CSC321 Lecture 4: Learning a Classifier

Roger Grosse

Overview

- Last time: binary classification, perceptron algorithm
- Limitations of the perceptron
 - no guarantees if data aren't linearly separable
 - how to generalize to multiple classes?
 - linear model no obvious generalization to multilayer neural networks
- This lecture: apply the strategy we used for linear regression
 - define a model and a cost function
 - optimize it using gradient descent

Overview

Design choices so far

- Task: regression, binary classification, multiway classification
- Model/Architecture: linear, log-linear
- Loss function: squared error, 0–1 loss, cross-entropy, hinge loss
- Optimization algorithm: direct solution, gradient descent, perceptron

Overview

• Recall: binary linear classifiers. Targets $t \in \{0, 1\}$

$$z = \mathbf{w}^T \mathbf{x} + b$$
$$y = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$$

- Goal from last lecture: classify all training examples correctly
 - But what if we can't, or don't want to?
- Seemingly obvious loss function: 0-1 loss

$$\mathcal{L}_{0-1}(y,t) = \begin{cases} 0 & \text{if } y = t \\ 1 & \text{if } y \neq t \end{cases}$$
$$= \mathbb{1}_{y \neq t}.$$

Attempt 1: 0-1 loss

• As always, the cost \mathcal{E} is the average loss over training examples; for 0-1 loss, this is the error rate:

$$\mathcal{E} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{y^{(i)} \neq t^{(i)}}$$

middle region very good since make no errors

Attempt 1: 0-1 loss

- Problem: how to optimize? cannot take derivative...
- Chain rule:

$$\frac{\partial \mathcal{L}_{0-1}}{\partial w_j} = \frac{\partial \mathcal{L}_{0-1}}{\partial z} \frac{\partial z}{\partial w_j}$$

Attempt 1: 0-1 loss

- Problem: how to optimize?
- Chain rule:

$$\frac{\partial \mathcal{L}_{0-1}}{\partial w_j} = \frac{\partial \mathcal{L}_{0-1}}{\partial z} \frac{\partial z}{\partial w_j}$$

- But $\partial \mathcal{L}_{0-1}/\partial z$ is zero everywhere it's defined!
 - $\partial \mathcal{L}_{0-1}/\partial w_j = 0$ means that changing the weights by a very small amount probably has no effect on the loss.
 - The gradient descent update is a no-op.

Attempt 2: Linear Regression

- Sometimes we can replace the loss function we care about with one which is easier to optimize. This is known as a surrogate loss function.
- We already know how to fit a linear regression model. Can we use this instead?

$$y = \mathbf{w}^{\top} \mathbf{x} + b$$
 $\mathcal{L}_{\mathrm{SE}}(y, t) = \frac{1}{2} (y - t)^2$

- Doesn't matter that the targets are actually binary.
- Threshold predictions at y = 1/2.
 minimize scalar targets

Attempt 2: Linear Regression

The problem:

penalize a correct prediction with large residuals if has larger leverage

- The loss function hates when you make correct predictions with high confidence!
- If t = 1, it's more unhappy about y = 10 than y = 0.

Attempt 3: Logistic Activation Function

- There's obviously no reason to predict values outside [0, 1]. Let's squash y into this interval.
- The logistic function is a kind of sigmoidal, or S-shaped, function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

A linear model with a logistic nonlinearity is known as log-linear:

$$z = \mathbf{w}^{\top} \mathbf{x} + b$$

 $y = \sigma(z)$
 $\mathcal{L}_{\text{SE}}(y, t) = \frac{1}{2}(y - t)^{2}$.

• Used in this way, σ is called an activation function, and z is called the logit.

Attempt 3: Logistic Activation Function

The problem:

(plot of \mathcal{L}_{SE} as a function of z)

dL/dz is slope on the curve

$$\frac{\partial \mathcal{L}}{\partial w_j} = \frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial w_j}$$
$$w_j \leftarrow w_j - \alpha \frac{\partial \mathcal{L}}{\partial w_j}$$

problem: if really wrong, z very negative we have close to 0 update to w

Attempt 3: Logistic Activation Function

The problem:

(plot of $\mathcal{L}_{\mathrm{SE}}$ as a function of z)

$$\frac{\partial \mathcal{L}}{\partial w_j} = \frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial w_j}$$
$$w_j \leftarrow w_j - \alpha \frac{\partial \mathcal{L}}{\partial w_j}$$

- In gradient descent, a small gradient (in magnitude) implies a small step.
- If the prediction is really wrong, shouldn't you take a large step?

