1 Model

m machines (indexed by i), n jobs indexed by j. Objective function is Total Weighted Completion time so we can suppose that the jobs are already sorted in the order $\left(\frac{w_j}{p_j}\right)_i$.

Let a_k be the pattern k. It is a binary vector of length n; $a_{k,j} = 1 \Leftrightarrow \text{job } j$ is included in the pattern k.

 $y_{i,k}$ is the binary decision variable: $y_{i,k} = 1 \Leftrightarrow$ we use pattern k for the machine i. The objective function is:

$$min \sum_{i} \sum_{k} C(a_k, y_{i,k})$$

with $C(a_k, y_{i,k}) = y_{i,k} \sum_j a_{k,j} w_j \sum_s^j a_{k,j} p_j^i$

This formulation of C can be justified by analogy to the following programs (that are equivalent):

Constraints are:

$$\forall i, \sum_{k} y_{i,k} = 1$$
$$\forall j, \sum_{i,k} a_{k,j} y_{i,k} = 1$$

2 Reduced cost

Let u_i, v_j be the dual variables. The reduced cost is: