## Clase 3

### Cálculo 3

#### Carlos Martínez Ranero

Departamento de Matemática Universidad de Concepción

### Recordatorio de la clase anterior.

- Puntos aislados y puntos de acumulación.
- Gráficas de funciones y conjuntos de nivel.
- · Límites.

## Plan de la clase de hoy.

- · Límites por trayectorias.
- Algebra de límites.
- · Teorema de acotamiento.

#### Límites.

Notemos que si  $B \subset A$  tiene a  $\vec{a}$  como punto de acumulación, entonces  $\lim_{\substack{\vec{X} \to \vec{a} \\ \vec{X} \in A}} f(\vec{X}) = \vec{L} \implies \lim_{\substack{\vec{X} \to \vec{a} \\ \vec{X} \in B}} f(\vec{X}) = \vec{L}$ . De esto conlcuimos que

#### **Teorema**

Sea  $A \subseteq \mathbb{R}^n$ ,  $\vec{a} \in A'$ . Si existen dos subconjuntos  $B_0$ ,  $B_1 \subset A$  como punto de acumulación, tales que

$$\lim_{\substack{\vec{X} \to \vec{a} \\ \vec{X} \in B_0}} f(\vec{X}) \neq \lim_{\substack{\vec{X} \to \vec{a} \\ \vec{X} \in B_1}} f(\vec{X}),$$

entonces el limite no existe.

### Ejemplo 1

Sea  $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$  la función definida por

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}.$$

Demostrar que

$$\lim_{(x,y)\to(0,0)}f(x,y)$$

no existe.

#### Solución:

Por un lado, notemos que

• 
$$\lim_{\substack{x \to 0 \ y=0}} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{\substack{x \to 0}} \frac{x^2}{x^2} = 1.$$

· Por otro lado, tenemos que

• 
$$\lim_{\substack{y \to 0 \ x^2 + y^2}} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{\substack{y \to 0}} \frac{-y^2}{y^2} = -1.$$

- Como los límites por trayectorias son distintos el límite no existe.
- Es importante notar que (0,0) es un punto de acumulación de los conjuntos A = {(x,0) : x ∈ R} y B = {(0,y) : y ∈ R}.

5



### Ejemplo 2

Sea  $f: \mathbb{R}^2 \setminus \{(1,2)\} \to \mathbb{R}$  la función definida como

$$f(x,y) = \frac{xy-2x-y+2}{(x-1)^2+(y-2)^2}.$$

Demostrar que

$$\lim_{(x,y)\to(1,2)}f(x,y)$$

no existe.

- Notemos que
- $\lim_{\substack{x \to 1 \\ y=2}} \frac{xy-2x-y+2}{(x-1)^2+(y-2)^2} = \lim_{x \to 1} \frac{2x-2x-2+2}{(x-1)^2} = 0.$
- $\lim_{\substack{y \to 2 \\ x=1}} \frac{xy-2x-y+2}{(x-1)^2+(y-2)^2} = \lim_{\substack{y \to 2}} \frac{y-2-y+2}{(y-2)^2} = 0.$
- Consideremos una recta arbitraria con pendiente m que pase por (1, 2), es decir, y 2 = m(x 1)
- $\lim_{\substack{(x,y)\to(1,2)\\y-2=m(x-1)}} \frac{(x-1)(y-2)}{(x-1)^2+(y-2)^2} = \lim_{x\to 1} \frac{m(x-1)^2}{(x-1)^2+m^2(x-1)^2} = \lim_{x\to 1} \frac{m}{1+m^2}.$
- Por ejemplo tomando m = 1 obtenemos límite igual a  $\frac{1}{2}$ .
- Por lo tanto el límite no existe. Notemos que el punto (1, 2) es un punto de acumulación de las rectas que consideramos.



### **Ejemplo 3**

Sea  $f: \mathbb{R}^2 \to \mathbb{R}$  la función definida como

$$f(x,y) = \begin{cases} 1 & 0 < y < x^2 \\ 0 & en otro caso \end{cases}$$

Encontrar  $\lim_{(x,y)\to(a,b)} f(x,y)$  para

- 1. (a,b) = (0,1)
- 2. (a, b) = (1, 1)
- 3. (a,b) = (0,0).

