1. Оператор присваивания. Ввод-вывод информации

1.	Вычислите значение функции:	
		$y = 3x^2 + \sin(x+2).$
2.	Вычислите значение функции:	- · · · · · · · · · · · · · · · · · · ·
 	221 0 93. 47	$y = ax^2 + \cos(2x+1).$
		$y = ax + \cos(2x + 1).$
3.	Вычислите значение функции:	
		$y = ax + b \cdot \sin(2x + 2).$
4.	Вычислите значение функции:	
		$y = ax^3 + \cos(3x+1)$.
5.	Вычислите значение функции:	
	15	r^2
		$y = \frac{x^2}{1 + \cos(2x - 1)}.$
		a
6.	Вычислите значение функции:	
		$y = \frac{x}{x} + 2x^2$
		$y = \frac{x}{a} + 2x^2.$
7.	Вычислите значение функции:	
		$y = 3x^2 - 2x + 1$.
8.	Вычислите значение функции:	,
0.	вы телите эта тепие функции.	1 2
		$y = \frac{1}{2}x^2 - 3x + 1$.
9.	Drywyawyma ayyayayyya dayyyyyyy	<u>Z</u>
9.	Вычислите значение функции:	1
		$y = \frac{1}{x^2 + 1} - a$.
		x^2+1
10.	Вычислите значение функции:	
		$a = a = a \cos(2x + 1)$
		$y = \frac{a}{x^2 + 1} - \cos(2x - 1).$
11.	Вычислите значение функции:	W 11
		$y = x^3 - 2x^2 + 4$.
1.0	D 1	$y-\lambda = 2\lambda + 4$.
12.	Вычислите значение функции:	2 2
		$y = ax^2 + bx^3 - 8.$
13.	Вычислите значение функции:	
		$y = a\sqrt{x^2 + 4} - b.$
1.4	D 1	$y-u \vee x + - U$.
14.	Вычислите значение функции:	
		$y = \cos(2x - 1) + \sin x.$
15.	Вычислите значение функции:	
		$y = a\sqrt{x} + bx^2.$

2. Оператор присваивания. Ввод-вывод информации

- 1. Даны длины ребер a, b, c прямоугольного параллелепипеда. Найти его объем $V = a \cdot b \cdot c$ и площадь поверхности $S = 2 \cdot (a \cdot b + b \cdot c + a \cdot c)$.
- 2. Найти длину окружности L и площадь круга S заданного радиуса $R: L = 2 \cdot \pi \cdot R$, $S = \pi \cdot R^2$.
- 3. Даны катеты прямоугольного треугольника a и b. Найти его гипотенузу c и периметр P: $c = \sqrt{a^2 + b^2}$, P = a + b + c.
- 4. Даны два круга с общим центром и радиусами R_1 и R_2 ($R_1 > R_2$). Найти площади этих кругов S_1 и S_2 , а также площадь S_3 кольца, внешний радиус которого равен R_1 , а внутренний радиус равен R_2 : $S_1 = \pi \cdot (R_1)^2$, $S_2 = \pi \cdot (R_2)^2$, $S_3 = S_1 S_2$.

