

Coralie Joucla

Machine learning : principes de bases et enjeux médicaux

Café Neuro

Jeudi 17 mars 2022

Définitions

L'ordinateur et la machine

- Un ordinateur est une machine :
 - Munie d'une mémoire dans laquelle on insère des données,
 - Et d'un **algorithme**
 - Codé dans un langage propre
 - Qui définit le traitement à effectuer sur ces données.

L'ordinateur et la machine

- Un ordinateur est une machine :
 - Munie d'une mémoire dans laquelle on insère des données,
 - Et d'un algorithme
 - ▶ Codé dans un langage propre
 - Qui définit le traitement à effectuer sur ces données.
- La machine :
 - Ne peut pas décider d'elle-même d'exécuter telle ou telle consigne
 - Ne peut qu'exécuter les étapes déterminées à l'avance <u>par l'auteur humain</u> de l'algorithme (Sabouret 2019).

- D'après Marvin Minsky, l'IA est :
 - Discipline informatique de construction de programmes
 - Réalisation de tâches qui sont (pour l'instant) mieux accomplies par des humains
 - Demandent des processus mentaux de haut niveau
 - Apprentissage perceptuel, organisation de la mémoire, raisonnement critique...

- D'après Marvin Minsky, l'IA est :
 - Discipline informatique de construction de programmes
 - Réalisation de tâches qui sont (pour l'instant) mieux accomplies par des humains
 - Demandent des processus mentaux de haut niveau
 - Apprentissage perceptuel, organisation de la mémoire, raisonnement critique...

- D'après Sabouret, c'est l'écriture d'algorithmes plus sophistiqués, qui :
 - Calculent automatiquement les bonnes réponses à partir des données fournies,
 - Au lieu d'écrire soi-même tout le détail des instructions à la main.
 - Le traitement des données est décrit dans un programme qui est lui-même une donnée fournie à la machine.

- Le traitement des données est décrit dans un programme qui est lui-même une donnée fournie à la machine.
 - Le résultat fourni n'est donc pas créé de toutes pièces par l'IA, mais dépend des instructions données par l'informaticien.

- Le traitement des données est décrit dans un programme qui est lui-même une donnée fournie à la machine.
 - Le résultat fourni n'est donc pas créé de toutes pièces par l'IA, mais dépend des instructions données par l'informaticien.
 - Un ordinateur ne peut écrire lui-même un programme pour résoudre un problème pour lequel il n'a pas été conçu car il y a :
 - Trop de données différentes,
 - Trop de règles requises pour que ce programme fonctionne correctement.

- Le traitement des données est décrit dans un programme qui est lui-même une donnée fournie à la machine.
 - Le résultat fourni n'est donc pas créé de toutes pièces par l'IA, mais dépend des instructions données par l'informaticien.
 - Un ordinateur ne peut écrire lui-même un programme pour résoudre un problème pour lequel il n'a pas été conçu car il y a :
 - Trop de données différentes,
 - Trop de règles requises pour que ce programme fonctionne correctement.
- Le programme d'IA qui résoudrait tous les problèmes n'existe pas car, justement, chaque problème nécessite un programme spécifique et des données adaptées

Qu'est-ce qui rend une machine « intelligente »?

Imite comportement humain Narrow IA très utilisée Assistant virtuel, voitures autonomes...

Qu'est-ce qui rend une machine « intelligente »?

Imite comportement humain Narrow IA très utilisée Assistant virtuel, voitures autonomes...

Apprend d'exemples sans avoir à être explicitement programmé

Qu'est-ce qui rend une machine « intelligente »?

Imite comportement humain Narrow IA très utilisée Assistant virtuel, voitures autonomes...

Apprend d'exemples sans avoir à être explicitement programmé

Type de *machine learning* utilisant des réseaux de neurones profonds, ne requiert pas d'extraction de features

Machine learning

Etape I : définition du problème à résoudre

- Découvrir des modèles cachés / structures intrinsèques dans les données
- Tirer des conclusions à partir d'ensembles de données constitués de données d'entrée sans réponses étiquetées

- Partir d'un ensemble connu de données d'entrée et de réponses connues à ces données (étiquettes)
- Construire un modèle pour prédire la réponse à de nouvelles données

Machine learning

Etape 2 : acquisition des données d'apprentissage et de test

- Le machine learning est utile lorsque :
 - Tâche complexe ou grande quantité de données, mais pas de modèle prédéterminé

- ▶ Le machine learning est utile lorsque :
 - Tâche complexe ou grande quantité de données, mais pas de modèle prédéterminé
 - L'ordinateur apprend de son expérience pour trouver des patterns dans les données

