Métodos Numéricos

Resolución de Sistemas de Ecuaciones No Lineales

Diego Passarella

Universidad Nacional de Quilmes

Definición del Problema

Sea $\vec{F}(\vec{x}): \mathbb{R}^n \to \mathbb{R}^n$ formada por n funciones no lineales $f_i(\vec{x}): \mathbb{R}^n \to \mathbb{R}$. Se busca un $\vec{\alpha}$ tal que $\vec{F}(\vec{\alpha}) = \vec{0}$:

$$\vec{F}(\vec{x}) := \begin{cases} f_1(x_1, x_2, \cdots, x_n) &= 0 \\ f_2(x_1, x_2, \cdots, x_n) &= 0 \\ \vdots &= \vdots \\ f_n(x_1, x_2, \cdots, x_n) &= 0 \end{cases}$$

SEnL

Observaciones:

- Generalmente es difícil determinar la existencia y unicidad de la solución.
- Los métodos numéricos empleados requieren una muy buena aproximación inicial de la solución para poder converger (no hay algoritmo de bisección adecuado en \mathbb{R}^n).
- La resolución de SEnL es equivalente a resolver un proceso de optimización de una función objetivo $\phi(\vec{x}) : \mathbb{R}^n \to \mathbb{R}$.

Método de Newton para SEnL

De forma similar para el caso de una $f: \mathbb{R}^n \to \mathbb{R}$, se construye una aproximación de $\vec{F}(\vec{x})$ por medio de un polinomio de Taylor de orden 1 en \mathbb{R}^n .

$$\vec{P}_1(\vec{x}^{(k+1)}) = \vec{F}(\vec{x}^{(k)}) + \mathcal{J}F(\vec{x}^{(k)}) \left(\vec{x}^{(k+1)} - \vec{x}^{(k)}\right) \approx \vec{0}$$

A partir de esta construcción se genera una sucesión que, si el problema está bien condicionado y el iterante inicial es una buena aproximación, convergerá a una solución.

$$\vec{x}^{(k+1)} = \vec{x}^{(k)} - \mathcal{J}F(\vec{x}^{(k)})^{-1}\vec{F}(\vec{x}^{(k)})$$

Método de Newton para SEnL

Matriz Jacobiana:

$$\mathcal{J}F(\vec{x}^{(k)}) = \begin{pmatrix} \frac{\partial f_1(\vec{x})}{\partial x_1} & \frac{\partial f_1(\vec{x})}{\partial x_2} & \dots & \frac{\partial f_1(\vec{x})}{\partial x_n} \\ \frac{\partial f_2(\vec{x})}{\partial x_1} & \frac{\partial f_2(\vec{x})}{\partial x_2} & \dots & \frac{\partial f_2(\vec{x})}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n(\vec{x})}{\partial x_1} & \frac{\partial f_n(\vec{x})}{\partial x_2} & \dots & \frac{\partial f_n(\vec{x})}{\partial x_n} \end{pmatrix}$$

Resolución de la sucesión:

$$\mathcal{J}F(\vec{x}^{(k)})\delta\vec{x}^{(k+1)} = -\vec{F}(\vec{x}^{(k)})$$

$$\vec{x}^{(k+1)} = \vec{x}^{(k)} + \delta \vec{x}^{(k+1)}$$

Es importante que el condicionamiento de $\mathcal{J}F(\vec{x}^{(k)})$ sea bajo en cada iteración.

Algoritmo

Propongo iterante inicial x

$$k = 0$$

Mientras $(norm(F(x)) > Tol) \& (k \le Nmax)$

Resolver
$$\mathcal{J}F(\vec{x}^{(k)})\delta\vec{x}^{(k+1)} = -\vec{F}(\vec{x}^{(k)})$$

$$\vec{x}^{(k+1)} = \vec{x}^{(k)} + \delta \vec{x}^{(k+1)}$$

$$k = k + 1$$

$$\vec{F}(\vec{x}^{(k)})$$

Incluir todos los mensajes de error y verificaciones pertinentes.

Método de Newton para SEnL

Comentarios Generales:

- La convergencia no está garantizada.
- Es muy conveniente comenzar a iterar cerca de una solución (en entornos donde $\vec{P}_1(\vec{x})$ sea una buena aproximación de $\vec{F}(\vec{\alpha}) = \vec{0}$).
- Si el problema está condicionado y $\vec{F}(\vec{x})$ es suficientemente regular, el método converge con orden 2.
- Es necesario conocer la matriz Jacobiana y poder evaluarla (complicado para n grandes, ¿Cálculo simbólico?).
- Para simplificar el problema, la matriz Jacobiana puede evaluarse cada s—iteraciones ($s \ge 2$). Esto degrada el orden de convergencia. Conveniente por la factorización.

SEnL como un Problema de Optimización

Problema de Optimización:

Encontrar un $\vec{\alpha} \in \mathcal{D} \subset \mathbb{R}^n$ tal que:

$$\phi(\vec{\alpha}) \le \phi(\vec{x}), \quad \forall \vec{x} \in \mathcal{D}$$

(el problema es equivalente si se plantea \geq) Este problema se puede plantear como encontrar un \vec{x} tal que:

$$\vec{g}(\vec{x}) = \nabla \phi(\vec{x}) = \vec{0}$$

con ∇ el vector gradiente, resultando:

$$\nabla \phi(\vec{x}) = \left(\frac{\partial \phi(\vec{x})}{\partial x_1}, \frac{\partial \phi(\vec{x})}{\partial x_2}, \cdots, \frac{\partial \phi(\vec{x})}{\partial x_n}\right)^t$$

Ejercicios Propuestos

Encontrar la/s solución(es) de:

$$F(x) = \begin{cases} x_1^2 + x_2^2 - 1 \\ 2x_1 + x_2 - 1 \end{cases} (S1)$$

$$F(x) = \begin{cases} x_1^2 + x_2^2 - 1\\ \sin(\frac{\pi}{2}x_1) + x_2^3 \end{cases} (S2)$$

Proponer un método para generar aproximaciones iniciales adecuadas para el método de Newton.