Evolution Strategies (ES)

Dr. Suyanto, S.T., M.Sc. HP/WA: 0812 845 12345

Intelligence Computing Multimedia (ICM)
Informatics faculty – Telkom University

How the predators catch a prey?

Intro

- ES diperkenalkan pertama kali oleh Ingo Rechenberg di Jerman pada era 1970-an.
- Ide-ide pada ES sangat mirip dengan GA. Tetapi, Ingo Rechenberg mengembangkan ES secara terpisah dari GA.
- Berbeda dengan GA yang bisa menghasilkan perubahan signifikan, ES justru berbasis pada prinsip sebab akibat: "Perubahan kecil menghasilkan efek-efek yang kecil juga".
- ES sering digunakan untuk eksperimen-eksperimen empiris, khususnya permasalahan optimasi numerik.
- Kecepatan proses ES lebih baik dibandingkan dengan GA untuk masalah optimasi bernilai real.

Intro

- Awalnya, ES menggunakan populasi yang hanya beranggotakan satu kromosom dan hanya menggunakan mutasi (tanpa rekombinasi) untuk menghasilkan satu anak.
- Jika anak yang dihasilkan lebih baik, maka anak tsb. menggantikan orangtuanya pada generasi berikutnya.
- Jadi, pada setiap generasi, populasi tetap beranggotakan hanya satu kromosom.

Spesifikasi teknis ES

Representasi	Vektor bernilai real
Seleksi orangtua	Uniform random
Rekombinasi	Discrete atau Intermediary
Mutasi	Gaussian perturbation
Seleksi survivor	(μ,λ) atau (μ+λ)
Ciri khusus	Self-adaptation pada mutation step sizes

Pseudo-code ES

$$t = 0$$

Inisialisasi populasi: satu kromosom $x^t = x_1^t,...,x_n^t$

LOOP sampai kondisi berhenti dipenuhi

Ambil z_i secara acak dari distribusi normal untuk i = 1, ..., n

$$y_i^t = x_i^t + z_i$$

IF
$$f(y^t) > f(x^t)$$
 THEN $x^{t+1} = y^t$ **ELSE** $x^{t+1} = x^t$

$$t = t + 1$$

END LOOP

Pseudo-code ES

- Pada *pseudo-code* di atas, nilai-nilai z diambil secara acak dari distribusi normal $N(\xi, \sigma)$
- Nilai rata-rata ξ dibuat sama dengan o dan variansi σ disebut sebagai *mutation step size*
- σ dibuat bervariasi menggunakan aturan yang disebut "1/5 success rule". Aturan ini melakukan proses perubahan σ pada setiap periode iterasi tertentu (misal k iterasi) menggunakan rumus:

$$\sigma = \frac{\sigma}{c} \quad \text{jika } p_s > 1/5$$

$$\sigma = \sigma c \quad \text{jika } p_s < 1/5$$

$$\sigma = \sigma \quad \text{jika } p_s = 1/5$$

Jika sukses > 20%, maka σ dinaikkan. Sukses = solusi saat ini lebih baik dari solusi sebelumnya.

 p_s = prosentase dari mutasi yang sukses.

c = konstanta dengan batasan $0.8 \le c \le 1$.

Distribusi normal

$$f(\vec{x}) = \sum_{i=0}^{D-1} \left(e^{-0.2} \sqrt{x_{i-1}^2 + x_i^2} + 3(\cos(2x_{i-1}) + \sin(2x_i)) \right)$$

Representasi Individu

- Variabel objek: $x_1, ..., x_n$
- Parameter-parameter strategi:
 - Mutation step sizes: $\sigma_1,...,\sigma_n$
 - Sudut-sudut rotasi: $\alpha_1, ..., \alpha_k$

Kromosom

$$\langle x_1,...,x_n,\sigma_1,...\sigma_n,\alpha_1,...,\alpha_k \rangle$$

- dimana k = n(n-1)/2 merupakan jumlah kombinasi pasangan i dan j dari n yang ada.
- Variabel objek mengkodekan nilai-nilai real secara langsung tanpa konversi.

Kromosom

Seleksi Orangtua

- Kalau di GA, kita bisa menggunakan salah satu dari berbagai macam metode seleksi yang ada.
- Pada ES, proses seleksi orangtua dilakukan secara tidak bias.
- Artinya, setiap kromosom bisa terpilih sebagai orangtua dengan probabilitas yang sama.
- Caranya adalah dengan menggunakan distribusi *uniform*.

