Algoritmos em Sequências

Notas de aula da disciplina TE: Técnicas de Construção de Algoritmos

Fabiano de Souza Oliveira (fabiano.oliveira@ime.uerj.br)

Paulo Eustáquio Duarte Pinto (pauloedp@ime.uerj.br)

setembro/2020

Algoritmos complementares em Sequências:

- Subsequência crescente máxima
- Subsequência consecutiva de soma máxima
- Subsequência máxima comum
- Distância de Edição

Dada uma sequência S de inteiros, $\langle s_1, s_2, ..., s_n \rangle$, determinar a subsequência crescente de tamanho máximo.

Exemplo: $S = \langle 10, 2, 15, 3, 20, 4, 20 \rangle$

A SCM é <2, 3, 4, 20>

```
função SCM-t(S[], n: Inteiro)
    //retorna o comprimento da subsequência crescente
    //máxima que termina em S[n]
   m \leftarrow 1
    para i ← 1 até n-1 faça
        se S[i] < S[n] então</pre>
            m \leftarrow máx \{m, SCM-t(S,i)+1\}
    retornar m
função SCM(S[], n: Inteiro)
    //retorna o comprimento da subsequência crescente
    //máxima contida em S[1..n]
   m \leftarrow 0
    para i ← 1 até n faça
        m \leftarrow max \{m, SCML-t(S,i)\}
    retornar m
```

```
var T[1..100000]: Inteiro ← -1
função SCM-t(S[], n: Inteiro)
     //retorna o comprimento da subsequência crescente
     //máxima que termina em S[n]
     se T[n]=-1 então
          m \leftarrow 1
           para i ← 1 até n-1 faça
                se S[i] < S[n] então</pre>
                     m \leftarrow max \{m, SCM-t(S,i)+1\}
          T[n] \leftarrow m
     retornar T[n]
função SCM(S[], n: Inteiro)
     //retorna o comprimento da subsequência crescente
     //máxima contida em S[1..n]
     m \leftarrow 0
     para i \leftarrow 1 até n faça
          m \leftarrow máx \{m, SCML-t(S,i)\}
     retornar m
```

Tempo: $\Theta(n^2)$

Solução: manter, para cada tamanho de subsequência crescente, qual o menor elemento possível que termina essa subsequência, à medida que se varre linearmente a sequência original.

```
i = 1 SCM de tamanho 1 termina em 10.
i = 2 SCM de tamanho 1 termina em 2.
i = 3 SCM de tamanho 2 termina em 15.
i = 4 SCM de tamanho 2 termina em 3.
i = 5 SCM de tamanho 3 termina em 20.
i = 6 SCM de tamanho 3 termina em 4.
i = 7 SCM de tamanho 4 termina em 20.
```

Exemplo: $S = \langle 10, 2, 15, 3, 20, 4, 20 \rangle$

```
SCM:
       k \leftarrow 1; T[1] \leftarrow S[1]; O[1] \leftarrow 1
       para i ← 2 até n faça
          se S[i] > T[k] então
              k \leftarrow k+1; T[k] \leftarrow S[i]; O[i] \leftarrow k
          senão
              j ← BuscaBinária (T, 1, k, S[i])
              // T[j-1] < S[i] \le T[j], para algum 1 \le j \le k
              T[j] \leftarrow S[i]; O[i] \leftarrow j
                                                           Tempo:
                                                          O(n \log n)
       = tamanho da SCM
          menor elemento que termina uma SC de tamanho j
T[j]
        = tamanho da SCM terminada em S[i]
```

```
função BuscaBinária (T[], ini, fim, x):

se ini > fim então

retornar ini

senão

m ← (ini + fim) div 2

se T[m] < x então

retornar BuscaBinária (T, m+1, fim, x)

senão

retornar BuscaBinária (T, ini, m-1, x)
```

Algoritmos em Sequências

Exemplo: $S = \langle 10, 2, 15, 8, 20, 16, 10, 5, 20 \rangle$ $O = \langle 1, 1, 2, 2, 3, 3, 3, 2, 4 \rangle$

i\ k	si	1	2	3	4
1	10	10	-	-	-
2	2	2	-	-	-
3	15	2	15	-	-
4	8	2	8	-	-
5	20	2	8	20	-
6	16	2	8	16	-
7	10	2	8	10	-
8	5	2	5	10	-
9	20	2	5	10	20

Soluções:

10	15	16	20
2	15	16	20
2	8	16	20
2	8	10	20

Para determinar uma SCM:

```
Obter(S[], O[], n, k, ref R[]):

m \leftarrow \infty; i \leftarrow n; j \leftarrow k

enquanto j > 0 faça

se O[i] = j e S[i] < m então

R[j] \leftarrow S[i]

j \leftarrow j-1; m \leftarrow S[i]

i \leftarrow i-1
```

Para determinar todas as SCMs, usa-se Backtracking

Dada uma sequência S de inteiros, $\langle s_1, s_2, ..., s_n \rangle$, determinar a subsequência consecutiva de soma máxima.

