Import libraries

```
In [44]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Explore the data

In [45]: df=pd.read_csv("Doctor_visit.csv")
In [46]: df.head(20)

Out[46]:

	Unnamed: 0	visits	gender	age	income	illness	reduced	health	private	freepoor	freerepat
0	1	1	female	0.19	0.55	1	4	1	yes	no	no
1	2	1	female	0.19	0.45	1	2	1	yes	no	no
2	3	1	male	0.19	0.90	3	0	0	no	no	no
3	4	1	male	0.19	0.15	1	0	0	no	no	no
4	5	1	male	0.19	0.45	2	5	1	no	no	no
5	6	1	female	0.19	0.35	5	1	9	no	no	no
6	7	1	female	0.19	0.55	4	0	2	no	no	no
7	8	1	female	0.19	0.15	3	0	6	no	no	no
8	9	1	female	0.19	0.65	2	0	5	yes	no	no
9	10	1	male	0.19	0.15	1	0	0	yes	no	no
10	11	1	male	0.19	0.45	1	0	0	no	no	no
11	12	1	male	0.19	0.25	2	0	2	no	no	yes
12	13	2	male	0.19	0.55	3	13	1	no	no	no
13	14	1	male	0.19	0.45	4	7	6	no	no	no
14	15	1	male	0.19	0.25	3	1	0	yes	no	no
15	16	1	male	0.19	0.55	2	0	7	no	no	no
16	17	2	male	0.19	0.45	1	0	5	yes	no	no
17	18	1	female	0.19	0.45	1	1	0	no	no	no
18	19	2	female	0.19	0.45	1	0	0	yes	no	no
19	20	1	female	0.19	0.35	1	0	0	yes	no	no
4											•

```
In [47]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 20 entries, 0 to 19
         Data columns (total 13 columns):
              Column
                           Non-Null Count
                                           Dtype
          0
              Unnamed: 0
                           20 non-null
                                           int64
          1
              visits
                           20 non-null
                                           int64
          2
              gender
                           20 non-null
                                           object
          3
              age
                           20 non-null
                                           float64
          4
              income
                           20 non-null
                                           float64
          5
              illness
                           20 non-null
                                           int64
          6
              reduced
                           20 non-null
                                           int64
          7
              health
                           20 non-null
                                           int64
          8
              private
                           20 non-null
                                           object
          9
              freepoor
                           20 non-null
                                           object
          10 freerepat
                           20 non-null
                                           object
          11 nchronic
                           20 non-null
                                           object
          12
              lchronic
                           20 non-null
                                           object
         dtypes: float64(2), int64(5), object(6)
         memory usage: 2.2+ KB
In [48]: df["illness"].value counts()
Out[48]: 1
              9
              4
         2
              4
         4
              2
         Name: illness, dtype: int64
In [49]: |df["gender"].value_counts()
Out[49]: male
                    11
         female
         Name: gender, dtype: int64
```

Data cleaning

In [50]: # Handling missing values
 df.isnull()

Out[50]:

	Unnamed: 0	visits	gender	age	income	illness	reduced	health	private	freepoor	freerepa
0	False	False	False	False	False	False	False	False	False	False	Fals
1	False	False	False	False	False	False	False	False	False	False	Fals
2	False	False	False	False	False	False	False	False	False	False	Fals
3	False	False	False	False	False	False	False	False	False	False	Fals
4	False	False	False	False	False	False	False	False	False	False	Fals
5	False	False	False	False	False	False	False	False	False	False	Fals
6	False	False	False	False	False	False	False	False	False	False	Fals
7	False	False	False	False	False	False	False	False	False	False	Fals
8	False	False	False	False	False	False	False	False	False	False	Fals
9	False	False	False	False	False	False	False	False	False	False	Fals
10	False	False	False	False	False	False	False	False	False	False	Fals
11	False	False	False	False	False	False	False	False	False	False	Fals
12	False	False	False	False	False	False	False	False	False	False	Fals
13	False	False	False	False	False	False	False	False	False	False	Fals
14	False	False	False	False	False	False	False	False	False	False	Fals
15	False	False	False	False	False	False	False	False	False	False	Fals
16	False	False	False	False	False	False	False	False	False	False	Fals
17	False	False	False	False	False	False	False	False	False	False	Fals
18	False	False	False	False	False	False	False	False	False	False	Fals
19	False	False	False	False	False	False	False	False	False	False	Fals

In [51]: df.dropna()

\sim		L E 1	
			1 0
-	~ ~		

	Unnamed: 0	visits	gender	age	income	illness	reduced	health	private	freepoor	freerepat
0	1	1	female	0.19	0.55	1	4	1	yes	no	no
1	2	1	female	0.19	0.45	1	2	1	yes	no	no
2	3	1	male	0.19	0.90	3	0	0	no	no	no
3	4	1	male	0.19	0.15	1	0	0	no	no	no
4	5	1	male	0.19	0.45	2	5	1	no	no	no
5	6	1	female	0.19	0.35	5	1	9	no	no	no
6	7	1	female	0.19	0.55	4	0	2	no	no	no
7	8	1	female	0.19	0.15	3	0	6	no	no	no
8	9	1	female	0.19	0.65	2	0	5	yes	no	no
9	10	1	male	0.19	0.15	1	0	0	yes	no	no
10	11	1	male	0.19	0.45	1	0	0	no	no	no
11	12	1	male	0.19	0.25	2	0	2	no	no	yes
12	13	2	male	0.19	0.55	3	13	1	no	no	no
13	14	1	male	0.19	0.45	4	7	6	no	no	no
14	15	1	male	0.19	0.25	3	1	0	yes	no	no
15	16	1	male	0.19	0.55	2	0	7	no	no	no
16	17	2	male	0.19	0.45	1	0	5	yes	no	no
17	18	1	female	0.19	0.45	1	1	0	no	no	no
18	19	2	female	0.19	0.45	1	0	0	yes	no	no
19	20	1	female	0.19	0.35	1	0	0	yes	no	no
4 =		_	_	_	_	_	_	_			

