Systèmes dynamiques Corrigé 2

Exercice 1. Familles d'applications transitives

Soit $(U_k)_{k\in\mathbb{N}}$ une base d'ouverts de X. Pour tous $k,i\in\mathbb{N}$, l'ensemble

$$A_{i,k} = \bigcup_{n \in \mathbf{N}} f_i^{-n}(U_k)$$

est un ouvert dense, par transitivité des f_i . Dès lors l'ensemble

$$Y = \bigcap_{i \in \mathbf{N}} \bigcap_{k \in \mathbf{N}} A_{i,k}$$

est dense, par le théorème de Baire, puisque X est localement compact. Tout élément $y \in Y$ vérifie $\omega_{f_i}(y) = X$.

Exercice 2. Transformations minimales

- 1. Soient U, V deux ouverts non vides, et $Y = \overline{\bigcup_{n \geq 0} f^{-n}(V)}$. Alors Y est fermé et $f(Y) \subset Y$; ainsi Y = X et il existe $n \in \mathbb{N}$ tel que $f^{-n}(U) \cap V = \emptyset$.
- 2. Soit $\mathcal{F} = \{F \subset X, F \text{ est un ferm\'e non vide tel que } f(F) \subset F\}$. Alors \mathcal{F} est partiellement ordonn\'e pour l'inclusion. Soit $\mathcal{C} \subset \mathcal{F}$ une famille totalement ordonnée. Alors

$$G = \bigcap_{F \in \mathcal{C}} F$$

est non vide. En effet, supposons que ce ne soit pas le cas. Alors $X = \bigcup_F \mathbb{C}F$ et par compacité, il existe $F_1, \ldots, F_N \in \mathcal{C}$ tels que

$$X = \bigcup_{i=1}^{N} \mathbf{C}F_i.$$

Par suite $\bigcap_{j=1}^N F_j = \emptyset$, ce qui est absurde puisque la famille $\{F_1, \dots, F_N\}$ est totalement ordonnée.

Ainsi G est non vide et c'est un minorant pour C. Par le lemme de Zorn, il existe un élément minimal de F, noté Y. Soit $F \subset Y$ un fermé non vide tel que $f(F) \subset F$. Alors F = Y par minimalité de Y et donc $f|_Y$ est minimale.

3. Soit $f: X \to X$ continue. Alors par la questions précédente, f admet une partie fermée minimale non vide Y. Soit $y \in Y$; on considère l'orbite positive $\mathcal{O}_+(y) = \{f^n(y), n \in \mathbf{N}\}$. Alors $\overline{\mathcal{O}_+(y)}$ est une partie fermée non vide de Y, invariante par f. Par minimalité, $\overline{\mathcal{O}_+(y)} = Y$ et y est positivement récurrent.

Exercice 3. Ensemble non-errant

- 1. Supposons que pour tout n > m, $f^n(U) \cap U = \emptyset$. Alors x n'est pas périodique et il existe un voisinage V de x tel que $f^j(V) \cap V = \emptyset$ pour tout $j = 1, \ldots, m$. Quitte à réduire V, on peut supposer $V \subset U$. On a donc $f^k(V) \cap V = \emptyset$ pour tout $k \in \mathbb{N}_{\geq 1}$ et $x \notin \Omega(f)$.
- 2. Soit $x \notin \Omega(f)$ et U un voisinage ouvert de x tel que $f^n(U) \cap U = \emptyset$ pour tout $n \ge 1$. Alors tout $y \in U$ est errant, et donc $\Omega(f)$ est fermé. Il est invariant : si $x \in \Omega(f)$ et y = f(x), on a un voisinage U de x et n > 0 tel que $f^n(U) \cap U \ne \emptyset$. Alors $V = f^{-1}(U)$ est un voisinage de y et vérifie $f^n(V) \cap V \ne \emptyset$.

Enfin, soit $x \in X$ et $y \in \omega(x)$. Soit U un voisinage ouvert de y. Alors il existe m > n > 0 tels que $f^m(x), f^n(x) \in U$. Il suit que $f^{m-n}(U) \cap U \neq \emptyset$, donc $y \in \Omega(f)$.

3. Pour $x \in Per(f)$, l'orbite $\mathcal{O}_+(x)$ est un ensemble minimal et donc $Per(f) \subset M(f)$.

Soit $F \subset X$ un sous-ensemble minimal pour f. Alors tout point de F est récurrent (cf. **Exercice 2.**) et donc $M(f) \subset R(f)$.

