Follow the User?!

Data Donation Studies for Collecting Digital Trace Data

Session 3: Data Donation Studies (Researcher Perspective)

Frieder Rodewald (University of Mannheim) & Valerie Hase (LMU Munich)

Part of the SPP DFG Project Integrating Data Donations in Survey Infrastructure

What are methodological decisions researchers you have to take in data donation studies? Example 1. The studies is a second of the second o

Data donation study - researcher perspective

3

Modelling

Agenda

- 1. **Research design & tool set-up**, including
 - **Task 3**: Modify the data donation tool
- 2. Data cleaning & augmentation, including
 - **▼ Task 4**: Classify search terms
- 3. Modelling digital traces

Image by Hope House Press via Unsplash

1) Research design & tool set-up

Source: Image by Markus Winkler via Unsplash

- Research Design & Tool Set-Up
 - **1.1** Which theoretical questions do I want to answer?
 - **1.2** How do I operationalize key variables via my data donation tool?
 - **1.3** How do I integrate the tool in surveys & recruit participants?

Data Cleaning & Augmentation

3

Modelling

Key decisions:

- Which theoretical questions do I want to answer?
- How do I operationalize key variables via my data donation tool?
- How do I integrate the tool in surveys & recruit participants?

Key decisions:

- Which theoretical questions do I want to answer?
- How do I operationalize key variables via my data donation tool?
- How do I integrate the tool in surveys & recruit participants?

Step I.I Which questions do I want to answer?

This may sound silly but:

- Novel method, few empirical applications
- To date: methodological playground
- What good is a method that is not used to advance theories/empirical knowledge?

Key decisions:

- Which theoretical questions do I want to answer?
- How do I operationalize key variables via my data donation tool?
- How do I integrate the tool in surveys & recruit participants?

Choose a tool, e.g., ...

- Port (Boeschoten et al., 2023) (Netherlands, different platforms)
- Data Donation Module (Pfiffner et al., 2022) (Switzerland, different platforms)
- WhatsR (Kohne & Montag, 2024) (Germany, WhatsApp)

- Participants "upload" data
- Local extraction, anonymization, & aggregation
- Users can delete data
- Informed consent, only then: send to researcher server

- Participants "upload" data
- Local **extraction**, anonymization, & aggregation
- Users can delete data
- Informed consent, only then: send to researcher server

Extraction >:

Figure. Filtering data - File extraction

Extraction \geqslant :

Figure. Filtering data - Python code

Extraction \geqslant :

```
def extract_ads_seen(ads_seen_json, locale):
    """extract ads information/ads and topics/ads viewed -> list of authors per day"""
    tl date = translate("date", locale)
    tl_value = translate(
       {"en": "Seen accounts", "de": "Gesehene Konten", "nl": "Geziene accounts"},
       locale.
    timestamps = [
       t["string_map_data"]["Time"]["timestamp"]
       for t in ads seen json["impressions history ads seen"]
   ] # get list with timestamps in epoch format (if author exists)
    dates = [epoch to date(t) for t in timestamps] # convert epochs to dates
    authors = [
       i["string map data"]["Author"]["value"]
       if "Author" in i["string map data"]
       else translate(
                "en": "Unknown account",
               "de": "Unbekanntes Konto",
                "nl": "Onbekend account",
           },
           locale,
        for i in ads_seen_json["impressions_history_ads_seen"]
    ] # not for all viewed ads there is an author!
    adds_viewed_df = pd.DataFrame({tl_date: dates, tl_value: authors})
    aggregated df = adds viewed df.groupby(tl date)[tl value].agg(list).reset index()
    return aggregated df
```

Figure. Filtering data - Python code

- Participants "upload" data
- Local extraction, **anonymization**, & aggregation
- Users can delete data
- Informed consent, only then: send to researcher server

