PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C07H 17/08, A01N 43/90 A61K 31/70, A23K 1/17

A1

(11) International Publication Number:

WO 93/15099

(43) International Publication Date:

5 August 1993 (05.08.93)

(21) International Application Number:

PCT/EP93/00036

(22) International Filing Date:

11 January 1993 (11.01.93)

(74) Agents: MOORE, James, William et al.; Pfizer Limited, Patents Department, Ramsgate Road, Sandwich, Kent CT13 9NJ (GB).

(30) Priority data:

9201505.6

24 January 1992 (24.01,92) GB (81) Designated States: CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(71) Applicant (for GB IE only): PFIZER LIMITED [GB/GB]; Ramsgate Road, Sandwich, Kent CT13 9NJ (GB).

(71) Applicant (for all designated States except GB IE US); PFIZ-ER INC. [US/US]; 235 East 42nd Street, New York, NY 10017 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): BANKS, Bernard, Joseph [GB/GB]; Pfizer Central Research, Ramsgate Road, Sandwich, Kent CT13 9NJ (GB).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: ANTIPARASITIC AGENTS

$$R^4$$
 CH_3
 CH_3

(I)

$$R^6$$
 OCH_3
 OH_3
 OH_3
 OH_3

(57) Abstract

Compounds of formula (I) wherein R1 is C1-C6 alkyl, C3-C6 alkenyl, or substituted C1-C4 alkyl wherein said substituent is halo, C₁-C₄ alkoxy, C₂-C₅ alkanoyl, C₂-C₅ alkoxycarbonyl, carboxy, mercapto or aryl; R² is C₃-C₈ alkyl, C₃-C₈ alkenyl, C₃-C₈ cycloalkyl or C₅-C₈ cycloalkenyl; R³ is OH, C₁-C₄ alkoxy or C₂-C₅ alkanoyloxy; or R³ is linked by a double bond and is = N-OR⁵ wherein R⁵ is H, C₁-C₄ alkyl or C₂-C₅ alkanoyl; and R⁴ is HO, C₁-C₄ alkoxy, C₂-C₅ alkanoyloxy or halo; or R4 is linked by a double bond and is = O or = N-OR5; or R4 is a group of formula (II) wherein R6 is HO, C1-C4 alkoxy, C_2 - C_5 alkanoyloxy or halo, or R^6 is linked by a double bond and is = 0 or = N-OR⁵; with certain provisos when R^2 is isopropyl or sec-butyl; are broad spectrum antiparasitic agents useful for treating parasite infestations of livestock and domesticated animals.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL.	Poland
BJ	Benin	ΙE	Ireland	PT	Portugal .
BR	Brazil	iΤ	Italy	RO	Romania
CA	Canada	JР	Japan	RU	Russian Federation
CF	Central African Republic	KР	Democratic People's Republic	SD	Sudan
CG	Congo		of Korca	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SK	Slovak Republic
CI	Câte d'Ivoire	KZ.	Kazakhstan	SN	Senegal
CM	Cameroon	LI	Liechtenstein	SU	Soviet Union
cs	Czechoslovakia .	. rk	Sri Lanka	TD	Chad
CZ	Czech Republic	I.U	Luxembourg	TG	Togo
DE	Germany	MC	Monaco	UA	Ukraine
DK	Denmark	MG	Madagascar	US	United States of America
ES	Spain	Ml.	Mali	VN	Vict Nam
FI	Finland	MN	Mongolia		

1

ANTIPARASITIC AGENTS

This invention relates to antiparasitic agents and in particular to compounds for use with domestic companion animals. The compounds are related to the avermectins but have modified substituent groups at the C-23 and C-25 positions. Processes for preparation of the compounds and compositions thereof are also included.

The avermectins and milbemycins form an important group of broad spectrum antiparasitic agents possessing anthelmintic, ectoparasiticidal, insecticidal and antibacterial activity, with application in the areas of animal and human health, agriculture and horticulture. The avermectins are a group of macrolide compounds (previously referred to as C-076 compounds) isolated from the fermentation broth of an avermectin producing strain of Streptomyces avermitilis. addition to these fermentation derived products, a large number of publications describe compounds derived semisynthetically from these products, many of which possess useful antiparasitic activities. Some of this chemistry is reviewed in Macrolide Antibiotics, Omura S., Ed., Academic press, New York (1984) and by Davies, H.G., Green, R.H. in Natural Product Reports, (1986), 3, 87-121 and in Chem. Soc. Rev., (1991), 20, 211-269 and 271-239. Thus for example U.S. patent no 4200581 discloses avermectin derivatives substituted by hydrocarbon groups.

In our European Patent Application nos. 0214731 and 0317148, we describe the preparation of compounds related to the avermectins but having an unnatural substituent group at the C-25 position in place of the isopropyl or sec-butyl group which is present in the

naturally occurring avermectins.

The present invention provides a series of semisynthetically derived novel compounds wherein both the C-23 and C-25 position substituents are modified. These compounds form the starting point for a further series of semi-synthetically derived analogues wherein the C-5 and C-13 position substituents may also be modified. The compounds possess a broad spectrum of activity against insect pests, acari, free-living nematodes and parasites affecting animals. the compounds of the invention possess a number of beneficial properties compared to similar compounds in terms of their efficacy, pharmacokinetics and The benefits that arise from this toleration. unexpected combination of properties include efficacy against the important parasitic worms or arthropods afflicting livestock, domesticated animals or humans at lower doses than are currently employed for related compounds and, in addition, the ability to treat animals previously regarded as sensitive to this class of macrolide with a greater margin of safety.

Thus according to the present invention there are provided compounds having the formula:-

$$R^4$$
 CH_3
 C

wherein R^1 is C_1 - C_6 alkyl, C_3 - C_6 alkenyl, or substituted C_1 - C_4 alkyl wherein said substituent is halo, C_1 - C_4 alkoxy, C_2 - C_5 alkanoyl, C_2 - C_5 alkoxycarbonyl, carboxy, mercapto or aryl;

 R^2 is C_3-C_8 alkyl, C_3-C_8 alkenyl, C_3-C_8 cycloalkyl or C_5-C_8 cycloalkenyl;

 R^3 is OH, C_1-C_4 alkoxy or C_2-C_5 alkanoyloxy; or R^3 is linked by a double bond and is =N-OR⁵ wherein R^5 is H, C_1-C_4 alkyl or C_2-C_5 alkanoyl; and

 R^4 is HO, C_1 - C_4 alkoxy, C_2 - C_5 alkanoyloxy or halo; or R^4 is linked by a double bond and is =0 or =N-OR⁵ wherein R^5 is as previously defined; or R^4 is a group of the formula:

wherein R^6 is HO, C_1 - C_4 alkoxy, C_2 - C_5 alkanoyloxy or halo, or R^6 is linked by a double bond and is =0 or =N-OR⁵ wherein R^5 is as previously defined; with the proviso that R^2 is not isopropyl or sec-butyl when R^3 is hydroxy, C_1 - C_4 alkoxy or C_2 - C_5 alkanoyloxy and R^4 is HO, C_1 - C_4 alkoxy, C_2 - C_5 alkanoyloxy or is a group of the formula (II) wherein R^6 is OH, C_1 - C_4 alkoxy or C_2 - C_5 alkanoyloxy.

