Thermodynamics of network model fitting with spectral entropies

Carlo Nicolini, Vladimir Vlasov, Angelo Bifone carlo.nicolini@iit.it

Center for Neuroscience and Cognitive Systems Istituto Italiano di Tecnologia

Paris, June 11, 2018

Why models are important

Complex networks models in neuroscience

Generative network models are crucial in network neuroscience¹

- Wiring rules or causal processes.
- Interest in the rules for building a network.
- A model can "compress" the description, highlighting regularities.

A new approach for evaluation of network models based on spectral properties.

¹Betzel R., Generative Models for Network Neuroscience: Prospects and Promise, J. R. Soc. Interface 14: 20170623

The spectral entropies method

PHYSICAL REVIEW X 6, 041062 (2016)

Spectral Entropies as Information-Theoretic Tools for Complex Network Comparison

Manlio De Domenico^{1,*} and Jacob Biamonte²

- Probability distributions encoded by density matrices ρ (unit trace, positive definite).
- Maximum uncertainty about a system with Hamiltonian L with the constraints:
- $\operatorname{Tr}[\rho] = 1$, $\langle \mathbf{L} \rangle = \operatorname{Tr}[\rho \mathbf{L}]$
- Quantum Gibbs-Boltzmann distribution:

$$\rho = \frac{e^{-\beta L}}{\text{Tr}\left[e^{-\beta L}\right]}$$

L is the graph Laplacian, semipositive definite symmetric matrix.

Von Neumann entropy and relative entropy

Von Neumann entropy

The Von Neumann entropy of the density matrix ρ is:

$$S(\rho) = -\operatorname{Tr}\left[\rho \log \rho\right] = -\sum_{i=1}^{n} \lambda_{i}(\rho) \log \lambda_{i}(\rho)$$

It measures the departure of the system from a pure state.

Relative entropy

The relative entropy of the density matrices ρ and σ

$$S(\rho \| \sigma) = \text{Tr} \left[\rho(\log \rho - \log \sigma) \right] \ge 0$$

It measures the amount of information lost when σ is used instead of ρ .

Example of Von Neumann entropy in networks

Global structure

Local structure

Motivation

$$S(\rho) = -\operatorname{Tr}\left[\rho\log\rho\right] = -\operatorname{Tr}\left[\frac{e^{-\beta L}}{\operatorname{Tr}\left[e^{-\beta L}\right]}\log\left(\frac{e^{-\beta L}}{\operatorname{Tr}\left[e^{-\beta L}\right]}\right)\right]$$

- There is a free parameter β: what is its role?
- Give a thermodynamic interpretation of relative entropy optimization.
- Provide a practical optimization method.

Statistical thermodynamics link

With the thermal equilibrium density matrices, the expression of relative entropy becomes:

$$S(\rho\|\sigma) = \beta \left[\left(F_{\rho} - F_{\sigma} \right) - \left(\langle \mathbf{L}_{\rho} \rangle_{\rho} - \langle \mathbf{L}_{\sigma} \rangle_{\rho} \right) \right] \geq 0.$$

where:

- $F_{\rho} = -\beta^{-1} \log Z_{\rho}$ is the free energy.
- $\langle \mathbf{L} \rangle_{\rho} = \text{Tr}[\rho \mathbf{L}]$ is the expected "energy".

Klein inequality and Gibbs' inequality

The state of minimum relative entropy is found by minimization of the left-hand side of:

$$\langle \mathbf{L}_{\sigma} \rangle_{\rho} - F_{\sigma} \geq \langle \mathbf{L}_{\rho} \rangle_{\rho} - F_{\rho}.$$

A "simple" receipt for model fitting within the spectral entropy framework.

