Investigate a Dataset

Udacity Data Analyst Nanodegree - Project 2

Introduction

This notebook investigates the <u>Titanic (https://www.kaggle.com/c/titanic/data)</u> dataset containing demographics and passenger information from 891 of the 2224 passengers and crew on board the Titanic.

Questions

The analysis of the Titanic dataset deals mainly with the relationship between survival of an individual and variables such as his:

- sex
- age
- · passenger class
- · ticket (fare) price
- · number of siblings/spouses on board
- · number of parents/children on board

Therefore we are investigating the following main question: Which factors made survival of an individual more likely?

During the course of analysis we are also looking at the following specific questions:

- 1. How did sex, age and socio-economic (passenger class / ticket price) status influence survival?
- 2. How did relationships on board (number of siblings/spouses/parents/children) influence survival?

Resources

- Udacity "Intro to data analysis" material
- Python 3 documentation (https://docs.python.org/3/)
- Pandas documentation (http://pandas.pydata.org/pandas-docs/stable/)
- NumPy documentation (http://docs.scipy.org/doc/)
- Matplotlib documentation (http://matplotlib.org/contents.html#)
- Seaborn documentation (https://stanford.edu/~mwaskom/software/seaborn/)
- Markdown documentation (https://daringfireball.net/projects/markdown/syntax)
- 20 Python libraries you aren't using (but should) (https://www.oreilly.com/learning/20-python-librariesyou-arent-using-but-should)

Environment setup

```
In [1]: # load required modules
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns

# display plots inside the notebook
%matplotlib inline

# ensure compatibility with Python 2.x
# from __future__ import print_function
```

Data ingestion

```
In [2]: # load dataset from local file system
titanic = pd.read_csv("titanic_data.csv")
```

Data exploration

Let's explore the dataset by printing its shape, the first and last 5 rows of data, and calculating some summary statistics

```
In [3]: # print shape rows, columns) of data set
titanic.shape
Out[3]: (891, 12)
```

In [4]: # show first 5 rows of dataset
 titanic.head()

Out[4]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.25
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38	1	0	PC 17599	71.2
2	3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/O2. 3101282	7.92
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803	53.10
4	5	0	3	Allen, Mr. William Henry	male	35	0	0	373450	8.05(

In [5]: # show Last 5 rows of dataset
 titanic.tail()

Out[5]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
886	887	0	2	Montvila, Rev. Juozas	male	27	0	0	211536	13.00
887	888	1	1	Graham, Miss. Margaret Edith	female	19	0	0	112053	30.00
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.45
889	890	1	1	Behr, Mr. Karl Howell	male	26	0	0	111369	30.00
890	891	0	3	Dooley, Mr. Patrick	male	32	0	0	370376	7.75

Summary statistics

Looking at each variable indepdently the summary statistics tell us that:

- PassengerId: There were 891 passengers on board
- Survived: Only 38% of these passengers survived.
- PClass: Only few passengers could afford first class, most, about 50%, spent their time on board in third class
- Age: Only 714 observations contain information for age, could this variable be a potential candidate
 for a data cleaning exercise? Mean age 30 with high standard deviation, youngest passenger still a
 baby, oldest passenger an old person at age 80. He or she seems to be an extreme outlier, since the
 average age in the third percentile is 38.
- SibSp: Mean value of 0.52 is somewhat misleading, since one can't have half a sibling or family member on board. Interestingly the standard deviation is quite high. Looking at the max value, there seems to be either a large family on board or someone married to many wifes (max = 8)
- Parch: There seems to be a large family onboard (max = 6)
- Fare: Mean price for a titanic ticket was 32 USD, although the standard deviationn is quite high (USD 50). Apparently some passengers did not pay anything for their ticket (min = 0), while some potentially wealthy passengers paid up to 512 USD (max = 512).

Given the summary statistics we might investigate the following questions:

- What does high standard deviation of Survied mean? Are their differences between gender, age, socio-economic status, etc.?
- Who were the youngest and oldest passenger on board (Age = 0.42/80)
- Who belonged to the large family?
- Who paid nothing at all and the maxium price?

In [6]: # calculate summary statistics
 titanic.describe()

Out[6]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.(
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.20
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.69
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.4
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.00
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.

