Monoidal Structures on the Category of Sets

The Clowder Project Authors

July 22, 2025

O1NK This chapter contains some material on monoidal structures on Sets.

Contents

5.1	The N	Monoidal Category of Sets and Products	2
	5.1.1	Products of Sets	2
	5.1.2	The Internal Hom of Sets	2
	5.1.3	The Monoidal Unit	2
	5.1.4	The Associator	3
	5.1.5	The Left Unitor	5
	5.1.6	The Right Unitor	8
	5.1.7	The Symmetry	10
	5.1.8	The Diagonal	12
	5.1.9	The Monoidal Category of Sets and Products	16
	5.1.10	The Universal Property of $(Sets, \times, pt)$	21
5.2	The N	Monoidal Category of Sets and Coproducts	40
	5.2.1	Coproducts of Sets	40
	5.2.2	The Monoidal Unit	41
	5.2.3	The Associator	41
	5.2.4	The Left Unitor	44
	5.2.5	The Right Unitor	47
	5.2.6	The Symmetry	50
	5.2.7	The Monoidal Category of Sets and Coproducts	53

	5.3 The Bimonoidal Category of Sets, Products, and Coproducts		
	5.3.1 The Left Distributor		
	5.3.2 The Right Distributor	62	
	5.3.3 The Left Annihilator		
	5.3.4 The Right Annihilator	03	
	ucts	64	
		01	
	A Other Chapters	67	
01NL	5.1 The Monoidal Category of Sets and Proucts	d -	
01NM	5.1.1 Products of Sets		
	See Constructions With Sets, Section 4.1.3.		
01NN	5.1.2 The Internal Hom of Sets		
	See Constructions With Sets, Section 4.3.5.		
01NP	5.1.3 The Monoidal Unit		

01NQ DEFINITION 5.1.3.1.1 ► THE MONOIDAL UNIT OF ×

The monoidal unit of the product of sets is the functor

$$\mathbb{1}^{\mathsf{Sets}} \colon \mathsf{pt} \to \mathsf{Sets}$$

defined by

$$\mathbb{1}_{\mathsf{Sets}} \stackrel{\scriptscriptstyle \mathrm{def}}{=} \mathrm{pt},$$

where pt is the terminal set of Constructions With Sets, Definition 4.1.1.1.1.

01NR 5.1.4 The Associator

01NS DEFINITION 5.1.4.1.1 ► THE ASSOCIATOR OF ×

The associator of the product of sets is the natural isomorphism

$$\alpha^{\mathsf{Sets}} \colon \times \circ (\times \times \mathrm{id}_{\mathsf{Sets}}) \stackrel{\sim}{\Longrightarrow} \times \circ (\mathrm{id}_{\mathsf{Sets}} \times \times) \circ \alpha^{\mathsf{Cats}_2}_{\mathsf{Sets},\mathsf{Sets},\mathsf{Sets}},$$

as in the diagram

whose component

$$\alpha_{X,Y,Z}^{\mathsf{Sets}} \colon (X \times Y) \times Z \xrightarrow{\sim} X \times (Y \times Z)$$

at (X, Y, Z) is given by

$$\alpha_{X,Y,Z}^{\mathsf{Sets}}((x,y),z) \stackrel{\text{def}}{=} (x,(y,z))$$

for each $((x, y), z) \in (X \times Y) \times Z$.

PROOF 5.1.4.1.2 ▶ Proof of the Claims Made in Definition 5.1.4.1.1

Invertibility

The inverse of $\alpha_{X,Y,Z}^{\mathsf{Sets}}$ is the morphism

$$\alpha_{X,Y,Z}^{\mathsf{Sets},-1} \colon X \times (Y \times Z) \xrightarrow{\sim} (X \times Y) \times Z$$

defined by

$$\alpha_{X,Y,Z}^{\mathsf{Sets},-1}(x,(y,z)) \stackrel{\scriptscriptstyle \mathsf{def}}{=} ((x,y),z)$$

for each $(x, (y, z)) \in X \times (Y \times Z)$. Indeed:

• Invertibility I. We have

$$\begin{split} \left[\alpha_{X,Y,Z}^{\mathsf{Sets},-1} \circ \alpha_{X,Y,Z}^{\mathsf{Sets}}\right] &((x,y),z) \stackrel{\text{def}}{=} \alpha_{X,Y,Z}^{\mathsf{Sets},-1} \Big(\alpha_{X,Y,Z}^{\mathsf{Sets}}((x,y),z)\Big) \\ &\stackrel{\text{def}}{=} \alpha_{X,Y,Z}^{\mathsf{Sets},-1}(x,(y,z)) \\ &\stackrel{\text{def}}{=} \big((x,y),z\big) \\ &\stackrel{\text{def}}{=} \Big[\mathrm{id}_{(X\times Y)\times Z}\Big] &((x,y),z) \end{split}$$

for each $((x,y),z) \in (X \times Y) \times Z$, and therefore we have $\alpha_{X,Y,Z}^{\mathsf{Sets},-1} \circ \alpha_{X,Y,Z}^{\mathsf{Sets}} = \mathrm{id}_{(X \times Y) \times Z}$.

• Invertibility II. We have

$$\begin{split} \left[\alpha_{X,Y,Z}^{\mathsf{Sets}} \circ \alpha_{X,Y,Z}^{\mathsf{Sets},-1}\right] &(x,(y,z)) \stackrel{\text{def}}{=} \alpha_{X,Y,Z}^{\mathsf{Sets}} \left(\alpha_{X,Y,Z}^{\mathsf{Sets},-1}(x,(y,z))\right) \\ &\stackrel{\text{def}}{=} \alpha_{X,Y,Z}^{\mathsf{Sets}} ((x,y),z) \\ &\stackrel{\text{def}}{=} (x,(y,z)) \\ &\stackrel{\text{def}}{=} \left[\mathrm{id}_{(X\times Y)\times Z}\right] &(x,(y,z)) \end{split}$$

for each $(x,(y,z)) \in X \times (Y \times Z)$, and therefore we have $\alpha_{X,Y,Z}^{\mathsf{Sets},-1} \circ \alpha_{X,Y,Z}^{\mathsf{Sets}} = \mathrm{id}_{X \times (Y \times Z)} \,.$

Therefore $\alpha_{X,Y,Z}^{\mathsf{Sets}}$ is indeed an isomorphism.

Naturality

We need to show that, given functions

$$f: X \to X',$$

 $g: Y \to Y',$
 $h: Z \to Z'$

the diagram

commutes. Indeed, this diagram acts on elements as

$$((x,y),z) \qquad \qquad ((x,y),z) \longmapsto ((f(x),g(y)),h(z))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(x,(y,z)) \longmapsto (f(x),(g(y),h(z))) \qquad \qquad (f(x),(g(y),h(z)))$$

and hence indeed commutes, showing α^{Sets} to be a natural transformation.

Being a Natural Isomorphism

Since α^{Sets} is natural and $\alpha^{\mathsf{Sets},-1}$ is a componentwise inverse to α^{Sets} , it follows from Categories, Item 2 of Proposition 11.9.7.1.2 that $\alpha^{\mathsf{Sets},-1}$ is also natural. Thus α^{Sets} is a natural isomorphism.

01NT 5.1.5 The Left Unitor

01NU

DEFINITION 5.1.5.1.1 ► THE LEFT UNITOR OF ×

The left unitor of the product of sets is the natural isomorphism

whose component

$$\lambda_X^{\mathsf{Sets}} \colon \operatorname{pt} \times X \xrightarrow{\sim} X$$

at $X \in \text{Obj}(\mathsf{Sets})$ is given by

$$\lambda_X^{\mathsf{Sets}}(\star, x) \stackrel{\scriptscriptstyle \mathrm{def}}{=} x$$

for each $(\star, x) \in \text{pt} \times X$.

PROOF 5.1.5.1.2 ► PROOF OF THE CLAIMS MADE IN DEFINITION 5.1.5.1.1

Invertibility

The inverse of $\lambda_X^{\mathsf{Sets}}$ is the morphism

$$\lambda_X^{\mathsf{Sets},-1} \colon X \xrightarrow{\sim} \mathrm{pt} \times X$$

defined by

$$\lambda_X^{\mathsf{Sets},-1}(x) \stackrel{\text{def}}{=} (\star,x)$$

for each $x \in X$. Indeed:

• Invertibility I. We have

$$\begin{split} \left[\lambda_X^{\mathsf{Sets},-1} \circ \lambda_X^{\mathsf{Sets}}\right] &(\mathsf{pt},x) = \lambda_X^{\mathsf{Sets},-1} \Big(\lambda_X^{\mathsf{Sets}} (\mathsf{pt},x)\Big) \\ &= \lambda_X^{\mathsf{Sets},-1} (x) \end{split}$$

$$= (pt, x)$$
$$= [id_{pt \times X}](pt, x)$$

for each $(pt, x) \in pt \times X$, and therefore we have

$$\lambda_X^{\mathsf{Sets},-1} \circ \lambda_X^{\mathsf{Sets}} = \mathrm{id}_{\mathrm{pt} \times X}$$
 .

• Invertibility II. We have

$$\begin{split} \left[\lambda_X^{\mathsf{Sets}} \circ \lambda_X^{\mathsf{Sets},-1}\right] (x) &= \lambda_X^{\mathsf{Sets}} \Big(\lambda_X^{\mathsf{Sets},-1}(x)\Big) \\ &= \lambda_X^{\mathsf{Sets},-1} \big(\mathrm{pt},x\big) \\ &= x \\ &= [\mathrm{id}_X](x) \end{split}$$

for each $x \in X$, and therefore we have

$$\lambda_X^{\mathsf{Sets}} \circ \lambda_X^{\mathsf{Sets},-1} = \mathrm{id}_X$$
 .

Therefore $\lambda_X^{\mathsf{Sets}}$ is indeed an isomorphism.

Naturality

We need to show that, given a function $f: X \to Y$, the diagram

$$\begin{array}{ccc} \operatorname{pt} \times X & \xrightarrow{\operatorname{id}_{\operatorname{pt}} \times f} & \operatorname{pt} \times Y \\ \lambda_X^{\operatorname{Sets}} & & & \downarrow \lambda_Y^{\operatorname{Sets}} \\ X & & & f \end{array}$$

commutes. Indeed, this diagram acts on elements as

$$\begin{array}{ccc}
(\star, x) & (\star, x) & \longrightarrow (\star, f(x)) \\
\downarrow & & \downarrow \\
x & \longmapsto f(x) & f(x)
\end{array}$$

and hence indeed commutes. Therefore λ^{Sets} is a natural transformation.

Being a Natural Isomorphism

Since λ^{Sets} is natural and $\lambda^{\mathsf{Sets},-1}$ is a componentwise inverse to λ^{Sets} , it follows from Categories, Item 2 of Proposition 11.9.7.1.2 that $\lambda^{\mathsf{Sets},-1}$ is also natural. Thus λ^{Sets} is a natural isomorphism.

01NV 5.1.6 The Right Unitor

01NW DEFINITION 5.1.6.1.1 ► THE RIGHT UNITOR OF ×

The right unitor of the product of sets is the natural isomorphism

whose component

$$\rho_X^{\mathsf{Sets}} \colon X \times \operatorname{pt} \xrightarrow{\sim} X$$

at $X \in \text{Obj}(\mathsf{Sets})$ is given by

$$\rho_X^{\mathsf{Sets}}(x,\star) \stackrel{\scriptscriptstyle \mathrm{def}}{=} x$$

for each $(x, \star) \in X \times \text{pt.}$

PROOF 5.1.6.1.2 ▶ Proof of the Claims Made in Definition 5.1.6.1.1

Invertibility

The inverse of $\rho_X^{\sf Sets}$ is the morphism

$$\rho_X^{\mathsf{Sets},-1} \colon X \xrightarrow{\sim} X \times \mathsf{pt}$$

defined by

$$\rho_X^{\mathsf{Sets},-1}(x) \stackrel{\mathrm{def}}{=} (x,\star)$$

for each $x \in X$. Indeed:

• Invertibility I. We have

$$\begin{split} \left[\rho_X^{\mathsf{Sets},-1} \circ \rho_X^{\mathsf{Sets}} \right] &(x,\star) = \rho_X^{\mathsf{Sets},-1} \Big(\rho_X^{\mathsf{Sets}} (x,\star) \Big) \\ &= \rho_X^{\mathsf{Sets},-1} (x) \\ &= (x,\star) \\ &= [\mathrm{id}_{X \times \mathrm{pt}}] (x,\star) \end{split}$$

for each $(x,\star) \in X \times pt$, and therefore we have

$$\rho_X^{\mathsf{Sets},-1} \circ \rho_X^{\mathsf{Sets}} = \mathrm{id}_{X \times \mathrm{pt}} \,.$$

• Invertibility II. We have

$$\begin{split} \left[\rho_X^{\mathsf{Sets}} \circ \rho_X^{\mathsf{Sets},-1} \right] (x) &= \rho_X^{\mathsf{Sets}} \Big(\rho_X^{\mathsf{Sets},-1} (x) \Big) \\ &= \rho_X^{\mathsf{Sets},-1} (x, \star) \\ &= x \\ &= [\mathrm{id}_X] (x) \end{split}$$

for each $x \in X$, and therefore we have

$$\rho_X^{\mathsf{Sets}} \circ \rho_X^{\mathsf{Sets},-1} = \mathrm{id}_X \,.$$

Therefore $\rho_X^{\sf Sets}$ is indeed an isomorphism.

