Санкт-Петербургский национальный исследовательский у информационных технологий, механики и опти

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

учевный центр овщей физики фтф Примоугольной	
ГруппаР3114 Студент_Лагус Максим Преподаватель_Куксова П. А.	Работа выполнена 21.05.22 Отчет сдан Отчет принят

Отчет по лабораторной работе № 1.04 Исследование равноускоренного вращательного движения (маятник Обербека)

- 1. Цель работы.
 - Проверка основного закона динамики вращения.
 - Проверка зависимости момента инерции от положения масс относительно оси вращения.
- 2. Задачи, решаемые при выполнении работы.
 - Измерение времени падения грузов с различными массами, которые раскручивают вращательный маятник.
 - Вычисление значений исследуемых величин по приведенным формулам
 - Построение графиков зависимости по результатам измерений
- 3. Объект исследования.
 - Падающий груз и маятник Обербека.
- 4. Метод экспериментального исследования.
 - Многократные измерения.
- 5. Рабочие формулы и исходные данные.
 - Второй закон Ньютона:

$$ma = mg - T$$

– Ускорение а:

$$a = \frac{2h}{t^2}$$

– Угловое ускорение ε , где d - диаметр ступицы:

$$\varepsilon = \frac{2a}{d}$$

– Момент силы натяжения нити:

$$M = \frac{md}{2}(g - a)$$

- Основной закон динамики вращения для крестовины:

$$I\varepsilon = M - M_{_{\rm TP}}$$

– Момент инерции крестовины с грузом:

$$I = I_0 + 4m_{\rm VT}R^2$$

- Расстояние между осью О вращения и центром грузика:

$$R = l_1 - (n - 1)l_0 + \frac{1}{2}b$$

 Значение момента инерции крестовины для каждого положения грузов:

$$I = \frac{\sum_{i=1}^{3} (\varepsilon_{i} - \varepsilon_{cp}) (M_{i} - M_{cp})}{(\varepsilon_{i} - \varepsilon_{cp})^{2}}$$

Значение момента силы трения для каждого положения грузов:

$$M_{_{\rm TD}} = M - I\varepsilon$$

- Абсолютная погрешность прямых измерений:

$$\Delta x' = \sqrt{\Delta x_{\rm cp}^2 + \left(\frac{2}{3}\Delta_{_{\rm HX}}\right)^2}$$

- Относительная погрешность прямых измерений:

$$\varepsilon_{x} = \frac{\Delta_{x}}{x_{co}} * 100\%$$

- Абсолютная погрешность косвенных измерений:

$$\Delta_z = \sqrt{\left(\frac{\delta z}{\delta a} \Delta_a\right)^2 + \left(\frac{\delta z}{\delta b} \Delta_b\right)^2 \dots}$$

- Относительная погрешность косвенных измерений:

$$\Delta \varepsilon_{z} = \frac{\Delta_{z}}{Z_{cp}} * 100\%$$

6. Измерительные приборы:

Таблица 1

№ п/п	Наименование	Тип прибора	Используем ый диапазон	Погрешнос ть прибора
1	Цифровой секундомер	Секундомер	[0; 8,70] c	0,5 с
2	Линейка	Линейка	[0; 700] мм	0,5 мм

Таблица 2

Масса каретки	$(47.0 \pm 0.5) \Gamma$
Масса шайбы	$(220,0\pm0,5)\ \Gamma$

Масса грузов на крестовине	$(408,0\pm0,5)\ \Gamma$
Расстояние первой риски от оси	(57.0 ± 0.5) mm
Расстояние между рисками	(25.0 ± 0.2) mm
Диаметр ступицы	(46.0 ± 0.5) mm
Диаметр груза на крестовине	(40.0 ± 0.5) mm
Высота груза на крестовине	(40.0 ± 0.5) mm

7. Схема установки

Рис. 2. Стенд лаборатории механики (общий вид): I – основание; 2 – рукоятка сцепления крестовин; 3 – устройство принудительного трения; 4 – поперечина; 5 – груз крестовины; 6 – трубчатая направляющая; 7 – передняя крестовина; 8 – задняя крестовина; 9 – шайбы каретки; 10 – каретка; 11 – система передних стоек.

8. Результаты прямых измерений и их обработки:

Таблица 3

Magaz praya ya	Provid o		По.	ложение у	тяжелите	лей	
Масса груз, кг	Время, с	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
	$\mathbf{t_1}$	4,58	5,25	5,91	7,60	8,62	9,63
0,22	t_2	4,65	5,00	5,81	7,79	8,54	9,70
0,22	t_3	4,75	5,10	6,16	7,54	8,70	9,56
	t_{cp}	4,66	5,12	5,96	7,64	8,62	9,63
	$\mathbf{t_1}$	3,40	4,03	5,00	5,66	6,20	6,91
0,44	t_2	3,45	3,89	4,78	5,60	6,34	6,85
0,44	t_3	3,39	3,91	4,86	5,54	6,24	6,88
	\mathbf{t}_{cp}	3,41	3,94	4,88	5,6	6,26	6,88
	$\mathbf{t_1}$	2,60	3,26	3,94	4,55	5,20	5,67
0,66	t_2	2,70	3,28	3,95	4,54	5,19	5,79
0,00	t_3	2,56	3,10	4,00	4,53	5,26	5,70
	\mathbf{t}_{cp}	2,62	3,21	3,96	4,54	5,21	5,72
	$\mathbf{t_1}$	2,32	3,03	3,47	4,07	4,46	4,99
0,88	t_2	2,40	2,78	3,39	3,98	4,50	5,02
0,00	t_3	2,20	2,70	3,44	3,93	4,39	5,00
	t_{cp}	2,31	2,84	3,43	3,99	4,45	5,00

