项目描述

本项目通过电商行业常见指标对淘宝用户进行分析,包括用户行为、商品属性、用户画像等,进而对企业经营进行决策支持。

数据来源

本项目数据集来自阿里云天池提供的 user action

分析目的

- 1. 从不同时间维度的PV和UV及不同用户行为的PV探索用户访问规律,为商品运营提供 建议
- 2. 分析各个流程的转化漏斗,结合二八定律细分商品的转化率和用户感兴趣率探索用户 喜好,为商品运营提供建议
- 3. 从用户消费频次、每付费用户平均消费次数、复购率和复购周期探索用户消费规律, 为商品运营提供建议。

结论与建议

结论 建议

用户活跃时段集中 **(20:00-22:00)** 、**周四** 为峰值,周末流量下降明显。

- 1. **20:00-22:00** 设置「整点秒杀」(如 21:00限量5折商品),利用稀缺性刺激冲 动消费
- 2. **周四**开展"周末补给"促销,**周六** 联动线下 扫码发券,**周日** 推新品预售

用户兴趣转化率低(整体转化 1.04%),超 47% 用户无购买行为,推荐精准度不足。

- 1. 优化推荐算法, 针对性筛选用户兴趣商品
- 2. 强化收藏/加购后的定向优惠推送 (转化率达 20.51% 可重点利用)

97% 用户购买 **≤50次**, **87%** 用户复购周期 **≤5天**, **15天** 后复购意愿归零。

- 1. 重点维护 3% 高价值用户 (购买>50次)
- 2. 5天内 推送关联商品/限时折扣
- 3. **15天** 以上流失用户触发召回机制(如红包激励)

数据处理

关键指标

指标	说明						
PV	页面浏览量,即网站或APP页面被用户访问的总次数						
UV	独立访客数, 即访问网站或APP的独立用户数						
转化率	指完成购买的用户与进入网站或APP的用户的比值						
复购率	指在特定时间段内,再次购买商品的用户占总用户数的比例						

数据理解

属性	说明					
user_id	用户ID, 脱敏					
item_id	商品ID,脱敏					
behavior_type	用户行为类型(包含点击、收藏、加购物车、购买),分别用1、2、3、4表示					
item_category	商品品类,脱敏					
time	用户行为发生的时间戳 (精确到小时)					

数据获取

In [2]: %pip install seaborn -i https://mirrors.aliyun.com/pypi/simple/

Looking in indexes: https://mirrors.aliyun.com/pypi/simple/

Requirement already satisfied: seaborn in d:\anaconda3\envs\test\lib\site-package s (0.13.2)

Requirement already satisfied: numpy!=1.24.0,>=1.20 in d:\anaconda3\envs\test\lib \site-packages (from seaborn) (2.0.1)

Requirement already satisfied: pandas>=1.2 in d:\anaconda3\envs\test\lib\site-pac kages (from seaborn) (2.2.3)

Requirement already satisfied: matplotlib!=3.6.1,>=3.4 in d:\anaconda3\envs\test \lib\site-packages (from seaborn) (3.10.1)

Requirement already satisfied: contourpy>=1.0.1 in d:\anaconda3\envs\test\lib\sit e-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.3.1)

Requirement already satisfied: cycler>=0.10 in d:\anaconda3\envs\test\lib\site-pa ckages (from matplotlib!=3.6.1,>=3.4->seaborn) (0.12.1)

Requirement already satisfied: fonttools>=4.22.0 in d:\anaconda3\envs\test\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (4.56.0)

Requirement already satisfied: kiwisolver>=1.3.1 in d:\anaconda3\envs\test\lib\si te-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.4.8)

Requirement already satisfied: packaging>=20.0 in d:\anaconda3\envs\test\lib\site -packages (from matplotlib!=3.6.1,>=3.4->seaborn) (24.2)

