Отчет о выполнении лабораторной работы «Изучение селективности глюкозооксидазы в окислении различных углеводов методом спектрофотометрии»

выполнили Лим Владимир, Розраенко Кирилл, группа Б04-202

Цель работы

Изучить кинетику реакции окисления различных гексоз (глюкозы, мальтозы и ксилозы) глюкозооксидазой, используя спектрофотометрический метод.

Теоретическая справка

Ферменты (энзимы) — это сложные белковые молекулы, ускоряющие многочисленные химические превращения в живых клетках, т.е. являющиеся природными катализаторами. Ферменты обладают высокой хемо-, регио- и стереоспецифичностью по отношению к субстрату и типу реакции. Схема ферментативной реакции для простейшего односубстратного случая имеет вил:

$$E+S \xrightarrow{k_1} E---S \xrightarrow{k_2} E+P$$

Здесь E — фермент (энзим), S — субстрат, E … S — фермент-субстратный комплекс, P — продукт реакции.

Для анализа подобной схемы можно применить квазиравновесное или квазистационарное приближение. Оба подхода приводят к уравнению для скорости реакции, называемому уравнением Михаэлиса-Ментен, описывающим зависимость скорости ферментативной реакции от концентрации субстрата:

$$W = \frac{k_2[E_{\Pi}][S]}{K_M + [S]}$$
 (1)

Здесь W — начальная скорость реакции, $[E_{\Pi}]$ — общая концентрация фермента, [S] — начальная концентрация субстрата, K_M — константа Михаэлиса-Ментен, являющаяся некой комбинацией констант k_1 , k_{-1} и k_2 .

В данной лабораторной работе рассматривается процесс ферментативного окисления β -D-глюкозы до глюконо-1,5-лактона молекулярным кислородом с помощью глюкозооксидазы. Молекула глюкозооксидазы имеет четвертичную

структуру. Глюкозооксидазы выделены из бактерий, плесневых грибов и т.д. Этот фермент состоит, как правило, из двух субъединиц:

рис. 1. Структура глюкозооксидазы.

Каждая субъединица содержит одну молекулу прочно нековалентно связанного кофермента — флавин-аденин динуклеотида (*FAD*). Именно этот структурный фрагмент энзимы ответственен за окислительновосстановительные превращения субстратов — глюкозы (углеводов) и кислорода:

Флавин аденин динуклеотид- окисленная форма FAD
$$^{\rm N}$$

В процессе трансформации FAD восстанавливается до $FADH_2$, принимая два электрона и два протона. При взаимодействии $FADH_2$ с молекулярным кислородом образуется перекись водорода и регенерируется FAD в окисленной форме. Механизм данной реакции выглядит следующим образом:

$$E_{0} \xrightarrow{k_{1}[S]} E_{0} \xrightarrow{k_{2}} E_{B} \xrightarrow{k_{2}} E_{B} \xrightarrow{k_{2}} P''$$

$$H_{2}O_{2} \xrightarrow{k_{1}[S]} E_{0} \xrightarrow{k_{2}} E_{B} \xrightarrow{k_{2}} P''$$

$$E_{0} \xrightarrow{k_{1}[S]} E_{0} \xrightarrow{k_{2}} E_{B} \xrightarrow{k_{2}} P''$$

$$E_{0} \xrightarrow{k_{1}[S]} E_{0} \xrightarrow{k_{2}} E_{B} \xrightarrow{k_{2}} P''$$

рис. 2. Механизм

ферментативного окисления глюкозы.

Здесь S — глюкоза, P'' — глюконолактон, E_o — фермент с коферментом FAD в окисленной форме, E_B — фермент с коферментом $FADH_2$ в восстановленной форме. В приближении $[O_2] = const$, можно показать, что кинетика образования продукта окисления глюкозы описывается формулой (1).

