1.5 Inverse functions & logarithms

- 1. inverse function 反函數 $f^{-1}(x)$
- 2. logarithmic function 對數函數 $\log_a x$
- 3. inverse trigonometric function 反三角函數 arcsin or sin⁻¹

0.1 Inverse function

A mapping 映射 f from domain 定義域 D to range 値域 R has three types:

- 1. maps one to many;
- 2. maps many to one;
- 3. maps one to one.

一對多

多對一

一對一

A function \boxtimes y is a mapping without the type of one to many, and is

- 1. one-to-one (injective, an injection) 一對一 (單射) if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$. $\Longrightarrow |D| \leq |R|$. (人人點不同菜。)
- 2. *onto* (surjective, a surjection) 映成 (滿射) if $\forall y \in R, \exists x \in D, \ni f(x) = y. \implies |D| \ge |R|$. (道道菜有人點。)
- 3. one-to-one \mathcal{C} onto (bijective, a bijection) 一對一且映成 (雙射) $\implies |D| = |R|$. (點好點滿。)
- ♦ : 證明正整數, 整數, 偶數, 有理數一樣多 $(|\mathbb{N}|=|\mathbb{Z}|=|2\mathbb{Z}|=|\mathbb{Q}|)$: 找雙射。

Vertical line test: f(x) is a function $\iff y = f(x)$ intersects any vertical line x = k at most one point.

(是函數 ← 任垂直線最多交一點。)

Horizontal line test: f(x) is one-to-one $\iff y = f(x)$ intersects any horizontal line y = c at most one point. (一對一 \iff 任水平線最多交一點。)

Define: The *inverse function* 反函數 of a *one-to-one* function

$$f: D \to R \text{ is } \boxed{f-1}: R \to D \text{ s.t. } \boxed{f^{-1}(y) = x \iff f(x) = y}.$$

- - 1. $f^{-1}(f(x)) = x, \forall x \in D.$ 2. $f(f^{-1}(y)) = y, \forall y \in R.$ 3. f^{-1} is one-to-one.

Attention:
$$f^{-1}(x) \neq \frac{1}{f(x)} = [f(x)]^{-1}.$$

How to solve $f^{-1}(x)$: (A 先變再換, B 先換再變; 最好固定一種) A1. write y = f(x); A2. become x = g(y); A3. exchange x, y to obtain $\sum_{x \in S} f(x) = f(x)$ B1. write x = f(y); B2. become y = g(x); B3. $f^{-1}(x) = g(x)$.

Skill: 怎麼變? 加對減 乘對除 冪次對開根 x對y D對R 指數對對數 天對地 雨對風 大陸對長空 山花對海樹 赤日對蒼穹 雷陰陰 霧濛濛 日下對天中 風高秋月白 雨霽晚霞紅 —《笠翁對韻》

Example 0.1 $f(x) = x^3 + 2$, $f^{-1}(x) = ?$

$$A. \ y = f(x) = x^3 + 2 \xrightarrow{(-2)} x^3 = y - 2 \xrightarrow{(3/7)} x = \sqrt[3]{y - 2},$$
 交換 x 與 y 。
 $B. \ x = f(y) = y^3 + 2 \xrightarrow{y^3 = x - 2} y = \sqrt[3]{x - 2}.$
 $\implies f^{-1}(x) = \sqrt[3]{x - 2}.$

How to draw $f^{-1}(x)$: $(y, f^{-1}(y)) = (f(x), x),$ y = f(x) 與 $y = f^{-1}(x)$ 的圖形對稱於 y = x (過原點 45° 直線)。

Example 0.2 Draw $\sqrt{-1-x}$.

 $\sqrt{-1-x}: (-\infty,-1] \to [0,\infty)$, 是 $-1-x^2$ 的反函數 (反函數是 $-1-x^2$)。 $Draw \ y = -1 - x^2 \ for \ x \in [0, \infty)$ (注意範圍), 再對稱 y = x 畫。

0.2 Logarithms

Define: The logarithmic function of base a (以 a 爲底的對數函數),

$$\log_a x, a > 0, a \neq 1$$
 : $(0, \infty) \to (-\infty, \infty)$

is the inverse function of $f(x) = a^x$. ("log(arithm) of x to the base a")

Note: a^x 要 a>0, $\log_a x$ 不只要 a>0, 還要 $a\neq 1$ 才有 one-to-one. $\log_a(a^x)=x, \forall \ x\in (-\infty,\infty)$ (或 $x\in \mathbb{R}$); $a^{\log_a y}=y, \forall \ y\in (0,\infty)$ (或 y>0).

Define: Natural logarithm 自然對數: ("natural log(arithm) of x")

$$f(\mathbf{x}) = \ln \mathbf{x} = \log_{e} \mathbf{x}$$

以 e 爲底的對數函數 (自然指數函數 e^x 的反函數: $\ln y = x \iff e^x = y$.)

Note:
$$[\frac{\ln e^x = x}{}], \forall x \in \mathbb{R}; [e^{\ln y} = y], \forall y > 0.$$

 $\log x = \log_{10} x$ common logarithm 常用對數, in science and engineering. $\lg x = \log_2 x$ binary logarithm 二元對數, in computer science.

Law of logarithms 對數律: a > 0, $a \neq 1$, x, y > 0. $(a^b = x, a^c = y)$

- 1. 乘: $\log_a xy = \log_a x + \log_a y$. ($\iff a^b \times a^c = a^{b+c}$)
- 2. 除: $\log_a x/y = \log_a x \log_a y$. ($\iff a^b/a^c = a^{b-c}$)
- 3. 冪次: $\log_a x^r = r \log_a x$ for $r \in \mathbb{R}$. $(\iff (a^b)^r = a^{rb})$

♦ History:

• 200 B.C. Archimedes(阿基米德) 發現:

$$1, 10, 100, 1000, \cdots$$

 $0, 1, 2, 3, \dots$

可以用第二列的加減表示第一列的乘除. $(\log_a x + \log_a y = \log_a xy)$

● 1544 Michael Stifel(斯基弗, 1487–1567) 在《Arithmetica Integra》中首次使用 exponent(指數) 這個字, 並寫道:

還可以用第二列的乘除代替第一列的冪次與開根. $(\log_a x^r = r \log_a x)$

● 1614 John Napier (納皮爾, 1550–1617) 發表歷史上第一張對數表. 他花了 20 年解

$$N = 10^7 (1 - 10^{-7})^L$$
 for $N = 5 \sim 10^7$,

也就是解

$$L = \text{Naplog}(N) = \log_{1-10^{-7}}(\frac{N}{10^7}) = 10^7 \log_{(1-10^{-7})^{10^7}}(\frac{N}{10^7})$$

其中的

$$(1-10^{-7})^{10^7} = 0.9999999^{10000000} \approx e^{-1}$$

所以

Naplog(N)
$$\approx -10^7 \ln(\frac{N}{10^7})$$
.

後來他想到應該以 10 爲底, 可惜命不夠長. $(\log_x y = \frac{\log_a y}{\log_a x})$

• 1620 Jost Bürgi (比爾吉, 1552–1632) 發表 《Progreß Tabulen》 羅列

$$(1.0001)^n$$
 for $0 \le n \le 23027$.

- 1624 Henry Briggs (1555–1631), Napier 的朋友, 繼承其遺志發表 1–20,000 & 90,000-100,000 的 14位數對數表 (of base 10); 1627 Ezechiel de Decker with Adriaan Valcq 補上 20,000-90,000.
- 1727 Leonhard Euler (歐拉, 1707–1783) 命名 e = 2.718281828..., 1730 發表用極限定義自然指數與自然對數函數:

$$e^x = \lim_{n \to \infty} (1 + \frac{x}{n})^n$$
 & $\ln x = \lim_{n \to \infty} n(x^{\frac{1}{n}} - 1).$

Change base formula 換底公式: $a > 0, a \neq 1, b > 0, b \neq 1, x > 0.$

$$\log_{\mathbf{a}} x = \frac{\log_b x}{\log_b \mathbf{a}}$$

Proof. Let $y = \log_a x \iff a^y = x$, then

$$\log_b x = \log_b a^y \quad \text{(inverse function)}$$

$$= y \log_b a \quad \text{(logarithmic law)}$$

$$= \log_a x \log_b a,$$

$$\implies \log_a x = \log_b x / \log_b a.$$

Note: 換底的好處 — 不用對每種底做對數表:
$$\ln 2 \approx 0.7$$
, $\ln 10 \approx 2.3$. Then $\log 2 = \frac{\ln 2}{\ln 10} \approx \frac{7}{23}$, $\lg 10 = \frac{\ln 10}{\ln 2} \approx \frac{23}{7}$.

