® BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

® Offenlegungsschrift

_® DE 197 34 895 A 1

(5) Int. Cl.⁶: **F 02 D 41/20** F 02 M 51/00

(1) Aktenzeichen: 197 34 895.5
 (2) Anmeldetag: 12. 8. 97
 (3) Offenlegungstag: 25. 2. 99

(1) Anmelder:

Siemens AG, 80333 München, DE

② Erfinder:

Gerken, Hartmut, 93152 Nittendorf, DE; Hoffmann, Christian, Dr., 93057 Regensburg, DE; Freudenberg, Hellmut, 93080 Pentling, DE; Pirkl, Richard, 93053 Regensburg, DE; Hecker, Martin, 93336 Altmannstein, DE

55 Entgegenhaltungen:

DE 36 21 541 C2 JP 3-199650 A und Patents Abstracts of Japan, M-1183;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (4) Vorrichtung und Verfahren zum Ansteuern wenigstens eines kapazitiven Stellgliedes
- Eine Vorrichtung zum Ansteuern wenigstens eines kapazitiven Stellgliedes wird über einen Kondensator von
 einem nach dem Sperrwandlerprinzip arbeitenden
 Schaltnetzteil SNT versorgt, dessen Sekundärspule zugleich die Funktion der großen und schweren Ladespule
 übernimmt. Dadurch wird Platz und Gewicht gespart.

Beschreibung

Die Erfindung betrifft eine Vorrichtung zum Ansteuern wenigstens eines kapazitiven Stellgliedes, insbesondere für Kraftstoffeinspritzventile einer Brennkraftmaschine, nach dem Oberbegriff von Anspruch 1. Die Erfindung betrifft auch ein Verfahren zum Betreiben dieser Vorrichtung.

Aus DE 36 21 541 A1 ist eine Vorrichtung zum Ansteuem kapazitiver Stellglieder mit einem von einer Spannungsquelle aufladbaren Kondensator, einer Lade- und einer Entladespule bekannt. Die an den kapazitiven Stellgliedern erreichbare Spannung U_P ist auf einen Wert $U_P < 2U_B$ kleiner als die doppelte Ausgangsspannung U_B der Spannungsquelle begrenzt.

Für eine Hochspannungsversorgung kapazitiver Stellglieder für Kraftstoffeinspritzventile einer Kraftfahrzeug-Brennkraftmaschine mit $U_P \approx 15 U_B$ ist diese Schaltung nicht geeignet. Höhere Spannungen sind bekannterweise mittels Schaltnetzteilen (SNT) erzeugbar.

Aufgrund der Abmessungen der Spulen des Schaltnetzteils SNT (Transformator), der Ladespule und der Entladespule sowie deren Gewicht entstehen Probleme bei deren Unterbringung in einem fahrzeugspezifischen Gehäuse.

Es ist Aufgabe der Erfindung, Abmessungen und Gewicht einer Vorrichtung zum Ansteuern wenigstens eines kapazitiven Stellgliedes so zu reduzieren, daß diese ohne Komplikationen in ein fahrzeugspezifisches Gehäuse paßt.

Aufgabe der Erfindung ist auch, ein Verfahren zum Betreiben dieser Vorrichtung anzugeben.

Diese Aufgabe wird erfindungsgemäß durch die Merk- 30 male des Anspruchs 1 gelöst.

Durch eine Verkoppelung des Schaltnetzteils mit der Schaltendstufe wird die Funktion von Lade- und Entladespule durch die Sekundärspule LS des Schaltnetzteil-Transformators SNT übernommen, welche dann als Umschwingspule arbeitet. Die große und schwere Ladespule (oder Entladespule) kann dadurch eingespart werden.

Ein Ausführungsbeispiel der Erfindung ist im folgenden unter Bezugnahme auf die schematische Zeichnung näher erläutert. Es zeigen:

Fig. 1 die Schaltung des Ausführungsbeispiels, und

Fig. 2 ein Flußdiagramm über den Ablauf des erfindungsgemäßen Ansteuerverfahrens.

