# Лабораторная работа №3

# Задача №1а)

# Условие

С помощью алгоритма Дейкстры найти кратчайший путь от вершины  $x_1$  до вершины  $x_7$  в следующем графе:



## Решение

| $s=x_1$   | $x_2$        | $x_3$        | $x_4$        | $x_5$        | $x_6$        | $t=x_7$      | $x_8$        | $x_9$        | <i>x</i> <sub>10</sub> |
|-----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------------|
| $(0,s)^*$ | $(\infty,s)$           |
|           | $(\infty,s)$ | $(\infty,s)$ | $(2,s)^*$    | $(\infty,s)$ | $(\infty,s)$ | $(\infty,s)$ | $(\infty,s)$ | $(\infty,s)$ | $(\infty,s)$           |
|           | $(5, x_4)$   | $(\infty,s)$ |              | $(5, x_4)$   | $(\infty,s)$ | $(4, x_4)^*$ | $(\infty,s)$ | $(\infty,s)$ | $(\infty,s)$           |

Кратчайший путь:  $s = x_1 \rightarrow x_4 \rightarrow x_7 = t$ .

**Ответ:** длина кратчайшего пути от  $s=x_1$  к  $t=x_7$  равна 4, кратчайший путь:  $s=x_1\to x_4\to x_7=t$ .

## Задача №2а)

#### Условие

С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины  $x_1$  до всех остальных вершин в следующем графе:



#### Решение

|   | 0          | -2          | 8               | 8                  | 3           | 1          | 8               | 8               | 8               | 0  | 0  | 0  | 0          | 0  | 0   | 0   |
|---|------------|-------------|-----------------|--------------------|-------------|------------|-----------------|-----------------|-----------------|----|----|----|------------|----|-----|-----|
|   | ∞          | 0           | 3               | 8                  | -1          | ∞          | 8               | 8               | 8               | -2 | -2 | -2 | -2         | -2 | -2  | -2  |
|   | $\infty$   | 8           | 0               | 4                  | -2          | $\infty$   | 8               | 2               | 8               | 8  | 1  | 1  | 1          | 1  | 1   | 1   |
|   | $\infty$   | 8           | 8               | 0                  | 8           | $\infty$   | 8               | 8               | 2               | 8  | 8  | 2  | <b>-</b> 5 | -8 | -10 | -10 |
|   | $\infty$   | 8           | 8               | 8                  | 0           | -1         | 1               | 3               | 8               | 3  | -3 | -3 | <b>-</b> 3 | -3 | -3  | -3  |
|   | $\infty$   | 8           | 8               | 8                  | 8           | 0          | 0               | 8               | 8               | 1  | 1  | -4 | -4         | -4 | -4  | -4  |
|   | $\infty$   | 8           | 8               | 8                  | 8           | $\infty$   | 0               | -2              | 8               | 8  | 1  | -2 | -4         | -4 | -4  | -4  |
|   | $\infty$   | 8           | 8               | -4                 | 8           | $\infty$   | $\infty$        | 0               | 1               | 8  | 6  | -1 | -4         | -6 | -6  | -6  |
|   | $\infty$   | 8           | 8               | 8                  | 8           | $\infty$   | 8               | 8               | 0               | 8  | 8  | 7  | 0          | -3 | -6  | -8  |
| 1 | $(0, x_1)$ | $(-2, x_1)$ | $(\infty, x_1)$ | $(\infty, \chi_1)$ | $(3, x_1)$  | $(1, x_1)$ | $(\infty, x_1)$ | $(\infty, x_1)$ | $(\infty, x_1)$ |    |    |    |            |    |     |     |
| 2 | $(0, x_1)$ | $(-2, x_1)$ | $(1, x_2)$      | $(\infty, x_1)$    | $(-3, x_2)$ | $(1, x_1)$ | $(1, x_6)$      | $(6, x_5)$      | $(\infty, x_1)$ |    |    |    |            |    |     |     |
| 2 | (0 %)      | ( 2 %)      | (1 %)           | (2 %)              | (_2 x )     | ( 1 24 )   | (2 %)           | (1 1 1 )        | (7 %)           |    |    |    |            |    |     |     |

