1. Einführung: Was ist Informatik?

Brockhaus Enzyklopädie in 24 Bänden (1997):

 Die Wissenschaft von der *systematischen* Verarbeitung von Informationen, besonders der automatischen Verarbeitung mithilfe von Computern.

• Informatik (engl.: computer science)

- Kunstwort aus Information und Mathematik
- Begriff ist in den 60er Jahren entstanden
- ist nicht Programmieren
- beschäftigt sich *nicht nur* mit den Digitalrechnern, wie wir sie heute kennen, sondern auch z.B. mit
 - DNA-Computing
 - Quantencomputer

Teilgebiete der Informatik

- Technische Informatik
- Praktische Informatik
- Theoretische Informatik
- Angewandte Informatik

Technische Informatik

Bereitstellung der Hardware

- Konstruktion von Rechnern, Speicherchips, Parallelrechnern,
 Peripheriegeräten, ...
- Grenzen zur Elektrotechnik fließend

Berücksichtigung der Anforderungen der Programme

- z.B.
 - Verarbeitung von extrem vielen Daten in möglichst kurzer Zeit
- ganz andere Hardwarelösung als zur Realisierung von z.B.
 - Steuerung von Waschmaschinen
 - Handys
 - Erzeugung von Grafiken
 - etc.

Praktische Informatik

• Bereitstellung der Software, die auf den Rechnern läuft

- Brücke zwischen primitiven Operationen, die eine Maschine "versteht" und den Anwendungsprogrammen, z.B.
 - Betriebssysteme
 - Netzwerke
 - Grafiksysteme
 - Mustererkenung
 - etc.
- klassisches Gebiet: Compilerbau
 - Compiler übersetzen Programme einer höheren Programmiersprache in die Maschinensprache
 - dadurch kann man Programme in einer höheren Programmiersprache formulieren, die weitgehend unabhängig ist von der verwendeten Hardware, die nur eine spezielle Maschinensprache versteht

Theoretische Informatik

Theoretische Grundlagen der Informatik

- theoretische Erkenntnisse k\u00f6nnen sehr schnell in die Praxis umgesetzt werden
 - es entstehen Werkzeuge (engl.: *tools*), die an die Theorie angelehnt sind
- Beispiel Compilerbau
 - anfangs (ohne Theorie der formalen Sprachen und Automatentheorie) benötigte man ca. 25 Personen-Jahre (Anzahl Personen mal Anzahl Jahre) für die Entwicklung eines einfachen Compilers
 - heute schafft das dank der entstandenen Werkzeuge ein Studierender allein im Praktikum
- Beispiel Softwareentwicklung
 - gut durchdachte, theoretisch abgesicherte Entwürfe erweisen sich auch für hochkomplexe Software als leichter wartbar und erweiterbar
 - Software, die im Hauruck-Verfahren entstanden ist, stößt stattdessen schnell an ihre Grenzen

Theoretische Informatik (2)

Beispiel FORTRAN

- eine der ersten höheren Programmiersprachen
- wurde nicht nach den Erkenntnissen der theoretischen Informatik entworfen
- viele Regeln, viele Ausnahmen
 - Compilerbau erschwert
 - Programmentwicklung erschwert

besser PASCAL

- sauber strukturierte Sprache
- war ursprünglich nur für die Lehre vorgesehen
- wurde plötzlich überall eingesetzt
 - bis heute als Delphi: objektorientierte Erweiterung von Pascal

heute eher

- C++, Java zur Entwicklung von Software
- VHDL, Verilog, SystemVerilog zur Entwicklung von Hardware
- SystemC zur Entwicklung von Hardware und Software

Angewandte Informatik

• Einsatz von Rechnern in den verschiedenen Anwendungsbereichen

- spezialisierte Programme f
 ür verschiedenste Anwendungen
- Konzepte entwickeln, die in verschiedenen Bereichen zur Anwendung kommen
 - Textverarbeitung
 - Tabellenkalkulation
 - Simulation von Wirtschaftsprozessen
 - Computerspiele
 - etc.

Beispiel Pen-Point-Computer

• Touch-Screen plus Stift

– Technische Informatik:

- Hardware bereitstellen
- Designmethodik, Partitionierung (HW oder SW?)

– Praktische Informatik:

- Softwaregrundlagen, Betriebssystem
- z.B. Handschrifterkennung

- Theoretische Informatik:

- theoretische Grundlagen
- z.B. statistische Lerntheorie für Handschrifterkennung

- Angewandte Informatik:

- Einsatzmöglichkeiten entwickeln
- z.B. Lagerhaltung, Terminkalender, etc.

Beziehungen der Teilgebiete

Teilgebiete der Informatik (2)

• Übergänge fließend

 Einteilung in diese vier Gebiete ist im deutschsprachigen Raum üblich (aber nicht unumstritten)

• Weitere anwendungsbezogene Spezialgebiete ("Bindestrichinformatiken")

- Medizinische Informatik
- Bio-Informatik
- Medien-Informatik
- Wirtschaftsinformatik
- Linguistische Informatik, etc.

Ziele des Studiums der Informatik

Informatik ist nicht identisch mit Programmieren!!!

- Ein Informatiker soll fähig sein
 - fachliche Zusammenhänge zu überblicken
 - Methoden der Informatik in der Berufspraxis einzusetzen
 - dem schnellen Wandel in der Informatik zu folgen
 - neue Entwicklungen kritisch zu bewerten
 - nach wissenschaftlichen Methoden selbständig zu arbeiten

Aber ohne Programmieren geht es auch nicht!!!!!

- Implementieren und Testen von neuen Algorithmen
- Modellieren von Softwaresystemen
- selbst Hardware wird heute mit Programmiersprachen beschrieben, simuliert und synthetisiert (also der Schaltplan aus dem Programm generiert)

Historie: Rechnertechnologien

- 1. Generation: 1940 1954
 - Relais: Schaltzeit 10⁻¹ s
 - Vakuumröhre: Schaltzeit 10⁻⁴ s
- 2. Generation: 1955 1964
 - Transistor: Schaltzeit 10⁻⁶ s
- 3. und 4. Generation: ab 1965
 - Integrierter Schaltkreis: Schaltzeit <10⁻⁹ s

Moore's Law

Gordon Moore (Mitbegründer von Intel)

- machte 1965 berühmte Beobachtung
- Alle 12 bis 24 Monate verdoppelt sich die Anzahl der Transistoren pro integrierter Schaltung
- Trend existiert bis heute

Moore's Law (2)

Die gute Nachricht

- selbst die komplexesten Computerarchitekturen basieren auf ganz einfachen Prinzipien
- und die versuchen wir in dieser Vorlesung zu verstehen