In the above definitions alkyl groups containing 3 or more carbon atoms may be straight or branch-chain; halo means fluoro, chloro, bromo, or iodo; and aryl means phenyl optionally substituted by one or more C_1-C_4 alkyl or C_1-C_4 alkoxy groups or halo atoms.

The C-076 complex comprises eight distinct but closely related compounds described as C-076 Ala, Alb, A2a, A2b, Bla, Blb, B2a and B2b. The "a" series of compounds refers to the natural avermectins wherein the 25-substituent is (S)-sec-butyl and the "b" series to those wherein the 25-substituent is isopropyl. The designations "A" and "B" refer to avermectins wherein the 5-substituent is methoxy or hydroxy, respectively, and the numeral "1" refers to avermectins wherein a double bond is present at the 22-23 position, and

4

numeral "2" to avermectins lacking the 22-23 double bond and having a hydrogen at the 22-position and hydroxy at the 23 position.

In this specification, the "a" and "b" identifiers have been dropped, however, identifiers Al, A2, Bl and B2 have been retained to refer to non-natural avermectins having the structural features corresponding to those of the natural avermectins as noted above.

Compounds of the formula (I) wherein R^3 is HO (avermectin B derivatives) are generally preferred. R^1 is preferably C_1-C_4 alkyl especially methyl or ethyl; R^2 is preferably cyclohexyl. Also preferred are compounds where R^3 is =N-OH(oximino) or =N-OR 5 wherein R^5 is methyl or ethyl.

The compounds of formula (I) wherein R^4 is α -L-oleandrosyl and R^3 is OH or OCH $_3$ are prepared from the corresponding C-25 modified avermectin A2 or B2 derivative of formula (I) wherein R^1 is H, by reacting with a halide of the formula R^1 -hal wherein hal is bromine or preferably iodine, in the presence of a silver salt.

The reaction is performed by stirring the appropriate avermectin having a hydroxy group at the C-23 position, with the halide in an organic solvent, in the presence of a suitable silver salt, preferably silver salicylate. We have found that diethyl ether is a preferred solvent. A period of several days at room temperature may be required for the reaction to go substantially to completion. Under these conditions we have surprisingly found that the reaction is substantially selective for the C-23 hydroxy group and it is not necessary to protect the C-5 hydroxy group present in the avermectin B class of compounds. The iodide is generally the preferred halide, however in activated compounds e.g. where R¹ is allyl, or benzyl,

the bromide is preferable. The product is isolated after filtration and evaporation of the solvent and is purified if necessary, by chromatography.

Compounds of the formula (I) wherein R^3 is $C_1 - C_4$ alkoxy or $C_2 - C_5$ alkanoyloxy can be prepared from the corresponding C-23 substituted derivative wherein R^3 is hydroxy by conventional alkylation or acylation. Compounds of formula (I) wherein R^3 is =NOR⁵ are prepared similarly from the corresponding compound wherein R^3 is hydroxy by oxidation, for example using manganese dioxide, to give the 5-oxo intermediate, which is then reacted with hydroxylamine to yield the oxime derivative (R^3 =NOH) or with an alkoxylamine or acyloxyamine to give compounds where R^3 is =NOR⁵ and R^5 is C_1 - C_4 alkyl or C_2 - C_5 alkanoyl respectively.

Compounds of the formula (I) wherein R4 is OH (monosaccharide derivatives) are prepared by selective hydrolysis of the appropriate avermectin starting material where R^4 is α -L-oleandrosyl. The terminal sugar hydroxy group, 4' in the case of the monosaccharides or 4'' for the disaccharides, may also be modified. In order to do this selectively, the 5hydroxy group may need protection and this can be done as for example, its 5-0-t-butyldimethylsilyl derivative. The sugar hydroxy group may then be alkylated or acylated to give compounds where R4 or R6 are C_1-C_4 alkoxy or C_2-C_5 alkanoyloxy. Alternatively the groups may be oxidised, for example using N-methyl morpholine oxide and tetrapropylammonium perruthenate, to give the 4' or 4''-oxo compound which may then be converted to the oxime or substituted oxime derivatives as previously described. Appropriate reagents and conditions for the these steps may be determined by reference to literature precedents and to the experimental examples included hereafter.

The starting materials of formula (I) wherein R1

6

is H are obtained directly from fermentation as previously described in EP-B-0214731 or EP-A-0317148.

As previously mentioned the compounds of the invention are highly active antiparasitic agents. Thus the compounds are effective in treating a variety of conditions caused by endoparasites including, in particular, helminthiasis which is most frequently caused by a group of parasitic worms described as nematodes and which can cause severe economic losses in swine, sheep, horses and cattle as well as affecting domestic animals and poultry. The compounds are also effective against other nematodes which affect various species of animals including, for example, Dirofilaria in dogs and various parasites which can infect animals and humans including gastro-intestinal parasites such as Ancylostoma, Necator, Ascaris, Strongyloides, Trichinella, Toxocara, Capillaria, Trichuris, Enterobius and parasites which are found in the blood or other tissues and organs such as filiarial worms and the extra intestinal stages of Strongyloides, Trichinella and Toxocara.

The compounds are also of value in treating ectoparasite infections including in particular arthropod ectoparasites such as ticks, mites, lice, fleas, blowfly and biting insects.

The compounds of formula (I) are administered as a formulation appropriate to the specific use envisaged and to the particular species of host animal being treated and the parasite or insect involved. They may be administered by injection, either subcutaneously or intramuscularly. Alternatively they may be administered orally in the form of a capsule, bolus, tablet, chewable tablet or liquid drench, or they may be administered as a pour-on or spot-on formulation or as an implant. Such formulations are prepared in a conventional manner in accordance with standard veterinary practice. Thus injectable formulations may

be prepared in the form of a sterile solution or Capsules, boluses or tablets may be prepared by mixing the active ingredient with a suitable finely divided diluent or carrier, additionally containing a disintigrating agent and/or binder such as starch, lactose, talc, or magnesium stereate. A drench formulation may be prepared by dispersing the active ingredient in an aqueous solution together with dispersing or wetting agents. Pour-on or spot-on formulations may be prepared by dissolving the active ingredient in an acceptable liquid carrier vehicle, such as butyl digol, liquid paraffin or non-volatile ester with or without addition of a volatile component such as isopropanol. These formulations will vary with regard to the weight of active compound depending on the species of host animal to be treated, the severity and type of infection and the body weight of the host. Generally for oral or parenteral administration, a dose of from about 0.001 to 10 mg per kg, preferably 0.01 to l mg/kg of animal body weight given as a single dose or in divided doses for a period of from 1 to 5 days will be satisfactory but of course there can be instances where higher or lower dosage ranges are indicated and such are within the scope of this invention.

