PH110: Tutorial Sheet 1 (Quantum Mechanics)

This tutorial sheet deals with problems related to the relativistic energy-momentum conservation.

- 1. If a particle of rest mass m_0 has total energy $4m_0c^2$, what is its total momentum expressed in terms of m_0c ? What will be the energy of this particle when its total momentum is $2m_0c$? Ans $(\sqrt{15}m_0c, \sqrt{5}m_0c^2)$
- 2. If a particle has the rest-mass energy of 100 MeV, what will be its total energy if it moves with the velocity: (a) 0.9c, (b) 0.99c, and (c) 0.999c? (Useful info: 1 MeV \equiv Million electron volts $= 1.0 \times 10^6 \text{ eV}$)
- 3. A ρ -meson of rest-mass energy 760 MeV decays into two π -mesons each of rest-mass energy 150 MeV. What is the speed of one π -meson relative to the other? Ans: 0.997c
- 4. A pion of rest mass energy 140 MeV decays into a muon of the rest-mass energy 100 MeV, and a neutrino of zero rest mass. In the rest frame of the pion, calculate the momentum and speed of the muon in the units of MeV/c and c, respectively. Ans (24.29 MeV/c, 0.324c)
- 5. Let m_0 be the rest mass of an electron and its anti-particle positron. If a hypothetical particle X rest mass $4m_0$ is produced during a collision between an electron and a positron, answer the following:
 - (a) if the momentum of the electron is $p\hat{k}$ and that of positron is $-p\hat{k}$, find p. Ans $(\sqrt{3}m_0c)$
 - (b) if the electron is initially at rest and the positron has momentum $q\hat{k}$, find q and the speed with which X is produced. Ans: $(\sqrt{48}m_0c, \frac{\sqrt{3}}{2}c)$