9. Расчет результатов косвенных измерений

		Расчет у	скорения	груза а		
масса, кг	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
0,22	0,06	0,05	0,04	0,02	0,02	0,02
0,44	0,12	0,09	0,06	0,04	0,04	0,03
0,66	0,20	0,14	0,09	0,07	0,05	0,04
0,88	0,26	0,17	0,12	0,09	0,07	0,06

	Расчет	углового	ускорения	я крестови	ины ε	
масса, кг	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
0,22	2,80	2,33	1,71	1,04	0,82	0,66
0,44	5,22	3,91	2,56	1,94	1,55	1,29
0,66	8,87	5,90	3,88	2,95	2,24	1,86
0,88	11,44	7,56	5,16	3,82	3,07	2,43

	Расчет	момента	силы натя	ин кинэжи	ти М	
масса, кг	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
0,22	0,05	0,05	0,05	0,05	0,05	0,05
0,44	0,10	0,10	0,10	0,10	0,10	0,10
0,66	0,15	0,15	0,15	0,15	0,15	0,15
0,88	0,20	0,20	0,20	0,20	0,20	0,20

		I, кі	* $_{\rm M}^2$		
1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
0,02	0,03	0,04	0,05	0,04	0,09
		M_{TP} ,	Н*м		
1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
0,01	0,01	0,02	0,01	0,00	0,01
		R,	M		
1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
0,08	0,10	0,13	0,15	0,18	0,20
		\mathbb{R}^2 ,	m^2		
1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
0,01	0,01	0,02	0,02	0,03	0,04

По методу наименьших квадратов найдем значения I_0 и $m_{\rm rp}$ $I_0=0,01~{\rm kr*m^2}$ $4m_{\rm rp}=1,62\Rightarrow m_{\rm rp}=0,41$

10. Расчет погрешностей измерений:

• Погрешность для первых значений

— Погрешность
$$\Delta t_{\rm cp1} = \sqrt{(\Delta t')^2 + \left(\frac{2}{3}\Delta_{\rm HX}\right)^2} \approx 0.21~{\rm c}$$
Доверительный интервал: $\Delta t' = t_{\alpha} * S_t \approx 0.21~{\rm c}$
— Погрешность $\Delta_a = \sqrt{\left(\frac{\delta a}{\delta t}\Delta_t\right)^2} = \sqrt{\left(\frac{-4h}{t_{\rm cp}^3}\Delta_t\right)^2} \approx 0.019 \frac{{\rm M}}{c^2}$
— Погрешность $\Delta_\varepsilon = \sqrt{\left(\frac{\delta \varepsilon}{\delta t}\Delta_t\right)^2} = \sqrt{\left(\frac{-8h}{d*t_{\rm cp}^3}\Delta_t\right)^2} \approx 0.91 \frac{{\rm pag}}{c^2}$
— Погрешность $\Delta_M = \sqrt{\left(\frac{\delta M}{\delta t}\Delta_t\right)^2} = \sqrt{\left(\frac{2mdh}{t_{\rm cp}^3}\Delta_t\right)^2} \approx 0~{\rm H}^*{\rm M}$

• Погрешность для I₀

$$\Delta_{I_0} = 2 * \sqrt{(\frac{1}{n} + \frac{R^4}{D}) \frac{\sum_{i=1}^n d_i^2}{n-2}} \approx 0,003 \text{ kg}^*\text{m}^2$$
 $\varepsilon_{I_0} = \frac{\Delta_{I_0}}{I_0} * 100\% \approx 55\%$

• Погрешность для m_{yr}

$$\Delta_{m_{ ext{yt}}} = rac{2}{4} \sqrt{rac{1}{D} rac{\sum_{i=1}^{n} d_{i}^{2}}{n-2}} pprox 0,001 \text{ kg}$$
 $arepsilon_{m_{ ext{yt}}} = rac{\Delta_{m_{ ext{yt}}}}{m_{ ext{yt}}} * 100\% pprox 1\%$

11. Графики

График зависимости Μ(ε)

График зависимости I(R²)

12. Окончательные результаты

Получены следующие величины:

- Первое значение $t_{\rm cp1} = (4,66 \pm 0,21)c$
- Первое значение $a_{\rm cp1} = (0,06 \pm 0,019) \frac{M}{c^2}$
- Первое значение $\varepsilon_{\rm cp1} = (2, 80 \pm 0, 91) \frac{{\rm pag}}{c^2}$
- Первое значение $M_{\rm cp1} = (0,05 \pm 0,00..)H$ * м
- Значение $m_{_{\mathrm{YT}}} = (0,61 \pm 0,001) H * м, \epsilon = 1\%$
- Значение $I_0 = (0,01 \pm 0,003)$ кг*м², $\epsilon = 55\%$

13. Выводы и анализ результатов работы.

В ходе выполнения работы были получены зависимости Μ(ε) и

 $I(R^2)$. Из графиков видно, что эта зависимость линейная, что подтверждает основной закон динамики вращения.

1/436,2	1 pucka	z packa	3 perces	ч риска	5 prices	6 pueses
m,	4,58 4,65 4,73	5,25	5,81 5,81 6,16	7,55	8,62	9,50
Ma	3,45	4,03 3,85 3,91	5 0 4 78 4,86	5,66 5,60 5,54	6,29	6,85
M	7,60 7,90 2,56	3,28 3,28 3,00	3,57	7,55 9,59 9,55	5,22 5,15 5,26	5,67 5,75 5,70
hy	2,32	3,03	3,77 3,39 5,44	4,07 3,98 3,53	4,50 4,50	4,95 5,02 5,00
	-		and real	22.04.2	2	