

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

ИНСТИТУТ КИБЕРНЕТИКИ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Лабораторная работа 1

по курсу «Теория вероятностей и математическая статистика, часть 2»

ВАРИАНТ 12

Тема:	Первичная обработка выборки из	
		
	v	
	дискретной генеральной совокупности	

Выполнил: Студент 3-го курса Конюхова А.А. Группа: КМБО-01-18

Задание

Задание 1. Получить выборку, сгенерировав 200 псевдослучайных чисел, распределенных по биномиальному закону с параметрами n и p.

$$n = 7 + V mod 15$$
 $p = 0.2 + 0.005V$

Задание 2. Получить выборку, сгенерировав 200 псевдослучайных чисел, распределенных по геометрическому закону с параметром p.

$$p = 0.2 + 0.005V$$

Задание 3. Получить выборку, сгенерировав 200 псевдослучайных чисел, распределенных по закону Пуассона с параметром λ .

$$\lambda = 1 + 0.02V$$

Следуя Указаниям для всех выборок построить:

- 1) Статистический ряд;
- 2) Полигон относительных частот;
- 3) График эмпирической функции распределения;

Найти:

- 1) Выборочное среднее;
- 2) Выборочную дисперсию;
- 3) Выборочное среднее квадратическое отклонение;
- 4) Выборочную моду;
- 5) Выборочную медиану;
- 6) Выборочный коэффициент асимметрии;
- 7) Выборочный коэффициент эксцесса.

Провести сравнение рассчитанных характеристик с теоретическими значениями.

V — номер варианта. Вычисления проводить до 0,00001.

Краткие теоретические сведения

Формулы, используемые для расчета:

1. Выборочное среднее

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{m} x_i^* n_i = \sum_{i=1}^{m} x_i^* w_i$$

2. Выборочный момент k-ого порядка (выборочный k-ый момент)

$$\bar{\mu}_k = \overline{\chi^k} = \sum_{i=1}^m (\chi_i^*)^k w_i$$

3. Выборочная дисперсия

$$D_B = \sum_{i=1}^m (x_i^* - \bar{x})^2 w_i = \sum_{i=1}^m (x_i^*)^2 w_i - (\sum_{i=1}^m x_i^* w_i)^2 = \overline{x^2} - (\bar{x})^2$$

4. Выборочный центральный момент k-ого порядка (выборочный центральный k-ый момент)

$$\bar{\mu}_k^0 = \sum_{i=1}^m (x_i^* - \bar{x})^k w_i$$

5. Выборочное среднее квадратическое отклонение

$$\bar{\sigma} = \sqrt{D_B}$$

- 6. Выборочная мода \overline{M}_0 значение x_i^* , которому соответствует наибольшая частота.
- 7. Выборочная медиана

$$\overline{M}_e = \begin{cases} x_i^*, & F_N^{\vartheta}(x_{i-1}^*) < 0.5 < F_N^{\vartheta}(x_i^*), \\ \frac{1}{2}(x_i^* + x_{i+1}^*), & F_N^{\vartheta}(x_i^*) = 0.5. \end{cases}$$

8. Выборочный коэффициент асимметрии

$$\bar{\gamma}_1 = \frac{\bar{\mu}_3^0}{\bar{\sigma}^3}$$

9. Выборочный коэффициент эксцесса

$$\bar{\gamma}_1 = \frac{\bar{\mu}_4^0}{\bar{\sigma}^4} - 3$$

Характеристики биномиального распределения

Ряд распределения

x_i	0	1	2	•••	m		n
p_i	q^n	$C_n^1 pq^{n-1}$	$C_n^2 p^2 q^{n-2}$		$C_n^m p^m q^{n-m}$	•••	p^n

Характеристика	Значение
Математическое ожидание	np
Дисперсия	npq, q = 1 - p
Среднее квадратическое	\sqrt{npq}
отклонение	
Мода	[(n+1)p], если $(n+1)p$ — дробное;
	$(n+1)p - \frac{1}{2}$, если $(n+1)p$ — целое;
Медиана	Round(np)
Коэффициент асимметрии	$\frac{q-p}{\sqrt{npq}}$
	•
Коэффициент эксцесса	$\frac{1 - 6pq}{\sqrt{npq}}$