As an alternative the compounds may be administered with the animal feedstuff and for this purpose a concentrated feed additive or premix may be prepared for mixing with the normal animal feed.

For use as an insecticide the compounds are applied as sprays, dusts, emulsions, pour-on, spot-on formulations and the like in accordance with standard veterinary practice.

The invention is illustrated by the following Examples: Fast atom bombardment (FAB) mass spectrometry was performed on a VG model 7070E mass spectrometer using a sample matrix of glycerol, thiglycerol, water and sodium chloride. Electron impact (EI) mass

8

spectrometry was performed using a VG model 7070F mass spectrometer. m/z values are quoted for the principal fragments. ¹H Nuclear magnetic resonance (NMR) spectral data were obtained on a Nicolet QE 300 spectrometer with a sample concentration of 5 mg/ml in deuterochloroform. The chemical shifts are given in parts per million relative to tetramethylsilane.

EXAMPLE 1

23-Methoxy-22,23-dihydro-25-cyclohexylavermectin Bl

A solution of 25-cyclohexylavermectin B2 (50 mg) and methyl iodide (570 mg) in diethyl ether (10 ml) containing a suspension of silver salicylate (200 mg) was stirred at room temperature for 30 hours. The reaction mixture was filtered and the filtrate evaporated to yield a yellow oil. The oil was purified by reverse phase high performance liquid chromatography on a Dupont Zorbax (trade mark) ODS C18 column eluting with a 15:85 mixture of water:methanol. Evaporation of the appropriate fractions gave the product (45 mg) as a white powder.

FAB mass spectrometry: $(M+Na^+)$ observed at m/z 930

(theoretical 930)

EI mass spectrometry: 623, 440, 363, 331, 247, 219,

195, 179, 167, 145, 135, 113,

95, 87.

¹H NMR as expected for a 22,23-dihydro avermectin Bl with a characteristic peak for the C-23 substituent at $\delta 3.33$ (3H,s,-OCH₃).

EXAMPLES 2-9

The following Examples were prepared following the method of Example 1 from 25-cyclohexylavermectin B2 using the appropriate iodide (Examples 2-5, 8 and 9) or bromide (Examples 6 and 7).

BI MS Fragmentation pattern	638, 619, 556, 440, 422, 404, 377, 331, 265, 247, 219, 195, 177, 145, 135, 113, 95, 87.	652, 633, 391, 331, 307, 247, 219, 195, 179, 145, 135, 127, 113, 107, 95, 87	651, 391, 331, 307, 247, 219, 195, 145, 135, 129, 113, 87.	666, 405, 331, 247, 219, 195, 179, 153, 145, 135, 127, 113, 95, 87.	649, 389, 331, 305, 277, 247, 243, 219, 193, 177, 153, 145, 135, 113, 95, 87.	439,355, 341, 331, 327, 312, 294, 251, 247, 242, 235, 202, 164, 153, 145, 135, 113, 105, 91, 87.	668,482, 407, 331, 323, 295, 289, 261, 257, 247, 237, 219, 195, 145, 127, 113, 111, 95, 87	463,379, 349, 331, 323, 309, 247, 197, 145, 135, 127, 113, 107, 95, 87.
FAB MS Ion observed/theory	196/196	981/981	981/981	566/566	616/616	1029/1029	166/166	1053/1053
¹ H NMR for characteristic fragment of C-23 side-chain.	1.165 (t, 3H, -CH ₂ C <u>H</u> 3)	0.935 (t, 3H, -CH ₂ CH ₂ CH ₃).	1.15 (d, 3H, - $CH(\overline{CH_3})_2$), 1.06 (d, 3H, - $CH(\overline{CH_3})_2$)	0.92 (t, 3H, -CH $_2$ CH $_2$ CH $_2$	5.61 (dq, 1H, -CH ₂ CH= $\frac{CH_2}{2}$) 5.27 (dq, 1H, -CH ₂ CH= $\frac{CH_2}{2}$)	7.2-7.45(m, 5H, -CH ₂ C ₆ <u>H</u> 5)	3.4 (s, 3H, -CH ₂ CH ₂ O <u>CH</u> 3)	$3.45 (s, 3H, -(CH_2)_4 CO_2 \overline{CH_3})$
Class	Д	щ	ф	В	В	Д	щ	Д
\mathbb{R}^1 .	ដុ	-nPr	-iPr	-nBu	-CH ₂ CH=CH ₂	-CH ₂ C ₆ H ₅	-сн ₂ сн ₂ осн ₃	$-(CH_2)_4CO_2CH_3$
. A.	cyclohexyl	=	=	=	: :	Ξ	=	Ξ
No.	7	m	4		9	٠.	∞ -	6

11

EXAMPLE 10

23-Methoxy-5-oximino-22,23-dihydro-25-cyclohexyl-avermectin Bl

A mixture of 23-methoxy-22,23-dihydro-25cyclohexylavermectin Bl (1 g) and manganese dioxide (2 g) in dry diethyl ether (30 ml) was stirred at room temperature for 16 hours. Further manganese dioxide (1 g) was then added and stirring continued for a further The mixture was then filtered and the residue washed with dichloromethane (50 ml). The filtrate was evaporated to give 23-methoxy-5-oxo-22,23-dihydro-25cyclohexylavermectin Bl (l g) as a yellow foam. was dissolved in pyridine (10 ml) and hydroxylamine hydrochloride (1 g) was added. The mixture was stirred at room temperature for 3 hours and then concentrated under vacuum to a small volume (3 ml) and partitioned between dichloromethane and 20% aqueous citric acid. The organic layer was separated, washed with 20% citric acid, then water, dried over anhydrous sodium sulphate, filtered and the solvent evaporated to give crude product (1.018 g). The product was purified by column chromatography on silica gel (100 g) eluting with dichloromethane/ethyl acetate (2:1) to give 23-methoxy-5-oximino-22,23-dihydro-25-cyclohexylavermectin Bl (711 The product was further purified by reverse phase high performance liquid chromatography on a Dynamax (trade mark) 5 cm diameter ODS Cl8 column eluting with a mixture of methanol:water (85:15). Evaporation of appropriate fractions gave the pure title product (298 mg).

FAB mass spectrometry: (M+Na⁺) observed at m/z 966 (theoretical 966)

EI mass spectrometry: 637, 482, 363, 331, 289, 279,

274, 257, 251, 247, 219, 195,

179, 145, 127, 113, 111, 95,

87.

