Теория графов

1 Введение. Базовые понятия теории графов

Определение 1 Граф - двойка G = (V, E), где V - множество вершин, а E - множество рёбер (отношение).

Рис. 1: Пример графов

▶ Пример: Города и наличие путей между ними. Люди в аудитории и связь между двумя людьми обозначает то, что у них день рождения в один день.

Определение 2 Граф называется **ориентированным**, когда отношение E не симметрично. То есть из $(x,y) \in E$ не следует $(y,x) \in E$.

Определение 3 Если из одной вершины в другую существует несколько рёбер, то такие рёбра называются **кратными**.

Определение 4 Граф, содержащий кратные рёбра называется мультиграфом.

Определение 5 Вершина x, такая что $(x, x) \in E$ называется **петлёй**.

Определение 6 Граф, который содержит петли называется псевдографом.

⊳ Обычный (простой) граф является неориентированным, без петель и без кратных ребер.

Определение 7 Последовательность вида $v_1e_1v_2e_2\dots v_ne_nv_{n+1}$ называется маршрутом в графе, где v_1 , v_{n+1} являются концами маршрута, а $e_i=(v_i,v_{i+1})$ - соединяющими рёбрами.

Определение 8 *Маршрут замкнут, если* $v_1 = v_{n+1}$

Определение 9 Если в пути все рёбра различны, и если маршрут замкнут, тогда маршрут называется **циклом**, а если не замкнут - **цепью**.

Рис. 2: Пример пути

▶ Если дополнительно все вершины различны, кроме, возможно первой и последней, цикл (цепь) называется простым(ой).

Определение 10 Граф называется **связным**, если между двумя любыми вершинами существует маршрут.

Определение 11 *Компонентной связности графа* называется часть графа (подграф), являющаяся связной.

Определение 12 Подграф G' = (V', E'), где $V' \subseteq V$, $E = \{(x, y) \in E \mid x, y \in V'\}$

Определение 13 Две вершины соединены ребром \Leftrightarrow две вершины **инцедентные** (смежные).

Определение 14 *Степенью вершины* v называется количество ребёр, инцедентных ей u обозначается $\deg v$

Замечание

$$\sum_{v \in V} \deg v = 2 \cdot |E|$$

Определение 15 Деревом называется связный, ацикличный граф.

Утверждение Следующие утверждения эквивалентны:

- 1. G дерево
- 2. Между любыми двумя вершинами в графе G существует единственная простая иепь
- 3. G связен, a |E| = |V| 1
- 4. G auuкличен, <math>a|E| = |V| 1

2 Эквивалентные определения дерева. Планарные графы

Докажем утверждение (1) из предыдущей лекции. Необходимо провести следующую цепочку импликаций:

$$1 \implies 2 \implies 3 \implies 4 \implies 1$$

- 1. Наше предположение: G ацикличный, связный граф. Так как граф связный, то всегда существует простая цепь между любыми двумя вершинами. Предположим, что существует две простые цепи из одной вершины в другую. Очевидно, тогда в графе есть цикл, что противоречит исходному условию.
- 2. Дан граф G, в котором есть ровно 1 простая цепь между двумя любыми вершинами. Очевидно, что тогда граф связен. Утверждение о количестве рёбер докажем индукцией по числу вершин.

База индукции очевидна. При n=1 не может быть рёбер. Могли бы быть петли, но это простой граф. Предположим, что наше утверждение верно для $k \leq n$. Осталось доказать справедливость для k > n+1.

Рассмотрим граф G в котом ровно n+1 вершина. Конечно, в G есть рёбра. Рассмотрим одно из этих рёбер. Удалим ребро (x,y) из G - получится граф G'. В нём две компоненты связности H_1, H_2 . Пусть у H_1 ровно n_1 вершины. Совершенно точно знаем, что $n_1 < n$. (равно не может быть, потому что мы выкинули одно ребро и вместе с ним ушла также одна вершина). В H_1 между любыми двумя вершинами есть ровно одна простая цепь. Следовательно, у графа H_1 есть $n_1 - 1$ рёбер. Для H_2 аналогично.

Мы знаем, что $n_1 + n_2 = n + 1$. А что с рёбрами?

$$(n_1 - 1) + (n_2 - 1) + 1 = n_1 + n_2 - 1 = n$$

Шаг индукции выполнен.

