Quasiprobability distributions of bright "banana" states

Bulat Nugmanov RQC / MIPT

Problem statement

We start with the following Hamiltonian:

$$\hat{H}_{Kerr} = \hbar \omega \hat{a}^{\dagger} \hat{a} + \hbar \gamma \hat{a}^{\dagger 2} \hat{a}^{2}$$

And let's study the evolution of the coherent state $|\alpha\rangle$:

$$|\psi\rangle = e^{-\frac{i}{\hbar}\hat{H}_{Kerr}\tau} |\alpha\rangle \sim \frac{e^{-\frac{|\alpha|^2}{2}}}{\pi^{1/4}} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} e^{i\Gamma n^2} |n\rangle$$

The main parametrs have the following orders:

$$\begin{cases} \gamma \tau = |\Gamma| \sim 10^{-6} \\ |\alpha|^2 \sim 10^{+6} \end{cases}$$

The state $|\psi\rangle$ we study using Husimi and Wigner functions:

$$Q(\beta) = \frac{|\langle \psi | \beta \rangle|^2}{\pi} = \frac{e^{-|\alpha|^2 - |\beta|^2}}{\pi} \left| \sum_{n=0}^{\infty} \frac{(\alpha \beta^*)^n e^{-i\Gamma n(n-1)}}{n!} \right|^2$$

$$W(\beta) = \frac{1}{\pi} \int_{-\infty}^{\infty} dy \, \psi^*(\operatorname{Re}\beta + y) \psi(\operatorname{Re}\beta - y) e^{2ip \operatorname{Im}\beta}$$

They have the following connection via Fourier transform:

$$C_s(z) = \mathcal{F}\left\{W
ight\}(z) = e^{rac{|z|^2}{2}} \mathcal{F}\left\{Q
ight\}(z) = e^{rac{|z|^2}{2}} C_a(z)$$

The main problem is to calculate this quasi-probabilistic functions in a reasonable time.

Table of nonlinearities

Material	Q	γ , Hz	$\left \Gamma\cdot 10^{-6}\right $
Al_2O_3	2×10^9	0.06	24
CaF_2	3×10^{11}	0.4	24000
MgF_2	6×10^9	0.03 (e, o)	36
Quartz	5×10^9	0.1	100
Fused silica	9×10^9	0.08	144
$LiNbO_3$	10^{9}	0.26 (o)	52
Si_3N_4	8×10^7	0.39	6
Si	10^{9}	0.5	100

The best performance archived for cubically nonlinear media in microresonators. $\Gamma = \gamma \tau$ is defined by archived quality with non-linearity determined by the material.

Basic idea

Instead of studing row which appears in Husimi function let's study function F that has less arguments:

$$F(A, e^{i\Gamma}) = \sum_{n=0}^{\infty} \frac{A^n e^{i\Gamma n^2}}{n!},\tag{1}$$

This function has relatively simple dependency on the z argument:

$$|F(A, e^{i\Gamma})| \approx \frac{1}{\sqrt{2|A\Gamma|}} \left(1 - \frac{1}{(4|A\Gamma|)^2} + \frac{5/2}{(4|A\Gamma|)^4} + \dots \right) \times \exp\left(|A| - \frac{\left(\arg\left(Ae^{2i|A|\Gamma}\right) - \Gamma\right)^2}{8|A\Gamma^2|} + \dots \right)$$
(2)

pic with dependence

Scheme

Wigner calculation

$$O(1 + |\alpha\Gamma|)$$

$$|\alpha|^2 \gtrsim \Gamma^{-2} \tag{3}$$

$$\Gamma = 2\pi \frac{k}{n} \tag{4}$$

We use the interesting fact:

$$\frac{dF}{dA}(A, e^{i\Gamma}) = e^{i\Gamma}F(Ae^{2i\Gamma}, e^{i\Gamma})$$

So we find an alternative repr for F for $\Gamma = 2\pi \frac{k}{n}$:

$$F(A, e^{i\Gamma}) = \frac{\sum_{j \in \mathbb{Z}_n} \exp\left(-i\Gamma j^2 + Ae^{2ij\Gamma}\right)}{\sum_{j \in \mathbb{Z}_n} \exp\left(-i\Gamma j^2\right)}$$
(5)

picture with some peaks

Then using characteristic functions connection and finding a lot of Gaussian integrals we find:

$$W(\beta) = \frac{2}{\pi} e^{|\alpha|^2 - 2(|\alpha| - |\beta|)^2} \sum_{m=0}^{\infty} \frac{\left(-|\alpha|^2\right)^m}{m!} \left| F(2\alpha\beta^* e^{i\Gamma(2m-1)}, e^{i\Gamma}) e^{-2|\alpha\beta^*|} \right|^2$$

$$W(\beta) = 2e^{2|\beta|^2} \sum_{m=0}^{\infty} \frac{\left(-|\alpha|^2\right)^m}{m!} Q(2\beta e^{-i\Gamma 2m})$$

the work in this direction is in progress

Husimi calculation

Firstly we rewrite the expression for F using integral:

$$\Gamma = \frac{\pi}{6}$$

$$\sum_{n=0}^{\infty} \frac{A^n e^{i\Gamma n^2}}{n!} = \frac{e^{i\frac{\pi}{4}\operatorname{sign}\Gamma}}{2\sqrt{\pi|\Gamma|}} \int_{-\infty}^{\infty} \exp\left(-\frac{z^2}{4\Gamma} + iAz\right) dz$$
(6)

then we deform the integration contour:

we use the method of steepest descent:

$$\int \exp(f(z)) dz = \sum_{k} \int_{\gamma_{k}} \exp(f(z)) dz \approx \sum_{k} \exp(f(z_{k})) \sqrt{\frac{2\pi}{-f''(z_{k})}}$$
(7)

concluding, we find the asymptotic expr for F:

$$\sum_{n=0}^{\infty} \frac{A^n e^{i\Gamma n^2}}{n!} \approx e^{\frac{i\pi}{4}\operatorname{sign}\Gamma} \frac{\exp\left(\frac{-i+i(W_{\bar{k}}(-2iA\Gamma)+1)^2}{4\Gamma}\right)}{\sqrt{-i\operatorname{sign}\Gamma\left(1+W_{\bar{k}}(-2iA\Gamma)\right)}}$$

$$\bar{k} \approx -\operatorname{sign}\Gamma\left[\frac{2|A\Gamma|+|\operatorname{arg}A|}{2\pi}\right]$$

where we've hidden bulky remainder.