Preliminaries to Numerical Analysis

o Numerical linear algebra (square linear systems: $A\vec{x} = \vec{b}$ overdetermined linear systems: $A\vec{x} = \vec{b}$ spectral theory: $A\vec{x} = \lambda\vec{x}$ (eigenvalues, Singular values)

o Nontinear

rootfinding

precentise polynom interp.

num. calculus (diff, integ. ODE theory)

Contents

Main Sources of ornors.

1 Floating-Point Numbers (how #'s one represented / stored on computer)

Conditioning (inherent property of a problem)

3 Stability (algorithm)

Absolute and Relative Errors

In numerical analysis, we use an **algorithm** to *approximate* some quantity of interest.

 We estimate of the accuracy of the computed value via an absolute error or a relative error:

$${
m e}_{
m abs} = A_{
m approx} - A_{
m exact}$$
 (absolute error) "percentage" ${
m e}_{
m rel} = {A_{
m approx} - A_{
m exact} \over A_{
m exact}} = {A_{
m approx} \over A_{
m exact}} - 1$, (relative error)

where $A_{\rm exact}$ is the exact, analytical answer and $A_{\rm approx}$ is the approximate, numerical answer.

• If ${
m e_{abs}}$ or ${
m e_{rel}}$ is small, we say that the approximate answer is accurate.

Example: Stirling's Formula

Stirling's formula provides a "good" approximation to n! for large n:

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
 (*)

Try in MATLAB:

```
n = ...;
err_abs = sqrt(2*pi*n)*(n/exp(1))^n - factorial(n);
err_rel = err_abs/factorial(n);
disp(err_abs)
disp(err_rel)
```

```
When n = 10:

Abs. err. = -30104...

Rel. err. = -0.008296 (0.8%)

When n = 100:

Abs. err. = -7.77... × 10

Rel. err. = -0.00083298 (0.08%)
```

Floating-Point Numbers

Limitations of Digital Representations

A digital computer uses a finite number of bits to represent a real number and so it cannot represent all real numbers.

- The represented numbers cannot be arbitrarily large or small;
- There must be gaps between them.

So for all operations involving real numbers, it uses a subset of $\mathbb R$ called the **floating-point numbers**, $\mathbb F$.

Scientific notation (base 10)

one digit before dec. pt. 3 no zero here.

$$3.14 \times 10^{2} = 314$$
 $3.14 \times 10^{-3} = 0.00314$
 3.14×10^{2}

one digit before dec. pt. 5 no Zero here.

3.
$$14 \times 10^{2} = 314$$

3. $14 \times 10^{-3} = 0.00314$

3. 14×10^{2}

= $(3 \times 10^{0} + 1 \times 10^{-1} + 4 \times 10^{-2}) \times 10^{2}$

= $3 \times 10^{2} + 1 \times 10^{1} + 4 \times 10^{0}$

= 314.

Scientific notation (base 2)

one bit here is not zero.

1.101₍₂₎ ×
$$2^{10_{(2)}}$$

= $(1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}) \times 2^{2}$

= $1 \times 2^{2} + 1 \times 2^{4} + 0 \times 2^{6} + 1 \times 7^{-1}$

$$\left(= 110.1_{(2)} \right)$$

$$= 4 + 2 + 0 + \frac{1}{2} = 6.5$$

Rough idea (4 bits)

$$00|00: 1.00_{(2)} \times 2^{0_{(2)}} = 1$$
 $01|00: 1.01_{(2)} \times 2^{0_{(2)}} = 1 + \frac{1}{4}$
 $10|00: 1.10_{(2)} \times 2^{0_{(2)}} = 1 + \frac{1}{4}$

bits after 1. Exponent

 $11|00: 1.11_{(2)} \times 2^{0_{(2)}} = 1 + \frac{1}{4}$
 $= 1 + \frac{3}{4}$.

 $\Rightarrow 1.10_{(2)} \times 2$
 $= 1 \times 2^3 = 8$.

