3rd October 2016

Home Assignment-11

Q1. For the circuit shown in below fig. let, $V_{CC} = 5V$, $R_C = 1$ K Ω , and $R_B = 20$ K Ω . The BJT has $\beta = 50$. Find the value of V_{BB} that results the transistor operating:

- (a) In the active mode with $V_C = 1V$
- (b) At the edge of saturation.
- (c) Deep in saturation with $\beta_{\text{forced}} = 10$.

Q2: For the circuit in Fig. 2, find V_B , V_E , and V_C for $R_B = 100$ K Ω , 10 K Ω and 1 K Ω . Let $\beta = 100$.

Q3: For the following transistor amplifier given in the figure, if R_S = 0 Ω , R_C =2.4 K Ω , R_E = 1 K Ω , R_B =620 K Ω , I_{CQ} = 4.108 mA and β =110. Draw the small signal equivalent model of the amplifier. Find the values of R_{in} , R_{out} and $A_{V.}$

Q4: For the following transistor amplifier given in the figure, if R_S = 0 Ω , R_1 =90 K Ω , R_2 =10 K Ω , R_C = 5K Ω , R_E = 1K Ω , V_{CC} = 20V and β = 100. Given that I_{CQ} = 1.18 mA, find small signal gain of this circuit.

