Verjetnost in statistika - zapiski s predavanj prof. Drnovška

Tomaž Poljanšek

študijsko leto 2022/23

Kazalo

	0.1	Matematično upanje oz. pričakovana vrednost
	0.2	Disperzija, kovarianco in korelacijski koeficient
	0.3	Pogojna porazdelitev in pogojno matematično upanje 12
	0.4	Višji momenti in vrstilne karakteristike
	0.5	Rodovne funkcije
	0.6	Momentno rodovna funkcija
	0.7	Šibki in krepki zakon velikih števil
	0.8	Centralni limitni izrek
1	Sta	tistika 30
	1.1	Osnovni pojmi
	1.2	Vzorčne statistike in cenilke
	1.3	Metode za pridobivanje cenilk
		1.3.1 Metoda momentov
		1.3.2 Metoda maksimalne zanesljivosti (oz. največjega ver-
		jetja)
	1.4	Intervalsko ocenjevanje parametrov

Posledica 0.1. Če so $X_1, X_2 \cdots X_n$ neodvisne slučajne spremenljivke, porazdeljene N(0,1), potem je $Y:=X_1^2+\cdots+X_n^2$ porazdeljena po $\chi^2(n)$

Dokaz. Vemo, da je $X_i^2 \sim \chi^2(1)$ in da so $X_1^2 \cdots X_n^2$ neodvisne spremenljivke. Potem je po trditvi + indukciji $Y \sim \chi^2(1+\cdots+1) = \chi^2(n)$

Oglejmo si transformacijo $f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \to (u,v)$, ki preslika zvezno porazdeljen slučajni vektor (x,y) v zvezno porazdeljen slučajni vektor (u,v), torej U=u(x,y), V=v(x,y)Označimo še $A_{u,v}=(-\infty,u]\times(-\infty,v]$ Potem je

$$F_{(U,V)}(u,v) = \iint_{A_{u,v}} p_{(U,V)}(s,t) ds dt$$

Pot drugi strani pa je

$$F_{(U,V)}(u,v) = P((U,V) \in A_{u,v}) = P((X,Y) \in f^{-1}(A_{u,v})) = \iint_{f^{-1}(A_{u,v})} p_{(X,Y)}(x,y) dx dy$$

Privzemimo še, da je f
 zvezno odvedljiva bijekcija. Potem je $f: \mathbb{R}^2 \to \mathbb{R}^2, (u,v) \to (x,y)$ tudi zvezno odvedljiva. Z
 zamenjavo spremenljivk x=X(u,v),y=Y(u,v) v zadnjem intergalu dobimo

$$F_{(U,V)}(u,v) = \iint_{A_{u,v}} p_{(X,Y)}(x(s,t), y(s,t)) \cdot |J(s,t)| dx ds$$

kjer je

$$J(u,v) = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} (u,v)$$

Jacobijeva determinanta.

Zaradi imamo torej $p_{(U,V)}(u,v) = p_{(X,Y)}(x(u,v),y(u,v))|J(u,v)|$ Oglejmo si poseben primer Primer. U=X, V=v(x,y) oz X=U, Y=y(u,v) Tedaj je $p_{(U,V)}(u,v)=p_{(X,Y)}(u,y(u,v))|\frac{\partial y}{\partial v}(u,v)|$ Gostota spremenljivke V je $\int_{-\infty}^{\infty}p_{(X,Y)}(u,y(u,v))|\frac{\partial y}{\partial v}(u,v)|dv=p_{V}(v)$ Pišimo Z=V, torej je Y=y(x,z), saj je U=X Potem prepišemo $p_{Z}(z)=\int_{-\infty}^{\infty}p_{(X,Y)}(u,y(x,z))|\frac{\partial y}{\partial z}(x,z)|dx$

Primer.

1.
$$Z = X + Y \implies Y = Z - X$$
, torej je $y(x, z) = z - x$, $\frac{\partial y}{\partial z}(x, z) = 1$

$$p_{X+Y}(z) = \int_{-\infty}^{\infty} p_{(X,Y)}(x, z - x) \cdot 1 dx$$

2.
$$Z = X \cdot Y \implies Y = \frac{Z}{X}$$
, torej je $y(x, z) = \frac{z}{x}$, $\frac{\partial y}{\partial z}(x, z) = \frac{1}{x}$
$$p_{X \cdot Y}(z) = \int_{-\infty}^{\infty} p_{(X,Y)}(x, \frac{z}{x}) \frac{1}{|x|} dx$$

Če sta še X in Y neodvisni slučajni spremenljivki, potem je

$$p_{X \cdot Y}(z) = \int_{-\infty}^{\infty} p_X(x) \cdot p_Y(\frac{z}{x}) \cdot \frac{1}{|x|} dx$$

0.1 Matematično upanje oz. pričakovana vrednost

V primeru $X:\begin{pmatrix} x_1 & \cdots & x_n \\ p_1 & \cdots & p_n \end{pmatrix}$ je matematično upanje oz. pricakovana vrednost vsota $E(X) := \sum_{k=1}^n x_k \cdot p_k$

V posebnem primeru $p_1=\cdots=p_n=\frac{1}{n}$ je $E(X)=\frac{1}{n}\sum_{k=1}^n x_k=\frac{x_1+\cdots+x_n}{n}$ - povprečje števil $x_1\cdots x_n$

expected value, expectation, mean value

Naj bo X diskretno porazdeljena slučajna spremenljivka z neskončno zalogo vrednosti:

$$X: \begin{pmatrix} x_1 & x_2 & x_3 & \cdots \\ p_1 & p_2 & p_3 & \cdots \end{pmatrix}$$

X ima matematično upanje oz. pričakovano vrednost, če je $\sum_{k=1}^{\infty}|x_k|p_k<\infty$ Tedaj je matematično upanje definirano kot $E(X)=\sum_{k=1}^{\infty}x_k\cdot p_k$ Naj bo sedaj X zvezno porazdeljena slučajna spremenljivka z gostoto p_X . Potem ima X matematično upanje, če je $\int_{-\infty}^{\infty}|x|\cdot p_X(x)dx<\infty$. Tedaje je matematično upanje slučajne spremenljivke X enako $E(X)=\int_{-\infty}^{\infty}x\cdot p_X(x)dx$

Primer.

1.
$$X \sim Ber(p)$$
 oz. $X : \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix} q = 1 - p, E(X) = 0 \cdot q + 1 \cdot p = p$

2.
$$X \sim Poi(\lambda)$$
, torej $p_k = P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda} k = 0, 1 \cdots$

$$E(X) = \sum_{k=0}^{\infty} k \cdot p_k = \sum_{k=0}^{\infty} k \cdot \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \cdot \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda$$

3. Enakomerna porazdelitev na [a, b]

$$p(X) = \begin{cases} \frac{1}{b-a} & \text{\'e } a \le x \le b \\ 0 & \text{sicer} \end{cases}$$

$$E(X) = \int_a^b x \cdot \frac{1}{b-a} dx = \frac{1}{b-a} \cdot \frac{x^2}{2} \Big|_a^b = \frac{b^2 - a^2}{2(b-a)} = \frac{b+a}{2}$$

4. $X \sim N(\mu, \sigma)$

$$E(X) = \frac{1}{\sigma\sqrt{2\pi}} \cdot \frac{-\infty}{\infty} x \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx =$$

$$U = \frac{x-\mu}{\sigma} \implies du = \frac{dx}{\sigma}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (\sigma u + \mu) e^{-\frac{1}{2}u^2} du = \frac{1}{\sqrt{2\pi}} \sigma \int_{-\infty}^{\infty} u \cdot e^{-\frac{1}{2}u^2} du + \mu \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u \cdot e^{-\frac{1}{2}u^2} du = \frac{1}{\sigma} \int_{-\infty}^{\infty} u \cdot e^{$$

Ker je v predzadnjem koraku 1. funkcija (v integralu) liha, 2. pa je gostota porazdelitve N(0,1)

5. Cauchyjeva porazdelitev $p(x) = \frac{1}{\pi(1+x^2)}$ Nima matematičnega upanja, saj je $\int_{-\infty}^{\infty} |x| \cdot \frac{1}{\pi(1+x^2)} dx = \frac{2}{\pi} \int_{0}^{\infty} \frac{x}{1+x^2} dx = \frac{1}{\pi} \ln(1+x^2)|_{0}^{\infty} = \infty$ 6. $1 - \frac{1}{2} + \frac{1}{3} - \cdots$ je pogojno konvergentna vrsta, t.j. konvergira, a ne absolutno

$$X: \begin{pmatrix} x_1 & x_2 & \cdots \\ p_1 & p_2 & \cdots \end{pmatrix}, \sum_{k=1}^{\infty} x_k \cdot p_k = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}$$

$$x_k \cdot p_k = \frac{(-1)^{k-1}}{k}$$

$$\sum_{k=1}^{\infty} p_k = 1$$

$$p_k := \frac{1}{2^k} \text{ npr. ker je vsota 1}$$

$$x_k := \frac{(-1)^{k-1}}{k} = 2^k$$

Ta porazdelitev nima matematičnega upanja, ker vrsta ne konvergira absolutno

Trditev 0.2. Naj bo $f: \mathbb{R} \to \mathbb{R}$ zvezna funkcija

- (a) Če je $X:\begin{pmatrix} x_1 & x_2 & \cdots \\ p_1 & p_2 & \cdots \end{pmatrix}$ potem je $E(f \circ X) \equiv E(f(X)) = \sum_{k=1}^{\infty} f(x_k) \cdot p_k$ (če le to matema "ticno upanje obstaja)
- (b) Če je X zvezno porazdeljena z gostoto p_X , potem je $E(f \circ X) = \int_{-\infty}^{\infty} f(x) \cdot p_X(x) dx$

Dokaz. (samo (a)):

$$f \circ X : \begin{pmatrix} f(x_1) & f(x_2) & \cdots \\ p_1 & p_2 & \cdots \end{pmatrix}$$
npr če $f(x_1) = f(x_3) \implies \begin{pmatrix} f(x_1) & f(x_2) & \cdots \\ p_1 + p_3 & p_2 & \cdots \end{pmatrix}$
$$(E(f \circ X) = \int_{-\infty}^{\infty} x \cdot p_{f(x)}(x) dx = \cdots = \int_{-\infty}^{\infty} f(x) \cdot p_X(x) dx - \text{substitucija}$$
$$y = f(x) \text{ v integralu}) \blacksquare$$

Posledica 0.3. Slučajna spremenljivka X ima matematično upanje \iff X ima matematično upanje. Tedaj velja |E(X)| = E(|X|)

Dokaz. (samo diskreten primer):

$$E(|X|) \stackrel{\operatorname{trd}.f(x)=|x|}{=} \sum_{i} |x_{i}| \cdot p_{i} \ge |\sum_{i} x_{i} \cdot p_{i}| = |E(X)|$$

Posledica 0.4. Za $\forall a \in \mathbb{R}$ in vsako slučjano spremenljivko X z matematičnim upanjem velja $E(a \cdot X) = a \cdot E(X)$ (homogenost)

Dokaz.
$$f(x) = a \cdot x$$
, trditev (od prej)

Podobno kot zadnjo trditev se dokaže

Trditev 0.5. Naj bo $f: \mathbb{R}^2 \to \mathbb{R}$ zvezna funkcija in (X,Y) slučajni vektor

- (a) Naj bo (X,Y) diskretno porazdeljen $p_{ij} := P(X = x_i, Y = y_j)$. Potem je $E(f(X,Y)) = \sum_i \sum_i f(x_i, y_j) \cdot p_{ij}$ (če le vrsta (oz. končna vsota) absolutno konvergira)
- (b) Naj bo (X,Y) zvezno porazdeljen z gostoto p(X,Y). Potem je $E(f(X,Y)) = \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} f(x,y) p_{(X,Y)}(x,y) dy$ (če le integral absolutno konvergira)

Posledica 0.6. Če slučajni spremenljivki X in Y imata matamatično upanje, potem ga ima tudi X + Y in velja E(X + Y) = E(X) + E(Y) (aditivnost)

Dokaz. (samo zvezen primer):

$$E(X,Y) \stackrel{f(x,y)=x+y}{=} \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} (x+y)p_{(X,Y)}(x,y)dy =$$

$$= \int_{-\infty}^{\infty} x dx \int_{-\infty}^{\infty} p_{(X,Y)}(x,y)dy + \int_{-\infty}^{\infty} y dy \int_{-\infty}^{\infty} p_{(X,Y)}(x,y)dx =$$

$$= \int_{-\infty}^{\infty} x p_X(x)dx + \int_{-\infty}^{\infty} y p_Y(y)dy = E(X) + E(Y)$$

Posledica 0.7. Za slučajne spremenljivke $X_1 \cdots X_n$, ki imajo matematično upanje, velja $E(a_1X_1 + \cdots + a_nX_n) = a_1E(X_1) + \cdots + a_nE(X_n)$ z $\forall a_1 \cdots a_n \in \mathbb{R}$

$$E(X+Y) = \int_{-\infty}^{\infty} x \cdot p_{X+Y}(x) dx \stackrel{?}{=} E(X) + E(Y)$$
 ni očitno iz tega

