Практическое задание

Тема: Выборочный метод.

Цель: Научиться рассчитывать ошибки выборки и доверительные интервалы.

Оборудование: вычислительная техника, чертежные инструменты.

Задание: рассчитать среднюю и предельную ошибки выборки и определить пределы генеральных характеристик с заданной степенью надежности (0,954) на основе показателей, полученных по данным выборки.

Исходные данные (*для варианта №2*): в таблице сгруппированы данные о возрасте студентов ВУЗа при бесповторной 5%-ной выборке:

Возраст (лет)	14-16	16-18	18-20	20-22	22-24
Количество студентов (чел.)	10	18	32	23	17

Решение:

1-2) Расчётная таблица, сформированная из исходных данных:

Возраст, лет, х	Количество студентов, f	Середина интервала, х'	x' · f	$(x_i' - \overline{x})^2$	$(x_i' - \overline{x})^2 \cdot f_i$
14-16	10	15	150	16	160
16-18	18	17	306	4	72
18-20	32	19	608	0	0
20-22	23	21	483	4	92
22-24	17	23	391	16	272
Итого:	$\Sigma = 100$	$\overline{x} = 19$	$\Sigma = 1938$	$\Sigma = 40$	$\Sigma = 596$

3) Среднее значение признака в генеральной совокупности:

$$\widetilde{x} = \frac{\sum_{i=1}^{n} x_i \cdot f_i}{\sum_{i=1}^{n} f_i} = 1938/100 = 19,38$$

4) Дисперсия признака в выборочной совокупности:

$$S^{2} = \frac{\sum (x_{i} - \bar{x})^{2} \cdot f_{i}}{\sum_{i} f_{i}} = 569/100 = 5,96$$

5) Т.к. количество студентов, попавших в 5% выборку = 100 чел., следовательно, общее количество студентов, обучающихся в ВУЗе:

$$100 \times 100 / 5 = 2000$$
 человек.

6) Средняя ошибка (для средней выборки):

$$\mu_{\bar{x}} = \sqrt{\frac{S^2}{n} \left(1 - \frac{n}{N}\right)} = \sqrt{5,69/100 * (1 - 100/2000)} = 0,24$$
 лет

Предельная ошибка: $\Delta_{\bar{x}} = 2*0,24 = 0,48$ лет

7) Отклонение генеральной средней выборки:

$$\widetilde{x} - \Delta_{\overline{x}} \le \overline{x} \le \widetilde{x} + \Delta \overline{x}$$
 $18.9 \le \overline{x} \le 19.86$

8) Т.к. в выборку попали 28 несовершеннолетних студентов (14 - 18 лет), то выборочная доля составит:

$$28/100 \times 100 = 28\%$$
. T.e. $w = 0.28$.

9) Средняя ошибка (для доли):

$$\mu_p = \sqrt{\frac{w(1-w)}{n}} = \sqrt{0.28 * (1-0.28)/100} = 0.0449$$

Предельная ошибка: $\Delta_p = 2*0,0449 = 0,0898$

$$w - \Delta_p \le p \le w + \Delta_p \longrightarrow 0.19 \le p \ge 0.37$$

Т.о. количество несовершеннолетних студентов в ВУЗе может быть от 19 до 37 %.