PATENT 4035-0148P

IN THE U.S. PATENT AND TRADEMARK OFFICE

Applicant:

WU, Gang et al.

Conf.:

9279

Appl. No.:

10/092,252

Group:

2681

Filed:

March 7, 2002

Examiner: UNASSIGNE

For:

SEAMLESS INTEGRATED NETWORK SYSTEM FOR

WIRELESS COMMUNICATION SYSTEMS

LETTER

Assistant Commissioner for Patents Washington, DC 20231

September 17, 2002

Sir:

Under the provisions of 35 U.S.C. § 119 and 37 C.F.R. § 1.55(a), the applicant(s) hereby claim(s) the right of priority based on the following application(s):

Country

Application No.

Filed

Japan

2001-272661

September 7, 2001

A certified copy of the above-noted application(s) is(are) attached hereto.

If necessary, the Commissioner is hereby authorized in this, concurrent, and future replies, to charge payment or credit any overpayment to Deposit Account No. 02-2448 for any additional fee required under 37 C.F.R. §§ 1.16 or 1.17; particularly, extension of time fees.

Respectfully submitted,

BIRCH, STEWART, KOLASCH & BIRCH, LLP

KM/jeb

4035-0148P

P.O. Box 747

Falls Church, VA 22040-0747

(703) 205-8000

Attachment

日本国特許 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日 Date of Application:

2001年 9月 7日

出 願 番 号 Application Number:

特願2001-272661

ST.10/C]:

[JP2001-272661]

顺 人 plicant(s):

独立行政法人通信総合研究所

PRIORITY DOCUMENT

2002年 3月 8日

特 許 庁 長 官 Commissioner, Japan Patent Office

特2001-272661

【書類名】

特許願

【整理番号】

CRL-01-87

【提出日】

平成13年 9月 7日

【特記事項】

特許法第30条第1項の規定の適用を受けようとする特

許出願

【あて先】

特許庁長官 及川 耕造 殿

【国際特許分類】

H04L 12/00

H04L 12/46

H04L 12/66

【発明者】

【住所又は居所】 東京都小金井市貫井北町4-2-1 独立行政法人通信

総合研究所内

【氏名】

ウー 剛

【発明者】

【住所又は居所】 東京都小金井市貫井北町4-2-1 独立行政法人通信

総合研究所内

【氏名】

長谷川 幹雄

【発明者】

【住所又は居所】 東京都小金井市貫井北町4-2-1 独立行政法人通信

総合研究所内

【氏名】

村上 誉

【発明者】

【住所又は居所】 東京都小金井市貫井北町4-2-1 独立行政法人通信

総合研究所内

【氏名】

水野 光彦

【特許出願人】

【識別番号】

301022471

【氏名又は名称】 独立行政法人通信総合研究所

特2001-272661

【代理人】

【識別番号】

100090893

【弁理士】

【氏名又は名称】

渡邊 敏

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

睡

【書類名】 明細書

【発明の名称】 無線システムのシームレス統合ネットワークシステム

【特許請求の範囲】

【請求項1】

無線システムのシームレス統合が可能なネットワークシステムにおいて、複数 の無線通信ネットワークに対して共通のプラットフォームを提供する共通コアネットワークが、

ローミングする通信端末をサポートするモビリティーマネージャと、トラフィック配分の協調をとるリソースマネージャとを有し、

サービス品質を保証しながら、同種無線通信ネットワーク内及び異種無線通信 ネットワーク間にローミングし、

1地域内では、

ゲートウェイルータを介してインターネットとアクセス可能にすると共に、 基地局インターフェースを介して基地局とアクセス可能にする構成において、 全ての地域において、

該1地域内における構造をインターネットを介して複数配置する

ことを特徴とする無線システムのシームレス統合ネットワークシステム。

【請求項2】

1つの共通コアネットワーク内において

同種無線通信ネットワークに属する基地局間、または異種無線通信ネットワークに属する基地局間、またはルーター間にローミングする通信端末の少なくともいずれかに対し、迅速なハンドオーバーをサポートするマイクロモビリティ管理機能を有すると共に、

複数の共通コアネットワーク間において、

同種無線通信ネットワークに属する基地局間、又は異種無線通信ネットワークに属する基地局間、又はルーター間にローミングする少なくともいずれかの通信端末に対し、

ハンドオーバーをサポートするマクロモビリティ管理機能を有する 請求項1に記載の無線システムのシームレス統合ネットワークシステム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、様々な無線システムをシームレスに統合し、それらを効率的に利用可能なシステムに関する。特に、そのシステムにおいて各種無線通信ネットワークに対して共通のプラットホームを提供する技術に関するものである。

[0002]

【従来の技術】

第3世代移動通信の先の動きとして、例えばモバイルコンピューティングサービスを場所によらず数十Mbpsまでの最適な接続環境で実現する第4世代移動通信の姿が見えつつある。

この場合、現状の地上系の延長線上では、高速サービスは地域限定的(スポットサービス)に成らざるを得ず、一案として広範囲では最低限の伝送速度でのサービスを提供し、ホットスポットでは高速伝送サービスを提供することが考えられる。

