Claims:

- 1. A stabilizer mixture containing
- (I) two different sterically hindered amine compounds, and
- (II) at least one compound selected from the group consisting of an organic salt of Zn, an inorganic salt of Zn, Zn oxide, Zn hydroxide, an organic salt of Mg, an inorganic salt of Mg, Mg oxide and Mg hydroxide;

with the proviso that component (I) is different from the combination of the compounds (B-8-a) and (B-8-b)

$$\begin{array}{c|c} CH & CH_2 & O \\ \hline & CH_2 & \\ CH_2 & O \\ \hline & CH_2 & \\ CH_3 & O \\ \hline & CH_3 & \\ H_3C & N & CH_3 \\ \hline & H_3C & O \\ \hline & CH_3 & \\ \hline & CH_4 & \\ \hline & CH_3 & \\ \hline & CH_4 & \\ \hline & CH_3 & \\ \hline &$$

wherein n_2 and n_2^{\star} are a number from 2 to 50; and

with the proviso that, when

component (I) is the combination of the compounds (B-1-a-1) and (B-7-a);

wherein b₁ is a number from 2 to 50,

wherein n₁ is a number from 2 to 50; and,

at the same time, component (II) is a Zn carboxylate;

the stabilizer mixture additionally contains as a further component

(X-1) a pigment or

(X-2) an UV absorber or

(X-3) a pigment and an UV absorber.

2. A stabilizer mixture according to claim 1 wherein the two different sterically hindered amine compounds of component (I) are selected from the group consisting of

 $(\alpha-1)$ a compound of the formula (A-1)

$$\begin{bmatrix}
H_3C & CH_3 & 0 \\
E_1 & N & 0
\end{bmatrix}$$

$$\begin{bmatrix}
H_3C & CH_3 & 0 \\
E_1 & N & 0
\end{bmatrix}$$

$$\begin{bmatrix}
H_3C & CH_3 & 0 \\
E_1 & N & 0
\end{bmatrix}$$

$$\begin{bmatrix}
H_3C & CH_3 & 0 \\
H_3C & CH_3 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
H_3C & CH_3 & 0 \\
H_3C & CH_3 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
H_3C & CH_3 & 0 \\
H_3C & CH_3 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
H_3C & CH_3 & 0 \\
H_3C & CH_3 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
H_3C & CH_3 & 0 \\
H_3C & CH_3 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
H_3C & CH_3 & 0 \\
H_3C & CH_3 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
H_3C & CH_3 & 0 \\
H_3C & CH_3 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
H_3C & CH_3 & 0 \\
H_3C & CH_3 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
H_3C & CH_3 & 0 \\
H_3C & CH_3 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
H_3C & CH_3 & 0 \\
H_3C & CH_3 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
H_3C & CH_3 & 0 \\
H_3C & CH_3 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
H_3C & CH_3 & 0 \\
H_3C & CH_3 & 0
\end{bmatrix}$$

in which

 $E_1 \text{ is hydrogen, } C_1\text{-}C_8 \text{alkyl, O', -OH, -}CH_2 \text{CN, } C_1\text{-}C_{18} \text{alkoxy, } C_5\text{-}C_{12} \text{cycloalkoxy, } C_3\text{-}C_6 \text{alkenyl, o', -OH, -}CH_2 \text{CN, C}_1\text{-}C_{18} \text{alkoxy, C}_2\text{-}C_{12} \text{cycloalkoxy, C}_3\text{-}C_6 \text{alkenyl, o', -OH, -}CH_2 \text{CN, C}_1\text{-}C_{18} \text{alkoxy, C}_2\text{-}C_{12} \text{cycloalkoxy, C}_3\text{-}C_6 \text{alkenyl, o', -OH, -}CH_2 \text{CN, C}_1\text{-}C_{18} \text{alkoxy, C}_2\text{-}C_{12} \text{cycloalkoxy, C}_3\text{-}C_6 \text{alkenyl, o', -OH, -}CH_2 \text{CN, C}_1\text{-}C_{18} \text{alkoxy, C}_2\text{-}C_{12} \text{cycloalkoxy, C}_3\text{-}C_6 \text{alkenyl, o', -}C_6 \text{alkenyl, o', -}C_8 \text{-}C_8 \text{-}C_8 \text{-}C_8 \text{-}C_8 \text{-}C_8 \text{-}C_8 \text{-}C_8 \text{-}C_8 \text{-}}C_8 \text{-}C_8 \text{-}C_8 \text{-}C_8 \text{-}C_8 \text{-}C_8 \text{-}C_8 \text{-}}C_8 \text{-}C_8 \text{-}C_8 \text{-}C_8 \text{-}C_8 \text{-}C_8 \text{-}C_8 \text{-}C_8 \text{-}}C_8 \text{-}C_8 \text{-}C_8 \text{-}}C_8 \text{-}C_8 \text{-}C_8 \text{-}}C_8 \text{-}C_8 \text{-}}C_8 \text{-}C_8 \text{-}C_8 \text{-}}C_8 \text{-}C_8 \text{-}}C_8 \text{-}C_8 \text{-}}C_8 \text{-}C_8 \text{-}}C_8 \text{-}C_8 \text{-}}C_8 \text{-}}C_8$

