Notes for University Physics

Zhao Wenchuan

October 16, 2021

Contents

1	Vector Spaces			
	1.1	Linear Combinations	2	2
	1.2	Line and Plane	3	3

Chapter 1.

Vector Spaces

§1.1 Linear Combinations

Definition 1.1.1. Let $\langle \mathbf{v}_i \rangle_{i=1}^n$ be a sequence such that for any $i \in \{1, \dots, n\}$, $\mathbf{v}_i \in \mathbb{R}^n$.

The linear span of $\langle \mathbf{v}_i \rangle$, denoted span $\langle \mathbf{v}_i \rangle$ is a subset of \mathbb{R}^n defined as

$$\operatorname{span}\langle \mathbf{v}_i \rangle := \{ \mathbf{a} \cdot \langle \mathbf{v}_i \rangle : \mathbf{a} \in \mathbb{R}^n \}.$$

An element $\mathbf{u} \in \mathbb{R}^n$ is a linear combination of $\langle \mathbf{v}_i \rangle$ iff

$$\mathbf{u} \in \operatorname{span}\langle \mathbf{v}_i \rangle$$
.

Definition 1.1.2. With the conditions above, for any $i, j \in \{1, ..., n\}$, \mathbf{v}_i and \mathbf{v}_j are said to be *linearly dependent* iff there exists $t \in \mathbb{R}$, such that

$$\mathbf{v}_i = t\mathbf{v}_j.$$

 \mathbf{v}_i and \mathbf{v}_j are linearly independent iff they are not linearly dependent.

Note 1.1.1. By definition of inner product, that is

$$\mathbf{u} = \sum_{i=1}^{n} a_i \mathbf{v}_i.$$

Note 1.1.2. Let $\langle \hat{\mathbf{e}}_i \rangle_{i=1}^n$ be a sequence, and for any $i \in \{1, \dots, n\}$,

$$\hat{\mathbf{e}}_i := \langle 0, \dots, 1, \dots, 0 \rangle.$$

Then, for any $\mathbf{u} \in \mathbb{R}^n$, the linear combination form of \mathbf{u} is

$$\mathbf{u} = \sum_{i=1}^{n} u_i \hat{\mathbf{e}}_i.$$

Lemma 1.1.1. With the conditions in Definition 1.1.1,

$$\operatorname{span}\langle \mathbf{v}_i \rangle = \mathbb{R}^n$$

iff for all $i, j \in \{1, ..., n\}$ with

§1.2 Line and Plane

Definition 1.2.1. Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$, where $\mathbf{a} \neq \mathbf{b}$. Let $L_{\mathbf{ab}} : \mathbb{R} \to \mathbb{R}^n$ be a mapping defined as

$$L_{\mathbf{a}\mathbf{b}}(t) := \mathbf{a} + t(\mathbf{b} - \mathbf{a}).$$

The line $\overline{\mathbf{ab}}$ through \mathbf{a} and \mathbf{b} is defined as the image of \mathbb{R} under L; i.e.,

$$\overline{ab} := L_{ab}[\mathbb{R}].$$

With \mathbf{a} and \mathbf{b} as *end points*, we define

- (i) $L_{ab}[[0,1]]$ as closed segment,
- (ii) $L_{ab}[(0,1)]$ as open segment,
- (iii) $L_{ab}[(0,1]]$ as half-open segment,
- (iv) $L_{ab}[[0,1]]$ as half-closed segment.

Definition 1.2.2. Let $\mathbf{a} \in \mathbb{R}^n$ and $\mathbf{u} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$.

The plane through ${\bf a}$ and orthogonal to ${\bf u}$ is defined as

$$P := \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{u} \cdot (\mathbf{x} - \mathbf{a}) = \mathbf{0} \}.$$