

#### Mariana Miloşescu

# Informatică

# **Profilul real**

Specializarea:

matematică-informatică, intensiv informatică

Manual pentru clasa a IX - a



EDITURA DIDACTICĂ ȘI PEDAGOGICĂ S.A.

| 1. Informatica și societatea                                 | 3   |
|--------------------------------------------------------------|-----|
| 1.1. Prelucrarea informațiilor                               | 3   |
| 1.2. Informatica                                             | 4   |
| 1.3. Etapele rezolvării unei probleme                        |     |
| 1.4. Algoritmul                                              |     |
| Evaluare                                                     | 10  |
| 2. Datele                                                    | 12  |
| 2.1. Definiția datelor                                       |     |
| 2.1.1. Clasificarea datelor                                  |     |
| 2.1.2. Tipul datelor                                         |     |
| 2.2. Operatorii                                              | 21  |
| 2.3. Expresiile                                              | 26  |
| Evaluare                                                     | 30  |
| 3. Algoritmii                                                | 26  |
| 3.1. Reprezentarea algoritmilor                              |     |
| 3.2. Principiile programării structurate                     |     |
| 3.2.1. Structura liniară                                     |     |
| 3.2.2. Structura alternativă                                 |     |
| 3.2.3. Structura repetitivă                                  |     |
| 3.3. Algoritmi elementari                                    |     |
| 3.3.1. Algoritmi pentru interschimbare                       |     |
| 3.3.2. Algoritmi pentru determinarea maximului (minimului)   |     |
| 3.3.3. Algoritmi pentru prelucrarea cifrelor unui număr      |     |
| 3.3.4. Algoritmi pentru calcularea c.m.m.d.c.                |     |
| 3.3.5. Algoritmi pentru testarea unui număr prim             |     |
| 3.3.6. Algoritmi pentru prelucrarea divizorilor unui număr   |     |
| 3.3.7. Algoritmi pentru conversii între sisteme de numerație |     |
| 3.3.8. Algoritmi pentru generarea şirurilor recurente        |     |
| 3.4. Eficiența algoritmilor                                  |     |
| 3.5. Aplicarea algoritmilor                                  | 78  |
| 3.5.1. Rezolvarea problemelor de matematică                  | 78  |
| 3.5.2. Rezolvarea problemelor de fizică                      | 82  |
| Evaluare                                                     | 85  |
| 4. Implementarea algoritmilor                                | 89  |
| 4.1. Caracteristicile limbajului de programare               | 89  |
| 4.2. Structura programului                                   | 91  |
| 4.3. Instrucțiunile declarative                              | 93  |
| 4.3.1. Tipuri de date                                        |     |
| 4.3.2. Constantele                                           | 95  |
| 4.3.3. Declararea variabilelor de memorie                    |     |
| 4.3.4. Doctorarea constantelor simbolico                     | 0.0 |



