

Plan du cours – Les blocs

(Bloc1)

Introduction: Le besoin, concepts et définitions

(Bloc 6) Définition des besoins et gestion de projet

(Bloc 7) Techniques de réalisation et opération

Lectures relatives

• Suggéré:

Data Warehousing Fundamentals, A Comprehensive Guide for IT Professionals,

Paulraj Ponniah

- Chapitres 10 et 11

Annexes:

- Dimensional model design checklist
- Logical table design
- Physical database design
- Dimensional model document
- Derived fact worksheet
- INF735 Bloc 2 Modélisation étoile Exercices

Concepts Clés du Bloc

- 3 dimensions (et +) = 1 cube
- Pas de 3^{ième} forme normale
- Le modèle vient du besoin informationnel
- L'entrepôt grandira plus vite en espace disque que les systèmes opérationnels puisque les doublons y sont non seulement permis mais encouragés.

Rappel de la structure générale

MODÈLE MULTIDIMENSIONNEL

Cube

1- ÉTOILE

Modèle de données

1. Étoile

Modélisation dimensionnelle .vs. Opérationnel (INF732)

- Opérationnel (Entité Relation/Association):
 - Tables et jointures en chaines
 - Normalisées (3 FN)
- Étoile:
 - Faits et dimensions
 - Pas normalisé
 - Jointures simples

Technique de conception logique permettant de structurer les données de manière à les rendre intuitives aux utilisateur d'affaires et offrir une bonne performance aux requêtes.

- Divise les données en faits et dimensions;
- Les faits (mesures) sont généralement des valeurs numériques provenant des processus d'affaires;
- Les dimensions fournissent le contexte (qui, quoi, quand, où, pourquoi et comment) des faits;
- Schéma en étoile: une table de faits entourée de plusieurs tables de dimension.

Modélisation dimensionnelle

• Ce que c'est:

- C'est la technique viable pour l'entrepôt de données
- Série de dimensions (éléments d'analyse) sur la données (fait selon une granularité)
- Chaque dimension représente un choix pour l'utilisateur.
 (Le modèle Entité-Relation ne permet pas à l'utilisateur de naviguer)

- À quel niveau de détail (faits)?
 - Selon le besoin exprimé
 - Idéalement le plus de détail possible
 - Selon les dimensions créées.

Modèle en étoile - Exemple

Créer pour BD commande herbe à puce

Figure 1. Star Schema Example

by Cheryl Grandy

Exemple (modèle logique)

Modèle en Étoile

Avantages

- Relationnel avec des liens 1 à plusieurs
- pas normalisée
- Naturel pour l'utilisateur
- Optimise la navigation

« Un entrepôt utile est basé sur la granularité (donnée de base)! »

- Aide le traitement des requêtes informationnelles
- Tremplin pour d'autres schémas propriétaires.

Provient de la transaction ou évènement, pas du contexte

- Mesures / Quantifiable / calculé
 - Additives (Qté vendue, \$ vendu)
 - Semi-additives (ex: solde client selon le mois)
 - Non-additives (pourcentage d'escompte)
- Non Quantifiable

Ex: présence et absence (mettre 1)

- Information à occurrence unique par transaction/évènement
- Booléen indicateur

Modèle en Étoile - clés

Tables de dimensions

- → Qualitatifs, circonstances et éléments déterminants du fait
- Artificielle (pas la clé naturelle, i.e. celle de la source opérationnelle)
 - + Permet les modifications de type 2 et 3
 - + Ne changera pas dans le temps
 - + Permet d'identifier la même entité même si a 2 clés naturelles différentes

• Table(s) de faits

- → Éléments quantifiables, mesurables, calculés
- Ensemble des clés étrangères
 - + identifiant (ex: no de facture)

ou séquentiel au besoin

Pas de clé nulle

Pas de clé étrangère nulle

Modèle en étoile – Exemple de requête

Figure 4. Multidimensional Query Example

by Cheryl Grandy

Annexe

2- FLOCON

2. Flocon

Figure 1. Star Schema Example

Hiérarchie des dimensions

- Un ensemble d'attributs ayant une relation hiérarchique (ex: catégorie et produit)
- Définissent les chemins d'accès dans les données (drill-down paths);

- Solutions:
 - → Dimensions séparées liées directement au fait (**)
 - → Dans 1 seule table de dimension
 - → Flocon

** Hiérarchie peut être établie dans la métadonnée du cube ou « univers »

Quand?

- Peu de données par ligne de dimension ou liste de possibilités d'un attribut trop longue pour un querry
- Facilité de répliquer la normalisation du system opérationnel
 - Le flocon reflète la façon de penser des utilisateurs
- L'outil trop simple est plus performant de cette façon (exemple: COGNOS Powerplay)
- Ajout à une dimension mal planifié.

