

EE141-Spring 2010 Digital Integrated Circuits

Lecture 19 Timing

EECS141

Lecture #19

1

Administrativia

- □ Project Phase 2 now on the web-site.
- □ Hw 6 due today.
- □ New homework to be posted in a week.
- □ Cory Hall closed on Monday (Power Outage)
 - Instructional computers in 353 Cory should come back on line on Tu.
- □ Enjoy Spring Break!

Class Material

- □ Last lecture
 - Registers
- □ Today's lecture
 - Timing
- □ Reading (Ch 10)

Latch versus Register (Flip-flop) Latch: level-sensitive • Register: edge-triggered stores data when clock is low - hold mode clock is high - transparent clock rises D Q D Q Clk Clk Clk Clk D D Q EECS141 Lecture #16

Clock Nonidealities

□ Clock skew

 Spatial variation in temporally equivalent clock edges; deterministic + random, t_{SK}

□ Clock jitter

- Temporal variations in consecutive edges of the clock signal; modulation + random noise
- Cycle-to-cycle (short-term) t_{JS}
- Long term *t*_{//}

□ Variation of the pulse width

Important for level sensitive clocking

EECS141 Lecture #16 11

Clock Uncertainties

Sources of clock uncertainty

Clock Skew and Jitter

□ Both skew and jitter affect the effective cycle time and the race margin

Clock Constraints in Edge-Triggered Systems

If launching edge is late and receiving edge is early, the data will not be too late if:

$$t_{clk-q} + t_{logic} + t_{setup} < T_{CLK} - t_{JS,1} - t_{JS,2} + \delta$$

Minimum cycle time is determined by the maximum delays through the logic

$$t_{clk-q} + t_{logic} + t_{setup} - \delta + 2t_{JS} < T_{CLK}$$

Skew can be either positive or negative

EECS141 Lecture #16 21

Shortest Path Earliest point of launching Clk Nominal clock edge Data must not arrive before this time

Clock Constraints in Edge-Triggered Systems

If launching edge is early and receiving edge is late:

$$t_{clk-q,min} + t_{logic,min} - t_{IS,1} > t_{hold} + t_{IS,2} + \delta$$

Minimum logic delay

$$t_{clk-q,min} + t_{logic,min} > t_{hold} + 2t_{JS} + \delta$$

(This assumes jitter at launching and receiving clocks are independent – which usually is not true)

EECS141 Lecture #16 23

Datapath with Feedback

Latch vs. Flip-flop

□ In a flip-flop based system:

- Data launches on one rising edge
 - And must arrive before next rising edge
- If data arrives late, system fails
 - If it arrives early, wasting time
- Flip-flops have hard edges

□ In a latch-based system:

- Data can pass through latch while it is transparent
- Long cycle of logic can borrow time into next cycle
 - As long as each loop finished in one cycle

Latch vs. Flip-flop Summary

- □ Flip-flops generally easier to use
 - Most digital ASICs designed with register-based timing
- □ But, latches (both pulsed and level-sensitive) allow more flexibility
 - And hence can potentially achieve higher performance
 - Latches can also be made more tolerant of clock un-certainty
 - More in EE241

EECS141 Lecture #16 29

CMOS Transistor Scaling

Goals of Technology Scaling

- Make things cheaper:
 - Want to sell more functions (transistors) per chip for the same money
 - Or build same products cheaper
 - Price of a transistor has to be reduced
- □ But also want to be faster, smaller, lower power...

EECS141 Lecture #16 31

Technology Scaling

- □ Benefits of 30% "Dennard" scaling (1974):
 - Double transistor density
 - Reduce gate delay by 30% (increase operating frequency by 43%)
 - Reduce energy per transition by 65% (50% power savings @ 43% increase in frequency)
- □ Die size used to increase by 14% per generation (not any more)
- □ Technology generation spans 2-3 years

Technology Scaling Models

Full Scaling (Constant Electrical Field)

ideal model — dimensions and voltages scale together by the same factor ${\bf S}$

Fixed Voltage Scaling

most common model until 1990's only dimensions scale, voltages remain constant

General Scaling

most realistic for today's situation — voltages and dimensions scale with different factors

Full Scaling (Dennard, Long-Channel) W, L, t_{ox} : 1/S V_{DD}, V_T: 1/S Area: WL C_{ox}: 1/tox C_L: C_{ox}WL I_D: C_{ox}(W/L)(V_{DD}-V_T)² R_{eq}: V_{DD}/I_{DSAT} EECS141 Lecture #16 40

Full Scaling (Dennard, Long-Channel)

- \square W, L, t_{ox} : 1/S
- □ V_{DD}, V_T: 1/S
- \Box t_p : $R_{eq}C_L$
- \square P_{avg} : $C_L V_{DD}^2 / t_p$
- \square P_{avg}/A : $C_{ox}V_{DD}^{2}/t_{p}$

EECS141 Lecture #16 4

Scaling Relationships for Long Channel Devices

Parameter	Relation	Full Scaling	General Scaling	Fixed Voltage Scaling
W, L, t _{ox}		1/S	1/S	1/S
V_{DD}, V_{T}		1/S	1/U	1
N_{SUB}	V/W _{depl} ²	S	S ² /U	S ²
Area/Device	WL	1/S ²	1/S ²	1/S ²
Cox	1/t _{ox}	S	S	s
$C_{\mathbf{L}}$	CoxWL	1/S	1/S	1/S
k _n , k _p	C _{ox} W/L	S	S	s
I _{av}	$k_{n,p} V^2$	1/S	S/U ²	s
t _p (intrinsic)	C _L V / I _{av}	1/S	U/S ²	1/S ²
Pav	$\frac{\mathrm{C_L V^2/t_p}}{\mathrm{C_L V^2}}$	1/S ²	S/U ³	s
PDP	C_LV^2	1/S ³	1/SU ²	1/S

Full Scaling (Dennard, Short-Channel)

- □ W, L, t_{ox}: 1/S
- □ V_{DD}, V_T: 1/S
- □ Area: WL
- □ C_{ox}: 1/tox
- \Box C_L : $C_{ox}WL$
- \square I_D : $WC_{ox}v_{sat}(V_{DD}-V_T-V_{VSAT}/2)$
- \square R_{eq} : V_{DD}/I_{DSAT}

EECS141 Lecture #16 4

Full Scaling (Dennard, Short-Channel)

- W, L, t_{ox}: 1/S
- □ V_{DD}, V_T: 1/S
- \Box t_p : $R_{eq}C_L$
- \Box P_{avg} : $C_L V_{DD}^2 / t_p$
- \square P_{avg}/A: C_{ox}V_{DD}²/t_p

Transistor Scaling (Velocity-Saturated Devices)

Parameter	Relation	Full Scaling	General Scaling	Fixed-Voltage Scaling	
W , L , $t_{\rm ox}$		1/S	1/S	1/S	
V_{DD} V_{T}		1/S	1/U	1	
N_{SUB}	V/W_{depl}^2	S	S^2/U	S^2	
Area/Device	WL	1/S ²	$1/S^2$	1/S ²	
$C_{\rm ox}$	$1/t_{\rm ox}$	S	S	S	
$C_{\it gate}$	$C_{ox}WL$	1/S	1/S	1/.5	
k_n , k_p	$C_{\mathrm{ox}}W/L$	S	S	S	
I_{sat}	$C_{ox}WV$	1/S	1/U	1	
Current Density	I _{sat} /Area	S	S^2/U	S^2	
Ron	V/I _{sat}	1	1	1	
Intrinsic Delay	$R_{on}C_{gate}$	1/S	1/S	1/S	
P	$I_{sat}V$	1/S ²	$1/U^2$	1	
Power Density	P/Area	1	S^2/U^2	S^2	
Lecture #16					

45

An interesting question

- □ What will did cause this model to break?
 - Leakage set by kT/q

EECS141

- Temp. does not scale
 - V_T set to minimize power
- Power actually increased
 - Leakage increased drastically
 - f increased faster than device speed
 - Hit cooling limit
- Process Variation
 - Hard to build very small things accurately (less averaging)