Announcements

Please (:11 out midtern course feedback survey
Previous lecture notes updated with instification in two places

Finite fields (cont.)

Prop: let noo, p:prime. There exists a finite field w/ pr elts., unique up to isom.

PF: Existance (last time):

If $f(x) := x^{p^n} - x \in \mathbb{F}_p$, then $Sp_{\mathbb{F}_p}(f)$ is a field of order p^n .

Uniqueness:

Let k be any field of order p^n . Then char k=p, $[k:F_p]=n$.

We have $|x^*| = |K| - 1 = p^n - 1$, so if $a \in K$, $a^{p^n - 1} = 1$, so $a^{p^n} = a$, a is a roof of $a^{p^n - 1} = a$.

Since K has $|K| = p^n$ roots of this poly, it is the splitting field of $x^{pn} - x$ over \mathbb{F}_p , which is unique up to isom.

Let Fipn le the unique field of order pn.

Remark: In practice, we often use the version $F_{pn} = F_p/(F)$ where $f_F F_p[x]$ is inred. Since here the presentation is explicit

Cyclotomic Fields

$$M_n = \left\{ \begin{array}{l} \text{all nth roots} \\ \text{of 1 in C} \end{array} \right\} = \left\{ 1, 9_n, ..., 9_n^{n-1} \right\} = \left\langle 9_n \right\rangle \subseteq \mathbb{Q}(9_n)$$

Primitive nth root: a generator y of y_n i.e. $y_n \neq 1$ for $y \in \mathbb{R}^d$.

Which In are primitive?

Primitive ...

- · 1st roots of 1
- · 2nd roots of 1
- · 4th roots of 1
- · 8th roots of 1

$$f_n^k \longmapsto k$$

So
$$5^{h}_{n}$$
 primitive \Leftrightarrow $9cd(k,n) = 1$

Euler
$$\varphi$$
 function: $\varphi(n) = |\{0 < k < n | \gcd(k, n) = 1\}|$
= $|\{prim. nth roots of 1\}|$

We can compute 4:

$$\varphi(P) = P - 1$$
 $\varphi(ab) = \varphi(a) \varphi(b) \text{ if } \gcd(a,b) = 1$
 $\varphi: \text{ Prime}$

$$\varphi(p^k) = p^{k-1} \cdot (p-1)$$
 $\gamma(p_1^{k_1} - p_n^{k_n}) = \prod_{i=1}^{n} p_i^{k_i-1} (p_i-1)$

Def: The cyclotomic polynomial is

$$\Phi_{n}(x) = TT(x-y) = TT(x-y_{n}^{k})$$

$$f \in \mu_{n} \qquad o \leq k < n$$

$$frim. \qquad g cd(k,n) = L$$

E.g. :

$$\Phi_3 = x^2 + x + 1$$
 $\Phi_6 = x^2 - x + 1$

$$x^{n}-1 = TT(x-g) = TT(TT(x-g)) = TT \underline{\mathfrak{T}_{d}(x)}$$

$$g \in \mu_{n} \qquad d \mid n \left(\frac{\mathfrak{T}_{d}(x-g)}{\mathfrak{T}_{n}(x-g)} \right) = d \mid n \underline{\mathfrak{T}_{d}(x)}$$

Facts:

a)
$$\pm d(x) | x^n - 1$$
 if $d|n$ (or if $d=n$)

b) Every root 9 of unity is a root of precisely one In () In is monic

d) deg
$$I_n = \varphi(n)$$

Thm: In(x) \ Z[x] and is inred. (over Z or Q)

Cor:

$$\sigma / M^{2^{n/2}} = \underline{\mathcal{I}}^{\nu}(x)$$

Pf of Thm:

In < Z[x]: Induction on n (n=1: clear)

Assume that Id(x) = 72[x] for den

Then $x^n-1=f(x) \not\equiv_{n}(x)$ where $f(x)=TT \not\equiv_{d}(x)$

Divide w/ remainder in Q[x] since x"-1, f(x) ∈ Q[x]

xn-1 = g(x)f(x) + r(x)

w/ g,re Q[x], deg r< deg f

Then in C[x], we have

 $\underline{\mathfrak{T}}_{n}(x)f(x) = g(x)f(x)+r(x) \Longrightarrow (\underline{\mathfrak{T}}_{n}(x)-g(x))f(x) = r(x)$

 \Rightarrow r(x) = 0 as deg r < deg f. Thus, $\pi_n(x) = g(x) \in \mathbb{Q}[x]$, and by Gauss' Lemma since x^n-1 , $f(x) \in 72[x]$, $\pi_n \in 72[x]$ too.

Irreducible: Suppose not:

 $\overline{d}_{n}(x) = f(x)g(x)$ fig monic in $\mathbb{Z}[x]$, firred.

Claim: Let g be a root of f. Then gp is a root of f for any prime p coprime to n

Claim \Rightarrow result: Iterating the claim, f^n is a root of f for any m coprime to n, so all prim nth roots of I are roots of $f \Rightarrow f = I_n$.

Pf of claim: Suppose instead that $g(3^p) = 0$.

Then I is a root of g(xp), so

$$g(x^p) = f(x)h(x)$$
 for some $h(x) \in \mathbb{Z}[x]$

Reduce mod p: 72[x] => IF_p[x]

- 1) xn-1 is sep. in Fp[x] as nxn-1 +0, So \(\overline{\pm}_{n}(x)\) has distinct roots.
- 2) Frob: Fp > Fp is the identity

 (a \in Fp^* \Rightarrow |a|| p-1 \Rightarrow ap-1 = 1 \Rightarrow ap=a)

 "Fermat's Little Theorem"

 Hence,

$$(\underline{g}(x))^{p} = \underline{g}(xp) = \underline{f}(x)\underline{h}(x) \in \underline{F}_{p}[x]$$

- 3) This means that $\overline{9}$ and \overline{f} have a common root
- 4) But then $\overline{\mathfrak{T}}_n = \overline{\mathfrak{g}} \overline{\mathfrak{f}}$ has a mult. root, a contradiction

U