Decoding Nation's Health: Patterns and Trends with Python

PYTHON PROJECT: M.TECH (DS)

Major Vaibhav Mishra

SCOPE

Code Snippets

MOTIVATION

A Digital India Initiative

Authentic Dataset

State Health Comparison

Probable Research Area

Public Health Insights Health
Inequality
and
Disparity

PROJECT WORKFLOW

Identifying the Data Source

Code Testing And Improvement

Code Re-organisation

Build a Problem Statement

Data Handling

Building Data Visualization

Pseudo Code

```
# Data Analysis Class
DataAnalysis:
  analyze_sex_ratios():
    extract_relevant_columns()
    calculate_mean_sex_ratios()
    combine_mean_values()
    plot_horizontal_bar_chart()
    identify_states_with_higher_birth_ratio()
  analyze_alcohol_consumption():
    extract alcohol columns()
    median_alcohol_consumption()
    alcohol_consumption_chart()
  analyze_blood_pressure():
    calculate_mean_blood_pressure()
    blood_pressure_comparison_table()
    plot_blood_pressure_comparison_chart()
```

```
# Choropleth Map Class
ChoroplethMap:
    load_and_clean_data()
    replace_state_names(replace_dict)
    randomly_columns_for_visualization()
    group_and_merge_data()
  plot_choropleth_map():
# Scatter Plot Generator Class
ScatterPlotGenerator:
  load_and_clean_data()
  plot_scatter_plot(col1, col2):
  execute_scatter_plot():
     display_available_columns()
     get_user_input_for_columns()
     plot_scatter_plot_based()
```

Code Snippets

Data Cleaning

```
self.df.iloc[:, 2:] = self.df.iloc[:, 2:].apply(pd.to_numeric, errors='coerce')
self.df = self.df.replace('*', pd.NA) # Replacing '*' with NaN
self.df.iloc[:, 2:] = self.df.iloc[:, 2:].abs() #
self.df.fillna(self.df.mean(), inplace=True)
```

Data Grouping

```
grouped_data = self.df.groupby('State/UT')[self.selected_feature].mean().reset_index()
self.gdf = pd.merge(self.gdf, grouped_data, left_on='ST_NAME', right_on='State/UT', how='left')
self.gdf = self.gdf.dropna(subset=[self.selected_feature])
```

Code Snippets

Choropleth plot

```
colors = [(0, 0, 1), (1, 1, 1), (1, 0, 0)] # Defining the color gradient
cmap = LinearSegmentedColormap.from_list('custom', colors, N=256)
fig, ax = plt.subplots(1, 1, figsize=(15, 10))
self.gdf.plot(column=self.selected_feature, cmap=cmap, linewidth=0.8, ax=ax, edgecolor='0.8', legend=True)
```

Handling Column Inputs

OUTPUT

DASHBOARD VIEW

Available columns for scatter plot: 1. Female population age 6 years and above who ever attended school (%) 2. Population below age 15 years (%) 3. Sex ratio of the total population (females per 1,000 males) 4. Sex ratio at birth for children born in the last five years (females per 1,000 males) 5. Children under age 5 years whose birth was registered with the civil authority (%) 6. Deaths in the last 3 years registered with the civil authority (%) 7. Population living in households with electricity (%) 8. Population living in households with an improved drinking-water source1 (%) 9. Population living in households that use an improved sanitation facility2 (%) 10. Households using clean fuel for cooking3 (%) 11. Households using iodized salt (%)

OUTPUT

CHOROPLETH

LINE PLOT

OUTPUT

SCATTER PLOT

BAR PLOT

OBSERVATION

https://github.com/vaibhav2404/NFHS-5.git

THANK YOU

QUESTIONS

