

DOCUMENT NUMBER: ENG-RPT-418
DOCUMENT TITLE: Zip Pen Product Specification Verification Test Report
DOCUMENT NOTES:

Document Information

Revision: 002	vault: MEG-Rel
Status: Release	Document Type: ENG-RPT

Date Information

Effective Date: 21 Feb 2018	Expiration Date:
Release Date: 21 Feb 2018	Next Review Date:

Control Information

Author: MGLASSETT	Owner: ENG-APPR
Previous Number:	Change Number: 2018-ENG-DCO-009

Revision: 002

Signature Manifest

Document Number: ENG-RPT-418

Title: Zip Pen Product Specification Verification Test Report

All dates and times are in Mountain Standard Time.

ENG-RPT-418 Zip Product Verif Rpt

Change Request

Name/Signature	Title	Date	Meaning/Reason
Lucy Richards (LRICHARDS)		10 Jan 2018, 11:41:39 AM	Approved

Collaboration

Name/Signature	Title	Date	Meaning/Reason
Mark Glassett (MGLASSETT)		25 Jan 2018, 03:36:23 PM	Complete
Dave Shimkus (DSHIMKUS)		05 Feb 2018, 03:40:24 PM	Complete
Joni Stegeman (JSTEGEMAN)	Ethicon Quality	14 Feb 2018, 04:45:02 PM	Complete
Darlene Hull (DHULL)	Regulatory	15 Feb 2018, 11:51:21 AM	Complete
Mallory Schroeder (MSCHROEDER)	Engineer	16 Feb 2018, 09:10:46 AM	Complete

Document Review

Name/Signature	Title	Date	Meaning/Reason
Mark Glassett (MGLASSETT)		19 Feb 2018, 03:30:01 PM	Complete
Lucy Richards (LRICHARDS)		20 Feb 2018, 10:37:42 AM	Complete

RA-Approval

Name/Signature	Title	Date	Meaning/Reason
Darlene Hull (DHULL)	Regulatory	20 Feb 2018, 12:26:50 PM	Approved

QA-Approval

Name/Signature	Title	Date	Meaning/Reason
Joni Stegeman (JSTEGEMAN)	Ethicon Quality	21 Feb 2018, 08:47:02 AM	Approved

ENG-Approval

Name/Signature	Title	Date	Meaning/Reason
Paul Borgmeier (PBORGMEIER)		20 Feb 2018, 11:08:18 AM	Approved

Training Review

Name/Signature	Title	Date	Meaning/Reason
Lucy Richards (LRICHARDS)		21 Feb 2018, 10:41:43 AM	Approved

Final Release

Printed on: 21 Jan 2020, 10:58:17 pm; Printed by: .

Name/Signature	Title	Date	Meaning/Reason
Lucy Richards (LRICHARDS)		21 Feb 2018, 10:41:56 AM	Approved

Quick Approval

Approve Now

Name/Signature	Title	Date	Meaning/Reason
Lucy Richards (LRICHARDS)		21 Feb 2018, 10:46:05 AM	Approved

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-418
Products, Inc.		Revision: 002
	Zip Pen Product Specification Verification	Page 1 of 24

Authored By: Mark Glassett

Revised By: Mallory Schroeder (M.S.)

TABLE OF CONTENTS

1. ABSTRACT

2. OBJECTIVE

3. RESULTS

4. CONCLUSIONS

7

5. RECOMMENDATIONS

7

1. ABSTRACT

Zip Project Catalog Numbers 2525-10, 2525-15, 2540, 2560, 2211 and 2220 were evaluated for conformance to requirements of the product specification ENG-PS-007 that were not verified under other protocols. The evaluation was done per of ENG-PRT-290. The Zip Pen and other accessories for the Zip Project met the requirements of the protocol for 19 design attributes required by the Product Specification.

2. OBJECTIVE

The objective of this test report is to document conformance to requirements of the product specification ENG-PS-007 for attributes that are not verified in other protocols.

3. RESULTS

3.1. BUTTON SIZE

3.1.1. Zip Pen button size measures 0.0699 square inches. The disposable pencil button size is 0.0697 square inches. The surface area of the two buttons is approximately the same (within .0002 inches square) and meets the requirements of the protocol. See calculations in Appendix I.

3.2. BRANDING

3.2.1. The Zip Pen Handle is gray pantone 427 with green inly that is pantone 356. The Megadyne name is molded into the handle and colored green

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-418
Products, Inc.		Revision: 002
	Zip Pen Product Specification Verification	Page 2 of 24

pantone 356. This design meets the requirements of the protocol. See verification in Appendix II.

3.3. TIP EXPOSURE

3.3.1. The average tip exposure of the Zip Pen is 0.87". The average tip exposure of the UltraVac is 0.93". This comparison shows that the Zip Pen has a .06" shorter exposure than the Ultra Vac on average. Note that a shorter exposure is more desirable than a longer exposure. The comparison data is as follows:

Product	Average Tip Exposure,	Standard Deviation	Range
	inches		
Zip Pen 2525-10	0.87	.007	.864887
Ultra Vac 2110-10	0.93	.086	.820 - 1.012

The requirement in the product specification is that the Zip Paen tip exposure be comparable to the Ultra Vac. Note that the Zip Pen standard deviation is very small indicating that the tip exposure is very consistent from one pencil to the next. The Ultra Vac has a much larger standard deviation (over ten times larger) indicating that it is less consistent from one pencil to the other. The standard deviation of the Ultra Vac is larger than the difference between the two averages. Statistically, the averages are not equal for a confidence interval of 90%. However, the range of values for the Zip Pen is within the range of values for the Ultra Vac. Given this fact, it can be concluded that the tip exposure for the two devices is comparable and meets the protocol. In order to make the requirement clearer for the Zip pen Product Specification, the Product Specification will be revised to be more specific. See data in Appendix III.

