Aprendizaje Automático Aprendizaje No Supervisado

Viviana Cotik 1er cuatrimestre 2019

Avance

1er parte

Introducción, Datos, Sesgos de Datos, Aprendizaje de conceptos, Sesgo
 Inductivo, Árboles de decisión, Naive Bayes, Evaluación de algoritmos

2da parte

- Aprendizaje no supervisado
- Ensambles
- Aprendizaje por refuerzo
- Redes Neuronales
- Algunas aplicaciones

Tipos de aprendizaje automático

Aprendizaje automático:

• supervisado:

- requiere instancias etiquetadas para entrenamiento
- o regresión, clasificación

Tipos de aprendizaje automático

Aprendizaje automático:

- supervisado:
 - requiere instancias etiquetadas para entrenamiento
 - regresión, clasificación
- no supervisado:
 - las instancias no están etiquetadas
 - o se usa para visualizar los datos, entenderlos, resumirlos
 - o clustering, reducción de la dimensión (PCA, T-SNE, MDS, ISOMAP)

Otros:

aprendizaje por refuerzos

Aprendizaje supervisado vs. no supervisado

Supervisado

- $\{(\mathbf{x}^{(1)}, \ \mathbf{c}(\mathbf{x}^{(1)})), \ (\mathbf{x}^{(2)}, \ \mathbf{c}(\mathbf{x}^{(2)})), \ \dots, \ (\mathbf{x}^{(m)}, \ \mathbf{c}(\mathbf{x}^{(m)}))\}$
- Objetivo: encontrar una hipótesis que satisfaga los datos

No supervisado

- $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots \mathbf{x}^{(m)}\}$
- Objetivo: que el algoritmo encuentre cierta estructura

Algoritmos de Aprendizaje Supervisado

Datos etiquetados

- Árboles de decisión
- Naive Bayes
- LDA (Linear Discriminant Analysis) (AID)
- SVM (Support Vector Machines) (AID)
- Regresión logística (Enfoque estadístico)
- KNN (k nearest neighbors)
- NN (RN, Redes Neuronales Artificiales) (también hay no supervisadas)
- ...
- Ensambles (combinación de modelos)

Aprendizaje No Supervisado

Datos no etiquetados

- Clustering: para encontrar patrones ocultos. Entender, resumir.
- Reducción de la dimensionalidad (PCA -principal component analysis- y otros)

Clustering

Encontrar grupos de instancias (clusters) a partir de información en los datos que describan objetos y sus relaciones.

Instancias de un cluster tienen que ser:

- similares entre sí y
- diferentes a las de otros clusters

Tan, Steinbach & Kumar, Introduction to Data Mining

Clustering: aplicaciones

Fuente: curso ML Stanford

Análisis de redes sociales

Jente: Wikimedia commons

Segmentación del mercado.

Fuente: internet

Algoritmos de clustering

Tipos de clustering:

- partición / jerárquicos
- exclusivos / no exclusivos

Algoritmos de clustering

- **De partición:** se clasifican **n datos** en **k clusters**. Cada cluster satisface requerimientos de una partición:
 - o cada dato está en un y sólo un cluster
 - o cada cluster debe tener al menos un dato

Jerárquicos

- **Aglomerativos (bottom up):** empiezan con n clusters y se combinan grupos hasta terminar en un cluster con n observaciones.
- Divisorios (top down): comienzan con un cluster de n observaciones y en cada paso se dividen un cluster en dos hasta tener n clusters.

K-means (K-medias)

Un método muy popular. Es de **partición**.

Entrada:

datos no etiquetados ($\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$, ... $\mathbf{x}^{(m)}$), $\mathbf{x}^{(i)}$ es un vector $\in \mathbb{R}^n$

K: cantidad de clusters

Algoritmo:

- Inicializar aleatoriamente K centroides de los clusters μ 1, ... μ K \in Rⁿ
- Repetir
 - a. **asignación de cluster:** para cada dato se fija su distancia a cada centroide y es asignado al más cercano
 - b. **movida de centroide:** tomar los centroides y moverlos a la posición promedio de los puntos de cada color

hasta que los centroides no se muevan

Puntos: datos de entrenamiento **Cruces:** centroides de los clusters

- (a) Conjunto de datos original
- (b) Asignación aleatoria de centroides
- (c-f) dos iteraciones de k-means:
 - asignación de cluster -datos pintados del mismo color del centroide-,
 - movida de centroides -a la media de los puntos asignados a este-

