LINEAR DIOPHANTINE EQUATION

LINEAR DIOPHANTINE EQUATION

Question Binary linear Diophantine equation.

Given integers a, b, c, find integers x, y such that

$$a \cdot x + b \cdot y = c$$
.

When c is the output of the division algorithm of (a, b), then we can use the (Euclidean) division algorithm to find a solution (x_0, y_0) .

SOME OBSERVATIONS

1. By the 2-out-of-3 principle of divisibility of integers, if the problem has a solution (x_0, y_0) , then for any common divisor d of a and b, we must have $d \mid c$.

Conversely, if c is not a multiple of common divisors of a and b, then the problem has no solution.

SOME OBSERVATIONS

2. If we can find a solution (x_0, y_0) to the Diophantine equation

$$a \cdot x + b \cdot y = c$$
.

Then for any integer z, (zx_0, zy_0) is a solution of the Diophantine equation

$$a \cdot x + b \cdot y = zc$$
.

GREATEST COMMON DIVISOR

GREATEST COMMON DIVISOR

Definition 1.2.1 Greatest common divisor.

Let a, b be two integers (not all zero). Then a positive integer g is called a *greatest common divisor* of a and b if it satisfies the following two defining properties:

- 1. $g \mid a$ and $g \mid b$, i.e. g is a common divisor of a and b; and
- 2. if d is any common divisor of a and b, then $d \mid g$.

For a given pair (a, b), the greatest common divisor is unique, we use gcd(a, b) to denote it. In particular, we use gcd(a, b) = g to mean the greatest common divisor exists and equals to g.

(EUCLIDEAN) DIVISION ALGORITHM AND GREATEST COMMON DIVISOR

Theorem 1.2.2.

Let a, b be two positive integers. The output (namely, the last non-zero remainder r) of the (Euclidean) division algorithm of (a, b) is a greatest common divisor of a and b.

In particular, since the (Euclidean) division algorithm always halts in finite steps, the greatest common divisor of any pairs of positive integers always exists.

(EUCLIDEAN) DIVISION ALGORITHM AND GREATEST COMMON DIVISOR

Theorem 1.2.2.

Let a, b be two positive integers. The output (namely, the last non-zero remainder r) of the (Euclidean) division algorithm of (a, b) is a greatest common divisor of a and b.

If we combine this theorem with our observations before, we see that: the Diophantine equation

$$a \cdot x + b \cdot y = c$$

has a solution (in \mathbb{Z}) if and only if c is a multiple of gcd(a, b).

PROOF OF THE THEOREM

Let's start with a lemma.

Lemma 1.2.3.

Let a, b be two positive integers. If there are integers q and r such that a = qb + r, then we have

$$gcd(a, b) = g \iff gcd(b, r) = g.$$

PROOF OF THE THEOREM

Lemma 1.2.3.

Let a, b be two positive integers. If there are integers q and r such that a = qb + r, then we have

$$gcd(a, b) = g \iff gcd(b, r) = g.$$

Proof. (\Rightarrow) Suppose gcd(a, b) = g, let's prove gcd(b, r) = g by verifying the two defining properties.

- 1. Since gcd(a, b) = g, we have $g \mid a$ and $g \mid b$. Since a = qb + r, by the 2-out-of-3 principle, we have $g \mid r$.
- 2. Let $d \mid b$ and $d \mid r$. Since a = qb + r, by the 2-out-of-3 principle, we have $d \mid a$. Since $\gcd(a, b) = g$, we have $d \mid g$.

A very similar argument gives you (\Leftarrow).

PROOF OF THE THEOREM

Let's assume $a \ge b$. The division algorithm gives us the following

$$a = q_1b + r_1 \qquad (Step 1)$$

$$b = q_2r_1 + r_2 \qquad (Step 2)$$

$$\vdots$$

$$r_{n-3} = q_{n-1}r_{n-2} + r \qquad (Step n - 1)$$

$$r_{n-2} = q_nr + 0 \qquad (Step n)$$

Our lemma 1.2.3 tells us that

$$\gcd(a,b) = \gcd(b, r_1) = \gcd(r_1, r_2) = \cdots$$

$$= \gcd(r_{n-3}, r_{n-2}) = \gcd(r_{n-2}, r) = \gcd(r, 0) = r. \quad \Box$$

(EUCLIDEAN) DIVISION ALGORITHM, BACKWARD

Note that, if we work the division algorithm backward, we have

$$r = r_{n-3} + (-q_{n-1}) \cdot r_{n-2}$$

$$= r_{n-3} + (-q_{n-1}) \cdot (r_{n-4} - q_{n-2}r_{n-3})$$
 substitute in r_{n-2}

$$= (\cdots) \cdot r_{n-4} + (\cdots) \cdot r_{n-3}$$
 collect the coefficients
$$\vdots$$

$$= x_0 \cdot a + y_0 \cdot b.$$

Hence, the division algorithm gives us a solution (x_0, y_0) of the Diophantine equation $a \cdot x + b \cdot y = \gcd(a, b)$.

BÉZOUT'S IDENTITY

Theorem 1.2.4 Bézout's identity.

Given non-zero integers a, b, there exist integers x_0, y_0 such that

$$a \cdot x_0 + b \cdot y_0 = \gcd(a, b).$$

BÉZOUT'S IDENTITY

Theorem 1.2.4 Bézout's identity.

Given non-zero integers a, b, there exist integers x_0 , y_0 such that

$$a \cdot \mathbf{x_0} + b \cdot \mathbf{y_0} = \gcd(a, b).$$

Proof. When a, b are both positive, the integers x_0, y_0 are obtained by working the division algorithm backward.

In general, we solve this problem for the positive integers |a|, |b|, producing integers x_0 , y_0 , then we have

$$a \cdot (\operatorname{sign}(a)x_0) + b \cdot (\operatorname{sign}(a)y_0) = \gcd(a,b),$$

where $\operatorname{sign}(\cdot)$ eats an integer and gives its signature, is a solution for our Diophantine equation.

SUMMARIZING

SUMMARIZING

• Let a, b be two nonzero integers. The Diophantine equation

$$a \cdot x + b \cdot y = c$$

has a solution (in \mathbb{Z}) if and only if c is a multiple of gcd(a, b).

• Let a, b be two nonzero integers. The Diophantine equation

$$a \cdot x + b \cdot y = c$$

has a solution (in \mathbb{Z}) if and only if c is a multiple of gcd(a, b).

• If this is the case, the *Bézout's identity* gives a pair of integers (x_0, y_0) such that $ax_0 + by_0 = \gcd(a, b)$. Suppose $c = m \gcd(a, b)$. Then (mx_0, my_0) is a solution of our Diophantine equation.

• Let a, b be two nonzero integers. The Diophantine equation

$$a \cdot x + b \cdot y = c$$

has a solution (in \mathbb{Z}) if and only if c is a multiple of gcd(a, b).

- If this is the case, the *Bézout's identity* gives a pair of integers (x_0, y_0) such that $ax_0 + by_0 = \gcd(a, b)$. Suppose $c = m \gcd(a, b)$. Then (mx_0, my_0) is a solution of our Diophantine equation.
- It remains to study what are all the solutions. Namely, to study the solution set

$$\{(\mathbf{x}, \mathbf{y}) \in \mathbb{Z}^2 \mid a \cdot \mathbf{x} + b \cdot \mathbf{y} = c\}.$$