	Program	Mant / gestión
CE EE TI	CE CS Físicos Biólogos 	ΤI
CE EE TI	SE CS CE	TI
CE EE	SE CS 	FP Primo informat
CE EE	SE CS CE 	
CE EE	CE SE EE	

Medidas

Hay un cierto desconcierto a la hora de utilizar los prefijos de Medida

Nombre	Símbolo	2 ^x		10 ^x		error
Kilo	К	2 ¹⁰	1024	10 ³	1000	2,4%
Mega	M	2 ²⁰	1048576	10 ⁶	1000000	4,9%
Giga	G	2 ³⁰	1073741824	10 ⁹	1000000000	7,4%
Tera	Т	2 ⁴⁰	1099511627776	10 ¹²	100000000000	10,0%
Peta	Р	2 ⁵⁰	1125899906842624	10 ¹⁵	100000000000000000000000000000000000000	12,6%
Exa	E	2 ⁶⁰	1152921504606846976	10 ¹⁸	100000000000000000000000000000000000000	15,3%
Zetta	Z	2 ⁷⁰	1180591620717411303424	10 ²¹	100000000000000000000000000000000000000	18,1%
Yotta	Υ	2 ⁸⁰	1208925819614629174706176	10 ²⁴	100000000000000000000000000000000000000	20,1%
Xenta/Xo	ra/Bronto	2 ⁹⁰	125728285239921434169442304	10 ²⁷	100000000000000000000000000000000000000	25,7%

Para los prefijos binarios existe la norma ISO/CEI, aunque no está suficientemente extendida. Por ejemplo, 2²⁰ se denomina Mebi y usa el símbolo Mi.

Problema con las medidas

No todo el mundo quiere decir lo mismo cuando utiliza la misma palabra:

- Los Hercios (Hz) se miden en potencias de 10: un procesador a 1 GigaHercio (GHz) va a 1.000.000.000 Hz.
- La velocidad de transmisión se mide en potencias de 10:
 - un MP3 stream a 128 Kb/s transmite 128.000 bits por segundo,
 - una conexión ADSL de 12 Mb/s acepta un máximo de 12.000.000 bits por segundo.
- El ancho de banda de los buses también se mide en potencias de 10
- La Memoria RAM siempre se mide en potencias de 2: 1GB de RAM es 2³⁰ bytes de RAM.
- Los discos duros (HD) utilizan potencias de 10.
 - Un HD de 30GB tiene $30 \cdot 10^9$ bytes (aproximadamente $28 \cdot 2^{30}$).
 - No es marketing, sino tradición:
 la estructura física de los discos (platos, pistas, sectores) no tiene por qué ser pot. de 2.
 - Además, el SO suele indicar el tamaño del disco en potencias de 2.

Por tanto, si compramos un portátil con 1GB de RAM y 30 GB de HD, Windows nos dirá que tiene 1GB de RAM y 28GB de disco duro.

Máquina von Neumann

John von Neumann (matemático húngaro) "First Draft of a report on the EDVAC" contract n. W-670-DRD-492 Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia, **June 1945**

Sólo aparece un autor aunque el report es resultado de múltiples horas de discusión del grupo que diseñó el ENIAC, en el que von Neumann era sólo un visitante. Prosper Eckert y John Mauchly (diseñadores principales del ENIAC) abandonaron la Moore School por este hecho.

- Memoria accesible por dirección.
- Las posiciones de memoria se pueden leer/escribir las veces que sean necesarias.
- Tanto los datos como las instrucciones se almacenan en memoria.
- No existe ninguna señal para diferenciar en memoria datos de instrucciones.
- Las instrucciones se ejecutan en secuencia.
- Existe un registro (PC) que apunta siempre a la instrucción en ejecución.
- Existen instrucciones explícitas para romper el secuenciamiento.
- Las instrucciones son imperativas, especifican cómo obtener los operandos, qué operación hay que realizar y dónde dejar el resultado.

