

CyC - Practica 6

Facundo Tomatis

(Ejercicio 1)

Consigna: Determinar cuales de las siguientes afirmaciones son verdaderas y cuales son falsas:

a)
$$\frac{1}{2}n^2 - 3n \in \Theta(n^2)$$

b)
$$n^3 \in O(n^2)$$

c)
$$n^2 \in \Omega(n^3)$$

d)
$$2^n \in \Theta(2^{n+1})$$

e)
$$n! \in O((n+1)!)$$

f)
$$f: \mathbb{N} \to \mathbb{R}^{\geq 0}, f(n) \in O(n) \implies [f(n)]^2 \in O(n^2)$$

g)
$$f: \mathbb{N} \to \mathbb{R}^{\geq 0}, f(n) \in O(n) \implies 2^{f(n)} \in O(2^n)$$

h)
$$f: \mathbb{N} \to \mathbb{R}^{\geq 0}, k \in \mathbb{R}^{\geq 0}, kf(n) \in O(f(n))$$

i) Para todo polinomio
$$p(n)$$
 de grado $m, p(n) \in O(n^m)$

j)
$$\alpha, \beta \in \mathbb{R}, \alpha < \beta \implies n^{\alpha} \in O(n^{\beta})$$

Respuesta:

a)
$$\frac{1}{2}n^2 - 3n \in \Theta(n^2)$$
 \square por $\lim_{n \to +\infty} f(n)/g(n) \in \mathbb{R}^+ \implies f(n) \in \Theta(g(n))$

b)
$$n^3 \in O(n^2)$$
 M por $\lim_{n \to +\infty} f(n)/g(n) \to \infty \implies f(n) \notin O(g(n))$

c)
$$n^2 \in \Omega(n^3)$$
 \boxtimes por $\lim_{n \to +\infty} f(n)/g(n) = 0 \implies f(n) \notin \Omega(g(n))$

d)
$$2^n \in \Theta(2^{n+1})$$
 \mathbf{Z} por $\lim_{n \to +\infty} f(n)/g(n) \in \mathbb{R}^+ \implies f(n) \in \Theta(g(n))$

e)
$$n! \in O((n+1)!)$$
 or $\lim_{n \to +\infty} f(n)/g(n) = 0 \implies f(n) \in O(g(n))$

f)
$$f: \mathbb{N} \to \mathbb{R}^{\geq 0}, f(n) \in O(n) \implies [f(n)]^2 \in O(n^2)$$
 or propiedad de potencias

g)
$$f: \mathbb{N} \to \mathbb{R}^{\geq 0}, f(n) \in O(n) \implies 2^{f(n)} \in O(2^n)$$
 \boxtimes Contraejemplo: $f(n) = 2n \in O(n) \implies 2^{2n} \leq c * 2^n$ que es absurdo ya que a medida que n crezca $2^{2n} > c * 2^n$

h)
$$f: \mathbb{N} \to \mathbb{R}^{\geq 0}, k \in \mathbb{R}^{\geq 0}, k * f(n) \in O(f(n))$$
 \checkmark $k * f(n) \leq p * f(n), p = c + k, c \in \mathbb{R}^{\geq 0} : k * f(n) \in O(f(n))$

i) Para todo polinomio
$$p(n)$$
 de grado $m, p(n) \in O(n^m)$ \square
si el coeficiente principal es positivo se puede probar por regla del maximo $[O(f(n) + g(n)) = O(max(f(n), g(n)))]$ o si no por limite

$$\mathbf{j)} \ \alpha, \beta \in \mathbb{R}, \alpha < \beta \implies n^{\alpha} \in O(n^{\beta}) \ \mathbf{\underline{M}} \ \text{por limite } \lim_{n \to +\infty} f(n)/g(n) = \mathbb{R}^{\geq 0} \implies f(n) \in O(g(n))$$

(Ejercicio 2)

Consigna: Probar que se cumplen las siguientes propiedades para $f, g, h : \mathbb{N} \to \mathbb{R}^{\geq 0}$

- Reflexividad:
 - a) $f(n) \in O(f(n))$
 - **b)** $f(n) \in \Theta(f(n))$
 - c) $f(n) \in \Omega(f(n))$
- Transitividad
 - **d)** Si $f(n) \in O(g(n))$ y $g(n) \in O(h(n)) \implies f(n) \in O(h(n))$
 - e) Si $f(n) \in \Theta(g(n))$ y $g(n) \in \Theta(h(n)) \implies f(n) \in \Theta(h(n))$
 - f) Si $f(n) \in \Omega(g(n))$ y $g(n) \in \Omega(h(n)) \implies f(n) \in \Omega(h(n))$
- Simetria
 - g) $f(n) \in \Theta(g(n)) \iff g(n) \in \Theta(f(n))$
- Simetria transpuesta
 - **h)** $f(n) \in O(g(n)) \iff g(n) \in \Omega(f(n))$

Respuesta:

- a) Por definicion $O(f(n)) = \{t : \mathbb{N} \to \mathbb{R}^+/c \in \mathbb{R}^+, n_0 \in \mathbb{N} \text{ tq } t(n) \leq cf(n), n \geq n_0\}$, va estar incluida f(n) ya que incluye todas las mayores o iguales a la constante c y esta contiene a la funcion donde c = 1 por lo que $f(n) \in O(f(n))$
- b) Por definicion $\Omega(f(n)) = \{t : \mathbb{N} \to \mathbb{R}^+/c \in \mathbb{R}^+, n_0 \in \mathbb{N} \text{ tq } t(n) \geq cf(n), n \geq n_0\}$ por lo que este conjunto de funciones va a tener a la misma f(n) debido a que hay una funcion donde c = 1 y las infinitas menores sin incluir el $0 \ (0 < c \leq 1)$
- c) Por definicion $\Theta(f(n)) = \{t : \mathbb{N} \to \mathbb{R}^+/c_1, c_2 \in \mathbb{R}^+, n_0 \in \mathbb{N} \text{ tq } c_1 f(n) \leq t(n) \leq c_2 f(n), n \geq n_0\}$ existe una funcion que sea $c_1 = c_2 = 1$ por lo que f(n) esta incluida.
- **d)** $f(n) \in O(g(n))$ si $\exists (c_0)$ tq $f(n) \le c_0 g(n), n \ge n_0$ **d.1** $g(n) \in O(h(n))$ si $\exists (c_1)$ tq $g(n) \le c_1 h(n), n \ge n_1$ **d.2** $f(n) \in O(h(n))$ si $\exists (c_2)$ tq $f(n) \le c_2 h(n), n \ge n_2, c_2 = c_0 * c_1, n_2 = max(n_0, n_1)$ **d.3**
- e) Si d.1 y f.1 entonces $f(n) \in \Theta(g(n))$ e.1 Si d.2 y f.2 entonces $g(n) \in \Theta(h(n))$ e.2 Si d.3 y f.3 y e.1 y e.2 entonces $f(n) \in \Theta(h(n))$
- f) $f(n) \in \Omega(g(n))$ si $\exists (c_0)$ tq $f(n) \geq c_0 g(n), n \geq n_0$ f.1 $g(n) \in \Omega(h(n))$ si $\exists (c_1)$ tq $g(n) \geq c_1 h(n), n \geq n_1$ f.2 $f(n) \in \Omega(h(n))$ si $\exists (c_2)$ tq $f(n) \geq c_2 h(n), n \geq n_2, c_2 = c_0 * c_1, n_2 = max(n_0, n_1)$ f.3
- g) Se utiliza la propiedad de simetria transpuesta demostrada en el inciso (h) Si $f(n) \in \Theta(g(n)) \iff f(n) \in O(g(n)) \wedge f(n) \in \Omega(g(n)) \iff g(n) \in \Omega(f(n)) \wedge g(n) \in O(f(n)) \iff g(n) \in \Theta(f(n))$
- h) Por definicion si $f(n) \in O(g(n)), f(n) \le c * g(n), c \in \mathbb{R}^+$ por lo que $g(n) \ge 1/c * f(n)$ cumpliendo la definicion de $g(n) \in \Omega(f(n))$ y viceversa