Parcial 2 Estadis	tica Aplicada III			1
David Isma Lépez Romeno				
(1) 133000				
1) SUsamos los datos del	tram in y	tenemos yme	las Fármalas	3869
Cov (Xi, Yi) = 1; a;i	e Corr	(xo y;) = 13;	aji	
De Exal, tenemos que	1 : "01	7.4	T;	
Variable	1 comp	2" do Comp	3" Comp	
% Tierro Cultivoble	1.6872	0,3304	0,1751	
% Gonodinia on PIB	1.6379	0.3304	0,3090	
Industrio Automovi, listica	0.4686	1.1566	0.2163	
Industria Militar	0,3513	1.079	0.1236	
India Democrático	0,3484	0.2478	0,8757	
% Mirerio en PIB	0.5699	0.4956	0,1554	
Industria Telecomunicacións	017329	0.9914	0.1447	
Correlouin				
Voriable	1st lomp	2" do Comp	3 or land	
1. Tions Cultivable	0.974105	0.23 36 28	0,1751	
% Ganadorio on PIB	0,945353	0,2336 28	0,3040	
Industria Automovilistica	0.270546	0.017839	0,2163	
Industria Hilitor	0.202823	0.7594327	0,1236	
India Democrático	0.130016	0,175221	0, 8757	
9. Hinnie en PIB	0,406382	0.350442	0,1554	
Industria Tale comunicaciones	0,423140	6, 301025	0,1492	

Variance Explicade

$$\mathcal{F}$$
) $f_{x}(x) = \sqrt{\frac{1}{2\pi^{3}}} e^{-\frac{1}{2\mu^{2}x^{2}}}$

$$f(x) = \sqrt{\frac{1}{2\pi x^3}} e^{-\frac{1}{2}\frac{(x-u)^2}{2x}} = \sqrt{\frac{1}{2\pi x^3}} e^{-\frac{1}{2}\frac{x^2}{2x}} + \frac{21xu}{2x^2} - \frac{1u^2}{2x^2}$$

$$= \sqrt{\frac{1}{2\pi^{2}}} e^{-\frac{1z}{2\mu^{2}}} e^{\frac{1}{2\mu}} e^{-\frac{4}{2z}}$$

$$=\sqrt{\frac{1}{2\pi x}}, e^{-\frac{A}{2\pi}} e^{\left(-\frac{A}{2\mu^2}x - \left(-\frac{A}{\mu}\right)\right)}$$

donde
$$h(z) = \sqrt{\frac{1}{2\pi z^3}} e^{-\frac{2}{2\pi}}$$
, $\mathcal{N}(y) = -\frac{1}{2yz}$, $T(z) = x$

$$A'[\mu] = \left(\frac{1}{\mu}\right)' = \frac{1}{\mu^{1}}$$

$$M[\mu] = \left(-\frac{1}{2\mu^{1}}\right)' = \frac{2\pi}{2\mu^{3}} = \frac{1}{\mu^{3}}$$

$$A_{5i} \mu \sigma_{5}, \quad \omega_{0i}, \quad T(x) = x$$

$$IE(x) = \frac{A'[\mu]}{M'[\mu]} = \frac{3}{\mu^{2}} = \frac{1}{\mu^{3}}$$

$$C)A''[\mu] = \left(\frac{1}{\mu^{2}}\right)' = -\frac{3\pi}{2}$$

$$(\alpha_{11} \sigma_{11} - (x) = x)$$

$$(\alpha_{11} \sigma_{11} - (x) =$$

4) Probabilidad una persona paga ono

Hi = [hombre , Medi = [lingueses merces of solutions universitains of mayer , Medi = [lingueses merces of universitains of universitains of universitains

Mujer coninguesos $\rho_{i}^{7} = \frac{e^{-0.35}}{1 \pm e^{0.35}} = 0.4633824$ sin anisosidod

* Hombie con inguisos $\rho_i^2 = \frac{-0.35-0.88}{1+e^{0.35-0.88}} = 0.226/814$ sin universi ded

Thembre con ingress $\rho_i = \frac{e^{0.35 - 0.88 - 0.32}}{1 + e^{0.35 - 0.88 - 0.32}} = 0.175086.3$ sin universided

Mujor conveyesses

Notice of a landing $\vec{p}_i = \frac{e^{-0.35} - 0.32 + 0.92}{1 + e^{-0.35} - 0.32 + 0.92} = 0.950166$ Can universided

