Innovative non-conformal finite element methods for augmented surgery

Internship presentation

Author: LECOURTIER Frédérique

Supervisors: DUPREZ Michel, FRANCK Emmanuel, LLERAS Vanessa

Strasbourg University

August 25, 2023

Introduction

Presentation of the teams

MIMESIS

- → project-team Inria affiliated with MLMS ("Machine Learning, Modélisation et Simulation") and with the Inria Nancy Center.
- → Aim: to create real-time digital twins of an organ
- → Scientific challenges :
 - scientific computing
 - data assimilation
 - machine learning
 - control
- Main application domains:
 - surgical training
 - surgical guidance during complex interventions

Scientific context

Abstract: Mimesis propose a new fictitious domain finite element method, the ϕ -FEM Method, given by a level-set function without requiring a mesh fitting the boundary.

- → Fictitious domain methods allow to mesh complex geometries to ensure geometric quality (such as organs like the liver)
- → Cartesian grid adapted for neural networks
- → *Practical case:* Real-time simulation, form optimization

Objectives - Deliverables

Objective : Correct and certify the prediction of a Fourier Neural Operator (FNO) **Tools :**

- \rightarrow the ϕ -FEM method (to be adapted for our purpose)
- → the FNO implementation by Vincent Vigon with Tensorflow.

Deliverables:

- → a weekly tracking report (in French)
- → a github repository
- → a report of the internship
- → an online report generated with a tool called antora (made by a github CI)

Problem considered

Poisson problem with Dirichlet conditions:

Find $u: \Omega \to \mathbb{R}^d (d=1,2,3)$ such that

$$\begin{cases} -\Delta u = f, & \text{in } \Omega, \\ u = g, & \text{on } \partial \Omega, \end{cases}$$
 (P)

with Δ the Laplace operator, Ω a smooth bounded open set and $\partial\Omega$ its boundary. In this section, we defined by

$$||u_{ex} - u_{method}||_{0,\Omega}^{(rel)} = \frac{\int_{\Omega} (u_{ex} - u_{method})^2}{\int_{\Omega} u_{ex}^2}$$

the relative error between the exact solution u_{ex} and u_{method} a solution obtained by FEM or ϕ -FEM, a correction solver or the prediction of an neural network.

General methods and tools

φ-FEM method
Fourier Neural Operator (FNO)

General methods and tools

Standard FEM method

 ϕ -FEM method Fourier Neural Operator (FNO)

Presentation of standard FEM method

Variational Problem:

Find
$$u \in V$$
 such that $a(u, v) = I(v), \ \forall v \in V$

where V is a Hilbert space, α is a bilinear form and I is a linear form.

Approach Problem:

Find
$$u_h \in V_h$$
 such that $a(u_h, v_h) = I(v_h), \ \forall v_h \in V$

with u_h an approximate solution in V_h , a finite-dimensional space dependent on h such that $V_h \subset V$, $dimV_h = N_h < \infty$, $(\forall h > 0)$

As $u_h = \sum_{i=1}^{N_h} u_i \varphi_i$ with $(\varphi_1, \dots, \varphi_{N_h})$ a basis of V_h , finding an approximation of the PDE solution implies solving the following linear system:

$$AU = b$$

with

$$A = (a(\varphi_i, \varphi_j))_{1 \le i, j \le N_h}, \quad U = (u_i)_{1 \le i \le N_h} \quad \text{and} \quad b = (I(\varphi_j))_{1 \le j \le N_h}$$

 \rightarrow Construct a mesh of our Ω geometry with a family of elements (in 2D: triangle, rectangle; in 3D: tetrahedron, parallelepiped, prism) defined by

$$\mathcal{T}_h = \{K_1, \ldots, K_{N_e}\}$$

General methods and tools

(Importance of geometric quality)

$$V_h := P_{C,h}^k = \{v_h \in C^0(\bar{\Omega}), \forall K \in \mathcal{T}_h, v_{h|K} \in \mathbb{P}_k\}$$

where \mathbb{P}_k is the vector space of polynomials of total degree less than or equal to k.