Геометрическое распределение

Ряд распределения

x_i	0	1	2	 m	
p_i	p	qp	q^2p	 q^mp	

Характеристика	Значение
Математическое ожидание	$\frac{q}{p}$, $q = 1 - p$
Дисперсия	$\frac{q}{p^2}$, $q=1-p$
Среднее квадратическое отклонение	$\frac{\sqrt{q}}{p}$
Мода	0

Медиана	$\left[-rac{ln2}{lnq} ight]$, если $rac{ln2}{lnq}$ — дробное; $-rac{ln2}{lnq}-rac{1}{2}$, если $rac{ln2}{lnq}$ — целое;
Коэффициент асимметрии	$\frac{2-p}{\sqrt{q}}$
Коэффициент эксцесса	$6 + \frac{p^2}{q}$

Распределение Пуассона

Ряд распределения

x_i	0	1	2	•••	m	
p_i	$e^{-\lambda}$	$\lambda e^{-\lambda}$	$\frac{\lambda^2 e^{-\lambda}}{2!}$		$\frac{\lambda^m e^{-\lambda}}{m!}$	•••

Характеристика	Значение
Математическое ожидание	λ
Дисперсия	λ
Среднее квадратическое отклонение	$\sqrt{\lambda}$
Мода	[λ]
Медиана	$\left[\lambda + \frac{1}{3} - \frac{0,02}{\lambda}\right]$
Коэффициент асимметрии	$\lambda^{-\frac{1}{2}}$
Коэффициент эксцесса	λ^{-1}

Используемые функции языка Octave:

- 1. Binornd(n, p) генерирует случайные числа от биномиального распределения, заданного количеством испытаний n и вероятностью успеха для каждого испытания p.
- 2. Geornd(n, p) генерирует случайные числа от геометрического распределения с параметром вероятности p.

- 3. Poissrnd(lambda) генерирует случайные числа от распределения Пуассона с параметром lambda.
- 4. Sort(A) сортировка массива.
- 5. Plot(X, Y) построение графика.
- 6. Stairs(X, Y) построение ступенчатого графика.

Результаты расчетов

Задание 1. n = 19, p = 0,26.

Биномиальное распределение. Полученная выборка

4	8	6	4	6	3	5	6	5	5
6	4	3	8	6	6	6	5	6	4
7	4	6	6	7	5	5	7	4	4
4	5	6	6	5	8	4	6	4	4
6	2	6	1	3	4	4	8	4	4
4	5	9	6	5	6	7	4	4	4
7	6	6	6	8	9	3	5	5	8
4	6	3	2	7	4	6	6	6	5
4	10	4	8	7	4	4	7	3	8
4	8	6	6	6	1	6	6	6	5
7	6	3	2	7	3	9	4	3	4
5	5	8	7	4	4	7	4	4	4
5	3	4	4	8	3	4	3	4	7
5	9	7	2	4	4	8	2	1	8
5	3	5	3	7	5	7	4	4	7
5	5	1	9	8	3	5	5	3	4
4	8	6	4	7	5	5	3	5	7
2	4	7	5	5	4	7	2	8	5
5	5	3	8	4	3	4	4	5	7

5	5	3	2	7	5	5	3	5	5

Упорядоченная выборка

1	1	1	1	2	2	2	2	2	2
2	2	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4	4	4
4	4	5	5	5	5	5	5	5	5
5	5	5	5	5	5	5	5	5	5
5	5	5	5	5	5	5	5	5	5
5	5	5	5	5	5	5	5	5	5
5	5	5	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	7	7	7	7
7	7	7	7	7	7	7	7	7	7
7	7	7	7	7	7	7	7	7	8
8	8	8	8	8	8	8	8	8	8
8	8	8	8	9	9	9	9	9	10

Статистический ряд

x_i	n_i	w_i	s_i
0	0	0	0
1	4	0.02	0.02

2	8	0.04	0.06
3	21	0.105	0.165
4	49	0.245	0.41
5	41	0.205	0.615
6	33	0.165	0.78
7	23	0.115	0.895
8	15	0.075	0.97
9	5	0.025	0.995
10	1	0.005	1

График полигона относительных частот

Эмпирическая функция распределения

Результаты расчетов требуемых характеристик

- Выборочное среднее: 5.09000;
- Выборочная дисперсия: 3.16190;
- Выборочное среднее квадратическое отклонение: 1.77817;
- Выборочная мода: 4;
- Выборочная медиана: 5;
- Выборочный коэффициент асимметрии: 0.18418;
- Выборочный коэффициент эксцесса: -0.26300;

Задание 2. p = 0.26.

