

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
Technical Papers		
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER
		5b. GRANT NUMBER
		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
		5e. TASK NUMBER
		5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT
Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048		
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)
		11. SPONSOR/MONITOR'S NUMBER(S)
12. DISTRIBUTION / AVAILABILITY STATEMENT		

TP-1998-160

30

MEMORANDUM FOR IN-HOUSE PUBLICATIONS

FROM: PROI (TI) (STINFO)

10 Jul 98

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-1998-160

Dr. Quinn "AFRL Propulsion Directorate Briefing for Industry (Space Propulsion Thrust"

NAECON Briefing

(Statement A)

20020823 043

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT A	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT	b. ABSTRACT	c. THIS PAGE			Leilani Richardson
Unclassified	Unclassified	Unclassified			19b. TELEPHONE NUMBER (include area code) (661) 275-5015

41 items enclosed

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

Air Force Research Laboratory

Propulsion Directorate

Rocket Propulsion Division

Dr. Lawrence P. Quinn

Air Force Research Laboratory Rocket Propulsion Division

Mission Statement

Create Rocket Propulsion
Technologies for the
Warfighter to Control and
Exploit Space & Air

ADVANCED EXPANDER
CYCLE ENGINE

INTEGRATED POWERHEAD
DEMONSTRATION

HALL THRUSTER

HYBRID BOOST

SUSTAINMENT MOTOR

Outline

- Who Are We?
- What Have We Done?
- Integrated High Payoff Rocket Propulsion Technology
- What Are We Doing?

Propulsion Directorate Rocket Propulsion Location

Facilities

NINETEEN LIQUID ENGINE
STANDS TO 8,000,000 LBS THRUST

THIRTEEN SOLID ROCKET MOTOR
PADS TO 10,000,000 LBS THRUST

A0168.

Altitude Facilities

FROM MILLIPOUNDS TO 60,000 LBS THRUST

A0168..

Combined Space Environment Simulation

30 FT DIAMETER LIQUID NITROGEN
COLD WALL QUARTZ LAMP SOLAR SIMULATION

Air Force Research Laboratory Space Propulsion Contributions

Air Force Research Laboratory Contribution to Air Force Satellite Propulsion

* \$1M AFRL Investment Extended On-Orbit Life and Generated Over \$1B Additional Income on Lockheed-Martin Commercial Satellites.

Air Force Research Laboratory Solid Propulsion Motor Technology Contributions

A0168.

Air Force Research Laboratory Contribution to Peacekeeper ICBM

PROPELLANT

* + HTPB(HYDROXY TERMINATED POLYBUTADIENE)
+ NEPE(NITRATE ESTER POLYETHER)

NOZZLE

+ CARBON-CARBON INTEGRAL THROAT INSERT
+ FLEXSEAL TVC
+ EXPANDABLE EXIT CONES

MOTOR CASE

LOW LENGTH-TO-DIAMETER KEVLAR
WOUND ELASTOMERIC INSULATION

PBPS

INJECTED MOLDED ATTITUDE
CONTROL ENGINE THRUST CHAMBER

OTHER

NUCLEAR EFFECTS STUDIES
ORDNANCE TEST SUPPORT

IOC
DEC 86

Propulsion Related AFSPC Deficiencies

- Costly Spacelift
- Unresponsive Spacelift
- Satellite Repositioning
- Satellite Recovery & On-Orbit Service
- Global Mobility Via Space
- Lack of DoD Space System Protection Capability

IHPRPT IS....

IHPRPT Investment Impacts

**Propulsion Performance has Major Impacts on
Vehicle Size/Weight**

**Propulsion Represents the Limiting Factor in Future
Military and Commercial Capabilities**

PROPELLSION IS...

Spacecraft	Tactical	60-80% Missile Weight
Boost	Life Limiting Factor	Critical Factor in Decreasing Time-to-Target
70-90% Takeoff System Weight	25-40% System Cost	50-70% Satellite Weight
40-60% System Cost		

Propulsion Directorate Primary IHPPT Focus Areas

AV0168..