Primer. 1. Če ima X matematično upanje, potem E(X-E(X))=E(X)-E(X)=0

2.
$$X_k \sim Ber(p)$$
, t.j. $X_k \sim \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix}$, $q = 1 - p$

$$X = X_1 + \dots + X_n \implies E(X) = E(X_1) + \dots + E(X_n) = n \cdot p$$

Posebej to (v 2. zgledu) velja v primeru, ko so $\{X_k\}_{i=1}^n$ neodvisne. To velja tudi za Bernoullijevo zaporedje ponovitev poskusa: opazujemo dogodek A sP(A) = p. X je frekvenca dogodka A v n ponovitvah poskusa. Potem je $X \sim Bin(n,p)$ in $X = X_1 + \cdots + X_n$, kjer je $(X_k = 1)$ dogodek, da se A zgodi v k-ti ponovitvi poskusa, sicer je $(X_k = 0)$. Po zgornjem je $E(X) = n \cdot p$. Do tega lahko pridemo tudi direktno:

$$E(X) = \sum_{k=0}^{n} k \cdot p_k = \sum_{k=0}^{n} k \cdot \binom{n}{k} p^k q^{n-k} =$$

$$= \sum_{k=1}^{n} k \cdot \frac{n}{k} \binom{n-1}{k-1} p^k q^{n-k} = np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} q^{n-k} \stackrel{j=k-1}{=}$$

$$= np(\sum_{j=0}^{n-1} \binom{n-1}{j} p^j q^{n-1-j}) = np(p+q)^{n-1} = np$$

Trditev 0.8 (Cauchy-Schwartzova neenakost). Če obstajata $E(X^2)$ in $E(Y^2)$, potem obstaja tudi E(X,Y) in velja $E(|X\cdot Y|) \leq \sqrt{E(X^2)\cdot E(Y^2)}$. Enačaj velja samo v primeru $|Y| = \sqrt{\frac{E(Y^2)}{E(X^2)}}|X|$ z verjetnostjo 1

Dokaz. Ker za nenegativa realna števila velja neenakost

$$u \cdot v \le \frac{1}{2}(u^2 + v^2) \iff (u - v)^2 \ge 0$$

za nenegativni slučajni spremenljivki U in V velja neenakost

$$U \cdot V \le \frac{1}{2}(U^2 + V^2)$$

Enakost velja samo v točkah $\omega \in \Omega$, za katere je $U(\omega) = V(\omega)$ Če vstavimo $U = a \cdot |X|$ in $V = \frac{1}{a}|Y|$ za a > 0, dobimo $|X \cdot Y| \leq \frac{1}{2}(a^2Y^2 + \frac{1}{a^2}Y^2)$ in zato je

$$E(|X \cdot Y|) \le \frac{1}{2}(a^2 E(X^2) + \frac{1}{a^2} E(Y^2)) \text{ za } \forall a > 0$$
 (2)

Če vstavimo $a^2 = \sqrt{\frac{E(Y^2)}{E(X^2)}}$ na desni strani dobimo

$$\frac{1}{2}(\sqrt{E(Y^2)+E(X^2)}+\sqrt{E(X^2+E(Y^2))})=\sqrt{E(X^2)+E(Y^2)}$$

Torej je

$$E(|X \cdot Y|) < \sqrt{E(X^2) \cdot E(Y^2)}$$

Enakost v neenakosti velja $\iff a|X| = \frac{1}{a}|Y|$, torej $|Y| = a^2|X| = \frac{E(Y^2)}{E(X^2)}|X|$ z verjetnostjo 1

Posledica 0.9. Če obstaja $E(X^2)$, potem obstaja E(X) in velja $(E(X))^2 \le E(X^2)$

Dokaz.
$$Y = 1$$
, t.j. $Y : \begin{pmatrix} 1 \\ 1 \end{pmatrix} \Longrightarrow$

$$E(|X \cdot 1|) \le \sqrt{E(X^2) \cdot 1}/2 \qquad (E(|X|))^2 \le E(X^2)$$

Trditev 0.10. Naj bosta X in Y neodvisni slučajni spremenljivki, ki imata matematični upanji. Potem ima matematično upanje tudi $X \cdot Y$ in velja $E(X \cdot Y) = E(X) \cdot E(Y)$

Dokaz. (samo zvezem primer):

Definicija 0.11 (Nekoreliranost). Slučajni spremenljivki X in Y sta nekorelirani, če velja $E(X \cdot Y) = E(X) \cdot E(Y)$, sicer sta korelirani.

Po trditvi iz neodvisnosti sledi nekoreliranost. Obratno pa ne velja:

Primer.

$$\begin{split} U &= \begin{pmatrix} 0 & \frac{\pi}{2} & \pi \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix} \\ X &= \cos(U) : \begin{pmatrix} 1 & 0 & -1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix} \\ Y &= \sin(U) : \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix} \\ E(X) &= 0, E(Y) = \frac{1}{3} \end{split}$$

 $X \cdot Y = sin(U) \cdot cos(U) = 0 \implies E(X \cdot Y) = 0 \implies X$ in Y sta nekorelirani slučajni spremenl

$$\frac{X \setminus Y \mid 0 \quad 1 \mid \Sigma}{-1 \quad \frac{1}{3} \quad 0 \quad \frac{1}{3}} \\
0 \quad 0 \quad \frac{1}{3} \quad \frac{1}{3} \\
-1 \quad \frac{1}{3} \quad 0 \quad \frac{1}{3} \\
\hline
\Sigma \quad \frac{2}{3} \quad \frac{1}{3} \mid 1$$

$$\frac{1}{3} = P(X = 1, Y = 0) \neq P(X = 1) \cdot P(Y = 0) = \frac{1}{3} \cdot \frac{2}{3}$$

Trditev 0.12.
$$X: \begin{pmatrix} x_1 & x_2 \\ p_1 & p_2 \end{pmatrix}, Y: \begin{pmatrix} y_1 & y_2 \\ q_1 & q_2 \end{pmatrix}$$

Potem sta X in Y neodvisni \iff nekorelirani $\iff E(X \cdot Y) = E(X) \cdot E(Y)$

0.2 Disperzija, kovarianco in korelacijski koeficient

Definicija 0.13 (Disperzija). Naj obstaja $E(X^2)$. Disperzija oz. varianca slučajne spremenljivke X je $D(X) \equiv var(X) := E((X - E(X))^2)$

Disperzija meri razpršenost slučajne spremenljivke X okoli E(X) Ker je $E((X-E(X))^2)=E(X^2-2E(X)X+(E(X))^2)=E(X^2)-2E(X)E(X)+(E(X))^2=E(X^2)-(E(X))^2$, je $D(X)=E(X^2)-(E(X))^2$

Lastnosti disperzije:

- $D(X) \ge 0$ in $D(X) = 0 \iff P(X = E(X)) = 1$, t.j. X je izrojena slučajna spremenljivka
- $D(a \cdot X) = a^2 D(X) \ a \in \mathbb{R}$
- $\forall a \in \mathbb{R}$ velja: $E((X-a)^2) \geq D(X)$. Enakost velja le v primeru a = E(X)

Dokaz.

$$E((X-a)^2) = E(X^2 - 2aX + a^2) = E(X^2) - 2E(x)|a| + a^2 = = (a - E(X))^2 + E(X^2) - 2E(X^2) + 2E(X^2) 2E(X^2)$$

Enakost velja samo za a = E(X)

Definicija 0.14 (Standardna deviacija). Standardna deviacija ali standardni odklon slučajne spremenljivke X je $\sigma(X) := \sqrt{D(X)}$

Zanjo velja $\sigma(aX) = |a| \cdot \sigma(X)$ za $\forall a \in \mathbb{R}$ Primeri nekaterih E(X) in D(X)

1. enakomerna diskretna porazdelitev: $\begin{pmatrix} x_1 & \cdots & x_n \\ \frac{1}{n} & \cdots & \frac{1}{n} \end{pmatrix}$

$$E(X) = \frac{x_1 + \dots + x_n}{n}, D(X) = E(X^2) - (E(X))^2 = \frac{x_1^2 + \dots + x_n^2}{2} - (\frac{x_1 + \dots + x_n}{2})^2$$

2. Binomska porazdelitev $Bin(n, p), n \in \mathbb{N}, p \in (0, 1), q = 1 - p$

$$E(X) = n \cdot p, D(X) = npq, \sigma(X) = \sqrt{npq}$$

3. Poissonova porazdelitev $Poi(\lambda), \lambda > 0$

$$E(X) = \lambda, D(X) = \lambda$$

4. Geometrijska porazdelitev $geo(p), p \in (0,1), q = 1-p$

$$E(X) = \frac{1}{p}, D(X) = \frac{q}{p^2}$$

5. Pascalova porazdelitev $Pas(m, p), m \in \mathbb{N}, p \in (0, 1)$

$$E(X) = \frac{m}{p}, D(X) = \frac{mq}{p^2}$$

6. Enakomerna zvezna porazdelitev Ed na [a, b]

$$E(X) = \frac{a+b}{2}, D(X) = \frac{(b-a)^2}{12}$$

7. Normalna porazdelitev $N(\mu, \sigma)$

$$E(X) = \mu, D(X) = \sigma^2, \sigma(X) = \sigma$$

8. Porazdelitev gama $\gamma(b,c)$

$$E(X) = \frac{b}{c}, D(X) = \frac{b}{c^2}$$

9. Porazdelitev $\chi^2(n) = \gamma(\frac{n}{2}, \frac{1}{2})$

$$E(X) = n, D(X) = 2n$$

10. Eksponentna porazdelitev $Exp(\lambda), \lambda>0=\gamma(1,\lambda)$

$$E(X) = \frac{1}{\lambda}, D(X) = \frac{1}{\lambda^2}, \sigma(X) = \frac{1}{\lambda}$$

Preverimo, da je $D(X) = \sigma^2$ za $X \sim N(\mu, \sigma)$

$$D(X) = E((X - E(X))^{2}) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} (x - \mu)^{2} \cdot e^{-\frac{1}{2}(\frac{x - \mu}{\sigma})^{2}} dx$$

$$t = \frac{x - \mu}{\sigma} \implies x - \mu = \sigma t, dx = \sigma dt$$

$$= \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t^2 e^{-\frac{1}{2}t^2} =$$

$$u = t, dv = t \cdot e^{-\frac{1}{2}t^2}$$

$$du = dt, v = -e^{-\frac{1}{2}t^2}$$

$$\frac{\sigma^2}{\sqrt{2\pi}}(-te^{-\frac{1}{2}t^2}|_{-\infty}^{\infty}) + \int_{-\infty}^{\infty}e^{-\frac{1}{2}t^2}dt = \qquad = \frac{\sigma^2}{\sqrt{2\pi}}(0+\sqrt{2\pi}) = \sigma^2$$

Definicija 0.15 (Kovarianca). Kovarianca slučajnih spremnljivk $K(X,Y) \equiv Cov(X,Y) := E((X-E(X))(Y-E(Y)))$

Ker je

$$E((X-E(X))(Y-E(Y))) = E(XY-E(Y)X-E(X)Y+E(X)E(Y)) = E(XY)-E(X)E(X)-E(X)E(Y)$$

je $cov(X,Y) = E(XY)-E(X)E(Y)$

Lastnosti:

- 1. K(X, X) = D(X)
- 2. $K(X,Y) = 0 \iff X \text{ in } Y \text{ sta neodvisni}$
- 3. K je simetrična in bilinearna funkcija:
 - K(X,Y) = K(Y,X)
 - $K(aX + bY, Z) = aK(X, Z) + bK(Y, Z) \forall a, b \in \mathbb{R}$
- 4. Če obstajata D(X) in D(Y), potem obstaja tudi K(X,Y). Tedaj velja $|K(X,Y)| \leq \sqrt{D(X) \cdot D(Y)} = \sigma(X) \cdot \sigma(Y)$ To sledi iz Cauchy-Schwartzove neenakosti $(|E(U \cdot V)| \leq \sqrt{E(U^2) \cdot E(V^2)})$ za slučajni spremenljivki X E(X) in Y E(Y). Enačaj v neenakosti velja $\iff Y E(Y) \pm \frac{\sigma(Y)}{\sigma(X)}(X E(X))$ z verjetnostjo 1
- 5. Če X in Y imata disperziji, potem jo ima tudi X+Y in valja D(X+Y)=D(X)+D(Y)+2K(X,Y) če sta X in Y nekorelirani (posebej neodvisni), potem je D(X+Y)=D(X)+D(Y)

Dokaz. Sledi iz enakosti

$$(X + Y - E(X + Y))^{2}?((X - E(X)) + (Y - E(Y)))^{2} = (X - E(X))^{2} + (Y - E(Y))^{2} + 2(X - E(X))^{2} + (Y - E(Y))^{2} + E((X - E(X))^{2}) + E((X - E(X))^{2}) + E((X - E(X))(Y - E(Y))) = D(X)$$

6. Posplošitev: $D(X_1 + \cdots + X_n) = D(X_1) + \cdots + D(X_n) + 2\sum_{i < j} K(X_i, X_j)$ Če so $X_1 \cdots X_n$ paroma nekorelirani (posebej neodvisni), potem je $D(X_1 + \cdots + X_n) = D(X_1) + \cdots + D(X_n)$

Primer. Bin(n,p) je vsota $X=X_1+\cdots+X_n$, kjer je $X_i\sim Ber(p)$, t.j. $X_i\sim \begin{pmatrix} 0&1\\q&p \end{pmatrix}$, ki so neodvisne Zato je $D(X)=D(X_1+\cdots+X_n)=n\cdot D(X_1)=n\cdot p\cdot q$, saj je $D(X_n)=E(X_n^2)-(E(X_n))^2=p-p^2=pq$

Definicija 0.16 (Standardizacija slučajne spremenljivke). Standardizacija skučajne spremenljivke X je slučajna spremenljivka $X_s=\frac{X-E(X)}{\sigma(X)}$

Zanjo velja:

•
$$E(X_s) = 0$$

•
$$D(X_s) = \frac{1}{\sigma(x)^2} \cdot D(X - E(X)) = \frac{1}{\sigma(X)^2} D(X) = 1$$

Primer.

$$X \sim N(\mu, \sigma) \implies X_s = \frac{X - E(X)}{\sigma(X)} = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

Definicija 0.17 (Korelacijski koeficient). Korelacijski koeficient slučajnih spremenljivk X in Y je

$$r(X,Y) = \frac{K(X,Y)}{\sigma(X)\sigma(Y)} = \frac{E((X - E(X))(Y - E(Y)))}{\sigma(X)\sigma(Y)} = E(X_s \cdot Y_s)$$

