

Optimization for Industrial Applications

M Elamparithy, Sinnu Susan Thomas

Optimization and Machine Learning Lab, Digital University Kerala

Optimization

Finding the optimum value of an objective given some constraints

$$heta^* \in arg\ max\ f(heta)$$
 $heta \in R^d$

Objective Function = 3*x + y

Convex Optimization

Objective Function = $x^2 + y$

Source: https://demonstrations.wolfram.com/ConstrainedOptimization/

Non-Convex Optimization

Objective function = $\frac{1}{2}(x-\beta)^2 + \gamma x^2 \cos(\pi x) - \lambda \sin(2\pi x) + \cos(4\pi x)\sin(\pi x)$

$$\beta = 1.0$$

$$y = 0.3$$

$$\lambda = 5.5$$

Source: https://demonstrations.wolfram.com/GlobalMinimumOfANonConvexFunction/

Non-Convex Optimization

Objective function = $\frac{1}{2}(x-\beta)^2 + \gamma x^2 \cos(\pi x) - \lambda \sin(2\pi x) + \cos(4\pi x)\sin(\pi x)$

$$\beta = 1.0$$

$$\gamma = 0.3$$

$$\lambda = 5.5$$

Source: https://demonstrations.wolfram.com/GlobalMinimumOfANonConvexFunction/

Black Box Functions

Objective Function = **Analytic form not known**

- cannot access f
- observe its outputs based on some given inputs

Black Box Functions

Curating a responsible digital world

Source: U.S. Energy Information Administration, based on DrillingInfo Inc., IHS Inc., The Appalachian Oil and Natural Gas Research Consortium, and U.S. Geological Survey. Note: Map includes production wells from January 2010 through January 2016.

Source: EIA produces new maps of the Utica Shale play

Source: Land Oil Rig 3D Model

Black Box Functions

Objective Function = *Analytic form not known*

Costly to evaluate!

Bayesian Optimization

Hence, if **function** is Black box + Costly to evaluate = **Bayesian Optimization** is used

How?

Bayesian Optimization

What? When? Why? How? Where?

Bayesian Optimization - How?

Step 2- Acquisition Functions

Dataset

Dataset

Dataset

$$\mathbf{X} = \{x_1, x_2, \dots, x_n\}$$
 $\mathbf{Y} = \{y_1, y_2, \dots, y_n\}$

$$\mathbf{X_*} = \{x_{n+1}, x_{n+2}, \dots, x_m\} \quad \ \mathbf{Y_*} = \{y_{n+1}, y_{n+2}, \dots, y_m\}$$

$$p(Y|X) = \mathcal{N}(Y|\mu, K)$$

$$\mu = (m(x_1), m(x_2), \ldots, m(x_n)) \qquad \mathbf{K} = egin{bmatrix} k(x_1, x_1) & k(x_1, x_2) & \ldots & k(x_1, x_n) \ k(x_2, x_1) & k(x_2, x_2) & \ldots & dots \ dots & dots & \ddots & dots \ k(x_n, x_1) & k(x_n, x_2) & \ldots & k(x_n, x_n) \end{bmatrix}$$

$$p(Y_*|X_*,X,Y)=\mathcal{N}(Y_*|\mu_*,K_*)$$

Bayesian Inference

Bayesian Optimization - How?

Step 2- Acquisition Functions

- Suggests new points which can be the optimum
- Uses the mean and variance from the Gaussian Process posterior
- Types-

Expected Improvement:
$$\mathrm{EI}(x) = (\mu - f(x^\star))\Phi\left(\frac{\mu - f(x^\star)}{\sigma}\right) + \sigma\varphi\left(\frac{\mu - f(x^\star)}{\sigma}\right)$$
Probability of Improvement: $\mathrm{PI}(x) = \Phi\left(\frac{\mu(x) - f(x^\star)}{\sigma(x)}\right)$

$$\Phi(z) \equiv \mathrm{CDF}(z) \qquad \varphi(z) = \frac{1}{\sqrt{2\pi}}\exp\left(-z^2/2\right)$$

Upper Confidence Bound: $a(x; \lambda) = \mu(x) + \lambda \sigma(x)$

DIGITAL UNIVERSITY KERALA

Algorithm

- 1. Select initial samples- X_i , Y_i
- 2. Obtain a Gaussian Process posterior
- 3. Acquisition Function suggests a new point X_{new}
- 4. Query **f** at X_{new} , get- Y_{new}
- 5. Update gaussian process with (X_{new}, Y_{new}) to obtain new posterior
- 6. Back to step 3
- 7. Repeat until optimum value

Applications

Robotics **Astronomy** Drug Development Graphics and Hyperparameter Animation Autonomous Optimization **Vehicles**

Chemistry

Process Optimization

Late-stage synthesis and preparation scale

Experimental HIV inhibitor

Optimize yield for a single target molecule

Important Experimental Parameters

Categorical

Catalyst (precat./ligand)

Acid/Base

Oxidant/Reductant

Solvent

Additive

...

Continuous

[Concentration]

Equivalents

Temperature

Pressure

Time

...

Curating a responsible digital world

Drug Synthesis

a

Prototypical chemical process optimization problem

Synthesis of BMS-911543

Drug Synthesis

Drug Synthesis

Materials Discovery

Desirable HBEs' properties:

- Suitable redox potential windows
- High solubility
- Ease of synthesis
- Electrochemical reversibility

Materials Discovery

HBE scaffold
$$R_1$$
 R_2 R_3 R_4 R_5

SMILES (Simplified Molecular-Input Line Entry System)

[R3]C1=CC=C(C([R4])([R5])C([R2])-[O][R1])C=C1

R₁ = -Me, -Et, -Pr, -Ph, -CN, -Eth, -COMe, -C(Me)Me, -CCOMe

 $R_2 = -N(Me)_3^+$, -COMe, -Et, -OCMe, $N(Me)_2$, -NO₂, -C(=O), -Pr, -C(Me)Me, -CCOMe, -C(Me)OMe

 $R_3 = -N(Me)_3^+$, -Me, -COMe, -Br, -C(=O), -OEth, -Pr, -C(Me)Me, -C(COMe), -C(Me)(OMe)

 $R_4 - R_5 = -N(Me)_3^+$, -OMe, -COMe, -Br, -N(Me)Me, -Et, -OEt, -NO₂, -C(=O), -Pr, -C(Me)Me, -C(COMe), -C(Me)(OMe) = -C(Me)(

-> 10⁵ molecules

Materials Discovery

Robotics

Learning a controller is equivalent to optimizing the parameters of the controller

$$\theta^* = \arg \max_{\theta} R[\pi(\theta)]$$

Robotics

Hyperparameter Optimization

Computer Graphics and Visual Design Curating a responsible digital world

MacPherson Architecture Front Suspension Sible digital world

Chakravarty, P., Lakehal-ayat, M., Blaschko, M., **Thomas, S. S.**, Palandri, J., & Wolf-Monheim, F. P. (2021). *U.S. Patent Application No. 16/662,183*.

MacPherson Architecture Front Suspension Sible digital world

Source: https://en.wikipedia.org/wiki/VFTS 352

Image and Vision Computing Lab Curtificates & Optimization and Machine Learning Lab

Computer Vision
Image & Video Processing
Bayesian Optimization
Causal AI

Thank You

https://sinnuthomas.github.io/sinnu.thomas@duk.ac.in

https://www.youtube.com/watch?v=UWH8 -njdaA&t=29s