Aerophysics

Materials Applications

Advanced Propellants

Advanced Concepts

Rocket Propulsion Division

Key Programs

- Integrated Powerhead Demo**
- Develop Enabling Technologies for Advanced Cryogenic Engines
 - Enables Reusable Space Launch Vehicles

- Advanced Expander Cycle Upper Stage Engine**
- Develop Technologies for the Next Generation Upper Stage Engines
 - Increased Reliability, Increased Payload, Decreased Cost

- Advanced Expander Cycle Upper Stage Engine**
- Develop Technologies for the Next Generation Upper Stage Engines
 - Increased Reliability, Increased Payload, Decreased Cost

Hybrid Propulsion

- Develop Hybrid Propulsion for Tactical, Upper Stages and Boost Systems
- Increased Operational Effectiveness, Inherent Safety and Increased Performance

Electric Propulsion

- Develop Advanced Spacecraft Propulsion
- Improved Orbit Transfer, Stationkeeping and Repositioning of Satellites

Strategic Sustainment

- Technology Efforts for Sustainment of Strategic Systems
- Sustainment of Existing Systems and Industrial Capacity

EELV Support

- Activation of Large Engine Test Facility at Edwards AFB
- Provides EELV With Assured Engine Test Capability
- Modern World Class Rocket Engine Test Facility
- On Track to Test Rocketdyne RS-68 for Boeing EELV

Facility System Test
9 Sep 97

Integrated Powerhead Demonstration

**DESIGNED FOR
LOWEST LIFE
CYCLE COST**

Oxygen Preburner

Hydrogen Turbopump

Hydrogen Preburner

- 10X Increase in Engine Life
- 10X Reduction in Maintenance Cost
- 60% Reduction in Vehicle Size
- Meets Military Spaceplane Requirements

Integrated Powerhead Demonstration

- Reusable Space Engine Technology Program
- Baseline Approach for Military Spaceplane
- Unique Design Enables 100 Missions w/o Overhaul
- Low Cost, Low Part Count, High Reliability
- Component Fabrication Underway

250K L₀₂/LH₂ BOOSTER ENGINE

Advanced Expander Cycle Engine Demo

**AFRL & P&W
Upper Stage Demo**

**LO₂
Pump
P&W**

**DEREC
EMA's
AFRL**

**LH₂
Turbopump
AFRL**

**Injector
P&W**

**Combustor
AFRL**

Advanced Expander Cycle Engine IHPRPT Phase I Payoffs

- Upper Stage
 - Increase Payload 11%-16%
 - Decrease Cost 5.6%
- Other Applications
 - Booster
 - Sustainer
 - Military Space Plane

Future DoD/Commercial Satellite Trends

- Greater Repositioning Requirements
- Higher Specific Power
- Greater Resolution
 - Distributed Apertures
 - Large Deployables
- Orbit Insertion
- Electric Propulsion Approaches

Larger GEO Satellites

High Power Available
High Thrust Desired

Small Sats

Low Power (<200W)
Small Impulse Bit

Pulsed
Plasma
Thruster

Electric Propulsion

**SPACECAST 2020 - Critical Technology
for Future of the Air Force**

**New World Vista - Enabling technology,
recommends aggressive R&D effort**

- Propulsion Directorate demonstrating Hall & Pulsed Plasma Thrusters
- Leading agency conducting fundamental research on Electric Propulsion

- Enables dramatic increases in GEO payloads 50 % near term and 300% far term increase

- Enables New Missions, Special Orbits 500% increase in Maneuvering

Solar Thermal Propulsion Critical Flight Experiment

CFE Objective

- Validate inflatable concentrators
 - Deployment and pressurization
 - Optical performance 2mrad
 - Space debris, AO, UV radiation
- Demonstrate Solar Thermal Propulsion System
 - Pointing and control .1 deg
 - Integrated engine and collector
 - Plume/mirror interactions
- Meet IHPRPT Performance Goals