C1-C8acyl,

m₁ is 1, 2 or 4,

if m₁ is 1, E₂ is C₁-C₂₅alkyl,

if m₁ is 2, E₂ is C₁-C₁₄alkylene or a group of the formula (a-I)

wherein E_3 is C_1 - C_{10} alkyl or C_2 - C_{10} alkenyl, E_4 is C_1 - C_{10} alkylene, and E_5 and E_6 independently of one another are C_1 - C_4 alkyl, cyclohexyl or methylcyclohexyl, and

if m₁ is 4, E₂ is C₄-C₁₀alkanetetrayl;

(α-2) a compound of the formula (A-2)

in which

two of the radicals E_7 are -COO-(C_1 - C_{20} alkyl), and two of the radicals E_7 are a group of the formula (a-II)

with E₈ having one of the meanings of E₁;

 $(\alpha-3)$ a compound of the formula (A-3)

in which

 E_9 and E_{10} together form C_2 - C_{14} alkylene,

E₁₁ is hydrogen or a group -Z₁-COO-Z₂,

Z₁ is C₂-C₁₄alkylene, and

Z₂ is C₁-C₂₄alkyl, and

E₁₂ has one of the meanings of E₁;

(α-4) a compound of the formula (A-4)

wherein

the radicals E_{13} independently of one another have one of the meanings of E_1 , the radicals E_{14} independently of one another are hydrogen or C_1 - C_{12} alkyl, and E_{15} is C_1 - C_{10} alkylene or C_3 - C_{10} alkylidene;

(α-5) a compound of the formula (A-5)

wherein

the radicals E_{18} independently of one another have one of the meanings of E_1 ;

(α-6) a compound of the formula (A-6)

in which

E₁₇ is C₁-C₂₄alkyl, and

E₁₈ has one of the meanings of E₁;

(α-7) a compound of the formula (A-7)

in which

 $\mathsf{E}_{19},\,\mathsf{E}_{20}$ and E_{21} independently of one another are a group of the formula (a-III)

wherein E22 has one of the meanings of E1;

 $(\alpha-8)$ a compound of the formula (A-8)

wherein

the radicals E_{23} independently of one another have one of the meanings of E_1 , and E_{24} is hydrogen, C_1 - C_{12} alkyl or C_1 - C_{12} alkoxy;

(α-9) a compound of the formula (A-9)

wherein

m2 is 1, 2 or 3,

 E_{25} has one of the meanings of E_1 , and

when
$$m_2$$
 is 1, E_{26} is a group — CH_2CH_2-NH — $\left\langle \right\rangle$

when m_2 is 2, E_{26} is $C_2\text{-}C_{22}$ alkylene, and when m_2 is 3, E_{28} is a group of the formula (a-IV)

wherein the radicals E_{27} independently of one another are $C_2 \cdot C_{12}$ alkylene, and the radicals E_{28} independently of one another are $C_1 \cdot C_{12}$ alkyl or $C_5 \cdot C_{12}$ cycloalkyl;

(α-10) a compound of the formula (A-10)

wherein

the radicals E_{29} independently of one another have one of the meanings of E_1 , and E_{30} is C_2 - C_{22} alkylene, C_5 - C_7 cycloalkylene, C_1 - C_4 alkylenedi(C_5 - C_7 cycloalkylene), phenylene or phenylenedi(C_1 - C_4 alkylene);

