Московский государственный университет им. М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра математических методов прогнозирования

Задание № 1. Вероятностные модели посещаемости курса

Автор: Арбузова Дарья

Группа: 417

Содержание

1	Постановка задачи	2
2	Вывод формул для расчёта распределений	2
3	Априорные распределения	4
4	Прогноз величины b	4
5	Влияние параметров p_1 и p_2	5
6	Временные замеры	7
7	Сравнение моделей 1 и 2	8

1 Постановка задачи

Рассмотрим модель посещаемости студентами одного курса лекции. Пусть аудитория данного курса состоит из студентов профильной кафедры, а также студентов других кафедр. Обозначим

 \bullet *а* — количество студентов, распределившихся на профильную кафедру;

- с количество студентов на данной лекции;
- \bullet d общее количество записавшихся на данной лекции;
- p_1 вероятность посещения лекции студентом профильной кафедры;
- p_2 вероятность посещения лекции студентом любой из остальных кафедр;

Рис. 1: Графическая модель

В модели 1:

•
$$a \sim R[a_{min}; a_{max}]$$

•
$$b \sim R[b_{min}; b_{max}]$$

•
$$c|a, b \sim B(a, p_1) + B(b, p_2)$$

•
$$d|c \sim c + B(c, p_3)$$

В модели 2:

•
$$a \sim R[a_{min}; a_{max}]$$

•
$$b \sim R[b_{min}; b_{max}]$$

•
$$c|a,b \sim Poiss(ap_1 + bp_2)$$

•
$$d|c \sim c + B(c, p_3)$$

Значения параметров: $a_{min}=15, a_{max}=30, b_{min}=250, b_{max}=350, p_1=0.5, p_2=0.05, p_3=0.5.$

В данном задании необходимо исследовать поведение моделей при различных параметрах, а также оценить плотность некоторых распределений с приходом новой информации.

2 Вывод формул для расчёта распределений

Проведём вывод необходимых распределений для рассматриваемых моделей, пользуясь фактами из теории вероятностей:

1.
$$a \sim R[a_{min}; a_{max}]$$

$$p(a) = \frac{1}{a_{max} - a_{min} + 1}$$

$$\mathbb{E}[a] = \frac{a_{min} + a_{max}}{2}$$

$$(a_{max} - a_{min} + 1)^2 - 1$$

$$\mathbb{D}[a] = \frac{(a_{max} - a_{min} + 1)^2 - 1}{12}$$

2. $b \sim R[b_{min}; b_{max}]$ аналогично:

$$p(b) = \frac{1}{b_{max} - b_{min} + 1}$$

$$\mathbb{E}[b] = \frac{b_{min} + b_{max}}{2}$$

$$\mathbb{D}[b] = \frac{(b_{max} - b_{min} + 1)^2 - 1}{12}$$

3. b|a

$$p(b|a) = \frac{p(a,b)}{p(a)} = \frac{\sum_{c=0}^{a+b} \sum_{d=c}^{2c} p(a,b,c,d)}{p(a)} = p(b) \cdot \sum_{c=0}^{a+b} p(c|a,b) \cdot \sum_{d=c}^{2c} p(d|c) = p(b)$$

Величины a и b независимы в рамках рассматриваемых моделей.

4. (a) Модель 1: $c|a,b\sim B(a,p_1)+B(b,p_2)$ Пусть c=x+y, где $x\sim B(a,p_1),y\sim B(b,p_2)$, тогда

$$p(c|a,b) = \sum_{k=0}^{c} p(x=k;a,p_1) \cdot p(y=c-k;b,p_2) =$$

$$= \sum_{k=0}^{c} C_a^k p_1^k (1-p_1)^{a-k} \cdot C_b^{c-k} p_2^{c-k} (1-p_2)^{b+k-c}$$

(b) Модель 2: $c|a,b \sim Poiss(ap_1 + bp_2)$

$$p(c|a,b) = e^{\lambda} \frac{\lambda^c}{c!},$$

где $\lambda = ap_1 + bp_2$

5. $d|c \sim c + B(c, p_3)$

$$p(d|c) = C_c^{d-c} p_3^{d-c} (1 - p_3)^{2c-d}$$

6. c|a

$$p(c|a) = \frac{p(a,c)}{p(a)} = \frac{\sum_{b=b_{min}}^{b_{max}} \sum_{d=0}^{2(a+b)} p(a,b,c,d)}{p(a)} =$$

$$= p(b) \cdot \sum_{b=b_{min}}^{b_{max}} p(c|a,b) \cdot \sum_{d=0}^{2(a+b)} p(d|c) = p(b) \cdot \sum_{b=b_{min}}^{b_{max}} p(c|a,b)$$

7. c|b аналогично:

$$p(c|b) = p(a) \cdot \sum_{a=a_{min}}^{a_{max}} p(c|a,b)$$

8. c

$$p(c) = \sum_{a=a_{min}}^{a_{max}} \sum_{b=b_{min}}^{b_{max}} \sum_{d=0}^{2(a+b)} p(a,b,c,d) =$$

$$= p(a) \cdot p(b) \cdot \sum_{a=a_{min}}^{a_{max}} \sum_{b=b_{min}}^{b_{max}} p(c|a,b) \cdot \sum_{d=0}^{2(a+b)} p(d|c) = p(a) \cdot p(b) \cdot \sum_{a=a_{min}}^{a_{max}} \sum_{b=b_{min}}^{b_{max}} p(c|a,b)$$

9. *d*

$$p(d) = \sum_{c=0}^{a_{max} + b_{max}} p(d|c)p(c)$$

3 Априорные распределения

Требуется рассчитать математические ожидания и дисперсии априорных распределений a,b,c и d.

