

ORDER NO. KM69007328C1

F9

Service Manual

Word Processor

KX-W1025

Panasonic

Matsushita Services Company
Division of Matsushita Electric
Corporation of America
50 Meadowland Parkway,
Secaucus, New Jersey 07094

Matsushita Electric
of Canada Limited
5770 Ambler Drive, Mississauga,
Ontario, L4W 2T3

Panasonic Sales Company,
Division of Matsushita Electric
of Puerto Rico, Inc.
San Gabriel Industrial Park
65th Infantry Ave. Km.9.5
Carolina, Puerto Rico 00630

INDEX

Section 1 General Information

1.1	Specifications	1-1
1.2	Function Key Location	1-2
1.3	List of Key Functions	1-3

Section 2 Removal and Replacement Procedures

2.1	Upper Cover	2-1
2.2	Display Unit	2-1
2.3	Keyboard	2-2
2.4	Main Logic Board	2-2
2.5	Floppy Disk Drive	2-2
2.6	Transformer and AC Power Cord	2-3
2.7	Chassis	2-3
2.8	Carrier	2-4
2.9	Ribbon Holder	2-4
2.10	Ribbon Feed Motor	2-4
2.11	Daisy Drive Unit	2-5
2.12	Hammer and Hammer Solenoid	2-5
2.13	Daisywheel Motor	2-5
2.14	Carrier Spacing Motor	2-6
2.15	Paper Feed Motor	2-6
2.16	Carrier Cable	2-6
2.17	Carrier Cable Winding	2-7

Section 3 Mechanical Functions and Adjustments

3.1	Paper Feed Mechanism	3-1
3.2	Paper Feed Motor	3-1
3.3	Line Space Detent	3-1
3.4	Paper Release Mechanism	3-2
3.5	Platen Latches	3-2
3.6	Platen Variable Clutch Mechanism	3-2
3.7	Carrier Spacing	3-3
3.8	Carrier Home Sensor	3-3
3.9	Ribbon Feed	3-3
3.10	Correction Tape Feed	3-4
3.11	Daisywheel Motor and Character Printing	3-4
3.12	Initializing	3-5
3.13	Daisy Home Position Adjustment	3-6
3.14	Ribbon Lift Adjustment	3-6

Section 4 Electronic Circuit Descriptions

4.1	Principle of Operation	4-2
4.2	Power Supply	4-3
4.3	CPU and Control Circuit	4-5
4.4	Keyboard Matrix Circuit	4-11
4.5	Liquid Crystal Display	4-12
4.6	Drive and Sensor Circuits	4-16
4.7	Floppy Disk Controller	4-20

Section 5 Floppy Disk Drive Unit

5.1	General Description	5-1
5.2	Block Diagram	5-1

Section 6 Circuit Diagram and Trouble Shooting

6.1	Logic Board Connection Diagram	6-1
6.2	Explanation of Connectors	6-2
6.3	Schematic Diagrams	6-4
6.4	Component Reference Guide	6-6
6.5	Trouble Shooting	6-9

Section 7 Parts Catalog and Lubrication Points

1.	Covers	7-1
2.	Chassis and Platen	7-3
3.	Carrier	7-5
4.	Keyboard and Display	7-7
6.	Power Supply	7-10
7.	Main Logic Board	7-11
8.	LCD Board and Volume Board	7-14
10.	Function Board	7-16
11	CFL Power Board and Packing Materials	7-17

International CorrectSpell English licensed from Houghton Mifflin Company. U.S. Pat. No. 4,580,241, 4,730,269, 4,674,066 and 4,771,401. Copyright[©] 1985, 1987, 1988 by Houghton Mifflin. All rights reserved. Reproduction or disassembly of embodied algorithms or database prohibited. Base upon The American Heritage Dictionary.

1. General Information

1.1 Specifications

Print Unit	Print Speed	12 cps
	Print Element	Cassette type Daisywheel (Mono Plastic) 96 characters
	Typing Pitch	10, 12, 15
	Line Spacing	1, 1 1/2, 2
	Paper Width	12" (304 mm)
	Writing Line	10" (254 mm)
	Paper Capacity	Original + 1
	Ribbon Cassette	Correctable, Fabric (Option)
	Correction Tape	Lift-off, Cover-up (Option)
Keyboard		45 Alpha/Numeric keys
Memory	Correction Memory	1 line
	Address List/Phrase/Text Memory	50,000 characters
	Line Formats	Original + 2 format
	Battery Backup	Approx. 5 years (User, Phrase, Margin)
Accu-Spell Plus	Basic Dictionary	63,000 words
	User Dictionary	120 words
Thesaurus	Dictionary	45,000 words
Display	Type	480 × 128 dot matrix LCD with backlit
	Number of chrs.	80 character × 14 line
Floppy Disk Drive		Built in 3.5" floppy disk drive (353KB)
Power Requirements	Voltage	120 V ± 10%
	Frequency	60 Hz
	Power Consumption	35 W
Operating Conditions	Temperature	5°C (41°F) to 35°C (95°F)
	Humidity	20% ~ 80% RH
Dimensions		17" (W) × 15 9/16" (D) × 4 5/8" (H) (432 × 395 × 118 mm)
Weight		Approx. 14 5/16 lbs. (6.5 kg)

Specifications are subject to change without notice.

1.2 Function Key Location

1.3 List of Key Functions

The KX-W1025 Word Processor has many functions for user operations and service operations.

a) User operations

These functions are executed by using the following CODE Key combinations. For more detailed information please refer to the KX-W1025 Operating Instructions.

CODE + Asets/releases auto carrier return mode in the typewriter mode

CODE + Bsets/releases BOLD print

CODE + Ccenters information

CODE + Eembeds the display symbols

CODE + Ffinds misspelled words (in edit mode)

CODE + Gdisables the status and ruler lines information on the 14th line in Text edit mode

CODE + HHalf spacing

CODE + Isets/releases Paragraph Indent

CODE + Jmoves the carriage by 1/60 inch (Micro Spacing)

CODE + Kstores line spacing to text

CODE + Lchanges margin format

CODE + Orecalls Margin Format O

CODE + Psets a Stop Code in a text

CODE + Qinputs sort rectangle in the Address List

CODE + Rprints information with the last character on each line aligned at the right margin

CODE + Ssearches words in a phrase or a text
.....searches strings in a record of the Address List

CODE + Ttext append

CODE + Usets/releases Continuous Underlining

CODE + Vreference code for mail merge

CODE + Wsets/releases Word by Word Underlining

CODE + Xreplaces a word/words in a phrase or a text

CODE + Yrecalls Margin Format Y

CODE + Zrecalls Margin Format Z

CODE + 1sets/releases the insert/over typing

CODE + 2moves information block in a phrase or a text

CODE + 3 copies information block in a phrase or a text
CODE + 4 deletes information block in a phrase or a text
CODE + 5 sets page break
CODE + 6 sets page length
CODE + 7 jumps to a desired page
CODE + 8 controls the impact of the printed characters
CODE + 9 recalls phrases
CODE + 0 enables the Thesaurus feature
CODE + MAR REL displays the layout of text
CODE + BACK SPACE reverse word by word scroll
CODE + FWD forward word by word scroll
CODE + makes corrections manually in the typewriter mode
..... deletes a record in the Address List
CODE + -(Hyphen) Permanent Hyphen
CODE + SPACE BAR Permanent Space
CODE + TAB aligns decimal points at the preset tab stops
CODE + TAB CLR clears all tabs and margins
CODE + RETURN searches the return mark while executing the word search command or the word replace command
..... auto paper insertion
CODE + LOCK Presets the unit for typing capital letters, lower case numbers, punctuation marks and symbols
CODE + ↓ next search word (in edit mode)
CODE + ↑ previous search word (in edit mode)
CODE + RELOC EXP express return
CODE + ? Mail Merge recorder header
CODE + NEXT PAGE scrolls to the previous page
..... scrolls to the previous RECORD of the Address List
CODE + ↑ scrolls to the previous display
CODE + ↓ scrolls to the next display
CODE + ← advances the cursor to the beginning of a line
CODE + → advances the cursor to the end of a line
CODE + QUICK ERASE deletes one line at a time

b) Service operations

The following functions support service and are accessed by turning ON the Power Switch while pressing the INDEX (↑) Key and the T Key. Before executing the service mode, insert paper in the printer to print results.

KX-W1025 TEST MODE

1. KEY Check (OUT)
2. KEY Check (IN)
3. ROM/RAM Check
4. LCD Check
5. FORMAT Check
6. FDD R/W Check

1. Keyboard Check (OUT)

This mode is used for checking the outer keys of the Keyboard, as shown below.

- 1) Press the number 1 key to execute the outer key check.
- 2) After the machine displays "TESTING... OUT", press each of the keys in the outside groups ① to ④, in order.
- 3) The results of the test are displayed as follows. When an abnormal condition exists, the result will be displayed in the LCD with a 0 or 1. 0 indicates an abnormal key, 1 indicates a normal key. If 0 appears in the chart, exit this mode by pressing the RETURN key and refer to the matrix chart on the next page to determine which key is abnormal. Repair or replace the abnormal key.

RESULT OUTPUT	NORMAL	ABNORMAL
LCD	KEY OUT OK	Check KEY OUT
PRINTER	KEY OUT OK	Check KEY OUT

2. Keyboard Check (IN)

This mode is used for checking the inner keys of the Keyboard, as shown below.

- 1) Press the number 2 key to execute the inner key check.
- 2) After the machine displays "TESTING... IN", press each of the keys in the inside groups ⑤ to ⑨, in order.
- 3) The results of the test are displayed as follows. When an abnormal condition exists, the result will be displayed in the LCD with a 0 or 1. 0 indicates an abnormal key, 1 indicates a normal key. If 0 appears in the chart, exit this mode by pressing the RETURN key and refer to the matrix chart on the next page to determine which key is abnormal. Repair or replace the abnormal key.

RESULT OUTPUT	NORMAL	ABNORMAL
LCD	KEY IN OK	Check KEY IN
PRINTER	KEY IN OK	Check KEY IN

Key Matrix Chart

Example	Abnormal	1	2	3	4	5	6	7	8
1 2 3 4 5 6 7 8	A ↓	1/2	£	P	;	QUICK ERASE	RETURN	TAB CLR	
A 0 1 1 1 1 1 1 1	B SPACE	'	.		SHIFT (R)	⇒	/	RELOC EXP	
B 1 1 1 1 1 1 1 1	C CODE	0	O	I	K	↑	LOCK	--	
C 1 1 1 1 1 1 1 1	D C TAB D TAB	N	Y	SHIFT (L)	M	Z	V		
D 1 1 1 1 1 1 1 1	E MAR REL	W	Q	A	D	B	H	3	
E 1 1 1 1 1 1 1 1	F 2 L MAR	1	S	R MAR	TAB SET	X	RPT		
F 1 1 1 1 1 1 1 1	G 7	4	U	T	G	,	J	8	
G 1 1 1 1 1 1 1 1	H FWD	5 BACK SPACE	E	R	↑	F	PRINT		
H 1 1 1 1 1 1 1 1	I =	9	6	≤	↓	L	NEXT PAGE		
I 1 1 1 1 1 1 1 1	J			MODE	LINE SP	LIST	SC/NEXT	MENU	
J 1 1 1 1 1 1 1 1	K			PITCH	KB	ADD	ON/OFF	HELP	
K 1 1 1 1 1 1 1 1									

3. ROM/RAM Check

This mode is used for checking the ROM/RAM.

