Neural networks in image saliency prediction

•••

Magdalena Rajtor

Overview of image saliency

- saliency unique features of a processed image
 saliency map their topographical representation
- more than just object detection
- modelling approaches:
 - ➤ Graph-Based Visual Saliency (GBVS)
 - Contextual Guidance Model
 - CNNs, RNNs, GANs
 - CNN+ (e.g. SAM-ResNet)
 - ➤ CNN++ (e.g. TranSalNet)

Challenges with modelling saliency

- they should have semantics (understanding image content)
- task and context dependance
- emotional factors

datasets: CAT2000 (sample of 400 images), EMOd (~700), paintings (150)

TranSalNet_Res model SIM on CAT2000: *0.75*

SIM (Similarity Index) vs SSIM (Structural Similarity Index)

1) Baseline performance - CAT2000

CAT2000	0.47
ART	0.48
EMO	0.57

mean SSIM scores

1) Baseline performance - ART

CAT2000	0.47
ART	0.48
EMO	0.57

mean SSIM scores

1) Baseline performance - EMO

CAT2000	0.47
ART	0.48
EMO	0.57

mean SSIM scores

110 1

ART

2) Finetuning on ART

3) Finetuning on EMO