Helper functions

```
In [7]: # helper functions to print rows containing the min/max value of a variable
    def titanic_min(variable):
        """
        Given a variable present in the titanic data set, the function prints the
        rows containing the min value
        """
        print("Information for min values of %s:" % variable)
        print(titanic.ix[titanic[variable] == min(titanic[variable])])

def titanic_max(variable):
        """
        Given a variable present in the titanic data set, the function prints the
        row containing the max value
        """
        print("Information for max values of %s:" % variable)
        print(titanic.ix[titanic[variable] == max(titanic[variable])])
```

Visualization

Besides looking at plain figures, we also like to investigate our data visually.

Let's look at **surivial** first. From the bar chart below we can see that only about 350 of 891 passengers survived their trip.

```
In [8]: # plot survival data
titanic["Survived"].plot(kind="hist", title="Distribution of (non)-survivors",
bins=2, xticks=(0,1))
```


What about **passenger class**? Apparently half of passengers were traveling in third class. The other half almost equally split into second and first class.

```
In [9]: # plot passenger class data
    titanic["Pclass"].plot(kind="hist", title="Distribution of passenger class", b
    ins=3, xticks=(1,2,3))
```

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0xb0c0dd8>

Next, let's investigate the **age** distribution of Titanic passengers. Apparently most of the passengers were between 20 and 30 years old. From the histogram it is evident that there were some very old passengers, too.

```
In [10]: # plot age data
    titanic["Age"].plot(kind="hist", title="Distribution of age")
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0xb594550>

Now let's have a look at extreme ages. How old were the youngest/oldest passengers? As can be seen from the output below, the youngest passenger was **not even 1 year old**, while the oldest passenger was **already 80**. Interestingly both survived, despite travelling in different passenger classes.

```
In [11]:
         # print information about youngest passenger
         titanic_min("Age")
         Information for min values of Age:
               PassengerId
                            Survived Pclass
                                                                          Name
                                                                                  Sex
         803
                       804
                                   1
                                              Thomas, Master. Assad Alexander
                                                                                male
                    SibSp
                            Parch Ticket
                                            Fare Cabin Embarked
         803
              0.42
                                          8.5167
                                    2625
                                                    NaN
         # print information about oldest passenger
In [12]:
         titanic max("Age")
         Information for max values of Age:
               PassengerId Survived Pclass
                                                                                Name
         630
                       631
                                   1
                                              Barkworth, Mr. Algernon Henry Wilson
                                 Parch Ticket
                                               Fare Cabin Embarked
                    Age
                         SibSp
         630
              male
                      80
                              0
                                        27042
                                                  30
                                                       A23
                                                                  S
```

Let's look at distribution of siblings/spouses of Titanic passengers. Interestingly, most passengers either did not have any or just one siblings/spouses on board, while there was one family (or someone with a lot of spouses) with 8 relatives on board.

```
In [13]: # plot sibling/spouse data
    titanic["SibSp"].plot(kind="hist", title="Distribution of siblings/spouses on
    board")
```

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0xb5edef0>

Now who was the family with maxium number of relatives?. As can be seen from the table below, it was the **Sage** family, which unfortunately did not survive their journey.

In [14]:			nformat ax("Sib		ut m	ax/miı	n value.	S			
	Info \		on for mengerId				•			Name	Sex
	159		160		0		3	Sage	e, Master. Thomas	Henry	male
	180		181		0		3	Sage,	Miss. Constance G	Gladys	female
	201		202		0		3		Sage, Mr. Fred	derick	male
	324		325		0		3	Sa	age, Mr. George Jo	ohn Jr	male
	792		793		0		3	9	Sage, Miss. Stella	Anna	female
	846		847		0		3	Sa	age, Mr. Douglas B	Bullen	male
	863		864		0		3 Sago	e, Miss	. Dorothy Edith "D	olly"	female
		۸۵۵	CibCn	Danch	т	icket	Fano	Cabin	Embarked		
	159	Age NaN	SibSp	2		2343					
	180	NaN	8 8	2		2343	69.55 69.55		S S		
	201	NaN	8	2		2343	69.55		S S		
	324	NaN	8	2		2343			S		
	792	NaN	8	2		2343		NaN			
	846	NaN	8	2		2343	69.55	NaN	S S		

What about the distribution of parents/childeren onboard of Titanic? The figure below shows that the majority of passengers did not have any children on board. As seen within the siblings/spouses data, there is one extreme case which we investigate below.

2 CA. 2343 69.55

S

NaN

863 NaN

8

In [15]: # plot parent/child data
 titanic["Parch"].plot(kind="hist", title="Distribution of parents/children on
 board")

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0xb68f978>

Apparently, Mrs. Goodwin was accompanied by **6 children** and unfortunately did not survive her trip.

Finally, let's dig into the distribution of fare prices. Obviously most passengers paid well below USD 100 for their ticket. There are a some passengers who paid more, e.g. between USD 100 and USD 300 while a few payed as much as USD 500.

