Introduction to Data Mining

Chapter 1 Introduction

Source: revised from slides provided by Tan, Steinbach, Karpatne, and Kumar

Large-scale Data is Everywhere!

- There has been enormous data growth in both commercial and scientific databases due to advances in data generation and collection technologies
- New mantra
 - Gather whatever data you can whenever and wherever possible.
- Expectations
 - Gathered data will have value either for the purpose collected or for a purpose not envisioned.

E-Commerce

Traffic Patterns

Social Networking: Twitter

Sensor Networks

Computational Simulations

Why Data Mining? Commercial Viewpoint

- Lots of data is being collected and warehoused
 - Web data
 - Yahoo has Peta Bytes of web data
 - Facebook has billions of active users
 - Purchases at department/ grocery stores, e-commerce
 - Amazon handles millions of visits/day
 - Bank/Credit Card transactions
- Computers have become cheaper and more powerful
- Competitive Pressure is Strong
 - Provide better, customized services for an edge (e.g. in Customer Relationship Management)

Why Data Mining? Scientific Viewpoint

- Data collected and stored at enormous speeds
 - remote sensors on a satellite
 - NASA EOSDIS archives over petabytes of earth science data / year

Sky Survey Data

- telescopes scanning the skies
 - Sky survey data
- High-throughput biological data
- scientific simulations
 - terabytes of data generated in a few hours
- Data mining helps scientists
 - in automated analysis of massive datasets
 - In hypothesis formation

Surface Temperature of Earth

Introduction to Data Mining, 2nd Edition

Great opportunities to improve productivity in all walks of life

McKinsey Global Institute

Big data: The next frontier for innovation, competition, and productivity.

Great Opportunities to Solve Society's Major Problems

Improving health care and reducing costs

Finding alternative/ green energy sources

Predicting the impact of climate change

Reducing hunger and poverty by increasing agriculture production

What is Data Mining?

Many Definitions

- Non-trivial extraction of implicit, previously unknown and potentially useful information from data
- Exploration & analysis, by automatic or semi-automatic means, of large quantities of data in order to discover meaningful patterns

What is (not) Data Mining?

What is not Data Mining?

- Look up phone number in phone directory
- Find documents
 that contain a
 particular set of
 keywords

Query (simple interactions with a database management system)

What is Data Mining?

- Certain names are more prevalent in certain US locations (O'Brien, O'Rourke, O'Reilly... in Boston area)
- Group together similar documents returned by search engine according to their context (e.g., Amazon rainforest, Amazon.com)

Improve the quality the search results based on their relevance to the input queries

Origins of Data Mining

 Draws ideas from machine learning/AI, pattern recognition, statistics, and database systems

Traditional techniques may be unsuitable due to data that is

Large-scale

High dimensional

Heterogeneous

Complex

Distributed

Database Technology, Parallel Computing, Distributed Computing

 A key component of the emerging field of data science and datadriven discovery

Data Mining Tasks

Prediction Methods

 Use some variables to predict unknown or future values of other variables.

Description Methods

 Find human-interpretable patterns that describe the data.

Data Mining Tasks ...

Association Rule Discovery: Definition

- Given a set of records each of which contain some number of items from a given collection
 - Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

```
Rules Discovered:

{Milk} --> {Coke}

{Diaper, Milk} --> {Beer}
```

Association Analysis: Applications

- Market-basket analysis
 - Rules are used for sales promotion, shelf management, and inventory management
- Telecommunication alarm diagnosis
 - Rules are used to find combination of alarms that occur together frequently in the same time period
- Medical Informatics
 - Rules are used to find combination of patient symptoms and test results associated with certain diseases

Predictive Modeling: Classification

 Find a model for class attribute as a function of the values of other attributes

Model for predicting credit worthiness

Class

Tid Employed		Level of Education	# years at present address	Credit Worthy
1	Yes	Graduate	5	Yes
2	Yes	High School	2	No
3	No	Undergrad	1	No
4	Yes	High School	10	Yes
	•••		•••	

Classification Example

Examples of Classification Task

- Classifying credit card transactions as legitimate or fraudulent
- Classifying land covers (water bodies, urban areas, forests, etc.) using satellite data

- Identifying intruders in the cyberspace
- Predicting tumor cells as benign or malignant
- Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil

Classification: Application 1

Fraud Detection

Goal: Predict fraudulent cases in credit card transactions.

