Riassunto Analisi 2

Alessandro Matteo Rossi 12 marzo 2021

Indice

1	Lezione 1 - $01/03/2021$	2
2	Lezione 2 - $04/03/2021$	3
3	Lezione 3 - $10/03/2021$	5
4	Tavola degli integrali	6

1 Lezione 1 - 01/03/2021

Definizione 1.1 (Integrale indefinito). Dato $\Omega \subseteq \mathbb{R}$ aperto e $f : \Omega \to \mathbb{R}$ diciamo che f ammette primitiva in Ω se $\exists F : \Omega \to \mathbb{R}$ derivabile tale che $F'(x) = f(x) \ \forall x \in \Omega$. F è detta primitiva di f.

La nozione può essere estesa a $\tilde{\Omega} = [a, b]$ se presenti la derivata destra in a e sinistra in b.

Osservazione 1.1. Esistono funzioni che non ammettono primitiva. Ad esempio la funzione di Heaviside definita come $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x > 0 \end{cases}$. Infatti non esiste una funzione F che abbia come derivata f per ogni punto.

In \mathbb{R} parlare di aperto connesso o intervallo è equivalente.

Osservazione 1.2. Se su $\Omega = I$ intervallo F e G sono primitive di f su I = (a, b) allora $(F - G)' = 0 \Rightarrow F - G = cost$ per Lagrange, da cui deriva la caratterizzazione delle costanti.

Ex 1.1 (Integrale di
$$1/x$$
). Presa $f(x) = \frac{1}{x} \operatorname{su} \mathbb{R} \setminus \{0\}$ essa ha integrale pari a $\int \frac{1}{x} dx = \begin{cases} \log x + c & x > 0 \\ \log(-x) + d & x < 0 \end{cases}$.

È fondamentale non usare il valore assoluto poiche il nostro integrale è definito su intervalli, e pertanto f è da integrare sui due intervalli su cui è definita.

Una condizione necessaria per avere primitiva è la **proprietà di Darboux** (è evidente che pertanto le funzioni derivate godano di (D)). Una funzione ha la proprietà di Darboux se mappa intervalli in intervalli.

Teorema 1.1. Se f ammette primitiva su I, allora f gode di (D) su I.

Dim. Siano $a,b \in I$ e sia $\gamma \in [f(a), f(b)]$ (se coincidono la tesi è ovvia!). Voglio mostrare che $\exists c \in [a,b] : f(c) = \gamma$, supponendo che $f(a) < \gamma < f(b)$. Sia $G(x) = F(x) - \gamma x$ dove F' = f. G è derivabile, in quanto somma di funzioni derivabili \Rightarrow è continua. La derivata di G è $G' = f - \gamma$ che non è monotona ed essendo continua non è iniettiva \Rightarrow non è invertibile. Allora $\exists x_1, x_2 \in (a,b) : G(x_1) = G(x_2)$ e per il teorema di Rolle $\exists c \in (x_1, x_2) : G'(c) = 0$ e quindi $f(c) = \gamma$, che è (D).

$\mathbf{2}$ Lezione 2 - 04/03/2021

Esistono funzioni che pur essendo (D) non sono integrabili, a riprova del fatto che è solo una condizione necessaria.

Ex 2.1. $f(x) = \begin{cases} \sin\frac{1}{x} & x \neq 0 \\ \frac{1}{2} & x = 0 \end{cases}$ gode di (D) ma non ammette primitiva. Se per x = 0 valesse 0,

Esistono due teorie dell'integrazione: quella classica di Riemann e quella moderna di Lebesgue. La teoria moderna non permette di calcolare "più" integrali di quella classica: è migliore perchè permette di dominare l'errore più efficientemente quando si calcolano integrali approssimati (spessissimo l'integrale è solo stimabile e non calcolabile con esattezza). L'integrale classico di Cauchy-Riemann è uno strumento utile per determinare la misura di superfici o solidi.

Faccio tre puntualizzazioni:

1. Le funzioni "buone" intese come continue, monotone e ovunque derivabili sono una assoluta minoranza. In matematica domina quella che noi consideriamo patologia. È impossibile (inteso come probabilità tendente a 0) pescare dal secchio di tutte le funzioni possibili una funzione "buona", mentre è certo (inteso come probabilità tendente a 1) pescare una funzione patologica. Appare evidente che le funzioni mai derivabili sono la quasi totalità. Se ne deduce che prendere una funzione "a caso" che sia continua e derivabile ovunque voglia dire tutt'altro che prenderne una "a caso".

Riusciamo però a dominare la matematica con le poche funzioni "buone" rimaste, che sono continue e derivabili, perchè posso approssimare bene quanto voglio una funzione patologica con una buona (con deboli ipotesi), tanto quanto posso approssimare un trascendente (probabilità 1 se pesco tra i numeri) con un razionale (probabilità 0).

