CLUSTERING

Clustering Problem – Formal Definition

- Assume the result of clustering is the generation of $K = \{K_1, K_2, ..., K_k\}$
- Given a data set $D=\{t_1,t_2,...,t_n\}$ of tuples and an integer value k, the *Clustering Problem* is to define a mapping $f:D \rightarrow \{1,..,k\}$ where each t_i is assigned to one cluster K_i , 1 <= j <= k.
- A *Cluster*, K_i, contains precisely those tuples mapped to it.
- K forms a partition of D.

Clustering Approaches

Types of Clustering

- *Hierarchical* A set of nested clusters organized as a hierarchical tree
- *Partitional* A division of data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
 - One set of clusters created
- Overlapping/Non-overlapping

Cluster Parameters

Given a cluster $K_m = \{t_{m1}, t_{m2}, ..., t_{mn}\}$ of n points.

$$centroid = C_m = \frac{\sum_{i=1}^{N} (t_{mi})}{N}$$

$$radius = R_m = \sqrt{\frac{\sum_{i=1}^{N} (t_{mi} - C_m)^2}{N}}$$

diameter =
$$D_m = \sqrt{\frac{\sum_{i=1}^{N} \sum_{j=1}^{N} (t_{mi} - t_{mj})^2}{(N)(N-1)}}$$

 $Medoid = M_m$ = an actual point in the cluster closest to the centroid

Calculating the Distance between Clusters K_i and K_j

• **Single link**: smallest distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_j) = min(t_{ip}, t_{jq})$

$$\operatorname{dist}(K_i, K_j) = \min\{\operatorname{dist}(t_{il}, t_{jm})\} \ \forall \ t_{il} \in K_i \not\in K_j \ and \ \forall \ t_{jm} \in K_j \not\in K_i$$

Calculating the Distance between Clusters K_i and K_j

• Complete link: largest distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_j) = max(t_{ip}, t_{jq})$

 $dist(K_i, K_j) = max\{dist(t_{ij}, t_jm)\} \ \forall t_{ij} \in K_i \notin K_j \ and \ \forall \ t_jm \in K_j \notin K_i$

Calculating the Distance between Clusters K_i and K_j

• **Average link**: avg distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_j) = avg(t_{ip}, t_{jq})$

 $dist(K_i, K_j) = average\{ dist(t_{il}, t_jm) \} \forall t_{il} \in K_i \notin K_j \ and \ \forall \ t_jm \in K_j \notin K_i$

Calculating the Distance between Clusters K_i and K_j

• Centroid distance: distance between the centroids of the two clusters

$$dist(K_i, K_j) = dist(C_i, C_j)$$

• **Medoid distance**: distance between the medoids of the two clusters

$$dist(K_i, K_j) = dist(M_i, M_j)$$

Example

- $K_1 = \{5, 6, 8\}, K_2 = \{9, 10\}$
- Single link distance = dist(8, 9) = 9 8 = 1
- Complete link distance = dist(5, 10) = 10 5 = 5
- Average link distance = $\frac{(9-5)+(9-6)+(9-8)+(10-5)+(10-6)+(10-8)}{2}$ $=\frac{4+3+1+5+4+2}{6}=\frac{19}{6}=3.167$

$$C_1 = \frac{5+6+8}{3} = \frac{19}{3} = 6.34$$

$$C_2 = \frac{9+10}{2} = \frac{19}{2} = 9.5$$

$$dist(C_1, C_2) = dist(9.5, 6.34) = 3.16$$

• Medoid distance = dist $(M_1, M_2) = dist(6, 9) = 3$

Hierarchical Clustering

- Nested set of clusters is created
- User decides which set of clusters to use
- Agglomerative
 - Bottom-up approach
 - Initially each item in its own cluster
 - Iteratively clusters are merged together

Divisive

- Top-down approach
- Initially all items in one cluster
- Clusters are successively divided

Hierarchical Clustering

- Use distance matrix
- ullet This method does not require the number of clusters $oldsymbol{k}$ as an input, but may need a termination condition

Hierarchical Algorithms

- Single Link
- MST Single Link
- Complete Link
- Average Link

Dendrogram

- Dendrogram: a tree-like data structure that illustrates hierarchical clustering techniques
- It shows the different set of clusters obtained at each level of the algorithm
- Each level shows clusters for that level
 - Leaves individual clusters
 - Root one cluster
- A cluster at level i is the union of its children clusters at level i+1
- Each level of the tree corresponds to a different set of clusters that may be used

Dendrogram – Formal Definition

- A **dendrogram** is a set of ordered triples < d, k, K >, where
 - d is the threshold distance
 - k is number of clusters
 - *K* is et of clusters

Dendrogram

- Each level of the dendrogram corresponds to a different set of clusters
- A clustering is obtained by cutting the dendrogram at a certain distance
- Each connected components forms a cluster

Example (1 - 6)

• Consider the points x1 = (0,2), x2 = (0,0), x3 = (1.5,0), x4 = (5,0), and x5 = (5,2) in the 2D space. Show the dendrogram that results from clustering these points using the single-link agglomerative hierarchical clustering method. Use Euclidean distance to measure distances between points.

