Доклад на тему: Методы организации безопасности в операционных системах

Архитектура компьютеров и операционные системы

Симонова Полина Игоревна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Аутентификация и авторизация	8
	4.1 Аутентификация	8
	4.2 Авторизация	9
5	Защита памяти и процессов	10
	5.1 Разделение адресных пространств	10
	5.2 Режим работы процессора (Kernel Mode vs User Mode)	10
	5.3 Контроль целостности процессов	11
6	Шифрование данных	12
	6.1 Шифрование файловых систем	12
	6.2 Защита сетевого трафика	12
7	Межсетевые экраны и системы обнаружения вторжений	14
	7.1 Системы обнаружения и предотвращения вторжений (IDS/IPS)	15
8	Обновления и мониторинг безопасности	16
9	Заключение	18
10) Выводы	19
11	L Список литературы	20

Список иллюстраций

5.1	Сравнение Kernel Mode и User Mode	11
6.1	Принцип работы HTTPS протокола	13
	Принцип работы межсетевого экрана	

Список таблиц

4.1	Методы аутентификации	8
4.2	Сравнение моделей управления доступом	9
8.1	Сравнение систем обновления в ОС	16

1 Цель работы

Изучить основные методы обеспечения безопасности операционных систем и способы их применения в современных ОС (Windows, macOS, Linux)

2 Задание

Изучить механизмы аутентификации и авторизации, их роль в защите данных; Рассмотреть методы защиты памяти и процессов от вредносного воздействия; Изучить межсетевые экраны и системы обнаружения вторжений, их роль в обеспечении безопасности.

3 Теоретическое введение

Современные операционные системы (ОС) являются основой для работы компьютеров, серверов и мобильных устройств. Безопасность ОС — критически важный аспект, поскольку уязвимости могут привести к утечке данных, несанкционированному доступу и другим киберугрозам. В своем докладе я рассмотрю основные методы обеспечения безопасности операционных систем.

4 Аутентификация и авторизация

4.1 Аутентификация

Аутентификация — процедура проверки подлинности, например проверка подлинности пользователя путем сравнения введенного им пароля с паролем, сохраненным в базе данных.

Основные методы:

- Парольная защита (логин и пароль).
- Биометрическая аутентификация (отпечатки пальцев, сканирование лица).
- Двухфакторная аутентификация (2FA) (пароль + SMS-код или токен).

Таблица 4.1: Методы аутентификации

		Надеж-	Сложность
Метод	Примеры	ность	внедрения
Пароли	Логин/пароль	Низкая	Очень простая
2FA	SMS, Google Auth	Средняя	Простая
Биометрия	Face ID, отпечаток	Высокая	Средняя
Сертификаты	PKI, Smart-карты	Очень	Сложная
		высокая	

4.2 Авторизация

Авторизация - предоставление определенному лицу или группе лиц прав на выполнение определенных действий или права доступа к ресурсам.

Основные методы:

- Дискреционное управление доступом (DAC) владелец ресурса сам назначает права (например, в Linux через chmod).
- Мандатное управление доступом (MAC) строгие правила, заданные администратором (используется в SELinux).
- Ролевое управление доступом (RBAC) права назначаются ролям, а не пользователям.

Таблица 4.2: Сравнение моделей управления доступом

Модель	Применение	Преимущества	Недостатки
DAC	Домашние ПК	Простота управления	Низкая
			безопасность
MAC	Госучреждения	Максимальная защита	Сложная настройка
RBAC	Корпоративные	Централизованный	Требует админи-
	сети	контроль	стрирования

5 Защита памяти и процессов

5.1 Разделение адресных пространств

ОС изолирует процессы, предотвращая их вмешательство в работу друг друга.

- Виртуальная память каждый процесс работает в своём адресном пространстве.
- Защита ядра (Kernel Mode vs User Mode) запрет пользовательским программам прямой доступ к аппаратным ресурсам.

5.2 Режим работы процессора (Kernel Mode vs User Mode)

- User Mode ограниченный доступ (приложения не могут напрямую управлять железом).
- Kernel Mode полный доступ (только для драйверов и ядра ОС). (рис. fig. 5.1).

Рис. 5.1: Сравнение Kernel Mode и User Mode

Примеры:

Windows: Virtual Memory Manager.

Linux: механизм mmap.

5.3 Контроль целостности процессов

- ASLR (Address Space Layout Randomization) рандомизация адресов в памяти для защиты от атак переполнения буфера.
- DEP (Data Execution Prevention) запрет выполнения кода в областях памяти, предназначенных для данных.
- Sandboxing (песочницы) изоляция процессов для предотвращения распространения вредоносного кода.

Примеры:

Google Chrome (каждая вкладка — отдельный процесс).

Firejail (Linux).

