PROJECT REPORT

1.INTRODUCTION:

- 1.1.Project Overview
- 1.2.Purpose

2.LITRATURE SURVEY:

- 2.1.Existing problem
- 2.2.References
- 2.3. Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1. Empathy Map Canvas
- 3.2. Ideation & Brainstorming
- 3.3. Proposed Solution
- 3.4. Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1. Functional requirement
- 4.2. Non-Functional requirements

5. PROJECT DESIGN

- 5.1. Data Flow Diagrams
- 5.2. Solution & Technical Architecture
- 5.3. User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1. Sprint Planning & Estimation
- 6.2. Sprint Delivery Schedule

6.3. Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 7.1. Feature 1
- 7.2. Feature 2
- 7.3. Database Schema (if Applicable)
- 8. TESTING
- 8.1. Test Cases
- 8.2. User Acceptance Testing
- 9. RESULTS
- 9.1. Performance Metrics
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX
- 13.1.Links

Source Code

GitHub & Project Demo Link

Project Report

Team ID	PNT2022TMID46943	
Project Name	Smart Waste Management System For Metropolitan	
	Cities	

1.INTRODUCTION:

1.1.Project Overview:

As the population is increasing, solid waste is also increasing in urban and rural areas, and waste management has become a global concern. A certain number of employees need to be appointed to attend to a certain number of dustbins. This is done every day periodically. This leads to a very inefficient and unclean system in which some dumpsters will be overflowing while others might not be even half full. This is caused by variation in population density in the city or some other random factor. This makes it impossible to determine which part needs immediate attention. Here, a waste management system is introduced in which each dumpster is embedded in a monitoring system that will notify the corresponding person if the dumpster is full. In this system, it is also possible to separate wet and dry waste into two separate containers. This system provides an effective solution to the waste management problem.

The garbage produced in the residential area can be collected directly from homes or by it is making an arrangement for mass collection in that area and can be lifted using vehicles. In the case of restaurants, malls, and other commercial establishments, garbage can be collected directly from the unit using vehicles. Industrial garbage, which includes waste produced in construction sites and various industries, can also be disposed of in different ways. For effective handling of these wastes, like collection and disposal, the Internet of Things (IOT) concept is being used, which mainly deals with sensing, actuating, data gathering, storing, and processing by connecting physical and virtual devices to the Internet.

1.2.Purpose:

A waste management system is the strategy an organization uses to dispose, reduce, reuse, and prevent waste. Possible waste disposal methods are recycling, composting, incineration, landfills, bioremediation, waste to energy, and waste minimization. As for waste management, it is the measures utilized to manage waste in its entire life cycle, from waste generation to disposal or recovery.

2.LITRATURE SURVEY:

2.1.Existing Problem:

Manual systems in which employees clear the dumpsters periodically. No systematicapproach towards clearing the dumpsters unclear about the status of a particular location. Employees are unaware of the need for a particular location much less effective in cleaning the city. The fill level of solid waste in each of the containers, which are strategically situated across the communities, is detected using ultrasonic sensors. A Wireless Fidelity (Wi-Fi) communication link is used to transmit the sensor data to an IoT cloud platform known as ThingSpeak. Depending on the fill level, the system sends appropriate notification message (in form of tweet) to alert relevant authorities and concerned citizen(s) for necessary action. Also, the fill level is monitored on ThingSpeak in real-time. The system performance shows that the proposed solution may be found useful for efficient waste management in smart and connected communities.