| 4.3.5. Declararea tipurilor de dată utilizator                | 99    |
|---------------------------------------------------------------|-------|
| 4.4. Operațiile de citire și scriere                          | 100   |
| Evaluare                                                      | 104   |
| 4.5. Expresia și instrucțiunea expresie                       | 106   |
| 4.5.1. Operatorii aritmetici                                  | 107   |
| 4.5.2. Operatorul pentru conversie implicită                  | 109   |
| 4.5.3. Operatorii pentru incrementare şi decrementare         | 111   |
| 4.5.4. Operatorii relationali                                 | 113   |
| 4.5.5. Operatorii logici                                      | 113   |
| 4.5.6. Operatorii logici pe biţi                              | 114   |
| 4.5.7. Operatorii de atribuire                                | 118   |
| 4.5.8. Operatorul conditional                                 | 121   |
| 4.5.9. Operatorul virgulă                                     | 123   |
| 4.5.10. Operatorul dimensiune                                 | 125   |
| 4.5.11. Precedența și asociativitatea operatorilor            | 125   |
| Evaluare                                                      | 127   |
| 4.6. Instrucțiunile de control                                | 131   |
| 4.6.1. Instrucțiunea ifelse                                   | 131   |
| 4.6.2. Instrucțiunea switchcase                               | 134   |
| 4.6.3. Instrucțiunea <b>while</b>                             | 137   |
| 4.6.4. Instrucțiunea for                                      | 139   |
| 4.6.5. Instrucțiunea dowhile                                  |       |
| Evaluare                                                      | 149   |
| 5. Implementarea structurilor de date                         | 155   |
| 5.1. Structurile de date                                      | 155   |
| 5.2. Tablourile de memorie                                    |       |
| 5.3. Implementarea tablourilor de memorie în limbajul C++     | 162   |
| 5.3.1. Tabloul cu o singură dimensiune – vectorul             | 162   |
| 5.3.2. Tabloul cu două dimensiuni – matricea                  | 164   |
| 5.4. Algoritmi pentru prelucrarea tablourilor de memorie      | 166   |
| 5.4.1. Algoritmi pentru parcurgerea tablourilor de memorie    | 166   |
| 5.4.2. Algoritmi pentru căutarea unui element într-un tablou  |       |
| de memorie                                                    | 174   |
| 5.4.3. Algoritm pentru ştergerea unui element dintr-un vector |       |
| 5.4.4. Algoritm pentru inserarea unui element într-un vector  | 177   |
| 5.4.5. Algoritmi pentru sortarea unui vector                  | 179   |
| 5.4.6. Algoritm pentru interclasarea a doi vectori            | 188   |
| 5.4.6. Aplicarea algoritmilor pentru prelucrarea tablourilor  |       |
| de memorie                                                    | 190   |
| Evaluare                                                      | 193   |
| 5.5. Fişierele                                                | 201   |
| 5.6. Implementarea fişierelor text în limbajul C++            | 204   |
| 5.6.1. Fluxuri de date pentru fişiere text                    | 205   |
| 5.6.2. Citiri şi scrieri cu format                            | 210   |
| 5 0 0 A P P P P P P P P P P P P P P P P P                     | 042   |
| 5.6.3. Aplicații cu prelucrări de fișiere                     | Z 1 3 |



| Pect pentru oameni și carți<br><b>Evaluare</b> | 219 |
|------------------------------------------------|-----|
| Anexa 1 – Mediul de programare C++             | 222 |
| Anexa 2 – Sisteme de numerație                 | 231 |
| Anexa 3 – Reprezentarea internă a datelor      | 233 |
| Anexa 4 – Funcții de sistem utile              | 236 |
| Anexa 5 – Codul ASCII                          |     |



# 1. Informatica și societatea

#### 1.1. Prelucrarea informațiilor

Calculatorul a fost inventat de om pentru a prelucra informația. El îl ajută să prelucreze foarte uşor, într-un timp extrem de scurt, cu foarte mare acuratețe, o mare cantitate de informație foarte complexă.

Prelucrarea informației este veche de când lumea. **Prelucrarea voluntară a informației** s-a făcut însă abia atunci când babilonienii au scris primele semne cuneiforme pe tăblițele de lut. Aşadar, prima manifestare a prelucrării informației a fost *scrisul*. Încă din antichitate pot fi puse în evidență două tipuri de prelucrări de informații:

- √ prelucrarea textelor = scrisul;
- √ prelucrarea numerelor = calculul numeric.

**Prelucrarea automată a informației** a fost posibilă o dată cu apariția calculatoarelor electronice. Aşadar, scopul utilizării unui calculator este de a prelucra **informația**. Informația prelucrată poate fi formată din texte, numere, imagini sau sunete și este păstrată pe diferite medii de memorare, în diferite formate, sub formă de **date**.

Transformarea datelor în informații nu este un atribut exclusiv al calculatorului. Acest fenomen a apărut o dată cu omul. De la primele reprezentări ale unor cantități, cu ajutorul degetelor, al pietricelelor sau al bețișoarelor, și de la manipularea manuală a acestor obiecte pentru a afla câte zile mai sunt până la un anumit eveniment, sau câte animale au fost vânate, sau câți războinici are tribul vecin, putem spune că are loc un proces de transformare a datelor în informații. Degetele, pietricelele și bețele reprezintă datele, iar ceea ce se obține prin manipularea lor (numărul de animale vânate, numărul de zile, numărul de războinici) reprezintă informația. Ceea ce deosebește un astfel de proces de o prelucrare cu ajutorul calculatorului sunt viteza de obținere a informațiilor și modul de reprezentare a informațiilor sub formă de date.