Lastnosti:

- 1. $r(X,Y) = 0 \iff X$ in Y sta nekorelirani
- 2. $r(X,Y) \in [-1,1]$, kar sledi iz lastnosti (4) za kovarianco
- 3. $r(X,Y) = 1 \iff Y = \frac{\sigma(Y)}{\sigma(X)}(X E(X)) + E(Y)$ z verjetnostjo 1

•
$$r(X,Y) = -1 \iff Y = -\frac{\sigma(Y)}{\sigma(X)}(X - E(X)) + E(Y)$$
 z verjetnostjo

Tedaj imamo linearno zvezo med X in Y

Primer.

$$(X,Y) \sim N(\mu_x, \mu_y, \sigma_x, \sigma_y, \rho) \ \mu_x, \mu_y \in \mathbb{R}, \sigma_x, \sigma_y \in [0, \infty], \rho \in [-1, 1]$$

Trdimo, da je $r(X,Y) = \rho$

$$(X_s, Y_s) \sim N(0, 0, 1, 1, \rho)$$

$$r(X, Y) = E(X_s \cdot Y_s) = \frac{1}{2\pi\sqrt{1 - p^2}} \iint_{\mathbb{R}} xye^{-\frac{1}{2(1 - \rho^2)}(x^2 - 2\rho xy'y^2)} dxdy$$

$$x^{2} - 2\rho xy + y^{2} = (x - \rho y)^{2} + (1 - \rho^{2})y^{2}$$

$$= \int_{-\infty}^{\infty} y e^{-\frac{1}{2}y^{2}} dy = \frac{1}{\sqrt{2\pi(1 - \rho^{2})}} \int_{-\infty}^{\infty} x e^{-\frac{1}{2(1 - \rho^{2})}(x - \rho y)^{2}} dx =$$

$$= E(N(\rho y, \sqrt{1 - \rho^{2}})), \text{ ker je } p(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x - \mu}{\sigma})^{2}} =$$

$$= \rho \frac{1}{\sqrt{(2\pi)}} \int_{-\infty}^{\infty} y^{2} e^{-\frac{1}{2}y^{2}} dy =$$

$$= (\frac{1}{\sqrt{(2\pi)}} \int_{-\infty}^{\infty} y^{2} e^{-\frac{1}{2}y^{2}} = D(N(0, 1)) = 1) \implies = \rho$$

Torej sta X in Y nekorelirani $\stackrel{\text{v splošnem}}{\Longleftrightarrow} \rho = 0 \stackrel{\text{ta primer}}{\Longleftrightarrow} X, Y$ neodvisni Kakšna je gostota, če je ρ blizu 1? $\rho \uparrow 1 : \rho \downarrow -1 :$ gostota je škoraj skoncentriranana neki premici, torej med X in Y obstaja skoraj linearna zveza

0.3 Pogojna porazdelitev in pogojno matematično upanje

Izberimo si dogodek B s P(B) > 0

Definicija 0.18. Pogojna porazdelitvena funkcija slučajne spremnljivke X glede na B je $F_X(X\mid B):=P(X\leq x\mid B)=\frac{P(X\leq x\wedge B)}{P(B)}$

Ima enake lastnosti kot porazdelitvena funkcija

A Diskreten primer

Naj bo (X,Y) diskretno porazdeljen slučajni vektor z verjetnostno funkcijo $p_{ij} = P(X = x_i, Y = y_i)i, j = 1, 2 \cdots$

Za pogoj B vzemimo $B = (Y = y_j)$ pri nekem j, torej $q_j = P(Y = Y_j)$ Potem je pogojna porazdelitvena funkcija slučajne spremenljivke X glede $F_X(X \mid Y = y) := \frac{P(X \leq x \mid Y = y_j)}{P(Y = y_j)} = \frac{1}{q_j} \sum_{j: x_j \leq x} p_{ij}$

Če vpeljemo pogojno verjetnostno funkcije $P_{i|j} = P(X = x_i \mid Y = X_i \mid$ $(y_j) = \frac{p_{ij}}{q_i}, F_X(X \mid Y = y_j) = \sum_{i: x_i \le X} p_{i|j}$

Pogojno matematično upanje slučajne spremenljivke X glede na $Y = y_i$ je matematično upanje te porazdelitve:

$$E(X \mid Y = y_j) := \sum_{i} x_i \cdot p_{i|j} = \frac{1}{q_j} \sum_{i} x_j \cdot p_{ij}$$

Regresijska funkcija $\ell(y_i) = \sum (X \mid Y = y_i)$, ki je definirana na zalogi vrednoti slučajne spremenljivke Y

Definirajmo novo slučajno spremenljivko $E(X \mid Y) = \ell(y)$, ki ji rečemo pogojno matematično upanje slučajne spremenljivke X glede slučajne spremenljivke Y

Ta ima shemo
$$E(X \mid Y) = \begin{pmatrix} \ell(y_1) & \ell(y_2) & \cdots \\ q_1 & q_2 & \cdots \end{pmatrix} = \begin{pmatrix} E(X \mid Y = y_1) & \cdots \\ q_1 & \cdots \end{pmatrix}$$
 Zanjo velja

$$E(X \mid Y) = \sum_{i} \ell(y_i) \cdot q_i? \sum_{i} \sum_{i} x_i \cdot p_{ij} = \sim_i x_i (\sum_{i} p_{ij}) = \sum_{i} x_i \cdot p_i = E(X)$$

kjer je $p_i = P(X = x_i)$

Kaj dobimo, če sta X in Y neodvisni slučajni spremenljivki? Tedaj je $p_{i|j} = \frac{p_{ij}}{q_j} = \frac{p_i \cdot q_j}{q_j} = p_i$ in $\ell(y_j) = E(E(X \mid Y = y_j)) = \sum_i x_i \cdot p_{i|j} = \sum_i x_i \cdot p_i = E(X)$, torej je regresijska funkcija kar konstanta E(X) oz. je $E(X \mid Y)$ izrojena slučajna spremenljivka z vrednostjo E(X)

Primer. Kokoš znese N jajc, kjer je $N \sim Poi(\lambda)$ z $\lambda > 0$. Iz vsakega jajca se z verjetnostjo $p \in (0,1)$ izvali piščanec, neodvisno od drugih jajc. Naj bo K število piščancev Dolocino $E(K \mid N), E(K)inE(N \mid K)$

$$P(N=n) = \frac{\lambda^n}{n!} e^{-\lambda} \ n = 0, 1, 2 \cdots$$
$$P(K=k \mid N=n) = \binom{n}{k} p^k q^{n-k} \ k = 0, 1 \cdots n$$

$$\ell(n) = E(K \mid N = n) = E(Bin(n, p)) = n \cdot p$$

torej je $E(K \mid N) = \ell(n) = p \cdot N$

$$E(K \mid N) = \begin{pmatrix} p \cdot 0 & p \cdot 1 & p \cdot 2 & \cdots \\ P(N=0) & P(N=1) & P(N=2) & \cdots \end{pmatrix}$$

$$E(K) = E(E(K \mid N)) = E(p \cdot N) = p \cdot E(N) = p \cdot \lambda$$

$$P(K = k) = \sum_{n=k}^{\infty} P(K = k \mid N = n) \cdot P(N \le n) = \sum_{n=k}^{\infty} \frac{n!}{k!(n-k)!} p^k q^{n-k} \cdot \frac{\lambda^n}{n!} e^{-\lambda} = \frac{1}{k!} e^{-\lambda} p^k \lambda^k \sum_{n=k}^{\infty} \frac{(qk)^{n-k}}{(n-k)!} = \frac{(p\lambda)^k}{k!} e^{-\lambda} e^{q\lambda} = \frac{(p\lambda)^k}{k!} e^{-p\lambda} k = 0, 1 \cdots n$$

Torej je $K \sim Poi(p \cdot \lambda)$

$$P(N = n \mid K = k) = \frac{P(N = n, K = k)}{P(K = k)} = \frac{P(K = k \mid N = n) \cdot P(N = n)}{P(K = k)} = \frac{n! p^k q^{n-k}}{k! (n-k)!} \cdot \frac{\lambda^n e^{-\lambda}}{n!} \cdot \frac{pk! e^{p\lambda}}{(p\lambda)^k} = \frac{(q\lambda)^{n-k}}{(n-k)!} \cdot e^{-q\lambda} n = k, k+1 \cdots$$

To je za k premaknjena Poissonova porazdelitev: $k + Poi(q\lambda)$

Potem je $\psi(k) = E(N \mid K = k) = E(k + Poi(qk)) = k + q \cdot \lambda$ in zato je $E(N \mid K) = \psi(k) = k \cdot q + \lambda$

Preizkus: $E(E(N \mid K)) = E(k + q \cdot \lambda) = p\lambda + q\lambda = \lambda = E(N)$ (ok) Regresijsko premico je vpeljal Golten (1822-1911)

B Zvezni primer

Naj bo (X,Y) zvezno porazdeljen slučajni vektor z gostoto $p_{(X,Y)}(x,y)$. Vzemimo $B = (y < Y \le y + k)$ za nek $y \in \mathbb{R}, k > 0$.

Potem je
$$F_X(X\mid y< Y\leq y+k)=P(x\leq x\mid y< Y\leq y+k)=\frac{P(X\leq x,y< Y\leq y+k)}{P(y< Y\leq y+k)}=\frac{F_{(X,Y)}(x,y+k)-F_{(X,Y)}(x,y)}{F_Y(y+k)-F_Y(y)}$$
Pogojna porazdelitvena funkcija slučajne spremenljivke X glede na do-

godek (Y = y) je limita, če obstaja:

$$F_X(x \mid Y = y) = \lim_{h \downarrow 0} F_X(x \mid y < Y \le y + h) = \lim_{h \downarrow 0} \frac{F_{(X,Y)}(x, y + h) - F_{(X,Y)}(x, y)}{F_Y(y + h) - F_Y(y)}$$

Denimo sedaj, da sta $p_{X,Y}$ in p_Y zvezni funkciji. Tedaj je $F_X(X \mid Y =$ $y) = \frac{\frac{\partial}{\partial y} F_{(X,Y)}(x,y)}{F_Y'(y)} = \frac{1}{p_Y(y)} \int_{-\infty}^x p_{(X,Y)}(x,v) dv$

Če vpeljemo pogojno pogojno gostoto $p_X(x \mid Y = y) := \frac{p_{(X,Y)}(x,y)}{p_Y(y)}$, je torej

$$F_{(X,Y)}(x \mid Y = y) = \int_{-\infty}^{x} p_X(u \mid y) du$$

Pogojno matematično upanje slučajne spremenljivke X glede na dogodek (Y=y) je

$$E(X \mid Y = y) := \int_{-\infty}^{\infty} x \cdot p_X(x|y) dx = \frac{1}{p_Y(y)} \cdot \int_{-\infty}^{\infty} x p_{(X,Y)}(x,y) dx$$

Vpeljimo regresijsko funkcijo $l(y) := E(X \mid Y = y)$, definirano na zalogi vrednosti slučajne spremenljivke Y. Tako dobimo novo slučajno spremenljivko $E(X \mid Y) := l(y)$: pogojno matematično upanje slučajne spremenljivke X glede na slucajno spremenljivko Y.

Kot v diskretnem primeru se pokaže enakost $E(E(X \mid Y)) = E(X)$

Primer. $(X,Y) \sim N(\mu_x, \mu_y, \sigma_x, \sigma_y, \rho)$ Robna gostota za Y je $N(\mu_y, \sigma_y)$ Zato je pogojna gostota

$$p_X(x \mid y) = \frac{p_{(X,Y)}(x,y)}{p_y(x)} = \cdots = \frac{1}{\sigma_x \sqrt{(2\pi)(1-\rho^2)}} exp(-\frac{1}{2(1-\rho)^2} (\frac{x-\mu_x}{\sigma_x} - \rho \frac{y-\mu_y}{\sigma_y})^2)$$

torej je
$$N(\mu_x + \rho \frac{\sigma_x}{\sigma_y}(y - \mu_y), \sigma_x \sqrt{1 - \rho^2})$$

Eksponent: $\frac{1}{2(1 - \rho^2)} \sigma_x^2 (x - (\mu_x + \rho \frac{\sigma_x}{\sigma_y}(y - \mu_y)))^2$
 $\implies l(y) = E(X \mid Y = y) = \mu_x + \rho \frac{\sigma_x}{\sigma_y}(y - \mu_y) - 1$. parameter $= \alpha + \beta y : \beta = \rho \frac{\sigma_x}{\sigma_y}, \alpha = \mu_x - \frac{\sigma_x}{\sigma_y} \cdot \mu_y$
Torej je $E(x \mid y) = \alpha + \beta y$

Primer. Meritev onesnaženosti zraka

Slučajna spremenljivka X meri koncentracijo ogljikovih delcev (v $\mu g/m^3$),

Y pa koncentracijo ozona (v $\mu l/l = ppm$)

Podatki kažejo, da ima (X,Y) približno dvorazsežno normalno poraz-

delitev,
$$\mu_x = 10.7, \sigma_x^2 = 29, \mu_y = 0.1, \sigma_y^2 = 0.02, \rho = 0.72$$

Koncentracija ozona je škodljiva zdravju, če je ≥ 0.3

Denimo, da naprava za merjenje ozona odpove, koncentracija škodljivih delcev je X=200

