Диагностическая работа №3 по МАТЕМАТИКЕ 11 класс

24 января 2019 года Вариант МА10309 (профильный уровень)

Выполнена: ФИО	класс	

Инструкция по выполнению работы

На выполнение работы по математике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 19 заданий.

Часть 1 содержит 8 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 4 задания повышенного уровня сложности с кратким ответом и 7 заданий повышенного и высокого уровней сложности с развёрнутым ответом.

Ответы к заданиям 1-12 записываются в виде целого числа или конечной десятичной дроби.

При выполнении заданий 13–19 требуется записать полное решение на отдельном листе бумаги.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Математика. 11 класс. Вариант МА10309

2

Часть 1

Ответом к каждому из заданий 1–12 является конечная десятичная дробь, целое число или последовательность цифр. Запишите ответы к заданиям в поле ответа в тексте работы.

На рисунке жирными точками показано суточное количество осадков, выпадавших в Мурманске с 7 по 22 ноября 1995 года. По горизонтали указываются числа месяца, по вертикали — количество осадков, выпавших в соответствующий день, в миллиметрах. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, сколько дней в этот период выпадало более 3 миллиметров осадков.

Ответ:		
OIBEL.		

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AB.

3

Ответ: ______.

Фабрика выпускает сумки. В среднем 12 сумок из 150 имеют скрытые дефекты. Найдите вероятность того, что купленная сумка окажется без дефектов.

Ответ: ______.

5 Найдите корень уравнения $2^{1-4x} = 32$.

Ответ: .

В четырёхугольник ABCD вписана окружность, AB = 44, CD = 55. Найдите периметр четырёхугольника ABCD.

Ответ: ______.

На рисунке изображён график дифференцируемой функции y = f(x), определённой на интервале (-1;10). Найдите количество решений уравнения f'(x) = 0 на отрезке [4;8].

Ответ: _____

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что AB=3, AD=6, $AA_1=8$. Найдите площадь сечения параллелепипеда плоскостью, проходящей через точки A, B и C_1 .

Ответ: _____

Часть 2

5

9 Найдите значение выражения $\sqrt{32}\cos^2\frac{5\pi}{8} - \sqrt{32}\sin^2\frac{5\pi}{8}$.

Ответ: .

Автомобиль массой m кг начинает тормозить и проходит до полной остановки путь S м. Сила трения F (в H), масса автомобиля m (в кг), время t (в c) и пройденный путь S (в м) связаны соотношением $F = \frac{2mS}{t^2}$. Определите, сколько секунд заняло торможение, если известно, что сила трения равна 2000 H, масса автомобиля — 1500 кг, путь — 600 м.

Ответ: ______.

11 Из одной точки круговой трассы, длина которой равна 14 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 80 км/ч, и через 40 минут после старта он опережал второй автомобиль на один круг. Найдите скорость второго автомобиля. Ответ дайте в км/ч.

Ответ: ______.

12 Найдите точку максимума функции $y = -\frac{x^2 + 81}{x}$.

Ответ: ______.

Для записи решений и ответов на задания 13–19 используйте отдельный лист. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- a) Решите уравнение $\frac{\log_2^2(\sin x) + \log_2(\sin x)}{2\cos x \sqrt{3}} = 0.$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left\lceil \frac{\pi}{2}; 2\pi \right\rceil$.
- В основании правильной четырёхугольной пирамиды MABCD лежит квадрат ABCD. Противоположные боковые грани пирамиды попарно перпендикулярны. Через середины рёбер MA и MB проведена плоскость α , параллельная ребру MC.
 - а) Докажите, что плоскость α параллельна ребру MD.
 - б) Найдите угол между плоскостью α и прямой AC.
- **15** Решите неравенство $\frac{x^2 3x 2}{x^2 3x + 2} + \frac{x^2 3x + 16}{x^2 3x} \ge 0.$
- 16 На сторонах AC и BC треугольника ABC вне его построены квадраты ACDE и CBFG. Точка M середина стороны AB.
 - а) Докажите, что точка M равноудалена от центров квадратов.
 - б) Найдите площадь треугольника DMG, если AC = 6, BC = 8, AB = 10.

