

Spacecraft Attitude Dynamics

prof. Franco Bernelli

General requirements for attitude control

Introduction

General elements

- Sensors (operation, precision, power, weight, cost)
- Actuators (operation, power, weight, cost)
- **Disturbances**
- Mission requirements
- Mission phases Dring buties phonen we used to check if on the systems one working property
- **Control logic**

Disturbance torque

External disturbances

thou to entirate the mariners

External distances			Accord 6 100
Disturbance	Туре	Main parameters	Reference formula
Gravity gradient	Constant torque for Earth pointing, cyclic for inertial pointing	Inertia momentsOrbit altitude	$T_{max} = \frac{3Gm_t}{2R^3} I_M - I_m $
Solar radiation	Cyclic torque for Earth pointing, constant for inertial (or Sun- oriented) pointing	Spacecraft geometryPanel reflectivityPosition of center of mass	$T_{max} = P_s A_s (1+q) \left(c_{ps} - c_g\right)$
Magnetic field	Cyclic torque	Orbit altitudeOrbit inclinationResidual dipole	$T_{max} = D_s B_{max}$
Aerodynamics	Constant torque for Earth pointing, variable for inertial pointing	Orbit altitudeGeometry and position of center of mass	$T_{max} = \frac{1}{2} \rho V^2 A_s C_D \left(c_{pa} - c_g \right)$

Disturbance torque

Once we have undertood the entity of external torque we should check if we have any kind of external disturbances. The internal disturbances are very difficult to model.

Internal disturbances

Disturbance	Effects on satellite	Typical values
Uncertain position	- Unbalanced torque when using	1 - 3 cm
of center of mass	symmetric thrusters	
	- Disturbance torque when using any	
	single thruster	
Misaligned thrust	Same	0.1° - 0.5°
Incorrect thrust	Same	±5%
magnitude		
Unbalanced rotors	Torques that affect stability and	Depends on rotors, can be compensated with
	pointing accuracy	counter-rotating rotors
Fluid slosh	Same as uncertain position of center	Depends on tank shape, can be reduced with
	of mass	internal fins
Flexible structures	Resonance at natural frequencies,	Depends on structure, care when mounting large
	limit on control bandwidth	panels and antennas or booms
Thermal-structural	Disturbance at transition between	Same
coupling	sunlight and eclipse	

Requirements

Origin of the requirements for attitude control systems

Requirement	Information needed
e.g we went to take a picture , The is	retrument is seem as a payload of the space chaft.
Payload requirements	
Object to point	Whole object or some parts of it such as an antenna or a radiator
Pointing direction	Target definition
Pointing area	All possible pointing directions
Pointing accuracy	Requirement on absolute angular pointing
Verification on pointing	Knowledge of the pointing direction in real time or after pointing
Pointing stability	Maximum deviation from nominal pointing
Slew maneuver	Reorientation from one direction to another in a specified time
Exclusion cones	Areas where pointing is not allowed
Other requirements	
Sun pointing	Required to generate electrical power or for thermal control
Pointing during thrust	Required for guidance system corrections
Pointing of antennas	Ground station or support satellite position

How can I active the represent? -> spece noft is unaccure or the play load con potent freely

Design criteria for some selected pointing requirements

Requirement	System
Nadir pointing payload	Payoad fixed to the satellite using a two-axis control on the satellite to achieve Earth pointing. The third axis is used to point a horizontal axis in the direction of velocity. Use of dual spin stabilization, with spin axis in the horizontal plane (pitch axis) and payload mounted on a non-spinning platform.
Inertial pointing payload	Payoad fixed to the satellite controlled on two axes to maintain the inertial pointing of the third axis. Control of the third axis can be used to keep one side towards the Sun.
Solar panel to point the Sun	A flat panel requires two-axis control. This can be achieved with a controlled satellite axis, and a rotation of the panel. A spinning "cylindrical" panel can be used, whose axis is orthogonal to the direction of the Sun.
Pointing the telecommunication antenna	Two-axis mechanism

