Ordres partiels et treillis.

1 Ordres partiels.

Définition 1. Un ordre partiel (ou poset en anglais) est une paire (P, \leq) où \leq est une relation binaire sur P telle que

- $\triangleright (reflexivit\acute{e}) \ \forall x \in P, x \leq x ;$
- $\triangleright (transitivit\acute{e}) \ \forall x,y \in P, x \leq y \implies y \leq z \implies x \leq z;$
- $\triangleright (antisym\acute{e}trie) \ \forall x,y \in P, x \leq y \implies y \leq x \implies x = y.$

Un préodre est une relation binaire reflexive et transitive.

Exemple 1. On donne quelques exemples de poset :

- 1. $(\wp(X), \subseteq)$, l'inclusion dans les parties de X
- 2. $(\Omega X, \subseteq)$, l'inclusion dans les ouverts de X
- 3. (Σ^*, \subseteq) , la relation préfixe dans les mots sur Σ

Attention, dans les trois exemples, il existe deux éléments u, v où

$$u \not\leq v$$
 et $v \not\leq u$.

Définition 2 (Dual). Soit (P, \leq) un poset. Le *dual* de P est $(P, \leq)^{op} := (P, \geq)$ où

$$a \ge b \iff b \le a$$
.

Définition 3 (Fonction (anti)monotone). Soit (P, \leq_P) et (L, \leq_L) deux posets. Une fonction $f: P \to L$ est monotone si pour tout $a, b \in P$ on a

$$a \leq_P b \implies f(a) \leq_L f(b)$$
.

On dit que $f:(P, \leq) \to (L, \leq)$ est antimonotone si $f:(P, q\geq) = (P, \leq_P)^{\text{op}} \to (L, \leq_L)$ est monotone, autrement dit pour tout $a, b \in P$ on a

$$a \leq_P b \implies f(a) \geq_L f(b).$$

2 Treillis complet.

Définition 4. Soit (A, \leq) un poset et $S \subseteq A$.

- $\label{eq:seq} \begin{array}{l} \triangleright \mbox{ Un } upper \; bound \; \mbox{de } S \; \mbox{est un \'el\'ement} \; a \in A \; \mbox{tel que} \; \forall s \in S, \\ s \leq a. \end{array}$
- ightharpoonup Un least upper bound (lub ou sup) de S est un upper bound $a \in A$ de S tel que, pour tout upper bound $b \in A$ de S, on a $a \leq b$.

Par dualité, on a les définitions suivantes.

- \triangleright Un élément $a \in A$ est un lower bound de S ssi a est un upper bound de S dans A^{op} .
- \triangleright Un élément $a \in A$ est un greatest lower bound (glb, inf) de S ssi a est un least upper bound de S dans A^{op} .

Exemple 2. Soit $S \subseteq \wp(X)$ alors le least upper bound de S dans $(\wp(X), \subseteq)$ est $\bigcup S \in \wp(X)$. Le greatest lower bound de S dans $(\wp(X), \subseteq)$ est $\bigcap S \in \wp(X)$.

Exemple 3. Soit $S \subseteq \Omega X$ alors le least upper bound dans $(\Omega X, \subseteq)$ est $\bigcup S \in \Omega X$. Le greatest lower bound dans $(\Omega X, \subseteq)$ n'existe pas forcément.

Exemple 4.