Interferência Óptica e Física Moderna

Universidade Federal Rural do Semi-Árido Campus Angicos

10 de agosto de 2022

Fonte

Fonte deste material: Halliday, Resnick, Walker; Fundamentos de Física; Volume 4 - Mecânica; 8ª Edição, LTC

Sumário

A Luz Como Uma Onda A lei da Refração (lei de Snell-Descartes) Comprimento de Onda e Índice de Refração

Intensidade das Franjas de Interferência

O Experimento de Young
Difração
O Experimento de Young
A Posição das Franjas
Coerência

Interferência em Filmes Finos

O Interferômetro de Michelson

A Luz Como Uma Onda

- A primeira pessoa a apresentar uma teoria ondulatória convincente para a luz foi o físico holandês Christian Huygens, em 1678.
- ► A teoria ondulatória de Huygens baseia-se no chamado **princípio de Huygens**, que diz o seguinte:

Princípio de Huygens

Todos os pontos de uma frente de onda se comportam como fontes pontuais de ondas secundárias. Depois de um intervalo de tempo t, a nova posição da frente de onda é dada por uma superfície tangente a essas ondas secundárias.

A Luz Como Uma Onda

A lei da Refração (lei de Snell-Descartes)

► Vamos agora usar o princípio de Huygens para deduzir a lei da refração (lei de Snell-Descartes):

$$n_2 {
m sen} heta_2 = n_1 {
m sen} heta_1$$

A lei da Refração (lei de Snell-Descartes)

Triângulo retângulo *hce*:

$$sen \theta_1 = \frac{\lambda_1}{hc} (2)$$

Triângulo retângulo hcg:

$$sen \theta_2 = \frac{\lambda_2}{hc} (3)$$

Combinando as equações (1), (2) e (3):

$$\boxed{\frac{\mathsf{sen}\theta_1}{\mathsf{sen}\theta_2} = \frac{\lambda_1}{\lambda_2} = \frac{v_1}{v_2}}$$

 $\Delta t_1 = \Delta t_2$

A lei da Refração (lei de Snell-Descartes)

$$\boxed{\frac{\mathsf{sen}\theta_1}{\mathsf{sen}\theta_2} = \frac{\lambda_1}{\lambda_2} = \frac{\mathsf{v}_1}{\mathsf{v}_2}} \quad (\mathsf{A})$$

Podemos definir um índice de refração n para cada meio como a razão entre a velocidade da luz no vácuo e a velocidade da luz no meio. Assim,

$$n=\frac{c}{v}$$

Para os dois meios:

$$\boxed{n_1 = \frac{c}{v_1} \left| (\mathsf{B}) \; \mathsf{e} \left| n_2 = \frac{c}{v_2} \right| (\mathsf{C}) }$$

Combinando as equações (A), (B) e (C):

$$\frac{\operatorname{sen}\theta_1}{\operatorname{sen}\theta_2} = \frac{c/n_1}{c/n_2} = \frac{n_2}{n_1} \qquad \Rightarrow$$
$$\boxed{n_1 \operatorname{sen}\theta_1 = n_2 \operatorname{sen}\theta_2}$$

Comprimento de Onda e Índice de Refração

Seja a equação que obtivemos:

$$\frac{\lambda_1}{\lambda_2} = \frac{v_1}{v_2}$$

Suponha uma luz monocromática com:

- ightharpoonup comprimento de onda λ e uma velocidade c no vácuo;
- um comprimento de onda λ_n e uma velocidade v em um meio cujo índice de refração é n.

Para essa luz, a equação acima pode ser reescrita da seguinte forma:

$$\lambda_n = \lambda \frac{v}{c}$$

Comprimento de Onda e Índice de Refração

Usando a definição de **índice de refração** $n = \frac{c}{v}$ na equação

$$\lambda_n = \lambda \frac{v}{c}$$

$$\lambda_n = \frac{\lambda}{n}$$

Frequência e Índice de Refração

Usando a relação geral $v = \lambda f$:

$$f_n = \frac{v}{\lambda_n}$$

Combinando com $\lambda_n = \frac{\lambda}{n}$

$$f_n = \frac{c/n}{\lambda/n} = \frac{c}{\lambda} = f$$

em que f é a frequência da luz no vácuo.

Embora a velocidade e o comprimento de onda da luz sejam diferentes no meio e no vácuo, a frequência da luz é a mesma no meio e no vácuo.

Diferença de fase

A diferença de fase entre duas ondas luminosas pode mudar se as ondas atravessarem materiais com diferentes índices de refração.

A diferença dos índices de refração produz uma diferença de fase entre as duas ondas.

