Page 2 of 14

Listing of Claims:

Please amend the claims as follows. This listing of claims replaces all prior versions.

1. (Currently Amended) A method of forming a metal thin dielectric film, comprising:

forming an oxygen-deficient metal oxide dielectric film comprising La_2O_x , wherein $0 \le x \le 3$, on a semiconductor substrate by atomic layer deposition (ALD) using an organic metal compound as a first reactant, wherein the oxygen-deficient metal oxide dielectric film comprises a metal oxide having an oxygen content that is less than a stoichiometric amount a lanthanum-containing compound; and

forming a metal oxide dielectric film on the oxygen-deficient metal oxide dielectric film by ALD using the first reactant and a second reactant, wherein the second reactant emprises a lanthanum-containing compound and an oxidizing agent.

2-3. (Canceled)

- 4. (Currently Amended) The method according to claim 1 [[3]], wherein the first reactant is selected from the group consisting of tris(1-n-propoxy-2-methyl-2-propoxy)lanthanum (III) (La(NPMP)₃), tris(2-ethyl-1-n-propoxy-2-butoxy)lanthanum (III) (La(NPEB)₃), lanthanum (III) ethoxide (La(OC₂H₅)₃), tris(6-ethyl-2,2-dimethyl-3,5-decanedionato)lanthanum (III) (La(EDMDD)₃), tris(dipivaloylmethanate)lanthanum (III) (La(DPM)₃), tris(2,2,6,6-tetramethyl-3,5-heptanedionato)lanthanum (III) (La(TMHD)₃), lanthanum (III) acetylacetonate (La(acac)₃), and tris(ethylcyclopentadienyl)lanthanum (III) (La(EtCp)₃), or combinations thereof.
 - 5. (Currently Amended) The method according to claim 1 further comprising:
- (a) feeding the first reactant <u>lanthanum-containing compound</u> onto the semiconductor substrate to form an adsorbed layer of the first reactant <u>lanthanum-containing compound</u>;
 - (b) removing a byproduct of (a) by means of purge; and
- (c) optionally repeating (a) and (b) until the oxygen-deficient metal oxide dielectric film with a predetermined thickness is formed.

Page 3 of 14

- 6. (Previously Presented) The method according to claim 1, wherein the oxygendeficient metal oxide dielectric film has a thickness in a range of about 5Å to about 30Å.
- 7. (Withdrawn) (Currently Amended) The method according to claim 1, further comprising:
- (a) feeding the first reactant <u>lanthanum-containing compound</u> onto the semiconductor substrate having the oxygen-deficient metal oxide dielectric film thereon, to form a chemisorbed layer of the first reactant;
- (b) feeding the second reactant oxidizing agent onto the chemisorbed layer to form the metal oxide dielectric film; and
- (c) optionally repeating (a) and (b) until the metal oxide dielectric film with a predetermined thickness is formed.
- 8. (Withdrawn) (Currently Amended) The method according to claim 7, wherein the second reactant oxidizing agent is selected from the group consisting of O₃, O₂, plasma O₂, H₂O, and N₂O, or combinations thereof.
- 9. (Withdrawn) The method according to claim 7, further comprising removing a byproduct after (a) and removing a byproduct after (b).
- 10. (Withdrawn) The method according to claim 9, wherein the removal of the byproduct is carried out by means of inert gas purge.
- 11. (Original) The method according to claim 1, wherein the method is carried out at a temperature in a range of about 200°C to about 350°C.
- 12. (Previously Presented) The method according to claim 1 further comprising annealing the oxygen-deficient metal oxide dielectric film.
- 13. (Previously Presented) The method according to claim 12, wherein the annealing is carried out after forming the oxygen-deficient metal oxide dielectric film or after forming the metal oxide dielectric film.

Page 4 of 14

- 14. (Original) The method according to claim 12, wherein the annealing is carried out at a temperature in a range of about 300°C to about 800°C.
- 15. (Original) The method according to claim 12, wherein the annealing is carried out under an atmosphere of a gas selected from the group consisting of O₂, N₂, and O₃, or combinations thereof, or under a vacuum atmosphere.
- 16. (Withdrawn) A method of forming a lanthanum oxide film, comprising: forming a first lanthanum oxide film on a semiconductor substrate by atomic layer deposition (ALD) using an alkoxide-based organic metal compound as a first reactant, wherein the first lanthanum oxide film comprises La₂O_x wherein x<3; and</p>

forming a second lanthanum oxide film comprising La_2O_3 on the first lanthanum oxide film by ALD using the first reactant and a second reactant, wherein the second reactant comprises an oxidizing agent.