```
In [17]: # plot fare data
    titanic["Fare"].plot(kind="hist", title="Distribution of fare prices")
```

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0xb719e80>

From the boxplot below we can see that the median fare price was well below USD 100 (from cell 5 we actually know that the average is USD 32 with standard deviation of approximately USD 50. Furthermore the fare price of roughly USD 500 seems to be an outlier.

```
In [18]: # plot fare data as box plot
ax = sns.boxplot(titanic["Fare"], orient="h")
ax.set_title("Fare prices")
```

Out[18]: <matplotlib.text.Text at 0xb83f320>

Now let's check the minium fare price. Intergestingly the minimum price is USD 0, meaning that 15 passengers did not pay for their ticket at all.

In [19]: # print passengers who paid the minimum fare price
 titanic_min("Fare")

Info	rmati	on for r	min val	ues of	Fare:			
	Pass	engerId	Survi	ved P	class		Name Sex	\
179		180		0	3		Leonard, Mr. Lionel male	
263		264		0	1		Harrison, Mr. William male	
271		272		1	3	To	rnquist, Mr. William Henry male	
277		278		0	2	Pa	arkes, Mr. Francis "Frank" male	
302		303		0	3	Johns	on, Mr. William Cahoone Jr male	
413		414		0	2	Cunn:	ingham, Mr. Alfred Fleming male	
466		467		0	2		Campbell, Mr. William male	
481		482		0	2	Frost,	Mr. Anthony Wood "Archie" male	
597		598		0	3		Johnson, Mr. Alfred male	
633		634		0	1	Pari	r, Mr. William Henry Marsh male	
674		675		0	2	I	Watson, Mr. Ennis Hastings male	
732		733		0	2		Knight, Mr. Robert J male	
806		807		0	1		Andrews, Mr. Thomas Jr male	
815		816		0	1		Fry, Mr. Richard male	
822		823		0	1	Reuch:	lin, Jonkheer. John George male	
	Age	SibSp	Parch	Ticke	t Fare	e Cabin	Embarked	
179	36	0	0	LIN	IE 6) NaN	S	
263	40	0	0	11205	9 6	B94	S	
271	25	0	0	LIN	IE 6) NaN	S	
277	NaN	0	0	23985	3 6) NaN	S	
302	19	0	0	LIN	IE 6) NaN	S	
413	NaN	0	0	23985	3 6) NaN	S	
466	NaN	0	0	23985	3 6) NaN	S	
481	NaN	0	0	23985	4 6) NaN	S	
597	49	0	0	LIN	IE 6) NaN	S	
633	NaN	0	0	11205	2 6) NaN	S	
674	NaN	0	0	23985	6 6) NaN	S	
732	NaN	0	0	23985	5 6) NaN	S	
806	39	0	0	11205	0 6	A36	S	
815	NaN	0	0	11205	8 6	B102	S	
822	38	0	0	1997	2 6) NaN	S	

```
In [20]: # print number of passengers with minimum ticket price
len(titanic["Fare"] == 0])
```

Out[20]: 15

What about the maxium fare price? Obviously three passengers were willing to pay the maxium price of **USD 512**, which is 16 times higher than the average price USD 32. At least all three got a ticket for the first passenger class!

