Hochleistungsrechnen - Leistungsanalyse

Tom Herrmann Lili Hauke Pascal Klinger

November 2021

Datenaufteilung

1)

Die Problemgröße N wird folgendermaßen aus den Interlines \underline{i} bestimmt (-1 da 0-indiziert):

$$N = 8 \cdot \underline{i} + 9 - 1 = 8 \cdot \underline{i} + 8$$

Wir verwenden \underline{i} für die Interlines, da i später unsere Zeilen beschreibt.

Nun wird daraus eine Matrix $A = (a_{ij})_{i,j \in (0,1,\dots,N)}$ erstellt, die 0-te Zeile und Spalte, sowie N-te Zeile und Spalte (der gesamte Rand) werden für das Lösungsverfahren von der Störfunktion bestimmt und pro Iterationsschritt nicht verändert.

Interessant für die Threadaufteilung sind also nur die Bereiche der Matrix A mit $(a_{ij})_{i,j \in (1,2,...,N-1)}$. Unsere Threadzahl ist t, einen einzelnen Thread bezeichnen wir mit $k: k \in (0,1,...,t-1)$. Wir können eine Aufteilung der Zeilen $i: i \in (1,2,...,N-1)$ vornehmen, dafür bestimmen wir für jeden Thread k die zugehörige Startzeile s_k und Endzeile e_k . Dabei bearbeitet jeder Thread k die Zeilen $\{i: s_k \leq i < e_k\}$.

Für die konkrete Berechnung verwenden wir die ganzzahlige Division:

$$s_k = \lfloor (k \cdot (N-1))/t \rfloor + 1 = \lfloor (k \cdot (8 \cdot \underline{i} + 7))/t \rfloor + 1$$
 bzw.

$$e_k = \lfloor ((k+1)\cdot (N-1))/t \rfloor + 1 = \lfloor ((k+1)\cdot (8\cdot \underline{i} + 7))/t \rfloor + 1$$

Insgesamt hätten wir als erste Zeile des 0-ten Threads also:

 $s_0 = |(0 \cdot (N-1))/t| + 1 = 1$, also die erste Zeile die wir bearbeiten wollen.

Analog ist die letzte Zeile des letzten Threads:

 $e_{t-1} = \lfloor ((t-1+1)\cdot(N-1))/t \rfloor + 1 = N$, wobei hier zu beachten ist, dass diese Zeile eben genau nicht mehr abgearbeitet wird, also decken wir insgesamt mit unseren Threads perfekt das Intervall (1, 2, ..., N-1) ab. Da $e_k = s_{k+1}$ Wird auch keine Zeile doppelt bearbeitet.

2)

CALCULATE-FOR-THREAD- $k(t, \underline{i}, k, M)$

 $/\!\!/ M$ sei unsere Matrix mit der gerechnet wird

 $1 \quad N = 8 \cdot \underline{i} + 8$

 $e_k = ((k+1) \cdot (N-1))/t$

4 for $(i = s_k; i < e_k; i + +)$

5 **for** (j = 1; j < N; j + +)

...

6 // Calculate something with/for M[i][j]

•••

3)

 $\underline{i} = 0, t = 3$:

Thread 1

Thursd 0

Randbereich

Thread 2

Leistungsanalyse

Für diese Messung wurden folgende Parameter genutzt:

1-12 Threads, Jacobi Methode, 512 Interlines, Störfunktion aktiv, Nach Iterationen abbrechen, Iterationen Dabei wurden folgende Daten gemessen: (Messungen in Sekunden und auf west2)

Threads	Messung 1	Messung 2	Messung 3	Durchschnitt
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				