

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Professora: Rosiane Soares Cesar

4ª Lista de Exercícios - Álgebra I

- (1) Determine:
 - (a) $\overline{37}^{-1}$ em \mathbb{Z}_{125} .
 - (b) $\overline{11}^{-1}$ em \mathbb{Z}_{263} .
 - (c) $\overline{35}^{-1}$ em \mathbb{Z}_{144} .
 - (d) $\overline{n-1}^{-1}$ em \mathbb{Z}_n , $n \geq 2$.
- (2) Determine ϕ (4620), ϕ (30⁴), ϕ (6²³ · 8²).
- (3) Construa a tabela de multiplicação de U(12).
- (4) Determine a ordem de $\overline{12}$ em U(25) e a ordem de $\overline{4}$ em U(255)
- (5) Seja a função $f: \mathbb{Z}_{96} \to \mathbb{Z}_{96}$ definida por $f(\overline{m}) = \overline{35m}$, para todo \overline{m} . Mostre que f é uma bijeção. Também encontre $\overline{m} \in \mathbb{Z}_{96}$ tal que $f(\overline{m}) = \overline{30}$
- (6) O objetivo desta questão é mostrar que nenhum número da forma 4n + 3, $n \in \mathbb{N}$ pode ser escrito como a soma dos quadrados de dois inteiros.
 - (a) Mostre que o quadrado de qualquer inteiro só pode ser congruente a 0 ou 1 módulo 4.
 - (b) Use (1) para mostrar que se x e y são inteiros então $x^2 + y^2$ só pode ser congruente a 0, 1 ou 2 módulo 4.
 - (c) Use (2) para mostrar que um inteiro da forma 4n + 3 não pode ser escrito como a soma de dois quadrados inteiros.
- (7) Calcule o resto da divisão de a por n nos casos abaixo:
 - (a) $a = 4^{200} e n = 7$.
 - (b) $a = 7^{1001} e n = 13$.
 - (c) $a = 2^{45632}$ e n = 15.
 - (d) $a = 6^{54632}$ e n = 25.
 - (e) $a = 5^{7^{101}}$ e n = 8
- (8) Calcule os dois últimos algorismos do número $7^{7^{1000}}$
- (9) Decida, justificando, se $-a^p + a$ é múltiplo inteiro de p para todo primo positivo p e todo número inteiro a.
- (10) Resolva as congruências lineares $ax \equiv b \pmod{n}$ abaixo e descreva o conjunto solução em termos de classes mod n.
 - (a) $18x \equiv 24 \pmod{25}$

	(b) $36x \equiv 63 \text{ (mo)}$ (c) $3x + 2 \equiv 0 \text{ (no)}$,			
	(d) $2x - 1 \equiv 7$ (e) $6x \equiv 25$ (mos	•			
(11)	Encontre, justificando, a quantidade de números naturais n , $10000 < n < 20000$, tais que $6n$ dividido por 105 deixa resto 96 .				
(12)	Seja $j: \mathbb{Z}_{64} \to \mathbb{Z}_{64}$ definida por $f(\overline{m}) = \overline{12m}$, para todo $\overline{m} \in \mathbb{Z}_{64}$. Determine o conjunto				
			$f^{-1}\left(\left\{\overline{20},\right.\right.\right)$	$\overline{24},\overline{44}\})$	
(13)	Mostre que a equação $x^{13}+12x+13y^6=1$ não admite soluções inteiras. (sugestão: reduza módulo 13 e use Teorema de Fermat.				
(14)	Mostre, usando o teorema de Fermat, que $2^{70} + 3^{70}$ é divisível por 13.				
(15)	Mostre que $19^{8n} - 1$ é divisível por 17, $\forall n \in \mathbb{N}$.				
$\mathbf{G}A$	BARITO				
(1)	(a) $\overline{98}$	(b) $\overline{24}$		(c) $\overline{101}$	(d) $\overline{n-1}$
(2)	960, 216000, $2^{29}.3^{22}$, respectivamente.				
(3)	Cálculos				
(4)	20 e 4, respectivamente.				
(5)	$f\left(\overline{42}\right) = \overline{30}$				
(6)	Demonstração				
(7)	(a) 2	(b) 11	(c) 1	(d) 11	(e) 5
(8)	07				
(9)	demonstração				
(10)	(a) $S = \overline{18}$				
	$(b) S = \overline{8} \cup \overline{33} \cup C = \overline{2}$	$1\overline{58} \cup \overline{83} \cup \overline{108}$	$\overline{8} \cup \overline{133} \cup \overline{158} \cup \overline{1}$	\cup $\overline{183}$ \cup $\overline{208}$	
	(c) $S = \overline{2}$ (d) $S = \overline{4}$				
	(e) $S = \emptyset$				

(14) Demonstração

(13) Demonstração

 $(12) \ \big\{\overline{15},\overline{31},\overline{47},\overline{63},\overline{2},\overline{18},\overline{34},\overline{50},\overline{9},\overline{25},\overline{41},\overline{57}\big\}.$

(11) 286

(15) Demonstração