

TEST REPORT

1. Applicant

Name : I DO IT Co. Ltd.,

Brand Name : N/A

Address #637, Smart-Hub Industry-University Convergence Center, 237

· Sangidaehak-ro, Siheung-si, Gyeonggi-do, Korea(429-793)

FCC ID : XQ8HDM-W300R

2. Products

Name : Wireless Full HD Sender Receiver

Model No. : HDM-W300R

Variant Model No. : N/A

Manufacturer I DO IT Co. Ltd.,

3. Test Standard : FCC 47 CFR Part 15 Subpart E

Canada RSS-210:issue 8

4. Test Method : ANSI C63.4:2009

5. Test Result : PASS

6. Dates of Test : February 02, 2015 ~ February 06, 2015

7. Date of Issue : February 13, 2015

8. Test Laboratory : Korea Standard Quality Laboratories

FCC Designation Number: 100384

Tested by Approved by

Kwangmin, Lee

YeoungRyul, Jo

Test Engineer:

Compliance Engineer:

This report may not be reproduced without the full written consent of Korea Standard Quality Laboratories.

Korea Standard Quality Laboratories

Testing Laboratories for EMC and Safety Compliance #102, Jangduk-Dong, Hwasung-City, Kyunggi-Do, KOREA

IC ID: 11273A-HDMW300R

1. Test Summary

Test Item	Test Speci	Test Specification clause	
6 DB EMISSION BANDWIDTH	FCC PART 15 C section 15.407(e)	Canada RSS-210: issue 8	PASS
MAXIMUM CONDUCTED OUTPUT POWER	FCC PART 15 C section 15.407(a)	Canada RSS-210: issue 8	PASS
BAND EDGES MEASUREMENT	FCC PART 15 C section 15.407(b)	Canada RSS-210: issue 8	PASS
POWER SPECTRAL DENSITY MEASUREMENT	FCC PART 15 C section 15.407(a)	Canada RSS-210: issue 8	PASS
RADIATED UNDESIRABLE EMISSION	FCC PART 15 C section 15.209(a)	Canada RSS-Gen: issue 4	PASS
POWERLINE CONDUCTED EMISSIONS	FCC PART 15 C section 15.207(a)	-	PASS

Remark:

N/A: not applicable. Refer to the relative section for the details.

EUT: In this whole report EUT means Equipment Under Test.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radio Frequency.

ANSI C63.4: the detail version is ANSI C63.4:2009 in the whole report.

FCC ID: XQ8HDM-W300R IC ID: 11273A-HDMW300R

2. TABLE OF CONTENTS

1. TEST SUMMARY	2
2. TABLE OF CONTENTS	3
3. GENERAL INFORMATION	4
3.1 Client Information.	4
3.2 General Description of E.U.T.	4
3.3 Details of E.U.T.	4
4. TEST METHODOLOGY	5
4.1 EUT Configuration.	5
4.2 EUT Exercise	5
4.3 General Test Procedures	5
4.4 Description of Test Modes	6
5. EQUIPMENT USED DURING TEST	7
6. SETUP OF EQUIPMENT UNDER TEST	8
6.1 Setup Configuration of EUT	8
6.2 Support Equipment	8
7. FCC PART 15 REQUIREMENTS	9
7.1 6 DB Emission Bandwidth	9
7.2 Maximum Conducted Output Power	24
7.3 Band Edges Measurement	27
7.4 Power Spectral Density Measurement	44
7.5 Radiated Undesirable Emission	59
7.6 Power line Conducted Emissions.	65
7.7 Frequency Stability	68

IC ID: 11273A-HDMW300R

3. GENERAL INFORMATION

3.1. Client Information

Applicant : I DO IT Co. Ltd.,

Address of Applicant : #637, Smart-Hub Industry-University Convergence Center, 237 Sangidaehak-ro,

Siheung-si, Gyeonggi-do, Korea(429-793)

3.2. General Description of E.U.T.

Product Name : Wireless Full HD Sender Receiver

Model No. : HDM-W300R

3.3. Details of E.U.T.

Product Name : Wireless Full HD Sender Receiver

Model Name : HDM-W300R

Series Model : N/A

Model Discrepancy : N/A

Operating Voltage : 3.3 VDC

Frequency Range : 5 725 MHz-5 850 MHz

Number of Channels :

IEEE 802.11a mode: 5 Channels

draft 802.11an 20MHz mode: 5 Channels draft 802.11an 40MHz mode: 3 Channels

Antenna Specification :

PCB antennas for 5 GHz Gain 4.98 dBi

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: XQ8HDM-W300R filing to comply with FCC Part 15, Subpart E Rules.

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4: 2009 and FCC CFR 47 15.207, 15.209 and 15.407,.

The above equipment was tested by Korea Standard Quality Laboratories. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4:2009 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.407 and KDB 789033 – 20140606.

The test results of this report relate only to the tested sample EUT identified in this report.

4.1. EUT Configuration

The EUT configuration for testing is installed for RF field strength measurement to meet the Commissions requirement, and is operated in a manner intended to generate the maximum emission in a continuous normal application.

4.2. EUT Exercise

The EUT is operated in the engineering mode to fix the Tx frequency for the purposes of measurement.

According to its specifications, the EUT must comply with the requirements of Section 15.407 under the FCC Rules Part 15 Subpart E.

4.3. General Test Procedures

Conducted Emissions

The EUT is placed on the turntable, which is positioned at 0.8 m above the ground plane. According to the requirements in Section 13.3 of ANSI C63.4, the conducted emission from the EUT is measured in the frequency range between 0.15 MHz and 30MHz, using the CISPR Quasi-Peak detector mode.

