Computational Vision

Lecture 2.1.2: Scale Invariant Feature Transform (SIFT)

Hamid Dehghani

Office: CS 241

Why do we care about matching features?

- Object Recognition
- Wide baseline matching
 - Given any two images, estimate the fundamental matrix and a set of matched interest points.
- Tracking

(a)

We want invariance!!!

 Good features should be robust to all sorts of nastiness that can occur between images.

Illumination

- Illumination
- Scale

- Illumination
- Scale
- Rotation

- Illumination
- Scale
- Rotation
- Affine

- Illumination
- Scale
- Rotation
- Affine
- Full Perspective

How to achieve illumination invariance

- The easy way (normalized)
- Difference based metrics (sift)

How to achieve scale invariance

Pyramids

- Divide width and height by 2
- Take average of 4 pixels for each pixel (or Gaussian blur)
- Repeat until image is tiny
- Run filter over each size image and hope its robust
- Scale Space (DOG method)

Pyramids

How to achieve scale invariance

- Pyramids
- Scale Space (DOG method)
 - Pyramid but fill gaps with blurred images
 - Like having a nice linear scaling without the expense
 - Take features from differences of these images
 - If the feature is repeatably present in between
 Difference of Gaussians it is Scale Invariant and we should keep it.

Differences Of Gaussians

Rotation Invariance

- Rotate all features to go the same way in a determined manner
- Take histogram of Gradient directions
- Rotate to most dominant (maybe second if its good enough)

Rotation Invariance

Labs!

See announcement on canvas