EE466 Lab 167 Mätning på elektriska kretsar

Jonas Sjöberg Högskolan i Gävle, Elektronikingenjörsprogrammet, tel12jsg@student.hig.se

Oscar Wallberg Högskolan i Gävle, Dataingenjörsprogrammet, tco13owg@student.hig.se

Labb utförd: ? Februari 2015 Instruktör: Efrain Zenteno

Sammanfattning

Syftet med laborationen är att praktiskt pröva några av de grundläggande sambanden och satserna i likströmsläran, samt att förstå enkla växelströmskretsar. Dessutom bör studenten efter genomförd laboration översiktligt förstå universalinstrumentets och oscilloskopets principiella funktionssätt, samt kunna tillämpa hanteringen av dessa instrument i mätning på elektriska kretsar.

Innehåll

1	Introduktion	3		
2	Mätning på seriekrets	3		
	2.1 Mätresultat	3		
	2.2 Kommentar	3		
3	Inverkan av en parallellgren på en krets	4		
	3.1 Mätresultat	4		
4	Mätning på parallellkrets	4		
	4.1 Mätresultat	5		
	4.2 Kommentar	5		
5	Mätning av resistans	5		
	5.1 Mätresultat	5		
	5.2 Teoretisk beräkning	5		
6	Mätning av emk och inre resistans i en tvåpol	5		
	6.1 Teoretisk härledning med Thévenins teorem	6		
7	Karakteristik hos en lysdiod	9		
	7.1 Mätresultat	10		
	7.2 Kommentar	12		
8	Mätning av växelspänning med universalinstrument och oscil-			
	loskop	12		
9	Studium av frekvensgång i en reaktiv krets	12		
	9.1 Mätresultat	12		
	9.2 Teoretisk beräkning	12		
	9.3 Kommentar	12		
10	Mätning av fasförskjutning i en reaktiv krets	12		
	10.1 Mätresultat			
	10.2 Teoretisk beräkning	12		
	10.3 Kommentar	12		
11	Mätning av resonansfrekvens	12		
	11.1 Mätresultat	12		
	11.2 Kommentar	12		
12	Resultat	12		
13	Referenser	13		

1 Introduktion

2 Mätning på seriekrets

Seriekretsen enligt figur 1 kopplades upp. 5 V valdes för spänningskällan.

Figur 1: Seriekrets

2.1 Mätresultat

Resistensen mellan A och B, R_1 , mättes upp till 100.561Ω och mellan B och C, R_2 , mättes 217.78Ω upp. Följande spänningar mättes därefter upp:

 $U_{AB}=1.58\mathrm{V}$

 $U_{BC} = 3.41 \mathrm{V}$

 $U_{AC} = 4.999 V$

2.2 Kommentar

Spänningsdelningslagen ger:

$$U_{AB} = U \times \frac{R_1}{R_1 + R_2}$$

$$U_{AB} = 4.999 \times \frac{100.561}{100.561 + 217.78}$$

$$U_{AB} = 1.579$$

$$U_{BC} = U \times \frac{R_2}{R_1 + R_2}$$

$$U_{BC} = 4.999 \times \frac{217.78}{100.561 + 217.78}$$

$$U_{BC} = 3.42$$

$$U_{AC} = U \times \frac{R_1 + R_2}{R_1 + R_2}$$

$$U_{AC} = U = 4.999$$

Kirchhoff's 2:a lag:

Summan av samtliga emk:s som ingår i en sluten krets är lika med summan av potentialfallen, eller

$$u_1 + u_2 + \ldots + u_n = 0$$

där u_k betecknar en potentialändring.

Enligt Kirchhoff's lag:

$$U - U_{AB} - U_{BC} = 0$$

$$4.99 - 1.579 - 3.42 = 0$$
, vilket stämmer.

3 Inverkan av en parallellgren på en krets

Ytterligare en resistor på 330 Ω kopplades parallellt till kretsen från figur 1, se figur 2.

