Pomijam trochę Følnerowskich rzeczy.

Definicja 1. Istnieje kanoniczne przekształcenie canⁱ: $\bar{H}^i(Y) \to H^i(Y,\mathbb{R}), \varphi \mapsto \varphi(\cdot)(e)$.

Lemat 2 (Cheegar - Gromov). Y spójny, wolny, kozwarty G-kompleks, G nieskończona grupa średniowalna, wówczas $\operatorname{can}^i: \bar{H}^i(Y) \to H^i(Y, \mathbb{R})$ jest włożeniem.

Uwaga 3. Żeby mieć liczby Bettiego chcemy, aby G była skończenie prezentowalna. Dla powyższych założeń i tak G musi być skończenie generowana (lemat Milnora-Schwartza).

Hipoteza 4 (Gromov). Zredukowane ℓ_p -kohomologie grupy średniowalnej znikają.

Wniosek 5. X skończony, $\pi_1(X) = G$ średniowalna, wówczas $\beta_1(X) = \beta_1(G) = 0$.

Stwierdzenie 6. X spójny kompleks o skończonym 2-szkielecie. Wówczas $\beta_1(X) = \beta_1(\pi(X))$.

Wniosek 7. \mathbb{F}_n nie jest średniowalna dla $n \geq 2$.

Twierdzenie 8 (Cheegar-Gromov). G skończenie prezentowalna, $|G| = \infty$, średniowalna, wtedy $\beta_1(G) = 0$. Jeśli G jest typu F_m , to $\beta_i(G) = 0$ dla $i \leq m-1$.

Wniosek 9. G nieskończona średniowalna o skończonej K(G,1), wówczas $\chi(G)=0$.

Defekt grupy

Załóżmy, że G posiada prezentację o g generatorach i r relacjach.

Definicja 10. $def(G) = max\{g - r\}$ – maksimum po skończonych prezentacjach.

Fakt 11.
$$def(G) \leq b_1(G) - b_2(G)$$

 $def(G) = 1 - \beta_0(G) + \beta_1(G) - \beta_2(K(G, 1)^{(2)})$

Wniosek 12. $def(G) \leq 1 + \beta_1(G)$ dla G skończenie prezentowalnej.