## CS575(Introduction To Parallel Programming) Project4

Project Title: Vectorized Array Multiplication/Reduction using SSE(Project 4)

Name : Si Thu Lin ID : 933-957-884

Email: <u>linsi@oregonstate.edu</u>

The code was run on the flip.

The Table of Performance is

|         | 1 Thread    | SIMD Alone  | SIMD+2 Threads | SIMD+4 Threads | SIMD+8 Threads |
|---------|-------------|-------------|----------------|----------------|----------------|
| 2       | 54.36667463 | 32.29298719 | 1.53611134     | 0.93368854     | 0.6720336      |
| 4       | 99.88296037 | 65.57201979 | 1.98016012     | 1.67216947     | 1.1869468      |
| 8       | 148.1023206 | 125.400505  | 4.46114495     | 3.36596183     | 2.216185       |
| 16      | 179.8939182 | 210.7959409 | 7.37650029     | 6.78777921     | 5.1100146      |
| 32      | 210.7959409 | 336.8601801 | 19.14724902    | 15.60742147    | 9.9564585      |
| 64      | 221.6757314 | 441.9258954 | 51.82464309    | 28.94670461    | 20.3161793     |
| 128     | 236.555858  | 527.5967504 | 62.74318807    | 60.58582917    | 38.9510991     |
| 256     | 242.5036674 | 576.86864   | 184.4199309    | 130.6143535    | 79.3298432     |
| 512     | 245.4267026 | 610.8397932 | 327.3330241    | 238.4023477    | 162.866483     |
| 1024    | 243.875264  | 627.3960786 | 428.659504     | 407.4528915    | 350.665484     |
| 2048    | 248.0427788 | 637.6752952 | 630.5443027    | 780.2104863    | 690.431163     |
| 4096    | 247.150689  | 639.0187448 | 824.4533717    | 1088.760122    | 1141.1641      |
| 8192    | 243.5916096 | 643.5537769 | 1067.681377    | 1632.23103     | 1577.2087      |
| 16384   | 243.7620608 | 644.1782546 | 1167.945961    | 1969.237818    | 2082.16193     |
| 32768   | 244.1528027 | 643.8717557 | 1211.83344     | 2255.986925    | 2388.05253     |
| 65536   | 244.1439083 | 641.4389946 | 1232.485229    | 2373.353486    | 2601.0476      |
| 131072  | 243.5962474 | 643.0171647 | 1262.531013    | 2463.438765    | 2722.2741      |
| 262144  | 241.8869172 | 641.3198846 | 1270.368786    | 2515.123147    | 2788.7032      |
| 524288  | 240.5018234 | 634.6459008 | 1272.568519    | 2536.581859    | 2829.1003      |
| 1048576 | 237.9008001 | 615.9275737 | 1174.624908    | 2530.99856     | 2852.08530     |
| 2097152 | 236.9974442 | 584.5472195 | 1154.940599    | 2028.882442    | 2522.22523     |
| 4194304 | 237.0957124 | 585.1166592 | 1043.578278    | 1769.287301    | 2213.9925      |
| 8388608 | 233.5712838 | 503.0232528 | 989.6344762    | 1623.885655    | 1901.94710     |

The Table of Speedup is

|         | SIMD Alone | SIMD+2 Threads | SIMD+4 Threads | SIMD+8 Threads |
|---------|------------|----------------|----------------|----------------|
| 2       | 0.59398496 | 0.02825465     | 0.01717391     | 0.0123611      |
| 4       | 0.65648855 | 0.0198248      | 0.01674129     | 0.0118833      |
| 8       | 0.84671533 | 0.03012205     | 0.02272727     | 0.0149638      |
| 16      | 1.17177914 | 0.04100472     | 0.03773212     | 0.0284057      |
| 32      | 1.59803922 | 0.0908331      | 0.07404043     | 0.0472326      |
| 64      | 1.99356913 | 0.23378582     | 0.1305813      | 0.0916481      |
| 128     | 2.2303263  | 0.26523625     | 0.25611638     | 0.164659       |
| 256     | 2.37880378 | 0.76048306     | 0.53860775     | 0.3271284      |
| 512     | 2.48888889 | 1.33373028     | 0.97137901     | 0.6636053      |
| 1024    | 2.57261056 | 1.75769981     | 1.67074301     | 1.4378886      |
| 2048    | 2.5708279  | 2.54207885     | 3.14546745     | 2.7835164      |
| 4096    | 2.58554304 | 3.33583279     | 4.40524817     | 4.6172807      |
| 8192    | 2.64193737 | 4.38307944     | 6.70068658     | 6.4748072      |
| 16384   | 2.64265182 | 4.7913361      | 8.07852465     | 8.5417800      |
| 32768   | 2.63716717 | 4.96342219     | 9.24006155     | 9.7809753      |
| 65536   | 2.62729879 | 5.04819161     | 9.72112515     | 10.6537480     |
| 131072  | 2.6396842  | 5.18288367     | 10.11279439    | 11.1753532     |
| 262144  | 2.65132109 | 5.25191193     | 10.39792964    | 11.5289545     |
| 524288  | 2.63884029 | 5.29130508     | 10.54703795    | 11.7633219     |
| 1048576 | 2.5890101  | 4.93745674     | 10.63888208    | 11.9885488     |
| 2097152 | 2.46647056 | 4.87321964     | 8.56077773     | 10.6424153     |
| 4194304 | 2.46785002 | 4.40150633     | 7.4623336      | 9.3379696      |
| 8388608 | 2.15361771 | 4.2369698      | 6.95241996     | 8.1428978      |

## The Graph for Standard Credit



## The Graph for the Extra Credit



## Explaination

The speedup for the small array size is low because there is overhead and that overhead is dominant when the speedup for the small array size is calculated. I opine that there is no solution for this. Another fact which is noticeable in the graph is that the speedups drop at the particular array size(around 1000000 in the graph). The cause of that is that the calculation is done so fast that the next data to be used for calculation cannot be fetched in time. Another cause is the lack of "Temporal Coherence" because the calculation uses every element in the fetched array only one time. These can be solved by using "Prefetching";