МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Статистические методы обработки экспериментальных данных»

Тема: Формирование и первичная обработка выборки. Ранжированный и интервальный ряды.

Студентка гр. 7381	 Алясова А.Н.
Студент гр. 7381	 Кортев Ю.В.
Преподаватель	Середа В.И.

Санкт-Петербург

Цель работы.

Ознакомление с основными правилами формирования выборки и подготовки выборочных данных к статистическому анализу.

Основные теоретические положения.

Ранжированный ряд — это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака. Ранжирование позволяет легко разделить количественные данные по группам, сразу обнаружить наименьшее и наибольшее значения признака, выделить значения, которые чаще всего повторяются.

Вариационный ряд — последовательность значений заданной выборки $x^m = (x_1, ..., x_m)$, расположенных в порядке неубывания:

$$x^{(1)} \le x^{(2)} \le \dots \le x^{(m)}$$

Интервальный ряд распределения — это таблица, состоящая из двух столбцов (строк) — интервалов варьирующего признака X_i и числа единиц совокупности, попадающих в данный интервал (частот - f_i), или долей этого числа в общей численности совокупностей (частостей - d_i).

Полигоном частот называют ломанную, отрезки которой соединяют точки $(x_1, n_1), (x_2, n_2), ..., (x_k, n_k)$. Для построения полигона частот на оси абсцисс от-кладывают варианты x_i , а на оси ординат — соответствующие им частоты n_i . Точки (x_i, n_i) соединяют отрезками прямых и получают полигон частот.

Гистограммой частот (частостей) называется ступенчатая фигура, состоящая из прямоугольников с основаниями, равными интервалам значений h_i и высотами, равными отношению частот (или частостей) к шагу:

$$\frac{m_i}{h_i} \left(\frac{\omega_i}{h_i} = \frac{m_i}{n * h_i} \right)$$

Эмпирической функцией распределения, построенной по выборке $x^m = (x_1, ..., x_m)$ объема m, называется случайная функция $\hat{F}_m(x)$, равная

$$\hat{F}_m(x) = \frac{1}{m} \sum_{i=1}^m I_{\{x_i \le x\}}.$$

Значения эмпирической функции распределения принадлежат отрезку [0,1].

Постановка задачи.

Осуществить формирование репрезентативной выборки заданного объема из имеющейся генеральной совокупности экспериментальных данных. Осуществить последовательное преобразование полученной выборки в ранжированный, вариационный и интервальный ряды. Применительно к интервальному ряду построить и отобразить графически полигон, гистограмму и эмпирическую функцию распределения для абсолютных и относительных частот. Полученные результаты содержательно проинтерпретировать.

Выполнение работы.

Выборка состоит из данных наблюдений относительно объемного веса $nu\left(\frac{\Gamma}{\text{см}^3}\right)$ при влажности 10% и модуля упругости $E\left(\frac{\text{кг}}{\text{см}^2}\right)$ при сжатии вдоль волокон древесины резонансной ели.

Формирование репрезентативной выборки заданного объема из имеющейся генеральной совокупности экспериментальных данных представлены в таблице 1-2. Объём выборки: 117.

Таблица 1

Nº	nu	E	Nº	nu	E									
1	480	153.3	25	408	110.0	49	405	103.6	73	465	127.7	97	487	146.0
2	510	129.4	26	331	74.1	50	434	140.4	74	390	108.1	98	532	158.7
3	426	119.0	27	467	113.0	51	344	86.8	75	463	129.2	99	330	71.1
4	482	139.9	28	545	145.3	52	415	119.7	76	468	128.9	100	438	134.1
5	393	103.2	29	396	83.8	53	463	136.7	77	488	134.1	101	593	187.4
6	510	162.3	30	351	102.9	54	475	143.6	78	443	137.4	102	445	124.7