- 2. Denoto con Y^X l'insieme di tutte le funzioni $f: X \to Y$.
- 3. D'ora in poi, se non diversamente specificato, considererò intervalli chiusi e limitati $[a,b] \subset$ \mathbb{R} e funzioni f limitate.

Definizione 2.1 (Partizione). Una partizione di [a,b] è un insieme ordinato di n+1 punti casuali. $P = \{x_0, x_1, ..., x_n\}$ t.c. $a = x_0 < x_1 < x_2 < ... < x_n = b$.

Il massimo delle ampiezze degli intervalli $\max\{\Delta x_i\}$ è detto **taglia della partizione**, dove $\Delta x = x_i - x_{i-1} \text{ con } i = 1, ..., n.$

Per arrivare a parlare di integrale inteso come area sottesa al grafico di una funzione è necessario introdurre i concetti di somme superiori e inferiori.

Considero una funzione $f:[a,b]\to\mathbb{R}$ limitata sull'intervallo I=[a,b]. Sia $P=\{x_0,...,x_n\}$ una partizione di [a,b]. Scriviamo $M_i=\sup_{x\in[x_{i-1},x_i]}f(x)$ e $m_i=\inf_{x\in[x_{i-1},x_i]}f(x)$ e definiamo le somme superiori come $S(P,f)=\sum_{i=0}^n M_i\Delta x_i$ e le somme inferiori come $s(P,f)=\sum_{i=0}^n m_i\Delta x_i$, relative alla partizione P.

Osservazione 2.1 $(P \in \mathcal{P})$. Considerando \mathcal{P} , l'isnieme di tutte le partizioni P di I = [a, b] ho che

$$M(b-a) \ge S(P,f) \ge s(P,f) \ge m(b-a) \quad \forall P \in \mathcal{P}$$

Da qui chiamo integrale superiore e integrale inferiore le scritture

$$\overline{\int_a^b} f(x) dx = \inf_{P \in \mathcal{P}} S(f, P) \qquad \int_a^b f(x) dx = \sup_{P \in \mathcal{P}} s(f, P)$$

È evidente che $\overline{\int}_a^b f(x) dx \ge \int_a^b f(x) dx$

Ex 2.2 (Funzione di Dirichlet). $f(x) = \begin{cases} 1 & x \in [a,b] \cap \mathbb{Q} \\ 0 & x \in [a,b] \setminus \mathbb{Q} \end{cases}$ In questo caso la disuguaglianza tra integrale superiore è stretta, poichè $\max_I f = 1$ e $\min_I f = 0$.

Definizione 2.2 (Integrale di Riemann). Sia $f:[a,b]\to\mathbb{R}$ limitata. Diciamo che f è Rintegrabile o $f \in \mathcal{R}([a,b])$ se l'integrale superiore coincide con l'integrale inferiore.

$$\overline{\int_a^b} f(x)dx = \int_a^b f(x)dx \doteq \int_a^b f(x)dx$$

Si può semplificare questa definizione con una caratterizzazione delle funzioni R-integrabili che renda la definizione più facile. Prima però un risultato preliminare.

Lemma 2.1 (Raffinamento di una partizione). Una partizione $P^* = P \bigcup \{\xi_1, ..., \xi_n\}$ che si ottiene aggiungendo un numero finito di punti a P si dice **raffinamento**.

Se P^* è un raffinamento di P, allora $S(P,f) \geq S(P^*,f) \geq s(P^*,f) \geq s(P,f)$.

Dim. Per dimostrarlo è sufficiente aggiungere un solo punto alla partizione. Se $\xi \in (x_{i-1}, x_i)$ allora $\sup_{x \in [x_{i-1}, x_i]} f(x) = \max \{ \sup_{x \in [x_{i-1}, \xi]} f(x), \sup_{x \in [\xi, x_i]} f(x) \}$

quindi
$$M_{i}\Delta x_{i} = \sup_{x \in [x_{i-1}, x_{i}]} f(x)\Delta x_{i} = \sup_{x \in [x_{i-1}, x_{i}]} f(x)(x_{i} - \xi + \xi - x_{i-1}) \ge \sup_{x \in [x_{i-1}, \xi]} f(x)(\xi - x_{i-1}) + \sup_{x \in [\xi, x_{i}]} f(x)(x_{i} - \xi).$$

È quindi evidente che aggiungendo punti alla partizione le somme superiori descrescano e quelle inferiori crescano.

