EE16A - Lecture 16 Notes

Name: Felix Su SID: 25794773

Spring 2016 GSI: Ena Hariyoshi

Negative Feedback Loop

Usually V^- is negative:

- $V_{err} = V_{in} V_{fb}$
- V_{fb} unchanged, $A>0,\ f>0$: V_{in} increases $\Rightarrow V_{err}$ increases $\Rightarrow V_{out}$ increases $\Rightarrow V_{fb}$ increases $\Rightarrow V_{err}$ decreases... V_{in} stabilizes
- Eq 1. $V_{out} = \frac{A}{1+Af} \cdot V^+$: Derivation at 27:34
 - Use resistors to determine f, which in turn determines the scaling factor of $\frac{V_{out}}{V_{in}}$
 - V_{out} scales V_{in} by a factor of $\frac{A}{1+Af}$
 - $V^- = V_{fb} = fV_{out} = \frac{fA}{1+Af} \cdot V^+$ (approaches 1 as $A \to \infty$)
- V_{out} approaches $\frac{1}{f} \cdot V^+$ as $A \to \infty$: Amps does not have to be very precise, just very large

• Changes to V_{in} should cause V_{err} to decrease (V_{fb} increases if V_{in} increases and decreases if V_{in} decreases)

NFL Equations

$$V_{out} = \frac{A}{1 + Af} \cdot V^+; \lim_{A \to \infty} V_{out} = \frac{1}{f} \cdot V^+$$
(1)

$$V^{-} = \frac{fA}{1 + Af} \cdot V^{+}; \lim_{A \to \infty} V^{-} = V^{+}$$
 (2)

Positive Feedback Loop

Usually V^- is positive:

- V_{in} continuously increases (V^+ is positive): V_{out} hits max rail
- V_{in} continuously decreases (V^- is negative): V_{out} hits min rail

Determining if Negative Feedback Exists

- 1. GR 1. $I^- = 0$, so analyze circuit between V_{out} and V_{fb}
- 2. $V_{fb} = \frac{R_2}{R_1 R_2} V_{out}$: $f = \frac{R_2}{R_1 R_2}$
- 3. Negative feedback exists

Analyzing complex OpAmp Circuits

 $\bullet\,$ Use GR 1 to locate open circuits (I=0)

- Split OpAmps by open circuits and V_{out}
- \bullet Determine if negative feedback loop exists (If positive feedback loop exists, V_{out} will hit the rails)
- \bullet Apply GR 2 with KCL to determine current flows
- ullet Analyze individual voltage drops across each resistor from V_{in} to V_{fb} to V_{out} to get V_{out}

Example OA_2 : Inverting Amplifier

- Inverts the sign and is determined by the ratio of the two resistors
- $V_{fb} = -\frac{R_2}{R_1} \cdot V_{out}$

Find Polarity of OpAmp

• Polarity of inverse amplifier should be the opposite sign of the disturbance (If V^+ is inserted as positive, the polarity of OpAmp must be negative to generate a proper negative feedback)