Quiz 3

1. Which type of graph is more suitable when you want to illustrate the correlation between two variables?	
0	Line Graph

Line Graph

Scatter Plot

Bar Graph

Tree Diagram

2. Which type of graph is more suitable when the focus of the graph is to compare size/strength of the segments to the total of each group?

0	Scatter Plot
•	Stacked Bar Graph
0	Bar Graph
0	Tree Diagram

3. Which statement is NOT correct about Graphs and Charts?

	Both rely on a repeated pattern to show data
•	Charts are always restricted to numerical axes.
	Graphs must have at least one numerical axe
0	They cannot be used interchangeably.

4.

Which of the followings is correct about PCA?

	PCA cannot be used in the field of Feature Selection. This application of PCA is well known for ineffective.
•	Data visualization: To take 3D data, and find a different way of plotting it in 2D (using k=2)
	As a replacement for (or alternative to) linear regression: For most learning applications, PCA and linear regression give substantially similar results
	Data compression: Reduce the dimension of your data, so that it takes up less memory/disk space. You must do this when processing your data.

5. Given d-dimensional data X , you run principle component analysis and pick P principle components. Can you always reconstruct any data point x_i for $i \in \{1 \dots N\}$ from the P principle components with zero reconstruction error?

0	Yes, if P < d
•	Yes, if P = d
0	No, you cannot
0	Yes, if P > d