

Mixed Integer Linear Programming (MILP)

- Types of Integer Linear Programming Models
- Feasible regions and graphical solution
- LP relaxation
- Special 0-1 constraints
- Computer solution
- Cautionary notes on sensitivity analysis and rounding
- *(M)ILP applications and formulations*

Integers

group often denoted with \mathbb{Z} , e.g. $x \in \mathbb{Z}$

3.11.2023

Types of Integer Linear Programming Models

Pure Integer Linear Programming (ILP)

- All the decision variables are integers

Mixed Integer Linear Programming (MILP)

- Some of the decision variables are integers

Binary Linear Programming (BLP)

- Decision variables restricted to be binary values (i.e. o or 1)
- Sometimes the term zero-one linear programming (ZOLP) is used
- Pure BLP: all the decision variables binary
- Mixed BLP: some decision variables binary

Examples of ILP problems

B	T.	P
L	\mathbf{L}	1

(pure) ILP

MILP

Max
$$3x_1 + 2x_2$$

Max
$$3x_1 + 2x_2$$

Max
$$3x_1 + 2x_2$$

s.t.
$$3x_1 + x_2 \le 9$$

 $x_1 + 3x_2 \le 7$
 $-x_1 + x_2 \le 1$
 $x_1, x_2 \in \{0,1\}$

s.t.
$$3x_1 + x_2 \le 9$$

 $x_1 + 3x_2 \le 7$
 $-x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$
 $x_1, x_2 \text{ integer}$

s.t.
$$3x_1 + x_2 \le 9$$

 $x_1 + 3x_2 \le 7$
 $-x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$
 $x_1 \text{ integer}$

Example of the feasible region: Pure ILP

Max
$$3x_1 + 2x_2$$

s.t. $3x_1 + x_2 \le 9$
 $x_1 + 3x_2 \le 7$
 $-x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$
 $x_1, x_2 \text{ integer}$

Feasible region

 X_1

Example of the feasible region: MILP

Max $3x_1 + 2x_2$ s.t. $3x_1 + x_2 \le 9$ $x_1 + 3x_2 \le 7$ $-x_1 + x_2 \le 1$ $x_1, x_2 \ge 0$ $x_1 \text{ integer}$

Feasible region

 X_1

Graphical Method for Solving MILP Problems

- Optimal solutions to MILP problems with two decision variables can be found by applying the graphical solution method for LPs
 - Caution: feasible region not equal to the LP feasible region!

- Points satisfying $3x_1 + x_2 \le 9$ $x_1 + 3x_2 \le 7$ $-x_1 + x_2 \le 1$ $x_1, x_2 \ge 0$
- Feasible region $(x_1, x_2 \text{ integer})$

Graphical Method for Solving ILP Problems (Cont'd)

MILP example:

Max
$$3x_1 + 2x_2$$

s.t. $3x_1 + x_2 \le 9$
 $x_1 + 3x_2 \le 7$
 $-x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$
 $x_1 \text{ integer}$

Points satisfying

$$3x_1 + x_2 \le 9$$

 $x_1 + 3x_2 \le 7$
 $-x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$

Feasible region $(x_1 \text{ integer})$

Linear programming relaxation

■ The LP relaxation of a (M)ILP problem is the LP problem obtained when all the integrality constraints are removed

MILP

 $\chi_1, \chi_2 \geq 0$

Linear programming relaxation (cont'd)

■ The LP relaxation of a BLP problem is the LP problem obtained when all the integrality constraints are removed

Linear programming relaxation (cont'd)

(pure) ILP

Max
$$3x_1 + 2x_2$$

s.t. $3x_1 + x_2 \le 9$
 $x_1 + 3x_2 \le 7$
 $-x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$
 $x_1, x_2 \text{ integer}$

LP relaxation

MILP

Understanding the implications of relaxing (integrality) constraints

Max
$$3x_1 + 2x_2$$

 $3x_1 + x_2 \le 9$
 $-x_1 + x_2 \le 1$
 $x_1, x_2 \in \{0,1\}$

Max
$$3x_1 + 2x_2$$

 $3x_1 + x_2 \le 9$
 $-x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$
 x_2 integer

Question:

■ Rank problems I-IV with regard to their optimal objective function value (i.e., the highest, 2nd highest,...)

