Section 13 Acoustics

- 13.1 Abbreviations and Terminology
- 13.2 Velocities, Spectrum and Reference Levels
- 13.3 Pressure, Intensity
- 13.4 Weighting Curves
- 13.5 1/3 Octave Center Frequencies
- 13.6 References

13.1 Abbreviations and Terminology

Abbreviations

ANSI Acoustic National Science Institute

dB decibels

f frequency, cycles/sec

Hz Hertz nm 10^{-9} meters P sound power p pressure pW 10^{-12} Watts

x RMS value of quantity x_o reference value of quantity

 μPa 10⁻⁶ Pascals

Terminology

decade band with the upper frequency x10 that of thelower.

decibels measure of a magnitude, $dB = 10log_{10}(mag)$.

far field beyond the near field (region where sound level drops -6 dB as distance from the source

doubles).

Hertz frequency in cycles/second.

narrow band band whose width is less than one-third octave but less than 1% of the center frequency near

field range within a distance equal to the wavelength of the lowest frequency emitted or twice

the greatest dimension of the subject.

octave a band with the upper freq exactly twice the lower freq. (common octaves include .0375-.075,

.075-.15, 15-.3, .6-1.2, 1.2-2.4, 2.4-4.8, 4.8-9.6 kHz).

pink noise has equal energy in each octave from 20 to 20,000 Hz, or with an energy content inversely

proportional to frequency.

random noise does not have a uniform frequency spectrum and has an amplitude, as a function of time, consis

tent with a Gaussian distribution curve.

third-octave highest frequency = 1.26 x lower frequency (ratio= $2^{1/3}$)

white noise has a constant spectrum level over the entire band of audible frequencies (need not be random).

13.2 Acoustic Velocities, Spectrum, and Reference Levels

Acoustic Velocity (speed of sound)

<u>Medium</u>	Approximate V	elocity/
Air (20° C)	343	m/s
Fresh water	1,480	m/s
Aluminum	5,150	m/s
Concrete	3,600	m/s
Glass	5,300	m/s
Steel	6,000	m/s

Wavelength (λ) = acoustic velocity frequency

Human hearing range is approximately 20 to 20,000 Hz

- Ultrasound lies above 20,000 Hz
- Infrasound lies below 20 Hz

Acoustic Reference Levels

<u>Quantity</u>	<u>Formula</u>	
Velocity (L_{ν})	$20\log(v/v_0)$	$v_o = 10 \text{ nm/s}^2$
Intensity (L_I)	$10\log(I/I_0)$	$I_o = 1 pW/m^2$
Sound Power Level (L_W)	$10\log(P/P_0)$	Po = 1 pW
Sound Pressure Level " SPL " (L_p)	$20\log(p/p_0)$	$20\mu Pa$ (air)
Pressure Spectrum Level (PSL)*	SPL – 10log⊿f	(dB)
Pressure Band Level (PBL)	$PSL + 10log\Delta f$	(dB)
Overall SPL (OASPL)	$10log_{10} \Sigma 10^{SPL/10}$	20 μ <i>Pa</i> (air)

^{*} the SPL contained within a band 1 Hz wide

13.3 **Acoustic Pressure and Intensity**

Sound Pressure from Sound Power

Transmission Environment

Free Field $L_W + log Q - 20 log r - 10.8 dB$ Reflecting Plane $L_W + log Q - 20 log r - 7.8 dB$ Reverberant Room $L_W + log Q - 20l og R - 6.2 dB$

where r = distance from source

Q =directivity index of source

R = room constant

Acoustic Intensity

I -
$$\underline{\text{Imaginary}[G_{yx}(f)]} = \underline{\text{Im}[G_{yx}(f)]}(\text{for air})$$

 $4\pi\rho_0\Delta rf$ 16.25 Δrf

where

 ρ_0 = fluid density = 1.293 kg/m³ for air Δr = microphone spacing (meters) f = frequency

Intensity Spectrum Level (ISL)

Intensity level of a sound contained within a band 1Hz wide

$$ISL = 10 \log \underline{I} = IL - 10 \log \Delta f \quad (dB)$$

$$I_{\alpha} \Delta f$$

where f = center frequency of band

 $I = \text{sound intensity (watts/}m^2)$ $I_o = 10^{-12} \text{ watt/}m^2 \text{ reference intensity}$