3.4. NOZZLE CLARITY

3.4.1. The nozzle design is clear in the area of the electrode and meets the requirements of the protocol. See verification in Appendix IV

3.5. CORD CONTAINMENT

3.5.1. The cord is contained within the tubing for the first 64 inches and meets the requirements of the protocol. See verification in Appendix V.

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-418
Products,	Zip Pen Product Specification Verification	Revision: 002
Inc.		Page 3 of 24

3.6. TUBING SWIVEL

3.6.1. The tubing has a swivel that is 8 inches from the connection to the Zip Pen and meets the requirements of the protocol. See verification in Appendix VI.

3.7. TUBING ERGONOMICS

3.7.1. The photo's below show that the tubing can be positioned in the manner that is shown in the IFU and meets the requirements of the protocol. See photos below and verification in Appendix VII.

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-418
Products,	Zip Pen Product Specification Verification	Revision: 002
Inc.		Page 4 of 24

3.8. BUTTON LOCATION

3.8.1. The yellow button is located nearest to the electrode end of the Zip Pen and the blue button is located farthest from the electrode end of the Zip Pen. This meets the requirements of the protocol. See verification in Appendix VIII.

3.9. ULPA FILTER EFFICIENCY

3.9.1. A review of the specification sheet and drawing for the ULPA filter media shows that the filter efficiency exceeds the required efficiency of 99.999% for 0.1 to 0.2 micron particles and meets the requirements of the protocol. See verification in Appendix IX. Note that there was a typographical error on the particle size for the efficiency in the protocol. The efficiency should be 99.999% at 0.1 – 0.2 micron particle size. The protocol listed 0.01 – 0.02 and will be corrected at DCO.

3.10. ULPA FILTER FLUID TRAP

3.10.1. A review of the drawing and of an actual product shows that the ULPA filter has a fluid trap and meets the requirements of the protocol. See verification in Appendix X.

3.11. ULPA FILTER CONNECTOR

3.11.1. A review of the drawing and of an actual product shows that the ULPA filter has a threaded connector that mates with the Zip Pen and meets the requirements of the protocol. See verification in Appendix XI.

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-418
Products, Inc.		Revision: 002
	Zip Pen Product Specification Verification	Page 5 of 24

3.12. CARBON FILTER CHARCOAL

3.12.1. A review of the Carbon filter data sheet and the actual product shows that it contains Charcoal and meets the requirements of the protocol. See verification in Appendix XII.

3.13. ZIP ELECTRODE INSERTION

3.13.1. Installation trials of 11 electrodes into 11 Zip Pens demonstrated that the electrode cannot be installed incorrectly. The installed electrodes met the maximum resistance requirement of less than 50 ohms. The Zip Pen meets he requirements of the protocol. See verification in Appendix XIII.

3.14. ZIP PEN PACKAGING

3.14.1. The Zip Pen shipping box is an RSC design. The drawing shows that the shipping box will contain one IFU per box and have 20 units in each box. The Zip Pen packaging meets the requirements of the protocol. See verification in Appendix XIV.

3.15. ZIP EXTENSION NOZZLE PACKAGING

3.15.1. The Extension Nozzle shipping box is an RSC design. The drawing shows that the shipping box will contain one IFU per box and have 10 units in each box. The Extension Nozzle packaging meets the requirements of the protocol. See verification in Appendix XV

3.16. ZIP PEN AND EXTENSION NOZZLE UNIT LABELING

3.16.1. The Zip Pen and Extension Nozzle unit labels contain the information required by the protocol. The Zip Pen and Extension Nozzle unit labels meet the requirements of the protocol. See verification in Appendix XVI.

3.17. ZIP PEN AND EXTENSION NOZZLE SHIPPER LABELING

3.17.1. The Zip Pen and Extension Nozzle shipping labels contain the information required by the protocol. The Zip Pen and Extension Nozzle shipping labels meet the requirements of the protocol. See verification in Appendix XVII.

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-418
Products, Inc.		Revision: 002
	Zip Pen Product Specification Verification	Page 6 of 24

3.18. ULPA AND CARBON FILTER UNIT LABELING

3.18.1. The ULPA and Carbon Filter unit labels contain the information required by the protocol. The ULPA and Carbon Filter unit labels meet the requirements of the protocol. See verification in Appendix XVIII.

3.19. ULPA AND CARBON FILTER SHIPPER LABELING

3.19.1. The ULPA and Carbon Filter shipping labels contain the information required by the protocol with one exception. The ULPA Filter shipping label does not have the product trade name on the label. The label has been approved through the DCO process by management and is what Marketing requested. The product specification and protocol will be revised at DCO. The labels meet the requirements of the protocol with exception of one item that will be revised. See verification in Appendix XIX.

