Rajalakshmi Engineering College

Name: NEIL DANIEL A

Email: 240701356@rajalakshmi.edu.in

Roll no: 240701356 Phone: 8925059757

Branch: REC

Department: I CSE FD

Batch: 2028

Degree: B.E - CSE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 1_MCQ

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: MCQ

1. Linked lists are not suitable for the implementation of?

Answer

Binary search

Status: Correct Marks: 1/1

2. Consider the singly linked list: $13 \rightarrow 4 \rightarrow 16 \rightarrow 9 \rightarrow 22 \rightarrow 45 \rightarrow 5 \rightarrow 16 \rightarrow 6$, and an integer K = 10, you need to delete all nodes from the list that are less than the given integer K.

What will be the final linked list after the deletion?

Answer

13 -> 16 -> 22 -> 45 -> 16

Status: Correct Marks: 1/1

3. In a singly linked list, what is the role of the "tail" node?

Answer

It stores the last element of the list

Status: Correct Marks: 1/1

4. Consider the singly linked list: 15 -> 16 -> 6 -> 7 -> 17. You need to delete all nodes from the list which are prime.

What will be the final linked list after the deletion?

Answer

15 -> 16 -> 6

Status: Correct Marks: 1/1

5. Given a pointer to a node X in a singly linked list. If only one point is given and a pointer to the head node is not given, can we delete node X from the given linked list?

Answer

Possible if X is not last node.

Status: Correct Marks: 1/1

6. The following function reverse() is supposed to reverse a singly linked list. There is one line missing at the end of the function.

What should be added in place of "/*ADD A STATEMENT HERE*/", so that the function correctly reverses a linked list?

struct node { int data;

```
struct node* next;
static void reverse(struct node** head_ref) {
     struct node* prev = NULL;
     struct node* current = *head ref:
     struct node* next;
     while (current != NULL) {
       next = current->next;
       current->next = prev;
       prev = current;
       current = next;
     /*ADD A STATEMENT HERE*/
   Answer
  *head_ref = prev;
   Status: Correct
                                                                    Marks: 1/1
```

- 7. Consider an implementation of an unsorted singly linked list. Suppose it has its representation with a head pointer only. Given the representation, which of the following operations can be implemented in O(1) time?
- i) Insertion at the front of the linked list
- ii) Insertion at the end of the linked list
 - iii) Deletion of the front node of the linked list
 - iv) Deletion of the last node of the linked list

Answer

I and III

Status: Correct Marks: 1/1

8. Given the linked list: $5 \rightarrow 10 \rightarrow 15 \rightarrow 20 \rightarrow 25 \rightarrow NULL$. What will be the output of traversing the list and printing each node's data?

5 10 15 20 25

struct node {

Status: Correct Marks: 1/1

9. The following function takes a singly linked list of integers as a parameter and rearranges the elements of the lists.

The function is called with the list containing the integers 1, 2, 3, 4, 5, 6, 7 in the given order. What will be the contents of the list after the function completes execution?

```
int value;
  struct node* next;
};
void rearrange (struct node* list) {
  struct node *p,q;
  int temp;
  if (! List || ! list->next) return;
  p=list; q=list->next;
  while(q) {
  temp=p->value; p->value=q->value;
    q->value=temp;p=q->next;
    q=p?p->next:0;
Answer
2, 1, 4, 3, 6, 5, 7
Status: Correct
                                                                      Marks: 1/1
```

10. Which of the following statements is used to create a new node in a singly linked list?

struct node {

int data;
struct node * next;
typedef struct node NODE;
NODE *ptr;

Answer
ptr = (NODE*)malloc(sizeof(NODE));
Status: Correct

Marks: 1/1