$PS7_{T}ao$

jiongliangtao

March 2019

1 Summary Table

Table 1:

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
logwage	1,669	1.625	0.386	0.005	1.362	1.936	2.261
hgc	2,229	13.101	2.524	0	12	15	18
tenure	2,229	5.971	5.507	0.000	1.583	9.333	25.917
age	2,229	39.152	3.062	34	36	42	46

Log wages missing at rate of 0.2512. I think the logwage variable is most likely to be MNAR.

The beta1 in first model and third model is 0.062. The beta1 in second model is 0.049. Both of those two values are different from the true value. The beta1 in first model and third model is closer to the true value. So, the first and third method is better than the second method.

2 Question 8

The data that used for this project is collected from Tweeter using API. I have collected the words people use most about this topic. I would like to see what opinions people have on this topic. I may take a linear regression model for this project.

Table 2:

	Dependent variable:					
		logwage				
	(1)	(2)	(3)			
hgc	0.062***	0.049***	0.062***			
	(0.005)	(0.004)	(0.005)			
collegenot college grad	0.146***	0.160***	0.146***			
-	(0.035)	(0.026)	(0.035)			
tenure	0.023***	0.015***	0.023***			
	(0.002)	(0.001)	(0.002)			
age	-0.001	-0.001	-0.001			
	(0.003)	(0.002)	(0.003)			
marriedsingle	-0.024	-0.029**	-0.024			
-	(0.018)	(0.014)	(0.018)			
Constant	0.639***	0.833***	0.639***			
	(0.146)	(0.115)	(0.146)			
Observations	1,669	2,229	1,669			
\mathbb{R}^2	0.195	0.132	0.195			
Adjusted \mathbb{R}^2	0.192	0.130	0.192			
Residual Std. Error	0.346 (df = 1663)	0.311 (df = 2223)	0.346 (df = 1663)			
F Statistic	80.508^{***} (df = 5; 1663)	$67.496^{***} (df = 5; 2223)$	80.508^{***} (df = 5; 1663)			

Note: p<0.1; **p<0.05; ***p<0.0