Algebraic Combinatorics: HW5

various authors

3/14/2024

Problem 1 (Pairing 2n people). The Lemma to prove Burnside's Lemma states that when a group G acts on X, the number of permutations that map x to y is the same for all y in the orbit of x. Use this to count the ways to pair up 2n people. (Remark: This can also be shown by a very easy combinatorial argument.)

Proof. $x \to x_1 \to x_2 \cdots \to x_n \to x$ orbit x.

First, define an ordering of 2n people p_1, p_2, \dots, p_{2n} as some ordering, for example $p_1p_2p_3 \dots p_{2n}$ defines pairings $p_{2i-1}p_{2i}$. Set X is all possible orderings, |X| = 2n!.

1234, pairing is a permutation (12)(34), (13)(24), (23)(14) or smth.

$$\frac{2n!}{2^n n!}$$

group G is then all S_4

Problem 2. Partitions of an integer n are obtained from compositions of n by ignoring the order of the parts. Use Burnside's Lemma and the symetric group S_3 to count the partitions of 9 into three parts. List all such partitions explicitly.

Proof. S_3 fixes various partitions as follows:

- (123) and (132) fix only the 3+3+3 partition. There is 1 such partition.
- (12), (13), and (23) fix one ordering of the 1|1|7, 2|2|5, 4|4|1, and 3|3|3 partitions. For example, (23) fixes 7|1|1, 5|2|2, 1|4|4, 3|3|3.
- The identity fixes all $\binom{9-3+2}{2} = \binom{8}{2} = 28$ partitions.

Thus, by Burnside's Lemma, the total number of partitions is

$$\frac{1+1+4+4+4+28}{6} = \boxed{7}.$$

By simple enumeration, the partitions are as follows:

- 1|1|7
- 1|2|6
- 1|3|5
- 1|4|4
- 2|2|5
- 2|3|4
- 3|3|3

Problem 3 (Burnside's \Rightarrow Fermat's Theorem). Let p, n, l be positive integers with p prime. Use induction (on l) and Burnside's Lemma to prove that

$$p^l \left| \left(n^{p^l} - n^{p^{l-1}} \right) \right|$$

Proof. We first show the base case $p|n^p-n$.

Consider the number of ways to color a p-necklace with n colors, where we are only concerned about rotational symmetries. From p's primality, the fixed points of any non-identity rotation are the a constant-color necklaces. Thus, the number of distinct colorings is

$$\frac{1}{p}(n^p + (p-1)n),$$

so $p|n^p + (p-1)n$. Therefore, $p|n^p - n$.

Now, assume that the statement holds for all integers up to l-1. Consider the number of ways to color a p^l -necklace with n colors, where we are concerned with rotational symmetries, that is, the cyclic group $G \cong \mathbb{Z}_{n^l}$. G has a generator π , the unit rotation.

Consider the number of fixed points of π^i , where $0 \le i < p^l$. If $i \ne 0$ and p|i, then π^i fixes $n^{p^{l-1}}$ necklaces, since our necklace has $p^l/p = p^{l-1}$ free beads. There are $p^{l-1} - 1$ such i.

Otherwise, we fix the n constant color necklaces, or when i = 0, fix all n^{p^l} necklaces.

Thus, by Burnside's Lemma, the number of colorings is

$$\frac{1}{p^l}((p^{l-1}-1)n^{p^{l-1}}+(p^l-p^{l-1})(n)+(n^{p^l}))=\frac{1}{p^l}(n^{p^l}-n^{p^{l-1}}+p^{l-1}(n^{p^{l-1}}-n)+p^ln).$$

Notice that

$$n^{p^{l-1}} - n = (n^{p^{l-1}} - n^{p^{l-2}}) + (n^{p^{l-2}} - n^{p^{l-3}}) + \dots + (n^p - n)$$

$$\equiv 0 \pmod{p},$$

so
$$p^{l}|p^{l-1}(n^{p^{l-1}}-n)$$
, whence

$$\frac{1}{p^{l}}(n^{p^{l}}-n^{p^{l-1}})$$

is an integer, so $p^l|n^{p^l}-n^{p^{l-1}}$, as desired. Therefore, by strong induction, our proof is complete.

And that's the end of the proof. I hope you enjoyed it. It was a pleasure to do. Goodbye, goodbye. I will continue this conclusion by induction. The base case is "goodbye." The inductive step is "goodbye." The conclusion is "goodbye." The proof is complete. Goodbye.

Problem 4 (Crowns with missing jewels; Extra-Credit). A crown with n places for diamonds is missing k of them. How many distinguishable ways can this happen? In other words, how many convex k-gons can be formed from the vertices of a regular n-gon, where two k-gons are considered distinguishable when they do not arise from each other by rotations.

Proof. We apply Polyá's Enumeration Theorem. Let G be the cyclic group of order n. We want the coefficient of the z^k term in

$$\frac{1}{n} \sum_{d|n} \phi(d) z_d^{n/d},$$

and $z_d = (1 + z^d)$ (z is like the 'generator'). There is a nonzero coefficient of z^k in $(1 + z^d)^{n/d}$ when k|d, and this coefficient is $\binom{n/d}{k/d}$. Thus, our desired coefficient is the sum

$$\boxed{\frac{1}{n} \sum_{d \mid \gcd(k,n)} \phi(d) \binom{n/d}{k/d}}$$

3