Octave Convolution

Thomas Weber

Introduction

• En classification d'images, les CNNs sont très performants

- Comment améliorer cette performance ?
 - Amélioration de la topologie du réseau avec des connexions raccourcies (ResNet, DenseNet)
 - Utiliser des convolutions « depth-wise » pour réduire le coût de calcul des convolutions classiques (Xception, MobileNet)
 - Recherche automatique de la meilleure architecture (NAS, PNAS, AmoebaNet)

 Idée retenue: exploiter la redondance spatiale des feature maps avec un nouvel opérateur de convolution: Octave Convolution

Redondance spatiale

- Décomposition de l'image en deux parties:
 - Haute fréquence: représente les détails qui changent rapidement
 - Basse fréquence: représente la structure globale qui évolue lentement

Principe

- Séparation des feature maps en 2 groupes
- Réduction spatiale de la partie basse fréquence d'une octave (par 2)
- Intérêt ?:
 - Gain en mémoire et coût de calcul
 - Agrandissement du champ réceptif pour les basse fréquences
 - Amélioration des performances
- Difficultés:
 - Communication efficace entre les groupes
 - Intégration « plug-and-play »

Objectif

- Implémenter le nouvel opérateur de convolution
- L'utiliser sur des nouvelles conditions:
 - Architectures
 - Datasets
- Vérifier que les gains de performances sont généralisables

Représentation multi-échelles

- Avant: $X \in \mathbb{R}^{c \times h \times w}$
- Après:

$$X = \{X^H; X^L\}$$

$$X^H \in \mathbb{R}^{(1-\alpha)c \times h \times w}$$

$$X^L \in \mathbb{R}^{\alpha c \times \frac{h}{2} \times \frac{w}{2}}$$

 Apparition d'un paramètre alpha entre 0 et 1: proportion de features basse fréquence

En sortie:

$$Y = \{Y^H, Y^L\}$$

$$Y^H = Y^{H \to H} + Y^{L \to H}$$

$$P^L = Y^{L \to L} + Y^{H \to L}$$

Octave Convolution

$$Y^{H} = f(X^{H}, W^{H \to H}) + upsample(f(X^{H}, W^{L \to H}), 2)$$

$$Y^{L} = f(X^{L}, W^{L \to L}) + f(pool(X^{H}, 2), W^{H \to L})$$

Résultats

Preuve de concept

- Choix d'une implémentation existante:
 https://github.com/koshian2/OctConv-TFKeras
- Test sur réseau Wide ResNet et dataset CIFAR-10

Alpha	Test accuracy (on repository)	Test accuracy (ours)
0	88.47 %	88.22 %
0.125		94.64 %
0.25	94.83 %	94.53 %
0.5	94.40 %	93.64 %
0.75	93.54 %	92.50 %

- Choix des datasets:
 - CIFAR-10: 60000 images / 10 classes
 - Stanford Dogs Dataset: 20000 images / 120 classes
- Choix des architectures:
 - CNN 7 couches
 - CNN 9 couches
 - Network-in-Network
- Choix d'alpha:
 - 0, 0.125, 0.25, 0.5, 0.75

Architectures

CNN 7 couches

CNN 9 couches

Network in Network

Résultats CIFAR-10

Figure 1: Test accuracy with 7-layers CNN (smoothed curve)

Figure 2: Test accuracy with 9-layers CNN (smoothed curve)

Résultats CIFAR-10

Figure 3: Test accuracy with NiN (smoothed curve)

Figure 4: Accuracy-FLOPs trade-off curve on CIFAR-10

Résultats Stanford Dogs Dataset

Figure 5: Test accuracy with 7-layers CNN (smoothed curve)

Figure 6: Test accuracy with 9-layers CNN (smoothed curve)

Résultats Stanford Dogs Dataset

Figure 7: Test accuracy with NiN (smoothed curve)

Figure 8: Accuracy-FLOPs trade-off curve on Stanford Dogs Dataset

Observations

Influence de l'architecture:

- Plus il y a de couches de convolution, plus la nouvelle convolution est efficace:
 - Avec NiN (9 couches de convolution): gain important de performances
 - Avec le CNN 9 couches (dont 6 de convolution): gain modéré sur le Dogs dataset
 - Avec le CNN 7 couches (dont 5 de convolution): pas de gain

Temps d'exécution:

- Pas de différences avec le CNN 7 ou 9 couches
- Avec NiN:

Alpha	Execution time (s) 1 epoch - CIFAR-10	Execution time (s) 1 epoch – Dogs Dataset
0	102	12
0.125	129	21
0.25	115	19
0.5	84	14
0.75	63	10

Conclusions

- Réduction mémoire et coût de calcul intéressante
- Résultats sur la performance mitigés:
 - Dépendant de l'architecture et/ou du dataset
- Avantages:
 - Côté générique, peut être testé dans toutes les architectures
- Perspectives:
 - Aller plus loin dans le multi-échelles avec plus que 2 octaves