UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE ENGENHARIA ELÉTRICA CURSO DE ENGENHARIA ELÉTRICA

Professor: William Caires Silva Amorim

ELT 227 - Laboratório de Circuitos Elétricos II

Nome:	Mat.:	Data:	/	/

Resposta em frequência

Introdução:

Obter a resposta de frequência da função de transferência é uma tarefa árdua. O intervalo de frequência necessário na resposta de frequência, muitas vezes, é tão extenso que não é conveniente o uso de uma escala linear para o eixo das frequências. Além disso, existe uma maneira mais sistemática de se localizar as características importantes dos gráficos de amplitude e fase da função de transferência. Por tais razões, tornou-se prática comum representar graficamente a função de transferência em um par de gráficos: a amplitude é representada graficamente versus o logaritmo da frequência; em outro gráfico, a fase (em graus) é representada graficamente versus o logaritmo da frequência.

Objetivos:

Análise da resposta em frequência aplicado em circuitos elétricos.

Material utilizado:

- resistores;
- capacitores;
- indutores;
- Fonte c.c.;
- Multímetro;

Roteiro:

- 1) Encontre a função de transferência (FT) do circuito apresentado abaixo, para os tipos:
 - a) Ganho de tensão (H(s) = Vo(s)/Vi(s));
 - b) Ganho de corrente (H(s) = Io(s)/Ii(s));
 - c) Impedância de Transferência (H(s) = Vo(s)/Ii(s));
 - d) Admitância de Transferência (H(s) = Io(s)/Vi(s));

Obs.: Considere a tensão de saída e corrente de saída do circuito no resistor de 6 Ω .

- Esboce a resposta em frequência para as quatro funções de transferência obtidas (amplitude e fase);
- Identificar os polos e zeros de cada função de transferência;

- Valide a FT encontrada em cada item (em amplitude e fase), realizando a simulação do circuito elétrico com pelo menos um ponto de frequência de operação.
- 2) Para o circuito apresentado abaixo, pede-se:

- a) Encontre a impedância de transferência (FT) do circuito;
- b) Encontre o valor da frequência aonde o módulo da FT é máximo;
- c) Analise o comportamento da amplitude e fase da FT quando $\omega \to \infty$ e $\omega \to 0$;
- d) Confirme os pontos pedidos no item b) e c), plotando a FT encontrada em amplitude e em fase.
- 3) Pesquise e discuta sobre o efeito da ressonância em um circuito RLC série, detalhando os seguintes parâmetros:
 - Frequência de ressonância;
 - Fator de qualidade;
 - Largura de banda;
 - Frequência de meia potência.
- a) Assuma um valor para a resistência, capacitância e indutância do circuito e plote a resposta em frequência da impedância RLC série;
- b) No gráfico gerado indique a frequência de ressonância, frequências de meia potência e largura de banda.
- c) Simule o circuito e confirme o efeito de ressonância.