Spark最佳实践

数据平台部-海量计算组 sharkdtu(涂小刚)

Spark

Apache Spark is a Lightning-fast and General engine for In-Memory large-scale data processing.

一个高效通用的内存型分布式计算框架

Why Spark?

Memory-Base

DAG

Functional Programming

性能

迭代和容错

灵活

分布式计算时代的瑞士军刀

Spark体系

Spark分布式运行架构

Master-Slave 主从架构

Spark on Yarn运行架构

主要内容

Spark Core编程模型及最佳实战

Spark Streaming编 程模型及最佳实战

Spark SQL Dataset/DataFrame编 程模型及最佳实战

Spark Core编程模型及最佳实战

RDD

- 分区的
 - 数据是由多个分区组成
 - 可以指定分区方式(Hash...)
- 抽象的
 - 每个分区的数据不一定有物理存储
 - 只能通过compute接口获取分区数据

- 只读的(不可变的)
 - 一个RDD只能转变为另一个RDD

丰富的操作算子

支持的算子列表

 $map(f:T\Rightarrow U)$: $RDD[T]\Rightarrow RDD[U]$ $filter(f: T \Rightarrow Bool) : RDD[T] \Rightarrow RDD[T]$ Lazy的,不会 $flatMap(f: T \Rightarrow Seq[U]) : RDD[T] \Rightarrow RDD[U]$ 立即执行. 只 $sample(fraction : Float) : RDD[T] \Rightarrow RDD[T] (Deterministic sampling)$ 会记住操作 groupByKey() : $RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]$ $reduceByKey(f:(V,V) \Rightarrow V)$: $RDD[(K,V)] \Rightarrow RDD[(K,V)]$ Transformations : $(RDD[T], RDD[T]) \Rightarrow RDD[T]$ union() $(RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]$ join() $(RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))]$ cogroup() crossProduct() : $(RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]$ 触发计算. 根 $mapValues(f: V \Rightarrow W)$ $RDD[(K, V)] \Rightarrow RDD[(K, W)]$ (Preserves partitioning) 据RDD记住的 sort(c: Comparator[K]) $RDD[(K, V)] \Rightarrow RDD[(K, V)]$ 操作依次计算 partitionBy(p : Partitioner[K]) $RDD[(K, V)] \Rightarrow RDD[(K, V)]$ count() $RDD[T] \Rightarrow Long$ collect() $RDD[T] \Rightarrow Seq[T]$ Actions $reduce(f:(T,T)\Rightarrow T)$ $RDD[T] \Rightarrow T$ lookup(k : K) : $RDD[(K, V)] \Rightarrow Seq[V]$ (On hash/range partitioned RDDs) save(path: String) Outputs RDD to a storage system, e.g., HDFS

RDD之间存在依赖关系

RDD编程模型

- 编程方式:定义RDD之间的转换,通过action方法得到结果
- 编程语言: 支持Scala, Java, Python, R等
- 内存计算:支持内存等多种cache,保存中间结果,避免重计算
- 容错机制: RDD血缘关系恢复, 支持checkpoint

RDD编程模型

举例: WordCount简单实例(scala)

```
import org.apache.spark.{SparkContext, SparkConf}
object WordCount {
 def main(args: Array[String]) {
   if (args.length < 2) {
      System.err.println("Usage: WordCount <inputfile> <outputfile>")
     System.exit(1)
   val conf = new SparkConf().setAppName("WordCount")
   val sc = new SparkContext(conf)
   val result = sc.textFile(args(0))
      .flatMap(line => line.split("\\s+"))
                                                       transformations
      .map(word => (word, 1))
      .reduceByKey( + )
   result.saveAsTextFile(args(1))
                                                       action
   sc.stop()
```

RDD编程模型

WordCount RDD转换关系

Spark Core编程模型及最佳实战

Scheduler

Spark任务调度

task级的调度, 分区数为多少, 则有多少个task

DAG 划分

Task调度

资源配置 广播变量,一个 单个Executor的cpu Executor一份,多个 core数, 默认一个 Task共享 core运行一个Task Job-1 Executor-n Executor-1 JVM进程 Stage-1 Shuffle Map Task ReduceTask BC变量 线程..... executor-cores Copy1 ReduceTask Task-4 ShuffleMapTask BC变量 CopyN executor-memory parallelism num-executors 单个Executor内存, 总共申请多少 分区数,决定 多个Task共享 个Executor Task有多少

