

Rebeca de la Fuente

Investigadora Postdoctoral (CADIC-CONICET)

ÍNDICE

- 1. Modelización de procesos en ecología
- 2. Modelos deterministas
- 3. Evolución, estabilidad y bifurcaciones
- 4. Modelos estocásticos
- 5. Teoría de campo medio
- 6. Dinámica de fuegos

Conceptos

- Variables (estado sistema)
- Parámetros
- Condiciones iniciales
- Trayectoria
- Régimen transitorio
- Puntos fijos
- Atractor
 - → Punto fijo
 - → Ciclo límite (órbitas periódicas)
 - → Atractor caótico
- Base de atracción
- Estabilidad
- Bifurcación

$$x_{n+1} = f(x_n)$$

$$\frac{dx(t)}{dt} = f(x(t))$$

$$x_{n+1} = f(x_n)$$

$$\frac{dx(t)}{dt} = f(x(t))$$

$$\frac{dx(t)}{dt} = f(x(t)) + q(x(t))\eta(t)$$

$$x_{n+1} = f(x_n)$$

$$\frac{dx(t)}{dt} = f(x(t))$$

Sistema de Ecuaciones Diferenciales Ordinarias

$$egin{cases} rac{dx_1}{dt} = F_1(x_1,x_2,\ldots,x_n;t) \ rac{dx_2}{dt} = F_2(x_1,x_2,\ldots,x_n;t) \ \ldots \ rac{dx_n}{dt} = F_n(x_1,x_2,\ldots,x_n;t) \end{cases}$$

$$\frac{dx}{dt} = 2x + 0.6$$

$$\frac{dx}{dt} = 2x^2 + 0.6$$

$$\frac{dx}{dt} = -2x + 3y$$

$$\frac{dy}{dt} = -3x$$

$$\frac{dx}{dt} = -2x + 3y^2$$

$$\frac{dy}{dt} = -3x^2(1-y)$$

$$x_{n+1} = f(x_n) \longrightarrow x_{n+1} = 2x_n$$

$$\frac{dx(t)}{dt} = f(x(t)) \qquad \longrightarrow \qquad \frac{dx}{dt} = 2x(1-x)$$

$$\frac{dx(t)}{dt} = f(x(t)) \qquad \longrightarrow \qquad \frac{dx}{dt} = 2x(1-x)$$

$$\longrightarrow x(0) = x_0$$

$$\rightarrow \Delta t$$

Método resolución numérica

$$\frac{dx(t)}{dt} = f(x(t)) \qquad \longrightarrow \qquad \frac{dx}{dt} = 2x(1-x)$$

$$\rightarrow x(0) = x_0$$

$$\rightarrow \Delta t$$

→ Método resolución numérica

$$x(t+\Delta t) = x(t) + \Delta t \frac{dx}{dt} + \frac{1}{2}(\Delta t)^2 \frac{d^2x}{dt^2} + \dots + \frac{1}{n!}(\Delta t)^n \frac{d^nx}{dt^n}$$

$$\frac{dx(t)}{dt} = f(x(t)) \qquad \longrightarrow \qquad \frac{dx}{dt} = 2x(1-x)$$

$$\rightarrow$$
 $x(0) = x_0$

$$\rightarrow \Delta t$$

→ Método resolución numérica

$$x(t+\Delta t) = x(t) + \Delta t \frac{dx}{dt} + \frac{1}{2}(\Delta t)^2 \frac{d^2x}{dt^2} + \dots + \frac{1}{n!}(\Delta t)^n \frac{d^nx}{dt^n}$$
 Forward Euler Estimación Error

$$\frac{dx(t)}{dt} = f(x(t)) \qquad \longrightarrow \qquad \frac{dx}{dt} = 2x(1-x)$$

$$\rightarrow$$
 $x(0) = x_0$

$$\rightarrow \Delta t$$

$$\longrightarrow$$
 Método resolución numérica \longrightarrow $x(t+h) = x(t) + h\frac{dx}{dt}$

$$x(t + \Delta t) = x(t) + \Delta t \frac{dx}{dt} + \frac{1}{2} (\Delta t)^2 \frac{d^2x}{dt^2} + \dots + \frac{1}{n!} (\Delta t)^n \frac{d^nx}{dt^n}$$
Forward Euler Estimación Error

$$\frac{dx}{dt} = 2x(1-x)$$

$$\rightarrow x(0) = x_0$$

$$\rightarrow \Delta t$$

$$\longrightarrow$$
 Método resolución numérica \longrightarrow $x(t+h) = x(t) + h \frac{dx}{dt}$

$$\frac{dx}{dt} = 2x(1-x)$$

$$\rightarrow x(0) = x_0$$

$$\rightarrow \Delta t$$

$$ullet$$
 Δt

$$\longrightarrow$$
 Método resolución numérica \longrightarrow $x(t+h) = x(t) + h \frac{dx}{dt}$

$$\frac{dx}{dt} = 2x(1-x)$$

$$\rightarrow$$
 $x(0) = x_0$

$$\rightarrow \Delta t$$

$$\longrightarrow$$
 Método resolución numérica \longrightarrow $x(t+h) = x(t) + h\frac{dx}{dt}$

$$\frac{dx}{dt} = 2x(1-x)$$

$$\rightarrow x(0) = x_0$$

$$\rightarrow \Delta t$$

$$\longrightarrow$$
 Método resolución numérica \longrightarrow $x(t+h) = x(t) + h\frac{dx}{dt}$

$$\frac{dx}{dt} = 2x(1-x)$$

$$\rightarrow$$
 $x(0) = x_0$

$$\rightarrow \Delta t$$

$$\longrightarrow$$
 Método resolución numérica \longrightarrow $x(t+h) = x(t) + h\frac{dx}{dt}$

$$\frac{dx}{dt} = 2x(1-x)$$

$$\rightarrow$$
 $x(0) = x_0$

$$\rightarrow \Delta t$$

$$\longrightarrow$$
 Método resolución numérica \longrightarrow $x(t+h) = x(t) + h \frac{dx}{dt}$

$$\frac{dx}{dt} = 2x(1-x)$$

$$\rightarrow x(0) = x_0$$

$$\rightarrow \Delta t$$

$$\longrightarrow$$
 Método resolución numérica \longrightarrow $x(t+h) = x(t) + h \frac{dx}{dt}$

$$\frac{dx}{dt} = 2x(1-x)$$

$$\rightarrow x(0) = x_0$$

$$\rightarrow \Delta t$$

$$\longrightarrow$$
 Método resolución numérica \longrightarrow $x(t+h) = x(t) + h \frac{dx}{dt}$

$$\frac{dx}{dt} = 2x(1-x)$$

$$\rightarrow x(0) = x_0$$

$$\rightarrow \Delta t$$

$$\longrightarrow$$
 Método resolución numérica \longrightarrow $x(t+h) = x(t) + h\frac{dx}{dt}$

Estabilidad

Paisaje dinámico (Dynamical landscape)

¿Aplicación?

¿Herramientas?

Aplicación en la investigación

Aplicación en la investigación

Aplicación en la investigación

Cambios entre estados estables alternativos en un lago

Cambios entre estados estables alternativos en un lago

Cambios entre estados estables alternativos hacia desertificación

Región Sahel

Cambios entre estados estables alternativos hacia desertificación

Región Sahel

Cambios entre estados estables alternativos en los ecosistemas oceánicos

Resolución Ejercicios

Resolución Ejercicios

Resolución Ejercicios

Preguntas...?

Rebeca de la Fuente

Investigadora Postdoctoral (CADIC-CONICET)