2^8	19%
	12/0

2^9 5%

2^6

Submit

Results gathered from 456 respondents.

FEEDBACK

2⁸. The set has (2³=8) strings, and a set of 8 elements has 2⁸ subsets.

1

0 points possible (ungraded)

Rank the functions n^2 , 2^n , n from slow to fast in terms of their growth rate as n increases.

$$n, 2^n, n^2$$

$$ullet$$
 n , n^2 , 2^n

$$2^n$$
, n , n^2

$$\circ$$
 2^n , n^2 , n

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

2

6.0/6.0 points (graded)

Find the number of 7-character (capital letter or digit) license plates possible if:

• there are no further restrictions,

78364164096

✓ Answer: 78364164096

78364164096

Explanation

In each position there are 26 + 10 = 36 choices (26 letters and 10 digits). The number of ways is $(26+10)^7=36^7=78,364,164,096$

• the first 3 characters are letters and the last 4 are numbers,

175760000

Answer: 175760000

175760000

Explanation

For the first 3 positions, the number of ways is 26^3 (letters only). For the last 4 positions, the number of ways is 10^4 (digits only). The total number of ways is $26^3 \cdot 10^4 = 175,760,000$

• letters and numbers alternate, for example A3B5A7Q or 0Z3Q4Q9.

632736000

✓ **Answer:** 632736000

632736000

Explanation

If there are 4 digits and 3 letters, the number of ways is $26^3 \cdot 10^4.$

If there are 4 letters and 3 digits, the number of ways is $26^4 \cdot 10^3$.

The total number of ways is

$$26^3 \cdot 10^4 + 26^4 \cdot 10^3 = 175,760,000 + 456,976,000 = 632,736,000$$

Submit

You have used 3 of 4 attempts

1 Answers are displayed within the problem

3

0 points possible (ungraded)

If P and Q are sets, then $\left|P\right|^{\left|Q\right|}$ is the number of functions

- lacksquare from P to Q,
- ullet from Q to P. \checkmark

Explanation

The number of functions from ${\cal Q}$ to ${\cal P}$ as there are $|{\cal P}|$ possible images for every element of ${\cal Q}.$

Submit

You have used 2 of 2 attempts

1 Answers are displayed within the problem

4

0.0/6.0 points (graded)

Recall that the power set $\mathcal{P}(S)$ of a set S is the collection of all subsets of S.

For A = $\{1,2,3\}$ and $B=\{x,y\}$, calculate the following cardinalities.

• $|\mathcal{P}(A)|$

X Answer: 8

• |P(B)|

★ Answer: 4

• $|A imes B^2|$

4 **X** Answer: 12

• $|\mathcal{P}(A \times B)|$

X Answer: 64 • $|\mathcal{P}(A) \times B|$ **X** Answer: 16 • $|\mathcal{P}(\mathcal{P}(A))|$ **X** Answer: 256

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

5

0 points possible (ungraded)

Let $G=\{0,2,4,6,8\}$ What is $|G^4|$?

- \bullet $5^4 \checkmark$
- \circ 4^5
- \circ $5 \times 4 \times 3 \times 2 \times 1$
- 0+2+4+6+8

Submit

You have used 2 of 2 attempts

	Caltesian Towers 3.3 Caltesian Towers DSL210X Courseware eux
• Answers are display	ed within the problem
6	
0 points possible (ungraded)	
Let A be a set with size 5.	. How many proper subsets does A have?
10	X Answer: 31
10	
Explanation A itself is not included. 2	$2^5 - 1 = 31.$
Submit You have us	sed 3 of 3 attempts
• Answers are display	yed within the problem
7	
) points possible (ungraded) How many subsets of $\{1$	
	, 2, , 0]
• are there,	
	X Answer: 512
Explanation	$\ldots, 9 \}$ is an either in the subset of not, hence there are $2^9 = 512$
subsets.	[1.1,9] is all either in the subset of flot, fields there are $2 - 312$
• contain '1',	
	X Answer: 256

Explanation

Ever set cotaining '1' corresponds to an abritrary subset of $\{2,3,\cdots,9\}$, and there are $2^8=256$ such subsets.

• have ≥ 5 elements,

Explanation

Every subset of size ≥ 5 corresponds to its complement that has size ≤ 4 . For example, $\{1,2,3,4,5\}$ has 5 elements, while its complement $\{6,7,8,9\}$ has 4 elements. Hence the number of subsets of size ≥ 5 is the same as the number of subsets of size ≤ 4 and together they comprise all 2^9 subsets. Hence the number of subsets of size ≥ 5 is $\frac{2^9}{2}=2^8=256$.

• have no odd elements,

Explanation

Any subset with no odd elements is a subset of of size $\{2,4,6,8\}$ and there are $2^4=16$ such subsets.

Submit You have used 3 of 3 attempts

• Answers are displayed within the problem

Topic: Topic 3 / Cartesian Powers

Add a Post

