Convolutional Neural Networks and Computer Vision

Arun Das
Secure AI and Autonomy Laboratory
University of Texas at San Antonio
Arun.Das@utsa.edu

Generic Deep Learning Pipeline

Deep Neural Networks (Fully Connected, Multilayer Perceptrons)

Large images is a problem!

What about 512x512 images?
A single 512x512 color image can have 512*512*3 = 786432 weights!
We will need several more FC layers. Hence DNNs are not scalable to larger images.

Traditional Image Processing

0.0625	0.125	0.0625
0.125	0.25	0.125
0.0625	0.125	0.0625
blur		

-1	-2	-1
0	0	0
1	2 ‡	1

0 -1 0 -1 5 -1 0 -1 0

	13		
7	6/6	0	1
The state of the s	(O)	To the	
1			¥.
1			-
-		addied a	ii.

Bottom Sobel

Sharpen

0		
50		
255	255	255

Horizontal

	255
	255
	255

Vertical

https://setosa.io/ev/image-kernels/

Traditional Image Processing

Object detection using traditional image processing techniques.

We usually have a source image, and we are trying to see if the source is in the target.

What are some of the issues that might pop up?

- Scaling
- Rotation
- Textures?
- Colors?
- Day or night?
- Hand crafting these features require subject matter experts.
- Small changes in the input image could drastically change the predictions.
- We might have to develop 100's of kernels (filters) to achieve it (what happens if it snows next?).

Using Convolution Operation to Learn Kernels

- Instead of hand-featured kernels, can we learn to optimize the weights in these kernels using an optimization algorithm?
- What if it could help with the classic invariance issues that we mentioned?
- Convolutional Neural Networks (CNNs) are designed specifically for this.

- Scaling
- Rotation
- Textures?
- Colors?
- Day or night?

Generic Deep Learning Pipeline

Das, Arun, et al. "Distributed machine learning cloud teleophthalmology IoT for predicting AMD disease progression." Future Generation Computer Systems 93 (2019): 486-498.