

Cracking the Elliptic Curve Cryptosystem

Chun Min Tan (CID: 02016068) cmt122@ic.ac.uk

Introduction to Elliptic Curve

Definition 1. (Elliptic Curve) An elliptic curve E is the set of solutions to a Weierstrass equation

$$E: y^2 = x^3 + ax + b$$

with point \mathcal{O} and a, b satisfying $4a^3 + 27b^2 \neq 0$

Elliptic Curve Addition Algorithm

Let E be an elliptic curve, and suppose P, Q are points on E. Define $P \oplus Q = R'$, as in the figure [1, $E \qquad P \oplus Q = R'$ p.281].

In cryptography we use elliptic curve over a finite field $E(\mathbb{F}_p) = \{(x, y) : x, y \in \mathbb{F}_p \land (x, y) \in E\} \cup \{\mathcal{O}\}$

Elliptic Curve Cryptography

Some notable elliptic curve cryptosystems Diffie-Hellmar key exchange and ElGamal public key etc. A summary o Diffie-Hellman key exhcange [1, p.297]

	Public parameter creation	
ic	A trusted party chooses and publishes a (large) prime p ,	
	an elliptic curve E over \mathbb{F}_p , and a point P in $E(\mathbb{F}_p)$.	
าร	Private computations	
\mathbf{n}	Alice	Bob
d	Chooses a secret integer n_A .	Chooses a secret integer n_B .
la	Computes the point $Q_A = n_A P$.	Computes the point $Q_B = n_B P$.
y,	Public exchange of values	
\int_{0}^{∞}	Alice sends Q_A to Bob \longrightarrow Q_A	
\mathbf{OI}	$Q_B \leftarrow$	— Bob sends Q_B to Alice
y	Further private computations	
	Alice	Bob
	Computes the point $n_A Q_B$.	Computes the point $n_B Q_A$.
	The shared secret value is $n_A Q_B = n_A (n_B P) = n_B (n_A P) = n_B Q_A$.	

Note that if one can solve $Q_A = n_A P$ or $Q_B = n_B P$, then one is able to crack the cipher, i.e. the elliptic curve discrete logarithm problem (ECDLP).

Double-and-Add Algorithm

- 1. We write n in binary form as
- $n = n_0 + n_1 \cdot 2 + n_2 \cdot 2^2 + \dots + n_r \cdot 2^r$ $n_i \in \{0, 1\}$
- 2. Compute $Q_i = 2Q_{i-1} = 2^i P$ for $i \ge 0$. Then

$$nP = n_0Q_0 + n_1Q_1 + \dots + n_rQ_r$$
 $n_i \in \{0, 1\}$

 $r = \lfloor \log_2 n \rfloor \leq \log_2 n$, : at most $\lfloor 2 \log_2 n \rfloor$ steps and on av-

erage it takes $3/2 \log_2 n$.

Improvements: We allow coefficients $n_i \in \{-1, 0, 1\}$ and Pohlig-Hellman Algorithm an extra digit in the expansion.

Proposition 1. For all $n \in \mathbb{N}$, there exists a ternary expansion where at most half of the coefficients are nonzero.

Proof. We look for the first two or more consecutive nonzero u_i in binary expansion. Suppose we have

$$u_s = u_{s+1} = \dots = u_{s+t-1} = 1$$
 and $u_{s+t} = 0$

where $t \geq 2$. Then we have

$$2^{s} + 2^{s+1} + \dots + 2^{s+t-1} + 0 \cdot 2^{s+t} = -2^{s} + 2^{s+t}$$

There are at most $|\log_2 n| + 1$ doublings and at most $\lfloor (\lfloor \log_2 n \rfloor + 1)/2 \rfloor + 1$ additions, added together gives $\left| \frac{3}{2} \log_2 n + \frac{5}{2} \right|$ and on average it takes $4/3\log_2 n + 7/3$.

