EPITA

Mathematics

Final exam S2

Duration: 3 hours

May 2022

Name:
First name:
Class:
Mark:
The marking system is given for a grading scale from 0 to 40. The final mark will be re-scaled from 0 to 20.
Instructions:

- Read the whole exam before starting. It contains 7 exercises.
- The quality of your redaction will be accounted in your mark.
- Write your answers on the stapled sheets provided for answering. Look at the frame's size before writing your redaction.
- A 1-point penalty may be removed if the paper's presentation is confused.
- Documents and pocket calculators are not allowed.
- Please, do not use lead pencils for answering.

Exercise 1 (6.5 points)

1.	Recall the Taylor expansions in 0, at the order 4, of e^u , $\cos(u)$, $\sin(u)$, $\ln(1+u)$ and $\sqrt{1+u}$.
2.	Find the Taylor expansion in 0 at the order 4 of $f(x) = \ln(1 - 2x) \sin(\frac{x}{2})$.
3	Find the Taylor expansion in 0 at the order 4 of $g(x) = \sqrt{1 + \cos(2x)}$.
Ο.	That the Taylor expansion in 0 at the order 1 of $g(x) = \sqrt{1 + \cos(2x)}$.

Exercise 2 (4 points)

1.	Compute $\lim_{x\to 0} \frac{\cos(2x^2)-1}{e^x-e^{-x}-2x}$
2.	Compute $\lim_{x \to +\infty} x^2 \left(e^{\frac{1}{x^2}} - \cos\left(\frac{1}{x}\right) \right)$.
2.	Compute $\lim_{x \to +\infty} x^2 \left(e^{\frac{1}{x^2}} - \cos\left(\frac{1}{x}\right) \right)$.
2.	Compute $\lim_{x \to +\infty} x^2 \left(e^{\frac{1}{x^2}} - \cos\left(\frac{1}{x}\right) \right)$.
2.	Compute $\lim_{x \to +\infty} x^2 \left(e^{\frac{1}{x^2}} - \cos\left(\frac{1}{x}\right) \right)$.
2.	Compute $\lim_{x \to +\infty} x^2 \left(e^{\frac{1}{x^2}} - \cos\left(\frac{1}{x}\right) \right)$.
2.	Compute $\lim_{x \to +\infty} x^2 \left(e^{\frac{1}{x^2}} - \cos\left(\frac{1}{x}\right) \right)$.
2.	Compute $\lim_{x \to +\infty} x^2 \left(e^{\frac{1}{x^2}} - \cos\left(\frac{1}{x}\right) \right)$.
2.	Compute $\lim_{x \to +\infty} x^2 \left(e^{\frac{1}{x^2}} - \cos\left(\frac{1}{x}\right) \right)$.
2.	Compute $\lim_{x \to +\infty} x^2 \left(e^{\frac{1}{x^2}} - \cos\left(\frac{1}{x}\right) \right)$.
2.	
2.	
2.	
2.	
2.	
22.	
22.	
22.	
2.	
2.	
2.	

Exercise 3 (5 points)

Consider the endomorphism f of \mathbb{R}^3 defined by its matrix in the standard basis (as input and output basis): $A = \begin{pmatrix} 2 & 2 & 3 \\ 4 & 3 & 5 \\ -1 & -2 & -1 \end{pmatrix}$
1. Find the inverse of A .