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-418
Products, Inc.		Revision: 002
	Zip Pen Product Specification Verification	Page 7 of 24

4. CONCLUSIONS

The products in the Zip Project were verified to meet the requirements of the protocol which shows that the products meet the Product Specification with one minor exception. For that one minor exception the Product Specification will be revised.

5. RECOMMENDATIONS

The following documentation for the Zip Project will be updated as a result of this test report: The Input/output conformance test matrix ENG-IOM-012 will be updated to show verification per this test report. The Product Specification ENG-PS-007 will be updated to clarify and correct the requirements identified in this report. The Smoke Evacuation Accessories Risk Analysis ENG-RMF-045 will be updated to show this test report in the appropriate verification areas.

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-418
Products, Inc.		Revision: 002
	Zip Pen Product Specification Verification	Page 8 of 24

Appendix I **Button Size**

Megadyne Medical Products, Inc.	TEST PROTOCOL	Document Number XENG-PRT-290
	Zip Pen	Revision: A
	Product Specification Verification Protocol	Page 19 of 33

Appendix I: BUTTON SIZE

Zip Pen Button Size Calculation from ENG-DWG-588

Length , 358 PV 2-6-2015

Tr (226) + [6358-,226) x.226] = ,0699 NOT 2-6-15

.0699 1n2 Two Dimensional Area:

Disposable Pencil Button Size Calculation

Lot Number: __ 10664 Catalog Number: 0039

Button Diameter: 298 PV 2-6-2015Calculation: $11(398)^{32} = 0.0697 \text{ pm}^2$

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-418
Products, Inc.		Revision: 002
	Zip Pen Product Specification Verification	Page 9 of 24

Appendix II Branding

Megadyne Medical Products,	TEST PROTOCOL	Document Number XENG-PRT-290
Inc.	Zip Pen Product Specification Verification Protocol	Revision: A Page 20 of 33
	Appendix II BRANDING	
Reference	e ENG-DWG-650	
Verify the	at the Pen Body has the following:	
Body Col	or is Gray Pantone 427: YES NO Initials/I	Date PV 1-26-2015
TPR inlag	y is Green Pantone 356: YES/NO Initials/I	Date PV 1-26-2015
Megadyn	e Name: YES NO In	nitials/Date <u>PV 1-26-</u> 20
document may not be rep	ent is an acknowledgment that the contents herein are the exclusive property roduced in any form whatsoever without written permission from Megadyne.	of Megadyne Medical Products, Inc. This The user of this document must ensure

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-418
Products		Revision: 002
	Zip Pen Product Specification Verification	Page 10 of 24

Appendix III Tip Exposure

The user must ensure that they are using the correct/current revision of this document. Document: XENG-PRT-290 Rev: A Effective: 23 Jan 2015 11:41 AM

Megadyne Medical Products,	TEST PROTOCOL	Document Number XENG-PRT-290
Inc.	Zip Pen	Revision: A
	Product Specification Verification Protocol	Page 21 of 33

Appendix III

TIP EXPOSURE

Zip Pen Catalog Number: 2525-10 Lot Number: 5140303

Ultra Vac Catalog Number: 2110-10 Lot Number: 5408

Zip Pen Sample Number Ultra Vac Sample Measurement Measurement Number . 867 .996 ZI UI .977 Z2. 877 U2 Z3 U3 1.012 .986 .992 .976 ·868 ·818 ·864 Z4 U4 Z_5 U5 Z6 U6 Z7 . 887 U7 .821 Z8 .810 U8 .869 Z9 U9 Z10 . 820 U10 . 883 Z11 U11 .825

Possession of this document is an acknowledgment that the contents herein are the exclusive property of Megadyne Medical Products, Inc. This document may not be reproduced in any form whatsoever without written permission from Megadyne. The user of this document must ensure that they are using the most current revision of this document.

Printed on: 23 Jan 2015, 02:14:56 pm; Printed by: MGLASSETT.

Medical Products	TEST REPORT	Document Number ENG-RPT-418
		Revision: 002
	Zip Pen Product Specification Verification	Page 11 of 24