- a kolikšna je pričakovana koncentracija ozona?
- b kolikšna je verjetnost, da je stopnja ozona zdravju skodljiva

a

$$E(Y \mid X = x) = \mu_y + \rho \frac{\sigma_y}{\sigma_x} (x - \mu_x) = 0.1 + 0.72 \sqrt{\frac{0.02}{29} (20 - 10.7)} = 0.28$$

b Pogojna porazdelitev $Y\mid X=x$ je $N(\mu_y+\rho\frac{\sigma_y}{\sigma_x}(x-\mu_x),\sigma_x\sqrt{1-\rho^2})=N(0.28,0.1)$

$$P(Y > 0.3 \mid X = 20) = 1 - P(Y \le 0.3 \mid X = 20) = 1 - F_{N(0,1)}(\frac{0.3 - 0.28}{0.1}) \doteq 0.42$$

0.4 Višji momenti in vrstilne karakteristike

Definicija 0.19 (Momenti). Naj bo $k \in \mathbb{N}$ in $a \in \mathbb{R}$. Moment reda k glede na točko a je $m_k(a) := E((X - a)^k)$ (če obstaja)

Za a obicajno vzamemo

1. a = 0: $z_k := m_k(0) = E(X^k)$ začetni moment reda k

2. a = E(X): $m_k := m_k(E(X))$ cen
ralni moment reda k

Ocitno je $z_1 = E(X), m_2 = D(X)$

Trditev 0.20. Če $\exists m_n(a)$, potem obstajaj tudi moment $m_k(a)$ za vse k < n

Dokaz. (V zveznem primeru):

$$E((X-a)^{k}) = \int_{-\infty}^{\infty} (x-a)^{k} p_{X}(x) dx = \int a - 1^{a+1} (X-a)^{k} p_{X}(x) dx + \int_{(-\infty,a-1)\cup(a+1,\infty)} (x-a)^{k} p_{X}(x) dx$$

$$\leq \int_{-\infty}^{\infty} p_{X}(x) dx + \int_{(-\infty,a-1)\cup(a+1,\infty)} (x-a)^{k} p_{X}(x) dx \leq$$

$$\leq 1 + E((X-a)^{k}) < \infty$$

Trditev 0.21. Če obstaja zacetni moment z_n , potem obstaja $m_n(a)$ glede na poljubno točko $a \in \mathbb{R}$

Dokaz.

$$E((X-a)^n) \le E((|X|+|a|)^n) = \sum_{k=0}^n \binom{n}{k} E(a)^{n-k} \cdot E(|X|^k) < \infty$$

Centralne momente lahko izrazimo z začetnimi:

$$m_n(a) = E((X - a)^n) = \sum_{k=0}^n \binom{n}{k} (-a)^{n-k} E(X^k)$$

$$a = E(X) \implies m_k = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} z_1^{n-k} z_k$$

Asimetrija slučajne spremenljivke X je $A(X):=E(X_s^3)=E((\frac{X-E(X)}{\sigma_x})^3)=\frac{m_3}{m_2^3}$ $m_2=\sigma^2=D(X)$

$$A(N(\mu, \sigma)) = 0$$
, ker $A(X) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^3 e^{-\frac{1}{2}x^2} dx$

Sploščenost (kurtozis)
$$K(X) := E(X_s^4) = \frac{m_4}{m_2^2}$$

$$K(N(\mu, \sigma)) = 3$$

Ce momenti ne obstajajo (npr. že E(X) ne), potem si lahko pomagamo z vrstilnimi karakteristikami

Definicija 0.22 (Mediana). Mediana slučajne spremenljivke X je vsaka vrednost $x \in \mathbb{R}$, za katero velja $P(X \le x) \le \frac{1}{2}$ in $P(Y \ge x) \ge \frac{1}{2}(1 - P(X < x) = 1 - F(x-))$

Če je F porazdelitvena funkcija za X, je to ekvivalentno s pogojem $F(x-) \le \frac{1}{2} \le F(x)$

Če je X zvezno porazdeljena slučajna spremenljivka, dobimo $F(X)=\frac{1}{2}$ oz. $\int_{-\infty}^{\infty}p(t)dx=\frac{1}{2}$

Te vrednosti (lahko jih je več) označimo z $X_{\frac{1}{2}}$

Primer.

•
$$X \sim \begin{pmatrix} 0 & 1 \\ \frac{1}{5} & \frac{4}{5} \end{pmatrix}$$

 $x_{\frac{1}{2}} = 1, E(X) = \frac{4}{5}$

•
$$X: \begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{4} & \frac{1}{4} & \frac{2}{4} \end{pmatrix}$$

Mediane so $[0, 1]$

•

$$\begin{array}{cc} \bullet & X \sim N(0,1) \\ & x_{\frac{1}{2}} = \mu = E(X) \end{array}$$

Definicija 0.23 (Kvantil). Kvantil reda p $(p \in (0,1))$ je vsaka vrednost x_p , za katero velja $P(X \le x_p) \ge p$ in $P(X \ge x_p) \ge 1 - p$ Ekvivalentno je $F(x_p-) \le p \le F(x_p)$

Če je X zvezno porazdeljena, je pogoj $F(x_p)=p$ t.j. $\int_{-\infty}^{\infty}p(t)dt=p$

• Kvartili: $X_{\frac{1}{4}}, X_{\frac{2}{4}}, X_{\frac{3}{4}}$

• Percentili: $X_{\frac{1}{100}}, X_{\frac{2}{100}}, \cdots X_{\frac{99}{100}}$

Primer. Telesna višina odraslih moških

Definicija 0.24 ((Semiinter)kvartilni razmik). $s:=\frac{1}{2}(x_{\frac{3}{4}}-x_{\frac{1}{4}})$ je nadomestek (analog) za standardno deviacijo *Primer*.

- $X \sim N(0, 1)$ $X_{\frac{1}{2}} = 0$ $\int_{-\infty}^{\frac{1}{4}} p(t)dt = \frac{1}{4} \xrightarrow{\text{tabelca}} x_{\frac{1}{4}} \doteq -0.67$ $\xrightarrow{\text{simetrija}} x_{\frac{3}{4}} \doteq 0.67 \implies s = 0.67, \sigma(x) = 1$
- X naj ima Cauchyjevo porazdelitev $p(x) = \frac{1}{\pi(1+x^2)}$ $x_{\frac{1}{2}} = 0$ Momenti ne obstajajo

$$\int_{-\infty}^{x_{\frac{1}{4}}} \frac{1}{\pi} \frac{1}{1+x^2} dx = \frac{1}{4}$$

$$\frac{1}{\pi} \arctan x \Big|_{x=-\infty}^{x_{\frac{1}{4}}} = \frac{1}{4}$$

$$\frac{1}{\pi} \arctan x_{\frac{1}{4}} + \frac{1}{2} = \frac{1}{4}$$

$$\arctan x_{\frac{1}{4}} = \frac{1}{4} \implies x_{\frac{1}{4}} = -1$$

$$\stackrel{\text{simetrija}}{\Longrightarrow} x_{\frac{3}{4}} = 1, s = 1$$

0.5 Rodovne funkcije

Definicija 0.25. Naj bo X slučajna spremenljivka z vrednostmi v $\mathbb{N} \cup \{0\}$: $p_k = P(X = k)k = 0, 1, 2 \cdots p_k \geq 0, \sum_{k=0}^{\infty} = 1$ Rodovna funkcija skučajne spremenljivke X je

$$G_X(s) = p_0 + p_1 s + p_2 s^2 + \dots = \sum_{k=0}^{\infty} p_k \dots s^k$$

za $\forall s \in \mathbb{R}$, za katere vrsta absolutno konvergira.

Očitno je
$$G_X(0) = p_0, G_X(1) = \sum_{k=0}^{\infty} p_k = 1$$

Ker je $s^X : \begin{pmatrix} s^0 & s^1 & s^2 & \cdots \\ p_0 & p_1 & p_2 & \cdots \end{pmatrix}$, je $G_X(s) = E(s^X)$

Za $s \in [-1, 1]$ velja $|p_k \cdot s^k| \le P_k$ in $\sum_{k=0}^{\infty} p_k = 1$. Zato je vrsta konvergentna, če je $|s| \le 1$. Torej je konvergenčni radij vrste vsaj 1

Primer.

• $X \sim geo(p), p \in (0,1)$ $p_k = P(X = k) = p \cdot q^{k-1} \ k = 1, 2, 3 \cdots$ $G_X(s) = \sum_{k=1}^{\infty} p \cdot q^{k-1} s^k = ps \sum_{k=0}^{\infty} (qs)^{k-1}$ $= ps \frac{1}{1 - qs}$

konvergira, ko $|qs|<1\Leftrightarrow |s|<\frac{1}{|q|}=:R$

•
$$p_k = P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

$$G_X(s) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} s^k = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda s)^k}{k!} = e^{-\lambda} \cdot e^{\lambda s} = e^{\lambda(s-1)}$$

$$R = \infty \ \forall s \in \mathbb{R}$$

Iz teorije Taylorjevih vrst sledi

Izrek 0.26 (O eniličnosti). Naj imata X in Y rodovni funkciji G_X in G_Y . Potem je $G_X(s) = G_Y(s)$ za $\forall s \in [-1, 1] \leftrightarrow P(X = k) = P(Y = k)$ za vse $k = 0, 1, 2 \cdots$

Tedaj velja $P(X = k) = \frac{1}{k!}G_X^k(0)$

$$G_X(s) = \sum_{k=0}^{\infty} p_k s^k, p_k = P(X=k)$$

Naj ima rodovna funkcija G_X slučajne spremenljivke X konvergenčni radij R > 1. Potem za $\forall s \in (-R, R)$ velja $G_X'(s) = \sum_{k=1}^{\infty} k \cdot p_k s^{k-1}$ Če postavimo s = 1, dobimo $G'(1) = \sum_{k=1}^{\infty} k \cdot p_k = E(X)$

Izrek 0.27. Naj ima X rodovno funkcijo $G_X(s)$ in naj bo $n \in \mathbb{N}$. Potem je

$$G_X^n(1-) \equiv \lim_{s \to 1} G_X^n(s) = E(X(X-1)(X-2)\cdots(X-N+1))$$

Dokaz. Za
$$\forall s \in [0,1)$$
 je $G_X^n(s) = \sum_{k=n}^{\infty} k(k-1)(k-2)\cdots(k-n+1)p_k s^{k-n+1} =$
= $E(X(X-1)(X-2)\cdots(X-n+1)\cdot s^{X-n})$

Ko gre $s \uparrow 1$, z uporabo Abelove leme dobimo

$$\lim_{s \nearrow 1} G_X^n(s) = \lim_{s \nearrow 1} \sum_{k=n}^{\infty} k(k-1) \cdot (k-n+1) =$$

$$\stackrel{\text{Abelova lema}}{=} \sum_{k=n}^{\infty} lim_s \nearrow_1 k(k-1) \cdot (k-n+1) = \sum_{k=n}^{\infty} k(k-1) \cdot (k-n+1) p_k = E(X(X-1) \cdot \cdots \cdot (X-n+1))$$

Posledica 0.28.

$$E(X) = G_X'(1-)$$

$$D(X) = E(X^2) - (E(X))^2 = E(X(X-1)) + E(X) - (E(X))^2 = G_X^{(2)}(1-) + G_X^{(1)}(1) - (G_X^{(1)}(1-))^2 = G_X^{(2)}(1-) + G_X^{(1)}(1-) + G_X^{(1)}(1-) + G_X^{(2)}(1-) +$$

Izrek 0.29. Naj bosta X in Y neodvisni slučajni spremenljivki z rodovnima funkcijama G_X in G_Y . Potem je $G_{X+Y}(s) = G_X(s) \cdot G_Y(s)$ za $s \in [-1, 1]$

Dokaz.
$$G_{X+Y}(s) = E(s^{X+Y}) = E(s^X \cdot s^Y) \stackrel{\text{izrek}}{=} E(s^X) \cdot E(s^Y) = G_X(s) \cdot G_Y(s)$$
, saj sta s^X in s^Y neodvisni slučajni spremenljivki

Posplo "sitev 0.30. Če so $X_1, X_2 \cdots X_n$ neodvisne slučajne spremenljivke, potem je za vse $s \in [-1, 1]G_{X_1 + \cdots + X_n}(s) = G_{X_1}(s) \cdot \cdots \cdot G_{X_n}(s)$. Če so $X_1, X_2 \cdots X_n$ enako porazdeljene in neodvisne, potem je

$$G_{X_1+\cdots+X_n}(s) = (G_X(s))^n$$

Izrek 0.31. Naj bodo za $\forall n \in \mathbb{N}$ slučajne spremenljivke $N, X_1, X_2 \cdots X_n$ neodvisne. Naj ima N rodovno funkcijo G_N, X_n pa rodovno funkcijo G_X . Potem ima slučajna spemenljivka $S := X_1 + X_2 + \cdots + X_n$ rodovno funkcijo enako $G_S = G_N \circ G_X$ oz. $G_S(s) = G_N(G_X(s))$ za $s \in [-1, 1]$

To je posplošitev formule dd: $P(N=n)=1, G_N(s)=1 \cdot s^n=s^n$

Dokaz. Zaradi neodvisnosti imamo $P(S=k) = \sum_{n=0}^{\infty} P(S=k,N=n) =$

$$= \sum_{n=0}^{\infty} P(N=n, X_1 + \dots + X_n = k) \stackrel{\text{neodvisnost}}{=} \sum_{n=0}^{\infty} P(N=n) \cdot P(X_1 + \dots + X_n = k)$$

Zato je

$$G_S(s) = \sum_{k=0}^{\infty} P(S=k) \cdot s^k = \sum_{k=0}^{\infty} \sum_{n=1}^{\infty} P(N=n) \cdot P(X_1 + \dots + X_n = k) \cdot s^k = \sum_{k=0}^{\infty} P(S=k) \cdot s^k = \sum_$$

$$= \sum_{n=1}^{\infty} P(N=n) \left(\sum_{k=0}^{\infty} P(X_1 + \dots + X_n = k) \cdot s^k \right) =$$

$$= G_{X_1 + \dots + X_n}(s)^{\text{neodvisnost}} \left(G_X(s)^n \right) \sum_{n=1}^{\infty} P(N=n) \cdot \left(G_X(s) \right)^n = G_N(G_X(s))$$

za vse $s \in [-1, 1]$

Posledica 0.32. Pri predpostavkah iz izreka velja Waldova enakost:

$$E(S) = E(N) \cdot E(X)$$

Dokaz.

$$G_S(s) = G_N(G_X(s)) \forall s \in [-1, 1]$$
(3)

$$E(S) = G'_s(1-) = G'_N(G_X(1-)) \cdot G'_X(1-) = E(N) \cdot E(X) \tag{4}$$

Primer. Kokoš, jajca, piščanci

N jajc, $N \sim Poi(\lambda)$

K je število piščancev

Definiramo $X_i = 1$ dogodek, da se iz i-tega jajca izvali piščanec, sicer $X_i = 0$.

Potem je $X_i : \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix}, q = 1 - p$ in X_i so neodvisne slučajne spremenljivke.

Očitno je $K = X_1 + X_2 + \cdots + X_n$ Ker je $G_N(s) = e^{\lambda(s-1)}$ in $G_X(s) = q \cdot s^0 + p \cdot s = q + ps$, je po izreku $G_K(s) = G_N(G_X(s)) = e^{\lambda(q+ps-1)} = e^{\lambda(ps-p)} = e^{\lambda p(s-1)} \forall s \in [-1,1]$, zato je $K \sim Poi(\lambda p)$

0.6 Momentno rodovna funkcija

Definicija 0.33 (Momentno rodovna funkcija). Momentno rodovna funkcija je $M_X(t) = E(e^{tX})$ za $t \in \mathbb{R}$, za katere obstaja matematično upanje

V primeru zvezne porazdelitve je $M_X(t) = \int_{-\infty}^{\infty} e^{tx} p_X(x) dx$

To je Laplaceova transformacija funkcije $p_{\boldsymbol{X}}$

V diskretnem primeru $X:\begin{pmatrix} x_1 & x_2 & \cdots \\ p_1 & p_2 & \cdots \end{pmatrix}$ je $M_X(t)=\sum_i e^{tx}p_i$

V posebnem primeru, ko ima X nenegative celoštevilske vrednosti, je $M_X(t) =$ $\sum_{i=0}^{\infty} e^{it} p_i =$

$$= \sum_{i=0}^{\infty} p_i(e^t)^i = G_X(e^t) \ (M_X(t) = E((e^t)^X) = G_X(e^t))$$

$$G_X(s) = E(s^X)$$

Očitno je $M_X(0) = E(e^0) = E(1) = 1$

Primer.

$$X \sim N(0, 1)$$

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(x-t)^2}{2}} dx \cdot e^{-\frac{t^2}{2}} =$$

$$= e^{\frac{t^2}{2}} \forall t \in \mathbb{R}$$

ker je $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(x-t)^2}{2}}$ gostota za N(0,1)

Izrek 0.34. Naj bo $M_X(t) < \infty$ (obstaja, $< \infty$ zato, ker je $e^t > 0$) za $\forall t \in (-\delta, \delta)$ pri nekem $\delta > 0$. Potem je porazdelitev za X natanko določena z M_X , vsi začetni momenti obstajajo, $z_k = E(X^k) = M_X^k(0)$ za $\forall k \in \mathbb{N}$ in velja $M_X(t) = \sum_{k=0}^{\infty} \frac{z_k}{k!} t^k$ za $\forall t \in (-\delta, \delta)$

Dokaz. (bistvo)

$$M_X(t) = E(e^{t \cdot X}) = E(\sum_{k=0}^{\infty} t^k \frac{x^k}{k!}) =$$

$$\sum_{k=0}^{\infty} \frac{E(X^k)}{k!} t^k = \sum_{k=0}^{\infty} \frac{z^k}{k!} t^k$$

Trditev 0.35. $M_{aX+b}(t) = e^{bt} M_X(at), a \neq 0, b \in R$

Dokaz.
$$M_{aX+b}(t) = E(e^{t(aX+b)}) = E(e^{(at)X} \cdot e^{bt}) = e^{bt}M_X(at)$$

Izrek 0.36. Če sta X in Y neodvisni slučajni spremenljivki, potem je $M_{X+Y}(t) = M_X(t) \cdot M_Y(t)$

$$Dokaz. \ M_{X+Y}(t) = E(e^{t(X+Y)}) = E(e^{t^X} \cdot e^{tY}) \stackrel{e^{tX}, e^{tY} \text{ neodvisni}}{=}$$
$$= E(e^{t^X}) \cdot E(e^{tY}) = M_X(t) \cdot M_Y(t)$$

Trditev 0.37. Naj bosta X in Y neodvisni slučajni spremenljivki in $X \sim N(\mu_x, \sigma_x), Y \sim N(\mu_y, \sigma_y)$. Potem je $X + Y \sim N(\mu_x + \mu_y, \sqrt{\sigma_x^2 + \sigma_y^2})$

Dokaz. Ker je

$$U := \frac{X - \mu_x}{\sigma_x} = \frac{X - E(X)}{\sigma(X)} \sim N(0, 1)$$

(standardizacija), je

$$X = \sigma_x \cdot U + \mu_x$$

in zato je

$$M_X(t) = e^{\mu_x t} \cdot M_U(\sigma_x t)$$

po zadnji trditvi. Potem je

$$M_U(t) = e^{\frac{t^2}{2}}$$

je

$$M_X(t) = e^{\mu_x t} \cdot e^{\frac{\sigma_x^2 t^2}{2}} = e^{\frac{\sigma_x^2 t^2}{2} + \mu_x t} \,\forall t \, in \mathbb{R}$$

za Y velja podobno. Po zadnjem izreku je

$$M_{X+Y}(t) = M_X(t) \cdot M_Y(t) = e^{\frac{\sigma_x^2 t^2}{2} + \mu_x t} \cdot e^{\frac{\sigma_y^2 t^2}{2} + \mu_y t} =$$

$$= e^{\frac{(\sigma_x^2 + \sigma_y^2)t^2}{2} + (\mu_x + \mu_y)t}$$

Po izreku je

$$X + Y \sim N(\mu_x + \mu_y, \sqrt{\sigma_x^2 + \sigma_y^2})$$

Opomba. Če bi vedeli, da je X+Y porazdeljena normalno, bi "samo" izračunali parametra

Primer.

$$X \sim N(0,1), M_X(t) = e^{\frac{t^2}{2}} = \sum_{k=0}^{\infty} \frac{(\frac{t^2}{2})^k}{k!} = \sum_{k=0}^{\infty} \frac{1}{2^k \cdot k!} t^{2k}$$

Po drugi strani je $M_X(t) = \sum_{j=0}^{\infty} \frac{z_j}{j!} t^j \ \forall t \in \mathbb{R}$ Primerjamo koeficiente:

- lihi koeficienti: $z_{2k-1} = 0 \ k \in \mathbb{N}$
- sodi koeficienti:

$$\frac{z_{2k}}{(2k)!} = \frac{1}{k!2^k} \implies z_{2k} = \frac{(2k)!}{k!2^k} =$$

$$= \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot (2k)}{2 \cdot 4 \cdot 5 \cdot \dots \cdot (2k)} = 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2k-1) = (2k-1)!! \ k \in \mathbb{N}$$

0.7 Šibki in krepki zakon velikih števil

Definicija 0.38 (Verjetnostna konvergenca). Zaporedje slučajnih spremenljivk $\{X_n\}_{n\in\mathbb{N}}$ verjetnostno konvergira proti skučajni spremenljivki X, če za $\forall \epsilon > 0$ velja $\lim_{n\to\infty} P(|X_n - X| \ge \epsilon) = 0$ oz. $\lim_{n\to\infty} P(|X_n - X| < \epsilon) = 1$

Definicija 0.39 (Skoraj gotova konvergenca). Zaporedje slučajnih spremenljivk $\{X_n\}_{n\in\mathbb{N}}$ skoraj gotovo konvergira proti skučajni spremenljivki X, če velja $P(p \lim_{n\to\infty} X_n = X) = 1$

Tukaj je
$$(\lim_{n\to\infty} X_n = X) = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = \{\omega \in \Omega : \|\omega\|_{\infty} = X(\omega)\} = X(\omega)\} = \{\omega \in \Omega : \|\omega\|_{\infty} = X(\omega)\} = X(\omega)\} = X(\omega)$$

$$= \{ \omega \in \Omega : \forall k (\in \mathbb{N}) \exists m \in \mathbb{N} \forall n \ge m : |X_n(\omega) - X(\omega)| < \frac{1}{k} \} =$$

$$= \{ \cap_{k \in \mathbb{N}} \cup_{m \in \mathbb{N}} \cap_{n \ge m} \omega \in \Omega : |X_n(\omega) - X(\omega)| < \frac{1}{k} \}$$
 (5)

Opomba.Števne unije in preseki \implies smo v $\sigma-{\rm algebri},$ torej je to res dogodek

Trditev 0.40. Če $X_n \xrightarrow{n \to \infty} X$ skoraj gotovo, potem za $\forall \epsilon > 0 \lim_{n \to \infty} P(|X_n - X| < \epsilon$ za $n \ge m) = 1$

Dokaz. Označimo $c_m := (|X_n - X| < \epsilon \text{ za } n \ge m) = \bigcap_{n=m}^{\infty} (|x_n - X| < \epsilon).$ Potem je $c_1 \subseteq c_2 \subseteq \cdots$

je
$$c_m$$
 za $\epsilon = \frac{1}{k}$ in $(\lim_{n \to \infty} X_n = X) \subseteq \bigcup_{n=1}^{\infty} c_m$ (presek)
Torej je $1 = P(\lim_{n \to \infty} X_n = X) \subseteq (\bigcup_{m=1}^{\infty} c_m) = \lim_{m \to \infty} P(c_m)$
Od tod sledi $\lim_{m \to \infty} P(c_m) = 1$

Posledica 0.41. Če $X_n \xrightarrow{n \to \infty} X$ skoraj gotovo, potem $X_n \xrightarrow{n \to \infty} X$ verjetnostno konvergira.

Dokaz. Izberemo $\epsilon > 0$. Potem velja

$$P(|X_n - X| < \epsilon \text{ za } \forall n \ge m) \le P(|X_m - X| < \epsilon)$$

Če uporabimo trditev, dobimo $\lim_{n\to\infty} P(|X_n-X|<\epsilon)=1$ (leva stran). \blacksquare

Opomba. Obratna implikacija ne velja

Definicija 0.42. Naj bo $X_1, X_2, X_3 \cdots$ zaporedje slučajnih spremenljivk, ki imajo matematično upanje. Definirajmo $Y_n = \frac{S_n - E(S_n)}{n} = \frac{X_1 + \dots + X_n}{n}$ $E(X_1)+\cdots+E(X_n)$

Potem je $E(Y_n) = 0$

Za $\{Y_n\}_{n\in\mathbb{N}}$ velja šibki zakon velikih števil (ŠZVŠ), kadar $Y_n \overset{n\to\infty}{\to} 0$ verjetnostno, torej za $\forall \epsilon > 0 \lim_{n\to\infty} (|y| < \epsilon) = 1 = \lim_{n\to\infty} (|\frac{S_n - E(S_n)}{n}| < \epsilon)$ Za $\{Y_n\}_{n\in\mathbb{N}}$ velja krepki zakon velikih števil (KZVŠ), kadar $Y_n \overset{n}{\to} 0$ skoraj gotovo, torej $P(\lim_{n\to\infty}\frac{S_n-E(S_n)}{n}=0)=1$

Če velja KVZŠ, potem velja ŠVZŠ

Primer. Mečemo kocko, X_k je # pik v k-tem metu. Potem je $E(X_k) = \frac{7}{2}$ in $Y_n = \frac{X_1 + \dots + X_n}{n} - \frac{7}{2}$ Ali konvergira $\frac{X_1 + \dots + X_n}{n} \stackrel{n \to \infty}{\to} \frac{7}{2}$ skoraj gotovo? (Da)

Izrek 0.43.