Геометрическое распределение. Полученная выборка

7	0	10	0	5	0	3	3	0	0
11	0	2	0	2	8	2	0	3	1
6	4	0	4	5	3	4	0	1	6
5	2	1	1	3	1	0	4	0	0
4	0	12	6	2	3	2	11	1	3
1	5	3	0	1	10	0	0	4	1
1	2	5	1	2	5	2	0	0	0

1	0	3	13	1	1	4	4	1	7
0	2	2	5	2	0	5	0	0	0
1	13	2	2	1	14	0	2	1	0
1	3	1	6	5	4	0	0	5	3
3	2	1	1	4	1	0	4	0	0
10	0	4	1	1	5	5	2	1	0
2	3	3	4	6	1	11	0	0	3
1	0	10	5	1	3	0	2	5	0
2	0	3	4	1	1	3	4	1	0
1	5	8	1	0	4	3	5	0	3
6	2	1	5	1	5	0	3	0	0
1	0	2	1	4	2	4	2	3	0
1	6	1	2	2	2	7	0	0	3

Упорядоченная выборка

		0	0				0		0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3

4	4	4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4	5	5
5	5	5	5	5	5	5	5	5	5
5	5	5	5	5	5	6	6	6	6
6	6	6	7	7	7	7	8	8	10
10	10	10	11	11	11	12	13	13	14

Статистический ряд

x_i	n_i	w_i	s_i
0	50	0.25	0.25
1	40	0.2	0.45
2	27	0.135	0.585
3	23	0.115	0.7
4	18	0.09	0.79
5	18	0.09	0.88
6	7	0.035	0.915
7	4	0.02	0.935
8	2	0.01	0.945
10	4	0.02	0.965
11	3	0.015	0.98
12	1	0.005	0.985
13	2	0.01	0.995
14	1	0.005	1

График полигона относительных частот

Эмпирическая функция распределения

Результаты расчетов требуемых характеристик

- Выборочное среднее: 2.68000;
- Выборочная дисперсия: 8.36760;
- Выборочное среднее квадратическое отклонение: 2.89268;
- Выборочная мода: 0;

- Выборочная медиана: 2;
- Выборочный коэффициент асимметрии: 1.59909;
- Выборочный коэффициент эксцесса: 2.70123;

Задание 3. $\lambda = 1,24$.

Распределение Пуассона, полученная выборка

4	1	2	1	0	0	2	1	2	1
2	1	1	2	3	2	0	0	3	2
0	3	1	1	2	1	1	3	1	1
0	2	3	1	0	2	0	0	0	1
2	0	0	3	3	0	1	1	1	2
1	2	4	3	2	1	5	0	0	1
2	0	0	1	0	2	0	1	4	1
0	3	3	1	2	0	1	3	1	2
0	0	0	1	0	1	3	0	2	1
2	3	1	1	3	0	0	1	1	1
0	0	0	1	0	2	1	2	0	2
2	0	2	1	1	0	0	0	2	1
1	5	0	4	3	1	1	1	1	1
0	0	1	1	0	3	4	2	0	1
2	1	2	1	0	0	0	0	2	1
0	0	0	3	0	3	2	1	1	2
2	2	1	3	1	2	1	2	2	1
0	0	0	2	0	3	0	1	1	2
0	2	0	0	0	0	3	1	2	1
1	4	3	1	3	5	1	1	2	1

Упорядоченная выборка

		0	0	0	0	0	0	0	0	0	0
--	--	---	---	---	---	---	---	---	---	---	---

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	4	4	4	4	4	4	5	5	5

Статистический ряд

x_i	n_i	w_i	s_i
0	60	0.3	0.3
1	64	0.32	0.62
2	42	0.21	0.83
3	25	0.125	0.955
4	6	0.03	0.985
5	3	0.015	1

График полигона относительных частот

Эмпирическая функция распределения

Результаты расчетов требуемых характеристик

- Выборочное среднее: 1.31;
- Выборочная дисперсия: 1.4239;

- Выборочное среднее квадратическое отклонение: 1.19327;
- Выборочная мода: 1;
- Выборочная медиана: 1;
- Выборочный коэффициент асимметрии: 0.78040;
- Выборочный коэффициент эксцесса: 0.11001;

Анализ результатов и выводы

Задание 1. Биномиальное распределение, n = 19, p = 0.26, q = 0.74.

