Home ► My courses ► EEE117-2019S-Sec1 ► Homework ► Homework 14 - Chapter 16

Started on Wednesday, 1 May 2019, 1:43 PM
State Finished

Completed on Wednesday, 1 May 2019, 1:43 PM

Time taken 29 secs

Grade 100.00 out of 100.00

Question 1

Correct

Mark 11.00 out of 11.00

P16.08b_6ed

Use waveform symmetry and find the Fourier series coefficients for this periodic waveform.

a) Find ω_0 in radians per second.

$$\omega_0 = \boxed{785398}$$
 rad/sec

b) Find f_0 in Hertz.

c) Find a_v.

$$a_v = 18.75$$
 Volts

d) Find a_k.

$$a_k = 50$$
 $\sqrt{(k\pi) \left[\sin(k\pi/2) + \sin(k\pi/4)\right]}$ Volts

e) Find b_k.

$$b_k = \boxed{0}$$
 for all k

Correct

Correct

Mark 11.00 out of 11.00

P16.13a_10ed

Use waveform symmetry and find the Fourier series coefficients for this periodic waveform.

a) Find a_v.

$$a_v = \boxed{0}$$
 Volts

b) Find a_k.

$$a_k^{}=(\boxed{4} \sqrt{V_m^{}/k\pi}) \sin(k\pi/\boxed{2} \sqrt{V_m^{}})$$
 Volts for k odd

c) Find b_k.

$$b_k = \begin{bmatrix} 0 \\ \checkmark \end{bmatrix}$$
 for all k

Correct

Question $\bf 3$

Correct

Mark 11.00 out of 11.00

P16.19b 9ed

Given:
$$v(t) = 25 + \frac{200}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin(\frac{\pi n}{4}) \cos(n\omega_0 t) Volts$$

The Fourier Series for this waveform using the Alternative Trigonometric Form given by

$$f(t) = a_v + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t - \theta_n)$$

Determine:

The average value $a_v = 25$ Volts

$$A_1 = 45$$
 Volts and $\theta_1 = 0$ ° (Degrees)

$$A_2 = 32$$
 Volts and $\theta_2 = 0$ \checkmark ° (Degrees)

$$A_3 = 15$$
 Volts and $\theta_3 = 0$ ° (Degrees)

$$A_4 = 0$$
 Volts and $\theta_4 = 0$ Cegrees)

$$A_5 = \begin{bmatrix} -9 & \checkmark & Volts & and & \theta_5 = \begin{bmatrix} 0 & \checkmark & \circ & (Degrees) \end{bmatrix}$$

Correct

Correct

Mark 11.00 out of 11.00

P16.19a 9ed

Given:

$$v(t)\!=\!\tfrac{-80}{\pi}\!\sum_{n=1,3,5,\ldots}^{\infty}\!\tfrac{1}{n}\!\sin\!\left(\tfrac{\pi n}{2}\right)\!\cos\!\left(n\,\omega_{0}t\right)\!+\!\tfrac{240}{\pi}\!\sum_{n=1,3,5,\ldots}^{\infty}\!\tfrac{1}{n}\!\sin\!\left(n\,\omega_{0}t\right)$$

Rewrite the Fourier Series for this waveform using the Alternative Trigonometric Form given by

$$f(t) = a_v + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t - \theta_n)$$

The alternate form is

For
$$n = 1, 5, 9, ... A_n = 252$$
 / $n\pi$

angle
$$\theta_n = \left[-108 \right] \circ \text{(Degrees, CW from the origin)}$$

For
$$n = 3, 7, 11, ... A_n = 252$$
 / $n\pi$

and angle
$$\theta_n = \boxed{-71.6}$$
 \checkmark ° (Degrees, CW from the origin)

CW = Clock-wise

Correct

Correct

Mark 11.00 out of 11.00

P16.27_6ed

The full-wave rectified sine-wave voltage is applied to the circuit shown.

