•	Project Name Global Sales Data Analytics					
	Name	POOVARASAN.P				
	Roll No	620619104023				
	Team ID	PNT2022TMID41454				

Assignment -4

Import Libraries

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
```

Import Dataset

data = pd.read_csv('abalone.csv')
data

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	Ι	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
									•••
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

 $4177 \text{ rows} \times 9 \text{ columns}$

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64

2	Diameter	4177 non-nul]	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	Rings	4177 non-null	int64
<pre>dtypes: float64(7),</pre>		int64(1), obje	ect(1)

Univariate Analysis

memory usage: 293.8+ KB

```
plt.hist(data['Sex']);
plt.xlabel('Sex');
```



```
plt.hist(data['Rings']);
plt.xlabel('Rings');
```



```
sns.boxplot(x=data['Length'])
plt.xlabel('Length');
```


plt.hist(data['Diameter']);
plt.xlabel('Diameter');

plt.hist(data['Height']);
plt.xlabel('Height');

sns.boxplot(x=data['Whole weight'])
plt.xlabel('Whole weight');

sns.boxplot(x=data['Shucked weight'])
plt.xlabel('Shucked weight');

plt.hist(data['Viscera weight']);
plt.xlabel('Viscera weight');


```
plt.hist(data['Shell weight']);
plt.xlabel('Shell weight');
```


→ Bivariate Analysis

```
plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Height"], y=data["Whole weight"]);
plt.xlabel('Height');
plt.ylabel('Whole weight');
```



```
plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Length"], y=data["Height"]);
plt.xlabel('Length');
plt.ylabel('Height');
```



```
plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Diameter"], y=data["Height"]);
plt.xlabel('Diameter');
plt.ylabel('Height');
```



```
plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Length"], y=data["Diameter"]);
plt.xlabel('Length');
plt.ylabel('Diameter');
```



```
plt.figure(figsize=(10, 6))
plt.scatter(x=data["Shucked weight"], y=data["Whole weight"]);
plt.xlabel('Shucked weight');
plt.ylabel('Whole weight');
```



```
plt.figure(figsize=(10, 6))
plt.scatter(x=data["Viscera weight"], y=data["Whole weight"]);
plt.xlabel('Viscera weight');
plt.ylabel('Whole weight');
```


→ Multi-variate Analysis

plt.figure(figsize=(10, 6));
sns.heatmap(data.corr(), annot=True);

→ Descriptive Statistics

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	41
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	

Handling Missing Values

data.isna().sum()

Sex	0
Length	0
Diameter	0
Height	0
Whole weight	0
Shucked weight	0
Viscera weight	0
Shell weight	0
Rings	0
dtype: int64	

Outlier Handling

```
numeric_cols = ['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight', 'Viscera
def boxplots(cols):
```

```
fig, axes = plt.subplots(4, 2, figsize=(15, 20))
    t=0
    for i in range(4):
        for j in range(2):
            sns.boxplot(ax=axes[i][j],
                                        data=data,
    plt.show()
def Flooring_outlier(col):
    Q1 = data[691].quantide(0.25)
                                     0.6
                                          0.7
                                                0.8
    Q3 = data[col].quantile(@#75)
    IQR = Q3 - Q1
    whisker_width = 1.5
    lower_whisker = Q1 -(whisker_width*IQR)
    upper_whisker = Q3 + (whisker_width*IQR)
    data[col]=np.where(data[col]>upper_whisker,upper_whisker,np.where(data[col]<lower_whis</pre>
print('Before Outliers Handling')
print('='*100)
boxplots(numeric_cols)
for col in numeric_cols:
    Flooring_outlier(col)
print('\n\nAfter Outliers Handling')
print('='*100)
boxplots(numeric_cols)
```


▼ Encode Categorical Columns

data = pd.get_dummies(data, columns = ['Sex']) data

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	Se
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15.0	
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7.0	
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9.0	
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10.0	
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7.0	
4172	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11.0	
4173	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10.0	
4174	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9.0	
4175	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10.0	
4176	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12.0	

 $4177 \text{ rows} \times 11 \text{ columns}$

▼ Split Data into Dependent & Independent Columns

```
Y = data[['Rings']]
X = data.drop(['Rings'], axis=1)
```

Scale the independent Variables

▼ Train Test Split

Colab paid products - Cancel contracts here