Продолжение таблицы 1

7	403	123.9	31	503	148.5	55	463	144.9	79	505	155.8	103	518	154.0
8	506	158.4	32	402	120.8	56	392	82.7	80	395	109.1	104	496	141.7
9	393	122.8	33	542	146.1	57	452	140.5	81	474	132.5	105	473	136.4
10	442	115.4	34	437	124.3	58	504	143.8	82	490	139.9	106	522	154.5
11	411	112.9	35	453	119.5	59	443	122.9	83	396	90.1	107	547	154.7
12	514	153.6	36	386	105.8	60	461	138.6	84	362	97.9	108	560	169.8
13	525	156.5	37	434	122.3	61	340	85.1	85	566	175.7	109	412	127.8
14	543	155.4	38	418	118.4	62	438	134.9	86	418	109.3	110	444	130.0
15	412	116.3	39	391	107.5	63	523	148.7	87	502	132.5	111	437	121.8
16	449	124.5	40	399	100.0	64	416	120.5	88	500	155.5	112	462	138.8
17	482	136.4	41	486	139.4	65	483	143.4	89	359	71.9	113	438	122.2
18	569	157.4	42	421	124.2	66	440	128.5	90	443	135.7	114	406	110.1
19	484	147.5	43	496	143.1	67	423	131.1	91	421	118.0	115	413	106.7
20	472	134.2	44	463	121.2	68	386	95.5	92	433	128.2	116	458	121.7
21	453	124.2	45	508	159.0	69	321	86.1	93	514	174.6	117	408	117.0
22	422	117.9	46	419	105.3	70	433	131.5	94	320	72.6			
23	320	64.5	47	434	108.7	71	351	89.0	95	406	113.8			
24	547	164.4	48	440	126.7	72	481	148.3	96	465	140.9			

Таблица 2

i	x_i	i	x_i										
1	480	18	569	35	453	52	415	69	321	86	418	103	518
2	510	19	484	36	386	53	463	70	433	87	502	104	496
3	426	20	472	37	434	54	475	71	351	88	500	105	473
4	482	21	453	38	418	55	463	72	481	89	359	106	522
5	393	22	422	39	391	56	392	73	465	90	443	107	547
6	510	23	320	40	399	57	452	74	390	91	421	108	560
7	403	24	547	41	486	58	504	75	463	92	433	109	412
8	506	25	408	42	421	59	443	76	468	93	514	110	444
9	393	26	331	43	496	60	461	77	488	94	320	111	437
10	442	27	467	44	563	61	340	78	443	95	406	112	462
11	411	28	545	45	508	62	438	79	505	96	465	113	438
12	514	29	396	46	419	63	523	80	395	97	487	114	406
13	525	30	351	47	434	64	416	81	474	98	532	115	413

Продолжение таблицы 2

14	543	31	503	48	440	65	483	82	490	99	330	116	458
15	412	32	402	49	405	66	440	83	396	100	438	117	408
16	449	33	542	50	434	67	423	84	362	101	593		
17	482	34	437	51	344	68	386	85	566	102	445		

Преобразование полученной выборки в ранжированный ряд представлено в таблице 3.

Таблица 3

i	x_i	i	x_i	i	x_i								
1	320	18	393	35	415	52	438	69	463	86	484	103	514
2	320	19	395	36	416	53	438	70	463	87	486	104	518
3	321	20	396	37	418	54	440	71	463	88	487	105	522
4	330	21	396	38	418	55	440	72	463	89	488	106	523
5	331	22	399	39	419	56	442	73	465	90	490	107	525
6	340	23	402	40	421	57	443	74	465	91	496	108	532
7	344	24	403	41	421	58	443	75	467	92	496	109	542
8	351	25	405	42	422	59	443	76	468	93	500	110	543
9	351	26	406	43	423	60	444	77	472	94	502	111	545
10	359	27	406	44	426	61	445	78	473	95	503	112	547
11	362	28	408	45	433	62	449	79	474	96	504	113	547
12	386	29	408	46	433	63	452	80	475	97	505	114	560
13	386	30	411	47	434	64	453	81	480	98	506	115	566
14	390	31	412	48	434	65	453	82	481	99	508	116	569
15	391	32	412	49	434	66	458	83	482	100	510	117	593
16	392	33	413	50	437	67	461	84	482	101	510		
17	393	34	415	51	437	68	462	85	483	102	514		

Из табл.3 можно увидеть, что наименьшее значение в выборке $x_{min}=320,$ а наибольшее значение $x_{max}=593.$

Преобразование полученной выборки в вариационный ряд с абсолютными частотами представлено в таблице 4.