[0003]

しかし、いずれにしてもリアルタイムサービスから蓄積型サービスまで、様々な伝送速度、QoS (Quality of Service、通信の目的に応じて最適な帯域割り当てを行うことで、それぞれの通信に求められるレスポンスタイムやスループットを確実に確保するための技術)に対応するサービスを1つの無線システムで提供することは困難である。

[0004]

【発明が解決しようとする課題】

そこで、上記従来からの問題点に鑑み、複数の無線システムを各環境に最適な システムとして構築し、それらをシームレスに統合できるネットワークを創出し 、全体としてより効率的で高度なサービスの提供を図ることを目的とする。

特に、本発明では、各種無線通信ネットワークに対して共通のプラットホーム を提供する

[0005]

【課題を解決するための手段】

本発明では、上記課題の解決を図るため、次の手段を用いる。

すなわち、無線システムのシームレス統合が可能なネットワークシステムにおいて、複数の無線通信ネットワークに対して共通のプラットフォームを提供する 共通コアネットワークが、ローミングする通信端末をサポートするモビリティー マネージャと、トラフィック配分の協調をとるリソースマネージャとを有する。

[0006]

そして、サービス品質を保証しながら、同種無線通信ネットワーク内及び異種無線通信ネットワーク間にローミングし、1地域内では、ゲートウェイルータを介してインターネットとアクセス可能にすると共に、基地局インターフェースを介して基地局とアクセス可能にする構成において、全ての地域において、上記1地域内における構造をインターネットを介して複数配置する。

[0007]

1つの共通コアネットワーク内において同種無線通信ネットワークに属する基地局間、または異種無線通信ネットワークに属する基地局間、またはルーター間にローミングする通信端末の少なくともいずれかに対し、迅速なハンドオーバーをサポートするマイクロモビリティ管理機能を有すると共に、複数の共通コアネットワーク間において、同種無線通信ネットワークに属する基地局間、又は異種無線通信ネットワークに属する基地局間、又はルーター間にローミングする少なくともいずれかの通信端末に対し、ハンドオーバーをサポートするマクロモビリティ管理機能を有する構成でもよい。

[0008]

【発明の実施の形態】

以下に、本発明による無線システムのシームレス統合ネットワークシステムの 一実施形態を示す。なお、実施形態は以下に限定されることなく、その趣旨から 逸脱しない範囲内において任意に変更が可能である。

本発明では、従来行われていないヘテロジニアスネットワークによるシステム の構築が行われている。まず、該ネットワークモデルにつき説述する。

[0009]

ヘテロジニアスネットワークのモデルには、複数の異種WANを採用した構成がいくつかある。図1に、基本モデルを2つのWAN、ネットワークAとネットワークBで示す。これらのモデルの主な相違点は、通信を行なうWANの層である。これらのモデルには、多くのバリエーションが考えられる(たとえば、(参考文献13)参照)。

[0010]

Aのトンネルネットワーク(10)のモデルでは、ユーザが複数のWAN通信 事業者と独立にサービス契約を結んでいる。

ある方針に基づいて、要求するサービスに対して最適なネットワークを選択する。ハイブリッドコア(1 1)は、トラフィックをインターネット(1 2)および選択したアクセスネットワーク(1 3)を通過させて通信端末(1 4)に送信する。

ネットワーク間の接続性は、7層のOSIモデルの比較的上位層(たとえば、トランスポート層)で決まるため、サービスの待ち時間が長くなる。

[0011]

このシステムでは、既存の無線アクセスネットワークに変更を加える必要がない。これらはすべて、シグナリング、ハンドオーバ、課金など、独自のインフラを備えている。このため、既存のネットワークシステム相互間で有効な協調をとることはきわめて困難である。

[0012]

Bのハイブリッドネットワーク(15)のモデルで、WAN(18)とインターネット(17)を直接インタフェースするハイブリッドコア(16)を設けている。

このモデルでは、WAN(18)がネットワーク層とその下位層の機能を実行する。このモデルの長所として、機能の重複が少ないこと、およびネットワーク層またはデータリンク層において高度のサービスを提供できることが挙げられる(たとえば、WAN相互間のハンドオーバが優れている)。

[0013]

Cのヘテロジニアスネットワーク(19)のモデルには、あらゆるネットワー

クの機能性を処理して単一のネットワークとして動作させる共通コアネットワークCCN(20)がある。複数のWAN(21)(21)が個々の無線システム技術に特に関連した機能のみを処理する。

一般に無線機器では、物理層とデータリンク層のみを取り入れている。CCN (20)に属するWAN相互の通信は、OSIモデルの下位層(リンク層またはネットワーク層)をベースとしている。

このためオーバヘッドが少なく、性能が向上する。このモデルの主要課題は複数のWANを集約することで、それには、標準化作業とこれを支援する事業体制とが求められる。

[0014]

