

CFS-based Mission Flight Software Workbook

These slides are a collection of notes that are slowly evolving with each OSK release into a complete workbook

OSK v3.2

Introduction (1 of 2)

OSK and this workbook can help accelerate and optimize the application development process, but it can not replace the rigor that is required to specify, design, develop, and verify robust FSW. FSW development and verification is a complex endeavor. NASA's cFS has been for "spacecraft bus" FSW on missions ranging from the 6U Dellingr CubeSat** to the 4-ton Global Precipitation Measurement (GPM) spacecraft.

Dellingr

GPM

From an app perspective, Dellingr has 17 apps (8 cFS community, 9 mission-specific) and GPM has 25 apps (11 cFS community, 14 mission-specific). There's a lot more to FSW than just apps such as device drivers, libraries, etc., but apps implement most of a mission's functional requirements and regardless of a mission's physical size, there is usually a substantial FSW application development effort. This workbook takes a FSW systems engineering approach towards defining the apps required to satisfy your mission requirements and designing an execution model for how they will work together as a system.

Introduction (2 of 2)

The core Flight Executive(cFE) is a general-purpose embedded system framework that can host apps to provide a cFS mission solution and there is a very wide range of mission architectures. In fact, the mission may not even be a space mission. This workbook targets using the cFS for spacecraft bus FSW. Even this narrower focus has considerable variability. For example, does the mission require onboard attitude determination and control (ADC)? If so, are the ADC algorithms being developed and implemented as cFS apps inhouse or is an ADC component with sensors and actuators being procured, in which case cFS apps will need to be written that interface with the ADC component.

Workbook Outline

The following outline describes the order and purpose of each workbook section:

1. OSK-cFS System Engineering Development Processes

- Defines a mission FSW engineering context
- Defines a generic spacecraft app model, a SimpleSat reference app model, and processes for using these models to develop your mission app model

2. Apply OSK-cFS Process to an example mission

Uses the models and processes defined in section 1 to develop an app model for an example mission

3. Tune, Verify, and Validate Your System

 Describes cFS, COSMOS, and OSK tools that are available to help you tune, verify, and validate your system

4. Attitude Determination and Control with the 42 Simulator

Describes FSW engineering processes for developing algorithms using 42, porting the algorithms to cFS
apps, and running a closed-loop system

OSK-cFS System Engineering Development Processes

UNDER

Introduction

The next two slides show a FSW mission lifecycle context and a cFS software engineering context.

FSW Mission FSW Context

Project & Systems

- Ops Concept
- Requirement
 - Analysis,
 - Decomposition
 - Allocation
- Build vs Buy

Subsystems

- Refine FSW Requirements
- Develop Algorithms
- Procure HW Components
- Develop Inhouse HW Components
- Select & Procure Processor Board

Spacecraft
Integration
& Test

Spacecraft Operations

Supported by OSK

FSW Mission FSW Context

- OSK supports integrating and testing cFS community apps, OSK apps, and user mission-specific apps into a functional FSW system that runs within OSK's software-in-the-loop (SIL) environment
- Nothing precludes OSK from being used in later mission lifecycle phases, however, creating the hardware in-the-loop (HIL) interfaces, developing simulators, and migrating ground system artifacts (if COSMOS is not used) are not covered by OSK.
- These efforts are represented by the gray arrows. The green arrow pointing to the processor card is not within the OSK boundaries because porting the cFE to a hardware platform is not directly covered by OSK, however, a cFS community platform list https://github.com/OpenSatKit/cfs-platform-list is maintained by the OSK project and provides links to cFS porting resources.
- OSK is not required to develop cFS apps, however, note the following
 - You will eventually need a ground interface and test script environment
 - You can leave OSK's SimSat environment and develop new apps in a new mission or target or use OSK's Sandbox target

Porting the cFE and Developing Platform Software

- OSK does not currently support platform development activities
- Preliminary plans to create a Code-As-You-Go (CAYG) cFE porting tutorials
 - YouTube video with git repos

