TD agreg n°4

Coralie Renault

4 novembre 2016

Remarque 1

On prendra comme définition de la transformée de Fourier pour $f \in L^1(\mathbb{R})$:

$$\forall \xi \in \mathbb{R}, \hat{f}(\xi) = \mathcal{F}(f)(\xi) = \int_{\mathbb{R}} f(x)e^{-2i\pi x\xi}dx$$

et pour la transformée de fourier Inverse,

$$\overline{\mathcal{F}}(f)(\xi) = \int_{\mathbb{R}} f(x)e^{2i\pi x\xi} dx$$

Théorème 1 (Rudin)

A chaque fonction $f \in L^2(\mathbb{R})$, on peut associer une fonction $\hat{f} \in L^2(\mathbb{R})$ tel que

- Si $f \in L^1 \cap L^2$ alors \hat{f} est la transformée de Fourier de f.

$$\lim_{A \to +\infty} \|\varphi_A - f\|_2 = \lim_{A \to +\infty} \|\psi_A - \hat{f}\|_2 = 0$$

Exercice 1 (LAAMRI)

- Montrer que si $f \in L^1(\mathbb{R})$ alors \hat{f} est bien définie et est uniformément bornée.
- Pour a > 0, calculer la transformée de Fourier de $f(x) = e^{-ax^2}$.
- Montrer que \mathcal{F} envoie $L^1(\mathbb{R})$ dans l'ensemble des fonctions continues qui tendent en 0en l'infinie.
- Monter qu'il n'existe pas d'élément neutre pour la convolution dans $L^1(\mathbb{R})$

Exercice 2 (LAAMRI)

Le but de cette exercice est de montrer que $\mathcal{F}(L^1(\mathbb{R}))$ est strictement inclue dans l'ensemble des fonctions continues qui tendent en 0 en l'infinie. Pour cela on suppose qu'il existe une fonction $g:\mathbb{R}\to\mathbb{C}$ qui est continue et tend vers 0 en l'infinie. On suppose de plus que g est impaire et vérifie

$$\int_{1}^{X} \frac{g(x)}{x} dx \xrightarrow{X \to +\infty} \text{ ou n'a pas de limites.}$$

— Par l'absurde on suppose qu'il existe une fonction $f \in L^1(\mathbb{R})$ tel que $\hat{f} = g$ pp partout et on pose F(x) = -ix(f(x) - f(-x)). Montrer que

$$g(\xi) = \int_0^{+\infty} F(x) \sin(2\pi x \xi) dx$$

— Montrer que

$$\int_{1}^{X} \frac{g(x)}{x} dx = \int_{1}^{X} \left(\int_{0}^{+\infty} F(t) \frac{\sin(2\pi xt)}{x} dt \right) dx$$

- Obtenir une contradiction
- Donner l'exemple d'une telle fonction g.
- En déduire la non surjectivité de \mathcal{F} .

Exercice 3 (DVP)

Définition 1

On rappelle la définition de l'espace de Schwartz :

$$S(\mathbb{R}) = \{ f \in C^{\infty}(\mathbb{R}, \mathbb{C}), \forall (n, p) \in \mathbb{N}^2 \sup_{x \in \mathbb{R}} |(1 + x^2)^n f^{(p)}(x)| < +\infty \}$$

Pour $u \in S(\mathbb{R})$, la transformée de Fourier de u , notée $\mathcal{F}u$, est la fonction définie sur \mathbb{R} , par

$$\forall \xi \in \mathbb{R}, \mathcal{F}u(\xi) = \int_{\mathbb{R}} e^{-ix\xi} u(x) dx$$

- 1. Montrer que $S(\mathbb{R})$ est stable par \mathcal{F} .
- 2. Si on pose $\forall v \in S(\mathbb{R})$,

$$\forall x \in \mathbb{R}, \overline{\mathcal{F}}v(x) = (2\pi)^{-1} \int_{\mathbb{R}} e^{ix\xi}v(\xi)d\xi$$

alors $S(\mathbb{R})$ est stable par $\overline{\mathcal{F}}$ et on a $\overline{\mathcal{F}}\mathcal{F}=\mathcal{F}\overline{\mathcal{F}}=identitdeS$ On pourra considérer $\forall \epsilon>0,\,\int_{\mathbb{R}}e^{itx}e^{-\epsilon t^2}\hat{f}(t)dt$

Exercice 4

Soit $f \in L^1(\mathbb{R}) \cap C(\mathbb{R})$. on suppose qu'il existe M > 0 et $\alpha > 1$ tels que $\forall x \in \mathbb{R}$, $|f(x)| < M(1+|x|)^{-\alpha}$. On suppose également que $\sum_{n \in \mathbb{Z}} |\hat{f}(n)| < +\infty$. Montrer que

$$\sum_{n\in\mathbb{Z}}|\hat{f}(n)|=\sum_{n\in\mathbb{Z}}(n)|$$

On pourra s'intéresser à la série

$$F(x) = \sum_{n \in \mathbb{Z}} f(x+n)$$

montrer qu'elle est périodique et s'intéresser à sa série de Fourier.

Exercice 5

Calculer la transformée de Fourier de f définie sur \mathbb{R}^* par $f(x) = Arctan(\frac{1}{x})$.