 $11|11: 1.11_{(2)} \times 2^{11_{(2)}}$
 $= (1 + \frac{3}{4}) \times 8 = 8 + 6$
 $= 14$

Floating-Point Numbers

A floating-point number is written in the form $\pm (1+F)2^E$ where

- E, the exponent, is an integer; fractional part F, the mantissa, is a number $F = \sum_{i=1}^{d} b_i 2^{-i}$, with $b_i = 0$ or $b_i = 1$. d: # $\int_{a}^{b} b_i t dt$

= b1/2 + b2/2 + --- + bd/d Note that F can be rewritten as

$$F = 2^{-d} \sum_{k=0}^{d-1} b_{d-k} 2^k,$$

where M is an integer in $\mathbb{N}[0, 2^d - 1]$. $= \{0, 1, 2, \dots, 2^d - 1\}$

Consequently, there are 2^d evenly-spaced numbers between 2^E and 2^{E+1} in the floating-point number system.

Floating-Point Numbers - IEEE 754 Standard

 MATLAB, by default, uses double precision floating-point numbers, stored in memory in 64 bits (or 8 bytes):

- · Predefined variables:
 - eps = the distance from 1.0 to the next largest double-precision number:

$$eps = 2^{-52} \approx 2.2204 \times 10^{-16}$$
.

- realmin = the smallest positive floating-point number that is stroed to full accuracy; the actual smallest is realmin/2^52.
- realmax = the largest positive floating-point number

$$= \frac{2^{1}-1}{2^{2}} = 2048-1 = 2047$$

$$0 - 1023 = -1023 \iff \text{min.} exp.$$

The IEEE standard guarantees that the relative representation error and the relative computational error have sizes smaller than eps, the machine epsilon:

Representation: The floating-point representation, $\hat{x} \in \mathbb{F}$, of $x \in \mathbb{R}$ $\hat{x} = x(1+\epsilon),$ for some $|\epsilon_1| \leq \frac{1}{2}$ [eps]. satisfies

Arithmetic: The floating-point representation, $\hat{x} \oplus \hat{y}$, of the result of $\hat{x} + \hat{y}$ with $\hat{x}, \hat{y} \in \mathbb{F}$ satisfies

$$\hat{x} \oplus \hat{y} = (\hat{x} + \hat{y})(1 + \epsilon_2), \quad \text{for some } |\epsilon_2| \leqslant \frac{1}{2} \text{ eps.}$$

Similarly with \bigcirc , \otimes , \oplus corresponding to -, \times , \div , respectively.

Algebraic

$$\left|\frac{1-\sqrt{1}}{\sqrt{1}}\right| \leq \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left|\frac{1}{\sqrt{2}}\right|$$

$$Gap = 2^{E} \underbrace{eps}$$

$$= \underbrace{\text{width}}_{\text{4+ of pts}} = \underbrace{\text{z}^{EH} - \text{z}^{E}}_{\text{2}52}$$

Round-Off Errors

Computers CANNOT usually

- represent a number correctly;
- add, subtract, multiply, or divide correctly!!

Run the following and examine the answers:

```
format long
1.2345678901234567890
12345678901234567890
(1 + eps) - 1
(1 + .5 * eps) - 1
(1 + .51 * eps) - 1
n = input(' n = '); (n^{(1/3)})^3 - n
```

Catastrophic Cancellation

<u>In finite precision storage</u>, two numbers that are close to each other are indistinguishable. So <u>subtraction of two nearly equal numbers</u> on a computer can result in loss of many significant digits.

Catastrophic Cancellation

Consider two real numbers stored with 10 digits of precision:

$$e = 2.7182818284,$$

 $b = 2.7182818272.$

- Suppose the actual numbers e and b have additional digits that are not stored.
- The stored numbers are good approximations of the true values.
- However, if we compute e-b based on the stored numbers, we obtain $0.0000000012=1.2\times 10^{-9}$, a number with only two significant digits.

Example 1: Cancellation for Large Values of x

Question

Compute $f(x) = e^x(\cosh x - \sinh x)$ at x = 1, 10, 100, and 1000.

