# Language Model Le Anh Cuong

## Reading

- Chapter 4 [1]
- Chapter 6 [2]

#### Outline

- Definitions of Language Model (LM)
- Applications of LM, how it is useful.
- Computing (estimating) probabilites.
- Evaluating LMs
- Problems of spare data
  - Smoothing techniques
- Tools

## Language Modeling

- We want to compute
   P(w1,w2,...,wn), the probability of a sequence
- Alternatively, we want to compute
   P(wn|w1,w2,...,wn-1), the probability of a word given some previous words
- The model, that computes P(W) or P(wn|w1,...,wn-1) is called the language model.

## Shannon's game

- ☐ Game's rule:
  - Given a sequence of word:  $w_1 w_2 \dots w_n$
  - Predict the next word?
- ☐ For example:
  - Anh ấy là một nhà khoa \_\_\_\_
  - □ Hắn cắm cúi chép vào \_\_\_
    - Hắn cắm cúi chép vào A
    - Hắn cắm cúi chép vào B

#### **Noise Channel**



- Model: probability of error (noise):
- Example: p(o|1) = .3 p(1|1) = .7 p(1|o) = .4 p(o|o) = .6
- The task: from the *noisy output*, we have to recover the origin (*input*) -> This process is called **Decoding**

#### Applications of noise channel

- OCR (optical character recognition)
  - straightforward: text  $\rightarrow$  print (adds noise), scan  $\rightarrow$  image
- Handwriting recognition (HR)
  - text  $\rightarrow$  neurons, muscles ("noise"), scan/digitize  $\rightarrow$  image
- Speech recognition- ASR (dictation, commands, etc.)
  - text → conversion to acoustic signal ("noise") → acoustic waves
- Machine Translation MT
  - text in target language → translation ("noise") → source language
- Also: Part of Speech Tagging
  - sequence of tags  $\rightarrow$  selection of word forms  $\rightarrow$  text

## Noisy Channel: The Golden Rule of OCR, ASR, HR, MT, ...

• Recall:

```
p(A|B) = p(B|A) p(A) / p(B) (Bayes formula)

A_{best} = argmax_A p(B|A) p(A) (The Golden Rule)
```

- p(B|A): the acoustic/image/translation/lexical model
  - application-specific name
  - will explore later
- p(A): the language model

#### The Chain rule

$$W = (w_1, w_2, w_3, ..., w_d)$$
  
compute  $p(W) = ?$ 

• Use the Chain rule:

$$p(W) = p(w_1, w_2, w_3, ..., w_d) =$$

$$= p(w_1) \times p(w_2|w_1) \times p(w_3|w_1, w_2) \times ... \times p(w_d|w_1, w_2, ..., w_{d-1})$$

#### **Problems**

- There are a lot of possible sentences
- In general, we'll never be able to get enough data to compute the statistics for those long prefixes

## Markov assumption (1)

- The perfect model: *without limitation of memory* 
  - $w_i$  -> know all previous words:  $w_1, w_2, w_3, ..., w_{i-1}$
- With limitation of memory:
  - Ignore the too far previous words ("too old" predecessors)
  - Just depends on the k nearest words:  $w_{i-k}, w_{i-k+1}, ..., w_{i-1}$
  - "kth order Markov approximation"

$$p(W) \cong \prod_{i=1..d} p(w_i|w_{i-k}, w_{i-k+1}, ..., w_{i-1}), d = |W|$$

## Markov Assumption (2)

So for each component in the product replace with the approximation (assuming a prefix of N)

$$P(w_n \mid w_1^{n-1}) \approx P(w_n \mid w_{n-N+1}^{n-1})$$

Bigram version

$$P(w_n \mid w_1^{n-1}) \approx P(w_n \mid w_{n-1})$$

#### N-gram models

• Markov approximation with order  $(n-1) \rightarrow n-1$ prediction gram LM:

$$p(W) =_{df} \prod_{i=1..d} p(w_i | w_{i-n+1}, w_{i-n+2}, ..., w_{i-1})$$

- Size of vocabulary |V| = 6ok:

  - 1-gram LM: unigram model, p(w),  $6 \times 10^4$  parameters
  - 2-gram LM: bigram model,  $p(w_i|w_{i-1})$  3.6 **X** 10<sup>9</sup> parameters
  - parameters

