

Módulo VGA para bus PLB de MicroBlaze

Ing. Alejandro J. Moya

apinom94@yahoo.com

SUMARIO:

- Descripción general de la interfaz VGA
- Módulo IP VGA desarrollado
 - -Estructura interna y operación
 - Funcionalidades
 - -Comandos de operación
- > Utilización de periféricos para MicroBlaze
- ➤ Comunicación I2C
- ➤ Conclusiones

- > Estándar para visualización ANALOGICA de imágenes y video
- > Conector DB15 para señales de colores (RGB) y sincronismo
- Alto grado de difusión en comparación con otros estándares como HDMI o DVI
- > Solo 5 hilos fundamentales

Dos enfoques para el diseño...

> Conversores DAC (resolución variable, más robusto)

Dos enfoques para el diseño...

> Conversores DAC (resolución variable, más robusto)

ANALOG DEVICES ADV7123

ON SEMICONDUCTOR FMS3818KRC

NO MANEJAN EL SINCRONISMO!!!

Dos enfoques para el diseño...

➤ Arreglos resistivos (menos resolución, más simple y compacto)

SENSIBLE A TEMPERATURA

POCA TOLERANCIA A FALLOS

4bits/color

16x16x16 = 4096 colores

VGA_R[3:0]	VGA_G[3:0]	VGA_B[4:0]	Resulting Color
0000	0000	0000	Black
0000	0000	1111	Blue
0000	1111	0000	Green
0000	1111	1111	Cyan
1111	0000	0000	Red
1111	0000	1111	Magenta
1111	1111	0000	Yellow
1111	1111	1111	White

El problema del sincronismo...

- **▶ MATRIZ DE PIXELES [HR:VR]**
- > DIVIDIDA EN SECCIONES

- **▶ MATRIZ DE PIXELES [HR:VR]**
- > DIVIDIDA EN SECCIONES

- **▶ MATRIZ DE PIXELES [HR:VR]**
- > DIVIDIDA EN SECCIONES

- **➤ MATRIZ DE PIXELES [HR:VR]**
- > DIVIDIDA EN SECCIONES

- MATRIZ DE PIXELES [HR:VR]
- > DIVIDIDA EN SECCIONES

HORIZONTAL

VERTICAL

> PARÁMETROS TEMPORALES PARA RESOLUCIÓN 640x480x12

HORIZONTAL

Scanline part Pixels		Time [µs]		
Visible area	640	25.422045680238		
Front porch	16	0.63555114200596		
Sync pulse	96	3.8133068520357		
Back porch	48	1.9066534260179		
Whole line	800	31.777557100298		

VERTICAL

Frame part	Lines	Time [ms]
Visible area	480	15.253227408143
Front porch	10	0.31777557100298
Sync pulse	2	0.063555114200596
Back porch	33	1.0486593843098
Whole frame	525	16.683217477656

> PARÁMETROS TEMPORALES PARA RESOLUCIÓN 640x480x12

HORIZONTAL

Scanline part Pixels		Time [µs]		
Visible area	640	25.422045680238		
Front porch	16	0.63555114200596		
Sync pulse	96	3.8133068520357		
Back porch	48	1.9066534260179		
Whole line	800	31.777557100298		

FRECUENCIA DE PIXEL ~25 MHZ

VERTICAL

Frame part	Lines	Time [ms]
Visible area	480	15.253227408143
Front porch	10	0.31///55/100298
Sync pulse	2	0.063555114200596
Back porch	33	1.0486593843098
Whole frame	525	16.683217477656

FRECUENCIA DE REFRESCAMIENTO ~60 HZ

> PARÁMETROS TEMPORALES PARA RESOLUCIÓN 640x480x12

HORIZONTAL

Scanline part Pixels		Time [µs]		
Visible area	640	25.422045680238		
Front porch	16	0.63555114200596		
Sync pulse	96	3.8133068520357		
Back porch	48	1 9066534260179		
Whole line	800	31.777557100298		

VERTICAL

Frame part	Lines	Time [ms]
Visible area	480	15.253227408143
Front porch	10	0.31777557100298
Sync pulse	2	0.063555114200596
Back porch	33	1 0486593843098
Whole frame	525	16.683217477656

TAMAÑO DE LÍNEA (PIXELES)

CANTIDAD DE LÍNEAS

Características generales...

