AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently amended) A compound of the general formula (I)

wherein

A represents an aryl or heteroaryl ring,

 R^1 , R^2 and R^3 independently from each other represent hydrogen, halogen, nitro, cyano, C_1 - C_6 -alkyl, hydroxy or C_1 - C_6 -alkoxy, wherein C_1 - C_6 -alkyl and C_1 - C_6 -alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C_1 - C_4 -alkoxy,

R⁴ represents trifluoromethylcarbonyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, C_1 - C_6 -alkenoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- or di- C_1 - C_4 -alkylaminocarbonyl, C_6 - C_{10} -arylaminocarbonyl, arylcarbonyl, heteroarylcarbonyl, heterocyclylcarbonyl, heterocyclyl or cyano, wherein C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, mono- and di- C_1 - C_4 -alkylaminocarbonyl can be further substituted with one to three identical or different radicals selected from the group consisting of C_3 - C_8 -cycloalkyl, hydroxy, C_1 - C_4 -alkoxy, C_1 - C_4 -

alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- and di- C_1 - C_4 -alkylaminocarbonyl, C_1 - C_4 -alkylcarbonylamino, (C_1 - C_4 -alkylcarbonyl)- C_1 - C_4 -alkylamino, cyano, amino, mono- and di- C_1 - C_4 -alkylamino, heteroaryl, heterocyclyl and tri-(C_1 - C_6 -alkyl)-silyl, and wherein heteroarylcarbonyl, heterocyclylcarbonyl, heterocyclyl can be further substituted with C_1 - C_4 -alkyl,

represents C₁-C₄-alkyl, which can be substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy, C₁-C₆-alkoxy, C₁-C₆-alkylthio, amino, mono- and di-C₁-C₆-alkylamino, arylamino, hydroxycarbonyl, C₁-C₆-alkoxycarbonyl and the radical -O-C₁-C₄-alkyl-O-C₁-C₄-alkyl,

or

- R⁵ represents amino,
- represents hydrogen, C₁-C₆-alkyl, formyl, aminocarbonyl, mono- or di-C₁-C₄-alkylaminocarbonyl, C₃-C₈-cycloalkylcarbonyl, C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, N-(C₁-C₄-alkylsulfonyl)-aminocarbonyl, N-(C₁-C₄-alkylsulfonyl)-aminocarbonyl, N-(C₁-C₄-alkylsulfonyl)-aminocarbonyl, heteroaryl, heteroaryl-carbonyl or heterocyclylcarbonyl, wherein C₁-C₆-alkyl, mono- and di-C₁-C₄-alkylaminocarbonyl, C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, heteroaryl and heterocyclyl can be substituted with one to three identical or different radicals selected from the group consisting of aryl, heteroaryl, hydroxy, C₁-C₄-alkoxy, hydroxycarbonyl, C₁-C₆-alkoxycarbonyl, aminocarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl, amino, mono- and di-C₁-C₄-alkylamino, C₁-C₄-alkylamino, tri-(C₁-C₆-alkyl)-silyl, cyano, mono- and di-C₁-C₄-alkylaminocarbonyl and halogen,

or

R⁶ represents a moiety of the formula

$*$
 $^{\circ}$ $^{\circ}$

wherein

R^{6A} is selected from the group consisting of hydrogen and C₁-C₆-alkyl, and

n represents an integer of 1 or 2,

R⁷ represents halogen, nitro, cyano, C₁-C₆-alkyl, hydroxy or C₁-C₆-alkoxy, wherein C₁-C₆-alkyl is further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C₁-C₄-alkoxy, and C₁-C₆-alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C₁-C₄-alkoxy,

and

Y¹, Y², Y³, Y⁴ and Y⁵ independently from each other represent CH or N, wherein the ring contains either 0, 1 or 2 nitrogen atoms,

or a pharmaceutically acceptable salt thereof.

- 2. (Currently amended) The compound of general formula (I) according to Claim 1, wherein
 - A represents an aryl or heteroaryl ring,

Application No.: 10/527,391 Docket No.:LeA 36248 (82439-303989)

R¹, R² and R³ independently from each other represent hydrogen, halogen, nitro, cyano, C₁-C₆-alkyl, hydroxy or C₁-C₆-alkoxy, wherein C₁-C₆-alkyl and C₁-C₆-alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C₁-C₄-alkoxy,

- R⁴ represents C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, C₁-C₆-alkenoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- or di-C₁-C₄-alkylaminocarbonyl, C₆-C₁₀-arylaminocarbonyl, heteroarylcarbonyl, heterocyclylcarbonyl, heteroaryl, heterocyclyl or cyano, wherein C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl can be further substituted with one to three identical or different radicals selected from the group consisting of C₃-C₈-cycloalkyl, hydroxy, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl, C₁-C₄-alkylcarbonyl-amino, amino, mono- and di-C₁-C₄-alkylamino, heteroaryl, heterocyclyl and tri-(C₁-C₆-alkyl)-silyl,
- R⁵ represents C₁-C₄-alkyl, which can be substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy, C₁-C₆-alkoxy, C₁-C₆-alkylthio, amino, mono- and di-C₁-C₆-alkylamino, arylamino, hydroxycarbonyl, C₁-C₆-alkoxycarbonyl and the radical -O-C₁-C₄-alkyl-O-C₁-C₄-alkyl,

