MATH6173: Statistical Computing

Supplementary Coursework Report

Delice Mambi-Lambu

School Of Mathematical Sciences Faculty Of Social Sciences University Of Southampton Student I.D: 30077966 Academic Year 2021/22

Contents

1	Section 1, Question 1
	1.1 Part C: Graph
	1.2 Part D: Graph
2	Section 1, Question 2
	2.1 Part A: Algorithm
	2.2 Part B: Algorithm
	2.3 Part C: Algorithm
3	Section 1, Question 3
	3.1 Part A: Derivation
	3.2 Part B: Algorithm
	3.3 Part D: Algorithm
	3.4 Part E: Graph
4	Section 1, Question 4
	4.1 Part A: Algorithm
	4.2 Part E: Graph
5	Section 2, Question 2

- 1 Section 1, Question 1
- 1.1 Part C: Graph
- 1.2 Part D: Graph

2 Section 1, Question 2

2.1 Part A: Algorithm

```
Algorithm 1 An algorithm with caption
Require: n \ge 0
Ensure: y = x^n
   y \leftarrow 1
   X \leftarrow x
   N \leftarrow n
   while N \neq 0 do
       if N is even then
           X \leftarrow X \times X
           N \leftarrow \tfrac{N}{2}
                                                                                                     \triangleright This is a comment
       else if N is odd then
           y \leftarrow y \times X
           N \leftarrow N-1
       end if
   end while
```

2.2 Part B: Algorithm

```
Algorithm 2 An algorithm with caption
```

```
Require: n \ge 0
Ensure: y = x^n
y \leftarrow 1
X \leftarrow x
N \leftarrow n
while N \ne 0 do
if N is even then
X \leftarrow X \times X
N \leftarrow \frac{N}{2}
else if N is odd then
y \leftarrow y \times X
N \leftarrow N - 1
end if
end while
```

2.3 Part C: Algorithm

Algorithm 3 An algorithm with caption

```
Require: n \ge 0
Ensure: y = x^n
y \leftarrow 1
X \leftarrow x
N \leftarrow n
while N \ne 0 do
if N is even then
X \leftarrow X \times X
N \leftarrow \frac{N}{2}
else if N is odd then
y \leftarrow y \times X
N \leftarrow N - 1
end if
end while
```

3 Section 1, Question 3

3.1 Part A: Derivation

Algorithm 4 An algorithm with caption

```
Require: n \ge 0
Ensure: y = x^n
y \leftarrow 1
X \leftarrow x
N \leftarrow n
while N \ne 0 do
if N is even then
X \leftarrow X \times X
N \leftarrow \frac{N}{2}
else if N is odd then
y \leftarrow y \times X
N \leftarrow N - 1
end if
end while
```

- 3.2 Part B: Algorithm
- 3.3 Part D: Algorithm
- 3.4 Part E: Graph

Algorithm 5 An algorithm with caption

```
Require: n \ge 0
Ensure: y = x^n
y \leftarrow 1
X \leftarrow x
N \leftarrow n
while N \ne 0 do
if N is even then
X \leftarrow X \times X
N \leftarrow \frac{N}{2}
\text{else if } N \text{ is odd then}
y \leftarrow y \times X
N \leftarrow N - 1
end if
end while
```

Algorithm 6 An algorithm with caption

```
Require: n \ge 0
Ensure: y = x^n
y \leftarrow 1
X \leftarrow x
N \leftarrow n
while N \ne 0 do
if N is even then
X \leftarrow X \times X
N \leftarrow \frac{N}{2}
else if N is odd then
y \leftarrow y \times X
N \leftarrow N - 1
end if
end while
```

4 Section 1, Question 4

4.1 Part A: Algorithm

```
Algorithm 7 An algorithm with caption
Require: n \ge 0
Ensure: y = x^n
   y \leftarrow 1
   X \leftarrow x
   N \leftarrow n
   while N \neq 0 do
       if N is even then
           X \leftarrow X \times X
           N \leftarrow \frac{N}{2}
                                                                                                    \triangleright This is a comment
       else if N is odd then
           y \leftarrow y \times X
           N \leftarrow N-1
       end if
   end while
```

4.2 Part E: Graph

5 Section 2, Question 2