4) 证明概率
$$p(\mathbf{x}_1,...,\mathbf{x}_n \mid \Sigma) = \frac{1}{(2\pi)^{nd/2} \mid \hat{\Sigma} \mid^{n/2}} (\lambda_1...\lambda_d)^{n/2} exp \left[-\frac{n}{2} (\lambda_1 + ... + \lambda_d) \right]$$

在 $\lambda_1 = 1...\lambda_d = 1$ 时达到最大值。

$$\prod_{i=1}^{d} \lambda_i^{n/2} exp\left(-\frac{n}{2}\lambda_i\right)$$

$$(\lambda_i e^{-\lambda_i})^{n/2}$$

统计学习基础

大纲

- ■统计学习
- ■线性回归方法
- ■线性分类方法
- ■扩展

回顾: 作业1

- ■根据左面图例生成二维点云数据
- ■采用K-means方法聚类,K=2
- ■完成聚类算法实现,可采用 matlab/octave/c++/python
- ■分别采用曼哈顿距离/欧式距离/马 氏距离作为距离评价方法
- ■人是否可以很好的分类?

零件分组

零件分组 (聚类)

如何找到合适的分割线?

$$\min_{f} ||\delta||_2 = \sum_{i=1}^{m} ||\delta_i||_2^2$$

$$\min_{f} ||\delta||_2 = \sum_{i=1}^{m} ||\delta_i||_2^2$$

$$\min_{f} ||\delta||_2 = \sum_{i=1}^{m} ||\delta_i||_2^2$$

■函数逼近问题:在选定的一类函数中寻找某个函数g,使它与已知函数f(或观测数据)在一定意义下为最佳近似表示,并求出用g近似表示而产生的误差。

$$f(x) = wg(x)$$

■函数g的类型的选择和表示问题,这是函数拟合中的一个比较困惑的问题。

房价

如何找到合适的f(x)

$$\min_{f} ||\delta||_2 = \sum_{i=1}^{m} ||\delta_i||_2^2$$

■函数的类型的选择和表示:

- 可选的 (基函数) 有很多
- 如何确定?

■函数逼近问题:

- 可使用各类函数
- 或函数的组合

如何找到合适的f(x): 函数空间

■函数空间是基函数的线性表达 $\{B_i(x), i = 0, 1, ..., n\}$

例如: n次多项式函数 $\{1, x, x^2, \dots, x^n\}$

■空间的思想:将复杂的量表达为若干(一般为有限)简单的量(基、字典)的(线性)组合

$$f(x) = \sum_{i=1}^{n} w_i B_i(x)$$

将求f(x)的求解转化为权系数 w_i 的求解

困难

■选择什么样的函数(函数空间)

例如:选择多项式空间?三角函数空间

■如果确立了空间,选择哪些基函数?

例如: x^n中n应该是多少? 是否要有xy项?

$$f(x) = \sum_{i=1}^{n} w_i B_i(x)$$

将求f(x)的求解转化为权系数 w_i 的求解

这就是"调参" 中关注的问题

■选择一个函数空间

- 基函数的线性表达
- 建立假设
- ■求解参数
 - 最小二乘法
 - 其它方法

$$y = f(x) = \sum_{i=1}^{n} w_i B_i(x)$$

$$\min_{W} ||Y - XW||^2$$

$$X^T X W = X^T Y$$

$$W = (X^T X)^{-1} X^T Y$$

统计学习-过拟合

误差为0,但拟合程度并无使用价值

$$f(x) = \sum_{i=1}^{n} w_i B_i(x)$$

•分类问题的过拟合

统计学习-过拟合

如何选择合适的基函数

高偏置 低方差 低偏置

高方差

统计学习-避免过拟合

- ■数据去噪
 - 提出训练样本中的噪声

 $f(x) = \sum_{i=1}^{n} w_i B_i(x)$

- ■数据扩增
 - 增加样本数,或者增加样本代表性和多样性
- ■模型简化
 - 选用更简单的模型, 避免拟合数据中的噪声, 或者进行模型剪裁
- ■正则约束
 - 选用更简单的模型, 避免拟合数据中的噪声

为什么是学习?