Fig. 1 zeigt die Schaltung eines Ausführungsbeispiels nach der Erfindung zum Ansteuern von weiter nicht dargestellten Kraftstoffeinspritzventilen einer Kraftfahrzeug-Brennkraftmaschine über kapazitive (piezokeramische) Stellglieder Px (x = 1 bis n) mittels einer nicht näher ausgeführten Steuerschaltung ST, die Teil eines als Kasten angedeuteten, mikroprozessorgesteuerten Motorsteuergerätes 50 FCU ist

An den Anschlüssen +B und GND einer Bordspannungsquelle B, die eine Batteriespannung von beispielsweise 12 V liefert, liegt eine Reihenschaltung der Primärspule Lp eines Transformators T und eines elektronischen Schalters T1, 55 vorzugsweise eines PMOS-Transistors, welcher von der Steuerschaltung ST angesteuert wird. Transformator T und Ladeschalter T1 sind Teil eines Schaltnetzteils SNT, welches nicht näher ausgeführt, sondern nur durch einen strichlierten Kasten angedeutet ist. Dieses Schaltnetzteil SNT ar- 60 beitet nach dem Sperrwandler-Prinzip.

Die Sekundärspule L_S des Transformators T ist mit ihrem ersten Anschluß über einen Kondensator C mit dem Minuspol GND der Spannungsquelle B und mit ihrem zweiten Anschluß mit den einen Anschlüssen parallelliegender kapazitiver Stellglieder Px verbunden. Jeder andere Anschluß der kapazitiven Stellglieder Px (P1 bis Pn) ist über zwei jeweils nur in einer Richtung stromleitende, elektronische Schalter

T3x und T4x mit dem Minuspol GND der Spannungsquelle B verbunden, wobei der jeweils eine Schalter T3x als Ladeschalter dient und vom jeweiligen Stellglied Px zum Minuspol GND leitend steuerbar ist, und der jeweils andere Schalter T4x als Entladeschalter dient und vom Minuspol GND zum jeweiligen Stellglied Px leitend steuerbar ist.

Zwischen dem zweiten Anschluß der Sekundärspule $L_{\rm S}$ und dem Minuspol GND ist eine Reihenschaltung einer Abkommutierungsspule $L_{\rm A}$ und eines zum Minuspol GND hin stromleitend steuerbaren elektronischen Abkommutierungsschalters T2 und parallel zu dieser Reihenschaltung eine Diode D, welche in Richtung vom Minuspol GND zum zweiten Anschluß der Sekundärspule $L_{\rm S}$ stromleitend ist, angeordnet.

Vorzugsweise sind der Abkommutierungsschalter T2, die Ladeschalter T3x und die Entladeschalter T4x Thyristorschalter, die beim Stromnulldurchgang (wenn der durch sie fließende Strom sein Vorzeichen wechselt) von selbst verlöschen.

Nachstehend wird ein Verfahren zum Betreiben der beschriebenen Ansteuerschaltung anhand der Zeichnung erläutert.

Ausgehend von einem eingeschwungenen Zustand, in welchem alle Schalter T1, T2, T3x und T4x nichtleitend sind, der Transformator T stromlos ist, die kapazitiven Stellglieder Px (P1 bis Pn) entladen und der Kondensator C etwa halb geladen ist, wird zum Aufladen des Kondensators C der Ladeschalter T1 nach dem Sperrwandlerprinzip getaktet angesteuert (T1 = 1; I in Fig. 2).

Es fließt ein Ladestrom I_L (Fig. 1) von der Sekundärspule L_S durch den Kondensator C und die Diode D zurück in die Sekundärspule L_S .

Hat die Kondensatorspannung U_C einen vorgegebenen Sollwert U_{Csoll} erreicht (Fig. 2, II), wird Ladeschalter T1 deaktiviert (Fig. 2; III). Der Kondensator C ist damit beispielsweise auf eine Spannung U_{Csoll} aufgeladen.

