

Réseau personnel sans fil (WPAN)

Wireless personal area networks: Overview

Lecturer: Keun-Woo Lim

COMASIC

22-09-2020

Bienvenue dans le monde de WPAN

- technologies spécifiques de WPAN
 - IEEE 802.15.4
 - 6LoWPAN
- **■** TPs utilisant FIT/lot-LAB
 - Capteurs pour WPAN
- Exercices de WPAN et FIT/lot-LAB
 - Communication / Reseau / Application

avant d'entrer dans les détails ...

- Nous devons savoir: Qu'est que le WPAN?
- Je vais vous expliquer brièvement l'aperçu
 - Applications?
 - Pourquoi utiliser le WPAN?
 - Quelles sont les exigences?

Aperçu général

Qu'est ce que le WPAN?

- C'est un réseau
 - réseau autour d'un individu
 - réseau sans fil
- Connexion d'appareils dans votre vie

WPAN

Applications de WPAN

■ Connexion d'appareils (sans fil → "cordless")

Capteurs sans fil

Considéré comme une technologie essentielle pour les capteurs

Applications de WPAN

automatisation de la maison (maison intelligente)

Applications de WPAN

■ localisation à l'intérieur

Quelque chose de plus familier

■ Bluetooth = WPAN

Applications de WPAN

- Il y a beaucoup d'applications!
 - bâtiments intelligents
 - voitures intelligentes
 - soins de santé sans fil
 - surveillance de la nature
 - Etc.
- vous pouvez créer vos services de WPAN!

Quelles sont les technologies WPAN?

IPv6-based Low-power Wireless Personal Area Networks

wibree

Un peu d'histoire...

- terme généralisé par IEEE 802.15
 - standardisation pour WPAN
 - IEEE 802.15.1 → ancien Bluetooth
 - IEEE 802.15.4 → technologie de base pour Zigbee,
 6LoWPAN
- avec la différence d'autres standardisations connexes
 - 802.11 (WLAN) : Wi-Fi
 - 802.16 (WMAN): WiMAX
 - 802.22 (WRAN): TV white space

Un peu plus details...

IEEE 802.15 Wireless Personal Area **Network (WPAN) Working Group** Task Group 1 WPAN/Bluetooth™ Task Group 2 Coexistence Task Group 3 WPAN High Rate Task Group 4 WPAN Low Rate Task Group 5 WPAN Mesh

récemment...

- Il existe de nombreux consortiums pour WPAN
- Bluetooth SIG
 - Blueooth LE, 5
- Zigbee Alliance
 - Zigbee
- IETF
 - 6LoWPAN
- Etc.

Caractéristiques de WPAN

Courte portée

- <100m pour Zigbee
- <10m pour Bluetooth classique

Taux bas

- 1~2Mbps pour Bluetooth
- < 10Mbps pour 802.15.4

Topologies de réseau

■ selon IEEE 802.15.4

Topologies de réseau

selon Bluetooth

Topologies de réseau

selon Bluetooth LE et 5

Question!

■ Pourquoi WPAN?

- Courte portée
- c'est lent
- les services sont limités

Pourquoi utiliser WPAN?

- WMAN a plus de portée!
- WLAN a vitesse plus rapide!
- Cellulaire a meilleure prestation de services!

la réponse

■ Portée courte?

- C'est bon!
- moins d'interference

■ Lent?

 les services de WPAN n'ont pas besoin de vitesse élevée

Efficacité énergétique!

priorité absolue

Performance de WPAN

	WiFi	Bluetooth	Zigbee	6LoWPAN	UMTS
Peak Data	High	Medium	Low	Low	Medium
Range	Medium	Low	Medium	Medium	High
Power	High	Low	Very Low	Very Low	Very High
Native IPv6	Yes	*No	*No	Yes	Yes
Topology	Star	Star	Mesh	Mesh	Star
Consortium	WiFi-Alliance	Bluetooth SIG	Zigbee Alliance	IETF, Google	3GPP