- 1) Press the number 3 key to execute the ROM/RAM check.
- 2) The results of the test are displayed as follows:

OUTPUT \ RESULT	NORMAL	ABNORMAL
LCD	ROM/RAM OK	Check ROM Check DRAM Check SRAM
PRINTER	ROM/RAM OK	Check ROM/RAM

4. LCD Check

This mode is used for checking LCD.

- 1) Press the number 4 key to execute the LCD check.
- 2) If the display is not clear, adjust the contrast control.
- 3) Press the Return Key.
- 4) If a horizontal or vertical line appears, or the line frame is broken, the LCD is defective.
- 5) Press the RETURN key to exit from this mode. "LCD OK" will be printed on the paper.

ABNORMAL

ABNORMAL

NORMAL

5. FORMAT Check

This mode is used to check the Disk Format.

- 1) Press the number 5 key to execute the Disk Format check.
- 2) The program automatically formats the floppy disk. The results of the test are displayed as follows.

RESULT OUTPUT	NORMAL	ABNORMAL
LCD	FORMAT OK	Check FORMAT Check PROTECT Check NO DISK Check DISK
PRINTER	FORMAT OK	Check FORMAT

6. FDD R/W Check

This mode is used to check the FDD read and write functions.

- 1) Press the number 6 key to execute the FDD R/W check.
- 2) The program automatically writes test data to tracks 0,40 and 79 on the disk and reads the data, then checks whether the data is correct or not. The results of the test are displayed as follows:

RESULT OUTPUT	NORMAL	ABNORMAL
LCD	FDD R/W OK	Check WRITE Check READ Check PROTECT Check NO DISK Check DISK
PRINTER	FDD R/W OK	Check FDD R/W

Note:

Formatted disk is required for testing.

7. Other Functions

The following functions are executed by turning ON the Power Switch while pressing the key combinations shown below.

.....	Display Message
SHIFT + RPT	Daisy home position is adjusted "DAISY ADJ."
RELOC + QUICK ERASE	Test data printing "TEST PRINTING"
SHIFT	Demonstration *No message
SHIFT + CODE	Clears all tabs, margin and RAM No message

* Pressing PRINT key performs demonstration print.

2. Removal and Replacement Procedures

For safety reasons and to avoid possible damage to electronic components, the AC Line Cord must be removed before disassembly.

Platen Knob (L)

2.1 Upper Cover

- 1) Remove the Platen Knobs from both sides of the Platen by pulling them outward.
- 2) Remove 3 screws from beneath the front edge of the Bottom Cover, 2 screws from the middle of the Bottom Cover, and 3 screws from the lower.
- 3) Carefully lift and remove the Upper Cover while observing the right side of the Platen Shaft.
- 4) Unplug the LCD Display flat cable CN7, the Selector Keys and the Lid Open Switch flat cable CN8 and the lid open switch from the Main Logic Board by lifting up the Upper Cover from the Bottom Cover.

Important Note:

Special clamping connectors are used for the Selector Keys flat cable CN8. To avoid cable damage, release clamp by pulling away from the board, as illustrated, when removing the flat cable. When reinstalling the flat cable, insert it and then push clamp fully toward the board.

Replace in the reverse order.

Note:

When reinstalling the Upper Cover, install the right side first. Be careful to line up the Paper Release Lever and the right side of the Platen to the respective openings.

2.2 Display Unit

- 1) Reverse the Upper Cover and release the flat cable clamp from the Upper Cover.
- 2) Push in the Pivot located on the LCD Contrast Knob side and remove the Display Unit from the Upper Cover.
- 3) Remove the 3 screws from the LCD Rear Cover.
- 4) Carefully remove the LCD Front Cover Assembly by releasing the five hooks and opening the LCD Front Cover Assembly from hook side.
- 5) Unplug the flat cable from LCD Board and lift out the Display Unit complete with the Contrast Board.

Replace in the reverse order.

Note:

When reinstalling LCD Front Cover Assembly, be sure to align the Contrast Control Knob

2.3 Keyboard

- 1) Lift the Keyboard up and to the left.
- 2) Unplug the Keyboard flat cables CN5, CN6 FG Ground wires from the Main Logic Board.

Replace in the reverse order.

Note:

When reinstalling the Keyboard, slightly lower the FG Plate and correct it by Keyboard.

2.4 Main Logic Board

- 1) Remove 2 ground wire screws.
- 2) Unplug the Power Transformer connector CN1, the Carrier Spacing Motor connector CN2, the Paper Feed Motor connector CN4, the Carrier flat cable CN3 and the FDD flat cable CN9 from the Main Logic Board.
- 3) Remove the 5 screws (▲) and lift out the Main Logic Board with the Power Switch.
- 4) Remove the 2 screws of LCD Brightness and lift out the LCD Brightness Board from the Bottom Cover

Replace in the reverse order.

2.5 Floppy Disk Drive

- 1) Remove the 4 screws from the Bottom Cover.
- 2) Carefully raise the Floppy Disk Drive from the Bottom Cover and remove.
- 3) Remove the 4 screws from the FDD Plate.

For more detail, please refer to the section 5.

Replace in the reverse order.

Note:

Connector CN9 must be unplugged before lifting the Floppy Disk Drive.

2.6 Transformer and AC power Cord

- 1) Remove the 2 screws from the Power Transformer.
- 2) Release the AC Cord from the Bottom Cover.
- 3) Remove the Power Transformer with the AC Cord.

Replace in the reverse order.

Note:

When replacing the AC Cord, make sure that it is routed as shown in the illustration.

Safety Notice:

When replacing the Power Transformer and the AC Cord, please follow the procedure below.

- 1) Carefully strip the lead ends and twist the wires together.
- 2) Fully insert the wire end into the closed end connector (Crimp-ON Type).
- 3) Firmly crimp the connector with an appropriate tool.

2.7 Chassis

- 1) Pull the right Paper Release Lever and remove the Platen by rotating the Platen Latches toward the front of the unit, then lift the Platen from the Chassis.
- 2) Remove the Paper Pan.
- 3) Remove the 2 screws from the Chassis.
- 4) The Chassis can be removed.

Replace in the reverse order.

Note:

Connectors CN2, CN3 and CN4 must be unplugged before lifting the Chassis.
(refer to section 2.4)

2.8 Carrier

- 1) Unplug the flat cable from the Carrier.
- 2) Position the Carrier in front of the left side rear frame opening.
- 3) Remove the screw from the Carrier Cable Hanger.
- 4) Remove the screw from the right side frame.
- 5) Remove the spring from the right Bail Lever Arm.
- 6) Carefully move the Bail Lever Arm away from the end of the Carrier Shaft.
- 7) Carefully slide the Carrier Shaft to the right.
- 8) Remove the Carrier.

Replace in the reverse order.

2.9 Ribbon Holder

- 1) Pull the Cam Follower out of the groove in the Drive Cam.
- 2) Slightly slide the Ribbon Holder to the right and remove it upward.

Replace in the reverse order.

2.10 Ribbon Feed Motor

- 1) Unsolder the Motor leads from the Ribbon Feed Motor.
- 2) Remove the 2 screws from the Motor.

Replace in the reverse order.

2.11 Daisy Drive Unit

- 1) Remove the Front Support and the Card Holder by removing the screw.
- 2) Remove the E-ring and the Drive Cam.
- 3) Remove the screw from the Ribbon Sensor Board.
- 4) Remove the screw from the Carrier Board.
- 5) Remove the spring.
- 6) Remove the Clip from the Slide Shaft.
- 7) Remove the Slide Shaft by pulling it to the front.
- 8) Carefully lift off the Daisy Drive Unit, Carrier Board and Ribbon Sensor Board together.

Replace in the reverse order.

2.12 Hammer and Hammer Solenoid

- 1) Remove the E-rings from the Hammer Pivot Shaft.
- 2) Slide the Shaft to the left and remove the Hammer with the plastic washer and spring.
- 3) Remove the 2 screws from the Hammer Solenoid.
- 4) Remove the Solenoid.
- 5) Unsolder the Solenoid leads from the Carrier Board.

Replace in the reverse order.

2.13 Daisywheel Motor

- 1) Remove the E-ring A from the Daisywheel Gear Shaft.
- 2) Pull the Daisywheel Gear forward to remove.
- 3) Remove the screw from the Daisywheel Motor.
- 4) Remove the E-ring B from the Daisywheel Shaft Bushing.
- 5) Remove the Bushing.
- 6) Remove the Motor.
- 7) Unsolder the Motor leads from the Carrier Board.

Replace in the reverse order.

During replacement check the following:

- Make sure that the leads match with their indicated colors as shown in the figure.
- Make sure that the marks on the two Daisywheel Drive Unit Gears are aligned.

2.14 Carrier Spacing Motor

- 1) Remove the 2 screws and disengage the motor from the Cable Drum.

Replace in the reverse order.

Note:

Connector CN2 must be unplugged before removing the Motor as in section 2.4.

2.15 Paper Feed Motor

- 1) Remove the 2 E-rings from the Paper Feed Cam Gear and Geneba Gear.
- 2) Remove the Paper Feed Cam Gear.
- 3) Remove the Geneba Gear.
- 4) Remove the Primary Gear by lifting out.
- 5) Remove the 2 screws and pull the Motor downward to remove it.
- 6) Unsolder the Motor leads.

Replace in the reverse order.

Note:

When replacing the Primary Gear and Paper Feed Cam Gear, make sure that the marks on the each Gear are aligned as shown in the illustration.

2.16 Carrier Cable

- 1) Remove the Tension spring from the Tension Arm.
- 2) Remove the Tension Arm from the frame.
- 3) Remove the Cable Gear Shaft screw and the Cable Drum.
- 4) Release the cable ends from the Carrier Cable Hanger.
- 5) Unwind the Carrier Cable.

Replace in the reverse order.

Follow the next step 2.17 for winding the cable on the Drum.

2.17 Carrier Cable Winding

Note:

Use of Carrier Cable Jig No. PJZXXR250M will make cable installation much easier, as illustrated.

- 1) Insert the short end of the cable through the lower hole and back through the upper hole, pulling until the cable stops.
- 2) Wind the short cable end 3 full turns clockwise around the drum, starting in the first groove and hold while proceeding with Step "3".
- 3) Wind the long cable end 4 full turns counterclockwise around the drum, starting in the first groove from the outside, and hold.
- 4) Slide the Carrier Cable Jig onto the drum, as illustrated, with the cable ends through the Jig opening.

Note:

- The cable can be held in place with tape if the Jig is not available.
- Pull the Carrier Cable Jig downward to remove.

3. Mechanical Functions and Adjustments

3.1 Paper Feed Mechanism

The paper feed mechanism, mounted on the Chassis, consists of the Platen, a spring-loaded Paper Release Plate and a floating Paper Pan which has 3 front and 3 rear Feed Rollers. As paper is inserted, it is guided between the rear Feed Rollers and the Platen, where it is gripped and fed as the Platen rotates. The paper can be advanced manually through the use of either Platen Knob.

