$$3090. \prod_{n=1}^{\infty} \left[1 + \frac{(-1)^{n+1}}{n^p} \right]. \quad 3091. \prod_{n=2}^{\infty} \left[1 + \frac{(-1)^n}{\ln n} \right].$$

$$3092. \prod_{n=2}^{\infty} \frac{\sqrt{n}}{\sqrt{n} + (-1)^n}. \quad 3093. \prod_{n=1}^{\infty} n^{(-1)^n}.$$

$$3694. \prod_{n=1}^{\infty} \sqrt[n]{n^{(-1)^n}}. \quad 3095. \prod_{n=1}^{\infty} \left[1 + \frac{(-1)^{n(n-1)/2}}{n} \right].$$

$$3096. \left(1 + \frac{1}{\sqrt{1}} \right) \left(1 - \frac{1}{\sqrt{3}} \right) \left(1 - \frac{1}{\sqrt{5}} \right) \times$$

$$\times \left(1 + \frac{1}{\sqrt{2}} \right) \left(1 - \frac{1}{\sqrt{7}} \right) \left(1 - \frac{1}{\sqrt{9}} \right) \left(1 + \frac{1}{\sqrt{3}} \right) \dots$$

$$3097. \left(1 + \frac{1}{1^{\alpha}} \right) \left(1 - \frac{1}{2^{\alpha}} \right)^2 \left(1 + \frac{1}{3^{\alpha}} \right) \left(1 + \frac{1}{4^{\alpha}} \right) \times$$

$$\times \left(1 - \frac{1}{5^{\alpha}} \right)^2 \left(1 + \frac{1}{6^{\alpha}} \right) \dots$$

3098. Показать, что произведение

$$\left(1 + \frac{1}{\sqrt{2}} + \frac{1}{2}\right) \left(1 - \frac{1}{\sqrt{2}}\right) \left(1 + \frac{1}{\sqrt{3}} + \frac{1}{3}\right) \times \left(1 - \frac{1}{\sqrt{3}}\right) \cdots$$

сходится, хотя ряд

$$\left(\frac{1}{\sqrt{2}} + \frac{1}{2}\right) + \left(-\frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{3}} + \frac{1}{3}\right) + \left(-\frac{1}{\sqrt{3}}\right) + \cdots$$

расходится.

3099. Показать, что произведение $\prod_{n=1}^{\infty} (1 + \alpha_n)$, где

$$lpha_n = \left\{ egin{array}{ll} -rac{1}{\sqrt{k}}, & ext{если } n=2k-1, \ rac{1}{\sqrt{k}} + rac{1}{k} + rac{1}{k\sqrt{k}}, & ext{если } n=2k, \end{array}
ight.$$

сходится, хотя оба ряда $\sum_{n=1}^{\infty} \alpha_n$ и $\sum_{n=1}^{\infty} \alpha_n^2$ расходятся,