

Simulation of Dynamical Scattering in Electron Diffraction Patterns

Tarik Drevon, David Waterman, Eugene Krissinel

Discrepancy between theory and experiments

Macromolecules solved from experimental Electron Diffraction (ED) data

B. L. Nannenga and T. Gonen, "The cryo-EM method microcrystal electron diffraction (MicroED)," Nat. Methods, vol. 16, no. May, pp. 369–379, 2019

Multiple scattering should prevent use of standard X-ray kinematic technique

G. Subramanian, S. Basu, H. Liu, J. Zuo, and J. C. H. Spence, "Solving protein nanocrystals by cryo-EM diffraction: Multiple scattering artifacts," Ultramicroscopy, vol. 148, pp. 87–93, 2015

Electron diffraction and dynamical scattering

Atomic interation cross section

$$P_{scattered} = \sigma \phi_{incident}$$

X-rays (Thomson scattering)

$$\sigma_{th} = \frac{8\pi}{3}r_e^2 = 66fm^2$$

Electrons (Coulomb scattering)

$$\sigma_{th} \approx 1.87 \times 10^6 Z^{4/3} (c/v)^2 = 5 \times 10^7 fm^2$$

Mean free path

$$l_{e} = 200nm$$

T. Latychevskaia and J. P. Abrahams, "Inelastic scattering and solvent scattering reduce dynamical diffraction in biological crystals," Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater., vol. 75, pp. 523–531, 2019

Numerical simulation tools of ED patterns

Born approximation (used for X-rays)

Schrodinger's fast electron wave equation

$$\frac{\partial \Psi(x,y,z)}{\partial_z} = \left\{ \frac{i\lambda}{4\pi} \nabla^2_{xy} + i\sigma V(x,y,z) \right\} \Psi(x,y,z)$$

Method	Exact/ consistent	Speed	Memory (per atoms)	Periodic structure	Grid based	Package
Multislice (MS) (physical optics based approach)	no	fast	10 points	yes	yes	TEMSIM (pyMS) PRISM,
Bloch wave (diagonalization in reciprocal space)	yes	slow	10 points	yes	no	EDM,PyQt,
Near bragg (real space path differences)	no	??	1 point	no	no	NearBragg (James Holton)

Multislice 2D examples : electrostatic potential

Multislice 2D examples : electrostatic potential

Multislice Silicon Diamond Structure

Simulation of biotin

 $C_{10}H_{16}N_2O_3S$

Structure $P2_12_12_1$

$$a = 5.24A$$
,

$$b = 10.35A$$

$$c = 21.04A$$

[001]=0deg

[401]=45deg

[801]=64deg

What's next?

- Use CCP4 with the simulated data
- Investigate effect of defects, solvent, inelastic scattering
- Further develop nearBragg approach
- Make python interface available from the python index pypi

More info http://brno.rc-harwell.ac.uk:8000/ RCaH VPN required