- ## Secondary Inflatable Experiments
- Microwave Antenna Characterization
 - PV array deployment
- ## Flight Experiment
- Cooperate program with NASA
 - Spartan/Shuttle launch
 - Inflatable characterization
 - Multiple GN2 burns
 - Experiment recovered by shuttle

Solar Thermal Propulsion Critical Flight Experiment

- Provides AFSPC with
 - Affordable Spacelift (2X payload to GEO)
 - Responsive Spacelift (Step down, <30 days)
 - Space Control (tug for repair/retrieval, denial)
 - Step toward high Isp Reusable OTV
 - Large aperture space antennas
- Alternatives
 - EP & chemical
 - Nuclear & Laser Thermal
 - AFRL SOTV/ISUS
 - NASA Shooting Star
- Need for Space Flight
 - Test 0g inflatable deployment dynamics and accuracy
 - Test 0g, free flight tracking and control for large inflatable structures
 - Quantify effects of LEO environment (Solar Flux, UV, AO, Debris)
 - Demonstrate solar thermal propulsion in operational space environment

AFRL SOTV

- Power and Propulsion
- Thermal storage cavity
- Single smaller rigid segmented concentrator
- Cryo H₂ storage and delivery
- Tankage interaction
- Thermionic operation
- EELV 2002 launch

Strategic Sustainment

- **USSTRATCOM Initiated Program**

- Meets the USSTRATCOM Requirement for Sustainment of Strategic Technology

- Funding Directed by Dr. Kaminski

- \$67M Fenced Funding from FY98 Through FY03

- **Coordinated with the MM SPO**

- OO-ALC/M
- SAF/AQS
- SMC/XRT
- USSTRATCOM/J541
 - HQ AFSPC/DRM, DOW

- **SPO PRP Deals with Existing System**

- **Strategic Sustainment Deals with**

- Future Technology
- Sustainment of Propulsion Development Capability

Strategic Sustainment and PRP

- Two Different Programs with Two Different Objectives

SS

Lab Program

PRP

SBICBM SPO Program

Technology Development

System Maintenance
(Propellant Repour)

Sustains Motor
Development Capability

Sustains Existing System

Component Design

Manufacturing

- PRP Only Does that Technology Needed to Keep Minuteman Operating

Strategic Sustainment Missile Propulsion

- Propellant
 - Sustainable Ingredients
 - Reduced Hazards Class 1.3
- Nozzle
 - In-Situ Densification
 - Low Cost Ingredients
- Stronger, Lower Cost Case
- Electromechanical Actuators
- Support & Hardware Cost Reduction - 25%
- Inert Weight Decrease - 15%
- Isp Increase - 4% (10 sec)

SUSTAINMENT MOTOR

Case (Thiokol)

- Reduce Case Weight by 13.7% (Increase Castor 120 Mass Fraction 1%)
 - Reduce Case Cost by 23% (Decrease Castor 120 Cost 6%)

Supersonic Splitline Flexseal Nozzle

- Method to Build a Lighter and Less Complicated Nozzle
- Improves the Payload of an NMD Missiles' Second and Third Stage by 9% (even when the Length of the Missile was Constrained)
- Applied to the Orbis 1® Motor Which was used to Demonstrate the concept
 - Nozzle Weight can be Reduced by 43%
 - Nozzle Cost Can Be Reduced by 20%
 - Propellant Weight can be Increased by 1%

SUPersonic SPLITLINE FLEXSEAL APPLIED TO ORBUS-4 MOTOR

Strategic Sustainment Aging and Surveillance

BASELINE TECHNOLOGY

- Address Both Analytical and Surveillance Technology

- Decrease Analysis Procedure, Aging Model & Material Characterization Uncertainties

