חישוביות וסיבוכיות תשפ"ה סמסטר א' שיעור 1 מכונות טיורינג

תוכן העניינים

	הגדרה היוריסטית של מכונת טיורינג	1.1
	הגדרה פורמלית של מכונת טיורינג	1.2
!	טבלת המעברים	1.3
,	חישוב פונקציות	1.4

1.1 הגדרה היוריסטית של מכונת טיורינג

הגדרה 1.1: מכונת טיורינג (הגדרה היוריסטית)

הקלט והסרט

מכונת טיורינג (מ"ט) קורא קלט.

הקלט נמצא על סרט אינסופי.

התווים של הקלט נמצאים במשבצות של הסרט.

במכונת טיורינג אנחנו מניחים שהסרט אינסופי לשני הכיוונים.

משמאל לתחילת הקלט לא כתוב כלום, ומימין לסוף הקלט לא כתוב כלום.

אנחנו מניחים שיש תו הרווח _ שנמצא בכל משבצות שאינן משבצות קלט, משמאל לקלט ומימין לקלט.

הראש

במצב ההתחלתי הראש בקצה השמאלי של הקלט.

 _	_	a	Ъ	Ъ	b	a	a]]]	

个

הראש יכול לזוז ימינה על הסרט וגם שמאלה על הסרט.

הראש יכול לקרוא את התוכן שנמצא במשבצת הסרט שבה הוא נמצא.

הראש יכול לכתוב על המשבצת הסרט שבה הוא נמצא. הכתיבה נעשית תמיד במיקום הראש.

המצבים

 q_0 בהתחלה הראש בקצה השמאלי של הקלט והמ"ט במצב התחלתי

הראש קורא את התו במשבצת הראשונה וכותב עליה לפי הפונקציית המעברים (שנגדיר בהגדרה 1.3). כעת המ"ט במצב חדש q_1

הראש קורא את התו במשבצת השניה וכותב עליה לפי הפונקציית המעברים ואז המ"ט במצב חדש q_2 . התהליך ממשיך עד שהראש מגיע לקצה הימיני של הקלט, ואז הוא ממשיך לקרוא ולכתוב על כל משבצת בכיוון שמאלה, עד שהוא מגיע לקצה השמאלי.

במ"ט ניתן לטייל על הקלט שוב ושוב לשני הכיוונים.

 $q_{
m rei}$ או מצב דוחה מגיע מגיע מגיע מגיע מסתיים כאשר המ"ט מגיע מגיע מהליך מסתיים

דוגמה 1.1

נרכיב מכונת טיורינג אשר מקבלת מילה אם היא בשפה

$$L = \{ w \in \{a, b\}^* | \#a_w = \#b_w \} .$$

b ו a אותיות אותיות מספר עם מספר מכל המילים עם מספר אווה אותיות ו

תיאור מילולי

- נסרוק את הקלט משמאל לימין ולכל a נחשפ b תואם.
 - .√ נסמן עליה ,a ניח שראינו במשבצת הראשונה .
- עכשיו נסרוק את יתרת הקלט ונחפש אות b מתאימה ל a שכבר ראינו.
 - אם לא מצאנו ,המילה לא בשפה.
 - $\sqrt{}$ אם מצאנו ,נסמן את ה- $\sqrt{}$ התואם ב- $\sqrt{}$
 - נחזור לתחילת הקלט ונעשה סריקה נוספת משמאל לימין.
- במשבצת הראשונה יש √ מסיבוב הראשון. הראש פשוט כותב עליה √, כלומר משבצת ראשונה נשארת ללא שינוי.
 - ullet הראש זז שמאלה למשבצת הבאה. נניח שמצאנו ullet. נסמן במשבצת ullet
 - נסרוק את יתרת הקלט ונחפש אות a מתאימה ל b שכבר ראינו.
 - אם לא מצאנו המילה לא בשפה.
 - .√ אם מצאנו (נסמן את ה- a התואם ב- -
 - . בכל משבצת שיש $\sqrt{}$ כותבים עליה $\sqrt{}$ וממשיכים למשבצת הבאה הימני.
 - נחזור לתחילת הקלט ונעשה סריקה נוספת משמאל לימין.
 - חוזרים על התהליך שוב ושוב.
 - אם היה מעבר שבו לא מצאנו אות תואמת, המילה לא בשפה. -

אם כולן היו תואמות ועשינו מעבר שבו הגכנו לקצה, מרווח לרווח, בלי לראות שום אות, אז המילה בשפה.

כעת נתאר את המ"ט באמצעות המצבי המכונה והפונקציית המעברים.

מצבי המכונה

q_0	המצב ההתחלתי. אליו נחזור לאחרכל סבב התאמה של זוג אותיות.
q_a	מצב שבו ראינו a ומחפשים b מצב שבו ראינו
q_b	מצב שבו ראינו b מצב שבו ראינו
back	מצב שנשתמש בו כדי לחזור לקצה השמאלי של הקלט ולהתחיל את הסריקה הבאה (סבב ההתאמה הבא).
acc	מצב מקבל.
rej	מצב דוחה.

- מכר המכונה מגיעה למצב acc כאשר המכונה מגיעה מגיעה acc עצירה במצב acc עצירה במצב
- תוצרת. rej היא עוצרת מגיעה מגיעה מגיעה rej עצירה במצב rej עצירה במצב
 - רק בשני מצבים אלו המכונה מפסיקה.
 בכל מצב אחר המכונה בהכרח ממשיכה.

המעברים

- בכל צעד המכונה מבצעת שתי פעולות:
 - 1. כותבת אות במיקום הראש
- 2. זזה צעד אחד שמאלה או צעד אחד ימינה.
- בכל צעד המכונה יכולה לעבור למצב אחר או להישאר באותו מצב.

דוגמה 1.2

בדקו אם המכונת טיורינג של הדוגמה 1.1 מקבלת את המילה abbbaa.

u	\checkmark	q_0	\checkmark	b	b	а	а	_
ш	\checkmark	\checkmark	q_0	b	b	а	а	
_	\checkmark	\checkmark	\checkmark	q_b	b	a	а	
_	\checkmark	\checkmark	\checkmark	b	q_b	а	a	_
_	\checkmark	\checkmark	\checkmark	back	b	\checkmark	а	_
_	\checkmark	\checkmark	back	\checkmark	b	✓	а	_
_	\checkmark	back	\checkmark	\checkmark	b	✓	а	_
_	back	\checkmark	\checkmark	\checkmark	b	✓	а	_
back	_	\checkmark	\checkmark	\checkmark	b	✓	а	L
L	q_0	\checkmark	\checkmark	\checkmark	b	✓	а	J
	\checkmark	q_0	\checkmark	\checkmark	b	\checkmark	а	_
	\checkmark	\checkmark	q_0	\checkmark	b	\checkmark	а	_
J	\checkmark	\checkmark	\checkmark	q_0	b	\checkmark	а	_
J	\checkmark	\checkmark	\checkmark	\checkmark	q_b	✓	а	_
J	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	q_b	а	_
u	\checkmark	\checkmark	\checkmark	\checkmark	back	✓	\checkmark	_
L	\checkmark	\checkmark	\checkmark	back	\checkmark	✓	\checkmark	_
	\checkmark	\checkmark	back	\checkmark	\checkmark	\checkmark	\checkmark	_
	\checkmark	back	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	_
_	back	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	_
back	_	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	_
_	q_0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	_
L	\checkmark	q_0	\checkmark	\checkmark	\checkmark	✓	\checkmark	_
u	\checkmark	\checkmark	q_0	\checkmark	\checkmark	✓	\checkmark	
u	\checkmark	\checkmark	\checkmark	q_0	\checkmark	\checkmark	\checkmark	

דוגמה 1.3

בדקו אם המכונת טיורינג של הדוגמה 1.1 מקבלת את המילה aab.