Exemplo: $S = \langle 6, 2, -7, 12, -15, 8 -2, 3, -5, 10, -1 \rangle$

A SCSM \acute{e} <8, -2, 3, -5, 10>, com soma = 14

O problema é resolvido varrendo a sequência e guardando a subsequência de soma máxima (SCSM) e a subsequência sufixo não negativa (SSU)

```
SCSM:
    sm, im, fm \leftarrow 0, 0, 0 //sm é SCSM de início im e fim fm
    ss, is, fs \leftarrow 0, 0, 0
                                   //ss é SSU de início is e fim fs
    para i ← 1 até n faça
        se ss+x[i] \ge 0 então
                                                                is fs I
                                                         fm
                                                  im
            ss \leftarrow ss + x[i]
                                     X
           fs \leftarrow i
            se is = 0 então
                                                      sm
                                                                 SS
                is \leftarrow i
            se ss > sm então
                sm, im, fm \leftarrow ss, is, fs
        senão
            ss, is, fs \leftarrow 0, 0, 0
```

Exemplo: $S = \langle 6, 2, -7, 12, -15, 8 -2, 3, -5, 10, -1 \rangle$

i	Si	is	fs	SS	im	fm	sm
1	6	1	1	6	1	1	6
2	2	1	2	8	1	2	8
3	-7	1	3	1	1	2	8
4	12	1	4	13	1	4	13
5	-15	0	0	0	1	4	13
6	8	6	6	8	1	4	13
7	-2	6	7	6	1	4	13
8	3	6	8	9	1	4	13
9	-5	6	9	4	1	4	13
10	10	6	10	14	6	10	14
11	-1	6	11	13	6	10	14

Dadas as sequências $A < a_1 a_2 ... a_n > e B < b_1 b_2 ... b_m > determinar a subsequência máxima comum, 5.$

```
Ex: A = OPACO B = PARADO, S = PAO
```

Solução (DC):

```
Considerando A_i \langle a_1 a_2 \dots a_i \rangle e B_j \langle b_1 b_2 \dots b_j \rangle e a SMC S_k \langle s_1 s_2 \dots s_k \rangle
```

```
se a_i = b_j, então S_k = S_{k-1}^j + a_i e S_{k-1} é SMC entre A_{i-1} e B_{j-1} senão S_k é SMC ou entre (A_{i-1} \ e \ B_j) ou entre (A_i \ e \ B_{j-1})
```

O problema é resolvido tabelando os tamanhos das subsequências comuns. Seja T(i, j) o tamanho da SMC relativa a A_i e B_i .

Recorrência:

$$T(i, 0) = 0, 0 \le i \le n.$$

 $T(0, j) = 0, 0 \le j \le m.$

$$T(i, j) = T(i-1, j-1)+1$$
, se i, j > 0 e $a_i = b_j$.

$$T(i, j) = max(T(i-1, j), T(i, j-1)) se i, j > 0 e a_i \neq b_j$$
.

```
T(i, 0) = 0, 0 \le i \le n.

T(0, j) = 0, 0 \le j \le m.

T(i, j) = T(i-1, j-1)+1, se i, j > 0 e a<sub>i</sub> = b<sub>i</sub>.

T(i, j) = max(T(i-1, j), T(i, j-1)) se i, j > 0 e a<sub>i</sub> \neq b<sub>j</sub>.
```

			P	A	R	Α	D	0
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1

```
T(i, 0) = 0, 0 \le i \le n.

T(0, j) = 0, 0 \le j \le m.

T(i, j) = T(i-1, j-1)+1, se i, j > 0 e a<sub>i</sub> = b<sub>i</sub>.

T(i, j) = max(T(i-1, j), T(i, j-1)) se i, j > 0 e a<sub>i</sub> \neq b<sub>j</sub>.
```

