

FCC RADIO TEST REPORT

For FCC ID: 2ABYU-RBT008

Report Reference No	. :	18EFAS11004 21
---------------------	-----	----------------

Date of issue: 2018-10-30

Address....: Zone A, 1F, No. 6, XinGang Road YuanGang Street, XinAn

District, ChangAn Town, DongGuan City, GuangDong,

China

States

Manufacturer...... Dongguan Rongmai electronic technology Co.,Ltd

Test specification:

Test item description.....: Mini tent, Tall tent

Trade Mark....: N/A

Model/Type reference...... RBT-007, RBT-008

Ratings...... DC 3V from battery

Smile Wang Responsible Engineer:

Authorized Signatory:

King Wang

Report No.: 18EFAS11004 21 1 of 39

Summary of test Standards and results	
2.1. Description of EUT	
2.3. Assistant equipment used for test	
2.4. Block diagram of EUT configuration for test	
2.5. Test environment conditions	
2.6. Measurement uncertainty	
3. 6dB Bandwidth and 99% Occupied Bandwidth	
3.1. Test equipment	
3.2. Block diagram of test setup	
3.3. Limits	
3.4. Test Procedure	
3 Test Result	
3.6. Original test data	
4. Maximum Peak Output Power	
4.1. Test equipment	
4.2. Block diagram of test setup	
4.3. Limits	
4.4. Test Procedure	
5. Power Spectral Density	
5.1. Test equipment	
5.2. Block diagram of test setup	
5.3. Limits	
5.5. Test Result	
5.6. Original test data	
6. Spurious Emissions	
6.1. Test equipment	
6.2. Block diagram of test setup	
6.3. Limit	
7. 100 kHz Bandwidth of Frequency Band Edge	
7.1. Test equipment	
7.2. Block diagram of test setup	
7.3. Limit	
7.4. Test Procedure	

Report No.: 18EFAS11004 21 2 of 39

	8.1. Test Equipment	33
	8.2. Limit	33
	8.3. Test Procedure	33
	8.4. Test result	34
	9 Power Line Conducted Emission	37
	9.1 Test equipment	37
	9.2 Block diagram of test setup	37
	9.3 Power Line Conducted Emission Limits(Class B)	37
	9.4 Test Procedure	38
	9.5 Test Result	38
	10. Antenna Requirements	39
	10.1. Limit	39
	10.2. Result	39
ı		

Report No.: 18EFAS11004 21 3 of 39

TEST REPORT DECLARE

Applicant	:	Radius Networks,Inc.
Address	:	3255 Grace Street NW, Washington, Dist of Columbia, United States
Equipment under Test	:	Mini tent, Tall tent
Model No	:	RBT-007 ,RBT-008
Trade Mark	:	N/A
Manufacturer	:	Dongguan Rongmai electronic technology Co.,Ltd
Address	:	LingDing No,10-13.Chukeng Village.DongKeng Town.DongGuan City

Test Standard Used: FCC Rules and Regulations Part 15 Subpart C (15.247)

Test procedure used: ANSI C63.10:2013, 558074 D01 v05.

We Declare:

The equipment described above is tested by DongGuan ShuoXin Electronic Technology Co., Ltd. and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and DongGuan ShuoXin Electronic Technology Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After test and evaluation, our opinion is that the equipment provided for test compliance with the requirement of the above FCC standards.

Report No:	18EFAS11004 21		
Date of Test:	2018-10-22	Date of Report:	2018-10-29

Note: This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of DongGuan ShuoXin Electronic Technology Co., Ltd.

Report No.: 18EFAS11004 21 4 of 39

1. Summary of test Standards and results

The EUT have been tested according to the applicable standards as referenced below.

Description of Test Item	Standard	Results
6dB Bandwidth And 99% Occupied Bandwidth	FCC Part 15.247 (a)(2)	PASS
Peak Output Power	FCC Part 15.247(b)(3)	PASS
Power Spectral Density	FCC Part 15.247(e)	PASS
Spurious Emissions at Antenna Port	FCC Part 15.247(d)	PASS
Spurious Emissions	FCC Part 15.205, 15.209, FCC Part 15.247(d)	PASS
100 kHz Bandwidth of Frequency Band Edge	FCC Part 15.247(d)	PASS
AC Line Conducted Emissions	FCC Part 15.207 (a)	N/A
Antenna requirement	FCC Part 15: 15.203	PASS

2. GENERAL TEST INFORMATION

2.1. Description of EUT

Report No.: 18EFAS11004 21

EUT* Name	:	Mini tent, Tall tent
Model Number	:	RBT-007 , RBT-008
Trade Mark	:	N/A
EUT function description	:	Mini tent, Tall tent with BT function.
Power supply	:	DC 3V from battery
Adaptor		N/A
Radio Specification	:	BT BLE
Operation frequency	:	2.402~2.480 GHz
Modulation	:	GFSK
Antenna Type	:	PCB Antenna, gain: 0dBi
FVIN		NA
Date of Receipt	:	2018/10/22
Sample Type	:	N/A

Note: EUT is the ab. of equipment under test.

2.2. Accessories of EUT

Description of Accessorie s	Manufacturer	Model number or Type	Other
/	/	/	/

2.3. Assistant equipment used for test

Description of Assistant equipment	Manufacturer	Model number or Type	Other
/	/	/	/

Report No.: 18EFAS11004 21 6 of 39

2.4. Block diagram of EUT configuration for test

EUT

EUT was connected to control to a special test jig provided by manufacturer which has a standard RSS-232 connector to connect to Notebook, and the Notebook will run a special test software "MP_v1.1.1" provided by manufacturer to control EUT work in test mode as blow table.

Tested mode, channel, and data rate information				
Mode	data rate (Mpbs)	Channel	Frequency	
	(see Note)		(MHz)	
	1	Low :CH00	2402	
BLE	1	Middle: CH19	2440	
	1	High: CH39	2480	

Note: According exploratory test, EUT will have maximum output power in those data rate, so those data rate were used for all test.

2.5. Test environment conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature range:	21-25℃
Humidity range:	40-75%
Pressure range:	86-106kPa

Report No.: 18EFAS11004 21 7 of 39

2.6. Measurement uncertainty

Test Item	Uncertainty
Uncertainty for Conduction emission test (9kHz-150kHz)	3.7 dB
Uncertainty for Conduction emission test (150kHz-30MHz)	3.3 dB
Uncertainty for Radiation Emission test (30MHz-200MHz)	4.60 dB (Polarize: V)
Oncertainty for Radiation Emission test (3000112-20001112)	4.60 dB (Polarize: H)
Uppertainty for Padiation Emission test (200MHz 10Hz)	6.10 dB (Polarize: V)
Uncertainty for Radiation Emission test (200MHz-1GHz)	5.08 dB (Polarize: H)
Uncertainty for Dodiction Emission toot (4011= 6011=)	5.01 dB (Polarize: V)
Uncertainty for Radiation Emission test (1GHz-6GHz)	5.01 dB (Polarize: H)
Uppertainty for Padiction Emission test (CCUz 19CUz)	5.26 dB (Polarize: V)
Uncertainty for Radiation Emission test (6GHz-18GHz)	5.26 dB (Polarize: H)
Lineartainty for Dadiation Emission toot (40011- 40011-)	5.06 dB (Polarize: V)
Uncertainty for Radiation Emission test (18GHz-40GHz)	5.06 dB (Polarize: H)
Uncertainty for radio frequency	±0.048kHz
Uncertainty for conducted RF Power	±0.32dB

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3. 6dB Bandwidth and 99% Occupied Bandwidth

3.1. Test equipment

Report No.: 18EFAS11004 21

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	Calibrated Date
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	05/25/2019	05/26/2018
2	Attenuator	Mini-Circuits	BW-S10W2	101109	12/17/2018	12/18/2017
3	RF Cable	Micable	C10-01-01-1	100309	12/17/2018	12/18/2017
4	Spectrum analyzer	R&S	FSV40	101470	06/28/2019	06/29/2018

3.2. Block diagram of test setup

3.3. Limits

For direct sequence systems, the minimum 6dB bandwidth shall be at least 500 KHz

3.4. Test Procedure

- (1) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- (2) Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- (3) Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- (4) Repeat above procedures until all frequencies measured were complete.

