CS 471/571 (Fall 2023): Introduction to Artificial Intelligence

Lecture 9: Expectimax

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Reminders and Announcement

- Written assignment 2: CSPs and Games
 - Deadline: Oct 25th, 2023

- Project 2: Multi-agent Search
 - Deadline: November 03rd, 2023

Thanh H. Nguyen 10/16/23

Today

Adversarial Search (continued)

Expectimax Search

Utilities

Thanh H. Nguyen 10/16/23 3

Adversarial Search

Adversarial Game Trees

Minimax Values

States Under Agent's Control:

Terminal States:

$$V(s) = \text{known}$$

Resource Limits

Resource Limits

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for nonterminal positions
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - α-β reaches about depth 8 decent chess program
- Guarantee of optimal play is gone
- More plies makes a BIG difference
- Use iterative deepening for an anytime algorithm

Why Pacman Starves

- A danger of replanning agents!
 - He knows his score will go up by eating the dot now (west, east)
 - He knows his score will go up just as much by eating the dot later (east, west)
 - There are no point-scoring opportunities after eating the dot (within the horizon, two here)
 - Therefore, waiting seems just as good as eating: he may go east, then back west in the next round of replanning!

Evaluation Functions

Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

- Ideal function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

• e.g. $f_1(s)$ = (num white queens – num black queens), etc.

Evaluation for Pacman

Depth Matters

- Evaluation functions are always imperfect
- The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters
- An important example of the tradeoff between complexity of features and complexity of computation

Uncertain Outcomes

Worst-Case vs. Average Case

Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Search

- Why wouldn't we know what the result of an action will be?
 - Explicit randomness: rolling dice
 - Unpredictable opponents: the ghosts respond randomly
 - Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
 - Max nodes as in minimax search
 - Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities
 - I.e. take weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertain-result problems as Markov Decision Processes

Expectimax Pseudocode

def value(state): if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state)

if the next agent is EXP: return exp-value(state)

def max-value(state): initialize v = -∞ for each successor of state: v = max(v, value(successor)) return v

def exp-value(state): initialize v = 0 for each successor of state: p = probability(successor) v += p * value(successor) return v

Expectimax Pseudocode

def exp-value(state): initialize v = 0 for each successor of state: p = probability(successor) v += p * value(successor) return v

$$v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10$$

Expectimax Example

Expectimax Pruning?

Depth-Limited Expectimax

Probabilities

Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes

- Random variable: T = whether there's traffic
- Outcomes: T in {none, light, heavy}
- Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

- Probabilities are always non-negative
- Probabilities over all possible outcomes sum to one
- As we get more evidence, probabilities may change:
 - P(T=heavy) = 0.25, $P(T=heavy \mid Hour=8am) = 0.60$
 - We'll talk about methods for reasoning and updating probabilities later

0.25

0.50

0.25

Reminder: Expectations

• The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes

• Example: How long to get to the airport?

Time:

Probability:

20 min

0.25

30 min

0.50

60 min

 \mathbf{X}

0.25

35

What Probabilities to Use?

- In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state
 - Model could be a simple uniform distribution (roll a die)
 - Model could be sophisticated and require a great deal of computation
 - We have a chance node for any outcome out of our control: opponent or environment
 - The model might say that adversarial actions are likely!
- For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes

Having a probabilistic belief about another agent's action does not mean that the agent is flipping any coins!

Quiz: Informed Probabilities

- Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?

• Answer: Expectimax!

- To figure out EACH chance node's probabilities, you have to run a simulation of your opponent
- This kind of thing gets very slow very quickly
- Even worse if you have to simulate your opponent simulating you...
- ... except for minimax, which has the nice property that it all collapses into one game tree

Modeling Assumptions

The Dangers of Optimism and Pessimism

Dangerous Optimism

Assuming chance when the world is adversarial

Dangerous Pessimism

Assuming the worst case when it's not likely

Assumptions vs. Reality

	Adversarial Gho	st	Random Ghost
Minimax Pacman	1	}	
Expectimax Pacman	·		

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Assumptions vs. Reality

	Adversarial Ghost	Random Ghost
Minimax	Won 5/5	Won 5/5
Pacman	Avg. Score: 483	Avg. Score: 493
Expectimax	Won 1/5	Won 5/5
Pacman	Avg. Score: -303	Avg. Score: 503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Other Game Types

Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra "random agent" player that moves after each min/max agent
 - Each node computes the appropriate combination of its children

Multi-Agent Utilities

• What if the game is not zero-sum, or has multiple players?

• Generalization of minimax:

Terminals have utility tuples

Node values are also utility tuples

• Each player maximizes its own component

 Can give rise to cooperation and competition dynamically...

