

PLANO DE ENSINO

1. IDENTIFICAÇÃO:

CURSO: Bacharelado em Engenharia de Software	SEMESTRE/ANO: 2°/2024
COMPONENTE CURRICULAR: Sistemas Computacionais	c/h: 80
PROFESSOR(A): Francisco Javier De Obaldía Díaz	
E-MAIL: Francisco.diaz@p.ucb.br	

2. EMENTA

Ementa: Tecnologias da Informação e Comunicação no Ambiente Organizacional. Classificação dos Sistemas Computacionais. Tecnologias de Desenvolvimento de Sistemas. Gestão do Conhecimento. Representação de dados numéricos e base. Operações aritméticas envolvendo bases. Sistema de ponto flutuante e ponto fixo. Representação sinalizada e complemento a dois. Representação de dados não numéricos. Álgebra booleana. Noções básicas de arquitetura e organização de computadores.

3. CONTRIBUIÇÃO PARA A FORMAÇÃO DO EGRESSO

Levando-se em consideração a flexibilidade necessária para atender domínios diversificados de aplicação e as vocações institucionais, espera-se dos egressos dos cursos de Engenharia de Software que:

- 1. Possuam sólida formação em Ciência da Computação, Matemática e Produção, visando a criação de sistemas de software de alta qualidade de maneira sistemática, controlada, eficaz e eficiente que levem em consideração questões éticas, sociais, legais e econômicas;
- 2. Sejam capazes de criar soluções, individualmente ou em equipe, para problemas complexos caracterizados por relações entre domínios de conhecimento e de aplicação;
- 3. Sejam capazes de agir de forma reflexiva na construção de software, compreendendo o seu impacto direto ou indireto sobre as pessoas e a sociedade;
- 4. Entendam o contexto social no qual a construção de Software é praticada, bem como os efeitos dos projetos de software na sociedade;
- 5. Compreendam os aspectos econômicos e financeiros, associados a novos produtos e organizações;
- 6. Reconheçam o caráter fundamental da inovação e da criatividade e compreendam as perspectivas de negócios e oportunidades relevantes.

4. COMPETÊNCIAS E HABILIDADES

De acordo com a RESOLUÇÃO Nº 5, DE 16 DE NOVEMBRO DE 2016, o curso de bacharelado em Engenharia de Software provê uma formação profissional que revela as habilidades e competências para:

- 1. Investigar, compreender e estruturar as características de domínios de aplicação em diversos contextos que levem em consideração questões éticas, sociais, legais e econômicas, individualmente e/ou em equipe;
- 2. Compreender e aplicar processos, técnicas e procedimentos de construção, evolução e avaliação de software;
- 3. Analisar e selecionar tecnologias adequadas para a construção de software;
- 4. Conhecer os direitos e propriedades intelectuais inerentes à produção e utilização de software;
- 5. Avaliar a qualidade de sistemas de software;

- 6. Integrar sistemas de software;
- 7. Gerenciar projetos de software conciliando objetivos conflitantes, com limitações de custos, tempo e com análise de riscos;
- 8. Aplicar adequadamente normas técnicas;
- 9. Qualificar e quantificar seu trabalho baseado em experiências e experimentos;
- 10. Exercer múltiplas atividades relacionadas a software como: desenvolvimento, evolução, consultoria, negociação, ensino e pesquisa;
- 11. Conceber, aplicar e validar princípios, padrões e boas práticas no desenvolvimento de software;
- 12. Analisar e criar modelos relacionados ao desenvolvimento de software;
- 13. Identificar novas oportunidades de negócios e desenvolver soluções inovadoras;
- 14. Identificar e analisar problemas avaliando as necessidades dos clientes, especificar os requisitos de software, projetar, desenvolver, implementar, verificar e documentar soluções de software baseadas no conhecimento apropriado de teorias, modelos e técnicas.

