Математическое ожидание. Условное математическое ожидание относительно σ -алгебры

Ссылка на видеокурс от МИАН

Математическое ожидание

Зафиксируем вероятностное пространство $\langle \Omega, \mathcal{A}, \mathbb{P} \rangle$.

Пусть $\xi:\Omega\to\mathbb{R}$ — случайная величина, измеримая относительно σ -алгебры \mathcal{A} , которая каждому элементарному исходу $\omega\in\Omega$ ставит некоторое вещественное число. Что значит измеримая? Для $\forall C\in\mathbb{R}$ множество $\{\forall\omega\in\Omega:\xi(\omega)< C\}\in\mathcal{A}$. Помним, что при фиксированном ω значение случайной величины ξ является детерминированным, а при случайном ω значение ξ является случайным.

Пусть $\xi(\omega)$ — конечнозначная функция, которая принимает N различных значений

$$\xi(\omega) \in \{c_1, c_2, \dots, c_N\}.$$

Такая функция называется **простой случайной величиной**. К примеру, допустим, что $\omega \in [0,1]$, тогда некоторая конечнозначная функция ξ имеет график

Рассмотрим множество элементарных исходов $A_n = \{ \forall \omega \in \Omega : \xi(\omega) = c_n \}$. Понятно, что $\Omega = \bigcup_{n=1}^N A_n$. Поскольку функция ξ измерима относительно σ -алгебры, то множество A_n является событием, т.е. $A_n \in \mathcal{A}, n = 1, \ldots, N$. Можно вычислить вероятность каждого такого события.

Определение 1. Математическое ожидание (expected) от простой случайной величины по опредлению есть

$$\mathbb{E}[\xi] = \sum_{n=1}^{N} c_n \cdot \mathbb{P}(A) = (L) \int_{\Omega} \xi(\omega) d\mathbb{P}(\omega).$$

То есть математическое ожидание — некоторое число, причем не случайное, зависящее от ξ , которая является строго детерминированной функцией. Это число является аналогом среднего значения случайной величины.

Пример 1. Бросается нечестная монетка: $\Omega = \{\text{'open', 'pemka'}\}, A = \{\Omega, \emptyset, \{\text{'open'}\}, \{\text{'pemka'}\}\}$ и $\mathbb{P}(\text{'open'}) = \frac{2}{3}, \mathbb{P}(\text{'pemka'}) = \frac{1}{3}.$

Курс: Стохастический анализ и его приложения в машинном обучении.

Допустим, что мы ставим на 'орла'. Пусть наш выигрыш (или проигрыш) при одном бросании есть случайная величина

 $\xi(\omega) = \begin{cases} 2, \omega = \text{`орел'}, \\ -3, \omega = \text{`решка'}. \end{cases}$

Встает вопрос: если мы играем много раз, стоит ли надеяться на выигрыш? Нужно посчитать средний выигрыш, то есть математическое ожидание:

$$\mathbb{E}[\xi] = 2 \cdot \frac{2}{3} + (-3) \cdot \frac{1}{3} = \frac{1}{3}.$$

При таких ставках ξ наш выгрыш составляет в среднем $\frac{1}{3}$ у.е.

Интеграл Лебега

Рассмотрим неотрицательные случайные величины $\xi(\omega) \geq 0$ (все их значения неотрицательны), измеримые относительно σ -алгебры. Можно найти простые случайные величины $\xi_N(\omega)$, которые измеримы относительно той же σ -алгебры и $\xi_N(\omega) \leq \xi(\omega), \forall \omega \in \Omega$.

Этот класс простых случайных величин непустой, поскольку функция $\xi_N(\omega) \equiv 0$ точно принадлежит такому классу.

Определение 2. Определим интеграл Лебега как

$$\int_{\Omega} \xi(\omega) d\mathbb{P}(\omega) = \sup_{\xi_N} \int_{\Omega} \xi_N(\omega) d\mathbb{P}(\omega) < \infty.$$

Всегда можно найти точную верхнюю грань (sup) любого множества. В нашем случае мы ищем sup числового множества (интеграл — это какое-то число). Может оказаться так, что точная верхняя грань — бесконечность, эти случаи нас не интересуют. Если sup конечен, говорят, что функция $\xi(\omega)$ интегрируема или суммируема по Лебегу.

Любую случайную величину (в том числе принимающую отрицательные значения) можно представить как $\xi(\omega) = \xi^+(\omega) - \xi^-(\omega)$, где $\xi^+(\omega), \xi^-(\omega) \ge 0$.

Если $\xi^+(\omega), \xi^-(\omega)$ интегрируемы одновременно, то и $\xi(\omega)$ интегрируема (по Лебегу).

Пример 2. Пусть $\Omega = [0,1]$, \mathcal{A} — **борелевская** σ -алгебра. В борелевской σ -алгебре содержатся все подмножества отрезка: все интервалы, полуинтервалы, отрезки и их счётные объединения.