Anonymization **(22)**:

```
Blame 1012 lines (1002 loc) - 40.1 KB
Code
           import typing
           from .genuine import unravel_hierarchical_fields
          fb_list_usernames = ['1LIVE',
                                '12-App',
                                '20 Minuten'.
    8
                                '3sat',
    9
                                'Aachener Nachrichten',
   10
                                'Aachener Zeitung',
                                'Aarauer Nachrichten',
   11
   12
                                'Aargauer Zeitung',
   13
                               'Abendzeitung München',
                               'Achgut.com - Die Achse des Guten',
   14
   15
                                'Achtzig - Die Kulturzeitung',
                                'actu.fr',
   17
                                'Adpunktum',
   18
                                'Advantage Wirtschaftsmagazin',
   19
                               'Aichacher Zeitung',
   20
                                'Aktuell Obwalden',
   21
                                'Alfelder Zeitung'.
   22
                                'all-in.de - das Allgau online.',
   23
                               'Allgäuer Zeitung',
   24
                                'Allgemeine Zeitung',
   25
                                'Allgemeine Zeitung | Coesfeld | Billerbeck | Gescher | Rosendahl | azonline',
   26
                                'Alpenparlament.TV',
   27
                                'Alpenschau.com',
                                'Andelfinger Zeitung',
```

Figure. Anonymization - Example of Whitelists

Anonymization **(22)**:

engagement_timestamp	day	engagement_type	donation_platform	donation_type
2021-12-04 10.37.42	2021-12-04	non-news	mstagram	Tonowed
2021-12-04 05:41:51	2021-12-04	non-news	Instagram	followed
2021-11-30 13:58:03	2021-11-30	non-news	Instagram	followed
2021-11-26 15:11:16	2021-11-26	non-news	Instagram	followed
2021-11-22 22:00:22	2021-11-22	news	Instagram	followed
2021-11-19 15:22:43	2021-11-19	non-news	Instagram	followed
2021-11-08 16:13:18	2021-11-08	news	Instagram	followed
2021-11-07 15:56:43	2021-11-07	non-news	Instagram	followed
2021-11-01 07:25:09	2021-11-01	non-news	Instagram	followed

Figure. Example of anonymized data

- Participants "upload" data
- Local extraction, anonymization, & **aggregation**
- Users can delete data
- Informed consent, only then: send to researcher server

Aggregation **E**:

```
def extract_ads_seen(ads_seen_json, locale):
    """extract ads information/ads and topics/ads viewed -> list of authors per day"""
   tl date = translate("date", locale)
    tl_value = translate(
       {"en": "Seen accounts", "de": "Gesehene Konten", "nl": "Geziene accounts"},
       locale.
    timestamps = [
       t["string_map_data"]["Time"]["timestamp"]
       for t in ads seen json["impressions history ads seen"]
   ] # get list with timestamps in epoch format (if author exists)
    dates = [epoch to date(t) for t in timestamps] # convert epochs to dates
    authors = [
       i["string map data"]["Author"]["value"]
       if "Author" in i["string map data"]
       else translate(
                "en": "Unknown account",
               "de": "Unbekanntes Konto",
                "nl": "Onbekend account",
           },
           locale,
        for i in ads_seen_json["impressions_history_ads_seen"]
    ] # not for all viewed ads there is an author!
    adds_viewed_df = pd.DataFrame({tl_date: dates, tl_value: authors})
    aggregated df = adds viewed df.groupby(tl date)[tl value].agg(list).reset index()
    return aggregated df
```

Figure. Aggregation - Python code

- Participants "upload" data
- Local extraction, anonymization, & aggregation
- Users can delete data
- Informed consent, only then: send to researcher server

Data deletion by users **X**:

Figure. Data deletion

This is how much "fun" testing DDTs is:

Figure. Github issues - Testing the tool

Key issues (Hase et al., 2024)

- Missing documentation by platforms (e.g., file structure)
- Sudden changes in DDPs
- Differences across languages & devices
- Insufficient in-tool classification

Let's have a look at the technical set-up (Frieder: Run example?)

Task 3: Modify the data donation tool

Frieder: can we ask them to change filtering scripts, etc.? YouTube-URL extraction?

Feel free to work in groups of 2-3 people.

Key decisions:

- Which theoretical questions do I want to answer?
- How do I operationalize key variables via my data donation tool?
- How do I integrate the tool in surveys & recruit participants?

Step I.III: How do I integrate the tool in surveys & recruit participants?

- Often: Survey, then forwarding to an external site
- Less often: Integration in existing survey infrastructure (Haim et al., 2023)

Step I.III: How do I integrate the tool in surveys & recruit participants?