Таблица 4

i	x_i	p_i												
1	320	2	19	403	1	37	438	3	55	474	1	73	508	1
2	321	1	20	405	1	38	440	2	56	475	1	74	510	2
3	330	1	21	406	2	39	442	1	57	480	1	75	514	2
4	331	1	22	408	2	40	443	3	58	481	1	76	518	1
5	340	1	23	411	1	41	444	1	59	482	2	77	522	1
6	344	1	24	412	2	42	445	1	60	483	1	78	523	1
7	351	2	25	413	1	43	449	1	61	484	1	79	525	1
8	359	1	26	415	1	44	452	1	62	486	1	80	532	1
9	362	1	27	416	1	45	453	2	63	487.	1	81	542	1
10	386	2	28	418	2	46	458	1	64	488	1	82	543	1
11	390	1	29	419	1	47	461	1	65	490	1	83	545	1
12	391	1	30	421	2	48	462	1	66	496	2	84	547	2
13	392	1	31	422	1	49	463	4	67	500	1	85	560	1
14	393	2	32	423	1	50	465	2	68	502	1	86	566	1
15	395	1	33	426	1	51	467	1	69	503	1	87	569	1
16	396	2	34	433	2	52	468	1	70	504	1	88	593	1
17	399	1	35	434	3	53	472	1	71	505	1			
18	402	1	36	437	2	54	473	1	72	506	1			

Преобразование полученной выборки в вариационный ряд с относительными частотами представлено в таблице 5.

Таблица 5

i	x_i	p_i	i	x_i	p_i	i	x_i	p_i	i	x_i	p_i	i	x_i	p_i
1	320	0.01709	19	403	0.00855	37	438	0.02564	55	474	0.00855	73	508	0.00855
2	321	0.00855	20	405	0.00855	38	440	0.01709	56	475	0.00855	74	510	0.01709
3	330	0.00855	21	406	0.01709	39	442	0.00855	57	480	0.00855	75	514	0.01709
4	331	0.00855	22	408	0.01709	40	443	0.02564	58	481	0.00855	76	518	0.00855
5	340	0.00855	23	411	0.00855	41	444	0.00855	59	482	0.01709	77	522	0.00855
6	344	0.00855	24	412	0.01709	42	445	0.00855	60	483	0.00855	78	523	0.00855
7	351	0.01709	25	413	0.00855	43	449	0.00855	61	484	0.00855	79	525	0.00855
8	359	0.00855	26	415	0.00855	44	452	0.00855	62	486	0.00855	80	532	0.00855
9	362	0.00855	27	416	0.00855	45	453	0.01709	63	487.	0.00855	81	542	0.00855

Продолжение таблицы 5

10	386	0.01709	28	418	0.01709	46	458	0.00855	64	488	0.00855	82	543	0.00855
11	390	0.00855	29	419	0.00855	47	461	0.00855	65	490	0.00855	83	545	0.00855
12	391	0.00855	30	421	0.01709	48	462	0.00855	66	496	0.01709	84	547	0.01709
13	392	0.00855	31	422	0.00855	49	463	0.03419	67	500	0.00855	85	560	0.00855
14	393	0.01709	32	423	0.00855	50	465	0.01709	68	502	0.00855	86	566	0.00855
15	395	0.00855	33	426	0.00855	51	467	0.00855	69	503	0.00855	87	569	0.00855
16	396	0.01709	34	433	0.01709	52	468	0.00855	70	504	0.00855	88	593	0.00855
17	399	0.00855	35	434	0.02564	53	472	0.00855	71	505	0.00855			
18	402	0.00855	36	437	0.01709	54	473	0.00855	72	506	0.00855			

Для определения количества интервалов используем формулу Стерджесса:

$$k = 1. +3.322 * \log(n),$$

где n – объем выборки.

Используя в качестве n=117, получаем, что k=8.

Чтобы определить шаг, с которым формировать интервалы, использована формула:

$$h = \frac{x_{max} - x_{min}}{k}.$$

Соответственно, для $x_{min}=320, x_{max}=593$ и k=8 получаем, что $h\approx 34$. Полученный интервальный ряд приведен в табл. 6.

Таблица 6

Интервал	Абсолютная частота	Относительная частота
[320, 354)	9	0.07692
[354,388)	4	0.03419
[388,422)	27	0.23077
[422,456)	25	0.21368
[456,490)	24	0.20513
[490,524)	17	0.14530
[524,558)	7	0.05983
[558,592)	3	0.02564
[592,593]	1	0.00855

В сумме абсолютные частоты дают 117, что соответствует объему выборки, а относительные частоты суммируются к единице.

Полигон, построенный применительно к интервальному ряду для абсолютных частот представлен на рис. 1.

Рисунок 1 – Полигон для абсолютной частоты

Полигон, построенный применительно к интервальному ряду для относительных частот представлен на рис. 2.

Рисунок 2 – Полигон для относительной частоты

Гистограмма, построенная применительно к интервальному ряду для абсолютных частот представлен на рис. 3.