Numerically:
$$= e^{x} \left(e^{-x} + e^{-x} \right)$$
$$= 1$$

NaN (not a number)

```
format long
x = input(' x = ');
y = exp(x) * ( cosh(x) - sinh(x) );
disp([x, y])
```

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$Sinh x = \frac{e^{x} - e^{-x}}{2}$$

Example 2: Cancellation for Small Values of x

Question

Compute
$$f(x) = \frac{\sqrt{1+x}-1}{x}$$
 at $x = 10^{-12}$.

Numerically:

```
x = 1e-12;
fx = (sqrt(1+x) - 1)/x;
disp( fx )
```

To Avoid Such Cancellations ...

- Unfortunately, there is no universal way to avoid loss of precision.
- One way to avoid catastrophic cancellation is to remove the source of cancellation by simplifying the given expression before computing numerically.
- For Example 1, rewrite the given expression recalling that

$$\cosh x = (e^x + e^{-x})/2 \qquad \sinh x = (e^x - e^{-x})/2.$$

• For Example 2, try again after rewriting f(x) as

$$f(x) = \frac{\sqrt{1+x}-1}{x} \cdot \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1} = \frac{1}{\sqrt{1+x}+1}$$
.

Do you now have an improved accuracy?

Errors A exact, Aapprox.

$$Abs. em. = Aexact - Aapprox.$$
 $Rel. em. = Aexact - Aapprox (percentage error; dimensionless)$
 $Aexact$

Floating-Point numbers (F)

- base-2 scientific notation

- machine epsilon (eps / eps)

eps =
$$2^{-52}$$
 $\approx 2.22 \times 10^{-16}$

•
$$eps = 2 \approx 2.22 \times 10^{-1}$$

• $significance$?

$$2 \times 10^{-16}$$

- Round off error.

ans = 2.2 -- e-16 (eps)

1
$$\chi$$
 χ 1+ eps $\chi = 1$ $\chi = 1$

<u>Convention</u>: Midpoint -> round down

- Distribution of F-P numbers

- there are $2^d = 2^{52}$ f-p #'s
 they are uniformly spaced

• the gap by two adjacent
$$f-p \#'s here$$

is $2^{E} [eps] = 2^{E} 2^{-d} = 2^{E-52}$

$$EX E=0$$
, $[1,2)$: $Gap = 2^{\circ}eps = eps$

$$E=1$$
, $[2,4)$: $Gap = 2 | eps | = 2 | eps |$...

Conditioning

Problems and Conditioning

- A mathematical problem can be viewed as a function f: X → Y from a data/input space X to a solution/output space Y.
- We are interested in changes in f(x) caused by small perturbations of x.
- A well-conditioned problem is one with the property that all small perturbations of x lead to only small changes in f(x)

Condition Number

relative emor

Let $f: \mathbb{R} \to \mathbb{R}$ and $\hat{x} = x(1 + \epsilon)$ be the representation of $x \in \mathbb{R}$.

• The ratio of the relative error in f due to the change in x to the relative error in x simplifies to

• In the limit of small error (ideal computer), we obtain

$$\kappa_f(x) := \lim_{\epsilon \to 0} \frac{\left| f(x) - f(x(1+\epsilon)) \right|}{\left| \int_{\epsilon}^{\infty} f(x) \right|}$$

$$= \left| \lim_{\epsilon \to 0} \frac{f(x + \epsilon x) - f(x)}{\epsilon x} \cdot \frac{x}{f(x)} \right| = \left| \frac{xf'(x)}{f(x)} \right|, \quad (\star)$$

which is called the (relative) condition number.