本発明では、ハイブリッドとヘテロジニアスを区別していることが特徴である。一般に、様々な種類の構成すべてをハイブリッドと呼んでいる場合が多いが、 複数のアクセスネットワークが同時に存在し、すべてが協調し合うことを強調す るために、これらをヘテロジニアスと呼ぶことにする。

ハイブリッドネットワークは、複数のネットワークから1つを選んで使用する という従来の概念を表している。

[0015]

これまでの研究は、無線システムのルーティングとハンドオフに関するものが多い。モバイルIPプロトコル(参考文献8)は、IPレベルを超えてモビリティを透過的にサポートするもので、ノードがその位置を変更できる。

モバイルIPは、一般にマクロ・モビリティ・ソリューションとみなされ、通信端末がサブネットワーク内で移動するマイクロモビリティ管理にはさほど向いていない。

マイクロモビリティの代表例は隣人の無線トランシーバ内のハンドオフで、この場合トランシーバの各々は地理的に非常に狭い領域しかカバーしていない。これまでマイクロモビリティをサポートする提案はかなり多かった(たとえば、Cellular IP(参考文献3)、HAWAII(参考文献10))。

こうした方式すべての相互間の違いは、ローカル (国内または国外) ドメイン 内のパケットの経路指定に使用される機構に関するものである。

[0016]

また、インターネット上のQoSは、主にInserv(参考文献2)とDiffserv(Differenciated Services)(参考文献1)に関するものである。

この他は大半がハイブリッドネットワーク構成に主眼を置いているか、またはマクロモビリティをサポートしている(参考文献 4)(参考文献 7)。

ATMがQoSをサポートできるとの前提で、無線ATM技術の開発に強い関心が集まっている(たとえば、MagicWANdプロジェクト(参考文献6)。

[0017]

現在の研究は、モビリティのプロトコルをサポートすることで、ローミング通信端末に対するソリューションを提供しているに過ぎない。ヘテロジニアスネットワークは実用化の可能性はあるが、従来の二者択一の意識がまだ強い。

本発明では、通信端末が複数のWAN上で同時通信はもちろん単一WAN上の通信もできるものとする。

[0018]

次世代の無線インターネットに課せられた最大の問題は、構成がきわめて柔軟で、公開されていて、様々な種類のネットワーク、端末、アプリケーションのサポートが可能でなければならないことである。

基本目標は、ヘテロジニアスネットワークがユーザに見えないようにする(シームレス)ことである。さらに、もう1つの目標は、無線システム技術とは関係のないようなシステム構成を設計することである。これらの検討から下記の必要条件が得られる。

[0019]

まず、ソフトウェア無線(SDR)の成否の鍵となるのは複数のアクセス技術であり、各WANは特定のサービスに対して最適化できる。

次はヘテロジニアス・アクセス・サポートである。ヘテロジニアスネットワークでは、各々が特定サービスに対して最適化された複数のネットワークを組み合わせて使用できることが望まれる。そうすると、複数の特化されたフローを用い

て安価で優れた接続性が実現できる。

複数のWANを「同時に」使用できることが望ましいので、マルチサービス端 末が各WANの間で素早く切換えられなければならない。

[0020]

モビリティ管理は、同種、および異種のWAN同士、また技術同士の間でシームレスハンドオーバが行なわれることが望まれる。無線LANを経由したBluetoothなどのローカルなポイントツーポイント間接続から第1、第2、第3世代のセルラー方式に至るまでの無線アクセス技術が普及するものと考えられる。

[0021]

また、有効な構成の選択も必要条件である。ヘテロジニアスネットワークの見逃せない魅力は、複数のWANを選択して利用できることである。

最も適切なWANの選定は、利用可能な帯域幅、サービスを実行するのに必要なエネルギー消費量、サービスの分類、コストなどの観点に基づいて決定できる

その結果、各サービスはこのサービスを最も有効にサポートするネットワークから提供されることになる。

[0022]

簡潔性、有効性、拡張性、低コスト等、これらの要求は互いに密接に関係している。こうした条件は、アクセスポイントが数千Mb/secの通信速度を提供する将来のピコセルラーネットワークにおいて特に重要である。多数の入り組んだアクセスポイントを設置することは得策でない。

[0023]

エネルギー効率もまた欠かせない条件の一つである。一般に、無線 I P 通信機の電源を入れると、無線インターネットによっていつもサービスにアクセスできようになるものと予想されている。

これは、位置情報と無線システム検出を良好な状態に保つなどのサービスの機構が多くのエネルギーを必要としないことである(帯域幅効率も同様)。セルラー通信システムでは、受動接続性(passive connectivity)のコンセプトを導入

して使用していない通信端末の電力消費を節減している。

[0024]

また、モバイルシステムには、静止したシステムには存在しない未解決のセキュリティの問題が多い。通信端末は、移動中にその位置を更新する必要がある。こうした位置のメッセージは、適切に保護しない限りプライバシーの侵害等の問題につながる可能性がある。

シームレスなハンドオフを最優先するシステムやアプリケーションでは、通信端末で使用するセッションキーの情報がハンドオフ中に新たな基地局またはアクセスポイントで直ちに得られなければならない。