General methods and tools

Standard FEM method

 ϕ -FEM method

Fourier Neural Operator (FNO)

Problem

We pose $u = \phi w + g$ such that

$$\begin{cases} -\Delta u = f, \text{ on } \Omega, \\ u = g, \text{ in } \Gamma, \end{cases}$$

where ϕ is the level-set function and Ω and Γ are given by :

$$\Omega = \{\phi < 0\} \quad \text{and} \quad \Gamma = \{\phi = 0\}.$$

The level-set function ϕ is supposed to be known on \mathbb{R}^d and sufficiently smooth. For instance, the signed distance to Γ is a good candidate

Fictitious domain

- $ightarrow \mathcal{O}$: fictitious domain such that $\Omega \subset \mathcal{O}$
- $\rightarrow \mathcal{T}_{h}^{\mathcal{O}}$: simple quasi-uniform mesh on \mathcal{O}
- $\Rightarrow \phi_h = I_{h,\mathcal{O}}^{(l)}(\phi) \in V_{h,\mathcal{O}}^{(l)} : \text{approximation of } \phi$ with $I_{h,\mathcal{O}}^{(l)}$ the standard Lagrange interpolation operator on

$$V_{h,\mathcal{O}}^{(I)} = \left\{ v_h \in H^1(\mathcal{O}) : v_{h|_T} \in \mathbb{P}_I(T) \ \forall T \in \mathcal{T}_h^{\mathcal{O}}
ight\}$$

- ightharpoonup $\Gamma_{\it h}=\{\phi_{\it h}=0\}$: approximate boundary of Γ
- $\rightarrow \mathcal{T}_h$: sub-mesh of $\mathcal{T}_h^{\mathcal{O}}$ defined by

$$\mathcal{T}_h = \left\{ T \in \mathcal{T}_h^{\mathcal{O}} : T \cap \{\phi_h < 0\} \neq \emptyset \right\}$$

 $ightharpoonup \Omega_{\it h}$: domain covered by the $\mathcal{T}_{\it h}$ mesh defined by

$$\Omega_h = \left(\cup_{T \in \mathcal{T}_h} T \right)^{\mathsf{O}}$$

 $(\partial \Omega_h \text{ its boundary})$

Facets and Cells sets

$$\mathcal{T}_{b}^{\Gamma} = \{ T \in \mathcal{T}_{b} : T \cap \Gamma_{b} \neq \emptyset \},$$

 $abla^{\mathcal{T}_h^\Gamma} \, o \, \Omega_h^\Gamma$: domain covered by the \mathcal{T}_h^Γ mesh, i.e.

$$\Omega_h^{\Gamma} = \left(\cup_{\mathbf{T} \in \mathcal{T}_h^{\Gamma}} \mathbf{T} \right)^{\mathbf{0}}$$

 $\rightarrow \mathcal{F}_h^{\Gamma}$: collects the interior facets of \mathcal{T}_h either cut by Γ_h or belonging to a cut mesh element, i.e.

$$\mathcal{F}_h^{\Gamma} = \{ E \text{ (an internal facet of } \mathcal{T}_h) \text{ such that } \\ \exists T \in \mathcal{T}_h : T \cap \Gamma_h \neq \emptyset \text{ and } E \in \partial T \}$$

Direct Method - Poisson problem

Approach Problem : Find $w_h \in V_h^{(k)}$ such that

$$a_h(w_h, v_h) = I_h(v_h) \quad \forall v_h \in V_h^{(k)}$$

where

$$a_h(w,v) = \int_{\Omega_h} \nabla(\phi_h w) \cdot \nabla(\phi_h v) - \int_{\partial \Omega_h} \frac{\partial}{\partial n} (\phi_h w) \phi_h v + G_h(w,v),$$

$$I_h(v) = \int_{\Omega} f \phi_h v + G_h^{rhs}(v)$$

and

$$V_h^{(k)} = \left\{ v_h \in H^1(\Omega_h) : v_{h|_T} \in \mathbb{P}_k(T), \ \forall T \in \mathcal{T}_h \right\}.$$

For the non homogeneous case, we replace

$$u = \phi w \rightarrow u = \phi w + g$$

by supposing that g is currently given over the entire Ω_h .

Stabilization terms

<u>1st term:</u> Ghost penality [Burman, 2010], ensure continuity of the solution by penalizing gradient jumps.

<u>2nd term</u>: require the solution to verify the strong form on Ω_h^{Γ} .

Purpose:

- → reduce the errors created by the "fictitious" boundary
- → ensure the correct condition number of the finite element matrix
- → permit to restore the coercivity of the bilinear scheme

Dual method - Poisson Problem

Problem: Find u on Ω_h and p on Ω_h^{Γ} such that

$$\int_{\Omega_h} \nabla u \nabla v - \int_{\partial \Omega_h} \frac{\partial u}{\partial n} v + \frac{\gamma}{h^2} \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} \left(u - \frac{1}{h} \phi p \right) \left(v - \frac{1}{h} \phi q \right)$$
$$+ G_h(u, v) = \int_{\Omega_h} f v + G_h^{rhs}(v), \ \forall v \text{ on } \Omega_h, \ q \text{ on } \Omega_h^{\Gamma}$$

with γ an other positive stabilization parameter and G_h and G_h^{rhs} the stabilization terms defined previously.

For the non homogeneous case, we replace

$$\int_{\tau} \left(u - \frac{1}{h} \phi p \right) \left(v - \frac{1}{h} \phi q \right) \quad \to \quad \int_{\tau} \left(u - \frac{1}{h} \phi p - g \right) \left(v - \frac{1}{h} \phi q \right)$$

by assuming g is defined on Ω_h^{Γ}

General methods and tools

Standard FEM method ϕ -FEM method Fourier Neural Operator (FNO)

Architecture of the FNO

Input *X* of shape (bs,ni,nj,nk) **Output** *Y* of shape (bs,ni,nj,1) with bs the batch size, ni and nj the grid resolution and nk the number of channels.

Important points

- → widely used in PDE solving and constitute an active field of research
- → FNO are Neural Operator networks: Unlike standard neural networks, which learn using inputs and outputs of fixed dimensions, neural operators learn operators, which are mappings between spaces of functions.
- → Mesh resolution independent : can be evaluated at any data resolution without the need for retraining

Objective

FNO Training:

Correction on the FNO predictions:

Correction

Problems considered Methods considered Numerical results

Correction

Problems considered

Methods considered
Numerical results

Trigonometric solution on a Square

→ Level-set function:

$$\phi(x, y) = x(1 - x)y(1 - y)$$

 \rightarrow Analytical solution : (Homogeneous if $\varphi = 0$)

$$u_{\mathrm{ex}}(\mathbf{x}, \mathbf{y}) = \mathbf{S} \times \sin(2\pi f \mathbf{x} + \varphi) \times \sin(2\pi f \mathbf{y} + \varphi)$$

→ Source term :

$$f(x,y) = 8\pi^2 S f^2 \sin(2\pi f x + \varphi) \sin(2\pi f y + \varphi)$$

- S = $0.5 \in [0,1]$: amplitude of the signal
- $f \in \mathbb{N}$: "frequency" of the signal
- $\varphi \in [0,1]$: phase at the origin

		f = 1	f = 2	f = 3	f = 4
Homogonoous	fem	2.61e-03	1.04e-02	2.34e-02	4.12e-02
Homogeneous	phifem	1.84e-03	1.44e-02	3.69e-02	6.84e-02
Non-homogeneous	fem	2.30e-03	9.53e-03	2.19e-02	3.88e-02
Non-nomogeneous	phifem	1.20e-04	5.74e-04	1.34e-03	2.39e-03

Unknown solution on a Circle

→ Level-set function :

$$\phi(x,y) = -1/8 + (x - 1/2)^2 + (y - 1/2)^2$$

→ Source term :

$$f(x,y) = exp\left(-\frac{(x-\mu_0)^2 + (y-\mu_1)^2}{2\sigma^2}\right)$$

- $\sigma \sim \mathcal{U}([0.1, 0.6])$
- $\mu_0, \mu_1 \sim \mathcal{U}([0.5 \sqrt{2}/4, 0.5 + \sqrt{2}/4])$

with the condition $\phi(\mu_0, \mu_1) < -0.05$

ightharpoonup a reference solution u_{ref} : over-refined \mathbb{P}^1 solution obtained with FEM

Correction

Problems considered

Methods considered

Numerical results

Correction by adding

We are given $\tilde{\phi}$ an "initial" solution to the problem under consideration.

