Определение определителя квадратной матрицы. Простейшие свойства определителя

Замечание -Пусть S_n - множество всех подстановок $\{1,2,\dots,n\}$. Тогда $|S_n|=n!$ Определитель- $|A|=\det A=\sum\limits_{g\in S_n}(-1)^ga_{1g(1)}a_{2g(2)}\dots a_{ng(n)}$. Под g в $(-1)^g$ имеется в виду чётность

подстановки
$$g$$
. матрицы $n imes n$: $egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$.

Теорема об определителе транспонированной матрицы: $|A|=|A^T|$

Доказательство:

Распишем два определителя по определению:

$$|A| = \sum_{g \in S_n} (-1)^g a_{1g(1)} a_{2g(2)} \dots a_{ng(n)} \quad (*)$$

Поскольку строки транспонированной матрицы меняются на столбцы (можно сказать, что местами меняются верхняя и нижняя строка каждой перестановки), то

$$|A^T| = \sum_{g \in S_n} (-1)^{g^{-1}} a_{g(1)1} a_{g(2)2} \dots a_{g(n)n} \quad (**)$$

Заметим, что в (*) и в (**) одинаковое количество слагаемых, и что для каждой подстановки g в |A| эта подстановка есть и в $|A^T|$. Слагаемому $a_{1g(1)}a_{2g(2)}\dots a_{ng(n)}$ соответствует слагаемое $a_{g(1)1}a_{g(2)2}\dots a_{g(n)n}$ (в транспонированной матрице). То есть слагаемые не изменились, то задаются обратными подстановками. Но для обратной подстановки чётность сохраняется, поэтому знаки слагаемых сохраняются.

Минор матрицы - для элемента a_{ij} получается вычёркиванием i-строки j-го столбца **Алгебраическое дополнение** - $A_{ij} = (-1)^{i+j} |M_{ij}|$