Correlation: Relationship between two variable.

X and Y is called correlation.

Degree of association between these two variables is

called correlation coefficient().

(Harvest, Ramfall)

Types of Consolation:

(1) Positive correlation: 1 \$70

(ii) Negative Correlation: 9 Lo

(III) No correlation: g=0

(IV) Penfect & correlation: g = 1

(V) Perfect Hogetive correlation: g = -1

Methods to find Correlation!

(1) Coefficient of correlation or Kast from Pearson's correlation.

(ii) Speanman's Rank correlation.

-1 < 9 < 1

Karl Pearson's Coefficient: (Direct Mothed)

$$S = \frac{\sum (x - \overline{x}) (y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2} \cdot \sqrt{\sum (y - \overline{y})^2}} = \frac{Sxy}{Sx \cdot Sy}$$

find Karl peurson's coefficient?

)	,		,-	,	7 -121	(4-4)2	(x-x)(y-y) '	١
	x	4 1	(x-x) [(y-y)	(n-x) -	(3-1)	(A-15/0 //	+
_	-		₩-2	1-6	4	2.56	-3.2	
	1	1	1	1	,	5.76	2.4	
	2	3	€a -1	-2.4				
	3	4	-d10	-1.4	6	1.96		
	4	5	1	-0.4	1	0.19	-0.4	
	5	ଷ	- 2	1	4	6.76	5.2	
	,	V .	1	7.0	1	1	1	}
			1					

$$\int = \frac{4}{\sqrt{10}} \int \frac{17.2}{17.2}$$

$$= 0.3049$$

$$= 0.305$$

Assumed Mean Method!

Hssumed	l'lean l'	16-INDA ,	1/2	dx		
× 1	4	dx=(x-6)	dy = (4-8°)	(dx- dx)](dy-dy)	(dx-dx)(dy-a)
68	81	8	1	€ 6.76	40.96	3-17.16
62	87	2	7	11.56	0.16	2.04
63	92	3	12	5.76	21.16	₹ -10·56 ·
6.5	93	5.	13	0.16	31.36	605-2.16
69	8 5	9	5	12.96	5.76	-9.36

Take assume mean of x as 60

17 17 180

180

19 = 5.4

19 = 7.6

19 =
$$\frac{5(4x - 6x)}{5(4x - 6x)^2}$$

19 = $\frac{5(4x - 6x)}{5(4x - 6x)^2}$

10 | $\frac{5(4x - 6x)}{5(4x - 6x)^2}$

10 | $\frac{5(4x - 6x)}{5(4x - 6x)^2}$

10 | $\frac{5(4x - 6x)}{5(4x - 6x)^2}$

11 | $\frac{5(4x - 6x)}{5(4x - 6x)^2}$

12.6

13.6

13.6

14x - $\frac{3}{4x}$

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

15.4

Spearman's Rank Correlation: for qualitative doda.

This is also applicable

Suppose for a sample of tige n,
$$X_{\lambda}$$
, Y_{λ} are convented to branks $R(X_{\lambda})$, $R(Y_{\lambda})$ and then is is compaded as $Y_{S} = \int_{R(X_{\lambda})}^{R(X_{\lambda})} R(Y_{\lambda}) = \frac{Cov(R(X), R(Y_{\lambda}))}{G_{R(\lambda)}}$

$$= \underbrace{\sum (Ri - \overline{R}) \cdot (Si - \overline{S})}_{\sum (Ri - \overline{R})^2 \cdot \sqrt{\sum (Si - \overline{S})^2}}$$
where $\overline{R} = \frac{1}{N} \sum Ri$, $\overline{S} = \frac{1}{N} \sum Si$

$$d\overline{L} = (Ri - Si)$$

$$\overline{R} = \overline{S} \cdot = \sum \overline{L} = \underbrace{nfl}_{\sum 1}$$

$$\frac{n^2}{2} = \underbrace{Si}_{\sum 2} = \underbrace{Si}_{\sum 2} = \underbrace{nfl}_{\sum 1} (nfl) (2nfl)$$

$$\frac{2}{5} = \frac{5}{5} = \frac{2}{5} = \frac{2}$$

$$76S = 1 - 6 \stackrel{\cancel{5}}{\underset{1=1}{\cancel{5}}} d^{\frac{1}{2}}$$

$$1 - \frac{1}{\cancel{5}} \frac{\cancel{5}}{\cancel{5}} \frac{1}{\cancel{5}} \frac{1}{\cancel{5}$$

(Auality of)
Food P1 P2 1 d

A 2 1 1 1

B 1 3 -2 4

C 4 2 2 2 4.

D 8 4 -1 1.

E 5 5 0 0

F 6 7 6 7 -1

$$y_s = 1 - \frac{6 \times 12}{7^3 - 7} = 0.786$$

Correlation is high and positively related.

Chi D!