BLP example: Product portfolio selection

- Metropolitan Microwaves, an electronic appliances store, is planning to include new product lines to its selection
 - The company has identified seven new possible product lines:

	Product line	Initial investment (\$)	Floor space (m^2)	Expexted rate of return (%)
1	Tablets	6,000	125	8.1
2	Laptops	2,000	150	9
3	Workstations	20,000	200	11
4	VR-equipment	14,000	40	10.2
5	Phones	15,000	40	10.5
6	Video Games	2,000	20	14.1
7	Gaming consoles	32,000	100	13.2
			_	_

- The company has \$45,000 to invest and 420 sq. ft. of floor space available
- A management scientist developed an integer linear programming model to support this decision, but she left for the academia and only her notes about the model remain

BLP example: Product portfolio selection (Cont'd)

"Model Notes"

Max
$$(6*1.081)x_1 + (2*1.09)x_2 + ...$$

s.t. A.
$$125x_1 + 150 x_2 + ... + 100 x_7 \le 420$$

B.
$$6x_1 + \dots + 32x_7 \le 45$$

C.
$$x_4 + x_5 \le 1$$

$$D. x_6 \le x_7$$

E.
$$2x_3 \le x_1 + x_2$$

F.
$$x_1 + x_2 + ... + x_7 \ge 3$$

$$x_1, ..., x_7 \in \{0,1\}$$

Data

	Product line	Initial investment (\$)	Floor space (m^2)	Expexted rate of return (%)
1	Tablets	6,000	125	8.1
2	Laptops	2,000	150	9
3	Workstations	20,000	200	11
4	VR-equipment	14,000	40	10.2
5	Phones	15,000	40	10.5
6	Video Games	2,000	20	14.1
7	Gaming consoles	32,000	100	13.2

Question

Interpret the meaning of the decision variables and the constraints

BLP: Special 0-1 Constraints

- Since binary variables only provide two choices, they are ideal for modelling yes-or-no (go/no-go, continue/discard, etc.) decisions
- Constraints can then be used to capture logical dependencies between these decisions
- Examples:
 - $x_i = 1, i = 1,...,n$ if and only if project i is started, otherwise $x_i = 0$
 - At most *k* out of *n* projects can be started:

$$\Sigma_i x_i \leq k$$

- Project *j* is conditional on project *i*:

$$x_i - x_i \leq 0$$

- Projects *i* and *j* are mutually exclusive:

$$x_i + x_j \leq 1$$

Computer Solution to (M)ILP problems

- In Excel Solver (2010-16)
 - Add an additional constraint that tells solver which decision variables are required to take integer ('int') or binary ('bin') values

- Choose algorithm "Simplex LP" as before
 - This tells Solver that problem is linear, i.e. ILP, MILP, or BLP (not some non-linear optimization problem with integer variables)
- The Simplex algorithm is only for solving LP problems despite the misleading naming of algorithms used in Excel Solver
- Algorithms for (M)ILP problems: Branch-and-bound, Cutting plane,...
 - These algorithms often use the Simplex for solving sub-problems

ILP problem:

Max
$$z=5x_1 + 4x_2$$

s.t. $x_1 + x_2 \le 5$
 $10x_1 + 6x_2 \le 45$
 $x_1, x_2 \ge 0$ and integer

Step 1: Bounding

- Solve the LP relaxation with Simplex
 - Gives an upper bound to the optimal value (cf. implications of relaxation)

Step 2: Branching

- Add constraints on one variable that did not have an integer value in the optimal solution

Max
$$z=5x_1 + 4x_2$$

s.t. $x_1 + x_2 \le 5$
 $10x_1 + 6x_2 \le 45$
 $x_1 \le 3$
 $x_1, x_2 \ge 0$
and integer

Max
$$z=5x_1 + 4x_2$$

s.t. $x_1 + x_2 \le 5$
 $10x_1 + 6x_2 \le 45$
 $x_1 \ge 4, x_2 \ge 0$
and integer

Step 3: Bounding

Solve the LP relaxations in each branch

 $x_1 \le 3$

Step 4: Branching

- Add constraints on one variable that did not have an integer value

- No need to branch LP1 since it has an integer solution!

LP0

LP2

Step 5: Bounding

Solve the LP relaxations with Simple

- Bound is lower than the integer solution found in Step 3:

No need to branch any deeper!

