1 Cariche puntiformi

Una carica puntiforme di $3\mu C$ dista $12\,\mathrm{cm}$ da una seconda carica puntiforme di $-1.5\,\mu C$. (a) Disegnare il campo elettrico creato da ciascuna carica, ed il campo elettrico totale; (b) calcolare l'intensità della forza su ciascuna carica, e l'intensità del campo elettrico generato dalla prima carica nel punto in cui si trova la seconda carica; (c) trovare la distanza necessaria fra le cariche affinché queste siano soggette ad forza di $5.7\,\mathrm{N}$. (Costante dielettrica del vuoto $\varepsilon_0 = 8.854 \times 10^{-12}\,\mathrm{C}^2/(\mathrm{m}^2\,\mathrm{N})$; costante di Coulomb $k = 1/4\pi\varepsilon_0 = 1.5\,\mathrm{M}$ [2.7 N; 1.86 \times 10⁶ V/m; 8.4 cm]

2 Condensatore

Determinare la capacità di un condensatore a facce piane e parallele con armature costituite da due dischi metallici (raggio $R=20\,\mathrm{cm}$) separati da uno strato d'aria di spessore $2.5\,\mathrm{mm}$. Determinare la carica su ciascuna armatura se il condensatore viene collegato a una pila da $9\,\mathrm{V}$ e calcolare il campo elettrico nella regione tra le armature. $[445\,\mathrm{pF};4\,\mathrm{nC};3.6\times10^3\,\mathrm{V/m}]$

3 Circuito con condensatori

Determinare la capacità equivalente del circuito in figura quando $C_1=1\,\mathrm{pF},\,C_2=2\,\mathrm{pF},\,C_3=3\,\mathrm{pF},\,C_4=4\,\mathrm{pF}$ e $C_5=5\,\mathrm{pF}.$ Calcolare, inoltre, la carica e la tensione di ciascun condensatore per $V_{ab}=100\,\mathrm{V}.$

$$[C=7.4~\mathrm{pF};Q=40~\mathrm{pC},\,80~\mathrm{pC},\,120~\mathrm{pC},\,240~\mathrm{pC}\text{ and }500~\mathrm{pC};V_{1,2,3}=40~\mathrm{V};V_4=60~\mathrm{V};V_5=100~\mathrm{V}]\\ [6~\mathrm{pF};12/5~\mathrm{pF};37/5~\mathrm{pF};V_4=60~\mathrm{V};V_{1,2,3}=40~\mathrm{V};V_5=100~\mathrm{V}]$$

4 Corrente elettrica

Alle estremità di un filo di rame è applicata una differenza di potenziale di 0.5 V. Il filo è lungo 2 m e ha un diametro di 0.8 mm. Calcolare: (a) la resistenza del filo; (b) l'energia dissipata in 10 s; (c) la quantità di carica totale che ha attraversato il filo in quel tempo. (La resistività del rame a 20 °C è 1.68×10^{-8} Ω m; la carica dell'elettrone è $q_e = -1.60 \times 10^{-19}$ C). [6.7×10^{-2} Ω ; 37.4 J; 74.8 C]

5 Resistenza

Si ha a disposizione una batteria da $12\,\mathrm{V}$ e si vuol fare in modo che la tensione applicata ad una resistenza $R_1=100\,\Omega$ sia di soli $8\,\mathrm{V}$. A questo scopo, si mette in serie a R_1 una seconda resistenza R_2 : quanto deve valere R_2 ? Quanto vale la resistenza equivalente? Qual è la corrente che circola in ciascuna resistenza? Descrivere cosa succede se le resistenze sono messe in parallelo invece che in serie. $[50\,\Omega; 150\,\Omega; 0.08\,\mathrm{A}; 0.08\,\mathrm{A}]$

6 Cariche in equilibrio

Due sfere identiche, ognuna di massa $3 \times 10^{-2} \, \mathrm{kg}$, sono cariche e in equilibrio come riportato in Figura. La lunghezza del filo è $0.15 \, \mathrm{m}$, e l'angolo $\theta = 5^{\circ}$. Determina l'intensità della carica presente sulle sfere. $[4.44 \times 10^{-8} \, \mathrm{C}]$

7 Legge di Ampère

Due fili verticali rettilinei di lunghezza $4\,\mathrm{m}$ sono disposti parallelamente e distano $5\,\mathrm{cm}$ l'uno dall'altro. Il primo filo è percorso da una corrente elettrica di $20\,\mathrm{A}$ ed esercita una forza repulsiva sul secondo di $2.4\times10^{-3}\,\mathrm{N}$. Determinare l'intensità della corrente che scorre nel secondo filo e il suo verso di percorrenza (concorde o opposto rispetto alla corrente che scorre nel primo filo). (Costante di permeabilità magnetica del vuoto $\mu_0 = 4\pi\times10^{-7}\,\mathrm{H/m} = 1.257\times10^{-6}\,\mathrm{H/m})$ [Discorde; $7.5\,\mathrm{A}$]

8 Potenziale ed energia

Una sfera conduttrice di raggio R viene caricata con una carica totale Q. Calcolare il lavoro necessario per portare una carica di prova q inizialmente molto lontana (infinitamente lontana) fino alla superficie della sfera carica. [(kQq)/R]