Нейронные сети в машинном обучении

Лекция 3 Сверточные нейронные сети

Содержание

- 1. Проблемы полносвязных нейронных сетей
- 2. Сверточные нейронные сети
- 3. Интерпретация обученных моделей
- 4. Transfer learning
- 5. Домашнее задание

Как устроены изображения: черно-белые

Как устроены изображения: цветные

Как устроены изображения: цветные

Datasets

Classes: 1000

Training images: 1,128,167

Validation images: 50,000

Test images: 100,000

Open Images Dataset V7 and Extensions

Classes: 600

Training images: 14,610,229

Validation images: 303,980

Test images: 937,237

Признаки - это яркости всех пикселей

Хотим сделать классификатор grayscale-изображений цифр от 0 до 9:

- Размер изображения: 5 x 5 пикселей
- Используем полносвязную сеть с одним скрытым слоем

Какова размерность весов этого слоя?

Признаки - это яркости всех пикселей

Хотим сделать классификатор grayscale-изображений цифр от 0 до 9:

- Размер изображения: 5 x 5 пикселей
- Используем полносвязную сеть с одним скрытым слоем

Какова размерность весов этого слоя?

Число входов = 25

Число выходов = 10

Число весов = 260

Проблемы полносвязных сетей

1. Требуется огромное количество нейронов

ImageNet: 1000 классов

Число параметров однослойной сети:

224 x 224 x 3 x 1000 ~ 150 000 000

Проблемы полносвязных сетей

2. Нет инвариантности к смещениям: карты активаций различаются

Решение

Возможное решение – введение новых типов слоев:

- Сверточные слои
- Пулинг
- Dropout (лекция 5)
- Нормализация (лекция 5)
- ...

Операция свертки (одномерный случай)

Определение

Результатом операции свертки массива m с ядром a называется сигнал n: $n[k] = \sum_{i=-w}^w m[k+i]a[-i]$. Обозначение: n=m*a

Операция свертки (одномерный случай)

Операция свертки на ч/б изображениях (двумерный случай)

Шаг 8

0

14

Инвариантность свертки к сдвигам

2	20								
0	0	0	0	during (name)					
0	0	0	0	Фильтр (=ядро, =kernel)	0	0	0		
0	0	1	0	* 0 1 =	0	1	0		
					0	0	2		
0	0	0	1				1		
Интуитивно: область изображения, которая сильно откликается на фильтр									
1	0	0	0	Out to the					
0	1	0	0	Фильтр 1 0	2	0	0		
				* =	0	1	0		
0	0	0	0		0	0	0		
0	0	0	0						

Примеры фильтров (ядер)

Тождественное

0 0 0 0 0 1 0

Детектор границ

0	1	0
1	-4	1
0	1	0

0

▶ Увеличение резкости

0	1	0
1	5	1
0	1	0

Padding и stride

Для 1D-свертки: Reflect padding x0 x2 **x3** x4 x1 x1 x4 x3 0101010 0 0 0 0 0 0 0 0

x0

x2

x1

x3

x4

padding = дополнение (отступ)

изображения

stride = шаг свертки

Для 2D-свертки:

101010101010101

0. 0. 0 : 0 : 0 : 0 :

0 0 !

0 1 0 1 0 1 0 1 0 1 0 1 0 1

Zero padding

Операция свертки на цветных изображениях (трехмерный случай)

image

width

image

depth

Операция свертки на цветных изображениях (трехмерный случай)

Задается: кол-во входных каналов, кол-во выходных каналов F, stride (шаг свертки), padding (дополнение изображения), размер ядра

Pooling

- 1. Разбиваем картинку фильтром pooling (например, 2x2)
- 2. Внутри каждой области считаем:
- максимум (max-pooling);
- минимум (min-pooling);
- среднее (mean-pooling)

Для чего нужен pooling?

- Сокращение вычислительных затрат;
- Вырабатывается инвариантность к небольшим сдвигам;
- Побеждают наиболее активные нейроны → получаем местонахождение самого сильного отклика на изображении;
- Увеличивает receptive field (важно на последних слоях сверточной сети находить крупные объекты, которые могут занимать всё исходное изображение)

Сверточные нейронные сети: LeNet (1998)

Сверточные нейронные сети: AlexNet (2012)

Сверточные нейронные сети: VGG-16 (2014)

Метрики качества в соревнованиях

Transfer learning

Обучаем на ImageNet

Признаковое представление

Выходы полносвязных слоев - хорошие признаковые описания изображений (embeddings)

Представления со слоев

Представления со слоев

Представления со слоев

Домашнее задание

Обучить сверточную нейронную сеть с семинара

Спасибо!

