1 Rachunek λ

Niech V będzie przeliczalnie nieskończonym zbiorem zmiennych przedmiotowych $x,\ y,\ \dots$ (indeksowanych być może liczbami naturalnymi). Elementy takiego zbioru będziemy nazywali λ -zmiennymi.

Definicja 1. (Zbiór $\tilde{\Lambda}$ pretermów)

Zbiorem pretermów będziemy nazywali najmniejszy (w sensie mnogościowym) zbiór wyrażeń $\tilde{\Lambda}$ taki, że:

- (P1) Jeśli $x \in V$, to $x \in \tilde{\Lambda}$.
- (P2) Jeśli $M, N \in \tilde{\Lambda}$, to $(MN) \in \tilde{\Lambda}$.
- (P3) Jeśli $x \in V$ i $M \in \tilde{\Lambda}$, to $(\lambda x. M) \in \tilde{\Lambda}$.

Korzystając z notacji Backusa-Naura induktywną definicję 1 możemy równoznacznie wyrazić w postaci:

$$\tilde{\Lambda} \leftarrow V \mid (\tilde{\Lambda} \tilde{\Lambda}) \mid (\lambda V. \tilde{\Lambda})$$

Elementy $\tilde{\Lambda}$ oznaczamy literami L, M, N, P, Q, R i ich wariantami wzbogaconymi o indeksy. Wyrażenia postaci (P2) nazywamy aplikacjami M do N. Symbol λ występujący w (P3) nazywamy λ -abstraktorem, zaś wyrażenia powstałe przez zastosowanie tej reguły to λ -abstrakcje. W wyrażeniu postaci ($\lambda x. M$) preterm M jest w zasięgu λ -abstraktora, a zmienna x jest przez niego związana. Ponadto, będziemy stosowali następujące konwencje notacyjne:

- najbardziej zewnętrzne nawiasy bedą pomijane,
- aplikacja wiąże lewostronnie; wyrażenia postaci (PQ)R będą zapisywane w postaci PQR,
- λ -abstrakcja wiaże prawostronnie: λx_1 . (λx_2 . P) zapisujemy λx_1 . λx_2 . P,
- następujące po sobie λ -abstrakcje postaci $\lambda x_1. \lambda x_2. ... \lambda x_n. P$ zapisujemy pod wspólnym λ -abstraktorem: $\lambda x_1 x_2 ... x_n. P$.

Powiemy, że dwa λ -termy są syntaktycznie równe, jeśli są identyczne rozumiane jako ciągi znaków. Równość syntaktyczną będziemy oznaczali znakiem \equiv .

Przykład 1. Podajmy kilka przykładów λ -pretermów pogrupowanych ze względu na konstrukcję.

- (P1): x, y, z.
- (P2): xx, yx, x(xz), $(\lambda x.(xz))y$, $y(\lambda x.(xz))$, $(\lambda x.x)(\lambda x.x)$.
- (P3): $\lambda x.(xz)$, $\lambda yz.x$, $\lambda x.(\lambda x.(xx))$.

Podwyrażenia λ -pretermu mogą być wzajemnie identyczne i występować wielokrotnie. Obserwację tę ujmuje następująca definicja.

Definicja 2. (Multizbiór Sub podtermów)

- $(1) Sub(x) = \{x\}$
- (2) $\operatorname{Sub}(MN) = \operatorname{Sub}(M) \cup \operatorname{Sub}(N) \cup \{MN\}$
- (3) $\operatorname{Sub}(\lambda x. M) = \operatorname{Sub}(M) \cup \{\lambda x. M\}$

Elementy multizbioru $\operatorname{Sub}(M)$ nazywamy podtermami M. Jeśli L jest podtermem M, ale $L \not\equiv M$, to L nazywamy podtermem wlaściwym.

Przykład 2. Podtermy wybranych λ -pretermów.

(a) Sub
$$(\lambda x. xx) = \{(\lambda x. xx)^1, (xx)^1, x^2\}$$

(b) Sub
$$((\lambda x. x x) (\lambda x. x x)) =$$

= $\{((\lambda x. x x) (\lambda x. x x))^1, (\lambda x. x x)^2, (x x)^2, x^4\}$

Definicja 3. (Zbiór FV zmiennych wolnych)

Z dowolnym pretermem M wiążemy zbiór FV(M) zmiennych wolnych w M określony w poniższy sposób:

$$FV(x) = \{x\}$$

$$FV(\lambda x. P) = FV(P) \setminus \{x\}$$

$$FV(PQ) = FV(P) \cup FV(Q)$$

Jesli FV $(M) = \emptyset$, to mówimy, że M jest domknięty lub nazywamy M kombinatorem.

Przykład 3. (a) $FV(\lambda x. xy) = \{y\}$

- (b) $FV(x(\lambda x. xy)) = \{x, y\}$
- (c) $FV(\lambda xyz.xy) = \emptyset$

Definicja 4. (Podstawienie)

Podstawieniem~[x/N] pretermu N za λ -zmienną x w M nazwamy następująco zdefiniowane przekształcenie:

$$x[x/N] = N,$$

$$y[x/N] = y,$$
o ile $x \neq y$,
$$(PQ)[x/N] = P[x/N]Q[x/N],$$

$$(\lambda y. P)[x/N] = \lambda y. P[x/N],$$
gdzie $x \neq y$ i $y \notin FV(N)$.

Zachodzą następujące fakty:

Dowód.

jest poprawnym podstawieniem oraz M[x/y][y/x] = M.