

Geophysical Data Analysis

Organisation

Contact

Dr. Stefanie Donner

- stefanie.donner@geophysik.unimuenchen.de
- Room 410
- Phone -4209 or -73981 (observatory)
 → drop in ... (on Mondays or Tuesdays)

Dr. Céline Hadziioannou

- celine.hadziioannou@geophysik.unimuenchen.de
- Room 442
- Phone -4138

Dr. Ceri Nunn

- ceri.nunn@gmail.de
- Room 409
- Phone -4207

Own introduction

How about you:

What is your name and background?

What do you expect/wish from this course?

Scope

- Understand the nature of (seismic) observations
- Understand the fundamentals of time series and signal processing
- Understand the many traps associated with filtering and spectral estimation
- Understand linear systems and their connection to filtering
- Understand the strength of correlation techniques
- Learn and apply programming tools to analyse geophysical data

Organisation I

- Mondays from 1:30pm to 5:00pm with break of 30 min (objections?)
- No lectures on 16. Mai (Pfingsten) and 20. June (all three lecturers conspicuous by absence)
- 11. July → full day at observatory in FFB (mandatory!)

Link to course website:

https://www.geophysik.uni-muenchen.de/~hadzii/geoDA_2016.html Username and password: GDAA2016

Organisation II

- Practical course based on python notebooks
 - → lectures, comprehension questions, exercises, programming exercises
 - → Bring your laptops
 - → focussed on seismology but also magnetics and other
- Each Monday 1-2 students will give a short summary (~ 5min) of last lecture, students will be assigned before randomly, everyone will have the chance (volunteers welcome)
- Final: written report; details and deadline follow later
 (easy for those who take the course and exercises seriously)

Literature

- Time Series Analysis and Inverse Theory for Geophysicists
 D. Gubbins (2004) Cambridge Press
- New Manual of Seismological Observatory Practice (NMSOP)
 P. Bormann (Ed.) (2012) GFZ German Research Centre for Geosciences
- Of Poles & Zeros
 F. Scherbaum (2001) Springer
- Routine Data Processing in Earthquake Seismology
 J. Havskov & L. Ottemöller (2010) Springer
- Digital Signal Processing A Computer Science Perspective
 J. Stein (2000) A Wiley-Interscience Publication

Laptop preparation

- Exercises as python notebooks:
 - → install Python 3.4 version of Anaconda:

http://continuum.io/downloads

→ install Obspy via anaconda:

https://github.com/obspy/obspy/wiki/Installation-via-Anaconda

Download notebook for testing from course website and try out

Problems?

Contact

Dr. Stefanie Donner

- stefanie.donner@geophysik.unimuenchen.de
- Room 410
- Phone -4209 or -73981 (observatory)
 → drop in ... (on Mondays or Tuesdays)

Dr. Céline Hadziioannou

- celine.hadziioannou@geophysik.unimuenchen.de
- Room 442
- Phone -4138

Dr. Ceri Nunn

- ceri.nunn@gmail.de
- Room 409
- Phone -4207

Geophysical Data Analysis

08/04/16

Own introduction

How about you:

What is your name and background?

What do you expect/wish from this course?

Geophysical Data Analysis

08/04/16

Scope

- Understand the nature of (seismic) observations
- Understand the fundamentals of time series and signal processing
- Understand the many traps associated with filtering and spectral estimation
- Understand linear systems and their connection to filtering
- Understand the strength of correlation techniques
- Learn and apply programming tools to analyse geophysical data

Geophysical Data Analysis

08/04/16

Organisation I

- Mondays from 1:30pm to 5:00pm with break of 30 min (objections?)
- No lectures on 16. Mai (Pfingsten) and 20. June (all three lecturers conspicuous by absence)
- 11. July → full day at observatory in FFB (mandatory!)

Link to course website:

https://www.geophysik.uni-muenchen.de/~hadzii/geoDA_2016.html Username and password: GDAA2016

Geophysical Data Analysis

08/04/16

Organisation II

- Practical course based on python notebooks
 - → lectures, comprehension questions, exercises, programming exercises
 - → Bring your laptops
 - → focussed on seismology but also magnetics and other
- Each Monday 1-2 students will give a short summary (~ 5min) of last lecture, students will be assigned before randomly, everyone will have the chance (volunteers welcome)
- Final: written report; details and deadline follow later
 (easy for those who take the course and exercises seriously)

Geophysical Data Analysis

08/04/16

Literature

- Time Series Analysis and Inverse Theory for Geophysicists
 D. Gubbins (2004) Cambridge Press
- New Manual of Seismological Observatory Practice (NMSOP)
 P. Bormann (Ed.) (2012) GFZ German Research Centre for Geosciences
- Of Poles & Zeros
 F. Scherbaum (2001) Springer
- Routine Data Processing in Earthquake Seismology
 J. Havskov & L. Ottemöller (2010) Springer
- Digital Signal Processing A Computer Science Perspective
 J. Stein (2000) A Wiley-Interscience Publication

Geophysical Data Analysis

08/04/16

Laptop preparation

- Exercises as python notebooks:
 - → install Python 3.4 version of Anaconda:

http://continuum.io/downloads

→ install Obspy via anaconda:

https://github.com/obspy/obspy/wiki/Installation-via-Anaconda

Download notebook for testing from course website and try out

Problems?

Geophysical Data Analysis

08/04/16