פתרון:

הגדרה 1.2: מכונות טיורינג

מכונת טיורינג (מ"ט) היא שביעייה

$$M = (Q, q_0, F, \Gamma, \Sigma, b, \delta)$$

1.2 הגדרה פורמלית של מכונת טיורינג

הגדרה 1.3: מכונת טיורינג

מכונת טיורינג (מ"ט) היא שביעיה

$$M = (Q, q_0, \Sigma, \Gamma, \delta, q_0, \text{acc}, \text{rej})$$

:כאשר

קבוצת מצבים סופיות Q

 $_ \notin \Sigma$ א"ב קלט סופי Σ

 $\Sigma \subset \Gamma$, $\bot \in \Gamma$ ref

 $\delta:(Q\backslash\{\mathrm{rej},\mathrm{acc}\}\times\Gamma\to Q\times\Gamma\times\{L,R\}$ פונקציית המעברים δ

מצב התחלתי q_0

acc מצב מקבל

rej מצב דוחה

דוגמה 1.4 (המשך דוגמה 1.1)

$$M = (Q, q_0, \Sigma, \Gamma, \delta, q_0, \mathrm{acc}, \mathrm{rej})$$

$$Q = \{q_0, q_a, q_b, \text{back}, \text{rej}, \text{acc}\}$$
.

$$\Sigma = \{ \texttt{a,b} \} \; , \qquad \Gamma = \{ \texttt{a,b,_,\checkmark} \}$$

$$\delta\left(q_0,\mathbf{a}\right) = \left(q_a, \checkmark, R\right) ,$$

$$\delta\left(q_0,\mathbf{b}\right) = \left(q_b,\checkmark,R\right) \ ,$$

$$\delta\left(q_{0}, \bot\right) = (\mathrm{acc}, \bot, R) \ ,$$

$$\delta\left(q_a,\checkmark\right) = \left(q_a,\checkmark,R\right) ,$$

$$\delta\left(q_{a},\mathrm{a}\right)=\left(q_{a},\mathrm{a},R\right)\ ,$$

$$\delta\left(q_a,\mathbf{b}\right) = (\mathsf{back},\checkmark,L) \ ,$$

$$\delta\left(q_b,\checkmark\right) = \left(q_b,\checkmark,R\right) ,$$

$$\delta(q_b, b) = (q_a, b, R) ,$$

$$\delta\left(q_b, \mathbf{a}\right) = \left(\mathrm{back}, \checkmark, L\right) \; ,$$

קל יותר לרשום את פונקציית המעבירים δ כטבלה:

Γ Q	a	b]	✓
q_0	(q_a, \checkmark, R)	(q_b, \checkmark, R)	$(\mathrm{acc}, _, R)$	(q_0, \checkmark, R)
q_a	(q_a,\mathtt{a},R)	$(back, \checkmark, L)$	$(\mathrm{rej}, _, L)$	(q_a, \checkmark, R)
q_b	$(back, \checkmark, L)$	(q_b, \mathtt{b}, R)	$(\mathrm{rej}, {\it __}, L)$	(q_b, \checkmark, R)
back	(back, a, L)	(back, b, L)	(q_0, \bot, R)	$(back, \checkmark, L)$

הגדרה 1.4: קונפיגורציה

תהי מכונת טיורינג. $M=(Q,q_0,\Sigma,\Gamma,\delta,q_0,\mathrm{acc},\mathrm{rej})$

קונפיגורציה של M הינה מחרוזת

 $\mu q \sigma \nu$

:כאשר משמעות

$$\mu, \nu \in \Gamma^*$$
, $\sigma \in \Gamma$, $q \in Q$.

- מצב המכונה, q
- הסימון במיקום הראש σ
- תוכן הסרט משמאל לראש, μ
 - תוכן הסרט מימין לראש. u

דוגמה 1.5 (המשך של דוגמה 1.3)

μ	q	σ	ν
	q_0	a	ab_
_√	q_a	a	b _
_√a	q_a	b	_
_ ✓	back	a	✓ _
_	back	✓	a √ _
_	back	_	✓ a ✓ _
_	q_0	✓	a √ _
_ ✓	q_0	a	✓ _
_ ✓ ✓	q_a	✓	J
_	q_a	J	J
_ ✓ ✓	rej	✓	

דוגמה 1.6

הרכיבו מכונת טיורינג אשר מקבלת כל מילה בשפה

$$L = \{a^n \mid n = 2^k , k \in \mathbb{N}\}$$

2 אשר חזקה של a אותיות מספר בעלי מספר ז"א מילים בעלי

פתרון:

k או $n=2^k$ או n=2 או n=1 או n=2 ראשית נשים לב שאם או $n=2^k$ מספר אשר חזקה של 2, אז n=1 (אם מתחלק ב- n=2 בדיוק פעמים.

