Introduction and goal Background Resolution of some differential equations The number of solutions Virtual differential 2-rigs

From combinatorial species to general differential 2-rigs

Fosco Loregian, Tanguy Massacrier

Taltech, Tallinn University of Technology

Goals : in the context of general differential 2-rigs (Loregian, Trimble, [5]) :

- Can we solve differential equations using the same techniques as for combinatorial species?
- Can some theorems about combinatorial species be extended ?

- Background
- Resolution of some differential equations
- The number of solutions
- 4 Virtual differential 2-rigs

Summary

- Background
 - Differential 2-rigs
 - Combinatorial species
- Resolution of some differential equations
- The number of solutions
- 4 Virtual differential 2-rigs

Definition, Loregian, [5].

A 2-rig is a category C with :

- finite coproducts +, called the addition,
- an other monoidal structure \otimes , called the multiplication,
- natural isomorphisms :

$$X \otimes Y + X \otimes Z \xrightarrow{\delta^{L}} X \otimes (Y + Z)$$

$$Y \otimes X + Z \otimes X \stackrel{\delta^R}{\underset{\sim}{\longrightarrow}} (Y + Z) \otimes X$$

Example

- (Set, +, \times , 1).
- If R is a ring, then $(Mod_R, \oplus, \otimes, R)$ is an example.
- If (A, \oplus, j) is a monoidal category, then $([A^{op}, \mathsf{Set}], +, *, I = A(j, -))$ is an example, where * is the Day convolution :

$$F * G = \int^{U,V \in A} FU \times GV \times A(U \oplus V, -)$$

• If \mathcal{C} is a 2-rig, then the category $\mathcal{C}[Y]$ with objects finite families of objects of \mathcal{C} noted $(A_1,\ldots,A_n)=\sum_{i=0}^n A_i\otimes Y^i$ with component-wise sum and Cauchy product :

$$\left(\sum_{i=0}^n A_i \otimes Y^i\right) \otimes \left(\sum_{j=0}^m B_j \otimes Y^j\right) = \left(\sum_{k=0}^{m+n} \left(\sum_{i+j=k} A_i \otimes B_j\right) \otimes Y^k\right)$$

Definition, Loregian, [5].

A differential 2-rig is a 2-rig C with :

- an endofunctor ∂ , called the derivation,
- natural isomorphisms :

$$\partial X + \partial Y \overset{\partial i_X + \partial i_Y}{\underset{\sim}{\longrightarrow}} \partial (X + Y)$$

$$\partial X \otimes Y + X \otimes \partial Y \xrightarrow{l} \partial (X \otimes Y)$$

such that : naturality, compatibility with the left-/right-distributors, compatibility with the \otimes -associator, compatibility with the left-/right- \otimes -unitors.

Ex for naturality : for all morphisms $u: X \to X', v: Y \to Y'$, we want the following diagram to commute :

$$\begin{array}{c} \partial(X\otimes Y) \xrightarrow{\quad \partial(u\otimes v) \quad } \partial(X'\otimes Y') \\ \downarrow_{I_{X,Y}} \uparrow \qquad \qquad \uparrow_{I_{X',Y'}} \\ \partial X\otimes Y + X\otimes \partial Y \xrightarrow[\partial u\otimes v + u\otimes \partial v]{} \partial X'\otimes Y' + X'\otimes \partial Y' \end{array}$$

Example

• If we want to endow $(C[Y], +, \otimes, I)$ with a derivation satisfying $\partial Y = I$, the Leibniz rule impose to set :

$$\partial \sum_{i=0}^n A_i \otimes Y^i = \sum_{i=0}^{n-1} (i+1)A_{i+1} \otimes Y^i$$

where $(i+1)A_{i+1}$ is the sum of (i+1) copies of A_{i+1} .

Definition 1, Joyal, [3].

Let $\mathcal B$ be the category of finite sets, with morphisms being the bijections. Define the category of combinatorial species $\operatorname{Spc} = [\mathcal B, \operatorname{FinSet}]$, which is equivalent to $[\mathcal B, \mathcal B]$.

Remark.

Decompose : $\mathcal{B} \simeq \prod_{n=0}^{\infty} S_n$

So $X : \mathcal{B} \to \mathsf{FinSet}$ can be decomposed as :

- a sequence of finite sets X_n , $n \ge 0$,
- a sequence of left actions of S_n on X_n , $n \ge 0$.

Example (species of trees)

Define the species of trees, by assigning to a finite set ${\it E}$ the set of trees on ${\it E}$:

and the action of S_n on X_n permutes the vertices of a tree chosen in the set X_n .

