# Lecture 3 Methods to study cell biology

#### Outline

- 1. How to obtain pure cell culture?
- 2. How are cells cultured?
- 3. What are cells composed of?
- 4. How to study the functions of these components in the cell?





#### 1.1 An authorative resource to obtain pure cell line



www.atcc.org

- ◆ ATCC serves by characterizing cell lines, bacteria, viruses, fungi and protozoa.
- ♦ More than 4,000 human and animal cell lines and an additional 1,200 hybridoma.
- ♦ More than 18,000 strains of bacteria from 900 genera, as well as 2,000 different types of animal viruses and 1,000 plant viruses.
- ♦ Over 49,000 yeast and fungi strains from 1,500 genera and 2,000 strains of protists.

**Table 8–1 Some Commonly Used Cell Lines** 

|            | <b>F</b> 2                                                 |
|------------|------------------------------------------------------------|
| CELL LINE* | CELL TYPE AND ORIGIN                                       |
| 3T3        | fibroblast (mouse)                                         |
| BHK21      | fibroblast (Syrian hamster)                                |
| MDCK       | epithelial cell (dog)                                      |
| HeLa       | epithelial cell (human)                                    |
| PtK1       | epithelial cell (rat kangaroo)                             |
| L6         | myoblast (rat)                                             |
| PC12       | chromaffin cell (rat)                                      |
| SP2        | plasma cell (mouse)                                        |
| COS        | kidney (monkey)                                            |
| 293        | kidney (human); transformed with adenovirus                |
| СНО        | ovary (Chinese hamster)                                    |
| DT40       | lymphoma cell for efficient targeted recombination (chick) |
| R1         | embryonic stem cell (mouse)                                |
| E14.1      | embryonic stem cell (mouse)                                |
| H1, H9     | embryonic stem cell (human)                                |
| <b>S2</b>  | macrophage-like cell (Drosophila)                          |
| BY2        | undifferentiated meristematic cell (tobacco)               |
|            |                                                            |

<sup>\*</sup>Many of these cell lines were derived from tumors. All of them are capable of indefinite replication in culture and express at least some of the special characteristics of their cell's of origin.

#### HeLa cell --- The first immortalized human cell line

--- isolated in 1951



Henrietta Lacks circa 1920–1951

ATCC Number: CCL-2
Designation: HeLa







TEM image for HeLa after dividing

#### 1.2 How are cell generally isolated from tissue?



#### 1.3 How to enrich homogenous cells?

- 1.3.1 Selectively grow single cell suspension in certain media which supports the outgrowth of single cell type over others
- 1.3.2 Fluorescence activated cell sorter (FACS)
- 1.3.3 Magnetic beads conjugated with cell-specific antibody

#### 1.3.1 FACS (fluorescence-activated cell sorter)



- 1. Cells were labeled with antibody-conjugated fluorescence dye.
- Sheath fluid flow (with no charge) focus the cells in the center where laser beam interacts with cells.
- Optimal flow rate of cells allows them to pass on a single cell basis.
- Based on its difference in charges,
   Cells will deflect in a certain angle in an electric field, and thus, be separated.

#### 1.3.2 Magnetic beads-conjugated antibody

Use magnetic force to enrich specific cells
 Example: isolation of T cells from thymus

thymus tissue homogenous mixture(tissue grounder)



Add CD3-magnetic beads conjugate



Apply magentic force for this mixture, wash



T cell enrichment

### 1.3.3 Laser capture microdissection



#### 1.4 Hybridoma cell lines



Figure 8-7 Molecular Biology of the Cell (© Garland Science 2008)



Figure 8-8 Molecular Biology of the Cell (© Garland Science 2008)

#### 2. How to grow cells/maintain a cell line?

#### A basic cell culture media usually contains:

- 1. A buffer for pH level regulation,
- a food source (e.g. Glucose, glutamine, amino acids, nucleotides, etc)
- 3. Serum / growth stimulant
- 4. minerals for metabolic functioning of the cells
- 5. Antibiotic additives and pH indicator

#### Some commonly used media:

F12, etc

Dulbecco's modified essential medium (DMEM) RPMI-1640 McCoy's 5A





#### 2D and 3D culture

 3D more accurately reflects in vivo condition, in which cell-cell communication, extracellular matrix will have effects on cellular activity