We will consider

$$\tilde{u} = \tilde{\phi} + \tilde{c}$$

We want to find $\tilde{C}:\Omega\to\mathbb{R}^d$ solution to the problem

$$\begin{cases} -\Delta \tilde{u} = f, & \text{on } \Omega, \\ \tilde{u} = g, & \text{in } \Gamma. \end{cases}$$

with $\tilde{C} = \phi C$ for the ϕ -FEM method.

Rewriting the problem, we seek to find $\widetilde{C}:\Omega \to \mathbb{R}^d$ solution to the problem

$$\begin{cases} -\Delta \tilde{C} = \tilde{f}, & \text{on } \Omega, \\ \tilde{C} = 0, & \text{in } \Gamma. \end{cases}$$
 (C₊)

with
$$\tilde{f} = f + \Delta \tilde{\phi}$$
.

In practice, it may be useful to integrate by parts the term containing $\Delta \tilde{\phi}$.

Correction by multiplying

We will considering

$$\tilde{u} = \tilde{\phi}C$$

We want to find $C: \Omega \to \mathbb{R}^d$ solution to the problem

$$\begin{cases} -\Delta(\tilde{\phi}\mathcal{C}) = f, & \text{on } \Omega, \\ \mathcal{C} = 1, & \text{on } \Gamma. \end{cases}$$
 (\mathcal{C}_{\times})

In the non-homogeneous case, it is important to impose the boundary conditions either by the direct method or by the dual method.

Correction by multiplying (elevated problem)

We introduced an initial modified problem : Find $\hat{u}:\Omega\to\mathbb{R}^d$ such that

$$\begin{cases} -\Delta \hat{u} = f, & \text{in } \Omega, \\ \hat{u} = g + m, & \text{on } \Gamma, \end{cases}$$
 $(\mathcal{P}^{\mathcal{M}})$

with $\hat{u} = u + m$ and m a constant.

We then apply the multiplication correction on the elevated problem by considering

$$\hat{\phi} = \tilde{\phi} + m$$

and so we look for $\mathit{C}:\Omega \to \mathbb{R}^d$ solution to the problem

$$\begin{cases} -\Delta(\hat{\phi}\mathcal{C}) = f, & \text{in } \Omega, \\ \mathcal{C} = 1, & \text{on } \Gamma. \end{cases}$$
 ($\mathcal{C}_{\times}^{\mathcal{M}}$)

In the case of this correction, it is important to impose the boundary conditions either by the direct method, or by the dual method.

Theoretical results

We consider $\hat{u_{ex}} = u_{ex} + m$ the exact solution of the elevated problem ($\mathcal{P}^{\mathcal{M}}$) with u_{ex} the exact solution of the initial problem (\mathcal{P}).

Here, we are interested by ($\mathcal{C}_{\times}^{\mathcal{M}}$) with standard FEM on a disturbed solution defined by

$$\hat{\phi} = \tilde{\phi} + m = \hat{u_{ex}} + \epsilon P$$

with $\tilde{\phi} = u_{ex} + \epsilon P$.

- \rightarrow We have $||\hat{u}_{ex} \hat{u}_h||_0 \le ch^{k+1}||\hat{\phi}||_\infty |C|_{k+1}$
- → With *m* sufficiently large, the error no longer depends on the solution but only on the perturbation *P* :

$$\left| \left| \frac{\hat{u_{ex}}}{\hat{\phi}} - C_h \right| \right|_{0,\Omega} \le ch^{k+1} \epsilon \left| |P''| \right|_{0,\Omega}$$

When m tends to infinity, the solution obtained with multiplication correction on an elevated problem $(\mathcal{C}_{\times}^{\mathcal{M}})$ converges to the solution obtained with correction by adding (\mathcal{C}_{+}) .

