draft_figures_12.18.18

Juliette Verstaen 12/18/2018

Contents

KOBE Plots with only most recent year of fisheries	1
RAM only	1
KOBE Plots with only most recent year of fisheries	3
All Data Sources	3
Total Catches in most recent year of ITQ, no ITQ, and Turfs	3
Total Catch: A more generous estimation of Turf catch	4
Logit regressions	6
run diagnostics	2
Diagnostics	2

KOBE Plots with only most recent year of fisheries

```
RAM only
No data: ITQ = FALSE
#read in data: this is updated projection data (updated using RAMs) and Corbett's ITQ/Turf data applied
fisheries_recent <- read_csv("data/fisheries_recent.csv")</pre>
## Parsed with column specification:
## cols(
##
     .default = col_double(),
##
     Country = col_character(),
##
     assess_id_short = col_character(),
##
     Year.x = col_integer(),
     CommName = col_character(),
##
##
     Dbase = col_character(),
##
     SciName = col_character(),
     IdLevel = col_character(),
##
##
     SpeciesCat.x = col_integer(),
     itq = col_character(),
##
     ivq = col_character(),
##
     iq = col_character(),
##
##
     turf = col_character()
## )
## See spec(...) for full column specifications.
#assuming that when no data is avaliable on the fishery inregardes to ITQ or Turfs that means there are
fisheries_recent$itq[is.na(fisheries_recent$itq)] <- "FALSE"</pre>
fisheries_recent$ivq[is.na(fisheries_recent$ivq)] <- "FALSE"</pre>
fisheries_recent$iq[is.na(fisheries_recent$iq)] <- "FALSE"</pre>
fisheries_recent$turf[is.na(fisheries_recent$turf)] <- "FALSE"</pre>
```

```
#only looking at fisheries data that come from RAMS database
# creating new column called "rightsbased" where 1 = ITQ and 0 = No ITQ
fisheries KOBE ram <- fisheries recent %>%
  filter(Dbase == "RAM") %>%
 mutate(rightsbased = case_when(
    itq == TRUE | iq == TRUE | ivq == TRUE ~ "1",
    itq == FALSE & iq == FALSE & ivq == FALSE ~ "0"))
#graphing
fisheries_KOBE_ram$rightsbased[fisheries_KOBE_ram$rightsbased == "0"]<- "No ITQ"
fisheries_KOBE_ram$rightsbased[fisheries_KOBE_ram$rightsbased == "1"]<- "ITQ"
ggplot(data = fisheries_KOBE_ram, aes( x=BvBmsy, y=FvFmsy, colour= rightsbased, size = Catch ))+
  geom_point()+
  labs(x = "B/Bmsy", y = "F/Fsmy") +
  theme_minimal()+
  theme(legend.title=element_blank())+
  ylim(0, 2.5)+
  xlim(0, 2.5)+
  geom_hline(aes(yintercept=1))+
  geom_vline(aes(xintercept=1))+
  ggtitle("KOBE Plot: RAM only Fisheries")
```

Warning: Removed 44 rows containing missing values (geom_point).

KOBE Plot: RAM only Fisheries

KOBE Plots with only most recent year of fisheries

All Data Sources

```
No data: ITQ = FALSE
fisheries_KOBE <- fisheries_recent %>%
  mutate(rightsbased = case_when(
    itq == TRUE | iq == TRUE | ivq == TRUE ~ "1",
    itg == FALSE & ig == FALSE & ivg == FALSE ~ "0"))
fisheries_KOBE$rightsbased[fisheries_KOBE$rightsbased == "0"]<- "No ITQ"
fisheries_KOBE$rightsbased[fisheries_KOBE$rightsbased == "1"]<- "ITQ"</pre>
#graphing
F_B_graph <- ggplot(data = fisheries_KOBE, aes( x=BvBmsy, y=FvFmsy, colour= rightsbased, size = Catch )
  geom_point()+
  labs(x = "B/Bmsy", y= "F/Fsmy") +
  theme_minimal()+
  theme(legend.title=element_blank())+
  ylim(0, 2.5)+
 xlim(0, 2.5)+
  geom_hline(aes(yintercept=1))+
  geom_vline(aes(xintercept=1))+
  ggtitle("KOBE Plot: All Fisheries")
```

LOOK AT THIS TOMORROW. ITQ AND NO ITQ CATCH PROJECTIONS SHOULD BE THE SAME, USING SAME DATA, BUT THEY ARE NOT. WTF?