Requirement already satisfied: pillow>=8 in d:\anaconda3\envs\test\lib\site-packa ges (from matplotlib!=3.6.1,>=3.4->seaborn) (11.1.0)

Requirement already satisfied: pyparsing>=2.3.1 in d:\anaconda3\envs\test\lib\sit e-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (3.2.1)

Requirement already satisfied: python-dateutil>=2.7 in d:\anaconda3\envs\test\lib \site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (2.9.0.post0)

Requirement already satisfied: pytz>=2020.1 in d:\anaconda3\envs\test\lib\site-pa ckages (from pandas>=1.2->seaborn) (2024.1)

Requirement already satisfied: tzdata>=2022.7 in d:\anaconda3\envs\test\lib\site-packages (from pandas>=1.2->seaborn) (2023.3)

Requirement already satisfied: six>=1.5 in d:\anaconda3\envs\test\lib\site-packag es (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.4->seaborn) (1.16.0) Note: you may need to restart the kernel to use updated packages.

```
import numpy as np
import pandas as pd
import datetime as dt
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
import re
```

```
In [4]: warnings.filterwarnings('ignore') # 忽略警告
    df = pd.read_csv('data/user_action.csv', encoding='ISO-8859-1')
    df.head() # 读取数据
```

Out[4]:		user_id	item_id	behavior_type	item_category	time
	0	98047837	232431562	1	4245	2014-12-06 02
	1	97726136	383583590	1	5894	2014-12-09 20
	2	98607707	64749712	1	2883	2014-12-18 11
	3	98662432	320593836	1	6562	2014-12-06 10
	4	98145908	290208520	1	13926	2014-12-16 21

```
In [5]: # 查看数据
print('数据行数', len(df))
print('数据列数', len(df.columns))
```

```
print('用户数量', len(df['user_id'].unique()))
print('商品数量', len(df['item_id'].unique()))
print('商品是类数量', len(df['item_category'].unique()))
print('最大时间', df['time'].max())
print('最小时间', df['time'].min())

数据行数 12256906
数据列数 5
用户数量 10000
商品数量 2876947
商品品类数量 8916
最大时间 2014-12-18 23
最小时间 2014-11-18 00
```

由此可知,该数据集包含了10000个用户在2014年11月18日至2014年12月18日1个月内的的1225万多条购物行为数据,商品总数量超过287万,分布在8916个类目中。样本量足够大,可以支撑我们通过数据分析来完成结论洞察。

数据清洗

```
In [6]: # 查看数据集缺失情况
        df.isnull().sum()
Out[6]: user_id
                        0
        item_id
                        0
        behavior_type
                        0
        item_category
                        0
        time
                        0
        dtype: int64
In [7]: #将time列分割为 date 和 hour 两列,再加一列星期以便分析
        df['date']= df['time'].map(lambda x:x.split(' ')[0])
        df['hour']= df['time'].map(lambda x:x.split(' ')[1])
        df['date']= pd.to datetime(df['date'])
        df['weekday'] = df['date'].dt.day_name()
        df.head()
```

Out[7]:		user_id	item_id	behavior_type	item_category	time	date	hour	weekc
	0	98047837	232431562	1	4245	2014- 12-06 02	2014- 12-06	02	Saturc
	1	97726136	383583590	1	5894	2014- 12-09 20	2014- 12-09	20	Tuesc
	2	98607707	64749712	1	2883	2014- 12-18 11	2014- 12-18	11	Thursc
	3	98662432	320593836	1	6562	2014- 12-06 10	2014- 12-06	10	Saturc
	4	98145908	290208520	1	13926	2014- 12-16 21	2014- 12-16	21	Tuesc
	4								
In [8]:	df	.dtypes # 3	查看数据类型						
Out[8]:	it be it ti da ho we	er_id em_id havior_type em_category me te ur ekday ype: objec	y datetim	int64 int64 int64 int64 object me64[ns] object object					
In [9]:	# 数据类型转换 df['user_id']=df['user_id'].astype('object') df['item_id']=df['item_id'].astype('object') df['item_category']=df['item_category'].astype('object') df['date']=pd.to_datetime(df['date']) df['hour']=df['hour'].astype('int64') df.dtypes								
Out[9]:	it be it ti da ho we	er_id em_id havior_type em_category me te ur ekday ype: objec	y datetim	object object int64 object object ne64[ns] int64 object					

