ÁRBOLES DE DECISIÓN

Definición de árboles de decisión para upna clasificación

- Un árbol de decisión es un clasificador que en función de un conjunto de atributos permite determinar a que clase pertenece el caso objeto de estudio
- La estructura de un árbol de decisión es:
 - Cada hoja es una categoría (clase) de la atributo objeto de la clasificación
 - Cada nodo es un nodo de decisión que especifica una prueba/comprobación/test simple a realizar (atributo)
 - Los descendientes de cada nodo son los posibles resultados (valores) de la prueba del nodo

Ejemplo de árbol de decisión

- Problema: en base a 3 variables de entrada (Refund, MarSt y TaxInc) predecir el valor de otra con dos clases (Cheat: yes o no)
- Árbol de decisión

Ejemplo de árbol de decisión

discreto discreto continuo clase

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Datos de entrenamiento

Atributos de division/test (nodo) Yes No NO MarSt Married Single, Dixorced NO < 80K > 80K YES NO Atributos de decisión (hoja)

Modelo: Árbol de decisión

Refund	Marital Status		Cheat
No	Married	80K	?

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

- Algoritmo básico de aprendizaje (algoritmo voraz)
 - Los atributos son categóricos
 - Si son continuos, se discretizan previamente
 - Se construye el árbol mediante la técnica divide y vencerás aplicada de forma recursiva
 - Al principio todos los ejemplos de entrenamiento están en el nodo raíz
 - Los atributos de test (nodo interno) se seleccionan en base a una medida heurística o estadística
 - Por ejemplo, la ganancia de información
 - Los ejemplos se dividen recursivamente basándose en los atributos seleccionados

Particionado recursivo del espacio de ejemplos

Particionado recursivo del espacio de ejemplos

Particionado recursivo del espacio de ejemplos

- Condiciones para terminar el particionamiento
 - Todos los ejemplos para un nodo dado pertenecen a la misma clase
 - Se crea una hoja etiquetada con la clase
 - No quedan más atributos para seguir particionando
 - Se crea una hoja etiquetada con la clase mayoritaria del nodo
 - No quedan ejemplos
 - No se crea hoja

Problema de 3 variables de entrada, 2 clases (Variable crédito: N/S) y 10 ejemplos

Problema de asignación de crédito

crédito	ingresos	propietario	Gastos- mensuales
N	Bajos	N	Altos
N	Bajos	S	Altos
N	Medios	S	Altos
N	Medios	N	Altos
N	Altos	N	Altos
S	Altos	S	Altos
N	Bajos	N	Bajos
N	Medios	N	Bajos
N	Altos	N	Bajos
s	Medios	S	Bajos

1. Se llama al algoritmo sobre el nodo raiz

crédito	ingresos	propietario	Gastos- mensuales
N	Bajos	N	Altos
N	Bajos	S	Altos
N	Medios	S	Altos
N	Medios	N	Altos
N	Altos	N	Altos
S	Altos	S	Altos
N	Bajos	N	Bajos
N	Medios	N	Bajos
N	Altos	N	Bajos
5	Medios	S	Bajos
		_	

2. Seleccionamos gastos como test

¿gastos?

CR	ING	PRO	gastos
No	Bajos	No	Altos
No	Bajos	Si	Altos
No	Medios	Si	Altos
No	Medios	No	Altos
No	Altos	No	Altos
si	Altos	Si	Altos

CR	ING	PRO	gastos
No	Bajos	No	Bajos
No	Medios	No	Bajos
No	Altos	No	Bajos
Si	Medios	Si	Bajos

3. Preparamos los nodos para las llamadas recursivas

4. Seleccionamos ingresos como test en gastos = altos

5. Creamos nodos hoja

6. Seleccionamos propietario como test en gastos = bajos

7. Creamos nodos hoja

Seleccionamos propietario como test en gastos=altos, ingresos=altos

9. Árbol de decisión (#no, #si)

- Sea T el conjunto de ejemplos, C el conjunto de clases y A el conjunto de atributos. El algoritmo básico para generar un árbol es el siguiente:
- ConstruirArbol (T, C, A)
- Crear un nodo RAIZ para el árbol
- Si todos los ejemplos en T pertenecen a la misma clase Ci
 Devolver el nodo RAIZ con etiqueta Ci
- з. Si A=Ф

Devolver el nodo RAIZ con etiqueta Ci donde Ci es la clase mayoritaria en T

- a ← atributo de A que mejor clasifica T
- 5. Etiquetar RAIZ con a
- 6. Para cada valor vi de a hacer
 - 1. Añadir una nueva rama debajo de RAIZ con el test a=vi
 - 2. Sea Ti el subconjunto de T en el que a = vi
 - 3. Si Ti $\neq \emptyset \rightarrow$ Construir Arbol (Ti, C, A-a)
- 7. Devolver RAIZ

Otro árbol de decisión para crédito (árbol 2)

Otro árbol de decisión para crédito (árbol 3)

1er. árbol: 6 reglas (2.33 premisas por regla)

2do. árbol: 8 reglas (2.5 premisas por regla)

3er. árbol: 6 reglas (2.5 premisas por regla)

- Dependiendo del orden en el que se van tomando los atributos obtenemos clasificadores de distinta complejidad (interpretabilidad)
- Lo ideal sería tomar en todo momento el atributo que mejor clasifica

¿Cómo decidir qué atributo es el mejor?

¿Cómo decidir qué atributo es el mejor?

- Preferencia por los nodos que tengan una distribución de las clases homogénea
 - Necesita una medida de la impureza del nodo

C0: 5

No homogéneo, Alto grado de impureza **C0: 10**

Homogéneo, Bajo grado de impureza

Medidas de la impureza del nodo

- □ Índice Gini
 - Árbol de decision: CART

$$GINI(t) = 1 - \sum_{j=1}^{C} p(j | t)^{2}$$

- Ratio de ganancia de información (entropía)
 - Árboles de decision: ID3, C4.5 (J48 en Weka)

$$E(t) = \sum_{j=1}^{c} -p(j | t) \log 2(p(j | t))$$

Tratan de seleccionar los atributos que más reducen la duda (heterogeneidad)

Ejemplos del cálculo de la entropía

$$E(t) = \sum_{j=1}^{c} -p(j | t) \log 2(p(j | t))$$

$$P(C1 \mid t) = 0/6 = 0$$
 $P(C2 \mid t) = 6/6 = 1$

Entropía =
$$-0*log2(0)+-1*log2(1)=0+0=0$$

$$P(C1 \mid t) = 1/6$$
 $P(C2 \mid t) = 5/6$

Entropía =
$$-1/6*log2(1/6)+-5/6*log2(5/6)=0.43+0.22=0.65$$

$$P(C1 \mid t) = 2/6$$
 $P(C2 \mid t) = 4/6$

Entropía =
$$-2/6*log2(2/6)+-4/6*log2(4/6)=0.53+0.39=0.92$$

$$P(C1 \mid t) = 3/6$$
 $P(C2 \mid t) = 3/6$

Entropía =
$$-3/6*log2(3/6)+-3/6*log2(3/6)=0.5+0.5=1$$

División basada en Information Gain

La ganancia de información es la cantidad de información que se gana con respecto al atributo a predecir (clases, C) si dividimos por el atributo A

$$Gain(A) = E(C) - E(A)$$

- Dado un atributo A con k valores $\{A_1, A_2, ..., A_k\}$
- \square Si el atributo A es seleccionado como nodo
 - lacktriangle Los ejemplos que hayan llegado al nodo, T , se particionarán de acuerdo a los k valores del atributo A
 - - En el nodo i-ésimo asignaremos los ejemplos del nodo T que tengan el valor i-ésimo en el atributo
 A
 - La entropía media del atributo A en sus sub-espacios (nodos hijos generados) se calcula aplicando:

$$E(A) = \sum_{i=1}^{k} \frac{n_i}{n} * E(T_i)$$

- lacktriangle n_i es el número de ejemplos del nodo hijo T_i
- \blacksquare n es el número de ejemplos del nodo T (el dividido)

Deberemos elegir el atributo que maximice la ganancia de información

Ejemplos del cálculo del índice GINI

$GINI(t) = 1 - \sum_{j=1}^{\infty} p(j \mid t)^2$

P(C1 | t) =
$$0/6 = 0$$
 P(C2 | t) = $6/6 = 1$
Gini = $1 - P(C1 | t)^2 - P(C2 | t)^2 = 1 - 0 - 1 = 0$

P(C1 | t) = 1/6 P(C2 | t) = 5/6
Gini = 1 -
$$(1/6)^2$$
 - $(5/6)^2$ = 0.278

P(C1 | t) = 2/6 P(C2 | t) = 4/6
Gini =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

C1	3
C2	3

P(C1 | t) = 3/6 P(C2 | t) = 3/6
Gini =
$$1 - (3/6)^2 - (3/6)^2 = 0.5$$

Comentarios generales

□ C4.5 y CART

- Modelo interpretable
- Frontera de decisión no lineal
- Determinan las variables más importantes para resolver el problema
- Permiten abordar tanto problemas de clasificación binarios como multi-clase
- Admiten variables de entrada tanto numéricas como discretas
 - En las numéricas determinan el mejor valor del umbral de división en cada nodo
- Permiten manejar ejemplos con valores perdidos
- Control de sobre-aprendizaje
 - Pre poda: parar de ramificar si hay pocos ejemplos (nodo o descendientes)
 - Técnicas de poda (bottom-up calculando el error)
- Considerados como dos de las 10 mejores técnicas de minería de datos

CART

- Permite abordar problemas de regresión
 - Reducen la varianza (error) al ramificar
- Realiza ramificación binaria para atributos numéricos y discretos

□ C4.5

- Realiza ramificación binaria para atributos numéricos
- Para atributos discretos crea tantas ramas como valores