

Short Course: Quadcopter Modeling and Simulation

By Author

Date

Few Things to Note

- This course is spread across 8 lectures
- First 6 lectures will be delivered in-person and last two will be online
- A few simple tasks as assignments
- This is NOT a mathematics-heavy course; we will focus more on implementation
- Simulation Platform: MATLAB and Simulink
- Suitable for
 - All UG, PG and PhD students with an engineering background
- Pre-requisites:
 - Basic knowledge of engineering mathematics (Mandatory)
 - Exposure to MATLAB and Simulink (Nice to have)

Before we start...

- 1. Which department are you from?
- 2. Do you have any background in robotics/drones (courses, projects etc.)?
- 3. What do you expect to learn out of this course?
- 4. Your experience with MATLAB and Simulink

Pre-Course Survey

https://tinyurl.com/SC361Survey

Course Outline and Schedule

Date	Lecture	Time	Topic
Sep 12	Lecture 1	6:00 – 7:30 pm	Introduction to UAVs and Overview of MATLAB and Simulink
Sep 13	Lecture 2	6:00 – 7:30 pm	First principle modeling of a quadcopter and basics of control
Sep 14	Lecture 3	10:30 am – 12:00 noon	Quadcopter control
	Lecture 4	2:00 – 3:30 pm	Introduction to Simscape and Multidomain Physical Modeling
Sep 15	Lecture 5	10:30 am – 12:00 noon	Scenario Generation and Path Planning
	Lecture 6	2:00 – 3:30 pm	Introduction to ROS and hardware deployment
Sep 20	Lecture 7 (Online)	6:00 – 7:30 pm	Introduction to Perception and State Machines
Sep 27	Lecture 8 (Online)	6:00 – 7:30 pm	Case Study

What are UAVs?

- Unmanned Aerial Vehicles
- Class of Robotic Systems
- Generally fixed-wing or multi-rotor (quadcopter type) configuration
- Wide variety of payloads and sizes:
 from "insect-like" to "flying cars"
- Huge range of applications

Current Trend: Increase in usage of UAVs across sectors

Drone following a defined path

Common tasks for UAV Development

- Platform Sense
- Perceive
- Decide & Plan

- Modeling Kinematics & Dynamics
- Sizing and Configuration
- Vibration Analysis

- Camera/LIDAR etc.
- Sensor filtering
- Sensor calibration
- Co-simulation

- Environment mapping
- Classification
- Segmentation
- Object Detection
- Sensor Fusion

- Localization
- Path & motion planning
- SLAM
- Map management
- Object Avoidance

- Guidance, Navigation & Control
- Multi-robot coordination
- Impedance Control

- CodeGeneration
- Networked Robots
- Communication models
- Multi-agent communication

Deep Learning

Toolbox™

MathWorks Tools to Accelerate Autonomous System Development

Computer Vision Toolbox™

Automated Driving Toolbox™

Control System Toolbox™

HW Support Packages

Simscape™

Phased Array System Toolbox™

Reinforcement Learning Toolbox[™]

Model Predictive Control Toolbox[™]

UAV Toolbox®

Sensor Fusion and Tracking Toolbox[™]

Statistics and Machine Learning Toolbox[™]

Navigation Toolbox[™]

WLAN Toolbox[™]

Communications Toolbox™

Embedded Coder™

Simulink Real-Time™

HDL Coder™

GPU Coder™

Building Blocks for UAV Simulation

Design/Model

Model flight dynamics and design flight controller

Plant Model

Flight Controller Autonomy Algorithms

Simulate

Simulate plant behavior in virtual scenarios with simulated flight paths

Scenario Simulation

Ground Control Station

Deploy

Deploy flight controller and autonomy algorithms to the platform

Integrated workflows for developing UAV applications

Typical UAV Development Workflows

#1 question of the UAV design process:

What level of the development are we working at?

Are we:

- Building the Flight Hardware?
- Programming the Control and Navigation system?
- Sizing the Battery and/or Payload properly?
- Developing Sensing hardware and Perception algorithms?
- Or all of the above?

Developing a 'systems-level' understanding is key to selecting the right *fidelity*.

UAV Plant Modeling: Selecting the appropriate fidelity

Approximate Programming UAV

High-Fidelity Building UAV

Reduced-order model for UAV

Model aerodynamics, propulsion, and motion of aircraft and spacecraft

2348222222 S ASSY ROTOR ENE B S ASSY ROTOR EN IX ─ ☐ Time

Physical Modeling

Link

Model construction techniques and best practices, domain-specific modeling, physical units

Link

Integrated simulations with sensor models

Cuboid *Performance*

Unreal Engine® Photorealistic

Rapidly author scenarios and generate sensor data

Realistic graphics to test autonomous algorithms in closed-loop simulations

Simulate and verify autonomous algorithm

Evaluate algorithms with Robotics System Toolbox, ROS, and Gazebo

UAV Plant Modeling: Selecting the appropriate fidelity

ApproximateProgramming UAV

High-Fidelity Building UAV

Reduced-order model for UAV

Vehicle Dynamics

Model aerodynamics, propulsion, and motion of aircraft and spacecraft

Physical Modeling

Link

Model construction techniques and best practices, domain-specific modeling, physical units

Link

What is a quadcopter?

- Rotating wing aircraft (rotorcraft)
- 4 rotating propellers
- Rotors used to generate lift

Equations of motion

- Work on the concept of balancing forces and torques
- Translational Dynamics:

$$F_{frame} = F_{gravity} - F_{thrust} - F_{drag}$$

Rotational Dynamics:

$$\tau_{\text{frame}} = \tau_{\text{motors}} - \tau_{\text{gyro}} - \tau_{\text{inertia}}$$

Drone motions

- 6 degrees of freedom
 - 1. Up-down
 - 2. Left-right
 - Forward-backward
 - Rotation around X-axis: Roll
 - 5. Rotation around Y-axis: Pitch
 - 6. Rotation around Z-axis: Yaw
- What we will control?
 - Thrust, Pitch, Roll, Yaw

How do we control the drone the motion? *Thrust*

How do we control the drone the motion? *Yaw*

How do we control the drone the motion? *Yaw*

How do we control the drone the motion?

Pitch

How do we control the drone the motion? *Roll*

Let's go to MATLAB

Simulation and deployment with MathWorks tools across the industry

3D Photorealistic Visualization of **Supernal's** eVTOL Platform Over Los Angeles

- Build air taxis
- Simulated in real city environment of LA

NASA's Multicopter Test Flight with Simulink Deployed Controller

- Built accurate controllers
- Modelled/simulated in Simulink
- Deployed to physical controller

Typical UAV Development Workflows

Homework

- Install the latest version of MATLAB R2024a with all toolboxes
- Complete <u>MATLAB Onramp</u>
- Complete <u>Simulink Onramp</u>
- Link to submit certificates: https://tinyurl.com/IITGNCourse