Correction

Problems considered Methods considered

Numerical results

Correction on exact solution

We consider the trigonometric solution on the square ($n_{vert} = 100$) and

$$\tilde{\phi} = u_{ex} \in \mathbb{P}_{10}$$

Results with FEM:

Homogeneous case :

Non homogeneous case :

	FEM	Corr_add	Corr_add_IPP	Corr_mult		FEM	Corr_add	Corr_add_IPP	Corr_mult
f = 1	2.61e-03	5.16e-11	1.28e-13	2.48e-13	f = 1	2.30e-03	4.74e-11	1.10e-13	1.72e-13
f = 2	1.04e-02	1.43e-11	1.27e-13	2.49e-13	f = 2	9.53e-03	1.79e-11	1.15e-13	2.16e-13
f = 3	2.34e-02	8.07e-12	1.26e-13	2.49e-13	f = 3	2.19e-02	1.19e-11	1.17e-13	2.29e-13
f = 4	4.12e-02	1.28e-11	1.24e-13	2,49e-13	f = 4	3.88e-02	8.32e-12	1.18e-13	2.35e-13

Results with ϕ -FEM :

Homogeneous case :

Non homogeneous case:

	PhiFEM	Corr_add	Corr_add_IPP	Corr_mult
f = 1	1.84e-03	2.21e-11	2.21e-13	3.08e-13
f = 2	1.44e-02	8.80e-12	4.77e-12	4.80e-12
f = 3	3.69e-02	1.30e-10	1.29e-10	1.73e-10
f = 4	6.84e-02	1.27e-09	1.27e-09	2.02e-09

Remark: For the addition, we hope C=0 and for the multiplication C=1 (on Ω).

Correction on disturbed solution I

We consider the trigonometric solution on the square ($n_{vert} = 100$ and $\varphi = 0$) and

$$ilde{\phi} = u_{\mathsf{ex}} + \epsilon \mathsf{P} \in \mathbb{P}_{10}$$

where ϵ a real number and P the perturbation (same expression as $u_{\rm ex}$ with $({\it S}_{\it p},f_{\it p},\varphi_{\it p})$ parameters). Consider $\varphi_{\it p}=0$ so that ${\it P}=0$ on Γ and therefore $\tilde{\phi}=0$ on Γ . 1st result : ϵ convergence.

Correction by adding with FEM:

Correction on disturbed solution II

2nd result: Importance of perturbation form.

We fix $f_p = 2$ and $\epsilon = 0.001$.

Correction by multiplying on an elevated problem with FEM:

	m = 0	m = 1	m = 10	m = 100	m = 1000	m = 10000
f = 1	1.06e-04	9.60e-06	6.79e-06	6.64e-06	6.62e-06	6.62e-06
f = 2	5.32e-05	2.89e-05	6.82e-06	6.63e-06	6.62e-06	6.62e-06
f = 3	8.65e-04	1.70e-05	6.64e-06	6.60e-06	6.62e-06	6.62e-06
f = 4	9.46e-04	4 16e-05	7 02e-06	6 64e-06	6 62e-06	6.62e-06

Correction on disturbed solution III

3rd result : Convergence of the correction by multiplying on an elevated problem. Correction by multiplying on the elevated problem with FEM and ϕ -FEM :

Remark : For ϕ -FEM, we do not find the same type of results.

m = 1000 m = 10000

Correction on a FNO prediction I

We consider the unknown solution on the circle (with f Gaussian) and

$$\tilde{\phi} = u_{\text{FNO}} \in \mathbb{P}_2$$

where u_{FNO} is the FNO prediction ($n_{vert} = 32$). Training on 4000 epochs (bs=64,lr=0.01): Test sample ($n_{test} = 100$, $n_{vert} = 32$):

Correction on a FNO prediction II

We will apply the different correction methods on the FNO prediction on the test sample.

Remark: We should try to reduce the resolution for correction, maybe we will gain in the time-to-error ratio.

Correction with other networks I

Idea: using a neural network to predict a single solution at any point in the domain

input data = a collection of
$$n_{pts}$$
 2D points : $\{(x_i, y_i)\}_{i=1,...,n_{pts}}$ output = solution at each of these points : $\{u_i\}_{i=1,...,n_{pts}}$

with
$$u_i = \phi(x_i, y_i)w_i$$
 and $w_i = w_\theta(x_i, y_i)$.

