Harsha Kankanamge

ACM 614 - Fall 2018 - Problem Set I

Part B.

Using the dataset 'auto2' that was provided in class, conduct the following analysis and answer the following questions using SAS:

1)Create a scatter plot that compares the weight of the cars to their length. Make the plot with green triangles. Make certain that weight is on the x axis and length is on the y axis. Title the plot 'Weight vs. Length of Cars' and make certain that no regression line is present.

```
proc gplot data=sa_hm.auto2;
    symbol v=triangle c=green;
    plot length*weight;
    Title 'Weight vs. Length of Cars';
run;
```


We can see very strong positive linear relationship between weight and length of the cars. When weight of the cars increases length of the cars also increases.

2)Run a simple linear regression of length (dependent variable) on weight (independent variable). Based on this analysis, how long would you expect a 6,000 pound car to be?

```
proc reg data=sa_hm.auto2;
  model length= weight;
run;
```

The REG Procedure Model: MODEL1 Dependent Variable: length

Number of Observations Read	74
Number of Observations Used	74

		Analysis of Va	ariance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	32390	32390	613.27	<.0001
Error	72	3802.67784	52.81497		
Corrected Total	73	36193			

Root MSE	7.26739	R-Square	0.8949
Dependent Mean	187.93243	Adj R-Sq	0.8935
Coeff Var	3.86702		

		Parameter	Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t							
Intercept	1	106.09652	3.41087	31.11	<.0001							
weight	1	0.02710	0.00109	24.76	<.0001							

Regression model for length:

Length[^] = 0.02710*weight+106.09652

If weight =6000 pound So estimated length would be:

Length^=268.69652

Most of the data points are on or very closer to the line. We can assume residual are normal.

Residuals are randomly distributed around the zero line. Therefore, variances of residuals are homogeneous.

R²=0.8949 So this is very good model for predict the length of the car using weight.

3)What is the average length difference of foreign cars to domestic cars? What is the average weight difference of foreign cars relative to domestic cars?

			The MEA	NS Procedure									
	Analysis Variable : length												
foreign	N Obs	N	Mean	Std Dev	Minimum	Maximum							
0	52	52	196.1346154	20.0460537	147.0000000	233.0000000							
1	22	22	168.5454545	13.6825481	142.0000000	193.0000000							

Average length difference of foreign cars to domestic cars:

Length of domestic car -Length of foreign car =27.5891609

Average length of domestic car is 27.5891609 higher than foreign car

```
proc means data=sa_hm.auto2;
    class foreign;
    var weight;
run;
```

The MEANS Procedure												
Analysis Variable : weight												
foreign	N Obs	N	Mean	Std Dev	Minimum	Maximum						
0	52	52	3317.12	695.3637404	1800.00	4840.00						
1	22	22	2315.91	433.0034542	1760.00	3420.00						

Average weight difference of foreign cars to domestic cars:

weight of domestic car -weight of foreign car =1001.21 pound

Average weight of domestic car is 1001.21 pound higher than foreign car

4)After controlling for the weight of a car, how much shorter is a foreign car on average? Is this a statistically significant difference? (Hint: This will require a multivariate regression)

```
proc reg data=sa_hm.auto2;
  model length= weight foreign;
run;
```

				Model: I		EL1 le: leng	th				
		Number of Observations Read 74									
		Num	ber o	f Obser	vatio	ns Used	74				
			Aı	nalysis (of Va	riance					
			7.	Sum		Mea	ın.		Т		
Source	ce	0	F	Squar		Squa		Valu	ie	Pr > F	
Mode	ł		2	323	95	1619	97	302.8	31	<.0001	
Error		7	71 3	797.772	67	53.4897	76				
Corre	cted Tota	al 7	73	36193							
	Root N	1SE		7.3	7.31367 R-S		uare	0.8	951		
	Depen	dent l	Mean	187.9	3243	Adj F	R-Sq	q 0.8921			
	Coeff	/ar		3.8	9165	;					
			Pa	rameter	Esti	imates					
V	ariable	DF		ameter stimate	Sta	andard Error	t Val	ue	Pr	> t	
In	tercept	1	107	.04581	4.	.64861	23.	03	<.0	001	
w	eight	1	0	.02686	0	.00137	19.	64	<.0	001	
	reign	1	-0	.69945	2	.30975	-0	30	0.7	829	

Multivariate regression model:

Domestic car: 0 Foreign car: 1

Length= 0.02686*weight-0.69945*foreign+107.04581

Average length of the foreign car is **0.69945** less than the domestic car after controlling the weight of the car.

Not significant because of high p-value and lower t value

ß2=coefficient of foreign

H0: ß2=0 H1: ß2≠0

Test statistic t =-0.30 p-value=0.7629>0.05 Do no reject H0

Distinction of length of foreign car and domestic car is not significant for fixed weight.

Most of the data points are on or very closer to the line. We can assume residual are normal.

5)Do foreign cars provide better mileage per gallon, on average? Why or why not?