Si x est récurrent, on a $x \in \omega(x) \subset \Omega(f)$. Comme $\Omega(f)$ est fermé, on a $R(f) \subset \Omega(f)$.

Exercice 4. Entropie d'un flot

La compacité de X et la continuité de Φ donnent

$$\forall \varepsilon > 0, \quad \exists \delta(\varepsilon) > 0, \quad \forall x, y \in X, \quad \operatorname{dist}(x, y) \leq \delta(\varepsilon) \implies \operatorname{d}_{1}^{\Phi}(x, y) \leq \varepsilon.$$

Pour $f: X \to X$, on rappelle que

$$d_n^f(x,y) = \max\{d(f^k(x), f^k(y)), k = 0, \dots, n-1\}.$$

De plus, on peut supposer que $\delta(\varepsilon) \to 0$ quand $\varepsilon \to 0$. Par conséquent, puisque $\mathrm{d}_T^{\Phi} \geq \mathrm{d}_{\lfloor T \rfloor}^{\varphi^1}$, on a pour tout $\varepsilon > 0$ et tout T > 1

$$B_{\mathbf{d}_{|T|}^{\varphi^1}}(x,\varepsilon) \supset B_{\mathbf{d}_{T}^{\Phi}}(x,\varepsilon) \supset B_{\mathbf{d}_{|T|}^{\varphi^1}}(x,\delta(\varepsilon)).$$

Ainsi, en notant pour toute application $f: X \to X$

$$M^f(n,\varepsilon) = \min \left\{ m \ge 1, \ \exists x_1, \dots, x_m \in X, \ \bigcup_{i=1}^m B_{d_n^f}(x_i,\varepsilon) = X \right\},$$

on a

$$M^{\varphi^1}(\lfloor T\rfloor,\varepsilon) \leq M^{\Phi}(T,\varepsilon) \leq M^{\varphi^1}(\lfloor T\rfloor,\delta(\varepsilon)),$$

où $M^{\Phi}(T,\varepsilon)$ est défini comme $M^f(n,\varepsilon)$ en remplaant d_n^f par d_T^{Φ} . Il suit que

$$\limsup_{n} \frac{1}{n} \log M^{\varphi^{1}}(n, \varepsilon) \leq \limsup_{T} \frac{1}{T} \log M^{\Phi}(T, \varepsilon) \leq \limsup_{n} \frac{1}{n} \log M^{\varphi^{1}}(n, \delta(\varepsilon)),$$

ce qui conclut.

Exercice 5. Propriétés de l'entropie topologique

On définit comme dans le cours, pour tout $f: X \to X$, tout $n \in \mathbb{N}_{>1}$ et tout $\varepsilon > 0$,

$$C^f(n,\varepsilon) = \min \left\{ m \ge 1, \ \exists U_1, \dots, U_m \subset X, \ \forall j, \ \operatorname{diam}_{\operatorname{d}_n^f}(U_i) \le \varepsilon, \ X \subset \bigcup_{i=1}^m U_i \right\},$$

et

$$N^f(n,\varepsilon) = \max \left\{ m \in \mathbf{N}, \ \exists x_1, \dots, x_m \in X, \ \forall i \neq j, \ \mathrm{d}_n^f(x_i, x_j) \leq \varepsilon \right\}.$$

- 1. On a $C^f(n,\varepsilon) \geq C^{f|_{\Lambda}}(n,\varepsilon)$ pour tous n,ε , ce qui conclut.
- 2. Par la question précédente on a $h_{\text{top}}(f_j) \leq h_{\text{top}}(f)$ pour tout j. De plus, on a que

$$C^f(n,\varepsilon) \le \sum_{i=1}^m C^{f|_{\Lambda_i}}(n,\varepsilon).$$

Ceci implique qu'il existe $i \in \{1, ..., m\}$ tel que

$$C^{f|_{\Lambda_i}}(n,\varepsilon) \ge \frac{1}{m}C^f(n,\varepsilon),$$

qui vérifie donc $h_{\text{top}}(f|_{\Lambda_i}) \geq h_{\text{top}}(f)$.

3. On a que $d_n^{f^m} \leq d_{mn-m+1}^f$ pour tous $m, n \geq 1$. Par suite, $M^{f^m}(n, \varepsilon) \leq M^f(mn - m + 1, \varepsilon) \leq M^f(mn, \varepsilon)$.

