Σπύρος Φρονιμός - Μαθηματικός

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ $17 \ \text{Martiou 2016}$

ΓΕΩΜΕΤΡΙΑ Α΄ ΛΥΚΕΙΟΥ

Τρίγωνα

ΣΧΕΤΙΚΕΣ ΘΕΣΕΙΣ ΚΥΚΛΩΝ

ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΔΙΑΚΕΝΤΡΟΣ ΚΥΚΛΩΝ

Διάκεντρος δύο κύκλων ονομάζεται το ευθύγραμμο τμήμα που ενώνει τα κέντρα τους. Συμβολίζεται με δ .

ΟΡΙΣΜΟΣ 2: ΣΧΕΤΙΚΕΣ ΘΕΣΕΙΣ ΚΥΚΛΩΝ

Οι τρεις σχετικές θέσεις μεταξύ δύο κύκλων είναι οι ακόλουθες:

1. Κύκλοι χωρίς κοινά σημεία

Ένας κύκλος λέγεται εξωτερικός ή εσωτερικός ενός άλλου κύκλου όταν όλα τα σημεία του πρώτου βρίσκονται στο εξωτερικό ή εσωτερικό μέρος του δεύτερου αντίστοιχα.. Οι κύκλοι αυτοί δεν έχουν κανένα κοινό σημείο.

2. Εφαπτόμενοι κύκλοι

Εφαπτόμενοι ονομάζονται οι κύκλοι οι οποίοι έχουν ένα κοινό σημείο. Το σημείο αυτό λέγεται σημείο επαφής.

3. Τεμνόμενοι κύκλοι

Τεμνόμενοι ονομάζονται οι κύκλοι οι οποίοι έχουν δύο κοινά σημεία. Το ευθύγραμμο τμήμα που ενώνει τα σημεία αυτά ονομάζεται **κοινή χορδή** των δύο κύκλων.

Χωρίς κοινά σημεία		Εφαπτόμενοι		Τεμνόμενοι
$(K \circ)$ $(\Lambda \circ)$	$K^{(A)}$	$K \circ \circ A$	$K \circ A A \circ$	$K \circ \bigoplus_{B} \circ A$

ΟΡΙΣΜΟΣ 3: ΚΟΙΝΗ ΕΦΑΠΤΟΜΕΝΗ ΔΥΟ ΚΥΚΛΩΝ

Για την κοινή εφαπτομένη δύο κύκλων διακρίνουμε τις εξής δύο περιπτώσεις:

1. Κοινή εξωτερική εφαπτομένη

Κοινή εξωτερική εφαπτομένη δύο κύκλων ονομάζεται η ευθεία η οποία εφάπτεται και στους δύο κύκλους έτσι ώστε να βρίσκονται και οι δύο κύκλοι στο ίδιο ημιεπίπεδο.

2. Κοινή εσωτερική εφαπτομένη

Κοινή εσωτερική εφαπτομένη δύο κύκλων ονομάζεται η ευθεία η οποία εφάπτεται και στους δύο κύκλους έτσι ώστε να βρίσκονται εκατέρωθεν αυτής.

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΣΧΕΤΙΚΕΣ ΘΕΣΕΙΣ ΚΥΚΛΩΝ

Για τις σχετικές θέσεις μεταξύ δύο κύκλων (K,R) και (Λ,ρ) , με $R>\rho$ ισχύουν οι ακόλουθες προτάσεις :

i. Ο κύκλος (Λ, ρ) είναι εξωτερικός του κύκλου (K, R) αν και μόνο αν η διάκεντρος είναι μεγαλύτερη από το άθροισμα των ακτίνων τους.

$$\delta > R + \rho$$

ii. Ο κύκλος (Λ, ρ) είναι εσωτερικός του κύκλου (K, R) αν και μόνο αν η διάκεντρος είναι μικρότερη από τη διαφορά των ακτίνων τους.

$$\delta < R - \rho$$

iii. Οι δύο κύκλοι (K,R) και (Λ,ρ) εφάπτονται εξωτερικά αν και μόνο αν η διάκεντρος είναι ίση με το άθροισμα των ακτίνων τους.

$$\delta = R + \rho$$

iv. Οι δύο κύκλοι (K,R) και (Λ,ρ) εφάπτονται εσωτερικά αν και μόνο αν η διάκεντρος είναι ίση με τη διαφορά των ακτίνων τους.

$$\delta = R - \rho$$

ν. Οι δύο κύκλοι (K,R) και (Λ,ρ) τέμνονται αν και μόνο αν η διάκεντρος είναι μεταξύ του αθροίσματος και της διαφοράς των ακτίνων τους.

$$R - \rho < \delta < R + \rho$$

Γενικότερα οι προηγούμενες σχέσεις μεταξύ των ακτίνων των δύο κύκλων και της διακέντρου συνοψίζονται για τις τρεις βασικές σχετικές θέσεις των δύο κύκλων και γράφονται ισοδύναμα ως εξής:

- 1. Κύκλοι χωρίς κοινά σημεία : $\delta > R + \rho$ ή $\delta < R \rho \Leftrightarrow |\delta \rho| > R$.
- **2.** Εφαπτόμενοι κύκλοι : $\delta = R + \rho$ ή $\delta = R \rho \Leftrightarrow |\delta \rho| = R$.
- **3.** Τεμνόμενοι κύκλοι : $R \rho < \delta < \delta < R + \rho \Leftrightarrow |\delta \rho| < R$.

Οι προηγούμενες προτάσεις φαίνονται συνοπτικά στον παρακάτω πίνακα:

Χωρίς κοινά σημεία		Εφαπτόμενοι		Τεμνόμενοι
$K \circ R \circ A$	K A P	K A P	$K \stackrel{R}{\rightleftharpoons} \stackrel{\rho}{\longrightarrow} \Lambda$	$K \stackrel{R}{\stackrel{\delta}{}} \stackrel{A}{} \stackrel{A}{}$
$ \frac{\delta < R - \rho}{\delta > R + \rho} \Rightarrow \delta - \rho > R $		$\begin{cases} \delta = R - \rho \\ \delta = R + \rho \end{cases} \Rightarrow \delta - \rho = R$		$R - \rho < \delta < R + \rho \Rightarrow \\ \delta - \rho < R$