

Esercizi per il corso di Probabilità e Statistica

Esercizi Soluzioni Riepilogo Voti

Soluzioni all'esercizio del 2022-03-29 creato per luigi.miazzo

Durante una sessione di un gioco da tavolo un giocatore deve fare un tiro salvezza con svantaggio, cioè lanciare due dadi da venti e tenere il valore più basso. Se tale valore è minore o uguale a 6 il giocatore cadrà addormentato e perderà un turno di gioco.

Quesiti e soluzioni

Quesito 1

Qual è la probabilità che il giocatore si addormenti?

Come suggerito si scriva prima lo spazio campionario relativo all'esercizio: gli elementi ω sono coppie del tipo (n_1,n_2) con $n_1,n_2\in\{1,\ldots,20\}$ cioè $\Omega=\{1,2,3,4,5,6,7,8,9,20\} imes \{1,2,3,4,5,6,7,8,9,20\}$. $\mathcal{A}=\mathcal{P}(\Omega)$.

Il giocatore si addormenta se si verifica l'evento E="il valore più basso tra n_1 e n_2 è minore o uguale di 6", ossia chiamiamo $E_i=\{n_i\leq 6\},\,i=1,2$ allora $E=E_1\cup E_2$.

Ricordiamo la seguente proprietà della funzione di probabilità:

 $P(E) = P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2).$

Assumiamo che il dado sia bilanciato: si ha $P(E_i)=0.3$. Per la probabilità $P(E_1\cap E_2)$ consideriamo il plot

e contiamo quanti elementi di Ω cadono nell'area data dall'intersezione dei due eventi.

- La risposta corretta è: 0.51
- La risposta inserita è: 36/400

Quesito 2

Il primo dato è stato lanciato...

e il giocatore ha ottenuto 18. Qual è la probabilità che il giocatore si addormenti?

 $n_1=18>6$ il giocatore si addormenta se con il secondo tiro non supera la soglia, per cui

- La risposta corretta è: 0.3
- La risposta inserita è: 6/20

Quesito 3

E se potesse ritirare?

Se il giocatore ottiene lo stesso valore su entrambi i dadi acquista il diritto di tirare nuovamente i dadi. Qual è la probabilità che ciò (ottenere lo stesso valore sui due dadi) avvenga?

L'evento in questione è $E = \{(n_1, n_2) \in \Omega : n_1 = n_2\}$. Si tratta di contare i punti sulla diagonale nel plot precedente. In alternativa si può pensare nel modo seguente: qualunque sia il risultato del primo dado c'è esattamente un solo risultato su 20 del secondo dado uguale ad esso, da cui la risposta.

- La risposta corretta è: 0.05
- La risposta inserita è: 20/400

2022-06-01	S
2022-05-31	Dur
2022-05-30	Q
2022-05-27	Qu
2022-05-26	Hin
2022-05-25	Cor
2022-05-24	II gi
2022-05-23	Ric
2022-05-20	Ass
2022-05-19	
2022-05-18	
2022-05-17	
2022-05-16	
2022-05-13	
2022-05-12	dado 2
2022-05-11	
2022-05-10	
2022-05-09	
2022-05-06	
2022-05-05	
2022-05-04	e co
2022-05-03	
2022-05-02	Qı
2022-04-29	II pi e il
2022-04-28	n_1
2022-04-27	
2022-04-26	Qı
2022-04-22	Es
2022-04-21	Se
2022-04-20	L'ev risp
2022-04-19	
2022-04-15	
2022-04-14	
2022-04-13	
2022-04-12	
2022-04-11	
2022-04-08	
2022-04-07	
2022-04-06	
2022-04-05	
2022-04-04	
2022-04-01	
2022-03-31	
2022-03-30	
2022-03-29	
2022-03-28	

2022-03-24