Si un cluster no tiene puntos:

- se elimina el centroide o
- se ubica nuevamente el centroide al azar

Optimización, función de costo a minimizar. Función de **distorsión**.

$$J = \sum_{i=1}^m \sum_{k=1}^K \mathbf{a}_{ik} \cdot ||x^{(i)} - \mu_k||^2$$
 K: nro de clusters, m: cant μ_k : centroide de cluster k $\mathbf{x}^{(i)}$: dato nro i \mathbf{a}_{i} 1 si $\mathbf{x}^{(i)}$ está asignado

K: nro de clusters, m: cant. datos a_{ik} 1 si x⁽ⁱ⁾ está asignado al cluster k
 0 en otro caso

K-means intenta encontrar μ_k y a_{ik} que minimicen J

- En **asignación de cluster**: minimiza J con respecto a a_{ik} (asignando los puntos al centroide más cercano, que está fijo)
- En **movida de centroide**: minimiza J con respecto a μ_k

Los problemas no necesariamente están bien separados en clusters.

Además, muchas veces la **dimensión > 3** (técnicas de reducción de la dimensionalidad)

K-means - Inicialización

K: cantidad de clusters

m: cantidad de datos

Requisito: K<m

Inicialización de centroides:

- al azar
- elegir K datos cualesquiera

K-means - Inicialización

K: cantidad de clusters

m: cantidad de datos

Requisito: K<m

Inicialización de centroides:

- al azar
- elegir K datos cualesquiera

Puede converger a distintas soluciones dependiendo de cómo lo inicializo

K-means - Inicialización

Inicialización de centroides:

- al azar
- elegir K datos cualesquiera
- múltiples inicializaciones al azar (para evitar óptimos locales)

Hacer entre 50 y 1000 veces

- inicializar centroides
- correr k-means y calcular la función de costo

elegir el clustering que tuvo la menor función de costo

Útil en casos con K chicos (<10)

- usar k clusters de un método jerárquico e inicializar con sus centroides
- ...

Distancias

Desde un punto de vista formal, para un conjunto de elementos X se define **distancia** o **métrica** como cualquier función matemática o aplicación d(a,b) de $X\times X$ en $\mathbb R$ que verifique las siguientes condiciones:

- ullet No negatividad: $d(a,b)\geq 0\ orall a,b\in X$
- ullet Simetria: $d(a,b)=d(b,a)\ orall a,b\in X$
- ullet Designal dad triangular: $d(a,b) \leq d(a,c) + igsepteq (c,b) \ orall a,b,c \in X$
- $\forall x \in X : d(x,x) = 0$
- ullet Si $x,y\in X$ son tales que d(x,y)=0 , entonces x=y .

Distancias

Atributos numéricos

- distancia euclídea
- distancia de Manhattan
- distancia de Chebychev

Euclidean Distance

$$\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

$$\sum_{i=1}^{n} |x_i - y_i|$$

$$max_{i=1..n} | x_i - y_i$$

Manhattan Distance

$$|x_1 - x_2| + |y_1 - y_2|$$

Chebyshev Distance

$$\max(|x_1-x_2|,|y_1-y_2|)$$

Distancias

Atributos discretos:

Value Difference Metric (VDM)

Otras distancias:

Similaridad de coseno, Jackard distance (ambas para documentos), Hamming distance, Levensthein Distance (ambas para cadenas de caracteres)

https://dzone.com/articles/the-levenshtein-algorithm-1

Distancia de Levenshtein: mínimo nro de ediciones de caracteres (agregado, borrado, sustitución) requeridos para cambiar una palabra por otra. Por ej. **para ADN**

DistanciaL (Honda, Hyundai) =3

K-means - Elección del K

¿Cómo elegimos el K? ¿Manualmente? Ambigüedad

Tan, Steinbach & Kumar, Introduction to Data Mining. Cap 8

Elección del K

- manualmente.
 Problema Ambiguedad.
- elbow method
- evaluar con una métrica y ver cuán bien funciona para propósito posterior
 - (venta de remeras, K:3-5)
 - compresión de imágenes (cuán bien se ve, cuán comprimida está)

K-means - Elección del K

Elbow method

no siempre es útil...

Ventajas:

- algoritmo simple
- eficiente

Desventajas:

- sensible a la elección de los centroides iniciales
- sensible al ruido y a outliers
- hay que especificar el K

Expectation Maximization y Mezcla de Gaussianas

Gaussian Mixture Models

Asumimos un **overlap (soft clustering)**. Los elementos tienen una probabilidad de estar en distintos clusters.

Cada cluster corresponde a una **distribución de probabilidades** (normal o Gaussiana) . Se quieren descubrir los parámetros: media y varianza

A diferencia de k-means computa la **probabilidad de que un elemento esté en distintos clusters**

Ej. de aplicaciones: reconocimiento del hablante.

Clustering jerárquico

Se suele mostrar en un **diagrama en forma de árbol**, llamado **dendograma**. Muestra clusters, subclusters y el orden en que fueron unidos.

Tan, Steinbach & Kumar, Introduction to Data Mining (Cap. 8)

Clustering jerárquico

Tipos de clustering jerárquico

- Aglomerativos (bottom up): empiezan con n clusters de un elemento y se combinan grupos de a uno hasta terminar en un cluster con n observaciones.
- Divisorios (top down): comienzan con un cluster de n observaciones y en cada paso se divide un cluster en dos hasta obtener n clusters de un elemento cada uno.

Aglomerativo: single linkage

Aglomerativo: single linkage

Single linkage:

uno clusters de menor distancia.

distancia: distancia entre cualesquiera dos puntos más cercanos (pertenecientes a distintos clusters).

Machine Learning, Univeristy of Washington, Fox, Gestrin, Coursera, https://www.coursera.org/lecture/ml-clustering-and-retrieval/agglomerative-clustering-bsFBT

Clustering Aglomerativo

- 1. Cada punto forma un cluster
- Computar matriz de proximidad
- 3. Repetir:
 - a. Buscar el par de clusters más similar y hacer un merge
 - b. Actualizar la matriz de proximidad
- 4. hasta que haya un solo cluster

Figure 8.15. Set of 6 two-dimensional points.

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
p 3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p_5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Table 8.4. Euclidean distance matrix for 6 points.

Point	x Coordinate	y Coordinate
p1	0.40	0.53
p2	0.22	0.38
р3	0.35	0.32
p4	0.26	0.19
p5	0.08	0.41
р6	0.45	0.30

Table 8.3. xy coordinates of 6 points.

(a) Single link clustering.

(b) Single link dendrogram.

$$dist(\{3,6\},\{2,5\}) = \min(dist(3,2), dist(6,2), dist(3,5), dist(6,5))$$
$$= \min(0.15, 0.25, 0.28, 0.39)$$
$$= 0.15.$$

Tan, Steinbach & Kumar, Introduction to Data Mining

Medición de similaridad entre clusters

Cómo definimos similaridad entre clusters?

- MIN (single linkage)
- distancia mínima entre dos puntos de los dos distintos clusters.

distancia máxima entre dos puntos de los distintos clusters

- AVG promedio de la distancia entre los puntos de los clusters
- distancia entre centroides

Clustering jerárquico

Ventajas:

- no asume ningún número de clusters (se pueden obtener cortando el dendograma en el nivel deseado)
- pueden corresponder a taxonomías (ej. reino animal)

Desventajas:

- Sensible a ruido y outliers
- Computacionalmente más caro en tiempo y en espacio

Resumen

- Aprendizaje supervisado vs. no supervisado
- Clustering y aplicaciones
- Algoritmos
 - o k-means
 - o EM
 - Aglomerativo: single linkage

Bibliografía

Capítulos de libros:

Tan, Steinbach & Kumar, Introduction to Data Mining. Cap 8

Otros:

https://towardsdatascience.com/supervised-machine-learning-classification-5e685fe18a6d

https://stanford.edu/~cpiech/cs221/handouts/kmeans.html

https://www.cs.princeton.edu/courses/archive/spring19/cos324/files/kmeans.pdf

http://axon.cs.byu.edu/~randy/jair/wilson2.html (distancias)