Multivariate Linear Regression with Bayesian Inference

Joaquín Martínez-Minaya

October 7, 2024

1 Multivariate Linear Regression Model

We define the multivariate linear regression model as:

$$Y = XB + E$$

where:

- Y is an $n \times m$ matrix of response variables, where n is the number of observations and m is the number of response variables.
- X is an $n \times k$ matrix of covariates, where k is the number of covariates (including the intercept).
- \boldsymbol{B} is a $k \times m$ matrix of coefficients.
- E is an $n \times m$ matrix of errors, assumed to follow a multivariate normal distribution: $E \sim \mathcal{N}(\mathbf{0}, \Sigma)$.

2 Prior Distributions

We use conjugate prior distributions for the coefficients matrix B and the covariance matrix Σ .

2.1 Prior for the Coefficient Matrix B

The prior distribution for the coefficient matrix B given the covariance matrix Σ is defined as a matrix normal distribution:

$$B \mid \Sigma \sim \mathcal{N}(B_0, \Sigma \otimes A^{-1})$$

where:

- B_0 is a $k \times m$ matrix of prior means, typically set to zero.
- A is a $k \times k$ precision matrix for the covariates. By default, it is set as an identity matrix, $A = I_k$.
- Σ is the covariance matrix of the response variables.

2.2 Prior for the Covariance Matrix Σ

The prior distribution for the covariance matrix Σ follows an inverse-Wishart distribution:

$$\Sigma \sim \mathrm{IW}(\nu_0, V_0)$$

where:

- ν_0 is the degrees of freedom parameter, set as $\nu_0 = m + 2$.
- V_0 is a $m \times m$ scale matrix, set as an identity matrix $V_0 = I_m$.

3 Posterior Distributions

Given the prior distributions and observed data, the posterior distributions for the parameters are derived as follows:

3.1 Posterior of $B \mid \Sigma, Y, X$

The conditional posterior distribution of the coefficient matrix B given the covariance matrix Σ is a matrix normal distribution:

$$oldsymbol{B} \mid oldsymbol{\Sigma}, oldsymbol{Y}, oldsymbol{X} \sim \mathcal{N}(oldsymbol{B}_n, oldsymbol{\Sigma} \otimes (oldsymbol{X}^Toldsymbol{X} + oldsymbol{A})^{-1})$$

where:

$$\boldsymbol{B}_n = (\boldsymbol{X}^T \boldsymbol{X} + \boldsymbol{A})^{-1} (\boldsymbol{X}^T \boldsymbol{Y} + \boldsymbol{A} \boldsymbol{B}_0)$$

3.2 Marginal Posterior of $\Sigma \mid Y, X$

The marginal posterior distribution of the covariance matrix Σ follows an inverse-Wishart distribution:

$$\Sigma \mid Y, X \sim IW(\nu_0 + n, V_0 + S)$$

where:

$$S = (Y - XB_n)^T (Y - XB_n) + (B_n - B_0)^T A(B_n - B_0)$$

3.3 Marginal Posterior of $B \mid Y, X$

The marginal posterior distribution of the coefficient matrix \boldsymbol{B} is a matrix t-distribution:

$$B \mid Y, X \sim \mathcal{T}(B_n, \Sigma_n \otimes (X^TX + A)^{-1}, \nu_n)$$

where:

- B_n is the posterior mean of B.
- $\Sigma_n = (V_0 + S)/(\nu_0 + n m + 1)$ is the scale matrix for Σ .
- $\nu_n = \nu_0 + n m + 1$ is the degrees of freedom for the t-distribution.

4 Posterior Predictive Distribution

The posterior predictive distribution for a new observation x^* is given by:

$$oldsymbol{Y}^* \mid oldsymbol{Y}, oldsymbol{X}, oldsymbol{x}^* \sim \mathcal{T}(oldsymbol{x}^* oldsymbol{B}_n, oldsymbol{\Sigma}_n (1 + oldsymbol{x}^{*T} (oldsymbol{X}^T oldsymbol{X} + oldsymbol{A})^{-1} oldsymbol{x}^*),
u_n)$$

This distribution captures both the uncertainty in the estimation of B and the variability in the new data point Y^* .