Total Catches in most recent year of ITQ, no ITQ, and Turfs

```
fisheries_recent <- read_csv("data/fisheries_recent.csv")</pre>
## Parsed with column specification:
## cols(
##
     .default = col_double(),
##
     Country = col character(),
##
     assess_id_short = col_character(),
     Year.x = col_integer(),
##
    CommName = col_character(),
##
##
    Dbase = col_character(),
    SciName = col_character(),
##
##
     IdLevel = col_character(),
##
    SpeciesCat.x = col_integer(),
     itq = col_character(),
##
     ivq = col_character(),
##
     iq = col_character(),
     turf = col_character()
##
## )
## See spec(...) for full column specifications.
#assuming that when no data is present for itqs/turf that means there are none
fisheries_recent$turf[is.na(fisheries_recent$turf)] <- "FALSE"</pre>
```

```
fisheries_recent$itq[is.na(fisheries_recent$itq)] <- "FALSE"</pre>
fisheries_recent$ivq[is.na(fisheries_recent$ivq)] <- "FALSE"</pre>
fisheries_recent$iq[is.na(fisheries_recent$iq)] <- "FALSE"</pre>
fisheries_rightsbased <- fisheries_recent %>%
  mutate(rightsbased = case_when(
    turf == TRUE ~ "2",
    itq == FALSE & iq == FALSE & ivq == FALSE ~ "0",
    itq == TRUE | iq == TRUE | ivq == TRUE ~ "1"
turfs <- filter(fisheries_rightsbased, rightsbased == "2")</pre>
itq <- filter(fisheries_rightsbased, rightsbased == "1")</pre>
no_itq <- filter(fisheries_rightsbased, rightsbased == "0")</pre>
sum(turfs$Catch, na.rm = TRUE)
## [1] 174065.5
#174065.5
sum(itq$Catch, na.rm = TRUE)
## [1] 3874741
#3874741
sum(no_itq$Catch, na.rm = TRUE)
## [1] 66155763
#66155763
```

 $turf = 174,065.5 = 0.248\% \ of \ total \ catch \ itq = 3,874,741 = 5.5\% \ of \ total \ catch \ no \ itq = 66,155,763 = 94.23\% \ of \ total \ catch \ Total = 70,204,569.5$

