CS & IT ENGINEERING

IPv4 Addressing Lecture No-21

By-Ankit Doyla Sir

TOPICS TO BE COVERED

classics Addressing

Supernetting in Classless Addressing

Supernetting in Classless addressing

The process of combining two or more network to get a single network is called as supernetting. Routing table

	NID	≤m	IL
	_	-	a
1	_	_	Ь
	-	-	~
7	-	-	d
	-	_	0
	-	_	f
	-	_	g
L	-	-	4
Γ	0.0.0.0	0.0.0.0	i
Lo DeFault entry			

Advantage of Supernetting

- Super netting Reduce Routing table entry.
- Router will take less time for processing the packet.
- c. It improve flexibility of IP Address Allotment i.e. If some one required 500 Address then we have no need to purchase class B network we can combine two class C network.

classFul Addressing

X=5001PAddKesses

Rules of Supernetting

- Network ID must be contiguous
- b. Size of the Network must be same & No. of Network must be in a power of 2
- c. First Network ID must be div. by tota size of the supernet.

```
First IP And Add must be divisible by total No. OF IP Addresses in the superpret
```


Ex - 1

```
N: 128.56.24.0/24, NID=246t, HID=8 = 2 IP
Ng: 128.56.25.0/24, NID-24bit, HID=8 => 28IP
N3: 128.56.26.0/24, NID = 24 bit, HID= 2 = 2 IP
N4: 128.56.27.0/24, NID = 24 bit, HID=8 = 2 IP
1. Network ID must be contiguous (True)
     N: 128.56.24.0/24
         NID= 24, HID= 8
```

```
Nj: 128.56.24 . - -
       DIN
                HID
   198.56.24.0000000 - 128.56.24.0 (NID)
    128.56.24.00000001 - 128.56.24.1
    128.56.24.00000010 - 128.56.24.2
    128.56.24.00000011-0128.56.24.3
   128-56-24-11111111-128-56-24-255 (DBA)
                          128.56.25.0
```



```
NQ: 128.56.25.024

128.56.25. -----
NID HID

128.56.25.00000000 - 128.56.25.0
```

128.56.25. 11111111 → 128.56.25.255 + 1

138.26.36.0

N3: 128.56.26.0 24


```
NID HID
```

```
128.26.96.0000000 → 128.26.0
```

N4: 128.26.27 0 24

```
NID NID 158.26.27 · 00000000 - 158.26.27 · 0
```

. . . .

128·56·27 · 1111111 - 128·56·27 · 255

- 2. Size of the NIW must be same and No. of nIw's must be in a Power of 2. (Touc)
 - same size=28, No. of Networks=4=22
- 3. First NID must be divisible by total size of supernet

Total size of supernut =
$$2^8 + 2^8 + 2^8 + 2^8 = 4 \times 2^8 = 2^7 \times 2^8 = 2^9$$
 $128.56.24.0$

N: 128.56.24.0 24

Na: 128.36.25.0 | 24

Na: 128.56.26.0124

N4: 128.56.27.0124

1 DIP: 128.56.24.192

DIP: 198.56.94.192

AND AND

SM: 255.255.0 NID = 128.86.94.0

X without supernetting Routing table at R,

	NID	sm	IF
	138.56.34.0	255.255.255.0	a
	128.56.25.0	255.255.255.0	a
Į		255.255.255.0	
	128.56.27.0	२55·२55·२55·0	۵

I DIP: 178.56.77.137

DIP = 128.56.27.132 AND AND SM = 255.255.255.0 NID = 128.56.27.0

Supernet mask

It is a 32 bit number used to generate a single IP address for the group of network based on the following two rules

Rule1: No of 1s in the supernet mask indicate fixed part

Rule2: No of 0s in the supernet mask indicate variable part

```
N1: 178: 56:24:0 | 24

N2: 198: 56:25:0 | 24

N3: 198: 56:26:0 | 24

N4: 198: 56:27:0 | 24
```


Supoput = 255.255.252.0


```
      IPAdd
      = 128:56:24:0

      AND
      AND

      SM
      Substruct Mask
      = 255:255:252:0

      NID
      Substruct-id
      = 128:56:24:0
```


DIP= 158.56.54

with supernutting table at Ri

supernet-iq	supernet mask	Interface
128.56.24.0		

AD Ryle For supernul-id

Superputid = First IP Address Always Superputid = 128.56.24.0

AD Ryle Fox supernut Mask

Total size of supernut=28+28+28+28+28

HD = 10 bit

NID = 32-10 = 22

Supernut Mask = 255.255.252.0

Final Ans: 128.56.24.0 | 22

Problem Solving On Supernetting

Q.1

Perform CIDR aggregation on the following IP

- A 57.6.96.0/21
- B 57.6.96.0/20
- 57.696.0/19
- D 57.6.96.0/18

Notwork-19 must be contiguous (True)

