

Institutt for matematiske fag

Eksamensoppgave i MA0301 Elementær diskret matematikk
Faglig kontakt under eksamen: Martin Strand Tlf: 970 27 848
Eksamensdato: . august 2014
Eksamenstid (fra-til): 09:00-13:00
Hjelpemiddelkode/Tillatte hjelpemidler: D: Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.
Annen informasjon: Alle svar skal begrunnes. Ta med så mye mellomregning og forklaring at det er enkelt å forstå hvordan du har tenkt.
Oppgavesettet består av ti punkter, og hvert punkt teller like mye.
Målform/språk: bokmål Antall sider: 2 Antall sider vedlegg: 0
Antan Sider Vedlegg.
Kontrollert av:

Sign

Dato

Oppgave 1

- a) Hva er koeffisienten foran x^3y^4 hvis du skriver ut $(x-y)^7$?
- b) En vennegjeng på sju skal sette seg ved et rundt bord med sju stoler. Om vi tar hensyn til de følgende forutsetningene, hvor mange mulige plasseringer er det rundt bordet?
 - To av dem er nylig blitt kjærester, og vil alltid sitte ved siden av hverandre, men den interne rekkefølgen for de to er uten betydning.
 - Fordi bordet er rundt, har rotasjonen ingenting å si: Plasseringen 1-2-3-4-5-6-7 er for eksempel den samme som 2-3-4-5-6-7-1.

Oppgave 2 La A og B være mengder i et univers \mathcal{U} . Bruk regnereglene for å vise at

$$\left((A\cap B)\cup\overline{(\overline{A}\cup B)}\,\right)\cap A=A.$$

Oppgave 3 Bruk matematisk induksjon for å vise at

$$\sum_{i=1}^{n} (2i-1) = 1 + 3 + 5 + \dots + (2n-1) = n^{2}$$

holder for alle positive heltall n.

Oppgave 4 Finn en isomorfi f mellom disse to grafene. La f(a) = 1.

Oppgave 5 Lag en endelig tilstandsmaskin som gjenkjenner alle strenger som inneholder minst tre enere, men ikke nødvendigvis på rad. Alfabetet er $\{0,1\}$.

Oppgave 6 Bruk Kruskals algoritme eller Prims algoritme for å finne et minimalt utspennende tre for grafen under. Oppgi hvilken algoritme du bruker, den totale vekten av treet, og den sjette kanten som blir lagt til i treet. For Prims algoritme skal du starte i a.

Oppgave 7 La $f : \mathbb{R} \to \mathbb{R}$ være funksjonen gitt ved f(x) = 5x + 3. Vis at f er en bijeksjon (altså injektiv/en-til-en og surjektiv/på), og finn den inverse funksjonen til f.

Oppgave 8 La M være en mengde, og se på potensmengden $\mathcal{P}(M)$, som inneholder alle delmengder av M. La A og B være delmengder av M, altså at $A, B \in \mathcal{P}(M)$. Vi betrakter \subseteq som en relasjon på $\mathcal{P}(M)$ på den vanlige måten: $A \subseteq B$ dersom A er inneholdt i B.

- a) Vis at \subseteq er en delvis ordning for alle mengder M.
- b) Finn et moteksempel som viser at \subseteq ikke er en fullstendig ordning.