Calculatorul nu ştie să prelucreze decât şiruri de cifre binare care pot fi modelate fizic prin impulsuri de curent, cu două niveluri de tensiune, ce corespund celor două cifre binare: 0 și 1. Prin urmare, datele vor fi codificări binare ale informației existente în exteriorul calculatorului. Dacă, într-o prelucrare manuală, datele sunt reprezentate de obiecte care pot fi manipulate de om (bețișoare, pietricele sau degete), în cazul unei prelucrări automate datele vor fi reprezentate prin obiecte pe care le poate manipula calculatorul, adică șiruri de biți.

Aşadar, din punct de vedere al unei prelucrări automate a informației, diferența dintre dată și informație este:

✓ **Informația** este un mesaj care înlătură necunoașterea unui anumit eveniment și are caracter de noutate. Informațiile sunt interpretate de oameni.

4 Informatica și societatea

Respect pentru oameni și cărți

Data este reprezentarea informației în interiorul calculatorului. Calculatorul nu înțelege conținutul acestor date, el numai le prelucrează prin operații specifice fiecărui
tip de dată. În urma prelucrării datelor, calculatorul poate furniza omului informații.

Pentru a rezolva o anumită sarcină, trebuie să cunoaștem modul în care o putem rezolva. Pentru aceasta, trebuie să găsim o anumită **metodă**, adică un set de pași pe care trebuie să-i executăm ca să realizăm sarcina. Acest set de pași formează **algoritmul** pentru rezolvarea problemei respective. Inițial, studiul algoritmilor a fost o disciplină a matematicii prin care se căuta să se găsească un set unic de instrucțiuni prin care să se descrie rezolvarea oricărei probleme dintr-o anumită categorie. Ați învățat deja o parte din acești algoritmi: algoritmul lui Euclid pentru găsirea celui mai mare divizor comun dintre două numere, algoritmul împărțirii unui număr, algoritmul extragerii rădăcinii pătrate dintr-un număr, algoritmul conversiei unui număr reprezentat în baza zece într-un număr reprezentat într-o altă bază de numerație etc. Cu timpul, descrierea metodei de rezolvare a unei probleme cu ajutorul algoritmilor s-a extins și în alte domenii de activitate.

La fel ca şi omul, şi un calculator, pentru a putea rezolva o anumită sarcină, trebuie să aibă cunoştințe despre modul în care poate să o rezolve, adică să cunoască algoritmul de rezolvare a problemei. Această informație i se transmite calculatorului prin intermediul unui **program**. Deoarece **limbajul natural** (limbajul prin care comunică oamenii) nu este înțeles de calculator, care este construit astfel încât să poată prelucra numai cifre binare, programul prin care i se comunică algoritmul este scris într-un limbaj de programare. **Limbajul de programare** este un **limbaj artificial** care, prin exprimări simbolice (**instrucțiuni**), descrie operațiile de prelucrare pe care trebuie să le execute calculatorul. El îi permite omului să comunice cu calculatorul (să îi dea comenzi pe care să le execute), deoarece fiecare instrucțiune din limbajul de programare va fi tradusă într-un grup de **instrucțiuni maşină** (instrucțiuni în **limbaj maşină**), adică un şir de biți care au o anumită semnificație pentru calculator. Acest limbaj se numește limbaj mașină deoarece este propriu fiecărui tip de mașină (calculator) fiind implementat sub formă de circuite electronice în procesor.

Aşadar, o sarcină se poate rezolva cu ajutorul calculatorului numai dacă modul în care se rezolvă poate fi descompus în paşi pentru a putea fi descris cu ajutorul unui algoritm, deoarece calculatorul este o **maşină algoritmică**.

Dezvoltarea prelucrării automate a informațiilor cu ajutorul calculatorului s-a făcut în două direcții:

- dezvoltarea echipamentelor astfel încât acestea să fie capabile să stocheze cât mai multă informație, pe care să o prelucreze cu viteză cât mai mare, folosind algoritmi cât mai complecşi;
- ✓ găsirea de noi algoritmi, cât mai performanți, pentru rezolvarea problemelor complexe şi îmbunătățirea tehnicilor de reprezentare şi comunicare a lor.

#### 1.2. Informatica

Folosirea calculatorului a dus la apariția unei noi științe și a unui nou domeniu de activitate: **informatica**.



Informatica reprezintă un complex de discipline prin care se asigură prelucrarea raţională a informațiilor prin intermediul maşinilor automate.