■学习是通过观察和分析环境,构造响应模式的一种方法

数据: 证据

数据: 证据

(概率理论)

统计学习是基于数据构建统计模型的一种方法

- ■监督式学习
- ■非监督式学习
- ■半监督学习
- ■强化学习

- 1. 模型
- 2. 策略
- 3. 算法

数据模型

■如何从数据中恢复信息?

大纲

- ■数据模型
- ■线性回归方法
- ■线性分类方法
- ■扩展

■房 价

■房价数据

样本集		面积 (x)	价格 (y)
	S ¹	2104	460
	S ²	1416	232
	S^3	1534	315
	Sm	 852	 178

■定义:

- m = 样本的数量
- x = 输入的 "样本" / "特征"
- y = "输出变量" / "目标变量"

■如何表达模型的假设H?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

- •单变量线性回归.
- •多变量线性回归.

样本集合	面积	价格
	(x)	(y)
	2104	460
	1416	232
	1534	315
	852	178
<u> </u>		

•假设H:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i : 模型参数

-如何选择 θ_i ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

- 出发点: 选择 θ_0, θ_1 使 $h_{\theta}(x)$ 与样本集 y 最为近似

■模型假设:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

■参数:

$$\theta_0, \theta_1$$

■目标函数: 所有目标点距离假设最近

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

•目标: \min_{θ_0,θ_1} $J(\theta_0,\theta_1)$

■简化形式

$$h_{\theta}(x) = \theta_1 x$$

 θ_1

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\underset{\theta_1}{\text{minimize}} J(\theta_1)$$

 $h_{\theta}(x)$

固定 θ_1 , 模型假设是x的函数

$J(\theta_1)$

目标函数是关于 θ_1 的函数

$$h_{\theta}(x)$$

固定 θ_1 , 模型假设是x的函数

$J(heta_1)$ 2关于 heta 的函数

目标函数是关于 θ_1 的函数

$$h_{\theta}(x)$$

固定 θ_1 ,模型假设是x的函数

$J(heta_1)$

目标函数是关于 θ_1 的函数

多变量的情况

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_0, \theta_1$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

$$h_{ heta}(x)$$
模型作

固定 θ_0, θ_1 ,模型假设是x的函数

$$h_{\theta}(x) = 50 + 0.06x$$

-一个典型的凸函数

固定 θ_0, θ_1 ,模型假设是x的函数 目标函数是关于 θ_0, θ_1 的函数 700 0.5 [0.4 600 0.3 Price \$ (in 1000s) 0.2 0.1 ${\theta \atop 1}$ -0.1 -0.2 -0.3 100 Training data -0.4 -Current hypothesis -0.5 -1000 1000 2000 3000 4000 1000 -500 500 1500 2000 Size (feet²)

 $h_{\theta}(x)$

■通常使用等高线表达三维函数

 $J(\theta_0, \theta_1)$

 $h_{ heta}(x)$ 固定 $heta_0, heta_1$,模型假设是x的函数

 $J(heta_0, heta_1)$ 目标函数是关于 $heta_0, heta_1$ 的函数

 $h_{ heta}(x)$ 固定 $heta_0, heta_1$,模型假设是×的函数

 $J(heta_0, heta_1)$ 目标函数是关于 $heta_0, heta_1$ 的函数

 $h_{ heta}(x)$ 固定 $heta_0, heta_1$,模型假设是x的函数

 $J(heta_0, heta_1)$ 目标函数是关于 $heta_0, heta_1$ 的函数

多变量学习的步骤

- -得到函数 $J(heta_0, heta_1)$
- •希望 $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$

●步骤:

- ・ 从一组值 $heta_0, heta_1$ 开始
- · 不断改变 θ_0, θ_1 来减小 $J(\theta_0, \theta_1)$, 直到 达到一个我们希望得到的最小值。

