#### **Smart Home Simulator - Phase 1**

### **Team Members**

Christa Abou Arraje - ID: 40226631

(role: Domain Model, technologies used)

Gabriel Rodriguez - ID: 40208888

(role: Context Diagram)

Jose Semaan - ID: 40244141

(role: Domain Model)

Ashpreet Singh - ID: 40172137

(role: Problem Definition)

Mark Tadros - ID: 40250850

(role: Context Diagram, technologies used, team leader)

# SOEN 343 - Software Architecture and Design Concordia University February 12<sup>th</sup>, 2024

# <u>Table of Contents</u>

| 1. Problem definition              | 3 |
|------------------------------------|---|
| 1.1 Problem Statement              | 3 |
| 1.2 Product Position Statement     | 3 |
| 1.3 Product Overview               | 3 |
| 1.3.1 Product Perspective          | 3 |
| 1.3.2 Assumptions and Dependencies | 4 |
| 2. Technology Used.                | 6 |
| 2.1 Control version System         | 6 |
| 2.2 Team Collaboration             | 6 |
| 2.3 Monitoring and Verification    | 6 |
| 2.4 Design and Modeling Work       | 6 |
| 2.5 Development Framework          | 6 |
| 2.6 Coding                         | 6 |
| 3. Context Diagram                 | 7 |
| 4. Domain Model                    | 8 |
| 5. Reference                       | 9 |

# 1. Problem definition

## 1.1 Problem Statement

|                        | a lack of comprehensive tools for simulating, testing, and educating on smart home configurations in a virtual environment                                                                                         |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Affects                | developers, educators, and smart home enthusiasts who require deep insights beyond the capabilities of current smart home management systems like Google Home and Amazon Alexa                                     |
| The impact of which is | restricted innovation in smart home technologies due<br>to the inability to experiment with complex scenarios<br>and system integrations without the cost or risk of<br>real-world deployment                      |
|                        | a platform that bridges this gap by offering advanced<br>simulation capabilities, fostering innovation, and<br>providing educational value beyond the operational<br>control provided by existing market solutions |

## 1.2 Product Position Statement

| For         | developers, researchers, and educators seeking an in-depth tool for smart home technology experimentation and learning                                        |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Who         | need to explore and innovate within the smart home space without the limitations of physical device constraints                                               |
| Beta        | is a comprehensive simulation platform                                                                                                                        |
| That        | offers unparalleled insights into smart home system behaviors, interactions, and potential innovations                                                        |
| Unlike      | mainstream smart home solutions like Google Home and Amazon Alexa, which focus on device management and control                                               |
| Our product | enables a deeper understanding and experimentation with smart home technologies, positioning SHS as a unique educational and developmental tool in the market |

# 1.3 Product Overview

# 1.3.1 Product Perspective

|                    |                       | Differentiating          |                                |
|--------------------|-----------------------|--------------------------|--------------------------------|
| Product            | Similar Features      | Features                 | Competitive Advantage          |
|                    | - Virtual environment | - In-depth educational   |                                |
|                    | for smart home        | and experimental         | - SHS allows for extensive     |
|                    | simulation            | platform                 | what-if scenario testing,      |
|                    | - API interfaces for  | - Customizable scenarios | which is not typically         |
|                    | device behavior       | for advanced testing     | offered by consumer-grade      |
| SHS                | emulation             | beyond real-time control | products                       |
|                    |                       | - Primarily focused on   | - SHS provides a broader       |
|                    | - Voice-controlled    | real-time device         | educational focus, whereas     |
|                    | home automation       | management               | Google Home is optimized       |
|                    | - Integration with    | - Limited to Google's    | for end-user convenience       |
| Google Home        | various smart devices | ecosystem                | and control                    |
|                    | - User-friendly       |                          | - SHS's simulation-based       |
|                    | interface for smart   | - Closed system with     | approach is unique and         |
|                    | device management     | limited scope for user   | offers a deeper dive into      |
|                    | - Wide range of       | customization            | smart home management          |
| Amazon             | compatible smart      | - Focus on voice         | compared to Alexa's more       |
| Alexa              | home products         | interaction              | surface-level control          |
|                    | - Secure and private  | - Requires Apple         |                                |
|                    |                       | hardware and is limited  |                                |
|                    | smart home devices    | to HomeKit-compatible    | - SHS is platform-agnostic     |
|                    | - Seamless            | devices                  | and does not require specific  |
| Apple              | integration with      | - Lacks a virtual        | hardware, offering flexibility |
| HomeKit            | Apple products        | simulation environment   | and a wider reach              |
|                    | - Integrates with a   | - More hardware-centric, |                                |
|                    | variety of smart      | requiring a SmartThings  | - SHS stands out by            |
|                    | devices               | Hub                      | providing a risk-free          |
|                    | - Offers some level   | - Focused on device      | environment for testing and    |
| Samsung            | of automation and     | connectivity rather than | learning, which SmartThings    |
| <b>SmartThings</b> | control               | simulation               | does not directly address      |
|                    | - Open-source         |                          |                                |
|                    | platform for smart    |                          | - SHS is specifically          |
|                    | home integration      | - Steeper learning curve | designed to be user-friendly   |
|                    | - Highly              | - Focuses on real-world  | and educational, potentially   |
|                    | customizable and      | integration over         | serving a different market     |
| OpenHAB            | flexible              | simulation               | segment than OpenHAB           |

