BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

100 65 590.4

Anmeldetag:

28. Dezember 2000

Anmelder/Inhaber:

ROBERT BOSCH GMBH;

Stuttgart/DE

Bezeichnung:

Anordnung und Verfahren zum Vermeiden

von Überschlägen

IPC:

B 60 T, B 60 K, B 62 D

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 13. Dezember 2001 **Deutsches Patent- und Markenamt** Der Präsident Im Auftrag

Right

ROBERT BOSCH GMBH 70442 Stuttgart

5 R. 39427

Anordnung und Verfahren zum Vermeiden von Überschlägen

Die Erfindung betrifft eine Anordnung zum Vermeiden von Überschlägen bei Bremsvorgängen von Kraftfahrzeugen mit Mitteln zum Herabsetzen der Bremskraft an mindestens einem Rad. Die Erfindung betrifft ferner ein Verfahren zum Vermeiden von Überschlägen bei Bremsvorgängen, bei dem die Bremskraft an mindestens einem Rad herabgesetzt wird.

15

20

25

30

10

Stand der Technik

Bei herkömmlichen Kraftfahrzeugen mit einem vergleichsweise großen Radstand und einem eher niedrigen Schwerpunkt besteht bei normalen Beladungszuständen in der Regel keine Gefahr eines Rückwärtsüberschlages im Falle einer abrupten Bremsung während einer Rückwärtsbewegung. Zunehmend kommen jedoch Kraftfahrzeuge auf den Markt, welche einen erheblich höheren Schwerpunkt als normale Kraftfahrzeuge des Standes der Technik aufweisen, wobei dies häufig mit einem ebenfalls stark verringerten Radstand einhergeht. Bei derartigen Kraftfahrzeugen kann es im Falle einer plötzlichen Bremsung während einer Rückwärtsbewegung zu Rückwärtsüberschlägen kommen. Ein solches Umkippen tritt dann auf, wenn die Hangneigung sehr steil ist, beispielsweise im Falle einer Tiefgara-

genausfahrt oder einer Rampe, und wenn die Kombination der Bremskraft an der Hinterachse mit der Fliehkraft am Schwerpunkt ein Drehmoment erzeugt, welches die Anziehungskraft der Erde überwindet.

5

10

25

30

Es wurde bereits vorgeschlagen, die Problematik der Gefahr eines Rückwärtsüberschlages dadurch zu verringern, dass man die Rückrollgeschwindigkeit eines Fahrzeugs begrenzt. Dies erfolgt gemäß dem Stand der Technik durch ein Erfassen der Rückrollgeschwindigkeit und durch ein Beaufschlagen einer Bremse des Kraftfahrzeugs beim Erreichen oder Überschreiten einer voreinstellbaren Grenzgeschwindigkeit in Rückwärtsrichtung.

15 Ebenfalls gibt es Ansätze, bei denen die Raddrehzahlen von Vorderrädern und Hinterrädern überwacht werden und bei denen beim Überschreiten von Grenzwerten der Fahrzeugantrieb, zum Beispiel zur Veränderung des Motorschleppmomentes, angesteuert wird, um einem drohenden Überschlag entgegenzuwirken.

Weiterhin gibt es auch andere Systeme, welche für den Einsatz in vergleichbaren Problemkreisen ausgelegt sind. Beispielsweise kann das Kippen eines Fahrzeugs bei Kurvenfahrt mit überhöhter Geschwindigkeit dadurch vermieden werden, dass die Geschwindigkeit des Fahrzeugs durch automatisches Bremsen reduziert wird und zum anderen ein Schlupfzustand am Rad eingestellt wird, damit die Querkräfte, die zum Kippen führen, unterdrückt werden. Auch ist es bekannt, vergleichbare Maßnahmen durch eine Geschwindigkeitsreduzierung zunächst über die Motorsteue-

rung und dann erst über einen Eingriff in das Bremssystem herbeizuführen.

Den bekannten Systemen des Standes der Technik zur Vermeidung eines Überschlages eines Kraftfahrzeugs ist gemeinsam, dass die Systeme erst relativ spät reagieren, nämlich beispielsweise dann, wenn die Bodenhaftung der Räder einer Achse bereits deutlich herabgesetzt ist, das heißt mit anderen Worten, wenn der Umkippvorgang bereits eingeleitet ist.

Ein weitere erwähnenswerte Maßnahme zur Vermeidung von Rückwärtsüberschlägen besteht in der Erhöhung der Masse der Vorderachse. Dies widerstrebt aber den grundsätzlichen Bemühungen zur Verringerung der Fahrzeugmasse.

