Math 662 Homework 4

Siyang Jing

3.1

Claim: For MGS, after iteration i = k, where $1 \le k \le n$, $\{q_1, ..., q_k\}$ are orthonormal.

We prove by induction on k.

Base Case: k = 1.

 $q_1 = a_1/r_{11} = a_1/\|a_1\|_2$. Therefore q_1 is normal.

Inductive Step: Assume true for k < m. Need to show $\{q_1, ..., q_m\}$ are orthonormal after iteration i = m.

Claim 2: (For MGS, inside iteration i = m) After iteration j = l, where $l < m, q_m$ is orthogonal to $q_1, ..., q_l$.

We show this Claim by induction on l. Base case is trivially true.

Inductive Step: Assume true for l < p.

In j = p iteration, $q_p^T(q_m - r_{pm}q_p) = r_{pm}(1 - q_p^Tq_p)$. Since p < m, and $\{q_1, ..., q_{m-1}\}$ are orthonormal, this inner product is just zero, and therefore q_m is orthogonal to q_p .

For each l < p, $q_l^T(q_m - r_{pm}q_p) = q_l^Tq_m - r_{pm}q_l^Tq_p = 0$, by inductive assumption and that $\{q_1, ..., q_{m-1}\}$ are orthogonal.

Then, $q_m = q_m / r_{mm} = q_m / \|q_m\|_2$, is normalized. And since $q_1, ..., q_{m-1}$ are not changed, $\{q_1, ..., q_m\}$ are

orthonormal.

In the i loop, in the j loop, for each r_{ji} , for MGS, $r_{ji} = q_j^T q_i = q_j^T (a_i - r_{j-1,i}q_{j-1} - r_{j-2,i}q_{j-2} - \dots - r_{1i}q_1)$. Since j < i, and by Claim, we have $\{q_1, ..., q_j\}$ orthogonal, therefore $r_{ji} = q_j^T q_i = q_j^T a_i$. Therefore, MGS and CGS are equivalent.

3.2

Approximately, CGS: $1E-15\times e^{c^2}$, MGS: $1E-15\times e^c$, Householder: constant

3.3

$$1. \left[\begin{array}{cc} I & A \\ A^T & 0 \end{array} \right] \left[\begin{array}{c} r \\ x \end{array} \right] = \left[\begin{array}{c} b \\ 0 \end{array} \right] \rightarrow \left\{ \begin{array}{c} r + A \, x = b \\ A^T r = 0 \end{array} \right. \rightarrow A^T r + A^T A \, x = A^T b \xrightarrow{A \, \text{has full rank}} x = (A^T A)^{-1} A^T b = \left[\begin{array}{c} A \\ A \end{array} \right] = \left[\begin{array}{$$

This is simply the normal equation, and it minimizes $||Ax - b||_2$.

2. By part 6 of theorem 3.3, the condition number is just the ratio of the largest to the smallest singular value, i.e. σ_1/σ_n .

$$3. \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} I & A^{-1}B \\ C & D \end{bmatrix} \begin{bmatrix} A^{-1} & 0 \\ 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} I & A^{-1}B \\ 0 & D - CA^{-1}B \end{bmatrix} \begin{bmatrix} A^{-1} & 0 \\ -CA^{-1} & 1 \end{bmatrix} \rightarrow \begin{bmatrix} I & A^{-1}B \\ 0 & I \end{bmatrix} \begin{bmatrix} A^{-1} & 0 \\ -(D - CA^{-1}B)^{-1}CA^{-1} & (D - CA^{-1}B)^{-1} \end{bmatrix} \rightarrow \begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} + A^{-1}B (D - CA^{-1}B)^{-1}CA^{-1} & -A^{-1}B (D - CA^{-1}B)^{-1} \\ -(D - CA^{-1}B)^{-1}CA^{-1} & (D - CA^{-1}B)^{-1} \end{bmatrix}$$

$$For \begin{bmatrix} I & A \\ A^{T} & 0 \end{bmatrix}, \text{ the inverse is } \begin{bmatrix} I - A(A^{T}A)^{-1}A^{T} & A(A^{T}A)^{-1} \\ (A^{T}A)^{-1}A^{T} & -(A^{T}A)^{-1} \end{bmatrix}$$

The (2, 1) entry is just the solution operator for the least square normal equation.

