Suggested Solution to 2015 SH2 H2 Mathematics Preliminary Examination Paper 1

Let P_N be the statement $\sum_{n=0}^{N} \frac{3n+2}{(n+1)!3^{n+1}} = 1 - \frac{1}{(N+1)!3^{N+1}}$ for all $N \ge 0$.

When N = 0,

LHS =
$$\sum_{n=0}^{0} \frac{3n+2}{(n+1)!3^{n+1}} = \frac{3(0)+2}{(0+1)!3^{0+1}} = \frac{2}{3}$$

RHS =
$$1 - \frac{1}{(0+1)!3^{0+1}} = \frac{2}{3} = LHS$$

Thus, P_0 is true.

Assume P_k is true for some $k \ge 0$, i.e.

$$\sum_{n=0}^{k} \frac{3n+2}{(n+1)!3^{n+1}} = 1 - \frac{1}{(k+1)!3^{k+1}}.$$

Consider
$$P_{k+1}$$
: To show $\sum_{n=0}^{k+1} \frac{3n+2}{(n+1)!3^{n+1}} = 1 - \frac{1}{(k+2)!3^{k+2}}$

LHS of
$$P_{k+1} = \sum_{n=0}^{k+1} \frac{3n+2}{(n+1)!3^{n+1}}$$

$$= \sum_{n=0}^{k} \frac{3n+2}{(n+1)!3^{n+1}} + \frac{3(k+1)+2}{(k+2)!3^{k+2}}$$

$$= 1 - \frac{1}{(k+1)!3^{k+1}} + \frac{3k+5}{(k+2)!3^{k+2}}$$

$$= 1 - \frac{(k+2)(3)}{(k+1)!(k+2)3^{k+1} \cdot 3} + \frac{3k+5}{(k+2)!3^{k+2}}$$

$$= 1 - \frac{3k+6}{(k+2)!3^{k+2}} + \frac{3k+5}{(k+2)!3^{k+2}}$$

$$= 1 + \frac{3k+5-3k-6}{(k+2)!3^{k+2}}$$

$$= 1 - \frac{1}{(k+2)!3^{k+2}} = \text{RHS of } P_{k+1}$$

 P_k is true $\Rightarrow P_{k+1}$ is true.

Since P_0 is true,

and P_k is true $\Rightarrow P_{k+1}$ is true,

by mathematical induction, P_N is true for all $N \ge 0$.

3 (i)
$$\frac{\cos 2x}{1-x^2} = (\cos 2x)(1-x^2)^{-1}$$

$$= \left(1 - \frac{(2x)^2}{2} + \frac{(2x)^4}{4!} + \dots\right)(1+x^2+x^4+\dots)$$

$$= \left(1 - 2x^2 + \frac{2x^4}{3} + \dots\right)(1+x^2+x^4+\dots)$$

$$= (1+x^2+x^4) + (-2x^2-2x^4) + \frac{2x^4}{3} + \dots$$
or $\left(1 - 2x^2 + \frac{2x^4}{3}\right) + (x^2-2x^4) + x^4 + \dots$

$$\approx 1 - x^2 - \frac{x^4}{3}$$
3 (ii)
$$\frac{\cos\left[2\left(\frac{1}{3}\right)\right]}{1 - \left(\frac{1}{3}\right)^2} \approx 1 - \left(\frac{1}{3}\right)^2 - \frac{1}{3}\left(\frac{1}{3}\right)^4 = 1 - \frac{1}{9} - \frac{1}{243} = \frac{215}{243}$$

$$\cos\left(\frac{2}{3}\right) \approx \frac{215}{243} \times \frac{8}{9}$$

$$= \frac{1720}{2187}$$

4 (i)

Either $\mathbf{a} = \mathbf{0}$ OR $\mathbf{b} = \mathbf{0}$ OR

a and **b** are perpendicular to each other.

