MGRECON - Class 2 (after class)

Summary of Class 1

- 1) $WTP = f(P_S^+, P_C^-, I^+, U^+);$
- 2) Consumers maximize CS = WTP P;
- 3) MWTP is decreasing;
- 4) if we read the MWTP graph horizontally, we have the demand curve $Q_D = f(P; P_S, P_C, I, U)$;
- 5) Movements along the Demand \neq Demand shifts
- 6) Consumer Surplus = area below the demand & above the price line
- 7) Elasticity $E_p = \frac{\Delta Q/Q}{\Delta P/P} = \frac{\Delta Q}{\Delta P} \cdot \frac{P}{Q}$
 - if you have a linear (inverse) demand equation $P=a-b\cdot Q$, use the formula $E=-\frac{1}{b}\cdot \frac{P}{Q}$,
 - if we only have 2 points, use the two-point formula

Summary of Class 1

Exercise 1 A recent article on titanium reports that the price has increased from \$10 to \$12 per kilogram, while quantity has decreased from 6 to 4.2 thousand metric tons. This information leads you to conclude that

- a. demand is inelastic
- b. demand is elasticc. supply is elastic
- d. the cross-price demand elasticity with aluminum is negative

Answer to Exercise 1

We do not have the demand equation. We only have two points on the demand. So we use the two-point elasticity formula.

mid-point values:

$$P_m = \frac{P_A + P_B}{2} = \frac{12 + 10}{2} = 11$$

$$Q_m = \frac{Q_A + Q_B}{2} = \frac{4.2 + 6}{2} = 5.1$$

$$E = \frac{\frac{Q_B - Q_A}{Q_m}}{\frac{P_B - P_A}{P_m}} = \frac{\frac{4.2 - 6}{5.1}}{\frac{12 - 10}{11}} \simeq -1.9412$$

Market Power

Market Power = ability to charge above cost

little competition (patents/licenses/franchises, economies of scale)

Requirement 1 by itself is not sufficient, e.g. water.

Requirement 2 by itself is not sufficient, e.g. the autograph of a non-celebrity.

Examples:

food/drinks inside stadiums, theaters, museums, pharmaceutical companies, De Beers, Microsoft, Monsanto, Luxottica

Revenue Maximization

A monopolist can choose any point on the demand curve.

Example:
$$Q = 16 - \frac{1}{3.75} \cdot P \Leftrightarrow P = 60 - 3.75 \cdot Q$$

Suppose there are no costs, hence profit maximization is just revenue maximization

$$Rev(Q) = P(Q) \cdot Q = (60 - 3.75 \cdot Q) \cdot Q = 60 \cdot Q - 3.75 \cdot Q^2$$

How do we find the point on the demand that maximizes total revenue?

Revenue Maximization: cont'd

Revenue Maximization: cont'd

To maximize revenue, solve the equation MR(Q) = 0

$$\overbrace{60 - 7.5 \cdot Q}^{\mathsf{MR}(Q) = 0} \quad \rightarrow \quad Q_* = 8$$

Why
$$MR(Q_*) = 0$$
?

if MR(Q) > 0, increasing Q increases Revenue

$$\begin{array}{l} \text{if } \mathsf{MR}(\mathit{Q}) < \mathsf{0}, \\ \text{decreasing Q increases Revenue} \end{array}$$

Marginal Revenue vs. Average Revenue

Revenue Maximization Exercise

Given the demand equation $Q=240-2\cdot P$, find the revenue-maximizing quantity Q_* and price P_* , and the resulting revenue $P_*\cdot Q_*$

Answer

- 1. Inverse demand P(Q)
- 2. $Rev(Q) = P(Q) \cdot Q$ _____

$$3. MR(Q) = \frac{dRev(Q)}{dQ}$$

- 4. Solve MR(Q) = 0 _____
- 5. $P_* = P(Q_*)$ _____
- 6. $P_* \cdot Q_* =$

Revenue Maximization Exercise: Answers

1. Inverse demand P(Q):
$$Q = 240 - 2 \cdot P \rightarrow P = 120 - \frac{1}{2} \cdot Q$$

2.
$$Rev(Q) = P(Q) \cdot Q = (120 - \frac{1}{2}Q) \cdot Q = 120 \cdot Q - \frac{1}{2} \cdot Q^2$$

3.
$$MR(Q) = \frac{dRev(Q)}{dQ} = 120 - Q$$

4. Solve
$$MR(Q) = 0$$
: $120 - Q = 0 \rightarrow Q_* = 120$

5.
$$P_* = P(Q_*) = 120 - \frac{1}{2}Q_* = 120 - \frac{1}{2} \cdot 120 = $60$$

6.
$$P_* \cdot Q_* = \$60 \cdot 120 = \$7200$$

Revenue Maximization Exercise: Figure

Marginal Revenue of a Linear Demand

If P(Q) is linear, then MR(Q) is also linear, with twice the slope:

$$P = a - b \cdot Q \rightarrow MR(Q) = a - 2b \cdot Q$$

Why MR(Q) < P(Q)?