Optimization

Model optimization in this settings corresponds to finding the optimal parameters $\hat{\theta}$ such that:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \quad \mathbb{E}_{\theta}[S(\rho \| \sigma(\theta))]$$

$$= \underset{\theta}{\operatorname{argmin}} \quad \operatorname{Tr} \left[\rho \left(\log \rho + \beta \underbrace{\mathbb{E}_{\theta}[\mathbf{L}(\theta)]}_{\text{easy}} + \mathbf{I} \underbrace{\mathbb{E}_{\theta}\left[\log Z(\theta)\right]}_{\text{hard to compute}} \right) \right]$$

- Knowledge of Laplacian spectra via random matrix theory.
- Monte Carlo sampling.
- Either hard to obtain, or slow to compute: we use an approximation.

$$\mathbb{E}_{\theta}[S(\rho \| \sigma(\theta)] \approx S(\rho \| \sigma(\mathbb{E}_{\theta}[\mathbf{L}]))$$

Gradients and exponential random graph models

Two variants of the exponential random graph models:

- Erdos-Renyi
- Planted partition model (two blocks)

By setting gradients of relative entropy to zero:

$$\frac{\partial \textit{S}(\rho \| \sigma(\mathbb{E}[L]))}{\partial \theta} = \beta \, \text{Tr} \left[\left(\rho - \sigma(\mathbb{E}[L]) \right) \frac{\partial \mathbb{E}[L](\theta)}{\partial \theta} \right],$$

in the Erdos-Renyi model we find:

$$p^* = \hat{p} = \lim_{\beta \to 0} \frac{1}{n\beta} \log \left(\frac{\operatorname{Tr} \left[\mathbf{1} \mathbf{p} \right] (n-1)}{(n-\operatorname{Tr} \left[\mathbf{1} \mathbf{p} \right])} \right)$$

Similarly in the planted partition model, with two blocks and $p_{\rm in},p_{\rm out}$ reconstruction in the limit $\beta\to 0$

An optimization algorithm

- 1. Start with some random solution $\theta(t_1)$ and low temperature $\beta \gg 1$.
- 2. Minimize $S(\rho \| \sigma)$ to get a new solution θ_1 .
- 3. Decrease β by some small amount.
- 4. Return to step 2 while convergence is achieved.

Undirected binary configuration model

Exponential random graph model with constrained degree sequence. Nodal hidden variables x_i :

$$p_{ij} = \mathbb{E}[a_{ij}] = \frac{x_i x_j}{1 + x_i x_j}$$

Macaque connectivity

Exponential distance rule:

 $\ell \approx 0.15~\text{mm}^{-1}$ according to other methods.

Conclusions

- A new framework the study of complex networks at different scales.
- An interpretation of the meaning of β.
- A practical implementation of gradient descent methods.

Networkqit code-alpha release

Documentation: networkgit.github.io

Repository: bitbucket.org/carlonicolini/networkqit

Arxiv: https://arxiv.org/abs/1801.06009

Appendix: approximation via matrix concentration in random graphs

For matrices of iid variables, in the large n and low sparsity limit all eigenvalues tend to their expected counterpart²,³:

$$\Pr(|\lambda_i(\mathbf{L}) - \lambda_i(\mathbb{E}(\mathbf{L}))| \ge t) \le \text{(some exponentially decaying function of t)}$$

For this reason we approximate $\lambda_i(\mathbf{L})$ with $\lambda_i(\mathbb{E}[\mathbf{L}])$, to get:

$$\log Z(\theta) = \log \sum_{i=1}^{n} e^{-\beta \lambda_i(\mathbf{L})} \approx \log \sum_{i=1}^{n} e^{-\beta \lambda_i(\mathbb{E}_{\theta}[\mathbf{L}])}$$

Hence:

$$\mathbb{E}_{\boldsymbol{\theta}}[\textit{S}(\boldsymbol{\rho}\|\boldsymbol{\sigma}(\boldsymbol{\theta})] \approx \textit{S}(\boldsymbol{\rho}\|\boldsymbol{\sigma}(\mathbb{E}_{\boldsymbol{\theta}}[\mathbf{L}(\boldsymbol{\theta})]))$$

²Cape et al. arXiv:1603.06100v1 (2017)

³Imbuzeiro Oliveira, arXiv:0911.0600 (2009)

Validity of the approximation

