Total No. of Printed Pages:02

F.E. (Semester- II) (Revised Course 2007-08) EXAMINATION OCTOBER 2020 Applied Mathematics- II

		Tappined Patthernation 11	
[Duration	ı : T	wo Hours] [Total Marks	: 6
Instructions:		 Answer THREE FULL QUESTIONS with ONE QUESTION from ANY THREE MODULES. Assume suitable data if necessary. 	
		MODULE- I	
Q.1	a)	Evaluate $\int_0^{\pi/2} Log_e (\alpha^2 Sin^2 x + \beta^2 Cos^2 x) dx$ by applying differentiation under the integral.	(7)
	b)	Find the length of the curve $x = \frac{y^3}{6} + \frac{1}{2y}$ from $y = 1$ to $y = 16$.	(6)
		The cardiode $r = 2 + 2 \cos\theta$ is revolved about the initial line, compute the surface area of the object generated.	(7)
Q.2	a)	Define curvature. If $\overline{r}(t)$ is any vector point function, Show that curvature $K = \frac{ \dot{\overline{r}} \times \dot{\overline{r}} }{ \dot{\overline{r}} ^3}$. Use it to find the curvature of $\frac{x^2}{4} + \frac{y^2}{9} = 1$ at point (0,3).	(8)
	b)	Solve the vector differential equation $\frac{d\overline{r}}{dt} = t\overline{i} + S$ int $\overline{j} + 5\overline{k}$ with initial condition $\overline{r}(0) =$	(6)
	c)	$2\overline{i} + 3\overline{j} - \overline{k}$ Find the unit Tangent vector T and principal normal N of the curve $x = 3t^2 + 2$, $y = 2t + 3$, $z = 2t^2 - 1$ at the point $t = 1$	(6)
Q.3	a)	MODULE- II Evaluate $\int_0^1 \int_0^{\sqrt{x}} \frac{2x^2y}{x^2+y^4} dxdy$	(6)
		Evaluate $\iint 2x + 3dxdy$ over the region enclosed by $y^2 = x$ and $x - y = 2$	(6)
	c)	Write the following as a single integral and evaluate $\int_0^1 \int_0^{\sqrt{x}} 2xy dx dy + \int_0^2 \int_0^{2-x} 2xy dx dy$	(8)
Q.4	a)	Evaluate $\iiint \frac{z}{\sqrt{x^2+y^2}} dxdydz$ over the region	(6)
	b)	$\{(x,y,z)/x^2 + y^2 + z^2 \le 4, x \ge 0, y \ge 0, z \ge 0\}$ Evaluate $\iiint 3y + xz dx dy dz$ over the region enclosed by $y^2 = 4x$, $z = 0$, $z = 1$ and $x = 1$	(6)
	c)	Find the volume of the tetrahedron bounded by the coordinate planes and plane 2x+y	(8)

Paper / Subject Code: FE211 / Applied Mathematics-II

FE211

(20)

MODULE-III

- Q.5 (6) a) If $r = \sqrt{x^2 + y^2 + z^2}$ and $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ then show that $div\left(\frac{\vec{r}}{r^3}\right) = 0$
 - b) Find the work done in moving a particle in a force field $\overline{F} = zx\overline{i} + 2x^2y\overline{j} + (z^2 + 2y)\overline{k}$, (6)along the curve in the plane x=2 and having equation $y^2 = 4z$ from (2,2,1) to (2,4,4)
 - c) Using Stoke's theorem or otherwise evaluate $\iint_{S} \nabla \times \vec{F} \cdot nds$ where $\vec{F} = (x^2 + 3y)\vec{\imath} + 2y\vec{\jmath} +$ (8) $(3x + z)\vec{k}$ and S is section of the plane x+2y+z=4 which is in the first octant.
- Q.6 a) State and prove Green's theorem in the plane. (8) b) Verify Gauss divergence theorem for $\vec{F} = (2x + y)\vec{i} + (y^2 + z)\vec{j} + z^2\vec{k}$ and S is the (12)surface of the cube $0 \le x, y, z \le 1$.

MODULE-IV

Solve the following differential equations Q.7 (20)

a)
$$(x^2y^2 + 2xy + 1) ydx + (y^2x^2 - xy + 3)xdy = 0$$

b) $(1+x)\frac{dy}{dx} + 1 = 2e^{-y}$
c) $(x+2y+3)dx - (2x-y+1)dy = 0$
d) $Sinx \frac{dy}{dx} + 3y = Cos x$

- Solve the following differential equations Q.8

a)
$$(D^2 + 4D - 8)y = e^{2x} \cos x + x$$

b)
$$(D^2 + 3D - 4) y = x \sin 2x$$

b)
$$(D^2 + 3D - 4) y = x Sin2x$$

c) $(D + 2)(D - 1)^2 y = e^{2x} + x^2 + 3x$

d)
$$x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4y = 3x^2 + \log_e x$$