[0025]

最後の条件として、エンド・ツー・エンドのQoS機構を備えることが望ましい。WANが提供するサービスは特化されているので、ヘテロジニアスネットワーク内のQoS問題はきわめて重要である。

エンド・ツー・エンドQoSには、ローカルのQoS機構との相互運用が可能であることが望ましいだけでなく、下位層(リンク層と物理層)のプロトコルがトラフィック特性を認識していて様々なQoSの要件を満たすことが可能であることが望ましい。

[0026]

上記のような必要条件のいくつかは互いに密接な関係がある。1つの必要条件 に対する課題を解決することが、別の課題の解決につながる場合がある。

従って、可能な限り既存のプロトコルに基づいた構成を構築しようという努力は、必要な手間を極力省いて既存のプロトコルとアプリケーションとの整合へとつながる。

[0027]

共通コアネットワークは共通のプラットフォームを提供するもので、このプラットフォームにより、すべてのマルチサービス端末が外部ネットワーク内にある通信ノードとの通信を行なう。

原則として、WANのすべてのアクセスポイントがこのネットワークに接続される。このネットワークは、WAN相互間のルーティングとシームレスハンドオ

ーバを行なう。

こうして様々なヘテロジニアスネットワークが自然に統合される。

CCNの主な機能モジュールはリソースマネジャで、これはトラフィックの分配を調整し、WANを選択する。CCNには、認証、選択されたアクセスシステム、課金、方針、ユーザの端末機能などの項目とともにユーザのプロフィアルを管理するための共通データベースがある。

[0028]

本発明による構成では、通信端末と外部ネットワーク内にある通信ノードとの間の通信を行なう。図2に、本構成全体のコンセプトを示す。普遍的なコンポーネントは基地局またはアクセスポイント(30)で、これは無線アクセスポイントの役割を果たし、CCN(31)とのインタフェースをする。

CCN(31)はいずれも、ゲートウェイルータ(32)を経由してインターネット(33)に接続される。CCN(31)は、複数のWANにサービスを提供する。通常、WANは互いにオーバーラップしており、通信端末(34)が1ヶ所で複数のWANにアクセスすることができる。こうした無線システムの適用区域は、きわめて大きくすることが可能である。

[0029]

マクロモビリティは、モバイルIPv6CCNを用いて実現する。頻繁に位置を更新する高速無線アクセスのあるCCNでは、マイクロモビリティを必要とする。基地局またはアクセスポイントに固定の通信端末には、そのモバイルIP気付のアドレスとして、ゲートウェイのIPアドレスが使用される。CCNの内部では、通信端末がそのホームアドレスによって識別される。基地局またはアクセスポイントは、標準IPが提供するエンジンに接続される。

これらのエンジンは、パケットを基地局またはアクセスポイントとゲートウェ イの間で転送させることが可能なネットワークトポロジーで接続される。

[0030]

本発明では、基地局は無線アクセスポイントと同じものとしているが、必ずし もこのことに固執する必要はない。アクセスポイントを相互接続した独自のネッ トワークを採用し、1つの基地局またはアクセスポイントを共有してこれをコア ネットワークに接続する無線アクセスプロバイダがあることも十分に考えられる

本発明の構成の重要なコンセプトは、低コストのネットワークを実現するための簡素化である。CCNと独立BANというコンセプトは、少ない投資によるインフラ整備の可能性を無線サービスプロバイダに提供するものである。新規参入のプロバイダは、適正なインタフェースを使用するものと仮定すると、容易にコアネットワークに接続できる。

[0031]

こうしたプロバイダは、事業を開始する前に独自のインフラを整備する必要がなく、コアとBANが提供するインフラを利用すれば済む。必要なことは、自社の無線サービスを展開し、無線アクセスのみに専念することである。

全く新しくサービスを開始するのに一般に必要なインフラは、この構成によって既に整っている。これには、技術的な問題(基地局またはアクセスポイント間の相互接続ネットワーク、ルーティング、ハンドオフ、インターネットアクセスなど)と事業上の問題(課金、顧客プロファイルの管理など)の両方が含まれる。構築が必要なコンポーネントは、基地局またはアクセスポイントおよび端末用のアクセス機構である。通常、アクセス機構は、マルチサービス端末での使用に適したソフトウェアモジュールであってもよい。

[0032]

一方、顧客は、CCNプロバイダと契約して様々なサービス(WANが提供する)を購入することができる。顧客が複数サービスの利用が可能な契約を結ぶ場合、システムとユーザは最も適切なサービスを選択できる。複数のアクセスネットワークを組み合わせて利用可能なキャパシティを増やすこともできる。

また、複数のアクセスネットワークが、トラフィックのアップリンクとダウンリンクに利用される可能性もある。これは、ウェブブラウジングやEメールなどのユーザアプリケーションに好都合で、こうしたアプリケーションは事実上非対称(アップリンクの帯域幅よりもダウンリンクの帯域幅が広い)である場合が多い。