4 (ii)

Projection vector of $\mathbf{a} - \mathbf{b}$ onto \mathbf{a}

$$= \! \big((\mathbf{a} \! - \! \mathbf{b}) \! \cdot \! \hat{\mathbf{a}} \big) \hat{\mathbf{a}}$$

$$= (\mathbf{a} \cdot \hat{\mathbf{a}} - \mathbf{b} \cdot \hat{\mathbf{a}}) \hat{\mathbf{a}}$$

$$= \left(\mathbf{a} \cdot \frac{\mathbf{a}}{|\mathbf{a}|} - 0\right) \frac{\mathbf{a}}{|\mathbf{a}|} \ (\mathbf{b} \cdot \hat{\mathbf{a}} = 0 \text{ since } \mathbf{b} \cdot \mathbf{a} = 0)$$

$$= \left(\frac{\mathbf{a} \cdot \mathbf{a}}{\left|\mathbf{a}\right|^2}\right) \mathbf{a}$$

 $= \mathbf{a} \text{ (since } \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2)$

Alternatively,

From the diagram, since $\mathbf{a} \perp \mathbf{b}$, the projection vector of vector of $\mathbf{a} - \mathbf{b}$ onto \mathbf{a} is \mathbf{a} itself.

4 (iii) Method 1: Geometrical Definition of Cross Product

Since $\mathbf{a} \perp \mathbf{b}$, the angle between \mathbf{a} and \mathbf{b} is 90° . Hence,

$$\mathbf{a} \times \mathbf{b}$$

$$= \left| \left(|\mathbf{a}| |\mathbf{b}| \sin 90^{\circ} \right) \hat{\mathbf{n}} \right|$$

$$= \left| \left(|\mathbf{a}| |\mathbf{b}| \sin 90^{\circ} \right) \right| \ (\because |\hat{\mathbf{n}}| = 1)$$

$$= ||\mathbf{a}||\mathbf{b}|(1)|$$

$$= ||\mathbf{a}||\mathbf{b}||$$

$$= |\mathbf{a}| |\mathbf{b}|$$
 (shown)

Method 2: Area of Triangle or Rectangle

Area of triangle with sides **a** and **b** = $\frac{1}{2} |\mathbf{a}| |\mathbf{b}|$

$$\frac{1}{2}|\mathbf{a} \times \mathbf{b}| = \frac{1}{2}|\mathbf{a}||\mathbf{b}|$$
$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}| \text{ (shown)}$$

Method 3: Length of Perpendicular Component

Length of component of \mathbf{a} perpendicular to $\mathbf{b} = |\mathbf{a} \times \hat{\mathbf{b}}|^{2}$

Since $\mathbf{a} \perp \mathbf{b}$, the component of \mathbf{a} perpendicular to \mathbf{b} is \mathbf{a} itself. Hence,

$$|\mathbf{a} \times \hat{\mathbf{b}}| = |\mathbf{a}|$$

$$\left| \mathbf{a} \times \frac{\mathbf{b}}{|\mathbf{b}|} \right| = \left| \mathbf{a} \right|$$

$$\frac{\left|\mathbf{a}\times\mathbf{b}\right|}{\left|\mathbf{b}\right|}=\left|\mathbf{a}\right|$$

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|$$
 (shown)