Selected ¹H NMR data (δ):1.93(3H,s); 3.3(3H,s); 3.39 (3H,s); 3.4(3H,s); 8.62(1H,bs).

EXAMPLE 11

23-Methoxy-5-methoximino-22,23-dihydro-25-cyclohexy-avermectin Bl

A solution of 23-methoxy-5-oxo-22,23-dihydro-25cyclohexylavermectin Bl (0.5 g), prepared as described in Example 10, and methoxylamine hydrochloride (0.5 g) in pyridine (10 ml) was stirred at room temperature for 16 hours. The reaction mixture was poured into water (50 ml) and extracted with diethyl ether (50 ml, x3). The combined ether layers were washed with water (50 ml) and brine (50 ml), dried (MgSO₄) and evaporated. The crude product was purified by column chromatography on silica gel (50 g) eluting with dichloromethane/ethyl acetate (4:1). Evaporation of appropriate fractions gave 23-methoxy-5-methoximino-22,23-dihydro-25cyclohexylavermectin Bl which was further purified by reverse phase high performance liquid chromatography on a Dynamax (trade mark) 5 cm diameter ODS Cl8 column eluting with a mixture of methanol and water. Evaporation of appropriate fractions gave the pure title compound (317 mg).

FAB mass spectrometry: $(M+Na^+)$ observed at m/z 980 (theoretical 980)

EI mass spectrometry: 669, 651, 363, 331, 288, 257, 251, 247, 227, 219, 195, 179, 145, 143, 127, 113, 111, 95, 87.

Selected ^IH NMR data (δ): 4.0 (3H,s).

EXAMPLE 12

23-Ethoxy-5-oximino-22,23-dihydro-25-cyclohexyl-avermectin Bl

To a solution of 23-ethoxy-5-oxo-22,23-dihydro-25-

cyclohexylavermectin Bl (0.8 g, see Preparation 3) in methanol (16 ml) and dioxan (16 ml) was added a solution of hydroxylamine hydrochloride (1 g) in water (16 ml). The mixture was warmed to 50°C and maintained at this temperature for 1 hour. The cooled solution was then evaporated and the residue partitioned between diethyl ether (100 ml) and water (100 ml). The organic layer was separated, washed with aqueous sodium hydrogen carbonate (100 ml, 5% solution) and water (100 ml), dried (MgSO4) and evaporated. crude product (0.8 g) was purified by column chromatography on silica gel (40 g) eluting with dichloromethane: ethyl acetate (100:0 to 70:30). Combination of appropriate fractions gave 23-ethoxy-5oximino-22,23-dihydro-25-cyclohexylavermectin Bl (0.5 The product was further purified by reverse phase high performance liquid chromatography on a Dynamax (trade mark) 5 cm diameter ODS Cl8 column eluting with a mixture of methanol:water (90:10). Evaporation of appropriate fractions gave the pure title compound (380 mg).

FAB mass spectrometry: (M+Na+) observed at m/z 980

(theorectical 980)

EI mass spectrometry: 377, 331, 293, 289, 274, 265,

257, 247, 219, 195, 179, 145,

127, 113, 111, 95, 87.

Selected ¹H NMR data (δ): 8.31 (bs,1H)

EXAMPLE 13

23-Ethoxy-5-methoximino-22,23-dihydro-25-cyclohexyl-avermectin Bl

To a solution of 23-ethoxy-5-oxo-22,23-dihydro-25-cyclohexylavermectin Bl (0.8 g) in methanol (16 ml) and dioxan (16 ml) was added a solution of methoxylamine hydrochloride (0.8 g) in water (16 ml). The mixture was warmed to 50°C and maintained at this temperature for 2 hours. The cooled solution was then evaporated

and the residue partitioned between ether (100 ml) and water (100 ml). The organic layer was separated, washed with aqueous sodium hydrogen carbonate (100 ml), 5% solution) and water (100 ml), dried (MgSO₄) and evaporated. The crude product (0.7 g) was purified by column chromatography on silica gel (50 g) eluting with dichloromethane:ethyl acetate (100:0 to 80:20). Evaporation of appropriate fractions gave 23-ethoxy-5-methoximino-22,23-dihydro-25-cyclohexylavermectin Bl (350 mg) as a white amorphous powder.

FAB mass spectrometry: (M+Na⁺) observed at m/z 994 (theoretical 994)

EI mass spectrometry: 682, 655, 482, 377, 331, 293, 289, 288, 265, 257, 247, 219, 195, 179, 145, 127, 113, 111, 95, 87.

Selected ¹H NMR data (δ): 3.995 (s,3H)

EXAMPLE 14

23-Methoxy-22,23-dihydro-25-cyclohexylavermectin Bl monosaccharide

23-Methoxy-22,23-dihydro-25-cycolohexylavermectin Bl (10 g) was added to a 1% solution of sulphuric acid in isopropanol (100 ml). The mixture was stirred at room temperature for 16 hours. The reaction mixture was poured onto ice (100 g) and water (100 ml) and extracted with dichloromethane (2 x 100 ml). combined organic extracts were washed with aqueous potassium hydrogen carbonate (50 ml, 20% solution) and water (25 ml), dried (NaSO4) and evaporated to give an off-white solid. This was purified by column chromatography on silica gel (100 g) eluting with dichloromethane: ethyl acetate (2:1 to 1:1). Evaporation of appropriate fractions gave 8.8 g of a white solid 2 g of this solid was further purified by reverse phase high performance liquid chromatography on a Dynamax (trade mark) 5 cm diameter ODS C-18 column

eluting with methanol:water (85:15). Evaporation of appropriate fractions gave 23-methoxy-22,23-dihydro-25-cyclohexyl-avermectin Bl monosaccharide (1.6 g) as a white amorphous powder.

FAB mass spectrometry: (M+Na⁺) observed at 809 (theoretical 809)

EI mass spectrometry: 624, 482, 363, 331, 279, 261,

251, 247, 227, 195, 179, 145,

143, 127, 113, 111, 95, 87.

Selected ¹H NMR data (δ): 3.46(s,3H), 3.3(s,3H).

EXAMPLE 15

23-Methoxy-5-oximino-22,23-dihydro-25-cyclohexylavermectin Bl monosaccharide

A mixture of 23-methoxy-22,23-dihydro-25-cyclohexyl-avermectin Bl monosaccharide (1.2 g) and manganese dioxide (5 g) in anhydrous diethyl ether (30 ml) was stirred for 2 hours. Further manganese dioxide (1 g) was added and stirring continued for 1 hour. reaction mixture was filtered and evaporated. residue (1 g) was taken up in methanol (20 ml) and dioxan (20 ml) and a solution of hydroxylamine hydrochloride (1 g) in water (20 ml) was added. mixture was heated to 50°C for 1 hour, then cooled and evaporated. The residue was partitioned between diethyl ether (100 ml) and water (100 ml). layer was separated, washed with aqueous sodium hydrogen carbonate (100 ml, 10% solution) and water (100 ml), dried (Na2SO4) and evaporated to give an oil (1 g) which was purified by column chromatography on silica gel (50 g) eluting with dichloromethane:ethyl acetate (100:0 to 75:25). Evaporation of appropriate fractions gave a foam which was further purified by reverse phase high performance liquid chromatography on a Dynamax (trade mark) 5 cm diameter ODS C-18 column eluting with methanol:water (85:15). Evaporation of appropriate fraction gave 23-methoxy-5-oximino-22,23dihydro-25-cyclohexylavermectin Bl monosaccharide (160 mg) as a white amorphous powder.

