χ^2 , t, and F distributions

Why do we care?

These distributions come up a bot in building confidence intervals and conductions by pothesis tests.

Ex: Xy. xn id Normal (4,02)

Estimate µ by $\hat{\mu} = \frac{1}{h} \sum_{i=1}^{h} X_{i}$

C.I. and hypothesis test are based on

$$\frac{X - \mu}{\sqrt{\frac{1}{n-1}\sum_{i=1}^{n-1}(x_i - \overline{x})^2}} \sim t_{n-1}$$

. What is a tn-1 distribution?

. Why / how do we know that

$$\frac{\overline{X} - \mu}{\sqrt{\frac{1}{n-1} \frac{\widehat{\Sigma}}{\widehat{c}_{1}} (x_{1} - \overline{X})^{2}}}$$

follows a t distribution with n-1 degrees of freedom?

x2 distribution building block for t and F distributions we will see, also occasionally useful on its own olf 2005 ZN Normal (0,1), their and we defire a new random variable $U=Z^2$, then $U \sim \chi^2$ (χ^2 with 1 degree of freedom) Ex: If $X \sim Normal(0,0^2)$ then $\frac{X-\mu}{\sigma} \sim Normal(0,1)$, so $(\frac{X-\mu}{\sigma})^2 \sim \chi^2$ · If U, Uz, ..., Un are iid (independent and identically

distributed) random variables with a χ^2 distribution, and we define $V = U_1 + U_2 + \cdots + U_n$ Hen V~ xn

Ex: If X, ..., Xn & Normal (µ, 02) then $\sum \left(\frac{\chi_{1}-\mu}{\sigma}\right)^{2} \sim \chi_{n}^{2}$

 $\frac{t \text{ Distribution}}{1 \text{ f Z} \sim \text{Normal(0,1)}}, \ U \sim \chi_n^2 \ \text{and} \ Z \ \text{and} \ U \ \text{are indigendent}}$ then $\frac{Z}{\sqrt{U/n}} \sim t_n$

F Distribution

Let U and V be independent χ^2 random variables with m and n degrees of freedom respectively.

Then (U/m) ~ Fm,n

Exis

Suppose Tatn. Define X=T2

What is the distribution of X?

Sample Mean and Variance, Normal Distin

Suppose Xy ... , Xn i'd Normal (M, 0-2)

Consider 2 new random variables

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$S^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (X_{i} - \overline{X})^{2}$$

Claim: X~ Normal (M, 52)

Claim: $\frac{(n-1)5^2}{\sigma^2} \sim \chi_{n-1}^2$

Claim: X and S2 are independent, 50 X and (n-1)s2 are independent

All 3 claims above can be proved using moment generating functions, see the textbook.

5

Claim: X-M ~ tn-1

Verification: divide numerator & denominator by 70n?

 $\frac{(X-\mu)/(\sqrt[6]{6n})}{5/\sqrt{5n}} = \frac{[X-\mu]}{5/\sqrt{5n}}$ $\frac{(n-1)5}{5/(n-1)}$

= ratio of Normal (0,1) r.v.
and xn-1 r.v. divided by its d.f.

(this is the def. of a 22n-1 r.v.)