Clock responses

Clock response in latch and flip-flop

Dr. E. Paul Braineard

Edge-triggered flip-flop

- Changes state either at the positive edge (rising edge) or at the negative edge (falling edge) of the clock pulse
- Sensitive to the inputs only at this transition of the clock
- Two types of edge-triggered flip-flops are covered in this section
 - D FF
 - J-K FF

Positive edge triggered

Dynamic input indicator

Negative edge triggered

Dr. E. Paul Braineard

Graphic symbols

 \boldsymbol{C}

K

Operation of a positive edge-triggered J-K flip-flop

(a) J = 1, K = 0 flip-flop SETS on positive clock edge. (If already SET, it remains SET.)

(b) J = 0, K = 1 flip-flop RESETS on positive clock edge. (If already RESET, it remains

(c) J = 1, K = 1 flip-flop changes state (toggle).

(d) J = 0, K = 0 flip-flop does not change. (If SET, it remains SET; if RESET, it remains RESET.)

Dr. E. Paul Braineard

J-K Flip-flop

Truth table for a positive edge-triggered J-K flip-flop.

	Inputs		Outputs		
J	K	CLK	Q	$\overline{\mathcal{Q}}$	Comments
0	0	^	Q_0	\overline{Q}_0	No change
0	1	1	Q ₀ 0 ♣	1	RESET
1	0	1	1	0	SET
1	i	Ĺ	\overline{Q}_0	Q_0	Toggle

^{1 =} clock transition LOW to HIGH

 Q_0 = output level prior to clock transition

Problem

• Determine the Q and \bar{Q} output waveforms of the flip-flop in Figure 1 for the J-K and CLK inputs in Figure 2. Assume that the positive edge-triggered flip-flop is initially RESET.

Master-slave D flip-flop

- Only the change in Master latch will bring change in Slave latch, hence called master slave
- master slave flip flop is triggered either on the rising edge of the clock signal or on falling edge of clock signal depending on the design
- When rising edge of clock is there at master, there will be falling edge of the clock at slave

Dr. E. Paul Braineard

Turn on captions

Master-slave D flip-flop

Applications of D-Flip flop

- Data storage
- Data transferring as shift register
- Frequency division circuits

D FF: Data storage

D FF: Data transferring as shift register

- D flip flops are connected to form a shift register.
- A cascade connection of D flip flops with same clock signal will form a shift register.
- A shift register can shift the data without changing the sequence of bits.
- When a clock pulse is applied, the one bit data is shifted or transferred. Shift registers can store the data temporarily.

Dr. E. Paul Braineard

D FF: Frequency division circuits

Dr. E. Paul Braineard

CC Turn on captions

B

is pres