Example 0.3 $f(x) = e^{x+1} + 2$, solve and draw $f^{-1}(x)$.

$$Let \ x = e^{y+1} + 2 \iff x - 2 = e^{y+1} \iff \ln(x - 2) = y + 1$$

$$\iff f^{-1}(x) = y = \ln(x - 2) - 1. \ (注意括號: \ln x - 2 \neq \ln(x - 2).)$$

$$f(x) : \mathbb{R} \to (2, \infty), \ f^{-1}(x) : (2, \infty) \to \mathbb{R}.$$

$$y \qquad y \qquad x = 2$$

5

0.3 Inverse trigonometric function

三角幾何 幾何三角 三角三角 幾何幾何

Trigonometric 三角函數 $f(x) \in \{\sin x, \cos x, \tan x, \cot x, \sec x, \csc x\}$ 是 periodic 週期函數 $(f(x+2\pi)=f(x)), x \in \mathbb{R}$, 不是 one-to-one, 所以要限制定義域, 使 f(x) 變成 one-to-one, 才能考慮反函數.

Define: The inverse function of restricted sine function is called the $inverse\ sine\ function$, $sin^{-1}x$, or the $arcsine\ function$,

 $\mathbf{arcsin} \; oldsymbol{x}$. (受限制的正弦函數的反函數=反正弦函數)

function	restricted domain	range	inverse
$\sin x$	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$\begin{bmatrix} -1, 1 \end{bmatrix}$	$\sin^{-1} x = \arcsin x$
$\cos x$	$\left[0,\pi ight]$	$\left[-1,1 ight]$	$\cos^{-1} x = \arccos x$
$\tan x$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	$\left(-\infty,\infty ight)$	$\tan^{-1} x = \arctan x$
$\cot x$	$(0,\pi)$	$\left(-\infty,\infty ight)$	$\cot^{-1} x$
$\sec x$	$\left[0,\frac{\pi}{2}\right) \cup \left[\pi,\frac{3\pi}{2}\right)$	$\left(-\infty,-1\right]\cup\left[1,\infty\right)$	$\sec^{-1} x$
$\csc x$	$\left(0,\frac{\pi}{2}\right]\cup\left(\pi,\frac{3\pi}{2}\right]$	$\left(-\infty,-1\right]\cup\left[1,\infty\right)$	$\csc^{-1} x$

Attention:
$$\sin^n x = (\sin x)^n$$
 for $n \in \mathbb{N}$, $\sin^{-1} x \neq \frac{1}{\sin x} = (\sin x)^{-1}$.

1. Sine 正弦 $\sin x : \mathbb{R} \to [-1, 1]$ (廣義).

$$\sin x: [-\tfrac{\pi}{2}, \tfrac{\pi}{2}] \rightarrow [-1, 1]$$

$$\sin^{-1} x : [-1, 1] \to [-\frac{\pi}{2}, \frac{\pi}{2}]$$

$$\sin^{-1}(\sin x) = x, \ \forall \ x \in [-\frac{\pi}{2}, \frac{\pi}{2}] \text{ and } \sin(\sin^{-1} y) = y, \ \forall \ y \in [-1, 1].$$

2. Cosine 餘弦 $\cos x : \mathbb{R} \to [-1, 1]$ (廣義).

$$\begin{array}{ccc} -1 & 01 \\ \cos^{-1} x & [-1 & 1] \rightarrow \end{array}$$

 $\cos x:[0,\pi]\to[-1,1]$

y

3. Tangent 正切 $\tan x : \mathbb{R} \to \mathbb{R}$ (廣義).

$$\tan^{-1} x: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

4. Cotangent 餘切 $\cot x : \mathbb{R} \to \mathbb{R}$ (廣義).

 $\cot x:(0,\pi)\to\mathbb{R}$

5. Secant 正割 $\sec x : \mathbb{R} \to (-\infty, -1] \cup [1, \infty)$ (廣義).

$$\sec^{-1} x : |x| \ge 1$$

 $\to [0, \frac{\pi}{2}) \cup [\pi, \frac{3\pi}{2})$

6. Cosecant 餘割 $\csc x : \mathbb{R} \to (-\infty, -1] \cup [1, \infty)$ (廣義).

 $\csc x: (0, \frac{\pi}{2}] \cup (\pi, \frac{3\pi}{2}] \to (-\infty, -1] \cup [1, \infty)$

Question: 一定要限制在這些區間嗎?