	RI				4.00
X		14 1	PL	de-	d
97-8	5	858	7 2	-1	1
98.8	2	789	4	-L	9
98 - 3	4	75 8	ر 5	-2	9-
984	3	77.2	1	6	4
967	6	838	3	3	36
				1 / 1	ク

$$\frac{3}{3} = 1 - \frac{6 \times 62}{7^3 - 7} = 0.107$$

Repeated Rank

(E)

X	R,	Y	R_2	d	d2	1#+2hd -(1.5)
20	8	28	3	5	25	L
22	7 3	24 24		-0.5 -4.5	20.25	5++++>->5.5
23	5.5	25	6	-0.5	0.25	7tm+8th = 7.5
30 30	1.5	2 6 27	5	-3.5		L
23	5.5	32	1	L 4.5	2025	
24	4-	30		2 2	. 4	
					88. 1	- 1

$$=1-6\left\{88.5+\frac{1}{12}\left(2^{3}-2\right)+\frac{1}{12}\left(2^{3}-2\right)+\frac{1}{12}\left(2^{3}-2\right)\right\}$$

-> Negatively

Correlated and

less correlation.

=

Regression Analysis:

Regression Lines

Dy on x line -> Used for fireling the value of y own

1 x on y line - used for finding the value of x when y is given

The arguession line you is defined as $y-\overline{y}=byx(x-\overline{x})$

and the regression line x on y is defined as

x- x = bxy (y-9)

where by - Regsession coefficient & ony

by 2 -> Regression coeff y on x.

and $\overline{x} = \frac{1}{h} \sum_{i=1}^{N} x_i$

夏·甘菜数

Data points

x	9
<u>بر</u>	91
*2	42
,	v v
xn	y _n

Regsession Coefficient.

$$byx = \int \frac{\delta y}{\delta x}$$

$$\frac{dy}{dx} = \frac{g}{6x} = \frac{g}{xy} - \frac{g}{x} \frac{g}{y}$$

$$69^2 = 5(9.9)^2$$

and by =
$$\int \frac{6x}{6y} = \frac{5xy - 5x5y}{5y^2 - (5y)^2}$$

Note! If the values in data points are very large

then we consider

$$\frac{bxy}{\Sigma u^2 - (Su)^2} = \frac{\Sigma u^2 - Su \Sigma u}{\Sigma u^2 - (Su)^2}$$

Properties of Regression lines -

(i) The segression lines always intersect of the bt (2,9).

(ii) 94 two regression linedas are given and 0 be the acute angle between them is

 $+an\theta = \frac{|-y^2|}{|-y^2|} \frac{|6x 6y|}{|6x^2+6y^2|}$ where β is correlation coeff.

Regression lines

m1 = 9 64

$$m_2 = \frac{1}{g} \frac{6y}{6x}$$

$$\frac{1 + m_1 - m_2}{1 + m_1 \cdot m_2} = \left| \frac{f \cdot \frac{6y}{6x} - \frac{1}{g} \cdot \frac{6y}{6x}}{\frac{1}{g} \cdot \frac{6y}{6x}} \right| \\
= \left| \frac{g - \frac{1}{g} \left| \frac{6y}{6x} \right|}{\frac{6x^2 + 6y^2}{6x^2}} \right| \\
= \frac{\left| \frac{6x^2 + 6y^2}{6x^2} \right|}{\frac{6x^2 + 6y^2}{6x^2}}$$

$$= \left| \frac{g^2 - 1}{5} \right| \cdot \left| \frac{6\pi \cdot 69}{6\pi + 69} \right|$$

$$tan0 = 0 = 0 = 0$$

Both lines coincides.

(iii) The coefficient of correlation is GI.M of Regression coefficients are
$$f = \int byx.bxy$$

byx and by either both are tre or both are -ve. If both are the gutne gt both are -ve then I is -ve

a: Find the lines of regression from the following data

Age of Husband: 25, 22, 20, 26, 35, 20, 22, 40, 20, 18.
Age of Wife: 18, 15, 20, 17, 22, 14, 16, 21, 15, 14.

Hence estimate (i) the age of husband when age of wife is 19
(ii) the age of wife, when the age of husband is 30

(111) conselation coefficient

Self
$$\chi = Agc$$
 of husband $y = Agc$ of wife $y = Agc$ of wife $y = x - A = x - 26$ $y = y - 17$

x 1	. \		1 .		1 .	1
	y	U	٤	ų ²	v2.	u v
25	18	-1	1	1	1	-1
22_	15	-4	-2	16	4-	ପ
28	20	2	3	4	9	6
26	n	0	0	Ó	0	0
35	22	9	5	81	25	4.5
20	14	- 6	-3	36	9	18
22	16	-4	-1	16	1	4
40	21	14	4	196	16	56
20	IS	-6	-2	36	4-	12
18	14-	-8	-3	64	9	24
256	172	-4	2	450	70	172

$$M = 10$$
, $X = \frac{250}{10} = 25.6$
 $Y = \frac{172}{10} = 17.2$

Rogression Coefficients!