- a Neenakost Markova: če slučajna spremenljivka X ima matematično upanje, potem je $P(|X| \geq a) \leq \frac{E(|X|)}{a}$ za $\forall a>0$
- b Neenakost Čebiševa: če slučajna spremenljivka X ima disperzijo, potem je $P(|X - E(X)| \ge a \cdot \sigma(x)) \le \frac{1}{a^2}$ za $\forall a > 0$ (pomembro za $a \ge 1$, ker je verjetnost ≤ 1)

oz. če pišemo $\epsilon = a \cdot \sigma(x) \implies P(|X - E(X)| \ge \epsilon) \le \frac{D(X)}{2}$ za $\forall \epsilon > 0$

Dokaz. (samo zvezni primer)

a
$$E(X) = \int_{-\infty}^{\infty} |x| p_x(x) dx \ge \int_{\{x:|x| \ge a\}} |x| p_x(x) dx \ge |a| \int_{\{x:|x| \ge a\}} p_x(x) dx = a \cdot P(|X| \ge a)$$

b

$$P((X - E(X)) \ge \epsilon) = P((X - E(X))^2 \ge \epsilon^2) \stackrel{\text{(a) za X-E(X)}}{\le} \frac{E((X - E(X))^2)}{\epsilon^2} = \frac{D(X)}{\epsilon^2}$$

Izrek 0.44 (Markov). Če za zaporedje slučajnih spremenljivk $\{X_n\}_{n\in\mathbb{N}}$ velja $\frac{D(S_n)}{n^2} \stackrel{n \to \infty}{\to} 0$, potem velja ŠZVŠ. Tukaj je $S_n := X_1 + \cdots + X_n$

Dokaz. V neenakosti Čebiševa vzamemo $X = \frac{S_n}{n}$

$$P(\frac{|S_n - E(S_n)|}{n} \ge \epsilon) \le \frac{P(S_n)}{n^{2} \epsilon^2} \stackrel{n \to \infty}{\to} 0$$

Če vzamemo $Y_n = \frac{|S_n - E(S_n)|}{n}$, je $P(|Y_n| \ge \epsilon) \stackrel{n \to \infty}{\to} 0$ oz. $P(|Y_n| < \epsilon) \stackrel{n \to \infty}{\to} 1$

Zato $Y_n \stackrel{n \to \infty}{\to} 0$ verjetnostno, torej velja ŠZVŠ za zaporedje $\{X_n\}_{n \in \mathbb{N}}$

Posledica 0.45 (Izrek Čebišev). Če so $X_1, X_2 \cdots X_n$ paroma nekorelirane slučajne spremenljivke in $\sup_{n \in \mathbb{N}} D(X_n) < \infty$, potem za $\{X_n\}_{n \in \infty}$ velja ŠVZŠ

Dokaz. Ker je $D(S_n) = D(X_1) + \dots + D(X_n) \le n \cdot c$, je $\frac{D(S_n)}{n^2} \le \frac{n \cdot c}{n^2} = \frac{c}{n} \xrightarrow{n \to \infty} 0$, zato po izreku Markova velja ŠZVŠ

 $Primer.~X_n:\begin{pmatrix}0&1\\q&p\end{pmatrix}$ neodvisne slučajne spremenljivke, $D(X_n)=pq, E(X_n)=p, E(S_n)=n\cdot p$

Po izreku Čebiševa velja ŠZVŠ: $P(\frac{|S_n - E(S_n)|}{n} \ge \epsilon) \stackrel{n \to \infty}{\to} 0$

$$\implies P(|\frac{S_n}{n} - p| \ge \epsilon) \stackrel{n \to \infty}{\to} 0$$

 S_n je frekvenca dogodka, $\frac{S_n}{n}$ je relativna frekvenca, $\frac{S_n}{n}=\frac{X_1+\dots+X_n}{n}\stackrel{n\to\infty}{\to} p$ verjetnostno

To je Bernoulijev zakon velikih števil iz 1713

Izrek 0.46 (Kolmogorov). Če za neodvisne slučajne spremenljivke $\{X_n\}_{n\in\mathbb{N}}$ velja $\sum_{n=1}^{\infty}\frac{D_n}{n^2}<\infty$, potem velja KZVŠ, t.j. $P(\lim_{n\to\infty}\frac{S-n-E(S_n)}{n}=0)=1$. Posebej je pogoj za vrsto izpolnjen, če je $\sup_n D(X_n)<\infty$

Primer. $X_n:\begin{pmatrix} 0 & 1\\ q & p \end{pmatrix}$ neodvisne slučajne spremenljivke, $D(X_n)=pq$

Po izreku Kolmogorova velja KVZŠ, t.j. $\frac{S_n}{n}=\frac{X_1+\cdots+X_n}{n}\stackrel{n\to\infty}{\to} p$ skoraj gotovo. To posplošuje Bernoullijev zakon

0.8 Centralni limitni izrek

Definicija 0.47. Naj bo $\{X_n\}_{n\in\mathbb{N}}$ zaporedje slučajnih spremenljivk s končnimi disperzijami. Definiramo $S_n:=X_1+\cdots+X_n$ in standardizirajmo: $Z_n=\frac{S_n-E(S_n)}{\sigma(S_n)}$, torej $E(Z_n)=0, D(Z_n)=1$

Za $\{X_n\}_{n\in\mathbb{N}}$ velja centralni limitni izrek, če je $F_{Z_n}(x)=P(Z_n\leq x)\stackrel{n\to\infty}{\to} F_{N(0,1)} \forall x\in\mathbb{R},$ t.j.

$$P(\frac{S_n - E(S_n)}{\sigma(S_n)} \le x) \stackrel{n \to \infty}{\to} \frac{1}{2\pi} \int_{-\infty}^x e^{-\frac{t^2}{2}} dx \text{ za } \forall x \in \mathbb{R}$$

Pracimo, da $\{Z_n\}_{n\in\mathbb{N}}$ po porazdelitvi konvergira proti standardizirani normalni porazdelitvi.

Izrek 0.48 (Centralni limitni izrek (CLI, osnovna verzija)). Naj bodo $X_1, X_2 \cdots$ neodvisne in enako porazdeljene slučajne spremenljivke. Potem zanje velja centralni limitni zakon, t.j

$$P(\frac{S_n - E(S_n)}{\sigma(S_n)} \le x) \stackrel{n \to \infty}{\to} \int_{-\infty}^x e^{\frac{t^2}{2}} dx \text{ za } \forall x \in \mathbb{R}$$

Dokazal je Ljapunov (1900), s tem je posplošil Laplaceov izrek iz leta 1812. V dokazu bomo uporabili

Izrek 0.49 (O zveznosti rodovne funkcije). Naj za zaporedje $\{Z_n\}_{n\in\mathbb{N}}$ slučajnih spremenljivk velja:

$$M_{Z_n}(t) \to M_{N(0,1)}(t) = e^{\frac{t^2}{2}}$$
 za vse $t \in (-\delta, \delta)$ pri nekem $\delta > 0$
Potem $F_{Z_n}(x) \to F_{N(0,1)}(x)$ za $\forall x \in \mathbb{R}$

Dokaz. CLI v primeru, ko X_n imajo momentno rodovno funkcijo

 $M_X(t) = E(e^{tX_n})$ na neki okolici točke 0

Naj bo
$$E(X_n) = \mu$$
, $D(X_n) = \sigma^2$ in $U_n := X_n - \mu = X_n - E(X_n)$. Torej je $E(U_n) = 0$ in $D(U_n) = \sigma^2$ ter $M_U(t) = 1 + tE(U_n) + \frac{t^2}{2!}E(U_n^2) + o(t^2) = 1 + \frac{t^2}{2}\sigma^2 + o(t^2) \left(\lim_{n \to \infty} \frac{o(n)}{n} = 0\right)$

Ker je
$$D(S_n) \stackrel{\text{neodvisne}}{=} D(X_1) + \dots + D(X_n) = n \cdot \sigma^2 \text{ in } E(S_n) = n \cdot \mu = E(X_1) + \dots + E(X_n), \text{ je } Z_n = \frac{S_n - E(S_n)}{\sigma(S_n)} = \frac{1}{\sigma \sqrt{n}} \left(\sum_{n=0}^n U_i \right)$$

Potem je
$$M_{Z_n}(t) = E(e^{tZ_n}) = E(e^{\frac{t}{\sigma\sqrt{n}}(U_1 + \dots + U_n)}) = E(e^{\frac{t}{\sigma\sqrt{n}}U_1}) \dots E(e^{\frac{t}{\sigma\sqrt{n}}U_n}) = \frac{\operatorname{enaki}}{=} (M_U(\frac{t}{\sigma\sqrt{n}}))^n = (1 + \frac{t^2}{2n} + o(\frac{1}{n}))^n$$

$$n \to \infty \equiv o(\frac{1}{n} \to 0) e^{\frac{t^2}{2}}$$

Lema 0.50. Če $X_n \to X$, potem $(1 + \frac{X_n}{n})^n \stackrel{n \to \infty}{\to} e^x$

Po prejšnjem izreku: $F_{Z_n}(x) \stackrel{n \to \infty}{\to} F_{N(0,1)}(x)$

 $\epsilon > 0: x - \epsilon \leq x_n \leq x + \epsilon$ za dovolj velik n

$$\implies (1 + \frac{x - \epsilon}{n})^n \le (1 + \frac{x_n}{n})^n \le (1 + \frac{x + \epsilon}{n})^n$$

$$\implies (1 + \frac{x - \epsilon}{n})^n \to e^{x - \epsilon}$$

$$\implies (1 + \frac{x_n}{n})^n \to e^x$$

$$\implies (1 + \frac{x + \epsilon}{n})^n \to e^{x + \epsilon}$$

V splošnem se CLI dokaže s pomočjo karakterističnih funkcij: naj bo X slučajna spremenljivka, $\ell_X(t) := E(e^{itX}) = E(\cos(tX)) + iE(\sin(tX))t \in \mathbb{R}$

za razliko od momentno rodovnih funkcij karakteristične funkcije vedno odstajajo

v zveznem primeru je $\int_{-\infty}^{\infty}e^{itx}p(x)dx$ - Fourierova transformacija funkcije $p_X(x)$

 $X_1, X_2 \cdots X_n$ neodvisne, enako porazdeljene

$$\mu := E(X_n), \sigma := \sigma(X_n)$$

$$E(S_n) \stackrel{\text{neodvisnost}}{=} E(X_1) + \dots + E(X_n) = n\mu$$

$$D(S_n) \stackrel{\text{neodvisnost}}{=} D(X_1) + \dots + D(X_n) = n\sigma^2$$

 $X_1, X_2 \cdots X_n$ neodvisne slučajne spremenljivke

$$Z_n = \frac{S_n - E(S_n)}{\sigma(S_n)} = \frac{S_n - n\mu}{\sqrt{n}\sigma} = \frac{\frac{S_n}{n} - \mu}{\frac{\sigma}{\sqrt{n}}}$$
$$\overline{Z_n} := \frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n} \implies Z_n = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

Po CLI za velike n
 velja $Z_n \approx N(0,1),$ zato je $\overline{X} \approx N(\mu,\frac{\sigma}{\sqrt{n}})$ oz
. $S_n \approx N(n\mu,\sigma\sqrt{n})$

Če so $X_1, X_2 \cdots$ porazdeljene normalno $N(\mu, \sigma)$, potem je $Z_n \sim N(0, 1)$, torej $F_{Z_n}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt$

Primer. Laplaceova formula je poseben primer CLI:

 $X_n:\begin{pmatrix} 0 & 1\\ q & p \end{pmatrix}, X_n=1$ je dogodek, da se dogodek A (s P(A)=p) zgodi v n-ti ponovitvi poskusa, sicer je $X_n=0$

 $E(X_n) = p, S_n = X_1 + \dots + X_n$ frekvenca dogodka A v prvih n ponovitvah $S_n \sim Bin(n, p), E(S_n) = np, D(S_n) = npq$, ker je $D(X_1) = pq$ $Z_n = \frac{S_n - E(S_n)}{\sigma(S_n)} = \frac{S_n - np}{\sqrt{npq}} \stackrel{\text{CLI}}{\approx} N(0, 1)$, če je n velik

$$P(S_n \le X) = P(\frac{S_n - np}{\sqrt{npq}} \le \frac{X - np}{\sqrt{npq}}) \approx$$

$$\approx \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{x - np}{\sqrt{npq}}} e^{-\frac{t^2}{2}} dt =$$

$$= \frac{1}{2} + \Phi(\frac{x - np}{\sqrt{npq}})$$

kjer je

$$\Phi(x) := \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt$$

verjetnostni integral

$$P(\alpha < S_n \le \beta) =$$

$$= P(S_n \le \beta) - P(S_n \le \alpha) \approx$$

$$\approx \frac{1}{2} + \Phi(\frac{\beta - np}{\sqrt{npq}}) - \frac{1}{2} - \Phi(\frac{\alpha - no}{\sqrt{npq}}) =$$

$$= \Phi(\frac{\beta - np}{\sqrt{npq}}) - \Phi(\frac{\alpha - np}{\sqrt{npq}})$$

Laplaceova aproksimacijska formula

Primer. Teža vrečke kostanja je porazdeljena približno normalno, saj je vsota tež posameznih kostanjev, ki so neodvisne, enako porazdeljene slučajne spremenljivke

 $X_n \cdots$ teža n-tega kostanja, $S_n = X_1 + \cdots + X_n \approx$ normalno - aditiven efekt

Primer.

$$p_{X_n}(x) = \begin{cases} \frac{1}{2}; x \in [-1, 1] \\ 0 \text{ sicer} \end{cases}$$

$$E(X_1) = 0, D(X_1) = \frac{(b-a)^2}{12} = \frac{1}{3}$$

$$S_1 = X_1, Z_1 = \frac{X_1 - E(X_1)}{\sigma(X_1)} = \frac{X_1}{\sqrt{\frac{1}{3}}} = x_1\sqrt{3}$$

$$S_2 = X_1 + X_2, Z_2 = \frac{S_2 - E(S_2)}{\sigma(S_2)} = \frac{X_1 + X_2 - E(X_1 + X_2)}{\sigma(X_1 + X_2)}$$

$$S_3 = X_1 + X_2 + X_3, Z_3 = \frac{S_3 - E(S_3)}{\sigma(S_3)}$$

1 Statistika

1.1 Osnovni pojmi

Kot vedo statistiko razdelimo na:

- 1. opisno statistiko: zbiranje, razvrščanje, prikazovanje podatkov, računanje osnovnih količin
- 2. analitično statistiko: upraba podatkov pri sklepanju glede zakonitosti danega področja

Definicija 1.1 (Populacija). Populacija je končna ali neskončna množica elementov, pri katerih merimo ali opazujemo neko količino

Primer.

- (a) kontrole kvalitete: populacija je množica (serija) izdelka, npr. dnevna proizvodnja, merimo lastnosti izdelkov, npr. življensko dobo
- (b) testiranje seb: populacija je množica vseh zaposlenih v državi, merimo npr. starost, višino place · · ·

Matematični pogled: na verjetnostnem prostoru (Ω, \mathcal{F}) imamo slučajno spremenljivko X.

Praviloma ne moremo izmeriti cele populacije, ampak meritve opravimo na relativno majhnem delu populacije, na vzorcu. Le-ta mora biti reprezentativen, izbran nepristransko in dovolj velik.

Matematični pogled: vzorec velikosti n je slučajni vektor $(x_1 \cdots x_n)$, kjer so

komponente enako porazdeljene kot slučajna spremenljivka X in med seboj neodvisne.

