Lecture 5: Edgeworth Expansion and Models

Xuejun Ma

School of Mathematical Sciences Soochow University https://xuejunma.github.io

Outline

Outline •0

- Review
- The Delta Method
- The Edgeworth Expansion

Terminology

- The Delta Method; The multivariate Delta method
- The Edgeworth Expansion; the expression of the expansion, including the notations related to the expression.

Review

0

- The Weak Law of Large Numbers: converge in probability/distribution
- The Strong Law of Large Numbers: almost sure convergence
- Use of LLN: Monte Carlo method
- The Central Limit Theorem

The Delta Method

- CLT is for \bar{X}_n
- ullet Can we generalize it to $g(ar{X})$? So the application of CLT is extended.
- Example: what is the limiting dist. for $e^{\bar{X}_n}$?

Theorem 5.5.24: The Delta Method

Suppose that $\frac{\sqrt{n}(Y_n-\mu)}{\sigma} \stackrel{d}{\to} N(0,1)$, and that $g(\cdot)$ is adifferentiable function such that $g'(\mu) \neq 0$, then

$$\frac{\sqrt{n}(g(Y_n)-g(\mu))}{|g'(\mu)|\sigma} \stackrel{d}{\to} N(0,1)$$

Remark:

- $Y_n = \bar{X}_n$ for the CLT. Here, Y_n is a generlized case. For any Y_n satisfying the convergence rule, we have the delta method.
- In other words, $Y_n \stackrel{d}{\to} N(\mu, \sigma^2/n)$ implies that $g(Y_n) \stackrel{d}{\to} N(g(\mu), (g'(\mu))^2 \sigma^2/n)$

Proof: The Delta Method

Intuition of proof: We are interested in the term $\frac{\sqrt{n}(g(Y_n)-g(\mu))}{|g'(\mu)|\sigma}$, Since $\frac{\sqrt{n}(Y_n-\mu)}{\sigma}$ converges to normal distribution, we have that $Y_n-\mu=O_p(n^{-0.5})$. Since g is differentiable at μ , when $y-\mu=0(1)$, there is

$$g(y) = g(\mu) + g'(\mu)(y - \mu) + o(1)(y - \mu)$$

Introduce it into the term of interest,

called "The Delta Method".

$$\begin{split} \frac{\sqrt{n}(g(Y_n) - g(\mu))}{|g'(\mu)|\sigma} &= \frac{\sqrt{n}(g(\mu) + g'(\mu)(Y_n - \mu) + rem - g(\mu))}{|g'(\mu)|\sigma} \\ &= \frac{\sqrt{n}(g'(\mu)(Y_n - \mu) + rem)}{|g'(\mu)|\sigma} \\ &= \sqrt{n}\Big[\frac{Y_n - \mu}{\sigma}\Big] + \frac{\sqrt{n}}{|g'(\mu)|\sigma} \cdot rem \end{split}$$

The first term converges to N(0,1) in distribution, and the second term converges to 0. So the summation would converge to N(0,1) in distribution.Note,the point here is that $g(y) = g(\mu) + g'(\mu)(y - \mu) + o(1)(y - \mu)$ when y changes with a small quantity. Since delta is always used to denote small quantity, so the method is

The Multivariate Delta Method

Suppose that $\mathbf{Y}_n = (Y_{n1}, Y_{n2}, \cdots, Y_{nk})$ is a sequence of random vectors such that $\sqrt{n}(\mathbf{Y}_n - \boldsymbol{\mu}) \overset{d}{\to} N(\mathbf{0}, \boldsymbol{\Sigma})$. Let $g: R^k \to R$ and let $g: \mathcal{R}^k \to \mathcal{R}^m$ be once diőerentiable at $\boldsymbol{\mu}$ with the gradient matrix $\Delta_g(\boldsymbol{\mu})$, then

$$\sqrt{n}(g(\boldsymbol{Y}_n) - g(\boldsymbol{\mu})) \stackrel{d}{\to} N_m(\boldsymbol{0}, \Delta_g^{\top}(\boldsymbol{\mu}) \Sigma \Delta_g(\boldsymbol{\mu}))$$

provided $\Delta_g^{\top}(\mu)\Sigma\Delta_g(\mu)$ is positive definite.

Let X_1, \dots, X_n be i.i.d with finite mean μ and finite variance σ^2 . By the CLT,

$$rac{\sqrt{n}(ar{X}_n-\mu)}{\sigma}\stackrel{d}{
ightarrow} {\sf N}(0,1)$$

. Let $W_n=e^{\hat{X}_n}$. Thus, $W_n=g(\bar{X}_n)$ where $g(t)=e^t$. Since $g'(t)=e^t$, the delta method implies that

$$rac{\sqrt{n}(W_n-e^\mu)}{\sigma e^\mu}\stackrel{d}{
ightarrow} N(0,1)$$

Let X_1,\cdots,X_n be i.i.d with finite mean μ and finite covariance matrix Σ . The according to the multivariate CLT, we have

$$\sqrt{n}\Big(\begin{bmatrix}\bar{X}_{n1}\\\bar{X}_{n2}\end{bmatrix}-\begin{bmatrix}\mu_1\\\mu_2\end{bmatrix}\Big)\overset{d}{\to} \textit{N}_2(\textbf{0},\boldsymbol{\Sigma}$$

Let $g(t,t)=s^2+t^2$,then can apply the delta method and we have that

$$\sqrt{n}(\bar{X}_{n1}^2 + \bar{X}_{n2}^2 - \mu_1^2 - \mu_2^2) \stackrel{d}{\to} 2\mu_1 Z_1 + 2\mu_2 Z_2$$

where $Z = (Z_1, Z_2)^T \sim N(0, \Sigma)$.

