Use the usual conventions for labeling angular momentum quantum numbers: For $\mathbf{J} = \mathbf{J}_1 + \mathbf{J}_2$, use m_i, m, j_i, j as quantum numbers for $J_{iz}, J_z, \mathbf{J}_i^2, \mathbf{J}^2$, respectively, and so on.

I. ELECTRON-POSITRON SYSTEM

Let S^- and S^+ be the spin operators for an electron and positron, respectively. The Hamiltonian for the composite system is

$$H = A\mathbf{S}^{-} \cdot \mathbf{S}^{+} + \frac{e\mathbf{B} \cdot (\mathbf{S}^{-} - \mathbf{S}^{+})}{mc}.$$

- (a) What are the four energy eigenvalues in the limit $A \ll eB/(\hbar mc)$ $(A \to 0)$?
- (b) What are the four energy eigenvalues in the limit $A \gg eB/(\hbar mc)$ $(B \to 0)$?
- (c) In which limit is the singlet spinor $(\chi_{\uparrow}^- \chi_{\downarrow}^+ \chi_{\downarrow}^- \chi_{\uparrow}^+)/\sqrt{2}$ an energy eigenstate? Solution. Without loss of generality, assume $\mathbf{B} = B\hat{\mathbf{z}}$. We may rewrite the Hamiltonian as

$$H = A(S_x^- S_x^+ + S_y^- S_y^+ + S_z^- S_z^+) + \frac{eB}{mc} \left(S_z^- - S_z^+ \right).$$

(a) In the limit $A \to 0$, the Hamiltonian becomes

$$H_{A\to 0} = \frac{eB}{mc} \left(S_z^- - S_z^+ \right).$$

The eigenvectors are simply all the combinations obtained by selecting one eigenvector for each S_z operator; i.e. $\chi_{\uparrow}^- \chi_{\uparrow}^+$, $\chi_{\uparrow}^- \chi_{\downarrow}^+$, $\chi_{\downarrow}^- \chi_{\uparrow}^+$, and $\chi_{\downarrow}^- \chi_{\downarrow}^+$. The energy eigenvalues are simply 0, $\hbar eB/(mc)$, $-\hbar eB/(mc)$, and 0, respectively.

(b) In the limit $B \to 0$, we must solve the eigenvalue problem. Note that we may write (in the $\chi^- \otimes \chi^+$ representation)

$$H_{B\to 0} = A\mathbf{S}^- \cdot \mathbf{S}^+ = A(S_x^- S_x^+ + S_y^- S_y^+ + S_z^- S_z^+) = A(S_z^- S_z^+ + \frac{1}{2} S_+^- S_+^+ + \frac{1}{2} S_-^- S_+^+)$$

$$= A \left[(S_z^- \otimes \mathbb{1}^+)(\mathbb{1}^- \otimes S_z^+) + \frac{1}{2} (S_+^- \otimes \mathbb{1}^+)(\mathbb{1}^- \otimes S_-^+) + \frac{1}{2} (S_-^- \otimes \mathbb{1}^+)(\mathbb{1}^- \otimes S_+^+) \right],$$

where we have used $S_{\pm} = S_x \pm i S_y$ (this wasn't really necessary as we will use Mathematica anyway). Using Mathematica, we obtain

$$H_{B\to 0} = A \begin{pmatrix} \hbar^2/4 & 0 & 0 & 0\\ 0 & -\hbar^2/4 & \hbar^2/2 & 0\\ 0 & \hbar^2/2 & -\hbar^2/4 & 0\\ 0 & 0 & 0 & \hbar^2/4 \end{pmatrix}.$$

We find that the eigenvalues are $A\hbar^2/4$ (with multiplicity 3) and $-3A\hbar^2/4$. The eigenvectors $\chi_{\downarrow}^-\chi_{\downarrow}^+$, $\chi_{\uparrow}^-\chi_{\uparrow}^+$, and $\left(\chi_{\uparrow}^-\chi_{\downarrow}^+ + \chi_{\downarrow}^-\chi_{\uparrow}^+\right)/\sqrt{2}$ all have eigenvalue $A\hbar^2/4$, while the remaining eigenvector is $\left(\chi_{\uparrow}^-\chi_{\downarrow}^+ - \chi_{\downarrow}^+\chi_{\uparrow}^+\right)/\sqrt{2}$ with eigenvalue $-3A\hbar^2/4$.

