

Report

Final Project

Hadeer Mamoduh Abdelfattah Mohammed Nada Abdellatef Shaker Seddik Mostafa Mahmoud Abdelwahab Nofal GRUOP | 11

Objective

We want to use machine learning models to identify fake tasks. Then we implement the GAN neural network. It's divided into generator to generate fake tasks and the discriminator to identify whether they are fake or real tasks.

Import the libraries

```
[1] 1 !pip install plotly
             Looking in indexes: <a href="https://pypi.org/simple">https://pypi.org/simple</a>, <a href="https://pypi.org/simple</a>, <a href="https://pypi.org/simple">https://pypi.org/simple</a>, <a href="https://pypi.org/simple</a>, <a href="https://pypi.org/simple</a>, <a href="https://pypi.
             Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from plotly) (1.15.0)
             Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.7/dist-packages (from plotly) (8.0.1)
 [2] 1 import pandas as pd
                2 import numpy as np
                 3 from sklearn.model_selection import train_test_split
                4 from sklearn.ensemble import RandomForestClassifier
                5 from sklearn.ensemble import AdaBoostClassifier
                6 from sklearn.metrics import classification_report, ConfusionMatrixDisplay, accuracy_score, confusion_matrix
                 7 from sklearn.ensemble import VotingClassifier
                8 from imblearn.over_sampling import RandomOverSampler
              10 import plotly.express as express
              12 from sklearn.preprocessing import MinMaxScaler
              13 from keras.models import Sequential, Model
              14 from keras.layers import Reshape
              15 from keras.layers import Dense
              16 from keras.layers import LeakyReLU
               17 from keras.layers.normalization.batch_normalization import BatchNormalization
               18 from keras.layers import Input, Flatten
```

1. Read the dataset

38]	data =	pd.rea	ad_csv("MCS	DatasetNEXT	CONLa	ıb.csv"	')							
39]	data													
		ID	Latitude	Longitude	Day	Hour	Minute	Duration	RemainingTime	Resources	Coverage	OnPeakHours	GridNumber	Ligitimacy
	0		45.442142	-75.303369			13	40	40		91		131380	
			45.442154	-75.304366		4	23	40	30		91		131380	
	2		45.442104	-75.303963			33	40	20		91		121996	
	3		45.441868	-75.303577		4	43	40	10		91		121996	
	4		45.447727	-75.147722		15	49	30	30		47		140784	
	14479	3999	45.445303	-75.165596			18	20	20	10	80		131397	
	14480	3999	45.445574	-75.165168			28	20	10	10	80		131397	
	14481	4000	45.436682	-75.152416		12	21	30	30		63		122015	
	14482	4000	45.436978	-75.153278		12	31	30	20	4	63		122015	
	14483	4000	45.436983	-75.153240		12	41	30	10		63		122015	
	14484 rc	ws × 1:	3 columns											

Splitting the dataset to features and label

Features

[40]			:[:,:-1] :[:,-1:]										
[41]	x												
		ID	Latitude	Longitude	Day	Hour	Minute	Duration	RemainingTime	Resources	Coverage	OnPeakHours	GridNumber
	0		45.442142	-75.303369		4	13	40	40		91		131380
	1		45.442154	-75.304366		4	23	40	30	9	91		131380
	2		45.442104	-75.303963		4	33	40	20		91		121996
	3	1	45.441868	-75.303577		4	43	40	10	9	91		121996
	4	2	45.447727	-75.147722	2	15	49	30	30		47		140784
	14479	3999	45.445303	-75.165596	2		18	20	20	10	80		131397
	14480	3999	45.445574	-75.165168	2		28	20	10	10	80		131397
	14481	4000	45.436682	-75.152416		12	21	30	30	4	63		122015
	14482	4000	45.436978	-75.153278		12	31	30	20	4	63		122015
	14483	4000	45.436983	-75.153240		12	41	30	10	4	63		122015
	14484 rc)ws × 1	2 columns										

Label

2. Splitting the dataset to train and test

From the documentation of the dataset, we will see that there is data imbalance. The legitimate tasks have 12,578 row and the fake tasks have only 1,897 rows, so we will do oversampling to try to balance the train data.

3. Apply models

Our first model is Random Forest

```
1 RF_model = RandomForestClassifier(random_state=42)
2 RF_model = RF_model.fit(x_train_resampled, y_train_resampled)
3 y_pred_RF = RF_model.predict(x_test)
```

4. Prediction of Random Forest

```
[15] 1 y_pred_RF

array([1, 1, 1, ..., 1, 1, 1])
```

Classification Report for Random Forest

Classification Report for Random Forest

Our second model is AdaBoost

```
[17] 1 AD_model = AdaBoostClassifier(n_estimators=100, random_state=42)
2 AD_model = AD_model.fit(x_train_resampled, y_train_resampled)
3 y_pred_AB = AD_model.predict(x_test)
```

Prediction of Adaboost

```
[18] 1 y_pred_AB

array([1, 1, 1, ..., 1, 1, 1])
```

Classification Report for AdaBoost

1 AB_acc = cal_accuracies(y_test, y_pred_AB) Classification Report: recall f1-score support precision Class 0 0.72 0.99 0.84 legit Class 1 1.00 0.95 accuracy 0.86 0.97 0.90 macro avg 0.95 weighted avg 0.95 Confusion Matrix: [[371 4] [142 2380]] Accuracy Score: 0.9496030376251294

5. Plot the comparison between the accuracies of our models

Accuracy Under Original Test Dataset

Table to compare the accuracies of the models before the GAN.

Models	Accuracy
Random Forest	99.8%
AdaBoost	94.9%

6. GAN Model

First, we used MinMaxScaler to scale our data.

```
[49] 1 scaler = MinMaxScaler()
2 x_train_scaled = scaler.fit_transform(x_train_resampled)
3 x_test_scaled = scaler.transform(x_test)

[50] 1 x_test_scaled

array([[0.96324081, 0.92083502, 0.49990828, ..., 0.4 , 0. ,
0.89997416],
[0.31657914, 0.68199069, 0.14896806, ..., 0.25714286, 1. ,
0.67495864],
[0.34133533, 0.86389702, 0.91261469, ..., 0.22857143, 1. ,
0.85000919],
...,
[0.8432108 , 0.44909557, 0.67515125, ..., 0.34285714, 0. ,
0.45001505],
[0.57289322, 0.66896582, 0.60065162, ..., 0.67142857, 0. ,
0.64999747],
[0.21830458, 0.59749968, 0.17413294, ..., 0.47142857, 1. ,
0.57496743]])
```

Discriminator Function

```
[22] 1 def define_discriminator():
    model = Sequential()
    #input layer
    model.add(Flatten(input_shape=x_train_scaled.shape[1:]))

def add_discriminator_block(neurons, alpha = 0.3):
    model.add(Dense(neurons))
    model.add(LeakyReLU(alpha))

add_discriminator_block(256)
    add_discriminator_block(512)

model.add(Dense(1, activation='sigmoid'))

# model.summary()

data = Input(shape=x_train_scaled.shape[1:])
    output = model(data)

return Model(data, output)
```

Generator Function

```
[23] 1 noise_shape = (100,)
      4 def define_generator():
      5 model = Sequential()
         def add_generator_block(neurons, alpha = 0.3):
          model.add(Dense(neurons))
           model.add(LeakyReLU(alpha))
           model.add(BatchNormalization())
         model.add(Dense(256, input_shape=noise_shape))
         model.add(LeakyReLU(alpha=.3))
         model.add(BatchNormalization())
          add_generator_block(512)
          add_generator_block(1024)
         model.add(Dense(np.prod(x_train_scaled.shape[1:]), activation='tanh'))
          #This is my output layer which should represent my fake generated image
          model.add(Reshape(x_train_scaled.shape[1:]))
          noise = Input(shape=noise_shape)
          data = model(noise)
         return Model(noise, data)
```