- ILP optimum:

$$(x_1, x_2) = (3,2), z=23$$

 $x_2 \le 0$

 $x_2 \ge 1$

Computational complexity: LP vs. MILP

- Solving (M)ILP problems is computationally much more demanding then solving LP problems
 - It is possible that in the B&B algorithm the number of sub-problems doubles with each branching-step
 - Hence, running time of the algorithm can grow exponentially as a function of the number of integer valued decision variables
- Adding constraints to an LP problem usually makes solving it computationally more demanding
- Adding constraints to a MILP problem can make it easier to solve!
 - Think about the B&B example problem with the additional constraint $x_1 \le 3$

BLP Example: Capital Budgeting

 Perry Construction is faced with the problem of determining which projects it should undertake over the next three years:

max	$180x_{A} + + 80x_{E}$					
	1. $30x_A + + 20x_E \le 70$		Estimated	Cap	ital Requir	ements
S.L.	- 11	Project	Present Value	Year1	Year2	Year3
	2. $40x_A + 8x_B \dots + 40x_E \le 90$	A	180 000	30 000	40 000	40 000
	3. $40x_A + 20x_C \dots + 40x_E \le 100$	В	20 000	12 000	8 000	O
	4. $x_{A},,x_{E} \in \{0,1\}$	C	72 000	30 000	20 000	20 000
		D	25 000	15 000	10 000	24 000
		E	80 000	20 000	40 000	40 000
		Funds Av	vailable	70 000	90 000	100 000

Question

Interpret the meaning of the decision variables and the constraints

BLP Example: Capital Budgeting Revisited

- Question: Help the mgmt to formulate the additional restrictions:
 - 1. At most three projects can be selected

$$x_A + x_B + x_C + x_D + x_E \le 3$$

- 2. Projects A and D cannot be both selected
- 3. If project C is selected, then project E must also be selected
- 4. If project B or E is selected, then project A cannot be selected
- 5. If project E is selected, then projects C and D must also be selected

BLP: Special 0-1 Constraints (Cont'd)

- To make sure that a logical constraint works check that:
 - 1. solutions that are not allowed by the problem description are infeasible
 - 2. solutions allowed by the problem description are feasible
- Example: 1st year capital requirement is reduced by \$10,000 if at least
 2 of projects C, D and E are selected (cf. a synergy)
 - \rightarrow New "dummy" variable x_s added to the model and 1. constraint modified:

$$30x_A + ... + 20x_E - 10x_S \le 70$$

- New constraints ensure that "project *S*" is selected if and only if at least 2 of projects C, D and E are selected:

$$x_C + x_D + x_E - 2x_S \ge 0$$

 $x_C + x_D + x_F - 2x_S \le 1$

Allowed?	$x_C + x_D + x_E$	x_S	$\begin{array}{c} x_C + x_D + x_E \\ -2x_S \end{array}$	Feasible?
yes	0	0	0	yes
no	0	1	-2	no
yes	1	0	1	yes
no	1	1	-1	no
no	2	0	2	no
yes	2	1	0	yes
no	3	0	3	no
yes	3	1	1	yes

BLP example: Covering problem

 Ohio Trust Company (OTC) is expanding into 20 new counties

- Ohio Banking law: "A branch bank can be established in a county only if an adjacent county has a Principle Place of Business (PPB)"
- Establishing a PPB requires state's approval so OTC seeks to establish as few as possible new PPBs

Question:

- Interpret the BLP problem
 - HINT: Decision variable $x_i = 1$ iff PPB is established in county i

$$\min x_1 + x_2 + x_3 + \dots + x_{20}$$

$$(1) x_1 + x_2 + x_{12} + x_{16} \ge 1$$

$$(2) x_1 + x_2 + x_3 + x_{12} \ge 1$$

(3)
$$x_2 + x_3 + x_4 + x_9 + x_{10} + x_{12} + x_{13} \ge 1$$

. . .