3.2 Paper Feed Motor

Drive for the Platen is provided by a DC motor which rotates the Platen through a Primary Gear, Paper Feed Cam Gear and Geneba Gear engaged with the Platen Gear. One complete revolution of the Primary Gear provides 1/2 line space movement to the Platen. As the Motor is energized, it begins to rotate counterclockwise (viewed from the top) and its gear causes the Primary Gear to rotate clockwise, then the Paper Feed Cam Gear turns the Geneba Gear intermittently by Cam movement, which turns the Platen Gear for advancing the Platen. The Home Detecting Lever is activated by Cam rotation and a Magnet Shutter mounted on the top of the Home Detecting Lever turns the Reed Switch off. The Motor and Gear continue to turn through momentum until a full revolution has been completed. After a rotation has been completed, the Platen position is maintained by a spring-loaded Detent which is engaged with the Platen Ratchet. The Paper Feed Motor is actuated whenever the Carrier return key is depressed.

3.3 Line Space Detent

After each line space operation, the Detent Lever is fully seated between 2 platen gear teeth by the tension of the spring attached to the Detent shaft, to obtain proper line space operation.

3.4 Paper Release Mechanism

The Feed Roller and Paper Pan assembly is held against the Platen by the tension of 2 coil springs attached to the Paper Release Plate.

Pulling the Paper Release Lever forward causes the Paper Release Plate to move downward, increasing the tension on the coil springs and allowing the Feed Rollers to move away from the Platen.

3.5 Platen Latches

The Platen is held securely in place by molded plastic rotary clamps installed on both ends of the platen. The design of the Platen Latches provides secure latching without the need of adjustment, and permits easy Platen removal and replacement.

Note:

Hold the Paper Release Lever vertically when replacing the Platen.

3.6 Platen Variable Clutch Mechanism

Normal rotational movement of the Platen Knob transmitted directly to the Platen causes the engaged Platen Gear to turn, limiting Platen movement to 1/2 space (1 tooth) increments. When the left Platen Knob is pushed to the right, the spring loaded Platen Gear is moved to the right, disengaging its clutch teeth from those inside the Platen Coupler, and allowing Platen rotation without turning the Platen Gear. This permits Platen movement in very small increments.

3.7 Carrier Spacing

Carrier movement is provided by a stepping motor controlled by the Logic Board. Motor rotation is transmitted via a cable and pulley to the Carrier, changing the rotational motor movement to horizontal carrier movement. The Carrier Motor is a stepping motor which operates in 7.5° increments for each pulse received. Each 7.5° step of the motor provides carrier movement of $1/120"$ to the left or right, requiring the following number of steps or pulses per space, depending on pitch:

15 pitch = $1/15" = 8$ steps
12 pitch = $1/12" = 10$ steps
10 pitch = $1/10" = 12$ steps

3.8 Carrier Home Sensor

The chassis is equipped with a limit Sensor to notify the CPU when the Carrier approaches its home position. The Home Detecting Lever is activated by the Card Holder and the Magnet Shutter mounted on the top of the Home Detecting Lever turns the Reed Switch off, generating the signal and indicating the carrier home position to the CPU.

3.9 Ribbon Feed

Ribbon Feed Drive is provided by a bi-directional DC motor, which also provides Correction Tape Lift and Feed, depending on which direction the motor is initially activated. The home, or starting position of the motor, is determined by a magnetic sensor which senses the location of the magnet affixed to the inner surface of the Drive Cam. During a character printing operation, the motor is energized and turns the Drive Cam in a counterclockwise direction (view from the left), until the magnet passes its sensor (Reed Switch). Thus, one revolution of the Cam Feed Gear advances the Ribbon Feed Gear and the Ribbon. A Stop Pawl prevents reverse movement of the Feed Gear.

3.10 Correction Tape Feed

During a correction operation the motor is energized, turning the Drive Cam in a clockwise direction approximately 180° , until the magnet passes its sensor (Reed Switch), at which time it reverses direction and returns to its home position. The Drive Cam's rotational movement is changed to vertical movement by a Cam Follower in the eccentric groove on the back of the Drive Cam, lifting the Ribbon Holder to its upper position. As the Motor lifts the Holder to its upper position, the tip of the Feed Pawl which pivots on the Slider, engages the Feed Gear and continues upward movement causing the Feed Gear to be advanced by one tooth. The Stop Pawl (leaf spring) prevents reverse movement of the Correct Reel.

3.11 Daisywheel Motor and Character Printing

a) Daisywheel Motor

The Daisywheel Stepping Motor is mounted within the Carrier frame and is controlled by the CPU. When a key is depressed, a signal is generated on the Main Logic Board, energizing the Motor and causing it to rotate to the desired point, step by step. Each step of the motor provides for 3.75° or one character spoke movement of the Daisywheel. The home position of the Motor corresponds to the underscore character on the Daisywheel being positioned at the printing point. In this position, the impact Hammer must be aligned with the projection at the back of the underscore spoke. Pulling back on the Daisywheel Release Lever pushes down the Lock bar and moves the Motor away from the Platen. The Daisywheel Gear shaft and Pilot pin are disengaged from the Daisywheel, allowing the Daisywheel to be removed. Upon installation of the Daisywheel, pushing the lever forward firmly latches the Motor in the printing position. If the Pilot pin does not engage in the Pilot hole of the Daisywheel, it will re-engage automatically when the Carrier returns to the home position during initialization.

b) Character Printing

Once the Daisywheel has moved to the desired character, the Hammer Solenoid is energized by the CPU causing the Hammer to move rapidly toward the Daisywheel, driving the character spoke into contact with the Platen. The strength of this impact is determined by the length of time the solenoid is energized, which is automatically controlled by the CPU corresponding to character surface area.

3.12 Initializing

Initialization is automatically performed when the power switch is turned on. When the power switch is turned on, the Carrier moves to the far left, then the Daisywheel Home Latch Lever is pushed inward by the left side frame and the Daisy Gear turns 2 revolutions. While the Daisywheel is turning, the Home Latch Lever catches the Daisywheel's latch point locating the Daisywheel home position, and the Pilot Pin on the Daisy Gear engages in the Pilot hole in the Daisywheel. The Carrier then returns to the Carrier home position.

3.13 Daisy Home Position Adjustment

Each spoke must be directly aligned with the Hammer when its character key is depressed. If necessary or when installing a new motor, adjust as follows:

Important Note:

The Daisywheel Motor must only be adjusted in the "DAISY ADJ" mode with power supplied to the motor. In the "DAISY ADJ" mode the Daisywheel motor will be energized for 2 minutes, after that the display will read "PWR OFF/ON". This message will remain until the power is turned off.

- 1) Install a Daisywheel and latch the motor in printing position.
- 2) Initialize the Daisywheel as in section 3.12.
- 3) Press the SHIFT + REPEAT keys and turn on the power at the same time. Display will read "DAISY ADJ".
- 4) Manually push the Hammer toward the Daisywheel and observe the underscore spoke locator in relation to the Hammer groove. If the Hammer is not aligned with the underscore spoke, follow the next step.
- 5) Align the Hammer groove with the underscore spoke locator by turning the Adjustment Screw. After adjusting the position, observe the alignment by repeating steps 2) 3) 4).
- 6) Apply a locking compound to the Adjustment Screw to prevent loosening.

3.14 Ribbon Lift Adjustment

The typed character must strike near the upper edge of the Ribbon (See the illustration). Check by typing several characters and observing their position on the Ribbon.

- 1) The tops of capital letters should be 1.5 to 2.0 mm from the upper edge of the Ribbon.
- 2) If the character is not in the proper position, adjust the position by turning the Adjustment Screw. Turning the screw clockwise will raise the position of the characters on the ribbon and counterclockwise will lower the position.

4. Electronic Circuit Descriptions

Block Diagram

4.1 Principle of Operation

This chapter explains the basic operation of the electronic circuitry for this personal word processor.

This word processor is mainly composed of control, drive, and power supply circuits, motors, a print hammer, a keyboard, and a LCD display with backlit circuit FDD and sensors.

The control circuit is composed of ROM, RAM, Gate Array and CPU which controls every operation of this word processor. The Control Circuit inputs the key data from the Key Matrix Circuit, which consists of 71 keys, a keyboard and 10 push switches of the control panel. It also controls the 480×128 dots LCD, drives the floppy disk drive through the floppy disk controller, and drives the print hammer, the daisywheel motor, the ribbon feed motor, the paper feed motor and the carrier spacing motor through the drive circuit by sensing two magnetic sensors which are the ribbon feed sensor and the carrier home/paper feed sensor.

4.2 Power Supply

4.2.1 General Description

The 120 volt AC input is stepped down by transformer T1, rectified by diodes D1-D4, then filtered by C2, C3 and C4. The filtered DC passes through the power switch SW1 and into the +12 volt, +5 volt regulator circuits, -16 V generator circuits and VCFL circuit.

- + VM -----Carrier Spacing Motor
- + 12 V -----Daisywheel Motor, DC Motors, Print Hammer, Buzzer
- + 5 V -----Logic Circuit, Floppy Disk Drive
- 16 V -----LCD
- VCFL -----CFL

Voltage Condition: At standby condition

Note: VM = 19 V at standby condition

VM = 13-16 V at printing condition

a) + 12 V Power Supply

The + 12 V Power Supply uses a transistor (Q1) and a voltage regulator (IC11).

The collector of transistor (Q1) remains at + 12 V by R3, R4, R5 and IC11.

b) + 5 V Power Supply and Reset Circuit

The + 5 V Power Supply contains a transistor (Q2) and a voltage regulator (IC11). The voltage regulator composed with the + 5 V regulator determines the collector voltage of the transistor Q2 and the reset circuit which is provided to initialize the CPU (IC1) and the Gate Array (IC2). The reset time is controlled by C7, which is connected to pin 3 of IC11. When the power switch (SW1) is turned on, the voltage at pin 5 of IC11 rises. After the voltage at pin 5 of IC11 rises over about + 4.6 V, the reset signal, which is L level, is provided for 30 msec.

Timing Chart

c) -16 V Power Supply

The -16 V power supply is used for LCD display drive and is generated by +5 V. This circuit is an oscillator circuit and mainly consists of Q3, Q4, L1, C9 and D9. Then, when the transistor Q4 is turned on, the electrical energy is stored into inductance L1 and when the transistor Q4 is turned off, the stored energy of the L1 generates negative voltage. The output voltage is determined about -16 V by the zener diode D9.

d) CFL Brightness Control Circuit

The CFL Brightness Control Circuit consists of a transistor Q8, a voltage regulator IC14, volume VR301, and R50, R51, R52. The VCFL voltage can be varied from about 7V to 9V by volume VR 301.

4.3 CPU and Control Circuit

4.3.1 General Description

This block mainly consists of the CPU (IC1), ROM (IC6, 7), RAM (IC3, 4, 5), and the Gate Array (IC2). The CPU receives key data from the keyboard through the Gate Array (IC2), processes the input from various sensors, function switches, and controls the Daisywheel, Paper Feed, Carrier Spacing, Ribbon Feed Motors and the Hammer Solenoid.

4.3.2 CPU

This Word processor is microprocessor controlled. It is controlled by a HD63B03X CPU "Central Processing Unit" IC1. The CPU controls the printer mechanism, keyboard scanning, and the display and memory management. The pin names and functions are shown in the following chart.