- 17
- В июле 2019 года планируется взять кредит в банке на три года в размере S млн рублей, где S целое число. Условия его возврата таковы:
- каждый январь долг увеличивается на 30 % по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
- в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.

Месяц и год	Июль 2019	Июль 2020	Июль 2021	Июль 2022
Долг (в млн рублей)	S	0,68	0,25S	0

Найдите наибольшее значение S, при котором каждая из выплат будет меньше 5 млн рублей.

18

Найдите все значения a, при каждом из которых уравнение

$$4(ax-x^2) + \frac{1}{ax-x^2} + 4 = 0$$

имеет ровно два различных корня на промежутке [-1;1).

- 19
- Все члены возрастающих арифметических прогрессий a_1, a_2, \dots и b_1, b_2, \dots являются натуральными числами.
- а) Приведите пример таких прогрессий, для которых $a_1b_1 + 2a_3b_3 = 4a_2b_2$.
- б) Существуют ли такие прогрессии, для которых $2a_1b_1 + a_4b_4 = 3a_2b_2$?
- в) Какое наибольшее значение может принимать произведение a_2b_2 , если $2a_1b_1+a_4b_4\leq 210$?

Ответы на тренировочные варианты 10309-10312 (профильный уровень) от 24.01.2019

	1	2	3	4	5	6	7	8	9	10	11	12
10309	3	2	3	0,92	- 1	198	2	30	- 4	30	59	9
10310	4	3	2	0,93	- 1	102	3	78	- 5	15	55	13
10311	152	3	6	0,25	- 4	16	0,5	2500	- 77	0,18	8	36
10312	102	2	4	0,25	- 7	29	0,5	1225	- 34	0,05	5	25

Критерии оценивания заданий с развёрнутым ответом

13

- a) Решите уравнение $\frac{\log_2^2(\sin x) + \log_2(\sin x)}{2\cos x \sqrt{3}} = 0.$
- б) Найдите все корни этого уравнения, принадлежащие отрезку $\left\lceil \frac{\pi}{2}; 2\pi \right\rceil$

Решение.

а) Запишем уравнение в виде системы:

$$\begin{cases} \log_2(\sin x) (\log_2(\sin x) + 1) = 0, \\ 2\cos x - \sqrt{3} \neq 0. \end{cases}$$

Пусть $y = \log_2(\sin x)$.

Получаем

$$y(y+1)=0$$
, откуда $y=0$ или $y=-1$.

После обратной замены получаем $\log_2(\sin x) = 0$ или $\log_2(\sin x) = -1$, то есть

$$\sin x = 1$$
 или $\sin x = \frac{1}{2}$ при условии $\cos x \neq \frac{\sqrt{3}}{2}$.

Если
$$\sin x = \frac{1}{2}$$
, то $x = \frac{\pi}{6} + 2\pi n$ или $x = \frac{5\pi}{6} + 2\pi k$, $k, n \in \mathbb{Z}$.

Числа
$$x = \frac{\pi}{6} + 2\pi n, n \in \mathbb{Z}$$
, не удовлетворяют условию $\cos x \neq \frac{\sqrt{3}}{2}$.

Если
$$\sin x = 1$$
, то $x = \frac{\pi}{2} + 2\pi m, m \in \mathbb{Z}$.

б) С помощью числовой окружности отберём корни на отрезке $\left[\frac{\pi}{2}; 2\pi\right]$

Получим
$$x = \frac{5\pi}{6}$$
 или $x = \frac{\pi}{2}$.

© СтатГрад 2018-2019 уч. г. Публикация в интернете или печатных изданиях без письменного согласия СтатГрад запрещена

Otbet: a) $\frac{5\pi}{6} + 2\pi k$; $\frac{\pi}{2} + 2\pi m$, $k, m \in \mathbb{Z}$; 6) $\frac{\pi}{2}$; $\frac{5\pi}{6}$.

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте <i>а</i> . ИЛИ	
Получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения обоих пунктов: пункта a и пункта δ	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

- В основании правильной четырёхугольной пирамиды MABCD лежит квадрат ABCD. Противоположные боковые грани пирамиды попарно перпендикулярны. Через середины рёбер MA и MB проведена плоскость α , параллельная ребру MC.
 - а) Докажите, что плоскость α параллельна ребру MD.
 - б) Найдите угол между плоскостью α и прямой AC.

