Spatio-Temporal Statistics with R Chapter 3

Spatio-Temporal Statistical Models 時空間統計モデル

Spatio-Temporal Statistics with R輪読 2019年5月10日

担当:澤田紘太

3. 時空間統計モデル

- 時空間統計モデリングの基本目標
 - 観測期間内のある地点における応答変数の値を予測し、その予測の不確実性も示す
 - 時空間的な非独立性のもとで、応答変数に対する共変量の重要性を科 学的に推定する
 - ある場所における応答変数の未来の値を予報し、その予報の不確実性 も示す

3.1 時空間的な予測

- 目標:▲地点の1993年7月15日の最高気温を予測したい
 - 同じ日付の周辺の温度データだけでなく、前後の日付のデータも使う
 - 前も後もデータがあるので、smoothing
 - 7月15日までしかデータがないならfiltering
 - 7月15日より前までしかデータがないならforecasting

決定論的予測

- 逆距離加重法 (inverse distance weighting, IDW)
 - ・全データ点の加重平均(予測したい点に近いほど加重)
- 各時点 t_j にそれぞれ m_j 地点のデータがある $\{Z(\mathbf{s}_{11};t_1),Z(\mathbf{s}_{21};t_1),\ldots,Z(\mathbf{s}_{m_11};t_1),\ldots,Z(\mathbf{s}_{1T};t_T),Z(\mathbf{s}_{2T};t_T),\ldots,Z(\mathbf{s}_{m_TT};t_T)\}$
- IDW予測子 $\widehat{Z}(\mathbf{s}_0; t_0) = \sum_{j=1}^{T} \sum_{i=1}^{m_j} w_{ij}(\mathbf{s}_0; t_0) Z(\mathbf{s}_{ij}; t_j)$
- ・重みづけ $w_{ij}(\mathbf{s}_0;t_0) \equiv \frac{\widetilde{w}_{ij}(\mathbf{s}_0;t_0)}{\sum_{k=1}^{T} \sum_{\ell=1}^{m_k} \widetilde{w}_{\ell k}(\mathbf{s}_0;t_0)},$ $\widetilde{w}_{ij}(\mathbf{s}_0;t_0) \equiv \frac{1}{d((\mathbf{s}_{ij};t_j),(\mathbf{s}_0;t_0))^{\alpha}},$
 - α は正の実数、d()は何らかの距離(e.g.ユークリッド)

IDWによる予測

- データのない日(7月14日) の予測はより滑らか
 - 他の方法でもそうなりやすい

- *α* = 5で計算
 - 小さくするとより滑らか
 - CVで最適値を選ぶ(後で)

Predictions (degrees Fahrenheit)

カーネル予測子

- IDWはカーネル予測子の一種 $\widetilde{w}_{ij}(\mathbf{s}_0;t_0) = k((\mathbf{s}_{ij};t_j),(\mathbf{s}_0;t_0);\theta)$
 - k()はカーネル関数 (2点間の類似性を示す関数)
 - θ はバンド幅パラメータ、 α に対応
 - 台はコンパクトでない(コンパクト=閾値以上の距離で重みゼロ)
- 他のカーネル予測子の例
 - Gaussian radial basis kernel

$$k((\mathbf{s}_{ij};t_j),(\mathbf{s}_0;t_0);\theta) \equiv \exp\left(-\frac{1}{\theta}d((\mathbf{s}_{ij};t_j),(\mathbf{s}_0;t_0))^2\right)$$

カーネル予測子による予測

105

- 100

- 95

- 90

- 85

- 80

• どっちがいい?→交差検証(cross-validation, CV)

