ECS 230

Applied Numerical Linear Algebra

François Gygi
Department of Computer Science

Floating point numbers

- The accessible range of representable numbers can be enhanced by using a mantissa + exponent notation
- $1,276,448 = 0.1276448 \times 10^7$
- this can be done by dividing a register in 3 fields:

Floating point numbers: the IEEE 754 standard

Implemented in all modern processors (*)

precision	length	mantissa	exponent	min value	max value
single	32	24	8	1.18 x 10 ⁻³⁸	3.40×10^{38}
double	64	53	11	2.23 x 10 ⁻³⁰⁸	1.79 x 10 ³⁰⁸

- single precision: C float, Fortran REAL*4
- double precision: C double, Fortran REAL*8

(*) GPUs: depends on model

IEEE754 standard

- Exponent: should represent positive and negative exponents
- A bias is added to the actual exponent
 +127 (single precision), +1023 (double precision)
- e = stored value, $x = (fraction) * 2^{(e-127)}$
- Allowed values for e: 1 to 254
 - (the values 0 and 255 are reserved for special cases)
- Largest exponent: +127
- Smallest exponent: -126

IEEE754 standard: normalized numbers

- Normalized numbers all have a mantissa starting with a 1 (which is therefore not represented)
 - the precision is 24-bit even though 23 bits are used
- How to represent zero?
 - e = mantissa = 0 is a special combination representing zero (all bits in register = 0)
 - Note: +0 and -0 have different representations
- At first sight, single-precision numbers smaller than 1.18 x 10⁻³⁸ cannot be represented and must be replaced by zero (underflow)

Floating point numbers: denormalized numbers

- If we drop the normalization requirement, numbers smaller than 1.18 x 10⁻³⁸ can be represented, although with fewer significant digits
- Such numbers are called denormalized numbers
- Denormalized numbers allow for "gradual underflow"

Floating point numbers: denormalized numbers

- Examples of normalized and denormalized numbers (in decimal)
- Assume a minimum exponent of -10, and 4 significant digits
- A normalized number: 1.478 x 10⁻³
- Smallest normalized number: 1.000 x 10⁻¹⁰
- A denormalized number: 0.012 x 10⁻¹⁰

Floating point numbers

- Smallest number representable with full 24-bit precision: 1.00000...000 x 2⁻¹²⁶
- FLT_MIN = 1.175e-38 (in header float.h)
- Smallest number representable (with reduced precision, denormalized): 0.0000000...00001 x 2⁻¹²⁶ = 2⁻¹⁴⁹
- Largest number representable with full 24-bit precision: $1.111111...111 \times 2^{+127} = (2-2^{-23}) \times 2^{+127}$
- $FLT_MAX = 3.403e + 38$

Note: 1/FLT_MAX is not FLT_MIN

Limitations of floating point

Ranges of representable numbers

Limitations of floating point

Ranges of representable numbers

Limitations of floating point

The density of representable values is irregular

These points are separated by $2^{-23} \times 2^{120} = 2^{97} \sim 10^{29}$

Underflow

- Numbers smaller than 2⁻¹⁴⁹ in magnitude are truncated to zero
- $2^{-149} = \approx 1.4013e-45$
- The truncation is silent
- Complete loss of information about finiteness of numbers

Overflow

- Numbers larger than FLT_MAX in magnitude are set to ± Inf
- 1/(+0) = + Inf
- 1/(-0) = Inf

IEEE 754 special values

- IEEE 754 special values that often (but not always) indicate an incorrect result
 - NaN: "Not a Number" (e=255,fraction≠0)
 - Computing 0/0 yields "NaN"
 - Computing sqrt(-1) yields "NaN"
 - Inf: "Infinity" (e=255,fraction=0)
 - Computing 1/0 yields "Inf"
- Computations that generate "NaN" of "Inf" do not interrupt the program (!)

IEEE 754 special values

- NaN and Inf values "propagate" through other calculations
 - Example: x + Inf = Inf for any x
 - Example: x * NaN = NaN for any x
- Quiet and Signaling NaN values
 - Quiet: does not interrupt calculation
 - (MSB of fraction = 1)
 - Signaling: causes interruption
 - (MSB of fraction = 0)
 - Implementation- and compiler-dependent

fp.c 15

Most numbers cannot be represented exactly

- But some numbers can..
- Exact representation depends on the base
 - Example: in base 10, 0.1 is exactly representable
 - In floating point binary, 0.1₁₀ has a non-terminating representation: 0.00011001100...
- ½, ¼, etc. are exactly representable in binary floating point
- What is the largest integer that is exactly representable in single precision floating point?

"machine epsilon" or roundoff

 "machine epsilon" is the largest computerrepresentable number ε such that

$$(1+\varepsilon)-1=0$$

- (machine epsilon also called roundoff u)
- How do we determine ε?

"machine epsilon" or roundoff

- IEEE arithmetic guarantees that
 |fl(x op y) x op y| < ε |x op y|
 for op = +, -, *, /, sqrt
 if no overflow or underflow occurs
- Note: no guarantee about other functions (implemented in libraries): exp, sin, cos, ...
- The order of operations matter

sum3.c ¹⁸

- Cancellation happens when two nearly equal numbers are subtracted
- Example: compute $f(x) = \frac{1 \cos x}{x^2}$ using 10-digit arithmetic

$$x=1.2 \times 10^{-5}$$

- Subtraction: 1-c = 0.000000001
- $-(1-c)/x^2 = 10^{-10} / 1.44 \times 10^{-10} = 0.6944$

- $(1-c)/x^2 = 10^{-10} / 1.44 \times 10^{-10} = 0.6944$
- However we know that

$$\cos x = 1 - 2\sin^{2}(x/2)$$

$$f(x) = \frac{1 - \cos x}{x^{2}} = \frac{1}{2} \left(\frac{\sin(x/2)}{x/2}\right)^{2}$$

$$f(x) < \frac{1}{2}$$

The result does not have any correct significant digit

- The subtraction (1-c) is exact, but yields only one correct significant digit
- The result is of the same order of magnitude as the error

Cancellation can lead to a total loss of correct significant digits

Example: summing a series numerically

$$S = \frac{\pi^2}{6} = \sum_{k=1}^{\infty} \frac{1}{k^2}$$

All terms positive, no cancellation

- First approach: sum 1/k² for increasing *k*
- $s = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{25} + \frac{1}{36} + \frac{1}{49} + \dots$ result: s = 1.64472532

- First approach: sum 1/k² for increasing k
- $s = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{25} + \frac{1}{36} + \frac{1}{49} + \dots$ result: s = 1.64472532
- The correct value is 1.644934066848...
- We have only four correct significant digits (out of possible nine)

Explanation:

- at k=4096, the sum is ~1.6, and $1/k^2 = 4096^{-2} = 2^{-24}$
- Single precision has a 24-bit mantissa
- The contribution from the term k=4096 "drops off the end": it is too small compared to 1.6, as ε is too small compared to 1
- All further terms beyond k=4096 do not contribute to the sum

- Solution: sum the series starting with small terms first
 - Note: this requires knowing how many terms to take before the summation begins

- Solution: sum the series starting with small terms first
 - Note: this requires knowing how many terms to take before the summation begins
- Using 10⁹ terms, and starting from the smallest term, we get 1.64493406 (correct to eight significant digits)

- It is not always possible to know in advance what values in a sum are small
 - Example: compute a scalar product of two vectors x and y in N dimensions

$$S = \sum_{k=1}^{N} x_k y_k$$

 Conclusion: computing sums using a 9digit mantissa does not guarantee 9 correct significant digits