Machine Called Computer

Part 1 Hardware Components

Tools

- □ 인간은 도구를 만든다
- □ Tools for farming, fishing, hunting
 - 동력원: 인간의 에너지
 - Transform the direction or magnitude of force

Image of hoe (괭이):

http://en.wikipedia.org/wiki/File:Peasant_in_the_vegetable_garden.
JPG

Image of bow and arrow:

http://en.wikipedia.org/wiki/File:Aphaia_pediment_polychrome_mode |_W-XI_Glyptothek_Munich.jpg

Machines

- ☐ Steam engine, 산업혁명
 - 동력원: 화학에너지
 - 결과: 힘 (운동에너지)
 - 기계 (자동장치) 인간의 힘을 대신함
- □ Used in all kinds of machines: 자동차, 트랙터, 공장기계, ...
- ☐ Alternate forms: gasoline engine, electric motor

Image of steam engine:

http://en.wikipedia.org/wiki/File:52_8134_Hoentrop_2012-09-16.jpg

Image of electric motor:

http://en.wikipedia.org/wiki/File:Motors01CJC.jpg

Machine Called Computer

- ☐ Computer, IT혁명
 - 동력원: 전기에너지
 - 결과: 계산, 논리적 처리
 - 자동장치 인간의 머리 (계산, 논리)를 대신함
 - 범용컴퓨터
 - All kinds of "smart" machines

Image of PC (범용컴퓨터):

http://en.wikipedia.org/wiki/File:MSI_Laptop_computer.jpg

Image of robot (smart machine):

https://en.wikipedia.org/wiki/File:HONDA_ASIMO.jpg

What is the machine called computer?

- ☐ Keep removing things from your PC
 - · Office, web browser, email, Windows, ...
- □ Processor, memory, I/O (and interconnection logic)
 - Computer hardware or computer architecture

Machine Called Computer

☐ What is computer? How does it work?

I/O: Monitor/keyboard, LAN-Internet, ...

† Fetch, decode, execute

Hardware - Inside PC

Image of Motherboard:

http://en.wikipedia.org/wiki/File:Acer_E360_Socket_93 9_motherboard_by_Foxconn.svg

Block diagram of a modern motherboard:

http://en.wikipedia.org/wiki/File:Motherboard_diagram.s
vg

ENIAC (1943-1946)

First fully-electronic, general-purpose computer

Image of ENIAC:

http://en.wikipedia.org/wiki/File:Classic_shot_of_the_ENIAC.jpg

Image of ENIAC:

http://en.wikipedia.org/wiki/File:Eniac.jpg

Machine Called Computer

- ☐ What is computer? How does it work?
 - Manipulate data by program execution

Memory

Program (executable)

Data

Main Memory (DRAM)

Storage (files, folders)

Hard disk or Flash memory

I/O: Monitor/keyboard, LAN-Internet, hard disk 9

CPU, Memory, I/O Devices

- □ CPU
 - Execute program (one instruction after another)
- □ Memory
 - Main memory (DRAM)
 - Program and data
 - Auxiliary storage (hard disk or flash memory)
 - Files and folders
- \square Input and output (I/O) devices: interact with outside
 - Keyboard, monitor, printer (human)
 - Interface with other machines (e.g., Internet)
 - Hard disk

Hard Disk in PC

C: Program Windows user **Temporary** data to Admin support Word Explorer lee program execution download HW resume File system: files and folders report1

My PC

- □ What if you click "report1" (Word file)?
- What if you click "Explorer"?
- ☐ Who does this hidden work?
 - Operating System (OS; 운영체제)
 - Graphic user interface (GUI)
 - Program execution (i.e., process; running program)
 - File system (files and folders)
 - † Create, modify, delete

Computers

- □ Program execution (CPU; 계산)
 - Process: running program
 - Dynamic entity (has life)
- □ Storage (memory; 저장)
 - Files and folders (file system)
 - Static entity, non-volatile
- □ Input and output (I/O; 접속)
 - Human interaction, Internet connection, hard disk

† Why do you buy computers?

