Aircraft trajectory usage

UNIVERSITY OF WESTMINSTER#

Dr Michal Weiszer

Dr Tatjana Bolic

Autumn School 2025

ADS-B for Ground movement

Dr Michal Weiszer
Centre for ATM Research

October2025 Autumn school 2025

Aircraft Ground Movement

- Aircraft Ground movement is one of the key operations at the airport:
- Links other operations (RWY scheduling, gate assignment)
- Taxiing alone represents up to 6% of fuel consumption for short-haul flights, (5m tonnes per year).
- Taxiing is the largest source of emissions in a standard LTO cycle.

Data sources

- Best source is airports (radar, ADS-B, EFPS, layout)
- Next best thing is Free sources
- For layout (Edge + Nodes):
 - o Google Earth /Open street map
 - NATS / EUROCONTROL EAD AIS
- Movements (ADS-B):
 - FlightRadar 24
 - o OpenSky

Airport Layout

- Created from Google Earth (manually),
- Automatically transformed to a list of nodes.

Airport Layout

- Other good source is Open Street Map
- Some airports have taxiways in OSM which can be extracted.
- Gate and stand coordinates are also published in NATS / Eurocontrol AIS

STAND	COORDINATE	STAND	COORDINATE
	Terminal 1	28	532145.90N 0021642.40W
1	To be surveyed	29	532143.47N 0021643.17W
2	532138.77N 0021629.89W	31	532144.58N 0021644.84W
4	532137.10N 0021629.72W	32	532145.73N 0021643.95W
5	532138.63N 0021626.85W		Terminal 3
6	532135.22N 0021629.54W	41	532137.93N 0021616.22W
7	532135.40N 0021627.33W	42	532136.08N 0021615.75W
8	532133.47N 0021630.04W	43	532134.20N 0021615.73W
9	532133.77N 0021627.44W	44L	532133.04N 0021615.99W
10	532131.73N 0021630.16W	44	532133.03N 0021615.00W
11	532132 25N 0021627 50W	44R	532132 11N 0021615.44W

ADS-B

Automatic Dependent Surveillance—Broadcast (ADS-B) is an aviation surveillance technology in which an aircraft periodically broadcasts its position and other related data.

Can be captured by ground (space) based receivers

Name	Example	
time_recorded	14-Dec-2021 19:50:28	
lat	53.368549	
lon	-2.28959	
flight_level	13.75	
alt	1175	
call_sign	RYR81EQ	
mode_s	0x4CA7B5	

ADS-B example

Trajectory is a discrete set of points

ADS-B challenges

- FR24/Opensky provides real-time tracking of ADS-B transponder data
- Covers most airports in worldwide
- Includes many but not all flights
- Noisy, needs cleaned
- Also, the data is not structured: no information about ground movement
- We need to transform unstructured data to structured
- Associate points to the airport layout graph

Rest of the movement is missing

ADS-B challenges

Data points can be very noisy

Source: Brownlee, A.E.I., Atkin, J.A.D., Woodward, J.R., Benlic, U. and Burke, E.K. (2014). Airport Ground Movement: Real World Data Sets and Approaches to Handling Uncertainty, Proc. of the Practice and Theory of Automated Timetabling (PATAT) Conference, York, UK, pp. 462-464. Extended abstract for presentation.

Data processing flow

1. reducing:

Basic data cleaning and processing,

2. joining flights crossing midnight:

 Detecting flight crossing midnight and divide_flights: splitting movements with same ID performing separate flights.

3. snapping to graph (also called map matching):

Snapping raw ADS-B tracks to the airport graph,

Reducing

- We need a unique ID for movements (call sign or aircraft registration repeats on different days)
- For each data point, a unique id named my_id is determined as date+call_sign or date+mode_s if call sign is missing.
- Data points with blank mode_s or call signs for maintenance vehicles (RANGER,MAINT) are removed.
- Any data point with altitude larger than 100 (ft) is removed.

