Objectifs:

- détection de mouvement

Partie TD

Mesures par différence d'images successives

- 1 Pour détecter le mouvement dans le cas d'un fond statique, on propose la technique suivante :
- 1ère étape : Calcul de la différence $\mid I_{t+1}$ -I $_t \mid$
- 2ème étape : Binarisation de l'image différence

Sur les 2 images ci-dessous, calculer l'image $| I_{t+1} - I_t |$

Image instant 't'

Image instant 't+1'

 $|I_{t+1} - I_t|$

2 - Proposer un seuil de binarisation, et calculer le résultat de la binarisation de | I

 $|I_{t+1} - I_t|$

Image binaire

Dans la pratique, comment devra-t-on choisir le seuil de binarisation ?

3 - On suppose disposer de 3 images. Proposer une solution pour détecter l'objet en mouvement dans l'image à l'instant 't'.

Image instant 't-1'

Image instant 't'

Image instant 't+1'

binarisation ($|I_t - I_{t-1}|$)

binarisation ($|I_{t+1} - I_t|$)

Résultat final

Construction d'une référence par accumulation

On dispose d'une séquence de N images constituée d'un fond sur lequel se déplace un objet de petite taille.

- 4 Pour reconstruire le fond, on fait la moyenne, pour chaque pixel, de toutes les images de la séquence. Écrire l'algorithme correspondant.
- 5 Justifier qualitativement le fait que cette méthode permette bien de reconstituer le fond ?
- 6 On considère un pixel particulier. Sur les N images de la séquence, ce pixel a l'intensité du fond (If) sur (N k) images et l'intensité (Io) d'un objet en déplacement sur k images. Donner l'intensité reconstruite du fond dans les configurations suivantes :

N	k	I_{f}	I_{o}	I _f reconstruite	erreur
100	10	50	200		
500	10	50	200		

Partie TP en Python

Mesure de mouvement par différence d'images successives

- 1 On considère les images de test im1_TP14.bmp et im2_TP14.bmp. Détecter le mouvement dans ces images par la méthode des différences d'images.
- 2 Refaire la mesure avec les images im1_TP14.bmp et im3_TP14.bmp. Que constate-t-on?
- 3 Modifier le programme ci-dessus pour détecter le mouvement avec trois images. Faire le test du programme avec les images im1_TP14.bmp , im2_TP14.bmp et im4_TP14.bmp
- 4 Traitement de vidéo : avec la fonction stream = cv2.VideoCapture (maVideo), chargez une vidéo et lisez chacune des images avec la fonction valid, frame = stream.read(). Pour chaque image, détecter le mouvement dans des séquences d'images (faire le test sur les 2 séquences fournies sur le disque commun film d'animation et entrée parking). On comparera les performances selon que l'on utilise 2 ou 3 images.

Mesure de mouvement par construction d'une référence

- 5 Écrire le programme permettant la construction d'une image de référence. Tester le programme sur les 2 séquences précédentes. Commenter les résultats.
- 6 A partir de cette référence, écrire le programme permettant la détection du mouvement. Commenter les résultats.