# Лабораторная работа 2.1.6 «Эффект Джоуля-Томсона»

Балдин Виктор, Б01-303

17 марта 2024 г.

#### Цель работы

- 1. Определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях.
- 2. Вычисление по результатам опытов коэффициентов Ван-дер-Ваальса a и b.

**Оборудование** Трубка с пористой перегородкой; труба Дьюара; термостат, термометры; дифференицальная термопара; микровольтметр; балластный баллон; манометр.

#### 1 Теоретическая часть

Рассмотрим стационарный поток газа между произвольными сечениями трубки и пористой перегородкой. Для 1 моля можно записать первое начало термодинамики:

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right),\tag{1}$$

где  $A_1 = P_1 V_1$  – работа над газом, необходимая для внесения его в первое сечение трубки,  $A_2 = P_2 V_2$  – работа газа по прохождению второго сечения. Используя уравнение 1, получим:

$$H_1 - H_2 = (U_1 + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu (v_2^2 - v_1^2)$$
 (2)

Или:

$$C_P(T_1 - T_2) = \frac{1}{2}\mu(v_2^2 - v_1^2),$$
 (3)

откуда:

$$\Delta T = \frac{\mu}{2C_P} (v_2^2 - v_1^2) \tag{4}$$

При этом:

$$v_1 = \frac{P_2}{P_1} v_2 \tag{5}$$

Таким образом, для углекислого газа оценка по формуле 4 дает  $\Delta T = 7 \cdot 10^{-4} \text{ K}$ , что ничтожно мало по сравнению с измеряемым эффектом.

Эффект Джоуля-Томсона Для дифференциального эффекта Джоуля-Томсона имеем:

$$\Delta T = \frac{\frac{2a}{RT} - b}{C_P} \Delta P,\tag{6}$$

где а и b – коэффициенты в уравнении Ван-дер-Ваальса:

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT
\tag{7}$$

Таким образом, a и b можно получить из нескольких пар значений  $(\mu, T)$ , где

$$\mu = \frac{\frac{2a}{RT} - b}{C_P} \tag{8}$$

Через коэффициенты Ван-дер-Ваальса находим температуру инверсии эффекта Джоуля-Томсона:

$$T_i = \frac{2a}{Rb} \tag{9}$$

Критическая точка газа определяется условиями:

$$\left(\frac{\partial P}{\partial V}\right)_T = 0, \ \left(\frac{\partial^2 P}{\partial V^2}\right)_T = 0,\tag{10}$$

откуда, используя уравнение 7, получим все параметры газа в критической точке:

$$V_{\kappa} = 3b, \ T_{\kappa} = \frac{8a}{27Rb}, \ P_{\kappa} = \frac{a}{27b^2}$$
 (11)

Связывая формулы 9 и 11, получим:

$$T_i = \frac{27}{4} T_{\kappa} \tag{12}$$

### 2 Экспериментальная установка

Схема используемой установки приведена на рис. 1. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается исследуемый газ. Трубка имеет длину L=80 мм и сделана из нержавеющей стали в силу ее малой теплопроводности. Диаметр трубки d=3 мм, толщина стенок 0.2 мм. Толщина трубки l=5 мм подобрана так, чтобы обеспечить оптимальный поток газа при перепаде давлений  $\Delta P \leq 4$  атм, при этом в результате эффекта Джоуля-Томсона создается достаточная разность температур.

Давление газа измеряется измеряется манометром M и регулируется вентилем B. Манометр M измеряет разность с атмоферным давлением  $\Delta P = P_1 - P_2$ .

Разность температур газа до перегородки и после нее измеряется дифференциальной термопарой медь – константан.



Рис. 1: Схема экспериментальной установки для изучения эффекта Джоуля-Томсона

# 3 Ход работы

- 1. Убедимся, что термостат залит водой, все электрические приборы заземлены.
- 2. Включим термостат.
- 3. Включим вольтметр 7. Получим показания вольтметра при  $\Delta P=0,$  используем ее для корректировки:  $\mathscr{E}=U(P)-U(0).$
- 4. Проведем измерения при температурах  $T_1=17$  °C,  $T_2=30$  °C,  $T_3=40$  °C,  $T_4=50$  °C. Полученные данные представим в таблице 1.

