#REG NO:1076_DS-01

#NAME:KUNAPURI UMESHCHANDRA

#DATE:13-10-2022

#IDENTEFY VARIABLES AND THEIR TYPES (QUANTITATIVE OR QUALITATIVE)

import numpy as np
import pandas as pd

data=pd.read_csv("/content/Enrollments_28092022.csv")
data

	StudentNo	DEGREE	INTERMEDIATE	SSC	INTERNSHIP
0	1001	8.10	76.0	92.0	Data Science
1	1002	8.10	76.0	92.0	MEAN Stack Web Development
2	1003	7.80	94.6	92.0	MEAN Stack Web Development
3	1004	9.03	89.5	89.0	Data Science
4	1005	8.38	87.0	90.0	MEAN Stack Web Development
292	2188	8.70	94.1	93.0	Data Science
293	2189	8.45	90.0	93.0	Data Science
294	2190	8.40	94.9	98.0	Data Science
295	2191	7.06	90.6	88.0	Cloud Computing Services (AWS)
296	2192	7.50	95.5	95.0	Cloud Computing Services (AWS)

297 rows × 5 columns

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 297 entries, 0 to 296
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	StudentNo	297 non-null	int64
1	DEGREE	297 non-null	float64
2	INTERMEDIATE	297 non-null	float64
3	SSC	297 non-null	float64
4	INTERNSHIP	297 non-null	object

dtypes: float64(3), int64(1), object(1)

memory usage: 11.7+ KB

```
#Size of Data (No. of Columns and Rows)
rows=len(data)
cols=len(data.axes[1])
```

```
print("rows:",str(rows))
print("cols:",str(cols))
```

rows: 297 cols: 5

import matplotlib.pyplot as plt
import statistics as stat

Prepare Histogram for Degree, Inter and 10th Class
plt.hist(data['DEGREE'])
plt.show

plt.hist(data['SSC'])
plt.show

plt.hist(data['INTERMEDIATE'])
plt.show

<function matplotlib.pyplot.show(*args, **kw)>

#Create Pie-Chart to represent the Enrollments for each Internship Program
interncourses=['Data science','web development','aws']
enrollments=[156,51,90]
plt.pie(enrollments,labels=interncourses)
plt.show()

#Find No. of Enrollments for each Internship Program
data['INTERNSHIP'].value_counts()

```
Data Science 156
Cloud Computing Services (AWS) 90
MEAN Stack Web Development 51
Name: INTERNSHIP, dtype: int64
```

#Find Measure of Central Tendency: MEAN, MEDIAN, MODE for Degree,Inter and 10th
print("DEGREE")
print("mean=",np.mean(data['DEGREE']))
print("median=",np.median(data['DEGREE']))
print("mode=",stat.mode(data['DEGREE']))
print("INTERMEDIATE")
print("mean=",np.mean(data['INTERMEDIATE']))
print("median=",np.median(data['INTERMEDIATE']))
print("mode=",stat.mode(data['INTERMEDIATE']))
print("SSC")
print("mean=",np.mean(data['SSC']))
print("median=",np.median(data['SSC']))

