Task 4: LED Driver

Optical Uplink

Joseph Arsenault Ryan Dufour Phil Robb

Abstract

The design, simulation, and construction of an LED driver circuit are described. In task 4 of the optical uplink project, a signal conditioning circuit and current driver are explored. A signal conditioner using the MCP6004 operational amplifier as a Schmitt trigger was built in order to output a square wave with 50% duty-cycle. The current driver was constructed using a MCP6004 operational amplifier which drives an 2N3904 BJT. The current driver receives the output voltage from the conditioner and converts it to a current signal which controls an IR1503 LED. The output of LED driver was required to operated at approximately 20 kHz, 50% duty-cycle, with a current of at least 100mA amplitude. The final current operated at a frequency of 20.1 kHz, a duty cycle of 50.1% and a 150mA peak amplitude.

Electrical and Computer Engineering University of Maine ECE - 342 November 12, 2017

Contents

1	Intr	roduction	1
2	Circ	cuit Development	1
	2.1	Ring oscillator	1
	2.2	Signal conditioner	3
	2.3	Current driver	3
	2.4	Voltage regulator	4
	2.5	Simulated summary	5
3	Exp	perimental Implementation	6
	3.1	Ring oscillator	6
	3.2	Signal conditioner	7
	3.3	Current driver	8
4	Disc	cussion	8
	4.1	Ring oscillator	8
5	Con	aclusion	9

List of Figures

1	Block diagram for optical uplink [1]	1
2	CMOS ring oscillator schematic	2
3	Simulated CMOS ring oscillator output	2
4	Generic current driver circuit [2]	3
5	Simulated LED driver	4
6	Simulated current	4
7	Voltage regulator	5
8	Simulated circuit	5
9	Final circuit	6
10	Experimental ring output	6
11	Experimental signal conditioner	7
List	of Tables	
1	Simulated Results	5
2	Ring oscillator comparisons	7
3	My caption	8
4	Simulated vs. experimental results	8
5	Comparison of ring oscillator results	9

1 Introduction

This report describes the design, implementation and test of an LED (light emmitting diode) driver.

This report describes design, implementation and test of an LED driver comprised of a ring oscillator, schmitt trigger, and a current driver. The ring oscillator is comprised of complementary metal oxide semi-conducting field effect transistors (CMOS) inverters connected in series. Figure 1 demonstrates where in the optical uplink project the LED driver is placed.

Figure 1: Block diagram for optical uplink [1]

The LED driver circuit supplies the LED with a controlled current. A voltage driven output to light the LED is not used due to increased sensitivity from temperature change.

2 Circuit Development

This section covers the design choices associated with the various circuits constructed. The individual circuits designed were a Schmitt trigger configured op amp as the signal conditioner and an op amp driving a BJT for the current driver. The input waveform was generated using the ring oscillator from Lab 3. The supply voltage was created using a voltage regulator.

The order in which the circuits are discussed is as follows: first, the ring oscillator, followed by the signal conditioner, then the current driver, and then finally the voltage regulator..

2.1 Ring oscillator

The CMOS ring oscillator consists of three CMOS inverters connected in series with the output of the last inverter connected to the input of the first inverter. The ring oscillator will also have a capacitor at each output connected to ground. The schematic for the CMOS ring oscillator can be seen in Figure 2.

Figure 2: CMOS ring oscillator schematic

The operation of the ring oscillator uses a series of inverters. The output of one inverter inverts the input signal. Therefore, if there are a series of inverters, then each odd inverter will have the same inverted output as the first. In this instance, there are three stages of inverters used, with the output of the third inverter being fed back into the input of the first inverter. This feedback from the output to the input causes an oscillation. The simulated output of the ring oscillator is depicted in Figure 3.

Figure 3: Simulated CMOS ring oscillator output

The output of the ring oscillator seen in Figure 3 is not a square wave, but instead a distorted sinusoid. However, the signal will be converted into a square wave by using a schmitt trigger. The resulting signal will be used to drive the LED driver circuit.

2.2 Signal conditioner

2.3 Current driver

The current driver for this lab was created using an MCP6004 op amp. The op amp is to act as the driver for the gate of a 2N3904 Bipolar Junction Transistor (BJT). The generic circuit for the current driver is shown in Figure 4.