- Low response rates (e.g., Hase & Haim, 2024; Keusch et al., 2024)
 - Behavioral intentions as "willingness to donate" high (79-52% of survey respondents)
 - Actual behavior as "participation in data donation" low (37-12% of survey respondents)
 - Well known intention-behavior gap (Kmetty & Stefkovics, 2025)
- Non-response bias
- Primary used in non-probability panels (e.g. online access panels)
- Survey design strategies: For now, is the only thing that works.
- Again, we will talk about this in session 4.

- Research Design & Tool Set-Up
 - **1.1** Which theoretical questions do I want to answer?
 - **1.2** How do I operationalize key variables via my data donation tool?
 - **1.3** How do I integrate the tool in surveys & recruit participants?

Data Cleaning & Augmentation

3

Modelling

Step II: Data cleaning & augmentation

Modelling

- Research Design & Tool Set-Up
 - **1.1** Which theoretical questions do I want to answer?
 - **1.2** How do I operationalize key variables via my data donation tool?
 - **1.3** How do I integrate the tool in surveys & recruit participants?

- Data Cleaning & Augmentation
 - **2.1** How do I clean and extend data?

2.2 How do I check for bias?

Figure. Data donation study - researcher perspective

Step II.I: How do I clean and extend data?

This is how your data may look like:

*	id ‡	submission_id +	filename ‡	n_deleted ‡	insert_timestamp	update_timestamp	entry
7868	308142	5345	liked_posts.json	0	2022-12-09 10:37:45.458707+00:00	2022-12-09 10:37:45,458714+00:00	{"string_list_data":[("timestamp":1654035032}],"title":" <user>"}</user>
7869	308143	5345	liked_posts.json	0	2022-12-09 10:37:45,458731+00:00	2022-12-09 10:37:45.458737+00:00	{"string_list_data":[{"timestamp":1654034499}],"title":" <user>"}</user>
7870	308144	5345	liked_posts.json	0	2022-12-09 10:37:45.458754+00:00	2022-12-09 10:37:45.458761+00:00	{"string_list_data":[{"timestamp":1654034341}],"title":" <user>"}</user>
7871	308145	5345	liked_posts.json	0	2022-12-09 10:37:45,458777+00:00	2022-12-09 10:37:45.458784+00:00	{"string_list_data":[{"timestamp":1654020807}],"title":" <user>"}</user>
7872	308146	5345	liked_posts.json	0	2022-12-09 10:37:45.458801+00:00	2022-12-09 10:37:45.458808+00:00	{"string_list_data":[{"timestamp":1654020127}],"title":" <user>"}</user>
7873	308147	5345	liked_posts.json	0	2022-12-09 10:37:45,458824+00:00	2022-12-09 10:37:45.458831+00:00	{"string_list_data":[{"timestamp":1654020057}],"title":"tagesschau"}
7874	308148	5345	liked_posts.json	0	2022-12-09 10:37:45,458847+00:00	2022-12-09 10:37:45.458854+00:00	{"string_list_data":[{"timestamp":1654019851}],"title":" <user>"}</user>
7875	308149	5345	liked_posts.json	0	2022-12-09 10:37:45,458871+00:00	2022-12-09 10:37:45.458878+00:00	{"string_list_data":[{"timestamp":1654019739}],"title":" <user>"}</user>
7876	308150	5345	liked_posts.json	0	2022-12-09 10:37:45,458894+00:00	2022-12-09 10:37:45.458901+00:00	{"string_list_data":[{"timestamp":1654019708}],"title":" <user>"}</user>
7877	308151	5345	liked_posts.json	0	2022-12-09 10:37:45,458918+00:00	2022-12-09 10:37:45.458925+00:00	{"string_list_data":[{"timestamp":1653940335}],"title":" <user>"}</user>
7878	308152	5345	liked_posts.json	0	2022-12-09 10:37:45.458941+00:00	2022-12-09 10:37:45.458948+00:00	{"string_list_data":[{"timestamp":1653938012}],"title":" <user>"}</user>
7879	308153	5345	liked_posts.json	0	2022-12-09 10:37:45,458965+00:00	2022-12-09 10:37:45.458971+00:00	{"string_list_data":[{"timestamp":1653937848}],"title":" <user>"}</user>
7880	308154	5345	liked_posts.json	0	2022-12-09 10:37:45,458988+00:00	2022-12-09 10:37:45.458995+00:00	{"string_list_data":[{"timestamp":1653937307}],"title":" <user>"}</user>
7881	308155	5345	liked_posts.json	0	2022-12-09 10:37:45,459011+00:00	2022-12-09 10:37:45.459018+00:00	{"string_list_data":[{"timestamp":1653808843}],"title":" <user>"}</user>
7882	308156	5345	liked_posts.json	0	2022-12-09 10:37:45,459035+00:00	2022-12-09 10:37:45.459042+00:00	{"string_list_data":[{"timestamp":1653781269}],"title":" <user>"}</user>
7883	308157	5345	liked_posts.json	0	2022-12-09 10:37:45,459058+00:00	2022-12-09 10:37:45.459065+00:00	{"string_list_data":[{"timestamp":1653753711}],"title":"sz"}
7884	308158	5345	liked_posts.json	0	2022-12-09 10:37:45.459082+00:00	2022-12-09 10:37:45.459089+00:00	{"string_list_data":[{"timestamp":1653691455}],"title":" <user>"}</user>
7885	308159	5345	liked_posts.json	0	2022-12-09 10:37:45,459105+00:00	2022-12-09 10:37:45.459112+00:00	{"string_list_data":[{"timestamp":1653674965}],"title":" <user>"}</user>
7886	308160	5345	liked_posts.json	0	2022-12-09 10:37:45.459128+00:00	2022-12-09 10:37:45.459135+00:00	{"string_list_data":[("timestamp":1653674398)],"title":" <user>"}</user>