^{*} Both Bluetooth and Zigbee are working to bring Native IPv6 in future specification

https://www.linkedin.com/pulse/20141113232539-28901359-iot-connecting-the-dots-part-2

Efficacité énergétique

	Wi-Fi	Zigbee	Bluetooth Low Energy
Sleep	10 μW	4 µW	8 µW
Receive (Rx) Power	90 mW	84 mW	28.5 mW
Transmit (Tx) Power	350 mW	72 mW	26.5 mW
Average Power for 10 Messages Per Day	500 μW	414 μW	50 μW

https://www.rfidjournal.com/articles/view?11062

Architecture de la pile WPAN

- Il n'y a pas de solution de pile unique pour WPAN
 - toutes les technologies ont une pile de réseau différente
- Toutefois, les objectifs et la portée sont similaires

exemples de la pile WPAN

exigences de la couche PHY

Faible consommation d'énergie

- Utilise une modulation plus résistante aux erreurs
 - Bluetooth: GFSK (1Mbps) (802.11ac: 256-QAM, >1Gbps)
- Contrôle de puissance
 - moins d'interférence aussi

utilisation de canaux plus petits

- 1~10MHz canaux (Wi-Fi: 20 ~ 160MHz)
- meilleure sensibilité / fiabilité

Un example

exigences de la couche MAC

■ Faible consommation d'énergie (encore)

- Rapport cyclique
 - L'appareil s'endort

Par exemple,

- appareil de mesure avec intervalle de données de 60 secondes
 - L'appareil peut dormir pour 59 seconds (rapport cyclique 1.6%)

Un example

IEEE 802.15.4 Duty cycle

Exigences de la couche réseau

Service à grande échelle

- Compatibilité avec autres services
- Facile à utiliser
- Facile à trouver

Par exemple,

- 6LoWPAN utilise IPv6 pour utilisation globale
- Et compatibilité aussi

exigences de la couche Routage

■ Faible consommation d'énergie (et encore...)

- Les protocoles de routage multi-hop peuvent entraîner une grande complexité dans un réseau
- doit être efficace!

Par exemple,

- RPL dans 6LoWPAN
- Zigbee routage

Question

- Connaissez-vous les differences entre les protocoles routages filaire vs sans fil?
 - algorithme?
 - efficacité énergétique?
 - comprenez-vous pourquoi il existe des protocoles de routage sans fil?

Une exemple d'efficacité énergétique

Problem with bad routing with extra hops

Institut Mines-Télécom

Une exemple d'efficacité énergétique

Control message problem

D's Link State Database

A #2	B #1	C #1	D #1	E #1
B/inf D/1	A/1	B/1	E/1	D/1
D/1	C/1	D/1	A/1	C/1
	E/1			B/1

A #2	B #2	C #1	D #1	E #1
B/inf	A/inf	B/1	E/1	D/1
D/1	C/1	D/1	A/1	C/1
	E/1			B/1

Copyright @ 1998

Internet Routing Protocols: Fundamental Operation

25

exigences de la couche de sécurité

- doit être sécurisé! (bien sûr)
- en même temps, doit avoir une faible complexité!
 - les méthodes d'authentification / cryptage solides ne peuvent pas être utilisées
 - problème énergétique!
 - doit avoir une faible complexité / faible échange de transmission

Plate-forme logicielle FIT/loT-Lab

Un rapide résumé...

Quelles sont les plates-formes matérielles dans FIT / lot-Lab?

Capteurs dans IoT?

- En fait, qu'est-ce que l'loT?
 - Appareils connectés
 - Mise en réseau de tous les appareils
- Les capteurs sont un sous-ensemble de ces appareils
 - Tout appareil qui détecte un phénomène physique à enregistrer en tant que donnée = un capteur

le travail du capteur

Détecter

Après tout, c'est un capteur

La communication

 Capable de donner ses données à un serveur / utilisateur

Réseau

- Transférer les données d'un autre capteur
- Gérer efficacement le réseau pour la longévité du service

Qu'est-ce qui permet la connexion de capteurs?