5. CONTEÚDO

- Conversão de Bases e Aritmética Computacional: Notação Posicional, bases decimal, binária, octal e hexadecimal. Conversão entre bases numéricas binária, octal e hexadecimal
- Representação de Dados e Informações: Bit, Byte, Palavra. Representação de dados e instruções. Tipos numéricos, caracteres e lógicos tipos numéricos inteiros, sinalização por complemento, ponto fixo e ponto flutuante.
- Portas lógicas e Álgebra Booleana: Portas lógicas e operações booleanas; Teorema de De Morgan.
 Universalidade das portas NAND e NOR. Circuitos lógicos e expressões booleanas; Circuitos integrados.
- Circuitos Lógicos Combinacionais: Simplificação das expressões booleanas utilizando Teoremas booleanos e Mapa de Karnaugh. Codificadores e decodificadores. Somadores e subtratores. Multiplexadores e Demultiplexadores
- Circuitos Lógicos Sequenciais: Latch, Flip-Flops. Registradores. Contadores
- Arquitetura e organização de computadores: Noções Básicas

PROGRAMA PROTAGONISMO DISCENTE - PPD

O Programa Protagonismo Discente é uma ação transversal e multidisciplinar da UCB. O foco desta estratégia pedagógica é incentivar uma postura ativa do corpo discente em sua formação continuada, com aprimoramento de conteúdos contemporâneos de formação geral e específica.

Trata-se de um percurso autoinstrucional trilhado no Ambiente Virtual de Aprendizagem (AVA). As atividades desenvolvidas no PPD compõem 10% da média (1,0 ponto) de todas as unidades curriculares (disciplinas) da graduação, com exceção do(s) Estágio(s) Curricular(es) e Trabalho de Conclusão de Curso (TCC).

Cronograma Semestral:

Período Atividade		
26/08	Início do PPD	
26/08 a 16/09	Leitura e realização do Ponto de Interação 1	
17/09 a 08/10	Leitura e realização do Ponto de Interação 2	
09/10 a 30/10	Leitura e realização do Ponto de Interação 3	
31/10 a 21/11	Leitura e realização do Ponto de Interação 4	
21/11	Encerramento PPD	

7. AVALIAÇÃO

A média (M) desta unidade curricular será obtida da seguinte forma:

Onde:

M = N1 + N2 + PPD + PE

N1 = Nota do primeiro bimestre (4,5 pontos)

N2 = Nota do segundo bimestre (4,5 pontos)

PPD = Programa Protagonismo Discente (1,0 ponto)

PE = Prova Unificada da UBEC - Ponto Extra

A composição das notas bimestrais (N1 e N2) e PPD são descritas no Quadro a seguir:

	Ponderação	Composição das Notas
N1	45%	Avaliação individual (Prova teórica ou prática) / Atividade(s) individual com entrega e/ou apresentação
		Atividade(s) em equipe composta pela entrega e/ou apresentação
N2	45%	Avaliação individual (Prova teórica ou prática) / Atividade(s) individual com entrega e/ou apresentação
		Atividade(s) em equipe composta pela entrega e/ou apresentação

PPD	10%	Percurso Formativo Autoinstrucional (AVA)
PE	10% Extra	Prova Unificada da UBEC – Ponto Extra O estudante que realizar a Prova Unificada obterá até um ponto extra na composição da sua nota. A nota será agregada à média ANTES da recuperação final.

Considerando que:

- O aproveitamento final dos estudantes nas atividades avaliativas é expresso em escala numérica de 0 (zero) a 10 (dez), com intervalos de 0,1 (um décimo);
- A nota mínima para aprovação é 7 (sete) e a frequência mínima de 75%.

Os seguintes casos podem ocorrer:

Média ≥ 7,0..... APROVADO

Média < 7,0.....AVALIAÇÃO SUBSTITUTIVA (N3)

Assim, o discente que não obtiver média (M) igual ou superior a 7 (sete) terá direito à Avaliação Substitutiva (N3), que substituirá a menor nota bimestral, conforme exemplificado abaixo:

M = N3 + N2 + PPD

ou

M = N1 + N3 + PPD

A Avaliação Substitutiva (N3) vale 4,5 (quatro pontos e meio) e abrange todo o conteúdo programático e atividades desenvolvidas no semestre. Esta não se aplica ao PPD.