Vorteile der Erfindung

10

15

Die Erfindung baut auf der gattungsgemäßen Anordnung da-20 durch auf, dass Mittel zum Bestimmen eines Neigungswinkels θ des Fahrzeugs vorgesehen sind und dass die Mittel zum Herabsetzen der Bremskraft in Abhängigkeit des Neigungswinkels θ aktivierbar sind. Durch die Messung des Neigungswinkels θ lässt sich ermitteln, wie hoch die 25 grundsätzliche Kippgefahr in der aktuellen Situation des Fahrzeugs ist. Die Auswertung eines solchen Neigungswinkels ist daher sinnvoll, wenn man eine Kippgefahr frühzeitig erkennen will, das heißt vorteilhafterweise nicht erst, wenn der Kippvorgang bereits eingeleitet ist. Auf 30 diese Weise ist man in der Lage effiziente Gegenmaßnahmen gegen das Umkippen frühzeitig zu ergreifen. Der Neigungswinkel kann beispielsweise bereits bei einer Vorwärtsfahrt des Fahrzeugs bestimmt werden, so dass bei einer nachfolgenden Rückwärtsfahrt die Bremskraft an den Hinterrädern von vornherein herabgesetzt werden kann. In solchen Situationen ist es möglich, dass die Bremsung des Fahrzeugs hauptsächlich über die Vorderräder erfolgt, so dass die Umkippgefahr minimiert ist.

Vorzugsweise sind die Mittel zum Herabsetzen der Bremskraft in Abhängigkeit mindestens eines der Parameter Masse des Kraftfahrzeugs, Schwerpunktshöhe des Kraftfahrzeugs, Geschwindigkeit des Kraftfahrzeugs, Beschleunigung des Kraftfahrzeugs und Fahrtrichtung des Kraftfahrzeugs aktivierbar. Neben dem Neigungswinkel θ , welcher im Rahmen der vorliegenden Erfindung für das Herabsetzen der Bremskraft besonders wichtig ist, ist es ebenfalls sinnvoll, andere der genannten Parameter in die Entscheidung, ob die Bremskraft herabgesetzt werden soll, einwirken zu lassen.

Bevorzugt sind die Mittel zum Herabsetzen der Bremskraft in Abhängigkeit eines Schlupfes aktivierbar. Die vorliegende Erfindung ist zwar besonders nützlich, da ein frühzeitiges Erkennen einer Umkippgefahr ermöglicht wird. Allerdings kann die Umkippgefahr besonders stark reduziert werden, wenn zusätzlich ein Schlupf von Rädern zu einer Aktivierung der Herabsetzung der Bremskraft führen kann. Stellt die Anordnung beim Rückwärtsfahren und beim gleichzeitigen Bremsen beispielsweise fest, dass die Vorderräder einen Schlupf aufweisen, so ist dies mit großer Wahrscheinlichkeit damit verbunden, dass die Auflagekraft der Vorderräder im Vergleich zum normalen Fahrbetrieb

stark herabgesetzt ist. Dem kann dann durch ein Unterbremsen der Hinterräder, das heißt durch ein Herabsetzen der Bremskraft, entgegengewirkt werden.

Von besonderem Vorteil ist es, wenn die Mittel zum Herabsetzen der Bremskraft Mittel zum Betätigen mindestens eines Eingangsventils und/oder eines Auslassventils eines Radbremszylinders aufweisen. Dies ist eine besonders wirkungsvolle und direkte Art, den Bremsdruck eines Rades herabzusetzen, wobei die Voraussetzungen hierfür, 10 Beispiel die Ansteuerbarkeit eines Eingangsventils eines Radbremszylinders, bei den meisten modernen Kraftfahrzeugen von vornherein gegeben sind, beispielsweise im Rahmen von ABS (Antiblockiersystem), ASR (Antriebsschlupfregelung) oder ESP (Elektronisches Stabilitätsprogramm). Das 15 Betätigen eines Eingangsventils führt dabei im Wesentlichen zu einem Halten des Drucks, während ein Betätigen eines Auslassventils zu einer direkten Reduzierung des Drucks führt.

20

25

30

Bevorzugt weisen die Mittel zum Bestimmen eines Neigungswinkels θ ein Inklinometer auf. Mit einem Inklinometer kann der Neigungswinkel θ direkt und zuverlässig gemessen werden, so dass beste Voraussetzungen für eine wirksame Reduzierung der Umkippgefahr bestehen.

Es kann aber auch sinnvoll sein, dass die Mittel zum Bestimmen eines Neigungswinkels θ Mittel zum Schätzen des Neigungswinkels θ auf der Grundlage einer Massenschätzung aufweisen. Es können Massenschätzungen vorgenommen werden, die auf dem Drehmoment, dem im Kraftfahrzeug eingelegten Gang und der Fahrzeugbeschleunigung basieren. Eine

solche kurzfristige oder lokale Schätzung kann dann mit einer langfristigen Schätzung während der Fahrt verglichen werden. Tritt eine starke Abweichung auf, so hat dies wahrscheinlich den Grund, dass sich das Fahrzeug in einer Position mit einem großen Neigungswinkel befindet. Eine Massenschätzung ist auch möglich, wenn das Fahrzeug direkt nach dem Anlassen an einem Berg anfährt. In diesem Fall wird mit der letzten Schätzung für volle Zuladung verglichen. Alternativ können beispielsweise Türschalter oder Airbagsensoren berücksichtigt werden. Mit derartigen Mitteln erhält man Indizien für eine Änderung der Fahrzeugmasse, die beim Öffnen und nachfolgenden Schließen einer Tür durch das Zusteigen oder Aussteigen eines Passagiers erfolgt sein kann. Airbagsensoren geben Aufschluss über die Größe beziehungsweise das Gewicht eines Passagiers. Eine andere Möglichkeit besteht darin, direkt die Gaspedalstellung und eine entsprechende Beschleuniqung des Fahrzeugs zu messen.

10

- 20 Es ist vorteilhaft, wenn die Mittel zum Bestimmen eines Neigungswinkels θ Mittel zum Bestimmen der Motordrehzahl, der Getriebedrehzahl und/oder der Raddrehzahl aufweisen. Diese Parameter können ebenfalls zusätzlichen Aufschluss über den Neigungswinkel θ liefern, insbesondere wenn dieser nicht direkt gemessen wird. Die Berücksichtigung möglichst vieler Parameter erhöht so die Genauigkeit der Bestimmung des Neigungswinkels θ .
- Die Erfindung ist besonders dadurch vorteilhaft, dass 30 Mittel zum Berechnen einer maximalen Bremskraft unter Verwendung des Neigungswinkels θ vorgesehen sind, dass Mittel zum Messen der aktuellen Bremskraft vorgesehen

sind, dass Mittel zum Vergleich der maximalen Bremskraft mit der aktuellen Bremskraft vorgesehen sind und dass die Mittel zum Herabsetzen der Bremskraft in Abhängigkeit des Vergleichs der maximalen Bremskraft mit der aktuellen Bremskraft aktivierbar sind. Die maximale Bremskraft kann 5 in Abhängigkeit des Neigungswinkels und sonstiger Fahrzeugparameter, beispielsweise des Radstandes und der Schwerpunktshöhe berechnet werden. Misst man nun die aktuelle Bremskraft, so kann entschieden werden, ob eine Unterbremsung der Hinterradbremsen, beispielsweise beim 10 Rückwärtsfahren eines Fahrzeugs, erforderlich ist.

Es kann aber auch vorteilhaft sein, dass Mittel zum Berechnen einer maximalen Bremskraft unter Verwendung des 15 Neigungswinkels θ vorgesehen sind, dass Mittel zum Schätzen der aktuellen Bremskraft vorgesehen sind, dass Mittel zum Vergleich der maximalen Bremskraft mit der aktuellen Bremskraft vorgesehen sind und dass die Mittel zum Herabsetzen der Bremskraft in Abhängigkeit des Vergleichs der maximalen Bremskraft mit der aktuellen Bremskraft aktivierbar sind. Auch wenn eine Messung der Bremskraft beispielsweise mit einem Radsensor unter den meisten Bedingungen die besten Ergebnisse liefert, kann auch eine Schätzung der Bremskraft im Rahmen der vorliegenden Erfindung eingesetzt werden.

20

25

30

Vorzugsweise sind die Mittel zum Herabsetzen der Bremskraft einem Hinterrad beziehungsweise der Hinterachse zugeordnet. Diese Ausführungsform ist aus dem Grunde vorteilhaft, da die vorliegende Erfindung besonders nützlich im Zusammenhang mit einer Umkippverhinderung bei Rückwärtsfahrt geeignet ist.

Aus demselben Grund kann es vorteilhaft sein, dass die Mittel zum Herabsetzen der Bremskraft in Abhängigkeit eines Schlupfes der Vorderräder aktivierbar ist.

5

10

15

20

Die Erfindung baut auf dem gattungsgemäßen Verfahren dadurch auf, dass ein Neigungswinkel θ des Fahrzeugs bestimmt wird und dass das Herabsetzen der Bremskraft in Abhängigkeit des Neigungswinkels θ aktiviert wird. Durch die Messung des Neigungswinkels θ lässt sich ermitteln, wie hoch die grundsätzliche Kippgefahr in der aktuellen Situation des Fahrzeugs ist. Die Auswertung eines solchen Neigungswinkels ist daher sinnvoll, wenn man eine Kippgefahr frühzeitig erkennen will, das heißt vorteilhafterweise nicht erst, wenn der Kippvorgang bereits eingeleitet ist. Auf diese Weise ist man in der Lage effiziente Gegenmaßnahmen gegen das Umkippen frühzeitig zu ergreifen. Der Neigungswinkel kann beispielsweise bereits bei einer Vorwärtsfahrt des Fahrzeugs bestimmt werden, dass bei einer nachfolgenden Rückwärtsfahrt die Bremskraft an den Hinterrädern von vornherein herabgesetzt werden kann. In solchen Situationen ist es möglich, dass die Bremsung des Fahrzeugs hauptsächlich über die Vorderräder erfolgt, so dass die Umkippgefahr minimiert ist.

25

30

Vorzugsweise wird das Herabsetzen der Bremskraft in Abhängigkeit mindestens eines der Parameter Masse des Kraftfahrzeugs, Schwerpunktshöhe des Kraftfahrzeugs, Geschwindigkeit des Kraftfahrzeugs, Beschleunigung des Kraftfahrzeugs und Fahrtrichtung des Kraftfahrzeugs aktiviert. Neben dem Neigungswinkel θ , welcher im Rahmen der vorliegenden Erfindung für das Herabsetzen der Bremskraft

besonders wichtig ist, ist es ebenfalls sinnvoll, andere der genannten Parameter in die Entscheidung, ob die Bremskraft herabgesetzt werden soll, einwirken zu lassen.

