本节内容

图的存储

邻接表法

邻接表法 (顺序+链式存储)

//"顶点"

```
//"边/弧"
typedef struct ArcNode{
   int adjvex;
   struct ArcNode *next;
   //InfoType info;
}ArcNode;
```

```
//边/弧指向哪个结点
//指向下一条弧的指针
//边权值
```

```
typedef struct VNode{
    VertexType data; //顶点信息
    ArcNode *first; //第一条边/弧
}VNode,AdjList[MaxVertexNum];
```

关注公众号【研途小时】获取后续课程完整更新

对比: 树的孩子表示法

孩子表示法:顺序存储各个节点,每个结点中保存孩子链表头指针

邻接表法

边结点的数量是2|E|,整体空间复杂度为 O(|V|+2|E|)

思考:如何求顶点的度、入度、出度?

如何找到与一个顶点相连的边/弧?

边结点的数量是|E|, 整体空间复杂度为 O(|V| + |E|)

王道考研/CSKAOYAN.COM

邻接表法

只要确定了顶 点编号,图的 邻接矩阵表示 方式唯一

	Α	В	C	D	E	F	
Α	0	1	1	1	0	0	
В	1	0	0	0	1	1	
С	1	0	0	0	1	0	×
D	1	0	0	0	0	> 1	
Ε	0	1	1	0	0	0	
F	0	1	0	1	0	0	

王道考研/CSKAOYAN.COM

图的邻接表表示

方式并不唯一

知识回顾与重要考点

邻接矩阵

	Α	В	С	D	E	F
Α	0	1	1	1	0	0
В	1	0	0	0	÷ 1	1
C	1	0	0	0	1	0
D	1	0	0	0	0	1
E	0	1	1	0	0	0
F	0	1	0	1	0	0

	邻接表	邻接矩阵
空间复杂度	无向图 O(V + 2 E); 有向图O(V + E)	O(V ²)
适合用于	存储稀疏图	存储稠密图
表示方式	不唯一	唯一
计算度/出度/入度	计算有向图的度、入度不方便, 其余很方便	必须遍历对应行或列
找相邻的边	找有向图的入边不方便,其余很方便	必须遍历对应行或列