

Getting Started with Neural Networks

Edited by Nur Naim, 20/9/22

LEARNING OBJECTIVES

- Understand the fundamental of deep learning, the general concept
- Able to discuss the current trending about deep learning and provide solutions and opinions regarding deep learning
- Understand the mathematical steps
- Understand the overall architecture
- Use Google Colab or other python IDEs or code editors.

INTRODUCTION

Artificial Intelligence

The theory and development of computer systems able to perform tasks normally requiring human intelligence

Machine Learning

Gives computers "the ability to learn without being explicitly programmed"

Deep Learning

Machine learning algorithms
with brain-like logical
structure of algorithms
called artificial neural
networks

LEVITY

WHAT IS DEEP LEARNING?

Machine Learning

Deep Learning

Brief History of Neural Network

WHY DEEP LEARNING?

WHY NOW?

Why is Deep Learning Important now?

Deep learning requires large amounts of data

Deep learning requires substantial computing power

 High-performance GPUs have a parallel architecture that is efficient for deep learning

Well-trained Deep Neural Network can handle tasks that were previously considered impossible

Since 1980s: Form of models hasn't changed much,

but lots of new tricks...

- More hidden units
- Better (online) optimization
- New nonlinear functions (ReLUs)
- Faster computers (CPUs and GPUs)

WHAT ARE THE CHALLENGES IN DEEP LEARNING?

- Not enough training data
- Poor Quality of data
- Irrelevant Features
- Nonrepresentative training data
- Overfitting and Underfitting

© ARCHITECTURES

DESIGN YOUR NN

Even for a basic Neural Network, there are many design decisions to make:

- 1. # of hidden layers (depth)
- 2. # of units per hidden layer (width)
- 3. Type of activation function (nonlinearity)
- 4. Form of objective function

NEURAL NETWORK MODEL

Inputs

Independent variables

Weights

Hidden Layer Weights

Dependent variable

"COMBINED LOGISTIC MODELS"

Independent variables

Weights

Hidden Layer

Weights

Dependent variable

Independent variables

Weights

Hidden Layer Weights

Dependent variable

JARGON PSEUDO-CORRESPONDENCE

- Independent variable = input variable
- Dependent variable = output variable
- Coefficients = "weights"
- Estimates = "targets"
- Logistic Regression Model (the sigmoid unit)

Independent variables

Coefficients

Dependent variable

 $\ \, \mathbb{C}$ Eric Xing @ CMU, 2006-2011

x1, *x2*, *x3*

a, *b*, *c*

Decision Functions

NEURAL NETWORK

DECISION BOUNDARY

- 0 hidden layers: linear classifier
 - Hyperplanes

DECISION BOUNDARY

- 1 hidden layer
 - Boundary of convex region (open or closed)

DECISION BOUNDARY

- 2 hidden layers
 - Combinations of convex regions

DIFFERENT LEVELS OF ABSTRACTION

- We don't know the "right" levels of abstraction
- So let the model figure it out!

Face Recognition:

- Deep Network can build up increasingly higher levels of abstraction
- Lines, parts, regions

Feature representation

3rd layer "Objects"

2nd layer "Object parts"

1st layer "Edges"

Pixels

Feature representation Output 3rd layer "Objects" Hidden Layer 3 2nd layer b₂ b_{E} Hidden Layer 2 "Object parts" 1st layer Hidden Layer 1 a₂ "Edges" **Pixels** X₂ **X**3 Input X₁ ••• $\mathbf{X}_{\mathbf{M}}$

Neural Network with sigmoid activation functions

Neural Network with arbitrary nonlinear activation functions

Sigmoid / Logistic Function

$$\operatorname{logistic}(u) \circ \frac{1}{1 + e^{-u}}$$

So far, we've assumed that the activation function (nonlinearity) is always the sigmoid function...

- A new change: modifying the nonlinearity
 - The logistic is not widely used in modern ANNs

Alternate 1: tanh

Like logistic function but shifted to range [-1, +1]

- A new change: modifying the nonlinearity
 - ReLU often used in vision tasks

 $\max(0, w \cdot x + b)$.

Alternate 2: rectified linear unit

Linear with a cutoff at zero

(Implementation: clip the gradient when you pass zero)

OBJECTIVE FUNCTIONS FOR NNS

- Regression:
 - Use the same objective as linear regression
 - Quadratic loss (i.e. mean squared)
- Classification:
 - Use the error same objective as logistic regression
 - Cross-entropy (i.e. negative log likelihood)
 - This requires probabilities, so we add an additional "softmax" layer at the end of our network

Forward

Quadratic
$$J = \frac{1}{2}(y - y^*)^2$$

Cross Entropy $J = y^* \log(y) + (1 - y^*) \log(1 - y)$

Backward

$$\frac{dJ}{dy} = y - y^*$$

$$\frac{dJ}{dy} = y^* \frac{1}{y} + (1 - y^*) \frac{1}{y - 1}$$

MULTI-CLASS OUTPUT

MULTI-CLASS OUTPUT

Softmax:

$$y_k = \frac{\exp(b_k)}{\sum_{l=1}^K \exp(b_l)}$$

APPLICATIONS

Examples of Deep Learning Applications

Fascinating Applications of Deep Learning

APPLICATIONS

REFERENCES

- https://www.slideshare.net/databricks/introduction-to-neural-networks-122033415
- https://www.cs.wmich.edu/~elise/courses/cs6800/Neural-Networks.ppt
- https://www.cs.cmu.edu/~mgormley/courses/10601b-f16/lectureSlides/lecture15-neural-nets.pptx
- Google (images) deep learning, why deep learning now, applications.