- $\lim_{(x,y)\to(0,1)} f(x,y) = 0$ , ya que la función es cero cerca del punto.
- $\lim_{\substack{(x,y)\to(1,1)\\x>0}} f(x,y) = 1 \text{ y } \lim_{\substack{(x,y)\to(1,1)\\x<0}} f(x,y) = 0.$

• 
$$\lim_{\substack{(x,y)\to(0,0)\\y=mx}} f(x,y) = 0 \text{ y } \lim_{\substack{(x,y)\to(0,0)\\y=\frac{x^2}{2}}} f(x,y) = 1.$$

#### Limites.

Observemos que la definición de limite es identica a la definición en una variable. Por lo tanto, se siguen satisfaciendo las reglas básicas de los limites.

## Teorema (Álgebra de Límites)

Sea  $A \subseteq \mathbb{R}^n$ ,  $\vec{a} \in A'$ , y  $f,g: A \to \mathbb{R}$ . Si  $\lim_{\vec{x} \to \vec{a}} f(\vec{x}) = L$ , y  $\lim_{\vec{x} \to \vec{a}} \vec{g}(\vec{x}) = M$  entonces:

- 1.  $\lim_{\vec{x} \to \vec{a}} [f(\vec{x}) + g(\vec{x})] = L + M$ ,
- 2.  $\lim_{\vec{x}\to\vec{a}}[f(\vec{x})g(\vec{x})] = LM,$
- 3.  $\lim_{\vec{x} \to \vec{q}} \left[ \frac{f(\vec{x})}{g(\vec{x})} \right] = \frac{L}{M}$ , en caso  $M \neq 0$ .

#### Existencia de Límites.

### **Teorema (Acotamiento)**

Sea 
$$A \subseteq \mathbb{R}^n$$
,  $\vec{a} \in A'$  y  $f : A \to \mathbb{R}$ . Si  $|f(\vec{x}) - L| \le h(\vec{x})$ , y  $\lim_{\vec{x} \to \vec{a}} h(\vec{x}) = 0$ , entonces  $\lim_{\vec{x} \to \vec{a}} f(\vec{x}) = L$ .

### **Ejemplo 4**

Demostrar que

$$\lim_{(x,y)\to(0,0)}x\cos\left(\frac{1}{x^2+y^2}\right)$$

existe.

- Primero observemos que  $\left|\cos\left(\frac{1}{x^2+y^2}\right)\right| \le 1$  y por lo tanto  $\left|x\cos\left(\frac{1}{x^2+y^2}\right)\right| \le |x|$ .
- Como  $\lim_{x\to 0} |x| = 0$  se sigue del teorema del acotamiento que  $\lim_{(x,y)\to(0,0)} x\cos\left(\frac{1}{x^2+y^2}\right) = 0$ .

### **Ejemplo 5**

Demostrar que

$$\lim_{(x,y)\to(1,0)} \frac{(x-1)^2 \ln x}{(x-1)^2 + y^2}$$

existe.

- Primero observemos que  $\lim_{\substack{y \to 0 \\ x=1}} \frac{(x-1)^2 \ln x}{(x-1)^2 + y^2} = 0$
- Notemos que  $\left| \frac{(x-1)^2 \ln x}{(x-1)^2 + y^2} \right| \le \left| \frac{(x-1)^2 \ln x}{(x-1)^2} \right| \le |\ln x|$
- Utilizando  $\lim_{x \to 1} |\ln x| = 0$ . Se sigue del teorema del acotamiento que  $\lim_{(x,y)\to(1,0)} \frac{(x-1)^2 \ln x}{(x-1)^2+y^2} = 0$ .

### **Ejemplo 6**

Demostrar que

$$\lim_{(x,y)\to(0,0)} xy \ln(x^2 + y^2)$$

existe.

- Primero observemos que  $\lim_{\substack{x \to 0 \\ y=0}} xy \ln(x^2 + y^2) = 0$
- Utilizando coordenadas polares  $x = r \cos \theta$  y  $y = r \sin \theta$  tenemos que

$$\lim_{(x,y)\to(0,0)} xy \ln(x^2 + y^2) = \lim_{r\to 0} r^2 \cos\theta \sin\theta \ln(r^2)$$

- Acotando se tiene que  $|r^2 \cos \theta \sin \theta \ln(r^2)| \le r^2 \ln r^2$ . Utilizando L'Hospital sabemos que  $\lim_{r \to 0} r^2 \ln r^2 = 0$ .
- Se sigue del teorema del acotamiento que  $\lim_{(x,y)\to(0,0)} xy \ln(x^2 + y^2) = 0.$