# **ISOLCA**

## Résultats de Performance Interface IA d'Analyse 3D de Modèles Anatomiques du genou

Mohamed Amine Sobhi

15août2025

### 1 Vue d'ensemble

**ISOLCA** est une application desktop d'intelligence artificielle spécialisée dans l'analyse automatisée de modèles 3D anatomiques du genou (fémur, tibia, rotule) au format STL. Le système enregistre et exporte les manipulations effectuées pour exploitation ultérieure par des systèmes robotiques de chirurgie.

#### 2 Dataset d'évaluation

Le système a été testé sur un ensemble de 118 modèles STL de genoux humains, comprenant :

Table 1 – Composition du dataset

| Type de modèle                      | Nombre | Pourcentage |
|-------------------------------------|--------|-------------|
| Modèles de référence                | 58     | 49.2%       |
| Modèles avec variations anatomiques | 32     | 27.1%       |
| Modèles avec déformations           | 18     | 15.3%       |
| Modèles bruités (test robustesse)   | 10     | 8.5%        |
| Total                               | 118    | 100%        |

## 3 Résultats de performance

## 3.1 Métriques principales

Table 2 – Performance globale du système ISOLCA

| Métrique                    | Valeur moyenne | Écart-type | IC 95%         |
|-----------------------------|----------------|------------|----------------|
| Temps de traitement (s)     | 1.8            | 0.3        | [1.6; 2.0]     |
| Précision spatiale (mm)     | 0.09           | 0.02       | [0.08;0.10]    |
| Écart-type d'isométrie (mm) | 0.035          | 0.008      | [0.032; 0.038] |
| Taux de réussite global (%) | 94.1           | 3.1        | [92.5;95.7]    |
| Consommation mémoire (GB)   | 2.1            | 0.4        | [1.9;2.3]      |

### 3.2 Performance par structure anatomique



FIGURE 1 – Taux de réussite par composant anatomique

Table 3 – Détail des performances par structure

| Structure        | Taux réussite (%) | Erreur moyenne (mm) | Temps (s) | F1-Score |
|------------------|-------------------|---------------------|-----------|----------|
| Fémur            | 96.8              | 0.06                | 0.8       | 0.967    |
| Tibia            | 93.2              | 0.08                | 0.6       | 0.928    |
| Rotule           | 89.4              | 0.12                | 0.4       | 0.889    |
| Moyenne pondérée | 94.1              | 0.09                | 1.8       | 0.938    |

### 3.3 Impact de la complexité des modèles



FIGURE 2 – Évolution des performances selon la complexité

#### 3.4 Analyse de robustesse

Table 4 – Impact du bruit sur les performances

| Niveau de bruit               | Précision (%) | Dégradation | Temps (s) | Erreur (mm) |
|-------------------------------|---------------|-------------|-----------|-------------|
| Aucun (référence)             | 97.2          |             | 1.6       | 0.06        |
| Faible ( $= 0.1 \text{ mm}$ ) | 94.8          | -2.5%       | 1.7       | 0.08        |
| Modéré (= 0.2  mm)            | 88.6          | -8.8%       | 1.9       | 0.12        |
| Élevé ( = $0.3 \text{ mm}$ )  | 85.1          | -12.4%      | 2.1       | 0.16        |

## 4 Comparaison avec l'état de l'art

Table 5 – Benchmarking des approches

| Méthode                 | Précision (%) | Temps (s) | Robustesse | Automatisation        |
|-------------------------|---------------|-----------|------------|-----------------------|
| ICP classique           | 78.3          | 4.2       | Limitée    | Manuelle              |
| RANSAC + ICP            | 84.1          | 6.8       | Moyenne    | Semi-automatique      |
| PointNet++              | 88.7          | 2.1       | Bonne      | Complète              |
| lightgray <b>ISOLCA</b> | 94.1          | 1.8       | Excellente | $\mathbf{Compl\`ete}$ |



FIGURE 3 – Positionnement performance/temps de calcul

# 5 Synthèse des résultats

#### Performances clés obtenues :

— **Précision globale :** 94.1% de taux de réussite

— **Précision spatiale :**  $0.09 \pm 0.02$  mm en moyenne

— Efficacité temporelle : 1.8 secondes par modèle

— Robustesse: Performances stables jusqu'à = 0.2 mm de bruit

— Amélioration vs état de l'art : +6.1% de précision, -14

#### Points forts identifiés:

- Traitement automatisé complet sans intervention manuelle
- Excellente performance sur les structures complexes (fémur : 96.8%)
- Robustesse aux variations anatomiques et aux artefacts
- Temps de calcul optimisé pour usage en temps quasi-réel
- Export des données compatible avec systèmes robotiques