\sim		
('OIIDC	$\mathbf{D}\mathbf{D}$	
COURS	$D_{\mathbf{L}}$	MATHÉMATIQUES

$\begin{array}{c} \text{TOME X} \\ \textbf{INFORMATIQUE} \end{array}$

Mathématiques générales ${\it France} \sim 2024$ ${\it Écrit~et~r\'ealis\'e~par}$ Louis Lascaud

0.1 Résolution de systèmes linéaires

Théorème

Soit A une matrice de taille $m \times n$. L'équation Ax = b admet au moins une solution si et seulement si b est orthogonal à $\operatorname{Ker}(A^*)$.

Chapitre 1

Exercices

Difficulté des exercices :

- $\bullet \circ \circ \circ \circ$ Question de cours, application directe, exercice purement calculatoire sans réelle difficulté technique
- • • • Exercice relativement difficile et dont la résolution appelle à une réflexion plus importante à cause d'obstacles techniques ou conceptuels, qui cependant devraient être à la portée de la plupart des étudiants bien entraînés
- ••••• La résolution de l'exercice requiert un raisonnement et des connaissances extrêmement avancés, dépassant les attentes du prérequis. Il est presque impossible de le mener à terme sans indication. Bien qu'exigibles à très peu d'endroits, ces exercices sont très intéressants et présentent souvent des résultats forts.

Appendice

Table des matières

1 Analyse matricielle					
	1.1	1.1 Compléments d'algèbre linéaire			
		1.1.1	Vocabulaire des espaces préhilbertiens réels ou complexes	3	
		1.1.2	Rappels de diagonalisation	5	
		1.1.3	Jordanisation	6	
			1.1.3.1 Preuve du théorème de Jordan	6	
			1.1.3.2 Opérations sur les blocs de Jordan	6	
	1.2	Comp	léments de topologie matricielle	7	
		1.2.1	Notion de norme subordonnée	7	
		1.2.2	Localisation des valeurs propres	8	
		1.2.3	Rayon spectral	8	
	1.3	Résolu	ution de systèmes linéaires	8	
2	Ana	alyse n	umérique	9	
3	Exe	ercices		11	
	Prol	blèmes		12	
		1 T;+		10	

Bibliographie

 $[1] \ \it{Titre du livre}, Auteur du livre, date, maison d'édition$

10 Bibliographie

Table des figures

Table des figures

Liste des tableaux