- Use credit card transactions and the information on its account-holder as attributes.
 - When does a customer buy, what does he buy, how often he pays on time, etc
- Label past transactions as fraud or fair transactions. This forms the class attribute.
- Learn a model for the class of the transactions.
- Use this model to detect fraud by observing credit card transactions on an account.

Classification: Application 2

- Churn prediction for telephone customers
 - Goal: To predict whether a customer is likely to be lost to a competitor.

- Use detailed record of transactions with each of the past and present customers, to find attributes.
 - How often the customer calls, where he calls, what timeof-the day he calls most, his financial status, marital status, etc.
- Label the customers as loyal or disloyal.
- Find a model for loyalty.

Classification: Application 3

- Sky Survey Cataloging
 - Goal: To predict class (star or galaxy) of sky objects, especially visually faint ones, based on the telescopic survey images (from Palomar Observatory).
 - 3000 images with 23,040 x 23,040 pixels per image.

- Segment the image.
- Measure image attributes (features) 40 of them per object.
- Model the class based on these features.
- Success Story: Could find 16 new high red-shift quasars, some of the farthest objects that are difficult to find!
 From [Fayyad, et.al.] Advances in Knowledge Discovery and Data Mining, 1996

Classifying Galaxies

Courtesy: http://aps.umn.edu

Early

Class:

Stages of Formation

Intermediate

Data Size:

- 72 million stars, 20 million galaxies
- Object Catalog: 9 GB
- Image Database: 150 GB

Attributes:

- Image features,
- Characteristics of light waves received, etc.

Late

Regression

- Predict a value of a given continuous valued variable based on the values of other variables, assuming a linear or nonlinear model of dependency.
- Extensively studied in statistics, neural network fields.
- Examples:
 - Predicting sales amounts of new product based on advetising expenditure.
 - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.
 - Time series prediction of stock market indices.

Clustering

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Applications of Cluster Analysis

Understanding

- Custom profiling for targeted marketing
- Group related documents for browsing
- Group genes and proteins that have similar functionality
- Group stocks with similar price fluctuations

Summarization

Reduce the size of large data sets

Use of K-means to partition Sea Surface Temperature (SST) and Net Primary Production (NPP) into clusters that reflect the Northern and Southern Hemispheres.

Introduction to Data Mining, 2nd Editi

Courtesy: Michael Eisen

Clustering: Application 1

Market Segmentation:

 Goal: subdivide a market into distinct subsets of customers where any subset may conceivably be selected as a market target to be reached with a distinct marketing mix.

- Collect different attributes of customers based on their geographical and lifestyle related information.
- Find clusters of similar customers.
- Measure the clustering quality by observing buying patterns of customers in same cluster vs. those from different clusters.

Clustering: Application 2

- Document Clustering:
 - Goal: To find groups of documents that are similar to each other based on the important terms appearing in them.
 - Approach: To identify frequently occurring terms in each document. Form a similarity measure based on the frequencies of different terms. Use it to cluster.

Enron email dataset

Deviation/Anomaly/Change Detection

- Detect significant deviations from normal behavior
- Applications:
 - Credit Card Fraud Detection
 - Network Intrusion
 Detection
 - Identify anomalous behavior from sensor networks for monitoring and surveillance.
 - Detecting changes in the global forest cover.

Motivating Challenges

Scalability

- High Dimensionality
- Heterogeneous and Complex Data

Data Ownership and Distribution

Non-traditional Analysis