Appendix IV: Nozzle Clarity Appendix V: Cord Containment

Products, Inc. Zip Pen
Appendix IV NOZZLE CLARITY Reference Drawing ENG-DWG-594 Verify that the Nozzle meets the following: Material is clear and not opaque: YENO Initials/Date PV 1-26-Z015 Comments: Appendix V CORD CONTAINMENT Reference Drawing ENG-DWG-716 Verify that the Assembly meets the following: Cord is assembled inside the tube for at least the first 64 inches:
NOZZLE CLARITY Reference Drawing ENG-DWG-594 Verify that the Nozzle meets the following: Material is clear and not opaque: YENO Initials/Date PV 1-26-2019 Comments: Appendix V CORD CONTAINMENT Reference Drawing ENG-DWG-716 Verify that the Assembly meets the following: Cord is assembled inside the tube for at least the first 64 inches:
Reference Drawing ENG-DWG-594 Verify that the Nozzle meets the following: Material is clear and not opaque: YES/NO Initials/Date PV 1-26-2019 Comments: Appendix V CORD CONTAINMENT Reference Drawing ENG-DWG-716 Verify that the Assembly meets the following: Cord is assembled inside the tube for at least the first 64 inches:
Verify that the Nozzle meets the following: Material is clear and not opaque: YES/NO Initials/Date PV 1-Zb-Z019 Comments: Appendix V CORD CONTAINMENT Reference Drawing ENG-DWG-716 Verify that the Assembly meets the following: Cord is assembled inside the tube for at least the first 64 inches:
Material is clear and not opaque: YESYNO Initials/Date PV 1-26-2019 Comments: Appendix V CORD CONTAINMENT Reference Drawing ENG-DWG-716 Verify that the Assembly meets the following: Cord is assembled inside the tube for at least the first 64 inches:
Appendix V CORD CONTAINMENT Reference Drawing ENG-DWG-716 Verify that the Assembly meets the following: Cord is assembled inside the tube for at least the first 64 inches:
Appendix V CORD CONTAINMENT Reference Drawing ENG-DWG-716 Verify that the Assembly meets the following: Cord is assembled inside the tube for at least the first 64 inches:
CORD CONTAINMENT Reference Drawing ENG-DWG-716 Verify that the Assembly meets the following: Cord is assembled inside the tube for at least the first 64 inches:
CORD CONTAINMENT Reference Drawing ENG-DWG-716 Verify that the Assembly meets the following: Cord is assembled inside the tube for at least the first 64 inches:
Reference Drawing ENG-DWG-716 Verify that the Assembly meets the following: Cord is assembled inside the tube for at least the first 64 inches:
Verify that the Assembly meets the following: Cord is assembled inside the tube for at least the first 64 inches:
Cord is assembled inside the tube for at least the first 64 inches:
(VICANO 1-11-10-1-10-1-10-1-10-1-10-1-10-1-10-
YESNO Initials/Date YV 1-26-2015
Comments:

Megadyne Medical Products,	TEST REPORT	Document Number ENG-RPT-418
	Zip Pen Product Specification Verification	Revision: 002
Inc.		Page 12 of 24

Appendix VI Tubing Swivel

		The user must ensure that they are using the correct/current revision of the Document: XENG-PRT-290 Rev: A Effective: 23 Jan 2015 11:41	is document. AM
	Megadyne Medical Products,	TEST PROTOCOL	Document Number XENG-PRT-290
	Inc.	Zip Pen	Revision: A
	The.	Product Specification Verification Protocol	Page 23 of 33
		Appendix VI	
4		TUBING SWIVEL	
<u>.</u> 5.	Reference	Prawing ENG-DWG-716	
<u>5</u>	Verify the	at the Assembly meets the following:	
5	The asser connection		
		YES/NO Initials/Da	te PV 1-26-2015
3	Commen	is:	
Confidential - Pre-Production Controlled on date printed			
D			
1			
n i i de			
3			
	document may not be re	nent is an acknowledgment that the contents herein are the exclusive property of produced in any form whatsoever without written permission from Megadyne. Tost current revision of this document.	Megadyne Medical Products, Inc. This he user of this document must ensure
		Printed on: 23 Jan 2015, 02:14:56 pm; Printed by: MGLASSE	

Megadyne Medical Products,	TEST REPORT	Document Number ENG-RPT-418
	Zip Pen Product Specification Verification	Revision: 002
Inc.		Page 13 of 24

Appendix VII: Tubing Ergonomics Appendix VIII: Button Location

Megadyne Medical Products,	TEST PROTOCOL	Document Number XENG-PRT-290
Inc.	Zip Pen Product Specification Verification Protocol	Revision: A Page 24 of 33
	Appendix VII	
	TUBING ERGONOMICS	
Reference	IFU MKT-LBL-531	
Verify tha	at the Assembly meets the following:	
	/Cord can be configured as shown for the three meth- configurations for the test report:	nods in the IFU. Photograph
	YESNO Initials/D	ate PV 2-4-2019
Comment	s:	
Reference	Appendix VIII BUTTON LOCATION Drawing ENG-DWG-716	

Verify the	at the Assembly meets the following:	
	ow CUT Button is nearest to the electrode and the B electrode:	
	YE\$/NO Initials/I	Date PV 1-27-2015
Commen	ts:	

Megadyne Medical Products,	TEST REPORT	Document Number ENG-RPT-418
		Revision: 002
Inc.	Zip Pen Product Specification Verification	Page 14 of 24

Appendix IX: Filter Efficiency Appendix X: ULPA Filter Fluid Trap

Megadyne Medical Products,	TEST PROTOCOL	Document Number XENG-PRT-290
Inc.	Zip Pen Product Specification Verification Protocol	Revision: A Page 25 of 33
	Appendix IX	
	ULPA FILTER EFFICIENCY	
	e Assembly Drawing ENG-DWG-1017and nt Drawing ENG-DWG-1015	
Verify the	at the Assembly meets the following:	
The assen particles:	ably has a minimum filtration efficiency of 99.999% f	
Comment		e <u>PV 1-29</u> -2019
	Appendix X	
	ULPA FILTER FLUID TRAP	
Reference	Assembly Drawing ENG-DWG-1017	
Verify that	at the Assembly meets the following:	
The asser	nbly has a Fluid Trap:	
	YES/NO Initials/Da	te PV 1-28-2015
Commen	is:	
	ent is an acknowledgment that the contents herein are the exclusive property of N roduced in any form whatsoever without written permission from Megadyne. Tl	
nat they are using the mo		

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-418
Products,	Zip Pen Product Specification Verification	Revision: 002
Inc.		Page 15 of 24

