In [44]: # Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

In [45]: titanic = pd.read_csv('https://query.data.world/s/i3kphasugbts4cqem257cou37
4ijdh') # Reading the dataframe

In [46]: titanic.head() # Taking glimpse of dataframe

Out[46]:

	pclass	survived	name	sex	age	sibsp	parch	ticket	fare	cabin	embarke
0	1.0	1.0	Allen, Miss. Elisabeth Walton	female	29.0000	0.0	0.0	24160	211.3375	B5	.
1	1.0	1.0	Allison, Master. Hudson Trevor	male	0.9167	1.0	2.0	113781	151.5500	C22 C26	ţ
2	1.0	0.0	Allison, Miss. Helen Loraine	female	2.0000	1.0	2.0	113781	151.5500	C22 C26	\$
3	1.0	0.0	Allison, Mr. Hudson Joshua Creighton	male	30.0000	1.0	2.0	113781	151.5500	C22 C26	\$
4	1.0	0.0	Allison, Mrs. Hudson J C (Bessie Waldo Daniels)	female	25.0000	1.0	2.0	113781	151.5500	C22 C26	:

In [47]: titanic.describe() # Viewing the statistics of the daframe

Out[47]:

	pclass	survived	age	sibsp	parch	fare	bı
count	1309.000000	1309.000000	1046.000000	1309.000000	1309.000000	1308.000000	121.0000
mean	2.294882	0.381971	29.881135	0.498854	0.385027	33.295479	160.8099
std	0.837836	0.486055	14.413500	1.041658	0.865560	51.758668	97.6969
min	1.000000	0.000000	0.166700	0.000000	0.000000	0.000000	1.0000
25%	2.000000	0.000000	21.000000	0.000000	0.000000	7.895800	72.0000
50%	3.000000	0.000000	28.000000	0.000000	0.000000	14.454200	155.0000
75%	3.000000	1.000000	39.000000	1.000000	0.000000	31.275000	256.0000
max	3.000000	1.000000	80.000000	8.000000	9.000000	512.329200	328.0000

In [48]: titanic.dtypes # Checking the datatypes of columns
Out[48]: pclass float64

float64 float64 survived object name object sex float64 age float64 sibsp parch float64 object ticket float64 fare cabin object object embarked boat object float64 body object home.dest dtype: object

In [49]: titanic.shape

Out[49]: (1310, 14)

```
In [50]: null_percentage = round(titanic.isnull().sum() / len(titanic) * 100, 2)
# Counting the percentage of null value in each variable
null_percentage
```

```
Out[50]: pclass
                         0.08
                         0.08
          survived
                         0.08
          name
          sex
                         0.08
                        20.15
          age
          sibsp
                         0.08
          parch
                         0.08
          ticket
                         0.08
          fare
                         0.15
          cabin
                        77.48
          embarked
                         0.23
                        62.90
          boat
          body
                        90.76
          home.dest
                        43.13
          dtype: float64
```

```
In [51]: null_percentage.plot.bar( title = "Missing Values in Dataset", figsize=(8,5
)) # plotting percentage of missing values
plt.xlabel('Variables')
plt.ylabel('Percentage')
#plt.savefig('1.png')
plt.show()
```



```
In [52]: titanic = titanic.drop(['boat', 'body', 'home.dest', 'cabin'], axis=1) # R
emoving the columns with too many missing values
```

```
In [53]: null_percentage = round(titanic.isnull().sum() / len(titanic) * 100, 2)
# Counting the percentage of null value in each variable
null_percentage.plot.bar( title = "Missing Values in Dataset", figsize=(8,5))
plt.xlabel('Variables')
plt.ylabel('Percentage')
#plt.savefig('2.png')
plt.show()
```



```
In [54]:
          titanic.isnull().sum()
                                           # Counting the number of null value in each
          variable again
Out[54]:
         pclass
          survived
                        1
          name
                        1
          sex
                        1
                      264
          age
          sibsp
                         1
          parch
                        1
                        1
          ticket
          fare
                        2
          embarked
                        3
          dtype: int64
```

