

Application Note

AN_324

FT900 User Manual

Version 1.2

Issue Date: 2017-03-30

This document provides details about the peripherals of the FT900 as well as the general system registers

Use of Bridgetek devices in life support and/or safety applications is entirely at the user's risk, and the user agrees to defend, indemnify and hold Bridgetek harmless from any and all damages, claims, suits or expense resulting from such use.

Table of Contents

1 Introduction	15
2 FT900 System Architecture	16
2.1 Architecture overview	16
2.2 Memory organization	17
2.3 FT900 Boot Control	
2.4 Debugging Support	
3 Register Map	19
4 Notations	21
5 General System Registers	22
5.1 Register Summary	22
5.2 Register Details	24
5.2.1 HIPID - Chip ID Register (address offset: 0x00)	24
5.2.2 EFCFG - Chip Configuration Register (address offset: 0x04)	24
5.2.3 CLKCFG - Clock Configuration Register (address offset: 0x08)	25
5.2.4 PMCFG - Power Management Register (address offset: 0x0C)	25
5.2.5 PTSTNSET - Test & Set Register (address offset: 0x10)	27
5.2.6 PTSTNSETR - Test & Set Shadow Register (address offset: 0x14)	27
5.2.7 MSCOCFG - Miscellaneous Configuration Register (address offset: 0x18)	27
5.2.8 GPIO Pin Configuration Registers (address offset: 0x1C - 0x5F)	29
5.2.9 GPIO Configuration Registers (address offset: 0x60 - 0x83)	34
5.2.10 GPIO Value Registers (address offset: 0x84 - 0x8F)	37
5.2.11 GPIO Interrupt Enable Registers (address offset: 0x90 - 0x9B)	38
5.2.12 Interrupt Pending Registers (address offset: 0x9C - 0xA7)	38
5.2.13 ETH_PHY_CFG - Ethernet PHY Miscellaneous Configuration Register (add 0xA8)	
5.2.14 ETH_PHY_ID - Ethernet PHY ID Register (address offset: 0xAC)	39
5.2.15 DAC_ADC_CONF - ADC/DAC Configuration/Status Register (address offs	et: 0xB0) 39
5.2.16 DAC_ADC_CNT - ADC/DAC Count Register (address offset: 0xB4)	41
5.2.17 DAC_ADC_DATA - ADC/DAC Data Register (address offset: 0xB8)	41
6 Interrupt Controller	42

	6.1 Register Summary	43
(6.2 Register Details	44
	6.2.1 IRQ00-03 Assignment Register (address offset: 0x00)	. 44
	6.2.2 IRQ04-07 Assignment Register (address offset: 0x04)	. 44
	6.2.3 IRQ08-11 Assignment Register (address offset: 0x08)	. 44
	6.2.4 IRQ12-15 Assignment Register (address offset: 0x0C)	. 45
	6.2.5 IRQ16-19 Assignment Register (address offset: 0x10)	. 45
	6.2.6 IRQ20-23 Assignment Register (address offset: 0x14)	. 45
	6.2.7 IRQ24-27 Assignment Register (address offset: 0x18)	. 45
	6.2.8 IRQ28-31 Assignment Register (address offset: 0x1C)	. 46
	6.2.9 IRQ Control Register (address offset: 0x20)	. 46
7	EFUSE	47
-	7.1 Introduction	47
-	7.2 EFUSE Operation	47
	7.3 EFUSE bits	
	USB Host	
	8.1 Register Summary	
	8.2 EHCI Operational Registers	
•		50
	8.2.1 HC Capability Register (address offset: 0x00)	. 50
	8.2.1 HC Capability Register (address offset: 0x00)	. 50 . 50
	8.2.1 HC Capability Register (address offset: 0x00)	. 50 . 50 . 50
	8.2.1 HC Capability Register (address offset: 0x00)	. 50 . 50 . 50 . 51
	8.2.1 HC Capability Register (address offset: 0x00)	. 50 . 50 . 50 . 51 . 52
	8.2.1 HC Capability Register (address offset: 0x00)	. 50 . 50 . 50 . 51 . 52 . 53
	8.2.1 HC Capability Register (address offset: 0x00)	. 50 . 50 . 51 . 52 . 53
	8.2.1 HC Capability Register (address offset: 0x00)	. 50 . 50 . 50 . 51 . 52 . 53 . 54
	8.2.1 HC Capability Register (address offset: 0x00)	. 50 . 50 . 50 . 51 . 52 . 53 . 54
8	8.2.1 HC Capability Register (address offset: 0x00)	. 50 . 50 . 50 . 51 . 52 . 53 . 54 . 54
8	8.2.1 HC Capability Register (address offset: 0x00)	. 50 . 50 . 50 . 51 . 52 . 53 . 54 . 54 . 55
8	8.2.1 HC Capability Register (address offset: 0x00)	. 50 . 50 . 50 . 51 . 52 . 53 . 54 . 54 . 55 56

	8.4 USB Host Testing Registers	.59
	8.4.1 Vendor Specific IO Control Register (address offset: 0x54)	59
	8.4.2 Vendor Specific Status Register (address offset: 0x58)	59
	8.4.3 Test Register (address offset: 0x50)	59
	8.4.4 HC_RSRV1 - Reserved 1 Register (address offset: 0x70)	60
	8.4.5 HC_RSRV2 - Reserved 2 Register (address offset: 0x74)	60
9	USB peripheral	61
	9.1 Register Summary	.61
	9.2 Initialization Registers	.63
	9.2.1 DC_ADDRESS_ENABLE - Address Register (address offset: 0x18)	
	9.2.2 DC_MODE - Mode Register (address offset: 0x10)	
	9.2.3 DC_INT_ENABLE - Interrupt Enable Register (address offset: 0x08)	
	9.2.4 DC_EP_INT_ENABLE - Endpoints Interrupt Enable Register (address offset: 0x0C) .	64
	9.3 Control Endpoint Data flow Registers	.64
	9.3.1 DC_EP0_CONTROL - Endpoint 0 Control Register (address offset: 0x1C)	64
	9.3.2 DC_EP0_STATUS - Endpoint 0 Status Register (address offset: 0x20)	64
	9.3.3 DC_EP0_BUFFER_LENGTH - Endpoint 0 Buffer Length Register (address offset: 0x2	4) 65
	9.3.4 DC_EP0_BUFFER - Endpoint 0 Buffer Register (address offset: 0x28)	65
	9.4 Other Endpoint Data Flow Registers	.66
	9.4.1 DC_EP(x)_CONTROL - Endpoint Control Registers (address offset: 0x2C/0x3C/0x4C/0x5C/0x6C/0x7C/0x8C)	66
	9.4.2 DC_EP(x)_STATUS - Endpoint Status Registers (address offset: 0x30/0x40/0x50/0x60/0x70/0x80/0x90)	66
	9.4.3 DC_EP(x)_BUFFER_LENGTH_LSB - Endpoint Buffer Length LSB Registers (address offset: 0x34/0x44/0x54/0x64/0x74/0x84/0x94)	
	9.4.4 DC_EP(x)_BUFFER_LENGTH_MSB - Endpoint Buffer Length MSB Registers (address offset: 0x35/0x45/0x55/0x65/0x75/0x85/0x95)	
	9.4.5 DC_EP(x)_BUFFER - Endpoint Buffer Registers (address offset: 0x38/0x48/0x58/0x68/0x78/0x88/0x98)	68
	9.5 General Registers	.68
	9.5.1 DC_INT_STATUS - Interrupt Status Register (address offset: 0x00)	68
	9.5.2 DC_EP_INT_STATUS - Endpoints Interrupt Status Register (address offset: 0x04)	69
	9.5.3 DC_FRAME_NUMBER_LSB - Frame Number LSB Register (address offset: 0x14)	69
	9.5.4 DC_FRAME_NUMBER_MSB - Frame Number MSB Register (address offset: 0x15)	69
1	0 Ethernet	70

10.1	Register Summary7	1
10.2	Register Details7	2
10.2	2.1 ETH_INT_STATUS - Interrupt Status Register (address offset: 0x0)	72
10.2	2.2 ETH_INT_ENABLE - Interrupt Enable Register (address offset: 0x1)	73
10.2	2.3 ETH_RX_CNTL - Receive Control Register (address offset: 0x02)	73
10.2	2.4 ETH_TX_CNTL - Transmit Control Register (address offset: 0x03)	74
10.2	2.5 ETH_DATA_N0 - Data Register (octet n) (address offset: 0x04)	74
10.2	2.6 ETH_DATA_N1 - Data Register (octet n+1) (address offset: 0x05)	74
10.2	2.7 ETH_DATA_N2 - Data Register (octet n+2) (address offset: 0x06)	75
10.2	2.8 ETH_DATA_N3 - Data Register (octet n+3) (address offset: 0x07)	75
10.2	2.9 ETH_ADDR_1 - Address Register (octet 1) (address offset: 0x08)	75
10.2	2.10 ETH_ADDR_2 - Address Register (octet 2) (address offset: 0x09)	75
10.2	2.11 ETH_ADDR_3 - Address Register (octet 3) (address offset: 0x0A)	75
10.2	2.12 ETH_ADDR_4 - Address Register (octet 4) (address offset: 0x0B)	75
10.2	2.13 ETH_ADDR_5 - Address Register (octet 5) (address offset: 0x0C)	75
10.2	2.14 ETH_ADDR_6 - Address Register (octet 6) (address offset: 0x0D)	75
10.2	2.15 ETH_THRESHOLD - Threshold Register (address offset: 0x0E)	77
10.2	2.16 ETH_MNG_CNTL – Management Control Register (address offset: 0x0F)	77
10.2	2.17 ETH_MNG_DIV - Management Divider Register (address offset: 0x10)	77
10.2	2.18 ETH_MNG_ADDR – Management Address Register (address offset: 0x11)	77
10.2	2.19 ETH_MNG_TX0 – Management Transmit Data 0 Register (address offset: 0x12)	78
10.2	2.20 ETH_MNG_TX1 – Management Transmit Data 1 Register (address offset: 0x13)	78
10.2	2.21 ETH_MNG_RX0 – Management Receive Data 0 Register (address offset: 0x14)	78
10.2	2.22 ETH_MNG_RX1 – Management Receive Data 1 Register (address offset: 0x15)	78
10.2	2.23 ETH_NUM_PKT - Number of Packets Register (address offset: 0x16)	78
10.2	2.24 ETH_TR_REQ - Transmission Request Register (address offset: 0x17)	79
1 C/	AN Bus Controller8	0
11.1	Register Summary8	1
	Register Details8	
	2.1 CAN_MODE - Mode Register (address offset: 0x00)	
	2.2 CAN_CMD - Command Register (address offset: 0x00)	
	2.3 CAN_STATUS - Status Register (address offset: 0x02)	
	2.4 CAN_INT_STATUS - Interrupt Status Register (address offset: 0x03)	
	2.5 CAN_INT_ENABLE - Interrupt Enable Register (address offset: 0x04)	
11.2	1.5 Grit_111_LIADEL Interrupt Eliable Register (address offset, 0x04)	رر

	11.2.6 CAN_RX_MSG - Receive Message Register (address offset: 0x05)	. 86
	11.2.7 CAN_BUS_TIM_0 - Bus Timing 0 Register (address offset: 0x06)	. 86
	11.2.8 CAN_BUS_TIM_1 - Bus Timing 1 Register (address offset: 0x07)	. 86
	11.2.9 CAN_TX_BUF - Transmit Buffer Register	. 87
	11.2.10 CAN_RX_BUF - Receive Buffer Register	. 88
	11.2.11 CAN Acceptance Filter	. 89
	CAN_ERR_CODE - Error Code Capture Register (address offset: 0x18)	. 92
	11.2.12	. 92
	CAN_RX_ERR_CNTR - Receive Error Counter Register (address offset: 0x19)	. 92
	11.2.13	. 92
	CAN_TX_ERR_CNTR - Transmit Error Counter Register (address offset: 0x1A)	. 92
	11.2.14	. 92
	CAN_ARB_LOST_CODE - Arbitration Lost Code Capture Register (address offset: 0x1B)	. 92
	11.2.15	. 92
12	2 SD Host	94
	L2.1 Register Summary	
1	L2.2 Register Details	
	12.2.1 SDH_AUTO_CMD23_ARG2 – Auto CMD23 Argument 2 Register (address offset: 0x0	-
	12.2.2 SDH_BLK_SIZE - Block Size Register (address offset: 0x04)	
	12.2.3 SDH_BLK_COUNT - Block Count Register (address offset: 0x06)	
	12.2.4 SDH_ARG_1 - Argument 1 Register (address offset: 0x08)	
		. ,
		. 97
	12.2.5 SDH_TNSFER_MODE - Transfer Mode Register (address offset: 0x0C)	
	12.2.5 SDH_TNSFER_MODE - Transfer Mode Register (address offset: 0x0C)	. 98
	12.2.5 SDH_TNSFER_MODE - Transfer Mode Register (address offset: 0x0C)	. 98 . 99
	12.2.5 SDH_TNSFER_MODE - Transfer Mode Register (address offset: 0x0C)	. 98 . 99 . 99
	12.2.5 SDH_TNSFER_MODE - Transfer Mode Register (address offset: 0x0C)	. 98 . 99 . 99 . 99
	12.2.5 SDH_TNSFER_MODE - Transfer Mode Register (address offset: 0x0C)	. 98 . 99 . 99 . 99 101
	12.2.5 SDH_TNSFER_MODE - Transfer Mode Register (address offset: 0x0C)	. 98 . 99 . 99 . 99 101
	12.2.5 SDH_TNSFER_MODE - Transfer Mode Register (address offset: 0x0C)	. 98 . 99 . 99 . 99 101 102
	12.2.5 SDH_TNSFER_MODE - Transfer Mode Register (address offset: 0x0C)	. 98 . 99 . 99 . 99 101 102 103
	12.2.5 SDH_TNSFER_MODE - Transfer Mode Register (address offset: 0x0C)	. 98 . 99 . 99 . 99 101 102 103
	12.2.5 SDH_TNSFER_MODE - Transfer Mode Register (address offset: 0x0C)	. 98 . 99 . 99 . 99 101 102 103 103

12.2.17 SDH_ERR_INT_STATUS - Error Interrupt Status Register (address offset: 0x32)104
12.2.18 SDH_NRML_INT_ENABLE - Normal Interrupt Status Enable Register (address offset: 0x34)
12.2.19 SDH_ERR_INT_ENABLE - Error Interrupt Status Enable Register (address offset: 0x36)
12.2.20 SDH_NRML_INT_SGNL_ENABLE - Normal Interrupt Signal Enable Register (address offset: 0x38)
12.2.21 SDH_ERR_INT_SGNL_ENABLE - Error Interrupt Signal Enable Register (address offset: 0x3A)
12.2.22 SDH_AUTO_CMD12_ERR_STATUS - Auto CMD12 Error Status Register (address offset: 0x3C)
12.2.23 SDH_HOST_CNTL_2 - Host Control 2 Register (address offset: 0x3E)108
12.2.24 SDH_CAP_1 - Capabilities Register 1 (address offset: 0x40)108
12.2.25 SDH_CAP_2 - Capabilities Register 2 (address offset: 0x44)109
12.2.26 SDH_RSRV_1 - Reserved 1 Register (address offset: 0x48)110
12.2.27 SDH_RSRV_2 - Reserved 2 Register (address offset: 0x4C)110
12.2.28 SDH_FORCE_EVT_CMD_ERR_STATUS - Force Event Register for Auto CMD Error Status (address offset: 0x50)
12.2.29 SDH_FORCE_EVT_ERR_INT_STATUS - Force Event for Error Interrupt Status Register (address offset: 0x52)
12.2.30 SDH_RSRV_3 - Reserved 3 Register (address offset: 0x54)111
12.2.31 SDH_RSRV_4 - Reserved 4 Register (address offset: 0x58)112
12.2.32 SDH_PRST_INIT - Preset value for initialization (address offset: 0x60)112
12.2.33 SDH_PRST_DFLT_SPD - Preset value for default speed (address offset: 0x62)112
12.2.34 SDH_PRST_HIGH_SPD - Preset value for the high speed (address offset: 0x64)112
12.2.35 SDH_PRST_SDR12 - Preset value for SDR12 (address offset: 0x66)113
12.2.36 SDH_PRST_SDR25 - Preset value for SDR25 (address offset: 0x68)113
12.2.37 SDH_PRST_SDR50 - Preset value for SDR50 (address offset: 0x6A)114
12.2.38 SDH_PRST_SDR104 - Preset value for SDR104 (address offset: 0x6C)114
12.2.39 SDH_PRST_DDR50 - Preset value for DDR50 (address offset: 0x6E)115
12.2.40 SDH_RSRV_5 - Reserved 5 Register (address offset: 0xFC)115
12.2.41 SDH_HC_VER - Host Controller Version Register (address offset: 0xFE)115
12.2.42 SDH_VNDR_0 - Vendor-defined 0 Register (address offset: 0x100)115
12.2.43 SDH_VNDR_1 - Vendor-defined 1 Register (address offset: 0x104)116
12.2.44 SDH_VNDR_2 - Vendor-defined 2 Register (address offset: 0x108)117
12.2.45 SDH_VNDR_3 - Vendor-defined 3 Register (address offset: 0x10C)117
12.2.46 SDH_VNDR_4 - Vendor-defined 4 Register (address offset: 0x110)117
12.2.47 SDH_VNDR_5 - Vendor-defined 5 Register (address offset: 0x114)117

12.2.48 SDH_VNDR_6 - Vendor-defined 6 Register (address offset: 0x118)11	8
12.2.49 SDH_VNDR_7 - Vendor-defined 7 Register (address offset: 0x11C)11	8
12.2.50 SDH_VNDR_8 - Vendor-defined 8 Register (address offset: 0x120)11	8
12.2.51 SDH_VNDR_9 - Vendor-defined 9 Register (address offset: 0x124)11	8
12.2.52 SDH_RSRV_6 - Reserved 6 Register (address offset: 0x128)11	8
12.2.53 SDH_HW_ATTR - Hardware Attributes Register (address offset: 0x178)11	9
12.2.54 SDH_CPR_MOD_CNTL - Cipher Mode Control Register (address offset: 0x180)11	9
12.2.55 SDH_CPR_MOD_STATUS - Cipher Mode Status Register (address offset: 0x184)12	0
12.2.56 SDH_CPR_MOD_STATUS_EN - Cipher Mode Status Enable Register (address offset: 0x188)12	0
12.2.57 SDH_CPR_MOD_SIG_EN - Cipher Mode Signal Enable Register (address offset: 0x18A)12	0
12.2.58 SDH_IN_DATA_LSB -Input Data LSB Register (address offset: 0x18C)12	0
12.2.59 SDH_IN_DATA_MSB -Input Data MSB Register (address offset: 0x190)12	1
12.2.60 SDH_IN_KEY_LSB - Input Key LSB Register (address offset: 0x194)12	1
12.2.61 SDH_IN_KEY_MSB - Input Key MSB Register (address offset: 0x198)12	1
12.2.62 SDH_OUT_DATA_LSB - Output Data LSB Register (address offset: 0x19C)12	1
	1
12.2.63 SDH_OUT_DATA_MSB - Output Data MSB Register (address offset: 0x1A0)12	
12.2.64 SDH_SCRT_CONS_DATA - Secret Constant Table Data Port (address offset: 0x1A4)	
12.2.64 SDH_SCRT_CONS_DATA – Secret Constant Table Data Port (address offset: 0x1A4)	
12.2.64 SDH_SCRT_CONS_DATA - Secret Constant Table Data Port (address offset: 0x1A4)	
12.2.64 SDH_SCRT_CONS_DATA – Secret Constant Table Data Port (address offset: 0x1A4)	3
12.2.64 SDH_SCRT_CONS_DATA - Secret Constant Table Data Port (address offset: 0x1A4)	3 4
12.2.64 SDH_SCRT_CONS_DATA - Secret Constant Table Data Port (address offset: 0x1A4)	3 4 6
12.2.64 SDH_SCRT_CONS_DATA - Secret Constant Table Data Port (address offset: 0x1A4) 12.3.1 Register Summary	3 4 6 8
12.2.64 SDH_SCRT_CONS_DATA - Secret Constant Table Data Port (address offset: 0x1A4) 12.3.1 Register Summary	3 4 6 8
12.2.64 SDH_SCRT_CONS_DATA - Secret Constant Table Data Port (address offset: 0x1A4) 12.3.1 Register Summary	3 4 6 8 8
12.2.64 SDH_SCRT_CONS_DATA - Secret Constant Table Data Port (address offset: 0x1A4) 12.3.1 Register Summary	3 4 6 8 8 8
12.2.64 SDH_SCRT_CONS_DATA - Secret Constant Table Data Port (address offset: 0x1A4) 12.3.1 Register Summary 13.2 UART MODE SELECTION 13.3 STANDARD 550 COMPATIBLE REGISTERS 13.3.1 UART_RBR - Receiver Buffer Register (address offset: 0x00 and LCR[7] = 0)	3 4 6 8 8 8 8
12.2.64 SDH_SCRT_CONS_DATA - Secret Constant Table Data Port (address offset: 0x1A4) 12.3.1 Register Summary	3 4 6 8 8 8 8
12.2.64 SDH_SCRT_CONS_DATA - Secret Constant Table Data Port (address offset: 0x1A4) 12.3.1 Register Summary	3 4 6 8 8 8 8 8 9
12.2.64 SDH_SCRT_CONS_DATA - Secret Constant Table Data Port (address offset: 0x1A4) 12.3.1 Register Summary	3 4 6 8 8 8 8 8 8 9 0
12.2.64 SDH_SCRT_CONS_DATA - Secret Constant Table Data Port (address offset: 0x1A4) 12.13 UART	3 4 6 8 8 8 8 9 0 2
12.2.64 SDH_SCRT_CONS_DATA - Secret Constant Table Data Port (address offset: 0x1A4) 12.3.1 QART	3 4 6 8 8 8 8 9 0 2 3
12.2.64 SDH_SCRT_CONS_DATA - Secret Constant Table Data Port (address offset: 0x1A4) 12.3 UART	3 4 6 8 8 8 8 8 9 0 2 3 4 4

14	Timers and Watchdog:	148
	13.6.20 UART_CKA - Clock Alteration Register (SPR offset: 0x13)	
	13.6.19 UART_PIDX - Port Index Register (SPR offset: 0x12)	
	13.6.18 UART_RSRV_1 - Reserved 1 Register (SPR offset: 0x11)	
	13.6.17 UART_GDS - Good Data Status Register (SPR offset: 0x10)	
	13.6.16 UART_RFC - Readable FCR Register (SPR offset: 0x0F)	
	13.6.15 UART_MDM - Modem Disable Mask Register (SPR offset: 0x0E)	
	13.6.14 UART_NMR - Nine Bit Mode Register (SPR offset: 0x0D)	
	13.6.13 UART_CSR - Channel Software Reset Register (SPR offset: 0x0C)	
	13.6.12 UART_REV - Revision Register (SPR offset: 0x0B)	
	13.6.11 UART_ID3 - Identification 3 Register (SPR offset: 0x0A)	
	13.6.10 UART_ID2 - Identification 2 Register (SPR offset: 0x09)	
	13.6.8 UART_FCH - Flow Control Level Register MSB (SPR offset: 0x07)	
	13.6.7 UART_FCL - Flow Control Level LSB Register (SPR offset: 0x06)	
	13.6.6 UART_RTL - Receiver Trigger Level Register (SPR offset: 0x05)	
	13.6.5 UART_TTL - Transmitter Trigger Level Register (SPR offset: 0x04)	
	13.6.4 UART_CKS Clock Select Register (SPR offset: 0x03)	
	13.6.3 UART_TCR - Time Clock Register (SPR offset: 0x02)	
	13.6.2 UART_CPR - Clock Prescaler Register (SPR offset: 0x01)	
	13.6.1 UART_ACR- Additional Control Register (SPR offset: 0x00)	
1	3.6 INDEXED CONTROL REGISTERS	
.=	13.5.4 UART_ICR - ICR Register (address offset: 0x05)	
	13.5.3 UART_TFL - Transmitter FIFO Level Register (address offset: 0x04)	
	13.5.2 UART_RFL - Receiver FIFO Level Register (address offset: 0x03)	
	13.5.1 UART_ASR - Additional Status Register (address offset: 0x01)	
1	13.5 950 COMPATIBLE REGISTERS	
	13.4.5 UART_XOFF2 - XOFF2 Register (address offset: 0x07)	
	13.4.4 UART_XOFF1 - XOFF1 Register (address offset: 0x06)	
	13.4.3 UART_XON2 - XON2 Register (address offset: 0x05)	
	13.4.2 UART_XON1 - XON1 Register (address offset: 0x04)	
	13.4.1 UART_EFR - Enhanced Feature Register (address offset: 0x02)	
1	13.4 650 COMPATIBLE REGISTERS	
	13.3.12 UART_SPR - SPR Register (address offset: 0x07)	
	12.2.12 HART CRR CRR Register (address offset, 0v07)	126

14	4.1 Register Summary1	49
14	4.2 Register Details1	49
1	14.2.1 TIMER_CONTROL_0 - Timers Control Register 0 (address offset: 0x00)	149
1	14.2.2 TIMER_CONTROL_1 - Timers Control Register 1 (address offset: 0x01)	149
1	14.2.3 TIMER_CONTROL_2 - Timers Control Register 2 (address offset: 0x02)	150
1	14.2.4 TIMER_CONTROL_3 - Timers Control Register 3 (address offset: 0x03)	150
1	14.2.5 TIMER_CONTROL_4 - Timers Control Register 4 (address offset: 0x04)	150
1	14.2.6 TIMER_INT - Timers Interrupt Register (address offset: 0x05)	150
1	14.2.7 TIMER_SELECT - Timers AD Select Register (address offset: 0x06)	151
1	14.2.8 TIMER_WDG - Watchdog Start Value (address offset: 0x07)	151
1	14.2.9 TIMER_WRITE_LS - Timer AD Start Value 7:0 (address offset: 0x08)	151
1	14.2.10 TIMER_WRITE_MS - Timer AD Start Value 15:8 (address offset: 0x09)	151
1	14.2.11 TIMER_PRESC_LS - Prescaler Start Value 7:0 (address offset: 0x0A)	151
1	14.2.12 TIMER_PRESC_MS - Prescaler Start Value 15:8 (address offset: 0x0B)	151
1	14.2.13 TIMER_READ_LS - Timer AD Current Value 7:0 (address offset: 0x0C)	152
1	14.2.14 TIMER_READ_MS - Timer AD Current Value 15:8 (address offset: 0x0D)	152
15	12S 1	53
15	5.1 Register Summary1	55
	5.1 Register Summary1 5.2 Register Details1	
15	-	55
15	5.2 Register Details1	55 155
15 1	5.2 Register Details	55 155 156
15 1	5.2 Register Details	55 155 156 156
15 1 1 1	5.2 Register Details	155 156 156 156 157
15 1 1 1 1	5.2 Register Details	155 156 156 156 157
15 1 1 1 1 1	5.2 Register Details 15.2.1 I2SCR - Configuration Register 1 (address offset: 0x00) 15.2.2 I2SCR2 - Configuration Register 2 (address offset: 0x02) 15.2.3 I2SIRQEN - Interrupt Enable Register (address offset: 0x04) 15.2.4 I2SIRQPEND - Interrupt Pending Register (address offset: 0x06) 15.2.5 I2SRWDATA - Transmit / Receive Data Register (address offset: 0x08)	155 156 156 157 157 158
15 1 1 1 1 1	5.2 Register Details 15.2.1 I2SCR - Configuration Register 1 (address offset: 0x00) 15.2.2 I2SCR2 - Configuration Register 2 (address offset: 0x02) 15.2.3 I2SIRQEN - Interrupt Enable Register (address offset: 0x04) 15.2.4 I2SIRQPEND - Interrupt Pending Register (address offset: 0x06) 15.2.5 I2SRWDATA - Transmit / Receive Data Register (address offset: 0x08) 15.2.6 I2SRXCOUNT - RX Count Register (address offset: 0x0C)	155 156 156 157 157 158 158
15 1 1 1 1 1 1 1	5.2 Register Details 15.2.1 I2SCR - Configuration Register 1 (address offset: 0x00)	155 156 156 157 157 158 158
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.2 Register Details 15.2.1 I2SCR - Configuration Register 1 (address offset: 0x00)	155 156 156 157 157 158 158 158
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.2 Register Details	155 156 156 157 157 158 158 59 60
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15.2.1 I2SCR - Configuration Register 1 (address offset: 0x00)	155 156 156 157 157 158 158 59 60 160
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.2 Register Details	155 156 156 157 157 158 158 59 60 160 160
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15.2.1 I2SCR - Configuration Register 1 (address offset: 0x00)	155 156 156 157 157 158 158 59 60 160 161

	16.2.5 SPIM_FIFO_CNTL - FIFO Control Register (address offset: 0x10)	
	16.2.7 SPIM_ALT_DATA – Alternative SPI Master Data Register (address offset: 0x18) 16.2.8 SPIM_RX_FIFO_COUNT – SPI Master RX FIFO Count Register (address offset: 0x1	162 162 C)
17	7 SPI Slaves 1	
	17.1 Register Summary	
	17.2 Register Details	
	17.2.1 SPIS_CNTL - Control Register (address offset: 0x00)	
	17.2.2 SPIS_STATUS - Status Register (address offset: 0x04)	
	17.2.3 SPIS_DATA – Receiver and Transmitter Data Registers (address offset: 0x08)	
	17.2.4 SPIS_SLV_SEL_CNTL - Slave Select Control Register (address offset: 0x0C)	
	17.2.5 SPIS_FIFO_CNTL - FIFO Control Register (address offset: 0x10)	
	17.2.6 SPIS_TNSFR_FRMT_CNTL - Transfer Format Control Register (address offset: 0x	14)
	17.2.7 SPIS_ALT_DATA - Alternative SPI Slave Data Register (address offset: 0x18)	
	17.2.8 SPIS_RX_FIFO_COUNT - SPI Slave RX FIFO Count Register (address offset: 0x1C)).167
18	8 I2C Master 1	.68
1	18.1 Register Summary	168
	18.2.1 I2CM_SLV_ADDR - Slave Address Register (address offset: 0x00)	
	18.2.2 I2CM_CNTL – Control Register (address offset: 0x01)	
	18.2.3 I2CM_STATUS - Status Register (address offset: 0x01)	
	18.2.4 I2CM DATA – Receive / Transmit Data Register (address offset: 0x02)	
	18.2.5 I2CM TIME PERIOD – Timer Period Register (address offset: 0x03)	
	18.2.6 I2CM_HS_TIME_PERIOD – High Speed Timer Period Register (address offset: 0x0	3)
	18.2.7 I2CM_FIFO_LEN - FIFO Mode Byte Length (address offset: 0x04)	
	18.2.8 I2CM FIFO INT ENABLE – FIFO Mode Interrupt Enable (address offset: 0x05)	
	18.2.9 I2CM_FIFO_INT_PEND - FIFO Mode Interrupt Pending (address offset: 0x06)	
	18.2.10 I2CM_FIFO_DATA - FIFO Data Register (address offset: 0x07)	
	18.2.11 I2CM_TRIG - Trigger Register (address offset: 0x08)	
1 (9 I2C Slave 1	
1	19.1 Register Summary	173

19.2 Register Details	.173
19.2.1 I2CS_OWN_ADDR - Own Address Register (address offset: 0x00)	173
19.2.2 I2CS_CNTL - Control Register (address offset: 0x01)	174
19.2.3 I2CS_STATUS - Status Register (address offset: 0x01)	174
19.2.4 I2CS_DATA - Receive / Transmit Data Register (address offset: 0x02)	175
19.2.5 I2CS_FIFO_LEN - FIFO Mode Byte Length (address offset: 0x04)	175
19.2.6 I2CS_FIFO_INT_ENABLE - FIFO Mode Interrupt Enable (address offset: 0x05)	175
19.2.7 I2CS_FIFO_INT_PEND - FIFO Mode Interrupt Pending (address offset: 0x06)	176
19.2.8 I2CS_FIFO_DATA - FIFO Data Register (address offset: 0x07)	176
19.2.9 I2CS_TRIG - Trigger Register (address offset: 0x08)	176
20 RTC	177
20.1 Register Summary	.177
20.2 Register Details	
20.2.1 RTC_CCVR - Current Counter Value Register (address offset: 0x00)	
20.2.2 RTC_CMR - Counter Match Register (address offset: 0x04)	
20.2.3 RTC_CLR - Counter Load Register (address offset: 0x08)	178
20.2.4 RTC_CCR - Counter Control Register (address offset: 0x0C)	178
20.2.5 RTC_STAT - Interrupt Status Register (address offset: 0x10)	178
20.2.6 RTC_RSTAT - Interrupt Raw Status Register (address offset: 0x14)	178
20.2.7 RTC_EOI - End of Interrupt Register (address offset: 0x18)	179
20.2.8 RTC_COMP_VERSION - Component Version Register (address offset: 0x1C)	179
21 PWM	180
21.1 Register Summary	.180
21.2 Register Details	
21.2.1 PWM_CTRL0 - PCM Control Register (address offset: 0x00)	
21.2.2 PWM_CTRL1 - PWM Control Register (address offset: 0x01)	
21.2.3 PWM_PRESCALER - PWM Prescaler Register (address offset: 0x02)	
21.2.4 PWM_CNTL - PWM Counter Register (LSB) (address offset: 0x03)	
21.2.5 PWM_CNTH - PWM Counter Register (MSB) (address offset: 0x04)	
21.2.6 PWM_CMP0L - Comparator 0 Value Register (LSB) (address offset: 0x05)	
21.2.7 PWM_CMP0H - Comparator 0 Value Register (MSB) (address offset: 0x06)	
21.2.8 PWM_CMP1L - Comparator 1 Value Register (LSB) (address offset: 0x07)	
21.2.9 PWM_CMP1H - Comparator 1 Value Register (MSB) (address offset: 0x08)	
21.2.10 PWM_CMP2L - Comparator 2 Value Register (LSB) (address offset: 0x09)	184

21.2.11 PWM_CMP2H - Comparator 2 Value Register (MSB) (address offset: 0x0A)184
21.2.12 PWM_CMP3L - Comparator 3 Value Register (LSB) (address offset: 0x0B)184
21.2.13 PWM_CMP3H - Comparator 3 Value Register (MSB) (address offset: 0x0C)184
21.2.14 PWM_CMP4L - Comparator 4 Value Register (LSB) (address offset: 0x0D)185
21.2.15 PWM_CMP4H - Comparator 4 Value Register (MSB) (address offset: 0x0E)185
21.2.16 PWM_CMP5L - Comparator 5 Value Register (LSB) (address offset: 0x0F)185
21.2.17 PWM_CMP5H - Comparator 5 Value Register (MSB) (address offset: 0x10)185
21.2.18 PWM_CMP6L - Comparator 6 Value Register (LSB) (address offset: 0x11)185
21.2.19 PWM_CMP6H - Comparator 6 Value Register (MSB) (address offset: 0x12)186
21.2.20 PWM_CMP7L - Comparator 7 Value Register (LSB) (address offset: 0x13)186
21.2.21 PWM_CMP7H - Comparator 7 Value Register (MSB) (address offset: 0x14)186
21.2.22 PWM_TOGGLE0 - Channel 0 OUT Toggle Comparator Mask Register (address offset: 0x15)
21.2.23 PWM_TOGGLE1 - Channel 1 OUT Toggle Comparator Mask Register (address offset: 0x16)
21.2.24 PWM_TOGGLE2 - Channel 2 OUT Toggle Comparator Mask Register (address offset: 0x17)
21.2.25 PWM_TOGGLE3 - Channel 3 OUT Toggle Comparator Mask Register (address offset: 0x18)
21.2.26 PWM_TOGGLE4 - Channel 4 OUT Toggle Comparator Mask Register (address offset: 0x19)
21.2.27 PWM_TOGGLE5 - Channel 5 OUT Toggle Comparator Mask Register (address offset: 0x1A)
21.2.28 PWM_TOGGLE6 - Channel 6 OUT Toggle Comparator Mask Register (address offset: 0x1B)187
21.2.29 PWM_TOGGLE7 - Channel 7 OUT Toggle Comparator Mask Register (address offset: 0x1C)188
21.2.30 PWM_OUT_CLR_EN - PWM OUT Clear Enable Register (address offset: 0x1D)188
21.2.31 PWM_CTRL_BL_CMP8 - Control Block CMP8 Value Register (address offset: 0x1E) 188
21.2.32 PWM_INIT - PWM Initialization Register (address offset: 0x1F)188
21.2.33 PWM_INTMASK - PWM Interrupt Mask Register (address offset: 0x20)188
21.2.34 PWM_INTSTATUS - PWM Interrupt Status Register (address offset: 0x21)189
21.2.35 PWM_SAMPLE_FREQ_H - PWM Data Sampling Frequency High Byte Register (address offset: 0x22)
21.2.36 PWM_SAMPLE_FREQ_L - PWM Data Sampling Frequency Low Byte Register (address offset: 0x23)
21.2.37 PCM_VOLUME - PCM Volume Register (address offset: 0x24)190
21.2.38 PWM_BUFFER - PCM Buffer Register (address offset: 0x3C)190

22 Data Capture Interface	191
22.1 Register Summary	191
22.2 Register Details	
22.2.1 DCAP_REG1 – Data Capture Interface Register 1 (address offset: 0x00)	
22.2.2 DCAP_REG2 – Data Capture Interface Register 2 (address offset: 0x04)	
22.2.3 DCAP_REG3 – Data Capture Interface Register 3 (address offset: 0x08)	
22.2.4 DCAP_REG4 - Data Capture Interface Register 4 (address offset: 0x0C)	192
23 Flash Controller	
23.1 Register Summary	
23.2 Register Details	
23.2.1 RSADDR0 – Memory Start Address Register (LSB) (address offset: 0x00)	
23.2.2 RSADDR1 – Memory Start Address Register (Byte 1) (address offset: 0x01)	
23.2.3 RSADDR2 – Memory Start Address Register (MSB) (address offset: 0x02)	194
23.2.4 FSADDR0 – Flash Start Address Register (LSB) (address offset: 0x03)	194
23.2.5 FSADDR1 – Flash Start Address Register (Byte 1) (address offset: 0x04)	195
23.2.6 FSADDR2 – Flash Start Address Register (MSB) (address offset: 0x05)	195
23.2.7 BLENGTH0 – Data Byte Length Register (LSB) (address offset: 0x06)	195
23.2.8 BLENGTH1 – Data Byte Length Register (Byte 1) (address offset: 0x07)	195
23.2.9 BLENGTH2 – Data Byte Length Register (MSB) (address offset: 0x08)	195
23.2.10 COMMAND – Command Register (address offset: 0x09)	196
23.2.11 SEMAPHORE – Semaphore Register (address offset: 0x0B)	196
23.2.12 CONFIG – Configuration Register (address offset: 0x0C)	196
23.2.13 STATUS – Status Register (address offset: 0x0D)	196
23.2.14 CRCL - Flash Content CRC Register (LSB) (address offset: 0x0E)	197
23.2.15 CRCH - Flash Content CRC Register (MSB) (address offset: 0x0F)	197
23.2.16 CHIPID0 - Chip ID Register (LSB) (address offset: 0x7C)	197
23.2.17 CHIPID1 - Chip ID Register (Byte 1) (address offset: 0x7D)	197
23.2.18 CHIPID2 - Chip ID Register (Byte 2) (address offset: 0x7E)	197
23.2.19 CHIPID3 - Chip ID Register (MSB) (address offset: 0x7F)	198
23.2.20 DRWDATA - Data Register (address offset: 0x80)	198
23.3 Flash Controller Commands	198
24 Contact Information	203
Appendix A – References	204
Thereas In the second of the s	204

Document References	204
Acronyms and Abbreviations	204
Appendix B – List of Tables & Figures	206
List of Tables	206
List of Figures	216
Appendix C - Revision History	218

1 Introduction

FT900 is a programmable System-on-Chip device with a 32-bit general purpose embedded microprocessor core and a plethora of connectivity options. It has been developed for high speed, data bridging tasks. With a parallel data capture interface, 10/100 Base-TX Ethernet interface, CAN bus, and USB 2.0 Hi-Speed peripheral and host ports, this device offers excellent interconnect capabilities and blazing computational power. The description of the general system registers, as well as the register set of various peripheral interfaces, is explained in details in this document.

2 FT900 System Architecture

2.1 Architecture overview

The FT900 core contains the 32-bit CPU (FT32), with control logic, flash memory and RAM. The flash memory size is 256 KB. The RAM consists of 256 KB shadow program memory and 64 KB data memory. Upon reset, the content of the flash memory is copied into the shadow program memory for fastest execution. The outside connections for the FT900 core are the memorymapped I/O interface, the interrupt interface, synchronous reset and the clock.

The peripherals of the FT900 series include:

- 1 high-speed USB host interface, which supports USB Battery Charging Specification Rev 1.2. It can be configured as SDP, CDP or DCP.
- 1 high-speed USB device interface, which support USB Battery Charging Specification Rev 1.2. It can perform BCD mode detection.
- 2 programmable UARTs
- SPI master interface
- 2 SPI slave interfaces
- 7-channel PWM blocks with optional digital filter on channel 0 and 1
- I2C master interface
- I2C slave interface
- I2S master / slave interface
- SD host interface
- 2 CAN interfaces
- Ethernet
- RTC
- Watchdog & 4 16-bit general purpose timers
- Debug interface
- 7-channel 10-bit 1MS/s ADC
- 2-channel 10-bit 1MS/s DAC
- 67 multi-purpose GPIOs

The block diagram shown below in Figure 2.1 illustrates the main IP blocks of FT900.

Figure 2.1 - FT900 System Architecture

2.2 Memory organization

The first 144 bytes in the Program Memory contains the followings:

- Reset vector
- Watchdog vector
- 32 interrupt vectors
- 1 non-maskable interrupt vector (reserved for the debugger)
- Program entry point

Address	Function
0x00	Reset vector
0x04	Watchdog vector
0x08	Interrupt vector 0
0x0C	Interrupt vector 1
0x80	Interrupt vector 30
0x84	Interrupt vector 31
0x88	Interrupt vector 32 (NMI)
0x8C	Program entry point

Table 2.1 - FT900 Program Memory Organization

2.3 FT900 Boot Control

Upon reset, boot control takes control of the memory buses and puts the CPU in a reset state.

It automatically transfers the data from the flash memory to the CPU program memory, starting from address 0 on both sides. Boot control calculates a CRC check over the entire contents of flash (256KB) and the result is placed in CRCH and CRCL registers found in the flash control module.

Figure 2.2 - FT900 Boot Control

2.4 Debugging Support

Debugging the FT900 series is carried out via the FTDI one-wire interface. The debugging support is implemented in the FT900 bootloader. The protocol used for debugging is the GDB remote protocol and a port of GDB is available in the FTDI FT900 toolchain. The GDB serial debug protocol commands are interpreted by a debug interpreter in the bootloader.

In addition, the debug interpreter:

- saves all machine states
- executes commands received over the debug interface
- restores all machine states and returns

Figure 2.3 - FT900 Debugging Support

3 Register Map

This section lists the I/O map for registers / memory in the device. Please note that some peripherals are not available on some models in the FT900 series. The details can be found in the table below. An (X) indicates that the peripheral exists and a minus (-) indicates that the peripheral is not available. All other peripherals that are not mentioned are available on all models in the series.

	CAN	Ethernet	Camera	SD Host	I2S
FT900Q/FT900L	Х	Х	X	X	Х
FT901Q/FT901L	-	Х	Х	X	Х
FT902Q/FT902L	Х	-	Х	Х	Х
FT903Q/FT903L	-	-	Х	Х	Х
FT905Q/FT905L	Х	Х	-	-	-
FT906Q/FT906L	-	Х	-	-	-
FT907Q/FT907L	Х	-	-	-	-
FT908Q/FT908L	-	-	-	-	-

Table 3.1 - Peripheral Availability on FT900 Series Models

The register map of the peripherals is as follows:

Function	Address Base Range		Access Mechanism
General Setup	0x10000	0×100BF	DW, W, B
Interrupt Controller	0x100C0	0×100FF	DW, W, B
USB Host	0x10100	0x1017F	DW, W, B
USB Host RAM	0x11000	0x12FFF	DW, W, B
USB Device	0x10180	0x1021F	В
Ethernet	0x10220	0x1023F	DW, W, B (DW for FIFO)
CAN 0	0x10240	0x1025F	В
CAN 1	0x10260	0x1027F	В
RTC	0x10280	0x1029F	DW
SPI Master	0x102A0	0x102BF	DW
SPI Slave 0	0x102C0	0x102DF	DW
SPI Slave 1	0x102E0	0x102FF	DW
I2C Master	0x10300	0x1030F	В
I2C Slave	0x10310	0x1031F	В
UART 0	0x10320	0x1032F	В

Function	Address Base Range	e	Access Mechanism
UART 1	0x10330	0x1033F	В
Timers/Watchdog	0x10340	0x1034F	В
I2S (Master/Slave)	0x10350	0x1035F	W
Data Capture	0x10360	0x1036F	DW
PWM	0x103C0	0x103FF	B for registers, W for FIFO
SD Host	0x10400	0x107FF	DW
Flash Controller	0x10800	0x108BF	В

^{*} DW (Double-Word): 32-bit; W (Word): 16-bit; B (Byte): 8-bit

Table 3.2 - Register Map for FT900 Series

4 Notations

These notations are used in the register descriptions:

Terms	Description
Reserved	Do not read/write the location
RO	Read-only
ROC	Read-only / Clear-when-read
RW	Read- and Write-able
RW1C	Read and Write-1-to-clear
RW1S	Read and Write-1-to-set
RWAC	Read- and Write-able with automatic clear
W1S	Write-1-to-set
W1T	Write-1-to-trigger-event
wo	Write-only

Table 4.1 - Notations used in Register Description

5 General System Registers

This section describes the registers that govern the general behavior of the FT900.

5.1 Register Summary

Listed below are the registers with their offset from the base address (0x10000). All registers can be accessed via Byte (8-bit), Word (16-bit) or Double-Word (32-bit) mode.

Address Offset	Register	Default value	References
0x00	HIPID - Chip ID Register	0x09XXXXXX	Section 5.2.1
0x04	EFCFG - Chip Configuration Register	0xXXXXXXX	Section 5.2.2
0x08	CLKCFG - Clock Configuration Register	0x00000000	Section 5.2.3
0x0C	PMCFG - Power Management Register	0x00000000	Section 5.2.4
0x10	PTSTNSET - Test & Set Register	0x00001000	Section 5.2.5
0x14	PTSTNSETR - Test & Set Shadow Register	0x00000000	Section 5.2.6
0x18	MSC0CFG - Miscellaneous Configuration Register	0x00000000	Section 5.2.7
0x1C	Pin 00 – 03 Register	0x04080808	Section 5.2.8.1
0x20	Pin 04 – 07 Register	0x04040404	Section 5.2.8.2
0x24	Pin 08 – 11 Register	0x04040404	Section 5.2.8.3
0x28	Pin 12 – 15 Register	0x04040404	Section 5.2.8.4
0x2C	Pin 16 – 19 Register	0x04040404	Section 5.2.8.5
0x30	Pin 20 – 23 Register	0x04040404	Section 5.2.8.6
0x34	Pin 24 – 27 Register	0x04040404	Section 5.2.8.7
0x38	Pin 28 – 31 Register	0x04040404	Section 5.2.8.8
0x3C	Pin 32 – 35 Register	0x04040404	Section 5.2.8.9
0x40	Pin 36 – 39 Register	0x04040404	Section 5.2.8.10
0x44	Pin 40 – 43 Register	0x04040404	Section 5.2.8.11
0x48	Pin 44 – 47 Register	0x04040404	Section 5.2.8.12
0x4C	Pin 48 – 51 Register	0x04040404	Section 5.2.8.13
0x50	Pin 52 – 55 Register	0x04040404	Section 5.2.8.14
0x54	Pin 56 – 59 Register	0x04040404	Section 5.2.8.15
0x58	Pin 60 – 63 Register	0x04040404	<u>Section 5.2.8.16</u>

0x5C	Pin 64 – 66 Register	0x04040404	Section 5.2.8.17
0x60	GPIO 00 – 07 Configuration Register	0x00000000	Section 5.2.9.1
0x64	GPIO 08 – 15 Configuration Register	0x00000000	Section 5.2.9.2
0x68	GPIO 16 – 23 Configuration Register	0x00000000	<u>Section 5.2.9.3</u>
0x6C	GPIO 24 – 31 Configuration Register	0x00000000	<u>Section 5.2.9.4</u>
0x70	GPIO 32 – 39 Configuration Register	0x00000000	<u>Section 5.2.9.5</u>
0x74	GPIO 40 – 47 Configuration Register	0x00000000	Section 5.2.9.6
0x78	GPIO 48 – 55 Configuration Register	0x00000000	Section 5.2.9.7
0x7C	GPIO 56 – 63 Configuration Register	0x00000000	Section 5.2.9.8
0x80	GPIO 64 – 66 Configuration Register	0x00000000	Section 5.2.9.9
0x84	GPIO 00 – 31 Value Register	0x00000000	Section 5.2.10.1
0x88	GPIO 32 – 63 Value Register	0x00000000	Section 5.2.10.2
0x8C	GPIO 64 – 66 Value Register	0x00000000	Section 5.2.10.3
0x90	GPIO 00 - 31 Interrupt Enable Register	0x00000000	Section 5.2.11.1
0x94	GPIO 32 – 63 Interrupt Enable Register	0x00000000	Section 5.2.11.2
0x98	GPIO 64 – 66 Interrupt Enable Register	0x00000000	Section 5.2.11.3
0x9C	GPIO 00 – 31 Interrupt Pending Register	0x00000000	Section 5.2.12.1
0xA0	GPIO 32 – 63 Interrupt Pending Register	0x00000000	Section 5.2.12.2
0xA4	GPIO 64 – 66 Interrupt Pending Register	0x00000000	Section 5.2.12.3
0xA8	ETH_PHY_CFG - Ethernet PHY Miscellaneous Configuration Register	0x00070300	Section 5.2.13
0xAC	ETH_PHY_ID - Ethernet PHY ID Register	0x00000000	Section 5.2.14
0×B0	DAC_ADC_CONF - ADC/DAC Configuration/Status Register	0x00000000	Section 5.2.15
0xB4	DAC_ADC_CNT - ADC/DAC Count Register	0x63000000	Section 5.2.16
0xB8	DAC_ADC_DATA - ADC/DAC Data Register	0x00000000	Section 5.2.17

Table 5.1 - Overview of General System Registers

5.2 Register Details

5.2.1 HIPID - Chip ID Register (address offset: 0x00)

This register is read-only.

Bit	Name	Type	Default Value	Description
31:0	Chip ID	RO	0x09XXXXXX	The two MSBs (09XX) depict FT900 series and the two LSBs (XXXX) shows the revision of the chip.

Table 5.2 - HIPID - Chip ID Register

For revision 0001 of the FT900 series, the pre-configured bits of the chip ID register (HIPID) and the chip configuration register (EFCFG, section 5.2.2) for different models are listed in in the table below. Note that these bits are always read-only.

	HIPID [3116]	HIPID [150]	EFCFG [31]	EFCFG [30]	EFCFG [29]
FT900Q/FT900L	0X0900	0X0001	1	1	1
FT901Q/FT901L	0X0901	0X0001	0	1	1
FT902Q/FT902L	0X0902	0X0001	1	0	1
FT903Q/FT903L	0X0903	0X0001	0	0	1
FT905Q/FT905L	0X0905	0X0001	1	1	0
FT906Q/FT906L	0X0906	0X0001	0	1	0
FT907Q/FT907L	0X0907	0X0001	1	0	0
FT908Q/FT908L	0X0908	0X0001	0	0	0

Table 5.3 - FT900 Series Revision 0001 Configuration

5.2.2 EFCFG - Chip Configuration Register (address offset: 0x04)

This register contains read-only information. Some bits are user configurable via EFUSE. More details can be found in the EFUSE section. Specifically, bits 27..26 and bits 20..0 are EFUSE configurable.

Bit	Name	Туре	Default Value	Description
31	CAN_ACTIVE	RO	X	CAN modules available; the value depends on device model; 1 – available; 0 – not available.
30	MAC_ACTIVE	RO	X	Ethernet module available; default value depends on device model; 1 – available; 0 – not available.
29	100_PIN	RO	Χ	1 - the device is a 100-pin device; 0 - the device is a 76-pin (QFN) or 80-pin (LQFP) device.
28	Reserved	RO	0	Always read as '0'
27	1-Wire_ACTIVE	RO	Χ	If set, FTDI 1-wire debug interface is enabled; otherwise it's permanently disabled.
26	EXT_SPI_ACTIVE	RO	X	If set, internal FLASH/EFUSE can be accessed via SPI Slave interface during reset; otherwise this interface is permanently disabled.
25:21	Reserved	RO	5'h1F	Reserved
20	FLASH_RD_ENA	RO	X	If set, FLASH read via the external SPI interface is allowed; otherwise this feature is permanently disabled. Write will still be available; but see bits

Bit	Name	Туре	Default Value	Description
				19-16
19	FLASH_WR_B3_ENA	RO	×	If set, FLASH write/erase to bytes 196608 – 262143 is allowed; otherwise it is permanently non-writable/non-erasable.
18	FLASH_WR_B2_ENA	RO	Х	If set, FLASH write/erase to bytes 131072 – 196607 is allowed; otherwise it is permanently non-writable/non-erasable.
17	FLASH_WR_B1_ENA	RO	X	If set, FLASH write/erase to bytes 65536 – 131071 is allowed; otherwise it is permanently non-writable/non-erasable.
16	FLASH_WR_B0_ENA	RO	×	If set, FLASH write/erase to bytes 0 – 65535 is allowed; otherwise it is permanently non-writable/non-erasable.
15:0	FLASH_CODE_RD	RO	X	Each bit corresponds 16kB of FLASH location, with bit 0 referring to locations 0-16383. When set the data residing in the said FLASH locations are not considered sensitive and when copied to the program memory, the user program can access these as data via LPM/LPMI instructions. When cleared, the data are considered sensitive; reading them from the program memory with LPM/LPMI instructions will not return the correct content.