Developing Custom Apps

Developing New Apps

- OSK app generator creates "hello world" app source code and COSMOS command & telemetry definition files with templates for
 - 1. cFS User's Guide Style App
 - Design and code according to the cFS Developer Guide
 - 2. OSK Framework App
 - Adhere to cFS API principles but design according to the OSK framework design patterns and coding idioms
- Initial app development often done independent of COSMOS
 - "Hello world" tool useful for learning, but often useful to start with an existing app that has a top-level design close to your needs
 - 42 Interface (I42) and 42 FSW Controller (F42) serve as high level example
- Verify New Apps
 - OSK does not augment cFS' unit testing framework
 - OSK supports functional app testing and system integration testing using COSMOS Script Runner and Test Runner tools
 - Thin integration and functional test infrastructure built on top of COSMOS script API
 - Minimal example tests, more planned

cFS Software Engineering

- Mission/Ops Concept
- Mission Requirements

4+1 View UML Diagrams 1

- Hardware Architecture
- Operating System, Board Support, Device Drivers
- Interface Control Documents (ICDs)

Introduction

Use a combination of custom notation and UML diagrams

Logical View

- cFS layered architecture
- cFS application model
- OSK object-based design

Process View

- Sequence diagrams with apps and messages
- Scheduler app-based design

Implementation View

- cFS mission tree structure and build environment
- ES startup script

Deployment View

- Github submodules?
- cFS targets

Use Cases

• Define driving scenarios that exercise groups of apps to achieve a mission goal

Page 13
Mission FSW Quick Start Guide

Mission FSW Systems Engineering Steps

- 1. Create an initial app model from OSK's generic spacecraft model using mission concepts of operations, mission requirements, and the spacecraft hardware architecture often in the form of a block diagram
 - Initial goal is to create a "good enough" architecture based on the maturity of the information at hand
 - Designing FSW is a very iterative process with top-down and bottom-up technical and non-technical forces at work
 - Trades are often made throughout the requirements analysis and spacecraft design phases that impact FSW. These forces are both technical and non-technical concerns may also influence decisions that impact the technical design
- 2. Analyze OSK's SimSat mission app model to understand what capabilities exist within OSK
- 3. Work through system engineering topics and app groups to design new apps and understand how to configure cFS community apps
- 4. Work through spacecraft lifecycle to determine the need for
 - Different versions of apps for different test environments
 - Simulation apps that can serve
- 5. Determine how you want to use OSK in the spacecraft lifecycle
 - Create OSK mission target
 - Plan migration to PIL and other environments
- 6. If OSK will be used in a verification role then develop test artifacts as needed
- Mission FSW Quick Start Guide FSW validation should occur in a high-fidelity test environment

FSW System Engineering Process

OSK Generic Spacecraft Model

OSK Generic Spacecraft Model

- Show how generic model can be tailored for different missions. First focus on CubeSats, larger mission can extrapolate.
- Three main tailoring areas
 - Device I/O
 - Closed loop control needs
 - Mission ops

Examples

- COTS vs inhouse ADCS
- Payload control (closed vs open loop) and data management
- Need for a mission manager app or ACS mode manager type app coupled with autonomy app group to achieve con ops
- In order to work through the steps an example user mission is needed to show how to create a user model and then create a plan for how to migrate from SimSat to the user model needs

SimSat Overview

Objectives

- SimSat is a fictional spacecraft that provides a reference mission context
- Provide a complete application suite illustrating
 - What apps are required to meet a mission's requirements
 - How they are configured and integrated as a system (not all apps configured yet)
 - Current app suite includes command & data handling (C&DH) apps
- Provide example scripts
 - Integration test script
 - Operational script
- Provide context for training exercises

SimSat is not integrated with the 42-simulator

Closed-loop 42-Simulator example scenario is not related to SimSat

Simple Satellite (SimSat)

Default OSK app configuration is for a fictitious satellite called SimpleSat (SimSat)

- The cFS can be used for many different types of embedded systems. A spacecraft was chosen due to the increased usage of the cFS on CubeSats
- SimSat provides a reference mission to provide context to
 - Illustrate what applications are required and how they are configured and integrated as a system to meet the requirements
 - Demonstrate an example integration test script
 - Demonstrate an operational script
- This does not include
 - Porting SimSat to a new platform
 - Integrating hardware devices
- SimSat is a
 - Low Earth Orbit (LEO) satellite with one nadir-pointing science instrument
 - The instrument has
 - A detector that produces 10 bytes of data per second
 - A power the following sequence: Apply power, wait for instrument initialization (~20s), and command to enable science

SimSat Applications (1 of 4)

SimSat Applications (2 of 4)

