DEPARTMENT OF MATHEMATICS

Indian Institute of Technology Guwahati MA101: Mathematics I, July - November, 2014

Tutorial Sheet: LA - 1

- 1. Supply two examples each and explain their geometrical meaning.
 - (a) Two linear equations in two variables with exactly one solution.
 - (b) Two linear equations in two variables with infinitely many solutions.
 - (c) Two linear equations in two variables with no solutions.
 - (d) Three linear equations in two variables with exactly one solution.
 - (e) Three linear equations in two variables with no solutions.
- 2. For what values of $\lambda \in \mathbb{R}$, the following system of equations has (i) no solution, (ii) a unique solution, and (iii) infinitely many solutions?

$$(5-\lambda)x + 4y + 2z = 4$$
, $4x + (5-\lambda)y + 2z = 4$, $2x + 2y + (2-\lambda)z = 2$.

Also, find the solutions whenever they exist.

- 3. Prove that the interchange of two rows of a matrix can be accomplished by a finite sequence of elementary row operations of the other two types.
- 4. Let A be an $n \times n$ matrix. If the system $A^2 \mathbf{x} = \mathbf{0}$ has a non-trivial solution then show that the system $A\mathbf{x} = \mathbf{0}$ also has a non-trivial solution.
- 5. Let A and B be two 2×3 matrices that are in reduced row echelon form. If the systems $A\mathbf{x} = \mathbf{0}$ and $B\mathbf{x} = \mathbf{0}$ have the same solution set then show that A = B.
- 6. Prove or disprove: There exist two solutions \mathbf{x}_1 and \mathbf{x}_2 of some consistent non-homogeneous system $A\mathbf{x} = \mathbf{b}$ such that $\mathbf{x}_1 + \mathbf{x}_2$ is also a solution of $A\mathbf{x} = \mathbf{b}$.
- 7. Prove or disprove: If two matrices of the same order have the same rank then they must be row equivalent.