2.2.Reference:

- 1. Teemu Nuortioa, Jari KytoÂ"jokib, Harri Niskaa, Olli BraÂ"ysyb Improved route planning and scheduling of waste collection and transport, Expert Systems with Applications 30 (2006 223 232,
- 2. M. Arebey, M. Hannan, H. Basri, and H. Abdullah, "Solid waste monitoring and management using RFID, GIS and GSM", The IEEE Student Conference on Research and Development (SCOReD), 16-18 November 2009, UPM Serdang, Malaysia, 2009

- 3. M. Hannan, M. Arebey, R. A. Begum, and H. Basri, "Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system", Waste Management, Vol. 31, pp. 2406-2413, 2011.
- **4.** S. Longhi, D. Marzioni, E. Alidori, G. Di Buo, M. Prist, M. Grisostomi, et al., "Solid Waste Management Architecture Using Wireless Sensor Network Technology", The 5th International Conference on New Technologies, Mobility and Security (NTMS), 7-10 May 2012, Istanbul, pp. 1-5, 2012. 147.
- **5.** Waikhom Reshmi, RamKumar Sundaram, M. Rajeev Kumar, Sensor Unit for Waste Management: A Better Method,, International conference on Science, Engineering and Management Research, ©2014 IEEE.

2.3. Problem Statement Definition:

User Story Number	User Story / Task	Acceptance criteria	Priority
USN-1	As an admin, I can monitor every dustbin and its garbage levels.	I can monitor the system.	High.
USN-2	As an admin, I will inform the authorized person to empty the trashcan.	I can inform authorized person.	Medium.
USN-3	As an admin, I can notice the trash level of every dustbin.	I can notice the trash level.	Low.
USN-4	As a Co-Admin, I can send alert message to the truck drivers.		High.

USN-5	As a trash van driver, I will follow the route to the dustbin.		High.
USN-6	As a waste collector, I will collect all the trash from the dumpsters and load it to the truck.		Medium.
USN-7	As a municipality officer, I can supervise the process and ensure the cleanliness of city.	these process	High.

3. IDEATION & PROPOSED SOLUTION:

3.1. Empathy Map Canvas:

3.2. Ideation & Brainstorming:

Step-1: Team Gathering, Collaboration and Select the Problem Statement:

Step-2: Brainstorm, Idea Listing and Grouping:

Step-3: Idea Prioritization:

3.3.Proposed Solution:

S.No.	Parameter	Description
1	Problem Statement (Problem to be solved).	At present, solid waste management is a major concern in the metropolitan cities of the developing and developed countries. As the population is growing, the garbage is also increasing. This huge, unmanaged accumulation of garbage is polluting the environment, spoiling the beauty of the area and also posing a health hazard. The dumpsters often overflow and make the city unclean.
2	Idea / Solution description.	A system is introduced to manage waste in big cities effectively without having to monitor the parts 24/7 manually. Here, the problem of unorganised and nonsystematic waste

collection is solved by designing an embedded IoT system that will monitor each dumpster individually for the of amount waste deposited. The IR sensor is used for detecting the presence of any waste the IR sensor used. The device is connected to the cloud. Whenever the filled, bin gets the message will be sent to the municipal office. 3 Novelty / Uniqueness. problem The of unorganized and nonsystematic waste collection is solved by designing an embedded IoT system that will monitor each dumpster individually for the of amount waste deposited. The IR sensor is used for detecting the presence of any debris the IR sensor used. The device is connected to the cloud. Whenever the bin gets filled, the message will be sent to the municipal office.

4	Social Impact / Customer Satisfaction.	This project is very effective in managing waste in any big city. Rather than using conventional periodic collection methods, a
		priority system is used to ensure the city is clean all 6 the time without any overflowing dumpsters. It has been tested and verified properly to
		ensure all the different parts work together for a smooth function of the whole system. In most of the metro cities globally poses a challenge to effective waste management and maintenance of the waste bins.
5	Business Model (Revenue Model).	 The cost to develop the project is about the sensors used here. The Arduino device and Cloud platform used here play a vital role in cost.
		• If any damage occurs to the device during pick- ups of the trashcan we

		need to fix it.
		• The contribution of the
		municipality is necessary
		to make the project
		succeed in the market
6	Scalability of the Solution.	The project design is a
		part of the implication
		that can be used to
		improve the waste
		management of a
		locality. All the technical
		aspects have been
		thoroughly designed
		keeping all the
		constraints in mind. The
		project resolves around
		whether the project will
		be able to meet the future
		needs of the users. This
		project-based on IoT
		gives users the freedom
		of changing hardware as
		well as software
		specifications as per the
		arising need. IoT based
		projects are already
		designed while keeping
		future demands in mind
		and in a rising economy
		like India where the
		concept of smart cities is
		new the demand for our
		project will keep on

	increasing.