Table 5.4 - EFCFG - Chip Configuration Register

5.2.3 CLKCFG - Clock Configuration Register (address offset: 0x08)

Bit	Name	Туре	Default Value	Description
31:16	Reserved	-	ı	Reserved
15	EHCI_ENA	RW	0	1: enable USB Host
14	DEV_ENA	RW	0	1: enable USB Peripheral
13	MAC_ENA	RW	0	1: enable Ethernet
12	SD_ENA	RW	0	1: enable SD Host
11	CAN0_ENA	RW	0	1: enable CAN0
10	CAN1_ENA	RW	0	1: enable CAN1
9	I2CM_ENA	RW	0	1: enable I2C Master
8	I2CS_ENA	RW	0	1: enable I2C Slave
7	SPIM_ENA	RW	0	1: enable SPI Master
6	SPIS0_ENA	RW	0	1: enable SPI Slave 0
5	SPIS1_ENA	RW	0	1: enable SPI Slave 1
4	UARTO_ENA	RW	0	1: enable UART 0
3	UART1_ENA	RW	0	1: enable UART 1
2	PWM _ENA	RW	0	1: enable PWM
1	I2S _ENA	RW	0	1: enable I2S
0	CAM _ENA	RW	0	1: enable Data Capture Interface

Table 5.5 - CLKCFG - Clock Configuration Register

5.2.4 PMCFG - Power Management Register (address offset: 0x0C)

Bit	Name	Туре	Default Value	Description
31:26	Reserved	RO	0	
25	PM_GPIO_IRQ_PEND	RW1C	0	GPIO interrupt during system shut down with

Bit	Name	Туре	Default Value	Description
				clock not running
24	SLOWCLK_5ms_IRQ _PEND	RW1C	0	Slow clock 5ms timer interrupt pending; write 1 to clear. If enabled, an interrupt will be generated.
23	RM_WK_HOST	RW1C	0	Remote Wakeup Interrupt pending to USB Host; write 1 to clear. If enabled, an interrupt will be generated on PM IRQ.
22	DEV_CONN_HOST	RW1C	0	Device Connect Interrupt pending to USB Host; write 1 to clear. If enabled, an interrupt will be generated on PM IRQ.
21	DEV_DIS_HOST	RW1C	0	Device Disconnect Interrupt pending to USB Host; write 1 to clear. If enabled, an interrupt will be generated on PM IRQ.
20	DEV_CONN_DEV	RW1C	0	Device Connect Interrupt pending to USB Device; write 1 to clear. If enabled, an interrupt will be generated on PM IRQ.
19	DEV_DIS_DEV	RW1C	0	Device Disconnect Interrupt pending to USB Device; write 1 to clear. If enabled, an interrupt will be generated on PM IRQ.
18	HOST_RST_DEV	RW1C	0	Host Reset Interrupt pending to USB Device; write 1 to clear. If enabled, an interrupt will be generated on PM IRQ.
17	HOST_RESUME_DEV	RW1C	0	Host Resume Interrupt pending to USB Device; write 1 to clear. If enabled, an interrupt will be generated on PM IRQ.
16	OC_DETECT	RW1C	0	Over current detected Interrupt pending if enabled; write 1 to clear. If enabled, an interrupt will be generated on PM IRQ.
15:11	Reserved	RO	0	
10	DEV PHY EN	RW	0	1: Enable USB Device PHY
9	PM_PWRDN_MODE	RW	0	1: disable system oscillator when powering down 0: do not disable system oscillator when powering down
8	PM_PWRDN	RW	0	1: power down system. This bit should be cleared after the system wakes up or at least 60-100us prior to setting it 1 again.
7	SLOWCLOCK_5ms_I RQ_EN	RW	0	1: enable slow clock 5ms timer interrupt.
6	SLOWCLOCK_5ms_S TART	RWAC	0	1: To start the 1-shot slow clock 5ms timer; once started it cannot be stopped. This bit will be cleared automatically when the timer expires.
5	FORCE_HOST_DET	RW	0	Normally USB host activity detection is performed only when required; setting this bit will force the PM to check for host connection activities regardless.
4	FORCE_DEV_DET	RW	0	Normally USB device activity detection is performed only when required; setting this bit will force the PM to check for device connection activities regardless.
3	RM_WK_HOST_EN	RW	0	1: enable remote wake up detection to USB host. Enable interrupt to PM IRQ when RM_WK_HOST is set.
2	HOST_DETECT_EN	RW	0	1: enable device connect/disconnect detection to USB Host. Enable interrupt to PM IRQ when either DEV_CONN_HOST or DEV_DIS_HOST is set.

Bit	Name	Туре	Default Value	Description
1	DEV_DETECT_EN	RW	0	1: enable device connect/disconnect to external host or external host reset detection. Enable interrupt to PM IRQ when any of DEV_CONN_DEV, DEV_DIS_DEV and HOST_RST_DEV is set.
0	OC_DETECT_EN	RW	0	1: Enable Over current detection. Enable interrupt to PM IRQ when OC DETECT is set

Table 5.6 - PMCFG - Power Management Register

5.2.5 PTSTNSET - Test & Set Register (address offset: 0x10)

Bit	Name	Туре	Default Value	Description
31:1	Reserved	RO	0	
0	TEST_SET	RW1C	0	This register is used as a binary semaphore. Upon a read, a 0 indicates that the semaphore has been granted to the reader and a 1 indicates that it has already been taken. CAUTION: Only the granted thread or process shall write a 1 to return the semaphore.

Table 5.7 - PTSTNSET - Test & Set Register

5.2.6 PTSTNSETR - Test & Set Shadow Register (address offset: 0x14)

Bit	Name	Туре	Default Value	Description
31:1	Reserved	RO	0	
0	TEST_SET	RW1 C	0	This register is used as a binary semaphore. Upon a read, a 0 indicates that the semaphore has been granted to the reader and a 1 indicates that it has already been taken. CAUTION: Only the granted thread or process shall write a 1 to return the semaphore.

Table 5.8 - PTSTNSETR - Test & Set Shadow Register

5.2.7 MSCOCFG - Miscellaneous Configuration Register (address offset: 0x18)

Bit	Name	Туре	Default Value	Description
31	PERI_SOFTRESET	RWAC	0	Write 1 to cause soft reset to all peripherals. It is automatically cleared.
30	PWM_SOFTRESET	RWAC	0	Write 1 to cause soft reset to PWM. It is automatically cleared.
29	I2C_SWOP	RW	0	0: I2C master function is available at GPIO44

Bit	Name	Туре	Default Value	Description
				and GPIO45 and I2C slave function is available at GPIO46 and GPIO47 1: swap the I2C master and I2C slave GPIO positions
28:26	PWM_TRIG_SEL	RW	0	PWM count external trigger selection (See PWM) If any of the GPIO is used for this purpose, the pad must be configured solely for this use. 0: none 1: GPIO 18 2: GPIO 26 3: GPIO 35 4: GPIO 40 5: GPIO 46 6: GPIO 52 7: GPIO 58
25:24	Reserved	R	0	
23	CAN0_SLOW	RW	0	1: Extend further the divider of CAN 0 by a factor of 16.
22	CAN1_SLOW	RW	0	1: Extend further the divider of CAN 1 by a factor of 16.
21	UART0_CLKSEL	RW	0	Clock Select for UART 0. Refer to UART chapter for more information on this bit.
20	UART0_FIFOSEL	RW	0	FIFO Selection for UART 0. Refer to UART chapter for more information on this bit.
19	UARTO_INTSEL	RW	0	INT Selection for UART 0. Refer to UART chapter for more information on this bit.
18	UART1_CLKSEL	RW	0	Clock Select for UART 1. Refer to UART chapter for more information on this bit.
17	UART1_FIFOSEL	RW	0	FIFO Selection for UART 1. Refer to UART chapter for more information on this bit.
16	UART1_INTSEL	RW	0	INT Selection for UART 1. Refer to UART chapter for more information on this bit.
15	HOST_RESET_ALL	RWAC	0	Write 1 to cause USB Host EHCI and PHY reset; it is automatically cleared immediately. Software needs to wait for EHCI to complete its reset (~200ms).
14	HOST_RESET_EHCI	RWAC	0	Write 1 to cause USB Host EHCI reset; it is automatically cleared immediately. Software needs to wait for EHCI to complete its reset (~200ms).
13	HOST_RESET_ATX	RWAC	0	Write 1 to cause USB Host PHY reset; it is automatically cleared immediately.
12	DEV_RMWAKEUP	RW	0	1: Drive K-state on Device USB port; software must maintain the 1ms requirement before turning it off.
11	DEV_RESET_ALL	RWAC	0	Write 1 to cause USB Dev Controller and ATX reset; it is automatically cleared immediately.
10	DEV_RESET_CONTR OLLER	RWAC	0	Write 1 to cause USB Dev Controller reset; it is automatically cleared immediately.
9	DEV_RESET_ATX	RWAC	0	Write 1 to cause USB Dev ATX reset; it is automatically cleared immediately.
8	MAC_RESET_PHY	RW	0	Write 1 to cause Ethernet PHY reset; it is automatically cleared immediately.
7:6	BCDHOST_MODE	WO	0	Battery Charging Device (BCD) Host Mode: 0: Standard Downstream Port (SDP) 1: Dedicated Charging Port (DCP) 2: Reserved

Bit	Name	Туре	Default Value	Description
				3: Charging Downstream Port (CDP)
5	BCDHOST_EN	WO	0	1: enable BCD Host
4	BCD_SOFTRESET	W1C	0	1: Generate software reset to BCD Host: if BCDHOST_EN is 1 BCD Dev: if BCDDEV_EN is 1 It is automatically cleared immediately
4	BCDDEV_DETECT_R UNNING	RO	0	1: indicates BCD Device detection is running
3	BCDDEV_EN	WO	0	1: enable BCD Device
3	BCDDEV_DETECT_C OMPLETE	RO	0	1: indicates BCD Device detection is done
2	BCDDEV_SD_EN	WO	1	1: enable secondary detection; refer to BCD IP document for details.
2	BCDDEV_SDP_FOUN D	RO	0	1: SDP detected
1	BCDDEV_VDP_EN_P OST_DCP	WO	0	1: enable connection of VDP_SRC after DCP detection; refer to BCD IP document for details.
1	BCDDEV_CDP_FOUN D	RO	0	1: CDP detected
0	BCDDEV_LGC_COMP _INHIB	WO	1	1: disable logic comparison during BCD detections; refer to BCD IP document for details.
0	BCDDEV_DCP_FOUN	RO	0	1: DCP detected

Table 5.9 - MSCOCFG - Miscellaneous Configuration Register

5.2.8 GPIO Pin Configuration Registers (address offset: 0x1C - 0x5F)

These registers control the pin configurations. Each register houses the configuration for 4 digital pins except the last register, which only configures 3 pins (64 to 66). Each byte of the register configures 1 digital pin. The pin direction for each of the special functions is fixed and will be set automatically. A pin that is configured as a GPIO can be further configured. Refer to the GPIO Configuration Registers in <u>section 5.2.9</u>.

The bit layout for the Pin Configuration Registers is as follows:

Bit	Description		Value	Configuration
31:30				
23:22	Pin		00	GPIO Function
15:14	Functionality		01	Special Function 1
7:6			10	Special Function 2 (if available)
				Special Function 3 (if available)
29:28			00	4mA
21:20	Output drive on	n n h i l i tu v	01	8mA
13:12	Output drive capability		10	12mA
5:4			11	16mA
27:26			00	None
19:18	With Dull up / D	ull down	01	75kΩ Pull-down
11:10	With Pull-up / Pull-down		10	75kΩ Pull-up
3:2			11	75kΩ Keeper
25				
17	Cabraitt		0	Normal
9	Schmitt		1	Schmitt
1				

24 16 8 0	Slew Rate	0 1	Fast Slow
--------------------	-----------	--------	--------------

Table 5.10 - Pin Configuration Register Description

The following tables give more details about each Pin Configuration Register. The "Pin Functionality Bits" section refers to bits 31:30, 23:22, 15:14, 7:6 in each register for configuring the corresponding pin to perform a specific functionality. Refer to table 5.10 above.

5.2.8.1 Pin 00 – 03 Register (address offset: 0x1C)

Bit	Name	Туре	Default	Pin Functionality Bits			
DIC	Name	Type	Value	00	01	10	11
31:24	PIN03_CFG	RW	8'h04	GPIO 3	VBUS Detect	-	-
23:16	PIN02_CFG	RW	8'h08	GPIO 2	1	1	-
15:8	PIN01_CFG	RW	8'h08	GPIO 1	OCN	ı	-
7:0	PIN00_CFG	RW	8'h08	GPIO 0	-	-	-

Table 5.11 - Pin 00 - 03 Register

5.2.8.2 Pin 04 - 07 Register (address offset: 0x20)

Di+	Bit Name		Default	t Pin Functionality Bits				
DIL	Name	Туре	Value	00	01	10	11	
31:24	PIN07_CFG	RW	8'h04	GPIO 7	Cam Pclk	ı	ADC Ch2	
23:16	PIN06_CFG	RW	8'h04	GPIO 6	Cam Ext	-	ADC Ch1	
					Clk			
15:8	PIN05_CFG	RW	8'h04	GPIO 5	Ethernet	-	-	
					LED 1			
7:0	PIN04_CFG	RW	8'h04	GPIO 4	Ethernet	-		
					LED 0			

Table 5.12 - Pin 04 - 07 Register

5.2.8.3 Pin 08 – 11 Register (address offset: 0x24)

Bit	Name	Туре	Default	Pin Functionality Bits			
Dit	Name	Type	Value	00	01	10	11
31:24	PIN11_CFG	RW	8'h04	GPIO 11	Cam D6	-	ADC Ch6
23:16	PIN10_CFG	RW	8'h04	GPIO 10	Cam D7	-	ADC Ch5
15:8	PIN09_CFG	RW	8'h04	GPIO 9	Cam HD	-	ADC Ch4
7:0	PIN08_CFG	RW	8'h04	GPIO 8	Cam VD	-	ADC Ch3

Table 5.13 - Pin 08 - 11 Register

5.2.8.4 Pin 12 - 15 Register (address offset: 0x28)

Bit	Name	Туре	Default	Pin Functionality Bits			
DIC	Name	Type	Value	00	01	10	11
31:24	PIN15_CFG	RW	8'h04	GPIO 15	Cam D2	CAN 0 Tx	-
23:16	PIN14_CFG	RW	8'h04	GPIO 14	Cam D3	-	DAC Ch0
15:8	PIN13_CFG	RW	8'h04	GPIO 13	Cam D4	-	DAC Ch1
7:0	PIN12_CFG	RW	8'h04	GPIO 12	Cam D5	-	ADC Ch7

Table 5.14 - Pin 12 - 15 Register

5.2.8.5 Pin 16 – 19 Register (address offset: 0x2C)

Bit	Name	Туре	Default	Pin Functionality Bits			
DIC	Name	Type	Value	00	01	10	11
31:24	PIN19_CFG	RW	8'h04	GPIO 19	SD CLK	-	-
23:16	PIN18_CFG	RW	8'h04	GPIO 18	-	CAN 1 Rx	-
15:8	PIN17_CFG	RW	8'h04	GPIO 17	Cam D0	CAN 1 Tx	-
7:0	PIN16 CFG	RW	8'h04	GPIO 16	Cam D1	CAN 0 Rx	-

Table 5.15 - Pin 16 - 19 Register

5.2.8.6 Pin 20 – 23 Register (address offset: 0x30)

Bit Name		Туре	Default	Pin Functi	Pin Functionality Bits		
DIL	Name	Type	Value	00	01	10	11
31:24	PIN23_CFG	RW	8'h04	GPIO 23	SD DAT1	-	-
23:16	PIN22_CFG	RW	8'h04	GPIO 22	SD DAT2	ı	-
15:8	PIN21_CFG	RW	8'h04	GPIO 21	SD DAT3	_	-
7:0	PIN20 CFG	RW	8'h04	GPIO 20	SD CMD	-	-

Table 5.16 - Pin 20 - 23 Register

5.2.8.7 Pin 24 – 27 Register (address offset: 0x34)

Bit	Name	Туре	Default	Pin Functionality Bits			
DIL	Name	Type	Value	00	01	10	11
31:24	PIN27_CFG	RW	8'h04	GPIO 27	SPIM SCK	-	-
23:16	PIN26_CFG	RW	8'h04	GPIO 26	SD WP	1	-
15:8	PIN25_CFG	RW	8'h04	GPIO 25	SD CD	-	-
7:0	PIN24_CFG	RW	8'h04	GPIO 24	SD DAT0	1	-

Table 5.17 - Pin 24 - 27 Register

5.2.8.8 Pin 28 - 31 Register (address offset: 0x38)

Di+	Bit Name	Туре	Default	Pin Functionality Bits			
DIC	Name	Type	Value	00	01	10	11
31:24	PIN31_CFG	RW	8'h04	GPIO 31	SPIM IO2	-	-
23:16	PIN30_CFG	RW	8'h04	GPIO 30	SPIM	-	-
					MISO		
15:8	PIN29_CFG	RW	8'h04	GPIO 29	SPIM	-	-
					MOSI		
7:0	PIN28_CFG	RW	8'h04	GPIO 28	SPIM SS0	ı	-

Table 5.18 - Pin 28 - 31 Register

5.2.8.9 Pin 32 – 35 Register (address offset: 0x3C)

Bit	Name	Туре	Default	Pin Functionality Bits			
DIC	Name	Type	Value	00	01	10	11
31:24	PIN35_CFG	RW	8'h04	GPIO 35	SPIM SS3	-	-
23:16	PIN34_CFG	RW	8'h04	GPIO 34	SPIM SS2	-	-
15:8	PIN33_CFG	RW	8'h04	GPIO 33	SPIM SS1	-	-
7:0	PIN32_CFG	RW	8'h04	GPIO 32	SPIM IO3	-	-

Table 5.19 - Pin 32 - 35 Register

5.2.8.10 Pin 36 - 39 Register (address offset: 0x40)

Bit	Name	Туре	Default	Pin Functionality Bits			
DIL	Name Name	Type	Value	00	01	10	11
31:24	PIN39_CFG	RW	8'h04	GPIO 39	SPIS0	ı	ı

					MISO		
23:16	PIN38_CFG	RW	8'h04	GPIO 38	SPIS0	-	-
					MOSI		
15:8	PIN37_CFG	RW	8'h04	GPIO 37	SPIS0 SS	-	-
7:0	PIN36_CFG	RW	8'h04	GPIO 36	SPIS0	-	-
					SCK		

Table 5.20 - Pin 36 - 39 Register

5.2.8.11 Pin 40 – 43 Register (address offset: 0x44)

Bit	Name	Туре	Default	Pin Functionality Bits			
DIL	Name	Type	Value	00	01	10	11
31:24	PIN43_CFG	RW	8'h04	GPIO 43	SPIS1	-	-
					MISO		
23:16	PIN42_CFG	RW	8'h04	GPIO 42	SPIS1	-	-
					MOSI		
15:8	PIN41_CFG	RW	8'h04	GPIO 41	SPIS1 SS	Ī	ı
7:0	PIN40_CFG	RW	8'h04	GPIO 40	SPIS1	-	-
					SCK		

Table 5.21 - Pin 40 - 43 Register

5.2.8.12 Pin 44 - 47 Register (address offset: 0x48)

Bit	Name Type Default Value Pin Functionality				S (note that I2C Master &		
		7.	Value	00	01	10	11
31:24	PIN47_CFG	RW	8'h04	GPIO 47	I2C1 SDA	1	-
23:16	PIN46_CFG	RW	8'h04	GPIO 46	I2C1 SCL	-	-
15:8	PIN45_CFG	RW	8'h04	GPIO 45	I2C0 SDA	1	-
7:0	PIN44_CFG	RW	8'h04	GPIO 44	I2C0 SCL	-	-

Table 5.22 - Pin 44 - 47 Register

Bit	Name	Type	ype Default F	Pin Functionality Bits			
DIL	Name	Type		00	01	10	11
31:24	PIN51_CFG	RW	8'h04	GPIO 51	-	ı	UART0 CTS
23:16	PIN50_CFG	RW	8'h04	GPIO 50	-	-	UART0 RTS
15:8	PIN49_CFG	RW	8'h04	GPIO 49	-	-	UART0 RXD
7:0	PIN48_CFG	RW	8'h04	GPIO 48	-	-	UART0 TXD

Table 5.23 - Pin 48 - 51 Register

5.2.8.14 Pin 52 – 55 Register (address offset: 0x50)

Bit	Name Type Default Pin Functionality Bits						
DIC	Name	Type	YPE Value	00	01	10	11
31:24	PIN55_CFG	RW	8'h04	GPIO 55	PWM Ch7	UART1	UARTO RI
						CTS	
23:16	PIN54_CFG	RW	8'h04	GPIO 54	PWM Ch6	UART1	UART0
						RTS	DCD
15:8	PIN53_CFG	RW	8'h04	GPIO 53	PWM Ch5	UART1	UART0
						RXD	DSR

Ī	7:0	PIN52_CFG	RW	8'h04	GPIO 52	PWM Ch4	UART1	UART0
							TXD	DTR

Table 5.24 - Pin 52 - 55 Register

5.2.8.15 Pin 56 - 59 Register (address offset: 0x54)

Bit	Name	Туре	Default	Pin Functionality Bits				
Dit	Name	Type	Value	00	01	10	11	
31:24	PIN59_CFG	RW	8'h04	-	-	-	-	
23:16	PIN58_CFG	RW	8'h04	GPIO 58	PWM Ch2	1	-	
15:8	PIN57_CFG	RW	8'h04	GPIO 57	PWM Ch1	-	-	
7:0	PIN56_CFG	RW	8'h04	GPIO 56	PWM Ch0	-	-	

Table 5.25 - Pin 56 - 59 Register

5.2.8.16 Pin 60 - 63 Register (address offset: 0x58)

Bit	Name	Туре	Default	Pin Functi	onality Bits	lity Bits			
DIL	Name	Type	Value	00	01	10	11		
31:24	PIN63_CFG	RW	8'h04	GPIO 63	I2SM	I2SS	-		
					LRCLK	LRCLK			
23:16	PIN62_CFG	RW	8'h04	GPIO 62	I2SM	I2SS	-		
					BCLK	BCLK			
15:8	PIN61_CFG	RW	8'h04	GPIO 61	I2S SDAI	1	-		
7:0	PIN60_CFG	RW	8'h04	GPIO 60	I2S SDAO	-	-		

Table 5.26 - Pin 60 - 63 Register

Bit	Name	Type Default Pin Functionality Bits					
ыс	Name	Type	Yalue	00	01	10	11
31:24	Reserved	RW	8'h04	-	-	1	1
23:16	PIN66_CFG	RW	8'h04	GPIO 66	I2SM	-	-
					CLK24		
15:8	PIN65_CFG	RW	8'h04	GPIO 65	I2SM	-	-
					CLK22		
7:0	PIN64_CFG	RW	8'h04	GPIO 64	I2S MCLK	-	1

Table 5.27 - Pin 64 - 66 Register

5.2.9 GPIO Configuration Registers (address offset: 0x60 - 0x83)

These registers control the GPIO configurations. Each register houses the configuration for 8 digital pads except the last register, which only configures 3 pads (64 to 66). Each nibble of the register configures 1 digital pad.

All GPIOs can function as an interrupt. The polarity can be either positive edge or negative edge if its interrupt capability is enabled. If this feature is desired, the pad must be configured as a **GPIO** input. Otherwise unpredictable behavior may result.

There is no de-bouncing for all GPIO's. If they are used as general inputs, and debouncing is needed, then software must handle this. If it's to be used as an interrupt, the external interrupt source should be glitch free.

The bit layout for the GPIO Configuration Registers is as follows:

Bit	Description	Value	Configuration
31:30 27:26 23:22 19:18 15:14 11:10 7:6 3:2	GPIO Direction	00 01 1X	Input Output OD Output
29 25 21 17 13 9 5	Interrupt Capable (Also see section <u>5.2.11</u> , "GPIO Interrupt Enable Registers")	0	No Yes

Bit	Description	Value	Configuration
28			
24			
20	Interrupt Edge		
16	Interrupt Edge (only if Interrupt Capable bit is	0	Falling Edge
12		1	Rising Edge
8	1)		
4			
0			

Table 5.28 - GPIO Configuration Register Description

The following tables give more details about which bits control a specific GPIO Pin using the values from Table 5.28.

5.2.9.1 GPIO 00 - 07 Configuration Register (address offset: 0x60)

Bit	Name	Туре	Default Value	Description
31:28	GPIO07_CFG	RW	0	For GPIO 7
27:24	GPIO06_CFG	RW	0	For GPIO 6
23:20	GPIO05_CFG	RW	0	For GPIO 5
19:16	GPIO04_CFG	RW	0	For GPIO 4
15:12	GPIO03_CFG	RW	0	For GPIO 3
11:8	GPIO02_CFG	RW	0	For GPIO 2
7:4	GPIO01_CFG	RW	0	For GPIO 1
3:0	GPIO00_CFG	RW	0	For GPIO 0

Table 5.29 - GPIO 00 - 07 Configuration Register

5.2.9.2 GPIO 08 - 15 Configuration Register (address offset: 0x64)

Bit	Name	Туре	Default Value	Description
31:28	GPIO15_CFG	RW	0	For GPIO 15
27:24	GPIO14_CFG	RW	0	For GPIO 14
23:20	GPIO13_CFG	RW	0	For GPIO 13
19:16	GPIO12_CFG	RW	0	For GPIO 12
15:12	GPIO11_CFG	RW	0	For GPIO 11
11:8	GPIO10_CFG	RW	0	For GPIO 10
7:4	GPIO09_CFG	RW	0	For GPIO 9
3:0	GPIO08_CFG	RW	0	For GPIO 8

Table 5.30 - GPIO 08 - 15 Configuration Register

5.2.9.3 GPIO 16 - 23 Configuration Register (address offset: 0x68)

Bit	Name	Туре	Default Value	Description
31:28	GPIO23_CFG	RW	0	For GPIO 23
27:24	GPIO22_CFG	RW	0	For GPIO 22
23:20	GPIO21_CFG	RW	0	For GPIO 21
19:16	GPIO20_CFG	RW	0	For GPIO 20
15:12	GPIO19_CFG	RW	0	For GPIO 19
11:8	GPIO18_CFG	RW	0	For GPIO 18
7:4	GPIO17_CFG	RW	0	For GPIO 17
3:0	GPIO16_CFG	RW	0	For GPIO 16

Table 5.31 - GPIO 16 - 23 Configuration Register

GPIO 24 - 31 Configuration Register (address offset: 0x6C) 5.2.9.4

Bit	Name	Туре	Default Value	Description
31:28	GPIO31_CFG	RW	0	For GPIO 31
27:24	GPIO30_CFG	RW	0	For GPIO 30
23:20	GPIO29_CFG	RW	0	For GPIO 29
19:16	GPIO28_CFG	RW	0	For GPIO 28
15:12	GPIO27_CFG	RW	0	For GPIO 27
11:8	GPIO26_CFG	RW	0	For GPIO 26
7:4	GPIO25_CFG	RW	0	For GPIO 25
3:0	GPIO24 CFG	RW	0	For GPIO 24

Table 5.32 - GPIO 24 - 31 Configuration Register

GPIO 32 - 39 Configuration Register (address offset: 0x70) 5.2.9.5

Bit	Name	Туре	Default Value	Description
31:28	GPIO39_CFG	RW	0	For GPIO 39
27:24	GPIO38_CFG	RW	0	For GPIO 38
23:20	GPIO37_CFG	RW	0	For GPIO 37
19:16	GPIO36_CFG	RW	0	For GPIO 36
15:12	GPIO35_CFG	RW	0	For GPIO 35
11:8	GPIO34_CFG	RW	0	For GPIO 34
7:4	GPIO33_CFG	RW	0	For GPIO 33
3:0	GPIO32_CFG	RW	0	For GPIO 32

Table 5.33 - GPIO 32 - 39 Configuration Register

5.2.9.6 GPIO 40 – 47 Configuration Register (address offset: 0x74)

Bit	Name	Туре	Default Value	Description
31:28	GPIO47_CFG	RW	0	For GPIO 47
27:24	GPIO46_CFG	RW	0	For GPIO 46
23:20	GPIO45_CFG	RW	0	For GPIO 45
19:16	GPIO44_CFG	RW	0	For GPIO 44
15:12	GPIO43_CFG	RW	0	For GPIO 43
11:8	GPIO42_CFG	RW	0	For GPIO 42
7:4	GPIO41_CFG	RW	0	For GPIO 41
3:0	GPIO40_CFG	RW	0	For GPIO 40

Table 5.34 - GPIO 40 - 47 Configuration Register

GPIO 48 - 55 Configuration Register (address offset: 0x78) *5.2.9.7*

Bit	Name	Туре	Default Value	Description
31:28	GPIO55_CFG	RW	0	For GPIO 55
27:24	GPIO54_CFG	RW	0	For GPIO 54
23:20	GPIO53_CFG	RW	0	For GPIO 53
19:16	GPIO52_CFG	RW	0	For GPIO 52
15:12	GPIO51_CFG	RW	0	For GPIO 51
11:8	GPIO50_CFG	RW	0	For GPIO 50
7:4	GPIO49_CFG	RW	0	For GPIO 49
3:0	GPIO48_CFG	RW	0	For GPIO 48

Table 5.35 - GPIO 48 - 55 Configuration Register

5.2.9.8 GPIO 56 – 63 Configuration Register (address offset: 0x7C)

Bit	Name	Туре	Default Value	Description
31:28	GPIO63_CFG	RW	0	For GPIO 63
27:24	GPIO62_CFG	RW	0	For GPIO 62
23:20	GPIO61_CFG	RW	0	For GPIO 61
19:16	GPIO60_CFG	RW	0	For GPIO 60
15:12	GPIO59_CFG	RW	0	For GPIO 59
11:8	GPIO58_CFG	RW	0	For GPIO 58
7:4	GPIO57_CFG	RW	0	For GPIO 57
3:0	GPIO56 CFG	RW	0	For GPIO 56

Table 5.36 - GPIO 56 - 63 Configuration Register

5.2.9.9 GPIO 64 - 66 Configuration Register (address offset: 0x80)

Bit	Name	Туре	Default Value	Description
31:12	Reserved	-	-	-
11:8	GPIO66_CFG	RW	0	For GPIO 66
7:4	GPIO65_CFG	RW	0	For GPIO 65
3:0	GPIO64_CFG	RW	0	For GPIO 64

Table 5.37 - GPIO 64 - 66 Configuration Register

5.2.10 GPIO Value Registers (address offset: 0x84 - 0x8F)

These registers contain the values for the GPIO pins. Each register contains the value of 32 digital pins except the last register, which only contains the value of 3 pins (64 to 66). Each bit of the register maps to the corresponding digital pin.

5.2.10.1 GPIO 00 - 31 Value Register (address offset: 0x84)

Bit	Name	Туре	Default Value	Description
31:0	GPIO_VAL_IN[31:0]	RO	X	Input values of GPIO 31 - 0
31:0	GPIO_VAL_OUT[31:0]	WO	0	Output values of GPIO 31 – 0

Table 5.38 - GPIO 00 - 31 Value Register

5.2.10.2 GPIO 32 - 63 Value Register (address offset: 0x88)

Bit	Name	Туре	Default Value	Description
31:0	GPIO_VAL_IN[63:32]	RO	Χ	Input values of GPIO 63 – 32
31:0	GPIO_VAL_OUT[63:32]	WO	0	Output values of GPIO 63 - 32

Table 5.39 - GPIO 32 - 63 Value Register

5.2.10.3 GPIO 64 - 66 Value Register (address offset: 0x8C)

Bit	Name	Туре	Default Value	Description
31:3	Reserved	-	-	-
2:0	GPIO_VAL_IN[66:64]	RO	X	Input values of GPIO 66 - 64
2:0	GPIO_VAL_OUT[66:64]	WO	0	Output values of GPIO 66 - 64

Table 5.40 - GPIO 64 - 66 Value Register

5.2.11 GPIO Interrupt Enable Registers (address offset: 0x90 - 0x9B)

When a pin has been configured as an input with interrupt capability, the GPIO Interrupt Enable Register can be used to enable interrupt generation. Each register enables interrupt generation for 32 digital pins except the last register, which only enables interrupt generation for 3 pins (64 to 66). Each bit of the register enables interrupt generation for 1 digital pin.

These should be used only for pads that have been properly configured as interrupt enabled GPIO inputs.

5.2.11.1 GPIO 00 - 31 Interrupt Enable Register (address offset: 0x90)

Bit	Name	Туре	Default Value	Description
31:0	GPIO_INT_EN[31:0]	RW	0	GPIO input 31-0 interrupt enable when set.

Table 5.41 - GPIO 00 - 31 Interrupt Enable Register

5.2.11.2 GPIO 32 - 63 Interrupt Enable Register (address offset: 0x94)

Bit	Name	Туре	Default Value	Description
31:0	GPIO_INT_EN[63:32]	RW	0	GPIO input 63-32 interrupt enable when set.

Table 5.42 - GPIO 32 - 63 Interrupt Enable Register

5.2.11.3 GPIO 64 - 66 Interrupt Enable Register (address offset: 0x98)

Bit	Name	Туре	Default Value	Description
31:3	Reserved	-	-	-
2:0	GPIO INT EN[66:64]	RW	0	GPIO input 66-64 interrupt enable when set.

Table 5.43 - GPIO 64 - 66 Interrupt Enable Register

5.2.12 Interrupt Pending Registers (address offset: 0x9C - 0xA7)

These registers hold the interrupt pending flags for the GPIO pins. Each register holds the flags for 32 digital pins except the last register, which only holds the flags for 3 pins (64 to 66). Each bit of the register holds the flag for 1 digital pin.

5.2.12.1 GPIO 00 – 31 Interrupt Pending Register (address offset: 0x9C)

Bit	Name	Туре	Default Value	Description
31:0	GPIO_INT_PEND[31:0]	RW1C	0	GPIO input 31-0 interrupt pending when set; write a 1 to clear.

Table 5.44 - GPIO 00 - 31 Interrupt Pending Register

5.2.12.2 GPIO 32 - 63 Interrupt Pending Register (address offset: 0xA0)

Bit	Name	Туре	Default Value	Description
31:0	GPIO_INT_PEND[63:32]	RW1C	0	GPIO input 63-32 interrupt pending when set; write a 1 to clear.

Table 5.45 - GPIO 32 - 63 Interrupt Pending Register

5.2.12.3 GPIO 64 - 66 Interrupt Pending Register (address offset: 0xA4)

Bit	Name	Туре	Default Value	Description
31:3	Reserved	-	-	-
2:0	GPIO_INT_PEND[66:64]	RW1C	0	GPIO input 66-64 interrupt pending when

		set; write a 1 to clear.

Table 5.46 - GPIO 64 - 66 Interrupt Pending Register

5.2.13 ETH_PHY_CFG - Ethernet PHY Miscellaneous Configuration Register (address offset: 0xA8)

Bit	Name	Туре	Default Value	Description
31:23	Reserved	-	-	-
22:20	ETHERNET_LED1_SEL	RW	0	Ethernet LED 1 source selection: 0: LINKLED 1: TXLED 2: RXLED 3: COLLED 4: FDXLED Others: SPDLED
19	Reserved	-	-	-
18:16	ETHERNET_LED2_SEL	RW	3′h7	Ethernet LED 2 source selection: 0: LINKLED 1: TXLED 2: RXLED 3: COLLED 4: FDXLED Others: SPDLED
15:11	Reserved	-	-	-
10	ETHERNET_LOOPBAC K	RW	0	1: Ethernet loopback; refer to IP document for details
9	ETHERNET_PWRSV	RW	1	1: Ethernet PHY Power Save (Preferably Set this to 0 prior to enabling the MAC clock)
8	ETHERNET_PWRDN	RW	1	1: Ethernet PHY Power Down (Preferably Set this to 0 prior to enabling the MAC clock)
7:5	Reserved	-	-	-
4:0	ETHERNET_PHYAD	RW	0	Ethernet PHY Address

Table 5.47 - ETH_PHY_CFG - Ethernet PHY Miscellaneous Configuration Register

5.2.14 ETH_PHY_ID - Ethernet PHY ID Register (address offset: 0xAC)

Bit	Name	Туре	Default Value	Description
31:0	ETHERNET_PHYID	RW	0	Ethernet PHY ID

Table 5.48 - ETH_PHY_ID - Ethernet PHY ID Register

5.2.15 DAC_ADC_CONF - ADC/DAC Configuration/Status Register (address offset: 0xB0)

Bit	Name	Туре	Default Value	Description
31:27	Reserved	-	-	-
26	ADC_IRQ_PEND	RW1C	0	ADC Interrupt Pending when set. Write a 1 to clear this bit.
25	DAC_IRQ_PEND1	RW1C	0	DAC 1 Interrupt Pending when set. Write a 1 to clear this bit.
24	DAC_IRQ_PEND0	RW1C	0	DAC 0 Interrupt Pending when set. Write a 1 to clear this bit.
23:19	Reserved	-	-	-

Bit	Name	Туре	Default Value	Description
18	ADC_IRQ_EN	RW	0	1: Enable ADC interrupt
17	DAC_IRQ_EN1	RW	0	1: Enable DAC 1 interrupt
16	DAC_IRQ_EN0	RW	0	1: Enable DAC 0 interrupt
15	ADC_START	RWAC	0	Write 1 to start ADC operations. This bit will be automatically cleared if ADC_CONT is 0; otherwise if ADC_CONT, ADC operation runs till this is set to 0 by the user.
14	ADC_EXTEND	RW	0	(Internal use only): Normal conversion takes 13 cycles; setting this bit to 1 will make the conversion take 14 cycles.
13	ADC_EXT_VREF	RW	0	1: Enable Rail-Rail Reference. The range is 0 - 3.3V.0: Disable Rail-Rail Reference. The range is 0.33 - 2.97V.
12	ADC_CONT	RW	0	1: Enable ADC continuous mode; ADC samples are availabile in the ADC FIFO after conversion
11	ADC_PDB	RW	0	0: power down ADC Set to 0 if ADC Is not used in the chip configuration.
10:8	ADC_CHANNEL	RW	0	0: No channel is selected 1: Channel 0 selected 2: Channel 1 selected 3: Channel 2 selected 4: Channel 3 selected 5: Channel 4 selected 6: Channel 5 selected 7: Channel 6 selected
7	DAC_START1	RW	0	Write 1 to start DAC 0 conversion. When DAC_CONT1 is not set, this bit is automatically cleared after a single conversion. When DAC_CONT1 is set, conversion proceeds (samples are taken from FIFO) until this bit is cleared by software.
6	Reserved	-	-	-
5	DAC_CONT1	RW	0	1: Enable DAC 1 continuous conversion mode; DAC samples are read from the DAC FIFO
4	DAC_PDB1	RW	0	0: power down DAC 1 Set to 0 if DAC 1 is not used in the chip configuration.
3	DAC_START0	RWAC	0	Write 1 to start DAC 0 conversion. When DAC_CONT0 is not set, this bit is automatically cleared after a single conversion. When DAC_CONT0 is set, conversion proceeds (samples are taken from FIFO) until this bit is cleared by software.
2	Reserved	-	-	-
1	DAC_CONT0	RW	0	1: Enable DAC0 in continuous conversion mode; DAC samples are read from the DAC FIFO
0	DAC_PDB0	RW	0	0: power down DAC 0 Set to 0 if DAC 0 Is not used in the chip configuration.

Table 5.49 - DAC_ADC_CONF - ADC/DAC Configuration/Status Register

5.2.16 DAC_ADC_CNT - ADC/DAC Count Register (address offset: 0xB4)

Bit	Name	Туре	Default Value	Description
31	Reserved	ı	-	-
30:24	DAC_DIVIDER	RW	7′h63	This determines the DAC1/0 conversion rate. The rate is determined by Peripheral clock freq / (DAC_DIVIDER+1) The maximum conversion rate is 1MHz.
23:16	ADC_DATA_COUNT	RO	0	The amount of data available for reading in the ADC FIFO at the most recent interrupt. The FIFO contains at least ADC_DATA_COUNT samples for readout
15:8	DAC_DATA_COUNT1	RO	0	The amount of data still available for conversion in the DAC 1 FIFO. The FIFO contains at most DAC_DATA_COUNT1 samples for conversion
7:0	DAC_DATA_COUNT0	RO	0	The amount of data still available for conversion in the DAC 0 FIFO. The FIFO contains at most DAC_DATA_COUNTO samples for conversion

Table 5.50 - DAC_ADC_CNT - ADC/DAC Count Register

5.2.17 DAC_ADC_DATA - ADC/DAC Data Register (address offset: 0xB8)

Bit	Name	Туре	Default Value	Description
31:26	Reserved	RO	0	
25:16	DAC_DATA1	WO	0	DAC 1 Data write window for DAC 1 FIFO; If byte access is used, write to the FIFO occurs only when the high byte is written. Hence the upper bits should be written last in this case.
15:10	Reserved	RO	0	
9:0	ADC_DATA	RO	0	ADC Data read window from FIFO for ADC. Only 16-bit read accesses are supported.
9:0	DAC_DATA0	WO	0	DAC 0 Data write window for DAC 1 FIFO; If byte access is used, write to the FIFO occurs only when the high byte is written. Hence the upper bits should be written last in this case.

Table 5.51 - DAC_ADC_DATA - ADC/DAC Data Register

6 Interrupt Controller

The interrupt controller takes in 32 interrupts, and based on the interrupt priorities assigned generates the interrupt to the FT900 together with an ISR address. Nested interrupts are allowed if enabled. By default it is disabled. Up to 16 levels of nesting is allowed which defaults to only 1 level if nesting is enabled.

When nesting is enabled, only interrupts with higher priorities can interrupt the current interrupt. Interrupts of same or lower priorities will be queued as long as the interrupt sources are not cleared.

The ISR vectors range from 0 to 31, corresponding to interrupts 0 to 31. The actual ISR address corresponds to program memory addresses 2 to 33.

The highest priority interrupt by default is interrupt input 0, and the lowest interrupt input is 31. The priorities however can be rearranged by setting the appropriate registers. Each interrupt input is assigned an interrupt priority position that can be changed. Note it's possible to assign multiple interrupts to the same priority. By default the interrupts 0 to 31 are assigned interrupt priorities 0 to 31 respectively, with lower number indicating higher priority.

A global interrupt mask bit is also available. Setting it to 1 will temporarily block all interrupts except the interrupt assigned as interrupt 0 which is non-maskable by this global mask.

In the FT900, the interrupts connections from the peripherals are listed in the table below. Interrupts 23 to 31 are unused by default.

Peripheral Interrupt	Interrupt Controller Interrupt Input Number	Default Priority
Power Management	0	0 (Highest) – Non-maskable
USB Host	1	1
USB Peripheral	2	2
Ethernet	3	3
SD Host	4	4
CAN 0	5	5
CAN 1	6	6
Data Capture Interface	7	7
SPI Master	8	8
SPI Slave 0	9	9

SPI Slave 1	10	10
I2C Master	11	11
I2C Slave	12	12
UART 0	13	13
UART 1	14	14
I2S	15	15
PWM	16	16
TIMERS	17	17
GPIO	18	18
RTC	19	19
ADC	20	20
DAC	21	21
SLOWCLOCK Timer	22	22
UNUSED	23-31	23-31

Table 6.1 - Interrupt Assignment Table

6.1 Register Summary

The base address for the interrupt assignment registers is 0x100C0. All registers and RAM locations can be accessed via Byte (8-bit), Word (16-bit) or Double-Word (32-bit) mode.

Address Offset	Register	Default value	References
0x00	IRQ00-03 Assignment Register	0x03020100	Section 6.2.1
0x04	IRQ04-07 Assignment Register	0x07060504	Section 6.2.2
0x08	IRQ08-11 Assignment Register	0x0B0A0908	Section 6.2.3
0x0C	IRQ12-15 Assignment Register	0x0F0E0D0C	Section 6.2.4
0x10	IRQ16-19 Assignment Register	0x13121110	Section 6.2.5

0x14	IRQ20-23 Assignment Register	0x17161514	Section 6.2.6
0x18	IRQ24-27 Assignment Register	0x1B1A1918	Section 6.2.7
0x1C	IRQ28-31 Assignment Register	0x1F1E1D1C	Section 6.2.8
0×20	IRQ Control Register	0x80000000	Section 6.2.9
1			

Table 6.2 - Overview of Interrupt Control Registers

6.2 Register Details

6.2.1 IRQ00-03 Assignment Register (address offset: 0x00)

Bit	Name	Туре	Default Value	Description
31:29	Reserved	-	-	-
28:24	PR03ASSIGN	RW	5'h03	Priority assignment for interrupt 3
23:21	Reserved	-	-	-
20:16	PR02ASSIGN	RW	5'h02	Priority assignment for interrupt 2
15:13	Reserved	-	-	-
12:8	PR01ASSIGN	RW	5′h01	Priority assignment for interrupt 1
7:5	Reserved	-	-	-
4:0	PR00ASSIGN	RW	5'h00	Priority assignment for interrupt 0

Table 6.3 - IRQ00-03 Assignment Register

6.2.2 IRQ04-07 Assignment Register (address offset: 0x04)

Bit	Name	Туре	Default Value	Description
31:29	Reserved	-	ı	-
28:24	PR07ASSIGN	RW	5′h07	Priority assignment for interrupt 7
23:21	Reserved	-	ı	-
20:16	PR06ASSIGN	RW	5′h06	Priority assignment for interrupt 6
15:13	Reserved	-	ı	-
12:8	PR05ASSIGN	RW	5′h05	Priority assignment for interrupt 5
7:5	Reserved	-	ı	-
4:0	PR04ASSIGN	RW	5′h04	Priority assignment for interrupt 4

Table 6.4 - IRQ04-07 Assignment Register

6.2.3 IRQ08-11 Assignment Register (address offset: 0x08)

Bit	Name	Туре	Default Value	Description
31:29	Reserved	-	ı	-
28:24	PR11ASSIGN	RW	5′h0B	Priority assignment for interrupt 11
23:21	Reserved	-	ı	-
20:16	PR10ASSIGN	RW	5′h0A	Priority assignment for interrupt 10
15:13	Reserved	-	ı	-
12:8	PR09ASSIGN	RW	5′h09	Priority assignment for interrupt 9
7:5	Reserved	-	ı	-
4:0	PR08ASSIGN	RW	5′h08	Priority assignment for interrupt 8

Table 6.5 - IRQ08-11 Assignment Register

6.2.4 IRQ12-15 Assignment Register (address offset: 0x0C)

Bit	Name	Туре	Default Value	Description
31:29	Reserved	-	-	-
28:24	PR15ASSIGN	RW	5′h0F	Priority assignment for interrupt 15
23:21	Reserved	-	-	-
20:16	PR14ASSIGN	RW	5′h0E	Priority assignment for interrupt 14
15:13	Reserved	-	-	-
12:8	PR13ASSIGN	RW	5′h0D	Priority assignment for interrupt 13
7:5	Reserved	-	-	-
4:0	PR12ASSIGN	RW	5'h0C	Priority assignment for interrupt 12

Table 6.6 - IRQ12-15 Assignment Register

6.2.5 IRQ16-19 Assignment Register (address offset: 0x10)

Bit	Name	Туре	Default Value	Description
31:29	Reserved	-	ı	-
28:24	PR19ASSIGN	RW	5′h13	Priority assignment for interrupt 19
23:21	Reserved	-	ı	-
20:16	PR18ASSIGN	RW	5′h12	Priority assignment for interrupt 18
15:13	Reserved	-	ı	-
12:8	PR17ASSIGN	RW	5′h11	Priority assignment for interrupt 17
7:5	Reserved	-	ı	-
4:0	PR16ASSIGN	RW	5′h10	Priority assignment for interrupt 16

Table 6.7 - IRQ16-19 Assignment Register

6.2.6 IRQ20-23 Assignment Register (address offset: 0x14)

Bit	Name	Туре	Default Value	Description
31:29	Reserved	-	-	-
28:24	PR23ASSIGN	RW	5′h17	Priority assignment for interrupt 23
23:21	Reserved	-	ı	-
20:16	PR22ASSIGN	RW	5′h16	Priority assignment for interrupt 22
15:13	Reserved	-	ı	-
12:8	PR21ASSIGN	RW	5′h15	Priority assignment for interrupt 21
7:5	Reserved	-	-	-
4:0	PR20ASSIGN	RW	5′h14	Priority assignment for interrupt 20

Table 6.8 - IRQ20-23 Assignment Register

6.2.7 IRQ24-27 Assignment Register (address offset: 0x18)

Bit	Name	Туре	Default Value	Description
31:29	Reserved	-	ı	-
28:24	PR27ASSIGN	RW	5′h1B	Priority assignment for interrupt 27
23:21	Reserved	-	ı	-
20:16	PR26ASSIGN	RW	5'h1A	Priority assignment for interrupt 26
15:13	Reserved	-	ı	-
12:8	PR25ASSIGN	RW	5′h19	Priority assignment for interrupt 25
7:5	Reserved	-	ı	-
4:0	PR24ASSIGN	RW	5′h18	Priority assignment for interrupt 24

Table 6.9 - IRQ24-27 Assignment Register

6.2.8 IRQ28-31 Assignment Register (address offset: 0x1C)

Bit	Name	Туре	Default Value	Description
31:29	Reserved	-	ı	-
28:24	PR31ASSIGN	RW	5′h1F	Priority assignment for interrupt 31
23:21	Reserved	-	ı	-
20:16	PR30ASSIGN	RW	5′h1E	Priority assignment for interrupt 30
15:13	Reserved	-	ı	-
12:8	PR29ASSIGN	RW	5′h1D	Priority assignment for interrupt 29
7:5	Reserved	-	- 1	-
4:0	PR28ASSIGN	RW	5'h1C	Priority assignment for interrupt 28

Table 6.10 - IRQ28-31 Assignment Register

6.2.9 IRQ Control Register (address offset: 0x20)

Bit	Name	Туре	Default Value	Description
31	Global Interrupt Mask	RW	1	Set to 1 to mask all interrupts.
30:8	Reserved	-	-	-
7	Nested Interrupt	RW	0	Set to 1 to enable nested interrupts. This bit shall be set or cleared while the Global Interrupt Mask is enabled.
6:4	Reserved	-	-	-
3:0	Nested Depth	RW	4'h00	Maximum number of nested interrupts permitted (Nested Depth + 1); minimum 1 level, and maximum 16 levels.

Table 6.11 - IRQ Control Register

7 EFUSE

7.1 Introduction

The EFUSE is the only way to modify the content of the Chip Configuration Register.

There are 64 bits in the EFUSE, in which the lower 32 bits correspond to the 32 bits in the register. Please note that only bits 27..0 should be modified by the EFUSE operation described below.

The EFUSE can be accessed externally via the first SPI slave interface (SPI Slave 1) while RESET is active. The supported mode is CPOL = 0 and CPHA = 0.

For the data transfer, a read operation reads all EFUSE bits at a time while a write operation writes each individual EFUSE bit separately.

Warning: Each EFUSE bit can only be written (or blown) once. After the bit has been blown, there is no way to revert it.

7.2 EFUSE Operation

To use the interface to access the EFUSE, send in "EFU" as the first 3 bytes.

To read from the EFUSE, send in the command 0x80. 8 dummy clocks are needed to perform the EFUSE read; another 64 dummy clocks must be provided to shift out the 64-bit EFUSE contents, with the MSB first.

To write to the EFUSE, send in the command 0x08, followed by 8-bit address (only the lower 6 bits are effective). A dummy byte should follow that.

After the required programming period (~500us) has elapsed, a non-zero byte should be sent in to terminate the programming cycle. The programming will not terminate automatically. CS signal shall remain asserted throughout until the last termination byte is transmitted.

7.3 EFUSE bits

The table below shows the 64 bits. The bit number acts as the bit address for the write operation.

Bit	Name	Description
27	1-Wire_ACTIVE	If set, FTDI 1-wire debug interface is available; otherwise it's permanently disabled.
26	EXT_SPI_ACTIVE	If set, internal FLASH/EFUSE can be accessed via SPI Slave 1 interface during reset; otherwise this interface is permanently disabled.
25:21	Reserved	-
20	FLASH_RD_ENA	If set, FLASH read via the external SPI interface is allowed; otherwise this feature is permanently disabled. Write will still be available; but see bits 19-16
19	FLASH_WR_B3_ENA	If set, FLASH write/erase to bytes 196608 – 262143 is allowed; otherwise it is permanently non-writable/non-erasable.
18	FLASH_WR_B2_ENA	If set, FLASH write/erase to bytes 131072 – 196607 is allowed; otherwise it is permanently non-writable/non-erasable.
17	FLASH_WR_B1_ENA	If set, FLASH write/erase to bytes 65536 – 131071 is allowed; otherwise it is permanently non-writable/non-erasable.
16	FLASH_WR_B0_ENA	If set, FLASH write/erase to bytes 0 – 65535 is allowed; otherwise it is permanently non-writable/non-erasable.
15:0	FLASH_CODE_RD	Each bit corresponds 16kB of FLASH location, with bit 0

Bit	Name	Description
		referring to locations 0-16383.
		When set the data residing in the said FLASH locations
		are not considered as sensitive information and when
		copied to the program memory, user program may
		access these via LPM/LPMI instructions.
		When cleared, the data are considered as sensitive
		information and reading them via LPM/LPMI instructions
		will not return the correct content.

Table 7.1 - EFUSE bits

8 USB Host

This is a single -port USB host controller which is compliant with the USB 2.0 specification and compatible with the Enhanced Host Controller Interface (EHCI) specification. It supports HS/FS/LS transactions, control/bulk/interrupt/isochronous transfers and split-transaction of the hub. An 8 kB RAM arranged as (2 kB x 32) is attached to the host as buffers.

8.1 Register Summary

Listed below are the registers with their offset from the base address (0x10100). All registers and RAM locations can be accessed via Byte (8-bit), Word (16-bit) or Double-Word (32-bit) mode.

Address Offset	Register	Default value	References
	EHCI Operational Registers		
0x00	HC Capability Register	0x01000010	Section 8.2.1
0x04	HCSPARAMS - HC Structural Parameters	0x0000001	Section 8.2.2
0x08	HCCPARAMS - HC Capability Parameters	0x00000006	Section 8.2.3
0x10	USBCMD - HC USB Command Register	0x00080B00	Section 8.2.4
0x14	USBSTS - HC USB Status Register	0x00001000	Section 8.2.5
0x18	USBINTR - HC USB Interrupt Enable Register	0x00000000	Section 8.2.6
0×1C	FRINDEX – HC Frame Index Register	0x00000000	Section 8.2.7
0x24	PERIODICLISTBASE – HC Periodic Frame List Base Address Register	0x00000000	Section 8.2.8
0x28	ASYNCLISTADDR – HC Current Asynchronous List Address Register	0x00000000	Section 8.2.9
0x30	PORTSC – HC Port Status and Control Register	0x00000000	Section 8.2.10
	Configuration Registers		
0x34	EOF Time & Asynchronous Schedule Sleep Timer Register	0x00000041	Section 8.3.1
0x40	Bus Monitor Control / Status Register	0x00000000	Section 8.3.2
0x78	HPROT – Master Protection Information Setting Register	0x0000003	Section 8.3.3
	USB Testing Registers		
0x54	Vendor Specific IO Control Register	0x00000020	Section 8.4.1
0×58	Vendor Specific Status Register	0xXXXXXXX	Section 8.4.2
0x50	Test Register	0×00000000	Section 8.4.3

0x70	HC_RSRV1 Reserved 1 Register	0x00000000	Section 8.4.4
0x74	HC_RSRV2 Reserved 2 Register	0x00000000	Section 8.4.5

Table 8.1 - Overview of USB Host Controller Registers

8.2 EHCI Operational Registers

8.2.1 HC Capability Register (address offset: 0x00)

This register has information on the host controller interface specification number implemented in this host controller.

Bit	Name	Туре	Default Value	Description
				Host Controller Interface Version Number
31:16	HCIVERSION	RO	16'h0100	It is a 2-byte register containing a BCD encoding of the EHCI revision number supported by the host controller
15:8	Reserved	-	-	-
				Capability Register Length
7:0	CAPLENGTH	RO	8′h10	It is used as an offset added to the register base to find out the beginning of the Operational Register Space

Table 8.2 - HC Capability Register

8.2.2 HCSPARAMS - HC Structural Parameters (address offset: 0x04)

This register specifies the number of downstream port implemented in this host controller.

