Projekt WSYZ

Celem projektu z przedmiotu WSYZ jest pogłębienie wiedzy i umiejętności zdobywanych w trakcie wykładu i laboratoriów. Zakres projektu obejmuje:

- Utworzenie modelu biznesowego działania przedsiębiorstwa za pomocą notacji BPMN 2.0. Model
 ten powinien uwzględniać nie tylko proces przepływu czynności wewnątrz przedsiębiorstwa, ale
 także interakcje z partnerami oraz procesy wewnętrzne partnerów. Powinien także zawierać
 wyszczególnione obiekty danych, w szczególności te, które będą precyzowane w częściach
 dotyczących modeli optymalizacyjnych.
- Umiejscowienie wewnątrz modelu biznesowego **modeli optymalizacyjnych**, które jako wejście otrzymają pewne obiekty danych (np. wejściowy plan produkcji) i dostarczą wynik, który będzie innym, bądź uszczegółowionym, obiektem danych (np. harmonogram produkcji).
- Każdy model optymalizacyjny powinien być sformułowany jako model matematyczny w postaci: zbiorów, parametrów, zmiennych i ograniczeń. Komentarze powinny opisywać znaczenie i funkcję poszczególnych ograniczeń (grup ograniczeń) oraz poszczególnych składników funkcji celu.
- Zaproponowanie **danych wejściowych** dla całego procesu biznesowego (np. zapotrzebowanie każdego sklepu na towar), obliczenie wyników za pomocą solvera i ich prezentacja.
- **Podsumowanie projektu w raporcie**, opis: modelu biznesowego, modeli optymalizacyjnych, zaproponowane dane, wyniki obliczeń i ich krótka analiza (wsparta wykresami i tabelami).
- Podsumowanie projektu w postaci prezentacji typu executive summary: Krótkiej (kilkuslajdowej)
 prezentacji przedstawiającej główne wyniki projektu. Docelowym odbiorcą prezentacji jest członek
 zarządu klienta. Wymagane jest by prezentacja w sposób możliwie ogólny i dobrze zrozumiały dla
 osoby nietechnicznej sprzedała zrealizowany projekt.
- Project management i Harmonogram pracy wraz z przypisaniem osób do poszczególnych ról i osób w projekcie.

Zespół projektowy, będący zespołem konsultingowo-wdrożeniowym odpowiada na wymagania a klienta – sieci sklepów spożywczych działającej w modelu franczyzowym. Zasobami klienta są magazyny oraz centralny system zarządzania przepływem towaru, sklepy natomiast są własnością franczyzobiorców.

W ramach projektu należy:

- 1. Przygotować model biznesowy BPMN rozważanego zagadnienia konieczne do umieszczenia w odpowiedzi na zapytanie ofertowe klienta
- 2. Podzielić role biznesowe uczestników projektu
 - a. **Project Manager** główny punkt kontaktu z klientem, odpowiada za kompletność wszystkich dokumentów, przedstawia finalną prezentację. Powinien delegować zadania techniczne pozostałym członkom zespołu, jednocześnie zarządzając terminami ukończenia poszczególnych zadań. Jedna rola na cały zespół
 - b. **Modeler** odpowiada za modelowanie biznesowe (BPMN, modele matematyczne). Może być kilka ról tego typu w projekcie
 - c. Analityk implementuje rozwiązania, testuje i waliduje. Może być kilka ról w projekcie
- 3. Przygotować w MS Project wykres Gantta ze szczegółowym rozbiciem kroków do wykonania w ramach projektu, w ramach ograniczeń czasowych. Przydzielić role do zadań.
 - a. Punkt 3 wykonuje Project Manager
- 4. Opracować i wdrożyć sposób raportowania progresu w wykonywanych zadaniach (np. MS Project)
- 5. Przygotować modele optymalizacyjne oraz opisać framework pozwalający na umiejscowienie ich w procesie biznesowym
- 6. Przetestować i zwalidować modele

- 7. Przygotować raport techniczny. UWAGA: Punkty 2, 3 i 4 są czynnościami wewnętrznymi zespołu projektowego i nie mogą być ujawnione klientowi. Należy zatem umieścić opis + wyniki z tych punktów w <u>załączniku</u> do raportu!
- 8. Przygotować i wygłosić prezentację executive summary

Wymagania klienta - opis problemu.