Radiated Emissions

The EUT is placed on the turntable, which is 0.8 m above the ground plane. The turntable is then rotated for 360 degrees to determine the proper orientation for the maximum emission level. The EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission level. And, each emission is to be maximized by changing the horizontal and vertical polarization of the receiving antenna. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.4 of ANSI C63.4.

4.4. Testing Applied Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.407

ANSI C63.4-2009

FCC KDB 412172

FCC KDB 789033 D02 General UNII Test Procedures New Rules v01

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

IC ID: 11273A-HDMW300R

4.5. Description of Test Modes

Description	Modulation Technology	Modulation Technology
26dB Bandwidth and 99% Bandwidth	OFDM	BPSK
Maximum conducted output power	OFDM	BPSK
Band edges measurement	OFDM	BPSK
Peak Power Spectral Density	OFDM	BPSK
Peak excursion	OFDM	BPSK
Radiated undesirable emission	OFDM	BPSK
Conducted undesirable emission	OFDM	BPSK
Powerline conducted emission	OFDM	BPSK

The EUT transmitting and receiving with two antennas simultaneously working at a/an mode, so 2T2R configuration was used for all testing in this report.

Software used to control the EUT for staying in continuous transmitting mode was programmed.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz, which worst case was in normal link mode only.

IEEE 802.11a mode:

Channel Low (5745MHz), Channel Mid (5785MHz) and Channel High (5825MHz) with 54Mbps data rate were chosen for full testing.

draft 802.11an Standard-20 MHz Channel mode:

Channel Low (5745MHz), Channel Mid (5785MHz) and Channel High (5825MHz) with 65Mbps data rate were chosen for full testing.

draft 802.11an Wide-40 MHz Channel mode:

Channel Low (5755MHz) and Channel Mid (5795MHz) with 135Mbps data rate were chosen for full testing.

Note: After the preliminary san the EUT 5G antenna with 4.98 dBi gain was the worst mode, which mode data was recorded.

IC ID: 11273A-HDMW300R

5. EQUIPMENT USED DURING TEST

No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Data	Next Cal. Data	Used equipment
1	Spectrum Analyzer	Agilent	E4440A	MY45304715	14.11.12	15.11.11	
2	Frequency Counter	HP	5350B	3049A05530	14.06.03	15.06.02	
3	DC Power Supply	ALINCO	DM-340MV	F001015	14.06.03	15.06.02	
4	Signal Generator	Leader Electronics	3220	137231	14.06.02	15.06.01	
5	Synthesized CW Generator	HP	83711B	US34490158	14.06.02	15.06.01	
7	SYNTHESIZED SWEEPER	HP	8340B	2804A00830	14.05.08	15.05.07	
8	Function Generator	IWATSU	SG-4105	62372780	14.04.30	15.04.29	
9	Modulation Analyzer	Agilent	8901B	3438A05099	14.06.03	15.06.02	
10	Audio Analyaer	Agilent	8903B	3729A18576	14.06.03	15.06.02	
11	Power Meter	Agilent	E4418B	GB43312894	14.06.02	15.06.01	
12	Power Sensor	HP	8485A	3316A14708	14.06.28	15.06.27	
13	Power Sensor	Agilent	8482B	2703703543	14.06.30	15.06.29	
14	Pre Amplifier	GTC	GA-1825A	GT0929/003	14.06.02	15.06.01	
15	Attenuator	Weinschel	53-30-33	MG906	14.04.18	15.04.17	
16	Step Attenuator	Agilent	8494B	MY41110204	14.06.02	15.06.01	
17	Step Attenuator	Agilent	8495B	3308A17660	14.06.02	15.06.01	
18	Step Attenuator	Agilent	8496B	US40152183	14.06.02	15.06.01	
19	Attenuator	HP	8493C	01672	14.05.20	15.05.19	
20	Attenuator	HP	30dB	-	14.04.18	15.04.17	
21	Attenuator	TAE SUNG	SMA-1	-	14.06.02	15.06.01	
22	Attenuator	TAE SUNG	SMA-2	-	14.06.02	15.06.01	
23	Termination	KWANG YEOK	KYTE-NJ-150W	2040004	14.06.02	15.06.01	
24	Spectrum Analyzer	LIG	ISA-265	L0812M002	14.10.24	15.10.23	
25	Bluetooth Tester	TESCOM	TC-3000A	3000A590236	14.06.02	15.06.01	
26	Loop ANT.	Com-Power	AL-130	121010	13.04.26	15.04.25	
27	Horn ANT.	SCHWARZBECK	BBHA 9120D	831	14.07.22	16.07.21	
28	Temp & Humidity Chamber	Seoksan Tech	SE-CT-02	S7400JD534061 8	14.06.03	15.06.02	•
29	Vibration Tester	Gana	GNV-400	C114	14.06.20	15.06.19	
30	Drop Tester	Self-made	DOC-800	DOC-01-43-14	N/A	N/A	
31	Power Divider	Agilent	11636B	12002	14.06.20	15.06.19	
32	Power Divider	Agilent	11636B	50591	14.06.20	15.06.19	
33	RMS Multimeter	RMS Multimeter	FLUKE87	61160149	14.06.03	15.06.02	
34	TEST RECEIVER	ROHDE&SCHWARZ	ESPI	101014	14.08.06	15.08.05	
35	Bi-log Antenna	SCHWARZBECK	VULB9160	1163	13.11.22	15.11.21	
36	Spectrum Analyzer	ROHDE&SCHWARZ	FSV-40	100994	15.03.31	16.03.30	
37	Horn ANT.	SCHWARZBECK	BBHA 9170	BBHA9170 573	14.03.25	16.03.24	
38	LISN	ROHDE & SCHWARZ	ENV216	101732	15.03.02	16.03.01	
39	LISN	KNW-407	Kyoritsu	8-1010-14	14.06.10	15.06.09	

