Number	Reaction				A	n	E	Ref.
1f	$H + O_2$	\rightleftharpoons	OH + O		3.520E+16	-0.70	71.4	[1]
2f	$H_2 + O$	\rightleftharpoons	OH + H		5.060E+04	2.67	26.3	[1]
3f	$H_2 + OH$	\rightleftharpoons	$H_2O + H$		1.170E+09	1.30	15.2	[1]
4f	$H_2O + O$	\rightleftharpoons	2 OH		7.600E+00	3.84	53.5	[1]
$5f^a$	$2 H + M^{(1)}$	\rightleftharpoons	$H_2 + M^{(1)}$		1.300E+18	-1.00	0	[2]
$6f^a$	$H + OH + M^{(2)}$	\rightleftharpoons	$H_2O + M^{(2)}$		4.000E+22	-2.00	0	[2]
$7 f^a$	$2 O + M^{(3)}$	\rightleftharpoons	$O_2 + M^{(3)}$		6.170E+15	-0.50	0	[2]
$8f^a$	$H + O + M^{(4)}$	\rightleftharpoons	$OH + M^{(4)}$		4.710E+18	-1.00	0	[2]
$9f^a$	$O + OH + M^{(4)}$	\rightleftharpoons	$\mathrm{HO_2} + \mathrm{M}^{(4)}$		8.000E+15	0.00	0	[2]
$10f^{a,b}$	$H + O_2 + M^{(5)}$	\rightleftharpoons	$\mathrm{HO_2} + \mathrm{M}^{(5)}$	k_0	5.750E+19	-1.40	0	[3, 2]
				k_{∞}	4.650E+12	0.44	0	
11f	$\mathrm{HO}_2 + \mathrm{H}$	\rightleftharpoons	2 OH		7.080E+13	0.00	1.23	[4]
12f	$\mathrm{HO}_2 + \mathrm{H}$	\rightleftharpoons	$H_2 + O_2$		1.660E+13	0.00	3.44	[4]
13f	$\mathrm{HO}_2 + \mathrm{H}$	\rightleftharpoons	$H_2O + O$		3.100E+13	0.00	7.2	[1]
14f	$HO_2 + O$	\rightleftharpoons	$OH + O_2$		2.000E+13	0.00	0	[5]
15f	$HO_2 + OH$	\rightleftharpoons	$H_2O + O_2$		2.890E+13	0.00	-2.08	[1]
$16f^{a,b}$	$2 \text{ OH} + \text{M}^{(6)}$	\rightleftharpoons	$H_2O_2 + M^{(6)}$	k_0	2.300E+18	-0.90	-7.12	[1]
				k_{∞}	7.400E+13	-0.37	0	
17f	2 HO_2	\rightleftharpoons	$H_2O_2 + O_2$		3.020E+12	0.00	5.8	[1]
18f	$H_2O_2 + H$	\rightleftharpoons	$HO_2 + H_2$		4.790E+13	0.00	33.3	[6]
19f	$H_2O_2 + H$	\rightleftharpoons	$H_2O + OH$		1.000E+13	0.00	15	[6]
20f	$H_2O_2 + OH$	\rightleftharpoons	$H_2O + HO_2$		7.080E+12	0.00	6	[1]
21f	$H_2O_2 + O$	\rightleftharpoons	$HO_2 + OH$		9.630E+06	2.00	16.7	[1]
22f	CO + OH	\rightleftharpoons	$CO_2 + H$		4.400E+06	1.50	-3.1	[1]
23f	$CO + HO_2$	\rightleftharpoons	$CO_2 + OH$		6.000E+13	0.00	96	[1]
24f	$CO + O_2$	\rightleftharpoons	$CO_2 + O$		1.000E+12	0.00	200	[2]
$25f^a$	$HCO + M^{(7)}$	\rightleftharpoons	$CO + H + M^{(i)}$	7)	1.860E+17	-1.00	71.1	[7]
26f	HCO + H	\rightleftharpoons	$CO + H_2$		5.000E+13	0.00	0	[8]
27f	HCO + O	\rightleftharpoons	CO + OH		3.000E+13	0.00	0	[1]
28f	HCO + O	\rightleftharpoons	$CO_2 + H$		3.000E+13	0.00	0	[1]
29f	HCO + OH	\rightleftharpoons	$CO + H_2O$		3.000E+13	0.00	0	[9]
30f	$HCO + O_2$	\rightleftharpoons	$CO + HO_2$		7.580E+12	0.00	1.72	[10]
31f	$HCO + CH_3$	\rightleftharpoons	$CO + CH_4$		5.000E+13	0.00	0	[8]
$32f^{a,b}$	$H + HCO + M^{(8)}$	\rightleftharpoons	$\mathrm{CH_2O} + \mathrm{M}^{(8)}$	k_0	1.350E+24	-2.57	1.78	[11]
				k_{∞}	1.090E+12	0.48	-1.09	
33f	$\mathrm{CH_2O} + \mathrm{H}$	\rightleftharpoons	$HCO + H_2$		5.740E+07	1.90	11.5	[12]