# 1.3.2 Assumptions and Dependencies

| Assumptions                                                                                                                                                                                  | Dependencies                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Users are looking for a simulation platform to understand and innovate in smart home technology, not just a control interface like those offered by Google Home or Amazon Alexa.             | The simulator's advanced features and usability must be clearly communicated to differentiate it from the convenience-oriented products in the market.                       |
| There is a market need for a tool that can simulate complex smart home scenarios for educational and developmental purposes, which is not currently met by existing consumer-grade products. | Ongoing updates and compatibility with various smart home protocols and devices to ensure SHS remains relevant against platforms like Apple HomeKit and Samsung SmartThings. |
| Educators and developers prefer a platform-agnostic tool that does not require specific hardware, unlike systems such as Apple HomeKit, which operates within the Apple ecosystem.           | The success of SHS may depend on the availability of a robust online community or support system similar to that which supports open-source platforms like OpenHAB.          |
| Potential users have the technical skill or willingness to engage with a more complex system that provides greater control and customization options than mainstream smart home systems.     | Dependencies on external APIs and services must<br>be managed to ensure SHS can simulate a range of<br>devices and scenarios accurately.                                     |

#### 2. Technology Used

#### 2.1 Control version System

For the control version system, we will be using GitHub. Here is the link to our repository: <a href="mailto:christa-ux/Beta (github.com">christa-ux/Beta (github.com)</a>. Since we're still in sprint 1, our GitHub is mainly empty.

#### 2.2 Team Collaboration

Concerning team collaboration and communication, Discord is our platform of choice. It allows us to have different channels, which means that our conversations can be divided into types like "general", "sprint1", "documents", etc. This helps with the organization, and it allows for easy access. For example, in the "documents" channel, we only share documents related to our work. For example if someone finished their part, then can send it there, or if we're working on a specific sprint, the instructions would also be found there.

#### 2.3 Monitoring and Verification

Starting Sprint 2, we'll be using commits on Github to track each person's finished tasks. We also have our main branch protected, so that any thing that wants to be merged will have to be reviewed by 2 people first. In addition, to stay on track and on the same page, we do regular meetings, mainly on Discord or Zoom to make sure everyone is okay with their part. For testing the code, we will be conducting unit testing with hopefully at least 80% coverage, using JUnit.

#### 2.4 Design and Modeling Work

The design of the Context Diagram and Domain Model were done using *draw.io*, a simple software that provides us with built-in tools to draw our models and diagrams. PowerPoint was also used since it provides us with shapes and some teammates are more familiar with it.

### 2.5 Development Framework

As a first decision, we opted for React as the framework for JavaScript for the front-end. Concerning the back-end, we'll be using Java, and we're considering Spring boot as it offers rich functionality for web-applications.

### 2.6 Coding

For the development of the "Smart Home" simulator, we discussed, as a team, that the most appropriate and direct programming languages to work with are: HTML, CSS, JavaScript and Java. The frontend, mainly the looks and the visual design of the simulator, will be implemented using the first 4 languages. As for the backend, which has to do with how the system functions, the storing of information and the interaction between entities, it will mainly be developed using Java which is an Object-oriented Programming language.

For simplicity, you can look at the following table to see which technology will be used for which activity:

| Activities                    | Used Technology                   |
|-------------------------------|-----------------------------------|
| <b>Control Version System</b> | GitHub and Moodle                 |
| Team Collaboration            | Discord                           |
| Monitoring and                | GitHub, Discord and Zoom          |
| Verification                  |                                   |
| Design and Modeling           | Draw.io and PowerPoint            |
| Work                          |                                   |
| Development                   | ReactJS/React Native, Spring boot |
| Framework                     |                                   |
| Coding                        | HTML, CSS, JavaScript and Java    |

## 3. Context Diagram



<u>Figure 1</u>: The context diagram displays how the external factors affect the system. The house layout is taken from a text file with the rooms and its configurations. User profiles are created to interact with the system as family members, guests or strangers. The modules are the elements the systems work with such as heating and security. Finally, there is the simulator with the dashboard and API that makes it all work together.

#### 4. Domain Model



<u>Figure 2</u>: Our smart home system simulator is centered on the dashboard which is the main interface. This dashboard is divided into 4 sub parts: System Parameters, Output Console, House View, and Smart Home Modules. Moreover, users can be of different types, and the simulator user has access to every type, in addition to using the system simulator as a whole.

#### 5. Reference

Context diagram. IST Project Management Office. (2023, October 5). https://uwaterloo.ca/ist-project-management-office/tools-and-templates/tools/context-diagram#:~:text=Context%20diagrams%20show%20the%20interactions,system%20will%20be%20part%20of.

Top 51 software development frameworks. Top Software Outsourcing Company in Vietnam - Orient Software. (n.d.). https://www.orientsoftware.com/blog/software-development-frameworks/

Johns, R. (n.d.). Want to level up in Java? Use these Java frameworks! *Hackr.io*. <a href="https://hackr.io/blog/java-frameworks">https://hackr.io/blog/java-frameworks</a>