Naturality

We need to show that, given a function $f: X \to Y$, the diagram

$$\begin{array}{ccc} X \times \operatorname{pt} & \xrightarrow{f \times \operatorname{id}_{\operatorname{pt}}} Y \times \operatorname{pt} \\ & & & \downarrow \rho_{X}^{\operatorname{Sets}} \\ \downarrow & & & \downarrow \rho_{Y}^{\operatorname{Sets}} \\ X & & & & f \end{array}$$

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes. Therefore ρ^{Sets} is a natural transformation.

Being a Natural Isomorphism

Since ρ^{Sets} is natural and $\rho^{\mathsf{Sets},-1}$ is a componentwise inverse to ρ^{Sets} , it follows from Categories, Item 2 of Proposition 11.9.7.1.2 that $\rho^{\mathsf{Sets},-1}$ is also natural. Thus ρ^{Sets} is a natural isomorphism.

01NX 5.1.7 The Symmetry

01NY

DEFINITION 5.1.7.1.1 \blacktriangleright The Symmetry of imes

The symmetry of the product of sets is the natural isomorphism

whose component

$$\sigma_{X,Y}^{\mathsf{Sets}} \colon X \times Y \xrightarrow{\sim} Y \times X$$

at $X, Y \in \text{Obj}(\mathsf{Sets})$ is defined by

$$\sigma_{X,Y}^{\mathsf{Sets}}(x,y) \stackrel{\scriptscriptstyle \mathrm{def}}{=} (y,x)$$

for each $(x, y) \in X \times Y$.

PROOF 5.1.7.1.2 ▶ Proof of the Claims Made in Definition 5.1.7.1.1

Invertibility

The inverse of $\sigma_{X,Y}^{\mathsf{Sets}}$ is the morphism

$$\sigma_{X,Y}^{\mathsf{Sets},-1} \colon Y \times X \stackrel{\sim}{\dashrightarrow} X \times Y$$

defined by

$$\sigma_{X,Y}^{\mathsf{Sets},-1}(y,x) \stackrel{\text{def}}{=} (x,y)$$

for each $(y, x) \in Y \times X$. Indeed:

• Invertibility I. We have

$$\begin{split} \left[\sigma_{X,Y}^{\mathsf{Sets},-1} \circ \sigma_{X,Y}^{\mathsf{Sets}}\right] &(x,y) \stackrel{\text{\tiny def}}{=} \sigma_{X,Y}^{\mathsf{Sets},-1} \Big(\sigma_{X,Y}^{\mathsf{Sets}}(x,y)\Big) \\ \stackrel{\text{\tiny def}}{=} \sigma_{X,Y}^{\mathsf{Sets},-1}(y,x) \\ \stackrel{\text{\tiny def}}{=} (x,y) \\ \stackrel{\text{\tiny def}}{=} [\mathrm{id}_{X\times Y}](x,y) \end{split}$$

for each $(x, y) \in X \times Y$, and therefore we have

$$\sigma_{X,Y}^{\mathsf{Sets},-1} \circ \sigma_{X,Y}^{\mathsf{Sets}} = \mathrm{id}_{X \times Y} \,.$$

• Invertibility II. We have

$$\begin{split} \left[\sigma_{X,Y}^{\mathsf{Sets}} \circ \sigma_{X,Y}^{\mathsf{Sets},-1}\right] &(y,x) \stackrel{\scriptscriptstyle \mathsf{def}}{=} \sigma_{X,Y}^{\mathsf{Sets},-1} \Big(\sigma_{X,Y}^{\mathsf{Sets}}(y,x)\Big) \\ &\stackrel{\scriptscriptstyle \mathsf{def}}{=} \sigma_{X,Y}^{\mathsf{Sets},-1}(x,y) \\ &\stackrel{\scriptscriptstyle \mathsf{def}}{=} (y,x) \\ &\stackrel{\scriptscriptstyle \mathsf{def}}{=} [\mathrm{id}_{Y\times X}] (y,x) \end{split}$$

for each $(y, x) \in Y \times X$, and therefore we have

$$\sigma_{X,Y}^{\mathsf{Sets}} \circ \sigma_{X,Y}^{\mathsf{Sets},-1} = \operatorname{id}_{Y \times X}.$$

Therefore $\sigma_{X,Y}^{\mathsf{Sets}}$ is indeed an isomorphism.

Naturality

We need to show that, given functions

$$f: X \to A,$$

 $g: Y \to B$

the diagram

$$\begin{array}{c|c} X \times Y & \xrightarrow{f \times g} & A \times B \\ \sigma_{X,Y}^{\mathsf{Sets}} & & & & & \downarrow \sigma_{A,B}^{\mathsf{Sets}} \\ Y \times X & \xrightarrow{g \times f} & B \times A \end{array}$$

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes, showing σ^{Sets} to be a natural transformation.

Being a Natural Isomorphism

Since σ^{Sets} is natural and $\sigma^{\mathsf{Sets},-1}$ is a componentwise inverse to σ^{Sets} , it follows from Categories, Item 2 of Proposition 11.9.7.1.2 that $\sigma^{\mathsf{Sets},-1}$ is also natural. Thus σ^{Sets} is a natural isomorphism.

01NZ 5.1.8 The Diagonal

01P0 DEFINITION 5.1.8.1.1 ► THE DIAGONAL OF ×

The diagonal of the product of sets is the natural transformation

whose component

$$\Delta_X \colon X \to X \times X$$

at $X \in \text{Obj}(\mathsf{Sets})$ is given by

$$\Delta_X(x) \stackrel{\text{def}}{=} (x, x)$$

for each $x \in X$.

PROOF 5.1.8.1.2 ▶ PROOF OF THE CLAIMS MADE IN DEFINITION 5.1.8.1.1

We need to show that, given a function $f: X \to Y$, the diagram

$$X \xrightarrow{f} Y$$

$$\downarrow^{\Delta_X} \qquad \downarrow^{\Delta_Y}$$

$$X \times X \xrightarrow{f \times f} Y \times Y$$

commutes. Indeed, this diagram acts on elements as

$$\begin{array}{ccc}
x & & x & & \\
\downarrow & & & \downarrow \\
(x,x) & \longmapsto (f(x),f(x)) & & (f(x),f(x))
\end{array}$$

and hence indeed commutes, showing Δ to be natural.

01P1 PROPOSITION 5.1.8.1.3 ▶ PROPERTIES OF THE DIAGONAL MAP

Let X be a set.

01P2

01P3

01P4

1. Monoidality. The diagonal map

$$\Delta : \operatorname{id}_{\mathsf{Sets}} \Longrightarrow \times \circ \Delta^{\mathsf{Cats}_2}_{\mathsf{Sets}}$$

is a monoidal natural transformation:

(a) Compatibility With Strong Monoidality Constraints. For each $X, Y \in \text{Obj}(\mathsf{Sets})$, the diagram

commutes.

(b) Compatibility With Strong Unitality Constraints. The diagrams

commute, i.e. we have

$$\begin{split} \Delta_{\mathrm{pt}} &= \lambda_{\mathrm{pt}}^{\mathsf{Sets},-1} \\ &= \rho_{\mathrm{pt}}^{\mathsf{Sets},-1}, \end{split}$$

where we recall that the equalities

$$\begin{split} \lambda_{\mathrm{pt}}^{\mathsf{Sets}} &= \rho_{\mathrm{pt}}^{\mathsf{Sets}}, \\ \lambda_{\mathrm{pt}}^{\mathsf{Sets}, -1} &= \rho_{\mathrm{pt}}^{\mathsf{Sets}, -1} \end{split}$$

are always true in any monoidal category by Monoidal Categories, ?? of ??.

01P5

2. The Diagonal of the Unit. The component

$$\Delta_{\rm pt}$$
: pt $\stackrel{\sim}{--}$ pt \times pt

of Δ at pt is an isomorphism.

PROOF 5.1.8.1.4 ▶ PROOF OF PROPOSITION 5.1.8.1.3

Item 1: Monoidality

We claim that Δ is indeed monoidal:

024S

1. Item 1a: Compatibility With Strong Monoidality Constraints: We need to show that the diagram

$$X \times Y \xrightarrow{\Delta_X \times \Delta_Y} (X \times X) \times (Y \times Y)$$

$$\downarrow \\ (X \times Y) \times (X \times Y)$$

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes.

024T

2. Item 1b: Compatibility With Strong Unitality Constraints: As shown in the proof of Definition 5.1.5.1.1, the inverse of the left unitor of Sets with respect to to the product at $X \in \text{Obj}(\mathsf{Sets})$ is given by

$$\lambda_X^{\mathsf{Sets},-1}(x) \stackrel{\text{def}}{=} (\star, x)$$

for each $x \in X$, so when X = pt, we have

$$\lambda_{\mathrm{pt}}^{\mathsf{Sets},-1}(\star) \stackrel{\scriptscriptstyle\mathrm{def}}{=} (\star,\star),$$

and also

$$\Delta_{\mathrm{pt}}^{\mathsf{Sets}}(\star) \stackrel{\scriptscriptstyle\mathrm{def}}{=} (\star, \star),$$

so we have $\Delta_{\mathrm{pt}} = \lambda_{\mathrm{pt}}^{\mathsf{Sets},-1}$.

This finishes the proof.

Item 2: The Diagonal of the Unit

This follows from Item 1 and the invertibility of the left/right unitor of Sets with respect to \times , proved in the proof of Definition 5.1.5.1.1 for the left unitor or the proof of Definition 5.1.6.1.1 for the right unitor.

01P6 5.1.9 The Monoidal Category of Sets and Products

Ø1P7 PROPOSITION 5.1.9.1.1 ➤ THE MONOIDAL STRUCTURE ON SETS ASSOCIATED TO THE PRODUCT

The category Sets admits a closed symmetric monoidal category with diagonals structure consisting of:

- The Underlying Category. The category Sets of pointed sets.
- The Monoidal Product. The product functor

$$\times$$
: Sets \times Sets \rightarrow Sets

of Constructions With Sets, Item 1 of Proposition 4.1.3.1.4.

• The Internal Hom. The internal Hom functor

Sets: Sets
$$^{op} \times Sets \rightarrow Sets$$

of Constructions With Sets, Item 1 of Proposition 4.3.5.1.2.

• The Monoidal Unit. The functor

$$\mathbb{1}^{\mathsf{Sets}} \colon \mathsf{pt} \to \mathsf{Sets}$$

of Definition 5.1.3.1.1.

• The Associators. The natural isomorphism

$$\alpha^{\mathsf{Sets}} \colon \times \circ (\times \times \mathrm{id}_{\mathsf{Sets}}) \stackrel{\sim}{\Longrightarrow} \times \circ (\mathrm{id}_{\mathsf{Sets}} \times \times) \circ \alpha^{\mathsf{Cats}}_{\mathsf{Sets},\mathsf{Sets},\mathsf{Sets}}$$

of Definition 5.1.4.1.1.

ullet The Left Unitors. The natural isomorphism

$$\lambda^{\mathsf{Sets}} \colon \times \circ \left(\mathbb{1}^{\mathsf{Sets}} \times \mathrm{id}_{\mathsf{Sets}} \right) \stackrel{\sim}{\Longrightarrow} \boldsymbol{\lambda}^{\mathsf{Cats}_2}_{\mathsf{Sets}}$$

of Definition 5.1.5.1.1.

• The Right Unitors. The natural isomorphism

$$ho^{\mathsf{Sets}} \colon imes \circ \left(\mathsf{id} imes \mathbb{1}^{\mathsf{Sets}} \right) \stackrel{\sim}{\Longrightarrow} oldsymbol{
ho}_{\mathsf{Sets}}^{\mathsf{Cats}_2}$$

of Definition 5.1.6.1.1.

• The Symmetry. The natural isomorphism

$$\sigma^{\mathsf{Sets}} \colon \times \stackrel{\sim}{\Longrightarrow} \times \circ \boldsymbol{\sigma}^{\mathsf{Cats}_2}_{\mathsf{Sets},\mathsf{Sets}}$$

of Definition 5.1.7.1.1.

• The Diagonals. The monoidal natural transformation

$$\Delta \colon \operatorname{id}_{\mathsf{Sets}} \Longrightarrow \times \circ \Delta^{\mathsf{Cats}_2}_{\mathsf{Sets}}$$

of Definition 5.1.8.1.1.

PROOF 5.1.9.1.2 ▶ PROOF OF PROPOSITION 5.1.9.1.1

The Pentagon Identity

Let W, X, Y and Z be sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and thus the pentagon identity is satisfied.

The Triangle Identity

Let X and Y be sets. We have to show that the diagram

$$(X \times \mathrm{pt}) \times Y \xrightarrow{\alpha_{X,\mathrm{pt},Y}^{\mathsf{Sets}}} X \times (\mathrm{pt} \times Y)$$

$$\rho_X^{\mathsf{Sets}} \times \mathrm{id}_Y \xrightarrow{\mathrm{id}_X \times \lambda_Y^{\mathsf{Sets}}} X \times Y$$

commutes. Indeed, this diagram acts on elements as

$$((x,\star),y) \qquad ((x,\star),y) \longmapsto (x,(\star,y))$$

$$(x,y) \qquad (x,y)$$

and thus the triangle identity is satisfied.

The Left Hexagon Identity

Let X, Y, and Z be sets. We have to show that the diagram

$$\begin{array}{c|c} \alpha_{X,Y,Z}^{\mathsf{Sets}} & (X \times Y) \times Z \\ \hline \alpha_{X,Y,Z}^{\mathsf{Sets}} & (Y \times X) \times Z \\ \hline X \times (Y \times Z) & (Y \times X) \times Z \\ \hline \\ \sigma_{X,Y \times Z}^{\mathsf{Sets}} & & & & & \\ \alpha_{Y,X,Z}^{\mathsf{Sets}} & & & & \\ (Y \times Z) \times X & & & & & \\ Y \times (X \times Z) & & & & \\ \hline \alpha_{Y,X,Z}^{\mathsf{Sets}} & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}$$

commutes. Indeed, this diagram acts on elements as

and thus the left hexagon identity is satisfied.

The Right Hexagon Identity

Let X, Y, and Z be sets. We have to show that the diagram

$$(\alpha_{X,Y,Z}^{\mathsf{Sets}})^{-1}X \times (Y \times Z) \\ \mathrm{id}_{X} \times \sigma_{Y,Z}^{\mathsf{Sets}} \\ (X \times Y) \times Z \qquad \qquad X \times (Z \times Y) \\ \sigma_{X \times Y,Z}^{\mathsf{Sets}} \bigvee_{\left(\alpha_{X,Z,Y}^{\mathsf{Sets}}\right)^{-1}} \\ Z \times (X \times Y) \qquad \qquad (X \times Z) \times Y \\ (\alpha_{Z,X,Y}^{\mathsf{Sets}})^{-1} \bigvee_{\left(Z \times X\right) \times Y} \sigma_{X,Z}^{\mathsf{Sets}} \times \mathrm{id}_{Y}$$

01P8 5.1.10 The Universal Property of $(Sets, \times, pt)$

01P9 THEOREM 5.1.10.1.1 \blacktriangleright The Universal Property of (Sets, \times , pt)

The symmetric monoidal structure on the category Sets of Proposition 5.1.9.1.1 is uniquely determined by the following requirements:

1. Existence of an Internal Hom. The tensor product

$$\otimes_{\mathsf{Sets}} \colon \mathsf{Sets} \times \mathsf{Sets} \to \mathsf{Sets}$$

of Sets admits an internal Hom $[-1, -2]_{Sets}$

2. The Unit Object Is pt. We have $\mathbb{1}_{\mathsf{Sets}} \cong \mathsf{pt}$.

More precisely, the full subcategory of the category $\mathcal{M}^{\mathrm{cld}}_{\mathbb{E}_{\infty}}(\mathsf{Sets})$ of ?? spanned by the closed symmetric monoidal categories (Sets, \otimes_{Sets} ,

 $[-1, -2]_{\text{Sets}}$, $\mathbb{1}_{\text{Sets}}$, λ^{Sets} , ρ^{Sets} , σ^{Sets}) satisfying Items 1 and 2 is contractible (i.e. equivalent to the punctual category).

PROOF 5.1.10.1.2 ▶ PROOF OF THEOREM 5.1.10.1.1

Unwinding the Statement

01PA

01PB

Let $(\mathsf{Sets}, \otimes_{\mathsf{Sets}}, [-_1, -_2]_{\mathsf{Sets}}, \mathbb{1}_{\mathsf{Sets}}, \lambda', \rho', \sigma')$ be a closed symmetric monoidal category satisfying Items 1 and 2. We need to show that the identity functor

$$\mathrm{id}_{\mathsf{Sets}} \colon \mathsf{Sets} \to \mathsf{Sets}$$

admits a unique closed symmetric monoidal functor structure

$$\begin{array}{cccc} \operatorname{id}_{\mathsf{Sets}}^{\otimes} \colon & A \otimes_{\mathsf{Sets}} B \stackrel{\sim}{--} & A \times B, \\ \operatorname{id}_{\mathsf{Sets}}^{\mathsf{Hom}} \colon & [A,B]_{\mathsf{Sets}} \stackrel{\sim}{--} & \mathsf{Sets}(A,B), \\ \operatorname{id}_{\mathbb{1}|\mathsf{Sets}}^{\otimes} \colon & \mathbb{1}_{\mathsf{Sets}} & \stackrel{\sim}{--} & \mathrm{pt}, \end{array}$$

making it into a symmetric monoidal strongly closed isomorphism of categories from (Sets, \otimes_{Sets} , $[-_1, -_2]_{Sets}$, $\mathbb{1}_{Sets}$, λ' , ρ' , σ') to the closed symmetric monoidal category (Sets, \times , Sets($-_1$, $-_2$), $\mathbb{1}_{Sets}$, λ^{Sets} , ρ^{Sets} , σ^{Sets}) of Proposition 5.1.9.1.1.

Constructing an Isomorphism $[-1, -2]_{Sets} \cong Sets(-1, -2)$

By ??, we have a natural isomorphism

$$\mathsf{Sets}(\mathrm{pt},[-_1,-_2]_{\mathsf{Sets}}) \cong \mathsf{Sets}(-_1,-_2).$$

By Constructions With Sets, Item 3 of Proposition 4.3.5.1.2, we also have a natural isomorphism

$$\mathsf{Sets}(\mathsf{pt}, [-_1, -_2]_{\mathsf{Sets}}) \cong [-_1, -_2]_{\mathsf{Sets}}.$$

Composing both natural isomorphisms, we obtain a natural isomorphism

$$\mathsf{Sets}(-1, -2) \cong [-1, -2]_{\mathsf{Sets}}$$
.

Given $A, B \in \text{Obj}(\mathsf{Sets})$, we will write

$$\operatorname{id}_{A,B}^{\operatorname{Hom}} : \operatorname{\mathsf{Sets}}(A,B) \stackrel{\sim}{\dashrightarrow} [A,B]_{\operatorname{\mathsf{Sets}}}$$

for the component of this isomorphism at (A, B).

Constructing an Isomorphism $\otimes_{\mathsf{Sets}} \cong \times$

Since \otimes_{Sets} is adjoint in each variable to $[-_1, -_2]_{\mathsf{Sets}}$ by assumption and \times is adjoint in each variable to $\mathsf{Sets}(-_1, -_2)$ by Constructions With Sets, Item 2 of Proposition 4.3.5.1.2, uniqueness of adjoints (??) gives us natural isomorphisms

$$A \otimes_{\mathsf{Sets}} - \cong A \times -,$$
$$- \otimes_{\mathsf{Sets}} B \cong B \times -.$$

By $\ref{eq:solution}$, we then have $\otimes_{\mathsf{Sets}} \cong \times$. We will write

$$\operatorname{id}_{\operatorname{Sets}|A}^{\otimes} : A \otimes_{\operatorname{Sets}} B \xrightarrow{\sim} A \times B$$

for the component of this isomorphism at (A, B).

Alternative Construction of an Isomorphism $\otimes_{\mathsf{Sets}} \cong \times$

Alternatively, we may construct a natural isomorphism $\otimes_{\mathsf{Sets}} \cong \times$ as follows:

1. Let $A \in \text{Obj}(\mathsf{Sets})$.

01PC

01PD

2. Since \otimes_{Sets} is part of a closed monoidal structure, it preserves colimits in each variable by ??.

01PE

3. Since $A \cong \coprod_{a \in A} \text{pt}$ and \otimes_{Sets} preserves colimits in each variable, we have

$$A \otimes_{\mathsf{Sets}} B \cong \left(\coprod_{a \in A} \mathsf{pt} \right) \otimes_{\mathsf{Sets}} B$$

$$\cong \coprod_{a \in A} (\mathsf{pt} \otimes_{\mathsf{Sets}} B)$$

$$\cong \coprod_{a \in A} B$$

$$\cong A \times B,$$

naturally in $B \in \text{Obj}(\mathsf{Sets})$, where we have used that pt is the monoidal unit for \otimes_{Sets} . Thus $A \otimes_{\mathsf{Sets}} - \cong A \times -$ for each $A \in \text{Obj}(\mathsf{Sets})$.

01PF

4. Similarly, $-\otimes_{\mathsf{Sets}} B \cong -\times B$ for each $B \in \mathsf{Obj}(\mathsf{Sets})$.

01PG

5. By ??, we then have $\otimes_{\mathsf{Sets}} \cong \times$.

Below, we'll show that if a natural isomorphism $\otimes_{\mathsf{Sets}} \cong \times$ exists, then it must be unique. This will show that the isomorphism constructed above is equal to the isomorphism $\mathrm{id}_{\mathsf{Sets}|A,B}^\otimes\colon A\otimes_{\mathsf{Sets}} B\to A\times B$ from before.

Constructing an Isomorphism $id_1^{\otimes} : \mathbb{1}_{\mathsf{Sets}} \to \mathsf{pt}$

We define an isomorphism $\mathrm{id}_{1}^{\otimes} \colon \mathbb{1}_{\mathsf{Sets}} \to \mathrm{pt}$ as the composition

in Sets.

Monoidal Left Unity of the Isomorphism $\otimes_{\mathsf{Sets}} \cong \times$

We have to show that the diagram

commutes. First, note that the diagram

corresponding to the case $A={\rm pt}$, commutes by the terminality of pt (Constructions With Sets, Construction 4.1.1.1.2). Since this diagram commutes, so does the diagram

Now, let $A \in \text{Obj}(\mathsf{Sets})$, let $a \in A$, and consider the diagram

Since:

- Subdiagram (5) commutes by the naturality of $\lambda'^{,-1}$.
- Subdiagram (†) commutes, as proved above.
- Subdiagram (4) commutes by the naturality of $id_{1|Sets}^{\otimes,-1}$
- Subdiagram (1) commutes by the naturality of $id_{\mathsf{Sets}}^{\otimes,-1}$.
- Subdiagram (3) commutes by the naturality of $\lambda^{\mathsf{Sets},-1}$.

it follows that the diagram

$$\operatorname{pt} \times A \xrightarrow{\operatorname{id}_{\mathsf{Sets}|\operatorname{pt},A}^{\otimes,-1}} \operatorname{pt} \otimes_{\mathsf{Sets}} A$$

$$\uparrow^{\mathsf{Sets},-1} \nearrow \qquad \qquad \downarrow^{\operatorname{id}_{\mathsf{1}|\mathsf{Sets}}^{\otimes,-1} \otimes_{\mathsf{Sets}} \operatorname{id}_{A}}$$

$$\operatorname{pt} \xrightarrow{[a]} A \xrightarrow{\lambda_{A}^{\prime,-1}} \qquad \qquad \mathbb{1}_{\mathsf{Sets}} \otimes_{\mathsf{Sets}} A$$

Here's a step-by-step showcase of this argument: [Link]. We then have

$$\lambda_A^{\prime,-1}(a) = \left[\lambda_A^{\prime,-1} \circ [a]\right](\star)$$

$$\begin{split} &= \left[\left(\mathrm{id}_{\mathbb{1}|\mathsf{Sets}}^{\otimes,-1} \times \mathrm{id}_{A} \right) \circ \mathrm{id}_{\mathsf{Sets}|\mathsf{pt},A}^{\otimes,-1} \circ \lambda_{A}^{\mathsf{Sets},-1} \circ [a] \right] (\star) \\ &= \left[\left(\mathrm{id}_{\mathbb{1}|\mathsf{Sets}}^{\otimes,-1} \times \mathrm{id}_{A} \right) \circ \mathrm{id}_{\mathsf{Sets}|\mathsf{pt},A}^{\otimes,-1} \circ \lambda_{A}^{\mathsf{Sets},-1} \right] (a) \end{split}$$

for each $a \in A$, and thus we have

$$\lambda_A^{\prime,-1} = \left(\mathrm{id}_{\mathbb{1}|\mathsf{Sets}}^{\otimes,-1} \times \mathrm{id}_A\right) \circ \mathrm{id}_{\mathsf{Sets}|\mathsf{pt},A}^{\otimes,-1} \circ \lambda_A^{\mathsf{Sets},-1}.$$

Taking inverses then gives

$$\lambda_A' = \lambda_A^{\mathsf{Sets}} \circ \mathrm{id}_{\mathsf{Sets}|\mathsf{pt},A}^{\otimes} \circ (\mathrm{id}_{\mathbb{1}|\mathsf{Sets}}^{\otimes} \times \mathrm{id}_A),$$

showing that the diagram

$$\operatorname{pt} \otimes_{\mathsf{Sets}} A \xrightarrow{\operatorname{id}_{\mathsf{Sets}}^{\otimes} | \operatorname{pt} \times A} \operatorname{pt} \times A$$

$$\operatorname{id}_{\mathbb{1}|\mathsf{Sets}}^{\otimes} \otimes_{\mathsf{Sets}} \operatorname{id}_{A} \xrightarrow{\lambda_{A}'} A$$

$$\mathbb{1}_{\mathsf{Sets}} \otimes_{\mathsf{Sets}} A \xrightarrow{\lambda_{A}'} A$$

indeed commutes.

Monoidal Right Unity of the Isomorphism $\otimes_{\mathsf{Sets}} \cong \times$

We can use the same argument we used to prove the monoidal left unity of the isomorphism $\otimes_{\mathsf{Sets}} \cong \times$ above. For completeness, we repeat it below.

We have to show that the diagram

commutes. First, note that the diagram

$$\begin{array}{c} \operatorname{pt} \otimes_{\mathsf{Sets}} \operatorname{pt} \xrightarrow{\operatorname{id}_{\mathsf{Sets}|\operatorname{pt},\operatorname{pt}}^{\mathsf{d}}} \operatorname{pt} \times \operatorname{pt} \\ \operatorname{id}_{\operatorname{pt}} \otimes_{\mathsf{Sets}} \operatorname{id}_{\mathbb{1}|\mathsf{Sets}}^{\otimes} & & \rho_{\operatorname{pt}}^{\mathsf{Sets}} \end{array}$$

$$\operatorname{pt} \otimes_{\mathsf{Sets}} \mathbb{1}_{\mathsf{Sets}} \xrightarrow{\rho_{\operatorname{pt}}'} \operatorname{pt}$$

corresponding to the case $A={\rm pt}$, commutes by the terminality of pt (Constructions With Sets, Construction 4.1.1.1.2). Since this diagram commutes, so does the diagram

Now, let $A \in \text{Obj}(\mathsf{Sets})$, let $a \in A$, and consider the diagram

Since:

- Subdiagram (5) commutes by the naturality of $\rho'^{,-1}$.
- Subdiagram (†) commutes, as proved above.
- Subdiagram (4) commutes by the naturality of id_{1|Sets}.
- Subdiagram (1) commutes by the naturality of id_{Sets}^{⊗,-1}.
- Subdiagram (3) commutes by the naturality of $\rho^{\mathsf{Sets},-1}.$

it follows that the diagram

Here's a step-by-step showcase of this argument: [Link]. We then have

$$\begin{aligned} \rho_A^{\prime,-1}(a) &= \left[\rho_A^{\prime,-1} \circ [a] \right] (\star) \\ &= \left[\left(\mathrm{id}_A \times \mathrm{id}_{\mathbb{1}|\mathsf{Sets}}^{\otimes,-1} \right) \circ \mathrm{id}_{\mathsf{Sets}|\mathsf{pt},A}^{\otimes,-1} \circ \rho_A^{\mathsf{Sets},-1} \circ [a] \right] (\star) \\ &= \left[\left(\mathrm{id}_A \times \mathrm{id}_{\mathbb{1}|\mathsf{Sets}}^{\otimes,-1} \right) \circ \mathrm{id}_{\mathsf{Sets}|\mathsf{pt},A}^{\otimes,-1} \circ \rho_A^{\mathsf{Sets},-1} \right] (a) \end{aligned}$$

for each $a \in A$, and thus we have

$$\rho_A^{\prime,-1} = \left(\mathrm{id}_A \times \mathrm{id}_{\mathbb{1}|\mathsf{Sets}}^{\otimes,-1}\right) \circ \mathrm{id}_{\mathsf{Sets}|\mathsf{pt},A}^{\otimes,-1} \circ \rho_A^{\mathsf{Sets},-1}.$$

Taking inverses then gives

$$\rho_A' = \rho_A^{\mathsf{Sets}} \circ \mathrm{id}_{\mathsf{Sets}|\mathsf{pt},A}^{\otimes} \circ \left(\mathrm{id}_A \times \mathrm{id}_{\mathsf{1}|\mathsf{Sets}}^{\otimes}\right).$$

showing that the diagram

indeed commutes.

Monoidality of the Isomorphism $\otimes_{\mathsf{Sets}} = \times$

We have to show that the diagram

commutes. First, note that the diagram

commutes by the terminality of pt (Constructions With Sets, Construction 4.1.1.2). Since the map $!_{pt \times (pt \times pt)} : pt \times (pt \times pt) \to pt$ is an isomorphism (e.g. having inverse $\lambda_{pt}^{\mathsf{Sets},-1} \circ \lambda_{pt}^{\mathsf{Sets},-1}$), it follows that the

diagram

also commutes. Taking inverses, we see that the diagram

commutes as well. Now, let $A, B, C \in \text{Obj}(\mathsf{Sets})$, let $a \in A$, let $b \in B$,

Since:

- Subdiagram (1) commutes by the naturality of $\alpha^{\mathsf{Sets},-1}$.
- Subdiagram (2) commutes by the naturality of $\mathrm{id}_{\mathsf{Sets}}^{\otimes,-1}$.
- Subdiagram (3) commutes by the naturality of $id_{\mathsf{Sets}}^{\otimes,-1}$.
- Subdiagram (\dagger) commutes, as proved above.

- Subdiagram (4) commutes by the naturality of $id_{\mathsf{Sets}}^{\otimes,-1}$.
- Subdiagram (5) commutes by the naturality of $id_{\mathsf{Sets}}^{\otimes,-1}$.
- Subdiagram (6) commutes by the naturality of α'^{-1} .

it follows that the diagram

$$\begin{array}{c|c} \operatorname{pt} \times (\operatorname{pt} \times \operatorname{pt}) \\ & | \\ & | \\ (a) \times ([b] \times [c]) \\ \downarrow \\ & \downarrow \\ (A \times B) \times C \\ & A \otimes_{\mathsf{Sets}} (B \times C) \\ \operatorname{id}_{\mathsf{Sets}|A \times B, C} \\ \downarrow \\ (A \times B) \otimes_{\mathsf{Sets}} C \\ & A \otimes_{\mathsf{Sets}} (B \times C) \\ & \downarrow \operatorname{id}_{A} \times \operatorname{id}_{\mathsf{Sets}|B, C}^{\otimes, -1} \\ & \downarrow \operatorname{id}_{A} \times \operatorname{id}_{\mathsf{Sets}|B, C}^{\otimes, -1} \\ & \downarrow \operatorname{id}_{A} \times \operatorname{id}_{\mathsf{Sets}|B, C}^{\otimes, -1} \\ & (A \times B) \otimes_{\mathsf{Sets}} C \\ & A \otimes_{\mathsf{Sets}} (B \otimes_{\mathsf{Sets}} C) \\ & \operatorname{id}_{\mathsf{Sets}|A, B}^{\otimes, -1} \otimes_{\mathsf{Sets}} \operatorname{id}_{C} \\ & (A \otimes_{\mathsf{Sets}} B) \otimes_{\mathsf{Sets}} C \end{array}$$

also commutes. We then have

$$\begin{split} \left[\left(\operatorname{id}_{\mathsf{Sets}|A,B}^{\otimes,-1} \otimes_{\mathsf{Sets}} \operatorname{id}_C \right) \circ \operatorname{id}_{\mathsf{Sets}|A \times B,C}^{\otimes,-1} \\ &\circ \alpha_{A,B,C}^{\mathsf{Sets},-1} \right] (a,(b,c)) = \left[\left(\operatorname{id}_{\mathsf{Sets}|A,B}^{\otimes,-1} \otimes_{\mathsf{Sets}} \operatorname{id}_C \right) \circ \operatorname{id}_{\mathsf{Sets}|A \times B,C}^{\otimes,-1} \\ &\circ \alpha_{A,B,C}^{\mathsf{Sets},-1} \circ \left([a] \times \left([b] \times [c] \right) \right) \right] (\star,(\star,\star)) \\ &= \left[\alpha_{A,B,C}^{\prime,-1} \circ \left(\operatorname{id}_A \times \operatorname{id}_{\mathsf{Sets}|B,C}^{\otimes,-1} \right) \\ &\circ \operatorname{id}_{\mathsf{Sets}|A,B \times C}^{\otimes,-1} \circ \left([a] \times \left([b] \times [c] \right) \right) \right] (\star,(\star,\star)) \\ &= \left[\alpha_{A,B,C}^{\prime,-1} \circ \left(\operatorname{id}_A \times \operatorname{id}_{\mathsf{Sets}|B,C}^{\otimes,-1} \right) \circ \operatorname{id}_{\mathsf{Sets}|A,B \times C}^{\otimes,-1} \right] (a,(b,c)) \end{split}$$

for each $(a,(b,c)) \in A \times (B \times C)$, and thus we have

$$\left(\mathrm{id}_{\mathsf{Sets}|A,B}^{\otimes,-1} \otimes_{\mathsf{Sets}} \mathrm{id}_{C}\right) \circ \mathrm{id}_{\mathsf{Sets}|A \times B,C}^{\otimes,-1} \circ \alpha_{A,B,C}^{\mathsf{Sets},-1} = \alpha_{A,B,C}^{\prime,-1} \circ \left(\mathrm{id}_{A} \times \mathrm{id}_{\mathsf{Sets}|B,C}^{\otimes,-1}\right) \circ \mathrm{id}_{\mathsf{Sets}|A,B \times C}^{\otimes,-1}$$

Taking inverses then gives

 $\alpha_{A,B,C}^{\mathsf{Sets}} \circ \mathrm{id}_{\mathsf{Sets}|A \times B,C}^{\otimes} \circ \left(\mathrm{id}_{\mathsf{Sets}|A,B}^{\otimes} \otimes_{\mathsf{Sets}} \mathrm{id}_{C} \right) = \mathrm{id}_{\mathsf{Sets}|A,B \times C}^{\otimes} \circ \left(\mathrm{id}_{A} \times \mathrm{id}_{\mathsf{Sets}|B,C}^{\otimes} \right) \circ \alpha_{A,B,C}',$ showing that the diagram

$$(A \otimes_{\mathsf{Sets}} B) \otimes_{\mathsf{Sets}} C$$

$$(A \times B) \otimes_{\mathsf{Sets}} C$$

$$(A \times B) \otimes_{\mathsf{Sets}} C$$

$$A \otimes_{\mathsf{Sets}} (B \otimes_{\mathsf{Sets}} C)$$

$$\mathsf{id}_{\mathsf{Sets}|A \times B,C}^{\otimes} \qquad \mathsf{id}_{\mathsf{Sets}|A \times B,C}^{\otimes}$$

$$(A \times B) \times C$$

$$A \otimes_{\mathsf{Sets}} (B \times C)$$

$$\mathsf{id}_{\mathsf{Sets}|A \times B,C}^{\otimes} \qquad \mathsf{id}_{\mathsf{Sets}|A,B \times C}^{\otimes}$$

$$A \times (B \times C)$$

indeed commutes.

Braidedness of the Isomorphism $\otimes_{\mathsf{Sets}} \cong \times$

We have to show that the diagram

$$\begin{array}{c|c} A \otimes_{\mathsf{Sets}} B \xrightarrow{\mathrm{id}_{\mathsf{Sets}|A,B}^{\otimes}} A \times B \\ \\ \sigma'_{A,B} \bigg| & & \bigg| \sigma^{\mathsf{Sets}}_{A,B} \\ B \otimes_{\mathsf{Sets}} A \xrightarrow{\mathrm{id}_{\mathsf{Sets}|B,A}^{\otimes}} B \times A \end{array}$$

commutes. First, note that the diagram

$$\begin{array}{c|c} \operatorname{pt} \otimes_{\mathsf{Sets}} \operatorname{pt} \xrightarrow{\operatorname{id}_{\mathsf{Sets}|\operatorname{pt},\operatorname{pt}}^{\otimes}} \operatorname{pt} \times \operatorname{pt} \\ \\ \sigma'_{\operatorname{pt},\operatorname{pt}} \bigg| & & & & & \\ \sigma'_{\operatorname{pt},\operatorname{pt}} \bigg| & & & & \\ \operatorname{pt} \otimes_{\mathsf{Sets}} \operatorname{pt} \xrightarrow{\operatorname{id}_{\overset{\otimes}{\mathsf{Sets}|\operatorname{pt},\operatorname{pt}}}} \operatorname{pt} \times \operatorname{pt} \\ \\ \operatorname{pt} \otimes_{\mathsf{Sets}} \operatorname{pt} \xrightarrow{\operatorname{id}_{\overset{\otimes}{\mathsf{Sets}|\operatorname{pt},\operatorname{pt}}}} \operatorname{pt} \times \operatorname{pt} \\ \end{array}$$

commutes by the terminality of pt (Constructions With Sets, Construction 4.1.1.1.2). Since the map $!_{pt \times pt} : pt \times pt \rightarrow pt$ is invertible (e.g. with inverse $\lambda_{pt}^{\mathsf{Sets},-1}$), the diagram

also commutes. Taking inverses, we see that the diagram

$$\begin{array}{c|c} pt \times pt & \xrightarrow{\mathrm{id}_{\mathsf{Sets}|pt,pt}^{\otimes,-1}} pt \otimes_{\mathsf{Sets}} pt \\ \\ \sigma_{\mathrm{pt,pt}}^{\mathsf{Sets},-1} & & (\dagger) & & \sigma_{\mathrm{pt,pt}}^{\prime,-1} \\ \\ pt \times pt & \xrightarrow{\mathrm{id}_{\mathsf{Sets}|pt,pt}^{\otimes,-1}} pt \otimes_{\mathsf{Sets}} pt \end{array}$$

commutes as well. Now, let $A, B \in \text{Obj}(\mathsf{Sets})$, let $a \in A$, let $b \in B$, and

which we partition into subdiagrams as follows:

Since:

- Subdiagram (2) commutes by the naturality of $\sigma^{\mathsf{Sets},-1}$.
- Subdiagram (5) commutes by the naturality of $id^{\otimes,-1}$.

- Subdiagram (†) commutes, as proved above.
- Subdiagram (4) commutes by the naturality of $\sigma'^{,-1}$.
- Subdiagram (1) commutes by the naturality of $id^{\otimes,-1}$.

it follows that the diagram

commutes. We then have

$$\begin{split} \left[\mathrm{id}_{\mathsf{Sets}|A,B}^{\otimes,-1} \circ \sigma_{A,B}^{\mathsf{Sets},-1} \right] (b,a) &= \left[\mathrm{id}_{\mathsf{Sets}|A,B}^{\otimes,-1} \circ \sigma_{A,B}^{\mathsf{Sets},-1} \circ ([b] \times [a]) \right] (\star, \star) \\ &= \left[\sigma_{A,B}'^{,-1} \circ \mathrm{id}_{\mathsf{Sets}|B,A}^{\otimes,-1} \circ ([b] \times [a]) \right] (\star, \star) \\ &= \left[\sigma_{A,B}'^{,-1} \circ \mathrm{id}_{\mathsf{Sets}|B,A}^{\otimes,-1} \right] (b,a) \end{split}$$

for each $(b, a) \in B \times A$, and thus we have

$$\operatorname{id}_{\mathsf{Sets}|A,B}^{\otimes,-1} \circ \sigma_{A,B}^{\mathsf{Sets},-1} = \sigma_{A,B}^{\prime,-1} \circ \operatorname{id}_{\mathsf{Sets}|B,A}^{\otimes,-1}.$$

Taking inverses then gives

$$\sigma_{A,B}^{\mathsf{Sets}} \circ \mathrm{id}_{\mathsf{Sets}|A,B}^{\otimes} = \mathrm{id}_{\mathsf{Sets}|B,A}^{\otimes} \circ \sigma_{A,B}',$$

showing that the diagram

$$A \otimes_{\mathsf{Sets}} B \xrightarrow{\mathrm{id}_{\mathsf{Sets}|A,B}^{\otimes}} A \times B$$

$$\sigma'_{A,B} \downarrow \qquad \qquad \qquad \downarrow \sigma^{\mathsf{Sets}}_{A,B}$$

$$B \otimes_{\mathsf{Sets}} A \xrightarrow{\mathrm{id}_{\mathsf{Sets}|B,A}^{\otimes}} B \times A$$

indeed commutes.

Uniqueness of the Isomorphism $\otimes_{\mathsf{Sets}} \cong \times$

Let $\phi, \psi \colon -_1 \otimes_{\mathsf{Sets}} -_2 \Rightarrow -_1 \times -_2$ be natural isomorphisms. Since these isomorphisms are compatible with the unitors of Sets with respect to \times and \otimes (as shown above), we have

$$\lambda_B' = \lambda_B^{\mathsf{Sets}} \circ \phi_{\mathsf{pt},B} \circ \left(\mathrm{id}_{1|\mathsf{Sets}}^{\otimes} \otimes_{\mathsf{Sets}} \mathrm{id}_Y \right),$$
$$\lambda_B' = \lambda_B^{\mathsf{Sets}} \circ \psi_{\mathsf{pt},B} \circ \left(\mathrm{id}_{1|\mathsf{Sets}}^{\otimes} \otimes_{\mathsf{Sets}} \mathrm{id}_Y \right).$$

Postcomposing both sides with $\lambda_B^{\mathsf{Sets},-1}$ gives

$$\lambda_B^{\mathsf{Sets},-1} \circ \lambda_B' \circ \left(\mathrm{id}_{\mathbb{1}|\mathsf{Sets}}^{\otimes,-1} \otimes_{\mathsf{Sets}} \mathrm{id}_Y \right) = \phi_{\mathrm{pt},B},$$
$$\lambda_B^{\mathsf{Sets},-1} \circ \lambda_B' \circ \left(\mathrm{id}_{\mathbb{1}|\mathsf{Sets}}^{\otimes} \otimes_{\mathsf{Sets}} \mathrm{id}_Y \right) = \psi_{\mathrm{pt},B},$$

and thus we have

$$\phi_{\mathrm{pt},B} = \psi_{\mathrm{pt},B}$$

for each $B \in \text{Obj}(\mathsf{Sets})$. Now, let $a \in A$ and consider the naturality diagrams

for ϕ and ψ with respect to the morphisms [a] and id_B . Having shown that $\phi_{\mathrm{pt},B} = \psi_{\mathrm{pt},B}$, we have

$$\begin{split} \phi_{A,B}(a,b) &= [\phi_{A,B} \circ ([a] \times \mathrm{id}_B)](\star,b) \\ &= [([a] \otimes_{\mathsf{Sets}} \mathrm{id}_B) \circ \phi_{\mathsf{pt},B}](\star,b) \\ &= [([a] \otimes_{\mathsf{Sets}} \mathrm{id}_B) \circ \psi_{\mathsf{pt},B}](\star,b) \\ &= [\psi_{A,B} \circ ([a] \times \mathrm{id}_B)](\star,b) \\ &= \psi_{A,B}(a,b) \end{split}$$

for each $(a, b) \in A \times B$. Therefore we have

$$\phi_{A,B} = \psi_{A,B}$$

for each $A, B \in \text{Obj}(\mathsf{Sets})$ and thus $\phi = \psi$, showing the isomorphism $\otimes_{\mathsf{Sets}} \cong \times$ to be unique.

O1PH COROLLARY 5.1.10.1.3 ► A SECOND UNIVERSAL PROPERTY FOR (Sets, \times , pt)

The symmetric monoidal structure on the category Sets of Proposition 5.1.9.1.1 is uniquely determined by the following requirements:

1. Two-Sided Preservation of Colimits. The tensor product

$$\otimes_{\mathsf{Sets}} \colon \mathsf{Sets} \times \mathsf{Sets} \to \mathsf{Sets}$$

of Sets preserves colimits separately in each variable.

2. The Unit Object Is pt. We have $\mathbb{1}_{\mathsf{Sets}} \cong \mathsf{pt}$.

More precisely, the full subcategory of the category $\mathcal{M}_{\mathbb{E}_{\infty}}(\mathsf{Sets})$ of $\ref{eq:subcategory}$ spanned by the symmetric monoidal categories $\left(\mathsf{Sets}, \otimes_{\mathsf{Sets}}, \mathbb{1}_{\mathsf{Sets}}, \lambda^{\mathsf{Sets}}, \rho^{\mathsf{Sets}}, \sigma^{\mathsf{Sets}}\right)$ satisfying Items 1 and 2 is contractible.

PROOF 5.1.10.1.4 ▶ PROOF OF COROLLARY 5.1.10.1.3

Since Sets is locally presentable (??), it follows from ?? that Item 1 is equivalent to the existence of an internal Hom as in Item 1 of Theorem 5.1.10.1.1. The result then follows from Theorem 5.1.10.1.1.

oppl 5.2 The Monoidal Category of Sets and Coproducts

01PM 5.2.1 Coproducts of Sets

01PJ

01PK

See Constructions With Sets, Section 4.2.3.

01PN 5.2.2 The Monoidal Unit

01PP DEFINITION 5.2.2.1.1 ► THE MONOIDAL UNIT OF

The monoidal unit of the coproduct of sets is the functor

$$\mathbb{0}^{\mathsf{Sets}} \colon \mathsf{pt} \to \mathsf{Sets}$$

defined by

$$\mathbb{O}_{\mathsf{Sets}} \stackrel{\text{def}}{=} \emptyset$$

where Ø is the empty set of Constructions With Sets, Definition 4.3.1.1.1.

01PQ 5.2.3 The Associator

01PR DEFINITION 5.2.3.1.1 ► THE ASSOCIATOR OF [

The associator of the coproduct of sets is the natural isomorphism

$$\alpha^{\mathsf{Sets}, \coprod} \colon \coprod \circ (\coprod \times \operatorname{id}_{\mathsf{Sets}}) \stackrel{\sim}{\Longrightarrow} \coprod \circ (\operatorname{id}_{\mathsf{Sets}} \times \coprod) \circ \alpha^{\mathsf{Cats}}_{\mathsf{Sets}, \mathsf{Sets}, \mathsf{Sets}},$$

as in the diagram

whose component

$$\alpha_{X,Y,Z}^{\mathsf{Sets},\coprod} \colon (X \coprod Y) \coprod Z \stackrel{\sim}{\dashrightarrow} X \coprod (Y \coprod Z)$$

at (X, Y, Z) is given by

$$\alpha_{X,Y,Z}^{\mathsf{Sets},\coprod}(a) \stackrel{\text{def}}{=} \begin{cases} (0,x) & \text{if } a = (0,(0,x)), \\ (1,(0,y)) & \text{if } a = (0,(1,y)), \\ (1,(1,a)) & \text{if } a = (1,z) \end{cases}$$

for each $a \in (X \coprod Y) \coprod Z$.