Primul calculator electronic a apărut în anul 1946, ca urmare a unei cereri precise din partea armatei americane, care a fost capabilă să finanțeze un proiect atât de costisitor. Apoi, administrația americană a cumpărat primul calculator non-militar în 1951, pentru recensământul populației. Doi ani mai târziu a fost construit primul calculator destinat unei firme particulare, când General Electric a cumpărat un calculator pentru uzina sa din Louisville. Începând din 1953, firma IBM a început să pătrundă și ea pe piața de calculatoare, prezentându-și calculatoarele în mediile științifice. Astfel, calculatoarele au început să pătrundă și în mediile universitare. Dezvoltarea continuă a echipamentelor electronice de calcul a făcut ca din 1965 informatica să nu mai fie doar o activitate anexă, ci să devină ea însăși o industrie. În contextul unei creșteri puternice a pietei, calculatorul a devenit o unealtă folosită în toate domeniile de activitate.

La primele calculatoare electronice programele erau scrise în cod mașină (binar) sau erau cablate sub formă de circuite electronice. Modificarea unui program sau introducerea unuia nou era foarte complicată, deoarece însemna introducerea programului bit cu bit. Din necesitatea rezolvării acestei probleme au apărut primele sisteme de operare şi primele limbajele de programare, numite limbaje de nivel înalt: în 1956 limbajul Fortran, orientat pe calcule tehnico-științifice, și în 1960 limbajul Cobol, orientat pe aplicații economice care folosesc putine operații de calcul, dar care manipulează un volum mare de date. Limbajele de programare s-au dezvoltat continuu pentru a se adapta la noile echipamente hardware, la noile sisteme de operare și la noile cerințe ale utilizatorilor, care însemnau de fapt noi sarcini pe care trebuia să le rezolve calculatorul, adică noi algoritmi orientați pe rezolvarea anumitor probleme. În 1971 a fost creat în universitățile elvețiene limbajul Pascal, primul limbaj structurat (fiecare prelucrare elementară este considerată ca un bloc, iar blocurile pot fi închise - încapsulate - unele în altele). O dată cu apariția microcalculatoarelor, acest limbaj s-a răspândit foarte mult. Limbajul Basic a fost creat în Statele Unite, în 1975, ca un limbaj interactiv și nu putea fi folosit decât pe microcalculatoare. El permitea abordarea programării și de către persoane care nu erau specialiste în informatică. În 1971 a fost creat, de firma Bell-Telephone, limbajul C, pentru a permite realizarea sistemului de operare Unix. Este un limbaj foarte performant, care posedă atât conceptele limbajelor structurate de nivel înalt, cât și conceptele limbajelor de nivel scăzut, care îi permit accesul la hardware. Programele scrise în limbajele apărute recent au crescut productivitatea programatorilor. Limbajele de nivel înalt au pus bazele ingineriei programării.

La începutul anilor '60, în mediile universitare au început să se formeze departamente pentru cercetarea şi studierea calculatoarelor. Cu timpul, a apărut o bogată literatură de specialitate, iar cursurile din domeniul informaticii au început să fie orientate pe subdomenii şi să fie gradate pe niveluri de dificultate. Astăzi, informatica este divizată în nouă **subdomenii**:



#### Informatica și societatea

- 1. Algoritmi şi structuri de date. Studiază metodele prin care se pot obține aplicații care să prelucreze diferite clase de informații, modul în care vor fi reprezentate informațiile care vor fi prelucrate şi metodele de optimizare a paşilor necesari pentru realizarea aplicațiilor. Scopul acestui subdomeniu este de a identifica problemele care pot fi descrise cu ajutorul algoritmilor, de a găsi modul în care trebuie procedat pentru a descoperi algoritmul şi metodele de analiză şi comparare a caracteristicilor algoritmilor pentru a obține algoritmi cât mai eficienți.
- 2. Limbaje de programare. Studiază notațiile (limbajele) prin care vor fi reprezentați algoritmii şi structurile de date, astfel încât aplicația să poată fi prelucrată. Aceste limbaje sunt apropiate limbajului natural şi pot fi uşor traduse în secvențe de comenzi pe care să le înțeleagă calculatorul. Scopul acestui subdomeniu este de a găsi noi tehnici de reprezentare şi comunicare a algoritmilor.
- 3. Arhitectura calculatoarelor. Studiază modul în care sunt organizate diferite componente hardware ale calculatorului şi modul în care sunt conectate pentru a putea obține un sistem eficient, sigur şi util. Scopul acestui subdomeniu este de a obține maşini algoritmice cât mai bune folosind cunoştințele despre algoritmi dobândite si tehnologia existentă.
- 4. Sisteme de operare. Studiază felul în care trebuie să fie organizate programele care controlează şi coordonează toate operațiile din sistemul de calcul. Scopul acestui subdomeniu este de a face un calculator să rezolve în acelaşi timp mai multe sarcini, fără ca paşii algoritmilor care descriu rezolvarea acestor sarcini să interfereze unii cu alţii, iar atunci când este cazul să se poată realiza comunicarea între diversi algoritmi.
- 5. **Ingineria programării**. Studiază metodele prin care poate fi automatizată activitatea de proiectare a aplicațiilor, de prelucrare a informațiilor, astfel încât să se obtină programe corecte, eficiente, fără erori și ușor de exploatat.
- 6. Calcule numerice şi simbolice. Studiază descrierea fenomenelor din lumea reală prin intermediul formulelor matematice, care pot fi manipulate algebric astfel încât să se obțină modele matematice uşor de descris prin algoritmi. Scopul acestui subdomeniu este de a găsi modele matematice care să permită descrierea şi reprezentarea în calculator a fenomenelor complexe, cum sunt: zborul avioanelor, curentii marini, traiectoria sateliților şi a planetelor, mişcarea particulelor etc.
- 7. Sisteme de gestiune a bazelor de date. Studiază modul în care pot fi organizate cantități mari de date ce nu necesită în prelucrare calcule matematice complexe. Este cazul informațiilor prelucrate în procesele economico-sociale, în întreprinderi şi în administrație. Prelucrarea acestor date trebuie să se facă eficient, fără erori, cu asigurarea securității lor.
- 8. Inteligența artificială. Studiază modul în care percepe şi raționează mintea umană cu scopul de a putea fi automatizate aplicații pe care omul le realizează prin metode "inteligente", care sunt dificil de descris cu ajutorul algoritmilor, ca de exemplu înțelegerea unui limbaj, crearea de noi teorii matematice, compunerea muzicii, crearea unei opere de artă, luarea unor decizii în urma evaluării unor situații complexe (stabilirea unui diagnostic în medicină, mutarea pieselor la jocul de şah etc.).



9. Animație şi robotică. Studiază metodele prin care pot fi generate şi prelucrate imaginile şi modul în care se poate răspunde unei situații din exterior prin acționarea unui robot.

#### 1.3. Etapele rezolvării unei probleme

Orice prelucrare automată a informațiilor presupune definirea următorului lanț:



Din această cauză, pentru orice rezolvare a unei probleme cu ajutorul calculatorului trebuie parcurse următoarele **etape**:

- 1. analiza problemei;
- 2. elaborarea modului de rezolvare a problemei;
- 3. codificarea modului de rezolvare a problemei într-un limbaj de programare;
- 4. testarea programului și corectarea erorilor.

Analiza problemei. Această etapă constă în formularea enunțului problemei, din care vor rezulta **specificațiile** complete și precise ale programului care va rezolva problema. Aceste specificații trebuie să țină cont de condițiile concrete de realizare a programului. Specificațiile sunt:

- ✓ Funcţia programului. Prin ea se determină ceea ce urmează să realizeze programul.
- ✓ Identificarea fluxului de informații. Aceasta presupune identificarea informațiilor de intrare şi, respectiv, a informațiilor de ieşire care vor fi descrise cu ajutorul datelor: date de intrare şi, respectiv, date de ieşire.

Fiecărui tip de informație îi corespunde un anumit mod de stocare în mediul de memorare, adică un anumit tip de dată. Între datele prelucrate de un program există diferite relații. Modul în care vor fi aranjate aceste date în mediul de memorare depinde de legătura dintre ele.

Elaborarea modului de rezolvare a problemei. Această etapă constă în găsirea metodei prin care să se poată rezolva problema. Ea presupune identificarea prelucrărilor care se fac asupra datelor de intrare pentru a obține datele de ieşire. Descrierea acestor prelucrări se face cu ajutorul algoritmului de rezolvare a problemei. Această fază este cea mai importantă şi cea mai grea, deoarece presupune definirea logică a unei secvențe de operații pe care să le poată executa calculatorul astfel încât să se obțină rezultatele dorite.