Technical Note 3.1: Cross-Validation

- データをtraining sampleとvalidation sampleに分け、 前者に当てはめたモデルを後者で評価する
- K分割交差検証法K-fold cross-validation
 - m点のデータをK個のほぼ同じサイズのfoldにランダムに分ける
 - 各foldについて、残りのK-1個のfoldでモデルを当てはめる
 - k-th foldに含まれる m_k 点について予測 $\hat{Z}_i^{(-k)}$ $(i=1,...,m_k)$
 - k-th foldについての平均二乗予測誤差 $MSPE_k = \frac{1}{m_k} \sum_{i=1}^{m_k} \left(Z_i \hat{Z}_i^{(-k)} \right)^2$
 - K-fold cross-validation score $CV_{(K)} = \frac{1}{K} \sum_{k=1}^{K} MSP \tilde{E}_{k}$
- Leave-one-out cross validation (LOOCV)
 - K分割交差検証法でK = mの場合(各データ点が1つのfoldになる)
 - LOOCV $\exists \exists \exists CV_{(m)} = \frac{1}{m} \sum_{i=1}^{m} MSPE_{i}$
- LOOCVは期待二乗誤差の推定値としてはバイアスが小さいが、分散が大きい
 - K=5, 10くらいが妥当な落としどころ

LOOCVによる比較

- IDWの α は5、Gaussの θ は0.6がベスト
- Gaussのほうが最適なバンド幅でのCVスコアが低く、 うまく予測できている

3.2 回帰(傾向面)推定

- ふつうの(重)回帰モデルを当てはめる
 - ・時空間的な非独立性は"傾向 trend"=共変量で説明できると仮定
 - モデル内で誤差・予測誤差分散を得ることができる

$$Z(\mathbf{s}_i;t_j) = \beta_0 + \beta_1 X_1(\mathbf{s}_i;t_j) + \ldots + \beta_p X_p(\mathbf{s}_i;t_j) + e(\mathbf{s}_i;t_j)$$

- 一旦、誤差はi.i.d.と仮定 $e(\mathbf{s}_i;t_j) \sim indep. N(0,\sigma_e^2)$
- 共変量
 - 空間的に変わるもの e.g. 標高
 - 時間的に変わるもの e.g. 季節
 - 時空間的に変わるもの e.g. 湿度
 - 基底関数basis functions

基底関数

・初等的な基底関数の線形 結合で複雑な曲線・曲面 を表現する

$$Y(\mathbf{s}) = \alpha_1 \phi_1(\mathbf{s}) + \alpha_2 \phi_2(\mathbf{s}) + \ldots + \alpha_r \phi_r(\mathbf{s})$$

基底関数に係数(重み)をかけて足し合わせる

回帰モデル

- ・下記の基底関数(共変量)の線形結合モデル
 - 全体平均(切片)
 - 線形の緯度
 - 線形の経度
 - 線形の時間(日)トレンド
 - 緯度と経度の交互作用
 - 緯度と時間の交互作用
 - 経度と時間の交互作用
 - 空間のみの基底関数12個
- 切片と18個の回帰係数を推定

最小二乗法Ordinary least squares, OLS

• 残差平方和RSSを最小化するパラメータの組を求める $\{\widehat{eta}_0,\widehat{eta}_1,\ldots,\widehat{eta}_p\}$

$$RSS = \sum_{j=1}^{T} \sum_{i=1}^{m} (Z(\mathbf{s}_i; t_j) - \widehat{Z}(\mathbf{s}_i; t_j))^2$$

$$\widehat{Z}(\mathbf{s};t) = \widehat{\beta}_0 + \widehat{\beta}_1 X_1(\mathbf{s};t) + \dots + \widehat{\beta}_p X_p(\mathbf{s};t)$$

• 分散パラメータも同時に得られる $\hat{\sigma}_e^2 = \frac{RSS}{mT-p-1}$

OLSによる予測

- カーネル法より滑らか
 - 滑らかな基底関数を使っているため
- 予測誤差に時空間的パターンはあまりない
 - 共変量で時空間的ばらつきの大部分を 説明できているため
- 予測誤差は端のほうで大きい
 - 外挿に近くなる
- 観測誤差とモデルの当てはまりの 悪さが区別できない

