Variant calling: tools, validation, genomes and outputs

Brad Chapman Bioinformatics Core, Harvard Chan School

https://github.com/chapmanb/bcbio-nextgen

http://bcb.io

http://j.mp/bcbiolinks

19 May 2015

Outline

- Variant calling made easy
- Tools
- Validation
- Post-calling annotation
- Genomes and graphs
- Understanding outputs
- Automating everything bcbio

Human whole genome sequencing

http://ensembl.org/Homo_sapiens/Location/Genome

High throughput sequencing

Variant calling

http://en.wikipedia.org/wiki/SNV_calling_from_NGS_data

Scale: exome to whole genome

The haploid human genome sequence

https://www.flickr.com/photos/119980645@N06/

Outline

- Variant calling made easy
- Tools
- Validation
- Post-calling annotation
- Genomes and graphs
- Understanding outputs
- Automating everything bcbio

SNPs and Indels

http://carolguze.com/text/442-2-mutations.shtml

Structural variations

Germline population calling

http://blog.goldenhelix.com/grudy/the-state-of-ngs-variant-calling-dont-panic/

Genome Analysis Toolkit (GATK)

The Genome Analysis Toolkit or GATK is a software package developed at the Broad Institute to analyze high-throughput sequencing data. The toolkit offers a wide variety of tools, with a primary focus on variant discovery and genotyping as well as strong emphasis on data quality assurance. Its robust architecture, powerful processing engine and high-performance computing features make it capable of taking on projects of any size.

https://www.broadinstitute.org/gatk/

GATK Best Practices

https://www.broadinstitute.org/gatk/guide/best-practices

HaplotypeCaller

http://gatkforums.broadinstitute.org/discussion/5464/workshop-presentations-2015-uk-4-20-24

Joint calling on large populations

http://gatkforums.broadinstitute.org/discussion/5464/workshop-presentations-2015-uk-4-20-24

Support and availability

Getting Help

Licensing & Source Code

Free for academics, fee for commercial use

Direct licensing and support through Broad

https://github.com/broadgsa

FreeBayes

https://github.com/ekg/freebayes

Filtering – hard cutoffs

```
filters = ('((AC[0] / AN) <= 0.5 && DP < 4 && %QUAL < 20) || '
'(DP < 13 && %QUAL < 10) || '
'((AC[0] / AN) > 0.5 && DP < 4 && %QUAL < 50)')
```

http://bcb.io/2014/05/12/wgs-trio-variant-evaluation/

Filtering - Variant Quality Score Recalibration

VQSLOD(x) = Log(p(x)/q(x))

Cancer somatic calling

http://www.nature.com/nmeth/journal/v10/n8/fig_tab/nmeth.2562_F1.html

Cancer heterogeneity

http://en.wikipedia.org/wiki/Tumour_heterogeneity

Not a solved problem

Four major genome centers predicted single-nucleotide variants (SNVs) for The Cancer Genome Atlas (TCGA) lung cancer samples, but only 31.0% (1,667/5,380) of SNVs were identified by all four.

http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.3407.html

MuTect

- Broad GATK UnifiedGenotyper based
- SNP only

https://www.broadinstitute.org/cancer/cga/mutect

VarDict

- AstraZeneca
- SNP + Insertion/Deletions
- Works on very deep targeted data

https://github.com/AstraZeneca-NGS/VarDictJava

Outline

- Variant calling made easy
- Tools
- Validation
- Post-calling annotation
- Genomes and graphs
- Understanding outputs
- Automating everything bcbio

Reference materials

Global Alliance for Genomics & Health

ICGC-TCGA DREAM Mutation Calling challenge

http://www.genomeinabottle.org/ http://ga4gh.org/#/benchmarking-team https://www.synapse.org/#!Synapse:syn312572

Validate and compare caller performance

http://bcb.io/2015/03/05/cancerval/

Outline

- Variant calling made easy
- Tools
- Validation
- Post-calling annotation
- Genomes and graphs
- Understanding outputs
- Automating everything bcbio