			P	A	R	A	D	0	
		0	1	2	3	4	5	6	
	0	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	1	
P	2	0	1	1	1	1	1	1	

```
T(i, 0) = 0, 0 \le i \le n.

T(0, j) = 0, 0 \le j \le m.

T(i, j) = T(i-1, j-1)+1, se i, j > 0 e a<sub>i</sub> = b<sub>i</sub>.

T(i, j) = max(T(i-1, j), T(i, j-1)) se i, j > 0 e a<sub>i</sub> \neq b<sub>j</sub>.
```

			P	A	R	A	D	0
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
0	1	O	0	0	0	0	0	1
P	2	0	1	1	1	1	1	1
A	3	0	1	2	2	2	2	2

```
T(i, 0) = 0, 0 \le i \le n.

T(0, j) = 0, 0 \le j \le m.

T(i, j) = T(i-1, j-1)+1, se i, j > 0 e a<sub>i</sub> = b<sub>i</sub>.

T(i, j) = max(T(i-1, j), T(i, j-1)) se i, j > 0 e a<sub>i</sub> ≠ b<sub>j</sub>.
```

			P	A	R	A	D	0
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1
P	2	0	1	1	1	1	1	1
A	3	0	1	2	2	2	2	2
C	4	0	1	2	2	2	2	2

```
T(i, 0) = 0, 0 \le i \le n.

T(0, j) = 0, 0 \le j \le m.

T(i, j) = T(i-1, j-1)+1, se i, j > 0 e a<sub>i</sub> = b<sub>i</sub>.

T(i, j) = max(T(i-1, j), T(i, j-1)) se i, j > 0 e a<sub>i</sub> \neq b<sub>j</sub>.
```

			P	A	R	A	D	0
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1
P	2	0	1	1	1	1	1	1
A	3	0	1	2	2	2	2	2
C	4	0	1	2	2	2	2	2
0	5	0	1	2	2	2	2	3

```
T(i, 0) = 0, 0 \le i \le n.
T(0, j) = 0, 0 \le j \le m.
T(i, j) = T(i-1, j-1)+1, se i, j > 0 e a<sub>i</sub> = b<sub>i</sub>.
T(i, j) = max(T(i-1, j), T(i, j-1)) se i, j > 0 e a_i \neq b_i
Algoritmo:
SCM(n, m):
     para i ← 0 até n incl.:
         T[i, 0] \leftarrow 0
     para j \leftarrow 0 até m incl.:
         T[0, j] \leftarrow 0
     para i \leftarrow 1 até n incl.:
          para j \leftarrow 1 até m incl.:
              se (a_i = b_j):

T[i, j] \leftarrow T[i-1, j-1] + 1
              senão:
                   T[i, j] \leftarrow max(T[i-1, j], T[i, j-1])
```

```
T(i, 0) = 0, 0 \le i \le n.
T(0, j) = 0, 0 \le j \le m.
T(i, j) = T(i-1, j-1)+1, se i, j > 0 e a<sub>i</sub> = b<sub>i</sub>.
T(i, j) = max(T(i-1, j), T(i, j-1)) se i, j > 0 e a_i \neq b_i
Para gerar uma SMC, usa-se DC:
Gerar (i, j, k):
    se (k > 0):
       se (a_i = b_i):
           s_k \leftarrow a_i
            Gerar (i-1, j-1, k-1)
                                          Para gerar todas as SMC,
        senão se (T[i-1, j] = k):
                                          usa-se Backtracking
           Gerar (i-1, j, k)
        senão:
            Gerar (i, j-1, k)
```

Gerar(n,m,T[n,m]) escrever S

```
Gerar (i, j, k):
    se (k > 0):
        se (a<sub>i</sub> = b<sub>j</sub>):
        s<sub>k</sub> ← a<sub>i</sub>
        Gerar (i-1, j-1, k-1)
        senão se (T[i-1, j] = k):
        Gerar (i-1, j, k)
        senão:
        Gerar (i, j-1, k)
```

Ex: mostrar a SMC entre OPACO e PARADO

			P	A	R	A	D	0
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1
P	2	0	1	1	1 ,	1	1	1
A	3	0	1	2	2	2	4 2 4	2
C	4	0	1	2	2	2	2	2
0	5	0	1	2	2	2	2	3

PAO

Exercício 11: Qual o tamanho da maior subsequência comum aos strings: ABRACADABRA e BABADECRABA?

