

Układy sekwencyjne – licznik

1. Cel ćwiczenia

Zapoznanie się ze sposobem projektowania układów sekwencyjnych synchronicznych. Badanie liczników równoległych binarnych.

2. Podział liczników

- 2.1. Liczniki szeregowe i równoległe
- 2.2. Liczniki jednokierunkowe i dwukierunkowe (rewersyjne)
- 2.3. Konwencja oznaczania wyprowadzeń
 - LOAD loadable
 - DIR, UP, DOWN bidirectional
 - CE clock enable
 - CLK, C clock
 - RST, CLR (a)synchronous reset
 - Qx data output (x numer pozycji, bitu)
 - Dx data input

3. Liczniki równoległe

- 3.1. Projektowanie licznika "modulo 3"
 - 3.1.1.przerzutnik typu D z wejściem CE;

CE,D Q	0 0	0 1	1 1	1 0	
0	0	0_	1	0	
1	(1	1)	1	0	Q'

$$Q' = /CE Q + CE D$$

3.1.2.projekt licznika "modulo 3" z wejściem CE (wykorzystuje przerzutniki typu Dce);

- diagram stanu

- tablica przejść i wyjść

Α	C	Е
А	0	1
0	0	1
1	1	2
2	2	0

kodowanie stanów	A1 A0
0	0 0
1	0 1
2	1 0

- synteza układu

CE A1 A0	0	1	
00	0	1	
01	1	0	
11	-	-	
10	0	0	A0'

$$A0' = /CE A0 + CE /A1 /A0$$

CE A1 A0	0	1	
00	0	0	
01	0	1	
11	-	-	
10	1	0	A1'

$$A1' = /CE A1 + CE A0$$

4. Liczniki rewersyjne

Licznik rewersyjny jest układem sekwencyjnym mającym możliwość zliczania w przód lub w tył, w zależności od stanu wejścia sterującego oznaczanego najczęściej DIR lub UP.

4.1. Projekt licznika rewersyjnego "modulo 3" (wejście sterujące DIR = '0' -> zliczanie w przód, DIR = '1' -> zliczanie w tył);

diagram stanu

tablica przejść i wyjść

0	DIR		
Q	0	1	
0	1	2	
1	2	0	
2	0	1	

kodowanie stanów	Q1 Q0
0	0 0
1	0 1
2	1 0

synteza układu

DIR Q1 Q0	0	1	
00	1	0	
01	0	0	
11	-	•	
10	0	1	Q0'

$$O0' = /DIR /O1 /O0 + DIR O1$$

DIR Q1 Q0	0	1	
00	0	1	
01	1	0	
11	-	-	
10	0	0	Q1'

$$Q0' = /DIR/Q1/Q0 + DIR/Q1$$
 $Q1' = /DIR/Q0 + DIR/Q1/Q0$

schemat licznika

5. Scalone układy licznikowe

W postaci modułów scalonych CMOS najczęściej występują liczniki dodające lub rewersyjne. Ze względu na realizowane funkcje liczniki scalone dzielone są na binarne (zliczające w kodzie naturalnym binarnym NKB) i dziesiętne (zliczające w kodzie BCD).

Jeśli typowe pojemności liczników nie odpowiadają wymaganiom projektanta, można je zmienić za pomocą układów sprzężenia zwrotnego wymuszających określoną zmianę zawartości licznika. W tym celu wykorzystuje się wejście zerujące licznika (RST, CLR).

5.1. Licznik binarny

Do realizacji scalonych liczników binarnych bardzo często wykorzystuje się przerzutniki typu T. 5.1.1.działanie przerzutnika typu T;

$$Q' = /T Q + T/Q = T \oplus Q$$

5.1.2.przykład realizacji licznika binarnego: 74HC393

5.2. Licznik dziesiętny (BCD)

Jest to licznik "modulo 10", zliczający w kodzie BCD. Na jego wyjściu pojawiają się kolejno stany od 0 do 9. Najczęściej realizowany jako szeregowe połączenie dwóch segmentów o pojemnościach 2 i 5.