- Bevorzugt wird das Herabsetzen der Bremskraft in Abhängigkeit eines Schlupfes aktiviert. Die vorliegende Erfindung ist zwar besonders nützlich, da ein frühzeitiges Erkennen einer Umkippgefahr ermöglicht wird. Allerdings kann die Umkippgefahr besonders stark reduziert werden, wenn zusätzlich ein Schlupf von Rädern zu einer Aktivie-10 rung der Herabsetzung der Bremskraft führen kann. Stellt die Anordnung beim Rückwärtsfahren und beim gleichzeitigen Bremsen beispielsweise fest, dass die Vorderräder einen Schlupf aufweisen, so ist dies mit großer Wahrscheinlichkeit damit verbunden, dass die Auflagekraft der Vor-15 derräder stark herabgesetzt ist. Dem kann dann durch ein Unterbremsen der Hinterräder, das heißt durch ein Herabsetzen der Bremskraft, entgegengewirkt werden.
- Es ist von besonderem Vorteil, wenn das Herabsetzen der 20 Bremskraft durch Betätigen mindestens eines Eingangsventils und/oder eines Auslassventils eines Radbremszylinders erfolgt. Dies ist eine besonders wirkungsvolle und direkte Art, den Bremsdruck eines Rades herabzusetzen, wobei die Voraussetzungen hierfür, zum Beispiel die An-25 steuerbarkeit eines Eingangsventils eines Radbremszylinders, bei den meisten modernen Kraftfahrzeugen von vornherein gegeben sind, beispielsweise im Rahmen von ABS (Antiblockiersystem), ASR (Antriebsschlupfregelung) oder ESP (Elektronisches Stabilitätsprogramm). Das Betätigen 30 eines Eingangsventils führt dabei im Wesentlichen zu einem Halten des Drucks, während ein Betätigen eines Aus-

lassventils zu einer direkten Reduzierung des Drucksführt.

Vorzugsweise wird der Neigungswinkel θ durch ein Inklinometer bestimmt. Mit einem Inklinometer kann der Neigungswinkel θ direkt und zuverlässig gemessen werden, so dass beste Voraussetzungen für eine wirksame Reduzierung der Umkippgefahr bestehen.

Ebenfalls kann es vorteilhaft sein, dass das Bestimmen 10 eines Neigungswinkels θ durch Schätzen des Neigungswinkels θ auf der Grundlage einer Massenschätzung erfolgt. Es können Massenschätzungen vorgenommen werden, die auf dem Drehmoment, dem im Kraftfahrzeug eingelegten Gang und der Fahrzeugbeschleunigung basieren. Eine solche kurzfristige oder lokale Schätzung kann dann mit einer langfristigen Schätzung während der Fahrt verglichen werden. Tritt eine starke Abweichung auf, so hat dies wahrscheinlich den Grund, dass sich das Fahrzeug in einer Position mit einem großen Neigungswinkel befindet. Eine Massen-20 schätzung ist auch möglich, wenn das Fahrzeug direkt nach dem Anlassen an einem Berg anfährt. In diesem Fall wird mit der letzten Schätzung für volle Zuladung verglichen. Eine andere Möglichkeit besteht darin, direkt die Gaspedalstellung und eine entsprechende Beschleunigung des . 25 Fahrzeugs zu messen.

Ebenfalls kann es nützlich sein, wenn das Bestimmen eines Neigungswinkels θ durch Bestimmen der Motordrehzahl, der Getriebedrehzahl und/oder der Raddrehzahl erfolgt. Diese Parameter können ebenfalls zusätzlichen Aufschluss über den Neigungswinkel θ liefern, insbesondere wenn dieser

nicht direkt gemessen wird. Die Berücksichtigung möglichst vieler Parameter erhöht so die Genauigkeit der Bestimmung des Neigungswinkels $\theta.$

Es ist von Vorteil, dass eine maximale Bremskraft unter Verwendung des Neigungswinkels 0 berechnet wird, dass die aktuelle Bremskraft gemessen wird, dass die maximale Bremskraft mit der aktuellen Bremskraft verglichen wird und dass das Herabsetzen der Bremskraft in Abhängigkeit des Vergleichs der maximalen Bremskraft mit der aktuellen Bremskraft aktiviert wird. Die maximale Bremskraft kann in Abhängigkeit des Neigungswinkels und sonstiger Fahrzeugparameter, beispielsweise des Radstandes und der Schwerpunktshöhe berechnet werden. Misst man nun die aktuelle Bremskraft, so kann entschieden werden, ob eine Unterbremsung der Hinterradbremsen, beispielsweise beim Rückwärtsfahren eines Fahrzeugs, erforderlich ist.

Ebenso kann jedoch vorteilhaft sein, dass eine maximale
20 Bremskraft unter Verwendung des Neigungswinkels θ berechnet wird, dass die aktuelle Bremskraft geschätzt wird, dass die maximale Bremskraft mit der aktuellen Bremskraft verglichen wird und dass das Herabsetzen der Bremskraft in Abhängigkeit des Vergleiches der maximalen Bremskraft mit der aktuellen Bremskraft aktiviert wird. Auch wenn eine Messung der Bremskraft unter den meisten Umständen die besten Ergebnisse liefert, kann auch eine Schätzung der Bremskraft im Rahmen der vorliegenden Erfindung eingesetzt werden.