# Comparison between 2D and 3D culture

|                             | 2D                                                                                        | 3D                                                                                                                                                                        |
|-----------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cell Shape                  | Flat and stretched                                                                        | Natural shape (ellipsoid/polarized) is retained                                                                                                                           |
| Cell interface<br>to medium | All cells are equally exposed to media components                                         | As in physiological conditions, there is gradient availability of media components. Upper layer of cells are highly exposed over the lower layer (Heterogeneous exposure) |
| Cell junction               | Cell junctions are less<br>prevalent and does not<br>resemble physiological<br>conditions | Cell junctions are prevalent and enable cell to cell communication.                                                                                                       |
| Cell<br>Differentiation     | Moderately and poorly<br>differentiated                                                   | Well differentiated                                                                                                                                                       |
| Drug<br>metabolism          | Drug metabolism not<br>well observed                                                      | Enhanced drug metabolism with increased<br>expression of CYP enzymes                                                                                                      |
| Drug<br>Sensitivity         | Cells are sensitive and<br>drugs show high<br>efficacy                                    | Cells often show resistance and drugs show low potency                                                                                                                    |
| Cell<br>Proliferation       | Higher proliferation rate<br>than in natural<br>environment                               | Proliferation rate may be high or low, it is based on cell type and 3D-cell culture technique.                                                                            |
| Response to stimuli         | Poor response to<br>mechanical stimuli of<br>cells                                        | well-established responses to mechanical stimuli of cells                                                                                                                 |
| Viability                   | Sensitive to cytotoxin                                                                    | Greater viability and less susceptible to external factor                                                                                                                 |
| Apoptosis                   | Highly susceptible to drug-induced apoptosis                                              | Enhanced resistance to drug-induced apoptotic stimuli                                                                                                                     |

Adapted from Sigma/Aldrich

#### 3. Cells can be separated into their functional fractions



# Chemical Components of a Cell



# 4. How to study cell biology?

- Protein?
- RNA?
- DNA?

# 4.1 Proteins can be isolated by chromatography



Gel filtration lon exchange affinity

# Protein chromatography



## 4.2 Protein analysis by SDS-PAGE





Figure 8-18a Molecular Biology of the Cell (© Garland Science 2008)

#### 4.3 2-D protein analysis



# 2-D gel analysis



## 4.2 How to analyze DNA/RNA?



Figure 10-5 Essential Cell Biology, 2/e. (© 2004 Garland Science)

## DNA/RNA can be labeled



DNA polymerase incorporates <sup>32</sup>P nucleotides, resulting in a population of radiolabeled DNA molecules that contain sequences from both strands

Figure 8-26 Molecular Biology of the Cell 6e (© Garland Science 2015)

# Labeled RNA/DNA is called probe, which binds to RNA/DNA specifically



#1: probe base-pairs and binds





Copyright © 2005 Pearson Prentice Hall, Inc.

#### . RNA FISH

#### RNA Fluorescence in situ hybridization

deltaC-mRNA in zebrafish embryo rRNA in the nucleolus of a pea



- 1. Make fluorescence labeled DNA/RNA probe
- 2. Cells were fixed and RNA can be accessible (permeabilized)
- 3. Apply the probe on fixed cells to allow hybridization
- 4. Visualization under fluorescence microscope

# **DNA FISH**



#### How to clone specific gene or analyze gene expression levels?



Figure 8-46 Molecular Biology of the Cell (© Garland Science 2008)

#### RT-PCR (reverse transcription-PCR)

Or other gene specific primer

- Extract total RNA
- 2. Reverse transcribe RNA into its complementary DNA (cDNA) with oligo(dT) as primer
- 3. Use cDNA as template, use gene-specific primers to do PCR
- 4. Analyze PCR products by SYBR green incorporation or agarose gel analysis



#### Cell free system- a relatively pure system

 An in vitro system consists from pure biomolecules or cell homogenate needed to catalyze a biological process, such as:

DNA replication,

DNA transcription,

Protein translation,

RNA splicing, etc.

It provides direct evidence for the function of proteins while eliminating the influence from other cellular components in a complex *in vivo* system.