Esponenziali e logaritmi

Funzione esponenziale

Abbiamo studiato le progressioni geometriche ed abbiamo visto che ci sono molte situazioni reali in cui il modello matematico sottostante è proprio una progressione geometrica.

Consideriamo per esempio la successione $a_n = 2^n \cos n = 0$, 1, 2 ecc.

Invece di limitarci ai numeri naturali proviamo adesso a considerare la funzione

$$f: x \to 2^x$$

(posso anche scrivere $f(x) = 2^x$ oppure $y = 2^x$).

Questa funzione risulta definita per tutti i numeri reali?

Proviamo:

• se
$$x = -n \in \mathbb{Z}$$
 $2^{-n} = \frac{1}{2^n}$

• se
$$x = \frac{m}{n} \in \mathbb{Q}$$
 $2^{\frac{m}{n}} = \sqrt[n]{2^m}$

• se x è un numero irrazionale, per esempio $x = \sqrt{2}$ possiamo definire $2^{\sqrt{2}}$ come l'elemento "separatore" delle due classi "contigue" di numeri reali

$$2^{1,4}$$
 $2^{1,41}$ $2^{1,414}$

$$2^{1,5}$$
 $2^{1,42}$ $2^{1,415}$

(dove si sono considerate le approssimazioni per eccesso e per difetto di $\sqrt{2}$). Quindi $f(x) = 2^x$ risulta definita $\forall x \in \Re$ cioè il suo dominio è \Re .

Chiamiamo funzione esponenziale una funzione del tipo

$$y = a^x$$
x si trova all'esponente

dove a è un numero reale positivo e diverso da 1 e si chiama base della funzione esponenziale.

La funzione esponenziale ha come dominio (insieme di definizione) l'insieme \Re dei numeri reali.

Osservazione 1: si considera la base a > 0 perché con basi negative non avrei sempre risultati reali: per esempio $a^{\frac{1}{2}}$ con a < 0 non è un numero reale.

Osservazione 2: non si considera la base a = 1 perché avremmo la funzione costante y=1.

Come risulta il grafico di $y = 2^x$?

Consideriamo per esempio a = 2 : possiamo fare una tabella assegnando vari valori alla variabile x e otteniamo

Х	у
-3	$2^{-3} = 1/8$
-2	$2^{-2} = 1/4$
-1	$2^{-1} = 1/2$
0	$2^0 = 1$
1	$2^1 = 2$
2	$2^2 = 4$

Osservazioni

La funzione $y = 2^x$ ha le seguenti caratteristiche:

- è crescente cioè se $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$;
- è iniettiva cioè ad elementi distinti corrispondono immagini distinte (se $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$);
- è sempre positiva e quindi il grafico si trova sempre sopra all'asse x;
- ha come asintoto l'asse x.

Consideriamo adesso $y = \left(\frac{1}{2}\right)^x$. Come risulta il suo grafico?

X	у
-3	8
-2	4
-1	2
0	1
1	1/2
2	1/4

Osserviamo che in questo caso la funzione è decrescente, ma per il resto ha le stesse caratteristiche.

In conclusione quindi, in generale, avremo che

$$y = a^x$$

è una funzione

- crescente quando la base a > 1,
- decrescente per 0 < a < 1.

Il codominio (insieme delle immagini) di $y = a^x$ è in ogni caso l'insieme dei reali positivi y > 0.

Funzione logaritmica

Il logaritmo (in una data base) di un numero

Riprendiamo l'esempio della duplicazione dei batteri presentato nella scheda 1 delle progressioni geometriche: se per esempio il numero iniziale dei batteri è $N_0 = 1000$ e sappiamo che ogni batterio si duplica ogni ora, possiamo chiederci dopo quanto tempo la colonia sarà costituita da 1 milione di batteri...

Scrivendo il numero di batteri presenti al tempo x (misurato in ore) come $N(x) = 1000 \cdot 2^x$ dovremo risolvere

$$10^3 \cdot 2^x = 10^6$$

Ma allora dovrà essere

$$2^x = 1000$$

Ma qual è l'esponente che dobbiamo dare a 2 per ottenere 1000?

Scriviamo la tabella di $y = 2^x$ e poiché $2^9 = 512$ e $2^{10} = 1024$ è chiaro che il nostro numero sarà tra 9 e 10.

Se continuiamo a provare: $2^9 = 512......2^{9,96} \cong 996 \text{ ma } 2^{9,97} \cong 1003 \text{ e quindi se ci accontentiamo di due cifre decimali potremo dire che } x \cong 9,96.$

Ma è chiaro che se dobbiamo risolvere problemi di questo tipo cercare l'esponente giusto "andando per tentativi" non è molto pratico!

I matematici hanno chiamato

 $\log_a N$ (che si legge"logaritmo in base a del numero N") l'esponente da dare alla base a per ottenere il numero N

Quindi nel nostro esempio il numero che cercavamo era

Nota storica

L'idea su cui si basa il concetto di logaritmo è molto antica e se ne trova già traccia nelle opere di Archimede: consideriamo una progressione geometrica, per esempio di ragione 2, e indichiamo accanto a ciascun termine il suo indice che è l'esponente da dare a 2 per ottenerlo.

Numero	indice
2	1
4	2
8	3
16	4
32	5
64	6
••••	•••

Si osserva che per moltiplicare due termini, per esempio $16 \cdot 64$, possiamo risalire ai rispettivi indici (4 + 6 = 10) e infine cercare nella tabella il termine con indice 10:

$$2^{10} = 1024$$
 ed infatti $16 \cdot 64 = 2^4 \cdot 2^6 = 2^{10}$

Questo metodo quindi semplificava il calcolo del prodotto di due numeri purché fossero termini della progressione.

Il matematico scozzese **John Napier** ,vissuto nel sedicesimo secolo, noto con il nome italianizzato di Giovanni Nepero, coniò il termine ancora oggi utilizzato di logaritmo, dal greco **logon arithmos**, cioè numero della ragione (intendendo l'indice, cioè l'esponente, per avere il numero della tabella).

Ma come si calcola il logaritmo di un numero?

Cominciamo ad approfondire l'argomento e studiamo prima di tutto **la funzione logaritmica** $y = \log_a x$ che risulta **la funzione inversa della funzione esponenziale.**

Se per esempio nella tabella della funzione $y = 2^x$ inverto i "ruoli" delle variabili x e y ottengo la tabella della funzione $y = \log_2 x$.

Tracciamo il grafico di $y = \log_2 x$:

X	$y = \log_2 x$
1/4	-2
1/2	-1
1	0
2	1
4	2

Nota

Osserviamo che i grafici di $y = 2^x$ e di $y = \log_2 x$ sono simmetrici rispetto alla retta y = x poiché abbiamo scambiato la x con la y. (e questo accade sempre quando si considerano una funzione e la sua inversa)

- Osserviamo che il dominio della funzione logaritmica è x > 0, mentre il codominio sono tutti i numeri reali: dominio e codominio sono scambiati rispetto alla funzione esponenziale.
- Il grafico ha come asintoto verticale l'asse y (l'esponenziale aveva invece l'asse x)
- Se la base a > 1 otteniamo una funzione crescente (come nel caso della funzione esponenziale)
- Il grafico interseca l'asse x in (1;0)

Tracciamo ora il grafico di $y = \log_{\frac{1}{2}} x$:

X	log _{1/2} x
1/4	2
1/2	1
1	0
2	-1
4	-2

Osserviamo che il grafico è in questo caso decrescente.

Quindi se 0 < a < 1 $y = \log_a x$ è una funzione decrescente ma per il resto abbiamo sempre l'asse y come asintoto verticale e il passaggio per (1;0).

Nota importante

Nel calcolo dei logaritmi le basi più usate sono la base 10 e la base "e" (*e* è un numero irrazionale il cui valore approssimato è 2,7 ed è particolarmente importante nello studio dell'analisi matematica).

Se vogliamo calcolare $log_{10}x$ utilizzando la calcolatrice dobbiamo premere il tasto log:

$$\log_{10} 10 = 1$$
 $\log_{10} 100 = 2$ ecc.

RICORDA: per indicare il logaritmo in base e si scrive ln (controlla il tasto sulla calcolatrice).

Ma per calcolare il logaritmo di un numero in una base diversa da 10 e da e?

Dobbiamo studiare alcune proprietà dei logaritmi da cui ricaveremo la regola del "cambiamento di base" che ci permetterà di calcolare logaritmi in base qualsiasi usando il tasto **log** della calcolatrice.

Proprietà dei logaritmi

$$\log_a(m \cdot n) = \log_a m + \log_a n$$

Infatti se poniamo $\log_a m = x$ cioè $a^x = m$ e $\log_a n = y$ cioè $a^y = n$ allora $m \cdot n = a^x \cdot a^y = a^{x+y}$ e quindi

$$x + y = \log_a(m \cdot n)$$

$$\log_a \left(\frac{m}{n}\right) = \log_a m - \log_a n$$

Infatti sempre ponendo $\log_a m = x$ e $\log_a n = y$ abbiamo che $\frac{m}{n} = \frac{a^x}{a^y} = a^{x-y}$ e quindi

$$x - y = \log_a \left(\frac{m}{n}\right)$$

$$\log_a(m^n) = n \cdot \log_a m$$

Infatti se poniamo $\log_a m = x$ cioè $a^x = m$ avremo che $m^n = (a^x)^n = a^{x \cdot n}$ e quindi

$$n \cdot x = \log_a(m^n)$$

4) **Cambiamento di base** $\log_a m = \frac{\log_b m}{\log_b a}$

Infatti se
$$a^x = m \Rightarrow \log_b a^x = \log_b m \Rightarrow x \cdot \log_b a = \log_b m \Rightarrow x = \frac{\log_b m}{\log_b a}$$

Esempio: per calcolare $\log_2 1000$ utilizzando il logaritmo in base 10 (nella calcolatrice basta premere log per avere il logaritmo in base 10) utilizzando la relazione del cambiamento di base avremo $\log_2 1000 = \frac{\log_{10} 1000}{\log_{10} 2} \cong 9,96578...$

ed ecco finalmente il numero del nostro esempio iniziale!

