

Automated and Early Detection of Disease Outbreaks

Kasper Schou Telkamp

Supervisors: Jan Kloppenborg Møller, Lasse Engbo Christiansen

Master Thesis Project

Spring, 2023

Technical University of Denmark

DTU Compute

Department of Applied Mathematics and Computer Science

Algorithms for prospective disease outbreak detection

Novel algorithm

The novel algorithm utilizes a generalized mixed effects model or a hierarchical mixed effects model as a modeling framework to model the count case observations y and assess the unobserved random effects u. These random effects are used directly to characterize an outbreak.

Formulation of hierarchical models

Poisson Normal

$$m{Y}|m{u} \sim \mathrm{Pois}\left(m{\lambda} \exp(m{u})
ight) \ m{u} \sim \mathrm{N}(m{0}, I\sigma^2)$$

Poisson Gamma

$$m{Y}|m{u} \sim ext{Pois}(m{\lambda}m{u}) \ m{u} \sim ext{G}(\mathbf{1}/\phi,\phi)$$

Formulation of hierarchical models

Poisson Normal

$$m{Y}|m{u} \sim ext{Pois}\left(m{\lambda} \exp(m{u})
ight) \ m{u} \sim ext{N}(m{0}, I\sigma^2)$$

Poisson Gamma

$$Y|u \sim \operatorname{Pois}(\lambda u)$$

$$\boldsymbol{u} \sim \mathrm{G}(\mathbf{1}/\phi, \phi)$$

$$Y \sim NB \left(1/\phi, 1/(\lambda \phi + 1) \right)$$

Step 1: Modeling framework

- Assume a hierarchical Poisson Normal or Poisson Gamma model to reference data using a log link
- Incorporate covariates by supplying a model formula on the form

$$\log(\lambda_{it}) = \boldsymbol{x}_{it}\boldsymbol{\beta} + \log(n_{it}), \quad i = 1, \dots, m, \quad t = 1, \dots, T$$
(1)

ullet Account for structural changes in the time series using a rolling window of width k

Step 2: Inference of random effects

- ullet Infer one-step ahead random effects \hat{u}_{it_1} for each group using the fitted model
- ullet Define outbreak detection threshold U_{t_0} as a quantile of the second stage model's random effects distribution
- Use either a Gaussian or Gamma distribution with respective plug-in estimates

Step 3: Parameter estimations and outbreak detection

- ullet Compare inferred random effects \hat{u}_{it_1} to a threshold U_{t_0}
- ullet Raise and alarm if the inferred random effect exceeds the threshold, i.e. $\hat{u}_{it_1} > U_{t_0}$
- Omit outbreak related observations from future parameter estimation

Shiga toxin (verotoxin)-producing Escherichia coli (STEC)

Figure: A stacked bar graph illustrating the number of monthly STEC cases observed in the period from 2008 to 2022 for the six age groups.

Combined trend and seasonality model

$$\log(\lambda_{it}) = \beta(ageGroup_i) + \beta_{trend}t + \sin\left(\frac{2\pi \cdot \tau_t}{12}\right)\beta_{\sin} + \cos\left(\frac{2\pi \cdot \tau_t}{12}\right)\beta_{\cos} + \log(n_{it}) \quad (2)$$

- ullet λ_{it} is the outbreak intensity at time t for age group i
- $\beta(ageGroup_i)$ is the fixed effect specific to age group i
- ullet eta_{trend} quantifies the rate of change in the outbreak intensity over time
- τ_t represents the time period t within a year (1-12)
- ullet eta_{\sin} and eta_{\cos} capture the effect of the seasonal pattern
- ullet log (n_{it}) acts as an offset, accounting for the population size at time t for age group i

Estimated one-step ahead random effects

- \bullet A rolling window of width k=36 months is employed
- Upper bound U_{t_0} is based on the 95% quantile of the random effects distribution
- ullet If the one-step ahead random effects u_{it_1} exceeds U_{t_0} an alarm is raised
- 29 alarms are generated using the Poisson Normal framework, while 27 alarms are generated using the Poisson Gamma framework.
- A great number of alarms are generated in the period from March 2021 to March 2022

Estimated one-step ahead random effects

- A rolling window of width k = 36 months is
- Upper bound U_{t_0} is based on the 95% quantile of
- If the one-step ahead random effects u_{it_1} exceeds
- 29 alarms are generated using the Poisson Normal framework, while 27 alarms are generated using the Poisson Gamma framework.
- A great number of alarms are generated in the period from March 2021 to March 2022

Performance of statistical outbreak detection algorithms

Summary

Summary

- Easy incorporation of covariates
- Positively identified outbreaks coinciding with well-documented outbreaks
- Effectively control the number of "false alarms"