First NID myst be div. by total size of Supernel

Pw

```
Supernutid = First IP Address Always

Supernutid = 57.6.96.0

Supernut Mask
```

total size of supernut = a^{13} HID = 13 bit NID = 3a - 13 = 19 bit

Final Ans: 57.6.96.0 19

Perform CIDR aggregation on the following

IP addresses HID NID Myst be contiguous (Tryc)

194.24.0.0/21, HID=IIbit @ same size & No. OF NIW's must be in a power of Q (False)

194.24.0.0/19

194.24.16.0/20, но- 12ы

194.24.0.0/21

194.24.0.0/20

194.24.0.0/22


```
194.24.0.0 21 7
```

- 1 contiguous (True)
- @ same size=2", & No. of n/w's=2=2' (True)
- 3 total size of supernut = 2"+2" = 2*2" = 212
 194.24.0.0
 Rem or HID

Superind id = 194.24.0.0

Total size of superint = 2¹²

HID=12 bit, NID=20bit

194.24.0.0 | 20 } -194.24.16.0 | 20 }

- 1 contiguous (Touc)
- 3 same size = 212 = No OF n/w's = 2

Supernutid = 1st IP Add Always = 194.24.0.0

total size of supernd = 213

HID=13bit NID=32-13=19bit

Final Ans: 194.24.0.0 19

supernutmask

Consider routing table of an organization's router shown below:

(Gate-2022-2marks)

Subnet number	Subnet Mask	Next Hop
12.20.164.0	255.255.252.0	R1
12.20.170.0	255.255.254.0	R2
12.20.168.0	255.255.254.0	Interface 0
12.20.166.0	255.255.254.0	Interface 1
Default		R3

Which of the following prefixes in CIDR notation can be collectively used to correctly aggregate all of the subnets in

the routing table? 12.20.164.0/21

12.20.164.0/22

12.20.168.0/22

12.20.164.0/20

Supernetting in Classfull addressing

Ex - 1

```
200.96.86.0
200.96.87.0
200.96.88.0
200.96.89.0
   class-c
```

1 Configuous (True)

- 3 Same size = 28 = No. of n/w's = 4 = 22 (1)
- (3) total size of subunut = $2^8 + 2^8 +$

200.96.86.0

False

supermetting Not Possible

Ex - 2

```
198.47.32.0
198.47.33.0
198.47.34.0
198.47.35.0
 class-c
```


- 1) Contiguous (True)
 - 2) same size = 28 & No. OF 1/w's = 4=22 (t)
- 3) total size of supernet = 28+28+28+28

Supernut Mask

 NID HID

[1111111 | 1111111 | 11111100 · 00000000 -> 255.255.252.0

Supernul bit 5=2

No. of N/w's that
must be combined = 2 = 4

supernut Mask:

Class-C

De Fault Submit Mask: 255.255.255.0

NID

NID

HID

1111111.11111.111.0000000

Ex - 3

128.56.24.0

128.56.25.0

128.56.26.0

128.56.27.0

Class-B

NID HID

we can't apply subunutting on single N/w

Ex - 4

128.56.0.0 128.57.0.0 128.58.0.0 128.59.0.0

- (2) same size = 216 & No. of n|w's = 4=22
- 3) Total size of supernut = 216 + 216 + 216 + 216 + 216 = 218 (True)

superintid= 128.56.0.0

total size OF superint = 218

HID=186it, NID=146it

HID

MID Suzegnit Mask = 11111111. 11111100.0000000.000000 -> 255.252.0.0

Supernet bits = 2

No- of nows must be Combined = 2? = 4

Cass-B Default subrul Misk: 355.255:0.0 HID

Subnet Mask	Supernet Mask	W
(1) No. of 1's in the subnet Mask either equal to NID bits or more than NID bits	(1) No. of 1's in the supernet mask always less than NID bits	
(2) Subnet mask is applicable for single n/w or subnetting is applicable For single N/w	(2) Supernet mask is applicable for two or more network or submitting is applicable	e Fox
(3) In subnetting we borrowed from Host ID	(3) In supernetting we borrowed from network-ID	or more
Classa: 255.0.0.0		

Class B: 255.255.0.0 class C: 255.255.255.0

class-A

255.192.0.0 (Subnet Mask)

Address	class-A	class-B	class-c
255.0.0.0(8-18)	subrut Mask	superful mask	Supernul Mask
à 55. ≥55.≥52.0 (22-is)	Subnet Mask	subnet mask	supernet Mask
વે55· વે55· વે55· o(ર4-1	s) submit mask	subnut mask	Subrut masis
255.224.0.0	Subnit mask	superned Mask	supernet mask

11-15)

