

File Organization

- The database is stored as a collection of files.
 - Each file is a sequence of records.
 - A record is a sequence of fields.
- One approach
 - Assume record size is fixed
 - Each file has records of one particular type only
 - Different files are used for different relations

This case is easiest to implement; will consider variable length records later

We assume that records are smaller than a disk block

Instructor Record

- Assume that each character occupies 1 byte and that numeric (8,2) occupies 8 bytes.
- Let's assume we allocate the maximum number of bytes that each attribute can hold.
- Then, the *instructor* record is 53 bytes long. A simple approach is to use the first 53 bytes for the first record, the next 53 bytes for the second record, and so on

```
type instructor = record

ID varchar (5);

name varchar(20);

dept_name varchar (20);

salary numeric (8,2);
end
```


- Simple approach:
 - Store record *i* starting from byte n * (i 1), where *n* is the size of each record.
 - Record access is simple but records may cross blocks
 - Modification: do not allow records to cross block boundaries

record 0	10101	Srinivasan	Comp. Sci.	65000
record 1	12121	Wu Finance		90000
record 2	15151	Mozart	Mozart Music	
record 3	22222	Einstein	Physics	95000
record 4	32343	El Said	History	60000
record 5	33456	Gold	Physics	87000
record 6	45565	Katz	Comp. Sci.	75000
record 7	58583	Califieri	History	62000
record 8	76543	Singh	Finance	80000
record 9	76766	Crick	Biology	72000
record 10	83821	Brandt	Comp. Sci.	92000
record 11	98345	Kim	Elec. Eng.	80000

- Deletion of record i: alternatives:
 - move records $i + 1, \ldots, n$ to $i, \ldots, n 1$
 - move record n to i
 - do not move records, but link all free records on a free list

Record 3 deleted

record 0	10101	Srinivasan	Comp. Sci.	65000
record 1	12121	Wu	Finance	90000
record 2	15151	Mozart	Music	40000
record 4	32343	El Said History		60000
record 5	33456	Gold Physics		87000
record 6	45565	Katz	Comp. Sci.	75000
record 7	58583	Califieri	History	62000
record 8	76543	Singh	Finance	80000
record 9	76766	Crick	Biology	72000
record 10	83821	Brandt	Comp. Sci.	92000
record 11	98345	Kim	Elec. Eng.	80000

- Deletion of record i: alternatives:
 - move records $i + 1, \ldots, n$ to $i, \ldots, n 1$
 - move record n to i
 - do not move records, but link all free records on a free list

Record 3 deleted and replaced by record 11

record 0	10101	Srinivasan	Comp. Sci.	65000
record 1	12121	Wu Finance		90000
record 2	15151	Mozart	Music	40000
record 11	98345	Kim	Elec. Eng.	80000
record 4	32343	El Said	History	60000
record 5	33456	Gold	Physics	87000
record 6	45565	Katz	Comp. Sci.	75000
record 7	58583	Califieri	History	62000
record 8	76543	Singh	Finance	80000
record 9	76766	Crick	Biology	72000
record 10	83821	Brandt	Comp. Sci.	92000

- Deletion of record i: alternatives:
 - move records $i + 1, \ldots, n$ to $i, \ldots, n 1$
 - move record n to i
 - do not move records, but link all free records on a free list

header				,	
record 0	10101	Srinivasan	Comp. Sci.	65000	
record 1				Å	
record 2	15151	Mozart	Music	40000	
record 3	22222	Einstein	Physics	95000	
record 4					
record 5	33456	Gold	Physics	87000	
record 6				<u>*</u>	
record 7	58583	Califieri	History	62000	
record 8	76543	Singh	Finance	80000	
record 9	76766	Crick	Biology	72000	
record 10	83821	Brandt	Comp. Sci.	92000	
record 11	98345	Kim	Elec. Eng.	80000	

Variable-Length Records

- Variable-length records arise in database systems in several ways:
 - Storage of multiple record types in a file.
 - Record types that allow variable lengths for one or more fields such as strings (varchar)
 - Record types that allow repeating fields (used in some older data models).
- Attributes are stored in order
- Variable length attributes represented by fixed size (offset, length), with actual data stored after all fixed length attributes
- Null values represented by null-value bitmap, which indicates which attributes of the record have a null value.

Variable-Length Records: Slotted Page Structure

- Slotted page header contains:
 - number of record entries
 - end of free space in the block
 - An array whose entries contain the location and size of each record
- Records can be moved around within a page to keep them contiguous with no empty space between them; entry in the header must be updated.
- Records can be grown or shrunk, as long as there is space in the block.
 - The cost of moving the records is not too high, since the size of a block is limited: typical values are around 4 to 8 kilobytes.

Storing Large Objects

- E.g., blob/clob types
- Records must be smaller than pages
- Alternatives:
 - Store as files in file systems
 - Store as files managed by database
 - Break into pieces and store in multiple tuples in separate relation
 - PostgreSQL TOAST