Improving Group Fairness in Knowledge Distillation via Laplace Approximation of Early Exits

Edvin 24V0074 Sagar 24D0367

CS 769 Optimization in Machine Learning

2 May 2025

Overview

1. Recap from Seminar

2. Experiments And Results

3. Analysis And Future Work

Section Overview

1. Recap from Seminar

2. Experiments And Results

3. Analysis And Future Work

 Knowledge Distillation as an effective way to distill knowledge from teacher to student

- Knowledge Distillation as an effective way to distill knowledge from teacher to student
- Teacher Provides "Soft Targets"

- Knowledge Distillation as an effective way to distill knowledge from teacher to student
- Teacher Provides "Soft Targets"
- Loss: kl divergence + cross-entropy

- Knowledge Distillation as an effective way to distill knowledge from teacher to student
- Teacher Provides "Soft Targets"
- Loss: kl divergence + cross-entropy
- Student model relies on spurious correlations

- Knowledge Distillation as an effective way to distill knowledge from teacher to student
- Teacher Provides "Soft Targets"
- Loss: kl divergence + cross-entropy
- Student model relies on spurious correlations
- Student's early Layers overconfident on hard instances

- Knowledge Distillation as an effective way to distill knowledge from teacher to student
- Teacher Provides "Soft Targets"
- Loss: kl divergence + cross-entropy
- Student model relies on spurious correlations
- Student's early Layers overconfident on hard instances
- DEDIER loss

$$\mathcal{L}_{ extit{student}} = \sum_{D_{ extit{w}}} (1 - \lambda) \cdot \emph{l}_{ extit{ce}} + \lambda \cdot exttt{wt} \cdot \emph{l}_{ extit{kd}}$$

where $\mathbf{wt} = \exp^{\beta.\mathbf{cm}.\alpha}$ and $\mathbf{cm}(\mathbf{p}) = \mathbf{p_{max}} - \max_{\mathbf{p_k} \in \mathbf{p} - \mathbf{p_{max}}} \mathbf{p_k}$

• Two alternate approaches for estimating uncertainity in prediction in early exit layers.

- Two alternate approaches for estimating uncertainity in prediction in early exit layers.
- [Meronen et al., 2023] used Laplace approximation for bayesian posterior at exit layer.

- Two alternate approaches for estimating uncertainity in prediction in early exit layers.
- [Meronen et al., 2023] used Laplace approximation for bayesian posterior at exit layer.
- [Jazbec et al., 2024] used AVCS based on Predictive-likelihood ratio to get confidence intervals for predictions.

- Two alternate approaches for estimating uncertainity in prediction in early exit layers.
- [Meronen et al., 2023] used Laplace approximation for bayesian posterior at exit layer.
- [Jazbec et al., 2024] used AVCS based on Predictive-likelihood ratio to get confidence intervals for predictions.
- Experiment: Laplace Approximation based uncertainity estimate to reweight both the losses.

Figure

(blond, male)

(blond, female)

(landbird, land bg) (waterbird, land bg)

S1: oh uh-huh well no they wouldn't would they no S2: No, they wouldn't go there.

Group: (contradiction X, has negation words)

Sentence: You sound like a terrorist Group: (Toxic ... mention of identity .X.)

\$1: Do you think Mrs. Inglethorp made a will leaving all her money to Miss Howard? I asked in a low voice, with some curiosity. S2: I yelled at the top of my lungs. Group: (contradiction ... has negation words

Sentence: She hates men because that's what her mother taught her Group: (Toxic ... mention of identity ...)

S1: so i have to find a way to supplement that S2: I need a way to add something extra. Group: (contradiction X has negation words X) Sentence: I doubt that anyone cares whether you believe it or not Group: (Toxic X, mention of identity X)

CivilComments-WILDS MultiNLI CelebA Waterbirds

• Bayesian treatment of parameters

$$p(\boldsymbol{\theta} \mid \mathcal{D}_{\mathsf{train}}) = \frac{p(\mathcal{D}_{\mathsf{train}} \mid \boldsymbol{\theta}) \, p(\boldsymbol{\theta})}{\int_{\boldsymbol{\theta}} p(\mathcal{D}_{\mathsf{train}}, \boldsymbol{\theta}) \, d\boldsymbol{\theta}} = \frac{[\mathsf{likelihood}] \times [\mathsf{prior}]}{[\mathsf{model evidence}]}$$

• Bayesian treatment of parameters

$$p(\boldsymbol{\theta} \mid \mathcal{D}_{\mathsf{train}}) = \frac{p(\mathcal{D}_{\mathsf{train}} \mid \boldsymbol{\theta}) \, p(\boldsymbol{\theta})}{\int_{\boldsymbol{\theta}} p(\mathcal{D}_{\mathsf{train}}, \boldsymbol{\theta}) \, d\boldsymbol{\theta}} = \frac{[\mathsf{likelihood}] \times [\mathsf{prior}]}{[\mathsf{model evidence}]}$$

MAP estimate can be found by maximising the unnormalised posterior:

$$\hat{m{ heta}} = rg \max_{m{ heta}} \log p(\mathcal{D}_{\mathsf{train}} \mid m{ heta}) + \log p(m{ heta})$$

• Bayesian treatment of parameters

$$p(\boldsymbol{\theta} \mid \mathcal{D}_{\mathsf{train}}) = \frac{p(\mathcal{D}_{\mathsf{train}} \mid \boldsymbol{\theta}) \, p(\boldsymbol{\theta})}{\int_{\boldsymbol{\theta}} p(\mathcal{D}_{\mathsf{train}}, \boldsymbol{\theta}) \, d\boldsymbol{\theta}} = \frac{[\mathsf{likelihood}] \times [\mathsf{prior}]}{[\mathsf{model evidence}]}$$

