Algoritmos - Aula 5

Fernando Raposo

Vamos ver

- Heap sort
- Análise Comparativa das Ordenações
- Conceitos Algorítmicos

 Algoritmo de ordenação baseado em comparações, similar ao Selection Sort. (procuramos o menor elemento e colocamos no início). Deve-se considerar no processo uma estrutura de Heap Binário (Binary Heap).

Heap Binário o que é?

- 1. Uma árvore;
- 2. Esta árvore pode ser representada por um array;
- 3. Cada nó filho é menor que seu nó pai (ou o nó pai é maior que seus nós filhos).

- Enxergando um Heap Binário em um array.
 - o raiz: array[1]
 - 1. Pai de índice f é f / 2;
 - 2. O filho esquerdo do índice p é 2p;
 - 3. O filho direito do índice p é 2p+1.

- Vamos treinar (Obs: para simplificar retiramos o índice zero do array)
 - Oual a raiz?

- Vamos treinar (Obs: para simplificar retiramos o índice zero do array)
 - Oual a raiz?
 - R: array[1]

- Vamos treinar (Obs: para simplificar retiramos o índice zero do array)
 - Quais os filhos da raiz array[1]?

- Vamos treinar (Obs: para simplificar retiramos o índice zero do array)
 - Quais os filhos da raiz array[1] ?
 - Arr R: Filho esquerdo = 2p = 2*1 = 2
 - R: Filho direito = 2p+1 = 2*1 + 1 = 3

- Vamos treinar (Obs: para simplificar retiramos o índice zero do array)
 - Quais os filhos da raiz array[2] = 2 ?
 - R: Filho esquerdo = 2p = 2*2 = 4
 - R: Filho direito = 2p+1 = 2*2 + 1 = 5

- Vamos treinar (Obs: para simplificar retiramos o índice zero do array)
 - Quais os filhos da raiz array[2] = 2 ?
 - R: Filho esquerdo = 2p = 2*2 = 4
 - R: Filho direito = 2p+1 = 2*2 + 1 = 5

- Fazendo as contas e montando o Heap...
- ANTES:

• Depois... (mas ainda falta...)

- Ainda Falta?
- Sim! Precisamos ser um Heap Binário (terceira regra)
 - o Cada nó filho **é menor que seu nó pai** (ou o nó pai é maior que seus nós filhos).

- Ainda Falta?
- Sim! Precisamos ser um Heap Binário (terceira regra)
 - o Cada nó filho **é menor que seu nó pai** (ou o nó pai é maior que seus nós filhos).

- Ainda Falta?
- Sim! Precisamos ser um Heap Binário (terceira regra)
 - o Cada nó filho **é menor que seu nó pai** (ou o nó pai é maior que seus nós filhos).

- Ainda Falta?
- Sim! Precisamos ser um Heap Binário (terceira regra)
 - o Cada nó filho **é menor que seu nó pai** (ou o nó pai é maior que seus nós filhos).

- Ainda Falta?
- Sim! Precisamos ser um Heap Binário (terceira regra)
 - Cada nó filho é menor que seu nó pai {ou o nó pai é maior que seus nós filhos).

- Temos então:
- ... E ainda não acabou...

 Troque o primeiro elemento e o último elemento de posições, e "apague" o último elemento do Heap.

Trocado!

Como ficou o Heap

- Precisamos ser um Heap Binário (terceira regra)
 - Cada nó filho é menor que seu nó pai (ou o nó pai é maior que seus nós filhos).

- Precisamos ser um Heap Binário (terceira regra)
 - Cada nó filho é menor que seu nó pai (ou o nó pai é maior que seus nós filhos).

- Precisamos ser um Heap Binário (terceira regra)
 - Cada nó filho é menor que seu nó pai (ou o nó pai é maior que seus nós filhos).

- Temos no array...
- Troque o primeiro elemento e o último elemento de posições, e "apague" o último elemento do Heap.

- Temos no array...
- Troque o primeiro elemento e o último elemento de posições, e "apague" o último elemento do Heap.

Temos no Heap

- Precisamos ser um Heap Binário (terceira regra)
 - Cada nó filho é menor que seu nó pai (ou o nó pai é maior que seus nós filhos).

- Precisamos ser um Heap Binário (terceira regra)
 - Cada nó filho é menor que seu nó pai (ou o nó pai é maior que seus nós filhos).

