	Understand										
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
	Analyze				06	HIN					
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Create						- 4				
	Total 100 %		10	0 %	100 %		10	0 %	100%		

CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc

Course Designers	Course Designers											
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts										
Mr. S. Karthik, IT Analyst, Tata Consultancy	Dr. Neelanarayanan,, Professor, School of Computer Science and Engineering, VIT	Mrs.A.Pavithra										
Services	Chennai	Mr.M.R.Vinodh										

Course Code UCS20D06J		Course	ADTICION INITELL	ARTIFICIAL INTELLIGENCE Cate		77 7	Dissipling Specific Floating	L	T	Р	С
		Name	ARTIFICIAL INTELL				Discipline Specific Elective	4	0	4	6
		3		Lally 1	11///25						
Pre-requ	uisiteCourses	Nil	Co-requisiteCourses	Nil	Pro	ogressiveCo	urses Nil				
Course O	fferingDepartr	nent Computer S	Science	Data Book / Code	s/Standards Nil						

Course Learning Rationale (CLR):	The purpose of learning this course is to:	Le	arni	ng			
CLR-1 : Discover problems	hat are agreeable to solution by AI methods.	1	2	3			
CLR-2: Study the basics of	designing intelligent agents that can solve general purpose problems						
CLR-3: Discover appropriat	e AI methods to solve a given problem	(Bloom)	(%	(%)			
CLR-4: Perform intellectual task as decision making, problem solving, perception, understanding							
R-5 : Formalize a given problem using different AI methods							
CLR-6: Provides adaptive le	earning		cie	nu			
		f Thinking	ed Proficiency	ed Attainment			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:		Level of	Expected	Expected			
CLO-1 : Demonstrate funda	mental understanding of the history of artificial intelligence and its	3	80	70			

4	Program Learning Outcomes (PLO)														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Fundamental Knowledge	Application of Concepts	Link with Related Disciplines	Procedural Knowledge	Skills in Specialization	Ability to Utilize Knowledge	Skills in Modeling	Analyze, Interpret Data	Investigative Skills	Problem Solving Skills	Communication Skills	Analytical Skills	ICT Skills	Professional Behavior	Life Long Learning
	L	Н	-	Н	L	-	3 .	=	L	L	17	Н	-	-	17-17

	foundations				m.															
CLO 2 ·	Apply basic principles of AI in solutions that require problem solving, inference, perception,	2	85	75		М	Н	L	М	L	-	250	-	М	L	-	Н	-		-
CLO-2 :	knowledge representation, and learning	3	٥٥	/5											6 6					
CI O 2 .	Identify systems with Artificial Intelligence.	2	75	70	1	М	Н	М	Н	L		-	2	М	L	-	Н	-	-	_
1 1 1 1 - 3 .	evaluation of different algorithms on a problem formalization	3	15	70	Λ,															
CLO-4:	Use classical Artificial Intelligence techniques, such as search algorithms,	3	85	80	Τ,	М	Н	М	Н	L	-	-	-	М	L	-	Н	-	-	-
CLO-5:	Ability to apply Artificial Intelligence techniques for problem solving.	3	85	75		Н	Н	М	Н	L	-	-	2	М	L		Н	-	33343	-
CLO-6:	Ability to learn the current Artificial Intelligence techniques.	3	80	70		L	Н	-	Н	L	-	V-7-10	-	L	L	777	Н	-	-	1752

	ration lour)	24	24	24	24	24
S-1	SLO-1	Introduction to Artificial Intelligence	Logical Reasoning-Introduction	Planning: designing programs to search for data or solutions to problems	Uncertain Knowledge and reasoning	Learning
	SLO-2	History of Al- Al Techniques	Knowledge Representation	Forward search and backward search	Quantifying uncertainty	Learning agents
6.3	SLO-1	Problem Solving with AI- AI models	Logical Agents: Knowledge based Agents	state-space search	Probability Theory: Uncertain Knowledge	Classification of learning
S-2	SLO-2	Data Acquisition and Learning Aspects in Al	The Wumpus World & Logic	Represent the current state and goal state	Axioms of probability	Learning elements
	SLO-1	Problem-Solving Process	Propositional logic	Problems to solve: Water Jug Problem	Bayes Theorem	Inductive Learning methods
S-3	SLO-2	Formulating Problems	Propositional logic: Syntax & Syntax grammar	State representation: Initial, operator, goal state	Bayes' Rules & uses	Learning decision tree
<i>.</i> .	SLO-1	Problem Types and Characteristics	Inference	Train travel problem	probabilistic Reasoning	Attribute based representation
S-4	SLO-2	Problem Analysis and Representation	Implication by inference Types of reasoning	State representation: Initial, operator, goal state	Uncertainty: Causes of uncertainty:	Choosing an attributes
S 5-8	SLO-1	Laboratory 1:program showing the various possibilities involved in solving a water jug problem.	Laboratory 3:program for Tic Tac Toe game played by Single player against automated Computer player.	Laboratory 7:Program for building a magic square of Odd number of Rows and columns.	Laboratory 10:Program for solving A* shortest path algorithm.	Laboratory 13: Program which demonstrate the precedence properties of operators in C language.
0.000	SLO-1	Agents- Examples of Agents	First-Order logic	partial-order planning	Probability	Decision tree learning
S-9	SLO-2	Types of agents	Syntax of First-Order logic	Basic representation Operator representation	Probability of occurrence	Hypothesis Spaces
S-10	SLO-1	General Search algorithm Uniformed Search Methods	Basic elements of First order logic Reducing first-order inference	planning graphs	Conditional probability	Information theory
		Heuristic Search Techniques	Quantifiers in First-order logic	Planning graph of feeding	Probability occurrence for the problem	Information gain

