Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2023-24

Πράξεις με δυαδικούς αριθμούς

(λογικές πράξεις)

http://mixstef.github.io/courses/csintro/

Μ.Στεφανιδάκης

Εκτέλεση πράξεων

υπολογιστικό σύστημα

- Επεξεργασία από ψηφιακά δυαδικά κυκλώματα
 - ν που εκτελούν πράξεις μεταξύ σειρών 0 και 1....
 - 🔭 ...οι οποίες αναπαριστούν δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς

- Ο υπολογιστής μπορεί να εκτελέσει
 - Λογικές πράξεις (δυαδικής λογικής)
 - Αριθμητικές πράξεις (πρόσθεση κλπ)
- Οι πράξεις εκτελούνται σε ομάδες bits που ονομάζουμε «δυαδικούς αριθμούς»
 - Bit: η μικρότερη λογική ποσότητα − η μικρότερη μονάδα δεδομένων − 0 ή 1.
 - Byte: ομάδα 8 bits
 - Συχνά η ελάχιστη ποσότητα που μπορεί να χειριστεί ο υπολογιστής κατά την εκτέλεση μιας πράξης

Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική

- Η δυαδική λογική ταιριάζει με την τεχνολογία του τρανζίστορ ως διακόπτη
 - 2 καταστάσεις: ON-OFF, 1-0
 - Ψηφιακά ηλεκτρονικά (2 στάθμες)
- Δυαδική άλγεβρα Boole
 - Λογική άλγεβρα
 - Υλοποίηση με διακοπτικά κυκλώματα
 - Η πρωτοποριακή εργασία του Shannon: "A Symbolic Analysis of Relay and Switching Circuits" (1938)

Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική (2)

- Στη δυαδική λογική άλγεβρα
 - Υπάρχουν 2 «ποσότητες» (σύμβολα):
 - Αληθές ή 1 ή ΝΑΙ
 - Ψευδές ή 0 ή ΟΧΙ
 - Ένα δυαδικό ψηφίο (bit) έχει τιμή 0 ή 1
- Στα ψηφιακά ηλεκτρονικά κυκλώματα ένα bit
 αναπαρίσταται με αντίστοιχη κατάσταση σε ένα ηλεκτρονικό κύκλωμα (ανάλογα με την τεχνολογία)
 - 0 → «χαμηλή τάση» ή «η μια φορά ρεύματος»
 - 1 → «υψηλή τάση» ή «η άλλη φορά ρεύματος»

Πράξεις Δυαδικής Λογικής

- Στη δυαδική λογική άλγεβρα
 - Καθορίζονται λογικές πράξεις μεταξύ των λογικών ποσοτήτων 0 και 1 (bits)
- Στα ψηφιακά ηλεκτρονικά κυκλώματα:
 - Κύκλωμα δέχεται ως είσοδο την ηλεκτρική αναπαράσταση των 0 και 1
 - Και παράγει στην έξοδό του την ηλεκτρική αναπαράσταση του αποτελέσματος μιας λογικής πράξης
 - Το κύκλωμα υλοποίησης της λογικής πράξης ονομάζεται πύλη (gate).

Λογικές πράξεις με bits

Λογικές πράξεις με bits

- Μονομελής λογική πράξη
 - ΝΟΤ (αντιστροφή)
- Διμελείς λογικές πράξεις
 - AND (λογικό-ΚΑΙ)
 - OR (λογικό-Η)
 - XOR (αποκλειστικό-Η)
 - κ.λ.π.

Βασικές Λογικές Πράξεις

- Αντιστροφή (NOT)
 - Αντιστροφή ενός bit

Πώς μπορεί να υλοποιηθεί μια πύλη ΝΟΤ;

• Από το προηγούμενο μάθημα: πύλη (gate) καταβόθρα καταβόθρα πηγή πύλη (source) (drain) πηγή PMOS: άγει σύμβολο n όταν στην πύλη εφαρμόζεται '0' p NMOS: άγει όταν κανάλι στην πύλη υπόστρωμα (channel) εφαρμόζεται '1' (body) Το τρανζίστορ NMOS

Από το προηγούμενο μάθημα: ποια η λειτουργία του;

Η πύλη ΝΟΤ (αντιστροφέας)

σύμβολο πύλης ΝΟΤ

Βασικές Λογικές Πράξεις

- Λογικό ΚΑΙ (AND)
 - το αποτέλεσμα είναι 1, μόνο όταν και το A και το B είναι 1
 - 0 AND x = x AND 0 = 0
 - \blacksquare 1 AND x = x AND 1 = x

(x = οποιαδήποτε τιμή, είτε 0 είτε 1)

Πίνακας Αλήθειας

A	В	AND
0	0	0
0	1	0
1	0	0
1	1	1

Παράδειγμα υλοποίησης: η πύλη NAND

Φραγή AND: για να θέσουμε σήμα στο 0

Βασικές Λογικές Πράξεις

Λογικό Ή (OR)

- το αποτέλεσμα είναι 1, όταν το A ή το B ή και τα δύο είναι 1
- -1 OR x = x OR 1 = 1

(x = οποιαδήποτε τιμή, είτε 0 είτε 1)

Πίνακας Αλήθειας

A	В	OR
0	0	0
0	1	1
1	0	1
1	1	1

σύμβολο πύλης Ο Ε

Παράδειγμα υλοποίησης: η πύλη ΝΟΚ

Συγκέντρωση σημάτων με ΟR

Βασικές Λογικές Πράξεις

- Αποκλειστικό Ή (XOR)
 - Το αποτέλεσμα είναι 1, όταν μόνο το A ή μόνο το B είναι 1
 - Ορίζεται και ως A XOR B = A·B' + A'·B
 - 1 XOR x = x XOR 1 = NOT x
 - \bullet 0 XOR x = x XOR 0 = x