その結果、各サービスはサービスのサポートに最も有効な(様々な展望におい

て) ネットワークを経由して提供される。実際には、顧客はサービスの提供に利用される無線技術を意識していないのである。

[0033]

インターネット上でエンド・ツー・エンドのQoSを実現することにはリスクが伴う。アプリケーション、複数のネットワーク層、およびネットワーク構成から来る複雑さはもとより、ネットワーク管理や事業モデルも入り組んでいるためである(参考文献11)。

通信端末、無線ネットワーク、および様々なアクセス技術の環境にQoSを導入する場合は、リスクが一層大きくなる。だが、乏しいリソースや予測不可能な有効帯域幅、誤り率の変動などの理由により、こうした環境におけるQoS機構のニーズは大きい。様々な特性の様々な無線ネットワークを適用しているヘテロジニアスネットワークでは、QoS機構に対するニーズが明白である。

[0034]

固定インターネット内では、エンド・ツー・エンドQoSを実現する方法がいくつかある。IP構成、すなわちInservとDiffservに関するQoSの目下の研究では、モビリティのサポートが重要であるにも関わらず除外されているようである。

QoSのアプローチは、コアネットワークQoSサービスと固定ネットワークQoSサービスの2つに分類できる。こうすると、無線IP(コア)ネットワークは、固定の最新QoSソリューションと両立する。ゲートウェイルータは、インターネットとコアネットワークの間の対応付けを行なうだけである。

[0035]

すべてのIP通信は、パケットベースであり、コネクションレス型伝送に依存 している。アドレス指定方式では、システムがトラフィックフローを識別できな い。

トラフィックフローという用語は、同一接続のIPパケット、すなわち、特定アプリケーション(ポート)間および特定ホスト(IPアドレス)間で転送されるIPパケットの流れを指している。

CNN内のトラフィックフローは、そのサービスのニーズとQoS要件とに従

って識別される。このようにトラフィックフローを識別する主な理由として以下 の2つが挙げられる。

[0036]

一つに、ルーティングの実現が挙げられる。 本発明では、通信端末は、複数の異種WANを利用する少なくとも1つのサービスに対して複数のフローを持つことができる。各アクセスネットワークは、最適化された種類のサービスに用いられる。

したがって、通信端末とこれに対応するノードとの間の各種サービスのパケットは、CCN上の異なるルート(すなわち、異なる基地局またはアクセスポイントと異なるアクセスネットワーク)を利用することができる。通信端末は、こうして少なくとも1つの基地局またはアクセスポイントを同時に利用してCCNに接続できる。

すなわち、通信端末と各基地局またはアクセスポイントの間のトラフィックは それらが必要とするサービスに応じて区別できなければならない。

[0037]

そしてもう一つに、層間の通信の実現が挙げられる。無線環境では、下位層の プロトコルがトラフィック特性を認識していることが不可欠である。インターネットは、ISO/OSI階層構造に基づいて実現し、この階層構造では、各層の プロトコルが互いに独立している。

無線インターネットでは、全体の性能と利用率を改善するためには他層の情報が必要な場合がある。たとえば、TCP仕様では下位層の特性について明白に言及されていないが、タイムアウトと再送の機構では、誤り率が低いこと、およびパケットがネットワークの輻輳によって損失すること、という暗黙の仮定がある

[0038]

TCPでは、ネットワークの輻輳により失われるパケットと、無線チャネル内のビットエラーで汚染したパケットとを区別する方法がない。もう1つの例として、無線MACとデータ・リンク・プロトコルを設計する場合、MACとデータリンク層内でトラフィック特性が既知であれば利用効率が高くなる。

また、W-CDMAシステムでは、パワーコントロールを採用して、異なるトラフィックに対する様々なQoS要件を満たすことができる。言い換えれば、物理層においてもトラフィックタイプが分かるものと誰もが想像している。

こうした例は、プロトコルをその使用環境に合わせて設計する必要があること を証明している。プロトコルの設計とプロトコルが存在するコンテキストとを分離すると、性能とエネルギー消費量に悪影響を及ぼし、無線マルチメディアのア プリケーションには向かなくなる。

[0039]

以上から、トラフィックフローを識別することは必要かつ有用である。だが、 課題は、こうしたフローの検出方法と、こうしたフローに対するQoS要件の決 定方法である。ここでは、識別をアプリケーションレベルのシグナリングプロト コルを利用した明示的識別と、トラフィッククラスに基づく黙示的識別の2つに 大別している。

[0040]

一つ目は、明示的識別であり、長所と将来性を考えて、IPv6をプロトコルプレームワークとして選択する。

IPv6の重要な特徴は、フローラベルを導入して個々のトラフィックフローに属するパケットのラベリングができることで、トラフィックフローに対して、送信側がサービスの非デフォルト特性(non-default qualit y)やリアルタイムサービス(参考文献 5)などの特別な処理を要求する。

フローラベルによりどのようなレベルに細分しているか今のところ明らかでない。フローラベルを採用しないリアルタイムアプリケーションが多いようであるが、最善努力型以上のサービスが求められている。

