Urban Mobility in SF Bay Area

Presented by:

Catherine Bui, Scott Xue, Steven Chen, & Nour El-Difrawy

General Motivation & Significance

- To study the effects of traffic-related delays on the extra fare passengers have to pay
- To use linear regression, machine learning, and K-Nearest Neighbors to understand the data

2.) Transparent pricing for trips.

Want to know about how much a taxi ride will cost? Here's a quick breakdown of taxi rates in San Francisco and for out-of-town trips.

Taxi Service	Fare Amount
First one-fifth mile of flag rate	\$3.50
Each additional one-fifth mile or fraction thereof	\$0.55
Each minute of waiting or traffic time delay	\$0.55
SFO Exit surcharge	\$4.00

Initial Analysis

Part 1A: Data Exploration

	Theoretical	Actual
Mean Squared Error	50.89	25.47

TAZ: 239

Part 1B: Data Exploration

Part 1B: Data Exploration

SFO trips:

	Mean	Median	Std. Dev
Dist (miles)	13.594	13.956	4.169
Duration (m)	21.933	21.000	8.809
Extra Fare	\$8.87	\$6.89	\$10.39

Non SFO trips:

	Mean	Median	Std. Dev
Dist (miles)	3.044	1.770	4.021
Duration (m)	10.661	9.000	7.446
Extra Fare	\$4.11	\$2.94	\$5.62

Part 2: Machine Learning

Distance

MSE: 29.843

Duration

MSE: 21.573

Separate Weekday/Weekend Regressions

Separate Weekday/Weekend Regressions

Using duration, (average) LSE decreases from 21.573 to 18.659.

MSE = 23.188

MSE = 14.130

Part 3: Linear Regression vs. K-nearest Neighbor

MSE KNN vs. Linear Regression

```
#Linear Regression
train slope = sum(taxi train.column(0)*(taxi train.column(1)-np.mean(taxi train.column(1))))/sum(taxi train.column(1)-np.mean(taxi train.c
train intercept = (-1*train slope*np.mean(taxi train.column(0)))+np.mean(taxi train.column(1))
 predicted fares = train slope*taxi test.column(0)+train intercept
 sum of errors squared = sum((predicted fares - taxi test.column(1))**2)
 sum of errors squared
 mean squared error(predicted fares,taxi test.column(1))
 32.184562711291306
  In [23]: sum((knn_pred(1) - taxi_test.column(1))**2)
                            mean_squared_error(knn_pred(1), taxi_test.column(1))
  Out[23]: 45.252737444339495
  In [25]: sum((knn pred(3) - taxi test.column(1))**2)
                             mean squared error(knn pred(3), taxi test.column(1))
  Out[25]: 33.115535646711344
  In [26]: sum((predictionknn - taxi test.column(1))**2)
                            mean squared error(knn pred(5), taxi test.column(1))
  Out[26]: 31.847334267440292
  In [24]: sum((knn pred(10) - taxi test.column(1))**2)
                            mean squared error(knn pred(10), taxi test.column(1))
   Out[24]: 30.608248306166509
```

For k=1,3, Linear Regression gives a better prediction. For k=5,10, KNN gives a better prediction.

K-Values vs. MSE

k mse 45.2527 31.2797 11 30.4 29.4716 16 29.2885 29.0025 26 28.5875 36 28.3785

Additional Analysis

Using new metrics to improve analysis

- Time of day when trip was taken
- Day of the week when trip was taken
- Average speed of trip
- Approx. "extra distance" of trip
 - Difference between straight line distance and actual distance of trip
 - Imperfect but decent approximation

Does traffic activity affect additional distance?

- Additional distance/Hour is the inverse of the Number of rides/Hour
- Traffic activity does influence drivers' behaviors

Does traffic activity affect average speed?

Multivariate Regression

- Using 12 features, can reduce MSE to 17.333
- Using a subset of just 7 of those, can reduce MSE to 17.371

Features

- 1. Trip Duration
- 2. Trip distance
- 3. Hour of day of trip
- 4. Weekend trip [0, 1]
- 5. Average Speed of trip
- 6. Extra Distance of trip
- 7-8.Dep. Longitude, Latitude
- **9-10. Arr. Longitude, Latitude 11-12.Arr. SFO**, Dep. SFO [0, 1]

KNN further analyses


```
In [13]: mean_squared_error(extra_fares_5,taxi_test.column(1))
Out[13]: 31.883081117963339
In [14]: mean_squared_error(knn_pred(10),taxi_test.column(1))
Out[14]: 30.670621070762422
In [18]: mean_squared_error(knn_pred(20),taxi_test.column(1))
Out[18]: 28.970544624820374
```

KNN Predicting Extra Fares with Duration


```
mean_squared_error(k_5,taxi_test.column('Extra Fare'))
27.292066373505875

mean_squared_error(k_10,taxi_test.column('Extra Fare'))
26.259536458936864

mean_squared_error(k_20,taxi_test.column('Extra Fare'))
25.259152330832066
```

Conclusion

- Taxi fares aren't as transparent as they say they are
- Multiple factors other than just those posted (distance and duration) can increase the actual fare that the customer pays