Structure of differential 2-rig on Spc : for species X, Y and a finite set E :

Sum:

$$(X + Y)(E) = X(E) + Y(E) = X(E) \prod Y(E)$$

Multiplication :

$$(X \otimes Y)(E) = \sum_{E_1+E_2=E} X(E_1) \times Y(E_2)$$

Derivation :

$$(\partial X)(E) = X(E+1) = X(E+\{*\})$$

Additional structure on Spc : for species X, Y and a finite set E :

• Substitution :

$$(X \circ Y)(E) = \sum_{\pi \text{ partition of } E} X(\pi) \times \prod_{p \in \pi} Y(p)$$

Example (derivative of the species of trees, Bergeron, [2])

If X is the species of trees, the species ∂X assigns to a finite set E the set of trees on $E + \{*\}$:

So ∂X is the species of disjoint sets of rooted trees.

Summary

- Background
- 2 Resolution of some differential equations
 - Former results to find fixed points of functors
 - Examples of equations
- The number of solutions
- 4 Virtual differential 2-rigs

First goal : can we solve (some) differential equations in general 2-rigs ? Polynomial differential equations : finding fixed points of :

$$X \mapsto A_0 + A_1 \otimes \partial X + A_2 \otimes (\partial^2)X + \cdots + A_n \otimes (\partial^n)X$$

For instance :

$$X \mapsto \partial X$$

Technique: use initial algebras and terminal coalgebras to find fixed points of functors.

Example

Take a set A. What are the fixed points of the following functor?

$$T_A : \mathsf{Set} \to \mathsf{Set}$$

 $S \mapsto 1 + (A \times S)$

Start from the initial object \varnothing or the terminal object 1, and recursively apply T_A to the unique morphisms $\varnothing \stackrel{!_1}{\to} T_A(\varnothing)$ and $1 \stackrel{!_2}{\leftarrow} T_A(1)$:

Example

$$\varnothing \xrightarrow{\mathbf{I}_1} 1 \xrightarrow{T_A\mathbf{I}_1} 1 + A \xrightarrow{T_A^2\mathbf{I}_1} 1 + A + A^2 \xrightarrow{T_A^3\mathbf{I}_1} 1 + A + A^2 + A^3 \to \dots$$
$$1 \xleftarrow{\mathbf{I}_2} 1 + A \xrightarrow{T_A\mathbf{I}_2} 1 + A + A^2 \xrightarrow{T_A^2\mathbf{I}_2} 1 + A + A^2 + A^3 \leftarrow \dots$$

Taking:

- the colimit of the first equation gives A^* , ie the initial algebra of T_A ,
- the limit of the second equation gives $A^* + A^{\mathbb{N}}$, ie the terminal coalgebra of T_A ,

and they give solutions to $T_A(X) \simeq X$.

Theorem, Trnokvá et al.

A set functor has an initial algebra if and only if it has a fixed point.

First Adámek's theorem, [6].

If $\mathcal C$ has an initial object 0 and ω -composition, and $F:\mathcal C\to\mathcal C$ preserves colimits of ω -chains, then the initial algebra of F is the colimit of :

$$0\stackrel{!}{\rightarrow} F0\stackrel{F!}{\rightarrow} F^20\rightarrow \dots$$

Second Adámek's theorem, [1].

If $\mathcal C$ has colimits and $F:\mathcal C\to\mathcal C$ preserves colimits of λ -chains for some infinite ordinal λ , then the initial algebra of F is $F^{\lambda_0}\overset{F^{\lambda_1}}{\to}F^{\lambda+1}0$.

Lambek's theorem.

If $F: \mathcal{C} \to \mathcal{C}$ has an initial algebra $\alpha: F(X) \to X$, then α is an isomorphism.

Remark.

Dual versions also work.

Remark.

If they exist:

- the initial algebra is the smallest fixed point,
- the terminal coalgebra is the largest fixed point.

Difficult:

- comodules : no
- linear species $([GL(p), Vect_k], \oplus, \otimes)$: no
- etc.

Idea : $(\mathbb{N}, +)$ and (\mathbb{N}, \cdot) are monoidal categories.

Structure on $[(\mathbb{N},+), Vect_k]$.

