





Particle Fluxes, North-Eastern Nordic Seas: 1983-1986

(Nordic Seas Sedimentation Data File, Vol. 1)

by

Susumu Honjo, Steven J. Manganini, Amy Karowe, Bonnie L. Woodward

Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543

April, 1987

Technical Report

Funding was provided by the Office of Naval Research under Grant Number N00014--85-C-0001.

Reproduction in whole or in part is permitted for any purpose of The United States Government. This report should be cited as:
Woods Hole Oceanog. Inst. Tech. Rept. WHOI-87-17.

Approved for publication; distribution unlimited

Approved for Distribution:

David A. Ross, Chairman

Geology and Geophysics Department

## Joint Program:

Woods Hole Oceanographic Institution and University of Kiel, University of Bremen, FRG

NORDIC SEAS SEDIMENTATION

DATA FILE, Vol. 1

PARTICLE FLUXES,

NORTH-EASTERN NORDIC SEAS:

1983 - 1986

Accession For

NTIS GRA&I
DTIC TAB
Unannounced
Justification

By
Pistribution/
Availability Codes

Avail and/or
Dist Special

Sponsored by Office of Naval Research Arlington, Virginia USA



## Table of Contents

|                            |                             |              |      |              |     |      |     |     |    |    |    |    |     |    |    |    |     |     |     |     |     |     |   | P | age      |
|----------------------------|-----------------------------|--------------|------|--------------|-----|------|-----|-----|----|----|----|----|-----|----|----|----|-----|-----|-----|-----|-----|-----|---|---|----------|
| Abstract .                 | • • •                       |              |      |              | •   |      | •   |     |    | •  |    | •  |     | •  |    | •  | •   | •   | •   |     | •   | •   | • | • | 1        |
| Introductio                | n                           |              |      |              | •   |      | •   |     |    |    |    | •  |     |    |    | •  | •   | •   | •   | •   |     | •   | • |   | 1        |
| Field Progr                | am .                        |              |      |              | •   |      | •   |     | •  | •  |    | •  |     |    |    | •  | •   | •   |     |     | •   | •   | • |   | 3        |
| Laboratory                 | Analys:                     | is .         | •    |              | •   |      | •   | •   | •  | •  |    | •  |     |    | •  | •  | •   | •   | •   |     |     |     | • |   | 3        |
| Results .                  | • • •                       |              |      |              | •   |      | •   |     |    |    |    | •  | •   | •  |    |    | •   | •   |     |     |     |     |   | • | 4        |
| Acknowledgm                | ents                        |              |      |              | •   |      | •   | •   | •  | •  |    | •  | •   | •  | •  | •  |     |     |     |     |     |     |   |   | 5        |
| References                 | • • •                       |              | •    | •            | •   |      | •   | •   | •  | •  | •  | •  | •   | •  | •  | •  | •   | •   | •   | •   | •   | •   | • | • | 6        |
|                            | edimen                      |              |      |              |     |      |     |     |    |    |    |    |     |    |    |    |     |     |     |     |     |     |   |   | 7        |
| Table 3. C                 | verage<br>omparia<br>Nordic | son o        | f ma | ass          | flu | uxe: | s t | et  | we | en | S  | ta | ıti | or | 18 | iı | ı t | :he | 2 1 | 101 | ctt | ıeı | m |   | 10       |
|                            | Location PARFLUX Analyt:    | K Mar        | k 5  | and          | 16  | se   | din | nen | ıt | tr | aŗ | 8  | •   | •  | •  |    | •   | ٠   |     |     | •   |     | • |   | 13       |
|                            | ·                           |              | •    |              |     |      |     |     |    |    |    |    |     |    |    |    |     |     |     |     |     |     |   |   | -        |
| Flux Data F                |                             |              |      |              |     |      |     |     |    |    |    |    |     |    |    |    |     |     |     |     |     |     |   |   |          |
| Norwegian-A                | tlanti                      | c Cur        | rent | : Aı         | rea | •    | •   | •   | •  | •  | •  | •  | •   | •  | •  | •  | •   | •   | •   | •   | •   | •   | • | • | 15       |
| LB-1<br>BI-1               |                             | Lofo<br>Isla |      |              |     |      | tar |     |    |    |    |    |     |    |    |    |     |     |     |     |     |     |   |   | 16<br>26 |
| NA-1<br>NB-1               | Aegi                        |              | ge . |              | •   |      | •   | •   | •  | •  |    | •  | •   |    |    | •  | •   | •   |     | •   |     |     |   |   | 36       |
| East Greenl                | and/Fra                     | am St        | rait | <b>E A</b> 1 | rea |      | •   | •   | •  |    |    |    | •   | •  |    |    | •   | •   |     | •   |     |     | • | • | 56       |
| FS-1<br>GB-2.2K<br>GB-2.3K | Green                       |              | Bas  | in,          | , 1 | , 96 | 6 п | 12  |    |    | •  |    | •   |    |    |    |     |     |     |     |     |     |   |   |          |

Nordic Seas Sedimentation Data File, Volume 1

Particle Fluxes, North-Eastern Nordic Seas: 1983 - 1986

by

Susumu Honjo, Steven J. Manganini, Amy Karowe, Bonnie L. Woodward

Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543

April, 1987

#### Abstract

Seventy-nine particle flux samples were collected from 1983 to 1986 using 7 automated time-series sediment traps at 6 stations distributed in the northern and eastern portion of the Nordic Seas as part of a German/U.S. joint program on arctic sedimentation studies. Each sample represents either one month or two weeks of sedimentation at approximately 400 m above the sea floor. In this data file the results of laboratory analysis conducted at the Woods Hole Oceanographic Institution, U.S.A. of the main sedimentological criteria: total mass, carbonate, opal, combustible, organic carbon, nitrogen, and lithogenic mass are presented in both tabular and histogram form. Results from the southern and western portion of the Nordic Seas will be published as they become available.

#### Introduction

Supported by the United States Office of Naval Research, the Woods Hole Oceanographic Institution (WHOI), with the cooperation of the University of Kiel and the University of Bremen, Federal Republic of Germany, has conducted a basin-wide sedimentological research program in the Nordic Sea since the summer of 1983. One of the major field experiments was deployment of 16 sets of sediment trap-current meter moorings for a period of about one year each throughout the basin. During the first half of the program we deployed 6 year-round moorings between August 1983 and August 1986 in the Fram Strait and Norwegian Basin. Details of mooring positions, depths, duration of deployment are summarized in Table 1. During the second part of the program, sediment trap mooring deployments and laboratory analyses of incoming samples will continue around Iceland, coastal Greenland and selected stations in cooperation with the Marine Research Institute, Reykjavik. The

University of Hamburg maintains 3 sediment trap mooring stations in the southern North Sea and we cooperate with their program on some of the laboratory analyses (Fig. 1).

The Nordic Sea is a basin, approximately 2.5 million square kilometers, defined by the east coast of Greenland to the west, Iceland to the south, the Norwegian coast to the east, and Spitsbergen to the north. It connects to the Arctic Ocean via the Fram Strait and to the North Atlantic via the Faeroe and Denmark straits (Hurdle, 1986). In short, the Nordic Sea is the bridge between the Arctic Ocean and the North Atlantic Ocean, and therefore is of global significance in regard to the Atlantic environment.

Most of the Nordic Sea lies north of the Arctic Circle. The net solar energy input is strongly limited in this basin due to low angle insolation during the summer and day-long darkness in the winter. Three longitudinal zones of ocean characteristics can be distinguished in this basin: 1) a zone along the east coast of Greenland which is covered by southerly flowing ice packs and floes in the East Greenland Current combined with fast-ice conditions on the immediate coast (Vinje, 1977). The surface temperature in this zone is 0°C throughout the year; 2) a zone on the east side of the basin where the warm, saline northward-flowing Norwegian-Atlantic Current prevails (Gathman, 1986); and 3) a zone in the central gyre which is often associated with mixed ice conditions where the other two zones meet in the middle of the basin (Wadhams, 1986; Swift, 1986). This unique arrangement of currents form several ocean fronts (Johannessen, 1986) and strong contrasts of oceanic conditions are seen within this relatively small basin. For example, the summer surface temperature difference between the east and west side of the basin along the 70th latitude (off Tromso, Norway to Scoresby Sound, Greenland, which are only about 1,000 km apart) is as great as 10°C in some years (Detrich, 1969). Thus the Nordic Sea embodies highly diversified specific environments within the basin boundary.

Very little is known about particle sedimentation and recycling schemes in the North Sea environment. Ocean particles in the Nordic Basin also involve specific origins, flux and processes which reflect varied oceanic characteristics. Questions include: how much of the particulate carbon and other biogenic particles settle down to the sea floor and how do they compare with surface production which is produced under severely limiting Arctic conditions? What is the sedimentary mechanism of lithogenic particles in the Arctic open ocean environment? How are these sedimentary particle processes related to ice coverage and mixed ice zone conditions? This research aims to answer these questions and, optimally, to draw a realistic model of particle flux and sedimentation in relation to other critical high latitude ocean environmental factors.

#### Field Program

Experimental logistics in the Nordic Sea are generally very difficult compared to lower latitude oceanographic endeavors; winter storms and ice coverage hinder deployment and recovery of large bottom tethered mooring arrays. Because of strong seasonality, flux measurements in high latitudes must cover at least a one-year cycle of seasons. We have used automated time-series sediment traps left unattended for about one year. A sediment trap used in this environment requires a large opening in order to collect enough volume of sample during the winter months when the flux is estimated to be extremely small. We used a PARFLUX Mark 5 and Mark 6 whose apertures are 1.2 and 0.5 m<sup>2</sup> with 12 and 13 sampling increments, respectively (Honjo and Doherty, 1987, in press) (Table 1, Fig. 2). The sediment traps were deployed at approximately 400 m above the sea floor at most mooring sites. The exception was a mooring with two sediment traps deployed along a taut line which was set in the Greenland Basin. One to three current meters were deployed with each sediment trap mooring. A transmissometer was deployed with two Fram Strait moorings for one year, 1984-1985. The results from the current meter and transmissometer experiments will be published elsewhere. deployment/recovery procedure for sediment trap mooring arrays was described in a separate paper (Honjo and Doherty, 1987, in press) We used sodium azide as a preservative (Honjo, 1980).

#### Laboratory Analysis

Recovered samples were refrigerated throughout the transportation and storage period. Each sample was equally shared with Dr. Gerold Wefer's laboratory (University of Bremen). Our responsibility at WHOI was to clarify the nature of the sediment trap collected samples with regard to basic sedimentological criteria. Dr. Wefer's group is investigating stable isotopes in planktonic foraminiferal tests and some biocoenosis composition in the samples.

Upon arrival at WHOI, each sample was sieved through a lmm Nylon mesh. This was necessary to maintain precise sample splitting. Particles smaller than 1 mm were further split into smaller aliquots by a precision wet sample splitter (Honjo, 1980). The split aliquots were further sieved through a 62 micron mesh for the LB-1, FS-1, and BI-1 samples in order to separate foraminiferal tests and radiolarian shells in this size category more efficiently. We analyzed individually samples in each size category for the following criteria. All results were normalized to flux values in mg m<sup>2</sup>day (Honjo, 1980).

Total mass Carbonate mass Combustible mass Noncombustible mass Opal mass Lithogenic mass Organic carbon, nitrogen, and hydrogen mass

A detailed description of the analytical methods applied to this research will be published elsewhere. In summary as illustrated in Fig. 3, the total mass flux was obtained as the average of dry mass weight of the three 16th aliquots. The carbonate content was obtained from the dry weight difference before and after decalcification by 1N acetic acid at room temperature. A decalcified aliquot was combusted for 3 hours at 500°C to obtain the mass of combustible organic matter as the difference between a decalcified sample and ash weight. Biogenic silica, or opal, content was analyzed by the sodium carbonate leaching method modified from Eggiman et al., 1980, on decalcified aliquots. Lithogenic particle flux, mostly clay and fine rock-forming detritus, was gained by subtracting the opal flux from the noncombustible flux. Organic carbon, nitrogen, and hydrogen content were analyzed using a Perkin-Elmer Elemental Analyzer, type 240C. We used at least 100 mg of decalcified samples (Fig. 3).

"5"al flux, therefore, is equal to the sum of carbonate, noncombustible, and combustible fluxes. The sum of biogenic opal and lithogenic fluxes should be the noncombustible flux. Insignificant discrepancies appear in some total flux values in this data file due to the rounding out processes during calculation. We regard the combustible portion of the flux as organic matter flux (Honjo, 1980). Combustible flux consists of organic carbon, nitrogen, and hydrogen balanced with oxygen and other unidentifiable ignition loss. The amount of organic nitrogen in the GB-1 sample was too small to analyze within our level of confidence. The opal content in the GB-2, 1966 trap sample was also too small to analyze with the leaching method at the time but we are making an effort to bring up significant numbers.

The phosphorus flux from this area will be published in a separate file. The results of analysis of 15 trace elements from all time-series sediment trap samples treated in the present data file (total of 1,185 analyses) will be published in a separate volume.

#### Results

The purpose of this data file is to publish a summary of available data on the flux in the north-eastern Nordic Sea for public use. Scientific interpretations and models will not be included in this publication.

The annual averages in two major areas, Norwegian-Atlantic current area and the East Greenland current area (sea ice prevailed) based upon fluxes from 6 stations presented in this report, is given in Table 2. The annual fluxes of sedimentary components from 6 stations are tabulated in Table 3 for comparison. At the beginning of each data file for individual stations are given the sample identification numbers, opening and closing dates, length of collection period and mid-point date during which the samples were collected. On subsequent pages are given the percentages of total flux of three size categories: particles which passed through 62 micrometer mesh (< 63  $\mu$ m), particles retained in a 1 mm mesh (> 1 mm), and particles in between (63  $\mu$ m - 1 mm). In the rightmost column of the table, the total flux of size categories combined is given. The columns of each histogram are labeled according to mid-point day of the sampling period. The six flux categories listed in the previous section are included in each data set.

#### Acknowledgments

Without the encouragement and support of Dr. G. Leonard Johnson, Office of Naval Research, this first entire ocean basin sedimentation study applying the flux concept would never have been started. We sincerely thank him for his insight and strong commitment to excellent science.

The Nordic Sea is one of the most difficult oceans with regard to experimental logistics. We have received a large amount of good will support from international colleagues; a large part of our success is due to them and even the unusually long acknowledgment in this paper may cover only a portion. In particular, the Alfred Wegener Institution of Polar and Marine Research, Bremerhaven provided us with vital shiptime on board R/V Polarstern for this experiment. Dr. Jörn Thiede, Chief Scientist of the 1984 and 1985 legs, took every possible opportunity to help us with his professional competence and personal care during this experiment. We also thank the R/V Meteor (old) and the Deutche Hydrographische Institute, Hamburg, which supported us in a difficult mission to recover a malfunctioned mooring system and to deploy a large array in the Greenland Sea during the summer of 1985. We also thank the R/V Meteor (new) and R/V Valdivia, University of Hamburg, for their high quality support of the mooring experiments in 1986.

The Nordic Sea program has been carried out under the mutual cooperation among the University of Bremen, University of Kiel and Woods Hole Oceanographic Institution. Dr. Gerold Wefer, our partner, has provided many useful suggestions in research and has been very helpful in providing vital logistic support. We own him our sincere gratitude. We thank for their dedication and imagination: Dr. Vernon L. Asper,

University of Southern Mississippi, and Dorinda Ostermann, WHOI, who made it possible to deploy and recover the first 4 mooring arrays in the northern Nordic Sea in 1983 and 1984; Peter Clay and Thomas Crook who provided vital assistance in recovering a stranded GB-1 mooring in the summer of 1985; Emily Evans who took care of communication traffic and data editing during this program.

#### References

- Detrich, G., 1969. Atlas of the Hydrography of the Northern North Atlantic, International Council for the Exploration of the Sea. Copenhagen.
- Eggimann, D.W., Manheim, F.T. and Betzer, P.R., 1980. Dissolution and Analysis of Amorphous Silica in Marine Sediments. Journal of Sedimentary Petrology, 50(1): 215-225.
- Gathman, S.G., 1986. Climatology. In: The Nordic Seas (Hurdle, B.G., ed.), 1-18, Springer-Verlag, New York, 777 pp.
- Hurdle, B.G. (ed.), 1986. The Nordic Seas. Springer-Verlag, New York, 777 pp.
- Honjo, S., 1980. Material Fluxes and Modes of Sedimentation in the Mesopelagic and Bathypelagic zones. Journal of Marine Research, 38: 53-97.
- Honjo, S. and Doherty, K.W., 1987 (in press). Large Aperture Time-Series Oceanic Sediment Traps; Design Objectives, Construction and Applications. Deep-Sea Research.
- Johannessen, O., 1986. Brief overview of Physical Oceanography. In: The Nordic Seas (Hurdle, B.G., ed.), 103-127, Springer-Verlag, New York, 777 pp.
- Swift, J.H., 1986. The Arctic Waters. In: The Nordic Seas (Hurdle, B.G., ed.), 129-153, Springer-Verlag, New York, 777 pp.
- Vinje, T.E., 1977. Sea Ice Conditions in the European Sector of the Marginal Sea of the Arctic, 1966-75. Norsk Polarinstitutt Arbok, 1975: 163-174.
- Wadhams, P., 1986. The Ice Cover. In: The Nordic Seas (Hurdle, B.G., ed.), 21-84, Springer-Verlag, New York, 777 pp.

