EPIC Title letsss go

T. C. Djupvik¹, O. F. Jakobsen¹, V. Aakre¹, and L. Nord-Varhaug¹

¹Institutt for fysikk, NTNU

30. mars 2023

1 Sammendrag

Ulike sylindre som ruller rent i bunnen av en sirkelformet bane opplever ulike dempekrefter. I dette forsøket ønskes det å analysere et slikt system med hjelp av videoanalyse og numeriske løsninger av den aktuelle differensialligningen. I løsningen av differensial-ligningene ble både Crank-Nicholsonmetoden og Euler-metoden ble forsøkt brukt, hvorpå Crank-Nicholson-metoden gav en bedre tilnærming til de eksperimentelle dataene enn Eulers-metode. Det ble dernest observert, basert på de numeriske modellene, at luftmotstanden og den forenklede motstanden fra en del andre fysiske prosesser var særdeles dominerende i forhold til rullefriksjonen.

Dette er bare tull

2 Innledning

I dette prosjektet undersøkes det hvilke effekter som bremser opp bevegelsen til en sylinder som ruller rent i bunnen av en sirkelformet bane. Det kommer ikke til å bli tatt hensyn til sluring, men både luft- og rullemotstand kommer til å bli tatt med i modellen. Ved å sammenligne de eksperimentelle målingene med de numeriske og analytiske løsningene av ligningen som beskriver systemet ønsker vi å anslå verdier for de ulike dempeeffektene. I tillegg vil det bli diskutert hvordan de ulike bremsekreftene varierer alt etter hvor sylinderen er i banen.

3 Teori

For å beskrive bevegelsen til sylinderen kan man bruke Newtons andre lov i tangentiell retning. Man kan da finne et uttrykk for $\ddot{\phi}$ gitt ved $\dot{\phi}$ og ϕ . Denne differensialligningen inneholder også de tre dempekreftene f_S , f_D og f_R , som henholdsvis inneholder diverse dempekrefter, luftmotstand og rullefriksjon.

$$\vec{f_S} = -\tilde{\delta}\vec{v} \tag{1}$$

$$\vec{f_D} = -\tilde{\beta} |\vec{v}|^2 \hat{v} \tag{2}$$

$$\vec{f_R} = -|\vec{f_R}|\hat{v} \tag{3}$$

Her er $\tilde{\delta}$ dempingskonstanten, $\tilde{\beta}$ dragkoeffisienten. Det kan vises at F_R kan uttrykkes ved

$$|f_R|\operatorname{sgn}\dot{\phi} = m\left[cl\ddot{\phi} + \frac{d}{r}\left(l\dot{\phi}^2 + g\cos\phi\right)\operatorname{sgn}\dot{\phi}\right]$$
(4)

Ved å bruke Newtons andre lov på den rullende sylinderen og bruke ligningen for f_R kommer man frem til følgende uttrykk:

$$\ddot{\phi} = -\omega_0^2 \sin \phi - 2\delta \dot{\phi}$$

$$-\frac{\pi \phi_R}{2\omega_0} \left(\omega_0^2 \cos \phi + \gamma \dot{\phi}^2\right) \operatorname{sgn} \dot{\phi}$$

$$-\beta \frac{3\pi}{4\omega_0} \dot{\phi}^2 \operatorname{sgn} \dot{\phi}$$
(5)

Her er størrelsene δ , β og ϕ_R skalerte versjoner av $\tilde{\delta}$, $\tilde{\beta}$ og d, der d er armen til normalkraften (se figur 1). Disse er definert slik:

$$\delta = \gamma \frac{\tilde{\delta}}{2m} \tag{6a}$$

$$\beta = \frac{4\gamma}{3\pi} \frac{\omega_0 l}{m} \tilde{\beta} \tag{6b}$$

$$\phi_R = \frac{d}{r} \frac{2\omega_0}{\pi} \tag{6c}$$

Å løse differensialligninger eksakt vil i de fleste tilfeller være svært vanskelig eller umulig. Likevel kan man løse (5) i noen grensetilfeller. Ved å bare se på $\phi << 1$ vil man kunne bruke approksimasjonene $\sin(\phi) = \phi + \mathcal{O}(\phi^3) \approx \phi$ og $\cos(\phi) = 1 + \mathcal{O}(x^2) \approx 1$. I tillegg vil man kunne finne eksakte løsninger ved å sette to av δ , β og ϕ_R lik 0.