- Temos no array...
- Troque o primeiro elemento e o último elemento de posições, e "apague" o último elemento do Heap.

- Temos no array...
- Troque o primeiro elemento e o último elemento de posições, e "apague" o último elemento do Heap.

Temos no array

- Precisamos ser um Heap Binário (terceira regra)
 - Cada nó filho é menor que seu nó pai (ou o nó pai é maior que seus nós filhos).

- Precisamos ser um Heap Binário (terceira regra)
 - Cada nó filho é menor que seu nó pai (ou o nó pai é maior que seus nós filhos).

Heap Binário!

- Temos no array...
- Troque o primeiro elemento e o último elemento de posições, e "apague" o último elemento do Heap.

- Temos no array...
- Troque o primeiro elemento e o último elemento de posições, e "apague" o último elemento do Heap.

Temos no array

- Precisamos ser um Heap Binário (terceira regra)
 - Cada nó filho é menor que seu nó pai (ou o nó pai é maior que seus nós filhos).

- Precisamos ser um Heap Binário (terceira regra)
 - Cada nó filho **é menor que seu nó pai** (ou o nó pai é maior que seus nós filhos).

Heap Binário!

- Temos no array...
- Troque o primeiro elemento e o último elemento de posições, e "apague" o último elemento do Heap.

- Temos no array...
- Troque o primeiro elemento e o último elemento de posições, e "apague" o último elemento do Heap.

- O algoritmo termina quando há só um elemento no Heap.
- O array está ordenado!

Heap Sort: Análise

- Complexidade: O(nLogn) em todos os casos
- Vantagens:
 - Espaço: Não necessita de vetor auxiliar para a ordenação;
- Desvantagem:
 - Na prática, Quicksort e Mergesort são melhores que ele;

Análise

fonte

Average Quicksort $\Omega(n \log(n))$ Θ(n log(n)) O(n^2) É importante Mergesort $\Omega(n \log(n))$ $\Theta(n \log(n))$ O(n log(n)) termos noção Timsort $\Omega(n)$ $\Theta(n \log(n))$ O(n log(n)) da complexidade Heapsort $\Omega(n \log(n))$ Θ(n log(n)) O(n log(n)) dos diversos Bubble Sort Θ(n^2) O(n^2) $\Omega(n)$ Algoritmos e Insertion Sort $\Omega(n)$ Θ(n^2) O(n^2) Selection Sort suas Ω(n^2) Θ(n^2) O(n^2) particularidades. Tree Sort Θ(n log(n)) $0(n^2)$ $\Omega(n \log(n))$ Shell Sort Θ(n(log(n))^2) O(n(log(n))^2) $\Omega(n \log(n))$ **Bucket Sort** O(n^2) $\Omega(n+k)$ $\Theta(n+k)$ Radix Sort $\Omega(nk)$ Θ(nk) O(nk)

 $\Omega(n+k)$

 $\Omega(n)$

 $\Theta(n+k)$

 $\Theta(n \log(n))$

Time Complexity

Best

Space Complexity

O(log(n))

0(n)

0(n)

0(1)

0(1)

0(1)

0(1)

0(n)

0(1)

O(n)

O(n+k)

O(k)

O(n)

Worst

Worst

O(n+k)

0(n log(n))

Algorithm

Counting Sort

Cubesort

Análise

Elements

Estabilidade de um Algoritmo

- Algebricamente
 - Um algoritmo é dito estável se: $i < j \in A[i] \equiv B[j] \rightarrow \pi[i] < \pi[j]$, onde π é a permutação de ordenação;
- Possível tradução
 - Elementos equivalentes mantém suas posições relativas após ordenação.

Estabilidade de um Algoritmo

BEFORE		
Name	Grade	
Dave	С	
Earl	В	
Fabian	В	
Gill	В	
Greg	Α	
Harry	Α	

BEFORE		
Name	Grade	
Dave	С	Instável
Earl	В	mstaver
Fabian	В	
Gill	В	
Greg	Α	
Harry	Α	

Estabilidade de um Algoritmo

- Estáveis por natureza: MergeSort, BubbleSort, InsertionSort
- Instáveis: Heapsort, Quicksort (mas podem ter implementações estáveis)

In Place

- Um algoritmo é dito "In-place" quando não é usado espaço extra para sua execução.
 - Obs: Pequena tolerância: Espaço para constantes de controle pode ser utilizados sem violar a característica In-place.

