CSE 408/598 Multimedia Information Systems

Phase #3

(Due November 29th 2015, midnight)

Description: In this project, you will

- experiment with video data representation,
- feature extraction, and
- experiment with video retrieval.

Tasks:

The input to the project will be a video file.

You will operate in the Y color space.

- Task I: Implement a program which divides the frames of the given video into 8-by-8 regions called *frame* blocks. Then, given a user supplied n, the program performs the following subtasks:
 - Task I(a): The program creates a *n*-bin gray scale histogram, by quantizing the Y color space, for each cellblock of each frame in the given video. The outputs, of the form

 $\langle frame_id, block_coord, gray_instance_id, num_pixels \rangle$

are written into a file of the form

video_filename_hist_n.hst

- Task I(b): The program applies 2D-DCT on the Y component of each block of each frame in the given video and selects the n most significant frequency components. The outputs, of the form

 $\langle frame_id, block_coord, freq_comp_id, value \rangle$

are written into a file of the form

video_filename_blockdct_n.bct

- Task I(c): The program applies 2D-DWT on the Y component of each block of each frame in the given video and selects the n most significant wavelet components. The outputs, of the form

 $\langle frame_id, block_coord, wavelet_comp_id, value \rangle$

are written into a file of the form

video_filename_blockdwt_n.bwt

- Task I(d): For each frame (except the last) of the video and for each block, the program computes the difference from the same block in the next frame and the creates an *n*-bin difference histogram, by quantizing the obtained differences. The outputs, of the form

 $\langle frame_id, block_coord, diff_comp_id, pixelcount \rangle$

are written into a file of the form

 $video_filename_diff_n.dhc$

• Task II: Implement a program which applies 2D-DWT on the Y component of each image video frame in the given set and selects the m most significant wavelet components (m is user supplied). The outputs, of the form

 $\langle frame_id, wavelet_comp_id, value \rangle$

are written into a file of the form

 ${\tt video_filename_} framedwt_m.fwt$

• Task III Implement a program which given (a) a query video, (b) a frame id, and (c) n and m values, identifies the best 10 matching frames (except itself) for each of the 5 feature types and displays the original frame as well as the 10 matches (and matching scores) for each feature type.

Deliverables:

- Your code (properly commented) and a README file.
- A report describing your work and the results on a sample image.

Please place your code in a directory titled "Code", the outputs to a directory called "Outputs", and your report in a directory called "Report"; zip or tar all off them together and submit it through the Blackboard.