Problem A. Three Pairwise Maximums

Time limit 1000 ms **Mem limit** 262144 kB

You are given three positive (i.e. strictly greater than zero) integers x, y and z.

Your task is to find positive integers a, b and c such that $x = \max(a, b)$, $y = \max(a, c)$ and $z = \max(b, c)$, or determine that it is impossible to find such a, b and c.

You have to answer t independent test cases. Print required a, b and c in any (arbitrary) order.

Input

The first line of the input contains one integer t ($1 \le t \le 2 \cdot 10^4$) — the number of test cases. Then t test cases follow.

The only line of the test case contains three integers x, y, and z ($1 \le x, y, z \le 10^9$).

Output

For each test case, print the answer:

- "NO" in the only line of the output if a solution doesn't exist;
- or "YES" in the first line and any valid triple of positive integers a,b and c ($1 \le a,b,c \le 10^9$) in the second line. You can print a,b and c in any order.

Sample 1

Input	Output
5 3 2 3 100 100 100 50 49 49 10 30 20 1 1000000000 1000000000	YES 3 2 1 YES 100 100 100 NO NO YES 1 1 1000000000