- The previous slide shows a cFS "bubble" chart where each app is a bubble and they communicate via messages on the software bus.
 - The blue cFS apps are reusable open source apps that are available on https://github.com/nasa/xx where 'xx' is the abbreviated app name
 - The green OSK apps were written specifically for OSK
 - The external COSMOS and 42 interfaces use UDP and TCP respectively
- Apps are designed to perform a dedicated function with clear interfaces and they operate in groups to achieve higher level mission objectives
- Runtime Environment Apps
 - Kit Command Ingest (KIT_CI) receives CCSDS command packets from COSMOS and sends them on the Software Bus
 - Kit Telemetry Output (KIT_TO) reads CCSDS telemetry packets from the Software Bus and sends them to COSMOS
 - **Kit Scheduler (KIT_SCH)** contains tables that define when to send messages on the Software Bus
 - Apps can use these messages to perform synchronous activities, e.g. sending their housekeeping status packet

SimSat Applications (3 of 4)

• Data/File Management

- File Manager (FM) provides a ground interface for performing common directory and file operations
- Data Storage (DS) reads packets from the software bus and writes them to files according to tabledefined
- **Housekeeping (HK)** creates new telemetry packets from pieces of other telemetry packets. The new packets are written to the SB and can be stored and/or telemetered.
- Trivial File Transfer Protocol (TFTP) transfers files between the flight and ground COSMOS. There's an open source CCSDS File Delivery Protocol (CFDP) app that will be added in a future release.

Autonomy

- Limit Checker (LC) monitors one or more telemetry values and start stored command relative time sequences (RTSs) in response to limit violations
- **Stored Command (SC)** Provides services to execute preloaded, table-defined command sequences at predetermined absolute or relative time intervals

SimSat Applications (4 of 4)

Attitude Determination and Control Apps

- **42 Interface (I42)** manages a TCP/IP connection to 42 and transfers actuators/sensor packets to/from 42
- 42 FSW (F42) Implements the "ThreeAxisFsw" attitude control algorithm defined in 42

Maintenance

- **Memory Dwell (MD)** creates telemetry packets containing contents of memory location specified in dwell tables
- Memory Manager (MM) provides read/write access to memory

Health & Safety

- Checksum (CS) monitors checksums across table-defined static code/data regions and reports errors
- Health & Safety (HS) monitors table-defined application check-in and event messages and reporting errors and/or starting a RTS to address the issue

SimSat Application Group Screens

- Each screen highlights the pre-configured SimSat apps that participate in achieving a particular user goal
- Similar organization to the cFE service screens: App ground interface, Functional screen link and a Learn section
- Some demos exist, but not all apps configured for SimSat and no tutorials have been created

FSW Systems Engineering Process

Generic Spacecraft Model

SimSat Reference Mission

Mission Inputs

- Workbook style documentation steps users through FSW system engineering (SE) topics
- Applications addressed in small groups that collaborate to provide end-user functionality

Page 25
Mission FSW Quick Start Guide

FSW-cFS Systems Engineering

"Explore cFS/SimSat" Tab

- 1. SimSat reference mission slides and scripts
- 2. Launch application functional group screen (next slide)

SimSat App Screens

Each functional application group screen uses the following layout

Complete interface to each app

- All commands
- All telemetry packets
- "Display Table" Dump, transfer and display table in COSMOS Table Manager
- "Display File" Issue app's command to create a file, then transfer and display binary file in COSMOS Table Manager

Functional screens combine commands and telemetry from one or more apps that work together to perform a related tasks. Launch videos, demos (predefined screen sequences) and tutorials (slides and/or scripts)

File-Data Storage Demo

System Engineering Topics

- System Engineering topics do not have a one-to-one correlation with app groups
- ConOps, mission requirements, and a hardware block diagram are required inputs
 - This is an iterative process so reapply these inputs
 - Spacecraft lifecycle can be considered a process input and iteratively examined to determine what's needed
- Goal is to manage complexity by working through topics
 - Topics are not 100% orthogonal (non-overlapping)
 - Create a ConOps and show how it impacts different apps groups

SE Topics

- 1. Device I/O
- 2. Close-loop control
- 3. Mission Ops & autonomy
- Data-File management
- Runtime Environment
- 6. FDIR
- 7. Interface & control apps
- 8. Maintenance
- 9. Time
- 10. Parameters and configuration

V&V Topics

- 1. Unit tests
- 2. App functional tests
- . Integration tests
- System and ops tests

Apply the OSK-cFS System Engineering Development Processes

Mission Analysis

- Success criteria
- Driving requirements

Page 31
Mission FSW Quick Start Guide

Spacecraft Block Diagram

Systems engineer maintain a spacecraft block diagram that has a version number

Page 32
Mission FSW Quick Start Guide

FSW Hardware Context

This context diagram should be synchronized with the system block diagram

OSK FSW SimSat Reference Architecture

Draft Mission Applications

Design Approach (1 of 3)