6 Шифрование данных

Шифрование — это метод защиты информации путём преобразования её в зашифрованный вид, который может быть расшифрован только с помощью ключа. В операционных системах шифрование может применяться для защиты данных на жёстком диске, в памяти, при передаче по сети и т.д

6.1 Шифрование файловых систем

BitLocker (Windows) и LUKS (Linux) — полное шифрование диска. EFS (Encrypting File System) — шифрование отдельных файлов в Windows.

6.2 Защита сетевого трафика

- VPN (Virtual Private Network) виртуальная частная сеть, создает частное сетевое подключение между устройствами с помощью Интернета.
- Защищённый туннель для удалённого доступа (OpenVPN, WireGuard) сетевой протокол, который обеспечивает безопасный удаленный доступ к операционной системе сервера. Он создает защищенный канал связи между двумя устройствами, позволяет пользователям безопасно подключаться к удаленной ОС и передавать данные.
- SSL (Secure Sockets Layer)/TLS (Transport Level Security) это цифровой документ, который подтверждает подлинность веб-сайта и обеспечивает за-

шифрованное соединение. Он устанавливает защищенную связь между веб-сервером и браузером, гарантируя, что любые передаваемые данные остаются конфиденциальными и безопасными.

- Шифрование веб-трафика (HTTPS). (рис. fig. 6.1)
- IPSec (Шифрование на сетевом уровне) это комплект протоколов, в состав которого входят почти 20 предложений по стандартам и 18 RFC. Он позволяет осуществлять подтверждение подлинности (аутентификацию), проверку целостности и/или шифрование IP-пакетов.

Рис. 6.1: Принцип работы HTTPS протокола

7 Межсетевые экраны и системы обнаружения вторжений

Файрволы (Firewalls) — это программное или аппаратное устройство, которое контролирует и фильтрует сетевой трафик на основе заданных правил. Файерволы могут использоваться для защиты локальной сети от внешних угроз, а также для ограничения доступа к определённым ресурсам внутри сети. (рис. fig. 7.1)

- Встроенные брандмауэры (Windows Defender Firewall, iptables в Linux).
- Гостеприимные и враждебные политики (разрешение/блокировка трафика).

What is a Firewall What is a Firewall Attackers The Internet

Рис. 7.1: Принцип работы межсетевого экрана

7.1 Системы обнаружения и предотвращения вторжений (IDS/IPS)

IDS/IPS которые используются для выявления и предотвращения попыток несанкционированного проникновения во внутренние сети. Для удобства продукты из этой категории обозначают общей аббревиатурой, хотя по факту они делятся на два компонента: IDS обнаруживают подозрительные действия, IPS — предотвращают их. (рис. fig. 7.2)

- Snort, Suricata анализ сетевого трафика на атаки.
- HIPS (Host-based IPS) мониторинг активности на уровне ОС.

Рис. 7.2: Разница между IDS и IPS

8 Обновления и мониторинг

безопасности

- Регулярные обновления (патчи уязвимостей). Windows Update, apt upgrade (Linux), App Store (macOS). Производители операционных систем регулярно выпускают обновления и патчи, которые устраняют уязвимости и улучшают безопасность системы.
- Антивирусное ПО (сканирование на вредоносные программы). Windows Defender, ClamAV (Linux), Malwarebytes.
- Аудит безопасности (логирование событий, анализ журналов).
- Журналы событий (Windows Event Viewer, /var/log/ в Linux).
- SIEM-системы (Splunk, ELK Stack).

Таблица 8.1: Сравнение систем обновления в ОС

Критерий	Windows	Linux (Ubuntu)	macOS
Менеджер	Windows Update	apt (APT)	Software Update
обновлений			
Частота	Ежемесячно (Patch	По мере выхода	Ежеквартально
обновлений	Tuesday)		

Критерий	Windows	Linux (Ubuntu)	macOS
Критические	Автоматически	Вручную/авто	С задержкой 1-2
исправления	через WU	через репозитории	недели
Поддержка	5-10 лет	До 10 лет (LTS)	~7 лет
EOL*			
Риски	"Сломанные"	Конфликты	Задержки
	обновления	зависимостей	безопасности

^{*}EOL - End of Life (срок поддержки)

9 Заключение

Безопасность операционных систем обеспечивается комплексом методов: от аутентификации и шифрования до защиты памяти и сетевой безопасности. Постоянное развитие угроз требует регулярного обновления защитных механизмов и обучения пользователей. Современные ОС, такие как Windows, Linux и macOS, интегрируют множество встроенных средств защиты, но их эффективность зависит от грамотной настройки и администрирования.

10 Выводы

Я изучила механизмы аутентификации и авторизации, методы защиты памяти и процессов от вредоносного воздействия и их роль в защите данных.

11 Список литературы

- 1. Таненбаум Э. Современные операционные системы
- 2. Голдовский И.М. Безопасность операционных систем
- 3. Официальная документация по безопасности Windows / Microsoft Corp.
- 4. The Linux Foundation Security documentation
- 5. Apple Platform Security