fing melveusm on the inde of the 1/2 can be neful

Types of attitude control

Control mode	Type of control
Control during thrust phase	
Spin stabilisation	Option 1) Spin axis aligned with the direction of thrust, continuous thrust
	Option 2) Spin axis orthogonal to direction of thrust, thrust with short impulses synchronous to spin rate
Three-axis control	Control torques controlled by sensors. Torques can also be generated by thrusters, with modulated thrust (on / off) or tilted to control the thrust direction.
Control without thrust	
Spin stability to control	The spin direction is controlled by applying precession
precession	torques with offset rockets.
Dual spin	Spin stabilisation with despun platform
Three-axis control	Control using sensors and actuators

Le most domained in terms of more and ourranders

Effect of pointing requirements on control type

Requirement	Effetct
Control during apogee kick	Preference for spin stability
Coarse control (> 10°)	Spin stabilisation or passive control with gravity gradient
Low-precision pointing (> 0.1°)	Dual spin or three-axis control
Precise pointing (< 0.1°)	Three-axis control
Low power control (< 1 kW)	Tilting solar panel or body-mounted panel on spinning
	spacecraft
High power control (> 1 kW)	Tilting solar panel
Multiple pointing requirements	Three-axis control
Slew maneuvers	Three-axis control with sufficient control torques

Estimation of control torques

| sturbage |

Disturbance	Reference formula	Reference quantities
"Capture"	$1 2(I_{\rm g})$	- Angular velocity at release
	$T = \frac{1}{2} \omega_t^2 \left(\frac{I_s}{\theta_{max}} \right)$	- Inertia moment around the axis of rotation
	θ_{max}	- Maximum rotation allowed
Maneuver	T = AQ I/t	- Maneuver time _ = Estudia of to spe sequired
	$T = 4\theta_{man}I_{s}/t_{man}$	- Maneuver angle
Misaligned thrust		- Thrust magnitude
		- Thruster location
Aerodynamics	$T = \frac{1}{2}\rho V^2 A_s C_D \left(c_{pa} - c_g\right)$	- Atmospheric density
	$I = \frac{1}{2} \rho V^{-} A_{S} C_{D} (c_{pa} - c_{g})$	- Satellite drag coefficient
		- Exposed surface
		- Relative speed
		- Distance between center of mass and center of pressure
Gravity gradient	3 <i>Gm</i>	- Inertia moments
	$T = \frac{3Gm_t}{R^3} I_1 - I_2 c_1c_2$	- Distance from ground
	R^{3}	- Misalignment w.r.t. LVLH
Magnetic field	T = D P	- Distance from groung
	$T = D_{S}B$	- Residual dipole
Solar radiation		- Absorption and reflection coefficients
	$T = P_s A_s (1+q) (c_{ps} - c_g)$	- Exposed surface
	(1" 3)	- Direction of the Sun
		- Distance between center of mass and center of pressure

Estimation of angular momentum requirements

Step	Operations and Comments
1. Estimation of disturbance torque	-s Dove thou we need to do stop s
2. Estimation of the integral over time of the disturbance torque for each axis	$-\frac{1}{2}$
3. Separate cyclic components from secular components	Soulor conforment on informat to soulor component on informat to soulor component to decide if we need a desolvantion uneclasic
4. Sizing of actuators	For cyclical components, inertia, reaction or CMG wheels can be used, for secular components rocket or magnetic systems
5. If thrusters are used, evaluate the integral over time of the disturbance magnitude for each axis	$h_x = \int T_{dx} dt$ because they one continue by accelerating over to send compare the continue to the conti