Find the circuit's response $v_0(t)$ by using the first four nonzero Fourier series terms.

Correct

Correct

Mark 11.00 out of 11.00

P16.23_6ed

Given: The maximum amplitude of the input signal is $V_m = 450 \pi^2 \text{ mV}$ (milli V) with a period $T = 2\pi \text{ ms}$ (milli sec) $(\pi = \text{pi})$.

$$v(t) = \begin{bmatrix} V_m \end{bmatrix} - \frac{4V_m t}{T}$$
 over the interval $0 \le t \le \frac{T}{2}$ $v(t) = \frac{4V_m t}{T} - 3V_m$ over the interval $\frac{T}{2} \le t \le T$

You should be able to simplify the Fourier series to

$$v(t) = 3.6 \sum_{n=1,3,5,\dots}^{\infty} \frac{\cos(n\omega_0 t)}{n^2}$$

The periodic triangular-wave voltage is applied to the filter circuit shown.

Estimate the filter circuit's output (response) $v_0(t)$ from the first three nonzero Fourier series terms.

$$v_{0,1}(t) = 2.54$$
 $\checkmark \cos(1000$ $\checkmark t + 45$ $\checkmark \circ)$ Volts $v_{0,3}(t) = 38$ $\checkmark \cos(3000$ $\checkmark t + 18.4$ $\checkmark \circ)$ Volts $v_{0,5}(t) = 14$ $\checkmark \cos(5000$ $\checkmark t + 11.3$ $\checkmark \circ)$ Volts

Correct

Correct

Mark 11.00 out of 11.00

P16.38_6ed

The triangular-wave voltage source is applied to this circuit.

The equation for the function = $50 \times 10^6 \text{ t/m}$ for $0 \le \text{t} \le \text{m}$ µs (micro sec)

Estimate the average power delivered to the 20 k Ω (kilo (Ohm) resistor when the circuit is in steady-state operation.

$$P_{20\Omega,steady-state} = \boxed{41.6}$$
 mW (milli W)

Correct

Correct

Mark 11.00 out of 11.00

P16.33_10ed

The periodic current waveform is applied to a 2.5 k Ω (kilo Ohm) resistor.

Given:
$$i(t) = \frac{I_m}{T_2} t$$
 for $0 \le t \le T/2$ and $i(t) = I_m$ for $T/2 \le t \le T$ where $I_m = 5$ A

a) Use the first three nonzero terms in the Fourier Series representation of i(t) to estimate the average power dissipated in the 2.5 kW (kilo Ohm) resistor.

$$P_{2.5 \text{ kΩ,estimate}} = 40.4$$
 kW (kilo Watt)

b) Calculate the exact value of the average power dissipated in the 2.5 k Ω (kilo Ohm) resistor. Hint: You must use the rms integral for the current waveform.

$$P_{2.5 \text{ k}\Omega,\text{exact}} = \boxed{41.67}$$
 kW (kilo Watt)

c) Find the error in % between the exact and approximate power calculations from part a) and part b). ("True" = Exact)

Correct

Correct

Mark 12.00 out of 12.00

P16.35_6ed

The voltage and current at the terminals of this network are

$$v(t) = 80 + 200 \cos(500t + 45^{\circ}) + 60 \sin(1,500t)$$
 Volts

$$i(t) = 10 + 6 \sin(500t + 75^{\circ}) + 3 \cos(1,500t - 30^{\circ})$$
 Amps

a) What is the average power at element's terminals?

$$P = \boxed{1145} \qquad \bigvee W$$

b) What is the rms value of the voltage?

$$V_{\rm rms} = \boxed{168}$$
 \checkmark $V_{\rm rms}$

c) What is the rms value of the current?

$$I_{rms} = \begin{bmatrix} 11 & & \\ & & \end{bmatrix} \checkmark A_{rms}$$

Correct

Marks for this submission: 12.00/12.00.

■ Homework 13 - Chapter 15 and 16

Jump to...

Quiz 1 - Chapter 9 ▶