

NLP Project: 소설 작가 분류 AI 경진대회

김채윤, 김민아, 백승재, 이유원, 이재리

목차

1 (서론

1-1 intro.

1-2 EDA

2 본론

2-1 Modeling

- CNN
- RNN
- LSTM
- Bi-LSTM&CNN

3 **결론**

3-1 각 모델링에 따른 결과 비교.

3-2 참고 자료

Project Review

001 >> 프로젝트 주제 및 설명

[소설작가분류AI프로젝트]

:: DACON

:: 문체 분석 알고리즘 개발

:소설 속 문장뭉치 분석을 통한 저자 예측

002 >> 프로젝트 배경

- •a. 작가의 글을 분석하여 특징 도출
- •b. 취향 추천 시스템 활용 / 대필, 유사작 탐지

003 >> 사용데이터

• train.csv : 소설 text, autor(0~4)

:: 5명의 저자가 쓴 text data

Project Review

>> Data Augmentation란?

[사전적의미]

:데이터의양과다양성을 확보하는 방법

[통상적의미]

: 원본 데이터의 Label을 보존하면서 원본데이터로부터 새로운 데이터를 생성하는 방법

"데이터 전처리>> 정제된 전처리>> 탐색적 자료 분석>> 모델>> 사용"

>> Data Augmentation를 하는 이유

- 문제 해결을 위해서는 데이터 이해가 선행되어야 함
- 다양한 NLP 분야에 활용되어 성능을 향상시키는데 기여함.

>> 작가별 데이터 개수 확인

	index	text
author		
0	13235	13235
1	7222	7222
2	11554	11554
3	15063	15063
4	7805	7805

[작가별 소설 개수]

>> 전체 데이터 문자/단어의 길이 비교

[문장의 길이]

>> 단어의 빈도

불용어 제거 후 전체 데이터 중 최빈 단어 Top 50

>> 작가별 단어 빈도

전체 데이터 중 작가들의 단어 사용 빈도

>> Q. 작가별로 최빈 단어가 다를 것이다.

[불용어 제거 후 작가별 최빈 단어 Top 5]

>> Q. 작가별로 쓰는 문장의 길이는 다를 것이다.

[작가별소설의 길이 데이터 분석]

"분포에 차이가 보이지 않아 특징으로 쓰기에 부적합"

>> Q. 작가별로 문장 품사에 구성이 다를 것이다.

[작기별 문장속품사데이터분석]

text_proc	pos_tags
He wa almost choking . There wa so much , so m	PRP VBZ RB NN . EX VBZ RB JJ , RB RB PRP VBD T
" Your sister asked for it , I suppose ? "	VB PRP\$ NN VBD IN PRP , PRP VBP . NN
She wa engaged one day a she walked , in perus	PRP VBD JJ CD NN DT PRP VBD , IN VBG NNP NNP V
The captain wa in the porch , keeping himself	DT NN NN IN DT NN , VBG PRP RB IN IN DT NN IN
" Have mercy , gentleman ! " odin flung up his	NNS VBP VBN , NN . JJ NN VBD RP PRP\$ NN . JJ N

	noun	adverb	verb	adjective	count	avg_noun	avg_adverb	avg_verb	avg_adjective
author									
0	126651	31484	102361	35830	13235	9.569399	2.378844	7.734114	2.707216
1	91359	32757	83588	29657	7222	12.650097	4.535724	11.574079	4.106480
2	118567	26891	89912	34305	11554	10.261987	2.327419	7.781894	2.969102
3	142577	49555	135452	44695	15063	9.465379	3.289849	8.992365	2.967204
4	82953	20589	63377	21653	7805	10.628187	2.637924	8.120051	2.774247

Modeling Overview

CNN Overview

POS-Tags + CNN

002 (Words and POS-Tags) + CNN

Text Column

Words & POS Tags

CNN Model

CNN Model

001

POS-Tags + CNN

문장 속 품사 분석

Step 2.

Keras tokenizer (texts_to_sequences)

각 텍스트를 정수 시퀀스로 변환

Step 3.