Eniac

1946: Preliminary Discussion of the Logical Design of an Electronic Computing Instrument, Arthur W. Burks, Herman H. Goldstine y John von Neumann

EDSAC 1, 1949

Maurice Wilkes:

1^{er} computador de programa almacenado.

650 instrucciones/s

Evaluación de un sistema informático: Métricas

Coste:

- Tamaño del die (dado).
- Complejidad: esfuerzo requerido en el diseño, validación y fabricación del procesador.
- Coste ambiental y social.
- Rendimiento: Inversa del tiempo que tarda en completarse una tarea. Formas básicas de mejorar el rendimiento:
 - Jerarquía de Memoria
 - Paralelismo
 - Segmentación
- Consumo: Energía consumida por unidad de tiempo (watios). Normalmente, mayor rendimiento requiere mayor consumo.
- Fiabilidad: Tiempo entre fallos/reparaciones. Sistemas tolerantes a fallos.

¿Qué es la sostenibilidad?

Competencia transversal de AC

Coste Económico

En Méjico

Fábricas en China...

Coste Ambiental

Coste Social

Adicción a internet/móbil, estrés de adaptación, pérdida del contacto humano, derechos humanos y condiciones de trabajo en las fábricas en países del sur, ...

Coste Humano

Atentados contra la salud, la dignidad, la igualdad, la libertad, o la vida misma...

Coste de construir (huella del producto)

- Ex: Un chip de 32 MB RAM (2 gr.) [Smi08]
 - Electricidad generada por 1,6 Kg de combustibles fósiles
 - 72 gramos de productos químicos
 - 3.200 litros de agua
 - 700 gramos de nitrogeno
- Coste energético de fabricación: 41 MJ
- Consumo durante 4 años de vida: 15 MJ

Tecnología de Fabricación

- Tecnología utilizada: CMOS
- Elemento básico: el transistor

La tecnología se identifica por la longitud de la puerta del transistor medida en micrómetros (μm, 10-6 m) o nanómetros (nm, 10⁻⁹ m).

Te	cnología	Ejemplo
1971	10 μm	Intel 4004
1975	3 μm	Intel 8088
1982	1,5 μm	Intel 286
1985	1 μm	Intel 386
1989	0,8 μm	Intel 486
1994	0,6 μm	Power PC 601
1995	0,35 μm	AMD K5
1998	0,25 μm	Alpha 21264
1999	180 nm	Intel Pentium III
2000	130 nm	AMD Athlon XP
2002	90 nm	Intel Pentium 4
2006	65 nm	IBM Cell (PS3)
2008	45 nm	IBM POWER 7
2010	32 nm	Intel Westmere
2011	22 nm	Intel Ivybridge
2014	14 nm	Intel Broadwell
2016	10 nm	-

Estructura básica de un transistor

Traditional Planar Transistor 22 nm Tri-Gate Transistor

Proceso de creación de un chip

Intel
Ivybridge
22nm
(2012)

Evaluación del coste

- Factor de yield: fracción de circuitos correctos
- Coste de un circuito integrado

$$Coste de un circuito integrado = \frac{Coste del die + Coste de testeo + Coste de empaquetado y test final}{Yield final (test)}$$

Coste del die (dado)

Coste del die =
$$\frac{\text{Coste del waffer}}{\text{Dies per waffer} \times \text{Die yield}}$$

Dies per waffer (oblea)

Waffer area / die area

Dies per waffer = $\frac{\text{Areaútil}}{\text{Die area}} = \frac{\pi \times (\text{diametro/2})^2}{\text{Die area}} - \frac{\pi \times \text{diameter}}{\sqrt{2 \times \text{Die area}}} \leftarrow \text{Compensación por los "dies" incompletos de los bordes}$

Die yield

Die yield = Waffer yield
$$\times \left(1 + \frac{\text{defectos por unidad de area} \times \text{die area}}{\alpha}\right)^{-\alpha}$$

• α = medida de la complejidad, se aproxima al número de máscaras críticas

Ley de Moore

- Gordon E. Moore, cofundador de Intel (1968) junto a Robert Noyce.
- En 1965, afirmó que el número de transistores por unidad de superficie se duplicaría cada año (1).
- En 1975, modificó su afirmación, diciendo que la capacidad de integración se duplicaría cada 24 meses.
- Actualmente se esta desacelerando. ¿Ha llegado el fin de la ley de Moore?

