Public Housing Spillovers: Evidence from South Africa

Ben Bradlow (Harvard University)
Stefano Polloni (MapDwell)
Will Violette (Federal Trade Commission)
william.j.violette@gmail.com

Any opinions expressed herein are those of the authors and do not necessarily represent the views of the Federal Trade Commission.

October 2020

Public Housing and Development

- ▶ In developing countries, 30% of urban pop. live in informal housing [UN, 2015]
- ▶ In Africa, governments have built \sim 5.4 mil. houses often replacing slums (\sim 3 mil. in South Africa)
- Place-Based Policy?
 - Housing projects may improve congestion, sanitation, and investment; or they may invite new slum growth (ie. backyard housing [Brueckner et al., 2019])

This paper

- ► Asks how housing projects in Johannesburg affect areas *within* as well as *nearby* project footprints
- ► Compares changes in outcomes by exposure to 166 constructed projects and 140 planned, but unconstructed projects
 - Measures exposure as neighborhood overlap with project footprints
- ▶ Finds that both formal + informal housing grow both within + nearby footprints
- ► Better houses, improved public goods, and more local firms help explain positive spillovers

Estimating Direct and Spillover Effects

$$\mathsf{Direct}_{it} = (\alpha_0 + \alpha_1 \mathsf{Post}_t) \times \mathsf{Area} \big(\mathsf{PLot}_i \cap \mathsf{PROJ.} \big) +$$

$$(\alpha_2 + \alpha_3 \mathsf{Post}_t) \times \mathsf{Area} \big(\mathsf{PLot}_i \cap \mathsf{Con.} \ \mathsf{PROJ.} \big)$$

$$\begin{aligned} \mathsf{Spillover}_{it} &= \sum_{k=1}^{8} \left(\beta_0^k \, + \, \beta_1^k \mathrm{Post}_t\right) \, \times \, \mathsf{Area} \big(\mathrm{Ring}_i^k \cap \mathrm{Proj.} \big) \, + \\ & \left(\beta_2^k \, + \, \beta_3^k \mathrm{Post}_t\right) \, \times \, \mathsf{Area} \big(\mathrm{Ring}_i^k \cap \mathrm{Con.} \, \, \mathrm{Proj.} \big) \end{aligned}$$

Estimating Direct and Spillover Effects

$$y_{it} = \mathsf{Direct}_{it} \, + \, (1 - P_i) \, \mathsf{Spillover}_{it} \, + \, \gamma_0 \, + \, \gamma_1 \, \mathsf{Post}_t + \varepsilon_{it}$$
 Where
$$P_i = 1 \Big\{ \mathsf{Area} \big(\mathsf{PLOT}_i \cap \mathsf{PROJ.} \big) > 0 \Big\}$$

 Identification requires assuming parallel trends between exposure to constructed projects and exposure to planned, but unconstructed projects

Data

- ► Aerial building counts 2001/2012 per 1 ha plot
 - ► Formal Houses, Informal Houses, Backyard Houses
 - Water Utility Buildings, Electricity Utility Buildings, Health Centers, Schools, Businesses, Informal Businesses
- ▶ Population/housing census in 2001/2011 overlapping 1 ha plots
 - Population, Total Rooms, Own house, Electric Lighting, Flush Toilet, Piped Water Inside, Employment, Log HH Income
- Deeds records of formal property transactions 2001-2011 overlapping 1 ha plots
 - Count Transactions, Prices
- ► Limitation: constructed project footprints have 4x more housing and 3x more population than unconstructed projects at baseline
- Requires a strong parallel trends assumption

Population and Housing Results

	People	Houses	Formal Houses	Informal Houses	Informal Backyard Houses
$\begin{array}{l} Post \times Constructed \; proj \\ overlap \; with: \end{array}$					
Plot footprint	25.737 ^a	9.102 ^a	6.629 ^a	2.473 ^b	6.648 ^a
	(4.630)	(1.544)	(0.812)	(1.044)	(1.157)
Plot neighborhood	0.213 ^a	0.070 ^a	0.023 ^b	0.047 ^b	0.037 ^a
(0-5 hm ring)	(0.075)	(0.023)	(0.011)	(0.019)	(0.013)
${\sf R}^2$ N	0.090	0.113	0.081	0.093	0.079
	701,395	871,778	871,778	871,778	871,778

- c p<0.10,b p<0.05,a p<0.01
- ▶ Per project, direct effect is 3,063 people and 1,083 houses
- ▶ Per project, spillover effect is 504 people and 168 houses

Price Results

	Transactions	Transactions	Log Price	Log Price
$\begin{array}{l} Post \times Constructed proj. \\ overlap with \colon \end{array}$				
Plot neighborhood	0.00026	-0.00026	0.00368	0.00963
(0-5 hm ring)	(0.00125)	(0.00080)	(0.00481)	(0.00821)
Pre: 2001-2006 Post: 2007-2012	\checkmark		\checkmark	
Pre: 2001-2004 Post: 2009-2012		✓		\checkmark
R^2	0.001	0.000	0.128	0.243
N	784,448	784,703	40,176	21,382

 c p<0.10, b p<0.05, a p<0.01

▶ No strong effects on house prices

Mechanisms: Neighborhood Quality

	Total Rooms	Own House	Electric Lighting	Flush Toilet	Piped Water Inside
Post \times Constructed proj overlap with:					
Plot footprint	0.3492	0.0396	0.1185 ^b	0.2367 ^a	0.2795 ^a
	(0.2950)	(0.0535)	(0.0555)	(0.0591)	(0.0550)
Plot neighborhood (0-5 hm ring)	0.0044	0.0006	0.0004	0.0008	0.0001
	(0.0028)	(0.0007)	(0.0009)	(0.0007)	(0.0007)
${\sf R}^2$ N	0.063	0.010	0.049	0.034	0.102
	698,762	699,801	701,296	701,296	701,296

 c p<0.10, b p<0.05, a p<0.01

▶ Basic services improve in project footprints

Mechanisms: Public Goods

	Water Utility Buildings	Electricity Utility Buildings	Health Centers	Schools
Post \times Constructed proj overlap with:				
Plot footprint	0.02453 ^a	0.00062	0.00109 ^b	0.06251 ^a
	(0.00532)	(0.00052)	(0.00048)	(0.01455)
Plot neighborhood (0-5 hm ring)	0.00005	0.00008	-0.00028	0.00119 ^c
	(0.00023)	(0.00006)	(0.00018)	(0.00071)
${\sf R}^2$ N	0.002	0.000	0.001	0.003
	871,778	871,778	871,778	871,778

 c p<0.10, b p<0.05, a p<0.01

► Public goods improve inside footprints (and somewhat nearby)

Mechanisms: Agglomeration Economies

	Businesses	Informal Businesses	Employment	Log Household Income
Post × Constructed proj overlap with:				
Plot footprint	0.05333 ^a	0.03445 ^a	0.04759	0.01943
	(0.01263)	(0.00831)	(0.03457)	(0.17251)
Plot neighborhood (0-5 hm ring)	0.00042	0.00043	0.00026	-0.00082
	(0.00039)	(0.00029)	(0.00042)	(0.00153)
R ²	0.001	0.002	0.179	0.380
N	871,778	871,778	758,982	699,171

 $^{^{\}rm c}$ p<0.10, $^{\rm b}$ p<0.05, $^{\rm a}$ p<0.01

▶ Some evidence of business/income growth in footprints

Summary

- Housing projects crowd-in formal and informal housing
- Provide positive amenities overall (better home quality, public goods, business growth)
- Comparing housing growth against project costs (noisily) suggests that projects increase welfare

Thank You!