

Quante palline da ping pong ci stanno in un autobus?

Tommaso Bocchietti 16/10/2023

Indice

1	Testo del Problema	3
2	Dati del Problema2.1 Dati dell'Autobus	
3	Risoluzione del Problema 3.1 Pallina da Ping Pong come Cubetto	
4	Risultato	Ę

1 Testo del Problema

Il problema proposto è il seguente:

Considerando un normale autobus di linea da circa 50 posti, quanti palline da ping pong possono starci all'interno?

Ogni dato non specificato può essere considerato a piacere.

2 Dati del Problema

Si prosegue ora definendo i dati del problema. In particolare si definiscono i dati dell'autobus e della pallina da ping pong.

2.1 Dati dell'Autobus

	Unità di misura	Valore
Lunghezza	m	8,0
Altezza	m	2,5
Larghezza	m	3,0
Volume	m^3	60

Indicheremo da qui in avanti il volume del bus con V_{bus} .

2.2 Dati della Pallina da Ping Pong

	Unità di misura	Valore
Diametro	cm	4
Volume cubetto equivalente	cm^3	64
Volume sfera	cm^3	4

3 Risoluzione del Problema

Per la risoluzione del problema è possibile adottare due approcci che portano, sulla base della ipotesi fatte, a due diversi risultati. Mentre una soluzione è solo una approssimazione ma di facile calcolo, l'altra è più precisa ma richiede l'uso di più formule e calcoli.

3.1 Pallina da Ping Pong come Cubetto

La prima soluzione è quella di considerare la pallina da ping pong come un cubetto di lato pari al diametro della pallina. In questo modo, il volume della pallina è dato da:

$$V_{pallinacubetto} = 0,04^3 = 64cm^3 \tag{1}$$

Il numero di palline che possono starci nell'autobus è dato da:

$$NP_{pallinacubetto} = \frac{V_{bus}}{VP_{pallinacubetto}} = \frac{60}{64 * 10^{-6}} = 937500 \tag{2}$$

3.2 Pallina da Ping Pong come Sfera

La seconda soluzione è quella di considerare la pallina da ping pong come una sfera. In questo caso, si prende in considerazione anche l'impilabilità della singola pallina. Per facilitare i conti e il processo logico, è comodo ora considerare la distribuzione nello spazio delle palline come all'interno di un solido cristallino CCC (Corpo Centrato Cubico).

Figura 1: Modello di distribuzione degli atomi in un solido cristallino CCC

Come si può vedere dalla figura, grazie a questo modello è possibile tenere conto dell'impilabilità delle palline. In particolare, a livello di calcoli, si definisce il fattore di compattazione atomica (FCA) come:

$$FCA = \frac{N_{atomi} * V_{atomo}}{V_{cella}} \tag{3}$$

Dove:

- N_{atomi} è il numero di atomi presenti nella cella
- V_{atomo} è il volume di un atomo
- V_{cella} è il volume della cella che li contiene

Per semplici considerazioni goniometriche, si può dimostrare che il lato della cella è dato da:

$$a = \frac{4 * R_{atomo}}{\sqrt{3}} \tag{4}$$

Dove R_{atomo} è il raggio dell'atomo (o della pallina di Ping Pong nel caso specifico).

Svolgendo i calcoli, si ottiene che FCA=0,68. Essendo poi il volume della cella dato da:

$$V_{cella} = a^3 = \frac{64 * R_{atomo}^3}{3 * \sqrt{3}} \tag{5}$$

Si ottiene che il numero di palline che possono starci nell'autobus è dato da:

$$NP_{pallinasfera} = \frac{V_{bus}}{V_{pallina} * FCA} = \frac{60}{4 * 10^{-}6 * 0,68} = 1,102,941,176$$
 (6)

4 Risultato

Il risultato del problema, in base al modello adottato, è il seguente:

- Pallina da Ping Pong come Cubetto: 937500 palline
- Pallina da Ping Pong come Sfera: 1171875 palline