Rekombinasi

	Dua orangtua tetap	Dua orangtua yang berubah-ubah untuk setiap gen ke- <i>i</i>
$z_i = (x_i + y_i) / 2$	intermediary lokal	intermediary global
$z_i = x_i$ atau y_i yang dipilih secara acak	discrete lokal	discrete global

Intermediary: z antara x dan y

discrete: z dipilih acak dari x atau y

Lokal: gen didapat dari ortu yg tetap

Global: gen didapat dari ortu yg berbeda2

Mutasi

- Sangat penting untuk menemukan solusi.
- Mengubah nilai gen dengan menambahkan bilangan random (distribusi normal).
- Dalam notasi matematika, suatu gen x_i dimutasi menggunakan rumus

$$x_i' = x_i + N(0, \sigma)$$

Mutasi

- Mutation step sizes σ adalah bagian dari kromosom dan σ juga dimutasi menjadi σ .
- Mutation step sizes σ ber-evolusi secara bersama-sama (co-evolution) dengan variabel objektif x.
- Hal ini disebut sebagai Net Mutation Effect yang dituliskan sebagai

$$\langle x, \sigma \rangle \rightarrow \langle x', \sigma' \rangle$$

Mutasi

- Urutan mutasi merupakan hal yang sangat penting.
- Mutasi σ harus lebih dulu daripada x.
- Alasannya adalah $\langle x', \sigma' \rangle$ dievaluasi dua kali, yaitu:
 - **Primer**: x' adalah bagus jika f(x') bagus.
 - **Sekunder**: σ' adalah bagus jika x' bagus.
- Jika urutannya dibalik, ES tidak bisa bekerja dengan baik untuk menemukan solusi.

Kromosom

Bagaimana terjadinya mutasi?

- ullet Mutasi tanpa Korelasi menggunakan satu σ
- Mutasi tanpa Korelasi menggunakan σ sebanyak n
- Mutasi dengan Korelasi

Mutasi tanpa Korelasi menggunakan satu σ

- Metode ini hanya menggunakan satu nilai σ untuk memutasi semua genyang ada di dalam kromosom.
- Oleh karena itu, suatu kromosom direpresentasikan sebagai

$$\langle x_1,...,x_n,\sigma\rangle$$

• Mutasi σ dan x diperoleh dengan menggunakan rumus sebagai berikut:

$$\sigma' = \sigma \cdot \exp(\tau \cdot N(0,1))$$
$$x'_{i} = x_{i} + \sigma' \cdot N(0,1)$$

- dimana τ berfungsi seperti laju belajar (*learning rate*) dan biasanya τ diset mendekati $\frac{1}{\sqrt{n}}$.
- Tentu saja kita bisa menggunakan suatu aturan untuk membatasi nilai σ' pada suatu nilai tertentu, misalnya ε_0 . Jadi, jika $\sigma' < \varepsilon_0$ maka $\sigma' = \varepsilon_0$.

Mutasi tanpa Korelasi menggunakan σ sebanyak n

Suatu kromosom direpresentasikan sebagai

$$\langle x_1,...,x_n,\sigma_1,...,\sigma_n \rangle$$

• Mutasi σ dan x diperoleh dengan menggunakan rumus

$$\sigma_i' = \sigma_i \cdot \exp(\eta . N(0,1) + \tau . N_i(0,1))$$

$$x_i' = x_i + \sigma_i' . N_i(0,1)$$

- η adalah *learning rate* untuk semua gen (Biasanya diset $\frac{1}{\sqrt{2n}}$).
- τ adalah *learning rate* untuk setiap posisi gen $(\frac{1}{(2n)^{1/4}})$.

- Metode ini selain menggunakan nilai σ sebanyak n yang masing-masing secara berurutan digunakan untuk memutasi gen-gen yang ada di dalam kromosom, juga menggunakan sudut-sudut rotasi α sebanyak k.
- Dimana k = n(n-1)/2 adalah jumlah kombinasi pasangan i dan j dari n yang ada.
- Oleh karena itu, suatu kromosom direpresentasikan sebagai

$$\langle x_1,...,x_n,\sigma_1,...,\sigma_n,\alpha_1,...,\alpha_k \rangle$$

Covariance matrix C didefinisikan sebagai

$$c_{ii} = \sigma_i^2$$

 $c_{ij} = 0$ jika *i* dan *j* tidak berkorelasi

$$c_{ji} = \frac{1}{2} \left(\sigma_i^2 - \sigma_j^2 \right) \tan \left(2\alpha_{ij} \right)$$
jika *i* dan *j* berkorelasi

• Mutasi σ , α , dan x diperoleh dengan menggunakan rumus sebagai berikut:

$$\sigma_{i}^{'} = \sigma_{i}.\exp(\eta.N(0,1) + \tau.N_{i}(0,1))$$

$$\alpha_{j}^{'} = \alpha_{j} + \beta.N(0,1)$$

$$x' = x + N(0,C')$$

- x adalah vektor variabel objektif $\langle x_1,...,x_n \rangle$
- Sedangkan C adalah matriks kovarian yang dihitung setelah mutasi sudut-sudut rotasi α .
- β adalah perubahan sudut yang biasanya berkisar 5°.
- Jika $|\alpha_j| > \pi$, maka $\alpha_j = \alpha_j 2\pi \operatorname{sign}(\alpha_j)$.