IC ID: 11273A-HDMW300R

6. SETUP OF EQUIPMENT UNDER TEST

6.1. Setup Configuration of EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

6.2. Support Equipment

No.	Equipment	Manufacturer	Model No.
1	DeskTop Computer	dell	E5430
2	Monitor	CARDINAL	CS-172
3	Mouse	Dell	MS111-T
4	Keyboard	Azio Levetron	KB528U

Remark:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

IC ID: 11273A-HDMW300R

7. FCC PART 15 REQUIREMENTS

7.1. 6 DB Emission Bandwidth

LIMIT

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low-loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW =100KHz, VBW≥ 3RBW, Detector = Peak. Trace mode = max hold.
- 4. Measure the maximum width of the emission that is 6 dB down from the peak of the emission..
- 5. Measure and record the results in the test report

TEST RESULTS

No non-compliance noted

IC ID: 11273A-HDMW300R

Test Data

Test mode: IEEE 802.11a mode/ANT 1

5745~5850MHz

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	FCC 6 dB Bandwidth Min. Limit (MHz)
Low	5745	16.46	0.5
Mid	5785	16.51	0.5
High	5825	16.47	0.5

Test mode: IEEE 802.11a mode/ANT 2

5745~5850MHz

Channel	Frequency (MHz)	Bandwidth (B) (MHz)	FCC 6 dB Bandwidth Min. Limit (MHz)
Low	5745	16.50	0.5
Mid	5785	16.48	0.5
High	5825	16.48	0.5

Test mode: IEEE 802.11a mode/ANT 1+2

5745~5850MHz

Channel	Frequency (MHz)	Bandwidth (B) (MHz)	FCC 6 dB Bandwidth Min. Limit (MHz)
Low	5745	16.44	0.5
Mid	5785	16.45	0.5
High	5825	16.47	0.5

 $\underline{\text{Test mode: draft 802.11n Standard-20 MHz Channel mode} \, / \, \text{ANT 1}}$

5745~5850MHz

Channel	Frequency (MHz)	Bandwidth (B) (MHz)	FCC 6 dB Bandwidth Min. Limit (MHz)
Low	5745	17.73	0.5
Mid	5785	17.72	0.5
High	5825	17.72	0.5

IC ID: 11273A-HDMW300R

Test mode: draft 802.11n Standard-20 MHz Channel mode / ANT 2 $\,$

5745~5850MHz

Channel	Frequency (MHz)	Bandwidth (B) (MHz)	FCC 6 dB Bandwidth Min. Limit (MHz)
Low	5745	17.74	0.5
Mid	5785	17.74	0.5
High	5825	17.66	0.5

Test mode: draft 802.11n Standard-20 MHz Channel mode / ANT 1+2

5745~5850MHz

Channel	Frequency (MHz)	Bandwidth (B) (MHz)	FCC 6 dB Bandwidth Min. Limit (MHz)
Low	5745	17.71	0.5
Mid	5785	17.66	0.5
High	5825	17.66	0.5

$\underline{\text{Test mode: draft 802.11n Wide-40 MHz Channel mode} \, / \, \text{ANT 1}}$

5745~5850MHz

Channel	Frequency (MHz)	Bandwidth (B) (MHz)	FCC 6 dB Bandwidth Min. Limit (MHz)
Low	5755	36.45	0.5
High	5795	36.46	0.5

$\underline{\text{Test mode: draft 802.11n Wide-40 MHz Channel mode} \, / \, \text{ANT 2}}$

5745~5850MHz

Channel	Frequency (MHz)	Bandwidth (B) (MHz)	FCC 6 dB Bandwidth Min. Limit (MHz)
Low	5755	36.48	0.5
High	5795	36.45	0.5

Test mode: draft 802.11n Wide-40 MHz Channel mode / ANT 1+2

5745~5850MHz

Channel	Frequency (MHz)	Bandwidth (B) (MHz)	FCC 6 dB Bandwidth Min. Limit (MHz)
Low	5755	36.28	0.5
High	5795	35.37	0.5

Test Plot

IEEE 802.11a mode/ANT 1:

5745~5850MHz

CH Low

CH Mid

CH High

<u>IEEE 802.11a mode/ANT 2:</u>

5745~5850MHz

CH Low

CH Mid

<u>IEEE 802.11a mode/ANT 1+2:</u>

5745~5850MHz

CH Low

CH Mid

CH High

draft 802.11n Standard-20 MHz Channel mode / ANT 1

5745~5850MHz

CH Low

CH Mid

draft 802.11n Standard-20 MHz Channel mode / ANT 2

5745~5850MHz

CH Low

CH Mid

CH High

draft 802.11n Standard-20 MHz Channel mode / ANT 1+2

5745~5850MHz

CH Low

CH Mid

draft 802.11n Wide-40 MHz Channel mode / ANT 1

5745~5850MHz

CH Low

draft 802.11n Wide-40 MHz Channel mode / ANT 2

5745~5850MHz

CH Low

draft 802.11n Wide-40 MHz Channel mode / ANT 1+2

5745~5850MHz

CH Low

IC ID: 11273A-HDMW300R

7.2. Maximum Conducted Output Power

LIMIT

According to §15.407(a),

For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

The peak power shall not exceed the limit as follow:

Test Configuration

The EUT was connected to a spectrum analyzer through a 50Ω RF cable.

TEST PROCEDURE

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v01.

Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, $10 \log(1/x)$, where x is the duty cycle.

TEST RESULTS

No non-compliance noted

Test Data

 $\underline{\text{Test mode: IEEE 802.11a mode / ANT 1}}$

5745~5850MHz

Channel	Frequency (MHz)	Duty factor (dB)	Average Conducted Power (dBm)	Limit (dBm)
Low	5745	0.19	2.67	30
Mid	5785	0.19	2.42	30
High	5825	0.19	1.85	30

Test mode: IEEE 802.11a mode / ANT 2

5745~5850MHz

Channel	Frequency (MHz)	Duty factor (dB)	Average Conducted Power (dBm)	Limit (dBm)
Low	5745	0.20	6.05	30
Mid	5785	0.20	4.51	30
High	5825	0.20	2.72	30

Test mode: IEEE 802.11a mode / ANT 1+2

5745~5850MHz

Channel	Frequency (MHz)	Duty factor (dB)	Average Conducted Power (dBm)	Limit (dBm)
Low	5745	0.18	8.97	30
Mid	5785	0.18	8.88	30
High	5825	0.18	8.73	30

Test mode: draft 802.11n Standard-20 MHz Channel mode / ANT 1 $\,$

5745~5850MHz

Channel	Frequency (MHz)	Duty factor (dB)	Average Conducted Power (dBm)	Limit (dBm)
Low	5745	0.20	2.93	30
Mid	5785	0.20	2.19	30
High	5825	0.20	1.68	30

IC ID: 11273A-HDMW300R

$\underline{\text{Test mode: draft 802.11n Standard-20 MHz Channel mode} \, / \, \text{ANT 2}}$

5745~5850MHz

Channel	Frequency (MHz)	Duty factor (dB)	Average Conducted Power (dBm)	Limit (dBm)
Low	5745	0.20	5.69	30
Mid	5785	0.20	3.82	30
High	5825	0.20	3.13	30

Test mode: draft 802.11n Standard-20 MHz Channel mode / ANT 1+2

5745~5850MHz

Channel	Frequency (MHz)	Duty factor (dB)	Average Conducted Power (dBm)	Limit (dBm)
Low	5745	0.32	8.11	30
Mid	5785	0.32	7.88	30
High	5825	0.32	7.45	30

Test mode: draft 802.11n Wide-40 MHz Channel mode / ANT 1

5745~5850MHz

Channel	Frequency (MHz)	Duty factor (dB)	Average Conducted Power (dBm)	Limit (dBm)
Low	5745	0.34	-0.26	30
High	5785	0.34	-1.57	30

$\underline{\text{Test mode: draft 802.11n Wide-40 MHz Channel mode}} \ / \ \text{ANT 2}$

5745~5850MHz

Channel	Frequency (MHz)	Duty factor (dB)	Average Conducted Power (dBm)	Limit (dBm)
Low	5745	0.35	1.95	30
High	5785	0.35	1.57	30

$\underline{\text{Test mode: draft 802.11n Wide-40 MHz Channel mode} \, / \, \text{ANT 1+2}}$

5745~5850MHz

Channel	Frequency (MHz)	Duty factor (dB)	Average Conducted Power (dBm)	Limit (dBm)
Low	5745	0.53	4.71	30
High	5785	0.53	3.93	30

Note: Measured power(dBm) has offiset with cable loss and duty factor

IC ID: 11273A-HDMW300R

7.3. Band Edges Measurement

LIMIT

According to §15.407(b),

- (1) The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.
- (2) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency block edges as the design of the equipment permits.

Test Configuration

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

TEST RESULTS

Refer to attach spectrum analyzer data chart.

FCC ID: XQ8HDM-W300R IC ID: 11273A-HDMW300R

Band Edges (draft 802.11a mode) / ANT 1

5745MHz

Detector mode: Peak Polarity: Vertical

Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
5725.00	58.05	74.00	15.95

Detector mode: Average Polarity: Vertical

Frequency (MHz)	Result	Limit	Margin
	(dBuV/m)	(dBuV/m)	(dB)
5725.00	46.46	54.00	7.54

FCC ID: XQ8HDM-W300R IC ID: 11273A-HDMW300R

Detector mode: Peak Polarity: Horizontal

Frequency (MHz)	Result	Limit	Margin
	(dBuV/m)	(dBuV/m)	(dB)
5725.00	65.50	74.00	8.50

Detector mode: Average Polarity: Horizontal

Frequency	Result	Limit	Margin
(MHz)	(dBuV/m)	(dBuV/m)	(dB)
5725.00	52.42	54.00	

FCC ID: XQ8HDM-W300R IC ID: 11273A-HDMW300R

Band Edges (draft 802.11a mode) / ANT 1

5825MHz

Detector mode: Peak Polarity: Vertical

Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
5725.00	54.89	74.00	19.11

Detector mode: Average Polarity: Vertical

Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
5725.00	45.28	54.00	8.72

FCC ID : XQ8HDM-W300R IC ID : 11273A-HDMW300R

Detector mode: Peak Polarity: Horizontal

Frequency (MHz)	Result	Limit	Margin
	(dBuV/m)	(dBuV/m)	(dB)
5725.00	49.49	74.00	24.51

Detector mode: Average Polarity: Horizontal

Frequency (MHz)	Result	Limit	Margin
	(dBuV/m)	(dBuV/m)	(dB)
5725.00	42.62	54.00	11.38

FCC ID: XQ8HDM-W300R IC ID: 11273A-HDMW300R

Band Edges (draft 802.11a mode) / ANT 2

5745MHz

Detector mode: Peak Polarity: Vertical

Frequency (MHz)	Result	Limit	Margin
	(dBuV/m)	(dBuV/m)	(dB)
5725.00	60.88	74.00	13.12

Detector mode: Average Polarity: Vertical

Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
5725.00	51.47	54.00	2.53

FCC ID: XQ8HDM-W300R IC ID: 11273A-HDMW300R

Detector mode: Peak Polarity: Horizontal

Frequency (MHz)	Result	Limit	Margin
	(dBuV/m)	(dBuV/m)	(dB)
5725.00	54.16	74.00	19.84