1D CNN 학습

text_proc	pos_tags
He wa almost choking . There wa so much , so m	PRP VBZ RB NN . EX VBZ RB JJ , RB RB PRP VBD T
" Your sister asked for it , I suppose ? "	VB PRP\$ NN VBD IN PRP , PRP VBP . NN
She wa engaged one day a she walked , in perus	PRP VBD JJ CD NN DT PRP VBD , IN VBG NNP NNP V
The captain wa in the porch , keeping himself	DT NN NN IN DT NN , VBG PRP RB IN IN DT NN IN
" Have mercy , gentleman!" odin flung up his	NNS VBP VBN , NN . JJ NN VBD RP PRP\$ NN . JJ N

[data processing]

[1D CNN]

POS-Tags + CNN

Model: "sequential_91"				
Layer (type)	Output	Shape	 ;	Param #
embedding_91 (Embedding)	(None,	200,	200)	9200
dropout_169 (Dropout)	(None,	200,	200)	0
conv1d_194 (Conv1D)	(None,	196,	200)	200200
global_max_pooling1d_107 (GI	(None,	200)		0
dropout_170 (Dropout)	(None,	200)		0
dense_93 (Dense)	(None,	5)		1005
Total params: 210,405 Trainable params: 210,405 Non-trainable params: 0				
None				

CNN Model Summary

POS-Tags + CNN Result

002

(Words and POS-Tags) + CNN

Step 1.

문장 속 각 단어에 품사 tagging

Step 2.

문장 형태소 단위로 분리

Step 3.

Keras tokenizer (texts_to_sequences)

Step 4.

1D CNN 학습

출처: Zhang, Y., & Wallace, B. (2015).

"Convolutional Neural Networks for Sentence Classification",

002 (Words and POS-Tags) + CNN

Model: "model_4"				
Layer (type)	Out put	Shape	Param #	Connected to
pos_input (InputLayer)	[(None,	. 529)]	0	
text_input (InputLayer)	[(None,	. 529)]	0	
embedding_8 (Embedding)	(None,	529, 10)	460	pos_input[0][0]
embedding_9 (Embedding)	(None,	529, 10)	448070	text_input[0][0]
concatenate_8 (Concatenate)	(None,	529, 20)	0	embedding_8[0][0] embedding_9[0][0]
conv1d_16 (Conv1D)	(None,	529, 20)	820	concatenate_8[0][0]
conv1d_17 (Conv1D)	(None,	529, 20)	820	concatenate_8[0][0]
conv1d_18 (Conv1D)	(None,	529, 20)	820	concatenate_8[0][0]
conv1d_19 (Conv1D)	(None,	529, 20)	820	concatenate_8[0][0]
global_max_pooling1d_16 (Global	(None,	20)	0	conv1d_16[0][0]
global_max_pooling1d_17 (Global	(None,	20)	0	conv1d_17[0][0]
global_max_pooling1d_18 (Global	(None,	20)	0	conv1d_18[0][0]
global_max_pooling1d_19 (Global	(None,	20)	0	conv1d_19[0][0]
concatenate_9 (Concatenate)	(None,	80)	0	global_max_pooling1d_16[0][0] global_max_pooling1d_17[0][0] global_max_pooling1d_18[0][0] global_max_pooling1d_19[0][0]
dropout_4 (Dropout)	(None,	80)	0	concatenate_9[0][0]
dense_4 (Dense)	(None,	5)	405	dropout_4[0][0]
Total params: 452,215 Trainable params: 452,215 Non-trainable params: D				

Words & POS-Tags + CNN Result

simpleRNN Overview

Step 1.

문장 부호 제거

Step 2.

불용어 제거

Step 3.

토큰화 및 원-핫 벡터

Step 4.

