Trabalho 2: Detection of Skin Injury

Matéria: Introdução aos Métodos Discretos

Autores: Matheus Muniz Damasco e Raíla Andrade

Professores: Ruy Freitas Reis e Joventino de Oliveira Campos

Introdução

Os métodos térmicos de medição de temperatura na superfície da pele têm se destacado como uma alternativa mais atraente em comparação com outras formas de termometria não invasiva, como a ressonância magnética, micro-ondas e ultrassom. Essa preferência se deve principalmente por serem métodos mais econômicos e seguros.

Para aplicar esses métodos, precisamos resolver algumas equações complexas, conhecidas como equações bio-térmicas, que consideram as condições internas do corpo e as condições de contorno específicas. A equação de Pennes, proposta em 1948, é uma ferramenta para prever como o calor se comporta nos tecidos vivos.

Motivação

O estudo do comportamento da temperatura em tecidos biológicos é muito importante em áreas como a medicina e a engenharia biomédica, especialmente no contexto do diagnóstico e tratamento de condições como queimaduras, tumores e outras lesões cutâneas. Métodos para prever a distribuição de temperatura em tecidos vivos são úteis para aprimorar técnicas de diagnóstico não invasivo, permitindo intervenções mais rápidas e eficazes.

No nosso trabalho, vamos focar na aplicação do Método de Diferenças Finitas (FDM) para diagnósticos térmicos de tumores. Sabemos que a presença de um tumor pode alterar a forma como o sangue flui e como o calor é gerado no corpo. Isso faz com que a distribuição de temperatura na pele seja diferente do normal. Essa diferença pode ser valiosa para diagnósticos não invasivos dos tumores.

Desafio

Este trabalho se concentra na resolução da Equação de Pennes com a derivada em relação ao tempo (continuação do trabalho 1), focando especificamente na detecção de lesões térmicas na pele, como tumores. O artigo base utilizado neste desafio pode ser acessado no link abaixo:

An RBF-MFS Model for Analysing Thermal Behaviour of Skin Tissues

- Objetivos:
 - Resolver a Equação de Pennes com a derivada em relação ao tempo.
 - Reproduzir a Fig. 8. Steady State Temperature Distributions of Healthy and Tumor Tissue

Formulação da Equação de Pennes no Estado Estacionário

• Equação de Pennes Originalmente:

$$\rho c \frac{\partial u(x,t)}{\partial t} = \nabla \cdot [k \nabla u(x,t)] + \omega_b \rho_b c_b \left[u_a - u(x,t) \right] + Q_m + Q_r(x,t)$$

Equação de Pennes sem Qr:

$$ho c rac{\partial u(x,t)}{\partial t} =
abla \cdot [k
abla u(x,t)] + \omega_b
ho_b c_b [u_a - u(x,t)] + Q_m$$

- Na equação acima:
 - o p, c e k representam, respectivamente, a densidade, o calor específico e a condutividade térmica do tecido.
 - ο wb, pb e cb referem-se à perfusão sanguínea, à densidade e ao calor específico do sangue.
 - o u_a é a temperatura arterial, considerada constante, u(x) é a temperatura do tecido no estado estacionário.
 - Qm é a geração de calor metabólico e Qr representa a fonte de calor decorrente do aquecimento espacial, considerado sem a variável temporal devido ao estado estacionário.
 - Qr não será considerado em nosso trabalho.

Discretização da Equação

• Forma Final da Equação Discretizada:

$$u_{i,j}^{n+1} = u_{i,j}^n + dt \cdot [rac{k \cdot rac{(u_{i+1,j}^n + u_{i-1,j}^n + u_{i,j-1}^n + u_{i,j+1}^n - 4 \cdot u_{i,j}^n)}{p_b \cdot c_b}}{p_b \cdot c_b} + rac{w_b \cdot p_b \cdot c_b + (u_a - u_{i,j}^n + Q_m)}{p_b \cdot c_b}]$$

Variáveis e Condições de Contorno

- A malha do nosso modelo ficou com o comprimento ao longo do eixo x de 0.08 m e o comprimento ao longo do eixo y de 0.03 m.
- Para um tecido com tumor, podemos definir $L \subseteq \{|x_2| \le 0.01 \,\mathrm{m}, \, 0.005 \,\mathrm{m} \le x_1 \le 0.015 \,\mathrm{m}\}.$
- k é a condutividade térmica do tecido, com valor de 0.5 W/(m°C).
- ω_b é a perfusão sanguínea, mencionada como $0.0005\,\mathrm{m}^3/\mathrm{s/m}^3$ para tecido saudável e $0.002\,\mathrm{m}^3/\mathrm{s/m}^3$ para tecido tumoral.
- $\rho = \rho_b$ é a densidade do sangue, onde usamos $1000 \,\mathrm{kg/m^3}$.
- $c = c_b$ é o calor específico do sangue, sendo $4000 \,\mathrm{J/(kg^\circ C)}$.
- u_a = u_c = u₀ são referentes à temperatura arterial, temperatura do ambiente e temperatura inicial, respectivamente, e são consideradas constantes em 37°C.
- Q_m é referente à geração de calor metabólica, e os valores usados foram 420 W/m³ para tecido saudável e 4200 W/m³ para tecido tumoral.

• Neumann:

$$-q(x_1, x_2; 0) = 0, x_1, x_2 \in I, II, IV$$

• Dirichlet:

$$-u(x_1, x_2; 0) = 37^{\circ}C, \quad x_1, x_2 \in III$$

Desenvolvimento no tempo da nossa equação

No vídeo ao lado conseguimos analisar o desenvolvimento da nossa equação ao longo do tempo e como o tecido saudável se comporta diferente do tecido tumoral. Podemos ver no nosso gráfico simulado ao lado que o tecido saudável converge em aproximadamente 41760 segundos, já o nosso tecido tumoral converge em aproximadamente 41343 segundos.

Comparações

Ao incorporar a derivada temporal na modelagem da distribuição térmica em tecidos biológicos, podemos analisar como essa distribuição evolui ao longo do tempo.

No tecido saudável, a difusão térmica domina, espalhando o calor de maneira mais uniforme. Com o passar do tempo, essa uniformidade tende a se acentuar, refletindo a eficiência do tecido saudável em regular sua temperatura.

No tecido tumoral, a maior geração de calor dentro do tumor continua a aumentar a temperatura nessa região, o que pode causar um padrão de temperatura menos uniforme, com gradientes mais acentuados ao redor da região tumoral.

Com o avançar dos passos de tempo no modelo, o sistema tende a se estabilizar, alcançando um estado estacionário.

Conclusões

O nosso trabalho foca especificamente na aplicação do método de diferenças finitas (FDM) para diagnósticos térmicos em lesões como tumores. Embora o Método de Diferenças Finitas (FDM) ofereça simplicidade e eficiência em muitos contextos, sua principal limitação reside na dificuldade de lidar com geometrias complexas e arbitrárias. Isso ocorre devido aos desafios de interpolação entre os contornos e os pontos interiores, especialmente ao desenvolver expressões de diferenças finitas para os nós próximos às bordas do domínio.

A incorporação da derivada temporal na modelagem da distribuição térmica em tecidos biológicos permite uma compreensão aprofundada de como o calor se comporta e evolui nesses meios ao longo do tempo.

À medida que o modelo evolui temporalmente, tanto os tecidos saudáveis quanto os tumorais tendem a alcançar um estado estacionário, refletindo suas características térmicas intrínsecas. Essa análise é importante para aprimorar métodos diagnósticos e terapêuticos, permitindo a identificação de anomalias térmicas associadas a tumores e contribuindo para o desenvolvimento de abordagens médicas mais eficazes e direcionadas.

Referências

An RBF-MFS Model for Analysing Thermal Behaviour of Skin Tissues