• o-gram LM: uniform model, 
$$p(w) = 1/|V|$$
, 1 parameter   
• 1-gram LM: unigram model,  $p(w) = 1/|V|$ , 1 parameters  $p(w) = 1/|V|$ , 1 parameters  $p(w) = 1/|V|$ , 1 parameter  $p(w) = 1/|V|$ , 2 parameter  $p(w) = 1/|V|$ , 1 parameter  $p(w) = 1/|V|$ , 2 parameter  $p(w) = 1/|V|$ , 3 parameter  $p(w) = 1/|V|$ , 2 parameter  $p(w) = 1/|V|$ , 3 parameter  $p(w) = 1/|V|$ , 2 parameter  $p(w) = 1/|V|$ , 3 parameter  $p(w) = 1/|V|$ , 2 parameter  $p(w) = 1/|V|$ , 3 parameter  $p(w) = 1/|V|$ , 2 parameter  $p(w) = 1/|V|$ , 3 parameter  $p(w) = 1/|V|$ , 2 parameter  $p(w) = 1/|V|$ , 3 parameter  $p(w) = 1/|V|$ , 2 parameter  $p(w) = 1/|V|$ , 3 parameter  $p(w) = 1/|V|$ , 2 parameter  $p(w) = 1/|V|$ , 3 parameter  $p(w) = 1/|V|$ , 2 parameter  $p(w) = 1/|V|$ , 3 parameter  $p(w) = 1/|V|$ , 4 parameter  $p(w) = 1/|V|$ , 5 parameter  $p(w) = 1/|V|$ , 6 parameter  $p(w) = 1/|V|$ , 1 parameter  $p(w) = 1/|V|$ , 1 parameter  $p(w) = 1/|V|$ , 2 parameter  $p(w) = 1/|V|$ , 3 parameter  $p(w) = 1/|V|$ , 4 parameter  $p(w) = 1/|V|$ , 5 paramete

• 3-gram LM: trigram model, 
$$p(w_i|w_{i-2},w_{i-1})$$
 2.16 **X** 10<sup>14</sup>

#### LM: observations

- How large n?
  - Nothing is enough (theoretically)
  - But anyway: as much as possible (→ close to "perfect" model)
  - Empirically: 3
    - parameter estimation? (reliability, data availability, storage space, ...)
    - 4 is too much:  $|V| = 60k \rightarrow 1.296 \times 10^{19}$  parameters
    - but: 6-7 would be (almost) ideal (having enough data): in fact, one can recover original from 7-grams!
- For now, keep word forms (no "linguistic" processing)

#### Estimate parameters

- Parameter: the necessary values to compute p(w|h)
- Get from: text
- Preparing the data:
  - text
  - Define words: separate words ...
  - Definition of sentences (insert "words" <s> and </s>)
  - Capitals: keep, discard, or be smart:
    - Nhận dạng tên riêng
    - Định nghĩa các kiểu số
  - numbers: keep, replace by <num>, or be smart (form ~ pronunciation)

#### Maximum Likelihood Estimate

- Trigrams from Training Data T:
  - count sequences of three words in T:  $c_3(w_{i-2}, w_{i-1}, w_i)$
  - count sequences of two words in T:  $c_2(w_{i-1}, w_i)$ :
    - either use  $c_2(y,z) = \sum_w c_3(y,z,w)$
    - or count differently at the beginning (& end) of data!

$$p(w_i|w_{i-2},w_{i-1}) =_{est.} c_3(w_{i-2},w_{i-1},w_i) / c_2(w_{i-2},w_{i-1}) \bullet$$

#### Estimate bigram probabilities

The Maximum Likelihood Estimate

$$P(w_i \mid w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$$

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

#### **ML** estimates

- The maximum likelihood estimate of some parameter of a model M from a training set T.
  - Is the estimate that maximizes the likelihood of the training set T give the model M
- Suppose the word "Chinese" occurs 400 times in a corpus of a million words (Brown corpus).
- What is the probability that a random word (from some other text from the same distribution) will be "Chinese"
- MLE estimate is 400/1000000 = 0.04
  - This may be a bad estimate for some other corpus
- But it is the esimate that makes it most likely that "Chinese" will occur 400 times in a million word corpus

## An example

- <s> I am Sam </s>
- <s> Sam I am </s>
- <s> I do not like green eggs and ham </s>

## An example

- <s> I am Sam </s>
- <s> Sam I am </s>
- <s> I do not like green eggs and ham </s>

$$\begin{split} P(\text{I}|<\text{s>}) &= \tfrac{2}{3} = .67 & P(\text{Sam}|<\text{s>}) &= \tfrac{1}{3} = .33 & P(\text{am}|\text{I}) &= \tfrac{2}{3} = .67 \\ P(}|\text{Sam}) &= \tfrac{1}{2} = 0.5 & P(\text{Sam}|\text{am}) &= \tfrac{1}{2} = .5 & P(\text{do}|\text{I}) &= \tfrac{1}{3} = .33 \end{split}$$

$$P(w_n|w_{n-N+1}^{n-1}) = \frac{C(w_{n-N+1}^{n-1}w_n)}{C(w_{n-N+1}^{n-1})}$$

25/2010

#### Berkeley Restaurant Project Sentences

- Can you tell me about any good cantonese restaurants close by mid priced thai food is what i'm looking for.
- Tell me about chez panisse.
- Can you give me a listing of the kinds of food that are available.
- I 'm looking for a good place to eat breakfast.
- When is caffe venezia open during the day

• ....

