컴퓨터 비전

- 컴퓨터 비전(Computer vision)
 - 컴퓨터를 이용하여 정지 영상 또는 동영상으로부터 의미 있는 정보를 추출하는 방법을 연구하는 학문
 - 즉, 사람이 눈으로 사물을 보고 인지하는 작업을 컴퓨터가 수행하게끔 만드는 학문

사과?

둥글다?

빨간색이다?

꼭지 모양?

사과가 몇 개??

컴퓨터 비전

■ 컴퓨터 비전과 영상 처리(image processing)

컴퓨터 비전 영상 처리

VS.

컴퓨터 비전

영상 처리

- 영상 처리는 영상을 입력으로 받아 화질을 개선하는 등의 처리를 하여 다시 영상을 출력으로 내보내는 작업
- 영상 처리는 컴퓨터 비전을 위한 전처리 작업

- 영상 처리는 영상을 다루는 모든 학문과 응용을 통틀어 지칭
- 컴퓨터 비전은 영상 인식과 같은 고수준의 영상 처리를 지칭

컴퓨터 비전 😞 영상 처리

컴퓨터 비전 관련 분야

컴퓨터 비전 연구분야

■ 영상의 화질 개선

https://en.wikipedia.org/wiki/High-dynamic-range_imaging, https://arxiv.org/pdf/1707.02921.pdf

컴퓨터 비전 연구 분야

객체 검출과 영상 분할

컴퓨터 비전 연구 분야

영상 분할의 종류

- Semantic
- Instance
- panoptic

(a) image

(b) semantic segmentation

(c) instance segmentation

(d) panoptic segmentation

컴퓨터 비전 연구 분야

인식(Recognition)

컴퓨터 비전 응용 분야

- 머신 비전(machine vision)
 - 공장 자동화: 제품의 불량 검사, 위치 확인, 측정 등
 - 높은 정확도와 빠른 처리 시간 요구
 - 조명, 렌즈, 필터, 실시간 (Real-time) 처리

https://laonple.blog.me/, http://www.cognex.com

컴퓨터 비전 응용 분야

- 인공지능 서비스
 - 입력 영상을 객체와 배경으로 분할 → 객체와 배경 인식 → 상황 인식
 → 로봇과 자동차의 행동 지시
 - Computer Vision + Sensor Fusion + Deep Learning
 - 인공지능 로봇, Amazon Go, 구글/테슬라의 자율 주행 자동차

https://youtu.be/NrmMk1Myrxc?t=26

https://youtu.be/wuhbqcMzOaw?t=7

OPENCV 프로그래밍

영상의 구조와 표현

- 영상(image)이란?
 - 픽셀(pixel)이 바둑판 모양의 격자에 나열되어 있는 형태 (2차원 행렬)
 - 픽셀: 영상의 기본 단위, picture element, 화소(畵素)

■ 그레이스케일(grayscale) 영상

- 흑백 사진처럼 색상 정보가 없이
 오직 밝기 정보만으로 구성된 영상
- 밝기 정보를 256 단계로 표현

■ 트루컬러(truecolor) 영상

- 컬러 사진처럼 색상 정보를 가지고 있어서 다양한 색상을 표현할 수 있는 영상
- Red, Green, Blue 색 성분을 256 단계로 표현
 → 256³ = 16,777,216 색상 표현 가능

- 그레이스케일 영상의 픽셀 값 표현
 - 밝기 성분을 0~255 범위의 정수로 표현

- 프로그래밍 언어에서 표현 방법: 1Byte 사용
 - C/C++ → unsigned char
 - Python → numpy.uint8

- 컬러 영상의 픽셀 값 표현
 - R, G, B 색 성분의 크기를 각각 0 ~ 255 범위의 정수로 표현
 - 0 : 해당 색 성분이 전혀 없는 상태
 - 255 : 해당 색 성분이 가득 있는 상태
 - 프로그래밍 언어에서 표현 방법: 3Bytes 사용
 - C/C++ → 구조체, 클래스
 - Python → 튜플, numpy.ndarray