Die Erfindung ist besonders dadurch vorteilhaft, dass das Herabsetzen der Bremskraft an einem Hinterrad beziehungs-

weise der Hinterachse erfolgt. Diese Ausführungsform ist aus dem Grunde vorteilhaft, da die vorliegende Erfindung besonders nützlich im Zusammenhang mit einer Umkippverhinderung bei Rückwärtsfahrt geeignet ist.

5

Aus demselben Grund ist es vorteilhaft, dass das Herabsetzen der Bremskraft in Abhängigkeit eines Schlupfes der Vorderräder aktiviert wird.

Der Erfindung liegt die überraschende Erkenntnis zugrunde, dass durch eine quantitative Beschreibung der Kippgefahr in Abhängigkeit der Fahrzeugeigenschaften, wie Schwerpunkthöhe, Fahrzeugmasse und Fahrzeuggeometrie, und der Hangneigung allgemein erfolgen kann. Für das Aktivieren des Schutzmittels, das heißt im vorliegenden Fall des Herabsetzens der Bremskraft, wird diese quantitativ bestimmte Kippgefahr ausgewertet. Dies ist besonders vorteilhaft, da eine frühzeitige Erkennung einer Kippgefahr und somit eine rechtzeitige Unterbremsung ermöglicht wird.

Zeichnungen

Die Erfindung wird nun mit Bezug auf die begleitenden Zeichnungen anhand bevorzugter Ausführungsformen beispielhaft erläutert.

Dabei zeigt:

30

Figur l eine schematische Darstellung eines geneigten Kraftfahrzeugs;

- Figur 2 ein Systemdiagramm zur Erläuterung der Erfindung; und
- 5 Figur 3 ein Flussdiagramm zur Erläuterung der Erfindung.

Beschreibung der Ausführungsbeispiele

10

30

Figur 1 zeigt eine schematische Darstellung eines Kraftfahrzeugs 10, welches sich auf einer geneigten Ebene 20 befindet. Ferner sind ein mit A gekennzeichnetes Vorderrad und mit B gekennzeichnetes Hinterrad zu erkennen. Weiterhin ist der Schwerpunkt G des Kraftfahrzeugs 10 15 eingezeichnet. Dieser Schwerpunkt G liegt im Vergleich zum Radstand l_B + l_A des Kraftfahrzeugs 10 relativ hoch. Die Höhe des Schwerpunkts G ist mit h gekennzeichnet. Es ist ein Kräftedreieck im Hinblick auf die Gewichtskraft eingezeichnet, welche bei einem Neigungswinkel θ auf den 20 Schwerpunkt G wirkt. Die Gewichtskraft Mg ist dabei in die Komponenten Mg $\cos \theta$ und Mg $\sin \theta$ zerlegt, wobei Mg $\cos \theta$ die senkrechte Komponente bezüglich des Kraftfahrzeugs 10 ist und wobei Mg $\sin\theta$ die waagrechte Komponente bezüglich des Kraftfahrzeugs 10 ist. 25

In die schematische Darstellung gemäß Figur 1 sind ferner Kräfte eingezeichnet, welche sich auf eine Situation beziehen, bei dem das sich in Rückwärtsrichtung bewegende Kraftfahrzeug 10 abgebremst wird. Die Normalkraft N_1 ist die Kraft, welche von dem Vorderrad A senkrecht auf die geneigte Ebene 20 aufgebracht wird. Die Normalkraft N_2

ist die Kraft, welche von dem Hinterrad B senkrecht auf die geneigte Ebene 20 aufgebracht wird. Die Kraft F_A ist die auf das Vorderrad A wirkende Bremskraft. Die Kraft F_B ist die auf das Hinterrad B wirkende Bremskraft. Die Kraft Ma ist die auf den Schwerpunkt des Fahrzeugs wirkende Trägheitskraft, welche aufgrund der Abbremsung des Kraftfahrzeugs 10 entsteht.

Aus fundamentalen mechanischen Überlegungen unter Berück-10 sichtigung des Gleichgewichtes der Kräfte und der Drehmomente ergeben sich die folgenden Beziehungen:

$$N_1 + N_2 = Mgcos\theta (1)$$

$$F_A + F_B - Mgsin\theta = Ma$$
 (2)

$$h(F_A + F_B) - l_B N_2 + l_A N_1 = 0$$
 (3)

Setzt man nach Umformung die Gleichung (1) in Gleichung 20 (3) ein so ergibt sich

$$N_1(l_A + l_B) = l_B Mg cos\theta - h(F_A + F_B)$$
 (4)

Eine Kippgefahr besteht, wenn die von dem Vorderrad A auf die geneigte Ebene 20 aufgebrachte Normalkraft N_1 gegen Null geht. In diesem Fall geht auch die auf das Vorderrad wirkende Bremskraft F_A gegen Null. In diesem Fall einer Kippgefahr ergibt sich demnach aus Gleichung (4):

$$0 = 1_B Mg cos \theta - hF_B$$
 (5)