Selv om man i noen tilfeller kan finne analytiske løsninger vil det i mange tilfeller være mer hensiktsmessig å løse differensialligningen numerisk. (5) er en ordinær differensialligning av andre orden. Denne kan skrives som to koblede førsteordens ordinære differensialligninger ved å innføre $u = \phi$:

$$\frac{\mathrm{d}\phi}{\mathrm{d}t} = u \tag{7a}$$

$$\frac{\mathrm{d}u}{\mathrm{d}t} = f(\phi, u) \tag{7b}$$

$$\frac{\mathrm{d}u}{\mathrm{d}t} = f(\phi, u) \tag{7b}$$

Dette ligningssettet kan løses diskret ved bruk av Eulers metode. Man løser da

$$\phi_{i+1} = \phi_i + u_i \Delta t \tag{8a}$$

$$u_{i+1} = u_i + f(\phi_i, u_i) \Delta t \tag{8b}$$

for en valgt Δt og med startverdiene ϕ_0 og $u_0 = \dot{\phi}_0$.

Da Eulers metode ofte fører til systematisk avvik er det bedre å bruke Crank-Nicholson-metoden, som man kan finne i labheftet.

Figur 1: Skisse av system.

4 Resultat

Figur 3 viser implementering av Eulers metode på måleserien til Sylinder 1. Her er det valgt $\Delta t = 0.01$ og $\Delta t = 10^{-6}$. Crank-Nicholson-metoden gir fullstendig sammenfallende løsning som den analytiske løsningen av (5). Se figur 4.

Eksperimentering av ulike verdier for ϕ_R , δ og β gir figur 5 som beste resultat. Her er $\delta = 0.014$, $\phi_R=0.0002$ og $\beta=0.080$ hos massiv metall og $\delta=0.009,\,\phi_R=0.0006$ og $\beta=0.090$ hos massiv plast.

Brukte videre (5) for å plotte hvordan de ulike dempeleddene i differensialligningen varierer med ϕ (se figur 6).

Figur 2: Skisse av oppsett.

 ${\bf Tabell\ 1:}\ {\bf Målinger}\ {\bf av}\ {\bf de}\ {\bf ulike}\ {\bf sylindrene}.$

Sylinder	masse	indre diameter	ytre diameter
	(g)	(mm)	(mm)
1	442 ± 0.5		73.5 ± 0.1
2	$1097 {\pm} 0.5$		44.5 ± 0.1
3	255 ± 0.5	$42.4 {\pm} 0.1$	$36.5 {\pm} 0.1$

Referanser

[1] Christoph Brüne. LABORATORIUM I FY1003 ELEKTRISITET OG MAGNETISME. NTNU Institutt for fysikk, 03. jan. 2023.

Figur 3: Bruk av Eulers metode. Henholdsvis $\Delta t = 0.01$ og $\Delta t = 10^{-6}$.

Figur 4: CN-metoden og den analytiske løsningen med $\delta=0.04$ og β og $\phi_R=0$. Disse sammenfaller fullstendig.

Figur 5: Justering av $\phi_R,\,\beta$ og δ hos helholdsvis massiv metall og massiv plast.

Figur 6: Sammenligning av påvirkning til ϕ_R , β og δ som funksjon av $\dot{\phi}$. Ser på tidspunkt med maksimal rullemotstand når $\phi = 0$. Det er bare rullefriksjonsleddet som avhenger av ϕ (se (5)).