B.V.N.S. Aditya 2019CS50471

1) x c d , a e d To Prove: X Fd iff X Fd

From compactness theorem, I Y Sin X such that Y = a (>) If x =d then X +d

let Y = {B1, B2, ..., Bn}

• So, $(\beta_1 \rightarrow (\beta_2 \rightarrow (... (\beta_n \rightarrow \alpha)...))$ is valid

From completeness theorem we have $\vdash (\beta_1 \rightarrow (\beta_2 \rightarrow ... (\beta_n \rightarrow d) ...)$

Now, we apply deduction theorem 'n' times, we get {B1, B2, - Bn3 Fd

> Y Fd

→ X Fd

Let y be the set of formulas of x used in deriving d. (€) If x +d, then x =d So, y Hd, y Cfin x (y always exists because derivation length

From soundness, y Eq, so x = d

So, #x Fa then x Fa

HEALE, XED III XED

Let Y = {B1, B2, ... Bn3. So {B, B2, ... Bn3 + 9 Using deduction theorem, $F(\beta_1 \rightarrow (\beta_2 \rightarrow ... (\beta_n \rightarrow \alpha)...)$ From soundness, we have $\not\models (\beta_1 \rightarrow (\beta_2 \rightarrow \cdots (\beta_n \rightarrow \alpha) \cdots)$ Which imples {B1, B2,...Bn3 Ed 50, y Ed, So x Ed

So, if x Ld then xtd

Hence, X = d iff X + d

B.V. N.S. Aditya 2019CS50471

- 2. Let X be a set of formulas. X is FSS (Finitely Satisfiable Set):
 If every Y Cfin X is satisfiable.
 - (a) let x be an arbitrary FSS. Let x_0, x_1, \dots, x_n be an enumeration of ϕ We define an infinite sequence of sets x_0, x_1, x_2 as below $x_0 = x$ for 17,0, $x_{i+1} = \begin{cases} x_i \cup \{\alpha_i\} & \text{if } x_i \cup \{\alpha_i\} \text{ is FSS} \\ x_i \text{ which otherwise} \end{cases}$

From construction, $X_0 \subseteq X_1 \subseteq X_2$ and each X_i is FSS. Let us define $Y = \bigcup_{i \ge 0} X_i$

Claim: Y is maximal FSS

- Let's assume that Y is not Fss. So, $\exists Z \subseteq_{fin} Y$ such that I is not satisfiable let $Z = \{\beta_1, \beta_2, \beta_n\}$ which can be written as $\{d_{i_1}, d_{i_2}, d_{i_n}\}$. Indices here correspond to our enumeration in ϕ So, $Z \subseteq_{fin} X_{k+1}$ where $X = \max(i_1, i_2, i_n)$. So, $Z = \max(i_1, i_2, i_n)$ So, $Z = \min(i_1, i_2, i_$
- 2) To prove: Y is maximal

 Let's assume that Y is not maximal. So, $\exists a_i' \in \phi$ such

 that Yu $\{a_i'\}$ is Fss. a_i' is considered while forming

 that Yu $\{a_i'\}$ is not added, $X_i' \cup \{a_i'\}$ is not Fss. So, X_{i+1} As X_{i-a_i} is not added, $X_i' \cup \{a_i'\}$ is not satisfiable. We $\exists z \subseteq X_i$ such that $z \cup \{a_i'\}$ is not satisfiable. The

 know that $X_i \subseteq Y$, so $z \subseteq Y$. So, $Y \cup \{a_i'\}$ can't be

 know that $X_i \subseteq Y$, so $z \subseteq Y$. So, $Y \cup \{a_i'\}$ can't be

 Fss because $z \cup \{a_i'\}$ is not satisfiable. This is $x \in Y_i$ so $x \in Y_i$ is maximal.

Hence, Y is maximal FSS. So, every FSS can be extended to a maximal FSS.

B.V.N.S. Aditya 2019 (55047)

- (b) X is a maximal FSS.
 - 1) We prove that formers both a, To don't belong to X. lets assume that both or, not belong to x. fa, 7d3 ⊆x. 80, fa, 7d3 is not satisfiable because 7(a/A 7d) = avad is valid. So, x is not FSS. This is a contradiction so, to {a,793 \$ X

Now, we show that atleast one of a,7d is in x. lets assume that both 9,74 don't belong to X. So, there exists sets B, CAn X, B2 CAn X such that B, Ufa3 is not sotisfiable, B, Ufas is not satisfiable let B1 = {B1, B2, ..., Bn3 let B= B, AB2A. ABn

B2 = {1, 12, ..., 1m} let & = 1, 12 1... 17m So, 7(B) is more valid = 7B VTd is valid -0 T(frad) is valid > Trva is valid

From O, @ 7BVTX VTP VX is valid

→ TBVT8 is valid (: Hava is T)

=> 7 (BAR) is valid

⇒ B, UBz is not satisfiable

B, UB2 Cfin X.
So, BELBY X is not FSS.