	SLO-1	BFS, Uniform Cost Search	Inference in first order logic and Generalized rules for FOL	Uses of planning graph	Bayesian networks	Explanation based learning
S-11	SLO-2	Depth First search , Depth Limited search (DLS)	FOL inference rules for quantifier	Planning graph example	Types of Bayesian Network	Hypothesis
6.12	SLO-1	Iterative Deepening search algorithm	Forward chaining	ICTIADO DIAN AIVONITUM	Building model op Bayesian Network	Statistical Learning methods
S-12	SLO-2	Iterative Deepening search for DFS	Properties of forward chaining	Using planning graphs for heuristics	Directed Acyclic Graph	Naïve Bayes
S 13-16		Laboratory 2: Program for solving a water jug problem using Breadth first search and Depth first search (BFS & DFS).		building a magic square of Even		Laboratory 14: Program to calculate factorial of a number
C 17	SLO-1	Informed Search- Introduction	Fast conversion of forward chaining	planning and acting in the real world	Conditional probability	Instance base learning
S-17	SLO-2	General tree search: Evaluation function	Properties of forward chaining Examples for forward chaining	Basic Planning	Bayesian Network Graph	Neural Networks
C 10	SLO-1	General graph search: Evaluation function	Backward Chaining	Real world: JOB shop scheduling	Inferences in Bayesian networks	Reinforcement Learning
S-18	SLO-2	Generate and Test BFS	Properties of Backward chaining Examples for Backward chaining	Critical path method	Components of Bayesian Network	Elements of reinforce learning
C 10	SLO-1	Generate and Test A* algorithm	Unification	Forward march	Temporal models	Reinforcement learning problem
S-19	SLO-2	Generate and Test AO* algorithm	Conditions for Unification & Unification algorithm	Backward march	Inference in temporal models	Agent environment interface
6.22	SLO-1	constraint satisfaction	Resolution for inference rule	Limited resources	Hidden Markov models	Steps for Reinforcement learning
S-20	SLO-2	Perform the task for given CSP:	Steps for Resolution	Hierarchical Planning	HMM components	Problem solving methods for RL
S 21-24	SLO-1 SLO-2	Laboratory 3: program to find out route distance between two cities	Laboratory 6:program to implement Tower of Hanoi	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Laboratory 12:program to solve 8-Queens problem	Laboratory15:program to implement five House logic puzzle problem

Learning
Resources

- 1.Russel. SandNorvig.P, (2003), "Artificial Intelligence A Modern Approach", Second Edition, Pearson Education. Unit (I V)
- 2. David Poole, Alan Mackworth, Randy Goebel, (2004), "Computational Intelligence: a logical approach", Oxford University Press.
- 3. Luger. G(2002), "Artificial Intelligence: Structures and Strategies for complex problem solving", Fourth Edition, Pearson Education.
- 4. Nilsson.J (1998), "Artificial Intelligence: A new Synthesis", Elsevier Publishers.

Learning A	ssessment											
В	loom's			Continou	s Learning Asse	ssment(50% V	Veightage)			Final Examina	ation (50%	
Level	of Thinking	CLA -	1 (10%)	CLA -	2 (10%)	CLA - 3 (20%)		CLA - 4	4# (10%)	weightage)		
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
	Understand					who who						
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
	Analyze					Salar Salar					50 M	
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
	Create				100 to 11		J. 4271 12.	100			10 ×	
	Total	10	0 % 100 %		0 %	10	0 %	10	00 %	100%		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
Mr. S. Karthik, IT Analyst, Tata Consultancy	Dr. Neelanarayanan,, Professor, School of Computer Science and Engineering, VIT	1. Dr. S. Kanchana						
Services	Chennai	2. Mrs. E. Sweety Bakyarani						

Course Code	UJK20401T	Course Name		Professional Skills	Course Category		Life Skill Course	L 2	T 0	P 0	C 2
Pre-requ	iisite Courses	Nil	Co-req	uisite Courses Nil	Progressive Courses	Nil					
Course Off Department		Career Development	t Centre	Data Book / Codes/Standards	Nil						