	Name	Age	Gender	job	===
0	Anna	NaN	М	Programmer	ıl.
1	Bob	32.0	М	Cook	+//
2	Raj	45.0	М	Writer	
3	Simran	34.0	F	Teacher	
4	Dev	29.0	М	Cook	

- # Preprocessing Pipeline:
- # Drope Name feature
- # Impute Age
- # Turn Gender into binary/numeric
- # one hot encode jobs

from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder

```
# Drop Name feature
df=df.drop(['Name'],axis=1)
df
```

	Age	Gender	job	
0	NaN	М	Programmer	ılı
1	32.0	М	Cook	+//
2	45.0	М	Writer	
3	34.0	F	Teacher	
4	29.0	М	Cook	

```
imputer=SimpleImputer(strategy='mean')
df['Age']= imputer.fit_transform(df[['Age']])
df
#df['Age']=df['Age'].fillna(df['Age'].mean()) use can use fillna also.
```

	job	Gender	Age	
ılı	Programmer	М	35.0	0
+//	Cook	М	32.0	1
	Writer	М	45.0	2
	Teacher	F	34.0	3
	Cook	М	29.0	4

```
#Turn Gender into Numeric Feature
gender_dct={'M':0,'F':1}
df['Gender']=[gender_dct[g] for g in df ['Gender']]
df
#df['Gender']=df['Gender'].replace({'M':0,'F':1}) we can use replace function
```

\blacksquare	job	Gender	Age	
ılı	Programmer	0	35.0	0
+/	Cook	0	32.0	1
_	Writer	0	45.0	2
	Teacher	1	34.0	3
	Cook	0	29.0	4

#df1=pd.get_dummies(df)
#df1 we can use get_dummies also,but its add column name to new column+ feature

	Age	Gender	job_Cook	job_Programmer	job_Teacher	job_Writer	\blacksquare
0	35.0	0	0	1	0	0	11.
1	32.0	0	1	0	0	0	+/
2	45.0	0	0	0	0	1	
3	34.0	1	0	0	1	0	
4	29.0	0	1	0	0	0	

#one hot encode jobs

[#] Create a OneHotEncoder instance

encoder=OneHotEncoder()

```
# Transform the 'job' column and convert it to a NumPy array
matrix= encoder.fit_transform(df[['job']]).toarray()
```

Get unique job categories and sort them for column names, it'll not create same c
column_names= sorted([i for i in df['job'].unique()])

Iterate over the transposed matrix and create new columns in the DataFrame
for i in range(len(matrix.T)) :
 df[column_names[i]] = matrix.T[i]

Drop the original 'job' column as it's no longer needed after encoding
df=df.drop(['job'],axis=1)

df

	Age	Gender	Cook	Programmer	Teacher	Writer	
0	35.0	0	0.0	1.0	0.0	0.0	ılı
1	32.0	0	1.0	0.0	0.0	0.0	+//
2	45.0	0	0.0	0.0	0.0	1.0	
3	34.0	1	0.0	0.0	1.0	0.0	
4	29.0	0	1.0	0.0	0.0	0.0	

#after getting all the desired result lets create class for each feature #using sklearn.base from sklearn.base import BaseEstimator, TransformerMixin class NameDropper(BaseEstimator, TransformerMixin): def fit (self,X,y=None): return self def transform(self,X): return X.drop(['Name'],axis=1) class AgeImputer(BaseEstimator, TransformerMixin): def fit (self,X,y=None): return self def transform(self,X): imputer = SimpleImputer(strategy='mean') X['Age']= imputer.fit transform(X[['Age']]) return X class FeatureEncoder (BaseEstimator,TransformerMixin): def fit (self,X,y=None): return self def transform(self,X): gender dct={'M':0,'F':1} X['Gender']=[gender_dct[g] for g in X ['Gender']] encoder=OneHotEncoder() matrix= encoder.fit transform(X[['job']]).toarray() column names= sorted([i for i in X['job'].unique()]) for i in range(len(matrix.T)) : X[column names[i]] = matrix.T[i] return X.drop(['job'],axis=1) #Creating new dataset for testing data= {'Name':['Ram','Sham','Kajal','Dev','Rani','Parag'], 'Age':[None, 32, None, 34, 29, 22], 'Gender':['M','M','F','M','F','M'], 'job':['Data_Analyst','Cook','Singer','Teacher','Devloper','Cook']} df2=pd.DataFrame(data) df2

	Name	Age	Gender	job	
0	Ram	NaN	М	Data_Analyst	ılı
1	Sham	32.0	М	Cook	+//
2	Kajal	NaN	F	Singer	
3	Dev	34.0	М	Teacher	
4	Rani	29.0	F	Devloper	
5	Parag	22.0	М	Cook	

#calling our function and storing it into variable to test ,I use fit_tranform.

```
dropper=NameDropper()
imp=AgeImputer()
enc= FeatureEncoder()
```

enc.fit_transform(imp.fit_transform(dropper.fit_transform(df2)))

\Rightarrow		Age	Gender	Cook	Data_Analyst	Devloper	Singer	Teacher	
	0	29.25	0	0.0	1.0	0.0	0.0	0.0	ılı
	1	32.00	0	1.0	0.0	0.0	0.0	0.0	
	2	29.25	1	0.0	0.0	0.0	1.0	0.0	
	3	34.00	0	0.0	0.0	0.0	0.0	1.0	
	4	29.00	1	0.0	0.0	1.0	0.0	0.0	
	5	22.00	0	1.0	0.0	0.0	0.0	0.0	

```
#creating a data preprocessing pipeline
from sklearn.pipeline import Pipeline
pipe=Pipeline([
    #for droping unwanted column 'Name'
    ('dropper',NameDropper()),
    #for imputing missing values in 'Age'
    ('imputer',AgeImputer()),
    #for endoing features
    ('endoder',FeatureEncoder())
])
#fitting and transforming the dataframe using the defined pipeline
pipe.fit_transform(df2)
```

	Age	e Gender	Cook	Data_Analyst	Devloper	Singer	Teacher	
	0 29.2	5 0	0.0	1.0	0.0	0.0	0.0	ıl.
	1 32.00	0	1.0	0.0	0.0	0.0	0.0	
2	2 29.2	5 1	0.0	0.0	0.0	1.0	0.0	
4	3 34.00	0	0.0	0.0	0.0	0.0	1.0	