Le but de ce document est de donner une définition formelle des fonctions dont est composé le langage C2QL.

Définitions générales

Soit \mathcal{V} un ensemble, appelé ensemble des valeurs.

Définition 1 Ici, pour simplifier, on appelle chaîne de caractères tout mot sur l'alphabet

$$\Sigma = \{a, \dots, z\} \cup \{A, \dots, Z\} \cup \{0, \dots, 9\}$$

Définition 2 On appelle nom d'attribut toute chaîne de caractères.

Définition 3 On appelle schéma relationnel tout ensemble de noms d'attributs.

Définition 4 On appelle relation de schéma relationnel Δ un ensemble de fonctions de $\Delta \cup \{id\}$ dans V.

Chacune de ces fonctions (chacun des éléments de la relation) est appelé(e) ligne.

Pour chaque ligne l de la relation et chaque α de Δ , $l(\alpha)$ est appelé attribut de nom α pour la ligne l.

L'image de id est appelé identifiant de la ligne, et il est, au sein de chaque relation, unique pour chaque ligne.

Définition 5 On appelle S l'ensemble des schémas relationnels possibles. Autrement dit, on pose $S = \mathcal{P}(\Sigma^*)$.

On appelle R l'ensemble des relations possibles,

et on introduit la fonction sch de R dans S qui à une relation associe son schéma relationnel.

Projections et sélections

Définition 6 Pour tout ensemble δ de noms d'attributs, on appelle projection sur les attributs δ la fonction suivante :

$$\begin{array}{cccc} \pi_{\delta}: & \mathbf{R} & \to & \mathbf{R} \\ & r & \mapsto & \{l|_{(\delta \cap \mathrm{sch}(r)) \cup \{id\}}/l \in r\} \end{array}$$

Définition 7 On appelle L l'ensemble de toutes les lignes possibles.

On appelle prédicat toute fonction de L dans {true, false}.

On appelle domaine d'un prédicat p le plus petit ensemble D tel que :

$$\forall (l, l') \in L^2, (l|_D = l'|_D \Rightarrow p(l) = p(l'))$$

et on le note dom(p).

Définition 8 On appelle sélection de prédicat p, pour tout prédicat p, la fonction :

$$\begin{array}{cccc} \sigma_p: & \mathbf{R} & \to & \mathbf{R} \\ & r & \mapsto & r \cap p^{-1}(\{true\}) \end{array}$$

Jointure naturelle

Définition 9 On dit que deux relations r et r' sont joignables si on a:

$$\forall l \in r \quad \exists ! l' \in r' \quad \forall \alpha \in \operatorname{sch}(r) \cap \operatorname{sch}(r'), \quad l(\alpha) = l'(\alpha)$$

Si r et r' sont deux relations joignables et l est une ligne de r, on appelle correspondant de l dans r' la ligne l' de la propriété précédente (unique par définition). On note cette ligne $\operatorname{cor}_{r,r'}(l)$. On dit alors que l et l' sont deux lignes correspondantes.

Définition 10 Si l et l' sont deux lignes correspondantes, on appelle concaténation de l et de l', notée l.l' la fonction de $\mathrm{sch}(l) \cup \mathrm{sch}(l') \cup \{id\}$ définie par :

$$\begin{cases} l.l'(\alpha) = l(\alpha) & si \ \alpha \in \operatorname{sch}(r) \setminus \operatorname{sch}(r') \\ l.l'(\alpha) = l'(\alpha) & si \ \alpha \in \operatorname{sch}(r') \setminus \operatorname{sch}(r) \\ l.l'(\alpha) = l(\alpha) = l'(\alpha) & si \ \alpha \in \operatorname{sch}(r) \cap \operatorname{sch}(r') \\ l.l'(id) = l(id) \end{cases}$$

Définition 11 Pour r et r' deux relations joignables, on appelle jointure naturelle de r et r' la table

$$r \bowtie r' = \{l. \operatorname{cor}_{r,r'}(l)/l \in r\}$$

On utilisera aussi la notation préfixe. En effet, si on appelle Rj l'ensemble des paires de relations unifiables, on vient de définir la fonction

$$\bowtie: Rj \rightarrow R$$
 $(r,r') \mapsto r \bowtie r'$

Fragmentation et défragmentation

La défragmentation est un cas particulier de jointure naturelle, le seul attribut en commun pour les deux tables est l'identifiant des lignes.

