计算题考点分析

考点	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
甘特图										10	
三级调度				13	8	9	20	20	1	11	
同步与互 斥	6	5			10	11	19	18	2	9	4
死锁	3	2	12						4		1
连续分配 内存管理											
非连续内 存分配管 理	8					10				14	
页面置换 算法			10	11				19			
位示图			11	12	9			17		13	
磁盘盘块 计算										13	
磁盘调度 算法											

- 计算题其实并不难, 掌握方法后细心计算即可
- 一定要细心,这种题不能丢分

多道程序设计——甘特图

真题 2021

此题并没有说明如果同时A,B请求使用CPU情况下,谁优先级高

2. 有两个程序,程序 A 依次使用 CPU 计 10s、设备甲计 5s、CPU 计 5s、设备乙计 10s、CPU 计 10s;程序 B 依次使用设备甲计 10s、CPU 计 10s、设备乙计 Ss、CPU 计 5s、设备乙计 10s。在单道程序环境下先执行程序 A 再执行程序 B,CPU 的利用率是多少?在多道程序环境下,CPU 利用率是多少?

单道程序环境下

CPU利用率=CPU使用时间/所有程序执行完所有时间 为什么分母是所有程序执行时间?

单道程序环境下,先执行程序A,在执行程序B,程序A和程序B都花费40S,其中上CPU执行时间为40S,则CPU利用率为50%

多道程序环境下

画甘特图,注意横轴/纵轴的意义 CPU利用率=40/45=88.9%

另一种画法

1.3 操作系统的 发展过程

1.3.3 多道批处理系统

设想一台电脑配备256KB的可用内存空间(未被OS占用的),一个磁盘,一个终端和一台打印机。3个程序JOB1、JOB2和JOB3,同时被提交执行,如下表所列。

内容	JOB ₁	JOB ₂	JOB ₃	
作业类型	偏重计算	偏重1/0	偏重1/0	
执行时间	5 min	15min	10min	
所需内存	50KB	100KB	80KB	
是否需要磁盘	No	No	Yes	
是否需要终端	No	Yes	No	
是否需要打印机	No	No	Yes	

假设系统中有三个作业...

	JOB1	JOB2	JOB3
作业类型	大量计 算	大量I/O	大量I/O
持续时间	5min	15min	10min
作业大小	50k	100k	80k
需要磁盘	否	否	是
需要终端	否	是	否
需要打印机	否	否	是

	单道程序设计	多道程序设计
处理机利用率	17%	33%
内存利用率	33%	67%
磁盘利用率	33%	67%
打印机利用率	33%	67%
经过时间	30min	15min
吞吐量	6个/h	12个/min
平均周转时间	18min	10min

- 1 5/(5+15+10) = 5/30 = 17%
- @ 5/15 = 33%
- (3 (5x50+15x100+10x80)/30x256)
- √ (4) (5x230+5x180+5x100)/(15x256) = 67% 230=50+100+80

- (10×80) (15+15+10)×80)
 - @ (10×80)/(15×80)=67%
- @ 10/15+15+10) = 33%
- 8 10/15 = 67%

第一章 操作系统引论

1.3 操作系统的发展过程

多道程序设计在提高资源利用率方面产生的效果

	单道程序设计	多道程序设计	
处理机使用	17% 05/30	33% 2 5/15	1cx230+3x180
内存使用	30% 3	67% 4	(5×230+1×180 /(15×25)
磁盘使用	33% (\$)	67% (6)	
打印机使用	33% (1)	67% (8)	10XM /12XM
经过时间	30 min	15 min	
吞吐率	6 jobs/h	12 jobs/h	
平均响应时间	18 min (1)	10 min (10)	

(9) ((5+0)+(15+5)+(10+20)/3 = 183

作业

2.	填空题
⊿.	强上烃

(1) 微和基度

732	エ 117 4-27 1/2 1 1 31-47 1 2/2 2/2 0		
(2) 在批处理兼分时系统中	往往把由分时系统控制的作业称为_	作业,	把由批

