AUS920010118US1 Alpert et al. Practical Methodology for Early Buffer and Wire Resource Allocation

AUS920010118US1 Alpert`et al. Practical Methodology for Early Buffer and Wire Resource Allocation

		450	FIG.	<i>4A</i>	
<u>401</u>	<u>402</u>	00 0 00 0 403	0 0 0 0 404	4 05	<u>406</u>
a 407	0 408	0 0 409	0 0 410	0 0 411	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
413	0000 0000 414	0 0 415	<u>416</u>	a a a <u>417</u>	418
0 419	<u>420</u>	00 421	0 0 0 422	0 0 <u>423</u>	<u>424</u>
<u>425</u>	<u>426</u>	u <u>427</u>	<u>428</u>	<u>429</u>	a <u>430</u>
431	<u>432</u>	a <u>433</u>	434	a <u>435</u>	<u>436</u>

AUS920010118US1 Alpert et al. Practical Methodology for Early Buffer and Wire Resource Allocation

FI	G. 4 .	$B = \frac{3}{2}$	/8		
0	0	6	4	1	2
<u>401</u>	<u>402</u>	<u>403</u>	<u>404</u>	<u>405</u>	<u>406</u>
2	2	4	3	3	6
407	<u>408</u>	<u>409</u>	<u>410</u>	<u>411</u>	412
2	8	2	0	5	0
<u>413</u>	<u>414</u>	<u>415</u>	<u>416</u>	<u>417</u>	<u>418</u>
2	2	3	3	2	0
<u>419</u>	<u>420</u>	<u>421</u>	<u>422</u>	<u>423</u>	<u>424</u>
0	0	1	0	0	1
<u>425</u>	<u>426</u>	<u>427</u>	<u>428</u>	<u>429</u>	<u>430</u>
0	0	1	2	1	0
<u>431</u>	<u>432</u>	<u>433</u>	<u>434</u>	<u>435</u>	<u>436</u>

FIG. 5

	<u>50</u>)2	<u>5</u> (03	<u>5</u> (<u>)4</u>		
<u>501</u>	521		530			522	<u>5</u>	<u>05</u>
523								524
<u>506</u>	<u>507</u>		<u>508</u>		<u>509</u>		<u>5</u>	ر <u>10</u>
	527				لر	525		
<u>511</u>	<u>51</u>	<u>2</u>	<u>513</u>		<u>5</u>	ر <u>14</u>	<u>5</u>	<u>15</u>
				526				
<u>516</u>	<u>51</u>	7	<u>5</u>	ر <u>18</u>	<u>5</u>	<u>19</u>	<u>5:</u>	<u>20</u>

AUS920010118US1
Alpert' et al.

Practical Methodology for Early Buffer and Wire Resource Allocation

1. SET Ct[j] = 0 FOR $1 \le j < L_j$ AND SINK t. SET v = t

2. WHILE v≠s DO

FOR j=1 to L_j-1 DO SET $C_par(v)LJ = C_vLj-1J$

3. LET v BE SUCH THAT par(v)=s. RETURN $min\{C_v[j]||0\le j< L_j\}$

720	730		\$\frac{722}{\text{A}}		\$724		726
) [5]	702	703	704	705	<u>302</u>	707	708
B(v)	&	5	12	3	5	0	
(^)q	23	4	2	33	0	0	
(q)d	2.5	3.6	2	8.0	4	5	
(v)p	1.3	9.8	0.5	8	1.0	8	

AUS920010118US1 Alpert' et al. Practical Methodology for Early Buffer and Wire Resource Allocation

5/8

AUS92001011&US1 Alpert et al. Practical Methodology for Early Buffer and Wire Resource Allocation

AUS920010118US1

Alpert et al.

Practical Methodology for Early Buffer and Wire Resource Allocation

7/8

FIG. 11

- 1. PICK AN UNVISITED NODE ν SUCH THAT ALL DESCENDANTS OF ν HAVE BEEN VISITED WHILE $\nu \neq s$ DO
- 2. IF v IS A SINK THEN $SET \ C_V[j] = 0 \ FOR \ 1 \le j < L_i$
- 3. IF v HAS ONE CHILD l(v) THEN FOR j=1 TO L_j . -1 DO SET $C_v[j] = C_{|(v)}[j-1]$ SET $C_v[0] = q(v) + min\{C_{|(v)}[j] || 0 \le j < L_j$.
- 4. IF v HAS TWO CHILDREN /(v) AND r(v) THEN
- 4.1 FOR j=2 TO L_{j} . -1 DO SET $C_{V}[j] = min\{C_{I(V)}[j_{j}] + C_{r(V)}[j_{r}] || j_{l} + j_{r} + 2 = j\}$
- 4.2 SET $C_V[0] = q(v) + min\{C_{|(v)}[j_j] + C_{r(v)}[j_r] \| j_l + j_r + 2 \le L_i\}$
- 4.3 SET $C_V[1] = \infty$
- 4.4 FOR j=1 TO L_j-1 DO SET $C_V[j] = min\{C_V[j], q(v) + C_{|(v)}[j-1], q(v) + C_{|(v)}[j-1]\}$
 - 5. MARK ν AS VISITED PICK AN UNVISITED NODE ν SUCH THAT ALL DESCENDANTS OF ν HAVE BEEN VISITED
 - 6. RETURN $min\{C_S[j] | 0 \le j < L_i\}$.

AUS920010118US1 Alpert et al. Practical Methodology for Early Buffer and Wire Resource Allocation

8/8