- Extend “Look-Ahead” Window to 10 Years With 90% Confidence Level

- Develop Techniques That Permit Individual Motor Predictions

- Reduce Time and Cost for Non-Destructive Evaluation Data Processing by 50% (Predicted Service Life 59.81 Years)

Strategic Sustainment Post Boost MIRV Propulsion

Phase II Tactical Hybrid Demonstrator Configuration

The Pay Off

- 16% Increase in Average Velocity
- 13% Increase in F-Pole
- 8% Increase in A-Pole

AFRL / PRR

6.2 & 6.3 New Project Starts

- **FY99**

- Light Weight Engine Nozzle
- Phase I Solid Boost Demonstrator (6.3)
- Critical Defect Assessment Program

- **FY00**

- High Temperature Oxygen Turbine Development
- Single Stage High Discharge Pressure LH₂ Turbopump
- Electric Propulsion System for Orbit Transfer (6.3)
- Strategic Sustainment Demonstration (6.3)

Propulsion Technology Enabling Future Space & Air Force Systems

- Low Cost Access to Space
- Airplane Like Operations
- Routine Space Transition Operations
- Satellite Maneuvering and Repositioning
- Missile Defense and Space Control
- New Space Based Systems
 - Space Based Radar

Conclusion

ROCKET PROPULSION DIVISION

- GUARANTEED to support the warfighter
- Close bond between PL and AFSPC
- Honest Broker / Expert Consultant
- One Place gives Full Spectrum Capability (Unique Facilities)
- A Center of Excellence for Propulsion
- Innovative Research
- Corporate Responsibilities

THE MAJOR NATIONAL LOCATION
FOR ROCKET PROPULSION
TECHNOLOGY

Rocket Propulsion Technology Fundamental to all Space & Missile Systems

Tactical Propulsion Minimum Smoke Propellant Development

Objective

- Demonstrate Next Generation of Low Hazards, High Performance, Low Signature Propellants

Approach

- Air Senior National Representative (ASNR) Sponsored Effort
 - France: Ballistics & Hazards
 - Germany: Formulation Characterization & Performance Calculations
 - United Kingdom: Mechanical Properties & Aging
 - U.S.: Formulation Characterization, Ingredient Analysis & Performance Calculations

Solar Propulsion Laboratory

World Class Facilities

Center of Excellence for U.S. Solar Efforts

- Laser Power Beaming (PL/LI)
- Solar Bimodal Propulsion and Power (PL/VT)
- Industry / AF / NASA / University
Solar Consortium CRDA
- Hercules CRDA
- Commercial Spin-Offs
 - High Temperature CC Springs
 - Holographic Embossed Thin Films for Medical CATscans
 - Compressed Natural Gas Bladders for Chrysler Corp.
 - Polyimide Concentrators for Space Based RF Antennas

- ONLY U.S. SOLAR FACILITY USING LH₂
- 10000:1 CONCENTRATION RATIO
- 3400K GAS TEMPERATURE

- 30 FOOT DIAMETER VACUUM SPHERE
- ONLY LARGE U.S. VACUUM FACILITY RATED FOR 100,000 LBS LH₂

Propulsion Directorate

Rocket Propulsion Facilities

AFRL Propulsion Directorate

New Energetic Monopropellants

Payoff

- Double Satellite On-Orbit Lifetime
- Non-Toxic Replacement of Hydrazine
- Candidate for Military Space Plane

Candidate Propellants

	<u>Isp (sec)*</u>	<u>p (g/cc)</u>
• Hydrazine	198	1.00
• Peroxide	164	1.43
• XM46 (HAN/TEAN)	244	1.43
• RKS-M1	270	1.69

* $P_c=1$ --- psi, Sea Level exhaust

Approach

- Low melting salts, dissolved in solvents

- Low volatility, low toxic

Status

- Several candidates synthesized
- Low shock sensitivity, low cost