Superwise learning lab -2

NAME:- Ayub Alam

Rollno:-TNU2021053100031L

Assigment Date:-

Submission date:-

Gradient desent

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

data=pd.read_csv(r'linear_regression.csv')
data
```

	data			
Out[3]:	Year	sExperience	Salary	
-	0	1.1	39343.0	
	1	1.3	46205.0	
	2	1.5	37731.0	
	3	2.0	43525.0	
	4	2.2	39891.0	
	5	2.9	56642.0	
	6	3.0	60150.0	
	7	3.2	54445.0	
	8	3.2	64445.0	
	9	3.7	57189.0	
	10	3.9	63218.0	
	11	4.0	55794.0	
	12	4.0	56957.0	
	13	4.1	57081.0	

	YearsExp	perience	Salary	
-	14	4.5	61111.0	
	15	4.9	67938.0	
	16	5.1	66029.0	
	17	5.3	83088.0	
	18	5.9	81363.0	
	19	6.0	93940.0	
	20	6.8	91738.0	
	21	7.1	98273.0	
	22	7.9	101302.0	
	23	8.2	113812.0	
	24	8.7	109431.0	
	25	9.0	105582.0	
	26	9.5	116969.0	
	27	9.6	112635.0	
	28	10.3	122391.0	
	29	10.5	121872.0	
In [4]:	x=data.ild y=data.ild			
In [5]:	plt.scatte			
	<pre>plt.plot() plt.xlabe</pre>	l('x')	or='red')	
	<pre>plt.ylabel('y') plt.title('Regression plo</pre>			
	plt.show()			


```
In [6]:
    m=0
    c=0
    L=0.0001
    e=1000
    n=float(len(x))
    for i in range (e):
        y_pred=m*x+c
        d_m=(-2/n)*sum(x*(y-y_pred))
        d_c=(-2/n)*sum(y-y_pred)
        m=m - L*d_m
        c=c - L*d_c
    print(m, c)
```

12836.600965885045 2915.2044856014018

```
In [7]: y_=m*x+c y_
```

```
17035.465548
        0
Out[7]:
                19602.785741
         1
         2
                22170.105934
         3
                28588.406417
         4
                31155.726611
         5
                40141.347287
         6
                41425.007383
         7
                43992.327576
         8
                43992.327576
         9
                50410.628059
         10
                52977.948253
         11
                54261.608349
         12
                54261.608349
         13
                55545.268446
         14
                60679.908832
         15
                65814.549218
         16
                68381.869412
         17
                70949.189605
         18
                78651.150184
         19
                79934.810281
         20
                90204.091054
         21
                94055.071343
         22
               104324.352116
         23
               108175.332406
```

```
25
                118444.613179
          26
                124862.913662
          27
                126146.573758
          28
                135132.194434
          29
                137699.514627
          Name: YearsExperience, dtype: float64
 In [8]:
           plt.scatter(x,y,color='Blue')
           plt.plot(x,y_,color='red')
           plt.xlabel('x')
           plt.ylabel('y')
           plt.title('Regression plot')
           plt.show()
                                     Regression plot
            140000
            120000
            100000
             80000
             60000
             40000
             20000
                                                      8
                                                               10
                                            6
                                           Х
 In [9]:
           from sklearn.model_selection import train_test_split
In [10]:
           x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=1/3,random_state=0)
In [11]:
           x train
          5
                 2.9
Out[11]:
                 5.1
          16
                 3.2
          8
          14
                 4.5
          23
                 8.2
          20
                 6.8
          1
                 1.3
          29
                10.5
          6
                 3.0
          4
                 2.2
          18
                 5.9
          19
                 6.0
          9
                 3.7
          7
                 3.2
          25
                 9.0
                 2.0
          3
          0
                 1.1
          21
                 7.1
```

24

114593.632889

```
Name: YearsExperience, dtype: float64
In [12]:
          y_train
         5
                 56642.0
Out[12]:
          16
                 66029.0
                 64445.0
          8
          14
                 61111.0
          23
                113812.0
                 91738.0
          20
                 46205.0
          1
          29
                121872.0
          6
                 60150.0
          4
                 39891.0
          18
                 81363.0
          19
                 93940.0
          9
                 57189.0
          7
                 54445.0
          25
                105582.0
          3
                 43525.0
          0
                 39343.0
          21
                 98273.0
          15
                 67938.0
          12
                 56957.0
          Name: Salary, dtype: float64
In [13]:
          1=0.0001
          m=0
          c=0
          epochs=1000
          n=float(len(x))
          n
Out[13]: 30.0
In [14]:
          for i in range(epochs):
               y_pred=m*x_train+c
               d_m=(-2/n)*sum(x_train*(y_train-y_pred))
               d_c=(-2/n)*sum(y_train-y_pred)
               m=m - 1*d_m
               c=c - 1*d_c
          print(m,c)
          13044.458512709201 2879.8182712986677
In [15]:
          y_pred=m*x_train+c
In [16]:
          y_pred
                 40708.747958
         5
Out[16]:
          16
                 69406.556686
          8
                 44622.085512
          14
                 61579.881578
          23
                109844.378076
```

15

12

4.9

4.0

```
20
                 91582.136158
         1
                 19837.614338
         29
                139846.632655
         6
                 42013.193809
         4
                 31577.626999
                 79842.123496
         18
         19
                 81146.569348
         9
                 51144.314768
         7
                 44622.085512
         25
                120279.944886
         3
                 28968.735297
         0
                 17228.722635
         21
                 95495.473712
                 66797.664984
         15
         12
                 55057.652322
         Name: YearsExperience, dtype: float64
In [21]:
          plt.scatter(x,y,color='Blue')
          plt.plot(x_train,y_pred,color='red')
          plt.xlabel('x')
          plt.ylabel('y')
          plt.title('Regression plot')
          plt.show()
```

