

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística AP2 2° semestre de 2017 GABARITO

Observações:

- A prova é acompanhada de uma tabela da distribuição Normal
- É permitido o uso de máquina de calcular
- Todos os cálculos devem ser mostrados passo a passo para a questão ser considerada
- Utilize nos cálculos pelo menos cinco casas decimais arrendondando para duas só ao final
- Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas
- Você pode usar lápis para responder as questões
- Os desenvolvimentos e respostas devem ser escritas de forma legível
- Ao final da prova devolva as folhas de questões e as de respostas
- Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões ou em folhas marcadas como rascunho não serão corrigidas.
- É PROIBIDO O USO DE CELULARES DURANTE A PROVA SOB QUALQUER PRETEXTO.

Professores: Otton Teixeira da Silveira Filho e Regina Célia P. Leal Toledo

1 - Primeira questão (2,0 pontos)

Na figura abaixo temos uma função que deve ser normalizada para que seja usada como distribuição de probabilidade. O valor **a** que é igual a 2.

a) Dê a constante de normalização e apresente a distribuição obtida;

Resolução:

Pela figura vemos que a função é não negativa. Podemos determinar a constante de normalização de duas maneiras. Vamos a primeira que será útil em outros itens desta questão.

Determinemos as equações das retas que compõem a função, ou seja, a reta que passa pela origem e o ponto (1,5; a) e a reta que passa pelos pontos (1,5; a) e (2; 0). Como a equação da reta é dada por

$$y = \alpha x + \beta$$

teremos

i) (0; 0) e (3/2; 2) (usaremos frações por conveniência)

$$0=\alpha\times0+\beta$$

 $2=3/2\alpha+\beta$

de onde tiramos $\alpha = 4/3$; $\beta = 0$ e a equação da reta será

$$y=\frac{4}{3}x$$
.

ii) (3/2; 2) e (2; 0) Teremos aqui

$$2=3/2\alpha+\beta$$

 $0=\alpha\times2+\beta$

que tem a solução $\alpha = -4$; $\beta = 8$ que dá na equação

$$y=4(-x+2)$$
.

Integremos

$$\int_{0}^{2} f(x) dx = \int_{0}^{3/2} \frac{4}{3} x dx + \int_{3/2}^{2} 4(-x+2) dx = \frac{4}{3} \int_{0}^{3/2} x dx + 4 \left[-\int_{3/2}^{2} x dx + 2 \int_{3/2}^{2} dx \right]$$

e daí

$$\int_{0}^{2} f(x) dx = \frac{4}{3} \frac{x^{2}}{2} \Big|_{0}^{3/2} - 4 \left[-\frac{x^{2}}{2} \Big|_{3/2}^{2} + 2x \Big|_{3/2}^{2} \right] = \frac{2}{3} \frac{9}{4} + 4 \left[-\frac{2^{2} - (3/2)^{2}}{2} + 2(2 - 3/2) \right] = \frac{3}{2} + 4(-\frac{7}{8} + 1) = 2.$$

Assim, a distribuição de probabilidade será

$$y = \frac{2}{3}x$$
; $x \in (0;3/2)e$ $y = 2(-x+2)$; $x \in (3/2;2)$.

A constante de normalização pode ser encontrada calculando a área dos dois triângulos que compõem a função dada na figura. A área total combinada dos dois triângulos é dada por

$$\frac{1,5\times 2}{2} + \frac{0,5\times 2}{2} = \frac{3}{2} + \frac{1}{2} = 2 .$$

b) Calcule a média da distribuição obtida;

Resolução:

Partindo da definição de média teremos

$$\mu = \int_{0}^{2} x f(x) dx = \frac{2}{3} \int_{0}^{3/2} x \times x dx + 2 \int_{3/2}^{2} x \times (-x+2) dx = \frac{2}{3} \int_{0}^{3/2} x^{2} dx + 2 \left[-\int_{3/2}^{2} x^{2} dx + 2 \int_{3/2}^{2} x dx \right] ,$$

o que nos leva a

$$\mu = \frac{2}{3} \frac{x^3}{3} \Big|_0^{3/2} + 2 \left[-\frac{x^3}{3} \Big|_{3/2}^2 + 2 \frac{x^2}{2} \Big|_{3/2}^2 \right] = \frac{2}{9} \left(\frac{3}{2} \right)^3 - \frac{2}{3} \left[2^3 - \left(\frac{3}{2} \right)^3 \right] + 2 \left[2^2 - \left(\frac{3}{2} \right)^2 \right] = \frac{3}{4} - \frac{37}{12} + \frac{7}{2} = \frac{7}{6} \approx 1,6667$$

c) Calcule a variância da distribuição obtida;

Resolução:

Adaptando a definição de variância ao nosso caso

$$\sigma^{2} = \int_{0}^{2} x^{2} f(x) dx - \mu^{2} = \frac{2}{3} \int_{0}^{3/2} x^{2} \times x dx + 2 \int_{3/2}^{2} x^{2} \times (-x+2) dx - \mu^{2}$$

calculemos a integral apresentada

$$\int_{0}^{2} x^{2} f(x) dx = \frac{2}{3} \int_{0}^{3/2} x^{3} dx - 2 \int_{3/2}^{2} x^{3} dx + 4 \int_{3/2}^{2} x^{2} dx = \frac{2}{3} \frac{x^{4}}{4} \Big|_{0}^{3/2} - 2 \frac{x^{4}}{4} \Big|_{3/2}^{2} + 4 \frac{x^{3}}{3} \Big|_{3/2}^{2}$$

ou

$$\int_{0}^{2} x^{2} f(x) dx = \frac{1}{6} \left(\frac{3}{2} \right)^{4} - \frac{2^{4} - (3/2)^{4}}{2} + \frac{4}{3} \left[2^{3} - (3/2)^{3} \right] = \frac{27}{32} - \frac{175}{32} + \frac{37}{6} = \frac{37}{24} \approx 1,5417 .$$

Daqui podemos escrever

$$\sigma^2 = \int_0^2 x^2 f(x) dx - \mu^2 = \frac{37}{24} - \left(\frac{7}{6}\right)^2 = \frac{37}{24} - \frac{49}{36} = \frac{13}{72} \approx 0,1806 .$$

d) Dê a moda da distribuição obtida.

Resolução:

Sendo a moda definida como o valor (ou valores) para o qual (ou para os quais) a distribuição é máxima, vemos pela figura que a distribuição é monomodal e seu valor é 1,5.

2 – Segunda questão (2,0 pontos)

Calcule as probabilidades solicitadas:

a) P(X < 0,32) para uma distribuição Normal de média 0,21 e variância 3,42;

Resolução:

Usaremos a fórmula

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$

que no nosso caso se reduz a

$$P(X<0.32) = P\left(Z<\frac{0.32-0.21}{\sqrt{3.42}}\right) \approx P\left(Z<\frac{0.11}{1.8493}\right) \approx 0.5 + P(Z<0.06) = 0.5 + 0.0239 = 0.5239$$
.

b) P(X < 0,11) para a distribuição Normal de média 0,23 e variância 2,39;

Resolução:

Seguindo os passos anteriores teremos

$$P(X<0,11) = P\left(Z<\frac{0,11-0,23}{\sqrt{2,39}}\right) \approx P\left(Z<-\frac{0,12}{1,5460}\right) \approx P\left(Z<-0,08\right) = 0,5 - P\left(Z<0,08\right) = 0,5 - 0,0319 = 0,4691$$

c) P(X< 0,98) para a distribuição Exponencial com α = 0,89

Resolução:

A definição da probabilidade para a distribuição Exponencial é

$$P(a < X < b) = \int_{a}^{b} \alpha e^{-\alpha x} dx = e^{-\alpha a} - e^{-\alpha b} .$$

Aplicando aos nossos dados teremos

$$P(X < 0.98) = 1 - e^{-0.89 \times 0.98} = 1 - e^{-0.8722} \approx 0.5820$$
.

d) P(X < 1,6) para a distribuição da primeira questão;

Resolução:

$$P(a < X < b) = \frac{2}{3} \int_{a}^{3/2} x \, dx + 2 \int_{3/2}^{b} (-x + 2) \, dx$$

que nos permite calcular oque foi solicitado

$$P(X<1,6) = \frac{2}{3} \int_{0}^{1.5} x \, dx + 2 \int_{1.5}^{1.6} (-x+2) \, dx = \frac{2}{3} \int_{0}^{3/2} x \, dx + 2 \left[-\int_{1.5}^{1.6} x \, dx + 2 \int_{1.5}^{1.6} dx \right] = \frac{2}{3} \frac{x^{2}}{2} \Big|_{0}^{1.5} + 2 \left[-\frac{x^{2}}{2} \Big|_{1.5}^{1.6} + 2 x \Big|_{1.5}^{1.6} \right]$$

e então

$$P(X<1,6) = \frac{1}{3} \frac{9}{4} + 2 \left[-\frac{1}{2} (1,6^2 - 1,5^2) + 2(1,6 - 1,5) \right] = 0,75 - 0,31 + 0,4 = 0,84$$
.