3.4. Problem Solution fit:

4.REQUIREMENT ANALYSIS:

4.1. Functional requirement:

FR No.	Functional Requirement	Sub Requirement (Story
	(Epic)	/ Sub-Task)
FR-1	Fitting IoT device in the	The IoT device need to be
	trashcans.	fixed in the dustbin with
		water proof safety. The
		IoT device consists
		Ultrasonic sensor, IR
		sensor, Weight sensor. To
		send data to the cloud
		GSM/GPRS is used.
FR-2	Connecting to the cloud.	The device should
		configure to connect to

		the cloud. The data of
		sensors need to be
		received and processed.
FR-3	Predictions for bin	In this system, a 24×7
	fulness.	monitoring system is
	Tunicos.	designed for monitoring
		dumpsters, A smart and
		organized system is
		designed for selective
		clearing the ultrasonic
		sensor is used for
		measuring the level of
		waste in the dustbin, DC
		motor powered platform
		is used for segregating
		wet and dry waste, IR
		sensor and moisture
		sensor is used for
		separating wet and dry
		waste. If either of the
		containers is full then an
		alert message is sent from
		the dustbin to employees
		and the cloud. In turn,
		employees can clear the
		corresponding dumpster.
FR-4	Real-time waste	Trash and recycling
	monitoring	containers can be outfitted
		or produced with low-cost
		sensors that monitor
		everything from the
		amount and types of
		material in a container to
		temperature, odour and

		location of the bin.
FR-5	Do not miss a pick	For periodically picked
		bins, we provide Pick
		evaluation. The tool
		records picks (sensor) and
		compares them to the
		schedule. Authorized
		person can immediately
		identify any missed, or
		off-schedule picks.
FR-6	Routes to the dumpsters	Based on current bin fill-
		levels and predictions of
		reaching full capacity,
		you are ready to respond
		and schedule waste
		collection. driver can
		compare planned vs.
		executed routes to
		identify any
		inconsistencies.

4.2.Non-Functional requirements:

FR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	IoT solutions for waste
		management problems
		offer municipalities data
		intelligence and realtime
		insights. In that regard,

		the fill patterns of specific
		containers can be
		identified by historical
		data and managed
		accordingly in the long
		term. In addition to
		hardware solutions,
		mobile applications are
		used to overcome the
		challenges in the regular
		waste management
		system, such as keeping
		track of the drivers while
		they are operating on the
		field
NFR-2	Security	Building and deploying
		IoT-based smart waste
		management in cities can
		be a complex,
		timeconsuming and
		resource-intensive
		process. Many municipal
		IT departments will not
		have the resources or in-
		house skills to support
		such a project internally.
NFR-3	Reliability	One of the difficult
		operational problems of
		municipal and local
		authorities are facing is
		the collection of
		municipal solid waste. In
		recent years, due to
		environmental concerns
		Chynolinental Concerns

		and number of costs, most
		of the municipalities have
		•
		been forced for assessing their solid waste
		management and
		examining their
		costeffectiveness and
		environmental impact, for
		example, designing the
		collection of routes.
		During the past 15 years.
NFR-4	Performance	An integrated Arduino
		program is developed to
		synchronize the
		identification system,
		automated lid system,
		micro-controller, display
		system, and
		communication system.
		An ultrasonic sensor is
		attached to the front side
		of the garbage bin. The
		transmitter of the
		ultrasonic sensor emits an
		ultrasonic sound that is
		beyond the human ear
		listening range, and the
		receiver receives the
		reflected sound waves by
		the solid objects.
NFR-5	Availability	Another purpose of this
	12. minority	project is to make the
		proposed waste
		management system as

		cheap as possible. A cost
		in BDT is presented in the
		following Table 3 needs
		for the construction of the
		proposed smart bin.
NFR – 6	Scalability	The city diverts about
		80% of its waste from
		landfills and hopes to go
		"zero waste" by the end
		of 2020. Besides strict
		regulations and high
		waste management fees
		for end consumers and
		businesses.