FAB mass spectrometry: $(M+Na^+)$ observed at m/z 822

(theoretical 822)

EI mass spectrometry: 799, 655, 637, 482, 363, 331,

288, 279, 256, 251, 237, 219,

195, 179, 145, 127, 113, 111,

95, 87.

Selected ¹H NMR data (δ): 8.55 (bs,1H)

EXAMPLE 16

23-Methoxy-5-methoximino-22,23-dihydro-25-cyclohexyl-avermectin Bl monosaccharide

A mixture of 23-methoxy-22,23-dihydro-25-cyclohexylavermectin Bl monosaccharide (1.0 g) and manganese dioxide (5 g) in anhydrous diethyl ether (30 ml) was stirred at room temperature for 3 hours, then filtered and evaporated to give a yellow oil (1 g). This was taken up in methanol (15 ml) and dioxan (15 ml) and a solution of methoxylamine (1.0 g) in water (15 ml) added. The mixture was heated at 50°C for 2 hours, cooled and evaporated. The residue was partitioned between diethyl ether (100 ml) and water (100 ml). organic layer was separated, washed with aqueous sodium hydrogen carbonate (100 ml, 10% solution) and water (100 ml), dried (Na2SO4) and evaporated to give an oil (1 g) which was purified by column chromatography on silica gel (40 g) eluting with dichloromethane:ethyl acetate (100:0 to 75:25). Evaporation of appropriate fractions gave a foam which was further purified by reverse phase high performance liquid chromatography on a Dynamax (trade mark) 5 cm diameter ODS C-18 column eluting with methanol:water (90:10). Evaporation of appropriate fraction gave 23-methoxy-5-methoximino-22,23-dihydro-25-cyclohexylavermectin Bl monosaccharide (188 mg) as a white amorphous powder.

17

FAB mass spectrometry: $(M+Na^+)$ observed at m/z 836

(theoretical 836)

EI mass spectrometry: 781, 696, 651, 620, 588, 525,

467, 363, 331, 288, 251, 219,

195, 145, 113, 95, 87.

Selected ¹H NMR data (δ): 3.995 (s,3H).

EXAMPLE 17

23-Ethoxy-5-oximino-22,23-dihydro-25-cyclohexyl-avermectin Bl monosaccharide

To a solution of 23-ethoxy-22,23-dihydro-25-cyclohexyl-avermectin Bl (3.5 g) in isopropanol (35 ml) was added isopropanol (35 ml) containing sulphuric acid (0.7 ml). The mixture was allowed to stand for 16 hours at room temperature, then poured onto ice (175 g) and water 175 ml) and extracted with dichloromethane (200 ml, x2). The combined organic extracts were dried (MgSO₄) and evaporated to give a yellow foam (4.2 g); 2 g of which was dissolved in anhydrous diethyl ether (55 ml). To this stirred solution at room temperature was added manganese dioxide (10 g) and stirring continued for 2 hours after which manganese dioxide (1 g) was added and stirring continued for a further ½ hour. reaction mixture was then filtered and evaporated to give a yellow foam (1.2 g) which was dissolved in methanol (24 ml) and dioxan (24 ml). A solution of hydroxylamine hydrochloride (1.2 g) in water (12 ml) was added. The mixture was stirred for 1 hour at 50°C then cooled and evaporated. The residue was partitioned between diethyl ether (100 ml) and water (100 ml). The organic layer was washed with aqueous sodium hydrogen carbonate (100 ml, 10% solution) and water (100 ml), dried (MgSO₄) and evaporated. product was purified by column chromatography on silica gel (50 g) eluting with dichloromethane: ethyl acetate (100:0 to 80:20). Evaporation of appropriate fractions gave a foam (610 mg). This material was further

18

purified by reverse phase high performance liquid chromatography on a Dynamax (trade mark) 5 cm diameter ODS C-18 column eluting with methanol:water (85:15). Evaporation of appropriate fractions gave 23-ethoxy-5-oximino-22,23-dihydro-25-cyclohexyl-avermectin Bl monosaccharide (340 mg) as a white amorphous powder.

FAB mass spectrometry: (M+Na⁺) observed at m/z 836 (theoretical 836)

EI mass spectrometry: 669, 651, 377, 331, 293, 274,

265, 247, 241, 219, 195, 179, 157, 145, 127, 113, 111, 95, 87.

Selected ¹H NMR data (δ): 8.48 (bs,1H)

EXAMPLE 18

4"-Oxo-23-methoxy-22,23-dihydro-25-cyclohexylavermectin Bl

To a stirred solution of 5-0-t-butyldimethylsilyl-4"-oxo-23-methoxy-22,23-dihydro-25-cyclohexylavermectin Bl (1.6 g) in methanol (45 ml) maintained at -20°C was added over a period of 5 minutes a solution of paratoluenesulphonic acid (1.2 g) in methanol (120 ml). The reaction mixture was stirred at -20°C for 1 hour and then allowed to warm to 0°C and then stirred for a further 1.5 hours at 0°C. The reaction mixture was partitioned between ethylacetate (700 ml) and aqueous sodium hydrogen carbonate (100 ml, 5% solution). organic layer was washed with water (200 ml, x3). organic layer was re-extracted with ethyl acetate (200 The combined ethyl acetate layers were dried and evaporated to give 4"-oxo-23-methoxy-22,23-dihydro-25cyclohexylavermectin Bl (1.5 g) as a white amorphous foam.

FAB mass specrotmetry: M+Na⁺) observed at m/z 951 (theoretical 951)

19

EI mass spectrometry: 624, 363, 331, 279, 261, 255,

251, 247, 227, 195, 179, 145,

143, 127, 113, 111, 95, 87.

