

Schletter, Inc.		15° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 15° Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-05, Eq. 7-2)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

$$C_t = 1.20$$

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 26.53$ psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.000 (Proceure)	
Cf+ BOTTOM	=	1.000 1.600 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.300	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.780 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the duridoo.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S _s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used
$T_a =$	0.00	$C_{d} = 1.25$	to calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W M 1.54D + 1.3E + 0.2S R 0.56D + 1.3E R 1.54D + 1.25E + 0.2S O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0 \text{D} + 1.0 \text{S} \\ 1.0 \text{D} + 1.0 \text{W} \\ 1.0 \text{D} + 0.75 \text{L} + 0.75 \text{W} + 0.75 \text{S} \\ 0.6 \text{D} + 1.0 \text{W} & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) \& (ASCE 7, Section 12.4.3.2)} \\ 1.238 \text{D} + 0.875 \text{E} & \text{0} \\ 1.1785 \text{D} + 0.65625 \text{E} + 0.75 \text{S} & \text{0} \\ 0.362 \text{D} + 0.875 \text{E} & \text{0} \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>iviaximum</u>	Front	<u>Rear</u>	
Tensile Load =	<u>2044.55</u>	<u>6814.04</u>	k
Compressive Load =	<u>4969.14</u>	<u>5142.14</u>	k
Lateral Load =	<u>6.66</u>	2433.28	k
Moment (Weak Axis) =	<u>0.01</u>	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (3) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi Overturning Check $M_O = 170602.6 \text{ in-lbs}$ Resisting Force Required = 2584.89 lbs A minimum 132in long x 38in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4308.15 lbs to resist overturning. Minimum Width = <u>38 in</u> in Weight Provided = 7576.25 lbs Sliding 584.92 lbs Force = Friction = Use a 132in long x 38in wide x 18in tall 0.4 ballast foundation to resist sliding. Weight Required = 1462.30 lbs Friction is OK. Resisting Weight = 7576.25 lbs Additional Weight Required = 0 lbs Cohesion Sliding Force = 584.92 lbs Cohesion = 130 psf Use a 132in long x 38in wide x 18in tall 34.83 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3788.13 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required.

2500 psi

8 in

Bearing Pressure

 $f'_c =$ Length =

 $\frac{\text{Ballast Width}}{38 \text{ in}} \frac{39 \text{ in}}{39 \text{ in}} \frac{40 \text{ in}}{41 \text{ in}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(3.17 \text{ ft}) = \frac{7576 \text{ lbs}}{7776 \text{ lbs}} \frac{7975 \text{ lbs}}{7975 \text{ lbs}} \frac{8174 \text{ lbs}}{1000 \text{ lbs}}$

ASD LC		1.0D -	+ 1.0S			1.0D + 1.0W				1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W			
Width	38 in	39 in	40 in	41 in	38 in	39 in	40 in	41 in	38 in	39 in	40 in	41 in	38 in	39 in	40 in	41 in
FA	1420 lbs	1420 lbs	1420 lbs	1420 lbs	2066 lbs	2066 lbs	2066 lbs	2066 lbs	2507 lbs	2507 lbs	2507 lbs	2507 lbs	-978 lbs	-978 lbs	-978 lbs	-978 lbs
F _B	1465 lbs	1465 lbs	1465 lbs	1465 lbs	2138 lbs	2138 lbs	2138 lbs	2138 lbs	2592 lbs	2592 lbs	2592 lbs	2592 lbs	-3271 lbs	-3271 lbs	-3271 lbs	-3271 lbs
F _V	118 lbs	118 lbs	118 lbs	118 lbs	1022 lbs	1022 lbs	1022 lbs	1022 lbs	847 lbs	847 lbs	847 lbs	847 lbs	-1170 lbs	-1170 lbs	-1170 lbs	-1170 lbs
P _{total}	10460 lbs	10660 lbs	10859 lbs	11059 lbs	11780 lbs	11979 lbs	12179 lbs	12378 lbs	12675 lbs	12874 lbs	13074 lbs	13273 lbs	297 lbs	416 lbs	536 lbs	656 lbs
М	3452 lbs-ft	3452 lbs-ft	3452 lbs-ft	3452 lbs-ft	6283 lbs-ft	6283 lbs-ft	6283 lbs-ft	6283 lbs-ft	7040 lbs-ft	7040 lbs-ft	7040 lbs-ft	7040 lbs-ft	1554 lbs-ft	1554 lbs-ft	1554 lbs-ft	1554 lbs-ft
е	0.33 ft	0.32 ft	0.32 ft	0.31 ft	0.53 ft	0.52 ft	0.52 ft	0.51 ft	0.56 ft	0.55 ft	0.54 ft	0.53 ft	5.24 ft	3.73 ft	2.90 ft	2.37 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	246.2 psf	245.5 psf	244.8 psf	244.1 psf	239.8 psf	239.2 psf	238.7 psf	238.2 psf	253.6 psf	252.7 psf	251.8 psf	251.0 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	354.4 psf	350.8 psf	347.5 psf	344.3 psf	436.6 psf	430.9 psf	425.6 psf	420.5 psf	474.1 psf	467.5 psf	461.3 psf	455.3 psf	239.4 psf	48.3 psf	41.2 psf	40.9 psf

Maximum Bearing Pressure = 474 psf Allowable Bearing Pressure = 1500 psf Use a 132 in long x 38 in wide x 18 in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_O = 1242.0 \text{ ft-lbs}$

Resisting Force Required = 784.43 lbs

S.F. = 1.67

Weight Required = 1307.38 lbs Minimum Width = 38 in in Weight Provided = 7576.25 lbs A minimum 132in long x 38in wide x 18in tall ballast foundation is required to resist

d = 1307.38 IDS overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E		
Width		38 in		38 in			38 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer
F_Y	206 lbs	538 lbs	206 lbs	789 lbs	2349 lbs	789 lbs	60 lbs	157 lbs	60 lbs
F _V	1 lbs	0 lbs	1 lbs	2 lbs	0 lbs	2 lbs	0 lbs	0 lbs	0 lbs
P _{total}	9585 lbs	7576 lbs	9585 lbs	9718 lbs	7576 lbs	9718 lbs	2803 lbs	7576 lbs	2803 lbs
M	2 lbs-ft	0 lbs-ft	2 lbs-ft	8 lbs-ft	0 lbs-ft	8 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft
L/6	0.53 ft	0.53 ft	0.53 ft	0.53 ft	0.53 ft	0.53 ft	0.53 ft	0.53 ft	0.53 ft
f _{min}	275.1 psf	217.5 psf	275.1 psf	278.6 psf	217.5 psf	278.6 psf	80.4 psf	217.5 psf	80.4 psf
f _{max}	275.3 psf	217.5 psf	275.3 psf	279.4 psf	217.5 psf	279.4 psf	80.5 psf	217.5 psf	80.5 psf

Maximum Bearing Pressure = 279 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 38in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 38in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum $\overline{\text{Axial Load}} =$	3.822 k	$\overline{\text{Maximum Axial Load}} = 4.773 \text{ k}$
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>52%</u>	Utilization = 64%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	1.764 k 12.808 k 7.421 k <u>24%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 36.30 \text{ in} \\ \text{Allowable Story Drift for All} & & 0.020 h_{\text{sx}} \\ \text{Other Structures, } \Delta = \{ & & 0.726 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & & 0.017 \text{ in} \\ \end{array}$

N/A

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 99 \text{ in}$$

$$J = 0.432$$

$$273.88$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = \left(\frac{\theta_b}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$(C_c)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

Not Used

$$\phi F_L = 28.0 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 99$$

$$J = 0.432$$

$$174.171$$

$$\left(Bc - \frac{\theta_y}{\theta_x} Fc_y\right)$$

$$S1 = \left(\frac{\theta_b}{1.6Dc} \right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.7$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16.1

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

38.9 ksi

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

 $\phi F_L =$

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_1 = \phi b [Bbr-mDbr^*h/t]$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$

$$2.155 \text{ in}^4$$

$$y = 41.015 \text{ mm}$$

$$Sx = 1.335 \text{ in}^3$$

$$M_{max} St = 2.788 \text{ k-ft}$$

 $\phi F_L = 43.2 \text{ ksi}$

3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 23.1 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

$$M_{max} W k = 1.152 \text{ k-ft}$$

Compression

3.4.9

$$b/t = 32.195$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^T$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 29.4 \text{ ksi}$

Weak Axis: 3.4.14

$$L_b = 88.9$$

 $J = 1.08$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_L = 29.2$$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$\phi F_L = \phi b [Bp\text{-}1.6Dp*b/t]$$

46.7

$$\phi F_L = 31.6 \text{ ksi}$$

3.4.16

$$D/t = 7.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

 $\phi F_L = \phi y F c y$

$$\phi F_L = 33.3 \text{ ksi}$$

S2 =

3.4.16.1 Used

Rb/t = 18.1

$$R_{t-1} = \frac{\theta_{y}}{17} E_{t} = \frac{\theta_{y}}{17$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = C_t$$

S2 = 141.0

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$k_1Bbr$$

$$S2 = \frac{k_1 BB}{mDbr}$$

$$S2 = 73.8$$

$$φF_L$$
= 1.3 $φyFcy$
 $φF_I$ = 43.2 ksi

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.4 \text{ ksi}$$
 $lx = 984962 \text{ mm}^4$

$$2.366 \text{ in}^4$$

$$y = 43.717 \text{ mm}$$

 $Sx = 1.375 \text{ in}^3$

$$M_{max}St = 3.363 \text{ k-ft}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

3.4.9

$$b/t = 16.2$$

S1 =12.21 (See 3.4.16 above for formula)

32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\varphi F_L = \varphi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 58.55 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ & 38.7028 \\ \\ \mathit{S1} = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ \mathit{S2} = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib}[\mathsf{Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2))}]}} \\ \mathsf{\phiF_L} = & 31.4 \text{ ksi} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L}_b &= 24.8 \\ \mathsf{J} &= 0.942 \\ 38.7028 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \phi \mathsf{F}_L &= \phi b [\mathsf{Bc-1.6Dc}^* \sqrt{((\mathsf{LbSc})/(\mathsf{Cb}^* \sqrt{(\mathsf{lyJ})/2}))}] \\ \phi \mathsf{F}_L &= 31.4 \end{split}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

S1 = 1.1
 $S2 = C_t$
S2 = 141.0
 $\phi F_L = 1.17 \phi y Fcy$
 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

27.5 mm

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc - Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$
3.4.9
$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$
3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
1.03 in²
 $\phi F_L = 28.85 \text{ kips}$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

	<u>Weak Axis:</u> 3.4.14
$L_b = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$
$\varphi F_L = 29.6 \text{ ksi}$	$\phi F_L = 29.6$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 <u>Not Used</u>

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

S1 = 1.1
 $S2 = C_t$
S2 = 141.0
 $\phi F_L = 1.17 \phi y Fcy$
 $\phi F_L = 38.9 \text{ ksi}$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

 $y = 0.672 \text{ in}^4$ y = 27.5 mm $Sx = 0.621 \text{ in}^3$

 $M_{max}St = 1.460 \text{ k-ft}$

Compression

3.4.7

$$\lambda = 2.00335$$

 $r = 0.81$ in
$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$
 $S2^* = 1.23671$
 $\varphi cc = 0.86047$
 $\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$
 $\varphi F_L = 7.50396$ ksi

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 48.30 \text{ in}$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\varphi F_L =$$

Weak Axis:

3.4.14

$$L_b = 48.3$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.6$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{by}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$D/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

$\frac{3.4.16.1}{\text{N/A for Weak Direction}}$

3.4.18 h/t =24.5 S1 = mDbrS1 = 36.9 0.65 m = $C_0 =$ 27.5 Cc = 27.5 k_1Bbr mDbrS2 = 77.3 $\phi F_L = 1.3 \phi y F c y$ 43.2 ksi $\phi F_L =$ $\phi F_1 St =$ 28.2 ksi

 $lx = 279836 \text{ mm}^4$

 0.672 in^4

0.621 in³

1.460 k-ft

27.5 mm

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$\phi F_L W k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}W k = 1.460 \text{ k-ft}$$

Compression

 $M_{max}St =$

y =

Sx =

3.4.7 $\lambda = 1.11734$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.76536$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_I = 18.9268$ ksi

$\phi F_{L} = 18.9268 \text{ ksi}$ 3.4.9 b/t =24.5 12.21 (See 3.4.16 above for formula) S1 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c [Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi 24.5 b/t =S1 = 12.21 32.70 S2 = $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 18.93 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 19.48 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-61.093	-61.093	0	0
2	M14	Υ	-61.093	-61.093	0	0
3	M15	Υ	-61.093	-61.093	0	0
4	M16	Υ	-61 093	-61 093	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-73.997	-73.997	0	0
2	M14	٧	-73.997	-73.997	0	0
3	M15	V	-118.396	-118.396	0	0
4	M16	V	-118.396	-118.396	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	170.194	170.194	0	0
2	M14	V	131.716	131.716	0	0
3	M15	V	73.997	73.997	0	0
4	M16	V	73 997	73 997	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	475.225	2	1246.163	2	.713	1	.003	1	Ō	1	0	1
2		min	-600.61	3	-1626.948	3	.027	15	0	15	0	1	0	1
3	N7	max	.022	9	1243.87	1	175	15	0	15	0	1	0	1
4		min	163	2	-473.66	3	-5.121	1	011	1	0	1	0	1
5	N15	max	.02	9	3822.412	2	0	1	0	1	0	1	0	1
6		min	-1.866	2	-1572.732	3	0	12	0	2	0	1	0	1
7	N16	max	1680.918	2	3955.495	2	0	3	0	3	0	1	0	1
8		min	-1871.756	3	-5241.57	3	0	2	0	2	0	1	0	1
9	N23	max	.022	9	1243.87	1	5.121	1	.011	1	0	1	0	1
10		min	163	2	-473.66	3	.175	15	0	15	0	1	0	1
11	N24	max	475.225	2	1246.163	2	027	15	0	15	0	1	0	1
12		min	-600.61	3	-1626.948	3	713	1	003	1	0	1	0	1
13	Totals:	max	2629.175	2	12748.09	2	0	12	·					
14		min	-3074.114	3	-11015.518	3	0	2						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	55.171	1	501.811	1	-3.647	15	0	15	.131	1	0	1
2			min	1.827	15	-826.704	3	-111.352	1	016	2	.004	15	0	3
3		2	max	55.171	1	350.509	1	-2.799	15	0	15	.041	1	.646	3
4			min	1.827	15	-581.831	3	-85.351	1	016	2	.001	15	391	1
5		3	max	55.171	1	199.207	1	-1.952	15	0	15	.002	3	1.067	3
6			min	1.827	15	-336.958	3	-59.35	1	016	2	026	1	643	1
7		4	max	55.171	1	47.904	1	-1.104	15	0	15	001	12	1.263	3
8			min	1.827	15	-92.085	3	-33.349	1	016	2	068	1	756	1
9		5	max	55.171	1	152.788	3	076	10	0	15	003	12	1.235	3
10			min	1.827	15	-103.398	1	-7.348	1	016	2	087	1	73	1
11		6	max	55.171	1	397.661	3	18.654	1	0	15	003	15	.983	3
12			min	1.827	15	-254.7	1	571	3	016	2	082	1	566	1
13		7	max	55.171	1	642.534	3	44.655	1	0	15	002	15	.506	3
14			min	1.827	15	-406.003	1	.526	12	016	2	053	1	263	1
15		8	max	55.171	1	887.407	3	70.656	1	0	15	.002	2	.181	2
16			min	1.827	15	-557.305	1	1.374	12	016	2	004	3	195	3
17		9	max	55.171	1	1132.281	3	96.657	1	0	15	.077	1	.758	1
18			min	1.827	15	-708.607	1	2.221	12	016	2	001	3	-1.12	3
19		10	max	55.171	1	859.909	1	-3.069	12	.016	2	.177	1	1.477	1
20			min	1.827	15	-1377.154	3	-122.659	1	0	12	.002	12	-2.271	3
21		11	max	55.171	1	708.607	1	-2.221	12	.016	2	.077	1	.758	1
22			min	1.827	15	-1132.281	3	-96.657	1	0	15	001	3	-1.12	3
23		12	max	55.171	1	557.305	1	-1.374	12	.016	2	.002	2	.181	2
24			min	1.827	15	-887.407	3	-70.656	1	0	15	004	3	195	3
25		13	max	55.171	1	406.003	1	526	12	.016	2	002	15	.506	3
26			min	1.827	15	-642.534	3	-44.655	1	0	15	053	1	263	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC								
27		14	max	<u>55.171</u>	1	254.7	_1_	.571	3	.016	2	003	15	.983	3
28			min	1.827	15	-397.661	3	-18.654	1	0	15	082	1	566	1
29		15	max	<u>55.171</u>	1	103.398	_1_	7.348	1	.016	2	003	12	1.235	3
30			min	1.827	15	-152.788	3	.076	10	0	15	087	1	73	1
31		16	max	<u>55.171</u>	1	92.085	3	33.349	1	.016	2	001	12	1.263	3
32			min	1.827	15	-47.904	1_	1.104	15	0	15	068	1	756	1
33		17	max	55.171	1	336.958	3	59.35	1	.016	2	.002	3	1.067	3
34			min	1.827	15	-199.207	_1_	1.952	15	0	15	026	1	643	1
35		18	max	55.171	1	581.831	3	85.351	1	.016	2	.041	1	.646	3
36			min	1.827	15	-350.509	1_	2.799	15	0	15	.001	15	391	1
37		19	max	55.171	1	826.704	3	111.352	1	.016	2	.131	1	0	1
38			min	1.827	15	-501.811	1	3.647	15	0	15	.004	15	0	3
39	M14	1	max	28.997	1	550.748	1	-3.779	15	.012	3	.153	1	0	1
40			min	.959	15	-667.166	3	-115.38	1	014	2	.005	15	0	3
41		2	max	28.997	1	399.446	1	-2.931	15	.012	3	.059	1	.525	3
42			min	.959	15	-478.727	3	-89.379	1	014	2	.002	15	436	1
43		3	max	28.997	1	248.143	1_	-2.083	15	.012	3	.003	3	.878	3
44			min	.959	15	-290.288	3	-63.378	1	014	2	011	1	732	1
45		4	max	28.997	1	97.12	2	-1.236	15	.012	3	0	12	1.057	3
46			min	.959	15	-101.85	3	-37.377	1	014	2	057	1	89	1
47		5	max	28.997	1	86.589	3	388	15	.012	3	002	12	1.064	3
48			min	.959	15	-54.461	1	-11.376	1	014	2	08	1	91	1
49		6	max	28.997	1	275.028	3	14.626	1	.012	3	003	15	.899	3
50			min	.959	15	-205.763	1	776	3	014	2	078	1	791	1
51		7	max	28.997	1	463.466	3	40.627	1	.012	3	002	15	.56	3
52			min	.959	15	-357.066	1	.39	12	014	2	053	1	534	2
53		8	max	28.997	1	651.905	3	66.628	1	.012	3	.001	10	.049	3
54			min	.959	15	-508.368	1	1.238	12	014	2	004	1	155	2
55		9	max	28.997	1	840.344	3	92.629	1	.012	3	.069	1	.399	1
56			min	.959	15	-659.67	1	2.085	12	014	2	001	3	635	3
57		10	max	28.997	1	810.973	1	-2.933	12	.014	2	.166	1	1.073	1
58			min	.959	15	-1028.782	3	-118.631	1	012	3	.002	12	-1.492	3
59		11	max	28.997	1	659.67	1	-2.085	12	.014	2	.069	1	.399	1
60			min	.959	15	-840.344	3	-92.629	1	012	3	001	3	635	3
61		12	max	28.997	1	508.368	1	-1.238	12	.014	2	.001	10	.049	3
62			min	.959	15	-651.905	3	-66.628	1	012	3	004	1	155	2
63		13	max	28.997	1	357.066	1	39	12	.014	2	002	15	.56	3
64			min	.959	15	-463.466	3	-40.627	1	012	3	053	1	534	2
65		14	max	28.997	1	205.763	1	.776	3	.014	2	003	15	.899	3
66			min	.959	15	-275.028	3	-14.626	1	012	3	078	1	791	1
67		15	max	28.997	1	54.461	1	11.376		.014	2	002	12	1.064	3
68			min	.959	15	-86.589	3	.388	15	012	3	08	1	91	1
69		16		28.997	1	101.85	3	37.377	1	.014	2	0	12	1.057	3
70			min	.959	15	-97.12	2	1.236	15	012	3	057	1	89	1
71		17	max	28.997	1	290.288	3	63.378	1	.014	2	.003	3	.878	3
72			min	.959	15	-248.143	1	2.083	15	012	3	011	1	732	1
73		18	max	28.997	1	478.727	3	89.379	1	.014	2	.059	1	.525	3
74			min	.959	15	-399.446	1	2.931	15	012	3	.002	15	436	1
75		19	max	28.997	1	667.166	3	115.38	1	.014	2	.153	1	0	1
76			min	.959	15	-550.748	1	3.779	15	012	3	.005	15	0	3
77	M15	1	max	<u>.505 </u>	15	755.231	2	-3.778	15	.014	2	.153	1	0	2
78			min	-30.11	1	-381.977	3	-115.388	1	01	3	.005	15	0	3
79		2	max	<u> </u>	15	544.049	2	-2.93	15	.014	2	.059	1	.303	3
80			min	-30.11	1	-278.193	3	-89.386	1	01	3	.002	15	595	2
81		3	max	<u>-30.11</u> -1	15	332.867	2	-2.082	15	.014	2	.002	3	. <u>51</u>	3
82			min	-30.11	1	-174.409	3	-63.385	1	01	3	011	1	997	2
83		4	max	<u>-30.11</u> -1	15	121.685	2	-1.235	15	.014	2	0	12	.622	3
LUJ		- 4	παλ	-1	LIJ	121.003		-1.200	IJ	.014		U	14	.022	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

85		Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]				z-z Mome	LC
B6				min												
B8			5													
B8						_				-						
B9			6													
90														_		
91			7			15					_					
92				min						12			053	1		_
93			8	max		15										
94				min				2		12		3		1		
95			9	max		15					.014			_	.656	
96	94			min	-30.11	1	-934.223	2	2.156	12	01	3	001	3	243	3
98	95		10	max		15				12	.01	3		1	1.609	
98	96			min	-30.11	1		3	-118.623	1	014	2	.002	12	702	3
99	97		11	max	-1	15	934.223	2	-2.156	12	.01	3	.069	1	.656	2
100	98			min	-30.11	1	-448.296	3	-92.622	1	014	2	001	3	243	3
101	99		12	max	-1	15	723.042	2	-1.309	12	.01	3	0	10	.12	3
101	100			min	-30.11	1	-344.512	3	-66.621	1	014	2	004	1	11	1
102	101		13	max	-1	15		2		12	.01	3	002	15	.388	3
103					-30.11	1		3		1	014	2		1		2
105			14			15				3				15		
106					-30.11											
106			15			15				1				12		
107																
108			16			_										
109			10													
110			17			_								_		
111			- ' '							_						
112			18													_
113			10											_		
114			10													
115 M16			13													
116		M16	1			_										
117		IVITO														
118			2													
119												_		_		
120			2			_										
121 4 max -1.935 15 71.795 2 -1.108 15 .012 1 001 12 .512 3 122 min -58.466 1 -30.651 3 -33.596 1 013 3 068 1 -1.069 2 123 5 max -1.935 15 73.133 3 22 10 .012 1 003 12 .493 3 124 min -58.466 1 -139.387 2 -7.594 1 013 3 087 1 -1.038 2 125 6 max -1.935 15 176.917 3 18.407 1 .012 1 003 15 .378 3 126 min -58.466 1 -350.568 2 187 3 013 3 082 1 813 2 127 7 max <t< td=""><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			3													
122			_			_										_
123 5 max -1.935 15 73.133 3 22 10 .012 1 003 12 .493 3 124 min -58.466 1 -139.387 2 -7.594 1 013 3 087 1 -1.038 2 125 6 max -1.935 15 176.917 3 18.407 1 .012 1 003 15 .378 3 126 min -58.466 1 -350.568 2 187 3 013 3 082 1 813 2 127 7 max -1.935 15 280.701 3 44.408 1 .012 1 002 15 .169 3 128 min -58.466 1 -561.75 2 .766 12 013 3 053 1 395 2 129 8 max -			4													
124 min -58.466 1 -139.387 2 -7.594 1 013 3 087 1 -1.038 2 125 6 max -1.935 15 176.917 3 18.407 1 .012 1 003 15 .378 3 126 min -58.466 1 -350.568 2 187 3 013 3 082 1 813 2 127 7 max -1.935 15 280.701 3 44.408 1 .012 1 002 15 .169 3 128 min -58.466 1 -561.75 2 .766 12 013 3 053 1 395 2 129 8 max -1.935 15 384.485 3 70.409 1 .012 1 .001 2 .217 2 130 min -58.466			_													
125 6 max -1.935 15 176.917 3 18.407 1 .012 1 003 15 .378 3 126 min -58.466 1 -350.568 2 187 3 013 3 082 1 813 2 127 7 max -1.935 15 280.701 3 44.408 1 .012 1 002 15 .169 3 128 min -58.466 1 -561.75 2 .766 12 013 3 053 1 395 2 129 8 max -1.935 15 384.485 3 70.409 1 .012 1 .001 2 .217 2 130 min -58.466 1 -772.932 2 1.614 12 013 3 003 3 136 3 131 9 max -1.935 15 488.27 3 96.41 1 .012 1 .076			5													
126 min -58.466 1 -350.568 2 187 3 013 3 082 1 813 2 127 7 max -1.935 15 280.701 3 44.408 1 .012 1 002 15 .169 3 128 min -58.466 1 -561.75 2 .766 12 013 3 053 1 395 2 129 8 max -1.935 15 384.485 3 70.409 1 .012 1 .001 2 .217 2 130 min -58.466 1 -772.932 2 1.614 12 013 3 003 3 136 3 131 9 max -1.935 15 488.27 3 96.41 1 .012 1 .076 1 1.022 2 132 13 10 1 944						_										
127 7 max -1.935 15 280.701 3 44.408 1 .012 1 002 15 .169 3 128 min -58.466 1 -561.75 2 .766 12 013 3 053 1 395 2 129 8 max -1.935 15 384.485 3 70.409 1 .012 1 .001 2 .217 2 130 min -58.466 1 -772.932 2 1.614 12 013 3 003 3 136 3 131 9 max -1.935 15 488.27 3 96.41 1 .012 1 .076 1 1.022 2 132 min -58.466 1 -984.114 2 2.462 12 013 3 .176 1 2.021 2 134 min -58.466 <td< td=""><td></td><td></td><td>6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			6													
128 min -58.466 1 -561.75 2 .766 12 013 3 053 1 395 2 129 8 max -1.935 15 384.485 3 70.409 1 .012 1 .001 2 .217 2 130 min -58.466 1 -772.932 2 1.614 12 013 3 003 3 136 3 131 9 max -1.935 15 488.27 3 96.41 1 .012 1 .076 1 1.022 2 132 min -58.466 1 -984.114 2 2.462 12 013 3 0 3 536 3 133 10 max -1.935 15 1195.295 2 -3.309 12 .013 3 .176 1 2.021 2 134 min -58.466																
129 8 max -1.935 15 384.485 3 70.409 1 .012 1 .001 2 .217 2 130 min -58.466 1 -772.932 2 1.614 12 013 3 003 3 136 3 131 9 max -1.935 15 488.27 3 96.41 1 .012 1 .076 1 1.022 2 132 min -58.466 1 -984.114 2 2.462 12 013 3 0 3 536 3 133 10 max -1.935 15 1195.295 2 -3.309 12 .013 3 .176 1 2.021 2 134 min -58.466 1 -592.054 3 -122.412 1 012 1 .003 12 -1.031 3 135 11 max -1.935 15 984.114 2 -2.462 12 .013 3 .076			7													
130 min -58.466 1 -772.932 2 1.614 12 013 3 003 3 136 3 131 9 max -1.935 15 488.27 3 96.41 1 .012 1 .076 1 1.022 2 132 min -58.466 1 -984.114 2 2.462 12 013 3 0 3 536 3 133 10 max -1.935 15 1195.295 2 -3.309 12 .013 3 .176 1 2.021 2 134 min -58.466 1 -592.054 3 -122.412 1 012 1 .003 12 -1.031 3 135 11 max -1.935 15 984.114 2 -2.462 12 .013 3 .076 1 1.022 2 136 min -58.466						_								_		
131 9 max -1.935 15 488.27 3 96.41 1 .012 1 .076 1 1.022 2 132 min -58.466 1 -984.114 2 2.462 12 013 3 0 3 536 3 133 10 max -1.935 15 1195.295 2 -3.309 12 .013 3 .176 1 2.021 2 134 min -58.466 1 -592.054 3 -122.412 1 012 1 .003 12 -1.031 3 135 11 max -1.935 15 984.114 2 -2.462 12 .013 3 .076 1 1.022 2 136 min -58.466 1 -488.27 3 -96.41 1 012 1 0 3 536 3 137 12 max -1.935 15 772.932 2 -1.614 12 .013 3 .001 <			8			15										
132 min -58.466 1 -984.114 2 2.462 12 013 3 0 3 536 3 133 10 max -1.935 15 1195.295 2 -3.309 12 .013 3 .176 1 2.021 2 134 min -58.466 1 -592.054 3 -122.412 1 012 1 .003 12 -1.031 3 135 11 max -1.935 15 984.114 2 -2.462 12 .013 3 .076 1 1.022 2 136 min -58.466 1 -488.27 3 -96.41 1 012 1 0 3 536 3 137 12 max -1.935 15 772.932 2 -1.614 12 .013 3 .001 2 .217 2 138 min -58.466 1 -384.485 3 -70.409 1 012 1 003 3				min										3		
133 10 max -1.935 15 1195.295 2 -3.309 12 .013 3 .176 1 2.021 2 134 min -58.466 1 -592.054 3 -122.412 1 012 1 .003 12 -1.031 3 135 11 max -1.935 15 984.114 2 -2.462 12 .013 3 .076 1 1.022 2 136 min -58.466 1 -488.27 3 -96.41 1 012 1 0 3 536 3 137 12 max -1.935 15 772.932 2 -1.614 12 .013 3 .001 2 .217 2 138 min -58.466 1 -384.485 3 -70.409 1 012 1 003 3 136 3 139 13 max -1.935 15 561.75 2 766 12 .013 3 002 15 .169 3			9	max		15								_		
134 min -58.466 1 -592.054 3 -122.412 1 012 1 .003 12 -1.031 3 135 11 max -1.935 15 984.114 2 -2.462 12 .013 3 .076 1 1.022 2 136 min -58.466 1 -488.27 3 -96.41 1 012 1 0 3 536 3 137 12 max -1.935 15 772.932 2 -1.614 12 .013 3 .001 2 .217 2 138 min -58.466 1 -384.485 3 -70.409 1 012 1 003 3 136 3 139 13 max -1.935 15 561.75 2 766 12 .013 3 002 15 .169 3				min		1		2		12			_	3		
135 11 max -1.935 15 984.114 2 -2.462 12 .013 3 .076 1 1.022 2 136 min -58.466 1 -488.27 3 -96.41 1 012 1 0 3 536 3 137 12 max -1.935 15 772.932 2 -1.614 12 .013 3 .001 2 .217 2 138 min -58.466 1 -384.485 3 -70.409 1 012 1 003 3 136 3 139 13 max -1.935 15 561.75 2 766 12 .013 3 002 15 .169 3			10	max		15		2				3		1		
135 11 max -1.935 15 984.114 2 -2.462 12 .013 3 .076 1 1.022 2 136 min -58.466 1 -488.27 3 -96.41 1 012 1 0 3 536 3 137 12 max -1.935 15 772.932 2 -1.614 12 .013 3 .001 2 .217 2 138 min -58.466 1 -384.485 3 -70.409 1 012 1 003 3 136 3 139 13 max -1.935 15 561.75 2 766 12 .013 3 002 15 .169 3	134			min		1		3	-122.412	1	012	1	.003	12	-1.031	3
136 min -58.466 1 -488.27 3 -96.41 1 012 1 0 3 536 3 137 12 max -1.935 15 772.932 2 -1.614 12 .013 3 .001 2 .217 2 138 min -58.466 1 -384.485 3 -70.409 1 012 1 003 3 136 3 139 13 max -1.935 15 561.75 2 766 12 .013 3 002 15 .169 3			11			15	984.114					3		1		2
137 12 max -1.935 15 772.932 2 -1.614 12 .013 3 .001 2 .217 2 138 min -58.466 1 -384.485 3 -70.409 1 012 1 003 3 136 3 139 13 max -1.935 15 561.75 2 766 12 .013 3 002 15 .169 3														3		
138 min -58.466 1 -384.485 3 -70.409 1 012 1 003 3 136 3 139 13 max -1.935 15 561.75 2 766 12 .013 3 002 15 .169 3			12			15				12		3	.001			
139																
			13			_										

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	. LC
141		14	max	-1.935	15	350.568	2	.187	3	.013	3	003	15	.378	3
142			min	-58.466	1	-176.917	3	-18.407	1	012	1	082	1	813	2
143		15	max	-1.935	15	139.387	2	7.594	1	.013	3	003	12	.493	3
144			min	-58.466	1	-73.133	3	.22	10	012	1	087	1	-1.038	2
145		16	max	-1.935	15	30.651	3	33.596	1	.013	3	001	12	.512	3
146			min	-58.466	1	-71.795	2	1.108	15	012	1	068	1	-1.069	2
147		17	max	-1.935	15	134.435	3	59.597	1	.013	3	.001	3	.437	3
148			min	-58.466	1_	-282.977	2	1.956	15	012	1	025	1	906	2
149		18	max	-1.935	15	238.219	3	85.598	1	.013	3	.041	1	.266	3
150			min	-58.466	1	-494.159	2	2.804	15	012	1	.001	15	55	2
151		19	max	-1.935	15	342.004	3	111.599	1	.013	3	.132	1	0	2
152			min	-58.466	1	-705.34	2	3.652	15	012	1	.004	15	0	3
153	M2	1	max	1120.243	1	2.283	4	.788	1	0	3	0	3	0	1
154			min	-1481.995	3	.538	15	.026	15	0	1	0	1	0	1
155		2	max	1120.572	1	2.268	4	.788	1	0	3	0	1	0	15
156			min	-1481.749	3	.534	15	.026	15	0	1	0	15	0	4
157		3	max	1120.9	1	2.253	4	.788	1	0	3	0	1	0	15
158			min	-1481.503	3	.53	15	.026	15	0	1	0	15	001	4
159		4		1121.229	1	2.237	4	.788	1	0	3	0	1	0	15
160			min	-1481.256	3	.527	15	.026	15	0	1	0	15	002	4
161		5	max	1121.557	1	2.222	4	.788	1	0	3	0	1	0	15
162			min	-1481.01	3	.523	15	.026	15	0	1	0	15	002	4
163		6	max	1121.885	1	2.207	4	.788	1	0	3	0	1	0	15
164			min	-1480.764	3	.52	15	.026	15	0	1	0	15	002	4
165		7	max	1122.214	1	2.192	4	.788	1	0	3	.001	1	0	15
166			min	-1480.517	3	.516	15	.026	15	0	1	0	15	003	4
167		8	max	1122.542	1	2.176	4	.788	1	0	3	.001	1	0	15
168			min	-1480.271	3	.512	15	.026	15	0	1	0	15	003	4
169		9	max	1122.871	1	2.161	4	.788	1	0	3	.001	1	0	15
170			min	-1480.025	3	.509	15	.026	15	0	1	0	15	004	4
171		10	max	1123.199	1	2.146	4	.788	1	0	3	.002	1	001	15
172			min	-1479.778	3	.505	15	.026	15	0	1	0	15	004	4
173		11	max	1123.528	1	2.13	4	.788	1	0	3	.002	1	001	15
174			min	-1479.532	3	.502	15	.026	15	0	1	0	15	005	4
175		12	max	1123.856	1	2.115	4	.788	1	0	3	.002	1	001	15
176			min	-1479.286	3	.498	15	.026	15	0	1	0	15	005	4
177		13	max	1124.185	1	2.1	4	.788	1	0	3	.002	1	001	15
178			min	-1479.04	3	.495	15	.026	15	0	1	0	15	006	4
179		14		1124.513	_1_	2.085	4	.788	1	0	3	.002	1	001	15
180				-1478.793	3	.491	15	.026	15	0	1	0	15	006	4
181		15		1124.841	<u>1</u>	2.069	4	.788	1	0	3	.002	1	002	15
182				-1478.547	3	.487	15	.026	15	0	1	0	15	007	4
183		16		1125.17	_1_	2.054	4	.788	1	0	3	.003	1	002	15
184				-1478.301	3	.484	15	.026	15	0	1	0	15	007	4
185		17		1125.498	_1_	2.039	4	.788	1	0	3	.003	1	002	15
186				-1478.054	3	.48	15	.026	15	0	1_	0	15	008	4
187		18		1125.827	_1_	2.024	4	.788	1	0	3	.003	1	002	15
188				-1477.808	3	.477	15	.026	15	0	1_	0	15	008	4
189		19		1126.155	_1_	2.008	4	.788	1	0	3	.003	1	002	15
190				-1477.562	3	.473	15	.026	15	0	1_	0	15	009	4
191	<u>M3</u>	1		451.812	2	8.079	4	.019	1	0	3	0	1	.009	4
192			min	-567.851	3	1.9	15	0	15	0	1	0	15	.002	15
193		2	max		2	7.307	4	.019	1	0	3	0	1	.005	2
194				-567.979	3	1.718	15	0	15	0	1	0	15	0	12
195		3		451.471	2	6.534	4	.019	1	0	3	0	1	.003	2
196				-568.107	3	1.536	15	0	15	0	1	0	15	0	3
197		4	max	451.301	2	5.762	4	.019	_1_	0	3	0	1	.001	2

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]		z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	
198			min	-568.235	3	1.355	15	0	15	0	1	0	15	002	3
199		5	max		2	4.989	4	.019	1	0	3	0	1_	0	15
200			min	-568.362	3	1.173	15	0	15	0	1	0	15	003	3
201		6	max	450.96	2	4.217	4	.019	1	0	3	0	1_	001	15
202			min	-568.49	3	.992	15	0	15	0	1	0	15	004	4
203		7	max	450.79	2	3.445	4	.019	1	0	3	0	1_	001	15
204			min	-568.618	3	.81	15	0	15	0	1	0	15	006	4
205		8	max	450.62	2	2.672	4	.019	1	0	3	0	1	002	15
206			min	-568.746	3	.629	15	0	15	0	1	0	15	007	4
207		9	max	450.449	2	1.9	4	.019	1	0	3	0	1	002	15
208			min	-568.873	3	.447	15	0	15	0	1	0	15	008	4
209		10	max		2	1.127	4	.019	1	0	3	0	1	002	15
210			min	-569.001	3	.265	15	0	15	0	1	0	15	009	4
211		11	max	450.109	2	.462	2	.019	1	0	3	0	1	002	15
212			min	-569.129	3	045	3	0	15	0	1	0	15	009	4
213		12	max	449.938	2	098	15	.019	1	0	3	0	1	002	15
214			min	-569.257	3	497	3	0	15	0	1	0	15	009	4
215		13	max		2	279	15	.019	1	0	3	0	1	002	15
216			min	-569.385	3	-1.19	4	0	15	0	1	0	15	009	4
217		14	max	449.598	2	461	15	.019	1	0	3	0	1_	002	15
218			min	-569.512	3	-1.962	4	0	15	0	1	0	15	008	4
219		15	max	449.427	2	642	15	.019	1	0	3	0	1	002	15
220			min	-569.64	3	-2.735	4	0	15	0	1	0	15	007	4
221		16	max	449.257	2	824	15	.019	1	0	3	0	1	001	15
222			min	-569.768	3	-3.507	4	0	15	0	1	0	15	006	4
223		17	max	449.087	2	-1.005	15	.019	1	0	3	0	1	001	15
224			min	-569.896	3	-4.28	4	0	15	0	1	0	15	004	4
225		18	max	448.916	2	-1.187	15	.019	1	0	3	0	1	0	15
226			min	-570.023	3	-5.052	4	0	15	0	1	0	15	002	4
227		19	max	448.746	2	-1.369	15	.019	1	0	3	0	1	0	1
228			min	-570.151	3	-5.824	4	0	15	0	1	0	15	0	1
229	M4	1	max	1240.804	1	0	1	176	15	0	1	0	1	0	1
230			min	-475.96	3	0	1	-5.326	1	0	1	0	10	0	1
231		2	max	1240.974	1	0	1	176	15	0	1	0	15	0	1
232			min	-475.832	3	0	1	-5.326	1	0	1	0	1	0	1
233		3	max	1241.144	1	0	1	176	15	0	1	0	15	0	1
234			min	-475.704	3	0	1	-5.326	1	0	1	001	1	0	1
235		4	max	1241.315	1	0	1	176	15	0	1	0	15	0	1
236			min	-475.576	3	0	1	-5.326	1	0	1	002	1	0	1
237		5	max	1241.485	1	0	1	176	15	0	1	0	15	0	1
238			min	-475.449	3	0	1	-5.326	1	0	1	002	1	0	1
239		6		1241.655	1	0	1	176	15	0	1	0	15	0	1
240			min	-475.321	3	0	1	-5.326	1	0	1	003	1	0	1
241		7		1241.826	1	0	1	176	15	0	1	0	15	0	1
242			min		3	0	1	-5.326	1	0	1	004	1	0	1
243		8	max	1241.996	1	0	1	176	15	0	1	0	15	0	1
244				-475.065	3	0	1	-5.326	1	0	1	004	1	0	1
245		9		1242.166	1	0	1	176	15	0	1	0	15	0	1
246			min		3	0	1	-5.326	1	0	1	005	1	0	1
247		10		1242.337	1	0	1	176	15	0	1	0	15	0	1
248			min		3	0	1	-5.326	1	0	1	005	1	0	1
249		11		1242.507	1	0	1	176	15	0	1	0	15	0	1
250				-474.682	3	0	1	-5.326	1	0	1	006	1	0	1
251		12		1242.677	1	0	1	176	15	0	1	0	15	0	1
252			min		3	0	1	-5.326	1	0	1	007	1	0	1
253		13		1242.848	1	0	1	176	15	0	1	0	15	0	1
254				-474.427	3	0	1	-5.326	1	0	1	007	1	0	1
										•	_				

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
255		14	max	1243.018	1	0	1	176	15	0	1	0	15	0	1
256			min	-474.299	3	0	1	-5.326	1	0	1	008	1	0	1
257		15	max	1243.188	1	0	1	176	15	0	1	0	15	0	1
258			min	-474.171	3	0	1	-5.326	1	0	1	008	1	0	1
259		16	max	1243.359	_1_	0	1	176	15	0	_1_	0	15	0	1
260			min	-474.043	3	0	1	-5.326	1	0	1	009	1	0	1
261		17	max	1243.529	1_	0	1	176	15	0	_1_	0	15	0	1
262			min		3	0	1	-5.326	1	0	1_	01	1	0	1
263		18	max	1243.699	1	0	1	176	15	0	_1_	0	15	0	1
264			min	-473.788	3	0	1	-5.326	1	0	1	01	1	0	1
265		19	max	1243.87	1	0	1	176	15	0	_1_	0	15	0	1
266			min		3	0	1	-5.326	1	0	1_	011	1	0	1
267	M6	1		3537.753	1_	2.997	2	0	1	0	_1_	0	1	0	1
268			min	-4773.176	3	181	3	0	1	0	1	0	1	0	1
269		2	max	3538.081	1	2.985	2	0	1	0	1_	0	1	0	3
270			min	-4772.93	3	19	3	0	1	0	1	0	1	0	2
271		3	max		1_	2.974	2	0	1	0	_1_	0	1	0	3
272			min	-4772.684	3	199	3	0	1	0	1_	0	1	001	2
273		4	max	3538.738	1	2.962	2	0	1	0	_1_	0	1	0	3
274			min	-4772.437	3	208	3	0	1	0	1	0	1	002	2
275		5	max	3539.067	1_	2.95	2	0	1	0	_1_	0	1	0	3
276			min	-4772.191	3	217	3	0	1	0	1	0	1	003	2
277		6		3539.395	1_	2.938	2	0	1	0	_1_	0	1	0	3
278			min	-4771.945	3	226	3	0	1	0	1	0	1	003	2
279		7		3539.724	_1_	2.926	2	0	1	0	_1_	0	1	0	3
280			min	-4771.698	3	235	3	0	1	0	1_	0	1	004	2
281		8	max	3540.052	1_	2.914	2	0	1	0	_1_	0	1	0	3
282			min	-4771.452	3	244	3	0	1	0	1_	0	1	005	2
283		9	max		1	2.902	2	0	1	0	_1_	0	1	0	3
284			min	-4771.206	3	253	3	0	1	0	1	0	1	005	2
285		10		3540.709	1_	2.89	2	0	1	0	_1_	0	1	0	3
286			min	-4770.959	3	261	3	0	1	0	1	0	1	006	2
287		11		3541.037	1_	2.878	2	0	1	0	_1_	0	1	0	3
288			min	-4770.713	3	27	3	0	1	0	1	0	1	007	2
289		12		3541.366	1	2.867	2	0	1	0	1_	0	1	0	3
290			min	-4770.467	3	279	3	0	1	0	1	0	1	007	2
291		13		3541.694	1	2.855	2	0	1	0	1	0	1	0	3
292			min		3	288	3	0	1	0	1_	0	1	008	2
293		14		3542.023	1	2.843	2	0	1	0	_1_	0	1	0	3
294			min		3	297	3	0	1	0	1	0	1	008	2
295		15		3542.351	1	2.831	2	0	1	0	1	0	1	0	3
296		40	min		3	306	3	0	1	0	1_	0	1	009	2
297		16		3542.679	1	2.819	2	0	1	0	1_	0	1	0	3
298		4-7	min		3	315	3	0	1	0	1_	0	1	01	2
299		17		3543.008	1	2.807	2	0	1	0	1	0	1	0	3
300		40	min	-4769.235	3	324	3	0	1	0	1_	0	1	01	2
301		18		3543.336	1	2.795	2	0	1	0	1_	0	1	0	3
302		40	min		3	333	3	0	1	0	1_	0	1	011	2
303		19		3543.665	1	2.783	2	0	1	0	1_	0	1	.001	3
304	N 4 7	4	min		3	342	3	0	1	0	1_	0	1	012	2
305	<u>M7</u>	1		1615.187	2	8.111	4	0	1	0	1	0	1	.012	2
306			min		3	1.904	15	0	1	0	1_	0	1	001	3
307		2		1615.016	2	7.338	4	0	1	0	1	0	1	.009	2
308		_	min	-1762.137	3	1.722	15	0	1	0	1_1	0	1	003	3
309		3		1614.846	2	6.566	4	0	1	0	1	0	1	.006	2
310			min	-1762.265	3	1.541	15	0	1	0	1	0	1	004	3
311		4	ımax	1614.676	2	5.793	4	0	1	0	_1_	0	1	.004	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
312			min	-1762.392	3	1.359	15	0	1	0	1	0	1	005	3
313		5	max	1614.505	2	5.021	4	0	1	0	1	0	1	.002	2
314			min	-1762.52	3	1.177	15	0	1	0	1	0	1	006	3
315		6	max	1614.335	2	4.249	4	0	1	0	1	0	1	0	2
316			min	-1762.648	3	.996	15	0	1	0	1	0	1	007	3
317		7	max	1614.165	2	3.476	4	0	1	0	1	0	1	001	15
318			min	-1762.776	3	.814	15	0	1	0	1	0	1	008	3
319		8	max	1613.994	2	2.722	2	0	1	0	1	0	1	002	15
320			min	-1762.903	3	.543	12	0	1	0	1	0	1	008	3
321		9		1613.824	2	2.12	2	0	1	0	1	0	1	002	15
322			min	-1763.031	3	.243	12	0	1	0	1	0	1	008	3
323		10	max	1613.654	2	1.519	2	0	1	0	1	0	1	002	15
324			min	-1763.159	3	137	3	0	1	0	1	0	1	009	4
325		11	max	1613.483	2	.917	2	0	1	0	_1_	0	1	002	15
326			min	-1763.287	3	589	3	0	1	0	1	0	1	009	4
327		12	max	1613.313	2	.315	2	0	1	0	_1_	0	1	002	15
328			min	-1763.414	3	-1.04	3	0	1	0	1	0	1	009	4
329		13	max	1613.143	2	275	15	0	1	0	_1_	0	1	002	15
330			min	-1763.542	3	-1.492	3	0	1	0	1	0	1	009	4
331		14		1612.972	2	457	15	0	1	0	_1_	0	1	002	15
332			min	-1763.67	3	-1.943	3	0	1	0	1	0	1	008	4
333		15		1612.802	2	638	15	0	1	0	_1_	0	1	002	15
334			min	-1763.798	3	-2.703	4	0	1	0	_1_	0	1	007	4
335		16	max	1612.632	2	82	15	0	1	0	_1_	0	1	001	15
336			min	-1763.926	3	-3.476	4	0	1	0	1	0	1	006	4
337		17	max	1612.461	2	-1.001	15	0	1	0	_1_	0	1	0	15
338			min	-1764.053	3	-4.248	4	0	1	0	1	0	1	004	4
339		18	max	1612.291	2	-1.183	15	0	1	0	_1_	0	1	0	15
340			min	-1764.181	3	-5.02	4	0	1	0	1	0	1	002	4
341		19		1612.121	2	-1.365	15	0	1	0	_1_	0	1	0	1
342			min	-1764.309	3	-5.793	4	0	1	0	1	0	1	0	1
343	<u>M8</u>	1		3819.346	2	0	1	0	1	0	_1_	0	1	0	1
344			min	-1575.032	3	0	1	0	1	0	1	0	1	0	1
345		2		3819.516	2	0	1	0	1	0	_1_	0	1	0	1
346			min	-1574.904	3	0	1	0	1	0	1	0	1	0	1
347		3	max	3819.687	2	0	1	0	1	0	_1_	0	1	0	1
348			min	-1574.776	3_	0	1	0	1	0	_1_	0	1	0	1
349		4	max		2	0	1	0	1	0	_1_	0	1	0	1
350			min	-1574.649	3	0	1	0	1	0	1	0	1	0	1
351		5		3820.027	2	0	1	0	1	0	1	0	1	0	1
352				-1574.521	3	0	1_	0	1	0	1	0	1	0	1
353		6		3820.198	2	0	1	0	1	0	1	0	1	0	1
354			min		3_	0	1_	0	1	0	1	0	1	0	1
355		7		3820.368	2	0	1	0	1	0	1	0	1	0	1
356			min		3_	0	1	0	1	0	1	0	1	0	1
357		8		3820.538	2	0	1	0	1	0	1	0	1	0	1
358			min		3	0	1_	0	1	0	1	0	1	0	1
359		9		3820.709	2	0	1	0	1	0	1	0	1	0	1
360			min		3_	0	1_	0	1	0	1	0	1	0	1
361		10		3820.879	2	0	1	0	1	0	1	0	1	0	1
362			min	-1573.882	3	0	1	0	1	0	1	0	1	0	1
363		11		3821.049	2	0	1	0	1	0	_1_	0	1	0	1
364			min		3	0	1_	0	1	0	<u>1</u>	0	1	0	1
365		12	max		2	0	1	0	1	0	1	0	1	0	1
366			min		3_	0	1	0	1	0	1_	0	1	0	1
367		13	max		2	0	1	0	1	0	1	0	1	0	1
368			min	-1573.499	3	0	1	0	1	0	1	0	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
369		14	max	3821.56	2	0	1	0	_1_	0	1	0	1	0	1
370			min	-1573.371	3	0	1	0	1_	0	1	0	1	0	1
371		15	max	3821.731	2	0	1	0	_1_	0	1	0	1	0	1
372			min	-1573.243	3	0	1	0	1_	0	1_	0	1	0	1
373		16		3821.901	2	0	1	0	1_	0	1	0	1	0	1
374		4-	min	-1573.115	3	0	1	0	1_	0	1	0	1	0	1
375		17		3822.072	2	0	1	0	1	0	1	0	1	0	1
376		40		-1572.988	3	0	1	0	1_	0	1_	0	1	0	1
377		18		3822.242	2	0	1	0	1	0	1	0	1	0	1
378		10		-1572.86 3822.412	3	0	1	0	<u>1</u> 1	0	_	0	1	0	1
379		19	min		3	0	1	0	1	0	1	0	1	0	1
381	M10	1		1120.243	<u> </u>	2.283	4	026	15	0	1	0	1	0	1
382	IVITO	<u> </u>	min	-1481.995	3	.538	15	788	1	0	3	0	3	0	1
383		2		1120.572		2.268	4	026	15	0	1	0	15	0	15
384			min	-1481.749	3	.534	15	788	1	0	3	0	1	0	4
385		3	max		1	2.253	4	026	15	0	1	0	15	0	15
386			min	-1481.503	3	.53	15	788	1	0	3	0	1	001	4
387		4		1121.229	1	2.237	4	026	15	0	1	0	15	0	15
388				-1481.256	3	.527	15	788	1	0	3	0	1	002	4
389		5		1121.557	1	2.222	4	026	15	0	1	0	15	0	15
390				-1481.01	3	.523	15	788	1	0	3	0	1	002	4
391		6	max	1121.885	1	2.207	4	026	15	0	1	0	15	0	15
392			min	-1480.764	3	.52	15	788	1	0	3	0	1	002	4
393		7	max	1122.214	1	2.192	4	026	15	0	1	0	15	0	15
394				-1480.517	3	.516	15	788	1	0	3	001	1	003	4
395		8		1122.542	_1_	2.176	4	026	<u>15</u>	0	1	0	15	0	15
396				-1480.271	3	.512	15	788	1_	0	3	001	1	003	4
397		9		1122.871	_1_	2.161	4	026	15	0	1	0	15	0	15
398				-1480.025	3	.509	15	788	1_	0	3	001	1	004	4
399		10		1123.199	1_	2.146	4	026	15	0	1_	0	15	001	15
400			min		3_	.505	15	788	_1_	0	3	002	1_	004	4
401		11		1123.528	1_	2.13	4	026	<u>15</u>	0	1	0	15	001	15
402		40	_	-1479.532	3	.502	15	788	1_	0	3	002	1	005	4
403		12		1123.856 -1479.286	<u>1</u> 3	2.115	4 15	026	<u>15</u> 1	0	<u>1</u>	002	1 <u>5</u>	001	15
404		12		1124.185		.498		788			<u>3</u> 1			005	4
405		13		-1479.04	<u>1</u> 3	2.1 .495	<u>4</u> 15	026 788	<u>15</u> 1	0	3	002	1 <u>5</u>	001 006	15
407		14		1124.513	<u> </u>	2.085	4	026	15	0	<u> </u>	002	15	006 001	15
408		14		-1478.793	3	.491	15	788	1	0	3	002	1	006	4
409		15		1124.841	1	2.069	4	026	15	0	1	0	15	002	15
410		10		-1478.547	3	.487	15	788	1	0	3	002	1	002	4
411		16		1125.17	1	2.054	4	026	15	0	1	0	15	002	15
412				-1478.301	3	.484	15	788	1	0	3	003	1	007	4
413		17		1125.498	1	2.039	4	026	15	0	1	0	15	002	15
414				-1478.054	3	.48	15	788	1	0	3	003	1	008	4
415		18		1125.827	1	2.024	4	026	15	0	1	0	15	002	15
416				-1477.808	3	.477	15	788	1	0	3	003	1	008	4
417		19		1126.155	1	2.008	4	026	15	0	1	0	15	002	15
418			min	-1477.562	3	.473	15	788	1	0	3	003	1	009	4
419	M11	1		451.812	2	8.079	4	0	15	0	1	0	15	.009	4
420				-567.851	3	1.9	15	019	1_	0	3	0	1	.002	15
421		2		451.642	2	7.307	4	0	15	0	1	0	15	.005	2
422				-567.979	3	1.718	15	019	1	0	3	0	1	0	12
423		3		451.471	2	6.534	4	0	<u>15</u>	0	1	0	15	.003	2
424				-568.107	3	1.536	15	019	1_	0	3	0	1_	0	3
425		4	max	451.301	2	5.762	4	0	15	0	<u>1</u>	0	15	.001	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
426			min	-568.235	3	1.355	15	019	1	0	3	0	1	002	3
427		5	max	451.131	2	4.989	4	0	15	0	1	0	15	0	15
428			min	-568.362	3	1.173	15	019	1	0	3	0	1	003	3
429		6	max	450.96	2	4.217	4	0	15	0	1	0	15	001	15
430			min	-568.49	3	.992	15	019	1	0	3	0	1	004	4
431		7	max	450.79	2	3.445	4	0	15	0	1	0	15	001	15
432			min	-568.618	3	.81	15	019	1	0	3	0	1	006	4
433		8	max	450.62	2	2.672	4	0	15	0	1	0	15	002	15
434			min	-568.746	3	.629	15	019	1	0	3	0	1	007	4
435		9	max	450.449	2	1.9	4	0	15	0	1	0	15	002	15
436			min	-568.873	3	.447	15	019	1	0	3	0	1	008	4
437		10	max	450.279	2	1.127	4	0	15	0	1	0	15	002	15
438			min	-569.001	3	.265	15	019	1	0	3	0	1	009	4
439		11	max	450.109	2	.462	2	0	15	0	1	0	15	002	15
440			min	-569.129	3	045	3	019	1	0	3	0	1	009	4
441		12	max	449.938	2	098	15	0	15	0	1	0	15	002	15
442			min	-569.257	3	497	3	019	1	0	3	0	1	009	4
443		13	max	449.768	2	279	15	0	15	0	1	0	15	002	15
444			min	-569.385	3	-1.19	4	019	1	0	3	0	1	009	4
445		14	max	449.598	2	461	15	0	15	0	1	0	15	002	15
446			min	-569.512	3	-1.962	4	019	1	0	3	0	1	008	4
447		15	max	449.427	2	642	15	0	15	0	1	0	15	002	15
448			min	-569.64	3	-2.735	4	019	1	0	3	0	1	007	4
449		16	max	449.257	2	824	15	0	15	0	1	0	15	001	15
450			min	-569.768	3	-3.507	4	019	1	0	3	0	1	006	4
451		17	max	449.087	2	-1.005	15	0	15	0	1	0	15	001	15
452			min	-569.896	3	-4.28	4	019	1	0	3	0	1	004	4
453		18	max	448.916	2	-1.187	15	0	15	0	1	0	15	0	15
454			min	-570.023	3	-5.052	4	019	1	0	3	0	1	002	4
455		19	max	448.746	2	-1.369	15	0	15	0	1	0	15	0	1
456			min	-570.151	3	-5.824	4	019	1	0	3	0	1	0	1
457	M12	1	max	1240.804	1	0	1	5.326	1	0	1	0	10	0	1
458			min	-475.96	3	0	1	.176	15	0	1	0	1	0	1
459		2	max	1240.974	1	0	1	5.326	1	0	1	0	1	0	1
460			min	-475.832	3	0	1	.176	15	0	1	0	15	0	1
461		3	max	1241.144	1	0	1	5.326	1	0	1	.001	1	0	1
462			min	-475.704	3	0	1	.176	15	0	1	0	15	0	1
463		4	max	1241.315	1	0	1	5.326	1	0	1	.002	1	0	1
464			min	-475.576	3	0	1	.176	15	0	1	0	15	0	1
465		5	max	1241.485	1	0	1	5.326	1	0	1	.002	1	0	1
466			min	-475.449	3	0	1	.176	15	0	1	0	15	0	1
467		6	max	1241.655	1	0	1	5.326	1	0	1	.003	1	0	1
468			min	-475.321	3	0	1	.176	15	0	1	0	15	0	1
469		7	max	1241.826	1	0	1	5.326	1	0	1	.004	1	0	1
470			min	-475.193	3	0	1	.176	15	0	1	0	15	0	1
471		8	max	1241.996	1	0	1	5.326	1	0	1	.004	1	0	1
472			min	-475.065	3	0	1	.176	15	0	1	0	15	0	1
473		9	max	1242.166	1	0	1	5.326	1	0	1	.005	1	0	1
474				-474.938	3	0	1	.176	15	0	1	0	15	0	1
475		10		1242.337	1	0	1	5.326	1	0	1	.005	1	0	1
476				-474.81	3	0	1	.176	15	0	1	0	15	0	1
477		11		1242.507	1	0	1	5.326	1	0	1	.006	1	0	1
478			min		3	0	1	.176	15	0	1	0	15	0	1
479		12		1242.677	1	0	1	5.326	1	0	1	.007	1	0	1
480			min		3	0	1	.176	15	0	1	0	15	0	1
481		13		1242.848	1	0	1	5.326	1	0	1	.007	1	0	1
482				-474.427	3	0	1	.176	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

