

opções que assinala.

Tópicos de Física Moderna 1° Teste (2)

Licenciatura em Engenharia Informática

28 de março de 2012 - 14h30 Duração - 2h00

NOME:	_ n°:
O teste é constituído por dez questões que valem dois valores cada uma, sendo	nove de escolha
múltipla. Cada questão de escolha múltipla só é considerada correta se forem selec	cionadas <u>todas</u> as
opções corretas que lhe correspondem. Assinale com uma cruz todas as opções c	orretas. Se achar
conveniente e tiver espaço pode apresentar, junto à questão, um pequeno cálculo	que justifique as

- Q1. Um comboio desloca-se à velocidade de 30m/s, no sentido positivo do eixo dos X. No chão do comboio uma bola rola à velocidade de 10m/s. Determine a velocidade da bola em relação a um observador parado na estação, se o movimento da bola for:
- a) na direção e sentido do movimento do comboio comboio:
- b) na direção perpendicular ao movimento do

- \Box $\vec{v} = 20\hat{i}$ (m/s)
- \boxtimes $\vec{v} = 144 \hat{i}$ (km/h)
- \boxtimes $\vec{v} = 40 \hat{i}$ (m/s)
- \Box v = 72 km/h
- \square $\vec{v} = 11.1 \hat{i} (km/h)$

- $\Box \vec{v} = 30 \hat{i} (m/s)$
- \Box v = 31.6 km/h
- $\boxtimes v = 113.84 \text{ km/h}$
- $\boxtimes \vec{v} = 30 \hat{i} + 10 \hat{j} (m/s)$
- $\boxtimes \vec{v} = 30 \hat{i} 10 \hat{j} (m/s)$
- **Q2.** O tempo de vida médio dos mesões π (piões) no seu referencial próprio é de 2.6×10^{-8} s. Se um feixe destas partículas se estiver a deslocar à velocidade de 0.9 c, antes de se desintegrarem percorrem, em média, medidos no referencial do laboratório, a distância d
 - \Box d = 7.02 m
 - $= \frac{7.02}{\sqrt{0.19}}$
 - \boxtimes d = 16.1 m

- \Box d = 161 m
- $d = \frac{16.1}{\sqrt{0.19}}$
- \Box d = 16.1 km
- Q3. Uma nave espacial, que se está a afastar da Terra à velocidade de 0.6c, dispara um míssil paralelamente ao sentido do seu movimento. Se o míssil se desloca à velocidade de 0.4c em relação à nave, a sua velocidade em relação à Terra é:
 - V = C

 \times $V = \frac{c}{1.24}$

v = 1.24c

□ v≤c

 \times v=0.806c

∨ < c
</p>

_	nave espacial viaja à velocidade de 0.8 c em e uma segunda nave que pretenda ultrapassar a	-
	$\mathbf{v} = \mathbf{c}$	v = 0.2 c
X	v = 0.946 c	v = 0.995 c
	$0.8 c < v \le c$	$\boxtimes 0.8 \text{ c} < \text{v} < \text{c}$
positi emiti	núcleo radioativo move-se, no referencial do liva do eixo dos X, quando emite um fotão γ do perpendicularmente à direção do movime encial do laboratório é:	No referencial próprio do núcleo o fotão é
	$\vec{v} = (0.6 \text{c}) \hat{i} + (0.8 \text{c}) \hat{j}$	□ v=cĵ
X	l v=c	$\boxtimes \vec{\mathbf{v}} = (0.8 \mathbf{c}) \hat{\mathbf{i}} + (0.6 \mathbf{c}) \hat{\mathbf{j}}$
	v = c î	
<u>mc.</u>	rmine para que valor de velocidade o momento	linear de uma partícula de massa \underline{m} é igual a
	$V = \frac{\sqrt{2}}{c}$	\boxtimes $V = \frac{c}{\sqrt{2}}$
	v = 0.5 c	
X	v = 0.707 c	\Box $\mathbf{v} = \mathbf{c}$
Q7. Deter	rmine a energia cinética (K) de uma partícula de	e massa \underline{m} a deslocar-se à velocidade de $\frac{1}{\sqrt{2}}$ c
	$K = mc^2 (\sqrt{2} + 1)$	\bowtie $K = mc^2(\sqrt{2} - 1)$
	$K = \frac{mc^2}{4}$	$K = mc^{2} (\sqrt{2} - 1)$ $K = \frac{\sqrt{2} mc^{2}}{2}$
	$K = \sqrt{2} \text{ mc}^2$	\boxtimes K = 0.4142 mc ²
Q8. As se	eguintes quatro afirmações são falsas. Escreva-a	s de novo de forma correta.
	ios tipos de radiação eletromagnética propagam	-se no vazio todos com a mesma velocidade e

