Google action prediction

LetsGo agency

Aujourd'hui, est-il possible de prédire la valeur de l'action chez Google dans le futur avec des réseaux de neurones récurrents de type LSTM?

Pourquoi doit-on le faire?

Qu'est-ce qu'un RNN de type LSTM?

Notre équipe de développeurs en IA, spécialisés sur les TimeSeries en parlent!

Sommaire

101 Les Times Series : Qesako ?

Notre projet

03 Le Team Works!

04 Business model

Explication sur les times series

des séquences de points de données, collectés à intervalles réguliers sur une période de temps.

> Des calculs puissants pour horodater en années, mois, jours, voire en heures jusqu'aux millisecondes!

Une base de données optimisée pour être étudiée en mesurant les changements au fil du temps, en proposant des fonctionnalités de gestion du cycle de vie des données, d'agrégation (summarization), et permettre de scanner de larges rangées d'enregistrements.

Grâce à ces données il est possible de prédire un événement qui n'a pas encore eu lieu

Focus sur le RNN & LSTM

Time Series

Focus sur le RNN & LSTM

LSTM

(opérateur d'oubli d'informations)

(opérateur d'ajout d'informations)

C_{t-1}: mémoire à l'instant t-1 C₊: mémoire à l'instant t

 $egin{aligned} h_{t-1} &: \text{entrée de la couche cachée à l'instant t-1} \\ h_t &: \text{entrée de la couche cachée à l'instant t} \end{aligned}$

x. : entrée de la cellule

σ (fonction sigmoïde) et tanh sont des fonctions d'activation utilisés traditionnellement dans les réseaux de neurones

Fonctionnement des LSTM

Mise à jour de la mémoire C_t (en fonction de la mémoire C_{t-1} et de l'oubli et de l'ajout)

(sortie de la couche cachée)

Projet RNN - LSTM

étude des données disponibles

Le Preprocessing

Différents tests effectués

Projet RNN - LSTM

L'étude de la données disponibles

	Open	High	Low	Close	Volume
Date					
2012-01-03	325.25	332.83	324.97	663.59	7,380,500
2012-01-04	331.27	333.87	329.08	666.45	5,749,400
2012-01-05	329.83	330.75	326.89	657.21	6,590,300
2012-01-06	328.34	328.77	323.68	648.24	5,405,900
2012-01-09	322.04	322.29	309.46	620.76	11,688,800
2012-01-10	313.70	315.72	307.30	621.43	8,824,000
2012-01-11	310.59	313.52	309.40	624.25	4,817,800
2012-01-12	314.43	315.26	312.08	627.92	3,764,400
2012-01-13	311.96	312.30	309.37	623.28	4,631,800
2012-01-17	314.81	314.81	311.67	626.86	3,832,800

- Pas de valeurs manquantes
- Replacement/Suppression des virgules de "Volume"
- La colonne "Date" devient notre index

Etudes des variables / cibles

Projet RNN - LSTM

Evolution de Open d'après tous le jeu de données

Composition de open

Le preprocessing - Approche univariée

Suppressions des colonnes inutiles, garder uniquement la colonne à prédire (Open)

Normaliser les données pour un traitement plus efficace de notre modèle

Création de séquences pour l'entraînement du modèle

Reshape des données afin d'avoir la bonne dimension (3D dans notre cas)

Initialisation et entraînement du modèle

Test du modèle : Preprocessing identique pour les données tests

Evaluation

Learning Curves

Projet RNN - LSTM

RMSE: 9.4

Prédiction de janvier 2017

Nous voyons visuellement que les tendances suivent la même évolution entre la réalité et la prédiction.

Amélioration du modèle

Automatisation des prédictions

Déploiement d'une application

Création d'un pôle R&D data

Team Works!

Possibilité vaste de sujets

Rester concurrentiel

La construction de notre équipe "parfaite"

Basée sur le projet Aristote et les travaux de recherche de Carnegie Mellon, du MIT et de l'Union College.

Adéquation des personnalités

Intelligence collective et émotionnelle

Les principes

Sécurité psychologique

Se sentir dans un espace de confiance avec son équipe

Fiabilité

Confiance partagée dans les objectifs à atteindre

Clarté

des structures, des rôles et des objectifs

Le sens

Le travail en équipe est important pour chacun

L'impact

L'équipe pense que sont travail compte et a un impact

Des questions?

letsgoagency@gmail.com www.google.com