$$\begin{array}{c|c}
\mathbf{5} \text{ (i)} & \sum_{r=1}^{n} \frac{1}{(2r-1)(2r+3)} = \sum_{r=1}^{n} \left[\frac{1}{4(2r-1)} - \frac{1}{4(2r+3)} \right] \\
& = \frac{1}{4} \left[\frac{1}{1} - \frac{1}{4} \right] \\
& + \frac{1}{3} - \frac{1}{4} \\
& + \frac{1}{2(n-1)} - \frac{1}{2(n-1)+3} \\
& + \frac{1}{2(n-1)} - \frac{1}{2(n-1)+3} \\
& + \frac{1}{2(n-1)} - \frac{1}{2(n-1)} \\
& + \frac{1}{2(n-1)} - \frac{1}{2(n-1)+3} \\
& = \frac{1}{4} \left(1 + \frac{1}{3} - \frac{1}{2n+1} - \frac{1}{2n+3} \right) \\
& = \frac{1}{4} \left[\frac{4}{3} - \frac{2n+3+2n+1}{(2n+1)(2n+3)} \right] \\
& = \frac{1}{3} - \frac{n+1}{(2n+1)(2n+3)} \\
& = \sum_{r=1}^{\infty} \frac{1}{(2r-1)(2r+3)} - \sum_{r=1}^{4} \frac{1}{(2r-1)(2r+3)} \\
& = \lim_{n \to \infty} \left[\frac{1}{3} - \frac{n+1}{(2n+1)(2n+3)} \right] - \left[\frac{1}{3} - \frac{5}{(9)(11)} \right] \\
& = \frac{1}{3} - 0 - \frac{1}{3} + \frac{5}{99}
\end{array}$$

$$\begin{array}{ll} \mathbf{\bar{5}}\,\text{(ii)} \\ \mathbf{(b)} \\ \mathbf{(b)} \\ & \sum_{r=0}^{n} \frac{1}{(2r+1)(2r+5)} = \sum_{r=0}^{r=n} \frac{1}{(2r+1)(2r+5)} \\ & = \sum_{r+l=n+1}^{n+l=n+1} \frac{1}{[2(r+1)-1][2(r+1)+3]} \\ & = \sum_{k=1}^{n+l=n+1} \frac{1}{(2k-1)(2k+3)} = \sum_{k=1}^{n+1} \frac{1}{(2k-1)(2k+3)} \\ & = \frac{1}{3} - \frac{n+2}{(2n+3)(2n+5)} \\ & \text{Alternatively,} \\ & \sum_{r=0}^{n} \frac{1}{(2r+1)(2r+5)} \\ & = \frac{1}{1\cdot5} + \frac{1}{3\cdot7} + \frac{1}{5\cdot9} + \cdots + \frac{1}{(2n+1)(2n+5)} \\ & = \frac{1}{(2\cdot1-1)(2\cdot1+3)} + \frac{1}{(2\cdot2-1)(2\cdot2+3)} + \cdots \\ & + \frac{1}{(2(n+1)-1)(2(n+1)+3)} \\ & = \sum_{r=1}^{n+1} \frac{1}{(2r+1)(2r+3)} \\ & = \frac{1}{3} - \frac{n+2}{(2n+3)(2n+5)} \\ & \mathbf{For students who ignored the "Hence" condition} \\ & \sum_{r=0}^{n} \frac{1}{(2r+1)(2r+5)} = \sum_{r=0}^{n} \left[\frac{1}{4(2r+1)} - \frac{1}{4(2r+5)} \right] \\ & = \frac{1}{4} \left[\frac{1}{1} - \frac{1}{4} \right] \\ & + \frac{1}{2(n+1)-1} - \frac{1}{2n+3} \right] \\ & = \frac{1}{4} \left[1 + \frac{1}{3} - \frac{1}{2n+3} - \frac{1}{2n+5} \right] = \frac{1}{4} \left[\frac{4}{1} - \frac{1}{2n+3} - \frac{1}{2n+5} \right] \end{array}$$

Using GC, $a \approx -2.2631$ $b \approx 0.67529$.

For
$$1 + \frac{1}{x+1} < 2^x$$
,

$$-2.26 < x < -1$$
 or $x > 0.676$ OR

$$-2.26 < x < -1$$
 or $x > 0.675$

6 (b) Let the distances for the swimming, cycling and running stage be s km, c km and r km respectively.