(c) It is clear that the singlet spinor $(\chi_{\uparrow}^-\chi_{\downarrow}^+ - \chi_{\downarrow}^-\chi_{\uparrow}^+)/\sqrt{2}$ is not an eigenvector of $H_{A\to 0}$. However, we see that it is an eigenvector of $H_{B\to 0}$, with negative energy eigenvalue since A>0.

II. FERMI'S GOLDEN RULE

A perturbing potential $\lambda \mathbf{J}_1 \cdot \mathbf{J}_2$ is applied to a state of uncoupled spins with angular momentum quantum numbers $j_1 = j_2 = 1$. Use Fermi's golden rule to determine which transitions to states of total angular momentum j are allowed.

Solution. Let $H' = \lambda \mathbf{J}_1 \cdot \mathbf{J}_2$ be the perturbing Hamiltonian. Fermi's golden rule states that for a time-independent perturbing Hamiltonian the only allowed transitions must have the same energy. Let $|j_1, m_1; j_2, m_2\rangle$ denote the initial ket. Now consider the projection of $H'|j_1, m_1; j_2, m_2\rangle$ to an arbitrary state $|j'_1, m'_1; j'_2, m'_2\rangle$. (We can just ignore the original Hamiltonian H^0 .)

$$\begin{split} \langle \alpha' | \, H' \, | \alpha \rangle &:= \langle j'_1, m'_1; j'_2, m'_2 | \, H' \, | j_1, m_1; j_2, m_2 \rangle \\ &= \langle j'_1, m'_1; j'_2, m'_2 | \, \lambda \mathbf{J}_1 \cdot \mathbf{J}_2 \, | j_1, m_1; j_2, m_2 \rangle \\ &= \lambda \, \langle j'_1, m'_1; j'_2, m'_2 | \, (J_{1x}J_{2x} + J_{1y}J_{2y} + J_{1z}J_{2z}) \, | j_1, m_1; j_2, m_2 \rangle \\ &= \lambda \, \langle j'_1, m'_1; j'_2, m'_2 | \, (J_{1z}J_{2z} + \frac{1}{2}J_{1+}J_{2-} + \frac{1}{2}J_{1-}J_{2+}) \, | j_1, m_1; j_2, m_2 \rangle \\ &= \lambda \, \langle j'_1, m'_1; j'_2, m'_2 | \, J_{1z}J_{2z} \, | j_1, m_1; j_2, m_2 \rangle + \frac{1}{2}\lambda \, \langle j'_1, m'_1; j'_2, m'_2 | \, J_{1+}J_{2-} \, | j_1, m_1; j_2, m_2 \rangle \\ &= \lambda \hbar^2 m_1 m_2 \delta^{j'_1}_{j_1} \delta^{m'_1}_{m_1} \delta^{j'_2}_{j_2} \delta^{m'_2}_{m_2} \\ &+ \frac{1}{2}\lambda \hbar^2 \sqrt{(j_1 - m_1)(j_1 + m_1 + 1)} \sqrt{(j_2 + m_2)(j_2 - m_2 + 1)} \delta^{j'_1}_{j_1} \delta^{m'_1}_{m_1 + 1} \delta^{j'_2}_{j_2} \delta^{m'_2}_{m_2 - 1} \\ &+ \frac{1}{2}\lambda \hbar^2 \sqrt{(j_1 + m_1)(j_1 - m_1 + 1)} \sqrt{(j_2 - m_2)(j_2 + m_2 + 1)} \delta^{j'_1}_{j_1} \delta^{m'_1}_{m_1 - 1} \delta^{j'_2}_{j_2} \delta^{m'_2}_{m_2 + 1} \\ &= \lambda \hbar^2 m_1 m_2 \delta^{j'_1}_{1} \delta^{m'_1}_{m'_1} \delta^{j'_2}_{1} \delta^{m'_2}_{m'_2} \\ &+ \frac{1}{2}\lambda \hbar^2 \sqrt{(1 - m_1)(m_1 + 2)} \sqrt{(1 + m_2)(2 - m_2)} \delta^{j'_1}_{1} \delta^{m'_1}_{m_1 + 1} \delta^{j'_2}_{1} \delta^{m'_2}_{m_2 - 1} \\ &+ \frac{1}{2}\lambda \hbar^2 \sqrt{(1 + m_1)(2 - m_1)} \sqrt{(1 - m_2)(m_2 + 2)} \delta^{j'_1}_{1} \delta^{m'_1}_{m_1 - 1} \delta^{j'_2}_{1} \delta^{m'_2}_{m_2 - 1} \\ &+ \frac{1}{2}\lambda \hbar^2 \sqrt{(1 + m_1)(2 - m_1)} \sqrt{(1 - m_2)(m_2 + 2)} \delta^{j'_1}_{1} \delta^{m'_1}_{m_1 - 1} \delta^{j'_2}_{1} \delta^{m'_2}_{m_2 - 1} \\ &+ \frac{1}{2}\lambda \hbar^2 \sqrt{(1 + m_1)(2 - m_1)} \sqrt{(1 - m_2)(m_2 + 2)} \delta^{j'_1}_{1} \delta^{m'_1}_{m_1 - 1} \delta^{j'_2}_{1} \delta^{m'_2}_{m_2 - 1} \\ &+ \frac{1}{2}\lambda \hbar^2 \sqrt{(1 + m_1)(2 - m_1)} \sqrt{(1 - m_2)(m_2 + 2)} \delta^{j'_1}_{1} \delta^{m'_1}_{m_1 - 1} \delta^{j'_2}_{1} \delta^{m'_2}_{m_2 - 1} \\ &+ \frac{1}{2}\lambda \hbar^2 \sqrt{(1 + m_1)(2 - m_1)} \sqrt{(1 - m_2)(m_2 + 2)} \delta^{j'_1}_{1} \delta^{m'_1}_{m_1 - 1} \delta^{j'_2}_{1} \delta^{m'_2}_{m_2 - 1} \\ &+ \frac{1}{2}\lambda \hbar^2 \sqrt{(1 + m_1)(2 - m_1)} \sqrt{(1 - m_2)(m_2 + 2)} \delta^{j'_1}_{1} \delta^{m'_1}_{m_1 - 1} \delta^{j'_2}_{1} \delta^{m'_2}_{m_2 - 1} \\ &+ \frac{1}{2}\lambda \hbar^2 \sqrt{(1 + m_1)(2 - m_1)} \sqrt{(1 - m_2)(m_2 + 2)} \delta^{j'_1}_{1} \delta^{m'_1}_{m_1 - 1} \delta^{j'_2}_{1} \delta^{m'_2}_{m_2 - 1} \\ &+ \frac{1}{2}\lambda \hbar^2 \sqrt{(1 + m_1)(2 - m_1)} \sqrt{$$

