ПОЛУЧЕНИЕ И ИССЛЕДОВАНИЕ СТРУКТУРЫ ШПИНЕЛИ СОСТАВА MLa_2O_4 ($M=Ba^{2+}, Sr^{2+}$)

Завиралова В.Д.⁽¹⁾, Абакумова Е.В.^(1,2), Тарасова Н.А.^(1,2), Анимица И.Е.^(1,2)

⁽¹⁾ Уральский федеральный университет

620002, г. Екатеринбург, ул. Мира, д. 19

⁽²⁾ Институт высокотемпературной электрохимии УрО РАН

620137, г. Екатеринбург, ул. Академическая, д. 20

В прогрессивном мире использование невозобновляемых источников энергии сопряжено с рядом серьезных проблем, оказывающих негативное влияние на экономику, социальную сферу и окружающую среду. Особое внимание уделяется загрязнению воздуха, воды и почвы, а также выбросам парниковых газов при добыче и переработке ископаемого топлива. Ведется большая работа по поиску решений, в том числе развитие новых передовых технологий аккумулирования и преобразования энергии.

Водородная энергетика — это область, которая фокусируется на использовании водорода в качестве источника энергии. Здесь особый интерес представляют твердооксидные топливные элементы (ТОТЭ) — электрохимические устройства, которые преобразуют химическую энергию топлива в электрическую с высокой эффективностью. Для этих целей ведется разработка устойчивых соединений с более низким диапазоном температур в отличие от существующих, для которых характерны значения $T_{pa\delta} > 800$ °C.

Сложные оксиды со структурой шпинели AB_2O_4 чаще содержат в подрешетке A двухвалентный металл, а в подрешетке B — трехвалентный. Но возможна кристаллизация и других стехиометрических соединений: $A^IIB^{II}B^{IV}O_4$, $A^IB^IB^VO_4$, $A^IB^IB^VO_4$, $A^IB^IB^VO_4$, $A^IB^IB^IVO_4$, A^IB^I

Соединения $BaLa_2O_4$ и $SrLa_2O_4$ относятся к перовскитоподобной структуре и характеризуются определенной степенью беспорядка в расположении катионов. В данной работе изучены методы получения сложных оксидов и проведен анализ структуры.