Alma Mater Studiorum - Università di Bologna Scuola di Scienze

A privacy-preserving Al-based Intent Recognition engine with Probabilistic Spell-Editing for an Italian Smart Home Voice Assistant

Paola Persico

Relatore: Controrelatore:

Chiar.mo Prof. Chiar.mo Prof.

Danilo Montesi Maurizio Gabbrielli

Corso di Laurea Magistrale in Informatica A.A. 2022/2023 - Sessione II

Summary

- Motivation
- State of the Art of Voice Assistants for a Smart Home
 - Proprietary Solutions
 - Open-Source Solution: Home Assistant
- Our Proposal: Converso
 - Spelling Correction
 - Intent Recognition
- Experimental results
- Conclusions

Motivation

- The market of smart appliances is expanding
- Smart home control via Voice Assistant is especially useful for:
 - people who temporarily require a hands-free interaction
 - people with disabilities
 - old people

State of the Art: Proprietary Solutions

- Most popular solutions:
 - Amazon Alexa, Google Home, Apple HomeKit
- The privacy issue: speakers are always listening
 - audio signals are sent to the cloud
 - possible data leakage and abuse of recordings
 - possible accidental triggers

State of the Art: Open-source solution

Home Assistant

- "Open source home automation that puts local control and privacy first [...] Perfect to run on a Raspberry Pi or a local server."
- Abstraction: appliances are *entities* with *state* + *attributes*

State of the Art: Open-source solution

Assist Pipeline

- STT (e.g. Whisper)
- Intent Recognition (e.g. Hassil)
- TTS (e.g. Piper)
- The accuracy issue
 - STT models struggle with the Italian language
 - Intent Recognition via Template Matching is not flexible

Our proposal: Converso

A new Intent Recognition engine for a Voice Assistant for the control of a smart home in the Italian language

■ Requirements:

- high accuracy (> 60%)
- low delay (< 5 s)</p>
- privacy-preservation (no data on cloud)
 - local → low resource consumption

Converso: Spelling Correction

- **Error detection**: unlikely unigrams and bigrams
 - Domain vocabulary (dataset + custom entities)
 - Frequency hash-tables (WaCky corpus)
- Candidates generation: Damerau-Levenshtein edit distance
 - 3 stages: increasing edits/vocabulary
- Candidate selection:

improvement threshold

 $P(w_i)$

 $P(w_i|w_{i-1})$

Converso: Intent Recognition

- Multi-Class Multi-Label classification:
 - Intent, Slots (Domain, Device Class, State), Response
- Synthetic dataset generated via FB CF Grammar
 - 200+ productions, e.g.:

 Climate[NUM=sg, GEN=m, ART=il] → 'riscaldamento' | 'condizionatore' | 'termosifone'
 - 42k text commands (230 unique classes)
- Preprocessing
 - tokenization → stop-word removal → Word2Vec → scaling
- **Grid search** with k-fold cross-validation
 - Best model: Linear SVM

Experimental results

Experiment

- 10 participants
- STT: Whisper base-int8
- ESP-32 satellite
- 360 commands

Results

■ Spell-editing → lower WER

"Pegni lucci camera dune"

"Spegni lampadina"

■ Embeddings → higher flexibility

Conclusion

- Converso is more **privacy-preserving** than market solutions
 - no recording is sent to the Internet
- Converso is more accurate than open-source solutions
 - due to spell-editing and embeddings
- Future work
 - generate and gather more data to improve accuracy
 - reduction of delay of spell-editing
 - add more intents

Thank you for your attention