Aus Gleichung (5) lässt sich die maximal zulässige Bremskraft F_{Bmax} an der Hinterachse in Abhängigkeit des Radstandes, der Schwerpunktshöhe, der Masse des Fahrzeugs und des Neigungswinkels der geneigten Ebene 20 ermitteln.

$$F_{\text{Bmax}} = \frac{l_{\text{B}}}{h} \text{Mgcos}\theta \tag{6}$$

Durch Einsetzen von Gleichung (6) in Gleichung (2), wobei berücksichtigt wird, dass F_A im Falle des Kippens des Kraftfahrzeugs gegen Null geht, ergibt sich ein Wert für die maximale Verzögerung a_{max}

$$a_{\text{max}} = \frac{F_{\text{Bmax}}}{M} + Mg\sin\theta \tag{7}$$

10

15

. 20

Eine vorteilhafte Variante der Erfindung besteht darin, die Bremskraft, welche auf das Hinterrad B beziehungsweise die Hinterräder wirkt zu messen und die Bremskraft solange zu reduzieren bis die gemessene Bremskraft F_{Bmess} kleiner ist als die maximale Bremskraft F_{Bmax} . Vorzugsweise wird dabei noch ein Sicherheitsparameter δ berücksichtigt, so dass in jedem Fall eine sichere Situation vorliegt, wenn gilt

$$F_{Bmess} < F_{Bmax} + \delta$$
 (8)

 δ berücksichtigt dabei beispielsweise Ungenauigkeiten bei der Schätzung beziehungsweise der Messung des Neigungswinkels θ , Ungenauigkeiten im Hinblick auf Variationen der Kraftfahrzeugmasse sowie der Schwerpunktshöhe.

Die Reduktion der Bremskraft kann neben der oben beschriebenen Möglichkeit anhand von Ungleichung (8) ebenfalls nach dem Kriterium erfolgen, dass das Verhalten der Vorderräder beobachtet wird. Fängt beispielsweise die Vorderachse an abzuheben, so erfahren die Vorderräder einen Schlupf. Sobald dies registriert wird, kann die Bremskraft reduziert werden, beispielsweise durch Schließen der Einlassventile. Das Herabsetzen der Bremskraft kann dann davon abhängig gemacht werden, dass kein Schlupf mehr an den Vorderrädern registriert wird.

In Figur 2 ist ein Systemschaltbild zur Erläuterung der vorliegenden Erfindung dargestellt. Ein Steuergerät 30 erhält als Eingaben die Raddrehzahlen der vier Kraftfahrzeugräder 32, 34, 36, 38. Weitere Eingabedaten kommen 15 beispielsweise von einer Motorsteuerung 40 und vom Getriebe 42. Diese Eingabedaten können verwendet werden, um die für die Entscheidung zum Herabsetzen einer Bremskraft erforderlichen Berechnungen oder Schätzungen durchzuführen. Zusätzlich ist es sinnvoll, dass dem Steuergerät 20 Eingangswerte von einer Neigungssensierung 16 zugeführt werden. Hierdurch ist es möglich, dass anstelle der geschätzten Werte für den Neigungswinkel θ gemessene Werte in dem Steuergerät 30 verwendet werden. Die Messung des Neigungswinkels θ kann auch zusätzlich zur Schätzung er-25 folgen.

In Figur 3 ist ein Flussdiagramm zur Erläuterung der Erfindung dargestellt.

Die Schritte des Flussdiagramms gemäß Figur 3 beinhalten die folgenden Maßnahmen:

30

- S1: Erfassung der Motordrehzahl, der Getriebedrehzahl und der Raddrehzahlen
- S2: Berechnung der Kraftfahrzeuggeschwindigkeit, der Beschleunigung und der Richtung
 - S3: Rückwärts?

5

20

25

- S4: Vorderantriebsschlupf beim Bremsen?
- S5: Druckaufbau nicht einschränken
- S6: F_B durch Schließung eines oder mehrerer Einlassventile halten beziehungsweise durch Öffnen eines oder mehrerer Auslassventile reduzieren
 - S7: Berechnen von F_{Bmax} und a_{max}
 - S8: $F_B > F_{Bmax}$? oder a > a_{max} ?
 - S9: Schätzung F_B
- 15 S10: Messung F_B

Die jeweils mit unterbrochenen Linien gekennzeichneten Elemente des Flussdiagramms können alternativ oder zusätzlich zu den mit durchgezogenen Linien gekennzeichneten Elementen eingesetzt werden.

In einem Schritt Sl werden bestimmte Parameter erfasst, wie die Drehzahlen des Motors, des Getriebes und der Räder. Hieraus ergeben sich die Masse, die Schwerpunktshöhe und die Hangneigung θ , wobei die Hangneigung θ zusätzlich gemessen werden kann.

In Schritt S2 werden die Kraftfahrzeuggeschwindigkeit, die Kraftfahrzeugbeschleunigung und die Fortbewegungs-30 richtung des Kraftfahrzeugs berechnet.

