Genera el codi de tres adreces corresponent a les següents instruccions:

```
i = 1;
j = 100;
while (i < j) {
   aux = v[i];
   v[i] = v[j];
   v[j] = aux;
   i = i + 1;
   j = j - 1;
}</pre>
```

Aplica les optimitzacions de mireta vistes a classe

Com que no es diu res, es considerarà que el vector té un rang de valors 1..n (n > 100) i que cada valor és un enter de 32 bits (4 bytes).

Segons el vist a classe, el codi de tres adreces pot ser aquest:

	C3@	Codi font corresponent
1	$t_1 = 1$	
2	$i = t_1$	i = 1;
3	$t_2 = 100$	j = 100;
4	$j = t_2$] - 100;
5	e ₁ : skip	while
6	if $i < j$ goto e_2	
7	$t_3 = 0$	
8	goto e₃	(i < j)
9	e ₂ : skip	
10	$t_3 = -1$	
11	e ₃ : skip	
12	if $t_3 = 0$ goto e_{fi}	{
13	$t_4 = i - 1$	
14	$t_5 = t_4 * 4$	aux = v[i];
15	$t_6 = v[t_5]$	aux - v[1],
16	$aux = t_6$	
17	$t_7 = j - 1$	
18	$t_8 = t_7 * 4$	
19	$t_9 = v[t_8]$	v[i] = v[j];
20	$t_{10} = i - 1$	\ \[\ \[\ \] \ \ \[\ \] \ \ \ \ \ \ \ \
21	$t_{11} = t_{10} * 4$	
22	$v[t_{11}] = t_9$	
23	$t_{12} = j - 1$	
24	$t_{13} = t_{12} * 4$	v[j] = aux;
25	$v[t_{13}] = aux$	
26	$t_{14} = 1$	
27	$t_{15} = i + t_{14}$	i = i + 1;
28	$i = t_{15}$	
29	$t_{16} = 1$	
30	$t_{17} = j - t_{16}$	j = j - 1;
31	$j = t_{17}$	
32	goto e ₁	}
33	e _{fi} : skip	ı

Sembla que 33 són moltes instruccions, però és la forma que té el c3@ sense optimitzar.

Les optimitzacions de mireta que es poden aplicar són

- 1. Brancaments adjacents. No hi ha cap canvi
- 2. Brancaments sobre brancaments. No hi ha cap canvi
- 3. Assignació de booleans. No hi ha cap canvi
- 4. Operacions constants. No hi ha cap canvi
- 5. Eliminació de codi inaccessible. No hi ha cap canvi
- 6. Desplaçament de constants: No hi ha cap canvi
- 7. Normalització d'operacions commutatives: suposant que les variables v, i, j i aux tenen un valor de nv inferior a les variables temporals, i aquestes el tenen pel seu número d'ordre...
- 8. Assignacions diferides (línies, 1-2, 3-4, 15-16 (discutible), 26-27, 29-30)

	C3@ original	C3@ optimitzat
1	$t_1 = 1$	
2	$i = t_1$	i = 1
3	$t_2 = 100$	
4	$j = t_2$	j = 100
5	e ₁ : skip	e ₁ : skip
6	if i < j goto e ₂	if i < j goto e ₂
7	$t_3 = 0$	$t_3 = 0$
8	goto e₃	goto e₃
9	e ₂ : skip	e ₂ : skip
10	$t_3 = -1$	$t_3 = -1$
11	e ₃ : skip	e ₃ : skip
12	<pre>if t₃ = 0 goto e_{fi}</pre>	<pre>if t₃ = 0 goto e_{fi}</pre>
13	$t_4 = i - 1$	$t_4 = -1 + i$
14	- 3	$t_5 = 4 * t_4$
15	$t_6 = v[t_5]$	
16	$aux = t_6$	$aux = v[t_5]$
17	$t_7 = j - 1$	$t_7 = -1 + j$
18	$t_8 = t_7 * 4$	$t_8 = 4 * t_7$
19	$t_9 = v[t_8]$	$t_9 = v[t_8]$
20	$t_{10} = i - 1$	$t_{10} = -1 + i$
21	$t_{11} = t_{10} * 4$	$t_{11} = 4 * t_{10}$
22	$v[t_{11}] = t_9$	$v[t_{11}] = t_9$
23	$t_{12} = j - 1$	$t_{12} = -1 + j$
24	$t_{13} = t_{12} * 4$	$t_{13} = 4 * t_{12}$
	$v[t_{13}] = aux$	$v[t_{13}] = aux$
26	$t_{14} = 1$	
27	$t_{15} = i + t_{14}$	$t_{15} = i + 1$
28	$i = t_{15}$	$i = t_{15}$
29	$t_{16} = 1$	
30	$t_{17} = j - t_{16}$	$t_{17} = -1 + j$
31	$j = t_{17}$	$j = t_{17}$
32	goto e ₁	goto e ₁
33	efi: skip	efi: skip