离散数学

10. 设有限集 A, B, |A|=m, |B|=n, 则||ρ(A×B)|=_{-2^m*n}

一、 选择题 (2*10)
1. 令 P: 今天下雨了, Q: 我没带伞,则命题"虽然今天下雨了,但是我没
带伞"可符号化为()。
$(A) P \rightarrow \neg Q \qquad (B) P \lor \neg Q$
(C) $P \land Q$ (D) $P \land \neg Q$
2. 下列命题公式为永真蕴含式的是()。
$(A) Q \rightarrow (P \land Q) (B) P \rightarrow (P \land Q)$
(C) $(P \land Q) \rightarrow P$ (D) $(P \lor Q) \rightarrow Q$
3、命题"存在一些人是大学生"的否定是(A) 而命题"所有的人都是要死
的"的否定是()。
(A) 所有人都不是大学生,有些人不会死
(B) 所有人不都是大学生, 所有人都不会死
(C) 存在一些人不是大学生,有些人不会死
(D) 所有人都不是大学生,所有人都不会死
4、水真式的否定是()。
(A) 永真式 (B) 永假式 (C) 可满足式 (D) 以上均有可能
5、以下选项中正确的是()。
$(A) 0 = \emptyset \qquad (B) 0 \subseteq \emptyset \qquad (C) 0 \in \emptyset \qquad (D) 0 \notin \emptyset$
6、以下哪个不是集合 A 上的等价关系的性质? ()
(A) 自反性 (B) 有限性 (C) 对称性 (D) 传递性
7、集合 $A = \{1,2,10\}$ 上的关系 $R = \{ x+y=10,x,y \in A\}$,则 R 的性质为 ()。
(A) 自反的 (B) 对称的
(C) 传递的,对称的 (D) 传递的
8. 设 D= 为有向图, V={a, b, c, d, e, f}, E={,,,,}
是()。

(A) 强连通图 (B) 单向连通图

(C)	弱连通图	(\mathbf{D})	不连通图
	<i>3</i> 37 大十 大川 「ST	$\langle \mathbf{D} \rangle$	

9、具有6个顶点,	12条边的连通简单平面图中,	每个面都是由()	条边
围成?				

- (A) 2 (B) 4 (C) 3 (D) 5
- 10. 连通图 G 是一棵树, 当且仅当 G中()。
 - (A) 有些边不是割边 (B) 每条边都是割边
 - (C) 无割边集 (D) 每条边都不是割边
- 二、 填空题(2*10)
- 1、命题"2是偶数或-3是负数"的否定是。

2、设全体域 D 是正整数集合,则命题∀x∃y(xy=y的真值是。

- 3、令 R(x):x是实数, Q(x):x是有理数。则命题"并非每个实数都是有理数"的符号化表示为____。
- **4**、公式(¬**P**∧**Q**)∨(¬**P**∧¬**Q**)化简为。
- 5、设 $A \cap B = A \cap C$, $\overline{A} \cap B = \overline{A} \cap C$, 则 B C
- 6、设 A={2,4,6} A上的二元运算*定义为: a*b=max{a,b} 则在独异点 中,单位元是 , 零元是 。
- 7、任一有向图中,度数为奇数的结点有 (奇数/偶数)个。
- 8. 如下无向图割点是_____,割边是____。

三、(10分) 设 $A \setminus B$ 和 C 是三个集合,则 $A \subset B \rightarrow \neg (B \subset A)$ 。

- 。四、(15分)某项工作需要派 A、B、C和 D 4 个人中的 2 个人去完成,按下面 3 个条件,有几种派法?如何派?
- (1) 若 A 去,则 C 和 D 中要去 1 个人;
- (2)B和C不能都去;
- (3) 若 C 去,则 D 留下

五、(15分)设A={1,2,3写出下列图示关系的关系矩阵,并讨论它们的性质:

六、(20分)画一个图使它分别满足:

- (1) 有欧拉回路和哈密尔顿回路;
- (2) 有欧拉回路,但无条哈密尔顿回路;
- (3) 无欧拉回路,但有哈密尔顿回路;
- (4) 既无欧拉回路,又无哈密尔顿回路。