Diferença de fase

Para calcular a diferença de fase em termos de comprimentos de onda, primeiro contamos o número de comprimentos de onda N_1 no comprimento L do meio 1:

$$N_1 = \frac{L}{\lambda_{n1}} = \frac{L \, n_1}{\lambda}$$

Em seguida, contamos o número de comprimentos de onda N_2 no comprimento L do meio 2:

$$N_2 = \frac{L}{\lambda_{n2}} = \frac{L \, n_2}{\lambda}$$

Diferença de fase

A diferença de fase entre as duas ondas é o valor absoluto da diferença entre N_1 e N_2 . Supondo que $n_2 > n_1$, temos

$$N_2 - N_1 = \frac{L n_2}{\lambda} - \frac{L n_1}{\lambda} = \frac{L}{\lambda} (n_2 - n_1)$$

Difração

- Quando uma onda encontra um obstáculo que possui uma abertura de dimensões comparáveis ao comprimento de onda, a parte da onda que passa pela abertura se alarga (é difratada) na região que fica do outro lado do obstáculo.
- ► Esse alargamento acontece de acordo com o princípio de Huygens.
- ► A difração não se limita às ondas luminosas; pode ocorrer com ondas de todos os tipos.

George Resch/Fundamental Photographs

Difração de ondas na superfície de um tanque com água

Difração

O Experimento de Young

- Em 1801, Thomas Young provou experimentalmente que a luz é uma onda, ao contrário do que pensavam muitos cientistas da época.
- O que o cientista fez foi demonstrar que a luz sofre interferência, como as ondas do mar, as ondas sonoras e todos os outros tipos de ondas.
- ► Além disso, Young conseguiu medir o comprimento de onda médio da luz solar; o valor obtido, 570 nm, está surpreendentemente próximo do valor atualmente aceito, 555 nm.
- Vamos agora discutir o experimento de Young como um exemplo de interferência de ondas luminosas.

O Experimento de Young

► A luz de uma fonte monocromática distante ilumina a fenda S₀ do anteparo A. A luz difratada pela fenda se espalha e é usada para iluminar as fendas S₁ e S₂ do anteparo B. Uma nova difração ocorre quando a luz atravessa essas fendas e duas ondas esféricas se propagam simultaneamente no espaço à direita do anteparo B, interferindo uma com a outra.

O Experimento de Young

- ► Fotografia da figura de interferência produzida com fendas curtas. (A fotografia é uma vista frontal de parte da tela C.)
- Os máximos e mínimos de intensidade são chamados de franjas de interferência porque lembram as franjas decorativas usadas em colchas e tapetes.

A Posição das Franjas

A diferença de fase entre duas ondas pode mudar se as ondas percorrerem distâncias diferentes.

Em um experimento de interferência de dupla fenda de Young, a intensidade luminosa em cada ponto da tela de observação depende da diferença ΔL entre as distâncias percorridas pelos dois raios até chegarem ao ponto.

A Posição das Franjas

- ▶ Diferença de percurso: $\Delta L = d \operatorname{sen} \theta$
- No caso de uma franja clara, um **máximo**, ΔL é igual a zero ou a um número inteiro de comprimentos de onda:

$$\Delta L = d \, {
m sen} heta = \left({
m n\'umero\ inteiro}
ight) \left(\lambda
ight)$$
 ou $d \, {
m sen} heta = m \, \lambda, \, {
m para} \, \, m = 0, 1, 2, ...$

A Posição das Franjas

- ▶ Diferença de percurso: $\Delta L = d \operatorname{sen} \theta$
- No caso de uma franja escura, um **mínimo**, ΔL é um múltiplo ímpar de metade do comprimento de onda:

$$\Delta L = d\, {\sf sen} heta = ({\sf n\'umero\ \'impar}) \left(rac{1}{2}\lambda
ight)$$

ou

Coerência

- No experimento de Young, para que uma figura de interferência apareça na tela, é preciso que a diferença de fase entre as ondas que chegam a um ponto P da tela não varie com o tempo.
- É o que acontece no caso da figura abaixo já que os raios que passam pelas fendas S₁ e S₂ fazem parte de mesma onda, a que ilumina o anteparo B.
- Como a diferença de fase permanece constante em todos os pontos do espaço, dizemos que os raios que saem das fendas S₁ e S₂ são totalmente coerentes.

As ondas que passam pelas duas fendas se superpõem e formam uma figura de interferência.

Intensidade das Franjas de Interferência

Pode-se obter uma expressão para a intensidade I das franjas em função do ângulo θ (detalhes da demonstração no livro-texto):

$$I = 4I_0 \cos^2\left(\frac{1}{2}\phi\right)$$

em que I_0 é a intensidade da luz que chega à tela quando uma das fendas está temporariamente coberta, e

$$\phi = \frac{2\pi d}{\lambda} \mathrm{sen}\theta$$

Interferência em Filmes Finos

- As cores que vemos quando a luz solar incide em uma bolha de sabão ou em uma mancha de óleo são causadas pela interferência das ondas luminosas refletidas pelas superfícies anterior e posterior de um filme fino transparente.
- A espessura do filme é tipicamente da mesma ordem de grandeza que o comprimento de onda da luz (visível) envolvida.
- Maiores espessuras destroem a coerência da luz necessária para produzir as cores.

