WWW.Dyrassa.com

Matière: Mathématiques

Niveau: 1AC Durée: 6h

Triangles

Professeur:

COMPÉTENCES EXIGIBLES

- Construire un triangle connaissant :
 - ♦ la longueur d'un côté et les deux angles qui lui sont adjacents,
 - ♦ les longueurs de deux côtés et l'angle compris entre ces deux côtés,
 - les longueurs des trois côtés.
- Sur papier uni, reproduire un angle au compas.
- Connaître et utiliser, dans une situation donnée, le résultat sur la somme des angles d'un triangle. Savoir l'appliquer aux cas particuliers du triangle équilatéral, d'un triangle rectangle, d'un triangle isocèle.
- Connaître et utiliser l'inégalité triangulaire.

ORIENTATIONS PEDAGOGIQUES

On remarquera, dans chaque cas où la construction est possible, que lorsqu'un côté est placé, on peut construire plusieurs triangles, deux à deux symétriques par rapport à ce côté, à sa médiatrice.

On rencontrera à ce propos l'inégalité triangulaire, $AB + BC \ge AC$ dont l'énoncé sera admis. Le cas de l'égalité AB + BC = AC sera commenté et illustré.

On admet que la somme des angles d'un triangle est 180° On utilise la propriété caractéristique pour construire des triangles.

EXTENSIONS

- Les droites remarquables dans un triangle
- ◆ Le triangle rectangle et le cercle
- Théorème de Pythagore
- Trigonométrie

PRE-REQUIS

- Les angles
- Mesurer et comparer les longueurs
- Parallélisme et perpendicularité
- La symétrie axiale

Objectif	Activités	Contenu de cours	Applications
L'inégalité triangulaire	Activité 1: 1-Place 3 points non alignés A, B et C a) Compare AB et AC + BC b) Compare AC avec AB + BC c) Compare BC avec AC + AB 2-Construis, si c'est possible, le triangle ABC dans chaque cas: 1er cas: AC=4 cm, AB=3 cm et BC=6 cm 2ième cas: AC=8 cm, AB=4 cm et BC =3 cm 3ième cas: AC=2 cm, AB=5 cm et BC=4 cm 4ième cas: AC=8 cm, AB=2 cm et BC=3 cm 3- à l'aide de la 1ère question, quelle condition doivent vérifier les longueurs d'un triangle afin de le construire?	I- Inégalité triangulaire Règle: Quels que soient les points A, B et C, on a : AB + BC > AC Propriété: Dans un triangle, la somme des longueurs de deux côtés est supérieure à la longueur du troisième côté. Exemple : AC < AB + BC AB < AC + BC BC < AC + AB Conséquence: Pour savoir s'il est possible de construire un triangle, il suffit de vérifier que la plus grande longueur est inférieure à la somme des longueurs des deux autres côtés. Cas d'égalité: ➤ Si A, B et C sont trois points tels que AB + BC = AC, alors le point B appartient au segment [AC]. Autrement : les points A, B et C sont alignés. Remarque : B n'est pas nécessairement le milieu de [AC]	Application 1: Dans chaque cas, dire s'il est possible de construire un triangle ABC: a. AB = 9cm, BC = 5 cm, AC = 1 cm. b. AB=6,5cm, BC =7cm, AC = 5 cm. c. AB = 3,7 cm, BC = 2,3 cm, AC = 6 cm.

Activité 2 : 1. Trace un triangle ABC 2. Mesure ses angles ABC , $ACB = BAC$ des angles d'un triangle 4. Compare tes résultats avec celles de manquante : $B = 32^{\circ}$ $C = B$ $BAC + ABC + ACB = 180^{\circ}$ Exemple 2 :	Objectif	Activités	Contenu de cours	Applications
Calculons la mesure de l'angle BAC : On sait que la somme des mesures des angles d'un triangle vaut 180° Donc: $B\hat{A}C + A\hat{B}C + B\hat{C}A = 180^{\circ}$ D'où: $B\hat{A}C = 180^{\circ} - A\hat{B}C - B\hat{C}A$ $B\hat{A}C = 180^{\circ} - 80^{\circ} - 55^{\circ}$	Somme des angles d'un	Activité 2: 1. Trace un triangle ABC 2. Mesure ses angles ABC, ACB et BAC 3. Calcule la somme des angles du triangle ABC	II-Somme des angles d'un triangle : Règle : Dans un triangle, la somme des mesures des angles fait 180° Exemple 1 : Exemple 2 : Calculons la mesure de l'angle BAC : On sait que la somme des mesures des angles d'un triangle vaut 180° Donc : $B\hat{A}C + A\hat{B}C + B\hat{C}A = 180^{\circ}$ D'où : $B\hat{A}C = 180^{\circ} - A\hat{B}C - B\hat{C}A$	Application: Calcule, pour chaque triangle, la mesure d'angle manquante : B 32° 112° R H 38° H

