Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Факультет ПИиКТ

Дисциплина: Информатика

Лабораторная работа № 6 Работа с системой компьютерной вёрстки Т_ЕX

Вариант: 90

Выполнил: Михайлов Петр Сергеевич

Группа: Р3111

Преподаватель: доцент, кандидат технических наук

Малышева Татьяна Алексеевна

- Black square.
- . См. задачу № 5 для 8-го класса.
- \blacksquare Докажите, что для любого тетраэдара существуют такие две плоскости, что отношение площадей проекций тетраэдра на эти плоскости не меньше $\sqrt{2}$.
- \blacksquare Рассмотрим n чисел a_1, a_2, \dots, a_n . Положим

$$b_k = \frac{a_i + \dots + a_k}{k} (\text{для } k = 1, 2, \dots),$$

$$C = (a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_n - b_n)^2,$$

$$D = (a_1 - b_n)^2 + (a_2 - b_n)^2 + \dots + (a_n - b_n)^2.$$
Докажите неравенства $C < D < 2C$.

■ Рассмотрим последовательность чисел $x_n = (1 + \sqrt{2} + \sqrt{3})^n$. Каждое из них приводится к виду

$$x_n = q_n + r_n\sqrt{2} + s_n\sqrt{3} + t_n\sqrt{6},$$

где q_n, r_n, s_n, t_n — целые числа. Найдите пределы

$$\lim_{n\to\infty}\frac{r_n}{q_n},\quad \lim_{n\to\infty}\frac{s_n}{q_n},\quad \lim_{n\to\infty}\frac{t_n}{q_n}.$$

■ См. задачу № 8 для 9-го класса.

Как участники соревнования справились с этими задачами, видно из приведенной таблицы. К сожалению, некоторые задачи оказались довольно трудными. Так, у восьмиклассников с задачей № 2 справились только

	таолица											
Результаты					Но	мера	а за,	дач				
	8 класс											
	1	2	3	4a	4б	5a	5б	51	3	6	7a	7б
	-15	2	1	26	2	24	17	4		7	4	2
+ ± ∓	8	0	0	5	9	0	3	12	2	0	1	1
=	2	0	0	0	5	0	2	4		1	1	2
9 класс												
	1	2	3a	3б	4	5	6	7	8			
	44	9	17	2	0	23	23	9	6	_		
+ ± ∓	13	0	2	2	0	14	1	1	0			
-	0	1	1	3	5	11	1	4	1			
'	т 10 класс											
	1	2	3a	36	31	в 4	Į	5	6	7	8	9
.	42	12	29	11	1	. 1	2	23	5	6	11	2
+	2	4	2	3	2	. ()]	11	1	2	7	0
+ ± ∓	0	2	4	9	1	1	7	2	5	4	9	0

два школьника, с задачей N_2 3 — один школьник и с задачей N_2 8 — четыре школьника.

Никто из девятиклассников не решил задачи N 4 и только два человека полностью решили задачу N 3б.

Среди десятиклассников задачи N_2 3в и 4 полностью решили толь-

Восьмиклассники, награжденные Дипломами 1 степени (слева направо): Ю. Ткаченко, А. Балинский, А. Разборов, А. Боричев.