- Le machine learning est utile lorsque :
 - Tâche complexe ou grande quantité de données, mais pas de modèle prédéterminé
 - L'ordinateur apprend de son expérience pour trouver des patterns dans les données

Classification de données : classe les données fournies en catégories pré-déterminées

- Le machine learning est utile lorsque :
 - Tâche complexe ou grande quantité de données, mais pas de modèle prédéterminé
 - L'ordinateur apprend de son expérience pour trouver des patterns dans les données

Classification de données : classe les données fournies en catégories pré-déterminées

Entraînement

Données connues

Etiquettes

- Le machine learning est utile lorsque :
 - Tâche complexe ou grande quantité de données, mais pas de modèle prédéterminé
 - L'ordinateur apprend de son expérience pour trouver des patterns dans les données

Classification de données : classe les données fournies en catégories pré-déterminées

Entraînement

- Le machine learning est utile lorsque :
 - Tâche complexe ou grande quantité de données, mais pas de modèle prédéterminé
 - L'ordinateur apprend de son expérience pour trouver des patterns dans les données

Classification de données : classe les données fournies en catégories pré-déterminées

- Le machine learning est utile lorsque :
 - Tâche complexe ou grande quantité de données, mais pas de modèle prédéterminé
 - L'ordinateur apprend de son expérience pour trouver des patterns dans les données

Classification de données : classe les données fournies en catégories pré-déterminées

Nécessité d'une grande quantité de données

- Capacités du modèle dépendent de la taille de l'échantillon d'entraînement
 - nombre features augmente => nombre essais nécessaire augmente

Nécessité d'une grande quantité de données

- Capacités du modèle dépendent de la taille de l'échantillon d'entraînement
 - nombre features augmente => nombre essais nécessaire augmente
- Classification:
 - Nécessité de 2^d essais

Nécessité d'une grande quantité de données

- Capacités du modèle dépendent de la taille de l'échantillon d'entraînement
 - nombre features augmente => nombre essais nécessaire augmente
- Classification:
 - Nécessité de 2^d essais
- Difficulté :
 - Données complexes => nécessité grand nombre de features
 - ▶ Grand nombre de features => nécessité grand nombre de données
 - > => difficile à obtenir en médecine (fatigue du sujet, contraintes techniques etc...)

Similarités de classes

- Pour discriminer au mieux les essais :
- Homogénéité intra-classe :
 - Essais classe A très semblables entre eux
 - Essais classe B très semblables entre eux

Similarités de classes

- Pour discriminer au mieux les essais :
- Homogénéité intra-classe :
 - Essais classe A très semblables entre eux
 - Essais classe B très semblables entre eux
- Hétérogénéité inter-classes :
 - Essais A et B très différents

Similarités de classes

- Pour discriminer au mieux les essais :
- Homogénéité intra-classe :
 - Essais classe A très semblables entre eux
 - Essais classe B très semblables entre eux
- Hétérogénéité inter-classes :
 - Essais A et B très différents
- Sinon => augmentation probabilité essais mal classés

Equilibre de classes

Avec deux catégories, probabilité de classer correctement au hasard = 50%

Equilibre de classes

- Avec deux catégories, probabilité de classer correctement au hasard = 50%
- Si quantité données classe A << classe B</p>
 - Classificateur devient plus sensible à détection classe majoritaire
 - Exemple : sur 1000 personnes à l'aéroport, 2 sont des terroristes
 - Il suffit au classificateur d'étiqueter tout le monde comme « non terroriste » pour obtenir 99,8% de bonnes réponses !

Equilibre de classes

- Avec deux catégories, probabilité de classer correctement au hasard = 50%
- Si quantité données classe A << classe B</p>
 - Classificateur devient plus sensible à détection classe majoritaire
 - Exemple : sur 1000 personnes à l'aéroport, 2 sont des terroristes
 - Il suffit au classificateur d'étiqueter tout le monde comme « non terroriste » pour obtenir 99,8% de bonnes réponses!

3 possibilités :

- lgnorer le problème : acceptable si écart faible
- > Sous-échantillonner : éliminer des essais de la classe majoritaire

Machine learning

Etape 3 : nettoyage des données et extraction de *features*

Nettoyage des données

- Les données recueillies sont souvent :
 - Bruitées : artéfacts en EEG, bruit blanc dans le signal sonore, etc...
 - Incomplètes : données manquantes, perdus de vue dans les BDD patients, etc...

Nettoyage des données

- Les données recueillies sont souvent :
 - Bruitées : artéfacts en EEG, bruit blanc dans le signal sonore, etc...
 - Incomplètes : données manquantes, perdus de vue dans les BDD patients, etc...

