Chapter 3 Descriptive Statistics: Numerical Measures

Slide 1

Learning objectives

- 1. Single variable Part I (Basic)
 - 1.1. How to calculate and use the measures of location
 - 1.2. How to calculate and use the measures of variability
- 2. Single variable Part II (Application)
 - 2.1. Understand what the measures of location (e.g., mean, median, mode) tell us about distribution shape
 - Discuss its use in manipulating simulated experiments
 - 2.2. How to detect outliers using z-score and empirical rule
 - 2.3. How to use Box plot to explore data
 - 2.4. How to calculate weighted mean
 - 2.5. How to calculate mean and variance for grouped data
- 3. Two variables
 - 3.1. How to calculate and use the measures of association
 - Covariance, Correlation coefficient

L.O. 1. Numerical measures - Part I

- **■** Numerical measures
- **■** Measures of Location
 - Mean, median, mode, percentiles, quartiles
- **■** Measures of Variability
 - Range, interquartile range, variance, standard deviation, coefficient of variation

Slide 3

Numerical Measures

If the measures are computed for data from a sample, they are called <u>sample statistics</u>.

If the measures are computed for data from a population, they are called <u>population parameters</u>.

A sample statistic is referred to as the <u>point estimator</u> of the corresponding population parameter.

Mean

•L.O. 1.1. •Mean •Median •Mode •Percentile •Quartile

- The <u>mean</u> of a data set is the average of all the data values.
- The sample mean \mathbb{Z} is the point estimator of the population mean m

Median

•L.O. 1.1. •Mean •Median •Mode •Percentile •Quartile

- The median of a data set is the value in the middle when the data items are arranged in ascending order.
 - For odd number of observations:
 - § the median is the middle value
 - For even number of observations:
 - § the median is the average of the middle two values.
- Whenever a data set has extreme values, the median is the preferred measure of central location.
 - Often used in annual income and property value data

Mode

•L.O. 1.1.
•Mean
•Median
•Mode
•Percentile
•Quartile

- The <u>mode</u> of a data set is the value that occurs with the greatest frequency.
- >n The greatest frequency can occur at two or more different values.
- If the data have exactly two modes, the data are bimodal.
- If the data have more than two modes, the data are multimodal.

Slide 7

Example

•L.O. 1.1. •Mean •Median •Mode •Percentile •Quartile

n Q4 (p. 84)

Compute the mean, median, and mode of the following sample:

53, 55, 70, 58, 64, 57, 53, 69, 57, 68, 53

 \emptyset Median = 57

 \emptyset Mode = 53

n What is the median, if 59 is added to the data?

Percentiles

•L.O. 1.1 •Mean •Median •Mode •Percentile •Quartile

- n A percentile provides information about how the data are spread over the interval from the smallest value to the largest value.
 - Admission test scores for colleges and universities are frequently reported in terms of percentiles.
- The <u>pth percentile</u> of a data set is a value such that at least <u>p</u> percent of the items take on this value or less and at least (100 <u>p</u>) percent of the items take on this value or more.

Slide 9

Percentiles

•L.O. 1.1. •Mean •Median •Mode •Percentile •Quartile

 \triangleright

Compute index i, the position of the pth percentile.

i = (p/100)n

If *i* is not an integer, round up. The *p*th percentile is the value in the *i*th position.

If i is an integer, the pth percentile is the average of the values in positions i and i+1.