Figure 4: Generic current driver circuit [2]

The key to operation of the current driver is the BJT transistor. A BJT transistor, in contrast with the metal oxide semi-conducting field effect transistor (MOSFET), is capable of producing current by both types of Charge Carriers. This effectively allows the BJT to behave as a NPN or PNP transistor depending on the size of the input current. This also allows the BJT to use a smaller current signal to control a larger current.

The operation of a BJT is paramount for this lab. The MCP6004 is only capable of outputting around 20mA of current. The IR LED in use, however, has a forward current of 100mA [3]. A much larger current has to generated in order for the LED to operate.

The MCP6004 is used to set the node voltage for R_{sense} . The op amp is assumed to be ideal, so $V_{-} = V_{+}$. In order to ensure that the LED is forward biased, the node voltage should be less than the sum of the voltage drops from V_{supply} over the BJT and the diode. The lab briefing [2] states to set V_{-} less then 3V.

In order to attain a suitable voltage, a voltage divider is placed at the input to the op amp. The source voltage is the output from the signal conditioner, and was found to be 5V. In order to be less than 3V, a 50/50 voltage divider was used in order to create an input of 2.5V. With this voltage, and the maximum forward current of 200mA, the value for R_{sense} can solved using Ohm's Law. The final value for R_{sense} is 13Ω .

The simulated circuit for current driver is seen in Figure 5.

Figure 5: Simulated LED driver circuit

The circuit required no changes from design to simulation. The current through the LED can be seen in Figure 6. The simulation was performed using a transient analysis integrated with Matlab.

Figure 6: Simulated current through the LED

The current through the LED matched the calculated value of 200mA. The LED is in an operational state. The LED also operates with the correct frequency and duty-cycle from the signal conditioner.

2.4 Voltage regulator

The Voltage regulator used was a LM7805. The voltage regulator is used because the CMOS ring oscillator and LED driver were designed to run on a source voltage of 5V. The power supply provided, however, is a 9V DC battery. The voltage, therefore, needs to be reduced. The voltage regulator operates by taking an input voltage and step it down to some lower voltage by shedding the difference in energy between the two potentials in the form of heat. Figure 7 shows the circuit configuration for the LM7805.

Figure 7: Configuration of voltage regulator[4]

The equivalent circuit model for the LM7805 is shown. Notably, the circuit was not included in simulations and was constructed during the Implementation phase.

2.5 Simulated summary

The final simulated circuit is shown in Figure 8.

Figure 8: Simulated LED driver

The summary of simulated results from this circuit is shown in Table 1.

Table 1: Simulated Results

Component	Simulated Values
Conditioned Voltage	5V
Conditioned Frequency	20kHz
Conditioned Duty-Cycle	48%
Output Current	200mA
R_{sense}	12Ω

The simulated circuit operated as expected and provided enough current in order to drive the LED. The resulting waveform through the LED is the correct frequency and duty-cycle in order to detected by the optical uplink receiver.

Figure 9: Experimental design

3 Experimental Implementation

The final circuit is shown in Figure 9.

In order to meet specifications, several minor changes to all circuits were made. The individual changes are discussed in their respective subsection as follows, the ring oscillator, the signal conditioner, and finally the current driver.

3.1 Ring oscillator

The ring oscillator required that the capacitances be increased in order to create the correct output waveform. A 560pF and a 1.2nF capacitor were added in parallel with the ring oscillator capacitors. The output from the ring oscillator is shown in Figure 10.

Figure 10: Experimental output of ring oscillator

The output wave form was 20.19kHz, with a duty-cycle of 50.03%. The changes required by the circuit are summarized in Table 2.

Table 2: Ring oscillator comparisons

Component Values	Simulated	Experimental
C_1	8.2nF	8.2 nF - 560 pF
C_2	8.2nF	8.2nF —— 1.2nF
C_3	8.2nF	8.2nF

After the required changes the circuit operated correctly.

3.2 Signal conditioner

The signal conditioner required several small changes in order to be functional. The $100k\Omega$ resistor voltage divider was switched to a $10k\Omega$ potentiometer in order to facilitate easier adjustment of the output duty-cycle. The resistors in the feedback configuration were changed to $10k\Omega$ and $100k\Omega$. This was done in order to minimize the loading effects between the signal conditioner and the current driver. The output waveform is shown in Fig 11.

Figure 11: Voltage output of signal conditioner

The output waveform operated with a 4.5V peak, 20.26kHz and 45% duty-cycle. Table 3 summarizes the differences between the simulated and implemented current driver.