Simple RNN

[simple RNN]

simpleRNN Result

1.4663

val_loss: 1.7253

loss:

accuracy

2.5

val accuracy

5.0

7.5

10.0

0.32

0.30

0.28

0.26

0.24

0.22

0.20

accuracy of Simple RNN (model1)

12.5 15.0 17.5

simpleRNN Result

Bi-LSTM Overview

001 Stopwords 제거 + Bi-LSTM

002 (Stopwords 제거 & lemmatization) + Bi-LSTM

Text Column

Stopwords 제거

Bi-LSTM Model

Stopwords 제거 lemmatization

Bi-LSTM Model

Bi-LSTM

Step 1.

데이터 전처리 (불용어 제거+ 표제어 추출)

Step 2.

단어 벡터화 + 패딩

Step 3.

데이터 split test, valid

Step 4.

Word2vec 임베딩

Step 5.

Bi-LSTM 모델

Bi-LSTM - Result

001 (Stopwords 제거 & lemmatization) + Bi-LSTM

Model: "sequential"			
Layer (type)	Output	Shape	Param #
embedding (Embedding)	(None,	100, 64)	1654272
spatial_dropout1d (SpatialDr	(None,	100, 64)	0
bidirectional (Bidirectional	(None,	100, 256)	197632
bidirectional_1 (Bidirection	(None,	256)	394240
dropout (Dropout)	(None,	256)	0
dense (Dense)	(None,	64)	16448
dropout_1 (Dropout)	(None,	64)	0
dense_1 (Dense)	(None,	5)	325
Total params: 2,262,917 Trainable params: 608,645 Non-trainable params: 1,654,2	272 		

accuracy: 0.6204 val_accuracy: 0.6105

Bi-LSTM & CNN Overview

Step 1. 문장 부호 제거

Step 2. BERT Pre-trained tokenizer

Step 3. Train – LSTM_CNN

Forward Backward LSTM Pre-trained Extended Word Embedding Word Embedding Text A group of Texts Cluster 1 Text Embedding Text Embedding clustering Cluster 2 using k-means Cluster n algorithm BiLSTM Layer CNN Layer Kmeans Layer

Step 4.

Eavaluate

출처:LSTM과 CNN을 이용한 텍스트 분류, 한국정보통신학회 학술집(2019)

Bi-LSTM & CNN Result

Model: "sequential_12"			
Layer (type)	Output	Shape	Param #
embedding_16 (Embedding)	(None,	472, 100)	3052300
bidirectional_15 (Bidirectio	(None,	472, 256)	234496
conv1d_15 (Conv1D)	(None,	472, 128)	163968
global_max_pooling1d_10 (Glo	(None,	128)	0
dropout_13 (Dropout)	(None,	128)	0
dense_23 (Dense)	(None,	128)	16512
dense_24 (Dense)	(None,	5)	645
Total params: 3,467,921 Trainable params: 3,467,921 Non-trainable params: 0			

val_loss: 0.6809

val_accuracy: 0.7857

Bi-LSTM + CNN **Summary**

Bi-LSTM + CNN Result

결론

참고

- [1] Johnson, R., & Zhang, T. "Effective Use of Word Order for Text Categorization with Convolutional Neural Networks." To Appear: NAACL-2015,
- [2] Zhang, Y., & Wallace, B. A Sensitivity Analysis of (and Practitioners' Guide to) "Convolutional Neural Networks for Sentence Classification", (2015).
- [3] Santos, C., & Zadrozny, B. "Learning Character-level Representations for Part-of-Speech Tagging. Proceedings of the 31st International Conference on Machine Learning", ICML-14(2011), 1818–1826.
- [4] Zhang, X., Zhao, J., & LeCun, Y. (2015). "Character-level Convolutional Networks for Text Classification", 1–9.
- [5] Kim, Y., Jernite, Y., Sontag, D., & Rush, A. M. (2015). "Character-Aware Neural Language Models."
- [6] Seong-Yoon Shin, Kwang-Seong Shin, Hyun-Chang Lee, "Text Classification Using LSTM-CNN", The Korea Institute of Information and Communication Engineering 2019.10, 692-694(3 pages)
- [7] Ho-yeon Park, Kyoung-jae Kim, "Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Model", Korea Intelligent Information Systems Society 2019.12, 141-154(14 pages)

감사합니다