Decompose into goal-oriented manageable subsystems

- 1. TBD Mission (Mission Manager and Automation App Groups)
- 2. Runtime Environment App Group
- 3. Data-File Management App Group
- 4. Fault Detection Isolation and Recovery (FDIR) (Health & Safety and Automation App Groups)
- 5. FSW Sustaining Engineering (Maintenance and Automation App Groups)

Design Approach (2 of 3)

For each subsystem

- Identify new applications, often based on top-down functional requirements and interfaces (trace req.)
- Message-based app designs (analogous to object-oriented class design)
 - Identify each app's context (what it knows about other components in the system)
 - Messages identify what an app can do rather than how it should do something
 - Use scenarios & sequences to help create and verify designs
- Identify cFE service and cFS app features and how they can be used/configured to meet your needs
- Iterate design from different perspectives: top-down, bottom-up, interfaces, control flow, data flows, etc.
- Find existing apps that are close to what is needed by the new app
 - cFS design patterns exists they just aren't documented (see OSK Runtime Environment slides)
- Think through lifecycle phases: Development, Spacecraft Test, On-orbit checkout, sustaining engineering

Maintain critical resource budgets

- Identify critical resources
 - CPU, memory (all types), telemetry (realtime & stored), onboard recorder, interfaces, message IDs, etc.
- Estimate, measure, and track each critical resource
- Be judicious on what you track and to what level of detail based on available engineering resources and

Design Approach (3 of 3)

Interface Design Considerations

- What data is needed onboard for onboard processing? How often? Does it need to be synchronized with other onboard processing?
 - What data integrity checks should be performed prior to using the data onboard?
 - What potential faults should be monitored and how detected?
- Is additional data required for the ground? If so, how often?
- What data is needed in realtime and what can be stored?
 - Think through testing vs operational needs
 - Note you want to eventually "test as you fly" so don't become dependent on test data
- What data is required for diagnostics? Does the device support on-orbit software updates?
- How will the interface be managed in each test configuration?
- Is there a need for direct ground-to-device command or an override capability?

Ground Tools

- What tools exists? What are required? What are nice to have?
- The cFS started at NASA/Goddard where ground system tools were built into existing ground systems and these tools have not be separated and made public

Software Development Process Recommendations

- Assign individuals to apps or groups of apps and to system engineering artifacts
 - Ownership and accountability promote more in-depth questioning
- Select a common application design for new apps (See notes page)
 - cFS App Developer's Guide style
 - OSK Framework style
 - Others exists
 - Probably best to use
- Hold code reviews
 - Improves code, requirements, and alignment of code to the requirements
 - Distributes expertise across the team
- Develop Unit and Build Test
 - If possible, have an independent system tester

OSK – SE - COLIBRI
Page 39

Driving Uses Cases

- Launch & Separation
- "Day in the Life"
 - Time Management
 - Science Ops
 - Payload Control
 - Ground Contacts
- Processor reset behavior

Mission Mode Diagram

1 – Mission: Mission Manager, SC, and LC

Mission Manager

- Context diagram
- Identify main functional requirements

Initial design thoughts

- Define a mission mode state diagram that will implemented by MM
- Identify commanded and autonomous mode transitions
- An advantage of using MM rather than Limit Checker and stored commands is that MM can check for condition prior to performing a mode transition
- How will eclipse
- Absolute Time Command (ATS) Sequence
- Relative Time Command Sequences

_

1-Mission: I²C App

- Context diagram
- Identify main functional requirements
- Scheduler table driven? Pend for wakeup message to gather I/O

1 – CALIBRI Mission: Payload Control App

- Context diagram
- Identify main functional requirements
- Data driven Pend for data packets needed to run control algorithm
 - Couple of strategies to consider
- Design algorithms with maximum number of table-defined parameters

1 – Mission: Sequence Diagrams

OSK – SE - COLIBRI

2 – Runtime Environment

Time Management

- When is GPS powered?
- Can GPS be synchronized with SBC clock?
- GPS App
 - Scheduler or interrupt driven
- Comm App(s)
 - Interrupt/data driven
- Transition to Scheduler App
- Scheduler Table design
- Design synchronous system
- Tune the system (performance monitor tool)

2 – Time Management Scenario

How can the processor clock be correlated GPS?

