3

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 LANGUAGE PROCESSOR SEMESTER - 7

Time: 3	3 H	THE	e 1

[Full Marks: 70

GROUP - A

(Multiple Choice Type Questions)

		ch data atmosture is mainly use						
i)	WILL	Which data structure is mainly used during shift-reduce parsing?						
	a)	Stack	b)	Queue				
	c)	Array	d)	Pointer.				
ii)	If al	l productions in a grammar G	- (<i>V</i> , T	, S, P) are of the form $A \rightarrow xB$ or $A \rightarrow$				
	A, E	$S \in V$ and $x \in T^*$, then it is called	ed					
	a)	contex-sensitive grammar	b)	non-linear grammar				
	. c)	right-linear grammar	d)	left-linear grammar.				
iii)	The	The edges in a flow graph whose heads dominate their tails are called						
	a)	Back edges	b)	Front edges				
	c)	Flow edges	d)	None of these.				
iv)	The	regular expression 0* (10*)* d	lenotes	the same set as				
iv)	The	regular expression 0* (10*)* d	lenotes b)	0 + (0 + 10') *				
iv)								
iv)	a) c)	(1*0)*1*	b)	0+(0+10')*				
	a) c)	(1*0)*1* (0+1)*10(0+1)*	b)	0+(0+10')*				

rech(CS	E)/SEM-	-7/CS-701/08/(09) 4	
vi)	The	role of preprocessor is	**************************************
	a)	produce output data	
	b)	produce output to compilers	
	c)	produce input to compilers	
	d)	none of these.	
vii)	Whi	ch of the following is not true about dynamic type checking?	
	a)	It increases the cost of execution	
	b)	Type checking is done during the execution	
	c)	All the type errors are detected	
	d)	None of these.	
viii)	A da	angling reference is a	
	a)	pointer pointing to storage which is still in use	
	b)	pointer pointing to storage which is freed	
•	c)	pointer pointing to nothing	
	d)	pointer pointing to uninitialized storage.	
ix)	Whi	ch of the following is not a loop optimization?	,
*. *.	a)	Loop unrolling	
	b)	Loop jamming	
	c)	Loop heading	
	d)	Induction variable elimination.	
x)	Ifa	grammar is LALR (1) then it is necessarily	
	a)	LL (1) b) SLR (1)	
	c)	LR (1) d) None of these.	

77301 (6/12)

CS/B.TECH(CSE)/SEM-7/CS-701/08/(09)

5

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Consider the context-free grammar:

 $S \rightarrow SS + |SS^*| a$

- a) Show how the string aa+a* can be generated by this grammar.
- b) Construct a parse tree for this string.
- c) What language is generated by this grammar?

2 + 2 + 1

3. Consider the following left-linear grammar:

S → Sab | Aa

 $A \rightarrow Abb \mid bb$

Find out an equivalent right-linear grammar.

- 4. Translate the arithmetic expression $a^* (b + c)$ into
 - a) Syntax tree
 - b) Three-address code
 - c) Postfix notation.

2 + 2 + 1

5. Give the NFA for the following Regular Expression. Then find a DFA for the same language.

(a | b) * abb

2 + 3

6. What is a handle?

Consider the grammar $E \rightarrow E + E \mid E * E \mid id$

Find the handles of the right sentential forms of reduction for the string id + id * id.

1 + 4

CS/B.TECH(CSE)/SEM-7/CS-701/08/(09)

6

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

7. Explain the following terms with examples:

 3×5

- a) Quadruples
- b) Triples
- c) Indirected triples

$$ex : a : = -b * (c + d | b) - (e * f)$$

8. Design a LL (1) parsing table for the following grammar:

$$A \rightarrow b \mid \epsilon$$

$$B \rightarrow Cf \mid d$$

C → fe

With the help of the parsing table show how the string "fefcbe" is parsed.

10 + 5

- 9. a) Consider the following Grammar:
 - 1) E -> TE'
 - 2) $E' \rightarrow + TE' \mid \epsilon$
 - 3) T -> FT'
 - 4) $T' \rightarrow FT' \mid \epsilon$
 - 5) $F \rightarrow (E) \mid id$
 - i) Obtain the FIRST and FOLLOW sets for the above grammar.
 - ii) Construct a Predictive Parsing table for the above grammar.
 - b) Explain the predictive Parser's action by describing the moves it would make on an input id + id * id\$.

CS/B.TECH(CSE)/SEM-7/CS-701/98/(09)

- 10. a) What is Peephole optimization?
 - b) What is an activation record? When and why are those records used? List different fields of an activation record and state the purpose of those fields.
 - c) Construct the DAG for the following basic block:

 $d := b \cdot c$

e := a + b

b := b * c

a := e - d

3 + (2 + 2 + 4) + 4

- 11. a) What do you understand by terminal table and literal table?
 - b) Consider some interblock code optimization without any data-flow analysis by treating each extended basic block as if it is a basic block. Give algorithms to do the following optimization within an extended basic block. In each case, indicate what effect on other extended basic blocks a change within one extended basic block can have.
 - i) Common sub-expression elimination
 - ii) Constant folding
 - iii) Copy propagation:

(3+3)+(3+3+3)

12. Write short notes on any three of the following:

 3×5

- a) Cross compiler
- b) Code optimization
- c) Left factoring
- d) Context free grammar
- e) Inherited attributes.

END