- Nécessité absolue de nettoyer la base de données au préalable
 - Voir méthodes recommandées en fonction du type de données

- But : sélectionner infos :
 - Pertinentes
 - Donnent un caractère distinctif aux classes

- But : sélectionner infos :
 - Pertinentes
 - Donnent un caractère distinctif aux classes
- Le choix de ces caractéristiques destinées à représenter le signal est complexe et crucial :
 - Des features non pertinentes ajoutent du bruit et peuvent fausser la classification
 - Si des features pertinentes sont absentes, il ne reste que du bruit à classer

- But : sélectionner infos :
 - Pertinentes
 - Donnent un caractère distinctif aux classes
- Le choix de ces caractéristiques destinées à représenter le signal est complexe et crucial :
 - Des features non pertinentes ajoutent du bruit et peuvent fausser la classification
 - Si des features pertinentes sont absentes, il ne reste que du bruit à classer
 - Influe directement sur la performance de l'algorithme : « garbage in, garbage out »
 - Dépend du type d'info recherché, du protocole d'acquisition des données etc...

Les features sont des éléments extraits des données permettant de distinguer les 2 catégories souhaitées

12

Les features sont des éléments extraits des données permettant de distinguer les 2 catégories souhaitées

- Les features sont des éléments extraits des données permettant de distinguer les 2 catégories souhaitées
- Certaines sont pertinentes, d'autres moins

- Couleur du pelage ?
- Couleur des yeux ?
- Taille des oreilles ?
- Forme du museau ?
- . . .

Les features sont des éléments extraits des données permettant de distinguer les 2 catégories souhaitées

Machine learning

Etape 4 : évaluation de la performance et ajustement du modèle

Fonctionnement général du SVM

- Algorithme d'apprentissage pour la discrimination dichotomique
- Principe : trouver la frontière de décision séparant tous les essais d'entraînement

Fonctionnement général du SVM

- Algorithme d'apprentissage pour la discrimination dichotomique
- Principe : trouver la frontière de décision séparant tous les essais d'entraînement

- Quelle est la meilleure séparation ?
 - Marge = distance entre la frontière et les essais les plus proches (vecteurs supports)
 - La frontière de décision optimale est celle qui maximise cette marge
 - => capacité de généralisation la plus grande possible

Mesures de performance

- Une frontière est rarement parfaite :
 - Des essais peuvent être mal classés,
 - Il est donc nécessaire de quantifier la performance du modèle établi

Mesures de performance

- Une frontière est rarement parfaite :
 - Des essais peuvent être mal classés,
 - Il est donc nécessaire de quantifier la performance du modèle établi

- La métrique la plus utilisée est l'accuracy :
 - Pourcentage d'essais correctement classés, par rapport au nombre total d'essais utilisés pour le test du modèle

Séparation des données

- Les données ne sont pas toujours séparables par une ligne
- Il est donc intéressant de recourir à des fonctions kernel pour obtenir d'autres formes de frontières

Séparation des données

- Les données ne sont pas toujours séparables par une ligne
- Il est donc intéressant de recourir à des fonctions kernel pour obtenir d'autres formes de frontières

Kernels: projection 2D->3D

- Chaque essai est représenté par des features, qui forment des coordonnées dans un espace à n dimensions
 - Exemple : 2 features = 2 dimensions, observables sur un plan.

Kernels: projection 2D->3D

- Chaque essai est représenté par des features, qui forment des coordonnées dans un espace à n dimensions
 - Exemple : 2 features = 2 dimensions, observables sur un plan.
- S'il n'est pas possible de séparer les données sur ces *n* dimensions, le *kernel* va être capable de les projeter sur *n+1* dimensions
 - Exemple : projection de 2D à 3D
- Il peut être possible de séparer les données dans ce nouvel espace
- Exemple : kernel linéaire

- Hyperparamètre C : permet de faire un compromis entre une classification parfaite des essais d'entraînement et la simplicité du modèle créé.
 - Présent dans les kernels linéaire et RBF

- Hyperparamètre C : permet de faire un compromis entre une classification parfaite des essais d'entraînement et la simplicité du modèle créé.
 - Présent dans les kernels linéaire et RBF
 - C diminue => marge plus permissive => classification à l'entraînement moins bonne
 - Mais frontière plus souple => meilleure capacité de généralisation sur les essais inconnus

- Hyperparamètre C : permet de faire un compromis entre une classification parfaite des essais d'entraînement et la simplicité du modèle créé.
- Hyperparamètre sigma : rayon de la zone d'influence de la frontière
 - Présent dans le kernel RBF seulement

- Hyperparamètre C : permet de faire un compromis entre une classification parfaite des essais d'entraînement et la simplicité du modèle créé.
- Hyperparamètre sigma : rayon de la zone d'influence de la frontière
 - Présent dans le kernel RBF seulement
 - > sigma diminue => moindre influence sur les essais plus éloignés de la frontière

Hyperparamètre C : permet de faire un compromis entre une classification parfaite des essais d'entraînement et la simplicité du modèle créé.