Report No.: 18EFAS11004 21 9 of 39

3.. Test Result

EUT Set	CH or	6 dB bandwidth	99% dB bandwidth	Limt	Conclusion
Mode	Frequency	Result (MHz)	Result (MHz)	>500KHz	PASS
	CH 00	0.638	/		PASS
BLE	CH 19	0.643	/	>500KHz	PASS
	CH 39	0.648	/		PASS

3.6. Original test data

Report No.: 18EFAS11004 21 12 of 39

4. Maximum Peak Output Power

4.1. Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	Calibrated Date
1	Power meter	Agilent	E4417A	MY45100473	05/26/2019	05/27/2018
2	Wireband Power sensor	Agilent	E4427A	MY5100041	12/17/2018	12/18/2017
3	RF Cable	Micable	C10-01-01-1	100309	12/17/2018	12/18/2017
4	Spectrum analyzer	R&S	FSV40	101470	06/28/2019	06/29/2018

4.2. Block diagram of test setup

4.3. Limits

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz bands: 1 Watt. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.4. Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. A wide band power meter with a matched thermocouple detector was used to directly measure the output power from the RF output port of the EUT in continuously transmitting mode.
- 3. The measurement shall be repeated at the lowest, the middle, and the highest channel of the stated frequency range.

Report No.: 18EFAS11004 21 13 of 39

4.5. TEST RESULT

EUT Set Mode	СН	Result(dBm) Peak	Limit	Conclusion
	CH 00	-1.87	30dBm	PASS
BLE	CH 19	-1.00	30dBm	PASS
	CH 39	-1.96	30dBm	PASS

5. Power Spectral Density

5.1. Test equipment

Report No.: 18EFAS11004 21

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	Calibrated Date
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	05/26/2019	05/27/2018
2	Attenuator	Mini-Circuits	BW-S10W2	101109	12/17/2018	12/18/2017
3	RF Cable	Micable	C10-01-01-1	100309	12/17/2018	12/18/2017
4	Spectrum analyzer	R&S	FSV40	101470	06/28/2019	06/29/2018

5.2. Block diagram of test setup

5.3. Limits

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

Report No.: 18EFAS11004 21 15 of 39

5.4. TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generatorl.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range
- 3. According to KDB 558074 D01 v05, set the RBW = 3 kHz, VBW = 30 kHz, Set the span to 1.5 times the DTS channel bandwidth.
- 4. Use the peak marker function to determine the maximum power level in any 3 kHz band segment within the fundamental EBW

5.5. Test Result

EUT Set Mode	СН	Result(dBm)	Limit (dBm)	Conclusion
	CH 00	-17.63	8	PASS
BLE	CH 19	-16.80	8	PASS
	CH 39	-19.02	8	PASS

5.6. Original test data

Report No.: 18EFAS11004 21

CH19

6. Spurious Emissions

6.1. Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	Calibrated Date
1	EMI Test Receiver	R&S	ESCI	101307	12/17/2018	12/18/2017
2	Spectrum analyzer	Agilent	E4407B	US40240708	07/04/2019	07/05/2018
3	Trilog Broadband Antenna	Schwarzbeck	VULB9168	VULB9168 -192	03/04/2019	03/05/2018
4	Double Ridged Horn Antenna	SCHWARZBEC K	BBHA 9120D1065	100276	12/17/2018	12/18/2017
5	Double Ridged Horn Antenna	SCHWARZBEC K	BBHA 9120D1065	100546	12/17/2018	12/18/2017
6	Dipole antenna	Schwarzbeck	UHAP	1101	12/17/2018	12/18/2017
7	Dipole antenna	Schwarzbeck	VHAP	1118	12/17/2018	12/18/2017
8	Pre-Amplifier	CY	EMC011830	980136	12/17/2018	12/18/2017
9	Pre-amplifier	HP	8447F	3113A05680	12/17/2018	12/18/2017
10	RF Cable	R&S	R01	10403	12/17/2018	12/18/2017
11	RF Cable	R&S	R02	10512	12/17/2018	12/18/2017
12	RF Cable	R&S	R01	10454	12/17/2018	12/18/2017
13	RF Cable	R&S	R02	10343	12/17/2018	12/18/2017
14	6 dB Attenuator	EMEC	ATT6000-6-N N	N/A	11/21/2018	11/22/2017
15	Turn Table	UC	UC3000	N/A	N/A	N/A
16	Antenna Mast	UC	UC3000	N/A	N/A	N/A
17	MeasurementSoft ware	Farad	EZ-EMC (Ver.ATT-03 A)	N/A	N/A	N/A
18	Spectrum analyzer	R&S	FSV40	101470	06/28/2019	06/29/2018

6.2. Block diagram of test setup

In 3m Anechoic Chamber Test Setup Diagram for below 1GHz

In 3m Anechoic Chamber Test Setup Diagram for frequency above 1GHz

Note: For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP.

