Mbed OS The Things Network Madrid

¿Qué es un RTOS?

- Sistema operativo de tiempo real
- Capa de abstracción entre el hardware y el programador
- Determinista: Cada operación tiene un tiempo fijo asignado para ejecutarse (o fallar).
- Conceptos:
 - Semáforos
 - Locks/Mutexes
 - Multi-Treading

Mbed simulator

https://simulator.mbed.com/ Experimental Mbed OS 5

> Si falla, insistir pulsando nuevamente el botón download que hay a la derecha de Add component

GPIO

Table 19. STM32WLE5/E4xx pin definition (continued)

	Table 19. 31M32WEL3/E4XX pm definition (continued)									
Pir	n numb	oer			0			Additional functions		
UFQFPN48	WLCSP59	UFBGA73	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions			
11	K11	H5	VDD	S	-	-	-	-		
12	J10	J1	PA4	I/O	FT	-	RTC_OUT2, LPTIM1_OUT, SPI1_NSS, USART2_CK, DEBUG_SUBGHZSPI_ NSSOUT, LPTIM2_OUT, CM4_EVENTOUT	-		
13	H9	J2	PA5	I/O	FT	-	TIM2_CH1, TIM2_ETR, SPI2_MISO, SPI1_SCK, DEBUG_SUBGHZSPI_ SCKOUT, LPTIM2_ETR, CM4_EVENTOUT	-		
14	G8	F4	PA6	I/O	FT	-	TIM1_BKIN, I2C2_SMBA, SPI1_MISO, LPUART1_CTS, DEBUG_SUBGHZSPI_ MISOOUT, TIM16_CH1, CM4_EVENTOUT	-		
15	E8	НЗ	PA7	I/O	FT_fa	-	TIM1_CH1N, I2C3_SCL, SPI1_MOSI, COMP2_OUT, DEBUG_SUBGHZSPI_ MOSIOUT, TIM17_CH1, CM4_EVENTOUT	-		
1										

GPIO

General Purpose Input Output

Configurable for a range of signals

Advantages
Saves space
Improves flexibility

API: Clases y métodos

https://os.mbed.com/docs/mbed-os/v6.15/apis/digitalout.html

DigitalOut class reference

Nomenclatura de los pines

- El emulador está basado en el NXP LPC1768
- https://github.com/ARMmbed/mbedos/blob/master/targets/TARGET_NXP/T ARGET_LPC176X/TARGET_MBED_LPC1 768/PinNames.h
- Podríamos cambiar en el código anterior p5 por P0_9 y funcionaría igual

```
PIN_INPUT,
PIN_OUTPUT
```

DigitalIn

	DigitalIn (PinName pin)
	Create a DigitalIn connected to the specified pin. More
	DigitalIn (PinName pin, PinMode mode)
	Create a DigitalIn connected to the specified pin. More
	~DigitalIn ()
	Class destructor, deinitialize the pin. More
int	read ()
	Read the input, represented as 0 or 1 (int) More
woid	mode (DinMede pull)

Los modos pull son:

PullUp, PullDown, PullNone, OpenDrain
 Hay que poner siempre wait en los bucles infinitos

PWMOut

```
#include "mbed.h"
    PwmOut miLED(p5);
    int main() {
 6 =
        while(1) {
             for(float i=0;i<1;i=i+0.1){
 7 =
                 miLED.write(i);
 8
 9
                 wait(0.5);
10
11 🔻
             for(float i=1;i>0;i=i-0.1){
                 miLED.write(i);
12
                 wait(0.5);
13
14
15
16
```

□ PwmOut Class Reference

Dublic Manshau Functions

Public Men	nber Functions
	PwmOut (PinName pin)
	Create a PwmOut connected to the specified pin. More
	PwmOut (const PinMap &pinmap)
	Create a PwmOut connected to the specified pin. More
void	write (float value)
	Set the output duty-cycle, specified as a percentage (float) More

AnalogIn

Public Mem	nber Functions
	AnalogIn (const PinMap &pinmap, float vref=MBED_CONF_TARGET_DEFAULT_ADC_VREF
	Create an AnalogIn, connected to the specified pin. More
	AnalogIn (PinName pin, float vref=MBED_CONF_TARGET_DEFAULT_ADC_VREF)
	Create an AnalogIn, connected to the specified pin. More
float	read ()
	Read the input voltage, represented as a float in the range [0.0, 1.0]. More