| P, A                      | 4.0  | 3.5  | 3.0  | 2.5  | 2.0  | 1.5  |
|---------------------------|------|------|------|------|------|------|
| $U_1$ , мкВ               | 136  | 105  | 85   | 64   | 44   | 29   |
| $U_2$ , мкВ               | 107  | 89   | 70   | 49   | 34   | 18   |
| $U_3$ , мкВ               | 101  | 80   | 63   | 43   | 27   | 15   |
| $U_4$ , мкВ               | 94   | 73   | 56   | 41   | 26   | 13   |
| $\Delta T_1$ , K          | 3.42 | 2.64 | 2.14 | 1.61 | 1.11 | 0.73 |
| $\sigma_{\Delta T_1}$ , K | 0.06 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
| $\Delta T_2$ , K          | 2.58 | 2.14 | 1.69 | 1.18 | 0.82 | 0.43 |
| $\sigma_{\Delta T_2}$ , K | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
| $\Delta T_3$ , K          | 2.38 | 1.89 | 1.49 | 1.01 | 0.64 | 0.35 |
| $\sigma_{\Delta T_3}$ , K | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
| $\Delta T_4$ , K          | 2.18 | 1.69 | 1.30 | 0.95 | 0.60 | 0.30 |
| $\sigma_{\Delta T_4}$ , K | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |

Таблица 1: Значения  $\Delta T(P)$  при разных температурах

5. По результатам измерений построим графики  $\Delta T(P)$  на рисунке 2.



Рис. 2: Графики  $\Delta T(\Delta P)$ 

6. Найдем коэффициенты Джоуля-Томсона методом наименьших квадратов. Погрешности рассчитаем по формулам:

$$\sigma_{\mu}^{\text{случ}} = \sqrt{\frac{1}{N-1} \left( \frac{\langle \Delta T^2 \rangle}{\langle P^2 \rangle} - \mu^2 \right)},\tag{13}$$

$$\sigma_{\mu}^{\text{cuct}} = \mu \sqrt{\varepsilon_{\Delta T}^2 + \varepsilon_P^2},\tag{14}$$

$$\sigma_{\mu}^{\text{сист}} = \mu \sqrt{\varepsilon_{\Delta T}^2 + \varepsilon_P^2},$$

$$\sigma_{\mu} = \sqrt{(\sigma_{\mu}^{\text{случ}})^2 + (\sigma_{\mu}^{\text{сист}})^2}$$
(14)

7. Результаты для разных температур представим в таблице  $\frac{2}{2}$  и и на графике  $\mu(T^{-1})$  (рис. 3).

| T, °C | $T^{-1}$ , $10^{-3} \text{ K}^{-1}$ | $\mu, 10^{-5} \; { m K}/\Pi{ m a}$ | $\sigma_{\mu},~10^{-5}~\mathrm{K/\Pi a}$ | $\varepsilon_{\mu}$ , % |
|-------|-------------------------------------|------------------------------------|------------------------------------------|-------------------------|
| 17    | 3.45                                | 1.06                               | 0.05                                     | 5                       |
| 30    | 3.30                                | 0.87                               | 0.04                                     | 5                       |
| 40    | 3.19                                | 0.82                               | 0.04                                     | 5                       |
| 50    | 3.10                                | 0.74                               | 0.03                                     | 5                       |

Таблица 2: Значения  $\mu(T)$ 

8. По графику  $\frac{3}{2}$  и с помощью формулы  $\frac{8}{2}$  найдем a и b (см. таблицу  $\frac{3}{2}$ ).



Рис. 3: График  $\mu(T^{-1})$ 

|                   | $a, \frac{\Pi a \cdot M^6}{K \cdot MOJL^2}$ | $b, 10^{-4} \frac{\text{M}^3}{\text{МОЛЬ}}$ |
|-------------------|---------------------------------------------|---------------------------------------------|
| Значение          | 1.06                                        | 5.77                                        |
| $\sigma$          | 0.14                                        | 0.75                                        |
| $\varepsilon$ , % | 13                                          | 13                                          |

Таблица 3: Коэффициенты Ван-дер-Ваальса

- 9. По формуле 9 найдем температуру инверсии для углекислого газа  $T_i=(442\pm115)~{
  m K},$   $\varepsilon_{T_i}=\varepsilon_a+\varepsilon_b=26\%.$
- 10. Табличные данные для углекислого газа  $a=0.36~\frac{\Pi \text{a} \cdot \text{m}^6}{\text{K} \cdot \text{моль}^2}, \, b=0.43 \cdot 10^{-4}~\frac{\text{м}^3}{\text{моль}}, \, T_{\text{инв}}=2000$  К.

## 4 Вывод

В ходе работы мы выявили экспериментально наличие эффекта Джоуля-Томсона, показали его линейность с неплохой степенью точности. Вычислив коэффициенты а и b, мы обнаружили расхождение с табличными значениями на целый порядок, поэтому наш опыт показывает, что модель газа Ван-дер-Ваальса способна описывать поведение газа лишь при малых отклонениях температуры, в реальности расхождение слишком велико, чтобы считать ее адекватной.