■最速下降算法

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update } j = 0 \text{ and } j = 1)} }
```

■最速下降算法-搜索方向

■最速下降算法-α

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

•如果 α 太小,最速下降法收敛的速度会很慢。

•如果 α 太大,在下降过程中会 越过最小值点,可能会出现不收 敛的情况。

■最速下降算法- 局部最小值

■最速下降法会收敛到局部最小值,即便修正学习速率α,¹仍不会改变这个结果。

■最速下降算法-学习速率

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

•当接近局部最小值时, 因为斜率减小,最速下 降法会自动减少每步的 补偿,因此不需随时调 整学习速率 α

■最速下降算法

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for
$$j = 1$$
 and $j = 0$)

 $\left. \right\}$

•线性回归模型

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

■最速下降法-梯度计算

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{2}{\partial \theta_{j}} \int_{-2m}^{m} \int_{-i\pi}^{i\pi} \left(h_{0} \left(\chi^{(i)} \right) - y^{(i)} \right)^{2}$$

$$= \frac{2}{\partial \theta_{j}} \int_{-2m}^{m} \int_{-i\pi}^{i\pi} \left(\theta_{0} + \theta_{1} \chi^{(i)} - y^{(i)} \right)^{2}$$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\Theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)} \right)$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\Theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)} \right). \mathbf{x}^{(i)}$$

■最速下降法

, do₀ J(0,0₁)

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

同步更新 θ_0 和 θ_1

■最速下降算法

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$
 }

■不正确做法:

$$\begin{aligned} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_1 := \operatorname{temp1} \end{aligned}$$

■正确的做法:同时更新

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

■初始值

■初始值

■尽量构建一个凸函数形式的目标函数

 $h_{ heta}(x)$ 固定 $heta_0, heta_1$,模型假设是x的函数

 $J(heta_0, heta_1)$ 目标函数是关于 $heta_0, heta_1$ 的函数

 $h_{ heta}(x)$ 固定 θ_0, θ_1 ,模型假设是x的函数

 $J(heta_0, heta_1)$ 目标函数是关于 $heta_0, heta_1$ 的函数

 $h_{ heta}(x)$ 固定 θ_0, θ_1 ,模型假设是x的函数

 $J(heta_0, heta_1)$ 目标函数是关于 $heta_0, heta_1$ 的函数

 $h_{ heta}(x)$ 固定 θ_0, θ_1 ,模型假设是x的函数

 $J(heta_0, heta_1)$ 目标函数是关于 $heta_0, heta_1$ 的函数

 $h_{ heta}(x)$ 固定 θ_0, θ_1 ,模型假设是x的函数

 $J(heta_0, heta_1)$ 目标函数是关于 $heta_0, heta_1$ 的函数

 $h_{ heta}(x)$ 固定 θ_0, θ_1 ,模型假设是x的函数

 $J(heta_0, heta_1)$ 目标函数是关于 $heta_0, heta_1$ 的函数

 $h_{ heta}(x)$ 固定 $heta_0, heta_1$,模型假设是x的函数

 $J(heta_0, heta_1)$ 目标函数是关于 $heta_0, heta_1$ 的函数

 $h_{ heta}(x)$ 固定 θ_0, θ_1 ,模型假设是x的函数

 $J(heta_0, heta_1)$ 目标函数是关于 $heta_0, heta_1$ 的函数

 $h_{ heta}(x)$ 固定 θ_0, θ_1 ,模型假设是x的函数

 $J(heta_0, heta_1)$ 目标函数是关于 $heta_0, heta_1$ 的函数

大纲

- ■数据的表达
- ■数据模型
- ■线性回归方法
- ■线性分类方法
- ■扩展

•分类

■零件: 盘类/轴类?

■邮件: 垃圾 / 正常?

▶肿瘤: 恶性/良性?

■恐怖事件: 分级

$$y \in \{0, 1\}$$