(β-1) a compound of the formula (B-1)

in which

 R_1 , R_3 , R_4 and R_5 independently of one another are hydrogen, C_1 - C_1 2alkyl, C_5 - C_1 2cycloalkyl, C_1 - C_4 -alkyl-substituted C_5 - C_1 2cycloalkyl, phenyl, phenyl which is substituted by -OH and/or C_1 - C_1 0alkyl; C_7 - C_9 phenylalkyl, C_7 - C_9 phenylalkyl which is substituted on the phenyl radical by -OH and/or C_1 - C_1 0alkyl; or a group of the formula (b-l)

$$H_3C$$
 CH_3 $N-R_6$ $(b-1)$ H_3C CH_3

 $R_2 \ is \ C_2 - C_{18} \\ alkylene, \ C_5 - C_7 \\ cycloalkylene \ or \ C_1 - C_4 \\ alkylene \\ di(B_5 - C_7 \\ cycloalkylene),$

the radicals R₁, R₂ and R₃, together with the nitrogen atoms to which they are bonded, perform a 5- to 10-membered heterocyclic ring, or

 R_4 and R_5 , together with the nitrogen atom to which they are bonded, form a 5- to 10-membered heterocyclic ring,

 R_6 is hydrogen, C_1 - C_8 alkyl, O', -OH, -CH $_2$ CN, C_1 - C_{18} alkoxy, C_5 - C_{12} cycloalkoxy, C_3 - C_8 alkenyl, C_7 - C_9 phenylalkyl unsubstituted or substituted on the phenyl by 1, 2 or 3 C_1 - C_4 alkyl; or C_1 - C_9 acyl, and

b₁ is a number from 2 to 50,

with the proviso that at least one of the radicals R_1 , R_3 , R_4 and R_5 is a group of the formula (b-l);

(β-2) a compound of the formula (B-2)

wherein

 R_{7} and R_{11} independently of one another are hydrogen or $C_{1}\text{-}C_{12}\text{alkyl}\text{,}$

 $R_8,\,R_9$ and R_{10} independently of one another are $C_2\text{-}C_{10}\text{alkylene},$ and

 X_1 , X_2 , X_3 , X_4 , X_5 , X_8 , X_7 and X_8 independently of one another are a group of the formula (b-II),

in which R_{12} is hydrogen, C_1 - C_{12} alkyl, C_5 - C_{12} cycloalkyl, C_1 - C_4 alkyl-substituted C_5 - C_{12} cycloalkyl, phenyl, -OH- and/or C_1 - C_{10} alkyl-substituted phenyl, C_7 - C_9 phenylalkyl, C_7 - C_9 phenylalkyl which is substituted on the phenyl radical by -OH and/or C_1 - C_{10} alkyl; or a group of the formula (b-1) as defined above, and

R₁₃ has one of the meanings of R₆;

(β-3) a compound of the formula (B-3)

in which

 R_{14} is C_1 - C_{10} alkyl, C_5 - C_{12} cycloalkyl, C_1 - C_4 alkyl-substituted C_5 - C_{12} cycloalkyl, phenyl or C_1 - C_{10} alkyl-substituted phenyl,

 R_{15} is C_3 - C_{10} alkylene, R_{16} has one of the meanings of R_6 , and P_6 is a number from 2 to 50;

(β-4) a compound of the formula (B-4)

in which

 R_{17} and R_{21} independently of one another are a direct bond or a -N(X₉)-CO-X₁₀-CO-N(X₁₁)-group, where X_9 and X_{11} independently of one another are hydrogen, C_1 -C₈alkyl, C_5 -C₁₂cycloalkyl, phenyl, C_7 -C₉phenylalkyl or a group of the formula (b-l),

X₁₀ is a direct bond or C₁-C₄alkylene,

R₁₈ has one of the meanings of R₆,

 R_{19} , R_{20} , R_{23} and R_{24} independently of one another are hydrogen, C_1 - C_{30} alkyl, C_5 - C_{12} cycloalkyl or phenyl,

 R_{22} is hydrogen, C_1 - C_{30} alkyl, C_5 - C_{12} cycloalkyl, phenyl, C_7 - C_8 phenylalkyl or a group of the formula (b-I), and

b₃ is a number from 1 to 50;

 $(\beta-5)$ a compound of the formula (B-5)

(B-5)

in which

 $R_{25},\,R_{26},\,R_{27},\,R_{28}$ and R_{29} independently of one another are a direct bond or $C_1\text{-}C_{10}$ alkylene,

