

<u>Help</u>

sandipan_dey 🗸

Next >

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Syllabus</u> <u>Outline</u> <u>laff routines</u> <u>Community</u>

☆ Course / Week 11: Orthogonal Projection, Low Rank Approximation,... / 11.3 Orthonorm...

(J

11.3.5 The QR Factorization

□ Bookmark this page

< Previous

■ Calculator

Week 11 due Dec 22, 2023 21:12 IST Completed

11.3.5 The QR Factorization

Homework 11.3.5.1

11/11 points (graded)

Consider
$$A=egin{pmatrix}1&0\0&1\1&1\end{pmatrix}$$
 .

• Compute the QR factorization of this matrix.

Notice that this is the same matrix as in Homework 11.3.4.1. Thus, it is a matter of taking the results and plugging them into the matrices Q and R:

$$\left(egin{array}{cc} \left(egin{array}{cc} a_0 & a_1 \end{array}
ight) = \left(egin{array}{cc} q_0 & q_1 \end{array}
ight) \left(egin{array}{cc}
ho_{0,0} &
ho_{0,1} \ 0 &
ho_{1,1} \end{array}
ight).$$

From Homework 11.3.4.1 we then get that

$$\left(egin{array}{c|c} 1 & 0 \ 0 & 1 \ 1 & 1 \end{array}
ight) = \left(egin{array}{c|c} rac{1}{\sqrt{2}} \begin{pmatrix} 1 \ 0 \ 1 \end{pmatrix} & rac{\sqrt{2}}{\sqrt{3}} \begin{pmatrix} -rac{1}{2} \ 1 \ rac{1}{2} \end{pmatrix} \end{array}
ight) \left(egin{array}{c|c} \sqrt{2} & rac{1}{\sqrt{2}} \ \hline 0 & rac{\sqrt{3}}{\sqrt{2}} \end{array}
ight)$$

• Check that QR=A.

Submit

• Answers are displayed within the problem

Homework 11.3.5.2

11/11 points (graded)

Consider
$$A=egin{pmatrix}1&1\\1&-1\\-2&4\end{pmatrix}$$
 .

• Compute the QR factorization of this matrix.

Notice that this is the same matrix as in Homework 11.3.4.3. Thus, it is a matter of taking the results and plugging them into the matrices Q and R:

$$\left(egin{array}{cc} \left(egin{array}{cc} a_0 & a_1 \end{array}
ight) = \left(egin{array}{cc} q_0 & q_1 \end{array}
ight) \left(egin{array}{cc}
ho_{0,0} &
ho_{0,1} \ 0 &
ho_{1,1} \end{array}
ight).$$

From Homework 11.3.4.3 we then get that

$$\left(egin{array}{c|c} 1 & 1 \ 1 & -1 \ -2 & 4 \ \end{array}
ight) = \left(egin{array}{c|c} rac{1}{\sqrt{6}} \left(egin{array}{c} 1 \ 1 \ -2 \ \end{array}
ight) & rac{1}{\sqrt{66}} \left(egin{array}{c} 7 \ 1 \ 4 \ \end{array}
ight) & \left(rac{\sqrt{6}}{0} \left(rac{-8}{\sqrt{6}}
ight)
ight)
ight.$$

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

<u>Careers</u>

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

Security

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>