Memory (주기억장치)

- ☐ Main memory (DRAM)
 - Many instructions in program
 - One address per instruction
 - Many data items: one address per item
- □ Main memory (DRAM)
 - Must keep up with CPU speed
 - Access time ≈ 50 ns, still much slower than CPU
 - Support random access (thus, the name RAM)

Computer Hardware

CPU (Central processing Unit)

Program Area

LD R0, R31(+0) LD R1, R31(+1) ADD R0,R1, R2 ST R2, R31(+3)

Data Area

Memory (보조기억장치)

- ☐ Hard disk (or NAND flash memory)
 - · Much slower, less expensive, larger storage space
 - Store everything in auxiliary storage device
 - Occasionally read it and copy files to main memory
 - I/O device
 - Not support random access

Image of hard disk:

http://en.wikipedia.org/wiki/File:Hard_driveen.svq

Hard Disk (Magnetic Device)

Memory and I/O devices

- ☐ What is common (from CPU perspective)
 - What CPU can read from or write to
- □ What is different
 - Main memory: many addresses
 - I/O devices: single address (e.g., keyboard: 3000번지)
 - Slower, occasional use

Hard Disk and Flash memory

- ☐ Hard disk (by IBM in 1953)
 - Least expensive, most storage capacity
 - Magnetic storage, rotating platter
 - 10 milliseconds of seek time
- □ (NAND) flash memory (Toshiba in 1989)
 - · Semiconductor: fully electronic
 - Faster, more reliable, more power-efficient
 - Replace hard disk in mobile devices (c.f., USB memory)
- † Survival of the fittest in technology world

Multiple Processes

- \Box Where is OS?
- ☐ Can run both Word and Explorer?
- OS scheduling and management
 - Take turns to execute
 - User illusion of simultaneous executions
- † Multi-processors multiple die
- † Multicore processors multiple cores in one die

OS program

OS data

Program 1

Data 1

Program 2

•

•

•

Main memory

Two Types of Computers

- ☐ General-purpose computer (범용컴퓨터)
 - 인간이 주는 (다양한 종류의) 프로그램을 실행함
 - PC, 한양대 데이터베이스 서버
- □ Embedded computer (내장형컴퓨터)
 - Machines 과 결합하여 다양하고 강력한 자동형 기계 형성
 - 항공기, 우주선, 자동차, 청소기, drone, 로봇, ...
 - Many different types, so many of them
 - 프로그램은 한 가지로 고정되어 있음
 - 컴퓨터는 기계를 조종하는 머리 역할 수행
 - 컴퓨터는 작고 기계에 안에 내장되어 잘 보이지 않음
 - † Special-purpose computer, dedicated computer

CPU Industry

- ☐ Processors for general-purpose computers
 - Intel (IA-32, IA-64)
 - IBM (PowerPC)
 - MIPS Technologies (MIPS)
 - Sun Microsystems (SPARC)
- ☐ What is special about this business?
 - In contrast with memory
- Mobile AP (application processor) for smartphones
 - Qualcomm, Samsung, Intel
- ❖ GPU (graphics processing unit): Nvidia, AMD

Storage and Monitor Industry

- □ DRAM
 - · Samsung, Hynix, Elpida, Micron
- □ Hard disk
 - Seagate, Toshiba, Western Digital
 - Closed business: IBM, HP, Quantum, Fujitsu, Samsung
- ☐ Flash memory
 - Samsung, Toshiba, Micron, Hynix
- ☐ Flat panel monitors
 - · Samsung, LG, Taiwanese and Japanese companies
- † Printers
 - HP, Xerox, Cannon, Samsung, Epson

Computer Systems Industry

- \Box PC
 - · Lenovo, HP, Dell, Acer Group
- □ Notebooks
 - HP, Acer, Lenovo, Dell
- ☐ Servers
 - · IBM, HP, Dell, Oracle, Fujitsu
 - Many CPUs, hundreds of disks, thousands of terminals
 - Support OS, compiler
- ☐ Supercomputers
 - HP, IBM, Europe, Japan
 - Millions of processors, support OS and compiler

Machine Called Computer

□ Data in binary form

Logic

Program and address as well

0000 0000
Address
→

Code/Data ↔

1000 0000

 \rightarrow

Control

CPU (Central Processing Unit)

t I/O devices are just like memory

IR

Program Area

LD R0, R31(+0) LD R1, R31(+1) ADD R0,R1, R2 ST R2, R31(+3)

Data Area 25

Inside CPU - Will come back soon

- □ ALU (arithmetic and logic unit)
 - Add, subtract, multiply, divide, AND, OR, NOT
 - Input: registers, output: register
- □ Registers
 - Storage of temporary data
- \square PC (program counter)
 - Address of the next instruction to execute
- ☐ IR (instruction register)
 - Instruction being executed
- ☐ Control logic
 - The rest of CPU for "fetch-decode-execute"