7. Apply the provided training dataset to GAN

```
[24] 1 def train(epochs, batch, generator, discriminator, combined):
         half_batch = int(batch / 2)
          for epoch in range(epochs):
            # train discriminator
            indices = np.random.randint(0, x_train_scaled.shape[0], half_batch)
           data = x_train_scaled[indices]
           noise = np.random.normal(0, 1, (half_batch, 100))
           fake_data = generator.predict(noise)
            discriminator_loss_real = discriminator.train_on_batch(data, np.ones((half_batch, 1)))
           discriminator_loss_fake = discriminator.train_on_batch(fake_data, np.zeros((half_batch, 1)))
            discriminator_loss = .5 * np.add(discriminator_loss_real, discriminator_loss_fake)
            noise = np.random.normal(0,1, (batch, 100))
            valid_y = np.array([1]*batch)
            generator_loss = combined.train_on_batch(noise, valid_y)
            print("epoch: %d Discriminator loss: %f - Generator loss: %f" % (epoch+1,
                                                                            discriminator_loss[0],
                                                                            generator_loss))
```

Implementation of the GAN

```
[25] 1 discriminator = define_discriminator()
    2 discriminator.compile(loss="binary_crossentropy", optimizer= "adam", metrics=["accuracy"])
    3
    4 generator = define_generator()
    5 generator.compile(loss="binary_crossentropy", optimizer= "adam")
    6
    7 noise = Input(shape=(100,))
    8 fake_data = generator(noise)
    9
    10 discriminator.trainable = False
    11
    12 valid = discriminator(fake_data)
    13
    14 combined = Model(noise, valid)
    15 combined.compile(loss="binary_crossentropy", optimizer= "adam")
    16
    17 train(2000, 32, generator, discriminator, combined)
```

The last 10 epochs of the training

```
epoch: 490 Discriminator loss: 0.199105 - Generator loss: 2.533022 epoch: 491 Discriminator loss: 0.349513 - Generator loss: 2.282841 epoch: 492 Discriminator loss: 0.398211 - Generator loss: 2.892312 epoch: 493 Discriminator loss: 0.302201 - Generator loss: 2.841201 epoch: 494 Discriminator loss: 0.241699 - Generator loss: 2.663990 epoch: 495 Discriminator loss: 0.231818 - Generator loss: 2.473982 epoch: 496 Discriminator loss: 0.291553 - Generator loss: 1.945768 epoch: 497 Discriminator loss: 0.260521 - Generator loss: 2.410531 epoch: 498 Discriminator loss: 0.217342 - Generator loss: 2.958851 epoch: 499 Discriminator loss: 0.234307 - Generator loss: 2.808013 epoch: 500 Discriminator loss: 0.244910 - Generator loss: 3.147508
```

8. Generate synthetic fake tasks via Generator network in GAN

Generate the fake data based on normal distribution and the output will be of size (batch size, 100)

	9	1	2	3	4	5	6	7	8	9	10	11
0	0.998731	-0.928944	0.623888	0.892624	0.781644	0.882846	0.152395	0.132759	-0.509205	-0.050465	-0.982832	-0.88535
1	0.774669	0.999996	0.611965	0.734027	0.534774	0.869223	0.999923	0.214865	0.999565	0.993074	0.999941	0.99993
2	0.619393	0.999939	0.510608	0.601337	0.498849	0.654515	0.999467	0.206532	0.997307	0.985556	0.999517	0.99951
3	0.847083	1.000000	0.485383	0.900767	0.514376	0.896539	0.999996	0.638939	0.999987	0.999238	0.999998	0.99999
4	0.974898	0.835256	0.313175	0.511008	0.799219	0.145615	0.758353	0.016510	0.049509	-0.182934	0.166972	0.96983
99	5 0.399686	1.000000	0.601850	0.740838	0.438788	0.882673	0.999997	0.479042	0.999913	0.999258	0.999998	0.99996
99	6 0.046256	1.000000	0.820530	0.931043	0.078248	0.995315	1.000000	0.695652	1.000000	1.000000	1.000000	1.00000
99	7 0.485851	0.999995	0.529999	0.856772	0.726184	0.629337	0.999890	0.375936	0.999803	0.994280	0.999977	0.99995
99	8 0.999633	-0.959580	0.924238	0.994148	0.715244	0.997967	0.960750	0.506445	0.763460	0.018045	-0.998679	-0.98048
99	9 0.999293	-0.576449	0.807124	0.977813	0.798653	0.965751	0.975212	0.281496	0.645050	-0.097006	-0.950722	0.33858