In dem Schritt S3 wird entschieden, ob das Fahrzeug vorwärts oder rückwärts fährt. Falls das Fahrzeug vorwärts fährt besteht keine Veranlassung, ein Umkippen des Fahrzeugs nach hinten zu verhindern, und der Ablauf geht zu Schritt S1 über. Falls das Fahrzeug rückwärts fährt wird in einem Schritt S4 entschieden, ob beim Bremsen ein Schlupf des Vorderradantriebs vorliegt. Falls kein Schlupf des Vorderradantriebs vorliegt wird in einem Schritt S5 veranlasst, dass der Druckaufbau in den Hin-10 terrädern nicht eingeschränkt wird, und der Ablauf geht zu Schritt S1 über. Falls in Schritt S4 entschieden wird, dass ein Schlupf der Vorderräder vorliegt, so wird die Bremskraft auf die Hinterräder in Schritt S6 durch eine Schließung der Einlassventile im Wesentlichen gehalten und/oder durch Öffnen der Auslassventile reduziert. Danach geht der Ablauf zu Schritt S1 über.

Aus den in Schritt S1 erfassten Werten kann ebenfalls in einem Schritt S7 gemäß den obigen Gleichungen (6) und (7) die maximale Bremskraft F_{Bmax} beziehungsweise die maximale Verzögerung a_{max} berechnet werden. In einem Schritt S8 wird entschieden, ob eine tatsächlich vorliegende, beispielsweise gemessene Bremskraft F_B größer ist als die Der für den Vergleich maximale Bremskraft F_{Bmax} . Schritt S8 verwendete Wert F_B wird in Schritt S9 geschätzt beziehungsweise in Schritt S10 gemessen. Wenn dies der Fall ist, wird zu Schritt S6 übergegangen, und die Bremskraft F_{B} wird durch Schließung eines oder mehrerer Einlassventile reduziert. Ist die Bremskraft F_{B} nicht größer als F_{Bmax} beziehungsweise als die Summe von F_{Bmax} und einem Sicherheitsparameter $\delta,$ so wird zu Schritt Sl übergegangen.

20

25

Die vorhergehende Beschreibung der Ausführungsbeispiele gemäß der vorliegenden Erfindung dient nur zu illustrativen Zwecken und nicht zum Zwecke der Beschränkung der Erfindung. Im Rahmen der Erfindung sind verschiedene Änderungen und Modifikationen möglich, ohne den Umfang der Erfindung sowie ihre Äquivalente zu verlassen.

R. 39427

5 Ansprüche

- Anordnung zum Vermeiden von Überschlägen bei Bremsvorgängen von Kraftfahrzeugen (10) mit Mitteln (12, 14, 30) zum Herabsetzen der Bremskraft an mindestens einem Rad, dadurch gekennzeichnet,
 - dass Mittel (16, 30) zum Bestimmen eines Neigungswinkels θ des Fahrzeugs vorgesehen sind und
- 15 dass die Mittel (12, 14, 30) zum Herabsetzen der Bremskraft in Abhängigkeit des Neigungswinkels θ aktivierbar sind.
- 20 2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Mittel (12, 14, 30) zum Herabsetzen der Bremskraft in Abhängigkeit mindestens eines der Parameter Masse des Kraftfahrzeugs, Schwerpunktshöhe des Kraftfahrzeugs, Geschwindigkeit des Kraftfahrzeugs, Beschleunigung des Kraftfahrzeugs und Fahrtrichtung des Kraftfahrzeugs aktivierbar sind.
- 3. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Mittel (12, 14, 30) zum Herabsetzen der Bremskraft in Abhängigkeit eines Schlupfes aktivierbar sind.

- 4. Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (12, 14, 30) zum Herabsetzen der Bremskraft Mittel zum Betätigen mindestens eines Eingangsventils (12, 14) und/oder eines Auslassventils eines Radbremszylinders aufweisen.
- Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (16) zum Bestimmen eines Neigungswinkels θ ein Inklinometer aufweisen.
- 10 Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel zum Bestimmen eines Neigungswinkels θ Mittel zum Schätzen des Neigungswinkels heta auf der Grundlage einer Massenschätzung aufweisen.
- 15 Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel zum Bestimmen eines Neigungswinkels heta Mittel zum Bestimmen der Motordrehzahl, der Getriebedrehzahl und/oder der Raddrehzahl aufweisen.
 - Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet,
- dass Mittel zum Berechnen einer maximalen Bremskraft F_{Bmax} unter Verwendung des Neigungswinkels θ vorgese-25 hen sind,
 - dass Mittel zum Messen der aktuellen Bremskraft $F_{\mathtt{B}}$ vorgesehen sind,