8. PONTUAÇÃO EXTRA

O estudante que participar do Exame Unificado do Grupo UBEC poderá ser atribuído até 1,0 (um) ponto extra na média (M) desta unidade curricular.

O referido exame será aplicado presencialmente no dia 24 de outubro, no turno da disciplina. Este é composto por questões objetivas de formação geral e de formação básica e específica.

9. BIBLIOGRAFIA:

BÁSICA:

- 1. Recuero, Raquel; A conversação em rede : comunicação mediada pelo computador / RaquelRecuero. Porto Alegre, RS : Sulina, c2012.
- 2. Weber, Raul Fernando. Fundamentos de arquitetura de computadores. 4. ed. Porto Alegre, RS :Bookman, 2012.
- 3. Lima, Paulo Marco Ferreira. Crimes de computador e segurança computacional. 2. ed. São Paulo, SP: Atlas, 2011

COMPLEMENTAR:

- 1. STALLINGS, William; Arquitetura e Organização de Computadores. 8. ed. São Paulo,SP: Pearson Education do Brasil, 2013. 624 p.
- 2. TANENBAUM, Andrew S. Organização estruturada de computadores. 6. ed. São Paulo, SP: Pearson Prentice Hall, 2013, 605 p.
- 3. WEBER, Raul Fernando. Arquitetura de computadores pessoais. 2. ed. Porto Alegre, RS: Editora Sagra Luzzatto, 2003. 271 p.
- 4. WEBER, Raul Fernando. Fundamentos de Arquitetura de Computadores. 3. ed. Porto Alegre, RS: Editora Sagra Luzzatto, 2004. 306 p.
- 5. MONTEIRO, Mário A. Introdução à Organização de Computadores. 4 ed. LTC, 2002

ACERVO DIGITAL:

Livro que se encontra na Biblioteca Online UCB: MONTEIRO, Mário A. Introdução à Organização de Computadores

10. OBSERVAÇÕES

Importante:

- O plano de ensino é flexível e pode sofrer alterações ao longo do semestre, desde que acordadas antecipadamente com os estudantes.
- A descrição das atividades e metodologias está descrita no PLANO DE TRABALHO SEMESTRAL.

	Plano de Trabalho Semestral							
Aula	Data	Conteúdo e Objetivos de Aprendizagem	Pré-aula	Aula	Pós-aula	Evidência		
1.	12/08	Apresentação do Plano de Ensino.	Pesquisas em sites e acervo digital da universidade.	Exposição do plano de ensino dando destaque às habilidades e competências que serão desenvolvidas.	Memória de aula	Avaliação de aprendizagem para a prova presencial 01.		
2.	19/08	Sistemas de numeração.	Pesquisas em sites e acervo digital da universidade.	Importância da base binária para a computação. Conversão entre bases.	Resumo das aulas	Avaliação de aprendizagem para a prova presencial 01.		
3.	26/08	Bases numéricas para a computação: bases octal e hexadecimal.	Pesquisas em sites e acervo digital da universidade.	Relação entre as bases binária, octal e hexadecimal. Conversão entre bases.	Memória de aula	Avaliação de aprendizagem para a prova presencial 01.		
4.	02/09	Conversão entre bases tendo referência a base binária.	Pesquisas em sites e acervo digital da universidade.	Exemplos e exercícios de aplicação dos sistemas de bases.	Resumo das aulas	Avaliação de aprendizagem para a prova presencial 01.		
5.	09/09	Representação de dados numéricos, lógicos e caracteres. Aritmética binária com representação em complemento a dois.	Pesquisas em sites e acervo digital da universidade.	Apresentação das codificações para representação de caracteres – Tabela ASCII. Exemplos e exercícios de álgebra binária a partir da representação por complemento a dois.	Resumo das aulas	Avaliação de aprendizagem para a prova presencial 01.		
6.	16/09	Primeira Avaliação	Estudo de todo o conteúdo: anotações, slides, livros, acervo digital.	Envolve o conteúdo estudado até a aula anterior.		Prova valendo 2 pontos		