#### Raw Bigram counts

Out of 9222 sentences: Count(col | row)

|         | i  | want | to  | eat | chinese | food | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 5  | 827  | 0   | 9   | 0       | 0    | 0     | 2     |
| want    | 2  | 0    | 608 | 1   | 6       | 6    | 5     | 1     |
| to      | 2  | 0    | 4   | 686 | 2       | 0    | 6     | 211   |
| eat     | 0  | 0    | 2   | 0   | 16      | 2    | 42    | 0     |
| chinese | 1  | 0    | 0   | 0   | 0       | 82   | 1     | 0     |
| food    | 15 | 0    | 15  | 0   | 1       | 4    | 0     | 0     |
| lunch   | 2  | 0    | 0   | 0   | 0       | 1    | 0     | 0     |
| spend   | 1  | 0    | 1   | 0   | 0       | 0    | 0     | 0     |

#### Raw Bigram Probabilities

#### Normalize by unigrams:

| i    | want | to   | eat | chinese | food | lunch | spend |
|------|------|------|-----|---------|------|-------|-------|
| 2533 | 927  | 2417 | 746 | 158     | 1093 | 341   | 278   |

|         | i       | want | to     | eat    | chinese | food   | lunch  | spend   |
|---------|---------|------|--------|--------|---------|--------|--------|---------|
| i       | 0.002   | 0.33 | 0      | 0.0036 | 0       | 0      | 0      | 0.00079 |
| want    | 0.0022  | 0    | 0.66   | 0.0011 | 0.0065  | 0.0065 | 0.0054 | 0.0011  |
| to      | 0.00083 | 0    | 0.0017 | 0.28   | 0.00083 | 0      | 0.0025 | 0.087   |
| eat     | 0       | 0    | 0.0027 | 0      | 0.021   | 0.0027 | 0.056  | 0       |
| chinese | 0.0063  | 0    | 0      | 0      | 0       | 0.52   | 0.0063 | 0       |
| food    | 0.014   | 0    | 0.014  | 0      | 0.00092 | 0.0037 | 0      | 0       |
| lunch   | 0.0059  | 0    | 0      | 0      | 0       | 0.0029 | 0      | 0       |
| spend   | 0.0036  | 0    | 0.0036 | 0      | 0       | 0      | 0      | 0       |

# Bigram Estimates of Sentence Probabilities

```
    P(<s> I want english food </s>) =
        p(i|<s>) x p(want|I) x p(english|want)
        x p(food|english) x p(</s>|food)
        =.000031
```

## Kinds of knowledge?

- P(english|want) = .0011
- P(chinese|want) = .0065
- P(to|want) = .66
- P(eat | to) = .28
- P(food | to) = 0
- P(want | spend) = 0
- P(i | <s>) = .25

- World knowledge
- Syntax

Discourse

#### **Evaluation**

- We train parameters of our model on a training set.
- How do we evaluate how well our model works?
- We look at the models' performance on some new data
- This is what happens in the real world; we want to know how our model performs on data we haven't seen
- So a test set. A dataset which is different than our training set

## **Evaluating N-gram models**

- Best evaluation for an N-gram
  - Put model A in a speech recognizer
  - Run recognition, get Word Error Rate (WER) for A
  - Put model B in speech recognition, get WER for B
  - Compare WER for A and B
  - Called Extrinsic Evaluation (application-based evaluation)

## Difficulty of extrinsic evaluation

- Extrinsic evaluation
  - It is specific to the application
    - It is usually called application dependent evaluation
    - It is no evidence to be sure how it is good to other applications
  - This is really time-consuming
- So how to independent/self evaluation
  - Use an intrinsic evaluation called **perplexity** 
    - Based on a test data
    - It is good if the test data looks like the training data

## Perplexity

 Perplexity is the probability of the test set (assigned by the LM), normalized by the number of words

$$PP(W) = P(w_1 w_2 \dots w_N)^{-\frac{1}{N}}$$
$$= \sqrt[N]{\frac{1}{P(w_1 w_2 \dots w_N)}}$$

Chain rule: 
$$PP(W) = \sqrt[N]{\prod_{i=1}^N \frac{1}{P(w_i|w_1\dots w_{i-1})}}$$
 For bigrams: 
$$PP(W) = \sqrt[N]{\prod_{i=1}^N \frac{1}{P(w_i|w_{i-1})}}$$

- Minimizing perplexity is the same as maximizing probability.
  - The best language model is one that best predicts an unseen test set.

## Perplexity

- There is another way to think about perplexity, as the weighted avarage branching fact (or of a language).
- The branching factor of a language is the number of possible next words that can follow any word.
- For example:
  - Training unigram, bigram, and trigram on 38 million words from Wall Street Journal, using 19,979 word vocabulary.
  - Test set of 1.5 million words.

| N-gram Order | Unigram | Bigram | Trigram |
|--------------|---------|--------|---------|
| Perplexity   | 962     | 170    | 109     |

#### Problems: the perils of overfitting

- N-grams only work well for word prediction if the test corpus looks like the training corpus
  - In real life, it often doesn't
  - We need to train robust models, adapt to test set, etc

#### Problem: zeros or nots?

- Zipf's Law:
  - A small number of events occur with high frequency
  - A large number of events occur with low frequency
  - You can quickly collect statistics on the high frequency events
  - You might have to wait an arbitrarily long time to get valid statistics on low frequency events
- Result:
  - Our estimates are sparse! no counts at all for the vast bulk of things we want to estimate!
  - Some of the zeroes in the table are really zeros But others are simply low frequency events you haven't seen yet. After all, ANYTHING CAN HAPPEN!
  - How to address?
- Answer:
  - Estimate the likelihood of unseen N-grams!

#### Zero problem

- Two kinds of zeros: p(w|h) = o, or even p(h) = o!
- Indeterminate:
  - happens when an event is found in test data which has not been seen in training data
- To make the system more robust
  - low count estimates:
    - they typically happen for "detailed" but relatively rare appearances
  - high count estimates: reliable but less "detailed"

## Smoothing is like Robin Hood: Steal from the rich and give to the poor (in probability mass)

We often want to make predictions from sparse statistics:

P(w | denied the) 3 allegations

2 reports

1 claims

1 request

7 total



Smoothing flattens spiky distributions so they generalize better

P(w | denied the) 2.5 allegations

1.5 reports

0.5 claims

0.5 request

2 other

7 total



Very important all over NLP, but easy to do badly!

#### Remove zero probability: smoothing

- Get new p'(w) (same  $\Omega$ ): almost p(w) but no zeros
- Discount w for (some) p(w) > o: new p'(w) < p(w) $\Sigma_{w \in discounted} (p(w) - p'(w)) = D$
- Distribute D to all w; p(w) = o: new p'(w) > p(w)
  - possibly also to other w with low p(w)
- Make sure  $\Sigma_{w \in \Omega} p'(w) = 1$
- There are many ways of <u>smoothing</u>

## Laplace smoothing

- Also called add-one smoothing
- Just add one to all the counts!
- Very simple  $P(w_i) = \frac{c_i}{N}$
- MLE estimate:

$$P_{\text{Laplace}}(w_i) = \frac{c_i + 1}{N + V}$$

Laplace estimate:

$$c_i^* = (c_i + 1) \frac{N}{N + V}$$

Reconstructed counts:

### Raw Bigram counts

Out of 9222 sentences: Count(col | row)

|         | i  | want | to  | eat | chinese | food | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 5  | 827  | 0   | 9   | 0       | 0    | 0     | 2     |
| want    | 2  | 0    | 608 | 1   | 6       | 6    | 5     | 1     |
| to      | 2  | 0    | 4   | 686 | 2       | 0    | 6     | 211   |
| eat     | 0  | 0    | 2   | 0   | 16      | 2    | 42    | 0     |
| chinese | 1  | 0    | 0   | 0   | 0       | 82   | 1     | 0     |
| food    | 15 | 0    | 15  | 0   | 1       | 4    | 0     | 0     |
| lunch   | 2  | 0    | 0   | 0   | 0       | 1    | 0     | 0     |
| spend   | 1  | 0    | 1   | 0   | 0       | 0    | 0     | 0     |

### Laplace smoothed bigram counts

|         | i  | want | to  | eat | chinese | food | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 6  | 828  | 1   | 10  | 1       | 1    | 1     | 3     |
| want    | 3  | 1    | 609 | 2   | 7       | 7    | 6     | 2     |
| to      | 3  | 1    | 5   | 687 | 3       | 1    | 7     | 212   |
| eat     | 1  | 1    | 3   | 1   | 17      | 3    | 43    | 1     |
| chinese | 2  | 1    | 1   | 1   | 1       | 83   | 2     | 1     |
| food    | 16 | 1    | 16  | 1   | 2       | 5    | 1     | 1     |
| lunch   | 3  | 1    | 1   | 1   | 1       | 2    | 1     | 1     |
| spend   | 2  | 1    | 2   | 1   | 1       | 1    | 1     | 1     |

### Laplace-smoothed bigrams

$$P^*(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V}$$

|         | i       | want    | to      | eat     | chinese | food    | lunch   | spend   |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| i       | 0.0015  | 0.21    | 0.00025 | 0.0025  | 0.00025 | 0.00025 | 0.00025 | 0.00075 |
| want    | 0.0013  | 0.00042 | 0.26    | 0.00084 | 0.0029  | 0.0029  | 0.0025  | 0.00084 |
| to      | 0.00078 | 0.00026 | 0.0013  | 0.18    | 0.00078 | 0.00026 | 0.0018  | 0.055   |
| eat     | 0.00046 | 0.00046 | 0.0014  | 0.00046 | 0.0078  | 0.0014  | 0.02    | 0.00046 |
| chinese | 0.0012  | 0.00062 | 0.00062 | 0.00062 | 0.00062 | 0.052   | 0.0012  | 0.00062 |
| food    | 0.0063  | 0.00039 | 0.0063  | 0.00039 | 0.00079 | 0.002   | 0.00039 | 0.00039 |
| lunch   | 0.0017  | 0.00056 | 0.00056 | 0.00056 | 0.00056 | 0.0011  | 0.00056 | 0.00056 |
| spend   | 0.0012  | 0.00058 | 0.0012  | 0.00058 | 0.00058 | 0.00058 | 0.00058 | 0.00058 |

## Big changes to count

- C(count to) went from 608 to 238!
- P(to|want) from .66 to .26!
  - Discount  $d = c^*/c$
  - So in general, Laplace is a blunt instrument
  - Could use more fine-grained method (add-k)
- Despite its flaws Laplace (add-k) is however still used to smooth other probabilistic models in NLP, especially
  - For pilot studies
  - in domains where the number of zeros isn't so huge.

#### Lidstone's & Jeffreys-Perks Laws

Because Laplace's law overestimates non-zero events, variations were created:

ullet Lidstone's law: instead of adding one, add some smaller value  $\lambda$ 

(6) 
$$P(w_1...w_n) = \frac{C(w_1...w_n) + \lambda}{N + B\lambda}$$

• Jeffreys-Perks law: set  $\lambda$  to be  $\frac{1}{2}$  (the expectation of maximized MLE):

(7) 
$$P(w_1...w_n) = \frac{C(w_1...w_n) + \frac{1}{2}}{N + \frac{1}{2}}$$

**Problems:** How do we guess  $\lambda$ ? And still not good for low frequency n-grams

### Implementation of N-gram



Figure 1: Our SORTED implementation of a trie. The dotted paths correspond to "the cat slept", "the cat ran", and "the dog ran". Each node in the trie is an entry in an array with 3 parts: w represents the word at the node; val represents the (rank encoded) value; and c is an offset in the array of n-1 grams that represents the parent (prefix) of a node. Words are represented as offsets in the unigram array.

504045 - Natural Language Processing

## Further reading

## Better discounting methods

- used by many smoothing algorithms
  - Interpolation
  - Good-Turing
  - Kneser-Ney
  - Witten-Bell
- use the count of things we've seen once to help estimate the count of things we've never seen



#### **Backoff and Interpolation**

- Sometimes it helps to use less context
  - Condition on less context for contexts you haven't learned much about
- Backoff:
  - use trigram if you have good evidence,
  - otherwise bigram, otherwise unigram



#### **Linear Interpolation**

Simple interpolation

$$\hat{P}(w_n|w_{n-1}w_{n-2}) = \lambda_1 P(w_n|w_{n-1}w_{n-2}) 
+ \lambda_2 P(w_n|w_{n-1}) 
+ \lambda_3 P(w_n)$$

$$\sum_{i} \lambda_i = 1$$



#### **Smoothing for Web-scale N-grams**

- "Stupid backoff" (Brants et al. 2007)
- No discounting, just use relative frequencies

$$S(w_i \mid w_{i-k+1}^{i-1}) = \begin{cases} \frac{\text{count}(w_{i-k+1}^i)}{\text{count}(w_{i-k+1}^{i-1})} & \text{if } \text{count}(w_{i-k+1}^i) > 0 \\ 0.4S(w_i \mid w_{i-k+2}^{i-1}) & \text{otherwise} \end{cases}$$

$$S(w_i) = \frac{\text{count}(w_i)}{N}$$

63





#### N-gram Smoothing Summary

- Add-1 smoothing:
  - OK for text categorization, not for language modeling
- The most commonly used method:
  - Extended Interpolated Kneser-Ney
- For very large N-grams like the Web:
  - · Stupid backoff

## **Good Turing**



#### More general formulations: Add-k

$$P_{Add-k}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + k}{c(w_{i-1}) + kV}$$

$$P_{Add-k}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + m(\frac{1}{V})}{c(w_{i-1}) + m}$$



#### Notation: N<sub>c</sub> = Frequency of frequency c

- N<sub>c</sub> = the count of things we've seen c times
- Sam I am I am Sam I do not eat

$$N_1 = 3$$

$$N_2 = 2$$

$$N_3 = 1$$



#### **Good-Turing smoothing intuition**

- You are fishing (a scenario from Josh Goodman), and caught:
  - 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish
- How likely is it that next species is trout?
  - 1/18



- How likely is it that next species is new (i.e. catfish or bass)
  - Let's use our estimate of things-we-saw-once to estimate the new things.
  - 3/18 (because N<sub>1</sub>=3)
- Assuming so, how likely is it that next species is trout?
  - Must be less than 1/18



#### **Good Turing calculations**

$$P_{GT}^*$$
 (things with zero frequency) =  $\frac{N_1}{N}$   $c^* = \frac{(c+1)N_{c+1}}{N_c}$ 

- Unseen (bass or catfish)
  - c = 0:
  - MLE p = 0/18 = 0
  - P\*<sub>GT</sub> (unseen) = N<sub>1</sub>/N = 3/18

- Seen once (trout)

  - c = 1 MLE p = 1/18

## **Good Turing**

- Imagine you are fishing
- There are 8 species: carp, perch, whitefish, trout, salmon, eel, catfish, bass
- You have caught
  - 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel
  - = 18 fish (tokens)
  - = 6 species (types)
- How likely is it that you'll next see another trout?

### Good-Turing

- Now how likely is it that next species is new
  - There were 18 distinct events... 3 of those represent singleton species.

## Good-Turning

- Idea: use the count of things you've seen **once** to estimate count of things you've **never seen**.
- Denote that:  $N_c$  is the number of N-gram which apears c time:  $N_o$  for the number of N-gram appearing o time,  $N_1$  -> appearing 1 time, ...

$$N_c = \sum_{x:count(x)=c} 1$$

• The Good-Turning estimates the smoothed count  $c^*$  of c base on  $N_c$  as follows:

$$c^* = (c+1)\frac{N_{c+1}}{N_c}$$

## **Good-Turning**

• similar idea: discount/boost the relative frequency estimate:

$$p(w) = c(w)/T$$

$$c*(w) = (c(w)+1)*\frac{N_{c(w)+1}}{N_{c(w)}}$$

$$p(w) = ((c(w)+1)*\frac{N_{c(w)+1}}{N_{c(w)}})/T$$

• specifically, for c(w) = o (unseen words):  $p_r(w) = N(1) / (|T| \times N(o))$ 

### **Good-Turning**

• Example: remember:  $p_r(w) = (c(w) + 1) \times N(c(w) + 1) / (|T| \times N(c(w)))$ 

Training data:  $\langle s \rangle$  what is it what is small? |T| = 8

- V = { what, is, it, small, ?, <s>, flying, birds, are, a, bird, . }, |V| = 12 p(it)=.125, p(what)=.25, p(.)=0 p(what is it?) = .25<sup>2</sup> **X** .125<sup>2</sup>  $\cong$  .001 p(it is flying.) = .125 **X** .25 **X** 0<sup>2</sup> = 0
- Raw reestimation (N(o) = 6, N(1) = 4, N(2) = 2, N(i) = 0 for i > 2):  $p_r(it) = (1+1) \times N(1+1)/(8 \times N(1)) = 2 \times 2/(8 \times 4) = .125$   $p_r(\text{what}) = (2+1) \times N(2+1)/(8 \times N(2)) = 3 \times 0/(8 \times 2) = 0$ : keep orig.  $p(\text{what}) = (0+1) \times N(0+1)/(8 \times N(0)) = 1 \times 4/(8 \times 6) \cong .083$
- Normalize (divide by 1.5 =  $\Sigma_{w \in |V|} p_r(w)$ ) and compute:  $p'(it) \cong .08$ ,  $p'(what) \cong .17$ ,  $p'(.) \cong .06$   $p'(what is it?) = .17^2 \, \text{X} .08^2 \cong .0002$   $p'(it is flying.) = .08 \, \text{X} .17 \, \text{X} .06^2 \cong .00004$