- 处理系统控制的作业称为_____作业。
 - (3) 在分时系统中, 若时间片长度一定, 则_____, 系统响应时间越慢。

为纽带构成的计算机系统

- (4)分布式操作系统能使系统中若干台计算机______完成一个共同的任务,分解问题成为子计算并使之在系统中各台计算机上_____,以充分利用各计算机的优势。
- (5)用户通过网络操作系统可以_____、___、,从而大大扩展了计算机的应用范围。

作业

1.有 3 个程序 A、B、C 在系统中单独处理占用的 CPU 时间和 I/O 设备时间如下表所示:

程序 A	CPU 20ms IC		IO2 30ms CPU 30ms		30ms	IO2 20ms	CPU 30ms	IO1 20ms
程序 B	IO2 30ms		CPU 30ms		IO	40ms	CPU 30ms	IO1 20ms
程序 C	IO1 20ms		CPU 50n	ns	I	O1 30ms	CPU 20ms	IO2 30ms

假定在具有 2 个 CPU 为 X 和 Y 的多机系统中,以多道程序设计方式,按如下条件执行上述 3 个程序,条件如下:

- (1) X 和 Y 运算速度相同,整个系统可以同时执行 2 个程序,并且在并行处理程序时速度也不下降。
 - (2) X 的优先级比 Y 高,即当 X、Y 均能执行程序时,由 X 去执行。
- (3)当多个程序同时请求 CPU 或 I/O 设备时,按程序 $A \times B \times C$ 的次序分配所请求的资源。
- (4)除非请求输入输出,否则执行中的程序不会被打断,也不会把控制转给别的 CPU。 而且因输入输出而中断的程序再重新执行时,不一定仍在同一 CPU 上执行。
 - (5) 控制程序的介入时间可忽略不计。
 - (6)程序 A、B、C 同时开始执行。

请作出多道程序运行的示意图,求:(1)程序 $A \times B \times C$ 同时开始执行到执行完毕为止的时间。(2) X 和 Y 的使用时间。

王道 P12

- 02. 有两个程序,程序 A 依次使用 CPU 计 10s、设备甲计 5s、CPU 计 5s、设备乙计 10s、CPU 计 10s;程序 B 依次使用设备甲计 10s、CPU 计 10s、设备乙计 5s、CPU 计 5s、设备乙计 10s。在单道程序环境下先执行程序 A 再执行程序 B, CPU 的利用率是多少?在多道程序环境下,CPU 利用率是多少?
- 03. 设某计算机系统有一个 CPU、一台输入设备、一台打印机。现有两个进程同时进入就绪态,且进程 A 先得到 CPU 运行,进程 B 后运行。进程 A 的运行轨迹为:计算 50ms,打印信息 100ms,再计算 50ms,打印信息 100ms,结束。进程 B 的运行轨迹为:计算 50ms,输入数据 80ms,再计算 100ms,结束。画出它们的时序关系图 (可用甘特图),并说明:
 - 1) 开始运行后, CPU 有无空闲等待? 若有, 在哪段时间内等待? 计算 CPU 的利用率。
 - 2) 进程 A 运行时有无等待现象? 若有, 在何时发生等待现象?
 - 3) 进程 B 运行时有无等待现象?若有,在何时发生等待现象?

答案

- (1) 微机是以 总线 为纽带构成的计算机系统。
- (2) 在批处理兼分时系统中,往往把由分时系统控制的作业称为<u>前台</u>作业,把由批处理系统控制的作业称为<u>后台</u>作业。
 - (3) 在分时系统中, 若时间片长度一定, 则 用户数越多 , 系统响应时间越慢。
- (4)分布式操作系统能使系统中若干台计算机<u>协同</u>完成一个共同的任务,分解问题成为子计算并使之在系统中各台计算机上 并行执行 ,以充分利用各计算机的优势。
- (5)用户通过网络操作系统可以_网络通信_、_资源共享__,从而大大扩展了计算机的应用范围。

答案