Par continuité de f, pour tout $\varepsilon > 0$, il existe $\delta(\varepsilon) > 0$ tel que $B(x, \delta(\varepsilon)) \subset B_{\mathrm{d}_m^f}(x, \varepsilon)$. Alors

$$B_{\mathbf{d}_{n}^{f^{m}}}(x,\delta(\varepsilon)) = \bigcap_{i=0}^{n-1} f^{-im} B(f^{im}(x),\delta(\varepsilon))$$

$$\subset \bigcap_{i=0}^{n-1} f^{-im} B_{\mathbf{d}_{m}^{f}}(f^{im}(x),\varepsilon)$$

$$= B_{\mathbf{d}_{mn}^{f}}(x,\varepsilon).$$

Ici, on a utilisé que

$$B_{\mathbf{d}_n^f}(x) = \bigcap_{k=0}^{n-1} f^{-k} B(f^k(x), \varepsilon).$$

Il suit que $M^{f^m}(n,\delta(\varepsilon)) \geq M^f(mn,\varepsilon)$, et donc

$$M^f(mn,\varepsilon) \leq M^{f^m}(n,\delta(\varepsilon)) \leq M^f(mn,\delta(\varepsilon)),$$

ce qui donne $h_{\text{top}}(f^m) = mh_{\text{top}}(f)$.

Si f est inversible on a $B_{\mathbf{d}_n^f}(x,\varepsilon) = B_{\mathbf{d}_n^{f-1}}(f^{n-1}(x),\varepsilon)$ pour tous n,x,ε , ce qui conclut.

- 4. On a que id : $(X, d) \to (X, d')$ est un homéomorphisme puisque d et d' engendrent la même topologie. De plus $f \circ id = id \circ f$ donc les systèmes dynamiques topologiques (X, d, f) et (X, d', f) sont conjugués. Cela conclut par un théorème du cours.
- 5. On a que $B_{\operatorname{d}_n^{f \times g}}((x,y),\varepsilon) = B_{\operatorname{d}_n^f}(x,\varepsilon) \times B_{\operatorname{d}_n^g}(y,\varepsilon)$. Ceci implique que $M^{f \times g}(n,\varepsilon) \leq M^f(n,\varepsilon) M^g(n,\varepsilon)$, et donc $h_{\operatorname{top}}(f \times g) \leq h_{\operatorname{top}}(f) + h_{\operatorname{top}}(g)$.

Soient $x_1, \ldots, x_m \in X$ (resp. $y_1, \ldots, y_p \in Y$) tels que pour tous $1 \leq i \neq i' \leq m$ (resp. $1 \leq j \neq j' \leq p$) on ait $d_n^f(x_i, x_j) \geq \varepsilon$ (resp. $d_n^g(y_i, y_j) \geq \varepsilon$). Alors pour tous $(i, j) \neq (i', j')$ on a

$$d_n^{f \times g}((x_i, y_i), (x_{i'}, y_{j'})) \ge \varepsilon.$$

Par conséquent $N^{f \times g}(n, \varepsilon) \ge N^f(n, \varepsilon) N^g(n, \varepsilon)$, et donc $h_{\text{top}}(f \times g) \ge h_{\text{top}}(f) + h_{\text{top}}(g)$.

Exercice 6. Entropie des transformations Lipschitziennes

1. Soit $n \ge 1$. Il existe c > 0 telle que pour tout $\varepsilon > 0$ on a

$$c^{-1}\varepsilon^{-n} < M([0,1]^n,\varepsilon) < c\varepsilon^{-n}$$
.

Par suite

$$\frac{-c + n \log 1/\varepsilon}{\log 1/\varepsilon} \le \frac{\log M([0,1]^n, \varepsilon)}{\log 1/\varepsilon} \le \frac{n \log 1/\varepsilon}{\log 1/\varepsilon},$$

ce qui conclut.

2. Soit $L > \max(1, L(f))$. Alors $d(f(x), f(y)) \le Ld(x, y)$ pour tous $x, y \in X$. Cela implique que

$$f^m(B(x,\varepsilon/L^n)) \subset B(f^m(x),\varepsilon), \quad 0 \le m \le n,$$

et donc

$$B(x,\varepsilon/L^n) \subset \bigcap_{m=0}^{n-1} f^{-m}B(f^m(x),\varepsilon) = B_{\mathbf{d}_n^f}(x,\varepsilon), \quad \forall x,\varepsilon.$$

Ainsi on obtient

$$\begin{split} \frac{1}{n}\log M^f(n,\varepsilon) &\leq \frac{1}{n}\log M(X,\varepsilon/L^n) \\ &= \frac{\log(L^n/\varepsilon)}{n}\frac{\log M(X,\varepsilon/L^n)}{\log(L^n/\varepsilon)} \\ &= \left(\log L - \frac{\log \varepsilon}{n}\right)\frac{\log M(X,\varepsilon/L^n)}{\log(L^n/\varepsilon)}. \end{split}$$

Puisque $\log L > 0$ on obtient

$$\limsup_{n} \frac{1}{n} M^{f}(n, \varepsilon) \le \log(L) \operatorname{bdim}(X),$$

et donc $h_{\text{top}}(f) \leq \log(L) \text{bdim}(X)$.

3. Par le cours, l'application doublante $E_2:[x]\mapsto [2x]$ sur $X=S^1$ satisfait cette égalité, puisque $\operatorname{bdim}(S^1)=1$, et $h_{\operatorname{top}}(E_2)=\log 2$.

Exercice 7. Entropie algébrique

1. Soit $i \in \{1, \ldots, s\}$. et $m, n \ge 0$. Alors $F^n(\gamma_i)$ peut s'écrire

$$F^n(\gamma_i) = \lambda_1 \cdots \lambda_{L(n,\Gamma)}, \quad \lambda_j \in \Gamma.$$

On a donc

$$F^{m+n}(\gamma_i) = F^m(\lambda_1) \cdots F^m(\lambda_{L(n,\Gamma)}).$$

Chaque $F^m(\lambda_j)$ peut s'écrire comme un produit d'éléments Γ de $L(m,\Gamma)$ termes. Ceci montre que

$$L_{n+m}(F,\Gamma) \le L_n(F,\Gamma)L_m(F,\Gamma).$$

Ainsi la suite $(\log L_n(F,\Gamma))_n$ est sous-additive, ce qui conclut.

2. Soit $\Gamma' = \{\gamma'_1, \dots, \gamma'_r\}$ est un autre système de générateurs. Soient

$$k = \max_{1 \le j \le r} L(\gamma'_j, \Gamma), \quad k' = \max_{1 \le i \le s} L(\gamma_i, \Gamma').$$

Alors pour tout $g \in G$ on a

$$L(g,\Gamma) \le k' L(g,\Gamma') \le kk' L(g,\Gamma).$$

En particulier $L_n(F,\Gamma) \leq k' L_n(F,\Gamma') \leq kk' L_n(F,\Gamma)$, ce qui conclut.

3. Soit Γ un système de générateurs de G. Alors on a

$$L_n(I_{\gamma_0}F,\Gamma) - 2c \le L_n(F,\Gamma) \le L_n(I_{\gamma_0}F,\Gamma) + 2c$$

où $c = \max(L(\gamma_0, \Gamma), L(\gamma_0^{-1}, \Gamma))$. Cela conclut.

4. Soit $x'_{\star} \in X$ un autre point base et α' un chemin joignant x'_{\star} à $f(x'_{\star})$. Soit $G' = \pi_1(M, x'_{\star})$. Soit β un chemin joignant x_{\star} à x'_{\star} Alors l'application $\psi : G \to G'$ définie par $\psi(\gamma) = \beta^{-1}\gamma\beta$ est un isomorphisme de groupes. On a

$$F_{x_{\star},\alpha}(\gamma) = \alpha^{-1}(f \circ \gamma)\alpha$$

$$= \alpha^{-1}(f \circ \beta)^{-1}(f \circ \beta)(f \circ \gamma)(f \circ \beta)^{-1}(f \circ \beta)\alpha$$

$$= \alpha^{-1}(f \circ \beta)^{-1}\alpha'\alpha'^{-1}(f \circ (\beta\gamma\beta^{-1}))\alpha'\alpha'^{-1}(f \circ \beta)\alpha,$$

ce qui montre que $F_{x_{\star},\alpha} = \phi^{-1} F_{x_{\star}',\alpha'} \psi$ où $\phi: G \to G'$ est un isomorphisme de la forme $\gamma \mapsto \beta'^{-1} \gamma \beta'$ où β' est un chemin joignant x_{\star} à x_{\star}' . En procédant comme à la question précédente, on conclut.