Table 3: My caption

Component Values	Simulated	Experimental
R_1	$100 \mathrm{k}\Omega$	470Ω
R_2	$100 \mathrm{k}\Omega$	$1 k\Omega$
R_{sense}	12Ω	12Ω
Output current	200mA	$150 \mathrm{mA\%}$

Overall, the circuit required only minor changes to operate within specification.

3.3 Current driver

Needs a donkey kicking

4 Discussion

This lab served as introduction to MOSFETS and implementation of digital logic. When using transistors to create digital devices, it is often assumed that the device behaves ideally. When the device is logic high, it is one voltage, and when it is logic low it is another. Based on this logic, it is assumed that the switching on and off of the MOSFETS happen instantaneously. Based on the results of the ring oscillator and other inverter circuits, the MOSFETS do not switch instantaneously. Instead, power is consumed by the MOSFETS when they transition from one state to another. This consumption of power causes a small time delay. Each of the circuits described in this report are discussed in the following subsections, excluding the astable multivibrator. The astable multivibrator was not constructed during the experimental phase of this task.

Table 4: Simulated vs. experimental results

Component Values	Simulated	Experimental
Output Current	$200 \mathrm{mA}$	$150 \mathrm{mA}$
Output Frequency	20kHz	20.1kHz
Output Duty-cycle	48%	50.1%

4.1 Ring oscillator

The ring oscillator circuit designed with the CMOS did not initially meet the specifications required in the lab. The simulations were accurate, but real-world parasitic capacitances from the board and jumper wires impacted the circuit. To remedy the situation, a capacitor of 4.7 nF was added in parallel after the second inverting gate. By increasing the capacitance, we lowered the frequency from 22.8 kHz to 19.8 kHz. The comparison between the simulated results and experimental is expressed in Table 5

Table 5: Comparison of ring oscillator results

Component Values	Simulated	Experimental
C_1	8nF	8.2nF
C_2	8nF	13.9nF
C_3	8nF	8.2nF
Frequency	20.1kHz	19.8kHz
Amplitude	5V	4.9V

The reason this oscillator is chosen over the astable multivibrator as the signal generator is mostly arbitrary and simply design choice for the optical uplink project [5]. Although one of the benefits of the ring oscillator is that from the sensitivity testing it is less affected by component tolerances than the astable multivibrator. This is significant since the capacitors available for circuit construction are 10% tolerances.

5 Conclusion

The design, simulation, and implementation of the LED driver have been explained. Lab specification required that the signal generator have a frequency of approximately 20kHz, a duty-cycle of approximately 50%, and an amplitude of at least 100mA. The LED driver takes a sinuisoidal waveform of variable duty-cycle and outputs a 50% durt-cycle square wave. The waveform is then converted to a suffeciently large driving current by the current driver. The LED driver was constructed using the following parts: a $10k\Omega$, $100k\Omega$, 470Ω , $1k\Omega$, 12Ω and a $10k\Omega$ potentiometer; a MCP6004 quadrature operation amplifier; an IR1503 LED; and finally a 2N3904 BJT. A 9V battery supply is stepped down to 5V with an LM7805 voltage regulator. The frequency was 20.1kHz, with a duty-cycle of 50.1%, and an amplitude of 150mA. An important lesson about the behavior circuits including both op amps and transistors was learned. The meshing of op amps and transistors provide novel solutions to real world problems

References

- [1] D.E. Kotecki Lab.(2017) Lab #2 Active Bandpass Filters [Online]. Available: http://web.eece.maine.edu/kotecki/ECE342/labs/ECE342_2017_Lab2.pdf
- [2] D.E. Kotecki Lab.(2017) Resistively Loaded MOSFET Gate [Online]. Available: http://web.eece.maine.edu/kotecki/ECE342/labs/ECE342_2017_Lab3_Inverter.pdf
- [3] Everlight Electronics. (2017) 5mm Infrared LED. [Online]. Available: https://media.digikey.com/PDF/Data%20Sheets/Everlight%20PDFs/9-IR1503.pdf
- [4] ON Semiconductor. (2017) LM7805 [Online]. Available: https://www.sparkfun.com/datasheets/Components/LM7805.pdf
- [5] N.W. Emanatoglu.(2017) Lab #3; MOSFET based logic gates [Online]. Available:http://web.eece.maine.edu/kotecki/ECE342/labs/ECE342_2017_Lab3_Briefing.pdf