- Previous Notes

$$Q_i \leftarrow Q_i - \int \frac{\partial}{\partial Q_i} J(Q)$$

where
$$\nabla J(0) = \left(\frac{\partial}{\partial \theta_1} J(0), \frac{\partial}{\partial \theta_2} J(0), \cdots, \frac{\partial}{\partial \theta_n} J(0)\right)$$

· Mean Square Error

$$E = \sqrt{\sum_{i=1}^{N} \left(\gamma^{(i)} - \gamma^{(i)} \right)^2}.$$

· Neuron

$$\hat{\gamma} = \int \left(\sum_{i=1}^{n} \chi_{i} W_{i} \right)$$

when the activation function is sigmoid (X) 1+e-x)

$$f'(x) = f(x) \left(1 - f(x) \right)$$

he cause
$$f'(x) = \frac{d}{dx} (1+e^{-x})^{-1}$$

 $= (-1)(1+e^{-x})^{-2} \frac{d}{dx} (1+e^{-x})$
 $= (+e^{-x})^{-2} (e^{-x})$
 $= \frac{e^{-x}}{1+e^{-x}} \frac{1}{1+e^{-x}} = \frac{1}{1+e^{-x}} \cdot (1-\frac{1}{1+e^{-x}})$

 $= + (\star) \left(1 - + (\star) \right)$

· Neural Network

· L: number of layers

· Me: number of nodes in layer l.

· al: output of ith mode in layer l.

 $a^{l} = \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix} \quad \text{shape} \quad n_{l} \times l$

· Zi output of ith node in layer l

 $Z^{\ell} = \begin{pmatrix} Z_{1}^{\ell} \\ Z_{2}^{\ell} \\ \vdots \\ Z_{N_{\ell}}^{\ell} \end{pmatrix} \quad \text{Shape} \quad N_{\ell} \times$

· Wi weights wonnecting ith node of layer l
and jth node of layer lt)

 $W^{l} = \begin{pmatrix} w_{11}^{l} & w_{12}^{l} - w_{1n_{l}} \\ w_{21}^{l} & w_{22}^{l} - w_{2n_{l}} \\ \vdots & \vdots & \ddots & \ddots \\ w_{N+1}^{l} & w_{N}^{l} - w_{N}^{l} \end{pmatrix}$ Shape $N_{l+1} \times N_{l}$.

Forward Propagation Consider the jth node of layer lt/ $Z_{j}^{l+l} = \sum_{i=1}^{l} W_{ij} A_{i}^{l}$ Therefore. $Z^{l+1} = W^l \cdot a^l$ $a_j^{l+l} = f(z_j^{l+l})$ we donate $f(x_j^{(x_i)}) = f(x_n)$ Therefore alt = f(zl+1) we initialize a' = Xthen apply $Z^{l+1} = w' \cdot a^{l}$. Q (+1) = { (z(+1)) finally we have $y' = a^L$

Backward Propagation.

$$E(w', w^2 - \psi^2; x) = \frac{1}{2} || / - || / ||^2$$

we compute
$$\nabla_{W}^{E}$$
, ∇_{W}^{E} , ∇_{W}^{E}

il. Zwit for every i.j l.

$$\frac{\partial}{\partial W_{i}} \stackrel{!}{E} = \frac{\partial E}{\partial Z_{j}^{l+1}} \frac{\partial Z_{j}^{l+1}}{\partial W_{j}^{i}} \qquad (\text{thain rule.})$$

$$\frac{\partial}{\partial w_{i}} = \frac{\partial}{\partial z_{i}} \frac{\partial}{\partial w_{i}}$$

$$\frac{\partial}{\partial w_{i}} = \frac{\partial}{\partial z_{i}} \frac{\partial}{\partial w_{i}}$$

$$\frac{\partial}{\partial w_{i}} = \frac{\partial}{\partial z_{i}} \frac{\partial}{\partial z_{i}}$$

$$\frac{\partial}{\partial z_{i}} = \frac{\partial}{\partial z_{i}} \frac{\partial}{\partial z_{i}}$$

Define
$$\begin{cases} l = \frac{\partial E}{\partial Z_{ij}^{l}} \end{cases}$$
 $= \begin{cases} \frac{\partial E}{\partial Z_{ij}^{l}} \end{cases}$ $= \begin{cases} \frac{\partial E}{\partial Z_{ij}^{l}} \end{cases}$ while $\frac{\partial}{\partial W_{jk}} Z_{jjk}^{l+1} = \frac{\partial}{\partial W_{jk}} \sum_{k=1}^{N} W_{jk} A_{k}^{l} = ($

while $\frac{\partial}{\partial \omega_{i}} Z_{j,k}^{(+)} = \frac{\partial}{\partial \omega_{i}} \sum_{k=1}^{n} W_{kjk}^{k} Q_{k}^{k} = Q_{i}^{k}$ Jule = 5 ltl. Ol

Then we have in matrix form Tolle E = 5 th (a)T

We only need to compute
$$\int_{0}^{1} now$$

If $L=l$, i.e. the output layer.

$$S_{j}^{L} = \frac{\partial}{\partial z_{j}^{L}} E = \frac{\partial}{\partial z_{j}^{L}} \frac{1}{2} || \gamma - \gamma ||^{2}$$

$$= \frac{\partial}{\partial z_{j}^{L}} \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} \right) \right]^{2}$$

$$= \frac{\partial}{\partial z_{j}^{L}} \frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} \right)^{2}$$

$$= -\left(\frac{1}{2} - \frac{1}{2} \left(\frac{1}{2} \right) \right) f'(z_{j}^{L})$$