5.2.1.przykład realizacji licznika dziesiętnego: 74HC390

IRUIH IABLE				
INPUTS				
CP	MR	ACTION		
1	L	No Change		
1	L	Count		
Х	Н	All Qs Low		

H = High Voltage Level, L = Low Voltage Level, X = Don't Care, ↑ = Transition from Low to High Level, ↓ = Transition from High to Low.

1 (15) nCP0 2 (14) nMR ÷ 2 COUNTER 5 (11) nQ₀ ÷ 5 COUNTER 7 (9) nQ₂ nQ₃

V_{CC} = 16

BCD COUNT SEQUENCE FOR 1/2 THE 390

	OUTPUTS			
COUNT	Q0	Q1	Q2	Q3
0	L	L	L	L
1	Н	L	L	L
2	L	Н	L	L
3	Н	Н	L	L
4	L	L	Н	L
5	Н	L	Н	L
6	L	Н	Н	L
7	Н	Н	Н	L
8	L	L	L	Н
9	Н	L	L	Н

Output nQ0 connected to nCP1 with counter input on nCP0.

6. Oznaczenie liczników stosowanych w oprogramowaniu ISE (układy z biblioteki producenta)

7. Kaskadowe łączenie liczników

W celu rozszerzenia zakresu zliczania można łączyć wiele modułów licznikowych w kaskadę. Sygnał końca zliczania (TC – *Terminal Count*) poprzedniego modułu powoduje odblokowanie i inkrementację stanu w kolejnym bloku licznika. W elektronice cyfrowej, szczególnie przy implementacji w urządzeniach rekonfigurowalnych, sygnał TC młodszego licznika podawany jest na wejście *clock enable* starszego, odblokowując go na okres jednego taktu sygnału zegarowego. Unikamy w ten sposób wprowadzania dodatkowej logiki w linię zegarową, co może zwiększać przesunięcia fazy między zboczami zegara i powodować powstawanie tzw. 'glitchy'(krótkie, niechciane impulsy).

Schemat przedstawia typowe połączenie kaskadowe licznika synchronicznego – należy zwrócić uwagę na konieczność powiązania kolejnych sygnałów TC z wejściem CE całego licznika.

8. Zadania:

- a) Zaprojektuj liczniki **L1**, **L2** korzystając z przerzutników typu D z wejściem *clock enable*, funkcje przejść w projektowanych licznikach zrealizuj z dowolnych bramek logicznych. Liczniki muszą posiadać wyjście końca zliczania (**TC**).
- b) Połącz kaskadowo zbudowane w pkt.a liczniki tak, aby L1 był młodszym a L2 starszym licznikiem w kaskadzie. Wykonaj symulację behawioralną tego układu i wyniki zamieść w karcie projektu.
- c) Przygotuj implementację układu licznika z pkt.b sterującego wyświetlaczem 7-segmentowym z płyty prototypowej Nexys2 (można wykorzystać dowolny ze sterowników wyświetlacza z serwera lub zaprojektować własny moduł sterujący do wyświetlacza multipleksowanego z płyty Nexys2). Na wejście zegarowe podaj sygnał wolnozmienny z dzielnika zegara (np. clk_gen_50).
- d) Zadanie dodatkowe: w celu ułatwienia testowania na pozostałych dwóch segmentach wyświetlacza LED wyświetlaj numery stanów odpowiedniego segmentu licznika (zadanie można zrealizować używając gotowych liczników binarnych z biblioteki producenta).

W czasie zajęć uruchom i zaprezentuj działanie jednego z zaprojektowanych układów (układ wybrany przez prowadzącego).

W opracowaniu zamieszczono fragmenty dokumentacji układu SN74HC390 i 74HC393 firmy Texas Instruments Incorporated.