Lecture 18: Kernel perceptron, Logistic Regression, Cross Entropy Minimization, Gradient Descent Instructor: Prof. Ganesh Ramakrishnan

The first kernel classification learner, was invented in 1964 so far

• Kernelized perceptron¹:
$$f(\mathbf{x}) = sign\left(\sum_{i} \alpha_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b\right)$$

- INITIALIZE: $\alpha = zeroes()$ REPEAT: for $\langle \mathbf{x}_i, y_i \rangle$ If $sign\left(\sum_j \alpha_j y_j K(\mathbf{x}_j, \mathbf{x}_j) + b\right) \neq y_i$
 - then, $\alpha_i = \alpha_i + 1$
 - endif
- Convergence is matter of Tutorial 6, Problem 3.
- Any other non-linear approach?

¹The first kernel classification learner, was invented in 1964

& di = dityi

training, we would soft, differentiable

- Kernelized perceptron¹: $f(\mathbf{x}) = \underline{sign}\left(\sum_{i} \alpha_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b\right)$
 - INITIALIZE: α =zeroes()
 - REPEAT: for $\langle \mathbf{x}_i, y_i \rangle$
 - If $sign\left(\sum_{j} \alpha_{j} y_{j} K(\mathbf{x}_{j}, \mathbf{x}_{j}) + b\right) \neq y_{i}$
 - then, $\alpha_i = \alpha_i + 1$
 - endif
- Convergence is matter of Tutorial 6, Problem 3.
- Any other non-linear approach? **Ans:** Neural Networks: Cascade of layers of perceptrons giving you non-linearity.
- To handle cascades of perceptrons effectively, we need to make the

sign for soft 4 differentiable

¹The first kernel classification learner, was invented in 1964

te-s E(0,1), tanh E(-1,1)

Decays faster

- Kernelized perceptron¹: $f(\mathbf{x}) = sign\left(\sum_{i} \alpha_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b\right)$
 - INITIALIZE: α =zeroes()
 - REPEAT: for $\langle \mathbf{x}_i, y_i \rangle$
 - If $sign\left(\sum_{j} \alpha_{j} y_{j} K(\mathbf{x}_{j}, \mathbf{x}_{j}) + b\right) \neq y_{i}$
 - then, $\alpha_i = \alpha_i + 1$
 - endif
- Convergence is matter of Tutorial 6, Problem 3.
- Any other non-linear approach? Ans: Neural Networks: Cascade of layers of perceptrons giving you non-linearity.
- To handle cascades of perceptrons effectively, we need to make the perceptron and error (objective) function differentiable.

We next discuss the specific sigmoidal percentron used most often in Neural Networks

¹The first kernel classification learner, was invented in 1964

Sigmoidal (perceptron) Classifier

- (Binary) Logistic Regression, abbreviated as LR is a single node perceptron-like classifier, but with....
 - $sign\left((\mathbf{w}^*)^T\phi(\mathbf{x})\right)$ replaced by $f_{\mathbf{w}}(\mathbf{x}) = f\left((\mathbf{w}^*)^T\phi(\mathbf{x})\right)$ where f(s) is the sigmoid function: $f(s) = \frac{1}{1+e^{-s}}$
- Then Pr(y = 0|x) = ?• Then Pr(y = 0|x) = ?

Logistic Regression: The Sigmoidal (perceptron) Classifier

- Estimator $\hat{\mathbf{w}}$ is a function of the dataset $\mathcal{D} = \{ (\phi(\mathbf{x}^{(1)}, y^{(1)}), (\phi(\mathbf{x}^{(2)}, y^{(2)}), \dots, (\phi(\mathbf{x}^{(m)}, y^{(m)})) \}$ • Estimator $\hat{\mathbf{w}}$ is meant to approximate the parameter \mathbf{w} .
- \odot Maximum Likelihood Estimator: Estimator $\widehat{\mathbf{w}}$ that maximizes the likelihood $L(\mathcal{D}; \mathbf{w})$ function.
 - \mathcal{D} ; **w**) function. Assumes that all the instances $(\phi(\mathbf{x}^{(1)}, y^{(1)}), (\phi(\mathbf{x}^{(2)}, y^{(2)}), \dots, (\phi(\mathbf{x}^{(m)}, y^{(m)}))$ in \mathcal{D} are all independent and identically distributed (iid)
- $= \underset{\omega}{\operatorname{argmax}} \prod_{i=1}^{m} \left[f_{\omega}(x^{(i)}) \right]_{x^{(i)}}^{y^{(i)}} \prod_{i=1}^{m}$