Selected ^{1}H -NMR data (δ): 3.47(s,3H), 3.38(s,3H), 3.27(s,3H)

EXAMPLE 19

4"-Oximino-23-methoxy-22,23-dihydro-25-cyclohexyl-avermectin_Bl

To a stirred solution of 4"-oxo-23-methoxy-22,23dihydro-25-cyclohexylavermectin Bl (0.7 g) in methanol (14 ml) and dioxan (14 ml) was added a solution of hydroxylamine hydrochloride (0.7 q) in water (14 ml). The mixture was heated at 50°C for 1 hour, then cooled and poured into diethyl ether (200 ml) and water (100 ml). The ether layer was separated and washed with aqueous sodium hydrogen carbonate (100 ml, 5% solution), water (100 ml), brine (100 ml), then dried (MgSO₄) and evaporated to give a foam (0.8 g). products were purified by reverse phase high performance liquid chromatography on a Dynamax (trade mark) 5 cm diameter ODS Cl8 column eluting with a mixture of methanol:water (85:15). Evaporation of appropriate fractions gave 4"-oximino-23-methoxy-22,23dihydro-25-cyclohexylavermectin Bl (oxime isomer A eluted first, 80 mg) and (oxime isomer B eluted second, 190 mg).

Isomer A

FAB mass spectrometry: (M+Na⁺) observed at m/z 966

(theoretical 966)

EI mass spectrometry: 482, 363, 331, 301, 279, 269,

261, 251, 247, 219, 181, 179,

158, 127, 113, 111, 95, 87.

Selected ¹H data (δ): 3.42(s,6H), 3.3(s,3H)

Isomer B

FAB mass spectrometry: (M+Na+) observed at m/z 966

(theoretical 966)

20

EI mass spectrometry: 625, 482, 363, 331, 301, 279, 269, 251, 247, 219, 181, 179,

158, 127, 113, 111, 95, 87.

Selected ^{I}H -NMR data (δ): 3.42(s,3H), 3.30(s,3H), 3.26(s,3H).

EXAMPLE 20

23-Methoxy-22,23-dihydro-25-cyclohexylavermectin Al

A solution of 23-methoxy-22,23-dihydro-25-cyclohexylavermectin Bl (250 mg) and methyl iodide (1 ml) in diethyl ethyl (10 ml) containing a suspension of silver oxide (250 mg) was stirred at room temperature for 48 hours. The reaction mixture was filtered and the filtrate evaporated to yield an oil which was purified by reverse phase high performance liquid chromatography on a Dynamax (trade mark) 5 cm diameter ODS Cl8 column eluting with a mixture of methanol and water (87:13). Evaporation of appropriate fractions gave pure title compound (139 mgs) as a white amorphous powder.

FAB mass spectrometry: (M+ Na⁺) observed at $^{m}/z$ 967 (theoretical 967)
EI mass spectrometry: 638, 482, 363, 331, 279, 275, 257, 251, 247, 219, 195, 193, 145, 127, 113, 111, 95, 87.
Selected 1 H-NMR data (δ): 3.51(s,3H), 3.41(s,3H), 3.39(s,3H), 3.30(s,3H).

EXAMPLE 21

23-Methoxy-4'-oximino-22,23-dihydro-25-cyclohexylavermectin Bl monosaccharide

A solution of 5-O-t-butyldimethylsilyl-23-methoxy-4'-oxo-22,23-dihydro-25-cyclohexylavermectin Bl monosaccharide (86 mg) and hydroxylamine hydrochloride (86 mg) in pyridine (2 ml) was stirred at room temperature for one hour. The mixture was poured into

water (10 ml) and extracted with diethyl ether (20 ml). The organic layer was separated, washed with 10% aqueous citric acid solution (10 ml), water (10 ml) and brine (10 ml), then dried (Na_2SO_4) , filtered and evaporated to yield an opaque glass (75 mg). product was purified by column chromatography on silica gel (Merck 9385 (trade mark)) eluted with 10% ethyl acetate in dichloromethane. Combination and evaporation of appropriate fractions gave an opaque glass (30 mg) which was further purified by reverse phase high performance liquid chromatography on an Ultrasphere (trade mark) 10 mm diameter ODS C-18 column eluted with acetonitrile:methanol:water (83:12:5). Combination and evaporation of appropriate fractions gave a colourless gum which was taken up in methanol (10 ml) containing para-toluene sulphonic acid (0.5 The reaction mixture was maintained at room temperature for 1½ hours and then poured into aqueous potassium hydrogen carbonate solution (10 ml) and diethyl ether (20 ml). The organic layer was separated, washed with water (10 ml), brine (10 ml) then dried (Na2SO4), filtered and evaporated to give crude product (19.2 mg). This was purified by reverse phase high performance liquid chromatography on an Ultrasphere (trade mark) 10 mm diameter ODS C-18 column eluted with acetonitrile:methanol:water (61:14:25). Evaporation of appropriate fractions gave the title compound (13.8 mg) as a white amorphous powder. FAB mass spectrometry: (M+Na⁺) observed at ^m/z

822 (theoretical 822)

EI mass spectrometry:

625, 363, 279, 261, 251,

195, 179, 158, 135, 111,

95

Selected ¹H NMR data (δ): 7.25 (bs,1H)

EXAMPLE 22

4'-epi-Hydroxy-23-methoxy-22,23-dihydro-25-cyclohexyl-avermectin Bl monosaccharide

To a solution of 5-0-t-butyldimethylsilyl-4'-oxo-23-methoxy-22,23-dihydro-25-cyclohexylavermectin Bl monosaccharide (1.17 g) in methanol (50 ml) was added sodium borohydride (100 mg). After ½ hour the reaction mixture was poured into water (100 ml) and extracted with ether (50 ml, x 3). The combined organic layers were washed with water (20 ml, x 2), brine (20 ml), dried (Na2SO4), filtered and evaporated to give crude product which was purified by reverse phase high performance liquid chromatography on a Dynamax (trade mark) 5 cm diameter column eluted with methanol:water (90:10). Evaporation of appropriate fractions gave a qum (609 mg). 150 mg of this material was taken up in methanol (10 ml) containing para-toluene sulphonic acid (0.5 mg). After 1 hour at room temperature the reaction mixture was poured into aqueous saturated sodium hydrogen carbonate solution (20 ml) and extracted with ether (20 ml, x 3). The combined organic layers were washed with water (10 ml, x 3), brine (10 ml, x 2), dried (Na₂SO₄), filtered and evaporated to give a yellow foam (95 mg). This was purified by column chromatography on silica gel (Merck 9385 (trade mark), 2 g) eluted with dichloromethane: ethyl acetate (4:1). Combination and evaporation of appropriate fractions gave the title compound (75.4 mg) as a white amorphous powder.

FAB mass spectrometry: (M+Na⁺) observed at ^m/z 809 (theoretical 809).

EI mass spectrometry: 642, 363, 331, 279, 261, 251, 247, 219, 195, 179, 145, 127, 113, 111, 95, 87.

Selected ¹H NMR data (δ): 3.82 (bs,1H).

