文章编号:1671-2579(2011)05-0193-04

公路双连拱隧道开挖方法的数值模拟研究

王文正. 夏永旭. 胡庆安

(长安大学 公路学院,陕西 西安 710064)

摘要: 应用有限元数值方法,对双连拱隧道的三导洞法、中导正洞台阶法和中导正洞全 断面法 3 种开挖方法,分别进行了施工数值模拟,给出了这 3 种开挖方法施工过程中围岩和 支护结构的应力和变形规律。经过比较分析后,认为三导洞法是Ⅱ级围岩中修建连拱隧道的 较好开挖方法。

关键词:双连拱隧道;开挖方法;数值模拟

双连拱隧道的施工开挖工序直接影响着隧道的施 工安全、工程费用和工程进度,因此,如何选择适当的 施工工序是必须慎重面对的问题。目前中国常用的双 连拱隧道施工方法有3种:三导洞法、中导正洞台阶法 和中导正洞全断面法。笔者针对这3种开挖方法,以 西汉高速公路某连拱隧道为例,对Ⅱ级围岩中的连拱 隧道施工过程进行数值模拟,探讨采用不同方法开挖 时围岩应力场和位移场的分布特点,以及支护结构的 受力演变规律,寻求在Ⅱ级围岩中修建连拱隧道的理 想开挖方法。

计算模型

该文计算模型采用线弹性平面应变模型,岩体初 始应力场仅考虑其自重应力,隧道初期支护只考虑锚 杆和喷混凝土的作用,二次衬砌作为安全储备。围岩 为Ⅱ类,假设开挖瞬间地应力释放 40%,初期支护施 作后释放其余60%。隧道设计断面如图1所示。

图 1 双连拱隧道结构示意(单位:cm)

在进行有限元计算时,岩体和混凝土使用平面四 节点等参单元模拟,锚杆用杆单元模拟,围岩及混凝土 的物理力学参数依据 JTJ 026-90《公路隧道设计规 范》中相关参数确定,不计中墙配筋。与工程实际中锚 杆对围岩的加固作用相比,按平面应变模型计算时,人 为地加大了锚杆的支护作用。为了解决这一问题,通 过与三维计算结果比较,将锚杆的弹性模量折减为标 准的85%。各计算参数见表1。

表 1 有限元计算物理力学参数

材料类型	弹性模量 E/GPa	泊松比 υ	重度 γ/ (kN•m ⁻³)	
 ∐ 类围岩	1.20	0.4	20.0	
C20 混凝土	26.0	0.2	23.0	
C25 混凝土	28.5	0.2	24.0	
锚杆	170.0	0.3	78.0	

3 种开挖方法的施工工序 2

在分别模拟上述3种开挖方法的动态施工过程 时,根据有限元数值计算特点,对3种方法的施工工序 作了必要的简化,简化后的工序列入表 2。

数值模拟计算结果分析 3

通过大量的数值模拟计算,可以给出3种开挖方 式在不同施工步骤时的围岩以及支护结构的应力和位 移,限于篇幅,这里仅将3种方法开挖时围岩应力场及 位移场的计算结果列入表 3, 喷层、中墙、仰拱应力及 锚杆轴应力计算结果列入表 4。

表 2 3 种开挖方法的施工工序

工序	三导洞法	中导正洞台阶法	中导正洞全断面法		
1	计算自重应力场	计算自重应力场	计算自重应力场		
2	中导洞开挖	中导洞开挖	中导洞开挖		
3	中导洞初期支护;中墙浇筑	中导洞初期支护;中墙浇筑	中导洞初期支护;中墙浇筑		
4	左、右导洞开挖	中墙顶、左侧回填;右洞上台阶开挖	中墙顶、左侧回填;右洞全断面开挖		
5	左、右导洞初期支护	右洞拱部初期支护	右洞初期支护;仰拱浇筑		
6	中墙顶、左侧回填;右洞拱部开挖	右洞下台阶开挖	左洞全断面开挖		
7	右洞拱部初期支护	右洞边墙初期支护;仰拱浇筑	左洞初期支护;及仰拱浇筑		
8	右洞核心土开挖	左洞上台阶开挖			
9	右洞仰拱浇筑	左洞拱部初期支护			
10	左洞拱部开挖	左洞下台阶开挖			
11	左洞拱部初期支护	左洞边墙初期支护;仰拱浇筑			
12	左洞核心土开挖				
13	左洞仰拱浇筑				