■0: 类别0(例如: 盘类 零件)

■1: 类别1 (例如: 轴类零件)

■分类阈值 0.5: $h_{\theta}(x)$

•如果 $h_{\theta}(x) \ge 0.5$,预测 "y = 1"

-如果 $h_{\theta}(x) < 0.5$,预测 "y = 0"

-分类: y = 0 or 1

$$h_{\theta}(x)$$
 -可以 > 1 或 < 0

-Logistic 回归: $0 \le h_{\theta}(x) \le 1$

■Logistic 回归模型

■希望
$$0 \le h_{\theta}(x) \le 1$$

$$h_{\theta}(x) = g(\theta^T x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

■S型函数

-Logistic 函数

- •模型假设输出的含义
- •输出

 $h_{\theta}(x)$ == 估算输入为x,输出 y = 1的概率

■例子: 如果
$$=x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{轴径} \end{bmatrix}$$

$$h_{\theta}(x) = 0.7$$

●告诉我们,此零件有70% 机会是轴类零件

•确定参数 θ "给定x, y = 1 的概率为70%"

$$P(y = 0|x; \theta) + P(y = 1|x; \theta) = 1$$

 $P(y = 0|x; \theta) = 1 - P(y = 1|x; \theta)$

■Logistic 回归

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

■ 假设预测"
$$y = 1$$
" 如果 $h_{\theta}(x) \ge 0.5$

• 预测 "
$$y = 0$$
" 如果 $h_{\theta}(x) < 0.5$

■决策边界 (Decision Boundary)

■预测 "
$$y = 1$$
" 如果 $-3 + x_1 + x_2 \ge 0$
 $\cancel{}$ $\cancel{$

•非线性的决策边界

■多类别问题

■Email目录/标签:工作, 朋友, 家庭, 临时

■医疗诊断:健康,感冒,传染病

■天气: 晴朗, 多云, 阴雨, 下雪

■2类边界:

■多类别:

■一对多:

- ■Class 1
- ■Class 2
- ■Class

$$h_{\theta}^{(i)}(x) = P(y = i|x;\theta)$$
 $(i = 1, 2, 3)$

■一对多:

-对所有类别分别训练Logistic分类器 $h_{\theta}^{(i)}(x)$,分别预测 y=i .

•对于每一个输入 x ,分别预测是否属于某个分类,取假设输出概率最大的一个类别 i

$$\max_{i} h_{\theta}^{(i)}(x)$$

Bagging

大纲

- ■数据的表达
- ■数据模型
- ■线性回归方法
- ■线性分类方法
- ■扩展

统计学习

统计学习方法有很多

- ■神经网络/深度网络
- ■K近邻
- ■朴素贝叶斯方法
- ■决策树
- ■支持向量机
- ■EM方法

- ■隐马尔科夫模型
- ■条件随机场
- Boosting
- Deep Learning
- ■流形学习
- **.**...

- ■学习复杂分类器的简单方法
 - Freund & Shapire, 1995
 - Friedman, Hastie, Tibshhirani, 1998

■容易实现,不需要外部工具支持

@定义:

■我们需要定义一组弱分类器

 $f_k(x)$ <50%的错误率

■一个有序叠加的分类过程:

■弱分类器

■h => p(error) = 0.5 这是一个随机划分

■针对现有分类结果,我们添加一个新的分类器

■每个数据 x_t 都有一个标记 y_t :

$$y_t = \begin{cases} -+1 & \\ --1 & \\ \end{pmatrix}$$

■更新样本权值:

 $\mathbf{w}_t \leftarrow \mathbf{w}_t \exp{-\mathbf{y}_t \mathbf{H}_t}$

■再次针对已有分类结果建立一个新的分类器

■每个数据 x_t 都有一个标记 y_t :

$$y_t = \begin{cases} -+1 & \\ --1 & \\ \end{pmatrix}$$

■更新样本权值:

 $\mathbf{w}_t \leftarrow \mathbf{w}_t \exp{-\mathbf{y}_t \mathbf{H}_t}$

■建立新的弱分类器

■通过弱分类器(线性)的叠加建立强分类器 (非线性)

■不同的目标函数和最小化算法将得到不同性质的Boosting分类器

■稳定性好,适用于工业领域

应用实例

- ■目标识别:识别图像中的目标物体
- ■Vidal-Naquet, Ullman (2003)

弱分类器

■针对显示器,弱分类器可定义为:

弱分类器

■使用不同模板,再建立一个特征

© Copyright RMEC 2009-2020

训练

■我们首先在图像集合上评估N个特征.

■接着,在目标物体和背景上分别采样,作为不同的分类

应用实例

总结

我们已经熟悉基本的统计学习方法

- ■如何确定模型
- ■根据数据选择策略
- ■选择和使用算法

总结

进一步学习

- ■《统计学习方法》李航著
- ■《机器学习》周志华著

作业

我们已经熟悉基本的统计学习方法

- ■给定一组有意义的 数据
- ■建立回归模型
- ■给出计算过程

所有数据和代码 在课程网站下载

