

MA2011 MECHATRONICS SYSTEMS INTERFACING

Tutorial 6
Prof. Cai Yiyu

College of Engineering
School of Mechanical and Aerospace Engineering

A/D CONVERSION

&

D/A CONVERSION

Specify an appropriate ±5V n-bit A/D converter (8- or 12-bit), sample rate (up to 100 Hz) and signal conditioning to convert the following analog signal into digital series. Estimate the relative quantization error in quantizing the specified input voltage:

$$E(t) = 1.5 \sin \pi t + 20 \sin 32\pi t - 3 \sin (60\pi t + \pi/4) V$$

(Many possible solutions.)

Input vs output

KNOWN: A/D converter: n = 8 or 12; $V_{max} = 5$ V; $V_{min} = -5$ V

 $0 \le f_s \le 100 \text{ Hz}$

Estimate the maximum Quantifying Error for your choice

Analysis

$$E(t) = 1.5 \sin \pi t + 20 \sin 32\pi t - 3 \sin (60\pi t + \pi/4) V$$

This input signal contains amplitudes C_1 , C_2 and C_3 with frequencies of $f_1 = 0.5$, $f_2 = 16$ and $f_3 = 30$ Hz, respectively.

Shannon-Nyquist Theorem

to be able to reconstruct the signal correctly, sampling theorem must be met:

$$f_s > 2f_{max}$$

The maximum frequency in the signal, f_{max} , is 30 Hz. So we must select $f_z > 60$ Hz.

Accuracy

The choice of number of bits for the A/D converter depends on the required accuracy as well as the accuracy of the transducer. For 8-bit A/D converter,

$$Q = \frac{10 \text{ V}}{2^8} = 39.1 \text{ mV}$$

For 12-bit A/D converter,
$$Q = \frac{10}{2^{12}} = 2.44 \text{ mV}$$

Finding the Amplitude Range

Amplitude range of the signal E(t) can only be found from the time domain plot or by differentiating the equation.

No unique solution

SOLUTION:

This design problem has an open-ended solution path. To demonstrate, one possible solution is presented.

Estimation of Amplitude Range

However, we know that it will never exceed $\pm (1.5 + 20 + 3) = \pm 24.5 \text{ V}.$

Estimated Gain

$$V_{out} = A_v V_{in}$$

So, we need a gain of $\pm 5V / \pm 24.5 V = about 0.2$.

Error

The relative quantization error is given by

G=0.2 Q(8-bits)=39.1mV Q(12-bits)=2.44mV Max Amplitudes A=?

The Detail

For each frequency component and the signal, this is listed as:

Commonant	Frequency	Max. Amplitude	Relative Quantization Error $\frac{Q}{0.2A}$ *100%	
Component			8-bits	12-bits
1.5sinπt	0.5	1.5	39.1mV/0.2/1.5*100%=13%	2.44mV/0.2/1.5*100%= 0.81%
20sin32πt	16	20	39.1mV/0.2/20*100%=9.8%	2.44mV/0.2/20*100%= 0.06%
3sin(60 π t+ π /4)	30	3	39.1mV/0.2/3*100%=6.5%	2.44mV/0.2/3*100%= 0.41%
E(t)		<+24.5	39.1mV/0.2/24.5*100%=0.8%	2.44mV/0.2/24.5*100%= 0.05%

As the relative quantization error for both 8-bit and 12-bit A/D converters are less than 1% for E(t), either is suitable for most applications. If the accuracies for the low-level components are important, then the 12-bit A/D converter is required.

Static pressures are to be measured at eight locations (at 8-cylinder points) under the hood of a NASCAR race car (with a V-8 engine). The pressure transducers to be used have an output span of $\pm 1 \text{ V}$ for an input span of ±25 cm H₂O. The signals are measured and recorded on a portable DAS/computer, which uses a 10-bit, ±5V A/D converter. Pressure needs to be resolved to within 0.25 cm H₂O. The dynamic content of the signal is important and has a fundamental period of about 0.5 s. Suggest an appropriate sample rate and signal conditioning (i.e. amplifier gain G and anti-aliasing filter cut off frequency f_c) for this application.

