证明方法

瞿裕忠 教授

南京大学计算机科学与技术系

证明方法(1)

- 引言
- 证明方法(上)

- 定理 (Theorem)
 - 能够被证明为真的陈述,通常是比较重要的陈述。
- 证明 (Proof)
 - 表明陈述 (定理) 为真的有效论证。
- 定理证明中可以使用的陈述
 - (当前) 定理的前提
 - 术语的定义
 - 公理(假定)
 - 已经证明的定理(推论、命题、引理)

- 定理的陈述(举例)
 - 如果x>y,其中x和y是正实数,那么 $x^2>y^2$ 。
- 形式化表示 (逻辑公式)
 - 对所有正实数x和y,如果x>y,那么 $x^2>y^2$ 。
 - $\forall x \forall y((x>y) \rightarrow (x^2>y^2))$ //论域为正实数

• 如何证明

- 定理的陈述为: $\forall x \forall y (P(x, y) \rightarrow Q(x, y))$
- 先证明,对论域中的任一元素a和b, $P(a,b) \rightarrow Q(a,b)$
- 再使用全称生成,得到 $\forall x \forall y (P(x, y) \rightarrow Q(x, y))$

- 更严格的证明
 - 对论域中的任一元素a, 要证明 $\forall y (P(a, y) \rightarrow Q(a, y))$
 - 对论域中的任一元素b, 给出 $P(a, b) \rightarrow Q(a, b)$ 的证明
 - 再使用全称生成,得到 $\forall y (P(a, y) \rightarrow Q(a, y))$
 - 再使用全称生成,得到 $\forall x \forall y (P(x, y) \rightarrow Q(x, y))$
- 有效的证明方法
 - 明确的证明框架,比如,反证法(广义)和数学归纳法
 - 严格的逻辑基础(遵循一阶谓词逻辑的有效论证)

- 猜想 (conjecture)
 - 尚未被证明为真的陈述,通常是比较重要的陈述。
 - 尚未有效论证,也没有被证伪。//哥德巴赫猜想

备注:一阶谓词逻辑是不可判定的

猜想

有效的证明方法

公理 定理 理论

概念: C₁,..., C_m

术语: T₁,...,T_n

- 证明方法
 - 逻辑基础
 - 基本框架
- 证明方法(上)
 - 直接证明
 - 反证法
 - 归谬法
 - 等价性证明

直接证明

- 定义
 - 整数n是偶数,如果存在一个整数k使得n=2k;整数n是奇 数,如果存在一个整数k使得n=2k+1。
 - 备注:一个整数要么是偶数,要么是奇数。
- 定理: 若n是奇数,则 n^2 是奇数。 $\forall n (Odd(n) \rightarrow Odd(n^2))$

$$\forall n \ (Odd(n) \rightarrow Odd(n^2))$$

- 任意给定一个奇数n,存在一个整数k , n=2k+1
- $n^2=2(2k^2+2k)+1$
- n²是奇数
- 所以,对任意奇数n, n²是奇数。

反证法

•
$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

- 证明框架
 - $\neg q \vdash \neg p$
 - 所以, $p \rightarrow q$ 成立

反证法(举例)

- 若3n+2是奇数,则n是奇数。
 - //直接证明的设想不奏效。3n+2 =2k+1 ⇒?
 - 假设结论不存立(¬q)
 - n是偶数,存在一个整数k使得n=2k
 - 3n+2=2(3k+1)
 - 3n+2是偶数 (¬p)
 - 因此,若3n+2是奇数,则n是奇数 ($p \rightarrow q$)

归谬法

•
$$q \equiv \neg q \rightarrow \mathbf{F}$$

- 证明框架
 - $\neg q$ ⊢ Contradiction (矛盾, 比如 $r \land \neg r$)
 - 所以,q成立

归谬法(举例)

- There is no rational number whose square is 2.
- Proof
 - Extra hypothesis: $(p/q)^2=2$, and p,q are integers which have no common factors except for 1.
 - Then, $p^2=2q^2 \Rightarrow p^2$ is even $\Rightarrow p$ is even $\Rightarrow p^2$ is multiple of 4 $\Rightarrow q^2$ is even $\Rightarrow q$ is even $\Rightarrow p$, q have 2 as common factor $\Rightarrow contradiction$

反证法 (广义)

- 原理
 - $p_1 \wedge ... \wedge p_n \rightarrow q \equiv \neg q \wedge p_1 \wedge ... \wedge p_n \rightarrow \mathbf{F}$
- 证明框架
 - $\neg q, p_1, ..., p_n \vdash \text{Contradiction}$ (矛盾,比如 $p_1 \land \neg p_1$)
 - 所以, $p_1 \wedge ... \wedge p_n \rightarrow q$

等价性证明

- 原理
 - $[p_1 \leftrightarrow p_2 \leftrightarrow ... \leftrightarrow p_n] \leftrightarrow [(p_1 \rightarrow p_2) \land (p_2 \rightarrow p_3) \land ... \land (p_n \rightarrow p_1)]$
- 证明框架
 - $p_1 \vdash p_2$
 - $p_2 \vdash p_3$
 - ...
 - $p_n \vdash p_1$
 - 因此, $p_1 \leftrightarrow p_2 \leftrightarrow ... \leftrightarrow p_n$ 。