Quartiles

•L.O. 1.1.
•Mean
•Median
•Mode
•Percentile
•Quartile

- ▷ n Second Quartile = 50th Percentile = Median

Slide 11

Example: Percentiles and Quartiles

•L.O. 1.1.
•Mean
•Median
•Mode
•Percentile

n Q4 (p. 84)

Find 25th and 75th percentiles from the sample below:

53, 55, 70, 58, 64, 57, 53, 69, 57, 68, 53

Ø 25th percentile = First quartile = 53

 \emptyset 75th percentile = Third quartile = 68

Measures of Variability

- n It is often desirable to consider measures of variability (dispersion), as well as measures of location.
 - For example, in choosing supplier A or supplier B we might consider not only the average delivery time for each, but also the variability in delivery time for each.
- **■** Range
- **■** Interquartile Range
- **■** Variance
- Standard Deviation
- **■** Coefficient of Variation

Slide 13

Range

•L.O. 1.2.
•Range
•IQR
•Variance
•St. Deviation
•Coefficient of
variation

- >n The <u>range</u> of a data set is the difference between the largest and smallest data values.
- **>n** It is the <u>simplest measure</u> of variability.
- ▶n It is <u>very sensitive</u> to the smallest and largest data values.
 - n Range of the sample: 53, 55, 70, 58, 64, 57, 53, 69, 57, 68, 53

$$= 70 - 53 = 17$$

Interquartile Range (IQR)

•L.O. 1.2.
•Range
•IQR
•Variance
•St. Deviation
•Coefficient of
variation

- The <u>interquartile range</u> of a data set is the difference between the third quartile and the first quartile.
- ▷ n It is the range for the middle 50% of the data.
- ▷ n It overcomes the sensitivity to extreme data values.
 - n IQR of the sample: 53, 55, 70, 58, 64, 57, 53, 69, 57, 68, 53

$$=68-53=15$$

Slide 15

Variance

•L.O. 1.2.
•Range
•IQR
•Variance
•St. Deviation
•Coefficient of
variation

The <u>variance</u> is a measure of variability that utilizes all the data.

The variance is the <u>average of the squared</u> differences between each data value and the mean.

The variance is computed as follows:

$$s^2 = \frac{\sum (x_i - \overline{x})^2}{n - 1}$$

$$s^2 = \frac{\sum (x_i - \underline{m})^2}{N}$$

for a sample

for a population

Standard Deviation

•L.O. 1.2.
•Range
•IQR
•Variance
•St. Deviation
•Coefficient of
variation

- The <u>standard deviation</u> of a data set is the positive square root of the variance.
- It is measured in the <u>same units as the data</u>, making it more easily interpreted than the variance.
- **▷** The standard deviation is computed as follows:

for a sample

for a population

Slide 17

Coefficient of Variation

*L.O. 1.2.

*Range
*IQR

*Variance
*St. Deviation
*Coefficient of

- The <u>coefficient of variation</u> indicates how large the standard deviation is in relation to the mean.
- **▷** The coefficient of variation is computed as follows:

for a sample

for a population

4

Example: Variance, Standard Deviation, And Coefficient of Variation

•L.O. 1.2. •Range •IQR •Variance •St. Deviation •Coefficient of variation

Consider the same data set:

53, 55, 70, 58, 64, 57, 53, 69, 57, 68, 53

> ■ Variance

$$z^{2} = \frac{\sum_{i} (x_{i} - \overline{x})^{2}}{n - 1} = \underbrace{45.418}$$

▶ ■ Standard Deviation

$$s = \sqrt{s^2} = \sqrt{33.32} = 6.74$$

the standard deviation is about 11% of of the mean

▶ ■ Coefficient of Variation

$$\left(\frac{3}{3} \times 100\right)\% = \left(\frac{6.74}{59.73} \times 100\right)\% = \left(\frac{11.25\%}{11.25\%}\right)$$

Slide 19

L.O. 2. Numerical measure - Part II

- **▶** Measures of Distribution Shape
 - **■** Detecting Outliers
 - z-score, empirical rule
- **▶** Exploratory Data Analysis
- ➤ The Weighted Mean and Working with Grouped Data

z-Scores

•L.O. 2.
•Shape
•z-score
•Empirical Rule
•Exploratory
•Weighted mean
•Grouped data

 \triangleright The <u>z-score</u> is often called the standardized value.