DEGREE

```
print("mode=",stat.mode(data['SSC']))
```

mean= 7.928080808080809

```
median= 8.0
    mode= 7.0
     INTERMEDIATE
    mean= 88.66262626262626
    median= 90.8
    mode= 95.0
    SSC
    mean= 88.10673400673402
    median= 90.0
    mode= 95.0
#Find Measure of Variance: Minimum, Maximum, Range, Mean Deviation,
#Standard Deviation, Co-efficient of Variation for Degree, Inter and 10th
cv= lambda x: np.std(x, ddof=1)/np.mean(x)*100
print("DEGREE")
print("Range=",max(data['DEGREE'])-min(data['DEGREE']))
print("Co-efficient of variation=",cv(data['DEGREE']))
data['DEGREE'].describe()
    DEGREE
     Range= 3.72999999999995
     Co-efficient of variation= 9.90881225818308
     count
            297.000000
               7.928081
    mean
     std
               0.785579
               5.800000
    min
     25%
               7.400000
     50%
               8.000000
    75%
               8.560000
     max
               9.530000
    Name: DEGREE, dtype: float64
print("INTERMEDIATE")
print("Range=",max(data['DEGREE'])-min(data['INTERMEDIATE']))
print("Co-efficient of variation=",cv(data['INTERMEDIATE']))
data['INTERMEDIATE'].describe()
     INTERMEDIATE
     Range= -55.47
     Co-efficient of variation= 8.29631726338337
            297.000000
             88.662626
    mean
     std
               7.355733
             65.000000
    min
     25%
              83.000000
     50%
              90.800000
    75%
              94.600000
    max
              99.400000
     Name: INTERMEDIATE, dtype: float64
```

```
print("SSC")
print("Range=",max(data['DEGREE'])-min(data['SSC']))
print("Co-efficient of variation=",cv(data['SSC']))
data['SSC'].describe()
    SSC
    Range= -28.86999999999997
    Co-efficient of variation= 10.24664491920062
    count 297.000000
             88.106734
    mean
    std
              9.027984
            38.400000
    min
    25%
            85.000000
             90.000000
    50%
    75%
             95.000000
             99.000000
    max
    Name: SSC, dtype: float64
#Measures of Position: Standard Scores for Degree, Inter and 10th
import scipy.stats as stats
print("Standard scores of Degree")
print(stats.zscore(data['DEGREE']))
    Standard scores of Degree
           0.219213
    1
           0.219213
    2
          -0.163315
    3
           1.405052
          0.576240
             . . .
    292
          0.984271
    293 0.665497
    294
          0.601742
    295
          -1.106886
    296
          -0.545844
    Name: DEGREE, Length: 297, dtype: float64
print("Standard scores of Intermediate")
print(stats.zscore(data['INTERMEDIATE']))
    Standard scores of Intermediate
    0
          -1.724369
    1
          -1.724369
    2
           0.808539
    3
          0.114032
          -0.226413
             . . .
    292 0.740450
    293
          0.182121
     294
           0.849392
    295
          0.263827
    296
           0.931099
    Name: INTERMEDIATE, Length: 297, dtype: float64
```

```
print(stats.zscore(data['SSC']))
     Standard scores of Ssc
           0.431972
     1
            0.431972
     2
            0.431972
     3
           0.099111
           0.210065
              . . .
     292
          0.542926
     293
           0.542926
     294
           1.097694
     295 -0.011843
     296
           0.764833
     Name: SSC, Length: 297, dtype: float64
#Identify Outliers for Degree, Inter and 10th
def outlier(a):
  q1 = np.quantile(a, 0.25)
  q2 = np.quantile(a, 0.75)
  m = np.median(a)
  iqr = q2-q1
  u_bound = q2+(1.5*iqr)
  l_bound = q1-(1.5*iqr)
  print(iqr,u_bound,l_bound)
  print("Inter Quartile Range:",iqr)
  outliers = a[(a \le 1\_bound) | (a \ge u\_bound)]
  print("outliers in boxplot:\n{}".format(outliers))
outlier(data['DEGREE'])
     1.1600000000000001 10.3 5.66
     Inter Quartile Range: 1.16000000000000001
     outliers in boxplot:
     Series([], Name: DEGREE, dtype: float64)
outlier(data['INTERMEDIATE'])
     11.5999999999994 111.99999999999 65.60000000000001
     Inter Quartile Range: 11.59999999999994
     outliers in boxplot:
     271
            65.0
     Name: INTERMEDIATE, dtype: float64
outlier(data['SSC'])
     10.0 110.0 70.0
     Inter Quartile Range: 10.0
     outliers in boxplot:
     5
            64.0
     7
            70.0
     31
            60.0
            68.0
     51
            60.0
     69
            65.6
     82
            50.0
     86
            64.0
```

236 38.4 237 67.0 243 40.2 270 65.0 288 65.0

Name: SSC, dtype: float64

#Create Box Plot for Degree, Inter and 10th
plt.boxplot(data['DEGREE'])
plt.show

<function matplotlib.pyplot.show(*args, **kw)>

plt.boxplot(data['INTERMEDIATE'])
plt.show

<function matplotlib.pyplot.show(*args, **kw)>

plt.boxplot(data['SSC'])
plt.show

```
#Identify No. of Students with 90% percentile for Degree, Inter and 10th Class def func(c):
    quantile = np.quantile(c, 0.9)
    Data=c[c==quantile]
    print("Students with 90% percentile:",Data.count())
func(data['DEGREE'])

Students with 90% percentile: 3

func(data['INTERMEDIATE'])

Students with 90% percentile: 3

func(data['SSC'])

Students with 90% percentile: 19
```

Colab paid products - Cancel contracts here