

Last week vs This week price

Data Set – Bitcoin Price (2012 – 2017)

Data Set – Difficulty and Hash Rate

Bitcoin price - Autocorrelation

- Autocorrelation, resample 'D', lag = 1, is 0.99736776309179975
- Autocorrelation, resample 'D', lag = 365, is -0.026137235760321745
- Autocorrelation, resample 'W' lag = 1, is 0.988093713769
- Autocorrelation, resample 'W' lag = 4, is 0.932231852951
- Autocorrelation, resample 'W' lag = 4, is -0.0163816400346

Model - ARMA

• model = sm.tsa.ARIMA(train, (1, 0, 0)).fit()

ARMA Model Results

Dep. Variable:		Last	No. Obse	rvations:	196					
Model:		ARMA(1, 0)	Log Like	lihood	-1026.611					
Method:		css-mle	S.D. of	innovations	45.178					
Date:	Sat, 1	l3 May 2017	AIC		2059.221					
Time:		13:20:08	BIC		2069.056					
Sample:		04-22-2012	HQIC		2063.203					
•	-	01-17-2016								
==========										
					[95.0% Conf. Int.]					
					-12.088 510.021					
ar.L1.Last 0.	9802	0.012 78	.599	0.000	0.956 1.005					
Roots										
	====== Real 	Imaginary			s Frequency					
		+0.000	Ðj	1.0202	0.0000					

Model – ARMA – Plot residual

Jan 2013 Jul

Jan 2014 Jul

Jul

Jan 2016

Jul

Date

Model - ARIMA

• model = sm.tsa.ARIMA(train, (2, 1, 3)).fit()

ARIMA Model Results												
Dep. Variable:	D.Last		No. Obse	No. Observations:		195						
Model:	ARIMA(2, 1, 3)		Log Like	Log Likelihood		-991.570						
Method:	css-mle		S.D. of innovations		39.016							
Date:	Sat, 13 May 2017		AIC		1997.141							
Time:		13:20:09		BIC		2020.052						
Sample:		04-29-2012		HQIC		2006.417						
•		- 01-17-2016	•									
	coef	std err	Z	P> Z	[95.0% Con	f. Int.]						
const	1.9850	3.864	0.514	0.608	-5.588	9.558						
ar.L1.D.Last		0.139			0.148							
ar.L2.D.Last	-0.6223	0.131	-4.751		-0.879							
		0.154			-0.319							
ma.L2.D.Last		0.136			0.437							
ma.L3.D.Last			-0.193		-0.281							
			ots									
	Real	-	inary	Modulus	Frequency							
AR.1	0.3381	-1.	2217j	1,2677	,	-0.2070						
	0.3381		+1.2217j			0.2070						
MA.1	-0.0136		1911j	1.1912		-0.2518						
MA.2	-0.0136		1911j	1.1912	0.2518							
MA.3	28.0560		0000i	28.0560	-0.0000							

LSTM OVERVIEW

Legend

unweighted connection

weighted connection

connection with time-lag

- branching point
- mutliplication
- (+) sum over all inputs
- gate activation function (always sigmoid)
- input activation function (usually tanh)
- output activation function (usually tanh)

LSTMs contain information outside the normal flow of the recurrent network in a gated cell.

- Forget Gate: conditionally decides what information to throw away from the block.
- Input Gate: conditionally decides which values from the input to update the memory state.
- Output Gate: conditionally decides what to output based on input and the memory of the block.

LSTM Network – Key Process

Model required

- from keras.models import Sequential
- from keras.layers import Dense
- from keras.layers import LSTM
- 1. Define function to create new data set, price at t column and t+1 (next month) to be predicted
- 2. 'look_back' is number of previous time steps to use as input variables to predict the next period default to 1
- 3. Create data set where X is the price at a given time (t) and Y is the price at (t+1)
- 4. Normalize the dataset, rescale the data to the range of 0-to-1
- 5. Split the ordered dataset into train and test datasets
- 6. Create and fit LSTM model
 - network has a visible layer with 1 input, hidden layer with 4 LSTM blocks/neurons
 - output layer makes a single value prediction
 - default sigmoid activation function used for LSTM block
- 7. Make predictions
- 8. Invert predictions and calculate MSE
- 9. Shift train prediction for plotting

```
def create_dataset(dataset, look_back=1):
    datax, dataY = [], []
    for i in range(len(dataset)-look back-1):
         a = dataset[i:(i+look back), 0]
        datax.append(a)
        dataY.append(dataset[i + look back, 0])
    return numpy.array(dataX), numpy.array(dataY)
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit transform(dataset)
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train size,:], dataset[train size:len(dataset),:]
model = Sequential()
model.add(LSTM(4, input_shape=(1, look_back)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=10, batch_size=1, verbose=2)
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
trainScore = math.sqrt(mean squared error(trainY[0], trainPredict[:,0]))
```


LSTM Network For Regression – Results

TRAIN SCORE: 21.87 RMSE TEST SCORE: 22.20 RMSE

Data: 2012 – 2017 price, Epochs = 10, Batch size = 1,

→ t and t+1 to be predicted

LSTM Network For Regression – Results

TRAIN SCORE: 22.28 RMSE TEST SCORE: 27.48 RMSE

Data: 2012 – 2017 price, Epochs = 300, Batch size = 10

→ t and t+1 to be predicted

LSTM Network For Regression – Window Method

TRAIN SCORE: 22.65 RMSE TEST SCORE: 29.86 RMSE

Data: 2012 – 2017 price, Epochs = 100, Batch size = 1

→ Input t, t-1, t-2 to predict the output variable t+1

→ Look back = 3

LSTM Network For Regression – Time Steps

TRAIN SCORE: 32.36 RMSE TEST SCORE: 38.13 RMSE

Data: 2012 – 2017 price, Epochs = 100, Batch size = 1

- → Input t, t-1, t-2 to predict the output variable t+1
- → Using the same data representation as in the previous window-based example, except when we reshape the data, we set the columns to be the time steps dimension and change the features dimension back to 1
- → Reshape input to be [samples, time steps, features]

LSTM with Memory Between Batch

TRAIN SCORE: 52.91 RMSE TEST SCORE: 103.40 RMSE

Data: 2012 – 2017 price

→ Normally, state within the network is reset after each training batch when fitting the model. We can gain finer control when internal state of LSTM network is cleared in Keras by making the layer "stateful"

Stacked LSTM with Memory Between Batches

TRAIN SCORE: 72.53 RMSE TEST SCORE: 104.54 RMSE

Data: 2012 - 2017 price,

→ LSTM networks can be stacked in Keras in the same way that other layer types can be stacked

