

Langages logiques

Un langage logique est construit à partir de :

- un ensemble $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1 \cup ...$ de symboles de fonction, où \mathcal{F}_0 est l'ensemble des **constantes** et \mathcal{F}_n est l'ensemble des symboles de **fonction** d'arité n, pour $n \geq 1$
- un ensemble $\mathcal{P} = \mathcal{P}_0 \cup \mathcal{P}_1 \cup \ldots$ de symboles de **prédicat**, où \mathcal{P}_0 est l'ensemble des symboles de proposition et \mathcal{P}_n est l'ensemble des symboles de prédicat d'arité n, pour $n \geq 1$

Langage logique sans variable

L'ensemble $\mathcal{T}_0(\mathcal{F})$ des **termes** est défini inductivement par :

- si $k \in \mathcal{F}_0$ est un symbole de constante, alors k est un terme
- si $f \in \mathcal{F}_n$ est un symbole de fonction d'arité n, et si t_1, \dots, t_n sont des termes, alors $f(t_1, \dots, t_n)$ est un terme

L'ensemble $\mathcal{L}_0(\mathcal{F}, \mathcal{P})$ des formules atomiques est défini par :

- si $p \in \mathcal{P}_0$ est un symbole de prédicat d'arité 0, alors p est une formule atomique
- si $p \in \mathcal{P}_n$ est un symbole de prédicat d'arité n et si t_1, \dots, t_n sont des termes de $\mathcal{T}_0(\mathcal{F})$, alors $p(t_1, \dots, t_n)$ est une formule atomique

L'ensemble $\mathbb{F}_0(\mathcal{F}, \mathcal{P})$ des formules logiques est défini inductivement par :

- true et false sont des formules logiques
- si F est une formule atomique, alors F est une formule logique
- si F est une formule logique, alors $\neg F$ est une formule logique
- si F_1 et F_2 sont des formules logiques, alors $(F_1 \wedge F_2)$, $(F_1 \vee F_2)$ et $(F_1 \Rightarrow F_2)$ sont des formules logiques

Langage logique avec variable

Soit X un ensemble de symboles de variable.

L'ensemble $\mathcal{T}(X,\mathcal{F})$ des **termes** est défini inductivement par :

- si $x \in X$ est un symbole de variable, alors x est un terme
- si $k \in \mathcal{F}_0$ est un symbole de constante, alors k est un terme
- si $f \in \mathcal{F}_n$ est un symbole de fonction d'arité n, et si t_1, \dots, t_n sont des termes, alors $f(t_1, \dots, t_n)$ est un terme

L'ensemble $\vartheta(t)$ des variables apparaissant dans un terme t est défini inductivement par :

$$\begin{array}{rcl}
\vartheta(x) & = & \{x\} & (x \in X) \\
\vartheta(k) & = & \emptyset & (k \in \mathcal{F}_0) \\
\vartheta(f(t_1, \dots, t_n)) & = & \vartheta(t_1) \cup \dots \cup \vartheta(t_n) & (f \in \mathcal{F}_n)
\end{array}$$

Définition inductive du terme t[x := t'] (substitution de la variable x par le terme t' dans t):

$$x[x := t'] = t'$$
 $(x \in X)$
 $y[x := t'] = y$ $(y \in X \text{ et } x \neq y)$
 $k[x := t'] = k$ $(k \in \mathcal{F}_0)$
 $f(t_1, \dots, t_n)[x := t'] = f(t_1[x := t'], \dots, t_n[x := t'])$ $(f \in \mathcal{F}_n)$

L'ensemble $\mathcal{L}(X, \mathcal{F}, \mathcal{P})$ des formules atomiques est défini par :

- si $p \in \mathcal{P}_0$ est un symbole de prédicat d'arité 0, alors p est une formule atomique
- si $p \in \mathcal{P}_n$ est un symbole de prédicat d'arité n et si t_1, \dots, t_n sont des termes de $\mathcal{T}(X, \mathcal{F})$, alors $p(t_1, \dots, t_n)$ est une formule atomique

L'ensemble $\mathbb{F}(X, \mathcal{F}, \mathcal{P})$ des formules logiques est défini inductivement par :

— true et false sont des formules logiques

- si F est une formule atomique, alors F est une formule logique
- si F est une formule logique, alors $\neg F$ est une formule logique
- si F_1 et F_2 sont des formules logiques, alors $(F_1 \wedge F_2)$, $(F_1 \vee F_2)$ et $(F_1 \Rightarrow F_2)$ sont des formules logiques
- si F est une formule et x un symbole de variable, alors $\forall x \, F$ et $\exists x \, F$ sont des formules L'ensemble Free(F) des **variables libres** d'une formule est défini inductivement par :

$$\operatorname{Free}(F) = \left\{ \begin{array}{ll} \emptyset & \text{si } F = \operatorname{true \ ou} \ F = \operatorname{false} \\ \bigcup_{i=1}^n \vartheta(t_i) & \text{si } F = p(t_1, \cdots, t_n) \\ \operatorname{Free}(F') & \text{si } F = \neg F' \\ \operatorname{Free}(F_1) \cup \operatorname{Free}(F_2) & \text{si } F = F_1 \wedge F_2 \ \text{ou } F = F_1 \Rightarrow F_2 \\ & \text{ou } F = F_1 \Rightarrow F_2 \\ \operatorname{Free}(F') \backslash \{x\} & \text{si } F = \forall x \ F' \ \text{ou } F = \exists x \ F' \end{array} \right.$$

Une occurrence de variable est **liée** si elle est dans la portées d'un quantificateur. Une **formule close** est une formule F telle que $Free(F) = \emptyset$ et si $Free(F) = \{x_1, \dots, x_n\}$ alors une **clôture universelle** de F est la formule $\forall x_1 \dots \forall x_n F$.

Définition inductive de la formule F[x:=t] (formule F sur laquelle est appliquée la **substitution** de x par le terme t) lorsque les variables de $\vartheta(t)$ n'ont pas d'occurrences liées dans F (si cette condition n'est pas vérifiée il suffit de renommer les occurrences liées de F):

$$\begin{array}{rclcrcl} & {\rm true}[x:=t] & = & {\rm true} \\ & & {\rm false}[x:=t] & = & {\rm false} \\ p(t_1,\cdots,t_n)[x:=t] & = & p(t_1[x:=t],\cdots,t_n[x:=t]) & (p\in\mathcal{P}_n) \\ & & (\neg F_0)[x:=t] & = & \neg (F_0[x:=t]) \\ & & (F_1\wedge F_2)[x:=t] & = & F_1[x:=t] \wedge F_2[x:=t] \\ & & (F_1\vee F_2)[x:=t] & = & F_1[x:=t] \vee F_2[x:=t] \\ & & (F_1\Rightarrow F_2)[x:=t] & = & F_1[x:=t] \Rightarrow F_2[x:=t] \\ & & (\forall x \ F_0)[x:=t] & = & \forall x \ F_0 \\ & & (\exists x \ F_0)[x:=t] & = & \exists x \ F_0 \\ & & (\exists y \ F_0)[x:=t] & = & \exists y \ (F_0[x:=t]) & (x\neq y) \\ \end{array}$$