Figur 2: Parallellgren på föregående krets.

3.1 Mätresultat

Strömmen som mättes vid spänningskällan var 33mA och strömmen i punkt B var 15.466mA.

4 Mätning på parallellkrets

Två resistorer kopplades enligt figur 3. Sedan valdes en lämplig spänning för spänningskällan.

Figur 3: Parallellgren på föregående krets.

- 4.1 Mätresultat
- 4.2 Kommentar
- 5 Mätning av resistans
- 5.1 Mätresultat
- 5.2 Teoretisk beräkning

6 Mätning av emk och inre resistans i en tvåpol

Dessa mätningar görs i syfte att undersöka konceptet tvåpol och demonstrera konceptet av att studera och räkna med reducering av komplexa nät med hjälp av Thévenins ekvivalens.

En så kallad experimentplatta eller breadboardänvänds för att konstruera kretsen som illustreras i Figur 4. Nätaggregatet V_1 är ett strömbegränsande laboratorieaggregat HP3631A. Spänningen U mäts över dekadresistorn R_3 med bänkmultimetern M_2 , en HP34401A. Strömmen I mäts genom att den handhållna multimetern Tenma 72-2050 kopplas mellan punkten A och R_3 . Källan som driver spänningen V_{AB} utgörs av V_1 , R_1 och R_2 .

Lasten som är ansluten till utgången utgörs av dekadresistorn R_3 . Resistansen hos multimetern M_2 parallellkopplas med R_3 och påverkar således kretsen på ett oönskat sätt. Om man antar att M_2 har en inre resistans på $10\,\mathrm{M}\Omega$ förändras lastens effektiva resistans. Förändringen är försumbar då R_3 har ett lågt värde men felvärdet blir klart påtagligt vid högre resistansvärden. Felvärdet kan beräknas med Ekvation 1 som vid en högre resistans enligt 2 blir 0.09%, vilket klart påverkar mätresultatet. Men eftersom den maximala resistansen som används är $100\,\mathrm{k}\Omega$ så kan belastning från multimetern förbises.

Utan belastning är spänningen vid tvåpolens "utgång", $V_{AB} = 7.16 \,\mathrm{V}$. Med R_3 ställd på sin maximala resistans är spänningen oförändrad. När värdet hos R_3 sänks börjar spänningen vid tvåpolens utgång också att sjunka.

Figur 4: Koppling vid mätning av EMK och inre resistans i en tvåpol.

Halva tomgångsspänningen $\frac{V_{AB}}{2}=3.58\,\mathrm{V}$ avläses vid en last av $R_3=341\,\Omega.$ Strömmen genom lasten är då $I=10.531\,\mathrm{mA}.$

$$Felvärde(\%) = \frac{Uppmätt\ värde - Förväntat\ värde}{Förväntat\ värde} \times 100$$
 (1)

Vid en resistans på t.ex. $1 \,\mathrm{M}\Omega$ blir felvärdet enligt Ekvation 2.

Ett felvärde på 0,09% är utgör ett signifikant mätfel. I det här fallet är lastresistansen som effektivt parallellkopplas med multimetern mycket lägre än 1 M Ω och mätfelet blir inte fullt så allvarligt.

Felvärde
$$R_{last}(\%) = \frac{\left(\frac{1}{\frac{1}{R_3} + \frac{1}{RM_2}}\right) - R_3}{R_3} \times 100$$
 (2)
$$= \frac{\left(\frac{1}{\frac{1}{1M\Omega} + \frac{1}{10M\Omega}}\right) - 1M\Omega}{1M\Omega} \times 100$$
 (3)

$$= \frac{\left(\frac{1}{1 \operatorname{M}\Omega} + \frac{1}{10 \operatorname{M}\Omega}\right) - 1 \operatorname{M}\Omega}{1 \operatorname{M}\Omega} \times 100 \tag{3}$$

$$=0,09\%$$
 (4)

