玩具火车(train)

输入文件名	train.in		
输出文件名	train.out		
单测试点时限	1.0 秒		
内存限制	512 MB		
测试点数目/单测试点分值	10/10		
提交源程序文件名			
对于C语言	train.c		
对于 C++ 语言	train.cpp		
对于 Pascal 语言	train.pas		

● 题目描述

明明得到了一辆新的玩具火车。

这辆玩具火车行驶的地图上有许多的站台和连接这些站台的<u>有向轨道</u>。火车只能从站台出发,沿着有向轨道行驶,到达另外的站台。

开始时,明明可以任意指定一个站台作为火车的出发站台。火车每到达一个站台(包括出发站台),都有可能存在超过 1 条的轨道可以行驶。在这个时候,明明可以从这些轨道中任选一条作为火车接下来的行驶轨道。如果没有道路可选择,那么火车就将停止行驶。<u>站台与轨道没有经过次数的限制</u>。

好奇的明明发现:有的时候,明明能够选择合适的路线使得火车一直不停地跑下去。他对 此很感兴趣,因此想请你告诉他,火车究竟从哪些站点出发能够有机会不停地行驶。

一个具体的例子如下:火车行驶的地图上共有 5 个站点和 5 条有向轨道,如果我们将站台从 $1 \sim 5$ 编号,用 (a, b) 表示一条从站台 a 到站台 b 的有向轨道,那么这 5 条轨道分别为 (1, 2), (1, 3), (3, 4), (4, 5), (5, 3)。地图如下图所示:

如果火车:

- I. 从站台 1 出发, 使火车沿路线 $1\rightarrow 3\rightarrow 4\rightarrow 5\rightarrow 3\rightarrow 4\rightarrow 5$ ······行驶, 火车能不停地跑下去。
- Ⅱ. 从站台2出发,没有道路可供明明选择,因此火车无法行驶。
- III. 从站台 3 出发,使火车沿路线 $3 \rightarrow 4 \rightarrow 5 \rightarrow 3 \rightarrow 4 \rightarrow 5 \cdots$ 行驶,火车能不停地跑下去。
- IV. 从站台 4 出发,使火车沿路线 $4\rightarrow 5\rightarrow 3\rightarrow 4\rightarrow 5\rightarrow 3$ ······行驶,火车能不停地跑下去。
- V. 从站台 5 出发,使火车沿路线 5→3→4→5→3→4······行驶,火车能不停地跑下去。
- 因此,火车从站台1,3,4,5出发都有机会能不停地行驶。

●输入格式

输入文件第一行包含两个正整数 n 和 m,分别表示站台的数量与有向轨道的数量。为了方便,我们将站台从 $1 \le n$ 编号。

接下来 m 行,每行包含 2 个正整数 a, b, 表示有一条连接站台 a, b 的有向轨道,方向为 从站台 a 至站台 b。

●输出格式

输出文件包含n 行,每行仅包含1 个整数,且该整数要么为0,要么为1。若火车从站台i 出发,最终有机会能无限制地行驶下去,那么第i 行的整数为1,否则为0。

●样例输入与输出

样例 1 输入:

样例 1 输出:

```
1
0
1
1
```

样例 1: 见用户目录下 train1.in 与 train1.ans。

样例 2: 见用户目录下 train2.in 与 train2.ans。

样例 3: 见用户目录下 train3.in 与 train3.ans。

●数据范围与约定

所有测试点统一拥有如下限制:

- •对于任意站台a, b, 保证不存在超过1条从站台a至站台b的有向轨道。
- •可能会存在从站台a出发,回到站台a的有向轨道。
- 整个地图可能不连通。

除了以上已给出的限制外,单个测试点的具体数据范围及特殊说明见下表:

Problem 1.Train

测试点编号	n=	m=	特殊说明
1	8	20	
2	300	500	无
3	300	500	
4	2×10^{3}	2×10^{3}	保证地图连通,且地图仅包含1个简单环
5	2×10^{3}	5×10^3	无
6	2×10^{3}	5×10^{3}	
7	5×10^{4}	5×10^{4}	保证地图连通,且地图仅包含1个简单环
8	2×10^{5}	5×10^{5}	
9	5×10 ⁵	10 ⁶	无
10	10 ⁶	10^{6}	