Control adaptativo Aeronaves no tripuladas

Domínguez Alegre, Carlos F. Prof. Gomez Pérez, Ignacio

Septiembre, 2019

Introducción

Desarrollo del simulador

Modelización de la planta Síntesis controlador LQR Modificación de la planta

Mecanismos de adaptación

Adaptación mediante RLSE Adaptación mediante SPSA

Comparación de ambos métodos

Introducción

Introducción

Desarrollo del simulador Modelización de la planta Síntesis controlador LQR Modificación de la planta

Mecanismos de adaptación Adaptación mediante RLSE Adaptación mediante SPSA

Comparación de ambos métodos

Modelización

Modelización

Introducción

Desarrollo del simulador

Modelización de la planta Síntesis controlador LQR Modificación de la planta

Mecanismos de adaptación Adaptación mediante RLS

Adaptación mediante SPSA

Comparación de ambos métodos

Síntesis controlador LQR

- Controlador PID
- Estimación de los puntos de equilibrio
- Linealización de la planta mediante método mínimos cuadrados
- Síntesis de controlador LQR

$$x = \begin{bmatrix} TAS \\ w \\ \theta \\ a \end{bmatrix} \quad u = \begin{bmatrix} \delta_e \\ \delta_t \end{bmatrix} \qquad \qquad \frac{dx}{dt} = \mathbf{A}x + \mathbf{B}u$$

Introducción

Desarrollo del simulador

Modelización de la planta Síntesis controlador LQR Modificación de la planta

Mecanismos de adaptación Adaptación mediante RLSE Adaptación mediante SPSA

Comparación de ambos métodos

Modificación

Introducción

Desarrollo del simulador

Modelización de la planta Síntesis controlador LQR Modificación de la planta

Mecanismos de adaptación Adaptación mediante RLSE

Adaptación mediante SPSA

Comparación de ambos métodos

Adaptación RLSE

Adaptación RLSE

Desempeño RLSE offline

Desempeño RLSE online

Desempeño RLSE online

Introducción

Desarrollo del simulador

Modelización de la planta Síntesis controlador LQR Modificación de la planta

Mecanismos de adaptación

Adaptación mediante RLSE

Adaptación mediante SPSA

Comparación de ambos métodos

Adaptación SPSA

- ► SPSA : simultaneus perturbation stochastic approximation
- Aproximación del gradiente de J mediante perturbaciones aleatorias

$$J = \sum_{k=0}^{k-1} x_k' \cdot Q \cdot x_k + u_k' \cdot R \cdot u_k \qquad \qquad Q = \begin{bmatrix} 10 & 0 & 0 & 0 \\ 0 & 10 \cdot \theta_1 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 5 \cdot \theta_2 \end{bmatrix}$$

- \bullet $\theta_1 \rightarrow w \ y \ \theta_2 \rightarrow q$
- ▶ Se realizaron 10 experimentos con 2 iteraciones en cada uno

Adaptación SPSA

Adaptación SPSA

Comparación de los métodos

	RLSE	SPSA
Número de parámetros	\odot	\odot
Tiempo de adaptación	\odot	
Capacidad de adaptación	\odot	
Complejidad, coste computacional	\odot	\odot

- 1. Viabilidad de aplicación
- 2. Métodos estimación recursiva rápidos, computacionalmente costosos.
- 3. Métodos basados en ajuste de parámetros lentos, computacionalmente ligeros.
- 4. Perturbaciones de la planta necesarias pero no deseables, búsqueda de ley de activación.