0n considère la fonction f définie par f(x)=3x.

- 1. Calculer le taux de variation de la fonction f entre 2 et 7.
- 2. Exprimer le taux de variation de la fonction f entre 2 et 2+h en fonction de h.
- 3. Retrouver le taux de variation de la fonction f entre 2 et 7 à l'aide de la question précédente.
- 4. Quel est le taux de variation de la fonction f entre 2 et 4?
- 5. Déterminer le nombre dérivé de la fonction f en 2 à l'aide du taux de variation.
- 6. Donner une interprétation graphique du nombre dérivé obtenu.

On considère la fonction f définie par $f(x)=rac{x^2}{4}$.

- 1. Calculer le taux de variation de la fonction f entre $\mathbf{3}$ et $\mathbf{5}$.
- 2. Exprimer le taux de variation de la fonction f entre 3 et 3+h en fonction de h.
- 3. Retrouver le taux de variation de la fonction f entre 3 et 5 à l'aide de la question précédente.
- 4. Quel est le taux de variation de la fonction f entre 3 et 4?
- 5. Déterminer le nombre dérivé de la fonction f en 3 à l'aide du taux de variation.
- 6. Donner une interprétation graphique du nombre dérivé obtenu.
- 7. Tracer sur le graphique suivant la tangente à la courbe de la fonction f au point d'abscisse 3.

- 8. Déterminer une équation de la tangente à la courbe de la fonction f au point d'abscisse 3.
- 9. Notons g la fonction affine dont la tangente à la courbe de la fonction f au point d'abscisse 3 est la représentation graphique.
 - Démontrer que $4(f(x)-g(x))=x^2-6x+9.$
- 10. Déduire de la question précédente la position relative de la courbe représentative de la fonction f par rapport à sa tangente au point d'abscisse 3.

- On considère la fonction f définie sur \mathbb{R}^* par $f(x)=rac{5}{x}$.
 - 1. Calculer le taux de variation de la fonction f entre 1 et 4.
 - 2. Exprimer le taux de variation de la fonction f entre 1 et 1+h en fonction de h
 - 3. Retrouver le taux de variation de la fonction f entre 1 et 4 à l'aide de la question précédente.
 - 4. Quel est le taux de variation de la fonction f entre 1 et 0,5?
 - 5. Déterminer le nombre dérivé de la fonction f en 1 à l'aide du taux de variation.
 - 6. Donner une interprétation graphique du nombre dérivé obtenu.
 - 7. Tracer sur le graphique suivant la tangente à la courbe de la fonction f au point d'abscisse 1.

- 8. Déterminer une équation de la tangente à la courbe de la fonction f au point d'abscisse 1.
- 9. Notons g la fonction affine dont la tangente à la courbe de la fonction f au point d'abscisse 1 est la représentation graphique.

Démontrer que $\dfrac{f(x)-g(x)}{5}=\dfrac{x^2-2x+1}{x}$ pour x>0.

10. Déduire de la question précédente la position relative de la courbe représentative de la fonction f par rapport à sa tangente au point d'abscisse 1.

 \mathbb{R}^+ par $f(x)=\sqrt{x}$.

- 1. Calculer le taux de variation de la fonction f entre 1 et 4.
- 2. Montrer que le taux de variation de la fonction f entre 1 et 1+h en fonction de h est $\frac{1}{\sqrt{1+h}+1}.$
- 3. Retrouver le taux de variation de la fonction f entre 1 et 4 à l'aide de la question précédente.
- 4. Quel est le taux de variation de la fonction f entre 1 et 1,21?
- 5. Déterminer le nombre dérivé de la fonction f en 1 à l'aide du taux de variation.
- 6. Donner une interprétation graphique du nombre dérivé obtenu.
- 7. Tracer sur le graphique suivant la tangente à la courbe de la fonction f au point d'abscisse 1.

- 8. Déterminer une équation de la tangente à la courbe de la fonction f au point d'abscisse $1. \ \ \,$
- 9. Notons g la fonction affine dont la tangente à la courbe de la fonction f au point d'abscisse 1 est la représentation graphique.

Démontrer que $-2(f(x)-g(x))=x-2\sqrt{x}+1.$

10. Déduire de la question précédente la position relative de la courbe représentative de la fonction f par rapport à sa tangente au point d'abscisse 1.

On considère la fonction f définie par $f(x)=x^3$.

- 1. Calculer le taux de variation de la fonction f entre $-\frac{3}{2}$ et -1.
- 2. Montrer que le taux de variation de la $\mbox{fonction }f\mbox{ entre }-1\mbox{ et }-1+h\mbox{ en fonction}$ $\mbox{de }h\mbox{ est }h^2-3h+3.$

Indication : On pourra utiliser l'identité remarquable $a^3-b^3=(a-b)(a^2+ab+b^2)$.

- 3. Retrouver le taux de variation de la fonction f entre -1 et $-\frac{3}{2}$ à l'aide de la question précédente.
- 4. Quel est le taux de variation de la fonction f entre -1 et $-\frac{1}{2}$?
- 5. Déterminer le nombre dérivé de la fonction f en -1 à l'aide du taux de variation.
- 6. Donner une interprétation graphique du nombre dérivé obtenu.
- 7. Tracer sur le graphique suivant la tangente à la courbe de la fonction f au point d'abscisse -1.

- 8. Déterminer une équation de la tangente à la courbe de la fonction f au point d'abscisse -1.
- 9. Notons g la fonction affine dont la tangente à la courbe de la fonction f au point d'abscisse -1 est la représentation graphique. Démontrer que

 $f(x) - g(x) = (x+1)(x^2 - x - 2).$

10. En observant que pour x<0, x-2<-2 et en factorisant x^2-x-2 , déduire de la question précédente la position relative de la courbe représentative de la fonction f par rapport à sa tangente au point d'abscisse -1.