6.1 Teoretisk härledning med Thévenins teorem

Kretsen som levererar spänningen ritas om till den i Figur 5. Den obelastade tomgångsspänningenmellan punkterna A och B, V_{AB} beräknas

Figur 5: Den obelastade kretsen som utgör källpolspänningen

Figur 6: Spänningskälla kortsluten för att hitta inre resistans

enligt Ekv. 5.

$$V_{AB} = V_{th} \times \frac{R_2}{R_1 + R_2}$$

$$V_{AB} = 10 \text{ V} \times \frac{1.2 \text{ k}\Omega}{470 \Omega + 1.2 \text{ k}\Omega}$$

$$V_{AB} = 10 \text{ V} \times \frac{1.2 \times 10^3}{470 + 1.2 \times 10^3}$$

$$V_{AB} = 7,185 \text{ V}$$
(5)

Den inre resistansen beräknas genom att kortsluta spänningskällan. Kretsen blir då den i Figur 6.

Den inre resistansen utgörs av parallellkopplingen \mathbb{R}_1 och \mathbb{R}_2 och beräknas

Figur 7: Fullständig ekvivalent krets

enligt Ekv. 6.

$$R_{th} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$

$$R_{th} = \frac{1}{\frac{1}{470\Omega} + \frac{1}{1.2 \,\text{k}\Omega}}$$

$$R_{th} = 337,72\,\Omega$$
(6)

De teoretiska värdena för Théveninekvivalensen i 7 används i Figur 7 som har ett beteende ekvivalent med den ursprungliga tvåpolen.

$$V_{AB} = 7,185 \,\mathrm{V}$$
 (7)

$$R_{th} = 337,72\,\Omega\tag{8}$$

Figur 8: Labbkoppling för att bestämma I/V-karakteristik hos LED

7 Karakteristik hos en lysdiod

För att undersöka I/v-karakteristiken hos en lysdiod behövs kännedom om spänningen över lysdioden, V_{LED} samt strömmen genom lysdioden, I_{LED} . Kretsen i Figur 8 konstruerades på en kopplingsplatta. En röd lysdiod användes, vi kan anta att det röda ljusets våglängd är cirka 660 nm och därmed förvänta oss ett framspänningsfall på cirka 1.8 V vid 20 mA. Framspänningsfallet V_f brukar i datablad ofta specificeras vid 20 mA, som också många gånger är lysdiodens rekommenderade maxström.

Resistorn R_2 förhindrar strömmen I_{LED} att bli alldeles för stor i det fall att resistansen hos dekadresistorn R_1 är ställd till ett lågt värde eller direkt kortslutning. Den högsta ström som kan flyta genom kretsen uppskattas i Ekvation 9 till ett värde under den specificerade maxgränsen på 20 mA.

$$I_{LED_{max}} = \frac{V_1 - V_{D1}}{R_2}$$

$$I_{LED_{max}} = \frac{10 \text{ V} - 1.8 \text{ V}}{470 \Omega}$$

$$I_{LED_{max}} = 17.4 \text{ mA}$$
(9)

Lysdioden är precis som namnet antyder en typ av diod och uppvisar en typisk diodkarakteristik, där strömmen I_{diod} är näst intill obefintlig då $V_{diod} < V_f$ för att sedan öka exponentiellt efter det att $V_{diod} \ge V_f$ och dioden börjar leda. Förhållandet mellan spänning och ström är olinjärt, ΔI är mycket stort över ett mycket litet område av ΔV .

Mätresultaten presenteras i Tabell 1, Figur 9 och Figur 10 under sektion 7.1.

