

## Matching Onderson Ond

Course: Algorithms



Faculty: Dr. Rajendra Prasath

## Computational Complexity

This class covers many important aspects of **Computational Complexity** to be considered while solving a specific problem. This lecture illustrates the Best, Average and Best cases of algorithms

#### Recap: Types of Algorithms

- Algorithms are classified
  - By implementation
  - By Design Paradigm
  - By Domain Specific study
  - By Computational Complexity
- There are different variations of algorithms and their purpose might be different from the classical theory of algorithms

#### **Computational Complexity**

- Running Times of the algorithms may vary based on n.
  - Fastest Algorithms Less time
  - Slowest Algorithms More time
- Order of Growth (Magnitude)
  - How fast the running time grows with the input size, say n?
- How to perform accurate analysis of algorithms in terms of its computational complexities:
  - Worst, average and Best cases

#### **Running Time Estimation**

| SIZE              | 20           | 50                        | 100                       | 200                       | 500                       | 1000      |
|-------------------|--------------|---------------------------|---------------------------|---------------------------|---------------------------|-----------|
| IOOOn             | .02<br>sec   | .05<br>sec                | .l<br>sec                 | .2<br>sec                 | .5<br>sec                 | sec       |
| 1000nlg n         | .09<br>sec   | .3<br>sec                 | .6<br>sec                 | I.5<br>sec                | 4.5<br>sec                | IO<br>sec |
| IOOn <sup>2</sup> | .04<br>sec   | .25<br>sec                | l<br>sec                  | 4<br>sec                  | 25<br>sec                 | 2<br>min  |
| IOn <sup>3</sup>  | .02<br>sec   | l<br>sec                  | IO<br>sec                 | nin<br>I                  | 21<br>min                 | 2.7<br>hr |
| n Ign             | .4<br>sec    | 1.1<br>hr                 | 220<br>Days               | 125<br>CENT               | 5x10 <sup>8</sup><br>CENT |           |
| 2 n/3             | .0001<br>sec | .I<br>sec                 | 2.7<br>hr                 | 3×10 <sup>4</sup><br>CENT |                           |           |
| 2n                | l<br>sec     | 35<br>YR                  | 3x10 <sup>4</sup><br>CENT |                           |                           | į         |
| 3 <sup>n</sup>    | 58<br>min    | 2×10 <sup>9</sup><br>CENT |                           |                           |                           | !         |

• One step takes one Microsecond. Ig n denotes log<sub>2</sub>n

#### **Computational Complexity**

| COMPLEXITY                              | Isec                                                      | 10 <sup>2</sup> sec<br>(1.7 min)                          | 10 <sup>4</sup> sec<br>(2.7 hr)                            | IO <sup>6</sup> sec<br>(I2 DAYS)                          | IO <sup>B</sup> SEC<br>(3 YEARS)                            | IO <sup>IO</sup> sec<br>(3 CENT.)                           |
|-----------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| 1000n<br>1000n ign<br>100n <sup>2</sup> | 10 <sup>3</sup><br>1.4x10 <sup>2</sup><br>10 <sup>2</sup> | 10 <sup>5</sup><br>7.7x10 <sup>3</sup><br>10 <sup>3</sup> | 10 <sup>7</sup><br>5.2 x10 <sup>5</sup><br>10 <sup>4</sup> | 10 <sup>9</sup><br>3.9x10 <sup>7</sup><br>10 <sup>5</sup> | 10 <sup>  </sup><br>3.  x 0 <sup>9</sup><br>10 <sup>6</sup> | 10 <sup>13</sup><br>2.6x10 <sup>11</sup><br>10 <sup>7</sup> |
| lon <sup>3</sup>                        | 46                                                        | 2.1x10 <sup>2</sup>                                       | 103                                                        | 4.6x10 <sup>3</sup>                                       | 2.1 x 10 <sup>4</sup>                                       | 10 <sup>5</sup>                                             |
| Nign                                    | 22                                                        | 36                                                        | 54                                                         | 79                                                        | 112                                                         | 156                                                         |
| 2n/3                                    | 59                                                        | 79                                                        | 99                                                         | 119                                                       | 139                                                         | 159                                                         |
| 2n                                      | 19                                                        | 26                                                        | 33                                                         | 39                                                        | 46                                                          | 53                                                          |
| 3n                                      | 12                                                        | 16                                                        | 20                                                         | 25                                                        | 29                                                          | 33                                                          |

- As the problem size increases, polynomial time algorithm become unusable gradually.
- A factor of ten increase in machine speed corresponds to a factor of ten increase in time.