5.PROJECT DESIGN:

5.1.Data Flow Diagrams:

The IoT device is fitted in the trashcans.

- The sensors in the device senses the garbage level.
- The GSM/GPRS will send the information about the garbage level to the cloud.
- The admin in the control center notifies the authorized person to collect the garbage.
- The truck driver will be notified the route to the filled dumpsters.
- The trashes are loaded to the truck.
- The more number of bins needed in high populated area.
- The overflowing of trashcans can be avoided.
- No missed pickups of trashcans.
- New smart dustbins can be install by just connecting the IoT device to the cloud.

5.2.Data flow diagram:

5.2.Solution & Technical Architecture:

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1	Arduino Uno	The Arduino Uno is an	Arduino
		open-source	programming itself is
		microcontroller board	done in C++.
		based on the Microchip	
		ATmega328P	
		microcontroller.	
2	Application Logic-1	Logic for IR sensor	C++/Python.
		data.	
3	Application Logic-2	Logic for Ultrasonic	C++/Python.
		sensor data.	
4	Application Logic-3	Logic for a Weight	C++/Python.
		sensor data	
5	GPRS/GSM	The Arduino GSM	C++/Python.
		shield allows an	
		Arduino board to	
		connect to the internet,	
		send and receive SMS,	

		and make voice calls	
		using the GSM library.	
6	Cloud Sever	Application deployment	IBM Watson IoT
		on Local System /	Platform, Node Red
		Cloud	
7	Cloud Database	Database Service on	IBM Watson IoT
		Cloud	platform, Cloudant
			DB

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1	Open-Source	Arduino Uno is used to	C++/Python
	Microcontroller	make the IoT device	
2	Security	Encryption/Decryption	GSM/GPRS,Python
		used for security	
		purpose	
3	Scalable Architecture	New features can be	Node Red
		added.	
4	Availability	Web application can be	IBM Watson IoT
		accessed from anywhere	Platform, HTML,
			CSS, JavaScript
5	Performance	All truck drivers can	Cloudant DB, IBM
		access the application at	Watson IoT Platform
		same time.	

5.3 User Stories:

User Type	Functional Requiremen t (Epic)	User Story Numbe r	User Story / Task	Acceptanc e criteria	Priorit y	Releas e
Admin	Login	USN-1	As an	I can	High	Sprint-

			. 1' T			4
			admin, I	monitor the		4
			can monitor	system.		
			every			
			dustbin and			
			its garbage			
			levels			
	Login	USN-2	As an	I can	Mediu	Sprint-
			admin, I	inform	m	2
			will inform	authorized		
			the	person.		
			authorized			
			person to			
			empty the			
			trashcan			
	Login	USN-3	As an	I can notice	Low	Sprint-
			admin, I	the trash		2
			can notice	level.		
			the trash			
			level of			
			every			
			dustbin			
Admin 2	Login	USN-4	As a Co-	I can alert	High	Sprint-
			Admin, I	truck driver		1
			can send			
			alert			
			message to			
			the truck			
			drivers			
Trash	Login	USN-5	As a trash	I can reach	High	Sprint-
Van			van driver,	the filled		2
Driver			I will	trashcans.		
			follow the			
			route to the			
			dustbin			
		l	1			

Garbage	Login	USN-6	As a waste	I can	Mediu	Sprint-
Collector			collector, I	empty the	m	2
			will collect	trashcans		
			all the trash			
			from the			
			dumpsters			
			and load it			
			to the truck.			
Municipa	Login	USN-7	As a	I can	High	Sprint-
1 officer			municipalit	manage all		1
			y officer, I	these		
			can	process		
			supervise	going		
			the process	good.		
			and ensure			
			the			
			cleanliness			
			of city			
Trashcan	Register	USN-8	As a	I can	Mediu	Sprint-
Monitor			trashcan	manage all	m	3
			monitor, I	these		
			can	process		
			initialize	going		
			new	good.		
			trashcans.			
		USN-9	As a	I can check	Mediu	Sprint-
			trashcan	the IoT	m	3
			monitor, I	device		
			can check			
			the quality			
			of IoT			
			device's			
			quality.			