3 – Data-File Management

- Telemetry Budget
- File Transfer

4 – Fault Detection Isolation and Recovery

- Limit checker and stored command apps implement the FDIR
- Other

5 – FSW Sustaining Engineering

- Since it's a short mission with a 6-month duration I recommend focuses on the most likely scenario of needing to upload a new library or application
 - This only requires cFE services
- I recommend having the Memory Manager and Memory Dwell apps as part of the default FSW, however I would scale the time put into using them based on available FSW engineers

Other Potential Topics

Freezing Versions

- COSMOS
- cFS
- Apps
- Tuning System
- Debugging
- V&V configurations
- Event filtering
- Designing a scheduler table
- Event log buffer management
 - Local event logs
- Create a synchronous system
 - Consistent operations
 - Test repeatability (FSW lab vs thermal vac). Need to know whether thermal if conditions caused the erroneous behavior

System Engineering Topics

SE Topics

- Device I/O
- Close-loop control
- Mission Ops & autonomy
- Data-File management
- Runtime Environment
- **FDIR**
- Interface & control apps
- Maintenance
- Time
- 10. Parameters and configuration

V&V Topics

- 1. Unit tests
- App functional tests
- Integration tests
- System and ops tests

- 1. What data must be downlinked to meet mission goals?
- 2. What are the contact frequencies, durations, and data rates?
- 3. What parts of operations need to be automated?
- 4. What level of fault detection, isolation, and recovery (FDIR) is necessary?
- Bottom-up
- 1. What processor card is being used and is a realtime operating system required?
- 2. What device interfaces does the FSW need to manage and how are they connected?
- 3. Make versus buy decisions. Some top-down decisions impact bottom-up design.

Page 53
Mission FSW Ouick Start Guide

Page 54
Mission FSW Quick Start Guide

SimSat App Screens

Each functional application group screen uses the following layout

Complete interface to each app

- All commands
- All telemetry packets
- "Display Table" Dump, transfer and display table in COSMOS Table Manager
- "Display File" Issue app's command to create a file, then transfer and display binary file in COSMOS Table Manager

Functional screens combine commands and telemetry from one or more apps that work together to perform a related tasks. Launch videos, demos (predefined screen sequences) and tutorials (slides and/or scripts)

App Interactive Resources (1 of 2)

- 1. Launch Data/File Management Screen from OSK main screen
- 2. Access FM commands, telemetry, tables, files and users guide.

App Interactive Resources (2 of 2)

App System Scripting Resources

4# This script configures SimSat to illustrate

5# as a system to meet mission operational ob

8 # grouped screen.

6# very simple. The descriptions in this script are kept to a hi 7# more details can be found in the tutorials in each simsat fun

Ops Example use the **COSMOS Script Runner**

Select and Configure cFS Community Apps

Mission FSW Quick Start Guide

Select and Configure cFS Community Apps

Leverage Community Apps

- OSK's SimSat application groups provide a system context for users to learn how apps work together to achieve a goal
 - Slides, YouTube videos, and built-in demos
 - Example operational script
 - The above resources are not complete, and the plan is to continually update them
- Prototype tools for generating default Data Storage, KIT_TO, and Housekeeping table source files
 - Links to tools from application group screens

Verify Community Apps

- NASA app unit tests can be run as needed
- OSK apps do not currently have unit tests
- OSK supports functional app testing and system integration testing using COSMOS Script Runner and Test Runner tools
 - Thin integration and functional test infrastructure built on top of COSMOS script API
 - No functional tests exist

OSK SimSat NASA cFS Libs & Apps

Name	Description	Cmd, Tlm, Tbl Defined	Video	Notes
CFDP (CF)	Implements the CCSDS File Delivery Protocol (CFDP)	Partial	No	Compiled, but not loaded by default. Downlink flow control semaphore not implemented
CFS_LIB	Utility functions	N/A	No	
Checksum (CS)	Compute checksums across table-defined memory blocks	All	No	
Data Storage (DS)	Read packets from the software bus and store them in files	All	Group	
File Manager (FM)	Provide basic directory & file management services	All	Group Solo	
Housekeeping (HK)	Combine parts of packets into new packets	All	Group Solo	
Health & Safety (HS)	Provide system health & safety checks	All	No	
Limit Checker (LC)	Monitor values in packets and activate stored commands as needed	All	No	
Memory Dwell (MD)	Create telemetry packets containing user defined memory locations	All	No	
Memory Manager (MM)	Provide interface to read/write (load/dump) memory locations.	All	No	Use with caution!
Software Bus Network (SBN)	Software Bus Network	None	No	Compiled, but not configured or loaded by default.
Stored Command (SC)	Manage absolute time and relative time command sequences		No	