Naive Collision Algorithm

Theorem 1. (Collision Theorem) An urn contains N balls, n are red, N-n are blue. Bob chooses m balls with replacement, then if X is the number of red ball observe, we have $P(X \ge 1) \ge 1 - e^{-mn/N}$

Proof. Note that $P(X \ge 1) = 1 - P(X = 0)$, note that $P(X = 0) = ((N - n)/m)^m = (1 - n/N)^m \le e^{-mn/N}$

1. If $N = \operatorname{ord}(P)$, choose $r \approx 3\sqrt{N}$. We randomly choose $1 \leq y_1, \ldots, y_r \leq N$ and compute

$$y_1P, y_2P, \dots, y_rP \in \langle P \rangle \subseteq E(\mathbb{F}_p)$$
 in at most $2r \log_2 N$ steps

2. We randomly select $1 \leq z_1, \ldots, z_r \leq N$ and compute

$$z_1P+Q,z_2P+Q,\ldots,z_rP+Q\in\langle P\rangle\subseteq E(\mathbb{F}_p)$$
 in at most $2r\log_2N+r$ steps

3. Search for a collision, $y_{\alpha}P = z_{\beta}P + Q \implies Q = (y_{\alpha} - z_{\beta})P$, hence the solution is $y_{\alpha} - z_{\beta} \pmod{N}$. Merge sort plus binary search combined requires on average $2r \log_2 r$ steps.

How likely is a collision? Treat $\langle P \rangle$ as the urn, y_i as the red balls. Pick r balls $(z_i P + Q)$, then by Collision theorem

$$P(\text{at least one collision}) = 1 - (1 - r/N)^r \ge 1 - e^{-r^2/N} \approx 1 - e^{-9} \approx 99.98\%$$

with total number of steps $2r \log_2 N + 2r \log_2 N + r + 2r \log_2 r = 3\sqrt{N} \log_2 (N^4 \cdot 9N) + 3\sqrt{N} = |O(\sqrt{N} \log N)|$

Key Idea: Generate 2 lists y_iP and z_iP+Q by randomly selecting y_i and z_i from [1,N] and search for a collision.

Pollard's ρ method for ord(P) = p prime

Theorem 2. Set |S| = p, $f: S \to S$ is sufficiently random, if (x_i) is generated by applying f, then $E(T + M) = \sqrt{\pi p/2}$.

Proof. One can show that for large p and T, M as in the figure provided [1, p.235]

then $E(T+M) = \sum_{k=0}^{\infty} kP(x_k \text{ is first match}) \approx \sum_{k=0}^{\infty} (k^2/p)e^{-k^2/2p} = \sqrt{\pi p/2}$

. Let $\{S_1,\ldots,S_L\}$ be a partition of $\langle P\rangle$. Now define H(X)=j if $X\in S_j$ and let $a_j,b_j\in_R[0,p-1]$ for each $1\leq j\leq L$. Then define $f:\langle P\rangle \to \langle P\rangle$

$$X \mapsto X + a_j P + b_j Q$$
 where $j = H(X)$

2. Since $\langle P \rangle$ is finite, by *Floyd's cycle-detection algorithm*, compute (X_i, X_{2i}) until $X_i = X_{2i}$, where $X_i = f(X_{i-1})$. **How fast is this algorithm?** Since $E(T+M)=\sqrt{p\pi/2}$, and in each evaluation of the function f, it only requires 2 modular addition, hence it takes approximately $2 \cdot \sqrt{p\pi/2}$ steps, therefore $O(\sqrt{p\pi/2})$ or $O(\sqrt{p})$.

Key Idea: Construct f to be sufficiently random, then compute (X_i, X_{2i}) until $X_i = X_{2i}$ where $X_i = f(X_{i-1})$.

Let $N = \operatorname{ord}(P) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$ be given. To solve $\tilde{n} : Q = \tilde{n}P$, consider $\tilde{n} \equiv n_i \pmod{p_i^{e_i}}$ for each $1 \leq i \leq r$.

