The reason for the terminology *coordinate form* is as follows: If E has finite dimension and if (u_1, \ldots, u_n) is a basis of E, for any vector

$$v = \lambda_1 u_1 + \cdots + \lambda_n u_n$$

we have

$$u_{i}^{*}(v) = u_{i}^{*}(\lambda_{1}u_{1} + \dots + \lambda_{n}u_{n})$$

= $\lambda_{1}u_{i}^{*}(u_{1}) + \dots + \lambda_{i}u_{i}^{*}(u_{i}) + \dots + \lambda_{n}u_{i}^{*}(u_{n})$
= λ_{i} ,

since $u_i^*(u_j) = \delta_{ij}$. Therefore, u_i^* is the linear function that returns the *i*th coordinate of a vector expressed over the basis (u_1, \ldots, u_n) .

The following theorem shows that in finite-dimension, every basis (u_1, \ldots, u_n) of a vector space E yields a basis (u_1^*, \ldots, u_n^*) of the dual space E^* , called a *dual basis*.

Theorem 3.23. (Existence of dual bases) Let E be a vector space of dimension n. The following properties hold: For every basis (u_1, \ldots, u_n) of E, the family of coordinate forms (u_1^*, \ldots, u_n^*) is a basis of E^* (called the dual basis of (u_1, \ldots, u_n)).

Proof. (a) If $v^* \in E^*$ is any linear form, consider the linear form

$$f^* = v^*(u_1)u_1^* + \dots + v^*(u_n)u_n^*.$$

Observe that because $u_i^*(u_j) = \delta_{ij}$,

$$f^*(u_i) = (v^*(u_1)u_1^* + \dots + v^*(u_n)u_n^*)(u_i)$$

= $v^*(u_1)u_1^*(u_i) + \dots + v^*(u_i)u_i^*(u_i) + \dots + v^*(u_n)u_n^*(u_i)$
= $v^*(u_i)$,

and so f^* and v^* agree on the basis (u_1, \ldots, u_n) , which implies that

$$v^* = f^* = v^*(u_1)u_1^* + \dots + v^*(u_n)u_n^*.$$

Therefore, (u_1^*, \ldots, u_n^*) spans E^* . We claim that the covectors u_1^*, \ldots, u_n^* are linearly independent. If not, we have a nontrivial linear dependence

$$\lambda_1 u_1^* + \dots + \lambda_n u_n^* = 0,$$

and if we apply the above linear form to each u_i , using a familiar computation, we get

$$0 = \lambda_i u_i^*(u_i) = \lambda_i,$$

proving that u_1^*, \ldots, u_n^* are indeed linearly independent. Therefore, (u_1^*, \ldots, u_n^*) is a basis of E^* .