

Description

The VSM60N08 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. This device is suitable for use in PWM, load switching and general purpose applications.

General Features

• $V_{DS} = 80V, I_D = 60A$ $R_{DS(ON)} < 12 \text{ m}\Omega @ V_{GS} = 10V$ (Typ:9mΩ)

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Special designed for convertors and power controls
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and High frequency circuits
- Uninterruptible power supply

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM60N08-T2	VSM60N08	TO-252	-	-	-

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	VDS	80	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	60	А	
Drain Current-Continuous(T _C =100°C)	I _D (100℃)	42.4	Α	
Pulsed Drain Current ^(Note 1)	I _{DM}	240	Α	
Maximum Power Dissipation	P _D	130	W	
Derating factor		0.87	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	380	mJ	
Operating Junction and Storage Temperature Range	T _J ,T _{STG}	-55 To 175	$^{\circ}$ C	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	R _{eJC}	1.15	°C/W	
---	------------------	------	------	--

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics				•		•
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	80	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =80V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V_{GS} =±20 V , V_{DS} =0 V	-	-	±100	nA
On Characteristics (Note 3)			•	•		
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS},I_{D}=250\mu A$	2	3	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	9	12	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =20A	-	30	-	S
Dynamic Characteristics (Note4)				•		•
Input Capacitance	C _{lss}	V _{DS} =25V,V _{GS} =0V,	-	4414	-	PF
Output Capacitance	C _{oss}		-	219	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	188	-	PF
Switching Characteristics (Note 4)	1		1			•
Turn-on Delay Time	t _{d(on)}		-	19	-	nS
Turn-on Rise Time	t _r	V_{DD} =40V, R_L =15Ω R_G =2.5Ω, V_{GS} =10V	-	12	-	nS
Turn-Off Delay Time	t _{d(off)}		-	40	-	nS
Turn-Off Fall Time	t _f		-	15	-	nS
Total Gate Charge	Qg	1/ 401/1 004	-	81.5	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =40V, I_D =20A,	-	26.9	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} =10V	-	23.7	-	nC
Drain-Source Diode Characteristics	1			I		I.
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	_	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	60	Α
Reverse Recovery Time	t _{rr}	Tj=25°C,I _F =20A	-	36	-	nS
Reverse Recovery Charge	Qrr	di/dt=100A/µs ^(Note3)	-	54	-	nC

Notes:

- **1.** Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=40V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuits

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 I_D Current De-rating

Drain Current (A)

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance