Endogenous Politics and the Design of Trade Institutions

Kristy Buzard
Syracuse University
kbuzard@syr.edu

May 19, 2018

Preview

Overview

The Questions

- 1. Can trade agreements (TAs) be used to manipulate domestic lobbying incentives?
 - ► Government objective function
- 2. What is the optimal design of various trade agreement properties?
 - ► Exogenous vs. endogenous politics

Overview

Political Economy of Trade Institutions

With a few exceptions, TA design literature has taken political economy forces to be exogenous. I:

- ► endogenize politics into a standard model for studying TA design questions
 - ▶ use this to examine gov't objective
- carefully distinguish between dynamics induced by exogenous and endogenous politics for
 - ▶ base case with tariff caps (see paper)
 - ► tariff caps with escape clause
- ► examine escape clause design when both exogenous and endogenous forces are present

Preview

Overview

Results

- ► TAs may be used to manipulate domestic political actors (even with no long-run distortions)
- ► Simple modeling framework can capture results from models of both exogenous and endogenous politics
 - ► For both tariff caps and escape clauses, endogenous politics changes outcomes dramatically
- ▶ Standard, theoretical escape clause can't work in the presence of endogenous political pressure
 - ▶ Points to real-world design of WTO Agreement on Safeguards
 - ► May explain why escape clause has fallen out of use

Model

Economy

Two countries: home and foreign (*)

- ► Separable in two goods: X and Y
 - \triangleright P_i : home price of good i
 - \triangleright P_i^* : foreign price of good i
- ▶ Demand identical for both goods in both countries
 - ► $D(P_i) = 1 P_i$
- ▶ Supply: $Q_X^*(P_X) > Q_X(P_X) \ \forall P_X$; symmetric for Y
 - $P = Q_X(P_X) = \frac{P_X}{2}; Q_Y(P_Y) = P_Y$
 - ▶ Home net importer of X, net exporter of Y

Policy and Politics

Home levies τ on X, Foreign levies τ^* on Y

- $ightharpoonup P_X = P_Y^W + \tau$ increasing in τ
- $\blacktriangleright \pi_X(P_X)$ increasing in P_X , therefore also τ

Non-tradable specific factors motivate political activity

Economic and Political Structure

Timeline

Each period:

- 1. Trade Agreement Formed
 - i. Governments set trade policy in international agreement
- 2. Domestic Politics Played Out
 - i. Exogenous shocks are realized AND/OR
 - ii. Import-competing industry lobbies government for protection
- 3. Tariffs are Applied
 - Given political pressure, governments choose applied tariff levels

Applied Tariff Decision

Model •00

Baldwin-style government objective function:

$$W = CS_X(\tau) + \gamma(s, e)\pi_X(\tau) + CS_Y(\tau^*) + \pi_Y(\tau^*) + TR(\tau)$$

- ▶ Standard *except* weight on import-competing profits:
 - ► s: exogenous shock
 - ▶ e: lobbying effort
- \triangleright Optimal applied tariff is a function of $\gamma(s, e)$
 - ► Ignores foreign welfare
 - ► Takes into account trade agreement enforcement
- \triangleright Assume γ , γ^* is private info of each government

Domestic Political Pressure: Two potential sources

1. Exogenous shocks

Model 000

- ▶ Shock directly to γ as in Bagwell & Staiger (2005): γ , γ^* with CDF $H(\gamma)$ on support $[\gamma, \overline{\gamma}]$; or
- Can take γ as a function of shock s: $\gamma(s)$
- 2. Endogenous effort choice of lobby, e
 - ▶ Lobby chooses effort to maximize profits, $\pi(\cdot)$, net of lobbying effort, e
 - ▶ Call lobby's optimal effort choice e^L

$$e^{L} = \max_{e} \pi(\tau(\gamma(e))) - e$$

Trade Agreement Negotiation

Model as Nash bargain between the two countries' governments

- ► Maximize joint political welfare
- ▶ Disagreement point: non-cooperative outcome

Once agreement is set, cooperation enforced by repeated-game punishments conditioned on history, history + DSB signal