- Because $y \in [0,1]$, we can interpret it as the estimated probability that t=1.
- The pundits who were 99% confident Clinton would win were much more wrong than the ones who were only 90% confident.

- Because $y \in [0,1]$, we can interpret it as the estimated probability that t=1.
- The pundits who were 99% confident Clinton would win were much more wrong than the ones who were only 90% confident.
- Cross-entropy loss captures this intuition: penalize predictions that are far from targets,

i..e larger partial derivatives

enalize predictions that are far from targets selections. Let larger partial derivatives
$$\mathcal{L}_{\mathrm{CE}}(y,t) = \left\{ \begin{array}{ll} -\log y & \text{if } t=1 \\ -\log (1-y) & \text{if } t=0 \end{array} \right.$$

$$= -t\log y - (1-t)\log (1-y)$$

Logistic Regression:

$$z = \mathbf{w}^{\top} \mathbf{x} + b$$

$$y = \sigma(z)$$

$$= \frac{1}{1 + e^{-z}}$$

$$\mathcal{L}_{CE} = -t \log y - (1 - t) \log(1 - y)$$

[[gradient derivation in the notes]]

- Problem: what if t = 1 but you're really confident it's a negative example $(z \ll 0)$?
- If y is small enough, it may be numerically zero. This can cause very subtle and hard-to-find bugs.

$$y = \sigma(z)$$
 $\Rightarrow y \approx 0$ $\mathcal{L}_{\text{CE}} = -t \log y - (1-t) \log (1-y)$ $\Rightarrow \text{ computes } \log 0$ one infinite loss

rounding errors -> zero

- Problem: what if t = 1 but you're really confident it's a negative example $(z \ll 0)$?
- If y is small enough, it may be numerically zero. This can cause very subtle and hard-to-find bugs.

$$y = \sigma(z)$$
 $\Rightarrow y \approx 0$
 $\mathcal{L}_{\text{CE}} = -t \log y - (1-t) \log(1-y)$ $\Rightarrow \text{ computes } \log 0$

kind of breaks abstraction

• Instead, we combine the activation function and the loss into a single logistic-cross-entropy function.

$$\mathcal{L}_{\text{LCE}}(z,t) = \mathcal{L}_{\text{CE}}(\sigma(z),t) = t\log(1+e^{-z}) + (1-t)\log(1+e^{z})$$

Numerically stable computation:

$$E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)$$

$$\frac{e^{0} + e^{-z}}{e^{-z}}$$

Comparison of loss functions:

Comparison of gradient descent updates:

• Linear regression:

$$\mathbf{w} \leftarrow \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)}$$

• Logistic regression:

$$\mathbf{w} \leftarrow \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)}$$

Comparison of gradient descent updates:

• Linear regression:

$$\mathbf{w} \leftarrow \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)}$$

Logistic regression:

$$\mathbf{w} \leftarrow \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)}$$

 Not a coincidence! These are both examples of matching loss functions, but that's beyond the scope of this course.

Hinge Loss

• Another loss function you might encounter is hinge loss. Here, we take $t \in \{-1,1\}$ rather than $\{0,1\}$.

$$\mathcal{L}_{\mathrm{H}}(y,t) = \max(0,1-ty)$$

- This is an upper bound on 0-1 loss (a useful property for a surrogate loss function).
- A linear model with hinge loss is called a support vector machine. You already know enough to derive the gradient descent update rules!
- Very different motivations from logistic regression, but similar behavior in practice.

similar to logistic + CE, interchangeable

Comparison of loss functions:

• What about classification tasks with more than two categories?

