KHÔLLE Nº 18

Exercice 1.

1. Soient G_{X_1} et G_{X_2} les fonctions génératrices de X_1 et X_2 respectivement. On note $G_{X_1+X_2}$ la fonction génératrice de X_1+X_2 . On sait que $G_{X_1+X_2}=G_{X_1}\cdot G_{X_2}$, car X_1 et X_2 sont indépendantes. De plus, $X_1\sim \mathcal{P}(\lambda_1)$ d'où $G_{X_1}(t)=\mathrm{e}^{\lambda_1(t-1)}$, pour tout réel t. De même, $G_{X_2}(t)=\mathrm{e}^{\lambda_2(t-1)}$ pour tout réel t car $X_2\sim \mathcal{P}(\lambda_2)$. On en déduit que, pour tout réel t, $G_{X_1+X_2}(t)=\mathrm{e}^{\lambda_1(t-1)}\cdot\mathrm{e}^{\lambda_2(t-1)}=\mathrm{e}^{(\lambda_1+\lambda_2)(t-1)}$. On reconnaît la série génératrice d'une loi de Poisson $\mathcal{P}(\lambda_1+\lambda_2)$. Or, les termes de la série génératrice permettent de déterminer les probabilités des valeurs prisent par la variable aléatoire. D'où, $(X_1+X_2)\sim \mathcal{P}(\lambda_1+\lambda_2)$.

2.

$$\begin{split} &P(X_1 = j \mid X_1 + X_2 = k) \\ &= P\big((X_1 = j \cap (X_1 + X_2 = k)) \cdot P(X_1 + X_2 = k) \quad \text{car } P(X_1 + X_2 = k) \neq 0, \\ &= P\big((X_1 = j) \cap (X_2 = k - j)\big) \cdot P(X_1 + X_2 = k) \\ &= P(X_1 = j) \cdot P(X_2 = k - j) \cdot P(X_1 + X_2 = k) \quad \text{par indépendance de } X_1 \text{ et } X_2, \\ &= e^{-\lambda_1} \frac{\lambda_1^j}{j!} \times e^{-\lambda_2} \frac{\lambda_2^{k-j}}{(k-j)!} \times e^{-\lambda_1 - \lambda_2} \frac{(\lambda_1 + \lambda_2)^k}{k!} \quad \text{car } (X_1 + X_2) \sim \mathcal{P}(\lambda_1 + \lambda_2) \\ &= e^{-2(\lambda_1 + \lambda_2)} \frac{(\lambda_1^{k+1} \lambda_2^{k-j} + \lambda_1^j \lambda_2^{k-j+1})^k}{j! \cdot (k-j)! \cdot k!} \\ &= \frac{e^{-2(\lambda_1 + \lambda_2)}}{2 \cdot k!} \binom{k}{j} (\lambda_1^{k+1} \lambda_2^{k-j} + \lambda_1^j \lambda_2^{k-j+1})^k \end{split}$$

Exercice 2.

- 1. Soient \vec{x} et \vec{y} deux vecteurs de \bar{F} . Soient λ et μ deux réels. Par la caractérisation séquentielle de l'adhérence, il existe deux suites $(\vec{x}_n)_{n\in\mathbb{N}}$ et $(\vec{y}_n)_{n\in\mathbb{N}}$ de vecteurs de F convergent vers \vec{x} et \vec{y} respectivement. On pose $(\vec{z}_n)_{n\in\mathbb{N}}$ la suite de vecteurs de F définie par $\vec{z}_i = \lambda \vec{x}_i + \mu \vec{y}_i$, pour tout entier i. Ainsi, par somme des limites, la suite $(\vec{z}_n)_{n\in\mathbb{N}}$ converge vers $\lambda \vec{x} + \mu \vec{y}$. Par la caractérisation séquentielle de l'adhérence, on en déduit que $\lambda \vec{x} + \mu \vec{y} \in \bar{F}$. D'où, \bar{F} est un sous-espace vectoriel de E.
- 2. (a) On suppose $\bar{F} \neq F$. Soit $\vec{v} \in \bar{F}$ tel que $\vec{v} \notin F$. Alors, (Vect \vec{v}) $\cap F = \{\vec{0}\}$ donc Vect \vec{v} et F sont en somme directe. Ainsi, comme F admet un supplémentaire de dimension 1 dans E, on en déduit que (Vect \vec{v}) $\oplus F = E$.
 - (b) On sait que \bar{F} est un sous-espace vectoriel de E. Or, $\vec{v} \in \bar{F}$ et $F \subset \bar{F}$, donc $E = (\operatorname{Vect} \vec{v}) \oplus F \subset \bar{F}$. Or, $\bar{F} \subset E$ d'après la question 1. On en déduit que $\bar{F} = E$.

Exercice 3.

1. Pour montrer que $\bar{A}=A$, on utilise la caractérisation séquentielle de l'adhérence. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de A qui converge pour la norme $\|\cdot\|_{\infty}$ vers une fonction $f\in \mathscr{C}([0,1],\mathbb{R})$. On sait que la suite de fonctions converge uniformément. En effet,

$$\sup_{t \in [0,1]} \|f_n(t) - f(t)\| \stackrel{\star}{=} \max_{t \in [0,1]} |f_n(t) - f(t)| = \|f_n - f\|_{\infty} \xrightarrow[n \to \infty]{} 0.$$

L'égalité \star est assurée car les fonctions f et f_n sont continues sur un segment. Ainsi, on a $0=f_n(0)\to f(0)$ quand $n\to\infty$; de même, $0=f_n(1)\to f(1)$. On en déduit donc que f(0)=f(1)=0. De plus, par interversion limite—intégrale sur un segment,

$$1 = \int_0^1 f_n(t) \ \mathrm{d}t \xrightarrow[n \to \infty]{} \int_0^1 f(t) \ \mathrm{d}t \qquad \text{d'où} \qquad \int_0^1 f(t) \ \mathrm{d}t = 1.$$

On en déduit donc que $f \in A$. On peut en conclure que l'ensemble A est un fermé dans $\mathscr{C}([0,1],\mathbb{R})$.

2. On considère la suite de fonctions continues $(f_n)_{n\in\mathbb{N}^*}$ définies comme montré dans la figure ci-dessous.

Figure 1 – Suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$

La suite $(b_n)_{n\in\mathbb{N}}$ est définie par, pour $n\in\mathbb{N}^\star,\,b_n=1/(1-\frac{1}{n}).$ Par construction de la suite de fonctions $(f_n)_{n\in\mathbb{N}^\star}$, on a bien $f_n(0)=f_n(1)=0$, pour tout entier $n\in\mathbb{N}^\star.$ De plus,

$$\int_0^1 f_n(t) \, \mathrm{d}t = b_n \times \left(1 - \frac{1}{n}\right) = 1.$$

On en déduit que $(f_n)_{n\in\mathbb{N}^*}$ est une suite de fonctions de A. Par définition de d, on a $d(0,A)\leqslant d(0,f_n)=\|f_n\|_\infty=b_n.$ Or, $b_n\to 1$ quand $n\to\infty$, et inf est le plus grand minorant, donc $d(0,A)\leqslant 1$.