Simone Giampà

Robotics & Artificial Intelligence Engineering Researcher

About me

I am a robotics and artificial intelligence Researcher with a strong interest in aerospace applications, and an academic background in Computer Science Engineering. My research focuses on developing and applying advanced AI techniques, such as deep learning, to solve challenging problems in robotics, including autonomous manipulation, navigation and control.

Personal

21/08/1999♦ Nationality: Italian♦ Genoa, Italy

Areas of Expertise

Robotics • Deep Learning
• Artificial Intelligence
• Computer Vision • Parallel
Computing • Embedded Systems

Interests

Robotics • Artificial Intelligence • Aerospace • Space Exploration

Contacts

simonegiampa99@gmail.com

+39 3505369946

in Linkedin Profile
Github Profile

Programming

C C++ Java
Python Matlab SQL

ROS, ROS2, Movelt2, NAV2 Tensorflow, TFLite, TFMicro

CUDA C/C++, CUDA Python

Pandas, Scikit-Learn, Numpy

Robots & Sensors

Universal Robot arms
AgileX Scout Mobile Robot

Igus Rebel robotic Arm 6DoF

LIDAR RGB-Depth camera

IMU Soft Pneumatic Gripper

Micro-controllers

Arduino Uno

Arduino Nano 33 BLE Sense

STM32F4 Nucleo

ESP32 Wifi

Education

2021 - 2024

Master's Degree in Computer Science Engineering

Politecnico di Milano · Milan, Italy 💡

Robotics & Deep Learning specialization - Grade: 106/110

2018 - 2021 | Bachelor's Degree in Computer Science Engineering

Politecnico di Milano · Milan, Italy 💡

Grade: 101/110

POLITECNICO

ELEONARDO

Work Experience

2024 - Present

Robotics and Autonomous Systems Researcher

LEONARDO INNOVATION LABS · Genoa, Italy 💡

Industrial Research on Autonomous Robotics and Deep Learning: working on several research projects aiming at producing patents and publications in renowned robotics conferences. Focusing on autonomous manipulation tasks and control of mobile manipulator arms. Currently working on:

- Mars Sample Return Project: a joint collaboration with Leonardo Space, ESA and NASA institutions, for the autonomous control and computer vision tasks of the Mars Sample Retriever Arm.
- MATISSE: European project collaboration for In-Orbit-Servicing robotic tasks digital twin simulation.
- Autonomous Control of Redundant Robotic Arm for industrial assembly process of large fuselage frames.

Certifications

2024 | Acce

Accelerated Computing with CUDA C/C++

NVIDIA DEEP LEARNING INSTITUTE · Certificate

Programming and exercises on CUDA C/C++ and acceleration of custom CUDA kernel with concurrent data streams and performance profiling

2024 Accelerated Computing with CUDA Python

NVIDIA DEEP LEARNING INSTITUTE · Certificate

Programming with Python-based CUDA kernels acceleration with Numba library and kernel performance profiling

2024 Accelerating Data-Science and Machine Learning Workflows

NVIDIA DEEP LEARNING INSTITUTE · Certificate

Exercises on Data Science and Analytics using GPU-accelerated libraries: cuDF (Pandas), cuML (Scikit-Learn) and cuPy (Numpy)

⊚ NVIDIA.

OVIDIA.

OVIDIA.

Master's Thesis Project

Development of an Autonomous Mobile Manipulation Robot for Industrial and Agricultural Environments

 $\mathsf{Polimi} \cdot \mathsf{Artificial}$ Intelligence and Robotics Laboratory (AIRLAB)

Autonomous Robotics Systems · SLAM · ROS2 · Nav2 · MoveIt2

Development of an autonomous mobile manipulation system, composed of a mobile wheeled robot, and a 6-DoF robotic arm manipulator, with a soft pneumatic gripper acting as a robotic hand. The system performs several tasks in industrial environments, such as exploration, navigation of an industrial plant, and interactions with control panels. The robotic system is also programmed to collect fruit from a tree, a demo simulation of a fruit picking task in realistic agricultural environments. The whole system comprises of a multitude of sensors and actuators, including a LIDAR for navigation and mapping, stereo cameras, IMU. The mobile manipulator performs object grasping and interaction tasks completely autonomously. The localization, navigation and mapping of the mobile robot base is done using NAV2. The trajectory planning and motion execution of the robotic arm is done with Movelt2. Every component in the system is controlled via ROS2 and the combination of the tasks is orchestrated via complex robot behavior trees.