	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5
<i>x</i> 1	0	2	2.5	5.39	5
<i>x</i> 2		0	1.5	5	5.39
<i>x</i> 3			0	3.5	4.03
<i>x</i> 4				0	2
<i>x</i> 5					0

Example (cont. 2 - 6)

- Using agglomerative single-link
- <d, k, K> = <math><0, 5, $\{\{x1\}, \{x2\}, \{x3\}, \{x4\}, \{x5\}\} >$
- x2 and x3 get merged at distance 1.5: <d, k, K> = < 1.5, 4, $\{\{x1\}, \{x2, x3\}, \{x4\}, \{x5\}\}$ >

	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5
<i>x</i> 1	0	2	2.5	5.39	5
<i>x</i> 2		0	1.5	5	5.39
<i>x</i> 3			0	3.5	4.03
<i>x</i> 4				0	2
<i>x</i> 5					0

Example (cont. 3 - 6)

- Using agglomerative single-link
- <d, k, K> = < 0, 5, $\{\{x1\}, \{x2\}, \{x3\}, \{4\}, \{x5\}\}\}$
- x2 and x3 get merged at distance 1.5: <d, k, K> = < 1.5, 4, $\{\{x1\}, \{x2, x3\}, \{x4\}, \{x5\}\}\}$ >

	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5
<i>x</i> 1	0	2	2.5	5.39	5
<i>x</i> 2		0	1.5	5	5.39
<i>x</i> 3			0	3.5	4.03
<i>x</i> 4				0	2
<i>x</i> 5					0

Example (cont. 4 - 6)

- Next, x4 and x5 are merged at distance 2 into the cluster $\{x4, x5\}$
- At the same level, x1 is merged with $\{x2, x3\}$

$$= < 2, 2, { {x1, x2, x3}, {x4, x5}} >$$

	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5
<i>x</i> 1	0	2	2.5	5.39	5
<i>x</i> 2		0	1.5	5	5.39
<i>x</i> 3			0	3.5	4.03
<i>x</i> 4				0	2
<i>x</i> 5					0

Example (cont. 5 - 6)

• Then, the clusters $\{x4, x5\}$ and $\{x1, x2, x3\}$ get merged at distance 3.5

$$= < 3.5, 1, { {x1, x2, x3, x4, x5} } >$$

	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5
<i>x</i> 1	0	2	2.5	5.39	5
<i>x</i> 2		0	1.5	5	5.39
<i>x</i> 3			0	3.5	4.03
<i>x</i> 4				0	2
<i>x</i> 5					0

Example (cont. 6 - 6)

• The dendrogram <d, k, K>:

$$\{<0, 5, \{\{x1\}, \{x2\}, \{x3\}, \{4\}, \{x5\}\} >, <1.5, 4, \{\{x1\}, \{x2, x3\}, \{x4\}, \{x5\}\} >, <2, 2, \{\{x1, x2, x3\}, \{x4, x5\}\}, <3.5, 1, \{\{x1, x2, x3, x4, x5\}\} >\}$$

	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5
<i>x</i> 1	0	2	2.5	5.39	5
<i>x</i> 2		0	1.5	5	5.39
<i>x</i> 3			0	3.5	4.03
<i>x</i> 4				0	2
<i>x</i> 5					0

Agglomerative Algorithms

- Bottom-up approach
- Initially each item in its own cluster
- Iteratively clusters are merged together
- Basic idea is the same. Difference is the dissimilarity measure used
- Algorithm next slide gives the basic idea

Agglomerative Algorithm

```
Input:
   D = \{t_1, t_2, ..., t_n\} // Set of elements
   A // Adjacency matrix showing distance between elements.
Output:
          // Dendrogram represented as a set of ordered triples.
Agglomerative Algorithm:
   d = 0;
   k=n;
   K = \{\{t_1\}, ..., \{t_n\}\};
   DE = \{\langle d, k, K \rangle\}; // Initially dendrogram contains each element in its own cluster.
   repeat
      oldk = k;
      d = d + 1;
      A_d = Vertex adjacency matrix for graph with threshold distance of d;
      \langle k, K \rangle = NewClusters(A_d, D);
      if oldk \neq k then
          DE = DE \cup \langle d, k, K \rangle; // New set of clusters added to dendrogram.
   until k=1
```

Remarks

- Algorithm outputs the dendrogram, DE
- Algorithm is not incremental
- Algorithm uses NewCusters(A_d, D) to determine how clusters are merged
- Implementation of NewCusters(A_d , D) is based on the dissimilarity measure used by the algorithm (single-link, complete-link, ... etc.)