It denotes the number of standard deviations a data value x_i is from the mean.

$$z_i = \frac{x_i - \overline{x}}{s}$$

Slide 25

z-Scores

•L.O. 2.
•Shape
•z-score
•Empirical Rule
•Exploratory
•Weighted mean
•Grouped data

- ▷n An observation's z-score is a measure of the relative location of the observation in a data set.
- ▷n A data value less than the sample mean will have a z-score less than zero.
- ▷n A data value greater than the sample mean will have a z-score greater than zero.
- ▷n A data value equal to the sample mean will have a z-score of zero.

Detecting Outliers

•L.O. 2.
•Shape
•z-score
•Empirical Rule
•Exploratory
•Weighted mean
•Grouped data

- ▷n An <u>outlier</u> is an unusually small or unusually large value in a data set.
- ▷n A data value with a z-score less than -3 or greater than +3 might be considered an outlier.
- **>n** It might be:
 - an incorrectly recorded data value
 - a data value that was incorrectly included in the data set
 - a correctly recorded data value that belongs in the data set

Slide 29

Exploratory Data Analysis

•L.O. 2.
•Shape
•z-score
•Empirical Rule
•Exploratory
•Weighted mean
•Grouped data

- n The techniques of <u>exploratory data analysis</u> consist of simple arithmetic and easy-to-draw pictures that can be used to summarize data quickly.
 - Five-Number Summary
 - Box Plot

The Weighted Mean and Working with Grouped Data

•L.O. 2.
•Shape
•z-score
•Empirical Rule
•Exploratory
•Weighted mean
•Grouped data

- **■** Weighted Mean
- **■** Mean for Grouped Data
- **■** Variance for Grouped Data
- Standard Deviation for Grouped Data

Slide 33

Weighted Mean

- n When the mean is computed by giving each data value a weight that reflects its importance, it is referred to as a <u>weighted mean</u>.
- n Class grade is usually computed by weighted mean.

In class midterm exam	Descriptive statistics and distributions	40%	weight)
Final group project	Statistical inference	30%	
Group project presentation		10%	
Homework		10%	
Participation		10%	
			!

n When data values vary in importance, the analyst must choose the weight that best reflects the importance of each value.

Weighted Mean

•L.O. 2.
•Shape
•z-score
•Empirical Rule
•Exploratory
•Weighted mean
•Grouped data

where:

 x_i = value of observation i w_i = weight for observation i

Slide 35

Grouped Data

•L.O. 2.
•Shape
•z-score
•Empirical Rule
•Exploratory
•Weighted mean
•Grouped data

- ▷ n The weighted mean computation can be used to obtain approximations of the mean, variance, and standard deviation for the grouped data.
- >n To compute the weighted mean, we treat the midpoint of each class as though it were the mean of all items in the class.
- ▷ n We compute a weighted mean of the class midpoints using the class frequencies as weights.
- ▷ n Similarly, in computing the variance and standard deviation, the class frequencies are used as weights.

Mean for Grouped Data

•L.O. 2.
•Shape
•Z-score
•Empirical Rule
•Exploratory
•Weighted mean
•Grouped data

>■ Sample Data

$$\underline{x} = \frac{n}{\sum_{i} t_{i}^{i} i M^{i}}$$

▶ ■ Population Data

$$m = \frac{\sum_{i} f_{i} M_{i}}{N}$$

where:

 f_i = frequency of class i M_i = midpoint of class i

Slide 37

Sample Mean for Grouped Data

•L.O. 2. •Shape •z-score •Empirical Rule •Exploratory •Weighted mean •Grouped data

Given below is the previous sample of monthly rents for 70 efficiency apartments, presented here as grouped data in the form of a frequency distribution.