Osservazione

In particulare abbiamo $\log_a b = \frac{\log_b b}{\log_b a} = \frac{1}{\log_b a}$ Esempio: $\log_{10} 100 = \frac{1}{\log_{100} 10}$ (infatti $\log_{10} 100 = 2$ mentre $\log_{100} 10 = \frac{1}{2}$)

Equazioni esponenziali

L'equazione esponenziale elementare è $a^x = k \pmod{k}$ altrimenti non ci sono soluzioni)

e per la definizione di logaritmo si risolve così: $x = \log_a k$

Ci sono poi equazioni che si possono ricondurre alla soluzione di equazioni esponenziali elementari. Vediamo degli esempi.

Esempi

1.
$$2^x = 3$$
 $x = \log_2 3$

1.
$$2^{x-1} = 3$$
 $x-1 = \log_2 3 \Rightarrow x = 1 + \log_2 3$

2.
$$2^{x-1} = 2^{3x} \Rightarrow x - 1 = 3x \Rightarrow 2x = -1 \Rightarrow x = -\frac{1}{2}$$

3.
$$2^{x-1} = 3^x$$

Per ricondurre questa equazione ad un'equazione elementare cerchiamo di avere lo stesso esponente: scriviamo quindi

$$\frac{2^x}{2} = 3^x$$

Dividiamo entrambi i membri per 2^x (o per 3^x) e otteniamo:

$$\frac{1}{2} = \left(\frac{3}{2}\right)^x \Rightarrow x = \log_{\frac{3}{2}} \frac{1}{2}$$

Se avessi diviso per 3^x avrei ottenuto $\left(\frac{2}{3}\right)^x = 2 \Rightarrow x = \log_{\frac{2}{3}} 2$.

Operando però un cambiamento di base ci accorgiamo che i due risultati sono uguali: infatti

$$\log_{\frac{3}{2}} \frac{1}{2} = \frac{\log_{\frac{2}{3}} \frac{1}{2}}{\log_{\frac{2}{3}} \frac{3}{2}} = -\log_{\frac{2}{3}} \frac{1}{2} = -(\log_{\frac{2}{3}} 1 - \log_{\frac{2}{3}} 2) = \log_{\frac{2}{3}} 2 \qquad \text{(poiché } \log_{\frac{2}{3}} 1 = 0 \text{)}$$

5.
$$3^{2x} - 12 \cdot 3^x - 13 = 0$$

Poniamo
$$3^x = y \Rightarrow y^2 - 12y - 13 = 0 \Rightarrow y_1 = -1 \cup y_2 = 13$$

Quindi $3^x = -1$ nessuna soluzione $3^x = 13 \Rightarrow x = \log_3 13$

Disequazioni esponenziali

Esempi

• $2^x > 4 \Rightarrow x > \log_2 4$ cioè x > 2

 $\bullet \qquad \left(\frac{1}{2}\right)^x > 4 \Rightarrow x < \log_{\frac{1}{2}} 4 \text{ cioè } x < -2$

In generale se abbiamo una disequazione esponenziale elementare del tipo

$$a^{x} > k \ (k > 0)$$

• se a > 1, essendo a^x una funzione crescente, si mantiene il verso della diseguaglianza e la soluzione è

$$x > \log_a k$$

• se 0 < a < 1, essendo a^x una funzione decrescente si inverte il verso della diseguaglianza e la soluzione è

$$x < \log_a k$$

Nota: se dobbiamo risolvere

$$2^x > -3$$

dal momento che 2^x è sempre positivo la disequazione sarà sempre verificata.

Quindi se abbiamo $a^x > k$ e k<0 la disequazione è verificata $\forall x \in \Re$.

Naturalmente considerazioni analoghe valgono per la risoluzione della disequazione di $a^x < k$ con k>0. Se k<0 invece in ci sarà nessuna soluzione di $a^x < k$ poiché a^x è sempre positivo.

Naturalmente una disequazione esponenziale può essere più complessa ma spesso può essere ricondotta alla risoluzione di disequazioni esponenziali elementari.

Vediamo degli esempi.

1.
$$2^x > 3 \Rightarrow x > \log_2 3$$

1'.
$$\left(\frac{1}{2}\right)^x > 3 \Rightarrow x < \log_{\frac{1}{2}} 3$$

2.
$$2^{x-1} > 3 \Rightarrow x-1 > \log_2 3 \Rightarrow x > 1 + \log_2 3$$

2'.
$$\left(\frac{1}{2}\right)^{x-1} > 3 \Rightarrow x-1 < \log_{\frac{1}{2}} 3 \Rightarrow x < 1 + \log_{\frac{1}{2}} 3$$

3.
$$2^{x-1} > 2^{3x} \Rightarrow x-1 > 3x \Rightarrow 2x < -1 \Rightarrow x < -\frac{1}{2}$$

3'.
$$\left(\frac{1}{2}\right)^{x-1} > \left(\frac{1}{2}\right)^{3x} \Rightarrow x-1 < 3x \Rightarrow 2x > -1 \Rightarrow x > -\frac{1}{2}$$

4.
$$2^{x-1} > 3^x \Rightarrow \frac{2^x}{2} > 3^x \Rightarrow \left(\frac{2}{3}\right)^x > 2 \Rightarrow x < \log_{\frac{2}{3}} 2$$

5.
$$3^{2x} - 12 \cdot 3^x - 13 > 0$$

Possiamo risolvere questa disequazione ponendo $3^x = y$ e sostituendo otteniamo :

$$y^2 - 12y - 13 > 0 \Rightarrow y < -1 \cup y > 13$$
 cioè

 $3^x < -1$ che non ha nessuna soluzione

$$3^x > 13 \Rightarrow x > \log_3 13$$

6.
$$4^x - 3 \cdot 2^x + 2 < 0 \Rightarrow 2^{2x} - 3 \cdot 2^x + 2 < 0$$

Poniamo
$$2^x = y \Rightarrow y^2 - 3y + 2 < 0 \Rightarrow 1 < y < 2$$
 e quindi $1 < 2^x < 2 \Rightarrow 2^0 < 2^x < 2^1 \Rightarrow 0 < x < 1$

$$7. \qquad \frac{9^x - 3^x}{4^x} > 0$$

Studiamo il segno del numeratore e del denominatore:

$$N > 0: 9^x - 3^x > 0 \Rightarrow 3^{2x} > 3^x \Rightarrow 2x > x \Rightarrow x > 0$$

$$D > 0: 4^x > 0 \ \forall x \in \Re$$

Quindi la soluzione è x > 0.

Equazioni logaritmiche

Si dice equazione logaritmica ogni equazione in cui l'incognita x compare come argomento di un logaritmo.

L'equazione logaritmica elementare è quindi:

$$\log_a x = k \ (x > 0) \iff x = a^k$$

Molte equazioni logaritmiche possono essere ricondotte alla risoluzione di equazioni logaritmiche elementari. Vediamo alcuni esempi.

Esempi

1.
$$\log_2 x = 3 \Rightarrow x = 2^3$$

2.
$$\log_3(x-2) = 2 \Rightarrow x-2 = 3^2 \Rightarrow x = 2+9 = 11$$

3.
$$\log_2(2x-1) = \log_2(3x-5)$$

In questo caso è importante determinare la condizione di accettabilità delle soluzioni (determinare il dominio dell'equazione) ricordando che l'argomento di un logaritmo deve essere strettamente positivo.

Quindi nel nostro caso avremo:

$$\begin{cases} 2x-1>0\\ 3x-5>0 \end{cases} \Rightarrow \begin{cases} x>\frac{1}{2}\\ x>\frac{5}{3} \end{cases} \Rightarrow x>\frac{5}{3}$$

Risolvendo l'equazione logaritmica abbiamo:

$$2x-1=3x-5 \Rightarrow x=4$$
 accettabile

Quindi la soluzione dell'equazione è x = 4.

4.
$$\log_2(x-1) = \log_2(2x+1)$$

$$\begin{cases} x-1>0\\ 2x+1>0 \end{cases} \Rightarrow \begin{cases} x>1\\ x>-\frac{1}{2} \Rightarrow x>1 \end{cases}$$

$$x-1=2x+1 \Rightarrow x=-2$$
 non accettabile

Quindi l'equazione non ha soluzioni.

5.
$$\log_2 x + 3 \cdot \log_4 x = 10$$

In questo caso occorre operare un cambiamento di base. Per esempio possiamo portare tutto in base 2 ponendo

$$\log_4 x = \frac{\log_2 x}{\log_2 4} = \frac{\log_2 x}{2}$$

Quindi:
$$\log_2 x + \frac{3}{2} \cdot \log_2 x = 10 \Rightarrow 5 \cdot \log_2 x = 20 \Rightarrow \log_2 x = 4 \Rightarrow x = 2^4$$

6.
$$\log(4x-5) + \log x = 2 \cdot \log(x+4)$$

(Se non scriviamo la base si intende che ci si riferisce sempre ad una stessa base e che non è importante conoscerla per risolvere l'equazione).

Impostiamo innanzitutto il sistema per avere le condizioni di accettabilità delle soluzioni:

$$\begin{cases} 4x - 5 > 0 \\ x > 0 \\ x + 4 > 0 \end{cases} \Rightarrow \begin{cases} x > \frac{5}{4} \\ x > 0 \\ x > -4 \end{cases} \Rightarrow x > \frac{5}{4}$$

Possiamo in questo caso applicare le proprietà dei logaritmi:

$$\log[(4x-5) \cdot x] = \log(x+4)^{2}$$

$$(4x-5) \cdot x = (x+4)^{2}$$

$$\dots \dots$$

$$x_{1} = \frac{16}{3} \text{ accettabile}$$

$$x_{2} = -1 \text{ non accettabile}$$

Quindi l'unica soluzione è $x = \frac{16}{3}$.

Disequazioni logaritmiche

La disequazione logaritmica elementare è del tipo

$$\log_a x > k \pmod{x > 0}$$

e si risolve così:

- se $a > 1 \implies x > a^k$ (essendo $\log_a x$ crescente si mantiene il verso della diseguaglianza)
- se $0 < a < 1 \implies 0 < x < a^k$ (essendo $\log_a x$ decrescente si inverte il verso della diseguaglianza)

Esempio

• $\log_2 x > 1 \Rightarrow x > 2$

Poiché per a > 1 $y = \log_a x$ è una

funzione crescente, si mantiene la diseguaglianza.

 $\bullet \qquad \log_{\frac{1}{2}} x > 1 \Rightarrow 0 < x < \frac{1}{2}$

Poiché per 0 < a < 1 $y = \log_a x$ è una funzione decrescente, si inverte la diseguaglianza e va tenuto conto del dominio del logaritmo.

E' chiaro che se devo risolvere

$$\log_a x < k \pmod{x>0}$$
 avrò:

se
$$a > 1 \Rightarrow 0 < x < a^k$$

se
$$0 < a < 1 \Rightarrow x > a^k$$

Esempi

- $\log_2 x < 1 \Rightarrow 0 < x < 2$
- $\log_{\frac{1}{2}} x < 1 \Rightarrow x > \frac{1}{2}$

Naturalmente le disequazioni logaritmiche possono essere più complesse ma spesso si possono ricondurre alla risoluzione di disequazioni elementari.

Vediamo alcuni esempi.

Esempi

$$1. \quad \log_2 x > 3 \Longrightarrow x > 2^3$$

$$2. \quad \log_{\frac{1}{3}} x > 3 \Rightarrow 0 < x < \left(\frac{1}{3}\right)^3$$

3.
$$\log_5(x-1) > 1 \Rightarrow x-1 > 5 \Rightarrow x > 6$$

4.
$$\log_{\frac{1}{2}}(2x-3) < 1 \Rightarrow 2x-3 > \frac{1}{2} \Rightarrow x > \frac{7}{4}$$

5.
$$\log_2(x+1) > \log_2(3x+2)$$

In questo caso possiamo risolvere un unico sistema in cui mettiamo il dominio dei logaritmi e la risoluzione della disequazione cioè:

$$\begin{cases} x+1>0\\ 3x+2>0\\ x+1>3x+2 \end{cases} \Rightarrow \begin{cases} x>-1\\ x>-\frac{2}{3}\\ x<-\frac{1}{2} \end{cases}$$

-1 -2/3 -1/2

La soluzione è: $-\frac{2}{3} < x < -\frac{1}{2}$

6.
$$\log_{\frac{1}{2}}(x+1) > \log_{\frac{1}{2}}(3x+2)$$

$$\begin{cases} x+1 > 0 \\ 3x+2 > 0 \\ x+1 < 3x+2 \end{cases} \implies \begin{cases} x > -1 \\ x > --\frac{2}{3} \\ x > -\frac{1}{2} \end{cases}$$

La soluzione è : $x > -\frac{1}{2}$

ESERCIZI

I) Equazioni esponenziali

1)
$$4^x = 8$$
 [$x = \frac{3}{2}$]

2)
$$9^x = 6 + 3^x$$

3)
$$\frac{2^{x+2}}{3} = 3^{x+1}$$

4)
$$15 + 4^x = 2^{x+3}$$
 [$x_1 = \log_2 3 \cup x_2 = \log_2 5$]

5)
$$2^{2-x} - 2^{3-x} + 2^x = 0$$
 [$x = 1$]

6)
$$2^{2x+1} - 17 \cdot 2^x + 8 = 0$$
 [$x_1 = 3 \cup x_2 = -1$]

7)
$$4^x = \frac{1}{2}$$

8)
$$3^x - 9^x = 0$$
 [$x = 0$]

9)
$$4^x - 5 \cdot 2^x + 6 = 0$$
 $[x_1 = 1 \cup x_2 = \log_2 3]$

$$[x = \log_{\frac{3}{5}} \frac{3}{25}]$$

11)
$$3^{x+7} = \frac{1}{3^{x-5}}$$

12)
$$\frac{5}{2^x + 1} + \frac{9}{2^x - 1} = \frac{15}{2^x + 1} + 1$$
 [x = 2]

$$[x = \log_3 4]$$

14)
$$4^x - 10 \cdot 2^x + 16 = 0$$
 [$x_1 = 1 \cup x_2 = 3$]

15)
$$3^{2-8x} = 9^{3x+1}$$

II) Disequazioni esponenziali

$$17)\left(\frac{1}{7}\right)^x \ge 7^3$$

$$18) \left(\frac{1}{10}\right)^x \le 100$$

19)
$$(x-2) \cdot 3^x < 0$$
 [$x < 2$]

$$[x \le -1]$$

21)
$$(2^x - 4) \cdot (3^{2x} - 3^x) \ge 0$$
 [$x \le 0 \cup x \ge 2$]

$$22) \ 2^{\frac{x^2 - x}{x+1}} \le 1$$
 [$x < -1 \cup 0 \le x \le 1$]

$$23) \frac{2^{x} - 1}{8 - 2^{x}} \le 0$$

$$[x \le 0 \cup x > 3]$$

$$[x \ge \log_{10} \frac{5}{2}]$$

25)
$$25^x - 13 \cdot 5^x + 30 \ge 0$$
 [$x \le \log_5 3 \cup x \ge \log_5 10$]

26)
$$8 \cdot \left(\frac{1}{4}\right)^x - 6 \cdot \left(\frac{1}{2}\right)^x + 1 > 0$$
 [$x < 1 \cup x > 2$]

27)
$$9^x - 2 \cdot 3^x - 3 \ge 0$$
 [$x \ge 1$]

28)
$$2 \cdot 3^x - 9^x > 1$$
 [nessuna soluzione]

$$[x \neq 0]$$

$$30) 4^x - 2^x > 0$$
 [x > 0]

$$31) \frac{2^x}{2^x + 1} + \frac{2^x}{2^x + 4} \le 1$$
 [$x \le 1$]

III) Equazioni logaritmiche

32)
$$\log_4 x = 2$$
 [$x = 4^2$]

33)
$$\log_3(2x+4) = 2$$
 [$x = \frac{5}{2}$]

34)
$$\log_{\frac{1}{2}}(x-1) = -1$$
 [$x = 3$]

35)
$$\log_2(x-2) + \log_2 x = \log_2(9-2x)$$
 [x = 3]

36)
$$\log(x+8) = 2 \cdot \log 3 - \log x$$
 [$x = 1$]

37)
$$4 \cdot \log_{\frac{1}{2}}^2 x - 5 \cdot \log_{\frac{1}{2}} x + 1 = 0$$
 $\left[x_1 = \frac{1}{2} \cup x_2 = \sqrt[4]{\frac{1}{2}} \right]$

38)
$$3 \cdot \log_2(x+2) - 3 \cdot \log_2(2x-1) + \log_2 4 - \log_3 9 = 0$$
 [$x = 3$]

39)
$$\log_2(x^2 - 5x) - \log_2(1 - x) = 1$$
 [$x = \frac{3 - \sqrt{17}}{2}$]

40)
$$\log_a(3x-5) + \log_a(x-2) = \log_a 2$$
 [$x = \frac{8}{3}$]

41)
$$2 \cdot \log(x-1) + \log(x-2) = \log(x^2-3x+2)$$
 [nessuna soluzione]

42)
$$2 \cdot \log x + \log(x^2 + 1) = \log(3 - x^2)$$
 [$x = 1$]

43)
$$\log x + \log(x+1) = \log(1-x)$$
 [$x = \sqrt{2} - 1$]

44)
$$3 \cdot \log_2^2 x + 5 \cdot \log_2 x - 2 = 0$$
 [$x_1 = \sqrt[3]{2} \cup x_2 = \frac{1}{4}$]

45)
$$\log_2(x-1) = \log_2(3x+5)$$
 [nessuna soluzione]

46)
$$\log_3 x - \frac{2}{3} \cdot \log_x 3 = \frac{5}{6} - \frac{1}{2} \cdot \log_9 x^2$$
 [$x_1 = 3^{-\frac{4}{9}} \cup x_2 = 3$]

47)
$$\log_2^2(x-1) - 5 \cdot \log_2(x-1) + 6 = 0$$
 [$x_1 = 5 \cup x_2 = 9$]

IV) Disequazioni logaritmiche

$$48) \log_{\frac{1}{3}}(x-2) < 1$$
 [$x > \frac{7}{3}$]

49)
$$\log_2(2x+5) > 0$$
 [$x > -2$]

50)
$$\log_{\frac{1}{2}}(3x-1) > 1$$
 $\left[\frac{1}{3} < x < \frac{1}{2}\right]$

51)
$$\log_3 x < 0$$

52)
$$\log_3^2 x - \log_3 x < 0$$
 [1 < x < 3]

53)
$$\log_3 x + \log_3 (x - 8) \ge 2$$
 [$x \ge 9$]

54)
$$\log_3^2 x + 2 \cdot \log_3 x - 3 < 0$$
 [$\frac{1}{27} < x < 3$]

55)
$$\log_{\frac{1}{2}}(x-3) > \log_{\frac{1}{2}}(20-3x)$$
 [3 < x < $\frac{23}{4}$]

56)
$$\log_{\frac{1}{3}}(6x-x^2)+2<0$$
 [nessuna soluzione]

57)
$$\log_{\frac{1}{3}}(x^2+4) + \log_3(x-3) \le \log_{\frac{1}{3}}(x+1)$$
 [x > 3]

58)
$$\log_{\frac{3}{4}}(1-x^2) \le 0$$

59)
$$\log_2(1-x^2)-1<0$$
 [-1

60)
$$\log_5^2 x + \log_5 x - 2 > 0$$
 [$0 < x < \frac{1}{25} \cup x > 5$]

61)
$$\log_{x} x + \log_{2}(1+x) < \log_{2}(1-x)$$
 [0 < x < $\sqrt{2}$ -1]

62)
$$\log_2^2 (1-x) - \log_2 (1-x) > 0$$
 [$x < -1 \cup 0 < x < 1$]

$$63) \frac{\log_3(2-x)}{\log_{\frac{1}{3}}(1+x)-1} < 0$$
 [-\frac{2}{3} < x < 1]