Kandy:
$$\frac{s}{3} + \frac{c}{26} + \frac{r}{12} = 11.7$$

Landy:
$$\frac{s}{3} + \frac{c}{28} + \frac{r}{9} = 12.4$$

Mandy:
$$\frac{s}{2} + \frac{c}{30} + \frac{r}{7} = 13.9$$

By GC,
$$s = 3.37$$
, $c = 181$, $r = 43.1$ (3s.f).

Therefore, the distances for the swimming, cycling and running stage are 3.37 km, 181 km and 43.1 km respectively.

$$s = 29133/8635$$

$$c = 313404/1727$$

$$r = 372582/8635$$

7 (a)
$$y = \frac{(x-1)(x-2)}{x-3}, x \in \mathbb{R}, x \neq 3$$
$$(x-3)y = (x-1)(x-2)$$
$$xy - 3y = x^2 - 3x + 2$$
$$x^2 - (y+3)x + (3y+2) = 0$$

For the values of y for which the graph exists, the equation $x^2 - (y+3)x + (3y+2) = 0$ has solutions for x. Hence, discriminant (with respect to $x \ge 0$

$$(y+3)^{2}-4(3y+2) \ge 0$$
$$y^{2}+6y+9-12y-8 \ge 0$$
$$y^{2}-6y+1 \ge 0$$

Solving
$$y^2 - 6y + 1 = 0$$
,

$$y = \frac{6 \pm \sqrt{6^2 - 4(1)(1)}}{2}$$

$$= \frac{6 \pm \sqrt{32}}{2}$$

$$= \frac{6 \pm 4\sqrt{2}}{2}$$

$$= 3 \pm 2\sqrt{2}$$

Hence, $y^2 - 6y + 1 \ge 0 \Rightarrow y \le 3 - 2\sqrt{2}$ or $y \ge 3 + 2\sqrt{2}$

7 (b) Equation of translated curve is $y = \frac{(x-1)(x-2)}{x-3} - \left(-\frac{2}{3}\right)$

At the intersection between C and the line $y = -\frac{2}{3}$,

$$x = 0$$
 or $x = 2.33333$ (or $\frac{7}{3}$).

Hence volume of revolution

$$= \pi \int_0^{2.33333} \left[\frac{(x-1)(x-2)}{x-3} - \left(-\frac{2}{3} \right) \right]^2 dx$$

= 2.6434

= 2.643 units³ (to 3 decimal places)

$$y = \cos^2 x$$

$$\Rightarrow x = \cos^{-1} \sqrt{y}$$

$$\Rightarrow f^{-1}(x) = \cos^{-1} \sqrt{x}$$

Hence required area

Hence required are
$$= \int_0^1 f^{-1}(x) dx$$

$$= \int_0^1 \cos^{-1} \sqrt{x} dx$$

$$= \int_0^1 1 \cdot \cos^{-1} \sqrt{x} dx$$

$$= \left[x \cos^{-1} \sqrt{x}\right]_0^1 - \int_0^1 x \cdot \frac{-1}{\sqrt{1 - \left(\sqrt{x}\right)^2}} \cdot \frac{1}{2\sqrt{x}} dx$$
$$= \frac{1}{2} \int_0^1 \sqrt{\frac{x}{1 - x}} dx$$

$$= \frac{1}{2} \int_{0}^{1} \sqrt{\frac{\sin^{2} \theta}{1 - \sin^{2} \theta}} \left(2 \sin \theta \cos \theta \right) d\theta$$

(using the substitution $x = \sin^2 \theta$)

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\sin \theta}{\cos \theta} (2 \sin \theta \cos \theta) d\theta$$
$$= \int_{0}^{\frac{\pi}{2}} \sin^{2} \theta d\theta$$
$$= \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos 2\theta}{2} d\theta$$

$$= \left[\frac{\theta}{2} - \frac{1}{4}\sin 2\theta\right]_0^{\frac{\pi}{2}} = \frac{\pi}{4} \text{ units}^2$$

9 (i)	A = area of base + area of walls
	$= \frac{\theta r^2}{2} + \frac{r}{6} (r + r + r\theta) = \frac{r^2}{6} (2 + 4\theta) = \frac{r^2}{3} (1 + 2\theta)$

Method 1: Expressing V in terms of r

$$\theta = \frac{3A}{2r^2} - \frac{1}{2}$$

$$V = \left(\frac{\theta r^2}{2}\right) \left(\frac{r}{6}\right)$$

$$= \frac{r^3}{12} \left(\frac{3A}{2r^2} - \frac{1}{2}\right)$$

$$= \frac{Ar}{8} - \frac{r^3}{24}$$

$$\frac{\mathrm{d}V}{\mathrm{d}r} = \frac{A}{8} - \frac{r^2}{8}.$$

For stationary point(s), $\frac{dV}{dr} = 0$, so we have $r = \sqrt{A}$ (reject $r = -\sqrt{A}$ as r > 0).

$$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = -\frac{r}{4}$$

When
$$r = \sqrt{A}$$
, $\frac{d^2V}{dr^2} = -\frac{\sqrt{A}}{4} < 0$.

i.e. V ix maximum when $r = \sqrt{A} \implies \theta = \frac{3A}{2(\sqrt{A})^2} - \frac{1}{2} = 1$.

Method 2: Expressing V in terms of
$$\theta$$

$$r = \sqrt{\frac{3A}{1+2\theta}} \text{ (reject } r = -\sqrt{\frac{3A}{1+2\theta}} \text{ as } r > 0\text{)}$$

$$V = \left(\frac{\theta r^2}{2}\right) \left(\frac{r}{6}\right) = \frac{\theta r^3}{12}$$
$$= \frac{\theta}{12} \left(\frac{3A}{1+2\theta}\right)^{\frac{3}{2}}$$
$$= \frac{\left(3A\right)^{\frac{3}{2}}}{12} \left[\theta \left(1+2\theta\right)^{-\frac{3}{2}}\right]$$

$$\frac{dV}{d\theta} = \frac{(3A)^{\frac{3}{2}}}{12} \left[(1+2\theta)^{-\frac{3}{2}} - 1.5(2)\theta (1+2\theta)^{-\frac{5}{2}} \right]$$

$$= \frac{(3A)^{\frac{3}{2}}}{12} (1+2\theta-3\theta)(1+2\theta)^{-\frac{5}{2}}$$

$$= \frac{(3A)^{\frac{3}{2}} (1-\theta)(1+2\theta)^{-\frac{5}{2}}}{12}$$

$$= \frac{(1-\theta)}{12} \sqrt{\frac{(3A)^3}{(1+2\theta)^5}}$$

For stationary point(s), $\frac{dV}{d\theta} = 0$, so we have $\theta = 1$.

Since
$$\frac{d^2V}{d\theta^2}\Big|_{\theta=1}$$

$$= \frac{\left(3A\right)^{\frac{3}{2}} \left[(1-\theta)2(-2.5)(1+2\theta)^{-\frac{7}{2}} - (1+2\theta)^{-\frac{5}{2}} \right]}{12} \bigg|_{\theta=1} = -\frac{\left(3A\right)^{\frac{3}{2}} \left(3^{-\frac{5}{2}}\right)}{12} < 0, \ \theta = 1 \text{ gives a}$$

maximum
$$V$$
.
9 (ii) $\frac{r^2}{3}(1+2\theta) = 108 \dots (1)$ and $\left(\frac{\theta r^2}{2}\right)\left(\frac{r}{6}\right) = 72 \dots (2)$

From (2), $\theta = \frac{864}{r^3}$. Substituting it into (1), we have

$$\frac{r^2}{3} \left(1 + \frac{1728}{r^3} \right) = 108$$
$$r^2 + \frac{1728}{r} = 324$$
$$r^3 - 324r + 1728 = 0$$

By GC,

r = -20.234 (reject as r > 0) or r = 14.234 or r = 6.