The MEANS Procedure										
foreign	N Obs	Variable	N	Mean	Std Dev	Minimum	Maximum			
0	52	length weight mpg price	52 52 52 52 52	198.1348154 3317.12 19.8269231 6072.42	20.0460537 695.3637404 4.7432972 3097.10	147.000000 1800.00 12.000000 3291.00	233.0000000 4840.00 34.0000000 15906.00			
1	22	length weight mpg price	22 22 22 22 22	168.5454545 2315.91 24.7727273 6384.68	13.6825481 433.0034542 6.6111869 2621.92	142.0000000 1760.00 14.000000 3748.00	193.0000000 3420.00 41.0000000 12990.00			

Yes, foreign cars provide better mileage per gallon, on average.

Average MPG of foreign car is 24.7727273

Average MPG of domestic car is 19.8269231

On average foreign car has 4.9458042 higher MPG than domestic car.

Pe	Pearson Correlation Coefficients, N = 74 Prob > r under H0: Rho=0										
	mpg	weight	length	foreign							
mpg	1.00000	-0.80717 <.0001	-0.79578 <.0001	0.39340 0.0005							
weight	-0.80717 <.0001	1.00000	0.94601 <.0001	-0.59283 <.0001							
length	-0.79578 <.0001	0.94601 <.0001	1.00000	-0.57020 <.0001							
foreign	0.39340 0.0005	-0.59283 <.0001	-0.57020 <.0001	1.00000							

If we can compare the correlation and mean value of length and weight for foreign and domestic car.

Length and weight have strong negative correlation with MPG. Since domestic car has higher length and weight it should has lower PMG compare with foreign car. Even though correlation between MPG and foreign is weak, it is positive. It means that foreign car has higher MPG compared with domestic cars.

If we build the regression model for mpg with weight.

```
proc reg data=sa_hm.auto2;
model mpg= weight;
run;
```

			M	odel:	MODE	edure EL1 ole: mpg					
	Number of Observations Read 74 Number of Observations Used 74										
		Nun	nber of	Obser	rvatio	ns Used	14	+			
			Ana	lysis	of Var	riance					
Source		DI	F S	Sum (Me: Squa		F Val	lue	Pr > F	
Model	Model		1 159	1591.99020		1591.99020		134.	.62	<.0001	
Error	Error			1.4692	26	11.825	96				
Correcte	ed Total	7:	3 244	3.4594	46						
	Root N	MSE		3.43889		R-Square		0.65	15		
	Depen	dent	Mean	21.2	9730	Adj R-	- Sq 0.64		167		
	Coeff	Var		16.1	4707						
			Para	amete	r Esti	mates					
Vari	able	DF	Param Estin		St	andard Error	t V	alue	Pr>	· [t]	
1 - 4 -	rcept	1	39.44	1028	1	.61400	2	4.44	<.00	01	
inte			-0.00601 0			0.00051788					

Mpg^= -0.00601*weight+39.44028

Since the domestic car has higher weight, domestic car has lower mpg compared with foreign car.

```
proc sgplot data=sa_hm.auto2;
    scatter x=weight y=mpg / group=foreign
        markerattrs=(symbol=circlefilled size =15) transparency=0.15;
    xaxis grid;
    yaxis grid;
run;
```

Domestic car: 0 (blue) Foreign car: 1 (red)

If cars have lower weight so that cars have higher mpg according to the graph.

In here we can see that foreign car has lower weight and higher mpg compared with domestic cars.

The reasons are that domestic cars have lower MPG compared with foreign cars.

- 1 Higher weight of domestic cars compared with foreign cars.
- 2 Higher length of domestic cars compared with foreign cars.

6)After controlling for the weight and length of a car, do foreign cars provide better mileage per gallon? Is this a statistically significant finding? With 95 percent confidence, what is the estimated range of the average effect that being foreign-made has on a car's mileage per gallon?

proc glm data=sa_hm.auto2; model mpg= weight length foreign/solution clparm; run;

			1	The GLN	M Proce	dure					
			Dep	pendent	t Variabl	e: mpg					
Sou	rce	D	F Sum	of Squ	ares I	Mean S	quare	F Va	alue	Pr > F	
Mod	Model		3 1	1645.288	8896	548.42	29632	48	8.10	<.0001	
Erro	r	7	0	798.170	0563	11.40	02437				
Con	ected Tota	al 7	3 2	2443.459	9459						
		R-Squ	iare Co	oeff Var	Root	MSE	mpg N	lean			
	0.67		344 15	5.85530	3.37	6749	21.2	9730			
	Source	DF	-71		Mean Square			F Value		F	
	weight	1			1591.990203		-			1	
	length		1 24.090421							5	
	foreign	reign 1		08272	29.2	208272	2	.56	0.114	0	
	Source	DF	Type	III SS	Mean 9	Square	F Va	lua	Pr >	E	
	weight	1	84.743			324180			0.008		
	length	1	26.001			119804	-		0.135		
	foreign	1	29.208	27198	29.208	327198	2	.56	0.114	0	
Parameter	Esti	mate		dard Error	t Value	Pr >	tl s	95% C	onfid	ence Limit	s
Intercept	50.5370	1292	6.2458	3515	8.09	<.000	1 38	.08008	8750	62.99393	835
weight	-0.0043	6563	0.0016	0137	-2.73	0.008	1 -0.	.00758	5947	-0.00117	179
length	-0.0827	4318	0.0547	9417	-1.51	0.135	5 -0.	19202	2670	0.02654	035
foreign	-1.7079	0387	1.0671	1033	-1.60	0.114	0 -3	.83618	8832	0.42038	057

 $Mpg^{-2-0.00436563}* weight-0.08274318* length-1.70790387* for eign+50.53701292$

After controlling for the weight and length of a car, foreign cars do not provide better mileage per gallon according to the above model. Foreign cars have 1.70790387 less mpg than domestic cars on average according to the model after controlling the weight and length.