This is a contradiction.
So, atteast one of a, Tx is in X

a way

So, a ex iff na €x.

- (c) x is a maximal FSS
 - (a) If $(\alpha \vee \beta) \in X$, then $\alpha \in X$ or $\beta \in X$ Contrapositive: If $\alpha \notin X$ and $\beta \notin X$ then $\alpha \vee \beta \notin X$ $\alpha \notin X \Rightarrow \neg \alpha \in X$ (from part b) $\beta \notin X \Rightarrow \neg \beta \in X$ Assume that $\alpha \vee \beta \in X$ Consider the set $Y = \{ \neg \alpha, \neg \beta, \alpha \vee \beta \} \subseteq X$ Y is not satisfiable because $\neg (\neg \alpha \land \neg \beta \land (\alpha \vee \beta))$ $= (\alpha \vee \beta \vee \neg \alpha) \land (\alpha \vee \beta \vee \neg \beta)$ is valid

So, this is a contradiction of VB € X

- (\Leftarrow) If $\alpha \in X$ or $\beta \in X$ then $\alpha \vee \beta \in X$ and $\beta \notin X$ Contrapositive: If $\alpha \vee \beta \notin X$, then $\alpha \notin X$ and $\beta \notin X$ $\Rightarrow \gamma [\alpha \vee \beta] \in X$ $\Rightarrow \gamma (\alpha \vee \beta) \in X$
 - 1) If dex, then consider the set {d, 7anp3 ex This set is not satisfiable because 7(an 7anp) is valid So. d &x
 - 2) If BEX, then consider the set {B, 7d 17B} CX

 This set is not satisfiable because 1 (B1 7d 17B) is valid

 So, B FX

So, $\alpha \notin X$ and $\beta \notin X$ So, if X is a maximal FSS, $(\alpha \vee \beta) \in X$ iff $(\alpha \in X \circ x \mid \beta \in X)$

B.V N.S. Aditya 2019(550471

(d) To prove: Every maximal FSS x generates a V_X such that for every for a formula of, $V_X \ne d$ iff $\alpha \in X$.

Here, $V_X = \{p \in P \mid p \in X\}$. Proof by induction on structure of α .

Base Case: α is a tomic proposition From the definition of V_X , $V_X \ne d$ iff $\alpha \in X$.

Induction step:

- of is of form 7B: $0_{x} \models 7B$ iff $0_{x} \not\models B$ (Definition of 0_{x}) $0_{x} \models B$ iff $B \not\models X$ (Induction Hypothesis) $0_{x} \models B$ iff $7B \in X$ (From 2(b))

 So, $0_{x} \models 7B$ iff $7B \in X$
- 2) or is of form $BV\delta$: $0_x \models BV\delta$ iff $(0_x \models B)$ or $0_x \models V$ (Definition of valuation) $0_x \models B$ or $0_x \models V$ iff $B \in X$ or $V \in X$ (Induction Hypothesis) $B \in X$ or $V \in X$ iff $BVV \in X$ (Proved in 2(c))

I bydaoni ,

SO, OX FBUY IT BUYEX

So, every maximal FSS X, & generates a valuation of such that for every formula &, ox ta iff a fx

B-V-N-S-Aditya 2019(55047)

(e) Given that X is FSS.

From Part (a), every FSS X can be extended to a maximal FSS Y

From Part (d), every maximal FSS y generates a valuation from Part (d), every maximal FSS y generates a valuation such that by Fa iff a f y

As X Sy, we can have by Fa iff a f y

So, we define by = {pf P | pf y 3 = by

So, we define by = {pf P | pf y 3 = by

So, forevery FSS X, there exists by such that by FSS X is simultaneously satisfiable

So, any FSS X is simultaneously satisfiable

Coll of

The state of the s

B.V.N.S. Aditya 2019 (550471

- (f) To Prove: For all x and forall &, x = x iff there exists Y CAN X such that Y = a.
 - (⇒) If x ⊨d then there exists Y ⊆ fin x such that Y ⊨d He know that if X = a, then XU{7a} is not satisfiable. As x' is not satisfiable, I a subset y' of x' (y' Stin x') which is not satisfiable Let Y = Y' \ {7d} Y Cfin X. So, Y should be satisfiable As YUfraj is not satisfiable, Y Fd.
 - So, 3 YCfin x such that Y Fa.
 - (=) If 3 Y Cfin X such that Y =d, then X =d This is trivially true because If y =x, then y =y, then y =d So, U Fax > U Fd So, x =d

Hence, Fox all X, fox all a, X =d iff Y \(\subsetempler fin \times \text{ such that } \times \text{ that } \)