Parallel Block Coordinate Descent Methods for Huge-Scale Partially Separable Optimization Problems

Peter Richtárik

School of Mathematics The University of Edinburgh

Joint work with Martin Takáč (Edinburgh)

INFORMS Phoenix Oct 15, 2012

Part I.

4 Boring Slides

BS1: Blocks

 $x \in \mathbb{R}^N$ is partitioned into *n* blocks/groups of variables:

$$x^{(1)}, \dots, x^{(n)}, \qquad x^{(i)} \in \mathbf{R}^{N_i}, \qquad \sum_{i=1}^n N_i = N$$

$$x = \sum_{i=1}^n U_i x^{(i)}$$

Example: N = 5, n = 2

$$x = (x_1, x_2, x_3, x_4, x_5)^T = \underbrace{((x_1, x_3), (x_2, x_4, x_5))}_{x^{(1)} \in \mathbb{R}^2} \underbrace{(x_1, x_3), (x_2, x_4, x_5)}_{x^{(2)} \in \mathbb{R}^3}$$

$$U_1 \underbrace{\begin{pmatrix} x_1 \\ x_3 \\ x_3 \\ 0 \\ 0 \end{pmatrix}}_{x^{(1)} \in \mathbb{R}^2} = \begin{pmatrix} x_1 \\ 0 \\ x_3 \\ 0 \\ 0 \end{pmatrix}, \qquad \underbrace{U_2 \underbrace{\begin{pmatrix} x_2 \\ x_4 \\ x_5 \end{pmatrix}}_{x^{(2)} \in \mathbb{R}^3} = \begin{pmatrix} 0 \\ x_2 \\ 0 \\ x_4 \\ x_5 \end{pmatrix}}_{x^{(2)} \in \mathbb{R}^3}$$

BS2: The Problem

$$\min_{x \in \mathbb{R}^N} \{ F(x) \stackrel{\text{def}}{=} f(x) + \Psi(x) \}, \tag{P}$$

Assumptions:

- ▶ f is convex and smooth
- ► *f* is (block/group) partially separable:

$$f = \sum_{J} f_{J}$$
, each f_{J} depends on a few blocks $x^{(i)}$ only

- $ightharpoonup \Psi$ is convex, nonsmooth and simple
- Ψ is (block/group) separable: $\Psi(x) = \sum_{i=1}^{n} \Psi_i(x^{(i)})$

$\Psi(x)$	meaning
0	smooth minimization
$\lambda \ x\ _1 \ (N=n)$	term inducing sparsity
$\lambda \sum_{i=1}^{n} \ x^{(i)}\ _{2}$	group-sparsity term LASSO
indicator function of a set	(block) separable constraints

▶ *n* is huge $(n \approx 10^9)$

BS3: Assumption: Smoothness of *f*

Definition (Block norms and norm in \mathbb{R}^N)

We measure the size of block $h^{(i)} \in \mathbf{R}^{N_i}$ of $h \in \mathbf{R}^N$, using a dedicated norm: $\|h^{(i)}\|_{(i)}$, i = 1, ..., n, and measure $x \in \mathbf{R}^N$ via

$$||x||_W^2 \stackrel{\text{def}}{=} \sum_{i=1}^n w_i ||x^{(i)}||_{(i)}^2.$$

Assumption (Smoothness of f)

The gradient of f is block coordinate-wise Lipschitz with positive constants L_1, L_2, \ldots, L_n :

$$\|\nabla_i f(x + U_i t) - \nabla_i f(x)\|_{(i)}^* \le L_i \|t\|_{(i)}, \ x \in \mathbf{R}^N, \ t \in \mathbf{R}^{N_i}, \ i = 1, \ldots, n,$$

where

$$\nabla_i f(x) \stackrel{\mathsf{def}}{=} (\nabla f(x))^{(i)} = U_i^T \nabla f(x) \in \mathbf{R}^{N_i}.$$

BS4: Applications

- ▶ Machine Learning: L_1 regularized linear support vector machines (SVM) with various (smooth) loss functions
- ► Ranking: Google problem
- Engineering: truss topology design
- ➤ **Statistics:** least squares, ridge regression, sparse least squares (LASSO), elastic net, group lasso, (sparse) group LASSO
- ▶ **Optimal Design:** *c* and *A* optimality

Part II.