Since demand is downward sloping, we have MR(Q) < P(Q), at any Q > 0.

Marginal Revenue and Elasticity

Marginal Revenue and Elasticity are related:

$$\boxed{ \begin{aligned} MR(Q) &= P(Q) \cdot \left(1 - \frac{1}{|E(Q)|}\right) \end{aligned}} \\ |E(Q)| &< 1 &\Leftrightarrow \frac{1}{|E(Q)|} > 1 &\Leftrightarrow 1 - \frac{1}{|E(Q)|} < 0 &\Leftrightarrow MR(Q) < 0 \\ |E(Q)| &> 1 &\Leftrightarrow \frac{1}{|E(Q)|} < 1 &\Leftrightarrow 1 - \frac{1}{|E(Q)|} > 0 &\Leftrightarrow MR(Q) > 0 \end{aligned}}$$

At any point where the demand is **inelastic** (|E(Q)|<1), revenue "follows P" if $P\downarrow$ by 1%, then $Q\uparrow$ by less than 1%, and thus $\mathrm{Rev}=(P\cdot Q)\downarrow$ if $P\uparrow$ by 1%, then $Q\downarrow$ by less than 1%, and thus $\mathrm{Rev}=(P\cdot Q)\uparrow$ If demand is inelastic, Rev and Q move in opposite directions, hence $\mathrm{MR}=\frac{\Delta\mathrm{Rev}}{\Delta\Omega}<0$

At any point where the demand is **elastic** (|E(Q)|>1), revenue "follows Q" if $P\uparrow$ by 1%, then $Q\downarrow$ by <u>more</u> than 1%, and thus $\mathrm{Rev}=(P\cdot Q)\downarrow$ if $P\downarrow$ by 1%, then $Q\uparrow$ by <u>more</u> than 1%, and thus $\mathrm{Rev}=(P\cdot Q)\uparrow$ If demand is elastic, Rev and Q move in the same direction, hence $\mathrm{MR}=\frac{\Delta\mathrm{Rev}}{\Delta\Omega}>0$

Marginal Revenue and Elasticity when Demand is Linear

Profit Maximization

$$\Pi(Q) = \operatorname{\mathsf{Rev}}(Q) - \operatorname{\mathsf{Cost}}(Q)$$

Suppose that:

- 1) demand is linear, and
- 2) total cost increases at a nondecreasing rate, i.e. MC is nondecreasing

Then

$$\max \ \Pi \ \ \Rightarrow \ \frac{d \ \Pi}{d Q} = \frac{d \ {\rm Rev}}{d Q} - \frac{d \ {\rm Cost}}{d Q} = 0$$

$$\max \Pi \Rightarrow \boxed{\mathsf{MR}(Q) = \mathsf{MC}(Q)}$$

Why MR(Q) = MC(Q)?

If MR(Q) > MC(Q), increasing Q increases profit (Rev grows more than Cost)

If MR(Q) < MC(Q), decreasing Q increases profit (Rev decreases less than Cost)

Exercise: Profit Maximization with constant MC

A monopolist operates in a market with demand

$$Q = 16 - \frac{1}{3.75}P \quad \Leftrightarrow \quad P = 60 - 3.75 \cdot Q$$

therefore

$$MR(Q) = 60 - 7.5 \cdot Q$$

Total cost of production is

$$TC(Q) = 15 \cdot Q$$

therefore

$$MC(Q) = 15$$

Find the profit maximizing quantity and price, and the resulting profit:

 $Q_M = \underline{\hspace{1cm}}$

 $P_M =$ _____

 $\Pi_M = \underline{\hspace{1cm}}$

Profit Maximization with constant MC: Answers

$$\overbrace{60 - 7.5 \cdot Q}^{MR} = \overbrace{15}^{MC} \rightarrow Q_M = 6$$

$$P_M = 60 - 3.75 \cdot Q_M = 60 - 3.75 \cdot 6 = 37.5$$

$$\Pi_{M} = \overbrace{37.5 \cdot 6}^{\text{revenue}} - \overbrace{15 \cdot 6}^{\text{cost}} = 135$$

The Social Cost of Monopoly: the "Deadweight Loss"

For each unit up to $ar{Q}=12$, there are gains from trade, i.e. MWTP > MC

All units up to $\bar{Q}=12$ should be sold, but the monopolist only sells $Q_M=6$ units.