(20)
$$x_{11} + x_{14} + x_{19} + x_{20} \ge 1$$

 $x_i \in \{0,1\}, i = 1, ..., 20 \ge 1$

BLP example: Covering problem (Cont'd)

Optimal solution:

$$x_i = 1,$$
 $i = 7, 11, 12$
 $x_i = 0,$ $i \neq 7, 11, 12$

Question:

- Assume that the cost of establishing a PPB varies across counties
 - Denote cost in county i by c_i
- How would you modify the BLP model to minimize total costs?

$$\min c_1 x_1 + c_2 x_2 + c_3 x_3 + \dots + c_{20} x_{20}$$

(1)
$$x_1 + x_2 + x_{12} + x_{16} \ge 1$$

$$(2) x_1 + x_2 + x_3 + x_{12} \ge 1$$

(3)
$$x_2 + x_3 + x_4 + x_9 + x_{10} + x_{12} + x_{13} \ge 1$$

(20)
$$x_{11} + x_{14} + x_{19} + x_{20} \ge 1$$

 $x_i \in \{0,1\}, i = 1, ..., 20 \ge 1$

BLP Example: Marketing Plan

 The Supersuds Corporation is developing its next year's marketing Number of plan for three new products.

-	Five TV spots purchased for
	commercials on national television
	networks.

- Max 3 spots for each product
- Each spot will feature a single product.
- How many spots should be allocated to each of the three products?

Estimated Profits	(Millions)
--------------------------	------------

	`	,
Product	Product	Product
1	2	3
\$1	\$2	\$0
2	3	4
3	5	5
4	6	6

TV Spots

BLP Example: Marketing Plan (Cont'd)

Decision variables: x_{ij} are binary (i = 1, 2, 3; j = 1, 2, 3, 4).

Maximize Profit = $1x_{11} + 2x_{12} + 3x_{13} + 4x_{14} + 2x_{21} + 3x_{22} + 5x_{23} + 6x_{24} + 0x_{31} + 4x_{32} + 5x_{33} + 6x_{34}$

Estimated Profits (Millions)

subject to:	Number of TV Spots	Product 1	Product 2	Product 3
Mutually Exclusive:	0	\$1	\$2	\$0
Product 1: $x_{11} + x_{12} + x_{13} + x_{14} = 1$	1	2	3	4
Product 2: $x_{21} + x_{22} + x_{23} + x_{24} = 1$	2	3	5	5
Product 3: $x_{31} + x_{32} + x_{33} + x_{34} = 1$	3	4	6	6

Total available spots: $1x_{12}+2x_{13}+3x_{14} +1x_{22}+2x_{23}+3x_{24}+1x_{32}+2x_{33}+3x_{34} \le 5$

Other Examples of BLP Applications

- Investment Analysis
 - Should we make a certain fixed investment?
- Site Selection
 - Should a certain site be selected for the location of a new facility?
- Designing a Production and Distribution Network
 - Should a certain plant (distribution center) remain open?
 - Should a certain site be selected for a new plant (or distribution center)?
 - Should a distribution center remain open?
 - Should a certain distribution center be assigned to serve a certain market area?
- Scheduling Interrelated Activities
 - Should a certain activity begin in a certain time period?
- Airline Applications:
 - Should a certain type of airplane be assigned to a certain flight leg?
 - Should a certain sequence of flight legs be assigned to a crew?

- Trying to solve the problem by first solving the LP relaxation and then rounding-up gives an infeasible solution:
 - RoundUP(2.5, 1.5)=(3,2)

 Trying to solve the problem by first solving the LP relaxation and then rounding-down gives an sub-optimal solution:

RoundDW(2.5, 1.5)=(2,1) ×

$$z'=3(2) + 2(1)=8 < 9$$

- Rounded solution may not be feasible.
- Rounded solution may not be close to optimal.
- There can be *many* rounded solutions.
 - Example: Consider a problem with 30 variables that have non-integer values in the LP-solution. How many possible rounded solutions are there?

- Solutions obtained by rounding optimal solutions of the LP relaxation (are infeasible)
- ★ ILP optimal solution

When are "non-integer" solutions okay?

- Solution is naturally divisible (e.g., \$, pounds, hours)
- Solution represents a rate (e.g., units per week)

When is rounding okay?

- When numbers are large
 - e.g., rounding 114.286 to 114 is *probably* okay.

When is rounding not okay?