or

- R⁵ represents amino,
- $R^6 \qquad \text{represents hydrogen, C_1-C_6-alkyl, formyl, aminocarbonyl, mono- or di-C_1-C_4-alkylaminocarbonyl, C_3-C_8-cycloalkylcarbonyl, C_1-C_6-alkylcarbonyl, N-(C_1-C_4-alkylsulfonyl)-aminocarbonyl, N-(C_1-C_4-alkylsulfonyl)-amino$

sulfonyl)-N-(C_1 - C_4 -alkyl)-aminocarbonyl, heteroaryl, heteroaryl-carbonyl or heterocyclylcarbonyl, wherein C_1 - C_6 -alkyl, mono- and di- C_1 - C_4 -alkylaminocarbonyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, heteroaryl and heterocyclyl can be substituted with one to three identical or different radicals selected from the group consisting of aryl, heteroaryl, hydroxy, C_1 - C_4 -alkoxy, hydroxycarbonyl, C_1 - C_6 -alkoxycarbonyl, aminocarbonyl, mono- and di- C_1 - C_4 -alkylaminocarbonyl, amino, mono- and di- C_1 - C_4 -alkylamino, tri-(C_1 - C_6 -alkyl)-silyl, cyano, mono- and di- C_1 - C_4 -alkylamino- C_1 - C_4 -alkylaminocarbonyl, C_1 - C_4 -alkylaminocarbonyl and halogen,

or

R⁶ represents a moiety of the formula

$*$
 $^{\text{N}}$ $^{\text{NR}}^{\text{6A}}$, $^{\text{N}}$ $^{\text{O}}$ or $^{\text{N}}$ $^{\text{CH}_2)_n}$

wherein

 R^{6A} is selected from the group consisting of hydrogen and $C_1\text{-}C_6\text{-alkyl}$, and

n represents an integer of 1 or 2,

R⁷ represents halogen, nitro, cyano, C₁-C₆-alkyl, hydroxy or C₁-C₆-alkoxy, wherein C₁-C₆-alkyl is further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C₁-C₄-alkoxy, and C₁-C₆-alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C₁-C₄-alkoxy,

and

- Y¹, Y², Y³, Y⁴ and Y⁵ independently from each other represent CH or N, wherein the ring contains either 0, 1 or 2 nitrogen atoms.
- 3. (Currently amended) The compound of general formula (I) according to Claim 1, wherein
 - A represents a phenyl, naphthyl or pyridyl ring,
 - R¹, R² and R³ independently from each other represent hydrogen, fluoro, chloro, bromo, nitro, cyano, methyl, ethyl, trifluoromethyl or trifluoromethoxy,
 - R⁴ represents C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono-C₁-C₄-alkylaminocarbonyl or cyano, wherein C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl and mono-C₁-C₄-alkylaminocarbonyl can be substituted with one to three identical or different radicals selected from the group consisting of C₃-C₈-cycloalkyl, hydroxy, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl, amino, mono- or di-C₁-C₄-alkylamino, heteroaryl and heterocyclyl,
 - R⁵ represents methyl or ethyl,
 - R⁶ represents hydrogen, C₁-C₆-alkyl, mono- or di-C₁-C₄-alkylaminocarbonyl, C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl or heterocyclylcarbonyl, wherein C₁-C₆-alkyl and C₁-C₆-alkoxycarbonyl can be substituted with one to three identical or different radicals selected from the group consisting of heteroaryl, hydroxy, C₁-C₄-alkoxy, hydroxycarbonyl, C₁-C₆-alkoxycarbonyl, aminocarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl, cyano, amino, mono- and di-C₁-C₄-alkylamino,

or

R⁶ represents a moiety of the formula

wherein

R^{6A} is selected from the group consisting of hydrogen and C₁-C₄-alkyl, and

- n represents an integer of 1 or 2,
- R⁷ represents halogen, nitro, cyano, trifluoromethyl, <u>or</u> trifluoromethoxy, methyl or ethyl,

and

 Y^1 , Y^2 , Y^3 , Y^4 and Y^5 each represent CH.

- 4. (Previously Presented) The compound of general formula (I) according to Claim 1, wherein
 - A represents a phenyl or a pyridyl ring,

R¹ and R³ each represent hydrogen,

R² represents fluoro, chloro, bromo, nitro or cyano,

- R⁴ represents cyano, C₁-C₄-alkylcarbonyl or C₁-C₄-alkoxycarbonyl, wherein C₁-C₄-alkoxycarbonyl can be substituted with a radical selected from the group consisting of hydroxy, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl, mono- and di-C₁-C₄-alkylamino, heteroaryl and heterocyclyl,
- R⁵ represents methyl,
- R⁶ represents hydrogen, C₁-C₄-alkyl, mono- or di-C₁-C₄-alkylaminocarbonyl, C₁-C₄-alkylcarbonyl or C₁-C₄-alkoxycarbonyl, wherein C₁-C₄-alkyl and C₁-C₄-alkoxycarbonyl can be substituted with a radical selected from the group consisting of heteroaryl, hydroxy, C₁-C₄-alkoxy, hydroxycarbonyl, aminocarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl, amino, mono- and di-C₁-C₄-alkylamino,

or

R⁶ represents a moiety of the formula

wherein

R^{6A} is selected from the group consisting of hydrogen and methyl,

R⁷ represents trifluoromethyl or nitro,

and

5. (Previously presented) The compound of general formula (I) according to claim 1, wherein A is phenyl or pyridyl.

