ModEDI

Elizabeth Brooks

Dept. of Computer Science Western Washington University Hunter Read

Dept. of Computer Science Western Washington University Kalvin Suting
Dept. of Computer Science

Western Washington University

Christopher Stovall

Dept. of Computer Science Western Washington University

Background - Quantitative Genetics

Case Study -Models for Daphnia

Central Concept - Fitness Surface

Motivations for parallelization:

- Fitness is an important function in evolutionary models
- Scalability for increased model complexity
- Parameter sweeps to efficiently test hypothesis
- Sequential execution time

Software Architecture

Critical Section: Using OpenMP

I/O: Using MPI

ModEDI Task Dependency Graphs

ModEDI Parallelization Workflow

- 1. Translate Java code base to C++
- 2. Parallelize critical section using OpenMP
- 3. Parallelize I/O using MPI
- 4. Optimize critical section
 - a. Compare run times by task size
 - b. Determine communication costs

Conclusions - Future Work

- Parallelized for scalability
 - Granularity of evolutionary hypothesis
 - Type of species
 - Number of physical traits
- Calculating mean fitness is nearly 70% of program computations
- Communicate in bulk to amortize startup costs
 - Reduce volume of communication
 - Reduce task size
 - Load imbalance
- Further improve I/O time with MPI

Questions?