Appendix XI: ULPA Filter Connector **Appendix XII: Charcoal Carbon Filter**

Megadyne Medical Products,	TEST PROTOCO	L	Document Number XENG-PRT-290
Inc.	Zip Pen Product Specification Verifica	ntion Protocol	Revision: A Page 26 of 33
	Append	lix XI	
	ULPA FILTER	CONNECTOR	
Reference	e Component Drawing ENG-DWG-1	017	
Verify the	at the Assembly meets the following		
	nbly has a threaded connector that is ENG-DWG-1160;	compatible with the	ne Zip Pen Proximal
	YESINO	Initials/Date	PV 1-28-2015
Commen	:s:		
	Append	ix XII	
	CHARCOAL CA	RBON FILTER	
Obtain a	sample of Carbon Filter 2220		
Verify th	at the Filter meets the following:		
The Filte	connects to the Mega Vac and/or M	lega Vac Plus	
The filter	contains charcoal		
	YES/NO) Initials/Date	PV 1-29-2015
Commen	ts:		

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-418
Products,		Revision: 002
Inc.	Zip Pen Product Specification Verification	Page 16 of 24

Appendix XIII Zip Electrode Insertion

The user must ensure that they are using the correct/current revision of this document. Document: XENG-PRT-290 Rev: A Effective: 23 Jan 2015 11:41 AM

Megadyne Medical Products,	TEST PROTOCOL	Document Number XENG-PRT-290
Inc.	Zip Pen	Revision: A
THC.	Product Specification Verification Protocol	Page 27 of 33

Appendix XIII

ZIP ELECTRODE INSERTION

Zip Pen Catalog Number: 2525-10 Lot Number: \$140 303

Electrode Catalog Number: 0014 A Lot Number: 150088

Continuity (Ohms) Pass/Fail Zip Pen Sample Insertion Correct Yes/No Number C1 yes PASS 0.8 C2 PASS 0.7 C3 Ves C4 yes PASS C5 1.2 Ves PASS PASS PASS C6 yes 6.7 C7 yes yes 1.0 0.7 C8 PASS yes yes 9.2 C9 C10 0.0 0.7 PASS C11 yes

Equipment Information				
Equipment	Fluke Multimeter, True RMS			
Cert Number	497572			
Asset Number	01372			
Cal Date	9/12/2014			
Cal Due	9/30/2015			

M.S. 1/10/18 – Adding missing equipment & calibration information. Calibration record attached in Appendix XIII

Possession of this document is an acknowledgment that the contents herein are the exclusive property of Megadyne Medical Products, Inc. This document may not be reproduced in any form whatsoever without written permission from Megadyne. The user of this document must ensure that they are using the most current revision of this document.

Printed on: 23 Jan 2015, 02:14:56 pm; Printed by: MGLASSETT.

Megadyne
Medical
Products,
Inc.TEST REPORTDocument Number
ENG-RPT-418Zip Pen Product Specification VerificationRevision: 002Page 17 of 24

Certificate Number: 497572 Asset Number: 01372

CERTIFICATE OF LIBRATION

Western States Calibration certifies this instrument has been cleaned, cal wall and inspected in accordance with said Instrument Calibration Procedure. This calibration was performed in accordance with requirem 15 of 150/IEC 17025, ISO 9001:2008, and ANSI/NCSL Z540-1 with measuring standards traceable to the National Institute of Standards and fee notice. Units of measurement are stated according to the International System of Units (SI). The results reported on this certificate apply only to the standards and inspected in accordance with said Instrument Calibration and Institute of Standards and fee notice. Units of measurement are stated according to the International System of Units (SI). The results reported on this certificate apply only to the standard in the standard in the standard in the International All data is reported as raw data and uncorrected for uncertainty or environmental effects. It is the end users responsibility to determine finess for use. Measurement uncertainty is not taken into account when determining In/Out of tolerance conditions. This certificate shall not be introduced except in full, without the written approval of Western States Calibration. Measurement Uncertainty (EMU) is reported per measurement, the unailable, @ k = 2.

Attention: Alan Holt

Megadyne Medical Products 11506 South State Street

Draper, UT 84020

PO Number: 23845

Asset Number: 01372 Manufacturer S/N: 93480388

Instrument: Multimeter, True RMS,

Manufacturer: Fluke Corp
Model Number: 179
Asset Location: N/A

| Received: 09/11/2014 |
| Date Done: 09/12/2014 |
| Date Due: 09/30/2015 |
| Calibration Interval: 12 Months |
| Calibrated at Customer's Site: No