7.1 Mätresultat

R_3	I_{LED}	V_{LED}
500Ω	$16.38\mathrm{mA}$	1.78 V
600Ω	$13.66\mathrm{mA}$	$1.766\mathrm{V}$
700Ω	$11.725\mathrm{mA}$	$1.755\mathrm{V}$
800Ω	$10.269\mathrm{mA}$	$1.744\mathrm{V}$
900Ω	$9.1342\mathrm{mA}$	$1.737\mathrm{V}$
$1\mathrm{k}\Omega$	$8.260\mathrm{mA}$	$1.730\mathrm{V}$
$2\mathrm{k}\Omega$	$3.3319\mathrm{mA}$	$1.685\mathrm{V}$
$3\mathrm{k}\Omega$	$2.3805\mathrm{mA}$	$1.671\mathrm{V}$
$4\mathrm{k}\Omega$	$1.8525\mathrm{mA}$	$1.662\mathrm{V}$
$5\mathrm{k}\Omega$	$1.5176\mathrm{mA}$	$1.655\mathrm{V}$
$6\mathrm{k}\Omega$	$1.2858\mathrm{mA}$	$1.648\mathrm{V}$
$7\mathrm{k}\Omega$	$1.1159\mathrm{mA}$	$1.643\mathrm{V}$
$8\mathrm{k}\Omega$	$985.6\mu\mathrm{A}$	$1.637\mathrm{V}$
$9\mathrm{k}\Omega$	$882.5\mu\mathrm{A}$	$1.6304\mathrm{V}$
$10\mathrm{k}\Omega$	$799.2\mu\mathrm{A}$	$1.630\mathrm{V}$
$20\mathrm{k}\Omega$	$408.7\mu A$	$1.605\mathrm{V}$
$30\mathrm{k}\Omega$	$275.3\mu\mathrm{A}$	$1.590\mathrm{V}$
$40\mathrm{k}\Omega$	$2077\mu A$	$1.578\mathrm{V}$
$50\mathrm{k}\Omega$	$1667\mu A$	$1.569\mathrm{V}$
$60\mathrm{k}\Omega$	$139.2\mu\text{A}$	$1.567\mathrm{V}$
$70\mathrm{k}\Omega$	496. μA	$1.556\mathrm{V}$
$80\mathrm{k}\Omega$	$104.8\mu A$	$1.55\mathrm{V}$
$90\mathrm{k}\Omega$	$93.3\mu\mathrm{A}$	$1.545\mathrm{V}$
$100\mathrm{k}\Omega$	$84.0\mu A$	$1.541\mathrm{V}$

Tabell 1: Mätresultat för kretsen i Figur 4.

Figur 9: Ström genom och spänning över LED som en funktion av resistans

Figur 10: Ström genom LED som en funktion av spänning över LED

Figur 11: Exempel på spänningsstyrd LED-drivare för osymmetrisk spänningsmatning

7.2 Kommentar

Mätningarna stämmer överens med antagandet att lysdiodens framspänningsfall V_f är omkring 1.8 V då $I_{LED}\approx 20\,\mathrm{mA}$.

Lysdioder drivs som lämpligast med en låg spänning och en hög ström, ofta används kretsar som levererar en konstant ström, constant current source. till exempel kretsen i Figur ??
om är en spänningsstyrd strömgenerator, som driver flera lysdioder med samma ström, med ett linjärt förhållande mellan styrspänning och diodström. Kretsen användes för att besvara en förfrågan om hur flera LEDs kan drivas med samma ström under en enkel +9V spänningsmatning.

- 8 Mätning av växelspänning med universalinstrument och oscilloskop
- 9 Studium av frekvensgång i en reaktiv krets
- 9.1 Mätresultat
- 9.2 Teoretisk beräkning
- 9.3 Kommentar
- 10 Mätning av fasförskjutning i en reaktiv krets
- 10.1 Mätresultat
- 10.2 Teoretisk beräkning
- 10.3 Kommentar
- 11 Mätning av resonansfrekvens
- 11.1 Mätresultat
- 11.2 Kommentar
- 12 Resultat

13 Referenser