| Table      | le 1a                   | _                           |                                                                                                   | SEDIMENT TRA                                                                  | RAP MOORII<br>D BY ONR       | AP MOORINGS IN THE GREENL<br>BY ONR (WHOI), DFG/GMIS<br>COORDINATED | GREENLAND<br>G/GMIS (KIE<br>INATED BY L             | RAP MOORINGS IN THE GREENLAND BASIN/NORWEGIAN SEA, 1983-1987<br>D BY ONR (WHOI), DFG/GMIS (KIEL UNIV.), GMIS (HAMBURG UNIV.)<br>COORDINATED BY WHOI/ONR | FGIAN SEA, 1983-1987<br>GMIS (HAMBURG UNIV.) | 1987.<br>IV.)                         | Revised:<br>Revised:<br>Revised:<br>Revised: | March 20, 1985<br>September 26, 1981<br>August 26, 1986<br>February 24, 1987<br>April 13, 1987 | , 1985<br>26, 1985<br>1986<br>24, 1987<br>1987 |
|------------|-------------------------|-----------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------|
| No. Year   | Year                    | ID No.                      | Location                                                                                          | Latitude/<br>Longitude                                                        | Water<br>depth<br>(m)        | Mooring<br>height<br>(m)                                            | No. 501b<br>spheres                                 | Trap type and<br>number/mooring                                                                                                                         | Trap<br>depth, m<br>(off floor)              | Cups/<br>duration<br>dxs:hrs          | Extra<br>Instrs.                             | Deploy/<br>Recov:                                                                              | Ship:<br>dep/rec                               |
| -          | 1983<br>Same m          | LB-1<br>Nooring n           | 1983 LB-1 Lofoten Basin<br>Same mooring moved north as                                            | 69°30,11'N<br>10°00.02'E<br>BI-l in 1984.                                     | 3,161                        | 432                                                                 | 25                                                  | Mark 5 (1)                                                                                                                                              | 2,761 (400)                                  | 12/<br>30:0                           | 2 CM<br>2 DEP                                | 8/11/83                                                                                        | Pstern/<br>Pstern                              |
| ~          | 1983<br>Recove          | GB-1<br>ery dela)           | 1983 GB-1 Greenland<br>Basin<br>Recovery delayed 1 year due                                       | 74°32.31'N<br>06°39.82'W<br>to release ba                                     | 3,417 2,00<br>ttery problem. | <b>∞</b>                                                            | 34<br>cessfully r                                   | 34 Mark 5 (2)<br>Successfully recovered in 1985                                                                                                         | 2,817<br>(600)<br>1,452<br>5. (1965)         | 12/<br>30:0                           | 2 CM<br>3 DEP                                | 8/1/83<br>7/30/85                                                                              | Pstern/<br>Meteor                              |
| , <u> </u> | 1984<br>Last c          | BI-1<br>cup close           | 1984 BI-1 West of 75°51.35'N<br>Storfjord 11°28.01'E<br>Last cup closed 14:00: 8/10/85. To be mov | 75°51.35'N<br>11°28.01'E<br>85. To be mov                                     | 2,123<br>ed to LB-:          | 473<br>2 in '85 w                                                   | 2,123 473 25 Mi<br>ed to LB-2 in '85 w/Kiel release | Mark 5 (1)<br>ise.                                                                                                                                      | 1,700                                        | 12/<br>30:4                           | 1 CM<br>2 DEP                                | 8/12/84<br>8/17/85                                                                             | Pstern/<br>Pstern                              |
| 4          | 1984 FS-1<br>#13 closed | FS-1<br>losed 090           | Central<br>Fram Str.<br>0900: 7/19/85. T                                                          | 78°51.9'N 2,527 2,079 l<br>01°22.0'E<br>Transmissometer worked all year long. | 2,527<br>r worked            | 2,079<br>all year l                                                 | LC)                                                 | Mark G (1) 2,442 (381) (381)<br>Redeployed in FS-2 location;                                                                                            | 2,442<br>(381)<br>ocation; ap                | 13/ 1<br>27:5 1<br>2<br>app. 50 miles | 1 CM<br>1 TMM<br>2 DEP<br>es east.           | 8/20/84<br>7/30/85                                                                             | Pstern/<br>Meteor                              |
| بر<br>م    | 1985<br>W111 C          | NS.SK-1<br>to 4<br>continue | West<br>Skagerrak<br>as NS.SK3 afte                                                               | 57°55'N<br>06°31'E<br>after 4/17/86 (U.                                       | 400<br>Hamburg,              | 220<br>S. Kempe,                                                    | 10<br>P.I.).                                        | Mark 6 (1)                                                                                                                                              | 300<br>(100)                                 | 13/<br>14:0                           | ICM<br>ICM                                   | 3/12/85<br>9/15/87                                                                             | Valdivia<br>Valdivia                           |
| •          | 1985<br>Will c          | NS.BF-1<br>to 4<br>continue | West of 62°00'N<br>Bergen Fjord 03°35'E<br>as NS.BF3 after 4/27/86 (U.                            | 62°00'N<br>03°35'E<br>ir 4/27/86 (U.                                          | 450<br>Hamburg,              | 220<br>S. Kempe,                                                    | 10<br>P.I.).                                        | Mark 6 (1)                                                                                                                                              | 350<br>(100)                                 | 13/                                   | ICM                                          | 3/22/85<br>9/25/87                                                                             | Valdivia<br>Valdivia                           |

| <b>T</b>  | Table 1                  | 1b                                                 |                                                                                                |                                                             |                       |                                          |                     |                                                                            |                                    |                                           | Rev: Se<br>Rev: Fe | March 20, 1985<br>September 26, 1985<br>February 24, 1987<br>April 13, 1987 | 1985<br>1985<br>1987<br>7 |
|-----------|--------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------|------------------------------------------|---------------------|----------------------------------------------------------------------------|------------------------------------|-------------------------------------------|--------------------|-----------------------------------------------------------------------------|---------------------------|
| <u>\$</u> | No. Year                 | ID No.                                             | Location                                                                                       | Latitude/<br>Longitude                                      | Water<br>depth<br>(国) | Mooring<br>height<br>(m)                 | No. 501b<br>spheres | Trap type and number/mooring                                               | Trap<br>depth, m<br>loff floor)    | Cups/ Extra<br>duration Instrs<br>dxs:hrs | Extra<br>Instrs.   | Deploy/<br>Recov:                                                           | Ship:<br>dep/rec          |
| 7         | 1985<br>All e            | 1985 GB-2 Greenl<br>Basin<br>All equipment worked. | Greenland<br>Basin<br>worked.                                                                  | 74°35'N<br>96°43'W                                          | 3,445                 | 2,008                                    | <b>*</b>            | Mark 5 (2)                                                                 | 2,823<br>(622)<br>881<br>(2564)    | 25/<br>14:0                               | N<br>O O O         | 8/02/85<br>8/23/86                                                          | Meteor<br>Valdivia        |
| <b>45</b> | 1985<br>Only             | FS-2 Cent<br>Fram<br>5 cups worked.                | Ēα                                                                                             | il 79°00'N 2,'<br>itr. 04°55.0'E<br>Transmissmeter flooded. | <del></del>           | 10 1,862 3<br>Current record OK.         | 32<br>OK.           | Mark 6 (2)                                                                 | 1,929<br>(501)<br>1,000<br>(1,500) | 13/<br>27:0                               | 4.0<br>4.0         | 7/29/85                                                                     | Pstern<br>Valdivia        |
| Φ.        | 1985<br>New 2            | NB-1                                               | 1985 NB-1 W. Norwegian 70°00'N 3<br>Sea 01°58'W<br>New 25 cup system; 17 samples recovered (U. | 70°00'N<br>01°58'W<br>recovered (                           | -                     | 296 2,773 15<br>Bremen, G. Wefer, P.I.). | 15<br>, P.I.).      | Mark 6 (1)                                                                 | 2,749                              | 13/<br>30:0                               | 2 DEP              | 8/18/85<br>7/15/86 #                                                        | Pstern<br>Meteor (new)    |
| 9         |                          | NA-1<br>:lectronic                                 | 1985 NA-1 Norway 65°31'N<br>Abyssal Plain 00°64'E<br>New electronics. 13 samples recovered.    | 65°31'N<br>00°64'E<br>ecovered.                             | 3,058                 | 2,558                                    | <b>S</b> 1          | Mark 6 (1)                                                                 | 2,630                              | 13/<br>30:0                               | 2 DEP              | 0 19/05<br>7/10/06 X                                                        | Pstern<br>Meteor (new)    |
| Ξ         | 1985<br>(K1el)<br>Perman | LB-2<br> )<br>Inent stat                           | 1985 LB-2 Lofoten 69°30'N<br>(Kiel) Basin 10°00'E<br>Permanent station for Bremem group to be  | 69°30'N<br>10°00'E<br>group to be                           | 3,160<br>funded by    | 432<br>, RG-95, DF                       | 25<br>G, after 19   | 3,160 432 25 Mark 5 (1)<br>funded by RG-95, DFG, after 1986 (U. Bremen, G. | 2,760<br>(400)<br>(157)<br>Wefer.  | 12/<br>(25?)<br>30/<br>P.I.).             | 2 CM<br>2 DEP      | 8 / 8 / 8 / 8 / 8 / 8 / 8 / 8 / 8 / 8 /                                     | Pste                      |

The state of the s

THE PROPERTY OF THE PROPERTY O

| Tat      | Table 1c       | U                  |                                                               |                        |                       |                          |                     |                                                              |                                |                                                      | Rev: Sept<br>Rev: Febr<br>Rev: Apri | March 20, 1985<br>September 26, 1985<br>February 24, 1987<br>April 13, 1987 | 1985<br>1985<br>1987 |
|----------|----------------|--------------------|---------------------------------------------------------------|------------------------|-----------------------|--------------------------|---------------------|--------------------------------------------------------------|--------------------------------|------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------|----------------------|
| 9        | Year           | No. Year ID No.    | Location                                                      | Latitude/<br>Longitude | Water<br>depth<br>(m) | Mooring<br>height<br>(国) | No. 501b<br>spheres | Trap type and Trap<br>number/mooring depth, m<br>(off floor) | Trap<br>depth, m<br>off floor) | Cups/ Extra<br>duration Instrs.<br>dvs:hrs_(depth_m) | 1                                   | Deploy/<br>Recov:                                                           | Ship:<br>dep/rec     |
| 21 🗆     | 12 1986 IP-1   | I-JI               | Iceland<br>Plateau                                            | 68°01'N<br>12°39'W     | 1,884                 | 458                      | 01                  | Mark 6 (1)                                                   | 1,454<br>(430)                 | 13/<br>30:0                                          | 1 CM<br>(1458)                      | 10/20/86<br>10/2/87                                                         | Smdsn<br>Smdsn       |
| E1 (     | 1986           | □13 1986 MRI-1     | South<br>Iceland                                              | 62°58'N<br>21°32'W     | 1,004                 | 459                      | 0.                  | Mark 5 (1)                                                   | 574<br>(430)                   | 13/<br>30:0                                          | 1 CM<br>(577)                       | 10/3/86<br>10/2/87                                                          | Smdsn<br>Smdsn       |
| <u>•</u> | 1986<br>Very I | NDS-1<br>high-tens | 1986 NDS-1 N. Dermark<br>Strait<br>Very high-tension mooring. | 69°30'N<br>21°13'W     | 446                   | 156                      | 20                  | Mark 6 (1)                                                   | 136<br>(100)                   | 13/<br>30:0                                          | 1 CM<br>(350)                       | 10/14/86<br>9/ <u>7</u> /87                                                 | Smdsn<br>Smdsn       |

Office of Naval Research, Code 1125AR Woods Hole Oceanographic Institution Deutche Forsungagemeinschaft German Ministry of Industry and Science Deutche Hydrographische Institute Marine Research Institute, Iceland ONR: WHOI: DFG: GMIS: DHI:

Current meter Transmissometer Dissolution experiment package

£ E₽::

Table 2. Average Mass Fluxes; Northern Nordic Seas, 1983-1986. Average Fluxes and (standard deviation) mg m<sup>-2</sup>day<sup>-1</sup>.

|                     | Norwegian-Atlantic<br>Current Area: | E. Greenland and Fram Strait Area: |
|---------------------|-------------------------------------|------------------------------------|
| Moorings:           | LB-1, BI-1, NA-1, NB-1              | FS-1, GB-21, GB-23                 |
| Total Flux          | 21.31 (5.39)                        | 8.45 (1.81)                        |
| Carbonate Flux      | 9.03 (1.96)                         | 2.42 (0.95)                        |
| Noncombustible Flux | 9.14 (4.87)                         | 4.56 (1.05)                        |
| Combustible Flux    | 3.24 (1.55)                         | 1.55 (0.83)                        |
| Biogenic Opal Flux  | 1.55 (0.36)                         | *                                  |
| Lithogenic Flux     | 7.55 (4.69)                         | *                                  |
| Organic Carbon Flux | 1.34 (1.00)                         | 0.58 (0.31)                        |
| Nitrogen Flux       | 0.16 (0.11)                         | 0.09 (0.06)                        |

### \* Not detectable

## Trap Station Codes:

LB-1: East Lofoten Basin FS-1: Central Fram Strait

BI-1: Bear Island - west of Storfjord

NA-1: Aegir Ridge

NB-1: East of Jan Mayen

GB-21: Greenland Basin (shallow)
GB-23: Greenland Basin (deep)

Table 3. Comparison of mass fluxes between 6 stations in the Northern Nordic Seas, 1983-1986.

| Area:              | Norweg | ian-Atlar | ntic Curre | ent    | East Gre | enland/Fr | am Strait |
|--------------------|--------|-----------|------------|--------|----------|-----------|-----------|
| Trap Station:      | LB-1   | BI-1      | NA-1       | NB-1   | FS-1     | GB-21     | GB-23     |
| Latitude           | 69°30N | 75°51N    | 65°31N     | 70°00N | 78°52N   | 74°35N    | 75°35N    |
| Longitude          | 10°00E | 11°28E    | 00°64E     | 01°58W | 01°22E   | 06°43W    | 06°43W    |
| Trap Depth         | 2,760m | 1,700m    | 2,630m     | 2,749m | 2,440m   | 1,966m    | 2,871m    |
| Total Flux**       | 22.80  | 28.40     | 17.36      | 16.79  | 7.20     | 8.79      | 10.21     |
| Carbonate Flux     | 11.40  | 6.61      | 9.18       | 8.93   | 1.40     | 2.59      | 3.28      |
| Noncombustible Flu | x 8.07 | 16.31     | 5.94       | 6.24   | 4.26     | 3.65      | 5.73      |
| Combustible Flux   | 3.37   | 5.35      | 2.31       | 1.90   | 0.92     | 2.50      | 1.23      |
| Biogenic Opal Flux | 1.12   | 1.96      | 1.68       | 1.44   | 0.60     |           | 2.61      |
| Lithogenic Flux    | 6.95   | 14.35     | 4.26       | 4.65   | 4.00     |           | 3.12      |
| Organic Carbon Flu | x 1.37 | 2.85      | 0.59       | 0.53   | 0.41     | 0.94      | 0.40      |
| Nitrogen Flux      | 0.18   | 0.30      | 0.08       | 0.08   | 0.06     | 0.16      | 0.06      |

\*\* Flux is in mg m2day

### Trap Station Codes:

LB-1: East Lofoten Basin FS-1: Central Fram Strait

BI-1: Bear Island - west of Storfjord

NA-1: Aegir Ridge

NB-1: East of Jan Mayen

GB-21: Greenland Basin (shallow)
GB-23: Greenland Basin (deep)



Figure 1. Approximate positions of sediment trap-current meter moorings in the Nordic Seas, 1983-1987.



Mark 6-13 (0.5 m<sup>2</sup> aperture with 13 sampling bottles).



Figure 2. PARFLUX Mark 5 and 6 sediment traps (from Honjo and Doherty, 1987, Fig. 2).



Mark 5-12 (1.2  $m^2$  aperture with 12 sampling bottles).

135 cm





Figure 3. Sample process flow diagram for sedimentological analysis of Nordic Sea flux samples.

# NORWEGIAN-ATLANTIC CURRENT AREA

# LB-1

# EAST LOFOTEN BASIN

69°30' N, 10°00'E

Trap depth: 2,760m Water depth: 3,160m

Annual Fluxes. (g/m/yr): Total......22.80

Carbonate......11.40

Noncombustible.....8.07

Combustible.......3.37

Opal.....1.12

Lithogenic.......6.95

#### PARELLIX Mack 5-17

| Sample                                                                                                                                | Opening                                                                                                                                                  | Closing                                                                                                                                                  | Span                                                                          | Mid.                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| ID                                                                                                                                    | Date                                                                                                                                                     | Date                                                                                                                                                     |                                                                               | Date                                                                                                                                        |
| 1 LB:-2500-1 2 LB:-2500-2 3 LB:-2500-3 4 LB:-2500-4 5 LB:-2500-5 5 LB:-2500-6 7 LS:-2500-7 8 LB:-2500-9 10 LB:-2500-10 11 LB:-2500-12 | 15-AUG-83<br>13-SEP-83<br>12-OCT-93<br>11-NOU-93<br>10-DEC-83<br>08-JAN-84<br>07-FEB-84<br>07-FEB-84<br>07-MAR-84<br>05-APR-84<br>05-MAY-84<br>05-JUN-84 | 13-SEP-83<br>12-OCT-83<br>11-NOV-63<br>10-DEC-83<br>08-JAN-84<br>07-FEB-94<br>07-MAR-84<br>05-APR-64<br>05-MAY-84<br>03-JUN-84<br>02-JUL-34<br>01-AUG-84 | 29.33<br>29.33<br>29.33<br>29.33<br>29.33<br>29.33<br>29.33<br>29.33<br>29.33 | 30-AUG-S3<br>28-SEP-63<br>27-OCT-83<br>25-NOV-83<br>25-NEC-63<br>23-JAN-54<br>22-FEB-64<br>22-MAR-84<br>20-MAR-84<br>20-MAR-84<br>10-MAR-84 |

Total Flux at Lofoten Basin (LB-1), 2600m, 1983-1984



Lofoten Basin I had 12 cups each open 29.33 days.

Mark 5 trap open from August 15 1983 to August 1 1984 at 2600 meters.

TOTAL FLUX (mg / m^2 / day)

Itl is total Flux in all size classes.

| _   | iti is total   |        |          | classes |          |       |          |        |
|-----|----------------|--------|----------|---------|----------|-------|----------|--------|
| Cup | <b>*</b> < 63u | ım     | 63um     | - 1     | > 1mm    |       | TOTAL    |        |
|     | % of Ttl       | FLUX   | % of Ttl | FLUX    | % of Ttl | FLUX  | % of Ttl | FLUX   |
| 1   | 70.74          | 72.41  | 17.90    | 18.32   | 11.36    | 11.63 | 100.00   | 102.36 |
| 2   | 60.82          | 98.24  | 26.73    | 43.17   | 12.45    | 20.11 | 100.00   | 161.52 |
| 3   | 64.75          | 91.36  | 20.72    | 29.24   | 14.53    | 20.51 | 100.00   | 141.10 |
| 4   | 41.90          | 18.37  | 17.84    | 7.82    | 40.26    | 17.65 | 100.00   | 43.84  |
| 5   | 55.73          | 10.74  | 13.75    | 2.45    | 30.50    | 5.88  | 100.00   | 19.27  |
| 6   | 37.26          | 2.28   | 6.70     | .41     | 56.20    | 3.44  | 100.00   | 6.12   |
| 7   | 40.92          | 3.43   | 6.56     | . 55    | 52.51    | 4.40  | 100.00   | 8.38   |
| 8   | 58.69          | 2.84   | 8.69     | . 43    | 32.28    | 1.56  | 100.00   | 4.84   |
| 9   | 60.09          | 2.68   | 7.62     | . 34    | 32.26    | 1.44  | 100.00   | 4.46   |
| 10  | 85.00          | 48.28  | 8.26     | 4.69    | 6.75     | 3.84  | 100.00   | 56.80  |
| 11  | 88.39          | 64.87  | 8.61     | 6.32    | 3.00     | 2.20  | 100.00   | 73.39  |
| 12  | 89.13          | 114.52 | 9.23     | 11.86   | 1.64     | 2.11  | 100.00   | 128.49 |
|     |                |        |          |         |          |       |          |        |

## Carbonate Flux at Lofoten Basin (LB-1). 2500m. 1983-1984



Lofoten Basin I had 12 cups each open 29.33 days.

