3.2 Tob sequencing with deadlines:

Giren a set of 'n' jobs,

deadline di sor each job i (d,710) Profit Pi >0 for each each job

- For any job i, the profit Pi is earned iff the job is completed by its deadline.
- only one quachine is available for processing
- A job is completed, when it gets executed on a machine for one unit of time.
- A feasible solution for this problem is a Subset I of jobs, such that each jobs in this subset can be completed by ets deadline.
- An optimal solution is a feasible solution weith maximum value.

Greedy Approach

- 1. Sort all jobs in decreasing order of profit
- 2. Initialize the result sequence as first in sorted jobs, as late as possible
- if we want 3. Do the following for remaining n-1 jobs: - If the coverent job can fit in the current result sequence neithout: missing the deadline, add current job to the

-result, else ignore the coverent job.

Ex: solve the below instance of job sequencing with deadlines problem and obtain the optimal solution:

Pi = { 100, 10, 15,2+} 15154 die f 2, 1, 2, 14 15 i 54

step1

Sout all jobs in decreasing order of

job	A	B	C	DØ
Pi	100	10	15	27
di	2	1 1	2	1

After sorting.

	job	A	D	C	В
	Pi	100	2+	15	lo
Ĺ	d_i	2		2	1 3

the state of the state of

Step 2 - Initialize Resultant as 1st Job and schedule as late as possible Draw Gant chart Leading of the said Just 1, mil Step 3: Repeat the same for others: P other jobs are Rejected as they mont fit ... the selected job set J= { D, A} projit earned = 27 +100 - 127

2.

i	31	12	13	14	ic
Pi	10	3	33	, 11	40
di	3	J		2	2
				100	1600

Step 1: Sort it in Ascending order

1	in the	$r_i \Delta \epsilon_i$	\.	V d	-1 /	331
	15	13	14	f1	f2	
\mathcal{P}_{i}	40	1 33	11	10	3	
di	2	e ·	2	3	[0 G]	

step 2: Initialize Result as 1st job and schedule as late as possible.

Draw Gantt chart

	fs		
0	1	2	3

Step 3: Repeat the same for others:

ja is orjected as its deadline is 2, consider j',

- j'2 is negerted as the sequence is full.

The selected job set:

$$J = \{j_3, j_5, j_1\}$$

$$profit canned = 33 + 40 + 10 = 83$$

solve the following instance of job sequencing unith deadlines problem:

3.

$$\frac{301}{n} = \int_{0}^{1} J_{1}, J_{2}, J_{4}$$