Video Synthesis from a Single Image

Patrick Radner

Problem Statement

Generate a short, realistic video given a single image.

Motivation

- Image GANs
- "Bringing Landscape Images to Life"

Some results: mirjang.github.io/mt_videosynthesis

Related Work: VGAN, TGAN, MoCoGAN

VGAN (2016)

- TGAN (2017)
 - Temporal generator
- MoCoGAN (2017)
 - Discriminator decomposition

Related Work: State of the Art

- DVDGAN (2019)
 - Feature pyramid
 - "BigGAN for videos"
- TriVDGAN (2020)
 - -TSRU
- TGANv2 (2020)
 - Subsampling for efficiency
- Latent Video Transformer

Samples DVDGAN and TGANv2

Method

- "DVDGAN w/ Style blocks"
- No BatchNorm
 - →Small batch size
- 128x128 resolution
- 65M parameters
 - 20M for Generator

Image Generation - BigGAN

- ResNet-like blocks
- Large batch size
- Best practices for GANs

Image Generation – StyleGAN2

- Style vector
- No BatchNorm!

$$w'_{ijk} = s_i \cdot w_{ijk}$$

$$w_{ijk}^{"} = w_{ijk}^{\prime} / \sqrt{\sum_{i,k} w_{ijk}^{\prime}^2 + \epsilon}$$

Discriminators

• Decomposition into
$$\mathcal{D}_S$$
 and \mathcal{D}_T
• $\#pixels = K \times H \times W + T \times \frac{H}{\phi_H} \times \frac{W}{\phi_W}$

WGAN-GP

Results: BAIR dataset

- 64x64 videos
- Static camera
- Little diversity

ours

DVDGAN-S

Bringing Landscape Images to Life

- Sky Time-lapse dataset
 - Ca. 1000 long videos
 - 2400 clips

- Custom Dataset:
 - ca. 500 YouTube videos
 - ca. 7500 clips
 - Duplicates

Quantitative Evaluation

	BAIR		Custom Dataset	
	IS (个)	FID(↓)	IS(个)	FID(↓)
DVDGAN-S	10.68	81.02	29.27	194.30
Ours	14.68	41.47	13.07	108.96

DVDGAN-S:

- approx. same # of params as ours
- Batch size 128

GauGAN videos

- GauGAN
 - Image2Image translation
 - Easy to use demo
- Domain gap
 - Dataset mostly close-up

Discussion

- Autoregressive Models
- TrajGRU
- Stochasticity
- Global effects

- General model for video prediction
- Landscape videos
 - Better specialized solutions

General Problems

- Resource intensive
- No unified dataset
- No unified metrics
- Lots of hyperparameters
 - Input: k-Frames, 1 Frame, unconditional, class-cond.
 - Output: length, resolution

Questions

Sources

BigGAN

A. Brock, J. Donahue, and K. Simonyan. Large Scale GAN Training for High FidelityNatural Image Synthesis. 2019.
 arXiv:1809.11096 [cs.LG]

StyleGAN

- T. Karras, S. Laine, and T. Aila. A Style-Based Generator Architecture for Generative Adversarial Networks. 2019.
 arXiv:1812.04948 [cs.NE]
- T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. Analyzing and Improving the Image Quality of StyleGAN. 2020. arXiv:1912.04958 [cs.CV]

DVDGAN

A. Clark, J. Donahue, and K. Simonyan. Adversarial Video Generation on ComplexDatasets. 2019.
 arXiv:1907.06571 [cs.CV]

GAUGAN

- T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu. Semantic Image Synthesis with Spatially-Adaptive Normalization.
 2019. arXiv:1903.07291 [cs.CV].
- nvidia.com/en-us/research/ai-playground

