ГЛАВА VI

Автономные системы

§ 1. СВОЙСТВА РЕШЕНИЙ И ТРАЕКТОРИЙ

1^{0} . Объект изучения.

Df. Нормальная система (3.1) y' = f(x, y) называется автономной, если ее правая часть не зависит от независимой переменной x, т. е. система имеет вид y' = f(y). В противном случае система (3.1) — неавтономная.

Автономную систему обычно сразу записывают так, как это принято в механике (см. систему (3.1_m)):

$$\dot{x} = X(x),\tag{6.1}$$

где $x = (x_1, \ldots, x_n)$, $\dot{x} = dx/dt$, $X = (X_1, \ldots, X_n)$, и предполагают, что вектор функция X(x) определена, непрерывна и удовлетворяет условию Липшица локально по x в области $D \subset \mathbb{R}^n$.

2^0 . Механическая интерпретация автономных систем.

Таким образом автономная система индуцирует непрерывное векторное поле X(x) в области D фазового пространства \mathbb{R}^n .

И обратно: любая вектор функция $V(x) \in C(D)$ задает автономную систему $\dot{x} = V(x)$, для которой V является полем скоростей.

Кривая $\gamma = \{(t,x) | x = \varphi(t), t \in I_{max}\}$, лежащая в области $G \subset \mathbb{R}^{n+1}$, называется интегральной кривой движения $x = \varphi(t)$ и является графиком функции $x = \varphi(t)$.

Кривая $L = \{x \mid x = \varphi(t), t \in I_{max}\}$, лежащая в области $D \subset \mathbb{R}^n$, называется траекторией движения $x = \varphi(t)$ и является проекцией интегральной кривой γ вдоль оси времени на фазовое пространство.

${\bf 3}^0.$ Инвариантность решений относительно сдвигов по t.

Лемма (об инвариантности решений относительно сдвигов по t). Пусть $x = \varphi(t, t_0, p)$ — решение системы (6.1) на интервале (a, b), тогда для $\forall \tau \in \mathbb{R}^1$ вектор функция $\psi(t) = \varphi(t + \tau, t_0, p)$ также является решением системы (6.1) для $\forall t \in (a - \tau, b - \tau)$.

Следствие 1. Пусть $x = \varphi(t, t_0, p)$ — решение системы (6.1) на интервале (a, b), тогда

$$\forall \tau \in \mathbb{R}^1: \quad \varphi(t+\tau, t_0+\tau, p) \stackrel{(a,b)}{\equiv} \varphi(t, t_0, p). \tag{6.2}$$

 4^{0} . Групповое свойство решений.

$$\forall t_1 \in (\alpha, \beta) : \quad \varphi(t - t_0, p) \stackrel{(\alpha, \beta)}{\equiv} \varphi(t - t_1, \varphi(t_1 - t_0, p)). \tag{6.3}$$

Полученное тождество называется групповым свойством решений автономной системы.

5^{0} . Особые точки и циклы.

Df. Если для $\forall t \in \mathbb{R}^1$ движение $\varphi(t,p) = p$, то точка p, являющаяся траекторией этого движения, называется точкой покоя, а также особой точкой или положением равновесия системы (6.1).

Выделим очевидное, но очень важное утверждение.

Утверждение. Точка $p \in D$ является точкой покоя тогда и только тогда, когда в системе (6.1) X(p) = 0.

- **Df.** Точка $p \in D$ называется обыкновенной или неособой, если $X(p) \neq 0$.
- **Df.** Если $\exists \omega > 0$, что для $\forall t \in \mathbb{R}^1$ движение $\varphi(t,p) = \varphi(t+\omega,p)$, то замкнутая кривая l, являющаяся траекторией этого движения, называется циклом.
 - 6⁰. Система для траекторий в окрестности обыкновенной точки.
 - **Df.** Система (6.4) называется системой для траекторий автономной системы (6.1).

7^{0} . Свойства и типы траекторий.

Теорема (о поведении и типах траекторий автономных систем). Траектории автономных систем не пересекаются и бывают трех типов: 1) точка покоя p, 2) цикл l, 3) незамкнутая траектория L без самопересечений (гомеоморфный образ прямой).

§ 2. А- И Ω-ПРЕДЕЛЬНЫЕ МНОЖЕСТВА

1^{0} . Определение и свойства предельных множеств.

- **Df.** Пусть траектория движения $x = \varphi(t t_0, p)$ системы (6.1) определена при всех $t \le t_0$, тогда точка q называется ее α предельной точкой, если существует последовательность моментов времени $\{t_k\}_{k=1}^{\infty}$ такая, что $t_k \to -\infty$ при $k \to \infty$ и $\varphi(t_k t_0, p) \to q$.
- **Df.** Пусть траектория движения $x = \varphi(t t_0, p)$ системы (6.1) определена при всех $t \ge t_0$, тогда точка q называется ее ω предельной точкой, если существует последовательность моментов времени $\{t_k\}_{k=1}^{\infty}$ такая, что $t_k \to +\infty$ при $k \to \infty$ и $\varphi(t_k t_0, p) \to q$.
- **Df.** Множество α -предельных точек траектории движения $x = \varphi(t t_0, p)$ системы (6.1) называется A-предельным множеством, а множество ω -предельных точек Ω -предельным множеством.

Лемма (о характеристическом свойстве предельных точек). Для того чтобы точка q была ω -предельной точкой траектории движения $x = \varphi(t - t_0, p)$, необходимо и достаточно, чтобы

$$\forall \varepsilon > 0, \quad \forall T > 0 \quad \exists t^* > T : \quad \|\varphi(t^* - t_0, p) - q\| < \varepsilon.$$
 (6.5)

Теорема (о свойствах Ω -предельных множеств). Ω -предельное множество любой траектории системы (6.1) замкнуто и инвариантно, т. е. содержит все свои предельные точки и состоит из целых траекторий.

2^{0} . Свойства предельных множеств траекторий, устойчивых по Лагранжу.

Df. Траектория движения $x = \varphi(t - t_0, p)$ системы (6.1), определенного на $I_{\text{max}} = (\alpha, \beta)$, называется положительно устойчивой по Лагранжу, если в фазовом пространстве можно указать такой компакт \overline{H}_+ , что $\varphi(t - t_0, p) \in \overline{H}_+$ для $\forall t \in [t_0, \beta)$, и называется отрицательно устойчивой по Лагранжу, если существует компакт $\overline{H}_- \subset D$ такой, что $\varphi(t - t_0, p) \in \overline{H}_-$ для $\forall t \in (\alpha, t_0]$.

Теорема (о свойствах Ω -предельных множеств траекторий, положительно устойчивых по Лагранжу). Ω -предельное множество любой положительно устойчивой по Лагранжу траектории системы (6.1) не пусто и связно.

§ 3. ЛИНЕЙНЫЕ СИСТЕМЫ ВТОРОГО ПОРЯДКА

10. Классификация Пуанкаре.

