Universidad Industrial de Santander

Introducción a la Física (2013)

Unidad: 01

• Clase: 07

Fecha: 20130606J

Contenido: Energía: introducción general

Web: http://halley.uis.edu.co/fisica_para_todos/

Archivo: 20130606J-HA-energia.pdf

Avisos parroquiales para hoy

- Formas de evaluación
 - Preguntas de los martes → 20%
 - Entregas pautadas de los trabajos → 4 trabajos → 20% c/u
- Preguntas del blog a evaluar "cuasi"-cualitativamente:
 - Preguntas de los martes → Cosmos
 - Preguntas de los martes → Lecturas
 - Preguntas de los martes → Seminarios
- "Rifa instantánea de re-evaluación"
 - 2 entregas (2da y 4ta)
 - 2 martes → 6 grupos por martes

En el episodio anterior...

En el episodio anterior...

- Objeto: Entidad que agrupa un estado y una funcionalidad relacionadas: Atributos y Métodos
- Clase: definiciones de los atributos y las funciones que definen a los métodos de los objetos

En python todo elemento es un objeto que pertence a una clase. Hay clases de objetos pre-definidas

```
n=0
masa=suma=suma2=0.
for linea in open("planets.dat"):
    if not linea.startswith("#"):
        masa=float(linea.split()[1])
        suma+=masa
        suma2+=masa**2
        n+=1
```

```
media=suma/n
media2=suma2/n
varianza=media2-media**2
from math import sqrt
desvio=sqrt(varianza)
print n, media, desvio
```


¿Qué es la energía?

¿Realmente existe?

Fisica Para Todos (Nuñez+Asorey+Estupinian)

Historia

Leibniz (1646-1716) → Vis viva

Fricción

Thomas Young (1773, 1829) → Energía

1829, G. Coriolis (1792- 1843) → Cinética

1853, William Rankine (1820 -1872) → Potencia

Energia

- Energía (del griego ἐνέργεια energeia, actividad, operación): magnitud escalar que describe la cantidad de trabajo que puede ser realizado por una fuerza.
- Es un atributo de los objetos y de los sistemas y obedece una ley de conservación: es una magnitud conservada
- Cada fenómeno físico se asocia con alguna forma de energía
- Incluyen:
 - cinética, potencial, térmica, gravitatoria, sonora, luminosa, elástica, electromagnética, nuclear, ...

Energía en todas las ciencias

- Biología
- Química

- Geología
- Meteorología
- Cosmología y astronomía

Cinética y potencial

Cinética

Energía asociada al movimiento

Potencial

- Interacción
- Depende de las posiciones relativas de los objetos
- ¿Qué energías potenciales conocen?

Energía mecánica

- En general, se denomina
- Energía Mecánica = Potencial + Cinética
- OJO (= Guarda = Cuidado):
 - no dice "Potencial Gravitatoria", dice "Potencial"

Sy en estos casos?

Nada se gana, nada se pierde...

Energía mecánica se convierte

en por

energía mecánica
energía térmica
energía eléctrica
radiación electromagnética
energía química
energía nuclear

Nada se gana, nada se pierde...

Energía química se convierte

en por

energía mecánica

energía térmica

energía eléctrica

radiación electromagnética

energía química

Analizando conversiones de energía

06/06/13

zy en un péndulo?

Energía potencial gravitatoria

- Recordemos las características de la energía potencial
 - Interacción → "Cargas"
 - Depende de la posición relativa
 - configuración espacial en presencia de un CAMPO de fuerzas conservativas
- ¿podemos aventurar una dependencia funcional?

Energía potencial gravitatoria

$$E_g(r) = -G \frac{m_1 m_2}{r}$$

$$G = 6.67 \times 10^{-11} \frac{J m}{kg^2}$$
 $G = 6.67 \times 10^{-11} \frac{m^3}{kg s^2}$

Cambio de energía potencial

$$\Delta E_{g12} = E_{g2} - E_{g1}$$

$$\Delta E_{g12} = -G m_1 m_2 \left(\frac{1}{r_2} - \frac{1}{r_1} \right)$$

Cambio de energía potencial

En los cambios de energía potencial, sólo importan las posiciones iniciales y finales

Referencia externa

La referencia en el infinito

Decreto

Se considera como punto de referencia para la energía

 La energía potencial gravitatoria para dos cuerpos a distancia r es igual al trabajo necesario para separar esos cuerpos desde esa distancia r hasta una distancia infinita.

Suponga que m,=M es la Tierra

$$\Delta E_{g12} = -G M m \left(\frac{1}{r_2} - \frac{1}{R} \right)$$

$$\Delta E_{g12} = -GMm(\frac{1}{R+h} - \frac{1}{R})$$

Paréntesis matemático

$$x \to 0 \Rightarrow \frac{1}{(1+x)} \simeq 1 - x$$

$$h \ll R \Rightarrow \frac{1}{(1+\frac{h}{R})} \simeq 1 - \frac{h}{R}$$

Luego, si h<<R

 La famosa fórmula para la variación de energía potencial gravitatoria

$$\Delta E_{g12} = -GM m \left(\frac{1}{R+h} - \frac{1}{R}\right) \simeq mgh$$

$$g = \frac{GM}{R^2}$$

- g es la aceleración de la gravedad
- Sobre la superficie terrestre, g ~ 9.8 m/s²
- ¿Podremos calcular los valores de g $g_{\oplus} = \frac{GM_{\oplus}^{/}}{R_{\oplus}^{2}}$ para otros cuerpos?

la Tierra

ra atalica

La energía se conserva.... siempre

Dado que la energía se conserva:

La variación de un tipo de energía implica la variación de otro tipo para compensar el cambio: la variación total es cero

$$\Delta E_g + \Delta E_x = 0$$

$$\Delta E_g = -\Delta E_x$$

$$E_{g2} + E_{x2} = E_{gI} + E_{xI} \rightarrow E_2 = E_1$$

La energía total inicial es igual a la energía total final

Mensaje de unos amigos

