Recitation 24

1 Review of Stoke's and Gauss's Theorems

- Stoke's theorem is the generalization of Green's theorem to an orientable 2D surface in 3D space.
- Gauss's theorem (also called the divergence theorem in 3D) is the generalization of the 2D divergence theorem to closed surfaces in 3D.

Problem 1

(Section 7.3 Problem 12 from the textbook)

Let S be the surface defined as $z = 4 - 4x^2 - y^2$ with $z \ge 0$ and oriented by a normal with nonnegative k-component. Let $\mathbf{F}(x, y, z) = x^3 \mathbf{i} + e^{y^2} \mathbf{j} + z e^{xy} \mathbf{k}$ Find $\iint_S \nabla \times \mathbf{F} \cdot d\mathbf{S}$. (Hint: Argue that you can integrate over a different surface.)

Problem 2

Show that for any bounded region Ω and any vector field \mathbf{F}

$$\iint_{\partial\Omega} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = 0$$

Problem 3

Let S_r be the sphere with radius r centered at the origin, oriented with outward normal. Suppose \mathbf{F} is a vector field such that

$$\iint_{S_r} \mathbf{F} \cdot d\mathbf{S} = \frac{1}{2}r^3 + r^4$$

Consider $\Omega = \left\{ (x,y,z) \mid 25 \leq x^2 + y^2 + z^2 \leq 49 \right\}$. Compute

$$\iiint_{\Omega} \operatorname{div} \mathbf{F} dV$$

Solution, Problem 1

The boundary of S is the ellipse $4x^2+y^2=4$ in the z=0 plane. By Stokes's theorem

 $\iint_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S'} \nabla \times \mathbf{F} \cdot d\mathbf{S}$

where S' is any piecewise smooth, orientable surface with $\partial S' = \partial S$ (subject to appropriate orientation). One computes that

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ x^3 & e^{y^2} & ze^{xy} \end{vmatrix} = xze^{xy}\mathbf{i} - yze^{xy}\mathbf{j}$$

This has no k-component. So let us take for S' the portion of the z=0 plane inside the ellipse. Hence $\mathbf{n}=\mathbf{k}$ so that

$$\iint_{S'} \nabla \times \mathbf{F} \cdot d\mathbf{S} = \iint_{S'} (xze^{xy}\mathbf{i} - yze^{xy}\mathbf{j}) \cdot \mathbf{k} dS$$
$$= \iint_{S'} 0 dS = 0$$

Because for any vector fields \mathbf{F} , divcurl $\mathbf{F}=0$, from the divergence theorem we have

$$\iint_{\partial\Omega}\operatorname{curl}\mathbf{F}\cdot d\mathbf{S}=\iiint_{\Omega}\operatorname{divcurl}\mathbf{F}dV=0$$

Solution, Problem 3

Let B_r be the ball with radius r. From the divergence theorem we have

$$\iint_{S_r} \mathbf{F} \cdot d\mathbf{S} = \iiint_{B_r} \operatorname{div} \mathbf{F} dV$$

Therefore

$$\iiint_{B_r} \operatorname{div} \mathbf{F} dV = \frac{1}{2}r^3 + r^4$$

Thus

$$\iiint_{\Omega} \operatorname{div} \mathbf{F} dV = \iiint_{B_7} \operatorname{div} \mathbf{F} dV - \iiint_{B_5} \operatorname{div} \mathbf{F} dV = \frac{1}{2} \left(7^3 - 5^3 \right) + \left(7^4 - 5^4 \right)$$