Normalisation - ATTENTION

Bien que les flocons existent, il est préférable de ne pas normaliser.

Il est d'avis général que:

- OK de normaliser pour l'approvisionnement en données (« Staging »)
- Pas normaliser pour le « querry » utilisateur
 - Difficile à comprendre par un utilisateur
 - Pas performant pour l'informationnel
- Pour présentation à un utilisateur, la données doit être dimensionnelle!

Santé et Bien-être Canada considère que le danger de la normalisation dans la présentation informationnelle croit avec l'usage. Éviter de normaliser.

Normalisation - ATTENTION

Désavantages du flocon:

- Plus il y a de niveaux, plus ce sera difficile à comprendre pour un utilisateur
- Complexité au chargement
- Espace disque gagné minime et ne doit pas être le facteur déterminant
- Ralentit la capacité de navigation et la capacité à se déplacer d'un niveau de sommarisation à l'autre
- Empêche l'utilisation des index bitmap.

EXEMPLES

Un exemple avec erreurs

Exemple corrigé

AGRÉGATIONS

Modèle de données

3. Étoile avec Agrégation

Agrégation

• Chercher le 10 pour 1...

• Attention à l'effet ETC

Outil doit être adapté

« certains faits ne peuvent pas être additionnées! »

Agrégation – Meilleur design

- Les agrégats doivent résider dans une table de faits séparée des données atomiques
- Chaque niveau d'agrégation doit avoir sa table de fait
- Créer une famille de schémas de façon à trouver les agrégats et le détail
- Par défaut, toute interrogation, SQL ou outil doit pointer sur la table de faits de détails et ses dimensions.
- Attention, tous les faits ne s'additionnent pas...

IMAGES OU « SNAPSHOTS »

Une image (« snapshot »)

- Pour entreposer un moment précis
- Pour pouvoir comparer des intervalles

Ex: L'inventaire de matière première à midi tous les jours Positions des bateaux de la flotte

Exercices

CONSTELLATION

4. Famille d'étoiles ou Constellation

Modèle en Étoile – pré-requis

• Les dimensions représentent la même chose pour tous

 Les dimensions sont standardisées, décrites et publiées – font parti de la « Méta Donnée »

- Les comptoirs (« Data marts ») utilisent une conformité stricte aux dimensions standardisées
- Si on ne peut adhérer à une dimension standardisé, Donner un autre nom et documenter clairement son utilisation

« Un –Data Mart- est une façon élégante d'avaler l'entrepôt une bouché à la fois! »

Constellation

- Réutilisation d'une (ou plusieurs) dimension
- Lier plusieurs Faits

- Attention à la conformité
 - Définition commune
 - Représentation commune
 - Homonymes et synonymes
 - Même mesure
 - Même calculs

MODÉLISATION - CAS

Trop de dimensions - ATTENTION

Attention aux mille-pattes:

- Un nombre top grand de dimensions indique généralement que des dimensions pourraient être combinées.
- Toutefois, les dimensions trop profondes ou trop larges peuvent poser problème.

Objectif: Meilleur navigation possible!

Dimensions

• Large

• Profonde

Table de pont (bridge table)

• Relie 1 à N de fait à dimensions

- Cas spéciaux seulement!
 - On peut généralement ajuster la table de fait...
 - Parfois signe d'un modèle déficient

Dimension DATE – plus qu'une simple date

- Date
- Jour de la semaine
- Julienne
- No. Semaine
- No. Mois
- Époque
- Jours depuis le début d'année fiscale
- Heure de début du jour
- Premier (dernier) jour de la semaine/mois/an/période
- Période comptable
- Quart
- Dates dans différents format
- Fête selon religion / pays
- Non de la fête
- Férié selon pays/religion
- LA date relative (0: aujourd'hui, -1: hier... normalement calculée mais parfois stockée)

Modélisation – le cas des dates

• Les dates en valeurs absolues pour ce qu'elles représentent dans sa dimension

• Les dates en valeurs relatives calculées pour le fait.

• La JUNK – Dimensionner ou dans le fait

• Les tables de faits pour les éléments sans faits

• Enregistrer le fait (sans fait) qui n'a pas eu lieu

• Plusieurs tables faits pour 1 dimension (cardinalités différentes)

- Plusieurs attribut du fait du même domaine (ex: Dates)
 - Même dimension ou plusieurs dimensions ?

