Das Spiel (contract bridge)

Probleme

Ginsberg's Intelligent Bridge (GIB)

Vergleich: Bridge Baron

1529 England

Ende 19. Jh. USA, England, Frankreich, Russland, Türkei, Ägypten

1925 Contract Bridge (Verschmelzung aller)

52 Karten: ♠ Pik, ♥ Couer, ♦ Karo, ♣ Treff

2 Paare: Nord-Süd vs. Ost-West

2 Phasen:

Reizen: wie viele Stiche mit welcher Trumpffarbe Spielen: Vorraussage erfüllen (möglichst mehr)

=> kein Glücksspiel! (Zufall, Kartenglück)

Leistungssport:

- Konzentration
- Strategie
- Psychologie

1995 Anerkennung des IOC

Schwierigkeit: un-/vollständige Information existierende Programme sind sehr schwach 1994: Bridge-Weltmeister: Müssen sich verbessern um hoffnungslos zu sein

1996: Poker-Weltmeister: 5 Min. pro Pokerprogramm Stärke schwer vergleichbar; ACBL gibt keine Rangliste

Connect Four solved Go-Moku solved Outro solved Nine-Men's Morris solved Othello: probably better than any human better than any living human Checkers: better than all but about 10 humans Backgammon: better than all but about 250 humans, possibly better? Chess: Scrabble: worse than best humans worse than best human 9-year-olds Go: worse than the best players at many local clubs

Performanzmessung:

- gleiche Situation von verschiedenen Paaren spielen lassen
- International Match Points (IMP's)
- Standardabweichung: 5,5 IMP's / deal
- Durchschnitt vs. Experte: 1,5 IMP's / deal
- Experte vs. Großmeister 0,5 IMP / deal
- besten Bridge-Programme (außer GIB) sind etwas schlechter als Durchnittsspieler

vor 1997: menschl. Spielweise kopieren 1998: **GIB**

- brute-force Suche zur Situationsanalyse
- verschiedene Techniken zur Bestimmung des nächsten Zugs
- so erfolgreich (Expertenlevel), dass alle Bridge-Programme von wissensbasierten auf suchbasierte Methoden umstiegen
- betrifft nur 2. Phase, 1. (Reizen, bidding) ist
 Schwachpunkt (riesige Datenbank)

5 Techniken

- partition search
- Monte Carlo Techinken an realen Problemen
- Schwierigkeiten der Monte Carlo Methode Theorie <-> Praxis (distributive Gitter)
- Erweiterung des alpha-beta prunings auf solche Gitter (anwendbar auf max. 32 Karten)
- 'quietschende Reifen' Optimierung für annähernd optimale Lösungen von KartenSpielproblemen (auf 52 Karten anwendbar)

partition search

- Computer analysiert auch sinnlose Züge
- konventionelle pruning-Techniken (alpha-beta) reichen nicht
- viele benutzen Transpositionstabellen
 Spielzustand + zugehöriger Wert

->Zustandsets speichern => pruning viel effizienter

Def.: Spiel ist ein Quadrupel (G, p, s, ev)

(Zustände, Startzustand, Nachfolgerfunktion, Evaluationsfunktion)

wichtig:

- s darf keine Schleifen enthalten
- ev(p) = Max, wenn Max dran ist
- ev(p) € [0,1] nur wenn s(p)=Ø0=Sieg für Min (z.B. keine Zeit)

Minimax wird um alpha-beta pruning und Transpositionstabellen erweitert

Eintrag (Zustand p, Eingrenzung [x,y], Wert v)

 $R_0(S)$ mit Zustandsset S aus G sind die Positonen p, die S erreichen können; $C_0(S)$ die S nicht erreichen R_0 und C_0 können meist nur approximiert werden Partitionssystem (P, R, C):

- P überführt einen Zustand in sein Zustandsset
- R und C sind o.a. Approximationen

partition search: geg: Spiel, Partitionssystem, Zustand, Ausschnitt [x,y] und Transpositionstabelle ges: Zustandswert, zugehöriges Zustandsset

Effektivität geht bei kleinen Sets verloren (alpha-beta pruning)

Man könnte mehr Zustände zusammenfassen, wenn nur 0 und 1 als Werte (zero-window search) gespeichert würden, aber im Bridge nicht möglich

partition search besonders geeignet für Bridge (1. große Zustandssets, 2. gut Approximationen R;C)

Vergleich mit alpha-beta pruning anhand von 1.000 zufälllig erzeugten deals

12-48 Karten

expandierte Knoten

auch mit 52 Karten getestet: 18.000 Knoten/deal ca. 1 sec CPU-Zeit

- M = Menge der möglichen Züge
- Konstruiere Set D von möglichen Kartengebungen (Reizen und Spielen betreffend)
- 2. Berechne für jeden Zug m aus M und jedes d aus D die Gewinnsumme s(m,d)
- 3. Gib das m zurück für das $\sum_{d} s(m,d)$ maximal ist