(x = οποιαδήποτε τιμή, είτε 0 είτε 1)

Πίνακας Αλήθειας

A	В	XOR
0	0	0
0	1	1
1	0	1
1	1	0

σύμβολο πύλης ΧΟΡ

Βασικές Λογικές Πράξεις

- XNOR: Η συμπληρωματική συνάρτηση της XOR
 - Το αποτέλεσμα είναι 1, όταν τα Α και Β είναι όμοια
 - Συνάρτηση «ισοδυναμίας»
 - Ορίζεται και ως Α ΧΝΟR Β = Α⋅Β + Α'⋅Β'

Πίνακας Αλήθειας

A	В	XNOR
0	0	1
0	1	0
1	0	0
1	1	1

Εκτέλεση εντολών λογικών πράξεων

- Κάθε (κεντρική) μονάδα επεξεργασίας προσφέρει εντολές για την εκτέλεση λογικών πράξεων
 - Μεταξύ «λέξεων» δεδομένων που προέρχονται από τους καταχωρητές
 - Οι πράξεις εκτελούνται στις Αριθμητικές Λογικές Μονάδες

Λογικές πράξεις σε ομάδες bits

- Ο υπολογιστής μπορεί να εφαρμόσει λογικές πράξεις στα δεδομένα μας
 - Δεδομένα = σειρές από 0 και 1
 - Όχι όμως σε μεμονωμένα bits
 - Αλλά: σε ομάδες («λέξεις») των 8, 16, 32 ή 64 bits
 ταυτόχρονα

$$A_{n} ... A_{i} ... A_{2} A_{1} A_{0}$$
 op (=AND, OR,XOR)
 $B_{n} ... B_{i} ... B_{2} B_{1} B_{0}$
 $Y_{n} ... Y_{i} ... Y_{2} Y_{1} Y_{0}$
 $Y_{i} = A_{i} \text{ op } B_{i}$

Ο τελεστής ΝΟΤ σε δυαδικούς αριθμούς

- Η έξοδος Y_i εξαρτάται μόνο από την είσοδο A_i

Ο τελεστής ΑΝΟ σε δυαδικούς αριθμούς

Ο τελεστής ΟR σε δυαδικούς αριθμούς

Μάσκες

- Για να αλλάξουμε την τιμή μεμονωμένων bits μέσα σε μια λέξη (bits εισόδου)
 - Για να θέσουμε συγκεκριμένα bits σε 1
 - Για να θέσουμε συγκεκριμένα bits σε 0
 - Για να αντιστρέψουμε συγκεκριμένα bits
 - Χωρίς όμως να επηρεάζουμε τα υπόλοιπα!
 - ο αυτά διατηρούν την τιμή τους, είτε 0 είτε 1
- Μάσκα: σειρά bits, επιλεγμένη ώστε:
 - Bits Εισόδου ορ Μάσκα \rightarrow Νέα ομάδα bits
 - op = AND, OR $\dot{\eta}$ XOR
 - Η νέα ομάδα περιέχει το επιθυμητό αποτέλεσμα

Μάσκα AND: για να θέσουμε bits στο 0

• Παράδειγμα: σε λέξη των 8 bits να τεθούν σε 0 τα 3 λιγότερο σημαντικά bits.

Λέξη: 1 0 0 1 1 0 1 0 AND

Μάσκα: 11111000

Nέα: 10011000

- Η AND μάσκα περιέχει:
 - 0 στα bits που θα γίνουν 0
 - 1 στα bits που θα παραμείνουν ως έχουν

$$0 \text{ AND } x = 0$$

$$1 \text{ AND } x = x$$

Μάσκα OR: για να θέσουμε bits στο 1

• Παράδειγμα: σε λέξη των 8 bits να τεθούν σε 1 τα bits 0,4 και 5.

Λέξη: 1 0 0 1 1 0 0 0 OR

Μάσκα: 00110001

Nέα: 1 0 1 1 1 0 0 1

- Η OR μάσκα περιέχει:
 - 1 στα bits που θα γίνουν 1
 - 0 στα bits που θα παραμείνουν ως έχουν

$$0 OR x = x$$

$$1 \text{ OR } x = 1$$

Μάσκα XOR: για να αντιστρέψουμε bits

• Παράδειγμα: σε λέξη των 8 bits να αντιστραφούν τα bits 3,6 και 7.

Λέξη: 1 0 0 1 1 0 0 0 XOR

Μάσκα: 1 1 0 0 1 0 0 0

Νέα: 0 1 0 1 0 0 0

- Η ΧΟΚ μάσκα περιέχει:
 - 1 στα bits που θα αντιστραφούν
 - 0 στα bits που θα παραμείνουν ως έχουν

$$0 \text{ XOR } x = x$$

$$1 \text{ XOR } x = x'$$

Ολίσθηση (Shift)

- Τυπικά δεν είναι πράξη της δυαδικής λογικής
 - Είναι όμως μια πολύ χρήσιμη και γρήγορη λειτουργία για πολλαπλασιασμό ή διαίρεση με δυνάμεις του 2 (2,4,8...)
 - Στο άκρο που «αδειάζει» εισάγεται το 0
 - Αν εισάγουμε το άλλο άκρο (που «χάνεται») έχουμε περιστροφή (rotation)

αριστερή ολίσθηση

δεξιά ολίσθηση