Пусть для некоторый случайной величины x известно её распределение, тогда

$$\mathbb{E}[x] = \sum_{x=x_{min}}^{x_{max}} xp(x)$$

$$\mathbb{D}[x] = \sum_{x=x_{min}}^{x_{max}} x^2 p(x) - (\mathbb{E}[x])^2$$

В пункте 2 было показано, как получить априорные распределения, имея p(c|a,b) и p(d|c).

Результаты приведены в таблице 1 (прочерк означает одинаковое поведение в обеих моделях):

Величина	Модель 1		Модель 2	
	\mathbb{E}	\mathbb{D}	\mathbb{E}	\mathbb{D}
a	22.5	21.25	-	-
b	300	850	-	-
С	26.25	27.3125	-	33.6875
d	39.375	68.0156	-	82.3594

Таблица 1: Априорные распределения

Приведём вид исследованных распределений на графиках ниже (см. рис. 2):

Puc. 2: Распределения p(c) и p(d) для моделей 1 и 2

4 Прогноз величины b

Требуется пронаблюдать, как происходит уточнение прогноза для величины b с приходом новой информации.

Рассмотрим распределения b,b|a,b|a,d. Как было показано выше в пункте 2,b и b|a распределены одинаково, поэтому будем сравнивать только b с b|a,d.

На рисунке 3 показано распределение соответствующих величин для моделей 1 и 2, а также указаны их матожидания.

Рис. 3: Уточнение прогноза для величины b с приходом новой информации для моделей 1 и 2

5 Влияние параметров p_1 и p_2

Требуется исследовать, каким образом единичный квадрат разбивается на области $\{(p_1,p_2)|\mathbb{D}[c|a]\leq \mathbb{D}[c|b]\}$ и $\{(p_1,p_2)|\mathbb{D}[c|a]>\mathbb{D}[c|b]\}$. Результаты для моделей 1 и 2 представлены на рисунках 4а и 4b соответственно.

Рис. 4: Соотношение между $\mathbb{D}[c|a]$ и $\mathbb{D}[c|b]$ в зависимости от p_1 и p_2 для моделей 1 и 2

Для большей наглядности рассмотрим трёхмерные графики зависимости $\mathbb{D}[c|a] - \mathbb{D}[c|b]$ от параметров p_1 и p_2 (рисунки 5а и 5b для моделей 1 и 2 соответственно). Синим обозначена плоскость, соответствующая равенству дисперсий.

Рис. 5: Зависимость $\mathbb{D}[c|a] - \mathbb{D}[c|b]$ от p_1 и p_2 для моделей 1 и 2

Очевидно, что области $\{(p_1,p_2)|\mathbb{D}[c|a] \leq \mathbb{D}[c|b]\}$ и $\{(p_1,p_2)|\mathbb{D}[c|a] > \mathbb{D}[c|b]\}$ в модели 2 не являются линейно разделимыми. Результаты модели 1 не являются достаточно наглядными и требуют большего анализа.

Найдём 3 точки на границе областей и проверим, лежат ли они на одной прямой. Для значений $p_1=0.05, 0.5$ и 0.95 вычислим соответствующие p_2 с помощью бинарного поиска с критерием останова $|\mathbb{D}[c|a]-\mathbb{D}[c|b]|<10^{-7}$. В таблице 2 представлены координаты точек и значение разности дисперсий в них.

Точка	p_1	p_2	$\mathbb{D}[c a] - \mathbb{D}[c b], 10^{-8}$
z_1	0.05	0.0095100594	4.46
z_2	0.5	0.0799816155	0.12
z_3	0.95	0.1503011680	-7.21

Таблица 2: Граничные точки

Составим 2 вектора, $v_1 = z_2 - z_1$ и $v_2 = z_3 - z_2$, и проверим их на коллинеарность. Получим $v_1 = (0.45, 0.07047), v_2 = (0.45, 0.07032)$. Поскольку координаты граничных точек вычислены с высокой степенью точности, то различие координат векторов в 4-м знаке даёт повод утверждать, что они неколлинеарны, следовательно, кривая, разделяющая области, не является прямой.

6 Временные замеры

Требуется рассчитать распределения p(c), p(c|a), p(c|b), p(b|a), p(b|a), p(b|a), p(d). Значения параметров a, b и d положены равными их матожиданию (a = 23, b = 300, d = 39).

Замеры производятся для полного набора выходных аргументов функций. Результаты представлены в таблице 3.

Распределение	Время, с			
	Модель 1	Модель 2		
p(c)	0.183	0.022		
p(c a)	0.107	0.013		
p(c b)	0.038	0.007		
p(b a)	0.001	-		
p(b a, d)	0.106	0.028		
p(d)	0.259	0.101		

Таблица 3: Временные замеры

Рис. 6: Распределения p(c|a) и p(c|b) для моделей 1 и 2

7 Сравнение моделей 1 и 2

При больших значениях параметров p_1 и p_2 и малом числе испытаний (параметрах a,b) пуассоновское распределение недостаточно хорошо приближает сумму биномиальных. В этом можно убедиться, положив значения параметров $a_{min}=1, a_{max}=5, b_{min}=10, b_{max}=15, p_1=0.9,$ см. рис. 7:

Рис. 7: Распределение p(c) для моделей 1 и 2