```
In [21]: # print passengers who paid the maximum fare price
    titanic_max("Fare")
```

Info	rmation	for m	ax valu	es of F	are:				
	Passeng	erId	Surviv	ed Pcl	ass			Name \	
258		259		1	1		Ward, Miss	s. Anna	
679		680		1	1 Carde	eza, Mr. Th	omas Drake Ma	artinez	
737		738		1	1	Les	urer, Mr. Gus	stave J	
	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
258	female	35	0	0	PC 17755	512.3292	NaN	C	
679	male	36	0	1	PC 17755	512.3292	B51 B53 B55	C	
737	male	35	0	0	PC 17755	512.3292	B101	С	

Data cleaning

Before moving on to actual analysis the data needs to be cleaned. During the exploration phase we discovered missing values for **Age** and **Cabin**. Furthermore some passengers were not assigned a proper ticket ID, but the value "Line". Another candidate for cleaning could be various extreme values in fare price, siblings/spouses or parents/children. How do we decide which values to keep and which to clean? One approach would be to go back to our initial question and check whether missing values in particular columns could impede analysis. As we are primary interested in factors influencing **survival**, e.g. sex, age, passenger class and other socio-economic variables, we should focus on these during data cleaning

Let's start with investigating real missing values: Age information is missing for 20% of all passengers, while cabin information is missing for **77**% of all passengers. Why do we have so little information on cabins?

```
# for each column print number of records where information is missing
In [22]:
          titanic.isnull().sum()
Out[22]: PassengerId
                           0
          Survived
                           0
          Pclass
                           0
          Name
                           0
          Sex
          Age
                         177
          SibSp
                           a
         Parch
                           0
         Ticket
                           0
          Fare
                           0
          Cabin
                         687
          Embarked
```

dtype: int64

In [23]: # for reach column print missing values as percentage of total values
 titanic.isnull().sum() / titanic.shape[0]

Out[23]: PassengerId 0.000000 Survived 0.000000 Pclass 0.000000 Name 0.000000 Sex 0.000000 Age 0.198653 SibSp 0.000000 Parch 0.000000 Ticket 0.000000 Fare 0.000000 Cabin 0.771044 Embarked 0.002245

dtype: float64

Let's dig deeper into missing age and cabin data. Checking passengers travelling in third class for missing data reveals that most of our issues can be found there. **77**% of missing age and **70**% of missing cabin values are attached to passengers in the third class.

In [24]: # print a subset of records with missing age information
 titanic.ix[titanic["Age"].isnull()].head()

Out[24]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.45
17	18	1	2	Williams, Mr. Charles Eugene	male	NaN	0	0	244373	13.0
19	20	1	3	Masselmani, Mrs. Fatima	female	NaN	0	0	2649	7.22
26	27	0	3	Emir, Mr. Farred Chehab	male	NaN	0	0	2631	7.22
28	29	1	3	O'Dwyer, Miss. Ellen "Nellie"	female	NaN	0	0	330959	7.87

Out[25]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.25
2	3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/O2. 3101282	7.92
4	5	0	3	Allen, Mr. William Henry	male	35	0	0	373450	8.05
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.45
7	8	0	3	Palsson, Master. Gosta Leonard	male	2	3	1	349909	21.0

Out[26]: PassengerId 0 Survived 0 Pclass 0 Name 0 Sex 0 136 Age SibSp 0 Parch 0 0 Ticket Fare 0 Cabin 479 Embarked 0

dtype: int64

```
Out[27]: PassengerId
                               NaN
          Survived
                               NaN
          Pclass
                               NaN
          Name
                               NaN
          Sex
                               NaN
                         0.768362
          Age
          SibSp
                               NaN
          Parch
                               NaN
          Ticket
                               NaN
          Fare
                               NaN
          Cabin
                         0.697234
          Embarked
                          0.000000
          dtype: float64
```

What could be a possible explanation for that? Apparently third class had bunk beds for 4-6 people. Maybe data was not rigorously recorded for this class, see: https://nmni.com/titanic/On-Board/Sleeping.aspx)

(https://nmni.com/titanic/On-Board/Sleeping.aspx)

Although there does not seem to be a substantial problem with Embarked and Ticket information, let's have a brief look at the missing values:

In [28]: # print records with missing embarked information
 titanic.ix[titanic["Embarked"].isnull()]

Out[28]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	С
61	62	1	1	Icard, Miss. Amelie	female	38	0	0	113572	80	В
829	830	1	1	Stone, Mrs. George Nelson (Martha Evelyn)	female	62	0	0	113572	80	В

In [29]: # print records where the value for ticket is "line"
titanic.ix[titanic["Ticket"] == "LINE"]

Out[29]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cŧ
179	180	0	3	Leonard, Mr. Lionel	male	36	0	0	LINE	0	Nε
271	272	1	3	Tornquist, Mr. William Henry	male	25	0	0	LINE	0	Νε
302	303	0	3	Johnson, Mr. William Cahoone Jr	male	19	0	0	LINE	0	Νε
597	598	0	3	Johnson, Mr. Alfred	male	49	0	0	LINE	0	Nŧ

Now, which data we want to omit for the analysis? Since our analysis mainly focuses on personal data like age, and socio-economic information, we first **remove all columns containing data which does not help to investigate these variables**, such as:

- Passengerld
- Name
- Ticket
- Cabin
- Embarked