Figure. Donated data - example

Step II.I: How do I clean and extend data?

This is how your data may look like:

Figure. Donated data - example

Step II.I: How do I clean and extend data?

- Manual annotation by participants during data donation
- APIs/scraping to extend collected data

▼ Task 4: Classify search terms

Download the data for Task 4 from the workshop website. This contains YouTube searches collected from a German social media sample. Either discuss or do this in R/Python....

- 1. how you would clean the data?
- 2. how you would identify health-related searches using NLP methods?

external_submission_id	* search_query *	donation_platform	
3862	https://www.youtube.com/results?search_query=theorien+d	YouTube	
3862	https://www.youtube.com/results?search_query=Gero+hesse	YouTube	
3862	https://www.youtube.com/results?search_query=macarons	YouTube	
3862	https://www.youtube.com/results?search_query=Weihnacht	YouTube	
3862	https://www.youtube.com/results?search_query=sallys+welt	YouTube	
9296	https://www.youtube.com/results?search_query=reitmaier	YouTube	
9296	https://www.youtube.com/results?search_query=zotero+ma	YouTube	
9296	https://www.youtube.com/results?search_query=einfach+inka	YouTube	
9296	https://www.youtube.com/results?search_query=tissot+197	YouTube	
9296	https://www.youtube.com/results?search_query=Druck	YouTube	
9272	https://www.youtube.com/results?search_query=der+pate+	YouTube	

Figure. Donated data - example

Step II.II: How do I check for bias?

- Errors in representation and measurements, e.g.
 - based on systematic drop-out (Pak et al., 2022)
 - based on systematic misclassification of digital traces (TeBlunthuis et al., 2024)

Step II: Data cleaning & augmentation

Modelling

- Research Design & Tool Set-Up
 - **1.1** Which theoretical questions do I want to answer?
 - **1.2** How do I operationalize key variables via my data donation tool?
 - **1.3** How do I integrate the tool in surveys & recruit participants?

- Data Cleaning & Augmentation
 - **2.1** How do I clean and extend data?

2.2 How do I check for bias?

Figure. Data donation study - researcher perspective

Step III: Modelling

- Research Design & Tool Set-Up
 - **1.1** Which theoretical questions do I want to answer?
 - **1.2** How do I operationalize key variables via my data donation tool?
 - **1.3** How do I integrate the tool in surveys & recruit participants?