 $\Delta f = \text{bandwidth } (Hz)$

0 0				
Nominal	Exact	A	В	C
Freq (Hz)	Freq (Hz)	<u>(dB)</u>	<u>(dB)</u>	(dB)
10	10.00	-70.4	-38.2	-14.3
12.5	12.59	-63.6	-33.3	-11.3
16	15.85	-56.4	-28.3	-8.4
20	19.95	-50.4	-24.2	-6.2
25	25.12	-44.8	-20.5	-4.4
31.5	31.62	-39.5	-17.1	-3.0
40	39.81	-34.5	-14.1	-2.0
50	50.12	-30.3	-11.6	-1.3
63	63.10	-26.2	-9.4	-0.8
80	79.43	-22.4	-7.3	-0.5
100	100.0	-19.1	-5.6	-0.3
125	126.9	-16.2	-4.2	-0.2
160	158.5	-13.2	-2.9	-0.1
200	199.5	-10.8	-2.0	.0
250	251.2	-8.7	-1.4	.0
315	316.2	-6.6	-0.9	.0
400	398.1	-4.8	-0.5	.0
500	501.2	-3.2	-0.3	.0
630	631.0	-1.9	-0.1	.0
800	794.3	-0.8	.0	.0
1,000	1,000	.0	.0	.0
1,250	1,259	0.6	.0	.0
1,600	1,585	1.0	.0	-0.1
2,000	1,995	1.2	-0.1	-0.2
2,500	2,512	1.3	-0.2	-0.3
3,150	3,162	1.2	-0.4	-0.5
4,000	3,981	1.0	-0.7	-0.8
5,000	5,012	0.6	-1.2	-1.3
6,300	6,310	-0.1	-1.9	-2.0
8,000	7,943	-1.1	-2.9	-3.0
10,000	10,000	-2.5	-4.3	-4.4
12,500	12,589	-4.3	-6.1	-6.2
16,000	15,849	-6.7	-8.5	-8.6
20,000	19,953	-9.3	-11.2	-11.3

13.5 1/3 Octave Center Frequencies (ANSI S1.6 1984)

Band	Nominal	Exact	Octave
<u>No.</u>	Center (Hz)	Center (Hz)	Center (Hz)
1	1.25	1.26	
2	1.60	1.58	
3	2.00	2.00	2.0
4	2.50	2.51	
5	3.15	3.16	
6	4.00	3.98	4.0
7	5.00	5.01	
8	6.30	6.31	
9	8.00	7.94	8.0
10	10.00	10.00	
11	12.5	12.59	
12	16.0	15.58	16.0
13	20.0	19.95	
14	25.0	25.12	
15	31.5	31.62	31.5
16	40.0	39.81	
17	50.0	50.12	
18	63.0	63.10	63.0
19	80.0	79.43	
20	100.0	100.00	
21	125.0	125.89	125.0
22	160.0	158.49	
23	200.0	199.53	
24	250.0	251.19	250.0
25	315.0	316.23	
26	400.0	398.11	
27	500.0	501.19	500.0
28	630.0	630.96	
29	800.0	794.33	
30	1,000	1,000.0	1,000
31	1,250	1,258.9	
32	1,600	1,584.9	
33	2,000	1,995.3	2,000
34	2,500	2,511.9	
35	3,150	3,162.3	
36	4,000	3,981.1	4,000
37	5,000	5,011.9	·
38	6,300	6,309.6	
39	8,000	7,943.3	8,000
40	10,000	10,000.0	•
41	12,500	12,589.3	
42	16,000	15,848.9	16,000
43	20,000	19,952.6	•

13.6 References

- 13.1 Beranek, Leo L., Acoustic Measurements, John Wiley & Sons, New York, New York, 1956.
- 13.2 Peterson, Arnold P.G. and Gross, Ervin E., Jr., *Handbook of Noise Measurement*, GenRag Incorporated, Concord, Massachusetts, 1978.
- 13.3 Measuring Sound, (Pamphlet), Bruel & Kjaer, Naerum, Denmark, September 1984.
- 13.4 Pocket Handbook, Noise, Vibration, Light, Thermal Comfort, Bruel & Kjaer, Naerum, Denmark, 1986.

Additional Reading

Hunter, Joseph L., Acoustics, Prentice-Hall Incorporated, Englewood Cliffs, New Jersey, 1957.

NOTES