1. To find $n_i \pmod{p_i^{e_i}}$, we write it in its p_i -adic expansion modulo $p_i^{e_i}$. This will give

$$n_i \equiv z_0 + z_1 p_i + \dots + z_{e_i - 1} p_i^{e_i - 1} \pmod{p_i^{e_i}}$$
 where $z_i \in [0, p_i - 1]$

2. Define $P_0 = (N/p_i)P$ and $Q_0 = (N/p_i)Q$, since P_0 has order p_i , we have

$$Q_0 = (N/p_i)Q = (N/p_i)\tilde{n}P = \tilde{n}(N/p_i \cdot P) = \tilde{n}P_0 = [\tilde{n}]_{p_i}P_0 = z_0P_0$$

therefore $z_0 = \log_{P_0} Q_0$ which can be solved using Pollard's ρ method.

- 3. If z_0, \ldots, z_{t-1} have been computed, then $z_t = \log_{P_0} Q_t$ can be computed using Pollard's ρ method as well where
 - $Q_t = \frac{N}{n_i^{t+1}} (Q z_0 P z_1 p_i P \dots z_{t-1} p_i^{t-1})$
- 4. This allow us to compute z_0, \ldots, z_{e_i-1} . Repeat for all n_j , then \tilde{n} can be found using *Chinese Remainder Theorem*.

How fast is this algorithm? Given $N=p_1^{e_1}p_2^{e_2}\cdots p_r^{e_r}$, then Pohlig-Hellman Algorithm takes $O\left(\sum e_i(\log n+\sqrt{p_i})\right)$

Key Idea: Solve for $\tilde{n} \equiv n \pmod{p_i^{e_i}}$ by solving $Q_t = z_t P$ and combine each n_i using Chinese Remainder Theorem.

General Attack on ECDLP

The best general attack is a combination of Pollard's ρ algorithm for factorisation and the Pohlig-Hellman Algorithm. The expected running time of this is

$$O(\sqrt{p})$$

where p is the largest prime divisor of N = ord(P).

To resist this attack one should pick an elliptic curve with point P of order N where all the prime divisors of N are large[2, §4.1].

Million Dollar Question(?)

Complexity Classes Venn Diagram [3]

Definition 2. (Decision version ECDLP) Given $(E(\mathbb{F}_p), N, d, Q, P)$ where $E(\mathbb{F}_p)$ is an elliptic curve over \mathbb{F}_p , $P \in E(\mathbb{F}_p)$ with order N and $d \leq N$ an integer. Then the decision problem is:

Is there an integer
$$k \le d : Q = kP$$
?

The decision version of ECDLP is known to be in NP \cap co-NP. It is not known to be in P as currently there is no deterministic polynomial time algorithm that solves . Therefore if one can show that there does not exist a deterministic polynomial time algorithm that solves ECDLP, this would imply

$$P \neq NP$$

thus settling one of the most important question in computer science. Further if one can show that it is NPcomplete, then this would imply that

$$NP = co-NP$$

which also solves another unsolved question in computer science[2, §4.1].

Conclusions

The underlying working principle of ECDLP is based on the assumption that $P \neq NP$. The algorithms covered here involve some probabilistic elements and the fastest known algorithm that can solve ECDLP in polynomial time can only be done on a non-deterministc Turing machine. But all of this may change when the age of quantum computing truly begins.

References

- [1] Jeffrey Hoffstein, Jill Pipher, Joseph H Silverman, and Joseph H Silverman. An introduction to math ematical cryptography, volume 1. Springer, 2008.
- [2] Darrel Hankerson, Alfred J Menezes, and Scott Vanstone. Guide to elliptic curve cryptography. Springer Science & Business Media, 2006.
- Anton Pierre De Villiers. Edge criticality in secure graph domination. PhD thesis, Stellenbosch: Stellenbosch University, 2014.