第 15 章 界面化学

基:		

1.	两相的界面为什么存在收缩张力。表面张力的第 义是。
2.	表面张力随温度的升高而。当液体的温度升高到临界温度时,表面张力等于这是因为。
3.	在热力学上,通常用模型的方法将界面层处理为相。吉布斯的处理方法。相。 按照吉布斯格
	型,两相平衡系统的体积 $V=$,物质的量 $n=$,,亥氏函数 $A=$ 。界面过剩量 $n_i^{(\sigma)}=$ 。
4.	若有一个二元系,两相达到平衡。试用 Gibbs 界面模型在下图中标出 $n_2^{(\sigma)}$ =? 是正吸附还是负吸附:
	β 相 β 相 β 相 β β 相 β
5.	试写出界面相的一个热力学基本方程, $\mathrm{d}G^{(\sigma)}$ =。根据这个基本程,可得表面张力的热力学表示式 σ =。
6.	存在弯曲界面的多相系统的平衡条件为: 热平衡; 力平衡; 相平衡。
7.	试写出 Laplace 方程:。对于半径为 <i>r</i> 的球形液滴,上式可写成。对于半径为 <i>r</i> 的液体中的气泡,上式可写成。
8.	如图所示,在一玻璃管两端分别有一个肥皂泡。今打开考克使它们接通, 其结果是大泡变大、小泡变小,还是大泡变小、小泡变大?二者最终能 否达到平衡状态?
9.	将玻璃毛细管插入水中(如右图),经验告诉我们,毛细管中的液面升高了,这是因为
10	一
10.	试写出 Kelvin 方程。试指出微小液滴的饱和蒸汽压为什
11.	试分析液体过热的原因,并指出为避免过热而采取的一些方法
12.	。
	何谓正吸附?,哪些物质加入水中呈正吸附。
	何谓负吸附?,哪些物质加入水中呈负吸附。

13.	有一表面活性剂加入水中,在浓度很低时,表面 $\Gamma_2^{(1)}$	
	张力与浓度间服从公式 $c_2 = \frac{\sigma^* - \sigma}{b}$, 在浓度较高	
	时,服从公式 c_2 = $A e^{(\sigma * - \sigma)/B}$ 试示意画出单位界 c_2	
	面吸附量 $\Gamma_2^{(1)}$ 随表面活性剂浓度 c_2 的变化曲线。式中 σ^* 为纯水的表面张力, b 、 A 和 B 为常数。	
14.	如何判断一液滴在固体表面上是否铺展	
	φ=。 , 它的物理意义是。	
15.	如何判断液体在固体表面是否润湿,试写出杨氏方程	
	。对于下列三种情况选填符号>、=、<,指出何者铺展、何者润湿?	
	φ 0 φ 0	
	$\cos\theta _{}0$ $\cos\theta _{}0$	
16.		
10.	回	
	液体在毛细管中呈如下两种状态,试分别画出它们的接触角,并指出何者润湿,何者不润湿?	
17	何谓临界胶束浓度?	A/m
1/.	质的浓度超过临界胶束浓度后,溶液内将生成不同形式的胶束,它	
	是。	11 7
18.	试在下表所列指标中填写物理吸附与化学吸附的特征或区别:	
	物理吸附 化学吸附	
	吸附力	
	吸附热	
	选择性	
	吸附分子层	
	吸附速度	
	吸附可逆性	
19.	多相催化反应的基本步骤是。	
20.	气体 A 在某催化剂表面发生分解反应 $A(g) \rightarrow 2B(g)$ 。若产物 B 在催化剂表面与 A 竞争吸附,则 A	和
	B 的兰缪尔等温方程分别为: $\theta_{\rm A}$ =	

计算题

一、试指出下列哪些偏导数是表面张力?

$$(1) \left(\frac{\partial A^{(\sigma)}}{\partial A_{S}}\right)_{T,p,n_{j}} \qquad (2) \left(\frac{\partial H^{(\sigma)}}{\partial A_{S}}\right)_{S,p,n_{j}} \qquad (3) \left(\frac{\partial G^{(\sigma)}}{\partial A_{S}}\right)_{T,p,n_{j}}$$

$$(4) \left(\frac{\partial H^{(\sigma)}}{\partial A_{S}}\right) \qquad (5) \left(\frac{\partial U^{(\sigma)}}{\partial A_{S}}\right) \qquad (6) \left(\frac{\partial A^{(\sigma)}}{\partial A_{S}}\right)$$

二、按照 Gibbs 界面模型,界面相的热力学基本方程 d $G^{(\sigma)}$ =?

恒温下,在一带有活塞的汽缸里,半径为r 的纯物质微小液滴与其蒸气达到气液平衡。试按照Gibbs 界面模型,写出界面相的热力学基本方程 $dA^{(\sigma)}=$?

三、下图表示四根毛细管插入某种液体后所引起的液面升高或降低,试指出何者是正确的?

四、在一个锥形容器中,放入一滴液体,若液面微微呈凸形,如下图所示。 试画出接触角,并判断其是润湿还是不润湿。(θ <90°)

- 五、若将一表面积为 A_S 的固体在某液体中浸湿。试表示该过程的吉氏函数变化,并用杨氏方程证明,该固体一定能被该液体所润湿。
- 六、已知水能润湿玻璃。今将三根半径不同的玻璃毛细管放在空气中,试简要描述,当空气的湿度逐渐增 大时,三根毛细管中所发生的变化。
- 七、从热力学角度分析,吸附应是吸热的还是放热的?为什么?请用热力学关系式 $\Delta G = \Delta H T\Delta S$ 分析说明之。
- 八、有一表面活性剂浓度很稀的水溶液,在 25[°]C时用快速移动的刀片刮取该溶液的表面,测得表面活性剂的单位界面吸附量 $\Gamma_2^{(1)}=3\times10^{-10}\,\mathrm{mol\cdot cm^{-2}}$ 。已知 25[°]C时纯水的表面张力为 $72.0\times10^{-3}\,\mathrm{N\cdot m^{-1}}$,试计算该溶液的表面张力。