Consider $[(\mathbb{N},+), Vect_k]$ with 'Day convolution'. That is, for objects F, G:

$$F + G = (F_n \oplus G_n)_{n \in \mathbb{N}}$$

$$F * G = \left(\int^{p,q \in \mathbb{N}} (F(p) \otimes G(q)) \odot \mathbb{N}(p+q,n) \right)_{n \in \mathbb{N}}$$

$$= \left(\sum_{p+q=n} F(p) \otimes G(q) \right)_{n \in \mathbb{N}}$$

$$I = (k,0,0,\dots)$$

Derivation? Copy polynomials:

$$\partial F = ((n+1)F_{n+1})_{n\in\mathbb{N}} = \left(\bigoplus_{1\leq k\leq n+1}F_{n+1}
ight)_{n\in\mathbb{N}}$$

Structure on $[(\mathbb{N},\cdot), Vect_k]$.

Consider $[(\mathbb{N},\cdot), Vect_k]$ with 'Day convolution'. That is, for objects F, G:

$$F + G = (F_n \oplus G_n)_{n \in \mathbb{N}}$$

$$F * G = \left(\int^{p,q \in \mathbb{N}} (F(p) \otimes G(q)) \odot \mathbb{N}(p \cdot q, n) \right)_{n \in \mathbb{N}}$$
$$= \left(\sum_{p \cdot q = n} F(p) \otimes G(q) \right)_{n \in \mathbb{N}}$$
$$I = (0, k, 0, 0, \dots)$$

Derivation ? For a prime number r:

$$\partial F = \partial_r F = 0 \oplus (\delta_n F_{r \cdot n})_{n \geq 1}$$

for some coefficients δ_n . Only choice of coefficients :

$$\partial F = \left(0, \left((v_r(n) + 1)F_{r \cdot n}\right)_{n \geq 1}\right)$$

Can we use the initial algebra or coalgebra techniques to solve the differential equation $\partial V \simeq V$ in our two examples of structures ?

0 = (0, 0, ...) is both initial and terminal. We want to study :

$$0 \stackrel{!}{\rightarrow} \partial 0 \stackrel{\partial !}{\rightarrow} \partial^2 0 \rightarrow \dots$$

$$0 \stackrel{!}{\leftarrow} \partial 0 \stackrel{\partial !}{\leftarrow} \partial^2 0 \leftarrow \dots$$

Issue : in our two structures we have $\partial \mathbf{0} = \mathbf{0}.$

We even have $\partial I = 0$.

Let's completely solve the differential equation $\partial V \simeq V$ in our two examples of structures.

Solutions in $[(\mathbb{N}, +), Vect_k]$.

The solutions of $\partial V \simeq V$ are, up to isomorphism, the \mathbb{N} -graded vector spaces of the form $V = (k^{\alpha})_{n \geq 0}$ for an infinite cardinal α , and the trivial space.

Proof.

$$\partial V \simeq V \Leftrightarrow \forall n, V_n \simeq (n+1)V_{n+1}$$

 $\Rightarrow V_0 \simeq V_1 \simeq 2V_2 \simeq 3! V_3 \simeq \cdots \simeq n! V_n \simeq \ldots$

3 steps:

- except the trivial solution, the dimensions must be infinite,
- assume $V = (k^{\alpha_n})_n$,
- ullet equation on the dimensions α_n :

$$\forall n, \ \alpha_n \simeq (n+1)\alpha_{n+1}$$

Remark.

Imposing $V_0 = \Lambda$ for some infinite dimensional vector space Λ , we get exactly one solution up to isomorphism :

$$V = (\Lambda, \Lambda, \dots)$$

Remark.

If Λ is a non-trivial finite dimensional vector space, there is no solution.

Is $V_0 = \Lambda$ a nice initial condition? Like $X[\varnothing] = \varnothing$ for species used by Labelle in [4], in

$$\begin{cases} \partial X = X \\ X[\varnothing] = \varnothing \end{cases}$$

Remark.

Similarly we can solve :

$$\left\{ \begin{array}{l} \partial V \simeq A \otimes V + B \\ V_0 = \Lambda \end{array} \right.$$

but only under some conditions on A, B, Λ .

Definition.

For $n \in \mathbb{N}$, write the decomposition

$$n = w_r(n)r^{v_r(n)}$$

Solutions in $[(\mathbb{N},\cdot), Vect_k]$.

The solutions of $\partial V \simeq V$ are, up to isomorphism, the \mathbb{N} -graded vector spaces of the form $V = (0, (U_{w_r(n)})_{n \geq 1})$, where, for w prime to r, U_w is the trivial space or of the form k^{α_w} for an infinite cardinal α_w .

Proof.

Set $U_v^{(w)} = V_{wr^v}$ for w prime to r, and use the fact that each $n \in \mathbb{N}$ has a unique decomposition $n = wr^v$ with w prime to r.

Remark.