Mark 5 trap open from August 15 1983 to August 1 1984 at 2600 meters.

Carbonate Flux

Ttl is total Flux in all size classes

| _   | Itl is total |               |              |       |                    |       |          |       |
|-----|--------------|---------------|--------------|-------|--------------------|-------|----------|-------|
| Cup |              |               | 63um         | - 1   | > 1 mm             |       | TOTAL    |       |
|     | % of Ttl     | FLUX          | % of Ttl     | FLUX  | % of Ttl           | FLUX  | % of Ttl | FLUX  |
| 1   | 32.92        | 33.69         | 15.18        | 15.54 | 6.81               | 6.97  | 54.91    | 56.20 |
| 2   | 25.46        | 41.13         | 22.92        | 37.01 | 9.02               | 14.56 | 57.40    | 92.71 |
| 3   | 26.19        | 36.95         | 17.96        | 25.34 | 10.58              | 14.93 | 54.73    | 77.23 |
| 4   | 19.56        | 8 <b>. 58</b> | 15.52        | 6.80  | 19.38              | 8.50  | 54.46    | 23.88 |
| 5   | 22.72        | 4.38          | 7.57         | 1.46  | 14.13              | 2.72  | 44.43    | 8.56  |
| 6   | 14.62        | . 89          | 3.22         | .20   | 18.57              | 1.14  | 36.41    | 2.23  |
| 7   | 17.43        | 1.46          | 3.16         | . 26  | 23.57              | 1.98  | 44.16    | 3.70  |
| 8   | 24.67        | 1.19          | 4.83         | . 23  | 17.51              | . 85  | 47.02    | 2.28  |
| 9   | 23.20        | 1.03          | 3.55         | - 16  | 10.75              | . 48  | 37.50    | 1.67  |
| 10  | 32.73        | 18.59         | 3.31         | 1.88  | 2.64               | 1.50  | 33.69    | 21.97 |
| 11  | 35.03        | 25.71         | 4.57         | 3.35  | 1.25               | . 92  | 40.85    | 29.98 |
| 12  | 35.70        | 45.87         | 4.89         | 6.28  | .84                | 1.08  | 41.43    | 53.23 |
|     | 722688889999 |               | <del>,</del> |       | 化 中央 化 电 电 电 电 电 电 |       |          |       |

Noncombustible Flux at Lofoten Basin (LB-1), 2600 m, 1983-84



Lofoten Basin I had 12 cups each open 29.33 days.

Mark 5 trap open from August 15 1983 to August 1 1984 at 2600 meters.

NON COMBUSTIBLE FLUX (mg / m^2 / day)

Itl is total Flux in all size classes.

| Cup | Ttl is tota # < 63 |       | all size |      | > 100    |      | TOTAL    |       |
|-----|--------------------|-------|----------|------|----------|------|----------|-------|
|     | % of Ttl           | FLUX  | % of Ttl | FLUX | % of Ttl | FLUX | % of Ttl | FLUX  |
| 1   | 29.76              | 30.46 | 1.75     | 1.18 | . 14     |      | 31.06    | 31.79 |
| 2   | 27.47              | 44.37 | 2.29     | 3.69 | . 30     | . 48 | 30.05    | 48.54 |
| 3   | 30.15              | 42.55 | 1.45     | 2.05 | . 32     | . 45 | 31.93    | 45.05 |
| 4   | 15.00              | 6.57  | 1.35     | . 59 | . 58     | . 26 | 16.93    | 7.42  |
| 5   | 23.62              | 4.55  | 3.72     | .72  | 1.76     | . 34 | 29.12    | 5.61  |
| 6   | 14.30              | . 87  | 2.03     | .12  | . 83     | .05  | 17.16    | 1.05  |
| 7   | 18.51              | 1.55  | 2.14     | . 18 | . 44     | .04  | 21.10    | 1.77  |
| 8   | 24.04              | 1.16  | 2.63     | .13  | .00      | .00  | 26.68    | 1.29  |
| 9   | 27.97              | 1.25  | 2.11     | . 09 | 4.28     | .19  | 34.36    | 1.53  |
| 10  | 41.79              | 23.74 | 3.33     | 1.89 | 2.44     | 1.38 | 47.55    | 27.01 |
| 11  | 43.15              | 31.66 | 2.67     | 1.96 | 1.28     | . 94 | 47.10    | 34.57 |
| 12  | 43.49              | 55.88 | 2.89     | 3.71 | . 05     | .06  | 46.43    | 59.65 |

Combustible Flux at Lofoten Basin (LB-1), 2600 m. 1983-84



Lofoten Basin I had 12 cups each open 29.33 days.

Mark 5 trap open from August 15 1983 to August 1 1984 at 2600 meters.

Combustible Flux

| Cup | Ttl is total |       | all size<br>63um |      | > 1mm    |      | TOTAL    |       |
|-----|--------------|-------|------------------|------|----------|------|----------|-------|
|     | % of Ttl     | FLUX  | % of Ttl         | FLUX | % of Ttl | FLUX | % of Ttl | FLUX  |
| 1   | 8.07         | 8.26  | 1.54             | 1.60 | 4.41     | 4.51 | 14.04    | 14.37 |
| 2   | 7. <b>89</b> | 12.74 | 1.52             | 2.46 | 3.14     | 5.07 | 12.55    | 20.27 |
| 3   | 8.41         | 11.84 | 1.31             | 1.84 | 3.43     | 5.12 | 13.34    | 18.83 |
| 4   | 7.34         | 3.22  | .97              | . 42 | 20.30    | 8.90 | 28.61    | 12.54 |
| 5   | 9.39         | 1.81  | 2.46             | .47  | 14.59    | 2.81 | 26.43    | 5.09  |
| 6   | 8.34         | .51   | 1.45             | .09  | 36.80    | 2.25 | 46.59    | 2.85  |
| 7   | 4.98         | . 42  | 1.26             | .11  | 28.50    | 2.39 | 34.74    | 2.91  |
| 8   | 9.97         | . 48  | 1.42             | .07  | 0.00     | 0.00 | 11.39    | . 55  |
| 9   | 8.92         | . 40  | 1.97             | .09  | 17.23    | . 77 | 28.12    | 1.25  |
| 10  | 10.48        | 5. 95 | 1.42             | . 92 | 1.68     | . 95 | 13.77    | 7.82  |
| 11  | 10.21        | 7.50  | 1.37             | 1.00 | . 46     | . 34 | 12.05    | 8.84  |
| 12  | 9.94         | 12.77 | 1.45             | 1.87 | .76      | . 98 | 12.15    | 15.61 |

25.50 Table 18.50 Table 18

Biogenic Silica flux at Lofoten Basin (LB-1), 2600m, 1983-1984



| Sample<br>IS#                  | OPAL<br>63   | OPAL % tot. 63        | OPAL<br>63-1 | OPAL %<br>tot.63-1 | OPAL<br>1      | OPAL %       | OPAL<br>total | geag :<br>of total                      |
|--------------------------------|--------------|-----------------------|--------------|--------------------|----------------|--------------|---------------|-----------------------------------------|
| 1 _81-2500-1                   | 3.87         | 3.78                  | ø.58         | ø.37               | 0.03           | 0.03         | 4.28          | 4.19                                    |
| 2                              | 5.40<br>2.92 | 3.96<br>2.71          | 0.99<br>0.E0 | 0.51<br>0.43       | 0.01<br>2.15   | ə.ə:<br>ə.i: | 7.40<br>4.57  | 4,55                                    |
| 4 LB:+2600-4<br>5 LB:+2600-5   | 0.32<br>0.5! | 1.87                  | 0.:3<br>0.05 | 0.30<br>0.25       | 9.15<br>3.15   | 0.35<br>0.54 | 0.88          | 2.53<br>3.45                            |
| \$ L81-2500-6*<br>7 L81-2500-7 | 0.09<br>0.17 | 1,47<br>2.03          | 0.09<br>0.03 | 0.02<br>0.32       | ე. ეტ<br>ე. 19 | 0.03<br>2.27 | 3.23<br>3.39  | :7<br>4 6E                              |
| 3 L81-2500-8•<br>9 L81-2500-9• | 2.18<br>3.39 | 2.51                  | 0.25<br>0.25 | 0.64<br>0.87       | ∂.36<br>∂.15   | 1.23         | 3.29<br>3.44  | €.15<br>6.15                            |
| 13 LB1-2500-10                 | 1.42         | 5. <i>3</i> 2<br>5.11 | 0.53<br>0.53 | 0.93<br>0.71       | 0.30<br>0.30   | 0.53<br>0.53 | 4.19<br>4.19  | 7. <b>3</b> .                           |
| 12 18: -2500-12                | 5.12         | 9.32                  | 1.04         | Ø.91               | ə.əs           | 3.34         | 9,2           | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 |

flux is in MqxM 2.dat.

STANKS SOCIETY ARESES

Lithagenic Flux at Lofoten Basin (LB-1) 2600m. 1983-84



| Sample                                                                                                                                                          | LITH                                                                                      | LITH<63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LITH                                                              | LITH63-1                                                                         | LITH                                                                 | LITH>1                                 | ∟ITH          | LITH%                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|---------------|------------------------------------------------|
| I.D.                                                                                                                                                            | <63                                                                                       | %tot.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63-1                                                              | %tot.                                                                            | >1                                                                   |                                        | tot <b>ai</b> | total                                          |
| 1 LB1-2600-1<br>2 LB1-2600-2<br>3 LB1-2600-3<br>4 LB1-2600-4<br>5 LB1-2600-5<br>6 LB1-2600-6<br>7 LB1-2600-7<br>8 LB1-2600-9<br>9 LB1-2600-10<br>11 LB1-2600-12 | 26.59<br>37.97<br>38.73<br>5.75<br>4.04<br>0.78<br>1.38<br>1.01<br>0.99<br>20.93<br>27.91 | 25.98<br>23.51<br>27.45<br>13.97<br>16.46<br>20.25<br>16.46<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25 | 0.80<br>2.75<br>1.446<br>0.446<br>0.643<br>0.99<br>0.996<br>1.487 | 0.78<br>1.68<br>1.03<br>1.05<br>3.43<br>2.15<br>20.46<br>22.39<br>21.395<br>2.23 | 0.12<br>0.47<br>0.29<br>0.11<br>0.25<br>0.04<br>0.04<br>0.04<br>0.08 | 0.000000000000000000000000000000000000 |               | 888873999695<br>846469999695<br>65884509773974 |

Flux is in mg/m<sup>2</sup>/day

Carbon Flux at Lofoten Basin (LB-1). 2600 m. 1983-84



| Sample<br>I.O.         | NTGN<br>.63  | NTGN<63<br>%cmbf. | NTGN<br>63-1 | NTGN63-1<br>%cmbf. | NTGN<br>1 | NTGN 1<br>%cmbf. | NDTM<br>letot | NTGNtat.<br>Nambr. |
|------------------------|--------------|-------------------|--------------|--------------------|-----------|------------------|---------------|--------------------|
| 1 LBI-2600-1           | 0.40         | 4.84              | 0.16         | 1.11               | 0.21      | 1,46             | 0.76          | 5.23               |
| 2 LB1-2500-2           | 0.76         | 3.75              | 0.19         | 0.94               | 0.36      | 1.78             | 1.31          | 5.46               |
| 3 L81-2600-3           | 0.66         | 3.51              | 0.10         | 0.53               | 0.30      | 1.59             | 1.26          | 5.63               |
| 4 LBI-2600-4           | 0.11         | 0.38              | 0.01         | 0.08               | 0.44      | 3.5+             | 0.56          | 4,47               |
| 5 LB1-2600-5           | 0.10         | 1.96              | 0.03         | 0.59               | 0.21      | 4.13             | 0.34          | 6.63               |
| 6 LB1-2600-6.          | 0.04         | 1.27              | 0.00         | 0.02               | 0.13      | 4.56             | 0.17          | 5.95               |
| 7 L81-2600-7•          | 0.02         | 0.69              | 0.01         | 0.34               | 0.13      | 4.47             | 0.16          | 5.50               |
| 8 LB1-2600-8•          | 0.03         | 1.42              | 0.01         | 0.47               | 0.10      | 4.50             | 0.04          | 1.23               |
| 9 L81-26 <b>00-</b> 9• | 0.02         | 1.60              | 0.00         | 0.00               | 0.06      | 4.50             | 0.08          | 5.40               |
| 10 L81-2600-10         | 0.25         | 3.20              | 0.06         | 0.77               | 0.08      | 1.32             | 0.39          | 4.44               |
| 11 681-2600-11         | 0.25         | 2.83              | 0.04         | 0.45               | 0.03      | 0.34             | 0.32          | 3.62               |
| 12 LB1-2600-12         | ð.6 <b>0</b> | 3.84              | 0.14         | 0.90               | 0.07      | 0.15             | Ø 61          | 5 1                |

Flux is in mg/m 2/day. "Xombf" = "% of combustible flux".

#### Nitrogen Flux at Lofoten Basin (LB-1), 2600 m, 1983-84



Lofoten Basin I had 12 cups each open 29.33 days.

Mark 5 trap open from August 15 1983 to August 1 1984 at 2600 meters.

NITROGEN FLUX ( mg / m^2 / day)

Ttl is Total Flux in all size classes.

| Cup             | # < 630  |      | 63um     | -    | > 1 mm   |      | TOTAL    |      |
|-----------------|----------|------|----------|------|----------|------|----------|------|
|                 | % of Ttl | FLUX |
| - <del></del> - | . 39     | .40  | .15      | .16  | .20      | .21  | .75      | .76  |
| 2               | . 47     | . 76 | .12      | .19  | .22      | . 36 | .81      | 1.31 |
| 5               | . 47     | .66  | .07      | .10  | .21      | .30  | . 75     | 1.06 |
| 4               | . 24     | .11  | .02      | .01  | 1.01     | . 44 | 1.27     | . 56 |
| 5               | . 53     | .10  | .17      | .03  | 1.08     | .21  | 1.78     | . 34 |
| 6               | . 60     | .04  | . 10     | .01  | 2.09     | .13  | 2.79     | . 17 |
| 7               | .27      | .02  | .09      | .01  | 1.58     | .13  | 1.94     | . 16 |
| 8               | . 69     | .03  | .12      | .01  | .00      | .00  | .81      | . 04 |
| 9               | . 43     | .02  | . 11     | .00  | 1.28     | .06  | 1.82     | .08  |
| 10              | . 44     | . 25 | . 11     | .06  | . 14     | .08  | . 68     | . 39 |
| 11              | .35      | . 25 | .06      | .04  | .04      | .03  | . 44     | . 32 |
| 12              | . 46     | . 60 | . 11     | . 14 | .06      | .07  | . 63     | .81  |

Hydrogen Flux at Lofoten Basin (LB-1), 2600 m. 1983-84



| Sample<br>I.D.         | HYDC<br>63 | HYDC:63<br>%cmbf. | HYDC | HYOC63-1<br>%cmbf. | HYDC | HYDC /1<br>%cmbf. | HYDC<br>total | HYD€tat.<br>%am <b>o</b> f. |
|------------------------|------------|-------------------|------|--------------------|------|-------------------|---------------|-----------------------------|
| 1 (81-2600-1           | ð.59       | 4.11              | 0.09 | 0.63               | 0.40 | 2.78              |               | 7.52                        |
| 2 LB1-2600-2           | 0.77       | 3.80              | 0.15 | 0.74               | 0.35 | 1.73              | 1.26          | 6.33                        |
| 3 LBI-2500-3           | ð.85       | 4.51              | 0.07 | 0.37               | 0.35 | 1.86              | 1.28          | 5.3∂                        |
| 4 LBI-2500-4           | 0.14       | 1.12              | 0.01 | 0.08               | 0.79 | 6.30              | 0.94          | ⁻.≲⊍                        |
| 5 LBI-2600-5           | 0.12       | 2.36              | 0.03 | ð.59               | 0.26 | 5.11              | 0.41          | 8.06                        |
| 6 L81-2500-6.          | 0.04       | 1.40              | 0.01 | 0.35               | 0.20 | 7.02              | 0.24          | 9.42                        |
| 7 L81-3600-7+          | 0.03       | 1.03              | 0.03 | 0.92               | 0.22 | 7.56              | 0.25          | 3.59                        |
| 9 LBI-26 <b>30-</b> 8• | 0.03       | 1.42              | 0.03 | 1.56               | 0.06 | 2.93              | 0.04          | 1.90                        |
| 9 LB1-2500-9.          | 0.03       | 2.40              | 0.01 | 0.80               | 0.08 | 6.40              | 0.11          | 8.90                        |
| 10 LB1-2600-10         | 0.42       | 5.37              | 0.05 | 0.64               | 0.12 | 1.53              | 0.59          | ~,54                        |
| 11 LB1-2600-11         | 0.37       | 4.19              | 0.05 | 0.57               | 0.03 | 0.34              | 0.45          | 5.09                        |
| 10 LB1-2600-12         | ð. 95      | 6.09              | 0.10 | 0.64               | 0.09 | 0.58              | 1.15          | 7.37                        |

Flux is in mg/m 2 day. "Acmbf" = % of combustible flux".

