Generalized Linear Model

A linear model $Y=Xoldsymbol{eta}+arepsilon$ can be equivalently expressed as

$$Y|X \sim N(\mu, \sigma^2),$$

 $\mu = X\beta, \quad \beta \in (-\infty, \infty).$

The model specifies

- ▶ the response variable is continuous and *normally* distributed.
- ritten as a linear combination of the covariates.

A generalized linear model (GLM) generalizes normal linear regression models to address a broader class of data structures.

- ▶ Instead of being normal, the response variable *Y* could have any distribution from the **exponential family** distributions.
- ▶ The mean $\mu = \mathbb{E}(Y|X)$ may be a more general function of $X\beta$, rather than an identify function.

$$g(\mu) = X\beta$$

Examples

Disease Occurring Rate:

- ▶ In the early stages of a disease epidemic, the rate at which new cases occur can often increase exponentially through time.
- ▶ We are interested in predicting the number of new cases y_i on day x_i .
- Since y_i is count-valued, we may use the Poisson distribution to model it.
- ▶ Let μ_i be the expected number of new cases on day x_i . Based on the description, the following model seems reasonable.

$$\mu_i = \beta_0 \exp(\beta_1 x_i)$$

Kyphosis Data:

- Children are followed up after corrective spinal surgeries. We are interested in the relationship between clinical covariates and postoperative deforming.
- ▶ Binary response: presence or absence of a postoperative deforming (denoted by a binary variable y_i)

$$y_i \sim Bernoulli(\pi_i)$$

▶ Assume log odds of deforming is associated with the linear predictor:

$$\log \frac{\pi_i}{1 - \pi_i} = X_i \beta$$

The Basics of GLM

We can view the traditional linear model $Y|X \sim N(X\beta, \sigma^2)$ as a combination of three components,

1. a systematic component (or linear predictor):

$$\eta = X\beta$$
,

2. a random component:

$$Y|X \sim \text{Normal}$$
,

$$\mathbb{E}(Y|X) = \mu, \ \operatorname{var}(Y|X) = \sigma^2,$$

3. a link function (an identify link):

$$\mu = \eta$$
.

- ► GLM generalizes both the random component and the link function.
- ▶ As for the random component, the focus is on distributions in the exponential family, which include many useful special cases such as Normal, Poisson, Gamma, Binomial, etc.
- ▶ As for the link function, the focus is to extend the identity link to other *monotone* functions such as reciprocal, log, probit, logit functions, etc. The specific choices depend on real situations.
- ► Tip: Always keep in mind: linear regression is a special case of GLM (with normal distribution and identity link)

Link function

Suppose y has a density from an exponential family:

$$f(y; \theta, \phi) = e^{\frac{y\theta - b(\theta)}{\phi} + c(y, \phi)}.$$

For *n* observations, $(y_i, x_{i1}, \dots, x_{ip})$, $i = 1, \dots, n$

- $\eta_i = \sum_{j=1}^p x_{ij}\beta_j$ is the linear predictor.
- ▶ $\beta = (\beta_1, \dots, \beta_p)'$ is the parameter of interest, and needs to appear somehow in the likelihood function.
- A link function g relates the linear predictor η_i to the mean parameter μ_i :

$$\eta_i = g(\mu_i)$$

- lacktriangle With a little abuse of notation, sometimes we write $oldsymbol{\eta}=g(oldsymbol{\mu})$ to represent entry-wise mapping
- g is required to be monotone increasing and differentiable.

$$\mu = g^{-1}(\eta) = g^{-1}(X\beta).$$

It's generally preferred that the image of g is \mathbb{R} . (The domain depends on the exponential family.)

Examples of link functions:

▶ If μ is unbounded (e.g., Normal distribution), may use identity link

$$g(\mu) = \mu = \eta$$

▶ If μ is positive (e.g., Poisson, Exponential), may use log link

$$g(\mu) = \log(\mu)$$

- ▶ If μ is bounded (e.g., Binomial, Bernoulli), without loss of generality, consider $0 < \mu < 1$:
 - logit link: $g(\mu) = logit(\mu) = \log \frac{\mu}{1-\mu}$;
 - probit link: $g(\mu) = \Phi^{-1}(\mu)$;
 - complimentary log-log link: $g(\mu) = \log(-\log(1-\mu))$.

Canonical Link Functions

Parameter relations:

$$\theta \longleftarrow \mu = \mathbb{E}(y) \longrightarrow \eta$$

Can we connect the natural parameter θ with the linear predictor?

- ▶ Canonical Link: the special link function g which makes $\theta = \eta$.
- $g(\mu) = \eta = \theta = {b'}^{-1}(\mu)$, namely

$$g=(b')^{-1}$$

▶ We know b' is strictly increasing and differentiable, so its inverse is a valid link function.

Examples

- ▶ Normal: Identity link $g(\mu) = \mu$
- ▶ Poisson: Log link $g(\lambda) = \log(\lambda)$
- ▶ Binary: Logit link $g(\pi) = \log \frac{\pi}{1-\pi}$
- Exponential: Negative reciprocal link $g(\mu) = -1/\mu$

GLM Model Fitting

- ▶ In GLM of (y, X) with a given link function, we can write out the likelihood function as a function of β
- ▶ To estimate β , we use maximum likelihood (ML) approach
- ightharpoonup However, unlike LM, no closed-form MLE for $oldsymbol{eta}$
- Need to maximize the log likelihood function numerically
 - Newton-Raphson method
 - Fisher-Scoring method
 - Iteratively reweighted least squares (IRLS) algorithm

Example (Logistic Regression)

Suppose $y_i \sim Bin(1, p_i)$, i = 1, ..., n, are independent 0/1 indicator responses, and x_i denote a $p \times 1$ vector of predictors for individual i. The log likelihood is as follows

$$I(y|\beta) = \sum_{i=1}^{n} \log \left[p_i^{y_i} (1 - p_i)^{(1 - y_i)} \right]$$

$$= \sum_{i=1}^{n} y_i \log \left(\frac{p_i}{1 - p_i} \right) - \log \left(\frac{1}{1 - p_i} \right)$$

$$= \sum_{i=1}^{n} (y_i \theta_i - \log(1 + e^{\theta_i})).$$

Choosing the canonical link, the logit link in this case,

$$\eta_i = \theta_i = \log(\frac{p_i}{1 - p_i}) = \mathbf{x}_i^T \boldsymbol{\beta},$$

which leads to

$$I(\mathbf{y}|\boldsymbol{\beta}) = \sum_{i=1}^{n} \{y_i \mathbf{x}_i^T \boldsymbol{\beta} - \log(1 + e^{\mathbf{x}_i^T \boldsymbol{\beta}})\}.$$

No closed-form MLE!