Clearly, we see that the only allowed transitions must have $j'_1 = j'_2 = 1$. In that case

$$\langle \alpha' | H' | \alpha \rangle = \lambda \hbar^2 m_1 m_2 \delta_{m_1}^{m'_1} \delta_{m_2}^{m'_2}$$

$$+ \frac{1}{2} \lambda \hbar^2 \sqrt{(1 - m_1)(m_1 + 2)} \sqrt{(1 + m_2)(2 - m_2)} \delta_{m_1 + 1}^{m'_1} \delta_{m_2 - 1}^{m'_2}$$

$$+ \frac{1}{2} \lambda \hbar^2 \sqrt{(1 + m_1)(2 - m_1)} \sqrt{(1 - m_2)(m_2 + 2)} \delta_{m_1 - 1}^{m'_1} \delta_{m_2 + 1}^{m'_2}.$$

The first term is nonzero if $m'_1 = m_1$ and $m'_2 = m_2$, as long as both m_1 and m_2 are nonzero. But we can ignore the first term since it corresponds to no transition. We require $m'_1 + m'_2 = m_1 + m_2$ for the remaining terms to be nonzero. Furthermore, m_1 and m_2 must increase/decrease by one while still preserving their sum; e.g. if m_1 increases by one then m_2 must decrease by one. Now, we enumerate each (m_1, m_2) . Adopting the new notation $|m_1, m_2\rangle$, we find the following nonzero

projections:

$$\langle 0, -1|H'|-1, 0\rangle = \lambda \hbar^{2},$$

$$\langle 0, 0|H'|-1, 1\rangle = \lambda \hbar^{2},$$

$$\langle -1, 0|H'| 0, -1\rangle = \lambda \hbar^{2},$$

$$\langle -1, 1|H'| 0, 0\rangle = \lambda \hbar^{2},$$

$$\langle 1, -1|H'| 0, 0\rangle = \lambda \hbar^{2},$$

$$\langle 1, 0|H'| 0, 1\rangle = \lambda \hbar^{2},$$

$$\langle 0, 0|H'| 1, -1\rangle = \lambda \hbar^{2},$$

$$\langle 0, 1|H'| 1, 0\rangle = \lambda \hbar^{2}.$$

Note that they all have the same energies.