1) Таблица сравнения относительных частот и теоретических вероятностей.

j	\widetilde{w}_{j}	p_j	$ \widetilde{w}_j - p_j $
0	0	0.00328	0.00328
1	0.02	0.02187	0.00187
2	0.04	0.06916	0.02916
3	0.105	0.13771	0.32711
4	0.245	0.19353	0.05147
5	0.205	0.20399	0.00101
6	0.165	0.16724	0.00224
7	0.115	0.10912	0.00588
8	0.075	0.05751	0.01749
9	0.025	0.02470	0.0003
10	0.005	0.00868	0.00368
	$\sum_{j=0}^{M} \widetilde{w}_{j} = 1$	$\sum_{j=0}^{M} p_j = 0.99679$	$\Delta_{max} = 0.32711$

2) Таблица сравнения рассчитанных характеристик с теоретическими значениями.

Название	Экспериментально	Теоретическо	Абсолютно	Относительно
показателя	е значение	е значение	e	е отклонение
			отклонение	
Выборочное	5.09000	4.94	0.15	0.03036
среднее				
Выборочная	3.16190	3.6556	0.4937	0.13505
дисперсия				

Выборочное	1.77817	1.91196	0.13379	0.06998
среднее				
квадратическо				
е отклонение				
Выборочная	4	5	1	0.2
мода				
Выборочная	5	5	0	0
медиана				
Выборочный	0.18418	0.25105	0.06687	0.27433
коэффициент				
асимметрии				
Выборочный	-0.26300	-0.04224	0.22076	5.22633
коэффициент				
эксцесса				

Задание 2. Геометрическое распределение, p = 0.26, q = 0.74.

1) Таблица сравнения относительных частот и теоретических вероятностей.

j	\widetilde{w}_{j}	p_j	$ \widetilde{w}_j - p_j $
0	0.25	0.26	0.01
1	0.2	0.1924	0.0076
2	0.135	0.14238	0.00738
3	0.115	0.10536	0.00964
4	0.09	0.07797	0.01203
5	0.09	0.05769	0.03231
6	0.035	0.04269	0.00769
7	0.02	0.03159	0.01159
8	0.01	0.02338	0.01338
10	0.02	0.0128	0.0072

11	0.015	0.00947	0.00553
12	0.005	0.00701	0.00201
13	0.01	0.00519	0.00481
14	0.005	0.00384	0.00116
	$\sum_{j=0}^{M} \widetilde{w}_j = 1$	$\sum_{j=0}^{M} p_j = 0.97177$	$\Delta_{max} = 0.03231$

2) Таблица сравнения рассчитанных характеристик с теоретическими значениями.

Название	Экспериментально	Теоретическо	Абсолютно	Относительно
показателя	е значение	е значение	e	е отклонение
			отклонение	
Выборочное	2.68000	2.84615	0.16615	0.05838
среднее				
Выборочная	8.36760	10.94675	2.57915	0.23561
дисперсия				
Выборочное	2.89268	3.30859	0.41591	0.12571
среднее				
квадратическо				
е отклонение				
Выборочная	0	0	0	-
мода				
Выборочная	2	2	0	0
медиана				
Выборочный	1.59909	2.02271	0.42362	0.20943
коэффициент				
асимметрии				
Выборочный	2.70123	6.09135	3.39012	0.55655

коэффициент		
эксцесса		

Задание 3. Распределение Пуассона, $\lambda = 1,24$.

1) Таблица сравнения относительных частот и теоретических вероятностей.

j	\widetilde{w}_{j}	p_j	$ \widetilde{w}_j - p_j $
0	0.3	0.28938	0.01062
1	0.32	0.35884	0.03884
2	0.21	0.22248	0.01248
3	0.125	0.09196	0.03304
4	0.03	0.02851	0.00149
5	0.015	0.00707	0.00793
	$\sum_{j=0}^{M} \widetilde{w}_j = 1$	$\sum_{j=0}^{M} p_j = 0.99824$	$\Delta_{max} = 0.03884$

2) Таблица сравнения рассчитанных характеристик с теоретическими значениями.