Moore's Law – The number of transistors on integrated circuit chips (1971-2016) Our World

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are strongly linked to Moore's law.

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic

Licensed under CC-BY-SA by the author Max Roser

Ley de Moore

- La ley de Moore es realmente una observación económica y no tecnológica.
- Lo que realmente Moore afirmó es que el número de transistores (que de forma económica) se pueden integrar en un circuito se duplicaría cada cierto tiempo.

28nm: Optimal Balance of Cost and Power for 2015 Devices

Latencia y Ancho de Banda

- LATENCIA: tiempo que transcurre entre la solicitud de un dato (a memoria por ejemplo) y la disponibilidad del mismo. Se mide en ciclos o unidades de tiempo (s).
- ANCHO de BANDA: número de bytes transmitidos por unidad de tiempo. Se mide en KB/s, MB/s, GB/s (siempre potencias de 10).

	Latencia	Ancho de Banda
Memoria DDR3-1600	8,75 ns (10 ⁻⁹ s)	12,8 GB/s
Gigabit Ethernet	190 μs (10 ⁻⁶ s)	1 Gb/s
Disco Duro SATA -600	7 ms (10 ⁻³ s)	145 MB/s

Ejemplo de Latencia vs Ancho de Banda

LATENCIA

- Ping a www.unizar.es: 10 ms
- Ferrari F1 (a 300 Km/h): 3.600 s
- Camión Volvo FH16 (a 100 Km/h): 10.800 s

¿Qué método permite transportar más información por unidad de tiempo?

Ejemplo de Latencia vs Ancho de Banda

Barcelona 300 Km

LATENCIA

- Ping a www.unizar.es: 10 ms
- Ferrari F1 (a 300 Km/h): 3.600 s
- Camión Volvo FH16 (a 100 Km/h): 10.800 s

ANCHO de BANDA

- ADSL a 20 Mb/s: 2,5 MB/s
- Ferrari F1 (transportando 1 HD de 1 TB): 277,8 MB/s
- Camión Volvo FH16 (transportando 34.000 HD de 1 TB): 3,15 TB/s

Productividad vs Tiempo de respuesta

Tiempo de respuesta (wall time)

- Tiempo de usuario: 3s
- Tiempo de sistema: 1s
- Tiempo de CPU: 4s
- Tiempo de respuesta: 7s
- Throughput: 1 proceso/7 s = 0,14 procesos/segundo

Productividad (throughput) = trabajo/tiempo

Throughput = 2 procesos/9,5 s = 0,21 procesos/segundo

Rendimiento de un procesador

Métricas de Rendimiento

Rendimiento de un procesador

• Reducir el tiempo de ejecución \Rightarrow Se puede actuar en cualquiera de los 3 factores

Otras métricas de Rendimiento

- MIPS: Millones de instrucciones por segundo
- MFLOPS: Millones de operaciones en punto flotante por segundo

Comparación de Rendimientos

■ Para comparar el rendimiento de 2 computadores usaremos el tiempo de ejecución:

• Si un programa P tarda 4,5 segundos en el computador A y 2 segundos en el computador B:

Gananciæ
$$\frac{T_A}{T_B} = \frac{4.5}{2} = 2.25$$
 \Rightarrow B es 2,25 veces más rápido que A, usaremos 2,25x

También podemos usar porcentajes:

$$\left(\frac{T_A}{T_B}-1\right)\cdot 100$$

✓ Una ganancia del 125% ⇒ B es 2,25 veces más rápido.