PROOF 5.2.3.1.2 ▶ Proof of the Claims Made in Definition 5.2.3.1.1

Unwinding the Definitions of $(X \coprod Y) \coprod Z$ and $X \coprod (Y \coprod Z)$

Firstly, we unwind the expressions for $(X \coprod Y) \coprod Z$ and $X \coprod (Y \coprod Z)$. We have

$$\begin{split} (X \coprod Y) \coprod Z & \stackrel{\text{def}}{=} \{(0, a) \in S \mid a \in X \coprod Y\} \cup \{(1, z) \in S \mid z \in Z\} \\ & = \{(0, (0, x)) \in S \mid x \in X\} \cup \{(0, (1, y)) \in S \mid y \in Y\} \\ & \cup \{(1, z) \in S \mid z \in Z\}, \end{split}$$

where $S = \{0, 1\} \times ((X \coprod Y) \cup Z)$ and

$$\begin{split} X \coprod (Y \coprod Z) &\stackrel{\text{def}}{=} \{(0,x) \in S' \mid x \in X\} \cup \{(1,a) \in S' \mid a \in Y \coprod Z\} \\ &= \{(0,x) \in S' \mid x \in X\} \cup \{(1,(0,y)) \in S' \mid y \in Y\} \\ & \cup \{(1,(1,z)) \in S' \mid z \in Z\}, \end{split}$$

where $S' = \{0, 1\} \times (X \cup (Y \coprod Z)).$

Invertibility

The inverse of $\alpha_{X,Y,Z}^{\mathsf{Sets},\coprod}$ is the map

$$\alpha_{X,Y,Z}^{\mathsf{Sets},\coprod,-1} \colon X \coprod (Y \coprod Z) \to (X \coprod Y) \coprod Z$$

given by

$$\alpha_{X,Y,Z}^{\mathsf{Sets},\coprod,-1}(a) \stackrel{\text{def}}{=} \begin{cases} (0,(0,x)) & \text{if } a = (0,x), \\ (0,(1,y)) & \text{if } a = (1,(0,y)), \\ (1,z) & \text{if } a = (1,(1,z)) \end{cases}$$

for each $a \in X \coprod Y(\coprod Z)$. Indeed:

• Invertibility I. The map $\alpha_{X,Y,Z}^{\mathsf{Sets},\coprod,-1} \circ \alpha_{X,Y,Z}^{\mathsf{Sets},\coprod}$ acts on elements as

$$(0,(0,x)) \mapsto (0,x) \mapsto (0,(0,x)),$$

$$(0, (0, y)) \mapsto (1, (0, y)) \mapsto (0, (0, y)),$$

$$(1, z) \mapsto (1, (1, z)) \mapsto (1, z)$$

and hence is equal to the identity map of $(X \coprod Y) \coprod Z$.

• Invertibility II. The map $\alpha_{X,Y,Z}^{\mathsf{Sets},\coprod} \circ \alpha_{X,Y,Z}^{\mathsf{Sets},\coprod,-1}$ acts on elements as

$$\begin{array}{cccc} (0,x) & \mapsto & (0,(0,x)) & \mapsto & (0,x), \\ (1,(0,y)) & \mapsto & (0,(0,y)) & \mapsto & (1,(0,y)), \\ (1,(1,z)) & \mapsto & (1,z) & \mapsto & (1,(1,z)) \end{array}$$

and hence is equal to the identity map of $X \coprod (Y \coprod Z)$.

Therefore $\alpha_{X,Y,Z}^{\mathsf{Sets},\coprod}$ is indeed an isomorphism.

Naturality

We need to show that, given functions

$$f: X \to X',$$

 $g: Y \to Y',$
 $h: Z \to Z'$

the diagram

$$\begin{array}{c|c} (X \coprod Y) \coprod Z & \xrightarrow{\left(f \coprod g\right) \coprod h} & (X' \coprod Y') \coprod Z' \\ & & \downarrow \\ \alpha_{X,Y,Z}^{\mathsf{Sets},\coprod} & & \downarrow \\ X \coprod (Y \coprod Z) & \xrightarrow{f \coprod (g \coprod h)} & X' \coprod (Y' \coprod Z') \end{array}$$

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes, showing $\alpha^{\mathsf{Sets},\coprod}$ to be a natural transformation.

Being a Natural Isomorphism

Since $\alpha^{\mathsf{Sets}, \coprod}$ is natural and $\alpha^{\mathsf{Sets}, \coprod, -1}$ is a componentwise inverse to $\alpha^{\mathsf{Sets}, \coprod}$, it follows from Categories, Item 2 of Proposition 11.9.7.1.2 that $\lambda^{\mathsf{Sets}, -1}$ is also natural. Thus $\alpha^{\mathsf{Sets}, \coprod}$ is a natural isomorphism.

01PS 5.2.4 The Left Unitor

01PT DEFINITION 5.2.4.1.1 ► THE LEFT UNITOR OF

The left unitor of the coproduct of sets is the natural isomorphism

whose component

$$\lambda_X^{\mathsf{Sets},\coprod} \colon \varnothing \coprod X \xrightarrow{\sim} X$$

at X is given by

$$\lambda_X^{\mathsf{Sets},\coprod}((1,x))\stackrel{\scriptscriptstyle\mathrm{def}}{=} x$$

for each $(1, x) \in \emptyset \coprod X$.

PROOF 5.2.4.1.2 ▶ Proof of the Claims Made in Definition 5.2.4.1.1

Unwinding the Definition of $\emptyset \coprod X$

Firstly, we unwind the expressions for $\emptyset \coprod X$. We have

where $S = \{0, 1\} \times (\emptyset \cup X)$.

Invertibility

The inverse of $\lambda_X^{\mathsf{Sets},\coprod}$ is the map

$$\lambda_X^{\mathsf{Sets},\coprod,-1} \colon X \to \emptyset \coprod X$$

given by

$$\lambda_X^{\mathsf{Sets},\coprod,-1}(x)\stackrel{\scriptscriptstyle\rm def}{=} (1,x)$$

for each $x \in X$. Indeed:

• Invertibility I. We have

$$\begin{split} \left[\lambda_X^{\mathsf{Sets},\coprod,-1} \circ \lambda_X^{\mathsf{Sets},\coprod}\right] (1,x) &= \lambda_X^{\mathsf{Sets},\coprod,-1} \bigg(\lambda_X^{\mathsf{Sets},\coprod} (1,x)\bigg) \\ &= \lambda_X^{\mathsf{Sets},\coprod,-1} (x) \\ &= (1,x) \\ &= \left[\mathrm{id}_{\varnothing \coprod X}\right] (1,x) \end{split}$$

for each $(1, x) \in \emptyset \coprod X$, and therefore we have

$$\lambda_X^{\mathsf{Sets},\coprod,-1} \circ \lambda_X^{\mathsf{Sets},\coprod} = \mathrm{id}_{\varnothing \coprod X}$$
 .

• Invertibility II. We have

$$\begin{split} \left[\lambda_X^{\mathsf{Sets},\coprod} \circ \lambda_X^{\mathsf{Sets},\coprod,-1}\right] (x) &= \lambda_X^{\mathsf{Sets},\coprod} \left(\lambda_X^{\mathsf{Sets},\coprod,-1}(x)\right) \\ &= \lambda_X^{\mathsf{Sets},\coprod,-1}(1,x) \\ &= x \\ &= [\mathrm{id}_X](x) \end{split}$$

for each $x \in X$, and therefore we have

$$\lambda_X^{\mathsf{Sets},\coprod} \circ \lambda_X^{\mathsf{Sets},\coprod,-1} = \mathrm{id}_X$$
 .

Therefore $\lambda_X^{\mathsf{Sets},\coprod}$ is indeed an isomorphism.

Naturality

We need to show that, given a function $f: X \to Y$, the diagram

commutes. Indeed, this diagram acts on elements as

$$\begin{array}{ccc}
(1,x) & (1,x) & \longrightarrow (1,f(x)) \\
\downarrow & & \downarrow \\
x & \longmapsto f(x) & f(x)
\end{array}$$

and hence indeed commutes. Therefore $\lambda^{\mathsf{Sets},\coprod}$ is a natural transformation.

Being a Natural Isomorphism

Since $\lambda^{\mathsf{Sets}, \coprod}$ is natural and $\lambda^{\mathsf{Sets}, -1}$ is a componentwise inverse to $\lambda^{\mathsf{Sets}, \coprod}$, it follows from Categories, Item 2 of Proposition 11.9.7.1.2 that $\lambda^{\mathsf{Sets}, -1}$ is also natural. Thus $\lambda^{\mathsf{Sets}, \coprod}$ is a natural isomorphism.

01PU 5.2.5 The Right Unitor

01PV

DEFINITION 5.2.5.1.1 ► THE RIGHT UNITOR OF

The right unitor of the coproduct of sets is the natural isomorphism

whose component

$$\rho_X^{\mathsf{Sets},\coprod} \colon X \coprod \emptyset \xrightarrow{\sim} X$$

at X is given by

$$\rho_X^{\mathsf{Sets},\coprod}((0,x))\stackrel{\scriptscriptstyle\mathrm{def}}{=} x$$

for each $(0, x) \in X \coprod \emptyset$.

PROOF 5.2.5.1.2 ▶ Proof of the Claims Made in Definition 5.2.5.1.1

Unwinding the Definition of $X \coprod \emptyset$

Firstly, we unwind the expression for $X \coprod \emptyset$. We have

$$\begin{split} X \coprod \varnothing &\stackrel{\text{def}}{=} \{(0,x) \in S \mid x \in X\} \cup \{(1,z) \in S \mid z \in \varnothing\} \\ &= \{(0,x) \in S \mid x \in X\} \cup \varnothing \\ &= \{(0,x) \in S \mid x \in X\}, \end{split}$$

where $S = \{0, 1\} \times (X \cup \emptyset) = \{0, 1\} \times (\emptyset \cup X) = S$.

Invertibility

The inverse of $\rho_X^{\mathsf{Sets},\coprod}$ is the map

$$\rho_X^{\mathsf{Sets}, \coprod, -1} \colon X \to X \coprod \emptyset$$

given by

$$\rho_X^{\mathsf{Sets},\coprod,-1}(x) \stackrel{\text{def}}{=} (0,x)$$

for each $x \in X$. Indeed:

• Invertibility I. We have

$$\begin{split} \left[\rho_X^{\mathsf{Sets}, \coprod, -1} \circ \rho_X^{\mathsf{Sets}, \coprod} \right] (0, x) &= \rho_X^{\mathsf{Sets}, \coprod, -1} \left(\rho_X^{\mathsf{Sets}, \coprod} (0, x) \right) \\ &= \rho_X^{\mathsf{Sets}, \coprod, -1} (x) \\ &= (0, x) \\ &= \left[\mathrm{id}_{X \coprod \varnothing} \right] (0, x) \end{split}$$

for each $(0, x) \in \emptyset \coprod X$, and therefore we have

$$\rho_X^{\mathsf{Sets},\coprod,-1} \circ \rho_X^{\mathsf{Sets},\coprod} = \mathrm{id}_{\emptyset \coprod X} \,.$$

• Invertibility II. We have

$$\begin{split} \left[\rho_X^{\mathsf{Sets}, \coprod} \circ \rho_X^{\mathsf{Sets}, \coprod, -1} \right] (x) &= \rho_X^{\mathsf{Sets}, \coprod} \left(\rho_X^{\mathsf{Sets}, \coprod, -1} (x) \right) \\ &= \rho_X^{\mathsf{Sets}, \coprod, -1} (0, x) \\ &= x \\ &= [\mathrm{id}_X] (x) \end{split}$$

for each $x \in X$, and therefore we have

$$\rho_X^{\mathsf{Sets},\coprod} \circ \rho_X^{\mathsf{Sets},\coprod,-1} = \mathrm{id}_X$$
 .

Therefore $\rho_X^{\mathsf{Sets},\coprod}$ is indeed an isomorphism.

Naturality

We need to show that, given a function $f: X \to Y$, the diagram

$$\begin{array}{ccc} X \coprod \varnothing & \xrightarrow{f \coprod \operatorname{id}_{\varnothing}} Y \coprod \varnothing \\ \downarrow^{\operatorname{Sets}, \coprod} & & & \downarrow^{\rho_Y^{\operatorname{Sets}, \coprod}} \\ X & \xrightarrow{f} & Y \end{array}$$

commutes. Indeed, this diagram acts on elements as

$$\begin{array}{ccc}
(0,x) & (0,x) & \longmapsto (1,f(x)) \\
\downarrow & & \downarrow \\
x & \longmapsto f(x) & f(x)
\end{array}$$

and hence indeed commutes. Therefore $\rho^{\mathsf{Sets},\coprod}$ is a natural transformation.

Being a Natural Isomorphism

Since $\rho^{\mathsf{Sets}, \coprod}$ is natural and $\rho^{\mathsf{Sets}, -1}$ is a componentwise inverse to $\rho^{\mathsf{Sets}, \coprod}$, it follows from Categories, Item 2 of Proposition 11.9.7.1.2 that $\rho^{\mathsf{Sets}, -1}$ is also natural. Thus $\rho^{\mathsf{Sets}, \coprod}$ is a natural isomorphism.