Page 61
Mission FSW Quick Start Guide

OSK SimSat Custom Libs & Apps

Name	Description	Cmd, Tlm, Tbl	Video	Notes
expat_lib	XML Parser	n/a	No	Only used by demo apps
osk_c_fw	Application framework for apps written in C	n/a	No	Used for all OSK SimSat apps
osk_42_lib	Utilities to manage 42's interface	n/a	No	Allows default options to be used for 42's socket interface code generation utility & 42's acapp to be used unchanged
F42	Manages execution of 42's "acapp" controller	All	No	
142	Manages sensor/actuator interfaces for F42	All	No	
ISIM	Simulates an instrument for SimSat demos	All	No	
KIT_CI	Ingest commands over UDP socket and send them on software bus	All	Group	Functionally similar NASA's lab_ci
KIT_SCH	Send table-defined messages on the software bus	All	Group	Schedule algorithm similar to sch_lab. Message and scheduler table implemented in JSON.
KIT_TO	Receive telemetry packets from the software bus and output them over a UDP socket	All	Group	Output JSON filter table determines packet output rates. OSK table tool can generate the table for a CSV file.
TFTP	Implement Trivial File Transport Protocol	All	No	Default file transfer protocol. Doesn't preclude use of CF app.

OSK cFS Additional Libs & Apps

Name	Description	Cmd, Tlm, Tbl Defined	Video	Notes
osk_cpp_lib	Application framework for apps written in C++	n/a	No	Prototype only used by C++ demo app
mqtt_lib	MQTT utilities	n/a	No	Unchanged from Alan Cudmore's repo: https://github.com/alanc98/mqtt_lib
Benchmark (BM)	Provides Dhrystone, Whetstone, and custom cFS measurements	All	No	Prototype needs review and documentation.
File Manager (FileMgr)	Same functions as NASA's FM	All	No	Refactor of NASA's FM app using osk_c_fw. Investigates moving most config parameters to a runtime startup file.
Heater Control (HC)	Simple bang-bang controller for demo purposes	All	No	Used in Limit Checker demo
Heater Sim (HSIM)	Simple heater simulation to provide feedback to HC app	All	No	Used in Limit Checker demo
MQTT	Bridge between a MQTT broker and the software bus	All	No	Early prototype with partial MQTT implementation. Refactor of Alan Cudmore's app from repo: https://github.com/alanc98/mqtt_app .
osk_c_demo	Sample app to illustrate how to use osk_c_fw	All	No	Not all osk_c_fw features demonstrated. Does not include JSON initialization configuration file.
osk_cpp_demo	Sample app to illustrate how to use osk_cpp_fw	All	No	Preliminary prototype.

Tune, Verify, & Validate

Performance Monitor Tool

Commands					
Set Fi	lter Mask	Se	et Trigge	ег Ма	isk
Start D	ata Collect	St	op Data	Coll	ect
Ge	et File	Lau	nch Ana	lysis	Tool
Status State	0 Mode	0 Tr	igger Co	ount	0
Masks					
Filter	00000000	00000000	000000	000	00000000
Trigger	00000000	00000000	000000	000	00000000
Log Stats					
Start	0	E	ind [0
Count	0	Remaining to	Write		0
File Transfer					
Pu	ıt File		Get F	ile	
PUT_FILE_COUN	IT: 0	GET_FILE_C	OUNT:		0
Ground Working	Directory				
Flight Working [)irectory				
T tigric Working E	heccory				

- Capture FSW performance data using screen
- Download file and <Launch Analysis Tool>

SimSat Integration Script

- Runs test script using Script Runner
- Issues Noop command to every application and verifies telemetry response

Page 66
Mission FSW Quick Start Guide

Functional Test Scripts

SimSat Operation Script Example

Page 68
Mission FSW Quick Start Guide

Running with 42 Simulator

Needs u

Needs updates since v2.4

Merge with apply systems engineering processes

Starting the Simulation

- Select < *Run 42 Sim* > which will start the 42 simulator in a new terminal window.
- The 42 configuration files used in the simulation are located in directory *OpenSatKit/42/OSK*
- The simulation takes a while to initialize

Page 70
Mission FSW Quick Start Guide

Preparing 42 Simulation

- From the kit main page on the previous slide select <42 Simulator> and the screen to the left will appear.
- The 2nd row of buttons allow you to change the behavior of the control algorithms running in the FSW and are described on the next slides
- Before running the sim you will open some additional windows that will be used for your class exercise
 - Manage Control Table
 - Plot Attitude Errors

