Introduction to computational models

Lab Assignment 1. Implementation of the multilayer perceptron

<u>Pedro Antonio Gutiérrez</u> pagutierrez@uco.es

Module "Introduction to computational models"
4th year of "Grado en Ingeniería Informática"
Especialidad Computación
Escuela Politécnica Superior
(Universidad de Córdoba)

22nd September 2021

Contents

Notation and architecture

Objectives of the lab assignment

- To familiarise the student with neural networks, in particular, with the multilayer perceptron.
- To implement the basic backpropagation algorithm for multilayer perceptrons.
- To check the effect of different parameters:
 - Network architecture.
 - Learning rate.
 - Momentum factor.
 - Early stopping by a validation set.
 - etc.

Backpropagation algorithm

- Please, read and analyse the theory notes.
- Pay special attention to the pseudo-code.
- Only two elements will be specified differently: the stop condition and a special decrement factor on the learning rate.

Stop condition

- Standard version, the algorithm stops if:
 - Training error does not decrease more than 0,00001 or increases, during 50 iterations (external loop).
- Validation version, the algorithm stops if:
 - Training error does not decrease more than 0,00001 or increases, during 50 iterations (external loop).
 - Validation error does not decrease more than 0,00001 or increases, during 50 iterations (external loop).

Decrementing learning rate in every layer

- It is interesting to include a different learning rate in every layer.
- Given that the weights in the first layers are more sensitive, the closer we are to the input layer the lower the learning rate can be.
- This can be done using the following equation

$$\eta_h = F^{-(H-h)}\eta, h \in \{1, \dots, H\}$$

where F if a decrement factor given by the user and η is the original learning rate.

• The learning rate only needs to be calculated once for every layer.

Decrementing learning rate in every layer

• For H = 2 y F = 2:

$$\eta_1 = 2^{-(2-1)}\eta = 2^{(-1)}\eta = \frac{\eta}{2}$$

$$\eta_2 = 2^{-(2-2)}\eta = 2^{(0)}\eta = \eta$$

• For H = 3 y F = 2:

$$\eta_1 = 2^{-(3-1)}\eta = 2^{(-2)}\eta = \frac{\eta}{4}$$

$$\eta_2 = 2^{-(3-2)}\eta = 2^{(-1)}\eta = \frac{\eta}{2}$$

$$\eta_3 = 2^{-(3-3)}\eta = 2^{(0)}\eta = \eta$$

Introduction to computational models

Lab Assignment 1. Implementation of the multilayer perceptron

Pedro Antonio Gutiérrez pagutierrez@uco.es

Module "Introduction to computational models"
4th year of "Grado en Ingeniería Informática"
Especialidad Computación
Escuela Politécnica Superior
(Universidad de Córdoba)

22nd September 2021