6.3. Limit

Report No.: 18EFAS11004 21

6.3.1 FCC 15.205 Restricted frequency band

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)

6.3.2 FCC 15.209 Limit

FREQUENCY	DISTANCE FIELD STRENGT		THS LIMIT
MHz	Meters	μV/m	dB(μV)/m
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0
Above 1000	3	74.0 dB(μV)/m (Peak) 54.0 dB(μV)/m (Average)	

6.3.3 Limit for this EUT

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10:2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

ATT

6.4. TEST PROCEDURE

- (1) EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber.
- (2) Setup EUT and assistant system according clause 2.4 and 8.2
- (3) Test antenna was located 3m from the EUT on an adjustable mast. Below pre-scan procedure was first performed in order to find prominent radiated emissions.
- (a) Change work frequency or channel of device if practicable.
- (b) Change modulation type of device if practicable.
- (c) Change power supply range from 85% to 115% of the rated supply voltage
- (d) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions
- (4) Spectrum frequency from 9MHz to 25GHz (tenth harmonic of fundamental frequency) was investigated, and no any obvious emission were detected from 9KHz to 30MHz and 18GHz to 25GHz, so below final test was performed with frequency range from 30MHz to 18GHz.
- (5) For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna
 - height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10 2013 on Radiated Emission test.
- (6) For emissions from 30MHz to 1GHz, Quasi-Peak values were measured with EMI Receiver and the bandwidth of Receiver is 120 KHz.
- (7)For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz for Peak measure, Detector is at PK; RBW is set at 1MHz, VBW is set at 3MHz for Average measure, Detector is at RMS..

Report No.: 18EFAS11004 21 22 of 39

6.5. TEST RESULT

Below 30M

EUT:	Mini tent, Tall tent	Model No.:	RBT-007 (Mini tent)
Temperature:	24℃	Relative Humidity:	55%
Distance:	3m	Test Power:	DC 3V from battery
Polarization:		Test Result:	Pass
Test Mode:	Keep TX Mode	Test By:	smile

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Р
				Р

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =20 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor

Between 30M - 1000 MHz

Report No.: 18EFAS11004 21

EUT:	Mini tent, Tall tent	Model No.:	RBT-007		
Temperature:	24	Relative Humidity:	55%		
Distance:	3m	Test Power:	DC 3V from battery		
Polarization:	Vertical	Test Result:	Pass		
Standard:	(RE)FCC PART 15 class B 3m	Test By:	smile		
Test Mode:	Keep TX Mode				

No. I	Mk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector
1	42.3022	25.60	-5.89	19.71	40.00	-20.29	QP
2	59.4405	23.79	-7.35	16.44	40.00	-23.56	QP
3	108.6470	23.23	-7.68	15.55	43.50	-27.95	QP
4	209.3129	22.57	-3.96	18.61	43.50	-24.89	QP
5	593.0497	23.88	2.48	26.36	46.00	-19.64	QP
6 '	* 796.1830	22.91	7.70	30.61	46.00	-15.39	QP

The test result is calculated as the following:

- (1) Result = Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss Amplifier Gain + Attenuator
- (3) Margin = Result Limit

EUT:	Mini tent, Tall tent	Model No.:	RBT-007
Temperature:	24	Relative Humidity:	55%
Distance:	3m	Test Power:	DC 3V from battery
Polarization:	Horizontal	Test Result:	Pass
Standard:	(RE)FCC PART 15 class B 3m	Test By:	smile
Test Mode:	Keep TX Mode		

80.0 dBuV/m Limit: Margin: 0.0 0 0 0 0 0 0 70 80 (MHz) 300 400 500 600 700 1000.000

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector
1		36.1272	25.43	-3.41	22.02	40.00	-17.98	QP
2	,	108.6470	23.23	-7.08	16.15	43.50	-27.35	QP
3	,	150.5378	24.01	-6.75	17.26	43.50	-26.24	QP
4	2	239.9874	24.17	-6.52	17.65	46.00	-28.35	QP
5	į	547.0977	23.14	4.61	27.75	46.00	-18.25	QP
6	*	731.9203	25.47	7.13	32.60	46.00	-13.40	QP