Detector mode: Average Polarity: Horizontal

Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
5725.00	45.23	54.00	8.77

FCC ID: XQ8HDM-W300R IC ID: 11273A-HDMW300R

Band Edges (draft 802.11a mode) / ANT 2

5825MHz

Detector mode: Peak Polarity: Vertical

Frequency (MHz)	Result	Limit	Margin
	(dBuV/m)	(dBuV/m)	(dB)
5725.00	62.77	74.00	11.23

Detector mode: Average Polarity: Vertical

Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
5725.00	52.14	54.00	1.86

FCC ID: XQ8HDM-W300R IC ID: 11273A-HDMW300R

Detector mode: Peak Polarity: Horizontal

Frequency (MHz)	Result	Limit	Margin
	(dBuV/m)	(dBuV/m)	(dB)
5725.00	65.03	74.00	8.97

Detector mode: Average Polarity: Horizontal

Frequency	Result	Limit	Margin
(MHz)	(dBuV/m)	(dBuV/m)	(dB)
5725.00	52.76	54.00	

FCC ID: XQ8HDM-W300R IC ID: 11273A-HDMW300R

$\underline{Band\ Edges\ (draft\ 802.11n\ Standard\text{--}20\ MHz\ Channel\ mode)\ /\ ANT\ 1\text{+-}2}$

5745MHz

Detector mode: Peak Polarity: Vertical

Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
5725.00	59.38	74.00	14.62

Detector mode: Average Polarity: Vertical

Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
5725.00	49.82	54.00	4.18

FCC ID: XQ8HDM-W300R IC ID: 11273A-HDMW300R

Detector mode: Peak Polarity: Horizontal

Frequency (MHz)	Result	Limit	Margin
	(dBuV/m)	(dBuV/m)	(dB)
5725.00	61.30	74.00	12.70

Detector mode: Average Polarity: Horizontal

Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
5725.00	51.26	54.00	2.74

FCC ID: XQ8HDM-W300R IC ID: 11273A-HDMW300R

$\underline{Band\ Edges\ (draft\ 802.11n\ Standard-20\ MHz\ Channel\ mode)\ /\ ANT\ 1+2}}{5825MHz}$

Detector mode: Peak Polarity: Vertical

Frequency (MHz)	Result	Limit	Margin
	(dBuV/m)	(dBuV/m)	(dB)
5725.00	62.53	74.00	11.47

Detector mode: Average Polarity: Vertical

Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
5725.00	52.22	54.00	1.78

FCC ID: XQ8HDM-W300R IC ID: 11273A-HDMW300R

Detector mode: Peak Polarity: Horizontal

Frequency	Result	Limit	Margin
(MHz)	(dBuV/m)	(dBuV/m)	(dB)
5725.00	63.26	74.00	10.74

Detector mode: Average Polarity: Horizontal

	equency	Result	Limit	Margin
	MHz)	(dBuV/m)	(dBuV/m)	(dB)
57	725.00	52.06	54.00	1.94

FCC ID : XQ8HDM-W300R IC ID : 11273A-HDMW300R

Band Edges (draft 802.11n Wide-40 MHz Channel mode) / ANT 1+2

5755MHz

Detector mode: Peak Polarity: Vertical

Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
5725.00	60.82	74.00	13.18

Detector mode: Average Polarity: Vertical

Frequency	Result	Limit	Margin
(MHz)	(dBuV/m)	(dBuV/m)	(dB)
5725.00	52.21	54.00	

FCC ID: XQ8HDM-W300R IC ID: 11273A-HDMW300R

Detector mode: Peak Polarity: Horizontal

Frequency	Result	Limit	Margin
(MHz)	(dBuV/m)	(dBuV/m)	(dB)
5725.00	59.80	74.00	14.20

Detector mode: Average Polarity: Horizontal

Frequency	Result	Limit	Margin
(MHz)	(dBuV/m)	(dBuV/m)	(dB)
5725.00	50.60	54.00	

FCC ID: XQ8HDM-W300R IC ID: 11273A-HDMW300R

$\underline{Band\ Edges\ (draft\ 802.11n\ Wide-40\ MHz\ Channel\ mode)\ /\ ANT\ 1+2}$

5795MHz

Detector mode: Peak Polarity: Vertical

Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
5725.00	57.01	74.00	16.99

Detector mode: Average Polarity: Vertical

Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
5725.00	48.87	54.00	5.13

FCC ID: XQ8HDM-W300R IC ID: 11273A-HDMW300R

Detector mode: Peak Polarity: Horizontal

Frequency (MHz)	Result	Limit	Margin
	(dBuV/m)	(dBuV/m)	(dB)
5725.00	58.84	74.00	15.16

Detector mode: Average Polarity: Horizontal

Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
5725.00	51.26	54.00	2.74

IC ID: 11273A-HDMW300R

7.4. Power Spectral Density Measurement

LIMIT

According to §15.407(a),

For the band 5.725–5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6dBi are used, both the maximum transmit power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Test Configuration

TEST PROCEDURE

- 1. The testing follows Method SA-2 of FCC KDB 789033 D01 General UNII Test Procedures v01r03.
- 2. Measure the duty cycle, Set span to encompass the entire emission bandwidth (EBW) of the signal. Set RBW = $300 \, \text{kHz}$. Set VBW $\geq 1 \, \text{MHz}$. Number of points in sweep $\geq 2 \, \text{Span} / \, \text{RBW}$. Sweep time = auto. Detector = RMS, Trace average at least $100 \, \text{traces}$ in power averaging mode. Add $10 \, \log(500 \, \text{kHz} / \, \text{RBW})$ to the test result. Add $10 \, \log(1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add $10 \, \log(1/0.25) = 6 \, \text{dB}$ if the duty cycle is $25 \, \text{percent}$.
- 3. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 4. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.
- 5. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

Method (1): Measure and sum the spectra across the outputs. The total final Power Spectral Density is from a device with 2 transmitter outputs. The spectrum measurements of the individual outputs are all performed with the same span and number of points, the spectrum value in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 to obtain the value for the first frequency bin of the summed spectrum.

