Zichen Wang, PhD

38 Garden Pl Edgewater, NJ 07020 (917) 826-8235 wangzc921@gmail.com

ABOUT

Machine Learning expert in biology and medicine, experienced with high-dimensional biomedical data including multi-omics and longitudinal electronic medical/health records (EMR/EHR). I am passionate about many research areas in ML/DL including graph neural networks, contrastive learning, deep generative models and reinforcement learning.

EXPERIENCE

Sema4, Stamfort, CT — Principal Scientist

SEP 2019 - PRESENT

Developing personalized phenotyping and prediction algorithms to understand pregnancy complications and neonatal disorders using longitudinal EMR.

Icahn School of Medicine at Mount Sinai, New York, NY — Assistant Professor

JUN 2017 - SEP 2019

Conducted various research projects in Computational Systems Biology primarily focused on using ML methods to understand mechanisms of actions of small molecule compounds.

Icahn School of Medicine at Mount Sinai, New York, NY — *Postdoctoral Fellow*

JAN 2017 - JUN 2017

Developed a DL model leveraging clinical variables from the EMR to study physiological aging.

EDUCATION

Icahn School of Medicine at Mount Sinai, New York, NY PhD in Computational Biology

AUG 2012 - DEC 2016

Developed computational and mathematical methods to study the complexity of regulatory networks in mammalian systems.

China Agricultural University, Beijing, China BS in Biochemistry and Molecular Biology

SEP 2008 - JUN 2012

SKILLS

ML/Data Science: Univariate and Multivariate Statistics, Ensemble Models (Random forest, Gradient boosting), Network Analysis, Deep Neural Network, NLP, RL

Biomedical Informatics:

Electronic Medical Records, Next-gen Sequencing Data, Transcriptomics, Cheminformatics

Software Development:

<u>Web frameworks</u>: Flask, Shiny <u>Databases</u>: MongoDB, MySQL, PostgreSQL

<u>DevOps</u>: Docker, Apache Mesos <u>UI</u>: Bootstrap, React.js, Backbone.js, d3.js, THREE.js

LANGUAGES

Programming: Python, R, Javascript, SQL, Bash, php, MATLAB, HTML, CSS

Natural: English, Mandarin

SOCIAL MEDIA

GitHub: wangz10

LinkedIn: zichenwang

Twitter: @ZichenWangPhD

Medium: @wangzc921

Kaggle: zichen

StackOverflow:

2340065/zichen-wang

Google scholar: <u>bwLMCp4AAAAJ</u>

Personal website: wangz10.github.io

SELECTED PUBLICATIONS

<u>Wang Z</u>, Zheutlin AB, Kao YH *et al*: **Analysis of hospitalized COVID-19 patients in the Mount Sinai** Health System using electronic medical records (EMR) reveals important prognostic factors for improved clinical outcomes. <u>medRxiv</u> 2020

Large scale observational study using the EMR to identify prognostic factors and to predict outcomes for hospitalized COVID-19 patients with competing risks survival analysis.

Wang Z, Lachmann A, Keenan AB, Ma'ayan A: L1000FWD: Fireworks visualization of drug-induced transcriptomic signatures. <u>Bioinformatics</u> 2018, 34(12): 2150-2152

Developed a large-scale interactive visualization engine (<u>l1000fwd.net</u>) for over 17,000 drug-induced transcriptomic signatures to facilitate drug discovery.

<u>Wang Z</u>, Li L, Glicksberg BS, Israel A, Dudley JT, Ma'ayan A: Predicting Age by Mining Electronic Medical Records with Deep Learning Characterizes Differences between Chronological and Physiological Age. <u>Journal of Biomedical Informatics</u> 2017, 76: 59-68

Employed deep neural nets to predict physiological age for over 300,000 patients using the EMR data and performed large-scale statistical association studies to reveal clinical and genetic factors contributing to disparities in aging.

Wang Z, Monteiro CD, Jagodnik KM *et al*: Extraction and analysis of signatures from the gene expression omnibus by the crowd. <u>Nature Communications</u> 2016 7, 12846.

Built a crowdsourcing microtask platform to enable over 70 citizen scientists to collaboratively work on curation of gene expression signatures from public repository and achieved one of the largest high-quality collection of signatures themed by genetic perturbation, drug treatment and diseases: http://amp.pharm.mssm.edu/CREEDS/.

<u>Wang Z</u>, Ma'ayan A: An open RNA-Seq data analysis pipeline tutorial with an example of reprocessing data from a recent Zika virus study. <u>F1000Research</u> 2016, 5(1574).

Developed one of the first transparent and reproducible computational pipeline implemented in Dockerized Jupyter notebook with equipped diverse interactive visualization widgets to analyze RNA-seq data from scratch: https://github.com/MaayanLab/Zika-RNAseq-Pipeline.

Wang Z, Clark NR, Ma'ayan A: Drug-induced adverse events prediction with the LINCS L1000 data. <u>Bioinformatics</u> 2016, 32(15):2338-2345.

Developed a novel multi-label classification framework to predict adverse drug reactions using features from drug-induced gene expression data and chemical structures: http://maayanlab.net/SEP-L1000/.

<u>Wang Z</u>, Clark NR, Ma'ayan A: Dynamics of the discovery process of protein-protein interactions from low content studies. <u>BMC Systems Biology</u>, 2015, 9(1):26.

Introduced a mathematical network discovery model to investigate the existence and consequences of research focus biases in biological networks from the literature.