Functions of Several Variable and Differential Geometry 2025 - Minor 1

Part A: Each question carries 1 mark.

- 1. Define partial derivative and directional derivative
- 2. Define contraction and state contraction principle.
- 3. State inverse function theorem.
- 4. State implicit function theorem.

Part B: Each question carries 3 marks.

- 5. Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ defined by f(x,y) = (x,2x,3x). Is f differentiable? If not, why? If yes, find f'(x) for some $x \in \mathbb{R}^2$.
- 6. Suppose that f is a differentiable real function in an open set $E \subset \mathbb{R}^n$, and that f has a local maximum at a point $x \in E$. Prove that f'(x) = 0.

Functions of Several Variable and Differential Geometry 2025 - Minor ${\bf 1}$

Part A: Each question carries 1 mark.

- 1. Define partial derivative and directional derivative
- 2. Define contraction and state contraction principle.
- 3. State inverse function theorem.
- 4. State implicit function theorem.

Part B: Each question carries 3 marks.

- 5. Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ defined by f(x,y) = (x,2x,3x). Is f differentiable? If not, why? If yes, find f'(x) for some $x \in \mathbb{R}^2$.
- 6. Suppose that f is a differentiable real function in an open set $E \subset \mathbb{R}^n$, and that f has a local maximum at a point $x \in E$. Prove that f'(x) = 0.

Part C: Each question carries 3 marks.

- 7. Let $E \subset \mathbb{R}^n$ be open. Let $f: E \to \mathbb{R}^m$ is differentiable at $x \in E$. Find the matrix corresponding to f'(x).
- 8. If f is \mathcal{C}' -mapping of an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^n and if f'(x) is invertible for every $x \in E$, then f(W) is open subset of \mathbb{R}^n for every open set $W \subset E$.

Part C: Each question carries 3 marks.

- 7. Let $E \subset \mathbb{R}^n$ be open. Let $f: E \to \mathbb{R}^m$ is differentiable at $x \in E$. Find the matrix corresponding to f'(x).
- 8. If f is \mathcal{C}' -mapping of an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^n and if f'(x) is invertible for every $x \in E$, then f(W) is open subset of \mathbb{R}^n for every open set $W \subset E$.