Решение.

- а) Пусть точка Q середина ребра MA, а точка K середина ребра MB. Плоскость α пересекает грань BMC по отрезку KL (точка L лежит на ребре BC), параллельному ребру MC. Ребро CD параллельно ребру AB, а ребро AB параллельно отрезку QK. Следовательно, плоскость α параллельна плоскости грани CMD. Поэтому прямая MD параллельна плоскости α .
- б) Пусть длина стороны основания равна a. Вместо плоскости α рассмотрим параллельную ей плоскость CMD. Проведём к ней перпендикуляр OH из центра основания точки O. Рассмотрим сечение пирамиды плоскостью MOH. Это сечение прямоугольный равнобедренный треугольник NMG, поскольку по условию грани CMD и AMB перпендикулярны. Отрезок OH параллелен катету MN этого треугольника и равен его половине:

$$OH = \frac{1}{2}MN = \frac{1}{2} \cdot \frac{a}{\sqrt{2}} = \frac{a\sqrt{2}}{4}$$
.

© СтатГрад 2018–2019 уч. г. Публикация в интернете или печатных изданиях без письменного согласия СтатГрад запрещена

Искомый угол равен углу HCO. В прямоугольном треугольнике OHC имеем:

$$\sin \angle HCO = \frac{OH}{OC} = \frac{a\sqrt{2} \cdot 2}{4 \cdot a\sqrt{2}} = \frac{1}{2}; \quad \angle HCO = 30^{\circ}.$$

Ответ: б) 30°.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и обоснованно	2
получен верный ответ в пункте δ	2
Имеется верное доказательство утверждения пункта а.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ , возможно,	1
с использованием утверждения пункта а, при этом пункт а	
не выполнен	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	U
Максимальный балл	2

13

Решите неравенство $\frac{x^2 - 3x - 2}{x^2 - 3x + 2} + \frac{x^2 - 3x + 16}{x^2 - 3x} \ge 0.$

Решение.

Сделаем замену $y = x^2 - 3x$. Получим

$$\frac{y-2}{y+2} + \frac{y+16}{y} \ge 0; \quad \frac{y^2 - 2y + y^2 + 18y + 32}{y(y+2)} \ge 0; \quad \frac{2y^2 + 16y + 32}{y(y+2)} \ge 0;$$

$$\frac{2(y+4)^2}{y(y+2)} \ge 0;$$
 $y < -2 \text{ M } y > 0.$

Отсюда после обратной замены получаем

$$x^2 - 3x < -2$$
; $x^2 - 3x + 2 < 0$; $(x-1)(x-2) < 0$; $1 < x < 2$

$$u x^2 - 3x > 0;$$
 $x(x-3) > 0;$ $x < 0$ $u x > 3.$

Ответ: $(-\infty; 0)$; (1; 2); $(3; +\infty)$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Решение содержит вычислительную ошибку, возможно, приведшую	1
к неверному ответу, но при этом имеется верная последовательность	
всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

© СтатГрад 2018–2019 уч. г. Публикация в интернете или печатных изданиях без письменного согласия СтатГрад запрещена

- 16 На сторонах AC и BC треугольника ABC вне его построены квадраты ACDE и CBFG. Точка M середина стороны AB.
 - а) Докажите, что точка M равноудалена от центров квадратов.
 - б) Найдите площадь треугольника DMG, если AC = 6, BC = 8, AB = 10.

Решение.

а) Пусть O_1 и O_2 — центры квадратов ACDE и CBFG. Тогда MO_1 и MO_2 — средние линии треугольников ABD и ABG, поэтому достаточно доказать, что BD = AG.

Если
$$\angle ACB = 90^{\circ}$$
, то

$$AG = AC + CG = BC + CD = BD$$
.

Если же $\angle ACB \neq 90^{\circ}$, то образуются треугольники BCD и GCA, которые равны по двум сторонам (BC = CG, AC = CD) и углу между ними:

$$\angle BCD = \angle ACB + \angle ACD = \angle ACB + 90^{\circ} =$$

$$= \angle BCA + \angle BCG = \angle ACG.$$

Значит, BD = AG.