```
In [52]: # print duplicate records/rows
         import pandas as pd
         df=pd.read_csv("Doctor_visit.csv")
         duplicate_rows=df[df.duplicated()]
         print(duplicate_rows)
```

```
Empty DataFrame
```

```
Columns: [Unnamed: 0, visits, gender, age, income, illness, reduced, health,
private, freepoor, freerepat, nchronic, lchronic]
Index: []
```

```
In [53]: # identify duplicate records
df.duplicated()
```

Out[53]: 0 False 1 False 2 False 3 False 4 False 5 False 6 False 7 False 8 False 9 False False 10 False 11 12 False 13 False 14 False False 15 False 16 17 False 18 False 19 False dtype: bool

In [54]: # Removal of duplicates
df.drop_duplicates()

Out[54]:

	Unnamed: 0	visits	gender	age	income	illness	reduced	health	private	freepoor	freerepat
0	1	1	female	0.19	0.55	1	4	1	yes	no	no
1	2	1	female	0.19	0.45	1	2	1	yes	no	no
2	3	1	male	0.19	0.90	3	0	0	no	no	no
3	4	1	ma l e	0.19	0.15	1	0	0	no	no	no
4	5	1	male	0.19	0.45	2	5	1	no	no	no
5	6	1	female	0.19	0.35	5	1	9	no	no	no
6	7	1	female	0.19	0.55	4	0	2	no	no	no
7	8	1	female	0.19	0.15	3	0	6	no	no	no
8	9	1	female	0.19	0.65	2	0	5	yes	no	no
9	10	1	male	0.19	0.15	1	0	0	yes	no	no
10	11	1	male	0.19	0.45	1	0	0	no	no	no
11	12	1	male	0.19	0.25	2	0	2	no	no	yes
12	13	2	male	0.19	0.55	3	13	1	no	no	no
13	14	1	male	0.19	0.45	4	7	6	no	no	no
14	15	1	male	0.19	0.25	3	1	0	yes	no	no
15	16	1	male	0.19	0.55	2	0	7	no	no	no
16	17	2	male	0.19	0.45	1	0	5	yes	no	no
17	18	1	female	0.19	0.45	1	1	0	no	no	no
18	19	2	female	0.19	0.45	1	0	0	yes	no	no
19	20	1	female	0.19	0.35	1	0	0	yes	no	no
4 6		_		_		_		_			

In [55]: # Handling inconsistent data
df.replace()

Out[55]:

	Unnamed: 0	visits	gender	age	income	illness	reduced	health	private	freepoor	freerepat
0	1	1	female	0.19	0.55	1	4	1	yes	no	no
1	2	1	female	0.19	0.45	1	2	1	yes	no	no
2	3	1	male	0.19	0.90	3	0	0	no	no	no
3	4	1	ma l e	0.19	0.15	1	0	0	no	no	no
4	5	1	male	0.19	0.45	2	5	1	no	no	no
5	6	1	female	0.19	0.35	5	1	9	no	no	no
6	7	1	female	0.19	0.55	4	0	2	no	no	no
7	8	1	female	0.19	0.15	3	0	6	no	no	no
8	9	1	female	0.19	0.65	2	0	5	yes	no	no
9	10	1	male	0.19	0.15	1	0	0	yes	no	no
10	11	1	male	0.19	0.45	1	0	0	no	no	no
11	12	1	male	0.19	0.25	2	0	2	no	no	yes
12	13	2	male	0.19	0.55	3	13	1	no	no	no
13	14	1	male	0.19	0.45	4	7	6	no	no	no
14	15	1	male	0.19	0.25	3	1	0	yes	no	no
15	16	1	male	0.19	0.55	2	0	7	no	no	no
16	17	2	male	0.19	0.45	1	0	5	yes	no	no
17	18	1	female	0.19	0.45	1	1	0	no	no	no
18	19	2	female	0.19	0.45	1	0	0	yes	no	no
19	20	1	female	0.19	0.35	1	0	0	yes	no	no
4 6	_	_	_	_	_	_	_	_			

visualize maximum, minimum, and medium income

Find out the no of days of reduced activity of male and female seperately due to illness

In [57]:	df.groupby(['gender','reduced']).mean()												
Out[57]:			Unnamed: 0	visits	age	income	illness	health					
	gender	reduced											
		0	12.600000	1.200000	0.19	0.430000	2.200000	2.6					
	female	1	12.000000	1.000000	0.19	0.400000	3.000000	4.5					
	lemale	2	2.000000	1.000000	0.19	0.450000	1.000000	1.0					
		4	1.000000	1.000000	0.19	0.550000	1.000000	1.0					
		0	10.428571	1.142857	0.19	0.414286	1.571429	2.0					
		1	15.000000	1.000000	0.19	0.250000	3.000000	0.0					
	male	5	5.000000	1.000000	0.19	0.450000	2.000000	1.0					
		7	14.000000	1.000000	0.19	0.450000	4.000000	6.0					
		13	13.000000	2.000000	0.19	0.550000	3.000000	1.0					

visualize is there any missing values in the dataset

In [58]: sns.heatmap(df.isnull(),cbar=False,cmap='viridis')

Out[58]: <AxesSubplot:>

correlation between different variables in the given dataset

plt figure(figsize=(10,10)) sns.heatmap(df.corr(),cbar=True,annot=True,cmap='Blues')

In [59]: plt.figure(figsize=(10,10))
sns.heatmap(df.corr(),cbar=True,annot=True,cmap="Blues")

Out[59]: <AxesSubplot:>