483	483	Member	Sec 14	may	Axial[lb]	LC 1		LC 1	z Shear[lb] 5.326	LC 1	Torque[k-ft]	LC 1	y-y Mome	LC 1	z-z Mome	LC 1
AB6			14				0	_		_					_	
## ## ## ## ## ## ## #			15												_	_
187			13													_
ABB			16								_				•	
188			10													
1990			17										_		_	
18			17												_	_
1992			10													
198			10													
A94			10								_	_	_			
A95			19					_		_	_					
A96		N 4 4	4				_									
498		IVIT														
A98											_					
A99																
500										•						
501			3											_		
502											_					
503 5 max 340,166 3 593,067 2 -1,801 15 0 3 015 1 -0,004 15 504 min -202,993 2 -624,412 3 -54,464 1 0 1 0 15 .133 3 506 min -202,622 2 -625,455 3 -54,464 1 0 1 -0.14 1 -459 2 507 7 max 340,722 3 590.3 2 -1801 15 0 3 -001 15 .464 3 508 min -202,825 2 -626,488 3 -54,464 1 0 1 -0.04 1 -777 2 509 8 max 341 3 588,916 2 -1.801 15 0 3 -0.02 15 .795 3 510 min -10.1881 2 <			4													
505			_							•	_	_				
506			5								_					
506										_						
507 7 max 340,722 3 590.3 2 -1,801 15 0 3 -0.01 15 464 3 508 mini -202,251 2 -626,488 3 -54,464 1 0 1 -042 1 -77 2 509 8 max 341 3 588,916 2 -1,801 15 0 3 -002 15 .795 3 510 min -201,881 2 -627,525 3 -54,464 1 0 1 -0.71 1 -1,082 2 511 9 max 348,411 3 546,99 2 -2,76 15 0 9 .044 1 -926 3 512 min -157,35 2 .002 15 -83,48 1 0 3 .01 1 -1,265 2 5 15 1 9 -001 15			6													
508 min -202_251 2 -26.6488 3 -54.464 1 0 1 042 1 77 2 509 8 max 341 3 588.916 2 -1.801 15 0 3 002 15 .795 3 510 min -201.881 2 -627.525 3 -54.464 1 0 1 -071 1 -1.082 2 511 9 max 348.411 3 54.699 2 -2.76 15 0 9 .044 1 .926 3 513 10 max 348.689 3 53.315 2 -2.76 15 0 9 0 0 10 904 3 514 min -156.98 2 .002 15 -83.48 1 0 3 .0 1 -1.265 2 515 11 max 348.264 <td></td> <td>_</td> <td>•</td> <td></td> <td></td> <td></td> <td></td>											_	•				
509			7	max												
STO Min -201.881 2 -627.525 3 -54.464 1 0 1 071 1 -1.082 2				min							_					
511 9 max 348.411 3 54.699 2 -2.76 15 0 9 .044 1 .926 3 512 min -157.721 2 .42 15 -83.48 1 0 3 .001 15 -1.237 2 513 10 max 348.689 3 53.315 2 -2.76 15 0 9 0 10 .904 3 514 min -157.35 2 .002 15 -83.48 1 0 3 0 1 -1.265 2 515 11 max 348.967 3 51.931 2 -2.76 15 0 9 001 15 .883 3 516 min -156.98 2 -1.727 4 -83.48 1 0 3 .001 15 .833 3 517 12 max 356.242 3 422.018<			8	max						15						
512 min -157.721 2 42 15 -83.48 1 0 3 .001 15 -1.237 2 513 10 max 348.689 3 53.315 2 -2.76 15 0 9 0 10 .904 3 515 11 max 348.967 3 51.931 2 -2.76 15 0 9 001 15 .883 3 516 min -156.98 2 -1.727 4 -83.48 1 0 3 045 1 -1.293 2 517 12 max 356.264 3 423.056 3 -1.76 15 0 2 .07 1 .772 3 519 13 max 356.542 3 422.018 3 -1.76 15 0 2 .042 1 .549 3 520 min -112.399 2 <td></td> <td></td> <td></td> <td>min</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>•</td> <td></td> <td>_</td> <td></td> <td></td>				min							_	•		_		
513	511		9	max	348.411					15	0	9	.044	1	.926	3
514 min -157.35 2 .002 15 -83.48 1 0 3 0 1 -1.265 2 515 11 max 348.967 3 51.931 2 -2.76 15 0 9 001 15 .883 3 516 min -156.98 2 -1.727 4 -83.48 1 0 3 045 1 -1.293 2 517 12 max 356.264 3 423.056 3 -1.76 15 0 2 .07 1 .772 3 518 min -112.77 2 -703.421 2 -53.382 1 0 3 .002 15 -1.147 2 519 13 max 356.542 3 422.018 3 -1.76 15 0 2 .042 1 .549 3 520 min -112.028 2	512			min	-157.721	2					0	3	.001	15		2
515 11 max 348.967 3 51.931 2 -2.76 15 0 9 001 15 .883 3 516 min -156.98 2 -1.727 4 -83.48 1 0 3 045 1 -1.293 2 517 12 max 356.264 3 423.056 3 -1.76 15 0 2 .07 1 .772 3 518 min -112.77 2 -703.421 2 -53.382 1 0 3 .002 15 -1.147 2 519 13 max 356.82 3 422.018 3 -1.76 15 0 2 .042 1 .549 3 520 min -112.039 2 -704.805 2 -53.382 1 0 3 .001 15 .403 2 521 14 max 357.098			10	max						15	0					_
516 min -156.98 2 -1.727 4 -83.48 1 0 3 045 1 -1.293 2 517 12 max 356.264 3 423.056 3 -1.76 15 0 2 .07 1 .772 3 518 min -112.77 2 -703.421 2 -53.382 1 0 3 .002 15 -1.147 2 519 13 max 356.542 3 422.018 3 -1.76 15 0 2 .042 1 .549 3 520 min -112.399 2 -704.805 2 -53.382 1 0 3 .001 15 775 2 521 14 max 356.82 3 420.98 3 -1.76 15 0 2 .014 1 .326 3 522 min -112.082 2				min						_	0	3		_		$\overline{}$
517 12 max 356.264 3 423.056 3 -1.76 15 0 2 .07 1 .772 3 518 min -112.77 2 -703.421 2 -53.382 1 0 3 .002 15 -1.147 2 519 13 max 356.542 3 422.018 3 -1.76 15 0 2 .042 1 .549 3 520 min -112.399 2 -704.805 2 -53.382 1 0 3 .001 15 -775 2 521 14 max 356.82 3 420.98 3 -1.76 15 0 2 .014 1 .326 3 522 min -111.2028 2 -706.188 2 -53.382 1 0 3 0 15 .403 2 523 15 min -111.658			11	max						15	0			15		
518 min -112.77 2 -703.421 2 -53.382 1 0 3 .002 15 -1.147 2 519 13 max 356.542 3 422.018 3 -1.76 15 0 2 .042 1 .549 3 520 min -112.399 2 -704.805 2 -53.382 1 0 3 .001 15 .775 2 521 14 max 356.82 3 420.98 3 -1.76 15 0 2 .014 1 .326 3 522 min -112.028 2 -706.188 2 -53.382 1 0 3 0 15 .403 2 523 15 max 357.098 3 419.943 3 -1.76 15 0 2 0 15 .104 3 524 min -111.658 2 <t< td=""><td>516</td><td></td><td></td><td>min</td><td></td><td>2</td><td></td><td>4</td><td>-83.48</td><td>1</td><td>0</td><td>3</td><td>045</td><td>1</td><td>-1.293</td><td>2</td></t<>	516			min		2		4	-83.48	1	0	3	045	1	-1.293	2
519 13 max 356.542 3 422.018 3 -1.76 15 0 2 .042 1 .549 3 520 min -112.399 2 -704.805 2 -53.382 1 0 3 .001 15 775 2 521 14 max 356.82 3 420.98 3 -1.76 15 0 2 .014 1 .326 3 522 min -112.028 2 -706.188 2 -53.382 1 0 3 0 15 -403 2 523 15 max 357.098 3 419.943 3 -1.76 15 0 2 0 15 .403 2 524 min -111.658 2 -707.572 2 -53.382 1 0 3 014 1 056 1 525 16 max 357.655 <	517		12	max	356.264	3	423.056	3	-1.76	15	0	2	.07	1	.772	3
520 min -112.399 2 -704.805 2 -53.382 1 0 3 .001 15 775 2 521 14 max 356.82 3 420.98 3 -1.76 15 0 2 .014 1 .326 3 522 min -112.028 2 -706.188 2 -53.382 1 0 3 0 15 -403 2 523 15 max 357.098 3 419.943 3 -1.76 15 0 2 0 15 .104 3 524 min -111.658 2 -707.572 2 -53.382 1 0 3 -014 1 056 1 525 16 max 357.377 3 418.905 3 -1.76 15 0 2 001 15 .343 2 526 17 10 2 0	518			min	-112.77	2	-703.421	2	-53.382	1	0	3	.002	15	-1.147	2
521 14 max 356.82 3 420.98 3 -1.76 15 0 2 .014 1 .326 3 522 min -112.028 2 -706.188 2 -53.382 1 0 3 0 15 -403 2 523 15 max 357.098 3 419.943 3 -1.76 15 0 2 0 15 -403 2 524 min -111.658 2 -707.572 2 -53.382 1 0 3 014 1 056 1 525 16 max 357.377 3 418.905 3 -1.76 15 0 2 001 15 .343 2 526 min -111.287 2 -708.955 2 -53.382 1 0 3 042 1 -117 3 528 min -110.916 2 -710.339 2 -5	519		13	max	356.542	3	422.018	3		15	0	2	.042	1	.549	3
522 min -112.028 2 -706.188 2 -53.382 1 0 3 0 15 403 2 523 15 max 357.098 3 419.943 3 -1.76 15 0 2 0 15 .104 3 524 min -111.658 2 -707.572 2 -53.382 1 0 3 014 1 056 1 525 16 max 357.377 3 418.905 3 -1.76 15 0 2 001 15 .343 2 526 min -111.287 2 -708.955 2 -53.382 1 0 3 042 1 117 3 527 17 max 357.655 3 417.867 3 -1.76 15 0 2 002 15 .718 2 528 min -110.916 2	520			min	-112.399	2	-704.805	2	-53.382	1	0	3	.001	15	775	2
523 15 max 357.098 3 419.943 3 -1.76 15 0 2 0 15 .104 3 524 min -111.658 2 -707.572 2 -53.382 1 0 3 014 1 056 1 525 16 max 357.377 3 418.905 3 -1.76 15 0 2 001 15 .343 2 526 min -111.287 2 -708.955 2 -53.382 1 0 3 042 1 117 3 527 17 max 357.655 3 417.867 3 -1.76 15 0 2 002 15 .718 2 528 min -110.916 2 -710.339 2 -53.382 1 0 3 002 15 .718 2 529 18 max -3.763	521		14	max	356.82	3	420.98	3	-1.76	15	0	2	.014	1	.326	3
524 min -111.658 2 -707.572 2 -53.382 1 0 3 014 1 056 1 525 16 max 357.377 3 418.905 3 -1.76 15 0 2 001 15 .343 2 526 min -111.287 2 -708.955 2 -53.382 1 0 3 042 1 117 3 527 17 max 357.655 3 417.867 3 -1.76 15 0 2 002 15 .718 2 528 min -110.916 2 -710.339 2 -53.382 1 0 3 07 1 338 3 529 18 max -3.763 15 707.119 2 -1.935 15 0 3 003 15 .362 2 530 min -111.968 1<	522			min	-112.028	2	-706.188	2	-53.382	1	0	3	0	15	403	2
525 16 max 357.377 3 418.905 3 -1.76 15 0 2 001 15 .343 2 526 min -111.287 2 -708.955 2 -53.382 1 0 3 042 1 117 3 527 17 max 357.655 3 417.867 3 -1.76 15 0 2 002 15 .718 2 528 min -110.916 2 -710.339 2 -53.382 1 0 3 07 1 338 3 529 18 max -3.763 15 707.119 2 -1.935 15 0 3 003 15 .362 2 530 min -111.968 1 -341.013 3 -58.507 1 0 2 101 1 167 3 531 19 max -3.652 </td <td>523</td> <td></td> <td>15</td> <td>max</td> <td>357.098</td> <td>3</td> <td>419.943</td> <td>3</td> <td>-1.76</td> <td>15</td> <td>0</td> <td>2</td> <td>0</td> <td>15</td> <td>.104</td> <td>3</td>	523		15	max	357.098	3	419.943	3	-1.76	15	0	2	0	15	.104	3
526 min -111.287 2 -708.955 2 -53.382 1 0 3 042 1 117 3 527 17 max 357.655 3 417.867 3 -1.76 15 0 2 002 15 .718 2 528 min -110.916 2 -710.339 2 -53.382 1 0 3 07 1 -338 3 529 18 max -3.763 15 707.119 2 -1.935 15 0 3 003 15 .362 2 530 min -111.968 1 -341.013 3 -58.507 1 0 2 101 1 167 3 531 19 max -3.652 15 705.735 2 -1.935 15 0 3 004 15 .013 3 532 min -111.597 1<	524			min	-111.658	2	-707.572	2	-53.382	1	0	3	014	1	056	1
526 min -111.287 2 -708.955 2 -53.382 1 0 3 042 1 117 3 527 17 max 357.655 3 417.867 3 -1.76 15 0 2 002 15 .718 2 528 min -110.916 2 -710.339 2 -53.382 1 0 3 07 1 -338 3 529 18 max -3.763 15 707.119 2 -1.935 15 0 3 003 15 .362 2 530 min -111.968 1 -341.013 3 -58.507 1 0 2 101 1 167 3 531 19 max -3.652 15 705.735 2 -1.935 15 0 3 004 15 .013 3 532 min -111.597 1<	525		16			3		3	-1.76	15	0	2	001	15		2
527 17 max 357.655 3 417.867 3 -1.76 15 0 2 002 15 .718 2 528 min -110.916 2 -710.339 2 -53.382 1 0 3 007 1 338 3 529 18 max -3.763 15 707.119 2 -1.935 15 0 3 003 15 .362 2 530 min -111.968 1 -341.013 3 -58.507 1 0 2 101 1 167 3 531 19 max -3.652 15 705.735 2 -1.935 15 0 3 004 15 .013 3 532 min -111.597 1 -342.051 3 -58.507 1 0 2 132 1 012 1 533 M5 1 max	526					2		2		1	0	3	042	1	117	3
528 min -110.916 2 -710.339 2 -53.382 1 0 3 07 1 338 3 529 18 max -3.763 15 707.119 2 -1.935 15 0 3 003 15 .362 2 530 min -111.968 1 -341.013 3 -58.507 1 0 2 101 1 167 3 531 19 max -3.652 15 705.735 2 -1.935 15 0 3 004 15 .013 3 532 min -111.597 1 -342.051 3 -58.507 1 0 2 132 1 012 1 533 M5 1 max 245.312 1 2754.259 3 0 1 0 1 0 1 0 1 0 1 0 1 0 <td>527</td> <td></td> <td>17</td> <td>max</td> <td>357.655</td> <td>3</td> <td></td> <td>3</td> <td>-1.76</td> <td>15</td> <td>0</td> <td>2</td> <td>002</td> <td>15</td> <td>.718</td> <td>2</td>	527		17	max	357.655	3		3	-1.76	15	0	2	002	15	.718	2
530 min -111.968 1 -341.013 3 -58.507 1 0 2 101 1 167 3 531 19 max -3.652 15 705.735 2 -1.935 15 0 3 004 15 .013 3 532 min -111.597 1 -342.051 3 -58.507 1 0 2 132 1 012 1 533 M5 1 max 245.312 1 2754.259 3 0 1 0 1 0 1 .033 2 534 min 6.139 12 -1714.214 1 0 1 0 1 0 1 0 15 535 2 max 245.682 1 2753.221 3 0 1 0 1 0 1 .934 1 536 min 6.324 12 <t< td=""><td>528</td><td></td><td></td><td></td><td></td><td>2</td><td>-710.339</td><td>2</td><td>-53.382</td><td>1</td><td>0</td><td>3</td><td>07</td><td>1</td><td>338</td><td>3</td></t<>	528					2	-710.339	2	-53.382	1	0	3	07	1	338	3
531 19 max -3.652 15 705.735 2 -1.935 15 0 3 004 15 .013 3 532 min -111.597 1 -342.051 3 -58.507 1 0 2 132 1 012 1 533 M5 1 max 245.312 1 2754.259 3 0 1 0 1 0 1 0.033 2 534 min 6.139 12 -1714.214 1 0 1 0 1 0 1 0 1 0 1 0 15 535 2 max 245.682 1 2753.221 3 0 1 0 1 0 1 0 1 .934 1 536 min 6.324 12 -1715.598 1 0 1 0 1 0 1 0 1 .1453 3 537 3 max 1074.845 3 1730.949 2 <td>529</td> <td></td> <td>18</td> <td>max</td> <td>-3.763</td> <td>15</td> <td>707.119</td> <td>2</td> <td>-1.935</td> <td>15</td> <td>0</td> <td>3</td> <td>003</td> <td>15</td> <td>.362</td> <td>2</td>	529		18	max	-3.763	15	707.119	2	-1.935	15	0	3	003	15	.362	2
531 19 max -3.652 15 705.735 2 -1.935 15 0 3 004 15 .013 3 532 min -111.597 1 -342.051 3 -58.507 1 0 2 132 1 012 1 533 M5 1 max 245.312 1 2754.259 3 0 1 0 1 0 1 0.033 2 534 min 6.139 12 -1714.214 1 0 1 0 1 0 1 0 1 0 1 0 15 535 2 max 245.682 1 2753.221 3 0 1 0 1 0 1 0 1 .934 1 536 min 6.324 12 -1715.598 1 0 1 0 1 0 1 0 1 .1453 3 537 3 max 1074.845 3 1730.949 2 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>3</td> <td></td> <td>1</td> <td>0</td> <td>2</td> <td></td> <td>1</td> <td></td> <td>3</td>						1		3		1	0	2		1		3
532 min -111.597 1 -342.051 3 -58.507 1 0 2 132 1 012 1 533 M5 1 max 245.312 1 2754.259 3 0 1 0 1 0 1 0 1 0.33 2 534 min 6.139 12 -1714.214 1 0 1 0 1 0 1 0 1 0 1 0 1 0 15 15 0 1			19			15		2		15	0	3		15	.013	3
533 M5 1 max 245.312 1 2754.259 3 0 1 0 1 0 1 0.033 2 534 min 6.139 12 -1714.214 1 0 1 0 1 0 1 0 15 535 2 max 245.682 1 2753.221 3 0 1 0 1 0 1 .934 1 536 min 6.324 12 -1715.598 1 0 1 0 1 0 1 -1.453 3 537 3 max 1074.845 3 1730.949 2 0 1 0 1 0 1 1.798 1 538 min -685.168 2 -1922.796 3 0 1 0 1 0 1 -2.849 3																
534 min 6.139 12 -1714.214 1 0 1 0 1 0 1 0 1 0 15 535 2 max 245.682 1 2753.221 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 -1.453 3 3 537 3 max 1074.845 3 1730.949 2 0 1 0 1 0 1 1.798 1 538 min -685.168 2 -1922.796 3 0 1 0 1 0 1 -2.849 3		M5	1			1				1		1		1		2
535 2 max 245.682 1 2753.221 3 0 1 0 1 0 1 .934 1 536 min 6.324 12 -1715.598 1 0 1 0 1 0 1 -1.453 3 537 3 max 1074.845 3 1730.949 2 0 1 0 1 0 1 1.798 1 538 min -685.168 2 -1922.796 3 0 1 0 1 0 1 -2.849 3										1		1		1	_	
536 min 6.324 12 -1715.598 1 0 1 0 1 0 1 -1.453 3 537 3 max 1074.845 3 1730.949 2 0 1 0 1 0 1 1.798 1 538 min -685.168 2 -1922.796 3 0 1 0 1 0 1 -2.849 3			2							1				1		
537 3 max 1074.845 3 1730.949 2 0 1 0 1 0.798 1 538 min -685.168 2 -1922.796 3 0 1 0 1 0 1 -2.849 3						12								_		
538 min -685.168 2 -1922.796 3 0 1 0 1 -2.849 3			3						-	1	_	1	_			
			4							1		1		_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC :	z-z Mome	LC
540			min	-684.797	2	-1923.833	3	0	1	0	1	0	1	-1.834	3
541		5	max	1075.401	3	1728.182	2	0	1	0	1	0	1	.025	9
542			min	-684.427	2	-1924.871	3	0	1	0	1	0	1	819	3
543		6	max	1075.679	3	1726.799	2	0	1	0	1	0	1	.197	3
544			min	-684.056	2	-1925.909	3	0	1	0	1	0	1	991	2
545		7	max	1075.957	3	1725.415	2	0	1	0	1	0	1	1.214	3
546			min	-683.685	2	-1926.946	3	0	1	0	1	0	1	-1.902	2
547		8	max	1076.235	3	1724.031	2	0	1	0	1	0	1	2.231	3
548			min	-683.314	2	-1927.984	3	0	1	0	1	0	1	-2.812	2
549		9	max	1085.133	3	184.318	2	0	1	0	1	0	1	2.565	3
550			min	-589.49	2	.417	15	0	1	0	1	0	1	-3.205	2
551		10	max	1085.411	3	182.934	2	0	1	0	1	0	1	2.487	3
552				-589.119	2	0	15	0	1	0	1	0	1	-3.302	2
553		11	max	1085.689	3	181.55	2	0	1	0	1	0	1	2.408	3
554			min	-588.749	2	-1.665	4	0	1	0	1	0	1	-3.398	2
555		12		1094.813	3	1275.592	3	0	1	0	1	0	1	2.113	3
556				-495.025	2	-2095.706	2	0	1	0	1	0	1	-3.044	2
557		13		1095.091	3	1274.554	3	0	1	0	1	0	1	1.44	3
558				-494.654	2	-2097.089	2	0	1	0	1	0	1	-1.937	2
559		14		1095.369	3	1273.516	3	0	1	0	1	0	1	.768	3
560				-494.283	2	-2098.473	2	0	1	0	1	0	1	83	2
561		15		1095.647	3	1272.479	3	0	1	0	1	0	1	.277	2
562				-493.913	2	-2099.856	2	0	1	0	1	0	1	002	13
563		16		1095.925	3	1271.441	3	0	1	0	1	0	1	1.386	2
564			min	-493.542	2	-2101.24	2	0	1	0	1	0	1	575	3
565		17		1096.203	3	1270.403	3	0	1	0	1	0	1	2.495	2
566			min	-493.171	2	-2102.624	2	0	1	0	1	0	1	-1.245	3
567		18	max	-6.803	12	2393.915	2	0	1	0	1	0	1	1.285	2
568				-245.198	1	-1183.266	3	0	1	0	1	0	1	651	3
569		19	max	-6.618	12	2392.532	2	0	1	0	1	0	1	.024	1
570				-244.827	1	-1184.304	3	0	1	0	1	0	1	026	3
571	M9	1	max		1	826.679	3	55.129	1	0	3	004	15	0	15
572			min	3.647	15	-500.722	1	1.827	15	0	1	131	1	016	2
573		2	max	111.726	1	825.641	3	55.129	1	0	3	003	15	.25	1
574			min	3.759	15	-502.106	1	1.827	15	0	1	102	1	436	3
575		3	max	339.61	3	595.834	2	54.464	1	0	1	002	15	.502	1
576			min	-203.734	2	-622.337	3	1.801	15	0	3	072	1	854	3
577		4	max		3	594.451	2	54.464	1	0	1	001	15	.193	1
578				-203.364	2	-623.375	3	1.801	15	0	3	044	1	526	3
579		5	max		3	593.067	2	54.464	1	0	1	0	15	004	15
580				-202.993	2	-624.412		1.801		0	3	015	1	196	3
581		6		340.444	3	591.683	2	54.464	1	0	1	.014	1	.133	3
582				-202.622	2	-625.45	3	1.801	15	0	3	0	15	459	2
583		7		340.722	3	590.3	2	54.464	1	0	1	.042	1	.464	3
584			min	-202.251	2	-626.488	3	1.801	15	0	3	.001	15	77	2
585		8	max	341	3	588.916	2	54.464	1	0	1	.071	1	.795	3
586				-201.881	2	-627.525	3	1.801	15	0	3	.002	15	-1.082	2
587		9		348.411	3	54.699	2	83.48	1	0	3	001	15	.926	3
588		ľ		-157.721	2	.42	15	2.76	15	0	9	044	1	-1.237	2
589		10	max		3	53.315	2	83.48	1	0	3	0	1	.904	3
590		10		-157.35	2	.002	15	2.76	15	0	9	0	10	-1.265	2
591		11		348.967	3	51.931	2	83.48	1	0	3	.045	1	.883	3
592				-156.98	2	-1.727	4	2.76	15	0	9	.001	15	-1.293	2
593		12		356.264	3	423.056	3	53.382	1	0	3	002	15	<u>-1.293 </u>	3
594		14	min	-112.77	2	-703.421	2	1.76	15	0	2	002	1	-1.147	2
595		13		356.542	3	422.018	3	53.382	1	0	3	001	15	.549	3
596		10		-112.399	2	-704.805	2	1.76	15	0	2	042	1	775	2
330			1111111	-112.333		-704.003		1.70	IU	U		042		113	