この場合のもう1つの問題は、QoSの情報が提供されないので、こうしたフローに与えるQoSを定めることである。

[0041]

もう一つは、黙示的識別である。 黙示的フロー検出には、様々な機構がある。 たとえば、Diffserv QoSクラスは該当する無線QoSに対応付けが可能である。

IPV6も、そのヘッダが8ビットのトラフィック・クラス・フィールドがある。このフィールドは、送信ノードおよび/または送信ルータによって利用でき、IPV6パケットの各クラスまたは優先順位を識別し、区別する。

[0042]

現時点では、このフィールドの利用方法が明らかでないが、明示的フローを導入せずにIPパケットに関して様々な形態の「Diffserv」を提供するため、いろいろな実験が進められているところである(参考文献 5)。これに代えて、トランスポート層のポート番号をモニターし、IPデータグラムをWWWまたはFTPトラフィックにより非最善努力方式で転送することもできる(参考文献 6)。

[0043]

CCN内部において、本発明は、利用効率の高い無線ネットワークを用いた通信端末までのフローの経路を指定する機構と、様々なQoS要件に関して各層間で情報を交換する機構とを必要としている。長所と将来性から考えて、IPv6をプロトコルフレームワークとして選択している。

[0044]

外部ネットワークから送出されるトラフィックは、明示的、黙示的のいずれか の識別機構で識別できる。

CCN内のフローの識別と経路指定は、ネットワーク層(すなわち、IP)で行なわれる。HAWAIIやCellular IPなど、マイクロモビリティをサポートする他の提案も採用してもよい。CCN内の新たなIPデータグラムにすべてのデータグラムを包含させることが、最適ソリューションであると考えられる。

本発明では、この方法で一貫性のあるアクセス機構を実現することができ、外部ネットワーク上に存在するアプリケーションまたはサービスを適応させる必要がない(しかし、明示的識別機構の適用による利点は失われない)。

[0045]

次に、本発明で採用した構成とプロトコルの機能モジュールを説明する。 図3に示す構成は、通信端末(40)、WAN(41)、CCN(42)、外 部ネットワーク(43)の4つの主要なビルディングブロック(40)(41)(42)(43)から成る。

外部ネットワーク (43) の内部には通信ノード (CN) (44) がある。少なくとも1つのゲートウェイルータ (GR) (45) (45) により、外部ネットワーク (43) がCCN (42) に接続されている。

[0046]

外部ネットワーク(43)では、モバイルIPを想定している。ゲートウェイルータ(45)がここでは積極的な役割を果たしていて、カプセル化されたパケットが通信端末を送信先とするゲートウェイに到達すると、ゲートウェイはパケットを展開して基地局またはアクセスポイントに向けて送信する。

[0047]

CCN(42)内の2つの重要な機能モジュールは、リソースマネジャ(RM)(46)とモビリティマネジャ(MM)(47)である。これらは、主としてトラフィックの分配とモビリティに関連する問題の処理に関わっている。

[0048]

CCN(42) は、基地局またはアクセスポイント(48)、したがってWAN(41)への通信をサポートしている。基地局またはアクセスポイントインタフェース(BSI)(49)は、主にCCN(42)に対する基地局またはアクセスポイント(48)の一貫したアクセス機構を提供している。BSI(49)は基地局またはアクセスポイント(48)のコンポーネントである。

基地局またはアクセスポイント(48)では、無線アクセスについて通常のリンク層問題を処理し、基地局またはアクセスポイント(48)がサポートする無線ネットワークのステータス情報を収集する。基地局またはアクセスポイント(48)では、ネットワークインタフェース(NI)(50)を用いてネットワークにアクセスする。

[0049]

通信端末(40)の主なコンポーネントは、BAN(51)と通信する基本アクセス部品(BAC)(52)である。このインタフェース以外に、ネットワークインタフェース(53)もある。しかし、基地局またはアクセスポイントのN

I (50)と対照的に、このインタフェース(53)は、通常ソフトウェア無線 技術を基本としたもので、複数のWAN(41)を利用できるようにしてある。

[0050]

ネットワークセレクタ (NS) (54) は、RM (46) と通信して、利用す るWAN(41)に対して無線を同調させる。ネットワーク選択制御プロトコル は、アクセスネットワークを適切に選択するのに利用される。

[0051]

- ロケータ(LOC) (55)は、RM(46)に通信端末(40)の位置情報 を提供する。ローカル・リソース・マネジャ(LRM)(56)は、端末のロー カルリソースを処理し、CCN(42)におけるリソースマネジャ(46)と通 信する。

[0052]

本発明の構成の最大の目標は、様々なアクセス技術を統合して共通の構成を得 ることである。この統合により、システムの利用効率が向上し、モバイルユーザ は要求するサービスを受けることができる。

この目標を達成するため、構成が果たすべき主なタスクとして、システム内の トラフィックの分配を調整するリソース管理、およびローミング通信端末をサポ ートするモビリティ管理がある。

[0053]

