Week 2: For each of the following, determine if the statement is true or false. If the statement is true, provide a full proof. If the statement is false, provide an explanation including a counter-example. Suppose that a, b, c, and d are integers.

- 2a. If $a \mid c$ and $b \mid c$, then $(a + b) \mid c$.
- 2b. If $a \mid c$ and $a \mid d$, then $a \mid cd$
- 2c. If $a \mid c$ and $b \mid c$, then $ab \mid c$
- 2d. If $a \mid b$ and $a \mid c$, then $a \mid (b+c)$

Solutions:

- 2a. False For example, if you have $3 \mid 12$ and $2 \mid 12$, then $(3 + 2) \mid 12$, however $12 \mod 5 = 2$.
- 2b. **True** Assume k, l are integers and c = ak and d = al, thus by multiplying the two together we get $cd = a^2(kl)$, cd = a(akl) since a is multiplied by an integer, by the Definition of Divisibility, $a \mid cd$. Q.E.D.
- 2c. False For example, $12 \mod 4 = 0$ and $12 \mod 6 = 0$, however $12 \mod 24 = 12$, not 0.
- 2d. **True** Assume l, m are integers s.t b=al and c=am. By adding the two equations together we get that b+c=al+am, which after factoring out an a becomes b+c=a(l+m). Since both l and m are constants, b+c=a(k) where k=l+m. Thus a|(b+c) by the Definition of Divisibility. Q.E.D.