# **Assignment 4**

## **Part I: Text Classifiers**

### 1. 代码组织

| 文件名          | 功能                                                    |
|--------------|-------------------------------------------------------|
| config.py    | 在 class 中定义模型参数                                       |
| dataset.py   | 读取、处理数据,利用 fastnlp 生成 train_data、dev_data、test_data 和 |
|              | vocabulary, 并用 pickle 导出                              |
| w2v.py       | 生成 word2vec 的 embedding 的预训练 weight,并用 pickle 导出      |
| model.py     | 用 pytorch 定义 CNN、RNN、LSTM、RCNN 模型                     |
| utils.py     | 定义用于计时 Callback 类                                     |
| train.py     | 定义 trainer,用于训练、测试模型                                  |
| visualize.py | 从 log 文件中提取出 loss、accuracy,并画出曲线(由于在训练过程中用            |
|              | tee 命令把控制台输出保存到 log 文件中)                              |

#### 2. 数据处理

### (代码请看 dataset.py)

- 2.1 使用了 20news-bydate\_py3.pkz 数据,用 fetch\_20newsgroups 取出全部 20 类的数据,其中有 train 和 test 数据
- 2.2 把原始 train、test 数据导入到 fastNLP 的 DataSet 中, 分别用 3 个 apply 来对数据进行以下操作
  - 去掉 string, punctuation
  - 把 string.whitespace 变成 space
  - 把数据全部小写化, 并以 space 切词
- 2.3 把处理好的 train 数据按 4:1 划分为 train\_data 和 dev\_dev, 而处理好的 test 数据就作为 test data

## 2.4 从 train\_data 中获得 vocabulary, 大小为 55253

- 2.5 按照 train\_data 获得的 vocabulary, 分别用 apply 把 trian\_data、dev\_data 和 test\_data 中的 word 变为 index
- 2.6 用 pickle 导出最终的 trian\_data、dev\_data、test\_data 和 vocabulary, 后缀名为.pkl

#### 2.7 数据集参数

| 20news-bydate_py3.pkz | 最终数据        | Size                     | Categories |
|-----------------------|-------------|--------------------------|------------|
|                       | train_data  | 9052 (80%)               |            |
| train_set             | trairi_data | (vocabulary size: 55253) | 20         |
|                       | dev_data    | 2262 (20%)               | 20         |
| test_set              | test_data   | 7532                     |            |

## 3. word2vec 的 embedding 预训练 weight 生成 (代码请看 w2v.py)

- 用 pickle 导入上文生成的 trian\_data、dev\_data、test\_data 和 vocabulary
- 用 vocabulary 把 trian\_data、dev\_data、test\_data 中的 idx 变回 word
- 把 train\_data 中的 input 数据取出,存到一个二维数组中
- 用 gensim 定义 word2vec 模型

- 用上述 train\_data 的二维数据构建 word2vec 模型的 vocabulary
- 把上述 train data 的二维数据放到 word2vec 模型中训练
- 从模型中取出每个 index 对应的 embedding, 组成 weight 矩阵。其中 index 为 0 的单词是'<pad>', 在 word2vec 模型中不存在(虽然 fastnlp 的 vocabulary 中有'<pad>', 但是数据中没有'<pad>'),因此把 index 为 0 的 embedding 定为全 0
- pickle 保存 weight 矩阵

| word2vec 模型参数 window |      | min_count | size          |
|----------------------|------|-----------|---------------|
| 值                    | 1和64 | 1         | embed_dim=128 |

### 4. 模型参数

(代码请看 config.py)

- **软编码**:本次实验所涉及的参数全部定义在这个文件里,包括模型参数、文件路径、文件名等。
- 本次实验一共实现了 CNN, CNN\_w2v, RNN, LSTM, LSTM\_maxpool, RCNN 共 6 个不一样的模型,以下是这些模型的参数:

| model          | CNN                            | CNN_w2v | RNN   | LSTM        | LSTM_maxpool | RCNN |
|----------------|--------------------------------|---------|-------|-------------|--------------|------|
| embed_dim      | 128                            |         |       |             |              |      |
| kernel_sizes   | (3, 4, 5)                      |         |       |             |              |      |
| kernel_num     | -                              | 100     |       |             |              |      |
| in_channels    |                                | 1       |       |             |              |      |
| dropout        | 0.5                            |         |       |             |              |      |
| word2vec       | False                          | True    | False |             |              |      |
| num_layers     |                                |         | 1     | 2           | 2            | 1和2  |
| bidirectional  |                                |         | true  |             |              |      |
| hidden_dim     |                                |         | 256   |             |              |      |
| optimizer      | Adam (Ir=1e-3, weight_decay=0) |         |       |             |              |      |
| patience       | 100 和<br>10                    | 20      | 20    | 100 和<br>20 | 20           | 20   |
| max_epoch      | 128                            |         |       |             |              |      |
| batch_size     | 64 8                           |         |       |             |              |      |
| print_every    | 10                             |         |       |             |              |      |
| validate_every | 100                            |         |       |             |              |      |

### 5. 模型结构 (用 pytorch 实现)

(代码请看 model.py)

- 一共实现了 CNN, CNN\_w2v, RNN, LSTM, LSTM\_maxpool, RCNN 共 6 个不一样的模型。
- 模型一 CNN: input 先过一个 embedding 层, 再过一个卷积层。卷积核大小为(3, 4, 5), 有 100 个。过了卷积层后用 ReLU 激活, 然后 max pool。再把 3 个卷积核的结果连起来, 然后 dropout, 最后过全连接层, 然后输出



