Benchmark Systems

Modeling Description

Abstract: This document describes the modeling of the Benchmark Examples using the OpenDSS Library from the Typhoon HIL toolchain. The main goal of these systems is to support a starting point for the usage of the library applying its key features. The library modeling technique/features are applied according to the electrical system characteristics in the study.

CONTENTS

CIGRE SYSTEMS	1
CIGRE EUROPEAN MEDIUM VOLTAGE (DISTRIBUTION SYSTEMS)	1
Results	2
Modeling Data	3
References	
9	

CIGRE SYSTEMS

CIGRE EUROPEAN MEDIUM VOLTAGE (DISTRIBUTION SYSTEMS)

The CIGRE Medium Voltage distribution network is derived from a physical network in southern Germany [1], which supplies a small town and the surrounding rural area. In the European version, the modeling does not include unbalances on lines and loads.

Figure 1 shows the topology of the feeder. The system operates at 20 kV 50 Hz via separate transformers (T1 and T2) from the 110 kV transmission network. The topology can be modified between radial/radial/meshed configurations through S1, S2, and S3 switches.

The data modeling is presented in the following subsections. All lines are symmetrical, and the loads are represented as constant impedance. A fixed tap at the transformers T1 and T2 is set manually on the transformer parameterization (without voltage regulator).

The power flow results in the Results subsection show a good match between the OpenDSS and SCADA models compared to the reference.

Figure 1 – Single Line diagram of the CIGRE European MV Feeder.

Results

Table 1. Power Flow – Load Voltages Magnitudes.

Bus	CIGRE	DSS	SCADA	Bus	CIGRE	DSS	SCADA
#0	1.0000	1.0007	1.0004	#8	0.9665	0.9625	0.9643
#1	1.0260	1.0213	1.0227	#9	0.9655	0.9616	0.9634
#2	1.0045	1.0003		#10	0.9645	0.9605	0.9623
#3	0.9715	0.9674	0.9675	#11	0.9645	0.9603	0.9621
#4	0.9700	0.9657	0.9697	#12	1.0020	1.0004	1.0036
#5	0.9690	0.9646	0.9664	#13	0.9970	0.9956	0.9986
#6	0.9675	0.9632	0.9651	#14	0.9940	0.9929	0.9958
#7	0.9665	0.9622	0.9640				

Table 2. Power Flow – Load Voltages Errors.

Bus	DSS	SCADA	Bus	DSS	SCADA
#0	-0.07%	-0.04%	#8	0.42%	0.23%
#1	0.46%	0.32%	#9	0.41%	0.22%
#2	0.42%		#10	0.42%	0.23%
#3	0.43%	0.41%	#11	0.44%	0.25%
#4	0.44%	0.03%	#12	0.16%	-0.16%
#5	0.46%	0.27%	#13	0.14%	-0.16%
#6	0.44%	0.25%	#14	0.11%	-0.18%
#7	0.44%	0.26%			

Table 3. Power Flow – System Input.

Meas.	CICRE	DS	S	SCADA		
	CIGRE	Value	Error	Value	Error	
P (MW)	45.9076	45.5472	0.79%	46.5141	-1.32%	
Q (Mvar)	16.5096	16.8198	-1.88%	15.7301	4.72%	
S (MVA)	48.7860	48.5536	0.48%	49.1018	-0.65%	
PF	0.9410	0.9381	0.31%	0.9473	-0.67%	

Modeling Data

Table 4. Line Segment Data.

Line	From (#Bus)	To (#Bus)	R1 (Ω/km)	X1 (Ω/km)	C1 (nF/km)	R0 (Ω/km)	x0 (Ω/km)	C0 (nF/km)	km
Line_1	#1	#2	0.501	0.716	151.175	0.817	1.598	151.175	2.82
Line_2	#2	#3	0.501	0.716	151.175	0.817	1.598	151.175	4.42
Line_3	#3	#4	0.501	0.716	151.175	0.817	1.598	151.175	0.61
Line_4	#4	#5	0.501	0.716	151.175	0.817	1.598	151.175	0.56
Line_5	#5	#6	0.501	0.716	151.175	0.817	1.598	151.175	1.54
Line_6	#6	#7	0.501	0.716	151.175	0.817	1.598	151.175	0.24
Line_7	#7	#8	0.501	0.716	151.175	0.817	1.598	151.175	1.67
Line_8	#8	#9	0.501	0.716	151.175	0.817	1.598	151.175	0.32
Line_9	#9	#10	0.501	0.716	151.175	0.817	1.598	151.175	0.77
Line_10	#10	#11	0.501	0.716	151.175	0.817	1.598	151.175	0.33
Line_11	#11	#4	0.501	0.716	151.175	0.817	1.598	151.175	0.49
Line_12	#3	#8	0.501	0.716	151.175	0.817	1.598	151.175	1.30
Line_13	#12	#13	0.510	0.366	10.097	0.658	1.611	4.0743	4.89
Line_14	#13	#14	0.510	0.366	10.097	0.658	1.611	4.0743	2.99
Line_15	#14	#8	0.510	0.366	10.097	0.658	1.611	4.0743	2.00

Table 5. Transformers T1 and T2 data.

Rated Primary Voltage:	110 kV
Rated Secondary Voltage:	20 kV
Connection:	Dyn
Rated Power:	25 MVA
R:	1 %
X:	12 %

Table 6. Load Data.

Bus	Reside	ential	Industrial		
	S [kVA]	PF	S [kVA]	PF	
#1	15300	0.98	5100	0.95	
#2					
#3	285	0.97	265	0.85	
#4	445	0.97			
#5	750	0.97			
#6	565	0.97			
#7			90	0.85	
#8	605	0.97			
#9			675	0.85	
#10	490	0.97	80	0.85	
#11	340	0.97			
#12	15300	0.98	5280	0.95	
#13			40	0.85	
#14	215	0.97	390	0.85	

References

[1] - <u>TF C6.04.02</u>: <u>TB 575</u> -- <u>Benchmark Systems for Network Integration of Renewable and Distributed Energy Resources.</u>