Number	R	eacti	on	A	n	E	Ref.
34f	$CH_2O + O$	\rightleftharpoons	HCO + OH	3.500E+13	0.00	14.7	[1]
35f	$\mathrm{CH_2O} + \mathrm{OH}$	\rightleftharpoons	$HCO + H_2O$	3.900E+10	0.89	1.7	[1]
36f	$CH_2O + O_2$	\rightleftharpoons	$HCO + HO_2$	6.000E+13	0.00	170	[13]
37f	$\mathrm{CH_2O} + \mathrm{HO_2}$	\rightleftharpoons	$HCO + H_2O_2$	4.110E+04	2.50	42.7	[14]
38f	$CH_4 + H$	\rightleftharpoons	$H_2 + CH_3$	1.300E+04	3.00	33.6	[15]
39f	$\mathrm{CH_4} + \mathrm{OH}$	\rightleftharpoons	$H_2O + CH_3$	1.600E+07	1.83	11.6	[15]
40f	$CH_4 + O$	\rightleftharpoons	$\mathrm{CH_3} + \mathrm{OH}$	1.900E+09	1.44	36.3	[16]
41f	$CH_4 + O_2$	\rightleftharpoons	$\mathrm{CH_3} + \mathrm{HO_2}$	3.980E+13	0.00	238	[7, 17]
42f	$CH_4 + HO_2$	\rightleftharpoons	$\mathrm{CH_3} + \mathrm{H_2O_2}$	9.030E+12	0.00	103	[7, 17]
43f	$\mathrm{CH_3} + \mathrm{H}$	\rightleftharpoons	$T-CH_2 + H_2$	1.800E+14	0.00	63.2	[16]
44f	$\mathrm{CH_3} + \mathrm{H}$	\rightleftharpoons	$S-CH_2 + H_2$	1.550E+14	0.00	56.4	[16]
45f	$\mathrm{CH_{3}}+\mathrm{OH}$	\rightleftharpoons	$S-CH_2 + H_2O$	4.000E+13	0.00	10.5	[18, 8]
46f	$CH_3 + O$	\rightleftharpoons	$\mathrm{CH_2O} + \mathrm{H}$	8.430E+13	0.00	0	[16]
47f	$CH_3 + T-CH_2$	\rightleftharpoons	$C_2H_4 + H$	4.220E+13	0.00	0	[13]
48f	$\mathrm{CH_3} + \mathrm{HO_2}$	\rightleftharpoons	$\mathrm{CH_{3}O} + \mathrm{OH}$	5.000E+12	0.00	0	[13]
49f	$\mathrm{CH_3} + \mathrm{O_2}$	\rightleftharpoons	$\mathrm{CH_{2}O} + \mathrm{OH}$	3.300E+11	0.00	37.4	[19]
50f	$CH_3 + O_2$	\rightleftharpoons	$CH_3O + O$	1.100E+13	0.00	116	[19]
51f	2 CH_3	\rightleftharpoons	$C_2H_4 + H_2$	1.000E+14	0.00	134	[20]
52f	2 CH ₃	\rightleftharpoons	$C_2H_5 + H$	3.160E+13	0.00	61.5	[21]
$53f^{a,b}$	$H + CH_3 + M^{(9)}$	\rightleftharpoons	$CH_4 + M^{(9)} k_0$	2.470E+33	-4.76	10.2	[22]
			k_{∞}	1.270E+16	-0.63	1.6	
$54f^{a,b}$	$2 \text{ CH}_3 + \text{M}^{(8)}$	\rightleftharpoons	$C_2H_6 + M^{(8)} k_0$	1.270E+41	-7.00	11.6	[15]
			k_{∞}	1.810E+13	0.00	0	
55f	$S-CH_2 + OH$	\rightleftharpoons	$\mathrm{CH_2O} + \mathrm{H}$	3.000E+13	0.00	0	[16]
56f	$S-CH_2 + O_2$	\rightleftharpoons	CO + OH + H	3.130E+13	0.00	0	[16]
57f	$S-CH_2 + CO_2$	\rightleftharpoons	$CO + CH_2O$	3.000E+12	0.00	0	[23]
$58f^a$	$S-CH_2 + M^{(10)}$	\rightleftharpoons	$T-CH_2 + M^{(10)}$	6.000E+12	0.00	0	[16]
59f	$T-CH_2 + H$	\rightleftharpoons	$CH + H_2$	6.020E+12	0.00	-7.48	[13]
60f	$T-CH_2 + OH$	\rightleftharpoons	$\mathrm{CH_2O} + \mathrm{H}$	2.500E+13	0.00	0	[16]
61f	$T-CH_2 + OH$	\rightleftharpoons	$\mathrm{CH} + \mathrm{H_2O}$	1.130E+07	2.00	12.6	[16]
62f	$T-CH_2 + O$	\rightleftharpoons	CO + 2 H	8.000E+13	0.00	0	[24]
63f	$T-CH_2 + O$	\rightleftharpoons	$CO + H_2$	4.000E+13	0.00	0	[24]
64f	$T-CH_2 + O_2$	\rightleftharpoons	$CO_2 + H_2$	2.630E+12	0.00	6.24	[23]
65f	$T-CH_2 + O_2$	\rightleftharpoons	CO + OH + H	6.580E+12	0.00	6.24	[23]
66f	2 T-CH ₂	\rightleftharpoons	$C_2H_2 + 2 H$	1.000E+14	0.00	0	[16]
67f	CH + O	\rightleftharpoons	CO + H	4.000E+13	0.00	0	[25]

Number		Re	eaction		A	n	E	Ref.
68f	$CH + O_2$	\rightleftharpoons	HCO + O		1.770E+11	0.76	-2	[26]
69f	$CH + H_2O$	\rightleftharpoons	$\mathrm{CH_2O} + \mathrm{H}$		1.170E+15	-0.75	0	[23]
70f	$CH + CO_2$	\rightleftharpoons	HCO + CO		4.800E+01	3.22	-13.5	[26]
71f	$CH_3O + H$	\rightleftharpoons	$\mathrm{CH_2O} + \mathrm{H_2}$		2.000E+13	0.00	0	[27]
72f	$CH_3O + H$	\rightleftharpoons	$S-CH_2 + H_2O$		1.600E+13	0.00	0	[27]
73f	$\mathrm{CH_{3}O} + \mathrm{OH}$	\rightleftharpoons	$\mathrm{CH_2O} + \mathrm{H_2O}$		5.000E+12	0.00	0	[27]
74f	$CH_3O + O$	\rightleftharpoons	$OH + CH_2O$		1.000E+13	0.00	0	[27]
75f	$CH_3O + O_2$	\rightarrow	$\mathrm{CH_2O} + \mathrm{HO_2}$		4.280E-13	7.60	-14.8	[27]
$76f^a$	$\mathrm{CH_3O} + \mathrm{M}^{(9)}$	\rightleftharpoons	$CH_2O + H + M^{(9)}$		7.780E+13	0.00	56.5	[8]
77f	$C_2H_6 + H$	\rightleftharpoons	$C_2H_5 + H_2$		5.400E+02	3.50	21.8	[16]
78f	$C_2H_6 + O$	\rightleftharpoons	$C_2H_5 + OH$		1.400E+00	4.30	11.6	[16]
79f	$C_2H_6 + OH$	\rightleftharpoons	$C_2H_5 + H_2O$		2.200E+07	1.90	4.7	[16]
80f	$C_2H_6 + CH_3$	\rightleftharpoons	$C_2H_5 + CH_4$		5.500E-01	4.00	34.7	[16]
$81f^{a,b}$	$C_2H_6 + M^{(8)}$	\rightleftharpoons	$C_2H_5 + H + M^{(8)}$	k_0	4.900E+42	-6.43	448	[15, 11, 8]
				k_{∞}	8.850E+20	-1.23	428	
82f	$C_2H_6 + HO_2$	\rightleftharpoons	$\mathrm{C_2H_5} + \mathrm{H_2O_2}$		1.320E+13	0.00	85.6	[13, 8]
83f	$C_2H_5 + H$	\rightleftharpoons	$C_2H_4 + H_2$		3.000E+13	0.00	0	[16]
84f	$C_2H_5 + O$	\rightleftharpoons	$C_2H_4 + OH$		3.060E+13	0.00	0	[16]
85f	$C_2H_5 + O$	\rightleftharpoons	$\mathrm{CH_3} + \mathrm{CH_2O}$		4.240E+13	0.00	0	[16]
86f	$C_2H_5 + O_2$	\rightleftharpoons	$C_2H_4 + HO_2$		2.000E+12	0.00	20.9	[16]
$87f^{a,b}$	$C_2H_5 + M^{(9)}$	\rightleftharpoons	$C_2H_4 + H + M^{(9)}$	k_0	3.990E+33	-4.99	167	[28, 8]
				k_{∞}	1.110E+10	1.04	154	
88f	$C_2H_4 + H$	\rightleftharpoons	$C_2H_3 + H_2$		4.490E+07	2.12	55.9	[29]
89f	$C_2H_4 + OH$	\rightleftharpoons	$C_2H_3 + H_2O$		5.530E+05	2.31	12.4	[29]
90f	$C_2H_4 + O$	\rightleftharpoons	$\mathrm{CH}_3 + \mathrm{HCO}$		2.250E+06	2.08	0	[13]
91f	$C_2H_4 + O$	\rightleftharpoons	$\mathrm{CH_{2}CHO} + \mathrm{H}$		1.210E+06	2.08	0	[13]
92f	$2 \overline{\mathrm{C_2H_4}}$	\rightleftharpoons	$C_2H_3 + C_2H_5$		5.010E+14	0.00	271	[30]
93f	$C_2H_4 + O_2$	\rightleftharpoons	$C_2H_3 + HO_2$		4.220E+13	0.00	241	[31]
94f	$C_2H_4 + HO_2$	\rightleftharpoons	$C_2H_4O + OH$		2.230E+12	0.00	71.9	[13]
95f	$C_2H_4O + HO_2$	\rightleftharpoons	$CH_3 + CO + H_2O_2$	2	4.000E+12	0.00	71.2	[13]
$96f^a$	$C_2H_4 + M^{(9)}$	\rightleftharpoons	$C_2H_3 + H + M^{(9)}$		2.600E+17	0.00	404	[32, 8]
$97f^a$	$C_2H_4 + M^{(9)}$	\rightleftharpoons	$C_2H_2 + H_2 + M^{(9)}$		3.500E+16	0.00	299	[32, 8]
98f	- ,		$C_2H_2 + H_2$		4.000E+13	0.00	0	[8]
$99f^{a,b}$	$C_2H_3 + M^{(9)}$	\rightleftharpoons	$C_2H_2 + H + M^{(9)}$	k_0	1.510E+14	0.10	137	[33, 8]
				k_{∞}	6.380E+09	1.00	157	
100f	$C_2H_3 + O_2$	\rightleftharpoons	$\mathrm{CH_2O} + \mathrm{HCO}$		1.700E+29	-5.31	27.2	[34]