Data Cleaning & Augmentation 3

2.1 How do I clean and extend data?

2.2 How do I check for bias?

Modelling

3.1 How do I analyze results?

Figure. Data donation study - researcher perspective

Step III.I: How do I analyze results?

Think carefully about...

- How to create indices from different metrics (e.g., liking, sharing, or commenting on content)
- Hierarchical structure (nested in time, metrics, platforms)
- Skewed data, non-linearity

Summary: Researcher perspective 🚝

- **Summary**: Key steps include...
 - 1. Research design & tool set-up
 - 2. Data cleaning & augmentation
 - 3. Modelling
- Further literature:
 - Boeschoten et al. (2022)
 - Carrière et al. (2024)

Questions?

References

- Boeschoten, L., Mendrik, A., Van Der Veen, E., Vloothuis, J., Hu, H., Voorvaart, R., & Oberski, D. L. (2022). Privacy-preserving local analysis of digital trace data: A proof-of-concept. *Patterns*, *3*(3), 100444. https://doi.org/10.1016/j.patter.2022.100444
- Boeschoten, L., Schipper, N. C. de, Mendrik, A. M., Veen, E. van der, Struminskaya, B., Janssen, H., & Araujo, T. (2023). Port: A software tool for digital data donation. *Journal of Open Source Software*, 8(90), 5596.
- Carrière, T. C., Boeschoten, L., Struminskaya, B., Janssen, H. L., De Schipper, N. C., & Araujo, T. (2024). Best practices for studies using digital data donation. *Quality & Quantity*. https://doi.org/10.1007/s11135-024-01983-x
- Haim, M., Leiner, D., & Hase, V. (2023). Integrating Data Donations into Online Surveys. *Medien & Kommunikationswissenschaft*, 71(1-2), 130–137. https://doi.org/10.5771/1615-634X-2023-1-2-130
- Hase, V., Ausloos, J., Boeschoten, L., Pfiffner, N., Janssen, H., Araujo, T., Carrière, T., De Vreese, C., Haßler, J., Loecherbach, F., Kmetty, Z., Möller, J., Ohme, J., Schmidbauer, E., Struminskaya, B., Trilling, D., Welbers, K., & Haim, M. (2024). Fulfilling Data Access Obligations: How Could (and Should) Platforms Facilitate Data Donation Studies? *Internet Policy Review*, *13*(3). https://doi.org/10.14763/2024.3.1793
- Hase, V., & Haim, M. (2024). Can We Get Rid of Bias? Mitigating Systematic Error in Data Donation Studies through Survey Design Strategies. *Computational Communication Research*, 6(2), 1. https://doi.org/10.5117/CCR2024.2.2.HASE

- Keusch, F., Pankowska, P. K., Cernat, A., & Bach, R. L. (2024). Do You Have Two Minutes to Talk about Your Data? Willingness to Participate and Nonparticipation Bias in Facebook Data Donation. *Field Methods*, *36*(4), 279–293. https://doi.org/10.1177/1525822X231225907
- Kmetty, Z., & Stefkovics, Á. (2025). Validating a willingness to share measure of a vignette experiment using real-world behavioral data. *Scientific Reports*, *15*(1), 9319. https://doi.org/10.1038/s41598-025-92349-2
- Kohne, J., & Montag, C. (2024). ChatDashboard: A Framework to collect, link, and process donated WhatsApp Chat Log Data. *Behavior Research Methods*, *56*(4), 3658–3684.
- Pak, C., Cotter, K., & Thorson, K. (2022). Correcting Sample Selection Bias of Historical Digital Trace Data: Inverse Probability Weighting (IPW) and Type II Tobit Model. *Communication Methods and Measures*, *16*(2), 134–155. https://doi.org/10.1080/19312458.2022.2037537
- Pfiffner, N., Witlox, P., & Friemel, T. N. (2022). *Data Donation Module*. https://github.com/uzh/ddm
- TeBlunthuis, N., Hase, V., & Chan, C.-H. (2024). Misclassification in Automated Content Analysis Causes Bias in Regression. Can We Fix It? Yes We Can! *Communication Methods and Measures*, *18*(3), 278–299. https://doi.org/10.1080/19312458.2023.2293713