■ Détection et communication, c'est tout bon, mais quelque chose manque?

un indice:

Plate-forme logicielle

- Nous utilisons les plates-formes logicielles pour contrôler tous les aspects d'un appareil capteur et son réseau
 - Activation / désactivation de la détection
 - Activation / désactivation de la communication
 - Mise sous / hors tension de l'appareil
 - Commandes du logiciel
- Etc.

Sans plate-forme logicielle...

- si les capteurs sont de simples firmwares?
 - Stupide vs Intelligent
 - Après tout, c'est ce que les OS sont pour ... pour rendre l'ordinateur plus intelligent!

Types de plates-formes logicielle

- Il existe de nombreux types de plates-formes disponibles
 - Embedded linux
 - TinyOS
 - Contiki
 - RIOT
 - Etc.
- Mais pourquoi différentes plates-formes ???
 - Meilleure performance
 - Meilleure compatibilité

TinyOS

- Réseau de capteurs OS développé par UC Berkeley
- Très petite taille de codage
- Utilisation du langage de programmation nesC
 - Bon ou Mauvais?
- Grande communauté

TinyOS architecture

Typical Application architecture

Contiki

- Créé par Adam Dunkels Suède
- Multitâche autorisé par multithreading
 - Préemption
 - GUI forte Cooja
- Plus lourd que TinyOS mais aussi plus puissant!
 - La plus petite pile IPv6 lors du premier développement
- Grande communauté

The Open Source OS for the Internet of Things

Contiki Contexte

- Chargement dynamique des programmes (par opposition à statique)
 - Dynamic loading
- Exécution gérée simultanée multithread
 - En plus d'événements entraînés
 - Evénement utilisateur, Evénement Thread, etc.
- Disponible sur MSP430, AR, HC12, x86 ...
- Supporter le simulateur Cooja

Objectifs de Contiki

- "mote" device
 - 10-100 Ko de code FROM
 - 1-10 Ko de RAM
 - la communication

Système d'exploitation embarqué

vous vous souvenez??

Contiki dans FIT/lot-Lab

```
Makefile.include
                                                      README_md
apps
                 doc
CONTRIBUTING.md examples
                                  platform
                                                       regression-tests
                 iotlab.makefile README-BUILDING.md
core
                                                      tools
                 lib
                                  README-EXAMPLES.md
cpu
dev
                 LICENSE
                                  README-IOT-LAB.md
klim@grenoble:~/iot-lab/parts/contiki$ cd examples
klim@grenoble:~/iot-lab/parts/contiki/examples$ ls
antelope
                       fat
                                        nrf52dk
                                                           sky-shell-webserver
avr-rss2
                       ftp
                                        openmote-cc2538
                                                          stm32nucleo-spirit1
cc2530dk
                       galileo
                                        ping-ipv6
                                                           tcp-socket
                       hello-world
cc2538-common
                                        powertrace
                                                           telnet-server
cc2538dk
                       http-socket
                                        ravenusbstick
                                                           timers
cc26xx
                       iotlab
                                        rime
                                                           trickle-library
cfs-coffee
                       ip64-router
                                        rime-tsch
                                                          udp-ipv6
collect.
                       ipso-objects
                                        rssi-scanner
                                                           udp-stream
                       ipv6
                                                           webbrowser
econotag-ecc-test
                                        seedeye
                                                           webbrowser-80col
econotag-flash-test
                                        sensniff
                       irc
eeprom-test
                       irc-80col
                                        servreg-hack
                                                           webserver
email
                       jn516x
                                        settings-example
                                                          webserver-ipv6
                       llsec
                                                           webserver-ipv6-raven
er-rest-example
                                        sky
er-rest-example-raven mbxxx
                                                           websockets
                                        sky-ip
example-shell
                       multi-threading
                                        sky-shell
                                                          wget
extended-rf-api
                       netperf
                                        sky-shell-exec
                                                           zolertia
klim@grenoble:~/iot-lab/parts/contiki/examples$
```


familier?

Contiki dans FIT/lot-Lab

```
cc2538-common
                       hello-world
                                        powertrace
                                                          telnet-server
cc2538dk
                       http-socket
                                        ravenusbstick
                                                          timers
cc26xx
                       iotlab
                                        rime
                                                          trickle-library
cfs-coffee
                       ip64-router
                                        rime-tsch
                                                          udp-ipv6
collect
                       ipso-objects
                                        rssi-scanner
                                                          udp-stream
econotag-ecc-test
                       ipv6
                                        seedeve
                                                          webbrowser
                                        sensniff
                                                          webbrowser-80col
econotag-flash-test
                       irc
eeprom-test
                       irc-80col
                                        servreg-hack
                                                          webserver
email
                       in516x
                                        settings-example webserver-ipv6
er-rest-example
                       llsec
                                                          webserver-ipv6-raven
                                        sky
er-rest-example-raven mbxxx
                                        sky-ip
                                                          websockets
example-shell
                       multi-threading sky-shell
                                                          wget
extended-rf-api
                       netperf
                                        skv-shell-exec
                                                          zolertia
klim@grenoble:~/iot-lab/parts/contiki/examples$ cd ipv6
klim@grenoble:~/iot-lab/parts/contiki/examples/ipv6$ ls
http-server native-border-router rpl-tsch
                                                   sky-websense
ison-ws
             rpl-border-router
                                   rpl-udp
                                                   slip-radio
multicast
             rpl-collect
                                   simple-udp-rpl
klim@grenoble:~/iot-lab/parts/contiki/examples/ipv6$ cd rpl-udp
klim@grenoble:~/iot-lab/parts/contiki/examples/ipv6/rpl-udp$ ls
Makefile
                 rpl-udp.csc
                                         rpl-udp-scale-wismote.csc
Makefile.target rpl-udp-powertrace.csc udp-client.c
project-conf.h
                 rpl-udp-scale.csc
                                         udp-server.c
klim@grenoble:~/iot-lab/parts/contiki/examples/ipv6/rpl-udp$ make TARGET=iotlab-m3
```


Pour les personnes qui ne sont pas familières

- C'est bon, il y a beaucoup de tutoriels qui peuvent être facilement suivis
 - Sans connaissances sur Contiki

Operating Systems

Contiki

Contiki

WSN430 nodes radio example

Rime communication stack example.

Contiki

Get and compile firmware for M3 and A8-M3 nodes

Compile sensors collecting

firmware example.

Contiki

Private IPv6/6LoWPAN/RPL network with M3 nodes

- From SSH frontend
- · From your computer

Contiki

Public IPv6/6LoWPAN/RPL network

- With M3 nodes
- With A8-M3 nodes

Contiki

CoAP server with public IPv6/RPL/6LoWPAN network

CoAP server example

Contiki

CoAP/RPL/TSCH

CoAP server running on top of a RPL/TSCH network

RIOT

Contiki Réseau pile architecture

Notre architecture de pile

Radio / MAC - IEEE 802.15.4

Radio

■ Tous les appareils basés sur 802.15.4 PHY

http://www.atmel.com/images/doc8111.pdf

MCU		ARM Cortex M3, 32-bits, 72 Mhz, 64kB RAM – ST2M32F103REY			
sensors		Ambient sensor light – ISL29020			
		 Atmospheric pressure and temperature – LPS331AP 			
		 Tri-axis accelerometer/magnetometer – L3G4200D 			
		Tri-axis gyrometer – LSM303DLHC			
radio communication		802.15.4 PHY standard, 2.4 Ghz – AT86RF231			
System on Module	High-performand	ce ARM Cortex-A8 microprocessor, 600 Mhz, 256 MB – Variscite VAR-SOM-AM35 CPU			
co-microcontroller					
	мси	ARM Cortex M3, 32-bits, 72 Mhz, 64kB RAM - ST2M32F103REY			
	sensors	Tri-axis accelerometer/magnetometer – L3G4200D			
	36113013	The axio documental magnetonical Look Look			