TEST RESULTS

No non-compliance noted

IC ID: 11273A-HDMW300R

Test Data

 $\underline{\text{Test mode: IEEE } 802.11a \text{ mode } / ANT \text{ } 1}$

5745~5850MHz

Channel	Frequency (MHz)	Duty factor (dB)	Average PSD (dBm/MHz)	Average PSD Limit (dBm)	Result
Low	5745	0.19	-1.89	17.00	PASS
Mid	5785	0.19	-2.40	17.00	PASS
High	5825	0.19	-3.50	17.00	PASS

Test mode: IEEE 802.11a mode /ANT 2

5745~5850MHz

Channel	Frequency (MHz)	Duty factor (dB)	Average PSD (dBm/MHz)	Average PSD Limit (dBm)	Result
Low	5745	0.20	0.87	17.00	PASS
Mid	5785	0.20	-0.29	17.00	PASS
High	5825	0.20	-1.39	17.00	PASS

 $\underline{\text{Test mode: IEEE } 802.11a \text{ mode } / \text{ANT } 1\text{+-}2}$

5745~5850MHz

Channel	Frequency (MHz)	Duty factor (dB)	Average PSD (dBm/MHz)	Average PSD Limit (dBm)	Result
Low	5745	0.18	4.41	17.00	PASS
Mid	5785	0.18	3.73	17.00	PASS
High	5825	0.18	3.11	17.00	PASS

 $\underline{\text{Test mode: draft 802.11n Standard-20 MHz Channel mode / ANT 1}}$

5745~5850MHz

Channel	Frequency (MHz)	Duty factor (dB)	Average PSD (dBm/MHz)	Average PSD Limit (dBm)	Result
Low	5745	0.20	-1.95	17.00	PASS
Mid	5785	0.20	-2.63	17.00	PASS
High	5825	0.20	-3.50	17.00	PASS

IC ID: 11273A-HDMW300R

Test mode: draft 802.11n Standard-20 MHz Channel mode / ANT 2 $\,$

5745~5850MHz

Channel	Frequency (MHz)	Duty factor (dB)	Average PSD (dBm/MHz)	Average PSD Limit (dBm)	Result
Low	5745	0.20	0.97	17.00	PASS
Mid	5785	0.20	-0.38	17.00	PASS
High	5825	0.20	-1.49	17.00	PASS

$\underline{\text{Test mode: draft 802.11n Standard-20 MHz Channel mode} \, / \, \text{ANT 1+2}}$

5745~5850MHz

Channel	Frequency (MHz)	Duty factor (dB)	Average PSD (dBm/MHz)	Average PSD Limit (dBm)	Result
Low	5745	0.32	3.54	17.00	PASS
Mid	5785	0.32	2.06	17.00	PASS
High	5825	0.32	1.73	17.00	PASS

Test mode: draft 802.11n Wide-40 MHz Channel mode / ANT 1 $\,$

5745~5850MHz

Channel	Frequency (MHz)	Duty factor (dB)	Average PSD (dBm/MHz)	Average PSD Limit (dBm)	Result
Low	5755	0.34	-5.57	17.00	PASS
High	5795	0.34	-5.95	17.00	PASS

$\underline{\text{Test mode: draft 802.11n Wide-40 MHz Channel mode} \, / \, \text{ANT 2}}$

5745~5850MHz

Channel	Frequency (MHz)	Duty factor (dB)	Average PSD (dBm/MHz)	Average PSD Limit (dBm)	Result
Low	5755	0.35	-2.60	17.00	PASS
High	5795	0.35	-3.86	17.00	PASS

Test mode: draft 802.11n Wide-40 MHz Channel mode / ANT 1+2

$5745{\sim}5850MHz$

Channel	Frequency (MHz)	Duty factor (dB)	Average PSD (dBm/MHz)	Average PSD Limit (dBm)	Result
Low	5755	0.53	0.58	17.00	PASS
High	5795	0.53	-1.09	17.00	PASS

Test Plot

IEEE 802.11a mode/ANT 1:

5745~5850MHz

CH Low

CH Mid

CH High

IEEE 802.11a mode/ANT 2:

5745~5850MHz

CH Low

CH Mid

IEEE 802.11a mode/ANT 1+2:

5745~5850MHz

CH Low

CH Mid

CH High

draft 802.11n Standard-20 MHz Channel mode / ANT 1

5745~5850MHz

CH Low

CH Mid

draft 802.11n Standard-20 MHz Channel mode / ANT 2

5745~5850MHz

CH Low

CH Mid

CH High

 $\underline{draft~802.11n~Standard\text{--}20~MHz~Channel~mode~/~ANT~1\text{+-}2}$

5745~5850MHz

CH Low

CH Mid

draft 802.11n Wide-40 MHz Channel mode / ANT 1

5745~5850MHz

CH Low

draft 802.11n Wide-40 MHz Channel mode / ANT 2

5745~5850MHz

CH Low

draft 802.11n Wide-40 MHz Channel mode / ANT 1+2

5745~5850MHz

CH Low

IC ID: 11273A-HDMW300R

7.5. Radiated Undesirable Emission

LIMIT

Radiated emissions from 9 kHz to 25 GHz were measured according to the methods defines in ANSI C63.4-2009. The EUT was placed, 0.8 meter above the ground plane, as shown in section 5.6.3. The interface cables and equipment positions were varied within limits of reasonable applications to determine the positions producing maximum radiated emissions

1. According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

2. In the emission table above, the tighter limit applies at the band edges.

Frequency (MHz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)		
30-88	100	40		
88-216	150	43.5		
216-960	200	46		
Above 960	500	54		

Test Configuration

Below 30MHz

Below 1 GHz

IC ID : 11273A-HDMW300R

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

 $RBW = 100kHz \ / \ VBW = 300kHz \ / \ Sweep = AUTO$

Above 1GHz:

(a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

7. Repeat above procedures until the measurements for all frequencies are complete.

IC ID: 11273A-HDMW300R

TEST RESULTS Test mode: ANT 1

 $9 \text{ kHz} \sim 30 \text{ MHz}$

Frequency (MHz)	Detect Mode	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)		
No emissions detected.									

