

VESP Vision

To be the centre of excellence in the field of technical education.

Program Code:-Common to all 1st semester

Course Name:-Basic Science(Physics)

Course Code: - 22102

Course coordinator: Mrs. Deepa Gupte

Date: 12/07/2020

Unit No:3

Unit Name: Heat and Optics

Unit Outcomes (UO3e):Distinguish the phenomena of total internal refection for the given media.

Learning Outcome (LO5): Students will be able to explain reflection, refraction and total internal reflection.

Learning Objective/ Key learning

- Students will be able to explain reflection and laws of reflection
- ▶ Students will be able to explain refraction and laws of refraction .
- ► Students will be able to explain total internal reflection

Reflection of light

- When light falls on a highly polished surface like a mirror most of the light is sent back into the same medium. This process is called reflection of light.
- Laws of reflection of light :-
 - The angle of incidence is equal to the angle of reflection.
 - The incident ray, the reflected ray and the normal to the mirror at the point of incidence all lie in the same plane.

Refraction of light

- When light travels obliquely from one transparent medium into another it gets bent. This bending of light is called refraction of light.
- When light travels from a rarer medium to a denser medium, it bends towards the normal.
- When light travels from a denser medium to a rarer medium to a rarer medium, it bends away from the normal.

- The two laws of refraction are:
 - The incident ray, the refracted ray and the normal to the surface of separation of two media lies in one plane.
 - For any two media, the ratio of the sine of angle of incidence to the sine of angle of refraction is a constant

Snell's Law

- The constant is called refractive index of second medium with respect to first medium. For a given pair of media, refractive index is written as $\frac{\sin i}{\sin r} = \mu_{12} = \frac{\mu_1}{\mu_2}$
- If the light passes from first medium to second medium, then the refractive index of first medium with respect to second medium is written as $\frac{\sin i}{\sin r} = \mu_{12} = \frac{\mu_1}{\mu_2}$
- This law is known as Snell's law.

Since 1962

Total Internal Reflection (T.I.R.)

- When a ray light passes from an optically denser medium into an optically rarer medium, the refracted ray is bent away from the normal.
- It is obvious that the angle of refraction is always greater than the angle of incidence and its value increases as the angle of incidence increases.
- A stage reaches when for a certain angle of incidence i_c called the critical angle, the angle of refraction is 90°, thus the ray instead of being refracted is totally reflected back in a denser medium.

Total Internal Reflection (T.I.R.)

Conditions of T.I.R:

 Principle of T.I.R: When a ray light passing from a denser medium to a rarer medium at an angle greater than the critical angle, the ray gets totally reflected in a denser medium. This phenomenon is called the total internal reflection (T.I.R)

Conditions of T.I.R:

- The ray of light must travel from an optically denser medium into an optically rarer medium.
- The angle of incidence in the denser medium should be greater than the critical angle for a given pair of media.

Critical Angle

- ▶ When a light ray passes from a denser medium to a rarer medium, the angle of incidence at which the angle of refraction is 90°, is called critical angle.
- We know, if $r = 90^{\circ}$ at $i = i_c$, then $\mu_{21} = \frac{\mu_2}{\mu_1} = \frac{\sin i_c}{\sin 90^{\circ}}$
- Let for optically denser medium $\mu_1 = \mu$ and for air $\mu_2 = 1$.
- $\therefore \frac{1}{\mu} = \frac{\sin(i_c)}{1}$ $\Rightarrow \sin(i_c) = \frac{1}{\mu}$ $\Rightarrow i_c = \sin^{-1}\left(\frac{1}{\mu}\right)$
- Thus the above equation is used to find critical angle provided the refractive index of denser medium is known

Critical Angle

Similarly for two different media, the critical angle is calculated as

$$i_c = \sin^{-1}\left(\frac{\mu_1}{\mu_2}\right)$$

where μ_1 and μ_2 are the refractive index of the rarer and the denser medium respectively