## **RACKTABLE**

### The Spectrum of Computational Complexity



# NTRACKTABLE

## The Spectrum of Computational Complexity

Undecidable (with no algorithms)

Hilbert's Tenth Problem

Superexponential

Presburger Arithmetic

Exponential

Circularity of Attribute Grammers

NP-Complete Problems

#### **Hilbert's Tenth Problem**

- Hilbert Spaces
  - Vibrating String can be modeled as a point in Hilbert Space (foundations of Functional Analysis)
- In 1900, Hilbert proposed 23 hard problems:
- The 10th Hard Problem:
  - Determining the solvability of a Diophantus equation:
  - Given a Diophantus equation with any number of unknowns and with rational integer coefficients: Devise a process, which could determine by a finite number of operations whether the equation is solvable in rational integers?
  - Diophantine equation  $3x^2-2xy-y^2z-7=0$  has an integer solution: x=1, y=2, z=-2
  - But the Diophantine equation  $x^2 + y^2 + 1 = 0$  has no such solution.

#### **Efficiency of Algorithms**

 Assume that we have a processor that executes a million high-level instructions per second and we have algorithms with polynomial running-time

#### How to define Efficiency?

- An algorithm is efficient if, when implemented, it runs quickly on real input instances.
- An algorithm is efficient if it achieves qualitatively better worst-case performance, at an analytical level, than brute-force search
- An algorithm is efficient if it has a polynomial running time
  - Growing Polynomials:
     1 < n < n log<sub>2</sub> n < n<sup>2</sup> < n<sup>3</sup> < 1.5n < 2<sup>n</sup> < n!</li>

#### **Asymptotic Upper Bounds**

#### "Big-O" Notation

(introduced in P. Bachmann's 1892 book Analytische Zahlentheorie\_

- Let f(n) be a function
  - Say the worst case running time of a certain algorithm on an input of size n
- and g(n) be another function
- We say that f(n) is O (g(n)) for sufficiently large n, the function f(n) is bounded by a constant multiple of g(n)
- More Precisely, f(n) is O(g(n)) if **there exist** constants c > 0 and  $n_0 \ge 0$  so that for all  $n \ge n_0$ , we have  $f(n) \le c \cdot g(n)$
- The constant c can not depend on n

#### **Asymptotic Lower Bounds**

#### "Omega ( $\Omega$ )" Notation

- Let f(n) be a function and g(n) be another function
- We say that f(n) is  $\Omega(g(n))$  if there exist constants c > 0 and  $n_0 \ge 0$  so that for all  $n \ge n_0$ , we have  $f(n) \ge c \cdot g(n)$
- Note that the constant c must be fixed, independent of n.

#### **Asymptotic Tight Bounds**

#### "Theta $(\Theta)$ " Notation

- Let f(n) be a function and let g(n) be another function.
- We say that f(n) is  $\Theta(g(n))$  if f(n) if both O(g(n)) and  $\Omega(g(n))$ .
- Asymptotically the tight bounds characterize the worst case performance of an algorithm precisely upto constant factors.
- It closes the gap between an upper bound and a lower bound.

#### **Asymptotic Growth Rates**

- A way of comparing functions that ignores constant factors and small input sizes
- O(g(n)): class of functions f(n) that grow no faster than g(n)
- $\Theta(g(n))$ : class of functions f(n) that grow at same rate as g(n)
- $\Omega(g(n))$ : class of functions f(n) that grow at least as fast as g(n)

#### **Computational Complexity**



#### **Identify the Constants**

Yes • 5

Yes • 1,000,000,000,000

Yes • 0.00000000001

Yes • -5

Yes • 0

No •  $8 + \sin(n)$ 



The running time of the algorithm is a "Constant" if it does not depend significantly on the input size

#### **Quadratic Functions?**

- $n^2$
- 0.001 n<sup>2</sup>
- 1000 n<sup>2</sup>
- $5n^2 + 3n + 2\log n$

Ignore low-order terms
Ignore multiplicative constants
Ignore "small" values of n

Write  $\Theta(n^2)$ 

#### Time Efficiency of Nonrecursive Algorithms

- Decide on parameter n indicating input size
- Identify algorithm's basic operation
- Determine worst, average, and best cases for input of size n
- Set up a sum for the number of times the basic operation is executed
- Simplify the sum using standard formulas and rules

#### **An Example**

How do we merge Two Sorted Arrays?



Time =  $\Theta(n)$  to merge a total of n elements (linear time)

#### **An Example**

How do we merge Two Sorted Arrays?



Time =  $\Theta(n)$  to merge a total of n elements (linear time)

#### Help among Yourselves?

- Perspective Students (having CGPA above 8.5 and above)
- Promising Students (having CGPA above 6.5 and less than 8.5)
- Needy Students (having CGPA less than 6.5)
  - Can the above group help these students? (Your work will also be rewarded)
- You may grow a culture of collaborative learning by helping the needy students

#### **Assistance**

- You may post your questions to me at any time
- You may meet me in person on available time or with an appointment
- TA s would assist you to clear your doubts.
- You may leave me an email any time (email is the best way to reach me faster)

#### Thanks ...

