Алгебра логики
Лекция 1. Высказывания
и логические операции

Математика в кибербезопасности

Лекция 1. Высказывания и логические операции

Буль и алгебра логики

Видео 1, 1:15

Как формализовать человеческий язык и перевести его в язык математики? Этой задачей занимался Аристотель.

Аристотель пишет фразы:

Все финики есть фрукты. Этот объект есть финик. Значит, этот объект есть фрукт.

Аристотель кодирует каждую фразу математической переменной х:

- Объект есть финик = x₁
- Каждый финик есть фрукт = x2
- Глагол «есть» это знак равенства «=».

Аристотель пишет для своих предложений математическое выражение:

$$f = x_1 \cdot x_2$$

Значение функции f покажет, является ли данный объект фруктом:

«Этот объект есть фрукт, если: он есть финик И все финики есть фрукты.»

Высказывания

Видео 1, 1:54

Высказывания – это утверждения, которые могут быть истинными или ложными.

Высказываниями могут быть только утвердительные выражения

Примеры:

Высказывания:

- Вода кипит при 100°С истина
 Земля стоит на 3 китах ложь

Не высказывания:

• Сегодня отличная погода!

«Высказывания» в логике компьютера:

- 0 ложь
- 1 истина

Логические операции и булевы функции

Видео 1, 2:45

f = x₁ ° x₂ ° - какая-то операция x₁, x₂ - булевы операнды

Логические операции над высказываниями

Видео 2, 0:00

Унарные (которые применяются к одному операнду):

• инверсия (отрицание)

Бинарные (применяются к двум операндам):

- дизъюнкция
- конъюнкция
- импликация
- строгая дизъюнкция
- эквиваленция

Инверсия

Видео 2, 0:26

Инверсия = отрицание. Инверсия меняет значение операнда на противоположное. Обозначение: $\overline{\mathbf{x}}$

$$\overline{0} = 1$$

 $\overline{1} = 0$

Дизъюнкция (логическое сложение)

Видео 2, 0:58

Дизъюнкция истинна, если истинен хотя бы один операнд

$$f = x_1 + x_2$$
 x_1, x_2 — операнды (предикаты), f — функция

Обозначения:

$$f = x_1 + x_2$$

 $f = x_1 \lor x_2$
 $f = x_1 || x_2$
 $f = x_1 OR x_2$

Конъюнкция (логическое умножение)

Видео 2, 2:23

Конъюнкция истинна, если верны все операнды

$$f = x_1 \cdot x_2$$

Обозначения:

$$f = x_1 \wedge x_2$$

$$f = x_1 \cdot x_2$$

$$f = x_1 & x_2$$

$$f = x_1 \text{ AND } x_2$$

	X 1	X 2	f
0	0	0	0
1	0	1	0
2	1	0	0
3	1	1	1

Импликация

Видео 2, 2:58

Импликация ложна только тогда, когда из истины следует ложь

Обозначения:

$$f = x_1 \rightarrow x_2$$

	X 1	X 2	f
0	0	0	1
1	0	1	1
2	1	0	0
3	1	1	1

Строгая дизъюнкция (побитовое исключающее ИЛИ)

Видео 2, 3:40

Строгая дизъюнкция истинна, если ровно один операнд истинен

$$f = x_1 \oplus x_2$$

Строгая дизъюнкция – это сложение по mod 2 (остаток от деления на 2)

	X 1	X 2	f
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	0

Обозначения:

$$f = x_1 \oplus x_2$$

 $f = x_1 XOR x_2$

Эквиваленция (логическое равенство)

Видео 2, 4:32

Эквиваленция истинна, если значения операндов совпадают

$$f = x_1 \sim x_2$$

	X 1	X 2	f	
0	0	0	1	
1	0	1	0	
2	1	0	0	
3	1	1	1	

Обозначения:

$$f = x_1 \equiv x_2$$
$$f = x_1 \sim x_2$$

Свойства логических операций

Видео 3, 0:00

- 1. Коммутативность $x \cdot y = y \cdot x$
- 2. Ассоциативность $(z \cdot y) \cdot x = (x \cdot y) \cdot z$
- 3. Дистрибутивность $x \cdot (y + z) = x \cdot y + x \cdot z \\ x \cdot (y \oplus z) = x \cdot y \oplus x \cdot z$

Иерархия функций

Видео 3, 0:58

- инверсия
- Λ конъюнкция
- V, ⊕ дизъюнкция, строгая дизъюнкция
- → импликация
- ~ эквиваленция

Построение вектора значений функции

Видео 3, 2:14

$$f = x \wedge y \sim \overline{z \vee y}$$

- Определим кол-во строк.
 2³= 8 строк
- 2. Следуем иерархии операций:
 - сначал<u>а z V</u> у,
 - затем <u>z V у</u>,
 - и, наконец, х ∧ у
- 3. Считаем f

Х	у	z	z∨y	<mark>z∨y</mark>	хлу	f
0	0	0	0	1	0	0
0	0	1	1	0	0	1
0	1	0	1	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	1	1	0	0	1
1	1	0	1	0	1	0
1	1	1	1	0	1	0