Using the Single Link Approach

- Two clusters K_i , K_j are merged if the distance between them is \leq threshold value, d. $dis(K_i, K_i) = min(t_{ip}, t_{iq})$
- How can we find such clusters K_i and K_i?
 - Input is given in the form of an adjacency matrix
 - As if we have a graph with objects in D as nodes
 - A weighted edge corresponds to distance/dissimilarity between the two objects
- Finds maximal connected components in this graph
 - weight on any edge is $\leq d$
- Two clusters are merged if there is an edge with weight \leq d that connects them
- Uses threshold distances at each level

Example

Threshold of

1 2 3

Single-Link Approach & Complete-Link Approach

- Single link algorithm, replace NewCusters(A_d, D) by a procedure to find maximal connected components
- Problems with single link:
- 1. Time to find maximal connected components is O(n2)
- 2. Can generate elongated clusters long chains of points
 - Solution: merge the two clusters if the distance between any point in the first cluster and any point in the second cluster is \leq threshold, d
 - This gives the *complete-link alternative* of the algorithm
- For complete-link, replace NewCusters(A_d , D) by a procedure to find cliques in the graph where distance between any two nodes is \leq threshold, d
- Still O(n²) algorithm but solves the long chains problem

MST Based Single-Link Algorithm

- A variation of single-link algorithm is based on using a Minimum Spanning Tree (MST)
- A MST subgraph that is a tree that spans all nodes and has minimal total weight

 Two clusters are merged if the distance between them is smallest as described in a MST of the graph

MST Single Link Algorithm

```
Input:
   D = \{t_1, t_2, ..., t_n\} // Set of elements
   A // Adjacency matrix showing distance between elements.
Output:
          // Dendrogram represented as a set of ordered triples.
MST Single Link Algorithm:
   d=0;
   k=n:
   K = \{\{t_1\}, ..., \{t_n\}\}\};
   DE = \langle d, k, K \rangle; // Initially dendrogram contains each element in its own cluster.
   M = MST(A);
   repeat
      oldk = k;
      K_i, K_i = two clusters closest together in MST;
      K = K - \{K_i\} - \{K_i\} \cup \{K_i \cup K_i\};
      k = oldk - 1:
      d = dis(K_i, K_i);
      DE = DE \cup \langle d, k, K \rangle; // New set of clusters added to dendrogram.
      dis(K_i, K_i) = \infty;
   until k=1
```

Example (1 - 3)

• Apply the MST single-link approach to the dataset of 5 points in the 2D space: x1 = (0, 2), x2 = (0, 0), x3 = (1.5, 0), x4 = (5, 0), and x5 = (5, 2).

	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5
<i>x</i> 1	0	2	2.5	5.39	5
<i>x</i> 2		0	1.5	5	5.39
<i>x</i> 3			0	3.5	4.03
<i>x</i> 4				0	2
<i>x</i> 5					0

Example (2 - 3)

• Apply the MST single-link approach to the dataset of 5 points in the 2D space: x1=(0,2), x2=(0,0), x3=(1.5,0), x4=(5,0), and x5=(5,2).

	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5
<i>x</i> 1	0	2	2.5	5.39	5
<i>x</i> 2		0	1.5	5	5.39
<i>x</i> 3			0	3.5	4.03
<i>x</i> 4				0	2
<i>x</i> 5					0

Example (3 - 3)

• The dendrogram <d, k, K>: $\{<0, 5, \{\{x1\}, \{x2\}, \{x3\}, \{4\}, \{x5\}\} >, <1.5, 4, \{\{x1\}, \{x2, x3\}, \{x4\}, \{x5\}\} >, <2, 3, \{\{x1\}, \{x2, x3\}, \{x4, x5\}\}, <2, 2, \{\{x1, x2, x3\}, \{x4, x5\}\}, <3.5, 1, \{\{x1, x2, x3, x4, x5\}\} >\}$

Complete-Link Algorithm

- This was described before
- Two clusters are merged if the distance between them is the smallest when considering the complete-link distances among clusters
- Complete-link finds compact clusters
- A variant of complete-link is called the furthest neighbor algorithm while single-link is sometimes called the nearest neighbor algorithm

The Average-Link Algorithm

• Two clusters are merged if the average distance between them \leq threshold value, d (i.e., distance between any two points $x_i \in K_i$ and $x_j \in K_j$) \leq threshold value, d

Divisive Clustering Algorithms

- Top-down approach
- Initially all items in one cluster
- Clusters are successively divided until either each object is in its own cluster or a termination condition is reached
- Reverse of the agglomerative algorithms
- One approach uses the MST version of the single link algorithm
- Clusters are split by removing edges from the MST starting with the edge with the largest weight

Example

• Apply the MST single-link divisive approach to the dataset of 5 points:

$$x1 = (0, 2), x2 = (0, 0), x3 = (1.5, 0), x4 = (5, 0), and x5 = (5, 2).$$

Major Weaknesses of Hierarchical Clustering Methods

- Do not scale well: time complexity of at least $O(n^2)$, where n is the number of total objects
- Not incremental
- Can not undo what was done previously