Blue Group Soluciones AWS para tu negocio

Contenido

- **1.** Equipo.
- **2.** Objetivo.
- **3.** Arquitectura.
- 4. Configuración de los servicios:
 - VPC / Subnets / Internet Gateway
 - Instancias y Security Groups
 - ELB y ALB
 - Autoscaling
- **5.** Demostración.
- **6.** Agradecimientos.

Equipo

Daniela Zapata

Desarrolladora

Silvia Piñel Desarrolladora

Almudena Rivera
Desarrolladora

Laudy Navarrete
Desarrolladora

Isabel IpialesDesarrolladora

Objetivo

Desplegar una web estática en AWS con alta disponibilidad, asegurándonos de que la caída de una zona de disponibilidad no afecte el acceso a la web.

En un entorno de negocio, la indisponibilidad de un sitio web puede generar pérdidas económicas.

Arquitectura

Configuración

Creación VPC

Creamos la VPC en la <u>región:</u> (Oregón: us-west-2) Siguiendo los siguientes pasos:

- Vamos al servicio de VPC dentro de la consola de AWS
- Creamos la VPC indicando el nombre.
- Seleccionamos el tamaño del bloque CIDR (10.0.0.0/16)
- Finalmente creamos la VPC.

Creación Subredes

Creamos las subredes <u>públicas</u> siguiendo los siguientes pasos:

- Seleccionamos la VPC creada previamente (Blue-VPC)
- Se nombra la subnet (Blue-Subnet1)
- Se selecciona la zona de disponibilidad para esta subnet (us-west-2a)
- Seleccionamos el tamaño del bloque CIDR (10.0.1.0/24)
- Finalmente creamos la subnet

Repetimos los mismos pasos para crear una **segunda** subnet a la que llamaremos (Blue-Subnet2), escogemos la zona de disponibilidad (us-west-2b) y el bloque CIDR (10.0.2.0/24).

Internet Gateway

Creamos el Gateway de Internet siguiendo estos pasos:

- Indicamos el nombre (Blue-igw)
- Finalmente creamos el Gateway de Internet.

A continuación, debemos **conectarla** con la VPC creada previamente

Route Table

Creamos la tabla de enrutamiento siguiendo estos pasos:

- Nombramos la tabla (Blue-Route-table)
- Se selecciona la VPC creada previamente
- Creamos la tabla de enrutamiento.
- Asociamos subredes explícitas a la tabla de enrutamiento.
- A continuación en la pestaña rutas, damos acceso a la tabla de enrutamiento a Internet.

Target Groups

Dentro de EC2 nos dirigimos a Target groups para configurarlo y crearlo:

- Elegimos Instancias para el target type.
- Establecemos "Blue-Target-Group" como nombre del grupo de destino.
- Seleccionamos el protocolo que usaran las instancias, en este caso HTTP en el puerto 80.
- Seleccionamos la VPC donde se encuentran las instancias, en este caso Blue-Target-Group.

Security Groups

En este caso primero creamos un grupo de seguridad para las instancias EC2 y otro para el Application Load Balancer

- Primero asignamos el nombre al grupo de seguridad.
- Añadimos una breve descripción.
- Seleccionamos nuestra Blue-VPC en ambos casos.
- Configuramos las reglas de entrada y salida.
- Para las instancias, reglas entrantes HTTP con puerto 80 y SSH con puerto 22.
- Las reglas salientes las configuramos para que permitan todo el tráfico.

Las correspondientes al Application Load Balancer configuramos las reglas de salida permitiendo el tráfico HTTP desde cualquier dirección.

Load Balancer

- Application Load Balancer optimizado para aplicaciones web.
- Distribución equitativa entre las instancias EC2.
- Escalabilidad automática para manejar grandes volúmenes de tráfico.
- Nombrar el Load Balancer como Blue-Load-Balancer.
- Seleccionamos nuestra VPC "Blue-VPC" para asociarlo.
- Marcamos las zonas de disponibilidad us-west-2a y us-west-2b.
- Seleccionamos nuestro grupo de seguridad "Blue-Seg-grp-instances".

Load Balancer

- Configuramos un listener en el puerto 80 y lo asociamos al target group.
- Podemos ver el resumen de las configuraciones.

Finalmente creamos el application load balancer

Plantilla Lanzamiento

EC2 > Launch Templates > Create Launch Template.

Configuración:

- AMI: seleccionar Amazon Linux 2.
- **Tipo de instancia**: t2.micro.
- Script de inicio.
- Seleccionar el grupo de seguridad para las instancias EC2.

Dos instancias en diferentes zonas de disponibilidad.

Plantilla de lanzamiento

Creamos el grupo de Auto Escalado

- Nombramos el Grupo (Blue-Auto-Scaling)
- Seleccionamos la plantilla de Lanzamiento creada previamente (Blue-launch-template).

- Seleccionamos la VPC
- Seleccionamos las Zonas de disponibilidad que indicamos en las Subredes
- Seleccionamos el Balanced best effort

- Integramos el Load Balancer que creamos previamente.
- Escogemos el Application Load Balancer (Blue-Target-Group | HTTP)
- Seleccionamos "No VPC Lattice Service"

- Configuramos la capacidad indicando el tamaño del grupo (2)
- Indicamos la capacidad Min (2) y Max (4), esto según los requerimientos del proyecto.
- Seleccionamos las políticas de no escalado
- Escogemos las políticas de mantenimiento de la instancia.

- Revisamos el resumen de lo que hemos configurado.
- Finalmente creamos el grupo de Auto Escalado.

Comprobar la configuración

Demostración