Codificarea modului de rezolvare a problemei într-un limbaj de programare. Algoritmul de rezolvare a problemei este transpus într-un limbaj de programare ales în conformitate cu specificul problemei care trebuie rezolvată, pentru a fi comunicat calculatorului.

**Testarea programului și corectarea erorilor.** Pentru testarea programului se va folosi o mulțime de seturi de date de intrare care trebuie să prevadă toate situațiile care pot să apară în exploatarea curentă a programului. Testarea constă în executarea repetată

#### Informatica și societatea

a programului pentru fiecare set de date de intrare. Dacă această mulțime de seturi de date nu este aleasă corect, programul nu va fi testat pe toate traseele algoritmului şi în etapa de exploatare pot apărea erori. În această etapă se pun în evidență erorile de sintaxă, erorile de logică şi dacă reprezentarea externă a rezultatelor are aspectul grafic dorit. Erorile de sintaxă apar din scrierea incorectă a instrucțiunilor şi ele vor fi corectate în program. Erorile de logică apar din cauza metodei de rezolvare alese şi ele vor trebui identificate în cadrul algoritmului şi corectate în program.

Aşadar, pentru ca un calculator **să poată produce informații**, trebuie ca, la rândul său, **să primească două categorii de informații**:

- ✓ Descrierea modului în care să realizeze sarcina, adică **algoritmul**, care i se comunică sub forma unui **program**.
- ✓ Informațiile de care are nevoie algoritmul ca să realizeze acea sarcină, care i se comunică sub formă de date de intrare.

### Studiu de caz

Scop: exemplificarea etapelor de rezolvare a unei probleme.

**Enunțul problemei**: Fiind date două numere reale a şi b, să se rezolve ecuația de gradul întâi cu aceşti coeficienți: ax+b=0.

În urma analizei problemei se obține specificația programului:

- ✓ **Funcția programului**. Dacă pentru ecuația de gradul întâi ax+b=0 există o soluție reală, se calculează, în caz contrar se afișează un mesaj.
- ✓ **Informațiile de intrare** sunt coeficienții ecuației, iar suportul extern prin care se vor introduce este tastatura. Reprezentarea internă a informației se va face prin **datele de intrare** *a* și *b*.
- ✓ Informația de ieşire va fi soluția ecuației, dacă există, iar dacă nu există, un mesaj. Suportul extern pe care va fi reprezentată informația de ieşire este ecranul monitorului. Reprezentarea internă a soluției ecuației se va face prin data de ieşire x.

Metoda folosită pentru rezolvarea problemei va fi algoritmul matematic de rezolvare a ecuației de gradul întâi.

Pentru testarea programului se va considera că un set de date de intrare este format de perechea de coeficienți (a;b), iar o mulțime completă de seturi de date de intrare poate fi {(0; 0), (0; 1.5), (2.5; 1.5)}.

#### 1.4. Algoritmul

Datele de intrare sunt supuse unui proces de prelucrare pentru a se obține datele de ieşire. În funcție de rezultatele care se doresc, prelucrarea datelor este realizată după un anumit algoritm.

Algoritmul reprezintă o mulțime ordonată și finită de pași executabili prin care se definește fără echivoc modul în care se poate realiza o anumită sarcină.



Între datele de intrare și datele de ieșire ale algoritmului există o relație bine determinată de însăși construcția algoritmului.

În activitățile zilnice întâlnim la tot pasul algoritmi: algoritmul de utilizare a mașinii de spălat rufe sau vase (exprimat prin setul de instrucțiuni din cartea tehnică a mașinii sau de pe capacul mașinii de spălat), algoritmul de înregistrare pe o casetă video (exprimat prin setul de instrucțiuni din cartea tehnică a videorecorderului), algoritmul de interpretare a muzicii (exprimat prin partitură), algoritmul de construire a unui model de avion sau de navă (exprimat prin setul de instrucțiuni care însoțesc piesele care compun modelul), algoritmul de rezolvare a unei probleme matematice (exprimat printr-un set unic de operații prin care se descrie modul de rezolvare a oricărei probleme dintr-o categorie de probleme). De fapt, aproape toate acțiunile noastre se desfășoară după un algoritm bine definit. Un exemplu de algoritm al activităților zilnice este o convorbire telefonică:

Pasul 1. Început.