Побочный же продукт данной реакции, а именно пероксид водорода, поможет нам изучить эту кинетику. Для этого, в реакционную смесь добавляются растворы йодида калия в молибдате натрия (предположительно, молибдат натрия также является источником активного кислорода, что позволяет несколько ускорить реакцию ферментативного окисления). При образовании молекул H_2O_2 , немедленно происходит реакция:

$$H_2O_2 + 3I^- + 2H^+ \xrightarrow{MoO_4^{2-}} 2H_2O + I_3^-$$

Образующийся ион I_3^- имеет интенсивную бурую окраску, что позволяет фиксировать его наличие в растворе с помощью спектров поглощения. На рабочей длине волны $\lambda = 390$ нм коэффициент экстинкции ε раствора I_3^- :

$$\varepsilon = 3 * 10^3 \,\mathrm{M}^{-1} \mathrm{cm}^{-1}$$

Описание установки и хода эксперимента

Оборудование и материалы: мерная колба на 250 мл - 1 шт., стакан на 250 мл - 1 шт., стаканчики на 25 мл - 4 шт., pH-метр, UV-VIS спектрофотометр PB-2201, кварцевая кювета толщиной 1 см, автоматические микропипетки на 20 мкл, стеклянная палочка, набор углеводов (глюкоза, манноза, ксилоза), дигидрофосфат калия, калий йодистый, 9%-й раствор молибдата натрия, 0,1 М раствор NaOH, раствор глюкозооксидазы (хранится в холодильнике), стандартный раствор с известным pH для калибровки pH-метра.

Для осуществления эксперимента по изучению кинетики ферментативного окисления различных углеводов были приготовлены растворы:

- фосфатный буфер (pH = 6.0) смесь растворов дигидрофосфата калия (1,71 г в 200 мл H_2O) и гидроксида натрия (1 М в H_2O) (калибровка pH производилась с помощью pH-метра и раствора с известным pH = 6.86)
- реактив йодида смесь раствора KI в буфере (0,83 г в 8 мл) и 9%-ного раствора молибдата натрия в буфере.
- растворы углеводов 0,5 г в 5 мл буфера.

Рабочий раствор для измерения скорости ферментативной реакции готовят непосредственно в кювете спектрофотометра. Для этого в кювете смешивают приготовленные заранее реагенты (0,5 мл реактива йодида, 0,4 мл раствора углевода, 1,1 мл буфера).

Далее, добавляем 20 мкл раствора глюкозооксидазы, быстро перемешиваем стеклянной палочкой и записываем кинетические кривые. Измерения проводим в течение 8 мин, рабочая длина волны — 390 нм, температура раствора поддерживается равной $t^{\circ} = 30^{\circ}C$ с помощью встроенного в спектрофотометр термостата.

Для каждого углевода запись кинетических кривых проводим по 2 раза.

В результате измерений получаем следующие кривые:

граф. 1.

3десь D — оптическая плотность раствора, t — время с начала измерения.

Зная коэффициент экстинкции ε для I_3^- на длине волны 390 нм и толщину поглощающего слоя l=1 см, найдем начальные значения скорости реакции w(0) для каждого углевода ($D=\varepsilon l[I_3^-]$ (2)):

Гексоза	dD/dt(0), 1/мин	w(0), мкМ/мин
Глюкоза-1	2,658	886,00
Глюкоза-2	3,000	999,93
Манноза-1	0,267	89,00
Манноза-2	0,356	118,67
Ксилоза-1	0,011	3,67
Ксилоза-2	0,017	5,50

табл. 1.

Здесь мы считаем, что скорость образования побочного продукта реакции (H_2O_2) совпадает со скоростью образования продукта окисления углевода.

Усредним значения начальной скорости реакции для каждого углевода и посчитаем относительную активность фермента, считая, что для глюкозы она равна 100%:

Гексоза	w(0), мкМ/мин	Отн. активность
Глюкоза	943 ± 57	100%
Манноза	104 ± 15	11%
Ксилоза	4,6 ± 0,9	0,5%

табл 2

Вывод

В ходе данной лабораторной работы нам удалось изучить кинетику ферментативного окисления углеводов молекулярным кислородом, используя глюкозооксидазу в качестве фермента. Полученные нами результаты показали, что данный фермент действительно обладает высокой хемоспецифичностью: относительные активности фермента для разных гексоз оказались отличающимися друг от друга минимум на порядок. Измерения затруднялись тем, что малое количество добавляемого в реакционные смеси раствора фермента (20 мкл) было тяжело отмерить точно, к тому же сам раствор мог со временем становиться концентрированнее, т.к. на дне стаканчика с ним лежал не до конца растворившийся порошок фермента. Также, невозможно точно зафиксировать начало реакции, т.к. время начала измерения сильно зависит от человеческого фактора. Все это привело к возникновению довольно большой (~15%) погрешности в определении начальных скоростей реакции, что, однако, не помешало нам оценить активность фермента как минимум по порядку.