LISTA 03: MÉTODO SIMPLEX

Exercício 01: Para o modelo seguinte, qual a solução ótima?

$$max Z = 4.x + y + 2.z$$

s. a.:

$$x + y \le 12$$

$$3.x + y + z \le 18$$

$$x, y, z \ge 0$$

Resolva também com o SOLVER do Excel. Um tutorial sobre a ferramenta pode ser encontrado neste vídeo: https://www.youtube.com/watch?v=_s1S4st-Dbs

<u>SOLUÇÃO</u>

Forma padrão:

$$max Z = 4.x + y + 2.z$$

$$x + y + f1 = 12$$

$$3.x + y + z + f2 = 18$$

$$x,y,z,f1,f2\geq 0$$

VB	-	X	y	Z	f1	f2	b	b/A _{ij}
V D	1	4	1	2	0	0	ı	-
fl	0	1	1	0	1	0	12	12
f2	0	3	1	1	0	1	18	6
ΔJ	-	4	1	2	0	0	-	-

VB	-	Х	у	Z	f1	f2	b	b/A _{ij}
V D	-	4,00	1,00	2,00	0,00	0,00	-	-
f1	0,0	0	2/3	- 1/3	1	- 1/3	6	-18
х	4,0	1	1/3	1/3	0	1/3	6	18
ΔJ	-	0	- 1/3	2/3	0	-1 1/3	-	-

VB	-	X	y	Z	f1	f2	b	b/A _{ij}
V D	1	4	1	2	0	0	1	1
f1	0	1	1	0	1	0	12	
z	2	3	1	1	0	1	18	
ΔJ	-	-2	-1	0	0	-2	•	-

Logo, Z=36 com z=18, ou seja, entre as variáveis originais, somente z faz parte da solução com valor 18. A segunda restrição é limitante, enquanto para a primeira existe uma folga de 12.

Exercício 02: Para o modelo seguinte, qual a solução ótima?

$$max Z = 3.x + 2y + 2.z$$

s. a.:

$$x+2y\leq 12$$

$$3.x + y + z \le 18$$

$$x,y,z\geq 0$$

<u>SOLUÇÃO</u>

Forma padrão:

$$\max Z = 3.x + 2y + 2.z$$

$$x + 2y + f1 = 12$$

$$3.x + y + z + f2 = 18$$

$$x,y,z,f1,f2\geq 0$$

VB	-	X	у	Z	f1	f2	b	b/A _{ij}
V D		3,00	2,00	2,00	0,00	0,00		
f1	0,0	1	2	0	1	0	12	12
f2	0,0	3	1	1	0	1	18	6
ΔJ	-	3	2	2	0	0		-

VB	-	X	у	Z	f1	f2	b	b/A _{ij}
V D		3,00	2,00	2,00	0,00	0,00		
f1	0,0	0	1 2/3	- 1/3	1	- 1/3	6	3 3/5
х	3,0	1	1/3	1/3	0	1/3	6	18
ΔJ	-	0	1	1	0	-1	-	-
	-	X	y	Z	f1	f2	b	b/A _{ij}
VB	-	3,00	2,00	2,00	0,00	0,00	-	-
у	2,0	0	1	- 1/5	3/5	- 1/5	3 3/5	-18
х	3,0	1	0	2/5	- 1/5	2/5	4 4/5	12
ΔJ	-	0	0	1 1/5	- 3/5	- 4/5	•	-
VD.	-	Х	y	Z	f1	f2	b	b/A _{ij}
VB	-	3,00	2,00	2,00	0,00	0,00	-	-
y	2,0	1/2	1	0	1/2	0	6	
z	2,0	2 1/2	0	1	- 1/2	1	12	
ΔJ	-	-3	0	0	-0	-2	-	-

A solução ótima é x=0; y=6; e z=12 com Z=36.

Obs.: Este modelo tem soluções múltiplas.

Exercício 03: Para o modelo seguinte, qual a solução ótima?

