Llama.cpp GPU Acceleration

Johannes Gäßler

About Me

- Currently writing my master's thesis on experimental particle physics at KIT
- Additional bachelor's degree in informatics
- kafe2 (Karlsruhe Fit Environment 2) developer
- No prior experience with CUDA or language models

llama.cpp

 Open-source C/C++ program for LlaMA inference

- Wide support across hardware and OSs
- Very good CPU performance
- I'm working on CUDA support

Weight Quantization

- Original LlaMa weights are FP16
- Can be quantized to 4 bit ints with moderate quality loss
- int4 big model > FP16 small model

Initial CUDA Implementation

• Dequantize weights to FP16/FP32,

FP16			
int4	int4	int4	int4
int4	int4	int4	int4
int4	int4	int4	int4
int4	int4	int4	int4
int4	int4	int4	int4
int4	int4	int4	int4
int4	int4	int4	int4
int4	int4	int4	int4

then use cuBLAS GEMM

- Performance only good for large batches
- Small batches: slower than CPU

Initial CUDA Implementation

- Matrix mult. I/O vs. compute depends on shape
- 2x square matrix: $O(N^2)$ data, $O(N^3)$ compute
- Square matrix + vector: $O(N^2)$ data, $O(N^2)$ compute
- Prompt processing: compute bound
- Token generation: I/O bound

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Better CUDA Implementation

- Matrix vector multiplication + on-the-fly dequantization
- Per weight:
 36.5 bits read + 32 bits write => 4.5 bits read

Better CUDA Implementation

- Multi GPU: split weight matrices across GPUs by rows
- Small tensors on main GPU only
- KV cache parallelization not implemented

Current CUDA Implementation

- Don't dequantize matrix
- Instead quantize hidden state to 8 bit
- Use per-byte integer intrinsics (similar to CPU)

Current CUDA Implementation

- N blocks with 1 scale d and M values q_m each
- Dequantization: $a_{inm} = d_{in}^a q_{inm}^a$, $b_{nm} = d_n^b q_{nm}^b$

$$c_{i} = \sum_{n=1}^{N} \sum_{m=1}^{M} a_{inm} b_{nm} = \sum_{n=1}^{N} \sum_{m=1}^{M} d_{in}^{a} q_{inm}^{a} d_{n}^{b} q_{nm}^{b}$$

$$= \sum_{n=1}^{N} d_{in}^{a} d_{n}^{b} \sum_{m=1}^{M} q_{inm}^{a} q_{nm}^{b}.$$

Accessibility

- Open-source is a positive sum game
- Jevons Paradox: more efficiency => more use
- Main goal: reduce hardware requirements, get more users

Accessibility: Memory

- Move weights from RAM to VRAM
- Can use total RAM + VRAM to fit model
- Goal: 33b q4 with standard settings on 16 GB RAM + 8 GB VRAM

Accessibility: Quantization

- Hierachical k-quants by
 I. Kawrakow
- 1 6 bit scale per 16 values
- 2 16 bit scales per 256 values
- Lower size/quantization error at the cost of more memory accesses

Comparison to GPTQ

LLaMA vs. LLaMA 2

WIP: Quantized GEMM