

日本国特許庁
JAPAN PATENT OFFICE

17.07.03

RECD 05 SEP 2003

WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日 Date of Application: 2003年 7月17日

出願番号 Application Number: 特願2003-198394

[ST. 10/C]: [JP 2003-198394]

出願人 Applicant(s): 本田技研工業株式会社

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年 8月22日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

Best Available Copy

【書類名】 特許願

【整理番号】 H1022048J2

【提出日】 平成15年 7月17日

【あて先】 特許庁長官 殿

【国際特許分類】 B21C 23/00

【発明者】

【住所又は居所】 埼玉県狭山市狭山1丁目10番地1 ホンダエンジニアリング株式会社内

【氏名】 船木 光弘

【発明者】

【住所又は居所】 埼玉県狭山市狭山1丁目10番地1 ホンダエンジニアリング株式会社内

【氏名】 馬場 大樹

【発明者】

【住所又は居所】 埼玉県狭山市狭山1丁目10番地1 ホンダエンジニアリング株式会社内

【氏名】 大山 真哉

【発明者】

【住所又は居所】 埼玉県狭山市狭山1丁目10番地1 ホンダエンジニアリング株式会社内

【氏名】 堀向 俊之

【特許出願人】

【識別番号】 000005326

【氏名又は名称】 本田技研工業株式会社

【代理人】

【識別番号】 100085257

【弁理士】

【氏名又は名称】 小山 有

【選任した代理人】

【識別番号】 100103126

【弁理士】

【氏名又は名称】 片岡 修

【先の出願に基づく優先権主張】

【出願番号】 特願2002-210153

【出願日】 平成14年 7月18日

【手数料の表示】

【予納台帳番号】 038807

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9722915

【包括委任状番号】 9304817

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 銅合金素材の製造方法

【特許請求の範囲】

【請求項 1】 室温で固溶しないか殆んど固溶しない第2の元素を母材金属(Cu)に固溶させ、この素材に200%以上の伸びに相当する歪を与えて結晶の微細化を図るとともに、この歪を与えるのと同時またはその後に時効処理を施して結晶粒子間に前記第2の元素が析出するのを助長せしめることを特徴とする銅合金素材の製造方法。

【請求項 2】 請求項1に記載の銅合金素材の製造方法において、前記第2の元素はCr(クロム)、ジルコニウム(Zr)、ベリリウム(Be)、チタン(Ti)、ホウ素(B)のうちの何れかであることを特徴とする銅合金素材の製造方法。

【請求項 3】 請求項1または請求項2に記載の銅合金素材の製造方法において、前記素材に歪を与える手段は、押し出し、引き抜き、せん断、圧延または鍛造のうちの何れかであることを特徴とする銅合金素材の製造方法。

【請求項 4】 請求項3に記載の銅合金素材の製造方法において、前記押し出しの条件は側方押し出しとし、金型温度は400～500℃、押し出し速度は0.5～2.0mm/secとすることを特徴とする銅合金素材の製造方法。

【請求項 5】 請求項1乃至請求項4に記載の銅合金素材の製造方法において、前記素材に歪を与える前に予め素材に時効処理を施しておくことを特徴とする銅合金素材の製造方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、溶接の電極材料や電気自動車のコネクタの材料等に好適する銅合金の製造方法に関する。

【0002】

【従来の技術】

自動車のEV(電気自動車)化に伴い、ハーネス、ワイヤーの接続部品である

コネクタの使用量が増加傾向にある。またEV化では電子制御技術で安全性、燃費を確保することも目的に挙げられる。

自動車に組み込まれるコネクタは高温、振動という過激な環境下で使用されるため、接続信頼性、接触安定性が求められる。またEV化が進むにつれてエネルギー損失が少ない、つまり高導電率な銅系ばね材料が望まれている。

また、溶接の電極材料に関しても機械的強度、熱的特性及び電気的特性の全てにおいて所定値以上の特性が要求される。

【0003】

金属材料の機械的強度を向上せしめる手段として結晶組織の微細化を図ることが、ホール・ペッチの法則として知られている。

例えば、金属や合金材料を変形すると、加工硬化によって材料強度が上昇する。これは加工（塑性変形）によって、材料中に種々の欠陥（点欠陥、転位、積層欠陥など）が蓄積し、これら欠陥の相互作用の結果、新しい欠陥の導入・移動が困難になり、外力に対する抵抗を持つことになるからと理解されている。

【0004】

金属材料に塑性変形（歪）を与えるには、従来から、押し出し、引き抜き、せん断、圧延、鍛造などが行われている。

具体的には、材料に高圧をかけながらねじるHPT (High Pressure Torsion) 法、括れのついたパイプの中を繰り返し通すCEC (Cyclic Extrusion Compression) 法、圧延で薄くなった金属板を切断して重ね合わせ繰り返し圧延するARB (Accumulative Roll Bonding) 法が提案され、特にアルミニウム合金に対しての微細化の具体的方法として、特許文献1、特許文献2、特許文献3、特許文献4などに開示される材料の断面減少を伴わない側方押し出しで、せん断変形を与えるECAE法が提案されている。