PR-BCD: Parallel Randomized Block Coordinate Descent

[RT2012b] P. R. and Martin Takáč Parallel coordinate descent methods for big data optimization problems

Parallel Randomized Block Coordinate Descent

Algorithm PR-BCD

Input: Choose initial point $x_0 \in \mathbf{R}^N$

for
$$k = 0, 1, 2, ...$$
 do

- 1. Choose random subset of blocks (sampling) $\hat{S} \subset \{1,2,\ldots,n\}$
- 2. In parallel for $i \in \hat{S}$ do:
 - (a) Compute block update: $h^{(i)}(x_k) \in \mathbf{R}^{N_i}$
 - (b) Update the block: $x_k^{(i)} = x_k^{(i)} + h^{(i)}(x_k)$
 - $(c) x_{k+1} = x_k$

end for

Leads to different algorithms for different samplings \hat{S} :

- $\hat{S} = \{i\}, i = 1, 2, ..., n$, with probability $\frac{1}{n}$ (serial uniform)
- $\hat{S} = \{i\}, i = 1, 2, ..., n$, with probability p_i (serial non-uniform)
- $\hat{S} = \{1, 2, ..., n\}$ with probability 1 (fully parallel)
- \hat{S} = many interesting choices in between!

ESO: Expected Separable Overapproximation

Definition (ESO)

f admits an (α, β) -ESO with respect to sampling \hat{S} if

$$\mathbf{E}[f(x+h_{[\hat{S}]})] \le f(x) + \frac{\alpha}{\alpha} \left(\langle \nabla f(x), h \rangle + \frac{\beta}{2} ||h||_L^2 \right).$$

► The overapproximation is (block) separable in *h*:

$$\langle \nabla f(x), \mathbf{h} \rangle + \frac{\beta}{2} \|\mathbf{h}\|_{L}^{2} = \sum_{i=1}^{n} \left(\langle \nabla_{i} f(x), \mathbf{h}^{(i)} \rangle + \frac{\beta L_{i}}{2} \|\mathbf{h}^{(i)}\|_{(i)}^{2} \right).$$

Main Result: Iteration Complexity

Theorem

Assume f admits an (α, β) -ESO with respect to sampling \hat{S} . Choose $x_0 \in \mathbf{R}^N$, confidence level $0 < \rho < 1$, target accuracy

$$0<\epsilon<\min\{2\left(\frac{\beta}{\alpha}\right)\mathcal{R}_L^2(x_0,x^*),F(x_0)-F^*\}$$

and iteration counter

$$k \geq \left(\frac{\beta}{\alpha}\right) \left(\frac{2\mathcal{R}_{L}^{2}(x_{0}, x^{*})}{\epsilon} \log \frac{F(x_{0}) - F^{*}}{\epsilon \rho}\right).$$

If x_k is the random point generated by PR-BCD as applied to F, then

$$P(F(x_k) - F^* \le \epsilon) \ge 1 - \rho$$

Remarks:

Specialized results for smooth functions, strongly convex functions,

ESO: Computing α , β

Constants α, β , and hence the complexity factor $\frac{\beta}{\alpha}$, depend on

- ightharpoonup sampling \hat{S}
- ▶ function *f*

$$\frac{\beta}{\alpha} \quad \left\{ \begin{array}{l} = n, \quad \text{ serial uniform } \hat{S} \text{ [RT2011a]} \\ \ll n, \quad \text{ doubly uniform } \hat{S}, \text{ (block) partially separable } f \text{ [RT2012b]} \end{array} \right.$$

[RT2011a] P. R. and Martin Takáč

Iteration complexity of randomized block coordinate descent methods for minimizing a composite function $% \left(1\right) =\left(1\right) \left(1\right$

[RT2012b] P. R. and Martin Takáč

Parallel coordinate descent methods for big data optimization problems

Doubly Uniform Samplings

Definition

Sampling \hat{S} is doubly uniform if for all $S_1, S_2 \subset \{1, 2, ..., n\}$:

$$|S_1| = |S_2| \implies \mathbf{P}(\hat{S} = S_1) = \mathbf{P}(\hat{S} = S_2).$$

Doubly Uniform Samplings

Definition

Sampling \hat{S} is doubly uniform if for all $S_1, S_2 \subset \{1, 2, ..., n\}$:

$$|S_1| = |S_2| \implies \mathbf{P}(\hat{S} = S_1) = \mathbf{P}(\hat{S} = S_2).$$

Remark: A doubly uniform sampling is uniquely characterized by

$$q_k \stackrel{\text{def}}{=} \mathbf{P}(|\hat{S}| = k), \qquad k = 0, 1, 2, \dots, n.$$

Indeed, we have

$$\mathbf{P}(\hat{S} = S) = \frac{q_{|S|}}{\binom{n}{|S|}}$$

Doubly Uniform Samplings

Definition

Sampling \hat{S} is doubly uniform if for all $S_1, S_2 \subset \{1, 2, ..., n\}$:

$$|S_1| = |S_2| \implies \mathbf{P}(\hat{S} = S_1) = \mathbf{P}(\hat{S} = S_2).$$