资源配置

- 太大的内存(executor-memory > 15G)
 - 资源浪费,影响其他业务
 - 限制单个Executor的内存不超过14G
 - 大内存需求单独找运维童鞋
- 太大的cpu核数(executor-cores > 5)
 - 丢弃了并发的优势 例如: num-executor=10 executor-cores=10
 - 申请等待时间和风险
 - 建议单个executor的core为2~3个
- 太多的executor(num-executor > 500)
 - 申请等待时间和风险
 - 每个executor都是独立的JVM, 网络IO成本
 - 丢弃了多任务的优势 例如: num-executor=1000 executor-cores=1
- 太多的分区(parallelism > executor * cores * (3-5))
 - 任务过细,轮数太多
 - 增加driver的维护压力

Spark Core编程模型及最佳实战

Shuffle

Spark Shuffle内部原理

2 Phrase: Write & Read

- Shuffle is Expensive
 - 序列化: CPU
 - 跨机器: Network IO
 - 读写文件: Disk IO

- Shuffle操作
 - repartition
 - *ByKey
 - Join & cogroup

Spark Shuffle实例

Shuffle Write: Map Tasks, 分区为3

Spark Shuffle实例

Shuffle Read: Reduce Tasks

- 优化数据结构
 - 尽可能使用原生类型(Int, Long, Double等)
 - 尽可能使用对象数组以及原生类型数组以替代Java或者Scala集合类
 - 尽可能避免采用嵌套数据结构来保存小对象
- 数据落地时, partition数不宜过多
 - 在保存数据到hdfs/tdw前,尽量控制partition数,避免落地后小文件较多影响后续加载,落地前调用 rdd.coalesce(num partition)减少partition数
- 主动Shuffle-repartition
 - 如果分区数较少,可加大分区,将任务细分
 - 提高后续分布式运行的速度
- 调整shuffle read并发度
 - 内存紧俏时,减少shuffle read并发,内存充足时,增加shuffle read并发
 spark.reducer.maxSizeInFlight=48m // default: 48m

- 多表Join
 - 如果要Join多个RDD, 请使用cogroup

```
// 多次shuffle,多一个join多一次shuffle val joinedRdd = rdd1.join(rdd2).join(rdd3)

// 使用cogroup join三个rdd val rdd2Data = rdd1.cogroup(rdd2, rdd3)

// 使用cogroup join四个rdd val rdd2Data = rdd1.cogroup(rdd2, rdd3, rdd4)
```

• 避免使用groupByKey做聚合操作

- 特征: groupByKey.mapValues(_.sum)

- 改进: rdd.reduceByKey(_+_)

- 数据倾斜处理--join
 - 对key进行分桶 缺点:小表会膨胀,整体运行较慢

```
leftRdd.map( x => ((x._1, Random.nextInt(100)), x._2)).join(
  rightRdd.flatMap(x => for (i <- o until 100) yield((x._1, i), x._2))
) // leftRdd is skewed</pre>
```


Spark Core编程模型及最佳实战

Broadcast

Broadcast基本原理

No broadcast: 每次启动任务都要传输大对象

Broadcast基本原理

Broadcast: 每个executor传输一次大对象,并使用torrent加快网络传输

Broadcast举例

- 广播大对象
 - 如果任务逻辑中会使用比较大的对象(大于10M),例如静态查找表,则考虑将其变成广播变量

```
val dict: HashMap[Int, String] = ...
val broadcastDict = sc.broadcast(dict)
rdd.map { x =>
  val dict = broadcastDict .value
  ...
}
```


