Problem 1. Analysis the stability and absolute stable interval of Modified and Revised Euler Iteration for Dahlquist test.

For Modified Euler Iteration:.

$$u_{n+1} = u_n + \frac{\Delta t}{2} (f_n + f_{n+1})$$

Assume that the disturbed initiate value is $\widetilde{u_0}$ and the exact initiate value is u_0 . Mark the following value calculated by the Modified Euler Iteration as $\widetilde{u_i}, i=1,2,\cdots$. Then $\widetilde{u_n}=\widetilde{u_{n-1}}+\frac{\Delta t}{2}(a\widetilde{u_{n-1}}+a\widetilde{u_n}), \quad \widetilde{u_n}=\frac{1+\frac{a\Delta t}{2}}{1-\frac{a\Delta t}{2}}\widetilde{u_{n-1}}, \quad u_n=\frac{1+\frac{a\Delta t}{2}}{1-\frac{a\Delta t}{2}}u_{n-1}.$ Hence, $\|\widetilde{u_n}-u_n\|=\frac{1+\frac{a\Delta t}{2}}{1-\frac{a\Delta t}{2}}\|\widetilde{u_{n-1}}-u_{n-1}\|=\cdots=(\frac{1+\frac{a\Delta t}{2}}{1-\frac{a\Delta t}{2}})^n\|\widetilde{u_0}-u_0\|.$

If we expect that to a fixed Δt , when $n \to \infty$, the error can still be of control, then it must be true:

$$\left\| \frac{1 + \frac{a\Delta t}{2}}{1 - \frac{a\Delta t}{2}} \right\| \leqslant 1.$$

Hence, because that $\Delta t \geqslant 0$, it can only be true when $a \leqslant 0$, and $0 \leqslant \Delta t < \frac{2}{|a|}$. On the other hand, take $z = a\Delta t$, we have $\|\frac{2+z}{2-z}\| \leqslant 1$, $z \in \mathcal{Z}$.

For Revised Euler Iteration:.

$$u_{n+1} = u_n + \Delta t a (u_n + \frac{\Delta t}{2} a u_n)$$

Claimed as above, we have $\widetilde{u_{n+1}}=\widetilde{u_n}(1+\Delta ta+\frac{1}{2}(\Delta ta)^2)$. Hence, $\|\widetilde{u_n}-u_n\|=(1+\Delta ta+\frac{1}{2}(\Delta ta)^2)^n\|\widetilde{u_0}-u_0\|$. As shown above, $\|1+\Delta ta+\frac{1}{2}(\Delta ta)^2\|\leqslant 1$. On the other hand, take $z=a\Delta t$, we have $\|z^2+2z+2\|\leqslant 2$.

Problem 2. Draw the convergence order of 1st-4th-order format

Result.

Figure 1: The convergence order of 1-4 order format