Sistema de Controle de Reservatórios – Fase 10 Pontos Possíveis 2

Adicionar comentário

∨ Detalhes

Especificação de Projeto – Atividade de Programação 2

Sistema de Controle de Reservatórios – Fase 2: Transferência de Água

1. Introdução e Contexto

Esta especificação detalha os requisitos para a segunda fase do projeto de automação predial. Com o controle da cisterna principal (t1) já implementado, esta etapa expande o sistema para incluir o abastecimento de um segundo reservatório (t2), localizado no topo do edifício.

O objetivo desta fase é projetar e implementar uma nova máquina de estados para controlar uma **bomba** (b1), responsável por transferir água da cisterna t1 para o reservatório superior t2. Este desenvolvimento introduz desafios adicionais, como a gestão de múltiplos processos interdependentes, a implementação de lógicas de proteção de equipamentos e a sincronização de recursos hídricos entre os reservatórios.

A arquitetura de software, baseada na Camada de Abstração de Hardware (HAL), será estendida para acomodar os novos componentes, reforçando as boas práticas de engenharia.

2. Objetivos de Aprendizagem

Ao final desta atividade, o estudante deverá ser capaz de:

- Projetar e implementar uma segunda máquina de estados que opera em conjunto com a primeira.
- Gerenciar a interdependência entre dois sistemas de controle.
- Implementar lógicas de temporização para proteção de atuadores (bomba), prevenindo o desgaste por ciclagem rápida.
- Implementar estados de erro e lógicas de falha segura (fail-safe) em uma máquina de estados.
- Expandir uma arquitetura de software existente (HAL, Simulação, GUI) para incorporar novos componentes.
- Simular um sistema de automação mais complexo, com múltiplos reservatórios e atuadores.

3. Descrição do Sistema

O sistema é expandido com a adição do reservatório t2 e da bomba b1. A bomba extrai água de t1 e a impulsiona para t2. O objetivo do novo controlador é manter o reservatório t2 sempre cheio, quando possível.

|---> Consumo do Edifício

4. Requisitos Funcionais

4.1. Simulação do Processo Físico (Expansão)

- Reservatório Superior (t2): Deve ser modelado com as mesmas características geométricas e volume de t1. Seu nível aumenta quando a bomba b1 está ligada.
- Consumo em tz: A simulação deve incluir uma funcionalidade de "consumo temporário" em tz, que possa ser ativada/desativada pela interface gráfica para permitir a visualização de todas as transições de estado.
- Sensores de t2:
 - Sensor de Nível Baixo (521): Localizado a 10% da altura. Retorna 1 se o nível for ≥ 10%, e o caso contrário.
 - Sensor de Nível Alto (s22): Localizado a 90% da altura. Retorna 1 se o nível for ≥ 90%, e o caso contrário.
- Bomba (b1): É um atuador binário (ligada/desligada). Quando ligada, a simulação deve garantir que a taxa de diminuição de volume em t1 seja idêntica à taxa de aumento de volume em t2.

4.2. Lógica de Controle (Máquina de Estados para a Bomba b1)

O controlador da bomba b1 deve ser uma nova **Máquina de Estados Finitos**, com o objetivo de manter o reservatório t2 cheio, respeitando as seguintes regras:

• Lógica Principal de Controle:

- 1. O comando para **ligar** a bomba **b1** deve ser emitido quando o sensor de nível alto **s22** for desativado (transição de **1** para **0**), indicando que o nível caiu abaixo de 90%.
- 2. O comando para **desligar** a bomba **b1** deve ser emitido quando o sensor de nível alto **s22** for ativado (transição de **o** para **1**), indicando que o nível atingiu 90%.
- Intertravamento de Segurança (Prioridade Máxima):
 - A bomba b1 só pode ser ligada se houver água suficiente na cisterna, condição verificada pelo sensor s11
 estar ativo (retornando 1).
 - Se o nível em t1 cair e o sensor s11 for desativado (transição para 0) enquanto a bomba estiver em funcionamento, ela deve ser imediatamente desligada para evitar danos (funcionamento a seco). Esta regra sobrepõe qualquer temporização.
- Lógica de Proteção da Bomba (Temporizadores):

Para evitar o desgaste por ciclagem rápida, a seguinte regra de temporização deve ser implementada:

Tempo Mínimo Desligada: Após ser desligada, a bomba deve permanecer inativa por no mínimo 5
 segundos, mesmo que a condição para ligar (s22) desativado) ocorra neste intervalo.

4.3. Tratamento de Erros e Falha Segura (Fail-Safe)

- Detecção de Inconsistência de Sensores: É fisicamente impossível que um sensor de nível alto esteja acionado enquanto o sensor de nível baixo do mesmo reservatório não esteja. As máquinas de estado devem monitorar continuamente as seguintes condições de erro:
 - o s12 está ATIVADO (1) e s11 está DESATIVADO (0).
 - o s22 está ATIVADO (1) e s21 está DESATIVADO (0).
- Estado de Erro e Ação Segura: Ao detectar qualquer uma das inconsistências acima, o sistema deve entrar imediatamente em um ESTADO DE ERRO. Neste estado, as seguintes ações devem ser executadas:
 - Comandar o fechamento imediato da válvula v1.
 - o Comandar o desligamento imediato da bomba b1.
 - Sinalizar a falha na interface gráfica.
 - O sistema deve permanecer travado neste estado seguro até que uma ação de reinicialização seja executada pelo usuário.

4.4. Requisitos de Interface (Expansão)

A interface gráfica deve ser atualizada para incluir:

- Uma representação visual do reservatório t2 e seu nível.
- Indicadores visuais para o estado dos sensores s21 e s22.
- Um indicador para o estado da bomba b1 (ex: "Desligada", "Ligada", "Aguardando").
- Um rótulo de texto para o estado da nova máquina de estados.
- Um botão ou checkbox para ativar/desativar o "consumo temporário" de t2.
- Indicador de Falha: Um indicador luminoso (ex: LED vermelho) que deve acender e permanecer ativo quando o sistema entrar no estado de erro.

<	>
(https://pucpr.instructure.com/courses/57884/modules/items/1392096)	(<u>https://pucpr.instructure.com/courses/57884/mo</u>

