

Ulrike Kuhl

Bielefeld University, Bielefeld, Germany

Mark T. Keane

University College Dublin, Dublin, Ireland

More Complex Designs

 We looked at simple 2-group design and the steps you need to go through

Then we consider a more complex
 3-group design

Control: No-Explanation

Experimental: CF-Explanation

- Here we will consider
 - sample size estimation and power
 - aspects of more complex designs (between & within variables)

Six Steps to Heaven...

Motivation

Design

Materials & Procedure

Piloting

Data Collection & Analysis

Results

Single Variable Designs...

(Between- or Within-Participants)

Design-A

Design-B

Control: No-Explanation

Experimental: CF-Explanation

Control:

#1:

Experimental Experimental #2: XP-method-1 XP-method-2

These are all **between-participant** designs, with **one** variable (Group), with either 2 or 3 separate groups...

Design-A is a between-participant design with one variable, Group, which has 2 levels (Control v Experimental)

Design-B is a *between-participant-design* with one variable, Group, but has 3 levels (Control v Expt#1 v Expt#2)

But, we can also do <u>within-participant</u> designs when we give the <u>same group</u> of people <u>different treatments</u> in phases of the experiment (eg before/after tests)

Here are two <u>within-participant</u> designs, one variable, Treatment, all with a single group of people

Design-C is a <u>within-participant design</u> with one variable, Treatment, which has 2 levels (Before v After)

Design-D is a <u>within-participant design</u> with one variable, Treatment, with 3 levels (XP1 v XP2 v XP3)

Design D: Presents New Problem?

Order Effects can contaminate this test of the methods; seeing XP1 could affect what people do in XP2 and so on...

XP-Order has 6 levels (01,02,03, 04,05,06)

Counterbalance XP-order to check/control XP-Order!

Multi-Variable Designs...

(Between- or Within-Participants)

This is a *between-participant* design, with *two variables* (Material, Method) involving 4 separate groups...

Material has 2 levels (dog-images v cat-images)
Method also has 2 levels (XP1 v XP2)

So we are crossing the variables to test for interactions!

Design

(Material, Method) involving 4 separate groups...

Material has 2 levels (dog-images v cat-images)

Method also kes 2 levels (XP1 v XP2)

So we are crossing the variables to test for interactions!

Consider Power...

How Many People Do We Test?

Let's Consider Power

How Many People Do We Test?

- Most common user-study flaw: too few participants
- ... but you can also test too many!
- Type I Error = false positive:
 Detect an effect that is not actually there
 --> might happen if N is too high!
- Type II Error = false negative:
 Overlook an effect that is there
 --> low N

Power Analysis tells you the optimal N for your design based on your estimate of effect-size for a p-level

Let's Consider Power

Design

How Many People Do We Test?

- Most common user-study flaw: too few participants
- ... but you can also test too many!
- Type I Error = false positive:

 Detect an effect that is not actually there
 Rule of thumb: More Variables = More People!
- Type II Error = false negative:
 Overlook an effect that is there
 --> might happen if N is too high!

Power Analysis tells you the optimal N for your design based on your estimate of effect-size for a p-level

--> test will produce small p-value, correctly indicating the effect!

Design

Small overlap = high probability to correctly find the effect (even with small samples) = high power

Power is the probability of correctly finding an existing effect.

Design

Big overlap = low probability to correctly find the effect (esp. with small samples) = low power

Power is the probability of correctly finding an existing effect.

Design

Good news! More samples = more power!

But: Do not just keep samplin guntil the effect is there: p-hacking is evil!

STEP 2

What Is Power?

Power Analysis tells us how many measurements we need to collect to have a good amount of power.

If we use the sample size recommended by the power analysis, we know that we use denough data to make a decision.

Necessary Decisions

1. How much power do we want? Convention: Power = 0.8 Meaning: we want an 80% probability of correctly finding an effect.

Necessary Decisions

- How much power do we want? Convention: Power = 0.8
 Meaning: we want an 80% probability of correctly finding an effect.
- 2. What is our significance level α ? Convention: $\alpha = 0.05$
- 3. How much overlap between our distributions do we expect?

Necessary Decisions

3. How much overlap between our distributions do we expect?

Tricky!

Single metric to combine both:

Effect Size (d) =

Estimated difference between means

Estimated standard deviation

How to get these estimates? Prior (pilot?) data, literature search, educated guess (worst case!)

Sample sizes for different designs:

Power = 0.8; α = 0.05 and a medium-effect size d = 0.5

Design-A

Control: No-Explanation

Experimental: CF-Explanation

two conditions using a t-test

N = 128

*64 part. per group

Design-B

Control:

Experimental#1: XP-method-1

Experimental#2: XP-method-2

three conditions using Kruskal-Wallis

N = 72

*24 part. per group

Sample sizes for different designs: Power = 0.8; α = 0.05 and a medium-effect size d = 0.5

Design-C

Before

After

two conditions using a paired t-test

N = 34(!)

Design-E 2 x 2

Four independent groups, using a 2x2 ANOVA

N = 180

*45 part. per group

--> Let's come full circle: What happened in our study

Plan for the Day

CF Tutorial	
TIME	Topics
9:00 AM	Introduction
	Hello and Introducing Ourselves!
	Hands-on: Trying Our Study (follow link)
9:30 AM	Historical Fundamentals of Counterfactuals
	From Philosophy to XAI (via Psychology)
	Two Sample User Studies and Q&A
10:30 AM	COFFEE (10:30-11:00)
11:00 AM	Fundamentals of Counterfactuals in AI
	Formalisation
	Modelling Approaches & Key Constraints
11:30 AM	Using Counterfactual Algorithms
	Hands-on: A Counterfactual Toolbox (AA)
	Hands-on: Checking Out Notebooks and Q&A
12:00 PM	Fundamentals of User Studies
	User Studies I: A Simple Two-Group Design
12:30 PM	LUNCH (12:30-14:00)
2:00 PM	Algorithmic Growth Points
	Computational Future Directions and Q&A
2:30 PM	More Fundamentals of User Studies
	User Studies I: A Simple Two-Group Design (cont.)
3:00 PM	COFFEE (15:00-15:30)
3:30 PM	From Fundamentals to an Actual User Study
	User Studies II: A More Complex Design
	User Studies III: Even More Complex Designs
	Hands-on: Looking At Our Study
5:00 PM	Closing Session, Discussion and Final Q&A
	TUTORIAL END