Imposing $V_w = \Lambda^{(w)}$ for some infinite dimensional vector spaces $\Lambda^{(w)}$ for w prime to r, we get exactly one solution up to isomorphism.

Is $V_w = \Lambda^{(w)}$ for w prime to r a nice initial condition?

Summary

- Background
- 2 Resolution of some differential equations
- The number of solutions
 - Labelle's result about the number of solutions for combinatorial species
 - A conjecture which would extend Labelle's result
 - Examples of equations in the context of our conjecture
- Wirtual differential 2-rigs

Definition 2.1, Labelle [4].

Given species $F_{i,j}$, a solution of the differential problem

$$\left\{ \begin{array}{rcl} \partial Y_i & = & F_{i,j}(X_1,\ldots,X_k,Y_1,\ldots,Y_p), & 1 \leq i \leq p, 1 \leq j \leq k \\ Y_i[\varnothing,\ldots,\varnothing] & = & \varnothing, & 1 \leq i \leq p \end{array} \right.$$

is a family of species $A=(A_i(X_1,\ldots,X_k))_{1\leq i\leq p}$ and natural isomorphisms

$$\theta_{i,j}: \partial A_i/\partial X_j \stackrel{\sim}{\to} F_{i,j}(X_1,\ldots,X_k,A_1,\ldots,A_p)$$

such that

$$A_i[\varnothing,\ldots,\varnothing]=\varnothing,\quad 1\leq i\leq p$$

Example

$$\begin{cases} \partial X = A \otimes X + B \\ X[\varnothing] = \varnothing \end{cases}$$

Labelle's result about the number of solutions for combinatorial spe A conjecture which would extend Labelle's result Examples of equations in the context of our conjecture

Part of theorem A, Labelle [4].

If m is a finite (possibly null) cardinal number or $m=2^{\aleph_0}$, then there exists a normalized compatible differential problem having exactly m non-isomorphic combinatorial solutions. Moreover, no differential problem can have exactly $m=\aleph_0$ or $m>2^{\aleph_0}$ non-isomorphic combinatorial solutions.

Lemma 2.6, Labelle [4].

For $n=(n_1,\ldots,n_k)\in\mathbb{N}^k$, there exists only a finite number $\mu_n>0$ of non-isomorphic molecular species

$$M_n^{(i)} = M_n^{(i)}(X_1, \dots, X_k))$$

supported by multisets having multicardinality n.

Every species $H = H(X_1, ..., X_k)$ has a unique molecular decomposition of the form

$$H = \sum_{n \in \mathbb{N}^k, \ 1 \leq i \leq \mu_n} C_n^{(i)}(H) M_n^{(i)}$$

where $C_n^{(i)}(H)$ are natural integers.

Moreover, for any pair H, K of species we have

$$H \simeq K \quad \Leftrightarrow \quad \forall n, \forall i, C_n^{(i)}(H) = C_n^{(i)}(K)$$

Conjecture.

If $\mathcal C$ is a monoidal category with initial object 0, such that the cardinality of $\mathcal C_0$ is κ , and such that the 2-rig $[\mathcal C^{op},\mathsf{Set}]$ can be endowed with a derivation ∂ , then the differential problem :

$$\left\{ \begin{array}{ccc} \partial X & \simeq & X \\ X[0] & = & \{*\} \end{array} \right.$$

has at most 2^{κ} solutions.

We want to replace $[(\mathbb{N},+), Vect_k]$ with something of the form $[\mathcal{C}^{op}, \mathsf{Set}]$:

- Replace $(\mathbb{N},+)$ by $(\mathbb{N},\geq,\min)=(\mathbb{N},\leq,\max)^{op}$.
- We want to replace $Vect_k$ by Set : same properties :

$$k^{\alpha} \oplus k^{\beta} = k^{\alpha+\beta}$$

$$k^{\alpha} \otimes k^{\beta} = k^{\alpha \times \beta}$$

Define the differential 2-rig $[(\mathbb{N}, \geq, \min), \mathsf{Set}]$:

• Sum:

$$F + G = (F_n + G_n)_{n \in \mathbb{N}}$$

Multiplication :

$$F * G = \left(\int^{p,q \in \mathbb{N}} F(p) \times G(q) \times \mathbb{N}(n, \min(p, q)) \right)_{n \in \mathbb{N}}$$
$$= \left(\sum_{n \le p,q} F(p) \times G(q) \right)_{n \in \mathbb{N}}$$

Derivation :

$$\partial F = \left(\coprod_{k \in \aleph_0} F_n\right)_{n \in \mathbb{N}} = (\aleph_0 F_n)_{n \in \mathbb{N}}$$

