પ્રશ્ન 1(અ) [3 ગુણ]

8051 માઇક્રોકંટ્રોલરના સામાન્ય ફીચર્સની યાદી બનાવો.

જવાબ:

ટેબલ: 8051 માઇક્રોકંટ્રોલરના સામાન્ય ફીચર્સ

ફીચર	વર્ણન
On-chip Oscillator	બિલ્ટ-ઇન ક્લોક જનરેટર સર્કિટ
Program Memory	કોડ સ્ટોરેજ માટે 4KB આંતરિક ROM
Data Memory	128 bytes આંતરિક RAM
I/O Ports	4 દ્વિદિશીય 8-bit પોર્ટ્સ (P0-P3)
Timers/Counters	બે 16-bit Timer/Counter યુનિટ્સ
Serial Port	Full duplex UART કમ્યુનિકેશન
Interrupts	પ્રાથમિકતા સાથે 5 interrupt સ્રોતો
SFRs	કંટ્રોલ માટે Special Function Registers

મેમરી ટ્રીક: "On Program Data I/O Timers Serial Interrupts SFRs"

પ્રશ્ન 1(બ) [4 ગુણ]

T-State, Machine Cycle, Instruction Cycle અને Opcode ની વ્યાખ્યા આપો.

જવાબ:

ટેબલ: માઇક્રોપ્રોસેસર ટાઇમિંગ વ્યાખ્યાઓ

શહ€	વ્યાખ્યા	અવધિ	
T-State	સિસ્ટમ ક્લોકનો એક સમયગાળો	મૂળભૂત ટાઇમિંગ યુનિટ	
Machine Cycle	એક મેમરી ઓપરેશન પૂરું કરવાનો સમય	3-6 T-states	
Instruction Cycle	instruction fetch, decode અને execute કરવાનો સમય	1-4 Machine cycles	
Opcode	instruction પ્રકાર દર્શાવતો operation કોડ	1-3 bytes	

• **T-State**: માઇક્રોપ્રોસેસર ઓપરેશનનો સૌથી નાનો સમય એકમ

• Machine Cycle: મેમરી એક્સેસ માટે અનેક T-states ધરાવે છે

• Instruction Cycle: સંપૂર્ણ instruction execution નો સમય

• Opcode: વિશિષ્ટ instruction ઓળખતો બાઇનરી કોડ

મેમરી ટ્રીક: "Time Machine Instruction Operation"

પ્રશ્ન 1(ક) [7 ગુણ]

Von-Neumann અને Harvard Architecture ની સરખામણી કરો.

જવાબ:

રેબલ: Von-Neumann vs Harvard Architecture સરખામણી

પરિમાણ	Von-Neumann	Harvard	
Memory Organization	કોડ અને ડેટા માટે એક જ મેમરી	ક્રોડ અને ડેટા માટે અલગ મેમરી	
Bus Structure	એક જ bus સિસ્ટમ	ક્યુઅલ bus સિસ્ટમ	
Speed	bus sharing થી ધીમી	parallel access થી ઝડપી	
Cost	ઓછી કિંમતે અમલીકરણ	ક્યુઅલ મેમરી થી વધારે કિંમત	
Flexibility	વધારે flexible મેમરી ઉપયોગ	ઓછી flexibility, નિશ્ચિત allocation	
Examples	8085, x86 processors	8051, DSP processors	

મુખ્ય તફાવતો:

- Memory Access: Von-Neumann sequential access, Harvard simultaneous access
- **Performance**: embedded applications માટે Harvard ઝડપી છે
- **Applications**: general computing หเ2 Von-Neumann, real-time systems หเ2 Harvard

મેમરી ટ્રીક: "Von-Single Harvard-Dual"

પ્રશ્ન 1(ક) OR [7 ગુણ]

Microcomputer System ને block diagram સાથે સમજાવો.

જવાબ:

Microcomputer System ना घटडो:

રેબલ: Microcomputer System ના ઘટકો

ยรร	รเช้	ઉદાહરણો
СРИ	કેન્દ્રીય પ્રોસેસિંગ અને નિયંત્રણ	8085, 8086
Memory	પ્રોગ્રામ અને ડેટા સ્ટોરેજ	RAM, ROM, EPROM
I/O Unit	બાહ્ય દુનિયા સાથે interface	Keyboard, Display
System Bus	ડેટા ટ્રાન્સફર માર્ગ	Address, Data, Control

- **CPU**: instructions execute કરે છે અને સિસ્ટમ ઓપરેશન control કરે છે
- Memory: પ્રોસેસિંગ માટે programs અને data store કરે છે
- **I/O**: બાહ્ય devices સાથે કમ્યુનિકેશન પૂરું પાડે છે
- **Bus**: ડેટા ટ્રાન્સફર માટે બધા components ને જોડે છે