Следовательно,

б) Треугольник ABC прямоугольный с прямым углом при вершине C, поскольку

$$AC^2 + BC^2 = 36 + 64 = 100 = AB^2$$

Треугольник DMG состоит из трёх треугольников: DCG, DCM и GCM. Прямоугольные треугольники DCG и ACB равны по двум катетам, поэтому

$$S_{DCG} = S_{ABC} = \frac{1}{2} \cdot 6 \cdot 8 = 24$$
.

Далее,

$$S_{DCM} = \frac{1}{2}DC \cdot MM_2 = \frac{1}{4}AC^2 = 9,$$

где M_2 — точка пересечения прямых MO_2 и BD .

Аналогично $S_{GCM} = \frac{1}{4}BC^2 = 16$.

Поэтому $S_{DMG} = 24 + 9 + 16 = 49$.

Ответ: б) 49.

© СтатГрад 2018–2019 уч. г. Публикация в интернете или печатных изданиях без письменного согласия СтатГрад запрещена

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта a , и	3
обоснованно получен верный ответ в пункте δ	3
Обоснованно получен верный ответ в пункте δ .	
ИЛИ	
Имеется верное доказательство утверждения пункта a , и при	2
обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки	
Имеется верное доказательство утверждения пункта a .	
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ	
из-за арифметической ошибки.	1
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	U
Максимальный балл	3

17

В июле 2019 года планируется взять кредит в банке на три года в размере S млн рублей, где S — целое число. Условия его возврата таковы:

- каждый январь долг увеличивается на 30 % по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
- в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.

Месяц и год	Июль 2019	Июль 2020	Июль 2021	Июль 2022
Долг (в млн рублей)	S	0,68	0,25S	0

Найдите наибольшее значение S, при котором каждая из выплат будет меньше 5 млн рублей.

Решение.

В январе 2020 года долг будет составлять 1,3S млн рублей, а в июле 2020 года — 0,6S млн рублей. Значит, выплата в 2020 году составит 0,7S млн рублей.

В январе 2021 года долг будет составлять $1,3\cdot 0,6S=0,78S$ млн рублей, а в июле 2021 года — 0,25S млн рублей. Значит, выплата в 2021 году составит 0,53S млн рублей.

© СтатГрад 2018–2019 уч. г. Публикация в интернете или печатных изданиях без письменного согласия СтатГрад запрещена

В январе 2022 года долг перед банком составит $1,3\cdot 0,25S=0,325S$ млн рублей, а в июле — 0 рублей. Значит, выплата в 2022 году составит 0,325S млн рублей.

Решим систему:

$$\begin{cases} 0.7S < 5, \\ 0.53S < 5, \\ 0.325S < 5, \end{cases}$$
 откуда $S < \frac{50}{7}$

Наибольшее целое решение этой системы — 7.

Ответ: 7.

Содержание критерия	Баллы
Обоснованно получен верный ответ	3
Верно построена математическая модель, решение сведено	
к исследованию этой модели, и получен результат:	2
— неверный ответ из-за вычислительной ошибки;	2
— верный ответ, но решение недостаточно обосновано	
Верно построена математическая модель, решение сведено	
к исследованию этой модели, при этом решение может быть	1
не завершено	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	U
Максимальный балл	3

Найдите все значения a, при каждом из которых уравнение

$$4(ax - x^2) + \frac{1}{ax - x^2} + 4 = 0$$

имеет ровно два различных корня на промежутке [-1;1).

Решение.

Сделаем замену $y = ax - x^2$.

Получаем

$$4y + \frac{1}{y} + 4 = 0;$$
 $\frac{4y^2 + 4y + 1}{y} = 0;$ $\frac{(2y+1)^2}{y} = 0;$ $y = -\frac{1}{2}.$

Следовательно, $x^2-ax-\frac{1}{2}=0$. Дискриминант этого уравнения равен $a^2+2>0$, поэтому оно при всех значениях a имеет ровно два различных корня. Положим $f(x)=x^2-ax-\frac{1}{2}$. Так как $f(0)=-\frac{1}{2}<0$, оба корня уравнения f(x)=0 принадлежат промежутку [-1;1) тогда и только тогда, когда $f(-1)\geq 0$ и f(1)>0, то есть когда $1+a-\frac{1}{2}\geq 0$ и $1-a-\frac{1}{2}>0$. Значит,

© СтатГрад 2018–2019 уч. г. Публикация в интернете или печатных изданиях без письменного согласия СтатГрад запрещена

Математика. 11 класс. Вариант МА10309

7

уравнение $4(ax-x^2)+\frac{1}{ax-x^2}+4=0$ имеет ровно два различных корня на промежутке [-1;1) при $-0.5 \le a < 0.5$.