Adding column names to fake data

Original scaled test data

0								atitude',' Hour', 'Mi n','Remair e', 'OnPe	inute', ningTime',	'Res	ources', .dNumber'])			
C→		ID	Latitude	Longitude	Day	Hour	Minute	Duration	Remaining	Time	Resources	Coverage	OnPeakHours	GridNumber
	0	0.963241	0.920835	0.499908	0.833333	0.521739	0.813559	0.2		0.2	0.555556	0.400000	0.0	0.899974
	1	0.316579	0.681991	0.148968	0.333333	0.434783	0.237288	0.6		0.4	1.000000	0.257143	1.0	0.674959
	2	0.341335	0.863897	0.912615	0.500000	0.304348	0.491525	1.0		0.4	1.000000	0.228571	1.0	0.850009
	3	0.481620	0.168476	0.346074	0.166667	0.478261	0.762712	0.8		0.4	0.777778	0.357143	0.0	0.150007
	4	0.894474	0.716124	0.427511	0.666667	0.913043	0.966102	1.0		0.2	0.111111	0.514286	0.0	0.699978
	2892	0.278570	0.313376	0.697648	0.333333	1.000000	0.694915	0.2		0.2	1.000000	0.614286	0.0	0.300027
	2893	0.770443	0.570796	0.322278	0.166667	0.608696	0.644068	0.6		0.6	0.888889	0.971429	0.0	0.549980
	2894	0.843211	0.449096	0.675151	0.333333	0.695652	0.271186	0.6		0.2	0.222222	0.342857	0.0	0.450015
	2895	0.572893	0.668966	0.600652	0.333333	0.173913	0.559322	1.0		8.0	0.666667	0.671429	0.0	0.649997
	2896	0.218305	0.597500	0.174133	0.833333	0.304348	0.779661	0.8		0.0	0.444444	0.471429	1.0	0.574967
	2897 rc	ws × 12 col	umns											

9. Mix the generated fake tasks with the original test dataset to obtain a new test dataset

We applied the scaler inverse transform and used absolute value function to remove the negative signs and round the values to change it to integer format except for the "Longitude" column like the original data.

	ID	Latitude	Longitude	Day	Hour	Minute	Duration	RemainingTime	Resources	Coverage	OnPeakHours	GridNumber
0	3853	45.567007	-75.211538		12	48	20	20		58	0	337840
1	1267	45.514863	-75.297589	2	10	14	40	30	10	48	1	253373
2	1366	45.554577	-75.110342	3	7	29	60	30	10	46		319084
3	1927	45.402752	-75.249258	1	11	45	50	30	8	55	0	56315
4	3578	45.522315	-75.229290	4	21	57	60	20	2	66	0	262765
3892	1599	45.584291	-75.186542	4	10	52	60	34	10	100		375375
3893	186	45.584291	-75.132921	6	2	59	60	45	10	100	1	375388
3894	1944	45.584290	-75.204159		17	37	60	29	10	100		375370
3895	3999	45.156475	-75.107492	6	16	59	58	35	8	31	1	368052
3896	3997	45.240120	-75.136208	6	18	57	59	24	7	23		127092
3897 rd	ows × 12	2 columns										

We added the label 0 (Real) to the data which was generated before and added it to the original test label.

10. Obtain Adaboost and RF detection performance using the new test dataset and present results in bar chart without the discriminator.

Now we will apply the two models with our mixed data. For the Random Forest model.