Number		Rea	action	A	n	E	Ref.
101f	$C_2H_3 + O_2$	\rightleftharpoons	$CH_2CHO + O$	7.000E+14	-0.61	22	[33, 34]
102f	$C_2H_3 + O_2$	\rightleftharpoons	$C_2H_2 + HO_2$	5.190E+15	-1.26	13.9	[33, 34]
103f	$C_2H_2 + O$	\rightleftharpoons	HCCO + H	4.000E+14	0.00	44.6	[24]
104f	$C_2H_2 + O$	\rightleftharpoons	$T-CH_2 + CO$	1.600E+14	0.00	41.4	[24]
105f	$C_2H_2 + O_2$	\rightleftharpoons	$\mathrm{CH_2O} + \mathrm{CO}$	4.600E+15	-0.54	188	[35]
106f	$C_2H_2 + OH$	\rightleftharpoons	$\mathrm{CH_{2}CO} + \mathrm{H}$	1.900E+07	1.70	4.18	[7, 36]
107f	$C_2H_2 + OH$	\rightleftharpoons	$C_2H + H_2O$	3.370E+07	2.00	58.6	[7, 36]
108f	$\mathrm{CH_{2}CO} + \mathrm{H}$	\rightleftharpoons	$\mathrm{CH_3} + \mathrm{CO}$	1.500E+09	1.43	11.2	[37]
109f	$CH_2CO + O$	\rightleftharpoons	$T-CH_2 + CO_2$	2.000E+13	0.00	9.6	[7, 36]
110f	$\mathrm{CH_{2}CO} + \mathrm{O}$	\rightleftharpoons	HCCO + OH	1.000E+13	0.00	8.37	[7, 36]
111f	$\mathrm{CH_{2}CO} + \mathrm{CH_{3}}$	\rightleftharpoons	$C_2H_5 + CO$	9.000E+10	0.00	0	[7, 36]
112f	HCCO + H	\rightleftharpoons	$S-CH_2 + CO$	1.500E+14	0.00	0	[24]
113f	HCCO + OH	\rightleftharpoons	HCO + CO + H	2.000E+12	0.00	0	[38]
114f	HCCO + O	\rightleftharpoons	2 CO + H	9.640E+13	0.00	0	[24]
115f	$HCCO + O_2$	\rightleftharpoons	2 CO + OH	2.880E+07	1.70	4.19	[33]
116f	$HCCO + O_2$	\rightleftharpoons	$CO_2 + CO + H$	1.400E+07	1.70	4.19	[33]
117f	$C_2H + OH$	\rightleftharpoons	HCCO + H	2.000E+13	0.00	0	[16, 36]
118f	$C_2H + O$	\rightleftharpoons	CO + CH	1.020E+13	0.00	0	[16, 36]
119f	$C_2H + O_2$	\rightleftharpoons	HCCO + O	6.020E+11	0.00	0	[16, 36]
120f	$C_2H + O_2$	\rightleftharpoons	$CH + CO_2$	4.500E+15	0.00	105	[16, 36]
121f	$C_2H + O_2$	\rightleftharpoons	HCO + CO	2.410E+12	0.00	0	[16, 36]
122f	$\mathrm{CH_{2}OH} + \mathrm{H}$	\rightleftharpoons	$\mathrm{CH_2O} + \mathrm{H_2}$	3.000E+13	0.00	0	[27]
123f	$\mathrm{CH_{2}OH} + \mathrm{H}$	\rightleftharpoons	$\mathrm{CH_{3}}+\mathrm{OH}$	2.500E+17	-0.93	21.5	[8]
124f	$CH_2OH + OH$	\rightleftharpoons	$\mathrm{CH_2O} + \mathrm{H_2O}$	2.400E+13	0.00	0	[27]
125f	$CH_2OH + O_2$	\rightleftharpoons	$\mathrm{CH_2O} + \mathrm{HO_2}$	5.000E+12	0.00	0	[27]
$126f^a$	$\mathrm{CH_2OH} + \mathrm{M}^{(9)}$	\rightleftharpoons	$CH_2O + H + M^{(9)}$	5.000E+13	0.00	105	[27]
$127f^a$	$CH_3O + M^{(9)}$	\rightleftharpoons	$\mathrm{CH_2OH} + \mathrm{M}^{(9)}$	1.000E+14	0.00	80	[27]
128f	$\mathrm{CH_{2}CO} + \mathrm{OH}$	\rightleftharpoons	$\mathrm{CH_{2}OH} + \mathrm{CO}$	1.020E+13	0.00	0	[27]
129f	$CH_3OH + OH$	\rightleftharpoons	$\mathrm{CH_{2}OH} + \mathrm{H_{2}O}$	1.440E+06	2.00	-3.51	[27]
130f	$\mathrm{CH_3OH} + \mathrm{OH}$	\rightleftharpoons	$\mathrm{CH_3O} + \mathrm{H_2O}$	4.400E+06	2.00	6.3	[8]
131f	$\mathrm{CH_3OH} + \mathrm{H}$	\rightleftharpoons	$\mathrm{CH_2OH} + \mathrm{H_2}$	1.354E+03	3.20	14.6	[39]
132f	$\mathrm{CH_3OH} + \mathrm{H}$	\rightleftharpoons	$\mathrm{CH_3O} + \mathrm{H_2}$	6.830E+01	3.40	30.3	[39]
133f	$CH_3OH + O$	\rightleftharpoons	$\mathrm{CH_{2}OH} + \mathrm{OH}$	1.000E+13	0.00	19.6	[27]
134f	$\mathrm{CH_3OH} + \mathrm{HO_2}$	\rightleftharpoons	$\mathrm{CH_2OH} + \mathrm{H_2O_2}$	6.200E+12	0.00	81.1	[27]
135f	$CH_3OH + O_2$	\rightleftharpoons	$\mathrm{CH_2OH} + \mathrm{HO_2}$	2.000E+13	0.00	188	[27]
$136f^{a,b}$	$\mathrm{CH_3OH} + \mathrm{M}^{(9)}$	\rightleftharpoons	$CH_3 + OH + M^{(9)}$ k_0	2.950E+44	-7.35	399	[40, 8]