Languages

mother tongue C2 **Italian** proficient C1 **English**

Language Certifications

2018	IELTS Grade 7.5: Level C1
2017	B2 First Cambridge
2016	B1 PET Cambridge
2015	Trinity College Grade 6

University Projects

2020

University Projects	
Robot head construction: Robotics and Design multi-disciplinary course	
Workshop Laboratory · 3D printing · Multidisciplinary project • Repository	
Multidisciplinary project of Robotics and Design: building and programming of a 3d printed and	
programmable robot head capable of mimicking human emotions and expressiveness, while	
interacting with other robots of the other student groups.	
Neural Network for Spoken Language Recognition on an Embedded system	
Tensorflow Lite & Micro · Neural Networks · Embedded Systems • Repository	
Neural network recognizing the language a person is speaking, from mel spectrogram features.	
Developed on an Arduino Nano (TinyML kit) with TensorFlow Lite for Microcontrollers.	
Natural Language Text Processing with Transformer Models Neural Networks · BERT Transformers · Natural Language • Repository	
Text analysis, sentiment analysis and response generation with BERT Transformer models. Fine-	
tuning of small scale Large Language Models (LLM)	
Nonlinear ARMA time series classification with Online Machine Learning models	
Streaming Machine Learning · Python · River library	
Non-linear ARMA time series generation and classification with streaming (incremental learn-	
ing) machine learning models in Python using the River ML library. Data Analysis and statistical	
interpretation of forecast data	
Deep Learning: Convolutional Neural Networks and Transfer Learning	
Tensorflow · Python · Image Classification	
Image classification challenge with convolutional neural networks and transfer learning of large	
pre-trained models. Time-series classification challenge with convolutional spectral features.	
Mobile Robotics projects with ROS and real-world LIDAR and encoders data	
ROS · C++ · SLAM · Mobile Robot · Autonomous navigation	
LIDAR for autonomous simultaneous localization and mapping (SLAM)	
STM32 Nucleo with Sensor Systems development board	
Sensors · C · Microcontroller · Electronics	
Development of many small projects aimed at handling a wide variety of sensors connected to	
the STM32 Nucleo board, using FreeRTOS and several wire communication protocols.	
STM32 Nucleo with Miosix Embedded OS kernel-space programming	
STM32 · Embedded OS programming · C++ · Linux	
Development of the <i>Game of Life</i> cellular automaton on an STM32 running an embedded OS	
in kernel-space, using a serial interface with an emulated terminal on a Linux machine for visu-	
alization of the automaton evolving matrix	
Software Engineering project: an online multi-player board game	
Java · Game · Large group project · Git Repository Group project development in Java of a multi-player online board game. Large project de-	
veloped with extensive software engineering principles and applications of a variety of code	
design patterns.	
LASER dynamics simulation with cellular automata in Matlab and Java	
LASER dynamics · Matlab · Java • Repository	
Simulation of LASER quantum dynamics of population inversion using a cellular automaton	
Vivado project: image histogram equalization in VHDL	
Xilinx Vivado · VHDL • Repository	
Logic circuit programming in VHDL of an equalization algorithm of a gray-scale image his-	

A time and memory efficient command-line text editor in C

Time and memory efficient text editor using optimized algorithms and data structures

Repository

 $\ensuremath{\mathtt{C}}$ \cdot Algorithms and Data Structures