Vrednost tega slučajnega vektorja pri enem naboru n meritev je realizacija vzorca: $(x_1 \cdots x_n)$: to so konkretni podatki, ki jih analiziramo. Pri opisni statistiki predstavimo in obdelamo te podatke.

Iz teh vzorčnih podatkov želimo oceniti nekatere lastnosti populacije, kot sta:

- 1. sredina populacije $\mu,$ t.i. matematično upanje slučajne spremenljivke X
- 2. povprečni odklon σ od sredine populacije, t.i. Standardna deviacija slučajne spremenljivke X

Ocene za μ so:

- vzorčno povprečje: $\overline{x} = \frac{x_1 + \dots + x_n}{n}$
- vzorčni modus: najpogostejša vrednost v vzorcu
- vzorčna mediana: srednja vrednost v vzorcu, urejenem po velikosti

Ocene za σ so:

- vzorčni razmak: razlika med največjo in najmanjšo vrednostjo v vzorcu
- vzorčna disperzija: s_0^2 ? $\frac{1}{n} \sum_{i=1}^n (x_i \overline{x})^2$
- popravljena vzorčna disperzija: $s^2 ? \frac{1}{n-1} \sum_{i=1}^n (x_i \overline{x})^2 = \frac{n}{n-1} s_0^2$

1.2 Vzorčne statistike in cenilke

Definicija 1.2 (Vzorčna statistika). Naj bo $(X_1, X_2 \cdots X_n)$ vzorec t.i. slučajni vektor, kjer so $X_1 \cdots X_n$ enako porazdeljene kot slucajna spremenljivka X in med seboj neodvisne.

Vzorčna statistika je simetrična funkcija vzorca $y = g(X_1, X_2 \cdots X_n)$, kjer je g simetricna funkcije n spremenljivk

Praviloma vzorčna statistika ocenjuje vrednost nekega parametra ξ . Tedaj je v cenilka za parameter.

y je odvisna od n, zato pišemo tudi $y_n = g(X_1 \cdots X_n)$.

Definicija 1.3 (Nepristranskost, doslednost). Če je $E(Y) = \xi$, je Y nepristranska cenilka za parameter xi

Cenilka $Y=Y_n$ je dosledna, če $Y_n \overset{n\to\infty}{\to} \xi$ verjetnostno, t.i. $\forall \epsilon>0$ je $\lim_{n\to\infty} P(|Y_n-\xi|\geq \epsilon)=0$ oz. $\lim_{n\to\infty} P(|Y_n-\xi|<\epsilon)=1$

Definicija 1.4 (Standardna napaka). Standardna napaka vzorčne statistike Y je standardna deviacija slučajne spremenljivke Y: $SE(Y) := \sigma(Y)$

Definicija 1.5 (Vzorčno povprecje). Naj bo X slučajna spremenljivka na populaciji, ki ima matematično upanje $E(X) = \mu$ in standardno deviacijo $\sigma(X) = \sigma$. Naj bo $(X_1 \cdots X_n)$ vzorec. Definirajmo vzorčno povprecje

$$\overline{X} = \frac{X_1 + \dots + X_n}{n}$$

ki je vzorčna statistika.

Je cenilka za \overline{X} , ki je nepristranska:

$$E(\overline{X}) = \frac{1}{n}(E(X_1) + \dots + E(X_n)) = \frac{1}{n}n \cdot \mu = \mu$$

Po ŠZVŠ (izreku Čebiševa) je to dosledna cenilka za μ . Ker je

$$D(\overline{X}) \stackrel{\text{neodv}}{=} \frac{1}{n^2} \sum_{i=1}^n D(X_i) = \frac{1}{n^2} n \cdot \sigma^2 = \frac{\sigma^2}{n}$$

je standardna napaka

$$SE(Y) = \frac{\sigma}{\sqrt{n}}$$

- čim vecji n, bolje oceni parameter μ Po CLI je pri velikem n slučajna spremenljivka $Z_n := \frac{S-n\mu}{\sigma\sqrt{n}} = \frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}} = \frac{\overline{X}-\mu}{\sigma}\sqrt{n}$ porazdeljena približno N(0,1) oz. \overline{X} je porazdeljen približno $N(\mu,\frac{\sigma}{\sqrt{n}})$ Če je X normalno porazdeljena $N(\mu,\sigma)$, potem je \overline{X} porazdeljen $N(\mu,\frac{\sigma}{\sqrt{n}})$ za vsak n

Trditev 1.6. Naj bo Y_n cenilka za ξ . Če je $E(Y_n) \stackrel{n \to \infty}{\to} \xi$ in $D(Y_n) \stackrel{n \to \infty}{\to} 0$, potem je $Y = Y_n$ dosledna cenilka za ξ

Dokaz. Fiksirajmo $\epsilon > 0$. Dokazati moramo $\lim_{n \to \infty} P(|Y_n - \xi| \ge \epsilon) = 0$ Ker je $E(Y_n) \stackrel{n \to \infty}{\xi}$, obstaja $n_0 \in \mathbb{N}$: $|E(Y_n) - \xi| < \frac{\epsilon}{2}$ zato je dogodek

$$(|Y_n - \xi| \ge \epsilon) \subseteq (|Y_n - E(Y_n)| + |E(Y_n) - \xi| \ge \epsilon) \text{ za } \forall n \subseteq$$

$$\stackrel{n \ge n_0}{\subseteq} (|Y_{n_0} - E(Y_{n_0})| + |E(Y_{n_0}) - \xi| \ge \epsilon)$$

Torej je za $n \ge n_0$

$$P(|Y_n - \xi| \ge \epsilon) \le P(|Y_n - E(Y_n)| \ge \frac{\epsilon}{2}) \le \frac{D(Y_n)}{\epsilon^2} \cdot 4 \xrightarrow{n \to \infty} 0 \text{ (doslednost)}$$

Neenakost Čebiševa: $P(|X-E(X)| \ge \epsilon) \le \frac{D(X)}{\epsilon^2}$ Tako imamo doslednost cenilke: $P(|Y_n - \xi| \ge \epsilon) \stackrel{n \to \infty}{\to} 0$

Primer. Porazdelitev χ^2 , n število prostorskih stopenj

$$p(X) = \begin{cases} \frac{1}{2^{\frac{n}{2}}\gamma(\frac{n}{2})} x^{\frac{n}{2}-1} e^{-\frac{x}{2}} x > 0\\ 0 \text{ sicer} \end{cases}$$

Modus = n-2, E(X) = n, D(X) = 2nMediana $\approx n \cdot (1 - \frac{2}{9n})^3$

Definicija 1.7 (Vzorcna disperzija). Naj bo X slučajna spremenljivka na populaciji. Vzorčna disperzija je definirana s

$$s_0^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$

popravljena vzorčna disperzija pa je

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

Kako sta porazdeljeni, če je $X \sim N(\mu, \sigma)$?

Raje vzemimo vzorčno statistiko: $\chi^2:=\frac{1}{\sigma^2}\sum_{i=1}^n(x_i-\overline{x})^2=\frac{n}{\sigma^2}s_0^2=\frac{n-1}{\sigma^2}s^2$ Ni lahko izračunati, da je $\chi^2\sim\chi^2(n-1)$

Ideja izpeljave je $\chi^2 = Z_1^2 + \cdots + Z_{n-1}^2$ za $Z_i \sim N(0,1)$ in med seboj neodvisne. Potem uporabimo trditev iz verjetnosti: $Z_i^2 \sim \chi^2(1)$, torej $E(\chi^2) = n-1$, $D(\chi^2) = 2(n-1)$. Od tod sledi

$$E(s_0^2) = E(\frac{\sigma^2}{n}\chi^2) = \frac{\sigma^2}{n}E(\chi^2) = \frac{n-1}{n}\sigma^2$$

torej s_0^2 ni nepristranska za $\sigma^2,$ je pa asimptotično nepristranska, t.i. $E(s_0^2) \stackrel{n \to \infty}{\to} \sigma^2$

Podobno je $E(s^2)=\frac{\sigma^2}{n-1}E(\chi^2)=\sigma^2$, torej je s^2 nepristranska cenilka za σ^2 Ker je $D(s_0^2)=\frac{\sigma^4}{n^2}D(\chi^2)=\frac{\sigma^42(n-1)}{n^4}\stackrel{n\to\infty}{\to} 0$ in $D(s^2)=\frac{2\sigma^4}{(n-1)^2}\stackrel{n\to\infty}{\to} 0$, iz trditve sledi, da sta s_0^2 in s^2 dosledni cenilki za σ^2

Studentova t-porazdelitev

$$p(x) = \frac{1}{\sqrt{n}B(\frac{n}{2}, \frac{1}{2})} (1 + \frac{x^2}{n})^{-\frac{n+1}{2}}$$

kjer je $B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$ Beta funkcija

$$n = 1: \quad \frac{1}{\pi} (1 + x^2)^{-1} = \frac{1}{\pi (1 + x^2)} \text{Cauchyjeva porazdelitev}$$

$$\text{ko gre } n \to \infty, \text{ gre } \sqrt{n} B(\frac{n}{2}, \frac{1}{n}) \to \sqrt{2\pi} \text{ in } (1 + \frac{x^2}{n})^{-\frac{n-1}{2}} = ((1 + \frac{x^2}{n})^n)^{-\frac{n+1}{2n}} \to e^{-\frac{x^2}{2}}$$

$$\text{torej je pri velikih n gostota približno } N(0, 1)$$

$$n = 2: \quad \frac{1}{\sqrt{2}B(1, \frac{1}{2})} (1 + \frac{x^2}{2})^{-\frac{3}{2}}$$

$$\text{za } n \ge 2 \text{ je } E(X) = 0$$

$$n = 3: \quad c \cdot (1 + \frac{x^2}{2})^{-2} \approx \frac{1}{x^4} \text{ za velike } x$$

za $n \ge 3$ je $D(X) = \frac{n}{n-2} > 1$

Leta 1908 jo je odkril W.S. Gosset, statistik v pivovarni guiness v Dublinu. Student je njegov prevdonim.

Pri normalni porazdelitvi slučajne spremenljivke $X \sim N(\mu, \sigma)$ je vzorčno povprečje \overline{X} porazdeljeno $N(\mu, \frac{\sigma}{\sqrt{n}}), \overline{X} = \frac{X_1 + \dots + X_n}{n}$, torej je $Z := \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sigma}} \sqrt{n}$ porazdeljena N(0,1). Če poznamo σ , potem bomo znali povedati, kako dobra ocena za μ je \overline{X} (\rightarrow intervali zaupanja).

Kako ravnati, če σ ne poznamo?

Lahko jo ocenimo s $s = \sqrt{\frac{1}{n-1}\sum_{i=1}^n(X_i - \overline{X})^2}$, tako da potem vzorčna statistika $T = \frac{\overline{X} - \mu}{s}\sqrt{n}$ ni več porazdeljena po N(0,1), niti približno normalna, razen če je n velik in je s potem skoraj konstanta σ .

Kako je porazdeljena vzorčna statistika T? Ker je $\chi^2 = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{(n-1)S^2}{\sigma^2}$, je $\frac{Z}{T} = \frac{S}{\sigma} = \sqrt{\frac{\chi^2}{n-1}}$, torej je $T = \frac{Z}{\sqrt{\frac{\chi^2}{n-1}}}$ Izkaže se, da sta $Z \sim N(0,1)$ in $\chi^2 \sim \chi^2(n-1)$ neodvisni slučajni spremenljivki. Od tod lahko izračunamo, da ima T Studentovo porazdelitev z n-1 prostorskimi stopnjami:

$$p_T(t) = \frac{1}{(n-1)B(\frac{n-1}{2}, \frac{1}{2})} \cdot \frac{1}{(1 + \frac{x^2}{n-1})^{\frac{n}{2}}}$$

1.3 Metode za pridobivanje cenilk

1.3.1 Metoda momentov

Definicija 1.8 (Vzročni moment). Naj bo $(X_1, X_2 \cdots X_n)$ vzorec velikosti n, torej $X_1 \cdots X_n$ neodvisne slučajne spremenljivke, porazdeljene kot slučajna spremenljivka X. Zacetni moment reda k je $z_k = E(X^k)$. Definiramo kti vzročni moment $z_k := \frac{X_1^k + \cdots + X_n^k}{n}$. Le ta je nepristranska cenilka za $z_k : E(Z_k) = \frac{1}{n}(E(X_1^k) + \cdots + E(X_n^k)) = z_k$. Z_k je tudi dosledna cenilka za z_k .