Remark: A doubly uniform sampling is uniquely characterized by

$$q_k \stackrel{\text{def}}{=} \mathbf{P}(|\hat{S}| = k), \qquad k = 0, 1, 2, \dots, n.$$

Indeed, we have

$$\mathbf{P}(\hat{S} = S) = \frac{q_{|S|}}{\binom{n}{|S|}}$$

Example: n = 4

- $ightharpoonup P(\emptyset) = q_0$
- $P(\{1\}) = P(\{2\}) = P(\{3\}) = P(\{4\}) = \frac{q_1}{4}$
- ▶ $P({1,2}) = P({1,3}) = P({1,4}) = P({2,3}) = P({2,4}) = P({3,4}) = \frac{q_2}{6}$
- $P(\{1,2,3\}) = P(\{1,2,4\}) = P(\{1,3,4\}) = P(\{2,3,4\}) = \frac{q_3}{4}$
- $P({1,2,3,4}) = q_4$

What Can We Model with Doubly Uniform Samplings?

Recall that

$$q_k = \mathbf{P}(|\hat{S}| = k)$$

Two Examples of Computing Environments:

- ightharpoonup au reliable processors: $q_{ au}=1$
- τ unreliable/busy processors with each giving an answer, independently, with probability p:

$$q_k = {\tau \choose k} p^k (1-p)^k, \qquad k = 0, 1, \dots, \tau$$

Definition

Function f is (block) partially separable of degree ω if

$$f(x) = \sum_{J \in \mathcal{J}} f_J(x),$$
 \mathcal{J} consists of (some) subsets of $\{1, 2, \dots, n\}$

- ▶ f_J depends on blocks $x^{(i)}$ for $i \in J$ only
- ▶ $\max_{J \in \mathcal{J}} |J| \le \omega$

Definition

Function f is (block) partially separable of degree ω if

$$f(x) = \sum_{J \in \mathcal{J}} f_J(x),$$
 \mathcal{J} consists of (some) subsets of $\{1, 2, \dots, n\}$

- ▶ f_J depends on blocks $x^{(i)}$ for $i \in J$ only
- $\blacktriangleright \; \max_{J \in \mathcal{J}} |J| \leq \omega$

Observe that:

▶ $1 \le \omega \le n$

Definition

Function f is (block) partially separable of degree ω if

$$f(x) = \sum_{J \in \mathcal{J}} f_J(x),$$
 \mathcal{J} consists of (some) subsets of $\{1, 2, \dots, n\}$

- ▶ f_J depends on blocks $x^{(i)}$ for $i \in J$ only
- ▶ $\max_{J \in \mathcal{J}} |J| \le \omega$

Observe that:

- ▶ $1 \le \omega \le n$
- ▶ If $\omega = 1$, f is (block) separable (as Ψ) and hence the main optimization problem can be decomposed into n independent problems

Definition

Function f is (block) partially separable of degree ω if

$$f(x) = \sum_{I \in \mathcal{I}} f_I(x),$$
 \mathcal{J} consists of (some) subsets of $\{1, 2, \dots, n\}$

- ▶ f_J depends on blocks $x^{(i)}$ for $i \in J$ only
- $\blacktriangleright \; \max_{J \in \mathcal{J}} |J| \leq \omega$

Observe that:

- ▶ $1 < \omega < n$
- ▶ If $\omega = 1$, f is (block) separable (as Ψ) and hence the main optimization problem can be decomposed into n independent problems

Example:
$$f(x) = \frac{1}{2} ||Ax - b||^2 = \sum_{j} \underbrace{\frac{1}{2} (A_j^T x - b_j)^2}_{f_j(x)}$$

lacksquare $\omega = \max \# \text{ of nonzeros in } A_j \text{ (a row of } A)$

ESO for Partially Separable f and Doubly Uniform \hat{S}

Theorem

Assume that

- f is partially separable of degree ω
- $ightharpoonup \hat{S}$ is a doubly uniform sampling

Then f admits an (α, β) -ESO with respect to \hat{S} with

$$\frac{\alpha}{\alpha} = \frac{\mathbf{E}[|\hat{S}|]}{n}, \qquad \beta = 1 + \frac{\left(\omega - 1\right)\left(\frac{\mathbf{E}[|\hat{S}|^2]}{\mathbf{E}[|\hat{S}|]} - 1\right)}{\max(1, n - 1)}.$$

Remarks:

 We have computed ESO for some other samplings as well, but will not talk about them here