01PW 5.2.6 The Symmetry

01PX DEFINITION 5.2.6.1.1 ► THE SYMMETRY OF ∐

The symmetry of the coproduct of sets is the natural isomorphism

$$\sigma^{\mathsf{Sets}, \coprod} \colon \coprod \overset{\sim}{\Longrightarrow} \coprod \circ \sigma^{\mathsf{Cats}_2}_{\mathsf{Sets}, \mathsf{Sets}}, \qquad \begin{array}{c} \mathsf{Sets} \times \mathsf{Sets} & \overset{\coprod}{\longrightarrow} \mathsf{Sets}, \\ \sigma^{\mathsf{Cats}_2}_{\mathsf{Sets}, \mathsf{Sets}} & \downarrow & \downarrow \\ \mathsf{Sets} \times \mathsf{Sets} & \mathsf{Sets} \end{array}$$

whose component

$$\sigma_{X,Y}^{\mathsf{Sets},\coprod} \colon X \coprod Y \stackrel{\sim}{\dashrightarrow} Y \coprod X$$

at $X, Y \in \text{Obj}(\mathsf{Sets})$ is defined by

$$\sigma_{X,Y}^{\mathsf{Sets},\coprod}(x,y) \stackrel{\scriptscriptstyle \mathsf{def}}{=} (y,x)$$

for each $(x, y) \in X \times Y$.

PROOF 5.2.6.1.2 ▶ Proof of the Claims Made in Definition 5.2.6.1.1

Unwinding the Definitions of $X \coprod Y$ and $Y \coprod X$

Firstly, we unwind the expressions for $X \coprod Y$ and $Y \coprod X$. We have

$$X \coprod Y \stackrel{\text{def}}{=} \{(0, x) \in S \mid x \in X\} \cup \{(1, y) \in S \mid y \in Y\},\$$

where $S = \{0, 1\} \times (X \cup Y)$ and

$$Y \coprod X \stackrel{\text{def}}{=} \{(0, y) \in S' \mid y \in Y\} \cup \{(1, x) \in S' \mid x \in X\},\$$

where
$$S' = \{0, 1\} \times (Y \cup X) = \{0, 1\} \times (X \cup Y) = S$$
.

Invertibility

The inverse of $\sigma_{X,Y}^{\mathsf{Sets},\coprod}$ is the map

$$\sigma_{X,Y}^{\mathsf{Sets},\coprod,-1} \colon Y \coprod X \to X \coprod Y$$

defined by

$$\sigma_{X,Y}^{\mathsf{Sets},\coprod,-1} \stackrel{\scriptscriptstyle \mathrm{def}}{=} \sigma_{Y,X}^{\mathsf{Sets},\coprod}$$

and hence given by

$$\sigma_{X,Y}^{\mathsf{Sets},\coprod,-1}(z) \stackrel{\text{def}}{=} \begin{cases} (0,x) & \text{if } z = (1,x), \\ (1,y) & \text{if } z = (0,y) \end{cases}$$

for each $z \in Y \coprod X$. Indeed:

• Invertibility I. We have

$$\begin{split} \left[\sigma_{X,Y}^{\mathsf{Sets},\coprod,-1} \circ \sigma_{X,Y}^{\mathsf{Sets},\coprod}\right] (0,x) &= \sigma_X^{\mathsf{Sets},\coprod,-1} \bigg(\sigma_X^{\mathsf{Sets},\coprod}(0,x)\bigg) \\ &= \sigma_X^{\mathsf{Sets},\coprod,-1} (1,x) \\ &= (0,x) \\ &= \left[\mathrm{id}_{X\coprod Y}\right] (0,x) \end{split}$$

for each $(0, x) \in X \coprod Y$ and

$$\left[\sigma_{X,Y}^{\mathsf{Sets},\coprod,-1} \circ \sigma_{X,Y}^{\mathsf{Sets},\coprod}\right]\!(1,y) = \sigma_X^{\mathsf{Sets},\coprod,-1}\!\left(\sigma_X^{\mathsf{Sets},\coprod}(1,y)\right)$$

$$= \sigma_X^{\mathsf{Sets}, \coprod, -1}(0, y)$$

$$= (1, y)$$

$$= \left[\mathrm{id}_{X \coprod Y} \right] (1, y)$$

for each $(1, y) \in X \coprod Y$, and therefore we have

$$\sigma_{X,Y}^{\mathsf{Sets},\coprod,-1} \circ \sigma_{X,Y}^{\mathsf{Sets},\coprod} = \mathrm{id}_{X\coprod Y} \,.$$

• Invertibility II. We have

$$\begin{split} \left[\sigma_{X,Y}^{\mathsf{Sets},\coprod} \circ \sigma_{X,Y}^{\mathsf{Sets},\coprod,-1}\right] (0,y) &= \sigma_X^{\mathsf{Sets},\coprod} \Big(\sigma_X^{\mathsf{Sets},\coprod,-1}(0,y)\Big) \\ &= \sigma_X^{\mathsf{Sets},\coprod,-1}(1,y) \\ &= (0,y) \\ &= \left[\mathrm{id}_{Y\coprod X}\right] (0,y) \end{split}$$

for each $(0, y) \in Y \coprod X$ and

$$\begin{split} \left[\sigma_{X,Y}^{\mathsf{Sets},\coprod} \circ \sigma_{X,Y}^{\mathsf{Sets},\coprod,-1}\right] &(1,x) = \sigma_X^{\mathsf{Sets},\coprod} \left(\sigma_X^{\mathsf{Sets},\coprod,-1}(1,x)\right) \\ &= \sigma_X^{\mathsf{Sets},\coprod,-1}(0,x) \\ &= (1,x) \\ &= \left[\mathrm{id}_{Y\coprod X}\right] &(1,x) \end{split}$$

for each $(1, x) \in Y \coprod X$, and therefore we have

$$\sigma_X^{\mathsf{Sets},\coprod} \circ \sigma_X^{\mathsf{Sets},\coprod,-1} = \mathrm{id}_{Y\coprod X} \,.$$

Therefore $\sigma_{X,Y}^{\mathsf{Sets},\coprod}$ is indeed an isomorphism.

Naturality

We need to show that, given functions $f: A \to X$ and $g: B \to Y$, the

diagram

commutes. Indeed, this diagram acts on elements as

$$(0,a) \qquad (0,a) \longmapsto (0,f(a))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

and hence indeed commutes. Therefore $\sigma^{\mathsf{Sets},\coprod}$ is a natural transformation.

Being a Natural Isomorphism

Since $\sigma^{\mathsf{Sets},\coprod}$ is natural and $\sigma^{\mathsf{Sets},-1}$ is a componentwise inverse to $\sigma^{\mathsf{Sets},\coprod}$ it follows from Categories, Item 2 of Proposition 11.9.7.1.2 that $\sigma^{\mathsf{Sets},-1}$ is also natural. Thus $\sigma^{\mathsf{Sets},\coprod}$ is a natural isomorphism.

101PY 5.2.7 The Monoidal Category of Sets and Coproducts

01PZ PROPOSITION 5.2.7.1.1 ► THE MONOIDAL STRUCTURE ON SETS ASSOCIATED TO []

The category **Sets** admits a closed symmetric monoidal category structure consisting of:

• The Underlying Category. The category Sets of pointed sets.

• The Monoidal Product. The coproduct functor

$$\coprod$$
: Sets \times Sets \rightarrow Sets

of Constructions With Sets, Item 1 of Proposition 4.2.3.1.4.

• The Monoidal Unit. The functor

$$\mathbb{0}^{\mathsf{Sets}} \colon \mathsf{pt} \to \mathsf{Sets}$$

of Definition 5.2.2.1.1.

of Definition 5.2.3.1.1.

• The Associators. The natural isomorphism $\alpha^{\mathsf{Sets}, \coprod} \colon \coprod \circ (\coprod \times \mathrm{id}_{\mathsf{Sets}}) \stackrel{\sim}{\Longrightarrow} \coprod \circ (\mathrm{id}_{\mathsf{Sets}} \times \coprod) \circ \alpha^{\mathsf{Cats}}_{\mathsf{Sets}, \mathsf{Sets}, \mathsf{Sets}}$

• The Left Unitors. The natural isomorphism

$$\lambda^{\mathsf{Sets},\coprod} \colon \coprod \circ \left(\mathbb{O}^{\mathsf{Sets}} \times \mathrm{id}_{\mathsf{Sets}} \right) \stackrel{\sim}{\Longrightarrow} \boldsymbol{\lambda}^{\mathsf{Cats}_2}_{\mathsf{Sets}}$$

of Definition 5.2.4.1.1.

• The Right Unitors. The natural isomorphism

$$\rho^{\mathsf{Sets},\coprod} \colon \coprod \circ \left(\mathsf{id} \times \mathbb{O}^{\mathsf{Sets}}\right) \stackrel{\sim}{\Longrightarrow} \boldsymbol{\rho}^{\mathsf{Cats}_2}_{\mathsf{Sets}}$$

of Definition 5.2.5.1.1.

• The Symmetry. The natural isomorphism

$$\sigma^{\mathsf{Sets},\coprod} : imes \stackrel{\sim}{\Longrightarrow} imes \circ {m{\sigma}}^{\mathsf{Cats}_2}_{\mathsf{Sets},\mathsf{Sets}}$$

of Definition 5.2.6.1.1.

PROOF 5.2.7.1.2 ▶ PROOF OF PROPOSITION 5.2.7.1.1 The Pentagon Identity Let W, X, Y and Z be sets. We have to show that the diagram $(W \coprod (X \coprod Y)) \coprod Z$ $((W \coprod X) \coprod Y) \coprod Z$ $W \coprod ((X \coprod Y) \coprod Z)$ $(W \coprod X) \coprod (Y \coprod Z) \underset{\alpha}{\underset{K,X,Y \coprod Z}{\longrightarrow}} W \coprod (X \coprod (Y \coprod Z))$ commutes. Indeed, this diagram acts on elements as (0,(0,w))(0,(0,(0,w)))(0,(0,(0,w)))(0, w) $(0,(0,w)) \longmapsto (0,w)$ (0, w)

Let X and Y be sets. We have to show that the diagram

$$(X \coprod \varnothing) \coprod Y \xrightarrow{\alpha_{X,\varnothing,Y}^{\mathsf{Sets}, \coprod}} X \coprod (\varnothing \coprod Y)$$

$$\rho_X^{\mathsf{Sets}, \coprod} \coprod_{\mathrm{id}_X} \lambda_Y^{\mathsf{Sets}, \coprod}$$

$$X \coprod Y$$

commutes. Indeed, this diagram acts on elements as

and therefore the triangle identity is satisfied.

The Left Hexagon Identity

Let X, Y, and Z be sets. We have to show that the diagram

and thus the left hexagon identity is satisfied.

The Right Hexagon Identity

Let X, Y, and Z be sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

oloo 5.3 The Bimonoidal Category of Sets, Products, and Coproducts

0101 5.3.1 The Left Distributor

01Q2 DEFINITION 5.3.1.1.1 ► THE LEFT DISTRIBUTOR OF × OVER]

The left distributor of the product of sets over the coproduct of sets is the natural isomorphism

$$\delta_{\ell}^{\mathsf{Sets}} \colon \times \circ (\mathrm{id}_{\mathsf{Sets}} \times \coprod) \stackrel{\sim}{\Longrightarrow} \coprod \circ (\times \times \times) \circ \boldsymbol{\mu}_{4 \mid \mathsf{Sets}, \mathsf{Sets}, \mathsf{Sets}, \mathsf{Sets}}^{\mathsf{Cats}_2} \circ (\Delta_{\mathsf{Sets}} \times (\mathrm{id}_{\mathsf{Sets}} \times \mathrm{id}_{\mathsf{Sets}}))$$

whose component

$$\delta^{\mathsf{Sets}}_{\ell|X,Y,Z} \colon X \times (Y \coprod Z) \stackrel{\sim}{\dashrightarrow} (X \times Y) \coprod (X \times Z)$$

at (X, Y, Z) is defined by

$$\delta^{\mathsf{Sets}}_{\ell|X,Y,Z}(x,a) \stackrel{\text{\tiny def}}{=} \begin{cases} (0,(x,y)) & \text{if } a = (0,y), \\ (1,(x,z)) & \text{if } a = (1,z) \end{cases}$$

for each $(x, a) \in X \times (Y \coprod Z)$.

PROOF 5.3.1.1.2 ▶ Proof of the Claims Made in Definition 5.3.1.1.1

Omitted.