MAP estimate can be found by maximising the unnormalised posterior:

$$\hat{m{ heta}} = rg \max_{m{ heta}} \log p(\mathcal{D}_{\mathsf{train}} \mid m{ heta}) + \log p(m{ heta})$$

Gaussian distribution via laplace approximation

$$p(\hat{\mathbf{z}}_i \mid \mathbf{x}_i) = \mathcal{N}(\hat{\mathbf{W}}_{MAP}^{\top} \hat{\boldsymbol{\phi}}_i, (\hat{\boldsymbol{\phi}}_i^{\top} \mathbf{V} \hat{\boldsymbol{\phi}}_i) \mathbf{U})$$

 $\mathbf{V}^{-1} \otimes \mathbf{U}^{-1} = \mathbf{H}^{-1}$

• Bayesian treatment of parameters

$$p(\boldsymbol{\theta} \mid \mathcal{D}_{\mathsf{train}}) = \frac{p(\mathcal{D}_{\mathsf{train}} \mid \boldsymbol{\theta}) \, p(\boldsymbol{\theta})}{\int_{\boldsymbol{\theta}} p(\mathcal{D}_{\mathsf{train}}, \boldsymbol{\theta}) \, d\boldsymbol{\theta}} = \frac{[\mathsf{likelihood}] \times [\mathsf{prior}]}{[\mathsf{model evidence}]}$$

MAP estimate can be found by maximising the unnormalised posterior:

$$\hat{oldsymbol{ heta}} = rg \max_{oldsymbol{ heta}} \log p(\mathcal{D}_{\mathsf{train}} \mid oldsymbol{ heta}) + \log p(oldsymbol{ heta})$$

Gaussian distribution via laplace approximation

$$p(\hat{\mathbf{z}}_i \mid \mathbf{x}_i) = \mathcal{N}(\hat{\mathbf{W}}_{\mathsf{MAP}}^{\top} \hat{\boldsymbol{\phi}}_i, (\hat{\boldsymbol{\phi}}_i^{\top} \mathbf{V} \hat{\boldsymbol{\phi}}_i) \mathbf{U})$$

 $\mathbf{V}^{-1} \otimes \mathbf{U}^{-1} = \mathbf{H}^{-1}$

Samples

$$\hat{\mathbf{z}}_{i}^{(I)} = \hat{\mathbf{W}}_{\mathsf{MAP}}^{\top} \hat{\boldsymbol{\phi}}_{i} + (\hat{\boldsymbol{\phi}}_{i}^{\top} \mathbf{V} \hat{\boldsymbol{\phi}}_{i})^{\frac{1}{2}} (\mathsf{Lg}^{(I)})$$

 $\mathbf{g}^{(\prime)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and \mathbf{L} is the Cholesky factor of \mathbf{U}

Section Overview

1. Recap from Seminar

2. Experiments And Results

3. Analysis And Future Work

- The MultiNLI dataset [Williams et al., 2018] was used.
- Determine if premise entails, contradicts, or is neutral given a hypothesis.
- Major Diffrences with DEDIER: The auxiliary reweighting is done in every layer, as student trained for five epochs.
- The auxiliary network used is a simple, single layer network.
- Models Used
 - Teacher model: bert-base-uncased (12-layer BERT, hidden size 768)
 - Student model: distilbert-base-uncased (6-layer DistilBERT, hidden size 768)
 - Auxiliary network: One-layer linear classifier trained on the students third layer.

- Hyperparameters
 - Teacher fine-tuning
 - Epochs: $E_T = 3$
 - Learning rate: 2×10^{-5}
 - Optimizer: AdamW
 - Student training
 - Epochs: $E_S = 5$
 - Learning rate: 2×10^{-5}
 - Optimizer: AdamW
 - Distillation temperature: $\tau = 2.0$
- Training and Evaluation
 - Batch size: 16
 - Dataset: MultiNLI (via HuggingFace datasets)
 - Evaluation: Accuracy and per-group performance (negation vs. non-negation)
 - Tokenization: bert-base-uncased tokenizer with padding and truncation
 - Learning rate scheduler: Linear schedule with warm-up

Metric	Teacher	Student (Aux layer 3)	Student (Aux layer 6)	Group
Average Accuracy	0.845	0.835	0.832	All

Table: Results of Dedier with Laplace

Metric	Teacher	Student
Final Test Accuracy	0.841	0.830

Table: Original DEDIER performance with same teacher

(b) Auxiliary network on layer 6 (last layer)

Figure: Confidence margins per layer on worst group predictions and all predictions

(a) Auxiliary network on layer 3 (b) Auxiliary network on layer 6 (last layer)

Figure: Confidence margins in student and teacher on the predictions that were wrong

Section Overview

1. Recap from Seminar

2. Experiments And Results

3. Analysis And Future Work

Analysis And Future Work

- Minor improvement in accuracy of the student model by the proposed approach over DEDIER on MultiNLI
- Still more testing needed, on varied datasets and teacher models for justifying its use.
- The confidence margins are generally lower than one used in DEDIER work.
- Need to study effects of increasing layers of Aux network
- Hyperparameter tuning

Conclusion

- Cheap, effective uncertainty via Laplace in early exits.
- Uncertainty reweights KD loss in student models.
- Reduces reliance on simple features.

References

Meronen, L., Trapp, M., Pilzer, A., Yang, L., and Solin, A. (2023). Fixing Overconfidence in Dynamic Neural Networks.

Version Number: 4.

Williams, A., Nangia, N., and Bowman, S. R. (2018).

A broad-coverage challenge corpus for sentence understanding through inference.

In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1112–1122. Association for Computational Linguistics.