ITESO

MAESTRÍA EN CIENCIA DE DATOS

IDI2

Realice código en Python que, recibiendo una función f dada, un valor inicial x_0 y una exactitud (error) dado E, encuentre una aproximación de exactitud menor a E para x cuando f(x) = 0 usando el método de Newton-Raphson. Asegúrese que cuenta el número de iteraciones realizadas.

Use su código para resolver los siguientes ejercicios (en todos los casos indique el(los) valor(es) inicial(es) que utilizó y el número de iteraciones que fueron necesarias para alcanzar la respuesta:

- 1. Aplique el método de Newton-Raphson para encontrar **todas** las soluciones exactas dentro de 10^{-4} para:
 - (a) $x^3 2x^2 5 = 0$
 - (b) $x \cos x = 0$
 - (c) $x 0.8 0.2 \sin x = 0$
 - (d) $\ln(x-1) + \cos(x-1) = 0$
 - (e) $e^x 3x^2 = 0$
- 2. Encuentre una aproximación a $\sqrt{3}$ correcta con exactitud 10^{-4} usando el algoritmo de Newton-Raphson
- 3. Encuentre el único cero negativo de $f(x) = \ln(x^2 + 1) e^{0.4x} \cos(\pi x)$ con exactitud de 10^{-6} usando Newton-Raphson.