Access GeoGebra at https://www.geogebra.org/m/tuf7y6sh.

Two stills from the GeoGebra interactive are in Figure 1 and Figure 2.

In-class Problem 1 The steps below outline the proof in the general case, when p = 7 and q = 5. This case is in Figure 1.

Figure 1: The lattice for the p = 7, q = 5 problem, with the j = 1 and k = 2 cases highlighted

- (a) The line segment between the origin and (7,5) has slope _____. Since p=7 and q=5 are distinct primes, there are no lattice points on line segment except the endpoints.
- (b) First, we will count the number of points N_1 where $\frac{5-1}{2} \ge y > \frac{5}{7}x > 0$. This triangle is grey in the GeoGebra. We will count how many lattice points on each horizontal lines j = 1, 2. Let's just check the numbers we should get:
 - When j = 1, there are _____ lattice points.
 - When j = 2, there are _____ lattice points.

For each j, we are counting positive integers $x < \underline{\hspace{1cm}} j$. Which is,

Thus, the total number of lattice points in this triangle, N_1 , is

Learning outcomes:

Author(s): Claire Merriman

(c) Next we will count the rest of the lattice points in the rectangle, the blue region in the GeoGebra. We will call this number N_2 .

The region is bounded by $0 < x \le \frac{7-1}{2}$, $0 < y < \frac{5}{7}x$, and $y \le \frac{5-1}{2}$. Now, the point A where $y = \frac{5}{7}x$ intersects $y = \frac{5-1}{2}$ is between two consecutive lattice points, with coordinates Similarly, the point B where $y = \frac{5}{7}x$ intersects $x = \frac{7-1}{2}$ is between two consecutive lattice points, with coordinates Thus, the only lattice point in the triangle A, B and $\left(\frac{7-1}{2}, \frac{5-1}{2}\right)$ is $\left(\frac{7-1}{2}, \frac{5-1}{2}\right)$. Therefore, there are also N_2 lattice points in the triangle with vertices $(0,0), \left(\frac{7-1}{2},0\right), \left(\frac{7-1}{2},\frac{5-1}{2}\right)$.

- (d) We use the same method as N_1 to find N_2 . We will count how many lattice points on each vertical lines k = 1, 2, 3. Let's just check the numbers we should get:
 - When k = 1, there are _____ lattice points.
 - When k = 2, there are _____ lattice points.
 - When k = 3, there are _____ lattice points.

For each k, we are counting positive integers $y < \underline{\hspace{1cm}} k$. Which is,

Thus, the total number of lattice points in this triangle is

Thus, the total number of lattice points is $N_1 + N_2 =$

In-class Problem 2 The steps below outline the proof in the general case, when p = 23 and q = 13.

Figure 2: The lattice for the p = 23, q = 13, with the j = 3 and k = 7 cases highlighted

- (a) The line segment between the origin and (23, 13) has slope _____. Since p = 23 and q = 13 are distinct primes, there are no lattice points on line segment except the endpoints.
- (b) First, we will count the number of points N_1 where $\frac{13-1}{2} \ge y > \frac{13}{23}x > 0$. This triangle is grey in the GeoGebra. We will count how many lattice points on each horizontal lines $j = 1, 2, \ldots, \ldots$. Let's just check one case, we should get:
 - When j = 3, as in Figure 2, there are _____ lattice points.

For each j, we are counting positive integers $x < \underline{\hspace{1cm}} j$. Which is,

Thus, the total number of lattice points in this triangle is

- (c) Next we will count the rest of the lattice points in the rectangle, the blue region in the GeoGebra. We will call this number N_2 .
 - The region is bounded by $0 < x \le \frac{23-1}{2}$, $0 < y < \frac{13}{23}x$, and $y \le \frac{13-1}{2}$. Now, the point A where $y = \frac{13}{23}x$ intersects $y = \frac{13-1}{2}$ is between two consecutive lattice points, with coordinates Similarly, the point B where $y = \frac{13}{23}x$ intersects $x = \frac{23-1}{2}$ is between two consecutive lattice points, with coordinates Thus, the only lattice point in the triangle A, B and $\left(\frac{23-1}{2}, \frac{13-1}{2}\right)$ is $\left(\frac{23-1}{2}, \frac{13-1}{2}\right)$. Therefore, there are also N_2 lattice points in the triangle with vertices $(0,0), \left(\frac{23-1}{2},0\right), \left(\frac{23-1}{2},\frac{13-1}{2}\right)$.
- (d) We use the same method as N_1 to find N_2 . We will count how many lattice points on each vertical lines $k = 1, 2, \ldots,$ Let's just check the numbers we should get:
 - When k = 7, as in Figure 2, there are _____ lattice points.

For each k, we are counting positive integers $y < \underline{\hspace{1cm}} k$. Which is,

Thus, the total number of lattice points in this triangle is

Thus, the total number of lattice points is $N_1 + N_2 = \underline{\hspace{1cm}}$.