Managing Control Table

	E42 Cont	ral Tabla		
	F42 Cont	roi i abie		
Get Current Valu	es Load Scre	een Values	Rest	ore Defaults
PD Gain Paramete	_			
	Г	_		
W		Z		
and the same				
Wheel Target Mon	nentum Limits			
Lower		Upper		
_		Upper		
		Upper		
_		Upper		
Lower		Upper	Z	
Lower Moment of Inertia		Upper	Z	
Lower Moment of Inertia		Upper	Z	
Lower Moment of Inertia		Upper	Z	
Lower Moment of Inertia		Upper Y-Axis		-Axis
Lower Moment of Inertia	Y		Z	-Axis 0.098000

- Selecting *Manage Control Table* on the 42 Sim screen produces the screen to the left.
- Select < *Get Current Values* > and it will populate the screen with the current control table values. This takes a little time because it is transferring a file from flight to ground
- Edit the screen as desired and click <*Load Screen Values*> to replace the current control table values
- The defaults can be restored by clicking **<***Restore Defaults*>

Page 72
Mission FSW Quick Start Guide

Plot Attitude Errors

• Selecting <Plot> button next to the attitude errors produces the screen below

Page 73
Mission FSW Quick Start Guide

Additional Configuration Options

- The kit includes two additional configuration options that can be manipulated
 - 1. Wheel target Momentum
 - 2. Sun Valid Configuration

Configure Sun Valid

- Selecting *<Config SunValid>* to override the current sun valid flag
- The plot below shows gimbal command

- The linear portion had a valid sun and the bend occurred when the SunValid was overridden to false.

Sim Termination

- Click *Disconnect* 42> to end a 42 simulation that is running with the FSW
- To terminate the flight software click on the terminal window with the FSW messages and then enter ctrl-c
- Each of the cosmos windows will need to be closed individually. If you close the COSMOS TlmViewer window first it prompt you to close all of the telemetry screens at once.

Appendix A

Demos

Screen-based Demos: FM Example (1 of 2)

Each demo follows a common user screen configuration

Page 78
Mission FSW Quick Start Guide

Screen-based Demos: FM Example (2 of 2)

Page 79
Mission FSW Quick Start Guide

Appendix B

Application Functional Screens

File Management

- <List to Packet> commands File Manage (FM)
 - To send a directory listing
 - The command uses a directory listing alphabetical "offset" to determine which file to start with in the listing
- OSK uses the verbs *list* and *send* to indicate information is sent in a telemetry packet.
- Write is used when information is written to a file

- <List to Packet> commands File Manage (FM)
 - To send a directory listing
 - The command uses a directory listing alphabetical "offset" to determine which file to start with in the listing

Page 81
Mission FSW Quick Start Guide

Table Management

	Table N	Management							
able Management									
Load Table	Validate	lidate A							
Abort Load	ımp Table	Display Table							
Table Registry		Table Registry Lis	sting 🔻						
Display Registry Write Regis	NAME:								
Table Manager Housekeeping		SIZE:			0				
Cmd Valid Cnt	0	CRITICAL:			0				
Cmd Error Cnt					0				
Last Updated Table	Last Updated Table				0				
Last File Loaded					0				
Last File Dumped	DBL BUFFERED:								
Last Table Loaded	ast Table Loaded			LAST_UPD_TIME_SECONDS:					
	FILE CREATE TIME SECS:								
				LAST FILE LOADED:					
				OWNER APP NAME:					
File Transfer		1							
Put File			Get File						
PUT_FILE_COUNT:		O GET_FILE_COU	NT:		0				
Ground Working Directory									
Flight Working Directory									
Flight Event Messages									

- Load a new FSW table
 - <*Put File*> transfers file from ground to flight
 - <Load Table> into table buffer
 - <*Validate*> table via app validation function
 - <*Activate*> new table
- *Display Registry* sends a table's registry information in a telemetry packet
- Dump and display FSW table *<Dump Table>* to onboard file < Get File> transfers file from flight to ground <Display Table> launches COSMOS Table Manager to view file. Requires binary file definition.