Zum Aufladen eines vollständig entladenen Kondensators C (nach längeren Betriebspausen) muß Ladeschalter T1 erforderlichenfalls längere Zeit getaktet angesteuert werden, um den Kondensator C auf den Sollwert U_{Csoll} aufzuladen.

Soll nun beispielsweise Stellglied P1 angesteuert werden, wozu der Steuerschaltung ST ein Steuersignal st (st = 1; Fig. 2, IV) zugeführt wird, so wird Ladeschalter T31 gezündet (Fig. 2; V). Es fließt nun ein Ladestrom Ip von dem als Spannungsquelle dienenden Kondensator C über die Sekundärspule L_S, die jetzt als Umschwingspule arbeitet, in das Stellglied P1, und von diesem über den leitenden Ladeschalter T31 zurück zum Kondensator C. Das Kraftstoffeinspritzventil wird geöffnet.

Sobald die Stellgliedspannung U_P einen vorgegebenen Sollwert U_{Psoll}erreicht hat, wird Abkommutierungsschalter T2 gezündet (**Fig. 2**; VI). Dadurch wird Ladeschalter T31 sofort nichtleitend (der Thyristor erlischt und geht in den Sperrzustand über), da der Ladestrom durch das Stellglied null wird und über die Abkommutierungsspule L_A und den Abkommutierungsschalter T2 in den Kondensator C umgeleitet wird; wenn er zu null wird, verlischt Abkommutierungsschalter T2 von selbst.

Der Abkommutierungszweig ermöglicht einerseits eine einfache Spannungszumessung für das jeweilige Stellglied und andererseits eine negative Aufladung des Kondensators C (negative Vorspannung). Durch die negative Vorspannung des Kondensators C wird eine vollständige Entladung der Stellglieder gewährleistet.

Damit ist der Ladevorgang des Stellgliedes P1 beendet und das Stellglied bleibt solange geladen, bis das Steuersignal st endet (st = 0; Fig. 2, VIII).

Zum Entladen des Stellgliedes P1 wird Entladeschalter

3

T41 gezündet (**Fig. 2**; **IX**), wodurch ein Entladestrom vom Stellglied P1 über die wieder als Umschwingspule arbeitende Sekundärspule L_S in den Kondensator C fließt. Der Stromkreis schließt sich vom Kondensator C über den Entladeschalter T41 zum Stellglied P1.

Ist das Stellglied P1 entladen ($U_P=0$ V), so übernimmt die Diode D den noch fließenden Strom. Sinkt dieser unter den Wert des Haltestromes des Entladeschalters T41, so verlischt dieser und geht in den Sperrzustand über; das Stellglied ist entladen ($U_P=0$) und der Ansteuervorgang damit 10 beendet.

Der nächste Ansteuervorgang desselben Stellgliedes P1 oder eines anderen Stellgliedes P2 bis Pn erfolgt auf dieselbe Weise, wie für das Stellglied P1 beschrieben.

Zur Durchführung des beschriebenen Verfahrens werden 15 der Steuerschaltung ST neben dem Steuersignal st die Kondensatorspannung U_C, die Stellgliedspannung U_P und die Zylindernummer x für das Stellglied Px des zu betätigenden Kraftstosseinspritzventils zugeführt. Mit diesen und anderen, nicht erwähnten Daten, wie beispielsweise Motordrehzahl, Kurbelwellenstellung, Last (oder Fahrpedalstellung) etc., berechnet die Steuerschaltung ST die Ein- und Ausschaltsignale für den Ladeschalter T1 bzw. die Steuersignale zum Zünden der Ladeschalter T2, T3x und der Entladeschalter T4x in der oben angegebenen Weise.