- 17. (Withdrawn) The method according to claim 16, wherein the first reactant is selected from the group consisting of La(NPMP)₃, La(NPEB)₃, and La(OC₂H₅)₃, or combinations thereof.
 - 18. (Withdrawn) The method according to claim 16 further comprising:
- (a) feeding the first reactant onto the semiconductor substrate to form an adsorbed layer of the first reactant;
 - (b) removing a byproduct of (a) by means of purge; and
- (c) optionally repeating (a) and (b) until the first lanthanum oxide film with a predetermined thickness is formed.
- 19. (Withdrawn) The method according to claim 18, wherein the first lanthanum oxide film has a thickness in a range of about 5Å to about 30Å.
 - 20. (Withdrawn) The method according to claim 16 further comprising:
- (a) feeding the first reactant onto the semiconductor substrate having the first lanthanum oxide film thereon, to form a chemisorbed layer of the first reactant;

Page 5 of 14

- (b) feeding the second reactant onto the chemisorbed layer to form the second lanthanum oxide film; and
- (c) optionally repeating (a) and (b) until the second lanthanum oxide film with a predetermined thickness is formed.
- 21. (Withdrawn) The method according to claim 20, wherein the second reactant is selected from the group consisting of O₃, O₂, plasma O₂, H₂O, and N₂O, or combinations thereof.
- 22. (Withdrawn) The method according to claim 20, further comprising removing a byproduct after (a) and removing a byproduct after (b).
- 23. (Withdrawn) The method according to claim 22, wherein the removal of the byproduct is carried out by means of inert gas purge.
- 24. (Withdrawn) The method according to claim 16, wherein the method is carried out at a temperature in a range of about 200°C to about 350°C.
- 25. (Withdrawn) The method according to claim 16 further comprising annealing the first lanthanum oxide film.
- 26. (Withdrawn) The method according to claim 25, wherein the annealing is carried out after forming the first lanthanum oxide film or after forming the second lanthanum oxide film.
- 27. (Withdrawn) The method according to claim 25, wherein the annealing is carried out at a temperature in a range of about 300°C to about 800°C.
- 28. (Withdrawn) The method according to claim 25, wherein the annealing is carried out under an atmosphere of a gas selected from the group consisting of O_2 , N_2 , and O_3 , or combinations thereof, or under a vacuum atmosphere.

Page 6 of 14

29. (Withdrawn) A method of forming a high dielectric film, comprising:

forming a first dielectric film on a semiconductor substrate, wherein the first dielectric film comprises a first metal oxide; and

forming a second dielectric film on the first dielectric film, wherein the second dielectric film comprises a second metal oxide, and wherein the method of forming the second dielectric film comprises:

- (a) forming an oxygen-deficient metal oxide film on the first dielectric film by atomic layer deposition (ALD) using an organic metal compound as a first reactant, wherein the oxygen-deficient metal oxide film comprises the second metal oxide and the second metal oxide has an oxygen content that is less than a stoichiometric amount; and
- (b) forming a metal oxide film on the oxygen-deficient metal oxide film by ALD using the first reactant and a second reactant, wherein the second reactant comprises an oxidizing agent.
- 30. (Withdrawn) The method according to claim 29, wherein the first dielectric film comprises Al_2O_3 .
- 31. (Withdrawn) The method according to claim 29, wherein the first dielectric film is formed by chemical vapor deposition (CVD) or ALD.
- 32. (Withdrawn) The method according to claim 29, wherein the first dielectric film has a thickness in a range of about 30Å to about 60Å.
- 33. (Withdrawn) The method according to claim 29, wherein the first reactant comprises an alkoxide-based metal oxide.
- 34. (Withdrawn) The method according to claim 29, wherein forming the oxygen-deficient metal oxide film comprises:
- (a) feeding the first reactant onto the first dielectric film to form an adsorbed layer of the first reactant;
- (b) removing a byproduct on the semiconductor substrate by means of purge; and(c) optionally repeating (a) and (b).

Page 7 of 14

- 35. (Withdrawn) The method according to claim 29, wherein the oxygen-deficient metal oxide film has a thickness in a range of about 5Å to about 30Å.
- 36. (Withdrawn) The method according to claim 29, wherein forming the metal oxide film comprises:
- (a) feeding the first reactant onto the semiconductor substrate having the oxygendeficient metal oxide film thereon, to form a chemisorbed layer of the first reactant;
- (b) feeding the second reactant onto the chemisorbed layer to form the metal oxide film; and
 - (c) optionally repeating (a) and (b).
- 37. (Withdrawn) The method according to claim 36, wherein the second reactant is selected from the group consisting of O₃, O₂, plasma O₂, H₂O, and N₂O, or combinations thereof.
- 38. (Withdrawn) The method according to claim 36, further comprising removing a byproduct after forming the chemisorbed layer of the first reactant and removing a byproduct after forming the metal oxide film.
- 39. (Withdrawn) The method according to claim 38, wherein the removal of the byproduct is carried out by means of inert gas purge.
- 40. (Withdrawn) The method according to claim 29, wherein (a) and (b) are carried out at a temperature in a range of about 200°C to about 350°C.
- 41. (Withdrawn) The method according to claim 29 further comprising annealing the oxygen-deficient metal oxide film.
- 42. (Withdrawn) The method according to claim 41, wherein the annealing is carried out after forming the oxygen-deficient metal oxide film or after forming the metal oxide film on the oxygen-deficient metal oxide film.

