Конечные автоматы, регулярные выражения, нерегулярные языки

14 января 2014 г.

1 Конечные автоматы и регулярные языки

Языком будем называть множество строк над некоторым алфавитом.

Определение 1. Конечный автомат — это пятерка $(Q, \Sigma, \delta, q_0, F)$, где

Q — конечное множество $cocmoshu\check{u}$,

 Σ — конечное множество, называемое алфавитом,

 $\delta: Q \times \Sigma \to Q$ — функция переходов,

 $q_0 \in Q$ — начальное состояние,

 $F \subseteq Q$ — множество заключительных состояний.

Автомат $M=(Q,\Sigma,\delta,q_0,F)$ допускает строку $w=w_1w_2\dots w_n$, где $w_i\in\Sigma$, если существует последовательность состояний r_0,r_1,\dots,r_n , такая что

- 1. $r_0 = q_0$
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$ для $i = 0, \ldots, n-1$,
- 3. $r_n \in F$.

Автомат M распознает язык $A = \{w \mid M$ допускает $w\}$.

Определение 2. Язык называется *регулярным*, если его распознает некоторый конечный автомат.

Недетерминированный конечный автомат отличается от детерминированного функцией переходов, которая имеет следующий вид:

$$\delta: Q \times (\Sigma \cup {\epsilon}) \to \mathfrak{P}(Q),$$

где $\mathfrak{P}(Q)$ — множество всех подмножеств Q, а ϵ — пустая строка. Переход по $y \in \Sigma \cup \{\epsilon\}$ из состояния r_i в состояние r_j разрешен, если $r_j \in \delta(r_i, y)$.

Для любого недетерминированного автомата можно построить детерминированный автомат, распознающий тот же язык.

Регулярные языки замкнуты относительно следующих операций:

Объединение: $A \cup B = \{ w \mid w \in A \text{ или } w \in B \}$

Пересечение: $A \cap B = \{w \mid w \in A \text{ и } w \in B\}$

Дополнение: $\overline{A} = \{ w \in \Sigma^* \mid w \notin A \}$

Обращение: $A^R = \{a_1 \dots a_k \mid a_k \dots a_1 \in A\}$

Конкатенация: $A \circ B = \{vw \mid v \in A \text{ и } w \in B\}$

Замыкание Клини: $A^* = \{w_1 \dots w_k \mid k \ge 0 \text{ и } w_i \in A \text{ для всех } i\}$

2 Регулярные выражения

Определение 3. R называется *регулярным выражением* над алфавитом Σ , если R — это

- 1. a, где $a \in \Sigma$, или
- 2. ϵ , где ϵ пустая строка, или
- $3. \varnothing$, или
- 4. $(R_1 \cup R_2)$, где R_1 и R_2 регулярные выражения, или
- 5. (R_1R_2) , где R_1 и R_2 регулярные выражения, или
- 6. (R_1^*) , где R_1 регулярное выражение.
- $a \in \Sigma$ соответствует языку $\{a\}$;

 ϵ соответствует языку $\{\epsilon\}$;

 \emptyset соответствует языку \emptyset .

Если R_1 и R_2 — регулярные выражения, соответствующие языкам L_1 и L_2 , то

 $(R_1 \cup R_2)$ соответствует языку $L_1 \cup L_2$;

 (R_1R_2) соответствует языку $L_1 \circ L_2$;

 (R_1^*) соответствует языку L_1^* .

L(R) — язык, которому соответствует регулярное выражение R. Регулярное выражение R допускает строку w (w coomsemcmeyem R), если $w \in L(R)$.

Пример 1. Строка 01010 соответствует выражению (01)*0.

Если, как в предыдущем примере, скобки опускают, то подразумевается следующий приоритет операций: R^{\star} , R_1R_2 , $R_1\cup R_2$.

Пример 2.

$$R_1^*R_2 \cup R_3 = ((R_1^*)R_2) \cup R_3$$

Пример 3. Пусть $\Sigma = \{0,1\}$. Язык

 $\{w \mid w \ coдержит \ poвно \ oдно \ вхождение \ 1\}$

соответствует выражению

$$0*10*$$
.

Выражение \varnothing^* описывает язык $\{\epsilon\}$. Язык

 $\{w \mid w \ codeржит\ не\ менее\ mpex\ символов,\ причем\ mpemuŭ\ символ\ -0\}$ соответствует выражению

$$(0 \cup 1)(0 \cup 1)0(0 \cup 1)^*$$
.

Язык

 $\{w \mid$ на нечетных позициях в w находится $1\}$

соответствует выражению

$$(1(0 \cup 1))^*(1 \cup \epsilon).$$

Теорема 1. По регулярному выражению R можно построить недетерминированный конечный автомат N, распознающий язык L(R).