В качестве случайной величины возьмем аналог функции Дирихле

$$\xi(\omega) = \begin{cases} -1, \ \omega \in \mathbb{R} \backslash \mathbb{Q} \ (\text{иррациональноe}), \\ 1, \ \omega \in \mathbb{Q} \ (\text{рациональноe}). \end{cases}$$

Ясно, что предложенная функция измерима относительно борелевской σ -алгебры.

Зададим вероятность для каждого события из \mathcal{A} :

$$\mathbb{P}\{[a,b]\} = b - a.$$

Вероятность того, что случайный исход окажется внутри интервала [a,b], принадлежащего единичному отрезку, — длина этого интервала. Такое распределение называют равномерным.

Найдем математическое ожидание:

$$\mathbb{E}[\xi] = (-1) \cdot \mathbb{P}\{\mathbb{R} \setminus \mathbb{Q}\} + 1 \cdot \mathbb{P}\{\mathbb{Q}\}.$$

Мера рациональных чисел на отрезке [0,1] равна 0, а мера иррациональных -1:

$$\mathbb{E}[\xi] = (-1) \cdot 1 + 1 \cdot 0 = -1.$$

Пусть теперь

$$\xi(\omega) = \sin \omega.$$

Интеграл Лебега от синуса на числовой прямой совпадает с интегралом по Риману. Найдем математическое ожидание:

$$\mathbb{E}[\xi] = \int_{\Omega} \xi(\omega) d\mathbb{P}(\omega) = \int_{0}^{1} \sin \omega d\omega = -\cos \omega \Big|_{0}^{1} = 1 - \cos 1 > 0.$$

Условное математическое ожидание относительно σ -алгебры

Пусть $\mathcal{B} \subset \mathcal{A}$ — некоторая σ -алгебра.

Имеется случайная величина $\xi(\omega)$, измеримая относительно σ -алгебры \mathcal{A} .

Имеется другая случайная величина $\eta(\omega)$, измеримая относительно σ -алгебры \mathcal{B} .

Курс: Стохастический анализ и его приложения в машинном обучении.

Определение 3. Случайная величина $\eta(\omega)$ называется условным математическим ожиданием $\xi(\omega)$ относительно σ -алгебры \mathcal{B} , если выполнены следующие условия:

 $\bullet \ \mathbb{E}[\xi]<\infty, \mathbb{E}[\eta]<\infty;$

•
$$\int_{B} \eta(\omega) d\mathbb{P}(\omega) = \int_{B} \xi(\omega) d\mathbb{P}(\omega), \forall B \in \mathcal{B}.$$

Обозначение УМО: $\mathbb{E}[\xi|\mathcal{B}] = \eta(\omega)$.

Замечание 1. $\mathbb{E}[\xi|\mathcal{A}] = \xi(\omega)$.

Замечание 2. $\mathbb{E}[\xi|\{\Omega,\emptyset\}] = \mathbb{E}[\xi]$.

Приведем поясняющий определение пример.

Пример 3. Пусть $\Omega = [-1, 1]$ и \mathcal{A} — борелевская σ -алгебра.

$$\mathcal{B} = \{\Omega, \emptyset, [-1,0], [-1,0), \{0\}, (0,1], [0,1], \Omega \setminus \{0\}\}$$
 — условная σ -алгебра. Понятно, что $\mathcal{B} \subset \mathcal{A}$.

Возьмем $\xi(\omega) = \sin \pi \omega$. Каким должна быть $\eta(\omega)$, чтобы она удовлетворяла определению УМО?

Первое, что приходит на ум — это равенство случайных величин $\eta(\omega) = \xi(\omega)$. Но это неверно, так как функции измеримы относительно разных σ -алгебр: функция ξ измерима относительно "богатой" борелевской σ -алгебры \mathcal{A} , а функция η должна быть измерима относительно "бедной" σ -алгебры \mathcal{B} .

Стоит ответить на вопрос: что значит измерима? Случайная величина η измерима относительно σ -алгебры \mathcal{B} $\Rightarrow \forall C \in \mathbb{R}$ множество $\{\forall \omega \in \Omega : \eta(\omega) < C\} \in \mathcal{B}$. Какая функция может удовлетворить этому определению? Только простая функция $\eta(\omega) = \eta_N(\omega)$.

Пусть
$$B=(0,1]$$
, тогда $\int\limits_{B}\xi(\omega)\mathbb{P}(\omega)=\int\limits_{0}^{1}\sin\pi\omega d\omega=\frac{2}{\pi}.$ При $B=[-1,0),\int\limits_{B}\xi(\omega)\mathbb{P}(\omega)=\int\limits_{-1}^{0}\sin\pi\omega d\omega=-\frac{2}{\pi}.$

Построим графики случайных величин:

Можно сделать вывод, что чем "беднее" σ -алгебра, тем "проще" случайная величина, измеримая относительно неё. По мере увеличения числа событий в "бедной" σ -алгебре случайная величина, измеримая относительно этой σ -алгебры, будет ЛУЧШЕ приближаться к случайной величине, измеримой по Борелю. Переводя на язык теории информации, чем больше событий в условной σ -алгебре, тем большей информацией мы можем располагать (см. предыдущие конспекты).