.1. אם n אינו חזקה של 2 אז קיים שלם $1\geq m$ עבורו אחרי m חילוקים ב- 2 נקבל מספר אי-זוגי שגדול מ-1. למעשה מתקיים משפט שנקרא משפט החילוק של חזקה של 2: נתון מספר שלם n.

אנדול שלם אי-זוגי ב- 2 נקבל מספר שלם אי-זוגי שגדול m שווה לחזקה של 2 אם ורק אם לא קיים שלם m עבורו אחרי מ- n

אפשר לנסח את המשפט בצורה שקולה:

.1 נקבל ב- 2 אם ורק אם קיים שלם m עבורו אחרי m חילוקים ב- 2 נקבל ורק שווה לחזקה של

הוכחה:

יהי n שלם. לפי המשפט הפירוק לראשוניים,

$$n = 2^{e_1} 3^{e_2} 5^{e_3} 7^{e_4} \cdots = 2^{e_1} \prod_{i=2}^{r} p_i^{e_i}$$

. כאשר e_i -ו ח שלמיים בפירוק של קבוצת הראשוניים קבוצת $\{p_i\}$

אם n חילוקים ב-2 נקבל מספר אי-זוגי m עבורו אחרי $e_2=e_3=\cdots=e_r=0$ אם אי- חילוקים ב-2 נקבל מספר אי-זוגי n אשר גדול מ- n

אם $m=e_1$ חילוקים ב- e_2 נקבל את e_2,e_3,\ldots,e_r שונה מאפס אז לפחות אחת אחת אחת אחת אחת החזקות a_1 אם a_2 אשר מספר אי-זוגי. גדול מ- a_1 אשר מספר אי-זוגי. גדול מ- a_2 אשר מספר אי-זוגי.

לאור המשפט הזה נרכיב אלגוריתם אשר מחלק את מספר האותיות במילה ב- 2 בצורה איטרטיבית. אם אחרי סבב מסויים נקבל מספר אי-זוגי גדול מ- 1 אז מספר האותיות a במילה לא יכול להיות חזקה של 2. אם אחרי כל הסבבים לא קיבלנו מספר אי-זוגי גדול מ-1 אז מובטח לנו שיש מספר אותיות a אשר חזקה של a.

• נתון הקלט

נעבר על סרט הקלט. משמאל לימין.

● מבצעים מחקיה לסירוגין של האות a כלומר אות אחת נמחק ואות אחת נשאיר וכן הלאה.

אם אחרי סבב הראשון

- 2 אין חזקה של ב- 4 אין אותיות a אותיות מספר אי-זוגי מספר אי-זוגי של אותיות 4 אין אותיות 4 אותיות 4 במילה.
 - . אחרי חילוק ב- 2 ונמשיך לסבב הבא a יש a אחרי אוגי של מספר זוגי של אותיות a
 - הראש חוזר לתו הראשון של הקלט

• בסבב הבא חוזרים על התהליך של מחיקה לסירוגין של האות a אות אחת נמחק ואות אחת נשאיר)

אם אחרי סבב השני

- - . אחרי חילוק ב- 2 ונמשיך לסבב הבא a אותיות אותיות מספר * ונמשיך לסבב הבא *
 - הראש חוזר לתו הראשון של הקלט

שחת נמחק ואות אחת נשאיר) a בסבב הבא חוזרים על התהליך של מחיקה לסירוגין של האות •

אם אחרי סבב השלישי

- 2 אין חזקה ב- 4 אין אותיות האחרון אין חזקה של אין מספר אי-זוגי של אותיות האחרון 4 אין חזקה של 4 אין אותיות במילה.
 - . אחרי חילוק ב- 2 ונמשיך לסבב הבא a אותיות אווגי של אותיות \pm פיבלנו מספר \pm אווגי של אותיות \pm
 - הראש חוזר לתו הראשון של הקלט.

בסבב האחרון נשאר רק אות a בסבב

 $_{
m c}$ לכן לפי המשפט למעלה מובטח לנו כי המילה מורכבת ממספר אותיות $_{
m a}$ אשר חזקה של

המכונת טיורינכ אשר מקבלת מילים בשפה שעובדת לפי האלגוריתם המתואר למעלה מתואר בתרשים למטה.

המצבים:

מצב none: מצב התחלתי. עדיין לא קראנו a בסבב סריקה זה.

מצב one: קראנו a בודד.

. a מצב even: קראנו מספר זוגי של

. a קראנו מספר אי-זוגי של odd:

מצב back: חזרה שלמאלה.

דוגמה 1.7

בדקו אם המילה

aaaa

מתקבלת על ידי המכונת טיורינג בדוגמה 1.6.

]	none	a	a	a	a	
J	\checkmark	one	a	a	a	J
J	\checkmark	a	even	a	a	J
J	\checkmark	a	\checkmark	odd	a	J

	\checkmark	а	\checkmark	а	even	_
	\checkmark	a	\checkmark	back	a	_
	\checkmark	a	back	\checkmark	a	_
	\checkmark	back	a	\checkmark	a	_
	back	\checkmark	a	\checkmark	a	_
back	_	\checkmark	a	\checkmark	a	_
1	none	\checkmark	a	\checkmark	a	_
]	\checkmark	none	a	\checkmark	a	
]	\checkmark	\checkmark	one	\checkmark	a	l
]	\checkmark	\checkmark	\checkmark	one	a	
]	\checkmark	\checkmark	\checkmark	a	even	l
]	\checkmark	\checkmark	\checkmark	back	a	
_	\checkmark	\checkmark	back	\checkmark	a	
]	\checkmark	back	\checkmark	\checkmark	a	
]	back	\checkmark	\checkmark	\checkmark	a	
back	_	\checkmark	\checkmark	\checkmark	a	
_	none	\checkmark	\checkmark	\checkmark	a	J
]	\checkmark	none	\checkmark	\checkmark	a	J
_	\checkmark	\checkmark	none	\checkmark	a	_
	\checkmark	\checkmark	\checkmark	none	a	L
_	\checkmark	\checkmark	\checkmark	\checkmark	one	J
	✓	✓	✓	acc	✓	u

μ	q	σ	ν
]	none	a	aaa 🗀

_ ✓	one	a	aa _
_ √ a	even	a	a _
_ √ a √	odd	a	
_ √ a √ a	even	_	
_ √ a √	back	a	
_ √ a	back	✓	a _
_ ✓	back	a	√ a _
_	back	✓	a ✓ a _
_	back	_	√ a √ a _
_	none	✓	а√а∟
	none	a	√ a _
✓ ✓	one	✓	a _
_	one	a	
_√ √ √ a	even	_	_
✓ ✓ ✓	back	a	_
✓ ✓	back	√ a	_
	back	✓	√ a _
_	back	✓	√√ a ∟
_	back	_	√√√ a _
_	none	✓	√√ a ∟
	none	✓	√ a _
✓ ✓	none	✓	a _
✓ ✓ ✓	none	a	
	one		
✓ ✓ ✓	acc	✓	

דוגמה 1.8

בדקו אם המילה

aaa

מתקבלת על ידי המכונת טיורינג בדוגמה 1.6.

פתרון:

μ	q	σ	ν
	none	a	aa 🗀
_ ✓	one	a	а _
_ √ a	even	a	_
_ √ a √	odd	_	_
_ √ a √ _	rej	_	

דוגמה 1.9

מהי שפת המכונה:

פתרון:

תיאור מילולי:

- $:q_0$ במצב התחלתי \bullet
- . עוברים למשבצת הבאה לימין הראש, a אם אנחנו רואים *
- . עוברים למשבצת הבהאה לשמאל הראש. *
- ממשיכים כך עד שנגיע לתו רווח, כלומר לסוף המילה, ואז עוברים למשבצת לשמאל הראש, כלומר לתו האחרון של המילה.
 - (.a אם אנחנו רואים a, המילה מתקבלת. (ז"א התו האחרון הינו *
 - (.b אם אנחנו רואים b, המילה נדחית. (ז"א התו האחרון הינו *
 - * אם אנחנו רואים תו-רווח המילה נדחית. (ז"א המילה הינה ריקה.)

