Basard N1

$$MU_{I} = 0.3 \cdot K\Pi \quad K_{0} = 14,2 \% \frac{1}{109}$$

$$T_{0} = 4 \cdot 2099 \quad K_{0} = K_{0} + K_{0} + K_{0} + K_{0}$$

$$K_M = 30\tau. g.e$$

Penersun

$$T_3 = 42099$$
 $K_{\Pi} = 150 \text{ T.9e.}$
 $K_{\Pi} = 150 \text{ T.9e.}$

$$K_0 = K_\Pi - A_T \cdot T_0$$
 $A_T = \frac{K_0 \cdot K_\Pi}{400\%} = 26.98 \frac{7.9 \, e}{209}$

$$(R_0) = 190 - 26.98 * 9 = 82.08 \text{ r.g.e}$$

3aga 40e 2:

Dano

Penelsene:

$$Q_{CMT.M.II} = \frac{150 \cdot 20 \cdot 8}{360} = 66,63$$

Kod.
$$couj I = 13035 \tau.p$$
 $Cut.n.II = \frac{150 \cdot 20 \cdot 8}{360} = 66,67$
 $Sup II = 3100 p.$
 $Cut. III = \frac{40 \cdot 5 \cdot 20}{360} = 11,11$
 $T = 2$

QCMT JM-3.77 =
$$\frac{100 \cdot 2 \cdot 20}{360} = 11,11$$

QCMT B.M. II = $\frac{4 \cdot 66,67}{100} = 4,67$

Q CHT B.M. II =
$$\frac{4.66,67}{100} = 4,67$$

$$Q_{CUST.T.II} = \frac{30.66.67}{100} = 20$$
; $Q_{CUST} M57/II = \frac{3.66.67}{100} = 2$

$$Q_{CMT} + II = \frac{30.66,64}{100} = 20$$

KeV. 11. 3. II =
$$T_{3.M}$$
 QCCUT. M + $\Sigma T_{3.MU}$ QCCUT. M + $T_{3.8.M}$ QCCUT. δM + $\delta M = 1$ + $\delta M = 1$ | $\delta M = 1$

$$K_{H.3}TT = \frac{Se + 0, SSH}{Sup} = 0,84$$

$$K_{00}$$
. H.M. II = $N_{S_{PP}}$ Ty KH.3 = $\frac{20.3100.3.5 \cdot 0.84}{360} = 506$

$$KOST.\Pi II = QCYT T3.T.\Pi = \left(\frac{NSUD}{F_K}\right)T.3T.\Pi = \left(20.\frac{3400}{360}\right).5 = 861$$

Basara 3

Dano
$$N_{74} = 1.08 \cdot N_{6a3} \quad I_{nr} = 100 \cdot \left(\frac{q_{ne}}{q_{6a3}}\right) \cdot \frac{Q = \frac{N_{rog}}{P_{c,n}}}{P_{c,n}}$$

$$I_{nr} = 103.5\%$$

$$\frac{N_{n,i}}{P_{n,i}} \cdot \frac{P\delta_{a3}}{N_{obs}} = 1.035$$
; $\frac{P\delta_{a3}}{P_{n,i}} = 1.08 = 1.035$;

$$\frac{P_{nn}}{P_{\delta as}} = \frac{1.08}{1,035} = 1.043$$
; $P_{cn} = \frac{P_{nn} - P_{\delta as}}{P_{\delta as}}$. $100\% = \frac{1.043 - 1}{1}$

= 4.3% Oalet: 4.3%

CTPZ

Basa rowy

Dayo

$$M_1 = 8.5 \text{K2}$$
; $K_4 = 2.5$
 $M_2 = 4 \text{K2}$; $K_{0.3.} = 1.3$
 $H_{30} = 600 \text{ ge}$; $K_{0.4} = 1.05$
 $H_{CTX} = 2500 \frac{9.0}{T}$
 $D_{yp} = 280 \text{ g.e}$

$$M_1 = 8.5 \text{Ke}$$
; $K_4 = 2.5$
 $M_2 = 4 \text{Ke}$; $K_{0.3.} = 1.3$
 $U_{30} = 600 \text{ g.e}$; $K_{0.3.} = 1.3$
 $U_{30} = 600 \text{ g.e}$; $K_{0.3.} = 1.05$
 $V_{4} = 2500 \frac{9.6}{7}$
 $V_{4} = 2500 \frac{9.6}{7}$

Bagana NS

Dano

Pencerule

Such = 107.p

Unpous = Such (1+ kney)

$$CA = 25\%$$

Khay = 15%

 $CA = \frac{A}{4apaux} + A$
 100%
 $A = \frac{A}{415+A} = \frac{1}{4} = 3$

$$U_{\text{OTT.MP}} = \left(U_{\text{MPOUS}} + A \right) \left(1 + \frac{C_{\text{H9C}}}{100} \right) = \left(11.5 + 3.8 \right) \left(1 + \frac{18}{100} \right) = 18.05 \text{ T.p}$$

$$O_{\text{T}} b \in \mathcal{T} : A = 3.8 \text{ T.p} \quad U_{\text{OTN.MP}} = 18.05 \text{ T.p}$$