$30 \text{ MHz} \sim 1 \text{ GHz}$

Frequency (MHz)	Detect Mode	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
82.93	PK	V	15.93	9.66	25.59	40.00	14.41
163.34	PK	V	11.55	15.23	26.78	43.5	16.72
271.82	PK	V	16.95	15.59	32.54	46.00	13.46
380.41	PK	V	19.34	19.05	38.39	46.00	7.61
500.25	PK	V	8.17	22.26	30.43	46.00	15.57
720.52	PK	V	7.50	27.16	34.66	46.00	11.34
100.46	PK	Н	14.14	11.17	25.31	43.50	18.19
163.34	PK	Н	15.73	15.23	30.96	43.50	12.54
233.92	PK	Н	14.34	13.78	28.12	46.00	17.88
432.40	PK	Н	14.67	20.52	35.19	46.00	10.81
528.56	PK	Н	12.37	23.04	35.41	46.00	10.59
801.52	PK	Н	13.00	28.73	41.73	46.00	4.27

$1~\mathrm{GHz} \sim 40~\mathrm{GHz}$

Frequency (MHz)	Detect Mode	Polarization (V/H)	Reading (dBuV)	Correct Factor (dB/m)	Amplifier Gain (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1599.00	PK	V	42.50	29.96	26.54	45.92	74.00	28.08
1599.00	AV	V	45.24	29.96	26.54	48.66	54.00	5.34
2398.00	PK	V	37.52	34.59	25.80	46.30	74.00	27.70
2398.00	AV	V	40.06	34.59	25.80	48.84	54.00	5.16
2498.00	PK	V	38.94	34.30	25.70	47.53	74.00	26.47
2498.00	AV	V	36.81	34.30	25.70	45.40	54.00	8.60
1601.00	PK	Н	44.42	30.33	26.46	48.29	74.00	25.71
1601.00	AV	Н	37.41	30.33	26.46	41.28	54.00	12.72
2497.50	PK	Н	42.60	34.30	25.70	51.19	74.00	22.81
2497.50	AV	Н	40.76	34.30	25.70	49.35	54.00	4.65
3000.00	PK	Н	37.43	34.51	25.14	46.80	74.00	27.20
3000.00	AV	Н	35.02	34.51	25.14	44.39	54.00	9.61

Remark:
1. Margin (dB) = Remark result (dBuV/m) - Average limit (dBuV/m).

IC ID: 11273A-HDMW300R

Test mode: ANT 2 9 kHz ~ 30 MHz

Frequency (MHz)	Detect Mode	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)		
No emissions detected.									

$30 \text{ MHz} \sim 1 \text{ GHz}$

Frequency (MHz)			Reading (dBuV)			Limit (dBuV/m)	Margin (dB)
48.71	PK	V	13.32	13.02	26.34	40.00	13.66
163.34	PK	V	13.14	15.23	28.37	43.50	15.13
271.82	PK	V	16.69	15.59	32.28	46.00	13.72
380.41	PK	V	18.32	19.05	37.37	46.00	8.63
500.26	PK	V	8.66	22.26	30.92	46.00	15.08
720.52	PK	V	7.27	27.16	34.43	46.00	11.57
40.89	PK	Н	17.26	12.67	29.93	40.00	10.07
102.71	PK	Н	16.92	11.42	28.34	43.50	15.16
240.43	PK	Н	13.12	14.13	27.25	46.00	18.75
380.41	PK	Н	12.72	19.05	31.77	46.00	14.23
528.56	PK	Н	11.27	23.04	34.31	46.00	11.69
801.17	PK	Н	8.54	28.73	37.27	46.00	8.73

1 GHz ~ 40 GHz

Frequency (MHz)	Detect Mode	Polarization (V/H)	Reading (dBuV)	Correct Factor (dB/m)	Amplifier Gain (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1598.50	PK	V	43.55	29.96	26.54	46.97	74.00	27.03
1598.50	AV	V	36.64	29.96	26.54	40.06	54.00	13.94
2498.50	PK	V	40.47	34.30	25.70	49.06	74.00	24.94
2498.50	AV	V	38.29	34.30	25.70	46.88	54.00	7.12
4889.00	PK	V	30.39	39.84	23.51	46.72	74.00	27.28
4889.00	AV	V	25.00	39.84	23.51	41.33	54.00	12.67
1601.50	PK	Н	44.82	30.33	26.46	48.69	74.00	25.31
1601.50	AV	Н	38.84	30.33	26.46	42.71	54.00	11.29
2498.50	PK	Н	41.73	34.30	25.70	50.32	74.00	23.68
2498.50	AV	Н	39.61	34.30	25.70	48.20	54.00	5.80
5147.00	PK	Н	35.10	40.21	23.68	51.63	74.00	22.37
5147.00	AV	Н	28.18	40.21	23.68	44.71	54.00	9.29

Remark

1. Margin(dB) = Remark result(dBuV/m) - Average limit(dBuV/m).

IC ID: 11273A-HDMW300R

Test mode: ANT 1+2 9 kHz ~ 30 MHz

Frequency (MHz)	Detect Mode	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)		
No emissions detected.									