The test result is calculated as the following:

- (1) Result = Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss Amplifier Gain + Attenuator
- (3) Margin = Result Limit

Report No.: 18EFAS11004 21 25 of 39

Between 1000M - 25000 MHz

Test Site	:	3m Chamber					
EUT		Mini tent, Tall tent	Tested By		Smile		
Power Supply	:	3 Vdc	Model Number		RBT-007		
Condition		Temp:24.5'C,Humi:55%, Press:100.1kPa	Test Mode	:	Tx mode		

Frequency	Re	ceiver	Rx Ant	tenna	Corrected Amplitude	FCC 15.24	7
(BALL=)	Reading	Detector	Polar	Factor	(dBµV/m)	Limit	Margin
(MHz)	(dBµV)	(PK/QP/AV)	(H/V)	(dB)		(dBµV/m)	(dB)
		Lov	w Chann	el (2402)			
4804	51.44	PK	Н	5.06	56.5	74	-17.5
4804	40.52	AV	Н	5.06	45.58	54	-8.42
4804	51.80	PK	V	5.06	56.86	74	-17.14
4804	40.29	AV	V	5.06	45.35	54	-8.65
7206	42.19	PK	Н	7.03	49.22	74	-24.78
7206	30.15	AV	Н	7.03	37.18	54	-16.82
7206	42.34	PK	V	7.03	49.37	74	-24.63
7206	30.08	AV	V	7.03	37.11	54	-16.89
		Midd	dle Chan	nel (2440))		
4880	53.08	PK	Н	5.14	58.22	74	-15.78
4880	41.06	AV	Н	5.14	46.2	54	-7.8
4880	50.24	PK	V	5.14	55.38	74	-18.62
4880	38.58	AV	V	5.14	43.72	54	-10.28
7320	43.01	PK	Н	7.52	50.53	74	-23.47
7320	32.16	AV	Н	7.52	39.68	54	-14.32
7320	41.59	PK	V	7.52	49.11	74	-24.89
7320	30.58	AV	V	7.52	38.1	54	-15.9
		Hig	h Chann	el (2480)	_		
4960	52.15	PK	Н	5.22	57.37	74	-16.63
4960	40.96	AV	Н	5.22	46.18	54	-7.82
4960	51.58	PK	V	5.22	56.8	74	-17.2
4960	41.14	AV	V	5.22	46.36	54	-7.64
7440	42.38	PK	Н	8.06	50.44	74	-23.56
7440	31.16	AV	Н	8.06	39.22	54	-14.78
7440	42.15	PK	V	8.06	50.21	74	-23.79
7440	30.79	AV	V	8.06	38.85	54	-15.15

The test result is calculated as the following:

Corrected Amplitude = Read Level + Antenna Factor + Cable loss - Amplifier Gain Margin= Corrected Amplitude-Limit

Radiated band edge:

Report No.: 18EFAS11004 21

Test Site	:	3m Chamber	Vertical				
EUT		Mini tent, Tall tent	Tested By : Smile		Smile		
Power Supply	:	3 Vdc	Model Number		RBT-007		
Condition	:	Temp:24.5'C,Humi:55%, Press:100.1kPa	Test Mode		Tx mode: 1M 2402MHz		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390	21.65	30.85	52.5	74	-21.5	peak
2	2390	10.51	30.85	41.36	54	-12.64	AVG

The test result is calculated as the following:

- (1) Result = Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss
- (3) Margin = Result Limit

Test Site	:	3m Chamber	Н	Horizontal				
EUT	ŀ	Mini tent, Tall tent	Te	ested By	:	Smile		
Power Supply	:	3 Vdc	M	odel Number	:	RBT-007		
Condition	:	Temp:24.5'C,Humi:55%, Press:100.1kPa	Te	est Mode	:	Tx mode: 1M 2402MHz		

100.0 dBuV/m		
		Limit: —
		AVG: —
60		
	1	
	*	
20.0		
2377.000	(MHz)	2427.00

No.	Frequency Readin		Correct	Result	Limit	Margin Remark	
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	//m) (dB)	
1	2390	23.04	30.85	53.89	74	-20.11	peak
2	2390	10.41	30.85	41.26	54	-12.74	AVG

The test result is calculated as the following:

- (1) Result = Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss
- (3) Margin = Result Limit