Restraining Political Pressure through TAs

- Will TA be used to discourage lobbying? Depends on how gov't welfare varies in γ
- With standard Baldwin-style objective function, welfare always increases with γ

$$W = CS_X(\tau) + \gamma \pi_X(\tau) + CS_Y(\tau^*) + \pi_Y(\tau^*) + TR(\tau)$$

- ► Isomorphic to 'Protection for Sale' objective function
- ▶ If lobbying effort subtracted as cost from W, welfare no longer monotonic in γ
 - ▶ If weights must sum to 1, welfare also not monotonic in γ

Objective Function

Objective Function

Comparison to the Literature

Others derive non-monotonicity in lobbying effort/tariff

- ► Maggi & Rodriguez-Clare (1998/2007): dynamic firm investment disortions
- ▶ Mitra (2002): lobbies pay investment cost to form

Here, I acknowledge the gov't objective function may be fundamentally non-monotonic

- ▶ Achieve same results with simpler model
- ► Endogenous politics in a wider range of questions
- ► Can have both endogenous / exogenous at the same time
 - \Rightarrow unify the exogenous and endogenous politics literatures

Escape Clause with Exogenous Politics

When γ is only exogenous (Bagwell & Staiger 2005):

- ► Simple escape clause: add a second (higher) negotiated weak binding
 - Escape clause is designed to allow higher applied tariff when realization of γ is high
- ► Improves political efficiency
- ► Can improve self-enforcement
- ▶ Incentive compatibility becomes an issue

Escape Clause

Incentive compatibility

Escape clause is meant to allow higher applied tariff when realized γ is high

- $\triangleright \gamma$ is private information
- ► We want truthful revelation, but truth-telling must be in the best interest of each gov't
- Gov't can exploit TOT externality by reporting high γ even when γ is low
 - ► Only way to prevent this is with some cost of using escape clause

When γ is *only* endogenous:

- ▶ Benefit of escape clause from exogenous case is gone
- ► Assuming lower binding is set to maximize political welfare, escape clause encourages inefficiently high lobbying effort / protection
- ► Incentive compatibility still an issue, but often not the central one
 - ► If lobby's preferred tariff ≥ escape clause binding, gov't experiences high γ, no need to lie

If γ is only endogenous, escape clause causes problems, provides no benefits

When the world is more complicated...

Now suppose political pressure is a result of both endogenous and exogenous forces (i.e. $\gamma(s, e)$):

- ▶ Want escape clause to deal with exogenous shock
- ► But endogenous part ⇒ lobbying incentives make it hard to implement escape clause

Ineffectiveness of Political Criterion for Escape Clause

Assume $\gamma(s,e)=\gamma(s)+\gamma(e)$. If an escape clause conditions on $\gamma(s,e)$ and $\gamma(s^L)<\gamma(s^H)<\gamma(e^L)$, the lower "normal" tariff binding will never be applied.

Escape Clause

When the world is more complicated... (con't)

- \blacktriangleright To make escape clause work, can't use γ
 - ▶ Need signal of shock that is not influenced by endogenous pressure
- ightharpoonup Can condition directly on s
 - ► This seems to be what the WTO actually does

Escape Clause

An Escape Clause for a Complicated World

Assume a WTO-like set up: gov't can choose between τ^a , 'escape' tariff $\tau(s)$, or politically-optimal τ matched to $\gamma(s, e)$

- ▶ Assume s verifiable, so no punishment for $\tau(s)$
- ▶ Punishment for $\tau(\gamma(s, e)) > \tau(s)$

Optimal τ^a may lead government to apply $\tau(\gamma(s, e))$

- ▶ When this happens, it leads to dispute, not valid escape
- ▶ Otherwise, no extra rent-seeking is encouraged

May explain why escape clause has fallen out of use

Conclusion

Taking into account endogenous political forces alongside exogenous ones in this simplified modeling framework

- ► demonstrates that TAs can be used to discourage lobbing activity in general
- ► can nest established results and provide new insights
- ► can answer questions about optimal design of trading institutions more fully
 - ▶ provides additional general explanation for tariff caps
 - ► helps explain the structure and enforcement of the WTO Safeguards measure

Future Work

- ▶ Application of framework to other design questions
- ▶ Interactions between $\gamma(s)$ and $\gamma(e)$
- ► Choice between protective measures over time