Límites en la mejora del Rendimiento

- **Ley de Amdahl** (leed el capítulo correspondiente del H&P)
 - Expresión formal del sentido común.

$$g1 = \frac{\text{to1}}{\text{tm1}} = \frac{\text{f1} \cdot \text{To}}{\text{tm1}} \Rightarrow \text{tm1} = \frac{\text{f1} \cdot \text{To}}{\text{g1}}$$

$$Ganancia = \frac{\text{To}}{\text{Tm}} = \frac{\text{to1} + \text{to2} + \text{to3}}{\text{tm1} + \text{tm2} + \text{tm3}} = \frac{\text{f1} \cdot \text{To} + \text{f2} \cdot \text{To} + \text{f3} \cdot \text{To}}{\text{f1} \cdot \text{To}} = \frac{1}{\text{f3} \cdot \text{To}} = \frac{1}{\text{f1}} + \frac{\text{f2}}{\text{g2}} + \frac{\text{f3}}{\text{g3}}$$

Mejora del Rendimiento

Ley de Amdahl

- Caso particular: sólo mejoramos una fracción (fm)
 - ✓ Fracción 1 (1-fm): sin mejorar (g1 = 1)
 - ✓ Fracción 2 (fm): mejorada (g2 = gm > 1)
- Si aplicamos una mejora, la ganancia obtenida depende de la fracción del tiempo original donde se usa esa mejora.

Para que la ganancia obtenida sea significativa (cercana a gm) fm ha de ser prácticamente 1.

	-
	rr

gm	5	10	50	100	1.000
fm	0,75	0,88	0,979	0,984	0,9989
Ganancia	2,5	5	25	50	500

Mejora del Rendimiento

Ley de Amdahl

• Regla de diseño: Optimizar el caso frecuente.

• Ejercicio, ¿Qué ocurre cuando gm
$$\rightarrow \infty$$
? \Rightarrow Ganancia = $\frac{1}{1-\text{fm}}$

1-fm : fm	0,8:0,2	0,5 : 0,5	0,25:0,75	0,1: 0,9	0,01:0,99
Ganancia	1,25	2	4	10	100

- Pero no hay que mejorar excesivamente el caso común. Es más eficaz aumentar la fracción a la que se aplica la mejora, aunque sea con ganancias pequeñas, que obtener ganancias muy grandes sobre una fracción muy pequeña.
 - ✓ Paralelizar el 20% de un programa y ejecutarlo en 1000 CPUs: Ganancia = 1,25
 - ✓ Paralelizar el 99% de un programa y ejecutarlo en 2 CPUs: Ganancia = 1,98
- La ley de Amdahl se puede aplicar a múltiples situaciones.

Top500

Rank	Site	System	Cores	TFLOPS	Power (Kw)
1	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93,014.6	15,371
2	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5- 2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	17,808
3	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	8,209
4	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	7,890
5	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	12,660
106	Barcelona Supercomputing Center Spain	MareNostrum - iDataPlex DX360M4, Xeon E5-2670 8C 2.600GHz, Infiniband FDR IBM	48896	925	1,016

www.top500.org

Ranking de los 500 supercomputadores más potentes del mundo.

■ La lista se actualiza 2 veces al año: junio (ICS) y noviembre (SC)

■ LINPACK es la aplicación utilizada para hacer este ranking.

Datos de junio de 2016

Top 500

https://leepavelich.files.wordpress.com/2015/11/top500nov2015.png?w=640

Consumo

Potencia y Energía

- Potencia es el trabajo realizado por unidad de tiempo
- Energía = Integral de la potencia en el tiempo

Potencia es el nivel de consumo

Energía es el área (nivel·tiempo)

- La Energía se mide en unidades de trabajo: Julios
- Potencia es la energía consumida por unidad de tiempo: Watios (Julios/seg)
- Si la potencia es constante: Energía = Potencia x t
- La Potencia es importante por razones de disipación térmica
- La Energía consumida es importante por el coste (económico y/o ambiental) y/o para incrementar la duración de la batería que alimenta al computador.
 - ✓ Batería = Energía

Consumo

Energía y potencia eléctricas

Potencia = $I \times V$ = amperios × voltios = watios

Energía = $P \times t = I \times V \times t = amperios \times voltios \times segundo = watios \times segundo = julios$

■ La Potencia consumida por un circuito CMOS tiene 3 componentes:

- Conmutación: debido a la conmutación entre niveles de tensión en la carga capacitiva efectiva de todo el chip.
- Corriente de fugas: los transistores no son ideales.
- Corriente de cortocircuito: los dos transistores del inversor están activos cuando la entrada cambia de tensión.
- La potencia debida a conmutación es la más importante, aunque la de fugas representa un porcentaje cada vez mayor debido a las reducidas dimensiones de los transistores.