The area between \bar{Q} and Q_M , below the demand and above the MC curve is the "Deadweight Loss"

generated by the monopoly

$$DWL = \frac{1}{2} (37.5 - 15) (12 - 6) = 67.5$$

The DWL is the monetary value of the unrealized gains from trade.

Classic Monopoly Picture

Classic Monopoly Picture: Answers

Consumer Surplus $= AP_ME$

Revenue = OP_MEQ_M

Total Variable Cost $= OBGQ_M$

Profit = BP_MEG

Deadweight Loss = GEH

The Lerner Index

Recall the link between MR and Elasticity:

$$MR(Q) = P(Q) \cdot \left(1 - \frac{1}{|E(Q)|}\right)$$

A profit maximizing seller chooses the output level Q_M where

$$MR(Q_M) = MC(Q_M)$$

Combining these two equalities and rearranging yields

$$\underbrace{\frac{P_M - \mathsf{MC}(Q_M)}{P_M}}_{\mathsf{Left}} = \frac{1}{|E(Q_M)|}$$

The Lerner Index is a measure of market power:

if $|E(Q_M)|$ is large, the Lerner index is small

if $|E(Q_M)|$ is small (close to 1), the Lerner index is large

The Lerner Index in pictures

Exercises

1. A good is sold at price $P_M = \$24$. You know that, at that point on the demand curve, $E_P = -2$. What is MC?

Answer:
$$\frac{\$24 - MC}{\$24} = \frac{1}{2} \rightarrow MC = \$12$$

2. Working as a consultant for a company, you discover that the price has been set at a point where $E_P=-0.82$. You see an opportunity to make a recommendation immediately. What recommendation?

(Note: you have not learned *anything* yet about the cost structure of this company)

Answer: If |E| < 1, increasing P raises revenue and cannot increase costs.

Swan's Pies

We have data on:

Q = our sales

P = our prices

A = our advertising expenditures

 $P_X = competitors' prices$

Y = Income of our buyers

Pop = Population near our stores

We want to:

Identify significant demand drivers (P and shifters)

Predict the direction of most effects; e.g. if P goes up Q goes down

Choose a model (linear, log, polynomial ...)

Perform the statistical estimation

Use the estimated coefficients to assist managerial decisions

Swan's Gourmet Frozen Fruit Pie, European Market Demand Data, 2016-1 to 2017-4

City	Year-Quarter	Row	Q	P (€)	A (€)	Px (€)	Y (€)	Pop	т
Copenhagen	2016-1	1	82887	4.79	11870	5.19	19785	1764754	1
	2016-2	2	72901	5.41	15614	3.63	19816	1775081	2
	2016-3	3	106199	4.31	10546	3.96	19940	1808791	3
	2016-4	4	78568	5.06	12729	4.63	20058	1811837	4
	2017-1	5	120952	4.77	14111	4.77	20106	1834492	5
	2017-2	6	87201	4.49	10632	3.66	20288	1869017	6
	2017-3	7	71789	4.98	12772	3.92	21182	1870754	7
	2017-4	8	155061	3.98	10842	4.35	21335	1877867	8
Barcelona	2016-1	9	214919	4.56	20387	3.74	9625	4912883	1
	2016-2	10	220539	4.6	20679	4.6	9851	4941102	2
	2016-3	11	172218	5.43	25775	4.37	9877	4949927	3
	2016-4	12	238150	4.56	20171	4.54	9936	4959864	4
	2017-1	13	256591	4.8	22904	4.03	9974	4974649	5
	2017-2	14	245715	4.5	20009	3.65	10028	4986292	6
	2017-3	15	237510	4.47	19955	3.97	10270	4986914	7
	2017-4	16	201141	5.41	24570	3.67	10412	5000497	8
Stuttgart	2016-1	17	110145	4.91	14910	5.23	14310	2285176	1
	2016-2	18	116912	4.58	14363	4.69	14554	2302945	2
	2016-3	19	142545	4.22	11807	4.52	14763	2324662	3
	2016-4	20	135300	4.55	13134	3.81	15120	2334683	4
	2017-1	21	134443	4.37	12738	3.97	15420	2334686	5
	2017-2	22	160029	4.04	11773	4.64	15505	2341437	6
	2017-3	23	65749	5.56	16542	5.21	15535	2343293	7
	2017-4	24	138459	4.64	13095	4.79	16100	2349031	8
Paris	2016-1	25	527428	4.31	32193	4.16	18785	11695450	1
	2016-2	26	504765	4.96	37724	5.05	18794	11811599	2
	2016-3	27	499079	3.77	28023	3.78	18821	11813719	3
	2016-4	28	448951	5.07	37951	3.46	18952	11818503	4
	2017-1	29	451161	5.28	40171	4.39	19221	11842401	5
	2017-2	30	464889	5.03	36683	4.22	19638	11909047	6
	2017-3	31	546251	4.91	37066	5.21	19934	11934859	7
	2017-4	32	529288	4.3	33045	4.78	19989	11935574	8
The Hague	2016-1	33	133740	4.01	10422	4.34	16010	1362486	1
_	2016-2	34	70139	4.75	20571	3.55	16171	1363325	2
	2016-3	35	263328	4.46	23723	5.03	16450	1370405	3
	2016-4	36	34559	5.25	29382	3.44	16515	1384396	4
	2017-1	37	270526	3.89	25153	3.88	16625	1385026	5
	2017-2	38	132062	5.27	40232	3.86	16773	1386713	6
	2017-3	39	126794	5.27	45213	4.1	16857	1394751	7
	2017-4	40	239474	3.92	40196	4.55	16893	1404000	8
Hamburg	2016-1	41	167495	4.35	16969	4.92	14502	3224922	1
	2016-2	42	184777	3.99	17022	4.79	14572	3226820	1 2
	2016-3	43	142506	4.76	19106	3.4	14732	3248190	1 3
	2016-4	44	191225	4.46	19300	4.73	14748	3266896	4
	2017-1	45	149219	4.51	17832	4.68	14831	3268014	5
	2017-2	46	134449	5.27	20658	3.65	15313	3284702	6
	2017-3	47	178994	4.28	17889	3.65	15463	3285469	7
	2017-4	48	123281	5.52	22865	3.99	15656	3297523	8
Average	İ		210006.31	4.67875	21902.44	4.27	16042.4	4267821.33	۳
		-	546251	5.56	45213	5.23	21335	11935574	-
max									