મેમરી ટ્રીક: "CPU Memory I/O Bus"

પ્રશ્ન 2(અ) [3 ગુણ]

	+	+
	+	++
	V	v
+		+ ++
	Address	
	Bus	Bus
	16-bit	
+		+ ++
	V	V
4		+ ++
	Memory	I/O
	System	Devices
4	·	+ ++

ટેબલ: 8085 Bus Organization

Bus หราง	Width	ธเช้
Address Bus	16-bit	મેમરી addressing (64KB)
Data Bus	8-bit	ડેટા ટ્રાન્સફર
Control Bus	Multiple	કંટ્રોલ સિગ્નત્સ

મેમરી ટ્રીક: "Address Data Control"

પ્રશ્ન 2(બ) [4 ગુણ]

8085 માં ઉપયોગમાં લેવાતા Flags ની સૂચી બનાવો અને દરેક flag નું કાર્ય સમજાવો.

જવાબ:

ટેબલ: 8085 Flags Register

Flag	नाम	Bit Position	รเช้
S	Sign	D7	પરિણામ નકારાત્મક હોય તો set
Z	Zero	D6	પરિણામ શૂન્ય હોય તો set
AC	Auxiliary Carry	D4	bit 3 થી 4 માં carry હોય તો set
P	Parity	D2	પરિણામમાં even parity હોય તો set
CY	Carry	D0	carry/borrow થાય તો set

D7 D6 D5 D4 D3 D2 D1 D0
+---+---+---+---+
| S | Z | - | AC | - | P | - | CY |
+---+---+---+---+

- Sign Flag: નકારાત્મક પરિણામ દર્શાવે છે (MSB = 1)
- Zero Flag: arithmetic પરિણામ શૂન્ય થાય ત્યારે set થાય છે
- Auxiliary Carry: BCD arithmetic operations માટે ઉપયોગ થાય છે
- Parity Flag: પરિણામમાં 1's ની સમ સંખ્યા તપાસે છે
- Carry Flag: arithmetic operations માં overflow દર્શાવે છે

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Sign Zero Auxiliary Parity Carry"

પ્રશ્ન 2(ક) [7 ગુણ]

8085 નો Block Diagram દોરો અને સમજાવો.

જવાબ:

ટેબલ: 8085 Block Components

Block	รเช้	Size
ALU	Arithmetic અને logical operations	8-bit
Accumulator	operations માટે પ્રાથમિક register	8-bit
Registers	ડેટા સ્ટોરેજ (B,C,D,E,H,L)	દરેક 8-bit
Program Counter	આગલી instruction તરફ point કરે છે	16-bit
Stack Pointer	stack ના top તરફ point કરે છે	16-bit
Control Unit	Instruction decode અને control	-

- Data Flow: PC ผูเลเ instructions fetch, CU ผูเลเ decode, ALU หi execute
- **Register Operations**: Accumulator ALU સાથે કાર્ય કરે છે, બીજા registers ડેટા store કરે છે
- Address Generation: PC અને SP 16-bit addresses આપે છે
- Control Signals: CU timing અને control signals generate કરે છે

મેમરી ટ્રીક: "ALU Accumulator Registers Program Stack Control"

પ્રશ્ન 2(અ) OR [3 ગુણ]

Microprocessor માં Instruction Fetching, Decoding અને Execution Operation સમજાવો.

જવાબ:

રેબલ: Instruction Cycle Phases

Phase	Operation	Duration
Fetch	મેમરીમાંથી instruction મેળવો	1 machine cycle
Decode	Instruction opcode નું અર્થઘટન	Execute નો ભાગ
Execute	જરૂરી operation કરો	1-3 machine cycles

મેમરી ટ્રીક: "Fetch Decode Execute"

પ્રશ્ન 2(બ) OR [4 ગુણ]

8085 માં Lower order Address અને Data lines નું Demultiplexing શું છે? આકૃતિની મદદથી સમજાવો.

જવાબ:

Demultiplexing Process:

- ALE Signal: address અને data ના વિભાજનને control કરે છે
- Latch IC: ALE high હોય ત્યારે 74LS373 address store કરે છે
- Timing: પહેલા address આવે છે, પછી same lines પર data આવે છે

રેબલ: Demultiplexing Components

Component	รเข้	Timing
ALE	Address Latch Enable signal	T1 દરમિયાન high
74LS373	Octal latch IC	A7-A0 store sè છે
AD7-AD0	Multiplexed lines	પહેલા Address પછી Data

મેમરી ટ્રીક: "Address Latch Enable Demultiplexes Lines"

પ્રશ્ન 2(ક) OR [7 ગુણ]

8085 નો Pin Diagram દોરો અને સમજાવો.