When
$$r = 6$$
, $\theta = \frac{864}{6^3} = 4$ (rejected since $4 > \pi$)

When
$$r = 14.234$$
, $\theta \approx \frac{864}{14.234^3} \approx 0.300 < \pi$

Therefore r = 14.2 is the only solution.

Alternatively,

$$\frac{r^2}{3}(1+2\theta) = 108$$
 and

$$\left(\frac{\theta r^2}{2}\right)\left(\frac{r}{6}\right) = 72$$

$$\theta = \frac{162}{r^2} - \frac{1}{2}$$
 and $\theta = \frac{864}{r^3}$

By sketching both graphs in the same diagram,

The points of intersections are (-20.2, -0.1), (6,4) and (-14.2, 0.3).

Since $0 < \theta < \pi$, we reject $(r, \theta) = (-20.2, -0.1)$ and $(r, \theta) = (6, 4)$.

Therefore r = 14.234 is the only solution.

10	$\left(\frac{\mathrm{d}x}{-k(200-2t-x)}\right)$
(1 st	$\frac{\mathrm{d}x}{\mathrm{d}t} = k\left(200 - 2t - x\right)$
Part)	
	When $t = 0$, $x = 8$ and $\frac{dx}{dt} = 16$.
	\mathbf{u}
	16 = k(200 - 8)
	$k = \frac{10}{10} = \frac{1}{10} \Rightarrow \frac{0x}{100} = \frac{200 - 2t - x}{100}$
	$k = \frac{16}{192} = \frac{1}{12} \Rightarrow \frac{dx}{dt} = \frac{200 - 2t - x}{12}$.
10	$u = 2t + x \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}t} = 2 + \frac{\mathrm{d}x}{\mathrm{d}t}$
(2^{nd})	$u = 2t + x \Rightarrow \frac{dt}{dt} = 2 + \frac{dt}{dt}$
(Part)	
	$\frac{\mathrm{d}u}{\mathrm{d}t} - 2 = \frac{200 - u}{12}$
	dt = 12
	$\frac{\mathrm{d}u}{\mathrm{d}t} = \frac{224 - u}{12}$
	$\frac{1}{u} du = \frac{1}{u}$
	$\frac{1}{224-u}\frac{\mathrm{d}u}{\mathrm{d}t} = \frac{1}{12}$
	Integrating both sides with respect to t ,
	$\int \frac{1}{224 - u} \mathrm{d}u = \int \frac{1}{12} \mathrm{d}t$
	$\int 224 - u$ $\int 12$
	$-\ln 224-u = \frac{t}{12} + C$
	$ -m ^{224-u} = \frac{1}{12} + C$
	$\ln 224-u = -\frac{t}{12} - C$
	12
	$ 224 - u = e^{-\frac{t}{12} - C}$
	$ 224-u = e^{-12}$
	t α t
	$224 - u = \pm e^{-\frac{t}{12} - C} = Ae^{-\frac{t}{12}}$ where $A = \pm e^{-C}$
	$u = 224 - Ae^{-\frac{t}{12}}$
	$x = 224 - 2t - Ae^{-\frac{t}{12}}$
	When $t = 0$, $x = 8$
	$8 = 224 - A \Rightarrow A = 216$
	<u>t</u>
	Thus, $x = 224 - 2t - 216e^{-\frac{t}{12}}$
	By GC, when $x = 0$, $t \approx 112$ (years)
	$D_j = 0$, when $n = 0$, $i = 112$ (joins)
10	$d_{rr} = \uparrow_{T}$
10	When $\frac{dx}{dt} = 0$, (t_1, x_1)
(3 rd	when $\frac{d}{dt} = 0$, (t_1, x_1)
Part)	200-2t-x=0
	$x = 200 - 2t \tag{111.99,0}$
	t
	So, x_1 is the maximum population size of the fish.
	t_1 is the number of years for the population to reach its maximum.
	The die number of years for the population to reach its maximum.

