1 Question 1:

- We would like to prove that $\langle a \rangle = \langle b \rangle = \{0, d, 2d, \dots, (\frac{n}{d} 1)d\}$. First we show that $d \in \langle a \rangle$. Extended-Euclid gives us integers x' and y' such that ax' + ny' = d. This means that $ax' \equiv d \pmod{n}$ and therefore $d \in \langle a \rangle$. Since $d \in \langle a \rangle$, then every multiple of d is in $\langle a \rangle$, and thus $\langle d \rangle \subset \langle a \rangle$. In the other direction, let $m \in \langle a \rangle$. Then m = ax + ny for some integers x, y. d|a and d|n, so d|ax + ny = m, and therefore $m \in \langle d \rangle$.
- To prove that $gcd(a,n)|b \Rightarrow ax \equiv b \pmod{n}$ has a solution, Let d = gcd(a,n). If d|b then $b \in d >$, and by the previous section, $b \in a >$, and therefore there exist ax + bx = b, and ax + bx = b.

To prove that $ax \equiv b \pmod{n}$ has a solution $\Rightarrow gcd(a,n)|b$, notice that if there is a solution to the equation this means that there exist integers x,y such that ax+ny=b. Since gcd(a,n)|a and gcd(a,n)|n, gcd(a,n)|ax+ny=b.

- Obviously $a\frac{n}{d} \equiv 0 \pmod{n}$, since $\frac{a}{d}$ is an integer. So we know that the sequence $ak \pmod{n}$ has a period of $\frac{n}{d}$. It cannot have any smaller period since if there is a period h with $h < \frac{n}{d}$ then $< a >= \{ak \pmod{n} | k = 0, \dots, n-1\}$ has only h elements, in contradiction to what we proved in the first section.
- The first $\frac{n}{d}$ elements of the sequence $ak \pmod{n}$, $k = 0, \ldots, n-1$ are exactly the elements of $\langle a \rangle$, and since we proved that this sequence has a period of $\frac{n}{d}$, each element of $\langle a \rangle$ is repeated exactly d times in the sequence. If $ax \equiv b \pmod{n}$ has a solution then $b \in \langle a \rangle$, therefore it appears d times in the sequence, which means that there exist k_1, \ldots, k_d such that $ak_i \equiv b \pmod{n}$ for $i = 1, \ldots, d$.
- We know that $ax' \equiv d \pmod{n}$, and therefore

$$ax'\frac{b}{d} \equiv d\frac{b}{d} \ (mod \ n)$$

 $\equiv b \pmod{n}$

which proves that $x' \frac{b}{d} \pmod{n}$ is a solution to the modular equation.

• The rest of the solutions of this modular equation are $x'\frac{b}{d} + i\frac{n}{d}$ for $i = 1, \ldots, d-1$. These are all distinct since $0 \le i\frac{n}{d} < n$ for $i = 0, \ldots, d-1$, and for every i > 0 we have

$$a(x'\frac{b}{d} + i\frac{n}{d}) \equiv ax'\frac{b}{d} + ai\frac{n}{d} \equiv b \pmod{n}$$

(we already proved that $ax'\frac{b}{d} \equiv b \pmod{n}$, and $ai\frac{n}{d} \equiv 0 \pmod{n}$ since $\frac{ai}{d}$ is an integer).

• An algorithm that solves the modular equation $ax \equiv b \pmod{n}$ given the input (a, n, b):

$$-(d, x', y') \leftarrow Extended - Euclid(a, n)$$

```
\begin{array}{l} - \text{ if } d|b \text{ then} \\ * \ x_0 \leftarrow x' \frac{b}{d} \ (mod \ n) \\ * \ \text{for } i = 1 \text{ to } d-1 \\ & \cdot \ x_i \leftarrow (x_0 + i \frac{n}{d}) \ (mod \ n) \\ * \ \text{return} \ \{x_0, \dots, x_{d-1}\} \\ - \ \text{else return} \ \emptyset \end{array}
```

2 Question 2:

gcd(e,(p-1)(q-1))=1, and therefore by question 1 there is a single solution to the modular equation $ex\equiv 1\ (mod\ (p-1)(q-1))$. The solution to this equation is the multiplicative inverse of e modulo (p-1)(q-1). Thus, to find d given e,p,q we just have to run the above algorithm with input (e,(p-1)(q-1),1).