Uncertainty Shocks and Financial Shocks

Marco Brianti

October 2018

Boston College

Financial Shocks and Uncertainty Shocks

Stock and Watson (2012); Caldara et al. (2016) among others shown that uncertainty shocks and financial shocks are deeply confounded.

$$corr(\iota_t^{\textit{EBP}}, \iota_t^{\textit{JLN}}) \approx 0.45$$

where ι_t^{EBP} is an unpredictable innovation in the **excess bond premium** from Gilchrist and Zakrajzek (2012) and ι_t^{JLN} is an unpredictable innovation in the **uncertainty proxy** from Jurado et al. (2015).

Both a theoretical and empirical question

Literature did not succeed yet to disentangle the two exogenous sources for two main reasons:

- Simultaneity
 - Both types of variables are fast moving
- Effect on observables
 - They have the same qualitative effects on prices and quantities

As a result, both **zero-impact restrictions** cannot be used and **internal instruments** are not available.

This Project

I want to take a step back and argue that it is conceptually wrong to disentangle these two shocks as defined by the literature.

From a theoretical point of view, uncertainty shocks can potentially be a primitive source of financial shocks.

It is more important to gauge how much of the combinations of these shocks appears to be

- a credit supply shock ⇒ financial shock
- a credit demand shock ⇒ macro uncertainty shock

Main Contribution

• I present evidence and theory of an **internal instrument** able to disentangle shifts in credit supply and demand.

I provide a new econometric method which can be applied to disentangle two structural shocks when an internal instrument is available.

Corporate Cash Reserves

Cash reserves (or cash holdings) refer to money or extremely liquid short-term investment which an individual corporation saves in order to be ready to cover any emergency funding or short-term requirements.

The typical U.S. large firm has cash equal to about 10% and 15% of total assets.

Together with current cash flow is consider the most important internal source of finance.

Cash Reserves and Financial Frictions

Almeida, Campello, Weisbach, 2004. The Journal of Finance

⇒ Financially constrained firms tend to build larger cash reserves as a buffer against potential credit supply shocks.

Kaplan and Zingales, 1997. Quarterly Journal of Economics

⇒ Investment is positive related to cash reserves when firms are financially constrained.

Campello, Graham, Harvey, 2010. Journal of Financial Economics

⇒ After the 2008-09 credit supply shock, cash reserves decrease because adopted as internal source of finance.

Cash Reserves and Uncertainty

Bloom, Mizen, Smietanka (2018). Working Paper

⇒ Higher economic uncertainty in the years 2007-09 is related to an increase in cash holdings.

Alfaro, Bloom, Lin (2018). NBER Working Paper

⇒ Firms accumulate cash reserves and short-term liquid instruments following uncertainty rises.

Economic Intuition I

To provide an economic intuition of the differential response of **cash holdings** to uncertainty and financial shocks, I present a properly augmented model in the spirit of

- Almeida, Campello, and Weisbach (2004)
- Han and Qiu (2007)

It is a simple representation of a dynamic setting where a credit-constrained profit-maximizing firm has a trade-off between present and future investment opportunities

Model

Period 0
$$d_0=y_0+b_0-i_0-c$$

Period 1 $d_1=y_1+b_1-i_1+c$, where $y_1\sim F$
Period 2 $d_2=g(I_0)-b_0+h(I_1)-b_1$

$$egin{array}{ll} \max_{\{b_t,i_t,c\}_{t=0,1}} & \mathbb{E}\left[d_0+d_1+d_2\Big|F
ight] \ & ext{subject to} & b_t \leq (1- au_t)i_t, \quad t=0,1 \ & d_t \geq 0, \quad t=0,1,2 \end{array}$$

Solution

Financially constrained firm: $I_t^* < I_t^{FB}$ for t = 0, 1

$$\Rightarrow b_t = (1 - \tau_t)i_t$$
 for $t = 0, 1$

$$\Rightarrow d_t = 0$$
 for $t = 0, 1$

which implies $I_0 = \frac{y_0 - c}{\tau_0}$ and $I_1 = \frac{y_1 + c}{\tau_1}$. Objective function is,

$$\max_{c} g\left(\frac{y_0 - c}{\tau_0}\right) - \frac{y_0 - c}{\tau_0} + \mathbb{E}\left[h\left(\frac{y_1 + c}{\tau_1}\right) - \frac{y_1 + c}{\tau_1}\middle|F\right]$$

and optimal condition for $c^*(\tau_0, F)$ is

$$\underbrace{g'\left(\frac{y_0 - c^*(\tau_0, F)}{\tau_0}\right)}_{\text{Marginal Return of } I_0} = \underbrace{\mathbb{E}\left[h'\left(\frac{y_1 + c^*(\tau_0, F)}{\tau_1}\right)\middle|F\right]}_{\mathbb{E}\text{ Marginal Return of } I_1}$$

Comparative Statics

Given the Euler equation for cash c,

$$\underbrace{g'\bigg(\frac{y_0-c^*(\tau_0,F)}{\tau_0}\bigg)}_{\text{Marginal Return of }I_0} = \underbrace{\mathbb{E}\left[h'\bigg(\frac{y_1+c^*(\tau_0,F)}{\tau_1}\bigg)\Big|F\right]}_{\mathbb{E}\text{ Marginal Return of }I_1}$$

Uncertainty shock: $y_1 \sim Q$ which is mean-preserving spread in F

$$\Rightarrow c^*(\tau_0, Q) > c^*(\tau_0, F)$$
 as long as $h'''(\cdot) > 0$

Financial shock: $\tau_0^f > \tau_0$ which is a decrease in b_0

$$\Rightarrow c^*(\tau_0^f, Q) < c^*(\tau_0, F)$$

Penalty Functions (I)

Penalty functions is a maximization problem where the importance of the constraint depends on some assumptions.

