Use gm/ID methodology to design a diff input SE output operational transconductance amplifier (OTA) that achieves the following specs.

Spec.		
Supply Voltage	1.2 V	VDD
Open loop DC voltage gain	≥ 36 dB	IB/2 ♥ IB/2
CMRR @ DC	≥ 50 dB	M2a M2b
BW	≥ 100 kHz	Vout
Power Consumption	≤ 30 uW	Vin+o— Mla Mlb— o Vin-
Reference current	10 uA	J⊌
Linear Range	90 mVpp	Vbiasn o→ M3
Load	2 pF	Ţ

1. Design of input transistors

$$P_{cons} = V_{DD} I_{ss} \le 30 \text{ uW} \rightarrow I_{ss} \le 25 \text{ uA}$$

$$\text{GBW} = \frac{g_{m1}}{2\pi C_L} \geq 6.4 \text{ MHz} \rightarrow g_{m1} \geq 80.5 \text{ uS} \rightarrow \left(\frac{g_m}{I_D}\right)_1 \geq 6.44 \rightarrow \left(\frac{g_m}{I_D}\right)_1 = 19$$

$$g_{\rm m} = 237.5 \, \rm uS$$

$$A_v = g_m R_{out} = 64 \to Rout = r_{o1} || r_{o2} = \frac{r_o}{2} \to r_o = 539 \text{ k}\Omega \to \left(\frac{g_m}{g_{ds}}\right)_1 \ge 128$$

$$L_1 = 3 \text{ um}, V_{GS1} = 314.5 \text{ mV}, W_1 = 43.74 \text{ um}, V_{Dsat1} = 68.91 \text{ mV}$$

$$LR = 2\sqrt{2} V_{Dsat1} \rightarrow V_{Dsat1} \ge 32 \text{ mV}$$

2. <u>Diode connected load</u>

$$r_{o2}=r_o=539~\mathrm{k}\Omega$$
, assume $g_{m1}=g_{m2}=237.5~\mathrm{us} \rightarrow \left(\frac{g_m}{g_{ds}}\right)_2=19$

$$L_2 = 1.68 \text{ um}, W_2 = 84.95 \text{u um}$$

3. Current mirror

$$A_{VCM} = \frac{1}{2g_m R_{ss}} = (50 - 32) dB = 0.1995 \rightarrow R_{ss} = 10.6 k\Omega$$

Assume $\rm M_3$ biased in SI ($\it gmoverid = 10 \rm) \rightarrow L_3 = 180$ nm, $\rm W_3 = 760.5$ nm

4. <u>Simulation Results</u>

1. Circuit Test Bench

2. DC OP

3. Diff Small Signal Analysis

4. CM Small Signal Analysis

5. Diff Large Signal

6. CM Large Signal