Hembro con ingress = = 0.39 -0.80 ±9.31+0.47 = 0.253506

heroros a la media pi = 1+ p.39 -0.80 = 0.32 +0.47

pi = e-0.35 + 0.47 = 0. 5299 64 · Mujor ingresos con superiores a la media can universided Pi - e-0.35 -0.08 10,17 =0.31864**6**5 a Hombie ingresos superviss a la neolio 1+ = 035 -0.88+0,42 con universided Mayor probabilided de passes de Mayor con ingreses superiores e la media

can estudios universibilias

P=0.529964 Menor probabilided depaga esdel Hambre Tean ingresos inferiores ale (media sila estudios universitàries p.=0.1750863 $|Z-\chi I| = |\sigma_{\chi}^2 - \lambda| |\sigma_{\chi}^2 - \lambda| = |(\sigma_{\chi}^2 - \lambda)/(\sigma_{\chi}^2 - \lambda)| - (8\sigma_{\chi}\sigma_{\chi})(8\sigma_{\chi}\sigma_{\chi})$ $= \sigma_{x}^{2} \sigma_{y}^{2} - \lambda \sigma_{x}^{2} - \lambda \sigma_{y}^{2} + \lambda^{2} - S^{2} \sigma_{x}^{2} \sigma_{y}^{2} = \lambda^{2} - \lambda (\sigma_{x}^{2} + \sigma_{y}^{2}) + \sigma_{x}^{2} \sigma_{y}^{2} (1-\beta)$ 7 = 0x2+0,2 = 1(0x2+0,2)2-4(1) 10x20,211-5)

= 0x2+0,2 1 /0x2+0,2 -40,2 0,2 (1-82)

Escaneado con CamScanner

(1) Así, 112 0210x + (0,210x2) + 40x2 10x2 (1-32) Z vie ozeroje, el puronteje de varianza explicado del companete 1 es 11 = 1 (0x2+03) = 10x2 (0x2+03) = 10x2 +03(1-5) (-) // Expl- 1 + \(\langle \sigma^2 + \sigma^2 \langle \s Andloganerto, (Enl= 1 - /(0x2+0y7) + 40x20y2(1-13) 2(0x2+03) b) Supersuno: que (31=1 Dam: 181=1 (=) 82=1(=)1-82=0 (Exp1 = \frac{1}{2} + \langle \sigma x + \sigma x + \sigma x \frac{1}{2} \rightarrow \frac{1}{2} \sigma \fra 2(0 2 +0,2) ニュナラニノ (Expl= \frac{1}{2} - \langle (\sigma_2^2 + \sigma_3^2) \frac{1}{2(\sigma_2^2 + \sigma_3^2)} = \frac{1}{2(\sigma_2^2 + \sigma_3^2)} \frac{1}{2(\sigma_2^2 + \sigma_3^2)}

= = = = = 0/

JENZ= 1 + V(0,210,2)2-40,20,27 ,. (4) 2/0 2 10,") => \(\sigma_x^2 + \sigma_i^2\) + 40x20y2 = \(\sigma_i^2 - 20,0, 40;^2\) (\sigma_i^2 + 0;^2) (\sigma_i^2 + 0;^2) = (0x2+0x2)2(0x2-0x2)2= (0x2+0x2)(0x2-0x2) Sustiflyunde on To d) Estander: zade ox =0 =1 1/2 Exp 1, 2 = \frac{1}{2} \frac{1}{1+1} - \frac{4}{1} \frac{1}{1-1} \frac{1}{1-9} = \frac{1}{2} \frac{1}{4} - \frac{1}{1-9} \frac{2}{1} = \frac{1}{2} \fra Jngi=iranoso Mi= [1 muja Bujo i (Clasa bajo Medi [O e.O.C.]

Notenos que (a base os hambre de clase alta. $\frac{\left(\frac{p_{i}}{1-\hat{p}_{i}}\right)}{\left(\frac{p_{i}}{1-\hat{p}_{i}}\right)} = e^{1.2} = \left(e^{1.2}-1\right) \times 100\% = 232.01\%$

Memi aunate 232,01% si consoles en una acided elingroso

Hombre a muyer.

$$\frac{\left(\frac{\rho_{i}'}{1-\rho_{i}'}\right)}{\left(\frac{\rho_{i}'}{1-\rho_{i}'}\right)} = e^{0.98} = 1\left(e^{0.98}-1\right) \times 100\% = 166.44\%$$

Memio aumenta 188, 44 % de hembre a nuyer

Alta a baje

$$\frac{\left(\frac{p_{i}^{2}}{1-p_{i}^{2}}\right)}{\left(\frac{p_{i}^{2}}{1-p_{i}^{2}}\right)} = e^{-1.05} = 7 \left(e^{-1}\right) \times 100\% = -65,006\%$$

Mamio disminup 65% de deso alta . baja

Alta a Media

$$\frac{\left(\frac{\hat{p}_{i}^{2}}{1-\hat{p}_{i}^{2}}\right)}{\left(\frac{\hat{p}_{i}^{2}}{1-\hat{p}_{i}^{2}}\right)} = e^{-0.75} = i\left(e^{-0.75} - 1\right) \times 100 = -52.76\%$$

Momis des mi me si posos de abla a media en 52.76%

Danla tobla del examen IC = internale confrianza)

IC (Mid Media) = (0,173, 1,284)

in Ordenado al origon y nivel muelio no son significations

Asimisme

1& IC (Ingreso) 1& IC (Mujer) 1& IC (Nivel Byjo) Si son variables
Significatives of 95%