CS & IT ENGINEERING

COMPUTER ORGANIZATION
AND ARCHITECTURE

Floating Point Representation

Lecture No.-02

Recap of Previous Lecture

Topics to be Covered

Topic Floating-

Floating-Point Numbers

Topic

Biased Exponent

Topic

Number Range

Topic

IEEE-754 Floating Point Representation

Topic

Denormalized Number

Topic: Floating-Point Numbers

The number is represented in format:

S E	М
-----	---

- Mantissa is signed normalized (implicit/explicit) fraction number
- Exponent is stored in biased form.

explicitly

#Q. Consider a 16-bit register used to store floating point numbers. The mantissa is normalized signed fraction number. Exponent is represented in excess-32 form. What is the 16-bit value for $+(11.5)_{10}$ in this register?

61005= 32

	16-	bits	
S	E	M	
1	6	9	
	$\begin{array}{c} k-1 \\ 2 \\ k-1 \\ 2 \end{array}$	= 32 = 2 ⁵	
	k-1 k=		

$$+(11.5)_{10} \Rightarrow positive \Rightarrow S = 0$$

 $(11.5)_{10} = (1011.1)_{2}$
explicit Normalization
 $0.10111 * 2$

$$M = 101110000$$
 $E = 4$
 $E = 4 + 32 = 36 = (100100)_{2}$

#Q. What is the 4-digit hexadecimal value for $+(11.5)_{10}$ in above question's register?

#Q. What is the 4-digit hexadecimal value for $+(37.75)_{10}$ in above question's register?

$$(37.75)_{10} = (100101.11)_{2}$$
 $1 6 9$

Explicit normalizath

 $0.10010111 * 2^{6}$
 0.100101110
 $1 = 10010110$
 $1 = 6$
 $1 = 6$
 $1 = 6 + 32 = 38 = (100110)_{2}$

$$Qmin = 0-32$$

$$0.11 * 2^{-33} = Cannot$$

$$0.11 * 2^{-33} = Stone$$

Topic: Bits in E and M

More no. of bits in E => larger range of numbers

11 — M => Better precision or Accuracy

Topic: Disadvantages of Conventional Representation

-> can not represent zero.

-> it can not store very small numbers around zero.

(has underflow)

Topic: IEEE-754 Floating Point Representation

E \$ 00.... O normal number and (Implicitly normalized)

E \$ 11....

Topic: IEEE-754 Floating Point Representation

S	E	М	Number
O	000	00	+0
1	000	0	-0
0	11	00	+∞
1	11	00	- 00
0 or 1	11	n +00	N.A.N. (Not A Number)
oor	000	M + 0 O	Denormalized number
0 or 1	E \$ 00 and E \$ 111	xxxxxx,X	Implicitly normalize

Topic: Denormalized Number

A very-very small number which can not be implicitly normalized.

single precision

Emin for normalized number = 1

$$emin = 1 - 127$$

= -126

0.000...ty to normalize I till 2-126 0.011 * 2 - 126 5 00 01100...0

> Value = 0.M * 2

Value =
$$(-1)$$
 * 1. M * 2
(Implicit)

Value
$$=(-1) \times 0.0 \times 2$$

(denormalized)

max value
$$C = +127$$

max value $E = 127 + 6$ ias
 $= 127 + 127$
 $= (254)_{10}$
 $= (11111110)_{2}$

that's why E = 111.....!

15 preserved.

#Q. The value of a float type variable is represented using the single- precision 32-bit floating point format IEEE-754 standard that uses 1bit for sign, 8 bits for biased exponent and 23 bits for mantissa. A float type variable X is assigned the decimal value of -27.625. The representation of X in hexadecimal notation is?

$$(27.625)_{10} = (11011.101)_2 \Rightarrow Implicit normalizath$$
 $S = -\frac{1}{2}$
 $S =$

#Q. The value represented by the following 32-bits in IEEE-754 representation is?

$$S = 0 \Rightarrow + ve$$

 $E = 100000011 = (131)_{10}$
 $M = 1100...0$

$$E \neq 0.0000$$
 Implicit and marmalized $e \neq 11.0000$

Value = 1. 1100...0 * 2

= 1.1100...0 * 2

=
$$(11100.0)_2$$

= $+(28)_{10}$

#Q. The value represented by the following 32-bits in IEEE-754 representation is?

Value =
$$0.11 \times 2^{-126}$$

= $11.0 \times 2^{-2} \times 2^{-126}$
= $+ 3 \times 2^{-128}$

#Q. Maximum value represented in IEEE-754 single precision?

#Q. Minimum value represented in IEEE-754 single precision?

Max

#Q. Minimum positive normalized value represented in IEEE-754 single precision?

Value =
$$+ 1.11..... / *2$$

= $111..... / *2$
= $111..... / *2$
= $+ (2^{24} - 1) * 2^{104}$

min possible normalized value.

Value =
$$+ 1.00.0 * 2^{1-127}$$

$$= + 2^{-126}$$

Maximum

#Q. Minimum positive denormalized value represented in IEEE-754 single precision?

M inimum

#Q. Maximum positive denormalized value represented in IEEE-754 single precision?

Value =
$$+0.000...01 \times 2^{-126}$$

= $+1.0 \times 2^{-23} \times 2^{-126}$
= 2^{-149}

#Q. How to represent +1 and -1 in IEEE-754 single precision floating point number?

#Q. How to represent +0.0000101 in IEEE-754 single precision floating point number?

#Q. The value of a float type variable is represented using the single- precision 32-bit floating point format IEEE-754 standard that uses 1bit for sign, 8 bits for biased exponent and 23 bits for mantissa. A float type variable X is assigned the decimal value of −14.25. The representation of X in hexadecimal notation is

A C1640000H

B 416C0000H

C 41640000H

C16C0000H

GATE-PYQ

#Q. Consider the following representation of a number in IEEE 754 singleprecision floating point format with a bias of 127.

Here S, E and F denote the sign, exponent and fraction components of the floating-point representation.

The decimal value corresponding to the above representation (rounded to 2 decimal places) is_____

Value =
$$-1.1111 * 2$$

= $-1.1111 * 2$
= $-(11.11)_2$
= $-(7.75)_0$

#Q. The format of the single-precision floating-point representation of a real number as per the IEEE 754 standard is as follows:

Sign Exponent mantiss

Which one of the following choices is correct with respect to the smallest normalized positive number represented using the standard?

- A. exponent = 00000001 and mantissa = 0000000000000000000001

- φ D. exponent = 000000000 and mantissa = 0000000000000000000001

2 mins Summary

Topic

Biased Exponent

Topic

Normalized Mantissa

Topic

Explicit vs Implicit Normalization

Topic

IEEE-754 Floating Point Representation

Happy Learning THANK - YOU