实现MapJoin

- Broadcast+map 大表join小表
 - 避免shuffle

```
// 传统的join操作会导致shuffle操作
val joinedRdd = rdd1.join(rdd2)

// 使用Broadcast将一个数据量较小的RDD作为广播变量
val rdd2Data = rdd2.collectAsMap()
val rdd2DataBroadcast = sc.broadcast(rdd2Data)
val joinedRdd = rdd1.map{ x =>
val rdd2Data = rdd2DataBroadcast.value
...
}
```


MapJoin处理数据倾斜

- 数据倾斜处理--join
 - 将rdd分割成两部分进行join

```
// leftRdd is skewed
val cnts = leftRdd.mapValues(_ => 1L).reduceByKey(_ + _).persist(storageLevel)
val skewedCnts = cnts.filter(_._2 >= 100000).collectAsMap()

val bcSkewedCnts = sc.broadcast(skewedCnts)
val leftRddSkewedPart = leftRdd.filter{ x => bcSkewedCnts.value.contains(x._1) }
val leftRddNoSkewedPart = leftRdd.filter{ x => !bcSkewedCnts.value.contains(x._1) }

val rightRddBcPart = rightRdd.filter{ x => bcSkewedCnts.value.contains(x._1) }
.collectAsMap()
val rightRddNoBcPart = rightRdd.filter{ x => !bcSkewedCnts.value.contains(x._1) }
```

MapJoin处理数据倾斜

- 数据倾斜处理--join
 - 将rdd分割成两部分进行join

Spark Core编程模型及最佳实战

Cache

Cache基本原理

No Cache

Cache基本原理

Cache

Cache原则

- Persist原则(Cache = Persist(StorageLevel.MEMORY_ONLY))
 - 长链型的RDD,每个都不需要Cache,Spark会链式执行
 - 树型的RDD, 分叉处的RDD, 尽量Cache
 - 多次迭代中,会变化的RDD不需要Cache,不变的RDD要Cache
- Unpersist原则
 - 不使用时尽快显示地调用rdd.unpersist(blocking = false)清除缓存
 - unpersist的RDD, 依然能够被使用, 只是需要被重新计算

Cache 时机

Cache性能

Kmeans算法Cache性能测试

输入大小	driver_memory	num_executor	executor_cores	分区数	聚类个数	迭代次数
9.3g	4g	10	2	100	6	10

	缓存方式	executor内存使用总量	cache比例	训练时间/s	GC时间占比
	MEMORY_ONLY	20g	33%	1558	12%
	MEMORY_ONLY_SER	20g	85%	984	7%
	MEMORY_ONLY_SER + COMPRESS	20g	100%	534	5%
	MEMORY_ONLY	40g	90%	986	7%
•	MEMORY_ONLY	60g	100%	463	4. 7%
	MEMORY_AND_DISK	20g	100%	1182	16. 9%
	DISK_ONLY	20g	100%	514	3. 2%

磁盘是多个Application 共享,存在不稳定性, 所以尽量少用

> 内存充足时推荐: rdd.persist(StorageLevel. MEMORY_ONLY) 内存稀缺时推荐: rdd.persist(StorageLevel. MEMORY_ONLY_SER)

// spark.rdd.compress=true

Spark Core编程模型及最佳实战

Checkpoint

Checkpoint

- Checkpointing is a process of truncating <u>RDD lineage graph</u> and saving it to a reliable distributed (HDFS) or local file system.
- 可靠性
 - sparkContext.setCheckpointDir -> cache->checkpoint

防止计算两次

断链(Truncate RDD lineage)

GraphX or MLLib

Checkpoint举例

• 随着迭代的进行, RDD依赖关系越来越长, driver维护压力变大, 很可能driver OOM

```
var curRdd = init(...).cache()
while(i < maxTimes) {
  val updatedRdd = iteration(curRdd).cache()
  curRdd.unpersist(false)
  curRdd = updatedRdd
  if (i% 20 == 0) curRdd.checkpoint()
  i += 1
}
```


Spark SQL Dataset/DataFrame编程模型及最佳实战

Dataset/DataFrame

Spark SQL概述

- 引入更高级别的API--Dataset/DataFrame
- 充分利用SparkSQL的优化执行策略,用户可省去复杂的优化过程
- 充分利用SparkSQL的二进制编码、内存管理以及Codegen等优化技术

Dataset/DataFrame简介

id	name	gender	age	hobbies
1	Jim	0	19	Football
2	David	0	18	Basketball
3	Joy	0	20	null
4	Linda	1	20	drawing
•••	•••	•••	•••	•••

root

- |-- id: integer (nullable = false)
- -- name: string (nullable = false)
- -- gender: byte (nullable = false)
- |-- age: integer (nullable = false)
- |-- hobbies: string(nullable = true)

DataFrame

- 分布式数据集 (可以理解为一张分布式表/视图)
- 包含schema信息
- 丰富的sql语义算子
- 弱类型,不支持编译期类型检查

type DataFrame = Dataset[Row]

Dataset

- 强类型,拥有RDD和DataFrame 共同优点
- 可以像RDD一样支持编译期类型检查
- 也可以像DataFrame一样调用 sql语义的算子

Dataset/DataFrame编程模型

- · 完全类似于RDD的编程模型
- 新增sql语义算子(select、where、groupBy等), 灵活方便
- Dataset/DataFrame依赖图会被转化为SQL算子,通过SparkSQL引擎执行

Dataset/DataFrame编程模型

举例

```
import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder().appName("Spark-SQL-Example").getOrCreate()
// For implicit conversions like converting RDDs to DataFrames
import spark.implicits._
// you can use custom classes that implement the Product interface
case class Person(name: String, age: Long)
// Encoders are created for case classes
val caseClassDS = Seq(Person("Jim", 43)).toDS()
// val caseClassDS = spark.createDataset(Seq(Person("Jim", 43)))
caseClassDS.show()
// +---+
// |name|age|
// +---+
// |Jim |43 |
// +---+
// Encoders for most common types are automatically provided by importing spark.implicits._
val primitiveDS = Seq(1, 2, 3).toDS()
primitiveDS.map(_ + 1).collect() // Returns: Array(2, 3, 4)
```

Spark SQL Dataset/DataFrame编程模型及最佳实战

Join

Join 概述

// SELECT * FROM A INNER JOIN B ON A.id=B.id WHERE A.score > 60 dfA.join(dfB, \$"dfAKey" === \$"df2Key ", " inner") .where(\$"dfAScore" > 60)

Join 基本流程

Table A (IterA)

a1	a2	•••
•••	•••	•••

streamIter: 流式遍历表

1、遍历表,取出一条记录

rowA

2、根据join条件得到keyA

keyA

4、join rowA 和 rowBs中每条记录

Table B (IterB)

b1	b2	•••
•••	•••	

buildIter: 查找表

3、根据join条件查找 keyB=keyA 的记录

rowA rowBs

5、根据join过滤条件判断是否符合要求

joinedRows

inner join

streamIter: 大表

a1	a2	•••
•••	•••	•••

buildIter: 小表

b1	b2	•••
•••	•••	•••

1、遍历表,取出一条记录

rowA

3、根据join条件查找 keyB=keyA 的记录

2、根据join条件得到keyA

keyA

4、查找成功,得到所有满足条件的记录

rowA

rowBs

Seq.empty

6、根据join过滤条件判断是否符合要求

joinedRows

left outer join

streamIter: 左表

a1	a2	•••
•••	•••	•••

buildIter: 右表

b1	b2	•••
•••	•••	•••

1、遍历表,取出一条记录
rowA 3、根据join条件查找 keyB=keyA 的记录
2、根据join条件得到keyA 4、查找成功,得到所有满足条件的记录 5、查找失败
rowA rowBs rowA nullRow