- 1. Vergleich: BridgeMaster
 - 180 Kartengebungen in 5 Schwierigkeitslevels

Level	BB	GIB	
1	16	31	DD Var C (aldualla mar 10).
2	8	23	BB Ver. 6 (aktuelle war 10):
3	2	12	10 Sek. pro Zug
4	1	21	
5	4	13	GIB: 90 Sek. für ganze Kartengeb.
Total	33	100	

18,3

%

- 2. Vergleich: Mensch
- 34 weltbesten Kartenspieler
- 12 Bridgeprobleme in 2 Tagen

Mensch: 90 Min. pro Kartengeb. GIB: 10 Min.

Endplatzierung: 12.

GIB als declarer (contract-Gewinner) - als defender > Fehler

Ziele des Reizens:

- Informationsaustausch mit dem Partner
- Gegner daran hindern dies zu tun
- Problem: viele verschiedene 'Sprachen'

Regeln in Datenbank gespeichert (unflexibel) subjektive Regeln des Autors GIB ca. 3.000 Regeln, andere Programme mehr

Bei bekannten Kartengebungen schneidet GIB gut ab, bei unbekannten extrem schlecht

B = Menge der Reizauswahlen

Z = Datenbank

- Konstruiere Set D von möglichen Kartengebungen (bisheriges Reizen betreffend)
- Prophezeie mit Hilfe von Z für jede Wahl b aus B und jedes d aus D den Reizausgang und berechne die Gewinnsumme s(b,d)
- 3. Gib das b zurück für das $\sum_{d} s(b,d)$ maximal ist

- 8 Teilnehmer
- Vorrunde: jeder gegen jeden
- besten vier spielen Halbfinale und Finale
- kurze Vorrunde sollte Gleichgewicht gewähren:

8	Gib	WB	Micro	$_{\mathrm{Buff}}$	Q-Plus	Снір	Baron	$\mathrm{M'lark}$	Total
Gib	72	14	11	16	7	19	16	17	100
WBridge	6		19	13	16	7	18	20	99
Micro	9	1	_	18	15	15	13	20	91
Buff	4	7	2		12	20	5	20	70
Q-Plus	13	$_4$	5	8	-	11	14	11	66
Blue Chip	1	13	5	0	9		11	20	59
Baron	4	2	7	15	6	9	: -	14	57
Meadowlark	3	0	0	0	9	0	6	=	18

GIB's einzige Turnierniederlage gegen einen Computer

Halbfinale gegen Bridge Buff 48 Kartengeb. -> 39IMPs

Finale gegen Wbridge 64 Kartengeb. -> 58 Kartengeb. -> 101IMPs Wbridge hat aufgegeben

Champion 2001, 2002, 2003: JACK (Holland)

Arbeiten an den Schwachstellen:

Reizen
Datenbank erweitern
in Moscito (Australien) konvertieren
Defensives Spiel
dem Partner einen Fehler erschweren
dem 'declarer' erleichtern

GIB zur Zeit:

- fast Expertenniveau
- stärkstes Computerbridgeprogramm weltweit
- entdeckte neues Ende beim Spiel gegen BB

Bridge Baron:

- versucht menschliche Spielweise zu kopieren
- mittels Hierarchical Task Network (HTN)
- Grund: Deep Blue vs. Kasparov 1997
 60 Mrd. Knoten pro Zug
 Mensch ein paar Dutzend

worst case vollst. Suchbaum: 10⁴⁴ Blätter worst case HTN: 305.000 Blätter Durchschnitt: 10²⁴ vs. 26.000

Bridge Baron:

- HTN planning zerteilt die 'schwierige' Aufgabe in viele kleine 'leichte' Teilaufgaben
- mögliche Lösungswege werden bewertet
- gewinnbringendster Lösungsweg gewählt

Turnierergebnisse 1997: Baron Barclay World Bridge Computer Challenge

Program

Bridge Baron

Program	Country	Score		
Q-Plus	Germany	+39.74 IMPs		
MicroBridge 8	Japan	+18.00 IMPs		
Bridge Baron	USA	+7.89 IMPs		
Meadowlark	USA	-64.00 IMPs		
GIB	USA	-68.89 IMPs		

Vorrunde: Mensch vs. Computer

Q-Plus MicroBridge 8 Meadowlark

Germany Japan

USA

Country

2nd place

3rd place 4th place

1st place

Performance

USA USA

5th place

Finalrunden: GIB

Bridge Baron

Computer vs. Computer

Quellen:

'GIB: Imperfect Information in a Computationally Challenging Game', Matthew L. Ginsberg 'Computer Bridge: A Big Win for AI Planning', S.J.J. Smith, D. Nau, T. Throop

http://ny-bridge.com/allevy/Montreal/indexMenton.html http://www.acbl.org