In [55]: titanic.drop(index = 1309, inplace = True) # Removing the row which resulted in null value of pclass, survived, name, sex, sibsp, parch, and ticket

```
In [56]: titanic.isnull().sum()
                                           # Counting the number of null value in each
          variable one more time
Out[56]: pclass
                        a
                        0
         survived
         name
                        0
         sex
                        0
         age
                      263
         sibsp
                        0
         parch
                        0
         ticket
                        0
         fare
                        1
         embarked
                        2
         dtype: int64
In [57]: | titanic['fare'].fillna(titanic['fare'].dropna().median(), inplace=True) # R
         eplacing missing fare with median value
         titanic['age'].fillna(titanic['age'].dropna().mean(), inplace = True) # Rep
          lacing missing age with median age
         titanic['embarked'].fillna(titanic['embarked'].dropna().mode()[0], inplace
          = True) # Replacing missing port with mode port
                                          # Counting the number of null value in each
In [58]:
         titanic.isnull().sum()
          variable one last time
Out[58]: pclass
                      0
         survived
                      0
         name
                      0
                      0
         sex
                      0
         age
         sibsp
                      0
         parch
         ticket
         fare
         embarked
         dtype: int64
         sex = titanic.groupby('sex')['sex'].count().reset index(name='counts') # Fi
In [59]:
         nding the population of each gender
          sex
Out[59]:
               sex counts
          0 female
                     466
              male
                     843
```

```
In [60]: labels = ['Female', 'Male']
    values = sex['counts']
    colors = ['pink', 'skyblue']
    explode = [0.1,0]
    plt.figure(figsize=(8,5))
    plt.title('Gender of Passengers')
    plt.pie(values,labels=labels,colors=colors,explode=explode, autopct='%1.1f%
    %', startangle=-90)
    plt.axis('equal')
    #plt.savefig('3.png')
    plt.show()
```

Gender of Passengers


```
In [61]:
         # Visualizing age distribution in both the genders
         plt.figure(figsize=(8,5))
         plt.subplot(211)
         plt.hist(titanic['sex'] == 'male']['age'],rwidth=0.9,alpha=0.3,colo
         r='skyblue',bins=15, edgecolor='red')
         plt.xlabel('Age')
         plt.ylabel('Count')
         plt.title('Age Distribution of Male Passengers')
         plt.subplot(212)
         plt.hist(titanic['sex'] == 'female']['age'],rwidth=0.9,alpha=0.3,co
         lor='pink',bins=15, edgecolor='red')
         plt.xlabel('Age')
         plt.ylabel('Count')
         plt.title('Age Distribution of Female Passengers')
         plt.tight layout() # This prevents overlapping of the labels of two figure
         #plt.savefig('4.png')
```


In [62]: titanic.groupby(['sex', 'survived'])['survived'].count().unstack() # Viewi
ng surived and dead population in each gender

Out[62]:

survived 0.0 1.0

sex

female 127 339

male 682 161

```
In [63]: # Visualizing surival in each gender
    sex_survived = titanic.groupby(['sex', 'survived'])['survived'].count().uns
    tack()
    sex_survived.plot.bar(color=['#d9534f', '#5cb85c'], title = "Survival of Pa
    ssengers Based on Gender", figsize=(8,5))
    plt.legend(['Dead', 'Survived'])
    plt.xlabel('Gender')
    plt.ylabel('Number of Passengers')
    #plt.savefig('5.png')
    plt.show()
```



```
In [64]: # Visualizing survival in each passenger class
    class_survived = titanic.groupby(['pclass', 'survived'])['survived'].count
    ().unstack()
    class_survived.plot.bar(color=['#d9534f', '#5cb85c'], title = "Survival of
    Passengers Based on Passenger Class", figsize=(8,5))
    plt.legend(['Dead', 'Survived'])
    plt.xlabel('Passenger Class')
    plt.ylabel('Number of Passengers')
    #plt.savefig('6.png')
    plt.show()
```



```
In [65]: # Visualizing distribution of fare in each passenger class
    titanic[titanic['pclass'] == 1]['fare'] .plot.kde(figsize=(8,5))
    titanic[titanic['pclass'] == 2]['fare'] .plot.kde()
    titanic[titanic['pclass'] == 3]['fare'] .plot.kde()
    plt.legend(['Class 1', 'Class 2', 'Class 3'])
    plt.title('Distribution of Passenger Fare')
    plt.xlabel('Passenger Fare')
    #plt.savefig('7.png')
    plt.show()
```



```
In [76]: # Visualizing distribution of age in each passenger class
    titanic.boxplot(column = 'age', by='pclass', figsize=(8,5))
    plt.xlabel('Passenger Class')
    plt.ylabel('Age')
    plt.title('Age Distribution of Passengers by Class')
    plt.suptitle('') # This removes the non essential automatically generated
    title in the figure
    #plt.savefig('8.png')
    plt.show()
```



```
In [67]: # Dividing our fare into categories
bins = [0,10,50,100,200,500,1000]
titanic['fare_cat'] = pd.cut(titanic['fare'], bins)

# Visualizing survival based on fare class
fare_survived = titanic.groupby(['fare_cat', 'survived'])['survived'].count
().unstack()
fare_survived.plot.bar(color=['#d9534f', '#5cb85c'], title = "Survival of P assengers Based on Fare", figsize=(8,5), stacked = True)
plt.legend(['Dead', 'Survived'])
plt.ylabel('Fare Category')
plt.ylabel('Number of Passengers')
plt.xticks(rotation='horizontal') # For rotating x axis labels
#plt.savefig('9.png')
plt.show()
```



```
In [68]: # Survival based on passenger class and port
  embarked = titanic.groupby(['embarked', 'survived'])['survived'].count().un
  stack()
  embarked
```