- 3. G связен, n число вершин, n-1 число рёбер. Давайте предположим, что в графе G есть цикл. Обозначим k количество вершин в цикле, конечно $k \le n$. Вне цикла располагается n-k вершин $v_1v_2\dots v_{n-k}$. Так как граф связный, следовательно, $\forall i\ v_i$ соединена с циклом минимум одним маршрутом. Выберем для v_1 самый короткий маршрут до цикла, для v_2 и т.д аналогично. В каждом таком маршруте возьмём первые рёбра. Все эти рёбра, конечно, различны. У нас есть n-k таких первых рёбер. Но тогда $n-1 \ge n-k+k=n$, чего не может быть. Противоречие.
- 4. G ацикличен, n вершин, n-1 ребро. Обозначим числом k количество компонент связности графа. Пусть n_1, n_2, \ldots, n_k количества вершин в компонентах связности графа G.

$$n_1 + n_2 + \dots + n_k = n$$

А G_1,G_2,\ldots,G_k - сами компоненты связности. Знаем, что $\forall i\,G_i$ - связен, ацикличен. Учитывая $1\implies 3$ число рёбер в G_i равно n_i-1 . Тогда число рёбер в исходном графе G

$$(n_1-1)+(n_2-1)+\cdots+(n_k-1)=n_1+n_2+\cdots+n_k-k$$

С другой стороны, мы знаем что количество рёбер в графе равно n-1. Тогда

$$n_1 + n_2 + \dots + n_k - k = n - 1$$
$$n - k = n - 1 \implies k = 1$$

2.1 Планарные графы

Определение 16 Γ раф G=(V,E) называется **планарным**, если можно так нарисовать его на плоскости, чтобы не было пересечений рёбер этого графа на картинке не по вершинам.

Примером непланарных графов может послужить K_5 , $K_{3,3}$.

Задача Задача о раскраске карты: Каким наименьшим числом красок можно обойтись при раскраске карты, чтобы соседние государства на ней были разных цветов.

Доказали, что наименьшим количеством цветов является число четыре.

Определение 17 Два графа G_1, G_2 называются гомеоморфными, если \exists граф H, такой что и G_1 , и G_2 получаются из H путём добавления вершин на некоторых рёбрах.

 \triangleright C_5, C_7 - гомеоморфны.

Теорема (Критерий Куратовского, 1932) Граф G - планарен тогда и только тогда, когда в нём нет подграфов гомеоморфных K_5 или $K_{3,3}$.

3 Некоторые сведения для программирования (I)

Определение 18 Взвешенный граф это тройка G = (V, E, F), где V, E - множества ребёр и вершин соответственно. $A \ F : E \mapsto \mathbb{R}$ - весовая функция, заданная на множестве рёбер.

 Часто веса интерпретируются как длины рёбер, а длиной пути считается сумма весов, составляющих его рёбер.

Определение 19 Граф называется **регулярным**, если степени всех его вершин одинаковы. Также граф называется полным, если степень каждой его вершины равна n-1.

Определение 20 В ориентированном графе **полустепенью захода** вершины называется число рёбер, оканчивающихся в этой вершине, а **полустепенью исхода** число рёбер, начинающихся в вершине.

Определение 21 Граф называется двудольным, если его вершины можно раскрасить в два цвета, так чтобы цвета любых двух соседних вершин были различны.

3.1 Способы представления графа

1. Списки смежности. В этом случае каждой вершине x сопоставляется список смежности, включающий вершины, соединенные с x ребром.

Списки смежности удобно хранить в массиве векторов, который объявлен следующим образом:

Неориентированные графы можно хранить аналогично, только каждое ребро нужно учитывать в двух списках смежности.

Для взвешенных графов структуру следует дополнить:

2. Матрица смежности показывает, какие рёбра есть в графе. С ее помощью можно эффективно проверить, существует ли ребро между двумя вершинами. Матрицу можно хранит в виде массива (матрицы).

A - матрица размером $n \times n$, где $A_{ij} = 1 \Leftrightarrow \exists (i,j) \in E$, иначе $A_{ij} = 0$. Пример:

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{pmatrix}$$

3. Список рёбер содержит все рёбра графа в некотором порядке. Это представление удобно, если алгоритм обрабатывает все ребра и не требует находить ребра, начинающиеся в заданной вершине.