数据分析 & 可视化

Part1. 流量分析

1. 日流量PV和UV分析

```
In [10]: pv_daily = df.groupby('date')['user_id'].count().reset_index().rename(columns={'
# pv_daily
In [11]: uv_daily = df.groupby('date')['user_id'].apply(lambda x: len(x.unique())).reset_
# uv_daily
```

我们得到了基于日流量PV和UV的数据,如果直接观察上述结果,会比较耗时且不太直观,我们来看看可视化结果:

```
In [12]: fig, axes = plt.subplots(2, 1, sharex=True)
    pv_daily.plot(x='date', y='pv_daily', ax=axes[0], colormap='cividis')
    uv_daily.plot(x='date', y='uv_daily', ax=axes[1], colormap='RdGy')
    axes[0].set_title('pv_daily')
    axes[1].set_title('uv_daily')
```

Out[12]: Text(0.5, 1.0, 'uv_daily')

可以看出,不管是PV还是UV趋势,均在12号的时候出现了一个尖峰,这正是著名的双十二大促节的用户集中消费导致的变化。 通过简单的数据分析和可视化工具,这是我们从数据中观察到的第一个结论。

2.小时流量PV和UV分析

上面的对不同访问量进行分析,其分析的时间跨度是每天。另外从我们的直觉可以知道,用户在一天当中对淘宝的使用也是有一定规律的。为了探索这个规律,我们将按照每小时统计用户的访问量和独立访问量。同pv daily, uv daily分析,我们完成如下代码:

```
In [13]: pv_hour = df.groupby('hour')['user_id'].count().reset_index().rename(columns={'u # pv_hour}]
In [14]: uv_hour = df.groupby('hour')['user_id'].apply(lambda x: len(x.unique())).reset_i # uv_hour

In [15]: fig, axes = plt.subplots(2, 1, sharex=True)
    pv_hour.plot(x='hour', y='pv_hour', ax=axes[0], colormap='cividis')
    uv_hour.plot(x='hour', y='uv_hour', ax=axes[1], colormap='RdGy')
    axes[0].set_title('pv_hour')
    axes[1].set_title('uv_hour')

Out[15]: Text(0.5, 1.0, 'uv_hour')

pv_hour
```


可以看出,PV的高峰值出现在20点之后,可能的原因是淘宝的主力消费人群是上班族,这部分群体在下班后开始使用淘宝浏览购物; UV的值比较恒定, 上午10点之后便没有出现大的波动,一个可能的原因是许多用户早晨也会刷一下淘宝,比如查看物流状态等,UV值在一天之内就不会再有大的变化波动了。另外也可以看出,半夜12点之后, PV/UV的趋势都是下降趋势。

3.周流量PV和UV分析

```
In [16]: pv_weekday = df.groupby('weekday')['user_id'].count().reset_index().rename(colum
# pv_weekday
```

```
In [17]: uv_weekday = df.groupby('weekday')['user_id'].apply(lambda x: len(x.unique())).r
# uv_weekday
In [18]: fig, axes = plt.subplots(2, 1, sharex=True)
pv_weekday.plot(x='weekday', y='pv_weekday', ax=axes[0], colormap='cividis')
uv_weekday.plot(x='weekday', y='uv_weekday', ax=axes[1], colormap='RdGy')
axes[0].set_title('pv_weekday')
axes[1].set_title('uv_weekday')
```

Out[18]: Text(0.5, 1.0, 'uv_weekday')

