Columnwise and inverted relatedness used:

(1)

1. the summation of inverted relatedness in each column is 1 and they are directly multiplied with group gradients

	Fashion_mnist	R_mnist	P_mnist	Not_mnist
The experiment	56.10			
Old ModGEM	58.47			

Note that I stop continuing the experiment considering the accuracy for fashion_mnist in the experiment is even worse than that with GEM (56.86)

(2)

- 1. the summation of inverted relatedness in each column is 1 and they are multiplied with group gradients
- 2. you know the total number of parameters p, except for individual groups, there are many remaining. For the remaining part, the weight for them is 1/(t-1) just like what they get from AGEM
- 3. the reconstructed gradients are summed up just like AGEM
- 4. the shape of summation of reconstructed gradients is (1, p) like AGEM

	Fashion_mnist	R_mnist	P_mnist	Not_mnist
The experiment	59.50	68.05	71.20	66.3
AGEM	59.8	70.33	70.36	68.21

(3)

- 1. the mean of inverted relatedness is moved to 1
- 2. considering the influence of inverted relatedness should not be too large, I set a threshold for it: [0.5, 1.5] (for inverted relatedness of which value is smaller than 0.5, it will be set to be 0.5)
- 3. you know the total number of parameters p, except for individual groups, there are many remaining. For the remaining part, the weight for them is 1 just like what they get from GEM

4. no summation afterwards, the final shape of reconstructed gradients is (t-1, p)

	Fashion_mnist	R_mnist	P_mnist	Not_mnist
The experiment	58.63	73.80	68.56	65.88
Old ModGEM	58.47	74.15	68.57	68.41