Exercici 22.

Calculeu, si existeixen, els inversos de 6 (mod 11), 6 (mod 17), 6 (mod 10), 7 (mod 11), 7 (mod 17), i 7 (mod 10).

Solució 22.

L'invers de a \pmod{n} serà, si existeix, un nombre x tal que $a \cdot x = 1 \pmod{n}$. Aquest invers només existirà si mcd(a,n) = 1, ja que és l'únic nombre que divideix a 1.

(a) Invers de $6 \mod(11)$:

Existirá ja que mcd(6,11) = 1. Hem de trobar x tal que $6 \cdot x \equiv 1 \mod(11)$.

$$6 \cdot x - k \cdot 11 = 1 \longrightarrow x = 2$$

(b) Invers de $6 \mod(17)$:

Existirá ja que mcd(6,17) = 1. Hem de trobar x tal que $6 \cdot x \equiv 1 \mod(17)$.

$$6 \cdot x - k \cdot 17 = 1 \longrightarrow x = 3$$

(c) Invers de $6 \mod(10)$:

No existirá ja que mcd(6,10) = 2 i clarament $2 \nmid 1$.

(d) Invers de $7 \mod(11)$:

Existirá ja que mcd(7,11) = 1. Hem de trobar x tal que $7 \cdot x \equiv 1 \mod(11)$.

$$7 \cdot x - k \cdot 11 = 1 \longrightarrow x = 8$$

(e) Invers de $7 \mod(17)$:

Existirá ja que mcd(7,17) = 1. Hem de trobar x tal que $7 \cdot x \equiv 1 \mod(17)$.

$$7 \cdot x - k \cdot 17 = 1 \longrightarrow x = 5$$

(f) Invers de $7 \mod(10)$:

Existirá ja que mcd(7,10) = 1. Hem de trobar x tal que $7 \cdot x \equiv 1 \mod(10)$.

$$7 \cdot x - k \cdot 10 = 1 \longrightarrow x = 3$$

Tots aquests càlculs de x es fan resolent les identitats de Bézout tal i com ja es va veure fa unes setmanes.