Therefore.

$$5^{L} = -(/-f(z^{L})) \times f'(z^{L})$$

$$= -(/-a^{L}) \times f'(z^{L})$$

$$= -(/-a^{L}) \times f'(z^{L})$$
we denote
$$\binom{a_{1}}{a_{2}} \times \binom{b_{1}}{b_{1}} = \binom{a_{1} \times b_{1}}{a_{1} \times b_{1}}$$

$$a_{1} \times b_{2} = \binom{a_{1} \times b_{1}}{a_{1} \times b_{1}}$$

$$a_{2} \times b_{2} = \binom{a_{1} \times b_{2}}{a_{1} \times b_{2}}$$

if l<Lie the super layer $\delta_j^l = \frac{\partial}{\partial z^l} =$ = Det 25 de multivariable chain rule = 2 5 to 3 de Wikin ak = Zi Siti aze Wij gi = 2 5 (+1 win f'(z)) In matrix form 8 = (u)) T 8 (z)

Cheat sheel (all column vectors)

Initialization:
$$a^{l} = \begin{pmatrix} a_{1}^{l} \\ a_{2}^{l} \\ a_{n_{l}}^{l} \end{pmatrix} \quad z^{l} = \begin{pmatrix} z_{1}^{l} \\ z_{2}^{l} \\ \vdots \\ z_{n_{l}}^{l} \end{pmatrix} \quad shape$$

$$W^{l} = \begin{pmatrix} w_{1}^{l} & w_{1}^{l} & \cdots & w_{n_{l}} \\ w_{2}^{l} & w_{2}^{l} & \cdots & w_{n_{l}} \\ w_{2}^{l} & w_{2}^{l} & \cdots & w_{n_{l}} \\ \vdots & \vdots & \vdots & \vdots \\ w_{n_{l}}^{l} & w_{n_{l}}^{l} & \cdots & w_{n_{l}} \\ w_{n_{l}}^{l} & w_{n_{l}}^{l} & w_{n_{l}}^{l} & w_{n_{l}}^{l} \\ w_{$$

Cheat sheet (all row vectors) Initialization $Q_{1} = (Q_{1}^{l} Q_{2}^{l} \cdots Q_{n_{l}}^{l}) \quad \mathcal{Z}_{1} = (\mathcal{Z}_{1}^{l} \mathcal{Z}_{2}^{l} \cdots \mathcal{Z}_{n_{l}}^{l})$ shape 1 × AL. $\mathcal{T} = \left(\mathcal{T}_1^l, \mathcal{S}_2^l \cdots \mathcal{S}_{n_k}^l\right)$ $W^{\ell} = \begin{pmatrix} w_{i1}^{\ell} & w_{i2}^{\ell} & W_{N_{i+1}}^{\ell} \\ w_{i1}^{\ell} & w_{i2}^{\ell} & W_{2N_{ii}}^{\ell} \end{pmatrix}$ shape $N_{\ell} \times N_{\ell+1}$ $W_{N_{\ell}}^{\ell} = \begin{pmatrix} w_{i1}^{\ell} & w_{i2}^{\ell} & W_{N_{\ell}}^{\ell} \\ w_{i1}^{\ell} & w_{i2}^{\ell} & W_{N_{\ell}}^{\ell} \end{pmatrix}$ shape $N_{\ell} \times N_{\ell+1}$ $\Delta^{(+)} = f(z^{(+)})$ $\gamma = \Delta^{(+)}$ Forward al=X Zl+1 = al wl Backward 8 = - (/- al) x f'(z') $S^{\ell} = S^{\ell+1}(w^{\ell})^{T} \times f'(z^{\ell})$ $\nabla_{W} E(x) = (a)^{T} S^{(+)}$ $f'(z^2) = q^2(1-q^2)$ if fis signoid f'(z') = if f(x) = X

Upadte We - UP - JIN TWE (X(i))

Question:

compute 76 =

2. If we add regulization term. In the wst function.
$$E = \frac{1}{2N} \sum_{i=1}^{N} ||\mathbf{x}'(\mathbf{x}'')|^2 + \frac{\lambda}{2} \sum_{i=1}^{N} \frac{|\mathbf{x}_i|^2}{|\mathbf{x}_i|^2} ||\mathbf{x}'(\mathbf{x}'')|^2 + \frac{\lambda}{2} \sum_{i=1}^{N} \frac{|\mathbf{x}_i|^2}{|\mathbf{x}_i|^2} ||\mathbf{x}'(\mathbf{x}'')|^2 + \frac{\lambda}{2} \sum_{i=1}^{N} \frac{|\mathbf{x}_i|^2}{|\mathbf{x}_i|^2} ||\mathbf{x}_i|^2 ||\mathbf{x}_i|^2 + \frac{\lambda}{2} \sum_{i=1}^{N} \frac{|\mathbf{x}_i|^2}{|\mathbf{x}_i|^2} ||\mathbf{x}_i|^2 +$$

compute Twe = Tol E.

3 compute
$$f'(z^l)$$
 when f is RelU
$$f(x) = \max(0, x)$$