Q&A

欢迎提问

证明方法(2)

- 证明方法(下)
 - 分情形证明
 - 存在性证明
 - 唯一性证明
 - 寻找反例
- 数学与猜想

分情形证明

- 原理
 - $p_1 \vee ... \vee p_n \rightarrow q \equiv (p_1 \rightarrow q) \wedge ... \wedge (p_n \rightarrow q)$
- 证明框架
 - $p_1 \vdash q$
 - ...
 - $p_n \vdash q$
 - 因此, $p_1 \vee ... \vee p_n \rightarrow q$

分情形证明(举例)

- 当n是一个正整数,且n≤4时,(n+1)³≥3ⁿ。
 - n=1, 2, 3, 4. (穷举)
- 当n是一个整数时,有n²≥n。
 - n≤0
 - n≥1
- $(x+y)^r < x^r + y^r$, 这里x, y是正实数, r是0 < r < 1的实数.
 - 不失一般性,假设x+y=1. 否则, $\diamondsuit x'=x/(x+y), y'=y/(x+y)$
 - $x < x^r$, $y < y^r \Rightarrow x+y < x^r+y^r \Rightarrow (x+y)^r < x^r+y^r$

存在性证明

- 证明目标
 - $\exists x P(x)$
 - 构造性证明
 - 存在这样的正整数,有两种方式表示为正整数的立方和。
 - $1729 = 10^3 + 9^3 = 12^3 + 1^3$
 - 非构造性证明
 - 存在无理数x和y 使得x y是有理数
 - $y^2=2$, $x=y^y$, $x^y=(y^y)^y=y^2=2$
 - 若x是无理数, x和y即为所求; 否则, y和y即为所求。

唯一性证明

• 证明目标

- $\exists x \ (P(x) \land \forall y \ (y \neq x \rightarrow \neg P(y))$
- $\exists x \ P(x) \land \forall y \ \forall z \ (P(y) \land P(z) \rightarrow y = z)$
- 举例,设 $a\neq 0$, ax+b=c有唯一的解。

寻找反例

原理

- $\neg \forall x \ P(x) \equiv \exists x \ \neg P(x)$
- 举例
 - 每个正整数都是两个整数的平方和
 - 3
 - 每个正整数都是三个整数的平方和
 - 7
 - 每个正整数都是四个整数的平方和?

证明中的错误

- a=b 假设a和b是两个相等的正整数
- a²=ab
 两边乘以a
- $a^2-b^2=ab-b^2$ 两边减去 b^2
- (a-b)(a+b) = (a-b)b
- (a+b) = b 两边除以(a-b)
- 2b = b
- 2 = 1

数学与猜想(费马大定理)

- Pierre de Fermat (1601-1665), France
 - Fermat's Last Theorem (1637) (费马<u>大定理</u>)
 - xⁿ+yⁿ=zⁿ (n>2, xyz≠0)没有整数解
- Andrew Wiles (1953-), Oxford, England
 - 1994/1995完成了费马大定理的证明(约10年时间)
 - 椭圆曲线理论

数学与猜想(哥德巴赫猜想)

- Goldbach Conjecture(1742年给欧拉的信中)
 - 任一大于2的整数都可写成三个质数之和。
- 欧拉版本(在给哥德巴赫的回信中)
 - 任一大于2的偶数都可写成两个质数之和。
 - $\forall n(even(n) \land (n \ge 2) \rightarrow \exists m \exists k(p(m) \land p(k) \land (n = m + k)))$
- "a+b"猜想
 - 任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和。
- 1966年陈景润(1933-1996)证明了"1+2"猜想

数学与猜想(四色猜想)

- Four Color Theorem
 - Proposed by Francis Guthrie in 1852
 - Proven in 1976 by Kenneth Ira Appel (1932-2013) and Wolfgang Haken (1928-)
 - Percy John Heawood (1861-1955, Britain) proved the five color theorem in 1890

世界数学难题

- Hilbert's problems (23), ICM'1900, Paris
- Millennium Prize Problems (7) by the Clay Mathematics Institute in 2000
 - 1. P versus NP problem
 - 2. Hodge conjecture
 - 3. Poincaré conjecture (solved by Perelman)
 - 4. Riemann hypothesis
 - 5. Yang–Mills existence and mass gap
 - 6. Navier-Stokes existence and smoothness
 - 7. Birch and Swinnerton-Dyer conjecture

Grigori Perelman (1966-, Russian)

In November 2002, Perelman posted the first of a series of eprints to the arXiv, ...

He declined to accept
Fields Medal award in 2006
Millennium Prize award in 2010

小结

- 证明方法的重要性
- 有难度的证明
 - 广义反证法
 - 分情形证明法
 - 数学归纳法
- 猜想的重要性

Q&A

欢迎提问