III. SCHWINGER BOSONS

Let a and b refer to Schwinger bosons. Give the physical significance of the operators

$$K_{+} = a^{\dagger}b^{\dagger},$$
$$K_{-} = ab,$$

in terms of the corresponding spin representation. Give the nonvanishing matrix elements of K_+ . [Why is this question from the textbook incomplete?]

Solution. Recall that we have the following nonzero commutation relations:

$$[a, a^{\dagger}] = 1$$
 and $[b, b^{\dagger}] = 1$.

The number operators N_a and N_b are also defined as

$$N_a = a^{\dagger} a$$
 and $N_b = b^{\dagger} b$.

Let $|n_a, n_b\rangle$ be the eigenket of N_a and N_b with eigenvalue n_a and n_b , respectively. We obtain the following (Equation 3.95):

$$a^{\dagger} | n_a, n_b \rangle = \sqrt{n_a + 1} | n_a + 1, n_b \rangle, \quad a | n_a, n_b \rangle = \sqrt{n_a} | n_a - 1, n_b \rangle,$$

 $b^{\dagger} | n_a, n_b \rangle = \sqrt{n_b + 1} | n_a, n_b + 1 \rangle, \quad b | n_a, n_b \rangle = \sqrt{n_b} | n_a, n_b - 1 \rangle.$

Then,

$$\begin{split} K_{+} & | n_a, n_b \rangle = \sqrt{(n_a + 1)(n_b + 1)} \, | n_a + 1, n_b + 1 \rangle \,, \\ K_{-} & | n_a, n_b \rangle = \sqrt{n_a n_b} \, | n_a - 1, n_b - 1 \rangle \,. \end{split}$$

Let A be an index which uniquely labels each $|n_a, n_b\rangle$. The matrix elements of K_{\pm} in this representation is simply

$$(K_{+})_{A'A} := \langle n'_{a}, n'_{b} | K_{+} | n_{a}, n_{b} \rangle = \langle n_{a'}, n_{b'} | a^{\dagger}b^{\dagger} | n_{a}, n_{b} \rangle = \sqrt{(n_{a} + 1)(n_{b} + 1)} \delta_{a', a+1} \delta_{b', b+1},$$

$$(K_{-})_{A'A} := \langle n'_{a}, n'_{b} | K_{-} | n_{a}, n_{b} \rangle = \langle n_{a'}, n_{b'} | ab | n_{a}, n_{b} \rangle = \sqrt{n_{a}n_{b}} \delta_{a', a-1} \delta_{b', b-1}.$$

Now, note that $j := (n_a + n_b)/2$ and $m := (n_a - n_b)/2$. Therefore, since K_+ increases both n_a and n_b by one, then j is also increased by one, whereas m remains the same. Similarly, K_- decreases both n_a and n_b by one, therefore j is decreased by one while m is again unchanged. Thus, we can see the physical significance of K_+ and K_- . They act as a raising and lowering operator for j, respectively. Rewriting $n_a = j + m$ and $n_b = j - m$, we obtain in the new representation (indexed by J)

$$(K_{+})_{J'J} := \langle j', m' | K_{+} | j, m \rangle = \langle j', m' | \sqrt{(j+m+1)(j-m+1)} | j+1, m \rangle$$

$$= \sqrt{(j+m+1)(j-m+1)} \delta_{j',j+1} \delta_{m',m},$$

$$(K_{-})_{J'J} := \langle j', m' | K_{-} | j, m \rangle = \langle j', m' | \sqrt{(j+m)(j-m)} | j-1, m \rangle$$

$$= \sqrt{(j+m)(j-m)} \delta_{j',j-1} \delta_{m',m}.$$