BI-1
BEAR ISLAND - WEST OF STORFJORD
75°51'N, 11°28'E

Trap depth: 1,700m Water depth: 2,123m

| Annual Fluxes. (g/m²/ | ur).  |
|-----------------------|-------|
| <del>-</del>          | •     |
| Total                 | 28.30 |
| Carbonate             | 6.61  |
| Noncombustible        | 16.31 |
| Combustible           | 5.38  |
| Biogenic Opal         | 1.96  |
| Lithogenic1           | 4.35  |
| Organic C             | 2.85  |
| N                     | 0.30  |

## PARFLUX Mark 5-13

| Sample                                                                                                                                                      | Opening                                                                                                                                                  | Closing                                                                                                                                                  | Span                                                                                            | Mid.                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID                                                                                                                                                          | Date                                                                                                                                                     | Date                                                                                                                                                     |                                                                                                 | Date                                                                                                                                                     |
| 26 BII-1700-1 27 BII-1700-2 28 BII-1700-3 29 BII-1700-4 30 BII-1700-5 31 BII-1700-6 32 BII-1700-7 33 BII-1700-8 34 BII-1700-9 35 BII-1700-10 36 BII-1700-11 | 12-AUG-84<br>11-SEP-84<br>11-OCT-84<br>11-NOV-84<br>11-DEC-84<br>12-JAN-85<br>11-FEB-85<br>12-MAR-85<br>11-APR-85<br>11-APR-85<br>11-JUN-85<br>11-JUN-85 | 11-SEP-84<br>11-OCT-84<br>11-NOV-84<br>11-DEC-84<br>12-JAN-85<br>11-FEB-85<br>12-MAR-85<br>11-APR-85<br>12-MAY-85<br>11-JUN-85<br>11-JUL-95<br>10-AUG-85 | 30.17<br>30.17<br>30.17<br>30.17<br>30.17<br>30.17<br>30.17<br>30.17<br>30.17<br>30.17<br>30.17 | 27-AUG-84<br>26-SEP-84<br>27-OCT-94<br>26-NOV-84<br>27-DEC-94<br>27-JAN-85<br>26-FEB-85<br>27-MAR-85<br>27-APR-85<br>27-MAY-85<br>26-JUN-85<br>26-JUL-85 |

Total Flux at Bear Island (BI-1), 1700m, 1964-1985



| Sample<br>I.D.                                                                                                                                | TTLF   | <1 % of<br>total |       | >1 % of<br>total | TTLF<br>total |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|-------|------------------|---------------|
| 26 BI1-1700-1 27 BI1-1700-2 28 BI1-1700-3 29 BI1-1700-4 30 BI1-1700-6 31 BI1-1700-7 33 BI1-1700-7 33 BI1-1700-9 35 BI1-1700-10 36 BI1-1700-11 | 42.41  | 79.97            | 10.62 | 20.03            | 53.03         |
|                                                                                                                                               | 100.12 | 82.55            | 21.17 | 17.45            | 121.29        |
|                                                                                                                                               | 89.79  | 82.63            | 18.88 | 17.37            | 108.67        |
|                                                                                                                                               | 65.74  | 81.60            | 14.82 | 18.40            | 80.56         |
|                                                                                                                                               | 118.82 | 92.68            | 9.38  | 7.32             | 128.20        |
|                                                                                                                                               | 125.34 | 92.12            | 10.72 | 7.88             | 136.06        |
|                                                                                                                                               | 57.81  | 80.41            | 14.08 | 19.59            | 71.89         |
|                                                                                                                                               | 35.88  | 85.41            | 6.13  | 14.59            | 42.01         |
|                                                                                                                                               | 21.65  | 89.65            | 2.50  | 10.35            | 24.15         |
|                                                                                                                                               | 47.31  | 95.42            | 2.27  | 4.58             | 49.53         |
|                                                                                                                                               | 13.22  | 56.98            | 9.98  | 43.02            | 23.20         |
|                                                                                                                                               | 91.79  | 94.35            | 5.50  | 5.65             | 97.23         |

Flux is in mg/m^2/day.

Carbonate Flux at Bear Island (BI-1), 1700m, 1984-1985



| Sample<br>I.D.                                                                                                                                                                            | CRTA<br><1                                                                                          | CRTA % tot.<1                                                                                            | CRTA<br>>1                                                                                    | CRTA % tot.>1                                                                         | CRTA<br>total                                                                               | CRTA :                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 25 BII-1700-1<br>27 BII-1700-2<br>28 BII-1700-3<br>29 BII-1700-4<br>30 BII-1700-5<br>31 BII-1700-6<br>32 BII-1700-7<br>33 BII-1700-8<br>34 BII-1700-9<br>35 BII-1700-10<br>36 BII-1700-11 | 9.80<br>22.83<br>23.67<br>15.80<br>21.95<br>22.88<br>11.63<br>7.04<br>4.18<br>8.74<br>2.56<br>20.38 | 18.48<br>18.82<br>21.78<br>19.61<br>17.12<br>16.82<br>16.18<br>16.76<br>17.31<br>17.63<br>11.03<br>20.95 | 1.77<br>11.61<br>5.66<br>4.75<br>2.42<br>4.38<br>3.47<br>2.41<br>1.25<br>0.72<br>4.20<br>2.00 | 3.34<br>9.57<br>5.21<br>5.90<br>1.89<br>3.22<br>4.83<br>5.74<br>5.18<br>1.45<br>18.10 | 11.56<br>34.44<br>29.55<br>20.73<br>24.52<br>27.31<br>15.26<br>9.62<br>5.56<br>9.52<br>6.81 | 21.80<br>28.83<br>27.13<br>25.75<br>25.00<br>20.00<br>21.20<br>20.00<br>20.00<br>20.00 |

Flux is in mg/m<sup>2</sup>/day.

### Noncombustible Flux at Bear Island 1, 1700m, 1984-85



| Sample<br>ID#   | NONC<br><1 | NONC %<br>tot1 | NONC<br>1 | NONC %<br>tot. 1 | NONC<br>total | NONC :<br>total |
|-----------------|------------|----------------|-----------|------------------|---------------|-----------------|
| 26 811-1700-1+  | 22.26      | 41.98          | 4.25      | 3.01             | 26.52         | 50.01           |
| 27 BI!-1700-2*  | 59.87      | 49.36          | 0.56      | 3.46             | <b>60.4</b> 3 | 49.32           |
| IS SI!-!700-3*  | 54.04      | 49.73          | 2.59      | 2.38             | 56.53         | 52.11           |
| 29 BI!-!700-4*  | 39.17      | 48.52          | 0.39      | 0.48             | 39.56         | 43.11           |
| 30 BI1-1700-5*  | 80.57      | 62.95          | 1.55      | 1.21             | 82.1:         | 64.25           |
| 31 BI1-1700-6*  | 88.35      | 64.93          | 0.24      | 0.13             | 38.53         | 65.:            |
| 32 BI1-1700-7*  | 39.29      | 54.65          | 2.14      | 2.98             | 41.43         | 57.50           |
| 33 BI1-1700-8*  | 23.82      | 56.70          | 0.46      | 1.09             | 24.29         | 57.80           |
| 34 BI1-1700-9*  | 14.51      | 60.08          | 0.13      | 2.54             | 14.53         | 50.53           |
| 35 BI1-1700-10* | 32.45      | 65.45          | 0.62      | 1.25             | 33.09         | 66.72           |
| 36 BI:-1700-11* | 7.96       | 33.88          | 0.58      | 2.50             | 3.44          | 36.39           |
| 37 BI!-1700-12* | 59.40      | 6:.06          | 1.21      | 1.24             | 50.51         | 62.33           |

Flux is in mg/m~2/day.

Combustible Flux at Bear Island (BI-1), 1700m, 1984-85



| Sample<br>ID#                                                                                                                                           | COMB<br><1                                                                                 | COMB % tot.<1                                                                       | COMB                                                                                  | COMB % tot. 1                                                                           | COMB<br>TOTAL                                                                               | COMB :<br>total                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 26 81!-1700-1* 27 81!-1700-2* 29 81!-1700-3* 29 81!-1700-4* 30 81!-1700-6* 31 81'-1700-6* 32 81!-1700-8* 34 81!-1700-9* 35 81!-1700-10* 36 81!-1700-11* | 10.03<br>17.33<br>11.29<br>10.03<br>15.48<br>13.78<br>6.08<br>4.14<br>2.31<br>5.80<br>2.58 | 18.91<br>14.29<br>10.39<br>12.45<br>12.07<br>10.13<br>8.46<br>9.35<br>9.57<br>11.70 | 4.60<br>9.00<br>10.62<br>9.67<br>5.42<br>6.10<br>8.47<br>3.27<br>1.12<br>0.93<br>5.20 | 8.67<br>7.42<br>9.77<br>12.00<br>4.23<br>4.48<br>11.78<br>7.78<br>4.64<br>1.88<br>22.41 | 14.64<br>26.33<br>21.91<br>19.71<br>20.90<br>19.87<br>14.55<br>7.41<br>3.43<br>6.73<br>7.78 | 27.81<br>21.7<br>20.18<br>24.47<br>16.30<br>14.50<br>20.24<br>17.84<br>14.20<br>13.57<br>33.53 |
| 37 811-1700-12+                                                                                                                                         | 11.22                                                                                      | 11.53                                                                               | 2.29                                                                                  | 2.35                                                                                    | 13.51                                                                                       | 13.69                                                                                          |

Fig. 13 in mg.m 2.day.

Biogenic Silica Flux at Bear Island 1, 1700m, 1984-85



| Sample                                                                                                                                        | OPAL                                                                                          | OPAL<1                                                                                     | OPAL                                                                                                                                         | OPAL>1                                                                                       | OPAL                                                                                          | OPAL                                                                                               | OPAL                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| ID#                                                                                                                                           | <1                                                                                            | %Ncmb.                                                                                     | >1                                                                                                                                           | %Ncmb.                                                                                       | total                                                                                         | %Ncmb.                                                                                             | %total                                                                                        |
| 26 BI1-1700-1 27 BI1-1700-2 29 BI1-1700-3 29 BI1-1700-4 30 BI1-1700-5 31 BI1-1700-7 33 BI1-1700-7 33 BI1-1700-9 35 BI1-1700-10 36 BI1-1700-11 | 6.51<br>11.62<br>9.41<br>4.94<br>7.12<br>5.75<br>2.69<br>1.53<br>1.04<br>2.56<br>0.90<br>7.27 | 24.56<br>19.22<br>16.62<br>12.49<br>8.67<br>6.50<br>6.28<br>7.08<br>7.74<br>10.66<br>12.00 | 0.959340<br>0.061184<br>0.520868<br>0.123738<br>0.191400<br>0.065302<br>0.595221<br>0.119040<br>0.020000<br>0.136090<br>0.115022<br>0.186550 | 3.62<br>0.10<br>0.92<br>0.31<br>0.23<br>0.07<br>1.44<br>0.49<br>0.14<br>0.41<br>1.36<br>0.31 | 7.47<br>11.68<br>9.93<br>5.07<br>7.31<br>5.82<br>3.29<br>1.64<br>1.06<br>2.70<br>1.01<br>7.46 | 28.17<br>19.32<br>17.54<br>12.81<br>8.90<br>6.57<br>7.93<br>6.77<br>7.21<br>8.15<br>12.02<br>12.31 | 14.09<br>9.63<br>9.14<br>6.29<br>5.70<br>4.28<br>4.57<br>3.91<br>4.37<br>5.44<br>4.37<br>7.67 |

Flux is in mg/m^2/day.

%Ncmb. is "% noncombustible flux".

Lithogenic Flux at Bear Island 1, 1700m, 1984-85



| Sample<br>IO#                                                                                                       | LITH                                                        | LITH:1<br>%Namb.                                            | LITH                                         | LITH>1<br>%Nomb.                                      | LITH<br>total                                               | LITH<br>%Nomb.                                              |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| 25 BI1-1700-1<br>27 BI1-1700-2<br>28 BI1-1700-3<br>28 BI1-1700-4<br>30 BI1-1700-5<br>31 BI1-1700-6<br>32 BI1-1700-7 | 15.75<br>48.25<br>44.53<br>34.23<br>73.45<br>92.60<br>36.60 | 59.38<br>79.85<br>78.81<br>86.52<br>89.45<br>93.23<br>88.34 | 3.29<br>0.50<br>2.07<br>0.27<br>1.36<br>0.17 | 12.41<br>0.83<br>3.65<br>0.67<br>1.65<br>0.20<br>3.73 | 19.04<br>48.75<br>46.70<br>34.49<br>74.81<br>82.77<br>38.14 | 71.79<br>80.63<br>92.46<br>97.19<br>91.11<br>93.43<br>92.07 |
| 33 BII-1700-8<br>34 BII-1700-9<br>35 BII-1700-10<br>36 BII-1700-11<br>37 BII-1700-12                                | 22.29<br>13.47<br>29.89<br>6.96<br>52.13                    | 91.82<br>92.10<br>90.35<br>82.47<br>85.01                   | 0.34<br>0.11<br>0.48<br>0.45<br>1.02         | 1.40<br>0.75<br>1.46<br>5.51<br>1.69                  | 22.64<br>13.58<br>30.37<br>7.43<br>53.15                    | 93.23<br>92.36<br>91.32<br>87.98<br>97.69                   |

Flux is in mg/m/2/day. %Nomb. is '% of noncombustible flux'.

Carbon Flux at Bear Island 1, 1700m, 1984-85



| Sample<br>I.O.          | CRNC  | CRNC 1 | CRNC | CRNC)1<br>%cmbf. | CRNC<br>total | CRNCtot.<br>%cmbf. |
|-------------------------|-------|--------|------|------------------|---------------|--------------------|
| 25 BI1-1700-1+          | 4,65  | 31.76  | 2.54 | 17.35            | 7.19          | 49.11              |
| 27 811-1700-2+          | 7.66  | 23.09  | 5.06 | 19.20            | 12.72         | 48.29              |
| 28 81:-:700-3*          | 12.31 | 56.19  | 6.35 | 28.98            | 18.56         | 35.17              |
| 29 811-1700-4+          | 4.72  | 23.96  | 5.82 | 29.55            | 10.55         | 53.51              |
| 30 811-1700-5+          | 7.04  | 33.58  | 3.07 | 14.69            | 10.11         | 48.37              |
| 31 8I'-17 <b>30-6</b> * | 5.50  | 27.67  | 3.61 | 18.15            | 9.11          | 45.52              |
| 32 81:-1700-7*          | 2.48  | 17.04  | 4.97 | 34.16            | 7.45          | 51.20              |
| 33 911-1700-8+          | 1.83  | 24.58  | 1.96 | 26.46            | 3.79          | 51.15              |
| 34 BI:-:T00-9+          | 0.58  | 25.66  | 0.59 | 17.20            | 1.47          | 42.86              |
| 35 BI1-1700-10+         | 2.54  | 37.71  | 0.47 | 7.02             | 3.01          | 44,73              |
| 36 BI1+1700-11+         | 1.23  | 15.81  | 2.38 | 37.02            | 4.11          | 52.83              |
| 37 BI1-1700-12+         | 4.57  | 33.84  | 1.16 | 8.61             | 5.74          | 42.45              |

المقاورة والإرائاء المودورون المروورون المراورون المراورون المراورون المراورون المراورون

Flux is in mg/m 2/day.
"%cmbf" = "% of combustible flux"

Nitrogen Flux at Bear Island 1, 1700m, 1984-1985



| 27 811-1700-2+       1.07       4.05       0.76       2         28 811-1700-3+       0.52       2.83       0.60       2         29 811-1700-4+       0.63       3.21       0.53       3         30 811-1700-5+       0.93       4.45       0.31       1         31 811-1700-6+       0.74       3.71       0.41       3         32 811-1700-8+       0.32       2.20       0.33       3         33 811-1700-9+       0.12       3.50       0.09       3         35 811-1700-10+       0.40       5.95       0.08       0         35 811-1700-11+       0.21       2.70       0.41       9 | 05     0.94     5.42       87     1.32     5.92       74     1.22     5.57       56     1.16     5.83       48     1.24     5.83       04     1.14     5.75       27     0.65     4.47       73     0.45     5.31       52     0.21     5.72       21     0.48     7.15       27     0.52     7.97       25     0.39     5.83 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Flux is in mg/m/2/day. '%cmbf' = "% of combustible flux".

Hydrogen Flux at Bear Island 1, 1700m, 1984-85



| Sample                                                                                                                                                 | HYDC                                                                         | HYDC 11                                                 | HYDC                                                                  | HYDC 1                                                                               | HYDC                                                                         | HYBCtat.                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------|
| I.O.                                                                                                                                                   | 1                                                                            | %ambf.                                                  | 1                                                                     | %ambf.                                                                               | total                                                                        | %ambf.                                                   |
| 28 81:-:700-:• 27 81:-:700-3• 28 81:-:700-3• 29 81:-:700-5• 30 81:-:700-5• 30 81:-:700-7• 30 81:-:700-7• 30 81:-:700-7• 31 81:-:700-8• 34 81:-:700-10• | 0.87<br>1.85<br>1.94<br>0.35<br>1.54<br>1.35<br>0.57<br>0.40<br>0.56<br>0.23 | 5.905<br>5.007<br>6.007<br>6.55<br>6.55<br>6.55<br>6.55 | 0.40<br>0.80<br>1.06<br>0.93<br>0.51<br>0.56<br>0.33<br>0.33<br>0.08, | 2.03<br>3.04<br>4.34<br>4.71<br>2.44<br>2.30<br>5.64<br>4.43<br>2.92<br>1.20<br>5.17 | 1.27<br>2.35<br>3.00<br>1.37<br>2.05<br>1.31<br>1.39<br>0.31<br>0.54<br>0.71 | 8.94.9<br>9.59.9<br>9.59.9<br>9.59.9<br>9.69.9<br>9.69.9 |

flux is in mg/m 2 day. Nombh = 3 of combustible flux

## NA-1

# AEGIR RIDGE

65°31'N, 00°64'E

Trap depth: 2,630m Water depth: 3,058m

#### PARFLUX Mark 5-13

| Sample                                                                                                                                                                   | Opening                                                                                                                        | Clusing                                                                                                                                     | Span                                                                            | Mid.                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| IJ                                                                                                                                                                       | Date                                                                                                                           | Date                                                                                                                                        |                                                                                 | Date                                                                                                                                        |
| 57 NA1-3058-1<br>58 NA1-3058-2<br>59 NA1-3058-3<br>50 NA1-3058-4<br>51 NA1-3058-5<br>62 NA1-3058-6<br>63 NA1-3058-7<br>64 NA1-3058-9<br>65 NA1-3058-10<br>67 NA1-3058-11 | 2!-AUG-85<br>13-SEP-85<br>06-OCT-85<br>29-OCT-85<br>21-NOV-85<br>14-DEC-85<br>06-JAN-86<br>29-JAN-86<br>21-FEB-86<br>15-MAR-86 | 13-SEP-35<br>06-OCT-85<br>29-OCT-85<br>21-NOV-85<br>14-DEC-85<br>06-JAN-86<br>29-JAN-86<br>21-FEB-86<br>16-MAR-86<br>08-APR-86<br>01-MAY-86 | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 02-SEP-85<br>25-SEP-85<br>18-00T-85<br>10-NOV-85<br>03-DEC-85<br>25-DEC-85<br>19-JAN-86<br>10-FEB-86<br>05-MAR-86<br>28-MAR-86<br>28-MAR-86 |
| 68 NA1-3058-12                                                                                                                                                           | 01-MAY-86                                                                                                                      | 24-MAY-36                                                                                                                                   | 23                                                                              | 13-MAY-85                                                                                                                                   |
| 69 NA1-3058-13                                                                                                                                                           | 24-MAY-86                                                                                                                      | 16-JUN-86                                                                                                                                   |                                                                                 | 25-JUN-86                                                                                                                                   |

Total Flux at Aegir Ridge (NA1). 3058m. 1985-1986



| Sample<br>I.D.                                                                                                                                                                             | TTLF                                                                                                   | <pre><!-- % of total</pre--></pre>                                                                       | TTLF<br>>1                                                                                   | >1 % of<br>total                                                                                | TTLF<br>total                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 57 NA1-3058-1<br>58 NA1-3058-2<br>59 NA1-3058-3<br>60 NA1-3058-4<br>61 NA1-3058-5<br>52 NA1-3058-7<br>64 NA1-3058-7<br>64 NA1-3058-8<br>65 NA1-3058-10<br>67 NA1-3058-11<br>68 NA1-3058-12 | 47.97<br>62.76<br>62.53<br>63.93<br>89.06<br>52.31<br>45.37<br>27.87<br>21.54<br>6.89<br>5.44<br>38.72 | 89.03<br>91.27<br>90.83<br>94.15<br>97.02<br>95.90<br>99.78<br>97.70<br>99.56<br>98.73<br>85.35<br>99.64 | 5.91<br>6.01<br>6.32<br>3.97<br>2.73<br>2.23<br>0.10<br>0.65<br>0.10<br>0.09<br>0.93<br>4.48 | 10.97<br>8.73<br>9.17<br>5.85<br>2.98<br>4.10<br>0.22<br>2.30<br>0.44<br>1.27<br>14.65<br>10.36 | 53.89<br>68.76<br>68.84<br>67.90<br>91.79<br>54.54<br>45.47<br>28.52<br>21.63<br>6.98<br>6.38<br>43.20 |
| E9 NA1-3058-13                                                                                                                                                                             | 53.18                                                                                                  | 89.73                                                                                                    | 6.09                                                                                         | 10.27                                                                                           | 59.27                                                                                                  |

Flux is in mg/m<sup>2</sup>/day.