|   |            |             |            | ` '             |             |             |             |             |                 |
|---|------------|-------------|------------|-----------------|-------------|-------------|-------------|-------------|-----------------|
| 2 | $(0, x_1)$ | $(-2, x_1)$ | $(1, x_2)$ | $(\infty, x_1)$ | $(-3, x_2)$ | $(1, x_1)$  | $(1, x_6)$  | $(6, x_5)$  | $(\infty, x_1)$ |
| 3 | $(0, x_1)$ | $(-2, x_1)$ | $(1, x_2)$ | $(2, x_8)$      | $(-3, x_2)$ | $(-4, x_5)$ | $(-2, x_5)$ | $(-1, x_7)$ | $(7, x_8)$      |
| 4 | $(0, x_1)$ | $(-2, x_1)$ | $(1, x_2)$ | $(-5, x_8)$     | $(-3, x_2)$ | $(-4, x_5)$ | $(-4, x_6)$ | $(-4, x_7)$ | $(0, x_8)$      |
| 5 | $(0, x_1)$ | $(-2, x_1)$ | $(1, x_2)$ | $(-8, x_8)$     | $(-3, x_2)$ | $(-4, x_5)$ | $(-4, x_6)$ | $(-6, x_7)$ | $(-3, x_4)$     |
| 6 | $(0, x_1)$ | $(-2, x_1)$ | $(1, x_2)$ | $(-10, x_8)$    | $(-3, x_2)$ | $(-4, x_5)$ | $(-4, x_6)$ | $(-6, x_7)$ | $(-6, x_4)$     |
| 7 | $(0, x_1)$ | $(-2, x_1)$ | $(1, x_2)$ | $(-10, x_8)$    | $(-3, x_2)$ | $(-4, x_5)$ | $(-4, x_6)$ | $(-6, x_7)$ | $(-8, x_4)$     |
| 8 | $(0, x_1)$ | $(-2, x_1)$ | $(1, x_2)$ | $(-10, x_8)$    | $(-3, x_2)$ | $(-4, x_5)$ | $(-4, x_6)$ | $(-6, x_7)$ | $(-8, x_4)$     |

Ответ: Кратчайшие расстояния:

$$x_1 \to x_2 - длина = -2$$

$$x_1 \rightarrow x_2 \rightarrow x_3 -$$
 длина = 1

$$x_1 
ightarrow x_2 
ightarrow x_5 
ightarrow x_6 
ightarrow x_7 
ightarrow x_8 
ightarrow x_4 -$$
 длина  $= -10$ 

$$x_1 \rightarrow x_2 \rightarrow x_5$$
 — длина =  $-3$ 

$$x_1 \rightarrow x_2 \rightarrow x_5 \rightarrow x_6 -$$
 длина =  $-4$ 

$$x_1 \rightarrow x_2 \rightarrow x_5 \rightarrow x_6 \rightarrow x_7$$
 — длина =  $-4$ 

$$x_1 \to x_2 \to x_5 \to x_6 \to x_7 \to x_8 -$$
 длина =  $-6$ 

$$x_1 o x_2 o x_5 o x_6 o x_7 o x_8 o x_4 o x_9$$
 — длина =  $-8$ 

#### Задача №4b)

#### Условие

С помощью алгоритма Флойда определить кратчайшие расстояния между каждой парой вершин для графа со следующей матрицей расстояний:

$$\begin{bmatrix} 0 & 11 & 2 & 8 & 11 & 11 \\ 11 & 0 & 5 & \infty & \infty & 1 \\ \infty & 5 & 0 & \infty & 2 & 1 \\ 2 & \infty & \infty & 0 & 2 & \infty \\ \infty & 9 & \infty & 2 & 0 & 7 \\ \infty & 1 & \infty & \infty & 7 & 0 \end{bmatrix}$$

#### Решение

$$D^{0} = \begin{vmatrix} 0 & 11 & 2 & 8 & 11 & 11 \\ 11 & 0 & 5 & \infty & \infty & 1 \\ \infty & 5 & 0 & \infty & 2 & 1 \\ 2 & \infty & \infty & 0 & 2 & \infty \\ \infty & 9 & \infty & 2 & 0 & 7 \\ \infty & 1 & \infty & \infty & 7 & 0 \end{vmatrix} \qquad T^{0} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{vmatrix}$$

$$D^{1} = \begin{vmatrix} 0 & 11 & 2 & 8 & 11 & 11 \\ 11 & 0 & 5 & 19 & 22 & 1 \\ \infty & 5 & 0 & \infty & 2 & 1 \\ 2 & 13 & 4 & 0 & 2 & 13 \\ \infty & 9 & \infty & 2 & 0 & 7 \\ \infty & 1 & \infty & \infty & 7 & 0 \end{vmatrix} \qquad T^{1} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 1 & 1 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 1 & 1 & 4 & 5 & 1 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{vmatrix}$$