Список ребер можно хранить в векторе:

Где наличие пары (x, y) значит, что $(x, y) \in E$.

Для взвешенного:

std::vector<tuple<int,int,int>>> edges;

4 Формула Эйлера

Определение 22 Планарный граф назовём **плоским**, если он изображён на плоскости без пересечения рёбер не по вершинам.

Обозначим v - число вершин, e - число рёбер, f - число "граней" графа.

Теорема (Эйлер) Пусть G - связен. Тогда

$$v - e + \mathfrak{f} = 2$$

Доказательство. Поскольку граф G - связен, то $e \ge v-1$, причём если $e = v-1 \implies G$ - дерево. Если $e = v-1 \implies \mathfrak{f} = 1$. Тогда

$$v - e + f = v - (v - 1) + 1 = 2$$

Имеем базу индукции по числу рёбер e. Предположим, что для всех $e \leq k-1$, еще знаем что $k \geq v-1$ утверждение доказано.

Шаг индукции: рассмотрим произвольное $v, e = k+1, \mathfrak{f}$ и любой плоский граф G с этими характеристиками. Поскольку $k+1 \geq v \implies e \geq v$. Значит в нашем графе есть хотя бы один цикл. Значит, есть грани, которые ограничены. Возьмём любую циклическую грань. Удалим из цикла одно ребро.

$$G = (v, e, f) \mapsto G' = (v, e - 1, f - 1)$$

$$v - (e - 1) + \mathfrak{f} - 1 = 2 \Leftrightarrow v - e + \mathfrak{f} = 2$$

Теорема (Следствие) Если $v \ge 3 \implies e \ge 3v - 6$

Доказательство

Пусть размер грани - количество рёбер в её границе плюс удвоенное количество внутренних рёбер.

Рассмотрим произвольную грань. Если её размер не превосходит 2, то это - бесконечная грань (не ограничена циклом). Ясно, что и внутренних рёбер в этой грани не больше одного. Следовательно, весь граф - одно ребро. Но это противоречит условию. Значит размер каждой грани не меньше трёх. Найдем сумму размеров всех граней.

С одной стороны, получается 2e. С другой стороны, не меньше чем 3f

$$2e \geq 3f$$

Подставляя в формулу Эйлера, получаем искомое.

Теорема (Следствие следствия) K_5 не планарен. Если бы она был планарен, значит $v \ge 3 \implies e \le 3v - 6$, но $10 \ge 3 \cdot 5 - 6$, что неверно. Значит K_5 не планарен.

Определение 23 *Хроматическим числом* графа называется минимальное количество цветов, в которые можно покрасить граф так, чтобы любые две соседние вершины были разных цветов.

$$\chi(G) = \min\{\chi : V = V_1 \sqcup V_2 \sqcup \cdots \sqcup V_\chi : \forall i \quad \forall x, y \in V_i (x, y) \notin E\}$$

Проблема Хроматическое число любого плоского графа ≤ 4

Мы же докажем более слабое утверждение.

Теорема Хроматическое число любого плоского графа ≤ 6

Доказательство

Если $v \ge 3 \implies e \le 3v - 6$

Докажем, что отсюда следует, что при ≥ 3 есть вершина степени ≤ 5 . Допустим степень каждой вершины ≥ 6 . Тогда

$$\sum_{\omega \in V} \deg \omega \ge 6 \cdot v = 2e$$

Но мы знаем, что

$$e < 3v - 6$$

Подставляя в первое выражение, получим противоречие.

Мы доказали, что при данных условиях есть вершины со степенью не большей 5. Теперь докажем теорему индукцией по v.

База индукции. Очевидно, что граф с $v \le 6$ красится в 6 цветов нужным нам образом. Предположим, что любой плоский граф на $v \le k$ красится в 6 цветов.

Шаг индукции. Берём произвольный граф на k+1 вершине. Рассмотрим вершину ω этого графа, такую что $\deg \omega \leq 5$. Рассмотрим G' в котором она находится. В нём k вершин и к нему применимо предположение индукции. Следовательно,

$$\chi(G') \le 6$$

Но концов, исходящих из ω - 5, а цветов - 6. Значит есть цвет, в который не покрашен ни один из двух концов рёбер, выходящих из ω . Покрасим ω в этот цвет. Получим, что весь граф покрашен в 6 цветов, и G' также верно покрашен. Следовательно,

$$\chi(G) \le 6$$