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	356.82	3	420.98	3	53.382	1	0	3	0	15	.326	3
598			min	-112.028	2	-706.188	2	1.76	15	0	2	014	1	403	2
599		15	max	357.098	3	419.943	3	53.382	1	0	3	.014	1	.104	3
600			min	-111.658	2	-707.572	2	1.76	15	0	2	0	15	056	1
601		16	max	357.377	3	418.905	3	53.382	1	0	3	.042	1	.343	2
602			min	-111.287	2	-708.955	2	1.76	15	0	2	.001	15	117	3
603		17	max	357.655	3	417.867	3	53.382	1	0	3	.07	1	.718	2
604			min	-110.916	2	-710.339	2	1.76	15	0	2	.002	15	338	3
605		18	max	-3.763	15	707.119	2	58.507	1	0	2	.101	1	.362	2
606			min	-111.968	1	-341.013	3	1.935	15	0	3	.003	15	167	3
607		19	max	-3.652	15	705.735	2	58.507	1	0	2	.132	1	.013	3
608			min	-111.597	1	-342.051	3	1.935	15	0	3	.004	15	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rota	te [r	LC	(n) L/y Ratio	LC		LC
1	M13	1	max	0	1	.137	2	.006	3 1.098		2	NC	_1_	NC	1
2			min	0	15	036	3	003	2 -2.77		3	NC	1_	NC	1
3		2	max	0	1	.183	3	.015	1 1.23		2	NC	4	NC	1
4			min	0	15	002	9	001	10 -2.75		3	902	3	NC	1
5		3	max	0	1	.361	3	.036	1 1.362		2	NC	5	NC	2
6			min	0	15	076	1	0	10 -2.73		3	498.458	3	5577.109	1
7		4	max	0	1	.469	3	.053	1 1.494	1e-2	2	NC	5	NC	2
8			min	0	15	122	1	0	10 -2.71	le-3	3	392.033	3	3742.239	1
9		5	max	0	1	.494	3	.062	1 1.626		2	NC	5	NC	3
10			min	0	15	119	1	0	10 -2.68	9e-3	3	373.654	3	3223.021	1
11		6	max	0	1	.437	3	.059	1 1.758	3e-2	2	NC	5	NC	2
12			min	0	15	067	1	0	10 -2.66	8e-3	3	418.066	3	3380.35	1
13		7	max	0	1	.317	3	.045	1 1.89		2	NC	4	NC	2
14			min	0	15	004	9	002	10 -2.64	7e-3	3	560.901	3	4397.447	1
15		8	max	0	1	.164	3	.025	1 2.022	2e-2	2	NC	1	NC	2
16			min	0	15	.003	15	005	10 -2.62	6e-3	3	990.625	3	8023.465	1
17		9	max	0	1	.248	2	.019	3 2.154	1e-2	2	NC	4	NC	1
18			min	0	15	.005	15	008	2 -2.60	4e-3	3	1783.149	2	NC	1
19		10	max	0	1	.288	2	.019	3 2.286	Se-2	2	NC	3	NC	1
20			min	0	1	038	3	012	2 -2.58	3e-3	3	1308.866	2	NC	1
21		11	max	0	15	.248	2	.019	3 2.154	1e-2	2	NC	4	NC	1
22			min	0	1	.005	15	008	2 -2.60	4e-3	3	1783.149	2	NC	1
23		12	max	0	15	.164	3	.025	1 2.022	2e-2	2	NC	1	NC	2
24			min	0	1	.003	15	005	10 -2.62	6e-3	3	990.625	3	8023.465	1
25		13	max	0	15	.317	3	.045	1 1.89	e-2	2	NC	4	NC	2
26			min	0	1	004	9	002	10 -2.64	7e-3	3	560.901	3	4397.447	1
27		14	max	0	15	.437	3	.059	1 1.758	3e-2	2	NC	5	NC	2
28			min	0	1	067	1	0	10 -2.66	8e-3	3	418.066	3	3380.35	1
29		15	max	0	15	.494	3	.062	1 1.626	Se-2	2	NC	5	NC	3
30			min	0	1	119	1	0	10 -2.68	9e-3	3	373.654	3	3223.021	1
31		16	max	0	15	.469	3	.053	1 1.494	1e-2	2	NC	5	NC	2
32			min	0	1	122	1	0	10 -2.71	le-3	3	392.033	3	3742.239	1
33		17	max	0	15	.361	3	.036	1 1.362	2e-2	2	NC	5	NC	2
34			min	0	1	076	1	0	10 -2.73	1e-3	3	498.458	3	5577.109	1
35		18	max	0	15	.183	3	.015	1 1.23	e-2	2	NC	4	NC	1
36			min	0	1	002	9	001	10 -2.75	2e-3	3	902	3	NC	1
37		19	max	0	15	.137	2	.006	3 1.098	Be-2	2	NC	1	NC	1
38			min	0	1	036	3	003	2 -2.77		3	NC	1	NC	1
39	M14	1	max	0	1	.277	3	.005	3 6.286		2	NC	1	NC	1
40			min	0	15	413	2	003	2 -4.92		3	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					LC
41		2	max	0	1	.523	3	.01	1	7.41e-3	2	NC	5_	NC	1
42			min	0	15	648	2	001	10	-5.889e-3	3	806.884	3	NC	1
43		3	max	0	1	.734	3	.028	1	8.534e-3	2	NC	<u>5</u>	NC	2
44			min	0	15	856	2	0	10		3_	433.529	3	7157.612	
45		4	max	0	1	.888	3	.045	1	9.657e-3	2	NC	_5_	NC	2
46			min	0	15	-1.017	2	0	10		3	324.334	3	4464.976	
47		5	max	0	1	.972	3	.054	1	1.078e-2	2	NC	<u>15</u>	NC	2
48			min	0	15	-1.12	2	0	10		3	280.15	2	3693.067	1
49		6	max	0	1	.986	3	.053	1	1.191e-2	2	NC	15	NC	2
50		_	min	0	15	<u>-1.165</u>	2	0	10	-9.73e-3	3	263.468	2	3773.184	
51		7	max	0	1	.941	3	.042	1	1.303e-2	2	NC	<u>15</u>	NC	2
52			min	0	15	<u>-1.158</u>	2	002	10		3	265.769	2	4814.062	1
53		8	max	0	1	86	3	.024	1	1.415e-2	2	NC	<u>15</u>	NC	2
54			min	0	15	<u>-1.117</u>	2	004			3	281.399	2_	8620.405	
55		9_	max	0	1	.777	3	.017	3	1.528e-2	2	NC	_5_	NC NC	1
<u>56</u>		40	min	0	15	<u>-1.066</u>	2	007	2	-1.261e-2	3	303.363	2	NC	1
57		10	max	0	1	.737	3	.017	3	1.64e-2	2	NC 040,000	5_	NC NC	1
58		4.4	min	0	1	<u>-1.04</u>	2	011	2	-1.357e-2	3	316.083	2	NC NC	1
59		11	max	0	15	.777	3	.017	3	1.528e-2	2	NC	_5_	NC NC	1
60		40	min	0	1	<u>-1.066</u>	2	007	2	-1.261e-2	3	303.363	2	NC NC	1
61		12	max	0	15	.86	3	.024	1	1.415e-2	2	NC 204 200	15	NC	2
62		40	min	0	1	-1.117	2	004	10		3	281.399	2	8620.405	
63		13	max	0	15	.941	3	.042	1	1.303e-2	2	NC OCE 700	<u>15</u>	NC 4044.000	2
64		4.4	min	0	1	<u>-1.158</u>	2	002		-1.069e-2	3	265.769	2	4814.062	1
65		14	max	0	15	.986	3	.053	1	1.191e-2	2	NC OCO 4CO	<u>15</u>	NC	2
66		4.5	min	0	1	<u>-1.165</u>	2	0 05.4	10	-9.73e-3	3	263.468	2	3773.184	
67		15	max	0	15	.972	3	.054	1	1.078e-2	2	NC 200.45	15	NC acco acc	2
68		4.0	min	0	1	-1.12	2	0	10		3	280.15	2	3693.067	1
69		16	max	0	15	.888	3	.045	1	9.657e-3	2	NC 224 224	5	NC	2
70 71		17	min	0	15	<u>-1.017</u> .734	3	<u> </u>	10	-7.809e-3	2	324.334 NC	<u>3</u> 5	4464.976 NC	2
72		17	max	0	1	856	2	0	10	8.534e-3 -6.849e-3	3	433.529	3	7157.612	1
73		18	min	0	15	.523	3	.01	1			NC	<u> </u>	NC	1
74		10	max	0	1	648	2	001	10	7.41e-3 -5.889e-3	3	806.884	3	NC NC	1
75		19		0	15	040 .277	3	.005	3	6.286e-3	2	NC	<u>ა</u> 1	NC NC	1
76		19	max	0	1	413	2	003	2	-4.928e-3	3	NC	1	NC NC	1
77	M15	1	max	0	15	.283	3	.005	3	4.206e-3	3	NC	1	NC	1
78	IVITO		min	0	1	413	2	003	2	-6.492e-3	2	NC	1	NC	1
79		2	max	0	15	.454	3	.01	1	5.021e-3	3	NC	5	NC	1
80			min	0	1	706	2	001	10	-7.654e-3	2	674.343	2	NC	1
81		3	max	0	15	.606	3	.028	1	5.837e-3		NC	5	NC	2
82			min	0	1	961	2	0			2	360.915		7130.431	1
83		4	max	0	15	.724	3	.045	1	6.653e-3	3	NC	5	NC	2
84			min	0	1	-1.151	2	0		-9.978e-3	2	268.234		4449.652	
85		5	max	0	15	.8	3	.054	1	7.469e-3	3	NC	15	NC	2
86			min	0	1	-1.261	2	.001		-1.114e-2	2	233.383	2	3679.673	
87		6	max	0	15	.835	3	.053	1	8.284e-3	3	NC	15	NC	2
88			min	0	1	-1.291	2	0		-1.23e-2	2	225.432		3756.585	
89		7	max	0	15	.833	3	.042	1	9.1e-3	3	NC	15	NC	2
90			min	0	1	-1.253	2	002		-1.346e-2	2	235.755	2	4783.591	1
91		8	max	0	15	.806	3	.024	1	9.916e-3	3	NC	15	NC	2
92			min	0	1	-1.171	2	004		-1.463e-2	2	261.268	2	8514.895	
93		9	max	0	15	.771	3	.016	3	1.073e-2	3	NC	5	NC	1
94			min	0	1	-1.083	2	007	2	-1.579e-2	2	295.512	2	NC	1
95		10	max	0	1	.752	3	.015	3	1.155e-2	3	NC	5	NC	1
96			min	0	1	-1.04	2	01	2	-1.695e-2	2	315.769	2	NC	1
97		11	max	0	1	.771	3	.016	3	1.073e-2	3	NC	5	NC	1
											_		_		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

99		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					LC
100	98			min	0	15	-1.083	2	007	2 -1.579e-2	2	295.512	2	NC	1
101			12	_	0										
102				min	0	15									
103	101		13	max	0	-	.833	3	.042	1 9.1e-3	3		15		2
104	102			min	0	15	-1.253	2	002	10 -1.346e-2	2	235.755	2	4783.591	1
106	103		14	max	0	1	.835	3	.053	1 8.284e-3	3	NC	15	NC	2
106	104			min	0	15	-1.291	2	0	10 -1.23e-2	2	225.432	2	3756.585	1
106	105		15		0	1		3	.054		3	NC	15		2
107					0	15									
108			16		0										2
109			1.0			_									1
110			17												2
111			1 ''	_		-									
113			18												•
113			10			-									
1144			10												
115			19												
116		MAC	1												
117		IVITO			_										_
118													_		•
119			12								_				
120						-									•
121			3												
122															
123			4		0	15					3				2
124				min	0	_					1	519.653	2	3728.628	1
125	123		5	max	0	15	.051	3	.062	1 1.181e-2	3	NC	5	NC	3
126	124			min	0	1	268	2	.002	10 -1.294e-2	1	512.369	2	3201.428	1
127	125		6	max	0	15	.011	3	.06	1 1.287e-2	3	NC	5	NC	2
127	126			min	0	1	205	2	.001	10 -1.39e-2	1	611.589	2	3342.491	1
128			7		0	15					3		4		2
129													2		
130			8		0	15			.026		3		4		2
131															
132			9												
133			Ť					_							
134			10								•				
135			10												
136			11												
137 12 max 0 1 .078 1 .026 1 1.498e-2 3 NC 4 NC 2 138 min 0 15 127 3 003 10 -1.582e-2 1 2962.558 2 7673.956 1 139 13 max 0 1 .003 4 .046 1 1.393e-2 3 NC 4 NC 2 140 min 0 15 089 2 0 10 -1.486e-2 1 952.302 2 4310.327 1 141 min 0 1 .011 3 .06 1 1.287e-2 3 NC 5 NC 2 142 min 0 15 205 2 .001 10 -1.39e-2 1 611.589 2 3342.491 1 143 15 max 0 1 .051					_										_
138			10								•				
139 13 max 0 1 .003 4 .046 1 1.393e-2 3 NC 4 NC 2 140 min 0 15 089 2 0 10 -1.486e-2 1 952.302 2 4310.327 1 141 14 max 0 1 .011 3 .06 1 1.287e-2 3 NC 5 NC 2 142 min 0 15 205 2 .001 10 -1.39e-2 1 611.589 2 3342.491 1 143 15 max 0 1 .051 3 .062 1 1.181e-2 3 NC 5 NC 3 144 min 0 15 268 2 .002 10 -1.294e-2 1 512.369 2 3201.428 1 145 16 max 0 1 <td< td=""><td></td><td></td><td>12</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td></td<>			12			-					3				
140 min 0 15 089 2 0 10 -1.486e-2 1 952.302 2 4310.327 1 141 14 max 0 1 .011 3 .06 1 1.287e-2 3 NC 5 NC 2 142 min 0 15 205 2 .001 10 -1.39e-2 1 611.589 2 3342.491 1 143 15 max 0 1 .051 3 .062 1 1.181e-2 3 NC 5 NC 3 144 min 0 15 268 2 .002 10 -1.294e-2 1 512.369 2 3201.428 1 145 16 max 0 1 .058 3 .054 1 1.075e-2 3 NC 5 NC 2 146 min 0 15 262			10								2				
141 max 0 1 .011 3 .06 1 1.287e-2 3 NC 5 NC 2 142 min 0 15 205 2 .001 10 -1.39e-2 1 611.589 2 3342.491 1 143 15 max 0 1 .051 3 .062 1 1.181e-2 3 NC 5 NC 3 144 min 0 15 268 2 .002 10 -1.294e-2 1 512.369 2 3201.428 1 145 16 max 0 1 .058 3 .054 1 1.075e-2 3 NC 5 NC 2 146 min 0 15 262 2 .002 10 -1.198e-2 1 519.653 2 3728.628 1 147 17 max 0 1 .031			13			_									
142 min 0 15 205 2 .001 10 -1.39e-2 1 611.589 2 3342.491 1 143 15 max 0 1 .051 3 .062 1 1.181e-2 3 NC 5 NC 3 144 min 0 15 268 2 .002 10 -1.294e-2 1 512.369 2 3201.428 1 145 16 max 0 1 .058 3 .054 1 1.075e-2 3 NC 5 NC 2 146 min 0 15 262 2 .002 10 -1.198e-2 1 519.653 2 3728.628 1 147 17 max 0 1 .031 3 .036 1 9.698e-3 3 NC 5 NC 2 148 min 0 15 187			4.4								-				
143 15 max 0 1 .051 3 .062 1 1.181e-2 3 NC 5 NC 3 144 min 0 15 268 2 .002 10 -1.294e-2 1 512.369 2 3201.428 1 145 16 max 0 1 .058 3 .054 1 1.075e-2 3 NC 5 NC 2 146 min 0 15 262 2 .002 10 -1.198e-2 1 519.653 2 3728.628 1 147 17 max 0 1 .031 3 .036 1 9.698e-3 3 NC 5 NC 2 148 min 0 15 187 2 0 10 -1.102e-2 1 648.262 2 5572.379 1 149 18 max 0 1 <			14												
144 min 0 15 268 2 .002 10 -1.294e-2 1 512.369 2 3201.428 1 145 16 max 0 1 .058 3 .054 1 1.075e-2 3 NC 5 NC 2 146 min 0 15 262 2 .002 10 -1.198e-2 1 519.653 2 3728.628 1 147 17 max 0 1 .031 3 .036 1 9.698e-3 3 NC 5 NC 2 148 min 0 15 187 2 0 10 -1.102e-2 1 648.262 2 5572.379 1 149 18 max 0 1 .003 4 .015 1 8.641e-3 3 NC 4 NC 1 150 min 0 15 052			4.5												•
145 16 max 0 1 .058 3 .054 1 1.075e-2 3 NC 5 NC 2 146 min 0 15 262 2 .002 10 -1.198e-2 1 519.653 2 3728.628 1 147 17 max 0 1 .031 3 .036 1 9.698e-3 3 NC 5 NC 2 148 min 0 15 187 2 0 10 -1.102e-2 1 648.262 2 5572.379 1 149 18 max 0 1 .003 4 .015 1 8.641e-3 3 NC 4 NC 1 150 min 0 15 052 2 0 10 -1.006e-2 2 1161.241 2 NC 1 151 19 max 0 1 .119<			15												
146 min 0 15 262 2 .002 10 -1.198e-2 1 519.653 2 3728.628 1 147 17 max 0 1 .031 3 .036 1 9.698e-3 3 NC 5 NC 2 148 min 0 15 187 2 0 10 -1.102e-2 1 648.262 2 5572.379 1 149 18 max 0 1 .003 4 .015 1 8.641e-3 3 NC 4 NC 1 150 min 0 15 052 2 0 10 -1.006e-2 2 1161.241 2 NC 1 151 19 max 0 1 .119 2 .004 3 7.584e-3 3 NC 1 NC 1 152 min 0 15 096 3			1								_				
147 17 max 0 1 .031 3 .036 1 9.698e-3 3 NC 5 NC 2 148 min 0 15 187 2 0 10 -1.102e-2 1 648.262 2 5572.379 1 149 18 max 0 1 .003 4 .015 1 8.641e-3 3 NC 4 NC 1 150 min 0 15 052 2 0 10 -1.006e-2 2 1161.241 2 NC 1 151 19 max 0 1 .119 2 .004 3 7.584e-3 3 NC 1 NC 1 152 min 0 15 096 3 002 2 -9.155e-3 2 NC 1 NC 1 153 M2 1 max .005 1			16												
148 min 0 15 187 2 0 10 -1.102e-2 1 648.262 2 5572.379 1 149 18 max 0 1 .003 4 .015 1 8.641e-3 3 NC 4 NC 1 150 min 0 15 052 2 0 10 -1.006e-2 2 1161.241 2 NC 1 151 19 max 0 1 .119 2 .004 3 7.584e-3 3 NC 1 NC 1 152 min 0 15 096 3 002 2 -9.155e-3 2 NC 1 NC 1 153 M2 1 max .005 1 .004 2 .004 1 -3.458e-6 15 NC 1 NC 1											•				
149 18 max 0 1 .003 4 .015 1 8.641e-3 3 NC 4 NC 1 150 min 0 15 052 2 0 10 -1.006e-2 2 1161.241 2 NC 1 151 19 max 0 1 .119 2 .004 3 7.584e-3 3 NC 1 NC 1 152 min 0 15 096 3 002 2 -9.155e-3 2 NC 1 NC 1 153 M2 1 max .005 1 .004 2 .004 1 -3.458e-6 15 NC 1 NC 1			17								3				
150 min 0 15 052 2 0 10 -1.006e-2 2 1161.241 2 NC 1 151 19 max 0 1 .119 2 .004 3 7.584e-3 3 NC 1 NC 1 152 min 0 15 096 3 002 2 -9.155e-3 2 NC 1 NC 1 153 M2 1 max .005 1 .004 2 .004 1 -3.458e-6 15 NC 1 NC 1				min	0	15	187				1		2		1
150 min 0 15 052 2 0 10 -1.006e-2 2 1161.241 2 NC 1 151 19 max 0 1 .119 2 .004 3 7.584e-3 3 NC 1 NC 1 152 min 0 15 096 3 002 2 -9.155e-3 2 NC 1 NC 1 153 M2 1 max .005 1 .004 2 .004 1 -3.458e-6 15 NC 1 NC 1	149		18	max	0	1	.003		.015	1 8.641e-3	3	NC	4	NC	1
151 19 max 0 1 .119 2 .004 3 7.584e-3 3 NC 1 NC 1 152 min 0 15 096 3 002 2 -9.155e-3 2 NC 1 NC 1 153 M2 1 max .005 1 .004 2 .004 1 -3.458e-6 15 NC 1 NC 1					0	15		2	0			1161.241	2		1
152 min 0 15 096 3 002 2 -9.155e-3 2 NC 1 NC 1 153 M2 1 max .005 1 .004 2 .004 1 -3.458e-6 15 NC 1 NC 1			19		0	1	.119	2	.004		3		_1	NC	_1
153 M2 1 max .005 1 .004 2 .004 1 -3.458e-6 15 NC 1 NC 1						15							1		1
		M2	1								_		1		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		
155		2	max	.005	1	.004	2	.004	1_	-3.206e-6	<u>15</u>	NC	_1_	NC	_1_
156			min	006	3	007	3	0	15	-9.687e-5	1_	NC	1_	NC	1
157		3	max	.005	1	.003	2	.004	1	-2.953e-6	15	NC	_1_	NC	1
158			min	006	3	007	3	0	15	-8.922e-5	1_	NC	1	NC	1
159		4	max	.004	1	.003	2	.003	1	-2.7e-6	<u>15</u>	NC	_1_	NC	1
160			min	006	3	007	3	0	15	-8.157e-5	1_	NC	1_	NC	1
161		5	max	.004	1	.002	2	.003	1_	-2.448e-6	<u>15</u>	NC	_1_	NC	1_
162			min	005	3	006	3	0	15	-7.392e-5	_1_	NC	1_	NC	1
163		6	max	.004	1	.002	2	.003	1	-2.195e-6	15	NC	_1_	NC	1
164			min	005	3	006	3	0	15	-6.626e-5	1	NC	1	NC	1
165		7	max	.003	1	.001	2	.002	1_	-1.943e-6	<u>15</u>	NC	_1_	NC	1_
166			min	005	3	006	3	0	15	-5.861e-5	1_	NC	1_	NC	1
167		8	max	.003	1	0	2	.002	1	-1.69e-6	<u> 15</u>	NC	_1_	NC	1_
168			min	004	3	005	3	0	15	-5.096e-5	1	NC	1	NC	1
169		9	max	.003	1	0	2	.002	1	-1.437e-6	15	NC	1_	NC	1
170			min	004	3	005	3	0	15	-4.331e-5	1	NC	1	NC	1
171		10	max	.003	1	0	2	.001	1	-1.185e-6	15	NC	1	NC	1
172			min	003	3	005	3	0	15	-3.566e-5	1	NC	1	NC	1
173		11	max	.002	1	0	2	.001	1	-9.322e-7	15	NC	1	NC	1
174			min	003	3	004	3	0	15	-2.8e-5	1	NC	1	NC	1
175		12	max	.002	1	0	2	0	1	-6.796e-7	15	NC	1	NC	1
176			min	003	3	004	3	0	15	-2.035e-5	1	NC	1	NC	1
177		13	max	.002	1	0	15	0	1	-4.27e-7	15	NC	1	NC	1
178			min	002	3	003	3	0	15	-1.27e-5	1	NC	1	NC	1
179		14	max	.001	1	0	15	0	1	-1.405e-7	10	NC	1	NC	1
180			min	002	3	003	3	0	15	-5.048e-6	1	NC	1	NC	1
181		15	max	.001	1	0	15	0	1	2.604e-6	1	NC	1	NC	1
182			min	002	3	002	3	0	15	-5.16e-7	3	NC	1	NC	1
183		16	max	0	1	0	15	0	1	1.026e-5	1	NC	1	NC	1
184			min	001	3	002	3	0	15	1.464e-7	12	NC	1	NC	1
185		17	max	0	1	0	15	0	1	1.791e-5	1	NC	1	NC	1
186			min	0	3	001	3	0	15	5.835e-7	15	NC	1	NC	1
187		18	max	0	1	0	15	0	1	2.556e-5	1	NC	1	NC	1
188			min	0	3	0	3	0	15	8.361e-7	15	NC	1	NC	1
189		19	max	0	1	0	1	0	1	3.321e-5	1	NC	1	NC	1
190			min	0	1	0	1	0	1	1.089e-6	15	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-3.404e-7	15	NC	1	NC	1
192			min	0	1	0	1	0	1	-1.037e-5	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	3.173e-6	1	NC	1	NC	1
194			min	0	2	001	4	0	15	1.051e-7	15	NC	1	NC	1
195		3	max	0	3	0	15	0	1	1.672e-5	1	NC	1	NC	1
196			min	0	2	003	4	0	15	5.505e-7	15	NC	1	NC	1
197		4	max	0	3	001	15	0	1	3.026e-5	1	NC	1	NC	1
198			min	0	2	005	4	0	15	9.959e-7	15	NC	1	NC	1
199		5	max	.001	3	002	15	0	1	4.38e-5	1	NC	1	NC	1
200			min	0	2	007	4	0	15	1.441e-6	15	NC	1	NC	1
201		6	max	.001	3	002	15	0	1	5.735e-5	1	NC	1	NC	1
202			min	001	2	009	4	0	15	1.887e-6	15	NC	1	NC	1
203		7	max	.002	3	002	15	.001	1	7.089e-5	1	NC	1	NC	1
204			min	001	2	01	4	0	15	2.332e-6	15	9295.61	4	NC	1
205		8	max	.002	3	003	15	.001	1	8.444e-5	1	NC	1	NC	1
206		Ť	min	002	2	011	4	0	15	2.777e-6		8285.413	4	NC	1
207		9	max	.002	3	003	15	.001	1	9.798e-5	1	NC	1	NC	1
208			min	002	2	012	4	0	15	3.223e-6		7681.691	4	NC	1
209		10	max	.002	3	003	15	.002	1	1.115e-4	1	NC	1	NC	1
210		10	min	002	2	013	4	0	15	3.668e-6		7377.133	4	NC	1
211		11	max	.002	3	003	15	.002	1	1.251e-4	1	NC	2	NC	1
<u></u>			πιαλ	.000		.000	IJ	.002		1.2010-4		INO		110	