Richard Megna/Fundamental Photographs

Interferência em Filmes Finos

Richard Megna/Fundamental Photographs

Interferência em Filmes Finos

Diferença de fase em filmes finos

A diferença de fase entre duas ondas pode mudar, se uma das ondas for refletida ou se ambas forem refletidas

- As refrações em interfaces não causam mudanças de fase;
- no caso das reflexões pode haver ou não mudança de fase, dependendo dos valores relativos dos índices de refração dos dois lados da interface.

Reflexão	Mudança de Fase
Em um meio com <i>n</i> menor	0
Em um meio com <i>n</i> maior	0,5 comprimento da onda

Diferença de Percurso em Filmes Finos

- Considere agora a diferença de comprimento entre os percursos de r₁ e r₂, 2L.
- ▶ Para que os raios r₁ e r₂ estejam em fase, é preciso que a diferença de fase seja um múltiplo ímpar de meio comprimento de onda:

$$2L = \frac{\text{número ímpar}}{2} \times \lambda_{n2}$$

► Logo, para os **máximos** (filme claro no ar).

$$2L = \left(m + \frac{1}{2}\right) \frac{\lambda}{n_2}$$
, para $m = 0, 1, 2, ...$

Diferença de Percurso em Filmes Finos

▶ Para que a diferença de fase entre os raios r₁ e r₂ seja meio comprimento de onda, é preciso que a diferença de fase introduzida pela diferença de percursos 2L seja um número inteiro de comprimentos de onda

$$2L = \text{número inteiro} \times \lambda_{n2}$$

▶ Logo, para os mínimos (filme escuro no ar).

$$2L = m \frac{\lambda}{n_2}$$
, para $m = 0, 1, 2, ...$

- O interferômetro é um dispositivo que pode ser usado para medir comprimentos ou variações de comprimento com grande precisão por meio de franjas de interferência.
- Vamos descrever o modelo de interferômetro projetado e construído por A. A. Michelson em 1881.

- Considere a luz que deixa o ponto P de uma fonte macroscópica S e encontra o divisor de feixe M. Divisor de feixe é um espelho que transmite metade da luz incidente e reflete a outra metade.
- Em M, a luz se divide em dois feixes: um é transmitido ao espelho M₁ e o outro é refletido para M₂.
- As ondas são refletidas pelos espelhos M₁ e M₂ e voltam ao espelho M, de onde chegam ao olho do observador após passarem pelo telescópio T.
- 4. O que o observador vê é uma série de franjas de interferência.

Deslocamento do Espelho

- ► A diferença das distâncias percorridas pelas duas ondas é 2d₂-2d₁;
- Qualquer coisa que altere essa diferença modifica a figura de interferência vista pelo observador.

Inserção

A modificação da figura de interferência também pode ser causada pela inserção de uma substância transparente no caminho de um dos raios.

Inserção

▶ Se um bloco de material transparente, de espessura L e índice de refração n, for colocado na frente do espelho M₁, o número de comprimentos de onda percorridos no material será

$$N_m = \frac{2L}{\lambda_n} = \frac{2Ln}{\lambda}$$

 O número de comprimentos de onda na mesma distância 2L antes de o bloco ser introduzido é

$$N_d = \frac{2L}{\lambda}$$

 Quando o bloco é introduzido, a luz que volta do espelho M₁ sofre uma variação de fase adicional (em comprimentos de onda) dada por

$$N_m - N_d = \frac{2Ln}{\lambda} - \frac{2L}{\lambda} = \frac{2L}{\lambda}(n-1)$$

- Para cada variação de fase de um comprimento de onda, a figura de interferência é deslocada de uma franja.
- Assim, observando de quantas franjas foi o deslocamento da figura de interferência quando o bloco foi introduzido é possível determinar a espessura L do bloco em termos de λ.

Padrão de Comprimento

- Na época de Michelson, o padrão de comprimento, o metro, tinha sido definido, por um acordo internacional, como a distância entre duas marcas de uma barra de metal guardada em Sèvres, perto de Paris.
- Michelson conseguiu mostrar, usando seu interferômetro, que o metro-padrão era equivalente a 1.553.163,5 comprimentos de onda da luz vermelha monocromática emitida por uma fonte luminosa de cádmio. Por essa medição altamente precisa, Michelson recebeu o Prêmio Nobel de Física em 1907.
- Seu trabalho estabeleceu a base para que a barra do metro fosse abandonada como padrão (em 1961) e substituída por uma nova definição do metro em termos do comprimento de onda da luz.
- Em 1983, a definição do metro foi mudada novamente, dessa vez com base em um valor arbitrado para a velocidade da luz.