R₃₀ has one of the meanings of R₆, and

b₄ is a number from 1 to 50;

(β-6) a product (B-6) obtainable by reacting a product, obtained by reaction of a polyamine of the formula (B-6-1) with cyanuric chloride, with a compound of the formula (B-6-2)

$$H_2N$$
— $(CH_2)\frac{1}{b_5}NH$ — $(CH_2)\frac{1}{b_5}NH$ — $(CH_2)\frac{1}{b_5}NH_2$ (B-6-1)

$$H \longrightarrow H_{31}$$
 (B-6-2)
 $H_3C \longrightarrow CH_3$
 $H_3C \longrightarrow CH_3$

in which

 b'_5 , b''_5 and b'''_5 independently of one another are a number from 2 to 12, R_{31} is hydrogen, C_1 - C_{12} alkyl, C_9 - C_{12} cycloalkyl, phenyl or C_7 - C_9 phenylalkyl, and R_{32} has one of the meanings of R_6 ;

(β-7) a compound of the formula (B-7)

wherein A_1 is hydrogen or C_1 - C_4 alkyl, A_2 is a direct bond or C_1 - C_{10} alkylene, and n_1 is a number from 2 to 50;

(β-8) at least one compound of the formulae (B-8-a) and (B-8-b)

wherein n₂ and n₂* are a number from 2 to 50;

(β-9) a compound of the formula (B-9)

(B-9)

wherein A_3 and A_4 independently of one another are hydrogen or C_1 - C_8 alkyl, or A_3 and A_4 together form a C_2 - C_1 4alkylene group, and the variables n_3 independently of one another are a number from 1 to 50; and

(β-10) a compound of the formula (B-10)

$$\begin{array}{c|c} & & & \\ \hline & & & \\ & &$$

wherein n₄ is a number from 2 to 50,

A5 is hydrogen or C1-C4alkyl,

the radicals A_6 and A_7 independently of one another are C_1 - C_4 alkyl or a group of the formula (b-1),

with the proviso that at least 50 % of the radicals A₇ are a group of the formula (b-l).

3. A stabilizer mixture according to claim 2, wherein

the two different sterically hindered amine compounds of component (I) are selected from the group consisting of the classes (α -1), (α -2), (α -3), (α -4), (α -5), (α -6), (α -7), (α -8), (α -9) and (α -10).

4. A stabilizer mixture according to claim 2, wherein

the two different sterically hindered amine compounds of component (I) are selected from the group consisting of the classes (β -1), (β -2), (β -3), (β -4), (β -5), (β -6), (β -7), (β -8), (β -9) and (β -10).

5. A stabilizer mixture according to claim 2, wherein

one of the two different sterically hindered amine compounds of component (I) is selected from the group consisting of the classes (α -1), (α -2), (α -3), (α -4), (α -5), (α -6), (α -7), (α -8), (α -9) and (α -10), and

the other of the two different sterically hindered amine compounds of component (I) is selected from the group consisting of the classes (β -1), (β -2), (β -3), (β -4), (β -5), (β -6), (β -7), (β -8), (β -9) and (β -10).

6. A stabilizer mixture according to claim 2, wherein

one of the two different sterically hindered amine compounds of component (I) is selected from the class (β-1).

7. A stabilizer mixture according to claim 2, wherein

one of the two different sterically hindered amine compounds of component (I) is selected from the class (β-1), and

the other of the two different sterically hindered amine compounds of component (I) is selected from the class (α -1) or (β -7).

8. A stabilizer mixture according to claim 2, wherein

one of the two different sterically hindered amine compounds of component (I) is selected from the class (β-7), and

the other of the two different sterically hindered amine compounds of component (I) is selected from the class (β -2).

9. A stabilizer mixture according to claim 2, wherein

the two different sterically hindered amine compounds of component (I) are selected from different classes.

10. A stabilizer mixture according to claim 2, wherein

m₁ is 1, 2 or 4,

if m1 is 1, E2 is C12-C20alkyl,

if m₁ is 2, E₂ is C₂-C₁₀alkylene or a group of the formula (a-I)

E3 is C1-C4alkvl.