જવાબ:

	8085 PIN DIAGR	AM
	+	
X1 1	40 VCC	
X2 2	39 ног	
RST 3	38 HLI	
SOD 4	37 CLE	
SID 5	36 RES	ET
TRAP 6	35 REA	.DY
RST7 7	34 10/	M
RST6 8	33 S1	
RST5 9	32 RD	
INTR 10	31 WR	
INTA 11	. 30 ALE	
AD0 12	29 80	
AD1 13	28 A15	
AD2 14	·	
	26 A13	
AD4 16	·	
	24 A11	
	23 A10	
	22 A9	
VSS 20	·	
·	+	

ટેબલ: 8085 Pin કાર્યો

Pin Group	รเช้	Count
Address Bus	A8-A15 (ઉચ્ચ ક્રમ)	8 pins
Address/Data	AD0-AD7 (Multiplexed)	8 pins
Control Signals	ALE, RD, WR, IO/M	4 pins
Interrupts	TRAP, RST7.5, RST6.5, RST5.5, INTR	5 pins
Power	VCC, VSS	2 pins
Clock	X1, X2, CLK	3 pins

• Address Lines: 16-bit addressing क्षमता (64KB)

• Data Lines: 8-bit ડેટા ટ્રાન્સફર

• Control Lines: મેમરી અને I/O ઓપરેશન કંટ્રોલ

• Interrupt Lines: ๔เร็ต่ะ interrupt handling

મેમરી ટ્રીક: "Address Data Control Interrupt Power Clock"

પ્રશ્ન 3(અ) [3 ગુણ]

8051 નો IP SFR દોરો અને દરેક bit નું કાર્ય સમજાવો.

જવાબ:

ટેબલ: IP Register Bit કાર્યો

Bit	нін	รเข้
D4	PT2	Timer 2 interrupt priority
D3	PS	Serial port interrupt priority
D2	PT1	Timer 1 interrupt priority
D1	PX1	External interrupt 1 priority
D0	PX0	External interrupt 0 priority

- **Priority Levels**: 1 = High priority, 0 = Low priority
- Default: ผยเ interrupts low priority (00H)
- Usage: High priority interrupt માટે bit 1 કરો

ਮੇਮਰੀ ਟ੍ਰੀs: "Timer2 Serial Timer1 External1 External0"

પ્રશ્ન 3(બ) [4 ગુણ]

8051 માટે Timer/Counter Logic diagram દોરો અને સમજાવો.

ટેબલ: Timer Components

Component	รเข้	Size
TH0/TL0	Timer 0 high/low byte registers	દરેક 8-bit
TMOD	Timer mode register	8-bit
TCON	Timer control register	8-bit
TF0	Timer 0 overflow flag	1-bit

• Clock Source: આંતરિક (system clock/12) અથવા બાહ્ય (T0 pin)

• **Operation**: લોડ કરેલા મૂલ્યથી FFH સુધી count કરે છે

• **Overflow**: TF0 flag set કરે છે અને interrupt generate કરે છે

• Modes: 4 અલગ અલગ timer modes ઉપલબ્ધ છે

મેમરી ટ્રીક: "Timer High-Low Mode Control Flag"

પ્રશ્ન 3(ક) [7 ગુણ]

8051 નો Block Diagram દોરો અને સમજાવો.

ટેબલ: 8051 Block Components

Block	รเช้	વિશેષતા
CPU	કેન્દ્રીય પ્રોસેસિંગ યુનિટ	8-bit processor
Program Memory	કોડ સ્ટોરેજ	4KB આંતરિક ROM
Data Memory	વેરિયેબલ સ્ટોરેજ	128 bytes RAM
I/O Ports	બાહ્ય interface	4 ports (32 I/O lines)
Timers	ટાઇમિંગ ઓપરેશન્સ	2 × 16-bit timers
Serial Port	કમ્યુનિકેશન	Full duplex UART
Interrupts	Event handling	5 interrupt sources

- **Architecture**: program/data મેમરી માટે અલગ Harvard architecture
- I/O Capability: 32 દ્વિદિશીય I/O lines
- On-chip Features: Timers, serial port, interrupt system
- Memory: ડેટા માટે Von-Neumann, પ્રોગ્રામ માટે Harvard

મેમરી ટ્રીક: "CPU Program Data I/O Timer Serial Interrupt"

પ્રશ્ન 3(અ) OR [3 ગુણ]

8051 નો PCON SFR દોરો અને દરેક bit નું કાર્ય સમજાવો.

