Computer Architecture 2 Final Exam

ELE320, Hanyang University, 2016 Fall,

Department:

ID:

- 1. (10pt) Explain multilevel (especially 2-level) page tables.
- 2. (15pt) Explain physically indexed and physically tagged cache, virtually indexed and virtually tagged cache, and virtually indexed and physically tagged cache.
- 3. (10pt) Virtually indexed and virtually tagged cache has an aliasing (or synonyms) problem. Explain what the problem is. In addition, propose a solution to solve it.
- 4. (10pt) Compare NOR flash and NAND flash in terms of price, speed, and endurance (or lifetime).
- (10pt) Compare SLC, MLC and TLC flash memories in terms of capacity, cost, speed, and endurance.
- 6. (15pt) Explain polling, interrupt, and DMA.
- 7. (10pt) In RAID 5 system which uses distributed block-interleaved even parity.
- (a) Assume E disk is out of order. Reconstruct E blocks. Note that p denotes a parity bit.

	Α	В	c	D	E
0	0	0	0	0	0(p)
1	1	0	0	0(p)	?
2	1	1	1(p)	1	?
3	0	0(p)	1	1	?

- (b) For requests to update blocks A0, B2, and C3, compute how many cycles are required. Assume that it takes a single cycle to update a single block in each HDD.
- 8. (10pt) Explain "Warp" in NVIDIA architecture.
- 9. (10pt) For MESI snooping protocol, specify cache states in processors P1, P2, and P3 for each step. Assumes initial cache state is invalid.

step	P1 cache state	P2 cache state	P3 cache state
P1: read A1			
P1: write 1 to A1			
P2: read A1			

Name:

step	P1 cache state	P2 cache state	P3 cache state
P2: write 2 to A1			
P3: read A1			
P3: write 3 to A1			
P1: write 0 to A1			
P2: read A1			
P2: write 1 to A1			

- 10. (10pt) The following code shows the implementation of lock by using ll (load linked) and sc (store conditional) instructions.
- (a) Fill the blanks.

try: mov R5, #1

ll R2,0(R4); load linked

sc _____; store conditional

beqz $\overline{R5,try}$; branch store fails (R5 = 0)

bnez R2, try; already locked?

(b) The above code invalidates all other copies in caches, which generates considerable bus traffic. Fill the blanks to revise the above code to solve the problem.

- 11. (10pt) Explain the directory cache coherent protocol
- 12. (10pt) DMA causes a cache coherence problem. Describe the situation where DMA causes the cache coherence problem and propose solutions.