ENGR 065: Circuit Theory

Problem Set #9

Read Chapter 15 from [1] and then solve the following problems.

Note: you can use the Laplace tables (included in Appendix) to solve these problems.

Problem 1: Find the Laplace transform of the following signals:

a)
$$v(t) = 8e^{-5t}$$
, $t > 0^{-1}$

b)
$$v(t) = (10e^{-1000t} - 5)u(t)$$

a)
$$v(t) = 8e^{-5t}$$
, $t > 0^-$
b) $v(t) = (10e^{-1000t} - 5)u(t)$
c) $v(t) = e^{-2t} + 4t - u(t)$, $t > 0^-$

d)
$$v(t) = 2u(t) + 2\sin(2t) - 2\cos(2t)$$
, $t > 0^-$

Recall: u(t) is a step function.

Problem 2

a) Let $v_1(t) = V_A e^{-\alpha t} u(t)$, where V_A and α are positive constants. Compute the Laplace transform of $\int_{0^{-}}^{t} V_{A} e^{-\alpha x} dx$

b) If
$$i(t) = 30e^{-1200t}u(t)$$
 mA, find the Laplace transform of $v(t) = 0.1 \frac{di(t)}{dt}$ [V]

c) Compute the Laplace transform of v(t), when

$$\frac{d^2}{dt^2}v(t) + 4\frac{dv(t)}{dt} + 3v(t) = 5e^{-2t}, \ v(0^-) = -2V, \quad \frac{dv}{dt}(0) = 2V/s$$

Problem 3: The switch has been open for a long time. At t = 0 the switch is closed.

- a) Determine the initial current $i_L(0)$.
- b) Find the differential equation for $i_L(t)$
- c) Transform the equation into s domain and obtain $I_L(s)$.

Problem 4: Consider the following RLC circuit.

- a) Compute the Laplace transform of the capacitor voltage v. Assume the following initial conditions $i(0^-) = a$, $v(0^-) = b$.
- b) Determine the time-domain expression for the capacitor voltage v(t), $t \ge 0$. Assume a very large resistance $R = \infty$ and b = 0.

Appendix: Laplace transforms and properties

Туре	$f(t) \ (t>0^-)$	F(s)
(impulse)	$\delta(t)$	1
(step)	u(t)	$\frac{1}{s}$
(ramp)	t	$\frac{1}{s^2}$
(exponential)	e^{-at}	$\frac{1}{s+a}$
(sine)	sin ωt	$\frac{\omega}{s^2 + \omega^2}$
(cosine)	$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
(damped ramp)	te^{-at}	$\frac{1}{(s+a)^2}$
(damped sine)	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
(damped cosine)	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$

Operation	f(t)	F(s)
Multiplication by a constant	Kf(t)	KF(s)
Addition/subtraction	$f_1(t) + f_2(t) - f_3(t) + \cdots$	$F_1(s) + F_2(s) - F_3(s) + \cdots$
First derivative (time)	$\frac{df(t)}{dt}$	$sF(s) - f(0^-)$
Second derivative (time)	$\frac{d^2f(t)}{dt^2}$	$s^2F(s) - sf(0^-) - \frac{df(0^-)}{dt}$
nth derivative (time)	$\frac{d^n f(t)}{dt^n}$	$s^n F(s) - s^{n-1} f(0^-) - s^{n-2} \frac{df(0^-)}{dt}$
		$-s^{n-3}\frac{df^{2}(0^{-})}{dt^{2}}-\cdots-\frac{d^{n-1}f(0^{-})}{dt^{n-1}}$
Time integral	$\int_0^t f(x) \ dx$	$\frac{F(s)}{s}$
Translation in time	f(t-a)u(t-a), a>0	$e^{-as}F(s)$
Translation in frequency	$e^{-at}f(t)$	F(s+a)
Scale changing	f(at), a > 0	$\frac{1}{a}F\left(\frac{s}{a}\right)$
First derivative (s)	tf(t)	$-\frac{dF(s)}{ds}$
nth derivative (s)	$t^n f(t)$	$(-1)^n \frac{d^n F(s)}{ds^n}$
s integral	$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(u) \ du$

References

[1] C. Alexander and M. Sadiku "Fundamentals of Electric Circuits", 7th Edition, 2021, McGraw-Hill