Sequence to Sequence Learning with Neural Networks

Ilya Sutskever, Oriol Vinyals, Quoc V. Le (2014)

NLP reading club 2021/06/10

Key Points

- Encoder Decoder architecture based on LSTMs to transform input sequence to output sequence
- New training technique: reversed input sequence
- A deeper stack of LSTMs give better results
- Achieved BLEU score of 34.8 on English-French translation task

Dataset

- A clean subset of the <u>WMT'14 English to French dataset</u>. (348M French words and 304M English words)
- Fixed vocab: 160,000 of the most frequent words for the source language, 80,000 of the most frequent words for the target language. All other works replaced with 'UNK' token
- Start/end of sentence denoted by <START> and <EOS> tokens

Model structure

Experiment results

Translation English to French:

	/	
	/	
	/	
	/	
	 /	_
7	 1 4 45	_

SMT baseline

Method	test BLEU score (ntst14)	
Bahdanau et al. [2]	28.45	
Baseline System [29]	33.30	
Single forward LSTM, beam size 12	26.17	
Single reversed LSTM, beam size 12	30.59	
Ensemble of 5 reversed LSTMs, beam size 1	33.00	
Ensemble of 2 reversed LSTMs, beam size 12	33.27	
Ensemble of 5 reversed LSTMs, beam size 2	34.50	
Ensemble of 5 reversed LSTMs, beam size 12	34.81	

Results from paper

Experiment results

Sentence length:

- Works well even for longer sentences
- Does less well for sentences with rare words, but still better than the SMT baseline

Experiment results

Word ordering

- Model captures meaning conveyed by word ordering
- Diagram shows PCA clustering of LSTM hidden states—the sentences in which the subject/object are reversed are more separated than those in which they are not. This is not something e.g. bag of words can capture

Aside: Bleu score

- a metric for automatically evaluating machine-translated text
- Measures how similar the translated text output from the model is to the 'ground truth translation', runs from 0 (very poor translation) to 1 (very good translation)
- Similarity using the 1,2,3,4 -gram overlap + penalty for sentences that are too short

A good explanation can be found <u>here</u>

Further resources

- Link to original paper
- Jay alammar's blog post on Seq2Seq models
- Chris Olah's post on LSTMs
- Code walkthrough of LSTM
- Kritz Moses' blog post covering this paper specifically
- Oral presentation of the paper at Neurips 2014