Sistemas Inteligentes

Escuela Técnica Superior de Informática Universitat Politècnica de ValÃ"ncia

Tema B2T7: Estimación de modelos de Markov.

indice

- 1 Aprendizaje: estimación de probabilidades en modelos de Markov ⊳ 1
 - 2 Inicialización de la re-estimación por Viterbi ⊳ 10

Estimación de probabilidades de un modelo de Markov

Problema básico:

Estimar las probabilidades de un modelo de Markov, M, mediante una secuencia de cadenas de entrenamiento $Y = \{y_1, \dots, y_n\}$ extraidas independientemente de acuerdo con la ley de probabilidad P(y|M).

Como las cadenas se han extraído independientemente:

$$P(Y|M) = \prod_{k=1}^{n} P(y_k|M)$$

El estimador de máxima verosimilitud de M es:

$$\hat{M} = \operatorname*{argmax}_{M} \prod_{k=1}^{n} P(y_k|M) pprox \operatorname*{argmax}_{M} \prod_{k=1}^{n} \tilde{P}(y_k|M)$$

Estimación mediante el algoritmo de Viterbi

Idea básica:

Analizar todas las cadenas Y, contabilizando las frecuencias de uso de las transiciones entre estados, de generación de símbolos en cada estado, etc. y normalizar adecuadamente.

Problema:

Cómo analizar las cadenas si no se conocen las probabilidades de del modelo?

Una posible solución:

- 1. Inicializar las probabilidades "adecuadamente"
- 2. Analizar cada cadena de Y mediante el algoritmo de Viterbi y obtener la secuencia de estados correspondiente
- 3. A partir de esta secuencia de estados, contabilizar las frecuencias requeridas.
- 4. Normalizar las frecuencias para obtener nuevas probabilidades del modelo
- 5. Repetir pasos 2-4 hasta convergencia.

Estimación mediante el algoritmo de Viterbi: ejemplo

Se dispone de tres cadenas de contorno de 4-direcciones que representan tres dígitos "siete" manuscritos¹.

A partir de estas cadenas se desea re-estimar las probabilidades de un modelo de Markov para estos dígitos. Utilizando el algoritmo de Viterbi se han obtenido las siguientes secuencias óptimas de estados para cada cadena:

Cadena: aaaaaddcdcdcdcdcbabaababccccb

Secuencia óptima de estados: 111112222222222333333333344444F

Cadena: aaaaaddcdcdcdcdcbababababacccdcbb

Secuencia óptima de estados: 11111222222222233333333334444444F

Cadena: aaaadcdcdcdcdcbabababccdccbaab

Secuencia óptima de estados: 111122222222223333333334444444444

¹Para mayor claridad se representan los trazos horizontales como 0=a, 2=c y los verticales como 1=b, 3=d.

Estimación mediante el algoritmo de Viterbi: ejemplo (cont.)

$$\pi_1 = 3/3 = 1$$
 $\pi_2 = \pi_3 = \pi_4 = 0$

A	1	2	3	4	F		A	1	2	3	4	F
1	4 + 4 + 3	1 + 1 + 1	0	0	0		1	$\frac{11}{14}$	$\frac{3}{14}$	0	0	0
2	0	11 + 11 + 11	1 + 1 + 1	0	0	\Rightarrow	2	0	$\frac{33}{36}$	$\frac{3}{36}$	0	0
3	0	0	9 + 9 + 8	1 + 1 + 1	0		3	0	0	$\frac{26}{29}$	$\frac{3}{29}$	0
4	0	0	0	4 + 6 + 8	1 + 1 + 1		4	0	0	0	$\frac{18}{21}$	$\frac{3}{21}$

B	a	b	c	d
1	5 + 5 + 4	0	0	0
2	0	0	6 + 6 + 6	6 + 6 + 6
3	5 + 5 + 4	5 + 5 + 5	0	0
4	0 + 0 + 2	1 + 2 + 2	4 + 4 + 4	0 + 1 + 1

	B	a	b	c	d
	1	14 14	0	0	0
>	2	0	0	$\frac{18}{36}$	$\frac{18}{36}$
	3	$\frac{14}{29}$	$\frac{15}{29}$	0	0
	4	$\frac{2}{21}$	$\frac{5}{21}$	$\frac{12}{21}$	$\frac{2}{21}$

Algoritmo de reestimación por Viterbi

```
Input: M^0 = (Q^0, \Sigma^0, \pi^0, A^0, B^0)
                                                                             /* Modelo inicial */
          Y = \{y_1, \ldots, y_n\}
                                                               /* cadenas de entrenamiento */
Output: M = (Q, \Sigma, \pi, A, B)
                                                                       /* Modelo optimizado */
M = M^{0}
repeat M' = M; \pi = 0; A = 0; B = 0
    for k=1 to n do
        m = |y_k|
                       /* secuencia de estados más probable para y_k, */
        \tilde{q}_1, \dots, \tilde{q}_m = \operatorname{argmax}_{q_1, \dots, q_m} P(y_k, q_1, \dots, q_m \mid M') /* por Viterbi */
                                                            /* actualización de contadores */
        \pi_{\tilde{q}_1}++; B_{\tilde{q}_1,y_{k-1}}++
        for t=2 to m do A_{\tilde{q}_{t-1},\tilde{q}_t}++; B_{\tilde{q}_t,y_{k,t}}++ done; A_{\tilde{q}_m,F}++
    done
    s = \sum_{q \in Q} \pi_q
    forall q \in Q do
                                                           /* normalización de contadores */
        \pi_a = \pi_a/s
        a = \sum_{q' \in Q} A_{q,q'}; forall q' \in Q do A_{q,q'} = A_{q,q'}/a
        b = \sum_{\sigma \in \Sigma} B_{q,\sigma}; forall \sigma \in \Sigma do B_{q,\sigma} = B_{q,\sigma}/b
    done
until M=M'
```

