ELETRÓNICA DIGITAL E CIRCUITOS 2018

Folha de Exercícios #6

[Circuitos lógicos | Mapas de Karnaugh]

- 1. Projete um circuito lógico digital que ative um alarme quando dois de três sensores estiverem ativos, recorrendo a um mapa de Karnaugh.
- 2. Um circuito lógico deverá ter uma entrada de 4 bits representando o número binário $A_3A_2A_1A_0$ e uma saída com valor 1 se o número de entrada for divisível por 3. Suponha que o circuito é aplicado apenas aos dígitos 0-9 e que os restantes valores 10-15 podem ser considerados condições "don't care".
 - a) Construa a tabela de verdade e o mapa de Karnaugh.
 - b) Determine a expressão lógica mínima.
 - c) Desenhe o circuito usando apenas portas AND, OR e NOT.
- **3.** Um sistema de transmissão de dados envia um bit de paridade por cada 4 bits (*nibble*) de dados. Em sistemas de paridade par, o bit de paridade é posto em 1 quando o número de 1s nos dados transmitidos é ímpar. Nos sistemas de paridade ímpar, o bit de paridade é 1 quando o número de 1s é par. Projete um circuito lógico que analise os 4 bits de dados e transmita o apropriado bit de paridade para ambos os sistemas de paridade.
- **4.** Considere os seguintes mapas de Karnaugh com entradas "don't care" assinaladas com "X". Para ambos os casos, determine a expressão lógica simplificada.

	$\overline{W}\overline{X}$	$\overline{W}X$	WX	$W\bar{X}$
$\bar{Y}\bar{Z}$			Χ	
$\bar{Y}Z$	Χ	1	Χ	1
YZ	1	1	Χ	Χ
$Y\bar{Z}$		1	Χ	Χ

	$\overline{W}\overline{X}$	$\overline{W}X$	WX	$W\bar{X}$
$\bar{Y}\bar{Z}$	1	1	1	
$\bar{Y}Z$	1	Χ	Χ	1
YZ	Χ	Χ	Χ	Χ
$Y\bar{Z}$		1	1	1

5. Numa fotocopiadora, é gerado um sinal de paragem (S) para parar a operação da fotocopiadora e acionar um indicador luminoso sempre que se verifique qualquer uma das seguintes condições: (1) não há papel no tabuleiro alimentador; (2) os dois micro-interruptores no percurso do papel estão ativados, indicando encravamento do papel. A existência de papel no tabuleiro alimentador é indicada pelo valor HIGH no sinal lógico P. Cada um dos micro-interruptores produz um sinal lógico (Q e R) com valor HIGH quando é ativado pelo papel encravado. Projete um circuito lógico para produzir o valor HIGH no sinal S, usando apenas portas NAND.