Number		A	n	E	Ref.			
				k_{∞}	1.900E+16	0.00	384	
137f	$\mathrm{CH_{2}CHO}$	\rightleftharpoons	$\mathrm{CH_{2}CO} + \mathrm{H}$		1.047E + 37	-7.19	186	[31]
138f	$\mathrm{CH_{2}CHO} + \mathrm{H}$	\rightleftharpoons	$\mathrm{CH_{3} + HCO}$		5.000E+13	0.00	0	[12]
139f	$\mathrm{CH_{2}CHO} + \mathrm{H}$	\rightleftharpoons	$\mathrm{CH_{2}CO} + \mathrm{H_{2}}$		2.000E+13	0.00	0	[12]
140f	$\mathrm{CH_{2}CHO} + \mathrm{O}$	\rightleftharpoons	$\mathrm{CH_2O} + \mathrm{HCO}$		1.000E+14	0.00	0	[12]
141f	$\mathrm{CH_{2}CHO} + \mathrm{OH}$	\rightleftharpoons	$\mathrm{CH_{2}CO} + \mathrm{H_{2}O}$		3.000E+13	0.00	0	[12]
142f	$\mathrm{CH_{2}CHO} + \mathrm{O_{2}}$	\rightleftharpoons	$CH_2O + CO + OH$		3.000E+10	0.00	0	[12]
143f	$\mathrm{CH_{2}CHO} + \mathrm{CH_{3}}$	\rightleftharpoons	$C_2H_5 + CO + H$		4.900E+14	-0.50	0	[12]
144f	$\mathrm{CH_{2}CHO} + \mathrm{HO_{2}}$	\rightleftharpoons	$CH_2O + HCO + OH$		7.000E+12	0.00	0	[12]
145f	$\mathrm{CH_{2}CHO} + \mathrm{HO_{2}}$	$\stackrel{\textstyle \leftarrow}{}$	$CH_3CHO + O_2$		3.000E+12	0.00	0	[12]
146f	$\mathrm{CH_{2}CHO}$	\rightleftharpoons	$CH_3 + CO$		1.170E+43	-9.80	183	[12]
147f	$\mathrm{CH_{3}CHO}$	$\stackrel{\textstyle \leftarrow}{}$	$\mathrm{CH}_3 + \mathrm{HCO}$		7.000E+15	0.00	342	[12]
$148 f^{a,b}$	$\mathrm{CH_3CO} + \mathrm{M}^{(9)}$	\rightleftharpoons	$CH_3 + CO + M^{(9)}$	k_0	1.200E+15	0.00	52.3	[12]
				k_{∞}	3.000E+12	0.00	69.9	
149f	$CH_3CHO + OH$	\rightleftharpoons	$\mathrm{CH_{3}CO} + \mathrm{H_{2}O}$		3.370E+12	0.00	-2.59	[12]
150f	$\mathrm{CH_{3}CHO} + \mathrm{OH}$	\rightleftharpoons	$\mathrm{CH_{2}CHO} + \mathrm{H_{2}O}$		3.370E+11	0.00	-2.59	[12]
151f	$CH_3CHO + O$	\rightleftharpoons	$CH_3CO + OH$		1.770E + 18	-1.90	12.5	[12]
152f	$CH_3CHO + O$	\rightleftharpoons	$\mathrm{CH_{2}CHO} + \mathrm{OH}$		3.720E+13	-0.20	14.9	[12]
153f	$CH_3CHO + H$	$\stackrel{\textstyle \leftarrow}{}$	$\mathrm{CH_{3}CO} + \mathrm{H_{2}}$		4.660E+13	-0.30	12.5	[12]
154f	$CH_3CHO + H$	\rightleftharpoons	$\mathrm{CH_{2}CHO} + \mathrm{H_{2}}$		1.850E + 12	0.40	22.4	[12]
155f	$\mathrm{CH_3CHO} + \mathrm{CH_3}$	\rightleftharpoons	$\mathrm{CH_{3}CO} + \mathrm{CH_{4}}$		3.900E-07	5.80	9.21	[12]
156f	$\mathrm{CH_{3}CHO} + \mathrm{CH_{3}}$	\rightleftharpoons	$\mathrm{CH_{2}CHO} + \mathrm{CH_{4}}$		2.450E+01	3.10	24	[12]
157f	$\mathrm{CH_{3}CHO} + \mathrm{HO_{2}}$	\rightleftharpoons	$\mathrm{CH_{3}CO} + \mathrm{H_{2}O_{2}}$		3.600E+19	-2.20	58.6	[12]
158f	$\mathrm{CH_3CHO} + \mathrm{HO_2}$	\rightleftharpoons	$\mathrm{CH_{2}CHO} + \mathrm{H_{2}O_{2}}$		2.320E+11	0.40	62.3	[12]
159f	$\mathrm{CH_3CHO} + \mathrm{O_2}$	\rightleftharpoons	$\mathrm{CH_{3}CO} + \mathrm{HO_{2}}$		1.000E+14	0.00	177	[12]
$160 f^{a,b}$	$C_2H_5OH + M^{(9)}$	\rightleftharpoons	$CH_3 + CH_2OH + M^{(9)}$	k_0	3.000E+16	0.00	243	[8]
				k_{∞}	5.000E+15	0.00	343	
$161f^{a,b}$	$C_2H_5OH + M^{(9)}$	\rightleftharpoons	$C_2H_4 + H_2O + M^{(9)}$	k_0	1.000E+17	0.00	226	[8]
				k_{∞}	8.000E+13	0.00	272	
162f	$C_2H_5OH + OH$	\rightleftharpoons	$\mathrm{CH_{2}CH_{2}OH} + \mathrm{H_{2}O}$		1.810E+11	0.40	3	[12]
163f	$C_2H_5OH + OH$	\rightleftharpoons	$\mathrm{CH_{3}CHOH} + \mathrm{H_{2}O}$		3.090E+10	0.50	-1.59	[12]
164f	$C_2H_5OH + OH$	\rightleftharpoons	$\mathrm{CH_{3}CH_{2}O} + \mathrm{H_{2}O}$		1.050E+10	0.80	3	[12]
165f	$C_2H_5OH + H$	\rightleftharpoons	$\mathrm{CH_{2}CH_{2}OH} + \mathrm{H_{2}}$		1.900E+07	1.80	21.3	[12]
166f	$C_2H_5OH + H$	\rightleftharpoons	$CH_3CHOH + H_2$		2.580E+07	1.60	11.8	[12]
167f	$C_2H_5OH + H$	\rightleftharpoons	$\mathrm{CH_{3}CH_{2}O} + \mathrm{H_{2}}$		1.500E+07	1.60	12.7	[12]
168f	$C_2H_5OH + O$	\rightleftharpoons	$CH_2CH_2OH + OH$		9.410E+07	1.70	22.8	[12]

Number]	A	n	E	Ref.		
169f	$C_2H_5OH + O$	\rightleftharpoons	$CH_3CHOH + OH$	1.880E+07	1.90	7.62	[12]
170f	$C_2H_5OH + O$	\rightleftharpoons	$CH_3CH_2O + OH$	1.580E+07	2.00	18.6	[12]
171f	$C_2H_5OH + CH_3$	\rightleftharpoons	$\mathrm{CH_{2}CH_{2}OH} + \mathrm{CH_{4}}$	2.190E+02	3.20	40.2	[12]
172f	$C_2H_5OH + CH_3$	\rightleftharpoons	$CH_3CHOH + CH_4$	7.280E+02	3.00	33.3	[12]
173f	$C_2H_5OH + CH_3$	\rightleftharpoons	$\mathrm{CH_{3}CH_{2}O} + \mathrm{CH_{4}}$	1.450E+02	3.00	32	[12]
174f	$C_2H_5OH + HO_2$	\rightleftharpoons	$CH_3CHOH + H_2O_2$	8.200E+03	2.50	45.2	[12]
175f	$C_2H_5OH + HO_2$	\rightleftharpoons	$\mathrm{CH_{2}CH_{2}OH} + \mathrm{H_{2}O_{2}}$	2.430E+04	2.50	66.1	[12]
176f	$C_2H_5OH + HO_2$	\rightleftharpoons	$\mathrm{CH_3CH_2O} + \mathrm{H_2O_2}$	3.800E+12	0.00	100	[12]
177f	$C_2H_4 + OH$	\rightleftharpoons	CH ₂ CH ₂ OH	2.410E+11	0.00	-9.96	[12]
178f	$C_2H_5 + HO_2$	\rightleftharpoons	$\mathrm{CH_{3}CH_{2}O} + \mathrm{OH}$	4.000E+13	0.00	0	[12]
$179f^a$	$\mathrm{CH_3CH_2O} + \mathrm{M}^{(9)}$	\rightleftharpoons	$CH_3CHO + H + M^{(9)}$	5.600E + 34	-5.90	106	[12]
$180 \mathrm{f}^a$	$\mathrm{CH_3CH_2O} + \mathrm{M}^{(9)}$	\rightleftharpoons	$\mathrm{CH_3} + \mathrm{CH_2O} + \mathrm{M}^{(9)}$	5.350E + 37	-7.00	99.6	[12]
181f	$\mathrm{CH_3CH_2O} + \mathrm{O_2}$	\rightleftharpoons	$\mathrm{CH_3CHO} + \mathrm{HO_2}$	4.000E+10	0.00	4.6	[12]
182f	$CH_3CH_2O + CO$	\rightleftharpoons	$C_2H_5 + CO_2$	4.680E+02	3.20	22.5	[12]
183f	$CH_3CH_2O + H$	\rightleftharpoons	$\mathrm{CH_{3}}+\mathrm{CH_{2}OH}$	3.000E+13	0.00	0	[12]
184f	$CH_3CH_2O + H$	\rightleftharpoons	$C_2H_4 + H_2O$	3.000E+13	0.00	0	[12]
185f	$CH_3CH_2O + OH$	\rightleftharpoons	$\mathrm{CH_{3}CHO} + \mathrm{H_{2}O}$	1.000E+13	0.00	0	[12]
186f	$CH_3CHOH + O_2$	\rightleftharpoons	$\mathrm{CH_3CHO} + \mathrm{HO_2}$	4.820E+13	0.00	21	[12]
187f	$CH_3CHOH + O$	\rightleftharpoons	$\mathrm{CH_{3}CHO} + \mathrm{OH}$	1.000E+14	0.00	0	[12]
188f	$CH_3CHOH + H$	\rightleftharpoons	$C_2H_4 + H_2O$	3.000E+13	0.00	0	[12]
189f	$CH_3CHOH + H$	\rightleftharpoons	$\mathrm{CH_{3}}+\mathrm{CH_{2}OH}$	3.000E+13	0.00	0	[12]
190f	$CH_3CHOH + HO_2$	\rightleftharpoons	$CH_3CHO + 2 OH$	4.000E+13	0.00	0	[12]
191f	$CH_3CHOH + OH$	\rightleftharpoons	$\mathrm{CH_{3}CHO} + \mathrm{H_{2}O}$	5.000E+12	0.00	0	[12]
$192f^a$	$CH_3CHOH + M^{(9)}$	\rightleftharpoons	$CH_3CHO + H + M^{(9)}$	1.000E+14	0.00	105	[12]
193f	$C_3H_4 + O$	\rightleftharpoons	$C_2H_4 + CO$	2.000E+07	1.80	4.18	[41]
194f	$\mathrm{CH_3} + \mathrm{C_2H_2}$	\rightleftharpoons	$C_3H_4 + H$	2.560E+09	1.10	57.1	[41]
195f	$C_3H_4 + O$	\rightleftharpoons	$HCCO + CH_3$	7.300E+12	0.00	9.41	[41]
$196f^{a,b}$	$C_3H_3 + H + M$	\rightleftharpoons	$C_3H_4 + M k_0$	9.000E+15	1.00	0	[37]
			k_{∞}	3.000E+13	0.00	0	
197f	$C_3H_3 + HO_2$	\rightleftharpoons	$C_3H_4 + O_2$	2.500E+12	0.00	0	[37]
198f	$C_3\overline{H_4 + OH}$	\rightleftharpoons	$C_3H_3 + H_2O$	5.300E+06	2.00	8.37	[42]
199f	$C_3H_3 + O_2$	\rightleftharpoons	$\mathrm{CH_{2}CO} + \mathrm{HCO}$	3.000E+10	0.00	12	[43]
$200f^{a,b}$	$C_3H_4 + H + M$	\rightleftharpoons	$C_3\overline{H_5 + M} k_0$	3.000E+24	-2.00	0	[37]
			k_{∞}	4.000E+13	0.00	0	
201f	$C_3H_5 + H$	\rightleftharpoons	$C_3H_4 + H_2$	1.800E+13	0.00	0	[44]
202f	$C_3H_5 + O_2$	\rightleftharpoons	$C_3H_4 + HO_2$	4.990E+15	-1.40	93.8	[45]