E4 is C1-C6alkylene, and

Es and Es independently of one another are C₁-C₄alkyl, and

if m₁ is 4, E₂ is C₄-C₈alkanetetrayl;

two of the radicals E7 are -COO-(C10-C15alkyl), and

two of the radicals E7 are a group of the formula (a-II);

E₉ and E₁₀ together form C₉-C₁₃alkylene,

E₁₁ is hydrogen or a group -Z₁-COO-Z₂,

Z₁ is C₂-C₆alkylene, and

Z₂ is C₁₀-C₁₆alkyl;

E₁₄ is hydrogen, and

E₁₅ is C₂-C₆alkylene or C₃-C₅alkylidene;

E₁₇ is C₁₀-C₁₄alkyl;

E24 is C1-C4alkoxy;

m2 is 1, 2 or 3,

when m_2 is 1, E_{26} is a group — $CH_2CH_2-NH-\langle \rangle$

when mo is 2, Eos is Co-Csalkylene, and

when m₂ is 3. E₂₆ is a group of the formula (a-IV)

the radicals E27 independently of one another are C2-C6alkylene, and

the radicals E28 independently of one another are C1-C4alkyl or C5-C8cycloalkyl; and

E₃₀ is C₂-C₈alkylene;

R₁ and R₃ independently of one another are a group of the formula (b-l),

R2 is C2-C8alkylene,

 R_4 and R_5 independently of one another are hydrogen, C_1 - C_{12} alkyl, C_5 - C_6 cycloalkyl or a group of the formula (b-l), or the radicals R_4 and R_5 , together with the nitrogen atom to which they are bonded, form a 5- to 10-membered heterocyclic ring, and

b₁ is a number from 2 to 25:

R₇ and R₁₁ independently of one another are hydrogen or C₁-C₄alkyl,

R₈, R₉ and R₁₀ independently of one another are C₂-C₄alkylene, and

X1, X2, X3, X4, X5, X6, X7 and X8 independently of one another are a group of the formula

(b-II),

R₁₂ is hydrogen, C₁-C₄alkyl, C₅-C₈cycloalkyl or a group of the formula (b-l);

R14 is C1-C4alkvl.

R₁₅ is C₃-C₆alkylene, and

b₂ is a number from 2 to 25:

R₁₇ and R₂₁ independently of one another are a direct bond or a group

-N(X₀)-CO-X₁₀-CO-N(X₁₁)-.

X₉ and X₁₁ independently of one another are hydrogen or C₁-C₄alkyl,

X₁₀ is a direct bond.

R₁₉ and R₂₃ are C₁-C₂₅alkyl or phenyl,

R₂₀ and R₂₄ are hydrogen or C₁-C₄alkyl,

R₂₂ is C₁-C₂₅alkyl or a group of the formula (b-l), and

b₃ is a number from 1 to 25;

R₂₅, R₂₆, R₂₇, R₂₈ and R₂₉ independently of one another are a direct bond or

C₁-C₄alkylene, and

b4 is a number from 1 to 25;

b'5, b"5 and b"5 independently of one another are a number from 2 to 4, and

R₃₁ is hydrogen, C₁-C₄alkyl, C₅-C₈cycloalkyl, phenyl or benzyl;

A₁ is hydrogen or methyl.

A2 is a direct bond or C2-C6alkylene, and

n₁ is a number from 2 to 25;

n₂ and n₂* are a number from 2 to 25;

 A_{3} and A_{4} independently of one another are hydrogen or $C_{1}\text{-}C_{4}\text{alkyl},$ or A_{3} and A_{4} together

form a Ca-C13alkviene group, and

the variables n₃ independently of one another are a number from 1 to 25;

n₄ is a number from 2 to 25.

A₅ and A₅ independently of one another are C₁-C₄alkyl, and

A7 is C1-C4alkyl or a group of the formula (b-l)

with the proviso that at least 50 % of the radicals A7 are a group of the formula (b-l).

