

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6679/01)

June 2009 6679 Mechanics M3 Mark Scheme

Question Number			Marks
Q1 (a)	6 Resolving vertice	Resolving vertically: $2T \cos \theta = W$	
	Hooke's Law:	4	M1A1 A1
(b)	EPE = $2 \times \frac{80 \times 3.5^2}{2 \times 4}$, = 245 (or awrt 245) (alternative $\frac{80 \times 7^2}{16}$ = 245)		M1A1ft,A1 [9]
Q2 (a)	Cone m $2h+3h$ Base $3m$ h Marker $4m$ d $m \times 5h +3m \times h = 4m \times d$		B1(ratio masses) B1(distances)
(b)	$\frac{d}{d} = \frac{1}{12}$ $6r = h$		A1 M1A1ft A1
			[8]

Question Number		
Q3 (a)	$R \sin \theta = mx\omega^{2}$ $R \times \frac{x}{r} = mx \times \frac{3g}{2r}$ $R = \frac{3mg}{2}$ $\frac{3mg}{2} \times \frac{d}{r} = mg$ $d = \frac{2}{3}r$	M1 A1 M1 A1 M1 A1 M1 A1 M1 A1 [8]
Q4 (a)	Volume = $\int_{\frac{1}{4}}^{1} \pi y^{2} dx = \int_{\frac{1}{4}}^{1} \pi \frac{1}{x^{4}} dx$ = $\left[\pi \times \frac{-1}{3x^{3}}\right]_{\frac{1}{4}}^{1}$ = $\pi(\frac{-1}{3} + \frac{64}{3}) = 21\pi$ $21\pi\rho\bar{x} = \rho\int \pi y^{2} x dx = \rho\int \pi \frac{1}{x^{4}} x dx$ $21\pi\bar{x} = \pi\left[\frac{-1}{2x^{2}}\right]_{\frac{1}{4}}^{1}$ $\bar{x} = \frac{1}{21}(\frac{-1}{2} + \frac{16}{2}) = \frac{5}{14}$ or awrt 0.36 $\bar{y} = 0$ by symmetry	M1A1 A1ft A1 M1A1 A1ft A1ft A1 [9]

Sch	eme	Marks
cos ⁻¹ 60°	Eliminate v^2 :	M1A1 M1A1
-	$T = mg \cos \theta + \frac{1}{l} (2mgl(\cos \theta - \frac{1}{4}))$ $T = 3mg \cos \theta - \frac{mg}{2}$	M1 A1
A d	$\theta = 60^{\circ} \Rightarrow mv^{2} = 2mgl(\frac{1}{2} - \frac{1}{4})$ $\Rightarrow v^{2} = \frac{gl}{2}$	M1
3/ 16	vertical motion under gravity: $0 = (v \cos 30^{\circ})^{2} - 2gs$	M1
	$0 = \frac{gl}{2} \times \frac{3}{4} - 2gs \Longrightarrow s = \frac{3l}{16}$	A1
	Distance below A = $\frac{l}{2} - \frac{3l}{16} = \frac{5l}{16}$	M1A1 [11]
60° V v cos 60	$\frac{1}{2}mv^{2} - mgl\cos 60 = \frac{1}{2}m(v\cos 60)^{2} - mgd$ $\frac{gl}{4} - \frac{gl}{2} = \frac{gl}{4} \times \frac{1}{4} - gd$ $d = \frac{1 - 4 + 8}{16}l = \frac{5l}{16}$	M1A1 M1 A1
	A d d 3/ 16	$(\frac{1}{2}mu^{2} +)mgl(\cos\theta - \frac{1}{4}) = \frac{1}{2}mv^{2}$ Resolving: $T - mg\cos\theta = \frac{mv^{2}}{l}$ Eliminate v^{2} : $T = mg\cos\theta - \frac{mg}{2} $ $\theta = 60^{\circ} \Rightarrow mv^{2} = 2mgl(\frac{1}{2} - \frac{1}{4})$ $\Rightarrow v^{2} = \frac{gl}{2}$ $0 = (v\cos 30^{\circ})^{2} - 2gs$ $0 = \frac{gl}{2} \times \frac{3}{4} - 2gs \Rightarrow s = \frac{3l}{16}$ Distance below $A = \frac{l}{2} - \frac{3l}{16} = \frac{5l}{16}$ $\frac{1}{2}mv^{2} - mgl\cos\theta - \frac{1}{2}m(v\cos\theta)^{2} - mgd$ $\frac{gl}{4} - \frac{gl}{2} = \frac{gl}{4} \times \frac{1}{4} - gd$

Question Number	Scheme	Marks
Q6 (a)	At max v, driving force = resistance $Driving force = \frac{80}{v}$	B1
	$\Rightarrow \frac{80}{20} = k \times 20^2 \Rightarrow k = \frac{1}{100}$	M1A1
	$F = \text{ma} \implies 100a = \frac{80}{v} - kv^2 (= \frac{8000 - v^3}{100v})$	M1
	$\Rightarrow v \frac{dv}{dx} = \frac{8000 - v^3}{10000v}$	A1
(b)	$\int_{4}^{8} \frac{10000v^{2}}{8000 - v^{3}} dv = \int_{0}^{D} 1 dx$	M1A1
	$D = \left[-\frac{10000}{3} \ln \left 8000 - v^3 \right \right]_4^8$	A1
	$= \left(-\frac{10000}{3} \ln \frac{7488}{7936}\right) = 193.7 \approx 194 \text{m} \text{(accept 190)}$	M1 A1
(c)	$\frac{dv}{dt} = \frac{8000 - v^3}{10000v} \Rightarrow \int_0^T 1 dt = \int_4^8 \frac{10000v}{8000 - v^3} dv$	M1A1
	$\Rightarrow T \approx \frac{1}{2} \times 2 \times 10000 \times \left\{ \frac{4}{7936} + \frac{2 \times 6}{7784} + \frac{8}{7488} \right\}$	M1 A1
	$\Rightarrow T(=31.1409) \approx 31$	[14]

Question Number	Scheme	Marks
Q7 (a)	m od=16 a=2 mod=12 a=1 A b 5m	
	d 5-d Hooke's law: Equilibrium $\Rightarrow \frac{16(d-2)}{2} = \frac{12(4-d)}{1}$	M1A1A1
	$\Rightarrow d = 3.2$ so extensions are 1.2m and 0.8m.	A1 A1
(b)	If the particle is displaced distance x towards \mathbf{B} then $-m\ddot{x} = \frac{16(1.2+x)}{2} - \frac{12(0.8-x)}{1} (= 20x)$ $\Rightarrow \ddot{x} = -40x \text{ or } \ddot{x} = -\frac{20}{m} (\Rightarrow \text{SHM})$	M1A1ft A1ft
(c)	$T = \frac{2\pi}{\sqrt{40}}$	B1ft
	$a = \frac{\sqrt{10}}{\text{their } \omega}$ $x = a \sin \omega t \text{ their } a, \text{ their } \omega$	B1ft M1
	$\frac{1}{4} = \frac{1}{2}\sin\sqrt{40}t$	A1
	$\sqrt{40t} = \frac{\pi}{6} (\Rightarrow t = \frac{\pi}{6\sqrt{40}})$	M1
	Proportion $\frac{4t}{T} = \frac{4\pi}{6\sqrt{40}} \times \frac{\sqrt{40}}{2\pi} = \frac{1}{3}$	M1A1 [16]