Page 8 of 14

- 43. (Withdrawn) The method according to claim 41, wherein the annealing is carried out at a temperature in a range of about 300°C to about 800°C.
- 44. (Withdrawn) The method according to claim 41, wherein the annealing is carried out under an atmosphere of a gas selected from the group consisting of O_2 , N_2 , and O_3 , or combinations thereof, or under a vacuum atmosphere.
- 45. (Withdrawn) A method of forming a high dielectric film, comprising: forming a first dielectric film on a semiconductor substrate, wherein the first dielectric film comprises a metal oxide; and

forming a second dielectric film on the first dielectric film, wherein the second dielectric film comprises a lanthanum oxide, and wherein the method of forming the second dielectric film comprises:

- (a) forming a first lanthanum oxide film on a semiconductor substrate by atomic layer deposition (ALD) using an alkoxide-based organic metal compound as a first reactant, wherein the first lanthanum oxide film comprises La₂O_x, wherein x<3; and
- (b) forming a second lanthanum oxide film comprising La₂O₃ on the first lanthanum oxide film by ALD using the first reactant and a second reactant, wherein the second reactant comprises an oxidizing agent.
- 46. (Withdrawn) The method according to claim 45, wherein the first dielectric film comprises Al_2O_3 .
- 47. (Withdrawn) The method according to claim 45, wherein the first dielectric film is formed by CVD or ALD.
- 48. (Withdrawn) The method according to claim 45, wherein the first dielectric film has a thickness in a range of about 30Å to about 60Å.
- 49. (Withdrawn) (Previously Presented) The method according to claim 45, wherein the first reactant is selected from the group consisting of La(NPMP)₃, La(NPEB)₃,

Page 9 of 14

La(OC₂H₅)₃, La(EDMDD)₃, La(DPM)₃, La(TMHD)₃, La(acac)₃, and La(EtCp)₃, or combinations thereof.

50. (Withdrawn) The method according to claim 45, wherein the method of forming the first lanthanum oxide film comprises:

feeding the first reactant onto the first dielectric film to form an adsorbed layer of the first reactant;

removing a byproduct on the semiconductor substrate by means of purge; and optionally repeating (a) and (b).

- 51. (Withdrawn) The method according to claim 45, wherein the first lanthanum oxide film has a thickness in a range of about 5Å to about 30Å.
- 52. (Withdrawn) The method according to claim 45, wherein the method of forming the second lanthanum oxide film comprises:
- (a) feeding the first reactant onto the semiconductor substrate having the first lanthanum oxide film thereon, to form a chemisorbed layer of the first reactant;
- (b) feeding the second reactant onto the chemisorbed layer to form the second lanthanum oxide film; and

optionally repeating (a) and (b).

- 53. (Withdrawn) The method according to claim 52, wherein the second reactant is selected from the group consisting of O₃, O₂, plasma O₂, H₂O, and N₂O, or combinations thereof.
- 54. (Withdrawn) The method according to claim 52, further comprising removing a byproduct after forming the chemisorbed layer of the first reactant and removing a byproduct after forming the second lanthanum oxide film.
- 55. (Withdrawn) The method according to claim 54, wherein removal of the byproduct is carried out by means of inert gas purge.

Page 10 of 14

- 56. (Withdrawn) The method according to claim 45, wherein (a) and (b) are carried out at a temperature in a range of about 200°C to about 350°C.
- 57. (Withdrawn) The method according to claim 45 further comprising annealing the first lanthanum oxide film.
- 58. (Withdrawn) The method according to claim 57, wherein the annealing is carried out after forming the first lanthanum oxide film and after forming the second lanthanum oxide film.
- 59. (Withdrawn) The method according to claim 57, wherein the annealing is carried out at a temperature in a range of about 300°C to about 800°C.
- 60. (Withdrawn) The method according to claim 57, wherein the annealing is carried out under an atmosphere of a gas selected from the group consisting of O_2 , N_2 , and O_3 , or combinations thereof, or under a vacuum atmosphere.
- 61. (Withdrawn) (Currently Amended) A metal thin dielectric film formed by the method according to claim 1.
- 62. (Withdrawn) (Previously Presented) The metal thin-dielectric film according to claim 61, wherein the metal thin dielectric film is capable of preventing the formation of a low dielectric layer at an interface between the metal thin-dielectric film and an electrode.
- 63. (Withdrawn) (Previously Presented) A semiconductor device comprising the metal thin-dielectric film according to claim 61.
- 64. (Withdrawn) A lanthanum oxide film formed by the method according to claim 16.
- 65. (Withdrawn) A semiconductor device comprising the lanthanum oxide film according to claim 64.

Page 11 of 14

- 66. (Withdrawn) A high dielectric film formed by the method according to claim 29.
- 67. (Withdrawn) A semiconductor device comprising the high dielectric film according to claim 66.
- 68. (Withdrawn) A high dielectric film formed by the method according to claim 45.
- 69. (Withdrawn) A semiconductor device comprising the high dielectric film according to claim 68.