Übungsaufgaben zur Vorlesung

Lineare Algebra und Analytische Geometrie I*

Prof. Dr. J. Kramer

Abgabetermin: 30.10.2018 in der Vorlesung

Bitte beachten:

JEDE Aufgabe auf einem neuen Blatt abgeben.

JEDES Blatt mit Namen, Matrikelnummer, Übungsgruppennummer versehen.

Serie 2 (30 Punkte)

Aufgabe 1 (10 Punkte)

Es sei (G, \circ) eine Gruppe.

- (a) Zeigen Sie, dass es in G genau ein neutrales Element gibt.
- (b) Beweisen Sie für $g, h \in G$ die folgenden Identitäten:

$$(g \circ h)^{-1} = h^{-1} \circ g^{-1}, \quad (g^{-1})^{-1} = g.$$

(c) Es sei $H \subseteq G$ eine nicht-leere Teilmenge. Beweisen Sie die Äquivalenz:

$$H$$
 Untergruppe von $G \iff g \circ h^{-1} \in H \ (\forall g, h \in H).$

Aufgabe 2 (10 Punkte)

Wir bezeichnen mit S_n die Menge aller bijektiven Abbildungen der Menge $\{1, 2, \dots, n\}$ auf sich selbst.

- (a) Zeigen Sie, dass die Menge S_n (mit der Verknüpfung "o" von Abbildungen als Gruppenoperation) eine Gruppe bildet.
- (b) Wieviele Elemente hat S_n ?
- (c) Weisen Sie nach, dass die Gruppe S_n für $n \geq 3$ nicht kommutativ ist.
- (d) Finden Sie alle Untergruppen von S_3 .

Die Gruppe S_n wird auch n-te symmetrische Gruppe und deren Elemente Permutationen genannt. Für ein Element $\pi \in S_n$ mit $\pi(j) = \pi_j$ für (j = 1, ..., n) sind folgende Notationen gebräuchlich:

$$\pi = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ \pi_1 & \pi_2 & \cdots & \pi_{n-1} & \pi_n \end{pmatrix} \quad \text{oder} \quad \pi = (\pi_1, \dots, \pi_n).$$

Aufgabe 3 (10 Punkte)

Es sei $f: G \longrightarrow H$ ein Gruppenhomomorphismus. Zeigen Sie die folgenden Aussagen:

(a) Der Kern

$$\ker(f) := \{ g \in G \mid f(g) = e_H \}$$

von f ist eine Untergruppe von G.

(b) Das Bild

$$im(f) := \{ h \in H \mid \exists g \in G : h = f(g) \}$$

von f ist eine Untergruppe von H.

Es sei nun n > 0 eine natürliche Zahl. Die Abbildungen $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ bzw. $g: \mathbb{Z} \longrightarrow \mathcal{R}_n$ seien durch die Zuordnungen $a \mapsto f(a) = n \cdot a$ bzw. $a \mapsto g(a) = R_n(a)$ ($a \in \mathbb{Z}$) gegeben.

(c) Zeigen Sie, dass f und g bezüglich der Verknüpfungen "+" auf \mathbb{Z} bzw. " \oplus " auf \mathcal{R}_n Gruppenhomomorphismen sind und bestimmen Sie im(f), ker(g) sowie ker $(g \circ f)$.