Ответ: $-0.5 \le a < 0.5$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено множество значений a , отличающееся от искомого только включением точки $a=0,5$ и/или исключением точки $a=-0,5$	3
С помощью верного рассуждения получен один из промежутков $(-\infty;0,5)$ или $(-0,5;+\infty)$, возможно, с включением точек $a=-0,5$ и/или $a=0,5$. ИЛИ Получен неверный ответ из-за вычислительной ошибки, но при этом верно выполнены все шаги решения	2
Задача верно сведена к исследованию квадратного уравнения $x^2 - ax - \frac{1}{2} = 0$, дальнейшее решение неверно или отсутствует	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4

19 Bce

Все члены возрастающих арифметических прогрессий a_1, a_2, \dots и b_1, b_2, \dots являются натуральными числами.

- а) Приведите пример таких прогрессий, для которых $a_1b_1 + 2a_3b_3 = 4a_2b_2$.
- б) Существуют ли такие прогрессии, для которых $2a_1b_1 + a_4b_4 = 3a_2b_2$?
- в) Какое наибольшее значение может принимать произведение a_2b_2 , если $2a_1b_1+a_4b_4\leq 210$?

Решение.

- а) Подходящим примером являются прогрессии 2, 3, 4, ... и 2, 3, 4, ... Для этих прогрессий имеем $a_1b_1+2a_3b_3=2\cdot 2+2\cdot 4\cdot 4=36=4\cdot 3\cdot 3=4a_2b_2$.
- б) Обозначим через c и d разности арифметических прогрессий (a_n) и (b_n) соответственно. Тогда

$$\begin{split} 2a_1b_1 + a_4b_4 &= 2a_1b_1 + (a_1 + 3c)(b_1 + 3d) = 3a_1b_1 + 3a_1d + 3b_1c + 9cd \,, \\ 3a_2b_2 &= 3(a_1 + c)(b_1 + d) = 3a_1b_1 + 3a_1d + 3b_1c + 3cd \, \text{ и} \\ 2a_1b_1 + a_4b_4 - 3a_2b_2 &= 6cd \,. \end{split}$$

© СтатГрад 2018–2019 уч. г. Публикация в интернете или печатных изданиях без письменного согласия СтатГрад запрещена

Математика. 11 класс. Вариант МА10309

8

Если $2a_1b_1+a_4b_4=3a_2b_2$, то cd=0. Получаем противоречие, ведь по условию $c\geq 1$ и $d\geq 1$.

в) По условию $c \ge 1$ и $d \ge 1$. В ходе решения пункта δ мы получили, что $2a_1b_1 + a_4b_4 - 3a_2b_2 = 6cd \ .$

Значит.

$$a_2b_2 = \frac{2a_1b_1 + a_4b_4 - 6cd}{3} \le \frac{210 - 6}{3} = 68.$$

Покажем, что случай $a_2b_2=68$ возможен. Это равенство выполняется, например, для прогрессий 3, 4, 5, 6,... и 16, 17, 18, 19,... Для них $2a_1b_1+a_4b_4=210$ и $a_2b_2=4\cdot 17=68$.

Ответ: а) Например, 2, 3, 4, ... и 2, 3, 4, ...; б) нет; в) 68.

Содержание критерия	Баллы
Верно получены все перечисленные (см. критерий на 1 балл)	1
результаты	†
Верно получены три из перечисленных (см. критерий на 1 балл)	3
результатов	3
Верно получены два из перечисленных (см. критерий на 1 балл)	2
результатов	2
Верно получен один из следующих результатов:	
— обоснованное решение пункта <i>a</i> ;	
— обоснованное решение пункта δ ;	1
— искомая оценка в пункте θ ;	
— пример в пункте ϵ , обеспечивающий точность предыдущей оценки	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	U
Максимальный балл	4