Práctica de Electronica con ABACUS-Nanohub Capacitor MOS

Daniel Vázquez Lago

3 de mayo de 2025

- 1 Objetivos
- 2 Parametros
- 3 Introducción teórica
- 4 Tensión de banda plana
- $V_{pol} = 0$
- 6 $V_{pol} = +2 \text{ V}$
- 7 $V_{pol} = -2 \text{ V}$
- 8 Función de trabajo
- 9 Conclusiones

Objetivos

Nuestro objetivo es analizar un capacitor MOS. En particular representaremos y daremos los valores caracterísicos para los siguientes casos:

- Diagarama de bandas en equilibrio y en polarización.
- Densidad de electrones y huecos en equlibrio y en polarización.
- Potencial electrostático y campo electrico en equibirio y con polarizaciones.
- Calcular el valor de la función de trabajo del metal para estar en condiciones de banda plana en equilibrio termodinámico.

Es muy **importante** recalcar lo siguiente: la herramienta proporcionada ABACUS Nanohub solo nos permite obtener valores en la parte del semiconductor, por lo que nosotros nos centraremos en esta principalmente.

Parámetros del capacitor

Los parámetros que introducimos en la simulación:

N_A [cm ⁻³]	$x_{ox} [\mu m]$	$x_{sc} [\mu m]$	T [K]	Ks	Ks	n_i [cm ⁻³]
3.5×10^{14}	0.1	5	300	3.9	11.7	10 ¹⁰
	E_g [eV]	m_h^*/m_e	m_n^*/m_e	χ [eV]	
	1.12	0.81	1.18	4.0)5	

Aproximación del MOS ideal.

Para los cálculos teóricos vamos a realizar una serie de suposiciones:

- El potencial en el metal es constante.
- El óxido es perfecto: no hay corrientes a través de esta.
- No hay centros de carga en el óxido ni en las interfaces.
- El semiconductor está uniformemente dopado.
- El semiconductor es suficientemente ancho como para que en la zona del contacto óhmico las bandas sean planas.
- Las funciones de trabajo del semiconductor y del metal son iguales.

Aquí definimos puntos clave y básicos en las ecuaciones:

■ Potencial de puerta V_G . Es la diferencia de potencial entre el nivel del metal y el nivel de Fermi en el semiconductor.

$$V_G = \frac{1}{q}(E_F(semiconductor) - E_F(metal))$$

• Potencial de sustrato ϕ_b . Es la diferencia entre el nivel intrínseco E_i y el nivel de Fermi del semicondtor en el sustrato dividido por q:

$$\phi_b = \frac{1}{q}(E_i(sustrato) - E_F)$$

• Potencial de interfaz ϕ_s . Es la diferencia entre el nivel intrínseco en el sustrado y la interfaz dividido por q.

$$\phi_s = \frac{1}{q}(E_i(sustrato) - E_i(interfaz))$$

Como hemos dicho V_G es la diferencia entre un nivel de fermi y otro. Si las dos funciones de trabajo son iguales tal y como heoms indicado, y la polarización qeu aplicamos es de 0 V, entonces $V_G = 0$. Sin embargo en el capacitor MOS de ABACUS Nanohub esto no es cierto, cuando la polarización aplicada es cero tenemos que $V_G \neq 0$. Esto es porque las funciones de trabajo no son iguales, de tal forma que

$$V_G' = V_{FB} + V_{polarizacion}$$

siendo V_{FB} la **tensión de banda plana**. Como veremos V_{FB} es elevada, por lo que hará que, aunque menor que la tensión umbral. Así pues lo que haremos será calcular primero V_{FB} a partir de la simulación y usaremos V_G' para los cálculos teóricos en vez de $V_G = V_{ideal} = V_{polarizacion}$.

Banda plana, acumulación, vaciamiento e inversa.

En función del valor de V_G tendremos un valor de ϕ_s . Para un portador tipo N, en función del valor de ϕ_s podemos distinguir

- **Acmulación** $\phi_s < 0$. Ocurre cuando $V_G' < 0$.
- **Equilibrio** $\phi_S = 0$. Ocurre solo cuando $V_G' = 0$.
- Vaciamiento $0 < \phi_S < 2\phi_b$. Ocurre cuando $0 < V_G' < V_T$.
- Inversión $2\phi_b < \phi_S$. Ocurre cuando $V_G' > V_T$.

