von Neumann エントロピーを元にした熱力学第二法則の導出

2022年12月23日

概要

系 S と熱浴 B が接している状況を考える。熱浴は温度 $\beta=(k_{\rm B}T)^{-1}$ であり、系に Q の熱を与えるとする。このとき、系 S のエントロピー変化 $k_{\rm B}\Delta S_S$ と熱浴のエントロピー変化 Q/T の和は必ず正になるというのが熱力学第 2 法則である:

$$\Delta S_S + \beta Q \ge 0$$
.

以下では、平衡熱力学に基づかないセットアップからスタートして、熱力学第二法則を導出する。

目次

1 セットアップ

2 証明 1

1 セットアップ

系 S と熱浴 B が接しているとき、全系の Hamiltonian \hat{H} は

$$\hat{H} = \hat{H}_S + \hat{H}_B + \hat{H}_I \tag{1.1}$$

と表される。ここで、 \hat{H}_S , \hat{H}_B はそれぞれ系 S と熱浴 B が独立して存在する場合の Hamiltonian であり、 \hat{H}_I は 系 S と熱浴 B の相互作用 Hamiltonian である。次に、密度行列 $\hat{\rho}$ が与えられた際に定義される von Neumann エントロピーを導入する:

$$S(\hat{\rho}) := -\operatorname{Tr}(\hat{\rho} \ln \hat{\rho}) \, . \tag{1.2}$$

密度行列とは、系全体を張る状態ベクトルの集合 $|\phi_0\rangle$, $|\phi_1\rangle$, ... $|\phi_{N-1}\rangle$ と、それぞれの状態が実現する確率 $p_0,\,p_1,\,\ldots,\,p_{N-1}$ ($\sum p_i=1$) が与えられたときに、

$$\hat{\rho} = \sum_{i=0}^{N-1} p_i |\phi_i\rangle \langle \phi_i| \tag{1.3}$$

と定義される。系の完全性 $\sum_n |n\rangle\,\langle n| = I$ を満たす何らかの状態ベクトル $|n\rangle$ を用いて Tr を計算できるため

$$\operatorname{Tr} \hat{\rho} = \sum_{n} \langle n | \hat{\rho} | n \rangle = \sum_{i=0}^{N-1} p_i = 1$$
 (1.4)

となる性質を持つ。すなわち、von Neumann エントロピーは形式的に Shannon エントロピーと一致する:

$$S(\hat{\rho}) = -\sum_{i=0}^{N-1} p_i \ln p_i \ . \tag{1.5}$$

2 証明