ECE 260 EXAM 1 SOLUTIONS

QUESTION 1

- (a) $f(z) = \frac{z^2 4}{(z^2 + 4)^3} = \frac{(z + 2)(z 2)}{[(z + 2j)(z 2j)]^3} = \frac{(z + 2)(z 2)}{(z + 2j)^3(z 2j)^3}$ first order zeros at -2 and 2 third order poles at -2j and 2j
- (b) a rational function is analytic everywhere except at its poles. therefore, f is analytic everywhere except at -2j and 2j.

QUESTION 2

- (a) $x(t)=t \delta(t)=[t \delta(t)]|_{t=0}=0$ [by equivalence property of δ function]
- (b) $x(t) = \int_0^4 \delta(\tau + 3) \tan(\tau) d\tau = 0$ [since integrand is identically zero]
- (c) $x(t) = \int_{-\pi}^{\pi} \delta(\tau \pi/2) u(\tau) d\tau = [u(\tau)]|_{\tau = \pi/2} = 1$ [by sifting property of δ function]
- (d) x(t)=1 if $t+1 \le 0$ and x(t)=0 otherwise [since all area of 1 concentrated at origin] since $t+1 \le 0 \Rightarrow t \le -1$, we have x(t) = $\begin{bmatrix} 1 & t \le -1 \\ 0 & \text{otherwise} \end{bmatrix}$ otherwise =u(-t-1)

QUESTION 3

$$\begin{array}{l} x(t) \\ = & (1)[u(t-[-\infty])-u(t+1)]+(-t)[u(t+1)-u(t)]+(t)[u(t)-u(t-1)]+(1)[u(t-1)-u(t-\infty)] \\ = & 1-u(t+1)+(-t)[u(t+1)-u(t)]+(t)[u(t)-u(t-1)]+u(t-1) \\ \text{alternatively, this can be rewritten as} \\ x(t) = & 1+(-1-t)u(t+1)+(2t)u(t)+(1-t)u(t-1) \end{array}$$

QUESTION 4

 $\begin{array}{l} x \text{ is causal } \Rightarrow x(t) = 0 \text{ for } t < 0. \\ v_1 \text{ is anticausal } \Rightarrow v_1(t) = 0 \text{ for } t > 0 \Rightarrow x(t) = 0 \text{ for } t > 2. \\ v_2 \text{ is even } \Rightarrow v_2(t) = v_2(-t) \Rightarrow x(t+1) = x(-t+1) \Rightarrow x(t) = x(2-t) = (2-t) - 1 = 1 - t \text{.} \\ \text{therefore, we conclude that} \\ x(t) = \begin{cases} 1 - t & 0 \leq t < 1 \\ t - 1 & 1 \leq t \leq 2 \\ 0 & \text{otherwise.} \end{cases}$

QUESTION 5

expressing x_3 in terms of x_1 and x_2 , we have $x_3(t)=2\,x_1(t)+2\,x_1(t-1)+x_2(t-1)$. since the system is LTI, we have that the input $a\,x_i(t-b)$ yields the output $a\,y_i(t-b)$. therefore, we have (from equation above) $y_3(t)=2\,y_1(t)+2\,y_1(t-1)+y_2(t-1)$.