```
In [30]: # remove PassengerId, Name, Ticket, Cabin and Embarked column
    titanic_cleaned = titanic.drop(labels=["PassengerId", "Name", "Ticket", "Cabi
    n", "Embarked"], axis=1, inplace=False)
```

Further we remove the outlier values (max values) for fare prices:

```
In [31]: # remove fare price outliers
    titanic_cleaned.drop(titanic_cleaned.index[[258, 679, 737]], inplace=True)
    # verify that used-to-be max values for Fare have been removed
    titanic_cleaned["Fare"].max()
Out[31]: 263.0
```

We do also drop all rows not containing age information:

```
In [32]: # Sunvived Press Sexith Age Sib Spg Parris Fare on titanic_cleaned.dropna(subset=["Age"], inplace=True)
```

Finally we check if any missing values and remain, which is not the case. We are left with **711 rows** of cleaned data:

```
In [33]: # check whether rows with missing age information were succesfully removed
         titanic_cleaned.isnull().sum()
Out[33]: Survived
                     0
         Pclass
                     0
         Sex
                     0
         Age
                     0
         SibSp
         Parch
         Fare
         dtype: int64
In [34]: # print number of rows remaining after cleaning
         titanic_cleaned.shape[0]
Out[34]: 711
```

Analysis

After exploring and cleaning the data, we are finally able to analyze our main question: Which factors made survival of an individual more likely? In order to start investigating this question, we would like to know how survival is correlated with other variables in the dataset. Although this does not imply causation, i.e. a strong positive correlation between surival and travelling in the first passenger class does not proof, that passengers surived because they travelled in first class. Maybe first class passengers where particulary wealthy and could afford personal that saved them in case of emergency. Taking this into account, using correlation between variables is still a good start for deeper analysis.

```
In [234]: titanic_cleaned.head()

Out[234]: Survived Pclass Sex Age SibSp Parch Fare
```

		Survived	Pclass	Sex	Age	SibSp	Parch	Fare
()	0	3	male	22.0	1	0	7.2500
1	1	1	1	female	38.0	1	0	71.2833
2	2	1	3	female	26.0	0	0	7.9250
(7)	3	1	1	female	35.0	1	0	53.1000
4	1	0	3	male	35.0	0	0	8.0500

Let's start with age. Instead of correlating Survived with individual ages, we form three age groups (young, middle and old) and use these for analysis:

In [35]:	# Surviye	d Rclass	Sex mia	Age	နှုံမှုနှ _{စုပ}	Parch	Fare	age	fare		
	titanic_c	Leaned["a	ge"] =	pd.cu	ut(tita	nic["A	ge"], b	ins=3,	label	s=["young",	"midd
	le", "old	'])									
	titanic_c	Leaned.he	ad()								

Out[35]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	age
0	0	3	male	22	1	0	7.2500	young
1	1	1	female	38	1	0	71.2833	middle
2	1	3	female	26	0	0	7.9250	young
3	1	1	female	35	1	0	53.1000	middle
4	0	3	male	35	0	0	8.0500	middle

We apply the same logic to fare prices:

```
In [37]: # bin fare prices into low, medium, high buckets
    titanic_cleaned["fare"] = pd.cut(titanic["Fare"], bins=3, labels=["low", "medi
    um", "high"])
    titanic_cleaned.head()
```

Out[37]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	age	fare
0	0	3	male	22	1	0	7.2500	young	low
1	1	1	female	38	1	0	71.2833	middle	low
2	1	3	female	26	0	0	7.9250	young	low
3	1	1	female	35	1	0	53.1000	middle	low
4	0	3	male	35	0	0	8.0500	middle	low

Further, instead of correlating individual values for siblings/spouses and parents/children, we create the dummy variable "family" to indicate whether a passenger had at leat 1 sibling/spouse **or** 1 parent/child on board.

In [38]:	# Survived	Pclass,	i Sex e "	Age l	ŞibŞp	Parch	teareneth	дае ра	fagen	family _a	at	Leat o	
ne sibling/spouse OR parent/child on board													
	<pre>titanic_cle titanic cle</pre>	-	, -	= (1	itanic	["SibS	p"] >= 1) (t	itani	c["Parc	h"]	>=1)	

Out[38]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	age	fare	family
0	0	3	male	22	1	0	7.2500	young	low	True
1	1	1	female	38	1	0	71.2833	middle	low	True
2	1	3	female	26	0	0	7.9250	young	low	False
3	1	1	female	35	1	0	53.1000	middle	low	True
4	0	3	male	35	0	0	8.0500	middle	low	False

Finally, we convert our recently created variables (age, fare, family), as well as Sex and passenger class into dummy variables.