Logistic Regression: The Sigmoidal (perceptron) Classifier

• Estimator $\hat{\mathbf{w}}$ is a function of the dataset

$$\mathcal{D} = \left\{ (\phi(\mathbf{x}^{(1)}, y^{(1)}), (\phi(\mathbf{x}^{(2)}, y^{(2)}), \dots, (\phi(\mathbf{x}^{(m)}, y^{(m)})) \right\}$$

- Estimator $\widehat{\mathbf{w}}$ is meant to approximate the parameter \mathbf{w} .
- **②** Maximum Likelihood Estimator: Estimator $\widehat{\mathbf{w}}$ that maximizes the likelihood $L(\mathcal{D}; \mathbf{w})$ function.
 - Assumes that all the instances $(\phi(\mathbf{x}^{(1)}, y^{(1)}), (\phi(\mathbf{x}^{(2)}, y^{(2)}), \dots, (\phi(\mathbf{x}^{(m)}, y^{(m)}))$ in \mathcal{D} are all independent and identically distributed (iid)
 - ullet Thus, Likelihood is the probability of ${\mathcal D}$ under iid assumption:

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmax}} L(\mathcal{D}, \mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmax}} \prod_{i=1}^{m} p(y^{(i)} | \phi(\mathbf{x}^{(i)})) =$$

$$\operatorname{argmax}_{\mathbf{w}} \ \prod_{i=1}^{m} \left(\frac{1}{1 + e^{-(w)^T \phi(x^{(i)})}} \right)^{y^{(i)}} \left(\frac{e^{-(w)^T \phi(x^{(i)})}}{1 + e^{-(w)^T \phi(x^{(i)})}} \right)^{1 - y^{(i)}}$$

= argmax of w over bernoulli trials $y^{(i)}$ with parameter $f_{\mathbf{w}}\left(\mathbf{w}^{T}\phi(x^{(i)})\right)$

Training LR

1 Thus, Maximum Likelihood Estimator for w is

$$\begin{split} \hat{\mathbf{w}} &= \operatorname{argmax} \ L(\mathcal{D}, \mathbf{w}) = \operatorname{argmax} \prod_{i=1}^{m} \rho(y^{(i)} | \phi(\mathbf{x}^{(i)})) \\ &= \operatorname{argmax} \prod_{i=1}^{m} \left(\frac{1}{1 + e^{-\mathbf{w}^{T} \phi(\mathbf{x}^{(i)})}} \right)^{y^{(i)}} \left(\frac{e^{-\mathbf{w}^{T} \phi(\mathbf{x}^{(i)})}}{1 + e^{-\mathbf{w}^{T} \phi(\mathbf{x}^{(i)})}} \right)^{1 - y^{(i)}} \\ &= \operatorname{argmax} \prod_{i=1}^{m} \left(f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right)^{y^{(i)}} \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right)^{1 - y^{(i)}} \\ &= \operatorname{argmax} \prod_{i=1}^{m} \left(f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right)^{y^{(i)}} \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right)^{1 - y^{(i)}} \\ &= \operatorname{argmax} \prod_{i=1}^{m} \left(f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right)^{y^{(i)}} \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right)^{1 - y^{(i)}} \end{split}$$

Training LR

1 Thus, Maximum Likelihood Estimator for w is

$$\begin{split} \hat{\mathbf{w}} &= \underset{\mathbf{w}}{\operatorname{argmax}} \ L(\mathcal{D}, w) = \underset{\mathbf{w}}{\operatorname{argmax}} \prod_{i=1}^{m} \rho(y^{(i)} | \phi(\mathbf{x}^{(i)})) \\ &= \underset{\mathbf{w}}{\operatorname{argmax}} \prod_{i=1}^{m} \left(\frac{1}{1 + e^{-\mathbf{w}^T \phi(\mathbf{x}^{(i)})}} \right)^{y^{(i)}} \left(\frac{e^{-\mathbf{w}^T \phi(\mathbf{x}^{(i)})}}{1 + e^{-\mathbf{w}^T \phi(\mathbf{x}^{(i)})}} \right)^{1 - y^{(i)}} \\ &= \underset{\mathbf{w}}{\operatorname{argmax}} \ \prod_{i=1}^{m} \left(f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right)^{y^{(i)}} \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right)^{1 - y^{(i)}} \end{split}$$

