# UNIVERSIDADE FEDERAL DO PIAUÍ – UFPI CENTRO DE CIÊNCIAS DA NATUREZA – CCN DEPARTAMENTO DE COMPUTAÇÃO – DC CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: CIRCUITOS DIGITAIS

# **DISPLAY DE 7 SEGMENTOS**

Alunos: Pedro Marques da Silva Junior

Carlos Meneses Guimarães Sousa

Professor: Dr. Kelson Rômulo Teixeira Aires

Teresina

Maio de 2018

# PEDRO MARQUES DA SILVA JUNIOR CARLOS MENESES GUIMARÃES SOUSA

**DISPLAY DE 7 SEGMENTOS** 

## **OBJETIVOS**

- 1 Projetar um decodificador capaz de exibir no display de 7 segmentos cada um dos valores decimais. Utilizar uma entrada **h** como habilitação do circuito e uma saída **v** como bit de validação do valor exibido referente ao código da entrada.
- 1.1 Apresentar a tabela verdade do circuito
- 1.2 Equação do circuito como Soma de Mintermos
- 1.3 Equação do circuito como Produto de Maxtermos
- 1.4 Equação simplificada do circuito
- 1.5 Circuito lógico simplificado
- 1.6 Projeto em VHDL
- 1.7 Modelagem no *software* ModelSim

## **TABELA-VERDADE**

O circuito terá cinco entradas (h, A, B, C, D) e oito saídas (v, a, b, c, d, e, f, g) que representarão cada um dos sete segmentos do display e o bit de validação. As saídas serão ativas no nível baixo. Segue abaixo a tabela correspondente ao circuito:

| NUM | h | A | В | C | D | V | ā | $\overline{b}$ | <u></u> <u> </u> <u> </u> | ₫ | $\bar{e}$ | $\bar{f}$ | $\overline{g}$ |
|-----|---|---|---|---|---|---|---|----------------|---------------------------|---|-----------|-----------|----------------|
| 0   | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0              | 0                         | 0 | 0         | 0         | 1              |
| 1   | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0              | 0                         | 1 | 1         | 1         | 1              |
| 2   | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0              | 1                         | 0 | 0         | 1         | 0              |
| 3   | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0              | 0                         | 0 | 1         | 1         | 0              |
| 4   | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0              | 0                         | 1 | 1         | 0         | 0              |
| 5   | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1              | 0                         | 0 | 1         | 0         | 0              |
| 6   | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1              | 0                         | 0 | 0         | 0         | 0              |
| 7   | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0              | 0                         | 0 | 1         | 1         | 1              |
| 8   | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0              | 0                         | 0 | 0         | 0         | 0              |
| 9   | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0              | 0                         | 1 | 1         | 0         | 0              |
| X   | 1 | X | X | X | X | 0 | 0 | 0              | 0                         | 0 | 0         | 0         | 0              |
| X   | 0 | X | X | X | X | 0 | 0 | 0              | 0                         | 0 | 0         | 0         | 0              |

# **EQUAÇÕES DO CIRCUITO**

As saídas e suas respectivas funções serão representadas aqui de três formas:

## 1 SOMA DE MINTERMOS:

$$\bar{a} = \sum m(1, 4)$$

$$\bar{b} = \sum m(5, 6)$$

$$\bar{c} = \sum m(3)$$

$$\bar{d} = \sum m(1, 4, 9)$$

$$\bar{e} = \sum m(1, 3, 4, 5, 7, 9)$$

$$\bar{f} = \sum m(1, 2, 3, 7)$$

$$\bar{g} = \sum m(0, 1, 7)$$

$$v = \sum m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)$$

#### 2 PRODUTO DE MAXTERMOS:

$$\bar{a} = \prod M(0, 2, 3, 5, 6, 7, 8, 9)$$

$$\overline{b} = \prod M(0, 1, 2, 3, 4, 7, 8, 9)$$

$$\bar{c} = \prod M (0, 1, 2, 4, 5, 6, 7, 8, 9)$$

$$\bar{d} = \prod M (0, 2, 3, 5, 6, 7, 8)$$

$$\bar{e} = \prod M(0, 2, 6, 8)$$

$$\bar{f} = \prod M (0, 4, 5, 6, 8, 9)$$

$$\bar{g} = \prod M(2, 3, 4, 5, 6, 8, 9)$$

$$v = \prod M (10, 11, 12, 13, 14, 15)$$

## 3 EQUAÇÕES SIMPLIFICADAS DO CIRCUITO

$$\bar{a} = h(\bar{A}\bar{B}\bar{C}D)$$

$$\bar{b} = h(\bar{A}B\bar{C}D + \bar{A}BC\bar{D})$$

$$\bar{c} = h(\overline{AB}C\overline{D} + AB\overline{D} + ABC)$$

$$\bar{d} = h(\bar{A}\bar{B}\bar{C}D + \bar{A}B\bar{C}\bar{D} + A\bar{B}\bar{C}D)$$

$$\bar{e} = h(\bar{A}D + \bar{A}BD + B\bar{C}D)$$

$$\bar{f} = h(\bar{A}\bar{B}D + \bar{A}\bar{B}C + \bar{A}CD)$$

$$\bar{g} = h(\bar{A}\bar{B}\bar{C} + \bar{A}BCD)$$

$$v = h(\bar{A} + A\bar{B}\bar{C})$$

# CIRCUITO SIMPLIFICADO

# Gerado pelo software Quartus



## PROJETO VHDL

## **MODELAGEM**

1 Quando o circuito está "habilitado"



2 Quando o circuito está "desabilidato"



# **REFERENCIAS**

**TOCCI**, Ronald. *Sistemas Digitais: Princípios e Aplicações*. Ed. 11. Pearson.

**DE LA VEGA**, Alexandre Santos: *Apostila de Teoria para Circuitos Digitais*. Niterói: UFF, 2015.