As Found: In Tolerance
As Returned: In Tolerance
Physical Damage: No

				Ш		%		%		
aracteristic Tested	Nominal Value	Toler	r		As Found	Error	As Returned	Error	TAR	EMU
AC Volts				Miller						
600.0 mV Range	300.0 mV~@ 45 Hz	296.7 to 3	03 J V		299.7	-9 %	Same	-9 %	24:1	170.8 µV
6.000 V Range	5.000 V~@ 500 Hz	4.947 to	Many		4.990	-19 %	Same	-19 %	14:1	4.6 mV
1	5.000 V~@ 1 kHz	4.897 to	М		4.951	-48 %	Same	-48 %	26:1	4.6 mV
60.00 V Range	50.00 V~@ 45 Hz	49.47 to	d BV		49.90	-19 %	Same	-19 %	20:1	30.9 mV
	50.00 V~@ 1 kHz	48.97 to	i i i i		50.02	2 %	Same	2 %	39:1	30.9 mV
600.0 V Range	300.0 V~@ 45 Hz	296.7 to	ed la v		299.7	-9 %	Same	-9 %	20:1	203.7 mV
	500.0 V~@500 Hz	494.7 to	d all V		500.1	2 %	Same	2 %	17:1	366.0 mV
	500.0 V~@ 1 kHz	489.7 to	MEN	Total Section	500.1	1 %	Same	1 %	33:1	366.0 mV
1000 V Range	1000 V~@ 45 Hz	987 to	o Mill		995	-38 %	Same	-38 %	21:1	925.2 mV
DC Volts										
6.000 V Range	5.000 V	4.992 to	5. 1 V		4.999	-13 %	Same	-13 %	10:1	1.0 mV
600.0 V Range	300.0 V	299.5 to	d V		299.9	-20 %	Same	-20 %	20:1	64.0 mV
1000 V Range	1000 V	996 to	otaliu II		1000	0 %	Same	0 %	44:1	584.7 mV
1000 V Range	-1000 V	-1002 to	984	III	-1000	0 %	Same	0 %	31:1	584.7 mV
AC Volts Frequency		-								
99.99 Hz Range	45.00 Hz~@1 V	44.94 to	5 1 12		45.00	0 %	Same	0 %	49:1	5.9 mHz
99.99 kHz Range	50.00 kHz~@ 5 V	49.94 to 5		11	50.00	0 %	Same	0 %	48:1	6.0 Hz
DC Volts Frequency										
99.99 Hz Range	45.00 Hz~@ 3 V	44.94 to	5 Birtz		45.00	0 %	Same	0 %	49:1	5.9 mHz
99.99 kHz Range	50.00 kHz~@ 30 V	49.94 to 5	o.		50.00	0 %	Same	0 %	48:1	6.0 Hz
DC Millivolts										
600.0 mV Range	30.0 mV	29.8 to 3	o Hivi	II	30.0	0 %	Same	0 %	38:1	58.1 µV
1	-300.0 mV	-300.5 to			-299.8	40 %	Same	40 %	21:1	63.2 µV
600.0 mV Range	600.0 mV	599.3 to 6	ошину		599.6	-57 %	Same	-57 %	9.5:1	106.6 µV
Resistance				П						
600.0 Ohm Range	500.0 Ohm	495.3 to 5	2 ji ji jibar		500.1	2 %	Same	2 %	30:1	188.1 mOhm
50.00 MOhm Range	19.00 MOhm	18.68 to 19	a Nort	1	18.99	-3 %	Same	-3 %	10:1	35.7 kOhm
Continuity										
Beeper On 25 Ohm	Pass/Fail	Pass			PASS		Same			
Beeper Off 250 Ohm	n Pass/Fail	Pass	HIII II		PASS		Same			
									P	age 1 of 2
westerncal.com	phone 801.466.1700	fax 801.484.5	D N	10	5 west 2950 so	uth	salt lake ci	ty, utah	84115.3	433

Megadyne
Medical
Products,
Inc.TEST REPORTDocument Number
ENG-RPT-418Zip Pen Product Specification VerificationRevision: 002Page 18 of 24

. · \									Certifica	te Number: 497572
Characteristic Tested		Nominal Value	Tolera	n.	As Found	% Error	As Returne	% d Error	TAR	EMU
Diode 2.400 V Rang		2.000 V	1.978 to 2		0.000	0.0		0.0/	>100:1	606.8 μV
Temperature	NAME AND ADDRESS OF THE OWNER, TH	2.000 V	1.570 10 2		2.002	9 %	Same	9 70	-100.1	ооо.о ру
I		0.0 °C	-1.0 to 1	id a	0.0	0 %	Same	0 %	5.3:1	0.23 °C
i i	- PUBLIS	-40.0 °C	-41.4 to -	90 M 10	-40.0	0 %		0 %	7.4:1	0.23 °C
ĺ		400.0 °C	395.0 to 4	04 5 Q	399.8	-4 %		-4 %	22:1	0.27 °C
Capacitance	1									
1000 nF Rang	je	900 nF	886 to 9	14 F	900	0 %	Same	0 %	15:1	1.2 nF
AC Current										
6.000 A Rang	The state of the s	4.000 A~@ 45 Hz	3.937 to	1984	3.999	-2 %		-2 %	5.7:1	12.7 mA
10.00 A Rang		9.00 A~@ 1 kHz	8.84 to		8.99	-6 %	THE RESIDENCE AND ADDRESS OF THE PARTY OF TH	-6 %	7.9:1	24.9 mA
60.00 mA Rang	ge	3.00 mA~@ 45 Hz	2.92 to 3	OF THE	3.02	25 %		25 %	31:1	6.4 µA
100 0 A D		50.00 mA~@ 1 kHz	49.22 to 5		49.94	-8 %		-8 %	11:1	83.3 µA
400.0 mA Rang DC Current	ge	400.0 mA~@ 1 kHz	393.7 to 4		399.0	-16 %	Same	-16 %	7.2:1	1.0 mA
60.00 mA Rang	70	3.00 mA	2.94 to 3		3.01	17 %	Same	47.0/	>100:1	5.8 µA
OU.OU TIPA Kang	ge	50.00 mA	49.47 to 5		49.99	-2 %		-2 %	30:1	21.1 μΑ
400.0 mA Rang	ge	-400.0 mA	-404.3 to -3		-399.9	2 %		2 %	12:1	417.4 µA
6.000 A Range	The state of the s	4.000 A	3.957 to	dala	4.001	2 %		2 %	14:1	3.7 mA
10.00 A Range		-9.00 A	-9.12 to	8. N	-9.00	0 %		0 %	20:1	8.9 mA
(* - "Out of Tolerance	" condition) (0	% Error of Limit - N	lay represent a	d	with an Asymn				ot be ca	culated.)
Standards Utilized (Make Wavetek Corp 9100 C ARCO ELECTRONIC Description of Material o	Calibrator, M CS SS-32 Ca	ultifunction,				474	Number As 1841 3166 Quantity	WSC601 WSC657	03	8/06/2015 6/14/2015 Parts ID
use							1		DMM44	
Battery							1	,	9 V	
Comments (i.e. adjustme	nts renairs mo	odifications limitations	and/or deviation	c	cedure):					
Battery and blown fo					l l					
Calibration Procedure:	10224 R1			1	ality Manager:	L	on Miles			
Degrees Fahrenheit:	73.0					,	, _	,	Kirk S	criber
Percent Humidity:	32.0			DI DITEM	n Technician:	Kich	South	en		/2014