જવાબ:

ટેબલ: PCON Register Bit કાર્યો

Bit	નામ	รเช่
D7	SMOD	Serial port mode modifier
D3	GF1	General purpose flag bit 1
D2	GF0	General purpose flag bit 0
D1	PD	Power down mode control
D0	IDL	Idle mode control

• SMOD: set થાય ત્યારે serial port baud rate બમણો કરે છે

• **GF1, GF0**: યુઝર-ડિફાઇન્ડ flag bits

• PD: power-down mode સક્રિય કરે છે

• IDL: idle mode સિક્રય કરે છે

ਮੇਮરੀ ਟ੍ਰੀs: "Serial General Power Idle"

પ્રશ્ન 3(બ) OR [4 ગુણ]

8051 Serial communication Mode 1 માં, XTAL=11.0592 MHz માટે, 9600 અને 4800 baud rate મેળવવા માટે TH1 ની કિંમત શોદ્યો.

જવાબ:

Mode 1 Baud Rate માટે સૂત્ર:

```
Baud Rate = (2^SMOD/32) × (Timer1 Overflow Rate)
Timer1 Overflow Rate = XTAL/(12 × (256 - TH1))
```

9600 Baud Rate માટે:

```
9600 = (1/32) × (11059200/(12 × (256 - TH1)))

9600 = 28800/(256 - TH1)

256 - TH1 = 3

TH1 = 253 = FDH
```

4800 Baud Rate ਮਾਣੇ:

```
4800 = (1/32) × (11059200/(12 × (256 - TH1)))

4800 = 28800/(256 - TH1)

256 - TH1 = 6

TH1 = 250 = FAH
```

ટેબલ: Baud Rates માટે TH1 મૂલ્યો

Baud Rate	TH1 મૂલ્ય (Hex)	TH1 મૂલ્ય (Decimal)
9600	FDH	253
4800	FAH	250

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Higher Baud Higher TH1"

પ્રશ્ન 4(અ) [3 ગુણ]

8051 માં LCALL અને LJMP instructions માં શું ફરક છે?

જવાબ:

ટેબલ: LCALL vs LJMP સરખામણી

પરિમાણ	પરિમાણ LCALL	
Function	Long subroutine call	Long jump
Stack Usage	Return address push કરે છે	કોઈ stack operation નથી
Return	RET instruction જરૂરી	इडत direct jump
Bytes	3 bytes	3 bytes
Address Range	16-bit (64KB)	16-bit (64KB)
PC Action	Save પછી load	સીધું load

- **LCALL**: subroutine call કરે છે, return address stack પર save કરે છે
- LJMP: specified address ч₹ unconditional jump
- Stack Impact: LCALL 2 stack bytes વાપરે છે, LJMP કોઈ વાપરતું નથી
- Usage: functions หเ2 LCALL, program flow control หเ2 LJMP

મેમરી ટ્રીક: "Call Saves Jump Goes"

પ્રશ્ન 4(બ) [4 ગુણ]

Timer0 વાપરીને port 1.0 પર square wave generate કરવા માટે 8051 Assembly Language Program લખો.

```
ORG 0000H ; શરૂઆતી address
LJMP MAIN ; મુખ્ય પ્રોગ્રામ પર jump

ORG 0030H ; મુખ્ય પ્રોગ્રામ શરૂઆત

MAIN:

MOV TMOD, #01H ; Timer0 model (16-bit)

MOV THO, #HIGH(-50000) ; High byte dis sei

MOV TLO, #LOW(-50000) ; Low byte dis sei
```

```
SETB TRO ; TimerO રારૂ કરો

LOOP:

JNB TFO, LOOP ; Overflow માટે રાહ જુઓ
CLR TFO ; Overflow flag clear કરો
CPL P1.0 ; P1.0 toggle કરો
MOV THO, #HIGH(-50000) ; Timer reload કરો
MOV TLO, #LOW(-50000) ; Timer reload કરો
SJMP LOOP ; પુનરાવર્તન
```

પ્રોગ્રામ સમજાવટ:

• Timer Setup: Mode 1 (16-bit timer)

• Count Value: વિશિષ્ટ delay માટે -50000

• Square Wave: દરેક overflow પર P1.0 toggle કરો

• Continuous: Loop square wave ବ୍ୟଦ୍ୟ છે

મેમરી ટ્રીક: "Mode Load Start Wait Toggle Reload"

પ્રશ્ન 4(ક) [7 ગુણ]

8051 ની કોઈપણ ત્રણ Logical અને ચાર Data Transfer Instructions ઉદાહરણ સાથે સમજાવો.