6. PROJECT PLANNING & SCHEDULING:

6.1 Sprint Planning & Estimation:

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional	User	User	Story	Priority	Team
	Requirement	Story	Story /	Points		Members
	(Epic)	Number	Task			
Sprint-	Monitoring	USN-1	The IoT	20	High	Stephenraj.W
1			device			Justinraj.J
			will			Merunraj.W
			monitor			Karan.D
			the			
			garbage			
			level in			
			trashcans.			
Sprint-	Registration	USN-2	As a	20	Low	Stephenraj.W
1			trashcan			Justinraj.J
			monitor I			Merunraj.W
			can			Karan.D
			initialize			Stephenraj.W
			new			Justinraj.J
			trashcans.			Merunraj.W
						Karan.D
						Stephenraj.W
						Justinraj.J
						Merunraj.W
						Karan.D
Sprint-	Dashboard	USN-3	As an	20	High	Stephenraj.W
2			admin, I			Justinraj.J
			can			Merunraj.W
			monitor			Karan.D

			every dustbin and its garbage levels			
Sprint-3	Alert	USN-4	As a Co- Admin, I can send alert message to the truck drivers.	20	High	Stephenraj.W Justinraj.J Merunraj.W Karan.D
Sprint-4	Location View	USN-5	As a trash van driver, I will follow the route to the dustbin.	20	Medium	Stephenraj.W Justinraj.J Merunraj.W Karan.D

6.2. Sprint Delivery Schedule:

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct	29 Oct	20	29 Oct
			2022	2022		2022
Sprint-2	20	6 Days	31 Oct	05 Nov	20	05 Nov

			2022	2022		2022
Sprint-3	20	6 Days	07	12 Nov	20	12 Nov
			Nov2022	2022		2022
Sprint-4	20	6 Days	14	19 Nov	20	19 Nov
			Nov2022	2022		2022

Velocity: Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day).

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

6.3 Reports from JIRA:

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

7.1. Wokwi:

7.2. Watson:


```
*Python 3.7.9 Shell*
File Edit Shell Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 18:58:18) [MSC v.1900 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.
Ln: 21 Col: 0
```

- m ×

7.3. Cloudant:

7.4. Nodered:

7.5.MIT App:

8.RESULTS & TESTING:

8.1.Performance Metrics:

9. ADVANTAGES & DISADVANTAGES:

ADVANTAGES:

- A reduction in the number of waste collections needed by up to 80%.
- Resulting in less manpower.
- Emissions.
- Fuel use and traffic congestion.

DISADVANTAGES:

- Increasing cost of the dustbin.
- Some wastes cannot be recycled.

- Technological push needed.
- Separation of useful material from waste difficult.

10.CONCLUSION:

This project is very effective in managing waste in any big city. Rather than using conventional periodic collection methods, a priority system is used to ensure the city is clean all the time without any overflowing dumpsters. It has been tested and verified properly to ensure all the different parts work together for a smooth function of the whole system. In most of the metro cities globally poses a challenge to effective waste management and maintenance of the waste bins. In this work, an IOT enabled Smart Waste Bin with real-time monitoring is designed and presented. In addition to the waste level measurement by using ultrasonic sensors, a sensing mechanism based on simple parallel plate capacitance is also developed and presented.

11.FUTURE SCOPE:

- Pollution prevention and source reduction.
- Reuse or redistribution of unwanted.
- Surplus materials; treatment, reclamation.
- And recycling of materials within the waste.
- And disposal through incineration, treatment, or land burial.

