Расчёт Импульсного стабилизатора

Выполнил: Джугели Дмитрий

Вариант 10

Задание 1

Таблица 1 – Параметры для подбора импульсного стабилизатора

№ИВ	$\mathbf{U}_{\mathtt{BX_min}}, \mathbf{B}$	U _{BX_max} , B	U _{вых} , В	I, mA	_
10	4,5	12	6	300	

1.1 Выбор стабилизатора

Texas Instruments- TL497AID

Корпус: SOIC-14

Диапазон входных напряжений: от 9.5 B до 12 B

Диапазон выходных напряжений: от Uвх.min(9,5B)+2B(11,5B)до

30B

Максимальный выходной ток: 500 мА

Минимальная рабочая температура: -40 С

Максимальная рабочая температура: +85 С

Итоговая схема

1.5 Рассчета тока Інаг

Iнаг =
$$\frac{U_{\text{вых}}}{R_{\text{нагр}}} = \frac{35B}{10 \text{ Ом}} = 3,5A$$

1.6 Вывод

Данный стабилизатор не выдержит нагрузку в 10 Ом, т.к. Інаг= 3.5А, Імах=500мА.

Задание 2

№ИВ	$U_{\scriptscriptstyle BX_min}, B$	$U_{\text{Bx_max}}$, B	$U_{\text{вых}}$, В	R, Ом
10	12	13	3.3	13

1.1 Выбор стабилизатора Texas Instruments LM2671M-3.3

y

Входное напряжение (макс.)	40 V
Входное напряжение МИН.	8 V
Выходное напряжение	3.3 V
Выходной ток	500 mA
Диапазон рабочих температур	40 C to + 125 C

Итоговая схема

1.2 Нагрузка

Подадим на стабилизатор нагрузку, эквивалентную $R_{\text{\tiny Harp}} = 10 \; \text{Ом}$

Рассчитаем, выдержит ли стабилизатор такую нагрузку

$$I$$
наг = $\frac{U_{\text{вых}}}{R_{\text{нагр}}} = \frac{3,3 \text{ B}}{10 \text{ Ом}} = 330 \text{mA}$

Следовательно, данный стабилизатор выдержит нагрузку в 10 Ом.