3.3 Find the Laplace X(s) given that x(t) is

- (a) 2tu(t-4)
- (b) $5\cos t \delta(t-2)$
- (c) $e^{-t}u(t-\tau)$
- (d) $\sin 2t \ u(t-\tau)$

3.11 Obtain the inverse Laplace transform of the following functions:

(a)
$$X(s) = \frac{1}{s} + \frac{2}{s}e^{-s}$$

(b)
$$Y(s) = \frac{10}{s^2 - 5s + 4}$$

(c)
$$\frac{s-2}{s^2+2s+10}$$

3.14 Find the inverse Laplace transform of the following functions:

(a)
$$F(s) = \frac{20(s+2)}{s(s^2+6s+25)}$$

(b)
$$P(s) = \frac{6s^2 + 36s + 20}{(s+1)(s+2)(s+3)}$$

3.18 Let
$$F(s) = \frac{5(s+1)}{(s+2)(s+3)}$$

- (a) Use the initial and final value theorems to find f(0) and $f(\infty)$.
- (b) Verify your answer in part (a) by finding f(t) using partial fractions.

3.22 Find the transfer function of the system shown in Figure 3.24.

FIGURE 3.24 For Problem 3.22.

3.29 Solve the differential equation

$$y''(t) + 7y'(t) + 12y(t) = e^{-t}u(t)$$

subject to
$$y(0) = -1$$
, $y'(0) = 2$

3.46 Consider the function

$$H(s) = \frac{s^2 + 6s + 10}{s^3 + 7s^2 + 11s + 5}$$

Use the MATLAB residue function to obtain the inverse Laplace transform of H(s).

3.50 Find the impulse response and the step response for each of the following systems:

(a)
$$H(s) = \frac{s+1}{s^2 + 5s + 6}$$

(b)
$$H(s) = \frac{5s}{s^3 + 10s^2 + 10s + 4}$$

3.51 Use MATLAB to find the zeros and poles of these functions:

(a)
$$\frac{s-2}{(s+1)^2+9}$$

(b)
$$\frac{s^2 + 2s + 5}{s(s^2 + 4s + 13)}$$

(c)
$$\frac{s^2 + 10s + 5}{s^3 + 4s^2 + 10s + 6}$$

3.53 Obtain the Bode plots for the following transfer functions using MATLAB:

(a)
$$H(s) = \frac{s(s+10)}{(s+20)(s+50)}$$

(b)
$$H(s) = \frac{s+1}{(s+2)(s^2+22.5s+16)}$$