- 1. Jaka jest wartość siły działającej na ładunek q_1 we wszystkich podanych niżej konfiguracjach (odpowiedź można podać w jednostkach $\frac{1}{4\pi\varepsilon_0}$, wszystkie dane odległości wyrażone są w μ m).
 - (a) Ładunek $q_1 = 3$ C w położeniu $\vec{r}_1 = (2, 3, 4)$ oraz ładunek $q_2 = -3$ C w położeniu $\vec{r}_2 = (-2, 1, 1)$.
 - (b) Ładunek $q_1=1$ C w położeniu $\vec{r}_1=(1,1,1)$ oraz ładunek $q_2=2$ C w położeniu $\vec{r}_2=(-2,1,1)$.
 - (c) Ładunek $q_1 = 1$ C w położeniu $\vec{r}_1 = (1,1,2)$, ładunek $q_2 = 2$ C w położeniu $\vec{r}_2 = (0,1,1)$ oraz ładunek $q_3 = -2$ C w położeniu $\vec{r}_3 = (1,1,-1)$.
- 2. Naszkicuj linie pola dla następujących konfiguracji:
 - (a) Ładunek $q_1 = 1$ C w położeniu $\vec{r}_1 = (1, 0, 0)$.
 - (b) Ładunek $q_1 = 1$ C w położeniu $\vec{r}_1 = (1, 0, 0)$ oraz ładunek $q_2 = 1$ C w położeniu $\vec{r}_2 = (-1, 0, 0)$.
 - (c) Ładunek $q_1 = 1$ C w położeniu $\vec{r}_1 = (1, 0, 0)$ oraz ładunek $q_2 = -1$ C w położeniu $\vec{r}_2 = (-1, 0, 0)$.
- 3. Jaka siła wywierana jest na ładunki $q_1=3{\rm C}$ oraz $q_2=-2{\rm C}$ w jednorodnym polu elektrycznym o natężeniu $\vec E=(2,0,0){\rm NC}^{-1}$?
- 4. Jaka siła wywierana jest na ładunki $q_1 = 3C$ i $q_2 = -2C$ znajdujące się odpowiednio w położeniach $\vec{r}_1 = (1, 1, 1)$ i $\vec{r}_2 = (1, 2, -3)$ w polu elektrycznym o natężeniu $\vec{E} = (y, x, 0)NC^{-1}$?
- 5. Jeżeli na dwie cząstki o ładunkach $q_1 = q_2 = 1$ C działa siła wzajemnego odpychania o wartości 10N, to w jakiej wzajemnej odległości muszą znajdować się te cząstki?