802.15.4 PHY standard, 2.4 Ghz AT86RF231

radio communication

IEEE 802.15.4

■ Une norme pour WPAN PHY/MAC (Bas debit)

Beaucoup de solutions WPAN l'utilisent

Application Network	ZigBee	6LoWPAN	Wireless HART	MiWi	ISA 100.11a
MAC	2.15.4	802.15.4	2.15.4	2.15.4	802.15.4
PHY	802.1	802	802.1	802.	802

MAC - Beacon-enabled CSMA/CA (Balise)

- Le coordonnateur envoie régulièrement des balises
- Période d'accès à la contestation
 - Contention Access Period (CAP). Slotted CSMA.
- Période sans contestation
 - Contention Free Period (CFP).
 - Services de transmission garantis (GTS): pour les services en temps réel.
- Partie inactive tous les nœuds dorment

Routing and Adaptation (6LoWPAN)

Importance de 6LoWPAN

Un réseau de capteurs est supposé avoir:

- De nombreux nœuds!
- Ils ont besoin d'un ensemble d'adresses étendues
- Aussi besoin de systèmes d'adressage automatique

Tous les réseaux doivent être connectés

Connecté à Internet? = Utiliser IPv4 ou IPv6

Pourquoi ne pas utiliser IPv4?

- Il est déjà assez congestionné
- IPv6 est énorme!

Application - CoAP

Qu'est-ce qu'une couche d'application?

- une pile qui permet et gère le transfert de données / application
 - Par des hôtes
 - Connexion aux serveurs qui ont les données / service

Étes-vous confus?

- PHY signalisation sans fil
- MAC contention pour utiliser la communication sans fil, à simple saut
- NET Communication multi-hop
- APP Communication hôte-serveur
 - Nous ne nous soucions pas des couches ci-dessous

CoAP

Constrained Application Protocol

- Protocole d'application utilisé pour les appareils contraints, comme les capteurs
- Agit comme HTTP, et aussi facilement adaptable avec HTTP

Pourquoi utiliser CoAP?

Protocole un-à-un

Connexion directe entre le serveur et le client

Compatibilité URL

- Facilement adaptable à l'architecture Internet actuelle
- coap: //sensor-network.com/1st-sensor
- Se connecte avec votre navigateur Web

Poids léger!

- Simple et adapté aux applications qui ont besoin d'UDP
- Réseaux de capteurs!

CoAP sur le web

- Sémantique compatible avec le web actuel
 - GET, POST, PUT, DELETE
 - Identique à HTTP
- **■** Fonctions dans le Web possible aussi
 - Mise en cache
 - Proxies
 - Etc.

Exemple de messagerie dans CoAP

```
Header: GET (T=CON, Code=1, MID=0x7d34)
         Uri-Path: "temperature"
GET
          Header: 2.05 Content (T=ACK, Code=69, MID=0x7d34)
          Payload: "22.3 C"
2.05
                 GET=1
                                      MID=0x7d34
                "temperature" (11 B) ...
                2.05 = 69
                                      MID=0x7d34
  "22.3 C" (6 B) ...
   Figure 16: Confirmable request; piggy-backed response
```


Résumons

GET /temperature

CoAP client

UDP

IPv6

6LoWPAN

CSMA

Contiki-MAC

RF-PHY

ACK Content « 12.4 »

CoAP server

UDP

IPv6

6LoWPAN

CSMA

Contiki-MAC

RF-PHY

Temp: 12.4

Notre objectif

II y aura 3 TP

- TP1 et TP2, nous allons nous concentrer sur l'utilisation des tutoriels sur FIT / IoT-Lab pour nous familiariser
- TP3, nous utiliserons les protocoles d'application pour concevoir une application simple et une solution de service!

