Essays in Behavioral Economics

Niklas M. Witzig ¹

🗹 niklas.witzig@uni-mainz.de 🌎 nmwitzig.github.io 🄰 @nmwitzig 🔘 @nmwitzig

GUTENBERG AKADEMIE

¹ Chair of Public and Behavioral Economics, Prof. Dr. Daniel Schunk

Motivation

• I am interested in economic decision-making — particularly in how individuals' subjective assessment of choice situations shapes their behavior.

- In three projects, I study how beliefs (Project 1), cognitive capabilities (Project 2) and contexts (Project 3) influence choices.
- Goal: Extend classical frameworks of choice (e.g., the "revealed-preferences paradigm" (Samuelson, 1938)).
- Timely discussion: Very recent applications of concepts from cognitive science and psychophysics to economic choice behavior (Enke & Graeber, 2020; Frydman & Jin, 2022; Gabaix, 2019; Khaw et al., 2021; Woodford, 2020).

P1: Behavioral Time Allocation

joint with Alexander Dzionara, JGU

Research Question: How do people decide how much time to take for solving a problem? Only poorly understood so far (Oud et al., 2016).

- We link allocation decisions to *subjective* assessment of a decision problem (Gabaix, 2019). E.g., Overoptimistic beliefs in own ability leads agents to allocate less time in a given setting.
- Method: visual search task in pre-registered lab experiment (n = 91): identify highest arabic numeral (see A in Fig. 1).

Figure 1: Visual search task and estimated average weighting functions

- performance, time-dependent measure uncertainty attitudes and beliefs and estimate speed-accuracy (Dean et al., 2007) as well as belief and probability weighting functions (Gonzalez & Wu, 1999; Tversky & Kahneman, 1992); see B + C in Fig. 1.
- → Link individually estimated parameters to endogenous time choice variant of our task.
- We find support for our hypotheses: Over(under)-confident and over(under)weighting individuals allocate more(less) time in our task, conditional on their ability.
- Behavioral assessments as drivers of time allocation decisions.
- Increasingly relevant for discussions about 4day workweeks.

P2: Cognitive Imprecision and Social Preferences

single-authored

Research Question: What role does the mental representation of arithmetic differences play for (measuring) pro-social behavior?

- Popular tool: (binary) dictator game. One person splits resources between herself and another (Bruhin et al., 2019; Charness & Rabin, 2002). See A Fig. 2.
- Assumption so far: People are perfectly able to process numerical quantities, only social preferences matter for choices. Empirically implausible (Dehaene, 2011).

Which Allocation do you choose? Points for you (A) Points for the other person (B) Allocation X 83 74 Allocation Y Please choose an allocation by clicking the appropriate buttor

Figure 2: Binary dictator game and model simulations

• I propose a **simple model of choice behavior** in binary dictator games featuring cognitive noise in estimating payoff differences based on Khaw et al. (2021).

Model and simulations imply:

- Random Utility Model (standard approach) implausible. In Noisy Payoffs Model, stochasticity of choices depends on quantities *involved* (see B + C in Fig. 2).
- Cognitive load (higher imprecision) increases selfish choices.
- Correlation between arithmetic ability and behavior should manifest.

Lab experiment to be conducted

P3: Strategic Uncertainty and Time Pressure in Professional Chess

joint with Johannes Carow, JGU + MWVLW RLP

Research Question: How does time pressure affect choices in the presence of strategic uncertainty?

- We investigate this in professional chess, which is highly strategic + players possess great skill.
- Two innovations:
 - 1. We propose a source of *exogenous variation* in available thinking time of chess players (due to a specific feature of FIDE World Cups)
 - 2. A novel measure for the degree of strategic uncertainty of a single chess move.

Figure 3: Predicted difficulty for White: low and high example

- Key in (human) chess is the (strategic interaction with the) difficulty of a position.
- Think difficulty as Q = f(p), i.e., the quality of a move Q being (partly) dependent on piece positions p.

- ullet We approximate f(p) using a residual convolutional neural network (RCNN) (McIlroy-Young et al., 2020) trained on > 80 mio. human chess moves.
- RCNN correctly identifies unseen positions of low (A) and high (B) difficulty (see Fig. 3).
- Variability of emerging difficulties across responses by opponent is related to strategic uncertainty of a chess move.
- In FIDE Chess World Cups, we find causal evidence that chess players play uncertaintyaverse strategies under time pressure.
- Implies that contextual factors matter even with very high proficiency.

References

- Bruhin, A., Fehr, E., & Schunk, D. (2019). The many Faces of Human Sociality: Uncovering the Distribution and Stability of Social Preferences. Journal of the European Economic Association, 17(4), 1025–1069.
- Dean, M., Wu, S.-W., & Maloney, L. T. (2007). Trading off speed and accuracy in rapid, goal-
- directed movements. *Journal of Vision*, 7(5), 10.
- Charness, G., & Rabin, M. (2002). Understanding Social Preferences with Simple Tests. The Quarterly Journal of Economics, 117(3), 817–869.
- Dehaene, S. (2011). The Number Sense: How the Mind Creates Mathematics, Revised and Updated Edition (Updated Edition). New York: Oxford University Press, USA.
- Enke, B., & Graeber, T. (2020). Cognitive Uncertainty. NBER Working Paper. Frydman, C., & Jin, L. J. (2022). Efficient Coding and Risky Choice. The Quarterly Journal of
- Economics, 137(1), 161–213. Gabaix, X. (2019). Behavioral inattention. In Handbook of Behavioral Economics: Applications and Foundations 1 (Vol. 2, pp. 261–343). Elsevier.
- Gonzalez, R., & Wu, G. (1999). On the Shape of the Probability Weighting Function. Cognitive Psychology, 38(1), 129–166. Khaw, M. W., Li, Z., & Woodford, M. (2021). Cognitive Imprecision and Small-Stakes Risk
- Aversion. *The Review of Economic Studies*, 88(4), 1979–2013. McIlroy-Young, R., Sen, S., Kleinberg, J., & Anderson, A. (2020). Aligning Superhuman AI with Human Behavior: Chess as a Model System. Proceedings of the 26th International Conference on Knowledge Discovery & Data Mining, 1677–1687.
- Oud, B., Krajbich, I., Miller, K., Cheong, J. H., Botvinick, M., & Fehr, E. (2016). Irrational time allocation in decision-making. Proceedings of the Royal Society B: Biological Sciences, 283(1822), 20151439.
- Samuelson, P. A. (1938). A Note on the Pure Theory of Consumer's Behaviour. Economica, 5(17), 61–71.
 - Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. *Journal of Risk and Uncertainty*, (5), 297–323.
- Woodford, M. (2020). Modeling Imprecision in Perception, Valuation, and Choice. Annual *Review of Economics*, 12(1), 579–601.