CHAPITRE III Résolution des Programmes Linéaires

Résolution Graphique

- Achat de matières brutes contenant un minerai à extraire (2 types de MB disponibles):
 - MB1 : taux moyen de minerai = 6kg par tonne
 - MB2 : taux moyen de minerai = 10kg par tonne
- 3 aspects à prendre en compte :
 - Le temps d'extraction,
 - Le volume total de stockage,
 - Le prix.

- Temps d'extraction (16 heures disponibles) :
 - MB1: 10 minutes par tonne
 - MB2 : 30 minutes par tonne
- Au plus 40 tonnes de MB peuvent être stockées
- Prix unitaires (119 000 euros disponibles):
 - MB1: 3.50 euros par kg
 - MB2 : 2 euros par kg
- On veut maximiser la quantité de minerai extraite
 - ==> Quelle quantité acheter de chaque MB?

- Formulation du problème
 - Variables
 - x₁ ≥ 0 est le nombre de tonnes de MP1 à acheter
 - x₂ ≥ 0 est le nombre de tonnes de MP2 à acheter
 - Objectif : maximiser la quantité totale de minerai
 - Quantité totale = quantité via MP1 + quantité via MP2
 - Contraintes de disponibilité sur les ressources
 - Temps d'extraction disponible,
 - Poids de stockage disponible,
 - Budget disponible.

Modèle mathématique obtenu (PL)

sous contraintes:

$$x_1 + 3 x_2 \le 96$$
 (temps) {en divisant par 10}

$$x_1 + x_2 \le 40$$
 (stockage)

$$7 x_1 + 4 x_2 \le 238$$
 (budget) {en div. par 500}

$$X_1 \ge 0, X_2 \ge 0$$

Deux variables x₁ et x₂, contraintes à être positives

3 contraintes linéaires en x₁ et x₂

Petit lexique de la PL

- x₁, x₂, ..., x_n: variables (de décision)
- Solution admissible = affectation de valeurs aux x_i vérifiant les contraintes
- Région/ensemble/domaine/polyèdre admissible
 = ensemble des solutions admissibles
- Solution optimale = solution admissible qui maximise/minimise la fonction objectif

Résolution graphique d'un PL (1/2)

- Méthode dite de « résolution graphique »
 - Exploite le fait qu'on a 2 variables : x₁ ≥ 0 et x₂ ≥ 0
- Toute inégalité est vérifiée par une moitié du plan ⇒ contrainte = demi-plan (dimension 2)
 - Tracé du domaine admissible dans le plan
 - Tracé de la frontière (= une droite) du demi-plan défini par chaque contrainte,
 - Pour chaque droite, on sélectionne un demi-plan
 - Région admissible = intersection de tous ces demi-plans.
 - Déterminer la meilleure des solutions admissibles ?

Résolution graphique d'un PL (2/2)

- Prise en compte de la fonction objectif f?
 - Si la valeur optimale est f*, on appelle droite optimale la droite d'équation f(x)=f* :
 - Toute droite d'équation f(x)=constante lui est parallèle,
 - Tracé de la droite f(x)=0
 - déplacer de f(x)=0 Vers la droite en restant parallèle à f(x)=0, et continuer dans cette direction le plus possible tout en restant admissible,
 - Donc : recherche « visuelle » d'une solution optimale !
- La solution optimale est un sommet du polyèdre

Résolution graphique du problème d'achat de matières brutes (1/3)

- Dans le domaine admissible (en bleu), on cherche une solution qui maximise 3x₁ + 5x₂
 - On trace la droite 3x₁+5x₂=0 (en violet)
 - La droite optimale est 3x₁+5x₂=valeur optimale
 - Cette droite est donc parallèle à la droite 3x₁+5x₂=0
 - Idée (visuelle) : on « déplace » la droite 3x₁+5x₂=0
 - En la faisant « glisser », le plus possible, dans le bon sens (3x₁+5x₂=8 passe par le point x₁=1 et x₂=1),
 - Tout en restant dans le domaine admissible.

Résolution graphique du problème d'achat de matières brutes (2/3)

Résolution graphique du problème d'achat de matières brutes (3/3)