Rozważana jest produkcja i dystrybucja podstawowych warzyw, tj. ziemniaków, kapusty, buraków i marchwi w Warszawie i okolicach.

Istnieją trzy rodzaje przedsiębiorstw:

• Grupa 6 producentów: P1...P6. Każdy z producentów produkuje każdy rodzaj warzyw jednak w różnych maksymalnych ilościach rocznych podanych w poniższej tabeli [tony]:

	Ziemniaki	Kapusta	Buraki	Marchew
P1	100	150	120	20
P2	40	90	230	40
P3	190	135	234	90
P4	120	248	65	120
P5	258	230	174	176
P6	357	122	15	100

Lokalizacja producentów to: Łomianki, Marki, Wiązowna, Mysiadło, Pruszków, Blizne Łaszczyńskiego.

- Sieć 3 magazynów-chłodni: M1..M3. Każdy magazyn ma określoną pojemność wyrażoną w tonach (1743, 534, 900) i może służyć do przechowywania dowolnych warzyw. Lokalizacje magazynów to Nadarzyn, Otwock, Pustelnik.
- Sieć sklepów spożywczych usytuowanych w Warszawie (proszę zaproponować 10 sklepów rozlokowanych w różnych punktach Warszawy (adres i pozycja GPS)).

Każdy ze sklepów spożywczych składa zamówienie do centrali sieci magazynów (przez e-mail, telefon, lub specjalną aplikację) raz w tygodniu. Każdy sklep może być obsługiwany przez dowolny magazyn, lub kilka magazynów. Ilość zamawianego towaru wynika z aktualnego stanu zapasów w magazynie przysklepowym i prognozy sprzedaży (wyniki modelu optymalizacyjnego są wartością orientacyjną, ale pozwalają podjąć lepszą decyzję, z których magazynów są sprowadzane produkty).

Raz w roku (na jesieni) producenci dostarczają towar do magazynów. Ilość towaru jest wyliczana na podstawie oddzielnie przeprowadzonych obliczeń, zgodnych z prognozowanymi zapotrzebowaniem (patrz model optymalizacyjny)

Problem optymalizacyjny

Model ten powinien umożliwić podjęcie decyzji,

- **a)** jakie warzywa w jakiej ilości powinny być transportowane raz w roku od każdego producenta do każdego magazynu,
- **b)** jakie warzywa i w jakiej ilości powinny być transportowane co tydzień z magazynów do poszczególnych sklepów,
- c) a także jaka część produktów powinna być w każdym tygodniu przechowywana w lokalnym magazynie każdego sklepu.

Informacje, dostępne dla każdego sklepu to: prognozowana sprzedaż każdego z warzyw w ciągu roku z podziałem na poszczególne tygodnie (proszę przyjąć sensowne wartości, ale zmienne w ciągu roku, np. ziemniaki i kapusta jedzone głównie na wiosnę i na jesieni, a buraki i marchew w lecie i w zimie) i pojemność magazynu przysklepowego (znowu proszę przyjąć sensowne wartości, np. dwukrotność średniej sprzedaży w tygodniu danego sklepu). Zapas warzyw nie powinien przekroczyć pojemności przysklepowego magazynu, ale także należy zachować minimalne zapasy każdego z warzyw (na wypadek błędów prognozy, należy przyjąć sensowne wartości, np. 10% średniej sprzedaży w tygodniu). Uwaga: towar dostarczany do sklepu uzupełnia zapas produktów w magazynie przysklepowym i dopiero stamtąd jest wydawany do sprzedaży w ciągu tygodnia.

Brakujące dane (odległości między producentami, magazynami, sklepami) należy pobrać z internetu (np. google maps). Założyć, że koszt przetransportowania jednej tony dowolnego produktu na odległość jednego kilometra wynosi 4zł.

Celem jest opracowanie strategii transportu minimalizującej całkowite roczne koszty transportu.

Proszę **NIE PROJEKTOWAĆ I NIE PISAĆ** aplikacji, która rozwiąże powyższy problem całościowo! Proszę zaproponować: model biznesowy, model optymalizacyjne, dane, i przeprowadzić obliczenia dla przykładowych danych. Przedstawić wyniki w sposób zrozumiały dla klienta – np. wizualizacja.

Możliwe narzędzia do optymalizacji: AMPL, GUSEK, CVX (https://www.cvxpy.org/) lub inne wedle uznania.