Bit	Name	Туре	Default Value	Description
31:4	Reserved	-	-	-
3:0	N_PORTS	RO	4'h1	Number of Ports This specifies the number of the physical downstream ports implemented on the host controller

Table 8.3 - HCSPARAMS - HC Structural Parameters

8.2.3 HCCPARAMS - HC Capability Parameters (address offset: 0x08)

Bit	Name	Туре	Default Value	Description
31:3	Reserved	-	ı	-
				Asynchronous Schedule Park Capability
2	ASYN_SCH_PARK_C AP	RO	1′b1	The host controller supports the park feature for HS queue heads in the Asynchronous Schedule. This feature can be disabled or enabled and set to a specific level by using the Asynchronous Schedule Park Mode Enable and Asynchronous Schedule Park Mode Count fields in the USBCMD register
1	PROG_FR_LIST_FLA	RO	1′b1	Programmable Frame List Flag
	G			When this bit is set to 1, the system software

Bit	Name	Туре	Default Value	Description
				can specify and use a smaller frame list and configure the host controller via Frame List Size field of the USBCMD register. This requirement ensures that the frame list is always physically contiguous.
0	Reserved	-	-	-

Table 8.4 - HCCPARAMS - HC Capability Parameters

8.2.4 USBCMD - HC USB Command Register (address offset: 0x10)

The command register is used by the software to schedule the command to be executed by the USB host controller hardware.

Bit	Name	Туре	Default Value	Description
31:24	Reserved	-	-	-
				Interrupt Threshold Control This is used by the system software to select the maximum rate at which the host controller will issue the interrupts. The only valid values are as below:
23:16	INT_THRC	RW	8'h08	0x00: Reserved 0x01: 1 micro-frame (125us) 0x02: 2 micro-frames (250us) 0x04: 4 micro-frames (500us) 0x08: 8 micro-frames (default: 1ms) 0x10: 16 micro-frames (2ms) 0x20: 32 micro-frames (4ms) 0x40: 64 micro-frames (8ms)
				Note: In the FS mode, these bits are reserved.
15:12	Reserved	-	-	-
11	ASYN_PK_EN	RW	1′b1	Asynchronous Schedule Park Mode Enable Software uses this to enable or disable the Park mode. When this is set to 1, the Park mode is enabled
10	Reserved	-	-	-
9:8	ASYN_PK_CNT	RW	2′h3	Asynchronous Schedule Park Mode Count This contains a count for the number of successive transactions that the host controller is allowed to execute from a high speed queue head on the asynchronous schedule.
7	Reserved	-	-	-
6	INT_OAAD	RW	1′b0	Interrupt on Asynchronous Advance Doorbell This is used as a doorbell by software to ring the host controller to issue and interrupt at the next advance of the synchronous schedule.
5	ASCH_EN	RW	1′b0	Asynchronous Schedule Enable This controls whether the host controller skips the processing of asynchronous schedule. 0: Do not process the asynchronous schedule

Bit	Name	Туре	Default Value	Description
				1: Use the ASYNCLISTADDR register to access the asynchronous schedule
				Periodic Schedule Enable
4	PSCH_EN	RW	1′b0	This controls whether the host controller skips the processing of the period schedule. 0: Do not process the period schedule 1: Use the PERIODICLISTBASE register to access the period schedule
				Frame List Size
				This specifies the size of the frame list.
3:2	FRL_SIZE	RW	2′h0	00: 1024 elements (default value, 4096 bytes) 01: 512 elements (2048 bytes) 10: 256 elements (1024 bytes) 11: reserved
				Host Controller Reset
1	HC_RESET	RW	1′b0	This is used by the software to reset the host controller.
				Run/Stop
0	RS	RW	1′b0	When this is set to 1, the host controller proceeds with the execution of schedule.
				0: Stop 1: Run

Table 8.5 - USBCMD - HC USB Command Register

8.2.5 USBSTS - HC USB Status Register (address offset: 0x14)

This register indicates the status of the USB host controller. This register is updated by the USB host controller hardware. Software clears a bit by writing 1 to the bit.

Bit	Name	Туре	Default Value	Description
31:16	Reserved	-	-	-
15	ASCH_STS	RO	1′b0	Asynchronous Schedule Status This reports the actual status of the asynchronous schedule.
14	PSCH_STS	RO	1′b0	Periodic Schedule Status This reports the actual status of the periodic schedule.
13	Reclamation	RO	1′b0	Reclamation This is a read-only status bit, and used to detect an empty of the asynchronous schedule
12	HCHalted	RO	1′b1	Host Controller Halted This is a 0 whenever the Run/Stop bit is set to 1. The host controller sets this to 1 after it has stopped the section as a result of the Run/Stop bit being set to 0.
11:6	Reserved	-	-	-
5	INT_OAA	RW1 C	1′b0	Interrupt on Async Advance This bit indicates the assertion of interrupt on Async Advance Doorbell

Bit	Name	Туре	Default Value	Description
				Host System Error
4	H_SYSERR	RW1 C	1′b0	The host controller sets this to 1 when a serious error occurs during a host system access involving the host controller module.
				Frame List Rollover
3	FRL_ROL	RW1 C	1′b0	The host controller sets this to 1 when the <i>Frame List Index</i> rolls over from its maximum value to zero.
				Port Change Detect
2	PO_CHG_DET	RW1 C	1′b0	The host controller sets this to 1 when any port has a change bit transition from 0 to 1. In addition, this bit is loaded with the OR of all of the PORTSC change bits.
				USB Error Interrupt
1	USBERR_INT	RW1 C	1′b0	The host controller sets this to 1 when the completion of a USB transaction results in an error condition
		RW1		USB Interrupt
0	USB_INT	C	1′b0	The host controller sets this to 1 upon completion of a USB transaction

Table 8.6 - USBSTS - HC USB Status Register

8.2.6 USBINTR - HC USB Interrupt Enable Register (address offset: 0x18)

This register enables the required host controller interrupts. The interrupts enabled by this register toggle the interrupt pin when the interrupt condition occurs. Interrupts not enabled in this register do not toggle the interrupt pin but the status can be read by polling the interrupt status register.

Bit	Name	Туре	Default Value	Description
31:6	Reserved	-	-	-
5	INT_OAA_EN	RW	1′b0	Interrupt on Async Advance Enable When this is 1 and the <i>Interrupt on Async Advance</i> bit in the USBSTS register is 1, the host controller will issue an interrupt at the next interrupt threshold.
4	H_SYSERR_EN	RW	1′b0	Host System Error Enable When this is 1 and the Host System Error Status bit in the USBSTS register is 1, the host controller will issue an interrupt at the next interrupt threshold.
3	FRL_ROL_EN	RW	1′b0	Frame List Rollover Enable When this is 1 and the Frame List Rollover bit in the USBSTS register is 1, the host controller will issue an interrupt at the next interrupt threshold.
2	PO_CHG_INT_EN	RW	1′b0	Port Change Interrupt Enable When this is 1 and the Port Change Detect bit in the USBSTS register is 1, the host controller will issue an interrupt at the next interrupt threshold.
1	USBERR_INT_EN	RW	1′b0	USB Error Interrupt Enable

Bit	Name	Туре	Default Value	Description
				When this is 1 and the <i>USBERRINT</i> bit in the USBSTS register is 1, the host controller will issue an interrupt at the next interrupt threshold.
0	USB_INT_EN	RW	1′b0	USB Interrupt Enable When this is 1 and the <i>Host USBINT</i> bit in the USBSTS register is 1, the host controller will issue an interrupt at the next interrupt threshold.

Table 8.7 - USBINTR - HC USB Interrupt Enable Register

8.2.7 FRINDEX - HC Frame Index Register (address offset: 0x1C)

This register is used by the host controller to index the periodic frame. The register is updated every 125 microseconds.

Bit	Name	Туре	Default Value	Description
31:14	Reserved	-	-	-
13:0	FRINDEX	RW	14'h0000	Frame Index This is used by the host controller to index the frame into the Periodic Frame List. It is updated every 125us. It cannot be written unless the host controller is halted.

Table 8.8 - FRINDEX - HC Frame Index Register

8.2.8 PERIODICLISTBASE – HC Periodic Frame List Base Address Register (address offset: 0x24)

This register contains the beginning address of the periodic frame list in the system memory.

Bit	Name	Туре	Default Value	Description
31:12	PERI_BASE_ADR	RW	Undefined	Periodic Frame List Base Address This 32-bit register contains the start address of the Periodic Frame List in the system memory. These form the upper 20 bits of the address.
11:0	Reserved	-	-	_

Table 8.9 - PERIODICLISTBASE - HC Periodic Frame List Base Address Register

8.2.9 ASYNCLISTADDR - HC Current Asynchronous List Address Register (address offset: 0x28)

This register contains the address of the next asynchronous queue head to be executed.

Bit	Name	Туре	Default Value	Description
				Current Asynchronous List Address
31:5	ASYNC_LADR	RW	Undefined	This 32-bit register contains the address of the next asynchronous queue head to be executed. These form the upper 27 bits of the address.
4:0	Reserved	ı	-	-

Table 8.10 - ASYNCLISTADDR - HC Current Asynchronous List Address Register

8.2.10 PORTSC - HC Port Status and Control Register (address offset: 0x30)

This register is reset only by hardware when the power is initially applied or in response to a host controller reset.

Bit	Name	Туре	Default Value	Description
31:17	Reserved	_	value	-
31.17	Reserved			Test Force Enable
16	TST_FORCEEN	RW	1′b0	When this is 1 the downstream facing port will be enabled in the high speed mode. Then the Run/Stop bit must be transitioned to 1 in order to enable the transmission of the SOFs out of the port under test. This enables testing of the disconnect detection.
15:12	Reserved	-	-	-
				Line Status
11:10	LINE_STS	RO	Undefined	These reflect the current logical levels of the D+ and D- signal lines.
9	Reserved	-	-	-
				Port Reset
				1: Port is in the reset state0: Port is not in the reset state
8	PO_RESET	RW	1′b0	When the software writes a 1 to this bit, the bus reset sequence as defined in the USB specification will start. Software writes a 0 to this bit to terminate the bus reset sequence. Software must keep this bit at 1 long enough to ensure the reset sequence is completed.
				Note: Before setting this bit, Run/Stop bit should be set to 0.
				Port Suspend
				1: Port is in the suspend state0: Port is not in the suspend state
				The Port Enable Bit and Suspend Bit of this register define the port state as follows.
				Port Enable , Suspend Port State
				0X Disabled
				10 Enabled
				11 Suspended
7	PO_SUSP	RW	1'b0	At the suspended status, the downstream propagation of data is blocked on this port except for the port reset. While at the suspended state, the port is sensitive to resume detection.
				Writing a 0 to this bit is ignored. The host controller will unconditionally set this to 0 when:
				The software sets Force Port Resume bit to 0 (from 1)

Bit	Name	Туре	Default Value	Description
				The software sets Port Reset bit to 1 (from 0)
				Note: Before setting this bit, Run/Stop bit should be set to 0.
_				Force Port Resume
				Resume detection/driven on port. No resume detected/driven on port.
6	F_PO_RESM	RW	1′b0	Software sets this to 1 to resume signaling. The host controller sets this to 1 if a J-to-K transition is detected while the port is in the suspended state. When this transits to 1 for the detection of a J-to-K transition, the Port Change Detect bit in USBSTS register is also set to 1.
5:4	Reserved	-	-	-
3	PO_EN_CHG	RW1 C	1′b0	Port Enable/Disable Change 1: Port enable/disable status has changed 0: No change
				Port Enable/Disable
		RW	1′b0	1: Enable 0: Disable
2	PO_EN			Ports can only be enabled by the host controller as a part of the reset and enable. Software cannot enable a port by writing a '1' to this bit. Writing a '0' to this bit to disable the port is possible however.
				Connect Status Change
1	CONN_CHG	RW1 C	1′b0	1: Change in current connect status 0: No change
		_		This indicates a change has occurred in the current connect status of the port.
				Current Connect Status
0	CONN_STS	RO	1′b0	1: Device is presented on the port 0: No device is presented
				This reflects the current state of the port, and may not correspond directly to cause the Connect Status Change bit to be set.

Table 8.11 - PORTSC - HC Port Status and Control Register

8.3 Configuration Registers

8.3.1 EOF Time & Asynchronous Schedule Sleep Timer Register (address offset: 0x34)

Bit	Name	Туре	Default Value	Description
31:7	Reserved	-	-	-
6	U_SUSP_N	RW	1'b1	Transceiver Suspend Mode Active low.

Bit	Name	Туре	Default Value	Description	
				draws the minimal This is part of the	ver in the suspend mode that power from the power supplies. power management.
				EOF 2 Timing Point	
				High-Speed EOF2	ng point before next SOF.
				0x0	2 clocks (30MHz): 66 ns
				0x1	4 clocks (30MHz): 133 ns
				0x2	8 clocks (30MHz): 266 ns
				0x3	16 clocks (30MHz): 533 ns
				Full-Speed EOF2 T	ime
5:4	EOF2_Time	RW	2'h0	0x0	20 clocks (30MHz): 666 ns
				0x1	40 clocks (30MHz): 1.333 us
				0x2	80 clocks (30MHz): 2.666 us
				0x3	160 clocks (30MHz): 5.333 us
				Low-Speed EOF2 T	Low-Speed EOF2 Time
				0x0	40 clocks (30MHz): 1.333 us
				0×1	80 clocks (30MHz): 2.666 us
				0x2	160 clocks (30MHz): 5.333 us
				0x3	320 clocks (30MHz): 10.66 us
				EOF 1 Timing Point	
					ng point before next SOF. De adjusted according to the
				maximum packet s	
				High-Speed EOF1	Time
				0x0	540 clocks (30MHz): 18 us
3:2	EOF1_Time	RW	2'h0	0x1	360 clocks (30MHz): 12 us
				0x2	180 clocks (30MHz): 6 us
				0x3	720 clocks (30MHz): 24 us
				Full-Speed EOF1 T	ime
				0x0	1600 clocks (30MHz): 53.3 us
				0x1	1400 clocks (30MHz): 46.6 us

Bit	Name	Туре	Default Value	Description	
				0x2	1200 clocks (30MHz): 40 us
				0x3	21000 clocks (30MHz): 700 us
				Low-Speed EOF1 T	ime
				0x0	3750 clocks (30MHz): 125 us
				0x1	3500 clocks (30MHz): 116 us
				0x2	3250 clocks (30MHz): 108 us
				0x3	4000 clocks (30MHz): 133 us
				Asynchronous Sche	edule Sleep Timer
				Controls the Async	hronous Schedule sleep timer.
				0x0	5 us
1:0	1:0 ASYN_SCH_SLPT RW	2'h1	0x1	10 us	
				0x2	15 us
				0x3	20 us

Table 8.12 - EOF Time & Asynchronous Schedule Sleep Timer Register

8.3.2 Bus Monitor Control / Status Register (address offset: 0x40)

Bit	Name	Туре	Default Value	Description
31:11	Reserved	-	-	-
				Host Speed Type
10:9	HOST_SPD_TYP	RO	2′h0	0x2: HS 0x0: FS 0x1: LS 0x3: Reserved
8	VBUS_VLD	RO	1′b0	VBUS Valid When the voltage on the VBUS is above the valid VBUS threshold, this signal is valid.
7:5	-	-	-	Reserved for testing only. They should remain as 0.
4	VBUS_OFF	RW	1′b0	VBUS OFF This controls the voltage on the VBUS_ON/OFF. 0: VBUS on 1: VBUS off
3:2	Reserved	-	-	These bits should remain as 0.
1	HDISCON_FLT_SEL	RW	1′b0	Select a timer to filter out noise on HDISCON from the UTMI+ 0: Approximately 135 us 1: Approximately 270 us

0	VBUS_FLT_SEL	RW	1′b0	Select a timer to filter out noise on VBUS_VLD from the UTMI+ 0: Approximately 135 us 1: Approximately 472 us
---	--------------	----	------	--

Table 8.13 - Bus Monitor Control / Status Register

8.3.3 HPROT - Master Protection Information Setting Register (address offset: 0x78)

Bit	Name	Туре	Default Value	Description
31:4	Reserved	-	ı	-
				Master Protection Information
3:0	HPROT	RW	4'h3	For programmable HPROT, software can use this to implement some level of protection.

Table 8.14 - HPROT - Master Protection Information Setting Register

8.4 USB Host Testing Registers

8.4.1 Vendor Specific IO Control Register (address offset: 0x54)

Bit	Name	Туре	Default Value	Description
31:6	Reserved	-	1	-
5	VCTLOAD_N	RW	1′b1	Vendor-Specific Test Mode Control Load This controls the active low output U_VCTLOAD_N to the PHY, Setting this to 1 makes U_VCTLOAD_N output a 1. Setting this to 0 makes U_VCTLOAD_N output a 0.
4:0	VCTL	RW	5′h00	Vendor-Specific Test Mode Control The programmed value is delivered to the PHY via the U_VCTL output.

Table 8.15 - Vendor Specific IO Control Register

8.4.2 Vendor Specific Status Register (address offset: 0x58)

Bit	Name	Туре	Default Value	Description
31:8	Reserved	-	ı	-
7:0	VSTS	RO	Depends on the reset values of the PHY	Vendor-Specific Test Mode Status

Table 8.16 - Vendor Specific Status Register

8.4.3 Test Register (address offset: 0x50)

Bit	Name	Туре	Default Value	Description
31:5	Reserved	-	-	-

Bit	Name	Туре	Default Value	Description
				FIFO Loop Back Mode
4	TST_LOOPBK	RW	1′b0	When this is set to 1, the host controller will enter the loop-back mode.
				Test Mode
3	TST_MOD	RW	1′b0	When this is set to 1, the host controller will enter the test mode. This test mode can save the simulation time. In the normal mode, the host controller uses a counter for 10ms detection of the USB reset. This is reduced in test mode.
2	TST_PKT	RW	1′b0	Test Packet Upon entering HS mode and setting this bit to 1, the test packet data defined in the USB specification has to be written. The host controller will repeatedly send the packet defined in the UTMI specification to the transceiver.
1	TST_KSTA	RW	1′b0	When this is set to 1, D+/D- are set to HS K state.
0	TST_JSTA	RW	1′b0	When this is set to 1, D+/D- are set to HS J state.

Table 8.17 - Test Register

8.4.4 HC_RSRV1 - Reserved 1 Register (address offset: 0x70)

Bit	Name	Туре	Default Value	Description
31:0	Reserved	-	-	-

Table 8.18 - HC_RSRV1 - Reserved 1 Register

8.4.5 HC_RSRV2 - Reserved 2 Register (address offset: 0x74)

Bit	Name	Туре	Default Value	Description
31:0	Reserved	-	-	-

Table 8.19 - HC_RSRV2 - Reserved 2 Register

9 USB peripheral

This is a USB device controller fully compliant with the USB 2.0 specification. It supports a control end point - End Point 0 (EP0) - and up to 7 other End Points (EP1-7).

The EPO control endpoint buffer size ranges from 8 to 64 bytes, configurable via software. EP1-7 support optional double buffering. The number of end points supported can be set by software, as well as their individual direction, type (Interrupt, Bulk, and Isochronous) and buffer size (8-1024 bytes). The total buffer size to be shared by all end points is 4 kB.

9.1 Register Summary

Listed below are the registers with their offset from the base address (0x10180). All registers and buffer locations can only be accessed via Byte (8-bit) mode.

Address Offset	Register	Default value	References
	Initialization Registers		
0x18	DC_ADDRESS_ENABLE - Address Register	0x00	Section 9.2.1
0x10	DC_MODE - Mode Register	0x00	Section 9.2.2
0x08	DC_INT_ENABLE - Interrupt Enable Register	0x00	Section 9.2.3
0x0C	DC_EP_INT_ENABLE - Endpoints Interrupt Enable Register	0x00	Section 9.2.4
	Control Endpoint Data Flow Registers		
0x1C	DC_EP0_CONTROL - Endpoint 0 Control Register	0x00	Section 9.3.1
0x20	DC_EP0_STATUS - Endpoint 0 Status Register	0x00	Section 9.3.2
0x24	DC_EP0_BUFFER_LENGTH - Endpoint 0 Buffer Length	0x00	Section 9.3.3
0x28	Register DC_EP0_BUFFER – Endpoint 0 Buffer Register	0x00	Section 9.3.4
	Other Endpoints Data Flow Registers		
0x2C	DC_EP1_CONTROL - Endpoint 1 Control Register	0x00	Section 9.4.1
0x30	DC_EP1_STATUS - Endpoint 1 Status Register	0x00	Section 9.4.2
0x34	DC_EP1_BUFFER_LENGTH_LSB - Endpoint 1 Buffer Length LSB Register	0x00	Section 9.4.3
0x35	DC_EP1_BUFFER_LENGTH_MSB - Endpoint 1 Buffer Length MSB Register	0x00	Section 9.4.4
0x38	DC_EP1_BUFFER - Endpoint 1 Buffer Register	0x00	Section 9.4.5
0x3C	DC_EP2_CONTROL - Endpoint 2 Control Register	0x00	Section 9.4.1
0x40	DC_EP2_STATUS - Endpoint 2 Status Register	0x00	Section 9.4.2
0x44	DC_EP2_BUFFER_LENGTH_LSB - Endpoint 2 Buffer Length LSB Register	0x00	Section 9.4.3
0x45	DC_EP2_BUFFER_LENGTH_MSB - Endpoint 2 Buffer	0x00	Section 9.4.4
0x48	Length MSB Register DC_EP2_BUFFER – Endpoint 2 Buffer Register	0x00	Section 9.4.5

0x4C	DC_EP3_CONTROL - Endpoint 3 Control Register	0x00	Section 9.4.1
0x50	DC_EP3_STATUS - Endpoint 3 Status Register	0x00	Section 9.4.2
0x54	DC_EP3_BUFFER_LENGTH_LSB - Endpoint 3 Buffer	0x00	Section 9.4.3
0x55	Length LSB Register DC_EP3_BUFFER_LENGTH_MSB - Endpoint 3 Buffer	0x00	Section 9.4.4
0x58	Length MSB Register DC_EP3_BUFFER – Endpoint 3 Buffer Register	0x00	Section 9.4.5
0x5C	DC_EP4_CONTROL - Endpoint 4 Control Register	0x00	Section 9.4.1
0x60	DC_EP4_STATUS - Endpoint 4 Status Register	0x00	Section 9.4.2
0x64	DC_EP4_BUFFER_LENGTH_LSB - Endpoint 4 Buffer	0x00	Section 9.4.3
0x65	Length LSB Register DC_EP4_BUFFER_LENGTH_MSB - Endpoint 4 Buffer	0x00	Section 9.4.4
0x68	Length MSB Register DC_EP4_BUFFER – Endpoint 4 Buffer Register	0x00	Section 9.4.5
0x6C	DC_EP5_CONTROL - Endpoint 5 Control Register	0x00	Section 9.4.1
0x70	DC_EP5_STATUS - Endpoint 5 Status Register	0x00	Section 9.4.2
0x74	DC_EP5_BUFFER_LENGTH_LSB - Endpoint 5 Buffer Length LSB Register	0x00	Section 9.4.3
0x75	DC_EP5_BUFFER_LENGTH_MSB - Endpoint 5 Buffer Length MSB Register	0x00	Section 9.4.4
0x78	DC_EP5_BUFFER - Endpoint 5 Buffer Register	0x00	Section 9.4.5
0x7C	DC_EP6_CONTROL - Endpoint 6 Control Register	0x00	Section 9.4.1
0x80	DC_EP6_STATUS - Endpoint 6 Status Register	0x00	Section 9.4.2
0x84	DC_EP6_BUFFER_LENGTH_LSB - Endpoint 6 Buffer Length LSB Register	0x00	Section 9.4.3
0x85	DC_EP6_BUFFER_LENGTH_MSB - Endpoint 6 Buffer Length MSB Register	0x00	Section 9.4.4
0x88	DC_EP6_BUFFER - Endpoint 6 Buffer Register	0x00	Section 9.4.5
0x8C	DC_EP7_CONTROL - Endpoint 7 Control Register	0x00	Section 9.4.1
0x90	DC_EP7_STATUS - Endpoint 7 Status Register	0x00	Section 9.4.2
0x94	DC_EP7_BUFFER_LENGTH_LSB - Endpoint 7 Buffer Length LSB Register	0x00	Section 9.4.3
0x95	DC_EP7_BUFFER_LENGTH_MSB - Endpoint 7 Buffer Length MSB Register	0x00	Section 9.4.4
0x98	DC_EP7_BUFFER - Endpoint 7 Buffer Register	0x00	Section 9.4.5
	General Registers		
0x00	DC_INT_STATUS - Interrupt Status Register	0x00	Section 9.5.1
0x04	DC_EP_INT_STATUS - Endpoints Interrupt Status	0x00	Section 9.5.2
0x14	Register DC_FRAME_NUMBER_LSB – Frame Number LSB Register	0x00	Section 9.5.3
0x15	DC_FRAME_NUMBER_MSB - Frame Number MSB Register	0x00	Section 9.5.4

Table 9.1 - Overview of USB Peripheral Registers

9.2 Initialization Registers

9.2.1 DC_ADDRESS_ENABLE - Address Register (address offset: 0x18)

This register sets the USB assigned address sent from the USB host and enables the USB peripheral. In response to the standard USB request SET_ADDRESS, the firmware must write the peripheral address to this register.

Bit	Name	Туре	Default Value	Description
7	ENABLE	RO	1′b0	Hardware sets this to 1 when software writes a new address to this register. It is cleared by hardware at the end of the current transfer when the new address will take effect.
6:0	ADDR	RW	7'h00	Function Address

Table 9.2 - DC_ADDRESS_ENABLE - Address Register

9.2.2 DC_MODE - Mode Register (address offset: 0x10)

This register allows the firmware to select the different test modes and enables the USB peripheral function.

Bit	Name	Туре	Default Value	Description
7	TST_MODE_ENABLE	RW	1′b0	Test Mode Enable. Setting this to 1 to enter the test mode. It can only be cleared by hardware reset.
6:5	TST_MODE_SELECT	RW	2′h0	Test Mode select (writeable only if MODE_ENABLE is 0) 2'h0: SE0_NAK 2'h1: J 2'h2: K 2'h3: Packet
4:2	Reserved	-	ı	-
1	FS_ONLY	RW	1′b0	Setting this to 1 disables HS detection handshake
0	USB_DEV_EN	RW	1′b0	USB function enables. Setting this to 1 enables the USB device

Table 9.3 - DC_MODE - Mode Register

9.2.3 DC_INT_ENABLE - Interrupt Enable Register (address offset: 0x08)

This register enables the different interrupt sources by writing a 1 to the corresponding bit.

Bit	Name	Туре	Default Value	Description
7	PHY_IE	RW	1'b0	PHY receive error interrupt enable
6	PID_IE	RW	1'b0	Package ID error interrupt enable
5	CRC16_IE	RW	1′b0	CRC16 error interrupt enable
4	CRC5_IE	RW	1′b0	CRC5 error interrupt enable
3	RESM_IE	RW	1′b0	Resume interrupt enable
2	SUS_IE	RW	1′b0	Suspend interrupt enable
1	RST_IE	RW	1'b0	Reset interrupt enable

0	SOF_IE	RW	1'b0	Start of Frame interrupt enable

Table 9.4 - DC_INT_ENABLE - Interrupt Enable Register

9.2.4 DC_EP_INT_ENABLE - Endpoints Interrupt Enable Register (address offset: 0x0C)

This register enables the different interrupt sources based on the specific endpoints by writing 1 to the corresponding bit.

Bit	Name	Туре	Default Value	Description
7	EP7_IE	RW	1′b0	Endpoint 7 interrupt enable
6	EP6_IE	RW	1'b0	Endpoint 6 interrupt enable
5	EP5_IE	RW	1′b0	Endpoint 5 interrupt enable
4	EP4_IE	RW	1'b0	Endpoint 4 interrupt enable
3	EP3_IE	RW	1′b0	Endpoint 3 interrupt enable
2	EP2_IE	RW	1′b0	Endpoint 2 interrupt enable
1	EP1_IE	RW	1′b0	Endpoint 1 interrupt enable
0	EP0_IE	RW	1'b0	Endpoint 0 interrupt enable

Table 9.5 - DC_EP_INT_ENABLE - Endpoints Interrupt Enable Register

9.3 Control Endpoint Data flow Registers

Control Endpoint Data flow registers are used for configuring the control endpoint and handle the sending and receiving data to the control endpoint.

9.3.1 DC_EP0_CONTROL - Endpoint 0 Control Register (address offset: 0x1C)

This register configures the maximum packet size of the control endpoint 0. It is also used to stall the control endpoint.

Bit	Name	Туре	Default Value	Description
7:3	Reserved	-	ı	-
2:1	EP_SIZE	RW	2'h0	Endpoint Maximum packet size 2'h0: 8 bytes 2'h1: 16 bytes 2'h2: 32 bytes 2'h3: 64 bytes
0	STALL	RW	1′b0	Send STALL Software writes 1 to send a STALL handshake in response to an IN token. Software writes 0 to terminate the STALL signalling.

Table 9.6 - DC_EPO_CONTROL - Endpoint 0 Control Register

9.3.2 DC_EP0_STATUS - Endpoint 0 Status Register (address offset: 0x20)

This register is used by the hardware to report the status of the control endpoint 0. Software writes 1 to the corresponding register bit to clear the status.

Bit	Name	Туре	Default Value	Description
7:5	Reserved	-	-	-
4	DATA END	RW1	1′b0	Data End.
4	DATA_LIND	S	1 00	Software should update this bit to 1 when

				writing: 1 to IN_PKT_RDY for last outgoing data packet 1 to IN_PKT_RDY for a zero-length data packet 1 to OUT_PKT_RDY after servicing the last incoming data packet
3	STALL	RW1 C	1′b0	Sent STALL. Hardware sets this to 1 when the STALL handshake has been transmitted. Software writes 1 to clear it.
2	SETUP	RW1 C	1′b0	SETUP token received. Hardware sets this to 1 and interrupts when the SETUP token has been received. Software writes 1 to clear it.
1	IN_PKT_RDY	RW1 S	1′b0	IN packet ready. Software should write 1 to it after loading a data packet into the endpoint 0 IN FIFO. Hardware clears it and generates an interrupt when the data packet has been successfully transmitted.
0	OUT_PKT_RDY	RW1 C	1′b0	OUT packet ready. Hardware sets this bit to 1 and generates an interrupt when a data packet has been received. Software writes 1 to clear it after unloading the data packet from the endpoint 0 OUT FIFO.

Table 9.7 - DC_EPO_STATUS - Endpoint 0 Status Register

9.3.3 DC_EP0_BUFFER_LENGTH - Endpoint 0 Buffer Length Register (address offset: 0x24)

This register is used by the hardware to report the length of the packet received in the endpoint 0 OUT buffer.

Bit	Name	Туре	Default Value	Description
7	Reserved	-	-	-
6:0	BUF_LEN	RO	7'h00	Indicates the number of data bytes received. Valid only if OUT_PKT_RDY is 1.

Table 9.8 - DC_EP0_BUFFER_LENGTH - Endpoint 0 Buffer Length Register

9.3.4 DC_EP0_BUFFER - Endpoint 0 Buffer Register (address offset: 0x28)

This register is the used to access the endpoint 0 FIFO.

Bit	Name	Туре	Default Value	Description
7:0	Data	R/W	8'h00	Endpoint 0 FIFO window register. A read unloads one data byte from the Endpoint 0 OUT FIFO. A write loads one data byte into the Endpoint 0 IN FIFO.

Table 9.9 - DC_EP0_BUFFER - Endpoint 0 Buffer Register

9.4 Other Endpoint Data Flow Registers

This is a set of register used to access the other endpoints from endpoint 1 to endpoint 7. The register definitions are the same for the registers from endpoint 1 to endpoint 7 but they are located at different offset addresses.

9.4.1 DC_EP(x)_CONTROL - Endpoint Control Registers (address offset: 0x2C/0x3C/0x4C/0x5C/0x6C/0x7C/0x8C)

The different endpoints are configured by writing to the corresponding endpoint control register selected based on the corresponding offset address. This register is used to configure the endpoint type, direction, maximum packet size and double buffering. It is also used to stall the corresponding data endpoint.

Bit	Name	Туре	Default Value	Description
				Endpoint double buffering Enable.
7	DBL_BUF	RW	1′b0	0: double buffering disabled 1: double buffering enabled
				Endpoint Maximum packet size. This parameter has to be fixed during the Set Configuration request.
6:4	EP_SIZE	RW	3'h0	0x0: 8 bytes 0x1: 16 bytes 0x2: 32 bytes 0x3: 64 bytes 0x4: 128 bytes 0x5: 256 bytes 0x6: 512 bytes 0x7: 1024 bytes
3	STALL	RW	1′b0	Send STALL. Valid only when the Endpoint is in bulk or interrupt mode. Software should write a 1 to this bit to send a STALL handshake in response to IN token, PING token and data phase of OUT transaction. Software should write a 0 to this bit to terminate the STALL signalling.
2:1	EP_MODE	RW	2'h0	Endpoint Mode. This parameter has to be fixed during the Set Configuration request. 0x0: EP disabled 0x1: EP configured for bulk transfers 0x2: EP configured for interrupt transfers 0x3: EP configured for isochronous transfers
0	EP_DIR	RW	1'b0	Endpoint Direction. This parameter has to be fixed during the Set Configuration request. 0x0: EP direction selected as OUT 0x1: EP direction selected as IN

Table 9.10 - DC_EP(x)_CONTROL - Endpoint Control Registers

9.4.2 DC_EP(x)_STATUS - Endpoint Status Registers (address offset: 0x30/0x40/0x50/0x60/0x70/0x80/0x90)

The different endpoint statuses are read by accessing the corresponding status register. The hardware reports the endpoint status in this register. Write a 1 to the corresponding register bit to clear the bit.

Bit	Name	Туре	Default Value	Description
7	CLR_TOGGLE	RW1S	1′b0	Clear data toggle. Software can write a 1 to this bit to reset the Endpoint data toggle to 0. This bit is always read as 0.
6	FIFO_FLUSH	RW1S	1′b0	FIFO Flush. Valid only when the EP direction is IN. Writing 1 to this bit flushes the next packet to be transmitted from the Endpoint IN FIFO. The FIFO pointer is reset and the IN_PKT_RDY bit is cleared. Hardware resets the FLUSH bit to 0 when the FIFO flush is complete.
5	DATA_ERR	RW1C	1′b0	Data error. Valid only when the Endpoint is in isochronous mode and the direction is OUT. This flag is set to 1 by hardware if a received packet has a CRC-16 error. It is automatically cleared when software clears the OUT_PKT_RDY bit.
4	STALL	RW1C	1′b0	Sent STALL. Valid only when the Endpoint is in bulk or interrupt mode. Hardware sets this bit to 1 when the STALL handshake is transmitted. Software can clear this bit by writing a 1 to this bit.
				Data underrun. Valid only when the Endpoint direction is IN. Its function is dependent upon the Endpoint mode:
3	UNDER_RUN RW1C 1'b	1′b0	Isochronous: Hardware sets this to 1 when a zero-length packet is sent in response to an IN token while IN_PKT_RDY is 0.	
				Bulk/Interrupt: Hardware sets this to 1 when a NAK packet is sent in response to an IN token while IN_PKT_RDY is 0.
				Software can clear this bit by writing a 1 to this bit.
				Data overrun. Valid only when the Endpoint is in isochronous mode and the direction is OUT.
2	OVER_RUN	RW1C	1′b0	Hardware sets this bit to 1 if a received packet cannot be loaded into the Endpoint FIFO.
				Software can clear this bit by writing a 1 to this bit.
1	IN_PKT_RDY	RW1S	1′b0	IN packet ready. Valid only when the Endpoint direction is IN. Software should write a 1 to this bit after loading a data packet into the Endpoint IN FIFO.
			1 50	Hardware clears this bit and generates an interrupt when the data packet has been successfully transmitted
0	OUT_PKT_RDY	RW1C	1′b0	OUT packet ready. Valid only when the Endpoint direction is OUT. Hardware sets this bit to 1 and generates an interrupt when a data packet has been received. Software writes a 1 to clear it after unloading the data packet from the Endpoint OUT FIFO.

Table 9.11 - DC EP(x) STATUS - Endpoint Status Registers

9.4.3 DC_EP(x)_BUFFER_LENGTH_LSB - Endpoint Buffer Length LSB Registers (address offset: 0x34/0x44/0x54/0x64/0x74/0x84/0x94)

The different endpoint buffer length is read by accessing the corresponding buffer length register. This register reports the LSB of the OUT buffer length.

Bit	Name	Туре	Default Value	Description
7:0	BUF_LEN_LSB	RO	8′h00	Indicates the low byte of the number of received data bytes in the Endpoint FIFO. Valid only if OUT_PKT_RDY is 1.

Table 9.12 - DC_EP(x)_BUFFER_LENGTH_LSB - Endpoint Buffer Length LSB Registers

9.4.4 DC_EP(x)_BUFFER_LENGTH_MSB - Endpoint Buffer Length MSB Registers (address offset: 0x35/0x45/0x55/0x65/0x75/0x85/0x95)

The different endpoint buffer length is read by accessing the corresponding buffer length register. This register reports the MSB of the OUT buffer length.

Bit	Name	Туре	Default Value	Description
7:3	Reserved	RO	5'h00	-
2:0	BUF_LEN_MSB	RO	3'h0	Indicates the high 3-bit of the number of received data bytes in the Endpoint FIFO. Valid only if OUT_PKT_RDY is 1.

Table 9.13 - DC_EP(x)_BUFFER_LENGTH_MSB - Endpoint Buffer Length MSB Registers

9.4.5 DC_EP(x)_BUFFER - Endpoint Buffer Registers (address offset: 0x38/0x48/0x58/0x68/0x78/0x88/0x98)

The different endpoint buffer is accessed by accessing the corresponding buffer register.

Bit	Name	Туре	Default Value	Description
7:0	buffer	RW	8′h00	Endpoint FIFO window register. A read unloads one data byte from the Endpoint OUT FIFO. A write loads one data byte into the Endpoint IN FIFO.

Table 9.14 - DC_EP(x)_BUFFER - Endpoint Buffer Registers

9.5 General Registers

9.5.1 DC_INT_STATUS - Interrupt Status Register (address offset: 0x00)

This register indicates that the hardware condition of the corresponding interrupt has occurred. Write a 1 to clear the corresponding bit.

Bit	Name	Туре	Default Value	Description
7	PHY	RW1C	1′b0	PHY receive error interrupt status
6	PID	RW1C	1′b0	Package ID error interrupt status
5	CRC16	RW1C	1'b0	CRC16 error interrupt status
4	CRC5	RW1C	1′b0	CRC5 error interrupt status
3	RESM	RW1C	1'b0	Resume interrupt status
2	SUS	RW1C	1′b0	Suspend interrupt status
1	RST	RW1C	1'b0	Reset interrupt status
0	SOF	RW1C	1'b0	Start of Frame interrupt status

Table 9.15 - DC_INT_STATUS - Interrupt Status Register

9.5.2 DC_EP_INT_STATUS - Endpoints Interrupt Status Register (address offset: 0x04)

This register indicates the corresponding endpoint hardware condition has occurred. Write a 1 to clear the corresponding bit.

Bit	Name	Туре	Default Value	Description
7	EP7	RW1C	1′b0	Endpoint 7 interrupt status
6	EP6	RW1C	1'b0	Endpoint 6 interrupt status
5	EP5	RW1C	1′b0	Endpoint 5 interrupt status
4	EP4	RW1C	1′b0	Endpoint 4 interrupt status
3	EP3	RW1C	1'b0	Endpoint 3 interrupt status
2	EP2	RW1C	1′b0	Endpoint 2 interrupt status
1	EP1	RW1C	1′b0	Endpoint 1 interrupt status
0	EP0	RW1C	1′b0	Endpoint 0 interrupt status

Table 9.16 - DC_EP_INT_STATUS - Endpoints Interrupt Status Register

9.5.3 DC_FRAME_NUMBER_LSB - Frame Number LSB Register (address offset: 0x14)

This register has the LSB of the last successfully received SOF.

Bit	Name	Туре	Default Value	Description	
7:0	FRAME_LSB	RO	8'h00	Frame Number for last received SOF, Least significant byte	

Table 9.17 - DC_FRAME_NUMBER_LSB - Frame Number LSB Register

9.5.4 DC_FRAME_NUMBER_MSB - Frame Number MSB Register (address offset: 0x15)

This register has the MSB of the last successfully received SOF.

Bit	Name	Туре	Default Value	Description
7:3	Reserved	RO	5′h00	-
2:0	FRAME_MSB	RO	3′h0	Frame Number for last received SOF, Most significant byte

Table 9.18 - DC_FRAME_NUMBER_MSB - Frame Number MSB Register

10 Ethernet

This is a MAC core that conforms to the IEEE 802.3-2002 specification with the following features:

- Supports 10BASE-T and 100BASE-TX/FX modes
- Supports full and half duplex operation at 10Mbps or 100Mbps
- CRC-32 algorithm calculates the FCS value one nibble at a time, automatic FCS generation and checking, able to capture frames with CRC errors if required
- Programmable MAC address
- Supports promiscuous mode
- Station Management (STA) entity included
- Both TX and RX has a 2kB buffer each (arranged as 512x32)

Listed below is the memory organization of the TX/RX RAM.

Offset	Data Bits	TX RAM Content	RX RAM Content	
0x0000	7:0	Data Length LSB	Frame Length LSB	
	15:8	Data Length MSB	Frame Length MSB	
	23:16	Destination Address Octet 1	Destination Address Octet 1	
	31:24	Destination Address Octet 2	Destination Address Octet 2	
0x0001	7:0	Destination Address Octet 3	Destination Address Octet 3	
	15:8	Destination Address Octet 4	Destination Address Octet 4	
	23:16	Destination Address Octet 5	Destination Address Octet 5	
	31:24	Destination Address Octet 6	Destination Address Octet 6	
0x0002	7:0	Source Address Octet 1	Source Address Octet 1	
	15:8	Source Address Octet 2	Source Address Octet 2	
	23:16	Source Address Octet 3	Source Address Octet 3	
	31:24	Source Address Octet 4	Source Address Octet 4	
0x0003	7:0	Source Address Octet 5	Source Address Octet 5	
	15:8	Source Address Octet 6	Source Address Octet 6	

Offset	Data Bits	TX RAM Content	RX RAM Content	
	23:16	Type/Len MSB	Type/Len MSB	
	31:24	Type/Len LSB	Type/Len LSB	
0x0004 - 0x01FF	7:0 Data octet n		Data octet n	
	15:8	Data octet n+1	Data octet n+1	
	23:16	Data octet n+2	Data octet n+2	
	31:24	Data octet n+3	Data octet n+3	

Table 10.1 - Memory Organization of TX/RX RAM

The memory is accessed indirectly using the data register. Data bits from the table above directly correspond to data bits of the Data Register. The TX RAM offset in the table above corresponds directly to the RAM address. The RX RAM offset in the table above defines the distance from the beginning of the frame in the FIFO.

10.1 Register Summary

Listed below are the registers with their offset from the base address (0x10220). All registers and buffer locations can only be accessed via Byte (8-bit), Word (16-bit) or Double-Word (32-bit). However, the FIFO must be accessed in Double-Word mode only.

Address Offset	Register	Default value	References
	Ethernet Registers		
0x00	ETH_INT_STATUS - Interrupt Status Register	0x00	Section 10.2.1
0x01	ETH_INT_ENABLE - Interrupt Enable Register	0x00	Section 10.2.2
0x02	ETH_RX_CNTL - Receive Control Register	0x00	Section 10.2.3
0x03	ETH_TX_CNTL - Transmit Control Register	0x00	Section 10.2.4
0x04	ETH_DATA - Data Register (octet n)	0x00	Section 10.2.5
0x05	ETH_DATA - Data Register (octet n+1)	0x00	Section 10.2.6
0x06	ETH_DATA - Data Register (octet n+2)	0x00	Section 10.2.7
0x07	ETH_DATA - Data Register (octet n+3)	0x00	Section 10.2.8
0x08	ETH_ADDR - Address Register (octet 1)	0x00	Section 10.2.9
0x09	ETH_ADDR - Address Register (octet 2)	0x00	Section 10.2.10

0x0A	ETH_ADDR - Address Register (octet 3)	0x00	Section 10.2.11
0x0B	ETH_ADDR - Address Register (octet 4)	0x00	Section 10.2.12
0x0C	ETH_ADDR - Address Register (octet 5)	0x00	Section 10.2.13
0x0D	ETH_ADDR - Address Register (octet 6)	0x00	Section 10.2.14
0x0E	ETH_THRESHOLD - Threshold Register	0x00	Section 10.2.15
0x0F	ETH_MNG_CNTL - Management Control Register	0x00	Section 10.2.16
0x10	ETH_MNG_DIV - Management Divider Register	0x00	Section 10.2.17
0x11	ETH_MNG_ADDR - Management Address Register	0x00	Section 10.2.18
0x12	ETH_MNG_TX0 - Management Transmit Data 0 Register	0x00	Section 10.2.19
0x13	ETH_MNG_TX1 - Management Transmit Data 1 Register	0x00	Section 10.2.20
0x14	ETH_MNG_RX0 - Management Receive Data 0 Register	0x00	Section 10.2.21
0x15	ETH_MNG_RX1 - Management Receive Data 1 Register	0x00	Section 10.2.22
0x16	ETH_NUM_PKT - Number of Packets Register	0x00	Section 10.2.23
0x17	ETH_TR_REQ - Transmission Request Register	0x00	Section 10.2.24

Table 10.2 - Overview of Ethernet Registers

10.2 Register Details

10.2.1 ETH_INT_STATUS - Interrupt Status Register (address offset: 0x0)

Bit	Name	Туре	Default Value	Description
7:6	Reserved	-	ı	-
5	MD_INT	RW1C	1′b0	Set when a transaction on the MII management interface has completed successfully (either read or write). Write a 1 to clear the status flag.
4	RX_ERR	RW1C	1′b0	Set when an error on RX has been encountered. This occurs when the RXER input pin is sampled high during frame reception (100 Mbps only), or the frame is not an integer number of octets and the FCS check failed (dribble bits in frame) – alignment error, or the frame has a wrong CRC, or the length/type field is inconsistent with the client data size. Write a 1 to clear the status flag.
3	FIFO_OV	RW1C	1′b0	Set when RX FIFO overrun is encountered. Write a 1 to clear the status flag.
2	TX_EMPTY	RW1C	1′b0	Set when a packet has been sent. Write a 1 to clear the status flag.

Bit	Name	Туре	Default Value	Description
1	TX_ERR	RW1C	1′b0	Set when an error on TX has been encountered. This occurs when the Data Length field value stored in the TX RAM exceeds 2032 in which case the frame will not be sent when this condition is encountered or the retransmission attempt limit (16) has failed during a truncated binary exponential back off process. Write a 1 to clear the status flag. The write
0	RX_INT		1′b0	data pointer is also reset in this case. Set when at least one packet is in the receiver's FIFO.
		RAC		This status flag will be cleared by hardware when there is no packet in the receiver FIFO

Table 10.3 - ETH_INT_STATUS - Interrupt Status Register

Note: The individual status will still be reflected even if the individual interrupt has been disabled. This allows polling by software.

10.2.2 ETH_INT_ENABLE - Interrupt Enable Register (address offset: 0x1)

Setting a bit in this register enables the interrupt. Clearing a bit in this register disables the interrupt.

Bit	Name	Туре	Default Value	Description
7:6	Reserved	-	-	-
5	MD_INT_MASK	RW	1′b1	Mask for MD_INT interrupt
4	RX_ERR_MASK	RW	1′b1	Mask for RX_ERR interrupt
3	FIFO_OV_MASK	RW	1′b1	Mask for FIFO_OV interrupt
2	TX_EMPTY_MASK	RW	1′b1	Mask for TX_EMPTY interrupt
1	TX_ERR_MASK	RW	1′b1	Mask for TX_ERR interrupt
0	RX MASK	RW	1′b1	Mask for RX_INT interrupt

Table 10.4 - ETH_INT_ENABLE - Interrupt Enable Register

10.2.3 ETH_RX_CNTL - Receive Control Register (address offset: 0x02)

This register configures the receiver.

Bit	Name	Туре	Default Value	Description
7:6	RX_MEM_SIZE	RO	2'h0	Memory size - 2048 Bytes
5	Reserved	1	ı	-
4	RESET_FIFO	RW	1′b0	1: clears the receiver FIFO; should be done when software initialisation of MAC is needed. It is recommended to set RX_ENABLE 0 first.
3	BAD_CRC	RW	1′b1	1: all frames with wrong CRC will be discarded; all valid frames with broadcast address FF-FF-FF-FF-FF-FF in the Destination Address field are captured 0: Do not drop frames with the wrong CRC. RX_ERR will still be flagged to indicate an erroneous packet has been received. The erroneous packet should be read out to

Bit	Name	Туре	Default Value	Description
				make place for subsequent packets.
2	PRMS_MODE	RW	1′b0	1: Promiscuous mode enabled; all valid frames regardless of destination address will be captured, including multicast and broadcast frames. 0: Promiscuous mode disabled
1	ACC_MULTI	RW	1′b0	1: Accept multicast; accepts all frames which have first bit of Destination Address set.
0	RX_ENABLE	RW	1′b0	1: enable frame receiver 0: disable frame receiver

Table 10.5 - ETH_RX_CNTL - Receive Control Register

10.2.4 ETH_TX_CNTL - Transmit Control Register (address offset: 0x03)

This register configures the transmitter.

Bit	Name	Туре	Default Value	Description
7:6	TX_MEM_SIZE	RO	2'h0	Memory size - 2048 Bytes
5	Reserved	-	-	-
4	DUPLEX_MODE	RW	1′b0	1: enable duplex mode for Ethernet transmitter 0: disable duplex mode for Ethernet transmitter
3	Reserved	-	-	-
2	CRC_ENABLE	RW	1′b0	1: frames will be sent with CRC appended 0: frames will be sent without CRC appended
1	PAD_ENABLE	RW	1′b0	1: padding will be appended to frames shorter than the minimum frame size 0: padding will not be appended to frames shorter than the minimum frame size
0	TX_ENABLE	RW	1′b0	1: enable transmitter 0: disable transmitter

Table 10.6 - ETH_TX_CNTL - Transmit Control Register

10.2.5 ETH_DATA_NO - Data Register (octet n) (address offset: 0x04)

Bit	Name	Туре	Default Value	Description
7:0	DATA	RW	8'h00	For read/write from/to data buffer (RX/TX RAM)

Table 10.7 - ETH_DATA_NO - Data Register (octet n)

10.2.6 ETH_DATA_N1 - Data Register (octet n+1) (address offset: 0x05)

Bit	Name	Туре	Default Value	Description
7:0	DATA	RW	8'h00	For read/write from/to data buffer (RX/TX RAM)

Table 10.8 - ETH_DATA_N1 - Data Register (octet n+1)

10.2.7 ETH_DATA_N2 - Data Register (octet n+2) (address offset: 0x06)

Bit	Name	Туре	Default Value	Description
7:0	DATA	RW	8'h00	For read/write from/to data buffer (RX/TX RAM)

Table 10.9 - ETH_DATA_N2 - Data Register (octet n+2)

10.2.8 ETH_DATA_N3 - Data Register (octet n+3) (address offset: 0x07)

Bit	Name	Туре	Default Value	Description
7:0	DATA	RW	8'h00	For read/write from/to data buffer (RX/TX RAM)

Table 10.10 - ETH_DATA_N3 - Data Register (octet n+3)

10.2.9 ETH_ADDR_1 - Address Register (octet 1) (address offset: 0x08)

Bit	Name	Туре	Default Value	Description
7:0	ADDRESS	RW	8'h00	MAC hardware address octet

Table 10.11 - ETH_ADDR_1 - Address Register (octet 1)

10.2.10 ETH_ADDR_2 - Address Register (octet 2) (address offset: 0x09)

Bit	Name	Туре	Default Value	Description
7:0	ADDRESS	RW	8'h00	MAC hardware address octet

Table 10.12 - ETH_ADDR_2 - Address Register (octet 2)

10.2.11 ETH_ADDR_3 - Address Register (octet 3) (address offset: 0x0A)

В	it	Name	Туре	Default Value	Description
7	:0	ADDRESS	RW	8'h00	MAC hardware address octet

Table 10.13 - ETH_ADDR_3 - Address Register (octet 3)

10.2.12 ETH_ADDR_4 - Address Register (octet 4) (address offset: 0x0B)

Bit	Name	Туре	Default Value	Description
7:0	ADDRESS	RW	8'h00	MAC hardware address octet

Table 10.14 - ETH_ADDR_4 - Address Register (octet 4)

10.2.13 ETH_ADDR_5 - Address Register (octet 5) (address offset: 0x0C)

Bit	Name	Туре	Default Value	Description
7:0	ADDRESS	RW	8'h00	MAC hardware address octet

Table 10.15 - ETH_ADDR_5 - Address Register (octet 5)

10.2.14 ETH_ADDR_6 - Address Register (octet 6) (address offset: 0x0D)

Bit Name Type Default Description

			Value	
7:0	ADDRESS	RW	8'h00	MAC hardware address octet

Table 10.16 - ETH_ADDR_6 - Address Register (octet 6)

10.2.15 ETH_THRESHOLD - Threshold Register (address offset: 0x0E)

Bit	Name	Туре	Default Value	Description
7:6	Reserved	-	1	-
5:0	THRESHOLD	RW	6′h00	This threshold specifies the threshold level for the TX RAM to begin transmission. When the byte count of the data in the TX RAM reaches this level, the transmission will start. Transmission starts when: Number of bytes written >= 4 * (THRESHOLD * 8 + 1)

Table 10.17 - ETH_THRESHOLD - Threshold Register

10.2.16 ETH_MNG_CNTL - Management Control Register (address offset: 0x0F)

This register is used to send management frames from the STA entity across the MII management interface

Bit	Name	Туре	Default Value	Description
7:3	REG_ADDRESS	RW	5′h00	These set the MII register address for the next transaction.
2	Reserved	-	-	-
1	WRITE	RW	1′b0	This bit should be updated together with the START bit. 1: perform write transaction 0: perform read transaction
0	START	RW	1′b0	Setting this bit to 1 will initiate the transaction. Hardware clears this bit after the transaction is complete.

Table 10.18 - ETH_MNG_CNTL - Management Control Register

10.2.17 ETH_MNG_DIV - Management Divider Register (address offset: 0x10)

Bit	Name	Туре	Default Value	Description
7:0	DIV	RW	8′h80	This is used to set the clock divider for the MDC clock used by the STA to clock transactions between PHY and MAC across the serial MII interface. The MDC clock is derived as follows: Find to File Performance in File Perform
				$Fmdc = \frac{1}{2 * (MDVR + 1)}$

Table 10.19 - ETH_MNG_DIV - Management Divider Register

10.2.18 ETH_MNG_ADDR - Management Address Register (address offset: 0x11)

Bit	Name	Туре	Default Value	Description
7:5	Reserved	-	-	-
4:0	PHY_ADDRESS	RW	5′h00	This register should be updated with the PHY address

Table 10.20 - ETH_MNG_ADDR - Management Address Register

10.2.19 ETH_MNG_TX0 - Management Transmit Data 0 Register (address offset: 0x12)

Bit	Name	Туре	Default Value	Description
7:0	TX_LSB	RW	8'h00	This is the lower byte of a word of data to be sent across the MII management interface to the PHY during the next data transmission

Table 10.21 - ETH_MNG_TX0 - Management Transmit Data 0 Register

10.2.20 ETH_MNG_TX1 - Management Transmit Data 1 Register (address offset: 0x13)

Bit	Name	Туре	Default Value	Description
7:0	TX_MSB	RW	8′h00	This is the upper byte of a word of data to be sent across the MII management interface to the PHY during the next data transmission

Table 10.22 - ETH_MNG_TX1 - Management Transmit Data 1 Register

10.2.21 ETH_MNG_RX0 - Management Receive Data 0 Register (address offset: 0x14)

Bit	Name	Туре	Default Value	Description
7:0	RX_LSB	RW	8′h00	This is the lower byte of a word of data read by the STA management entity from the PHY during the last transaction

Table 10.23 - ETH_MNG_RX0 - Management Receive Data 0 Register

10.2.22 ETH_MNG_RX1 - Management Receive Data 1 Register (address offset: 0x15)

Bit	Name	Туре	Default Value	Description
7:0	RX_MSB	RW	8'h00	This is the upper byte of a word of data read by the STA management entity from the PHY during the last transaction

Table 10.24 - ETH_MNG_RX1 - Management Receive Data 1 Register

10.2.23 ETH_NUM_PKT - Number of Packets Register (address offset: 0x16)

Bit	Name	Туре	Default Value	Description
7:6	Reserved	-	-	-
5:0	NUM_PKT	RO	6′h00	This is the number of packets in the receive FIFO. When NPR is greater than 0, RXINT interrupt will be active

Table 10.25 - ETH_NUM_PKT - Number of Packets Register

10.2.24 ETH_TR_REQ - Transmission Request Register (address offset: 0x17)

Bit	Name	Туре	Default Value	Description
7:1	Reserved	-	-	-
0	NEW_TX	RW1S	1′b0	1: Send the new frame in transmit memory. Hardware clears this bit when the transmission is complete or an error on TX is encountered.

