ASYMPTOTIC BOUNDING

→TIME
Every algorithm requires resources →SPACE

we use asymptotic bounding to know how many resources we are using.

ASYMPTOTIC:

We have a function $\tau(n)$, which is the time/space the algorithm takes, as n changes. We want to bound the change \rightarrow how does it change as it gets larger?

BIG O NOTATION

UPPER BOUND \rightarrow WORST CASE \rightarrow T(n) is taking as much resources as it can

T(n) is O(f(n)) iff T(n) = Cf(n) for all n = n.

we want T(n) to Stay below F(n)

we look for a constant c that will make this true

Lets try with: f(n) = n

Lets try with: $f(n) = \log n$ CF(n) = Clag(n)

C = 1 $\rightarrow 1 \cdot \log(n)$ C = 1000 $\rightarrow 1000 \cdot \log(n)$ C = 10 $\rightarrow 10 \cdot \log(n)$

BIG OMEGA NOTATION

LOWER BOUND - BEST CASE

BIG THETA NOTATION

EXACT BOUND