- 模型二 CNN\_w2v:和 CNN 的唯一区别是,在 embedding 层导入 word2vec 的 embedding 预训练 weight (初始化),然后再进行训练
- 模型三 RNN:1个 embedding 层+1层双向 RNN+1个全连接层



• 模型四 LSTM: 1 个 embedding 层+2 层双向 LSTM+dropout+1 个全连接层



• 模型五 LSTM\_maxpool: 1 个 embedding 层+2 层双向 LSTM+max pool+dropout+1 个 全连接层(这个模型介于 LSTM 和 RCNN 之间,只是比 LSTM 多了一层 max pool)



• 模型六 RCNN:1 个 embedding 层+1 层双向 LSTM+1 个线性层+max pool+1 个全连接层



## 6. 计时 Callback 实现 (代码请看 utils.py)

• 基于 fastNLP 的 Callback, 实现了 on\_epoch\_end 的计时功能, 可以用于比较不同模型

的运行时间。

## 7. Trainer 和 Tester 实现 (代码请看 train.py)

- 用 pickle 导入 trian\_data、dev\_data、test\_data 和 vocabulary,以及 word2vec 模型的 embedding 预训 weights
- 根据 config 中的 task\_name 参数来定义对应的模型,并导入对应模型所需的参数
- 定义 Adam 的 optimizer
- 定义计时 Callback、EarlyStop 的 Callback
- 定义 Metric 为 AccuracyMetric
- 然后定义 Trainer, 进行训练
- 最后定义 Tester, 并在 test\_data 上进行测试

### 8. 模型结果和对比

(以下出现的图有统一的格式:左图为 loss 对比,右图为 dev 上的 accuracy 对比,右图的 label 显示了 dev 上的最高 accuracy、test 上的最终 accuracy)

• 对比一: CNN 和 CNN\_w2v



| 模型           | CNN                                        | CNN_w2v               |
|--------------|--------------------------------------------|-----------------------|
| end_epoch    | 115                                        | 43                    |
| sum time     | 3851s                                      | 3049s                 |
| best dev acc | 87.53                                      | 90.89                 |
| test acc     | 76.43                                      | 81.13                 |
| 对比           | • 用了 word2vec 的 embedding 的 快,而且最终结果提高了~5% | y weight 初始化后,模型收敛速度更 |

对比二:RNN 和 LSTM



| 模型           | RNN                                                                                | LSTM                              |
|--------------|------------------------------------------------------------------------------------|-----------------------------------|
| num_layers   | 1                                                                                  | 2                                 |
| end_epoch    | 23                                                                                 | 42                                |
| sum time     | 6790s                                                                              | 31128s                            |
| best dev acc | 50.09                                                                              | 89.35                             |
| test acc     | 40.19                                                                              | 78.29                             |
| 对比           | <ul><li>层数增加了之后,运行时间显著</li><li>应用了 LSTM 的结构后, accurated 会被作为 vanilla RNN</li></ul> | ·<br>香增加<br>acy 显著提高,因此如今 LSTM 一般 |

# • 对比三: LSTM、LSTM\_maxpool 和 RCNN



| 模型           | LSTM LSTM_maxpool                                                                                                     |        | RCNN  |
|--------------|-----------------------------------------------------------------------------------------------------------------------|--------|-------|
| end_epoch    | 42                                                                                                                    | 18     | 7     |
| sum time     | 31128s                                                                                                                | 26154s | 2887s |
| best dev acc | 89.35                                                                                                                 | 88.06  | 88.86 |
| test acc     | 78.29                                                                                                                 | 78.16  | 76.77 |
| 对比           | <ul> <li>应用了 max pool 结构后,收敛更快了,最终 accuracy 也差不多</li> <li>而应用了完整的 RCNN 结构后,收敛还能更快,而且 performance 也能保持在一个水平</li> </ul> |        |       |

### 对比四: CNN、LSTM 和 RCNN



| 模型           | CNN                              | LSTM   | RCNN  |
|--------------|----------------------------------|--------|-------|
| end_epoch    | 115                              | 42     | 7     |
| sum time     | 3851s                            | 31128s | 2887s |
| best dev acc | 87.53                            | 89.35  | 88.86 |
| test acc     | 76.43                            | 78.29  | 76.77 |
| 对比           | LSTM) 运行时间长了<br>• 三者最终的 accuracy |        |       |

## 9. 部分模型参数的简单对比

• 对比一: 基于 RCNN 的 num\_layers 对比(增加 BiLSTM 层数并没有显著影响)



• 对比二: 基于 CNN\_w2v 的 window 对比(小的 window 效果更好)



 对比三: 基于 CNN 的 patience 对比 (patience 不需要设置的很大,不仅不能他提高 accuracy,反而使用了更长的训练时间)



# Part II: Suggestion

- 1. 使用感觉
- 这样的封装感觉还是很好的,写代码可以更快捷、简洁
- 2. 建议
- Vocabulary 在初始化的时候可以添加 end\_of\_sentence='<EOS>'和 start\_of\_sentence='<START>'
- 可以导入 dataset 直接生成 Vocabulary
- Trainer 只能传进 1 个 batch\_size, 但是 train 和 dev 数据其实可以用不同的 batch\_size
- 似乎不支持继续训练模型,希望可以支持继续训练模型。
- print\_every 输入的是 step 间隔,可以增加一个输入 epoch 的间隔
- 文档里有部分的函数或类是没有使用样例的,如果能像 pytorch 的文档一样有使用样例 和输出样例的话,能帮助理解 fastNLP 的使用