Test Site	-	3m Chamber	Vertical				
EUT	:	Mini tent, Tall tent	Tested By	•••	Smile		
Power Supply	:	3 Vdc	Model Number		RBT-007		
Condition	:	Temp:24.5'C,Humi:55%, Press:100.1kPa	Test Mode	:	Tx mode: 1M 2480MHz		

No.	Frequency	Reading	Correct	Result	Limit Margin		Remark
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	22.52	31.07	53.59	74.00	-20.41	peak
2	2483.500	10.36	31.07	41.43	54.00	-12.57	AVG

The test result is calculated as the following:

- (1) Result = Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss
- (3) Margin = Result Limit

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	22.84	31.07	53.91	74.00	-20.09	peak
2	2483.500	10.67	31.07	41.74	54.00	-12.26	AVG

The test result is calculated as the following:

- (1) Result = Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss
- (3) Margin = Result Limit

7. 100 kHz Bandwidth of Frequency Band Edge

7.1. Test equipment

Report No.: 18EFAS11004 21

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	Calibrated Date
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	05/25/2019	05/26/2018
2	Attenuator	Mini-Circuits	BW-S10W2	101109	12/17/2018	12/18/2017
3	RF Cable	Micable	C10-01-01-1	100309	12/17/2018	12/18/2017
4	Spectrum analyzer	R&S	FSV40	101470	06/28/2019	06/29/2018

7.2. Block diagram of test setup

7.3. Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Report No.: 18EFAS11004 21 31 of 39

7.4. Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a

EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its					
linear range. 3.Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span					
including 100 kHz bandwidth from band edge. 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the					
graph with marking the highest point and edge frequency.					
5. Repeat above procedures until all measured frequencies were complete.					
7.5. Test result					
Pass					

Report No.: 18EFAS11004 21 33 of 39

8. Conducted Spurious Emissions

8.1. Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	Calibrated Date
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	05/26/2019	05/27/2018
2	Attenuator	Mini-Circuits	BW-S10W2	101109	12/17/2018	12/18/2017
3	RF Cable	Micable	C10-01-01-1	100309	12/17/2018	12/18/2017
4	Spectrum analyzer	R&S	FSV40	101470	06/28/2019	06/29/2018

8.2. Limit

In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

8.3. Test Procedure

The transmitter output was connected to a spectrum analyzer, The resolution bandwidth is set to 100 kHz, The video bandwidth is set to 300 kHz and measure all the emissions detected.

8.4. Test result

Report No.: 18EFAS11004 21

PASS (See below detailed test result.)

9 Power Line Conducted Emission

9.1 Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Pulse Limiter	MTS-systemtechnik	MTS-IMP-136	261115-010-0024	12/17/2018
2	EMI Test Receiver	R&S	ESCI	101308	12/17/2018
3	LISN	AFJ	LS16	16011103219	12/17/2018
4	LISN	Schwarzbeck	NSLK 8127	8127-432	12/17/2018
5	Measurement Software	Farad	EZ-EMC (Ver.ATT-03A)	N/A	N/A
6	MeasurementSoftware	Farad	EZ-EMC (Ver.ATT-03A)	N/A	N/A

9.2 Block diagram of test setup

9.3 Power Line Conducted Emission Limits(Class B)

Frequency	Quasi-Peak Level dB(μV)	Average Level dB(μV)	
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*	
500kHz ~ 5MHz	56	46	
5MHz ~ 30MHz	60	50	

Note 1: * Decreasing linearly with logarithm of frequency.

Note 2: The lower limit shall apply at the transition frequencies.

9.4 Test Procedure

Report No.: 18EFAS11004 21

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80cm above the ground plane.

Configuration EUT to simulate typical usage as described in clause 2.4 and test equipment as described in clause 10.2 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.

All support equipment power received from a second LISN.

Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in clause 2.4 were scanned during the preliminary test.

After the preliminary scan, we found the test mode producing the highest emission level.

The EUT configuration and worse cable configuration of the above highest emission levels were recorded for reference of the final test.

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Neutral and Line, recording at least the six highest emissions.

Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

The test data of the worst-case condition(s) was recorded.

The bandwidth of test receiver is set at 9 KHz.

9.5 Test Result

N/A

10. Antenna Requirements

Report No.: 18EFAS11004 21

10.1. Limit

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

10.2. Result

See 2.1