જવાબ:

ટેબલ: Logical Instructions

Instruction	รเข้	ઉદાહરણ	પરિણામ
ANL	Logical AND	ANL A, #0FH	A = A AND 0FH
ORL	Logical OR	ORL A, #F0H	A = A OR F0H
XRL	Logical XOR	XRL A, #FFH	A = A XOR FFH

રેબલ: Data Transfer Instructions

Instruction	รเน้	ઉદાહરણ	ઓપરેશન
MOV	ડેટા move કરો	MOV A, #50H	A માં 50H લોડ કરો
MOVX	External move	MOVX A, @DPTR	External memory થી લોડ કરો
PUSH	Stack પર push	PUSH ACC	Accumulator stack પર push
POP	Stack થી pop	POP ACC	Stack થી accumulator માં pop

વિગતવાર ઉદાહરણો:

```
; Logical Instructions

ANL A, #0FH ; Upper nibble mask Sti

ORL P1, #80H ; Portl di bit 7 set Sti

XRL A, #FFH ; Accumulator complement Sti

; Data Transfer Instructions

MOV R0, #30H ; Immediate data dis Sti

MOVX @DPTR, A ; External memory di store Sti

PUSH B ; B register save Sti

POP PSW ; Status word restore Sti
```

મેમરી ટ્રીક: "AND OR XOR Move External Push Pop"

પ્રશ્ન 4(અ) OR [3 ગુણ]

Instructions સમજાવો: (i) RRC A (ii) POP (iii) CLR PSW.7

જવાબ:

ટેબલ: Instruction સમજાવટો

Instruction	કાર્ય	ઓપરેશન	ઉદાહરણ
RRC A	Carry દ્વારા જમણે rotate	A→C, C→A(MSB)	A=85H,C=0 → A=42H,C=1
POP	Stack થી pop	SP→Register, SP-1	POP ACC
CLR PSW.7	PSW નો bit 7 clear	PSW.7 = 0	CY flag clear

```
RRC A Operation:

vèdi: A = [D7 D6 D5 D4 D3 D2 D1 D0] C = [C]

vel: A = [C D7 D6 D5 D4 D3 D2 D1] C = [D0]
```

- RRC A: Accumulator ને carry flag દ્વારા જમણે rotate કરે છે
- **POP**: Top stack element ને specified register માં remove કરે છે
- CLR PSW.7: Carry flag clear કરે છે (Program Status Word નો bit 7)

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Rotate Pop Clear"

પ્રશ્ન 4(બ) OR [4 ગુણ]

30H લોકેશનમાં સેટોર ડેટાને 31H લોકેશનમાં સ્ટોર ડેટાવડે ભાગાકાર કરી શેષને 40h અને ભાગફળને 41h મેમરી લોકેશનમાં સ્ટોર કરવા માટે 8051 નો Assembly Language Program લખો.

```
ORG 0000H
                    ; પ્રોગ્રામ શરૂઆત
LJMP MAIN
ORG 0030H
MAIN:
   MOV A, 30H ; Dividend Gis sei
                  ; Divisor GÌS કરો
   MOV B, 31H
                  ; A ને B વડે ભાગો
   DIV AB
                 ; Quotient સ્ટોર કરો
   MOV 41H, A
   MOV 40H, B
                  ; Remainder સ્ટોર કરો
   SJMP $
                   ; અહીં રોકો
END
```

પ્રોગ્રામ સ્ટેપ્સ:

1. **ડેટા લોડ**: Dividend અને divisor ને A અને B માં move કરો

2. **Division**: DIV AB instruction વાપરો

3. **પરિણામ સ્ટોર**: A માં quotient, B માં remainder

4. Save: પરિણામો specified મેમરી લોકેશન્સમાં સ્ટોર કરો

રેબલ: DIV AB Instruction

પહેલાં	પછી
A = Dividend	A = Quotient
B = Divisor	B = Remainder

ਮੇਮਣੀ ਟ੍ਰੀs: "Load Divide Store"

પ્રશ્ન 4(ક) OR [7 ગુણ]

8051 Microcontroller ના Addressing Modes ની યાદી બનાવો અને દરેકને ઉદાહરણ સાથે સમજાવો.

જવાબ:

ટેબલ: 8051 Addressing Modes

Mode	વર્ણન	ઉદાહરણ	સમજાવટ
Immediate	Instruction માં ડેટા	MOV A, #50H	A માં 50H લોડ કરો
Register	Register વાપરો	MOV A, R0	R0 નો content A માં move કરો
Direct	મેમરી address સ્પષ્ટ	MOV A, 30H	Address 30H થી લોડ કરો
Indirect	Register भां address	MOV A, @R0	R0 માં આવેલા address થી લોડ કરો
Indexed	Base + offset	MOVC A, @A+DPTR	A = content of (A+DPTR)
Relative	PC + offset	SJMP HERE	PC સાપેક્ષ jump
Bit	Bit address	SETB P1.0	Port 1 નો bit 0 set કરો

વિગતવાર ઉદાહરણો:

```
; Immediate Addressing
MOV A, #25H ; géd ųcu 25H GÌS SEÌ

; Register Addressing
MOV A, R7 ; Register R7 À A Hi move SEÌ

; Direct Addressing
MOV A, 40H ; HHE GÌSEH 40H EÜ GÌS SEÌ

; Indirect Addressing
MOV R0, #50H ; R0 address 50H dEE point SEÈ EÒ
MOV A, ERO ; R0 GIEL UÌEL-E SEGH address EÜ GÌS SEÌ

; Indexed Addressing
MOV DPTR, #TABLE ; Lookup table dEE point SEÌ
MOVC A, EA+DPTR ; Table[A] EÜ GÌS SEÌ

; Relative Addressing
SJMP NEXT ; Label NEXT VE jump SEÌ

; Bit Addressing
SETB P2.5 ; Port 2 HÌ bit 5 set SEÌ
```

મેમરી ટ્રીક: "Immediate Register Direct Indirect Indexed Relative Bit"

પ્રશ્ન 5(અ) [3 ગુણ]

8051 microcontroller સાથે Relay ઇન્ટરફેસિંગ દોરો.

```
8051 Port Pin
```


วัผผ: Interface Components

Component	รเช้	મૂલ્ય
Transistor	Current amplifier	BC547 NPN
Resistor	Base current limiter	2.2ΚΩ
Relay	Electromagnetic switch	12V DC
Diode	Back EMF protection	1N4007

- **Operation**: Port pin HIGH \rightarrow Transistor ON \rightarrow Relay energized
- **Protection**: Diode back EMF damage અટકાવે છે
- **Isolation**: Relay electrical isolation પૂરું પાડે છે

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Transistor Resistor Relay Diode"

પ્રશ્ન 5(બ) [4 ગુણ]

8051 microcontroller સાથે 7-Segment display ઇન્ટરફેસ કરો અને "1" પ્રિન્ટ કરવાનો પ્રોગ્રામ લખો.

```
8051 Port 1
P1.0 ----[330Ω]---- a
P1.1 ----[330Ω]---- b
P1.2 ----[330Ω]---- c
```

```
P1.3 ---[330\Omega]---- d
P1.4 ---[330\Omega]---- e
P1.5 ---[330\Omega]---- f
P1.6 ---[330\Omega]---- g
P1.7 ---[330\Omega]---- dp

7-Segment Display

aaaa

f b

f b

gggg

e c

e c

e dddd dp
```

"1" Display કરવાનો પ્રોગ્રામ:

```
ORG 0000H
LJMP MAIN

ORG 0030H
MAIN:

MOV P1, #06H ; "1" display Stì (segments b,c ON)
SJMP $ ; અહੀਂ ਦੇੜੇ

; "1" ਮੀਟੇ Pattern: 00000110 = 06H
; ŞSd segments b અને c ON છે
```

રેબલ: 7-Segment Display Components

Component	รเช	મૂલ્ય
Current Limiting Resistor	LED segments ને protect કરે છે	330Ω
Port Connection	Digital output control	Port 1
Display Pattern	Segment control	Binary pattern

મેમરી ટ્રીક: "Current Limit Segment Pattern"

પ્રશ્ન 5(ક) [7 ગુણ]

8051 microcontroller સાથે DAC 0808 ઇન્ટરફેસ કરો અને Square wave generate કરવાનો પ્રોગ્રામ લખો.

```
8051 DAC0808

Port 2 +----+

P2.0 ----> | D0 IOUT|---[10KΩ]---+--> Vout
```

```
P2.1 ---->| D1
P2.2 ---->| D2
                  IREF | ---[10KΩ]---+
                   P2.3 ---->| D3
P2.4 ---->| D4
                   VCC | --- (+5V)
P2.5 ----> | D5
                   VEE | --- (-5V)
P2.6 ----> D6
                     P2.7 ----> D7
             GND | --- (GND)
        +----+
                            Op-Amp Buffer
                             Output
```

