CPE201 Digital Design

By Benjamin Haas

Class 15: Comparators and Decoders/Encoders

Comparator

- End Goal:
 - 4-bit input numbers
 - <, >, = outputs

Starting Small

- 1-bit
 - A<B
 - A=B
 - A>B

Equality

XNOR (A B)

0 The input bits are not equal.

Truth Table

A	В	A< B	A= B	A> B
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

•
$$A=B=A'B'+AB=A\ B$$

Circuit

•
$$A = B = A B$$

2-bit Comparator

University of Nevada, Reno

Same process

A1	A0	B1	В0	A< B	A= B	A> B
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0

A	\1	A0	B1	В0	A< B	A= B	A> B
1		0	0	0	0	0	1
1		0	0	1	0	0	1
1		0	1	0	0	1	0
1		0	1	1	1	0	0
1		1	0	0	0	0	1
1		1	0	1	0	0	1
1		1	1	0	0	0	1

arnaugh Maps

University of Nevada, Reno

Boolean Expressions • A>B: A1B1' + A0B1'B0' + A1A0B0'

- A=B: A1'A0'B1'B0' + A1'A0B1'B0 + A1A0B1B0 + A1A0'B1B0'
- : A1'B1' (A0'B0' + A0B0) + A1B1 (A0B0 + A0'B0')
- : (A0B0 + A0'B0') (A1B1 + A1'B1')
- : (A0 B0) (A1 B1)

Circuit

Generalize

- A>B
 - If A1 = 1 and B1 = 0
 - If A1 = B1 and A0 = 1 and B0 = 0
 - A1=B1 means when they are both 0 and both 1
- A<B
 - If A1 = 0 and B1 = 1
 - If A1 = B1 and A0 = 0 and B0 = 1
- A=B
 - (A1 B1) (A0 B0)

4-bit Comparator

- Use generalized rules
 - 8-bits is too many inputs for a Karnaugh map
 - Create a circuit from the rules
- A>B
 - If A3 = 1 and B3 = 0
 - If A3 = B3 and A2 = 1 and B2 = 0
 - If A3 = B3, A2 = B2 and A1 = 1 and B1 = 0
 - If A3 = B3, A2 = B2, A1 = B1 and A0 = 1 and B0 = 0

4-bit Comparator

Larger Comparators

Input AND output comparator signals to

ripple the resuls A0-

• Inputs treated as 5th bit

An 8-bit magnitude comparator using two 74HC85s.

Comparator Applications

- Sensors
 - Temperature, position compared to a setting
- Motor control
 - Like in 3-D printers
- Password verification

Decoders

- An input combination activates one output
- n inputs, 2^n outputs
 - 1 to 2, 2 to 4, 3 to 8, 4 to 16

Active High vs Active Low

- Active High = ON means 1
- Active Low = ON means 0
- This chip is active low

Active Low Decoder

Decimal	I	Binar	y Inp	uts	Decoding								Out	puts							
Digit	A_3	A_2	A_1	A_0	Function	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	$\overline{A}_3\overline{A}_2\overline{A}_1\overline{A}_0$	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	0	0	0	1	$\overline{A}_3\overline{A}_2\overline{A}_1A_0$	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	0	0	1	0	$\overline{A}_3\overline{A}_2A_1\overline{A}_0$	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
3	0	0	1	1	$\overline{A}_3\overline{A}_2A_1A_0$	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1

Basics

- Input = 1001
- Active high output 41
- AND

Basics

• Input = 1001 • Active low outpu $_{A_1}$ NAND $X = A_3 A_2 A_1 A_0$ • Chip would have A₂ 16 of these

Applications

- Memory Addressing
 - Turn on a specific bank of memory
- Turn specific things on and off
 - Ex TV vs projector screen

Encoders

- Reverse of decoder
- 2ⁿ inputs, n outputs

Basics

8 to 3 encoder (binary to octal)

D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7	A	B	C
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Application

- Keypad
- Encoded output
 is easier to transmit
 and use

Reading

- This lecture
 - Sections 6.4-6.6
- Next lecture
 - Sections 6.8-6.10