Exercício 12: Qual o tamanho da maior subsequência crescente em: 26 3 15 29 60 20 4 8 19 16 24 32 2 18 35

Exercício 13: Qual a soma da subsequência consecutiva de maior soma em:
-1 8 -7 6 15 -23 9 -3 -5 16 -5 8 -9 12 -6

Distância de Edição

Dados dois strings A e B, quer-se determinar a menor sequência de operações para transformar A em B.

Os tipos de operação são:

- -inserção de um caracter
- -deleção de um caracter
- -substituição de um caracter

Ex: ERRO transforma-se em ACERTO com 3 operações:

-inserção do A AERRO

-inserção do C ACERRO

-substituição do R ACERTO

Distância de Edição - Formulação DC

Dados os substrings A_i (primeiros i caracteres) e B_j ,

$$D(i, j) = distância de edição entre $A_i e B_j =$$$

$$D(i-1, j-1)$$
, se $a_i = b_i$

1 + min(D(i-1, j), D(i, j-1), D(i-1, j-1)), se
$$a_i \neq b_i$$

Deleção de a_i

Inserção de b_j

Substituição de a_i por b_i

	0	1 A	2 C	3 E	4 R	5 T	6 0
0	0	1	2	3	4	5	6
1 E	1	1	2	2	3	4	5

	0	1 A	2 C	3 E	4 R	5 T	6 0
0	0	1	2	3	4	5	6
1 E	1	1	2	2	3	4	5
2 R	2	2	2	3	2	3	4

	0	1 A	2 C	3 E	4 R	5 T	6 0
0	0	1	2	3	4	5	6
1 E	1	1	2	2	3	4	5
2 R	2	2	2	3	2	3	4
3 R	3	3	3	3	3	3	4

		0	1 A	2 C	3 E	4 R	5 T	6 O
0		0	1	2	3	4	5	6
1 6		1	1	2	2	3	4	5
2	R	2	2	2	3	2	3	4
3 1	R	3	3	3	3	3	3	4
4	0	4	4	4	4	4	4	3

Distância de Edição

```
D(i, j) = D(i-1, j-1) = 0, se a_i = b_i
            min(D(i-1, j), D(i, j-1), D(i-1, j-1)) + 1, se a_i \neq b_i
DistânciaEdição():
#Dados: Strings A e B, com |A| = n e |B| = m
    para i \leftarrow 0 até n incl.:
        D[i, 0] \leftarrow i
    para j ← 0 até m incl.:
        D[0,j] \leftarrow j
    para i \leftarrow 1 até n incl.:
        para j 1 até m incl.:
            se (A[i] = B[j]):
                 D[i, j] \leftarrow D[i-1, j-1]
             senão:
                 D[i, j] \leftarrow 1 + min(D[i-1, j-1], D[i-1, j], D[i, j-1])
```

Complexidade: O(n.m)

Distância de Edição - Apresentando a transformação

	0	1 A	2 C	3	4 R	5 T	6 0
0	0	-1	-2	3	4	5	6
1 E	1	1	2	2	3	4	5
2 R	2	2	2	3	2	3	4
3 R	3	3	3	3	3	3	4
4 0	4	4	4	4	4	4	3

Distância de Edição - Apresentando uma transformação

```
Transf(i,j):
#Dados Matriz de distâncias D, Strings A e B
   se ((i>0) ou (j>0)):
      se (A[i] = B[i]):
          Transf(i-1,j-1); escrever 'Manteve' A[i];
      senão se ((j > 0) e D[i,j] = D[i,j-1]+1):
          Transf(i,j-1); escrever 'Inseriu' B[j];
      senão se ((i > 0) e D[i,j] = D[i-1,j]+1):
          Transf(i-1,j); escrever 'Deletou' A[i];
      senão:
          Transf(i-1, j-1)
          escrever 'Transformou' A[i] 'em' B[j]
```

Transf(n,m)

Para gerar todas as transformações usa-se Backtracking

Distância de Edição - Apresentando a transformação

	0	1 M	2 A	3 R	4 R	5 0	6 M
O	0	-1	2	3	4	5	6
1 A	1	1	1	-2	3	4	5
2 M	2	1	2	2	3	4	4
3 0	3	2	2	3	3	3	4
4 R	4	3	3	2	3	4	4
5 A	5	4	3	3	3	4	2 5

Algoritmos em Sequências

FIM