Table 10.26 - ETH_TR_REQ - Transmission Request Register

11 CAN Bus Controller

Two CAN bus controllers are supported by this device. The controllers have the following features.

- Conforms to Bosch CAN 2.0B specification
- Data rate up to 1Mbps
- Hardware message filtering (dual/single filters)
- 64-byte receive FIFO
- 16-byte transmit buffer
- No overload frames are generated
- Normal & Listen Only modes supported
- Single Shot transmission
- Ability to abort transmission
- Readable error counters
- Last Error Code

Listed below are the symbols used in the CAN Frame buffer

Symbol	Description		
FF	Frame Format		
RTR	Remote Request bit 1: Remote Frames 0: Data Frames		
X	Don't care		
DLC	Data Length Code		
ID	CAN Message identifier		
DATA1 - DATA8	Data bytes		

Table 11.1 - Symbols used in the CAN Frame buffer

The memory buffer layout for standard frames is:

Offset	Data Bits	Standard Frame buffer content for TX/RX RAM									
	7:0	FF	RTR	X/0	X/0	DLC3	DLC2	DLC1	DLC0		
0x00	15:8	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3		
UXUU	23:16	ID2	ID1	ID0	X/RTR	X/0	X/0	X/0	X/0		
	31:24				DA ⁻	TA1					
	7:0				DA	TA2					
0.01	15:8				DA	TA3					
0x01	23:16	DATA4									
	31:24	DATA5									
	7:0				DA	TA6					
0x02	15:8	DATA7									
UXUZ	23:16	DATA8									
	31:24	UNUSED									
	7:0	UNUSED									
0x03	15:8	UNUSED									
	23:16				UNU	JSED					
	31:24				UNU	JSED					

Table 11.2 - Standard Frames Memory Buffer Layout

The memory buffer layout for extended frames is:

Offset	Data Bits	Extended Frame buffer content for TX/RX RAM									
1	7:0	FF	RTR	X/0	X/0	DLC3	DLC2	DLC1	DLC0		
0x00	15:8	ID28	ID27	ID26	ID25	ID24	ID23	ID22	ID21		
UXUU	23:16	ID20	ID19	ID18	ID17	ID16	ID15	ID14	ID13		
	31:24	ID12	ID11	ID10	ID9	ID8	ID7	ID6	ID5		
	7:0	ID4	ID3	ID2	ID1	ID0	X/RTR	X/0	X/0		
0x01	15:8		DATA1								
UXUI	23:16		DATA2								
	31:24		DATA3								
	7:0		DATA4								
0x02	15:8	DATA5									
UXUZ	23:16		DATA6								
	31:24	DATA7									
	7:0		DATA8								
0x03	15:8		UNUSED								
0.003	23:16		UNUSED								
	31:24				UNU	ISED					

Table 11.3 - Extended Frames Memory Buffer Layout

11.1 Register Summary

Listed below are the registers with their offset from the base addresses (0x10240 for CAN1 and 0X10260 for CAN2). All registers and buffer locations can only be accessed via Byte (8-bit) mode.

Address Offset	Register	Default value	References
0x00	CAN_MODE - Mode Register	0x04	<u>Section 11.2.1</u>
0x01	CAN_CMD - Command Register	0x00	Section 11.2.2
0x02	CAN_STATUS - Status Register	0x20	Section 11.2.3

0x03	CAN_INT_STATUS - Interrupt Status Register	0x00	Section 11.2.4
0x04	CAN_INT_ENABLE - Interrupt Enable Register	0x00	Section 11.2.5
0x05	CAN_RX_MSG - Receive Message Register	0x00	Section 11.2.6
0x06	CAN_BUS_TIM_0 - Bus Timing 0 Register	0x00	Section 11.2.7
0x07	CAN_BUS_TIM_1 - Bus Timing 1 Register	0x00	Section 11.2.8
0x08	CAN_TX_BUF_0 - Transmit Buffer 0 Register	0x00	Section 11.2.9.1
0x09	CAN_TX_BUF_1 - Transmit Buffer 1 Register	0x00	Section 11.2.9.2
0x0A	CAN_TX_BUF_2 - Transmit Buffer 2 Register	0x00	Section 11.2.9.3
0x0B	CAN_TX_BUF_3 - Transmit Buffer 3 Register	0x00	Section 11.2.9.4
0x0C	CAN_RX_BUF_0 - Receive Buffer 0 Register	0x00	Section 11.2.10.1
0x0D	CAN_RX_BUF_1 - Receive Buffer 1 Register	0x00	Section 11.2.10.2
0x0E	CAN_RX_BUF_2 - Receive Buffer 2 Register	0x00	Section 11.2.10.3
0x0F	CAN_RX_BUF_3 - Receive Buffer 3 Register	0x00	Section 11.2.10.4
0x10	CAN_ACC_CODE_0 - Acceptance Code 0 Register	0x00	Section 11.2.11.1
0x11	CAN_ACC_CODE_1 - Acceptance Code 1 Register	0x00	Section 11.2.11.2
0x12	CAN_ACC_CODE_2 - Acceptance Code 2 Register	0x00	Section 11.2.11.3
0x13	CAN_ACC_CODE_3 - Acceptance Code 3 Register	0x00	Section 11.2.11.4
0x14	CAN_ACC_MASK_0 - Acceptance Mask 0 Register	0x00	Section 11.2.11.5
0x15	CAN_ACC_MASK_1 - Acceptance Mask 1 Register	0x00	Section 11.2.11.6
0x16	CAN_ACC_MASK_2 - Acceptance Mask 2 Register	0x00	Section 11.2.11.7
0x17	CAN_ACC_MASK_3 - Acceptance Mask 3 Register	0x00	Section 11.2.11.8
0x18	CAN_ERR_CODE - Error Code Capture Register	0x00	Section 11.2.12
0x19	CAN_RX_ERR_CNTR - Receive Error Counter	0x00	Section 11.2.13
0x1A	Register CAN_TX_ERR_CNTR - Transmit Error Counter	0x00	Section 11.2.14
0×1B	Register CAN_ARB_LOST_CODE – Arbitration Lost Code Capture Register	0x00	<u>Section 11.2.15</u>

Table 11.4 - Overview of CAN Registers

11.2 Register Details

11.2.1 CAN_MODE - Mode Register (address offset: 0x00)

Bit	Name	Туре	Default Value	Description
-----	------	------	------------------	-------------

				·
7:3	Reserved	-	-	-
				Reset Mode
2	RST	RW	1′b1	1: Controller in reset mode; no frame reception and transmission is possible. This mode is used to configure the controller hardware
				Listen Only Mode
1	LSTN_ONLY	RW	1′b0	Updatable only when RST is 1
-	25111_51121			0: Normal Mode
				1: Listen only mode
				Hardware Acceptance Filter Scheme
		RW	1′b0	Updatable only when RST is 1
0	ACC_FLTR			0: dual filter is used for hardware acceptance filter scheme 1: single filter is used for hardware acceptance filter scheme

Table 11.5 - CAN_MODE - Mode Register

11.2.2 CAN_CMD - Command Register (address offset: 0x01)

Bit	Name	Туре	Default Value	Description
7:3	Reserved	-	-	-
2	TX_REQ	W1S	1′b0	Transmit Request 1: Initiates frames transmission by Bit Stream Processor 0: No effect
1	ABORT_TX	WO	1′b0	Abort Transmission When writing 1 to this bit simultaneously with TX_REQ bit, 1-shot transmission is performed. If TX_REQ has been set to 1, and the transmission has not started, writing a 1 to ABORT_TX will abort the request.
0	Reserved	-	-	-

Table 11.6 - CAN_CMD - Command Register

11.2.3 CAN_STATUS - Status Register (address offset: 0x02)

Bit	Name	Туре	Default Value	Description
7				Receive Buffer Status:
/	RX_BUF_STS	RO	1′b0	1: at least one message is in RX FIFO. 0: no message is in RX FIFO
6	OVRN STS	RO	1′b0	Data Overrun Status
0	OVKN_313	KO	1 00	1: when RX FIFO encounters overrun.

				0: no overrun occurred since the last clear data overrun command This bit is cleared when a 1 is written to DATA OVRN bit.
5	TX_BUF_STS	RO	1′b1	Transmit Buffer Status 1: transmit buffer can be written. 0: transmission in progress and transmit buffer is locked such that no data write can be accepted.
4	Reserved	-	-	-
3	RX_STS	RO	1′b0	Receive Status 1: when the CAN core is receiving a message.
2	TX_STS	RO	1′b0	Transmit Status 1: when the CAN core is transmitting a message.
1	ERR_STS	RO	1′b0	1: when at least one of CAN error counters has reached error warning limit (96). This bit is automatically cleared when the error counter is below the limit.
0	BUS_OFF_STS	RO	1′b0	1: Node is in bus off state and cannot transmit and receive frames. When the transmit error counter exceeds the limit of 255, this bit will be set to 1, the CAN controller sets reset mode, and if enabled an error warning interrupt is generated. The transmit error counter is then set to 127 and receive error counter is cleared. The CAN controller stays in reset mode until the CPU clears the reset mode bit. Once this is completed the CAN controller waits for 128 occurrences of the bus free signal (11 consecutive recessive bits) counting down the transmit error counter. After that this bit is cleared (bus on), the error counters are reset and the error warning interrupt is generated if enabled.

Table 11.7 - CAN_STATUS - Status Register

11.2.4 CAN_INT_STATUS - Interrupt Status Register (address offset: 0x03)

Bit	Name	Туре	Default Value	Description
7	Reserved	-	-	-
6	ARB_LOST	RW1C	1′b0	Arbitration Lost Interrupt Set when the CAN core has lost arbitration during transmission of its own message and become a receiver Write a 1 to clear this interrupt.

Bit	Name	Туре	Default Value	Description
5	ERR_WRNG	RW1C	1′b0	Error Warning Interrupt Set when there is a change in ERR_STS or BUS_OFF_STS bits of Status register. Write a 1 to clear this interrupt.
4	ERR_PSV	RW1C	1′b0	Error Passive Interrupt Set when CAN core has reached or exceeded error passive level. Write a 1 to clear this interrupt.
3	RX	RW1C	1′b0	Receive Interrupt Set when there is at least one message in the RX FIFO. Write a 1 to decrement the RX message counter (NUM_FRM). NUM_FRM is not decremented automatically. Note that this flag is cleared after the first message is read. The interrupt handler should check how many messages there are (NUM_FRM) and read all of them out.
2	TX	RW1C	1′b0	Transmission Interrupt Set after a successful transmission. Write a 1 to reset the write pointer to TX RAM before writing the next frame of data.
1	BUS_ERR	RW1C	1′b0	Bus Error Interrupt Set when the CAN core encounters a bus error while transmitting or receiving a message. Write a 1 to clear this interrupt.
0	DATA_OVRN	RW1C	1′b0	Data Overrun Interrupt Set when the RX FIFO overrun has occurred. Write a 1 to clear this interrupt.

Table 11.8 - CAN_INT_STATUS - Interrupt Status Register

11.2.5 CAN_INT_ENABLE - Interrupt Enable Register (address offset: 0x04)

Bit	Name	Туре	Default Value	Description
7	Reserved	-	-	-
6	ARB_LOST_EN	RW	1′b0	Mask for ARB_LOST interrupt.
5	ERR_WRNG_EN	RW	1′b0	Mask for ERR_WRNG interrupt.
4	ERR_PSV_EN	RW	1′b0	Mask for ERR_PSV interrupt.
3	RX_EN	RW	1′b0	Mask for RX interrupt.
2	TX_EN	RW	1′b0	Mask for TX interrupt.
1	BUS_ERR_EN	RW	1′b0	Mask for BUS_ERR interrupt.
0	DATA_OVRN_EN	RW	1′b0	Mask for DATA_OVRN interrupt.

Table 11.9 - CAN_INT_ENABLE - Interrupt Enable Register

11.2.6 CAN_RX_MSG - Receive Message Register (address offset: 0x05)

Bit	Name	Туре	Default Value	Description
7:5	Reserved	-	-	-
4:0	NUM_FRM	RO	5′h00	Number of stored message frames This shows the number of frames stored in the RX FIFO. The value is incremented on each successful frame reception and decremented by clearing the RX interrupt. Up to 21 messages can be stored. This equation shows the calculation: $n = \frac{64}{3 + data_length_code}$

Table 11.10 - CAN_RX_MSG - Receive Message Register

11.2.7 CAN_BUS_TIM_0 - Bus Timing 0 Register (address offset: 0x06)

Bit	Name	Туре	Default Value	Description
7:6	SYNC_JMP_WDT	RW	2′h0	Synchronisation Jump Width This allows compensation for phase shifts between clocks of different bus controllers. The maximum number of clock cycles a bit period may be changed by one resynchronisation is defined by SYNC_JMP_WDT as: T_SYNC_JMP_WDT: t_sclk x (2 x SYNC_JMP_WDT [1] + SYNC_JMP_WDT [0] + 1)
5:0	BAUD_PSCL	RW	6′h00	Baud Rate Prescaler Baud rate can be set using this equation: BAUD_PSCL: $(32 \times BAUL_PSCL[5] + 16 \times BAUD_PSCL[4] + 8 \times BAUD_PSCL[3] + 4 \times BAUD_PSCL[2] + 2 \times BAUD_PSCL[1] + BAUD_PSCL[0])$ The period of CAN system clock tsclk is thus: t_{sclk} : $2 \times t_{clk} \times BAUD_PSCL$

Table 11.11 - CAN_BUS_TIM_0 - Bus Timing 0 Register

11.2.8 CAN_BUS_TIM_1 - Bus Timing 1 Register (address offset: 0x07)

Bit	Name	Туре	Default Value	Description
7	NUM_SAM	RW	1′b0	Number of bus level samples 0: bus level is sampled once (recommended for high speed buses) 1: bus level is sampled three times (recommended for low/medium speed buses where there is a benefit from filtering spikes)
6:4	TIM_SEG2	RW	3′h0	Number of clock cycles per Time Segment 2 t_{TIM_SEG2} : $t_{sclk} \times (4 \times TIM_SEG1[2] + 2 \times TIM_SEG1[1] + TIM_SEG1[0] + 1)$
3:0	TIM_SEG1	RW	4'h0	Number of clock cycles per Time Segment 1 t_{TIM_SEG1} : $t_{sclk} \times (8 \times TIM_SEG1[3] + 4 \times TIM_SEG1[2] + 2 \times TIM_SEG1[1] + TIM_SEG1[0] + 1)$

Table 11.12 - CAN_BUS_TIM_1 - Bus Timing 1 Register

11.2.9 CAN_TX_BUF - Transmit Buffer Register

The Transmit Buffer Register (CAN_TX_BUF) is used to write a CAN frame which will be sent over the CAN network. It is a write-only register. This register is mapped into four consecutive byte locations starting at offset 0x08. Users can access these locations through registers CAN_TX_BUF_0 to CAN_TX_BUF_3. The byte at location CAN_TX_BUF_0 is least significant, while the byte at location CAN_TX_BUF_3 is most significant.

Writing to the Transmit Buffer Register performs auto increment of the internal write pointer. This pointer is the actual address to the CAN TX RAM. Auto increment is executed only when location CAN_TX_BUF_3 is accessed.

The write pointer can be reset by writing a 1 to bit TX of the Interrupt Status Register. Refer to section 11.2.4 for further information.

11.2.9.1 CAN_TX_BUF_0 - Transmit Buffer 0 Register (address offset: 0x08)

Bit	Name	Туре	Default Value	Description
7:0	DATA	wo	8'h00	This is used to write a CAN frame for transmission. When write is performed on CAN_TX_BUF_3, the internal write pointer will be automatically incremented. This pointer can be reset by writing a 1 to TX of the Interrupt Status register.

Table 11.13 - CAN_TX_BUF_0 - Transmit Buffer 0 Register

11.2.9.2 CAN_TX_BUF_1 - Transmit Buffer 1 Register (address offset: 0x09)

Bit	Name	Туре	Default Value	Description
7:0	DATA	wo	8'h00	This is used to write a CAN frame for transmission. When write is performed on CAN_TX_BUF_3, the internal write pointer will be automatically incremented. This pointer can be reset by writing a 1 to TX of the Interrupt Status register.

Table 11.14 - CAN_TX_BUF_1 - Transmit Buffer 1 Register

11.2.9.3 CAN_TX_BUF_2 - Transmit Buffer 2 Register (address offset: 0x0A)

Bit	Name	Туре	Default Value	Description
7:0	DATA	wo	8'h00	This is used to write a CAN frame for transmission. When write is performed on CAN_TX_BUF_3, the internal write pointer will be automatically incremented. This pointer can be reset by writing a 1 to TX of the Interrupt Status register.

Table 11.15 - CAN_TX_BUF_2 - Transmit Buffer 2 Register

11.2.9.4 CAN_TX_BUF_3 - Transmit Buffer 3 Register (address offset: 0x0B)

Bit	Name	Туре	Default Value	Description
7:0	DATA	WO	8'h00	This is used to write a CAN frame for transmission. When write is performed on CAN_TX_BUF_3, the internal write pointer will be automatically incremented. This

				pointer can be reset by writing a 1 to TX of the Interrupt Status register.	
--	--	--	--	---	--

Table 11.16 - CAN_TX_BUF_3 - Transmit Buffer 3 Register

11.2.10 CAN_RX_BUF - Receive Buffer Register

The Receive Buffer Register (CAN RX BUF) is used to read CAN frames received from the CAN network. It is a read-only register. This register is mapped into four consecutive byte locations starting at offset 0x0C. The users can access these locations through registers CAN RX BUF 0 to CAN_RX_BUF_3. The byte at location CAN_RX_BUF_0 is least significant, while the byte at location CAN RX BUF 3 is most significant.

Reading the Receive Buffer Register performs auto increment of the internal read pointer. This pointer is the actual address to the CAN RX FIFO. Auto increment is executed only when location CAN_RX_BUF_3 is accessed.

11.2.10.1 CAN_RX_BUF_0 - Receive Buffer 0 Register (address offset: 0x0C)

Bit	Name	Туре	Default Value Description	
7:0	DATA	RO	8'h00	This is used to read a received CAN frame. When read is performed on CAN_RX_BUF_3, the internal read pointer will be automatically incremented.

Table 11.17 - CAN_RX_BUF_0 - Receive Buffer 0 Register

11.2.10.2 CAN_RX_BUF_1 - Receive Buffer 1 Register (address offset: 0x0D)

Bit	Name	Туре	Default Value	Description
7:0	DATA	RO	8'h00	This is used to read a received CAN frame. When read is performed on CAN_RX_BUF_3, the internal read pointer will be automatically incremented.

Table 11.18 - CAN_RX_BUF_1 - Receive Buffer 1 Register

11.2.10.3 CAN_RX_BUF_2 - Receive Buffer 2 Register (address offset: 0x0E)

Bit	Name	Туре	Default Value	Description
7:0	DATA	RO	8'h00	This is used to read a received CAN frame. When read is performed on CAN_RX_BUF_3, the internal read pointer will be automatically incremented.

Table 11.19 - CAN_RX_BUF_2 - Receive Buffer 2 Register

11.2.10.4 CAN_RX_BUF_3 - Receive Buffer 3 Register (address offset: 0x0F)

Bit	Name	Туре	Default Value Description	
7:0	DATA	RO	8'h00	This is used to read a received CAN frame. When read is performed on CAN_RX_BUF_3, the internal read pointer will be automatically incremented.

Table 11.20 - CAN_RX_BUF_3 - Receive Buffer 3 Register

11.2.11 CAN Acceptance Filter

The acceptance filter makes it possible to pass received messages to the RX FIFO only when the identifier bits of the received message are equal to the predefined ones within the acceptance filter registers.

The acceptance filter is defined by the acceptance code registers (CAN ACC CODE 3:CAN ACC CODE 0) and acceptance mask registers (CAN ACC MASK 3:CAN ACC MASK 0).

The acceptance code registers contain bit patterns of messages to be received while the corresponding acceptance mask registers define which bit positions will be compared and which ones are don't care. Writing a 1 to a certain bit in CAN_ACC_MASK_x defines the corresponding bit in CAN_ACC_CODE_x as 'don't care'.

The figure below demonstrates the process. An 'X' shows that the corresponding bit in CAN ACC CODE x is used in the filter and a minus '-' shows that the bit is ignored:

Figure 11.1 - CAN Acceptance Filter

The ACC FLTR bit of the Mode Register (CAN MODE) sets one of the two available filter configurations: single or dual filter.

Single Filter Configuration:

In single filter configuration, one long filter can be defined (four bytes). If a standard frame message is received, the complete identifier including RTR bit and the first two data bytes (if received) are used for acceptance filtering. Messages may also be accepted if there is no data byte. If only one data byte is received then only bits up to this data byte are compared with the filter. All single bit comparisons have to signal acceptance for successful reception of message.

If an extended frame message is received while in single filter configuration, the complete identifier including the RTR bit is used for acceptance filtering. Again, for successful reception, all single bit comparisons have to signal acceptance.

Dual Filter Configuration:

In dual filter configuration, two short filters can be defined. The received message is compared to both filters to decide whether this message should be stored in the RX FIFO. If at least one of the messages filters signals acceptance, the message is accepted.

If a standard frame message is received, the first filter compares the complete standard identifier including RTR bit and the first data byte of the message. The second filter only compares the complete standard identifier including RTR bit. For successful reception of a message, all single bit comparisons of at least one filter must signal acceptance. If no data byte is required for filter 1, the four least significant bits of AMR1 and AMR3 have to be set to 1 (don't care).

If an extended frame message is received while in dual filter mode, both filters are comparing the first two bytes of the extended identifier range only. For a successful reception, all single bit comparisons of at least one filter have to signal acceptance.

The content of the acceptance code registers (CAN_ACC_CODE_3:CAN_ACC_CODE_0), depending on the filter configuration and the frame type, is presented below. Please refer to table 11.2 and 11.3 for the bits in a CAN message. For simplicity, the tables refer to the different settings as:

- Setting 1: Single filter configuration, standard frame message
- Setting 2: Single filter configuration, extended frame message
- Setting 3: Dual filter configuration, standard frame message
- Setting 4: Dual filter configuration, extended frame message

A particular bit in CAN_ACC_CODE_x can always be ignored by setting the corresponding bit in CAN_ACC_MASK_x to 1. It is recommended to set the mask to 1 for the unused bits in CAN_ACC_CODE_x.

11.2.11.1 CAN_ACC_CODE_0 - Acceptance Code 0 Register (address offset: 0x10)

Bit	Name	Type	Default	Description			
DIL	Name	Туре	Value	Setting 1	Setting 2	Setting 3	Setting 4
7	ACC_CODE	RW	1'b0	ID10	ID28	ID10	ID28
6	ACC_CODE	RW	1'b0	ID9	ID27	ID9	ID27
5	ACC_CODE	RW	1′b0	ID8	ID26	ID8	ID26
4	ACC_CODE	RW	1'b0	ID7	ID25	ID7	ID25
3	ACC_CODE	RW	1′b0	ID6	ID24	ID6	ID24
2	ACC_CODE	RW	1'b0	ID5	ID23	ID5	ID23
1	ACC_CODE	RW	1'b0	ID4	ID22	ID4	ID22
0	ACC_CODE	RW	1'b0	ID3	ID21	ID3	ID21

Table 11.21- CAN_ACC_CODE_0 - Acceptance Code 0 Register

11.2.11.2 CAN_ACC_CODE_1 - Acceptance Code 1 Register (address offset: 0x11)

Bit	Name	Tymo	Default	Description			
DIL	Name	Туре	Value	Setting 1	Setting 2	Setting 3	Setting 4
7	ACC_CODE	RW	1'b0	ID2	ID20	ID2	ID20
6	ACC_CODE	RW	1'b0	ID1	ID19	ID1	ID19
5	ACC_CODE	RW	1'b0	ID0	ID18	ID0	ID18
4	ACC_CODE	RW	1'b0	RTR	ID17	RTR	ID17
3	ACC_CODE	RW	1'b0	Unused	ID16	DATA1[7]	ID16
2	ACC_CODE	RW	1'b0	Unused	ID15	DATA1[6]	ID15
1	ACC_CODE	RW	1'b0	Unused	ID14	DATA1[5]	ID14
0	ACC_CODE	RW	1'b0	Unused	ID13	DATA1[4]	ID13

Table 11.22 - CAN_ACC_CODE_1 - Acceptance Code 1 Register

11.2.11.3 CAN_ACC_CODE_2 - Acceptance Code 2 Register (address offset: 0x12)

Bit	Name	Turno	Default	Description			
DIL	Name	Туре	Value	Setting 1	Setting 2	Setting 3	Setting 4
7	ACC_CODE	RW	1'b0	DATA1[7]	ID12	ID10	ID28
6	ACC_CODE	RW	1'b0	DATA1[6]	ID11	ID9	ID27
5	ACC_CODE	RW	1'b0	DATA1[5]	ID10	ID8	ID26
4	ACC_CODE	RW	1'b0	DATA1[4]	ID9	ID7	ID25
3	ACC_CODE	RW	1'b0	DATA1[3]	ID8	ID6	ID24
2	ACC_CODE	RW	1'b0	DATA1[2]	ID7	ID5	ID23
1	ACC_CODE	RW	1'b0	DATA1[1]	ID6	ID4	ID22
0	ACC_CODE	RW	1'b0	DATA1[0]	ID5	ID3	ID21

Table 11.23 - CAN_ACC_CODE_2 - Acceptance Code 2 Register

11.2.11.4 CAN_ACC_CODE_3 - Acceptance Code 3 Register (address offset: 0x13)

Bit	Name	Туре	Default	Description			
DIL	Name	туре	Value	Setting 1	Setting 2	Setting 3	Setting 4
7	ACC_CODE	RW	1'b0	DATA2[7]	ID4	ID2	ID20
6	ACC_CODE	RW	1′b0	DATA2[6]	ID3	ID1	ID19
5	ACC_CODE	RW	1'b0	DATA2[5]	ID2	ID0	ID18
4	ACC_CODE	RW	1′b0	DATA2[4]	ID1	RTR	ID17
3	ACC_CODE	RW	1'b0	DATA2[3]	ID0	DATA1[3]	ID16
2	ACC_CODE	RW	1′b0	DATA2[2]	RTR	DATA1[2]	ID15
1	ACC_CODE	RW	1'b0	DATA2[1]	Unused	DATA1[1]	ID14
0	ACC_CODE	RW	1'b0	DATA2[0]	Unused	DATA1[0]	ID13

Table 11.24 - CAN_ACC_CODE_3 - Acceptance Code 3 Register

11.2.11.5 CAN_ACC_MASK_0 - Acceptance Mask 0 Register (address offset: 0x14)

Bit	Name	Туре	Default Value	Description
7:0	DATA	RW	8'h00	This register determines which bits in CAN_ACC_CODE_0 are used for the acceptance filter. A 1 in a particular bit means that the corresponding bit in CAN_ACC_CODE_0 will not be compared.

Table 11.25 - CAN_ACC_MASK_0 - Acceptance Mask 0 Register

11.2.11.6 CAN_ACC_MASK_1 - Acceptance Mask 1 Register (address offset: 0x15)

Bit	Name	Туре	Default Value	Description
7:0	DATA	RW	8'h00	This register determines which bits in CAN_ACC_CODE_1 are used for the acceptance filter. A 1 in a particular bit means that the corresponding bit in CAN_ACC_CODE_1 will not be compared.

Table 11.26 - CAN_ACC_MASK_1 - Acceptance Mask 1 Register

11.2.11.7 CAN_ACC_MASK_2 - Acceptance Mask 2 Register (address offset: 0x16)

Bit	Name	Туре	Default Value	Description
7:0	DATA	RW	8'h00	This register determines which bits in CAN_ACC_CODE_2 are used for the acceptance filter. A 1 in a particular bit means that the corresponding bit in CAN_ACC_CODE_2 will not be compared.

Table 11.27 - CAN_ACC_MASK_2 - Acceptance Mask 2 Register

11.2.11.8 CAN_ACC_MASK_3 - Acceptance Mask 3 Register (address offset: 0x17)

Bit	Name	Туре	Default Value	Description
7:0	DATA	RW	8'h00	This register determines which bits in CAN_ACC_CODE_3 are used for the acceptance filter. A 1 in a particular bit means that the corresponding bit in CAN_ACC_CODE_3 will not

Bit	Name	Туре	Default Value	Description
				be compared.

Table 11.28 - CAN_ACC_MASK_3 - Acceptance Mask 3 Register

11.2.12 CAN_ERR_CODE - Error Code Capture Register (address offset: 0x18)

Bit	Name	Туре	Default Value	Description
7	RX_WRN	RO	1′b0	Set when RX_ERR counter is greater than or equal to 96.
6	TX_WRN	RO	1′b0	Set when TX_ERR counter is greater than or equal to 96.
5	ERR_DIR	RO	1′b0	Direction of transfer when error occurred. 0: transmission 1: reception
4	ACK_ERR	RO	1'b0	ACK error occurred.
3	FRM_ERR	RO	1'b0	Form error occurred.
2	CRC_ERR	RO	1′b0	CRC error occurred.
1	STF_ERR	RO	1'b0	Stuff error occurred.
0	BIT_ERR	RO	1′b0	Bit error occurred.

Table 11.29 - CAN_ERR_CODE - Error Code Capture Register

11.2.13 CAN_RX_ERR_CNTR - Receive Error Counter Register (address offset: 0x19)

Bit	Name	Туре	Default Value	Description
7:0	RX_ERR	RO	8′h00	This is the current receive error counter. If a bus off event occurs, it is initialized to 0.

Table 11.30 - CAN_RX_ERR_CNTR - Receive Error Counter Register

11.2.14 CAN_TX_ERR_CNTR - Transmit Error Counter Register (address offset: 0x1A)

Bit	Name	Туре	Default Value	Description
7:0	TX_ERR	RO	8′h00	This is the low-byte of the current transmit error counter as the width of the transmit error counter is 9-bit. If a bus off event occurs, it is initialized to 127 to count the minimum protocol defined time (128 occurrences of bus free signal). Reading TX_ERR during this time gives information about the status of the bus off recovery.

Table 11.31 - CAN_TX_ERR_CNTR - Transmit Error Counter Register

11.2.15 CAN_ARB_LOST_CODE - Arbitration Lost Code Capture Register (address offset: 0x1B)

Bit	Name	Туре	Default Value	Description
7:5	Reserved	-	-	-

4:0	ARB_CODE	RO	5′h00	This contains the bit position at which arbitration was lost during transmission of a message. This register is not updated until the previous arbitration lost interrupt has been acknowledged.
-----	----------	----	-------	---

Table 11.32 - CAN_ARB_LOST_CODE - Arbitration Lost Code Capture Register

12 SD Host

The device supports a SD Host with the following features.

- Supports PIO data transfers
- Supports configurable SD bus modes: 4-bit mode and 8-bit mode
- Supports configurable 8-word/16-word register for data FIFO
- Supports configurable 1K/2K/4K SRAM for data FIFO
- Supports configurable 1-bit/4-bit SD card bus and 1-bit/4-bit/8-bit MMC card bus
- Configurable CPRM function for security
- Built-in generation and check for 7-bit and 16-bit CRC data
- Card detection (Insertion/Removal)
- Supports Read Wait mechanism for SDIO function
- Supports Suspend/Resume mechanism for SDIO function

12.1 Register Summary

Listed below are the registers with their offset from the base address (0x10400). All registers can only be accessed via Double-Word (32-bit) mode. Note that some registers are not 32-bit long. In that case, several registers are combined into one 32-bit location. If one such register is accessed, all other registers in the same 32-bit location will also be affected. The users need to take care not to modify the content of the other registers.

Address Offset	Register	Default value	References
0x00	SDH_AUTO_CMD23_ARG2 - Auto CMD23	0x0000000	Section 12.2.1
0x04	Argument 2 Register SDH_BLK_SIZE – Block Size Register	0x0000	Section 12.2.2
0x06	SDH_BLK_COUNT - Block Count Register	0x0000	Section 12.2.3
0x08	SDH_ARG_1 - Argument 1 Register	0x00000000	<u>Section 12.2.4</u>
0x0C	SDH_TNSFER_MODE - Transfer Mode Register	0x0000	<u>Section 12.2.5</u>
0x0E	SDH_CMD - Command Register	0x0000	Section 12.2.6
0x10 -	SDH_RESPONSE - Response Register	0x00000000	Section 12.2.7
0x1C 0x20	SDH_BUF_DATA - Buffer Data Port Register	0x00000000	<u>Section 12.2.8</u>
0x24	SDH_PRESENT_STATE - Present State Register	0x00000000	Section 12.2.9
0x28	SDH_HST_CNTL_1 - Host Control 1 Register	0x00	Section 12.2.10
0x29	SDH_PWR_CNTL - Power Control Register	0x00	Section 12.2.11

0x2A	SDH_BLK_GAP_CNTL - Block Gap Control Register	0x0000	Section 12.2.12
0x2C	SDH_CLK_GAP_CNTL - Clock Control Register	0x0000	Section 12.2.13
0x2E	SDH_TIMEOUT_CNTL - Timeout Control Register	0x00	<u>Section 12.2.14</u>
0x2F	SDH_SW_RST - Software Reset Register	0x00	Section 12.2.15
0x30	SDH_NRML_INT_STATUS - Normal Interrupt Status Register	0x0000	Section 12.2.16
0x32	SDH_ERR_INT_STATUS - Error Interrupt Status Register	0x0000	Section 12.2.17
0x34	SDH_NRML_INT_ENABLE - Normal Interrupt Status Enable Register	0x0000	<u>Section 12.2.18</u>
0x36	SDH_ERR_INT_ENABLE - Error Interrupt Status Enable Register	0x0000	Section 12.2.19
0x38	SDH_NRML_INT_SGNL_ENABLE - Normal Interrupt Signal Enable Register	0x0000	Section 12.2.20
0x3A	SDH_ERR_INT_SGNL_ENABLE - Error Interrupt Signal Enable Register	0x0000	<u>Section 12.2.21</u>
0x3C	SDH_AUTO_CMD12_ERR_STATUS - Auto CMD12 Error Status Register	0x0000	Section 12.2.22
0x3E	SDH_HOST_CNTL_2 - Host Control 2 Register	0x0000	Section 12.2.23
0x40	SDH_CAP_1 - Capabilities Register 1	0x016A0080	<u>Section 12.2.24</u>
0x44	SDH_CAP_2 - Capabilities Register 2	0x00000F75	<u>Section 12.2.25</u>
0x48	SDH_RSRV_1 - Reserved 1 Register	0x00000000	<u>Section 12.2.26</u>
0x4C	SDH_RSRV_2 - Reserved 2 Register	0x00000000	<u>Section 12.2.27</u>
0x50	SDH_FORCE_EVT_CMD_ERR_STATUS - Force Event for Auto CMD Error Status Register	0x0000	<u>Section 12.2.28</u>
0x52	SDH_FORCE_EVT_ERR_INT_STATUS - Force Event for Error Interrupt Status Register	0x0000	<u>Section 12.2.29</u>
0x54	SDH_RSRV_3 - Reserved 3 Register	0x00000000	<u>Section 12.2.30</u>
0x58	SDH_RSRV_4 - Reserved 4 Register	0x00000000	<u>Section 12.2.31</u>
0x60	SDH_PRST_INIT - Preset value for initialization Register	0x0000	<u>Section 12.2.32</u>
0x62	SDH_PRST_DFLT_SPD - Preset value for default speed Register	0x0000	Section 12.2.33
0x64	SDH_PRST_HIGH_SPD - Preset value for the high speed Register	0x0000	<u>Section 12.2.34</u>
0x66	SDH_PRST_SDR12 - Preset value for SDR12 Register	0x0000	<u>Section 12.2.35</u>
0x68	SDH_PRST_SDR25 - Preset value for SDR25 Register	0x0000	<u>Section 12.2.36</u>
0x6A	SDH_PRST_SDR50 - Preset value for SDR50 Register	0x0000	<u>Section 12.2.37</u>
0x6C	SDH_PRST_SDR104 - Preset value for SDR104 Register	0x0000	<u>Section 12.2.38</u>
0x6E	SDH_PRST_DDR50 - Preset value for DDR50 Register	0x0000	Section 12.2.39
0xFC	SDH_RSRV_5 - Reserved 5 Register	0x0000	Section 12.2.40
0xFE	SDH_HC_VER - Host Controller Version Register	0x0002	Section 12.2.41

0x100	SDH_VNDR_0 - Vendor defined 0 Register	0x00000001	Section 12.2.42
0x104	SDH_VNDR_1 - Vendor defined 1 Register	0x00000000	Section 12.2.43
0x108	SDH_VNDR_2 - Vendor defined 2 Register	0x00000000	Section 12.2.44
0x10C	SDH_VNDR_3 - Vendor defined 3 Register	0x1F000000	Section 12.2.45
0x110	SDH_VNDR_4 - Vendor defined 4 Register	0x00000000	Section 12.2.46
0x114	SDH_VNDR_5 - Vendor defined 5 Register	0x00000000	Section 12.2.47
0x118	SDH_VNDR_6 - Vendor defined 6 Register	0x00000000	Section 12.2.48
0x11C	SDH_VNDR_7 - Vendor defined 7 Register	0x00000000	Section 12.2.49
0x120	SDH_VNDR_8 - Vendor defined 8 Register	0x00000000	Section 12.2.50
0x124	SDH_VNDR_9 - Vendor defined 9 Register	0x00000000	Section 12.2.51
0x128	SDH_RSRV_6 - Reserved 6 Register	0x00000000	Section 12.2.52
0x178	SDH_HW_ATTR - Hardware Attributes Register	0x00000150	Section 12.2.53
0x180	SDH_CPR_MOD_CNTL - Cipher Mode Control Register	0x00000000	Section 12.2.54
0x184	SDH_CPR_MOD_STATUS - Cipher Mode Status Register	0x00000000	Section 12.2.55
0x188	SDH_CPR_MOD_STATUS_EN - Cipher Mode Status Enable Register	0x0000	Section 12.2.56
0x18A	SDH_CPR_MOD_SIG_EN - Cipher Mode Signal Enable Register	0x0000	Section 12.2.57
0x18C	SDH_IN_DATA_LSB -Input Data LSB Register	0x00000000	Section 12.2.58
0x190	SDH_IN_DATA_MSB -Input Data MSB Register	0x00000000	Section 12.2.59
0x194	SDH_IN_KEY_LSB - Input Key LSB Register	0x00000000	Section 12.2.60
0x198	SDH_IN_KEY_MSB - Input Key MSB Register	0x00000000	<u>Section 12.2.61</u>
0x19C	SDH_OUT_DATA_LSB - Output Data LSB Register	0x00000000	Section 12.2.62
0x1A0	SDH_OUT_DATA_MSB - Output Data MSB Register	0x00000000	Section 12.2.63
0x1A4	SDH_SCRT_CONS_DATA - Secret Constant Table Data Port	0x00000000	<u>Section 12.2.64</u>

Table 12.1 - Overview of SD Host Registers

12.2 Register Details

12.2.1 SDH_AUTO_CMD23_ARG2 - Auto CMD23 Argument 2 Register (address offset: 0x00)

This register sets a 32-bit block count to the argument of CMD23 while executing Auto CMD23. The available block count will be limited by BLK_CNT. In this case, 65535 blocks is the maximum value.

Bit	Name	Туре	Default Value	Description
31:0	ARG_2	RW	32'h0000_ 0000	Auto CMD23 argument 2

Table 12.2 - 11.2.1 SDH_AUTO_CMD23_ARG2 - Auto CMD23 Argument 2 Register

12.2.2 SDH_BLK_SIZE - Block Size Register (address offset: 0x04)

This register is used to configure the number of bytes in a data block.

Bit	Name	Туре	Default Value	Description
15:12	Reserved	-	-	-
11:0	BLK_SIZE	RW	12'h000	This register specifies the block size of data transfers for CMD17/18/24/25/53 and can be set with values ranging from 1 up to the maximum buffer size.

Table 12.3 - 11.2.2 SDH_BLK_SIZE - Block Size Register

12.2.3 SDH_BLK_COUNT - Block Count Register (address offset: 0x06)

The block count register is set when the BLK_CNT_EN bit is set to 1. This register is used only for the multi-block transfers. The host controller will decrease the counting number during the data transfer and stop counting when it counts down to zero. When a suspend command is completed in the SDIO transfer, the remaining block counts can be determined by reading this register. Before issuing a resume command to start a re-transfer, the host driver should restore the block counts that are previously saved.

Bit	Name	Туре	Default Value	Description
31:16	BLK_CNT	RW	16'h000	Block count of the current transfer. Valid values are from 1 to 65535 blocks 0000: stop counting

Table 12.4 - 11.2.3 SDH_BLK_COUNT - Block Count Register

12.2.4 SDH_ARG_1 - Argument 1 Register (address offset: 0x08)

This register is assigned to bits[39:8] of the command field.

Bit	Name	Туре	Default Value	Description
31:0	ARG1	RW	32'h0000_ 0000	Command argument

Table 12.5 - 11.2.4 SDH_ARG_1 - Argument 1 Register

12.2.5 SDH_TNSFER_MODE - Transfer Mode Register (address offset: 0x0C)

The host driver should set this register before issuing the data transfer command or resume command. When in the SDIO transfer, the values of this register should be preserved after the suspend command and should be restored before the resume command.

Bit	Name	Туре	Default Value	Description
15:6	Reserved	-	-	-
5	MULTI_BLK	RW	1′b0	Multiple blocks selection Single block selection
4	TRAN_DIR_SEL	RW	1′b0	1: Read from the card to host 0: Write from the host to card
3:2	AUTO_CMD_EN	RW	2'h0	Auto CMD enable There are two methods to stop the read and write operations of multiple blocks: 01: Auto CMD12 Enable When this field is set to 01, the host controller will issue a CMD12 when the last block transfer is completed. 10: Auto CMD23 Enable When this bit field is set to 10, the host controller will issue a CMD23 before issuing a command specified in the Command Register 11: Reserved 00: Auto Command Disabled
1	BLK_CNT_EN	RW	1′b0	Block count enable. This bit is only valid for a multi-block transfer. When set to 0 the BLK_CNT register will be disabled. The multi-block transfer will be an infinite transfer
0	Reserved	RW	1′b0	Write 0 to this bit

Table 12.6 - 11.2.5 SDH_TNSFER_MODE - Transfer Mode Register

12.2.6 SDH_CMD - Command Register (address offset: 0x0E)

The host driver should check the Command Inhibit (CMD) and Command Inhibit (DAT) bits in the present state register to determine whether the SD bus is free to transfer.

Bit	Name	Туре	Default Value	Desc	cription	
31:30	Reserved	-	-	-		
29:24	CMD_IDX	RW	6′h00	Thes		l be assigned to bits ommand field
		RW	2′h0	11	Abort	CMD12/52 for writing I/O Abort in CCCR
23:22	CMD_TYPE			10	Resume	CMD52 for writing Function Select in CCCR
				01	Suspend	CMD52 for writing Bus Suspend in CCCR
				00	Normal	Other commands
				Data	Present Sel	ect
				1: in	dicates that	data is present and data
				transfer is enabled		
21	DATA_PRE_SEL	RW	1′b0			owing conditions
				_		ds only using the CMD line
				1		ds with no data transfer but
					using the	busy signal on DAT[0]

Bit	Name	Туре	Default Value	Description
				Resume command
20	CMD_IDX_CHK_E N	RW	1′b0	Command Index Check Enable 1: the host controller will check the index field response to determine if the values are CMD_IDX. If they are not the same, CMD_IDX_ERR will be triggered
19	CMD_CRC_CHK_ EN	RW	1′b0	Command CRC Check Enable 1: the host controller will check the CRC field response to determine whether the CRC is correct. CMD_CRC_ERR will be triggered if an error is detected.
18	Reserved	-	-	-
17:16	RSP_TYPE_SEL	RW	2'h0	Response Type Select 11: Response length 48 with busy check after response 10: Response length 48 01: Response length 136 00: No response

Table 12.7 - 11.2.6 SDH_CMD - Command Register

12.2.7 SDH_RESPONSE - Response Register (address offset: 0x10-0x1C)

The Host Controller stores the Auto CMD12 response in the upper word of the Response Register to avoid the Auto CMD12 response, which tends to be overwritten by the other command.

Bit	Name	Туре	Default Value	Description
127:0	RSP	RO	0	Command Response

Table 12.8 - 11.2.7 SDH_RESPONSE - Response Register

12.2.8 SDH_BUF_DATA - Buffer Data Port Register (address offset: 0x20)

This register uses the 32-bit Data Port Register to access the internal buffer.

Bit	Name	Туре	Default Value	Description
31:0	DATA_PORT	RO	32'h0000_ 0000	Buffer Data Port Register

Table 12.9 - 11.2.8 SDH_BUF_DATA - Buffer Data Port Register

12.2.9 SDH_PRESENT_STATE - Present State Register (address offset: 0x24)

The host driver can access the status from this read-only register.

Bit	Name	Туре	Default Value	Description
31:25	Reserved	-	-	-
24	CMD_LIN_LV	RO		Command Line Signal Level

Bit	Name	Туре	Default Value	Description
23:20	DATA_LIN_LV	RO		Data[3:0] Line Signal Level
19	WR_PROP_LV	RO		Write Protect Pin Level 1: Write enabled 0: Write protected
18	CD_PIN_LV	RO		Card Detect Pin Level 1: Card is detected 0: Card is not detected
17	SYS_CARD_STAB LE	RO		Card State Stable 1: No card or card is inserted 0: Reset or de-bounce
16	SYS_CARD_INSE RT	RO		Card Inserted 1: Card inserted 0: Reset, de-bouncing, or no card is detected
15:12	Reserved	-	-	-
11	BUF_RD_EN	ROC		Buffer Read Enable 1: Read Enable 0: Read Disable
10	BUF_WR_EN	ROC		Buffer Write Enable 1: Write Enable 0: Write Disable
9	RD_TRAN_ACT	ROC		Read Transfer Active 1: under the following conditions: (1) After the end bit of a read command (2) When CONT_REQ in the block gap control register is set to restart a transfer. 0: under the following conditions: (1) When all data blocks specified by the block length are transferred to the system. (2) When SP_BLK_GAP in the block gap control register is set to 1 and the host controller has transferred all the valid data blocks to the system. The TRAN_CMPLT interrupt is generated when this bit changes from 1 to 0
8	WR_TRAN_ACT	ROC		Write Transfer Active 1: under the following conditions: (1) After the end bit of a write command (2) When CONT_REQ in the block gap control register is set to restart a transfer. 0: under the following conditions: (1) After getting the CRC status of the last data block specified by the transfer count. (2) After getting the CRC status of any block where data transmission is stopped by SP_BLK_GAP. A BLK_GAP_EVT interrupt will be generated when SP_BLK_GAP is set to 1 and this bit changes to 0. This bit is useful in the command with a busy data line.
7:3	Reserved	-	-	-
2	DATA_LIN_ACT	ROC		Data Line Active In a read transfer, this status bit is used to

Bit	Name	Туре	Default Value	Description
				check whether a read transfer is executing on the bus. Changing this bit from 1 to 0 will generate a BLK_GAP_EVT interrupt when SP_BLK_GAP is set to 1. 1: under the following conditions: (1) After the end bit of a read command (2) When CONT_REQ in the block gap control register is set to restart a transfer. 0: under the following conditions: (1) When the end bit of the last data block is sent from the SD bus to the host controller. (2) When SP_BLK_GAP is set to 1 and a read transfer is stopped at the block gap. In a write transfer, this status bit is used to check whether a write transfer is executing on the bus. Changing this bit from 1 to 0 will generate a TRAN_CMPLT interrupt in the normal interrupt status register. 1: under the following conditions: (1) After the end bit of a read command (2) When CONT_REQ in the block gap control register is set to restart a transfer. 0: under the following conditions: (1) When the card release the busy signal of the last data block. (2) When SP_BLK_GAP is set to 1 and the card releases the write busy at the block gap. In the command with busy data line, this bit indicates whether a command with busy is executing on the bus. This bit will be set after the end bit of the command with busy and will be cleared when busy is de-asserted or busy is not detected after the end of a response.
1	CMD_INHIBIT_D AT	ROC		Command Inhibit (DAT) 1: Cannot issue new commands to use the data line 0: Issue new commands to use the data line
0	CMD_INHIBIT_C MD	ROC		Command Inhibit (CMD) 1: Cannot issue command 0: Issue command only with the command line

Table 12.10 - 11.2.9 SDH_PRESENT_STATE - Present State Register

12.2.10 SDH_HST_CNTL_1 - Host Control 1 Register (address offset: 0x28)

Bit	Name	Туре	Default Value	Description
7	CD_SEL	RW	1′b0	Card Detect Signal Selection 1: The test level for the card detection 0: The card detect pin is selected
6	CD_TEST_LV	RW	1′b0	Card Detect Test Level 1: Card is inserted 0: Card cannot be found

Bit	Name	Туре	Default Value	Description
5	EXT_DATA_WIDT H	RW	1′b0	Extended Data Transfer Width 1: 8-bit bus width 0: Bus width is selected by the data transfer width
4:2	Reserved	1	-	-
1	DATA_WIDTH	RW	1′b0	Data Width 1: 4-bit mode 0: 1-bit mode
0	Reserved	-	-	-

Table 12.11 - SDH_HST_CNTL_1 - Host Control 1 Register

12.2.11 SDH_PWR_CNTL - Power Control Register (address offset: 0x29)

Bit	Name	Туре	Default Value	Description
15:12	Reserved	-	-	-
11:9	SD_BUS_VOL	RW	3′h0	SD Bus Voltage Select 111: 3.3V (Typ) 110: 3.0V (Typ) 101: 1.8V (Typ) Others: Reserved
8	Reserved	-	-	-

Table 12.12 - SDH_PWR_CNTL - Power Control Register

12.2.12 SDH_BLK_GAP_CNTL - Block Gap Control Register (address offset: 0x2A)

Bit	Name	Туре	Default Value	Description
23:20	Reserved	-	-	-
19	INT_BLK_GAP	RW	1′b0	1: Check the interrupt at block gap enabled
18	READ_WAIT	RW	1′b0	1: Enable Read Wait
17	CONT_REQ	RWAC	1′b0	1: To restart a transaction (SP_BLK_GAP must also be 1; if 0 this will be aborted) It is cleared automatically by the host controller when: a. In a read transfer, DATA_LIN_ACT changes from 0 to 1 to start a read transfer In a write transfer, WR_TRAN_ACT changes from 0 to 1 to start a write transfer
16	SP_BLK_GAP	RW	1′b0	1: Stop at block gap request; the host controller will stop at the block gap by using READ_WAIT or stop IO_SD_CLK in a read transaction

				0: the host controller will not write data to DATA_PORT
--	--	--	--	---

Table 12.13 - SDH_BLK_GAP_CNTL - Block Gap Control Register

12.2.13 SDH_CLK_CNTL - Clock Control Register (address offset: 0x2C)

Bit	Name	Туре	Default Value	Description
15:8	LOW_BIT_SD_CL K_SEL	RW	8'h00	SD clock frequency value 7:0 for the 10-bit divided clock mode. These are used to select the frequency of the IO_SD_CLK pin. The base clock is ½ of chip system clock N: chip system clock * (1 / 2N) 0: not supported
7:6	UPPER_BIT_SD_ CLK_SEL	RW	2′h0	SD clock frequency value 9:8 for the 10-bit divided clock mode
5	CLK_GEN_SEL	ROC	1′b0	This bit is always set to zero 0: 10-bit divided clock mode
4:3	Reserved	-	-	-
2	SD_CLK_EN	RW	1′b0	1: IO_SD_CLK will be output
1	CLK_STABLE	ROC	1′b0	This bit is set to 1 when the internal clock is stable
0	INTER_CLK_EN	RW	1′b0	1: Internal clock will start oscillating

Table 12.14 - SDH_CLK_CNTL - Clock Control Register

12.2.14 SDH_TIMEOUT_CNTL - Timeout Control Register (address offset: 0x2E)

This host driver should set the timeout value according to the capabilities register. The value of DATA_TIMER indicates the data line timeout times.

Bit	Name	Туре	Default Value	Description
23:20	Reserved	-	1	-
19:16	DATA_TIMER	RW	4′hE	1111: Reserved 1110: Chip system clk x 2^27 1101: Chip system clk x 2^26 0000: Chip system clk x 2^13

Table 12.15 - SDH_TIMEOUT_CNTL - Timeout Control Register

12.2.15 SDH_SW_RST - Software Reset Register (address offset: 0x2F)

A reset pulse will be generated when this bit is set to 1. This bit will be automatically cleared once the reset pulse is issued.

Bit	Name	Туре	Default Value	Description
31:27	Reserved	1	-	-

26	SOFT_RST_DAT	RWAC	1′b0	1: Software reset for data line
25	SOFT_RST_CMD	RWAC	1′b0	1: Software reset for command line
24	SOFT_RST_ALL	RWAC	1′b0	1: Software reset for all

Table 12.16 - SDH_SW_RST - Software Reset Register

12.2.16 SDH_NRML_INT_STATUS - Normal Interrupt Status Register (address offset: 0x30)

The interrupt status can be latched by setting the Normal Interrupt Status Enable register corresponding bit to 1.

Bit	Name	Туре	Default Value	Description
15	ERR_INT	ROC	1′b0	1: Error Interrupt
14:9	Reserved	-	-	-
8	CARD_INT	ROC	1′b0	1: Card Interrupt
7	CARD_REMOVE	RW1C	1′b0	1: Card Remove
6	CARD_INSERT	RW1C	1′b0	1: Card Inserted
5	BUF_RD_RDY	RW1C	1′b0	1: Buffer Read Ready
4	BUF_WR_RDY	RW1C	1′b0	1: Buffer Write Ready
3	Reserved	RW1C	1′b0	Write 0 to this bit
2	BLK_GAP_EVT	RW1C	1′b0	1: Block Gap Event
1	TRAN_CMPLT	RW1C	1′b0	1: Transfer Complete
0	CMD_CMPLT	RW1C	1′b0	1: Command Complete

Table 12.17 - SDH_NRML_INT_STATUS - Normal Interrupt Status Register

12.2.17 SDH_ERR_INT_STATUS - Error Interrupt Status Register (address offset: 0x32)

The interrupt status can be latched by setting the Error Interrupt Status Enable Register corresponding bit to 1.

Bit	Name	Туре	Default Value	Description
31:27	Reserved	-	-	-
26	Reserved	RW1C	1′b0	Write 0 to this bit

Bit	Name	Туре	Default Value	Description
25	Reserved	RW1C	1′b0	Write 0 to this bit
24	AUTO_CMD12_ERR	RW1C	1′b0	Auto CMD12 error
23	CUR_LIM_ERR	RW1C	1′b0	Current limit error
22	DATA_END_BIT_ERR	RW1C	1′b0	Data End Bit error
21	DATA_CRC_ERR	RW1C	1′b0	Data CRC error
20	DATA_TIMEOUT_ERR	RW1C	1′b0	Data Timeout error
19	CMD_IDX_ERR	RW1C	1′b0	Command Index error
18	CMD_ERR_BIT_ERR	RW1C	1′b0	Command End Bit error
17	CMD_CRC_ERR	RW1C	1′b0	Command CRC error
16	CMD_TIMEOUT_ERR	RW1C	1′b0	Command Timeout error

Table 12.18 - 11.2.17 SDH_ERR_INT_STATUS - Error Interrupt Status Register

12.2.18 SDH_NRML_INT_ENABLE - Normal Interrupt Status Enable Register (address offset: 0x34)

If the corresponding bit of the interrupt source in the normal interrupt status enable register is set to 1, the interrupt becomes active, which is latched and available for the host driver in the normal interrupt status register.

Bit	Name	Туре	Default Value	Description
15	Reserved	-	-	-
14:9	Reserved	-	-	-
8	CARD_INT_ST_EN	RW	1′b0	Card Interrupt status enable
7	CARD_REMOVE_ST_E N	RW	1′b0	Card Remove status enable
6	CARD_INSERT_ST_EN	RW	1′b0	Card Insert status enable
5	BUF_RD_RDY_ST_EN	RW	1′b0	Buffer Read Ready status enable
4	BUF_WR_RDY_ST_EN	RW	1′b0	Buffer Write Ready status enable
3	Reserved	RW	1′b0	Write 0 to this bit
2	BLK_GAP_EVT_ST_EN	RW	1′b0	Block Gap Event status enable

1	TRAN_CMPLT_ST_EN	RW	1′b0	Transfer Complete status enable
0	CMD_CMPLT_ST_EN	RW	1′b0	Command Complete status enable

Table 12.19 - SDH_NRML_INT_ENABLE - Normal Interrupt Status Enable Register

12.2.19 SDH_ERR_INT_ENABLE - Error Interrupt Status Enable Register (address offset: 0x36)

If the corresponding bit of the interrupt source in the Error Interrupt Status Enable Register is set to 1 and if the interrupt becomes active, the active state will be latched and will be available for the host driver in this register.

Bit	Name	Туре	Defau It Value	Description
31:26	Reserved	-	-	-
25	Reserved	RW	1′b0	Write 0 to this bit
24	AUTO_CMD12_ERR_ST_EN	RW	1′b0	Auto CMD12 error status enable
23	CUR_LIM_ERR_ST_EN	RW	1′b0	Current limit error status enable
22	DATA_END_BIT_ERR_ST_EN	RW	1′b0	Data End Bit error status enable
21	DATA_CRC_ERR_ST_EN	RW	1′b0	Data CRC error status enable
20	DATA_TIMEOUT_ERR_ST_E N	RW	1′b0	Data Timeout error status enable
19	CMD_IDX_ERR_ST_EN	RW	1′b0	Command Index error status enable
18	CMD_END_BIT_ERR_ST_EN	RW	1′b0	Command End Bit error status enable
17	CMD_CRC_ERR_ST_EN	RW	1′b0	Command CRC error status enable
16	CMD_TIMEOUT_ERR_ST_EN	RW	1′b0	Command Timeout error status enable

Table 12.20 - SDH_ERR_INT_ENABLE - Error Interrupt Status Enable Register

12.2.20 SDH_NRML_INT_SGNL_ENABLE - Normal Interrupt Signal Enable Register (address offset: 0x38)

This register is used to select the interrupt status that is notified to the host system as an interrupt. These interrupt statuses share the same interrupt line.

Bit	Name	Type Default Value		Description
15	Reserved	-	-	-
14:9	Reserved	_	-	-

8	CARD_INT_SIG_EN	RW	1′b0	Card Interrupt signal enable
7	CARD_REMOVE_SIG_EN	RW	1′b0	Card Remove signal enable
6	CARD_INSERT_SIG_EN	RW	1′b0	Card Insert signal enable
5	BUF_RD_RDY_SIG_EN	RW	1′b0	Buffer Read Ready signal enable
4	BUF_WR_RDY_SIG_EN	RW	1′b0	Buffer Write Ready signal enable
3	Reserved	RW	1′b0	Write 0 to this bit
2	BLK_GAP_EVT_SIG_EN	RW	1′b0	Block Gap Event signal enable
1	TRAN_CMPLT_SIG_EN	RW	1′b0	Transfer Complete signal enable
0	CMD_CMPLT_SIG_EN	RW	1′b0	Command Complete signal enable

Table 12.21 - SDH_NRML_INT_SGNL_ENABLE - Normal Interrupt Signal Enable Register

12.2.21 SDH_ERR_INT_SGNL_ENABLE - Error Interrupt Signal Enable Register (address offset: 0x3A)

This register is used to select the interrupt status that is regarded by the host system as an interrupt. These interrupt statuses share the same interrupt line.

Bit	Name	Туре	Default Value	Description
31:26	Reserved	-	-	-
25	Reserved	RW	1′b0	Write 0 to this bit
24	AUTO_CMD12_ERR_SIG_EN	RW	1′b0	Auto CMD12 error signal enable
23	CUR_LIM_ERR_SIG_EN	RW	1′b0	Current limit error signal enable
22	DATA_END_BIT_ERR_SIG_EN	RW	1′b0	Data End Bit error signal enable
21	DATA_CRC_ERR_SIG_EN	RW	1′b0	Data CRC error signal enable
20	DATA_TIMEOUT_ERR_SIG_EN	RW	1′b0	Data Timeout error signal enable
19	CMD_IDX_ERR_SIG_EN	RW	1′b0	Command Index error signal enable
18	CMD_END_BIT_ERR_SIG_EN	RW	1′b0	Command End Bit error signal enable
17	CMD_CRC _ERR_SIG_EN	RW	1′b0	Command CRC error signal enable
16	CMD_TIMEOUT_ERR_SIG_EN	RW	1′b0	Command Timeout error signal enable

Table 12.22 - SDH_ERR_INT_SGNL_ENABLE - Error Interrupt Signal Enable Register

12.2.22 SDH_AUTO_CMD12_ERR_STATUS - Auto CMD12 Error Status Register (address offset: 0x3C)

When the auto_cmd12_en register is set to 1 and the auto cmd12 error status register is set, the host driver will check this register to identify what kind of error happens during executing AUTO CMD12. This register is valid only when the auto_cmd12_err is set to 1.

Bit	Name	Туре	Default Value	Description
15:8	Reserved	-	-	-
7	CMD_NO_EX_BY_CMD12	ROC	1′b0	Command not executed by Auto CMD12 error
6:5	Reserved	-	-	-
4	AUTO_CMD_IDX_ERR	ROC	1′b0	Auto CMD index error
3	AUTO_CMD_END_BIT_ERR	ROC	1′b0	Auto CMD end bit error
2	AUTO_CMD_CRC_ERR	ROC	1′b0	Auto CMD CRC error
1	AUTO_CMD_TIMEOUT_ERR	ROC	1′b0	Auto CMD timeout error
0	AUTO_CMD12_NO_EX	ROC	1′b0	Auto CMD12 not executed

Table 12.23 - SDH_AUTO_CMD12_ERR_STATUS - Auto CMD12 Error Status Register

12.2.23 SDH_HOST_CNTL_2 - Host Control 2 Register (address offset: 0x3E)

Bit	Name	Туре	Default Value	Description
31	PRESET_VAL_EN	RW	1′b0	0: SDCLK and driver strength are controlled by the host driver 1: automatic selection by the pre-set value
30	ASYN_INT_EN	R/W	1′b0	Asynchronous Interrupt Enable
29:24	Reserved	-	-	-
23	SAMPLE_CLK_SEL	RW	1′b0	Sampling clock select 0: Fixed clock is used to sample data
22:16	Reserved	-	-	-

Table 12.24 - SDH_HOST_CNTL_2 - Host Control 2 Register

12.2.24 SDH_CAP_1 - Capabilities Register 1 (address offset: 0x40)

The host controller may implement these values during initialization.

Bit	Name	Туре	Default Value	Description
31:30	SLOT_TYPE	RO	2′h0	Removable Card Slot

Bit	Name	Туре	Default Value	Description
29	ASYNC_INT_SUPPORT	RO	1′b0	0: not supported
28	BUT_64_SYPPORT	RO	1′b0	0: not supported
27	Reserved	-	-	-
26:25	Reserved	-	-	-
24	VOLTAGE_3_3_SUPPORT	RO	1′b1	Voltage supports 3.3V
23	SUSPEND_RESUME_SUPP ORT	RO	1′b0	0: Suspend / Resume not supported
22	Reserved	RO	1′b1	-
21	HI_SPEED_SUPPORT	RO	1′b1	1: High speed supported
20	Reserved	RO	1′b0	-
19	Reserved	RO	1′b1	-
18	8BIT_SUPPORT	RO	1′b0	0: 8-bit not supported
17:16	MAX_BLK_LEN	R0	2'h2	2: 2048 bytes
15:8	BASE_CLK_FOR_SD_CLK	RO	8'h00	0: Get information via another method
7	TIMEOUT_CLK_UNIT	RO	1′b1	1: MHz
6	Reserved	-	-	-
5:0	TIMEOUT_CLK_FREQ	RO	6'h00	0: Get information via another method

Table 12.25 - SDH_CAP_1 - Capabilities Register 1

12.2.25 SDH_CAP_2 - Capabilities Register 2 (address offset: 0x44)

Bit	Name	Туре	Default Value	Description
31:24	Reserved	-	-	-
23:16	CLK_MULTI	RO	8'h00	not supported
15:12	Reserved	-	-	-
11:8	Reserved	RO	4′hF	-
7	Reserved	-	-	-

Bit	Name	Туре	Default Value	Description
6	DRIVER_D_SUPPORT	RO	1′b1	not supported
5	DRIVER_C_SUPPORT	RO	1′b1	not supported
4	DRIVER_A_SUPPORT	RO	1′b1	not supported
3	Reserved	-	-	-
2	DDR50_SUPPORT	RO	1′b1	not supported
1	SDR104_SUPPORT	RO	1′b0	not supported
0	SDR50_SUPPORT	RO	1′b1	not supported

Table 12.26 - SDH_CAP_2 - Capabilities Register 2

12.2.26 SDH_RSRV_1 - Reserved 1 Register (address offset: 0x48)

Bit	Name	Туре	Default Value	Description
31:0	Reserved	-	-	-

Table 12.27 - SDH_RSRV_1 - Reserved 1 Register

12.2.27 SDH_RSRV_2 - Reserved 2 Register (address offset: 0x4C)

Bit	Name	Туре	Default Value	Description
31:0	Reserved	-	-	-

Table 12.28 - SDH_RSRV_2 - Reserved 2 Register

12.2.28 SDH_FORCE_EVT_CMD_ERR_STATUS - Force Event Register for Auto CMD Error Status (address offset: 0x50)

The Force Event register is not a physical register. It is an address to which the Auto CMD error status register can be written. The force event register is only for debugging.

Bit	Name	Туре	Default Value	Description
15:8	Reserved	-	-	-
7	R_CMD_NO_EX_BY_CMD 12	WO	1′b0	Force event for the Command Not Executed by Auto CMD12 Error
6:5	Reserved	-	-	-
4	R_CMD_IDX_ERR	WO	1′b0	Force event for the Auto CMD Index Error
3	R_CMD_END_BIT_ERR	WO	1′b0	Force event for the Auto CMD End Bit Error

2	R_CMD_CRC_ERR	WO	1′b0	Force event for the Auto CMD CRC Error
1	R_CMD_TIMEOUT_ERR	WO	1′b0	Force event for the Auto CMD Timeout Error
0	R_CMD12_NO_EX	wo	1′b0	Force event for the Auto CMD12 Not

Table 12.29 - SDH_FORCE_EVT_CMD_ERR_STATUS - Force Event Register for Auto CMD **Error Status**

12.2.29 SDH_FORCE_EVT_ERR_INT_STATUS - Force Event for Error Interrupt Status Register (address offset: 0x52)

The Force Event register is not a physical register. It is an address to which the error interrupt status register can be written. This Force Event register is for debugging only. The effect of writing to this address will be reflected in the error interrupt status register if the corresponding bit of the error interrupt status enable register is set.

Bit	Name	Туре	Default Value	Description
31:25	Reserved	-	-	Write 0 to these bits
24	R_AUTP_CMD_ERR	WO	1′b0	Force Event for the Auto CMD Error
23	R_CUR_LIMIT_ERR	WO	1′b0	Force Event for the Current Limit Error
22	R_DATA_END_BIT_ERR	WO	1′b0	Force Event for the Data End Bit Error
21	R_DATA_CRC_ERR	WO	1′b0	Force Event for the Data CRC Error
20	R_DATA_TIMEOUT_ERR	WO	1′b0	Force Event for the Data Timeout Error
19	R_CMD_IDX_ERR	WO	1′b0	Force Event for the Command Index Error
18	R_CMD_END_BIT_ERR	WO	1′b0	Force Event for the Command End Bit Error
17	R_CMD_CRC_ERR	WO	1′b0	Force Event for the Command CRC Error
16	R_CMD_TIMEOUT_ERR	WO	1′b0	Force Event for the Command Timeout Error

Table 12.30 - SDH_FORCE_EVT_ERR_INT_STATUS - Force Event for Error Interrupt **Status Register**

12.2.30 SDH_RSRV_3 - Reserved 3 Register (address offset: 0x54)

Bit	Name	Туре	Default Value	Description
31:0	Reserved	-	-	-

Table 12.31- SDH_RSRV_3 - Reserved 3 Register

12.2.31 SDH_RSRV_4 - Reserved 4 Register (address offset: 0x58)

Bit	Name	Туре	Default Value	Description
31:0	Reserved	-	-	-

Table 12.32 - SDH_RSRV_4 - Reserved 4 Register

12.2.32 SDH_PRST_INIT - Preset value for initialization (address offset: 0x60)

Bit	Name	Туре	Default Value	Description
15:14	DRIVER_STR_SEL	RO		Driver Strength Select Value Driver Strength is supported by the 1.8- V signalling bus speed modes. This field is meaningless for the 3.3-V signalling 11: Driver type D is selected 10: Driver type C is selected 01: Driver type A is selected 00: Driver type B is selected
13:11	Reserved	-	-	-
10	CLK_GEN_SEL	RO	1′b0	Clock Generator Select Value The version does not support the programmable clock generator and is fixed to 0
9:0	SDCLK_FREQ_SEL	RO		SDCLK Frequency Select Value The 10-bit pre-set value for setting the SDCLK Frequency Select in the Clock Control. The register is described by a host system.

Table 12.33 - SDH_PRST_INIT - Preset value for initialization

12.2.33 SDH_PRST_DFLT_SPD - Preset value for default speed (address offset: 0x62)

Bit	Name	Туре	Default Value	Description
15:11	Reserved	-	-	-
10	CLK_GEN_SEL	RO	1′b0	Clock Generator Select Value The version does not support the programmable clock generator and is fixed to 0
9:0	SDCLK_FREQ_SEL	RO		SDCLK Frequency Select Value The 10-bit pre-set value for setting the SDCLK Frequency Select in the Clock Control. The register is described by a host system.

Table 12.34 - SDH_PRST_DFLT_SPD - Preset value for default speed

12.2.34 SDH_PRST_HIGH_SPD - Preset value for the high speed (address offset: 0x64)

Bit	Name	Туре	Default Value	Description
-----	------	------	------------------	-------------

Bit	Name	Туре	Default Value	Description
15:11	Reserved	-	-	-
10	CLK_GEN_SEL	RO		Clock Generator Select Value The version does not support the programmable clock generator and is fixed to 0
9:0	SDCLK_FREQ_SEL	RO		SDCLK Frequency Select Value The 10-bit pre-set value for setting the SDCLK Frequency Select in the Clock Control. The register is described by a host system.

Table 12.35 - SDH_PRST_HIGH_SPD - Preset value for the high speed

12.2.35 SDH_PRST_SDR12 - Preset value for SDR12 (address offset: 0x66)

Bit	Name	Туре	Default Value	Description
15:14	DRIVER_STR_SEL	RO		Driver Strength Select Value Driver Strength is supported by the 1.8- V signalling bus speed modes. This field is meaningless for the 3.3-V signalling 11: Driver type D is selected 10: Driver type C is selected 01: Driver type A is selected 00: Driver type B is selected
13:11	Reserved	-	-	-
10	CLK_GEN_SEL	RO	1′b0	Clock Generator Select Value The version does not support the programmable clock generator and is fixed to 0
9:0	SDCLK_FREQ_SEL	RO		SDCLK Frequency Select Value The 10-bit pre-set value for setting the SDCLK Frequency Select in the Clock Control. The register is described by a host system.

Table 12.36 - SDH_PRST_SDR12 - Preset value for SDR12

12.2.36 SDH_PRST_SDR25 - Preset value for SDR25 (address offset: 0x68)

Bit	Name	Туре	Default Value	Description
15:14	DRIVER_STR_SEL	RO		Driver Strength Select Value Driver Strength is supported by the 1.8- V signalling bus speed modes. This field is meaningless for the 3.3-V signalling 11: Driver type D is selected 10: Driver type C is selected 01: Driver type A is selected 00: Driver type B is selected
13:11	Reserved	-	-	-
10	CLK_GEN_SEL	RO	1′b0	Clock Generator Select Value The version does not support the programmable clock generator and is

			fixed to 0
9:0	SDCLK_FREQ_SEL	RO	SDCLK Frequency Select Value The 10-bit pre-set value for setting the SDCLK Frequency Select in the Clock Control. The register is described by a host system.

Table 12.37 - SDH_PRST_SDR25 - Preset value for SDR25

12.2.37 SDH_PRST_SDR50 - Preset value for SDR50 (address offset: 0x6A)

Bit	Name	Туре	Default Value	Description
15:14	DRIVER_STR_SEL	RO		Driver Strength Select Value Driver Strength is supported by the 1.8- V signalling bus speed modes. This field is meaningless for the 3.3-V signalling 11: Driver type D is selected 10: Driver type C is selected 01: Driver type A is selected 00: Driver type B is selected
13:11	Reserved	-	-	-
10	CLK_GEN_SEL	RO	1′b0	Clock Generator Select Value The version does not support the programmable clock generator and is fixed to 0
9:0	SDCLK_FREQ_SEL	RO		SDCLK Frequency Select Value The 10-bit pre-set value for setting the SDCLK Frequency Select in the Clock Control. The register is described by a host system.

Table 12.38 - SDH_PRST_SDR50 - Preset value for SDR50

12.2.38 SDH_PRST_SDR104 - Preset value for SDR104 (address offset: 0x6C)

Bit	Name	Туре	Default Value	Description
15:14	DRIVER_STR_SEL	RO		Driver Strength Select Value Driver Strength is supported by the 1.8- V signalling bus speed modes. This field is meaningless for the 3.3-V signalling 11: Driver type D is selected 10: Driver type C is selected 01: Driver type A is selected 00: Driver type B is selected
13:11	Reserved	-	-	-
10	CLK_GEN_SEL	RO	1′b0	Clock Generator Select Value The version does not support the programmable clock generator and is fixed to 0
9:0	SDCLK_FREQ_SEL	RO		SDCLK Frequency Select Value The 10-bit pre-set value for setting the SDCLK Frequency Select in the Clock

host system.		Control. The register is described by a host system.
--------------	--	--

Table 12.39 - SDH_PRST_SDR104 - Preset value for SDR104

12.2.39 SDH_PRST_DDR50 - Preset value for DDR50 (address offset: 0x6E)

Bit	Name	Туре	Default Value	Description
15:14	DRIVER_STR_SEL	RO		Driver Strength Select Value Driver Strength is supported by the 1.8- V signalling bus speed modes. This field is meaningless for the 3.3-V signalling 11: Driver type D is selected 10: Driver type C is selected 01: Driver type A is selected 00: Driver type B is selected
13:11	Reserved	-	-	-
10	CLK_GEN_SEL	RO	1′b0	Clock Generator Select Value The version does not support the programmable clock generator and is fixed to 0
9:0	SDCLK_FREQ_SEL	RO		SDCLK Frequency Select Value The 10-bit pre-set value for setting the SDCLK Frequency Select in the Clock Control. The register is described by a host system.

Table 12.40 - SDH_PRST_DDR50 - Preset value for DDR50

12.2.40 SDH_RSRV_5 - Reserved 5 Register (address offset: 0xFC)

Bit	Name	Туре	Default Value	Description
15:0	Reserved	-	-	-

Table 12.41 - SDH_RSRV_5 - Reserved 5 Register

12.2.41 SDH_HC_VER - Host Controller Version Register (address offset: 0xFE)

Bit	Name	Туре	Default Value	Description
31:24	VNDR_VER_NUM	RO	8'h00	Vendor Version Number
23:16	SPEC_VER_NUM	RO	8'h02	Specification Version Number

Table 12.42 - SDH_HC_VER - Host Controller Version Register

12.2.42 SDH_VNDR_0 - Vendor-defined 0 Register (address offset: 0x100)

Bit	Name	Туре	Default Value	Description
31:28	Reserved	-	-	-

27:24	N_CRC	RW	4'h0	Write CRC Status Wait Cycle The host controller is used to set 5 SCLK clock cycles for the specifications and round-chip effect. Users can add the wait cycle for other factors.
23:17	Reserved	-	-	-
16	INT_EDGE_SEL	RW	1′b0	1: The CMD and DAT line output at the rising edge of SCLK 0: The CMD and DAT line output at the falling edge of SCLK
15:14	Reserved	-	-	-
13:8	P_LAT_OFF	RW	6′h00	Pulse latch offset When the host controller uses the pulse latch to sample the read data and response, users need to set the latch offset to correctly sample the value. The values set should be smaller than the SDCLK Frequency Select 0x3F: Latch value at the 63 rd ½ chip frequency clock rising edge after the SCLK edge 0x01: Latch value at the 1 st 0x00: Latch value at SCLK edge
7:1	Reserved	-	-	-
0	P_LAT_EN	RW	1′b1	1: Use the pulse latching function for the read data and response. Should always be set to 1.

Table 12.43 - SDH_VNDR_0 - Vendor-defined 0 Register

12.2.43 SDH_VNDR_1 - Vendor-defined 1 Register (address offset: 0x104)

Bit	Name	Туре	Default Value	Description
31:25	Reserved	-	-	-
24	CMD_CONFLICT_EN	RW	1′b0	1: Enable host controller to check the CMD line conflict error
23:19	Reserved	-	-	-
18:16	N_SB	RW	3′h0	N_SB Timing: Users can add the busy wait cycle for other factors. The host controller is set to 5 SCLK clock cycles
15:12	Reserved	-	-	-
11:8	N_CR	RW	3′h0	N_CR Timing: Users can add the response wait cycle for other factors. The host controller is set to 64 SCLK clock cycles
7:3	Reserved	-	-	-

2	MMC_BOOT_ACK_EN	RW	1′b0	MMC Booting Mode Acknowledge Enable
1:0	MMC_BOOT	RW	2′h0	MMC Booting Mode Selection 11: MMC Bus Test mode 10: MMC Alternative Boot Mode 01: MMC Boot mode 00: Normal mode

Table 12.44 - SDH_VNDR_1 - Vendor-defined 1 Register

12.2.44 SDH_VNDR_2 - Vendor-defined 2 Register (address offset: 0x108)

Bit	Name	Туре	Default Value	Description
31:1	Reserved	-	-	-
0	CLK_CTRL_SW_RST	RWAC	1′b0	1: To reset the clock control of the host controller

Table 12.45 - SDH_VNDR_2 - Vendor-defined 2 Register

12.2.45 SDH_VNDR_3 - Vendor-defined 3 Register (address offset: 0x10C)

Bit	Name	Туре	Default Value	Description
31:29	Reserved	-	-	-
28:24	Reserved	-	5′h1F	-
23:0	Reserved	-	-	-

Table 12.46 - SDH_VNDR_3 - Vendor-defined 3 Register

12.2.46 SDH_VNDR_4 - Vendor-defined 4 Register (address offset: 0x110)

Bit	Name	Туре	Default Value	Description
31:0	Reserved	RO	-	-

Table 12.47 - SDH_VNDR_4 - Vendor-defined 4 Register

12.2.47 SDH_VNDR_5 - Vendor-defined 5 Register (address offset: 0x114)

Bit	Name	Туре	Default Value	Description
31:4	Reserved	-	-	-
3:0	DB_TIMEOUT	RW	4′h0	Card Insertion De-bounce Cycle 0: 2 ⁹ chip system clock cycles 1: 2 ¹⁰ chip system clock cycles 15: 2 ²⁴ chip system clock cycles

Table 12.48 - SDH_VNDR_5 - Vendor-defined 5 Register

12.2.48 SDH_VNDR_6 - Vendor-defined 6 Register (address offset: 0x118)

Bit	Name	Туре	Default Value	Description
31:1	Reserved	-	-	-
0	HBURST_INCR	RW	1′b0	0: AHB master uses SINGLE and INCR4 as the AHB burst type (should be fixed to this?)

Table 12.49 - SDH_VNDR_6 - Vendor-defined 6 Register

12.2.49 SDH_VNDR_7 - Vendor-defined 7 Register (address offset: 0x11C)

Bit	Name	Туре	Default Value	Description
31:1	Reserved	-	-	-
0	AHB_RESP_ERR_STS	RW1C	1′b0	This bit is set when the AHB master receives an error type response

Table 12.50 - SDH_VNDR_7 - Vendor-defined 7 Register

12.2.50 SDH_VNDR_8 - Vendor-defined 8 Register (address offset: 0x120)

Bit	Name	Туре	Default Value	Description
31:1	Reserved	-	-	-
0	AHB_RESP_ERR_STS_E N	RW	1′b0	1: Enable the AHB master response error status

Table 12.51 - SDH_VNDR_8 - Vendor-defined 8 Register

12.2.51 SDH_VNDR_9 - Vendor-defined 9 Register (address offset: 0x124)

Bit	Name	Туре	Default Value	Description
31:1	Reserved	-	-	-
0	AHB_RESP_ERR_SIG_E N	RW	1′b0	1: Enable the interrupt generation when the AHB master response status is set

Table 12.52 - SDH_VNDR_9 - Vendor-defined 9 Register

12.2.52 SDH_RSRV_6 - Reserved 6 Register (address offset: 0x128)

Bit	Name	Туре	Default Value	Description
31:0	Reserved	-	-	-

Table 12.53 - SDH_RSRV_6 - Reserved 6 Register

12.2.53 SDH_HW_ATTR - Hardware Attributes Register (address offset: 0x178)

Bit	Name	Туре	Default Value	Description
31:9	Reserved	-	-	-
8:0	HW_CONFIG	RO	9′h150	8: Async 7: 4-bit SD data bus 6: CPRM present 5: DLL absent 4:0 DATA FIFO is 4k SRAM

Table 12.54 - SDH_HW_ATTR - Hardware Attributes Register

12.2.54 SDH_CPR_MOD_CNTL - Cipher Mode Control Register (address offset: 0x180)

This register is the configurable register for the CPRM function. When the CPRM function is used, this register will be used to select the mode of the cipher function to encrypt or decrypt.

Bit	Name	Туре	Default Value	Description
31:11	Reserved	-	-	-
10	SWAP_HL	RW	1′b0	1: Swap the high/low word of the encrypted data to TX FIFO The high-word and low-word of the encrypted data will be swapped before being written to TX FIFO. The high-word and low-word of the encrypted data will be swapped before decryption.
9	CH_ENDIAN	RW	1′b0	Change Endianness In this mode, the endianness of the encrypted data will be changed before being written to the TX FIFO. In this mode, the endianness of data from the RX FIFO will be changed before decryption.
8	SEC_ACCESS_EN	RW	1′b0	Secret Constant Table Access Enable This bit must be enabled before writing or reading the secret constant table. Once this bit is enabled, the firmware will always access from the very beginning of the secret constant table.
7	AUTO_C2_DCBC_EN	RW	1′b0	Auto C2 Decryption with C-CBC Mode Enable In this mode, data will be automatically decrypted and sent to the buffer. The data lengths should be multiples of 8 bytes.
6	AUTO_C2_ECBC_EN	RW	1′b0	Auto C2 Encryption with C-CBC Mode Enable In this mode, data written to the buffer will be automatically encrypted and sent to the TX FIFO. The data lengths should be multiples of 8 bytes.
5	RNGC2_G_EN	RW	1′b0	C2 Random Number Generator Enable
4	C2_DCBC_EN	RW	1′b0	C2 Decryption with C-CBC Mode Enable

Bit	Name	Туре	Default Value	Description
3	C2_D_EN	RW	1′b0	C2 Decryption with EBC Mode Enable
2	C2_ECBC_EN	RW	1′b0	C2 Encryption with C-CBC Mode Enable
1	C2_E_EN	RW	1′b0	C2 Encryption with EBC Mode Enable
0	C2_G_EN	RW	1′b0	C2 One Way Function Enable

Table 12.55 - SDH_CPR_MOD_CNTL - Cipher Mode Control Register

12.2.55 SDH_CPR_MOD_STATUS - Cipher Mode Status Register (address offset: 0x184)

Bit	Name	Туре	Default Value	Description
31:1	Reserved	-	-	-
0	CP_RDY	RW1C	1′b0	Cipher is ready When this bit is set to 1, reading 0x19C and 0x1A0 will retrieve cipher or plain text

Table 12.56 - SDH_CPR_MOD_STATUS - Cipher Mode Status Register

12.2.56 SDH_CPR_MOD_STATUS_EN - Cipher Mode Status Enable Register (address offset: 0x188)

Bit	Name	Туре	Default Value	Description
31:1	Reserved	-	-	-
0	RDY_SIG_EN	RW	1′b0	Cipher Ready Signal Enable

Table 12.57 - SDH_CPR_MOD_STATUS_EN - Cipher Mode Status Enable Register

12.2.57 SDH_CPR_MOD_SIG_EN - Cipher Mode Signal Enable Register (address offset: 0x18A)

Bit	Name	Туре	Default Value	Description
31:1	Reserved	-	-	-
0	RDY_SIG_EN	RW	1′b0	Cipher Ready Signal Enable

Table 12.58 - SDH_CPR_MOD_SIG_EN - Cipher Mode Signal Enable Register

12.2.58 SDH_IN_DATA_LSB -Input Data LSB Register (address offset: 0x18C)

Bit	Name	Туре	Default Value	Description
31:0	DATA	RW	32'h0000 _0000	Input port for the input data bits 31:0

Table 12.59 - SDH_IN_DATA_LSB -Input Data LSB Register

12.2.59 SDH_IN_DATA_MSB -Input Data MSB Register (address offset: 0x190)

Bit	Name	Туре	Default Value	Description
31:0	DATA	RW	32'h0000 _0000	Input port for the input data bits 63:32

Table 12.60 - SDH_IN_DATA_MSB -Input Data MSB Register

12.2.60 SDH_IN_KEY_LSB - Input Key LSB Register (address offset: 0x194)

Bit	Name	Туре	Default Value	Description
31:0	KEY	RW	32'h0000 _0000	Input port for the input key bits 31:0

Table 12.61 - SDH_IN_KEY_LSB - Input Key LSB Register

12.2.61 SDH_IN_KEY_MSB - Input Key MSB Register (address offset: 0x198)

Bit	Name	Туре	Default Value	Description
31:0	KEY	RW	32'h0000 _0000	Input port for the input key bits 63:32

Table 12.62 - SDH_IN_KEY_MSB - Input Key MSB Register

12.2.62 SDH_OUT_DATA_LSB - Output Data LSB Register (address offset: 0x19C)

Bit	Name	Туре	Default Value	Description
31:0	DATA	RW	32′h0000 _0000	Output port for the output data bits 31:0

Table 12.63 - SDH_OUT_DATA_LSB - Output Data LSB Register

12.2.63 SDH_OUT_DATA_MSB - Output Data MSB Register (address offset: 0x1A0)

Bit	Name	Туре	Default Value	Description
31:0	DATA	RW	32'h0000_ 0000	Output port for the output data bits 63:32

Table 12.64 - SDH_OUT_DATA_MSB - Output Data MSB Register

12.2.64 SDH_SCRT_CONS_DATA - Secret Constant Table Data Port (address offset: 0x1A4)

Bit	Name	Туре	Default Value	Description
31:8	Reserved	-	-	-
7:0	DATA_PORT	RW	8'h00	Secret constant table data port. 256 bytes are needed; this port should be written 256 times to initialize the secret constant table

Table 12.65 - SDH_SCRT_CONS_DATA - Secret Constant Table Data Port

13 UART

The device supports 2 UARTs with the following features:

- Software compatible with 450, 550, 750 and 950 UARTs
- Separate configurable BAUD clock line
- Configuration capability
- Two modes of operation: UART mode and FIFO mode
- Majority voting logic
- 16 / 128 bytes FIFO for TX and RX in FIFO mode to reduce the interrupt frequency
- adds or deletes standard asynchronous communication bits (start, stop and parity) to or from the serial data
- Double buffering for both TX and RX in UART mode
- Independently controlled transmit, receive, line status and data set interrupts
- Programmable baud generator
- MODEM control functions (CTS, RTS, DSR, DTR, RI and DCD)
- Programmable automatic out-of-band Flow Control logic through Auto-RTS and Auto-CTS
- Programmable automatic Flow Control logic using DTR and DSR
- Programmable automatic in-band Flow Control logic using XON / XOFF characters
- Programmable special characters detection
- Trigger levels for TX and RX FIFO interrupts, automatic in-band and out-of-band flow control
- RS-485 buffer enable signals
- TX and RX disable capability
- Fully programmable serial interface characteristics:
 - o 5-, 6-, 7-, 8- or 9-bit characters
 - o Even, odd, or no-parity bit generation and detection
 - o 1-, 1.5, or 2-stop bit generation
 - Baud generation
 - Detection of bad data in receive FIFO
- Clock prescaler from 1 to 31875
- Enhanced isochronous clock option

- Complete status reporting capabilities
- False start bit detection
- Line-break generation and detection. Internal diagnostic capabilities:
 - o Loop-back controls for communications link fault isolation
 - o Break, parity, overrun, framing error simulation
- Full prioritised interrupt system controls
- Software reset

13.1 Register Summary

The registers offset from the base addresses are 0x10320 for UART 1 and 0x10330 for UART 2. All registers can only be accessed via Byte (8-bit) mode.

Offset	Register	Default value	References
	STANDARD 550 COMPATIBLE REGISTERS		
0x00	UART_RBR - Receiver Buffer Register	0x00	Section 13.3.1
0x00	UART_THR - Transmitter Holding Register	0x00	Section 13.3.2
0x00	UART_DIV_LSB - Divisor LSB Register	0x00	Section 13.3.3
0x01	UART_DIV_MSB - Divisor MSB Register	0x00	Section 13.3.4
0x01	UART_INT_ENABLE - Interrupt Enable Register	0x00	Section 13.3.5
0x02	UART_INT_STATUS - Interrupt Status Register	0x00	Section 13.3.6
0x02	UART_FCR FIFO - Control Register	0x00	Section 13.3.7
0x03	UART_LCR Line - Control Register	0×00	Section 13.3.8
0x04	UART_MCR - Modem Control Register	0x00	Section 13.3.9
0x05	UART_LSR - Line Status Register	0x00	Section 13.3.10
0x06	UART_MSR - Modem Status Register	0x00	Section 13.3.11
0x07	UART_SPR - SPR Register	0×00	<u>Section 13.3.12</u>
	GEO COMPATIBLE DECISTEDS		
	650 COMPATIBLE REGISTERS		
0x02	UART_EFR - Enhanced Feature Register	0x00	<u>Section 13.4.1</u>
0x04	UART_XON1 - XON1 Register	0x00	Section 13.4.2
0x05	UART_XON2 - XON2 Register	0×00	Section 13.4.3
0x06	UART_XOFF1 - XOFF1 Register	0x00	Section 13.4.4
0x07	UART_XOFF2 - XOFF2 Register	0x00	<u>Section 13.4.5</u>

	950 COMPATIBLE REGISTERS		
0x01	UART_ASR - Additional Status Register	0x00	<u>Section 13.5.1</u>
0x03	UART_RFL - Receiver FIFO Level Register	0x00	<u>Section 13.5.2</u>
0x04	UART_TFL - Transmitter FIFO Level Register	0x00	<u>Section 13.5.3</u>
0x05	UART_ICR - ICR Register	0x00	<u>Section 13.5.4</u>
	INDEXED CONTROL REGISTERS		
0x00	UART_ACR - Additional Control Register	0x00	<u>Section 13.6.1</u>
0x01	UART_CPR - Clock Prescaler Register	0x00	Section 13.6.2
0x02	UART_TCR - Time Clock Register	0x00	Section 13.6.3
0x03	UART_CKS - Clock Select Register	0x00	Section 13.6.4
0x04	UART_TTL - Transmitter Trigger Level Register	0x00	Section 13.6.5
0×05	UART_RTL - Receiver Trigger Level Register	0x00	<u>Section 13.6.6</u>
0x06	UART_FCL - Flow Control Level LSB Register	0x00	<u>Section 13.6.7</u>
0x07	UART_FCH - Flow Control Level Register MSB	0x00	<u>Section 13.6.8</u>
0x08	UART_ID1 - Identification 1 Register	0x00	Section 13.6.9
0x09	UART_ID2 - Identification 2 Register	0x00	Section 13.6.10
0x0A	UART_ID3 - Identification 3 Register	0x00	Section 13.6.11
0x0B	UART_REV - Revision Register	0x00	Section 13.6.12
0x0C	UART_CSR - Channel Software Reset Register	0x00	Section 13.6.13
0x0D	UART_NMR - Nine Bit Mode Register	0x00	Section 13.6.14
0×0E	UART_MDM - Modem Disable Mask Register	0x00	Section 13.6.15
0x0F	UART_RFC - Readable FCR Register	0x00	Section 13.6.16
0x10	UART_GDS - Good Data Status Register	0x00	Section 13.6.17
0x11	UART_RSRV_1 - Reserved 1 Register	0x00	Section 13.6.18
0x12	UART_PIDX - Port Index Register	0x00	Section 13.6.19
0x13	UART_CKA - Clock Alteration Register	0x00	Section 13.6.20

Table 13.1 - Overview of UART Registers

13.2 UART MODE SELECTION

The operation of the UART depends on a number of standard mode settings. These modes are referred to throughout this section. The compatibility modes are tabulated below.

UART Mode	FIFO Size	FCR(0)	Enhanced Mode EFR(4) = 1	FCR(5) Guarded with LCR(7) = 1	FIFOSEL pin
450	1	0	×	X	x
550	16	1	0	0	0
Extended 550	128	1	0	Х	1
650	128	1	1	X	x
750	128	1	0	1	0
950	128	1	1	Х	х

Table 13.2 - UART mode selection

450 Mode

The 450 mode is the default mode set after a hardware reset. In the 450 Mode the FIFO is disabled, and the UART operates in BYTE mode. With FCR[0] cleared, (FIFO disabled) all other mode setting are ignored.

550 Mode

In the 550 mode the FIFO's are enabled, and can accept up to 16 bytes of data (reception and transmission directions). To put the UART into 550 mode, the FCR[0] should be set high. In this mode the FIFOSEL pin should be tied low.

Extended 550 Mode

The extended 550 mode is enabled by connection of the FIFOSEL to a HIGH state. In this mode the FIFO size is increased to 128 bytes.

750 Mode

The 750 mode is enabled by writing the FCR[0] with 1 and FCR[5] with 1. In the 750 mode the FIFO size is set to 128 bytes. Please note, that writes to FCR[5] are protected by FCR[7]. To write FCR[5], first set the FCR[7] high, then write FCR[5], and clear FCR[7] back to activate protection. In the 750 mode the FIFOSEL pin should be tied low (0).

750 mode enhancements over 550 mode:

- Deeper FIFO size
- Automatic RTS/CTS out-of-band flow control
- Sleep mode

650 Mode

The 650 mode is active when EFR[4] is set (enhanced mode is enabled). As 650 software drivers usually put the device into enhanced mode, running 650 drivers on the UART device will result in 650 compatibility with 128 deep FIFO's, as long as FCR[0] is set.

The FIFOSEL state is ignored in the 650 mode.

The 650 mode enhancements over 550 mode:

- Deeper FIFO size
- Automatic RTS/CTS out-of-band flow control
- Sleep mode
- · Automatic in-bank flow control
- Special character detection
- IRDA-format transmit and receive mode
- Transmit trigger levels
- · Optional clock prescaler

950 Mode

The additional features of 950 mode apply only when UART is in Enhanced mode (EFR[4] = 1). FCR[0] set in Enhanced mode enables the 128 Bytes FIFO mode.

Configuration of the UART in 950 Mode is identical with the 650 Mode. Additional specific features of 950 Mode's, are enabled using the Additional Control Register ACR. In addition to larger FIFO's, higher baud rates the enhancements of 950 over 650 mode are:

- Selectable arbitrary trigger levels for the receiver and transmitter FIFO interrupts
- Improved automatic flow control using selectable arbitrary thresholds
- DSR/DTR automatic flow control
- Transmitter and receiver can be optionally disabled
- Software reset of device
- Readable FIFO fill levels
- Optional generation of an RS-485 buffer enable signal
- Four-byte device identification
- Readable status for automatic in-band and out-of-band flow control
- External 1x clock modes
- Flexible M N/8 clock prescaler
- 9-bit data mode

The 950 trigger levels are enabled when ACR[5] is set (FCR[7:4] are ignored). The arbitrary trigger levels can be defined in RTL, TTL, FCL and FCH registers. The Additional Status Register (ASR) offers flow control status for the local and remote transmitters. FIFO levels are readable using RFL and TFL registers.

The user may apply an external 1x (or Nx) clock for the transmitter and receiver to the RI and DSR pin respectively. The transmitter clock may be asserted on the DTR pin. The external clock options are selected through the CKS register.

It is also possible to define the over-sampling rate used by the transmitter and receiver clocks. The 450/550/750 and compatible devices employ 16 times over-sampling. There are 16 clock cycles per bit. The UART can employ over-sampling rate from 4 to 16 by programming the TCR register. This allows the data rates to be increased. Default value after reset for this register is 0x00, which corresponds to a 16 cycle sampling clock. Writing 0x01, 0x02 or 0x03 will also result in 16 cycle sampling clock. To program the value to any value from 4 to 15 it is necessary to write this value into TCR, to set the device to a 13 cycle sampling clock it would be necessary to write 0x0D to TCR.

The UART also offers 9-bit data frames for multi-drop industrial applications.

13.3 STANDARD 550 COMPATIBLE REGISTERS

13.3.1 UART_RBR - Receiver Buffer Register (address offset: 0x00 and LCR[7] = 0)

Bit	Name	Туре	Default Value	Description
7:0	DATA	RO	8'h00	FIFO Data Read from RX Buffer

Table 13.3 - UART_RBR - Receiver Buffer Register

13.3.2 UART_THR - Transmitter Holding Register (address offset: 0x00 and LCR[7] = 0)

Bit	Name	Туре	Default Value	Description
7:0	DATA	WO	8'h00	FIFO Data Write to TX Buffer

Table 13.4 - UART_THR - Transmitter Holding Register

13.3.3 UART_DIV_LSB - Divisor LSB Register (address offset: 0x00 and LCR[7] = 1)

Bit	Name	Туре	Default Value	Description
7:0	DATA	WO	8′h00	The 8 least-significant bits (LSBs) of the 16-bit divisor for generation of the baud clock in the baud rate generator. BaudRate = InputClock/ (SC * Divisor * prescaler)

Table 13.5 - UART_DIV_LSB - Divisor LSB Register

13.3.4 UART_DIV_MSB - Divisor MSB Register (address offset: 0x01 and LCR[7] = 1)

Bit	Name	Туре	Default Value	Description
7:0	DATA	WO	8'h00	The 8 most-significant bits (MSBs) of the 16-bit divisor for generation of the baud clock in the baud rate generator. BaudRate = InputClock/ (SC * Divisor * prescaler)

Table 13.6 - UART_DIV_MSB - Divisor MSB Register

13.3.5 UART_INT_ENABLE - Interrupt Enable Register (address offset: 0x01)

Bit	Name	Туре	Default Value	Description
7	CTS_EN	RW	1′h0	Enable CTS interrupt when EFR[4] = 1
6	RTS_EN	RW	1′h0	Enable RTS interrupt (when EFR[4]=1)
5	SC_EN	RW	1′h0	Enable Special Character interrupt Mask or Alternate Sleep Mode
4	SM_EN	RW	1′h0	Enable Sleep Mode

3	MOD_STS_EN	RW	1′h0	Enable Modem Status Interrupt
2	LINE_STS_EN	RW	1′h0	Enable Receiver Line Status Interrupt
1	TX_EMTY_EN	RW	1'h0	Enable Transmitter Holding Register Empty Interrupt
0	RX_AVL_EN	RW	1′h0	Enable Received Data Available Interrupt

Table 13.7 - UART_INT_ENABLE - Interrupt Enable Register

13.3.6 UART_INT_STATUS - Interrupt Status Register (address offset: 0x02)

Bit	Name	Туре	Default Value	Description
7:6	Reserved	-	-	Reserved
5:4	Interrupt priority (Enhanced mode)	RO	2′h0	<refer 13.9="" below="" table="" to=""></refer>
3:1	Interrupt priority (All modes)	RO	3′h0	<refer 13.9="" below="" table="" to=""></refer>
0	Interrupt pending	RO	1′h0	<refer 13.9="" below="" table="" to=""></refer>

Table 13.8 - UART_INT_STATUS - Interrupt Status Register

In order to provide minimum software overhead during data character transfers, the UART prioritizes interrupts into six levels and records these in the interrupt Status Register. When the CPU accesses the Interrupt status register, the UART freezes all interrupts and indicates the highest priority pending interrupt to the CPU. While this CPU access is occurring, the UART records new interrupt, but do not change its current indication until the access is complete. The table below shows the contents of the Interrupt Status Register.

UART_INT_S	Interrupt Function					
TATUS [5:0]	INT TYPE	INT Source	Level			
000001	none	No interrupt pending1	-			
000110	Receiver Line Status or address-bit detected in 9-bit mode	Overrun Error or Parity Error or Framing Error or Break Interrupt or address-bit detected in 9-bit mode	1			
000100	Receiver Data Available	The receiver FIFO level is above the interrupt trigger level	2a			
001100	Receiver time-out	There has been no read of UART_RBR or a period of time greater than the time-out period. There has been no new data received and written into the UART_RBR for a period of time greater than the time-out period.	2b			
000010	Transmitter THR empty	Transmitter Holding Register Empty	3			

UART_INT_S	Interrupt Function						
TATUS [5:0]	INT TYPE	INT Source	Level				
000000	Modem status change	Clear to Send or Data Set Ready or Ring Indicator or Data Carrier Detect	4				
010000	In-band flow control XOFF or special character (XOFF2) or special character 1,2,3 or 4 or bit 9 set in 9 bit mode	Valid XOFF, valid XOFF2 or matches special character 1,2,3 or 4(only in Enhanced mode)	5				
100000	CTS or RTS change of state	When CTS or RTS bits will change	6				

Table 13.9 - Interrupt Status Register Software Handling

Notes:

- 1 ISR[0] indicates whether any interrupts are pending.
- 2 Interrupts of priority levels 5 and 6 cannot occur unless the UART is in Enhanced mode
- 3 ISR[5] is only used in 650 & 950 modes. In 750 mode, it is 0 when FIFO size is 16 and 1 when FIFO size is 128. In all other modes it is permanently set to 0.

13.3.7 UART_FCR - FIFO Control Register (address offset: 0x02) **550 AND 750 MODE**

Bit	Name	Туре	Default Value	Description
7:6	RCVR_TRIG	WO	2′h0	Receiver FIFO Trigger
5	FIFO_SIZE	WO	1′h0	Enable UART support for 128 Byte deep FIFO's
4:3	Reserved	WO	2′h0	
2	TXMT_RST	WO	1'h0	Transmitter FIFO reset. Writing a 1 to FCR2 clears all bytes in the XMIT FIFO and resets its counter logic to 0. The shift register is not cleared. The 1 that is written to this bit position is self-clearing.
1	RCVR_RST	WO	1′h0	Receiver FIFO reset. Writing a 1 to FCR1 clears all bytes in the RCVR FIFO and resets its counter logic to 0. The shift register is not cleared. The 1 that is written to this bit position is self-clearing.
0	FIFO_EN	WO	1′h0	Receiver and Transmitter FIFO's enable.

Table 13.10 - UART_FCR - FIFO Control Register - 550 mode

This is a write only register at the same location as the ISR (the ISR is a read only register). Readable contents of this register are placed in ICR space on 0x0F offset. This register is used to enable the FIFOs, clear the FIFOs, set the FIFO triggers levels, and select the type of DMA signaling. When changing from the FIFO Mode to UART Mode and vice versa, data is automatically cleared from the FIFOs. This bit must be a 1 when other FCR bits are written to or they will not be programmed.

RCVR TRGIGG(1:0) - are used to set the trigger level for the RCVR FIFO interrupt.

FCT[7:6] RCVR FIFO TRIGGER LEVEL	Fcr[7:6]	RCVR FIFO TRIGGER LEVEL
------------------------------------	----------	-------------------------

Fcr[7:6]	RCVR FIFO TRIGGER LEVEL	
	Standard FIFO*mode (16 B)	Extended FIFO*mode*(128B)
00	1	1
01	4	32
10	8	64
11	14	112

Table 13.11 - UART_RCVR - FIFO Trigger Level - 550 mode

In this mode the transmitter trigger level is equal to 1.

650 MODE

Bit	Name	Туре	Default Value	Description
7:6	RCVR_TRIG	WO	2′h0	Receiver FIFO Trigger
5:4	THR_TRIG	WO	1′h0	Transmitter FIFO Trigger
3	Reserved	-	2′h0	-
2	TXMT_RST	WO	1′h0	Transmitter FIFO reset. Writing a 1 to FCR2 clears all bytes in the XMIT FIFO and resets its counter logic to 0. The shift register is not cleared. The 1 that is written to this bit position is self-clearing
1	RCVR_RST	wo	1'h0	Receiver FIFO reset. Writing a 1 to FCR1 clears all bytes in the RCVR FIFO and resets its counter logic to 0. The shift register is not cleared. The 1 that is written to this bit position is self-clearing
0	FIFO_EN	WO	1′h0	Receiver and Transmitter FIFO's enable

Table 13.12 - UART_FCR - FIFO Control Register - 650 mode

This is a write only register at the same location as the ISR (the ISR is a read only register). This register is used to enable the FIFOs, clear the FIFOs, set the RCVR FIFO and THR FIFO triggers level, and select the type of DMA signaling. When changing from the FIFO Mode to UART Mode and vice versa, data is automatically cleared from the FIFOs. This bit must be a 1 when other FCR bits are written to or they will not be programmed.

RCVR TRGIGG(1:0) - are used to set the trigger level for the RCVR FIFO interrupt and flow control.

	RCVR FIFO TRIGGER LEVEL		
FCR[7:6]	Lower trigger for flow control	Interrupt trigger and upper trigger for flow control	
00	1	16	

^{* -} depends on Ext FIFO enable (FCR(5)) bit value

	RCVR FIFO TRIGGER LEVEL				
FCR[7:6]	Lower trigger for flow control	Interrupt trigger and upper trigger for flow control			
01	16	32			
10	32	112			
11	112	120			

Table 13.13 - UART_RCVR - FIFO Trigger Level - 650 mode

THR TRGIGG(1:0) - are used to set the trigger level for the XMIT FIFO interrupt.

FCR[5:4]	TRANSMIT INTERRUPT TRIGGER LEVEL
00	16
01	32
10	64
11	112

Table 13.14 - XMIT FIFO Trigger Level

950 MODE

When ACR[5]=1, bits FCR[5:4] and FCR[7:6] are ignored and the transmitter trigger level can be defined by TTL(transmitter) and RTL(receiver) registers. The trigger level determined by TTL and RTL may be from 0 to 127. There are also FCH and FCL registers used for specifying triggers for the flow control feature.

Setting 0x00 to the TTL register causes an interrupt to occur when the FIFO and the transmitter shift register are both empty and the SO is in idle state.

13.3.8 UART_LCR - Line Control Register (address offset: 0x03)

Bit	Name	Туре	Default Value	Description
7	DLA	RW	1′h0	Divisor Latch Access Bit 0: Receiver and Transmitter Buffers enable 1: Divisor Latch Enable
6	SET_BRK	RW	1′h0	When set the transmitter is switched into break state, The SO Serial Output pin is driven into logic 0 state
5	SET_PARITY	RW	1'h0	Stick Parity 0: Disable Parity Stick 1: Enable Parity Stick When bits 3, 4 and 5 are logic 1 the Parity bit is transmitted and checked as a logic 0. If bits 3 and 5 are 1 and bit 4 is a logic 0 then the Parity bit is transmitted and checked as a logic 1. If bit 5 is a logic 0 Stick Parity is disabled.
4	EVEN_PARITY	RW	1′h0	Even Parity Select 0: An odd number of logic ones is checked for in the transmitted and received character 1: An even number of logic ones is checked for in

Bit	Name	Туре	Default Value	Description
				the transmitted and received character
3	PARITY_EN	RW	1′h0	Parity Enable 1: parity enabled 0: parity disabled
2	STOP_BITS	RW	1′h0	Number of STOP bits 0: 1 Stop bit generated 1: 1.5 stop bits generated for 5 data bits or 2 STOP bits generated for 6/7/8 data bits
1:0	WORD_LEN	RW	1′h0	Word Length select bits 00: 5 data bits 01: 6 data bits 10: 7 data bits 11: 8 data bits

Table 13.15 - UART_LCR - Line Control Register

13.3.9 UART_MCR - Modem Control Register (address offset: 0x04)

Bit	Name	Туре	Default Value	Descriptio	n	
7	BAUD_PSCL*	RW	1′h0		to MCR(7 ator to 1,	elect) sets the clock divider in the else the divider is a M where:
6	IRDA_MODE*	RW	1'h0	on this bit e	nly availa enables Irl	ble in 650 or 950 mode. A '1' DA mode, which transfers tted data in special format.
5	AFE_XON*	RW	1'h0	1: auto flow 0: disable a In Enhance "XON any" transmissio	v control e auto flow o d mode th feature. T on in case	
4	LOOPBK_EN	RW	1′h0	Enable Loop 1: This bit p diagnostic t	provides a	local loop-back feature for the UART
3	OUT2	RW	1′h0	Output 2 (C 1: the OUT?	OUT2) 2 output is	s forced to a logic 0 s forced to a logic 1
2	OUT1	RW	1′h0	Output1 (O 1: the OUT	UT1) 1 output is	s forced to a logic 0 s forced to a logic 1

1	RTS	RW	1′h0	Request to send 1: the RTS output is forced to a logic 0 0: the RTS output is forced to a logic 1
0	DTR	RW	1′h0	Data Terminal Ready 1: the DTR output is forced to a logic 0 0: the DTR output is forced to a logic 1

Table 13.16 - UART_MCR - Modem Control Register

13.3.10 UART_LSR - Line Status Register (address offset: 0x05)

			Default	
Bit	Name	Туре	Value	Description
7	RBR_ERR	RO	1′h0	Error in UART_RBR / Error in RCVR FIFO In the UART Mode this is a 0. In the FIFO mode, 1: when there is at least one parity error, framing error or break indication in the FIFO. 0: when LSR is read. In 450 mode this bit is permanently cleared. In 9-bit mode this bit is not affected by LSR[2].
6	TX_EMTY	RO	1'h0	Transmitter Empty 1: whenever the Transmitter Holding Register (THR) and the Transmitter Shift Register are both empty. 0: whenever either the THR or TSR contains a data character. In the FIFO mode 1: whenever the transmitter FIFO and shift register are both empty
5	TXH_EMTY	RO	1′h0	Transmitter Holding Register Empty 1: Transmitter Holding Register is Empty 0: Transmitter Holding Register has data In the FIFO mode, 1: XMIT FIFO is empty 0: at least 1 byte is written to the XMIT FIFO
4	BRK_INT	RO	1'h0	1: whenever the received data input is held in the Space (logic 0) state for longer than a full word transmission time (that is, the total time of Start bit, data bits, a Parity and Stop bits). 0: whenever the CPU reads the contents of the Line Status Register. In the FIFO mode this error is associated with the particular character in the FIFO it applies to. This error is revealed to the CPU when its associated character is at the top of the FIFO. When break occurs only one zero character is loaded into the FIFO. The next character transfer is enabled after SI goes to the mark state and receives the next valid start bit.
3	FRM_ERR	RO	1′h0	Framing Error, indicates that the received character did not have a valid Stop bit. 1: whenever the Stop bit following the last data bit or parity bit is detected as a logic 0 bit (Spacing level). 0: whenever the CPU reads the contents of the Line Status Register.

