Master Theorem

Gives the Time Complexity for the recurrence relation: T(n) = aT(n/b) + f(n)

Master Theorem

For the Recurrence: $T(n) = aT(n/b) + \Theta(n^c)$, a >= 1, b > 1

There are following three cases:

1. If $f(n) = \Theta(n^c)$ where $c < Log_b a$ then $T(n) = \Theta(n^{Log_b a})$

2. If $f(n) = \Theta(n^c)$ where $c = Log_b a$ then $T(n) = \Theta(n^c Log n)$

Problems:

1.
$$T(n) = 2 T(n/2) + \Theta(n)$$

$$a = 2$$
, $b = 2$, $c = 1$
 $\Rightarrow c = \log_b a$

Time Complexity: $\Theta(n \log_2 n)$

Time Complexity using Masters Theorem | C++ Placement Course | Lecture 16.5

Press Esc to exit full screen

Problems:

2.
$$T(n) = 3T(n/2) + n^2$$

$$a = 3$$
, $b = 2$, $c = 2$
 $\Rightarrow c > \log_b a$

Time Complexity: Θ(n²)

Time Complexity using Masters Theorem | C++ Placement Course | Lecture 16.5

0 4

Recurrence Tree Method:

1.
$$T(n) = T(n-1) + n$$

 $T(n) = T(n-1) + n$
 $T(n-1) = T(n-2) + n-1$
 $T(n-2) = T(n-3) + n-2$

Adding all the terms, we get

Recurrence Tree Method:

$$T(n) = n + (n-1) + (n-2) + (n-3) + + 1$$

 $T(n) = (n * (n+1))/2$
 $T(n) = \Theta(n^2)$

Recurrence:

```
T(n) = 2T(n/2) + n
T(n) = 2T(n/2) + n
T(n/2) = 2T(n/4) + n/2
T(n/4) = 2T(n/8) + n/4
.
.
.
.
.
.
.
```

Quick Sort Complexity:

Quick Sort Complexity:

$$T(n) = n + n + n + ...$$
 Log n terms
= $\Theta(n \text{ Log } n)$ in best case