Definimos V_T como el potencial umbral, y lo podemos obtener como:

$$V_T = 2\phi_b + rac{K_S}{k_{ox}} x_{ox} \sqrt{rac{4qN_D}{K_S \varepsilon_0}} \phi_b = 0.78 \text{ V}$$

Mientras que ϕ_b , al estar definido en el sustrato cuando $x \to \infty$ tenemos que es un parámetro que depende solo del material, dopado (tipo N) y temperatura:

$$\phi_b = \frac{kT}{q} \log \left(\frac{N_A}{n_i} \right) = 0.27 \text{ V}$$

Densidad de huecos y electrones en la interfaz

Y los valores de la densidad de huecos y electrones dependerán de si estamos en la región de acumulación, vaciamiento o inversión:

Acmulación.

$$p_p = n_i e^{(E_F - E_i)/kT} \qquad n_p = \frac{n_i^2}{p_p}$$

■ Vaciamiento. Válido cuando vaciamiento delta.

$$p_p \approx n_i \qquad n_p \approx n_i$$

Inversión.

$$n_p = n_i e^{-(E_F - E_i)/kT}$$
 $p_p = \frac{n_i^2}{n_p}$

Recordamos que la densidad de carga es:

$$\rho = q(p_p - n_p - N_A)$$

Densidad de huecos y electrones en el sustrato

En el sustrato cuando $x=5\mu m$ deberíamos encontrarnos el caso del semiconductor extrínseco con los dopantes ionizados típico, tal que:

$$p_p \approx N_A \qquad n_p = \frac{n_i^2}{N_A} \tag{1}$$

Aproximación de vaciamiento delta

Además de las aproximaciones mencionadas anteriormente tenemos que suponer la aproximación de vaciamiento delta. La aproximación de vaciamiento delta nos permite obtener los valores de ϕ_S , $\mathcal{E}(x)$, V(x) y $\rho(x)$ a lo largo del semiconductor.

Esta aproximación solo es valida en la región de vaciamiento $0 < V_G' < 0.78 \text{ V}$, y asume que hace es suponer que en la región $0 \le x \le W$ del semiconductor es $\rho(x) \approx -qN_A$. Como veremos, con ninguno de los potenciales de polarización será valida la aproximación de vaciamiento delta, y por tanto todas los resultados teóricos diferiran mucho de la simulación.

El valor ϕ_s en el semiconductor dependen en última instancia del potencial V_G que le

demos, que será nuestro parámetro de entrada. Así pues, dado un V_G , tenemos que:

$$\phi_s = \operatorname{sign}(V_G) \left(\frac{-\alpha + \sqrt{\alpha^2 + 4|V_G|}}{2} \right)^2 \qquad \alpha^2 = \left(\frac{K_S}{K_{ox}} x_0 \sqrt{\frac{2qN_A}{K_S \varepsilon_0}} \right)^2 = 0.097 \text{ V}$$

Y por otro lado las bandas ($E_F = 0$) donde $E_i = \frac{kT}{q} \log \left(\frac{N_A}{n_i} \right)$:

$$E_c(sustrato) = \frac{E_g}{2} + \frac{3}{4}kT\log\left(\frac{m_p^*}{m_n^*}\right) + E_i \quad E_v(sustrato) = -\frac{E_g}{2} + \frac{3}{4}kT\log\left(\frac{m_p^*}{m_n^*}\right) + E_i$$

y en la interfaz

$$E_c(interfaz) = E_c(sustrato) + \phi_s$$
 $E_v(interfaz) = E_v(sustrato) + \phi_s$

El valor del campo electrico en la interfaz:

$$\mathcal{E}(\textit{interfaz}) = rac{qN_D}{K_S arepsilon_0} W \qquad W = \sqrt{rac{2K_S arepsilon_0}{qN_A} \phi_s}$$

Que lo indicaremos en las tablas como \mathcal{E}_{sc} . Además tendremos

$$\mathcal{E}_{ox} = \frac{K_S}{K_{ox}} \mathcal{E}_{sc} \tag{2}$$

en virtud de las condiciones de frontero óxido-semiconductor.

Tensión de banda plana

Para el calculo de la tensión de banda plana vamos a calcular V_G , a partir del ϕ_S cuando $V_{polarizacion}=0$, ya que por definición esto implicaría que:

$$V_G = V_{FB} \tag{3}$$

Como veremos $\phi_S=0.58$ V, tal que $\phi_S\approx 2\phi_b$, estando en el rango de aplicación de la aproximación de vaciamiento, de lo que obtenemos:

$$V_{FB} = 0.82 \text{ V}$$
 (4)

Así pues, a partir de ahora:

$$V_G' = V_G(ideal) - V_{FB} (5)$$

Estamos en inversión, ya que $V_G' =$ $0.82 > V_T = 0.78$.

	$\phi_{\mathcal{S}}$ [V]	W [μ m]
Teoria	0.58	1.46
Sim.	0.58	1.88

Potencial electrósticatico en función de x:

En la interfaz ($E_F = 0$ eV)

	E_c [eV]	E_{v} [eV]
Teoria Sim.	0.823 0.863	-0.297 -0.283

En el sustrato ($E_F = 0$ eV)

	E_c [eV]	E_v [eV]
Teoria	0.243	-0.877
Sim.	0.257	-0.863

Bandas en el semiconductor. Azul: E_c . Verde: E_v .

