

SEABORK

HDSC Winter: Capstone Project

Using Diet Analysis to Predict and Prevent Child Malnutrition

Nafisa Opemi Query Analyst, Research Paper Lead

Zion Oluwasegun

Data Cleaning &

Processing

Fabritius Research Paper, Query Analyst III

Aleksander Busz

Rofiat Adetutu Research Paper, Query Analyst II

AGENDA

- Our Team
- Agenda
- Introduction
- Problem Statement
- Existing solution
- Our Approach
- Dataset Description
- Models
- Summary & Recommendation

UNDERSTANDING CHILD MALNUTRITION

Using Diet Analysis to Predict and Prevent Child malnutrition

Child Malnutrition

 Child malnutrition refers to a condition where a child's body does not get adequate nutrients required for growth and development

Types

- Undernutrition
- Micronutrient deficiencies
- Micronutrient deficiencies

PROBLEM STATEMENT

USING DIET ANALYSIS TO PREDICT AND PREVENT CHILD MALNUTRITION

Diet analysis can be a valuable tool in predicting and preventing child malnutrition.

PREDICT

Accessing dietary intake and Identifying nutritional gaps.

PREVENT

Discus solution to mitigate the problem using diet analysis.

EXISTING SOLUTION

MACHINE LEARNING MODEL

Existing products and solutions such

as:

- WFTP's NutriGIS
- NutriPhone

OUR APPROACH

Examining the data without any preconceptions or assumptions, allowing for unexpected patterns and insights to emerge.

Breaking down the analysis into smaller, more focused tasks that can be completed within a short period of time.

OUR APPROACH

DATASET DESCRIPTION

COUNTRY NUTRITION PROFILE

Contains datasets on:

- Information on adult
- Adolescent and child diet
- Burden of malnutrition
- Nutrition strategies and financing
- Social determinant of nutrition

UNDERSTANDING THE CONTEXT

KEY METRICS

Collection of data.

Preparation of dataset for the country_burden as X and Y feature.

Fill all null value with zeros(0).

KEY METRICS

Combine overweight, wasting column into a single column

Encode process & dataset splitting.

Obtain result for country with overweight columns.

Severe Overweight % around the world

Severe Wasting % around the world

Severe Stunting % around the world

DATASET TRAINING & MODELLING

KEY METRICS Spilt data into testing and training set.	MODEL RESULT		
	MODELS	R ² SCORE	MEAN SQUARE ERROR
Import and train the dataset, using Linear Regression, Decision Tree Regressor, Lasso, Ridge.	Linear Regression	0.005835207573170678	14.467726149476086
	Decision Tree Regressor	0.0025273591327529214	14.533422493511958
Make predictions on test data.	Lassos	0.00	14.47909136936741
	Ridge	0.01	14.46772604916935
	Polynomial features	- 1792690688056920916361216	2.853136802364168e+25

HDSC WINTER: CAPSTONE PROJECT

DATASET TRAINING & MODELLING

```
import tensorflow as tf
# Set random seed
tf.random.set seed(42)
# Add an extra layer and increase number of units
model 1 = tf.keras.Sequential([
  tf.keras.layers.Dense(100), # 100 units
  tf.keras.layers.Dense(10), # 10 units
  tf.keras.layers.Dense(1) # 1 unit (important for output layer)
1)
# Compile the model
model 1.compile(loss=tf.keras.losses.mae,
                          optimizer=tf.keras.optimizers.Adam(), # Adam works but SGD doesn't
                          metrics=['mae'])
# Fit the model and save the history (we can plot this)
history 1= model 1.fit(X train, y train, epochs=100, verbose=0)
```

HYPER TUNING & EVALUATION

KEY METRICS

DATASET TRAINING & MODELLING

```
import tensorflow as tf
# Assume X train padded has a shape of (num samples, max length)
# and y train has a shape of (num samples,)
# Reshape X train padded to add a third dimension
max length = 100
# Define your model as usual
model = tf.keras.Sequential([
    tf.keras.layers.Conv1D(32, 5, activation='relu', input shape=(124, 1)),
    tf.keras.layers.MaxPooling1D(3),
    tf.keras.layers.Conv1D(32, 5, activation='relu'),
    tf.keras.layers.MaxPooling1D(3),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(1, activation='sigmoid')
1)
# Compile the model as usual
model.compile(optimizer='adam', loss='mean absolute error', metrics=['mae'])
# Fit the model with the reshaped input data
model.fit(X train, y train, epochs=100)
```

```
[ ] model.summary()
   Model: "sequential 5"
   Layer (type)
                      Output Shape
                                       Param #
   conv1d (Conv1D)
                      (None, 120, 32)
                                       192
   max pooling1d (MaxPooling1D (None, 40, 32)
                                       0
   conv1d 1 (Conv1D)
                      (None, 36, 32)
                                       5152
   max pooling1d 1 (MaxPooling (None, 12, 32)
   flatten (Flatten)
                      (None, 384)
   dense 15 (Dense)
                      (None, 1)
                                       385
   Total params: 5,729
   Trainable params: 5,729
   Non-trainable params: 0
Epoch 93/100
Epoch 94/100
148/148 [============== ] - 2s 13ms/step - loss: 8.3533 - mae: 8.3533
Epoch 96/100
Epoch 97/100
Epoch 98/100
```

Epoch 99/100

<keras.callbacks.History at 0x7f4e78355e10>

DATASET TRAINING & MODELLING

SUMMARY

Child malnutrition is a serious global health issue that requires innovative solutions. The results of this study demonstrate the potential of AI in analyzing dietary patterns to predict and prevent child malnutrition.

RECOMMENDATION

- Intervention to support exculsive breast feeding for atleast the first five months.
- Increased efforts be made to improve the dietary diversity in regions with lower percentages of children receiving food from multiple groups, particularly in younger age groups