Predictions (degrees Fahrenheit)

Prediction errors (degrees Fahrenheit)

3.2.1 モデル診断: 独立でない誤差

- 残差のセミバリオグラム
 - 元データのセミバリオグラムと比較
- 共変量でデータの時空間変動をある程度説明できているが、すべてではない

非独立性の検定 (Tech Note 3.2含む)

- ダービン・ワトソン検定 Durbin-Watson test
 - 時系列の連続する点での非独立性
 - 自己相関が強いと小さくなる

$$d = \frac{\sum_{t=2}^{T} (\widehat{e}_t - \widehat{e}_{t-1})^2}{\sum_{t=1}^{T} \widehat{e}_t^2}$$

• モランのI統計量 Moran's /

• 空間的自己相関の統計量

$$I = \frac{m \sum_{i=1}^{m} \sum_{j=1}^{m} w_{ij} (Z_i - \bar{Z})(Z_j - \bar{Z})}{(\sum_{i=1}^{m} \sum_{j=1}^{m} w_{ij})(\sum_{i=1}^{m} (Z_i - \bar{Z})^2)}$$

- 距離で重みづけしたピアソンの相関係数
- 時間も含めるとSpace-time Index
- ダービン・ワトソン検定の時空間版
 - $\hat{\gamma}_{e}(||\mathbf{h}_{1}||; \tau_{1})$: 最小の時間・空間ラグでのセミバリオグラム

$$F \equiv \left| \frac{\widehat{\gamma}_e(||\mathbf{h}_1||; \tau_1)}{\widehat{\sigma}_e^2} - 1 \right|$$

OLS残差の自己相関

- 時間的・空間的な自己相関
 - 検定はLabで
- モデルが時空間的変動を説明 しきれていない
 - 環境変動の解析ではよくあること

非独立性への対処

- 一般化最小二乗法Generalized least squares, GLS
 - ・誤差の独立性という仮定を緩め、誤差間の共分散を許す
 - e~N(0, C_e) C_e:時空間共分散行列
 - ・ 共分散行列が既知である必要 ⇒ 4章
 - データのない点を含む、予測したい範囲内の全点について
- 目的によっては気にしなくてもよい
 - OLSのパラメータ推定値・予測値は非独立性を無視しても不偏
 - 標準誤差・予測標準誤差はバイアス
 - 正の自己相関なら過少推定 → 推定・予測の精度を過大評価

3.2.2 時空間モデルのパラメータ推定

- どの変数が重要なのかを知りたい
- GLSだとSE大きいが傾向は同じ

- ・緯度・経度・緯度:経度は重要でなさそう(信頼区間に0を含む)
 - 緯度が有意でないのは意外だが、 緯度と他の変数の交互作用などが あるためか

	Dependent variable:			
	Max. Temperatur	re (°F)		
	$\hat{\beta}_{\mathrm{ols}}\left(SE(\hat{\beta}_{\mathrm{ols}})\right)$	$\hat{\beta}_{\mathrm{gls}} \left(SE(\hat{\beta}_{\mathrm{gls}}) \right)$		
Intercept	192.240** (97.854)	195.320** (98.845)		
Longitude	1.757(1.088)	1.780(1.097)		
Latitude	-1.317(2.556)	-0.974(2.597)		
Day	$-1.216^{***} (0.134)$	-1.237^{***} (0.136)		
Longitude × Latitude	-0.026 (0.028)	-0.022(0.029)		
Longitude × Day	-0.023^{***} (0.001)	-0.023****(0.001)		
Latitude × Day	-0.019***(0.002)	-0.019***(0.002)		
α_1	16.647*** (4.832)	19.174*** (4.849)		
α_2	18.528*** (3.056)	16.224*** (3.125)		
α_3	-6.607**(3.172)	-4.204(3.199)		
α_4	30.545*** (4.370)	27.500*** (4.493)		
α_5	14.739*** (2.747)	13.957*** (2.759)		
α_6	-17.541^{***} (3.423)	-15.779****(3.461)		
α_7	28.472*** (3.552)	25.985*** (3.613)		
α_8	-27.348****(3.164)	-25.230***(3.202)		
α_9	-10.235**(4.457)	-7.401(4.556)		
α_{10}	10.558**** (3.327)	8.561** (3.396)		
α_{11}	-22.758****(3.533)	-19.834****(3.569)		
α_{12}	21.864*** (4.813)	17.771*** (5.041)		
Observations	3,989	3,989		