Densidad de portadores

En la interfaz:

	n_p [cm ⁻³]	$p_p \ [{\rm cm}^{-3}]$
Teoria Sim.	$\begin{array}{c} 1.58 \times 10^{15} \\ 1.57 \times 10^{15} \end{array}$	$6.34 \times 10^{4} \\ 6.34 \times 10^{4}$

En el sustrato:

	$n_p \ [{\rm cm}^{-3}]$	p_p [cm ⁻³]
Teoria	2.86×10^{5}	3.50×10^{14}
Sim.	$2.83 imes 10^5$	$3.50 imes 10^{14}$

Densidad de carga.

Azul: n_p . Rojo: p_p . Verde: ρ .

Campo eléctrico

En la interfaz:

	\mathcal{E}_{ox} [V/cm]	\mathcal{E}_{sc} [V/cm]
Teoria	2.38×10^4	7920
Sim.	2.57×10^{4}	8490

Campo eléctrico.

Potencial electrostático y anchura

Estamos en inversión, ya que $V'_G = 2.82 > V_T = 0.78$.

	$\phi_{\mathcal{S}}$ [V]	W [μ m]
Teoria	2.34	2.94
Sim.	0.735	1.97

Potencial electrósticatico en función de x:

Bandas de energía

Bandas en el semiconductor. Azul: E_c . Verde: E_v .

En la interfaz ($E_F = 0$ eV)

	E_c [eV]	E_{v} [eV]
Teoria	-1.52	-2.64
Sim.	0.102	-1.02

En el sustrato ($E_F = 0$ eV)

	E_c [eV]	E_{v} [eV]
Teoria	0.243	-0.877
Sim	0.257	-0.863

Densidad de portadores

En la interfaz:

	$n_p \ [{\rm cm}^{-3}]$	p_p [cm $^{-3}$]
Teoria Sim.	$\begin{array}{c} 5.86 \times 10^{44} \\ 1.57 \times 10^{15} \end{array}$	$1.71 \times 10^{-25} \\ 6.34 \times 10^{5}$

En el sustrato:

	$n_p \ [{\rm cm}^{-3}]$	p_p [cm ⁻³]
Teoria	2.86×10^{5}	3.50×10^{14}
Sim.	$2.83 imes 10^5$	$3.50 imes 10^{14}$

Densidad de carga.

Azul: n_p . Rojo: p_p . Verde: ρ .

Campo eléctrico

En la interfaz:

	\mathcal{E}_{ox} [V/cm]	$\mathcal{E}_{\textit{sc}}$ [V/cm]
Teoria	4.77×10^4	1.59×10^4
Sim.	2.14×10^5	7.00×10^4

Campo eléctrico.

Potencial electrostático y anchura

Estamos en acumulación, ya que $V_G^\prime = -1.18 < 0.0.$

	$\phi_{\mathcal{S}}$ [V]	W [μ m]
Teoria Sim.	$-0.888 \\ -0.157$	1.81 0.99

Potencial electrósticatico en función de x:

Bandas de energía

Bandas en el semiconductor. Azul: E_c . Verde: E_v .

En la interfaz ($E_F = 0 \text{ eV}$)		
	E_c [eV]	E_v [eV]
Teoria	1.71	0.591
Sim.	0.994	-0.1236

En el sustrato ($E_F = 0$ eV)

	E_c [eV]	E_{v} [eV]
Teoria Sim.	0.243 0.257	-0.877 -0.863

Densidad de portadores

En la interfaz:

	$n_p \ [{\rm cm}^{-3}]$	$p_p \ [\mathrm{cm}^{-3}]$
Teoria Sim.	$\begin{array}{c} 2.92 \times 10^{29} \\ 1.53 \times 10^{17} \end{array}$	$1.71 \times 10^{-25} \\ 647$

En el sustrato:

	$n_p \ [{\rm cm}^{-3}]$	p_p [cm ⁻³]
Teoria Sim.	$\begin{array}{c} 2.86 \times 10^{5} \\ 2.83 \times 10^{5} \end{array}$	$\begin{array}{c} 3.50 \times 10^{14} \\ 3.50 \times 10^{14} \end{array}$

Densidad de carga.

Azul: n_p . Rojo: p_p . Verde: ρ .

Campo eléctrico

En la interfaz:

	\mathcal{E}_{ox} [V/cm]	\mathcal{E}_{sc} [V/cm]
Teoria Sim.	$\begin{array}{c} 2.94 \times 10^{4} \\ 1.04 \times 10^{5} \end{array}$	9810 3.44×10^4

Campo eléctrico.

Función de trabajo

La función de trabajo la calculamos como:

$$\phi_m = q\chi + (E_C - E_F)_{\text{sustrato}} - qV_{TB} = 4.05 + 0.863 - 0.82 = 4.078 \text{ eV}$$
 (6)

que correspondería a la función de trabajo del aluminio o indio (que estarían en un intervalo de $4.1\ a\ 4.5\ eV$).

Conclusiones

Las conclusiones finales son:

- Los voltajes dados son demasiado grandes: no tenemos ecuaciones analíticas para inversión y acumulación.
- El comportamiento de la simulación es el esperado.

FIN