Consumo

Potencia y energía de conmutación:

Potencia =
$$C \times V^2 \times f$$

Energía = $C \times V^2$ [energía consumida en 1 ciclo de reloj]

siendo,

- f, frecuencia
- C, capacidad efectiva equivalente de todo el chip en 1 ciclo (faradios)
- V, tensión de alimentación

Potencia de fugas:

Potencia_{de fuga} =
$$I_{de fuga} \times V$$

Valores típicos	
Disco Duro	15 W
Bombilla de 50W	50 W
portátil	75 W
PC de sobremesa	400 W
Lavadora	1.500 W
Potencia contratada hogar estándar	5,5 KW
Ferrari F1(2004) (900 CV, 1 CV = 735 W)	661 KW
Locomotora AVE Madrid-Barcelona	8,8 MW
Central nuclear (producción)	1 GW

Métricas que relacionan Rendimiento y Potencia

Métricas de eficiencia

- Aproximaciones según el tipo de computador
 - ✓ Portátiles (bajo consumo) → 1/Energía = Duración de la batería
 - ✓ Supercomputadores (green 500) → Mflops / W

Green 500

Rank	Site	System	MFLOPS/W	Power (Kw)	Top 500
1	Advanced Center for Computing and Communication, RIKEN	ZettaScaler-1.6, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband FDR, PEZY-SCnp	6673.8	150.0	94
2	Computational Astrophysics Laboratory, RIKEN	ZettaScaler-1.6, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband FDR, PEZY-SCnp	6195.2	46.9	486
3	National Supercomputing Center in Wuxi	Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway	6051.3	15371	1
4	GSI Helmholtz Center	ASUS ESC4000 FDR/G2S, Intel Xeon E5-2690v2 10C 3GHz, Infiniband FDR, AMD FirePro S9150	5272.1	57.2	440
5	Institute of Modern Physics (IMP), Chinese Academy of Sciences	Sugon Cluster W780I, Xeon E5-2640v3 8C 2.6GHz, Infiniband QDR, NVIDIA Tesla K80	4778.5	65	446
202	Barcelona Supercomputing Center	MareNostrum - iDataPlex DX360M4, Xeon E5-2670 8C 2.600GHz, Infiniband FDR IBM	911	1016	106

www.green500.org

Datos de junio de 2016

- Ranking de los 500 supercomputadores más potentes del mundo ordenados según eficiencia energética (MFLOPS/watio).
- El supercomputador que más consume (top2 jun 2016): 17808 kW. = 17.808 MW
- Potencia de ASCO 2: 1027,2 MW (los 500 supercomputadores del top500 consumían todos juntos alrededor de 300 MW en nov 2010)

Métricas para caracterizar la fiabilidad:

- Fiabilidad: tiempo de funcionamiento continuo sin fallos
 - ✓ MTTF = Mean Time To Failure
- Tasa de fallos (Failure rate)

$$\lambda = \frac{1}{MTTF}$$

- Interrupción del servicio se mide como el tiempo medio necesario para restablecerlo
 - ✓ MTTR = Mean Time To Repair
- Tiempo medio entre fallos (Mean Time Between Failures)
 - ✓ MTBF = MTTF+MTTR
- Disponibilidad (availability): Fracción del tiempo en que un sistema está funcionando.

Availability =
$$\frac{MTTF}{MTTF + MTTR}$$

El tiempo entre fallos se aproxima a una distribución exponencial donde:

- p = probabilidad de que se produzca un fallo
- $\lambda = 1/MTTF$ (failure rate)
- t = tiempo transcurrido

$$p = 1 - e^{-\lambda t}$$

¿Cómo calcular el MTTF de un sistema, dado el MTTF de los componentes?