Square Wave Generate કરવાનો પ્રોગ્રામ:

```
ORG 0000H
LJMP MAIN
ORG 0030H
MAIN:
   MOV A, #00H ; Minimum મૂલ્ય (0V)
MOV P2, A ; DAC પર output
CALL DELAY ; રાહ જુઓ
    MOV A, #0FFH ; Maximum ५억 (여기어기 5V)
    MOV P2, A ; DAC પર output
CALL DELAY ; રાહ જુઓ
    SJMP MAIN ; Square wave માટે પુનરાવર્તન
DELAY:
    MOV RO, #200 ; Delay counter
LOOP1:
    MOV R1, #250 ; Inner loop counter
LOOP2:
    DJNZ R1, LOOP2 ; Inner delay loop
    DJNZ RO, LOOP1 ; Outer delay loop
    RET
END
```

રેબલ: DAC Interface Specifications

પરિમાણ	મૂલ્ય	ธเน้
Resolution	8-bit	256 output levels
Reference Voltage	5V	Full scale output
Output Range	0-5V	Analog voltage range
Interface Type	Parallel	8-bit data bus

Square Wave Generation:

• Low Level: 00H લગભગ 0V output પેદા કરે છે

• **High Level**: FFH લગભગ 5V output પેદા કરે છે

• Frequency: Delay routine ના duration દ્વારા નક્કી થાય છે

• Output: DAC output પર સ્વચ્છ analog square wave

મેમરી ટ્રીક: "Digital Analog Convert Square"

પ્રશ્ન 5(અ) OR [3 ગુણ]

8051 microcontroller સાથે Push button Switch નું Interface.

જવાબ:

રેબલ: Push Button Interface Components

Component	મૂલ્ય	รเข้
Pull-up Resistor	10ΚΩ	Switch ખુલ્લું હોય ત્યારે logic HIGH સુનિશ્ચિત કરે છે
Push Button	SPST Momentary	User input device
Logic Levels	HIGH=1, LOW=0	Switch ખુલ્લું=1, દબાવ્યું=0

Sample Program:

```
CHECK_SWITCH:

JB P1.0, SW_RELEASED ; Switch દબાવ્યું નથી તો jump
; Switch દબાવેલું હોય ત્યારનો code અહીં
CALL SWITCH_PRESSED
SJMP CHECK_SWITCH

SW_RELEASED:
; Switch દબાવ્યું નથી ત્યારનો code અહીં
SJMP CHECK_SWITCH

SWITCH_PRESSED:
; Switch દબાવેલું હોય ત્યારે action
RET
```

Operation:

- **Switch ખુલ્લું**: Pull-up resistor pin ને HIGH (logic 1) બનાવે છે
- Switch દબાવ્યું: Pin GND સાથે જોડાય છે, LOW (logic 0) બને છે
- **Debouncing**: વિશ્વસનીય operation માટે software debouncing જરૂરી હોઈ શકે છે

મેમરી ટ્રીક: "Pull-up Switch Ground"

પ્રશ્ન 5(બ) OR [4 ગુણ]

8051 microcontroller સાથે DC Motor ઇન્ટરફેસ કરો.

```
8051 Port Pin (P1.0)
  +---+
| 1K | Base Resistor
+---+
+---+ Base
NPN | Power Transistor
| TIP122 | (Darlington)
+---+
  Collector
+---+
DC | 12V DC Motor
Motor
+---+
  +VCC (12V)
+---+ Freewheeling Diode
| 1N4007 | (Motor नी आर पार)
```

```
+---+
```

Motor Control Program:

```
MOTOR_ON:
   SETB P1.0
               ; Motor ON કરો
   RET
MOTOR_OFF:
   CLR P1.0 ; Motor OFF Sel
   RET
MOTOR_SPEED_CONTROL:
   ; Speed control भाटे PWM
   SETB P1.0 ; Motor ON
   CALL DELAY ON ; ON time duration
   CLR P1.0 ; Motor OFF
   CALL DELAY OFF ; OFF time duration
DELAY_ON:
   MOV RO, #100 ; ON time delay
   DJNZ RO, $
   RET
DELAY OFF:
   MOV RO, #50 ; OFF time delay
   DJNZ RO, $
   RET
```

ટેબલ: DC Motor Interface Components

Component	รเช่	વિશેષતા
Power Transistor	Current amplification	TIP122 (Darlington pair)
Base Resistor	Current limiting	1ΚΩ
Freewheeling Diode	Back EMF protection	1N4007
DC Motor	Load device	12V DC Motor

Operation Principle:

- **Motor ON**: Port pin HIGH → Transistor saturated → Motor ચાલે છે
- **Motor OFF**: Port pin LOW → Transistor cut-off → Motor અટકે છે
- **Speed Control**: PWM technique motor ને average power બદલે છે
- **Protection**: Diode transistor ને back EMF થી બચાવે છે

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Transistor Resistor Diode Motor"

પ્રશ્ન 5(ક) OR [7 ગુણ]

8051 microcontroller સાથે LCD ઇન્ટરફેસ કરો અને "Hello" display કરવાનો પ્રોગ્રામ લખો.

