Summary | Statics

Introduction

Centroid / Centre of area

The point where the area of a figure is assumed to be concentrated.

Located on the axes of symmetry.

First moment of area

Measure of spatial distribution of a shape in relation to an axis.

About x-axis =
$$\int_A y \, dA = A\bar{x}$$

About y-axis
$$=\int_A x \, \mathrm{d}A = A \bar{y}$$

Here:

- ullet $ar{x}$ Centroid's x coordinate
- \bar{y} -Centroid's y coordinate
- ullet A Total area

About an axis of symmetry, first moment of area is 0.

Second moment of area

About x-axis =
$$I_{xx} = I_x = \int_A y^2 dA$$

About y-axis =
$$I_{yy} = I_y = \int_A x^2 dA$$

Always positive.

The product of moment of area about x,y axes

$$I_{xy} = \int_A xy \,\mathrm{d}A$$

The polar moment of area about z axis

$$I_{zz}=J_0=\int_A r^2 \;\mathrm{d}A=I_{xx}+I_{yy}$$

Radius of gyration

About x-axis
$$= r_x^2 = rac{I_{xx}}{A}$$

About y-axis
$$=r_y^2=rac{I_{yy}}{A}$$

About z-axis =
$$r_z^2 = \frac{I_{zz}}{A}$$

Derived Formulas for Common Shapes

Shape	Description	
Rectangle or Parallelogram	Base b . Height h . About centroidal axis parallel to base.	$rac{bh^3}{12}$
Triangle	Base b . Height h . About base.	$\frac{bh^3}{12}$
Triangle	Base b . Height h . About centroidal axis parallel to	$\frac{bh^3}{36}$

Shape	Description	I_{xx}
	base.	
Circle	Diameter d . About centroidal axis.	$\frac{\pi d^4}{64}$

Parallel Axis Theorem

$$I_x = I_{x_1} + Aar{y}^2$$

$$I_y = I_{y_1} + Aar{x}^2$$

$$I_{xy} = I_{x_1y_1} + A\bar{x}\bar{y}$$

Here

- $\bullet\,$ On LHS, the moments of area are about some $\,x$, $\,y\,$ axes.
- ullet On RHS, the moments of area are about centroidal axes $\,x_1\,$, $\,y_1\,$ parallel to x, y.
- \bar{x} is the distance between x and x_2 axes.
- \bar{y} is the distance between y and y_1 axes.

(i) Note

 I_x is at a minimum when the axis is through the centroid. Same for I_y .

Perpendicular Axis Theorem

$$I_{zz} = I_{xx} + I_{yy} = I_{mm} + I_{nn}$$

x, y, z are a set of axes. m, n, z are another set of axes.

If I_{xx} is at maximum, I_{yy} will be at minimum.

Transformation Law

The 2 sets of axes must share the origin.

(i) Note

Don't have to memorize this. Will be given on exams, if required.

$$I_{x_1x_1} = rac{I_{xx}+I_{yy}}{2} + \left(rac{I_{xx}-I_{yy}}{2}
ight)\cos2 heta - I_{xy}\sin2 heta$$

$$I_{y_1y_1} = rac{I_{xx}+I_{yy}}{2} - \left(rac{I_{xx}-I_{yy}}{2}
ight)\cos2 heta + I_{xy}\sin2 heta$$

$$I_{x_1y_1} = \left(rac{I_{xx}-I_{yy}}{2}
ight)\sin 2 heta + I_{xy}\cos 2 heta$$

Principal Axes

The product of moment of area is 0 about principal axes.

$$I_{xy}=0$$

There will be 2 directions of principal axes which are perpendicular to each other.

(i) Note

For a shape with more than 2 axis of symmetry, all axes through the centroid is a principal axis.

Principal second moments of area

Second moments about the principal axes.

About principal axes second moments of area will be at minimum and maximum.

Centroidal principal axes

Principal axes through the centroid.

(i) Note

Any axis of symmetry is a centroidal principal axis.

Beams

- $\bullet \ \ \log \ (\, L >> B, D\,)$
- axis of the beam is straight
- constant cross-section throughout its length

Classified by supporting conditions

First 3 are the mandatory ones in s1.

u.d.l means uniformly distributed load.

Туре	Image
Simply supported beam	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Cantilevered beam	u.d.l. ₩
Overhanging beam	$\frac{\mathbf{w}_1}{\mathbf{w}_2}$
Propped cantilevered beam	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Continuous beam	W_1 W_2 $u.d.l.$

Туре	Image
Fixed beam	

At a section

- ullet P Normal force / Axial force
- $\bullet \ \ S_y, S_y$ Shear forces along y and z axis
- ullet M_x Twisting moment / Torque
- $\bullet \ \ M_y, M_z$ Bending moments about $\, y \,$ and $\, z \,$ axis

Degress of freedom

A plane member have 3 degrees of freedom. Any of the 3 can be restrained.

- ullet Displacement in x -direction
- ullet Displacement in y -direction
- ullet Rotation about z -direction

SFD & BMD

Sign convention

- Bending moment
 - Hogging (curves upwards in the middle) is (+) ve
 - Sagging (curves downwards in the middle) is (-) ve
- Shear force
 - Clockwise shear is (+) ve.
 - o Counterclockwise shear is (-) ve.

Pure bending

A member is in pure bending when shear force is 0 and bending moment is a constant.

Point of Contraflexure

The point about which bending moment is 0, and changes its sign through the point.

