clarity in the following pages is likely due to the many workshop participants and coinstructors who have given me valuable feedback on this material over the years!

Finally, if you are seeking a more comprehensive or technical treatment of any of these subjects, I've listed several resources and references in "Further Machine Learning Resources" on page 514.

What Is Machine Learning?

Before we take a look at the details of various machine learning methods, let's start by looking at what machine learning is, and what it isn't. Machine learning is often categorized as a subfield of artificial intelligence, but I find that categorization can often be misleading at first brush. The study of machine learning certainly arose from research in this context, but in the data science application of machine learning methods, it's more helpful to think of machine learning as a means of building models of data.

Fundamentally, machine learning involves building mathematical models to help understand data. "Learning" enters the fray when we give these models tunable parameters that can be adapted to observed data; in this way the program can be considered to be "learning" from the data. Once these models have been fit to previously seen data, they can be used to predict and understand aspects of newly observed data. I'll leave to the reader the more philosophical digression regarding the extent to which this type of mathematical, model-based "learning" is similar to the "learning" exhibited by the human brain.

Understanding the problem setting in machine learning is essential to using these tools effectively, and so we will start with some broad categorizations of the types of approaches we'll discuss here.

Categories of Machine Learning

At the most fundamental level, machine learning can be categorized into two main types: supervised learning and unsupervised learning.

Supervised learning involves somehow modeling the relationship between measured features of data and some label associated with the data; once this model is determined, it can be used to apply labels to new, unknown data. This is further subdivided into classification tasks and regression tasks: in classification, the labels are discrete categories, while in regression, the labels are continuous quantities. We will see examples of both types of supervised learning in the following section.

Unsupervised learning involves modeling the features of a dataset without reference to any label, and is often described as "letting the dataset speak for itself." These models include tasks such as *clustering* and *dimensionality reduction*. Clustering algorithms

identify distinct groups of data, while dimensionality reduction algorithms search for more succinct representations of the data. We will see examples of both types of unsupervised learning in the following section.

In addition, there are so-called *semi-supervised learning* methods, which fall somewhere between supervised learning and unsupervised learning. Semi-supervised learning methods are often useful when only incomplete labels are available.

Qualitative Examples of Machine Learning Applications

To make these ideas more concrete, let's take a look at a few very simple examples of a machine learning task. These examples are meant to give an intuitive, non-quantitative overview of the types of machine learning tasks we will be looking at in this chapter. In later sections, we will go into more depth regarding the particular models and how they are used. For a preview of these more technical aspects, you can find the Python source that generates the figures in the online appendix.

Classification: Predicting discrete labels

We will first take a look at a simple *classification* task, in which you are given a set of labeled points and want to use these to classify some unlabeled points.

Imagine that we have the data shown in Figure 5-1 (the code used to generate this figure, and all figures in this section, is available in the online appendix).

Figure 5-1. A simple data set for classification