D.S. de maths n° 3

Développées

Consignes

- La durée de l'épreuve est 2h.
- L'énoncé comporte 5 questions.
- L'usage de la calculatrice est interdit (et inutile).
- Rédigez clairement vos solutions en explicitant votre raisonnement et mentionnant les résultats utilisés.
- Bon courage!

La développée D d'une courbe plane birégulière C est par définition le lieu formé par ses centres de courbure.

Si C est donnée par une paramétrisation α , on obtient une paramétrisation β de sa développée D en posant

$$\beta = \alpha + \rho N$$
.

- 1. Supposons que $\alpha: I \to \mathbf{R}^2$ est un arc paramétré birégulier de classe \mathcal{C}^2 exprimé en terme d'un paramètre quelconque t. Rappeler comment sont définis et/ou calculés :
 - son abscisse curviligne s (à partir d'un point initial de paramètre t_0 sur la courbe),
 - son vecteur unitaire tangent T,
 - son vecteur unitaire normal N,
 - sa courbure κ ,
 - son rayon de courbure ρ .
- 2. En utilisant les formules de Frénet, montrer que le vecteur dérivé le long de D est donné par

$$\frac{\mathrm{d}\boldsymbol{\beta}}{\mathrm{d}s} = \frac{\mathrm{d}\rho}{\mathrm{d}s}\,\boldsymbol{N}.$$

3. Supposons que $\frac{d\rho}{ds}$ ne s'annule nulle part, de sorte qu'elle possède partout le même signe $\varepsilon \in \{1, -1\}$. Montrer que l'arc paramétré β est alors birégulier, et exprimer son vecteur tangent unitaire T_{β} , son vecteur normal unitaire N_{β} , sa courbure κ_{β} et son rayon de courbure ρ_{β} en termes de ceux de α .

(Attention : s n'est sans doute pas une abscisse curviligne pour β !)

- 4. Montrer que la développée d'une ellipse est une astroïde.
- 5. Déterminer une paramétrisation naturelle ainsi que la développée de la cardioïde

$$r(\theta) = 1 + \cos \theta, \qquad \theta \in]-\pi,\pi[.$$