Ćwiczenie Spanning Tree Protocol

Teoria:)

Protokół Spanning Tree Protocol (STP) stosowany jest w sieciach Ethernet w celu zapobiegania pętlom na poziomie warstwy 2, a także w celu wyboru optymalnych ścieżek przesyłania danych. W protokole STP koszt ścieżki (ang. path cost) odgrywa kluczową rolę w wyborze optymalnego drzewa rozpinającego. Wartość kosztu ścieżki zależy od prędkości łącza.

PortFast

Opis działania:

- **default** w kontekście PortFast automatycznie włącza funkcję **PortFast** na wszystkich portach przełącznika skonfigurowanych jako porty dostępowe (access ports).
- PortFast powoduje, że porty natychmiast przechodzą do stanu **forwarding** po aktywacji, bez przechodzenia przez standardowe fazy STP (Listening i Learning). To przyspiesza komunikację dla urządzeń końcowych, takich jak komputery, które nie uczestniczą w procesie STP.
- Ważne: PortFast nie wyłącza STP na porcie jeśli na porcie zostaną odebrane BPDU, port nadal może uczestniczyć w STP lub zareagować zgodnie z konfiguracją BPDU Guard lub BPDU Filter.

Zastosowanie:

- Przyspiesza aktywację portów dla urządzeń końcowych.
- Jest to wygodne rozwiązanie dla portów podłączonych do hostów, które nie biorą udziału w protokole STP, takich jak komputery czy drukarki.

Konfiguracja:

• Włączenie PortFast na wszystkich portach dostępowych (access ports):

Switch(config)# spanning-tree portfast default

• Włączenie PortFast na porcie

Switch(config-if)# spanning-tree portfast

BPDU Guard

Opis działania:

- BPDU Guard służy do natychmiastowego wyłączania portów, które otrzymają BPDU, jeśli
 zostały skonfigurowane jako porty PortFast. Port jest wyłączany (stan err-disable), ponieważ
 PortFast zakłada, że port jest podłączony do urządzeń końcowych, które nie uczestniczą w
 wymianie BPDU.
- **BPDU Guard** działa jako mechanizm ochrony przed błędną konfiguracją lub próbą podłączenia przełącznika do portu, który powinien obsługiwać jedynie urządzenia końcowe.
- Działanie globalne: BPDU Guard włącza ochronę na wszystkich portach z PortFast.
- Działanie na poziomie portu: Może być także włączony indywidualnie na wybranych portach, niezależnie od tego, czy PortFast jest skonfigurowany globalnie.

Zastosowanie:

- Idealne rozwiązanie, aby chronić porty przeznaczone dla urządzeń końcowych przed niepożądaną wymianą BPDU (np. w przypadku przypadkowego podłączenia innego przełącznika).
- Zapobiega tworzeniu się pętli w sieci poprzez natychmiastowe wyłączanie portu po wykryciu

 RPDII

Konfiguracja:

Globalnie:

Switch(config)# spanning-tree portfast bpduguard default

Na poziomie portu:

Switch(config-if)# spanning-tree bpduguard enable

Zadanie 1

W Packet Tracer zaimplementuj sieć zgodnie z topologią pokazaną na rysunku 1.

Rysunek 1. Topologia sieci

W tabeli 1 przedstawiono adresację dla poszczególnych urządzeń a w tabeli 2 przydział portów do odpowiednich VLAN'ów.

Tabela 1

Urządzenie	Interfejs	Adres IP	Maska podsieci	Brama domyślna
SW1	VLAN 99	172.30.99.1	255.255.255.0	
SW2	VLAN 99	172.30.99.2	255.255.255.0	
SW3	VLAN 99	172.30.99.3	255.255.255.0	
PC1	NIC	172.30.10.1	255.255.255.0	
PC2	NIC	172.30.10.2	255.255.255.0	
PC3	NIC	172.30.10.3	255.255.255.0	

Tabela 2

Porty	VLAN	
SW1 F0/11	VLAN 10	
SW2 F0/11	VLAN 10	
SW3 F0/11	VLAN 10	

Celem ćwiczenia jest skonfigurowanie sieci VLAN oraz połączenia **trunk** pomiędzy przełącznikami, sprawdzenie i skonfigurowanie pierwszorzędnych i drugorzędnych mostów głównych protokołu STP, następnie zoptymalizowanie topologii przełączników za pomocą **Rapid PVST**, **PortFast** i **BPDU guard**.