We try with a Physics-Informed Neural Networks (PINNs).

model = MLP with 6-layer network

$$loss = mse(\Delta(\phi(x_i, y_i)w_{\theta,i}) + f_i)$$

Hidden Lavers

Training over 20000 epochs

Correction with other networks II

We consider the trigonometric solution on the square and $\tilde{\phi} = u_{PINNs} \in \mathbb{P}_{10}$ where u_{PINNs} is the PINNs prediction ($n_{vert} = 32$) and we have

$$||u_{ex} - \tilde{\phi}||_{0,\Omega}^{(rel)} = 1.93e - 3.$$

We will correct this solution with the correction by adding (with FEM and ϕ -FEM). Standard FEM method : ϕ -FEM method :

$$||u_{\it ex} - \tilde{\phi} {\it C}||_{0,\Omega}^{(\it rel)} = 1.13e - 4$$
 divided by 246.60 (FEM : 2.80e-2)

$$||u_{\rm ex} - \tilde{\phi} {\it C}||_{0,\Omega}^{({\it rel})} = 1.27 e - 4$$
 divided by 151.34 (ϕ -FEM : 1.92e-2)

Conclusion

Conclusion

- → obtain numerical results on analytical solutions ⇒ correction methods considered functional and theoretical results confirmed
- → correction methods on the FNO predictions not satisfactory
- → try to increase the degree of the solution :
 - Legendre and MLP not satisfactory
 - PINNs : reduction of the error made by conventional methods (FEM and ϕ -FEM) by a factor of around 100 (correction by addition).

Perspectives:

- → try adding PINNs to the output of the FNO (add the PINNs as a layer output that would replace the decomposition into a series of polynomials) ⇒ solution at any point in the domain
- → carry out some documentation work to find more suitable models than the FNO
- consider more complex and time-varying geometries (such as 3D organ geometries)

[1] Allal Bedlaoui. Les éléments finis : de la théorie à la pratique.

[2]

[51

191

- Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York, NY: Springer New York, 2011. ISBN: 978-0-387-70913-0 978-0-387-70914-7. DOI: 10.1007/978-0-387-70914-7.
- [3] Erik Burman. "Ghost penalty". In: Comptes Rendus. Mathématique 348.21 (2010). Number: 21-22, pp. 1217-1220. ISSN: 1778-3569. DOI: 10.1016/j.crma.2010.10.006.
- [4] Erik Burman et al. "CutFEM: Discretizing geometry and partial differential equations". In: International Journal for Numerical Methods in Engineering 104.7 (2015). Number: 7 eprint: https://onlinelibrary.wiley.com/doi/odf/10.1002/nme.4823. pp. 472-501. ISSN: 1097-0207. DOI: 10.1002/nme.4823.
 - Stéphane Cotin et al., &-FEM: an efficient simulation tool usine simple meshes for problems in structure mechanics and heat transfer.
- [7] Michel Duprez, Vanessa Lleras, and Alexei Lozinski. "A new φ-FEM approach for problems with natural boundary conditions". In: Numerical Methods for Partial Differential Equations 33.1 (2023). Number: 1_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/num.22878, pp. 281–303. ISSN: 1098-2426. DOI: 10.1002/num.22878.
- [8] Michel Duprez and Alexei Lozinski. "φ-FEM: A Finite Element Method on Domains Defined by Level-Sets". In: SIAM Journal on Numerical Analysis 58.2 (Jan. 2020). Number: 2 Publisher: Society for Industrial and Applied Mathematics, pp. 1008-1028. ISSN: 0036-1429. DOI: 10.1137/19M1248947.
 - Zongyi Li et al. Neural Operator: Graph Kernel Network for Partial Differential Equations. Mar. 6, 2020. DOI: 10.48550/arXiv.2003.03485. arXiv. 2003.03485[cs.math.stat].
- [10] Zongyi Li et al. Fourier Neural Operator for Parametric Partial Differential Equations. Issue: arXiv:2010.08895. May 16, 2021. DOI: 10.48550/arXiv.2010.08895. arXiv: 2010.08895 [cs. math].
- [11] Zongyi Li et al. Fourier Neural Operator with Learned Deformations for PDEs on General Geometries. July 11, 2022. DOI: 10.48550/arXiv.2207.05209. arXiv: 2207.05209 [cs.math].
- [12] Zongyi Li et al. Physics-Informed Neural Operator for Learning Partial Differential Equations. July 29, 2023. DOI: 10.48550/arXiv.2111.03794. arXiv. 2111.03794[cs.math].
- [13] Méthodes numériques pour les EDP.
- [14] Nicolas Moës and Ted Belytschko. "X-FEM, de nouvelles frontières pour les éléments finis". In: Revue Européenne des Éléments Finis 11.2 (Jan. 2002). Number: 2-4, pp. 305–318. ISSN: 1250-6559. DOI: 10.3166/reef.11.305–318.
- [15] Alfio Quarteroni et al. Méthodes numériques: algorithmes, analyse et applications. Ed. revue et augmentée. Milan: Springer, 2007, ISBN: 978-88-470-0495-5.