NAME	FUNCTION
Vss	GND
XTAL	RESONATOR Input (7 MHz)
EXTAL	
MP0	CPU Mode Select (+ 5 V)
MP1	CPU Mode Select (0 V)
RES	Reset
STBY	Not used (+ 5 V)
NM1	Not used (+ 5 V)
P20	
P21	Carrier Spacing Motor Phase Signal
P22	
P23	
P24	NC
P25	Carrier Spacing Enable
P26	BUZZER
P27	RAM Enable Signal
P50	FDD Disk Change Signal
P51	FDD Interrupt Request
P52	Not used (+ 5 V)
P53	Not used (+ 5 V)
P54	Not used (+ 5 V)
P55	Carrier Home / Paper Feed Sensor
P56	Lid Open Sensor
P57	Ribbon Feed Sensor
P60	
P61	Daisywheel Motor Phase Signal
P62	
P63	
P64	Print Hammer Solenoid ON Signal
P65	
P66	Paper Feed Motor/Ribbon Feed Motor Control Signal
P67	

NAME	FUNCTION
E	System Clock (1.75MHz)
RD	READ Signal
WR	WRITE Signal
R/W	R/W Signal
LIR	NC
BA	NC
D0	
D1	
D2	
D3	
D4	
D5	
D6	
D7	
A0	
A1	
A2	
A3	
A4	
A5	
A6	
A7	
Vss	GND
A8	
A9	
A10	
A11	
A12	
A13	
A14	
A15	
Vcc	+5V

4.3.3 Memory Map and Expansion Memory

The CPU (IC1) can manage a 64K byte memory area, but this Word processor needs a 576K byte memory area to operate. The memory area consists of the following: a 128K byte operating program area, a 64K byte RAM area, a 384K byte dictionary area, and an I/O area.

The 64K byte management capability of the CPU is expanded by using two 16K byte windows. The expansion memory area consists of two 32K byte TEXT RAM areas and a 384K byte dictionary area, which is divided into thirty one 16K byte blocks, each having its own address code. When the CPU writes one of these address codes into a BANK register, the CPU can access that memory block through the BANK window by means of the expansion memory decode circuit. For example, when the CPU writes "40" (data) into the BANK 1 register, the CPU can access block 1 in IC6 (128K byte ROM) through the BANK 1 window.

The CPU's remaining 32K byte memory area is divided and assigned for 192 byte internal RAM, 4K byte RAM (IC3) area, interface area, and 16K byte operating program area.

The 16K operating program assignment: If the VECT1 terminal (IC2 Pin 5) is connected to + 5 V, the operating program is located in the external ROM (IC6). If the VECT1 terminal (IC2 Pin 5) is connected to 0 V, the operating program is located in the bottom of the 512K byte ROM (IC7).

Memory Map (64K byte)

ADDRESS	Used For
0000 001F	Internal Register CPU (IC1)
0020 003F	Not used
0040 00FF	Internal 192 byte RAM CPU (IC1)
0100 03FF	Not used
0400	Gate Array (IC2) Key Scan Register
0410	Gate Array (IC2) Key Matrix Date Input
0420	Not used
0430	Gate Array (IC2) LCD Control Register
0600 061F	Gate Array (IC2) BANK0 Selection Register
0620 063F	Gate Array (IC2) BANK1 Selection Register
0A00 0BFF	LCD Display
0C00 0FFF	FDD Controller
1000 1FFF	Not used
2000 2FFF	4K byte RAM (IC3)
3000 3FFF	4K byte window (IC4)
4000 7FFF	BANK0 (16K byte) Window
8000 BFFF	BANK1 (16K byte) Window
C000 FFFF	*16K byte ROM (IC6/IC7) Operating Program Area (Common)

Expansion Memory Map (512K byte)

IC4 32K byte RAM

BLOCK	CODE	NAME
0	10	TEXT Memory Area
1	14	
IC5 32K byte RAM	20	TEXT Memory Area
	24	

IC7

BLOCK	CODE	NAME
4	80	Dictionary Area 16K byte
5	84	Dictionary Area 16K byte
:	:	:
18	B8	Dictionary Area 16K byte
19	BC	Dictionary Area 16K byte
20	C0	Operating Program Area 16K byte
21	C4	Operating Program Area 16K byte
:	:	:
33	F4	Operating Program Area 16K byte
34	F8	Operating Program Area 16K byte

ROM	Installed	Not Installed
Common Program	IC6	IC7 Bottom 16K byte
VECT1 (IC2) Pin 5	+5V	0V

*Note Program Common Area is located in IC6 (128K byte ROM) or bottom 16K byte in IC7 (512K byte ROM). The selection is determined by the status of the VECT1 pin on the Gate Array IC2 Pin 5.

4.3.4 Gate Array

The Gate Array (IC2) is an original LSI which integrates complex circuits into 1 chip IC. Basically the Gate Array consists of 9 circuits. The Key Scan Register, the Key Scan Decoder and the Expansion Input Port are used to sense the key data and function mode positions. The Expansion Memory Decoder, BANK0 register and BANK1 register are used to access expansion memory area (IC4, 5, 6, 7) and 4K byte RAM(IC3). The Expansion Output Port is a 1 bit output port (not used). The Interface Decoder is used to access other block circuits in the Gate Array, and access the LCD and FDC(IC13)

Gate Array (IC2) Block Diagram

4.3.5 Memory Select

The Gate Array (IC2) has 6 memory select signal outputs for ROM1, 2, 3(ROM3 is not used) and RAM1, 2, 3. The Memory Select output signal is generated by the Expansion Memory Decoder and the Address Generator which decode the address signals. When the CPU selects a memory chip, a low (L) active pulse signal is generated by the decoder then read or write is accomplished.

4.3.6 Gate Array Pin Function

The Gate Array pin functions are shown in the following chart.

NAME	FUNCTION	
WF	LCD Control Signal	
DF		
LP		
OP80	Not used	
VECT 1	VECTOR	
KS11	Key Scan Output with Open Drain	
KS10		
IP77	Key Data Input	
IP76		
IP75		
IP74		
IP73		
IP72		
IP71		
IP70		
CSROM3		Not Use
KS9		Key Scan Output with Open Drain
KS8		
KS7		
KS6		
KS5		
KS4		
KS3		
KS2		
KS1		
ROM2	IC6 Chip Select	
RAM1	IC5 Chip Select	
RAM2	IC4 Chip Select	
RAM3	IC3 Chip Select	
FDCS	FDC (IC) Chip Select	
RSTOUT	RESET OUT for FDC	
Vss	Ground (0 V)	

NAME	FUNCTION	
VDD	+5 V	
VECT 2	Not used	
LCDEB	Not used	
RSTB	RESET	
LCDE	LCD Enable	
E	E Clock	
RDWR	READ/WRITE	
A15	Address Bus	
A14		
A13		
EA18		
EA16	Expansion Address Bus	
EA17		
EA15		
EA14		
A12		Address Bus
OEB		Out Enable
EA13	Expansion Address Bus	
A9	Address Bus	
A5		
A11		
A4		
A10		
ROM1		IC7 Chip Select
D7	Data Bus	
D6		
D0		
D5		
D1		
D4		
D2		
D3		

4.3.7 Memory Protection Circuit

The circuit prevents writing data to the RAM chips when the unit is turned on or off and while the memory retention is in the backup mode. When the reset signal (L level) is provided to IC1 (CPU), pin 16 (P27) of IC1 is turned to high impedance from H level. Thus, the RAM CE2 terminal becomes L level by R16, and the RAM data can't be accessed by the CPU thus, protecting the memory.

When the reset signal becomes H level from L level, the pin 16 of the CPU I/O port is turned to H level by the software, and the RAM data can be accessed by the CPU.

4.3.8 Memory Backup Circuit

The circuit contains the lithium battery used to back up the phrase memory, the user dictionary, and the margin format. In normal condition, the power is supplied to the RAM from the +12 V power source to maintain the memory. When the voltage at the cathode of D6 becomes lower than +3 V, because of either the power switch or accidental power interruption, the lithium battery starts supplying about +3 V 1 μ A to the RAM VDD terminals (IC3) through R9 and D7 to maintain the memory.

Voltage Condition: At standby condition

4.4 Keyboard Matrix Circuit

The matrix circuit is composed of a Key Scan Register, a Key Scan Decoder and an 8 bit Expansion Input Port which are located in the Gate Array (IC2), and the keyboard and function switch boards. KS1-KS9 are connected to the keyboard switches and KS10-KS11 are connected to the function switches which are composed of 10 push switches. When one of the scanning output (KS1-KS11) lines in the scanning decoder is turned from high impedance to low level, the data of the key which is connected to the selected scanning line, is sent to the CPU through the expansion input port and data bus (D0-D7). The scanning output line (KS1-KS11) which is turned to low level is determined by data written into the Key Scan Register by the CPU. The CPU then reads the 8 bit key data from IP70-IP77 (address 0410). The CPU can sense all data about every 20 msec. For example, when the CPU reads address 0410 after writing data "01" to the Key Scan Register and the RETURN key is pushed, the voltages are as shown in the following schematic.

4.5 Liquid Crystal Display

Block Diagram

4.5.1 LCD General Construction

This LCD module is composed of a LCD Panel, two inter connectors, a LCD frame, a heat seal, LCD PCB , and several ICs (2 common drivers, 6 segment drivers, an LCD controller, a pseudo static RAM, a OP amp, and a NAND Gate) and Inverter Gate. LCD Panel has 480×128 dots which consists of matrix, of 480 segment lines and 128 common lines, as a display area. The 480 segment lines are divided into 240 segment lines and are connected to the LCD PCB through the inter connectors which are made from silicon rubber and carbon on both sides of the LCD panel. The 128 common lines are connected to the LCD PCB through the heat seal, which is a carbon printed film.

The LCD frame is used to fix the LCD panel to the LCD PCB at the best position so that each segment line is connected to the printed pattern on the LCD PCB correctly.

The cold Fluorescent LampCFL ia placed to the side edge of the Light Guide Plate seated between the LCD Panel and LCD PCB and the Light Reflection Seat mounted inside of the Lamp Case covered around the Fluorescent Lamp.

When the Light Beam goes into the edge of the Light Guide Plate, the Light Guide Plate leads the Light Beam into the Entire Plate and uniformly lighting for LCD Panel Back Light.

CAUTION:

Do not disassemble the LCD frame from the LCD PCB. The LCD frame is fixed between the LCD panel and LCD PCB by the critical adjustment.

Do not touch the CFL power supply PCB and CFL while power on high voltage(300V-600V) is generating.

4.5.2 Character Arrangement and Construction

A character area is composed of 6×9 dots.

Each character has font area which is composed of a matrix of 5×7 dots, a underscore area 6×1 dots which is located at the bottom of the character area, a blank areas, one of which is located between the underscore area and the under character area.

4.5.3 Bias Circuit

LCD needs 6 levels at voltage bias (V1-V6) to display.

V1 is fixed to +5 V. V6 is determined by the base bias of Q401 which is created by R412 and VR401. The customer can control the V6 bias by adjusting the volume VR401. V2-V4 are generated by the bias which is divided by R401-R405 between V1 and V6, and output through OP amp IC411. When the resistance between collector and base of Q401 is decreased the voltage between V1 and V6 is increased, and the display of the LCD becomes bright.

When the resistance between collector and base of Q401 is at maximum, each voltage is as follows:

V1: +5 V, V2: +3.1 V, V3: +1.3 V, V4: -11.0 V, V5: -13.4 V, V6: -15.2 V

4.5.4 LCD Display Control Circuit

LCD control circuit is consisted of the LCD controller SED1330 (IC409), 32K byte pseudo static RAM (IC410) and the OP Amp (IC411).