Consider the standard constrained maximization problem,

$$\max_{x} f(x)$$
 s.t $g(x) \ge 0$

a penalty function is an unconstrained maximization problem

$$\max_{x} f(x) + G(g(x))$$

 \Rightarrow Assumptions on $G(\cdot)$ determines the importance of g(x).

Penalty Functions (II)

Given $\max_x f(x)$ s.t $g(x) \ge 0$, I assume $G(\cdot)$ to be linear,

$$\max_{x} f(x) + \delta g(x), \quad \delta > 0$$

 \Rightarrow the larger δ , the more important g(x)

Applied to SVARs, PFA has the flavor of **sign restrictions** but with the advantage that the problem is **just identified**.

Shortcoming: parameter δ is exogenously chosen making the identification strategy less credible.

Given the reduced-form system $X_t = BX_{t-1} + \iota_t$ where

- $X_t = [U_t \ F_t \ Y_t]'$ where Y_t are macroeconomic variables.
- $\iota'_t \iota_t = \Sigma_\iota$

Step 1

$$\begin{array}{ll} \max_{\gamma_U} & \sum_{t=0}^K e_U' B^t \tilde{A}_0 \gamma_U + \delta e_C' \tilde{A}_0 \gamma_U \\ \text{subject to} & \delta \geq 0 \ \text{ and } \ \gamma_U \gamma_U' = 1 \end{array}$$

Step 2

$$\begin{array}{ll} \max_{\gamma_F} & \sum_{t=0}^J e_F' B^t \tilde{A}_0 \gamma_F - \delta e_C' \tilde{A}_0 \gamma_F \\ \text{subject to} & \delta \geq 0, \ \, \gamma_F \gamma_F' = 1 \ \, \text{and} \ \, \gamma_U \gamma_F' = 0 \end{array}$$

where $\tilde{A}_0\tilde{A}_0'=\Sigma_\iota$ and e_j is a selection vector of variable j.

Given the reduced-form system $X_t = BX_{t-1} + \iota_t$ where

- $X_t = [U_t \ F_t \ C_t \ Y_t]'$
- $\iota'_t \iota_t = \Sigma_\iota$

Step 1 - Uncertainty Shock

$$\begin{array}{ll} \max_{\gamma_U} & \sum_{t=0}^K e_U' B^t \tilde{A}_0 \gamma_U + \delta e_C' \tilde{A}_0 \gamma_U \\ \text{subject to} & \delta \geq 0 \ \ \text{and} \ \ \gamma_U \gamma_U' = 1 \end{array}$$

An uncertainty shock maximizes its effect on uncertainty over the first K quarters with penalty (merit) δ if cash is negative (positive) on impact.

Given the reduced-form system $X_t = BX_{t-1} + \iota_t$ where

- $X_t = [U_t \ F_t \ Y_t]'$ where Y_t are macroeconomic variables.
- $\iota'_t \iota_t = \Sigma_\iota$

Step 2 - Financial Shock

$$\begin{array}{ll} \max_{\gamma_F} & \sum_{t=0}^J e_F' B^t \tilde{A}_0 \gamma_F - \delta e_C' \tilde{A}_0 \gamma_F \\ \text{subject to} & \delta \geq 0, \ \, \gamma_F \gamma_F' = 1 \ \, \text{and} \ \, \gamma_U \gamma_F' = 0 \end{array}$$

A financial shock maximizes its effect on credit spread over the first J quarters with penalty (merit) δ if cash is positive (negative) on impact.

Given the reduced-form system $X_t = BX_{t-1} + \iota_t$ where

- $X_t = [U_t \ F_t \ Y_t]'$ where Y_t are macroeconomic variables.
- $\iota'_t \iota_t = \Sigma_\iota$

Step 1 - Uncertainty Shock

$$\begin{array}{ll} \max_{\gamma_U} & \sum_{t=0}^K e_U' B^t \tilde{A}_0 \gamma_U + \pmb{\delta} e_C' \tilde{A}_0 \gamma_U \\ \text{subject to} & \delta \geq 0 \ \text{ and } \ \gamma_U \gamma_U' = 1 \end{array}$$

Step 2 - Financial Shock

$$\begin{array}{ll} \max_{\gamma_F} & \sum_{t=0}^J e_F' B^t \tilde{A}_0 \gamma_F - \frac{\delta}{\delta} e_C' \tilde{A}_0 \gamma_F \\ \text{subject to} & \delta \geq 0, \;\; \gamma_F \gamma_F' = 1 \;\; \text{and} \;\; \frac{\gamma_U \gamma_F'}{\delta} = 0 \end{array}$$

where $\tilde{A}_0 \tilde{A}'_0 = \Sigma_{\iota}$ and e_i is a selection vector of variable j.

I suggest a **general approach** where δ is treated as an endogenous parameter chosen by the data.

 \Rightarrow Given the problem above, set δ such that $\gamma_U \gamma_F' = 0$

Intuition. Internal instrument intervention should be strong enough such that $\gamma_U \gamma_F' = 0$.

Results - Uncertainty Shock

EBP

MacroUncertH3

GDP

5 10 15 20

Results - Financial Shock

-0.02

-0.03

10

20

0

15

-0.005

-0.01

5 10

15 20

10 15 20 0

Results - Variance Explained

