

MERGING DATAFRAMES WITH PANDAS

Reading multiple data files

Tools for pandas data import

- pd.read_csv() for CSV files
 - dataframe = pd.read_csv(filepath)
 - dozens of optional input parameters
- Other data import tools:
 - pd.read_excel()
 - pd.read_html()
 - pd.read_json()

Loading separate files

```
In [1]: import pandas as pd
In [2]: dataframe0 = pd.read_csv('sales-jan-2015.csv')
In [3]: dataframe1 = pd.read_csv('sales-feb-2015.csv')
```


Using a loop

```
In [4]: filenames = ['sales-jan-2015.csv', 'sales-feb-2015.csv']
In [5]: dataframes = []
In [6]: for f in filenames:
    ...: dataframes.append(pd.read_csv(f))
```


Using a comprehension

```
In [7]: filenames = ['sales-jan-2015.csv', 'sales-feb-2015.csv']
In [8]: dataframes = [pd.read_csv(f) for f in filenames]
```


Using glob

```
In [9]: from glob import glob
In [10]: filenames = glob('sales*.csv')
In [11]: dataframes = [pd.read_csv(f) for f in filenames]
```


MERGING DATAFRAMES WITH PANDAS

Let's practice!

MERGING DATAFRAMES WITH PANDAS

Reindexing DataFrames

"Indexes" vs. "Indices"

- indices: many index labels within Index data structures
- *indexes*: many pandas *Index data structures*

indexes

NOC	AFG	АНО	ALG	ANZ	ARG	ARM	 VEN	VIE	YUG	ZAM	ZIM	ZZX
Edition												
1896	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN
1900	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	33.561198
1904	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	-22.642384
1908	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	0.000000
1912	NaN	NaN	NaN	-26.092774	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	0.000000
1920	NaN	NaN	NaN	0.000000	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	0.000000
1924	NaN	NaN	NaN	0.000000	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	0.000000
1928	NaN	NaN	NaN	0.000000	131.101152	NaN	 NaN	NaN	323.521127	NaN	NaN	0.000000
1932	NaN	NaN	NaN	0.000000	-25.794206	NaN	 NaN	NaN	0.000000	NaN	NaN	0.000000
1936	NaN	NaN	NaN	0.000000	-10.271982	NaN	 NaN	NaN	-29.357594	NaN	NaN	0.000000
1948	NaN	NaN	NaN	0.000000	-4.601500	NaN	 NaN	NaN	47.596769	NaN	NaN	0.000000
1952	NaN	NaN	NaN	0.000000	-10.508545	NaN	 NaN	NaN	34.043608	NaN	NaN	0.000000

Importing weather data

```
In [1]: import pandas as pd
In [2]: w_mean = pd.read_csv('quarterly_mean_temp.csv', index_col='Month')
In [3]: w_max = pd.read_csv('quarterly_max_temp.csv', index_col='Month')
```


Examining the data

```
In [4]: print(w_mean)
       Mean TemperatureF
Month
Apr
                61.956044
               32.133333
Jan
Jul
                68.934783
               43.434783
0ct
In [5]: print(w_max)
       Max TemperatureF
Month
Jan
                      68
                      89
Apr
Jul
                      91
                      84
0ct
```


The DataFrame indexes

```
In [6]: print(w_mean.index)
Index(['Apr', 'Jan', 'Jul', 'Oct'], dtype='object', name='Month')
In [7]: print(w_max.index)
Index(['Jan', 'Apr', 'Jul', 'Oct'], dtype='object', name='Month')
In [8]: print(type(w_mean.index))
<class 'pandas.indexes.base.Index'>
```


Using .reindex()

Using .sort_index()

Reindex from a DataFrame Index

Reindexing with missing labels

Reindex from a DataFrame Index

```
In [16]: w_max.reindex(w_mean3.index)
Out[16]:
       Max TemperatureF
Month
                    68.0
Jan
                    89.0
Apr
                     NaN
Dec
In [17]: w_max.reindex(w_mean3.index).dropna()
Out[17]:
       Max TemperatureF
Month
                    68.0
Jan
                    89.0
Apr
```


Order matters

```
In [18]: w_max.reindex(w_mean.index)
Out[18]:
       Max TemperatureF
Month
                      89
Apr
Jan
                      68
Jul
                      91
                      84
Oct
In [19]: w_mean.reindex(w_max.index)
Out[19]:
       Mean TemperatureF
Month
Jan
               32.133333
               61.956044
Apr
               68.934783
Jul
0ct
               43.434783
```


MERGING DATAFRAMES WITH PANDAS

Let's practice!