תשובה סופית: המכונה מקבלת שפת המילים המסתיימות באות a.

דוגמה 1.10

מהי שפת המכונה:

פתרון:

תיאור מילולי:

- $:q_0$ במצב התחלתי \bullet
- * אם אנחנו רואים b, המילה נדחית.
- . אם אנחנו רואים $_{-}$, המילה מתקבלת.
- - $oldsymbol{.}$ $oldsymbol{.}$ אנחנו ראינו $oldsymbol{a}$ וכתבנו עליה $oldsymbol{q}_1$
- q_1 ממשיכים למשבצת הבאה לימין והמ"ט נשארת במצב אם אנחנו רואים במשבצת הבאה st או st משיכים למשבצת אוווי נשארת st
- אם אנחנו רואים תו רווח (כלומר הגענו לסוף המילה) הראש זז למשבצת השמאלי, כלומר לאות st האחרונה של המילה והמ"ט עוברת למצב q_2
 - . במצב q_2 ראינו a בתו הראשון, כתבנו עליה במצב בתו האחרון.
 - . אם אנחנו רואים a המילה נדחית.
 - * אם אנחנו רואים _, המילה נדחית.
 - q_3 כותבים עליה q_3 והמ"ט עוברת למצב \star
 - . במצב q_3 קראנו b במצב בתו הראשון ומחקנו הראשון בתו a במצב •
 - q_0 הראש η ז משבצת אחת שמאלה עד שיגיע לתו הרשאון ומ η ט חוזרת למצב התחלת \bullet

- המ"ט באופן איטרטיבי, עוברת על הקלט ובכל מעבר:
- , אחרת המילה המילה אותה ומחליפה אותה שם $_{-}$, אחרת המילה מורידה אותה אותה $_{+}$
- . אחרת המילה של המילה מורידה אותה ומחליפה אותה של בסופה של המילה \star
- אם לאחר מספר מעברים כאלו הסרט ריק, המ"ט מקבלת, וזה יתקיים לכל מילה ורק למילים בשפה

$$\left\{a^n b^n \middle| n \ge 0\right\} .$$

תשובה סופית: המכונה מקבלת שפת המילים

$$\left\{a^n b^n \middle| n \ge 0\right\} .$$

דוגמה 1.11

μ	q	σ	ν
	q_0	a	aaabbbb
	q_1	a	aabbbb
a	q_1	a	abbbb
aa	q_1	a	bbbb
aaa	q_1	Ъ	bbb
aaab	q_1	Ъ	bb
aaabb	q_1	Ъ	b
aaabbb	q_1	Ъ	
aaabbbb	q_1	J	_
aaabbb	q_2	Ъ	
aaabb	q_3	Ъ	
aaab	q_3	Ъ	b
aaa	q_3	Ъ	bb
aa	q_3	a	bbb

	i	ı	ı
a	q_3	a	abbb
	q_3	a	aabbb
ـــا ـــا	q_3		aaabbb
	q_0	a	aabbb
	q_1	a	abbb
a	q_1	a	bbb
aa	q_1	Ъ	bb
aab	q_1	Ъ	b
aabb	q_1	Ъ	
aabbb	q_1		
aabb	q_2	Ъ	
aab	q_3	Ъ	
aa	q_3	Ъ	b_
a	q_3	a	bb
	q_3	a	abb
	q_3		aabb
	q_0	a	abb
	q_1	a	bb
a	q_1	Ъ	b
ab	q_1	Ъ	
abb	q_1		
ab	q_2	Ъ	
a	q_3	Ъ	
	q_3	a	b
	q_3		ab

	q_0	a	b
	q_1	Ъ	b
b	q_1		
	q_2	Ъ	
	q_3		
	q_0	L	

הגדרה 1.5: גרירה בצעד אחד

M מכונת של $M=(Q,\Sigma,\Gamma,\delta,q_0,\mathrm{acc},\mathrm{rej})$ מכונת של מכונת אוריינה ווהיינה $M=(Q,\Sigma,\Gamma,\delta,q_0,\mathrm{acc},\mathrm{rej})$ נסמן

$$c_1 \vdash_M c_2$$

. בודד בעד בים ל- עוברים ל- עוברים כשנמצאים ב- (c_2 אם בצעד בודד.

