LAN Switching

Teoría de las Comunicaciones

02 de Septiembre de 2014

Acceso Compartido

- Un medio físico para varios hosts, control descentralizado.
- Surge la necesidad de:
 - Esquema de Direccionamiento.
 - Control de Acceso.
 - Podría usarse FDM o TDM?
- Ejemplos:
 - Aloha.
 - Ethernet (802.3).
 - WIFI (802.11).
 - Token Ring (802.5).

Acceso Compartido: Ethernet

Topologías

Tipos de Cables

- 10base2 Coaxil (10 Mbps, 200 m)
- 10base5 Coaxil (10 Mbps, 500 m)
- 10baseT Par Trenzado (10/100/1000 Mbps, 100 m)

Acceso Compartido: Ethernet

- IEEE 802.3
- Max. 500m por tramo (evitar atenuación).
- Max. 4 repetidores ⇒ Enlace max=2500m
- Min. 2.5m entre hosts.

Ethernet Frame Format

Un host recibe frames que estén destinados a ...

- ... su dirección.
- ... la dirección broadcast (FF:FF:FF:FF:FF).
- ... una dirección multicast (de estar suscripto).
 - o cualquier frame (de haber sido activado el modo promiscuo).

Transmiciones: CSMA/CD

Cuando un host tiene datos para enviar, sensa el medio:

- Si está *libre*, transmite.
- Si está ocupado:
 - 1-persistente: espera a que se libere y transmite. (es el caso de Ethernet IEEE 802.3)
 - p-persistente: espera a que se libere y transmite con probabilidad p.
- Half-duplex: La lógica de recepción está establecida en el sensado para detectar colisiones.

Colisiones

- Si los hosts envían frames, producen colisiones.
- Es necesario tener un control sobre los envíos, para saber si llegaron sin colisionar.
- ★ Largo mínimo de trama: Se envía hasta saber que no hubo colisión. El tiempo de propagación entre los extremos es clave.

Ejercicio

Siendo $25,6\mu s$ el delay máximo en una LAN 802.3 de 10 Mbps

- a. ¿Cuál es el período de tiempo mínimo que deberá transcurrir para que las estaciones que enviaron un paquete se aseguren de que no ocurrió una colisión?
- b. Calcular el tamaño mínimo de la trama.
- c. ¿Qué pasaría si un emisor desea transmitir una trama de datos de tamaño menor al mínimo especificado?

Colisiones

¿Qué hacer ante una colisión?

¡Retransmitir!

- ¿Inmediatamente?
- ¿Luego de un tiempo fijo?
- ¿Luego de un tiempo aleatorio?

Exponential BackOff

Contention Window

- Elegir un *slot* entre 0 y $2^k 1$, con k la cantidad de intentos.
- Esperar slot veces el RTT antes de sensar para retransmitir.

Estados de un transmisor

802.2: Logical Link Control

- Ofrece tres tipos de servicios
 - Sin conexión y sin ACK
 - Sin conexión y con ACK
 - Orientado a conexión
- Encapsula distintos tipos de medios físicos (WIFI, Ethernet, ...)

Red de Area Local (LAN)

★ Conjunto de estaciones que comparten dominio de broadcast.

Dominio de Colisión vs Dominio de Broadcast

Extended LAN

- ★ Las LANs pueden ser de varios tipos de tecnologías.
- ★ Las estaciones deben compartir esquema de direccionamiento.

Extended LAN

- ★ Por razones de: heterogeneidad, distancia, aislamiento, redundancia, seguridad.
- ★ Distintos tipos de multiplexores. Se pueden caracterizar por la capa o nivel en que trabajan.
 - Físico: Repetidores y hubs.
 - Enlace: Bridges y switches.
 - Red: Routers. Gateways?.

Learning Bridge

Port
1
1
1
2
2
2

Los switchs aprenden

★ Relacionan direcciones (i.e.: MAC) con interfaz en función del tráfico en la LAN.

Ejercicio

Dada una LAN con un switch L2 que une 4 hosts (H1 a H4), se envían frames, en este orden:

H1 a H2; H4 a H3; H2 a H1; H1 a H3; H3 a H1

Asumiendo que la tabla de forwarding del switch se encuentra vacía, diga si los frames son enviados directamente a destino por el switch o son transmitidos por todos los puertos (flooding). Indique también los cambios en la tabla de forwarding del switch.

Topologías con ciclos

Idea

• Cada switch envía paquetes (BPDUs) a sus vecinos propagando informacion acerca de la topología de la LAN de manera periódica.

Mecanismo

- ★ Se elige un switch **root**.
- ★ Cada switch aprende las distancias al **root** de todos sus vecinos.
- Cada switch determina cuál es su interfaz con distancia mínima al root.
- ★ Por cada LAN, se elige solo una interfaz de un switch como designada que tenga la distancia mínina al root entre las posibles.

Bridge Protocol Data Units (BPDUs)

Los BPDUs están conformados por ...

- 1. El *id* del que está enviando el mensaje.
- 2. El *id* del **root** según el que está enviando el mensaje.
- 3. La distancia, en saltos, desde el que envía el mensaje hasta el **root**.

Se actualiza esta información en cada switch si ...

- se identifica un BPDU con menor **root** id.
- **ó** se identifica un BPDU con igual **root** *id* pero a menor distancia.
- 6 el root id y la distancia son las mismas pero el id del switch es menor.

Las interfaces (ports) pueden ser

Root port

El puerto con menor distancia al **root**, elegido de entre los puertos de **un switch**.

Designated port

Todo aquel puerto con mejor distancia al **root**, elegido de entre todos los puertos de varios switches conectados **una LAN**.

Blocked port

El resto.

Ejercicio

Dada la siguiente LAN

- a. Simule varios rounds de STP. Asuma que todos los switchs comienzan con un round de envío, después todos reciben sus mensajes y realizan los cálculos, luego otro round de envío y así hasta que STP termine. ¿Cuál es el switch root? ¿Qué puertos quedan bloqueados?
- b. Ahora, el cable de S2 que conecta con L1 se rompe. Recalcule STP ¿Qué sucede?

LANs Virtuales (VLANs)

"...Said another way, broadcast does not scale, and as a consequence extended LANs do not scale. One approach to increasing the scalability of extended LANs is the virtual LAN (VLAN). VLANs allow a single extended LAN to be partitioned into several seemingly separate LANs."

LANs Virtuales (VLANs)

Se pueden definir según

- a) Dirección MAC.
- b) Interfaz.

Enlaces Troncales (VLAN trunking - 802.1q

802.3

802.1Q