- Dados dos componentes con fallos independientes y distribución exponencial
 - ✓ Probabilidades de fallo p₁ y p₂
 - \checkmark Tasas de fallo λ_1 y λ_2
 - ✓ Tiempos medios entre fallos MTTF₁ y MTTF₂
- probabilidad de que se produzca un fallo es 1 "probabilidad que no falle ninguno", o sea:

$$p = 1 - (1 - p_1) \times (1 - p_2) = 1 - e^{-\lambda_1 t} \times e^{-\lambda_2 t} = 1 - e^{-(\lambda_1 + \lambda_2)t}$$

• Que sigue una distribución exponencial con $\lambda = \lambda_1 + \lambda_2$ de donde se deduce que :

$$\frac{1}{\mathsf{MTTF}} = \frac{1}{\mathsf{MTTF}_1} + \frac{1}{\mathsf{MTTF}_2}$$

Ejercicio

Sistema formado por:

- 1 CPU (incluye placa base y memoria)
- 2 Discos
- 1 Fuente de alimentación
- Calcular el MTTF del sistema:

MTTF = 1.000.000 horas

MTTF = 500.000 horas

MTTF = 200.000 horas

$$\frac{1}{\text{MTTF}_{\text{sistema}}} = \frac{1}{\text{MTTF}_{\text{CPU}}} + \frac{1}{\text{MTTF}_{\text{disco}}} + \frac{1}{\text{MTTF}_{\text{disco}}} + \frac{1}{\text{MTTF}_{\text{fuente}}} = \frac{1}{10^6} + \frac{2}{500 \cdot 10^3} + \frac{1}{200 \cdot 10^3} = \frac{1 + 4 + 5}{10^6} = \frac{1}{10^5} + \frac{1}{10^5} = \frac{1}{10^5} + \frac{1}{10^5} = \frac{1}{10^5} + \frac{1}{10^5} = \frac{1$$

$$MTTF_{sistema} = 100.000 \text{ horas}$$

Una forma de mejorar la fiabilidad es mediante redundancia.

- ✓ En tiempo: Repetir un cálculo para comprobar si es erróneo
- ✓ En recursos: Disponer de componentes extra que reemplazan al que falla
- Ver ejemplos páginas 26 y 27 de H&P

Redundancia: Ejemplo

- Construimos unas fuente de alimentación redundante con dos fuentes de tal forma que una es suficiente para alimentar el sistema. Cuando una de las dos falla se reemplaza sin detener el sistema.
- $MTTF_{fuente}$ = tiempo medio entre fallos para 1 fuente (200.000 horas en nuestro ejemplo)
- $MTTR_{fuente}$ = tiempo de cambiar la fuente que falla (supongamos 24 horas)
- $MTTF_{2 \ fuentes} = MTTF_{fuente}/2$ tiempo medio entre fallos para 2 fuentes.
- Probabilidad P₂ de que falle la segunda fuente (Una vez ya ha fallado la 1a):

$$P_2 = 1 - e^{-\lambda t} = 1 - e^{-\frac{MTTR_{fuente}}{MTTF_{fuente}}}$$

MTTR son unas pocas horas y MTTF pueden ser millones \Rightarrow (MTTR/MTTF es un valor cercano a 0)

si
$$x \to 0$$
 entonces $1 - e^{-x} \approx x$ por lo que $P_2 \approx \frac{MTTR_{fuente}}{MTTF_{fuente}}$

- 1/p es el numero de veces esperado que hay que repetir un proceso (falla una fuente) con probabilidad p hasta que hay éxito (falla la 2° fuente en este caso)
- Cada vez que falla una fuente han transcurrido en media MTTF_{2 fuentes} horas, por tanto:

$$MTTF_{fuente\ doble} = MTTF_{2\ fuentes} \times \frac{MTTF_{fuente}}{MTTR_{fuente}} = \frac{MTTF_{fuente}^2}{2 \times MTTR_{fuente}} = \frac{200.000^2}{2 \times 24} = 830.000.000\ horas$$