# WHAT ARE EARTH SYSTEM MODELS USED FOR?

CLIM 670 EARTH SYSTEM MODELING

**FEBRUARY 6, 2020** 

Cristiana Stan

## **LEARNING OUTCOMES**

- Understand the approaches used in the design of general circulation models and forecast systems
- Able to apply course information and skills to a real world situation

# WHAT IS A GENERAL CIRCULATION MODEL (GCM)? CLIMATE MODEL, COUPLED GCM (CGCM), ATMOSPHERIC GCM (AGCM)

#### Complex Definition

A discrete form of the Navier-Stokes equations applied to the motion field of atmosphere, ocean, land surface, and ice in response to the solar energy and abide the fundamental physical principles such as the first law of thermodynamics, Stefan-Boltzman law, and Clausius-Clapeyron equation.

#### Simple Definition

A collection of numerical methods that describe processes in the atmosphere, oceans, land surface, and ice, along with their interactions.

# WHAT IS A CLIMATE MODEL? GENERAL CIRCULATION MODEL (GCM), COUPLED GCM (CGCM)

#### Complex Definition

A discrete form of the Navier-Stokes equations applied to the motion field of atmosphere, ocean, land surface, and ice in response to the solar energy and abide the fundamental physical principles such as the first law of thermodynamics, Stefan-Boltzman law, and Clausius-Clapeyron equation.

#### Simple Definition

A collection of numerical methods that describe processes in the atmosphere, oceans, land surface, and ice, along with their interactions.

## WHAT IS A CLIMATE MODEL?

#### Complex Definition

A discrete form of the Navier-Stokes equations applied to the motion field of atmosphere, ocean, land surface, and ice in response to the solar energy and abide the fundamental physical principles such as the first law of thermodynamics, Stefan-Boltzman law, and Clausius-Clapeyron equation.

#### Simple Definition

A collection of numerical methods that describe processes in the atmosphere, oceans, land surface, and ice, along with their interactions.

# ATMOSPHERIC MODEL ATMOSPHERIC GENERAL CIRCULATION MODEL (AGCM)

- I.A set of *numerical methods* describing only processes in which the atmospheric fluid does not undergo phase changes **dry dynamical core**.
- 2. A set of *numerical methods* describing small-scale processes such as clouds, aerosol, turbulence, radiation, and their interactions **model physics**.
- 3. A set of *properties* describing the interactions between the atmosphere and the other components of the climate model **boundary conditions**.

- I. Set of *numerical methods* describing only processes in which the atmospheric fluid does not undergo phase changes **dry dynamical core**.
- 2. Set of *numerical methods* describing small-scale processes such as clouds, aerosol, turbulence, radiation, and their interactions **model physics**.
- 3. Set of *properties* describing the interactions between the atmosphere and the other components of the climate model.

## DRY DYNAMICAL CORE

- Grid that the model equations are discretized on.
- Conservative properties: dry mass, possibly energy and angular momentum.
- Requires a mix of numerical analysis, geophysical fluid dynamics, and computational science.

# DRY DYNAMICAL CORE EXAMPLES

Gaussian

Reduced Gaussian



**Cubed Sphere** 



# DRY DYNAMICAL CORE EXAMPLES



# HOW DO THE GRIDS COMPARE?



Test of correlated tracers: http://earthsystemcog.org/projects/dcmip-2012

- I. Set of *numerical methods* describing only processes in which the atmospheric fluid does not undergo phase changes **dry dynamical core**.
- 2. Set of *numerical methods* describing small-scale processes such as clouds, turbulence, radiation, and their interactions **model physics**.
- 3. Set of *properties* describing the interactions between the atmosphere and the other components of the climate model **boundary conditions**.

- 1. Set of *numerical methods* describing only processes in which the atmospheric fluid does not undergo phase changes **dry dynamical core**.
- 2. Set of *numerical methods* describing small-scale processes such as clouds, aerosol, turbulence, radiation, aerosol, and their interactions **model physics**.
- 3. Set of *properties* describing the interactions

2. Set of *numerical methods* describing small-scale processes such as clouds, turbulence, radiation, and their interactions – model physics.

### MODEL PHYSICS/CLOUDS REPRESENTATION

- I. Conventional Parameterizations: statistical effects of small-scale processes on the large scales are represented in terms of the atmospheric state on scales on the order of the grid box size.
- 2. **Stochastic Parameterizations:** extension of conventional parameterizations to include a stochastic process.
- 3. Global cloud resolving models: models with the grid box size that allows representation of small-scale processes by making direct use of equations that govern them.
- 4. Super-parameterization: bridges the gap between the conventional and stochastic parameterizations and global cloud resolving models.
- **5. Machine Learning Parametrizations:** emulation of observed or simulated cloud parameters using data driven Al techniques.

- I. Set of *numerical methods* describing only processes in which the atmospheric fluid does not undergo phase changes **dry dynamical core**.
- 2. Set of *numerical methods* describing small-scale processes such as clouds, aerosol, turbulence, radiation, and their interactions **model physics**.
- 3. Set of *properties* describing the interactions between the atmosphere and the other components of the climate model **boundary conditions**.

- 1. Set of *numerical methods* describing only processes in which the atmospheric fluid does not undergo phase changes **dry dynamical core**.
- 2. Set of *numerical methods* describing small-scale processes such as clouds, turbulence, radiation, and their interactions **model physics**.
- 3. Set of *properties* describing the interactions between the atmosphere and the other components of the climate model **boundary conditions**.

## **BOUNDARY CONDITIONS**

- Fixed: uncoupled GCM
  - Observed climatology
  - Time varying observations
- Dynamical Models: coupled GCM
  - Land model
  - Ocean model
  - Sea-ice model





### WHAT ARE GENERAL CIRCULATION MODELS USED FOR?

- I. Design numerical experiments to help us understand how the climate system varies on time scales from a few weeks to multi-decadal, and how human activity is affecting the Earth's climate.
  - Read the two articles:
    - Mrinmoy Majumder, 2010: Introduction to Climate Change and Climate Models in "Impact of Climate Change on Natural Resource Management", B.K. Jana and M. Majumder (eds.).DOI 10.1007/978-90-481-3581-3\_23, © Springer Science+Business Media B.V. 2010
    - Antonello Provenzale, 2014: Climate Models, Rend. Fis. Acc. Lincei, 25:49–58. DOI 10.1007/s12210-013-0268-7
- Weather and climate forecasts
  - Need to know the current state or initial conditions
  - Forecast system = Data Assimilation System (DA) + Numerical Model (GCM)

# UNIFIED FORECAST SYSTEM (UFS)



# UNIFIED FORECAST SYSTEM (UFS)

|                         | Atm | Land | Ocean | Sea Ice | Aerosol | Ionosphere | Storm Surge | Wave |
|-------------------------|-----|------|-------|---------|---------|------------|-------------|------|
| Medium-Range<br>Weather |     |      |       |         |         |            |             |      |
| S2S                     |     |      |       |         |         |            |             |      |
| Hurricane               |     |      |       |         |         |            |             |      |
| Short-Range<br>Weather  |     |      |       |         |         |            |             |      |
| Space Weather           |     |      |       |         |         |            |             |      |
| Coastal                 |     |      |       |         |         |            |             |      |
| Air Quality             |     |      |       |         |         |            |             |      |