11. A stabilizer mixture according to claim 1, wherein

the two different sterically hindered amine compounds of component (I) are selected from the group consisting of the compounds of the formulae (A-1-a), (A-1-b), (A-1-c), (A-1-d),

(A-2-a), (A-3-a), (A-3-b), (A-4-a), (A-4-b), (A-5), (A-6-a), (A-7), (A-8-a), (A-9-a), (A-9-b), (A-9-c), (A-10-a), (B-1-a), (B-1-b), (B-1-c), (B-1-d), (B-2-a), (B-3-a), (B-4-a), (B-4-b) and (B-4-c), a product (B-6-a) and the compounds of the formulae (B-7-a), (B-8-a), (B-8-b), (B-9-a) and (B-10-a);

$$\begin{bmatrix} H_3C & CH_3 & O \\ E_1-N & O - C \end{bmatrix} C_4H_9 & C(CH_3)_3 \\ H_3C & CH_3 & C(CH_3)_3 \end{bmatrix}$$

$$(A-1-c)$$

wherein E_1 is hydrogen, C_1 - C_0 alkyl, O', -OH, -CH₂CN, C_1 - C_{10} alkoxy, C_5 - C_{12} cycloalkoxy, C_5 - C_0 alkenyl, C_7 - C_0 phenylalkyl unsubstituted or substituted on the phenyl by 1, 2 or 3 C_1 - C_4 alkyl; or C_1 - C_9 acyl;

in which two of the radicals E7 are -COO-C13H27 and

of E₁;

$$\begin{array}{c} CH_2 \\ CH_2 \\ CH_2 \\ CH_2 \\ CH_3 \\ CH_4 \\ CH_4 \\ CH_5 \\ C$$

wherein E_{12} has one of the meanings of E_1 ;

wherein E₁₃ has one of the meanings of E₁;

wherein E₁₆ has one of the meanings of E_{1;}

wherein E₁₈ has one of the meanings of E_{1;}

$$\mathsf{E}_{10} \bigvee_{\mathsf{E}_{20}} \mathsf{E}_{2}; \tag{A-7}$$

in which E₁₉, E₂₀ and E₂₁ independently of one another are a group of the formula (a-III)

wherein E22 has one of the meanings of E1:

wherein E23 has one of the meanings of E1;

wherein E25 has one of the meanings of E1;

wherein E_{29} has one of the meanings of $E_{1;}$

wherein b_1 is a number from 2 to 20 and R_6 is hydrogen, C_1 - C_8 alkyl, O_7 -OH, -CH₂CN, C_1 - C_1 8alkoxy, C_8 - C_1 2cycloalkoxy, C_8 - C_8 alkenyl, C_7 - C_9 phenylalkyl unsubstituted or substituted on the phenyl by 1, 2 or 3 C_1 - C_4 alkyl; or C_1 - C_8 acyl;

wherein R₁₃ has one of the meanings of R₆,

wherein b2 is a number from 2 to 20 and R16 has one of the meanings of R6;

wherein b₃ is a number from 1 to 20 and R₁₈ has one of the meanings of R₆;

Ŕ₁₈

wherein b4 is a number from 1 to 20 and R30 has one of the meanings of R6;

a product (B-6-a) obtainable by reacting a product, obtained by reaction of a polyamine of the formula (B-6-1-a) with cyanuric chloride, with a compound of the formula (B-6-2-a)

$$H_2N - (CH_2)_3 - NH - (CH_2)_2 - NH - (CH_2)_3 - NH_2$$
 (B-6-1-a)

$$\begin{array}{c} H - N - C_4H_9 \\ H_9C - CH_9 \\ H_9C - CH_3 \end{array}$$

in which R₃₂ has one of the meanings of R₆;

wherein n₁ is a number from 2 to 20;

$$\begin{array}{c|c} CH & CH_2 & CH_2 \\ \hline CH_2 & CH_2 & CH_3 \\ H_3C & N & CH_3 \\ H & CH_3 & CH_3 \\ \end{array}$$

wherein n2 and n2* are a number from 2 to 20;

(B-9-a)

wherein the variables n₃ independently of one another are a number from 1 to 20;

$$\begin{array}{c|c} CH_3 & \\ \hline CH_2 - CH_2 - CH \\ \hline C - CH_2 - CH \\ \hline C - CH_3 - CH \\ \hline C - CH_$$

wherein n_4 is a number from 2 to 20, and at least 50 % of the radicals A_7 are a group of the formula (b-I)

$$H_3C$$
 CH_3 $N-R_6$ B_6 CH_3

wherein R_6 is hydrogen, C_1 - C_8 alkyl, O', -OH, -CH $_2$ CN, C_1 - C_{18} alkoxy, C_5 - C_{12} cycloalkoxy, C_5 - C_6 alkenyl, C_7 - C_9 phenylalkyl unsubstituted or substituted on the phenyl by 1, 2 or 3 C_1 - C_4 alkyl; or C_1 - C_8 acyl, and the remaining radicals A_7 are ethyl.