```
In [60]: #relation between income and visits
    plt.figure(figsize=(10,10))
    plt.scatter(x='income',y='visits',data=df)
    plt.xlabel('income')
    plt.ylabel('visits')
```

Out[60]: Text(0, 0.5, 'visits')


```
In [61]: #no of males and females affected by illness
sns.histplot(df.gender,bins=2)
```

Out[61]: <AxesSubplot:xlabel='gender', ylabel='Count'>

visualize the percentage of people getting govt health insurance due to low income, due to low age and also the percentage of people getting private health insurance

```
In [62]: #percentage of people having govt health insurance
         label=['yes','no']
         Y=df[df['freepoor']=='yes']
         N=df[df['freepoor']=='no']
         x=[Y.shape[0],N.shape[0]]
         plt.figure(figsize=(5,5))
         plt.pie(x,labels=label)
         plt.title("% of people having govt health insurance due to low income")
         plt.show()
         #percentage of people having private health insurance
         Y=df[df['private']=='yes']
         N=df[df['private']=='no']
         x=[Y.shape[0],N.shape[0]]
         plt.figure(figsize=(5,5))
         plt.pie(x,labels=label)
         plt.title("% of people having private health insurance")
         plt.show()
         # % of people getting govt insurance due to low age, disability or veteran stat
         Y=df[df['freerepat']=='yes']
         N=df[df['freerepat']=='no']
         x=[Y.shape[0],N.shape[0]]
         plt.figure(figsize=(5,5))
         plt.pie(x,labels=label)
         plt.title(" % of people getting govt insurance due to low age, disability or ve
         plt.show()
```

% of people having govt health insurance due to low income

% of people having private health insurance

% of people getting govt insurance due to low age, disability or veteran status

plot a horizontal bar chart to analyze the reduced days of activity due to illness based on gender

```
In [68]: import matplotlib.pyplot as plt
    db=df.groupby('gender')['reduced'].sum().to_frame().reset_index()
    # creating the bar chart
    plt.barh(db['gender'],db['reduced'],color=['cornflowerblue','lightseagreen'])
    # Adding the aesthetics
    plt.title('Bar chart')
    plt.xlabel('gender')
    plt.ylabel('reduced activity')
    #show the plot
    plt.show()
```