可见,周四是每周访问量最高的一天,周二、周三次之,周末和周一相对较少,这可能是由于上班族周末选择消费、放松的方式更多样化,减少了淘宝的使用量。

4.不同用户行为流量分析

```
In [19]: # 统计不同行为的用户访问量
pv_behavior_hour = df.groupby(['behavior_type', 'hour'])['user_id'].count().rese
ax = sns.lineplot(x='hour', y='pv_behavior_hour', hue='behavior_type', data=pv_b
```


从上图可以清楚的看出,用户的点击行为数量远远大于收藏、加购物车、购买行为的数量,符合常识。从时间上来看,早上和下午用户点击量有明显的上升趋势,晚上20点左右点击量最大。

Out[20]: <Axes: xlabel='hour', ylabel='pv_behavior_hour'>

可见这四种行为趋势变化是一样的,晚上20点左右是用户行为的高峰期,而在早上10点前是用户行为的低谷期。

结论一

日周期规律

• 黄金时段: 20:00-22:00 (用户下班后休闲时段)

■ 用户心理:工作结束后放松身心

■ 用户行为:深度浏览、高客单价商品决策

• 低谷时段: 早上

■ 用户可能在工作或其他

周周期规律

• 周四峰值:工作日购物需求集中释放

■ 用户心理:周末消费前准备

■ 数据对比:周四PV比周末高29%

• 周末低谷: 用户注意力分散至线下场景

■ 周六日流量最低,约为周四流量的77.5%左右

建议:

- 20:00-22:00设置「整点秒杀」(如21:00限量5折商品),利用稀缺性刺激冲动消费
- 周四「周末补给站」主题促销(例如食品/日用品满199减50)
- 周六「线下体验店扫码领券」活动
- 周日「预售专场」 (下周新品抢先预定)

用户喜好分析

1. 转化率分析

按照转化流程对用户购买行为进行划分,查看各节点之间的转化情况

点击浏览商品(pv) -- 收藏+加购商品(fav+cart) -- 支付购买商品(buy)

结合tableau可视化:

转化率漏斗图

由此可见,点击浏览商品(pv) -> 收藏+加购商品(fav+cart) 的转化率为 **5.07%** , 收藏 +加购商品(fav+cart) -> 支付购买商品(buy) 的转化率为 **20.51%** ,而点击浏览商品(pv) -> 支付购买商品(buy) 的转化率为 **1.04%**。这里最主要的原因是用户浏览的商品中,大部分商品都没有收藏(用户不感兴趣),所以转化率较低。

2. 用户行为与商品品类的关系分析

造成转换率的原因,我们可以假设是推荐系统未精准推荐用户感兴趣的商品,或者推荐的商品与用户的兴趣不匹配。我们可以进一步联合商品分析来验证。

```
In [29]: df['operation'] = 1
    df_category = df[df.behavior_type != 2].groupby(['item_category', 'behavior_type
        .operation.count().unstack(1).rename(columns={1: 'pv', 3: 'cart', 4: 'buy'}).fil
    # 购买转化率计算 (购买数/浏览量)
    df_category['buy_conversion_rate'] = df_category['buy'] / df_category['pv']
    # 加购转化率计算 (加购数/浏览量)
    df_category['cart_conversion_rate'] = df_category['cart'] / df_category['pv']
    df_category.head()
```

Out[29]: behavior_type pv cart buy buy_conversion_rate cart_conversion_rate item_category

```
2
     3.0
          0.0
                0.0
                                0.000000
                                                      0.000000
3
     3.0
          0.0
                0.0
                                0.000000
                                                      0.000000
4
          0.0
                0.0
                                0.000000
                                                      0.000000
     1.0
    10.0
          0.0
                0.0
                                0.000000
                                                      0.000000
8 976.0 4.0 4.0
                                0.004098
                                                      0.004098
```

```
In [73]: # 异常值处理

df_category = df_category.fillna(0)

df_category = df_category[df_category['buy_conversion_rate'] >= 0]

df_category = df_category[df_category['buy_conversion_rate'] <= 1]

df_category = df_category[df_category['cart_conversion_rate'] >= 0]

df_category = df_category[df_category['cart_conversion_rate'] <= 1]
```

```
In [74]: # 可视化购买转化率
sns.distplot(df_category['buy_conversion_rate'])
```


