(1) 128.96.39.10 写成二进制为 10000000 01100000 00100111 00001010 和 255.255.255.128 即 111111111 1111111 1111111 10000000 相与 得 10000000 01100000 00100111 00000000 即128.96.39.0 所以,对应该目的地址的下一跳是【接口m0】 (2) 128.96.40.12写成二讲制为 10000000 01100000 00101000 00001100 和 255.255.255.128 即 111111111 1111111 1111111 10000000 相与 得 10000000 01100000 00101000 00000000 即128.96.40.0 所以,对应该目的地址的下一跳为【R2】路由器 (3) 128.96.40.151写成二进制为 10000000 01100000 00101000 10010111 和 255.255.255.128 即 11111111 11111111 1111111 10000000 相与 得 10000000 01100000 00101000 10000000 即 128.96.40.128, 没 有相同的目的地址 和 255.255.255.192 即 11111111 11111111 1111111 11000000 相与 得 10000000 01100000 00101000 10000000 即128.96.40.128, 没有 相同的目的地址 所以,对应该地址的下一跳为【R4】路由器 (4) 192.4.153.17写成二进制为 11000000 00000100 10011001 00010001 和 255.255.255.192 即 111111111 1111111 1111111 11000000 相与 得 11000000 00000100 10011001 00000000 即196.4.153.0 所以,对应该地址的下一跳是【R3】路由器 (5) 192.4.153.90写成二进制为 11000000 00000100 10011001 01011010 和 255.255.255.128 即 111111111 1111111 1111111 10000000 相与 得 11000000 00000100 10011001 00000000 即 192.4.153.0,没有相 同的目的地址 和 255.255.255.192 即 11111111 11111111 11111111 11000000 相与

得 11000000 00000100 10011001 01000000 即192.4.153.64, 没有

相同的目的地址

所以,对应该地址的下一跳为【R4】路由器

4-22

	总长度 (字节)	数据字段长度 (字节)	片偏移字段	MF标值
数据报片1	1500	1480	0	1
数据报片2	1500	1480	185	1
数据报片3	1040	1020	370	0

^{*8}个字节为偏移单位

*每一片都有20个字节的固定首部长

4-28

4-42

路由器A更新后的路由表

目的网络	距离	下一跳路由器	步骤
N1	3	С	不同的下一跳, 距离更短, 更新
N2	2	С	相同的下一跳,距离一样,不变
N3	1	F	不同的下一跳, 距离更长, 不变
N4	5	G	不同的下一跳, 距离更长, 不变