Total Catch: A more generous estimation of Turf catch

```
fisheries_recent <- read_csv("data/fisheries_recent.csv")</pre>
## Parsed with column specification:
## cols(
##
     .default = col_double(),
     Country = col_character(),
##
##
     assess_id_short = col_character(),
     Year.x = col integer(),
##
     CommName = col character(),
##
    Dbase = col_character(),
##
##
     SciName = col_character(),
     IdLevel = col_character(),
##
##
    SpeciesCat.x = col_integer(),
##
     itq = col_character(),
##
     ivq = col_character(),
##
     iq = col_character(),
##
     turf = col_character()
```

```
## )
## See spec(...) for full column specifications.
#load in data for turf/itq only projection
turf_itq_isscaap <- read_csv("data/turf_itq_isscaap.csv")</pre>
## Parsed with column specification:
## cols(
##
    SciName = col character(),
    Country = col_character(),
##
    programstart = col_integer(),
##
##
    itq_now = col_integer(),
##
    iq = col_logical(),
##
    itq = col_logical(),
##
    ivq = col_logical(),
##
    turf = col_logical(),
##
     SpeciesCat = col_integer()
## )
turf_only <- turf_itq_isscaap %>%
  select(SciName, Country, turf)
fisheries_recent_generousturf_1 <- select(fisheries_recent, Country, assess_id_short, Year.x,SciName, C
#merge the most recent data on each fishery with turf data
fisheries_recent_generousturf <- merge(fisheries_recent_generousturf_1,turf_only, by = c("Country", "Sc
#assuming that when no data is present for itqs/turf that means there are none
fisheries_recent_generousturf$turf[is.na(fisheries_recent_generousturf$turf)] <- "FALSE"
fisheries_recent_generousturf$itq[is.na(fisheries_recent_generousturf$itq)] <- "FALSE"
fisheries_recent_generousturf$ivq[is.na(fisheries_recent_generousturf$ivq)] <- "FALSE"
fisheries_recent_generousturf$iq[is.na(fisheries_recent_generousturf$iq)] <- "FALSE"
fisheries_recent_generousturf_rightsbased <- fisheries_recent_generousturf %>%
  mutate(rightsbased = case_when(
   turf == TRUE ~ "2",
    itq == FALSE & iq == FALSE & ivq == FALSE ~ "0",
    itq == TRUE | iq == TRUE | ivq == TRUE ~ "1"
   ))
#create dfs for turf, itq, and no itq fisheries to calculate the sum of each
#NOTE to rememeber: the data from these fisheries are the most recent numbers we have. they are not all
turfs_generous <- filter(fisheries_recent_generousturf_rightsbased, rightsbased == "2")
itq_generous <- filter(fisheries_recent_generousturf_rightsbased, rightsbased == "1")
no_itq_generous <- filter(fisheries_recent_generousturf_rightsbased, rightsbased == "0")
sum(turfs generous$Catch, na.rm = TRUE)
## [1] 1530353
#1530353
sum(itq_generous$Catch, na.rm = TRUE)
```

[1] 8374634

```
#8374634

sum(no_itq_generous$Catch, na.rm = TRUE)

## [1] 69025946

#69025946
```

Generous Turf Catch Estimates:

 $turf = 1,530,353 -> 1.93\% \ global \ catch \ itq = 8,374,634 -> 10.6\% \ global \ catch \ no \ itq = 69,025,946 -> 87.46\% \ global \ catch$

Total: 78,930,933

*note: 5643 actual rows 5707 when manually added added - this means 64 species were matched with existing species in database - when separated out all by species it was worse - separate remaining by genus?

