

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN IIC2283 - Diseño y Análisis de Algoritmos

Profesor: Nicolás Van Sint Jan

Ayudante: Dante Pinto

Ayudantía 1 Notación asintótica

1. Demuestre que para todo $\varepsilon \in \mathbb{R}^+$ y para todo $k, a \in \mathbb{N}$, con $a \geq 2$, se cumple que:

$$log_a^k(n) \in \mathcal{O}(n^{\varepsilon})$$

 Hint : Puede asumir que $\log_a(x) \leq x$ para todo x > 0

- 2. Suponga que $\lim_{n\to\infty}\frac{f(n)}{g(n)}$ existe y es igual a $\ell.$ Demuestre que:
 - Si $\ell = 0$, entonces $f \in \mathcal{O}(g)$ y $g \notin \mathcal{O}(f)$.
 - Si $\ell = \infty$, entonces $g \in \mathcal{O}(f)$ y $f \notin \mathcal{O}(g)$.
 - Si $\ell \in \mathbb{R}^+$, entonces $f \in \Theta(g)$.
- 3. Demuestre las siguientes afirmaciones:
 - $n! \in \Omega(2^n)$.
 - $n^n \notin \mathcal{O}(n!)$.
 - $\log(n^n) \in \mathcal{O}(\log(n!))$.