EXAMPLE 23

4',5-Bis-oximino-23-methoxy-22,23-dihydro-25-cyclohexylavermectin Bl monosaccharide

A solution of 4'-oximino-23-methoxy-22,23-dihydro-25-cyclohexylavermectin Bl monosaccharide (64 mg) in diethyl ether (20 ml) containing manganese dioxide (64 mg) was stirred at room temperature for 48 hours. The reaction mixture was filtered and the filter cake washed with dichloromethane. The combined filtrates were evaporated to give a yellow gum which was taken up in methanol (10 ml) and dioxan (10 ml). To this solution was added a solution of hydroxylamine hydrochloride (100 mg) in water (5 ml). The reaction mixture was stirred at room temperature for 36 hours then poured into aqueous potassium hydrogen carbonate solution (20 ml) and extracted with ether (20 ml, x 2). The combined organic layers were dried (Na2SO4), filtered and evaporated. The crude product was purified by reverse phase high performance liquid chromatography on an Ultrasphere (trade mark) 10 mm diameter ODS C-18 column eluted with methanol:water (80:20). Evaporation of appropriate fractions gave the title compound (5.6 mg) as a white amorphous powder.

FAB mass spectrometry: $(M+Na^+)$ observed at $^m/z$

835 (theoretical 835)

EI mass spectrometry: 748, 722, 596, 578, 469,

424, 378, 354, 333, 264,

249, 221, 197, 179, 161,

145, 113, 91.

Selected ¹H NMR data (δ): 8.4 (bs,1H), 7.55(bs,1H).

24

PREPARATION 1

5-0-t-Butyldimethylsilyl-23-methoxy-22,23-dihydro-25-cyclohexyl-avermectin Bl and 4",5-bis-0-t-butyl-dimethylsilyl-23-methoxy-22,23-dihydro-25-cyclohexyl-avermectin Bl

To a solution of 23-methoxy-22,23-dihydro-25cyclohexylavermectin Bl (29.6 g) and imidazole (12.7 g) in anhydrous dimethylformamide (280 ml) was added tbutyldimethylsilyl chloride (14.2 g) and the mixture was stirred at room temperature for 2 hours. reaction mixture was concentrated under vacuum to approximately 100 ml and then partitioned between diethyl ether (500 ml) and water (150 ml). The aqueous layer was separated and washed with diethyl ether (100 ml, x2). The combined ether layers were washed with water (200 ml, x4) and brine (200 ml), then dried $(MgSO_4)$ and evaporated to an oil (35 g). The oil was taken up in the minimum volume of dichloromethane and applied to a column of silica gel (1000 g). with dichloromethane containing 5% ethyl acetate provided, after evaporation of appropriate fractions, 4",5-0-t-butyldimethylsilyl-23-methoxy-22,23-dihydro-25-cyclo-hexylavermectin Bl (13.7 g). Elution with dichloromethane containing 25% ethyl acetate provided, after evaporation of appropriate fractions, 5-0-tbutyldimethylsilyl-23-methoxy-22,23-dihydro-25cyclohexylavermectin Bl (17.1 g). Both compounds were obtained as amorphous white foams. They were characterised by 1H-NMR and mass spectrometry.

PREPARATION 2

5-0-t-Butyldimethylsilyl-4"-oxo-23-methoxy-22,23-dihydro-25-cyclohexylavermectin Bl

To a stirred solution of 5-0-t-butyldimethylsilyl-23-methoxy-22,23-dihydro-25-cyclohexylavermectin Bl (2.9 g) and N-methyl-morpholine oxide (3.71 g) in anhydrous dichloromethane (60 ml) containing a

suspension of crushed 4A° molecular sieves (100 mg) at room temperature was added tetrapropylammonium perruthenate (0.406 g). The mixture was stirred for 1 hour and then filtered. The filtrate was washed with aqueous sodium sulphite (30 ml, 5% solution), brine (30 ml) and aqueous copper sulphate (30 ml, 5% solution). The organic solution was dried (MgSO₄) and evaporated. The resulting dark foam was purified by column chromatography on silica gel (100 g) eluting with dichloromethane:ethylacetate (100:0 to 90:10). Combination of appropriate fractions gave 5-0-t-butyldimethylsilyl-4"-oxo-23-methoxy-22,23-dihydro-25-cyclohexylavermectin Bl as a white amorphous foam (1.6 g) which was characterised by 'H-NMR and mass spectrometry.

PREPARATION 3

23-Ethoxy-5-oxo-22,23-dihydro-25-cyclohexylavermectin Bl

A mixture of 23-ethoxy-22,23-dihydro-25-cyclo-hexylavermectin Bl (2 g) and manganese dioxide (4 g) in anhydrous diethyl ether (60 ml) was stirred at room temperature for 16 hours, further manganese dioxide (1 g) was then added and stirring continued for 48 hours. The mixture was then filtered and evaporated to give 23-ethoxy-5-oxo-22,23-dihydro-25-cyclohexylavermectin Bl as a yellow solid (1.6 g) which was used without purification.

PREPARATION 4

5-O-t-Butyldimethylsilyl-23-methoxy-22,23-dihydro-25-cyclohexylavermectin Bl monosaccharide

To a solution of 23-methoxy-22,23-dihydro-25-cyclohexyl avermectin Bl monosaccharide (3 g) and imidazole (3.1 g) in anhydrous dimethylformamide (20 ml) was added t-butyldimethylsilylchloride (0.53 g) and the mixture was stirred overnight then a further 0.27 g

26

raine *

of t-butyldimethylsilyl chloride was added and stirring continued for 2 hours. The reaction mixture was poured into water (100 ml) and extracted with dichloromethane (50 ml, x 2). The combined organic layers were washed with water (50 ml), dried (Na₂SO₄), filtered and evaporated. The product was purified by column chromatgraphy on silica gel (Merck 9385 (trade mark), 50 g) eluted with dichloromethane and then 20% ethyl acetate in dichloromethane. Evaporation of appropriate fractions gave the title compound (3.27 g) as an amorphous white foam which was characterised by ¹H-NMR and mass spectrometry.

PREPARATION 5

5-O-t-Butyldimethylsilyl-4'-oxo-23-methoxy-22,23-dihydro-25-cyclohexylavermectin Bl monosaccharide

A solution of 5-0-t-butyldimethylsilyl-23-methoxy-22,23-dihydro-25-cyclohexylavermectin Bl monosaccharide (1.4 g), N-methylmorpholine N-oxide (3.14 g), tetrapropylammonium peruthenate (0.233 g) in dichloromethane (300 ml) containing a suspension of powdered 4 angstrom molecular sieves was stirred for 1 hour at room temperature. The reaction mixture was then washed with aqueous sodium sulphite solution (5%, 50 ml, x 2), water (50 ml) and brine (50 ml), then dried (Na2SO4), filtered and evaporated. The product was purified by column chromatography on silica gel (Merck 9385 (trade mark), 20 g) eluted with dichloromethane and then 10% ethyl acetate in dichloromethane. Evaporation of appropriate fractions gave the title compound (1.17 g) which was characterised by ¹H-NMR and mass spectrometry.