MERGING DATAFRAMES WITH PANDAS

Arithmetic with Series & DataFrames

Loading weather data

```
In [1]: import pandas as pd
In [2]: weather = pd.read_csv('pittsburgh2013.csv',
                             index_col='Date', parse_dates=True)
   . . . :
In [3]: weather.loc['2013-7-1':'2013-7-7', 'PrecipitationIn']
Out[3]:
Date
2013-07-01
            0.18
2013-07-02
           0.14
2013-07-03
           0.00
           0.25
2013-07-04
2013-07-05
           0.02
2013-07-06
            0.06
             0.10
2013-07-07
Name: PrecipitationIn, dtype: float64
```


Scalar multiplication

```
In [4]: weather.loc['2013-07-01':'2013-07-07', 'PrecipitationIn'] * 2.54
Out[4]:
Date
2013-07-01
            0.4572
           0.3556
2013-07-02
           0.0000
2013-07-03
           0.6350
2013-07-04
           0.0508
2013-07-05
2013-07-06
             0.1524
2013-07-07
             0.2540
Name: PrecipitationIn, dtype: float64
```


Absolute temperature range

```
In [5]: week1_range = weather.loc['2013-07-01':'2013-07-07',
                                     ['Min TemperatureF', 'Max TemperatureF']]
   . . . :
In [6]: print(week1_range)
            Min TemperatureF Max TemperatureF
Date
2013-07-01
                                               79
                           66
2013-07-02
                           66
                                              84
2013-07-03
                           71
                                              86
2013-07-04
                                              86
                           70
2013-07-05
                           69
                                              86
2013-07-06
                           70
                                              89
2013-07-07
                                              77
                           70
```


Average temperature

```
In [7]: week1_mean = weather.loc['2013-07-01':'2013-07-07',
                                 'Mean TemperatureF'
   . . . :
In [8]: print(week1_mean)
Date
2013-07-01
             72
2013-07-02
            74
            78
2013-07-03
2013-07-04
            77
            76
2013-07-05
              78
2013-07-06
2013-07-07
              72
Name: Mean TemperatureF, dtype: int64
```


Relative temperature range

```
In [9]: week1_range / week1_mean
RuntimeWarning: Cannot compare type 'Timestamp' with type 'str', sort order is
undefined for incomparable objects
  return this.join(other, how=how, return_indexers=return_indexers)
Out[9]:
            2013-07-01 00:00:00 2013-07-02 00:00:00 2013-07-03 00:00:00 \
Date
2013-07-01
                             NaN
                                                  NaN
                                                                        NaN
                                                  NaN
2013-07-02
                             NaN
                                                                        NaN
2013-07-03
                             NaN
                                                  NaN
                                                                        NaN
2013-07-04
                             NaN
                                                  NaN
                                                                        NaN
                                                  NaN
                                                                        NaN
2013-07-05
                             NaN
2013-07-06
                             NaN
                                                  NaN
                                                                        NaN
2013-07-07
                             NaN
                                                  NaN
                                                                        NaN
            2013-07-04 00:00:00 2013-07-05 00:00:00 2013-07-06 00:00:00
Date
2013-07-01
                             NaN
                                                  NaN
                                                                        NaN
```


Relative temperature range

```
In [10]: week1_range.divide(week1_mean, axis='rows')
Out[10]:
            Min TemperatureF Max TemperatureF
Date
2013-07-01
                    0.916667
                                       1.097222
2013-07-02
                    0.891892
                                       1.135135
2013-07-03
                    0.910256
                                       1.102564
2013-07-04
                    0.909091
                                       1.116883
2013-07-05
                    0.907895
                                       1.131579
2013-07-06
                                       1.141026
                    0.897436
2013-07-07
                    0.972222
                                       1.069444
```


Percentage changes

```
In [11]: week1_mean.pct_change() * 100
Out[11]:
Date
2013-07-01
                  NaN
           2.777778
2013-07-02
2013-07-03 5.405405
2013-07-04
           -1.282051
2013-07-05
           -1.298701
           2.631579
2013-07-06
2013-07-07 -7.692308
Name: Mean TemperatureF, dtype: float64
```


Bronze Olympic medals

Silver Olympic medals

Gold Olympic medals

Adding bronze, silver

```
In [18]: bronze + silver
Out[18]:
Country
France
                   936.0
Germany
                      NaN
Italy
                     NaN
Soviet Union
                  1211.0
United Kingdom
                  1096.0
United States
                  2247.0
Name: Total, dtype: float64
```


Adding bronze, silver

```
In [19]: bronze + silver
Out[19]:
Country
France
                   936.0
Germany
                     NaN
Italy
                     NaN
Soviet Union
                  1211.0
               1096.0
United Kingdom
United States
                  2247.0
Name: Total, dtype: float64
In [22]: print(bronze['United States'])
1052.0
In [23]: print(silver['United States'])
1195.0
```


Using the .add() method

```
In [21]: bronze.add(silver)
Out[21]:
Country
France
                   936.0
Germany
                     NaN
                     NaN
Italy
Soviet Union
                  1211.0
United Kingdom
                  1096.0
United States
                  2247.0
Name: Total, dtype: float64
```


Using a fill_value

```
In [22]: bronze.add(silver, fill_value=0)
Out[22]:
Country
France
                   936.0
                   454.0
Germany
                   394.0
Italy
Soviet Union
                  1211.0
United Kingdom
                  1096.0
United States
                  2247.0
Name: Total, dtype: float64
```


Adding bronze, silver, gold

```
In [23]: bronze + silver + gold
Out[23]:
Country
France
                     NaN
Germany
                     NaN
Italy
                     NaN
Soviet Union
                  2049.0
United Kingdom
                  1594.0
United States
                  4335.0
Name: Total, dtype: float64
```


Chaining .add()

MERGING DATAFRAMES WITH PANDAS

Let's practice!