Out[68]:

survived	0.0	1.0			
embarked					
С	120	150			
Q	79	44			
s	610	306			

```
In [69]: embarked.plot.bar(title = "Survival of Passengers Based on Port Embarked",
    figsize=(8,5), color=['#d9534f', '#5cb85c'])
    plt.legend(['Dead', 'Survived'])
    plt.xlabel('Port Embarked')
    plt.ylabel('Number of Passengers')
    #plt.savefig('10.png')
    plt.show()
```



```
In [70]: # Visualizing the effects of family size on survival
    titanic['familysize'] = titanic['sibsp'] + titanic['parch'] + 1  # creati
    ng a new variable called family size
    family_survived = titanic.groupby(['familysize', 'survived'])['survived'].c
    ount().unstack()
    family_survived.plot.bar(color=['#d9534f', '#5cb85c'], title = "Survival of
    Passengers Based on Family Size", figsize=(8,5))
    plt.legend(['Dead', 'Survived'])
    plt.xlabel('Family Size')
    plt.ylabel('Number of Passengers')
    #plt.savefig('11.png')
    plt.show()
```


In [71]: # Creating a new variable called title by splitting the name variable
 titanic['title'] = titanic.name.str.extract(' ([A-Za-z]+)\.', expand=False)
 title = titanic.groupby(['title', 'sex'])['survived'].count().unstack()
 title

Out[71]:

sex	female	male	
title			
Capt	NaN	1.0	
Col	NaN	4.0	
Countess	1.0	NaN	
Don	NaN	1.0	
Dona	1.0	NaN	
Dr	1.0	7.0	
Jonkheer	NaN	1.0	
Lady	1.0	NaN	
Major	NaN	2.0	
Master	NaN	61.0	
Miss	260.0	NaN	
MIIe	2.0	NaN	
Mme	1.0	NaN	
Mr	NaN	757.0	
Mrs	197.0	NaN	
Ms	2.0	NaN	
Rev	NaN	8.0	
Sir	NaN	1.0	

```
In [72]: # Converting the uncommon titles into common ones
    titanic['title'] = titanic['title'].replace(['Lady', 'Countess','Capt', 'Co
    l','Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')
    titanic['title'] = titanic['title'].replace('Mlle', 'Miss')
    titanic['title'] = titanic['title'].replace('Ms', 'Miss')
    titanic['title'] = titanic['title'].replace('Mme', 'Mrs')
    title = titanic.groupby(['title', 'sex'])['survived'].count().unstack()
    title
```

Out[72]:

sex	female	male
title		
Master	NaN	61.0
Miss	264.0	NaN
Mr	NaN	757.0
Mrs	198.0	NaN
Rare	4.0	25.0

```
In [73]: # Viewing the survival of each title
    titanic[['title', 'survived']].groupby(['title'], as_index=False).mean()
```

Out[73]:

	title	survived
0	Master	0.508197
1	Miss	0.678030
2	Mr	0.162483
3	Mrs	0.787879
4	Rare	0.379310

```
In [74]: # Visualizing survival based on title
    titanic_title = titanic.groupby(['title', 'survived'])['survived'].count().
    unstack()
    titanic_title.plot.bar(color=['#d9534f', '#5cb85c'], title = "Survival of P
    assengers Based on Title", figsize=(8,5))
    plt.legend(['Dead', 'Survived'])
    plt.xlabel('Title')
    plt.ylabel('Number of Passengers')
    #plt.savefig('12.png')
    plt.show()
```