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		
212			min	002	2	013	4	0	15	4.114e-6	15		4	NC	1
213		12	max	.003	3	003	15	.002	1	1.386e-4	1_	NC	1_	NC	1
214			min	002	2	012	4	0	15	4.559e-6	15	7526.799	4	NC	1
215		13	max	.003	3	003	15	.002	1	1.522e-4	1	NC	1	NC	1
216			min	003	2	012	4	0	15	5.004e-6	15		4	NC	1
217		14	max	.004	3	002	15	.003	1	1.657e-4	1_	NC	1	NC	1
218			min	003	2	011	4	0	15	5.45e-6	15	8927.698	4	NC	1
219		15	max	.004	3	002	15	.003	1	1.792e-4	1	NC	1	NC	1
220			min	003	2	009	4	0	15	5.895e-6	15	NC	1	NC	1
221		16	max	.004	3	002	15	.003	1	1.928e-4	1	NC	1	NC	1
222			min	003	2	007	1	0	15	6.341e-6	15	NC	1	NC	1
223		17	max	.004	3	001	15	.003	1	2.063e-4	1	NC	1	NC	1
224			min	004	2	006	1	0	15	6.786e-6	15	NC	1	NC	1
225		18	max	.005	3	0	15	.004	1	2.199e-4	1	NC	1	NC	1
226			min	004	2	004	1	0	15	7.231e-6	15	NC	1	NC	1
227		19	max	.005	3	0	15	.004	1	2.334e-4	1	NC	1	NC	1
228			min	004	2	003	1	0	15	7.677e-6	15	NC	1	NC	1
229	M4	1	max	.003	1	.003	2	0	15	1.517e-7	3	NC	1	NC	2
230			min	001	3	005	3	004	1	-3.785e-6	1	NC	1	6063.828	1
231		2	max	.003	1	.003	2	0	15	1.517e-7	3	NC	1	NC	2
232			min	001	3	005	3	004	1	-3.785e-6	1	NC	1	6603.959	1
233		3	max	.003	1	.003	2	0	15	1.517e-7	3	NC	1	NC	2
234			min	001	3	004	3	003	1	-3.785e-6	1	NC	1	7246.247	1
235		4	max	.002	1	.003	2	0	15	1.517e-7	3	NC	1	NC	2
236			min	0	3	004	3	003	1	-3.785e-6	1	NC	1	8017.331	1
237		5	max	.002	1	.003	2	0	15	1.517e-7	3	NC	1	NC	2
238			min	0	3	004	3	003	1	-3.785e-6	1	NC	1	8953.406	
239		6	max	.002	1	.002	2	0	15	1.517e-7	3	NC	1	NC	1
240			min	0	3	004	3	002	1	-3.785e-6	1	NC	1	NC	1
241		7	max	.002	1	.002	2	0	15	1.517e-7	3	NC	1	NC	1
242			min	0	3	003	3	002	1	-3.785e-6	1	NC	1	NC	1
243		8	max	.002	1	.002	2	0	15	1.517e-7	3	NC	1	NC	1
244			min	0	3	003	3	002	1	-3.785e-6	1	NC	1	NC	1
245		9	max	.002	1	.002	2	0	15	1.517e-7	3	NC	1	NC	1
246			min	0	3	003	3	002	1	-3.785e-6	1	NC	1	NC	1
247		10	max	.001	1	.002	2	0	15	1.517e-7	3	NC	1	NC	1
248			min	0	3	002	3	001	1	-3.785e-6	1	NC	1	NC	1
249		11	max	.001	1	.001	2	0	15	1.517e-7	3	NC	1	NC	1
250			min	0	3	002	3	001	1	-3.785e-6	1	NC	1	NC	1
251		12	max	.001	1	.001	2	0	15	1.517e-7	3	NC	1	NC	1
252			min	0	3	002	3	0		-3.785e-6	1	NC	1	NC	1
253		13	max	0	1	.001	2	0		1.517e-7	3	NC	1	NC	1
254		1.0	min	0	3	002	3	0	1	-3.785e-6	1	NC	1	NC	1
255		14	max	0	1	0	2	0	15	1.517e-7	3	NC	1	NC	1
256			min	0	3	001	3	0	1	-3.785e-6	1	NC	1	NC	1
257		15	max	0	1	0	2	0	15	1.517e-7	3	NC	1	NC	1
258		1.0	min	0	3	001	3	0	1	-3.785e-6	1	NC	1	NC	1
259		16	max	0	1	0	2	0	15	1.517e-7	3	NC	1	NC	1
260		'	min	0	3	0	3	0	1	-3.785e-6	1	NC	1	NC	1
261		17	max	0	1	0	2	0	15	1.517e-7	3	NC	1	NC	1
262			min	0	3	0	3	0	1	-3.785e-6	1	NC	1	NC	1
263		18	max	0	1	0	2	0	15	1.517e-7	3	NC	1	NC	1
264		10	min	0	3	0	3	0	1	-3.785e-6	1	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.517e-7	3	NC	1	NC	1
266		13	min	0	1	0	1	0	1	-3.785e-6	1	NC NC	1	NC	1
267	M6	1	max	.016	1	.016	2	0	1	0	1	NC NC	4	NC	1
268	IVIO		min	022	3	024	3	0	1	0	1	1984.449	3	NC	1
200			1111111	022	J	024	J	U		U		1304.449	J	INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	1		(n) L/y Ratio L			
269		2	max	.015	1	.015	2	0	1	0	_1_		4_	NC	1
270			min	021	3	023	3	0	1	0	<u>1</u>		3	NC	1
271		3	max	.014	1	.013	2	0	1	0	_1_		4	NC	1
272			min	02	3	021	3	0	1	0	1_		3	NC	1
273		4	max	.014	1	.012	2	0	1	0	_1_		4_	NC	1
274		_	min	018	3	02	3	0	1	0	1_		3	NC	1
275		5	max	.013	1	.011	2	0	1	0	1		4	NC	1
276			min	017	3	019	3	0	1	0	1_		3	NC	1
277		6	max	.012	1	.01	2	0	1	0	1		1	NC	1
278		_	min	016	3	017	3	0	1	0	1_		3	NC	1
279		7	max	.011	1	.008	2	0	1	0	<u>1</u>		1_	NC	1
280			min	015	3	016	3	0	1	0	<u>1</u>		3	NC	1
281		8	max	.01	1	.007	2	0	1	0	_1_		1	NC	1
282			min	013	3	015	3	0	1	0	1_		3	NC	1
283		9	max	.009	1	.006	2	0	1	0	_1_		1_	NC	1
284			min	012	3	013	3	0	1	0	1_		3	NC	1
285		10	max	.008	1	.005	2	0	1	0	1		1_	NC NC	1
286			min	011	3	012	3	0	1	0	1		3	NC	1
287		11	max	.007	1	.004	2	0	1	0	1		1	NC	1
288		1.0	min	01	3	<u>01</u>	3	0	1	0	1		3	NC	1
289		12	max	.006	1	.003	2	0	1	0	<u>1</u>		1_	NC	1
290			min	009	3	009	3	0	1	0	<u>1</u>		3	NC	1
291		13	max	.005	1	.002	2	0	1	0	1		1	NC	1
292			min	007	3	008	3	0	1	0	1		3	NC	1
293		14	max	.005	1	.002	2	0	1	0	1		1_	NC	1
294			min	006	3	006	3	0	1	0	1		3	NC	1
295		15	max	.004	1	.001	2	0	1	0	_1_		1_	NC	1_
296			min	005	3	005	3	0	1	0	1_		3	NC	1
297		16	max	.003	1	0	2	0	1	0	_1_		1_	NC	1
298			min	004	3	004	3	0	1	0	1_		1	NC	1
299		17	max	.002	1	0	2	0	1	0	1		1	NC	1
300			min	002	3	003	3	0	1	0	1_		1	NC	1
301		18	max	00	1	0	2	0	1	0	_1_		1_	NC	1_
302			min	001	3	001	3	0	1	0	1		1	NC	1
303		19	max	0	1	0	1	0	1	0	1		1_	NC	1
304			min	0	1	0	1	0	1	0	1_	110	1	NC	1
305	M7	1_	max	00	1	0	1	0	1	0	_1_		1_	NC	1_
306			min	0	1	0	1	0	1	0	1_		1	NC	1
307		2	max	0	3	0	2	00	1	0	_1_		1_	NC	1
308			min	0	2	002	3	0	1	0	1_	110	1_	NC	1
309		3	max	.002	3	0	15	0	1	0	_1_	NC	1_	NC NC	1
310			min	002	2	005	3	0	1	0	<u>1</u>		1_	NC	1
311		4	max	.003	3	001	15	0	1	0	1_		1_	NC	1
312			min	002	2	007	3	0	1	0	1_		1	NC	1
313		5	max	.003	3	002	15	0	1	0	1		1	NC	1
314			min	003	2	009	3	0	1	0	1_	110	1	NC	1
315		6	max	.004	3	002	15	0	1	0	_1_		1_	NC	1
316			min	004	2	01	3	0	1	0	<u>1</u>		3	NC	1
317		7	max	.005	3	002	15	0	1	0	1		1	NC	1
318			min	005	2	011	3	0	1	0	1_		3	NC	1
319		8	max	.006	3	003	15	0	1	0	1		1	NC	1
320			min	005	2	012	3	0	1	0	1_		3	NC	1
321		9	max	.007	3	003	15	0	1	0	1		1	NC	1
322			min	006	2	013	3	0	1	0	1		3	NC	1
323		10	max	.008	3	003	15	00	1	0	_1_		1_	NC	1_
324			min	007	2	013	3	0	1	0	1_		3	NC	1
325		11	max	.009	3	003	15	0	1	0	1_	NC	1_	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio			LC
326			min	008	2	013	4	0	1	0	1_	7257.28	3	NC	1
327		12	max	.009	3	003	15	0	1	0	_1_	NC	1_	NC	1
328			min	009	2	013	4	0	1	0	1_		3	NC	1
329		13	max	.01	3	003	15	0	1	0	1	NC	1	NC	1
330			min	009	2	012	4	0	1	0	1	8148.009	4	NC	1
331		14	max	.011	3	003	15	0	1	0	1	NC	1	NC	1
332			min	01	2	011	4	0	1	0	1	9061.396	4	NC	1
333		15	max	.012	3	002	15	0	1	0	1	NC	1	NC	1
334			min	011	2	011	1	0	1	0	1	NC	1	NC	1
335		16	max	.013	3	002	15	0	1	0	1	NC	1	NC	1
336			min	012	2	01	1	0	1	0	1	NC	1	NC	1
337		17	max	.014	3	001	15	0	1	0	1	NC	1	NC	1
338			min	013	2	009	1	0	1	0	1	NC	1	NC	1
339		18	max	.015	3	0	15	0	1	0	1	NC	1	NC	1
340			min	013	2	008	1	0	1	0	1	NC	1	NC	1
341		19	max	.015	3	0	15	0	1	0	1	NC	1	NC	1
342			min	014	2	007	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.009	2	.012	2	0	1	0	1	NC	1	NC	1
344			min	004	3	015	3	0	1	0	1	NC	1	NC	1
345		2	max	.009	2	.011	2	0	1	0	1	NC	1	NC	1
346			min	004	3	014	3	0	1	0	1	NC	1	NC	1
347		3	max	.008	2	.011	2	0	1	0	1	NC	1	NC	1
348			min	003	3	013	3	0	1	0	1	NC	1	NC	1
349		4	max	.008	2	.01	2	0	1	0	1	NC	1	NC	1
350			min	003	3	012	3	0	1	0	1	NC	1	NC	1
351		5	max	.007	2	.009	2	0	1	0	1	NC	1	NC	1
352			min	003	3	012	3	0	1	0	1	NC	1	NC	1
353		6	max	.007	2	.009	2	0	1	0	1	NC	1	NC	1
354			min	003	3	011	3	0	1	0	1	NC	1	NC	1
355		7	max	.006	2	.008	2	0	1	0	1	NC	1	NC	1
356			min	003	3	01	3	0	1	0	1	NC	1	NC	1
357		8	max	.006	2	.007	2	0	1	0	1	NC	1	NC	1
358			min	002	3	009	3	0	1	0	1	NC	1	NC	1
359		9	max	.005	2	.007	2	0	1	0	1	NC	1	NC	1
360			min	002	3	008	3	0	1	0	1	NC	1	NC	1
361		10	max	.005	2	.006	2	0	1	0	1	NC	1	NC	1
362			min	002	3	007	3	0	1	0	1	NC	1	NC	1
363		11	max	.004	2	.005	2	0	1	0	1	NC	1	NC	1
364			min	002	3	007	3	0	1	0	1	NC	1	NC	1
365		12	max	.004	2	.005	2	0	1	0	1	NC	1	NC	1
366			min	001	3	006	3	0	1	0	1	NC	1	NC	1
367		13	max	.003	2	.004	2	0	1	0	1	NC	1	NC	1
368			min	001	3	005	3	0	1	Ö	1	NC	1	NC	1
369		14	max	.003	2	.003	2	0	1	0	1	NC	1	NC	1
370			min	001	3	004	3	0	1	0	1	NC	1	NC	1
371		15	max	.002	2	.003	2	0	1	0	1	NC	1	NC	1
372			min	0	3	003	3	0	1	0	1	NC	1	NC	1
373		16	max	.002	2	.002	2	0	1	0	1	NC	1	NC	1
374			min	0	3	002	3	0	1	0	1	NC	1	NC	1
375		17	max	.001	2	.002	2	0	1	0	1	NC	1	NC	1
376			min	0	3	002	3	0	1	0	1	NC	1	NC	1
377		18	max	0	2	0	2	0	1	0	1	NC	1	NC	1
378			min	0	3	0	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380		13	min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.005	1	.004	2	0	15	1.045e-4	1	NC	†	NC	1
382	10110		min	007	3	008	3	004	1	3.458e-6	15	NC	1	NC	1
- J- J-				.001						3. 1000 0			-	.,0	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		LC
383		2	max	.005	1	.004	2	0	15	9.687e-5	1_	NC	_1_	NC	1
384			min	006	3	007	3	004	1	3.206e-6	15	NC	1_	NC	1
385		3	max	.005	1	.003	2	0	15	8.922e-5	<u>1</u>	NC	_1_	NC	1
386			min	006	3	007	3	004	1	2.953e-6	15	NC	1_	NC	1
387		4	max	.004	1	.003	2	0	15	8.157e-5	1_	NC	1_	NC	1
388			min	006	3	007	3	003	1	2.7e-6	15	NC	1	NC	1
389		5	max	.004	1	.002	2	0	15	7.392e-5	_1_	NC	1_	NC	1
390			min	005	3	006	3	003	1	2.448e-6	15	NC	1_	NC	1
391		6	max	.004	1	.002	2	0	15	6.626e-5	1_	NC	1_	NC	1
392			min	005	3	006	3	003	1	2.195e-6	15	NC	1	NC	1
393		7	max	.003	1	.001	2	0	15	5.861e-5	_1_	NC	_1_	NC	1
394			min	005	3	006	3	002	1	1.943e-6	15	NC	1_	NC	1
395		8	max	.003	1	0	2	0	15	5.096e-5	<u>1</u>	NC	_1_	NC	1
396			min	004	3	005	3	002	1	1.69e-6	15	NC	1	NC	1
397		9	max	.003	1	0	2	0	15	4.331e-5	1_	NC	1_	NC	1
398			min	004	3	005	3	002	1	1.437e-6	15	NC	1	NC	1
399		10	max	.003	1	0	2	0	15	3.566e-5	1_	NC	1_	NC	1
400			min	003	3	005	3	001	1	1.185e-6	15	NC	1	NC	1
401		11	max	.002	1	0	2	0	15	2.8e-5	1_	NC	1	NC	1
402			min	003	3	004	3	001	1	9.322e-7	15	NC	1	NC	1
403		12	max	.002	1	0	2	0	15	2.035e-5	1	NC	1	NC	1
404			min	003	3	004	3	0	1	6.796e-7	15	NC	1	NC	1
405		13	max	.002	1	0	15	0	15	1.27e-5	1_	NC	1	NC	1
406			min	002	3	003	3	0	1	4.27e-7	15	NC	1	NC	1
407		14	max	.001	1	0	15	0	15	5.048e-6	1	NC	1	NC	1
408			min	002	3	003	3	0	1	1.405e-7	10	NC	1	NC	1
409		15	max	.001	1	0	15	0	15	5.16e-7	3	NC	1	NC	1
410			min	002	3	002	3	0	1	-2.604e-6	1	NC	1	NC	1
411		16	max	0	1	0	15	0	15		12	NC	1	NC	1
412			min	001	3	002	3	0	1	-1.026e-5	1	NC	1	NC	1
413		17	max	0	1	0	15	0	15	-5.835e-7	15	NC	1	NC	1
414			min	0	3	001	3	0	1	-1.791e-5	1	NC	1	NC	1
415		18	max	0	1	0	15	0	15	-8.361e-7	15	NC	1	NC	1
416			min	0	3	0	3	0	1	-2.556e-5	1	NC	1	NC	1
417		19	max	0	1	0	1	0	1	-1.089e-6	15	NC	1	NC	1
418			min	0	1	0	1	0	1	-3.321e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	1.037e-5	1	NC	1	NC	1
420			min	0	1	0	1	0	1	3.404e-7	15	NC	1	NC	1
421		2	max	0	3	0	15	0	15	-1.051e-7	15	NC	1	NC	1
422			min	0	2	001	4	0	1	-3.173e-6	1	NC	1	NC	1
423		3	max	0	3	0	15	0	15	-5.505e-7	15	NC	1	NC	1
424			min	0	2	003	4	0	1	-1.672e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	0	15	-9.959e-7	15	NC	1	NC	1
426			min	0	2	005	4	0	1	-3.026e-5	1	NC	1	NC	1
427		5	max	.001	3	002	15	0	15	-1.441e-6	15	NC	1	NC	1
428			min	0	2	007	4	0	1	-4.38e-5	1	NC	1	NC	1
429		6	max	.001	3	002	15	0	15	-1.887e-6	15	NC	1	NC	1
430			min	001	2	009	4	0	1	-5.735e-5	1	NC	1	NC	1
431		7	max	.002	3	002	15	0	15	-2.332e-6	15	NC	1	NC	1
432			min	001	2	01	4	001	1	-7.089e-5	1	9295.61	4	NC	1
433		8	max	.002	3	003	15	0	15	-2.777e-6	15	NC	1	NC	1
434			min	002	2	011	4	001	1	-8.444e-5	1	8285.413	4	NC	1
435		9	max	.002	3	003	15	0	15		15	NC	1	NC	1
436			min	002	2	012	4	001	1	-9.798e-5	1	7681.691	4	NC	1
437		10	max	.002	3	003	15	0	15		15	NC	1	NC	1
438			min	002	2	013	4	002	1	-1.115e-4	1	7377.133	4	NC	1
439		11	max	.003	3	003	15	0	15	-4.114e-6	15	NC	2	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC		LC
440			min	002	2	013	4	002	1	-1.251e-4	1_	7326.065	4	NC	1
441		12	max	.003	3	003	15	0	15	-4.559e-6	<u>15</u>	NC	<u>1</u>	NC	1
442			min	002	2	012	4	002	1	-1.386e-4	1_	7526.799	4	NC	1
443		13	max	.003	3	003	15	0	15	-5.004e-6	15	NC	1_	NC	1
444			min	003	2	012	4	002	1	-1.522e-4	1	8023.13	4	NC	1
445		14	max	.004	3	002	15	0	15	-5.45e-6	15	NC	1_	NC	1
446			min	003	2	011	4	003	1	-1.657e-4	1	8927.698	4	NC	1
447		15	max	.004	3	002	15	0	15	-5.895e-6	<u>15</u>	NC	_1_	NC	1
448			min	003	2	009	4	003	1	-1.792e-4	1	NC	1	NC	1
449		16	max	.004	3	002	15	0	15	-6.341e-6	<u>15</u>	NC	1_	NC	1
450			min	003	2	007	1	003	1	-1.928e-4	1_	NC	1_	NC	1
451		17	max	.004	3	001	15	0	15	-6.786e-6	<u>15</u>	NC	<u>1</u>	NC	1
452			min	004	2	006	1	003	1	-2.063e-4	1_	NC	1_	NC	1
453		18	max	.005	3	0	15	0	15	-7.231e-6	15	NC	1_	NC	1_
454			min	004	2	004	1	004	1	-2.199e-4	1	NC	1	NC	1
455		19	max	.005	3	0	15	0	15	-7.677e-6	15	NC	1	NC	1
456			min	004	2	003	1	004	1	-2.334e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.003	2	.004	1	3.785e-6	1	NC	1	NC	2
458			min	001	3	005	3	0	15	-1.517e-7	3	NC	1	6063.828	1
459		2	max	.003	1	.003	2	.004	1	3.785e-6	1	NC	1	NC	2
460			min	001	3	005	3	0	15	-1.517e-7	3	NC	1	6603.959	1
461		3	max	.003	1	.003	2	.003	1	3.785e-6	1_	NC	1	NC	2
462			min	001	3	004	3	0	15	-1.517e-7	3	NC	1	7246.247	1
463		4	max	.002	1	.003	2	.003	1	3.785e-6	1	NC	1	NC	2
464			min	0	3	004	3	0	15	-1.517e-7	3	NC	1	8017.331	1
465		5	max	.002	1	.003	2	.003	1	3.785e-6	1	NC	1	NC	2
466			min	0	3	004	3	0	15	-1.517e-7	3	NC	1	8953.406	1
467		6	max	.002	1	.002	2	.002	1	3.785e-6	1	NC	1	NC	1
468			min	0	3	004	3	0	15	-1.517e-7	3	NC	1	NC	1
469		7	max	.002	1	.002	2	.002	1	3.785e-6	1	NC	1	NC	1
470			min	0	3	003	3	0	15	-1.517e-7	3	NC	1	NC	1
471		8	max	.002	1	.002	2	.002	1	3.785e-6	1	NC	1	NC	1
472			min	0	3	003	3	0	15	-1.517e-7	3	NC	1	NC	1
473		9	max	.002	1	.002	2	.002	1	3.785e-6	1	NC	1	NC	1
474			min	0	3	003	3	0	15	-1.517e-7	3	NC	1	NC	1
475		10	max	.001	1	.002	2	.001	1	3.785e-6	1	NC	1	NC	1
476			min	0	3	002	3	0	15	-1.517e-7	3	NC	1	NC	1
477		11	max	.001	1	.001	2	.001	1	3.785e-6	1	NC	1	NC	1
478			min	0	3	002	3	0	15	-1.517e-7	3	NC	1	NC	1
479		12	max	.001	1	.001	2	0	1	3.785e-6	1	NC	1	NC	1
480			min		3	002	3	0	15	-1.517e-7	3	NC	1	NC	1
481		13	max	0	1	.001	2	0	1	3.785e-6	1	NC	1	NC	1
482			min	0	3	002	3	0	15	-1.517e-7	3	NC	1	NC	1
483		14	max	0	1	0	2	0	1	3.785e-6	1	NC	1	NC	1
484			min	0	3	001	3	0	15	-1.517e-7	3	NC	1	NC	1
485		15	max	0	1	0	2	0	1	3.785e-6	1	NC	1	NC	1
486			min	0	3	001	3	0	15	-1.517e-7	3	NC	1	NC	1
487		16	max	0	1	0	2	0	1	3.785e-6	1	NC	1	NC	1
488			min	0	3	0	3	0		-1.517e-7	3	NC	1	NC	1
489		17	max	0	1	0	2	0	1	3.785e-6	1	NC	1	NC	1
490			min	0	3	0	3	0		-1.517e-7	3	NC	1	NC	1
491		18	max	0	1	0	2	0	1	3.785e-6	1	NC	1	NC	1
492		1.0	min	0	3	0	3	0	15	-1.517e-7	3	NC	1	NC	1
493		19	max	0	1	0	1	0	1	3.785e-6	1	NC	1	NC	1
494		10	min	0	1	0	1	0	1	-1.517e-7	3	NC	1	NC	1
495	M1	1	max	.006	3	.137	2	0	1	1.078e-2	1	NC	1	NC	1
496	1711		min	003	2	036	3	0		-2.072e-2	3	NC	1	NC	1
100			1111111	.000		.000			10	U. ZU Z					

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio L	C (n) L/z Rat	io LC
497		2	max	.006	3	.067	2	Ö	15	5.251e-3	1	NC 4	,	1
498			min	003	2	018	3	003	1	-1.025e-2	3	1657.278 2	NC	1
499		3	max	.006	3	.009	3	0	15	3.832e-5	10	NC 5	NC NC	1
500			min	003	2	008	2	004	1	-1.114e-4	3	800.737	NC	1
501		4	max	.006	3	.052	3	0	15	4.079e-3	2	NC 5	NC NC	1
502			min	003	2	091	2	004	1	-4.336e-3	3	507.295 2	NC NC	1
503		5	max	.006	3	.106	3	0	15	8.12e-3	2	NC 5	NC NC	1
504			min	003	2	178	2	003	1	-8.561e-3	3	367.244 2		1
505		6	max	.006	3	.163	3	0	15	1.216e-2	2	NC 1		1
506			min	003	2	262	2	001	1	-1.279e-2	3	289.926 2		1
507		7	max	.006	3	.218	3	0	1	1.62e-2	2	NC 1	5 NC	1
508			min	003	2	336	2	0	3	-1.701e-2	3	244.202		1
509		8	max	.005	3	.263	3	0	1	2.024e-2	2	9590.456 1		1
510			min	003	2	395	2	0	15	-2.123e-2	3	217.119 2		1
511		9	max	.005	3	.293	3	0	15	2.289e-2	2	8972.989 1		1
512			min	003	2	433	2	0	1	-2.16e-2	3	203.006		1
513		10	max	.005	3	.303	3	0	1	2.462e-2	2	8784.578 1		1
514			min	003	2	445	2	0	15	-1.941e-2	3	198.87 2		1
515		11	max	.005	3	.296	3	0	1	2.635e-2	2	8972.734 1		1
516			min	003	2	433	2	0		-1.721e-2	3	203.703 2		1
517		12	max	.005	3	.271	3	0	15	2.538e-2	2	9589.907 1		1
518			min	003	2	394	2	0	1	-1.472e-2	3	219.216 2		1
519		13	max	.005	3	.231	3	0	15	2.034e-2	2	NC 1		1
520			min	003	2	333	2	0	1	-1.179e-2	3	249.255 2		1
521		14	max	.005	3	.179	3	.001	1	1.531e-2	2	NC 1		1
522			min	003	2	255	2	0	15	-8.853e-3	3	300.636 2		1
523		15	max	.005	3	.121	3	.003	1	1.027e-2	2	NC 5		1
524		4.0	min	002	2	17	2	0	15	-5.918e-3	3	389.114 2		1
525		16	max	.005	3	.061	3	.004	1	5.236e-3	2	NC 5		1
526		4-	min	002	2	084	2	0		-2.983e-3	3	553.002		1
527		17	max	.004	3	.004	3	.004	1	3.345e-4	1_	NC 5		1
528		40	min	002	2	005	2	0	15	-4.862e-5	3	903.399 2		1
529		18	max	.004	3	.06	2	.003	1	8.029e-3	2	NC 4		1
530		40	min	002	2	048	3	0	15	-3.4e-3	3	1917.056 2		1
531		19	max	.004 002	3	.119 096	3	0	15	1.616e-2	3	NC 1		1
532	NAE	1	min		_	<u>096</u> .288			-	-6.898e-3				
533	<u>M5</u>	1	max	.019 012	3		3	0	1	0	1	NC 1		1
534 535		2	min	012 .019	3	038 .141	2	0	1	0	1	NC 5		1
536			max	012	2	019	3	0	1	0	1	794.086		1
537		3	max	.012	3	.029	3	0	1	0	1	NC 5		1
538		J	min	012	2	024	2	0	1	0	1	373.315		1
539		4	max	.018	3	.13	3	0	1	0	1		5 NC	1
540		-	min	012	2	221	2	0	1	0	1	228.269 2		1
541		5	max	.018	3	.267	3	0	1	0	1	8130.099 1		1
542			min	012	2	434	2	0	1	0	1	160.54 2		1
543		6	max	.018	3	.422	3	0	1	0	1	6249.513 1		1
544			min	011	2	646	2	0	1	0	1	124.019		1
545		7	max	.017	3	.572	3	0	1	0	1	5165.445 1		1
546			min	011	2	838	2	0	1	0	1	102.84		1
547		8	max	.017	3	.698	3	0	1	0	1	4535.969 1		1
548			min	011	2	993	2	0	1	0	1		NC	1
549		9	max	.016	3	.779	3	0	1	0	1	4213.477 1		1
550			min	011	2	-1.091	2	0	1	0	1	84.141 2		1
551		10	max	.016	3	.808	3	0	1	0	1	4116.351 1		1
552			min	011	2	-1.124	2	0	1	0	1	82.285		1
553		11	max	.016	3	.788	3	0	1	0	1	4213.59 1	5 NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