- > Resolución de 640x480 con 12 bits de profundidad de color
- ➤ Señales <u>hsync</u> y <u>vsync</u> activas a nivel bajo
- > Función netamente demostrativa

Device Utilization Summary (estimated values)				[-]
Logic Utilization	Used	Available	Utilization	
Number of Slices	197	5888		3%
Number of Slice Flip Flops	123	11776		1%
Number of 4 input LUTs	379	11776		3%
Number of bonded IOBs	34	372		9%
Number of GCLKs	1	24		4%

- Control de las señales de sincronismo hsync y vsync según regiones de la pantalla
- Contadores binarios ascendentes para las coordenadas de cada pixel.

Control de las señales de sincronismo hsync y vsync según regiones de la pantalla

Contadores binarios ascendentes para las coordenadas de cada pixel.

Base 800 y 525 respectivamente

- Control de las señales de sincronismo hsync y vsync según regiones de la pantalla
- Contadores binarios ascendentes para las coordenadas de cada pixel.
- Divisor de frecuencia 50MHz /2 para los 25MHz de frecuencia de pixel (pixel_tick)

- Control de las señales de sincronismo hsync y vsync según regiones de la pantalla
- Contadores binarios ascendentes para las coordenadas de cada pixel.
- Divisor de frecuencia 50MHz /2 para los 25MHz de frecuencia de pixel (pixel_tick)
- Salida para indicar cuando se encuentra en una zona no visualizable en pantalla

- Control de las señales de sincronismo hsync y vsync según regiones de la pantalla
- Contadores binarios ascendentes para las coordenadas de cada pixel.
- Divisor de frecuencia 50MHz /2 para los 25MHz de frecuencia de pixel (pixel_tick)
- Salida para indicar cuando se encuentra en una zona no visualizable en pantalla

IMPORTANTE PARA LOS DEMÁS MÓDULOS QUE SI VISUALIZAN VIDEO

- Control de las señales de sincronismo hsync y vsync según regiones de la pantalla
- Contadores binarios ascendentes para las coordenadas de cada pixel.
- Divisor de frecuencia 50MHz /2 para los 25MHz de frecuencia de pixel (pixel_tick)
- Salida para indicar cuando se encuentra en una zona no visualizable en pantalla
- > Entrada de habilitación global

> Video_on activo en 1 solo en la zona visualizable de pantalla

- > Video_on activo en 1 solo en la zona visualizable de pantalla
- > Por cada conteo vertical existen 800 conteos horizontales

v_sync se desactiva solo en zona de retrazo 480 + FP

duración de 2 líneas

2 líneas, 2 pulsos de *hsync*

video_on desactivado desde la línea 480

duración de 2 líneas

2 líneas, 2 pulsos de hsync

video_on desactivado desde la línea 480

> Video_on activo hasta el píxel 639, h_sync todavía activada

duración de 96 píxeles (RT)

video_on desactivado desde el píxel 639

El efecto de enable...

El efecto de enable...

> Desactiva conteo y restaura todas las salidas a sus valores iniciales

DIAGRAMA DE BLOQUES SIMPLIFICADO

NUCLEO DEL CONTROLADOR

BLOQUE MANUAL

BLOQUE AUTOMÁTICO

BLOQUE AUTOMÁTICO

➤ Envía Código de colores según estado activo de la pantalla

- ➤ Envía Código de colores según estado activo de la pantalla
- ➤ Comparadores para establecer color según posición en pantalla

➤ Envía Código de colores según estado activo de la pantalla

- ➤ Comparadores para establecer color según posición en pantalla
- Contador interno para alternar patrón de color cada 1s

- ➤ Envía Código de colores según estado activo de la pantalla
- Comparadores para establecer color según posición en pantalla
- Contador interno para alternar patrón de color cada 1s
- Entradas de habilitación global y de selección

Con pixel_x...

Con pixel_x...

Con pixel_y...