 5. Даны координаты двух противоположных вершин прямоугольника: (x_1, y_1) , (x_2, y_2) . Сто-
- 5. Даны координаты двух противоположных вершин прямоугольника: $(x_1, y_1), (x_2, y_2)$. Стороны прямоугольника параллельны осям координат. Найти периметр и площадь данного прямоугольника.
- 6. Найти расстояние между двумя точками с заданными координатами (x_1, y_1) и (x_2, y_2) на плоскости. Расстояние вычисляется по формуле $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$.
- 7. Даны координаты трех вершин треугольника: $(x_1, y_1), (x_2, y_2), (x_3, y_3)$. Найти его периметр и площадь, используя формулу для расстояния между двумя точками на плоскости. Для нахождения площади треугольника со сторонами a, b, c использовать формулу Герона: $S = \sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}$, где p = (a+b+c)/2 полупериметр.
- 8. Дано значение температуры T в градусах Фаренгейта. Определить значение этой же температуры в градусах Цельсия. Температура по Цельсию T_C и температура по Фаренгейту T_F связаны следующим соотношением: $T_C = (T_F 32) \cdot 5/9$.
- 9. Известно, что X кг шоколадных конфет стоит A рублей, а Y кг ирисок стоит B рублей. Определить, сколько стоит 1 кг шоколадных конфет, 1 кг ирисок, а также во сколько раз шоколадные конфеты дороже ирисок.
- 10. Найти решение системы линейных уравнений вида $\begin{cases} A_1 \cdot x + B_1 \cdot y = C_1, \\ A_2 \cdot x + B_2 \cdot y = C_2, \end{cases}$ коэффициентами A_1 , B_1 , C_1 , A_2 , B_2 , C_2 , если известно, что данная система имеет единственное решение. Воспользоваться формулами $x = (C_1 \cdot B_2 C_2 \cdot B_1)/D, \quad y = (A_1 \cdot C_2 A_2 \cdot C_1)/D, \quad \text{где } D = A_1 \cdot B_2 A_2 \cdot B_1.$
- 11. Дано значение угла α в градусах ($0 < \alpha < 360$). Определить значение этого же угла в радианах, учитывая, что 180 градусов равно π радианов.
- 12. Скорость первого автомобиля V_1 км/ч, второго V_2 км/ч, расстояние между ними S км. Определить расстояние между ними через T часов, если автомобили удаляются друг от друга. Данное расстояние равно сумме начального расстояния и общего пути, проделанного автомобилями; общий путь = время \times суммарная скорость.
- 13. Даны три точки А, В, С на числовой оси. Найти длины отрезков АС и ВС и их сумму.
- 14. Даны два ненулевых числа. Найти сумму, разность, произведение и частное их квадратов.
- 15. Скорость лодки в стоячей воде V км/ч, скорость течения реки U км/ч (U < V). Время движения лодки по озеру T_1 ч, а по реке (против течения) T_2 ч. Определить путь S, пройденный лодкой (путь = время \times скорость). Учесть, что при движении против течения скорость лодки уменьшается на величину скорости течения.

3. Условный оператор

1.	Вычислите значение функции:	$y = \begin{cases} ax^2 + 1, & x > 0, \\ ax - 1, & x \le 0. \end{cases}$
	вы телите эна тение функции.	$\int_{0}^{\infty} ax - 1, x \le 0.$
2.	Вычислите значение функции:	$\mathbf{y} = \begin{cases} ax + 1, & x \ge 1, \end{cases}$
		$y = \begin{cases} ax + 1, & x \ge 1, \\ x^2 - 1, & x < 1. \end{cases}$
3.	Вычислите значение функции:	$y = \begin{cases} 3a^2, & x < 0, \\ 4ax - 1, & x \ge 0. \end{cases}$
		$4ax-1, x \ge 0.$
4.	Вычислите значение функции:	$y = \begin{cases} 2a^2, & x > 4, \\ 3x - 1, & x \le 4. \end{cases}$
	функции	$(3x-1, x \le 4.$
5.	Вычислите значение функции:	$y = \begin{cases} 2ax - 2, & x > 2, \\ 3a^2 - 2x, & x \le 2. \end{cases}$
		$3a^2 - 2x, x \le 2.$
6.	Вычислите значение функции:	$y = \begin{cases} 2ax^2 - 1, & x > 1, \end{cases}$
7.	1.	$y = \begin{cases} 2ax^2 - 1, & x > 1, \\ x, & x \le 1. \end{cases}$
/.	Вычислите значение функции:	$y = \begin{cases} x^2, & x > 2, \\ x = 1, & x > 2, \end{cases}$
8.		$(2a-1, x \le 2.$
0.	Вычислите значение функции:	$y = \begin{cases} x^2, & x > 2, \\ 2a - 1, & x \le 2. \end{cases}$ $y = \begin{cases} \cos(2x - 1), & x > 2, \\ \sin(3x + 1), & x \le 2. \end{cases}$
9.		
	Вычислите значение функции:	$y = \begin{cases} 2x^3 - 2x - 1, & x > 2, \\ 3x^2 - 2x + 1, & x \le 2. \end{cases}$
10.		
	Вычислите значение функции:	$y = \begin{cases} 2ax^2 - 1, & x > 1, \\ 1/a, & x \le 1. \end{cases}$
11.	_	
	Вычислите значение функции:	$y = \begin{cases} a\sqrt{x} + 1, & x \ge 0, \\ ax - 1, & x < 0. \end{cases}$
12.	D 1	
	Вычислите значение функции:	$y = \begin{cases} \sqrt{x} + a, & x \ge 0, \\ a/x - 1, & x < 0. \end{cases}$
13.	. Вычислите значение функции:	$y = \begin{cases} 1/x + a, & x > 0, \\ x^2 - 1, & x \le 0. \end{cases}$
		$\int_{0}^{y} x^{2} - 1, x \leq 0.$
14.	Вычислите значение функции:	$y = \begin{cases} \cos(x), & x > \pi/2, \\ \sin(x), & x \le \pi/2. \end{cases}$
1.5	Ψ,	
15.	Вычислите значение функции:	$y = \begin{cases} \sqrt{x-2}, & x > 2, \\ (x-2)^2 + 1, & x \le 2. \end{cases}$
	15	$((x-2)^2+1, x \le 2.$

4. Операторы цикла

1.	Даны целые числа K и N ($N > 0$). Вывести N раз число K .		
2.	Даны два целых числа A и B ($A < B$). Вывести в порядке возрастания все целые числа, расположенные между A и B (включая сами числа A и B), а также количество N этих чисел.		
3.	Даны два целых числа A и B ($A < B$). Вывести в порядке убывания все целые числа, расположенные между A и B (не включая числа A и B), а также количество N этих чисел.		
4.	Одна штука некоторого товара стоит 20,4 руб. Напечатать таблицу стоимости для 1, 2,, 10 штук этого товара.		
5.	Напечатать квадраты всех целых чисел от A до B ($A < B$) с шагом H .		
6.	Напечатать все положительные числа из диапазона от A до B ($A < B$) с шагом H .		
7.	Даны два целых числа A и B ($A < B$). Найти сумму всех целых чисел от A до B включительно.		
8.	Даны два целых числа A и B ($A < B$). Найти произведение всех целых чисел от A до B включительно.		
9.	Даны два целых числа A и B ($A < B$). Найти сумму квадратов всех целых чисел от A до B включительно.		
10.	Дано вещественное число (>0) – цена 1 кг конфет. Вывести стоимость 1.2, 1.4,, 2 кг конфет.		
11.	Дано целое число N (>0). Найти квадрат данного числа, используя для его вычисления следующую формулу: $N^2 = 1 + 3 + 5 + + (2 \cdot N - 1) .$		
12.	Дано вещественное число A и целое число N (>0). Вывести все целые степени числа A от 1 до N .		
13.	. Дано целое число N (>0). Найти наибольшее целое число K , квадрат которого не превосходит N : $K^2 \le N$.		
14.	. Дано целое число N (>1). Найти наибольшее целое число K , при котором выполняется неравенство $3^K < N$.		
15.	Дано целое число N (>1) и две вещественные точки на числовой оси: A , B (A < B). Отрезок $[A,B]$ разбит на N равных отрезков. Вывести H — длину каждого отрезка, а также набор точек A , $A+H$, $A+2H$, $A+3H$,, B , образующий разбиение отрезка $[A,B]$.		

5. Операторы цикла

Для заданного натурального n подсчитать сумму: $\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n}$ Для заданного натурального n и действительного x подсчитать сумму: 2. $\cos x + \frac{\cos^2 x}{2} + \frac{\cos^3 x}{3} + \dots + \frac{\cos^n x}{n}$ $\overline{\text{Для заданного натурального }n}$ подсчитать сумму: 3. $1-3+3^2-3^3+...+(-1)^n3^n$. Для заданного натурального n подсчитать сумму: 4. $\frac{1}{\sin 1} + \frac{1}{\sin 2} + \dots + \frac{1}{\sin n}$. Для заданного натурального n подсчитать сумму: $1-2^3+3^3-...+(-1)^{n+1}n^3$. Для заданного натурального n подсчитать сумму: 6. $\cos 1 - \cos 2 + \cos 3 - ... + (-1)^{n+1} \cos n \,.$ Для заданного натурального n и действительного x подсчитать сумму: $x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n-1} x^n}{\underline{n}} (|x| < 1).$ Для заданного натурального n подсчитать суммух 8. $1!-2!+3!-...+(-1)^{n+1}n!.$ Для заданного натурального n и действительного x подсчитать сумму: $\sin x + \sin x^2 + \sin x^3 + \dots + \sin x^n.$ Для заданного натурального n подсчитать сумму: $1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}.$ Для заданного натурального n подсчитать сумму: $n^2 + (n+1)^2 + (n+2)^2 + ... + (2 \cdot n)^2$. Для заданного натурального n подсчитать сумму: 12. 1!+2!+3!+...+ *n*!. Для заданного натурального n и действительного x подсчитать сумму:

 $1+x+\frac{x^2}{2!}+...+\frac{x^n}{n!}$.

 $1-x+x^2-x^3+...+(-1)^n x^n$.

 $x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \frac{x^{2n+1}}{2n+1} (|x| < 1).$

Для заданного натурального n и действительного x подсчитать сумму:

Для заданного натурального n и действительного x подсчитать сумму:

15.