Not significant because of high p-value and lower t value

```
ß3=coefficient of foreign
H0: ß3=0
H1: ß3≠0
```

Test statistic t =-1.6 p-value=0.1140>0.05 Do no reject H0

Distinction of mpg of foreign car and domestic car is not significant for fixed weight and length.

This is not a statistically significant finding

Estimated range of the average effect that being foreign-made has on a car's mileage per gallon: -3.83618832 to 0.42038057

95% confidence interval for mean mpg for domestic cars and foreign cars.

```
proc sql;
create view work.cars as
  select * from sa_hm.auto2
    order by foreign;
quit;
proc means data=work.cars lclm uclm alpha=0.05;
  var mpg;
by foreign;
run;
```


7)Create a summary table that reports average price of a car by its repair status ranking and whether or not it is foreign or domestic.

proc means data=sa_hm.auto2;
class foreign rep78;
var price;
run;

Analysis Variable : price													
foreign rep78 N Obs N Mean Std Dev Minimum Maximum													
0	1	2	2	4564.50	522.5519113	4195.00	4934.00						
	2	8	8	5967.63	3579.38	3887.00	14500.00						
	3	27	27	6607.07	3881.27	3291.00	15906.00						
	4	9	9	5881.56	1592.02	3829.00	8814.00						
	5	2	2	4204.50	311.8340905	3984.00	4425.00						
1	3	3	3	4828.67	1285.61	3895.00	6295.00						
	4	9	9	6261.44	1896.09	3995.00	9735.00						
	5	9	9	6292.67	2765.63	3748.00	11995.00						

proc means mean data=sa_hm.auto2;

class foreign rep78;
var price;
run;

Analysis Variable : price			
foreign	rep78	N Obs	Mean
0	1	2	4564.50
	2	8	5967.63
	3	27	6607.07
	4	9	5881.56
	5	2	4204.50
1	3	3	4828.67
	4	9	6261.44
	5	9	6292.67

8) What are some of the most difficult or confusing aspects of SAS to you so far?

How to decode the categorical variable back to its normal name?

Calculate the mean difference by categorical variable directly without doing manually.

Can we analyze the big data set with SAS as Python?

run;

9) **[ADVANCED QUESTION]** Create a summary tables that details the average price of a car by manufacturer of a car (note, this is not the make of the car). What is the highest priced manufacturer, on average? What is the lowest, on average?

```
data sa_hm.auto3;
  set sa_hm.auto2(keep=make price mpg rep78 hdroom trunk weight length
turn displ gratio foreign);
  length manufacturer $20;
  manufacturer = substr(make, 1, index(make, ' ') - 1);
run;

proc means data=sa_hm.auto3;
  class manufacturer;
    var price;
```

The MEANS Procedure Analysis Variable: price manufacturer N Obs Mean Std Dev Minimum Maximum AMC 4215.67 485.6267428 3799.00 4749.00 3 3 Audi 2 2 7992.50 2400.63 6295.00 9690.00 BMW 9735.00 9735.00 9735.00 1 1 7 Buick 7 2257.92 4082.00 10372.00 6075.29 Cad. 3 13930.33 2313.71 11385.00 15906.00 5705.00 Chev. 6 6 4372.33 911.3044863 3299.00 Datsun 4 6006.50 1573.12 4589.00 8129.00 4 5055.50 1236.39 3984.00 6342.00 Dodge 4 4296.00 Fiat 1 4296.00 4296.00 Ford 2 4288.00 142.8355698 4187.00 4389.00 2 2 5149.00 919.2388155 4499.00 5799.00 Honda Linc. 3 3 12852.33 1175.50 11497.00 13594.00 3995.00 3995.00 Mazda 1 1 3995.00 3291.00 6303.00 Merc. 6 6 4913.83 1239.38 Olds 7 6050.86 2486.49 4181.00 10371.00 Peugeot 12990.00 12990.00 1 12990.00 Plym. 5 5 4820.00 955.6874489 4060.00 6486.00 Pont. 6 4878.83 582.4851643 4172.00 5798.00 6 3895.00 Renault 1 3895.00 3895.00 Subaru 1 3798.00 3798.00 3798.00 5122.00 3748.00 5899.00 Toyota 3 3 1193.32 VW 4 4 6021.00 1166.44 4697.00 7140.00 11995.00 11995.00 11995.00 Volvo 1 1

The highest priced manufacturer is "Cad" (\$13930.33) on average

The lowest priced manufacturer is "Subaru" (\$3798) on average