TECHNIQUES DE SÉRIES CHRONOLOGIQUES EXERCICES PROCESSUS STOCHASTIQUES 3

- 1. Soit $T \subseteq \mathbb{R}$. Quelle condition doit satisfaire une famille de fonctions de distribution conjointes $F(x_1, \ldots, x_n; t_1, \ldots, t_n)$ définies pour tous les sous-ensembles finis $\{t_1, \ldots, t_n\} \subseteq T$, où $n \ge 1$, pour que ces distributions soient les distributions d'un processus stochastique ? [Voir Brockwell and Davis (1991, Theorem 1.2.1)]
- 2. Démontrez que la fonction d'autocovariance d'un processus stochastique stationnaire du second ordre (sur les entiers) est nécessairement paire et positive semi-définie. [Voir Brockwell and Davis (1991, Theorem 1.5.1).]
- 2. Soit la fonction $\gamma: \mathbb{Z} \to \mathbb{R}$ définie par

$$\begin{array}{rcl} \gamma(k) & = & 1 & , & \mathrm{si} \; k = 0 \\ & = & \rho & , & \mathrm{si} \; |k| = 1 \\ & = & 0 & , & \mathrm{autrement.} \end{array}$$

Montrez que cette fonction est une fonction d'autocovariance si et seulement si $|\rho| \le 0.5$. [Voir Brockwell and Davis (1991, Example 1.5.1)]

- 3. Soient $(Z_t : t \in \mathbb{Z})$ des variables aléatoires i.i.d. $N[0, \sigma^2]$ et soient a, b et c des constantes. Établissez lesquels parmi les processus suivants sont stationnaires du second ordre. Pour chaque processus stationnaire du second ordre, trouvez la moyenne et la fonction d'autocovariance.
 - (a) $X_t = a + b Z_t + c Z_{t-1}$
 - (b) $X_t = a + b Z_0$
 - (c) $X_t = Z_1 \cos(ct) + Z_2 \sin(ct)$
 - (d) $X_t = Z_0 \cos(ct)$
 - (e) $X_t = Z_t \cos(ct) + Z_{t-1} \sin(ct)$
 - (f) $X_t = Z_t Z_{t-1}$
- 4. Soit $(Y_t : t \in \mathbb{Z})$ un processus stationnaire du second ordre, tel que $E(Y_t) = 0$, $\forall t$, et soient a et b des constantes.

(a) Si $X_t=a+bt+s_t+Y_t$, où s_t est une fonction périodique de période 12, montrez que le processus

$$Z_t = (1 - B)(1 - B^{12})X_t$$

est stationnaire du second ordre.

(b) Si $X_t = (a + bt)s_t + Y_t$, où s_t est une fonction périodique de période 12, montrez que le processus

$$Z_t = (1 - B^{12})(1 - B^{12})X_t$$

est stationnaire du second ordre.

- 5. Soient $(X_t : t \in \mathbb{Z})$ et $(Y_t : t \in \mathbb{Z})$ des processus stationnaires non corrélés entre eux, i.e., tels que $Cov(X_s, Y_t) = 0, \ \forall s, t$.
 - (a) Montrez que le processus $X_t + Y_t$ est stationnaire du second ordre.
 - (b) Trouvez la fonction d'autocovariance de $X_t + Y_t$.
- 6. Soit le processus

$$S_t = \mu + S_{t-1} + u_t, \ t = 1, 2, \dots$$

où $S_0 = 0$ et $u_1, u_2, ...$ sont des variables aléatoires indépendantes et identiquement distribuées de moyenne zéro et de variance σ^2 .

- (a) Trouvez la moyenne et la fonction de covariance du processus S_t . Ce processus est-il stationnaire au sens strict? du second ordre?
- (b) Montrez que le processus $Y_t=(1-B)S_t$, t=1,2,... est stationnaire au sens strict. Calculez sa moyenne et sa fonction d'autocovariance.

Références

BROCKWELL, P. J., AND R. A. DAVIS (1991): *Time Series: Theory and Methods*. Springer-Verlag, New York, second edn.