- When numbers are small
 - e.g., rounding 2.6 to 2 or 3 may be a problem.
- Binary variables
 - yes-or-no decisions

Cautionary note about sensitivity analysis in (M)ILP problems

- A B&B algorithm usually does not provide information on the solution sensitivity (cf. Simplex algorithm)
 - →No "Sensitivity report" for (M)ILP problems
- Yet, analyzing sensitivity of (M)ILP problems is important
 - Maybe more important than for LP problems
- Sensitivity analysis requires reoptimizing the problem

$$\max z = 40x_1 + 60x_2 + 70x_3 + 160x_4$$
$$16x_1 + 35x_2 + 45x_3 + 85x_4 \le \mathbf{100}$$
$$x_1, x_2, x_3, x_4 \in \{0, 1\}$$

$$\rightarrow$$
Optimum $x = (1,1,1,0), z = 170$

$$\max z = 40x_1 + 60x_2 + 70x_3 + 160x_4$$
$$16x_1 + 35x_2 + 45x_3 + 85x_4 \le \mathbf{101}$$
$$x_1, x_2, x_3, x_4 \in \{0, 1\}$$

$$\rightarrow$$
Optimum $x = (1,0,0,1), z = 200$

MILP Example: Fixed-Charge Problem

- A product can be assembled on any of the five assembly lines.
 - For each line, the table below gives the cost of assembling a product, the assembly time required per product, the start-up cost, and the maximum number of hours the line can be operated during the next month.
- At least 350 units of product must be assembled next month.

	Start-up	Prod.	Prod.Time	Maximum
<u>Line</u>	Cost	Cost/unit	(hrs./unit)	Prod.hrs.
A	\$ 6,000	\$ 80	5	510
В	\$10,000	\$ 60	6	480
C	\$ 2,000	\$110	10	600
D	\$ 7,500	\$ 75	4	440
E	\$15,000	\$ 40	3	480

MILP Example: Fixed-Charge Problem (cont'd)

min
$$80x_A + ... + 40x_E + 6000y_A + ... + 15000y_E$$

s.t. 1.
$$x_A + x_B + ... + x_E \ge 350$$

2.
$$5x_A \le 510 \ y_A$$

3.
$$6x_{\rm B} \le 480 \ y_{\rm B}$$

4.
$$10x_{\rm C} \le 600 \ y_{\rm C}$$

5.
$$4x_{\rm D} \le 440 \ y_{\rm D}$$

6.
$$3x_{\rm E} \le 480 \ y_{\rm E}$$

$$y_{A},...,y_{E} \in \{0,1\}$$

$$x_A,...,x_E \ge 0$$

	Start-up	Prod.	Prod.Time	Maximum
Line	Cost	Cost/unit	(hrs./unit)	Prod.hrs.
A	\$ 6,000	\$ 80	5	510
В	\$10,000	\$ 60	6	480
C	\$ 2,000	\$110	10	600
D	\$ 7,500	\$ 75	4	440
E	\$15,000	\$ 40	3	480

Question

Interpret the decision variables, the objective function and the constraints

MILP Example: Fixed-Charge Problem (cont'd)

MILP Example: Fixed-Charge Problem (cont'd)

Question: Help the management to formulate the additional restrictions:

- 1. If line E is operated, then line B must also be operated
- 2. If line A is operated, then lines D and E may not be operated

- 3. If line B is operated, then at least 50 units must be produced on that line
- 4. If line C is operated, then no more than 150 units may be produced on lines B and D combined

MILP Example: Distribution System Design

- Company operates a plant in St. Louis
 - Annual capacity of 30,000 units
- Products shipped to 3 distribution centers in Boston, Atlanta and Houston
 - Different demands
- Possible locations for new plants: Detroit,
 Toledo, Denver, Kansas City
 - Differ in terms of annual fixed operating costs and cost of shipment to distribution centers
- In which cities should new plants be built?
 - Satisfy demands with minimal cost

MILP Example: Distribution System Design (Cont'd)

$$\min 5x_{11} + 2x_{12} + 3x_{13} + \dots + 4x_{52} + 3x_{53} \\ +175y_1 + 300y_2 + 375y_3 + 500y_4 \\ x_{11} + x_{12} + x_{13} \le 10y_1 \\ x_{21} + x_{22} + x_{23} \le 20y_2 \\ x_{31} + x_{32} + x_{33} \le 30y_3 \\ x_{41} + x_{42} + x_{43} \le 40y_4 \\ x_{51} + x_{52} + x_{53} \le 30 \\ x_{11} + x_{21} + x_{31} + x_{41} + x_{51} = 30 \\ x_{12} + x_{22} + x_{32} + x_{42} + x_{52} = 20 \\ x_{13} + x_{23} + x_{33} + x_{43} + x_{53} = 20 \\ x_{ij} \ge 0, y_k \in \{0,1\},$$