This circuit is operated as follows.

1. After the power switch is turned on (at the initialize routine), CPU initializes the LCD controller and the RAM (IC410). the CPU writes every character's font data into the CG RAM area of the RAM (IC410) through the LCD controller(IC409).
2. The CPU writes the character code date into the VRAM area of the RAM (IC410) through the LCD controller (IC409).
3. The LCD controller picks up the character code from VRAM area and displays each character on the LCD.

4.5.5 Segment and Common Driver Circuit

Segment and Common Driver Circuit is consisted of 2 common drivers IC401,IC402 and 6 segment drivers IC403-IC408. Each common driver can drive 68 common lines, and each segment driver can drive 80 segment lines. This LCD module is enough to drive only 128 common lines, so one common driver IC401 drives 68 common lines and another one IC402 drives 60 common lines. Each common driver and segment driver is assigned as a diagram.

The LCD controller scans display data, continuously. The scanning method as a follows:

1. The LCD controller sends segment data of the first common line to the segment driver IC403-IC408 through XD0-XD3 of the LCD controller IC409.
2. The LCD driver IC403-IC408 outputs the segment data of the first common line. At the same time, the LCD controller turns on the first common line of the common driver.
3. The LCD controller scans from the 1st common line data to the 128th common line data continuously.

Scanning timing pulses (XSCL, WF, LP, YSCL, YD, YDIS) are sent from the LCD controller IC409 and controls LCD drivers (IC401-408), then to make the display of the LCD clean, WFand LP signal timings are modified by the NAND GATE (IC412) and the Gate Array (IC2) of the main PCB.

4.5.6 CFL Power Supply

This CFL Power Supply is used for lighting a CFL(Cold Fluorescent Lamp) which is the Back Light of the LCD. This circuit is an inverter circuit and mainly consists of transistor Q501, Q502, switching transformer L502, capacitance C502 and C503.

When the DC power is supplied to this circuit, whichever transistor Q501 or Q502 is active. If Q501 is active in advance of Q502, the base of Q501 is biased to turn on Q501, so that Q501 is turned on in a moment.

When Q501 is turned on, the current passes from transistor pin 3 to pin 4 of the transformer. When the transformer core between pin 3 and pin 4 is saturated magnetically, VCE(voltage between collector and emitter) of Q501 is increased and Q501 is turned off. When Q501 is turned off, Q502 is turned on next with the same process of Q501. In this way, this circuit inverts DC power to AC power and this AC power is supplied to the CFL through L502.

Note:

When the switch is turned on, Pin 6 and Pin 10 of transformer L502, capacitance C503, and terminals of CFL is very high voltage (about AC 300V). Do not touch these points, when turning on the switch.

Schematic Diagram

Timing Chart

4.6 Drive and sensor Circuits

4.6.1 Print Hammer Drive Circuit

When energized the plunger of the hammer solenoid strikes the print hammer, which in turn impacts a spoke on the daisywheel and prints a character. The amount of impact force is controlled by the software.

Each character on the daisywheel has a different surface area, requiring a different impact for proper print. For example, a capital "W" has a large surface area, requiring a heavier impact to print correctly. A period "." however, requires much less impact to obtain the same impression. When a "W" is typed, it is given a longer impact time than a ". ". In this way, each character has its own defined impact duration, providing an even impression level. This Word processor has three impression levels. "IMPRESSION:1" is softer than "IMPRESSION:3". The impression level that is set is retained after the Word processor is turned off.

The print hammer drive circuit mainly consists of Q7, D13 and D14. The CPU (IC1) generates a signal for a specific amount of time. When the P64 of IC1 is turned to H level from L level, Q7 is turned on, activating the hammer solenoid. The current through the hammer solenoid is fixed at about 3.5 amps.

Schematic Diagram

Voltage Condition: At standby condition

Timing Chart

4.6.2 DC Motor Drive and Sensor Circuit

Paper feed and ribbon feed motors are +12 V bi-directional DC motors controlled by IC10, which are able to drive two motors at different times. The driving motor (paper feed or ribbon feed) is selected by the signal received from Port 65 and 66 of CPU (IC1), and the direction of motor rotation (index or reverse index) is dependent on the signal received from Port 67 of IC1, as indicated in the truth table.

SW501 (ribbon feed sensor) is used to monitor the position of the drive cam by detecting the position of a magnet mounted on the gear.

SW502 (paper feed sensor/carrier home sensor) is used to monitor the position of the intermediate gear by a cam mounted on the gear. And also SW502 is used to detect the carrier home position, when the power switch is turned on. SW301(Lid Open Senser) is used to sense when the Front Cover is opened to prevent accidental movement of the Carrier while changing the Ribbon, Correction Tape or Daisywheel.

Truth Table

Input			Output			Function	
IN1	IN2	IN3	OUT1 COM	OUT2 COM	OUT2	Ribbon Feed Motor Output OUT1, OUT COM	Paper Feed Motor Output OUT2, OUT COM
0	0	0	0	0	0	Braking	Braking
0	0	1	0	0	0	Braking	Braking
0	1	0	OFF	1	0	Open	↻ CW
0	1	1	OFF	0	1	Open	↻ CCW
1	0	0	0	1	OFF	↻ CW	Open
1	0	1	1	0	OFF	↻ CCW	Open
1	1	0	0	0	0	Braking	Braking
1	1	1	0	0	0	Braking	Braking

Timing Chart

Schematic Diagram

4.6.3 Daisywheel Motor and Carrier Spacing Motor Drive Circuit

The Daisywheel Motor and the Carrier Spacing Motor are four-phase uni-polar PM type stepping motors. The stepping signal of the Carrier Spacing Motor originates at P20, P21, P22 and P23 of IC1. The stepping signal of the Daisywheel Motor originates at P60, P61, P62 and P63 of IC1. These signals are sent to the transistor array IC9 and IC8.

A step/hold control line supplied by P25 of IC1, controls the amount of current supplied to the motor while it is stepping or holding. When P25 of IC1 is low, +VM is supplied through R26, R24 and R25, giving the motor less current while it is holding. When P25 of IC1 is high, +VM is supplied through Q6, R24 and R25, giving the motor extra current needed for stepping.

The Daisywheel Motor Drive Circuit does not have a voltage control circuit.

Daisywheel Motor Drive Circuit

Voltage Condition: At standby condition

Timing Chart

Carrier Spacing Motor Drive Circuit

Voltage Condition: At standby condition

NOTE: VM = 19V At standby condition
VM = 13V-16V At printing condition

Timing Chart

4.6.4 Buzzer Circuit

The Buzzer receives a signal (about 2.3 kHz) from Port 26 (Pin 15) of IC1, which turns on or off IC9 (IN Pin 7, OUT Pin 10) driving the buzzer.

The Buzzer is mounted on the Logic Board and sounds under the following circumstances:

- 1) Sound of "A"
 a) Carrier enters Hot Zone.
 b) Carrier reaches right margin.
 c) Depressing invalid function key.
 d) Displaying CHECK RIBBON!.
 e) Displaying CHECK PLATEN!.
- 2) Sound of "B"
 a) Incorrect spelling is found.

4.7 Floppy Disk Controller

IC13 (TC8566AF) is used to interface between the CPU (IC1) and the Floppy Disk Unit. IC13 consists of an FDC circuit and VFO.

1) FDC Circuit

This circuit has 4 registers which the CPU can access directly, and send a write signal to the floppy disk unit in accordance with CPU command signal. Also, this circuit receives read data (RDT), mixed clock and effective data from the floppy disk unit and switches this data to parallel data, and then sends data (D0-D7) to RAM.

2) VFO

Data recorded on the disk, is composed of clock pulses (4 MHz) generated by FDC and effective data. When FDC reads this data, effective data pulses have to synchronize the data window pulse generated by VFO. For performing this synchronization, the data window pulse synchronizes the clock pulse by VFO.

3) TC8566AF (IC13) Pin Function

Pin No.	Signal Name	Description of Signal	Direction	Pin No.	Signal Name	Description of Signal	Direction
1	C6	Not used	Out	51	NC	Pull up (+5 V)	—
2	-IOR	Read Strobe	In	52	NC	Pull up (+5 V)	—
3	—	Not used	—	53	CL	Pull up (+5 V)	In
4	-IOW	Write Strobe	In	54	Vss	Ground	—
5	A0	Address Bus	In	55	SYNC	Not used	Out
6	A1	Address Bus	In	56	WDT1	FDD Write Signal	Out
7	A2	Address Bus	In	57	WE	FDD Write Enable	Out
8	A3	Pull up (+5 V)	In	58	HS	Not used	Out
9	A4	Pull up (+5 V)	In	59	HL	Not used	Out
10	A5	Pull up (+5 V)	In	60	MEN3	Not used	Out
11	A6	Pull up (+5 V)	In	61	MEN2	Not used	Out
12	A7	Pull up (+5 V)	In	62	MEN1	Not used	Out
13	CS	Chip select	In	63	MENO	Drive A Motor ON	Out
14	AEN	Pull down (Ground)	In	64	Vss	Ground	—
15	D0	Data Bus	Bi-Direction	65	VDD	+ 5 V	—
16	D1	Data Bus	Bi-Direction	66	DS3	Not used	Out
17	D2	Data Bus	Bi-Direction	67	DS2	Not used	Out
18	D3	Data Bus	Bi-Direction	68	DS1	Not used	Out
19	D4	Data Bus	Bi-Direction	69	DS0	Drive Sel 0	Out
20	D5	Data Bus	Bi-Direction	70	STP	Step Signal	Out
21	D6	Data Bus	Bi-Direction	71	FR	Not used	Out
22	D7	Data Bus	Bi-Direction	72	LC	Not used	Out
23	DRQ2	Not used	Out	73	DR	Direction Sel	Out
24	INTRQ	Not used	Out	74	Vss	Ground	—
25	INT	Interrupt Request	Out	75	VDD	+ 5 V	—
26	DRQ	Not used	Out	76	IDX	Index Signal	In
27	Vss	Ground	—	77	RDY	Read Signal	In
28	AG	Ground	—	78	—	Not used	—
29	NC	Pull down (Ground)	—	79	—	Not used	—
30	NC	Pull down (Ground)	—	80	WP	Write Protect Signal	In
31	NC	Pull down (Ground)	—	81	2S	Pull up (+5 V)	In
32	DACK2	Pull up (+5 V)	In	82	FLT	Pull up (+5 V)	In
33	DMATC	Pull down (Ground)	In	83	TKO	Track 00 Signal	In
34	CONT	Filter Interrupt	In	84	PS1	Not used	Out
35	TEST	Pull up (+5 V)	In	85	PS0	Not used	Out
36	VCO	Not used	Bi-Direction	86	DSB	Not used	Out
37	LPF2	Low Pass Filter Output	Out	87	DSA	Not used	Out
38	LPF1	Low Pass Filter Output	Out	88	LA	Pull up (+5 V)	In
39	TRDT	Not used	Out	89	NC	Pull up (+5 V)	—
40	DW	Pull up (+5 V)	In	90	VDD	Pull up (+5 V)	—
41	RD/SK	Not used	Out	91	NC	Not used	—
42	TDW	Not used	Out	92	CDS	Pull up (+5 V)	In
43	LOCK	Pull up (+5 V)	In	93	RESET	Reset Signal	In
44	RDT	Read Data Signal	In	94	SHB	Pull down (Ground)	In
45	XOUT	16 MHz Resonator	Out	95	SHA	Pull down (Ground)	In
46	XIN	16 MHz Resonator	In	96	SHEN	Pull up (+5 V)	In
47	VFOEN	Pull down (Ground)	In	97	STNBY	Not used	Out
48	MIN	Pull up (+5 V)	In	98	WDT	Not used	Out
49	MFM	Pull up (+5 V)	Out	99	ENID	Not used	Out
50	NC	Pull up (+5 V)	—	100	C4	Not used	Out

5. Floppy Disk Drive Unit

5.1 General Description

This micro floppy disk drive is able to write to or read from a 3.5 inch floppy disk which conforms to the MFD standard.