^{*) -} Note only 650/950 mode

Bit	Name	Туре	Default Value	Description
				In the FIFO mode this error is associated with the particular character in the FIFO it applies to. This error is revealed to the CPU when its associated character is at the top of the FIFO. The UART will try to resynchronize after a framing error.
2	PRTY_ERR_RX _9BIT	RO	1'h0	Parity Error/ 9-bit of received data in UART-RBR 1: upon detection of a parity error 0: whenever the CPU reads the contents of the Line Status Register. In the FIFO mode this error is associated with the particular character in the FIFO it applies to. This error is revealed to the CPU when its associated character is at the top of the FIFO. In 9-bit mode, this bit is the 9-th bit of the received data, in addition to the 8 bits in UART-RBR.
1	OVRN_ERR	RO	1'h0	Overrun Error 1: upon detection of an overrun condition and reset whenever the CPU reads the contents of the Line Status Register. If the FIFO mode data continues to fill the FIFO beyond the trigger level, an overrun error will occur only after the FIFO is full and the next character has been completely received in the shift register. OVRN_ERR is indicated to CPU as soon as it happens. The character in the shift register is overwritten, but it is not transferred to the FIFO.
0	DATA_RDY	RO	1′h0	Data Ready 1: whenever a complete incoming character has been received and transferred into the Receiver Buffer Register or the FIFO. 0: by reading all of the data in the Receiver Buffer Register or the FIFO

Table 13.17 - UART_LSR - Line Status Register

13.3.11 UART_MSR - Modem Status Register (address offset: 0x06)

Bit	Name	Туре	Default Value	Description
7	DCD	RO	1′h0	Data Carrier Detect This bit is the complement of the Data Carrier Detect (DCD) input. If bit 4 of the Modem Control Register is set to a 1, this bit is equivalent to OUT 2 in the Modem Control Register.
6	RI	RO	1′h0	Ring Indicator This bit is the complement of the Ring Indicator (RI) input. If bit 4 of the Modem Control Register is set to a 1, this bit is equivalent to OUT 1 in the Modem Control Register.
5	DSR	RO	1′h0	Data Set Ready This bit is the complement of the Data Set Ready (DSR) input. If bit 4 of the Modem Control Register is set to a 1, this bit is equivalent to DTR in the Modem Control Register.
4	CTS	RO	1′h0	Clear to Send This bit is the complement of the Clear to Send (CTS) input.

Bit	Name	Туре	Default Value	Description
				If bit 4 (LOOPBK_EN) of the Modem control register is set to a 1, this bit is equivalent to RTS in the Modem Control Register.
3	D_DCD	RO	1′h0	Delta Data Carrier Detect 1: indicates that the DCD input to the chip has changed state.
2	TERI	RO	1′h0	Trailing Edge Ring Indicator 1: Indicates that the RI input to the chip has changed from a low to a high state.
1	D_DSR	RO	1′h0	Delta Data Set ready 1: Indicates that the DSR input to the chip has changed state since the last time it was read by the CPU.
0	D_CTS	RO	1′h0	Delta Clear To Send 1: Indicates that the CTS input to the chip have changed state since the last time it was read by the CPU.

Table 13.18 - UART_MSR - Modem Status Register

13.3.12 UART_SPR - SPR Register (address offset: 0x07)

Bit	Name	Туре	Default Value	Description
7:0	DATA	RW	8′h00	This is the command port for the indexed control register. Writing and reading to indexed control register is addressed by offset written to this register

Table 13.19 - UART_SPR - SPR Register

13.4 650 COMPATIBLE REGISTERS

To access these registers LCR must be set to 0xBF.

13.4.1 UART_EFR - Enhanced Feature Register (address offset: 0x02)

Bit	Name	Туре	Default Value	Description
7	CTS_FC	RO	1′h0	1: Automatic CTS flow control enable
6	RTS_FC	RO	1′h0	1: Automatic RTS flow control enable
5	SPL_CHAR	RO	1′h0	1: Special Character Detection mode enable
4	EM	RO	1′h0	1: Enhanced mode enable
3:2	IBT_FCM	RO	1′h0	In-band transmit flow control mode 00: Disable in-band flow control 01: Enable single character in-band transmit flow control. Recognizing XON2 as the XON character and XOFF2 as the XOFF character 10: Enable single character in-band transmit flow control. Recognizing XON1 as the XON character and XOFF1 as the XOFF character 11: Reserved

1:0	IBR_FCM	RO	1'h0	In-band receive flow control mode 00: Disable in-band flow control 01: Enable single character in-band receive flow control. Recognizing XON2 as the XON character and XOFF2 as the XOFF character 10: Enable single character in-band receive flow control. Recognizing XON1 as the XON character and XOFF1 as the XOFF character 11: Reserved
-----	---------	----	------	---

Table 13.20 - UART_EFR - Enhanced Feature Register

13.4.2 UART_XON1 - XON1 Register (address offset: 0x04)

Bit	Name	Туре	Default Value	Description
7:0	DATA		8'h00	Value of XON1

Table 13.21 - UART_XON1 - XON1 Register

13.4.3 UART_XON2 - XON2 Register (address offset: 0x05)

Bit	Name	Туре	Default Value	Description
7:0	DATA		8'h00	Value of XON2

Table 13.22 - UART_XON2 - XON2 Register

13.4.4 UART_XOFF1 - XOFF1 Register (address offset: 0x06)

Bit	Name	Туре	Default Value	Description
7:0	DATA		8'h00	Value of XOFF1

Table 13.23 - UART_XOFF1 - XOFF1 Register

13.4.5 UART_XOFF2 - XOFF2 Register (address offset: 0x07)

Bit	Name	Туре	Default Value	Description
7:0	DATA		8'h00	Value of XOFF2

Table 13.24 - UART_XOFF2 - XOFF2 Register

13.5 950 COMPATIBLE REGISTERS

To access these registers ACR[7] must be set to 1.

13.5.1 UART_ASR - Additional Status Register (address offset: 0x01)

Bit	Name	Туре	Default Value	Description
7	TX_IDLE	RO	1′h0	1: transmitter is idle (transmitter FIFO and shift register are empty)

Bit	Name	Туре	Default Value	Description
				0: transmitter is transmitting.
6	FIFO_SIZE	RO	1′h0	1: FIFO are 16 deep if FCR[0]=1; 0: FIFO are 128 deep if FCR[0]=1
5	FIFO_SEL	RO	1′h0	Actual state of FIFOSEL pin
4	SPECIAL_CHA R_DETECT	RO	1′h0	1: special character detect and is stored in UART_RBR; 0: no special character detect The flag is cleared by reading ASR.
3	DTR	RO	1′h0	Complement state of DTR pin
2	RTS	RO	1′h0	Complement state of the RTS pin
1	REMOTE_TX_ DSBL	RW	1′h0	1: transmitter has sent an XOFF character 0: the remote transmitter is not disabled by inband flow control. This bit may be cleared by software to re-enable remote transmitter (XON is sent)
0	TX_DSBL	RW	1′h0	1: transmitter disabled (receiver detect XOFF) 0: transmitter is not disabled by in- band flow control. This bit may be cleared by software to re-enable transmission if it was disabled by in-band flow control.

Table 13.25 - UART_ASR - Additional Status Register

13.5.2 UART_RFL - Receiver FIFO Level Register (address offset: 0x03)

Bit	Name	Туре	Defau It Value	Description
7:0	DATA	RO	8'h00	Number of characters in the receiver FIFO

Table 13.26 - UART_RFL - Receiver FIFO Level Register

Note: Reading from this register requires ACR[7]=1

13.5.3 UART_TFL - Transmitter FIFO Level Register (address offset: 0x04)

Bit	Name	Туре	Defau It Value	Description
7:0	DATA	RO	8'h00	Number of characters in the transmitter FIFO

Table 13.27 - UART_TFL - Transmitter FIFO Level Register

Note: Reading from this register requires that last value written to LCR was not 0xBF and ACR[7]=1

13.5.4 UART_ICR - ICR Register (address offset: 0x05)

_ bit Name Type Defau Description	Bit	Name	Type	Defau	Description
---	-----	------	------	-------	-------------

			lt Value	
7:0	DATA	RW	8′h00	Data port to the indexed control register. Writing data to the indexed control register and reading data from the indexed control register is done using this register.

Table 13.28 - UART_ICR - ICR Register

13.6 INDEXED CONTROL REGISTERS

Writing to Indexed Control Registers (ICRs) is addressed by the SPR offset, and data is loaded through the ICR register. Before writing, be sure that the LCR was not loaded with value '0xBF' (it enables access to 650 compatible registers). To write ICRs please follow these steps:

Figure 13.1 - ICR registers write access

Reading from Indexed Control Registers is addressed by the SPR offset, and data is read through the ICR register. Before reading be sure that LCR was not loaded with the value '0xBF' (it enables access to 650 compatible registers). To read from ICRs please follow these steps:

Figure 13.2 - ICR registers read access

13.6.1 UART_ACR- Additional Control Register (SPR offset: 0x00)

Bit	Name	Туре	Default Value	Description
7	ADL_STS_EN	RW	1′h0	Additional status enable 1: ASR, TFL and RFL are enabled 0: disabled
6	ICR_RD_EN	RW	1′h0	ICR read enable 0: LSR is readable 1: ICR registers are readable
5	950_TLE	RW	1'h0	O: Interrupts and flow control trigger levels are described in the FCR register The triggers are set by RTL, TTL, FCL and FCH registers
4:3	DTR	RW	1'h0	DTR line configuration When CKS[4] or CKS[5] are set, the transmitter 1x clock or the output of the baud rate generator (Nx clock) are asserted on the DTR pin, otherwise the pin is defined as follows: 00: DTR pin is compatible with 450, 550, 650 and 750 (i.e. normal). 01: DTR pin is used for out-of-band flow control. It will be forced high, when the receiver FIFO level reaches the upper flow control trigger (FCH). It will be forced low when the receiver FIFO level falls below the lower flow control trigger (FCL). 10: DTR is configured to drive the active low enable pin of an external RS485 buffer. The pin will be forced low whenever the transmitter is not empty (LSR[6]=0), otherwise the pin is high. 11: DTR is configured to drive the active high enable pin of the external RS485 buffer. The pin will be forced high whenever the transmitter is not empty (LSR[6]=0), otherwise the pin is low.
2	DSR	RW	1′h0	1: enables automatic out-of-band flow control using the DSR pin
1	TX	RW	1'h0	Transmitter disable. 0: Transmitter is enabled. 1: Transmitter is disabled. Data in THR are not transmitted. In-band flow control characters may still be transmitted.
0	RX	RW	1'h0	Receiver disable. 0: Receiver is enabled and data are stored in UART_RBR. 1: Receiver is disabled. The receiver continues to operate as normal to maintain frame synchronization but received data are not stored. In-band control characters continue to be detected and acted upon. Special characters will not be detected.

Table 13.29 - UART_ACR- Additional Control Register

13.6.2 UART_CPR - Clock Prescaler Register (SPR offset: 0x01)

Bit	Name	Туре	Default Value	Description
7:3	PSCL	RW	5′h00	clock prescaler

2:0 Reserved		-
--------------	--	---

Table 13.30 - UART_CPR - Clock Prescaler Register

13.6.3 UART_TCR - Time Clock Register (SPR offset: 0x02)

Bit	Name	Туре	Default Value	Description
7:4	Reserved	-	-	-
3:0	N_TIMES_CLO CK	RW	4'h00	Bits N-times clock

Table 13.31 - UART_TCR - Time Clock Register

13.6.4 UART_CKS Clock Select Register (SPR offset: 0x03)

Bit	Name	Туре	Default Value	Description
7	TX_CLK_MD	RW	1′h0	Transmitter 1x clock mode selector 0: transmitter clock is in Nx clock mode 1: transmitter is in isochronous 1x clock mode
6	TX_CLK_SRC	RW	1′h0	Transmitter clock source selector 0: transmitter clock source is the output of the baud rate generator 1: transmitter uses external clock applied to the RI pin
5:4	TX_CLK_GEN	RW	2'h0	Transmitter 1x clock or baud rate generator output (BAUD_OUT) on the DTR pin. 00: The function of the DTR pin is defined by the setting of ACR[4:3]. 01: The transmitter 1x clock is asserted on the DTR pin and setting of ACR[4:3] is ignored. 10: The output of baud rate generator (Nx clock) is asserted on the DTR pin and the setting of ACR[4:3] is ignored. 11: Reserved
3	RX_CLK_MD	RW	1′h0	Receiver 1x clock mode selector 0: Receiver clock is in Nx clock mode 1: Receiver is in isochronous 1x clock mode
2	BAUD_OUT	RW	1'h0	Disable BAUD_OUT pin 0: BAUD_OUT is enabled and connected to the baud rate generator which is Nx clock. By default it is the 16x clock but using the TCR register it may be configured in range from 4x to 16x clock. 1: BAUD_OUT is disabled and permanently set to logic 0
1:0	RX_CLK_SRC	RW	2'h0	Receiver Clock source selector 00: The RCLK pin is selected for the receiver clock 01: The DSR pin is selected for the receiver clock 10: The baud rate generator output is selected for the receiver clock (internal BAUD_OUT connection) 11: The transmitter clock is selected for the receiver clock

Table 13.32 - UART_CKS Clock Select Register

13.6.5 UART_TTL - Transmitter Trigger Level Register (SPR offset: 0x04)

This register is located at 0x04 offset of the Indexed Control Register. This register is used for storing the interrupt trigger level for the transmitter in 950 mode (ACR[5] = 1). The interrupt occurs (if enabled) when the transmitter FIFO level falls below the value of the TTL register. If the TTL=0, then an interrupt will occur when both FIFO and shift register are empty and the SO line is marked to be in the idle state.

Bit	Name	Туре	Default Value	Description
7	Reserved	-	-	-
6:0	TRIG_LVL	RW	7′h0	Transmitter Trigger Level The interrupt trigger level for the transmitter in 950 mode (ACR[5] = 1)

Table 13.33 - UART_TTL - Transmitter Trigger Level Register

13.6.6 UART_RTL - Receiver Trigger Level Register (SPR offset: 0x05)

The RTL register is located at 0x05 offset of the ICR. This register is used for storing the interrupt trigger level for the receiver in 950 mode (ACR[5] = 1). The interrupt occurs (if enabled) when the receiver FIFO level reaches the value stored in this register.

Bit	Name	Туре	Default Value	Description
7	Reserved	-	-	-
6:0	TRIG_LVL	RW	7′h0	Receiver Trigger Level The interrupt trigger level for the receiver in 950 mode (ACR[5] = 1)

Table 13.34 - UART_RTL - Receiver Trigger Level Register

13.6.7 UART_FCL - Flow Control Level LSB Register (SPR offset: 0x06)

Automatic flow control is supported by FCL and FCH registers. This registers are active only in Enhanced mode, when FCR[6:7] bits are disabled (ACR[5] = 1). The FCL stores the lower trigger level and FCH stores the upper trigger level. Both registers are able to store level values from 0 to 127.

Bit	Name	Туре	Default Value	Description
7	Reserved	-	-	-
6:0	FLW_CNTL	RW	7′h0	Value of Flow Control LSB

Table 13.35 - UART_FCL - Flow Control Level LSB Register

13.6.8 UART_FCH - Flow Control Level Register MSB (SPR offset: 0x07)

Automatic flow control is supported by FCL and FCH registers. These registers are active only in Enhanced mode, when FCR[6:7] bits are disabled (ACR[5] = 1). The FCL stores the lower trigger level and FCH stores the upper trigger level. Both registers are able to store level values from 0 to 127.

Bit	Name	Туре	Default Value	Description
7	Reserved	-	-	-
6:0	FLW_CNTL	RW	7′h0	Value of Flow Control MSB

Table 13.36 - UART_FCH - Flow Control Level Register MSB

13.6.9 UART_ID1 - Identification 1 Register (SPR offset: 0x08)

To identifying the device type, use ID1,ID2,ID3 and REV registers. In ID1,ID2 and ID3 registers a hexadecimal ID of the device is written. The REV register include a hardware revision sign.

Bit	Name	Туре	Default Value	Description
7:0	DATA	RW	8'h0	Identification value 1

Table 13.37 - UART_ID1 - Identification 1 Register

13.6.10 UART_ID2 - Identification 2 Register (SPR offset: 0x09)

To identifying the device type, use ID1,ID2,ID3 and REV registers. In ID1,ID2 and ID3 registers a hexadecimal ID of the device is written.

Bit	Name	Туре	Default Value	Description
7:0	DATA	RW	8'h0	Identification value 2

Table 13.38 - UART_ID2 - Identification 2 Register

13.6.11 UART_ID3 - Identification 3 Register (SPR offset: 0x0A)

To identifying the device type, use ID1,ID2,ID3 and REV registers. In ID1,ID2 and ID3 registers a hexadecimal ID of the device is written.

Bit	Name	Туре	Default Value	Description
7:0	DATA	RW	8'h0	Identification value 3

Table 13.39 UART_ID3 - Identification 3 Register

13.6.12 UART_REV - Revision Register (SPR offset: 0x0B)

To identifying the device type, use ID1,ID2,ID3 and REV registers. In ID1,ID2 and ID3 registers a hexadecimal ID of the device is written.

Bit	Name	Туре	Default Value	Description
7:0	DATA	RW	8'h0	hardware revision sign

Table 13.40 - UART_REV - Revision Register

13.6.13 UART_CSR - Channel Software Reset Register (SPR offset: 0x0C)

Bit	Name	Туре	Default Value	Description
7:0	DATA	RW	8'h0	00: To reset the UART write 0x00 to the Channel Software Reset register

Table 13.41 - UART_CSR - Channel Software Reset Register

13.6.14 UART NMR - Nine Bit Mode Register (SPR offset: 0x0D)

To enable 9-bit data mode NMR[0] bit must be logic 0. In this mode data are nine bits wide, and the 9-th bit is stored in LSR[2] for receiving. In transmission the 9-th bit should be written in SPR[0] bit before writing 8-bit data to THR.

In 9-bit mode the setting in LCR[1:0] are ignored. Furthermore as parity is permanently disabled, the setting of LCR[5:3] is also ignored.

In 9-bit mode, in-band flow control is disabled.

When the UART is configured for both Enhanced and 9-bit data mode, setting IER[5] will enable detection of up to four 'address' characters. The eight least significant bits of these characters are stored in XON1, XON2, XOFF1 and XOFF2 registers. The 9-th bit of these characters is stored in NMR[5] to NMR[2].

Bit	Name	Туре	Default Value	Description
7:6	Reserved	-	-	-
5	9_SC4	RW	1′h0	9-th bit of special characters
4	9_SC3	RW	1′h0	9-th bit of special characters
3	9_SC2	RW	1'h0	9-th bit of special characters
2	9_SC1	RW	1′h0	9-th bit of special characters
1	9_INT_EN	RW	1′h0	9-bit data mode interrupt enable 0: interrupt for detection of an 'address' character is disabled 1: interrupt for detection of an 'address' character is enabled
0	9_EN	RW	1′h0	9-bit data mode enable

Table 13.42 - UART_NMR - Nine Bit Mode Register

13.6.15 UART_MDM - Modem Disable Mask Register (SPR offset: 0x0E)

MDM is used to mask selected interrupts of modem lines.

Bit	Name	Туре	Default Value	Description
7:4	Reserved	-	-	-
3	DCD_MASK	RW	1′h0	Delta DCD disable. 0: Enables level 4 interrupt from delta DCD when IER[3]=1 1: Disables level 4 interrupt from delta DCD.

Bit	Name	Туре	Default Value	Description
2	RI_MASK	RW	1′h0	Trailing edge RI disable. 0: Enables level 4 interrupt from trailing edge RI when IER[3]=1 1: Disables level 4 interrupt from trailing edge RI.
1	DSR_MASK	RW	1′h0	Delta DSR disable. 0: Enables level 4 interrupt from delta DSR when IER[3]=1 1: Disables level 4 interrupt from delta DSR.
0	CTS_MASK	RW	1′h0	Delta CTS disable. 0: Enables level 4 interrupt from delta CTS when IER[3]=1 1: Disables level 4 interrupt from delta CTS.

Table 13.43 - UART_MDM - Modem Disable Mask Register

13.6.16 UART_RFC - Readable FCR Register (SPR offset: 0x0F)

Bit	Name	Туре	Default Value	Description
7:0	FCR	RO	8'h00	read the state of FCR register

Table 13.44 - UART_RFC - Readable FCR Register

13.6.17 UART_GDS - Good Data Status Register (SPR offset: 0x10)

Good data status is set when the following conditions are true:

- ISR reads level 0 (no interrupt), level 2 or 2a (receiver data) or level 3 (THR empty)
- LSR[7] is clear.
- LSR[1] is clear.

Bit	Name	Туре	Default Value	Description
7:0	DATA	RO	8'h00	contains 'good data status' bit on least significant position.

Table 13.45 - UART_GDS - Good Data Status Register

13.6.18 UART_RSRV_1 - Reserved 1 Register (SPR offset: 0x11)

Bit	Name	Туре	Default Value	Description
7:0	Reserved	-	-	-

Table 13.46 - UART_RSRV_1 - Reserved 1 Register

13.6.19 UART_PIDX - Port Index Register (SPR offset: 0x12)

Bit	Name	Туре	Default Value	Description
7:0	DATA	RO	8'h00	The value of UART index is 0.

Table 13.47 - UART_PIDX - Port Index Register

13.6.20 UART_CKA - Clock Alteration Register (SPR offset: 0x13)

Bit	Name	Туре	Default Value	Description
7:5	Reserved	-	-	-
4	CLK_TXRDY	RW	1′h0	Output system clock on TxRdy pin
3	CLK_SEL	RW	1′h0	Use CLKSEL pin for system clock
2	INV_DTR	RW	1′h0	Invert DTR signal
1	INV_TX_CLK	RW	1′h0	Invert internal Tx clock
0	INV_RX_CLK	RW	1′h0	Invert internal Rx clock

Table 13.48 - UART_CKA - Clock Alteration Register

14 Timers and Watchdog

FT900 consists of a 32-bit watchdog timer and four 16-bit users' timers.

The watchdog timer is clocked off the main clock. The watchdog can be initialized with a 5-bit register. The value of this register points to a bit of the 32-bit counter which will be set. A timer decrements and signals an interrupt when it rolls over. Once started and initialized the watchdog cannot be stopped. It can be cleared by writing into a register.

Four user timers can be clocked off the main clock or a common 16-bit prescaler, which can be selected for each timer individually. These timers can be started, stopped and cleared/initialized. Current values of all four user timers can be read from registers (one at a time - common register, multiplexed access). All timers count up or down and signal an interrupt when rolling over. Each of the timers can be configured to be one-shot or in continuous mode. They are initialized from a common register and only one at a time (multiplexed access).

The Prescaler block is a 16-bit timer/counter. It can be cleared/initialized by writing into a register the same as with other timers, however if one of the user timers has already started using the prescaler it cannot be cleared and the command is ignored. The Prescaler automatically stops after clear. It also starts automatically when any of the user timers using it starts.

All timers (4 user timers, prescaler and watchdog) instantiate the same block. Setting clear input high, depending on the direction input value, initializes the timer with a final value if counting up or 0 when counting down. Start input triggers a timer which increments/decrements synchronously with an enable signal. Setting mode input high causes a timer to stop when it rolls over.

Normal operation:

User timers	Prescaler	Watchdog
Select the timer to initialize by writing into the TIMER_SELECT register. Write initial/final value into TIMER_WRITE_LS and TIMER_WRITE_MS registers.	Write initial value into TIMER_PRESC_LS and TIMER_PRESC_MS registers.	Write initial value into TIMER_WDG register to initialize one of the 32 bits of the timer.
Write into direction bit in TIMER_CONTROL_3 register to select up/down counting.	N/A	N/A
Write into mode bit in TIMER_CONTROL_3 register to select mode.	N/A	N/A
Write into clear_x bits in TIMER_CONTROL_4 register to initialize the timer.	Write into clear_presc bit in TIMER_CONTROL_4 register to initialize the prescaler (if possible)	Write into clear_wdg bit in TIMER_CONTROL_2 register to clear watchdog.
Write into start_x bits in TIMER_CONTROL_1 register to start the timer.	Write into prescaler_en bit in TIMER_CONTROL_2 register to enable prescaler and it will automatically start when the timer/timers using it starts.	Write into start_wdg bit in TIMER_CONTROL_2 register to start watchdog.
Select timer you want to read from by writing into timer_read_sel bit in TIMER_SELECT register. Current value can be read from TIMER_READ_LS and TIMER_READ_MS registers.	N/A	N/A
Write into stop_x bit in TIMER_CONTROL_1 register to stop the timer.	N/A	N/A

Table 14.1 - Timers/Watchdog Operation

14.1 Register Summary

Listed below are the registers with their offset from the base address (0x10340). All registers can only be accessed via Byte (8-bit) mode.

Offset	Register	Default value	References
0x00	TIMER_CONTROL_0 - Timers Control Register 0	0x00	<u>Section 14.2.1</u>
0x01	TIMER_CONTROL_1 - Timers Control Register 1	0x00	<u>Section 14.2.2</u>
0x02	TIMER_CONTROL_2 - Timers Control Register 2	0x00	<u>Section 14.2.3</u>
0x03	TIMER_CONTROL_3 - Timers Control Register 3	0x00	<u>Section 14.2.4</u>
0x04	TIMER_CONTROL_4 - Timers Control Register 4	0x00	Section 14.2.5
0x05	TIMER_INT - Timers Interrupt Register	0x00	Section 14.2.6
0x06	TIMER_SELECT - Timers AD Select Register	0x00	Section 14.2.7
0x07	TIMER_WDG - Watchdog Start Value	0x00	Section 14.2.8
0x08	TIMER_WRITE_LS - Timer AD Start Value 7:0	0x00	Section 14.2.9
0x09	TIMER_WRITE_MS - Timer AD Start Value 15:8	0x00	<u>Section 14.2.10</u>
0x0A	TIMER_PRESC_LS - Prescaler Start Value 7:0	0x00	<u>Section 14.2.11</u>
0x0B	TIMER_PRESC_MS - Prescaler Start Value 15:8	0x00	Section 14.2.12
0x0C	TIMER_READ_LS - Timer AD Current Value 7:0	0x00	<u>Section 14.2.13</u>
0x0D	TIMER_READ_MS - Timer AD Current Value 15:8	0x00	<u>Section 14.2.14</u>

Table 14.2 - Overview of Timers/Watchdog Registers

14.2 Register Details

14.2.1 TIMER_CONTROL_0 - Timers Control Register 0 (address offset: 0x00)

Bit	Name	Туре	Default Value	Description
1	block_en	RW	1'b0	1: To enable the timer module
0	soft_reset	RWAC	1'b0	1: Write 1 to trigger the reset

Table 14.3 - TIMER_CONTROL_0 - Timers Control Register 0

14.2.2 TIMER_CONTROL_1 - Timers Control Register 1 (address offset: 0x01)

Bit	Name	Туре	Default Value	Description
7	stop_d	RWAC	1′b0	1: To trigger stopping timer D
6	stop_c	RWAC	1′b0	1: To trigger stopping timer C
5	stop b	RWAC	1′b0	1: To trigger stopping timer B

4	stop_a	RWAC	1′b0	1: To trigger stopping timer A
3	start_d	RWAC	1'b0	1: To trigger starting timer D
2	start_c	RWAC	1′b0	1: To trigger starting timer C
1	start_b	RWAC	1'b0	1: To trigger starting timer B
0	start_a	RWAC	1′b0	1: To trigger starting timer A

Table 14.4 - TIMER_CONTROL_1 - Timers Control Register 1

14.2.3 TIMER_CONTROL_2 - Timers Control Register 2 (address offset: 0x02)

Bit	Name	Туре	Default Value	Description
7:4	prescaler_en	RW	4'h0	Enable prescaler bits for timers D/C/B/A
				respectively
3	wdg_int_ien	RW	1'b0	1: enable watch dog interrupt
2	wdg_int	RW1C	1'b0	1: watch-dog interrupt pending
1	clear_wdg	RWAC	1′b0	1: To trigger clearing watch dog timer
0	start_wdg	RWAC	1′b0	1: To trigger starting watch dog timer

Table 14.5 - TIMER_CONTROL_2 - Timers Control Register 2

14.2.4 TIMER_CONTROL_3 - Timers Control Register 3 (address offset: 0x03)

Bit	Name	Туре	Default Value	Description
7:4	direction	RW	4′h0	Counter direction bits for timers D/C/B/A respectively 1: Up 0: Down
3:0	mode	RW	4'h0	Continuous/1-shot mode bits for timers D/C/B/A respectively 1: 1-shot 0: Continuous

Table 14.6 - TIMER_CONTROL_3 - Timers Control Register 3

14.2.5 TIMER_CONTROL_4 - Timers Control Register 4 (address offset: 0x04)

Bit	Name	Туре	Default Value	Description
4	presc_clear	RWAC	1'b0	1: To trigger clearing prescaler
3	clear_d	RWAC	1'b0	1: To trigger clearing timer D
2	clear_c	RWAC	1′b0	1: To trigger clearing timer C
1	clear_b	RWAC	1′b0	1: To trigger clearing timer B
0	clear_a	RWAC	1′b0	1: To trigger clearing timer A

Table 14.7 - TIMER_CONTROL_4 - Timers Control Register 4

14.2.6 TIMER_INT - Timers Interrupt Register (address offset: 0x05)

Bit	Name	Туре	Default Value	Description
7	timer_int_d_en	RW	1′b0	1: Enable timer D interrupt
6	timer_int_d	RW1C	1'b0	1: Timer D interrupt pending
5	timer_int_c_en	RW	1'b0	1: Enable timer C interrupt
4	timer_int_c	RW1C	1′b0	1: Timer C interrupt pending
3	timer_int_b_en	RW	1′b0	1: Enable timer B interrupt
2	timer_int_b	RW1C	1′b0	1: Timer B interrupt pending
1	timer_int_a_en	RW	1′b0	1: Enable timer A interrupt

Bit	Name	Туре	Default Value	Description
0	timer_int_a	RW1C	1′b0	1: Timer A interrupt pending

Table 14.8 - TIMER_INT - Timers Interrupt Register

14.2.7 TIMER_SELECT - Timers A..D Select Register (address offset: 0x06)

Bit	Name	Туре	Default Value	Description
3:2	timer_read_sel	RW	2′h0	Select one of Timers A/B/C/D to read (value 0/1/2/3)
1:0	timer_write_sel	RW	2′h0	Select one of Timers A/B/C/D to write (value 0/1/2/3)

Table 14.9 - TIMER_SELECT - Timers A..D Select Register

14.2.8 TIMER_WDG - Watchdog Start Value (address offset: 0x07)

Bit	Name	Туре	Default Value	Description	
4:0	timer_wdg_writ	RW	5′h00	Setting watchdog value	
	е			5'h00	32'h0000_0001
				5'h01	32'h0000_0002
				5'h1E	32'h4000_0000
				5'h1F	32'h8000_0000

Table 14.10 - TIMER_WDG - Watchdog Start Value

14.2.9 TIMER_WRITE_LS - Timer A..D Start Value 7:0 (address offset: 0x08)

Bit	Name	Туре	Default Value	Description
7:0	timer_write_7_0	RW	8'h00	Write low byte of the timer start value

Table 14.11 - TIMER_WRITE_LS - Timer A..D Start Value 7:0

14.2.10 TIMER_WRITE_MS - Timer A..D Start Value 15:8 (address offset: 0x09)

Bit	Name	Туре	Default Value	Description
7:0	timer_write_15_ 8	RW	8'h00	Write high byte of the timer start value

Table 14.12 - TIMER_WRITE_MS - Timer A..D Start Value 15:8

14.2.11 TIMER_PRESC_LS - Prescaler Start Value 7:0 (address offset: 0x0A)

Bit	Name	Туре	Default Value	Description
7:0	timer_presc_7_ 0	RW	8'h00	Write low byte of the timer prescaler start value

Table 14.13 - TIMER_PRESC_LS - Prescaler Start Value 7:0

14.2.12 TIMER_PRESC_MS - Prescaler Start Value 15:8 (address offset: 0x0B)

Bit	Name	Туре	Default Value	Description

7:0	timer_presc_15	RW	8'h00	Write high byte of the timer prescaler start
	_8			value

Table 14.14 - TIMER_PRESC_MS - Prescaler Start Value 15:8

14.2.13 TIMER_READ_LS - Timer A..D Current Value 7:0 (address offset: 0x0C)

Bit	Name	Туре	Default Value	Description
7:0	timer read 7 0	RO	8'h00	Read low byte of the timer start value

Table 14.15 - TIMER_READ_LS - Timer A..D Current Value 7:0

14.2.14 TIMER_READ_MS - Timer A..D Current Value 15:8 (address offset: 0x0D)

Bit	Name	Туре	Default Value	Description
7:0	timer_read_15_	RO	8'h00	Read high byte of the timer start value
	8			

Table 14.16 - TIMER_READ_MS - Timer A..D Current Value 15:8

15 I2S

The I2S interface supports both Master and Slave modes. The formats supported are I2S, Left Justified and Right Justified.

In the Master mode, 2 clock sources are to be provided externally. One is 24.576MHz and the other 22.5792MHz. LRCLK, BCLK and MCLK will be generated by the module based on the sampling rate and bit length.

The table below shows the oversampling rate supported (i.e. the MCLK frequency supported). The MCLK divider factor must be set accordingly. The reference clock is either the 24.576MHz or 22.5792MHz incoming clock.

Sampling frequency	Oversampling Rate Supported	Reference Clock	MCLK Divider Setting
	32fs		64
11025	64fs	22.5792MHz	32
	128fs	22.3792MH2	16
	256fs		8
	32fs		32
22050	64fs	22.5792MHz	16
22030	128fs	22.3792MH2	8
	256fs		4
	32fs		16
44100	64fs	22 E702MH-	8
44100	128fs	22.5/92MH2	4
	256fs		2
	32fs		48
	64fs		24
16000	128fs	24 F76MH7	12
16000	256fs	22.5792MHz 24.576MHz	6
	384fs		4
	512fs		3
	32fs		24
	64fs		12
32000	128fs	24.576MHz	6
	256fs		3
	384fs		2
	32fs		16
	64fs		8
48000	128fs	24.576MHz	4
	256fs		2
	512fs		1

Sampling frequency	Oversampling Rate Supported	Reference Clock	MCLK Divider Setting
	32fs		8
96000	64fs	24.576MHz	4
90000	128fs	24.37011112	2
	256fs		1
	32fs		4
192000	64fs	24.576MHz	2
	128fs		1

Table 15.1 - Oversampling rates supported by FT900 I2S

In this mode (i.e. Master mode), the number of BCLK cycles per channel per sampling cycle can only be either 16 or 32.

The table shows the supported bit length with the number of BCLK per sampling cycle in the Master mode. The BCLK divider factor must be set accordingly. The reference clock is either the 24.576MHz or 22.5792MHz incoming clock.

Bit length / Channel	# of BCLK cycles / Channel / Sampling Cycle	BCLK Divider Setting
16	16	64
16, 20, 24, 32	32	32
16	16	32
16, 20, 24, 32	32	16
16	16	16
16, 20, 24, 32	32	8
16	16	48
16, 20, 24, 32	32	24
16	16	24
16, 20, 24, 32	32	12
16	16	16
16, 20, 24, 32	32	8
16	16	8
16, 20, 24, 32	32	4
16	16	4
16, 20, 24, 32	32	2
	16 16, 20, 24, 32 16 16, 20, 24, 32 16 16, 20, 24, 32 16 16, 20, 24, 32 16 16, 20, 24, 32 16 16, 20, 24, 32 16 16, 20, 24, 32 16 16, 20, 24, 32 16	Bit length / Channel Cycle Channel / Sampling Cycle 16 16 16, 20, 24, 32 32 16 16 16, 20, 24, 32 32 16 16 16, 20, 24, 32 32 16 16 16, 20, 24, 32 32 16 16 16, 20, 24, 32 32 16 16 16, 20, 24, 32 32 16 16 16, 20, 24, 32 32 16 16 16, 20, 24, 32 32 16 16 16, 20, 24, 32 32 16 16

Table 15.2 - FT900 I2S settings

In the Slave mode, LRCLK and BCLK are to be input to the device. MCLK is not used in this case; neither are the 24.576MHz and 22.5792MHz inputs. They can be configured as GPIOs.

In the Slave mode, the incoming/outgoing data can be 16, 20, 24 or 32 bits per channel. And the incoming number of BCLK cycles per sampling period can be 16, 20, 24 or 32. The data length can be X-bit per channel whereas the number of BCLK cycles per sampling period can be any setting mentioned that is larger or equal to X-bit. For example, 16-bit data length per channel can be supported with any of 16, 20, 24 or 32 BCLK cycles per sampling period setting. **However, the maximum frequency of BCLK is 12.288MHz regardless of the sampling frequency and bit length**.

15.1 Register Summary

Listed below are the registers with their offset from the base address (0x10350). All registers can only be accessed via Word (16-bit) mode.

Offset	Register	Default value	References
0x00	I2SCR - Configuration Register 1 I2SCR2 - Configuration Register 2	0x00 0x00	Section 15.2.1 Section 15.2.2
0x04	I2SIRQEN - Interrupt Enable Register	0x00	Section 15.2.3
0x06	I2SIRQPEND - Interrupt Pending Register	0x00	<u>Section 15.2.4</u>
0x08	I2SRWDATA - Transmit / Receive Data Register	0x00 0x00	Section 15.2.5
0x0E	I2SRXCOUNT - RX Count Register I2STXCOUNT - TX Count Register	0x00	Section 15.2.6 Section 15.2.7

Table 15.3 - Overview of I2S Registers

15.2 Register Details

15.2.1 I2SCR - Configuration Register 1 (address offset: 0x00)

Bit	Name	Туре	Default Value	Description
15	Soft Reset	RW	1′b0	1: To turn on the soft reset.
				0: To turn off the soft reset.
14:12	Padding	RW	3′h0	0: No padding required; (bit length = number
				of bclk cycles)
				1: 4 extra 0 bits are added.
				2: 8 extra 0 bits are added.
				3: 12 extra 0 bits are added.
				4: 16 extra 0 bits are added.
				Others: Reserved
11:10	Format	RW	2′h0	0: I2S Format.
				1: Left Justified Format.
				2: Right Justified Format.
				Others: Reserved
9:8	Bit Length	RW	2′h0	0: 16-bit Format.
				1: 20-bit Format.
				2: 24-bit Format.
				3: 32-bit Format.
7	IsMaster64	RW	1′b0	This is valid for I2S Master mode only.
				1: 32 BCLK cycles per channel;.

				0: 16 BCLK cycles per channel.
6	MasterMode	RW	1'b0	1: Set I2S to the Master Mode.
5	IsMaster22	RW	1′b0	This is valid for I2S Master mode only. 1: Use 22.5792MHz input as the reference clock. 0: Use 24.576MHz input as the reference clock.
4	BCLK Polarity	RW	1'b0	1: Invert the polarity of BCLK.
3	LRCLK Out Polarity	RW	1′b0	1: Invert the polarity of LRCLK for reception.
2	LRCLK In Polarity	RW	1′b0	1: Inver the polarity of LRCLK for transmission.
1	RX Enable	RW	1'b0	1: Enable the receive channel.
0	TX Enable	RW	1'b0	1: Enable the transmit channel.

Table 15.4 - I2SCR - Configuration Register 1

15.2.2 I2SCR2 - Configuration Register 2 (address offset: 0x02)

Bit	Name	Туре	Default Value	Description
15:12	Reserved	-	-	-
11:8	MCLK Divider	RW	4'h0	This is valid for I2S Master mode only. 0: No division (MCLK = reference clock). 1: Divide by 2. 2: Divide by 3. 3: Divide by 4. 4: Divide by 6. 5: Divide by 12. 7: Divide by 16. 8: Divide by 24. 9: Divide by 32. A: Divide by 48. B: Divide by 64. Others: Reserved
7:4	Reserved	-	-	-
3:0	BCLK Divider	RW	4'h0	This is valid for I2S Master mode only. 0: No division (MCLK = reference clock). 1: Divide by 2. 2: Divide by 3. 3: Divide by 4. 4: Divide by 6. 5: Divide by 8. 6: Divide by 12. 7: Divide by 16. 8: Divide by 24. 9: Divide by 32. A: Divide by 48. B: Divide by 64. Others: Reserved

Table 15.5 - I2SCR2 - Configuration Register 2

15.2.3 I2SIRQEN - Interrupt Enable Register (address offset: 0x04)

Bit	Name	Туре	Default Value	Description
15:13	Reserved	-	-	-
12	RX FIFO Ov	RW	1′b0	1: Enable Receive FIFO Overflow Interrupt.

Bit	Name	Туре	Default Value	Description
11	RX FIFO Full	RW	1′b0	1: Enable Receive FIFO Full Interrupt.
10	RX FIFO Half	RW	1′b0	1: Enable Receive FIFO Half Full Interrupt.
9	RX FIFO Empty	RW	1′b0	1: Enable Receive FIFO Empty Interrupt.
8	RX FIFO Under	RW	1′b0	1: Enable Receive FIFO Underflow Interrupt.
7:5	Reserved	ı	-	-
4	TX FIFO Ov	RW	1'b0	1: Enable Transmit FIFO Overflow Interrupt.
3	TX FIFO Full	RW	1′b0	1: Enable Transmit FIFO Full Interrupt.
2	TX FIFO Half	RW	1′b0	1: Enable Transmit FIFO Half Full Interrupt.
1	TX FIFO Empty	RW	1′b0	1: Enable Transmit FIFO Empty Interrupt.
0	TX FIFO Under	RW	1′b0	1: Enable Transmit FIFO Underflow Interrupt.

Table 15.6 - I2SIRQEN - Interrupt Enable Register

15.2.4 I2SIRQPEND - Interrupt Pending Register (address offset: 0x06)

Bit	Name	Туре	Default Value	Description
15:13	Reserved	-	-	-
12	RX FIFO Ov	RW1C	1′b0	1: Receive FIFO Overflow Interrupt Pending. Write 1 to clear.
11	RX FIFO Full	RW1C	1′b0	1: Receive FIFO Full Interrupt Pending. Write 1 to clear.
10	RX FIFO Half	RW1C	1′b0	1: Receive FIFO Half Full Interrupt Pending. Write 1 to clear.
9	RX FIFO Empty	RW1C	1′b0	1: Receive FIFO Empty Interrupt Pending. Write 1 to clear.
8	RX FIFO Under	RW1C	1′b0	1: Receive FIFO Underflow Interrupt Pending. Write 1 to clear.
7:5	Reserved	ı	-	-
4	TX FIFO Ov	RW1C	1′b0	1: Transmit FIFO Overflow Interrupt Pending. Write 1 to clear.
3	TX FIFO Full	RW1C	1′b0	1: Transmit FIFO Full Interrupt Pending. Write 1 to clear.
2	TX FIFO Half	RW1C	1′b0	1: Transmit FIFO Half Full Interrupt Pending. Write 1 to clear.
1	TX FIFO Empty	RW1C	1′b0	1: Transmit FIFO Empty Interrupt Pending. Write 1 to clear.
0	TX FIFO Under	RW1C	1′b0	1: Transmit FIFO Underflow Interrupt Pending. Write 1 to clear.

Table 15.7 - I2SIRQPEND - Interrupt Pending Register

15.2.5 I2SRWDATA - Transmit / Receive Data Register (address offset: 0x08)

Bit	Name	Туре	Default Value	Description
15:0	TX FIFO Data	WO	-	Data window for writing data to the transmit FIFO.
15:0	RX FIFO Data	RO	16'h000 0	Data window for reading data from the receive FIFO.

Table 15.8 - I2SRWDATA - Transmit / Receive Data Register

15.2.6 I2SRXCOUNT - RX Count Register (address offset: 0x0C)

Bit	Name	Туре	Default Value	Description
15:0	RX FIFO Data Count	RO	16'h000 0	Indicates the number of data in the Receive FIFO.

Table 15.9 - I2SRXCOUNT - RX Count Register

15.2.7 I2STXCOUNT - TX Count Register (address offset: 0x0E)

Bit	Name	Туре	Default Value	Description
15:0	TX FIFO Data	RO	16'h000	Indicates the number of data in the Transmit
	Count		0	FIFO.

Table 15.10 - I2STXCOUNT - TX Count Register

16 SPI Master

There is a SPI Master module in the device.

Listed below are the key features of this SPI master:

- Full duplex synchronous serial data transfer
- · Single, Dual and Quad SPI transfer
- Master operation
- Multimaster system supported
- Two modes of operations: SPI mode and FIFO mode
- FIFO size of 64 bytes
- Support up to 8 SPI slaves
- · System error detection
- Interrupt generation
- Bit rates generated 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512 of system clock
- Four transfer formats supported

16.1 Register Summary

Listed below are the registers with their offset from the base address (0x102A0). All registers can only be accessed via Double-Word (32-bit) mode. However, the least significant byte of the FIFO can be accessed via Byte (8-bit) mode. This facilitates fast byte oriented operations.

Address Offset	Register	Default value	References
0x00	SPIM_CNTL - Control Register	0x04	<u>Section 16.2.1</u>
0x04	SPIM_STATUS - Status Register	0x00	<u>Section 16.2.2</u>
0x08	SPIM_DATA - Receiver and Transmitter Data Registers	0x20	<u>Section 16.2.3</u>
0x0C	SPIM_SLV_SEL_CNTL - Slave Select Control Register	0xFF	Section 16.2.4
0x10	SPIM_FIFO_CNTL - FIFO Control Register	0x00	<u>Section 16.2.5</u>
0x14	SPIM_TNSFR_FRMT_CNTL - Transfer Format Control Register	0x00	<u>Section 16.2.6</u>
0x18	SPIM_ALT_DATA – Alternative SPI Master Data Register	0x00	Section 16.2.7
0x1C	SPIM_RX_FIFO_COUNT - SPI Master RX FIFO Count Register	0x00	<u>Section 16.2.8</u>

Table 16.1 - Overview of SPI Master Registers

16.2 Register Details

16.2.1 SPIM_CNTL - Control Register (address offset: 0x00)

Bit	Name	Туре	Default Value	Description					
7	SP_IE	RW	1′b0	1: To enable SPI Master interrupt					
6	SP_E	RW	1′b0	SPI System enable; 1 to enable.					
5	SP_R2	RW	1′b0	See table at S	SP_R1 and SP_	_R0			
4	MSTR	RW	1′b0	1: To enable	this SPI Maste	r			
3	CLK_POL	RW	1′b0	Clock polarity select 0: High level; SCK idles Low 1: Low level; SCK idles high					
2	CLK_PHA	RW	1′b1	Clock phase 0: Shift Data Out on Falling edge; capture Data In on Rising edge 1: Shift Data Out on Rising edge; capture Data In on Falling edge					
		RW	1'b0	Together with	n SP_R2, they	define the SPI	clock rate		
1:0	SP_R[1:0]			SP_R2	SP_R1	SP_R0	System Clock divided by		
				0	0	0	4		
				0	0	1	8		
				0	1	0	16		
				0	1	1	32		
				1	0	0	64		
				1	0	1	128		
				1	1	0	256		
				1	1	1	512		

Table 16.2 - SPIM_CNTL - Control Register

16.2.2 SPIM_STATUS - Status Register (address offset: 0x04)

Bit	Name	Туре	Default Value	Description
7	SPI_FLAG	RW	1′b0	Interrupt request; this flag is automatically set to one at the end of an SPI transfer
6	WR_COL	RW	1'b0	Write collision error status flag. The flag is automatically set if the SPDR is written when the TX register is full (in FIFO Mode when the TX FIFO is full)
5	SPI_BIS	RW	1′b0	Indicates end of transmission from SPIM_ALT_DATA register. This flag can generate an interrupt if enabled by SPIM_TNSFR_FRMT_CNTL[6]=1

Bit	Name	Туре	Default Value	Description
4	MOD_FAUL T	RW	1′b0	SPI mode-fault error status flag. This flag is set if the SS pin goes to active low.
3	THRE	RW	1′b0	SPI in IDLE state with TX FIFO or THR register empty 0: Transmission is in progress
2	TX_EMPTY	RW	1'b0	Transmitter Empty 0: TX FIFO contains at least one byte. 1: TX FIFO is empty
1	RX_FIFOFU LL	RW	1′b0	Receiver FIFO Full
0	SSC_EN	RW	1′b0	Slave Select Control Enable 1: auto SS assertions enabled 0: auto SS assertions disabled – SS always shows contents of Slave Select Control Register

Table 16.3 - SPIM_STATUS - Status Register

16.2.3 SPIM_DATA - Receiver and Transmitter Data Registers (address offset: 0x08)

Bit	Name	Туре	Default Value	Description
7:0	SPDR_RX	RO	8'h00	Data from last Receive operation
7:0	SPDR_TX	wo	8'h00	Data for next Transmit operation

Table 16.4 - SPIM_DATA - Receiver and Transmitter Data Registers

16.2.4 SPIM_SLV_SEL_CNTL - Slave Select Control Register (address offset: 0x0C)

Bit	Name	Туре	Default Value	Description
				SS7-SS0 pin select
7:0	DATA	RW	8'hFF	0: assigned SS while Master transfer is active
				1: SS is forced to logic 1

Table 16.5 - SPIM_SLV_SEL_CNTL - Slave Select Control Register

16.2.5 SPIM_FIFO_CNTL - FIFO Control Register (address offset: 0x10)

Bit	Name	Туре	Default Value	Description		
7:6	RCVR_TRI G	I RW	2'h0		RCVR FIFO Trigge	r Level
				Bits	Standard FIFO Mode (16W)*	Extended FIFO Mode (64W)*
				00	01	01
				01	04	16

Bit	Name	Туре	Default Value	Description		
				10	08	32
				11	14	56
				* Depends on SFC	R[5] value	
5	64_BYTE	RW	1′b0	1: 64 Byte deep F	IFOs enabled	
4	TIMEOUT	RW	1′b0	1: Enable Timeout	interrupt	
3	Reserved	-	-	-		
2	TX_RST	RW	1′b0	Write 1 to TX FIF not affected; This		he shift register is
1	RCVR_RST	RW	1′b0	Write 1 to RX FIF not affected; This		he shift register is
0	FIFO_EN	RW	1′b0	RX and TX FIFO's	enable	

Table 16.6 - SPIM_FIFO_CNTL - FIFO Control Register

16.2.6 SPIM_TNSFR_FRMT_CNTL - Transfer Format Control Register (address offset: 0x14

Bit	Name	Туре	Default Value	Description
7	FIFO_EXT	RW	1′b0	1: Enable FIFO extension and allow 16 bits data transfer to / from FIFO
6	BISINT_EN	RW	1′b0	1: Enable interrupt generation after the transfer is complete from SPIM_ALT_DATA register
5	MULTI_REC	RW	1′b0	1: Allow continuous reception of data without the necessity of loading the TX FIFO
4	Reserved	-	-	-
3	TX_IEN	RW	1′b0	1: Transmitter FIFO Empty interrupt enabled
2	DIR	RW	1′b0	1: Performs multichannel READ (Requires DUAL / QUAD mode to be enabled)
1	QUAD_SPI	RW	1′b0	1: Enable QUAD SPI transfer
0	DUAL_SPI	RW	1′b0	0: Enable DUAL SPI transfer

Table 16.7 - SPIM_TNSFR_FRMT_CNTL - Transfer Format Control Register

16.2.7 SPIM_ALT_DATA - Alternative SPI Master Data Register (address offset: 0x18)

Bit	Name	Туре	Default Value	Description
7:0	DATA	RW	8'h00	Alternative SPI Mode Data register. Data transmitted through this register are done as a single channel SPI only regardless of QUAD/DUAL mode setting

Table 16.8 - SPIM_ALT_DATA - Alternative SPI Master Data Register

16.2.8 SPIM_RX_FIFO_COUNT - SPI Master RX FIFO Count Register (address offset: 0x1C)

Bit	Name	Туре	Default Value	Description
7:0	DATA	RW	8'h00	The number of bytes available in the RX FIFO. Note that the counter can only count up to 63, then rolls back to 0. If it is 0 and SPI_FLAG bit is 1, it means there are 64 bytes in the FIFO

Table 16.9 - SPIM_RX_FIFO_COUNT - SPI Master RX FIFO Count Register

17 SPI Slaves

There are two independent SPI slaves in the device.

Listed below are the key features of the SPI slaves:

- Full duplex synchronous serial data transfer
- Two modes of operations: SPI mode and FIFO mode
- FIFO size of 64 bytes
- · System error detection
- Interrupt generation
- Four transfer formats supported

17.1 Register Summary

Listed below are the registers with their offset from the base addresses (0x102C0 and 0x102E0 respectively). All registers can only be accessed via Double-Word (32-bit) mode. However, the least significant byte of the FIFO can be accessed via Byte (8-bit) mode. This facilitates fast byte oriented operations.

Address Offset	Register	Default value	References
0x00	SPIS_CNTL - Control Register	0x04	Section 17.2.1
0x04	SPIS_STATUS - Status Register	0x00	<u>Section 17.2.2</u>
0x08	SPIS_DATA – Receiver and Transmitter Data	0x00	<u>Section 17.2.3</u>
0x0C	Registers SPIS_SLV_SEL_CNTL - Slave Select Control	0x00	<u>Section 17.2.4</u>
0x10	Register SPIS_FIFO_CNTL - FIFO Control Register	0x00	<u>Section 17.2.5</u>
0x14	SPIS_TNSFR_FRMT_CNTL - Transfer Format	0x00	<u>Section 17.2.6</u>
0x18	Control Register SPIS_ALT_DATA – Alternative SPI Slave Data		<u>Section 17.2.7</u>
0x1C	Register SPIS_RX_FIFO_COUNT - SPI Slave RX FIFO Count Register	0x00	Section 17.2.8

Table 17.1 - Overview of SPI Slave Registers

17.2 Register Details

17.2.1 SPIS_CNTL - Control Register (address offset: 0x00)

Bit	Name	Туре	Default Value	Description
7	SP_IE	RW	1′b0	1: To enable SPI Slave interrupt
6	SP_E	RW	1′b0	SPI System enable; 1 to enable.

