某年高数试卷

一、选择题(请选择正确答案编码填入下表中,每小题3分,共24分)

题号	1	2	3	4	5	6	7	8
答案								

- 1. 微分方程 $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = xe^{3x}$ 的待定特解 y^* 的一个形式是().
 - (A) $y^* = (ax + b) + ce^{3x}$

(B) $y^* = (ax + b) + cxe^{3x}$

(C) $y^* = (ax + b)e^{3x}$

- (D) $y^* = (ax + b)xe^{3x}$
- 2. 过点 (3,2,-7) 且在三坐标轴上的截距相等,则此平面方程是 ().
 - (A) x + y + z + 2 = 0

(B) z + y + z - 2 = 0

(C) x - y + z - 2 = 0

(D) x - y - z - 2 = 0

- 3. 这题没找到
- 4. 这题也没找到
- 5. 这题还是没找到
- 6. 设 L 是平面有向曲线,下列曲线积分中,($^{\circ}$) 是与路径无关的
 - (A) $\int_{L} (ye^{x} + x^{2} y) dx + (x + e^{x} 2y^{2}) dy$ (B) $\int_{L} (\cos x + y) dx + (x + \cos y) dy$
- - (C) $\int_{L} (\cos x y) dx + (x + \cos y) dy$ (D) $\int_{L}^{L} (\frac{1}{2}y + 3xe^{x}) dx (\frac{1}{2}x y\sin y) dy$
- 7. 设 Σ 是平面 x = 1、y = 1、z = 1 与三个坐标面围成区域的表面,取外侧,则曲面积分 $\iint 2x dy dz + 2z dz dx + 3y dx dy = () .$
 - (A) 0
- (B) 2
- (C) 4
- (D) 7
- 8. 级数 $1 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{3}\right)^2 + \dots + \left(\frac{1}{n}\right)^2 + \dots$ 是 ().
 - (A) 幂级数
- (B) 调和级数
- (C) p 级数
- (D) 等比级数
- 二、填空题(请将正确答案填在相应的横线上,每空3分,共24分)
- 1. 微分方程 y' = p(x)y 的通解是 y =
- 3. 设 $f(x,y) = \tan(xy^2)$,则 $f_x(0,2) =$ ______

- 5. 已知 Ω 是由旋转抛物面 $z=x^2+y^2$ 与上半球面 $z=\sqrt{2-x^2-y^2}$ 围成的区域,则 $\iiint xyz dx dy dz = \underline{\hspace{1cm}}$
- 6. 设 Σ 是球面 $x^2 + y^2 + z^2 = 1$,则 $\iint (x^2 + y^2 + z^2) dS =$ ______
- 的正向.
- 三、综合题(请写出求解过程,8小题,共52分)
- 1. 求过点 (3,-2,1), 且与直线 $\frac{x-1}{1} = \frac{y+1}{1} = \frac{z-2}{2}$ 平行的直线方程. $(6 \ \beta)$
- 2. 设 $z = e^{xy} + \cos(x + y)$, 求 dz. (6 分)
- 3. 计算 $\iint \frac{y}{x} dx dy$, *D* 是由直线 y = 2x, y = x, x = 2, x = 4 围成的闭区域. (6 分)
- 4. 计算 $\iiint z dx dy dz$,其中 Ω 由平面 z=3 与旋转抛物面 $x^2+y^2=3z$ 围成的区域. (6 分)

5. 计算
$$\int_L 2xy dx + x^2 dy$$
, L 为抛物线 $y = x^2$ 上从 $O(0,0)$ 到 $B(1,1)$ 的一段弧. (6 分)

6. 利用高斯公式计算
$$\iint_{\Sigma} 2xz dy dz + yz dz dx - z^2 dx dy$$
,其中 Σ 为由上半圆锥面 $z = \sqrt{x^2 + y^2}$ 与上半球面 $z = \sqrt{2 - x^2 - y^2}$ 所围立体 Ω 的表面,取外侧. (8分)

7. 判断级数
$$\sum_{n=1}^{\infty} n2^n$$
 的敛散性. (6 分)

8. 求幂级数
$$\sum_{n=0}^{\infty} (n+1)x^n$$
 在收敛域 $(-1,1)$ 的和函数 $s(x)$. (6 分)

PS: 还有 2 分我也不知道去哪了

江理竞赛小分队: 552839044

江理高数研讨群: 273027128 江理 18 学习群: 806650494 江理 17 大物线代 C 交流群: 469094854

江理数学编辑爱好者: 734148635