表 3 不同方法开挖时围岩的应力及位移计算结果

方法	工序	最大主 应力/MPa	最小主 应力/MPa	X 方向(X 方向位移/mm		Y 方向位移/mm	
		$\sigma_{ m lmax}$	$\sigma_{3 \mathrm{min}}$	$U_{x ext{max}}$	$U_{x{ m min}}$	$U_{\scriptscriptstyle { extstyle ymax}}$	$U_{\scriptscriptstyle m ymin}$	
	2	0.01	-1.59	0.444	-0.438	2.770	-2.067	
	3	0.73	-2.75	0.836	-0.830	4.415	-3.738	
	4	0.83	-2.75	0.786	-0.786	4.582	-4.108	
	5	0.94	-2.79	1.762	-1.762	4.802	-4.236	
	6	0.88	-3.25	1.664	-2.087	5.421	-5.036	
三 导 洞:	7	4.18	-4.79	1.512	-1.704	9.280	-8.557	
) 洞 ::	8	2.53	-4.85	1.526	-1.784	9.045	-8.550	
法	9	2.31	-4.82	1.748	-1.543	9.777	-8.584	
	10	2.23	-4.89	1.892	-1.576	10.162	-8.601	
	11	3.54	-5.69	1.820	-1.734	9.941	-10.010	
	12	2.15	-5.56	1.903	-1.910	9.970	-9.999	
	13	2.16	-5.58	2.011	-2.139	9.984	-10.000	
	2	0.01	-1.59	0.444	-0.438	2.770	-2.067	
	3	0.73	-2.75	0.836	-0.830	4.415	-3.738	
	4	0.66	-2.68	0.831	-1.518	4.467	-4.666	
	5	3.95	-4.67	2.588	-2.655	9.610	-8 . 138	
台	6	2.39	-4. 25	0.998	-1.254	7.753	-8.848	
阶 法	7	2.16	-4.30	1.085	-1.278	9.662	-8.651	
	8	2.08	-4.34	1.433	-1.507	9.929	-8.905	
	9	3.49	-5.99	2.272	-3.188	9.673	-10.166	
	10	1.98	-5.92	1.554	-1.591	9.614	-10.699	

?1994-2018 China Academic Journal Flectronic Publishing House. All rights researed. http://www.cnki.net

续表 3									
	2	0.01	-1.59	0.444	-0.438	2.770	-2.067		
	3	0.73	-2.75	0.836	-0.830	4.415	-3.738		
全 断	4	0.64	-2.56	0.827	-0.683	4.622	-4.796		
全 断 面 法	5	0.50	-3.05	1.052	-1.042	9.223	-8. 016		
-	6	0.12	-3.16	1.071	-1.957	9.609	-8.966		
	7	0.07	-3.47	1.418	-1.366	9.492	-9.584		

表 4 不同方法开挖时支护结构的应力计算结果

		表 4 不同方 一 一 喷层应力/MPa		7 法开挖时支护结构 		中墙应力/MPa		 锚杆轴应力/MPa	
方法	工序	$\sigma_{ m 1max}$	$\sigma_{3 \mathrm{min}}$	$\sigma_{ m lmax}$	$\sigma_{3 \mathrm{min}}$	$\sigma_{ m lmax}$	$\sigma_{3 \mathrm{min}}$	$\sigma_{ m 1max}$	
	3	0.11	-7.54						
	4	0.09	-8.62						
	5	0.78	-9. 39					43.6	
	6	1.38	-11.1			2.39	-5.22	53.3	
=	7	3.26	-14.3			6.10	-14. 5	69.8	
三导洞	8	3.27	-14.4			5.63	-14.2	69.8	
法	9	3.30	-14.5	3.88	-3.79	5.58	-14. 3	70.0	
	10	4.48	-16.1	5.05	-4.57	7.61	-16.9	65.0	
	11	5.67	-17.7	6.29	-5.43	8.81	-17.7	73.9	
	12	5.63	-17.9	3.97	-5.29	8.68	-17.7	73.8	
	13	5.63	-18. 1	3.96	-5.27	8.43	-17.6	74.0	
	3	0.11	-7.54						
	4	2.16	-9.38			2.33	-5.11		
	5	2.40	-11.9			5.52	-14.0	68.8	
	6	3.28	-13.1			5.37	-14.2	68.6	
台 阶	7	4.01	-13.5	4.01	-6.06	5.59	-14. 5	71.3	
法	8	5.35	-17.3	5.35	-5.93	7.47	-17.0	68.6	
	9	5.30	-19.2	6.65	-6.99	8.59	-17.3	73.8	
	10	5.89	-19. 3	4.39	-7.07	8.87	-18. 3	73.8	
	11	5.85	-19. 5	4.25	-7.09	8.87	-18.4	78.5	
	3	0.11	-7.54						
全	4	0.22	-9.63			2.30	-5. 12		
断 面	5	4.04	-17.7	3.60	-11.6	4.48	-16.7	67.9	
法	6	6.71	-19.6	6.27	-11.7	8.01	-18. 0	67.3	
	7	6.75	-23.7	6.60	-12.6	9.89	-21.5	75.9	