• η adalah *learning rate* untuk semua gen. Biasanya diset mendekati

$$\frac{1}{\sqrt{2n}}$$

• au adalah *learning rate* untuk setiap posisi gen. Biasanya diset mendekati

$$\frac{1}{(2n)^{1/4}}$$

Mutasi tanpa Korelasi menggunakan satu σ

Mutasi tanpa Korelasi menggunakan $n \sigma$

Mutasi dengan Korelasi

•

Global maximum

Generasi 1

Global maximum

Generasi 2

Global maximum

Generasi 10

Mutasi dengan Korelasi Populasi = 1

Mutasi dengan Korelasi Populasi = 1

Global maximum

Global maximum

2 parent dan 14 anak hasil mutasi

Rekombinasi

	Dua orangtua tetap	Dua orangtua yang berubah-ubah untuk setiap gen ke- <i>i</i>
$z_i = (x_i + y_i) / 2$	intermediary lokal	intermediary global
$z_i = x_i$ atau y_i yang dipilih secara acak	discrete lokal	discrete global

Intermediary: z antara x dan y

discrete: z dipilih acak dari x atau y

Lokal: gen didapat dari ortu yg tetap

Global: gen didapat dari ortu yg berbeda2

Seleksi Survivor

- Misalkan jumlah kromosom dalam populasi adalah μ.
- Proses rekombinasi dan mutasi menghasilkan sejumlah kromosom anak, misalnya λ .
- Pada ES, seleksi *survivor* dilakukan secara deterministik dengan cara memilih sejumlah μ kromosom yang memiliki *fitness* paling tinggi.
- Proses pemilihan tersebut bisa dilakukan pada kromosom **anak** saja yang sering disebut sebagai (μ,λ) -selection.
- Atau dilakukan pada gabungan kromosom orangtua dan kromosom anak yang sering disebut sebagai (μ+λ)-selection.

Seleksi Survivor

- Metode $(\mu+\lambda)$ -selection bisa mempertahankan kromosom terbaik, sedangkan metode (μ,λ) -selection tidak bisa.
- Tetapi, metode (μ,λ) -selection lebih sering digunakan karena tiga alasan:
 - lebih baik dalam menghindari optimum lokal;
 - lebih baik untuk permasalahan dengan nilai optimum yang berubah-ubah;
 - bisa menghindari adanya nilai σ yang buruk tetapi bertahan hidup terlalu lama di dalam kromosom ketika x sangat dekat dengan solusi (fit).

Seleksi Survivor

- Berbeda dengan GA, pada ES selective pressure biasanya dibuat sangat tinggi, misalnya $\lambda = 7\mu$.
- Jika kita menggunakan metode (μ,λ) -selection, maka untuk $\lambda = 7\mu$ berarti kita harus memilih 1 dari 7 kromosom sebagai individu terbaik.
- Hal ini berarti terjadi kompetisi yang sangat ketat (selective).

- Kemampuan untuk mengikuti nilai optimum yang berubah-ubah dan kemampuan menentukan mutation step size σ secara adaptif.
- Misalkan terdapat suatu masalah optimasi fungsi yang nilai-nilai optimumnya sengaja dibuat berubah-ubah (moving optimum) pada periode sejumlah generasi tertentu, misalnya setiap 500 generasi.

- Pada gambar di atas, sekumpulan kotak kecil menyatakan individu/kromosom dalam populasi ES.
- Pada berbagai kasus, ES dapat segera menemukan nilai optimum.
- Sifat inilah yang disebut sebagai *self-adaptation*.

Untuk bisa memiliki sifat *self-adaptation*, ES harus memenuhi persyaratan berikut:

- μ > 1 untuk mendapatkan strategi-strategi yang berbeda,
- $\lambda > \mu$ untuk membangkitkan banyak anak (biasanya $\lambda \approx 7\mu$),
- (μ,λ) -selection untuk menghindari σ yang salah dalam beradaptasi,
- Saling menukarkan parameter-parameter strategi yang terdapat pada kromosom-kromosom menggunakan proses rekombinasi intermediary lokal atau global.