In [75]: # 可视化加购转化率
sns.distplot(df_category['cart_conversion_rate'])

Out[75]: <Axes: xlabel='cart_conversion_rate', ylabel='Density'>


```
In []: # 将购买转化率分三类查看各类占比例
       df_convert_rate = pd.cut(df_category['buy_conversion_rate'], [-1, 0, 0.1, 1]).va
       df_convert_rate= df_convert_rate / df_convert_rate.sum()
       df_convert_rate
Out[]: buy_conversion_rate
        (0.0, 0.1] 0.502693
        (-1.0, 0.0] 0.476885
        (0.1, 1.0]
                    0.020422
        Name: count, dtype: float64
In []: # 将加购转化率分三类查看各类占比例
       df_interest_rate = pd.cut(df_category['cart_conversion_rate'], [-1, 0, 0.1, 1]).
       df_interest_rate = df_interest_rate / df_interest_rate.sum()
       df_interest_rate
Out[]: cart_conversion_rate
        (0.0, 0.1] 0.538487
        (-1.0, 0.0] 0.390373
```

(0.1, 1.0]0.071140 Name: count, dtype: float64

> 由以上分析结果可见,商品的购买率(浏览->购买)和感兴趣率(浏览->加购物车) 基本都在 0.1 以内,购买率 超过0.1 的用户仅仅只有 2.04%, 有 47% 的用户几乎不会 购买商品,同时从感兴趣率来看,有39%的用户对商品不感兴趣。

3. 二八定律分析

二八定律:在任何一组东西中,最重要的只占其中一小部分,约20%,其余80%尽管是多 数,却是次要的,因此又称二八定律。

```
In [50]: df_category = df_category[df_category['buy'] > 0]
         value_10 = df_category['buy'].sum()
         value 8 = value 10 * 0.8
         # 按照销量降序排序
         df_category = df_category.sort_values(by='buy', ascending=False)
         # 添加一列累计购买量按行统计
         df_category['cunmsum_buy'] = df_category['buy'].cumsum()
         df category['label'] = df category['cunmsum buy'].map(lambda x: '前80%' if x <=
         df_category.head()
```

Out[50]:	behavior_type	pv	cart	buy	buy_conversion_rate	cart_conversion_rate
	item_category					
	6344	85369.0	3822.0	2208.0	0.025864	0.044770
	1863	371738.0	9309.0	2000.0	0.005380	0.025042
	5232	135506.0	4486.0	1611.0	0.011889	0.033106
	6977	22806.0	2007.0	1324.0	0.058055	0.088003
	8877	63396.0	1974.0	1072.0	0.016910	0.031138
	4					•
In [52]:	df category.gr	oupbv('lab	el')['la	abel'l.c	ount() /df categorv[ˈ	label'l.count()

In [52]: | d+_category.groupby('label')['label'].count() /d+_category['label'].count()

Out[52]: label

前80% 0.155727 后20% 0.844273

Name: label, dtype: float64

以上结果说明 前 80% 销量由 15.6 左右的商品品类承包,接近二八原则。

对于传统零售行业,因为成本高,因此只能局限于这前 20% 的商品提供利润。

对于电子商务,空间成本极剧减少乃至为 0,使后80%的商品也可以销售出去,因此将长 尾部分的商品优化推荐好,能够给企业带来更大的收益。

4. 商品销量前20和访问量前20

```
In [53]: #取商品购买量top20
        buy_top20 = df_category.nlargest(20, 'buy')
        #取商品访问量top20
        pv_top20 = df_category.nlargest(20, 'pv')
        #取重合商品类别,需要注意到这里商品列刚好是索引列,所以需要加index, intersection(
        categories = set(buy_top20.index).intersection(set(pv_top20.index))
        categories
Out[53]: {1863,
          3064,
          4370,
          5027,
          5232,
          5399,
          5894,
          6344,
          6513,
          9516,
          10392,
          10894,
          11279,
          13230}
```

可以看到重叠的商品类别有 14 个,这 14 个品类既有流量又有一定的转化能力,可以针对性地丰富品类内的商品数,并且针对性优化商品利益点,提高高流量品类内的商品转化。

结论二

用户访问到购买的整体转化率仅 1.04%,点击到收藏+加购的转化率为 5.07%,所有商品的转化率和感兴趣率基本都在 0.1 以内,商品购买转化率达到 0.1以上 的仅 2.04% 的用户,有 超过47% 的用户几乎不会发生购买行为、39% 的用户对商品不感兴趣,而收藏+加购到购买的转化率有 20.51%。

建议:

说明客户对于感兴趣的商品成交率较大,但是存在所有推荐商品对客户的感兴趣率几乎仅有 **0.1**,运营部需要特别重视此问题,精准定位客户喜好,针对推荐系统进行调整,以便达到成交率的有效提升。

用户消费频率分析

1. 用户消费频次

```
In [55]: user_buy = df[df.behavior_type == 4].groupby('user_id')['behavior_type'].count()
user_buy.plot(x='user_id', y='buy_count')
```

Out[55]: <Axes: xlabel='user_id'>

In [56]: #将购买次数分三类查看各类占比例 buy_rate = pd.cut(df[df.behavior_type==4].groupby('user_id')['behavior_type'].co #计算各个分组分别在整体数据集中的占比 buy_rate = buy_rate / buy_rate.sum() buy_rate

Out[56]: behavior_type

(50, 200] 0.967702 (200) 0.967702 (200, 1000] 0.000675 Name: count, dtype: float64

可以看到,在一个月内:

- 1. 将近 97% 用户的购买次数均不超过 50 次,这期间还包括了双十二当天的集中购 物,排除双十二高峰,实际消费次数应当会更少。
- 2. 仅有 3% 用户购买次数 超过50次,这部分高频消费的用户可以看作是忠实的超级用 户,应当重点留存。
- 3. 存在 超过200 次的用户,有可能属于刷单行为。

2. ARPPU分析

ARPPU(Average Revenue Per Paying User)表示每付费用户平均收益,计算公式: ARPPU = 总收入 / 付费用户数。

该数据集中没有收益金额,这里我们改为度量每付费用户平均消费次数,计算公式: ARPPU = 总消费次数 / 付费用户数。

```
In [90]: user_arppu = df[df.behavior_type == 4].groupby(['date', 'user_id'])['behavior_ty
         arppu = user_arppu.groupby('date').apply(lambda x: x.sum() / x.count())
         sns.distplot(arppu)
```

Out[90]: <Axes: xlabel='arppu', ylabel='Density'>

In [84]: arppu

```
Out[84]: date
        2014-11-18 2.423652
        2014-11-19 2.439444
        2014-11-20 2.320375
        2014-11-21
                    2.271429
                     2.530120
        2014-11-22
        2014-11-23
                     2.330780
        2014-11-24 2.248031
        2014-11-25 2.313961
        2014-11-26
                    2.402824
        2014-11-27
                     2.403405
        2014-11-28 2.231623
        2014-11-29 2.331881
        2014-11-30
                     2.357236
        2014-12-01 2.359083
        2014-12-02 2.284543
        2014-12-03 2.289334
        2014-12-04
                     2.328707
        2014-12-05 2.223041
        2014-12-06 2.253444
        2014-12-07
                    2.320741
        2014-12-08
                   2.204384
        2014-12-09 2.413576
        2014-12-10 2.230236
        2014-12-11
                     2.226363
        2014-12-12 3.913523
        2014-12-13 2.245320
        2014-12-14 2.312749
        2014-12-15
                     2.313460
        2014-12-16 2.285455
        2014-12-17 2.302548
        2014-12-18
                     2.310567
```