# Smoothing by Combination: Linear Interpolation

• Weight in less detailed distributions using  $\lambda = (\lambda_0, \lambda_1, \lambda_2, \lambda_3)$ :

$$p'_{\lambda}(w_{i}|w_{i-2},w_{i-1}) = \lambda_{3} p_{3}(w_{i}|w_{i-2},w_{i-1}) + \lambda_{2} p_{2}(w_{i}|w_{i-1}) + \lambda_{1} p_{1}(w_{i}) + \lambda_{o}/|V|$$

Normalize:

$$\lambda_i > 0$$
,  $\Sigma_{i=0..n} \lambda_i = 1$  is sufficient  $(\lambda_0 = 1 - \Sigma_{i=1..n} \lambda_i)$   $(n=3)$ 

- Estimation using MLE:
  - $\underline{\text{fix}}$  the  $p_3$ ,  $p_2$ ,  $p_1$  and |V| parameters as estimated from the training data
  - then find such  $\{\lambda_i\}$  which minimizes the cross entropy (maximizes probability of data):  $-(1/|D|)\sum_{i=1..|D|}log_2(p'_{\lambda}(w_i|h_i))$

### Held-out Data

- What data to use?
  - try the training data T: but we will always get  $\lambda_3 = 1$ 
    - why? (let p<sub>iT</sub> be an i-gram distribution estimated using relative freq. from T)
    - minimizing  $H_T(p'_{\lambda})$  over a vector  $\lambda$ ,  $p'_{\lambda} = \lambda_3 p_{3T} + \lambda_2 p_{2T} + \lambda_1 p_{1T} + \lambda_0 / |V|$ 
      - remember:  $H_T(p'_{\lambda}) = H(p_{3T}) + D(p_{3T}||p'_{\lambda})$ ;  $(p_{3T} \text{ fixed} \rightarrow H(p_{3T}) \text{ fixed, best})$
      - which  $p'_{\lambda}$  minimizes  $H_T(p'_{\lambda})$ ? Obviously, a  $p'_{\lambda}$  for which  $D(p_{3T}||p'_{\lambda})=0$
      - ...and that's  $p_{3T}$  (because D(p||p) = 0, as we know).
      - ...and certainly  $p'_{\lambda} = p_{3T}$  if  $\lambda_3 = 1$  (maybe in some other cases, too).
      - $(p'_{\lambda} = 1 \times p_{3T} + o \times p_{2T} + o \times p_{1T} + o/|V|)$
  - thus: do not use the training data for estimation of  $\lambda$ !
    - must hold out part of the training data (*heldout* data, <u>H</u>):
    - ...call the remaining data the (true/raw) *training* data,  $\underline{T}$
    - the *test* data <u>S</u> (e.g., for comparison purposes): still different data!

### The Formula

• Repeat: minimizing  $-(1/|H|)\sum_{i=1..|H|}\log_2(p'_{\lambda}(w_i|h_i))$  over  $\lambda$ 

$$\begin{aligned} p_{\lambda}'(w_{i}|\ h_{i}) &= p_{\lambda}'(w_{i}|\ w_{i-2}, w_{i-1}) = \lambda_{3} \, p_{3}(w_{i}|\ w_{i-2}, w_{i-1}) + \\ \lambda_{2} \, p_{2}(w_{i}|\ w_{i-1}) &+ \lambda_{1} \, p_{1}(w_{i}) + \lambda_{o} \, / |V| \end{aligned}$$

"Expected Counts (of lambdas)": j = 0..3 – next page

$$c(\lambda_j) = \sum_{i=1..|H|} (\lambda_j p_j(w_i|h_i) / p_\lambda'(w_i|h_i))$$

• "Next  $\lambda$ ": j = 0...3

$$\lambda_{j,\text{next}} = c(\lambda_j) / \Sigma_{k=0..3} (c(\lambda_k))$$

### Example

- Raw distribution (unigram only; smooth with uniform): p(a) = .25, p(b) = .5,  $p(\alpha) = 1/64$  for  $\alpha \in \{c...r\}$ , = o for the rest: s,t,u,v,w,x,y,z
- Heldout data: <u>baby</u>; use one set of  $\lambda$  ( $\lambda_1$ : unigram,  $\lambda_0$ : uniform)
- Start with  $\lambda_1 = .5$ ;  $p'_{\lambda}(b) = .5 \times .5 + .5 / 26 = .27$   $p'_{\lambda}(a) = .5 \times .25 + .5 / 26 = .14$   $p'_{\lambda}(y) = .5 \times 0 + .5 / 26 = .02$   $c(\lambda_1) = .5 \times .5 / .27 + .5 \times .25 / .14 + .5 \times .5 / .27 + .5 \times .04 / .02 = 2.72$   $c(\lambda_0) = .5 \times .04 / .27 + .5 \times .04 / .14 + .5 \times .04 / .27 + .5 \times .04 / .02 = 1.28$  Normalize:  $\lambda_{1,next} = .68$ ,  $\lambda_{0,next} = .32$ . Repeat from step 2 (recompute  $p'_{\lambda}$  first for efficient computation, then  $c(\lambda_i)$ , ...) Finish when new lambdas almost equal to the old ones (say, < 0.01 difference).

