Университет ИТМО

Факультет программной инженерии и компьютерной техники
Направление подготовки 09.03.04 Программная инженерия
Дисциплина «Вычислительная математика»

Отчёт

Лабораторная работа №5 Вариант 8

Выполнил:

Попов Дмитрий Юрьевич

P3213

Преподаватель:

Машина Екатерина Алексеевна

Цель работы

Решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

Вычислительная реализация задачи

Интерполяция заданной функции

х	у
2,10	3,7587
2,15	4,1861
2,20	4,9218
2,25	5,3487
2,30	5,9275
2,35	6,4193
2,40	7,0839

Таблица конечных разностей

X _i	y _i	$\Delta y_{\rm i}$	$\Delta^2 \mathbf{y}_i$	$\Delta^3 \mathbf{y}_i$	$\Delta^4 y_i$	$\Delta^5 y_i$	$\Delta^6 \mathbf{y}_{\mathrm{i}}$
2.1	3.7587	0.4274	0.3083	-0.6171	1.0778	-1.7774	2.9757
2.15	4.1861	0.7357	-0.3088	0.4607	-0.6996	1.1983	
2.2	4.9218	0.4269	0.1519	-0.2389	0.4987		
2.25	5.3487	0.5788	-0.087	0.2598			
2.3	5.9275	0.4918	0.1728				
2.35	6.4193	0.6646					
2.4	7.0839						

Вычисление для х1

X1 = 2.355

Так как точка в правой половине отрезка интерполирования, то применим вторую интерполяционную формулу Ньютона.

$$\begin{split} t &= \frac{x - x_n}{h} = \frac{2.355 - 2.4}{0.05} = -0.9 \\ y(X_1) &= N_7(t) = ys[6] + t*dys[5] + ((t*(t+1))/fct(2))*d2ys[4] + ((t*(t+1)*(t+2))/fct(3))*d3ys[3] + ((t*(t+1)*(t+2)*(t+3))/fct(4))*d4ys[2] + ((t*(t+1)*(t+2)*(t+3)*(t+4))/fct(5))*d5ys[1] + ((t*(t+1)*(t+2)*(t+3)*(t+4)*(t+5))/fct(6))*d6ys[0] = 6.452 \end{split}$$

Вычисления для х2

X2 = 2.254

Так как (а) меньше, используем первую интерполяционную форму Гаусса

$$t = \frac{x-a}{h} = \frac{2.254 - 2.25}{0.05} = 0.08$$

 $y(X_2) = P_7(t) = ys[3] + t*dys[3] + ((t*(t-1))/fct(2))*d2ys[2] + ((t*(t+1)*(t-1))/fct(3))*d3ys[2] + ((t*(t+1)*(t-1))*(t-2))/fct(4))*d4ys[1] + ((t*(t+1)*(t-1)*(t-2))/fct(5))*d5ys[1] + ((t*(t+1)*(t-1)*(t-2)*(t+2))/fct(6))*d6ys[0] = 5.3875$

Код программы

https://github.com/llunistsil/Computational-Math-2024/tree/main/P3213/Popov_368679/lab5

Вывод

В результате выполнения данной лабораторной работы были изучены методы для решения нелинейных уравнений и систем их них.

Для решения уравнений были использованы метод Ньютона, половинного деления и простых итераций. Для решения систем нелинейных уравнений был использован метод простых итераций.

Также была написана программа, реализующая все методы решений.