12) APPENDIX:

Source Code

import time

import sys

import ibmiotf.application

import ibmiotf.device

```
#Provide your IBM Watson Device Credentials
organization = "uzesig"
deviceType = "Arduino"
deviceId = "12345"
authMethod = "token"
authToken = "12345678"
# Initialize GPIO
def myCommandCallback(cmd):
  print("Command received: %s" % cmd.data['command'])
  status=cmd.data['command']
  if status=="lighton":
    print ("led is on")
  else:
    print ("led is off")
  #print(cmd)
```

```
try:
      deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}
      deviceCli = ibmiotf.device.Client(deviceOptions)
      #.....
except Exception as e:
     print("Caught exception connecting device: %s" % str(e))
      sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an
event of type "greeting" 10 times
deviceCli.connect()
while True:
    #Get Sensor Data from esp32
    weightSensor=random.randint(0,100)
    irSensor=random.randint(0,100)
    ultrasSensor=random.randint(0,100)
```

```
data = { 'weight' : weightSensor, 'ir':irSensor, 'ultrasonic':ultrasSensor }
    #print data
    def myOnPublishCallback():
       print ("Published Weight of Trashcan is = %s C" % weightSensor, "IR
Sensor = %s %%" % irSensor, "Ultrasonic Sensor = %s %%" % ultrasSensor, "to
IBM Watson")
    success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
on_publish=myOnPublishCallback)
    if not success:
       print("Not connected to IoTF")
    time.sleep(1)
    deviceCli.commandCallback = myCommandCallback
# Disconnect the device and application from the cloud
deviceCli.disconnect()
                                 Wokwi Code
                                   // library for wifi
#include <WiFi.h>
#include < PubSubClient.h >
                                       // library for MQTT
```

#include <LiquidCrystal_I2C.h>

```
LiquidCrystal_I2C lcd(0x27, 20, 4);
//----- credentials of IBM Accounts -----
#define ORG "jrbl5n"
                               // IBM organisation id
                                       // Device type mentioned in ibm
#define DEVICE_TYPE "Arduino"
watson iot platform
#define DEVICE_ID "12345"
                                // Device ID mentioned in ibm watson iot
platform
#define TOKEN "12345678"
                              // Token
//----- customise above values -----
char server[] = ORG ".messaging.internetofthings.ibmcloud.com";
                                                                 //
server name
char publishTopic[] = "iot-2/evt/data/fmt/json";
                                                        // topic name
and type of event perform and format in which data to be send
char topic[] = "iot-2/cmd/led/fmt/String";
                                                      // cmd Represent
type and command is test format of strings
char authMethod[] = "use-token-auth";
                                                       // authentication
method
char token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID;
//Client id
```

```
WiFiClient wifiClient;
                                                   // creating instance for
wificlient
PubSubClient client(server, 1883, wifiClient);
#define ECHO_PIN 12
#define TRIG_PIN 13
float dist;
void setup()
Serial.begin(115200);
pinMode(LED_BUILTIN, OUTPUT);
 pinMode(TRIG_PIN, OUTPUT);
 pinMode(ECHO_PIN, INPUT);
 //pir pin
 pinMode(34, INPUT);
//ledpins
 pinMode(23, OUTPUT);
```

```
pinMode(2, OUTPUT);
pinMode(4, OUTPUT);
 pinMode(15, OUTPUT);
 lcd.init();
 lcd.backlight();
 lcd.setCursor(1, 0);
 lcd.print("");
wifiConnect();
mqttConnect();
float readcmCM()
 digitalWrite(TRIG_PIN, LOW);
 delayMicroseconds(2);
digitalWrite(TRIG_PIN, HIGH);
delayMicroseconds(10);
 digitalWrite(TRIG_PIN, LOW);
 int duration = pulseIn(ECHO_PIN, HIGH);
 return duration * 0.034 / 2;
```

```
void loop()
{
     lcd.clear();
publishData();
 delay(500);
 if (!client.loop())
                                  // function call to connect to IBM
   mqttConnect();
}
/* -----retrieving to cloud------
void wifiConnect()
{
 Serial.print("Connecting to ");
 Serial.print("Wifi");
 WiFi.begin("Wokwi-GUEST", "", 6);
```

```
while (WiFi.status() != WL_CONNECTED)
  {
   delay(500);
   Serial.print(".");
  }
 Serial.print("WiFi connected, IP address: ");
 Serial.println(WiFi.localIP());
}
void mqttConnect()
  if (!client.connected())
    Serial.print("Reconnecting MQTT client to ");
     Serial.println(server);
     while (!client.connect(clientId, authMethod, token))
      {
       Serial.print(".");
       delay(500);
    initManagedDevice();
    Serial.println();
```

```
void initManagedDevice()
 {
  if (client.subscribe(topic))
    Serial.println("IBM subscribe to cmd OK");
   }
  else
   {
    Serial.println("subscribe to cmd FAILED");
void publishData()
 float cm = readcmCM();
 if(digitalRead(34))
                                       //pir motion detection
  Serial.println("Motion Detected");
  Serial.println("Lid Opened");
  digitalWrite(15, HIGH);
```

```
if(digitalRead(34)== true)
{
if(cm <= 60)
                                           //Bin level detection
  digitalWrite(2, HIGH);
  Serial.println("High Alert!!!, Trash bin is about to be full");
  Serial.println("Lid Closed");
  lcd.print("Full! Don't use");
  delay(2000);
  lcd.clear();
  digitalWrite(4, LOW);
  digitalWrite(23, LOW);
else if(cm > 60 \&\& cm < 120)
  digitalWrite(4, HIGH);
  Serial.println("Warning!!, Trash is about to cross 50% of bin level");
  digitalWrite(2, LOW);
  digitalWrite(23, LOW);
else if(cm > 120)
```

```
digitalWrite(23, HIGH);
  Serial.println("Bin is available");
  digitalWrite(2,LOW);
  digitalWrite(4, LOW);
  delay(10000);
  Serial.println("Lid Closed");
}
else
 Serial.println("No motion detected");
  digitalWrite(2, LOW);
  digitalWrite(15, LOW);
  digitalWrite(4, LOW);
  digitalWrite(23, LOW);
}
}
else
  digitalWrite(15, LOW);
```

```
}
 if(cm \le 60)
digitalWrite(21,HIGH);
String payload = "{\"High_Alert\":";
payload += cm;
payload += " }";
Serial.print("\n");
Serial.print("Sending payload: ");
Serial.println(payload);
if (client.publish(publishTopic, (char*) payload.c_str()))
                                                              // if data is uploaded
to cloud successfully, prints publish ok else prints publish failed
{
Serial.println("Publish OK");
else if(cm <= 120)
digitalWrite(22,HIGH);
```

```
String payload = "{\"Warning\":";
payload += cm;
payload += " }";
Serial.print("\n");
Serial.print("Sending payload: ");
Serial.println(payload);
if(client.publish(publishTopic, (char*) payload.c_str()))
{
Serial.println("Publish OK");
}
else
Serial.println("Publish FAILED");
}
else
Serial.println();
}
 float inches = (cm / 2.54);
                                                   //print on lcd
 lcd.setCursor(0,0);
      lcd.print("Inches");
```

```
lcd.setCursor(4,0);
lcd.setCursor(12,0);
lcd.print("cm");
lcd.setCursor(1,1);
lcd.print(inches, 1);
lcd.setCursor(11,1);
lcd.print(cm, 1);
lcd.setCursor(14,1);
delay(1000);
lcd.clear();
}
```

13. OUTPUT PICTURE:

13.1. LINKS:

GitHub Link:

https://github.com/IBM-EPBL/IBM-Project-44887-1660727265

Wokwi Link:

https://wokwi.com/projects/347927859012043348

MIT App Link:

http://ai2.appinventor.mit.edu/#5964237919617024

Node Link:

 $https://node-red-towru-2022-11-08.eu-gb.mybluemix.net/ui/\#!/0?socketid=4K9d90PmJD_0qgwwAABF$

Video Demo Link:

https://youtu.be/eDVDmruqYoA