Logit regressions

##

itq_now = col_integer(),

new UN GDP data, 2016 only Scaled GDPs Rerun Regressions ##itq or turf: probablity of itq = f(ISSCAPP and GDP)

```
fisheries_recent <- read_csv("data/fisheries_recent.csv")</pre>
```

```
## Parsed with column specification:
## cols(
##
     .default = col double(),
##
     Country = col_character(),
##
     assess_id_short = col_character(),
     Year.x = col_integer(),
##
     CommName = col character(),
##
     Dbase = col_character(),
##
##
     SciName = col_character(),
##
     IdLevel = col_character(),
##
     SpeciesCat.x = col_integer(),
##
     itq = col_character(),
##
     ivq = col_character(),
##
     iq = col_character(),
##
     turf = col_character()
## )
## See spec(...) for full column specifications.
fisheries_recent$itq[is.na(fisheries_recent$itq)] <- "FALSE"</pre>
fisheries_recent$ivq[is.na(fisheries_recent$ivq)] <- "FALSE"</pre>
fisheries_recent$iq[is.na(fisheries_recent$iq)] <- "FALSE"</pre>
fisheries_recent$turf[is.na(fisheries_recent$turf)] <- "FALSE"</pre>
turf_itq_isscaap <- read_csv("data/turf_itq_isscaap.csv")</pre>
## Parsed with column specification:
## cols(
##
     SciName = col_character(),
##
     Country = col_character(),
##
     programstart = col_integer(),
```

```
##
     iq = col_logical(),
##
     itq = col_logical(),
     ivq = col_logical(),
##
    turf = col_logical(),
##
##
    SpeciesCat = col_integer()
## )
turf_only <- turf_itq_isscaap %>%
  select(SciName, Country, turf, SpeciesCat)
fisheries_recent_generousturf_1 <- fisheries_recent %>%
  select(Country, assess_id_short, Year.x, CommName, Biomass, Catch, BvBmsy, FvFmsy, Dbase, SciName, Id
fisheries_recent_generousturf <- merge(turf_only, fisheries_recent_generousturf_1, by = c("Country", "S
fisheries_recent_generousturf$turf[is.na(fisheries_recent_generousturf$turf)] <- "FALSE"
fisheries_recent_generousturf$itq[is.na(fisheries_recent_generousturf$itq)] <- "FALSE"
fisheries_recent_generousturf$ivq[is.na(fisheries_recent_generousturf$ivq)] <- "FALSE"
fisheries_recent_generousturf$iq[is.na(fisheries_recent_generousturf$iq)] <- "FALSE"
fisheries_recent_generousturf_rightsbased <- fisheries_recent_generousturf %>%
  mutate(rightsbased = case_when())
    itq == TRUE | iq == TRUE | ivq == TRUE ~ "1",
    itq == FALSE | iq == FALSE | ivq == FALSE ~ "0"
   ))
gdp_all <- read_excel("data/un_gdp_2016.xls")</pre>
gdp <- gdp_all %>%
  select(Country, gdp_center) %>%
  filter( gdp_center != "NA")
merge_gdp_rightsbased <- merge(gdp, fisheries_recent_generousturf_rightsbased, by = c("Country"))
gdp_rightsbased <- filter(merge_gdp_rightsbased, SpeciesCat != "NA" )</pre>
gdp_rightsbased$SpeciesCat <- factor(gdp_rightsbased$SpeciesCat)</pre>
gdp_rightsbased$rightsbased <- as.numeric(gdp_rightsbased$rightsbased)</pre>
itq_glm <- glm(formula = rightsbased ~ gdp_center + SpeciesCat, family = "binomial", data = gdp_rightsb</pre>
itq_glm
##
## Call: glm(formula = rightsbased ~ gdp_center + SpeciesCat, family = "binomial",
       data = gdp_rightsbased)
##
## Coefficients:
##
   (Intercept)
                   gdp_center SpeciesCat22 SpeciesCat23 SpeciesCat24
    -1.940e+01
                    2.217e+00
                                 -1.327e+00
                                               -5.097e+00
                                                               2.307e-06
##
## SpeciesCat31 SpeciesCat32 SpeciesCat33 SpeciesCat34 SpeciesCat35
                    2.083e+01
##
     -3.147e+00
                                  1.577e+01
                                                 1.777e+01
                                                               1.779e+01
## SpeciesCat37 SpeciesCat42 SpeciesCat43 SpeciesCat44 SpeciesCat45
      1.615e+01
                    1.522e+01
                                  1.879e+01
                                               -6.003e-01
                                                             -3.330e+00
```

```
## SpeciesCat47 SpeciesCat52 SpeciesCat53 SpeciesCat54 SpeciesCat55
##
    -1.735e+00
                  -1.850e+00
                                -3.817e+00
                                              -1.992e+00
                                                            -1.805e+00
## SpeciesCat56 SpeciesCat57 SpeciesCat58 SpeciesCat74 SpeciesCat76
                                              -1.007e+00
                  -2.347e+00
                                -7.922e-01
    -2.933e+00
                                                            -1.391e+00
## SpeciesCat77
##
    -1.952e+00
## Degrees of Freedom: 326 Total (i.e. Null); 301 Residual
## Null Deviance:
                       388.6
## Residual Deviance: 168.4
                               AIC: 220.4
summary(itq_glm)
##
## Call:
  glm(formula = rightsbased ~ gdp_center + SpeciesCat, family = "binomial",
##
      data = gdp_rightsbased)
##
## Deviance Residuals:
       Min
                  1Q
                        Median
                                      3Q
                                               Max
## -2.68637 -0.22999 -0.00004
                                 0.51469
                                           2.90251
##
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.940e+01 1.773e+04 -0.001
                                                0.999
## gdp_center
                2.217e+00 4.956e-01
                                       4.473 7.72e-06 ***
## SpeciesCat22 -1.327e+00 2.507e+04
                                       0.000
                                                1.000
## SpeciesCat23 -5.097e+00 1.915e+04
                                       0.000
                                                1.000
## SpeciesCat24 2.307e-06 2.507e+04
                                       0.000
                                                1.000
## SpeciesCat31 -3.147e+00 2.047e+04
                                       0.000
                                                1.000
