SSD

1 Spacecraft System Design

Mission concept:

- subject (what for)
- orbit and constellation
- payload, bus
- launch element
- ground element
- mission operations
- command, communication, control

2 Space Dynamics/Kepler Orbits

Typical coordinate systems:

- spacecraft-fixed
 - Mittelpunkt des Satelliten = Ursprung
 - nadir = z-Achse, nominale Geschwindigkeit = x-Achse
 - gut, um Position und Orientierung der Satelliteninstrumente festzustellen
- \bullet earth-fixed
 - Mittelpunkt der Erde = Ursprung
 - durch greenwich meridian = x-Achse
 - Geolocation, Satellitenbewegung
- $\bullet\,$ roll, pitch and yaw-coordinates

- celestial coordinates
 - Mittelpunkt der Erde = Ursprung
 - Richtung Frühlingspunkt = x-Achse
 - Orbitanalyse, Astronomie

Keplergesetze

- 1. der Orbit eines jeden Planeten ist eine Ellipse, wobei die Sonne in einem der Fixpunkte liegt
- 2. die Verbindungslinie zwischen Sonne und Planet überstreicht in gleichen Zeiten gleiche Flächen
- 3. die Quadrate der Umlaufzeiten sind proportional zu den Kuben der großen Halbachsen

Ellipsendinge

- a . . . große Halbachse
- ε , e ... Exzentrizität, "Abplattung" der Ellipse (ε =0: Kreis, ε =1: Parabel, $0 < \varepsilon < 1$: Ellipse)

Begriffe:

- Periapsis: Punkt der Ellipse, der am nähesten an dem Zentralkörper liegt (bei Sonne: Perihel, bei Erde: Perigäum)
- Apoapsis: Punkt der Ellipse, der am weitesten entfernt vom Zentralkörper liegt (bei Sonne: Apohel, bei Erde: Apogäum)
- Distanz zu Periapsis $r_p = a(1-\varepsilon)$, Distanz zu Apoapsis $r_a = a(1+\varepsilon)$

6 Bahnelemente:

- große Halbachse a
- Exzentrizität ε
- inclination i
- right ascension of the ascending node Ω
- argument of perigee ω
- \bullet true anomaly ν

Lieblingsformel

$$T = 2\pi \sqrt{\frac{a^3}{\mu}}$$

Change of the right ascension of the ascending node

$$\Delta\Omega = -\frac{3\pi J_2 R_E^2}{a^2 (1-\varepsilon^2)^2} cos(i)$$

Change of the argument of perigee

$$\Delta \omega = \frac{3\pi J_2 R_E^2}{2a^2 (1 - \varepsilon^2)^2} (4 - 5sin^2(i))$$

Orbits

1. Highly Elliptical Orbit HEO

- hohe Exzentrizität
- große Halbachsen
- dadurch lange Kontakdauer zum Satelliten
- \bullet Werte für Perigäum: 200 bis 15.000 km
- Werte für Apogäum: 50.000 bis 140.000 km
- für Forschung (z.B. Weltraumteleskope), Telekommunikation, Militär
- Beispiel: Molniya-Orbit (feste Inklination von 63,4°, Periodendauer von einem halben Sterntag (23h56m4s))

2. Sun-Synchronous Orbit

- Höhe und Inklination werden so kombiniert, dass ein Satellite aus Sicht der Sonne immer auf dem selben Orbit ist
- \bullet Höhe: 600-800 km
- Inklination: leicht retrograd ($\approx 98^{\circ}$)
- Umlaufdauer: 96-100min

3. Geostationary Orbit GEO

- kreisförmiger Orbit
- \bullet Höhe: 35.786km
- Umlaufdauer: 24h
- Wettersatelliten, Kommunikationssatelliten, Fernsehsatelliten

Subsatellite Point = intersection of the line between satellite and earth center with the earth's surface Hohmann Transfer

• Calculate a transfer between two circular orbits with radius r_A to r_B . The velocity at pericenter of the transfer ellipse:

$$v_P^2 = 2\mu \left(\frac{1}{r_A} - \frac{1}{r_A + r_B}\right) = 2\mu \frac{r_B}{r_A(r_A + r_B)}$$

• The required Δv_A to inject from the transfer orbit:

$$\Delta v_A = v_P - v_A = \sqrt{\frac{\mu}{r_A}} \left(\sqrt{\frac{2r_B}{r_A + r_B}} - 1 \right)$$

3

• The required Δv to inject from the transfer orbit into orbit with r_B :

$$\Delta v_B = v_B - v_{\rm apo} = \sqrt{\frac{\mu}{r_B}} \left(1 - \sqrt{\frac{2r_A}{r_A + r_B}} \right)$$

where v_B is the circular velocity at r_B .