דוגמה 1.12 (המשך של דוגמה 1.6)

במכונת טיורינג שמתואר בתרשים דמטה (אשר שווה למ"ט בדוגמה 1.6 רק עם סימנוים שונים למצבים) מתקיים

$$\checkmark q_0 a \checkmark a \vdash_M \checkmark \checkmark q_1 \checkmark a$$

הגדרה 1.6: גרירה בכללי

Mשל פיגורציות ור ו- c_1 ו- היינה מכונת טיורינג, מכונת $M=(Q,\Sigma,\Gamma,\delta,q_0,\mathrm{acc},\mathrm{rej})$ נסמן

$$c_1 \vdash_M^* c_2$$

. יותר צעדים. c_1 ל- c_2 ב- c_2 אם ניתן לעבור מ- (c_2 או יותר את c_1 גורר את

דוגמה 1.13 (המשך של דוגמה 1.6)

במכונת טיורינג שמתואר בתרשים דמטה (אשר שווה למ"ט בדוגמה 1.6 רק עם סימנוים שונים למצבים) מתקיים

$$\checkmark q_0 a \checkmark a \vdash_M^* \checkmark \checkmark \checkmark q_4 a$$

2

$$\checkmark q_0 a \checkmark a \vdash_M \checkmark \checkmark q_1 \checkmark a$$

$$\vdash_{M} \checkmark \checkmark \checkmark q_1 a$$

$$\vdash_M \checkmark \checkmark \checkmark aq_2$$
 _

$$\vdash_M \checkmark \checkmark \checkmark q_4 a$$
.

הגדרה 1.7: קבלה ודחייה של מחרוזת

תהי

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \text{acc}, \text{rej})$$

מכונת טיורינג, ו-

$$w \in \Sigma^*$$

מחרוזת. אומרים כי

מקבלת את w אם M

$$q_0w \vdash_M^* u \ \mathrm{acc}\,\sigma\,\mathrm{v}$$

עבור $v,u\in\Gamma^*,\sigma\in\Gamma$ כלשהם,

דוחה את w אם M

$$q_0w\vdash_M^* u \text{ rej } \sigma \text{ v}$$

. עבור $v,u\in\Gamma^*,\sigma\in\Gamma$ כלשהם

הגדרה 1.8: הכרעה של שפה

תהי

$$M=(Q,\Sigma,\Gamma,\delta,q_0,\mathrm{acc}\,,\mathrm{rej})$$

מכונת טיורינג, ו-

$$L \subseteq \Sigma^*$$

שפה. אומרים כי M מכריעה את לכל $w \in \Sigma^*$ אם לכל את מכריעה מכריעה מ

- w את מקבלת את $M \Leftarrow w \in L$
 - w דוחה את את $M \Leftarrow w \not\in L$

הגדרה 1.9: קבלה של שפה

תהי

$$M=(Q,\Sigma,\Gamma,\delta,q_0,\mathrm{acc}\,,\,\mathrm{rej})$$

מכונת טיורינג, ו-

$$L \subseteq \Sigma^*$$

שפה. אומרים כי M מקבלת את אם לכל $w \in \Sigma^*$ מתקיים

- w אז M מקבלת את $w \in L$ אם $w \in L$
- w אז M אז $w \not\in L$ אם •

במקרה כזה נכתוב ש-

$$L(M) = L$$
.