27

CLAIMS

1. A compound having the formula:

$$R^4$$
 CH_3
 C

wherein R^1 is C_1 - C_6 alkyl, C_3 - C_6 alkenyl, or substituted C_1 - C_4 alkyl wherein said substituent is halo, C_1 - C_4 alkoxy, C_2 - C_5 alkanoyl, C_2 - C_5 alkoxycarbonyl, carboxy, mercapto or aryl;

 R^2 is C_3-C_8 alkyl, C_3-C_8 alkenyl, C_3-C_8 cycloalkyl or C_5-C_8 cycloalkenyl;

 R^3 is OH, C_1-C_4 alkoxy or C_2-C_5 alkanoyloxy; or R^3 is linked by a double bond and is =N-OR⁵ wherein R^5 is H, C_1-C_4 alkyl or C_2-C_5 alkanoyl; and

 R^4 is HO, C_1 - C_4 alkoxy, C_2 - C_5 alkanoyloxy or halo; or R^4 is linked by a double bond and is =0 or =N-OR 5 wherein R^5 is as previously defined; or R^4 is a group of the formula:

$$R^6$$
 CH_3
 OCH_3
 OCH_3

wherein R^6 is HO, C_1-C_4 alkoxy, C_2-C_5 alkanoyloxy or

halo, or R^6 is linked by a double bond and is =0 or =N-OR⁵ wherein R^5 is as previously defined; with the proviso that R^2 is not isopropyl or sec-butyl when R^3 is hydroxy, C_1 - C_4 alkoxy or C_2 - C_5 alkanoyloxy and R^4 is HO, C_1 - C_4 alkoxy, C_2 - C_5 alkanoyloxy or is a group of the formula (II) wherein R^6 is OH, C_1 - C_4 alkoxy or C_2 - C_5 alkanoyloxy.

- 2. A compound as claimed in claim 1 wherein R3 is OH.
- 3. A compound as claimed in claim 1 wherein \mathbb{R}^3 is $=\mathbb{N}-\mathbb{R}^5$ and \mathbb{R}^5 is H, methyl or ethyl.
- 4. A compound as claimed in any one of claims 1 to 3 wherein R^1 is C_1-C_4 alkyl.
- 5. A compound as claimed in claim 4 wherein \mathbb{R}^1 is methyl or ethyl.
- 6. A compound as claimed in any one of claims 1 to 5 wherein \mathbb{R}^2 is cyclohexyl.
- 7. A compound as claimed in any one of claims 1 to 6 wherein R^4 is H or $\alpha\text{-L-oleandrosyl}$.
- 8. A composition for the treatment and prevention of parasitic infections in humans and animals, including ectoparasiticidal, insecticidal, acaricidal and anthelmintic compositions, which comprises a compound of the formula (I) as claimed in any one of claims 1 to 7 together with an inert diluent or carrier.
- 9. A composition as claimed in claim 8 in the form of a liquid drench or an oral, pour-on or spot on formulation or in the form of an animal feedstuff or a premix or supplement for addition to animal feed.
- 10. A method of combating insect or parasite infections or infestations, including parasitic conditions in humans and animals and agricultural or horticultural pest infestations, which comprises applying an effective amount of a compound of the

formula (I) as claimed in any one of claims 1 to 7 to the organism responsible for said infection or infestation or to the location thereof.

International Application No

PCT/EP 93/00036

I CLASSIFICATION OF SUB	TECT MATTED (if agreed along Continu	anternational Application 140		
	JECT MATTER (if several classification int Classification (IPC) or to both National			
Int.Cl. 5 CO7H17/		A61K31/70;	A23K1/17	
II. FIELDS SEARCHED				
	Minimum Docur	mentation Searched ⁷		
Classification System		Classification Symbols		
Int.Cl. 5	CO7H ; CO7D ; A23K	A01N ; A6:	1K	
		er than Minimum Documentation is are Included in the Fields Searched ^a	,	
III. DOCUMENTS CONSIDER		12	7 - 13 - 13	
Category Citation of I	Document, 11 with indication, where appropriate	riate, of the relevant passages 12	Relevant to Claim No. ¹³	
20 Febr	008 184 (MERCK AND CO. ruary 1980 aims; example 5	INC.)	1-10	
	307 224 (AMERICAN CYAN ch 1989 aims	IAMID COMPANY)	1,2,4,5, 8-10	
23 Sept	EP,A,O 238 258 (GLAXO GROUP LIMITED) 23 September 1987 see claims; example 12			
18 Marc cited	214 731 (PFIZER LIMITE ch 1987 in the application aims; example 14	:D)	1,6-10	
		·		
O Special categories of cited of "A" document defining the goonsidered to be of part	general state of the art which is not	cited to understand the princip	oflict with the application but	
"E" earlier document but put filing date	blished on or after the international row doubts on priority claim(s) or	"X" document of particular relevan cannot be considered novel or involve an inventive step		
which is cited to establis citation or other special "O" document referring to a other means	nce; the claimed invention we an inventive step when the ne or more other such docu- ng obvious to a person skilled			
"P" document published priority di	or to the international filing date but ate claimed	in the art. "&" document member of the same	e patent family	
IV. CERTIFICATION				
Date of the Actual Completion of 29 Al	f the International Search PRIL 1993	Date of Malling of this Interna 0 1. 06. 93	itional Search Report	
International Searching Authority	у	Signature of Authorized Office	et .	
EUROPI	EAN PATENT OFFICE	DAY G.J.		

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

9300036 EP SA 69414

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

29/0

29/04/93

Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
EP-A-0008184	20-02-80	US-A- AT-T- AU-B- AU-A- JP-C- JP-B- JP-A-	4200581 7300 526571 4923379 1612418 2038596 55024165	29-04-80 15-05-84 20-01-83 07-02-80 30-07-91 31-08-90 21-02-80	
EP-A-0307224	15-03-89	AU-A- JP-A- US-A-	2208888 1156991 5104871	16-03-89 20-06-89 14-04-92	
EP-A-0238258	23-09-87	AU-B- AU-A- AU-A- CH-A- DE-A- FR-A- GB-A- JP-A- JP-A- NL-A- SE-A-	609032 6990987 612565 6991487 671764 3707859 2600651 2187742 62265289 62277387 8700581 8701019	26-04-91 17-09-87 18-07-91 17-09-87 29-09-89 08-10-87 31-12-87 16-09-87 18-11-87 02-12-87 01-10-87 13-09-87	
EP-A-0214731	18-03-87	AU-B- AU-A- JP-A- OA-A- SU-A- US-A-	572402 6056986 62029590 8370 1560059 5089480	05-05-88 14-05-87 07-02-87 29-02-88 23-04-90 18-02-92	