【0005】

一方、銅合金については特許文献5、特許文献6などに開示される方法が提案されている。この先行技術は銅合金のうちでも、水栓金具などの材料として使用される黄銅 (Cu-Zn) の特性（切削性と脱亜鉛腐食）を改善するために、熱間押し出しによって動的再結晶を起こさせ、結晶の微細化と特定の結晶組織割合

(α 相、 β 相、 γ 相の割合)が得られるようにしたものである。

【0006】

また、クロム(Cr)、ジルコニウム(Zr)、ベリリウム(Be)、ホウ素(B)、チタン(Ti)などの室温で固溶しないか殆んど固溶しない元素を添加した時効硬化型の銅合金に対して所定の特性を引き出すには、先ず、溶体化処理によって、前記元素を高温で十分に固溶させた後、急冷して過飽和状態とし、この後所定の温度で時効処理することで過飽和状態となっていた添加元素を析出せしめるようにしている。

【0007】

【特許文献】

特許文献1：特開平9-137244号公報

特許文献2：特開平10-258334号公報

特許文献3：特開平11-114618号公報

特許文献4：特開2000-271621号公報

特許文献5：特開平11-140568号公報

特許文献6：特開2000-355746号公報

【0008】

【発明が解決しようとする課題】

上述したアルミニウム合金や銅合金に対する加工硬化或いは時効処理をそのままクロム(Cr)、ジルコニウム(Zr)、ベリリウム(Be)、チタン(Ti)或いはホウ素(B)など添加した時効硬化型の銅合金に対して適用しても、機械的強度と熱的特性及び電気的特性の全てを両立させることができない。

【0009】

即ち、例えば電極材料として要求される熱的特性及び電気的特性を銅合金に発現せしめるには、固溶している添加元素をできるだけ多量に析出する必要がある。そして、多量に析出せしめるには時効温度を高める必要があるが、温度を高めると粒成長が進み機械的特性が低下してしまう。即ち、機械的強度と熱的・電気的特性とはトレードオフの関係にある。

【0010】

【課題を解決するための手段】

上記課題を解決するため、本発明に係る銅合金素材の製造方法は、先ず、溶体化処理によって、母材金属（Cu）にCr（クロム）、ジルコニウム（Zr）、ベリリウム（Be）、チタン（Ti）、ホウ素（B）等の固溶しにくい第2の元素を固溶させ、この後必要に応じて時効処理を施す。歪を与える前の素材としては、溶体化処理したままのものでも所望する性能は得られるが、溶体化処理後に時効を施し、結晶粒子間に第2の元素が析出しているものがより好ましい。

そして、上記の素材に200%以上、好ましくは220%の伸びに相当する歪を与えて結晶の微細化（平均結晶粒径20μm以下）を図るとともに、この歪を与えるのと同時またはその後に時効処理を施して結晶粒子間に前記第2の元素が析出するのを助長せしめる。

【0011】

上記の方法により、スポット溶接、アーク溶接、プラズマ溶接などの電極材料或いは電気自動車に組み込まれるコネクタとして好ましい特性を有する銅合金が得られる。好適な特性としては硬度が30（HRB）以上好ましくは40（HRB）以上、導電率が85（IACS%）以上好ましくは90（IACS%）以上、熱伝導率が350（W/（m・K））以上好ましくは360（W/（m・K））以上である。

硬度が30（HRB）以上であると、電極材料の先端が変形して発熱してしまうことが防止でき、導電率が85（IACS%）以上であると、鋼板と反応してくっついてしまうことを防止でき、熱伝導率が350（W/（m・K））以上であると冷却効率が高まり溶接時の電極材料の溶着を防止できる。

【0012】

前記素材に歪を与える手段としては、押出し、引き抜き、せん断、圧延または鍛造などが考えられる。特に側方押出し場合には、素材温度を400～1000℃、金型温度を400～500℃、押出し速度を0.5～2.0mm/secとすることで、同時に時効処理を施すことも可能になる。

【0013】

【発明の実施の形態】

以下に本発明の実施の形態を添付図面に基づいて説明する。図1は本発明に係る銅合金を得る工程を説明した図であり、先ず、母材(Cu)にCr:0.1~1.4wt%溶融し、これを急冷してCuにCrが過飽和に固溶した素材を得る。次いでこの素材に200%以上の伸びに相当する歪を与える。尚、素材としては溶体化処理の後に時効処理がなされているものが好ましい。

