Homework Week 11

1. Give a valid interpretation in first-order logic of

"Every martian can fool some of the people all of the time (and these can be different subsets of people for each martian)"

Use both ForAll (\forall) and Exists (\exists) quantifiers, and assume predicates Martian(?v), Person(?v), Time(?v), and Fools(?v₁,?v₂,?v₃), where the first three are probably clear, and the latter is ?v₁ fools ?v₂ at time ?v₃.

ForAll(x), [Martian(x) -> Exists(y)[Person(y) AND ForAll(t)[Time(t) -> Fools(x,y,t)]]]

ForAll(x), Exists(y) ForAll(t) [Martian(x) -> Person(y) AND Time(t) -> Fools(x,y,t)]

2. Consider the following propositional KB

```
    1. handEmpty → ~holding-A;
    2. handEmpty → ~holding-B;
    3. handEmpty → ~holding-C;
    4. holding-A → ~handEmpty;
    5. holding-B → ~handEmpty;
    6. holding-C → ~handEmpty;
    7. on-A-B → ~clear-B;
    8. on-B-C → ~clear-C;
    9. on-C-D → ~clear-D
```

(a) Give a single first-order rule to replace propositional rules 1-3. Show quantifiers. You can use "Exists" and "ForAll" (as in problem 1) instead of the usual symbols.

```
ForAllx, (handEmpty -> ~holding(x))
```

(b) Give a single first-order rule that replaces propositional rules 4-6.

```
ForAllx, (holding(x) -> \sim handEmpty(x))
```

(c) Give a single first-order rule that replaces propositional rules 7-9. Show quantifiers.

```
ForAllx, ForAlly, (on(x, y) -> ~clear(y))
ForAllx, ForAlly, (~on(x, y) V ~clear(y))
ForAllx, ForAlly, (~(on(x, y) ^ clear(y)))
~(Existsx, Existsy, (on(x, y) ^ clear(y)))
```

```
3. Given the axioms:
```

A,B are constants ?x's, ?y's, and ?z's are (universally-quantified) variables

```
ontable(A) ?x's, ?
  ~clear(A)
  ~above(?x1, ?y1) or below(?y1,?x1)
  ~below(?x2, ?y2) or above(?y2, ?x2)
  ~on(?x3, ?y3) or above(?x3, ?y3)
  ~on(?x4, ?y4) or ~above(?y4, ?z4) or above(?x4, ?z4)
  clear(?x5) or on(B, ?x5)
  ~ontable(?x6) or ~holding(?x6)
  ~ontable(?x7) or ~on(?x7, ?y7)
```

Give a refutation resolution proof of below(A, B).

See next page

3. Given the axioms: A,B are constants ontable(A) ?x's, ?y's, and ?z's are (universally-quantified) variables ~clear(A) \sim above(?x1, ?y1) or below(?y1,?x1) ~below(?x2, ?y2) or above(?y2, ?x2) \sim on(?x3, ?y3) or above(?x3, ?y3) on(?x4, ?y4) or above(?y4, ?z4) or above(?x4, ?z4) _elear(?x5) or on(B, ?x5) ~ontable(?x6) or ~holding(?x6) \sim ontable(?x7) or \sim on(?x7, ?y7) Give a refutation resolution proof of below (A, B).

[-below (A, B)] [-above (?x1, ?y1) or below (?y1, ?x1)] -above (B, A) [-below (?x2,?y2) or above (?x2,?x2)] -below (A,B) = [ontable (-below (A,B)] (-ontable (?x6) or -holding (?x6)] - holding (- below (A, B)) = - holding (-below (-clear (-below (A, B)))) [clear (?x5) or on (B, ?x5)] -holding (-below (on (B, -below (A, B)))) [-on (?x4, ?y4) or -above (?x4, ?z4) or above (?x4, ?z4) -holding (-below (above (on (B, -below (A, B)))) or above (on (B, below (A, B)))) (-on (?x3?y3) or above (2 x3, ? y3) - holding (-below ({}))

4. Show the result of resolving P(?y, ?x, B, ?y) or Q(?x, ?y, ?x, A) with $\sim P(?z, ?z, ?w, A)$.

Q(A, A, A, A)

 $\{z/y, y/A, w/B, x/A\}$