```
In [39]: # convert categorical variables (Sex and PClass) into dummy variables for anal
ysis
titanic_dummies = pd.get_dummies(data=titanic_cleaned, columns=["Sex", "Pclas
s", "age", "family", "fare"])
titanic_dummies.drop(labels=["Age", "SibSp", "Parch", "Fare"], axis=1, inplace
ue)
titanic_dummies.head()
```

Out[39]:

	Survived	Sex_female	Sex_male	Pclass_1	Pclass_2	Pclass_3	age_young	age_mid
0	0	0	1	0	0	1	1	0
1	1	1	0	1	0	0	0	1
2	1	1	0	0	0	1	1	0
3	1	1	0	1	0	0	0	1
4	0	0	1	0	0	1	0	1

Now we are ready to calculate the correlation matrix.

In [248]: # calculate correlation matrix
 titanic_dummies.corr()

Out[248]:

	Survived	Sex_female	Sex_male	Pclass_1	Pclass_2	Pclass_3	age_yo
Survived	1.000000	0.542190	-0.542190	0.294366	0.085113	-0.330442	0.0128
Sex_female	0.542190	1.000000	-1.000000	0.116341	0.068353	-0.160388	0.0641
Sex_male	-0.542190	-1.000000	1.000000	-0.116341	-0.068353	0.160388	-0.0641
Pclass_1	0.294366	0.116341	-0.116341	1.000000	-0.333844	-0.587952	-0.2446
Pclass_2	0.085113	0.068353	-0.068353	-0.333844	1.000000	-0.566204	-0.0670
Pclass_3	-0.330442	-0.160388	0.160388	-0.587952	-0.566204	1.000000	0.2714
age_young	0.012834	0.064173	-0.064173	-0.244611	-0.067082	0.271461	1.0000
age_middle	0.011208	-0.032636	0.032636	0.126100	0.067855	-0.168494	-0.8677
age_old	-0.046742	-0.060886	0.060886	0.228772	-0.002110	-0.198235	-0.2487
family_False	-0.201643	-0.283819	0.283819	-0.132074	-0.030312	0.141502	-0.1136
family_True	0.201643	0.283819	-0.283819	0.132074	0.030312	-0.141502	0.1136
fare_low	-0.099115	-0.112146	0.112146	-0.250056	0.083480	0.147021	-0.0251
fare_medium	0.099115	0.112146	-0.112146	0.250056	-0.083480	-0.147021	0.0251
fare_high	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Since the correlation matrix is hard to read, we visualize its result using a heatmap.

In [40]: # visualize corrleation matrix
sns.heatmap(titanic_dummies.corr())

Out[40]: <matplotlib.axes._subplots.AxesSubplot at 0xb8ac4e0>

Interestingly, we can observe a strong (>= 0.4) positive correlation between **survival** and being female, whereas the opposite is true for being **male**. Further, the correlation matrix shows a moderate positive relation between survival and travelling in **first class**. The opposite is true for residing in **third class**. As far as **age groups** are concerned, no correlation can be observed, while having at least one **family** member on board is modestly corrleated with survival. Finally, **fare price groups** do not seem to have a particular strong positive or negative with survival.

Given the positive relation between survival and being female, between survival and passenger class, as well as between survival and family, we look at these variables using a pivot tables.

Solely comparing survival between sex reveals that women were much more likely to surive then man. Further, passengers travelling in first class were much more likely than those travelling in third class. Finally, half of passengers having a family member on board survived their trip, whereas only 1/3 survived without family support.

10				P2_Anai	ysis_and_Report
In [42]:	# pivot	stum le di	speay ing	str vival	vs. sex
	pd.pivc p_sum,	Serwiweed np mean	Staniced np std	Saned wed margins=T	<pre>lues=["Survived"], index=["Sex"], aggfunc=[n rue)</pre>
0+[42].	Bokitys		, ,,	ŭ	,
Out[42]:	l.	sum	mean	std	
		Survived	Survived	Survived	
	Sex				
	female	196	0.753846	0.43160	
	male	91	0.201774	0.40177	

In [43]: # pivot table displaying survival vs. passenger class
pd.pivot_table(titanic_cleaned, values=["Survived"], index=["Pclass"],
aggfunc=[np.sum, np.mean, np.std], margins=True)