$30 \text{ MHz} \sim 1 \text{ GHz}$

Frequency (MHz)	Detect Mode	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
78.20	PK	V	15.08	9.92	25.00	40.00	15.00
163.34	PK	V	13.47	15.23	28.70	43.50	14.80
271.82	PK	V	16.40	15.59	31.99	46.00	14.01
380.41	PK	V	20.03	19.05	39.08	46.00	6.92
500.25	PK	V	8.60	22.26	30.86	46.00	15.14
720.52	PK	V	7.96	27.16	35.12	46.00	10.88
102.00	PK	Н	15.51	11.34	26.85	43.50	16.65
144.39	PK	Н	10.54	14.96	25.50	43.50	18.00
233.56	PK	Н	13.52	13.76	27.28	46.00	18.72
380.41	PK	Н	12.86	19.05	31.91	46.00	14.09
528.56	PK	Н	10.56	23.04	33.60	46.00	12.40
799.98	PK	Н	9.05	28.71	37.76	46.00	8.24

$1 \text{ GHz} \sim 40 \text{ GHz}$

Frequency (MHz)	Detect Mode	Polarization (V/H)	Reading (dBuV)	Correct Factor (dB/m)	Amplifier Gain (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1598.50	PK	V	45.51	29.96	26.54	48.93	74.00	25.07
1598.50	AV	V	38.62	29.96	26.54	42.04	54.00	11.96
2498.50	PK	V	41.16	34.30	25.70	49.75	74.00	24.25
2498.50	AV	V	39.53	34.30	25.70	48.12	54.00	5.88
4879.00	PK	V	34.88	39.84	23.51	51.21	74.00	22.79
4879.00	AV	V	27.98	39.84	23.51	44.31	54.00	9.69
1601.50	PK	Н	45.06	30.33	26.46	48.93	74.00	25.07
1601.50	AV	Н	38.17	30.33	26.46	42.04	54.00	11.96
2498.00	PK	Н	41.16	34.30	25.70	49.75	74.00	24.25
2498.00	AV	Н	39.53	34.30	25.70	48.12	54.00	5.88
5194.00	PK	Н	34.68	40.21	23.68	51.21	74.00	22.79
5194.00	AV	Н	27.78	40.21	23.68	44.31	54.00	9.69

Remark

1. Margin (dB) = Remark result (dBuV/m) – Average limit (dBuV/m).

IC ID: 11273A-HDMW300R

7.6. Power line Conducted Emissions

LIMIT

According to $\S15.207(a)$, except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range (MHz)	$\begin{array}{c} \text{Limits} \\ (dB\mu V) \end{array}$					
	Quasi-peak	Average				
0.15 to 0.50	66 to 56*	56 to 46*				
0.50 to 5	56	46				
5 to 30	60	50				

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range.

Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

FCC ID : XQ8HDM-W300R IC ID : 11273A-HDMW300R

Test Data

Line – PE(Peak and Average detector used)

Neutral – PE(Peak and Average detector used)

IC ID: 11273A-HDMW300R

_	Correction	Correction Factor			Quasi-Peak			Average		
Frequency (MHz)	LISN	Cable	Line	Limit [dBuV]	Reading [dBuV]	Result [dBuV]	Limit [dBuV]	Reading [dBuV]	Result [dBuV]	
0.16	9.67	0.61	N	65.36	49.26	49.26	55.36	40.06	40.06	
0.17	9.84	0.57	Н	64.77	51.74	51.74	54.77	44.84	44.84	
0.30	9.63	0.61	N	60.30	42.98	42.98	50.30	34.13	34.13	
0.30	9.55	0.62	Н	60.19	43.77	43.77	50.19	34.48	34.48	
0.60	9.69	0.58	Н	56.00	41.52	41.52	46.00	39.13	39.13	
0.60	9.78	0.58	N	56.00	42.48	42.48	46.00	39.63	39.63	
0.97	9.59	0.61	Н	56.00	38.84	38.84	46.00	34.33	34.33	
0.97	9.68	0.61	N	56.00	38.78	38.78	46.00	34.87	34.87	
5.15	9.58	0.64	N	60.00	30.67	30.67	50.00	25.99	25.99	
5.18	9.49	0.64	Н	60.00	27.16	27.16	50.00	27.19	27.19	
24.05	9.51	1.19	Н	60.00	38.60	38.60	50.00	38.71	38.71	
24.05	9.64	1.19	N	60.00	40.32	40.32	50.00	38.69	38.69	

Margin (dB) = Limit - Emission Level

[Emission Level = Measured Value + CF + CL]

IC ID: 11273A-HDMW300R

7.7. Frequency Stability

Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

Test Configuration

Test Procedures

- 1. The EUT is installed in an environment test chamber with external power source.
- 2. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT.
- 3. A sufficient stabilization period at each temperature is used prior to each frequency measurement.
- 4. When temperature is stabled, measure the frequency stability.
- 5. The test shall be performed under -20 to 50 centigrade and nominal voltage.

IC ID: 11273A-HDMW300R

Test Data

Frequency: 5785 MHz	Frequency Drift (ppm)		
Temperature ($^{\circ}$ C)	0 minute	5 minutes	10 minutes
T 50 ℃ Vnom	-3.25	-3.18	-3.22
T 40 ℃ Vnom	-6.32	-5.27	-5.33
T 30 ℃ Vnom	-4.52	-4.44	-4.21
T 20 ℃ Vnom	-6.63	-6.59	-6.60
T 10 ℃ Vnom	0.71	0.69	0.67
T 0 °C Vnom	0.92	1.02	0.94
T−10 °C Vnom	1.33	1.28	1.40
T−20 °C Vnom	2.36	2.14	2.11
Vnom [Vdc]: 3.3			
Tmax [°C]: 50		Tmin [°C]: -20	