Tarca 2.

1. Encuentre matriz de transferencia de:

Considerando como salida
$$Y = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix}$$

$$Z = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix}$$

$$Z = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix}$$

$$Z = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix}$$

$$Z = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix}$$

$$Z = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix}$$

$$Z = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix}$$

$$Z = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix}$$

$$Z = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix}$$

$$Z = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix}$$

$$Z = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}$$

Salidas: $\begin{bmatrix} W \\ u_2 \\ \vdots \\ Z_2 \end{bmatrix} = \begin{bmatrix} Z_3 \\ u_2 \\ Z_2 \end{bmatrix} \quad Y = C \times D u$ Hallands la matriz de transferencia usando el modelos G(5) = [C[SI-A] B+D] Usemos matlabis 2 (53+ (52+25+24) G(3) = 53+652+25+24