• The Hohmann transfer is the most energy-efficient transfer between two circular orbits.

$$\Delta v_{\rm total} = \Delta v_A + \Delta v_B = \sqrt{\mu} \left[\sqrt{\left(\frac{2}{r_A} - \frac{2}{r_A + r_B}\right)} - \sqrt{\frac{1}{r_A}} + \sqrt{\frac{2}{r_B} - \frac{2}{r_A + r_B}} - \sqrt{\frac{1}{r_B}} \right]$$

3 Mission Analyses

Earth-Synchronous Orbit

- the ground track repeats after a specific period of time
- Earth's rotation rate is the sidereal rotation period = sidereal day $\tau_{\scriptscriptstyle E}$
- τ_E is varying with time $\tau_E = 86164.10555 + 0.15 \cdot C$ [s] where C is the centuries since year 2000
- as the Earth rotates eastward, the satellite is thus moving relative to the surface in westward direction by

$$\Delta\Phi_r = 2\pi \frac{T}{\tau_{\scriptscriptstyle E}} \, [{\rm rad/rev}]$$

- second effect influencing the shift of the subsatellite point is the rotation of the satellite's orbit plane $\Delta\Omega$
- as $\Delta\Omega$ is positive in eastward direction, these two effects are combined to the total angular shift $\Delta\Phi$ at subsequent equator passages

$$\Delta \Phi = \Delta \Phi_r - \Delta \Omega \text{ [rad/rev]}$$

• to be Earth-Synchronous:

$$n\Delta\Phi = m \cdot 2\pi$$

Sun-Synchronous Orbit

- die Erde braucht $\tau_S = 3.155815 \cdot 10^7 s$, um einmal um die Sonne zu kreisen
- bei einem sonnensynchronen Orbit muss der Winkel zwischen Sonnenrichtung und Orbitebene konstant bleiben
- $\bullet\,$ also muss sich die Ebene pro Tag um einen Winkel θ drehen

$$\theta = 2\pi \frac{\tau_{\scriptscriptstyle E}}{\tau_{\scriptscriptstyle S}} \ [\mathrm{rad/day}] = 2\pi \frac{\tau_{\scriptscriptstyle E}}{\tau_{\scriptscriptstyle S}} \frac{T}{\tau_{\scriptscriptstyle E}} \ [\mathrm{rad/rev}]$$

Earth- and Sun-Synchronous Orbit

•

$$\Delta\Omega = \theta \Rightarrow T\left(\frac{1}{\tau_{\scriptscriptstyle E}} - \frac{1}{\tau_{\scriptscriptstyle S}}\right) = \frac{m}{n}$$

• angular shift between two subsequent orbits

$$\Delta \Phi = \Delta \Phi_r - \Delta \Omega = 2\pi T \left(\frac{1}{\tau_{\scriptscriptstyle E}} - \frac{1}{\tau_{\scriptscriptstyle S}}\right) \ [{\rm rad/rev}]$$

worst case between subsequent orbits $\Delta \Phi \cdot R_E$.

Eclipse periods angle between Earth-Sun vector and normal vector to orbit plane: $\sin \beta = \vec{s} \cdot \vec{n}$ Earth central angular radius at entry into eclipse: $\beta^* = \sin^{-1}\left(\frac{R_E}{h + R_E}\right)$

Angular arc of orbit in shadow: $2\cos^{-1}\left(\frac{\cos\beta^*}{\cos\beta}\right)$ Ground Contact and Coverage Analyses altitude h, visible horizon characterized by angles ρ and λ_0 : $\rho + \lambda_0 = 90^{\circ}$

$$R_E = (R_E + h)\cos \lambda_0$$
$$= (R_E + h)\sin \rho$$

observe Λ_t, Θ_t (long,lat) from known orbit position of satellite, characterized by subsatellite point Λ_s, Θ_s . characteristic paramters:

- nadir angle η
- earth central angle λ
- spacecraft elevation angle ε

calculate nadir angle η :

$$\tan \eta = \frac{\frac{R_E}{R_E + h} \sin \lambda}{1 - \frac{R_E}{R_E + h} \cos \lambda}$$
$$\lambda + \eta + \varepsilon = 90^{\circ}$$

 λ_{max} : maximum earth central angle \Rightarrow swath width $2\lambda_{\text{max}}$ perpendicular to groundtrack on surface. Time in view T_{view} for circular orbit with period T:

$$T_{\text{view}} = \frac{T}{180^{\circ}} \cos^{-1} \left(\frac{\cos \lambda_{\text{max}}}{\cos \lambda} \right)$$

ground station contact periods

- $\sin \eta_{\max} = \cos \varepsilon_{\min} \frac{R_E}{R_E + h}$
- $\lambda_{\rm max} = 90^{\circ} \varepsilon_{\rm min} \eta_{\rm max}$
- max range satellite \leftrightarrow groundstation: $D_{\max}=R_E\frac{\sin\lambda_{\max}}{\sin\eta_{\max}}$
- total time in view: $T_{\rm view} = \frac{T}{180^{\circ}} \cos^{-1} \left(\frac{\cos \lambda_{\rm max}}{\cos \lambda_{\rm min}} \right)$

4

- 5 Mechanics
- 6 Thermal Engineering
- 7 Rocket Propulsion
- 8 TT&C
- 9 Power Generation
- 10 Power System
- 11 Thermal Testing
- 12 Spacecraft Operations