6、根据join过滤条件判断是否符合要求

joinedRows

right outer join

Spark SQL 之 Join

full outer join

left outer join right outer join 合并结果

left semi join

streamIter: 左表

a1	a2	•••
•••	•••	•••

buildIter: 右表

b1	b2	•••
•••	•••	•••

1、遍历表,取出一条记录

rowA

2、根据join条件得到keyA

keyA

4、查找成功,得到所有满足条件的记录

3、根据join条件查找 keyB=keyA 的记录

5、查找失败

null

rowA

left anti join

streamIter: 左表

a1	a2	•••
•••	•••	•••

buildIter: 右表

b1	b2	•••
•••	•••	•••

1、遍历表,取出一条记录

rowA

2、根据join条件得到keyA

keyA

4、查找成功,得到所有满足条件的记录

3、根据join条件查找 keyB=keyA 的记录

5、查找失败

rowA

null

Join 实现

broadcast join 实现

- 无Shuffle, 在map端完成
- Table B 不能超过 spark.sql.autoBroadcastJoinThreshold=10M

Join 实现

sort join 实现

不满足broadcast join, 默认都采用sort join

Join 实现

hash join 实现

- Table B 超过 10M,即不满足broadcast join条件
- spark.sql.join.preferSortMergeJoin=false
- 分区的平均大小不超过spark.sql.autoBroadcastJoinThreshold=10M
- Table A 大小是 Table B 的三倍以上

Spark SQL Dataset/DataFrame编程模型及最佳实战

Aggregate

Aggregate概述

```
ds.groupBy($"department", $"gender").agg(Map(
   "salary" -> "avg",
   "age" -> "max"
)).show()
```

department	gender	age	salary
1	0	26	5000
1	0	28	6500
2	0	26	5500
1	1	25	5200

	department	gender	max (age)	avg (salary)
•	1	0	28	57500
	1	1	25	5200
	2	0	26	5500

aggregate 表达式,过滤 出需要的列 grouping 表达式,用 于生成key

SELECT max(age), avg(salary) FROM ds GROUP BY department, gender

Aggregate实现

在每个分区里按顺序对每个key进行聚合计算

Aggregate实现

hash aggregate实现

hash aggregate: 只支持原生类型的聚合操作(Boolean, Byte, Short, Int,...)

Spark Streaming编程模型及最佳实践

DStream

Spark Streaming概述

DStream 简介

- 按时间将数据流切分为一个个batch
- Spark将每个batch的数据看做一个RDD,
 Dstream为这些RDD按时间排列的抽象
- Spark按batch时间顺序启动Job处理一个 个RDD输出结果

DStream 编程模型

Spark Streaming数据源

数据源: 文件系统

Spark Streaming数据源

数据源:消息中间件(通过Receiver接收)

Spark Streaming数据源

Spark Streaming编程模型及最佳实践

Long-running

Fault tolerance Performance Stop gracefully

Three Factors of Long-running

Fault tolerance

- 增加AM & Spark Driver重试次数以及长时运行保证

```
// tdw-spark default: 1
spark.yarn.maxAppAttempts=4
spark.yarn.am.attemptFailuresValidityInterval=1h
```

- 增加Executor失败最大容忍次数

```
// default: max(2 * num executors, 3)
spark.yarn.max.executor.failures={8 * num_executors}
spark.yarn.executor.failuresValidityInterval=1h
```

- 增加Task失败最大容忍次数

```
// default: 4 spark.task.maxFailures=8
```

- Performance (保证一个batch 的处理时间不大于一个batch 的间隔)
 - 开启推测执行,淘汰那些跑的慢的Task,注意action操作是幂等的spark.speculation=true
 - 如果数据源是来自Receiver,建议num_receiver=num_executor,同时控制每个batch的partition数

// num_partition = (batch_interval / blockInterval) * num_receiver
spark.streaming.blockInterval=200ms

- 如果数据源是来自消息中间件,建议控制接收速率

spark.streaming.backpressure.enabled=true //单位: 每秒接收记录的条数 spark.streaming.receiver.maxRate=xxx

- Stop gracefully (保证异常退出或主动kill时不丢数据)
 - 应用程序异常退出时,可能还有一些数据尚未处理完,在关闭前做好收尾工作 spark.streaming.stopGracefullyOnShutdown=true
 - 如果主动Kill,上述参数可能并不一定有用

yarn application -kill appid

解决办法:

为应用程序单独开启一个线程监控hdfs文件,当检测到文件被删除后主动stop优雅退出。

谢谢 Q&A