超臨界ブラックホール降着流におけるライマンアルファ輝線の輻射力の計算

武者野 拓也 (筑波大学 宇宙理論研究室 M2)

共同研究者 小川拓未、大須賀健、矢島秀伸(筑波大学)、大向一行(東北大学)

銀河中心に普遍的に存在する巨大BHは銀河との共進化を示唆している **⇒巨大BHがいつどこで生まれ、どのように成長したのか**を明らかにすることは 宇宙の歴史を理解するうえで極めて重要

宇宙初期(z > 6)に $10^9 M_{\odot}$ 程度の超巨大ブラックホールが存在 \Rightarrow **形成シナリオに厳しい制約を与える**

形成シナリオの1つの可能性:ガス降着による急成長

初代星由来の種BH $(M_{\rm BH} \sim 10^{1-2} M_{\odot}, z \sim 20)$

周囲のガスを取り込み急成長

成長時間の問題

Eddington 降着では**観測を説明できない**

降着による超巨大ブラックホール成長には **超臨界降着が不可欠**

 $lope M_{
m BH} \sim 10^{3-4} M_{\odot}$ の超大質量星由来のm BHを種とする説もある

輻射電離加熱によるガス降着の抑制

ハローの星間ガスが 降着円盤スケールに 供給される過程に注目 (低角運動量のため球対称を仮定)

R_B: Bondi 半径, Ṁ_B: Bondi 降着率

R_{ion}:電離領域の半径

 n_{∞} : 星間ガスの数密度, T_{∞} : 星間ガスの温度

輻射電離加熱によるガス降着の抑制

ハローの星間ガスが 降着円盤スケールに 供給される過程に注目 (低角運動量のため球対称を仮定)

降着円盤からの輻射電離加熱が 星間ガスを温め**電離領域**を形成(**T**∞**上昇**)

降着率低下

$$\dot{M}_{\rm B} \propto M_{\rm BH}^2 n_{\infty} T_{\infty}^{-3/2}$$

Milosavjevic et al. 2009

R_B: Bondi 半径, Ṁ_B: Bondi 降着率

R_{ion}:電離領域の半径

 n_{∞} : 星間ガスの数密度, T_{∞} : 星間ガスの温度

高密度環境中の超臨界降着解 (Inayoshi, et. al. 2016, Sakurai, et al. 2016)

Lyα光子の強力な輻射力が降着を阻害?

Dijkstrtra (2017)

これまでの研究

- ・超臨界降着は実現可能と思われているが、 **Lyα輻射力が考慮されていない**ために最終的な結論は不明
- ・しかしBH降着流の流体計算との結合に適した **Lyα輻射輸送計算コードは存在しない**

本研究

- ・Ly α 輻射流体計算の第一歩として、 **流体の速度場を考慮した** Ly α 輻射輸送計算コードを開発
- ・球対称超臨界降着解の妥当性を評価: 定常降着流中でLyα輻射輸送を 解きLyα輻射力と重力を比較

基礎方程式:空間1次元球対称+振動数1次元輻射モーメント式

静的ガスに対する球対称ライン拡散方程式(Dijkstra et al. 2006)を動的ガスに拡張

$$\frac{\partial E_{x_0}}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{c}{3\kappa_{x_0}} \frac{\partial E_{x_0}}{\partial r} \right) + \frac{1}{2} \frac{\partial}{\partial x_0} \left(\kappa_{x_0} \frac{\partial E_{x_0}}{\partial x_0} \right) + 4\pi \eta_{x_0}$$

$$\frac{\partial \Phi}{\partial x_0} \left(r^2 E_{x_0} v \right) - \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 v \right) \frac{1}{3} E_{x_0} + \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 v \right) \frac{\partial}{\partial x_0} \left[\left(\frac{c}{v_{\text{th}}} + x_0 \right) \frac{1}{3} E_{x_0} \right]$$

動的ガス効果

0付き文字:流体静止系での量

※Lyα輻射力評価時には定常輻射場を使用

使っている近似

- ・流体静止系における Eddington 近似 $(P_{x_0} = E_{x_0}/3)$
- ・Fokker-Planck 近似(散乱前後の振動数変化が小さい)
- ・亜相対論近似(v/c の 2 次以上の項を無視)

 E_x :振動数依存輻射エネルギー密度 $x = (v - v_\alpha)/\Delta v_\alpha$ (無次元化した振動数)

 $v_{\alpha} = 2.47 \times 10^{15} \text{ Hz (Ly } \alpha$ 振動数)

 $\Delta v_{\alpha} = v_{\alpha} \ (v_{\rm th}/c)$

c:光速

 $v_{
m th}$:流体の熱速度

v:流体の速度

 $\kappa_x = \sigma_0 \phi(x) n(r)$ (散乱係数)

