Formal Languages and Automata: NFA Practice Problems

- **A.** Give NFAs with the specified number of states recognizing each of the following languages. In all cases, the alphabet is $\{0,1\}$.
- 1. The language $\{w \in \Sigma^* | w \text{ ends with } 00\}$.

Formal Languages and Automata: NFA Practice Problems

A. Give NFAs with the specified number of states recognizing each of the following languages. In all cases, the alphabet is $\{0,1\}$.

1. The language $\{w \in \Sigma^* | w \text{ ends with } 00\}$.

2. The language $\{w \in \Sigma^* | w \text{ contains the substring 0101 } \}$ with 5 states.

Formal Languages and Automata: NFA Practice Problems

A. Give NFAs with the specified number of states recognizing each of the following languages. In all cases, the alphabet is $\{0,1\}$.

1. The language $\{w \in \Sigma^* | w \text{ ends with } 00\}$.

2. The language $\{w \in \Sigma^* | w \text{ contains the substring 0101 } \}$ with 5 states.

3. The language $\{w \in \Sigma^* | w \text{ contains at least two 0's, or exactly two 1's }\}.$

3. The language $\{w \in \Sigma^* | w \text{ contains at least two 0's, or exactly two 1's }\}.$

4. The language 0*1*0*0 with three states.

4. The language 0*1*0*0 with three states.