添加元素がZrの場合は、0.15~0.5wt%、Beの場合は、0.1~3.0wt%、Tiの場合は0.1~6.0wt%、Bの場合は0.01~0.5wt%、とする。

【0014】

図2はCu管を用いて歪を与える金型を示し、Cu管に上記混合物を充填し、金型温度を400~500°Cとし、押し出し速度を約1mm/secとして、4回繰り返して押し出す(EACE処理)。このようにCrが過飽和に固溶した銅合金素材に歪を与える。この操作で、結晶粒径は200μmが20μm以下となる。

【0015】

ここで、 Δe ：歪量、 ψ ：接合内角の1/2、ERR：加工前後の面積比、 A_0 ：加工前の断面積、 A ：加工後の断面積、EAR：加工前後の相当断面積減少率、EE：相当歪(伸び)とすると、以下の関係が成立する。

$$\Delta e = 2/\sqrt{3} \cot \psi$$

$$ERR = A_0/A = \exp(\Delta e)$$

$$EAR = (1 - 1/ERR) \times 100$$

$$EE = (ERR - 1) \times 100$$

【0016】

上記の側方押し出し(EACE処理)によって結晶組織が微細化する。そして押し出し条件が時効処理と重なるため、微細化と同時に第2元素の析出も助長される。

このEACE処理によって得られた銅合金の結晶組織を図3(a)の顕微鏡写真に示す。またEACE処理前の結晶組織を同図(b)の顕微鏡写真に示す。これら顕微鏡写真から、EACE処理によって微細な結晶粒子間に添加元素が析出

(写真の黒い点) していることが分る。

【0017】

図4はE A C E処理の際の金型温度と硬度との関係を示すグラフ、図5は金型温度と導電率との関係を示すグラフ、図6は金型温度と熱伝導率との関係を示すグラフであり、これらのグラフから本発明にかかる方法によって得られた銅合金は、溶接チップなどの電極材料として要求される特性、即ち、硬度30 (H R B) 以上、導電率85 (I A C S %) 以上、熱伝導率350 (W/ (m · K)) 以上であることが分る。

【0018】

即ち、図4～6からは、E A C E処理を施していない素材（溶体化処理+時効処理）は硬度は高いが、導電率と熱伝導率に劣り、溶体化処理のみを施した素材にE A C E処理を施した素材は硬度は低くなるものの、導電率と熱伝導率に優れ、更に溶体化処理後に時効処理を施した素材にE A C E処理を施した素材は、硬度、導電率、熱伝導率の全てに優れることが分る。

【0019】

従来のように単に時効処理を行っていたものより、写真からも明らかのように、歪を与えて時効すると、第2の元素が成分中のC、O、B、N等の不純物と反応し、炭化物、酸化物、硼化物、窒化物といった形で析出する。時効析出物が従来より増すことで、成分中の銅以外の元素が減少し、マトリックスは純銅に近い成分となり上記の特性が向上すると考えられる。同様の理由で、硬度が低下する現象も理解できる。

【0020】

図7は本発明に係る方法によって得られた銅合金と従来の銅合金の溶接性をスパッタ発生、張り付きの有無で比較したグラフであり、本発明にかかる銅合金はアルミナ分散銅および時効処理前の銅合金に比較して、適正な電流条件は同等であり、また張り付きが生じない。

【0021】

図8は本発明に係る銅合金と従来の銅合金の溶接性を連続打点数で比較したグラフであり、本発明にかかる銅合金を溶接チップとした場合には、1475打点

が可能であった。

【0022】

次に、添加元素としてチタン (Ti) を選定し、上記と同様の方法で銅合金を得た。得られた結果を図9乃至図12に示す。

図9はTi添加量と導電率の関係を示すグラフであり、元々Tiの最大固溶度は8wt%程度とあまり大きくないが、図9から時効処理しても約0.5wt%は固溶状態として残っている。この固溶しているTiが銅合金の導電率を低下させている原因と考えられる。

【0023】

図10は、銅合金を470°Cで2時間時効処理した後に、強加工 (200%の伸びに相当する歪を付与) した銅合金と時効処理しただけの銅合金の導電率を示すグラフである。このグラフから、強加工した銅合金の導電率が大幅に向上去ることが分る。この原因は、強加工によって固溶していたTiが析出したためと考えられる。

【0024】

図11は、強加工した銅合金と時効処理しただけの銅合金の硬度を比較したグラフである。このグラフから、強加工した銅合金の硬度は時効処理しただけの銅合金の硬度よりも低くなっている。これは、固溶強化に寄与していたTiが強加工によって析出したためと考えられる。

【0025】

図12は、硬度、導電率と強加工の温度との関係を示したグラフである。このグラフから、強加工しない場合には導電率に劣り、強加工の温度を上げるに従つて硬度は低下するが導電率は向上することが分る。この原因も上記したように固溶強化に寄与していたTiが強加工によって析出したためと考えられる。

【0026】

このように、時効処理では析出せしめることができなかった固溶状態のTiを強加工することを組み合わせることで、固溶しているTiを銅マトリクスから析出せしめることができ、しかも強加工の度合いを制御することで析出するTiの量を制御することができるので、目的に合致した特性の銅合金を作り出すことが

できる。

【0027】

次に、添加元素としてホウ素（B）を選定し、各種方法で銅合金を製造した。得られた銅合金のホウ素（TiB）と導電率の関係を図13に示す。ここで、銅合金を得る方法として、①溶体化処理した溶製材を調製、②銅に化合物（セラミック）としてTiB₂粉末を添加、③銅にTi粉末とB粉末を単独で添加する方法を採用した。

図13から、製法として溶製材を選定した場合が最も導電率が高いことが判明した。尚、何れの製法でもTiBの添加割合の増加に伴って導電率は低下し、また強加工を行うことで導電率は向上する。

【0028】

【発明の効果】

以上に説明したように本発明に係る銅合金の製造方法によれば、銅合金の結晶組織を微細した上で、結晶粒子間に添加元素を多量に析出せしめることができるため、従来トレードオフの関係にあった機械的強度と熱的・電気的特性を両立させることができる。

特に、溶接チップなどの電極材料として要求される特性、具体的には硬度30 (H R B) 以上、導電率85 (I A C S %) 以上、熱伝導率350 (W / (m · K)) 以上の銅合金を得ることができる。

また、電気自動車のコネクタなどの部品としての特性に優れた銅合金をえることができる。

【図面の簡単な説明】

【図1】

本発明に係る銅合金の製造方法を説明した図

【図2】

E A C E 処理に用いる金型を説明した図

【図3】

- (a) は本発明に係る製造方法で得られた銅合金の結晶組織を示す顕微鏡写真
- (b) はE A C E 処理前の結晶組織を示す顕微鏡写真

【図4】

金型温度と硬度との関係を示すグラフ

【図5】

金型温度と導電率との関係を示すグラフ

【図6】

金型温度と熱伝導率との関係を示すグラフ

【図7】

本発明に係る製造方法で得られた銅合金と従来の銅合金の溶接性をスパッタ発生、張り付きの有無で比較したグラフ

【図8】

本発明に係る製造方法で得られた銅合金と従来の銅合金の溶接性を連続打点数で比較したグラフ

【図9】

T_i 添加量と導電率の関係を示すグラフ

【図10】

強加工した銅合金と時効処理しただけの銅合金の導電率を示すグラフ

【図11】

強加工した銅合金と時効処理しただけの銅合金の硬度を比較したグラフ

【図12】

硬度、導電率と強加工の温度との関係を示したグラフ

【図13】

T_i B の添加方法と導電率の関係を示すグラフ

【書類名】

図面

【図1】

【図2】

【図3】

(b)

(a)

【図4】

【図 5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

TiBの添加方法の違いによる導電率変化

【書類名】 要約書

【課題】 機械的強度と熱的・電気的特性に優れた特性を銅合金に付与する方法を提供する。

【解決手段】 溶体化処理によって、母材金属（Cu）にCr（クロム）、ジルコニウム（Zr）、ベリリウム（Be）、チタン（Ti）、ホウ素（B）等の固溶しにくい第2の元素を固溶させた後急冷して過飽和状態の素材を得る。この後必要に応じて時効処理を施す。そして、この素材に200%以上、好ましくは220%の伸びに相当する歪を与えて結晶の微細化（平均結晶粒径20μm以下）を図るとともに、この歪を与えるのと同時に時効処理を施して結晶粒子間に前記第2の元素が析出するのを助長せしめる。

【選択図】 図1

認定・付加情報

特許出願の番号	特願 2003-198394
受付番号	50301186378
書類名	特許願
担当官	第五担当上席 0094
作成日	平成15年 8月11日

<認定情報・付加情報>

【特許出願人】

【識別番号】	000005326
【住所又は居所】	東京都港区南青山二丁目1番1号
【氏名又は名称】	本田技研工業株式会社
【代理人】	申請人
【識別番号】	100085257
【住所又は居所】	東京都千代田区麹町5丁目7番地 秀和紀尾井町 T B Rビル922号
【氏名又は名称】	小山 有

【選任した代理人】

【識別番号】	100103126
【住所又は居所】	神奈川県相模原市相模原1-3-8 岩本ビル3 階 片岡特許事務所
【氏名又は名称】	片岡 修

特願 2003-198394

出願人履歴情報

識別番号 [000005326]

1. 変更年月日 1990年 9月 6日

[変更理由] 新規登録

住 所 東京都港区南青山二丁目1番1号
氏 名 本田技研工業株式会社

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.