NOTA SULLA REGIONE DI CONVERGENZA

Viene indicata con σ che viene detta ascissa di convergenza

PROPRIETA' DELLA TRASFORMATA

1) LINEARITA'

(già di per sé l'integrale è un operatore lineare)

Linearità: per ogni coppia di segnali causali $f_1(t)$ e $f_2(t)$ e ogni coppia di costanti α_1 e α_2

$$\mathcal{L}\{\alpha_1 f_1(t) + \alpha_2 f_2(t)\} = \alpha_1 F_1(s) + \alpha_2 F_2(s)$$

Dimostrazione: dalla definizione

$$\mathcal{L}\{\alpha_{1}f_{1}(t) + \alpha_{2}f_{2}(t)\} = \int_{0}^{\infty} \left[\alpha_{1}f_{1}(t) + \alpha_{2}f_{2}(t)\right]e^{-st}dt =$$

$$= \alpha_{1}\int_{0}^{\infty} f_{1}(t)e^{-st}dt + \alpha_{2}\int_{0}^{\infty} f_{2}(t)e^{-st}dt$$

$$= \alpha_{1}F_{1}(s) + \alpha_{2}F_{2}(s)$$

2) TRASLAZIONE IN FREQUENZA

(compare un esponenziale nel tempo)

• moltiplicare per un esponenziale nel tempo causa una traslazione in frequenza

3) DERIVATA IN FREQUENZA

Prendendo t come costante quando facciamo la derivata rispetto a s e poi portando fuori dall'integrale:

• moltiplicare per t nel tempo equivale a derivare nel dominio di Laplace

4) DERIVATA NEL TEMPO

- Proprietà duale (equivale a moltiplicare per s in frequenza, tenendo conto della condizione iniziale f(0))
- Sfruttiamo alcune proprietà come la derivata del prodotto

La dimostrazione si esegue calcolando $\int_0^\infty (f(t)e^{-st})\,dt$ in due modi, e poi uguagliandoli

- il primo modo si fa sfruttando la derivata del prodotto
- il secondo modo si fa l'integrale della derivata

Infatti:

$$\int_{0}^{\infty} \frac{d}{dt} \left(f(t)e^{-st} \right) dt = \mathcal{L} \left\{ \frac{d}{dt} f(t) \right\} - s F(s)$$

$$\int_{0}^{\infty} \frac{d}{dt} \left(f(t)e^{-st} \right) dt = f(t)e^{-st} \Big|_{0}^{\infty} = \lim_{t \to \infty} f(t)e^{-st} - f(t)e^{-st} -$$

- Nota: s funge da operatore di derivazione
 - Ci permette questa proprietà di passare dalle equazioni differenziali a equazioni algebriche nel dominio di Laplace

5) INTEGRAZIONE NEL TEMPO

Dalla 4, si può interpretare s come operatore di derivazione. Quindi per l'integrazione prendiamo 1/s come operatore.

Integrazione nel tempo:

$$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s}$$

• Dati due segnali causali f(t) e g(t) definiamo la loro convoluzione

$$(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau = \int_0^t f(\tau)g(t-\tau)d\tau$$

6) CONVOLUZIONE

- vedi definizione di convoluzione in proprietà 5
 - Convoluzione nel tempo:

$$\mathcal{L}\left\{ (f * g)(t) \right\} = F(s) G(s)$$

- convoluzione nel tempo ←→ prodotto in Laplace
 - utile per la risposta forzata

[...] TRASFORMATE FONDAMENTALI

ESPONENZIALE CAUSALE

$$f(t) = e^{at} = 0$$

$$f(t) = e^{at} = 1$$

$$f(t)$$

SENO

Sfruttando le formule di Eulero e le proprietà appena descritte:

f(t)
$$F(s)$$

Repride 1 $X \{ a_1 f(t) + a_2 f_1(t) \} = a_1 F(s) + a_2 f_2(s) \}$

1(t) $\frac{1}{s}$

Repride 2 $f(t) = a_1 F(s) + a_2 f_2(s)$
 $e^{st} f(t) = f(s)$

Repride 2 $f(t) = f(s) = f(s)$
 $f(t) = sin (\omega + 1) + (t) = e^{st}$
 $f(t) = sin (\omega + 1) + (t) = e^{st}$
 $f(t) = sin (\omega + 1) + (t) = e^{st}$
 $f(t) = f(t) = f(s)$
 $f(t) = f(t) = f(s)$
 $f(t) = f(s)$
 $f($