RM(46)は、このように、リソースの割当てとCCN(42)内のトラフ イックの分配をサポートする許諾管理(admission control) とを受け持っている。これは、通信端末(40)に要求されるサービスを最も効 率的に提供できるWANを選択する。

本質的に、これは複数の無線アクセスシステムを結合し、その特徴を利用して 高いスペクトル利用効率でサービスを提供するものである(参考文献12)。

R

M(46)のもう1つのタスクは、外部ネットワーク(43)で使用される可能 性のあるIP QoS構成(Intservまたはdiffserv)との通信 である。これは内外部のQoSパラメータ間の対応付けに過ぎない。

1 6

[0054]

本発明には、コアネットワークCCN(42)内の基本的クラスのいくつかを 利用する構想がある(たとえば、最善努力、リアルタイム、適応)。こうした機 構により、無線リンクはIP QoSパラメータがある程度変動しているIPパ ケットをサポートできる。この機能モジュールはネットワーク層で実現する。 RMは、特定の基準に基づいて選択を行なう。これらの基準の源泉は、移動端末

(すなわち、ローカル・リソース・マネジャ)、モバイルユーザ、アプリケーション、基地局など、様々である。

特定目的の入力として下記がある。

- (1) セッションのQoS要件
- (2) コストや好きなWANなどのユーザの好み
- (3) サポートされているアクセスネットワーク、プロトコル、有効リソース などの端末機能
- (4) CCNとWANのステータス(すなわち、有効リソース)
- (5) 移動端末の位置

[0055]

RM(46)には、アクセスネットワークの変更に伴うコストも組み入れることが望ましい(ソフトウェア無線の再構成に関わるコストなど)。しかし、この管理タスクは、決して瑣末なことでなく、特に地域の中を高速で移動する移動体では無視できない。

モビリティマネジャ(MM)(47)は、モビリティに関するすべての問題を 処理する。これは移動体の位置を追跡し、特定位置における通信端末に有効なア クセスネットワークを決定する。

[0056]

RM(46)はこのMM(47)による情報を利用する。これ以外のMM(47)の主なタスクは、CCN(42)内ローカルと外部ネットワーク(モバイルIPに基づく)の両方のハンドオフを行なうことである。このハンドオフの際、MM(47)はRM(46)と通信する必要がある。

MM(47)はネットワーク層で実現し、CCN(42)で動作する。通信端

末(40)がコアネットワーク内で移動すると、モビリティがネットワーク層には見えず、システムはIPフローとIPQoSの各パラメータをそのまま維持しようとする。コアネットワーク間のモビリティの場合は、どのパケットが最善努力型のトラフィックとして転送できるかによる制限がある。

[0057]

通信端末(40)にはすべての標準トランスポートプロトコルと無線特別制御サービスが含まれる。制御メッセージは、共通コアネットワーク(42)と通信端末(40)の機能モジュールとの間で透過的に転送される。

BAC(52)はすべての通信端末(40)の一部である。これは、基本アクセスネットワーク(51)と通信するための主要なコンポーネントである。BAN(51)は、シグナリング、同期、ページング、位置など、様々な機能に対して利用される。同期は、通信端末(40)が複数のアクセスネットワークを利用できる場合に重要である。

[0058]

そのネットワークインタフェース(NI)(53)がソフトウェア無線技術を利用して実現する場合、同時に(BANは別として)複数のアクセスネットワークを利用することは不可能であると考えられる。アクセスネットワークのスケジューリングのためには、優れた同期機構が必要である。ネットワークセレクタ(NS)(54)は、必要なアクセスネットワークの選択が可能なモジュールである。

これは、CCN(42)に存在するRM(46)と通信して、利用すべきネットワークと使用できると思われる時刻を判断する。

RM(46)は、ユーザの選択、WANなどの共通コアネットワーク(42)のリソース、端末(40)のローカルリソースに従ってトラフィックの分配を行なう。ローカル・リソース・マネジャ(LRM)(56)は、端末のローカルリソースを処理し、CCN(42)のRM(46)と通信を行なう。

[0059]

アプリケーションは、インフラを利用してそのトラフィックとQoS要件を指定できることが望ましい。QoS APIは、アプリケーションがこれを利用し

てその要求を指定し、セッションを成立させる。アプリケーションがこのAPI を利用しない場合は、最善努力型の機構がこのセッションに利用される。

[0060]

本発明で提案するモビリティとQoSの管理方式は、固定モバイルIPv6ネットワーク技術と両立するものである。さらに、こうした技術をマイクロセルラー・モビリティ・ソリューションと組み合わせると、固定ネットワークQoS技術と無線QoS技術(ネットワーク層よりも下位)の間の通信が可能になる。

これにより、無線ネットワークはIP QoSパラメータがある程度変動しているIPパケットに対応できる。コアネットワークQoSとフロー管理は展開されるIPプロトコル全体とは独立しているので、Diffservなど、他のIP技術をサポートする高度なシステムを構築できる。

[0061]

次に、本発明による共通コアネットワークの構成を図4に示し、説述する。図4のAは上記で説述した1つの共通コアネットワーク(31)を示し(図2参照)、Bはそれら(31・・・)が各地域にあり、相互にインターネット(33)を介して接続した構成である。