Carbonate Flux at Aegir Ridge 1 (NA-1), 3058 m, 1985-1986



| Sampla<br>1.7.                                      | ORTA<br>1       | 0878 %<br>136,71 |                      |               |                |                      |
|-----------------------------------------------------|-----------------|------------------|----------------------|---------------|----------------|----------------------|
| 57 (141-3 <b>8</b> 58+1<br>68 (141-3 <b>9</b> 58+1  | 21.54<br>35.54  | 28.87<br>51.38   | 55                   | 2.38<br>-3.72 |                | 42.25<br>52.42       |
| 58 JA142052-2                                       | 38,44<br>38,28  | 57.30<br>57.30   | J.27<br>1.80         | 4.30<br>2.85  | 3 <b>3</b> .31 | 51.32<br>5.02        |
| 80 12 - 50554<br>81 - 34 - 50554<br>81 - 34 - 50554 | 48.30           | 51.37            | :.39                 | 1.14          | 4" 4"          |                      |
| 02 (%) (J232)<br>63 (%) (J232)                      | 19.33<br>2 . 78 | 17.87<br>47.86   | <b>3</b> .31<br>3.32 | 2.34          | 20.79          | 4 (1.20)<br>4 (1.20) |
| 04 041 - 2086 - 2<br>55 045 - 3058 - 3              | 19.21           |                  | 3.34<br>3.32         | 0.00          |                | •                    |
| 55 NH 1-1758 - 10<br>87 NH - 1758 - 1               | 4,73<br>3,25    |                  | 2.53<br>2.55         |               | 3.34           |                      |
| 10 00 00 00 00 00 00 00 00 00 00 00 00 0            | . <b>3.</b>     |                  | 35                   |               |                |                      |

ومعائد ومايد والمانية

Noncombustible Flux at Aegir Hidge (NA-1), 3058m, 1985-1986



| Sample<br>ID#                                                                                                                        | NONC<br>(1                                                                  | NONG % tot.<1                                                                | NONC<br>11                                                   | NONC %                                                       | NONC<br>total                                                               | MONE %                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 57 NA1-3058-1<br>58 NA1-3058-3<br>59 NA1-3058-4<br>60 NA1-3058-4<br>61 NA1-3058-5<br>62 NA1-3058-6<br>63 NA1-3058-7<br>54 NA1-3058-8 | 20.46<br>5.99<br>21.05<br>23.74<br>35.60<br>22.42<br>19.74<br>11.34<br>9.04 | 37.96<br>8.71<br>30.58<br>54.95<br>38.78<br>41.10<br>43.41<br>39.77<br>41.80 | 0.24<br>0.25<br>0.73<br>0.53<br>0.11<br>0.13<br>0.00<br>0.03 | 0.45<br>0.37<br>1.06<br>2.93<br>0.12<br>0.24<br>0.01<br>0.10 | 20.70<br>6.24<br>21.79<br>24.38<br>35.71<br>22.55<br>19.74<br>11.37<br>9.06 | 38.42<br>9.09<br>31.65<br>35.90<br>38.91<br>41.33<br>43.42<br>39.87<br>41.87 |
| 56 NA1-3058-13<br>57 NA1-3058-11<br>58 NA1-3058-12<br>59 NA1-3058-13                                                                 | 1.84<br>1.91<br>!4.31<br>!9.06                                              | 26.34<br>29.91<br>34.19<br>32.15                                             | Ø.04<br>Ø.21<br>Ø.92<br>+.50                                 | 0.50<br>0.23<br>2.13<br>2.70                                 | 1.87<br>1.92<br>15.73<br>20.85                                              | 25.24<br>30.14<br>35.41<br>34.66                                             |

Fiur is in mg/m/2/da,.

Combustible Flux at Aegir Ridge (NA-1), 3058m, 1985-86



| Sample<br>ID#                                                                                                                                                                                                                 | COMB                                                                                                                                                | COMB %                                                                                                 | COMB<br>>1                                                                                   | COMB % tot.>1                                                                                        | COMB<br>TOTAL                                                                                  | COMB %<br>total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 57 NA1-3058-1<br>58 NA1-3058-2<br>59 NA1-3058-3<br>60 NA1-3058-4<br>61 NA1-3058-5<br>62 NA1-3058-6<br>63 NA1-3058-7<br>64 NA1-3058-8<br>65 NA1-3058-9<br>66 NA1-3058-10<br>57 NA1-3058-11<br>68 NA1-3058-12<br>59 NA1-3058-13 | 5.23<br>5.23<br>5.04<br>4.90<br>6.89<br>3.82<br>9.33<br>1.32<br>0.28<br>1.33<br>7.1.38<br>7.33<br>7.33<br>7.33<br>7.33<br>7.33<br>7.33<br>7.33<br>7 | 11.08<br>30.88<br>7.31<br>7.21<br>7.17<br>7.14<br>8.52<br>4.27<br>8.68<br>5.05<br>4.27<br>8.52<br>8.96 | 4.12<br>0.39<br>4.22<br>1.54<br>1.53<br>1.19<br>0.08<br>0.48<br>0.05<br>0.24<br>1.68<br>2.54 | 7.64<br>0.56<br>6.13<br>2.26<br>1.66<br>2.18<br>0.17<br>1.68<br>0.79<br>0.79<br>3.69<br>3.99<br>4.28 | 10.09<br>21.62<br>9.25<br>6.43<br>8.11<br>5.08<br>3.95<br>1.70<br>1.96<br>0.41<br>0.51<br>5.36 | 11.44<br>11.44<br>11.44<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39<br>11.39 |

Flux is in mg/m<sup>2</sup>/day.

Biogenic Silica Flux at Aegir Ridge (NA-1), 3056m. 1985-86



| Sample                                                                                                                                                                                                       | OPAL                                                                 | OPAL %                                                                                                   | OPAL % tot.(1                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| ID#                                                                                                                                                                                                          | 1                                                                    | Nof. 1                                                                                                   |                                                                                                           |
| 57 NA1-3058-1<br>58 NA1-3058-2<br>59 NA1-3058-3<br>60 NA1-3058-4<br>61 NA1-3058-6<br>62 NA1-3058-6<br>63 NA1-3058-7<br>54 NA1-3058-9<br>65 NA1-3058-10<br>67 NA1-3058-11<br>68 NA1-3058-12<br>69 NA1-3058-13 | 5.38<br>5.56<br>5.57<br>7.57<br>4.95<br>5.59<br>0.58<br>3.76<br>4.87 | 28.40<br>89.07<br>25.47<br>29.41<br>27.08<br>21.96<br>25.93<br>22.42<br>39.63<br>30.98<br>30.18<br>23.90 | 10.91<br>8.09<br>8.06<br>10.56<br>10.53<br>9.08<br>11.26<br>8.94<br>16.59<br>8.31<br>9.10<br>8.70<br>8.22 |

Flux is in mg/m 2/day.

Not enough sample in  $^{-1}$  mm fraction to analyze for Opal. "%Nof." = "% of noncombustible flu-".

Lithogenic Flux at Aegir Ridge (NA-1), 3058 m. 1985-6



| Sample<br>I.J. | LITH  | LITH : 1<br>%Nomb. | -     |
|----------------|-------|--------------------|-------|
| ST NA1-3058-1  | 14.58 | 70.42              | 27.05 |
| SE NA1-3058-2  | 0.43  | 6.86               | 0.62  |
| SE NA1-3058-3  | 15.50 | 71.16              | 22.52 |
| SO NA1-3058-4  | 16.57 | 67.99              | 24.41 |
| S: NA1-3058-5  | 25.93 | 72.61              | 28.25 |
| SO NA1-3058-5  | 17.47 | 77.47              | 32.02 |
| SO NA1-3058-7  | 14.62 | 74.05              | 32.15 |
| 64 NA1-3058-8  | 8.79  | 77.31              | 30.82 |
| SE NA1-3058-9  | 5.45  | 60.19              | 25.20 |
| SE NA1-3058-10 | 1.26  | 67.15              | 18.02 |
| ST NA1-3058-11 | 1.33  | 69.07              | 20.82 |
| SE NA1-3058-12 | 11.05 | 70.25              | 25.58 |
| SE NA1-3058-13 | 14.19 | 68.67              | 23.94 |

Flux is in mg/m 2/day. %Nomb. = 1% of noncombustible flux. Not enough it mm fraction to do analysis.

Carbon Flux at Aegir Aidge (NA-1), 3058m, 1985-86



| Sample<br>I.J.                                                                                                                                                                                               | CRNC<br>· 1                                                                          | CRNC<1 %cmbf.                                                                                            | CRNC                                                                                 | CRNC 1                                                                                     | CRNC<br>total                                                                                | CRNCtat.<br>%cmbf.                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| ST NA1-3058-1<br>SS NA1-3058-2<br>SS NA1-3058-3<br>SO NA1-3058-4<br>S: NA1-3058-5<br>SC NA1-3058-5<br>SC NA1-3058-7<br>S4 NA1-3058-9<br>S5 NA1-3058-10<br>ST NA1-3058-11<br>S8 NA1-3058-12<br>S8 NA1-3058-12 | 2.55<br>3.10<br>2.43<br>1.50<br>3.26<br>1.34<br>1.10<br>0.95<br>0.14<br>0.15<br>2.09 | 25.25<br>!4.33<br>26.28<br>23.37<br>40.17<br>26.29<br>27.99<br>56.04<br>42.58<br>33.53<br>29.44<br>39.02 | 2.16<br>0.25<br>1.54<br>0.58<br>0.90<br>0.52<br>0.04<br>0.22<br>0.04<br>0.11<br>1.14 | 21.36<br>1.19<br>16.62<br>9.97<br>9.90<br>10.25<br>0.89<br>13.16<br>2.23<br>21.27<br>21.27 | 4.70<br>3.36<br>3.97<br>2.08<br>4.06<br>1.06<br>1.14<br>1.13<br>0.98<br>0.18<br>0.25<br>3.34 | 45.52<br>45.50<br>50.54<br>50.56<br>50.55<br>59.61<br>47.00<br>47.00<br>47.51 |

Flux is in maxm 2.dav.

<sup>%</sup>smbf) = '% of sambustible fluk'

### Nitrogen Flux at Aegir Ridge (NA-1), 3058m, 1985-86



| Sample<br>I.D.         | NTGN<br>1 | NTGN:1<br>%cmbf. | NTGN<br>1 | NTGN>!<br>%cmbf. | NTGN<br>total | NTGNtot.<br>%ambf. |
|------------------------|-----------|------------------|-----------|------------------|---------------|--------------------|
| 57 NA1-3058-1          | 0.33      | 3.25             | 0.27      | 2.71             | 0.60          | 5.95               |
| 58 NA!-3 <b>058</b> -2 | 0.42      | 1.93             | 0.03      | 0.16             | 0.45          | 2.38               |
| 58 NA1-3 <b>058-3</b>  | 0.31      | 3.33             | 0.21      | 2.32             | 0.52          | 5.54               |
| 50 MA1-3 <b>058-4</b>  | 0.18      | 2.80             | 0.09      | 1.37             | 0.27          | 4                  |
| 51 NA!-3 <b>058-5</b>  | 0.47      | 5.78             | 0.11      | 1.30             | 0.57          | 7.07               |
| 62 NA1-3 <b>058</b> -6 | 0.18      | 3.62             | 0.06      | 1.18             | 0.24          | 4.3!               |
| 53 NA1-3058-7          | 0.14      | 3.65             | 0.00      | 0.09             | 0.15          | ∃,"1               |
| 64 NA1-3058-8          | 0.11      | 6.36             | 0.02      | 1.38             | 0.13          | 7.74               |
| 6-620E-1AN 22          | 0.10      | 5.12             | 0.00      | 0.23             | 0.11          | 5.35               |
| 56 NA1-3058-10         | 0.02      | 3.98             | 0.00      | 1.02             | 0.02          | 4.39               |
| 57 NA1-3058-11         | 0.02      | 4.12             | 0.01      | 2.27             | 0.03          | 5.39               |
| 68 NA1-3058-12         | 0.29      | 5.45             | 0.12      | 2.24             | 0.41          | 7.53               |
| 59 NA1-3058-13         | 0.20      | 2.55             | 0.12      | 1.51             | 0.32          | 4.05               |

Flux is in mg/m<sup>1</sup>2/day.

Control Control Control

<sup>&</sup>quot;%cmbf' = "% of combustible flux"

Hydrogen Flux at Aegir Ridge (NA-1), 3058m, 1985-86



| Sample                                                                                                                                                                                                                        | HYDC                                                                                                 | HYDC 11 %cmbf.                                                       | HYDC                                                                                         | HYDC 1                                                                               | HYDC                                                                                 | HYDCtst.                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| I.J.                                                                                                                                                                                                                          | :1                                                                                                   |                                                                      | 1                                                                                            | %cmbf.                                                                               | total                                                                                | %ombf.                                                                                                      |
| 57 NA1-3058-1<br>58 NA1-3058-2<br>59 NA1-3058-4<br>50 NA1-3058-4<br>51 NA1-3058-5<br>62 NA1-3058-6<br>53 NA1-3058-7<br>64 NA1-3058-8<br>55 NA1-3058-9<br>66 NA1-3058-10<br>57 NA1-3058-11<br>68 NA1-3058-12<br>59 NA1-3058-13 | 0.44<br>0.44<br>0.36<br>0.41<br>0.56<br>0.21<br>0.26<br>0.13<br>0.14<br>0.03<br>0.03<br>0.28<br>0.22 | 4.40<br>2.05<br>3.92<br>6.97<br>5.19<br>4.64<br>7.54<br>7.54<br>5.22 | 0.30<br>0.03<br>0.19<br>0.07<br>0.11<br>0.08<br>0.00<br>0.03<br>0.01<br>0.02<br>0.16<br>0.23 | 2.94<br>0.15<br>2.09<br>1.08<br>1.51<br>0.12<br>1.82<br>0.31<br>1.34<br>2.99<br>2.94 | 0.74<br>0.48<br>0.56<br>0.48<br>0.67<br>0.27<br>0.15<br>0.15<br>0.04<br>0.44<br>0.45 | 7.34<br>2.31<br>5.44<br>5.75<br>7.35<br>7.35<br>8.75<br>8.75<br>8.75<br>8.75<br>8.75<br>8.75<br>8.75<br>8.7 |

Flux is in mg/m 2/day.

<sup>&</sup>quot;%cmbf" = "% of combustible flu."

# NB-1

# EAST OF JAN MAYEN

(NB-1) 70°00'N, 01°58'W

Trap depth: 2,749m Water depth: 2,773m

| 2                        |
|--------------------------|
| Annual Fluxes (g/m /yr): |
| Total16.78               |
| Carbonate8.93            |
| Noncombustible6.24       |
| Lithogenic4.65           |
| Combustible1.90          |
| Biogenic Opal1.44        |
| Organic C0.53            |
| N                        |

### PARFLUX Mark 5-25

Total Flux at Jan Mayen (NB1), 2815m, 1985-1986



| Sample<br>I.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TTLF<br>1                                                                                                         | 11 % of<br>total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TTLF                                                                                                   | 1 % of<br>total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 70 MB! - 28!5 - 1<br>71 NB! - 28!5 - 2<br>72 NB! - 28!5 - 4<br>74 NB! - 28!5 - 5<br>75 NB! - 28!5 - 5<br>76 NB! - 28!5 - 7<br>77 NB! - 28!5 - 7<br>77 NB! - 28!5 - 7<br>78 NB! - 28!5 - 12<br>78 NB! - 28!5 - 11<br>78 NB! - 28!5 - 12<br>80 NB! - 28!5 - 12<br>81 NB! - 28!5 - 12<br>82 NB! - 28!5 - 12<br>83 NB! - 28!5 - 12<br>84 NB! - 28!5 - 12<br>85 NB! - 28!5 - 12 | 72.99<br>91.93<br>95.98<br>72.99<br>45.36<br>45.37<br>49.70<br>45.70<br>46.70<br>46.70<br>36.70<br>47.00<br>47.00 | 91.44<br>99.00<br>99.35<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97.55<br>97 | 7.01<br>11.29<br>3.07<br>4.71<br>1.13<br>14.85<br>0.35<br>1.25<br>0.68<br>0.53<br>0.33<br>0.34<br>0.06 | 8.94<br>10.90<br>10.17<br>10.17<br>10.17<br>10.17<br>10.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11.17<br>11. | 79.22<br>79.25<br>74.05<br>74.05<br>74.05<br>74.05<br>54.00<br>40.00<br>41.00<br>41.00<br>41.00<br>53.00<br>41.00<br>53.00<br>41.00<br>54.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00<br>60.00 |

File is in morm 2 day.

Carbonate Flux at Jan Mayen (NB-1), 2815m, 1985-1986



| I.O                                                                                                                                                                                                                                                   | .1 t                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRTA %<br>total |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 70 NB1-2815-1 71 NB1-2815-2 72 NB1-2815-3 73 NB1-2815-4 74 N61-2815-5 75 NB1-2815-6 75 NB1-2815-7 77 NB1-2815-7 77 NB1-2815-7 78 NB1-2815-10 80 NB1-2815-11 81 NB1-2815-11 81 NB1-2815-11 81 NB1-2815-12 82 NB1-2815-13 83 NB1-2815-15 85 NB1-2815-15 | 47.19<br>44.25<br>25.33<br>24.04<br>24.50<br>28.01<br>20.74<br>24.50<br>24.50<br>24.50<br>24.50<br>24.50<br>24.50<br>24.50<br>24.50 | 42.72<br>45.72<br>45.70<br>47.29<br>461.96<br>51.96<br>52.25<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95<br>51.95 | 10.35<br>7.59 | 3.435<br>4.554<br>9.2554<br>10.554<br>10.5597<br>4.5697<br>4.5697<br>10.337<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554<br>10.3554 | 40.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57.50<br>57 | 1               |

Flux is in mg miliday.