Description of the FNO architecture

- → perform a *P* transformation, to move to a space with more channels (to build a sufficiently rich representation of the data)
- → apply L Fourier layers defined by

$$\mathcal{H}'_{\theta}(\tilde{X}) = \sigma\left(\mathcal{C}'_{\theta}(\tilde{X}) + \mathcal{B}'_{\theta}(\tilde{X})\right), I = 1, \dots, L$$

with \tilde{X} the input of the current layer and

- σ an activation function (ReLU or GELU)
- $\mathcal{C}_{ heta}^{l}$: convolution sublayer (convolution performed by Fast Fourier Transform)
- $\mathcal{B}_{\theta}^{\prime}$: "bias-sublayer"
- → return to the target dimension by performing a *Q* transformation (in our case, the number of output channels is 1)

Fourier Layer Structure

 $\begin{array}{|c|c|}
\hline
C_{\theta} & F & \hat{W} & F^{-1}
\end{array}$

Convolution sublayer : $C_{\scriptscriptstyle H}^{\scriptscriptstyle I}({\it X})={\cal F}^{-1}({\cal F}({\it X})\cdot\hat{\it W})$

- $\rightarrow \hat{W}$: a trainable kernel
- \rightarrow \mathcal{F} : 2D Discrete Fourier Transform (DFT) defined by

$$\mathcal{F}(X)_{ijk} = \frac{1}{ni} \frac{1}{nj} \sum_{i'=0}^{ni-1} \sum_{j'=0}^{nj-1} X_{i'j'k} e^{-2\sqrt{-1}\pi \left(\frac{i'}{ni} + \frac{j'}{nj}\right)}$$

 \mathcal{F}^{-1} : its inverse.

 $ightarrow (\mathbf{Y}\cdot\hat{\mathbf{W}})_{ijk} = \sum_{k'} \mathbf{Y}_{ijk'}\hat{\mathbf{W}}_{ijk'} \quad \Rightarrow \quad \text{applied channel by channel}$

Bias-sublayer:
$$\mathcal{B}_{\theta}^{l}(X)_{ijk} = \sum_{k'} X_{ijk} W_{k'k} + B_k$$
 B_{θ}^{l}

- → 2D convolution with a kernel of size 1
- → allowing channels to be mixed via a kernel without allowing interaction between pixels.

Correction on a ϕ -FEM solution

We consider the trigonometric solution on the square and

$$ilde{\phi} = u_{\phi - \mathit{FEM}} \in \mathbb{P}_2$$

where $u_{\phi-\text{FFM}}$ is the solution obtained with ϕ -FEM ($n_{\text{vert}}=32$).

We will correct this solution with the different correction methods by using FEM.

We obtain the following correction terms (\tilde{C} for addition and C for multiplication):

Correction on a ϕ -FEM solution - Derivatives

We compute the first and second derivatives of $\tilde{\phi}$ according to x and y.

We can see that the second derivatives are quite far from the true derivatives.