4. First obtain A = QR

$$x^{(1)} = R^{-1}Q^Tb$$
, $r^{(1)} = b - Ax^{(1)}$

Repeat

i. Compute the residual vectors (possibly in double precision):

$$s^{(i)} = b - r^{(i)} - A x^{(1)}, t^{(i)} = -A^T r^{(i)}$$

ii. Solve for the corrections using QR factorization of A

$$\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} dr^{(i)} \\ dx^{(i)} \end{bmatrix} = \begin{bmatrix} s^{(i)} \\ t^{(i)} \end{bmatrix}$$

$$\begin{bmatrix} dr^{(i)} \\ dx^{(i)} \end{bmatrix} = \begin{bmatrix} I - A(A^TA)^{-1}A^T & A(A^TA)^{-1} \\ (A^TA)^{-1}A^T & -(A^TA)^{-1} \end{bmatrix} \begin{bmatrix} s^{(i)} \\ t^{(i)} \end{bmatrix} = \begin{bmatrix} 0 & QR^{-T} \\ R^{-1}Q^T & -R^{-1}R^{-T} \end{bmatrix} \begin{bmatrix} s^{(i)} \\ t^{(i)} \end{bmatrix}$$

iii. Update:

$$r^{(i+1)} = r^{(i)} + dr^{(i)}$$
$$x^{(i+1)} = x^{(i)} + dx^{(i)}$$

iv.
$$i \leftarrow i + 1$$

Until accurate enough

3.4

$$\frac{\partial}{\partial x} ||Ax - b||_C = \frac{\partial}{\partial x} (Ax - b)^T C (Ax - b) = A^T (C^T + C) (Ax - b)$$
$$\frac{\partial}{\partial x} ||A\hat{x} - b||_C = 0 \to A^T C (A\hat{x} - b) = 0 \to \hat{x} = (A^T C A)^{-1} A^T C b$$

We notice that since C is SPD, we can apply Cholesky factorization to C such that $C = LL^T$.

Let $\tilde{A} = L^T A$, $\tilde{b} = L^T b$, then the original problem becomes a least square problem of minimizing $\|\tilde{A}x - \tilde{b}\|_2$.

Then everything is the same as the last question, we just substitute \tilde{A} for A and \tilde{b} for b.

3.9

1.
$$(A^T A)^{-1} = (V \Sigma U^T U \Sigma V^T)^{-1} = V \Sigma^{-2} V^T$$

2.
$$(A^TA)^{-1}A^T = V\Sigma^{-2}V^TV\Sigma U^T = V\Sigma^{-1}U^T$$

3.
$$A(A^TA)^{-1} = U\Sigma V^T V\Sigma^{-2}V^T = U\Sigma^{-1}V^T$$

4.
$$A(A^{T}A)^{-1}A^{T} = U\Sigma V^{T}V\Sigma^{-2}V^{T}V\Sigma U^{T} = I$$

3.11

Notice that $\hat{X} = \underset{X}{\operatorname{argmin}} \|AX - I\|_F = \underset{X}{\operatorname{argmin}} \|AX - I\|_F^2$, since Frobenius norm is nonnegative.

Since this is quadratic in X, $\frac{\partial}{\partial X} ||AX - I||_F^2$ equals zeros when evaluated at $X = \hat{X}$.

$$\frac{\partial}{\partial X}\|AX-I\|_F^2 = \frac{\partial AX-I}{\partial X}\frac{\partial}{\partial AX-I}\|AX-I\|_F^2 = 2A^T(AX-I)$$

$$A^T(A\hat{X} - I) = 0 \rightarrow A^T A \hat{X} = A^T I$$

This is essentially the same as the least square problem, if we consider each column of X as an "x" and each column of I a "b". Therefore, we have $\hat{X} = A^+I = A^+ = V\Sigma^+U^T$, the Moore-Penrose pseudo inverse.

$$||A\hat{X} - I||_F = ||U\Sigma V^T V \Sigma^+ U^T - I||_F = 0$$

3.14

Let A be a $m \times n$ matrix. WLOG, we assume $m \ge n$.

$$\begin{bmatrix} 0 & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v_i \\ \pm u_i \end{bmatrix} = \begin{bmatrix} \pm A^T u_i \\ A v_i \end{bmatrix} = \begin{bmatrix} \pm V \Sigma U^T u_i \\ U \Sigma V^T v_i \end{bmatrix} \quad (*)$$

Notice that since U and V are orthonormal matrices, $U^Tu_i = e_i$ and $V^Tv_i = e_i$, where e_i is an n dimensional vector whose entries are all 0 except the ith entry, which is equal to 1.

$$(*) = \begin{bmatrix} \pm V \Sigma e_i \\ U \Sigma e_i \end{bmatrix} = \begin{bmatrix} \pm \sigma_i V e_i \\ \sigma_i U e_i \end{bmatrix} = \pm \sigma_i \begin{bmatrix} v_i \\ \pm u_i \end{bmatrix}$$

3.15

We still have $A^T A \hat{x} = A^T b$, but now $A^T A$ is not invertible.

We first show existence of solution. A is full rank $\Rightarrow \exists y, s.t. Ay = b \Rightarrow \exists y, s.t. A^TAy = A^Tb$.

Since A is full rank and m < n, rank $(A^TA) = \text{rank}(A) = m$. Therefore $\dim(\ker(A^TA)) = n - m$. The solution space of $A^TAy = A^Tb$ has the same dimension as kernel, i.e. n - m.