Classification Report for Random Forest

[85]	1 y_mixed_pre	d_RF = RF_m	odel.predi	ct(x_mixed	_data_final)	
0	1 RF_mixed_ac	c = cal_acc	uracies(y_	mixed_data	, y_mixed_pr	ed_RF)
D)	Classification	Report:				
		precision	recall	f1-score	support	
	Class 0	1.00	0.27	0.43	1375	
	legit Class 1	0.72	1.00	0.83	2522	
	accuracy			0.74	3897	
	macro avg	0.86	0.64	0.63	3897	
	weighted avg	0.81	0.74	0.69	3897	
	Confusion Matr	ix:				
	[[372 1003] [1 2521]]					
	Accuracy Score					
	0.742365922504	4906				

Confusion Matrix

Applying Adaboost with our mixed data Classification Report for Adaboost

Plot the comparison between the accuracies of our models

Accuracy Under Mixed Test Dataset

Table to compare the accuracies of the mixed data after the generator.

Models	Accuracy
Random Forest	74.2%
AdaBoost	72.1%

11. According to the cascade detection framework, as shown in Figure 1, verify the cascade framework performance and show results in bar chart

We passed the mixed data to the discriminator, and these are the probabilities of the predictions.

Then, we implemented a condition that round the probabilities which are bigger than 0.5 to 1, otherwise 0.

Now, we added the discriminator prediction and the original label to our mixed data.

1 x	_mixed_o	data_final												
	ID	Latitude	Longitude	Day	Hour	Minute	Duration	RemainingTime	Resources	Coverage	OnPeakHours	GridNumber	Ligitimacy	d_predictio
0	3853	45.567007	-75.211538		12	48	20	20		58		337840		
1	1267	45.514863	-75.297589	2	10	14	40	30	10	48		253373		
2	1366	45.554577	-75.110342			29	60	30	10	46		319084		
3	1927	45.402752	-75.249258		11	45	50	30		55		56315		
4	3578	45.522315	-75.229290		21	57	60	20		66		262765		
3892	1599	45.584291	-75.186542	4		52	60	34	10	100		375375		
3893	3 186	45.584291	-75.132921		2	59	60	45	10	100		375388		
3894	1944	45.584290	-75.204159		17	37	60	29	10	100		375370		
389	3999	45.156475	-75.107492		16	59	58	35	8	31		368052		
3896	3997	45.240120	-75.136208		18	57	59	24		23		127092		

We want to get all the true tasks from the discriminator prediction, so we filtered the rows which equals the prediction 1.

Applying the Random Forest model with our filtered data.

Classification Report for Random Forest

Applying the Adaboost model with our filtered data.

Classification Report for Adaboost

[100] 1 AB_d_acc =	cal_accuraci	es(y_actu	al, y_d_pro	ed_AB)
Classification	Report:			
	precision	recall	f1-score	support
Class 0	0.73	0.82	0.77	439
legit Class 1	0.96	0.94	0.95	2277
accuracy			0.92	2716
macro avg	0.85	0.88	0.86	2716
weighted avg	0.93	0.92	0.92	2716
Confusion Matr	ix:			
[[360 79]				
[134 2143]]				
Accuracy Score				
0.921575846833	5787			

Confusion Matrix

Plot the comparison between the accuracies of our models

Accuracy Under Discriminator True Dataset

Table to compare the accuracies of the mixed data after the generator.

Models	Accuracy
Random Forest	96%
AdaBoost	92.1%

Conclusion

We noticed that the **Random Forest** model performed better than the **Adaboost** model in all the above cases (*Traditional ML methods*, *GAN Generated Method and the Cascade framework methods*). The difference between GAN generated data methods and the Cascade framework methods is that the one layer classifier (**RF and Adaboost models**) performed poor compared with the two layer classifier (first layer was the discriminator and the second one was the ML models) which has the best accuracy as shown which was **96%** for Random forest with the discriminator where the Random forest without the discriminator was **74.2%** and that makes sense because the discriminator performed as a filtration layer that give more accurate real results.