Рисунок 3 – Гистограмма для абсолютной частоты

Гистограмма, построенная применительно к интервальному ряду для относительных частот представлен на рис. 4.

Рисунок 4 – Гистограмма для относительной частоты

Эмпирическая функция распределения, построенная применительно к интервальному ряду для относительных частот представлен на рис. 5.

Функция распределения:

$$F(333) = 0.0769$$

$$F(369) = 0.1111$$

$$F(405) = 0.3419$$

$$F(438) = 0.5556$$

$$F(474) = 0.7607$$

$$F(507) = 0.9060$$

$$F(539) = 0.9658$$

$$F(565) = 0.9915$$

$$F(593) = 1$$

Рисунок 5 – График эмпирической функции распределения

Выводы.

В ходе данной лабораторной работы была сформирована выборка данных и осуществлена её подготовка к статическому анализу.

Выборка приведена к ранжированному, вариационному и интервальному видам. Используя полученный интервальный ряд построен полигон, гистограмма и эмпирическая функция распределения для абсолютных и относительных частот.

В результате выполнения работы были получены результаты, описанные ниже.

Из полученного ранжированного ряда сразу видны минимальное и максимальное значение выборки. В данном случае были получены значения $x_{min} = 320, x_{max} = 593.$

По полученному вариационному ряду виден наиболее частотный элемент выборки $x_{49}=463$ с частотой $p_{49}=4$.

По сформированному интервальному ряду можно увидеть, что большинство значений выборки сконцентрированы в интервале [388,422). Более наглядно это представляют построенные гистограммы и полигоны частот. При этом их форма не зависит от того, какие частоты используются – абсолютные или относительные.

По полученным результатам можно сделать предположение о том, что выборка была сделана из нормального распределения, на это указывает форма полученных гистограмм и полигонов частот.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('sample.csv', header=None).iloc[:, 0]
ranked_series = df.sort_values()
ranked_series.to_csv('Ранжированный_ряд.csv', index=0, header=None)
variation series = ranked series.apply(lambda x: sum(ranked series == x))
relative var series = variation series.apply(lambda x: x / len(df))
variation_df = pd.DataFrame({'Значение': ranked_series, 'Частота': varia-
tion_series,
                             'Относительная частота': relative_var_se-
ries}).drop_duplicates()
variation_df.to_csv('Bapиaционный_ряд.csv', index=0, header=None)
k = 1.33 + 3.31 * np.log10(len(df))
k = int(k)
print(k)
h = (max(ranked series) - min(ranked series)) / k
h = int(h)
print(h)
means = []
nums = []
relative nums = []
distrib nums = []
for i in range(min(ranked_series), max(ranked_series), h):
```

```
cond = (i <= variation df['Значение']) & (variation df['Значение'] <
i+h) if i+h < max(ranked series) else (i <= variation df['Значение']) &
(variation df['Значение'] <= i+h)
    means.append(int(variation df['Значение'][cond].mean()))
    nums.append(variation df['Yactota'][cond].sum())
    relative nums.append(variation df['Относительная часто-
та'][cond].sum())
    distrib nums.append(variation df['Относительная часто-
та'][variation df['Значение'] < i+h].sum())
inter df = pd.DataFrame({'Средние значения': means, 'Частота': nums},
dtype=np.int64)
inter_df.to_csv('Интервальный_Ряд.csv', index=0, header=None)
inter df['Частота'] = inter df['Частота'] / h
relative inter df = pd.DataFrame({'Средние значения': means,
'Относительная частота': relative nums}, dtype=np.int64)
relative inter df.to csv('Интервальный ряд относительные частоты.csv',
index=0, header=None)
distrib_df = pd.DataFrame({'Средние значения': means, 'Относительная ча-
стота': distrib_nums}, dtype=np.int64)
distrib_df.to_csv('Функция_распределения.csv', index=0, header=None)
fig = inter_df.plot(x='Средние значения', y='Частота', title='Полигон для
абсолютной частоты')
plt.show()
fig = inter df.plot(x='Средние значения', y='Частота', kind='bar',
title='Гистограмма для абсолютной частоты')
plt.show()
fig = relative inter df.plot(x='Средние значения', y='Относительная ча-
стота', title='Полигон для относительной частоты')
```

```
plt.show()

fig = relative_inter_df.plot(x='Средние значения', y='Относительная ча-
cтота', kind='bar', title='Гистограмма для относительной частоты')
plt.show()

fig = distrib_df.plot(x='Средние значения', y='Относительная частота',
title='Эмпирическая функция распределения')
plt.show()
```