- Note that CLT is a good estimate for large n
- When *n* is small, it might be away from the truth
- Example: Consider $X_ii.i.d$ Gamma(1,1), i=1,2,3, We know that $EX_1=VarX_1=1$. Let $Z=\sqrt{3}(\bar{X}_3-1)$, then according to CLT, $Z\sim N(0,1)$ approximately.

• Since *n* is small, there is large difference! How to get a good estimate?

The Edgeworth Expansion

Recall that in the proof of CLT, we figured out the characteristic function as

$$\Phi_{Z_n}(t) = \Phi_Y^n(\frac{t}{\sqrt{n}})$$

where $Z_n=\frac{1}{\sigma}\sqrt{n}[\frac{1}{n}\sum_{i=1}^n(X_i-EX_i)]$ and $Y=(X_1-EX_1)/\sigma$. When we take it as $\Phi_Y(t/\sqrt{n})=1-\sigma^2t^2/(2\sigma^2n)+o(1/n)$, then we have CLT. What if we consider higher order moments?

• Let k_j be jth cumulant of Y, where

$$k_1 = EY, k_2 = Var(Y), k_3 = E(Y_EY)^3, k_4 = E(Y - EY)^4 - 3VarY$$

• Consider $K_Y = \log(\Phi_Y(t))$ and the Taylor series expansion of $K_Y(t)$ at t = 0,

$$\mathcal{K}_Y(t) = rac{1}{\Phi_Y(0)} rac{d\Phi_Y(t)}{dt}|_{t=0} + rac{1}{\Phi_Y(0)} rac{d^2\Phi_Y(t)}{dt^2}|_{t=0} + \cdots = \sum_{i=1}^\infty k_j rac{(it)^j}{j!}$$

• Since $Y = (X_1 - EX_1)/\sigma$, we have $k_1 = EY = 0, k_2 = VarY = 1$, so

$$\Phi_{Y}(t) = exp(-\frac{t^{2}}{2} + \sum_{j=3}^{\infty} \frac{(it)^{j}}{j!}) = exp(-\frac{t^{2}}{2} + \frac{k_{3}^{3}(it)}{3!} + \dots + \frac{k_{j}^{j}}{j!} + \dots)$$

Introduce it into the equation for

$$\Phi_{Z_n}(t) = e^{-t^2/2} [1 + n^{-1/2} r_i(it) + n^{-1} r_2(it) + o(n^{-1})]$$

where
$$r_1(it) = k_3^3(it)/6$$
, and $r_2(it) = \frac{1}{24}k_4^4(it) + \frac{1}{72}k_3^{12}(it)$

 Here, we apply the higher order moments of X to depict the characteristic function more clearly. Therefore, we have the Edgeworth expansion:

$$F_{Z_n}(z) = \Phi(z) + \frac{1}{\sqrt{n}} p_1(z) \phi(z) + \frac{1}{n} p_2(z) \phi(z) + o(\frac{1}{n})$$

where
$$p_1(z) = -k_3(z^2 - 1)/6$$
 and

$$p_2(z) = -z[k_4(z^2 - 3)/24 + k_3^2(z^4 - 10z^3 + 15)/72]$$

.

Returning to our example. Consider the rst order Edgeworth expansion, we have

$$P(Z_e \leq z) pprox \Phi(z) + rac{1}{\sqrt{3}\phi(z)p_1(z)}$$

where $p_1(z) = -k_3(z^2 - 1)/6$ and $k_3 = 2$.

Homework

1 Let X_1, \dots, X_n, \dots be a sequence of independent random variables such that

$$E[X_i] = \mu,$$
 $Var(X_i) < \sigma^2,$ $n = 1, 2, \cdots$

With Chebychev's inequality, prove that $\bar{X}_n \stackrel{P}{\longrightarrow} \mu$.

- ② Let U_1, U_2, \cdots be independent random variables having the uniform distribution on [0,1] and $Y_n = (\prod_{i=1}^n U_i)^{-1/n})$. Show that $\sqrt{n}(Y_n e) \stackrel{d}{\longrightarrow} N(0, e^2)$.
- **1** Let X_1, \dots, X_n be i.i.d. random variables following Uniform[0,1].Let $Y_n = \min(X_1, \dots, X_n)$.
 - (i) Show that $Y_n \stackrel{a.s}{\longrightarrow} 0$ as $n \to \infty$.
 - (ii) Show that $nY_n \stackrel{d}{\longrightarrow} \exp(1)$, where $\exp(1)$ is the exponential distribution with density $f(x) = e^{-x}$ for x > 0.