

ATOMIC STRUCTURE

IMPORTANT DEFINITIONS

Proton (m _p) /anode rays	Neutron (m _n)	Electron(m _e) / cathode rays
mass = 1.67×10^{-27} kg	mass = $1.67 \times 10^{-27} \text{ kg}$	mass = 9.1×10^{-31} kg
mass = 1.67×10^{-24} g	mass = 1.67×10^{-24} g	mass = 9.1×10^{-28} g
mass = 1.00750 amu	mass = 1.00850 amu	mass = 0.000549 amu
e/m value is dependent on the nature of gas taken in discharge tube.		e/m of electron is found to be independent of nature of gas & electrode used.

REPRESENTATION OF AN ELEMENT

Terms associated with elements:

- Atomic Number (Z): = No. of protons
 Electron = Z C (charge on atom)
- Mass number (A) =Total number of neutron and proton present

A = Number of proton + Number of Neutrons

• **Isotopes :** Same atomic number but different mass number

Ex.:
$${}_{6}C^{12}$$
, ${}_{6}C^{13}$, ${}_{6}C^{14}$

• **Isobars**: Same mass number but different atomic number

Ex.
$$_{1}H^{3}$$
, $_{2}He^{3}$

• **Isodiaphers :** Same difference of number of Neutrons & protons

Ex.
$${}_{5}B^{11}$$
, ${}_{6}C^{13}$

• **Isotones**: Having same number of neutron

Ex.
$$_{1}H^{3}$$
, $_{2}He^{4}$

• **Isosters**: They are the molecules which have the same number of atoms & electrons

• **Isoelectronic**:Species having same no. of electrons

Ex. Cl-, Ar

ATOMIC MODELS

- **Thomson**: An atom considered to be positively charged sphere where e⁻ is embedded inside it.
- Drawback: Cannot explain stability of an atom.
- Rutherford Model of an atoms :

Electron is revolving around the nucleus in circular path.

$$R_N = R_0(A)^{1/3}$$
, $R_0 = 1.33 \times 10^{-13}$ cm [A = mass number, $R_N =$ Radius of nucleus] **SIZE OF NUCLEUS**

- The volume of the nucleus is very small and is only a minute fraction of the total volume of the atom. Nucleus has a diameter of the order of 10^{-12} to 10^{-13} cm and the atom has a diameter of the order of 10^{-8} cm.
- Thus, diameter (size) of the atom is 1,00,000 times the diameter of the nucleus.

ELECTROMAGNETIC SPECTRUM

- RW→MW→IR→Visible→UV→X-rays→CR (Radiowaves →Microwaves →Infrared rays →Visible rays →Ultraviolet rays →X-rays →Cosmic rays)
- Wavelength decreases
- Frequency increases
- $c = v\lambda$ $\lambda = \frac{c}{v}$ $\overline{v} = \frac{1}{\lambda} = \frac{v}{c}$
 - T = $\frac{1}{v}$ E = $\frac{hc}{\lambda}$ = hv, h = 6.626 × 10⁻³⁴ Js
 - $E(ev) = \frac{12400}{\lambda(\mathring{A})}$
 - •Total amount of energy transmitted $E = nhv = \frac{nhc}{\lambda}$

E

BOHR'S ATOMIC MODEL

Theory based on quantum theory of radiation and the classical laws of physics

•
$$\frac{K(Ze)(e)}{r^2} = \frac{mv^2}{r}$$

- $mvr = \frac{nh}{2\pi}$ or $mvr = n\hbar$
- Electron remains in stationary orbit where it does not radiate its energy.

• **Radius**:
$$r = 0.529 \times \frac{n^2}{Z} \text{Å}$$

• **Velocity**:
$$v = 2.188 \times 10^6 \frac{Z}{n} ms^{-1}$$

=Total energy =
$$-13.6 \times \frac{Z^2}{n^2}$$
 eV/atom

•
$$TE = -\frac{KZe^2}{2r}$$
, $PE = \frac{-KZe^2}{r}$, $KE = \frac{KZe^2}{2r}$
 $PE = -2KE$, $KE = -TE$, $PE = 2TE$

• Revolutions per sec =
$$\frac{v}{2\pi r}$$

- Time for one revolution = $\frac{2\pi r}{v}$
- Energy difference between n₁ and n₂ energy level

$$\Delta E = E_{n_2} - E_{n_1} = 13.6 Z^2 \bigg(\frac{1}{n_1^2} - \frac{1}{n_2^2} \bigg) \frac{eV}{atom} = IE \times \bigg(\frac{1}{n_1^2} - \frac{1}{n_2^2} \bigg)$$

where IE = ionization energy of single electron species.