12. A stabilizer mixture according to claim 11 wherein

the two different sterically hindered amine compounds of component (I) are

- a compound of the formula (A-1-b) wherein E₁ is hydrogen, and a compound of the formula (B-1-a) wherein R₆ is hydrogen;
- a compound of the formula (B-1-a) wherein R₆ is hydrogen, and a compound of the formula (B-7-a); or

- 3) a compound of the formula (B-2-a) wherein R₁₃ is methyl, and a compound of the formula (B-7-a).
 - 13. A stabilizer mixture according to claim 2 wherein E_1 , E_8 , E_{12} , E_{13} , E_{18} , E_{18} , E_{22} , E_{23} , E_{25} , E_{25}
 - 14. A stabilizer mixture according to claim 11 wherein E_1 , E_8 , E_{12} , E_{13} , E_{16} , E_{18} , E_{22} , E_{23} , E_{25} , E_{25} , E_{26} , E_{26
 - 15. A stabilizer mixture according to claim 1, wherein the compound of component (II) is selected from the group consisting of Mg carboxylates, Zn carboxylates, Mg oxides, Zn oxides, Mg hydroxides, Zn hydroxides, Mg carbonates and Zn carbonates.
 - 16. A stabilizer mixture according to claim 1, which additionally contains as a further component
 - (X-1) a pigment or
 - (X-2) an UV absorber or
 - (X-3) a pigment and an UV absorber.
 - 17. A stabilizer mixture according to claim 1, which additionally contains as a further component
 - (XX) an organic salt of Ca, an inorganic salt of Ca, Ca oxide or Ca hydroxide.
 - **18.** A composition comprising an organic material subject to degradation induced by light, heat or oxidation and a stabilizer mixture according to claim 1.
 - 19. A composition according to claim 18 wherein the organic material is a synthetic polymer.
 - 20. A composition according to claim 18 wherein the organic material is a polyolefin.

- 21. A composition according to claim 18 wherein the organic material is polyethylene, polypropylene, a polyethylene copolymer or a polypropylene copolymer.
- 22. Polypropylene containing a compound of the formula (B-1), a compound of the formula (B-7) and a Zn-carboxylate;

in which

 $R_1,\,R_3,\,R_4$ and R_5 independently of one another are hydrogen, $C_1\text{-}C_1\text{-}zalkyl,\,C_5\text{-}C_1\text{-}zocycloalkyl,}$ $C_1\text{-}C_4\text{-}alkyl\text{-}substituted}$ $C_5\text{-}C_1\text{-}zocycloalkyl,$ phenyl, phenyl which is substituted by -OH and/or $C_1\text{-}C_0\text{-}alkyl;\,C_7\text{-}C_9\text{-}phenylalkyl}$ which is substituted on the phenyl radical by -OH and/or $C_1\text{-}C_0\text{-}alkyl;$ or a group of the formula (b-l)

 R_2 is $C_2\text{-}C_{18}$ alkylene, $C_5\text{-}C_7$ cycloalkylene or $C_1\text{-}C_4$ alkylenedi($B_5\text{-}C_7$ cycloalkylene), or

the radicals R_1 , R_2 and R_3 , together with the nitrogen atoms to which they are bonded, perform a 5- to 10-membered heterocyclic ring, or

 R_4 and R_5 , together with the nitrogen atom to which they are bonded, form a 5- to 10-membered heterocyclic ring,

 R_6 is hydrogen, C_1 - C_8 alkyl, O', -OH, -CH $_2$ CN, C_1 - C_{18} alkoxy, C_5 - C_{12} cycloalkoxy, C_3 - C_6 alkenyl, C_7 - C_9 phenylalkyl unsubstituted or substituted on the phenyl by 1, 2 or 3 C_1 - C_4 alkyl; or C_1 - C_9 acyl, and

 b_1 is a number from 2 to 50,

with the proviso that at least one of the radicals R_1 , R_3 , R_4 and R_5 is a group of the formula (b-1);

wherein A_1 is hydrogen or C_1 - C_4 alkyl, A_2 is a direct bond or C_1 - C_{10} alkylene, and n_1 is a number from 2 to 50.

23. A method for stabilizing an organic material against degradation induced by light, heat or oxidation, which comprises incorporating into the organic material a stabilizer mixture according to claim 1.