빛의 삼원색: (R, G, B)

■ 영상에서 주로 사용되는 좌표계

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,N} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ a_{M,1} & a_{M,2} & \cdots & a_{M,N} \end{bmatrix}$$

M×N 행렬 (m-by-n matrix)

■ 그레이스케일 영상에서 픽셀 값 분포의 예

	187	187	187	194	197	173	77	25	19	19
	190	187	190	191	158	37	15	14	20	20
	187	182	180	127	32	16	13	16	14	12
	184	186	172	100	20	13	15	18	13	18
	186	190	187	127	18	14	15	14	12	10
	189	192	192	148	16	15	11	10	10	9
	192	195	181	37	13	10	10	10	10	10
	189	194	54	14	11	10	10	10	9	8
	189	194	19	16	11	11	10	10	9	9
\	192	88	12	11	11	10	10	10	9	9

■ 트루컬러 영상에서 픽셀 값 분포의 예

영상 데이터의 크기

- 영상 데이터 크기 분석
 - 그레이스케일 영상: (가로 크기) × (세로 크기) Bytes
 - 트루컬러 영상: (가로 크기) × (세로 크기) × 3 Bytes

 $512 \times 512 = 262144$ Bytes

 $1920 \times 1080 \times 3 = 6220800$ Bytes ≈ 6 MBytes

영상 파일 형식 특징

BMP

- 픽셀 데이터를 압축하지 않고 그대로 저장
 → 파일 용량이 큰 편
- 파일 구조가 단순해서 별도의 라이브러리 도움 없이 파일 입출력 프로그래밍 가능

JPG

- 주로 사진과 같은 컬러 영상을 저장
- 손실 압축(lossy compression)
- 압축률이 좋아서 파일 용량이 크게 감소
 그지털 카메라 사진 포맷으로 주로 사용

GIF

- 256 색상 이하의 영상을 저장
 → 일반 사진을 저장 시 화질 열화가 심함
- 무손실 압축(lossless compression)
- 움직이는 GIF 지원

PNG

- Portable Network Graphics
- 무손실 압축 (컬러 영상도 무손실 압축)
- 알파 채널(투명도)을 지원

OPENCV 개요

What is OpenCV?

- Open source
- Computer vision & machine learning
- Software library

Why OpenCV?

- BSD/Apache 2 license ... Free for academic & commercial use
- Multiple interface ... C, C++, Python, Java, JavaScript, MATLAB, etc.
- Multiple platform ... Windows, Linux, Mac OS, iOS, Android
- Optimized ... CPU instructions, Multi-core processing, OpenCL, CUDA
- Popular ... More than 18 million downloads
- Usage ... Stitching streetview images, detecting intrusions, monitoring mine equipment, helping robots navigate and pick up objects, Interactive art, etc.

OPENCV 역사

OPENCV 구성

- OpenCV main modules
 - Core, widely used, infrastructures
 - https://github.com/opencv/opencv/

calib3d, core, dnn, features2d, flann, gapi, highgui, imgcodecs, imgproc, java, js, ml, objdetect, photo, python, stitching, ts, video, videoio, world

OpenCV extra modules

- Brand new, unpopular, non-free, HW dependency, etc.
- https://github.com/opencv/opencv_contrib/

aruco, bgsegm, bioinspired, ccalib, cnn_3dobj, cudaarithm, cudabgsegm, ..., cudawarping, cudev, cvv, datasets, dnns_easily_fooled, dnn_objdetect, dpm, face, freetype, fuzzy, hdf, hfs, img_hash, line_descriptor, matlab, optflow, ovis, phase_unwrapping, plot, reg, rgbd, saliency, sfm, shape, stereo, structured_light, superres, surface_matching, text, tracking, videostab, viz, xfeatures2d, ximgproc, xobjdetect, xphoto

opency-python 설치

■ pip 명령으로 설치하기

> pip install opencv-python