64)
$$\frac{\log_2^2 x - \log_2 x}{\log_2 x} < 0$$
 [0 < x < 2 con x \neq 1]

V) Esercizi di ricapitolazione

$$[x=3]$$

$$[x = \log_{\frac{2}{3}} 6]$$

67)
$$25^x - 5^{x+1} + 6 = 0$$
 [$x = \log_5 2 \cup x = \log_5 3$]

68)
$$(2^x - 4) \cdot \left(\left(\frac{1}{9} \right)^x - 1 \right) > 0$$
 [0 < x < 2]

69)
$$2 \cdot 5^x - 25^x + 8 > 0$$
 [$x < \log_5 4$]

$$70) \frac{\left(\frac{1}{3}\right)^{x} - 3}{4^{x}} < 0$$
 [x > -1]

71)
$$\log_5(x+2) - \log_5(x-1) = \log_5 x$$
 [$x = 1 + \sqrt{3}$]

72)
$$\log_2^2 (5x - 4) - \log_2 (5x - 4) = 0$$
 [$x_1 = 1 \cup x_2 = \frac{6}{5}$]

73)
$$\log_{\frac{1}{2}}(x+3) + \log_{2}(2x-1) = 2$$
 [nessuna soluzione]

74)
$$\log_{\frac{1}{2}}(x+1) - \log_{\frac{1}{2}}3x > 0$$
 [$x > \frac{1}{2}$]

75)
$$\log_{\frac{1}{3}}(x-4) - \log_{\frac{1}{3}}^{2}(x-4) < 0$$
 [4 < x < $\frac{13}{3}$ \cup x > 5]

76)
$$\frac{2^x - 8}{\log_2(x+3) - 1} > 0$$
 [-3 < x < -1 \cup x > 3]

77)
$$9^x + 9 = 10 \cdot 3^x$$
 [$x = 0$, $x = 2$]

78)
$$3^{x-2} = 5^{x-1}$$
 [$x = \log_{\frac{3}{5}} \frac{9}{5}$]

79)
$$49^x - 6 \cdot 7^x - 7 > 0$$
 [x > 1]

80)
$$\frac{1}{3^x - 9} - \frac{1}{3^x + 1} > 0$$
 [$x > 2$]

$$81) \frac{\left(\frac{1}{3}\right)^x - 1}{4 - 2^x} < 0$$
 [$0 < x < 2$]

$$82)\log_2 x = \log_{\frac{1}{2}}(2x - 1)$$
 [$x = 1$]

83)
$$\log_3(x-1)+1 = \log_3(x+2)+\log_3\left(x-\frac{6}{5}\right)$$
 [$x = \frac{11+\sqrt{61}}{10}$]

84)
$$\log_3^2(x+2) - \log_3(x+2) = 0$$
 [$x_1 = -1$, $x_2 = 1$]

85)
$$\log_{\frac{1}{3}}(4x-3) > -1$$
 [$\frac{3}{4} < x < \frac{3}{2}$]

86)
$$\log_{\frac{1}{2}}^2 x - \log_{\frac{1}{2}} x - 2 < 0$$
 [$\frac{1}{4} < x < 2$]

$$87) \frac{1-25^x}{\log_2(x-3)} < 0$$

Scheda 1

Logaritmi e chimica

In chimica la concentrazione molare di ioni H^+	presenti in una soluzione viene indicata con il
simbolo $[H^+]$ e si ha:	

 $[H^+]$ = 1 per una soluzione di massima acidità;

 $[H^+] = 10^{-7}$ per una soluzione neutra;

 $[H^+] = 10^{-14}$ per una soluzione di minima acidità (basica).

Si definisce il pH di una soluzione come

$$pH = -\log_{10}[H^+]$$

e quindi abbiamo che:

se $[H^+] = 1 \Rightarrow pH = 0$ soluzione di massima acidità;

se $[H^+] = 10^{-7} \Rightarrow pH = 7$ soluzione neutra;

se $[H^+] = 10^{-14} \Rightarrow pH = 14$ soluzione di minima acidità (basica)

Problemi

a) 	Dato il pH di una soluzione, per esempio pH=8, quanto risulta la concentrazione di ioni $[H^+]$?
b)	Un aumento del pH corrisponde ad un aumento o a una diminuzione della concentrazione di ioni H^+ ?
	Se la soluzione X ha un pH doppio della soluzione Y, come risulta la concentrazione degli ioni H^+ presenti nelle due soluzioni?

Scheda 2

Logaritmi e decibel

Ricordiamo che l'intensità I di un'onda sonora è definita come la quantità di energia che attraversa in 1 secondo una superficie di 1 m^2 disposta perpendicolarmente alla superficie di propagazione dell'onda e si misura quindi in W/m^2 .

L'intensità minima percepita da un orecchio "normale" (alla frequenza di riferimento di 1000 Hz) è $I_0 = 10^{-12} W / m^2$ (soglia di udibilità).