	s the endomorphism f bijective? Explain why. If it is, give an expression of the mapping f^{-1} .
	Assume that A is the matrix of another linear map $g \in \mathcal{L}(\mathbb{R}_2[X], \mathbb{R}^3)$ in the standard bases as input and output bases dive an expression of the mapping g .
•	
•	
•	
•	
•	
•	
The two	questions of this exercise are mutually independent.
1. I	n the vector space $E = \mathbb{R}_2[X]$, consider the families:
1. I	In the vector space $E = \mathbb{R}_2[X]$, consider the families: $\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right) \text{and} \mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$
F	$\mathcal{F}_1 = (P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2)$ and $\mathcal{F}_2 = (Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X)$
F <i>I</i>	$\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right)$ and $\mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ or each family, say whether it is a basis of E or not. Justify rigorously your answer. If it is, find the coordinates of
F <i>I</i>	$\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right)$ and $\mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ for each family, say whether it is a basis of E or not. Justify rigorously your answer. If it is, find the coordinates of $P = -X^2 + 7X + 5$ in this basis.
F	$\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right)$ and $\mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ for each family, say whether it is a basis of E or not. Justify rigorously your answer. If it is, find the coordinates of $P = -X^2 + 7X + 5$ in this basis.
F <i>F</i>	$\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right)$ and $\mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ for each family, say whether it is a basis of E or not. Justify rigorously your answer. If it is, find the coordinates of $P = -X^2 + 7X + 5$ in this basis.
F <i>F</i>	$\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right)$ and $\mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ for each family, say whether it is a basis of E or not. Justify rigorously your answer. If it is, find the coordinates of $P = -X^2 + 7X + 5$ in this basis.
F <i>F</i>	$\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right)$ and $\mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ for each family, say whether it is a basis of E or not. Justify rigorously your answer. If it is, find the coordinates of $P = -X^2 + 7X + 5$ in this basis.
F <i>F</i>	$\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right)$ and $\mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ for each family, say whether it is a basis of E or not. Justify rigorously your answer. If it is, find the coordinates of $P = -X^2 + 7X + 5$ in this basis.
F <i>F</i>	$\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right)$ and $\mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ for each family, say whether it is a basis of E or not. Justify rigorously your answer. If it is, find the coordinates of $P = -X^2 + 7X + 5$ in this basis.
F <i>F</i>	$\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right)$ and $\mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ for each family, say whether it is a basis of E or not. Justify rigorously your answer. If it is, find the coordinates of $P = -X^2 + 7X + 5$ in this basis.
F <i>F</i>	$\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right)$ and $\mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ for each family, say whether it is a basis of E or not. Justify rigorously your answer. If it is, find the coordinates of $P = -X^2 + 7X + 5$ in this basis.
F F F F F F F F F F F F F F F F F F F	$\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right)$ and $\mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ for each family, say whether it is a basis of E or not. Justify rigorously your answer. If it is, find the coordinates of $P = -X^2 + 7X + 5$ in this basis.
F F F F F F F F F F F F F F F F F F F	$\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right)$ and $\mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ for each family, say whether it is a basis of E or not. Justify rigorously your answer. If it is, find the coordinates of $P = -X^2 + 7X + 5$ in this basis.
F F F F F F F F F F F F F F F F F F F	$\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right)$ and $\mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ for each family, say whether it is a basis of E or not. Justify rigorously your answer. If it is, find the coordinates of $P = -X^2 + 7X + 5$ in this basis.
F F F F F F F F F F F F F F F F F F F	$\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right)$ and $\mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ for each family, say whether it is a basis of E or not. Justify rigorously your answer. If it is, find the coordinates of $P = -X^2 + 7X + 5$ in this basis.
F F F F F F F F F F F F F F F F F F F	$\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right)$ and $\mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ for each family, say whether it is a basis of E or not. Justify rigorously your answer. If it is, find the coordinates of $P = -X^2 + 7X + 5$ in this basis.

Mathematics

FINAL EXAM	S2-	May	2022
------------	-----	-----	------

2. In	the vector space \mathbb{R}^3 , consider the vectors $u=(2,3,-1)$ and $v=(1,-1,-2)$.
(a)	Is the family (u, v) a basis of $G = \text{Span}(u, v)$? Justify your answer.
` '	
(h)	Find a $\subset \mathbb{D}$ such that ω (15.5 a) $\subset C$
(0)	Find $a \in \mathbb{R}$ such that $w = (-15, 5, a) \in G$.

Exercise 5 (8 points)

Consi	der the linear map $f: \left\{ \begin{array}{ll} \mathbb{R}_2[X] & \longrightarrow & \mathbb{R}^2 \\ P & \longmapsto & (P(0), P'(1)) \end{array} \right.$
	Find a basis of the kernel of f . Deduce its dimension.
	$\mathrm{Im}(f)$.
3.	Is f injective? Is f surjective?
4.	Find the matrix of f in the standard bases as input and output bases.

5.	Find the matrix of f in the standard basis as input basis and $((2,1),(-1,-1))$ as output basis.
Exer	rcise 6 (8 points)
Let $f \in$	$\mathcal{L}(\mathbb{R}^3)$ be defined by its matrix in the standard basis: $A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ 0 & -1 & -1 \end{pmatrix}$.
The th	aree column vectors of A are denoted by C_1 , C_2 and C_3 .
1.	Is the family (C_1, C_2, C_3) linearly independent? If it is not, extract a maximal independent family.
2.	Deduce a basis \mathcal{B}_1 of $\mathrm{Im}(f)$ and a basis \mathcal{B}_2 of $\mathrm{Ker}(f)$. Give their dimensions.

3.	Show that $\operatorname{Im}(f) \oplus \operatorname{Ker}(f) = \mathbb{R}^3$. We build a basis \mathcal{B} of \mathbb{R}^3 by concatenation of the families \mathcal{B}_1 and \mathcal{B}_2 .
,	
4.	Compute A^2 and deduce a property about f . How such a linear map is called?
۲	II
θ.	Using questions 3. and 4., give the image by f of an arbitrary vector in $\text{Im}(f)$. Then of an arbitrary vector in \mathbb{R}^3 .
6.	With no computations, using question 5, find the matrix of f in basis \mathcal{B} as input and output basis.

Exercise 7 (3.5 points)

Let $E = \mathbb{R}^2$, $F = \operatorname{Span}((1,1))$ and $G = \operatorname{Span}((1,-1))$. We accept without proof that $F \oplus G = E$. Thus, $\forall u \in E, \exists ! (v,w) \in E$ $F \times G$ such that u = v + w. Consider the linear map $s: \left\{ \begin{array}{ccc} E & \longrightarrow & E \\ u & \longmapsto & v-w \end{array} \right.$ 1. For $u = (1,3) \in \mathbb{R}^2$, find v and w. Deduce s(u).

2. Draw F and G in \mathbb{R}^2 , then draw the vector u = (1,3). Explain graphically how we get v, w and s(u) (draw these vectors too). How could we call the endomorphism s?