	Rent (\$)	Frequency
	420-439	8
	440-459	17
	460-479	12
	480-499	8
\triangleright	500-519	7
	520-539	4
	540-559	2
	560-579	4
	580-599	2
	600-619	6

Sample Mean for Grouped Data

•L.O. 2.
•Shape
•z-score
•Empirical Rule
•Exploratory
•Weighted mean
•Grouped data

	7	\triangle	\triangle
Rent (\$)	f_i	M_i	f_iM_i
420-439	8	429.5	3436.0
440-459	17	449.5	7641.5
460-479	12	469.5	5634.0
480-499	8	489.5	3916.0
500-519	7	509.5	3566.5
520-539	4	529.5	2118.0
540-559	2	549.5	1099.0
560-579	4	569.5	2278.0
580-599	2	589.5	1179.0
600-619	6	609.5	3657.0
Total	70		34525.0

$$\overline{x} = \frac{34,525}{70} = \underbrace{493.21}$$

This approximation differs by \$2.41 from the actual sample mean of \$490.80.

Slide 39

Variance for Grouped Data

▶ ■ For sample data

$$s^{2} = \frac{\sum f_{i} (M_{i} - \overline{x})^{2}}{n - 1}$$

▶ ■ For population data

$$s^2 = \frac{\sum f_i \left(M_i - \mathbf{m} \right)^2}{N}$$

Sample Variance for Grouped Data

•L.O. 2.
•Shape
•z-score
•Empirical Rule
•Exploratory
•Weighted mean
•Grouped data

	7	\triangle	\triangle	\triangle	\triangle
Rent (\$)	f_i	M_i	M _i - x	$(M_i - x)^2$	$f_i(M_i-x)^2$
420-439	8	429.5	-63.7	4058.96	32471.71
440-459	17	449.5	-43.7	1910.56	32479.59
460-479	12	469.5	-23.7	562.16	6745.97
480-499	8	489.5	-3.7	13.76	110.11
500-519	7	509.5	16.3	265.36	1857.55
520-539	4	529.5	36.3	1316.96	5267.86
540-559	2	549.5	56.3	3168.56	6337.13
560-579	4	569.5	76.3	5820.16	23280.66
580-599	2	589.5	96.3	9271.76	18543.53
600-619	6	609.5	116.3	13523.36	81140.18
Total	70				208234.29

continued \rightarrow

Slide 41

Sample Variance for Grouped Data

*L.O. 2. *Shape *z-score *Empirical Rule *Exploratory *Weighted mean *Grouped data

▶ ■ Sample Variance

$$s^2 = 208,234.29/(70-1) = 3,017.89$$

 \triangleright **Sample Standard Deviation**

$$s = \sqrt{3,017.89} = 54.94$$

This approximation differs by only \$.20 from the actual standard deviation of \$54.74.

L.O. 3. Measures of Association Between Two Variables

- **■** Covariance
- **■** Correlation Coefficient

Slide 43

Slide 44

Covariance The covariance is a measure of the linear association between two variables. Positive values indicate a positive relationship. Negative values indicate a negative relationship.

Covariance

•L.O. 3. •Covariance •Correlation

▶ The correlation coefficient is computed as follows:

for samples

$$\triangleright \left[S_{xy} = \frac{\sum (x_i - \mathbf{m}_x)(y_i - \mathbf{m}_y)}{N} \right]$$

for populations

Slide 45

Correlation Coefficient

•L.O. 3. Covariance Correlation

- \triangleright The coefficient can take on values between -1 and +1.
- Values near -1 indicate a <u>strong negative linear</u> relationship.
- Values near +1 indicate a <u>strong positive linear</u> relationship.

Correlation Coefficient

•L.O. 3. •Covariance •Correlation

▶ The correlation coefficient is computed as follows:

$$r_{xy} = \frac{s_{xy}}{s_x s_y}$$

for samples

for populations

Slide 47

Correlation Coefficient

•L.O. 3. •Covariance •Correlation

Correlation is a measure of linear association and not necessarily causation.

 \triangleright

Just because two variables are highly correlated, it does not mean that one variable is the cause of the other.

In class Exercise

•L.O. 3. •Covariance •Correlation

- Q45 (p. 112)
- Q46 (p. 112)

Slide 49

End of Chapter 3