Answer: 不一定, 只要能 one-to-one 就好.

Question: 爲什麼要限制在這些區間?

Answer: see §3.5, §7.3.

(Fill by yourself:

n	1	2	3	4	5	6	7	8
$\sin^{-1}(\sin n)$	1							
$\cos^{-1}(\cos n)$	1							
$\tan^{-1}(\tan n)$	1							
$\cot^{-1}(\cot n)$	1							
$\sec^{-1}(\sec n)$	1							
$\csc^{-1}(\csc n)$	1							

hint: $\sin(\pi - \theta) = \sin \theta$, $\cos(-\theta) = \cos \theta$, $\tan(\pi + \theta) = \tan \theta$.

Example 0.4 (a) $\sin^{-1} \frac{1}{2} = ?$ (b) $\tan(\arcsin \frac{1}{3}) = ?$

(a) Let
$$x = \sin^{-1} \frac{1}{2} \iff \sin x = \frac{1}{2}$$
,
 $x = (2k + \frac{1}{6})\pi$ or $(2k + \frac{5}{6})\pi$, only $\frac{\pi}{6} \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.
(b) Let $\theta = \arcsin \frac{1}{3} \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \iff \sin \theta = \frac{1}{3}$,
 $\tan \theta = \frac{1}{\sqrt{3^2 - 1^2}} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}$.

Example 0.5 Simplify $\cos(\tan^{-1} x)$.

$$Let \ \theta = \tan^{-1} x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \iff \tan \theta = x.$$

$$\sec^2 \theta = 1 + \tan^2 \theta, \sec \theta = \sqrt{1 + \tan^2 \theta} = \sqrt{1 + x^2}.$$
(負不合, : $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right), \sec \theta \ge 1 > 0.$)
: $\cos \theta = \frac{1}{\sec \theta} = \frac{1}{\sqrt{1 + x^2}}.$
[Another method]: See diagram.

Skill: Diagram: Inverse $\left\{\begin{array}{c} \sin / \tan / \sec \\ \cos / \cot / \csc \end{array}\right\}$ function

$$\theta = \sin^{-1} x \to \sin \theta = x$$

$$\theta = \cos^{-1} x \to \cos \theta = x$$

$$\frac{1}{\sqrt{1-x^2}}x$$

$$\theta = \tan^{-1} x \to \tan \theta = x$$

$$\sqrt{1 + x^2}$$

$$\theta = \cot^{-1} x \to \cot \theta = x$$

$$\theta = \sec^{-1} x \to \sec \theta = x$$

$$\theta = \csc^{-1} x \to \csc \theta = x$$

lacktriangle Additional: Special angles: $\theta = \frac{p}{q}\pi$ for q = 2, 3, 4, 6.

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$
	π	$\frac{\frac{\pi}{6}}{\frac{7\pi}{6}}$	$\frac{\frac{\pi}{4}}{\frac{5\pi}{4}}$	$\frac{\frac{\pi}{3}}{\frac{4\pi}{3}}$	$\frac{\frac{\pi}{2}}{\frac{3\pi}{2}}$	$\frac{2\pi}{3}$ $\frac{5\pi}{3}$	$\frac{\frac{3\pi}{4}}{\frac{7\pi}{4}}$	$\frac{\frac{5\pi}{6}}{\frac{11\pi}{6}}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{2}$
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$ \frac{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}} $	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$
	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{2}$
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$		$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$
	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$		$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$
$\cot \theta$		$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-1	$-\sqrt{3}$
		$\sqrt{3}$	1	$\frac{\frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}}}$	0	$-\frac{1}{\sqrt{3}}$	-1	$-\sqrt{3}$
$\sec \theta$	1	$-\frac{\frac{2}{\sqrt{3}}}{-\frac{2}{\sqrt{3}}}$	$\sqrt{2}$			-2	$-\sqrt{2}$	$ \begin{array}{c} -\frac{2}{\sqrt{3}} \\ \frac{2}{\sqrt{3}} \\ 2 \end{array} $
	-1	$-\frac{2}{\sqrt{3}}$	$-\sqrt{2}$	-2		2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$
$\csc \theta$		2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	
		-2	$-\sqrt{2}$	$-\frac{\frac{2}{\sqrt{3}}}{-\frac{2}{\sqrt{3}}}$	-1	$-\frac{2}{\sqrt{3}}$ $-\frac{2}{\sqrt{3}}$	$-\sqrt{2}$	-2