Riscrivendo:

$$\frac{1}{2j} \frac{1}{(s-j\omega_0)} = \frac{1}{2j} \frac{1}{(s-j\omega_0)} = \frac{1}{2j} \frac{1}{(s-j\omega_0)} = \frac{1}{2j} \frac{1}{(s-j\omega_0)^2}$$

$$= \frac{\omega_0}{s^2 - j^2 \omega_0^2} = \frac{\omega_0}{s^2 + \omega_0^2}$$

POLINOMI

RAMPA UNITARIA

Rampa unitaria: $f(t) = t \cdot 1(t)$

• moltiplicazione per $t \longrightarrow$ proprietà 3

$$f(t) = t \cdot 1(t) \qquad \text{rampe unitaria} \qquad \qquad \begin{array}{c} \uparrow^{\pm 1(t)} \\ \uparrow^{\pm 1(t)}$$

RAMPA PARABOLICA

Rampa parabolica: $f(t) = t^2 \cdot 1(t)$

 $\bullet\,$ Posso riscrivere evidenziando la moltiplicazione per t

$$f(t) = t^{2} + (t) \quad \text{rempe benefities}$$

$$= t \cdot t + (t) \quad \text{on } g(t) = t + (t)$$

$$= t \cdot g(t)$$

Da cui:

$$2\{t^{2}+(t)\}-2\{t\cdot t+(t)\}-\frac{1}{ds}2\{t+(t)\}=-\frac{1}{ds}\frac{1}{s^{2}}=-\left(-\frac{2}{s^{2}}\right)-\frac{2}{s^{2}}$$

RAMPA DEL K-ESIMO ORDINE

Vale, per induzione:

$$t^k \cdot 1(t) \longleftrightarrow rac{k!}{s^{k+1}}$$

• partendo da $t^{k+1} = t \cdot \underbrace{t^k \cdot 1(t)}_{g(t)}$

IMPULSO DI DIRAC

- Area rettangolo unitaria avente base infinitesima (astrazione)
- Matematicamente: $\int_{-\infty}^{\infty} \delta(t) f(t) \, dt = f(0)$ (tutta l'energia concentrata in 0)
 - Eseguendo la trasformata:

$$\mathcal{L}\{\delta(t)\}=\int_0^\infty \delta(t)e^{-st}\,dt=e^{-st}|_{t=0}=1$$

• in maniera sempre astratta [funzioni generalizzate], può essere interpretato come la derivata dei gradini $\mathbf{1}(t)$ (incremento infinito)

Abbiamo quindi 3 modi di vedere l'impulso di Dirac

TABELLA TRASFORMATE

SEGNALE	$\mathbf{f}(\mathbf{t})$	$\mathbf{F}(\mathbf{s})$
Impulso unitario	$\delta(t)$	1
Gradino unitario	1(t)	1/s
Rampa unitaria	$t \cdot 1(t)$	$1/s^2$
Rampa parabolica unitaria	$(t^2/2)1(t)$	$1/s^3$
Esponenziale	$e^{at} 1(t)$	1/(s-a)
Sinusoide	$\sin(\omega_0 t) 1(t)$	$\omega_0/(s^2+\omega_0^2)$
Cosinusoide	$\cos(\omega_0 t) 1(t)$	$s/(s^2+\omega_0^2)$
Esponenziale×monomio	$(t^{\ell}/\ell!) e^{at} 1(t)$	$1/(s-a)^{\ell+1}$

Tutte le funzioni elementari hanno come trasformate delle funzioni razionali