טבלת המעברים 1.3

דוגמה 1.14

בנו מכונת טיורינג שמכריעה את השפה

$$L = \{w = \{a, b, c\}^* | \#a_w = \#b_w = \#c_w\}$$

מצב	סימון בסרט	מצב חדש	כתיבה	תזוזה	תנאי
q.S	σ	$q.\left(S\cup\left\{\sigma\right\}\right)$	√	R	$\sigma \notin S$
q.S	σ	q.S		R	$\sigma \in S$
$q/\{a,b,c\}$	a,b,c,\checkmark	back		L	
$q.\emptyset$		acc		R	
back	a,b,c,\checkmark	back		L	
back	_	$q.\emptyset$		R	

דוגמה 1.15

בנו מכונת טיורינג שמכריעה את השפה

$$\{x_1 \dots x_k \# y_1 \dots y_k \# z_1 \dots z_k \mid x_i, y_i, z_i \in \{0, \dots, 3\}, \forall i, x_i \ge z_i \ge y_i\}$$

L={X, X, # Y, Y # = = | X, 1/2, = , e {0,1,2,3} Vi X2=, 2 X;}

מצב	סימון בסרט	מצב חדש	כתיבה	תזוזה	תנאי
X * *	σ	$X\sigma*$	√	R	
X * *	✓	X * *	√	R	
$X\sigma*$	$0,1,\ldots,9,\checkmark$	$X\sigma*$		R	
$X\tau*$	#	$Y\tau *$		R	
$Y\tau*$	σ	$Y\tau\sigma$		R	
$Y\tau*$	✓	$Y\tau*$		R	
$Y\tau\sigma$	$0,1,\ldots,9,\checkmark$	$Y\tau\sigma$		R	
$Y au_1 au_2$	#	$Z au_1 au_2$		R	
$Z au_1 au_2$	√	$Z au_1 au_2$		R	
$Z au_1 au_2$	σ	back	✓	L	
Z * *	_	acc		R	
back	$0,1,\ldots,9,\checkmark$	back		L	
back	_	X * *		R	

1.4 חישוב פונקציות

דוגמה 1.16 כפל אונרי

בנו מכונת טיורינג אשר מקבלת את הקלט

 $1^{i} # 1^{j}$

ומחזירה את פלט

 $1^{i\cdot j}$.

- .2 כפול 2 כפול הוא לדוגמה, נניח שהקלט הוא \bullet הקלט הוא 11#11.
- נרצה להבדיל בין הקלט לבין הפלט. לכן בתחילת הריצה, נתקדם ימינה עד סוף הקלט ונוסיף שם את התו \$.

לאחר מכן נחזור לתחילת הקלט.

- .\$ על כל אות במילה השמאלית נעתיק את המילה הימינית לאחר סימן ה-
- לאחר מכן נשאיר רק את התווים שלאחר סימן ה \$. כלומר, נמחק את כל מה שאינו פלט.

μ	q	σ	ν
	q_0	1	1#11_
_11#11	q_1]
_11#11	q_1	\$]
_	q_1	u	11#11\$
_	q_2	1	1#11\$
	q_3	1	#11\$
1#	q_4	1	1\$
1 #√	q_5	1	\$

1 #√ 1\$	q_5]	J
1 #√ 1\$1	q_6]	J
1#	q_6	√	1\$1 _
1 #√	q_4	1	\$1 _
1#√√	q_5	\$	1 _
1 # √√\$1	q_5]	J
1 #√ √\$11	q_6]	J
1 #√	q_6	√	\$11_
1#√✓	q_4	\$	11_
1 #√	back	√	\$11_
_	back]	1#11\$11_
	q_2	1	#11\$11_
	q_3	#	11\$11_
#	q_4	1	1\$11_
# √	q_5	1	\$11_
_#√ 1\$11	q_5]	J
_#√ 1\$111	q_6]	J
#	q_6	√	1\$111_
_#√	q_4	1	\$111_
<i>_#√</i> √	q_5	\$	111_
_#√√ \$111	q_5]	J
_# √ \$1111	q_6]	J
_	q_4	√	\$1111
_ <i>#√ √</i>	q_4	\$	1111
_ <i>#√</i>	back	√ \$	1111

 back		#11\$1111
 q_2	#	11\$1111
 q_7	1	1\$1111
 q_7	\$	1111
 acc	1	111