Question:

 Interpret the model, i.e., decision variables, objective function, constraints

MILP Example: Distribution System Design (Cont'd)

$$\min 5x_{11} + 2x_{12} + 3x_{13} + \dots + 4x_{52} + 3x_{53} + 175y_1 + 300y_2 + 375y_3 + 500y_4$$

$$x_{11} + x_{12} + x_{13} \le 10y_1$$

$$x_{21} + x_{22} + x_{23} \le 20y_2$$

$$x_{31} + x_{32} + x_{33} \le 30y_3$$

$$x_{41} + x_{42} + x_{43} \le 40y_4$$

$$x_{51} + x_{52} + x_{53} \le 30$$

$$x_{11} + x_{21} + x_{31} + x_{41} + x_{51} = 30$$

$$x_{12} + x_{22} + x_{32} + x_{42} + x_{52} = 20$$

$$x_{13} + x_{23} + x_{33} + x_{43} + x_{53} = 20$$

$$x_{ij} \ge 0, y_k \in \{0,1\},$$

Optimal solution (non-zero dec. var.):

$$x_{42} = 20, x_{43} = 20, x_{51} = 30, y_4 = 1$$

Modelling non-constant marginal costs with MILP

 MILP can capture arbitrary piecewise linear functions in the objective function or in the constraints

MILP formulation

- Decision variables:
 - *y*: cost
 - x: number of units produced
 - $z_1, z_2, z_3 \in \{0,1\}$: $x \text{ located on segment with } z_i=1$
 - c₁, c₂, c₃, c₄ ∈ [0,1]:
 'Weights for segment borders'
- Constraints:

$$0c_{1} + 5c_{2} + 20c_{3} + 25c_{4} = x$$

$$c_{1} + c_{2} + c_{3} + c_{4} = 1$$

$$z_{1} + z_{2} + z_{3} = 1$$

$$c_{1} \leq z_{1}$$

$$c_{2} \leq z_{1} + z_{2}$$

$$c_{3} \leq z_{2} + z_{3}$$

$$c_{4} \leq z_{3}$$

$$y = 0c_{1} + 2c_{2} + 4c_{3} + 5c_{4}$$

Modelling variable marginal costs with MILP (cont'd)

- Consider x=10 units are produced
- Then MILP has to find $c_i \in [0,1]$ such that $0c_1 + 5c_2 + 20c_3 + 25c_4 = 10$
- However, only two consecutive c_i :s can have a non-zero value due to z_i :s:

-
$$z_1$$
=1 and $0c_1 + 5c_2 = 10$ \rightarrow infeasible

-
$$z_2$$
=1 and $5c_2 + 20c_3 = 10 \implies c_2 = 2/3, c_3 = 1/3$

- z_3 =1 and $20c_3 + 25c_4 = 10 \rightarrow infeasible$
- Hence, the cost is equal to

$$y = 0(0) + 2\left(\frac{2}{3}\right) + 4\left(\frac{1}{3}\right) + 5(0) = \frac{8}{3} = 2\frac{2}{3}$$
, which is inline with the original cost function!

$$0c_{1} + 5c_{2} + 20c_{3} + 25c_{4} = x$$

$$c_{1} + c_{2} + c_{3} + c_{4} = 1$$

$$z_{1} + z_{2} + z_{3} = 1$$

$$c_{1} \leq z_{1}$$

$$c_{2} \leq z_{1} + z_{2}$$

$$c_{3} \leq z_{2} + z_{3}$$

$$c_{4} \leq z_{3}$$

$$y = 0c_{1} + 2c_{2} + 4c_{3} + 5c_{4}$$

Integer Linear Programming - Summary

- Different types: MILP, pure ILP, BLP,....
- Compared to LP models, MILP models can capture
 - Yes/no decisions
 - Logical dependencies among decisions
 - Fixed-charges (e.g. start-up costs)
 - Piecewise linear functions (e.g. non-constant marginal production costs)
- Solving of ILPs is fundamentally different from solving LPs
 - Solution time may increase exponentially as a function of the problem size