• Ionization energy $= E_{\infty} - E_{G.S.} = 0 - E_{G.S.}$ $E_{G.S} =$ Energy of electron in ground state

HYDROGEN SPECTRUM

• Rydberg's Equation :

$$\frac{1}{\lambda} = \overline{\nu} = R_H \bigg\lceil \frac{1}{n_1^2} - \frac{1}{n_2^2} \bigg\rceil \times Z^2$$

 $R_{H} \cong 109700 \text{ cm}^{-1} = \text{Rydberg constant}$

- For first line of a series $n_2 = n_1 + 1$
- Limiting spectral line (series limit) means $n_2 = \infty$
- H_α line means n₂ =n+1; also known as line of longest λ, shortest ν, least E
- Similarly H_{B} line means $n_{2} = n_{1} + 2$
- When electrons de-excite from higher energy level (n) to ground state in atomic sample, then number of spectral lines observed in the

spectrum =
$$\frac{n(n-1)}{2}$$

 When electrons de-excite from higher energy level (n₂) to lower energy level (n₁) in atomic sample, then number of spectral line observed in the spectrum

$$=\frac{(n_2-n_1)(n_2-n_1+1)}{2}$$

No. of spectral lines in a particular series
 = n₂ - n₁

DE-BROGLIE HYPOTHESIS

- All material particles posses wave character as well as particle character.
- $\lambda = \frac{h}{h} = \frac{h}{h}$ mν p
- The circumference of the nth orbit is equal to n times of wavelength of electron i.e.,

Number of waves = n = principalquantum number

- Wavelength of electron $(\lambda) \approx \sqrt{\frac{150}{V(\text{volts})}} \text{Å}$ $\lambda = \frac{h}{\sqrt{2mKE}}$

HEISENBERG UNCERTAINTY

According to this principle, "it is impossible to measure simultaneously the position and momentum of a microscopic particle with absolute accuracy"

If one of them is measured with greater accuracy, the other becomes less accurate.

•
$$\Delta x.\Delta p \ge \frac{h}{4\pi}$$
 or $(\Delta x)(\Delta v) \ge \frac{h}{4\pi m}$ where $\Delta x = Uncertainty in position$

 Δp = Uncertainty in momentum

 $\Delta v = Uncertainty in velocity$

m = mass of microscopic particle

Heisenberg replaced the concept of orbit by that of orbital.

QUANTUM NUMBER

Principal Quantum number (By Bohr)

- Indicates = Size and energy of the orbit, distance of e- from nucleus
- Values n = 1, 2, 3, 4, 5...
- Angular momentum = $n \times \frac{h}{2\pi}$
- Total number of e^-s in an orbit = $2n^2$
- Total number of orbitals in an orbit = n^2 \Rightarrow
- Total number of subshell in an orbit = n

Azimuthal/Secondary/Subsidiary/Angular momentum quantum number (ℓ)

- Given by = Sommerfeld
- Indicates = Sub shells/sub orbit/sub level
- Values $\Rightarrow 0, 1, \dots, (n-1)$
- Indicates shape of orbital/Sub shell

= maleures shape of oronar such			
Value	Values of ℓ	Initial from	
of n	[Shape]	word	
eg.	$\ell = 0$ (s) [Spherical]	Sharp	
If $n = 4$		Principal	
	ℓ =2 [d] [Double dumb	Diffused	
	bell]		
	ℓ =3 [f] [Complex]	Fundamental	

- Total no. of e^-s in a suborbit = 2(2l + 1)
- Total no. of orbitals in a suborbit = (2l + 1)
- Orbital angular momentum

$$= \sqrt{\ell \left(\ell + 1\right)} \frac{h}{2\pi} = \sqrt{\ell \left(\ell + 1\right)} \hbar$$

h = Planck's constant

For H & H like species all the subshells of a shell have same energy.

i.e.
$$2s = 2p$$
 $3s = 3p = 3d$

- Magnetic Quantum number (m)
 - ⇒ Given by Linde
 - ⇒ Indicates orientation of orbitals i.e. direction of electron density.
 - Value of $m = -\ell+\ell$
 - Maximum no of e's in an orbital = 2(with opposite spin)

m for p sub shell =
$$p_x$$
 p_y p_z -1 $+1$ 0

m for d sub shell =

Spin Quantum Number (mg or s)

Given by Uhlenback & Goudsmit

Values of $s = \pm \frac{1}{2}$

Total value of spin in an atom = $\pm \frac{1}{2}$ ×number of unpaired electrons

Spin Angular momentum = $\sqrt{s(s+1)} \frac{h}{2\pi}$

- Aufbau principle: The electrons are filled up in increasing order of the energy in subshells. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14} 5d^{10} 6p^6 7s^2 5f^{14} 6d^{10} \\$
- $(n + \ell)$ rule: The subshell with lowest $(n + \ell)$ value is filled up first, but when two or more subshells have same $(n + \ell)$ value then the subshell with lowest value of n is filled up first.
 - Pauli exclusion principle: Pauli stated that no two electrons in an atom can have same values of all four quantum numbers.
- Hund's rule of maximum multiplicity: Electrons are distributed among the orbitals of subshell in such a way as to give maximum number of unpaired electrons with parallel spin.