Название	Экспериментально	Теоретическо	Абсолютно	Относительно
показателя	е значение	е значение	e	е отклонение
			отклонение	
Выборочное	1.31	1.24	0.07	0.05645
среднее				
Выборочная	1.4239	1.24	0.1839	0.14831
дисперсия				
Выборочное	1.19327	1.11355	0.07972	0.07159
среднее				
квадратическо				
е отклонение				
Выборочная	1	1	0	0

мода				
Выборочная	1	1	0	0
медиана				
Выборочный	0.78040	0.89803	0.11763	0.13099
коэффициент				
асимметрии				
Выборочный	0.11001	0.80645	0.69644	0.86359
коэффициент				
эксцесса				

Список литературы

- 1. Математическая статистика [Электронный ресурс]: метод. указания по выполнению лаб. работ / А.А. Лобузов М.: МИРЭА, 2017.
- 2. Боровков А. А. Математическая статистика. СПб.: Лань, 2010.-704 с.
- 3. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Юрайт, 2013. 479 с.

Приложение

Файл Binomial.m

```
pkg load statistics
format long
n = 19;
p = 0.26;
A = binornd(n, p, 1, 200);
A_sort = sort(A);
%Запись массива в файл
f=fopen('binomial.txt','wt');
for i=1:200
    fprintf(f,'%d\t',A_sort(i));
end
fclose(f);
%Массив данных биномиального распределения
f=fopen('binom.txt','rt');
for i=1:200
    A(i) = fscanf(f, '\% d t', 1);
end
fclose(f);
A
%Полигон относительных частот для биномиального распределения
N = [0,4,8,21,49,41,33,23,15,5,1]; %Массив значений пі
x = [0:10];
w = N/200;
[0.00328, 0.02187, 0.06916, 0.13771, 0.19353, 0.20399, 0.16724, 0.10912, 0.05751, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.088, 0.
2470,0.00868];
plot(x, w, 's-*',x,P,'r-*')
grid on
grid minor
%Эмпирическая функция распределения биномиального распределения
S = [0,0.02,0.06,0.165,0.41,0.615,0.78,0.895,0.97,0.995,1];
figure
stairs(x, S)
grid on
grid minor
```

```
%Выборочное среднее
function res = v_sred(x, w)
 res = 0:
 for i = 1:11
  xx = x(i)*w(i);
  res = res + xx;
 endfor
end
%Выборочный момент к-ого порядка
function res = v_moment(x, w, k)
 res = 0;
 for i = 1:11
  xx = ((x(i)).^k)*w(i);
  res = res + xx;
 endfor
end
%Выборочная дисперсия
function res = v_disp(x, w)
 a = v_moment(x, w, 2);
 b = v_sred(x, w);
 res = a - b*b;
end
%Выборочное среднее квадратическое отклонение
function res = v_sredkotk(x, w)
 res = sqrt(v\_disp(x, w));
end
%Выборочная мода
function res = v_moda(N)
 maxn = max(N);
 for i = 1:11
  if maxn == N(i)
   res = i-1;
  endif
 endfor
end
%Выборочная медиана
function res = v_mediana(S)
  for i = 1:11
   if S(i) > 0.5
```

```
res = i-1;
    break
   endif
  endfor
end
%Выборочный центральный момент к-ого порядка
function res = v_{moment}(x, w, k)
 res = 0:
 a = v_sred(x, w);
 for i = 1:11
  xx = ((x(i) - a).^k)*w(i);
  res = res + xx;
 endfor
end
%Выборочный коэффициент асимметрии
function res = v_k asim(x, w)
 a = v_{cmoment}(x, w, 3);
 b = v_sredkotk(x, w);
 res = a/(b.^3);
end
%выборочный коэффициент эксцесса
function res = v_kex(x, w)
 a = v_{cmoment}(x, w, 4);
 b = v_sredkotk(x, w);
 res = a/(b.^4) - 3;
end
%Выборочное среднее для биномиального распределения
xx = v_sred(x, w);
% Выборочная дисперсия для биномиального распределения
d = v_disp(x, w);
%Выборочное среднее квадратическое отклонение для биномиального
распределения
s = v_sredkotk(x, w);
%Выборочный коэффициент асимметрии для биномиального распределения
a = v kasim(x, w);
%Выборочный коэффициент эксцесса для биномиального распределения
e = v kex(x, w);
disp(sprintf('X = \%.5f',xx))
disp(sprintf('D = \%.5f',d))
```

```
disp(sprintf('S = \%.5f',s))
%Выборочная мода для биномиального распределения
MODA = v \mod (N)
%Выборочная медиана для биномиального распределения
MEDIANA = v_mediana(S)
disp(sprintf('A = \%.5f',a))
disp(sprintf('E = \%.5f',e))
                                                                                                         Файл Geom.m
pkg load statistics
format long
p = 0.26;
A = geornd(p, 1, 200);
A_sort = sort(A);
%Запись массива в файл
f=fopen('geometric.txt','wt');
for i=1:200
   fprintf(f,'%d\t',A_sort(i));
end
fclose(f);
%Массив данных геометрического распределения
f=fopen('geom.txt','rt');
for i=1:200
   A(i) = fscanf(f, '\% d \ t', 1);
end
fclose(f);
Α
%Полигон относительных частот для геометрического распределения
N = [50,40,27,23,18,18,7,4,2,0,4,3,1,2,1]; %Массив значений пі
x = [0:14];
w = N/200;
[0.26, 0.1924, 0.14238, 0.10536, 0.07797, 0.05769, 0.04269, 0.03159, 0.02338, 0.0173, 0.02338, 0.0173, 0.02338, 0.0173, 0.02338, 0.0173, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02338, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.02388, 0.023888, 0.023888, 0.023888, 0.023888, 0.023888, 0.023888, 0.023888, 0.023888, 0.023888, 0.023888, 0.023888, 0.024888, 0.02888, 0.028888, 0.028888, 0.028888, 0.028888, 0.028888, 0.028888, 0.028880
.0128,0.00947,0.00701,0.00519,0.00384];
plot(x, w, 's-*', x, P, 'r-*')
grid on
grid minor
```