DAS=Direct-attached storage

(Many possible solutions.)

Input vs output

KNOWN: Transducer: ±1 V output; ±25 cm H₂O input

DAS (ADC): n = 10; $V_{max} = 5 \text{ V}$; $V_{min} = -5 \text{ V}$

FIND: f_s , f_c , G.

Race Car

Input span: \pm 25 cm H₂O (Pressure Transducer)

Output span: $\pm 1 \text{ V}$ (Pressure Transducer)

ADC: 10-bit, -5 V Range, 0.25 cm H₂O

Sensitivity K

The transducer sensitivity

$$K = \Delta V_{out}/\Delta V_{in} = (1-(-1))V/(25-(-25)) \text{ cmH}_2O = 2V/50\text{cmH}_2O$$

$$=0.04$$
V/cmH₂O

Sensitivity K meets problem constraint (10-bit ADC)?

The A/D resolution is:

$$Q = \frac{10V}{2^{10}} = 0.00976 \text{ V}.$$

Pressure needs within 0.25 cm H₂O

This can be expressed as

$$Q = \frac{0.00976V}{0.04V/\text{cm H}_2O} = 0.244 \text{ cm H}_2O < 0.25 \text{ cm H}_2O$$

Amplifier (Gain 5)

The sensitivity meets problem constraints. However, an analog amplifier between the transducer and A/D converter with a gain of G = 5 will take full advantage of the A/D range and improve resolution:

$$Q = \frac{0.00976V}{5 \times 0.04V / \text{cmH}_2\text{O}} = 0.0488 \text{ cm H}_2\text{O}$$

For one pressure sensor, the fundamental period of the signal is about 0.5s (500ms), or a frequency of 2Hz. The maximum sampling period is 250ms or the minimum sampling frequency is greater than 4 Hz.

Sampling

Since the car is powered by a high performance V-8 engine, there are 8 cylinders and there are 8 pressure signals to sense, one for each cylinder. Hence, the DAS has to sample at least up to 8 times faster than maximum sampling period required for 1 pressure sensor i.e. 250/8 [ms] or a minimum frequency of 32 Hz. Δ max=250/8 ms. f_{min}=8000/250=32Hz

The range of a signal is between ± 5 V and it is required to make measurements with a quantization size no more than 5 mV. What is the minimum resolution of an ADC needed?

Since

$$\frac{5 - (-5)}{2^N} = Q \le 0.005$$

$$\Rightarrow 2^N \ge \frac{10}{0.005} = 2000$$

If N = 11, $2^N = 2048$ and if N = 12, $2^N = 4096$. Although a 11-bit ADC will suffice, it is not commercially available. Hence a **12-bit ADC** will be needed.

One Objective

Two Ideas Three Techniques

Four Examples

Five Misunderstandings

Six & Seven
Tutorials & Project

REVISION: ONE OBJECTIVE OF DIGITIZATION

REVISION: TWO IDEAS

- 1. Fourier Series Representation (Theory)
 - Frequency domain analysis

- 2. Shannon-Nyquist Theorem
 - Aliasing, 2-phase filtering

REVISION: THREE TECHNIQUES

1: Frequency Domain Analysis

Spike plotting

2: First Order System

Dynamic Error 3:Sampling & Aliasing

Two-phase Filtering

REVISION: THREE TECHNIQUES

1: Frequency Domain Analysis

Spike plotting

2: First Order System

Dynamic Error

3:Sampling & Aliasing

Two-phase Filtering

ANSWER TO Q4

REVISION: FOUR EXAMPLES

T2 Q2

T3 Q2

f(t) is a function defined as follows.

- (a) Is it a periodic function? If yes, what is the period, and write the function of the waveform defined at [0, T]
- (b) Is it a symmetric function?
- (c) Can the waveform be represented by Fourier Series? If yes, what are the DC C_0 , A_n and B_n of the waveform and the Fourier Series?
- (d) What are the peak amplitude, and peak-to-peak amplitude?
- (e) If the peak amplitude is changed to A, what will be the function of f(t) and its Fourier Series Representation?

During a step function calibration, a first-order instrument is exposed to a step change of 100 units. If after 1.2 s the instrument indicates 80 units, estimate the instrument time constant. Estimate the error in the indicated value after 1.5 s. Assume $X_{out}(0) = 0$ units and K = 1 unit/unit.

 $c \tau = 0.75 \text{ s}$; error at 1.5 s = 13.4 units

Content Copyright Nanyang Technological Universi

12

Content Copyright Nanyang Technological University

1

T4 Q1

T5 Q3

3. An accelerometer that is used to measure the vibration of a machine has a frequency response as shown in the figure below:

The vibration signal is filtered to ensure that the vibration signal beyond 2.5 kHz does not affect the recording of the measurements.

Content Copyright Nanyang Technological University

19

REVISION: FIVE MISUNDERSTANDINGS

Tutorial	Content
# 6	A/D & D/A Conversion
# 5	Amplifiers
# 4	Sampling Quantizing Coding
# 3	Zero-order system First-order system Second-order system
# 2	Fourier Series
# 1	Characteristics of Measurement System

Lecture	Content	Fundamental
# 6	A/D & D/A Conversions	Shannon-Nyquist Theorem Ordinary Differential Equations Fourier Series
# 5	Amplifiers	Shannon-Nyquist Theorem Ordinary Differential Equations Fourier Series
# 4	Sampling Quantizing Coding	Shannon-Nyquist Theorem Fourier Series
# 3	Zero-order system First-order system Second-order system	Ordinary Differential Equations Fourier Series
# 2	Fourier Series	Fourier Series
# 1	Characteristics of Measurement System	Concepts

Lecture	Content	Fundamental	Application
# 6	A/D & D/A Conversions	Shannon-Nyquist Theorem Ordinary Differential Equations Fourier Series	A/D Converter D/A Converter Design
# 5	Amplifiers	Shannon-Nyquist Theorem Ordinary Differential Equations Fourier Series	Amplifier Design
# 4	Sampling Quantizing Coding	Shannon-Nyquist Theorem Fourier Series	A/D & D/A Conversion
# 3	Zero-order system First-order system Second-order system	Ordinary Differential Equations Fourier Series	Amplifier Design, ADC, DAC
# 2	Fourier Series	Fourier Series	Amplifier Design, ADC, DAC
# 1	Characteristics of Measurement System	Concepts	

Lecture	Content	Fundamental	Application	Difficult Level
# 6	A/D Conversion	Shannon-Nyquist Theorem Ordinary Differential Equations Fourier Series	A/D Converter D/A Converter Design	***
# 5	Amplifiers	Shannon-Nyquist Theorem Ordinary Differential Equations Fourier Series	Amplifier Design	***
# 4	Sampling Quantizing Coding	Shannon-Nyquist Theorem Fourier Series		***
#3	Zero-order system First-order system Second-order system	Ordinary Differential Equations Fourier Series		****
# 2	Fourier Series	Fourier Series		***
# 1	Resistors, Capacitors,	Mechatronics Concepts		*

Lecture	Content	Fundamental	Not Examinable
# 6	A/D & D/A Conversions	Shannon-Nyquist Theorem Ordinary Differential Equations Fourier Series	
# 5	Amplifiers	Shannon-Nyquist Theorem Ordinary Differential Equations Fourier Series	
# 4	Sampling Quantizing Coding	Shannon-Nyquist Theorem Fourier Series	Mathematics Proof of Shannon-Nyquist Theorem
# 3	Zero-order system First-order system Second-order system	Ordinary Differential Equations Fourier Series	Mathematics Proof of Ordinary Different Equation
# 2	Fourier Series	Fourier Series	Mathematics Proof of Fourier Series Representation
# 1	Characteristics of Measurement System	Mechatronics Concepts	