Distributed load, shear force & bending moment

Suppose a beam is under a distributed load of w=f(x) per unit length.

$$\frac{\mathrm{d}S}{\mathrm{d}x} = -w$$

$$\frac{\mathrm{d}M}{\mathrm{d}x} = -S \wedge \frac{\mathrm{d}^2 M}{\mathrm{d}x^2} = w$$

Deflection of a beam

Suppose a simply supported beam is applied a load of W at mid-span.

$$S_{
m max} = rac{WL}{4I} ~\wedge~ D_{
m max} = rac{WL^3}{48EI}$$

Here:

- ullet $S_{
 m max}$ Maximum stress
- ullet $D_{
 m max}$ Deflection
- ullet W Load
- ullet L Span length
- ullet Young's modulus
- ullet I Second moment of cross-sectional area

Principle of Superposition

A beam with multiple loads can be split into multiple systems each with a single load. Reason for doing so is the ease of calculations.

Values will be the sum of each system's corresponding value.

Structural Elements

3 types:

- Bars (1D)
- Plates and Shells (2D)
- Blocks (3D)

Bar elements are only focused for s1.

Pin Joint

Doesn't exert a moment. Free rotations are allowed. When only pin joints are used, bars will have only axial forces.

Bars

Here

- ullet N Axial force
- ullet S_x,S_y Shear force
- *M*_{*x*}

Types of bars

Axially loaded

Generally in trusses, pin joints are considered.

- Predominant tension Ties
- Predominant compression Struts

Flexural

• Predominant bending - beams

Torsional

• Predominant torque - shafts

Trusses

Also known as Ties-Struts model.

Definition

An assembly of members used to span long distances. Idealized as

- Connected by **frictionless** pin joints at their ends
- Developing axial forces

Types

2 types:

- Plane truss (2D)
- Space truss (3D)

A truss requires 3 external reactions for equilibrium.

Predominant force is axial force.

Advantages of truss

- High span
- Material efficiency

Triangulation

To create a truss:

- Start with a triangle (3 bars and 3 joints)
- Add 2 more bars and 1 joint repeatedly

This type of truss is a simple truss.

Simple (Closed) Truss

When a truss is only made of bars and joints.

Open Truss

When a truss is pinned directly to a foundation. It has 1 member & 2 free joints less than a closed truss.

Stability of trusses

When a truss is:

- unstable: it's called a mechanism
- stable: it's called a structure

Stable truss

When the shape cannot be altered, the structure is internally stable.

Stable & determinate (simply stiff)

Determinate means internal forces can be determined by laws of statics alone.

Stable & indeterminate

Indeterminate means laws of statics alone are not sufficient to determine forces; relative stiffness of members will influence the solution (Indeterminate trusses are safer).

Unstable truss

When the shape can be altered, the truss is called a mechanism.

Necessary condition for being simply stiff

These are necessary (but not sufficient) conditions.

Here:

- m Number of members (bars)
- *j* Number of joints

For a 2D simple (closed) truss

- ullet m < 2j-3 truss is unstable
- ullet $m=2j-3\,$ truss is determinate if stable
- $\bullet \quad m>2j-3 \ \ \hbox{- truss is indeterminate if stable}$

For a 2D open truss

- ullet m<2j truss is unstable
- ullet m=2j truss is determinate if stable
- ullet m>2j truss is indeterminate if stable

For a 3D simple (closed) truss

$$m = 3j - 6$$

For a 3D open truss

$$m = 3j$$

Analysis of Trusses

Deviations from the ideal in real trusses.

- Loads are not applied only at joints; hence there is bending in members
- · Joints are not perfectly pinned, so moments can be developed at joints

Method of Joints

Principle

Since the truss is in equilibrium, each pin joint must also be in equilibrium.

(i) Note

2 equilibrium equations can be written at each joint - vertical & horizontal.

Sign convention

Forces acting on each joint is marked. Tensile forces are positive. Compressive forces are negative.

Method

- Find external reactions using equilibrium equations for the entire truss.
- Start with a joint with only 2 unknown joint forces.
- Mark the forces (consider all forces are tensile) acting on the joint.
- Find the unknown forces at the selected joint, using 2 equilibrium equations for the joint.
- Go to all other joints in turn and find forces in all the members.

Special cases

Case	Description
A C C	$F_{ m AX} = F_{ m XB}, F_{ m DX} = F_{ m XC}$
P C D B	$F_{ m P}=F_{ m XB}, F_{ m DX}=F_{ m XC}$

Case

Description

$$F_{
m DX} = F_{
m XC}$$

$$F_{
m DX}=F_{
m XC}=0$$

Method of Sections

Principle

Since the truss is in equilibrium, each of its section must be in stable equilibrium.

Method

- Decide on which member's internal force must be calculated.
- Cut the truss through 3 or less members including the target member.
- Internal forces in cut members become external forces. Can be represented as tensile forces.
- Use equilibrium equations for RHS or LHS section to find the internal forces.

Beam Analogy (Approximate) method

In this method, the internal forces are found assuming the elongated truss is a beam.

i For a simply supported beam

- ullet Maximum bending moment is at mid-span: $M_{
 m max}=rac{wL^2}{8}$
- Maximum shear force is at the supports: $\frac{wL}{2}$

Here:

- Chord members horizontal members
- Web members diagonal members
- ullet d truss depth

In the truss,

• Bending moment is carried by chord members.

Bending moment =
$$F_{\mathrm{chord}} \times d$$

· Shear force is carried by vertical component of web member force

(i) Pratt & Howe type trusses

Pratt type truss is shown below.

Internal force in web members are tensile.

Howe type truss is a shown below.

Internal force in web members are compressive.

Usually **Pratt type** is cost-efficient. To make sure a howe type truss is strong enough like pratt type, web members must be shorter and thicker.

Indeterminate Trusses

When a truss is indeterminate, one or more compatibility equations (related to truss deformation) must be used.

This PDF is saved from https://s1.sahithyan.dev