Dashboards, from data to infographics

Derek Land (d.d.land@hhs.nl)
Suzanne Verspaandonk - de Jong (s.d.dejong@hhs.nl)

28 februari 2024

Grafana

Today

- 7 min Where does the data come from?
- 13 min Data storage?
- 10 min Display data in Dashboards
 - ▶ Using data for sustainable manufactoring

Today

- 7 min Where does the data come from?
- 13 min Data storage?
- 10 min Display data in Dashboards
 - Using data for sustainable manufactoring

Details

- Measuring data with an IOT device
- Sending data from an IOT device
- Receiving data using a IOT message protocol (MQTT)
- ► Collecting data in a graphical interface (Grafana)
- ▶ Using the information \rightarrow up to you!

Today

- 7 min Where does the data come from?
- 13 min Data storage?
- 10 min Display data in Dashboards
 - Using data for sustainable manufactoring

Applied University

- Working from sensor to Dashboard
- ► Handson experience
- ▶ Background information for further applications

Who am I

And why do I give this talk?

Who am I

And why do I give this talk?

- ► Lecturer at the Applied Physics department (THUAS)
 - Teaching computational related physics courses
- ▶ Researcher at the Smart Sensor Systems research group
 - Extracting the right data at the right time from sensors
 - In various fields (agriculture, predictive maintanance, well-being)

IOT Device - What is data?

Sensor Data

The output from a device that responds to the environment

IOT Device - What is data?

Sensor Data

The output from a device that responds to the environment

- ► RaspberryPi Pico (WH)
- ► Many possible use-cases
- Onboard temperature sensor
- Wireless capabilities

IOT Device - What is data?

Sensor Data

The output from a device that responds to the environment

- ► RaspberryPi Pico (WH)
- Many possible use-cases
- Onboard temperature sensor
- Wireless capabilities

Code already installed, ready to send data to the cloud!

IOT device - Cloud - Dashboard

Many other options... But this one for today

MQTT - cloudprovider

hiveMQ.com

A free Cloud MQTT Broker that enables you to connect up to 100 devices.

MQTT - cloudprovider

hiveMQ.com

A free Cloud MQTT Broker that enables you to connect up to 100 devices.

- ► Easy to see what is going on
- ▶ Nice for testing / learning / demonstrations
- ► Free to use with limited devices connected, easy to replace with other tools

MQTT - cloudprovider

hiveMQ.com

A free Cloud MQTT Broker that enables you to connect up to 100 devices.

- Easy to see what is going on
- ▶ Nice for testing / learning / demonstrations
- ► Free to use with limited devices connected, easy to replace with other tools

At home: RaspberryPi with mosquitto (MQTT) and a database container Professional: Surf (Apache Kafka) or paid HiveMQ or own infrastructure

Get HiveMQ

We make it easy for you to try HiveMQ

Select the HiveMQ Cloud plan you need

Serverless

FREE

By selecting Get Started you agree to our current SaaS Terms.

Get Started

A basic MQTT broker for learning and experimenting with MQTT.

A great place to play

Shared MOTT platform

RECOMMENDED

Starter

Starts from (i)

\$0.34/hour

\$0.80/million

\$250/month*

messages

Try with Free Credits

Complete MQTT platform for testing and small-scale production.

Everything in Serverless, plus

Dedicated MOTT platform

CREATE NEW CLUSTER

note the URL (will need that later!)

hiveMQ.com - cluster

create an account for your device (and the webviewer)

RaspberryPi Pico WH

- Circuitpython installed
- ► Accessable as a USB-device
- Connect Pico-W and edit settings.toml

Only need to change:

- 1. HIVE_cluster_url
- HIVE_username
- 3. HIVE_password

With the generated credentials!

https://github.com/ddland/MasterClass-Dashboards for complete code!

Data?

- Web client receives (and displays) data
- ► Temperature data with Timestamps
- ► Topic per sensor

Dashboard

How to display the data?

Grafana.com

- ► Self-hosted, opensource
- Cloudbased, subscription model
- ▶ Free account nice for testing and learning

Grafana.com

- Self-hosted, opensource
- ► Cloudbased, subscription model
- ► Free account nice for testing and learning
- → sign-up... and launch Grafana-stack (skip introduction)

HiveMQ - Grafana

- Install MQTT plugin
- ▶ Only streaming data, no storage!

Grafana - MQTT

- ▶ URL from HiveMQ (add the tls://, port :8883 at the end of the address)
- Username / password credentials from HiveMQ
- ► Save & Test

Grafana - MQTT

- ▶ URL from HiveMQ (add the tls://, port :8883 at the end of the address)
- Username / password credentials from HiveMQ
- Save & Test

Testing OK? \rightarrow explore data

Copy TOPIC from HiveMQ (or Raspberrypi Pico) in Explore Topic field

Do you see some data?

Grafana - Dashboard

Grafana Dashboard

A Grafana dashboard consists of panels displaying data in beautiful graphs, charts, and other visualizations.

So explore, add some panels and visualise the sensor data!

Grafana - Dashboard

Grafana Dashboard

A Grafana dashboard consists of panels displaying data in beautiful graphs, charts, and other visualizations.

So explore, add some panels and visualise the sensor data!

- ▶ Does your temperature measure the same as your neighbours?
- ▶ When should there be an alert colour?
- ▶ What do you want to bring across with the panel?
- ▶ Who is the intended audiance?

Take aways

- ▶ Where does the data come from?
- Does your measurement represent the data your want?
- How do you get the data to the end-user?
- What do you want to display?
- ▶ How do you make sure your message is understood?

First challenge in dashboard design is defining the information value of your data

Average temperature?

- Average temperature?
- ► Realtime temperature?

- ► Average temperature?
- Realtime temperature?
- ▶ Temperatures below or above a certain value?

- Average temperature?
- Realtime temperature?
- ► Temperatures below or above a certain value?
- Combination?

Then you can choose how to present that information

 $\blacktriangleright \ \ \, \text{Average temperature?} \, \to \, \text{Number, bar graph}$

- ightharpoonup Average temperature? ightharpoonup Number, bar graph
- ightharpoonup Realtime temperature? ightharpoonup Graph, table, gauge chart

- ightharpoonup Average temperature? ightharpoonup Number, bar graph
- ▶ Realtime temperature? → Graph, table, gauge chart
- ightharpoonup Temperatures below or above a certain value? ightharpoonup Graph, number, gauge chart (with boundaries)

- ightharpoonup Average temperature? ightharpoonup Number, bar graph
- ▶ Realtime temperature? → Graph, table, gauge chart
- ightharpoonup Temperatures below or above a certain value? ightharpoonup Graph, number, gauge chart (with boundaries)
- Combination?

Make it easy and attractive

- Alignment
- ► Colour
- Avoid information overflow

Make it easy and attractive

- Alignment
- ► Colour
- Avoid information overflow

