

Topics

Textbooks

- R. M. Geller, R.A. Freedman,
 & W.J. Kaufmann <u>Universe</u>,
 (11th ed), W. H. Freeman
 and Co, 2013
 - Readable, not quite the required depth in a few places

Textbooks

- B. W. Carroll and D. A. Ostlie, <u>An introduction to modern</u> <u>astrophysics</u>, 2nd edition, Pearson, 2014
- technical, more material and depth than required
 - recommended for those on Physics with Astrophysics degree programme

VITALS

- Three VITALS assessments on the Astrophysics theme on:
 - Radiation in the context of stars
 - Basic properties of stars
 - Basic properties of galaxies

The Sun

- Properties
- Lifetime
- Energy Source

The Sun

- The Sun is a typical star
- A giant ball of gas
- Made of about 71% hydrogen, 27% helium and 2% heavier elements

Distance

Distance =

 1.5 x 10¹¹ m
 1 au

 (Parallax of planets and Kepler's Law)

Mass

- Estimate the mass of the Sun, M₁, using the effect of its gravity on the Earth (mass M₂), assuming circular motion
- Equate force due to gravity with centripetal force

$$\frac{GM_1M_2}{r^2} = \frac{M_2v^2}{r}$$

$$\frac{GM_1}{r} = v^2$$

Circular velocity

$$v = \frac{2\pi r}{P}$$

$$\frac{GM_1}{r} = \frac{4\pi^2 r^2}{P^2}$$

$$M_1 = \frac{4\pi^2 r^3}{GP^2}$$

Period $P = 365 \times 24 \times 60 \times 60 = 3.1 \times 10^7$ seconds

$$M_1 = \frac{4\pi^2 (1.5 \times 10^{11})^3}{6.7 \times 10^{-11} (3.1 \times 10^7)^2}$$

$$M_1 = 2.0 \times 10^{30} \text{ kg}$$

- Solar Mass = $1 M_{\odot}$
 - (Kepler's Law later in module)

Luminosity

- Luminosity = $4 \times 10^{26} \text{ W} = 1 \text{ L}_{\odot}$
 - (Flux and d)

Lifetime

- Geological evidence
 - \rightarrow at least 5 x 10⁹ years
- Stellar evolution theory 10 x 10⁹ years
- Energy required

earthsci.org/space/space/geotime/radate/radate.html

$$E = L\tau$$

$$= 4 \times 10^{26} \times 10 \times 10^{9} \times 3 \times 10^{7}$$

$$= 1 \times 10^{44} J$$

Energy Source

In the core of the Sun

$$T=1 \times 10^7 \text{ K}$$

P=10⁹ atmospheres

Sufficient for fusion of hydrogen nuclei into helium

$$4^{1}H \rightarrow {}^{4}He + \nu + \gamma$$

Energy comes from difference in mass

Class exercise

 Calculate the difference in mass between four ¹H nuclei (mass = 1.0078 amu) and one ⁴He nucleus (mass = 4.0026 amu) and express as a percentage change in mass

Class exercise

$$4^{1}H \rightarrow {}^{4}He$$

so $\Delta m = 4 \times 1.0078 - 4.0026$
 $= 4.0312 - 4.0026 = 0.0286$ amu
and $\frac{\Delta m}{m} = \frac{0.0286}{4.0312} = 0.0071 = 0.7\%$

 Core of the Sun contains about 10% of the total mass

Therefore total energy available

$$= \Delta mc^{2}$$

$$= 0.10 \times 0.007 \times 2 \times 10^{30} \times (3 \times 10^{8})^{2}$$

$$= 1 \times 10^{44} \text{ J}$$

Explains lifetime of Sun

Class Question

What stops the Sun collapsing under its own weight?

- A. The strong nuclear repulsion between the atoms of these layers.
- B. The outward flow of neutrinos exerts a strong outward pressure.
- C. The pressure of the radiation flowing out through the star.
- D. The pressure of the very high-temperature gas within the Sun supports the outer layers.
- E. The interior of the Sun is under such high pressure that it is solid.

Class Question

What stops the Sun collapsing under its own weight?

- A. The strong nuclear repulsion between the atoms of these layers.
- B. The outward flow of neutrinos exerts a strong outward pressure.
- C. The pressure of the radiation flowing out through the star.
- D. The pressure of the very high-temperature gas within the Sun supports the outer layers.
- E. The interior of the Sun is under such high pressure that it is solid.

Why is the pressure at the centre of the Sun so high?

Why is the temperature at the centre of the Sun so high?

Only innermost 10% of the total mass has right conditions for fusion

Summary

- The Sun is a very average star about half way through its 10 billion year lifetime
- Energy generated in core by nuclear fusion
- Held together by its own gravity balancing the thermal pressure