Hyperparamètre sigma : rayon de la zone d'influence de la frontière

Le réglage de ces hyperparamètres est **crucial** car ils influencent fortement la performance du modèle

Exemple de l'influence des hyperparamètres

Exemple de l'influence des hyperparamètres

Validation de la performance

- Nécessité de mesurer la performance de généralisation = perf sur données inconnues
 - Division des données : ensemble d'entraînement + ensemble de test

Validation de la performance

- Nécessité de mesurer la performance de généralisation = perf sur données inconnues
 - Division des données : ensemble d'entraînement + ensemble de test
- Optimisation des hyperparamètres => division des données en 3 sets :
 - Ensemble d'entraînement + ensemble de validation pour optimiser les hyperparamètres
 - Ensemble de test pour évaluer la performance sur les paramètres obtenus

Validation de la performance

- Nécessité de mesurer la performance de généralisation = perf sur données inconnues
 - Division des données : ensemble d'entraînement + ensemble de test
- Optimisation des hyperparamètres => division des données en 3 sets :
 - Ensemble d'entraînement + ensemble de validation pour optimiser les hyperparamètres
 - Ensemble de test pour évaluer la performance sur les paramètres obtenus
- Procédure de validation croisée (cross-validation)
 - Problème : faible quantité de données => division nuit à performance
 - Utilisation des partitions comme ensemble d'entraînement ou de test successivement

Validation croisée

Classification de données aléatoires

- Test du pipeline sur des données générées aléatoirement
- Comparaison des performances après optimisation en fonction du nombre d'essais par classe

Que faire des résultats?

Interprétation des chiffres obtenus

Interprétation et remise en contexte

- De manière générale, le SVM est une méthode statistique qui donne un score
 - Il faut l'interpréter et le remettre en contexte car il ne suffit pas
 - Or cet effort n'est pas toujours fait dans les études publiées

Interprétation et remise en contexte

- De manière générale, le SVM est une méthode statistique qui donne un score
 - Il faut l'interpréter et le remettre en contexte car il ne suffit pas
 - Or cet effort n'est pas toujours fait dans les études publiées
- Il est nécessaire ici de fixer un positionnement de travail :
 - Soit donner la priorité à la performance
 - Soit donner la priorité à la robustesse et à la fiabilité

Interprétation et remise en contexte

- De manière générale, le SVM est une méthode statistique qui donne un score
 - Il faut l'interpréter et le remettre en contexte car il ne suffit pas
 - Or cet effort n'est pas toujours fait dans les études publiées
- Il est nécessaire ici de fixer un positionnement de travail :
 - Soit donner la priorité à la performance
 - Soit donner la priorité à la robustesse et à la fiabilité
- Ceci pose notamment la question de la reproductibilité de ces études :
 - Manque de recul et de formation sur les algorithmes de classification
 - Manque de reproductibilité des études dû au manque de précision

IA et médecine

Applications, implications

Applications de l'IA en médecine

- Détection et le diagnostic des maladies
 - Monitoring permanent des patients
 - Modèle d'IA prédictif pour bébés prématurés => 75% détection septicémies graves

Applications de l'IA en médecine

Détection et le diagnostic des maladies

- Monitoring permanent des patients
- Modèle d'IA prédictif pour bébés prématurés => 75% détection septicémies graves
- Traitement personnalisé des maladies
 - Recommandations personnalisées en temps réel aux patients, 24 heures sur 24
 - Réponses aux questions selon antécédents médicaux, préférences et besoins personnels du patient

Applications de l'IA en médecine

Détection et le diagnostic des maladies

- Monitoring permanent des patients
- Modèle d'IA prédictif pour bébés prématurés => 75% détection septicémies graves

Traitement personnalisé des maladies

- Recommandations personnalisées en temps réel aux patients, 24 heures sur 24
- Réponses aux questions selon antécédents médicaux, préférences et besoins personnels du patient

Imagerie médicale

- Aussi efficace que les radiologues humains pour détecter les signes du cancer du sein
- Rend plus gérable le nombre stupéfiant d'images médicales que les cliniciens doivent analyser

Applications de l'IA en médecine

Détection et le diagnostic des maladies

- Monitoring permanent des patients
- Modèle d'IA prédictif pour bébés prématurés => 75% détection septicémies graves

Traitement personnalisé des maladies

- Recommandations personnalisées en temps réel aux patients, 24 heures sur 24
- Réponses aux questions selon antécédents médicaux, préférences et besoins personnels du patient

Imagerie médicale

- Aussi efficace que les radiologues humains pour détecter les signes du cancer du sein
- Rend plus gérable le nombre stupéfiant d'images médicales que les cliniciens doivent analyser

Essais cliniques

- Attribution et recherche des codes patients accélérée
- Mise à jour des données pertinentes

Limitations et régulation de l'IA

Pas de directives universelles claires à l'heure actuelle

Limitations et régulation de l'IA

- Pas de directives universelles claires à l'heure actuelle
- Personnes qui créent les algorithmes à utiliser en clinique ne sont pas toujours les médecins qui traitent les patients
 - Les informaticiens devraient en savoir plus sur la médecine
 - Les cliniciens doivent apprendre pour quelles tâches un algorithme spécifique est ou n'est pas adapté

Limitations et régulation de l'IA

- Pas de directives universelles claires à l'heure actuelle
- Personnes qui créent les algorithmes à utiliser en clinique ne sont pas toujours les médecins qui traitent les patients
 - Les informaticiens devraient en savoir plus sur la médecine
 - Les cliniciens doivent apprendre pour quelles tâches un algorithme spécifique est ou n'est pas adapté
- Essais cliniques
 - Exigence de transparence extrême autour des méthodes scientifiques utilisées
 - Algorithmes souvent « boîtes noires »
 - Impossibilité de « déballer » cette boîte noire: impact sur acceptabilité de l'étude ?

- ▶ Si algorithme non transparent pour les informaticiens et pour les cliniciens
 - Doute du patient

- ▶ Si algorithme non transparent pour les informaticiens et pour les cliniciens
 - Doute du patient

A choisir, préfère-t-on être mal diagnostiqué par un humain ou par un algorithme ?

- ▶ Si algorithme non transparent pour les informaticiens et pour les cliniciens
 - Doute du patient

A choisir, préfère-t-on être mal diagnostiqué par un humain ou par un algorithme ?

Quid si l'algorithme est généralement plus performant que l'humain ?

- ▶ Si algorithme non transparent pour les informaticiens et pour les cliniciens
 - Doute du patient

A choisir, préfère-t-on être mal diagnostiqué par un humain ou par un algorithme ?

Quid si l'algorithme est généralement plus performant que l'humain ?

Sacrifice de la relation avec le médecin ?

Le mythe du remplacement du médecin

- Les médecins seront-ils remplacés par l'IA?
 - Non, mais...
 - Ceux qui comprennent l'IA seront avantagés
 - > => déjà une exigence courante chez les radiologues aux USA

Le mythe du remplacement du médecin

- Les médecins seront-ils remplacés par l'IA?
 - Non, mais...
 - Ceux qui comprennent l'IA seront avantagés
 - > => déjà une exigence courante chez les radiologues aux USA

- Vinod Khosla (Silicon Valley): 80% des médecins seront remplacés
 - En réalité : transcripteurs médicaux, techniciens et secrétaires médicales sont susceptibles d'être informatisés
 - Mais seulement 0,42% de chances que médecins et chirurgiens soient remplacés

Place du machine learning en médecine

- Le machine learning a déjà fait ses preuves pour :
 - Facilitation et accélération tâches répétitives
 - Pallie variations intra et inter individuelles de traitement par les experts

Place du machine learning en médecine

- Le machine learning a déjà fait ses preuves pour :
 - Facilitation et accélération tâches répétitives
 - Pallie variations intra et inter individuelles de traitement par les experts

- Sans toutefois remplacer l'humain
 - Diagnostic nécessite une capacité de résolution de problème créative
 - Même exercice mais avec outils plus perfectionnés
 - Interprétation des données restera toujours un territoire humain

Optimisme du corps médical

- Sarwar 2019 : enquête auprès de 487 médecins dans 54 pays
 - > 42,4% médecins : IA va créer de nouveaux postes et augmenter l'emploi
 - Accroissement efficacité diagnostic
 - ▶ 48,3% : diagnostic doit être effectué principalement par médecin
 - > 25,3% : tâche peut être partagée à égalité IA/humain
- Consensus : transformation médecine
 - IA = outil supplémentaire dans le processus de diagnostic
 - Dégage du temps pour le médecin : renforcement relation soignant-soigné

Merci de votre attention!