જવાબ:

સંપૂર્ણ LCD Interface Program:

```
ORG 0000H
LJMP MAIN
ORG 0030H
MATN:
   CALL LCD INIT ; LCD initialize Sel
   MOV DPTR, #MESSAGE ; Message string dts point st
   CALL DISPLAY_STRING ; Message display Sel
   SJMP $
                     ; Execution અટકાવો
LCD INIT:
   CALL DELAY 15MS ; Power on પછી 15ms રાહ જુઓ
   MOV A, #38H ; Function set: 8-bit mode, 2 lines, 5x7 matrix
   CALL COMMAND WRITE
   MOV A, #0EH
                      ; Display on, cursor on, blink off
   CALL COMMAND WRITE
   MOV A, #01H
                      ; Display clear કरो
   CALL COMMAND_WRITE
   MOV A, #06H
                      ; Entry mode: cursor increment, no shift
   CALL COMMAND WRITE
   RET
COMMAND_WRITE:
                ; Data lines (D4-D7) પર command મોકલો
   MOV P2, A
                     ; Command भाटे RS = 0
   CLR P3.0
   SETB P3.1
                     ; Enable pulse high
   CALL DELAY 1MS
   CLR P3.1
                     ; Enable pulse low
   CALL DELAY 1MS
   RET
DATA_WRITE:
   MOV P2, A
                    ; Data lines (D4-D7) પર data મોકલો
```

```
SETB P3.0 ; Data HIZ RS = 1
   SETB P3.1
                       ; Enable pulse high
   CALL DELAY 1MS
             ; Enable pulse low
   CLR P3.1
   CALL DELAY_1MS
   RET
DISPLAY STRING:
   CLR A
   MOVC A, @A+DPTR ; String માંથી character મેળવો
JZ STRING_END ; Zero હોય તો string નો અંત
CALL DATA_WRITE ; Character display કરો
   INC DPTR ; આગલા character d२६ point s૨ો
   SJMP DISPLAY_STRING ; અંત સુધી ચાલુ રાખો
STRING_END:
   RET
MESSAGE: DB "HELLO", 0 ; Null terminator ਦੀ ਅੰ message string
DELAY 1MS:
   MOV RO, #4 ; Outer loop counter
DEL1:
   MOV R1, #250 ; Inner loop counter
DEL2:
   DJNZ R1, DEL2 ; Inner delay loop
   DJNZ RO, DEL1 ; Outer delay loop
   RET
DELAY 15MS:
   MOV R2, #15 ; 15ms delay counter
DEL15:
   CALL DELAY_1MS ; 1ms delay call Se
   DJNZ R2, DEL15
                      ; 15 વખત repeat કરો
   RET
END
```

ટેબલ: LCD Control Signals

Signal	Pin	รเช่
RS	P3.0	Register Select (0=Command, 1=Data)
EN	P3.1	Data latch માટે enable pulse
R/W	GND	Read/Write (write માટે GND સાથે tied)
D4-D7	P2.0-P2.3	4-bit data bus (upper nibble)

ટેબલ: મહત્વપૂર્ણ LCD Commands

Command	Hex Code	ธเช้
Function Set	38H	8-bit mode, 2 lines, 5x7 matrix
Display Control	0EH	Display ON, cursor ON, blink OFF
Clear Display	01H	સંપૂર્ણ display clear કરો
Entry Mode	06H	Cursor increment, no display shift

LCD Display Process:

1. **Initialization**: LCD parameters configure કરો અને display clear કરો

2. **Command Mode**: RS=0 સાથે commands મોકલો

3. **Data Mode**: RS=1 સાથે characters મોકલો

4. **Enable Pulse**: EN signal સાથે data/command latch કરો

5. **String Display**: Null terminator સુધી message characters માં loop કરો

Character Display Steps:

• Data mode માટે RS=1 set કરો

• Data bus પર character code મૂકો

• Enable pulse generate કરો (HIGH થી LOW)

• LCD ને process કરવા માટે રાહ જુઓ (1ms delay)

• આગલા character માટે repeat કરો

મેમરી ટ્રીક: "Initialize Command Data Enable Display"