Noncombustible Flux at Jan Mayen (NB-1). 2815m. 1985-1986



| Sample<br>  IS#<br> |                                                                                                                                                       | NONC %<br>tot. 1                                                                                                           | NONC<br>!                                                                                    | tot. 1                                                                                               |                      |   |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------|---|
| 72 NB1-2815-3       | 30.37<br>35.84<br>17.49<br>29.94<br>22.12<br>17.48<br>19.70<br>15.48<br>18.57<br>8.05<br>16.3<br>16.3<br>16.3<br>16.3<br>16.3<br>16.3<br>16.3<br>16.3 | 38.72<br>34.72<br>34.67<br>39.64<br>39.64<br>37.53<br>40.53<br>40.33<br>36.43<br>37.12<br>48.32<br>48.43<br>37.48<br>48.43 | 0.14<br>1.42<br>1.50<br>0.31<br>0.03<br>2.34<br>0.07<br>0.24<br>0.05<br>0.05<br>0.05<br>0.05 | 0.17<br>1.37<br>2.16<br>1.36<br>0.34<br>0.35<br>0.57<br>0.57<br>0.57<br>0.29<br>0.32<br>0.32<br>0.32 | 37.99501576F:5449:07 | - |

Fili is in mo m I dal.

Combustible Flux at Jan Mayen (NB-1), 2815m, 1985-86



COMB : COMB COME " DOME 31,748 COMB Sample tot. 1 1 . 1 tot. ! 0.21 0.27 7.33 10.07 70 481-2915-1 8.53 71 181-2315-2 2.50 2.43 11.41 3.90 5.65 7.50 72 %8:-28:5-3 7.28 4.18 3.:0 4.19 1481-2315-4 5.75 2.10 2.74 7.35 74 181-2815-5 3.44 5.35 9.33 0.24 5.53 15 %81-2315-6 3.61 7.30 0.19 0.42 3.30 7.21 75 %81-2815-7 4.56 12.49 : 3.75 17.34 25.36 5.03 61-2315-3 3.53 3.24 3.44 ð.32 5.54 79 481-2915-9 2.32 5.96 2.11 J.EØ 0.33 2.23 2.02 79 %81-2815-10 0.75 3.04 5.38 80 MB1-28:5-11 3.43 7.27 1.20 4.00 ∂.56 2.43 81 NB1-2815-12 :.28 1.32 5.39 0.54 2.15 7.90 92 %81-2315-13 0.22 0.30 93 NB1-2815-14 3.12 0.27 J.59 3.39 9.36 17.64 84 481-2815-15 J.∃4 0.01 J.19 3.95 3.22 85 481-2915-15 J.J0 3.31 J.J' 0.00 7,81 42.54 კ. უე 85 481-2815-17 4.50 50.45 3.30

F. . .s .c mg m 2 day.

Biogenic Silica Flux at Jan Mayen (NB-1), 2815m, 1986



| Samo<br>ID# |             | OPAL<br>.1 | OPAL %<br>Nof! | OPAL % tot! |
|-------------|-------------|------------|----------------|-------------|
| 70          |             | 9.44       |                |             |
| 71          | NB1-2815-2  | 12.99      |                |             |
| 72          |             | 3.91       | 20.49          |             |
| 73          | NB1-2815-4  | 8.17       | 26.57          | 10.66       |
| 74          | NB1-2815-5  | 4.70       | 20.98          | 8.64        |
| 75          | NB1-2815-6  | 4.30       | 24.58          | 9.29        |
| 76          | NB1-2815-7  | 4.08       | 18.85          | 6.45        |
| 77          | NB1-2815-8  | 3.69       | 16.95          | 5.86        |
| 78          | NB1-2815-9  | 3.23       | 19.35          | 7.23        |
| 79          | NB1-2815-10 | 2.28       | 16.56          | 6.07        |
| 80          | NB1-2815-11 | 3.23       | 17.35          | 5.84        |
| 81          | NB1-2815-12 | 1.22       | 15.06          | 5.62        |
| 82          | NB1-2815-13 | 1.79       | 17.67          | 5.58        |
| 83          | NB1-2815-14 | 2.80       | 17.32          | 7.22        |
| 84          | NB1-2815-15 | 0.46       | 19.91          | 9.60        |
| 85          | NB1-2815-16 | 0.22       | 14.77          | 7.89        |
| 36          | NB1-2815-17 | 0.92       | 26.82          | 10.33       |

Flux is in mg/m°2/day.

Not enough sample in .1 mm fraction to analyze for Opal.

<sup>&</sup>quot;%Nof." = "% of noncombustible flux".

Lithogenic Flux at Jan Mayen (N8~1), 2815, 1986



| RAMPLE<br>I.D. |       | LITH(!<br>%Nomb. | LITH 1<br>%total |
|----------------|-------|------------------|------------------|
| NB1-2815-1     | 20.93 | 68.61            | 28.43            |
| NB1-2815-2     | 22.85 | 61.33            | 22.13            |
| NB1-2915-3     | 13.58 | 71.14            | 18.33            |
| NB1-2815-4     | 21.77 | 70.80            | 28.41            |
| NB1-2815-5     | 17.52 | 78.21            | 32.20            |
| NB1-2815-6     | 13.18 | 75.30            | 28.50            |
| NB1-2815-7     | 15.22 | 70.33            | 24.08            |
| NB1-2815-8     | 18.01 | 82.72            | 33.47            |
| NE1-2815-9     | 12.39 | 79.14            | 29.58            |
| NB1-1815-10    | 11.40 | 82.79            | 30.36            |
| NB1-2815-11    | 15.34 | 92.40            | 32.50            |
| N81-2815-12    | 5.83  | 84.32            | 31.46            |
| NB1-2315-13    | 9.34  | 82.24            | 30.66            |
| NB1-2815-14    | 13.37 | 92.56            | 34.48            |
| NB1-2815-15    | 1.35  | 30.02            | 38.56            |
| NB1-2315-16    | 1.27  | 93.35            | 45.58            |
| WE1-2815-17    | 2.51  | 72.22            | 28.11            |

Flux is in mg/m 2/day. Insufficient material to analyze thm fraction.

### Carbon Flux at Jan Mayen (NB-1), 2815m, 1985-86



| Sample<br>1.3.                                                                                                                                                                                                        | CRNC<br>1                                                                                    | CRNC(1                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 70 NB1-2815-1 71 NB1-2815-2 70 NB1-2815-3 70 NB1-2815-4 74 NB1-2815-6 75 NB1-2815-7 70 NB1-2815-7 70 NB1-2815-7 70 NB1-2815-7 70 NB1-2815-7 71 NB1-2815-1 80 NB1-2815-11 81 NB1-2815-11 81 NB1-2815-11 81 NB1-2815-11 | 3.41<br>4.13<br>1.69<br>1.31<br>1.70<br>2.35<br>1.77<br>1.41<br>1.56<br>0.05<br>0.04<br>0.02 | 41.53<br>36.16<br>23.20<br>24.29<br>25.17<br>44.72<br>13.77<br>47.93<br>36.03<br>39.43<br>1.39 |
| o €, ya isa in majim ji da                                                                                                                                                                                            | ١                                                                                            |                                                                                                |

how of in may mile day.

object = % of combustible flag.

Not enough ... mm fraction to do analysis.



| Sample<br>I.D.                                                                                                                                                                                           | NTGN<br>(1                                                                   | NTGN<1<br>%cmbf.                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 70 N81-2815-1 71 N81-2815-2 72 N81-2815-3 73 N81-2815-4 74 N81-2815-5 75 N81-2815-6 75 N81-2815-7 77 N81-2815-8 78 N81-2815-8 78 N81-2815-10 80 N81-2815-11 81 N81-2815-11 81 N81-2815-12 82 N81-2815-13 | 0.48<br>0.50<br>0.24<br>0.25<br>0.22<br>0.31<br>0.24<br>0.20<br>0.15<br>0.01 | 5.90<br>5.29<br>3.24<br>3.23<br>3.85<br>6.55<br>1.82<br>6.64<br>5.21<br>5.04<br>5.67<br>5.08<br>0.36 |
| 84 NB1-2815-15                                                                                                                                                                                           | 0.00                                                                         | 0.00                                                                                                 |

'%cmbf' = '% of combustible flux'.

Not enough , 1 mm fraction to do analysis.

Flux is in mg/m 2/day.



| Sample<br>I.D.                                                                                                                                              | HYDC<br><1                                                                   | HYDC<1<br>%cmbf.                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 70 NB1-2815-1 71 NB1-2815-2 72 NB1-2815-3 73 NB1-2815-4 T4 NB1-2815-5 75 NB1-2815-6 T6 NB1-2815-7 77 NB1-2815-8 78 NB1-2815-9 79 NB1-2915-10 80 NB1-2815-11 | 0.51<br>0.76<br>0.34<br>0.45<br>0.33<br>0.25<br>0.36<br>0.32<br>0.24<br>0.19 | 6.28<br>6.63<br>4.67<br>5.69<br>5.92<br>6.66<br>2.11<br>8.74<br>6.42<br>6.14 |
| 81 NB1-2815-12<br>32 NB1-2815-13                                                                                                                            | 0.13                                                                         | 6.88<br>1.35                                                                 |
| 83 NB1-2815-14                                                                                                                                              | 0.02                                                                         | 0.63                                                                         |

Flux is in mg/m/2/day.
"%cmbf' = "% of combustible flux".
Not enough ' mm fraction to do analysis.

# EAST GREENLAND/FRAM STRAIT AREA

FS-1

# CENTRAL FRAM STRAIT

78°52' N, 01°22'E

Trap depth: 2,440m Water depth: 2,527m

| Annual Fluxes   | $(g/m^2/yr)$ : |
|-----------------|----------------|
| Total           | 6.61           |
| Carbonate       | 1.40           |
| Noncombustible. | 4.26           |
| Combustible     | 0.92           |
| Lithogenic      | 4.00           |
| Biogenic Opal   | 0.60           |
| Organic C       |                |
| N               |                |

#### <sup>മ</sup>ലമമിളൂട് ശിഷ്ടം ( ജലത്ത

| Sample                                                                                                                                                       | Opening                                                                                                                                                  | Closing                                                                                                                                                               | Span                                                         | Mid.                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID                                                                                                                                                           | Date                                                                                                                                                     | Date                                                                                                                                                                  |                                                              | Date                                                                                                                                                     |
| 13 F51-2000-1 14 F31-2000-2 15 F31-2000-3 15 F31-2000-5 18 F31-2000-5 18 F31-2000-7 20 F31-2000-7 20 F31-2000-1 21 F31-2000-10 23 F31-2000-11 24 F31-2000-12 | 20-AUG-84<br>17-SEP-84<br>15-OCT-84<br>11-NOV-84<br>09-DEC-84<br>07-JAN-85<br>03-FEB-85<br>03-MAR-85<br>20-MAR-85<br>27-APR-85<br>21-JUN-35<br>19-JUL-85 | 17-SEP-84<br>15-OCT-84<br>11-NOV-84<br>09-OEC-84<br>07-JAN-85<br>03-FEB-85<br>03-MAR-85<br>30-MAR-85<br>27-APR-85<br>25-MAY-85<br>21-JUN-85<br>13-JUL-35<br>15-AUG-85 | 27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5 | 03-SEF-S4<br>01-GCT-S4<br>29-GCT-S4<br>25-NOV-S4<br>24-DEC-S4<br>21-JAN-85<br>17-FEB-85<br>17-MAR-85<br>13-APR-85<br>11-MAY-85<br>08-JUN-85<br>05-JUL-85 |

Total Flux at Fram Strait (FS-1), 2000m, 1984-1985



FRAM STRAIT 1 POISONED WITH HG CL2 359 DAYS Mark 5 trap open from AUGUST 20 1984 to AUGUST 15 1985 at 2000 meters. TOTAL FLUX (mg / m^2 / day)

| Сцр | Ttl is tota    |       | all size |       | > 1ma    |       | TOTAL    |       |
|-----|----------------|-------|----------|-------|----------|-------|----------|-------|
|     | % of Ttr       | FLUX  | % of Ttl | FLUX  | % of Ttl | FLUX  | % of Ttl | FLUX  |
| 1   | 57.18          | 12.30 | 23.52    | 5.06  | 19.29    | 4.15  | 100.00   | 21.51 |
| 2   | 63.02          | 25.34 | 17.56    | 7.04  | 19.42    | 7.81  | 100.00   | 40.21 |
| 3   | 64.12          | 29.17 | 14.99    | 6.82  | 20.88    | 9.50  | 100.00   | 45.49 |
| 4   | 50.03          | 9.05  | 29.41    | 5.32  | 20.56    | 3.72  | 100.00   | 18.09 |
| 5   | 63. <b>83</b>  | 6.46  | 17.89    | 1.81  | 18.28    | 1.85  | 100.00   | 10.12 |
| 6   | 52.92          | 3.90  | 34.60    | 2.55  | 12.48    | . 92  | 100.00   | 7.37  |
| 7   | 59. <i>7</i> 5 | 2.91  | 12.73    | . 62  | 27.52    | 1.34  | 100.00   | 4.87  |
| 8   | 51.98          | 3.80  | 15.18    | 1.11  | 32.83    | 2.40  | 100.00   | 7.31  |
| 9   | 24.86          | 14.00 | 27.73    | 15.62 | 47.41    | 26.70 | 100.00   | 56.32 |
| 10  | 36.46          | 3.91  | 45.45    | 4.75  | 18.09    | 1.89  | 100.00   | 10.45 |
| 11  | 72.32          | 4.39  | 19.60    | 1.19  | 8.07     | . 49  | 100.00   | 6.07  |
| 12  | 31.80          | 5.31  | 16.11    | 2.69  | 52.10    | 8.70  | 100.00   | 16.70 |
| 13  | 31.56          | 2.13  | 12.00    | . 81  | 56.44    | 3.81  | 100.00   | 6.75  |
|     | *********      |       |          |       | ******   |       | *******  |       |

## Carbonate Flux at Fram Strait (FS-1), 2000m, 1984-1985



| Sample<br>I.O.                                                                                                                                               | CRTA                                                                                         | CRTA %                                                                                                | CRTA                                                                                 | CRTA % tot.:1                                                                                           | CRTA<br>total                                                                        | CRTA % total                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 13 FS1-2000-1 14 FS1-2000-2 15 FS1-2000-3 15 F51-2000-4 17 F51-2000-6 19 F51-2000-7 20 FS1-2000-8 21 F51-2000-9 22 FS1-2000-10 23 FS1-2000-11 24 F51-2000-12 | 3.51<br>6.84<br>7.72<br>3.31<br>1.64<br>0.78<br>0.81<br>0.98<br>0.71<br>0.82<br>0.72<br>1.21 | 14.52<br>17.13<br>18.16<br>18.33<br>18.10<br>14.44<br>15.52<br>13.44<br>1.60<br>7.27<br>11.98<br>7.79 | 0.81<br>2.30<br>2.05<br>2.78<br>0.54<br>0.39<br>0.72<br>0.98<br>1.57<br>0.33<br>0.10 | 3.77<br>5.72<br>4.51<br>15.37<br>5.34<br>3.85<br>9.78<br>13.41<br>2.79<br>3.16<br>1.65<br>9.80<br>32.74 | 4.32<br>9.14<br>9.77<br>6.09<br>2.18<br>1.17<br>1.53<br>1.96<br>2.15<br>0.85<br>2.71 | 3.76<br>3.76<br>4.89<br>4.89<br>5.89<br>7.3.74<br>13.98<br>10.52<br>10.52 |

Flux is in mg/m 2/day.

TO STATE STATES STATES STATES

#### Noncombustible Flux at Fram Strait 1, 2000 m, 1984-85



| Sample<br>IO#                                                                                                                                                           | NONC<br>- 1                                                                                      | NONC % tot!                                                                                              | NONC                                                                                          | NONC %                                                                                          | NONC<br>total                                                                    | NONC %<br>total                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 13 FS1-2000-1* 14 FS1-2000-2* 15 FS1-2000-3* 15 FS1-2000-4* 17 FS1-2000-5* 18 FS1-2000-6* 19 FS1-2000-7* 20 FS1-2000-9* 21 FS1-2000-10* 23 FS1-2000-11* 24 FS1-2000-12* | 13.22<br>20.86<br>21.77<br>9.16<br>4.56<br>2.87<br>2.06<br>2.75<br>15.74<br>7.67<br>3.67<br>4.09 | 54.67<br>52.23<br>51.21<br>50.72<br>50.33<br>53.15<br>39.46<br>37.72<br>35.43<br>68.00<br>61.06<br>26.34 | 2.14<br>2.64<br>4.02<br>0.45<br>0.45<br>0.13<br>0.13<br>0.47<br>24.30<br>1.23<br>0.29<br>4.92 | 8.85<br>6.61<br>9.46<br>2.49<br>4.97<br>2.41<br>2.49<br>6.45<br>54.69<br>10.90<br>4.83<br>31.68 | 15.36<br>23.50<br>25.79<br>9.61<br>5.00<br>2.29<br>3.22<br>40.04<br>8.90<br>3.91 | 63.52<br>58.94<br>60.67<br>53.21<br>55.30<br>55.56<br>43.67<br>44.17<br>90.12<br>79.90<br>65.89<br>53.02 |
| 25 FS1-2000-13+                                                                                                                                                         | 1.35                                                                                             | 20.96                                                                                                    | 0.59                                                                                          | 9.16                                                                                            | 1.94                                                                             | 30.12                                                                                                    |

Flur is in mg/m 2 day.

Combustible Flux at Fram Strait 1, 2000 m, 1984-85



| Sample<br>ID#                                                                                                                           | COMB                                                                 | COMB % tot.<1                                                                  | COMB<br>`1                                                           | COMB % tot. 1                                                         | COMB<br>TOTAL                                                                | COMB :                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 13 F51-2000-1* 14 F51-2000-2* 15 F51-2000-3* 16 F51-2000-4* 17 F61-2000-6* 18 F51-2000-7* 20 F51-2000-8* 21 F51-2000-9* 22 F51-2000-10* | 3.28<br>4.32<br>3.51<br>1.61<br>0.35<br>0.43<br>0.31<br>0.45<br>0.55 | 13.56<br>10.32<br>8.26<br>8.91<br>9.38<br>7.96<br>5.94<br>6.17<br>1.31<br>4.68 | 1.21<br>2.87<br>3.43<br>0.49<br>0.86<br>0.39<br>0.49<br>0.95<br>0.83 | 5.00<br>7.19<br>8.07<br>2.71<br>9.49<br>7.22<br>9.39<br>13.03<br>1.95 | 4.49<br>7.19<br>5.94<br>2.10<br>1.71<br>0.32<br>0.30<br>1.40<br>1.41<br>0.38 | 15.57<br>13.00<br>16.33<br>11.63<br>18.87<br>15.33<br>19.27<br>27.30 |
| 24 FS1-2000-12+<br>25 FS1-2000-13+                                                                                                      | 0.68<br>0.35<br>0.27                                                 | 11.31<br>5.47<br>4.19                                                          | 2.13                                                                 | 1.66<br>13.72<br>15.58                                                | Ø.78<br>2.98<br>1.23                                                         | 12.99<br>19.19<br>19.35                                              |

Flux is in mg/m 2/day.