                                       0.001
## SpeciesCat32 2.083e+01 1.773e+04
                                                0.999
## SpeciesCat33 1.577e+01 1.773e+04
                                       0.001
                                                0.999
## SpeciesCat34 1.777e+01 1.773e+04
                                       0.001
                                                0.999
## SpeciesCat35 1.779e+01 1.773e+04
                                       0.001
                                                0.999
## SpeciesCat37 1.615e+01 1.773e+04
                                       0.001
                                                0.999
## SpeciesCat42 1.522e+01 1.773e+04
                                       0.001
                                                0.999
## SpeciesCat43 1.879e+01 1.773e+04
                                       0.001
                                                0.999
## SpeciesCat44 -6.003e-01 2.161e+04
                                       0.000
                                                1.000
## SpeciesCat45 -3.330e+00 1.802e+04
                                       0.000
                                                1.000
## SpeciesCat47 -1.735e+00 2.157e+04
                                       0.000
                                                1.000
## SpeciesCat52 -1.850e+00 1.823e+04
                                       0.000
                                                1.000
## SpeciesCat53 -3.817e+00 1.897e+04
                                       0.000
                                                1.000
## SpeciesCat54 -1.992e+00 1.918e+04
                                       0.000
                                                1.000
## SpeciesCat55 -1.805e+00 1.893e+04
                                       0.000
                                                1.000
## SpeciesCat56 -2.933e+00
                           1.799e+04
                                       0.000
                                                1.000
## SpeciesCat57 -2.347e+00 1.858e+04
                                       0.000
                                                1.000
## SpeciesCat58 -7.922e-01
                           1.811e+04
                                       0.000
                                                1.000
## SpeciesCat74 -1.007e+00
                                       0.000
                                                1.000
                           2.172e+04
## SpeciesCat76 -1.391e+00 2.028e+04
                                       0.000
                                                1.000
## SpeciesCat77 -1.952e+00 1.948e+04
                                       0.000
                                                1.000
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
```

```
Null deviance: 388.62 on 326 degrees of freedom
## Residual deviance: 168.40 on 301 degrees of freedom
## AIC: 220.4
##
## Number of Fisher Scoring iterations: 19
Run Turf versus ITQ probably: prob(ITQ). Turf = 1 and ITQ = 0 with the data set that was the turf/itq
only one
fisheries_recent <- read_csv("data/fisheries_recent.csv")</pre>
## Parsed with column specification:
## cols(
##
     .default = col_double(),
##
     Country = col_character(),
##
     assess_id_short = col_character(),
     Year.x = col_integer(),
##
     CommName = col_character(),
##
##
     Dbase = col_character(),
     SciName = col_character(),
##
##
     IdLevel = col_character(),
##
     SpeciesCat.x = col_integer(),
     itq = col_character(),
##
##
     ivq = col_character(),
##
     iq = col_character(),
     turf = col_character()
##
## )
## See spec(...) for full column specifications.
fisheries_recent$itq[is.na(fisheries_recent$itq)] <- "FALSE"
fisheries_recent$ivq[is.na(fisheries_recent$ivq)] <- "FALSE"
fisheries_recent$iq[is.na(fisheries_recent$iq)] <- "FALSE"</pre>
fisheries_recent$turf[is.na(fisheries_recent$turf)] <- "FALSE"</pre>
turf_itq_isscaap <- read_csv("data/turf_itq_isscaap.csv")</pre>
## Parsed with column specification:
## cols(
     SciName = col_character(),
     Country = col_character(),
##
##
    programstart = col_integer(),
##
    itq_now = col_integer(),
##
     iq = col_logical(),
##
     itq = col_logical(),
##
     ivq = col_logical(),
##
     turf = col_logical(),
##
     SpeciesCat = col_integer()
## )
turf_only <- turf_itq_isscaap %>%
  select(SciName, Country, turf, SpeciesCat)
fisheries_recent_generousturf_1 <- fisheries_recent %>%
  select(Country, assess_id_short, Year.x, CommName, Biomass, Catch, BvBmsy, FvFmsy, Dbase, SciName, Id
fisheries_recent_generousturf <- merge(turf_only, fisheries_recent_generousturf_1, by = c("Country", "S
```

```
fisheries_recent_generousturf$turf[is.na(fisheries_recent_generousturf$turf)] <- "FALSE"
fisheries_recent_generousturf$itq[is.na(fisheries_recent_generousturf$itq)] <- "FALSE"
fisheries_recent_generousturf$ivq[is.na(fisheries_recent_generousturf$ivq)] <- "FALSE"
fisheries_recent_generousturf$iq[is.na(fisheries_recent_generousturf$iq)] <- "FALSE"
fisheries_recent_generousturf_rightsbased <- fisheries_recent_generousturf %>%
  mutate(rightsbased = case_when(
   turf == TRUE ~ "1",
   itq == TRUE | iq == TRUE | ivq == TRUE ~ "0"
    ))
gdp_all <- read_excel("data/un_gdp_2016.xls")</pre>
gdp <- gdp_all %>%
  select(Country, gdp_center) %>%
  filter( gdp_center != "NA")
join_gdp_rightsbased <- merge(gdp, fisheries_recent_generousturf_rightsbased, by = c("Country"))
gdp_rightsbased <- filter(join_gdp_rightsbased, SpeciesCat != "NA" )</pre>
gdp_rightsbased$SpeciesCat <- factor(gdp_rightsbased$SpeciesCat)</pre>
gdp_rightsbased$rightsbased <- as.numeric(gdp_rightsbased$rightsbased)</pre>
itq_turf_glm <- glm(formula = rightsbased ~ gdp_center + SpeciesCat, family = "binomial", data = gdp_ri
itq_glm
##
## Call: glm(formula = rightsbased ~ gdp_center + SpeciesCat, family = "binomial",
##
       data = gdp_rightsbased)
