

§9.3

Dr. Basilio

utline

Guiding Questions

Separable EQs

§9.3: Separable Equations

Ch 9: Differential Equations
Math 5B: Calculus II

Dr. Jorge Eduardo Basilio

Department of Mathematics & Computer Science Pasadena City College

Class #8 Notes

March 19, 2019 Spring 2019

Outline

§9.3

Dr. Basilio

Outline

Guiding Questions

arable EQs

Guiding Questions

Separable Equations

Guiding Questions for §9.3

§9.3

Dr. Basilio

Outline

Guiding Questions

Separable EQs

Guiding Question(s)

1 What are separable equations and how can solve them?

Separable Equations - Introduction

§9.3

Dr. Basilio

Outline

Guiding Questions

- Differential equations can be very hard to solve. So far, we've looked at:
 - Solutions to a few DE:
 - Natural Growth/Decay: $\frac{dy}{dx} = ky \rightarrow y = Ce^{kx}$
 - Newton's Law of Cooling: $\frac{dT}{dt} = k(T T_S) \rightarrow T(t) = T_S + Ce^{kt}$
 - Using anti-differentiation: $\frac{dy}{dx} = f(x) \rightarrow y(x) = \int f(x) dx$
 - The qualitative behavior of a DE. That is, how the DE can tell us about the shape of the solutions.
 - Slope Fields to help us visualize solutions
 - Euler's method to approximate solutions (numerical algorthim)

Separable Equations - Introduction

§9.3

Dr. Basilio

Outline

Guiding Questions

Separable EQs

• Let's look again at how we solved DEs of the form: $\frac{dy}{dx} = f(x)$.

$$\frac{dy}{dx}dx = f(x)$$

$$\int \frac{dy}{dx}dx = \int f(x)dx$$

$$y(x) = \int f(x)dx$$

- So can we generalize this simple trick to solve more complicated DEs?
- Yes, and we've given them a name: separable equations.

§**9**.3

Dr. Basilio

Outline

Guiding Questions

Separable EQs

Recall we looked at DE of the form, $\frac{dy}{dx} = F(x, y)$, but didn't try to solve them and instead looked at their slope fields. This gave us a general idea about the solution curves.

Definition 1: Separable Equations

• The separable equation is a DE of the form where F(x, y) = f(x)g(y), or

$$\frac{dy}{dx} = f(x)g(y)$$

• That is, the right-hand side is a product of a function in x only and a function in y only.

Examples

The following DEs are all separable equations:

(a)
$$\frac{dy}{dx} = x^2y^2$$

(b) $\frac{dy}{dx} = \frac{x^2}{y^2}$

(d)
$$\frac{dy}{dx} = y$$

(b)
$$\frac{dy}{dx} = \frac{x^2}{y^2}$$

(e)
$$y' = \frac{6x^2}{2y + \cos(y)}$$

(c)
$$y' + xe^y = 0$$

(f)
$$\theta e^{t^2} \frac{d\theta}{dt} = t \sec(\theta)$$

The following are NOT separable equations:

(g)
$$\frac{dy}{dx} = x^2 + y^2$$

(h)
$$\frac{dy}{dx} = (x + y)^2$$

How to solve Separable EQs

- The name comes from the fact that we can "separate the derivative" $\frac{dy}{dx}$ into two pieces dy and dx and because the right-hand side is a product f(x)g(y) we can re-arrange the DE by "separating each variable on one side of the equal sign."
- Here's the general strategy to solving these DEs:

•
$$\frac{dy}{dx} = f(x)g(y)$$

• $\frac{dy}{dx} = f(x)g(y)$ • $\frac{dy}{g(y)} = f(x)dx$ ("separate the x and y") • $\int \frac{dy}{g(y)} = \int f(x) dx$

•
$$\int \frac{dy}{g(y)} = \int f(x) \, dx$$

- After integrating both sides, we try to solve for y (or just leave it as an equation)
- We call this technique "separation of variables".

§9.3

Dr. Basilio

§9.3

Dr. Basilio

Separable EQs

Activity 1:

Find the general solutions of the following separable equations:

(a)
$$y \frac{dy}{dx} - x = 0$$

(b) $y' = -ty$

(b)
$$y' = -ty$$

§9.3

Dr. Basilio

ıtline

Guiding Questions

§9.3

Dr. Basilio

Outline

Guiding Questions

Separable EQs

Activity 2:

(a) Solve the IVP:

$$y' = \frac{xy^3}{1+x^2}; \quad y(0) = -1$$

(b) Discuss the maximal interval where the solution exits (called an interval of validity).

§9.3

Dr. Basilio

ıtline

Guiding Questions