5556		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
				min		2	-1.092	2		1	- v	1		2		1
557	555		12	max	.015		.719		0	1	0	1_	4536.23	15	NC	1
558	556			min	01		991		0	1	0	1	91.486	2		1
559	557		13	max	.015	3		3	0	1	0	1_	5165.963	15		1
560				min					0	_	_	•				-
15 max			14		.015				0	1	0	_1_				_
F662	560			min	01		628		0	1	0	1	129.913	2	NC	1
F653	561		15	max	.014		.313		0	1	0	1_	8132.021	15		1
F664	562			min	01	2		2	0	1	0	1		2		1
565	563		16	max	.014				0	1	0	1		15		1
Fee6				min					0	1	0	1		2		1
See	565		17	max	.014	3	.011	3	0	1	0	1	NC	5	NC	1
Feb	566			min	009	2	016	2	0	1	0	1	446.066	2	NC	1
Fig.	567		18	max	.014	3	.123	1	0	1	0	1	NC	5	NC	1
S70	568			min	009	2	112	3	0	1	0	1	985.687	1	NC	1
S71	569		19	max	.014	3	.238	1	0	1	0	1	NC	1	NC	1
S72	570			min	009	2	222	3	0	1	0	1	NC	1	NC	1
F73	571	M9	1	max	.006	3	.137	2	0	15	2.072e-2	3	NC	1	NC	1
S74	572			min	003	2	036	3	0	1	-1.078e-2	1	NC	1	NC	1
S75	573		2	max	.006	3	.067	2	.003	1	1.025e-2	3	NC	4	NC	1
S76	574			min	003	2	018	3	0	15	-5.251e-3	1	1657.278	2	NC	1
577	575		3	max	.006	3	.009	3	.004	1	1.114e-4	3	NC	5	NC	1
578	576			min	003	2	008	2	0	15	-3.832e-5	10	800.737	2	NC	1
578	577		4	max	.006	3	.052	3	.004	1	4.336e-3	3	NC	5	NC	1
579										15						1
S80			5		.006	3	.106	3	.003	1	8.561e-3	3	NC	5	NC	1
581 6 max .006 3 .163 3 .001 1 1.279e-2 3 NC 15 NC 1 582 min 003 2 262 2 0 15 -1.216e-2 2 289.926 2 NC 1 583 7 max .006 3 218 3 0 3 1.701e-2 3 NC 15 NC 1 584 min 003 2 336 2 0 1 -1.62e-2 2 244.20 2 NC 1 585 8 max .005 3 .263 3 0 15 2.123e-2 3 9590.456 15 NC 1 587 9 max .005 3 .293 3 0 15 2.123e-2 2 277.119 2 NC 1 588 min 003 2 443<				min						15			367.244		NC	1
583 7 max .006 3 .218 3 0 3 1.701e-2 3 NC 15 NC 1 584 min 003 2 336 2 0 1 -1.62e-2 2 244.202 2 NC 1 585 8 max .005 3 .263 3 0 15 2.123e-2 3 9590.456 15 NC 1 586 min 003 2 395 2 0 1 -2.024e-2 2 217.119 2 NC 1 587 9 max .005 3 .293 3 0 1 2.16e-2 3 8972.989 15 NC 1 588 min 003 2 433 2 0 15 -2.289e-2 2 203.006 2 NC 1 590 min 003 2 433	581		6	max	.006	3	.163	3	.001	1	1.279e-2	3	NC	15	NC	1
583 7 max .006 3 .218 3 0 3 1.701e-2 3 NC 15 NC 1 584 min 003 2 336 2 0 1 -1.62e-2 2 244.202 2 NC 1 585 8 max .005 3 .263 3 0 15 2.123e-2 3 9590.456 15 NC 1 586 min 003 2 395 2 0 1 -2.024e-2 2 217.119 2 NC 1 587 9 max .005 3 .293 3 0 1 2.16e-2 3 8972.989 15 NC 1 588 min 003 2 433 2 0 15 -2.289e-2 2 203.006 2 NC 1 590 min 003 2 433				min	003				0	15		2	289.926		NC	1
584 min 003 2 336 2 0 1 -1.62e-2 2 244.202 2 NC 1 585 8 max .005 3 .263 3 0 15 2.123e-2 3 9590.456 15 NC 1 587 9 max .005 3 .293 3 0 1 2.16e-2 2 217.119 2 NC 1 588 min 003 2 433 2 0 15 -2.289e-2 2 203.006 2 NC 1 589 10 max .005 3 .303 3 0 15 1.941e-2 3 8784.578 15 NC 1 590 min 003 2 445 2 0 1 -2.462e-2 2 198.87 2 NC 1 591 11 max .005 3			7						0	3		3		15		1
585 8 max .005 3 .263 3 0 15 2.123e-2 3 9590.456 15 NC 1 586 min 003 2 395 2 0 1 -2.024e-2 2 217.119 2 NC 1 587 9 max .005 3 .293 3 0 1 2.16e-2 3 8972.989 15 NC 1 588 min 003 2 433 2 0 15 -2.289e-2 2 203.006 2 NC 1 589 10 max .005 3 .303 3 0 15 1.941e-2 3 8784.578 15 NC 1 590 min 003 2 445 2 0 1 -2.462e-2 2 18.872.734 15 NC 1 591 11 min 003 2 <td></td> <td></td> <td></td> <td>min</td> <td></td> <td>2</td> <td></td> <td>2</td> <td>0</td> <td>1</td> <td></td> <td>2</td> <td></td> <td>2</td> <td>NC</td> <td>1</td>				min		2		2	0	1		2		2	NC	1
586 min 003 2 395 2 0 1 -2.024e-2 2 217.119 2 NC 1 587 9 max .005 3 .293 3 0 1 2.16e-2 3 8972.989 15 NC 1 588 min 003 2 4433 2 0 15 -2.289e-2 2 203.006 2 NC 1 589 10 max .005 3 .303 3 0 15 1.94e-2 3 784.578 15 NC 1 590 min 003 2 445 2 0 1 -2.462e-2 2 198.87 2 NC 1 591 11 max .005 3 .296 3 0 15 1.721e-2 3 8972.734 15 NC 1 592 min 003 2 433			8	max	.005	3	.263	3	0	15	2.123e-2	3	9590.456	15	NC	1
588 min 003 2 433 2 0 15 -2.289e-2 2 203.006 2 NC 1 589 10 max .005 3 .303 3 0 15 1.941e-2 3 8784.578 15 NC 1 590 min 003 2 445 2 0 1 -2.462e-2 2 198.87 2 NC 1 591 11 max .005 3 .296 3 0 15 1.721e-2 3 8972.734 15 NC 1 592 min 003 2 -433 2 0 1 2.635e-2 2 203.703 2 NC 1 593 12 max .005 3 .271 3 0 1 1.472e-2 3 958.99.97 15 NC 1 594 min 003 2 333 <td></td> <td></td> <td></td> <td>min</td> <td>003</td> <td>2</td> <td>395</td> <td>2</td> <td>0</td> <td>1</td> <td>-2.024e-2</td> <td>2</td> <td>217.119</td> <td>2</td> <td>NC</td> <td>1</td>				min	003	2	395	2	0	1	-2.024e-2	2	217.119	2	NC	1
588 min 003 2 433 2 0 15 -2.289e-2 2 203.006 2 NC 1 589 10 max .005 3 .303 3 0 15 1.941e-2 3 8784.578 15 NC 1 590 min 003 2 445 2 0 1 -2.462e-2 2 198.87 2 NC 1 591 11 max .005 3 .296 3 0 15 1.721e-2 3 8972.734 15 NC 1 592 min 003 2 -433 2 0 1 2.635e-2 2 203.703 2 NC 1 593 12 max .005 3 .271 3 0 1 1.472e-2 3 958.99.97 15 NC 1 594 min 003 2 333 <td>587</td> <td></td> <td>9</td> <td>max</td> <td>.005</td> <td>3</td> <td>.293</td> <td>3</td> <td>0</td> <td>1</td> <td>2.16e-2</td> <td>3</td> <td>8972.989</td> <td>15</td> <td>NC</td> <td>1</td>	587		9	max	.005	3	.293	3	0	1	2.16e-2	3	8972.989	15	NC	1
590 min 003 2 445 2 0 1 -2.462e-2 2 198.87 2 NC 1 591 11 max .005 3 .296 3 0 15 1.721e-2 3 8972.734 15 NC 1 592 min 003 2 433 2 0 1 -2.635e-2 2 203.703 2 NC 1 593 12 max .005 3 .271 3 0 1 1.472e-2 3 9589.907 15 NC 1 594 min 003 2 394 2 0 15 -2.53e-2 2 219.216 2 NC 1 595 13 max .005 3 .231 3 0 1 1.179e-2 3 NC 15 NC 1 596 min 003 2 255				min	003	2		2	0	15		2	203.006	2	NC	1
590 min 003 2 445 2 0 1 -2.462e-2 2 198.87 2 NC 1 591 11 max .005 3 .296 3 0 15 1.721e-2 3 8972.734 15 NC 1 592 min 003 2 433 2 0 1 -2.635e-2 2 203.703 2 NC 1 593 12 max .005 3 .271 3 0 1 1.472e-2 3 9589.907 15 NC 1 594 min 003 2 394 2 0 15 -2.538e-2 2 219.216 2 NC 1 595 13 max .005 3 .231 3 0 1 1.179e-2 3 NC 15 NC 1 596 min 003 2 255			10		.005	3	.303	3	0	15		3		15	NC	1
592 min 003 2 433 2 0 1 -2.635e-2 2 203.703 2 NC 1 593 12 max .005 3 .271 3 0 1 1.472e-2 3 9589.907 15 NC 1 594 min 003 2 394 2 0 15 -2.538e-2 2 219.216 2 NC 1 595 13 max .005 3 .231 3 0 1 1.179e-2 3 NC 15 NC 1 596 min 003 2 333 2 0 15 -2.034e-2 2 249.255 2 NC 1 597 14 max .005 3 .179 3 0 15 8.853e-3 3 NC 15 NC 1 598 min 003 1 -2.155				min	003	2	445	2	0	1	-2.462e-2	2	198.87	2	NC	1
592 min 003 2 433 2 0 1 -2.635e-2 2 203.703 2 NC 1 593 12 max .005 3 .271 3 0 1 1.472e-2 3 9589.907 15 NC 1 594 min 003 2 394 2 0 15 -2.538e-2 2 219.216 2 NC 1 595 13 max .005 3 .231 3 0 1 1.179e-2 3 NC 15 NC 1 596 min 003 2 333 2 0 15 -2.034e-2 2 249.255 2 NC 1 597 14 max .005 3 .179 3 0 15 8.853e-3 3 NC 15 NC 1 598 min 003 1 -2.155			11		.005	3	.296	3	0	15		3		15	NC	1
593 12 max .005 3 .271 3 0 1 1.472e-2 3 9589.907 15 NC 1 594 min 003 2 394 2 0 15 -2.538e-2 2 219.216 2 NC 1 595 13 max .005 3 .231 3 0 1 1.179e-2 3 NC 15 NC 1 596 min 003 2 333 2 0 15 -2.034e-2 2 249.255 2 NC 1 597 14 max .005 3 .179 3 0 15 8.853e-3 3 NC 15 NC 1 598 min 003 2 255 2 001 1 -1.531e-2 2 300.636 2 NC 1 600 min 002 2 17	592			min	003	2	433	2	0	1		2	203.703	2	NC	1
594 min 003 2 394 2 0 15 -2.538e-2 2 219.216 2 NC 1 595 13 max .005 3 .231 3 0 1 1.179e-2 3 NC 15 NC 1 596 min 003 2 333 2 0 15 -2.034e-2 2 249.255 2 NC 1 597 14 max .005 3 .179 3 0 15 8.853e-3 3 NC 15 NC 1 598 min 003 2 255 2 001 1 -1.531e-2 2 300.636 2 NC 1 599 15 max .005 3 .121 3 0 15 5.918e-3 3 NC 5 NC 1 600 min 002 2 17 <td< td=""><td></td><td></td><td>12</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>1</td><td></td><td>3</td><td></td><td>15</td><td></td><td>1</td></td<>			12						0	1		3		15		1
595 13 max .005 3 .231 3 0 1 1.179e-2 3 NC 15 NC 1 596 min 003 2 333 2 0 15 -2.034e-2 2 249.255 2 NC 1 597 14 max .005 3 .179 3 0 15 8.853e-3 3 NC 15 NC 1 598 min 003 2 255 2 001 1 -1.531e-2 2 300.636 2 NC 1 599 15 max .005 3 .121 3 0 15 5.918e-3 3 NC 5 NC 1 600 min 002 2 17 2 003 1 -1.027e-2 2 389.114 2 NC 1 601 max .005 3 .061 <t< td=""><td>594</td><td></td><td></td><td>min</td><td>003</td><td>2</td><td>394</td><td>2</td><td>0</td><td>15</td><td>-2.538e-2</td><td>2</td><td>219.216</td><td>2</td><td>NC</td><td>1</td></t<>	594			min	003	2	394	2	0	15	-2.538e-2	2	219.216	2	NC	1
596 min 003 2 333 2 0 15 -2.034e-2 2 249.255 2 NC 1 597 14 max .005 3 .179 3 0 15 8.853e-3 3 NC 15 NC 1 598 min 003 2 255 2 001 1 -1.531e-2 2 300.636 2 NC 1 599 15 max .005 3 .121 3 0 15 5.918e-3 3 NC 5 NC 1 600 min 002 2 17 2 003 1 -1.027e-2 2 389.114 2 NC 1 601 16 max .005 3 .061 3 0 15 2.983e-3 3 NC 5 NC 1 602 min 002 2 084			13					3								1
597 14 max .005 3 .179 3 0 15 8.853e-3 3 NC 15 NC 1 598 min 003 2 255 2 001 1 -1.531e-2 2 300.636 2 NC 1 599 15 max .005 3 .121 3 0 15 5.918e-3 3 NC 5 NC 1 600 min 002 2 17 2 003 1 -1.027e-2 2 389.114 2 NC 1 601 16 max .005 3 .061 3 0 15 2.983e-3 3 NC 5 NC 1 602 min 002 2 084 2 004 1 -5.236e-3 2 553.002 2 NC 1 603 17 max .004 3 <									0	15						1
598 min 003 2 255 2 001 1 -1.531e-2 2 300.636 2 NC 1 599 15 max .005 3 .121 3 0 15 5.918e-3 3 NC 5 NC 1 600 min 002 2 17 2 003 1 -1.027e-2 2 389.114 2 NC 1 601 16 max .005 3 .061 3 0 15 2.983e-3 3 NC 5 NC 1 602 min 002 2 084 2 004 1 -5.236e-3 2 553.002 2 NC 1 603 17 max .004 3 .004 3 0 15 4.862e-5 3 NC 5 NC 1 604 min 002 2 005			14						0			3				1
599 15 max .005 3 .121 3 0 15 5.918e-3 3 NC 5 NC 1 600 min 002 2 17 2 003 1 -1.027e-2 2 389.114 2 NC 1 601 16 max .005 3 .061 3 0 15 2.983e-3 3 NC 5 NC 1 602 min 002 2 084 2 004 1 -5.236e-3 2 553.002 2 NC 1 603 17 max .004 3 .004 3 0 15 4.862e-5 3 NC 5 NC 1 604 min 002 2 005 2 004 1 -3.345e-4 1 903.399 2 NC 1 605 18 max .004 3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>																1
600 min 002 2 17 2 003 1 -1.027e-2 2 389.114 2 NC 1 601 16 max .005 3 .061 3 0 15 2.983e-3 3 NC 5 NC 1 602 min 002 2 084 2 004 1 -5.236e-3 2 553.002 2 NC 1 603 17 max .004 3 .004 3 0 15 4.862e-5 3 NC 5 NC 1 604 min 002 2 005 2 004 1 -3.345e-4 1 903.399 2 NC 1 605 18 max .004 3 .06 2 0 15 3.4e-3 3 NC 4 NC 1 606 min 002 2 048 <			15							15	5.918e-3	3				1
601 16 max .005 3 .061 3 0 15 2.983e-3 3 NC 5 NC 1 602 min 002 2 084 2 004 1 -5.236e-3 2 553.002 2 NC 1 603 17 max .004 3 .004 3 0 15 4.862e-5 3 NC 5 NC 1 604 min 002 2 005 2 004 1 -3.345e-4 1 903.399 2 NC 1 605 18 max .004 3 .06 2 0 15 3.4e-3 3 NC 4 NC 1 606 min 002 2 048 3 003 1 -8.029e-3 2 1917.056 2 NC 1 607 19 max .004 3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>003</td><td></td><td>-1.027e-2</td><td></td><td></td><td></td><td></td><td></td></td<>									003		-1.027e-2					
602 min 002 2 084 2 004 1 -5.236e-3 2 553.002 2 NC 1 603 17 max .004 3 .004 3 0 15 4.862e-5 3 NC 5 NC 1 604 min 002 2 005 2 004 1 -3.345e-4 1 903.399 2 NC 1 605 18 max .004 3 .06 2 0 15 3.4e-3 3 NC 4 NC 1 606 min 002 2 048 3 003 1 -8.029e-3 2 1917.056 2 NC 1 607 19 max .004 3 .119 2 0 1 6.898e-3 3 NC 1 NC 1			16							15		3				_
603 17 max .004 3 .004 3 0 15 4.862e-5 3 NC 5 NC 1 604 min 002 2 005 2 004 1 -3.345e-4 1 903.399 2 NC 1 605 18 max .004 3 .06 2 0 15 3.4e-3 3 NC 4 NC 1 606 min 002 2 048 3 003 1 -8.029e-3 2 1917.056 2 NC 1 607 19 max .004 3 .119 2 0 1 6.898e-3 3 NC 1 NC 1																
604 min 002 2 005 2 004 1 -3.345e-4 1 903.399 2 NC 1 605 18 max .004 3 .06 2 0 15 3.4e-3 3 NC 4 NC 1 606 min 002 2 048 3 003 1 -8.029e-3 2 1917.056 2 NC 1 607 19 max .004 3 .119 2 0 1 6.898e-3 3 NC 1 NC 1			17													
605 18 max .004 3 .06 2 0 15 3.4e-3 3 NC 4 NC 1 606 min 002 2 048 3 003 1 -8.029e-3 2 1917.056 2 NC 1 607 19 max .004 3 .119 2 0 1 6.898e-3 3 NC 1 NC 1										-						_
606 min 002 2 048 3 003 1 -8.029e-3 2 1917.056 2 NC 1 607 19 max .004 3 .119 2 0 1 6.898e-3 3 NC 1 NC 1			18							15						1
607																
			19													
	608			min	002		096	3					NC		NC	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 14-42 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015			
Engineer:	HCV	Page:	1/5			
Project:	Standard PVMax - Worst Case, 37-42 Inch Width					
Address:						
Phone:						
E-mail:						

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	2/5					
Project:	Standard PVMax - Worst Case, 37	Standard PVMax - Worst Case, 37-42 Inch Width						
Address:								
Phone:								
E-mail:								

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 37	-42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2915.5	1524.0	0.0	1524.0
2	2915.5	1524.0	0.0	1524.0
Sum	5831.0	3048.0	0.0	3048.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5831 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{ ext{ed},Na}$ $\Psi_{ ext{g}}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 37-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}}c_{a1}^{1.5}$	° (Eq. D-24)						
le (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Vc / Avco) Yec, v Ye	$_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	դ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
666.00	648.00	1.000	0.969	1.000	1.000	15593	0.70	10875

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}\lambda}\sqrt{f'_{c}c_{a1}}^{1.}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	16.16	24369		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V} \Psi_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
872.64	1175.16	1.000	1.000	1.000	24369	0.70	25334

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n kcpNag; kcpN	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / A Nco) Ψ ec,N Ψ	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\varPsi_{ ho,Na}$	N _{a0} (lb)	N _a (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2916	6071	0.48	Pass
Concrete breakout	5831	10231	0.57	Pass
Adhesive	5831	8093	0.72	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1524	3156	0.48	Pass (Governs)
T Concrete breakout x+	3048	10875	0.28	Pass
Concrete breakout y-	1524	25334	0.06	Pass
Pryout	3048	20601	0.15	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 37-42 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.72 0.48 120.3 % 1.2 Pa	3C. D.7.3	0.72	0.48	120.3 %	1.2	Pas
-------------------------------------	-----------	------	------	---------	-----	-----

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.