

XII Olimpiada Iberoamericana de Matemática Universitaria

Noviembre de 2009

- **Problema 1** (4 puntos) Una línea recta pasa por un vértice de un triángulo no degenerado y corta este triángulo en dos triángulos semejantes con una razón entre los lados igual a $\sqrt{3}$. Encontrar los ángulos del triángulo dado.
- **Problema 2** (5 puntos) Sean x_1, \ldots, x_n vectores no nulos de un espacio vectorial V y $\varphi: V \to V$ un operador lineal de este espacio tales que $\varphi x_1 = x_1, \varphi x_k = x_k x_{k-1}$ para k = 2, 3, ..., n. Demostrar que el conjunto de vectores x_1, \ldots, x_n es linealmente independiente.
- **Problema 3** (5 puntos) Sean $a, b, c, d, e \in \mathbb{R}^+$ y f definida como: $\{(x, y) \in (\mathbb{R}^+)^2 | c dx ey > 0\} \to \mathbb{R}^+$ dada por f(x, y) = (ax)(by)(c dx ey). Encontrar su valor máximo.
- **Problema 4** (6 puntos) Dados enteros positivos m y n, decimos que una función $f:[0,m]\to\mathbb{R}$ es (m,n)-resbalosa si posee las siguientes propiedades:
 - i) f es contínua;
 - ii) f(0) = 0, f(m) = n;
 - iii) Si $t_1, t_2 \in [0, m]$ con $t_1 < t_2$ son tales que $t_2 t_1 \in \mathbb{Z}$ y $f(t_2) f(t_1) \in \mathbb{Z}$, entonces $t_2 t_1 \in \{0, m\}$.

Determinar los valores de m, n para los cuales existe una función f que sea (m, n)-resbalosa.

Problema 5 (7 puntos) Sean \mathbb{N} y \mathbb{N}^* los conjuntos de los naturales y de los enteros positivos respectivamente.

Definimos una relación \in en \mathbb{N} por $a \in b$ si, y solo si, el a-ésimo bit en la representación binaria de b es 1.

Definimos una relación $\tilde{\in}$ en \mathbb{N}^* por $a\tilde{\in}b$ si, y solo si, b es múltiplo del a-ésimo número primo p_a .

- i) (2 puntos) Demostrar que no existe una biyección $f: \mathbb{N} \to \mathbb{N}^*$ tal que $a \in b \Leftrightarrow f(a) \in f(b)$.
- ii) (5 puntos) Demostrar que existe una biyección $g: \mathbb{N} \to \mathbb{N}^*$ tal que $(a \in b \text{ o } b \in a) \Leftrightarrow (f(a) \in f(b) \text{ o } f(b) \in f(a)).$

Problema 6 (7 puntos) Sean $\alpha_1, \ldots, \alpha_d, \beta_1, \ldots, \beta_e \in \mathbb{C}$ tales que los polinomios

$$f_1(x) = \prod_{i=1}^{d} (x - \alpha_i)$$
 y $f_2(x) = \prod_{i=1}^{e} (x - \beta_i)$

tienen coeficientes enteros. Supongamos que existen polinomios $g_1, g_2 \in \mathbb{Z}[x]$ tal que $f_1g_1 + f_2g_2 = 1$. Demostrar que

$$\left| \prod_{i=1}^{d} \prod_{j=1}^{e} (\alpha_i - \beta_j) \right| = 1.$$

Problema 7 (8 puntos) Sea G un grupo tal que todo subgrupo de G es subnormal. Supongamos que existe N subgrupo normal de G, tal que Z(N) es diferente de e y G/N es cíclico. Demostrar que Z(G) es diferente de e. (Z(G) denota el centro de G).

Nota: Un subgrupo H de G es subnormal si existen subgrupos $H_1, H_2, ..., H_m = G$ de G con $H \triangleleft H_1 \triangleleft H_2 \triangleleft ... \triangleleft H_m = G$ (\triangleleft denota subgrupo normal).