Міністерство освіти і науки України Національний університет "Львівська політехніка" Інститут комп'ютерних наук та інформаційних технологій Кафедра програмного забезпечення

Звіт Про виконання лабораторної роботи № 8

На тему:

«Наближення дискретних (таблично заданих) функцій»

Лектор:

доц. каф. ПЗ Мельник Н. Б.

Виконав:

ст. гр. ПЗ-18

Юшкевич А.І.

Прийняв:

проф. каф. ПЗ

Гавриш В.І.

« ... » ... 2023 p.

 $\sum =$ _____

Тема роботи: Наближення дискретних (таблично заданих) функцій.

Мета роботи: Ознайомлення на практиці з методами інтерполяції функцій.

Теоретичні відомості Інтерполяційний поліном Лагранжа

Один з підходів до задачі інтерполяції — метод Лагранжа. Основна ідея цього методу полягає в пошуку поліному, який приймає значення 1 в одному довільному вузлі інтерполяції і значення 0 у всіх інших вузлах.

Наближену функцію $y = \varphi(x)$ представимо у вигляді

$$\varphi(x) = L_n(x) = \sum_{i=0}^n P_i(x) f(x_i),$$

$$P_i(x_j) = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$
, $i, j = 0,1,...,n$.

Оскільки точки $x_0, x_1, ..., x_{i-1}, x_{i+1}, ..., x_n$ є коренями многочлена $P_i(x)$, то його можна записати наступним чином

$$P_i(x) = \frac{(x - x_0)(x - x_1)...(x - x_{i-1})(x - x_{i+1})...(x - x_n)}{(x_i - x_0)(x_i - x_1)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_n)},$$

а наближена функція $\varphi(x)$, яку називають *інтерполяційним многочленом Лагранжа*, матиме вигляд

$$\varphi(x) = L_n(x) = \sum_{i=0}^n \frac{(x - x_0)(x - x_1)...(x - x_{i-1})(x - x_{i+1})...(x - x_n)}{(x_i - x_0)(x_i - x_1)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_n)} f(x_i).$$

Інтерполяційний поліном Ньютона

Іншим підходом до задачі інтерполяції є метод Ньютона (метод розділених різниць). Нехай для функції y = f(x) задано її значення в точках $x_0, x_1, ..., x_n$. Треба побудувати такий поліном $P_n(x)$ степеня не вище від n, значення якого у вузлах інтерполювання збігаються із значенням функції y = f(x), тобто

$$P_n(x_i) = y_i \ (i = 0,1,...,n).$$

Поліном $P_n(x)$ будемо шукати у вигляді

$$P_n(x) = f(x_0) + P_n(x_0, x_1)(x - x_0) + P_n(x_0, x_1, x_2)(x - x_0)(x - x_1) + \dots + P_n(x_0, x_1, \dots, x_n)(x - x_0)(x - x_1) \dots (x - x_{n-1}),$$

$$P_n(x_0, x_1, ..., x_n) = \frac{P_n(x_1, ..., x_n) - P_n(x_0, ..., x_{n-1})}{x_n - x_0} -$$
 розділена різниця $n -$ го порядку.

Нехай вузли інтерполяції утворюють арифметичну прогресію $x_i = x_0 + ih$ (i = 0,1,2,...,n), h - крок інтерполяції.

Таким чином, скінченну різницю , _ го порядку можна записати у вигляді

$$\Delta^{n} f(x_{i}) = \Delta(\Delta^{n-1} f(x_{i})) = \Delta^{n-1} f(x_{i+1}) - \Delta^{n-1} f(x_{i}).$$

Розділену різницю n—го порядку можна виразити через скінченну різницю n—го порядку

$$P_n(x_0, x_1, ..., x_n) = \frac{\Delta^n f(x_0)}{n! h^n}.$$

Тоді наведений вище поліном можна записати у вигляді

$$\begin{split} P_n(x) &= f(x_0) + \frac{\Delta f(x_0)(x - x_0)}{1!h} + \frac{\Delta^2 f(x_0)(x - x_0)(x - x_1)}{2!h^2} + \\ &+ \dots + \frac{\Delta^n f(x_0)(x - x_0)(x - x_1)\dots(x - x_{n-1})}{n!h^n}, \end{split}$$

отримане представлення називають *інтерполяційним поліномом Ньютона для інтерполяції вперед* для рівновіддалених вузлів інтерполяції.

Формули Ньютона та Лагранжа характеризують один і той самий поліном, вони відрізняються лише алгоритмом його побудови.

Індивідуальне завдання

Варіант 22:

Використовуючи інтерполяційні поліноми Лагранжа та Ньютона, обчислити значення таблично заданої функції у точці x_{0} = 1,5.

œ :	f(x)	*	x :	f(x)
0,0	I,758203		0,5	1,654140
0.1	I.738744		0,6	I,632460
0,2	1,718369		0,7	1,611005
0,3	I.697320		0,8	I,589975
0,4	1,675834		0,9	I,569559

Рис. 1. Таблично задана функція

Рис. 2. Дискретно задана функція

Результат виконання програми

```
Ed Microsoft Visual Studio Debu, × + v

LAGRANGE:

Polynom: -0.0854277x^9 +0.352183x^8 -0.609292x^7 +0.574306x^6 -0.32136x^5 +0.105962x^4 +0.0206048x^3 -0.0560174x^2 -0.189273x^1 +1.7582x^0 solution for 0.15: -0.0854277

NEWTHON:

Polynom: -0.0854277x^9 +0.352183x^8 -0.609292x^7 +0.574306x^6 -0.32136x^5 +0.105962x^4 +0.0206048x^3 -0.0560174x^2 -0.189273x^1 +1.7582x^0 solution for 0.15: -0.0854277
```

Рис. 3. Вивід отриманих поліномів у консоль

Рис. 4. Графічне зображення отриманого поліному

Висновки

У результаті виконання лабораторної роботи, складено програму обчислення таблично заданої функції в точці $x_0 = 0.15$, використовуючи інтерполяційні поліноми Лагранжа та Ньютона. Програмний продукт розроблений у середовищі Microsoft Visual Studio мовою програмування C++.

Інтерполяційний поліном Лагранжа:

```
L(x) = -0.0854277x^9 + 0.352183x^8 - 0.609292x^7 + 0.574306x^6 - 0.32136x^5 + 0.105962x^4 + 0.0206048x^3 - 0.0560174x^2 - 0.189273x^1 + 1.7582
```

Інтерполяційний поліном Ньютона:

```
P(x) = -0.0854277x^9 + 0.352183x^8 - 0.609292x^7 + 0.574306x^6 - 0.32136x^5 + 0.105962x^4 + 0.0206048x^3 - 0.0560174x^2 - 0.189273x^1 + 1.7582
```

Додаток

CInterpolation.h:

```
#pragma once
#include <iostream>
#include <vector>
using namespace std;
class CInterpolation
public:
      CInterpolation() = delete;
      CInterpolation(double* m x, double* m y, size t m size);
      vector<double> Lagrange() const;
      double FindByLagrange(double x) const;
      vector<double> Newthon(double x) const;
      double FindByNewthon(double x) const;
private:
      vector<double> m x;
      vector<double> m y;
      size t m_size;
      double FindDifferences(int difference index, int x index) const;
      double FindQ(double x, double movable x, double interpolation step) const;
      vector<double> Forward(double interpolation step) const;
      double Factorial(int x) const;
} ;
```

CInterpolation.cpp:

```
#include "CInterpolation.h"
```

```
CInterpolation::CInterpolation(double* x, double* y, size_t size) {
      for (int i = 0; i < size; i++) {</pre>
             this->m x.push back(x[i]);
             this->m y.push back(y[i]);
      this->m size = size;
}
vector<double> CInterpolation::Lagrange() const {
      vector<double> solution;
      vector<double> result;
      vector<double> temp;
      double free{ 0 };
      result.push_back(1);
      for (int i = 0; i < m size; i++) {
             if (i != 0)
                    result.push back(0);
             temp.push_back(1);
             solution.push_back(0);
      for (int uni = 0; uni < m_size; uni++) {</pre>
             for (int i = 0; i < m size; i++) {</pre>
                    if (uni == i) {
                           free++;
                           continue;
                    }
                    for (int j = 0; j < i + 1 - free; j++) {
    temp[j] *= -m_x[i];</pre>
                           result[j + 1] += temp[j];
                    }
                    int j{ 0 };
                    for (; j < i + 2 - free; j++) {</pre>
                           temp[j] = result[j];
                    }
             }
             double division{ 1 };
             for (int i = 0; i < m size; i++) {</pre>
                    if (i == uni)
                           continue;
                    division *= m_x[uni] - m_x[i];
             for (int i = 0; i < m size; i++) {</pre>
                    result[i] *= m_y[uni];
                    result[i] /= division;
                    solution[i] += result[i];
             }
             division = 1;
             free = 0;
             for (int i = 0; i < m_size; i++) {</pre>
                    temp[i] = 1;
                    if (i == 0)
                           result[i] = 1;
                    else
                           result[i] = 0;
             }
      return solution;
double CInterpolation::FindByLagrange(double x) const{
```

```
vector<double> polynom = Lagrange();
      double result{ 0 };
      for (int i = polynom.size() - 1; i >= 0; i--) {
             result = polynom[i] * pow(x, i);
      return result;
}
double CInterpolation::FindDifferences(int difference index, int x index) const{
      double result{ 0 };
      if (x index > m size - difference index - 2) {
            cout << "error" << endl << endl;
            result = 0;
      else if (difference index == 0) {
             result = m y[x index + 1] - m y[x index];
      }
      else {
            result = FindDifferences(difference_index - 1, x_index + 1) -
FindDifferences(difference_index - 1, x_index);
      return result;
}
double CInterpolation::FindQ(double x, double movable x, double interpolation step) const {
      return (x - movable x) / interpolation step;
vector<double> CInterpolation::Forward(double interpolation step) const {
      vector<double> difference;
      vector<double> r;
      vector<double> solution;
      vector<double> result;
      vector<double> temp;
      difference.push_back(m_y[0]);
      result.push_back(1);
      for (int i = 0; i < m size; i++) {</pre>
             if (i != 0)
                   result.push back(0);
             temp.push back(1);
             solution.push back(0);
             r.push back(m x[0] + i * interpolation step);
             if (i != m_size - 1)
                   difference.push back(FindDifferences(i, 0));
      }
      for (int i = 0; i < m size; i++) {</pre>
             for (int 1 = 0; 1 < i; 1++) {</pre>
                   for (int j = 0; j < 1 + 1; j++) {
                          temp[j] *= -r[l];
                          result[j + 1] += temp[j];
                   }
                   for (int k = 0; k < m \text{ size; } k++) {
                         temp[k] = result[k];
                   }
             }
             int j{ 0 };
             for (; j < m_size - i - 1; j++) {</pre>
```

```
for (int k = 0; k < m \text{ size } -1; k++)
                          if (k == 0) {
                                temp[k] = 0;
                          temp[k + 1] = result[k];
                   for (int k = 0; k < m size; k++)
                          result[k] = temp[k];
             double division = pow(interpolation step, i);
             for (int j = 0; j < result.size(); j++) {</pre>
                   if (result[j] != 0) {
                          result[j] /= division;
                          result[j] *= difference[i];
                          result[j] /= Factorial(i);
                   solution[j] += result[j];
             for (int i = 0; i < m_size; i++) {</pre>
                   temp[i] = 1;
                   if (i == 0)
                          result[i] = 1;
                   else
                          result[i] = 0;
             }
      return solution;
}
double CInterpolation::Factorial(int x) const{
      int result{ 0 };
      if (x == 0) {
            return 1;
      else {
             result = x * Factorial(x - 1);
      return result;
vector<double> CInterpolation::Newthon(double x) const{
      vector<double> result;
      bool isEquidistant{ true };
      double difference{ 0 };
      difference = m_x[1] - m_x[0];
             double interpolation step = fabs(difference);
             if ((x - m x[0]) < (m x[m x.size() - 1] - x)) {
                   result = Forward(interpolation step);
      return result;
double CInterpolation::FindByNewthon(double x) const {
      vector<double> polynom = Newthon(x);
      double result{ 0 };
```

```
for (int i = polynom.size() - 1; i >= 0; i--) {
              result = polynom[i] * pow(x, i);
      return result;
Lab 08 NM.cpp:
#include <iostream>
#include "CInterpolation.h"
int main()
      const size t m size{ 10 };
      double m_x[m_size] { 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 };
double m_y[m_size] { 1.758203, 1.738744, 1.718369, 1.697320, 1.675834, 1.654140,
1.632460, 1.611005, 1.589975, 1.569559 };
      const double x{ 0.15 };
      CInterpolation in(m x, m y, m size);
      vector<double> lagrange_polynom = in.Lagrange();
      double lagrange result = in.FindByLagrange(x);
      vector<double> newthon_polynom = in.Newthon(x);
      double newthon result = in.FindByNewthon(x);
      cout << "LAGRANGE:\n\nPolynom: ";</pre>
       for (int i = 0; i < m size; i++) {</pre>
              if (lagrange_polynom[i] >= 0)
                    cout << "+";
              cout << lagrange_polynom[i] << "x^" << m_size - i - 1 << " ";</pre>
       cout << "\nSolution for " << x << ": " << lagrange result << "\n\n\n";</pre>
      cout << "NEWTHON:\n\nPolynom: ";</pre>
      for (int i = 0; i < m_size; i++) {</pre>
              if (newthon_polynom[i] >= 0)
                     cout << "+";
              cout << newthon_polynom[i] << "x^{n} << m size - i - 1 << " ";
       cout << "\nSolution for " << x << ": " << newthon_result << "\n\n\n";
}
```