44 (0)	
11 (i)	$4y^2 + 8y - x^2 = 0$
	By applying implicit differentiation,
	$8y\frac{\mathrm{d}y}{\mathrm{d}x} + 8\frac{\mathrm{d}y}{\mathrm{d}x} - 2x = 0$
	$8\frac{\mathrm{d}y}{\mathrm{d}x}(y+1) = 2x \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{4(y+1)}$
11 (ii)	$At\left(-\frac{3}{2}, \frac{1}{4}\right): \frac{dy}{dx} = \frac{-\frac{3}{2}}{4(\frac{1}{4}+1)} = -\frac{3}{10}$
	Gradient of normal = $-\frac{1}{-\frac{3}{10}} = \frac{10}{3}$
	Equation of normal at $\left(-\frac{3}{2}, \frac{1}{4}\right)$ is
	$\left(y - \frac{1}{4}\right) = \frac{10}{3}\left(x + \frac{3}{2}\right)$
	$y = \frac{10}{3}x + \frac{21}{4}$
11	By completing the square,
(iii)	$4y^2 + 8y - x^2 = 0$
	$4(y^2 + 2y) - x^2 = 0$
	$4 \left[(y+1)^2 - 1 \right] - x^2 = 0$
	$(y+1)^2 - 1 - \frac{x^2}{4} = 0$
	$(y+1)^{2} - 1 - \frac{x^{2}}{4} = 0$ $\frac{(y-(-1))^{2}}{1^{2}} - \frac{x^{2}}{2^{2}} = 1$
	`_\
	y = -0.5x - 1
	$-x^2 + 4y^2 + 8y = 0$
	(0, 0) x
	(0, -2)
	y = 0.5x - 1

12 (a)(i)

Method 1: Using Exponential Forms

$$z_{1} = \sqrt{2} - \sqrt{2}i = 2e^{-i\frac{\pi}{4}}; \quad z_{2} = 1 + \sqrt{3}i = 2e^{i\frac{\pi}{3}}$$

$$z_{3} = -\frac{z_{2}^{2}}{z_{1}^{*}}$$

$$= e^{i\pi} \frac{\left(2e^{i\frac{\pi}{3}}\right)^{2}}{\left(2e^{-i\frac{\pi}{4}}\right)^{*}}$$

$$= e^{i\pi} \left(\frac{4e^{i\frac{2\pi}{3}}}{2e^{i\frac{\pi}{4}}}\right)$$

$$= \frac{2e^{i\frac{5\pi}{3}}}{e^{i\frac{\pi}{4}}}$$

$$= 2e^{i\left(\frac{5\pi}{3} - \frac{\pi}{4}\right)}$$

$$= 2e^{i\frac{17\pi}{12}} = 2e^{i\left(-\frac{7\pi}{12}\right)}$$

Method 2: Applying Laws of Modulus & Argument

$$|z_{1}| = \sqrt{(\sqrt{2})^{2} + (\sqrt{2})^{2}} \qquad |z_{2}| = \sqrt{(1)^{2} + (\sqrt{3})^{2}}$$

$$= 2, \qquad = 2,$$

$$\arg(z_{1}) = -\tan^{-1}\left(\frac{\sqrt{2}}{\sqrt{2}}\right) \qquad \arg(z_{2}) = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right)$$

$$= -\frac{\pi}{4} \qquad = \frac{\pi}{3}$$

Hence

$$\left| -\frac{z_2^2}{z_1^*} \right| = \frac{\left| z_2 \right|^2}{\left| z_1 \right|} = \frac{2^2}{2} = 2$$

$$\arg\left(-\frac{z_2^2}{z_1^*}\right) = \arg\left(-1\right) + \arg\left(z_2^2\right) - \arg\left(z_1^*\right)$$
$$= \pi + 2\arg\left(z_2\right) + \arg\left(z_1\right)$$
$$= \pi + 2 \times \frac{\pi}{3} - \frac{\pi}{4}$$
$$= \frac{17\pi}{12} \equiv -\frac{7\pi}{12}$$

Therefore $z_3 = 2e^{i\left(-\frac{7\pi}{12}\right)}$.