- Genera colores para 3 franjas en pantalla
- ➤ Estructura idéntica a la anterior, pero solo para tres regiones
- ➤ Entradas de habilitación global y de selección
- ➤ El color para cada región puede establecerse manualmente
- ➤ Incluye un subcircuito para manejar encoder rotatorio y carga de colores

rgb_encoder(11:0)

- Genera colores para 3 franjas en pantalla
- ➤ Estructura idéntica a la anterior, pero solo para tres regiones
- ➤ Entradas de habilitación global y de selección
- ➤ El color para cada región puede establecerse manualmente
- ➤ Incluye un subcircuito para manejar encoder rotatorio y carga de colores

rgb_encoder(11:0)

- Genera colores para 3 franjas en pantalla
- ➤ Estructura idéntica a la anterior, pero solo para tres regiones
- ➤ Entradas de habilitación global y de selección
- ➤ El color para cada región puede establecerse manualmente
- ➤ Incluye un subcircuito para manejar encoder rotatorio y carga de colores

Asociación con bloque rotary

Asociación con bloque rotary

Asociación con bloque rotary

VGA_rotary_encoder blue_ColorReg(3:0) b video encoder(3:0)-1 rgb_encoder(11:0) color selector(1:0) green ColorReg(3:0) rotary pixel X(9:0) blue initValue(3:0) blue count(3:0) red ColorReg(3:0) color sel(1:0) clk q video encoder(3:0). green initValue(3:0) enable red initValue(3:0) green count(3:0) reset clk rot a reset rotary a rot b red_count(3:0) rotary b video on r video encoder(3:0)

Bloque rotary

- ➤ Contadores up/down de 4bits con entradas de reset, habilitación, carga paralela y dirección de conteo sincrónicas
- ➤ Un contador para cada color. Selección mediante color_sel[1:0]
- Incluye circuito para el manejo del encoder rotatorio
- Incorpora circuito para detectar automáticamente cambios en la entrada paralela y cargar

Bloque rotary

Circuito de control de carga paralela

Bloque rotary

Circuito de control del encoder

Habilitación de contadores (en AND con mux selector)

Chapman K. Rotary Encoder Interface for Spartan-3E Starter Kit. In: Xilinx, editor.: Xilinx; 2006.

Control de dirección de conteo (up/down)

Bloque rotary

Bloque rotary

- > Selección entre dos modos de operación, Manual o Automático
- > Dos vías de modificar colores en pantalla:
 - Encoder Rotatorio (HW)
 - Mediante Registros, a través de UART (SW)
- Habilitación general por software
- Interacción general con usuario de forma Remota (UART) o Manual mediante switches y encoder rotatorio

Registros Asociados

- > REGISTRO DE CONTROL GENERAL
- > REGISTRO DE SELECCION
- > REGISTRO PARA VALOR ROJO
- > REGISTRO PARA VALOR VERDE
- > REGISTRO PARA VALOR AZUL

Registros Asociados

CTRL_REG - CONTROL REGISTER (ADDRESS: VGA_MODULE_BASEADDR + 16)

R/W-0 R/W-0

RESERVADO

EN

ST

0 31

Bit 31 ST: Self Test bit

Si EN = 1:

0 = Modo Manual Activado

1 = Modo Automático Activado

Si EN = 0:

Este bit se ignora

Bit 30 EN: Global Enable bit

0 = Módulo VGA desactivado

1 = Módulo VGA activado

Bit 0-29 Reservado

Registros Asociados

SEL_REG - COLOR SELECTOR REGISTER (ADDRESS: VGA_MODULE_BASEADDR + 12)

0 R/W-0 R/W-0

RESERVADO

SEL0

SEL1

0

Bit 30-31 SEL1:SEL0: Color Selector Bits

Si EN = 0:

Estos bits se ignoran

Si EN = 1:

00 = El encoder rotatorio modifica la franja roja

01 = El encoder rotatorio modifica la franja verde

01 = El encoder rotatorio modifica la franja azul

01 = El encoder rotatorio no modifica ninguna franja

Bit 0-29 Reservado

Registros Asociados

RED_REG - RED COLOR REGISTER (ADDRESS: VGA_MODULE_BASEADDR + 0)

R/W-0 R/W-0 R/W-0

RESERVADO	RD3	RD2	RD1	RD0	
-----------	-----	-----	-----	-----	--

0 31

Bit 29-31 RD3:RD0: Color data bits

Si EN = 0:

Estos bits se ignoran

Si EN = 1:

RD3:RD0: Unsigned 4-bit Red Color data bits

Bit 0-28 Reservado

Registros Asociados

GREEN_REG - GREEN COLOR REGISTER (ADDRESS: VGA_MODULE_BASEADDR + 4)

R/W-0 R/W-0 R/W-0

RESERVADO	GR3	GR2	GR1	GR0	
-----------	-----	-----	-----	-----	--

0 31

Bit 29-31 GR3:GR0: Color data bits

Si EN = 0:

Estos bits se ignoran

Si EN = 1:

GR3:GR0: Unsigned 4-bit Green Color data bits

Bit 0-28 Reservado

Registros Asociados

BLUE_REG - BLUE COLOR REGISTER (ADDRESS: VGA_MODULE_BASEADDR + 8)

R/W-0 R/W-0 R/W-0

RESERVADO	BL3	BL2	BL1	BL0
-----------	-----	-----	-----	-----

0 31

Bit 29-31 BL3:BL0: Color data bits

Si EN = 0:

Estos bits se ignoran

Si EN = 1:

BL3:BL0: Unsigned 4-bit Green Color data bits

Bit 0-28 Reservado

Interfaz de app con usuario

Interfaz de app con usuario

DONAL STREET OF THE PARTY OF TH

Selección de franja de pantalla a modificar en modo manual

Interfaz de app con usuario

D D R D RAIN SHE THE STATE OF STATE OF

Indican franja seleccionada y estados del sistema

Interfaz de app con usuario

Comunicación IIC con memoria y puerto de expansión externos

Comunicación UART con PC

Comando	Sintaxis	Función
Comando	(ASCII)	T UNICION
Escribe ROJO		Escribe el valor XX en el registro RED_REG. XX representa un número del 00 al 15 especificado en
		ASCII, donde el primer valor será la decena (incluyendo el 0) y el segundo la unidad. Si la decena es un
	CRXX	número distinto de 0 ó 1, se asume que el valor a escribir se encuentra en el rango de 0 a 9, y no es
		necesario especificar el próximo byte; de lo contrario es necesario que el segundo byte se encuentre en
		el rango de 0 a 5. Cualquier otro caso provoca la anulación total del comando y no tiene efecto sobre la
		aplicación.
Escribe		Idem al anterior, pero para GREEN_REG.
VERDE	CGXX	
Escribe AZUL	CBXX	Idem al anterior, pero para BLUE_REG.
Modo		Provoca que el módulo VGA entre en Modo Automático modificando el bit correspondiente en
Automático	PP	CTRL_REG
	PC	Provoca que el módulo VGA entre en Modo Manual modificando el bit correspondiente en CTRL_REG.
Modo Manual		No afecta valores de color
Deshabilita	55	Deshabilita globalmente el módulo VGA modificando el bit correspondiente en CTR_REG. No afecta
VGA	PD	valores de color.
	A PE	Habilita globalmente el módulo VGA modificando el bit correspondiente en CTRL_REG. No afecta
Habilita VGA		valores de color.
Salva estado	SS	Salva estado de registros del módulo en memoria EEPROM IIC y actualiza contador
		, ,
Lee Estado	RSXX	Lee estado especificado por XX en memoria EEPROM y lo carga en el sistema. XX idem a los
		comandos de color, y debe corresponderse con la cantidad de estados almacenados.
Clear estado	CS	Borra todos los estados almacenados en memoria EEPROM y actualiza contador
		★ILIIVX ALL PRUGRAWIMABLE,

Función Switches

SWITCH (Nombre en la placa de desarrollo)	FUNCION	
SW3	Selecciona la franja roja. Activa led LD7 para indicarlo.	
SW2	Selecciona la franja verde. Activa led LD6 para indicarlo.	
SW1	Selecciona la franja azul. Activa led LD5 para indicarlo.	
SW0	Conmuta entre Modo Automático y Modo Manual según corresponda.	

Conclusiones

- ➤ Es posible incorporar al flujo de diseño de EDK cualquier diseño específico como modulo IP personalizado y conectarlo a un sistema de procesamiento empotrado con microprocesador.
- Mediante las herramientas de EDK de Xilinx ofrecen gran versatilidad y posibilitan el codiseño hardware/software de cualquier sistema empotrado, así como su depuración y manteniemiento.