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-418
Products,		Revision: 002
Inc.	Zip Pen Product Specification Verification	Page 19 of 24

Appendix XIV Zip Pen Packaging

Megadyne Medical Products,	TEST	PROTOCOL		Document Number XENG-PRT-290
Inc.		Zip Pen		Revision: A
	Product Specifica	ation Verificatio	n Protocol	Page 28 of 33
		Appendix X	av	
	2	ZIP PEN PACK	AGING	
Reference	e Assembly Drawings 2	2525-10 and 2525	5-15	
Verify that	at the Assembly meets	the following:		
The asser	nbly box is an RSC sty	le box:		
		YES/NO	Initials/Date	PV 1-29-2015
The asser	mbly requires an IFU in	each box:		
		(YES)NO	Initials/Date	PV 1-29-2015
The asser	mbly requires 20 units p	per box:		
		YÉS/NO	Initials/Date	PV 1-29-2015
Commen	ts:			
Possession of this docum	nent is an acknowledgment that the	contents herein are the e	xclusive property of Mo	gadyne Medical Products, Inc. This user of this document must ensure

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-418
Products,		Revision: 002
Inc.	Zip Pen Product Specification Verification	Page 20 of 24

Appendix XV Zip Pen Extension Nozzle Packaging

Megadyne Medical	TEST PROTOCOL		Document Number XENG-PRT-290
Products, Inc.	Zip Pen Product Specification Verification	n Protocol	Revision: A Page 29 of 33
	Appendix X	ζV	
	ZIP EXTENSION NOZZI	E PACKAGI	ING
Reference	e Assembly Drawing 2540 and 2560		
Verify th	at the Assembly meets the following:		
The asser	mbly box is an RSC style box:		D. 1 20 2-11
m	(YES/NO	Initials/Date	e PV 1-29-2011
The asser	mbly requires an IFU in each box: (YES)NO	Initials/Date	e PV 1-29-2015
The asser	mbly requires 10 units per box:		
	YESINO	Initials/Dat	e PV 1-29-2015
C			
Commer	its:		
			
ocument may not be re	ment is an acknowledgment that the contents herein are the e- produced in any form whatsoever without written permission nost current revision of this document.	xclusive property of M n from Megadyne. Th	Megadyne Medical Products, Inc. The user of this document must ensure

date printed

Confidential - Pre-Production Controlled on

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-418
Products,		Revision: 002
Inc.	Zip Pen Product Specification Verification	Page 21 of 24

Appendix XVI Zip Pen and Extension Nozzle Unit Labeling

Megadyne Medical Products,	TEST PROTOCOL	Document Number XENG-PRT-290
Inc.	Zip Pen	Revision: A
IIIc.	Product Specification Verification Protocol	Page 30 of 33

The user must ensure that they are using the correct/current revision of this document

Appendix XVI

ZIP PEN AND EXTENSION NOZZLE UNIT LABELING

Reference Unit Label Drawings ENG-DWG-272, ENG-DWG-277, MKT-LBL-514 and MKT-LBL-517. Verify that the Labels meet the following:

X X X X X X	X X X X X X	X X X X X X N/A	X X X X X N/A
X X X X X	X X X X X	X X X X X N/A	X
X X X X	X	X X X X X N/A	X
X X X X X	X	X X X X N/A	X
X X X X	X	X X X N/A	X
X X X	X	X X N/A X	X X N/A
X X X	X X X	X N/A X	X N/A
X	X	N/A	N/A
X	X	X	
\sim		/ '	
	X	X	X
X	Χ	X	X
X	Χ	X	X
X	X	X	X
X	Χ	X	X
X	X	X	X
X	X	X	X
×	X	X	X
X	X	N/A	N/A
_	Y	N/A	N/A
\checkmark	Ý	V	X
Ŷ	Ŷ	N/A	N/A
	X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X N/A X X X X X N/A

Comments:	

Possession of this document is an acknowledgment that the contents herein are the exclusive property of Megadyne Medical Products, Inc. This document may not be reproduced in any form whatsoever without written permission from Megadyne. The user of this document must ensure that they are using the most current revision of this document.