Snapping

- 1. Build a connected airport graph.
- 2. For each flight identified by my_id iterate over the tracks.
 - 1. Skip if speed>30 m/s or 0.1 m/s (stationary). Skipping tracks too fast for taxiing and stationary tracks mostly at gate) to speed up the snapping.
 - Identify neighboring nodes and edges to the last identified edge. This step limits the snapping to the neighboring edges/nodes to speed up the snapping.
 - 3. Calculate distance to neighboring edges centre.
 - Identify and add edge with the minimum distance to edge sequence, exclude rwy crossing.

Edge sequence: 53, 38, 124, ...

Snapping

- 5. Check the found edge sequence:
 - o if there is a discontinuity (each edge must have two neighbours), fill the discontinuity with the shortest path.
 - Skip if the shortest path is too long (>=7 edges). In that case the data is probably noisy and the shortest path would be guessing.
- 6. Check the found edge sequence and remove edges not connected to the rest of the sequence (each edge must have two neighbours).
- 7. Count complete routes: if start/end is rwy/gate, then the found route is marked as complete.
- 8. Iterate over tracks and the found edge sequence:
- 9. If speed <1 m/s, add wait time to the identified nearest node.
- 10. Identify tracks closest to start/end node of edge, to find timings when the aircraft traverses the edge.

Application

- A range of KPIs can be calculated:
- Taxiway and Intersections use
- Runway exits use
- Runway occupancy times
- Taxi time and speeds
- Turnaround time

• ...

Taxiway use and speeds

Avg speed count

Source: AVISIM - Intelligent Airport Simulation and Analytics. 2024. Available at: https://www.avisu.co.uk/services/avisim-analytics/

Runway use

RWY Occupancy

Further application

Processed data can be used for:

- Taxi time prediction
- Combination with weather data (METAR)
- Airport simulation

(f) angle_sum (degree)

Source: [1]

Conclusions

- ADS-B is a vast and very detailed data source
- (mostly) freely available
- High resolution enables versatile and detailed analysis of different flight phases, operation, etc
- Worldwide coverage
- Requires time-intensive processing and data reduction
- Can be noisy and have missing datapoints
- Problems related to Big data

Trajectory clustering for air traffic categorisation

Dr Tatjana BolicCentre for ATM Research

Autumn School 2025 October 2025

Goal

Data availability:

Trajectory – different historical datasets Economic airline related data – very little

Data – mining techniques available

Goal is to learn about usual (or nominal) choices airlines make

Routing, Aircraft types Operational flight costs

Apply trajectory clustering and statistical analysis

Data

ADS-B data from OPenSky Network

Summer season 2019 - 31 March 2019--27 October 2019 2 396 394 trajectories

State vector

4D positions sent sometimes even twice per second Callsign for the flight, origin, destination (if available) and mode-S transponder ID

Filtering

Every 30 seconds

About half of trajectories did not have origin or destination or both

Needed to create an algorithm to add origin and destination

Similar algorithm became available in OpenSky Network resources

Clean the trajectories
Missing points
Outliers

Data inspection

Positioning or ferry flights

45% less than <1000 km 68% one airline 250 ODs six flights a day - feeders

Data inspection

Indicates charter flights

Clustering

clusters

Used DBSCAN

Maximum radius of the neighbourhood ϵ = 0.3 - corresponds to 30 km

An airway has a width of 10 NM, which equals 18.52 km plus a buffer

Minimum number of elements m = 2

An element is a flight trajectory - a geometric representation of a set of connected position messages

The distance between two elements is represented by the undirected Hausdorff distance.

airlines

Other characteristics

Airline Aircraft type Airline cost type

Used Pearson's $\chi 2$ test of independence

Higher GCD between ODs where there is dependence between the airline and the trajectory cluster

UNIVERSITY OF WESTMINSTER#

THANK YOU