It is interface compatible with the 5 1/4 inch mini FDD and can record single sided/double density.

5.2 Block Diagram

6. Circuit Diagram and Trouble Shooting

6.1 Logic Board Connection Diagram

6.2 Explanation of Connectors

CN1 Power Transformer Connector

CN501 CFL Power Supply Connector

Pin No.	Signal Name	Color of Lead.	Remarks
1	AC16V	Red	For Electric Circuit
2	AC16V	Red	For Electric Circuit

Pin No.	Signal Name	Color of Lead.	Remarks
1	NC	----	----
2	VCFL	Red	CFL Power 7V~9V
3	GND	Black	Ground

CN2 Carrier Spacing Motor Connector

Pin No.	Signal Name	Description of Signal	Direction
1	SCR	Carrier Spacing Motor Power Supply	Out
2	CRA	Phase A for Carrier Spacing Motor Drive	Out
3	CRB	Phase B for Carrier Spacing Motor Drive	Out
4	CRA	Phase A for Carrier Spacing Motor Drive	Out
5	CRB	Phase B for Carrier Spacing Motor Drive	Out

CN3 Carrier Connector

Pin No.	Signal Name	Description of Signal	Direction
1	GND	Ground	----
2	RBS	Ribbon Sensor	In
3	HSE	Hammer Solenoid Enable	Out
4	HSE	Hammer Solenoid Enable	Out
5	+12V	+12V	Out
6	+12V	+12V	Out
7	DSA	Phase A for Daisywheel Motor Drive	Out
8	RBP	Phase (+) of Ribbon Feed Motor	Out
9	DSB	Phase B for Saisywheel Motor Drive	Out
10	RBN	Phase (-) of Ribbon Feed Motor	Out
11	DSA	Phase A for Daisywheel Motor Drive	Out
12	DSB	Phase B for Daisywheel Motor Drive	Out

CN4 Sensor Connector

Pin No.	Signal Name	Description of Signal	Direction
1	LFN	Phase (-) of Paper Feed Motor	Out
2	LFP	Phase (+) of Paper Feed Motor	Out
3	GND	Ground	----
4	LFS	LF/Carrier Sensor	In

CN5 Keyboard Connector 1

Pin No.	Signal Name	Description of Signal	Direction
1	P70		
2	P71		
3	P72		
4	P73	Key Date	In
5	P74		
6	P75		
7	P76		
8	P77		
9	NC	Not connected	----

CN6 Keyboard Connector 2

Pin No.	Signal Name	Description of Signal	Direction
1	KS9		
2	KS8		
3	KS7		
4	KS6		
5	KS5	Key Strobe	
6	KS4		
7	KS3		
8	KS2		
9	KS1		

CN 7 80Chr.x14Line LCD Connector

Pin No.	Signal Name	Description of Signal	Direction
1	GND	Ground	---
2	RST	RESET	Out
3	LCDE	Enable	Out
4	R/W	Read/Write	Out
5	A5	Address Bus	Out
6	A4	Address Bus	Out
7	D7		
8	D6		
9	D0		
10	D5	Date Bus	In/Out
11	D1		
12	D4		
13	D2		
14	D3		
15	WF	LCD Controller Signal	Out
16	DF	LCD Controller Signal	Out
17	LP	LCD Controller Signal	Out
18	+5V	+5V	Out
19	GND	Ground	----
20	VCFL	7V 9V	Out
21	GND	Ground	----
22	VEE	16V	Out

CN 8 Control Panel Connector

Pin No.	Signal Name	Description of Signal	Direction
1	P56	Lid Open Sensor	Out
2	+5V	+5V	In
3	KS11	Key Strobe	Out
4	KS10	Key Strobe	Out
5	P74		
6	P73		
7	P72	Key Strobe	In
8	P71		
9	P70		

CN9 FDD Connector

Pin No.	Signal Name	Description of Signal	Direction
1	+5V	+5V	In
2	+5V	+5V	In
3	NC	Not connected	----
4	+5V	+5V	In
5	+5V	+5V	In
6	RDY	READY	In
7	GND	Ground	----
8	GND	Ground	----
9	+5V	+5V	In
10	GND	Ground	----
11	RDT	Read Date	In
12	WP	Write Protect	In
13	TK0	Track 00	In
14	WE	Write Gate	Out
15	GND	Ground	----
16	WDT1	Write Gate	Out
17	GND	Ground	----
18	STP	Step	Out
19	DR	Direction Select	Out
20	MENO	Motor ON	Out
21	NC	Not connected	----
22	DS0	Drive Select 0	Out
23	INDEX	Index	In
24	DISK CH	Disk Change	In

CN10 Power SW Connector

Pin No.	Signal Name	Description of Signal	Direction
1	VMOUT	VM OUT	OUT
2	VMIN	VM IN	IN

CN11 CFL Brightness Volume Connector

Pin No.	Signal Name	Color of Lead	Remarks
1	B. Cont	White	Bright Control
2	B. Cont	White	Volume

CN500 Carrier Connector

Pin No.	Signal Name	Description of Signal	Direction
1	GND	Ground	----
2	RBS	Ribbon Sensor	In
3	HSE	Hammer Solenoid Enable	Out
4	HSE	Hammer Solenoid Enable	Out
5	+12V	+12V	Out
6	+12V	+12V	Out
7	DSA	Phase A for Daisywheel Motor Drive	Out
8	RBP	Phase (+) of Ribbon Feed Motor	Out
9	DSB	Phase B for Daisywheel Motor Drive	Out
10	RBN	Phase () of Ribbon Feed Motor	Out
11	DSA	Phase A for Daisywheel Motor Drive	Out
12	DSB	Phase B for Daisywheel Motor Drive	Out

6.3 Schematic Diagrams

6.3.1 Logic Board Schematic

Note: The voltage are measured in "Self Print" mode.

(): Standby condition

Important safety notice:

The shaded area on this schematic diagram incorporates special features important for protection from fire and electrical shock hazards. When servicing it is essential that only manufacturer's specified parts be used for the critical components in the shaded areas of the schematic.

6.3.2 LCD Board Schematic

6.4 Component Reference Guide

6.4.1 Logic Board

HD63B3XP
(IC1)

UD656487
(IC2)

M6364MA
(IC3)

T51832PL
(IC4,5)

2W1025M
(IC6)

1W1000M
(IC7)

TD62064
(IC8)

BAI 2003
(IC9)

TA7288P
(IC10)

Voltage Control
GND
Input

M5236L
(IC14)

AN8079
(IC11)

TC8566AF
(IC13)

6.4.2 LCD Board

MSM5298A
(IC401,402)

MSM5299A
(IC403-408)

SED1330F
(IC409)

H65256BF
(IC410)

LA6324NM
(IC411)

74HC00AF
(IC412)

74HC04AF
(IC413)

6.5 Trouble Shooting

7. Parts Catalog and Lubrication Points

NOTES: 1. Important safety notice.

Components identified by mark have special characteristics important for safety. When replacing any of these components, use only manufacturer's specified parts.

2. The S mark is for service standard parts and may differ from production parts.
 3. The * mark designates parts available during the production period only.

1. Covers

Ref. No.	Parts No.	Parts Name and Description	Per Set	Remarks
1-1	PJYFW1025M	Upper Cover Assembly	1	
1-2	PJKE91Z-1	Paper Guide	1	
1-3	PJKK67X	Front Cover	1	
1-4	PJKE125Z	Paper Stand	1	
1-5	PJKK9019Y-1	Hard Cover	1	
1-6	PJKE90Z-1	AC Cord Cover	1	
1-7	PJYMW1025M	Bottom Cover Assembly	1	
1-8	EME-113KG	Floppy Disk Drive Complete	1	*
1-9	PJMD9112Z	FDD Plate	2	
1-10	PJDS52011Z	Tilt Spring	2	
1-11	PJDF9130Z	Tilt Shaft	2	
1-12	PJUS94Y	FG Plate	1	
1-13	PJBC25Z	Knob. Tact Switch (Gray)	1	
1-14	PJBC27Z	Knob. Tact Switch (Gray)	1	
1-15	PJBC25Y	Knob. Tact Switch (Blue)	1	
1-16	PJBC27Y	Knob. Tact Switch (Green)	1	
1-17	PJBC26Z	Function Knob	1	
1-18	PJJE147Z	FDD Cable	1	
1-19	PJBD27Z	LCD Bright cont knob	1	
1-20	XTW3+14SFZ	Screw 3x14 mm	8	
1-21	XTW3+12S	Screw 3x10 mm	6	
1-22	XSN3+6	Screw 3x6 mm	4	
1-23	XTW26+6F	Screw 2.6x6 mm	1	
1-24	PJMC106Z	Shield Plate	1	
1-25	PJJT198Z	GND Lead	1	
1-26	PJUS136Z	FG Plate	1	
1-27	PJJT159Z	GND Lead	1	
1-28	PJUS140Z	FG Plate	1	
1-29	XTW3+10S	Screw 3x10mm	21	
1-30	PJUP434Z	Volume Bare PCB	1	
1-31	PJVV14B04	Contrast Volume	1	
1-32	PJJS686Z	Volume Lead	1	

2. Chassis and Platen

=Lubrication=

▲ PJOL-G311S (Grease)

★ PJOL-G948P (Oil)

★PJOL-K1879 (Grease)

★ PJOL-SG3451 (Grease)