Q = units soldP = price

A = advertising

Px = Competitors' Average Price

 $\begin{array}{ll} I & = {\sf Income} \\ \\ {\sf Pop} & = {\sf Population} \end{array}$

T = Time

Swan's Pies: a Linear Demand Model

The regression equation is:

$$Q = a + b \cdot P + c \cdot A + d \cdot P_X + e \cdot Y + f \cdot Pop + g \cdot T + z$$

The "noise" term z includes measurement errors and omitted variables.

We expect:

- b < 0 demand is downward sloping!
- c > 0 hopefully, money spent on advertising has increased sales!
- d>0 our competitors' products should be substitute goods
- e > 0 hopefully, our product is not an inferior good
- f > 0 more people around \rightarrow more potential buyers
 - g no expectation

Swan's Pies: Discussion Questions

- 1. How would you calculate price elasticities?
- 2. Do you expect Paris and Stuttgart to have the similar demands for Swan's Pies?
- **3.** Can you say anything about whether Swan's has set prices optimally, without any information about their costs?

Swan's Pies: Demand Estimate

Estimation yields

$$Q = 282\,031 - 81\,266 \cdot P + 3.6636 \cdot A + 19\,970 \cdot P_X + 0.0524 \cdot Y + 0.0312 \cdot Pop + 1\,918 \cdot T + z$$

Let's look at Paris in 2016-3: $Q_0 = 499,079$ and $P_0 = 3.77$

Was the price set optimally at 3.77?

Had we charged $P_1 = 4$, our sales would have been (on average)

Revenue would have been

$$P_1 \cdot Q_1 = 4 \cdot 480,390 = 1,921,560 > P_0 \cdot Q_0 = 3.77 \cdot 499,079 = 1,881,528$$

Had we charged a bit more in Paris 2016-3, our revenue would have been higher.

What about profit?

We know nothing about costs, but ... lowering Q cannot increase costs!

Swan's Pies: Elasticity in Paris 2016-3

If we measure elasticity, we get

$$|E_P| = b \cdot \frac{P}{Q} = 81,266 \cdot \frac{3.77}{499079} = 0.61 < 1$$

Indeed, $|E_P| < 1$, and thus revenue follows P.

Swan's Pies: pricing decisions in Paris

Were all pricing decisions wrong in Paris?

Date	Q	Р	$ E_P $
2016-1	527,428	4.31	0.66
2016-2	504,765	4.96	0.80
2016-3	499,079	3.77	0.61
2016-4	448,951	5.07	0.92
2017-1	451,161	5.28	0.95
2017-2	464,889	5.03	0.88
2017-3	546,251	4.91	0.73
2017-4	529,288	4.30	0.66

It is never optimal to operate on the inelastic part of the demand curve