##
## Coefficients:
## (Intercept)
                gdp_center SpeciesCat22 SpeciesCat23 SpeciesCat24
##
    -1.940e+01
                  2.217e+00
                               -1.327e+00
                                              -5.097e+00
                                                              2.307e-06
## SpeciesCat31 SpeciesCat32 SpeciesCat33 SpeciesCat34 SpeciesCat35
##
    -3.147e+00
                   2.083e+01
                                 1.577e+01
                                              1.777e+01
                                                              1.779e+01
## SpeciesCat37 SpeciesCat42 SpeciesCat43 SpeciesCat44 SpeciesCat45
##
      1.615e+01
                    1.522e+01
                                  1.879e+01
                                              -6.003e-01
                                                            -3.330e+00
## SpeciesCat47 SpeciesCat52 SpeciesCat53 SpeciesCat54 SpeciesCat55
    -1.735e+00
                 -1.850e+00 -3.817e+00
                                              -1.992e+00
                                                            -1.805e+00
## SpeciesCat56 SpeciesCat57 SpeciesCat58 SpeciesCat74 SpeciesCat76
                  -2.347e+00
                                -7.922e-01
                                              -1.007e+00
                                                            -1.391e+00
     -2.933e+00
## SpeciesCat77
##
     -1.952e+00
##
## Degrees of Freedom: 326 Total (i.e. Null); 301 Residual
## Null Deviance:
                        388.6
## Residual Deviance: 168.4
                                AIC: 220.4
summary(itq_turf_glm)
```

```
## Call:
## glm(formula = rightsbased ~ gdp_center + SpeciesCat, family = "binomial",
       data = gdp_rightsbased)
##
## Deviance Residuals:
##
       \mathtt{Min}
                        Median
                  10
                                      3Q
                                               Max
## -2.78655 -0.32591
                        0.00004
                                 0.17282
                                           2.59183
##
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                1.953e+01 1.773e+04
                                       0.001
                                                0.999
               -1.968e+00 4.897e-01
                                      -4.018 5.86e-05 ***
## gdp_center
## SpeciesCat22 1.178e+00 2.507e+04
                                       0.000
                                                1.000
## SpeciesCat23 4.525e+00 1.915e+04
                                       0.000
                                                1.000
## SpeciesCat24 -1.137e-06 2.507e+04
                                       0.000
                                                1.000
## SpeciesCat31 2.794e+00
                           2.047e+04
                                       0.000
                                                1.000
## SpeciesCat32 -2.095e+01 1.773e+04 -0.001
                                                0.999
## SpeciesCat33 -1.618e+01
                           1.773e+04
                                      -0.001
                                                0.999
## SpeciesCat34 -1.926e+01 1.773e+04
                                      -0.001
                                                0.999
## SpeciesCat35 -1.821e+01 1.773e+04
                                      -0.001
                                                0.999
## SpeciesCat37 -1.651e+01 1.773e+04
                                      -0.001
                                                0.999
## SpeciesCat42 -1.570e+01 1.773e+04
                                      -0.001
                                                0.999
## SpeciesCat43 -1.911e+01 1.773e+04
                                      -0.001
                                                0.999
## SpeciesCat44 5.243e-01 2.163e+04
                                       0.000
                                                1.000
## SpeciesCat45 2.871e+00 1.803e+04
                                       0.000
                                                1.000
## SpeciesCat47 1.529e+00 2.160e+04
                                       0.000
                                                1.000
## SpeciesCat52 1.587e+00 1.824e+04
                                       0.000
                                                1.000
## SpeciesCat53 3.353e+00 1.900e+04
                                       0.000
                                                1.000
                                       0.000
## SpeciesCat54 1.713e+00 1.923e+04
                                                1.000
## SpeciesCat55 1.538e+00 1.897e+04
                                       0.000
                                                1.000
## SpeciesCat56 2.521e+00 1.800e+04
                                       0.000
                                                1.000
## SpeciesCat57 2.052e+00 1.860e+04
                                       0.000
                                                1.000
## SpeciesCat58 6.990e-01 1.811e+04
                                       0.000
                                                1.000
                                       0.000
## SpeciesCat74
                8.944e-01
                           2.172e+04
                                                1.000
## SpeciesCat76 1.211e+00 2.031e+04
                                       0.000
                                                1.000
## SpeciesCat77 1.674e+00 1.954e+04
                                       0.000
                                                1.000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 379.13 on 312 degrees of freedom
## Residual deviance: 134.16 on 287 degrees of freedom
     (14 observations deleted due to missingness)
## AIC: 186.16
##
## Number of Fisher Scoring iterations: 19
```