Ref. No.	Parts No.	Parts Name and Description	Per Set	Remarks
2-1	PJZXR550M	Platen Assembly	1	
2-2	PJBN27Z	Platen Knob (L)	1	
2-3	PJUB76Z	Paper Release Lever	1	
2-4	PJDJ08261RZ	Platen Bushing (R)	1	
2-5	PJBN28Z	Platen Knob (R)	1	
2-6	PJZH1XR310M	Paper Pan Assembly	1	
2-7	PJDR37Z	Feed Roller	6	
2-8	PJDS7018Z	Spring, Bail Lever	2	
2-9	PJUB75Z	Bail Lever (L)	1	
2-10	PJDF955Z	Bail Shaft	1	
2-11	PJUB61Z	Bail Lever (R)	1	
2-12	PJUL77Z	Paper Release Plate	1	
2-13	PJDS5108Z	Spring, Paper Release	2	
2-14	PJDF552Z	Carrier Shaft	1	
2-15	PJZHR520M	Paper Feed Motor Bracket Assembly	1	
2-16	PJVSFR1Z	Reed Switch (SW502)	1	
2-17	PJHE028Z	Magnet	1	
2-18	PJHR9109Z	Magnet Holder	1	
2-19	PJDG50160Z	Primary Gear	1	
2-20	PJMC68Z	Magnetic Shutter	1	
2-21	PJHR549Z	Home Detecting Lever	1	
2-22	PJDS7016Z	Spring, Home Detecting Lever	1	
2-23	PJDS7015Z	Spring, Detent	1	
2-24	PJDE91Z	Detent, Lever	1	
2-25	PJWQ3R520M	Paper Feed Motor Assembly	1	
2-26	PJJS437Z	Paper Feed Motor Lead	1	
2-27	PJJQ83Y	Carrier Spacing Motor	1	
2-28	PJHG947Z	Mount Rubber, Rear	2	
2-29	PJHG932Z	Mount Rubber, Front	2	
2-30	PJZXXR250M	Gear Cup (Jig)	1	
2-31	PJDD3191Z	Drum Gear	1	
2-32	PJHE5040Z	Drum Gear Shaft	1	
2-33	PJDZ25Z	Carrier Cable	1	
2-34	PJUL78Z	Cable Hanger	1	
2-35	PJDR35Z	Tension Pulley	1	
2-36	PJDY137Z	Tension Pulley Shaft	1	
2-37	PJUL76Z	Tension Arm	1	
2-38	PJDS5164Z	Tension Spring	1	
2-39	PJHR551Z	Cable Holder	1	
2-40	PJJE109Z	Flat Cable	1	
2-41	PJHR533Z	Guide, Paper Feed	1	
2-42	PJZR2XR250M	Bail Roller Kit	2	
2-43	PJUP228Y-C	L.F. Sensor Bare PCB	1	
2-44	PJNW620Z	Plastic Washer	1	
2-45	XUC7FY	E-ring	2	
2-46	PJDG50162Z	Geneba Gear	1	
2-47	XUC2FY	E-ring	4	
2-48	PJDG50161Z	Paper Feed Gear	1	
2-49	PJHE5057Z	Screw 3×12 mm	2	
2-50	XTS3+13F	Screw 3×13 mm	1	
2-51	XTN3+6F	Screw 3×6 mm	3	
2-52	XTW3+U6L	Screw 3×6 mm	1	
2-53	XTW3+5L	Screw 3×5 mm	1	
2-54	XYN3+C4	Screw 3×4 mm	2	
2-55	XTW3+6L	Screw 3×6 mm	2	
2-56	XTS3+8F	Screw 3×8 mm	1	
2-57	PJDS9253Z	Platen Earth Spring	1	
2-58	PJHM323	Washer	1	

3. Carrier

Ref. No.	Parts NO.	Parts Name and Description	Per Set	Remarks
3-1	PJZUXR340M	Ribbon Holder Assembly	1	
3-2	PJDS7005Y	Reel Tension Spring	1	
3-3	PJDG5071Z	Correct Reel Gear	2	
3-4	PJDJ08271RZ	Bushing, Carrier (L)	1	
3-5	PJHR548Z	Stop Pawl, Tape Feed	1	
3-6	PJDG5637X	Ribbon Feed Gear	1	
3-7	PJDS5107Z	Spring, Adjust	2	
3-8	PJMD2012Z	Holder, Cam Follower	1	
3-9	PJDS3150Z	Spring, Cam Follower	1	
3-10	PJDY135Z	Cam Follower	1	
3-11	PJHG711Z	Rubber, Cam Follower	1	
3-12	PJWQ1XR335M	Daisywheel Motor Assembly	1	
3-13	PJDJ03051FZ	Wheel Shaft Bushing	1	
3-14	PJHR9103Y	Latch Lever	1	
3-15	PJDS7019Z	Initialize Lever Spring	1	
3-16	PJZG1XR340M	Daisywheel Gear Assembly	1	
3-17	PJDF553Z	Slide Shaft, Carrier	1	
3-18	PJDS9076Z	Clip	1	
3-19	PJMU48Y	Sub Carrier Frame	1	
3-20	PJDS4200Z	Spring	1	
3-21	PJFP29Y	Hammer Solenoid	1	
3-22	PJBD17Z	Daisywheel Release Lever	1	
3-23	PJDY132W	Hammer Shaft	1	
3-24	PJDS7008X	Spring, Hammer	1	
3-25	PJDE92Z	Hammer	1	
3-26	PJZCSR340M	Card Holder Assembly	1	
3-27	PJDY134Z	Shaft, Cam Gear	1	
3-28	PJHR9110Z	Feed Pawl, Ribbon	1	
3-29	PJHR9017Y	Slider, Feed Pawl	1	
3-30	PJZG2R440M	Cam Assembly	1	
3-31	PJMU51Z	Front Support	1	
3-32	PJWQ2XR335M	Ribbon Feed Motor Assembly	1	
3-33	PJMU49Z	Carrier Frame	1	
3-34	PJDJ08251RZ	Bushing, Carrier (R)	1	
3-35	PJHS951Z	Oil Felt	1	
3-36	PJDS4042Z	Spring, Lock Lever (L)	1	
3-37	PJZFXR340M	Lock Bar Assembly	1	
3-38	PJJS430Z	Carrier Connector (CN500)	1	
3-39	PJHR9102Z	Rear Slider	1	
3-40	PJJE68Z	Sensor Lead	1	
3-41	PJVSFR1Z	Reed Switch (SW501)	1	
3-42	XWC3B	Washer	1	
3-43	PJNW310Z	Plastic washer	1	
3-44	PJUP228Y-B	Ribbon Sensor Bare PCB	1	
3-45	PJUP228Y-A	Carrier Bare PCB	1	
3-46	PJDS4043Z	Spring Lock Lever (R)	1	
3-50	XUCR4FY	E-ring	1	
3-51	XUC2FY	E-ring	4	
3-52	XTW3+U12L	Screw 3×12 mm	1	
3-53	XTN3+6F	Screw 3×6 mm	4	
3-54	XYN3+C4	Screw 3×4 mm	2	
3-55	XTN26+12F	Screw 2.6×12 mm	1	
3-56	XTN26+8G	Screw 2.6×8 mm	1	
3-57	XTN2+4F	Screw 2×4 mm	1	
3-58	XWG25	Washer	1	

4. Keyboard and Display

Ref. No.	Parts No.	Parts Name and Description	Per Set	Remarks
4-1	PJSHX226Z	Keyboard Complete	1	
4-2	PACC3Z	Key Top Support(S)	3	
4-3	PACC1Z	Key Top Support(L)	1	
4-4	PACC2Z	Key Top Support(M)	1	
4-5	PJUP367Z	Keyboard FPC	1	
4-6	PJMD9148Z	Keyboard Frame	1	
4-7	PADS2Z	Key Spring	72	
4-8	PJHR603Z	FFC Sheet	1	
4-9	PYJKW1025M	LCD Front Cover Assembly	1	
4-10	PJB21Z	Contrast Switch Knob	1	
4-11	PJWDW1025M	Display Unit Complete	1	
4-12	PJYK1W1025M	LCD Rear Cover Assembly	1	
4-13	PJJE229Z	LCD Cable	1	
4-14	PJJN8Z	ES Core	1	
4-15	PJHR601Z	Cable Clamp	1	
4-16	PJHR582Z	LCD Support	1	
4-17	PJDS5097Z	LCD Support Spring	1	
4-18	XTW3+10SFZ	Screw 3x10 mm	3	
4-19	PJXA60010Z	C F L	1	
4-20	PJHR9364Z	LAMP Case Upper	1	
4-21	PJZEW1025	LAMP Case Bottom Assembly	1	
4-22	PJT216Z	Earth Lead Wire	1	
4-23	PJT194Z	Earth Lead Wire	1	
4-24	XTW4V8L	Screw 4x8 mm	1	
4-25	XWG4	Washer	1	
4-26	PJJS687Z	C F L Lead	1	
4-27	PJJS688Z	C F L Lead	1	
4-28	PJJN21Z	E S Core	1	

Ref. No.	Parts No.	Parts Name and Description	Per Set	Remarks
4-40	PABZ671Z	Key Top, L MAR	1	
4-41	PABZ675Z	Key Top, MAR REL	1	
4-42	PABZ676Z	Key Top, 1 !	1	
4-43	PABZ677Z	Key Top, 2 @	1	
4-44	PABZ678Z	Key Top, 3 #	1	
4-45	PABZ679Z	Key Top, 4 \$	1	
4-46	PABZ680Z	Key Top, 5 %	1	
4-47	PABZ681Z	Key Top, 6 ¢	1	
4-48	PABZ682Z	Key Top, 7 &	1	
4-49	PABZ683Z	Key Top, 8 *	1	
4-50	PABZ684Z	Key Top, 9 (1	
4-51	PABZ685Z	Key Top, 0)	1	
4-52	PABZ686Z	Key Top, - _	1	
4-53	PABZ687Z	Key Top, = + . ,	1	
4-54	PABZ688Z	Key Top, BACK SPACE	1	
4-55	PABZ689Z	Key Top, FWD	1	
4-56	PABZ736Z	Key Top, NEXT PAGE PREVIOUS	1	
4-57	PABZ737Z	Key Top, PRINT	1	
4-58	PABZ672Z	Key Top, R MAR	1	
4-59	PABZ690Z	Key Top, TAB D TAB	1	
4-60	PABZ691Z	Key Top, Q	1	
4-61	PABZ692Z	Key Top, W XX XX	1	
4-62	PABZ693Z	Key Top, E EMBED	1	
4-63	PABZ694Z	Key Top, R RMF	1	
4-64	PABZ695Z	Key Top, T APPEND	1	
4-65	PABZ696Z	Key Top, Y	1	
4-66	PABZ697Z	Key Top, U XX XX	1	
4-67	PABZ698Z	Key Top, I P INDENT	1	
4-68	PABZ699Z	Key Top, O	1	
4-69	PABZ700Z	Key Top, P STOP	1	
4-70	PABZ701Z	Key Top, 1/2 1/4 β ç	1	
4-71	PABZ702Z	Key Top, £ £ .. ^	1	
4-72	PABZ703Z	Key Top, < X	1	
4-73	PABZ738Z	Key Top, ↑ PREVIOUS SCR	1	
4-74	PABZ673Z	Key Top, TAB SET	1	
4-75	PABZ704Z	Key Top, LOCK CAPS	1	
4-76	PABZ705Z	Key Top, A AUTO	1	
4-77	PABZ706Z	Key Top, S SEARCH	1	
4-78	PABZ707Z	Key Top, D	1	
4-79	PABZ708Z	Key Top, F FIND	1	
4-80	PABZ709Z	Key Top, G	1	
4-81	PABZ710Z	Key Top, H HALF SP	1	
4-82	PABZ711Z	Key Top, J MICRO SP	1	
4-83	PABZ712Z	Key Top, K	1	
4-84	PABZ713Z	Key Top, L CHG. FORM	1	
4-85	PABZ714Z	Key Top, ; :	1	
4-86	PABZ715Z	Key Top, , "	1	
4-87	PABZ716Z	Key Top, RETURN	1	
4-88	PABZ739Z	Key Top, ← B LINE	1	
4-89	PABZ740Z	Key Top, → E LINE	1	
4-90	PABZ674Z	Key Top, TAB CLR	1	
4-91	PABZ717Z	Key Top, SHIFT	1	
4-92	PABZ718Z	Key Top, Z	1	
4-93	PABZ719Z	Key Top, X REPLACE	1	
4-94	PABZ720Z	Key Top, C CENTER	1	
4-95	PABZ721Z	Key Top, V	1	
4-96	PABZ722Z	Key Top, B BOLD	1	
4-97	PABZ723Z	Key Top, N	1	