0103 5.3.2 The Right Distributor

01Q4 DEFINITION 5.3.2.1.1 ► THE RIGHT DISTRIBUTOR OF × OVER []

The right distributor of the product of sets over the coproduct of sets is the natural isomorphism

$$\delta_r^{\mathsf{Sets}} \colon \times \circ (\coprod \times \mathrm{id}_{\mathsf{Sets}}) \stackrel{\sim}{\Longrightarrow} \coprod \circ (\times \times \times) \circ \boldsymbol{\mu}_{\mathsf{4}|\mathsf{Sets},\mathsf{Sets},\mathsf{Sets},\mathsf{Sets}}^{\mathsf{Cats}_2} \circ ((\mathrm{id}_{\mathsf{Sets}} \times \mathrm{id}_{\mathsf{Sets}}) \times \Delta_{\mathsf{Sets}})$$
 as in the diagram

$$(\mathsf{Sets} \times \mathsf{Sets}) \times (\mathsf{Sets} \times \mathsf{Sets})$$

$$(\mathsf{id}_{\mathsf{Sets}} \times \mathsf{id}_{\mathsf{Sets}}) \times \Delta_{\mathsf{Sets}}$$

$$(\mathsf{Sets} \times \mathsf{Sets}) \times \mathsf{Sets}$$

$$(\mathsf{Sets} \times \mathsf{Sets}) \times \mathsf{Sets}$$

$$(\mathsf{Sets} \times \mathsf{Sets}) \times (\mathsf{Sets} \times \mathsf{Sets})$$

whose component

$$\delta^{\mathsf{Sets}}_{r|X,Y,Z} \colon (X \coprod Y) \times Z \xrightarrow{\sim} (X \times Z) \coprod (Y \times Z)$$

at (X, Y, Z) is defined by

$$\delta^{\mathsf{Sets}}_{r|X,Y,Z}(a,z) \stackrel{\text{def}}{=} \begin{cases} (0,(x,z)) & \text{if } a = (0,x), \\ (1,(y,z)) & \text{if } a = (1,y) \end{cases}$$

for each $(a, z) \in (X \coprod Y) \times Z$.

PROOF 5.3.2.1.2 ▶ PROOF OF THE CLAIMS MADE IN DEFINITION 5.3.2.1.1

Omitted.

0105 5.3.3 The Left Annihilator

01Q6 DEFINITION 5.3.3.1.1 \blacktriangleright The Left Annihilator of \times

The left annihilator of the product of sets is the natural isomorphism

$$\zeta_{\ell}^{\mathsf{Sets}} \colon \mathbb{O}^{\mathsf{Sets}} \circ \boldsymbol{\mu}_{4|\mathsf{Sets},\mathsf{Sets},\mathsf{Sets},\mathsf{Sets}}^{\mathsf{Cats}_2} \circ \left(\mathrm{id}_{\mathsf{pt}} \times \boldsymbol{\epsilon}_{\mathsf{Sets}}^{\mathsf{Cats}_2}\right) \stackrel{\sim}{\Longrightarrow} \times \circ \left(\mathbb{O}^{\mathsf{Sets}} \times \mathrm{id}_{\mathsf{Sets}}\right)$$

as in the diagram

with components

$$\zeta_{\ell|A}^{\mathsf{Sets}} \colon \emptyset \times A \stackrel{\sim}{\dashrightarrow} \emptyset.$$

PROOF 5.3.3.1.2 ▶ PROOF OF THE CLAIMS MADE IN DEFINITION 5.3.3.1.1

Omitted. For a partial proof, see [Pro25].

01Q7 5.3.4 The Right Annihilator

0108 DEFINITION 5.3.4.1.1 \triangleright The Right Annihilator of \times

The **right annihilator of the product of sets** is the natural isomorphism

$$\zeta_r^{\mathsf{Sets}} \colon \mathbb{O}^{\mathsf{Sets}} \circ \boldsymbol{\mu}_{4|\mathsf{Sets},\mathsf{Sets},\mathsf{Sets},\mathsf{Sets}}^{\mathsf{Cats}_2} \circ \left(\boldsymbol{\epsilon}_{\mathsf{Sets}}^{\mathsf{Cats}_2} \times \mathrm{id}_{\mathsf{pt}}\right) \stackrel{\sim}{\dashrightarrow} \times \circ \left(\mathrm{id}_{\mathsf{Sets}} \times \mathbb{O}^{\mathsf{Sets}}\right)$$

PROOF 5.3.4.1.2 ▶ Proof of the Claims Made in Definition 5.3.4.1.1

Omitted. For a partial proof, see [Pro25].

0109 5.3.5 The Bimonoidal Category of Sets, Products, and Coproducts

01QA PROPOSITION 5.3.5.1.1 ► THE BIMONOIDAL STRUCTURE ON SETS ASSOCIATED TO × AND \[\]

The category Sets admits a closed symmetric bimonoidal category structure consisting of:

- The Underlying Category. The category Sets of pointed sets.
- The Additive Monoidal Product. The coproduct functor

II: Sets
$$\times$$
 Sets \rightarrow Sets

of Constructions With Sets, Item 1 of Proposition 4.2.3.1.4.

• The Multiplicative Monoidal Product. The product functor

$$\times : \mathsf{Sets} \times \mathsf{Sets} \to \mathsf{Sets}$$

of Constructions With Sets, Item 1 of Proposition 4.1.3.1.4.

• The Monoidal Unit. The functor

$$\mathbb{1}^{\mathsf{Sets}} \colon \mathsf{pt} \to \mathsf{Sets}$$

of Definition 5.1.3.1.1.

• The Monoidal Zero. The functor

$$\mathbb{0}^{\mathsf{Sets}} \colon \mathsf{pt} \to \mathsf{Sets}$$

of Definition 5.1.3.1.1.

• The Internal Hom. The internal Hom functor

$$\mathsf{Sets} \colon \mathsf{Sets}^\mathsf{op} \times \mathsf{Sets} \to \mathsf{Sets}$$

of Constructions With Sets, ?? of ??.

- The Additive Associators. The natural isomorphism $\alpha^{\mathsf{Sets}, \coprod} \colon \coprod \circ (\coprod \times \mathrm{id}_{\mathsf{Sets}}) \stackrel{\sim}{\Longrightarrow} \coprod \circ (\mathrm{id}_{\mathsf{Sets}} \times \coprod) \circ \alpha^{\mathsf{Cats}}_{\mathsf{Sets}, \mathsf{Sets}, \mathsf{Sets}}$ of Definition 5.2.3.1.1.
- The Additive Left Unitors. The natural isomorphism

$$\lambda^{\mathsf{Sets}, \coprod} \colon \coprod \circ \left(\mathbb{O}^{\mathsf{Sets}} \times \mathrm{id}_{\mathsf{Sets}} \right) \stackrel{\sim}{\Longrightarrow} \boldsymbol{\lambda}^{\mathsf{Cats}_2}_{\mathsf{Sets}}$$

of Definition 5.2.4.1.1.

• The Additive Right Unitors. The natural isomorphism

$$\rho^{\mathsf{Sets},\coprod} \colon \coprod \circ \left(\mathsf{id} \times \mathbb{O}^{\mathsf{Sets}}\right) \stackrel{\sim}{\Longrightarrow} \rho^{\mathsf{Cats}_2}_{\mathsf{Sets}}$$

of Definition 5.2.5.1.1.

• The Additive Symmetry. The natural isomorphism

$$\sigma^{\mathsf{Sets},\coprod} : \coprod \stackrel{\sim}{\Longrightarrow} \coprod \circ \sigma^{\mathsf{Cats}_2}_{\mathsf{Sets},\mathsf{Sets}}$$

of Definition 5.2.6.1.1.

- The Multiplicative Associators. The natural isomorphism $\alpha^{\mathsf{Sets}} : \times \circ (\times \times \mathrm{id}_{\mathsf{Sets}}) \xrightarrow{\sim} \times \circ (\mathrm{id}_{\mathsf{Sets}} \times \times) \circ \alpha^{\mathsf{Cats}}_{\mathsf{Sets},\mathsf{Sets},\mathsf{Sets}}$ of Definition 5.1.4.1.1.
- The Multiplicative Left Unitors. The natural isomorphism $\lambda^{\mathsf{Sets}} \colon \times \circ \left(\mathbb{1}^{\mathsf{Sets}} \times \mathrm{id}_{\mathsf{Sets}} \right) \stackrel{\sim}{\Longrightarrow} \lambda^{\mathsf{Cats}_2}_{\mathsf{Sets}}$ of Definition 5.1.5.1.1.
- The Multiplicative Right Unitors. The natural isomorphism $\rho^{\mathsf{Sets}} \colon \times \circ \left(\mathsf{id} \times \mathbb{1}^{\mathsf{Sets}}\right) \stackrel{\sim}{\Longrightarrow} \rho^{\mathsf{Cats}_2}_{\mathsf{Sets}}$ of Definition 5.1.6.1.1.
- The Multiplicative Symmetry. The natural isomorphism

$$\sigma^{\mathsf{Sets}} : \times \stackrel{\sim}{\Longrightarrow} \times \circ \sigma^{\mathsf{Cats}_2}_{\mathsf{Sets},\mathsf{Sets}}$$

of Definition 5.1.7.1.1.

• The Left Distributor. The natural isomorphism

$$\delta_{\ell}^{\mathsf{Sets}} \colon \times \circ (\mathrm{id}_{\mathsf{Sets}} \times \coprod) \overset{\sim}{\Longrightarrow} \coprod \circ (\times \times \times) \circ \boldsymbol{\mu}_{4|\mathsf{Sets},\mathsf{Sets},\mathsf{Sets},\mathsf{Sets}}^{\mathsf{Cats}_2} \circ (\Delta_{\mathsf{Sets}} \times (\mathrm{id}_{\mathsf{Sets}} \times \mathrm{id}_{\mathsf{Sets}}))$$
 of Definition 5.3.1.1.1.

• The Right Distributor. The natural isomorphism

$$\delta_r^{\mathsf{Sets}} \colon \times \circ (\coprod \times \mathrm{id}_{\mathsf{Sets}}) \stackrel{\sim}{\Longrightarrow} \coprod \circ (\times \times \times) \circ \boldsymbol{\mu}_{4|\mathsf{Sets},\mathsf{Sets},\mathsf{Sets},\mathsf{Sets}}^{\mathsf{Cats}_2} \circ ((\mathrm{id}_{\mathsf{Sets}} \times \mathrm{id}_{\mathsf{Sets}}) \times \Delta_{\mathsf{Sets}})$$
of Definition 5.3.2.1.1.

• The Left Annihilator. The natural isomorphism

$$\zeta_{\ell}^{\mathsf{Sets}} \colon \mathbb{O}^{\mathsf{Sets}} \circ \boldsymbol{\mu}_{4|\mathsf{Sets},\mathsf{Sets},\mathsf{Sets},\mathsf{Sets}}^{\mathsf{Cats}_2} \circ \left(\mathrm{id}_{\mathsf{pt}} \times \boldsymbol{\epsilon}_{\mathsf{Sets}}^{\mathsf{Cats}_2} \right) \stackrel{\sim}{\Longrightarrow} \times \circ \left(\mathbb{O}^{\mathsf{Sets}} \times \mathrm{id}_{\mathsf{Sets}} \right)$$
of Definition 5.3.3.1.1.

• The Right Annihilator. The natural isomorphism

$$\zeta_r^{\mathsf{Sets}} \colon \mathbb{O}^{\mathsf{Sets}} \circ \boldsymbol{\mu}_{4|\mathsf{Sets},\mathsf{Sets},\mathsf{Sets},\mathsf{Sets}}^{\mathsf{Cats}_2} \circ \left(\boldsymbol{\epsilon}_{\mathsf{Sets}}^{\mathsf{Cats}_2} \times \mathrm{id}_{\mathsf{pt}}\right) \stackrel{\sim}{\dashrightarrow} \times \circ \left(\mathrm{id}_{\mathsf{Sets}} \times \mathbb{O}^{\mathsf{Sets}}\right)$$
of Definition 5.3.4.1.1.

PROOF 5.3.5.1.2 ► PROOF OF PROPOSITION 5.3.5.1.1 Omitted.

Appendices

A Other Chapters

Preliminaries

- 1. Introduction
- 2. A Guide to the Literature

Sets

- 3. Sets
- 4. Constructions With Sets
- 5. Monoidal Structures on the Category of Sets
- 6. Pointed Sets
- 7. Tensor Products of Pointed Sets

Relations

- 8. Relations
- 9. Constructions With Relations

10. Conditions on Relations

Categories

- 11. Categories
- 12. Presheaves and the Yoneda Lemma

Monoidal Categories

13. Constructions With Monoidal Categories

Bicategories

14. Types of Morphisms in Bicategories

Extra Part

15. Notes

References

[Pro25] Proof Wiki Contributors. Cartesian Product Is Empty Iff Factor Is Empty — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/ Cartesian_Product_is_Empty_iff_Factor_is_Empty (cit. on pp. 63, 64).