Constrained Convex Optimization Wednesday, 29 November 2023 $f_0: \mathbb{R}^n \to \mathbb{R}$ be some f_{i} Min f (x) 5.t. $f: (>c) \leq 0$ $\forall i=1,..., m$ $f_i(x) = 0$ $\forall i = 1, \dots l$ Lets have $\lambda_1, \lambda_2, \ldots, \lambda_m \in$ Define $(for \lambda; >0)$ $L(x, \lambda, u) = f_0(\alpha) + \sum_{i=1}^{m} \lambda_i f_i(\alpha) + \sum_{i=1}^{n} f_i(\alpha)$ for fixed 7,11 $Min L(\alpha, \lambda, \mu) \leq f_0(\alpha^*)$ S.t. 7>0 LAGRANGIAN DUAL $g(\lambda, \mu) = \min_{\lambda \in \mathcal{A}} L(\alpha, \lambda, \mu)$ S.t. $\lambda \geq 0$ Dual function Want to max g (A, M) It it, ux are p.t. of maxima $g(\lambda, M) \leq g(\lambda^*, M^*) \leq f_0(x^*)$ MEAK DUALITY THM

fo (x*) - g (A*, M*) < Duality

GAD fap Why convex function imp 77 If Pis convex phoblem Joually duality gap Zero

(Strong Drahity) KKT Conditions: Let $x^* \in (x^*, u^*)$ be any perimal & dual optimal points with Zero duality gap. Then we must have i) $f_i(x^*) \leq 0$ $f_i(x^*) = 0$ (PF) $2) \quad \lambda^{4} \geq 0 \qquad (DF)$ 3) $\lambda_i^* f_i(\alpha^*) = 0 \quad \forall i \quad (CS)$ $4) \quad \nabla_{\alpha} L(\alpha, \lambda^{*}, \mu^{*}) = 0$

USE THIS FOR SVM