Задачи по Логическо Програмиране

13.11.2021

Задача 1:

Нека с е индивидна константа.

$$\varphi_1 := \forall x (p(x, x) \& r(x, x)),$$

$$\varphi_2 := \forall x \forall y ((p(x,y) \Rightarrow p(y,x)) \& (r(x,y) \Rightarrow r(y,x))),$$

$$\varphi_3 := \forall x \forall y \forall z ((p(x,y) \& p(y,z) \Rightarrow p(x,z)) \& (r(x,y) \& r(y,z) \Rightarrow r(x,z))),$$

$$\varphi_4 := \forall x ((r(x,c) \Rightarrow x = c) \& \exists y (p(x,y) \& \neg r(x,y))),$$

$$\varphi_5 := \forall x (\neg(x=c) \Rightarrow \exists y (r(x,y) \& \neg p(x,y))),$$

$$\varphi_6 := \forall x \forall y \forall z (p(x, y) \& p(y, z) \Rightarrow r(x, y) \lor r(x, z) \lor r(y, z)).$$

Да се докаже, че множеството $\Gamma_1 = \{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ е изпълнимо.

Решение:

Ще се отървем от квантора за съществуване, като $c\kappa y$ ленизираме φ_4 :

$$\varphi_4' \leadsto \forall x ((r(x,c) \Rightarrow x = c) \& (p(x,d) \& \neg r(x,d)))$$

1. Ще докажем, че $\Gamma_1 = \{ \varphi_1, \varphi_2, \varphi_3, \varphi_4 \}$ е изпълнимо.

 Γ_1 е изпълнимо, ако същестува структура M, такава че за всяко $\varphi \in \Gamma_1$ е вярно $M \models \varphi$.

За решение използваме насочения граф $\langle V, E \rangle$, където $V = \{a,b\}$ и $E = \{\langle a,b \rangle, \ \langle b,a \rangle, \ \langle a,a \rangle, \ \langle b,b \rangle\}.$

Решението е структурата $\mathbf{M} = (\mathbf{V}, \mathbf{p}, \mathbf{r})$, където:

$$\mathbf{p^{M}}(\mu_{1}, \mu_{2}) \longleftrightarrow \langle \mu_{1}, \mu_{2} \rangle \in \{\langle a, b \rangle, \langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle\}$$

$$\mathbf{r^{M}}(\mu_{1}, \mu_{2}) \longleftrightarrow \langle \mu_{1}, \mu_{2} \rangle \in \{\langle a, a \rangle, \langle b, b \rangle\}$$

$$\mathbf{c^{M}} = a$$

$$\mathbf{d^{M}} = a$$

Задача 2:

Нека S е множеството от всички безкрайни редици от естествени числа. Ако $n \in \mathbb{N}$ и $\alpha \in S$, то с α_n ще означаваме n-тия член на редицата α . Нека \mathcal{L} е предикатният език без формално равенство и с един триместен предикатен символ p. Да означим с \mathcal{A} структурата за \mathcal{L} , която е с универсум (носител) множеството $\mathbb{N} \cup S$ и за произволни $\alpha, \beta, l \in \mathbb{N} \cup S$

$$\langle \alpha, \beta, l \rangle \in p^{\mathcal{A}} \stackrel{\text{def}}{\longleftrightarrow} \alpha, \beta \in S, l \in \mathbb{N}$$
 и за всяко $n \in \mathbb{N}$ $\beta_{ln} = \alpha_n$.

- а) Да се докаже, че следните множества са определими в \mathcal{A} с формула от \mathcal{L} :
 - 1. S, $\{1\}$, $\{0\}$,
 - 2. $\{\alpha \mid \alpha \in S \text{ и всички членове на } \alpha \text{ са равни } \},$
 - 3. $\{\langle a, b, c \rangle \mid a, b, c \in \mathbb{N} \text{ и } c = ab \}.$
- б) Да се докаже, че множеството $\{3\}$ не е определимо в \mathcal{A} с формула от \mathcal{L} .

Решение:

$$a)$$
 $\varphi_{\mathbb{N}}[x]=\exists y\exists z(p(y,z,x))$ определя $\mathbb{N},$ $\varphi_{S}[x]=\neg\varphi_{\mathbb{N}}[x]$ определя $S,$

```
\begin{split} &\varphi_{eq}[x] = \varphi_S[x]\&\forall y(\varphi_{\mathbb{N}}[y] \Rightarrow p(x,x,y)) \\ &\text{ определя } \{\alpha \mid \alpha \in S \text{ и всички членове на } \alpha \text{ са равни } \}, \\ &\varphi_0[x] = \varphi_{\mathbb{N}}[x]\&\forall y(\varphi_S[y]\&\neg\varphi_{eq}[y] \Rightarrow \neg p(y,y,x)) \\ &\text{ определя } \{0\}, \\ &\varphi_1[x] = \varphi_{\mathbb{N}}[x]\&\forall y(\varphi_S[y] \Rightarrow p(y,y,x)) \text{ определя } \{1\}, \\ &\varphi_{\langle a,b,c\rangle}[x,y,z] = \varphi_{\mathbb{N}}[x]\&\varphi_{\mathbb{N}}[y]\&\varphi_{\mathbb{N}}[z]\&\forall u\forall v(p(u,v,x)\&p(u,v,y) \Leftrightarrow p(u,v,z)) \\ &\text{ определя } \{\langle a,b,c\rangle \mid a,b,c\in \mathbb{N} \text{ и } c = ab\}. \end{split}
```