Ref. No.	Parts No.	Parts Name and Description	Per Set	Remarks
4-98	PABZ724Z	Key Top, M	1	
4-99	PABZ725Z	Key Top, , , i	1	
4-100	PABZ726Z	Key Top, . . j	1	
4-101	PABZ727Z	Key Top, / ? ~	1	
4-102	PABZ728Z	Key Top, SHIFT	1	
4-103	PABZ741Z	Key Top, ↓ NEXT SCR	1	
4-104	PABZ729Z	Key Top, ↑	1	
4-105	PABZ730Z	Key Top, CODE	1	
4-106	PABZ731Z	Key Top, RPT	1	
4-107	PABZ732Z	Key Top, SPACE	1	
4-108	PABZ733Z	Key Top, RELOC EXP	1	
4-109	PABZ734Z	Key Top, QUICK ERASE LINE	1	
4-110	PABZ735Z	Key Top, ↓	1	

6. Power Supply

Ref. No.	Parts No.	Parts Name and Description	Per Set	Remarks
6-1	PJJA121Z	AC Cord	1	▲
6-2	PJJT68Z	Closed End Connector	2	▲
6-3	EST2011B	Power Switch	1	
6-4	PJJS655Z	Power Switch Lead	1	
6-5	PJJN9Z	ES Core	2	
6-6	PJLT5L22	Power Transformer	1	▲
6-7	XTW3 + 12S	Screw 3x 12 mm	2	

7. Main Logic Board

(Parts Side View)

JM2, JM3, JM5, JM8 and JM10 are installed.

Ref. No.	Parts No.	Parts Name and Description	Per Set	Remarks
Integrated Circuit, Transistors and Diodes				
IC1	PJVIHD63B3XP	IC	1	
IC2	PJVIUD656487	IC	1	
IC3	PJVIM6364MA	IC RAM	1	
IC4,5	PJVIT51832PL	IC RAM	2	
IC6	PJWI2W1025M	IC ROM	1	
IC7	PJWI1W1000M	IC ROM	1	
IC8	PJVITD62064	IC	1	
IC9	PJVIMC1413P	IC	1	
IC10	PJVITA7288P	IC	1	
IC11	AN8079	IC	1	
IC14	PJVIM5236L	IC	1	
IC13	PJVITC8566AF	IC	1	
D1-4	PJVDRLL253	Diode	4	
D5-8,10,11	PJVD1S2076	Diode	6	
D9	MA1160M	Diode (Zener)	1	
D12,16	PJVD05AZ24	Diode (Zener)	2	
D13	PJVD1N4003	Diode	1	
D14	MA2240	Diode (Zener)	1	
D20	PJVD05AZ12	Diode (Zener)	1	
Q1	2SA1470S	Transistor	1	
Q2	2SB1140ST	Transistor	1	
Q3,5	2SC2021MS	Transistor	1	
Q4	2SA937MS	Transistor	1	
Q6,8	2SB909MQR	Transistor	1	
Q7	2SK1059	Transistor	1	
Resistors				
R1,6,48,49	ERD25FJ221	220 1/4W Carbon	4	S
R2	ERD25FJ183	18K 1/4W Carbon	1	S
R3,36,50	ERD25FJ153	15K 1/4W Carbon	3	S
R4	ERO25TKD9091	9.09K 1/4W Metal	1	
R5	ERO25TKD1001	1K 1/4W Metal	1	
R7	ERD25FJ470	47 1/4W Carbon	1	
R8	ERD25FJ331	330 1/4W Carbon	1	
R9	ERD25FJ122	1.2K 1/4W Carbon	1	
R10,18	ERD25FJ152	1.5K 1/4W Carbon	2	
R11	ERD25FJ332	3.3K 1/4W Carbon	1	
R12,33	ERD25FJ105	1M 1/4W Carbon	2	
R13	ERD25FJ220	22 1/4W Carbon	1	
R14,42	ERD25FJ473	47K 1/4W Carbon	2	
R15,22,28	ERD25FJ223	22K 1/4W Carbon	3	
R16,21,	ERD25FJ103	10K 1/4W Carbon	2	
R29-32,43,47	ERD25FJ103	10K 1/4W Carbon	6	
R17,19,38-41	ERD25FJ472	4.7K 1/4W Carbon	6	
R20,45,53	ERD25FJ101	100 1/4W Carbon	3	
R23	ERD25FJ561	560 1/4W Carbon	1	
R24,25	ERX2SJ8R2V	8.2 2W Metal	2	
R26	ERG2SJ121V	120 2W Metal	1	
R34,37	ERD25FJ102	1K 1/4W Carbon	2	
R35	ERD25FJ683	68K 1/4W Carbon	1	
R51	ERD25FJ682	6.8K 1/4W Carbon	1	
R52	ERD25FJ333	33K 1/4W Carbon	1	
RA1	EXBP88472K	Resistor Array (4.7K× 8)	1	
RA2	ERBP88103K	Resistor Array (10K× 8)	1	

Ref. No.	Parts No.	Parts Name and Description				Per Set	Remarks
Capacitors							
C1	ECKD1H103ZF	0.01	50V	Ceramic		1	S
C2-4	ECEA1ESS332	3300	25V	Electrolytic		3	
C5,28	ECKD1H102KB	1000P	50V	Ceramic		2	S
C6	ECEA1CSS682	6800	16V	Electrolytic		1	
C7	ECEA1HUR33	0.33	50V	Electrolytic		1	
C8,18	ECEA0JU102	1000	6.3V	Electrolytic		2	
C9	ECKD1H561KB	560P	50V	Ceramic		1	S
C10	ECEA1EU100	10	25V	Electrolytic		1	
C11,12	ECKD1H103ZF	0.01	50V	Ceramic		2	S
C13,14	ECFD1E104ZF	0.1	25V	Semi-Conductor		2	S
C15	ECKD1H103ZF	0.01	50V	Ceramic		1	S
C16,17,19,25	ECFD1E104ZF	0.1	25V	Semi-Conductor		4	S
C20	ECQM1H102JV	1000P	50V	Polyester		1	
C21	ECQM1H103JV	0.01	50V	Polyester		1	
C22,23	ECCD1H330JC	33P	50V	Ceramic		2	
C24	ECKD1H103ZF	0.01	50V	Ceramic		1	S
C26	ECEA1EU4R7	4.7	25V	Electrolytic		1	
C27	ECKD1H101KB	100P	50V	Ceramic		1	S
C29	ECEA1CU101	100	16V	Electrolytic		1	
Other Parts							
BAT	BR2325-1HC	Lithium Battery				1	
BUZ	PJSCPBM22EPP	Buzzer				1	
CN1,11	PJJP37Z	Connector, Power Transformer				2	
CN2	PJJP95Z	Connector, SP.Motor				1	
CN3	PJJS419Z	Connector, Carrier				1	
CN4	PJJP123Z	Connector, LF. Motor				1	
CN5,6	PJJP261Z	Connector, Keyboard				2	
CN7	PJJS395Z	Connector, LCD				1	
CN8	PJJS615Z	Connector, Control Panel				1	
CN9	PJJS522Z	Connector, FDD				1	
CN10	PJJP195Z	Connector, Power SW				1	
F1	XBA1C30NU100	Fuse	125V 3A			1	▲
L1	PELQLHL6222J	Coil				1	*
PB1	PJWPW1025M	Main PCB Complete				1	
X1	PJVCST700MT	Resonator (7 MHz)				1	
X2	PJCSA16.00M	Resonator (16 MHz)				1	
7-1	XTB3 + 8J	Screw 3×8 mm (for Transistor)				2	
7-2	XTW3 + 8S	Screw 3×8 mm (for Heat Sink)				2	
7-3	XWC3B	Washer				2	
GP2-4	PJJP283Z	GND PIN				3	

CAUTION:

The lithium battery is a critical component (type No. BR2325-1HC).
Please observe proper polarity and exact location when replacing it.

8. LCD Board and Volume Board

(Parts Side View)

Ref. No.	Parts No.	Parts Name and Description			Per Set	Remarks
IC401,402	PJVIMSM5298A	IC			2	
IC403-408	PJVIMSM5299A	IC			6	
IC409	PJVISED1330F	IC			1	
IC410	PJVIH65256BF	IC RAM			1	
IC411	PJVILA6324NM	IC			1	
IC412	PJVI74HC00AF	IC			1	
IC413	PJVI74HC04AF	IC			1	
R401,402	ERJ8GEYJ562	5.6K 1/8W Chip			2	
R403,412	ERJ8GEYJ393	39K 1/8W Chip			1	
R404,405	ERJ8GEYJ562	5.6K 1/8W Chip			2	
R407-411	ERJ8GEYJ470	47 1/8W Chip			5	
C410,413,415	ECSV1H104ZFM	0.1 50V Chip (Ceramic)			3	
C417,418	ECSV1H104ZFM	0.1 50V Chip (Ceramic)			2	
C401-406	ECEB1EU4R7SB	4.7 25V Electrolytic			6	
Q401	2SA1037KRS	Transistor			1	
CN401	PJJS650Z	Connector,LCD FFC			1	
X401	PJVCST700MT	Resonator (7 MHz)			1	

Volume PCB

VR401	PJV14B04-A	Contrast Volume	1	
8-1	PJJE152Z	Volume Lead	1	
8-2	PJUP314Z	Volume Bare PCB	1	

10. Function Board

Ref. No.	Parts No.	Parts Name and Description			Per Set	Remarks
SW301	PJSH1A23Z	Push Switch			1	
SW311-314	EVQQS205K	Push Switch			4	
SW315-320	EVQQS205K	Push Switch			6	
10-1	PJJE247Z	Lead Wire (5P)			1	
10-2	PJJE248Z	Lead Wire (7p)			1	
10-3	PJJE228Z	Lead Wire			1	
10-4	PJUP435Z-A	Function Bare PCB(A)			1	
10-5	PJUP435Z-B	Function Bare PCB(B)			1	
10-6	PJUP435Z-C	Lid Switch PCB			1	

C F L Power Board and Packing Materials

Ref. No.	Parts No.	Parts Name and Description	Per Set	Remarks
L501	PJLQ33Z	Power Inductor	1	
L502	PJLQ37Z	Power Trans	1	
L503	PJLQ40Z	Inductor	1	
R501,502	ERD25FJ332	3.3K 1/4W Carbon	2	S
Q501,502	2SD973AR	Transister	2	
C503	ECKD3F390J	33PF 3KV Ceramic	1	
C502	ECHS1333JZ	0.033 100V Electrolytic	1	
C501	ECEA1CKA101	100 16V Electrolytic	1	
F501	XBA251.250-L	Fuse 250V 0.25A	1	
CN501	PJJP52Z	Connector CFL	1	
PB2	PJWP2W1025M	CFL Power PCB Complete	1	

Packing Materials

P1	PJQX5871Z	Instruction Book	1	
P2	PJPG635Z	Carton Box	1	
P3	PJPN344Z	Pad (L)	1	
P4	PJPN345Z	Pad (R)	1	
P5	PJPN361Z	Pad (Bottom)	1	
P6	PJPE193Z	Plastic Bag	1	
P7	PJPE312Z	Carroge Stopper	1	