$$\frac{byx = \frac{5uv - \frac{5uxu}{n}}{5u^{2} - \frac{(-4)(2)}{10}} = \frac{172 - \frac{(-4)(2)}{10}}{450 - \frac{(-4)^{2}}{10}} = 0385$$

$$bxy = \frac{172 - \frac{(-4)(2)}{10}}{10} = 2.23$$

$$\frac{5xy}{78 - \frac{(-4)(2)}{10}} = 2.23$$

line of regression you x y- y = byx (x-x)

$$\frac{\chi \text{ on } y}{(2-x)} = Lxy (y-y)$$

$$= \frac{\chi - 2 \cdot 23y - 12 \cdot 76}{(y^{n}n)}$$
(1) When $y = 19$ - Then $(\chi \text{ on } y)$

$$= 2 \cdot 23 \times 19 - 12 \cdot 76$$

$$= \chi = 29 \cdot 6 = 30$$

$$= \chi = 29 \cdot 6 = 30$$
Age of husband $\chi = 30$ (gran)
$$= \frac{\chi - 29 \cdot 6}{(y^{n}n)}$$

(ii) When
$$x = 30$$
 (green)

 $y = 0.385 \times 30 + 7.34$ (y on x)

 $= 18.89 \approx 19$

Hence age of wife 10 19 when $x = 30$.

(iii)
$$\beta = \pm \sqrt{byx.bxy} = \sqrt{0.305 \times 2.23}$$

= 0.927

: Of regression lines one 5x-y = 22 and 64x - 45y = 24.

find is moon values of x and y

(11) regression coefficients

(iii) coefficient of corrolation

Standard deviation of y re by if the vaniance of or is 25.

8/n (i) n=6, y=8 1.e X=6, y=8} soln of regression lines are

(ii) Regression Coefficients:

The regression line 2 on y 5x-y=22

コ ルニサーシー

6 bay = 5

regression line y on ne 64x-45y=24

 $y = \frac{64}{45} - \frac{24}{45}$; by $x = \frac{64}{45}$

$$S = \frac{1}{45} \sqrt{\frac{64}{45}} \times \frac{1}{5}$$

$$S = 0.533$$
(iv)
$$6x^{2} = 25 = 0.6x = 5$$

$$6x^{3} = \frac{6}{45} \times \frac{6}{5}$$

$$\frac{6x^{3}}{45} = \frac{8}{15} \times \frac{6}{5}$$

$$\frac{6x^{3}}{45} = \frac{8}{15} \times \frac{6}{5}$$

$$\frac{6}{45} \times \frac{6}{5} = \frac{40}{3} = 13.33$$

$$\chi^2 = \sum_{i=1}^{\infty} \left(\int_0^{\infty} - \int_0^{\infty} e^{i t} dt \right)^2$$

Ho: No association between both attisties.

X- test et Independence et Attribute. Whather two cittiblety are independent or not. Conender M Configency table. Acceptance ogg Note: Cal Xx, v < tab Xx, v Ho accepted If Cal Xx, > fad Xx,"

ગ

the rejected

Scanned with CamScanner

How to compute expected frequency

			RT
	CL	Ь	945.
	С	d	Ctd
CT	a+c	b+d.	M = a+ b+ (+d)

Expected frequency fe

$$E(a) = (a+b) \cdot (a+c)$$

$$N$$

$$E(b) = (a+b) \cdot (b+d)$$

$$N$$

$$E(c) = (c+d) \cdot (a+c)$$

$$df = (8-1). (C-1)$$
 $nogrow$
 $nogcolumn$
 $= (2-1) \times (2-1)$
 $= 1$

then GIXa, y < tab Xta, y then H=: accept.

Extain area, quinine was administered to 212 persons out of total population of 3248.

The no of fever cases is shown below:

Tradmont	Feven	No fever	Total			
Quinine	20	792	812			
No quenne	220	. 2216	2436			
Total	240	3008	3248			
10100	(:	Y				

Discuss the usefulness of quining is checking Malana at 5% level of significance.

Ho: There is no association between quinine and Malaria.

Treatment	Former	No fever	Total
Quinine	20	792	812
Not quinine	220	2216	2436
., :	240	3008	M = 3248
	•		

$$E(792) = \frac{812 \times 3000}{3248} = 752$$

$$\phi$$
 $y = (21)(21)=1$

lavel of significana 120.01

X tab = 304

· · X cal 7 X fab.

then we seject the.

Refinately there is association retibers quinine and malaria

T-test X~ N(0,1), Y~ Xm

and X and Y are ind.

thon t_ X/ /

The Think the time of time of time of the time of time

Ho: X = M

 $t = \frac{\overline{X} - \underline{M}}{6\overline{x}} = -m \left(\frac{\overline{X} - \underline{M}}{S} \right)$

X > sample mean, n > sample the 4 > population mean; s > s.d. of sample

Scanned with CamScanner

Where

$$S = \sqrt{\frac{\sum (x_0 - x_1)^2}{n-1}}$$

d.v = 0 n-1

9+ (al |tx,y| < |tab tx,y|

then to accept.