### The Problem

- Not enough data
  - Language Modeling: we do not see "correct" n-grams
    - solution so far: smoothing
  - suppose we see:
    - short homework, short assignment, simple homework
  - but not:
    - simple assigment
  - What happens to our (bigram) LM?
    - p(homework | simple) = high probability
    - p(assigment | simple) = low probability (smoothed with p(assigment))
  - They should be much closer!

#### **Word Classes**

- Observation: similar words behave in a similar way
  - trigram LM:
    - in the ... (all nouns/adj);
    - catch a ... (all things which can be catched, incl. their accompanying adjectives);
  - trigram LM, conditioning:
    - a ... homework (any atribute of homework: short, simple, late, difficult),
    - ... the woods (any verb that has the woods as an object: walk, cut, save)
  - trigram LM: both:
    - a (short,long,difficult,...) (homework,assignment,task,job,...)

### Solution

- Use the Word Classes as the "reliability" measure
- Example: we see
  - short homework, short assignment, simple homework
  - but not:
    - simple assigment
  - Cluster into classes:
    - (short, simple) (homework, assignment)
      - covers "simple assignment", too
- Gaining: realistic estimates for unseen n-grams
- Loosing: accuracy (level of detail) within classes

### The New Model

- Rewrite the n-gram LM using classes:
  - Was: [k = 1..n]
    - $p_k(w_i|h_i) = c(h_i,w_i) / c(h_i)$  [history: (k-1) words]
  - Introduce classes:

$$p_k(w_i|h_i) = p(w_i|c_i) p_k(c_i|h_i)$$

- history: <u>classes</u>, too: [for trigram:  $h_i = c_{i-2}, c_{i-1}$ , bigram:  $h_i = c_{i-1}$ ]
- Smoothing as usual
  - over  $p_k(w_i|h_i)$ , where each is defined as above (except uniform which stays at 1/|V|)

### **Training Data**

- Suppose we already have a mapping:
  - $r: V \to C$  assigning each word its class  $(c_i = r(w_i))$
- Expand the training data:
  - $T = (w_1, w_2, ..., w_{|T|})$  into
  - $T_C = (\langle w_1, r(w_1) \rangle, \langle w_2, r(w_2) \rangle, ..., \langle w_{|T|}, r(w_{|T|}) \rangle)$
- Effectively, we have two streams of data:
  - word stream:  $w_1, w_2, ..., w_{|T|}$
  - class stream:  $c_1$ ,  $c_2$ , ...,  $c_{|T|}$  (def. as  $c_i = r(w_i)$ )
- Expand Heldout, Test data too

### Training the New Model

- As expected, using ML estimates:
  - $p(w_i|c_i) = p(w_i|r(w_i)) = c(w_i) / c(r(w_i)) = c(w_i) / c(c_i)$ 
    - !!!  $c(w_i, c_i) = c(w_i)$  [since  $c_i$  determined by  $w_i$ ]
  - $p_k(c_i|h_i)$ :
    - $p_3(c_i|h_i) = p_3(c_i|c_{i-2},c_{i-1}) = c(c_{i-2},c_{i-1},c_i) / c(c_{i-2},c_{i-1})$
    - $p_2(c_i|h_i) = p_2(c_i|c_{i-1}) = c(c_{i-1},c_i) / c(c_{i-1})$
    - $p_1(c_i|h_i) = p_1(c_i) = c(c_i) / |T|$
- Then smooth as usual
  - not the  $p(w_i|c_i)$  nor  $p_k(c_i|h_i)$  individually, but the  $p_k(w_i|h_i)$

### Classes: How To Get Them

- We supposed the classes are given
- Maybe there are in [human] dictionaries, but...
  - dictionaries are incomplete
  - dictionaries are unreliable
  - do not define classes as equivalence relation (overlap)
  - do not define classes suitable for LM
    - small, short... maybe; small and difficult?
- → we have to construct them <u>from data</u> (again...)

## Toolkits and Open sources

- You can make your own language models with tools freely available for research
- CMU language modeling toolkit
  - http://www.speech.cs.cmu.edu/SLM\_info.html
- SRI language modeling toolkit
  - http://www-speech.sri.com/projects/srilm/
- KenLM Language Model Toolkit
  - https://kheafield.com/code/kenlm/