Number]	React	tion		A	n	E	Ref.
203f	$C_3H_5 + CH_3$	\rightleftharpoons	$C_3H_4 + CH_4$		3.000E+12	-0.32	-0.548	[37]
$204f^{a,b}$	$C_2H_2 + CH_3 + M$	\rightleftharpoons	$C_3H_5 + M$	k_0	2.000E+09	1.00	0	[37]
				k_{∞}	6.000E+08	0.00	0	
205f	$C_3H_5 + OH$	\rightleftharpoons	$C_3H_4 + H_2O$		6.000E+12	0.00	0	[37]
206f	$C_3H_3 + HCO$	\rightleftharpoons	$C_3H_4 + CO$		2.500E+13	0.00	0	[42]
207f	$C_3H_3 + HO_2$	\rightleftharpoons	$OH + CO + C_2H_3$		8.000E+11	0.00	0	[41]
208f	$C_3H_4 + O_2$	\rightleftharpoons	$CH_3 + HCO + CO$		4.000E+14	0.00	175	[46]
209f	$C_3H_6 + O$	\rightleftharpoons	$C_2H_5 + HCO$		3.500E+07	1.65	-4.07	[44]
210f	$C_3H_6 + OH$	\rightleftharpoons	$C_3H_5 + H_2O$		3.100E+06	2.00	-1.25	[44]
211f	$C_3H_6 + O$	\rightleftharpoons	$CH_2CO + CH_3 + H$		1.200E+08	1.65	1.37	[44]
212f	$C_3H_6 + H$	\rightleftharpoons	$C_3H_5 + H_2$		1.700E+05	2.50	10.4	[44]
$213f^{a,b}$	$C_3H_5 + H + M^{(8)}$	\rightleftharpoons	$C_3H_6 + M^{(8)}$	k_0	1.330E+60	-12.00	25	[41]
				k_{∞}	2.000E+14	0.00	0	
214f	$C_3H_5 + HO_2$	\rightleftharpoons	$C_3H_6 + O_2$		2.660E+12	0.00	0	[13]
215f	$C_3H_5 + HO_2$	\rightleftharpoons	$OH + C_2H_3 + CH_2O$)	3.000E+12	0.00	0	[13]
$216f^{a,b}$	$C_2H_3 + CH_3 + M^{(8)}$	\rightleftharpoons	$C_3H_6 + M^{(8)}$	k_0	4.270E + 58	-11.94	40.9	[41]
				k_{∞}	2.500E+13	0.00	0	
217f	$C_3H_6 + H$	\rightleftharpoons	$C_2H_4 + CH_3$		1.600E+22	-2.39	46.8	[41]
218f	$CH_3 + C_2H_3$	\rightleftharpoons	$C_3H_5 + H$		1.500E+24	-2.83	77.9	[41]
$219f^{a,b}$	$C_3H_8 + M$	\rightleftharpoons	$CH_3 + C_2H_5 + M$	k_0	7.830E+18	0.00	272	[32]
				k_{∞}	1.100E+17	0.00	353	
220f	$C_3H_8+O_2$	\rightleftharpoons	$I-C_3H_7 + HO_2$		4.000E+13	0.00	199	[47, 41, 48]
221f	$C_3H_8+O_2$	\rightleftharpoons	$N-C_3H_7 + HO_2$		4.000E+13	0.00	213	[47, 41, 48]
222f	$C_3H_8 + H$	\rightleftharpoons	$I-C_3H_7+H_2$		1.300E+06	2.40	18.7	[47, 41, 48]
223f	$C_3H_8 + H$	\rightleftharpoons	$N-C_3H_7 + H_2$		1.330E+06	2.54	28.3	[48, 49]
224f	$C_3H_8 + O$	\rightleftharpoons	$I-C_3H_7 + OH$		4.760E+04	2.71	8.82	[48, 41]
225f	$C_3H_8 + O$	\rightleftharpoons	$N-C_3H_7 + OH$		1.900E+05	2.68	15.6	[48, 41]
226f	$C_3H_8 + OH$	\rightleftharpoons	$N-C_3H_7 + H_2O$		1.400E+03	2.66	2.21	[41]
227f	$C_3H_8 + OH$	\rightleftharpoons	$I-C_3H_7 + H_2O$		2.700E+04	2.39	1.65	[41]
228f	$C_3H_8 + HO_2$	\rightleftharpoons	$I-C_3H_7 + H_2O_2$		9.640E+03	2.60	58.2	[48, 49, 41]
229f	$C_3H_8 + HO_2$	\rightleftharpoons	$N-C_3H_7 + H_2O_2$		4.760E+04	2.55	69	[48, 49, 41]
230f	$I-C_3H_7+C_3H_8$	\rightleftharpoons	$N-C_3H_7 + C_3H_8$		8.400E-03	4.20	36.3	[48, 50]
$231f^{a,b}$	$C_3H_6 + H + M^{(8)}$	\rightleftharpoons	$I-C_3H_7 + M^{(8)}$	k_0	8.700E+42	-7.50	19.8	[41]
				k_{∞}	1.330E+13	0.00	6.53	
232f	$I-C_3H_7+O_2$	\rightleftharpoons	$C_3H_6 + HO_2$		1.300E+11	0.00	0	[48, 41]
$233f^{a,b}$	$N-C_3H_7 + M$	\rightleftharpoons	$CH_3 + C_2H_4 + M$	k_0	5.490E+49	-10.00	150	[48, 41]

Number	Reaction	A	n	E	Ref.	
		k_{∞}	1.230E+13	-0.10	126	
$234f^{a,b}$	$H + C_3H_6 + M^{(8)} \implies N-C_3H_7 + M^{(8)}$	k_0	6.260E+38	-6.66	29.3	[48, 41]
		k_{∞}	1.330E+13	0.00	13.6	
235f	$N-C_3H_7 + O_2 \rightleftharpoons C_3H_6 + HO_2$		9.000E+10	0.00	0	[48, 41]

Units are mol, cm³, kJ, K.

The backward rates for all reversible reactions can be calculated from thermodynamic data.

^aThird-body efficiencies are:

```
[M] = 1 [other].
```

[M1] = 0.5 [AR] + 0.5 [HE] + 2.5 [H2] + 12 [H2O] + 1.9 [CO] + 3.8 [CO2] + 1 [other].

[M2] = 0.38 [AR] + 0.38 [HE] + 2.5 [H2] + 12 [H2O] + 1.9 [CO] + 3.8 [CO2] + 1 [other].

[M3] = 0.2 [AR] + 0.2 [HE] + 2.5 [H2] + 12 [H2O] + 1.9 [CO] + 3.8 [CO2] + 1 [other].

[M4] = 0.75 [AR] + 0.75 [HE] + 2.5 [H2] + 12 [H2O] + 1.9 [CO] + 3.8 [CO2] + 1 [other].

[M5] = 0.7 [AR] + 0.7 [HE] + 2.5 [H2] + 16 [H2O] + 1.2 [CO] + 2.4 [CO2] + 1.5 [C2H6] + 1 [other].

[M6] = 0.4 [AR] + 0.4 [HE] + 2 [H2] + 6 [H2O] + 1.5 [CO] + 2 [CO2] + 2 [CH4] + 3 [C2H6] + 1 [other].

[M7] = 1.9 [H2] + 12 [H2O] + 2.5 [CO] + 2.5 [CO2] + 1 [other].

[M8] = 0.7 [AR] + 2 [H2] + 6 [H2O] + 1.5 [CO] + 2 [CO2] + 2 [CH4] + 3 [C2H6] + 1 [other].

[M9] = 0.7 [AR] + 2 [H2] + 6 [H2O] + 1.5 [CO] + 2 [CO2] + 2 [CH4] + 1 [other].

[M10] = 2.4 [H2] + 15.4 [H2O] + 1.8 [CO] + 3.6 [CO2] + 1 [other].

^bPressure dependent reactions are described by the TROE-formulation [51]. The centering parameters are given by:

 $F_{c,10f} = 0.5.$

 $F_{c,16f} = 0.265 \exp(-T/94 \text{ K}) + 0.735 \exp(-T/1756 \text{ K}) + \exp(-5182 \text{ K/T}).$

 $F_{c.32f} = 0.2176 \exp(-T/271 \text{ K}) + 0.7824 \exp(-T/2755 \text{ K}) + \exp(-6570 \text{ K/T}).$

 $F_{c.53f} = 0.217 \exp(-T/74 \text{ K}) + 0.783 \exp(-T/2941 \text{ K}) + \exp(-6964 \text{ K/T}).$

 $F_{c,54f} = 0.38 \exp(-T/73 \text{ K}) + 0.62 \exp(-T/1180 \text{ K}).$

 $F_{c,81f} = 0.16 \exp(-T/125 \text{ K}) + 0.84 \exp(-T/2219 \text{ K}) + \exp(-6882 \text{ K/T}).$

 $F_{c,87f} = 0.832 \exp(-T/1203 \text{ K}).$

 $F_{c,99f} = 0.7.$

 $F_{c,136f} = 0.586 \exp(-T/279 \text{ K}) + 0.414 \exp(-T/5459 \text{ K}).$

 $F_{c,148f} = 1.$

 $F_{c,160f} = 0.5.$

 $F_{c,161f} = 0.5.$

 $F_{c,196f} = 0.5.$

 $F_{c,200f} = 0.2.$

 $F_{c,204f} = 0.5.$

 $F_{c,213f} = 0.98 \exp(-T/1097 \text{ K}) + 0.02 \exp(-T/1097 \text{ K}) + \exp(-6860 \text{ K/T}).$

 $F_{c,216f} = 0.825 \exp(-T/1341 \text{ K}) + 0.175 \exp(-T/60000 \text{ K}) + \exp(-10140 \text{ K/T}).$

 $F_{c,219f} = 0.24 \exp(-T/1946 \text{ K}) + 0.76 \exp(-T/38 \text{ K}).$

 $F_{c,231f} = \exp(-T/645.4 \text{ K}) + \exp(-6844 \text{ K/T}).$

 $F_{c,233f} = 2.17 \exp(-T/251 \text{ K}) + \exp(-1185 \text{ K/T}).$

 $F_{c,234f} = \exp(-T/1310 \text{ K}) + \exp(-48100 \text{ K/T}).$

References

- [1] M.L. Rightley and F.A. Williams. Structures of co diffusion flames near extinction. Combustion Science and Technology, 125:181, 1997.
- [2] P. Saxena and F. A. Williams. Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide. *Combustion and Flame*, In Press, 2006.
- [3] J. Troe. Detailed modeling of the temperature and pressure dependence of the reaction $H + O_2 (+M) \rightarrow HO_2 (+M)$. Proceedings of the Combustion Institute, 28:1463–1469, 2000.
- [4] M. Mueller, T. Kim, R. Yetter, and F. Dryer. Flow reactor studies and kinetic modeling of the H₂/O₂ reaction. *International Journal of Chemical Kinetics*, 31:113–125, 1999.
- [5] J. Warnatz. Combustion Chemistry. Springer-Verlag, Berlin, 1984.
- [6] R. A. Yetter, F. L. Dryer, and H. Rabitz. A comprehensive reaction mechanism for carbon monoxide/hydrogen/oxygen kinetics. *Combustion Science and Technology*, 79:97– 128, 1991.
- [7] R. P. Lindstedt and G. Skevis. Chemistry of acetylene flames. Combustion Science and Technology, 125(1–6):73–137, 1997.
- [8] P. Saxena and F. A. Williams. Work in Progress Communication, Center for Energy Research, 2005.
- [9] W. Tsang and R. F. Hampson. Chemical kinetic data base for combustion chemistry. part 1. methane and related compounds. *Journal of Physical and Chemical Reference Data*, 15:1087–1276, 1986.
- [10] R. S. Timonen, E. Ratajczak, and D. Gutman. Kinetics of the reactions of the formyl radical with oxygen, nitrogen dioxide, chlorine and bromine. *Journal of Physical Chem*istry, 92:651–655, 1988.
- [11] Gri-mech 1.2. http://www.me.berkeley.edu/gri_mech/.
- [12] J. Li. Experimental and Numerical Studies of Ethanol Chemical Kinetics. PhD thesis, Princeton University, 2004.
- [13] D.L. Baulch, C.J. Cobos, R.A. Cox, C. Esser, P. Frank, T. Just, J.A. Kerr, M.J. Pilling, J. Troe, R.W. Walker, and J. Warnatz. Evaluated kinetic data for combustion modeling. *Journal of Physical and Chemical Reference Data*, 21(3):411–749, 1992.