Bit	Name	Туре	Default Value	Description
5	SP_R2	RW	1′b0	See table at SP_R1 and SP_R0
4	Reserved	-	-	-
3	CLK_POL	RW	1′b0	Clock polarity select 0: High level; SCK idles Low 1: Low level; SCK idles high
2	CLK_PHA	RW	1′b1	Clock phase 0: Shift Data Out on Falling edge; capture Data In on Rising edge 1: Shift Data Out on Rising edge; capture Data In on Falling edge
1:0	SP_R[1:0]	RW	1′b0	Set SP_R2/1/0 value to 0 if the SPI master is operating at high speed. Otherwise, set it to a non-zero value.

Table 17.2 - SPIS_CNTL - Control Register

17.2.2 SPIS_STATUS - Status Register (address offset: 0x04)

Bit	Name	Туре	Default Value	Description
7	SPI_FLAG	RW	1′b0	Interrupt request; this flag is automatically set to one at the end of an SPI transfer
6	WR_COL	RW	1′b0	Write collision error status flag. The flag is automatically set if the SPDR is written when the TX register is full (in FIFO Mode when the TX FIFO is full)
5	SPI_BIS	RW	1′b0	Indicates end of transmission from SPIS_ALT_DATA register. This flag can generate an interrupt if enabled by SPIS_TNSFR_FRMT_CNTL[6]=1
4	Reserved	-	-	-
3	THRE	RW	1′b0	SPI in IDLE state with TX FIFO or THR register empty 0: Transmission is in progress
2	TX_EMPTY	RW	1′b0	Transmitter Empty 0: TX FIFO contains at least one byte. 1: TX FIFO is empty
1	RX_FIFOFU LL	RW	1′b0	Receiver FIFO Full
0	SSC_EN	RW	1′b0	Slave Select Control Enable 1: auto SS assertions enabled 0: auto SS assertions disabled – SS always shows contents of Slave Select Control Register

Table 17.3 - SPIS_STATUS - Status Register

17.2.3 SPIS_DATA - Receiver and Transmitter Data Registers (address offset: 0x08)

Bit	Name	Туре	Default Value	Description
7:0	SPDR_RX	RO	8'h00	Data from last Receive operation
7:0	SPDR_TX	wo	8'h00	Data for next Transmit operation

Table 17.4 - SPIS_DATA - Receiver and Transmitter Data Registers

17.2.4 SPIS_SLV_SEL_CNTL - Slave Select Control Register (address offset: 0x0C)

Bit	Name	Туре	Default Value	Description
7:0	Reserved	-	-	-

Table 17.5 - SPIS_SLV_SEL_CNTL - Slave Select Control Register

17.2.5 SPIS_FIFO_CNTL - FIFO Control Register (address offset: 0x10)

Bit	Name	Туре	Default Value	Description		
					RCVR FIFO Trigge	r Level
				Bits	Standard FIFO Mode (16W)*	Extended FIFO Mode (64W)*
				00	01	01
7:6	RCVR_TRI	RW	2'h0	01	04	16
/	G		20	10	08	32
				11	14	56
				* Depends on SFC	CR[5] value	
5	64_BYTE	RW	1′b0	1: 64 Byte deep F	IFOs enabled	
4	TIMEOUT	RW	1′b0	1: Enable Timeout	t interrupt	
3	Reserved	-	-	-		
2	TX_RST	RW	1′b0	Write 1 to TX FIF not affected; This	O and its logic; The bit will clear itself	ne shift register is
1	RCVR_RST	RW	1′b0	Write 1 to RX FIF not affected; This	O and its logic; The bit will clear itself	ne shift register is
0	FIFO_EN	RW	1'b0	RX and TX FIFO's	enable	

Table 17.6 - SPIS_FIFO_CNTL - FIFO Control Register

17.2.6 SPIS_TNSFR_FRMT_CNTL - Transfer Format Control Register (address offset:

Bit	Name	Туре	Default Value	Description
7	FIFO_EXT	RW	1′b0	1: Enable FIFO extension and allow 16 bits data transfer to / from FIFO
6	BISINT_EN	RW	1′b0	1: Enable interrupt generation after transfer is complete from SPIS_ALT_DATA register
5	MULTI_REC	RW	1′b0	1: Allow continuous reception of data without the necessity of loading the TX FIFO
4	Reserved	-	-	-
3	TX_IEN	RW	1′b0	1: Transmitter FIFO Empty interrupt enabled
2:0	Reserved	-	-	-

Table 17.7 - SPIS_TNSFR_FRMT_CNTL - Transfer Format Control Register

17.2.7 SPIS_ALT_DATA - Alternative SPI Slave Data Register (address offset: 0x18)

Bit	Name	Туре	Default Value	Description
7:0	DATA	RW	8'h00	Alternative SPI Mode Data register. Data transmitted through this register are done as a single channel SPI only, regardless of QUAD/DUAL mode setting

Table 17.8 - SPIS_ALT_DATA - Alternative SPI Slave Data Register

17.2.8 SPIS_RX_FIFO_COUNT - SPI Slave RX FIFO Count Register (address offset: 0x1C)

Bit	Name	Туре	Default Value	Description
7:0	DATA	RW	8'h00	The number of bytes available in the RX FIFO. Note that the counter can only count up to 63, then rolls back to 0. If it is 0 and SPI_FLAG bit is 1, it means there are 64 bytes in the FIFO

Table 17.9 - SPIS_RX_FIFO_COUNT - SPI Slave RX FIFO Count Register

18 I2C Master

The I2C Master conforms to v2.1 and v3.0 of the I2C specification.

Listed below are the key features supported by the I2C master:

- Supports Standard Speed Mode (up to 100kb/s)
- Supports Fast mode (up to 400kb/s)
- Supports Fast-plus mode (up to 1Mb/s)
- Supports High-speed mode (up to 3.4Mb/s)
- Performs arbitration and clock synchronisation
- Supports multi-master systems
- Supports both 7-bit and 10-bit address modes
- Supports interrupt generation
- Supports FIFO mode

18.1 Register Summary

Listed below are the registers with their offset from the base address (0x10300). All registers can only be accessed via Byte (8-bit) mode.

Address Offset	Register	Default value	References
0×00	I2CM_SLV_ADDR - Slave Address Register	0x00	<u>Section 18.2.1</u>
0x01	I2CM_CNTL - Control Register	0x00	<u>Section 18.2.2</u>
0x01	I2CM_STATUS - Status Register	0x20	<u>Section 18.2.3</u>
0x02	I2CM_DATA - Receive / Transmit Data Register	0x00	<u>Section 18.2.4</u>
0x03	I2CM_TIME_PERIOD - Timer Period Register	0x01	<u>Section 18.2.5</u>
0x03	I2CM_HS_TIME_PERIOD - High Speed Timer Period Register	0x01	<u>Section 18.2.6</u>
0x04	I2CM_FIFO_LEN - FIFO Mode Byte Length	0x00	<u>Section 18.2.7</u>
0x05	I2CM_FIFO_INT_ENABLE - FIFO Mode Interrupt Enable	0x00	<u>Section 18.2.8</u>
0x06	I2CM_FIFO_INT_PEND - FIFO Mode Interrupt Pending	0x00	<u>Section 18.2.9</u>
0x07	I2CM_FIFO_DATA - FIFO Data Register	0x00	<u>Section 18.2.10</u>
0x08	I2CM_TRIG - Trigger Register	0x00	<u>Section 18.2.11</u>

Table 18.1 - Overview of I2C Master Registers

18.2 Register Details

18.2.1 I2CM_SLV_ADDR - Slave Address Register (address offset: 0x00)

Bit	Name	Туре	Default Value	Description
7:1	SLV_ADDR	RW	7′h00	This is 7-bit address bits
0	RX_OP	RW	1′b0	0: next operation is a transmission 1: next operation is a reception

Table 18.2 - I2CM_SLV_ADDR - Slave Address Register

18.2.2 I2CM_CNTL - Control Register (address offset: 0x01)

Bit	Name	Туре	Default Value	Description
7	I2C_RST	wo	1′b0	Resets the whole I2C Master controller.
6	SLV_RST	wo	1′b0	If set together with the RUN bit, the master will generate 9 I2C clocks without generating the START condition to recover a blocking Slave device to a known state. A STOP condition will be generated. This bit will be automatically cleared.
5	ADDR	WO	1′b0	Setting this together with the RUN bit will cause the generation of a START condition and transmission of a Slave address.
4	HS	wo	1′b0	Setting this together with the RUN bit switches the Bus controller into high-speed mode.
3	ACK	WO	1′b0	This bit should normally be set when the Master is in the receiver mode to generate ACK. It must be cleared when the master requires no further data from the Slave transmitter.
2	STOP	wo	1′b0	Setting this will cause the STOP condition to be generated.
1	START	wo	1′b0	Setting this will cause the START or Repeated START condition to be generated.
0	RUN	wo	1′b0	Setting this will cause the Bus controller to be active.

Table 18.3 - I2CM_CNTL - Control Register

18.2.3 I2CM_STATUS - Status Register (address offset: 0x01)

Bit	Name	Туре	Default Value	Description
7	Reserved	-	-	-
6	BUS_BUSY	RO	1′b0	1: indicates the Bus is Busy, and access is not possible. It's reset by START/STOP conditions.

Bit	Name	Туре	Default Value	Description
5	I2C_IDLE	RO	1′b1	1: indicates the Bus controller is in the IDLE state.
4	ARB_LOST	RO	1′b0	1: indicates that during the last operation the Bus controller lost the arbitration
3	DATA_ACK	RO	1′b0	1: indicates that during the last transmit operation data wasn't acknowledged.
2	ADDR_ACK	RO	1′b0	1: indicates that during the last operation the slave address wasn't acknowledged.
1	I2C_ERR	RO	1′b0	1: indicates an error occurred during the last operation – ARB_LOST, DATA_ACK or ADDR_ACK
0	I2C_BUSY	RO	1′b0	1: indicates that the Bus controller is receiving / transmitting data on the bus; other status bits of the Status register are not valid.

Table 18.4 - I2CM_STATUS - Status Register

18.2.4 I2CM_DATA - Receive / Transmit Data Register (address offset: 0x02)

Bit	Name	Туре	Default Value	Description
7:0	DATA	RW	8'h00	When read, this is the data received in the last transaction. When written, this is the data to be transmitted in the next transaction.

Table 18.5 - I2CM_DATA - Receive / Transmit Data Register

18.2.5 I2CM_TIME_PERIOD - Timer Period Register (address offset: 0x03)

Bit	Name	Туре	Default Value	Description
7	TIME_ENB	RW	1′b0	Cleared to use this register.
6:0	SCL_LP	RW	7'h01	Frequency scaler used in STANDARD_FAST and FAST_PLUS modes. The value is appended with a 1 at LSB to make it 8-bit. SCL_PERIOD = (SCL_LP[6] * 128 + SCL_LP[5] * 64 + SCL_LP[4] * 32 + SCL_LP[3] * 16 + SCL_LP[2] * 8 + SCL_LP[1] * 4 + SCL_LP[0] * 2 + 1) * CLK_PERIOD

Table 18.6 - I2CM_TIME_PERIOD - Timer Period Register

18.2.6 I2CM_HS_TIME_PERIOD - High Speed Timer Period Register (address offset: 0x03)

Bit Name Type Value Description

Bit	Name	Туре	Default Value	Description
7	TIME_ENB	wo	1′b0	Set to use this register.
6	FAST	wo	1′b0	Set to indicate to the Bus controller to use FAST generic timing parameters.
5	Reserved	-	-	-
4:0	SCL_HP	wo	1'b1	Frequency scalar used in FAST mode. The value is appended with a 1 at the LSB, and prepended with 2 0's to make it 8-bit. SCL_PERIOD = (SCL_HP[4] * 32 + SCL_HP[3] * 16 + SCL_HP[2] * 8 + SCL_HP[1] * 4 + SCL_HP[0] * 2 + 1) * CLK_PERIOD

Table 18.7 - I2CM_HS_TIME_PERIOD - High Speed Timer Period Register

18.2.7 I2CM_FIFO_LEN - FIFO Mode Byte Length (address offset: 0x04)

Bit	Name	Туре	Default Value	Description
7:0	FIFO_BL	RW	8'h00	Number of bytes (FIFO_BL + 1) to transmit / receive when FIFO mode is enabled

Table 18.8 - I2CM_FIFO_LEN - FIFO Mode Byte Length

18.2.8 I2CM_FIFO_INT_ENABLE - FIFO Mode Interrupt Enable (address offset: 0x05)

Bit	Name	Туре	Default Value	Description
7	DONE	RW	1′b0	FIFO_BL operation completed Interrupt
6	I2C_INT	RW	1′b0	I2C Interrupt
5	RX_FULL	RW	1′b0	RX FIFO Full interrupt enable
4	RX_HALF	RW	1′b0	RX FIFO Half Full interrupt enable
3	RX_EMPTY	RW	1′b0	RX FIFO Empty interrupt enable
2	TX_FULL	RW	1′b0	TX FIFO Full interrupt enable
1	TX_HALF	RW	1′b0	TX FIFO Half Full interrupt enable
0	TX_EMPTY	RW	1'b0	TX FIFO Empty interrupt enable

Table 18.9 - I2CM_FIFO_INT_ENABLE - FIFO Mode Interrupt Enable

18.2.9 I2CM_FIFO_INT_PEND - FIFO Mode Interrupt Pending (address offset: 0x06)

Bit	Name	Туре	Default Value	Description
7	DONE	RW1C	1′b0	FIFO_BL operation complete interrupt pending
6	I2C_INT	RW1C	1′b0	I2C Interrupt pending
5	RX_FULL	RW1C	1′b0	RX FIFO Full interrupt pending
4	RX_HALF	RW1C	1′b0	RX FIFO Half Full interrupt pending
3	RX_EMPTY	RW1C	1′b0	RX FIFO Empty interrupt pending
2	TX_FULL	RW1C	1′b0	TX FIFO Full interrupt pending
1	TX_HALF	RW1C	1′b0	TX FIFO Half Full interrupt pending
0	TX_EMPTY	RW1C	1′b0	TX FIFO Empty interrupt pending

Table 18.10 - I2CM_FIFO_INT_PEND - FIFO Mode Interrupt Pending

18.2.10 I2CM_FIFO_DATA - FIFO Data Register (address offset: 0x07)

Bit	Name	Туре	Default Value	Description
7:0	FIFO_DATA	RW	8'h00	FIFO Data Read from RX Buffer

Table 18.11 - I2CM_FIFO_DATA - FIFO Data Register

18.2.11 I2CM_TRIG - Trigger Register (address offset: 0x08)

Bit	Name	Туре	Default Value	Description
7	RX_OP	RW	1'b0	A write to this register triggers the FIFO mode operation. Set this bit to 1 for RX, and 0 for TX FIFO operations. The operation will end when FIFO_BL expires.
6:0	Reserved	-	-	-

Table 18.12 - I2CM_TRIG - Trigger Register

19 I2C Slave

The I2C Slave conforms to v2.1 and v3.0 of the I2C specification.

Listed below are the key features supported by the I2C slave:

- Supports Standard Speed Mode (up to 100kb/s)
- Supports Fast mode (up to 400kb/s)
- Supports Fast-plus mode (up to 1Mb/s)
- Supports High-speed mode (up to 3.4Mb/s)
- Performs arbitration and clock synchronisation
- Supports interrupt generation
- Supports FIFO mode
- Supports clock stretch operation

19.1 Register Summary

Listed below are the registers with their offset from the base address (0x10310). All registers can only be accessed via Byte (8-bit) mode.

Address Offset	Register	Default value	References
0x00	I2CS_OWN_ADDR - Own Address Register	0x00	<u>Section 19.2.1</u>
0x01	I2CS_CNTL - Control Register	0x00	<u>Section 19.2.2</u>
0x01	I2CS_STATUS - Status Register	0x00	<u>Section 19.2.3</u>
0x02	I2CS_DATA - Receive / Transmit Data Register	0x00	<u>Section 19.2.4</u>
0x04	I2CS_FIFO_LEN - FIFO Mode Byte Length	0x00	<u>Section 19.2.5</u>
0x05	I2CS_FIFO_INT_ENABLE - FIFO Mode Interrupt	0x00	<u>Section 19.2.6</u>
0x06	Enable I2CS_FIFO_INT_PEND - FIFO Mode Interrupt	0x00	<u>Section 19.2.7</u>
0x07	Pending I2CS_FIFO_DATA - FIFO Data Register	0x00	<u>Section 19.2.8</u>
0x08	I2CS_TRIG - Trigger Register	0x00	<u>Section 19.2.9</u>

Table 19.1 - Overview of I2C Master Registers

19.2 Register Details

19.2.1 I2CS_OWN_ADDR - Own Address Register (address offset: 0x00)

Bit	Name	Туре	Default Value	Description
7	Reserved	-	-	-
6:0	OWN_ADD R	RW	7'h00	This is the seven address bits of the Slave controller.

Table 19.2 - I2CS_OWN_ADDR - Own Address Register

19.2.2 I2CS_CNTL - Control Register (address offset: 0x01)

Bit	Name	Туре	Default Value	Description
7	I2C_RST	wo	1′b0	Setting this bit will reset the whole Slave controller.
6	DEV_ACTV	RW	1'b0	Device Active 1: enables the Slave controller operations 0: disables the Slave controller operations Writing a 1 sets DEV_ACTV to 1 immediately while writing 0 will not be effective immediately if there is any on-going transmission. It's suggested that this bit is polled if a 0 is written.
5:4	Reserved	-	-	-
3	REC_FIN_C LR	wo	1′b0	Writing 1 to this bit clears REC_FIN bit from the Status register.
2	SEND_FIN_ CLR	wo	1′b0	Writing 1 to this bit clears SEND_FIN bit from the Status register.
1:0	Reserved	-	-	-

Table 19.3 - I2CS_CNTL - Control Register

19.2.3 I2CS_STATUS - Status Register (address offset: 0x01)

Bit	Name	Туре	Default Value	Description
7	Reserved	-	-	-
6	DEV_ACTV	RW	1′b0	Device Active 1: enables the Slave controller operations 0: disables the Slave controller operations Writing a 1 set DEV_ACTV to 1 immediately while writing 0 will not be effective immediately if there is any on-going transmission. It's suggested that this bit is polled if a 0 is written.
5	Reserved	-	-	-
4	BUS_ACTV	RO	1′b0	1: indicates that there is transmission: send, receive or own address detection in progress
3	REC_FIN	RO	1′b0	1: indicates that the Master has ended the transmit operation. It means no more RX_REQ will be set during this single or bursts receive operation. It is cleared by writing 1 to REC_FINCLR bit in the Control register.

Bit	Name	Туре	Default Value	Description	
2	SEND_FIN	RO	1'b0	1: indicates that the Master has ended the receive operation. It means no more TX_REQ will be set during this single or burst send operation. It is cleared by writing 1 to SEND_FINCLR bit in the Control register.	
1	TX_REQ	RO	1'b0	1: indicates the Slave controller is addressed as transmitter and requires data from the host device.	
0	RX_REQ	RO	1′b0	1: indicates the Slave controller has received data from the Master. It is automatically cleared by reading of I2CS_DATA.	

Table 19.4 - I2CS_STATUS - Status Register

19.2.4 I2CS_DATA - Receive / Transmit Data Register (address offset: 0x02)

Bit	Name	Туре	Default Value	Description
7:0	DATA	RW	8'h00	When read, this is the data received in the last transaction. When written, this is the data to be transmitted in the next transaction.

Table 19.5 - I2CS_DATA - Receive / Transmit Data Register

19.2.5 I2CS_FIFO_LEN - FIFO Mode Byte Length (address offset: 0x04)

Bit	Name	Туре	Default Value	Description
7:0	FIFO_BL	RW	8'h00	Number of bytes (FIFO_BL + 1) to transmit / receive when FIFO mode is enabled

Table 19.6 - I2CS_FIFO_LEN - FIFO Mode Byte Length

19.2.6 I2CS_FIFO_INT_ENABLE - FIFO Mode Interrupt Enable (address offset: 0x05)

Bit	Name	Туре	Default Value	Description
7	DONE	RW	1′b0	FIFO_BL operation completed Interrupt
6	I2C_INT	RW	1′b0	I2C Interrupt
5	RX_FULL	RW	1′b0	RX FIFO Full interrupt enable
4	RX_HALF	RW	1′b0	RX FIFO Half Full interrupt enable
3	RX_EMPTY	RW	1′b0	RX FIFO Empty interrupt enable
2	TX_FULL	RW	1′b0	TX FIFO Full interrupt enable
1	TX_HALF	RW	1′b0	TX FIFO Half Full interrupt enable

Bit	Name	Туре	Default Value	Description
0	TX_EMPTY	RW	1′b0	TX FIFO Empty interrupt enable

Table 19.7 - I2CS_FIFO_INT_ENABLE - FIFO Mode Interrupt Enable

19.2.7 I2CS_FIFO_INT_PEND - FIFO Mode Interrupt Pending (address offset: 0x06)

Bit	Name	Туре	Default Value	Description
7	DONE	RW1C	1′b0	FIFO_BL operation complete interrupt pending
6	I2C_INT	RW1C	1′b0	I2C Interrupt pending
5	RX_FULL	RW1C	1′b0	RX FIFO Full interrupt pending
4	RX_HALF	RW1C	1′b0	RX FIFO Half Full interrupt pending
3	RX_EMPTY	RW1C	1′b0	RX FIFO Empty interrupt pending
2	TX_FULL	RW1C	1′b0	TX FIFO Full interrupt pending
1	TX_HALF	RW1C	1′b0	TX FIFO Half Full interrupt pending
0	TX_EMPTY	RW1C	1'b0	TX FIFO Empty interrupt pending

Table 19.8 - I2CS_FIFO_INT_PEND - FIFO Mode Interrupt Pending

19.2.8 I2CS_FIFO_DATA - FIFO Data Register (address offset: 0x07)

Bit	Name	Туре	Default Value	Description
7:0	FIFO_DATA	RO	8'h00	FIFO Data Read from the RX Buffer

Table 19.9 - I2CS_FIFO_DATA - FIFO Data Register

19.2.9 I2CS_TRIG - Trigger Register (address offset: 0x08)

Bit	Name	Туре	Default Value	Description
7	RX_OP	RW	1'b0	A write to this register triggers the FIFO mode operation. Set this bit to 1 for RX, and 0 for TX FIFO operations. The operation will end when FIFO_BL expires.
6:0	Reserved	-	-	-

Table 19.10 - I2CS_TRIG - Trigger Register

20 RTC

This is a Real Time Clock (RTC) running off a dedicated 32.768 kHz oscillator. It is powered by the internal 1.2V regulator.

20.1 Register Summary

Listed below are the registers with their offset from the base address (0x10280). All registers can be accessed via Double-Word (32-bit) mode.

Address Offset	Register	Default value	References
0x00	RTC_CCVR - Current Counter Value Register	0x00000000	<u>Section 20.2.1</u>
0x04	RTC_CMR - Counter Match Register	0x00000000	Section 20.2.2
0x08	RTC_CLR - Counter Load Register	0x00000000	Section 20.2.3
0x0C	RTC_CCR - Counter Control Register	0x00000000	Section 20.2.4
0x10	RTC_STAT - Interrupt Status Register	0x00000000	Section 20.2.5
0x14	RTC_RSTAT - Interrupt Raw Status Register	0x00000000	Section 20.2.6
0x18	RTC_EOI - End of Interrupt Register	0x00000000	Section 20.2.7
0x1C	RTC_COMP_VERSION - Component Version Register	0x3230332A	Section 20.2.8

Table 20.1 - Overview of RTC Registers

20.2 Register Details

20.2.1 RTC_CCVR - Current Counter Value Register (address offset: 0x00)

Bit	Name	Туре	Default Value	Description
31:0	DATA	RO	32'h0	This is the current value of the internal counter. This value always is read coherently.

Table 20.2 - RTC_CCVR - Current Counter Value Register

20.2.2 RTC_CMR - Counter Match Register (address offset: 0x04)

Bit	Name	Туре	Default Value	Description
31:0	DATA	RW	32'h0	When the internal counter matches this register, an interrupt is generated if enabled. When appropriate, this value is written coherently. Only when all relevant bytes have been written will the new value be effective.

Table 20.3 - RTC_CMR - Counter Match Register

20.2.3 RTC_CLR - Counter Load Register (address offset: 0x08)

Bit	Name	Туре	Default Value	Description
31:0	DATA	RW	32'h0	Loaded in the counter as the loaded value, which is written coherently.

Table 20.4 - RTC_CLR - Counter Load Register

20.2.4 RTC_CCR - Counter Control Register (address offset: 0x0C)

Bit	Name	Туре	Default Value	Description
31:4	Reserved	-	-	-
3	RTC_WEN	RW	1'h0	Allows the user to force the counter to wrap when a match occurs instead of waiting until the maximum count is reached. 0: wrap disabled 1: wrap enabled
2	RTC_EN	RW	1'h0	Allows the user to control counting in the counter. 0: Counter disabled 1: Counter enabled
1	RTC_MASK	RW	1'h0	Allows the user to mask a generated interrupt. 0: Interrupt unmasked 1: Interrupt masked
0	RTC_IEN	RW	1'h0	Allows the user to disable interrupt generation. 0: Interrupt disabled 1: Interrupt enabled

Table 20.5 - RTC_CCR - - Counter Control Register

20.2.5 RTC_STAT - Interrupt Status Register (address offset: 0x10)

Bit	Name	Туре	Default Value	Description
31:1	Reserved	-	-	-
0	RTC_STAT	RO	1'h0	This is the masked raw status 0: Interrupt is inactive 1: Interrupt is active (regardless of polarity)

Table 20.6 - RTC_STAT - Interrupt Status Register

20.2.6 RTC_RSTAT - Interrupt Raw Status Register (address offset: 0x14)

Bit	Name	Туре	Default Value	Description
-----	------	------	------------------	-------------

31:1	Reserved	-	-	-
0	TC_RSTAT	RO	1′h0	0: Interrupt is inactive 1: Interrupt is active (regardless of polarity)

Table 20.7 - RTC_RSTAT - Interrupt Raw Status Register

20.2.7 RTC_EOI - End of Interrupt Register (address offset: 0x18)

Bit	Name	Туре	Default Value	Description
31:1	Reserved	-	-	-
0	RTC_EOI	RO	1'h0	By reading this location, the match interrupt is cleared. Performing read-to-clear on interrupts, the interrupt is cleared at the end of the read.

Table 20.8 - RTC_EOI - End of Interrupt Register

20.2.8 RTC_COMP_VERSION - Component Version Register (address offset: 0x1C)

Bit	Name	Туре	Default Value	Description
31:0	RTC_COMP_ VERSION	RO	32'h323 0332A	ASCII value for each number in the version, followed by *. 32_30_33_2A represents the version 2.03*.

Table 20.9 - RTC_COMP_VERSION - Component Version Register

21 PWM

The device supports 7 separate independent PWM channels. All channels share an 8-bit prescaler to scale the system clock frequency to the desired channels.

Each channel has its own 16-bit comparator value. This is the value that would be matched to a preset 16-bit counter. When a channel's 16-bit comparator value matches that of the 16-bit counter, the corresponding PWM channel output will toggle. This 16-bit comparator value will continue to count until it reaches its preset value, and the counter will just roll over.

A special feature allows the 7 channels each to also toggle its own output based on the comparison results of other channels. Hence each channel potentially can have up to 7 toggle edges.

The PWM can be generated as a multi-shot or continuously. When defined as a multi-shot, an interrupt may be generated at the end of the PWM production.

Channels 0 and 1 can double as a stereo 11 kHz or 22 kHz PWM audio channel. Once it's set up, the 16-bit or 8-bit PWM audio data can be downloaded to the PWM's local FIFO which can hold up to 64 stereo or 128 mono audio data. The data will be played back based on the prescaler and 16-bit counter and the data will be automatically scaled to fit the playback period if necessary.

The FIFO can generate a number of interrupts for FIFO management. They are the FIFO full, empty, half-empty, overflow and underflow. Each of these interrupts can be individually masked if required.

21.1 Register Summary

Listed below are the registers with their offset from the base address (0x103C0). All registers can only be accessed via Byte (8-bit) mode but the FIFO can only be accessed via Word (16-bit) mode.

Address Offset	Register	Default value	References
0x00	PWM_CTRL0 - PCM Control Register	0x00	<u>Section 21.2.1</u>
0x01	PWM_CTRL1 - PWM Control Register	0x00	<u>Section 21.2.2</u>
0x02	PWM_PRESCALER - PWM Prescaler Register	0x00	<u>Section 21.2.3</u>
0x03	PWM_CNTL - PWM Counter Register (LSB)	0x00	<u>Section 21.2.4</u>
0x04	PWM_CNTH - PWM Counter Register (MSB)	0x00	<u>Section 21.2.5</u>
0x05	PWM_CMP0L - Comparator 0 Value Register (LSB)	0x00	<u>Section 21.2.6</u>
0x06	PWM_CMP0H - Comparator 0 Value Register	0x00	<u>Section 21.2.7</u>
0x07	(MSB) PWM_CMP1L - Comparator 1Value Register (LSB)	0x00	Section 21.2.8
0x08	PWM_CMP1H - Comparator 1 Value Register (MSB)	0x00	Section 21.2.9
0x09	PWM_CMP2L - Comparator 2 Value Register (LSB)	0x00	Section 21.2.10
0x0A	PWM_CMP2H - Comparator 2 Value Register	0x00	Section 21.2.11
0x0B	(MSB) PWM_CMP3L - Comparator 3 Value Register (LSB)	0x00	Section 21.2.12
0x0C	PWM_CMP3H - Comparator 3 Value Register	0x00	Section 21.2.13
0x0D	(MSB) PWM_CMP4L - Comparator 4 Value Register (LSB)	0x00	Section 21.2.14

0x0E	PWM_CMP4H - Comparator 4 Value Register	0x00	Section 21.2.15
0x0F	(MSB) PWM_CMP5L - Comparator 5 Value Register (LSB)	0x00	<u>Section 21.2.16</u>
0×10	PWM_CMP5H - Comparator 5 Value Register	0x00	Section 21.2.17
0x11	(MSB) PWM_CMP6L - Comparator 6 Value Register (LSB)	0x00	<u>Section 21.2.18</u>
0x12	PWM_CMP6H - Comparator 6 Value Register	0x00	<u>Section 21.2.19</u>
0x13	(MSB) PWM_CMP7L - Comparator 7 Value Register (LSB)	0x00	<u>Section 21.2.20</u>
0x14	PWM_CMP7H - Comparator 7 Value Register	0x00	<u>Section 21.2.21</u>
0x15	(MSB) PWM_TOGGLE0 - Channel 0 OUT Toggle	0x00	<u>Section 21.2.22</u>
0×16	Comparator Mask Register PWM_TOGGLE1 - Channel 1 OUT Toggle	0x00	<u>Section 21.2.23</u>
0×17	Comparator Mask Register PWM_TOGGLE2 - Channel 2 OUT Toggle	0x00	<u>Section 21.2.24</u>
0x18	Comparator Mask Register PWM_TOGGLE3 - Channel 3 OUT Toggle	0x00	<u>Section 21.2.25</u>
0×19	Comparator Mask Register PWM_TOGGLE4 - Channel 4 OUT Toggle	0x00	<u>Section 21.2.26</u>
0x1A	Comparator Mask Register PWM_TOGGLE5 - Channel 5 OUT Toggle	0x00	<u>Section 21.2.27</u>
0x1B	Comparator Mask Register PWM_TOGGLE6 - Channel 6 OUT Toggle	0x00	Section 21.2.28
0x1C	Comparator Mask Register PWM_TOGGLE7 - Channel 7 OUT Toggle	0x00	Section 21.2.29
0x1D	Comparator Mask Register PWM_OUT_CLR_EN - PWM OUT Clear Enable Register	0x00	Section 21.2.30
0×1E	PWM_CTRL_BL_CMP8 - Control Block CMP8 Value Register	0x00	Section 21.2.31
0x1F	PWM_INIT - PWM Initialization Register	0x00	Section 21.2.32
0×20	PWM_INTMASK - PWM Interrupt Mask Register	0x00	Section 21.2.33
0×21	PWM_INTSTATUS - PWM Interrupt Status Register	0x00	Section 21.2.34
0x22	PWM_SAMPLE_FREQ_H - PWM Data Sampling Frequency High Byte Register	0x56	Section 21.2.35
0x23	PWM_SAMPLE_FREQ_L - PWM Data Sampling Frequency Low Byte Register	0x22	Section 21.2.36
0x24	PCM_VOLUME - PCM Volume Register	0x00	Section 21.2.37
0x3C	PWM_BUFFER - PCM Buffer Register	0xXXXX	Section 21.2.38

Table 21.1 - Overview of PWM Registers

21.2 Register Details

21.2.1 PWM_CTRL0 - PCM Control Register (address offset: 0x00)

Bit	Name	Туре	Default Value	Description
7	PWM_C H01_A UTO	RW	1′b0	Set to 1 to use channels 0 & 1 for audio playback via the internal FIFO.
6	PWM_C H01_M ONO	RW	1'b0	Set to 1 for mono audio. Both channels will playback the same data.
5	PWM_C H01_8 BIT	RW	1'b0	Set to 1 for 8-bit audio data.
4	PWM_C H01_S CALE	RW	1'b0	Set to 1 if automatic scaling of data is required.
3	PWM_C H01_FI LTER	RW	1′b0	Set to 1 if PCM filter is required. This is valid only with PWM_CH01_AUTO and PCM_EN set.
2	PCM_E N	RW	1'b0	Set to 1 if channel 0 and channel 1 are used for PCM playback.
1	PWM_D EV_EN	RW	1'b0	Set to 1 to enable PWM. This bit is not really used.
0	PWM_S OFT_RE SET	RW	1′b0	Set to 1 to reset PWM.

Table 21.2 - PWM_CTRL0 - PCM Control Register

21.2.2 PWM_CTRL1 - PWM Control Register (address offset: 0x01)

Bit	Name	Туре	Default Value	Description	
7	Reserv ed	-	-	-	
6	PCM_BI YTEREV ERSE	RW	1′b0	0: Data is treated as in big of For 8-bit, this has no eff 1: Data is treated as in little For 8-bit, this has no eff For 16-bit, the lower and	ect. e endian format
5	PWM_I NT	RW	1'b0	PWM Interrupt	
4	PWM_I NT_MA SK	RW	1′b0	Interrupt mask bit for PWM_	_INT
				PWM trigger enable:	
	PWM_T			00	Disabled
2:1	RIGGE	RW	2'h0	01	Positive Edge
	R_EN			10	Negative Edge
				11	Any Edge
0	PWM_E N	RW	1′b0	Set to 1 to enable PWM.	

Table 21.3 - PWM_CTRL1 - PWM Control Register

21.2.3 PWM_PRESCALER - PWM Prescaler Register (address offset: 0x02)

Bit	Name	Туре	Default Value	Description
7:0	PRESC ALER	RW	8'h00	8-bit Prescaler value.

Table 21.4 - PWM_PRESCALER - PWM Prescaler Register

21.2.4 PWM_CNTL - PWM Counter Register (LSB) (address offset: 0x03)

Bit	Name	Туре	Default Value	Description
7:0	CNT16 _LSB	RW	8'h00	16-bit counter LSB.

Table 21.5 - PWM_CNTL - PWM Counter Register (LSB)

21.2.5 PWM_CNTH - PWM Counter Register (MSB) (address offset: 0x04)

Bit	Name	Туре	Default Value	Description
7:0	CNT16 _MSB	RW	8'h00	16-bit counter MSB.

Table 21.6 - PWM_CNTH - PWM Counter Register (MSB)

21.2.6 PWM_CMP0L - Comparator 0 Value Register (LSB) (address offset: 0x05)

Bit	Name	Туре	Default Value	Description
7:0	CMP16 _0_LSB	RW	8'h00	LSB of comparator 0 16-bit value.

Table 21.7 - PWM_CMP0L - Comparator 0 Value Register (LSB)

21.2.7 PWM_CMP0H - Comparator 0 Value Register (MSB) (address offset: 0x06)

Bit	Name	Туре	Default Value	Description
7:0	CMP16 _0_MS B	RW	8'h00	MSB of comparator 0 16-bit value.

Table 21.8 - PWM_CMP0H - Comparator 0 Value Register (MSB)

21.2.8 PWM_CMP1L - Comparator 1 Value Register (LSB) (address offset: 0x07)

Bit	Name	Туре	Default Value	Description
-----	------	------	------------------	-------------

7:0	CMP16 _1_LSB	RW	8'h00	LSB of comparator 1 16-bit value.
-----	-----------------	----	-------	-----------------------------------

Table 21.9 - PWM_CMP1L - Comparator 1 Value Register (LSB)

21.2.9 PWM_CMP1H - Comparator 1 Value Register (MSB) (address offset: 0x08)

Bit	Name	Туре	Default Value	Description
7:0	CMP16 _1_MS B	RW	8'h00	MSB of comparator 1 16-bit value.

Table 21.10 - PWM_CMP1H - Comparator 1 Value Register (MSB)

21.2.10 PWM_CMP2L - Comparator 2 Value Register (LSB) (address offset: 0x09)

Bit	Name	Туре	Default Value	Description
7:0	CMP16 _2_LSB	RW	8'h00	LSB of comparator 2 16-bit value.

Table 21.11 - PWM_CMP2L - Comparator 2 Value Register (LSB)

21.2.11 PWM_CMP2H - Comparator 2 Value Register (MSB) (address offset: 0x0A)

Bit	Name	Туре	Default Value	Description
7:0	CMP16 _2_MS B	RW	8'h00	MSB of comparator 2 16-bit value.

Table 21.12 - PWM_CMP2H - Comparator 2 Value Register (MSB)

21.2.12 PWM_CMP3L - Comparator 3 Value Register (LSB) (address offset: 0x0B)

Bit	Name	Туре	Default Value	Description
7:0	CMP16 _3_LSB	RW	8'h00	LSB of comparator 3 16-bit value.

Table 21.13 - PWM_CMP3L - Comparator 3 Value Register (LSB)

21.2.13 PWM_CMP3H - Comparator 3 Value Register (MSB) (address offset: 0x0C)

Bit	Name	Туре	Default Value	Description
7:0	CMP16 _3_MS B	RW	8'h00	MSB of comparator 3 16-bit value.

Table 21.14 - PWM_CMP3H - Comparator 3 Value Register (MSB)

21.2.14 PWM_CMP4L - Comparator 4 Value Register (LSB) (address offset: 0x0D)

Bit	Name	Туре	Default Value	Description
7:0	CMP16 _4_LSB	RW	8'h00	LSB of comparator 4 16-bit value.

Table 21.15 - PWM_CMP4L - Comparator 4 Value Register (LSB)

21.2.15 PWM_CMP4H - Comparator 4 Value Register (MSB) (address offset: 0x0E)

Bit	Name	Туре	Default Value	Description
7:0	CMP16 _4_MS B	RW	8'h00	MSB of comparator 4 16-bit value.

Table 21.16 - PWM_CMP4H - Comparator 4 Value Register (MSB)

21.2.16 PWM_CMP5L - Comparator 5 Value Register (LSB) (address offset: 0x0F)

Bit	Name	Туре	Default Value	Description
7:0	CMP16 _5_LSB	RW	8'h00	LSB of comparator 5 16-bit value.

Table 21.17 - PWM_CMP5L - Comparator 5 Value Register (LSB)

21.2.17 PWM_CMP5H - Comparator 5 Value Register (MSB) (address offset: 0x10)

Bit	Name	Туре	Default Value	Description
7:0	CMP16 _5_MS B	RW	8'h00	MSB of comparator 5 16-bit value.

Table 21.18 - PWM_CMP5H - Comparator 5 Value Register (MSB)

21.2.18 PWM_CMP6L - Comparator 6 Value Register (LSB) (address offset: 0x11)

Bit	Name	Туре	Default Value	Description
7:0	CMP16 _6_LSB	RW	8'h00	LSB of comparator 6 16-bit value.

Table 21.19 - PWM_CMP6L - Comparator 6 Value Register (LSB)

21.2.19 PWM_CMP6H - Comparator 6 Value Register (MSB) (address offset: 0x12)

Bit	Name	Туре	Default Value	Description
7:0	CMP16 _6_MS B	RW	8'h00	MSB of comparator 6 16-bit value.

Table 21.20 - PWM_CMP6H - Comparator 6 Value Register (MSB)

21.2.20 PWM_CMP7L - Comparator 7 Value Register (LSB) (address offset: 0x13)

В	it	Name	Туре	Default Value	Description
7	:0	CMP16 _7_LSB	RW	8'h00	LSB of comparator 7 16-bit value.

Table 21.21 - PWM_CMP7L - Comparator 7 Value Register (LSB)

21.2.21 PWM_CMP7H - Comparator 7 Value Register (MSB) (address offset: 0x14)

Bit	Name	Туре	Default Value	Description
7:0	CMP16 _7_MS B	RW	8'h00	MSB of comparator 7 16-bit value.

Table 21.22 - PWM_CMP7H - Comparator 7 Value Register (MSB)

21.2.22 PWM_TOGGLE0 - Channel 0 OUT Toggle Comparator Mask Register (address offset: 0x15)

Bit	Name	Туре	Default Value	Description	
7:0	TOGGL E_EN_0	RW	8'h00	Channel 0 PWM OUT toggle comparator mask (each bit corresponds to 1 comparator)	

Table 21.23 - PWM_TOGGLE0 - Channel 0 OUT Toggle Comparator Mask

21.2.23 PWM_TOGGLE1 - Channel 1 OUT Toggle Comparator Mask Register (address offset: 0x16)

Bit	Name	Туре	Default Value	Description	
7:0	TOGGL E_EN_1	RW	8'h00	Channel 1 PWM OUT toggle comparator mask (each bit corresponds to 1 comparator)	

Table 21.24 - PWM_TOGGLE1 - Channel 1 OUT Toggle Comparator Mask

21.2.24 PWM_TOGGLE2 - Channel 2 OUT Toggle Comparator Mask Register (address offset: 0x17)

Bit	Name	Туре	Default Value	Description	
7:0	TOGGL E_EN_2	RW	8'h00	Channel 2 PWM OUT toggle comparator mask (each bit corresponds to 1 comparator)	

Table 21.25 - PWM_TOGGLE2 - Channel 2 OUT Toggle Comparator Mask Register

21.2.25 PWM_TOGGLE3 - Channel 3 OUT Toggle Comparator Mask Register (address offset: 0x18)

Bit	Name	Туре	Default Value	Description	
7:0	TOGGL E_EN_3	RW	8'h00	Channel 3 PWM OUT toggle comparator mask (each bit corresponds to 1 comparator)	

Table 21.26 - PWM_TOGGLE3 - Channel 3 OUT Toggle Comparator Mask Register

21.2.26 PWM_TOGGLE4 - Channel 4 OUT Toggle Comparator Mask Register (address offset: 0x19)

Bit	Name	Туре	Default Value	Description	
7:0	TOGGL E_EN_4	RW	8'h00	Channel 4 PWM OUT toggle comparator mask (each bit corresponds to 1 comparator)	

Table 21.27 - PWM_TOGGLE4 - Channel 4 OUT Toggle Comparator Mask Register

21.2.27 PWM_TOGGLE5 - Channel 5 OUT Toggle Comparator Mask Register (address offset: 0x1A)

Bi	t	Name	Туре	Default Value	Description	
7:	0	TOGGL E_EN_5	RW	8'h00	Channel 5 PWM OUT toggle comparator mask (each bit corresponds to 1 comparator)	

Table 21.28 - PWM_TOGGLE5 - Channel 5 OUT Toggle Comparator Mask Register

21.2.28 PWM_TOGGLE6 - Channel 6 OUT Toggle Comparator Mask Register (address offset: 0x1B)

Bit	Name	Туре	Default Value	Description	
7:0	TOGGL E_EN_6	RW	8'h00	Channel 6 PWM OUT toggle comparator mask (each bit corresponds to 1 comparator)	

Table 21.29 - PWM_TOGGLE6 - Channel 6 OUT Toggle Comparator Mask Register

21.2.29 PWM_TOGGLE7 - Channel 7 OUT Toggle Comparator Mask Register (address offset: 0x1C)

Bit	Name	Туре	Default Value	Description	
7:0	TOGGL E_EN_7	RW	8'h00	Channel 7 PWM OUT toggle comparator mask (each bit corresponds to 1 comparator)	

Table 21.30 - PWM_TOGGLE7 - Channel 7 OUT Toggle Comparator Mask Register

21.2.30 PWM_OUT_CLR_EN - PWM OUT Clear Enable Register (address offset: 0x1D)

Bit	Name	Туре	Default Value	Description	
7:0	CLR_E N	RW	8'h00	PWM Out clear enable	

Table 21.31 - PWM_OUT_CLR_EN - PWM OUT Clear Enable Register

21.2.31 PWM_CTRL_BL_CMP8 - Control Block CMP8 Value Register (address offset: 0x1E)

Bit	Name	Туре	Default Value	Description	
7:0	CTRL_B	RW	8'h00	Control block CMP8 value.	
	L_CMP			0: continuous	
	8			1: one-shot, 2 - 255	

Table 21.32 - PWM_CTRL_BL_CMP8 - Control Block CMP8 Value Register

21.2.32 PWM_INIT - PWM Initialization Register (address offset: 0x1F)

Bit	Name	Туре	Default Value	Description	
7:0	INIT	RW	8'h00	PWM Initialisation register	

Table 21.33 - PWM_INIT - PWM Initialization Register

21.2.33 PWM_INTMASK - PWM Interrupt Mask Register (address offset: 0x20)

Bit	Name	Туре	Default Value	Description
7:6	Reserved	-	-	-
5	FIFO_EMPTY_MASK	RW	1′b0	FIFO empty interrupt mask
4	FIFO_FULL_MASK	RW	1′b0	FIFO full interrupt mask
3	FIFO_HALF_MASK	RW	1′b0	FIFO half full interrupt mask

Bit	Name	Туре	Default Value	Description
2	FIFO_OV_MASK	RW	1′b0	FIFO overflow interrupt mask
1	FIFO_UNDER_MASK	RW	1′b0	FIFO underflow interrupt mask
0	PWM_INT_MASK	RW	1′b0	PWM_INT interrupt mask (same as bit[4] of PWM_CTRL)

Table 21.34 - PWM_INTMASK - PWM Interrupt Mask Register

21.2.34 PWM_INTSTATUS - PWM Interrupt Status Register (address offset: 0x21)

Bit	Name	Туре	Default Value	Description
7:6	Reserved	-	-	-
5	FIFO_EMPTY_INT	RW1C	1′b0	FIFO empty interrupt; write 1 to clear.
4	FIFO_FULL_INT	RW1C	1′b0	FIFO full interrupt; write 1 to clear.
3	FIFO_HALF_INT	RW1C	1′b0	FIFO half full interrupt; write 1 to clear.
2	FIFO_OV_INT	RW1C	1′b0	FIFO overflow interrupt; write 1 to clear.
1	FIFO_UNDER_INT	RW1C	1′b0	FIFO underflow interrupt; write 1 to clear.
0	PWM_INT	RW1C	1′b0	PWM interrupt; write 1 to clear. (same as bit[5] of PWM_CTRL1)

Table 21.35 - PWM_INTSTATUS - PWM Interrupt Status Register

21.2.35 PWM_SAMPLE_FREQ_H - PWM Data Sampling Frequency High Byte Register (address offset: 0x22)

Bit	Name	Туре	Default Value	Description
7:0	PWM_SAMPLE_FRE Q_H	RW	8'h56	PWM Data Sampling Frequency High Byte

Table 21.36 - PWM_SAMPLE_FREQ_H - PWM Data Sampling Frequency High Byte Register

21.2.36 PWM_SAMPLE_FREQ_L - PWM Data Sampling Frequency Low Byte Register (address offset: 0x23)

Bit	Name	Туре	Default Value	Description
7:0	PWM_SAMPLE_FRE Q_L	RW	8'h22	PWM Data Sampling Frequency Low Byte

Table 21.37 - PWM_SAMPLE_FREQ_L - PWM Data Sampling Frequency Low Byte Register

21.2.37 PCM_VOLUME - PCM Volume Register (address offset: 0x24)

Bit	Name	Туре	Default Value	Description	
7:5	Reserved	-	-	-	
4:0	Volume Control	RW	5′h00	0x00	Mute
				0x01	~6.25%
				0x02	~12.5%
				0x03	~19%
				0x04	~25%
				0x05	~31%
				0x06	~37%
				0x07	~44%
				0x08	~50%
				0x09	~56%
				0x0A	~63%
				0x0B	~69%
				0x0C	~75%
				0x0D	~81%
				0x0E	~88%
				0x0F	~94%
				0x10	~100%
				0x11-0x1F	Illegal; forced to 0x10

Table 21.38 - PCM_VOLUME - PCM Volume Register

21.2.38 PWM_BUFFER - PCM Buffer Register (address offset: 0x3C)

Bit	Name	Туре	Default Value	Description
15:0	Buffer Data	WO	-	The entry point to the FIFO. It must be written in 16-bit. For 8-bit data, the upper 8-bit will be ignored.

Table 21.39 - PWM_BUFFER - PCM Buffer Register

22 Data Capture Interface

There is an 8-bit parallel interface to collect byte streaming data from a sensor peripheral - e.g. a camera module - in a 2Kbyte internal FIFO. The interface will provide a clock to the peripheral at a speed of 25MHz (max).

22.1 Register Summary

Listed below are the registers with their offset from the base address (0x10360). All registers can only be accessed via Double-Word (32-bit) mode.

	value	References
DCAP_REG1 – Data Capture Interface Register 1	0x00000FFC	<u>Section 22.2.1</u>
DCAP_REG2 – Data Capture Interface Register 2	0x00000000	Section 22.2.2
DCAP_REG3 – Data Capture Interface Register 3	0x00000000	Section 22.2.3
DCAP_REG4 - Data Capture Interface Register 4	0x00000000	<u>Section 22.2.4</u>
	DCAP_REG2 – Data Capture Interface Register 2 DCAP_REG3 – Data Capture Interface Register 3	DCAP_REG1 - Data Capture Interface Register 1 0x00000FFC DCAP_REG2 - Data Capture Interface Register 2 0x00000000 DCAP_REG3 - Data Capture Interface Register 3 0x00000000

Table 22.1 - Overview of Data Capture Interface Registers

22.2 Register Details

22.2.1 DCAP_REG1 - Data Capture Interface Register 1 (address offset: 0x00)

Bit	Name	Туре	Default Value	Description		
31:16	COUNT	RW	16'h0000		s to capture after be in multiple of 4	
				Data capture s transitions from 0		cle when trigger
15:12	TRIG PAT	RW 4'h0	4'h0	En[1] / VD	En[0] / HD	Trigger
13.12	1100_1711	1	' '''	0	0	TRIG_PAT[0]
				0	1	TRIG_PAT[1]
				1	0	TRIG_PAT[2]
				1	1	TRIG_PAT[3]
11:0	THRESHOLD	RW	12'hFFC		nreshold value for e a multiple of 4 byt	

Table 22.2 - DCAP_REG1 - Data Capture Interface Register 1

22.2.2 DCAP_REG2 - Data Capture Interface Register 2 (address offset: 0x04)

Bit	Name	Туре	Default Value	Description
31:12	Reserved	-	-	-

	Dofault	

Bit	Name	Туре	Default Value	Description
11:0	FULLNESS	RO	12"h000	Specifies the number of bytes that can be safely read from the FIFO. Its value is always a multiple of 4

Table 22.3 - DCAP_REG2 - Data Capture Interface Register 2

22.2.3 DCAP_REG3 - Data Capture Interface Register 3 (address offset: 0x08)

Bit	Name	Туре	Default Value	Description
31:0	DATA	RO	-	Next four samples from the FIFO. Reading this will remove the sample from the FIFO. When FULLNESS is 0, the effect is non-deterministic

Table 22.4 - DCAP_REG3 - Data Capture Interface Register 3

22.2.4 DCAP_REG4 - Data Capture Interface Register 4 (address offset: 0x0C)

Bit	Name	Туре	Default Value	Description
31:3	Reserved	-	-	-
2	HAS_DATA	RO	1′b0	Set when FIFO contains at least THRESHOLD bytes.
1	CLK_SENSE	RW	1′b0	1: capture data on clock rising edge
0	INT_ENB	RW	1′b0	1: enable interrupt; an interrupt will be generated when HAS_DATA = 1

Table 22.5 - DCAP_REG4 - Data Capture Interface Register 4

23 Flash Controller

There are two ways to access the memory control unit. One is via the CPU I/O interface and the other via the FTDI 1-wire debugger interface. The CPU I/O interface is described here.

From the CPU I/O interface, memory transfer can occur between the Flash and the Program Memory, and between the Flash and the Data Memory. A number of the serial Flash commands are also supported, and the CPU may issue these commands to the Flash.

As this is a shared resource between the debugger interface and CPU I/O interface, the interface must acquire the resource first before performing any of the activities. This is done by reading a test-and-set semaphore. If the interface reads a 0 from the semaphore it can safely assume it has acquired the resource. Any further read to this semaphore will return a 1 until it is released by the interface that acquired the resource.

If both the debugger and CPU attempt to acquire the resource while it is free at exactly the same time, priority is given to the debugger and the CPU interface will read a 1 instead.

Until the semaphore is acquired, the semaphore is the only register any of the interfaces can read. Once the semaphore is acquired by the interface, the interface will have full access to all the registers in the control unit.

If an interface that does not have the resource writes to the control unit registers they will be ignored while a read from any of the control unit registers will always return 0.

23.1 Register Summary

Listed below are the registers with their offset from the base address (0x10800). All registers can only be accessed via Byte (8-bit) mode.

Address Offset	Register	Default value	References
0x00	RSADDR0 – Memory Start Address Register (LSB)	0x00	Section 23.2.1
0x01	RSADDR1 – Memory Start Address Register (Byte	0x00	Section 23.2.2
0x02	1) RSADDR2 – Memory Start Address Register (MSB)	0x00	<u>Section 23.2.3</u>
0x03	FSADDR0 - Flash Start Address Register (LSB)	0x00	Section 23.2.4
0x04	FSADDR1 - Flash Start Address Register (Byte 1)	0x00	<u>Section 23.2.5</u>
0x05	FSADDR2 - Flash Start Address Register (MSB)	0x00	<u>Section 23.2.6</u>
0x06	BLENGTH0 - Data Byte Length Register (LSB)	0x00	Section 23.2.7
0x07	BLENGTH1 - Data Byte Length Register (Byte 1)	0x00	Section 23.2.8
0x08	BLENGTH2 - Data Byte Length Register (MSB)	0x00	Section 23.2.9
0x09	COMMAND – Command Register	0x00	Section 23.2.10
0x0A	Reserved	-	
0x0B	SEMAPHORE - Semaphore Register	0x00	Section 23.2.11
0x0C	CONFIG - Configuration Register	0x00	Section 23.2.12
0x0D	STATUS – Status Register	0x00	Section 23.2.13

0x0E	CRCL - Flash Content CRC Register (LSB)	0xXX	Section 23.2.14
0x0F	CRCH - Flash Content CRC Register (MSB)	0xXX	Section 23.2.15
0x7C	CHIPIDO – Chip ID Register (LSB) (only via 1-wire debugger)	0xXX	Section 23.2.16
0x7D	CHIPID1 – Chip ID Register (Byte 1) (only via 1-wire debugger)	0xXX	<u>Section 23.2.17</u>
0x7E	CHIPID2 – Chip ID Register (Byte 2) (only via 1-wire debugger)	0xXX	<u>Section 23.2.18</u>
0x7F	CHIPID3 – Chip ID Register (MSB) (only via 1- wire debugger)	0xXX	<u>Section 23.2.19</u>
0x80	DRWDATA – Data Register	0x00	Section 23.2.20

Table 23.1 - Overview of Data Capture Interface Registers

23.2 Register Details

23.2.1 RSADDR0 - Memory Start Address Register (LSB) (address offset: 0x00)

Bit	Name	Туре	Default Value	Description
7:0	-	WO	0x00	LSB of the start address of memory location to perform read/write for either program or data memory

Table 23.2 - RSADDR1 - Memory Start Address Register (LSB)

23.2.2 RSADDR1 - Memory Start Address Register (Byte 1) (address offset: 0x01)

Bit	Name	Туре	Default Value	Description
7:0	-	WO	0x00	Byte 1 of the start address of memory location to perform read/write for either program or data memory

Table 23.3 - RSADDR1 - Memory Start Address Register (Byte 1)

23.2.3 RSADDR2 - Memory Start Address Register (MSB) (address offset: 0x02)

Bit	Name	Туре	Default Value	Description
7:0	-	wo	0x00	MSB of the start address of memory location to perform read/write for either program or data memory

Table 23.4 - RSADDR2 - Memory Start Address Register (MSB)

Note: The memory start address must always be aligned to a 4-byte boundary in both read/write cases. The address is treated as a double word address (e.g. 01 is byte address 4).