## Biogenic Opal Flux at Fram Strait 1, 2000m, 1984-85



| Sample                | OPAL   | OPAL<1     | OPAL<1       |
|-----------------------|--------|------------|--------------|
| ID#                   | .1<br> | %Ncmb.<br> | %Total       |
| 13 FS1-2000-1         | 2.81   | 18.28      | 11.61        |
| 14 FS1-2000-2         | 5.58   | 23.73      | 13.96        |
| 15 FS1-2000-3         | 5.41   | 20.98      | 12.73        |
| 15 F31-2000-4         | 1.58   | 16.46      | 3.7 <b>6</b> |
| 17 FS1-2000-5         | 0.71   | 14.23      | 7.87         |
| 18 FS1-2000-6         | 0.52   | 17.33      | 9.63         |
| 19 FS1-2 <b>000-7</b> | 0.33   | 14.47      | 6.35         |
| 20 FS1-2000-8         | 1.32   | 40.91      | 18.07        |
| 21 F51-2000-9         | 0.78   | 1.95       | 1.75         |
| 22 FS1-2000-10        | 0.41   | 4.63       | 3.65         |
| 23 FS1-2000-11        | 1.02   | 25.73      | 16.96        |
| 24 FS1-2000-12        | 0.53   | 5.93       | 3.44         |
| 25 FS1-2000-13        | 0.27   | 14.14      | 4.26         |

Flux is in mg/m^2/day.

%Nomb. is "% noncombustible flux".

Not enough 31 mm fraction to do analysis.

Lithogenic Flux at Fram Strait 1, 2000m, 1984-85



| Sample                | LITH  | LITH </th |
|-----------------------|-------|-----------|
| ID#                   | <1    | %Nomb.    |
|                       |       |           |
| 13 FS1-2000-1         | 10.41 | 67.79     |
| 14 FS1-2000-2         | 15.28 | 65.03     |
| 15 FS1-2 <b>000-3</b> | 16.36 | 63.44     |
| 15 FS1-2000-4         | 7.58  | 78.86     |
| 17 FS1-2000-5         | 3.85  | 76.79     |
| 18 FS1-2000-6         | 2.35  | 78.34     |
| 19 FS1-2000-7         | 1.73  | 75.49     |
| 20 FS1-2000-8         | 1.43  | 44.49     |
| 21 FS1-2000-9         | 14.96 | 37.36     |
| 22 FS1-2000-10        | 7.26  | 81.55     |
| 23 FS1-2000-11        | 2.65  | 66.94     |
| 24 FS1-2000-12        | 3.56  | 39.46     |
| 25 FS1-2000-13        | 1.08  | 55.45     |

Flux is in  $mg/m^2/day$ .

%Nomb. is "% noncombustible flux".

Not enough at mm fraction to do analysis.

Carbon Flux at Fram Strait 1, 2000m, 1984-85



| Sample<br>I.C.         | CRNC<br>1 | CRNC (1 %cmbf. | CRNC<br>-1 | CRNC>1<br>%cmbf. | CRNC<br>total | CRNCtot.<br>%cmbf. |
|------------------------|-----------|----------------|------------|------------------|---------------|--------------------|
| :3 F5!-2000-!•         | 1.39      | 30.39          | 0.58       | 12.92            | 1.97          | 43.81              |
| 14 F51-2000-2•         | 2.13      | 29.62          | 1.41       | 19.61            | 3.54          | 49.23              |
| 15 F31-2000-3•         | 1.75      | 25.25          | 2.04       | 29.39            | 3.79          | 54.65              |
| 15 F3:-2000-4*         | 0.79      | 37.66          | 0.26       | 12.38            | 1.05          | 50.04              |
| ¹7 F5:-2000-5•         | 0.48      | 27.80          | 0.36       | 21.05            | 0.94          | 48.35              |
| 13 F5'-2 <b>000-6*</b> | 0.34      | 41.45          | 0.19       | 22.71            | 0.53          | 64.15              |
| 13 F51-2000-7•         | 0.33      | 27.77          | 0.17       | 21.25            | 0.39          | 49.02              |
| 20 FS1-2000-9+         | 0.18      | 12.86          | 0.51       | 36.48            | 0.69          | 49.29              |
| 21 F5:-2000-9+         | ð.:3      | 9.08           | 0.51       | 36.17            | 0.64          | 45.25              |
| 22 F31-2000-10+        | 0.29      | 32.92          | 0.14       | 16.22            | 0.43          | 49.14              |
| 23 F51-2000-11•        | 0.43      | 55.10          | 0.06       | 7.69             | 0.49          | 52.79              |
| 24 F3:-2000-:2*        | 0.35      | 11.31          | 1.15       | 38.59            | 1.50          | 50.40              |
| 25 F31-20000-13∙       | Ø.22      | 17.39          | ð.26       | 20.31            | 0.48          | 37.70              |

Fluk is in mg m 2 day. Gerbf \* % of combustible fluk'.

Nitrogen Flux at Fram Strait. 2000m. 1984-85



| Sample<br>I.O.          | NTGN<br>- 1 | _     | NTGN<br>1     | NTGN<br>Nombf. |      |   |
|-------------------------|-------------|-------|---------------|----------------|------|---|
| 13 FS1-2000-1+          | ð.:9        | 4.17  | ð. <b>3</b> 8 | , 79           | 2.27 |   |
| 14 FS1-2000-2*          | 0.30        | 4.24  | ð. S          | 2.29           | 3.45 |   |
| 15 F31 <b>-2000-3</b> * | Ø.23        | 3.36  | ð.·~          | 3.45           | 2 43 |   |
| 16 F31-2000-4+          | ð.;·        | 5.39  | 2.34          | 1.30           | 3 3  |   |
| 17 FS1-2000-5+          | 2.27        | 3.86  | 3.33          | . 15           | 2 3  |   |
| 18 FS1-2 <b>000-6</b> • | 0.04        | 5.21  | <b>3.32</b>   |                | 3 37 |   |
| 19 F51-2000-7+          | 0.02        | 3.11  | 3.31          |                | 3.3  | • |
| 20 F51-2000-8•          | 9.14        | ∃.∃~  | J. J5         | 4.35           | 2 2  | • |
| 21 FS1-2000-9*          | 2.21        | ₹. 35 | ð. ð3         | <u> </u>       | 3 34 |   |
| 22 FS1-2000-10+         | 0.34        | 4.29  | 3.3           | n 5            | 2.25 |   |
| 23 F31-2000-11+         | ð. 35       | 5.13  | 3.3           | Ĵį             | 2.0% |   |
| 24 F31-2000-12•         | ð. ðS       | 1.54  | 3.12          | 4 22           |      |   |
| 25 FS1-2000-13+         | 0.03        | 2.14  | 0 03          | _ 1            | 2.25 | • |

Flux is in mg/m  $\mathbb{C}/day$ . "%cmof" = "% of combustible flux

CONTRACTOR OF THE PROPERTY OF

### Hydrogen Flux at Fram Strait, 2000m, 1984-1985



| 1472.8<br>1 1 |                                         | #* <u>0</u> 0 | 57<br>1:75   | <b>-</b> 4 - 🧖 ″ | . 751 |   |  |
|---------------|-----------------------------------------|---------------|--------------|------------------|-------|---|--|
|               | · : : : : : : : : : : : : : : : : : : : |               | 36           | 2 2              |       | • |  |
|               | 335                                     | 3 43          |              |                  | •     | • |  |
|               | . 222                                   | ž 44          | - 4          | • •              | .* 4  |   |  |
|               | 268 1.                                  | *             | * 4.54       |                  | .,•   |   |  |
|               | 222 :•                                  | ť             | \$           | .*               |       |   |  |
|               | 333 5                                   | 2 2:          | • 4          |                  |       | • |  |
|               | •                                       |               | <del>-</del> |                  |       |   |  |
| •             | 222                                     | * ***         | •            | ٠.               |       |   |  |
|               | 222 -                                   | 2. 25.        |              | .*               |       |   |  |
|               | •                                       | 1 1 1 to      | .*           | •                |       |   |  |
|               | 222                                     | <i>:</i> •    |              |                  |       |   |  |
|               |                                         |               |              |                  |       |   |  |
|               | **************************************  | ÷             |              |                  |       |   |  |

•

GB-2 (1,900m)
GREENLAND BASIN
74°35'N, 06°43'W

Trap depth: 881m Water depth: 3,445m

| Annual Fluxes (g/m | m²/yr): |
|--------------------|---------|
| Total              | 8.79    |
| Carbonate          | 2.59    |
| Noncombustible     | 3.69    |
| Combustible        | 2.50    |
| Organic C          | 0.94    |
| ν                  | 0 16    |

- APF . MAC. 5- 5

| 1~_ | ~  |                                        | រជ <b>់ព</b> េកធ្វ | 3.~~             | ipan | M. 3.              |
|-----|----|----------------------------------------|--------------------|------------------|------|--------------------|
|     |    |                                        | . d ' f            | _a:e             |      |                    |
|     |    |                                        |                    |                  |      |                    |
|     | •  | 1.8.1                                  | 25 A. C. 45        | 35 - 9EP - 95    | 73   | 2 4                |
| • • | -  |                                        | 19 68 5            | 35 - 117 :5      |      | 13 HER 49          |
|     | -  | ************************************** | 25 , 1 45          | 34 1000 35       |      | 2 <b>3</b> -32* 35 |
|     |    | 200 ·                                  | 34 % 3             | 34 JET 95        |      | 3-10 45            |
|     |    | 3 3 3<br>6 1 1                         | 34 Je - 95         | 21 (45)-35       | :3   | 3 JE - 45          |
|     |    | 2000 m                                 | and the second     | Mi AFB 45        |      |                    |
|     | *  | 3.3.3                                  | , e k a e e e      | JA MAN 46        | :3   | 7 - 58 - 56        |
| • • |    |                                        | A gradual supplier | ្រុក ឯកក្នុង និង | 1.5  | - MAE 11           |
|     | -  | 222                                    | The market of      | رشيد سوف دي      | 13   | 44°6 = 2           |
|     | •~ |                                        | A                  |                  | . ,  | يُن ينزمه          |
|     | •  | * * *                                  |                    |                  | • •  |                    |
|     |    | · , · , •                              |                    |                  | . ,  |                    |

Total Flux at Greenland Basin 2, 1900m, 1985-86



| Rample                                                                                                                                                                   | TTLF<br>:                                                                          | l % of<br>total                                                       | TTLF<br> <br>                 | ! % of<br>total                                          | TTLF<br>total                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------|
| 89 GBZ-1900-1<br>90 GBZ-1900-2<br>91 GBZ-1900-3<br>92 GBZ-1900-4<br>93 GBZ-1900-5<br>94 GBZ-1900-7<br>96 GBZ-1900-8<br>97 GBZ-1900-9<br>98 GBZ-1900-10<br>99 GBZ-1900-10 | 20.25<br>23.44<br>20.75<br>21.21<br>15.44<br>13.42<br>3.46<br>0.10<br>3.00<br>2.08 | 32.0!<br>79.53<br>86.77<br>32.38<br>32.42<br>32.27<br>36.77<br>100.00 | 6.41<br>6.45<br>4.65<br>1.3:4 | 17.99<br>21.47<br>13.23<br>7.52<br>7.58<br>7.73<br>13.23 | 36.88<br>29.86<br>35.44<br>22.85<br>11.79<br>14.54<br>10.81<br>2.10<br>2.10 |

čivo is in mg m č day.

inap maximust.oned beginning at oup #8.

### Carbonate Flux at Greenland Basin 2, 1900m, 1985-86



| Sample<br>1.0.                                                                                                                                                                           | CRTA                                 | CRTA % tot. 1                                              | _                                            | -    | ORTA<br>total | -                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------|----------------------------------------------|------|---------------|------------------------|
| 89 582-1900-1<br>90 582-1900-2<br>91 382-1900-3<br>92 382-1900-4<br>93 382-1900-5<br>94 382-1900-6<br>95 682-1900-7<br>96 682-1900-8<br>97 682-1900-1<br>98 582-1900-1<br>99 382-1900-11 | 7.03<br>2.76<br>7.78<br>4.14<br>3.72 | 9.57<br>25.57<br>35.32<br>35.32<br>35.35<br>35.35<br>35.35 | 0.73<br>1.30<br>1.34<br>0.35<br>0.23<br>0.23 | 4.36 |               | 17.80<br>03.8<br>05.44 |

file is to mim 2 day

That maifunctioned beginning at our #8.

### Moncombustible Flux at Greenland Basin 2, 1900m, 1985-86



| 3470.8<br>17 <b>3</b> | MONO         | NONC :         |       | NONC : |       |        |
|-----------------------|--------------|----------------|-------|--------|-------|--------|
| 59 582-1300-1         | 14.12        | 39.29          | 2.31  | 3.53   | 13.32 | 4      |
| 30 382-1300-1         | 3.34         | 32.35          | 2.13  | J 35   |       | 4.7    |
| 9 382-1900-3          | 3.38         | 28.38          | 2.16  | 5.66   |       | 24 (1. |
| 90 3 <b>80-1900-4</b> | 3 . <b>5</b> | วา. รอ         | . 3~  | 4.54   | 3 13  | 4.     |
| 93 382-1300-5         | 5.57         | 35.53          | ð. 39 | ∄ .    | •     | ÷      |
| 34 362 300-6          | 5.53         | 38.49          | 3 72  | . 3    |       | ÷ .    |
| 35 382-1300-7         | 1.5          | 33. <b>3</b> 6 | J. 55 | - 3    | 4 -   | , •    |
| 96 382 - 300 3        |              |                |       |        |       |        |
| 37 382-1300-9         |              |                |       |        |       |        |
| 98 GB2-1900- 3        |              |                |       |        |       |        |
| 99 382 - 1900 -       |              |                |       |        |       |        |
| 00 387 300 J          |              |                |       |        |       |        |

### Combustible Flux at Greenland Basin 2, 1900m, 1985-86



|                   |               | трмр             | <b>₩</b> ₽   | ME        | <b>4</b> 6 ∴   | ٣Ē  | 5° au |
|-------------------|---------------|------------------|--------------|-----------|----------------|-----|-------|
| :                 |               |                  | • •          |           |                | *** | •     |
|                   | -<br>320-     | - 444.44<br>4 44 | <b>4</b> *** | ) <u></u> |                |     | ·     |
| -                 | 300           | 3 4 T            |              | •         | 5 45           |     |       |
|                   | 300 - 1       | 1.               | * 1          |           | • -            |     |       |
|                   | 100 1         | <b>.</b>         | 3 2 2        |           | ¥ <del>7</del> |     |       |
|                   | 100 - 4       |                  | • •          |           |                |     |       |
|                   | 4 <b>33</b> * |                  | - 4          |           | •              | •   |       |
| in and the second | 300<br>300    |                  | • • •        |           |                |     |       |
| <b>.</b>          | 422 -         |                  |              |           |                |     |       |
|                   | +38 - 3       |                  |              |           |                |     |       |
| · •               | 122           |                  |              |           |                |     |       |
| ٠,٠ ٠,٠           | .96           |                  |              |           |                |     |       |

Carbon Flux at Greenland Basin 2, 1900m, 1985-86



| amp . e                               |              | GRNC<br>1              |                | GRNC<br>;      | -            | -            | SRNCtat.<br>Vambf. |
|---------------------------------------|--------------|------------------------|----------------|----------------|--------------|--------------|--------------------|
| · · ·                                 |              | 4,21                   |                |                |              |              |                    |
| - 11 E.T                              |              | ງ. 1 <b>ນ</b><br>3. 78 | 36.43<br>4:.32 |                | 7,43         | 3.37<br>4.47 |                    |
| 1 -5.                                 |              | 2,24                   | • •            | <b>3</b> .13   | 3.55         | 2.43         |                    |
|                                       |              | 2.56<br>.∔a            | 43.32<br>12.00 | ง. 16<br>ง. 15 | 6.15<br>3.23 | 2.92<br>1.53 |                    |
| ·= •=:                                | 100          |                        | 17,49          |                | 1.58         |              |                    |
| 15 38.<br>1 45                        |              |                        |                |                |              |              |                    |
| 4- (£)                                | 400 J        |                        |                |                |              |              |                    |
| · · · · · · · · · · · · · · · · · · · | २७७ ÷<br>+७० |                        |                |                |              |              |                    |

### Nitrogen Flux at Greenland Basin 2, 1900m. 1985-86



| Bample<br>. 2.                                                                                                                                                                            |                                                      | NTGN-1<br>%ambf.                                     |                                                             | NTGN 1<br>%cmbf.                                     | · <del>-</del> | NT3Ntat.<br>%cmbf.                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|----------------|------------------------------------------------------|
| 63 382 - 1800 - 1<br>83 382 - 1800 - 2<br>81 382 - 1800 - 3<br>82 382 - 1800 - 4<br>83 382 - 1800 - 5<br>84 382 - 1800 - 5<br>85 382 - 1800 - 6<br>86 382 - 1800 - 8<br>87 382 - 1800 - 8 | 0.68<br>2.49<br>3.56<br>3.37<br>0.45<br>3.27<br>3.23 | 5,:9<br>5.05<br>5.35<br>7.33<br>7.56<br>5.32<br>3.44 | 3. 13<br>3. 14<br>3. 13<br>3. 33<br>3. 35<br>3. 32<br>3. 39 | 1.17<br>1.51<br>2.11<br>0.56<br>0.35<br>2.54<br>2.52 |                | 7.78<br>7.78<br>7.78<br>7.88<br>0.99<br>9.99<br>0.98 |
| 38 382-1900-13<br>39 382-1900-11<br>30 382-1900-12                                                                                                                                        |                                                      |                                                      |                                                             |                                                      |                |                                                      |

thustuble tides

Hydrogen Flux at Greenland Basin 2, 1900m, 1985-86



The second secon

# GB-2 3,000m

## GREENLAND BASIN

74°35'N, 06°43'W

Trap depth: 2,823m Water depth: 3,445m

| 2                        |
|--------------------------|
| Annual Fluxes (g/m /yr): |
| Total10.21               |
| Carbonate3.28            |
| Noncombustible5.73       |
| Combustible1.23          |
| Biogenic Opal2.61        |
| Lithogenic3.12           |
| Organic C0.40            |
| N 0.06                   |