- ② Maximizing the likelihood $Pr(\mathcal{D}; \mathbf{w})$ w.r.t \mathbf{w} , is the same as minimizing the negative log-likelihood $\underline{E}(\mathbf{w}) = -\frac{1}{m} \log Pr(\mathcal{D}; \mathbf{w})$ w.r.t \mathbf{w} .
 - Derive the expression for $E(\mathbf{w}) \longrightarrow \mathbf{Error}$
 - $E(\mathbf{w})$ is called the cross-entropy loss function

Minimizing negative Log-likelihood for LR

• Cross-entropy² is the average number of bits needed to identify an event (example \mathbf{x}) drawn from the (data) set \mathcal{D} , if a coding scheme is used that is optimized for a modeled probability distribution $\Pr(y|\mathbf{w},\phi(.))$, rather than the 'true' distribution $\Pr(y|\mathcal{D})$. $E(\mathbf{w}) = \mathbf{E}_{\Pr(y|\mathcal{D})} \left[-\log \Pr(y|\mathbf{w},\phi(.)) \right] = \sum_{\mathbf{v}} \sum$

The Cross-entropy Loss function:

-
$$\sum y^{(i)} \log (f_{\omega}(x^{(i)}) + (y_{\omega}(x^{(i)})) \log (1-f_{\omega}(x^{(i)})) \geq H(P_{\omega})$$

Pro($y=1|x^{(i)}$)

Pro($y=1|x^{(i)}$)

Pro($y=0|x^{(i)}$)

Pro($y=0$

Minimizing negative Log-likelihood for LR

• Cross-entropy² is the average number of bits needed to identify an event (example \mathbf{x}) drawn from the (data) set \mathcal{D} , if a coding scheme is used that is optimized for a modeled probability distribution $Pr(y|\mathbf{w},\phi(.))$, rather than the 'true' distribution

with some simplification,

with some simplification,
$$E(\omega) = -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y(i) w(i) - \log \left(1 + e^{w(i)} (x^{(i)}) \right) \right]$$

$$= -\frac{1}{m} \sum_{i$$

Minimizing negative Log-likelihood for LR

• Cross-entropy² is the average number of bits needed to identify an event (example \mathbf{x}) drawn from the (data) set \mathcal{D} , if a coding scheme is used that is optimized for a modeled probability distribution $\Pr(y|\mathbf{w},\phi(.))$, rather than the 'true' distribution $\Pr(y|\mathcal{D})$.

$$E(\mathbf{w}) = \mathbf{E}_{\Pr(y|\mathcal{D})} \left[-\log \Pr(y|\mathbf{w}, \phi(.)) \right]$$
 (1)

The Cross-entropy Loss function:

$$E(\mathbf{w}) = -\left[\frac{1}{m}\sum_{i=1}^{m} \left(y^{(i)}\log f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right) + \left(1 - y^{(i)}\right)\log\left(1 - f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right)\right)\right]$$
(2)

with some simplification,

$$E(\mathbf{w}) = -\left[\frac{1}{m}\sum_{i=1}^{m} \left(y^{(i)}\mathbf{w}^{T}\phi(\mathbf{x}^{(i)}) - \log\left(1 + \exp\left(\mathbf{w}^{T}\mathbf{x}^{(i)}\right)\right)\right)\right]$$
(3)

²https://en.wikipedia.org/wiki/Cross_entropy

No closed form solution to the cross-entropy loss

$$\widehat{\mathbf{w}}^{MLE} = \underset{\mathbf{w}}{\operatorname{arg\,min}} - \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \log f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right) \right) \right]$$
(4)

Apply gradient descent with $\mathbf{w}^{(k+1)} = \mathbf{w}^k - \eta \nabla E(\mathbf{w}^k)$ $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta \nabla \left[-\sum_{k=1}^{n} \mathbf{y}^{(i)} \mathbf{w}^{(k)} \phi(\mathbf{x}^{(k)}) - \log \left(1 + \mathbf{e}^{(k)} \phi(\mathbf{x}^{(k)}) \right) \right]$ = $W^{(k)} + \frac{\gamma}{m} \sum_{i=1}^{m} (y^{(i)} - R(Y-1|x^{(i)};\omega^{(k)}) \varphi(x^{(i)})$ Smoothed faveraged version of perception update !