Example: Conditioning of Subtraction

Consider f(x) = x - c where c is some constant. Using the formula (*), we find that the associated condition number is

$$\kappa(x) = \left| \frac{xf'(x)}{f(x)} \right| = \left| \frac{x}{x-c} \right|.$$

• It is large when $x \approx c$. (Catastrophic cancellation)

Example: Conditioning of Multiplication

The condition number of f(x) = cx is

$$\kappa(x) = \left| \frac{xf'(x)}{f(x)} \right| = \left| \frac{x \cdot c}{cx} \right| = 1.$$

No magnification of error.
 Well-condition)

Example: Conditioning of Function Evaluation

The condition number of $f(x) = \cos(x)$ is

$$\kappa(x) = \left| \frac{xf'(x)}{f(x)} \right| = \left| \frac{-x \sin x}{\cos x} \right| = |x \tan x|.$$

• The condition number is large when $x=(n+1/2)\pi$, where $n\in\mathbb{Z}$.

Example: Conditioning of Root-Finding

$$ar^2+br+c=0$$

Let r = f(a; b, c) be a root of $ax^2 + bx + c = 0$. Instead of direct differentiation, use implicit differentiation

$$f'(\alpha) = \frac{dr}{da}$$

$$r^2 + 2ar\frac{dr}{da} + b\frac{dr}{da} = 0.$$

Solve for the derivative.

$$f'(a) = \frac{dr}{da} = -\frac{r^2}{2ar+b} = -\frac{r^2}{\pm\sqrt{b^2-4ac}},$$

then compute the condition number using the formula (*) to get

$$\kappa(a) = \left| \frac{af'(a)}{f(a)} \right| = \left| \frac{ar^2}{\pm r\sqrt{b^2 - 4ac}} \right| = \left| \frac{ar}{\sqrt{b^2 - 4ac}} \right|.$$

Conditioning is poor for small discriminant, i.e., near repeated roots.

$$full problem$$

$$f: \mathbb{R}^3 \longrightarrow \mathbb{C}^2$$

$$\vec{f}\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} c \\ c \end{bmatrix}$$

Stability

Algorithms

- Recall that we defined a problem as a function $f: X \to Y$.
- An algorithm can be viewed as another map $\tilde{f}: X \to Y$ between the same two spaces, which involves errors arising in
 - representing the actual input x as \hat{x} :
 - implementing the function *f* numerically on a computer.

Example: Horner's Method

Consider evaluating a polynomial

$$p(x) = c_n x^{n-1} + c_{n-1} x^{n-2} + \dots + c_2 x + c_1.$$

Can rewrite it as

$$p(x) = (\cdots((c_n x + c_{n-1})x + c_{n-2})x + \cdots + c_2)x + c_1,$$

```
function p = horner(c, x)
% HORNER evaluates polynomial using Horner's method.
    n = length(c);
    p = c(n);
    for k = n-1:-1:1
        p = p*x + c(k);
    end
end
```

Analysis: General Framework

The relative error of our interest is

$$\left|\frac{\tilde{f}(\hat{x})-f(x)}{f(x)}\right| \leqslant \left|\frac{\tilde{f}(\hat{x})-f(\hat{x})}{f(x)}\right| + \left|\frac{f(\hat{x})-f(x)}{f(x)}\right| \\ \lessapprox \left|\frac{\tilde{f}(\hat{x})-f(\hat{x})}{f(\hat{x})}\right| + \left|\frac{f(\hat{x})-f(x)}{f(x)}\right| \leqslant (\hat{\kappa}_{\text{num}}+\kappa_f) \text{ [eps]}.$$
 where $\kappa = \kappa_f$ be the (relative) condition number of the exact problem f and
$$\hat{\kappa}_{\text{num}} = \max \left|\frac{\tilde{f}(\hat{x})-f(\hat{x})}{f(\hat{x})}\right| \left/\frac{\hat{x}-x}{x}\right|.$$

Example: Root-Finding Revisited

Consider again solving the quadratic problem $ar^2 + br + c = 0$.

- Taking a=c=1 and $b=-(10^6+10^{-6})$, the roots can be computed exactly by hand: $r_1=10^6$ and $r_2=10^{-6}$.
- If numerically computed in MATLAB using the quadratic equation formula, r_1 is correct but r_2 has only 5 correct digits.
- Fix it using $r_2 = (c/a)/r_1$.