Steps in the design of the attitude control system

Step	Input	Output
1) Definition of control modes	Mission requirements, mission	List of mission control modes
	profile, conditions for orbit	Requirements and constraints
	injection	
2) Selection of control type	Payload, thermal and power	Methods of stabilization and
	requirements, type of orbit and	control (three-axis, gravity
	pointing, disturbances	gradient, spin)
3) Quantify disturbances	Satellite geometry, mission profile,	Values of gravity gradient torque,
	magnetic and orbit model	magnetic, aerodynamic, solar
		pressure, thrust, internal
4) Choice and sizing of	Satellite geometry, pointing	Type of sensors
hardware	accuracy, maneuvering speed,	Type of actuators
	operational life, pointing direction	Signal processing
5) Definition of attitude	All the above	Algorithms and logic of each
determination and control		control mode
algorithms		
6) Iterate the design	All the above	Subsystem specifications

Typical control modes

Mode	Description	
Orbit insertion	Period during and after the final phase of the launch, insertion	
	into orbit. The satellite may not be controlled, be spinned with	
	the apogee thruster, or controlled by a thruster system	
Attitude acquisition	Initial attitude determination and stabilization. It can be used	
	to correct small orbit injection errors	
Normal	Used for most part of the mission. The system is primarily	
	sized for this phase	
Slew maneuver	Satellite re-orientation	
Emergency	If the normal system does not work or if it is deactivated. It	
	may require less power or sacrifice performance to meet	
	thermal and / or power requirements	
Special	With particular requirements for particular phases of the	
	mission	

Requirements of the attitude determination and control system

Requirement	Definition	Example / Comments			
Determination	Determination				
Accuracy	Accuracy of information on the attitude with	Information available in real-time			
	respect to an inertial system	onboard or processed on ground			
Amplitude	Angular interval for which the accuracy must	In a cone of 30° around nadir			
	be maintained				
Control					
Accuracy	Accuracy achievable with respect to an	Contains errors in both control and			
	imposed command	determination of the attitude			
Amplitude	Angular interval for which the control				
	accuracy must be maintained				
Oscillation Limit on angles or angular velocities for high		It is usually specified so as not to			
	frequency transient motions	confuse sensor data.			
		0.1° in one minute, 1°/s between 1			
		and 20 Hz.			
Drift Limit for low frequency transient mo		1°/hour, max. 5°. This is to avoid			
		frequent system resets			
Response time	Specifies the time available to complete				
	maneuvers or corrections after disturbances				

Effects of required precision on the attitude control architecture

Precision	Effects on spacecraft	Effects on control system
>5°	 Allows use of gravity gradient Cheap system 	 No sensor needed for gravity gradient, just need a boom motor, damper and momentum wheel Accuracy of Earth sensors and magnetometers are sufficient For better precision, Sun and / or star sensors are needed
1° - 5°	 Gravity gradient not suitable Spin stability is possible if pointing is inertial De-spun platform might be required Three-axis stability is suitable 	 Sun and Earth sensors might be enough for a spinner Three-axis stabilization requires a system of RWs or CMGs, saving propellant for long missions For a spinning platform, thrusters and nutation dampers are good An all-magnetic system might be fine for certain orbits
0.1° - 1°	- Dual-spin or three-axis systems are suitable	 Accurate reference needed, star sensors or gyroscopes and Earth sensors Wheel systems with thrusters for coarse control and desaturation A magnetic system could also be fine for small satellites
<0.1°	- Three-axis control is required - Individual payloads might be isolated, articulated and autonomous in pointing	 You need a very precise star sensor or gyroscope Control laws and computational load are complex Flexible parts must be taken into account in the model

Interaction with other subsystems

Mission Structure • Earth pointing or inertial pointing? • Limits on position • Control during orbit correction maneuvers? of center of mass • Payload on separate platform? Constraints on • Availability of on-board navigation data? inertia moments • Pointing stability and accuracy required? **Propulsion** • Effects of structural • Slew maneuvers required? Thruster sizing flexibility • Orbit ? • Propellant volume • Thruster position • Autonomy? Minimum impulse • Sensor position • Mission lifetime? inputs of the courtrol Thermal Communication Special Pointing precision **ADCS** system design maneuvers of antenna • Spin or passive stability or three-axis active required? control **Power** • On board data processing vs ground control • Solar panel Sensor selection Power pointing Actuator selection Power needed for requirements • Architecture of data processing system **ADCS**