Note: p < 0.1; **p < 0.05; ***p < 0.01

他の問題

- 多重共線性
 - 一部変数の線形結合が他の変数と近似
 - 標準誤差が増大する
 - e.g. 基底関数5は有意だが、基底関数5にノイズを加えた関数をモデルに入れると有意でなくなる(Lab 3.2)
- 交絡
 - 重要な変数が無視されている/無関係な変数が含まれていることで解釈 や有意性が変わる
 - 残差が非独立ということは、モデルにない共変量が重要
 - 予測が目的なら、非独立性をモデルに組み込んでしまえばよい

3.2.3 変数選択

- 重要な共変量だけを選び出す
- 総当たり
 - 全共変量の有無を総当たりで試し、予測力が最大のものを選ぶ
 - 共変量p個で 2^p 個のモデルを計算する必要がある
- 効率的なアルゴリズムを用いたbest subset法
- 自動的な変数選択アルゴリズム
 - 変数増加法forward selection : p>nでも使える
 - 変数減少法backward selection
 - Mixed selection
 - LASSO, Ridge

変数増加法forward selection

- 切片のみモデルから始め、事前に決めた停止条件を満たすまで、 評価基準を最も改善する変数を一つずつ追加していく
- AIC基準で4変数までのモデル
 - フルモデルで有意でない緯度が最初
 - ・ 緯度:日が入ると係数は減少

• RSS基準にすると少し結果が変わる

	Dependent variable:							
	Max. Temperature (°F)							
	$eta_{ m ols}$							
	(1)	(2)	(3)	(4)	(5)			
Intercept	88.673***	148.940***	147.840***	136.810***	138.420***			
Latitude		-1.559***	-1.559***	-1.274***	-1.273***			
Day			0.069***	0.755***	0.755***			
Latitude × Day				-0.018***	-0.018***			
Longitude					0.019			
Observations	3,989	3,989	3,989	3,989	3,989			
Residual Std. Error	7.726	4.710	4.669	4.626	4.625			

	Dependent variable:							
	(1)	(2)	(3)	(4)	(5)			
Intercept	88.673***	148.940***	147.780***	140.420***	122.020***			
Latitude		-1.559***	-1.560***	-1.366***	-0.838***			
Longitude × Day			-0.001***	-0.006***	-0.011***			
Latitude × Day				-0.012***	-0.023***			
α_{10}					-6.927***			
Observations	3,989	3,989	3,989	3,989	3,989			
Residual Std. Error	7.726	4.710	4.661	4.607	4.470			

Technical Note 3.4: 正則化

• RSSに罰則項を足してパラメータ推定値をshrinkさせる

$$\sum_{j=1}^{T} \sum_{i=1}^{m} \left[Z(\mathbf{s}_i; t_j) - (\beta_0 + \beta_1 X_1(\mathbf{s}_i; t_j) + \ldots + \beta_p X_p(\mathbf{s}_i; t_j)) \right]^2 + \lambda \sum_{\ell=1}^{p} |\beta_{\ell}|^q$$

- Ridge回帰:q=2 係数が0に近く推定される
- Lasso回帰:q=1 一部の係数が0になる \rightarrow 変数選択
- ベイズ法:係数に事前分布を与える より一般的
 - Ridge · Lassoに相当するものもベイズで定式化できる
- 罰則付きの推定値はスケール不変でないので、Xをスケーリング・センタリングする