Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Отчёт по лабораторной работы 4.4.3 ИЗУЧЕНИЕ ЦЕНТРИРОВАННЫХ СИСТЕМ

Выполнил студент:

Сериков Василий Романович

группа: Б03-102

Аннотация

Цель работы:

Изучение методов определения фокусных расстояний линз и сложных оптических систем, а также изучить трубу Кеплера и с помощью метода Бесселя определить фокусные расстояния собирающих линз.

В работе используются:

Оптическая скамья, набор линз, экран, осветитель со шкалой, зрительная труба, диафрагма, линейка.

Теоретические сведения:

В данной работе мы будем проверять формулу тонкой линзы (а – расстояние от предмета до линзы, b – расстояние от линзы до изображения, F – фокусное расстояние линзы):

$$\pm 1/a \pm 1/b = \pm 1/F$$

Также будем определять фокусное расстояние линз с помощью метода Бесселя для случая, когда n = n' и f' = -f. Тогда фокусное расстояние вычисляется по формуле:

$$f = \frac{(L - \delta)^2 - l^2}{4(L - \delta)}. (1)$$

Рис. 1: Метод Бесселя для центрированных систем

Рис. 2: Методы определения фокусных расстояний линз с помощью зрительной трубы

В данной работе предлагается собрать трубу Кеплера и установить, что коэффициент увеличения равен отношению фокусных расстояний первой и второй линз.

Рис. 3: Телескоп Кеплера из собирающих линз

Ход работы и обработка результатов.

1. Для проверки формулы тонкой линзы соберем схему с экраном и получим четкое изображение на нем, измерим расстояния от линзы до источника и от линзы до экрана: а, b соответственно. Полученные результаты занесем в таблицу 1. По результатам построим графики зависимости 1/b от (1/a) и ab = f(a + b)

а, см						
b, см	13,4	36,8	58,5	11,9	29,6	15,2

 $_{\mathrm{CM}}$

а, см	17,1	51,8	16,4	60,0	26,4	25,1
b, см	52,1	17,4	60,1	16,6	24,7	26,0

Таблица 2: Результаты для второй линзы, $\sigma_{a,b}=\pm 0,2$ $_{\mathrm{CM}}$

а, см	24,5	50,7	21,5	72,4
b, см	49.1	23,3	71,0	20,2

Таблица 3: Результаты для третьей линзы, $\sigma_{a,b}=\pm 0,2$ $_{\rm CM}$

Рис. 4: График зависимости 1/b(1/a) и расчет фокусного расстояния

Рис. 5: График зависимости ab(a+b) и расчет фокусного расстояния

2. Проведем расчет фокусных расстояний линз с помощью зрительной трубки.

$\mathcal{N}_{ar{0}}$	1	2	3	4
F, см	10,4	13,1	15,1	-10,6

Таблица 4: Фокусные расстояния, измеренные с помощью зрительной трубы, $\sigma_F = 0, 2$ см

3. Определим фокусные расстояния с помощью метода Бесселя

$N_{\overline{0}}$	1 2		3
F, см	10,2	12,9	16,1

Таблица 5: Фокусные расстояния, определенные с помощью метода Бесселя, $\sigma_F = 0, 3$ см

Обсуждение результатов и выводы:

В данной работе мы изучили способы определения фокусных расстояний линз, из полученных результатов можно сделать вывод, что все способы эквиваленты.