$$D^{2} = \begin{vmatrix} 0 & 11 & 2 & 8 & 11 & 11 \\ 11 & 0 & 5 & 19 & 22 & 1 \\ 16 & 5 & 0 & 24 & 2 & 1 \\ 2 & 13 & 4 & 0 & 2 & 13 \\ 20 & 9 & 14 & 2 & 0 & 7 \\ 12 & 1 & 6 & 20 & 7 & 0 \end{vmatrix} \qquad T^{2} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 1 & 1 & 6 \\ 2 & 2 & 3 & 2 & 5 & 6 \\ 1 & 1 & 1 & 4 & 5 & 1 \\ 2 & 2 & 2 & 4 & 5 & 6 \\ 2 & 2 & 2 & 2 & 5 & 6 \end{vmatrix}$$

$$D^{3} = \begin{vmatrix} 0 & 7 & 2 & 8 & 4 & 3 \\ 11 & 0 & 5 & 19 & 7 & 1 \\ 16 & 5 & 0 & 24 & 2 & 1 \\ 2 & 9 & 4 & 0 & 2 & 5 \\ 20 & 9 & 14 & 2 & 0 & 7 \\ 12 & 1 & 6 & 20 & 7 & 0 \end{vmatrix} \qquad T^{3} = \begin{vmatrix} 1 & 3 & 3 & 4 & 3 & 3 \\ 1 & 2 & 3 & 1 & 3 & 6 \\ 2 & 2 & 3 & 2 & 5 & 6 \\ 1 & 3 & 1 & 4 & 5 & 3 \\ 2 & 2 & 2 & 2 & 5 & 6 \end{vmatrix}$$

$$D^{4} = \begin{vmatrix} 0 & 7 & 2 & 8 & 4 & 3 \\ 11 & 0 & 5 & 19 & 7 & 1 \\ 16 & 5 & 0 & 24 & 2 & 1 \\ 2 & 9 & 4 & 0 & 2 & 5 \\ 4 & 9 & 6 & 2 & 0 & 7 \\ 12 & 1 & 6 & 20 & 7 & 0 \end{vmatrix} \qquad T^{4} = \begin{vmatrix} 1 & 3 & 3 & 4 & 3 & 3 \\ 1 & 2 & 3 & 1 & 3 & 6 \\ 2 & 2 & 3 & 2 & 5 & 6 \\ 1 & 3 & 1 & 4 & 5 & 3 \\ 4 & 2 & 4 & 4 & 5 & 6 \\ 2 & 2 & 2 & 2 & 5 & 6 \end{vmatrix}$$

$$D^{5} = \begin{vmatrix} 0 & 7 & 2 & 6 & 4 & 3 \\ 11 & 0 & 5 & 9 & 7 & 1 \\ 6 & 5 & 0 & 4 & 2 & 1 \\ 2 & 9 & 4 & 0 & 2 & 5 \\ 4 & 9 & 6 & 2 & 0 & 7 \\ 11 & 1 & 6 & 9 & 7 & 0 \end{vmatrix} \qquad T^{5} = \begin{vmatrix} 1 & 3 & 3 & 5 & 3 & 3 \\ 1 & 2 & 3 & 5 & 3 & 6 \\ 5 & 2 & 3 & 5 & 5 & 6 \\ 1 & 3 & 1 & 4 & 5 & 3 \\ 4 & 2 & 4 & 4 & 5 & 6 \\ 5 & 2 & 2 & 5 & 5 & 6 \end{vmatrix}$$

$$D^{6} = \begin{vmatrix} 0 & 4 & 2 & 6 & 4 & 3 \\ 11 & 0 & 5 & 9 & 7 & 1 \\ 6 & 2 & 0 & 4 & 2 & 1 \\ 2 & 6 & 4 & 0 & 2 & 5 \\ 4 & 8 & 6 & 2 & 0 & 7 \\ 11 & 1 & 6 & 9 & 7 & 0 \end{vmatrix} \qquad T^{6} = \begin{vmatrix} 1 & 6 & 3 & 5 & 3 & 3 \\ 1 & 2 & 3 & 5 & 3 & 6 \\ 5 & 6 & 3 & 5 & 5 & 6 \\ 1 & 6 & 1 & 4 & 5 & 3 \\ 4 & 6 & 4 & 4 & 5 & 6 \\ 5 & 2 & 2 & 5 & 5 & 6 \end{vmatrix}$$

**Ответ:** Матрица  $D^6$  дает значения кратчайших расстояний между вершинами, кратчайший путь строится по матрице  $T^6$ . Например, кратчайшее расстояние между пятой и третьей вершинами равно 6, кратчайший путь:  $x_5 \to x_4 \to x_1 \to x_3$ .