run diagnostics

Diagnostics

```
##run above chunk to get gdp_rightsbased df not the old csv file that is now archived in data folder
diagnostics <- gdp_rightsbased %>%
 mutate(management = case_when(
   itq == TRUE | iq == TRUE | ivq == TRUE ~ "1",
   turf == TRUE ~ "2",
   itq == FALSE | iq == FALSE | ivq == FALSE | turf == FALSE ~ "0"
   )) %>%
 select(Country, gdp_center, SpeciesCat, management)
#diagnostics wont run with non-numeric?
diagnostics$SpeciesCat <- as.numeric(diagnostics$SpeciesCat)</pre>
diagnostics$management <- as.numeric(diagnostics$management)</pre>
\#2=gdp; 4=turf; 5=SpeciesCat; 23=itq; 24=ivq; 25=iq; 26=binary rights based
pairs(diagnostics[2:4])
                                                                          gdp_center
                                                                          8
                                 08 000 0 00 00000000
                                 8 080808 80 0808 00
                                                                          &
8°
                               SpeciesCat
                       8
                            0 0 0000 0 00 0
                                                       management
                  \infty
                                 0000000
   -0.5 0.0
            0.5
                 1.0
                     1.5
                                                    0.0
                                                         0.5
                                                               1.0
                                                                    1.5
                                                                          2.0
#pearson's r correlations
cor(diagnostics[2:4])
             gdp_center SpeciesCat management
## gdp_center 1.0000000 -0.4074071 -0.3992407
## SpeciesCat -0.4074071 1.0000000 0.4163631
## management -0.3992407 0.4163631 1.0000000
#run chi square?
```

Bar Chart: Coefficient Species Category