23.2.4 FSADDR0 - Flash Start Address Register (LSB) (address offset: 0x03)

Bit	Name	Туре	Default Value	Description
7:0	-	WO	0x00	LSB of the start address of flash location to perform read/write

Table 23.5 - FSADDRO - Flash Start Address Register (LSB)

23.2.5 FSADDR1 - Flash Start Address Register (Byte 1) (address offset: 0x04)

E	Bit	Name	Туре	Default Value	Description
7	' :0	-	WO	0x00	Byte 1 of the start address of flash location to perform read/write

Table 23.6 - FSADDR1 - Flash Start Address Register (Byte 1)

23.2.6 FSADDR2 - Flash Start Address Register (MSB) (address offset: 0x05)

Bit	Name	Туре	Default Value	Description
7:0	-	wo	0x00	MSB of the start address of flash location to perform read/write

Table 23.7 - FSADDR2 - Flash Start Address Register (MSB)

Note: The flash start address must always be aligned to 256-byte boundary in the write case, and can be any value in the read case. The address is treated as a byte address (e.g. 01 is byte address 1).

23.2.7 BLENGTHO - Data Byte Length Register (LSB) (address offset: 0x06)

Bit	Name	Туре	Default Value	Description
7:0	-	WO	0x00	LSB of the Byte Length to transfer

Table 23.8 - BLENGTHO - Data Byte Length Register (LSB) (LSB)

23.2.8 BLENGTH1 - Data Byte Length Register (Byte 1) (address offset: 0x07)

Bit	Name	Туре	Default Value	Description
7:0	-	WO	0x00	Byte 1 of the Byte Length to transfer

Table 23.9 - BLENGTH1 - Data Byte Length Register (Byte 1)

23.2.9 BLENGTH2 - Data Byte Length Register (MSB) (address offset: 0x08)

Bit	Name	Туре	Default Value	Description
7:0	-	WO	0x00	MSB of the Byte Length to transfer

Table 23.10 - BLENGTH2 - Data Byte Length Register (MSB)

Note 1: When the flash is the destination (write case), the byte length must be a multiple of 256 bytes (1 page of flash entry). There is no such restriction on byte length if the flash is the source (read case).

Note 2: The registers must be set to (byte length - 1). For example, if the byte length is 256, then BLENGTH0 is set to 255 and BLENGTH1 and BLENGTH2 are set to 0.

23.2.10 COMMAND - Command Register (address offset: 0x09)

Bit	Name	Туре	Default Value	Description
7:0	-	wo	0x00	Command to perform. See section 23.3.

Table 23.11 - COMMAND - Command Register

23.2.11 SEMAPHORE - Semaphore Register (address offset: 0x0B)

Bit	Name	Туре	Default Value	Description
				Semaphore value
				If a 0 is read, then the control unit's resource is allocated to whichever that does the test. This register is then automatically set to 1.
				If a 1 is read, then the resource is being used and not free.
7:0	-	RW	0x00	This semaphore can be released by only the interface which acquires the semaphore with writing a 1 to this register.
				All other registers in this control unit are not readable or writeable until this semaphore is acquired.
				If both the CPU and Debugger test this semaphore register at the same time when it is free, priority is given to the Debugger and the CPU will read a 1 instead.

Table 23.12 - SEMAPHORE - Semaphore Register

23.2.12 CONFIG - Configuration Register (address offset: 0x0C)

Bit	Name	Туре	Default Value	Description
7:2	Reserved	-	-	Reserved bits
1:0	SPI_CLK	WO	2′b0	The serial SPI clock speed to the serial flash 0x0: Flash SPI clock speed = 1/2 System clock speed 0x1: Flash SPI clock speed = 1/3 System clock speed 0x2: Flash SPI clock speed = 1/4 System clock speed 0x3: Flash SPI clock speed = 1/5 System clock speed

Table 23.13 - CONFIG - Configuration Register

23.2.13 STATUS - Status Register (address offset: 0x0D)

Bit	Name	Туре	Default Value	Description
7	Reserved	-	-	-
6	Control Busy	RO	1′b0	1: The control unit is busy. This means no other command should be issued. When this bit is set, bits 7, 3-0 may not be valid until this bit is cleared.
5	Data Read	RO	1'b0	1: Data for read is available at data read port

	Ready			
4	Data Write Ready	RO	1'b0	1: Data for write can be written to data write port
3	Reserved	-	-	-
2	Reserved	-	-	-
1	Reserved	-	-	-
0	Write in Progress	RO	1'b0	1: Flash Write Operations in Progress

Table 23.14 - STATUS - Status Register

23.2.14 CRCL - Flash Content CRC Register (LSB) (address offset: 0x0E)

Bit	Name	Туре	Default Value	Description
7:0	-	RO	0xXX	LSB of the CRC16 of the flash content. The CRC is calculated upon reset when flash content is transferred to the programme memory, and the CRC is based on the polynomial X16+X15+X2+1

Table 23.15 - CRCL - Flash Content CRC Register (LSB)

23.2.15 CRCH - Flash Content CRC Register (MSB) (address offset: 0x0F)

Bit	Name	Туре	Default Value	Description
7:0	-	RO	0xXX	MSB of the CRC16 of the flash content. The CRC is calculated upon reset when flash content is transferred to the programme memory, and the CRC is based on the polynomial X16+X15+X2+1

Table 23.16 - CRCH - Flash Content CRC Register (MSB)

23.2.16 CHIPIDO - Chip ID Register (LSB) (address offset: 0x7C)

Bit	Name	Туре	Default Value	Description
7:0	-	RO	0xXX	LSB of the 32-bit chip ID, only accessible via the 1-wire debugger. The same ID is available to the CPU in another register address

Table 23.17 - CHIPIDO - Chip ID Register (LSB)

23.2.17 CHIPID1 - Chip ID Register (Byte 1) (address offset: 0x7D)

Bit	Name	Туре	Default Value	Description
7:0	-	RO	0xXX	Byte 1 of the 32-bit chip ID, only accessible via the 1-wire debugger. The same ID is available to the CPU in another register address

Table 23.18 - CHIPID1 - Chip ID Register (Byte 1)

23.2.18 CHIPID2 - Chip ID Register (Byte 2) (address offset: 0x7E)

Bit	Name	Туре	Default Value	Description
-----	------	------	------------------	-------------

7:0	-	RO	0xXX	Byte 2 of the 32-bit chip ID, only accessible via the 1-wire debugger. The same ID is available to the CPU in another register address
				another register address

Table 23.19 - CHIPID2 - Chip ID Register (Byte 2)

23.2.19 CHIPID3 - Chip ID Register (MSB) (address offset: 0x7F)

Bit	Name	Туре	Default Value	Description
7:0	-	RO	0xXX	MSB of the 32-bit chip ID, only accessible via the 1- wire debugger. The same ID is available to the CPU in another register address

Table 23.20 - CHIPID3 - Chip ID Register (MSB)

23.2.20 DRWDATA - Data Register (address offset: 0x80)

Bit	Name	Туре	Default Value	Description
7:0	-	RW	0x00	This is the data read or write port used to transfer data in and out of this control unit. Up to 64 addresses may be used.
				When bit 4 of STATUS is not set, writing to this port will have no effect.
				When bit 5 of STATUS is not set, reading this port will return 0.

Table 23.21 - DRWDATA - Data Register

23.3 Flash Controller Commands

The following commands are supported by the control unit. The command is initiated once the command register is updated. No further command can be entered until the current one is completed. If two successive commands, regardless what they are, are entered while one is ongoing, the current operation will be aborted. The two commands will not be executed either.

The commands can be divided into 2 groups. The first group consists of commands that are supported directly by the serial flash. The second group consists of commands that initiate data transfer between the debugger/CPU interface and flash, debugger/CPU interface and program/data memory, or flash and program/data memory.

The following table lists the first group of commands. If executing any of these commands that require data input, write the required data to the DRWDATA register.

Command	Code	Description
CMDWREN	0x06	The Write Enable (WREN) instruction is for setting the Write Enable Latch (WEL) bit. Those instructions such as PP, SE, BE, CE, and WRSR, which are intended to change
		the device content, should be set every time after the WREN instruction sets the WEL bit.
CMDWRDI	0x04	The Write Disable (WRDI) instruction is for resetting the Write Enable Latch (WEL) bit.

Command	Code	Description
		The WEL bit is reset by the following situations:
		- Power-up
		- Write Disable (WRDI) instruction completion
		- Write Status Register (WRSR) instruction completion
		- Page Program (PP) instruction completion
		- Sector Erase (SE) instruction completion
		- Block Erase (BE) instruction completion
		- Chip Erase (CE) instruction completion
CMDWRSR	0x01	The WRSR instruction is for changing the values of Status Register Bits. Before sending WRSR instruction, the Write Enable (WREN) instruction must be executed first. The WRSR instruction can change the value of Block Protect (BP1 - bit3, BP0 - bit2) bits to define the protected area of memory (as shown in table 2). The WRSR also can set or reset the Status Register Write Disable (SRWD - bit 7) bit in accordance with Write Protection (WP#) pin signal. The WRSR instruction cannot be executed once the Hardware Protected Mode (HPM) is entered.
		This instruction has no effect on bits 6, 5, 1 and 0.
CMDRDID	0x9F	The RDID instruction is for reading the manufacturer ID of 1-byte and followed by Device ID of 2-byte. The MXIC Manufacturer ID and Device ID are listed as table of "ID Definitions" of the MXIC specification.
		While Program/Erase operation is in progress, it will not decode the RDID instruction, so there's no effect on the cycle of program/erase operation which is currently in progress.
CMDRDSR	0x05	The RDSR instruction is for reading Status Register Bits. The Read Status Register can be read at any time (even in program/erase/write status register condition) and continuously. It is recommended to check the Write in Progress (WIP) bit before sending a new instruction when a program, erase, or write status register operation is in progress. The status data can be read back from the STATUS
		register. The bits 7, 3-0 of STATUS reflect the content from this flash command.
CMDRDSFDP	0x5A	The Serial Flash Discoverable Parameter (SFDP) standard provides a consistent method of describing the functional and feature capabilities of serial flash devices in a standard set of internal parameter tables.
		Refer to MXIC specification for the parameter

Command	Code	Description
		details.
CMDSE	0x20	Sector erase; Sector address can be set at FSADDRx.
CMDBE1 / CMDBE2	0x52 / 0xD8	Block erase; Block address can be set at FSADDRx.
CMDCE1 / CMDCE2	0x60 / 0xC7	Chip erase.
CMDDP	0xB9	The Deep Power-down (DP) instruction is for setting the device on the minimizing the power consumption. During the Deep Power-down mode, the device is not active and all Write/Program/Erase instruction are ignored.
CMDRDP	0xAB	The RDP instruction is for releasing from Deep Power Down Mode.

Table 23.22 - Flash Controller Command Group 1

The following table lists the commands that initiate data transfer between Debugger/CPU interface and flash/program/data memory, or between flash and program/data. Each command allows the option to reset the CPU, or reboot the system, or allow the system to continue.

Command	Code	Description
		Initiates data transfer from Debugger Interface to Program Memory.
CMDDBG2P1	0xE0	The start address of the Program Memory destination will be dictated by RSADDRx which must be 32-bit aligned.
		The number of bytes to transfer will be dictated by BLENGTHx.
		Data to be transferred will be in DRWDATA.
CMDDBG2P2	0xE1	Similar to CMDDBG2P1 except at the end of the transfer, a CPU reset will be performed.
CMDDBG2P3	0xE2	Similar to CMDDBG2P1 except at the end of the transfer, a system reboot will be performed.
CMDDBG2D1	0xE4	Similar to CMDDBG2P1 except the destination is the Data Memory.
CMDDBG2D2	0xE5	Similar to CMDDBG2P2 except the destination is the Data Memory.
CMDDBG2D3	0xE6	Similar to CMDDBG2P3 except the destination is the Data Memory.
CMDDBG2F1	0xE8	Initiates data transfer from Debugger Interface to Flash Memory.
		The start address of the Flash Memory destination will be

Command	Code	Description
		dictated by FSADDRx which must be 256-byte aligned.
		The number of bytes to transfer will be dictated by BLENGTHx and must be multiples of 256 bytes.
		Data to be transferred will be in DRWDATA.
CMDDBG2F2	0xE9	Similar to CMDDBG2F1 except at the end of the transfer, a CPU reset will be performed.
CMDDBG2F3	0xEA	Similar to CMDDBG2F1 except at the end of the transfer, a system reboot will be performed.
		Initiates data transfer from Program Memory to Flash Memory.
		The start address of the Program Memory destination will be dictated by RSADDRx which must be 32-bit aligned.
CMDP2F1	0xF0	The start address of the Flash Memory destination will be dictated by FSADDRx which must be 256-byte aligned.
		The number of bytes to transfer will be dictated by BLENGTHx and must be multiples of 256 bytes.
CMDP2F2	0xF1	Similar to CMDP2F1 except at the end of the transfer, a CPU reset will be performed.
CMDP2F3	0xF2	Similar to CMDP2F1 except at the end of the transfer, a system reboot will be performed.
		Initiates data transfer from Flash Memory to Program Memory.
CMDF2P1	0xF4	The start address of the Program Memory destination will be dictated by RSADDRx which must be 32-bit aligned.
CMDF2F1		The start address of the Flash Memory destination will be dictated by FSADDRx which must be 256-byte aligned.
		The number of bytes to transfer will be dictated by BLENGTHx.
CMDF2P2	0xF5	Similar to CMDF2P1 except at the end of the transfer, a CPU reset will be performed.
CMDF2P3	0xF6	Similar to CMDF2P1 except at the end of the transfer, a system reboot will be performed.
		Initiates data transfer from Data Memory to Flash Memory.
		The start address of the Data Memory destination will be dictated by RSADDRx which must be 32-bit aligned.
CMDD2F1	0xF8	The start address of the Flash Memory destination will be dictated by FSADDRx which must be 256-byte aligned.
		The number of bytes to transfer will be dictated by BLENGTHx and must be multiples of 256 bytes.
CMDD2F2	0xF9	Similar to CMDD2F1 except at the end of the transfer, a CPU reset will be performed.
CMDD2F3	0xFA	Similar to CMDD2F1 except at the end of the transfer, a system

Command	Code	Description	
		reboot will be performed.	
	0xFC	Initiates data transfer from Flash Memory to Data Memory.	
CMDE2D1		The start address of the Data Memory destination will be dictated by RSADDRx which must be 32-bit aligned.	
CMDF2D1		The start address of the Flash Memory destination will be dictated by FSADDRx which must be 256-byte aligned.	
		The number of bytes to transfer will be dictated by BLENGTHx.	
CMDF2D2	0xFD	Similar to CMDF2D1 except at the end of the transfer, a CPU reset will be performed.	
CMDF2D3	0xFE	Similar to CMDF2D1 except at the end of the transfer, a system reboot will be performed.	
CMDHALT	0xFF	This command forces halt immediately to the CPU. The use should be avoided as this cannot be undone. Only a system reset will remove the halt effect.	

Table 23.23 - Flash Controller Command Group 2

24 Contact Information

Head Quarters - Singapore

Bridgetek Pte Ltd 178 Paya Lebar Road, #07-03

Singapore 409030 Tel: +65 6547 4827

Fax: +65 6841 6071

E-mail (Sales) sales.apac@brtchip.com E-mail (Support) support.apac@brtchip.com

Branch Office - Taipei, Taiwan

Bridgetek Pte Ltd, Taiwan Branch

2 Floor, No. 516, Sec. 1, Nei Hu Road, Nei Hu District

Taipei 114 Taiwan, R.O.C.

Tel: +886 (2) 8797 5691 Fax: +886 (2) 8751 9737

E-mail (Sales) sales.apac@brtchip.com E-mail (Support) support.apac@brtchip.com

Branch Office - Glasgow, United Kingdom

Bridgetek Pte. Ltd. Unit 1, 2 Seaward Place, Centurion Business Park

Glasgow G41 1HH United Kinadom

Tel: +44 (0) 141 429 2777 Fax: +44 (0) 141 429 2758

E-mail (Sales) sales.emea@brtichip.com E-mail (Support) support.emea@brtchip.com

Branch Office - Vietnam

Bridgetek VietNam Company Limited Lutaco Tower Building, 5th Floor, 173A Nguyen Van

Ward 11, Phu Nhuan District, Ho Chi Minh City, Vietnam Tel: 08 38453222

Fax: 08 38455222

E-mail (Sales) sales.apac@brtchip.com E-mail (Support) support.apac@brtchip.com

Web Site

http://brtchip.com/

Distributor and Sales Representatives

Please visit the Sales Network page of the Bridgetek Web site for the contact details of our distributor(s) and sales representative(s) in your country.

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Bridgetek Pte Ltd (BRT Chip) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance requirements. All application-related information in this document (including application descriptions, suggested Bridgetek devices and other materials) is provided for reference only. While Bridgetek has taken care to assure it is accurate, this information is subject to customer confirmation, and Bridgetek disclaims all liability for system designs and for any applications assistance provided by Bridgetek. Use of Bridgetek devices in life support and/or safety applications is entirely at the user's risk, and the user agrees to defend, indemnify and hold harmless Bridgetek from any and all damages, claims, suits or expense resulting from such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. Bridgetek Pte Ltd, 178 Paya Lebar Road, #07-03, Singapore 409030. Singapore Registered Company Number: 201542387H.

Appendix A - References

Document References

N.A.

Acronyms and Abbreviations

Terms	Description
ADC	Analogue to Digital Converter
BCD	Battery Charger Detection
CAN	Controller Area Network
CPRM	Content Protection for Recordable Media
СРИ	Central Processing unit
CRC	Cyclic Redundancy Check
DAC	Digital to Analogue Converter
FIFO	First In First Out
GPIO	General Purpose Input Output
I ² C	Inter-Integrated Circuit
IP	Intellectual Property
LSB	Least Significant Byte
MAC	Media Access Controller
MDC	Management Data Clock
MII	Media Independent Interface
ММС	Multi Media Card
MSB	Most Significant Byte
SPI	Serial Peripheral Interface
PHY	Physical Layer
PWM	Pulse Width Modulation
RAM	Random Access Memory
SD	Secure Digital

Terms	Description
STA	Used in Ethernet as the "Station Management Controller"
UART	Universal Asynchronous Receiver Transmitter
USB	Universal Serial Bus
USB-IF	USB Implementers Forum

Appendix B – List of Tables & Figures

List of Tables

Table 2.1 - FT900 Program Memory Organization	17
Table 3.1 - Peripheral Availability on FT900 Series Models	19
Table 3.2 - Register Map for FT900 Series	20
Table 4.1 - Notations used in Register Description	21
Table 5.1 - Overview of General System Registers	23
Table 5.2 - HIPID - Chip ID Register2	24
Table 5.3 - FT900 Series Revision 0001 Configuration	24
Table 5.4 - EFCFG - Chip Configuration Register	25
Table 5.5 - CLKCFG - Clock Configuration Register2	25
Table 5.6 - PMCFG - Power Management Register	27
Table 5.7 - PTSTNSET - Test & Set Register	27
Table 5.8 - PTSTNSETR - Test & Set Shadow Register	27
Table 5.9 - MSCOCFG - Miscellaneous Configuration Register2	29
Table 5.10 - Pin Configuration Register Description	30
Table 5.11 - Pin 00 - 03 Register	30
Table 5.12 - Pin 04 - 07 Register	30
Table 5.13 - Pin 08 - 11 Register	30
Table 5.14 - Pin 12 - 15 Register	30
Table 5.15 - Pin 16 - 19 Register	31
Table 5.16 - Pin 20 - 23 Register	31
Table 5.17 - Pin 24 - 27 Register	31
Table 5.18 - Pin 28 - 31 Register	31
Table 5.19 - Pin 32 - 35 Register	31
Table 5.20 - Pin 36 - 39 Register	32
Table 5.21 - Pin 40 - 43 Register	32
Table 5.22 - Pin 44 – 47 Register	32
Table 5.23 - Pin 48 - 51 Register	32
Table 5.24 - Pin 52 - 55 Register	33
Table 5.25 - Pin 56 - 59 Register	33
Table 5.26 - Pin 60 - 63 Register	34
Table 5.27 - Pin 64 - 66 Register3	34
Table 5.28 - GPIO Configuration Register Description	35
Table 5.29 - GPIO 00 - 07 Configuration Register	35
Table 5.30 - GPIO 08 - 15 Configuration Register	35
Table 5.31 - GPIO 16 - 23 Configuration Register	35

Table 5.32 - GPIO 24 - 31 Configuration Register
Table 5.33 - GPIO 32 - 39 Configuration Register
Table 5.34 - GPIO 40 - 47 Configuration Register
Table 5.35 - GPIO 48 - 55 Configuration Register
Table 5.36 - GPIO 56 - 63 Configuration Register
Table 5.37 - GPIO 64 - 66 Configuration Register
Table 5.38 - GPIO 00 - 31 Value Register
Table 5.39 - GPIO 32 - 63 Value Register
Table 5.40 - GPIO 64 - 66 Value Register
Table 5.41 - GPIO 00 - 31 Interrupt Enable Register
Table 5.42 - GPIO 32 - 63 Interrupt Enable Register
Table 5.43 - GPIO 64 - 66 Interrupt Enable Register
Table 5.44 - GPIO 00 - 31 Interrupt Pending Register
Table 5.45 - GPIO 32 - 63 Interrupt Pending Register
Table 5.46 - GPIO 64 - 66 Interrupt Pending Register
Table 5.47 - ETH_PHY_CFG - Ethernet PHY Miscellaneous Configuration Register
Table 5.48 - ETH_PHY_ID - Ethernet PHY ID Register
Table 5.49 - DAC_ADC_CONF - ADC/DAC Configuration/Status Register
Table 5.50 - DAC_ADC_CNT - ADC/DAC Count Register
Table 5.51 - DAC_ADC_DATA - ADC/DAC Data Register
Table 6.1 - Interrupt Assignment Table
Table 6.2 - Overview of Interrupt Control Registers
Table 6.3 - IRQ00-03 Assignment Register
Table 6.4 - IRQ04-07 Assignment Register
Table 6.5 - IRQ08-11 Assignment Register
Table 6.6 - IRQ12-15 Assignment Register
Table 6.7 - IRQ16-19 Assignment Register
Table 6.8 - IRQ20-23 Assignment Register
Table 6.9 - IRQ24-27 Assignment Register
Table 6.10 - IRQ28-31 Assignment Register
Table 6.11 - IRQ Control Register
Table 7.1 - EFUSE bits
Table 8.1 - Overview of USB Host Controller Registers
Table 8.2 - HC Capability Register
Table 8.3 - HCSPARAMS - HC Structural Parameters
Table 8.4 - HCCPARAMS - HC Capability Parameters
Table 8.5 - USBCMD - HC USB Command Register
Table 8.6 - USBSTS - HC USB Status Register
Table 8.7 - USBINTR - HC USB Interrupt Enable Register

Table 8.8 - FRINDEX - HC Frame Index Register
Table 8.9 - PERIODICLISTBASE - HC Periodic Frame List Base Address Register 54
Table 8.10 - ASYNCLISTADDR - HC Current Asynchronous List Address Register 55
Table 8.11 - PORTSC - HC Port Status and Control Register
Table 8.12 - EOF Time & Asynchronous Schedule Sleep Timer Register
Table 8.13 - Bus Monitor Control / Status Register
Table 8.14 - HPROT - Master Protection Information Setting Register 59
Table 8.15 - Vendor Specific IO Control Register
Table 8.16 - Vendor Specific Status Register
Table 8.17 - Test Register
Table 8.18 - HC_RSRV1 - Reserved 1 Register
Table 8.19 - HC_RSRV2 - Reserved 2 Register
Table 9.1 - Overview of USB Peripheral Registers
Table 9.2 - DC_ADDRESS_ENABLE - Address Register
Table 9.3 - DC_MODE - Mode Register
Table 9.4 - DC_INT_ENABLE - Interrupt Enable Register
Table 9.5 - DC_EP_INT_ENABLE - Endpoints Interrupt Enable Register 64
Table 9.6 - DC_EP0_CONTROL - Endpoint 0 Control Register
Table 9.7 - DC_EP0_STATUS - Endpoint 0 Status Register
Table 9.8 - DC_EP0_BUFFER_LENGTH - Endpoint 0 Buffer Length Register 65
Table 9.9 - DC_EP0_BUFFER - Endpoint 0 Buffer Register
Table 9.10 - DC_EP(x)_CONTROL - Endpoint Control Registers
Table 9.11 - DC_EP(x)_STATUS - Endpoint Status Registers
Table 9.12 - DC_EP(x)_BUFFER_LENGTH_LSB - Endpoint Buffer Length LSB Registers 68
Table 9.13 - DC_EP(x)_BUFFER_LENGTH_MSB - Endpoint Buffer Length MSB Registers 68
Table 9.14 - DC_EP(x)_BUFFER - Endpoint Buffer Registers
Table 9.15 - DC_INT_STATUS - Interrupt Status Register
Table 9.16 - DC_EP_INT_STATUS - Endpoints Interrupt Status Register
Table 9.17 - DC_FRAME_NUMBER_LSB - Frame Number LSB Register 69
Table 9.18 - DC_FRAME_NUMBER_MSB - Frame Number MSB Register 69
Table 10.1 - Memory Organization of TX/RX RAM
Table 10.2 - Overview of Ethernet Registers
Table 10.3 - ETH_INT_STATUS - Interrupt Status Register
Table 10.4 - ETH_INT_ENABLE - Interrupt Enable Register
Table 10.5 - ETH_RX_CNTL - Receive Control Register
Table 10.6 - ETH_TX_CNTL - Transmit Control Register
Table 10.7 - ETH_DATA_N0 - Data Register (octet n)
Table 10.8 - ETH_DATA_N1 - Data Register (octet n+1)
Table 10.9 - ETH_DATA_N2 - Data Register (octet n+2)

Table 10.10 - ETH_DATA_N3 - Data Register (octet n+3)
Table 10.11 - ETH_ADDR_1 - Address Register (octet 1)
Table 10.12 - ETH_ADDR_2 - Address Register (octet 2)
Table 10.13 - ETH_ADDR_3 - Address Register (octet 3)
Table 10.14 - ETH_ADDR_4 - Address Register (octet 4)
Table 10.15 - ETH_ADDR_5 - Address Register (octet 5)
Table 10.16 - ETH_ADDR_6 - Address Register (octet 6)
Table 10.17 - ETH_THRESHOLD - Threshold Register
Table 10.18 - ETH_MNG_CNTL - Management Control Register
Table 10.19 - ETH_MNG_DIV - Management Divider Register
Table 10.20 - ETH_MNG_ADDR - Management Address Register
Table 10.21 - ETH_MNG_TX0 - Management Transmit Data 0 Register
Table 10.22 - ETH_MNG_TX1 - Management Transmit Data 1 Register
Table 10.23 - ETH_MNG_RX0 - Management Receive Data 0 Register
Table 10.24 - ETH_MNG_RX1 - Management Receive Data 1 Register
Table 10.25 - ETH_NUM_PKT - Number of Packets Register
Table 10.26 - ETH_TR_REQ - Transmission Request Register
Table 11.1 - Symbols used in the CAN Frame buffer
Table 11.2 - Standard Frames Memory Buffer Layout
Table 11.3 - Extended Frames Memory Buffer Layout
Table 11.4 - Overview of CAN Registers
Table 11.5 - CAN_MODE - Mode Register
Table 11.6 - CAN_CMD - Command Register
Table 11.7 - CAN_STATUS - Status Register
Table 11.8 - CAN_INT_STATUS - Interrupt Status Register 85
Table 11.9 - CAN_INT_ENABLE - Interrupt Enable Register
Table 11.10 - CAN_RX_MSG - Receive Message Register
Table 11.11 - CAN_BUS_TIM_0 - Bus Timing 0 Register
Table 11.12 - CAN_BUS_TIM_1 - Bus Timing 1 Register
Table 11.13 - CAN_TX_BUF_0 - Transmit Buffer 0 Register
Table 11.14 - CAN_TX_BUF_1 - Transmit Buffer 1 Register
Table 11.15 - CAN_TX_BUF_2 - Transmit Buffer 2 Register
Table 11.16 - CAN_TX_BUF_3 - Transmit Buffer 3 Register
Table 11.17 - CAN_RX_BUF_0 - Receive Buffer 0 Register
Table 11.18 - CAN_RX_BUF_1 - Receive Buffer 1 Register
Table 11.19 - CAN_RX_BUF_2 - Receive Buffer 2 Register
Table 11.20 - CAN_RX_BUF_3 - Receive Buffer 3 Register
Table 11.21- CAN_ACC_CODE_0 - Acceptance Code 0 Register
Table 11.22 - CAN_ACC_CODE_1 - Acceptance Code 1 Register

Table 11.23 - CAN_ACC_CODE_2 - Acceptance Code 2 Register
Table 11.24 - CAN_ACC_CODE_3 - Acceptance Code 3 Register
Table 11.25 - CAN_ACC_MASK_0 - Acceptance Mask 0 Register
Table 11.26 - CAN_ACC_MASK_1 - Acceptance Mask 1 Register
Table 11.27 - CAN_ACC_MASK_2 - Acceptance Mask 2 Register
Table 11.28 - CAN_ACC_MASK_3 - Acceptance Mask 3 Register
Table 11.29 - CAN_ERR_CODE - Error Code Capture Register
Table 11.30 - CAN_RX_ERR_CNTR - Receive Error Counter Register
Table 11.31 - CAN_TX_ERR_CNTR - Transmit Error Counter Register
Table 11.32 - CAN_ARB_LOST_CODE - Arbitration Lost Code Capture Register
Table 12.1 - Overview of SD Host Registers
Table 12.2 - 11.2.1 SDH_AUTO_CMD23_ARG2 - Auto CMD23 Argument 2 Register
Table 12.3 - 11.2.2 SDH_BLK_SIZE - Block Size Register
Table 12.4 - 11.2.3 SDH_BLK_COUNT - Block Count Register
Table 12.5 - 11.2.4 SDH_ARG_1 - Argument 1 Register
Table 12.6 - 11.2.5 SDH_TNSFER_MODE - Transfer Mode Register
Table 12.7 - 11.2.6 SDH_CMD - Command Register
Table 12.8 - 11.2.7 SDH_RESPONSE - Response Register
Table 12.0 11.2.0 CDU DUE DATA DUSTA Data Data Data Data Data Data Data Dat
Table 12.9 - 11.2.8 SDH_BUF_DATA - Buffer Data Port Register
Table 12.10 - 11.2.9 SDH_PRESENT_STATE - Present State Register
Table 12.10 - 11.2.9 SDH_PRESENT_STATE - Present State Register
Table 12.10 - 11.2.9 SDH_PRESENT_STATE - Present State Register
Table 12.10 - 11.2.9 SDH_PRESENT_STATE - Present State Register101Table 12.11 - SDH_HST_CNTL_1 - Host Control 1 Register102Table 12.12 - SDH_PWR_CNTL - Power Control Register102
Table 12.10 - 11.2.9 SDH_PRESENT_STATE - Present State Register101Table 12.11 - SDH_HST_CNTL_1 - Host Control 1 Register102Table 12.12 - SDH_PWR_CNTL - Power Control Register102Table 12.13 - SDH_BLK_GAP_CNTL - Block Gap Control Register103
Table 12.10 - 11.2.9 SDH_PRESENT_STATE - Present State Register101Table 12.11 - SDH_HST_CNTL_1 - Host Control 1 Register102Table 12.12 - SDH_PWR_CNTL - Power Control Register102Table 12.13 - SDH_BLK_GAP_CNTL - Block Gap Control Register103Table 12.14 - SDH_CLK_CNTL - Clock Control Register103
Table 12.10 - 11.2.9 SDH_PRESENT_STATE - Present State Register101Table 12.11 - SDH_HST_CNTL_1 - Host Control 1 Register102Table 12.12 - SDH_PWR_CNTL - Power Control Register102Table 12.13 - SDH_BLK_GAP_CNTL - Block Gap Control Register103Table 12.14 - SDH_CLK_CNTL - Clock Control Register103Table 12.15 - SDH_TIMEOUT_CNTL - Timeout Control Register103
Table 12.10 - 11.2.9 SDH_PRESENT_STATE - Present State Register101Table 12.11 - SDH_HST_CNTL_1 - Host Control 1 Register102Table 12.12 - SDH_PWR_CNTL - Power Control Register102Table 12.13 - SDH_BLK_GAP_CNTL - Block Gap Control Register103Table 12.14 - SDH_CLK_CNTL - Clock Control Register103Table 12.15 - SDH_TIMEOUT_CNTL - Timeout Control Register103Table 12.16 - SDH_SW_RST - Software Reset Register104
Table 12.10 - 11.2.9 SDH_PRESENT_STATE - Present State Register101Table 12.11 - SDH_HST_CNTL_1 - Host Control 1 Register102Table 12.12 - SDH_PWR_CNTL - Power Control Register102Table 12.13 - SDH_BLK_GAP_CNTL - Block Gap Control Register103Table 12.14 - SDH_CLK_CNTL - Clock Control Register103Table 12.15 - SDH_TIMEOUT_CNTL - Timeout Control Register103Table 12.16 - SDH_SW_RST - Software Reset Register104Table 12.17 - SDH_NRML_INT_STATUS - Normal Interrupt Status Register104
Table 12.10 - 11.2.9 SDH_PRESENT_STATE - Present State Register101Table 12.11 - SDH_HST_CNTL_1 - Host Control 1 Register102Table 12.12 - SDH_PWR_CNTL - Power Control Register102Table 12.13 - SDH_BLK_GAP_CNTL - Block Gap Control Register103Table 12.14 - SDH_CLK_CNTL - Clock Control Register103Table 12.15 - SDH_TIMEOUT_CNTL - Timeout Control Register103Table 12.16 - SDH_SW_RST - Software Reset Register104Table 12.17 - SDH_NRML_INT_STATUS - Normal Interrupt Status Register104Table 12.18 - 11.2.17 SDH_ERR_INT_STATUS - Error Interrupt Status Register105
Table 12.10 - 11.2.9 SDH_PRESENT_STATE - Present State Register.101Table 12.11 - SDH_HST_CNTL_1 - Host Control 1 Register.102Table 12.12 - SDH_PWR_CNTL - Power Control Register.102Table 12.13 - SDH_BLK_GAP_CNTL - Block Gap Control Register.103Table 12.14 - SDH_CLK_CNTL - Clock Control Register.103Table 12.15 - SDH_TIMEOUT_CNTL - Timeout Control Register.103Table 12.16 - SDH_SW_RST - Software Reset Register.104Table 12.17 - SDH_NRML_INT_STATUS - Normal Interrupt Status Register.104Table 12.18 - 11.2.17 SDH_ERR_INT_STATUS - Error Interrupt Status Register.105Table 12.19 - SDH_NRML_INT_ENABLE - Normal Interrupt Status Enable Register.106
Table 12.10 - 11.2.9 SDH_PRESENT_STATE - Present State Register
Table 12.10 - 11.2.9 SDH_PRESENT_STATE - Present State Register
Table 12.10 - 11.2.9 SDH_PRESENT_STATE - Present State Register101Table 12.11 - SDH_HST_CNTL_1 - Host Control 1 Register102Table 12.12 - SDH_PWR_CNTL - Power Control Register102Table 12.13 - SDH_BLK_GAP_CNTL - Block Gap Control Register103Table 12.14 - SDH_CLK_CNTL - Clock Control Register103Table 12.15 - SDH_TIMEOUT_CNTL - Timeout Control Register103Table 12.16 - SDH_SW_RST - Software Reset Register104Table 12.17 - SDH_NRML_INT_STATUS - Normal Interrupt Status Register104Table 12.18 - 11.2.17 SDH_ERR_INT_STATUS - Error Interrupt Status Register105Table 12.20 - SDH_NRML_INT_ENABLE - Normal Interrupt Status Enable Register106Table 12.21 - SDH_NRML_INT_SGNL_ENABLE - Normal Interrupt Signal Enable Register107Table 12.22 - SDH_ERR_INT_SGNL_ENABLE - Error Interrupt Signal Enable Register107
Table 12.10 - 11.2.9 SDH_PRESENT_STATE - Present State Register
Table 12.10 - 11.2.9 SDH_PRESENT_STATE - Present State Register
Table 12.10 - 11.2.9 SDH_PRESENT_STATE - Present State Register

Table 12.29 - SDH_FORCE_EVT_CMD_ERR_STATUS - Force Event Register for Auto CMD Error Status
Table 12.30 - SDH_FORCE_EVT_ERR_INT_STATUS - Force Event for Error Interrupt Status Register
Table 12.31- SDH_RSRV_3 - Reserved 3 Register111
Table 12.32 - SDH_RSRV_4 - Reserved 4 Register112
Table 12.33 - SDH_PRST_INIT - Preset value for initialization
Table 12.34 - SDH_PRST_DFLT_SPD - Preset value for default speed112
Table 12.35 - SDH_PRST_HIGH_SPD - Preset value for the high speed113
Table 12.36 - SDH_PRST_SDR12 - Preset value for SDR12113
Table 12.37 - SDH_PRST_SDR25 - Preset value for SDR25114
Table 12.38 - SDH_PRST_SDR50 - Preset value for SDR50114
Table 12.39 - SDH_PRST_SDR104 - Preset value for SDR104
Table 12.40 - SDH_PRST_DDR50 - Preset value for DDR50115
Table 12.41 - SDH_RSRV_5 - Reserved 5 Register115
Table 12.42 - SDH_HC_VER - Host Controller Version Register
Table 12.43 - SDH_VNDR_0 - Vendor-defined 0 Register116
Table 12.44 - SDH_VNDR_1 - Vendor-defined 1 Register117
Table 12.45 - SDH_VNDR_2 - Vendor-defined 2 Register117
Table 12.46 - SDH_VNDR_3 - Vendor-defined 3 Register117
Table 12.47 - SDH_VNDR_4 - Vendor-defined 4 Register117
Table 12.48 - SDH_VNDR_5 - Vendor-defined 5 Register117
Table 12.49 - SDH_VNDR_6 - Vendor-defined 6 Register118
Table 12.50 - SDH_VNDR_7 - Vendor-defined 7 Register118
Table 12.51 - SDH_VNDR_8 - Vendor-defined 8 Register118
Table 12.52 - SDH_VNDR_9 - Vendor-defined 9 Register118
Table 12.53 - SDH_RSRV_6 - Reserved 6 Register118
Table 12.54 - SDH_HW_ATTR - Hardware Attributes Register
Table 12.55 - SDH_CPR_MOD_CNTL - Cipher Mode Control Register120
Table 12.56 - SDH_CPR_MOD_STATUS - Cipher Mode Status Register120
Table 12.57 - SDH_CPR_MOD_STATUS_EN - Cipher Mode Status Enable Register120
Table 12.58 - SDH_CPR_MOD_SIG_EN - Cipher Mode Signal Enable Register120
Table 12.59 - SDH_IN_DATA_LSB -Input Data LSB Register121
Table 12.60 - SDH_IN_DATA_MSB -Input Data MSB Register121
Table 12.61 - SDH_IN_KEY_LSB - Input Key LSB Register121
Table 12.62 - SDH_IN_KEY_MSB - Input Key MSB Register121
Table 12.63 - SDH_OUT_DATA_LSB - Output Data LSB Register
Table 12.64 - SDH_OUT_DATA_MSB - Output Data MSB Register121
Table 12.65 - SDH_SCRT_CONS_DATA - Secret Constant Table Data Port122
Table 13.1 - Overview of UART Registers

Table 13.2 - UART mode selection
Table 13.3 - UART_RBR - Receiver Buffer Register
Table 13.4 - UART_THR - Transmitter Holding Register
Table 13.5 - UART_DIV_LSB - Divisor LSB Register
Table 13.6 - UART_DIV_MSB - Divisor MSB Register
Table 13.7 - UART_INT_ENABLE - Interrupt Enable Register
Table 13.8 - UART_INT_STATUS - Interrupt Status Register
Table 13.9 - Interrupt Status Register Software Handling
Table 13.10 - UART_FCR - FIFO Control Register - 550 mode
Table 13.11 - UART_RCVR - FIFO Trigger Level - 550 mode
Table 13.12 - UART_FCR - FIFO Control Register - 650 mode
Table 13.13 - UART_RCVR - FIFO Trigger Level - 650 mode
Table 13.14 - XMIT FIFO Trigger Level
Table 13.15 - UART_LCR - Line Control Register
Table 13.16 - UART_MCR - Modem Control Register
Table 13.17 - UART_LSR - Line Status Register
Table 13.18 - UART_MSR - Modem Status Register
Table 13.19 - UART_SPR - SPR Register
Table 13.20 - UART_EFR - Enhanced Feature Register
Table 13.21 - UART_XON1 - XON1 Register
Table 13.22 - UART_XON2 - XON2 Register
Table 13.23 - UART_XOFF1 - XOFF1 Register
Table 13.24 - UART_XOFF2 - XOFF2 Register
Table 13.25 - UART_ASR - Additional Status Register
Table 13.26 - UART_RFL - Receiver FIFO Level Register
Table 13.27 - UART_TFL - Transmitter FIFO Level Register
Table 13.28 - UART_ICR - ICR Register
Table 13.29 - UART_ACR- Additional Control Register141
Table 13.30 - UART_CPR - Clock Prescaler Register142
Table 13.31 - UART_TCR - Time Clock Register
Table 13.32 - UART_CKS Clock Select Register
Table 13.33 - UART_TTL - Transmitter Trigger Level Register
Table 13.34 - UART_RTL - Receiver Trigger Level Register
Table 13.35 - UART_FCL - Flow Control Level LSB Register
Table 13.36 - UART_FCH - Flow Control Level Register MSB
Table 13.37 - UART_ID1 - Identification 1 Register
Table 13.38 - UART_ID2 - Identification 2 Register
Table 13.39 UART_ID3 - Identification 3 Register144
Table 13.40 - UART_REV - Revision Register

Table 13.41 - UART_CSR - Channel Software Reset Register
Table 13.42 - UART_NMR - Nine Bit Mode Register145
Table 13.43 - UART_MDM - Modem Disable Mask Register146
Table 13.44 - UART_RFC - Readable FCR Register146
Table 13.45 - UART_GDS - Good Data Status Register
Table 13.46 - UART_RSRV_1 - Reserved 1 Register146
Table 13.47 - UART_PIDX - Port Index Register
Table 13.48 - UART_CKA - Clock Alteration Register147
Table 14.1 - Timers/Watchdog Operation149
Table 14.2 - Overview of Timers/Watchdog Registers
Table 14.3 - TIMER_CONTROL_0 - Timers Control Register 0
Table 14.4 - TIMER_CONTROL_1 - Timers Control Register 1
Table 14.5 - TIMER_CONTROL_2 - Timers Control Register 2
Table 14.6 - TIMER_CONTROL_3 - Timers Control Register 3
Table 14.7 - TIMER_CONTROL_4 - Timers Control Register 4
Table 14.8 - TIMER_INT - Timers Interrupt Register
Table 14.9 - TIMER_SELECT - Timers AD Select Register
Table 14.10 - TIMER_WDG - Watchdog Start Value
Table 14.11 - TIMER_WRITE_LS - Timer AD Start Value 7:0
Table 14.12 - TIMER_WRITE_MS - Timer AD Start Value 15:8
Table 14.13 - TIMER_PRESC_LS - Prescaler Start Value 7:0
Table 14.14 - TIMER_PRESC_MS - Prescaler Start Value 15:8
Table 14.15 - TIMER_READ_LS - Timer AD Current Value 7:0
Table 14.16 - TIMER_READ_MS - Timer AD Current Value 15:8152
Table 15.1 - Oversampling rates supported by FT900 I2S
Table 15.2 - FT900 I2S settings
Table 15.3 - Overview of I2S Registers
Table 15.4 - I2SCR - Configuration Register 1
Table 15.5 - I2SCR2 - Configuration Register 2
Table 15.6 - I2SIRQEN - Interrupt Enable Register
Table 15.7 - I2SIRQPEND - Interrupt Pending Register
Table 15.8 - I2SRWDATA - Transmit / Receive Data Register
Table 15.9 - I2SRXCOUNT - RX Count Register
Table 15.10 - I2STXCOUNT - TX Count Register
Table 16.1 - Overview of SPI Master Registers
Table 16.2 - SPIM_CNTL - Control Register160
Table 16.3 - SPIM_STATUS - Status Register
Table 16.4 - SPIM_DATA - Receiver and Transmitter Data Registers161
Table 16.5 - SPIM_SLV_SEL_CNTL - Slave Select Control Register161

Table 16.6 - SPIM_FIFO_CNTL - FIFO Control Register1	62
Table 16.7 - SPIM_TNSFR_FRMT_CNTL - Transfer Format Control Register1	62
Table 16.8 - SPIM_ALT_DATA - Alternative SPI Master Data Register1	63
Table 16.9 - SPIM_RX_FIFO_COUNT - SPI Master RX FIFO Count Register1	63
Table 17.1 - Overview of SPI Slave Registers	64
Table 17.2 - SPIS_CNTL - Control Register1	65
Table 17.3 - SPIS_STATUS - Status Register1	65
Table 17.4 - SPIS_DATA - Receiver and Transmitter Data Registers1	66ء
Table 17.5 - SPIS_SLV_SEL_CNTL - Slave Select Control Register1	66ء
Table 17.6 - SPIS_FIFO_CNTL - FIFO Control Register1	66ء
Table 17.7 - SPIS_TNSFR_FRMT_CNTL - Transfer Format Control Register1	67
Table 17.8 - SPIS_ALT_DATA - Alternative SPI Slave Data Register1	67
Table 17.9 - SPIS_RX_FIFO_COUNT - SPI Slave RX FIFO Count Register1	67
Table 18.1 - Overview of I2C Master Registers	68ء
Table 18.2 - I2CM_SLV_ADDR - Slave Address Register1	69
Table 18.3 - I2CM_CNTL - Control Register1	69
Table 18.4 - I2CM_STATUS - Status Register1	170
Table 18.5 - I2CM_DATA - Receive / Transmit Data Register	170
Table 18.6 - I2CM_TIME_PERIOD - Timer Period Register1	170
Table 18.7 - I2CM_HS_TIME_PERIOD - High Speed Timer Period Register1	171
Table 18.8 - I2CM_FIFO_LEN - FIFO Mode Byte Length1	171
Table 18.9 - I2CM_FIFO_INT_ENABLE - FIFO Mode Interrupt Enable1	171
Table 18.10 - I2CM_FIFO_INT_PEND - FIFO Mode Interrupt Pending1	.72
Table 18.11 - I2CM_FIFO_DATA - FIFO Data Register1	.72
Table 18.12 - I2CM_TRIG - Trigger Register1	172
Table 19.1 - Overview of I2C Master Registers1	173
Table 19.2 - I2CS_OWN_ADDR - Own Address Register1	174
Table 19.3 - I2CS_CNTL - Control Register	174
Table 19.4 - I2CS_STATUS - Status Register1	۲5
Table 19.5 - I2CS_DATA - Receive / Transmit Data Register	٦5
Table 19.6 - I2CS_FIFO_LEN - FIFO Mode Byte Length1	۲5
Table 19.7 - I2CS_FIFO_INT_ENABLE - FIFO Mode Interrupt Enable1	176
Table 19.8 - I2CS_FIFO_INT_PEND - FIFO Mode Interrupt Pending1	176
Table 19.9 - I2CS_FIFO_DATA - FIFO Data Register1	٦6
Table 19.10 - I2CS_TRIG - Trigger Register1	۲6
Table 20.1 - Overview of RTC Registers	177
Table 20.2 - RTC_CCVR - Current Counter Value Register	١77
Table 20.3 - RTC_CMR - Counter Match Register1	L77
Table 20.4 - RTC_CLR - Counter Load Register	۲8

Table 20.5 - RTC_CCR Counter Control Register
Table 20.6 - RTC_STAT - Interrupt Status Register
Table 20.7 - RTC_RSTAT - Interrupt Raw Status Register
Table 20.8 - RTC_EOI - End of Interrupt Register
Table 20.9 - RTC_COMP_VERSION - Component Version Register
Table 21.1 - Overview of PWM Registers
Table 21.2 - PWM_CTRL0 - PCM Control Register
Table 21.3 - PWM_CTRL1 - PWM Control Register
Table 21.4 - PWM_PRESCALER - PWM Prescaler Register
Table 21.5 - PWM_CNTL - PWM Counter Register (LSB)
Table 21.6 - PWM_CNTH - PWM Counter Register (MSB)183
Table 21.7 - PWM_CMP0L - Comparator 0 Value Register (LSB)
Table 21.8 - PWM_CMP0H - Comparator 0 Value Register (MSB)
Table 21.9 - PWM_CMP1L - Comparator 1 Value Register (LSB)
Table 21.10 - PWM_CMP1H - Comparator 1 Value Register (MSB)184
Table 21.11 - PWM_CMP2L - Comparator 2 Value Register (LSB)
Table 21.12 - PWM_CMP2H - Comparator 2 Value Register (MSB)184
Table 21.13 - PWM_CMP3L - Comparator 3 Value Register (LSB)
Table 21.14 - PWM_CMP3H - Comparator 3 Value Register (MSB)
Table 21.15 - PWM_CMP4L - Comparator 4 Value Register (LSB)
Table 21.16 - PWM_CMP4H - Comparator 4 Value Register (MSB)185
Table 21.17 - PWM_CMP5L - Comparator 5 Value Register (LSB)
Table 21.18 - PWM_CMP5H - Comparator 5 Value Register (MSB)185
Table 21.19 - PWM_CMP6L - Comparator 6 Value Register (LSB)
Table 21.20 - PWM_CMP6H - Comparator 6 Value Register (MSB)
Table 21.21 - PWM_CMP7L - Comparator 7 Value Register (LSB)
Table 21.22 - PWM_CMP7H - Comparator 7 Value Register (MSB)
Table 21.23 - PWM_TOGGLE0 - Channel 0 OUT Toggle Comparator Mask186
Table 21.24 - PWM_TOGGLE1 - Channel 1 OUT Toggle Comparator Mask186
Table 21.25 - PWM_TOGGLE2 - Channel 2 OUT Toggle Comparator Mask Register187
Table 21.26 - PWM_TOGGLE3 - Channel 3 OUT Toggle Comparator Mask Register187
Table 21.27 - PWM_TOGGLE4 - Channel 4 OUT Toggle Comparator Mask Register187
Table 21.28 - PWM_TOGGLE5 - Channel 5 OUT Toggle Comparator Mask Register187
Table 21.29 - PWM_TOGGLE6 - Channel 6 OUT Toggle Comparator Mask Register187
Table 21.30 - PWM_TOGGLE7 - Channel 7 OUT Toggle Comparator Mask Register188
Table 21.31 - PWM_OUT_CLR_EN - PWM OUT Clear Enable Register
Table 21.32 - PWM_CTRL_BL_CMP8 - Control Block CMP8 Value Register
Table 21.33 - PWM_INIT - PWM Initialization Register
Table 21.34 - PWM_INTMASK - PWM Interrupt Mask Register

Table 21.35 - PWM INTSTATUS - PWM Interrupt Status Register
Table 21.36 - PWM_SAMPLE_FREQ_H - PWM Data Sampling Frequency High Byte Register189
Table 21.37 - PWM_SAMPLE_FREQ_L - PWM Data Sampling Frequency Low Byte Register189
Table 21.38 - PCM_VOLUME - PCM Volume Register
Table 21.39 - PWM_BUFFER - PCM Buffer Register
Table 22.1 - Overview of Data Capture Interface Registers
Table 22.2 - DCAP_REG1 - Data Capture Interface Register 1
Table 22.3 - DCAP_REG2 - Data Capture Interface Register 2
Table 22.4 - DCAP_REG3 - Data Capture Interface Register 3
Table 22.5 - DCAP_REG4 - Data Capture Interface Register 4
Table 23.1 - Overview of Data Capture Interface Registers
Table 23.2 - RSADDR1 - Memory Start Address Register (LSB)
Table 23.3 - RSADDR1 - Memory Start Address Register (Byte 1)194
Table 23.4 - RSADDR2 - Memory Start Address Register (MSB)
Table 23.5 - FSADDR0 - Flash Start Address Register (LSB)
Table 23.6 - FSADDR1 - Flash Start Address Register (Byte 1)195
Table 23.7 - FSADDR2 - Flash Start Address Register (MSB)
Table 23.8 - BLENGTH0 - Data Byte Length Register (LSB) (LSB)
Table 23.9 - BLENGTH1 - Data Byte Length Register (Byte 1)
Table 23.10 - BLENGTH2 - Data Byte Length Register (MSB)
Table 23.11 - COMMAND - Command Register
Table 23.12 - SEMAPHORE - Semaphore Register196
Table 23.13 - CONFIG - Configuration Register
Table 23.14 - STATUS - Status Register
Table 23.15 - CRCL - Flash Content CRC Register (LSB)
Table 23.16 - CRCH - Flash Content CRC Register (MSB)197
Table 23.17 - CHIPIDO - Chip ID Register (LSB)
Table 23.18 - CHIPID1 - Chip ID Register (Byte 1)
Table 23.19 - CHIPID2 - Chip ID Register (Byte 2)
Table 23.20 - CHIPID3 - Chip ID Register (MSB)
Table 23.21 - DRWDATA - Data Register
Table 23.22 - Flash Controller Command Group 1
Table 23.23 - Flash Controller Command Group 2
List of Figures
Figure 2.1 - FT900 System Architecture
Figure 2.2 - FT900 Boot Control
Figure 2.3 - FT900 Debugging Support
Figure 11.1 - CAN Acceptance Filter

Application Note AN_324 FT900 User Manual

Version 1.2

Figure 13.1	- ICR registers write access	139
Figure 13.2	2 - ICR registers read access	140

Appendix C - Revision History

Document Title: AN_324 FT900 User Manual

Document Reference No.: BRT_000131
Clearance No.: BRT#081

Product Page: http://brtchip.com/product/

Document Feedback: Send Feedback

Revision	Changes	Date
1.0	Initial Release	2014-11-07
1.1	Revised Release	2015-10-12
1.2	Migrated from FTDI to Bridgetek	2017-03-30