Project #4

Multicore Computing

Problem 2

Date	Jun 20, 2020
Instructor	Bongsoo Sohn
Std. Name	Junhyuck Woo
Std. ID	20145337

INDEX

INDEX	
ENVIRONMENT	
Single Thread Version	2
Thrust Version	2
SOURCE CODE	3
Single Thread Version	3
Thrust Version	4
OUTPUT	5
Single Thread Version	5
Thrust Version	5
EXPERIMENTAL RESULT	6

ENVIRONMENT

Single Thread Version

TT			
Hard	ware		
	MacBook Pro (15-inch, 2017)		
	Processor: 2.8 GHz Quad-Core Intel Core i7		
	Memory: 16GB 2133 MHz LPDDR3		
	Memory. 100D 2133 MHZ DI DDK3		
Operating System			
	macOS Catalina, ver: 10.15.4		
	macos Catamia, ver. 10.15.4		
IDE (Integrated Development Environment)			
I —	· •		
	Visual Studio Code 1. 45.1		
	gcc version 8.4.0 (Homebrew GCC 8.4.0_1)		
Testing Environment			
	iTerm2		
	Build 3.3.9		
	openjdk 14.0.1 2020-04-14		
	OpenJDK Runtime Environment (build 14.0.1+7)		
	1		
	OpenJDK 64-Bit Server VM (build 14.0.1+7, mixed mode, sharing)		

Thrust Version

2 222 675	
Hard	lware
	Desktop
	Processor: AMD Ryzen 5 2600X Six-Core Processor
	Memory: 16GB
	GPU: GeForce GTX 107
Onon	noting Creators
Oper	rating System
	Ubuntu, ver: 20.04 LTS
IDE ((Integrated Development Environment)
	Visual Studio Code 1. 45.1
	CUDA ver: 10.2
	gcc (Ubuntu 7.5.0-6ubuntu2) 7.5.0
	g++ (Ubuntu 7.5.0-6ubuntu2) 7.5.0
	nvcc ver 10.2.89
_	ng Environment
Ш	iTerm2 (Used for terminal)
	Build 3.3.9

SOURCE CODE

Single Thread Version

```
// Writer: Junhyuck Woo
// Lecture: Multicore Computing
// Organization: Chung-Ang University
// Deadline: June3 20, 2020
// Project #4
// - Single Thread
#include <iostream>
#include <time.h>
#include <vector>
using namespace std;
#define N 2000000.0
int increase()
  static int i = 1;
  return i++;
int main(int argc, char* argv[])
  double sum = 0;
  double\ exec\_time = 0;
  float tmp = 0;
  clock_t start_time, end_time;
   vector<double> X(N);
   vector < double > Z(N);
  // Start timer
  start_time = clock();
  // initialize X to 0,1,2,3, ....
  generate(X.begin(), X.end(), increase);

// Divide X as N
   for (int i=0; i<N; i++) {
     X[i] = X[i] / N;
   // Calculation
   for (int i=0; i<N; i++) {
     Z[i] = 4.0 / (X[i] * X[i] + 1); // Z = 4.0 / (X*X + 1)
     Z[i] = Z[i] / N;
                             //Z = Z * (1/N)
   // Sum the calculation result
   for (int i=0; i<N; i++) {
    sum += Z[i];
  // End timer
  end\_time = clock();
  exec\_time = (double)(end\_time - start\_time)*1000 / CLOCKS\_PER\_SEC;
  // Print the result
  cout <<"N: 2000000.0" << end1;\\
  cout << "Excution Time: " << exec_time << " ms" << endl;
  cout << "Result: " << sum << endl;
   return 0;
```

Thrust Version

```
// Writer: Junhyuck Woo
// Lecture: Multicore Computing
// Organization: Chung-Ang University
// Deadline: June3 20, 2020
// Project #4
// - Thrust
#include <thrust/fill.h>
#include <thrust/reduce.h>
#include <thrust/sequence.h>
#include <thrust/transform.h>
#include <thrust/device_vector.h>
#include <iostream>
#include <time.h>
using namespace std;
#define N 2000000.0
int main(int argc, char* argv[])
  float sum = 0;
  clock t start time, end time;
  double exec_time = 0;
  // allocate three device_vectors
  thrust::device_vector<float> X(N);
  thrust::device_vector<float> Y(N);
  thrust::device_vector<float> Z(N);
  // Start timer;
  start_time = clock();
  // initialize X to 0,1,2,3, ....
  thrust::sequence(X.begin(), X.end());
  thrust::fill(Y.begin(), Y.end(), N);
  // Divide X as N
  thrust::transform(X.begin(), X.end(), Y.begin(), X.begin(), thrust::divides<float>());
  thrust::transform(X.begin(),\ X.end(),\ X.begin(),\ X.begin(),\ thrust::multiplies < float > ()); //\ X = X*X
  thrust::fill(Y.begin(), Y.end(), 1.0); // Y <- 1.0
  thrust::transform(X.begin(), X.end(), Y.begin(), X.begin(), thrust::plus<float>()); // X = X + 1
  thrust::fill(Y.begin(), Y.end(), 4.0); // Y <- 4.0
  thrust::transform(Y.begin(), Y.end(), X.begin(), Z.begin(), thrust::divides<float>()); // z = 4.0 / X
  thrust::fill(Y.begin(), Y.end(), N);
  thrust::transform(Z.begin(), Z.end(), Y.begin(), Z.begin(), thrust::divides < float>()); // z = z / N \\
  // Sum the calculation result
  sum = thrust::reduce(Z.begin(), Z.end(), (float)0.0, thrust::plus<float>());
  // End timer
  end_time = clock();
  exec_time = (double)(end_time - start_time)*1000 / CLOCKS_PER_SEC;
  // Print the result
  cout << "N: 2000000.0" << end1;
  cout << "Excution Time: " << exec_time << " ms" << endl;
  cout << "Result: " << sum << endl;
  return 0;
```

OUTPUT

Single Thread Version

Thrust Version

```
swook@swook-desktop: ~/jw_test

swook@swook-desktop
swook@swook-desktop
thrust_ex.cu
swook@swook-desktop
-/jw_test
swook@swook-desktop: ~/jw_test
swook@swook-desktop
thrust_ex
-/jw_test
swook@swook-desktop
swook@swook-desktop
-/jw_test
swook@swook-desktop
swook.gov
swo
```

EXPERIMENTAL RESULT

▲ Fig. 1. Exec Time of integration

Type	Exec Time (ms)
Single Thread	68.423
Thrust	1.039

▲ TABLE 1

▲ Fig. 2. Performance of integration

Type	pe Performance (1/exec time)	
Single Thread	0.0146	
Thrust	0.9625	

▲ TABLE 2

From the result of execution, I could check the software which uses Thrust library shows the better performance. Because the given workload is the same, but the Thrust version finished the calculation in a short time.