Lógica Computacional

1. Sistema Lógico ou Sistema Formal

Um *sistema lógico* representa **fatos** e raciciona sobre os mesmos de forma rigorosa e não ambígua.

Uma Linguagem Formal é constituída por:

- alfabeto: conjunto de símbolos;
- gramática: regras sintáticas que definem um conjunto de sequências de símbolos do alfabeto;
- semântica: significado de fórmulas;
- sistema dedutivos: conjunto de regras de dedução que indicam como se podem deduzir novas fórmulas a partire de outras fórmulas de maneira puramente sintática.

2. Lógica Proposicional

2.1. Argumentos

Um argumento é uma estrutura da forma

$$\phi_1$$
 \vdots
 ϕ_n
 ψ

onde $n\geq 1$ e ϕ_1,\ldots,ϕ_n e ψ são proposições. Um argumento da forma apresenta acima diz-se **válido** se e só se a conclusão ψ for verdadeira sempre que as premissas ϕ_1,\ldots,ϕ_n foram simultaneamente verdadeiras. Caso contrário, é um argumento **inválido**.

Um argumento da forma

lê-se: ψ_1 e ψ_2 , logo ϕ .

2.3. Linguagems do Cálculo Proposicional

Para explicitar a forma lógica de uma proposição, utiliza-se uma *linguagem* proposicional.

Alfabeto de uma Linguagem Proposicional:

- Símbolos de pontuação: (e);
- Conjunto numerável de símbolos proposicionais:

$$p, p_1, p_2, \ldots, q, q_1, q_2, \ldots, r, r_1, \ldots;$$

- Símbolos conetivos unários: ¬ ("não");
- Símbolos conetivos binários: $\land, \lor, \implies, \iff$.

As fórmulas de uma linguagem proposicional L são expressões formadas de acordo com as seguintes regras sintáticas:

- 1. Um símbolo proposicional é uma fórmula atómica;
- 2. Se ψ é uma fórmula, então $(\neg \psi)$ também o é;
- 3. Se ψ e ϕ são fórmulas e "o" é um conetivo binário da linguagem considerada, então $(\phi \circ \psi)$ também é uma fórmula.

Exemplo: Considerando a linguagem proposicional $L_{\neg,\wedge,\vee,\implies,\iff}$.

Fórmulas de
$$L$$
: $p, (\neg r), (\neg (\neg (\neg q))), (p \land q)$

Não Fórmulas de
$$L: p\neg, p \wedge q \implies (r \vee q), \neg (q \wedge, \neg (q \wedge r))$$

Convenções de escrita: de maneira a simplificar as escrita de fórmulas, é possível omitir alguns parêntesis onde a leitura da fórmula não seja ambígua tendo em conta as seguintes precedências:

- 1. ¬
- 2. \wedge
- 3. V

4. ⇒ e ⇔

Desta maneira:

- $p \wedge r$ é uma abreviatura de $(p \wedge r)$;
- $(p_1 \implies \neg p_2)$ é uma abrevitura de $(p_1 \implies (\neg p_2))$;
- ullet $p_1 \implies p_2 \iff p_3$ não é fórmula.

Literal: fórmula que consiste apenas de um símbolo proposicional, e.g. $p_1; \neg p_6$.

Dada uma lunguagem proposicional L, arbitrária, os símbolos que fazem parte do alfabeto de L são **símbolos primitivos** da linguagem, enquanto que os **símbolos definidos** são extensões de símbolos primitivos (e.g. \oplus à custa de \wedge e \vee , através da Forma Disjuntiva Normal).

Fim da aula de 07-10-2021.