Table listing the experiments carried out:

Size of the fixed length sample	Overlap	K- value	Classifier	Accuracy		
32	0	110	Support Vector Machine	0.793939		
32	0	116	Support Vector Machine	0.781818		
16	0	108	Random Forest	0.769697		
16	0	120	Support Vector Machine	0.769697		
16	0	120	Random Forest	0.769697		
32	0	116	Random Forest	0.769697		
16	0	108	Support Vector Machine	0.769697		
32	0	106	Support Vector Machine	0.763636		
32	0	102	Support Vector Machine	0.763636		
16	0					
32	0	110	Random Forest	0.763636 0.763636		
16	0	110	Support Vector Machine	0.763636		
32	0	106	Multinomial Naive Bayes	0.757576		
16	0	116	Support Vector Machine	0.757576		
16	0	100	Random Forest	0.757576		
16	0	114	Support Vector Machine	0.751515		
16	0	11				
32	0	114	Random Forest	0.751515		
32	0	116	Multinomial Naive Bayes	0.751515		
32	0	102	Random Forest	0.745455		
64	0	108	Multinomial Naive Bayes	0.745455		
16	0	112	Support Vector Machine	0.745455		
96	0	116	Multinomial Naive Bayes	0.745455		
16	0	102	Support Vector Machine	0.745455		
16	0	102	Random Forest	0.739394		
32	0	100	Support Vector Machine	0.739394		
16	0	110	Random Forest	0.739394		
16	0	104	Random Forest	0.739394		
16	0	116	Random Forest	0.733333		
16	0	114	Random Forest	0.733333		
16	0	118	Support Vector Machine	0.727273		
32	0	118	Support Vector Machine	0.727273		
16	0	112	Random Forest	0.721212		
64	0	112	Multinomial Naive Bayes	0.721212		
16	0	106	Support Vector Machine	0.721212		
32	0	112	Random Forest	0.715152		
32	0	100	Random Forest	0.715152		
32	0	100	Multinomial Naive Bayes	0.709091		
32	0	108	Support Vector Machine	0.709091		
32	0	104	Random Forest	0.709091		

We used standard K-means.

For classification, we did the training-test split on the files by **training:test = 8:2**. In other words, for each class, we select 80% files as the training data, and others as the test data. If there is less than 4 files, we randomly select a files as the test data.

	Brush_	Climb	Comb	Descend	Drink	Eat	Eat	Getup	Liedown	Pour	Sitdown	Standup	Use	337 11
	teeth	stairs -	hair [—]	stairs	glass	meat	soup	bed -	Liedown_ bed	water	chair –	chair	telephone	Walk
Brush_teeth	1	0	0	0	0	0	0	0	0	0	0	0	0	1
Climb_stairs	0	16	0	0	0	0	0	0	0	0	2	1	0	1
Comb_hair	0	0	5	0	1	0	0	0	0	0	0	0	0	0
Descend_stairs	0	7	0	1	0	0	0	0	0	0	0	0	0	0
Drink_glass	0	0	0	0	20	0	0	0	0	0	0	0	0	0
Eat_meat	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Eat_soup	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Getup_bed	0	0	0	0	2	0	0	13	0	0	0	5	0	0
Liedown bed	0	0	0	0	0	0	0	2	0	1	2	0	0	0
Pour_water	0	0	0	0	0	0	0	0	0	20	0	0	0	0
Sitdown_chair	0	0	0	0	0	0	0	2	0	0	11	6	0	1
Standup_chair	0	0	0	0	0	0	0	4	0	0	7	9	0	0
Use_telephone	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Walk	0	1	0	0	0	0	0	0	0	0	0	0	0	19

Code Snippets:

```
import os
import math
import itertools
import numpy as np
import pandas as pd
from sklearn.cluster import XMeans
from sklearn.cluster import XMeans
from sklearn.svm import SVC
from sklearn.svm import SVC
from sklearn.svm import SVC
from sklearn.naive_bayes import MaussianND
from sklearn.naive_bayes import MaussianND
from sklearn.naive.bayes import doutsianNd
from sklearn.matrics import accuracy score
import matplotlib.pyplot as plt
imatplotlib inline
```

```
def plotConfusionMatrix(y_true, y_pred, classList, clfName):
    cm=confusion_matrix(y_true, y_pred)
    fig=plt.figure(figsize=(9, 9))
    plt.clf()
    plt.imshow(cm, interpolation='nearest', cmap='Reds')
    plt.title('Confusion Matrix - {}'.format(clfName))
    plt.ylabel('True label',fontsize=15)
    plt.xlabel('Predicted label',fontsize=15)
    tick_marks = range(len(classList))
    plt.xticks(tick_marks, classList, rotation=45, fontsize=12)
    plt.yticks(tick_marks, classList, fontsize=12)
    plt.show()
```

```
In [17]: h_Kmean = KMeans(n_clusters = highest_k)
           h_Kmean.fit(h_traData)
          h_cluster = h_Kmean.labels_
h_predict = h_Kmean.predict(h_tesData)
In [35]: tesFileClass = list(itertools.chain(*[[i]*int(h_tesN[i]) for i in range(len(h_tesN))]))
In [54]: start = 0
           end = h_tesFrames[0].shape[0]
           fileClass = 0
           tempSum = []
histClass = {}
           for i in range(len(h_tesFrames)):
               file = np.histogram(h_predict[start:end], bins = highest_k)[0]
if tesFileClass[i] == fileClass:
                    tempSum.append(file)
                else:
                   histClass[fileClass] = np.mean(tempSum, axis = 0)
                    tempSum = []
fileClass += 1
               tempSum.append(file)
if i < len(h_tesFrames) - 1:</pre>
                    start = end
                    end += h_traFrames[i+1].shape[0]
               else:
                    histClass[fileClass] = np.mean(tempSum, axis = 0)
In [65]: for i in histClass.keys():
               plt.figure(figsize = (6, 6))
plt.bar(range(0, highest_k), histClass[i], width = 1.0)
                plt.title(classList[i])
                plt.xticks(range(0, highest_k, 10))
               plt.show()
                                Brush_teeth
```