Доказательство. Докажем по индукции. Базис: R содержит один символ. В этом случае R имеет вид: ϵ , или \varnothing , или a, где $a \in \Sigma$. Несложно построить автомат, распознающий L(R).

Шаг индукции: допустим, что каждое регулярное выражение длины меньше k>1 соответствует некоторому регулярному языку и рассмотрим выражение R длины k. Три варианта:

- $R = R_1 \cup R_2$: По предположению индукции $L_1 = L(R_1)$ и $L_2 = L(R_2)$ регулярные языки. Тогда $L(R) = L(R_1 \cup R_2) = L_1 \cup L_2$ является регулярным языком, так как множество регулярных языков замкнуто относительно объединения.
- $R = R_1 R_2$: По предположению индукции $L_1 = L(R_1)$ и $L_2 = L(R_2)$ регулярные языки. Тогда $L(R) = L(R_1 R_2) = L_1 \circ L_2$ является регулярным языком, так как множество регулярных языков замкнуто относительно конкатенации.
- $R = (R_1)^*$: Аналогично.

Теорема 2. Любому регулярному языку соответствует некоторое регулярное выражение.

Доказательство. Доказательство состоит в преобразовании детерминированного автомата, распознающего язык L: будем постепенно удалять состояния и заменять метки на дугах регулярными выражениями. То, что получается в результате таких преобразований, называют обобщенным недетерминированным автоматом.

Добавим к конечному автомату уникальные и не совпадающие начальное и заключительное состояния. Свяжем новое начальное состояние с начальным состоянием исходного автомата и все заключительные состояния исходного автомата — с новым заключительным состоянием, пометив соответствующие дуги регулярным выражением ϵ . Каждую дугу исходного автомата, помеченную символами c_1, \ldots, c_k пометим регулярным выражением $(c_1 \cup \cdots \cup c_k)$. Если между двумя состояниями исходного автомата отсутствует дуга, соединим их в новом автомате дугой, помеченной регулярным выражением \varnothing .

Пока у автомата более двух состояний, выбираем какое-либо внутреннее состояние, удаляем его и помечаем дуги регулярными выражениями, соответствующими путям, проходившим через удаленное состояние. Обозначим за R(s,t) регулярное выражение на дуге из s в t. При удалении состояния q дуга из состояния i в состояние j помечается следующим регулярным выражением:

$$(R(i,q)R(q,q)^*R(q,j) \cup R(i,j)).$$

Таким образом, регулярные языки \Leftarrow по определению \Rightarrow детерминированные конечные автоматы \iff регулярные выражения.

3 Нерегулярные языки

Язык

 $\{w \mid w \text{ содержит одинаковое количество 1 и 0}\}$

не является регулярным, но язык

 $\{w \mid w \text{ содержит одинаковое число вхождений 01 и 10}\}$

является регулярным.

Лемма 1 (о разрастании). Если язык A является регулярным, то для некоторого числа p верно, что любая строка $s \in A$, содержащая не менее p символов, может быть разделена на три части: s = xyz таким образом, что

- 1. $xy^iz \in A$ для всех i > 0;
- 2. |y| > 0;
- $3. |xy| \leq p.$

Воспользуемся леммой о разрастании для доказательства нерегулярности языка $B = \{0^n1^n \mid n \geq 0\}$. Допустим, что B — регулярный язык. Пусть $w = 0^p1^p$. Так как B — регулярный язык, w можно представить в виде w = xyz, где |y| > 0 и $xy^iz \in B$ для любого $i \geq 0$. Если y целиком

состоит из нулей, то xyyz содержит больше нулей, чем единиц. Если y целиком состоит из единиц, то xyyz содержит больше единиц, чем нулей. Если y содержит как единицы так и нули, то xyyz не соответствует 0^*1^* и, следовательно, не соответствует 0^n1^n . Получили противоречие.

Докажем, что язык $B=\{1^{n^2}\mid n\geq 0\}$ не является регулярным. Допустим, что B — регулярный язык. Пусть $w=1^{p^2}$. Так как B — регулярный язык, w можно представить в виде w=xyz, где $|y|>0, |xy|\leq p$ и $xy^iz\in B$ для любого $i\geq 0$. Тогда $xyyz=1^{p^2+|y|}\in B$. Поскольку $0<|y|\leq p$, получаем

$$p^2 + |y| \le p^2 + p < p^2 + 2p + 1 = (p+1)^2$$

И

$$p^2 < p^2 + |y| < (p+1)^2$$
.

Следовательно, $p^2 + y$ не является квадратом никакого числа и $xyyz = 1^{p^2 + |y|} \notin B$. Значит, вопреки нашему предположению, B не является регулярным.