30

- dass Mittel zum Vergleich der maximalen Bremskraft F_{Bmax} mit der aktuellen Bremskraft F_{B} vorgesehen sind und
- 5 dass die Mittel (12, 14, 30) zum Herabsetzen der Bremskraft in Abhängigkeit des Vergleiches der maximalen Bremskraft F_{Bmax} mit der aktuellen Bremskraft F_{B} aktivierbar sind.
- 9. Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet,
- dass Mittel zum Berechnen einer maximalen Bremskraft $F_{\text{Bmax}} \text{ unter Verwendung des Neigungswinkels } \theta \text{ vorgese-}$ hen sind,
 - dass Mittel zum Schätzen der aktuellen Bremskraft F_{B} vorgesehen sind,
- 20 dass Mittel zum Vergleich der maximalen Bremskraft F_{Bmax} mit der aktuellen Bremskraft F_{B} vorgesehen sind und
- dass die Mittel (12, 14, 30) zum Herabsetzen der Bremskraft in Abhängigkeit des Vergleiches der maximalen Bremskraft F_{Bmax} mit der aktuellen Bremskraft F_{B} aktivierbar sind.
- 10. Anordnung nach einem der vorangehenden Ansprüche, da-30 durch gekennzeichnet, dass die Mittel (12, 14, 30) zum Herabsetzen der Bremskraft einem Hinterrad beziehungsweise der Hinterachse zugeordnet sind.

- S dnung nach einem der vorangehenden Ansprüche, da
 S egekennzeichnet, dass die Mittel (12, 14, 30) zum

 S ozen der Bremskraft in Abhängigkeit eines SchlupVorderräder aktivierbar sind.
 - 12. Verfahren zum Vermeiden von Überschlägen bei Bremsvorgängen von Kraftfahrzeugen, bei dem die Bremskraft an mindestens einem Rad herabgesetzt wird (S6), dadurch gekennzeichnet,

- dass ein Neigungswinkel θ des Fahrzeugs bestimmt wird (S1) und
- 15 dass das Herabsetzen der Bremskraft in Abhängigkeit des Neigungswinkels θ aktiviert wird.
- 13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass das Herabsetzen der Bremskraft in Abhängigkeit mindestens eines der Parameter Masse des Kraftfahrzeugs, Schwerpunktshöhe des Kraftfahrzeugs, Geschwindigkeit des Kraftfahrzeugs, Beschleunigung des Kraftfahrzeugs und Fahrtrichtung des Kraftfahrzeugs aktiviert wird.
- 25 14. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass das Herabsetzen der Bremskraft in Abhängigkeit eines Schlupfes aktiviert wird.
- 15. Verfahren nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass das Herabsetzen der Bremskraft durch Betätigen mindestens eines Eingangsventils (12, 14)

und/oder eines Auslassventils eines Radbremszylinders erfolgt.

- 16. Verfahren nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass der Neigungswinkel θ durch ein Inklinometer (16) bestimmt wird.
- 17. Verfahren nach einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, dass das Bestimmen eines Neigungswinkels θ durch Schätzen des Neigungswinkels θ auf der Grundlage einer Massenschätzung erfolgt.
 - 18. Verfahren nach einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, dass das Bestimmen eines Neigungswinkels θ durch Bestimmen der Motordrehzahl, der Getriebedrehzahl und/oder der Raddrehzahl erfolgt.
 - 19. Verfahren nach einem der Ansprüche 12 bis 18, dadurch gekennzeichnet,

20

15

- dass eine maximale Bremskraft F_{Bmax} unter Verwendung des Neigungswinkels θ berechnet wird (S7),
- dass die aktuelle Bremskraft F_B gemessen wird (S9),

- dass die maximale Bremskraft F_{Bmax} mit der aktuellen Bremskraft F_{B} verglichen wird (S8) und
- dass das Herabsetzen der Bremskraft in Abhängigkeit
 des Vergleiches der maximalen Bremskraft mit der aktuellen Bremskraft erfolgt.

- 20. Verfahren nach einem der Ansprüche 12 bis 19, dadurch gekennzeichnet,
- dass eine maximale Bremskraft F_{Bmax} unter Verwendung des Neigungswinkels θ berechnet wird (S7),
 - dass die aktuelle Bremskraft F_B geschätzt wird (S10),
- dass die maximale Bremskraft F_{Bmax} mit der aktuellen Bremskraft F_{B} verglichen wird (S8) und
 - dass das Herabsetzen der Bremskraft in Abhängigkeit des Vergleiches der maximalen Bremskraft mit der aktuellen Bremskraft erfolgt.
- 21. Verfahren nach einem der Ansprüche 12 bis 20, dadurch gekennzeichnet, dass das Herabsetzen der Bremskraft an einem Hinterrad beziehungsweise der Hinterachse erfolgt.
- 22. Verfahren nach einem der Ansprüche 12 bis 21, dadurch gekennzeichnet, dass das Herabsetzen der Bremskraft in Abhängigkeit eines Schlupfes der Vorderräder aktiviert wird.

25.

R. 39427

5 Zusammenfassung

Die Erfindung betrifft eine Anordnung zum Vermeiden von Überschlägen bei Bremsvorgängen von Kraftfahrzeugen (10) mit Mitteln (12, 14, 30) zum Herabsetzen der Bremskraft an mindestens einem Rad, wobei Mittel (16, 30) zum Bestimmen eines Neigungswinkels θ des Fahrzeugs vorgesehen sind und die Mittel (12, 14, 30) zum Herabsetzen der Bremskraft in Abhängigkeit des Neigungswinkels θ aktivierbar sind. Die Erfindung betrifft ferner ein Verfahren zum Vermeiden von Überschlägen.

(Figur 1)

Fig.1

Fig.2

Fig.3