M1 Maths fondamentales

Analyse avancée

Feuille d'exercices nº 2

ESPACES DE SOBOLEV

Exercise 1. Rappels de distribution.

1. Soit $g \in L^1_{loc}(\mathbf{R})$. On définit

$$f: \mathbf{R} \to \mathbf{R}, \quad x \mapsto \int_0^x g.$$

Montrer que f' = g (au sens des distributions).

- 2. Soit $u \in \mathcal{D}'(\mathbf{R})$ une distribution telle que u' soit nulle. Montrer que u est constante.
- 3. Soit $u \in \mathcal{C}^0(\mathbf{R})$ tel que $g_- := (u_{|\mathbf{R}_-^*})' \in L^1_{\mathrm{loc}}(\mathbf{R}_-^*)$ et $g_+ := (u_{|\mathbf{R}_+^*})' \in L^1_{\mathrm{loc}}(\mathbf{R}_+^*)$ avec g_- et g_+ intégrables au voisinage de 0.

Montrer que $u' \in L^1_{loc}(\mathbf{R})$ et que

$$u'(x) = \begin{cases} g_{-}(x) & \text{si } x < 0; \\ g_{+}(x) & \text{si } x > 0. \end{cases}$$

Exercise 2. Différences finies.

Soit $u \in L^1_{loc}(\mathbf{R})$.

- 1. Montrer que si $1 \le p \le \infty$ et $u' \in L^p(\mathbf{R})$ alors $((u(\cdot + h) u)/h)_{h>0}$ est bornée dans $L^p(\mathbf{R})$.
- 2. Montrer que si $1 et <math>((u(\cdot + h) u)/h)_{h>0}$ est bornée dans $L^p(\mathbf{R})$ alors $u' \in L^p(\mathbf{R})$.
- 3. Donner un contre-exemple à l'implication précédente quand p=1.

Exercise 3. Exponentielles oscillantes.

Pour $\varepsilon > 0$, on définit

$$u_{\varepsilon}:]0,1[\to \mathbf{C}, \quad x \mapsto \mathrm{e}^{\mathrm{i} \frac{x}{\varepsilon}}.$$

1. Montrer que pour tout $k \in \mathbf{Z}$, il existe $0 < c_k \le C_k$ tel que pour tout $1 \le p \le \infty$, pour tout $0 < \varepsilon \le 1$

$$\frac{c_k}{\varepsilon^k} \le \|u_{\varepsilon}\|_{W^{k,p}(]0,1[)} \le \frac{C_k}{\varepsilon^k}.$$

2. Déduire que l'injection de $L^{\infty}(]0,1[;\mathbf{C})$ dans $L^{1}(]0,1[;\mathbf{C})$ n'est pas compacte.

Exercise 4. Un exemple d'échec d'injection.

Pour $n \in \mathbf{N}^*$, on définit $u_n : [0,1] \to \mathbf{R}$ continue par les conditions suivantes

- u_n est constante égale à 1 sur] $0, \frac{1}{2} \frac{1}{(n+2)}$];
- u_n est constante égale à 0 sur $\left[\frac{1}{2} + \frac{1}{(n+2)}, 1\right]$;
- u_n est affine sur $\left[\frac{1}{2} \frac{1}{(n+2)}, \frac{1}{2} + \frac{1}{(n+2)}\right]$.

Montrer que $(u_n)_{n \in \mathbb{N}^*}$ est bornée dans $L^{\infty}(]0,1[) \cap W^{1,1}(]0,1[)$, mais bornée dans aucun $W^{\frac{1}{p},p}(]0,1[)$ quand 1 .

Exercise 5. Masse de Dirac.

- 1. Expliquer pourquoi la masse de Dirac à l'origine δ_0 , vue comme une mesure sur \mathbf{R} , appartient à $W^{s,1}(\mathbf{R})$ pour tout s < 0.
- 2. Montrer que $\delta_0 \in W^{-1,\infty}(\mathbf{R})$.

Exercise 6. Passage au non linéaire.

Soit $(k,p) \in \mathbf{N} \times [1,\infty]$ tel que $k-\frac{1}{p} \neq 0$. On admettra qu'il existe C > 0 tel que pour tout $\ell \in [0,k]$, pour tout $u \in \mathcal{C}_c^{\infty}(\mathbf{R})$,

$$\|u^{(\ell)}\|_{L^{q_{\ell}}(\mathbf{R})} \le C \|u^{(k)}\|_{L^{p}(\mathbf{R})}^{\frac{\ell}{k}} \|u\|_{L^{\infty}(\mathbf{R})}^{1-\frac{\ell}{k}}$$

où q_ℓ est défini par

$$\frac{1}{q_\ell} := \frac{\ell}{k} \frac{1}{p} \,.$$

Montrer qu'il existe C' > 0 tel que, pour tout $u \in \mathcal{C}_c^{\infty}(\mathbf{R})$ et $v \in \mathcal{C}_c^{\infty}(\mathbf{R})$,

$$\|(uv)^{(k)}\|_{L^p(\mathbf{R})} \le C' \left(\|u^{(k)}\|_{L^p(\mathbf{R})} \|v\|_{L^{\infty}(\mathbf{R})} + \|u\|_{L^{\infty}(\mathbf{R})} \|v^{(k)}\|_{L^p(\mathbf{R})} \right).$$