Définition 12 Deux relations r et r' sont dites unifiables si:

$$\left\{ \begin{array}{l} \{l(id)/l \in r\} = \{l(id)/l \in r'\} \\ \operatorname{sch}(r) \cap \operatorname{sch}(r') = \emptyset \end{array} \right.$$

On remarquera que deux relations unifiables sont également joignables.

On note Ru l'ensemble des paires de relations unifiables, qui est donc un sous-ensemble de Ri, qui lui même est un sous-ensemble de R^2 .

Définition 13 Pour tout ensemble de noms d'attributs δ on appelle fragmentation de fragment gauche δ l'application suivante :

$$\begin{array}{ccc} \operatorname{frag}_{\delta} & \mathcal{R} & \to & \operatorname{Ru} \\ & r & \mapsto & \left(\{l|_{(\operatorname{sch}(r)\cap\delta)\cup\{id\}}/l \in r\}, \{l_{(\operatorname{sch}(r)\setminus\delta)\cup\{id\}}/l \in r\}\right) \end{array}$$

Définition 14 On appelle défragmentation la restriction de la jointure naturelle à Ru.

$$\begin{array}{cccc} \text{defrag} & \text{Ru} & \to & \text{R} \\ & (r,r') & \mapsto & r \bowtie r' \end{array}$$

Chiffrement et déchiffrement

Vu que pour l'instant on s'intéresse uniquement aux contenus des tables pour démontrer la correction sémantique des lois de composition, on ne parlera pas pour l'instant des éventuelles clefs de chiffrement et déchiffrement.

Définition 15 On appelle chiffrement tout couple c de fonctions de V dans V (Enc, Dec) vérifiant $Dec \circ Enc = id$.

Pour toute valeur v de V on note c(v) = Enc(v) et $c^{-1}(v) = \text{Dec}(v)$

Définition 16 Pour une ligne l définie sur Δ , pour α un attribut, et pour c un chiffrement, on appelle version de l chiffrée pour α avec le chiffrement c la ligne notée $c(l)_{\alpha}$ définie par :

$$\left\{ \begin{array}{ll} \forall \beta \in \Delta \setminus \{\alpha\} & \mathit{c}(l)_{\alpha}(\beta) = l(\beta) \\ & \mathit{c}(l)_{\alpha}(\alpha) = \mathit{c}(l(\alpha)) & \mathit{si} \ \alpha \in \Delta \end{array} \right.$$

De même, on définit la version de l déchiffrée pour α avec le chiffrement c, notée $c^{-1}(l)_{\alpha}$, par :

$$\left\{ \begin{array}{ll} \forall \beta \in \Delta \setminus \{\alpha\} & c^{-1}(l)_{\alpha}(\beta) = l(\beta) \\ & c^{-1}(l)_{\alpha}(\alpha) = c^{-1}(l(\alpha)) & si \ \alpha \in \Delta \end{array} \right.$$

Définition 17 Pour α un nom d'attribut et c un chiffrement, on appelle fonction de chiffrement de α par c la fonction

$$\begin{array}{cccc} \operatorname{crypt}_{\alpha,\, c} : & \mathbf{R} & \to & \mathbf{R} \\ & r & \mapsto & \{\, c(l)_\alpha/l \in r\} \end{array}$$

De $m\hat{e}me$, on appelle fonction de déchiffrement de α par c la fonction

$$\begin{array}{cccc} \mathrm{decrypt}_{\alpha,\,\mathbf{c}} : & \mathrm{R} & \to & \mathrm{R} \\ & r & \mapsto & \{\,\mathbf{c}^{-1}(l)_\alpha/l \in r\} \end{array}$$

Agrégation

Définition 18 Pour δ un ensemble de noms d'attributs, on appelle nom de groupe pour δ toute application n définie de $\delta \cup \{id\}$ dans \mathcal{V} .

On remarque que tout nom de groupe est une ligne.

 δ est appelé domaine du nom de groupe n, et noté dom(n).