Teorema 2.2 (Criterio per la R-integrabilità). Sia $f:[a,b]\to\mathbb{R}$ limitata. Allora $f\in\mathcal{R}([a,b])\Leftrightarrow$ $\forall \varepsilon > 0 \ \exists P \in \mathcal{P} : S(P, f) - s(P, f) < \varepsilon.$

 $Dim. \ (\Leftarrow)$

Per ogni partizione P abbiamo $s(P,f) \leq \int f \leq \overline{f} \leq S(P,f)$ da cui $S(P,f) - s(P,f) \geq \overline{f} \leq S(P,f)$

Da cui, per ipotesi, $\forall \varepsilon > 0 \ \exists P : \varepsilon > S(P, f) - s(P, f) \ge \overline{\int} f - \int f$. Al limite integrale inferiore e superiore coincidono soddisfando Def. 2.2.

 (\Rightarrow) Se f è R-integrabile allora $\int_a^b f = \overline{\int} f = \int f$. Poichè l'integrale superiore è inf delle somme superiori, per ogni $\varepsilon > 0 \overline{\int} f + \varepsilon/2$ non è minorante: esiste una partizione P_1 tale che $S(P_1,f) < \overline{f}f + \varepsilon/2$. Ragionamento analogo, con i dovuti cambi di segno, si può fare per le somme inferiori e con una partizione P_2 . Pertanto prendendo $P_1 = P_1 \bigcup P_2$ raffinamento di queste partizioni per il Lemma si ha la descrescita delle somme superiori e la crescita delle somme inferiori e quindi la tesi.

3 Lezione 3 - 10/03/2021

Vediamo una serie di condizioni sufficienti affinchè una funzione limitata sia R-integrabile su un intervallo I chiuso e limitato.

Teorema 3.1 (Condizioni sufficienti per l'integrabilità). Sia $f:[a,b]\to\mathbb{R}$ una funzione limitata. Allora

- 1. $f \in \text{continua} \Rightarrow f \in \mathcal{R}([a, b])$
- 2. f è monotona $\Rightarrow f \in \mathcal{R}([a,b])$
- 3. f ha un numero finito di punti di discontinuità $\Rightarrow f \in \mathcal{R}([a,b])$

Dim. 1. Se f è continua su [a, b] allora per Heine-Cantor è uniformemente continua, cioè

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x, y : |x - y| < \delta, |f(x) - f(y)| < \frac{\varepsilon}{b - a}$$

Presa ora una partizione $P = \{x_0, ..., x_n\}$ di [a, b] di taglia $\Delta x_i < \delta$. Poichè f è continua su ogni subintervallino $[x_{i-1}, x_i]$ esistono s_i e t_i tali che $M_i = f(s_i)$ e $m_i = f(t_i)$, cioè sup e inf sono assunti per Weierstrass.

Ma allora la differenza tra somme superiori e inferiori è

$$S(P, f) - s(P, f) = \sum_{i=0}^{n} (M_i - m_i) \Delta x_i < \frac{\varepsilon}{b - a} \sum_{i=0}^{n} \Delta x_i = \varepsilon$$

il che è equivalente al criterio di R-integrabilità, da cui si deduce che la funzione sia per l'appunto R-integrabile. $\hfill\Box$

$$Dim. \ 2.$$

Osservazione 3.1. I punti (1) e (3) sono molto simili. Infatti essere continua vuol dire avere un numero finito di punti di discontinuità, cioè 0.

Osservazione 3.2. Nel caso di funzione continua (1) non è necessario specificare la limitatezza della funzione, poichè per Weierstrass l'immagine di un compatto [a,b] è compatta, e quindi provvista di massimo e minimo.

4 Tavola degli integrali

Gli integrali notevoli sono ottenibili leggendo la tabella delle derivate al contrario.

f	$\int f$	C.E.
0	$c \in \mathbb{R}$	
x^n	$\frac{x^{n+1}}{n+1} + c$	$n \in \mathbb{N}_0, x \in \mathbb{R}$
x^{α}	$\frac{\frac{x^{n+1}}{n+1} + c}{\frac{x^{\alpha+1}}{\alpha+1} + c}$	$\alpha \in -1, x > 0, \alpha \in \mathbb{R}$
$\frac{1}{x}$	$\int \log x + c x > 0$	
x	$\int \log(-x), x < 0$	
e^x	$e^x + c$	$x \in \mathbb{R}$
$\sin x$	$-\cos x + c$	$x \in \mathbb{R}$
$\cos x$	$\sin x + c$	$x \in \mathbb{R}$
Chx	Shx + c	$x \in \mathbb{R}$
Shx	Chx + c	$x \in \mathbb{R}$
$1 + \tan^2 x = \frac{1}{\cos^2 x}$	$\tan x + c$	$x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$\frac{1}{1+x^2}$	$\arctan x + c$	$x \in \mathbb{R}$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x + c$	$x \in (-1,1)$
$-\frac{1}{\sqrt{1-x^2}}$	$\arccos x + c$	$x \in (-1, 1)$