

KIT-Department of Informatics Prof. Dr.-Ing. Tamim Asfour

Exam Answer Sheet

Robotics II: Humanoid Robotics

on September 24, 2020, 09:00 - 10:00

Family name:	Given name:	Matriculation number:
Exercise 1		out of 7 points
Exercise 2		out of 8 points
Exercise 3		out of 10 points
Exercise 4		out of 8 points
Exercise 5		out of 12 points
Total:		
		Grade:

Family name: Given name: Mat. No.: 2

Exercise 1 Humanoid Robots

3. Models of human body in the MMM:

1.	Humanoid robots:
	•
	•
	•
	•
2.	Two advantages:
	•
	Two disadvantages:
	•
	•

Exercise 2 Grasping Synergies and Eigengrasps

1. Mechanism for the first eigengrasp:

2. Explanation of the mechanism:

 ${\bf Mathematical\ description\ of\ the\ mechanism:}$

Solved actuation problem:

Exercise 3 Grasping

1. (a) Two other object classes:

•

•

(b) Object knowledge of each of the two other classes:

•

•

(c) Your approach to grasp an object (for each of the two other classes):

•

•

2. Steps required:

3. (a) Two ways for generating data:

•

•

(b) Block diagram and description:

Exercise 4 Active Perception

1. Discussion of the difference:

2. Heuristics:

•

•

•

3. Purpose of the costs functions:

• ψ_1 :

• ψ_2 :

• $\psi_{3,pos}$ and $\psi_{3,rot}$:

• Only ψ_1 :

Exercise 5 Imitation Learning

1. Mirror neurons:

2. Challenges:

•

•

3. Information to be extracted from demonstration:

4. Task constraints:

•

•

- 5. Criteria and segmentation methods:
 - First Level:
 - Second Level:

6. • Canonical system:

• Transformation system:

7. Can it be learned by multiple demonstrations?