Effects prediction

http://www.ensembl.org/info/genome/variation/predicted_data.html

Tools for effects predictions

snpEff

http://snpeff.sourceforge.net/

■ Variant Effect Predictor (VEP) from Ensembl

http://www.ensembl.org/info/docs/tools/vep/index.html

Annotation and analysis - GEMINI

https://github.com/arq5x/gemini

Outline

- Variant calling made easy
- Tools
- Validation
- Post-calling annotation
- Genomes and graphs
- Understanding outputs
- Automating everything bcbio

Currently: GRCh37/hg19

GRCh38 - graph based, many more alternative loci

 $\verb|http://www.slideshare.net/GenomeRef/transitioning-to-grch38|$

GRCh38 - advantage for variant calling

Reference assembly influence

3

Personalis, Inc. Personalis

Major histocompatibility complex (MHC) – HLAs

http://www.ebi.ac.uk/ipd/imgt/hla/ http://sciscogenetics.com/technology/human-leukocyte-antigen-complex/

Alignment: bwa alternative allele support

https://github.com/lh3/bwa/blob/master/README-alt.md

Genome graphs and variation

http://www.nature.com/ng/journal/v46/n12/fig_tab/ng.3121_SF6.html

vg - tools for working with variant graphs

Outline

- Variant calling made easy
- Tools
- Validation
- Post-calling annotation
- Genomes and graphs
- Understanding outputs
- Automating everything bcbio

VCF – overview

http://vcftools.sourceforge.net/VCF-poster.pdf

VCF – representations

Types of variants

SNPs

Alignment VCF representation
ACGT POS REF ALT
ATGT 2 C T

Deletions

Alignment VCF representation
ACGT POS REF ALT
A--T 1 ACG A

Insertions

Alignment VCF representation
AC-GT POS REF ALT
ACTGT 2 C CT

Complex events

Alignment VCF representation
ACGT POS REF ALT
A-TT 1 ACG AT

Large structural variants

VCF representation
POS REF ALT INFO
100 T SVTYPE=DEL;END=300

http://vcftools.sourceforge.net/VCF-poster.pdf

Learning to read VCFs

■ Step by step guide from Broad

https://www.broadinstitute.org/gatk/guide/article?id=1268

Specification

http://samtools.github.io/hts-specs/

Outline

- Variant calling made easy
- Tools
- Validation
- Post-calling annotation
- Genomes and graphs
- Understanding outputs
- Automating everything bcbio

White box software

Overview

https://github.com/chapmanb/bcbio-nextgen

- Aligners: bwa-mem, novoalign, bowtie2
- Variantion: FreeBayes, GATK, VarDict, MuTecT, Scalpel, SnpEff, VEP, GEMINI, Lumpy, Delly, CNVkit
- RNA-seq: Tophat, STAR, cufflinks, HTSeq
- Quality control: fastqc, bamtools, RNA-SeQC
- Manipulation: bedtools, bcftools, biobambam, sambamba, samblaster, samtools, vcflib, vt

Provides

- Community collected set of expertise
- Validation outputs + automated evaluation
- Scaling
- Ready to run parallel processing on AWS
- Local installation of tools and data

Complex, rapidly changing baseline functionality

Whole genome, deep coverage v1

Warning: the material on this page is considered out of date by the GSA team.

Best Practice Variant Detection with the GATK v2

Warning: the material on this page is considered out of date by the GSA team.

RETIRED: Best Practice Variant Detection with the GATK v3

Best Practice Variant Detection with the GATK v4, for release 2.0 [RETIRED]

July 2012 edited February 4 | The Best Practices have been updated for GATK version 3. If you are running an older version, you should seriously consider upgrading. For more details

Quality differences between methods

Variant Calling Test

We compare combinations of variant calling pipelines across different data sets. Browse our public facing reports to see how various aligner + variant caller combinations perform against each other. Test your own combination of tools by creating your own report. Below is a sample conconcordance view on our "Illumina 100bp Paired End 30x Coverage" data set.

http://www.bioplanet.com/gcat

Benefits of improved filtering

http://j.mp/cancervalpre

Solution

http://www.amazon.com/Community-Structure-Belonging-Peter-Block/dp/1605092770

Community: contribution

https://github.com/chapmanb/bcbio-nextgen

Outline

- Variant calling made easy
- Tools
- Validation
- Post-calling annotation
- Genomes and graphs
- Understanding outputs
- Automating everything bcbio