- Can we do better than 'two bits' in the three message or do we need one bit '0' to say no rain everyday?
- Every system of discrete signals has some 'information' and we need those many bits to represent the system

• Entropy =
$$\sum_{i} p_i * \log(\frac{1}{p_i})$$

Information Gain

• Entropy
$$H(S) = \sum_{i \in [K]} \frac{S_i}{S} * \log \frac{S}{S_i}$$

Information Gain due to A

•
$$IG(S,A) = H(S) - H(S|A)$$

= $H(S) - \sum_{t} \frac{S_t}{S} H(S_t)$

where, $t \in T$ is the different values present in S for A

Detail	Compact	Column				
△ Outlook	F	ă Temperature	F	≛ Humidity F	∆ Wind	
Sunny Rain Other (4)	36% 36% 29%	Mild Hot Other (4)	43% 29% 29%	2 unique values	Weak Strong	57% true 9 64% false 5 36%
Sunny		Hot		High	Weak	No
Sunny		Hot		High	Strong	No
Overcast		Hot		High	Heak	Yes
Rain		Mild		High	Beak	Yes
Rain		Cool		Normal	Weak	Yes
Real		Cool		Normal	Strong	No
Overcast		Cool		Normal	Strong	Yes
Sunny		Hild		High	Weak	No
Sucry		C001		Normal	Weak	Yes
Resn		BLIS		Normal	Weak	Yes
Sunny		Mild		Mormal	Strong	Yes
Overcast		MIZd		High	Strong	Yes
Overset		Het		Mormal	Weak	Yes
Rate		Hild		High	Strong	No

$$H(S/A)$$

$$= \frac{5}{14}H(S_S) + \frac{4}{11}xH(S_A) + \frac{5}{14}H(S_A)$$

$$= \frac{5}{14}H(S_S) + \frac{4}{11}xH(S_A) + \frac{5}{14}H(S_A)$$

$$H(S_W) = \frac{5}{8}\log \frac{8}{6} + \frac{2}{8}\log \frac{4}{9}$$

$$= \frac{5}{14}\log \frac{8}{14} + \frac{2}{14}\log \frac{4}{9}$$

H(S) = 0.94 A = Outlook $T = \{S, 0, R\}$ $H(S_0) = 0$ $H(S_0) = 0$ $H(S_0) = \frac{5}{14} \text{H(S_0)} + \frac{4}{14} \text{H(S_0)}$ $H(S_0) = 0$ $H(S_0) = 0$ $H(S_0) = 0$ $H(S_0) = \frac{5}{14} \text{H(S_0)} + \frac{4}{14} \text{H(S_0)}$ $H(S_0) = 0$ $H(S_0) = 0$ $H(S_0) = \frac{5}{14} \text{H(S_0)} + \frac{4}{14} \text{H(S_0)}$ $H(S_0) = 0$ $H(S_0)$

CART

- Classification and Regression Tree
 - · Key idea:
 - Only Two Children
 - Some goodness criterion to split (Typically minimize Ginni Index based)
 - $\sum p_t(1-p_t)$
 - Pruning to avoid overfitting (Typically Information Gain)

In general,
Decision trees, good for explaining decisions
However, very sensitive to noise in the data, small change in the data can lead to a very different different tree

Bayes vs Naïve Bayes vs Decision Tree

- Optimal
- This is ultimate goal
 Easy to build
- practically difficult to
 Not all features
 learn Bayes classifier
 independent
 directly from the data
 Explainability is
- Curse of

- · Easy to build
- Explainability is good
- Overfitting
- sensitivity

 Curse of Dimensionality

kNN

- 'k' nearest neighbours
- Data set $D = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$
- Given a point x, find out k nearest point from D to x
- E.g., say $|x_{\sigma(1)}-x|<=|x_{\sigma(2)}-x|<=...<=|x_{\sigma(n)}-x|$
- Collect labels of $x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(k)}$
- \hat{y} = the most frequently occurring label in $x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(k)}$

What will be label if k = 5?

- •How to choose right k?
- On the given data,
 - •estimate error on different k values
 - •select the one with least error
 - •Choose the k value where a small decrease in k causes a large increase in error and increase in k results small decrease in the error

- Running time, linear in $n \times d$
- As $n \to \infty$, 1-NN error rate is at most 2 \times Bayes error rate
- How to measure nearness?
 - If features are continuous, Euclidian metric What metric?
 Discrete features: hamming distance
- Drawback
 - Frequent classes dominate