

- ★ Super Low Gate Charge
- ★ 100% EAS Guaranteed
- ★ Green Device Available
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology

Product Summary

BVDSS	RDSON	ID
60V	6.2mΩ	60A

Description

The XR60N06 is the high cell density trenched N-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The XR60N06 meet the RoHS and Green Product requirement 100% EAS guaranteed with full function reliability approved.

TO252-3L Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	60	V
V _G s	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	60	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	35	А
I _{DM}	Pulsed Drain Current ²	240	Α
EAS	Single Pulse Avalanche Energy ³	280	mJ
las	Avalanche Current		Α
P _D @T _C =25°C	Total Power Dissipation⁴	70	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
T_J	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter		Max.	Unit
Reja	Thermal Resistance Junction-Ambient ¹			°C/W
Rejc	Thermal Resistance Junction-Case ¹		2.0	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Parameter Conditions		Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	60			V
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA				V/°C
Passau	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =10A		62	8	mΩ
R _{DS(ON)}	Static Dialii-Source Off-Resistance	V_{GS} =4.5V , I_D =5A				11152
$V_{GS(th)}$	Gate Threshold Voltage	V _{GS} =V _{DS} . In =250uA	2.0	3	3.0	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	VGS-VDS, ID-250UA				mV/°C
	Drain Source Leakage Current	V _{DS} =60V , V _{GS} =0V , T _J =25°C			1	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =60V, V _{GS} =0V , T _J =100°C			100	· uA
I _{GSS}	Gate-Source Leakage Current	ate-Source Leakage Current $V_{GS} = \pm 20 \text{V}$, $V_{DS} = 0 \text{V}$			±100	nA
gfs	Forward Transconductance	$V_{DS}=5V$, $I_{D}=10A$	15			S
R _g	Gate Resistance V _{DS} =0V , V _{GS} =0V , f=1MHz					Ω
Qg	Total Gate Charge			56		nC
Q_{gs}	Gate-Source Charge	V_{DS} =50V , V_{GS} =10V , I_D =40A		10		
Q_{gd}	Gate-Drain Charge			16		
T _{d(on)}	Turn-On Delay Time			14.5		
Tr	Rise Time	VGS=10V, VDD=30V,		24		no
T _{d(off)}	Turn-Off Delay Time	RG=2.5Ω, ID=2A		45		ns
T _f	Fall Time			22		
C _{iss}	Input Capacitance			2873		
Coss	Output Capacitance V _{DS} =30V , V _{GS} =0V , f=1MHz Reverse Transfer Capacitance			252		pF
C _{rss}				205		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			60	Α
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =10A , T _J =250			1.2	V
t _{rr}	Reverse Recovery Time	IF=10A , di/dt=100A/μs ,		22		nS
Qrr	Reverse Recovery Charge	T _J =250		27		nC

FÈ he Ádata Á ested Ány Ásurface Ámounted Ánn Ás Á Ánch² FR-4 Ánoard Án thÁ2 OZÁsopper.

CÉ he Álata Áested Áby ÁpulsedÁ ápulse Ávidth Á 300 us Á áluty Ásycle Á 2% HE he EAS data shows Max. rating . The test condition is VDD=40V, VGS=10V, L=0.5mH.

LÉ he Ápower Álissipation Ás Áimited Áby Á 150°C junction Áemperature

E he data is theoretically the same as I_D and I_{DMA} in real applications Ás hould Ábe Áimited Áby Áotal Ápower Álissipation.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS (Curves)

Figure 1. Output Characteristics

- - -

Temperature ($^{\circ}$ C)

Figure 5. VGS(th) vs Junction Temperature

Figure 2. Transfer Characteristics

V_{GS} Gate-Source Voltage (V)

Figure 4. ID vs Junction Temperature

Temperature ($^{\circ}$ C)

Figure 6. Rdson Vs Junction Temperature

1000 Tueut 100 T

V_{SD} Source-Drain Voltage (V)

Figure 9. Source- Drain Diode Forward

Test Circuit

1) E_{AS} Test Circuits

2) Gate Charge Test Circuit:

3) Switch Time Test Circuit:

Package Mechanical Data-TO252-3L

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.10		2.50	0.083		0.098
A2	0		0.10	0		0.004
В	0.66		0.86	0.026		0.034
B2	5.18		5.48	0.202		0.216
С	0.40		0.60	0.016		0.024
C2	0.44		0.58	0.017		0.023
D	5.90		6.30	0.232		0.248
D1	5.30REF			0.209REF		
E	6.40		6.80	0.252		0.268
E1	4.63			0.182		
G	4.47		4.67	0.176		0.184
Н	9.50		10.70	0.374		0.421
L	1.09		1.21	0.043		0.048
L2	1.35		1.65	0.053		0.065
V1		7°			7°	
V2	0°		6°	0°		6°

Reel Spectification-TO252-3L

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
W	15.90	16.00	16.10	0.626	0.630	0.634
Е	1.65	1.75	1.85	0.065	0.069	0.073
F	7.40	7.50	7.60	0.291	0.295	0.299
D0	1.40	1.50	1.60	0.055	0.059	0.063
D1	1.40	1.50	1.60	0.055	0.059	0.063
P0	3.90	4.00	4.10	0.154	0.157	0.161
P1	7.90	8.00	8.10	0.311	0.315	0.319
P2	1.90	2.00	2.10	0.075	0.079	0.083
A0	6.85	6.90	7.00	0.270	0.271	0.276
В0	10.45	10.50	10.60	0.411	0.413	0.417
K0	2.68	2.78	2.88	0.105	0.109	0.113
Т	0.24		0.27	0.009		0.011
t1	0.10			0.004		
10P0	39.80	40.00	40.20	1.567	1.575	1.583