3 – Terceira questão (2,0 pontos)

Determine se as funções abaixo são distribuições de probabilidade justificando sua resposta. Não serão levados em consideração itens sem justificativa.

a)
$$x^2 - sen(x); x \in [0,2]$$
;

Resolução:

Observe que, por exemplo, em x = 1, sen(1) é menor que 1 e, portanto, a função apresentada toma valor negativo. Portanto, esta função não pode representar uma distribuição de probabilidade.

b)
$$2(x-x^2); x \in [0,1]$$
;

Resolução

Observemos que os valores desta função (que é um polinômio de segundo grau) toma seus menores valores são nos extremos do intervalo onde vale zero em ambos. Ela é não negativa. Integremos

$$\int_{0}^{1} 2(x-x^{2}) dx = 2 \left[\int_{0}^{1} x \, dx - \int_{0}^{1} x^{2} \, dx \right] = 2 \left[\frac{x^{2}}{2} \Big|_{0}^{1} - \frac{x^{3}}{3} \Big|_{0}^{1} \right] = 1^{2} - \frac{2}{3} \cdot 1^{3} = \frac{1}{3} ,$$

logo não é distribuição de probabilidade pois não está normalizada.

c)
$$3(x-x^5); x \in [0,1]$$

Resolução:

Novamente temos que a função se anula nos extremos do intervalo, sendo positiva dentro do intervalo. Integremos

$$\int_{0}^{1} 3(x-x^{5}) dx = 3 \left[\int_{0}^{1} x dx - \int_{0}^{1} x^{5} dx \right] = 3 \left[\frac{x^{2}}{2} \Big|_{0}^{1} - \frac{x^{6}}{6} \Big|_{0}^{1} \right] = \frac{3}{2} 1^{2} - \frac{1}{2} 1^{5} = 1 ,$$

e, portanto, é uma distribuição de probabilidade.

d)
$$6(x^2-x^5); x \in [0,2]$$
.

Resolução:

Observe que a função acima toma valores negativos para x > 1. Por exemplo, para x = 2 obtemos -168. Portanto, temos que ela não pode constituir uma distribuição de probabilidade.

4 – Quarta questão (1,0 ponto)

Pode-se modelar a probabilidade de chegada de táxis num ponto movimentado usando a distribuição Exponencial. Calcule a probabilidade de chegar um táxi em menos de 2 minutos com parâmetro igual a 1,2.

Resolução:

Aplicando diretamente a fórmula desta distribuição

$$P(a < X < b) = e^{-\alpha a} - e^{-\alpha b}$$

teremos

$$P(X<2)=1-e^{-1.2\times 2}=1-e^{-2.4}\approx 1-0.09071\approx 0.9093$$
.

5 – Quinta questão (2,0 pontos)

Foi obtida a amostra que se segue: 3,21; 2,95; 3,3; 3,01; 2,97; 3,23; 3,13; 3,05; 3,12; 3,03. Ache a média e a variância usando estimadores consistentes e não viciados e, supondo ser possível usar a distribuição Normal, calcule a probabilidade de encontrarmos elementos da amostra maiores que 3,1.

Resolução:

Para estimadores consistentes e não viciados usaremos para a média e a variância

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \ e \ S^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n \, \bar{X}^2 \right)$$
.

Teremos

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{3,21+2,95+3,3+3,01+2,97+3,23+3,13+3,05+3,12+3,03}{10} = \frac{31}{10} = 3,1$$
.

Calculemos o somatório

$$\sum_{i=1}^{n} X_{i}^{2} = 3,21^{2} + 2,95^{2} + 3,3^{2} + 3,01^{2} + 2,97^{2} + 3,23^{2} + 3,13^{2} + 3,05^{2} + 3,12^{2} + 3,03^{2} = 96,2252$$

logo

$$S^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n \bar{X}^{2} \right) = \frac{1}{9} \left(96,2252 - 10 \times 3,1^{2} \right) = \frac{0,1252}{9} \approx 0,0139 .$$

Agora calculemos para a distribuição Normal a probabilidade

$$P(X>3,1)=0,5-P(X<3,1)=P\left(Z<\frac{3,1-3,1}{\sqrt{0,0139}}\right)=0,5+P(Z<0)=0,5$$
.

6 – Sexta questão (1,0 ponto)

Uma amostra de 20 correias de um modelo de automóvel teve como média de duração 20 000km e desvio padrão de 4 500 km. Determine o intervalo de confiança para a média com coeficiente de confiança de 80%.

Resolução:

Trabalharemos com unidades em milhares de km apenas para simplificar os cálculos. O intervalo de confiança para média é dada por

$$IC(\mu,\gamma) = \left[\bar{X} - z_{\gamma/2} \frac{\sigma}{\sqrt{n}}; \bar{X} + z_{\gamma/2} \frac{\sigma}{\sqrt{n}} \right].$$

Com os dados do problema teremos $\frac{\sigma}{\sqrt{n}} = \frac{4.5}{\sqrt{20}} \approx \frac{4.5}{4.4721} \approx 1,006 \text{ e} \quad z_{\gamma/2} = z_{0.4} = 1,28 \text{ ,}$ portanto

$$IC(\mu,\gamma)=[20-1,28\times1,006;20+1,28\times1,006]\approx[18,7123;21,2877]$$
,

ou seja, o intervalo de confiança para a média em unidades em milhares de km é

$$[18712,3;21287,7]$$
.

Tabela da distribuição Normal N(0,1)

\mathbf{Z}_{c}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	*0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	*0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997

Atribua o valor 0,5 para valores maiores ou iguais a 3,4.