- [14] B. Eiteneer, C. L. Yu, M. Goldenberg, and M. Frenklach. Determination of rate coefficients for reactions of formaldehyde pyrolysis and oxidation in the gas phase. *Journal of Physical Chemistry A*, 102:5196–5205, 1998.
- [15] J.C. Hewson and F.A. Williams. Rate-ratio asymptotic analysis of methane-air diffusion flame structure for predicting production of oxides of nitrogen. *Combustion and Flame*, 117(3):441–476, 1999.
- [16] M. Frenklach, H. Wang, and M. Rabinowitz. Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method combustion of methane. Progress in Energy and Combustion Science, 18(1):47–73, 1992.
- [17] S. C. Li and F. A. Williams. Reaction mechanisms for methane ignition. *Journal of Engineering for Gas Turbines and Power*, 124:471–480, 2002. ASME.
- [18] H. H. Grotheer, Kelm, Siegfried, H. S. T. Driver, R. J. Hutcheon, R. D. Lockett, and G. N. Robertson. Elementary reactions in the methanol oxidation system. part i: Establishment of the mechanism and modeling of laminar burning velocities. *Berichte der Bunsen-Gesellschaft – Physical Chemistry Chemical Physics*, 96:1360–1373, 1992.
- [19] R. Zellner and F. Ewig. Computational study of the $ch_3 + o_2$ chain branching reaction. Journal of Physical Chemistry, 92:2971–2974, 1988.
- [20] Y. Hidaka, T. Nakamura, H. Tanaka, K. Inami, and H. Kawano. High-temperature pyrolysis of methane in shock-waves - rates for dissociative recombination reactions of methyl radicals and for propyne formation reaction. *International Journal of Chemical Kinetics*, 22:701–709, 1990.
- [21] K.P. Lim and J.V. Michael. The thermal reactions of CH₃. Twenty-Fifth Symposium (International) on Combustion, page 713, 1994.
- [22] Gri-mech 3.0. http://www.me.berkeley.edu/gri_mech/.
- [23] K.M. Leung and R.P. Lindstedt. Detailed kinetic modeling of $C_1 C_3$ alkane diffusion flames. Combustion and Flame, 102:129–160, 1995.
- [24] P. Frank, K.A. Bhaskaran, and T. Just. Acetylene oxidation: The reaction C₂H₂ + O at high temperatures. In *Twenty-First Symposium (International) on Combustion*, page 885, Pittsburgh, Pennsylvania, 1986. The Combustion Institute.
- [25] N. Peters. Flame calculations with reduced mechanisms an outline. In N. Peters and B. Rogg, editors, Reduced Kinetic Mechanisms for Applications in Combustion Systems, volume m 15 of Lecture Notes in Physics, chapter 1, pages 3–14. Springer-Verlag Berlin, 1993.

- [26] M.W. Markus, P. Roth, and T. Just. A shock tube study of the reactions of ch with CO₂ and O₂. *International Journal of Chemical Kinetics*, 28:171, 1996.
- [27] S.C. Li and Williams F.A. Formation of NO_x, CH₄, and C₂ species in laminar methanol flames. *Proceedings of the Combustion Institute*, 27:485–493, 1998.
- [28] Y. Feng, J. T. Niiranen, A. Bencsura, V. D. Knyazev, and D. Gutman. Weak collision effects in the reaction $C_2H_5=C_2H_4+H$. *Journal of Physical Chemistry*, 97(4):871–880, 1993.
- [29] A. Bhargava and P. R. Westmoreland. Measured flame structure and kinetics in a fuel-rich ethylene flame. *Combustion and Flame*, 113(3):333–347, 1998.
- [30] Y. Hidaka, T. Nishimori, K. Sato, Y. Henmi, R. Okuda, and K. Inami. Shock-tube and modeling study of ethylene pyrolysis and oxidation. *Combustion and Flame*, 117(4):755– 776, 1999.
- [31] N. M. Marinov and P. C. Malte. Ethylene oxidation in a well-stirred reactor-stirred reactor. *International Journal of Chemical Kinetics*, 27(10):957–986, 1995.
- [32] D.L. Baulch, C.J. Cobos, R.A. Cox, C. Esser, P. Frank, T. Just, J.A. Kerr, M.J. Pilling, J. Troe, R.W. Walker, and J. Warnatz. Summary table of evaluated kinetic data for combustion modeling: Supplement 1. Combustion and Flame, 98:59–79, 1994.
- [33] B. Varatharajan and F. A. Williams. Chemical-kinetic descriptions of high-temperature ignition and detonation of acetylene-oxygen-diluent systems. *Combustion and Flame*, 124(4):624–645, 2001.
- [34] N. M. Marinov, W. J. Pitz, C. K. Westbrook, A. M. Vincitroe, M. J. Castaldi, S. M. Senkan, and C. F. Melius. Aromatic and polycyclic aromatic hydrocarbon formation in a laminar premixed n-butane flame. *Combustion and Flame*, 114:192–213, 1998.
- [35] A. Laskin and H. Wang. On initiation reactions of acetylene oxidation in shock tubes a quantum mechanical and kinetic modeling study. *Chemical Physics Letters*, 303:43–49, 1999.
- [36] M. M. Y. Waly, S. M. A. Ibrahim, S. C. Li, and F. A. Williams. Structure of two-stage flames of natural gas with air. *Combustion and Flame*, 125(3):1217–1221, 2001.
- [37] M. Petrova and F. A. Williams. A small detailed chemical-kinetic mechanism for hydrocarbon combustion. *Combustion and Flame*, 144:526–544, 2006.
- [38] C.K. Westbrook and F.L. Dryer. Chemical kinetic modeling of hydrocarbon combustion. Progress in Energy and Combustion Science, 10:1–57, 1984.

- [39] J. T. Jodkowski, M. T. Rayez, J. C. Rayez, T. Berces, and S. Dobe. Theoretical study of the kinetics of the hydrogen abstraction from methanol. 3. reaction of methanol with hydrogen atom, methyl, and hydroxyl radicals. *Journal of Physical Chemistry A*, 103:3750–3765, 1999.
- [40] T. Held and F. L. Dryer. A comprehensive mechanism for methanol oxidation. *International Journal of Chemical Kinetics*, 30:805–830, 1998.
- [41] S. G. Davis, C. K. Law, and H. Wang. Propene pyrolysis and oxidation kinetics in flow reactor and in laminar premixed flames. *Combustion and Flame*, 119:375–399, 1999.
- [42] H. Wang and M. Frenklach. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. *Combustion and Flame*, 110(1-2):173–221, 1997.
- [43] I. Slagle and D. Gutman. Kinetics of the reaction of c_3h_3 with molecular oxygen from 293-900 k. In Twenty-First Symposium (International) on Combustion, pages 875–883, Pittsburgh, Pennsylvania, 1986. The Combustion Institute.
- [44] W. Tsang. Journal of Physical and Chemical Reference Data, 20, 1991.
- [45] J. Bozelli and A. Dean. Hydrocarbon radical reactions with oxygen: Comparison of allyl, formyl, and vinyl to ethyl. *Journal of Physical Chemistry*, 97:4427–4441, 1993.
- [46] H. Wang. A new mechanism for initiation of free-radical chain reactions during high-temperature, homogeneous oxidation of unsaturated hydrocarbons: Ethylene, propyne and allene. *International Journal of Chemical Kinetics*, 33:698–706, 2001.
- [47] B. Varatharajan and F. A. Williams. Ignition times in the theory of branched-chain thermal explosions. *Combustion and Flame*, 121:551–554, 2000.
- [48] W. Tsang. Chemical kinetic data base for combustion chemistry. part 3. propane. Journal of Physical and Chemical Reference Data, 17(2):887–951, 1988.
- [49] N. M. Marinov, W. J. Pitz, C. K. Westbrook, M. J. Castald, and S. M. Senkan. Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames. *Combustion Science and Technology*, 116–117:211–287, 1996.
- [50] Z. W. Qin. Shock Tube Modeling Study of Propane Ignition. PhD thesis, University of Texas, 1998.
- [51] R. G. Gilbert, K. Luther, and J. Troe. Theory of thermal unimolecular reactions in the fall-off range. ii. weak collision rate constants. Ber. Bunsenges. Phys. Chem., 87:169– 177, 1983.