Pasul 2. Mergi la telefon.

Pasul 3. Ridică microreceptorul telefonului.

Pasul 4. Dacă are ton, formează numărul de telefon; altfel, pleacă la vecin şi mergi la Pasul 10.

Pasul 5. Dacă telefonul este ocupat, închide telefonul şi mergi la Pasul 11; altfel, aşteaptă să răspundă.

Pasul 6. Dacă nu răspunde, pune microreceptorul în furcă şi mergi la Pasul 12; altfel, începi discuția cu persoana care a răspuns.

Pasul 7. Dacă a răspuns persoana căutată, mergi la Pasul 9; altfel, cere să vină la telefon persoana căutată.

Pasul 8. Dacă persoana căutată nu poate să vină la telefon, mergi la Pasul 13; altfel, aşteaptă să vină la telefon.

Pasul 9. Discută la telefon cu persoana căutată și mergi la Pasul 13.

Pasul 10. Anunță la serviciul "Deranjamente telefoane" că ai telefonul defect și mergi la Pasul 14.

Pasul 11. Așteaptă 15 minute și mergi la Pasul 2.

Pasul 12. Aşteaptă 1 oră şi mergi la Pasul 2.

Pasul 13. Închide telefonul.

Pasul 14. Terminat. -

Un exemplu de algoritm matematic este rezolvarea ecuației de gradul întâi:

$$\mathbf{a} \times \mathbf{z} + \mathbf{b} = \mathbf{0}$$

unde  ${\bf a}$  și  ${\bf b}$  sunt coeficienții ecuației și pot lua orice valori din domeniul numerelor reale, iar  ${\bf z}$  reprezintă un număr care se calculează și care poate lua și el orice valoare reală, astfel încât să fie îndeplinită relația definită prin ecuație. Algoritmul de rezolvare a ecuației va prezenta un set unic de operații prin care se calculează valoarea lui  ${\bf z}$  oricare ar fi valorile pentru  ${\bf a}$  și  ${\bf b}$ :

Pasul 1. Început.

Pasul 2. Comunică valorile pentru a și b.

Pasul 3. Compară a=0. Dacă este adevărat, execută Pasul 4; altfel, execută Pasul 7.



Pasul 4. Compară b=0. Dacă este adevărat, execută Pasul 5; altfel, execută Pasul 6.

Pasul 5. Comunică mesajul "Ecuația are o infinitate de soluții". Mergi la Pasul 9.

Pasul 6. Comunică mesajul "Ecuația nu are soluții". Mergi la Pasul 9.

Pasul 7. Calculează z=-b/a.

Pasul 8. Comunică valoarea lui z.

Pasul 9. Terminat.

Numărul de paşi este finit (9 paşi). Toți paşii reprezintă acțiuni care se pot executa: compară, calculează, comunică. O dată definit acest algoritm, paşii lui se vor executa pentru orice valori ale lui  $\bf a$  și  $\bf b$ , deci algoritmul descrie rezolvarea unei probleme generale. La fiecare executare a algoritmului care descrie o problemă generală va fi tratat un caz particular, adică se rezolvă ecuația de gradul întâi pentru valori precizate ale lui  $\bf a$  și  $\bf b$ , ca de exemplu  $\bf 2 \times \bf z - \bf 4 = \bf 0$  ( $\bf a = \bf 2$ ,  $\bf b = -\bf 4$ ) sau  $\bf 0 \times \bf z - \bf 4 = \bf 0$  ( $\bf a = \bf 0$ ,  $\bf b = -\bf 4$ ) sau  $\bf 0 \times \bf z - \bf 0 = \bf 0$  ( $\bf a = \bf 0$ ,  $\bf b = \bf 0$ ).

