

Taller: Completitud en \mathbb{R} y finitud

10 de Agosto de 2022

Indicaciones generales

- o El taller es una evaluación, por lo tanto se debe entregar en físico y de manera presencial.
- o La fecha de entrega es el Miércoles 17 de Agosto al inicio de la clase.
 - 1. Considere el conjunto $A = \{\frac{1}{2^{n-1}} : n \in \mathbb{Z}^+\}$. Demuestre que Inf(A) = 0.
 - 2. Sea E un subconjunto no vacío y acotado superiormente de los números reales y considere el conjunto $U = \{x \in \mathbb{R} : x \text{ es cota superior de } E\}$. Demuestre que Sup(E) = Inf(U).
- 3. Sea $f:A\to B$ una función inyectiva. Muestre que si B es finito, entonces A es finito.
- 4. Sea A un conjunto no finito y B un subconjunto finito de A. Muestre que A-B no es finito y en consecuencia $A-B\neq\emptyset$.

Suproye que existe la cota inferior X y que esta es la mayor de las cotas interiores, adicuonalmente

inf (A)=2 ≠0, XEIR

(USO1) X>0 = x~f(A)>0

for prop argumediana dado que XEIR, Subenos que existe un nein

 $\chi > \frac{1}{\chi} > \frac{1}{2^{n-1}} \qquad (=) <=)$

esto es para valquer X70 jago yurantitudo que habrá un a EA jal que ±nf(A) = X7a.

Contradicción que surge de asumir que X 70.

(aso 2) $\chi < 0 = Inf(A) < 0$ No Sigurdo (a estrutura de) caso 1 con la prop. arguinediangi

$$-\chi > \frac{1}{\chi} > \frac{1}{2^{n-1}}$$

$$\chi \neq \frac{1}{\chi} = \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}}$$

$$\chi = \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}}$$

$$= \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}}$$

$$= \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}}$$

$$= \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}}$$

$$= \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}} <$$

De la contenior se deduce que Inf(A) = x =0.

Ver que Sup(E) es Cota Superior de t
pero w es el infino del conjuto de les
cotes superiores de E luego hay un elemento del conjunto U que es mús peque no que so infino (2) (2)
00 4 50 (Ntimo (-)/2)
(1) (1) (1) (1)
Controlición que sixua en cultos casos de
(3)
(ontroliain que surge en aubos (asos de asomir sup(E) \neq inf(U). por la que sup(E) = inf(U).
De la
Si Bes finito, entonces A es finito.
S' B as linite and A is finite
Suponga f: A -> Bes inyectiva y B
Suponga f: A -> B es inyectiva y B finito, por Absurdo Considere A Vinfinito
Dudo que f es injection saberros que Fodo elencato de A vu a un elenato
Jodo elemento de A vu a un elemento
le B, pero cono IAI) BI por
de B, pero como lAI) BI por principio de palonar existivá C, d tq.
f(c) = f(d) + c + d
~ 10 was niega el hecho de que f es inyectiva
$f(c) = f(d)$ if $c \neq d$ 10 and riega el hecho de que f es inyactiva (=) (=) (=)
(m tradicción que surgo de asurir 40
Contradicción que surge de asunir que A es infinito, luego A debe ser finito
july july
Denostración de palonar abyo

(A - B) UB, predo probor el	dado (re	que ar un	unbos	son ones	finite)
entonces	bregs	Crear	ena fi) A GO)	
					モキュ

entences puedo (vear una Juncion)

(w):
$$\int S; \ \omega \in A - B = \int f(u) \in \pm_m$$
 $S; \ \omega \in B = \int h(w) \in I_n$

As more presonance of function that the $\int (\phi): 2s: \varphi \in I_n \Rightarrow g(\varphi)$

entorces A: (A-B) UB HI I UI,

\$\frac{1}{2}: \pm_U \pm_L H (A-B) UB}\$

es decir, existe una biyectión de (A-B) UB en IX = Im UIn, pero note que (A-B) UB es A, loego existe una biyectión de A en IX esto contradice el hero de que A sea infinito.

(ニ) イニ)

esto Sirge por asunir que A-B con B finito, es finito, lego A-B debe ser infinito y un ello es claro que A-B tiere almanos un elemento bego A-B & B. ejercicio 1 Cont. hacia fultu probur que $\Lambda \leq 2^{n-1}$, $\Lambda \in \mathbb{N} \subseteq \mathbb{Z}$ Por INU cuin: 1) Sea N=1 Note que $1 \le 2^{n-1}$ 1 4 20 X.I) Asuma que K & 2 Ahora si tereno k +1: K Z 2 K-1)+1, KEIN K+1 & 2 K & 2 (K-1)+1 Puso buse) KH = 2K Puso indutaro) K+1 +2 < 2x +2 (K+1)+1 = K+2 < K+3 < 2(K+1) / (K+1)+1 / 2 (K+1) W

Ejercicio 1 Versión 2
Considere el conjunto $A = g = \frac{1}{2^{n-1}} : n \in \mathbb{Z}^{t}$ Demestre que Inf(A) = 0.
0 = 0 = 0
Jensone go Inf Con Do
Sea and A note que and IRT lugo por propo arguinediona
propo arylinediona
Jn. & N: 0 < 1 < 9 m
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Veyo Cero es Cota inferior de an 7 96A.
Supongue por abourdo que X es una cota inf.
Supergue por abourdo yue Wes una cola inf. mus grande que O , en earticoner $w=\inf(A)>0$ note que $w\in\mathbb{R}^+$
note que WEIR'
lueso por prop. arg. In t.g.
~
2 2 4 2
$\omega > 1 > 1 > 1$
2 2 2
<u> </u>
luego existe un elemento de A mús granda
que su cota inferror.
Contradicción que surge de cosumer que

(4)

			۲
Denostrución	de	Palorer	
			⊢

Por indución

Caso Buse) sea B=Ø, entones note que no puede existir una função de A -> B, donde IAI > 1Bl, en Purticular es imposible una sureión inyection.

H.I.) A Sum que es cierto para IA >B)
Con IBI= n. (No hay injectividad)

Coso indestro) Asuna eor absordo que (A)7/B=n+1
es myectiva.

Sea |A| > |B| = n+1 Dte gor puedo hacer B/ of (nt1)} y fundiér 1A/Sn+13 pero rete que esto es el cuso anterior donde (A/ 5/B/= a, así eliminé la smager y la preimager de B y A respectivemente y obtuve una función no Inyectua de una Drignal mate in yectiva (=) <=).

lego debe fererse que tempoco 1A1>1B/ = n+re> inyection para este casa