No closed form solution to the cross-entropy loss

$$\widehat{\mathbf{w}}^{MLE} = \underset{\mathbf{w}}{\operatorname{arg\,min}} - \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \log f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right) \right]$$
(4)

- ② Apply gradient descent with $\mathbf{w}^{(k+1)} = \mathbf{w}^k \eta
 abla \mathsf{E}\left(\mathbf{w}^k
 ight)$
- The descent update

$$-\eta \nabla E\left(\mathbf{w}\right) = -\eta \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \nabla \log f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right) + \left(1 - y^{(i)}\right) \nabla \log\left(1 - f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right)\right)\right)\right]$$
(5)

No closed form solution to the cross-entropy loss

$$\widehat{\mathbf{w}}^{MLE} = \underset{\mathbf{w}}{\operatorname{arg\,min}} - \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \log f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right) \right) \right]$$
(4)

- ② Apply gradient descent with $\mathbf{w}^{(k+1)} = \mathbf{w}^k \eta \nabla E(\mathbf{w}^k)$
- The descent update

$$-\eta \nabla E\left(\mathbf{w}\right) = -\eta \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \nabla \log f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right) + \left(1 - y^{(i)}\right) \nabla \log \left(1 - f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right)\right)\right)\right]$$
(5)

No closed form solution to the cross-entropy loss

$$\widehat{\mathbf{w}}^{MLE} = \underset{\mathbf{w}}{\operatorname{arg\,min}} - \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \log f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right) \right]$$
(4)

- ② Apply gradient descent with $\mathbf{w}^{(k+1)} = \mathbf{w}^k \eta \nabla E(\mathbf{w}^k)$
- The descent update

$$-\eta \nabla E\left(\mathbf{w}\right) = -\eta \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \nabla \log f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right) + \left(1 - y^{(i)}\right) \nabla \log\left(1 - f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right)\right)\right)\right]$$
(5)

- $\nabla f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) = \phi(\mathbf{x}^{(i)}) \left(\frac{e^{-(\mathbf{w})^T \phi(\mathbf{x}^{(i)})}}{1 + e^{-(\mathbf{w})^T \phi(\mathbf{x}^{(i)})}} \right)$

Descent update for LR

$$-\eta \nabla E\left(\mathbf{w}\right) = -\eta \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \nabla \log f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right) + \left(1 - y^{(i)}\right) \nabla \log \left(1 - f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right)\right)\right]\right]$$
(6)

- $\nabla \log f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right) = \phi(\mathbf{x}^{(i)})e^{-(\mathbf{w})^{T}\phi(\mathbf{x}^{(i)})}\left(\frac{1}{1+e^{-(\mathbf{w})^{T}\phi(\mathbf{x}^{(i)})}}\right)^{2} \text{ and }$ $\nabla \log\left(1 f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right)\right) = -\phi(\mathbf{x}^{(i)})\left(\frac{1}{1+e^{-(\mathbf{w})^{T}\phi(\mathbf{x}^{(i)})}}\right)^{2}$

Descent update for LR

$$-\eta \nabla E\left(\mathbf{w}\right) = -\eta \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \nabla \log f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right) + \left(1 - y^{(i)}\right) \nabla \log \left(1 - f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right)\right)\right)\right]$$
(6)

- $\nabla \log f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right) = \phi(\mathbf{x}^{(i)})e^{-(\mathbf{w})^{T}\phi(\mathbf{x}^{(i)})}\left(\frac{1}{1+e^{-(\mathbf{w})^{T}\phi(\mathbf{x}^{(i)})}}\right)^{2} \text{ and }$ $\nabla \log\left(1 f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right)\right) = -\phi(\mathbf{x}^{(i)})\left(\frac{1}{1+e^{-(\mathbf{w})^{T}\phi(\mathbf{x}^{(i)})}}\right)^{2}$

$$-\eta \nabla E\left(\mathbf{w}\right) = \eta \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} - f_{\mathbf{w}}\left(\mathbf{x}^{(i)}\right)\right) \phi(\mathbf{x}^{(i)})\right]$$
(7)

The final descent update

$$-\eta \nabla E(\mathbf{w}) = \eta \left[\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} - f_{\mathbf{w}} \left(\mathbf{x}^{(i)} \right) \right) \phi(\mathbf{x}^{(i)}) \right]$$
(8)

The iterative update rule:

$$\mathbf{w}^{(k+1)} = \mathbf{w}^k + \eta \left[\frac{1}{m} \sum_{i=1}^m \left(y^{(i)} - f_{\mathbf{w}^k} \left(\mathbf{x}^{(i)} \right) \right) \phi(\mathbf{x}^{(i)}) \right]$$
(9)

Stochastic version of the same:

$$\mathbf{w}^{(k+1)} = \mathbf{w}^k + \eta \left(y^{(i)} - f_{\mathbf{w}^k} \left(\mathbf{x}^{(i)} \right) \right) \phi(\mathbf{x}^{(i)})$$
(10)

• How would you contrast the updates with sigmoid (LR) against those with the step function (perceptron)?