Name: behavior_type, dtype: float64

由此可见,用户每日平均消费次数在区间 (2, 2.5) 内波动,双十二当天超过了 3.9 次,说明用户可能会进行加购但在双十二当天集中购买。

3. 复购情况分析

复购是指消费者再次购买同一品牌或同一产品的行为。通过分析复购情况,可以了解消费者的购买习惯和需求,为产品开发和营销提供参考。

一般来说,复购是指对产品的重复购买行为。但是这个定义在商业上是不精确的,假若一个用户在一天内多次在淘宝购买商品,不能说明这件用户对淘宝的依赖(有可能是某位用户只是第一次用,但是买的量大)。因此商业分析过程中,对于复购行为进行明确的定义。这里的复购是指:两天以上都在该平台产生了购买行为,需要指出一天多次的购买不算是复购。

计算方法: 复购率 = 复购用户数 / 有购买行为用户数

```
Out[92]: user_id
        4913
         6118
         7528
                   6
         7591
         12645
                   4
         142376113 1
         142412247 7
         142430177 5
                  8
         142450275
         142455899
                  7
         Name: date, Length: 8886, dtype: int64
In [93]: # 计算复购率
        repeat_buy_rate = user_pay[user_pay > 1].count() / user_pay.count()
        repeat_buy_rate
Out[93]: np.float64(0.8717083051991897)
```

可见, 复购率达到了87%! 这是相当不错的结果!

4. 复购周期分析

除了以上对复购频次的统计,还需要对复购意向做进一步的探究,了解用户多久复购一次。

```
In [99]: user_buy = df[df.behavior_type==4].groupby(['user_id', 'date'])['operation'].cou
user_buy.head()
```

Out[99]:		user_id	date	operation
	0	4913	2014-12-01	1
	1	4913	2014-12-07	2
	2	4913	2014-12-11	1
	3	4913	2014-12-13	1
	4	4913	2014-12-16	1

```
In [110... repeat_buy_cycle = user_buy.groupby('user_id')['date'].apply(lambda x: x.sort_va
repeat_buy_cycle.head()
```

Name: date, dtype: float64

第1列为索引列,即为user id列

第二列为该条记录在原始dataframe表中的索引位置,即data_user_buy的默认索引第三列为同一用户相邻两个购买日期的求差结果。

```
In [111... repeat_buy_cycle.value_counts().plot(kind='line')

plt.xlabel('repeat_day_diff')
plt.ylabel('count')
```

Out[111... Text(0, 0.5, 'count')


```
In [112... sns.distplot(repeat_buy_cycle.reset_index().groupby('user_id').date.mean())
```

Out[112... <Axes: xlabel='date', ylabel='Density'>

可以看出:

- 1. 大部分用户的复购行为发生在5天之内, 在第5天复购的行为出现了明显的拐点。
- 2. 不同用户平均复购时间呈正态分布, 但是总体来看, 呈现逐渐下降趋势。

结论三

将近97%用户的购买次数均不超过 **50** 次,付费用户平均每日消费次数在 **2-2.5** 次之间波动,复购率较高达到 **87.17%**,复购周期主要集中在 **1-5天**。

建议:

重点留存 3% 购买次数 超过50次 的忠实用户,且大部分用户的复购行为发生在 5天 之内,建议在这个时候采取营销策略提升用户的购买意图,超过15天后,复购的意愿基本已经趋于 0,此时可以考虑采取召回策略,增加复购的可能性,防止用户流失。