Is ∂ really Leibniz ? For example for naturality. On objects F, G, at the level $n \ge 0$:

$$\begin{cases}
(\partial(F * G))_n &= \coprod_{k \in \aleph_0} \coprod_{n \leq p,q} F(p) \times G(q) \\
(\partial F * G + F * \partial G)_n &= \coprod_{n \leq p,q} \left(\coprod_{k \in \aleph_0} F(p) \right) \times G(q) \\
+ \coprod_{n \leq p,q} F(p) \times \left(\coprod_{k \in \aleph_0} G(q) \right) \\
\simeq \coprod_{t \in \{0,1\}} \coprod_{k \in \aleph_0} \coprod_{n \leq p,q} F(p) \times G(q)
\end{cases}$$

The above isomorphism is natural. If we fix a bijection $\aleph_0 \simeq \{0,1\} \times \aleph_0$, independently of F,G, we can show we have a natural isomorphism between the two above expressions,by reindexing.

Goal : solve $\partial V \simeq V$ in this structure.

Solutions in $[(\mathbb{N}, \geq, \min), \operatorname{Set}]$.

The solutions of $\partial V \simeq V$ are, up to isomorphism, the objects $V = (V_n)_{n \in \mathbb{N}}$ such that each V_n is an infinite set or 0.

Proof.

$$\partial V \simeq V \quad \Leftrightarrow \quad \forall n > 0, \ V_n \simeq \aleph_0 V_n$$

So $V_0=0$ or even $V_0=\Lambda$ doesn't fix a 'reasonable' number of solutions : (\mathbb{N},\geq,\min) has \aleph_0 objects, but we have strictly more than 2^{\aleph_0} solutions even with the initial condition.

Summary

- Background
- Resolution of some differential equations
- The number of solutions
- 4 Virtual differential 2-rigs
 - Virtual species
 - Generalization

Recall Labelle's decomposition of combinatorial species :

$$H = \sum_{n \in \mathbb{N}^k, \ 1 \le i \le \mu_n} C_n^{(i)}(H) M_n^{(i)}$$

where $C_n^{(i)}$ are natural integers and $M_n^{(i)}$ are molecular species.

If we:

- allow negative coefficients, writing $H = H_p H_n$ for two species H_p, H_n ,
- quotient up to $H_p-H_n=H_p'-H_n'\Leftrightarrow H_p+H_n'\simeq H_p'+H_n$, we get the virtual species.

It can give solutions to equations which otherwise wouldn't have any.

Definition.

A category C is cancellative if for every objects A, B, C, the property $A + B \simeq A + C$ implies $B \simeq C$.

Consider a cancellative differential 2-rig $(C, +, \otimes, \partial)$.

Definition.

Set $(\mathcal{C}^2, \boxplus, \boxtimes, \bar{\partial})$, where :

$$(A, B) \boxplus (C, D) = (A + C, B + D)$$
$$(A, B) \boxtimes (C, D) = (A \otimes C + B \otimes D, A \otimes D + B \otimes C)$$
$$\bar{\partial}(A, B) = (\partial A, \partial B)$$

Theorem.

 $(\mathcal{C}^2, \boxplus, \boxtimes, \bar{\partial})$ is a differential 2-rig.

Definition.

The virtual category $\mathbb{V}(C)$ is C^2 quotiented by $(A,B) \sim (C,D)$ if and only if $A+D \simeq C+B$, ie the category with :

- objects : \mathcal{C}_0^2 quotiented by \sim ,
- morphisms $[(A,B)] \rightarrow [(C,D)]$: the morphisms $(A',B') \rightarrow (C',D')$ for all $(A,B) \sim (A',B')$ and $(C,D) \sim (C',D')$.

Theorem.

The virtual category $\mathbb{V}(\mathcal{C})$ is a differential 2-rig.

Theorem.

 $\mathcal C$ quotiented by isomorphisms, can be embedded into $\mathbb V(\mathcal C)$ as a differential 2-rig.

Jiří Adámek, Stefan Milius, and Lawrence S. Moss.

Fixed points of functors.

Journal of Logical and Algebraic Methods in Programming, 95:41–81, February 2018.

François Bergeron, Gilbert Labelle, and Pierre Leroux.

Combinatorial Species and Tree-like Structures.

Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1997.

André Joyal.

Une théorie combinatoire des séries formelles.

Advances in Mathematics, 42(1):1–82, October 1981.

Gilbert Labelle.

On combinatorial differential equations.

Journal of Mathematical Analysis and Applications, 113(2):344–381, 1986.

Fosco Loregian and Todd Trimble.

Differential 2-rigs.