通过对计算结果的仔细分析可知,对于相同的支不同,使得围岩应力释放的先后次序也不同,最终导致护措施,3种方法分别并挖时,由于并挖和支护顺序的。围岩应力场和位移场以及支护应力场分布的不同。具

体表现为:

- (1) 围岩应力场:全断面法开挖时,因施工步骤少而对围岩的扰动最小,其拉应力和压应力都远小于另两种方法。三导洞法开挖时产生的拉应力最大,但拉应力区范围很小,仅出现在个别应力集中点,影响不大。台阶法开挖时产生的压应力最大。
- (2) 围岩位移场:全断面法位移最小,三导洞的水平位移量和拱顶沉降略大于全断面法,但小于台阶法。
- (3) 喷层: 3 种方法开挖期间喷层出现的最大主应力 σ_{1max} 以及最小主应力 σ_{3min} 之比分别为 1:1.05:1.20 和 1:1.08:1.31。可见全断面法开挖时喷层出现的拉应力和压应力都最大,三导洞法施工时则喷层应力最小。
- (4) 锚杆:锚杆在 3 种方法开挖时承受的最大拉应力分别为 74、78.5 和 75.9 MPa,数值上相差无几,但三导洞法略小于另两种方法。
- (5) 仰拱: 3 种方法开挖时仰拱出现的 σ_{1max} 、 σ_{3min} 之比分别为 1:1.06:1.06 和 1:1.31:2.32。三导洞法仰拱产生的拉应力和压应力都最小,台阶法次之,全断面法则最大。
- (6) 中墙:中墙拉应力最大值出现在底部,压应力最大值出现在基部拐角处,3 种方法开挖时中墙的 $\sigma_{1\max}$ 、 $\sigma_{3\min}$ 之比分别为1:1:1.12和1:1.05:1.22。三导洞法和台阶法中墙应力相当,小于全断面法。

综上所述,在相同的支护措施下,三导洞法进行Ⅱ类围岩双连拱隧道施工时,与台阶法相比围岩位移值小,初期支护和中墙应力低,因而优于台阶法。与全断面法相比,三导洞法因开挖工序多,对围岩扰动大,围岩的应力场和位移场逊于全断面法,而初期支护和中墙的受力远优于全断面法。但是,对于双连拱隧道的施工,考察的重点在于结构的受力状态,所以在Ⅱ级围岩中修建直中墙双连拱隧道时,推荐使用三导洞开挖方法。

需要说明的是,上述结论只是在给定的假定条件、简化的施工工序和特定的计算参数下得到。而在工程实际中,隧道开挖方法的选择,不仅与工程地质条件密切相关,而且还和施工硬件——开挖设备、运输设备、

支护设备和支护材料,以及施工软件——施工人员素质、工程师施工经验和施工组织管理水平密切相关。但是,该文所得到的对3种方法的比较分析结果,不会有大的改变。

4 结论

以西汉高速公路某双连拱隧道为原型,建立弹性 平面应变模型,对Ⅱ级围岩中修建直中墙连拱隧道的 几种开挖方法进行了数值模拟研究,讨论了施工过程 中围岩应力场和位移场的变化特点,以及支护结构受 力在施工中的变化规律,得出以下主要结论:

- (1) 3 种方法开挖时,三导洞法支护结构受力最小,全断面法则远大于三导洞法和台阶法。
- (2) 三导洞法在开挖正洞前对左右边墙处围岩进行了加固,虽扰动次数多于台阶法,但最终围岩应力及位移却小于台阶法。全断面法施工时由于对围岩的扰动次数最少,围岩主应力最小,位移量也最小。
- (3) 三导洞法边墙锚杆承受较大的拉应力,应保证其施工质量。台阶法拱腰处锚杆承受较大的拉应力,而边墙处锚杆受力则很小,可少设。全断面法边墙锚杆受力较小,可少设。
- (4) 3 种方法开挖时,后进坑道侧的围岩应力大于先进坑道侧的围岩,后进坑道的拱顶沉降也大于先进坑道侧;后进坑道侧拱顶的锚杆拉应力大于先进坑道侧;喷层及中墙应力则是先进坑道侧大于后进坑道侧。
- (5) 3 种方法开挖时,后进坑道的施工使得先进坑道的支护结构应力有不同程度的增加,其中喷层和中墙压应力增幅最为显著。三导洞法后进坑道对先进坑道支护结构的影响最小,全断面法则最大。

参考文献:

- [1] JTJ 026-90 公路隧道设计规范[S].
- [2] 王文正. 公路双联拱隧道开挖方法及施工过程数值模拟研究[D]. 长安大学硕士学位论文,2003.