The Tiling Method

Max von Hippel

March 22, 2021

Consider a two-party communication problem, in which the participants

participate to compute a function:

$$f: \underbrace{\mathbb{B}^n}_{\text{Alice's Bob's global}} \rightarrow \underbrace{\mathbb{B}}_{\text{output}}$$

$$\text{input input output}$$

The players can come up with a *protocol* $\Pi = (p_1, ..., p_t)$, namely, for some natural $t \in \mathbb{N}$, a sequence of t-many functions $p_i : \mathbb{B}^* \to \mathbb{B}^*$ such that the communication between the players looks like this:

Suppose that there is a protocol Π for f consisting of t messages, but, there does not exist any protocol Π' for f consisting of fewer than t messages. Then we say t is the *communication complexity* of f, and we write C(f) = t.

Given some such function f, it would be nice if we could automatically compute a reasonable lower bound on its communication complexity. One way to do this is with the *tiling method*. We will give the method immediately, and in tandem, we will illustrate the method using the function f(x,y) = x < y where x,y are integers in $\{0,1,2,3\}$, encoded in Boolean. First, let M(f) be the *matrix* of f, namely, the $2^n \times 2^n$ matrix whose (x,y)th entry is the value f(x,y).

	0	1	2	3	4
0	0	1	1	1	1
1	0	0	1	1	1
2	0	0	0	1	1
3	0	0	0	0	1
4	0	0	0	0	0

Table 1: The matrix f(<) for inputs $x, y \in \{0, 1, 2, 3\}$. Values of x are given in the rows, while values of y are given in the columns. False (i.e. 0) values are marked blue for clarity.

TODO...