Data Science HW01

— · Feature Encoding

Attribute 1

原為字串型態,先將其月份資訊留存,成為其 — feature。

並且,依照其月份資訊,將其編成介於 -1 到 1 的 cos 函數和 sin 函數,具體實現為將 (月份 / 12 * 2π) 視為 radian,進行運算,依此編碼原因為,退 測下雨與否和季節有所關係,而 sin 和 cos 函式合 併來看,就具有週期性,因此採用此編碼方式,形 成兩個獨立的 feature。

另外,透過其月份再將其推至可能的季節,在 這邊做了較為廣泛的猜測將 3 - 5 月設為春天、6 - 8 月為夏天、9 - 11 為秋天、12 - 2 為冬天,期許能在 季節上有一定的對應基準。

Attribute 8 \ 9

原為表達風向的字串資料,總共分為 16 個方向。

原先想要將其編成介於 0 – 15 的整數資料,分別表示 16 個不同的方向,但是考慮到方向間的相關性低,這樣的編碼方式會隱含著數字大小比較和不同方向有所關係,因此放棄此種編碼。

最後,選擇將方向編為向量,具體實作為,將正北視為 0 度,每 22.5 度計算一次,cos 和 sin 的數值,分別將其存入 x 方向和 y 方向的向量中,由此可知會將一方向拆為兩個 feature作為表示。

Attribute 20 \ 21

原為表達是否下雨的字串資料,將其轉為 0 和 1,分別表示會下雨和不會下雨。

二、缺失值處理

在做完將非數值資訊轉為數值資訊後,將所有 資料進行**線性插值**的運算,若處理玩依舊留有缺失 值,就將此筆資料予以刪除

三、Feature 的擴展

前言

由於對於各 feature 的解釋,能去透過一些運算來表示 feature 基於某特性而衍生的 feature 或feature 間的關聯性,不但可以幫助在 feature importance 上較低的 feature 可能可以找到新的表達方式使其 importance 有所提升,更有機會增加數據的解釋性

Feature 間的差距

由於我認為具有時間序的 feature 互相的變化 量可以構成新的 feature,因此對於有早晚時間的資料都會將其數據相檢視為新的一筆資料

Feature 間的交互關係

對於兩 feature 或我猜測兩者具有一定的相關性,舉例來說,這邊我任為方向向量和風速是具有相關度的 feature,因此將兩者相乘,並且作為新的feature。在這邊做的運算方式都是兩者相乘的形式。

三、模型超參數的調整

在這邊引用了 XGBClassifier 進行預估是否下雨,而為了去調整此模型的超參數,在這邊使用了RandomizedSearchCV 用以找尋相對好的超參數組合。

四、Feature 的挑選

使用 RamdoizedSearchCV 後可以觀察各feature 在過程中所占的 importance 程度,而基於此可以剔除importance 較低的 feature,或是將其用其他方式表示為新的 feature。

五、成果和心得

在這過程中我嘗試了各式的編碼方式,其實對於各式編碼和擴展方式的好壞程度,要準確評估有 其困難,在我最佳的成績,在 public 應可獲得 0.82 上下的成果,這是未使用額外資料的成果,我相信 此可以作為我各項操作上的評分依據。