- 6. (Previously Presented) The compound of general formula (I) according to claim 1, wherein R¹ is hydrogen.
- 7. (Previously Presented) The compound of general formula (I) according to claim 1, wherein R² is cyano.
- 8. (Previously Presented) The compound of general formula (I) according to claim 1, wherein R³ is hydrogen.
- 9. (Previously Presented) The compound of general formula (I) according to claim 1, wherein R^4 is C_1 - C_4 -alkoxycarbonyl optionally substituted by hydroxy or wherein R^4 is C_1 - C_4 -alkylcarbonyl.
- 10. (Previously Presented) The compound of general formula (I) according to claim 1, wherein R⁵ is methyl.
- 11. (Previously Presented) The compound of general formula (I) according to claim 1, wherein R⁶ is hydrogen.
- 12. (Previously Presented) The compound of general formula (I) according to claim 1, wherein R⁷ is trifluoromethyl or nitro.
- 13. (Previously Presented) A compound of general formula (IA)

$$R^4$$
 R^4
 R^4
 R^6
 R^3
 CF

wherein

Z represents CH or N, and

 R^1 , R^3 , R^4 and R^6 have the meaning indicated in claim 1.

14. (Previously Presented) A process for synthesizing the compounds of general formula (I), as defined in claim 1 by condensing compounds of general formula (II)

$$R^{1}$$
 A
 CHO
(II),

wherein

A, R¹ and R² have the meaning indicated in claim 1,

with compounds of general formula (III)

Docket No.:LeA 36248 (82439-303989)

Application No.: 10/527,391

wherein

R⁴ and R⁵ have the meaning indicated in claim 1,

and compounds of general formula (IV)

$$\begin{array}{c|c}
 & \text{NH}_2 \\
 & \text{HN} & \text{O} \\
 & \text{Y}_1^1 & \text{Y}_2^5 \\
 & \text{Y}_3^2 & \text{Y}_4^4 & \text{R}^7
\end{array}$$

$$\begin{array}{c|c}
 & \text{(IV)}_1 \\
 & \text{R}^3 & \text{(IV)}_2
\end{array}$$

wherein

 R^3 , R^7 , and Y^1 to Y^5 have the meaning indicated in claim 1,

in the presence of an acid either in a three-component / one-step reaction or sequentially to give compounds of the general formula (IB)

wherein

A, R^1 to R^5 , R^7 , and Y^1 to Y^5 have the meaning indicated in claim 1,

optionally followed by reaction of the compounds of general formula (IB) with compounds of the general formula (V)

$$R^{6*}-X$$
 (V),

wherein

 R^{6*} has the meaning of R^6 as indicated in claim 1, but does not represent hydrogen, and X represents a leaving group,

in the presence of a base.

- 15. (Currently amended) A composition containing at least one compound of general formula

 (I) or (IA) as defined in claim 1 and a pharmacologically acceptable diluent.
- 16. (Cancelled)
- 17. (Currently amended) A process for the preparation of compositions a composition, said process comprising a step of bringing according to Claim 15 characterized in that the compounds of general formula (I) as defined in claim 1 together with customary auxiliaries are brought into a suitable application form; wherein said composition contains at least one compound of general formula (I) and a pharmacologically acceptable diluent.
- 18. (Cancelled)
- 19. (Currently amended) A method of treating acute and chronic inflammatory, ischaemic or remodelling processes, comprising administering a therapeutically effective amount of a compound of a compound of claim 1.
- 20. (Previously Presented) The method of Claim 19, wherein the process is chronic obstructive pulmonary disease, acute coronary syndrome, acute myocardial infarction or development of heart failure.

Application No.: 10/527,391 Docket No.:LeA 36248 (82439-303989)

21. (Previously Presented) The method of claim 19, wherein a neutrophil elastase inhibitory amount is administered.

- 22. (New) A composition containing at least one compound of general formula (IA) as defined in claim 13 and a pharmacologically acceptable diluent.
- 23. (New) A process for preparation of a composition, said process comprising a step of bringing the compounds of general formula (IA) as defined in claim 13 together with customary auxiliaries into a suitable application form; wherein said composition contains at least one compound of general formula (IA) and a pharmacologically acceptable diluent.
- 24. (New) Ethyl 4-(4-cyanophenyl)-6-methyl-1-(3-methylphenyl)-2-oxo-1,2,3,4-tetrahydro-5-pyrimidinecarboxylate, or a pharmaceutically acceptable salt thereof.