Objectif	Activités	Contenu de cours	Applications
Objectif	Activités	Contenu de cours III- Construction de triangles: On peut construire un triangle lorsque l'on connaît: 1 la longueur d'un côté et les mesures des deux angles qui lui sont adjacents; 2 les longueurs de deux côtés et la mesure de l'angle compris entre ces côtés; 3 les longueurs des trois côtés (dans le cas où la somme des deux plus petites longueurs est supérieure à la troisième longueur). Exemples 1 ABC est un triangle tel que AB = 3,5 cm, BÂC = 32° et ABC = 56°: C ABC est un triangle tel que AB = 3 cm, AC = 2,5 cm et BÂC = 40°:	Application: 1. Construis un triangle ABC tel que: AB=8cm; BC = 7cm et AC= 6cm 2. Construis un triangle EFG tel que: EF= 5cm; EG=6cm et FÊG = 50°
		3 ABC est un triangle tel que $AB = 4 cm, BC = 2 cm et AC = 3 cm:$ Puisque: $3 + 2 > 4$ Donc le triangle ABC est constructible	3. Construis un triangle HIJ tel que : HI=9cm ; $I\hat{H}J = 70^{\circ}$ et $H\hat{I}J = 30^{\circ}$
		A 4 cm	

		IV- Triangles particuliers :1. Le triangle rectangle :	
Connaître et construire les triangles particuliers : -Rectangle -Isocèle -Equilatéral 1. Qu 2. Me calc 3. Qu	Be triangle EFG suivant: F elle est la nature de ce triangle? estre les angles $F\widehat{E}G$ et $F\widehat{G}E$ puis cule la somme $F\widehat{E}G + F\widehat{G}E$ e peut-on dire des angles $F\widehat{E}G$ et F	Définition: Le triangle rectangle est un triangle qui a un angle droit Remarque: Le côté opposé à l'angle droit s'appelle l'hypoténuse: c'est le plus grand des trois côtés du triangle. L'hypoténuse L'hypoténuse L'hypoténuse L's angles aigus d'un triangle rectangle sont complémentaires Exemple: A Les deux angles aigus ABC est rectangle en A Les deux angles aigus ABC est rectangle en A complémentaires:	Application: ABC est un triangle rectangle en A Reproduis et complète le tableau suivant: ABC 53° 8° ACB 71° 39°

Objectif	Activités	Contenu de cours	Applications
	Activité 4: 1. Construis un triangle isocèle ABC en A 2. Mesure les angles à la base du ABC. Qu'observez-vous?	Propriété 2: Si un triangle possède deux angles complémentaires alors il est rectangle Exemple: On a : ABC + ACB = 50.92° + 39.08° = 90° Donc : ABC est un triangle rectangle en A Définition Le triangle isocèle est un triangle qui a deux côtés égaux. Exemple: Sommet principal A Donc ABC est un triangle isocèle en A Donc AB = AC	Application: On donne le triangle EFG tel que : $E\widehat{F}G = 20^{\circ}$ et $G\widehat{E}F = 70^{\circ}$ Détermine la nature du triangle EFG . Application: Est-ce qu'on peut construire un triangle isocèle dont la longueur de l'un de ses côtés est 4 cm et son périmètre vaut 28 cm?

Propriété 1

Dans un triangle isocèle, les angles à la base sont égaux.

Exemple:

On a : ABC triangle isocèle en A

Donc $\widehat{ABC} = \widehat{ACB}$

Propriété 2

Si un triangle a deux angles égaux alors il est isocèle.

Exemple:

On a : $M\widehat{N}P = M\widehat{P}N = 68.2^{\circ}$

Donc : le triangle MNP est isocèle

Application:

1-consctuis un triangle isocèle en A tel que : $B\hat{A}C = 100^{\circ} et AB = 5 cm$

2-Calcule la mesure de l'angle $A\hat{B}C$

Objectif	Activités	Contenu de cours	Applications
	Activité 5 : 1. Construis un triangle équilatéral <i>ABC</i> 2. Compare les angles de ce triangle 3. Détermine la mesure de chaque angle.	3. Le triangle équilatéral : Définition : Le triangle équilatéral est un triangle qui a ses trois côtés égaux. Exemple : On a : ABC un triangle équilatéral Donc : AB = AC = BC Propriété 1 : Si un triangle est équilatéral alors chaque angle mesure 60° Exemple :	Application: On donne la figure suivante, tel que MN = NP = PM Calcule la mesure des angles: MÑP, MPN et MPN sans rapporteur