Symbol	Pin/ball				No todas las ninas tianan funcionalidad ADC	
	LQFP100	No todos los pines tienen funcionalidad AE El p15 del LPC1768 es el P0_23, que es entrada 0 del ACD 0.		o15 del LPC1768 es el P0_23, que es la		
P0[23]/AD0[0]/	9	E5	D5	[2]	I/O	P0[23] — General purpose digital input/output pin.
12SRX_CLK/ CAP3[0]					I	AD0[0] — A/D converter 0, input 0.
CAPS[0]					I/O	I2SRX_CLK — Receive Clock. It is driven by the master and received by the slave. Corresponds to the signal SCK in the <i>I</i> ² <i>S-bus specification</i> . (LPC1769/68/67/66/65/63 only).
					I	CAP3[0] — Capture input for Timer 3, channel 0.
D01243/4 D0143/ 0 D4 D4 I21 UO BA				121	1/0	PATA41 Concept numbers digital input/output his

AnalogIn y PwmOut

```
#include "mbed.h"

PwmOut miLED(p5);
AnalogIn miPot(p15);

int main() {
    while (1) {
        miLED.write(miPot.read());
        printf("Intensidad: %.2f\n", miLED.read());
        wait_ms(500);
}

and the product of the pro
```


Serial output

Intensidad: 0.39
Intensidad: 0.39

Interrupciones externas

Public	Member Functions								
	InterruptIn (PinName pin)								
	Create an InterruptIn connected to the specified pin. More								
	InterruptIn (PinName pin, PinMode mode)								
	Create an InterruptIn connected to the specified pin, and the pin configured to the specified mode. More								
int	read ()								
	Read the input, represented as 0 or 1 (int) More	8.7.2	Interr						
	operator int ()		Each p interrup source						
	An operator shorthand for read() More								
void	rise (Callback< void()> func)		Any pi						
	Attach a function to call when a rising edge occurs on the input. More		progra						
void	fall (Callback< void()> func)								
	Attach a function to call when a falling edge occurs on the input. More								

8.7.2 Interrupt sources

Each peripheral device has one interrupt line connected to the NVIC but may have several interrupt flags. Individual interrupt flags may also represent more than one interrupt source.

Any pin on Port 0 and Port 2 (total of 42 pins) regardless of the selected function, can be programmed to generate an interrupt on a rising edge, a falling edge, or both.

Interrupciones externas

```
#include "mbed.h"
    DigitalOut miLED(p5);
    InterruptIn miBoton(p6);
 7 ▼ void alternarLED() {
        printf("LED alternado\n");
        miLED.write(!miLED.read());
10
11
12
13
14 * int main() {
15
        miBoton.fall(&alternarLED);
16
17 -
        while(1){
18
            wait(1);
19
20
21
```


Serial output

LED alternado

RAK3172

Features

- Based on STM32WLE5CCU6
- LoRaWAN 1.0.3 specification compliant
- Supported bands: EU433, CN470, IN865, EU868, AU915, US915, KR920, RU864, and AS923-1/2/3/4
- . LoRaWAN Activation by OTAA/ABP
- · LoRa Point to Point (P2P) communication
- Easy to use AT Command Set via UART interface
- Long-range greater than 15 km with optimized antenna
- Arm Cortex-M4 32-bit
- 256 kbytes flash memory with ECC
- 64 kbytes RAM
- Ultra-Low Power Consumption of 1.69 μA in sleep mode
- Supply Voltage: 2.0 V ~ 3.6 V
- Temperature Range: -40° C ~ 85° C

RAK3272

Figure 2: RAK3272S Breakout Board Pinout

RAK3172 en Mbed Studio 1/3

- Mbed Studio no incluye aún el módulo RAK3172
- Afortunadamente Hallard ha incluido una en la librería de "Custom Targets" de Mbed
 - https://github.com/ARMmbed/stm32customtargets
 - Procedimiento:
 - 1. Crear un programa nuevo
 - 2. Importar la librería stm32customtargets
 - 3. Copiar el archivo custom_targets.json de la librería anterior a la carpeta raíz del proyecto
 - 4. Seleccionar el nuevo target RAK3172_BREAKBOARD

RAK3172 en Mbed Studio 2/3

RAK3172 en Mbed Studio 3/3

Conexión del ST-Link v2

Se utiliza el pin 3.3V del ST-Link para alimentar el RAK3272, pero además tiene que conectarse a los pines TVCC para que el ST-Link "sepa" cuál es la tensión de alimentación del target.

Blink en el RAK3272

