SEL 310 Ondas Eletromagnéticas 30/03/2020 Quiz#2

Questão 1:

Uma onda polarizada ao longo de \hat{x} se propaga ao longo do eixo z em um meio sem perdas com $\mu_r = 1$, $\varepsilon_r = 9$. A magnitude do campo elétrico é 100 V/m e a frequência é de 1 GHz.

$$\hat{E} = Real \left[E_0 e^{j(\omega t - kz + \varphi)} \right] \hat{x}$$

Encontre:

- a) A velocidade de fase
- b) O número de onda
- c) O comprimento de onda
- d) Se em t=0 e z=0 o campo elétrico vale $\hat{E}=50\hat{x}\ V/m$, qual será seu valor em t=0 e $z=\lambda/2$?
- e) O campo em t=0 e $z=\lambda/2$ está em fase com o campo em t=0 e z=0?
- e) Escreva os fasores de campo em *z*=0 e em *z*=5cm.

Questão 2:

Uma onda plana polarizada circularmente à esquerda com magnitude de campo elétrico de 5 V/m, frequência de 200 MHz, incide normalmente em um meio dielétrico com $\varepsilon_r = 4$ (localizado em $z \ge 0$).

- a) Escreva a expressão temporal e fasorial do campo elétrico da onda incidente
- b) Calcule os coeficientes de reflexão e transmissão (use as expressões já derivadas em sala)
- c) Escreva os fasores de campo elétrico da onda refletida ($z \le 0$), transmitida ($z \ge 0$), e o campo total ($z \le 0$).