

Recall: qeHk

yeHl

quyeHk+l We know: cocycles - dual objects level curves.

They are co-oriented. Two claims: 1 Cup product is intersection of dual objects. 2) Cap product is "pushing" the dual objects or homotoping

opposite

x, opposite

of M In an orientable manifold: co-orientations (>> orientations \sum_{x_i} orientation of M (n=2)* co-orientation

Cup & Cap notes from my Teaching page

Cup

Idea. To find quy, push qup, push y down and intersect

Example 1. n=2, k=1 k=2 k=1push

φ,ψ ε H¹
φυψ ε H²

Using def of U: $\varphi \cup \psi(\sigma) = 2 \cdot 2$ = 4 Can view same example in context of nearby triangles:

We can modify the curves by homotopy, giving cohomologous cochains:

CUP, CAP, AND POINCARÉ DUALITY

Poincaré duality.
$$H^k(X) \xrightarrow{\cong} H_{n-k}(X)$$

 $\varphi \longmapsto [M] \land \varphi$

Also. Under this isomorphism, cup product corresponds to intersection: $\varphi \cup \psi \longmapsto \varphi^* \cap \psi^*$

We'll work with Δ -complexes, simplicial (co)homology.

CAP

Idea. Kealize cohomology class φ as "intersect with dual object." Push dual in each simplex toward highest vertex (this is well-defined across different simplices in a \triangle -complex). Result is $EMT \cap \varphi = \varphi^*$

Example 2. n=2, k=1

Example 3 n=3, k=1

Example 4 n=3, k=1

Example 5 n=3, k=2

Example 2. n=3, k=1,1 (mod 2 this time)

Have $\varphi \circ \psi \in \mathbb{H}^2 \longrightarrow \text{should be dual to a 1-cell.}$ If we push all the way and intersect, get a point (not what we want). If we push almost all the way, we get what we want:

Note: In the earlier examples, pushing almost all the way also works.

Claim. This proves P.D.