MTH206M (2024-25, ODD SEMESTER) PROBLEM SET 3

- 1. Show that interchanging two rows can be effected by elementary row operations of the other two types, i.e., R_{ij} can be performed using $R_i(\alpha)$ and $R_{ij}(\beta)$ only.
- 2. Using (1), prove that every square matrix is a product of triangular matrices.
- 3. Let A be an $m \times n$ matrix with reduced echelon from B. If m < n, what is the reduced echelon form of the square matrix $\left[\begin{array}{c} A \\ \hline \mathbf{0} \end{array}\right]$ and if m > n what is the reduced echelon form of the square matrix $\left[\begin{array}{c} A \\ \mathbf{0} \end{array}\right]$?
- 4. Reduce each of the following matrix to a matrix in reduced echelon form by elementary row operations and find the rank, a row basis, a column basis, and a rank factorization.

(a)
$$\begin{bmatrix} 2 & 1 & 0 & 0 & 1 \\ 3 & 0 & 3 & 0 & 2 \\ 5 & 7 & -9 & 2 & 5 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 0 & 2 & 4 & 3 & 0 \\ 0 & 5 & 10 & 7.5 & 0 \\ 0 & 1 & 2 & 1.5 & 4 \\ 0 & 2 & 4 & 3 & 2 \end{bmatrix}$$

- 5. Prove or disprove: if *A* is an $m \times n$ matrix such that m > n, then $Ax = \mathbf{0}$ has no non-trivial solution.
- 6. Prove or disprove: every system $Ax = \mathbf{0}$, where A is a 2×3 matrix, has a solution $\mathbf{u} = (u_1, u_2, u_3)$ with $u_1 = 0$.
- 7. If *A* is a square matrix, show that $Ax = \mathbf{0}$ has a non-trivial solution iff $y^TA = \mathbf{0}$ has a non-trivial solution.

- 8. Let A and B be matrices with the same number of columns. Show that $Ax = \mathbf{0}$ and $\begin{bmatrix} A \\ B \end{bmatrix} x = \mathbf{0}$ have the same solution space iff $\mathcal{R}(B) \subseteq \mathcal{R}(A)$.
- 9. Let A be an $m \times n$ matrix of rank r < m. Let B be a matrix in echelon form obtained from A by elementary row operations and let E be the transforming matrix (i.e., E is the product of the elementary matrices used in the reduction). Show that the last m r rows of E form a basis of the solution space of $x^TA = \mathbf{0}$.
- 10. Let A be an $m \times n$ matrix. Show that $A^TAx = A^Tb$ is consistent for all $b \in \mathbb{R}^m$. Show also that if Ax = b is consistent, then the solution sets of the two systems are the same.
- 11. Show that Ax = b has a solution belonging to C(B) iff ABu = b is consistent.
- 12. Show that for every $b \in C(A)$, Ax = b has a solution belonging to C(A) iff (i) A is square and (ii) $\rho(A) = \rho(A^2)$.

(Hint: Try to show that $C(A) = C(A^2)$.)