Baseline data

Simulated baseline data is generated according to a Negative Binomial distribution with mean μ and a variance parameter $\phi\mu$. The equation for the mean $\mu(t)$ is given as:

$$\mu(t) = \exp\left(\theta + \beta_{trend}t + \sum_{j=1}^{m} \left(\gamma_1 \cos\left(\frac{2\pi jt}{52}\right) + \gamma_2 \sin\left(\frac{2\pi jt}{52}\right)\right)\right)$$
(3)

Scenarios

Scenario	θ	φ	β	γ_1	γ_2	m	Trend
1	0.1	1.5	0.0000	0.00	0.00	0	0
2	0.1	1.5	0.0000	0.60	0.60	1	0
3	0.1	1.5	0.0025	0.00	0.00	0	1
4	0.1	1.5	0.0025	0.60	0.60	1	1
5	-2.0	2.0	0.0000	0.00	0.00	0	0
6	-2.0	2.0	0.0000	0.10	0.30	1	0
7	-2.0	2.0	0.0050	0.00	0.00	0	1
8	-2.0	2.0	0.0050	0.10	0.30	1	1
25	5.0	1.2	0.0000	0.00	0.00	0	0
26	5.0	1.2	0.0000	0.05	0.01	1	0
27	5.0	1.2	0.0001	0.00	0.00	0	1
28	5.0	1.2	0.0001	0.05	0.01	1	1

Simulation study

Outbreaks

- Four outbreaks during baseline weeks (313-575), one outbreak during current weeks (576-624)
- Random constant value k is chosen
- ullet Outbreak size v is generated from a Poisson distribution with mean equal to k times the standard deviation from the baseline data
- ullet The v outbreak cases are distributed randomly in time according to a discretized log-normal distribution represented as $Z \sim \lfloor \mathrm{LN}(0, 0.5^2) \rfloor$

Figure: Plots of one randomly chosen realization for scenario 8, 12, 13, and 20.

False Positive Rates

Probability an outbreak is detected

Diagnostic odds ratio

Probability function for *Y*

$$P[Y = y] = g_Y(y; \boldsymbol{\beta}, \phi)$$

$$= \frac{\lambda^y}{y!\Gamma(1/\phi)\phi^{1/\phi}} \frac{\phi^{y+1/\phi}\Gamma(y+1/\phi)}{(\lambda\phi+1)^{y+1/\phi}}$$

$$= \frac{\Gamma(y+1/\phi)}{\Gamma(1/\phi)y!} \frac{1}{(\lambda\phi+1)^{1/\phi}} \left(\frac{\lambda\phi}{\lambda\phi+1}\right)^y$$

$$= \left(\frac{y+1/\phi-1}{y}\right) \frac{1}{(\lambda\phi+1)^{1/\phi}} \left(\frac{\lambda\phi}{\lambda\phi+1}\right)^y, \quad \text{for } y = 0, 1, 2, \dots$$

$$(4)$$

where the following convention is used

The marginal distribution of Y is a negative binomial distribution, $Y \sim NB(1/\phi, 1/(\lambda \phi + 1))$

Proof

The probability function for the conditional distribution of Y for given \boldsymbol{u}

$$f_{Y|u}(y; u, \boldsymbol{\beta}) = \frac{(\lambda u)^y}{y!} \exp(-\lambda u)$$
(6)

and the probability density function for the distribution of \boldsymbol{u} is

$$f_u(u;\phi) = \frac{1}{\phi\Gamma(1/\phi)} \left(\frac{u}{\phi}\right)^{1/\phi - 1} \exp(-u/\phi) \tag{7}$$

Proof

Given (6) and (7), the probability function for the marginal distribution of Y is determined from

$$g_{Y}(y;\beta,\phi) = \int_{u=0}^{\infty} f_{Y|u}(y;u,\beta) f_{u}(u;\phi) du$$

$$= \int_{u=0}^{\infty} \frac{(\lambda u)^{y}}{y!} \exp(-\lambda u) \frac{1}{\phi \Gamma(1/\phi)} \left(\frac{u}{\phi}\right)^{1/\phi - 1} \exp(-u/\phi) du$$

$$= \frac{\lambda^{y}}{y! \Gamma(1/\phi) \phi^{1/\phi}} \int_{u=0}^{\infty} u^{y+1/\phi - 1} \exp\left(-u(\lambda \phi + 1)/\phi\right) du$$
(8)

Proof

In (8) it is noted that the integrand is the *kernel* in the probability density function for a Gamma distribution, $G\left(y+1/\phi,\phi/(\lambda\phi+1)\right)$. As the integral of the density shall equal one, we find by adjusting the norming constant that

$$\int_{u=0}^{\infty} u^{y+1/\phi-1} \exp\left(-u/(\phi/(\lambda\phi+1))\right) du = \frac{\phi^{y+1/\phi}\Gamma(y+1/\phi)}{(\lambda\phi+1)^{y+1/\phi}}$$
(9)

and then (4) follows