

Solution

Friends and Party

A person has 11 friends, of whom 4 will be invited to a party.

How many choices are there if 2 of the friends are feuding and will not attend together?

Write only integer answer.

Answer= number (3 significant figures)

Save & Grade

Save only

New variant

Solution

Total # of ways = (1)

2 of the friends = $1 \cdot \binom{9}{2}$ Are invited

of Choose

ways the rect

to invite 2 out of 9.

the two

Friends and Party

A person has 7 friends, of whom 5 will be invited to a party.

How many choices are there if 2 of the friends will only attend together?

Write only integer answer.

Answer= number (3 significant figures)

Save & Grade

Save only

New variant

Solution The two both invited = $1 \cdot {5 \choose 3}$ The two both not invited = ${5 \choose 5}$ ${5 \choose 3} + {5 \choose 5} = 11$.

To fulfill the requirements for a certain degree, a student can choose to take any 7 out of a list of 21 courses, with the constraint that at least 1 of the 7 courses must be a Mathemetics course.

Suppose that 7 of the 21 courses are Mathemetics courses.

How many choices are there for which 7 courses to take?

Answer = number (3 significant figures)

Save & Grade

Save only

New variant

Solution

Total # of ways =
$$\begin{pmatrix} 21\\7 \end{pmatrix}$$

not choose Math = $\begin{pmatrix} 14\\7 \end{pmatrix}$