Printed on: 23 Jan 2015, 02:14:56 pm; Printed by: MGLASSETT.

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-418
Products,		Revision: 002
Inc.	Zip Pen Product Specification Verification	Page 22 of 24

Appendix XVII Zip Pen and Extension Nozzle Shipping Labels

The user must ensure that they are using the correct/current revision of this document. Document: XENG-PRT-290 Rev: A Effective: 23 Jan 2015 11:41 AM TEST PROTOCOL Megadyne **Document Number** Medical XENG-PRT-290 Products, Zip Pen Revision: A Inc. **Product Specification Verification Protocol** Page 31 of 33 Appendix XVII ZIP PEN AND EXTENSION NOZZLE SHIPPING LABELS Reference Shipper Label Drawings MKT-LBL-499, MKT-LBL-510, MKT-LBL-515 and MKT-LBL-516. Verify that the Labels meet the following: 2525-10 2525-15 2560 Requirement 2540 Label Part Number Label Revision and Date Bar code Catalog Number and Symbol Manufacturer symbol and name/info Product Trade Name Graphic of the product E-Z Clean Logo N/A CE Mark EC Rep and symbol Lot Number and Symbol Expiration Date and Symbol Sterilization Symbol Do Not Reuse Symbol Consult Instructions Symbol Rx Only Symbol Do Not Use if Package is Damaged Symbol Temperature and Humidity Symbol Quantity per box symbol Initials/Date PV 1-29-2015 Acceptance YES/NO Comments: Possession of this document is an acknowledgment that the contents herein are the exclusive property of Megadyne Medical Products, Inc. This document may not be reproduced in any form whatsoever without written permission from Megadyne. The user of this document must ensure that they are using the most current revision of this document.

Possession of this document is an acknowledgment that the contents herein are the exclusive property of Megadyne Medical Products, Inc. This document may not be reproduced in any form whatsoever without written permission from Megadyne. The user of this document must ensure that they are using the most current revision of this document.

Printed on: 23 Jan 2015, 02:14:56 pm; Printed by: MGLASSETT.

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-418
Products,		Revision: 002
Inc.	Zip Pen Product Specification Verification	Page 23 of 24

Appendix XVIII ULPA and Carbon Filter Unit Labeling

Megadyne Medical	TEST PROTOC	OL	Document Number XENG-PRT-290
Products, Inc.	Zip Pen Product Specification Verific	eation Protocol	Revision: A Page 32 of 33
	Append ULPA AND CARBON FI e Unit Label Drawings MKT-LBL- eet the following:	518 and MKT-LBI	
Requirem	ant	221	2220
	t Number	JAPEL I	V
	vision and Date		\rightarrow
Bar code	Vision and Date	\rightarrow	\rightarrow
	Jumbar and Sambal		\rightarrow
	Number and Symbol	\rightarrow	N/A
	Trade Name	\rightarrow	IN/A
	turer symbol and name/info	\rightarrow	\rightarrow
	of the product	X	\rightarrow
	ber and Symbol		\rightarrow
CE Mark			
	and symbol	X	\rightarrow
	nstructions Symbol	X	\rightarrow
Rx Only		X	\rightarrow
Temperat	ture and Humidity Symbol	X_	X
Acceptan		PV 1-29-21	015
Commen			
1			
ossession of this docum	nent is an acknowledgment that the contents herein a produced in any form whatsoever without written pe	re the exclusive property of	Megadyne Medical Products, Inc.

0.816

Megadyne Medical	TEST REPORT	Document Number ENG-RPT-418
Products,		Revision: 002
Inc.	Zip Pen Product Specification Verification	Page 24 of 24

Appendix XIX ULPA and Carbon Filter Shipper Labels

The user must ensure that they are using the correct/current revision of this document.

Document: XENG-PRT-290 Rev: A Effective: 23 Jan 2015 11:41 AM

Megadyne Medical Products,	TEST PROTOCOL	Document Number XENG-PRT-290
Inc.	Zip Pen	Revision: A
	Product Specification Verification Protocol	Page 33 of 33

Appendix XIX

ULPA AND CARBON FILTER SHIPPING LABELS

Reference Shipping Label Drawings MKT-LBL-519 and MKT-LBL-523. Verify that the Labels meet the following:

Requirement	2221	2220
Label Part Number	X	X
Label Revision and Date	X	X
Bar code	X	X
Catalog Number and Symbol	X	X
Manufacturer symbol and name/info	X	X
Product Trade Name		N/A
Graphic of the product	X	X
CE Mark	X	X
EC Rep and symbol	X	X
Lot Number and Symbol	×	X
Consult Instructions Symbol	X	X
Rx Only Symbol	X	X
Temperature and Humidity Symbol	X	X
Quantity per box symbol	X	X

Acceptance YES/NO Initials/Date PV 1-10-2018

Comments: PV-Original conductor of test corrected

missing initials.

Possession of this document is an acknowledgment that the contents herein are the exclusive property of Megadyne Medical Products, Inc. This document may not be reproduced in any form whatsoever without written permission from Megadyne. The user of this document must ensure that they are using the most current revision of this document.

Printed on: 23 Jan 2015, 02:14:56 pm; Printed by: MGLASSETT.