%Эмпирическая функция распределения геометрического распределения

```
S
[0.25, 0.45, 0.585, 0.7, 0.79, 0.88, 0.915, 0.935, 0.945, 0.945, 0.965, 0.98, 0.985, 0.995, 1];
figure
stairs(x, S)
grid on
grid minor
%Выборочное среднее
function res = v\_sred(x, w)
 res = 0:
 for i = 1:15
  xx = x(i)*w(i);
  res = res + xx;
 endfor
end
%Выборочный момент к-ого порядка
function res = v_moment(x, w, k)
 res = 0;
 for i = 1:15
  xx = ((x(i)).^k)*w(i);
  res = res + xx;
 endfor
end
%Выборочная дисперсия
function res = v_disp(x, w)
 a = v_moment(x, w, 2);
 b = v_sred(x, w);
 res = a - b*b;
end
%Выборочное среднее квадратическое отклонение
function res = v_sredkotk(x, w)
 res = sqrt(v\_disp(x, w));
end
%Выборочная мода
function res = v_moda(N)
 maxn = max(N);
 for i = 1:15
  if maxn == N(i)
   res = i-1;
  endif
```

```
endfor
end
%Выборочная медиана
function res = v_mediana(S)
  for i = 1:15
   if S(i) > 0.5
    res = i-1;
    break
   endif
  endfor
end
%Выборочный центральный момент к-ого порядка
function res = v_{moment}(x, w, k)
 res = 0;
 a = v_sred(x, w);
 for i = 1:15
  xx = ((x(i) - a).^k)*w(i);
  res = res + xx;
 endfor
end
%Выборочный коэффициент асимметрии
function res = v_k asim(x, w)
 a = v_{cmoment}(x, w, 3);
 b = v_sredkotk(x, w);
 res = a/(b.^3);
end
%Выборочный коэффициент эксцесса
function res = v_kex(x, w)
 a = v_{moment}(x, w, 4);
 b = v_sredkotk(x, w);
 res = a/(b.^4) - 3;
end
%Выборочное среднее для геометрического распределения
xx = v_sred(x, w);
%Выборочная дисперсия для геометрического распределения
d = v_disp(x, w);
%Выборочное среднее квадратическое отклонение для геометрического
распределения
s = v_sredkotk(x, w);
```

```
%Выборочный
                   коэффициент
                                     асимметрии
                                                              геометрического
                                                      ДЛЯ
распределения
a = v_kasim(x, w);
%Выборочный коэффициент эксцесса для геометрического распределения
e = v_kex(x, w);
disp(sprintf('X = \%.5f',xx))
disp(sprintf('D = \%.5f',d))
disp(sprintf('S = \%.5f',s))
%Выборочная мода для геометрического распределения
MODA = v \mod (N)
%Выборочная медиана для геометрического распределения
MEDIANA = v_mediana(S)
disp(sprintf('A = \%.5f',a))
disp(sprintf('E = \%.5f',e))
                               Файл Puasson.m
pkg load statistics
format long
lambda = 1.24;
A = poissrnd(lambda, 1, 200);
A_{sort} = sort(A);
%Запись массива в файл