DSIC – UPV: SIN

Algoritmo mediante el algoritmo de Viterbi: ejercicio

Sea M un modelo de Markov de conjunto de estados $Q = \{0, 1, F\}$; alfabeto $\Sigma = \{a, b\}$; probabilidades iniciales $\pi_0(0) = 0.7, \pi_0(1) = 0.3$; y probabilidades de transición entre estados y de emisión de símbolos:

A	0	1	F
0	0.5	0.4	0.1
1	0.3	0.5	0.2

B	a	b
0	0.6	0.4
1	0.4	0.6

Reestima los parámetros de M mediante una iteración de reestimación por Viterbi, a partir de las cadenas de entrenamiento "a a a" y "b b a".

Ejercicio: secuencias de estados mas probables

Los pares cadena-secuencia óptima de estados obtenidos son:

aaa bba 001F 011F

Ejercicio: parámetros reestimados

$$\hat{\pi}_0(0) = \frac{2}{2} = 1$$

$$\hat{\pi}_0(1) = \frac{0}{2} = 0$$

$$\hat{\pi}_0(1) = \frac{0}{2} = 0$$

$oxed{A}$	0	1	F
0	$\frac{1}{3}$	$\frac{2}{3}$	0
1	0	$\frac{1}{3}$	$\frac{2}{3}$

B	a	b
0	$\frac{2}{3}$	$\frac{1}{3}$
1	2 3 2 3	$\frac{1}{3}$

indice

- 1 Aprendizaje: estimación de probabilidades en modelos de Markov ⊳ 1
- 2 Inicialización de la re-estimación por Viterbi > 10

Inicialización de la re-estimación por Viterbi

Una idea elemental: Inicializar todas las probabilidades según distribuciones equiprobables.

Problema: Suele producir problemas de convergencia o convergencia a máximos locales inadecuados.

Una idea útil para modelos lineales:

- Segmentar cada cadena de Y en tantos segmentos de (aproximadamente)
 la misma longitud como estados tenga el modelo de Markov.
- Asignar los símbolos de cada segmento a su correspondiente estado
- Contabilizar las frecuencias de generación y transición
- Normalizar las frecuencias para obtener probabilidades iniciales requeridas

Inicialización por segmentación lineal: Ejemplo

Obtener un modelo de Markov de N=3 estados mediante segmentación lineal a partir de las cadenas

$$y_1 = \mathsf{aabbcc}$$
 $y_2 = \mathsf{aaabbccc}$

$$Q = \{1, 2, 3, F\} \qquad \Sigma = \{a, b, c\}$$

$$q=\left\lfloor rac{t\cdot N}{\mid y\mid +1}
ight
floor+1$$
 : aabbbcc aaabbccc 1122233 11222333 $\pi_1=rac{2}{2},\quad \pi_2=\pi_3=0$

$oxed{B}$	a	b	c
1	$\frac{4}{4}$	0	0
2	$\frac{1}{6}$	$\frac{5}{6}$	0
3	0	0	$\frac{5}{5}$

Inicialización por segmentación lineal

```
Input: Y = \{y_1, \dots, y_n\}, N /* cadenas de entrenamiento, número de estados */
Output: M = (Q, \Sigma, \pi, A, B)
                                                                                   /* modelo */
Q = \{1, 2, \dots, N, F\}; \Sigma = \{y \in y_k \in Y\}
                                                                     /* estados y símbolos */
                                                           /* inicialización de contadores */
\pi = 0; A = 0; B = 0
for k=1 to n do
                                                       /* actualización de contadores por */
                                           /* alineamiento lineal de y_k con los estados */
q = 1; \pi_q + +; B_{q,y_{k,1}} + +
for t=2 to |y_k| do q'=q; q=\left|\frac{t}{|y_k|+1}N\right|+1; A_{q',q}++; B_{q,y_{k,t}}++ done
A_{q,F} ++
done
s = \sum_{q \in Q} \pi_q
forall q \in Q do
                                                          /* normalización de contadores */
\pi_q = \pi_q / s
a = \sum_{q' \in Q} A_{q,q'}; forall q' \in Q do A_{q,q'} = A_{q,q'} / a
b = \sum_{\sigma \in \Sigma} B_{q,\sigma}; forall \sigma \in \Sigma do B_{q,\sigma} = B_{q,\sigma} / b
done
```