Examen terminal du 16 mai 2023 Partie Structures algébriques

Barême indicatif: Str. alg. I. 4,5 pts; Str. alg. II. 3 pts; Str. alg. III. 2,5 pts.

Exercice 1. Str. alg. I.

Soit (G,*) un groupe.

Partie A.-

- 1. Soit H un sous-groupe de G. Sous quelle condition dit-on que H est un sous-groupe distingué de G?
- 2. Supposons que H est un sous-groupe distingué de G. Préciser la loi sur l'ensemble quotient G/H qui munit G/H d'une structure de groupe.
- 3. Montrer que cette loi est bien définie.
- 4. Quel est l'élément neutre du groupe quotient G/H?

Partie B.- Soit G le groupe S_4 des permutations de l'ensemble $\{1, 2, 3, 4\}$. On admettra que $H = \{id, (12)(34), (13)(24), (14)(23)\}$ forme un sous-groupe distingué de G à 4 éléments.

- 1. Quel est l'indice de H dans $G = S_4$?
- 2. Est-ce que le quotient G/H est isomorphe à $\mathbb{Z}/6\mathbb{Z}$? Justifier votre réponse.
- 3. Donner la partition de S_4 induite par les classes à gauche suivant le sous-groupe H.
- 4. Trouver un élément σ de S_4 tel que l'ordre de σ dans G soit différent de l'ordre de $\sigma \circ H$ dans G/H.

Exercice 2. Str. alg. II.

Partie A.- Soient I et J des idéaux d'un anneau commutatif $R, +, \cdot$. Soit $I + J = \{x + y \mid x \in I, y \in J\}$.

- 1. Montrer que I + J est un sous-anneau de R.
- 2. Montrer que I + J est un idéal de R.

Partie B.- Soit R l'anneau \mathbb{Z} .

- 1. Soient I = (4) et J = (6). Trouver un élément $a \in \mathbb{Z}$ tel que I + J = (a).
- 2. Soient $a_1, a_2, \ldots, a_n \in \mathbb{Z}$. Rappeler l'identité de Bezout pour a_1, a_2, \ldots, a_n .
- 3. Montrer que l'idéal (a_1, a_2, \ldots, a_n) est principal. Justifier votre réponse.

Exercice 3. Str. alg. III.

- 1. Montrer que $x^2 + x + 1$ est un polynôme irréductible dans $\mathbb{F}_5[x]$.
- 2. Justifier pourquoi $K=\mathbb{F}_5[x]/(x^2+x+1)$ est un corps à 25 éléments. Lister ses éléments.
- 3. Soit α la classe de x dans K et β la classe de 3x+1 dans K. Déterminer le produit $\alpha \cdot \beta$ dans K. Trouver un représentant de $\alpha \cdot \beta$ de degré au plus 1.