Si definisce livello sonoro, che indichiamo con l_s , misurato in decibel (dB):

$$l_s = 10 \cdot \log_{10} \left(\frac{I}{I_0} \right)$$
 (dB)

Quindi se
$$I = I_0 \Rightarrow l_s = 0$$
 dB
se $I = 10 \cdot I_0 \Rightarrow l_s = 10$ dB
se $I = 100 \cdot I_0 \Rightarrow l_s = 20$ dB
ecc.

all'intensità I del suono.

Problemi

a)	Un amplificatore di un impianto Hi-Fi emette un suono che ad una data distanza ha un livello sonoro di 80 dB. Raddoppiando la potenza dell'amplificatore e quindi l'intensità I del suono, come risulterà (in quella stessa posizione) il livello sonoro?
b)	L'intensità del suono (per la frequenza di riferimento di 1000 Hz) che provoca una sensazione di dolore al timpano è $I=1W/m^2$: qual è il livello sonoro corrispondente?
c)	Rappresenta in un grafico (I, l_s) l'andamento del livello sonoro (in dB) rispetto

Problemi

1)Supponiamo che nella sterilizzazione del latte alla temperatura costante di 120°C il numero n(t) delle spore del microrganismo Bacillus Stearothermophilus sia regolato dalla legge

$$n(t) = 100 \cdot 0.98^t$$

dove t è la durata in secondi del processo di sterilizzazione.

Rappresenta l'andamento di n(t) e determina il tempo di dimezzamento del numero delle spore cioè dopo quanti secondi il loro numero è dimezzato rispetto a quello iniziale.

[34,3 s]

2) Un biologo ha scoperto che il numero N(t) di un dato tipo di batteri presenti al tempo t (misurato in ore) in una coltura raddoppia ogni ora. Sapendo che all'inizio (t=0) il numero dei batteri era 50 scrivi l'espressione di N(t). Dopo quanto tempo il numero di batteri è maggiore di 1 milione?

$$[N(t) = 50 \cdot 2^{t}; 14,3 \text{ h}]$$

3) Una sostanza radioattiva si dimezza ogni ora. Indicando con Q_0 la quantità di sostanza radioattiva iniziale , determina l'espressione della quantità Q(t) di sostanza radioattiva al tempo t misurando t in ore. Dopo quanto tempo la quantità di sostanza radioattiva si riduce a meno di 1/100 della quantità iniziale? E dopo quanto a meno di 1/1000?

$$[Q(t) = Q_0 \cdot \left(\frac{1}{2}\right)^t ; 6,6 \text{ h}; 10 \text{ h}]$$

4) In quanti anni raddoppia un capitale iniziale C_0 se la banca applica un interesse composto del 2%?

[35 anni]

5) Se sappiamo che il nostro capitale iniziale raddoppierà in 10 anni, qual è il tasso di interesse composto applicato dalla nostra banca?

[7%]

- 6) Dopo la fecondazione, per scissione della cellula madre nel processo chiamato mitosi, si hanno due cellule figlie ogni 30 ore.
 - a) Quante cellule si hanno dopo 5 giorni dalla fecondazione?
 - b) quanti giorni devono passare dalla fecondazione per avere circa 2^{20} (circa un milione) cellule?

[16; 25 giorni]

- 7) a)Una banca applica un tasso di interesse composto del 4% con capitalizzazione ad 1 anno (ogni anno l'interesse viene aggiunto al capitale). Scrivi quanto risulta il capitale, partendo da un capitale iniziale $C_0 = 100$ (euro), dopo 5 anni.
 - b) Un'altra banca applica lo stesso tasso composto del 4% ma con capitalizzazione a 6 mesi cioè ogni 6 mesi l'interesse si somma al capitale. In questo caso, sempre partendo da 100 euro, quanto risulta il capitale dopo 5 anni?

[circa € 122; circa € 148]

8) Una coperta misura 250 cm x 280 cm ed è spessa 0,3 cm. Ogni volta che la pieghi in due la sua superficie si dimezza e raddoppia il suo spessore.

Se devi metterla in una scatola 50 cm x 40 cm x 30 cm (30 cm altezza della scatola), quante volte dovrai ripiegarla? La coperta starà nella scatola?(controlla lo spessore)

[6 piegature ; sì]

9) Abbiamo bisogno di un prestito e confrontiamo le proposte di due banche: la prima ci propone un tasso composto del 4% con durata di 15 anni (cioè dovremo restituire quanto abbiamo avuto in prestito con l'interesse maturato in 15 anni), la seconda un tasso del 3% con durata 20 anni. Qual è la proposta migliore? Quanto dobbiamo restituire alla prima banca? E alla seconda? (Indica con C_0 il valore iniziale del prestito)

[la prima; $1,801 \cdot C_0$; $1,806 \cdot C_0$]

10) Il numero di batteri in una certa coltura raddoppia in 20' (20 minuti). Sapendo che il numero iniziale è $N_0 = 500$ scrivi come risulta il numero N(t) di batteri presenti dopo t minuti . Dopo quanto tempo i batteri sono 1 milione?

[
$$N(t) = 500 \cdot 2^{\frac{t}{20}}$$
; circa 219' cioè 3h 39']