$$\max Z = 3.x + 2y$$

s. a.:

$$x + 2y \le 12$$

$$3.x + y \ge 6$$

$$x, y \ge 0$$

<u>SOLUÇÃO</u>

Forma padrão:

$$max Z = 3.x + 2y - M.a1$$

s. a.:

$$x + 2y + f\mathbf{1} = 12$$

$$3.x + y - e1 + a1 = 6$$

$$x,y,e1,f1,a1\geq 0$$

MD	-	Х	у	f1	e1	a1	b	b/A _{ij}
VB		3,00	2,00	0,00	0,00	-1000,00		
f1	0,0	1	2	1	0	0	12	12
a1	1.000,0	3	1	0	-1	1	6	2
ΔJ	-	3003	1002	0	-1000	0	-	-
VB	-	X	у	f1	e1	a1	b	b/A _{ij}
V D		3,00	2,00	0,00	0,00	-1000,00		
f1	0,0	0	1 2/3	1	1/3	- 1/3	10	6
x	3,0	1	1/3	0	- 1/3	1/3	2	6
ΔJ	-	0	1	0	1	-1001	-	ı
VB	-	X	у	f1	e1	a1	b	b/A _{ij}
	-	3,00	2,00	0,00	0,00	-1000,00	-	1
у	2,0	0	1	3/5	1/5	- 1/5	6	30
х	3,0	1	0	- 1/5	- 2/5	2/5	0	0
ΔJ	-	0	0	- 3/5	4/5	-1000 4/5	-	-
VB	-	X	у	f1	e1	a1	b	b/A _{ij}
V D	-	3,00	2,00	0,00	0,00	-1000,00	-	-
e1	0,0	0	5	3	1	-1	30	
x	3,0	1	2	1	0	0	12	
ΔJ	-	0	-4	-3	0	-1000	-	-

Apenas x entre as variáveis originais é uma variável básica, com x=12 e Z=36.

Exercício 04: Para o modelo seguinte, qual a solução ótima?

$$min Z = 3.x - 2y$$

$$x + 2y \le 12$$

$$3.x + y \le 6$$

$$x, y \ge 0$$

<u>SOLUÇÃO</u>

Forma padrão:

$$min Z = 3.x - 2y$$

$$x + 2y + f1 = 12$$

$$3.x + y + f2 = 6$$

$$x,y,f1,f2 \geq 0$$

VB	-	X	у	f1	f2	b	b/A _{ij}
V D		3,00	-2,00	0,00	0,00		
f1	0,0	1	2	1	0	12	6
f2	0,0	3	1	0	1	6	6
ΔJ	-	3	-2	0	0	-	1
VB	-	X	у	f1	f2	b	b/A _{ij}
VБ		3,00	-2,00	0,00	0,00		
у	-2,0	1/2	1	1/2	0	6	
f2	0,0	-5	0	1	-2	0	

Exercício 05: Para o modelo seguinte, qual a solução ótima?

$$min Z = -2.x - y$$

s. a.:

$$x-y \leq 10$$

$$2. x - y \le 40$$

$$x, y \ge 0$$

SOLUÇÃO

Forma padrão:

$$min Z = -2.x - y$$

s. a.:

$$x - y + f1 \le 10$$

$$2.x - y + f1 \le 40$$

$$x, y, f1, f2 \ge 0$$

VB	ı	X	у	f1	f2	b	b/A _{ij}
V D		-2,00	-1,00	0,00	0,00		
fl	0,0	1	-1	1	0	10	10
f2	0,0	2	-1	0	1	40	20
ΔJ	-	-2	-1	0	0	-	-

VB	-	X	у	f1	f2	b	b/A _{ij}
VD	-	-2,00	-1,00	0,00	0,00	1	1
х	-2,0	1	-1	1	0	10	-10
f2	0,0	0	1	-2	1	20	20
ΔJ	-	0	-3	2	0	-	-

VB	-	X	у	f1	f2	b	b/A _{ij}
VD	-	-2,00	-1,00	0,00	0,00	1	1
х	-2,0	1	0	-1	1	30	-30
у	-1,0	0	1	-2	1	20	-10
ΔJ	-	0	0	-4	3	-	-

O modelo é ilimitado, pois todos os valores da coluna da variável que entra são negativos.

APLICAÇÕES:

Exercício 06: Para o modelo seguinte, qual a solução ótima? Escreva o modelo de P.L. e resolva pelos métodos gráfico e simplex. Se possível, teste também no Solver.

A construtora *M.B.& J. Ltda* alugou de uma empresa especializada duas gruas para a construção de um prédio comercial. A grua é um equipamento de transporte vertical com limitações técnicas quanto ao peso máximo içado, quanto ao comprimento da lança, quanto à velocidade de içamento, entre outros. A construtora estudou o *layout* do canteiro de obras para posicionar os equipamentos F4R e F6S. Considerando as necessidades de movimentação de materiais, tem-se os seguintes dados para o planejamento de um ciclo operacional:

- O equipamento F4R é capaz de elevar 20 blocos paletizados por hora, considerando o acoplamento e desacoplamento da carga. Para o equipamento F6S este número vale 40/hora.
- A lança do modelo F4R é mais longa, facilitando o trabalho das empilhadeiras que ficam no solo e posicionam a carga. Para o equipamento F4R, para cada bloco, a empilhadeira gasta 6 minutos. Já para o modelo F6S uma empilhadeira gasta 4 minutos para posicionar cada carga.
- Por questões de balanceamento da carga de trabalho nos pisos superiores, o equipamento
 F4R não pode elevar mais do que 75% da carga total elevada.