ESO Coefficients

α	β
$\frac{\mathbf{E}[\hat{S}]}{n}$	$1 + \frac{(\omega - 1) \left(\frac{E[\hat{\hat{S}} ^2]}{E[\hat{\hat{S}}]} - 1\right)}{\max(1, n - 1)}$
<u>T p</u> n	$1+rac{(\omega-1)(au-1)p}{\max(1,n-1)}$
$\frac{\tau}{n}$	$1+rac{(\omega-1)(au-1)}{\max(1,n-1)}$
1	ω
$\frac{1}{n}$	1
	$\frac{\mathbf{E}[\hat{S}]}{n}$ $\frac{\tau p}{n}$ $\frac{\tau}{n}$ 1

Parallelization Speedup for DU Samplings

Sampling \hat{S}	$rac{eta}{lpha}$ of sampling $/$ $rac{eta}{lpha}$ of DU serial
Doubly Uniform (DU)	$\frac{\max(1,n-1)}{\left(\frac{E[\hat{S} ^2]}{(E \hat{S})^2} - \frac{1}{E[\hat{S}]}\right)(\omega - 1) + \frac{1}{E[\hat{S}]}\max(1,n-1)}$
DU unreliable	$\frac{\max(1,n-1)}{\left(1-\frac{1}{\tau}\right)(\omega-1)+\frac{1}{\tau}\frac{\max(1,n-1)}{\rho}}$
DU reliable	$\frac{\max(1,n\!-\!1)}{\left(1\!-\!\frac{1}{\tau}\right)(\omega\!-\!1)\!+\!\frac{1}{\tau}\max(1,n\!-\!1)}$
DU fully parallel	$\frac{\underline{n}}{\omega}$
DU serial	1

Parallelization Speedup: Theory vs Practice

Theory is when you know everything but nothing works. Practice is when everything works but no one knows why. In our lab, theory and practice are combined: nothing works and no one knows why.

Parallelization Speedup (DU reliable): Theory

$$F(x) = f(x) = \frac{1}{2} ||Ax - b||_2^2, \qquad A \in \mathbf{R}^{3000 \times 1000}$$

Parallelization Speedup (DU reliable): Experiment

$$F(x) = f(x) = \frac{1}{2} ||Ax - b||_2^2, \qquad A \in \mathbf{R}^{3000 \times 1000}$$

A Problem with Billion Variables

LASSO problem:

$$F(x) = \frac{1}{2} ||Ax - b||^2 + \lambda ||x||_1$$

The instance:

- ► A has
 - $= 2 \times 10^9 \text{ rows}$
 - $n = 10^9$ columns (= # of variables)
 - exactly 20 nonzeros in each column
 - on average 10 and at most 35 nonzeros in each row ($\omega=35$)
- optimal solution x^* has 10^5 nonzeros

Solver: Asynchronous parallel coordinate descent method with nice (=reliable DU) sampling and $\tau=1,8,16$ cores

Coordinate Updates / n

Iterations / n

Wall Time

Billion Variables — 1, 8 and 16 Cores

	$ F(x_k) - F^*$		Elapsed Time			
$(k \cdot \tau)/n$	1 core	8 cores	16 cores	1 core	8 cores	16 cores
0	6.27e+22	6.27e+22	6.27e+22	0.00	0.00	0.00
1	2.24e+22	2.24e+22	2.24e+22	0.89	0.11	0.06
2	2.25e+22	3.64e+19	2.24e+22	1.97	0.27	0.14
3	1.15e+20	1.94e+19	1.37e+20	3.20	0.43	0.21
4	5.25e+19	1.42e+18	8.19e+19	4.28	0.58	0.29
5	1.59e+19	1.05e+17	3.37e+19	5.37	0.73	0.37
6	1.97e+18	1.17e+16	1.33e+19	6.64	0.89	0.45
7	2.40e+16	3.18e+15	8.39e+17	7.87	1.04	0.53
:	:	:	:	1 :	:	:
26	3.49e+02	4.11e+01	3.68e+03	31.71	3.99	2.02
27	1.92e+02	5.70e+00	7.77e+02	33.00	4.14	2.10
28	1.07e+02	2.14e+00	6.69e+02	34.23	4.30	2.17
29	6.18e+00	2.35e-01	3.64e+01	35.31	4.45	2.25
30	4.31e+00	4.03e-02	2.74e+00	36.60	4.60	2.33
31	6.17e-01	3.50e-02	6.20e-01	37.90	4.75	2.41
32	1.83e-02	2.41e-03	2.34e-01	39.17	4.91	2.48
33	3.80e-03	1.63e-03	1.57e-02	40.39	5.06	2.56
34	7.28e-14	7.46e-14	1.20e-02	41.47	5.21	2.64
35	-	-	1.23e-03	-	-	2.72
36	-	-	3.99e-04	-	-	2.80
37	-	-	7.46e-14	-	<u>-</u> ∢@ > ∢ ≣	2.87