Page 82 Mission FSW Quick Start Guide

Memory Management

- Memory Manager (MM) and Memory Dwell (MD) apps are typically used for inflight maintenance.
- MM commands allow direct access to any memory location
- MD generates telemetry packets that contain the contents of table-specified memory locations
 - Only 1 dwell table telemetry packet is defined
 - < Jam Dwell Table > allows the dwell table to be loaded without using the table load service
- The FSW can easily be corrupted using memory manager
- The memory management demo is a good place to start since it demonstrates MM and MD using safe memory locations

Page 83
Mission FSW Quick Start Guide

Recorder Management

	Recorder M	Management				
ta Storage App Statu	s					
Enable/Disable	e 14 Info Dest File 58 Info					
Cmd Valid Cnt	Cnt	0 State	e			
Destination File Con	figuration					
Enable/Disable	Sequen	nce Count	File	Filename Type		
File Path Name	ise Name	se Name File E				
Max File Size	File Age	Clos	se 1/All Files			
Tbl Load Count	0	Tbl Access Err	Cnt		(
File Write Valid Cnt 0		File Write Inva	alid Cnt			
Hdr Update Valid Cnt	r Update Valid Cnt 0				(
Packet Filter Config	uration				4	
Dest File	Add Message	Algorith	m	Filter Type		
Tbl Load Cnt	0	Tbl Access Err	Cnt		(
Pkt Discard Cnt	0	Pkt Ignored Cnt			(
Pkt Filtered Cnt	Pkt Stored Cnt					
Packet Filter File						
e Transfer						
Put F	Get File					
PUT_FILE_COUNT:	GET_FILE_COUNT:					
Ground Working Direct	tory					
	EN I					
Flight Working Directo	ТУ					

Page 84
Mission FSW Quick Start Guide

Autonomy Management

tored Command(SC) A	pp - Relat	ive Tin	ne Seq	uence	s(RTS)		
Start RTS	Stop RTS Enable RTS Disable RTS					ble RTS	
Start Group	Stop Group Enable Group Disable Grou					le Group	
Cmd Valid Cnt 0 Cmd Error Cnt 0							
TS Status RTS EXECUTI		. 49 48	0000	32	00 0	. 1	
Active Cnt 00	000 Start Err Cnt 0000 Next Time				000000		
	Err R	TS#		0000	Err RTS	Offset	0000
imit Checker(LC) App Reset WP Stats		TS# t AP Sta	its S		Err RTS	1	O000
imit Checker(LC) App	Reset)	1	
Reset WP Stats Set App State Cmd Valid Cnt	Reset	t AP Sta	0 Cm	Set AP	State 0	1	
mit Checker(LC) App Reset WP Stats Set App State	Reset Ap	p State	0 Cm	Set AP	State 0	1	Prem Off
Reset WP Stats Set App State Cmd Valid Cnt Watch Points(WP) A Watch Points (2-bi	Reset Ap	DE AP State DE	0 Cm Statu: 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 or Cnt	1	Prem Off

Page 85
Mission FSW Quick Start Guide

Application Management

CFS_KIT APP_M	MGMT_SCREEN			
	App Mar	nagement		
	Executive Service S	tatus		
App Summary	Cmd Ctr	0 Cmd Err Ctr	0	
App/Task Registry	Registered Apps	0 Registered Tasks	0	
Enable App Events				
Disable App Events	App Info			
Add KIT_TO Msg	Name	Entry Point	←	 <get app="" info=""> commands cFE executive</get>
Start App	Main Task Name	Main Task ID O Priority	0	services to send a telemetry packet with the
Stop App	Type	0 # Child Tasks	0	command-specified app
Reload App	File Name	Exception	0	
Get App Info	Code Size	0 Data Size	0	
Create App Tool	BSS Size	0 Stack Size	0	
File Transfer				
Put	File	Get File		 <app registry="" task=""> commands cFE</app>
PUT_FILE_COUNT:	0	GET_FILE_COUNT:	0	executive services to write app or task
Ground Working Direct	огу			information to a file that can be transferred
				to ground via a < Get File>
Flight Working Directory				
Flight Event Messages				

Page 86
Mission FSW Quick Start Guide

Appendix C

References

References

- 1. 4+1 View of UML Diagrams, http://everspring79.blogspot.com/2008/09/uml-41-view-materials.html
 - There are many articles on the "4+1 Architecture" model and on mapping UML to the 4+1 model. They don't all agree. This one seems reasonable and the purpose for including the model is to encourage the high-level thought processes and not argue detailed points. The cFS design is not documented using any single method.
- 2. NASA Operational Simulator for Small Satellites, http://www.stf1.com/NOS3Website/Nos3MainTab.php

OSK – SE - COLIBRI