Single Phase Unipolar PWM Inverter

1 Objective:

To simulate the Single Phase Full Bridge Inverter with Unipolar PWM technique in MATLAB/SIMULINK.

1.1 Design specifications:

- Input Voltage (V_{in}) : 350 V
- Peak value of triangular voltage: 10 V
- Frequency of triangular signal: 1KHz
- Load Resistor (R): 50 Ω
- Load Inductor (L): 50 mH;
- Control signal (V_{cont}) : $6\sin(2*50\pi t)$

2 Unipolar PWM Technique:

- One leg is controlled with V_{cont} and another with $-V_{cont}$.
- When V_{cont} . $V_{tri} \longrightarrow \text{T1}$ is ON, and When $V_{cont} < V_{tri} \longrightarrow \text{T4}$ is ON.
- When $-V_{cont}$. $-V_{tri} \longrightarrow T2$ is ON, and When $-V_{cont} < -V_{tri} \longrightarrow T3$ is ON.
- Output voltage $(V_0) = m_a(V_{in})sin(nw_0t)$
- • Total harmonic distortion (THD) : $\sqrt{\frac{V_{rms}^2 - V_1^2}{V_1^2}} = 6.27\%$

3 Simulation Diagram:

Fig. 1: Simulink Model

4 Waveforms

Fig. 2: Output voltage and Output current waveforms

4.1 Harmonics spectrum

Fig. 3: Harmonics spectrum of Load voltage