Proses Evolusi

μ,λ

Sejumlah μ orangtua menghasilkan sejumlah λ anak hanya menggunakan mutasi (tanpa rekombinasi). Pada proses evolusi jenis ini, seleksi survivor dilakukan hanya terhadap sejumlah λ anak (μ orangtua tidak diperhatikan). Seleksi survivor menghasilkan sejumlah μ individu terbaik yang akan akan hidup pada generasi berikutnya. Dengan demikian, jumlah individu dalam populasi selalu tetap, yaitu sejumlah μ .

• μ/r,λ

sama dengan μ,λ tetapi menggunakan rekombinasi (r).

Proses Evolusi

• μ+λ

Sejumlah μ orangtua menghasilkan sejumlah λ anak hanya menggunakan mutasi (tanpa rekombinasi). Seleksi survivor dilakukan terhadap gabungan **anak** dan **orangtua**: $\lambda + \mu$. Seleksi survivor menghasilkan sejumlah μ individu terbaik yang akan akan hidup pada generasi berikutnya. Dengan demikian, jumlah individu dalam populasi selalu tetap, yaitu sejumlah μ .

• $\mu/r+\lambda$

sama dengan $\mu+\lambda$ tetapi menggunakan rekombinasi (r).

Contoh Aplikasi ES

- Desain Jet Nozzle
- Desain Lensa
- Desain Jembatan
- Kotak Ajaib
- Optimasi swarming
- Optimasi Sistem Pipa
- Travelling Salesman Problem

Desain Jet Nozzle

[evonet.lri.fr/CIRCUS2/node.php?node=72]

Desain Lensa Optik

[www.bionik.tu-berlin.de/institut/xs2anima]

Desain Jembatan

[www.bionik.tu-berlin.de/institut/xs2anima]

Kotak Ajaib

[www.bionik.tu-berlin.de/institut/xs2anima]

Start Stop End

g 381

 Q^{0}

8 3,07E+00

The Magic 21x21-Square with the Magic Sum of 2006

Evolution of a Magic Square

Optimasi Swarming

[www.bionik.tu-berlin.de/institut/xs2anima]

Optimasi Sistem Pipa

[Michael Herdy, Giannino Patone, Technical Report TR-94-05, 1994]

The quality function (Fitness)

pressure at the i-th final node

Travelling Salesman Problem

[Michael Herdy, Giannino Patone, Technical Report TR-94-05, 1994]

- Representasi Kromosom?
- Permutasi → keluar dari pakem ES (umumnya real)
- Apa bedanya dengan GA?
- ES menggunakan mutation step size

Empat Operator Mutasi

123456789101112	Parents-Tour	
154326789101112	Inversion of the tour segment 2-3-4-5	
134526789101112	Insertion of town no.2 between no.5 and no.6	
167234589101112	Displacement of the tour segment 2-3-4-5	
1 5 3 4 2 6 7 8 9 10 11 12	Reciprocal Exchange of towns no.2 and no. 5	

Kesimpulan

- ES sangat poweful untuk permasalahan dengan bilangan real
- ES cenderung lebih cepat dibandingkan GA
- ES bisa memiliki sifat Self Adaptation

Daftar Pustaka

- [SUY08] Suyanto, 2008, Evolutionary Computation: Komputasi Berbasis "Evolusi" dan "Genetika", penerbit Informatika Bandung.
- evonet.lri.fr/CIRCUS2/node.php?node=72
- www.bionik.tu-berlin.de/institut/xs2anima
- Michael Herdy, Giannino Patone, Technical Report TR-94-05, 1994

Daftar Pustaka

- [EIBo3] Eiben, A.E. and Smith, J.E., 2003, "Introduction to Evolutionary Computing", Springer-Verlag Berlin Heidelberg.
- [ADNo7] Adnan Oktar, 2007, "Mekanisme Khayalan Teori Evolusi", <u>www.evolutiondeceit.com/indonesian/keruntuhan3.php</u>
- [JUL07] Julie Leung, Keith Kern, Jeremy Dawson, 2007, "Genetic Algorithms and Evolution Strategies", presentation slides.
- [SUYo8] Suyanto, 2008, Evolutionary Computation: Komputasi Berbasis "Evolusi" dan "Genetika", penerbit Informatika Bandung.
- [TOMo7] Tomoharu Nakashima, 2007, "Evolving Soccer Teams for RoboCup Simulation", IEEE Congress on *Evolutionary Computation*, Singapore 25 28 September 2007.
- [RYA98a] Ryan Conor and O'Neill Michael, 1998, "Grammatical Evolution: A Steady State approach". In Proceedings of the Second International Workshop on Frontiers in Evolutionary Algorithms 1998, pages 419-423.