Method 3: Using Cartesian Form

$$z_{3} = -\frac{z_{2}^{2}}{z_{1}^{*}}$$

$$= -\frac{\left(1 + \sqrt{3}i\right)^{2}}{\sqrt{2} + \sqrt{2}i}$$

$$= -\frac{1 + 2\sqrt{3}i - 3}{\sqrt{2} + \sqrt{2}i}$$

$$= \frac{2 - 2\sqrt{3}i}{\sqrt{2} + \sqrt{2}i}$$

$$= \frac{4e^{-i\frac{\pi}{3}}}{2e^{i\frac{\pi}{4}}}$$

$$= 2e^{-i\frac{7\pi}{12}}$$

12 (a)

(ii)

12 (a)

No, because...

(iii)

...the difference in argument between any pair of adjacent complex numbers is not constant, OR

...the difference in argument between z_1 and z_2 is not $2\pi/3$ (or any other pair of the two complex numbers) OR

$$(z_1)^3 = \left(2e^{-i\frac{\pi}{4}}\right)^3 = 8e^{-i\frac{3\pi}{4}}$$
 but

$$(z_1)^3 = \left(2e^{-i\frac{\pi}{4}}\right)^3 = 8e^{-i\frac{3\pi}{4}} \text{ but}$$

 $(z_2)^3 = \left(2e^{i\frac{\pi}{3}}\right)^3 = 8e^{i\pi} \neq (z_1)^3$

12 (b) Method 1: Using exponential form

$$\frac{1}{e^{i4\theta} - 1} = \frac{1}{e^{i2\theta} \left(e^{i2\theta} - e^{-i2\theta} \right)}$$

$$= \left(\frac{1}{e^{i2\theta} - e^{-i2\theta}} \right) e^{-i2\theta}$$

$$= \frac{1}{2i\sin 2\theta} \left(\cos 2\theta - i\sin 2\theta \right)$$

$$= -\left(\frac{1}{2}\cot 2\theta \right) i - \frac{1}{2}$$

$$= -\frac{1}{2} - \left(\frac{1}{2}\cot 2\theta \right) i$$

Hence
$$Re(w) = -\frac{1}{2}$$
 (shown)

and
$$\operatorname{Im}(w) = -\frac{1}{2}\cot 2\theta$$

Method 2: Using polar form

$$\frac{1}{e^{i4\theta} - 1} = \frac{1}{\cos 4\theta + i\sin 4\theta - 1} \left(\frac{\cos 4\theta - 1 - i\sin 4\theta}{\cos 4\theta - 1 - i\sin 4\theta} \right)$$

$$= \frac{\cos 4\theta - 1 - i\sin 4\theta}{\left(\cos 4\theta - 1\right)^2 + \left(\sin 4\theta\right)^2}$$

$$= \frac{\cos 4\theta - 1 - i\sin 4\theta}{\cos^2 4\theta - 2\cos 4\theta + 1 + \sin^2 4\theta}$$

$$= \frac{-(1 - \cos 4\theta) - i\sin 4\theta}{2(1 - \cos 4\theta)}$$

$$= -\frac{1}{2} - \frac{2\sin 2\theta \cos 2\theta}{2(1 - (1 - 2\sin^2 2\theta))}i$$

$$= -\frac{1}{2} - \frac{1}{2}i\cot 2\theta$$

Hence
$$Re(w) = -\frac{1}{2}$$
 (shown)

and
$$\operatorname{Im}(w) = -\frac{1}{2}\cot 2\theta$$