#### Aşadar algoritmii au următoarele proprietăți:

- ✓ Claritatea. Orice algoritm tebuie să fie precis definit, să prezinte clar toate etapele care trebuie parcurse până la obținerea soluției, fără să formuleze nimic ambiguu.
- ✓ **Finitatea**. Algoritmul trebuie să fie format dintr-un număr finit de paşi, prin executarea cărora să se ajungă la rezolvarea problemei şi obținerea rezultatelor.
- ✓ Succesiunea determinată a paşilor. Paşii care compun algoritmul trebuie executați într-o ordine bine determinată. De obicei ei se execută în ordine secvențială (ordinea în care au fost scrişi). În cazul în care apare necesitatea schimbării acestei ordini, trebuie să se precizeze clar pasul care urmează să fie executat.
- ✓ Universalitatea. Algoritmul trebuie să permită rezolvarea unei clase de probleme, care sunt de acelaşi tip şi care diferă între ele numai prin datele de intrare. El trebuie să ofere posibilitatea de a rezolva orice problemă din acea clasă de probleme.
- ✓ **Realizabilitatea**. Paşii care compun algoritmul trebuie să reprezinte operații care se pot executa cu resursele disponibile.
- ✓ **Eficiența**. Operațiile care compun algoritmul trebuie alese astfel încât soluția problemei să fie obținută după un număr minim de paşi, cu precizia prestabilită sau cu o precizie satisfăcătoare.

## Evaluare

#### Răspundeți:

- Ce este un algoritm? Ce sunt paşii algoritmului?
- 2. Determinați algoritmul pentru prepararea unui ceai. Identificați proprietățile algoritmului, în acest exemplu.
- **3.** Citiți o rețetă din cartea de bucate. Determinați algoritmul pentru prepararea produsului culinar.
- 4. Daţi patru exemple de probleme a căror rezolvare nu poate fi descrisă cu ajutorul algoritmului şi patru exemple de probleme a căror rezolvare poate fi descrisă cu ajutorul algoritmului.



5. Prin definiție, calculatorul este o unealtă care ajută omul să execute mai bine şi mai uşor unele sarcini. Ce gen de sarcini poate executa calculatorul? În ce domenii poate fi folosit calculatorul pentru a ajuta oamenii pentru realizarea acestor sarcini?

**6.** De ce calculatorul este o maşină care prelucrează informația? Enumerați patru motive care să justifice acest răspuns.

- 7. Aplicațiile care presupun calcule complexe executate repetat, precum şi cele care necesită alcătuirea de tabele, au constituit motivația apariției şi dezvoltării calculatoarelor. Dați un exemplu pentru fiecare dintre aceste aplicații şi explicați cât de greu i-ar fi omului să execute aceste operații fără ajutorul unui echipament de calcul electronic. Dați exemple de activități din liceu în care poate fi folosit calculatorul.
- **8.** Ce legături există între calculator şi matematică? Dar între informatică şi matematică? Numiți subdomeniile informaticii în care aceste legături sunt foarte importante.
- Nu toate aplicațiile de prelucrare a informațiilor pot fi automatizate folosind un calculator. Exemplificați cu trei genuri diferite de aplicații în care folosirea calculatorului este limitată.
- **10.** Dați două exemple în care executarea unei aplicații cu ajutorul calculatorului devine mai dificilă decât executarea ei manuală.

#### Alegeți:

- 1. Algoritmul prin care s-a descris rezolvarea ecuației de gradul întâi folosește pași prin care se execută operații de comunicare, comparație și calcul. Această proprietate a algoritmului se numește:
  - a) claritate
- b) realizabilitate
- c) eficiență
- **2.** Algoritmul prin care s-a descris rezolvarea ecuației de gradul întâi permite obținerea soluțiilor pentru orice combinație de valori ale coeficienților *a* și *b*. Această proprietate a algoritmului se numește:
  - a) finitate
- b) claritate
- c) universalitate

#### Rezolvaţi:

- 1. Se consideră următorul enunț: Fiind dat un număr **a** care reprezintă lungimea laturii unui pătrat, să se calculeze perimetrul, aria și diagonala pătratului. Descrieți etapele de rezolvare a acestei probleme cu ajutorul calculatorului.
- 2. Se consideră următorul enunț: Fiind date trei numere a, b și c să se verifice dacă pot reprezenta lungimile laturilor unui triunghi și, în caz afirmativ, să se calculeze aria triunghiului. Descrieți etapele de rezolvare a acestei probleme cu ajutorul calculatorului.
- 3. Se consideră următorul enunț: Fiind date trei numere a, b și c să se verifice dacă ele pot forma o progresie geometrică. Descrieți etapele de rezolvare a acestei probleme cu ajutorul calculatorului.