Algorithm and Theory of Computation 2013 Jan.

1 Short Questions

[S₁] Let
$$P(n) = a_k n^k + a_{k-1} n^{k-1} + \cdots + a_1 n + a_0$$
, where $a_k > 0$. Prove
$$P(n) = \Theta(n^k).$$

 $[S_2]$ Ordering by asymptotic growth rate from slowest to fastest:

$$7^{n^{1.008}}, (100n+2)^2, n^3, lg^5n, e^n, log_5n, 8^{n^{1.607}}$$

[S₃] Calculate
$$5_2 = \sum_{i=1}^{n} i^2$$
 and $5_3 = \sum_{i=1}^{n} i^3$

2 Long Questions

 $[L_1]$ From the following recurrence determine the growth rate of T(n):

$$\begin{cases} T(n) = 5T(n-1) - 6T(n-2) + 7^n \\ T(0) = 1 & T(1) = 6 \end{cases}.$$

[L_2] Using dynamic programming algorithm to calculate the matrix product $A_1 \times A_2 \times A_3 \times A_4 \times A_5$, where $A_1: 30 \times 35$, $A_2: 35 \times 15$, $A_3: 15 \times \mathcal{G}$, $A_4: \mathcal{G} \times 10$ and $A_5: 10 \times 20$.

 $[L_3]$ Suppose we have an instance of TSP given by the cost matrix:

$$\begin{bmatrix} \infty & 3 & 5 & 8 & 1 & 2 \\ 3 & \infty & 6 & 4 & 5 & 9 \\ 5 & 6 & \infty & 2 & 4 & 1 \\ 8 & 4 & 2 & \infty & 7 & 5 \\ 1 & 5 & 4 & 7 & \infty & 6 \\ 2 & 9 & 1 & 5 & 6 & \infty \end{bmatrix}$$

- a) Give the partial solution X = (5, -, -, -, -), calculate B(X) using the reducing technique on the matrix.
- b) For X as in a), use backtracking with branch-and-bound to find the best solution which is an extension of the given partial solution. Draw the portion of the state space tree you are investigating.