答案:

一、 选择题:

1, D 2, C 3, A 4, B 5, D

6, B 7, B 8, C 9, C 10, B

二、填空:

- 1、2不是偶数且-3不是负数
- 2, F
- $3 \cdot \neg \forall x (R(x) \rightarrow Q(x))$
- 4、 ¬ P
- 5、等于
- 6, 2, 6
- 7、偶数
- 8, d, e_5

三、证明:

 $A \subset B \Leftrightarrow \forall x (x \in A \to x \in B) \land \exists x (x \in B \land x \notin A) \Leftrightarrow \forall x (x \notin A \lor x \in B) \land \exists x (x \in B \land x \notin A)$ $\Leftrightarrow \neg \exists x (x \in A \land x \notin B) \land \neg \forall x (x \notin B \lor x \in A) \Rightarrow \neg \exists x (x \in A \land x \notin B) \lor \neg \forall x (x \in A \lor x \notin B)$ $\Leftrightarrow \neg (\exists x (x \in A \land x \notin B) \land \forall x (x \in A \lor x \notin B)) \Rightarrow \neg (\exists x (x \in A \land x \notin B) \land \forall x (x \in B \to x \in A))$ $\Leftrightarrow \neg (B \subset A)_{\circ}$

四、解 设A: A 去工作; B: B 去工作; C: C 去工作; D: D 去工作。则根据 题意应有: $A \rightarrow C \oplus D$, $\neg (B \land C)$, $C \rightarrow \neg D$ 必须同时成立。因此

 $(A \rightarrow C \oplus D) \land \neg (B \land C) \land (C \rightarrow \neg D)$

 $\Leftrightarrow (\neg A \lor (C \land \neg D) \lor (\neg C \land D)) \land (\neg B \lor \neg C) \land (\neg C \lor \neg D)$

 $\Leftrightarrow (\neg A \lor (C \land \neg D) \lor (\neg C \land D)) \land ((\neg B \land \neg C) \lor (\neg B \land \neg D) \lor \neg C \lor (\neg C \land \neg D))$

 $\Leftrightarrow (\neg A \land \neg B \land \neg C) \lor (\neg A \land \neg B \land \neg D) \lor (\neg A \land \neg C) \lor (\neg A \land \neg C \land \neg D)$

 $\vee (C \wedge_{\neg} D \wedge_{\neg} B \wedge_{\neg} C) \vee (C \wedge_{\neg} D \wedge_{\neg} B \wedge_{\neg} D) \vee (C \wedge_{\neg} D \wedge_{\neg} C) \vee (C$

 $\neg C \land \neg D)$

 $\lor (\neg C \land D \land \neg B \land \neg C) \lor (\neg C \land D \land \neg B \land \neg D) \lor (\neg C \land D \land \neg C) \lor (\neg C \land D \land \neg C) \land \neg C$ $\land \neg D)$

 $\Leftrightarrow F \lor F \lor (\neg A \land \neg C) \lor F \lor F \lor (C \land \neg D \land \neg B) \lor F \lor F \lor (\neg C \land D \land \neg B) \lor F \lor (\neg C \land D) \lor F \lor$

$$\Leftrightarrow (\neg A \land \neg C) \lor (\neg B \land C \land \neg D) \lor (\neg C \land D \land \neg B) \lor (\neg C \land D)$$
$$\Leftrightarrow (\neg A \land \neg C) \lor (\neg B \land C \land \neg D) \lor (\neg C \land D)$$

 \Leftrightarrow T

故有三种派法: $B \wedge D$, $A \wedge C$, $A \wedge D$ 。

五、

(1)
$$R=\{<2,1>,<3,1>,<2,3>\}; M=\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix};$$
它是反自反的、反对称的、传递的; (2) $R=\{<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>\}; M=\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix};$ 它是反自反的、

(2) R={<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>};M=
$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
;它是反自反的、

对称的;

(3) R={<1,2>,<2,1>,<1,3>,<3,3>};M=
$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
;它既不是自反的、反自反的、

也不是对称的、反对称的、传递的。

六、