Patentansprüche

1. Vorrichtung zum Ansteuern wenigstens eines kapazitiven Stellgliedes (Px; x = 1 bis n), insbesondere für 30 Kraftstoffeinspritzventile einer Brennkraftmaschine, mit einer von einer Gleichspannungsquelle (B) gespeisten Schaltung mit einem Kondensator (C), einer Ladespule, einer Entladespule (LS) und wenigstens einem Lade- und einem Entladeschalter (T3x, T4x), dadurch 35 gekennzeichnet,

daß der Gleichspannungsquelle (B) ein Schaltnetzteil (SNT) nachgeschaltet ist, welches einen Transformator (T) enthält,

daß die Primärspule (LP) des Transformators (T) in 40 Reihenschaltung mit einem elektronischen Schalter (T1) an den Anschlüssen (+B, GND) der Gleichspannungsquelle (B) liegt,

daß die Sekundärspule (L_S) die Funktion der Lade- und der Entladespule übernimmt, und mit ihrem ersten Anschluß über den Kondensator (C) mit dem Minuspol (GND) der Spannungsquelle (B) verbunden ist,

daß der zweite Anschluß der Sekundärspule (L_S) mit den einen Anschlüssen der parallellgeschalteten kapazitiven Stellglieder (Px) verbunden ist,

daß der andere Anschluß jedes Stellgliedes (Px) über jeweils zwei nur in einer Richtung stromleitende, elektronische Schalter (T3x, T4x) mit dem Minuspol (GND) der Spannungsquelle (B) verbunden ist, wobei der eine Schalter (T3x) als Ladeschalter dient und vom 55 Stellglied (Px) zum Minuspol (GND) leitend steuerbar ist, und der andere Schalter (T4x) als Entladeschalter dient und vom Minuspol (GND) zum jeweiligen Stellglied (Px) leitend steuerbar ist und

glied (Px) leitend steuerbar ist, und daß zwischen dem zweiten Anschluß der Sekundärspule (L_S) und dem Minuspol (GND) eine Reihenschaltung einer Abkommutierungsspule (L_A) und eines zum Minuspol (GND) hin stromleitend steuerbaren elektronischen Schalters (T2) und parallel zu dieser Reihenschaltung eine Diode (D), welche in Richtung vom Minuspol (GND) zum zweiten Anschluß der Sekundärspule (L_S) stromleitend ist, angeordnet ist.

2. Vorrichtung nach Anspruch 1, dadurch gekenn-

4

zeichnet, daß der elektronische Ladeschalter (T1) ein PMOS-Transistor ist.

3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die elektronischen Schalter (T2, T3x, T4x) Thyristoren sind.

4. Verfahren zum Betreiben der Vorrichtung nach Anspruch 1, dadurch gekennzeichnet,

daß zum Aufladen des Kondensators (C) der Schalter (T1) solange getaktet angesteuert wird, bis die Kondensatorspannung (U_C) einen vorgegebenen Sollwert (U_{Csoll}) erreicht, daß zum Ansteuern eines Stellgliedes (Px) der Steuerschaltung (ST) ein Steuersignal (st) zugeführt wird, welche daraufhin den dem Stellglied (Px) zugeordneten Ladeschalter (T3x) zündet, um das Stellglied (Px) aus dem Kondensator (C) über die als Umschwingspule arbeitende Sekundärspule (L_S) aufzuladen, bis die Stellgliedspannung (U_P) einen vorgegebenen Sollwert (U_{Psoll}) erreicht hat,

daß beim Erreichen des Sollwertes (U_{Psoil}) der Abkommutierungsschalter (T2) gezündet wird, wodurch das Stellglied (Px) geladen bleibt und der Kondensator (C) negativ vorgespannt wird, und

daß zum Entladen des Stellgliedes (Px) am Ende des Steuersignals (st) der dem Stellglied (Px) zugeordnete Entladeschalter (T4x) gezündet wird, wodurch das Stellglied (Px) über die als Umschwingspule arbeitende Sekundärspule ($L_{\rm S}$) in den Kondensator (C) entladen wird.

Hierzu 2 Seite(n) Zeichnungen

V1.

- Leerseite -

Nummer: Int. Cl.⁶: Offenlegungstag: **DE 197 34 895 A1 F 02 D 41/20**25. Februar 1999

