* Name Origin:

From radium

* Sources:

Formed from the decay of radium in the earth's crust.

* Uses:

Used to treat some forms of cancer, also used in earthquake prediction.

* Additional Notes:

The element was discovered in 1900 by Dorn, who called it radium emanation. In 1908 Ramsay and Gray, who named it niton, isolated the element and determined its density, finding it to be the heaviest known gas. It is essentially inert and occupies the last place in the zero group of gases in the Periodic Table. Since 1923, it has been called radon. Thirty nine isotopes and isomers are known. Radon-222, coming from radium, has a half-life of 3.823 days and is an alpha emitter; Radon-220, emanating naturally from thorium and called thoron, has a half-life of 55.6 s and is also an alpha emitter. Radon-219 emanates from actinium and is called actinon. It has a half-life of 3.96 s and is also on alpha emitter. It is estimated that every square mile of soil to a depth of 6 inch contains about 1 g of radium, which releases radon in tiny amounts to the atmosphere. Radon is present in some spring waters, such as those at Hot Springs, Arkansas. On the average, one part of radon is present to 1 x 10²¹ part of air. At ordinary temperatures radon is a colorless gas; when cooled below the freezing point,

Arkansas. On the average, one part of radon is present to 1 x 10²¹ part of air. At ordinary temperatures radon is a colorless gas; when cooled below the freezing point, radon exhibits a brilliant phosphorescence which becomes yellow as the temperature is lowered and orange-red at the temperature of liquid air. It has been reported that fluorine reacts with radon, forming radon fluoride. Radon clathrates have also been reported. Radon is still produced for therapeutic use by a few hospitals by pumping it from a radium source and sealing it in minute tubes, called seeds or needles, for application to patients. This practice has now been largely discontinued as hospitals can order the seeds directly from suppliers, who make up the seeds with the desired activity for the day of use. Care must be taken in handling radon, as with other radioactive materials. The main hazard is from inhalation of the element and its solid daughters, which are collected on dust in the air. Good ventilation should be provided where radium, thorium, or actinium is stored to prevent build-up of this element. Radon build-up is a health consideration in uranium mines. Recently radon build-up in homes has been a concern. Many deaths from lung cancer are caused by radon exposure. In the U.S. it is recommended that remedial action be taken if the air in homes exceeds 4 pCi/ I.