### PARFLUX Mark 6-13

SCHOOL SCHOOL MANAGEMENT ASSESSED CONTRACTOR SCHOOL SCHOOL

| Sample<br>:3                                                                                                                                             | Opening<br>Date                                                                                                                | Closing<br>Date                                                                                                                             | Span                                     | Mid.<br>Date                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 10: 382-3000-1 10: 382-3000-2 10: 582-3000-3 10: 582-3000-4 10: 582-3000-5 10: 582-3000-7 10: 582-3000-9 10: 382-3000-10 10: 382-3000-10 10: 382-3000-10 | 34-AUG-85<br>31-SEP-85<br>22-SEP-85<br>27-001-85<br>24-NOU-85<br>22-DEC-85<br>:3-JAN-86<br>:3-KE8-86<br>:5-MAR-86<br>:5-MAR-86 | 01-SEP-85<br>29-3EP-85<br>27-001-85<br>24-NOU-85<br>22-0EC-85<br>13-JAN-86<br>13-FEB-86<br>16-MAR-86<br>13-APR-86<br>11-MAY-86<br>28-301-85 | 2000 00 00 00 00 00 00 00 00 00 00 00 00 | 18-AUG-85<br>15-SEP-85<br>13-007-85<br>10-NOU-85<br>28-DED-85<br>35-JAN-86<br>32-FEB-86<br>32-MAR-86<br>32-MAR-86<br>30-MAR-86 |
| 113 382-3000-13                                                                                                                                          | 36-711-95                                                                                                                      | <b>3</b> 0-406-36                                                                                                                           | 2.4                                      | - <b>20</b> 2 2 2 35                                                                                                           |

Total Flux at Greenland Basin 2, 3000m, 1985-86



| Samp.e                         |                | • :     |     |            |            |
|--------------------------------|----------------|---------|-----|------------|------------|
| :. <b>.</b> .                  | ,              | tota.   |     | • • а.     | 1.13.      |
| a: 582-3000-                   | 4.29           | 79.4-   | 2 2 | 2 52       |            |
| 30 380-3300-3                  | 78 33          | 14 17   | ÷   | , · - "    |            |
| 03 382-3000-3                  | <u>) = 6</u> = |         |     |            |            |
| 34 382-3338-4                  | 3.2            | 4g [4   | 2 4 |            | <u>.</u> . |
| 35 382 3332-5                  | •              |         | :   |            |            |
| 25 382 1220-5                  | 2.5            | 4 * 4 × | * : |            |            |
| 37 382 7888 1                  | .5 54          | •       |     |            |            |
| 34 3 <u>4</u> 2 33 <b>22</b> 4 | 2.3            |         | • " | ,          |            |
| 33 350 1332 +                  |                |         | ·   | · ·        |            |
| 2 360 1000 0                   |                | •       | ÷   |            |            |
| ાના સ્ટુટર                     | 1 4            |         |     |            |            |
| 1 457 1000                     |                |         |     | × <u>;</u> | , i        |
|                                | •              |         |     |            |            |

Carbonate Flux at Greenland Basin 2, 3000m. 1985-86



• •

| • • • |  |  |
|-------|--|--|
|       |  |  |
|       |  |  |
| •     |  |  |
|       |  |  |
|       |  |  |
| ٠     |  |  |
|       |  |  |
| • •   |  |  |
|       |  |  |

**v** -

Noncombustible Flux at Greenland Basin 2, 3000m, 1985-6



| : |   |                                        | N3N2  | NONO %         | NONC         | NONC %<br>tot. 1 | NONC<br>total | NONC %<br>total |
|---|---|----------------------------------------|-------|----------------|--------------|------------------|---------------|-----------------|
|   |   | X X X X                                | 3 3   | 52.55          | 3.34         | ə.zø             | 10.23         | 52.75           |
|   |   | * * *                                  | 5 46  | 52.48          | 3.37         | ð.23             | 16.03         | 52.71           |
|   |   |                                        | 5 Š   | 57,29          | 3.39         | 3.28             | 16.69         | 57.57           |
|   |   | 222 +                                  | 5.34  | 35.58          | 3.28         | ₫.36             | 18.32         | 58.44           |
| • |   |                                        | 3 €   | 55.5           | ა. ან        | 0.30             | 10.21         | 55.31           |
| • |   | * * * =                                | 5.5   | 49.66          | ٠.١5         | 4.18             | 14,91         | 53.34           |
|   | • |                                        | € 34  | 52.15          | 1.52         | 5.63             | 15.66         | <b>5</b> 7.78   |
|   | - |                                        | 2 35  | 55.52          | 3.49         | 2.19             | 13.35         | 58.79           |
|   | • |                                        | 1 44  | 50.0 <b>2</b>  | 3.36         | 0.33             | 9.50          | 53.65           |
|   |   | ************************************** | 1 50  | 53.50          | J.35         | 1.29             | 14.35         | 54.79           |
|   | - | 222                                    |       | ∃5. <b>5</b> 8 |              |                  | 13.14         | 55.5∂           |
|   |   |                                        | • £5  | 55.5°          | <b>ə</b> .32 | 1.25             | 14.98         | 58.07           |
|   | ÷ | * * * * *<br>* * * *                   | 14 15 | 97.20          | <b>3</b> .38 | 0.50             | 35.14         | 57.32           |

• • •

Combustible Flux at Greenland Besin 2, 3000m, 1985-86



| Sample<br>10#                                                                                      | COMB<br>\1                                                           | COMB %                                                                                | COMB<br>1                                                            | COMB % tot./1                                                        | COMB<br>TOTAL                                                                | COMB ":<br>total                                                                       |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 380-7000-1<br>380-7000-2<br>380-7000-3<br>380-7000-4<br>380-7000-8<br>380-7000-1<br>300-8<br>300-7 | 2.91<br>4.27<br>3.87<br>4.18<br>2.18<br>3.55<br>3.19<br>2.23<br>2.23 | 15.00<br>14.04<br>13.35<br>12.87<br>11.96<br>14.01<br>11.06<br>0.23<br>12.14<br>10.82 | 0.06<br>0.07<br>0.16<br>0.09<br>0.06<br>0.39<br>0.01<br>0.54<br>0.00 | 0.30<br>0.23<br>0.56<br>0.28<br>0.30<br>1.40<br>0.02<br>2.39<br>0.22 | 2.97<br>4.34<br>4.03<br>4.27<br>2.24<br>4.20<br>0.59<br>2.75<br>2.56<br>2.80 | 15.30<br>14.35<br>13.15<br>13.24<br>13.24<br>11.00<br>11.00<br>12.55<br>10.36<br>10.36 |





| Sample<br>ID#   | GPAL ' | JPAL % | SPAL 4        |
|-----------------|--------|--------|---------------|
| 101 GB2-3000-1  | 5.;8   | 50.40  | 31.56         |
| 102 GB2-3000-2  | 7.39   | 43.86  | 26.23         |
| 103 682-3000-3  | 8.34   | 49.37  | 29.77         |
| 104 GB2-3000-4  | 8.31   | 48.09  | 27. 4         |
| '05 GB2-3000-5  | 4.58   | 44.34  | 25.07         |
| 106 GB2-3000-6  | 6.25   | 42.21  | 22.72         |
| : <b>0</b> 7    | 5.99   | 35.96  | <b>20.7</b> 8 |
| 108 GB2-3000-8  | 4.17   | 31.23  | 18.36         |
| 109 GB2-3000-9  | 3.78   | 39.81  | 21.36         |
| 110 GB2-3000-10 | 5.23   | 35.23  | 19.30         |
| 111 382-3000-11 | 4.50   | 35.01  | 19.46         |
| 112 GB2-3000-12 | 7.12   | 47.52  | 27.59         |
| 113 682-3000-13 | 19.83  | 56.43  | 32.69         |

Flux is in mg/m^2/day.

"Whof." = "% of noncombustible flux".

Not enough 1 mm fraction to do analysis.

Lithogenic Flux et Greenland Beein 2, 3000 m, 1985-88



| 5am(  | =           | LITH<br>()   | LITH< | LITH() |
|-------|-------------|--------------|-------|--------|
| · ə 1 | GB2-3000-1  | 4.01         | 39.22 | 20.69  |
| ' 02  | GB2-3000-2  | 7.97         | 49.71 | 26.20  |
| . 93  | 582-3000-3  | 8.27         | 49.55 | 28.52  |
| 1 24  | 682-3000-4  | 9.23         | 50.39 | 28.44  |
| 1 25  | GB2-3000-5  | 5.58         | 54.62 | 30.54  |
| 106   | GB2-3000-5  | 7.41         | 50.03 | 26.93  |
| 97    | 682-3000-7  | 9. <b>05</b> | 54.30 | 31.37  |
| 108   | 382-3000-8  | 8.69         | 78.70 | 38.26  |
| . 93  | 582-3000-9  | 5.66         | 59.58 | 31.96  |
| 1 1 2 | G82-3000-10 | 9.27         | 62.41 | 34.20  |
| 1.1.1 | GB2-3000-11 | 8.54         | 64.99 | 36.12  |
| 1/2   | SB2-3000-12 | 7.54         | 50.32 | 29.22  |
| 113   | 687-3000-13 | 14 93        | 47.49 | 24.61  |

Flux is in  $mg/m^2Z/day$ . %Nomb. = '% of noncombustible flux'.

Not enough ' mm fraction to do analysis.

Carbon Flux at Greenland Basin 2, 3000m, 1985-86



| Sample<br>I.D.                                      | CRNC<br>(1                   | CRNC (1 %cmbf.                   |
|-----------------------------------------------------|------------------------------|----------------------------------|
| 101 GB2-3000-1                                      | 1.04                         | 35.06                            |
| 102 GB2-3000-2                                      | 1.52                         | 35.12                            |
| 103 GB2-3000-3                                      | 0.36                         | 8.99                             |
| 104 GB2-3000-4                                      | 1.38                         | 32.43                            |
| 105 GB2-3000-5                                      | 0.70                         | 31.47                            |
| 106 GB2-3000-6                                      | 1.07                         | 25.21                            |
| 107 GB2-3000-7                                      | 1.09                         | 34.22                            |
| 108 GB2-3000-8<br>109 GB2-3000-9<br>110 GB2-3000-10 | 1.08<br>1.07<br>1.10<br>1.08 | 37.24<br>47.91<br>32.72<br>42.25 |
| 112 GB2-3000-12                                     | 0.44                         | 15.77                            |
| 113 GB2-3000-13                                     | 2.48                         | 31.70                            |

Flux is in mg/m 2/day.
"%cmbf" = '% of combustible flux".
Not enough 1 mm fraction to do analysis.

Nitrogen Flux at Greenland Basin 2, 3000m, 1985-86



| Sample<br>I.D.                                                                                                                                                  | NTGN<br>⊘1                                                           | NTGN 1<br>%cmbf.                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 101 682-3000-1<br>102 682-3000-2<br>103 682-3000-3<br>104 682-3000-4<br>105 682-3000-5<br>106 682-3000-7<br>108 682-3000-7<br>109 682-3000-9<br>110 682-3000-10 | 0.15<br>0.22<br>0.05<br>0.21<br>0.10<br>0.17<br>0.14<br>0.16<br>0.12 | 5.21<br>4.99<br>1.27<br>4.39<br>4.57<br>3.93<br>4.51<br>5.52<br>5.24<br>4.14<br>5.95 |
| 112 682-3000-12<br>113 682-3000-13                                                                                                                              | 0.05<br>0.36                                                         | 1.51                                                                                 |

Flux is in mg/m 2/day.

""cmof" = "% of combustible flux".

Not enough .1 mm fraction to do analysis.

Hydrogen Flux at Greenland Basin 2, 3000m, 1985-86



| Sample                                                                                                                                                          | HYDC                                                                 | HYDC 1                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|
| I.J.                                                                                                                                                            | 1                                                                    | %cmbf.                                                                       |
| 101 362-3000-1<br>102 362-3000-2<br>103 362-3000-3<br>104 362-3000-4<br>105 362-3000-6<br>107 362-3000-7<br>108 362-3000-7<br>108 362-3000-9<br>110 362-3000-10 | 0.16<br>0.24<br>0.05<br>0.22<br>0.11<br>0.16<br>0.20<br>0.16<br>0.17 | 5.39<br>5.50<br>1.10<br>5.38<br>5.13<br>5.10<br>5.43<br>5.43<br>5.43<br>6.53 |
| 112 682-3000-12                                                                                                                                                 | 0.06                                                                 | 2 405                                                                        |
| 113 682-3000-13                                                                                                                                                 | 0.41                                                                 | 5.29                                                                         |

Flux is in mg/m 2/day. "%cmbf"  $\approx$  "% of combustible flux". Not enough 1 mm fraction to do analysis.

|                                                   | DOCUMENTATION                                                                                                                                                                            | I REPORT NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 9                                                                                                                                                                                            | 1. Recigioni's Accesson No.                                                                                                                                                                                      |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title one                                         | PRISE<br>Substitute                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ı                                                                                                                                                                                              | S. Regart Date                                                                                                                                                                                                   |
| Part                                              | Live Chaxes N                                                                                                                                                                            | ertherastern Werll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Selection (Fig. 486)                                                                                                                                                                           | April, 148                                                                                                                                                                                                       |
| No. r                                             | 11 mean her the                                                                                                                                                                          | entation bate is ex-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                | •                                                                                                                                                                                                                |
| Authoris                                          | , Susumu Helle.<br>Bonnie I. ac                                                                                                                                                          | , steren 1. Hanganii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or, Ams car we.                                                                                                                                                                                | 6. Performing Organization Rept. No. (Fig.) 1 - M - 1                                                                                                                                                            |
| -                                                 | ing Organization Name o                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                | 16 Project/Tech/Work Unit No                                                                                                                                                                                     |
| Woods                                             | a do le Breamour                                                                                                                                                                         | anni Institution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                | 11 Contract(C) or Grant(G) No.                                                                                                                                                                                   |
| Wood:                                             | s Hole, Massact                                                                                                                                                                          | msetts 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                | (C)                                                                                                                                                                                                              |
|                                                   |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                | ( <b>G</b> ) *{000}80-1001                                                                                                                                                                                       |
| Z. Spansa                                         | ring Organisation Name o                                                                                                                                                                 | and Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                | 13. Type of Report & Period Covered                                                                                                                                                                              |
| 11 . :                                            | e et Nava. Res                                                                                                                                                                           | \$44.8 £ - 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                | les bnisas                                                                                                                                                                                                       |
|                                                   |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                | 14                                                                                                                                                                                                               |
|                                                   |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                | l                                                                                                                                                                                                                |
| L Supple                                          | mentery Nation                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |                                                                                                                                                                                                                  |
|                                                   |                                                                                                                                                                                          | and the second s |                                                                                                                                                                                                | Provide District MUCH NO. 1.2                                                                                                                                                                                    |
| <b>4 Aberre</b><br>Sev <b>e</b> r                 |                                                                                                                                                                                          | le :lux samples we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | re collected from 198                                                                                                                                                                          | 3 to 1986 using 7 automated                                                                                                                                                                                      |
| Sever time-port tion at a labor the rearbor Resu  | r(Unit 200 works) ity-nine partic -series sedimention of the Nord studies. Each oproximately of ratory analysis main sedimentol on, nitrogen, a                                          | The flux samples were it traps at 6 station if Seas as part of isample represents 00 m above the sead is conducted at the body ionical criteria: to and lithogenic mass outhern and western                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | re collected from 198<br>ons distributed in the<br>a German/U.S. joint<br>either one month or<br>floor. In this data<br>Woods Hole Oceanograp<br>otal mass, carbonate,<br>are presented in bot | 3 to 1986 using ? automated<br>e northern and eastern<br>program on arctic sedimenta-<br>two weeks of sedimentation                                                                                              |
| Sever time-port tion at a labor the rearries they | etune 200 media<br>ntv-nine partic<br>series sediment<br>ion of the Nord<br>studies. Each<br>pproximately of<br>ratory analysis<br>main sedimentol<br>on, nitrogen, a<br>lts from the so | The flux samples we not traps at 6 stations as part of 1 sample represents 10 m above the sea for conducted at the foliogical criteria: to and lithogenic massouthern and westernole.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | re collected from 198<br>ons distributed in the<br>a German/U.S. joint<br>either one month or<br>floor. In this data<br>Woods Hole Oceanograp<br>otal mass, carbonate,<br>are presented in bot | 3 to 1986 using 7 automated e northern and eastern program on arctic sedimenta-two weeks of sedimentation file the results of hic Institution, U.S.A. of opal, combustible, organic h tabular and histogram form |

c. COSATI Field/Group

Approved for publication; distribution unlimited UNCLASSIFIED 84

20. Security Class (This Report) 21. No. of Pages

22. Price

### **DOCUMENT LIBRARY**

November 21, 1986

### Distribution List for Technical Report Exchange

Institute of Marine Sciences Library University of Alaska O'Neill Building 905 Koyukuk Ave., North Fairbanks, AK

Attn. Stella Sanchez-Wade Documents Section Scripps Institution of Oceanography Labrary, Mail Code C-075C La Jolla, CA - 92093

Hancock Labrary of Biology & Oceanography Alan Hancock Laboratory University of Southern California University Park Los Angeles, CA 90089-0371

Gifts & Exchanges Library Bedford Institute of Oceanography P.O. Box 1006 Dartmouth, NS, B2Y 4A2, CANADA

Office of the International
Ice Patrol
c o Coast Guard R & D Center
Avery Point
Groton, CT 06340

Library Physical Oceanographic Laboratory Nova University 8000 N. Ocean Drive Dania, FL 33304

NOAA EDIS Miami Library Center 4301 Rickenbacker Causeway Miami, FL 33149

Library Skidaway Institute of Oceanography P.O. Box 13687 Savannah, GA 31416

Institute of Geophysics University of Hawaii Library Room 252 2525 Correa Road Honolulu, HI 96822

Library Chesapeake Bay Institute 4800 Atwell Road Shady Side, MD 20876 MIT Libraries Serial Journal Room 14E-210 Cambridge, MA 02139

Director, Ralph M. Parsons Laboratory Room 48-311 MIT Cambridge, MA 02139

Marine Resources Information Center Bldg. E38-320 MIT Cambridge, MA 02139

Library
Lamont-Doherty Geological Observatory
Colombia University
Palisades, NY 10964

Library Serials Department Oregon State University Corvallis, OR 97331

Pell Marine Science Library University of Rhode Island Narragansett Bay Campus Narragansett, RI 02882

Working Collection Texas A&M University Dept. of Oceanography College Station, TX 77843

Library Virginia Institute of Marine Science Gloucester Point, VA 23062

Fisheries-Oceanography Library 151 Oceanography Teaching Bldg. University of Washington Seattle, WA 98195

Library R.S.M.A.S. University of Miami 4600 Rickenbacker Causeway Miami, FL 33149

Maury Oceanographic Library Naval Oceanographic Office Bay St. Louis NSTL, MS 39522-5001 ATTN: Code 4601

25 2000 | SANSON