Problem 1. Anderson 8.3

Calculate the wavelength of a 1 MeV neutron in free space. If a total E of 1 MeV is a constant of the motion and the neutron is in a region of a potential well depth of 10 MeV, what is the wavelength?

Solution

Part (a)

$$\lambda_{free} = \frac{h}{\sqrt{2m_n T}}$$

$$= \frac{4.14 \times 10^{-15} \,\text{eV} \,\text{s} \times \frac{1 \,\text{MeV}}{1 \times 10^6 \,\text{eV}}}{\sqrt{2 \times 939.6 \,\text{MeV} \, c_0^{-2} \times 1 \,\text{MeV}}}$$

$$= 2.87 \times 10^{-14} \,\text{m}$$

$$= 28.7 \,\text{fm}$$

Part (b)

$$\lambda_{well} = \frac{h}{\sqrt{2m_n(T+V)}}$$

$$= \frac{4.14 \times 10^{-15} \,\text{eV} \,\text{s} \times \frac{1 \,\text{MeV}}{1 \times 10^6 \,\text{eV}}}{\sqrt{2 \times 939.6 \,\text{MeV} \, c_0^{-2} \times 11 \,\text{MeV}}}$$

$$= 8.64 \,\text{fm}$$

Problem 2.

Using the NNDC ENDF evaluations, find (and report) the elastic scattering cross sections for $0.5\,\mathrm{MeV}$, $1\,\mathrm{MeV}$, $5\,\mathrm{MeV}$, and $10\,\mathrm{MeV}$ neutrons scattering in $^{207}\mathrm{Pb}$. Use those values to calculate the corresponding mean free paths for elastic scattering.

Solution

T (MeV)	$\Sigma (\mathrm{cm}^{-1})$	Mean Free Path (cm)
0.5	5.810217	5.216310
1.0	4.876894	6.214590
5.0	4.896170	6.190124
10.0	2.483300	12.204686

Problem 3. Anderson 8.10, change deuterium to $^7\mathrm{Li}$ and change uranium to $^{206}\mathrm{Pb}$

Find the number of collisions (nearest integer) necessary to thermalize a beam of $1\,\mathrm{MeV}$ neutrons with $^7\mathrm{Li}$, He, Be, C, and $^{206}\mathrm{Pb}$

Solution

A	Target	Average Collisions to Thermalize
7	Li-7	67
4	Helium	41
9	Beryllium	85
12	Carbon	111
206	Pb-206	1809

Problem 4.

A $14\,\mathrm{MeV}$ neutron scatters elastically off of a $^{12}\mathrm{C}$ nucleus. The energy given to the $^{12}\mathrm{C}$ nucleus is $1\,\mathrm{MeV}$. What is the scattered angle of the neutron?

Solution

$$\theta' = \cot^{-1} \frac{1 - A\cos 2\theta'_A}{A\sin 2\theta'_A}$$

$$T' = T \left[\frac{\cos \theta' + \left(A^2 - \sin^2 \theta' \right)^{1/2}}{A+1} \right]^2$$

Substituting in $T = 14 \,\text{MeV}$ and $T' = 13 \,\text{MeV}$ and using wolframalpha to solve, we get:

$$\theta' = \pm 56.22^{\circ}$$