Escreva um modelo de de P.L. que minimize a carga de trabalho das empilhadeiras, sabendo que uma carga de 120 blocos precisa ser transportada do solo aos pisos superiores da obra em até 240 minutos.

SOLUÇÃO:

	F4R	F6S		
Tempo da empilhadeira (min/bloco)	6,00	4,00	Lin	nite
Tempo gasto pela grua (min./bloco)	3,00	1,50	<=	240 min
Produção mínima	1,00	1,00	>=	120 blocos
Proporção	1,00	-3,00	<=	0,00

Variáveis de decisão:

x: número de blocos transportados pela grua F4R;

y: número de blocos transportados pela grua F6S.

$$min Z = 6x + 4y$$

s. a.:

$$3x + 1.5y \le 240$$

$$x + y \ge 120$$

$$x - 3y \le 0$$
 (equivalente a $x \le (x + y) * 0.75$)

$$x, y \ge 0$$

Forma padrão:

$$min Z = 6x + 4y + M * a1$$

s. a.:

$$3x + 1.5y + f1 = 240$$

$$x + y - e1 + a1 = 120$$

$$x - 3y + f2 = 0$$

$$x, y, f1, f2, e1, a1 \ge 0$$

VB	-	X	у	f1	f2	e1	a1	b	b/A _{ij}
VΔ		6,00	4,00	0,00	0,00	0,00	1000,00		
fl	0,0	3	1 1/2	1	0	0	0	240	160
al	1.000,0	1	1	0	0	-1	1	120	120
f2	0,0	1	-3	0	1	0	0	0	0
ΔJ	-	-994	-996	0	0	1000	0	-	-
	-								
VD	-	X	у	f1	f2	e1	a1	b	b/A _{ij}
VB	-	x 6,00	y 4,00	f1 0,00	f2	e1 0,00	a1 1000,00	b	b/A _{ij}
VB fl	0,0							b 60	b/A _{ij}
		6,00	4,00	0,00	0,00	0,00	1000,00		b/A _{ij}
fI	0,0	6,00 1 1/2	4,00	0,00	0,00	0,00	1000,00	60	b/A _{ij}

Logo, o ponto ótimo é (0,120), ou seja, somente o equipamento F6S deve operar, transportando toda a carga. A folga no tempo de 240 minutos será de 60 minutos. E as empilhadeiras precisarão trabalhar por 8 horas para o transporte dos blocos no canteiro de obras.

Solução gráfica:

Exercício 07: Em uma fábrica de equipamentos industriais, o gerente de produção deve estabelecer o nível ótimo de produção ao longo de dois períodos de planejamento, considerando uma série de custos, demandas, balanço de estoques e restrições de produção. Estes dados são mostrados na tabela a seguir. Toda a demanda deve ser atendida no período em que ocorre. O estoque inicial é de 8 unidades e ao final do segundo período devem restar pelo menos 20 unidades em estoque. O custo de armazenagem é de R\$ 2,00/(unidades.mês) e deve ser calculado sobre o estoque médio. A capacidade de produção é de 30 unidades no mês 1 e de 60 unidades no mês 2. O custo de produção é R\$ 8,00/unidade no mês 1 e de R\$ 10,00/unidade no mês 2.

Símbolo	Dados	Período 1	Período 2
D	Demanda	12	15
EI	Estoque inicial dado	8	1
	Restrição de estoque final	-	20
CEu	Custo do estoque (R\$/(unid.mês))	2	2
CVu	Custo de produção (R\$/unidade)	8	10
СарР	Capacidade de produção (unidades/mês)	30	60

Algumas considerações:

O estoque inicial do mês 2 será o estoque final do mês 1.

O estoque médio do período é a média simples entre o estoque inicial e o estoque final no período.

$$EM_i = \frac{EI_i + EF_i}{2}$$

O estoque final no período obedece à relação:

$$EF_i = EI_i + P_i - D_i$$

Escreva um modelo de P.L. que minimiza os custos totais. Resolva através do método simplex e interprete os resultados. Qual a folga na capacidade de produção? Esta informação pode ser lida no tableau?