0.49063

Out[43]:

ΑII

287

	sum	mean	std
	Survived	Survived	Survived
Pclass			
1	119	0.650273	0.478192
2	83	0.479769	0.501041
3	85	0.239437	0.427342
All	287	0.403657	0.490630

0.403657

In [44]: # pivot table displaying survival vs. family
 pd.pivot_table(titanic_cleaned, values=["Survived"], index=["family"],
 aggfunc=[np.sum, np.mean, np.std], margins=True)

Out[44]:

	sum	mean	std
	Survived	Survived	Survived
family			
False	128	0.318408	0.466439
True	159	0.514563	0.500599
All	287	0.403657	0.490630

Let's go one step further and investigate survival, sex and passenger class. The table shows that **96%** of **females** travelling in first, and **92%** travelling in **second** class survied their trip. Whereas only **40%** of males in first, and only **15%** in second and third class survived their trip.

In [211]:	# pivo	table	sum atsplayin	green vivo	stu s. sex
					ŞS ÜHKRIŞSĒĞI
	- 00	=[np_su	m, np mea	n, np.std]_ margir
ut[211]:	SOMILIA	Poless	sum	mean	std
			Suili	IIIeaii	Siu
			Survived	Survived	Survived
	Sex	Pclass			
		1	82.0	0.964706	0.185617
	female	2	68.0	0.918919	0.274823
		3	47.0	0.460784	0.500921
		1	40.0	0.396040	0.491512
	male	2	15.0	0.151515	0.360375
		3	38.0	0.150198	0.357973
	All		290.0	0.406162	0.491116

Repeating the same analysis using family and passenger class, we can observe relatively high survival rates for passengers travelling in first class, despite their family status. Although, the difference between passengers having a family member on board and travelling in first class, and those without family support is **10**%. However, the major differences here is between passengers having family and travelling in **second class**. While **63**% of passengers having a family member on board and travelling second class survived the trip, only **34**% without family support did.

Out[41]:

		sum	mean	std
		Survived	Survived	Survived
family	Pclass			
	1	49	0.583333	0.495968
False	2	32	0.344086	0.477644
	3	47	0.208889	0.407421
	1	70	0.707071	0.457422
True	2	51	0.637500	0.483755
	3	38	0.292308	0.456582
All		287	0.403657	0.490630

In order to make it easier to consume our results, we visualize the analysis above:

In [116]: # visualize differences between (non)-survivors given sex and passenger class
 grid = sns.FacetGrid(titanic_cleaned, row="Sex", col="Pclass")
 grid.map(plt.hist, "Survived", bins=2).set(xticks=(0,1))

Out[116]: <seaborn.axisgrid.FacetGrid at 0x1254e2320>

In [203]: # visualize differences between (non)-survivors given sex and family on board
grid = sns.FacetGrid(titanic_cleaned, row="Sex", col="family")
grid.map(plt.hist, "Survived", bins=2).set(xticks=(0,1))

Out[203]: <seaborn.axisgrid.FacetGrid at 0x126218b70>

Conclusion

Our general analysis revealed the following points:

- On average women were much more likely to survive their trip on Titanic
- The same is true for passengers travelling in first class
- Passengers having one or more family member on board also survived their trip more often than those without family support

Further, the investigation between survival and more than one variable revealed that:

- Most of the women traveling in first and second class survied their trip, whereas the opposite is true for men
- The data on survival, sex and family on board is inconclusive, since women were on average more likely to surive their trip despite having family no board

Despite our findings, we can not be sure that the variables we found to have an effect on survival, really **caused** it. For instance, there may have been other reasons despite gender, for women to be more likely to survive than men.