

Introduction:

We designed a multimodal model for a 19-class multilabel image classification competition.. The dataset contains 30,000 training and 10.000 test samples of images and captions. Our goal was to build a high mean F1 Score performance of model using visual and features. both text

Data Preprocessing:

For images, we resized them to 224x224 and standardized pixel values. For captions, we tokenized the text, padded sequences and added attention masks. We also performed stratification to balance class labels

Figure 13: Example of the Data Stratification over a small dataset in accordance to the label distribution

Figure 7: Example of resizing an image from 240×320 to 224×224 .

Features:

We extracted the following features:

Visual features: We used an EfficientNet model as the vision backbone due to its high performance and efficiency. The output from the pretrained model represented the visual embeddings.

Text features: We used a BERT model to obtain contextualized word embeddings from the captions. The output from BERT formed the text embeddings.

Combined features: We concatenated the visual and text embeddings to form the input to our multimodal model. The combined embeddings captured both visual and semantic information

Figure 12: The design of our best Text-Vision Model

Models	Train Loss	Val Loss	Train Marco F1 (%)	Train Micro F1 (%)	Train Marco F1 (%)	Val Micro F1 (%)	Test F1 (%)	Running Time(s)
Default	0.0664	0.080	74.74	84.83	67.83	83.27	87.041	4383.23
Improved	0.653	0.022	80.82	90.85	79.90	90.37	89.195	1770.84

Best Model Setting:

Hyper-parameters Name	Setting			
Epoch	10			
Optimizer	Adam			
Loss function	Weighted Binary Cross Entropy			
Output threshold	0.45			
Dropout probability	0.2			
Batch size	256			
Learning Rate	2e-3			
Default Model:	BERT-Vision			
Text Model:	BERT			
Vision model:	EfficientNetV2-S			
Data Augmentation:	Random Crop & Hori and Vert Flin			

Machine Learning Models:

We experimented with different vision backbones (MobileNet, ResNet, EfficientNet), text models (DistilBERT, MobileBERT) and loss functions (BCE, weighted BCE). Hyperparameters like learning rate, dropout and threshold were tuned

Final Model:

Our final multimodal model uses:

- 1. EfficientNet-V2 as the vision backbone due to its high performance and efficiency compared to other tested models like MobileNet and ResNet.
- 2 The full BERT model as the text backbone since it achieved the strongest performance compared to DistilBERT and MobileBERT for our task.
- 3.A weighted BCE loss function to optimize performance for our imbalanced dataset.