Os vários tipos de radiação eletromagnética propagam-se no vazio todos com a mesma velocidade cada frequência mas com sua característa.____

2) O ângulo crítico para que ocorra reflexão interna total numa interface benzeno-água é de 33.33° $(n_{\text{benzeno}}\!=\!1.82~e~n_{\text{água}}=1.33)$

O ângulo crítico para que ocorra reflexão interna total numa interface benzeno-água é de 46.95°

3) Quando uma dada radiação incide, segundo a normal, numa interface vidro-água, não há feixe refletido porque toda a radiação é transmitida sem mudar de direção.

Quando uma dada radiação incide, segundo a normal, numa interface vidro-água, parte da radiação é refletida e parte é transmitida, embora uma e outra sem mudarem de direção porque $\theta_i=0$

4) Uma onda é uma perturbação periódica que se propaga no espaço e no tempo, transportando matéria e energia.

Uma onda é uma perturbação periódica que se propaga no espaço e no tempo, transportando energia mas não transportando matéria.

- **Q9.** A equação de onda $\vec{E}(y,t) = 100 \text{ ser} \left[-2\pi \left(4 \times 10^{14} \text{ t} 2 \times 10^6 \text{ y} \right) \right] \hat{k}$ representa uma radiação eletromagnética
- \square polarizada na direção do eixo dos Y e a propagar-se no sentido positivo do eixo dos X, e em que A = 100 nm; λ = 400 nm; f = 4×10¹⁴ Hz; v = c.
- $\hfill\Box$ polarizada na direção do eixo dos Z e a propagar-se no sentido positivo do eixo dos Y, e em que A = 100 nm; λ = 500 nm; T = 2.5×10⁻¹⁵ s; v = 2.0×10⁸ m/s.
- \boxtimes polarizada na direção do eixo dos Z e a propagar-se no sentido positivo do eixo dos Y, e em que $A=100 \text{ V/m}; \lambda=500 \text{ nm}; T=2.5\times10^{-15} \text{ s}; v=2.0\times10^8 \text{ m/s}.$
- \boxtimes polarizada na direção do eixo dos Z e a propagar-se no sentido positivo do eixo dos Y, e em que A = 100 V/m; λ = 500 nm; f = 4×10¹⁴ s⁻¹; n = 1.5.
- \square polarizada na direção do eixo dos Y e a propagar-se no sentido positivo do eixo dos Z, e em que A = 100 V/m; $\lambda = 500 \text{ nm}$; $f = 4 \times 10^{14} \text{ s}^{-1}$; v = c/1.5.

 $(A-amplitude; \lambda-comprimento de onda; f-frequência; T-período; v-velocidade de propagação; n-índice de refração)$

Q10. Um feixe de radiação monocromática incide no ponto A, como se mostra na figura. Passa através de um dado material transparente de índice de refração n=1.80, e atinge uma parede no ponto X. Considerando os parâmetros e as dimensões indicados na figura, a distância OX é: (aconselha-se a não fazer arredondamentos drásticos)

$$\overline{OX} = 2.71 \text{ cm}$$

$$\boxtimes$$
 2.1 < \overline{OX} < 2.2 cm

$$\Box$$
 $\overline{OX} > 2.5 \text{ cm}$

$$\boxtimes \overline{OX} = 2.17 \text{ cm}$$

$$\Box$$
 2.7 < \overline{OX} < 2.8 cm