- Targets form a discrete set $\{1, \dots, K\}$.
- It's often more convenient to represent them as one-hot vectors, or a one-of-K encoding:

$$\mathbf{t} = \underbrace{(0, \dots, 0, 1, 0, \dots, 0)}_{\text{entry } k \text{ is } 1}$$

- Now there are D input dimensions and K output dimensions, so we need $K \times D$ weights, which we arrange as a weight matrix \mathbf{W} .
- Also, we have a K-dimensional vector **b** of biases.
- Linear predictions:

$$z_k = \sum_j w_{kj} x_j + b_k$$

Vectorized:

 A natural activation function to use is the softmax function, a multivariable generalization of the logistic function:

$$y_k = \operatorname{softmax}(z_1, \dots, z_K)_k = \frac{e^{z_k}}{\sum_{k'} e^{z_{k'}}}$$

- The inputs z_k are called the logits.
- Properties:
 - Outputs are positive and sum to 1 (so they can be interpreted as probabilities)
 - If one of the z_k 's is much larger than the others, $\operatorname{softmax}(\mathbf{z})$ is approximately the argmax. (So really it's more like "soft-argmax".)
 - Exercise: how does the case of K = 2 relate to the logistic function?
- Note: sometimes $\sigma(\mathbf{z})$ is used to denote the softmax function; in this class, it will denote the logistic function applied elementwise.

 If a model outputs a vector of class probabilities, we can use cross-entropy as the loss function:

$$egin{aligned} \mathcal{L}_{ ext{CE}}(\mathbf{y},\mathbf{t}) &= -\sum_{k=1}^{K} t_k \log y_k \ &= -\mathbf{t}^{ op}(\log \mathbf{y}), \end{aligned}$$

where the log is applied elementwise.

• Just like with logistic regression, we typically combine the softmax and cross-entropy into a **softmax-cross-entropy** function.

• Multiclass logistic regression:

$$\begin{aligned} \textbf{z} &= \textbf{W}\textbf{x} + \textbf{b} \\ \textbf{y} &= \operatorname{softmax}(\textbf{z}) \\ \mathcal{L}_{\mathrm{CE}} &= -\textbf{t}^{\top}(\log \textbf{y}) \end{aligned}$$

• **Tutorial**: deriving the gradient descent updates

$$\frac{\partial \mathcal{L}_{\mathrm{CE}}}{\partial z} = y - t$$

 $\bullet \ \mbox{Recall: a set \mathcal{S} is convex if for any $\textbf{x}_0,\textbf{x}_1 \in \mathcal{S}$,}$

$$(1 - \lambda)\mathbf{x}_0 + \lambda\mathbf{x}_1 \in \mathcal{S} \quad \text{for } 0 \le \lambda \le 1.$$

• A function f is convex if for any x_0, x_1 in the domain of f,

$$f((1-\lambda)\mathbf{x}_0 + \lambda\mathbf{x}_1) \leq (1-\lambda)f(\mathbf{x}_0) + \lambda f(\mathbf{x}_1)$$

- Equivalently, the set of points lying above the graph of f is convex.
- Intuitively: the function is bowl-shaped.

- We just saw that the least-squares loss function $\frac{1}{2}(y-t)^2$ is convex as a function of y
- For a linear model, z = w^Tx + b is a linear function of w and b. If the loss function is convex as a function of z, then it is convex as a function of w and b.

Which loss functions are convex?

Why we care about convexity

- All critical points are minima
- Gradient descent finds the optimal solution (more on this in a later lecture)

- We've derived a lot of gradients so far. How do we know if they're correct?
- Recall the definition of the partial derivative:

$$\frac{\partial}{\partial x_i} f(x_1, \dots, x_N) = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_N) - f(x_1, \dots, x_i, \dots, x_N)}{h}$$

• Check your derivatives numerically by plugging in a small value of h, e.g. 10^{-10} . This is known as finite differences.

• Even better: the two-sided definition

$$\frac{\partial}{\partial x_i} f(x_1, \ldots, x_N) = \lim_{h \to 0} \frac{f(x_1, \ldots, x_i + h, \ldots, x_N) - f(x_1, \ldots, x_i - h, \ldots, x_N)}{2h}$$

- Run gradient checks on small, randomly chosen inputs
- Use double precision floats (not the default for most deep learning frameworks!)
- Compute the relative error:

a,b are closed form solution for derivative and finite different approximation

$$\frac{|a-b|}{|a|+|b|}$$

• The relative error should be very small, e.g. 10^{-6}

- Gradient checking is really important!
- Learning algorithms often appear to work even if the math is wrong.
- But:
 - They might work much better if the derivatives are correct.
 - Wrong derivatives might lead you on a wild goose chase.
- If you implement derivatives by hand, gradient checking is the single most important thing you need to do to get your algorithm to work well.