SOLUÇÃO:

As variáveis de decisão:

 P_i : P1 e P2.

FO:

$$min = 8.P_1 + 10.P_2 + \frac{CEu}{2} \left[\frac{8 + (8 + P_1 - 12)}{2} + \frac{(8 + P_1 - 12) + (8 + P_1 - 12 + P_2 - 15)}{2} \right]$$

$$min = 8.P_1 + 10.P_2 + 3P_1 + P_2 - 19$$

$$min = 11.P_1 + 11.P_2 - 19$$

s.a.:

Restrições de produção:

$$P_1 \le 30$$

$$P_2 \le 60$$

Estoque final deve ser positivo:

$$EI_1 + P_1 - D_1 \ge 0$$
$$8 + P_1 - 12 \ge 0 \rightarrow P_1 \ge 4$$

Ε

$$EI_2 + P_2 - D_2 \ge 0$$
 $(8 + P_1 - 12) + P_2 - 15 \ge 0 \rightarrow P_1 + P_2 \ge 19$

Esta última restrição pode ser substituída por:

$$(8 + P_1 - 12) + P_2 - 15 \ge 20$$
$$P_1 + P_2 \ge 39$$

O modelo pode ser escrito como:

$$min = 11.P_1 + 11.P_2 - 19$$

s.a.:

 $P_1 \leq 30$

 $P_2 \le 60$

 $P_1 \ge 4$

 $P_1 + P_2 \ge 39$

 $P_1, P_2 \ge 0$

VB	-	Х	у	f1	f2	e1	a1	e2	a2	b	b/A _{ij}
		11	11	0	0	0	1000	0	1000		
fI	0	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	30,00	30,00
f2	0	0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00	60,00	#DIV/0!
al	1000	1,00	0,00	0,00	0,00	-1,00	1,00	0,00	0,00	4,00	4,00
<i>a</i> 2	1000	1,00	1,00	0,00	0,00	0,00	0,00	-1,00	1,00	39,00	39,00
ΔJ	-	- 1989,00	- 989,00	0,00	0,00	1000,00	0,00	1000,00	0,00	-	-
		,	,	•						•	
VB	-	X	y	f1	f2	e1	a1	e2	a2	b	b/A _{ij}
V D		11	11	0	0	0	1000	0	1000		
fl	0	0,00	0,00	1,00	0,00	1,00	-1,00	0,00	0,00	26,00	#DIV/0!
f2	0	0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00	60,00	60,00
x	11	1,00	0,00	0,00	0,00	-1,00	1,00	0,00	0,00	4,00	#DIV/0!
a2	1000	0,00	1,00	0,00	0,00	1,00	-1,00	-1,00	1,00	35,00	35,00
ΔJ	1	0,00	- 989,00	0,00	0,00	-989,00	1989,00	1000,00	0,00	-	-
VB	-	X	y	f1	f2	e1	a1	e2	a2	b	b/A _{ij}
VБ		11	11	0	0	0	1000	0	1000		
fI	0	0,00	0,00	1,00	0,00	1,00	-1,00	0,00	0,00	26,00	
f2	0	0,00	0,00	0,00	1,00	-1,00	1,00	1,00	-1,00	25,00	
x	11	1,00	0,00	0,00	0,00	-1,00	1,00	0,00	0,00	4,00	
у	11	0,00	1,00	0,00	0,00	1,00	-1,00	-1,00	1,00	35,00	
ΔJ	-	0,00	0,00	0,00	0,00	0,00	1000,00	11,00	989,00	-	-

A produção será de 4 unidades no primeiro mês e de 35 unidades no segundo, com Z= R\$ 410.

A folga de capacidade corresponde aos valores de f1 e f2 no último tableau, ou seja, 26 e 25, respectivamente.

Os dados no formato de planilha como a solução ótima constam nesta tabela:

Símbolo	Dados	Período 1	Período 2	
D	Demanda	12	15	
EI	Estoque inicial dado	8	-	
	Restrição de estoque final	-	20	
CEu	Custo do estoque (R\$/(unid.mês))	2	2	
CVu	Custo de produção (R\$/unidade)	8	10	
CapP	Capacidade de produção (unidades/mês)	30	60	
				•
	CÁLCULO.			
EI	Estoque inicial	8	0	
EF	Estoque final	0	20	
EM	Estoque médio no mês	4	10	SOMA
CEM	Custo mensal de armazenagem	8	20	28
Р	Produção mensal	4	35	39
СР	Custo de produção mensal	32	350	382
СТ	Custo Total (arm. + prod.)	40	370	410

LEGENDA:

