parser-stage 实验报告

秦若愚 2019011115

实验目标

• 完成一个手工实现的递归下降语法分析器

实验内容

下面依次介绍以下函数的实现:

p_relational p_logical_and p_assignment p_expression p_statement p_declaration p_block p_if p_return p_type

p_relational

与 relational 对应的语法等价的 EBNF 文法为:

```
relational: additive \{ \ '<' \ additive \ | \ '>=' \ additive \ | \ '>=' \ additive \ \}
```

参考 p_equality 即可写出对应实现。

p_logical_and

与 logical_and 对应的语法等价的 EBNF 文法为:

```
logical_and: equality { '&&' equality }
```

参考 p_logical_or 即可写出对应实现。

p_assignment

当发现下一个 token 是 Assign 时,先使用 lookhead 读入 Assign,再调用 p_expression() 函数解析 expression,最后构建 Assignment 结点并返回该结点。

p expression

调用 p_assignment() 函数解析 assignment, 并返回结果。

p_statement

self.next 是 Semi 或者属于 p_expression.first 的情况已给出。当 self.next 为 If 时,调用 p_if() 函数解析; 当 self.next 为 Return 时,调用 p_return() 函数解析。

p_declaration

首先构建 Declaration 结点并设置 var_t 和 ident。当发现下一个 token 是 Assign 时,先使用 lookhead 读入 Assign,再调用 p_expression() 函数解析 expression,然后将 Declaration 结点的 init_expr 设置为解析 expression 的返回值。最后返回 Declaration 结点。

p_block

在 p_block_item() 中,若发现接下来是 statement 则调用 p_statement () 函数解析,若接下来是 declaration 则调用 p_declaration () 函数解析,否则报错。最后返回解析结果。其余部分已给出。

p_if

依次读入或解析 If, LParen, cond (调用 p_expression() 函数), RParen, then (调用 p_statement() 函数), 然后构建 If 结点。若 self.next 是 Else,则继续读入并解析之后的 otherwise (调用 p_statement() 函数),将结果赋给 If 结点的 otherwise。最后返回 If 结点。

p_return

依次读入或解析 Return, expression (调用 p_expression() 函数), Semi, 然后构建 Return 结点并返回该结点。

p_type

读入 Int,构建 TInt 结点并返回该结点。

思考题

1. 答:

```
additive : multiplicative P
P : Q multiplicative P
      | \in \text{
Q : '+'}
      | '-'
```

其中P和Q为新增加的非终结符。

2. 答:

出错例子如下:

```
int main() {
   int a = 1;
   a = a + + a + 1;
   return a;
}
```

仅考虑解析 a + + a + 1 的部分, 文法如下所示。

其中 additive 和 P 为非终结符,终结符 ident 为任意已声明变量。

首先匹配并读入 a , 进入 ParseP() , 然后先匹配 + , 之后在匹配 ident 时遇到 + , 失败。此时 BeginSym = { ident } , EndSym = { ε } , 因此补救符号集合 S = { ident , ε }。跳过不属于 S 的 + 后匹配 a 成功,从而可以继续解析。

3. 实验代码和课堂上讲授的方法不完全一致,不太能帮助理解课堂上的方法。