OpenTSN3.0 网卡实现方案 (版本 1.0)

OpenTSN 开源项目组 2021 年 6 月

版本历史

版本	修订时间	修订内容	修订人	文件标识
1.0	2021.6	初版编制		
				OpenTSN3.0
				Open15N3.0
				▼

目录

1、	概述	4
2,	总体方案	4
3、	TSE 模块详细设计	6
4、	HCP 模块详细设计	6
	录 A. command/command ook 会会校子	

1、概述

OpenTSN2.0 开源硬件逻辑既可作为 TSN 网卡又可作为 TSN 交换机使用,为了简化其作为 TSN 交换机使用时的逻辑复杂度以及增强其作为 TSN 网卡使用时的功能可扩展性,并且考虑到逻辑模块的复用,现将 OpenTSN2.0 开源硬件逻辑拆分为 TSN 交换机和 TSN 网卡。本文详细介绍 TSN 网卡的总体设计。

2、总体方案

TSN 网卡的总体实现架构框图如图 2-1。TSN 网卡是由时间敏感 网络端处理逻辑 TSE 以及时间敏感网络硬件控制逻辑 HCP 组成。

图 2-1 总体架构框图

网卡的总体实现架构框图中的信号含义如下表 2-1。

信号	位宽	含义
i_clk	1	时钟信号,时钟频率为125MHz
i_rst_n	1	复位信号, 低有效
o_init_led	1	初始化信号

表 2-1 TSE 总体架构框图中信号含义

信号	位宽	含义
GMII_HOST		GMII 主机接口
GMII_NETWORK		GMII 网络接口
o_s_pulse		秒脉冲或毫秒脉冲(可配置)
wv_wr_command[203:0]		写命令
w_wr_command_wr		写命令使能信号
wv_rd_command[203:0]		读命令
w_rd_command_wr		读命令使能信号
wv_rd_command_ack[203:0]	204	读命令响应信号
w_gmii_data_clk_tse2hcp	1	GMII 时钟信号
w_gmii_data_en_tse2hcp	1	GMII 数据有效信号
w_gmii_data_tse2hcp[7:0]	8	GMII 数据
w_gmii_data_er_tse2hcp	1	GMII 数据错误信号
w_gmii_data_hcp2tse[7:0]	8	GMII 数据
w_gmii_data_en_hcp2tse	1	GMII 数据有效信号
w_gmii_data_er_hcp2tse	1	GMII 数据错误信号
w_gmii_data_clk_hcp2tse	1	GMII 时钟信号
w_timer_rst_gts2others	1	19bit 时钟复位信号

TSE(Timing Sensitive End,时间敏感端)模块:主要功能是将标准以太网报文映射为 TSN 报文,将 TSN 报文逆映射为标准以太网报文;以及计算 PTP 报文在 TSE 中传输的时间,即透明时钟,并将透明时钟累加到 PTP 报文透明时钟域中。

HCP(Hardware Control Point,硬件控制点)模块:主要功能是对 PTP 报文/状态报文/标准以太网非 IP 报文进行封装、对 ARP 封装报文/配置封装报文/PTP 封装报文进行解封装;对配置报文进行解析,并生成写命令,收集 TSN 交换机状态并周期性进行上报;以及在 PTP 报文中记录时间戳,计算 PTP 报文在 HCP 中传输的时间,即透明时钟,并将透明时钟累加到 PTP 报文透明时钟域中。

3、TSE 模块详细设计

TSE 模块详细设计见《时间敏感网络端处理逻辑 TSE 设计文案》。

4、HCP 模块详细设计

HCP 模块详细设计见《时间敏感网络硬件控制逻辑 HCP 设计方案》。

附录 A: command/command_ack 命令格式

表 A-1 command_ack 命令格式

位置	位宽	名称	说明
[203:180]	8	node_id	该字段用来标识对哪个节点进行读写。每个 TSE 或 TSS 都有一个唯一的节点 ID。该字段在 TSN 网卡+TSN 交换机模式下使用到。
[179:172]	8	dest_module_id	该字段用来标识对一个节点内的哪个模块进行控制。TSE或TSS内部每个子模块都有一个唯一的模块ID
[171:168]	4	type	4'b0001:寄存器或表项的写命令; 4'b0010:寄存器或表项的读命令; 4'b0110:寄存器或表项的读响应。
[167:152]	16	addr	寄存器或表项的读/写地址
[151:0]	152	data	寄存器或表项的读/写数据; 其中五元 组映射表的表项位宽最大, 为 152bit