Stage de Recherche en Informatique (Supélec 2A)

Génération de signaux micro-Doppler par réseaux de neurone

Paul LE GRAND DES CLOIZEAUX

LRI, CentraleSupélec, Université Paris-Saclay

Contexte Objectif: Classifier des profils micro-Doppler d'objets volants Des profils micro-Doppler de drones et d'oiseaux ont été collectés par l'ONERA. FIGURE 1 – Exemple de drone utilisé

Quantité de donnés insuffisantes

Problèmes

—Nombre faible de profils.

— Profils hautement corrélés (collectés dans des conditions semblables)

Solution proposée

Data augmentation par génération de profils micro-Doppler artificiels par réseaux de neurone (GAN).

Qu'est ce qu'un GAN (Generative Adversarial Network)? Un GAN: un réseau de neurone utilisé pour générer des données. Training set Discriminator

FIGURE 4 – Schéma d'un GAN basique

Fonctionnement

Recherche d'un équilibre entre le générateur et le discriminateur.

- Générateur essaye de tromper le discriminateur
- Discriminateur essaye de démasquer le générateur

Amélioration du générateur par rétropropagation de l'erreur du discriminateur sur l'image.

Différents types de GAN Différentes architectures de réseau (par ex avec ou sans labels) GAN CGAN infoGAN Différentes fonctions d'erreurs du discriminateur —Entropie croisée

— Distance de Wasserstein

Mesurer les performances d'un GAN?

Nécessité de quantifier à quel point les données générés sont fidèles aux données réelles.

- Pas possible d'évaluer le réseau sur une base de test.
- Évaluation par un être humain peu fiable, quand les données ne sont pas des photos.

FID (Fréchet Inception Distance)

Evaluation d'une distance entre deux ensembles d'images :

InceptionV3, un réseau de neurone à convolution entraîné sut ImageNet est utilisé pour extraire des motifs de l'image.

Utilisation de l'avant-dernière couche du réseau. Supposition que les motifs suivent une distribution normale multidimensionnelle.

$$X_{\rm real} = \mathcal{N}(\mu_{\rm real}, \Sigma_{\rm real}), X_{\rm generated} = \mathcal{N}(\mu_{\rm generated}, \Sigma_{\rm generated})$$

$$FI = ||\mu_{\rm real} - \mu_{\rm generated}||^2 + Tr(\Sigma_{\rm real} + \Sigma_{\rm generated} - (\Sigma_{\rm real}\Sigma_{\rm genrated})^{1/2})$$

Résultats

TODO

En attente des résultats de la génération de profils consécutifs

Perspectives

Les signaux générés ne sont pas de très bonne qualité.

Améliorations

- Utilisation de GAN *image-to-image*, tel que CycleGAN, à partir de profils micro-Doppler simulés. Permettrait de générer des profils de drones non présent dans la base de donnée.
- Utilisation de GAN plus avancés (par exemple **StyleGAN**)