f=fopen('puasson.txt','wt');
for i=1:200
 fprintf(f, '\%d\t', A\_sort(i));
end
fclose(f);
%Массив данных распределения Пуассона
f=fopen('puas.txt','rt');
for i=1:200
 A(i) = fscanf(f, '\% d t', 1);
end
fclose(f);
A
%Полигон относительных частот для распределения Пуассона
N = [60,64,42,25,6,3]; %Массив значений пі
x = [0:5];
w = N/200;
```

```
P = [0.28938, 0.35884, 0.22248, 0.09196, 0.02851, 0.00707];
plot(x, w, 's-*', x, P, 'r-*')
grid on
grid minor
%Эмпирическая функция распределения Пуассона
S = [0.3, 0.62, 0.83, 0.955, 0.985, 1];
figure
stairs(x, S)
grid on
grid minor
%Выборочное среднее
function res = v\_sred(x, w)
 res = 0;
 for i = 1:6
  xx = x(i)*w(i);
  res = res + xx;
 endfor
end
%Выборочный момент к-ого порядка
function res = v_moment(x, w, k)
 res = 0:
 for i = 1:6
  xx = ((x(i)).^k)*w(i);
  res = res + xx;
 endfor
end
%Выборочная дисперсия
function res = v_disp(x, w)
 a = v_moment(x, w, 2);
 b = v_sred(x, w);
 res = a - b*b;
end
%Выборочное среднее квадратическое отклонение
function res = v_sredkotk(x, w)
 res = sqrt(v\_disp(x, w));
end
%Выборочная мода
function res = v_moda(N)
```

```
maxn = max(N);
 for i = 1:6
  if maxn == N(i)
   res = i-1;
  endif
 endfor
end
%Выборочная медиана
function res = v_mediana(S)
  for i = 1:6
   if S(i) > 0.5
    res = i-1;
    break
   endif
  endfor
end
%Выборочный центральный момент к-ого порядка
function res = v\_cmoment(x, w, k)
 res = 0:
 a = v_sred(x, w);
 for i = 1:6
  xx = ((x(i) - a).^k)*w(i);
  res = res + xx;
 endfor
end
%Выборочный коэффициент асимметрии
function res = v_k asim(x, w)
 a = v_{moment}(x, w, 3);
 b = v_sredkotk(x, w);
 res = a/(b.^3);
end
%Выборочный коэффициент эксцесса
function res = v_kex(x, w)
 a = v_{cmoment}(x, w, 4);
 b = v_sredkotk(x, w);
 res = a/(b.^4) - 3;
end
%Выборочное среднее для распределения Пуассона
xx = v\_sred(x, w);
```

```
%Выборочная дисперсия для распределения Пуассона
d = v_disp(x, w);
%Выборочное среднее квадратическое отклонение распределения Пуассона
s = v_sredkotk(x, w);
%Выборочный коэффициент асимметрии для распределения Пуассона
a = v_kasim(x, w);
%Выборочный коэффициент эксцесса для распределения Пуассона
e = v_kex(x, w);
disp(sprintf('X = \%.5f',xx))
disp(sprintf('D = \%.5f',d))
disp(sprintf('S = \%.5f',s))
%Выборочная мода для распределения Пуассона
MODA = v_moda(N)
%Выборочная медиана для распределения Пуассона
MEDIANA = v_mediana(S)
disp(sprintf('A = \%.5f',a))
disp(sprintf('E = \%.5f',e))
```