7.	23/09	Aritmética binária	Pesquisas em sites e acervo	Exemplos e exercícios de	Resumo das aulas	Avaliação de
		com representação	digital da universidade.	álgebra binária a partir da		aprendizagem
		em complemento a		representação por		para a prova
		dois		complemento a dois.		presencial 01.
8.	30/09	Aplicações das	Pesquisas em sites e acervo	Solução de problemas de	Resumo das aulas	Avaliação de
		bases na ciência da	digital da universidade.	conversão entre bases		aprendizagem
		computação.		numéricas aplicados na		para a prova
				ciência da computação.		presencial 02.
9.	07/10	Introdução à	Pesquisas em sites e acervo	Apresentação da álgebra	Resumo das aulas	Avaliação de
		álgebra booleana e	digital da universidade.	booleana e discussão, por		aprendizagem
		portas lógicas das		meio de exemplos, de		para a prova
		operações AND, OR,		circuitos lógicos		presencial 02.
		NOT e XOR.		construídos a partir das		
				portas AND, OR e NOT.		
10.	21/10	Álgebra booleana e	Pesquisas em sites e acervo	Álgebra booleana e	Resumo das aulas	Avaliação de
		portas lógicas das	digital da universidade.	discussão, por meio de		aprendizagem
		operações AND, OR,		exemplos, de circuitos		para a prova
		NOT e XOR.		lógicos construídos a partir		presencial 02.
				das portas AND, OR e NOT.		
11.	28/10	Segunda Avaliação	Estudo de todo o conteúdo:	Envolve o conteúdo		Prova valendo 3
			anotações, slides, livros,	estudado até a aula		pontos
			acervo digital.	anterior.		
12.	04/11	Postulados e	Pesquisas em sites e acervo	postulados e propriedades	Resumo das aulas	Avaliação de
		propriedades da	digital da universidade.	da lógica booleana e dos		aprendizagem
		lógica booleana,		teoremas de De Morgan.		para a prova
		teoremas de De		Exemplos e aplicação de		presencial 02.
		Morgan e		exercícios de simplificação		
		universalidade das		de circuitos lógicos pelo		
		portas NAND e		Mapa de Karnaugh.		
		NOR. implificação				
		de circuitos lógicos				
		pelo Mapa de				

		Karnaugh. Circuitos lógicos combinacionais e sequenciais.				
13.	11/11	Simplificação de circuitos lógicos pelo Mapa de Karnaugh. Circuitos lógicos combinacionais e sequenciais.	Pesquisas em sites e acervo digital da universidade.	Exemplos e aplicação de exercícios de simplificação de circuitos lógicos pelo Mapa de Karnaugh.	Resumo das aulas	Avaliação de aprendizagem para a prova presencial 02.
14.	18/11	Continuação Simplificação de circuitos lógicos pelo Mapa de Karnaugh. Circuitos lógicos combinacionais e sequenciais.	Pesquisas em sites e acervo digital da universidade.	Exemplos e aplicação de exercícios de simplificação de circuitos lógicos pelo Mapa de Karnaugh.	Resumo das aulas	Avaliação de aprendizagem para a prova presencial 02.
15.	25/11	Continuação Simplificação de circuitos lógicos pelo Mapa de Karnaugh. Circuitos lógicos combinacionais e sequenciais.	Pesquisas em sites e acervo digital da universidade.	Exemplos e aplicação de exercícios de simplificação de circuitos lógicos pelo Mapa de Karnaugh.	Resumo das aulas	Avaliação de aprendizagem para a prova presencial 02.
16.	02/12	Terceira avaliação presencial 03	Estudo de todo o conteúdo: anotações, slides, livros, acervo digital.	Envolve o conteúdo estudado até a aula anterior.	Não há	Prova valendo 3 pontos

17.	09/12	Prova de	Estudo de todo o conteúdo:	Envolve o conteúdo de	Não há	Prova valendo 10
		Recuperação	anotações, slides, livros, acervo digital.	todo o semestre.		pontos
		Aula Síntese e divulgação de resultados.		Análise crítica verbal sobre os temas.	Reflexão com os estudantes sobre o aprendizado na disciplina	Reflexão com os estudante sobre o aprendizado da disciplina