

SIGGRAPH2016

THE 43RD INTERNATIONAL CONFERENCE AND EXHIBITION ON

Computer Graphics Interactive Techniques

24-28 JULY

ANAHEIM, CALIFORNIA

THE 43RD INTERNATIONAL CONFERENCE AND EXHIBITION ON COMPUTER Graphics Interactive Techniques

A Deep Learning Framework for Character Motion Synthesis and Editing

Daniel Holden *, Jun Saito †, Taku Komura *,

*The University of Edinburgh †Marza Animation Planet

Outline

Motivation

Synthesis

Editing

Discussion

Goal

Data driven synthesis of motion from high level controls with no manual preprocessing

Previous Work

Lots of manual processing (Graphs, Trees)

- Segmentation
- Alignment
- Classification

[Heck et al. 2007]

[Kovar et al. 2002]

Previous Work

- Scalability Issues (RBF, GP, GPLVM, kNN)
 - Must store whole database in memory
 - Grows O(n²) with number of data points
 - Requires expensive acceleration structures

[Lee et al. 2010] [Park et al. 2002]

[Mukai and Kuriyama 2005]

Overview

Overview

Overview

Outline

Motivation

Synthesis

Editing

Discussion

Convolutional Neural Networks

- Great success in classification and segmentation for images, video, sound
- We can use CNN on motion data too

Outline

Motivation

Synthesis

Editing

Discussion

Motion Editing

Post processing may not ensure naturalness

Motion Editing

 We edit using the motion manifold learned by a Convolutional Autoencoding Network [Holden et al. 2015]

Autoencoder

• Learns projection operator of motion manifold

Manifold Surface

- Hidden Unit values parametrise manifold surface
- Adjusting them ensures motion remains natural

Motion Data

Hidden Units

Constraint Satisfaction

 Motion editing is a constraint satisfaction problem over Hidden Units

Motion Data

Hidden Units

Constraint Satisfaction

Local foot velocity must equal global velocity

$$Pos(\mathbf{H}) = \sum_{j} \|\mathbf{v}_{r}^{\mathbf{H}} + \boldsymbol{\omega}^{\mathbf{H}} \times \mathbf{p}_{j}^{\mathbf{H}} + \mathbf{v}_{j}^{\mathbf{H}} - \mathbf{v}_{j}'\|_{2}^{2}.$$

Output trajectory must equal input trajectory

$$Traj(\mathbf{H}) = \|\omega^{\mathbf{H}} - \omega'\|_2^2 + \|\mathbf{v}_r^{\mathbf{H}} - \mathbf{v}_r'\|_2^2$$

A Neural Algorithm of Artistic Style

 Combine style of one image with content of another [Gatys et al. 2015]

- Gram Matrix of Hidden Units encode style
- Actual Values of Hidden Units encode content

$$Style(\mathbf{H}) = s \|G(\mathbf{\Phi}(\mathbf{S})) - G(\mathbf{H})\|_{2}^{2} + c \|\mathbf{\Phi}(\mathbf{C}) - \mathbf{H}\|_{2}^{2}$$

$$G(\mathbf{H}) = \frac{\sum_{i}^{n} \mathbf{H}_{i} \mathbf{H}_{i}^{T}}{n}$$

- Gram Matrix of Hidden Units encode style
- Actual Values of Hidden Units encode content

$$Style(\mathbf{H}) = s\|G(\Phi(\mathbf{S})) - G(\mathbf{H})\|_2^2 + c\|\Phi(\mathbf{C}) - \mathbf{H}\|_2^2$$
 Content Term
$$G(\mathbf{H}) = \frac{\sum_i^n \mathbf{H}_i \mathbf{H}_i^T}{n}$$

- Gram Matrix of Hidden Units encode style
- Actual Values of Hidden Units encode content

$$Style(\mathbf{H}) = s\|G(\mathbf{\Phi}(\mathbf{S})) - G(\mathbf{H})\|_2^2 + c\|\mathbf{\Phi}(\mathbf{C}) - \mathbf{H}\|_2^2$$
 Style Term
$$G(\mathbf{H}) = \frac{\sum_i^n \mathbf{H}_i \mathbf{H}_i^T}{n}$$

- Gram Matrix of Hidden Units encode style
- Actual Values of Hidden Units encode content

$$Style(\mathbf{H}) = s \|G(\mathbf{\Phi}(\mathbf{S})) - G(\mathbf{H})\|_{2}^{2} + c \|\mathbf{\Phi}(\mathbf{C}) - \mathbf{H}\|_{2}^{2}$$

$$G(\mathbf{H}) = \frac{\sum_{i}^{n} \mathbf{H}_{i} \mathbf{H}_{i}^{T}}{n} \quad \text{Gram Matrix}$$

- Gram Matrix of Hidden Units encode style
- Actual Values of Hidden Units encode content

$$Style(\mathbf{H}) = s \|G(\mathbf{\Phi}(\mathbf{S})) - G(\mathbf{H})\|_{2}^{2} + c \|\mathbf{\Phi}(\mathbf{C}) - \mathbf{H}\|_{2}^{2}$$

$$G(\mathbf{H}) = \frac{\sum_{i}^{n} \mathbf{H}_{i} \mathbf{H}_{i}^{T}}{n}$$

Style

Content

Transfer

Outline

Motivation

Synthesis

Editing

Discussion

Training

Motion Manifold

- Several large databases (including whole CMU)
- Training takes around 6 hours

Motion Synthesis

- Task specific data only (e.g. locomotion only)
- Training takes around 1 hour

Contribution

- High quality synthesis with no manual preprocessing
- Motion synthesis and editing in unified framework
- Procedural, parallel technique

Future Work

- Need more general solution for ambiguity issue
- Wish to use more high level features with a deeper network
- What changes are required for interactive applications?