- Temps ou heure .vs. Date
 - Date dimensionnée
 - Intervalles dimensionnables
 - Heure précise au fait (trop d'entrées à la dimension)

• Hiérarchie (Flocon ou au Cube)

Devises multiples

Fuseau horaire

• Détail (transactions) .vs. Snapshot (portrait)

TYPES DE CHANGEMENTS

Changements dans les dimensions (lents)

• Type 1 : Une simple erreur

- Type 2: Impact sur l'historique
 - + Historique = date

• Type 3: Gestion de scénarios (modifications tentatives ou sans effet)

• Type 1 : Une simple erreur

Écraser l'ancienne valeur

• Type 2: Impact sur l'historique

+ Historique = date

Exemple: Client_X change de province du Québec à l'Ontario le 19 mai 1980...

Dim_Client

Clé_client	No_Client	Nom	Province	Actif	Date_changement
23456	Cl234	Client_X	Québec	N	1971-06-20
36680	Cl234	Client_X	Ontario	Y	1980-05-19

Fait_vente

Clé_client	Vente_\$	(date)
•••		
23456	100	12/03/1979
23456	355	22/05/1979
23456	233	05/01/1980
36680	545	07/12/1985
36680	666	12/04/2001

Type 3 - Exemple

• Type 3: Gestion de scénarios (modifications tentatives ou sans effet)

Changements dans les dimensions (Rapides)

Rapide = Plusieurs fois par semaine/mois

- Créer une nouvelle dimension avec les attributs qui changent
- Assigner une clé de plus au fait

3- CUBE

Cube

Le OLAP dans l'outil de présentation

Centre de formation en technologies de l'information

MEILLEURS PRATIQUES

Meilleurs pratiques multidimensionnelles

- Créer toujours vos modèles étoiles (relationnel)
- Créez des cubes (propriétaire) si besoin:
 - Performance
 - Intégration de la méta-information et hiérarchie
 - Présentation dans l'outil d'interrogation

Cubes

AUTRES CONSIDÉRATIONS

Quelques faits...

- 90% des requêtes utilisateurs sont de natures multidimensionnelles
- Les entrepôts doublent en volume chaque année
- La plupart des requêtes sont imprévisibles
- Les sommaires et les index consomment généralement plus d'espace disque que la donnée détaillée
- 99% des requêtes impliquent une agrégation (sommaire)
- La crédibilité repose sur la disponibilité de l'entrepôt et le rafraîchissement des données.

Modélisation dimensionnelle

- Mythe #1: Bon que pour le DSS...
- Mythe #2: Personne ne comprend la modélisation dimensionnelle
- Mythe #3: Ne fonctionne qu'avec la vente au détail
- Mythe #4: Le Flocon remplace l'étoile
- Mythe #5: Difficile d'introduire une nouvelle dimension ou un nouveau type de donnée
- Mythe #6: Le Big Data remplace la modélisation étoile

Modélisation - étapes

- Lister les sujets/comptoirs potentiels
- Lister les dimensions
- Créer la matrice des deux (voir les recoupements)
- Obtenir la standardisation (politique)
- Modéliser:
 - Choisir le sujet/comptoir
 - Décider de la granularité (.vs. Dimensions)
 - Choisir les dimensions
 - Choisir les faits à présenter

Modélisation - Trucs

- Les noms qui seront choisis à cette étape marqueront le projet et demeureront à jamais – bien choisir
- Un attribut ne devrait vivre que dans une dimension mais un fait peut être répété dans plusieurs tables de faits
- Si une dimension joue plusieurs rôles, nommer différemment et expliquer ce rôle

Modèle dimensionnel - Optimisation

• Des outils sont disponibles pour l'optimisation de l'indexation et agrégation

Trucs du Kimball Group

http://www.rkimball.com/html/designtips.html

Plateformes BI

Gartner Magic Quadrant for Data Warehouse and Data Management solutions for Analytics

UNE PARENTHÈSE SUR LE DATA VAULT

Modélisation Entrepôts de données 1.0 - Comptoirs

- Utilisation de Comptoirs (« Data marts ») privilégié
- Modélisation étoile idéale
- Alimentation SOURCE → ETC (Staging) → Comptoir

Modélisation Entrepôts de données 2.0 - Entreprise

- Construction d'un Entrepôt de données d'Entreprise
- Modélisation étoile idéale (pour OLAP) par sujet
- Alimentation
 SOURCE → ETC (Staging) → DATA VAULT → Comptoir

« Data Vault » (par Dan Linstedt)

« Data Vault » (par Dan Linstedt)

Idéal pour:

- Entrepôt ENTREPRISE!
- Garder tous le détail transactionnel
- Prouver la traçabilité (SOX, vérifications)
- Multiples centres de données
- Énormément de sources de données