De plus, pour r une relation, on définit l'ensemble des noms de groupe de r pour δ :

$$r_{\delta} = \{l|_{\delta}/l \in r\}$$

Définition 19 Pour r une relation et n un groupe, on appelle groupe de r pour le nom n l'ensemble des éléments de r coïncidant avec n sur $(\operatorname{sch}(r) \cap \operatorname{dom}(n)) \cup \{id\}$. On le note r_n .

Autrement dit:

$$r_n = \{l \in r/l|_{(\operatorname{sch}(r) \cap \operatorname{dom}(n)) \cup \{id\}} = n|_{(\operatorname{sch}(r) \cap \operatorname{dom}(n)) \cup \{id\}}\}$$

De plus, on appelle identifiants du groupe r_n l'ensemble des identifiants des lignes du groupe. On note $\mathrm{IDs}(r_n)$ cet ensemble.

Autrement dit:

$$IDs(r_n) = \{l(id)/l \in r_n\}$$

Définition 20 Pour r une relation, n un nom de groupe, et α un attribut de $(\operatorname{sch}(r) \setminus \operatorname{dom}(r)) \cup \{id\}$, on appelle valeurs du groupe r_n pour l'attribut α la fonction

$$r_n(\alpha): \operatorname{IDs}(r_n) \to \mathcal{V}$$

 $l(id) \mapsto l(\alpha)$

Définition 21 Pour r une relation, et n un nom de groupe, on appelle ligne de groupe de r pour n la ligne notée $\lg_{r,n}$ définie $sur \operatorname{sch}(r) \cup \{id\}$ par :

$$\left\{ \begin{array}{ll} \lg_{r,n}(\alpha) = n(\alpha) & si \ \alpha \in \operatorname{sch}(r) \cap \operatorname{dom}(n) \\ \lg_{r,n}(\alpha) = r_n(\alpha) & si \ \alpha \in (\operatorname{sch}(r) \cup \{id\}) \setminus \operatorname{dom}(n) \end{array} \right.$$

Définition 22 Pour δ un ensemble de noms d'attributs, on appelle fonction d'agrégation pour les attributs δ la fonction suivante :

$$\begin{array}{cccc} \operatorname{group}_{\delta}: & \mathbf{R} & \to & \mathbf{R} \\ & r & \mapsto & \left\{ \lg_{r,n} / n \in r_{\delta} \right\} \end{array}$$

Réduction

La plupart du temps, les agrégations sont faites pour pouvoir faire une réduction ensuite. On suppose que les identifiants des lignes peuvent être totalement ordonnés et donc que les fonctions définies sur des ensembles d'identifiants peuvent être vues comme des listes.

Pour toute liste l on notera hd(l) le premier élément de la liste, et tl(l) le reste de la liste.

Dans les définitions qui suivent, f est une fonction de \mathcal{V}^2 dans \mathcal{V} et z est un élément de \mathcal{V} .

Définition 23 On appelle réduction d'une liste t par la fonction f avec l'élément neutre z la valeur red_{f,z}(t) définie par induction sur la liste par :

$$\begin{cases} \operatorname{red}_{f,z}(\emptyset) = z \\ \operatorname{red}_{f,z}(t) = \operatorname{red}_{f,f(z,hd(t))}(\operatorname{tl}(t)) \end{cases}$$

Si une valeur v de V n'est pas une liste, on la considère alors comme une liste à un seul élément et on pose donc $\operatorname{red}_{f,z}(v) = f(z,v)$.

Définition 24 Pour l une ligne définie sur δ , et α un nom d'attribut, on appelle réduction de l'attribut α dans la ligne l par la fonction f avec l'élément neutre z la ligne $\operatorname{red}_{\alpha,f,z,l}$ définie sur δ par :

$$\begin{cases} \operatorname{red}_{\alpha,f,z,l}(\alpha) = \operatorname{red}_{f,z}(l(\alpha)) \\ \operatorname{red}_{\alpha,f,z,l}(\beta) = l(\beta) \end{cases} si \beta \neq \alpha$$

Définition 25 On appelle fonction de réduction de l'attribut α par la fonction f avec l'élément neutre z la fonction suivante :

$$\left\{ \begin{array}{ccc} \operatorname{fold}_{\alpha,f,z}: & \mathbf{R} & \to & \mathbf{R} \\ & r & \mapsto & \left\{ \operatorname{red}_{\alpha,f,z,l}/l \in r \right\} \end{array} \right.$$