Wykonaj następujące czynności:

- a. Nazwij przełączniki zgodnie z rysunkiem 1.
- b. Utwórz na wszystkich przełącznikach następujące VLAN'y: 10, 20, 30, i 99.

```
SW1(config) # vlan 10
SW1(config-vlan) # vlan 20
SW1(config-vlan) # vlan 30
SW1(config-vlan) # vlan 99
```

Te same czynności należy powtórz na Sw2 i Sw3

c. Ustaw na przełącznikach port **fa0/11** na tryb dostępu i przypisz port przełącznika do sieci VLAN zgodnie z tabela 2.2 następnie zweryfikuj konfiguracje.

```
SW1(config)# interface f0/11
SW1(config-if)# switchport mode access
SW1(config-if)# switchport access vlan 10
```

Powtórz konfigurację na SW2 i SW3

d. Skonfiguruj porty fa0/1-4 jako trunk i przypisz je do natywnej sieci VLAN 99

```
SW1 (config) # interface range f0/1-4
SW1 (config-if-range) # switchport mode trunk
SW1 (config-if-range) # switchport trunk native vlan 99

SW2 (config) # interface range f0/1-4
SW2 (config-if-range) # switchport mode trunk
SW2 (config-if-range) # switchport trunk native vlan 99

SW3 (config) # interface range f0/1-4
SW3 (config-if-range) # switchport mode trunk
SW3 (config-if-range) # switchport trunk native vlan 99
```

e. Skonfiguruj adres na interfejsach zarządzania na wszystkich trzech przełącznikach zgodnie z tabela 2.1

```
SW1 (config) # interface vlan99
SW1 (config-if) # ip address 172.30.99.1 255.255.255.0

SW2 (config) # interface vlan99
SW2 (config-if) # ip address 172.30.99.2 255.255.255.0

SW3 (config) # interface vlan99
SW3 (config-if) # ip address 172.30.99.3 255.255.255.0
```

f. Upewnij się, że przełączniki są prawidłowo skonfigurowane poprzez sprawdzenie komunikacji pomiędzy nimi (polecenie ping). Sprawdź konfigurację **STP** na każdym z przełączników za pomocą polecenia:

```
SW1# show spanning-tree
```

Przeanalizuj status protokołu **STP**, który przełącznik jest **root primary**, Czy dla każdego z **VLAN**;ów sytuacja przedstawia się tak samo?

g. Konfigurowanie trybu STP. Użyj polecenia spanning-tree mode, aby skonfigurować przełączniki tak, żeby używały Rapid PVST jako tryb STP.

```
SW1 (config) # spanning-tree mode rapid-pvst
SW2 (config) # spanning-tree mode rapid-pvst
SW3 (config) # spanning-tree mode rapid-pvst
```

Przeanalizuj status protokołu **STP**, czy coś się zmieniło?

h. Konfiguracja Spanning Tree i równoważenie obciążenia.

Skonfiguruj **S1**, aby był pierwszorzędnym przełącznikiem głównym dla sieci VLAN, 10, 20. Skonfiguruj **S3**, aby był pierwszorzędnym przełącznikiem głównym dla sieci VLAN 30, 99.

```
SW1(config) # spanning-tree vlan 10,20 root primary SW3(config) # spanning-tree vlan 30,99 root primary
```

Sprawdź konfigurację na każdym z przełączników za pomocą polecenia

```
SW1# show spanning-tree
```

i. Konfiguracja PortFast i BPDU guard na przełącznikach.

```
SW1 (config) # interface f0/11

SW1 (config-if) # spanning-tree portfast

SW1 (config-if) # spanning-tree bpduguard enable

SW2 (config) # interface f0/11

SW2 (config-if# spanning-tree portfast

SW2 (config-if) # spanning-tree bpduguard enable

SW3 (config) # interface f0/11

SW3 (config-if) # spanning-tree portfast

SW3 (config-if) # spanning-tree bpduguard enable
```

Użyj polecenia **show running-config**, aby sprawdzić konfigurację.

Zadanie 2

- 1. Zapewnij łączność pomiędzy VLAN'ami 10,99 Wskazówka: dodaj ruter lub przełącznik warstwy 3 i go skonfiguruj).
- 2. Dodatkowo połącz przełączniki z wykorzystaniem portów GigabitEthernet, połączenia skonfiguruj jako trunk, natywny VLAN 99
- 3. Obserwuj zachowanie sieci

Uzupełnienie

Koszt ścieżki oblicza się na podstawie przepustowości (bandwidth) łącza, zgodnie z poniższymi zaleceniami:

```
10 Gbps: koszt = 2
1 Gbps: koszt = 4
100 Mbps: koszt = 19
10 Mbps: koszt = 100
```

Wartości te są zgodne z IEEE 802.1D-2004, które wprowadziło zmiany w stosunku do wcześniejszej wersji protokołu.