Exercise Number: 2.7.4

Proposition. Let \mathcal{F}_1 , \mathcal{F}_2 , ... be a sequence of collections of subsets of Ω , such that $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$.

- 1. Suppose each F_i is an algebra. Then $\cup_{i=1}^{\infty} F_i$ is also an algebra.
- 2. Now suppose each F_i is a σ -algebra. Then $\cup_{i=1}^{\infty} F_i$ is not necessarily a σ -algebra.

Proof.

Recall the criteria required for a σ -algebra: finite additivity of sets, closed under complements, and includes the empty set.

1. First note that we have the following fact:

$$\cup_{i=1}^{n} \mathcal{F}_i = \mathcal{F}_n$$

since each successive algebra is just a refinement of the previous one.

2.

1