♦ Additional: Answer

A	$\mid n \mid$	1	2	3	4	5	6	7	8
\overline{B}	$\pi-n$	2.14	1.14	0.14	-0.86	-1.86	-2.86	-3.86	-4.86
\overline{C}	$n-\pi$	-2.14	-1.14	-0.14	0.86	1.86	2.86	3.86	4.86
\overline{D}	$2\pi - n$	5.28	4.28	3.28	2.28	1.28	0.28	-0.72	-1.72
\overline{E}	$n-2\pi$	-5.28	-4.28	-3.28	-2.28	-1.28	-0.28	0.72	1.72
\overline{F}	$3\pi - n$	8.42	7.42	6.42	5.42	4.42	3.42	2.42	1.42
\overline{G}	$n-3\pi$	-8.42	-7.42	-6.42	-5.42	-4.42	-3.42	-2.42	-1.42
\overline{H}	$4\pi - n$	11.56	10.56	9.56	8.56	7.56	6.56	5.56	4.56

	Domain	Range							
$\sin^{-1}(\sin n)$	AB EF								
$\cos^{-1}(\cos n)$	A DE H								
$\tan^{-1}(\tan n)$	A C E G								
$\cot^{-1}(\cot n)$	A C E G		-	0	π	π	0	0	$\longrightarrow x$
$\sec^{-1}(\sec n)$	A DE H		$-\frac{\pi}{2}$	U	$\frac{\pi}{2}$	/($\frac{3\pi}{2}$	2π	
$\csc^{-1}(\csc n)$	AB EF		2		2		2		

How to read tables:

- 1. Find $\cos^{-1}(\cos 5)$: Look the column of n=5 in the 1st table.
- 2. In the 2nd table $\cos^{-1}(\cos n)$ domain ADEH

$$(\because \cos 5 = \cos(2\pi - 5) = \cos(5 - 2\pi) = \cos(4\pi - 5))$$
:

Look numbers in rows ADEH $\{5, 1.28, -1.28, 7.56\}$.

3. $\cos^{-1}(\cos n)$ range blue $(0 \sim \pi/2)$ and green $(\pi/2 \sim \pi)$:

Find the number of color blue or green 1.28 in the row D $(2\pi - n)$.

4.
$$\cos^{-1}(\cos 5) = 2\pi - 5$$
.

()		2	2	1 4	5	6	7	Q
<i>1</i> t	1		ว	4	J	O	(0
$\sin^{-1}(\sin n)$	1	$\pi-2$	$\pi-3$	$\pi-4$	$5-2\pi$	$6-2\pi$	$7-2\pi$	$3\pi - 8$
$\cos^{-1}(\cos n)$	1	2	3	$2\pi-4$	$2\pi - 5$	$2\pi-6$	$7-2\pi$	$8-2\pi$
$\tan^{-1}(\tan n)$	1	$2-\pi$	$3-\pi$	$4-\pi$	$5-2\pi$	$6-2\pi$	$7-2\pi$	$8-3\pi$
$\cot^{-1}(\cot n)$	1	2	3	$4-\pi$	$5-\pi$	$6-\pi$	$7-2\pi$	$8-2\pi$
$\sec^{-1}(\sec n)$	1	$2\pi-2$	$2\pi - 3$	4	$2\pi - 5$	$2\pi-6$	$7-2\pi$	$4\pi - 8$
$\csc^{-1}(\csc n)$	1	$\pi-2$	$\pi - 3$	4	$3\pi - 5$	$3\pi - 6$	$7-2\pi$	$3\pi - 8$

(Find by yourself:

 $\sin(\sin^{-1} 1), \cos(\cos^{-1} 1), \tan(\tan^{-1} 1), \cot(\cot^{-1} 1), \sec(\sec^{-1} 1), \csc(\csc^{-1} 1) = ?)$