Naj bo gostota slučajne spremenljivke X odvisna od parametrov $\xi_1 \cdots \xi_n$: $p(X; \xi_1 \cdots \xi_m)$. Naj odstajajo začetni momenti $z_k = E(X^k) = \int_{-\infty}^{\infty} p(x; \xi_1 \cdots \xi_n) dx, k = 1, 2 \cdots m$. Denimo, da iz teh m enačb lahko izrazimo parametre: $\xi_k = \phi_k(z_1, z_2 \cdots z_m), k = 1 \cdots m$ za neko funkcijo ϕ_k . Potem je $c_k := \phi_k(z_1 \cdots z_m)$ cenilka za parameter $\xi_k, k = 1 \cdots n$

Primer. Naj bo $X \sim N(\mu, \sigma)$, kjer sta μ in σ neznana parametra. Potem je $z_1 = E(X) = \mu, z_2 = E(X^2) = E(X^2) - (E(X))^2 + (E(X))^2 = D(X) + (E(X))^2 = \sigma^2 + \mu^2 \text{ (m = 2)}$

Iz teh dveh enačb izrazimo parametra μ in σ : $\mu=z_1,\sigma^2=z_2-\mu^2=z_2-z_1^2$. Cenilka za μ je $Z_1=\overline{X}=\frac{X_1+\cdots+X_n}{n}$, cenilka za σ^2 je $Z_2-Z_1^2=\frac{X_1^2+\cdots+X_n^2}{n}-\overline{X}^2$. To je enako

$$S_0^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 =$$

$$= \frac{1}{n} \sum_{i=1}^n (X_i^2 - 2X_i \overline{X} + \overline{X}^2) =$$

$$= \frac{1}{n} \sum_{i=1}^n X_i^2 - 2\overline{X}\overline{X} + \overline{X}^2 =$$

$$= \frac{1}{n} \sum_{i=1}^2 X_i^2 - \overline{X}^2$$

Torej bodimo že znani cenilki za parametra μ in σ^2

Primer. Naj bo X porazdeljena enakomerno na [a,b], kjer sta a in b neznana parametra. Iščemo cenilki za a in b. Po metodi momentov moramo izračunati 2 začetna momenta

$$z_1 = E(X) = \frac{a+b}{2}$$

$$z_2 = E(X^2) = \int_{-\infty}^{\infty} x^2 p(x; a, b) dx = \frac{1}{b-a} \int_a^b x^2 dx = \frac{1}{b-a} \frac{x^3}{3} \Big|_a^b = \frac{b^3 - a^3}{3(b-a)} = \frac{b^2 + ab + a^2}{3}$$

Iz 1. enačbe dobimo $b = 2z_1 - a$, kar vstavimo v 2. enačbo

$$\begin{aligned} 3z_2^2 &= b^2 + ab + a^2 = 4z_1^2 - 4z_1a + a^2 + 2az_1 - a^2 + a^2 \\ &\Longrightarrow 3z_2 = 4z_1^2 - 2z_1a + a^2 \\ a^2 - 2az_1 + (4z_1^2 - 3z_2) &= 0 \\ D &= 4z_1^2 - 4(4z_1^2 - 3z_2) = 12(z_2 - z_1^2) \\ a_{1,2} &= \frac{1}{2}(2z_1 \pm \sqrt{D}) = z_1 \pm \frac{1}{2}2\sqrt{3}\sqrt{z_2 - z_1^2} = z_1 \pm \sqrt{3}\sqrt{z_2 - z_1^2} \end{aligned}$$

Ker je a < b, je torej

$$a = z_1 - \frac{1}{2}2\sqrt{3}\sqrt{z_2 - z_1^2}$$
$$b = z_1 + \frac{1}{2}2\sqrt{3}\sqrt{z_2 - z_1^2}$$

Cenilka za a je

$$A := Z_1 \pm \frac{1}{2} 2\sqrt{3}\sqrt{Z_2 - Z_1^2}$$
 $A := Z_1 \pm \frac{1}{2} 2\sqrt{3}\sqrt{Z_2 - Z_1^2} = Z_1 - S_0\sqrt{3}$ po prejšnjem primeru = \overline{X}

Cenilka za b je $B=\overline{X}+S_0\sqrt{3}$ Denimo da imamo konkreten vzorec-2,0,1,2,4(n=

5)
$$\overline{X} = \frac{-2+0+1+2+4}{5} = 1$$
 $S_0^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{1}{5} ((-3)^2 + (-1)^2 + 0^2 + 1^2 + 3^2) = 4$ Vzorčna vrednost za A je $\overline{X} - S_0 \sqrt{3} = 1 - 2\sqrt{3} = \div -2.46$, vzorčna vrednost z B je $\overline{X} + S_0 \sqrt{3} = 1 + 2\sqrt{3} = \div 4.46$

1.3.2 Metoda maksimalne zanesljivosti (oz. največjega verjetja)

Definicija 1.9 (Funkcija zanesljivosti). Naj bo gostota slučajne spremenljivke X odvisna od parametra ξ , torej $p(x;\xi)$. Funkcija zanesljivosti (likelihood function) je

$$L(x_1 \cdots x_n; \xi) = p(x_1; \xi) \cdots p(x_n; \xi)$$

Pri danih $x_1 \cdots x_n$ izberimo tak ξ_{max} , da ima L tam maksimum. Ta vrednost parametra je odvisna od $x_1 \cdots x_n$, torej $\xi_{max} = \phi(x_1, x_2 \cdots x_n)$ za neko funkcijo ϕ . Tako dobimo cenilko $c := \phi(x_1 \cdots x_n)$ za parameter ξ

Primer.

$$p(x;\lambda) := \begin{cases} \lambda e^{-\lambda x} & x > 0\\ 0 & x < 0 \end{cases}$$

 λ je neznan parameter, ki ga ocenjujemo

$$L(x_1 \cdots x_n; \lambda) = \lambda e^{-\lambda x_1} \cdots \lambda e^{-\lambda x_n} = \lambda^n e^{-(x_1 + \cdots + x_n)}$$

Poiskati moramo λ_{max} , pri katerem je dosežen maksimum funkcije L (oz. maksimum funkcije $\ln(L)$)

$$\ln L(x_1 \cdots x_n; \lambda) = n \cdot \ln \lambda - \lambda \sum_{i=1}^n x_i$$

$$\frac{\partial}{\partial \lambda} (\ln L(x_1 \cdots x_n; \lambda)) = \frac{n}{\lambda} - \sum_{i=1}^n x_i = 0$$

$$\implies \lambda_{max} = \frac{n}{\sum_{i=1}^n x_i} = \frac{1}{x}$$

Ker je $\frac{\partial^2}{\partial \lambda^2} \ln L(x_1 \cdots x_n; \lambda) = -\frac{n}{\lambda^2} < 0$, je v λ_{max} maksimum. Cenilka za λ je $c := \frac{1}{\overline{X}}$

Isto cenilko dobimo z metodo momentov:

$$z_1 = E(X) = \frac{0}{\infty} x \lambda e^{-\lambda x} dx = \frac{\text{D.N.}}{\lambda} \qquad \Longrightarrow \lambda = \frac{1}{z_1} = \frac{1}{\overline{x}}$$

cenilka za λ je $c:=\frac{1}{\overline{X}}$

 $Primer.~X \sim N(\mu, \sigma),\, \mu, \sigma$ neznana parametra, ki ju ocenjujemo

$$L(x_{1} \cdots x_{n}; \mu, \sigma) := \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x_{1}-\mu}{\sigma})^{2}} \cdots \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x_{n}-\mu}{\sigma})^{2}} =$$

$$= \frac{1}{(2\pi)^{\frac{n}{2}}} \cdot \frac{1}{\sigma^{n}} e^{-\frac{1}{2\sigma^{2}}(x_{1}-\mu)^{2}+\cdots+(x_{n}-\mu)^{2}}$$

$$\ln L = -\frac{n}{2} \ln 2\pi - n \cdot \ln \sigma - \frac{1}{2\sigma^{2}}((x_{1}-\mu)^{2}+\cdots+(x_{n}-\mu)^{2})$$

$$\frac{\partial}{\partial \mu} \ln L = -\frac{1}{2\sigma^{2}}(2(x_{1}-\mu)(-1)+\cdots+2(x_{1}-\mu)(-1)) = \frac{1}{\sigma^{2}}(x_{1}-\mu+\cdots+x_{n}-\mu) = 0$$

$$x_{1}+\cdots+x_{n}-n\mu=0 \implies \mu = \frac{x_{1}+\cdots+x_{n}}{n} = \overline{x}$$

$$\frac{\partial}{\partial \sigma} \ln L = -\frac{n}{\sigma} + \frac{1}{\sigma^{3}}((x_{1}-\mu)^{2}+\cdots+(x_{n}-\mu)^{2}) = 0$$

$$\implies \sigma^{2} = \frac{1}{n}((x_{1}-\mu)^{2}+\cdots+(x_{n}-\mu)^{2}) =$$

$$= \frac{1}{n}((x_{1}-\overline{x})^{2}+\cdots+(x_{n}-\overline{x})^{2}) = s_{0}^{2}$$

Cenilka za μ je \overline{X} , cenilka za σ^2 je $S_0^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$

Primer.
$$Bin(1,p) = Ber(p), X: \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix} q = 1-p, p$$
 neznan parameter

$$P(X = x) = p^{x}(1 - p)^{1 - x}x \in \{0, 1\}$$

$$L(x_{1} \cdots x_{n}; p) = p^{x_{1}}(1 - p)^{1 - x_{1}} \cdots p^{x_{n}}(1 - p)^{1 - x_{n}} =$$

$$= p^{x_{1} + \cdots + x_{n}}(1 - p)^{n - (x_{1} + \cdots + x_{n})}$$

$$x := x_{1} + \cdots + x_{n} \implies L(x_{1} \cdots x_{n}; p) = p^{x}(1 - p)^{1 - x}x \in \{0, 1 \cdots n\}$$

$$\ln L = x \ln p + (n - x) \ln(1 - p)$$

$$\frac{\partial}{\partial p} \ln L = \frac{x}{p} - \frac{n - x}{1 - p} = 0$$

$$\implies x(1 - p) = (n - x)p \implies x - xp = np - xp \implies p = \frac{x}{n} = \overline{x}$$

Cenilka za p je $P:=\overline{X}=\frac{X_1+\cdots+X_n}{n}$ Ker je

 $E(P) = \frac{1}{n}(E(X_1) + \dots + E(X_n)) = p$

je P nepristranska cenilka Ker je

 $D(P) = \frac{1}{n^2} (D(X_1 + \dots + D(X_n))) = \frac{1}{n^2} n D(X_1) = \frac{1}{n} D(X_1) \xrightarrow{n \to \infty} 0$

po trditvi sledi, da je \overline{X} dosledna cenilka za P

1.4 Intervalsko ocenjevanje parametrov

Definicija 1.10 (Interval zaupanja). Naj bo gostota slučajne spremenljivke X odvisna od parametra ξ . Interval [A, B] (odvisen le od $(x_1 \cdots x_n)$ in ne do ξ) je interval zaupanja za parameter ξ , pri stopnji tveganja $\alpha \in (0,1)$, če je

$$P(\xi \in [A, B]) = 1 - \alpha \text{ oz. } P(\xi \notin [A, B]) = \alpha$$

Za α običajno vzamemo vrednost 0.05 (ali 0.01) A in B sta vzorčni statistiki, $1-\alpha$ je stopnja zaupanja

Primer. $X \sim N(\mu, \sigma), \sigma$ poznamo, μ pa je neznan parameter.

Slučajna spremenljivka $Z:=\frac{\overline{X}-\mu}{\sigma}\sqrt{n}\sim N(0,1)$ Pri dani stopnji tveganja α najdemo $z_{\frac{\alpha}{2}}>0$, da je $P(-z_{\frac{\alpha}{2}}< Z< z_{\frac{\alpha}{2}})=1-\alpha$

oz. $P(|Z| > z_{\frac{\alpha}{2}}) = \alpha$ oz. $P(Z > z_{\frac{\alpha}{2}}) \stackrel{?}{=} \frac{\alpha}{2}$

Pogoj $|Z| < z_{\frac{\alpha}{2}}$ pomeni: $|\overline{X} - \mu| < z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$

$$A := \overline{X} - Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < < \overline{X} + Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} =: B$$

[A, B] je interval zaupranja za μ pri stopnji tveganja α

Konkreten zgled: imejmo vzorec velikosti n = 36, za katerega izračunamo $\overline{x} = 2.6$ in $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2} = 0.3$. Predpostavimo, da imamo $X \sim$ $N(\mu, \sigma)$ in predpostavimo, da je $\sigma := s = 0.3$ (kar pogosto naredimo, če je n razmeroma velik). Vzemimo $\alpha = 0.05$. Iz tabele razberemo $z_{\frac{\alpha}{2}} = 1.96$, torej $P(Z>z_{\frac{\alpha}{2}})=\frac{\alpha}{2}$. Tedaj je vzorčna vrednost za A enaka

$$\overline{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} = 2.6 - 1.96 \frac{0.3}{\sqrt{36}} = 2.5$$

vzorčna vrednost za B je $\overline{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} = 2.7$ Interval zaupanja za μ je [2.5, 2.7], t.j.

$$P(\mu \in [2.5, 2.7]) = 1 - \alpha = 0.95$$

Primer. $X \sim N(\mu, \sigma)$, μ in σ sta neznana. Iščemo interval zaupanja za μ .

Slučajna spremenljivka $T:=\frac{\overline{X}-\mu}{\sigma}\sqrt{n}\sim Student(n-1)$ Pri danem tveganju α izberemo $t_{\frac{\alpha}{2}}>0$, da je $P(|T|< t_{\frac{\alpha}{2}})=1-\alpha$ oz. $P(T>t_{\frac{\alpha}{2}})=\frac{\alpha}{2}$ Sedaj imamo podobno situacijo kot v primeru 1. Pogoj $|T|< t_{\frac{\alpha}{2}}$ pomeni

$$A := \overline{X} - t_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + t_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} =: B$$

Konkreten zgled: življenska doba žarnic v vzorcu je 9.8, 10.2, 10.4, 9.8, 10.0, 10.2, 9.6 (v dneh), n=7. Predpostavimo normalni model $N(\mu,\sigma)$ z neznanima parametroma μ in σ

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 10.0$$

$$s := \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2} = 0.283$$

Vzemimo $\alpha=0.05$, iz tabele za Student(5) razberemo $t_{\frac{\alpha}{2}}=2.45$ Vzorčna vrednost za A je $a=\overline{x}-t_{\frac{\alpha}{2}}\cdot\frac{s}{\sqrt{n}}=9.74$ Vzorčna vrednost za B je $b=\overline{x}+t_{\frac{\alpha}{2}}\cdot\frac{s}{\sqrt{n}}=10.26$ Interval zaupanja za μ je [9.74, 10.26], kar zapišemo kot $\mu=10.0\pm0.26$, Verjetnost, da je $\mu\in[9.74,10.26]$ je 0.95