 ϕ : Voight profile

(Smith et al. 2015 のフィッティング式を使用)

σ₀: Ly α ライン中心に対する 中性水素ガスの散乱断面積

n:水素数密度

 η :放射率

 $L_{
m Edd}$:トムソン散乱に対する Eddington 光度

静的一様ガスのテスト計算

ライン中心に対する光学的厚み $au_0 = 10^{11}, 10^{12}$

$$v(r) = 30v_{\rm th} \left(\frac{r}{R_{\rm min}}\right)^{-0.5}, \ n(r) \propto \left(\frac{r}{R_{\rm min}}\right)^{-1.5}$$

振動数が wing に遷移 (::ドップラー効果)

- ⇒散乱断面積が低下
- ⇒輻射力の増幅は非効率に

- ・流体の**速度場は輻射力を低下させる**働きを持つ
- ・定量的な評価にはシミュレーションが必須
- (:速度場入りの解析解は無い)

超臨界降着流中のLyα輻射力評価

超臨界降着流中のLyα輻射力評価の計算条件

計算領域(中性水素ガス): $r_{\min} (= \mathbf{10}^{-3} R_{\mathrm{B}}) < r < r_{\max} (= \mathbf{10} \ R_{\mathrm{B}})$

結果:Ly α 輻射力

Force Multiplier M_F

$$\frac{L_{\text{Ly}\alpha}}{c}M_{\text{F}} := \int f_{\text{rad}}(r)dV$$

$$\frac{L_{\text{Ly}\alpha}}{c}M_{\text{F,grav}} := \int f_{\text{grav}}(r)dV$$

 $L_{Lv\alpha}$: Ly α 光度

 $f_{\rm rad}$: 単位体積当たりのLy α 輻射力, $f_{\rm grav}$: 単位体積当たりの重力

結果: Lyα輻射力は超臨界降着を抑制するか?

本研究

7U1 J 14

先行研究(Inayoshi, et al. 2016, Sakurai, et al. 2016)

Filled circle:重力 > Ly α 輻射力

白領域:超臨界降着可能

Open circle: Ly α 輻射力 > 重力

影領域:亜臨界降着

従来の研究で超臨界降着が実現可能と されている領域でありながら、 Lyα輻射力が重力を上回る領域

$$0.6 < \left(\frac{M_{\rm BH}}{10^4 M_{\odot}}\right) \left(\frac{n_{\infty}}{10^5 \text{ cm}^{-3}}\right) < 6$$

Lyα輻射力が降着率を抑制する可能性があるため、今後Lyα輻射力入りの流体計算を用いた詳細な研究が必要

以上のLy α 輻射輸送計算で考慮していなかった、 **2光子放射**による**Ly \alpha 輻射力の減衰効果**について

 $p_{ ext{dest}}$: 散乱一回当たりのLy lpha 破壊確率

2 光子放射によるLy α 光子の破壊効果の影響

2p軌道にいる電子が低確率でイオンと相互作用して2s軌道に遷移 ⇒1s軌道への遷移時に連続線(禁制線)を放射

⇒1回の散乱当たりにある確率 p_{dest} でLy α 光子が破壊される

2 光子放射によるLy α 光子の破壊効果の影響

静的一様ガスの場合における 2光子破壊の輻射力への影響

*電離度 10-4 を仮定

 au_0 :ライン中心に対する系の光学的厚み

ある τ^* までほぼ全ての光子が破壊される = τ^* より内側で輻射力の増幅 M_F が決まる $\Rightarrow \tau_0 = \tau^*$ で輻射力の増幅は打ち止め

2 光子放射によるLy α 光子の破壊効果の影響

まとめ

・宇宙初期のブラックホールの超臨界降着への $Ly\alpha$ 輻射力の影響を評価するために、 速度場の影響を考慮した $Ly\alpha$ 輝線輻射輸送コードを開発した。

・先行研究で示されている球対称超臨界降着流での $Ly \alpha$ 輻射力を評価した結果、 超臨界降着が実現可能とされていながらも、 $Ly \alpha$ 輻射力が重力を上回る条件がある ことがわかった。

$$0.6 < \left(\frac{M_{\rm BH}}{10^4 M_{\odot}}\right) \left(\frac{n_{\infty}}{10^5 \, {\rm cm}^{-3}}\right) < 6$$

この結果、超臨界降着が実現しにくくなる可能性がある。

(2光子放射によるLyα輻射力の減衰が有効に働き、 上記の条件は緩和される可能性がある。)

future work

- ·Lyα輻射力を考慮した流体計算を行い、最終的に得られる降着率を明らかにする。
- ・多次元化効果を考慮するためにLy α 輻射輸送コードを拡張する。