各地域において、インターネット(33)と地域CCN(31・・・)の間に ゲートウェイルータ(32・・・)があり、これには、各種無線システムの各セ ルの基地局(30・・・)が直接接続されている。グローバルCCN(31') は地域CCN(31・・・)で構成される。

[0062]

【発明の効果】

本発明によれば、複数種類の無線システムを、各無線システムの環境に最適な 形態で利用しながら、それらをシームレスに統合するネットワークを構築するこ とができ、全体として効率的かつ高度なネットワークサービスを提供することが できる。

特に、本発明に係る共通コアネットワークの採用により、同一無線システム内における水平シームレスモービリティと、異種無線システムの間の垂直シームレスモービリティをサポートすると共に、移動端末が同一のIPアドレスを使用でき

るようになる。

また、アクセスポイントをCCNへ直接接続することにより、新しいサービスを容易に開始することが出来る。

【参考文献1】

Blake, S., Black D., Carlson, M., Davies, E., Wang, Zh., Weiss, W., "An architecture for Differentiated Services", IETF RFC 2475, 1998.

【参考文献2】

Braden, R, Clark, D., Shenker, S., "Integrated Services in the Internet Architecture: An Overview", IETF RFC 1633, 1994.

【参考文献3】

Campbell A. T., Gomez, J., Kim S., Turany i, Z., Wan, C-Y., Valko, A: "Design, Implem entation and Evaluation of Cellular IP", IEEE Personal Communications, Special Issue on IP-based Mobile Telecommunications Networks, Vol. 7No. 4, pg. 42-49, August 2000.

【参考文献4】

Daedalus project, Berkeley, http:/daedalus.cs.berkeley.edu.

【参考文献 5】

Deering S., Hinden R.: "Internet Protocol, Version 6 (1Pv6), Specification", IETF RFC 2460, December 1998.

【参考文献6】

Magic Wand project, http://www.tik.ee . ethz.ch/~wand/.

【参考文献7】

Monarch project, CMU, http://www.monarch.cs.cmu.edu.

【参考文献8】

Perkins C., IP Mobility Support, RFC 2002, October 1996.

【参考文献9】

Pitoura E., Samaras G.: "Locating Objects in Mobile Computing", IEEE Transactions on Knowledge and Data Engineering, 2000.

【参考文献10】

Ramjee R., La Porta T. F., Salgarelli L., Thuel S., Varadhan K., Li L.: "IP-bas ed Access network infrastructure for next-generation wireless data networks",

【参考文献11】

IEEE Personal Communications, pp. 34-41, August 2000.

【参考文献12】

Rexhepi, V., Karagiannis, G., Heijenk, G., "A Framework for QoS & Mobility in the Internet Next Generation", Proceedings EUNICE 2000, Sixth EUNICE Open European Summer School, University of Twente, Enschede, the Netherlands, Sep

tember 13-15, 2000.

· 【参考文献13】

Tonjes, R. et al.: "Architecture for Future Generation Multi-access Wireless System with Dynamic Spectrum Allocation", Mobile Summit 2000. Galway, Ireland, 1-4. October 2000, http://www.ist-drive.org/papers.html.

【参考文献14】

Walsh R, Xu L., Paila T.: "Hybrid networks—a step beyond 3G", third international symposium on Wireless Personal Multimedia Communications (WPMC '00), pp. 109-114 Bangkok, Thailand, November 2000.

【図面の簡単な説明】

【図1】

各ネットワークのアーキテクチャモデルを比較する説明図である。

【図2】

本発明に係る統合ネットワークのアーキテクチャ概念図である。

【図3】

本発明に係るヘテロジニアスネットワークのアーキテクチャの説明図である。

【図4】

本発明による共通コアネットワークの構成を示す説明図である。

【符号の説明】

- 30 基地局
- 31 共通コアネットワーク
- 31 ′ グローバル共通コアネットワーク
- 32 ゲートウェイルータ

33 インターネット

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

特2001-272661

【書類名】

要約書

【要約】

【課題】 複数の無線システムをシームレスに統合できるネットワークを創出し、全体としてより効率的で高度なサービスの提供を図る。特に、各種無線通信ネットワークに対して共通のプラットホームを提供することを目的とする。

【解決手段】 ローミングする移動端末をサポートするモビリティーマネージャ47と、トラフィック配分の協調をとるリソースマネージャ46とを有し、サービス品質を保証しながら、同種無線通信ネットワーク内及び異種無線通信ネットワーク間にローミングし、1地域内では、ゲートウェイルータ32を介してインターネット33とアクセス可能にする一方、全ての地域において、該1地域内における構造31をインターネットを介して複数配置31 'する。

【選択図】

図 4

出願人履歴情報

識別番号

[301022471]

1. 変更年月日

2001年 4月 2日

[変更理由]

新規登録

住 所

東京都小金井市貫井北町4-2-1

氏 名

独立行政法人通信総合研究所