-1.1 SYSTEMS OF LINEAR EQUATIONS

-1.1.1 Defintions

Everything we learned so far about vectors and matrices can be used to solve and characterise a family of equations known as **linear equations**. You're probably already very familiar with linear equations: they are equations in which the **variables** appear directly, without any power or other functions acting on them. For example, the simple equation

$$y = ax + b, \tag{-1.1.1}$$

where x, y are both variables and a, b are both constant real numbers is a linear equation. Equation -1.1.1 can be re-written as

$$ax - y + b = 0,$$
 (-1.1.2)

where now a is the **coefficient** of the variable x, while the variable y has the coefficient -1 and b is a so-called **free coefficient**. In general, a linear equation of two variables has the form

$$a_0 + a_x x + a_y y = 0, (-1.1.3)$$

i.e. we changed the name of a to a_x and b to a_0 , and gave y the coefficient a_y . We can also rename x and y to x_1 and x_2 , respectively, and name their coefficients accordingly:

$$a_0 + a_1 x_1 + a_2 x_2 = 0. (-1.1.4)$$

The form shown in Equation -1.1.4 can be easily expanded into n variables:

$$a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + \dots + a_{n-1} x_{n-1} + a_n x_n = 0,$$
 (-1.1.5)

where $x_1, x_2, ..., x_n$ are the variables of the equation, and $a_0, a_1, ..., a_n$ are its coefficients. We say that n is the **order** (also: **degree**) of the equation.

Note -1.1 Number set used for linear equations

As with other topics, in the context of this section both the variables and coefficients are all **real numbers**, however almost anything we discuss here can genrally be applied to complex numbers or other structures.

Example -1.1 Linear equations

The following is a linear equation of order 3, using the variables x, y, z:

$$3x + 2y - z + 4 = 0$$
.

The coefficients of the equation are

$$a_0 = 4$$
,

Figure -1.1 Two linear equations represented as lines in \mathbb{R}^2 . Note how in the red equation the free coefficient is zero, and so the line goes through the origin.

$$a_x = a_1 = 3,$$

 $a_y = a_2 = 2,$
 $a_z = a_3 = -1.$

Another linear equation of the same three variables is

$$5x - 2y + 1 = 0.$$

In this case the coefficient $a_z = a_3 = 0$. Depending on the context, this equation can be considered as either an equation of order 3 or an equation of order 2.

In \mathbb{R}^2 linear equations represent a line, which doesn't necesserally go through the origin (and thus isn't necesserally a subspace of \mathbb{R}^n). For a line to go through the origin, the free coefficient a_0 must equal zero (see Figure -1.1).

In \mathbb{R}^3 linear equations represent planes. Much like with the lines in \mathbb{R}^2 , these planes don't necesserally go through the origin. The trend continues with increasing dimensions: in \mathbb{R}^4 linear equations represent 3-dimensional spaces, in \mathbb{R}^5 linear equations

Figure -1.2 Two intersecting planes in \mathbb{R}^3 with their corresponding equations.

represent 4-dimensional spaces, etc. When the free coefficient is equal to zero, these spaces become subspaces of the respective \mathbb{R}^n .

-1.1.2 Systems and matrix form

A **system of linear equations** is a set of linear equations using the same variables. For example, the three equations

$$\begin{cases}
2x - 5y + 4z + 2 = 0 \\
-3x - 2y + 1 = 0 \\
5x + 4z + -3 = 0
\end{cases}$$

form together a system of 3 linear equations with 3 variables (x, y and z). Systems of linear equations can be written together in matrix form: in the above example, the system can be represented as the equation

$$\begin{bmatrix} 2 & -5 & 4 \\ -3 & -2 & 0 \\ 5 & 0 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

since performing the matrix-vector product and vector addition yields back the system of equations. We call the matrix the **coefficients matrix** of the equation.

Note -1.2

In practice, many times the vector representing the free coefficients is moved to the right hand side of the equation. In the case of the above system this yields the simple equation

$$\begin{bmatrix} 2 & -5 & 4 \\ -3 & -2 & 0 \\ 5 & 0 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \\ 3 \end{bmatrix}.$$

In the most general form, a system of m equations in n variavles $x_1, x_2, x_3, ..., x_n$ can be represented as the product of an $m \times n$ coefficient matrix and the variables vector, yielding the free-coefficient vector:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}, \tag{-1.1.6}$$

$$m \times n \text{ coefficients}$$

$$m \text{ free coefficients}$$

which can be written succinctly as

$$A \quad x = b \ . \tag{-1.1.7}$$

-1.1.3 Solutions

-1.1.4 Finding solutions