Chapitre 12: Intégration de fonctions positives

1 Comparaison par inégalité

Proposition 1

- Soient $a \in \mathbb{R}$ et f une fonction continue **positive** sur $[a, +\infty[$. L'intégrale $\int_a^{+\infty} f(t)dt$ converge si et seulement si $x \mapsto \int_a^x f(t)dt$ est majorée sur $[a, +\infty[$.
- Soient $b \in \mathbb{R}$ et f une fonction continue **positive** sur $]-\infty,b]$. L'intégrale $\int_{-\infty}^b f(t)dt$ converge si et seulement si $x \mapsto \int_{\mathbb{R}}^b f(t)dt$ est majorée sur $]-\infty,b]$.

Remarque 1

Il s'agit d'une conséquence du théorème de la limite monotone : la fonction $x \mapsto \int_a^x f(t)dt$ (resp. $x \mapsto \int_x^b f(t)dt$) est croissante sur $[a, +\infty[$ (resp. décroissante sur $]-\infty, b]$).

Proposition 2 (Comparaison par inégalité)

- Soient $a \in \mathbb{R}$ et f, g deux fonctions continues sur $[a, +\infty[$ et **positives au voisinage de** $+\infty$ telles que, au voisinage de $+\infty$: $0 \le f \le g$.
 - 1. Si $\int_a^{+\infty} g(t)dt$ converge alors $\int_a^{+\infty} f(t)dt$ converge.
 - 2. Si $\int_{a}^{+\infty} f(t)dt$ diverge alors $\int_{a}^{+\infty} g(t)dt$ diverge.
- Soient $b \in \mathbb{R}$ et f, g deux fonctions continues sur $]-\infty, b]$ et **positives au voisinage de** $-\infty$ telles que, au voisinage de $-\infty$: $0 \le f \le g$.
 - 1. Si $\int_{-\infty}^{b} g(t)dt$ converge alors $\int_{-\infty}^{b} f(t)dt$ converge.
 - 2. Si $\int_{-\infty}^{b} f(t)dt$ diverge alors $\int_{-\infty}^{b} g(t)dt$ diverge.

Remarque 2

Dire qu'au voisinage de $\pm \infty$ on a $0 \le f \le g$ signifie :

Exemple 1

Étudier la nature de $\int_{1}^{+\infty} \frac{e^{-t}}{t^2} dt$.

Déterminer la nature des intégrales suivantes.

$$1. \int_{1}^{+\infty} \frac{t}{t + \sqrt{t}} dt;$$

$$2. \int_1^{+\infty} \frac{dt}{e^t + e^{-t}}.$$

2 Comparaison par négligeabilité

Proposition 3 (Comparaison par négligeabilité)

• Soient $a \in \mathbb{R}$ et f, g deux fonctions continues sur $[a, +\infty[$ et **positives au voisinage de** $+\infty$ telles que $f(x) = \underset{x \to +\infty}{o} (g(x))$.

1. Si
$$\int_a^{+\infty} g(t)dt$$
 converge alors $\int_a^{+\infty} f(t)dt$ converge.

2. Si
$$\int_{a}^{+\infty} f(t)dt$$
 diverge alors $\int_{a}^{+\infty} g(t)dt$ diverge.

• Soient $b \in \mathbb{R}$ et f, g deux fonctions continues sur $]-\infty, b]$ et **positives au voisinage de** $-\infty$ telles que $f(x) = \underset{x \to -\infty}{o} (g(x))$.

1. Si
$$\int_{-\infty}^{b} g(t)dt$$
 converge alors $\int_{-\infty}^{b} f(t)dt$ converge.

2. Si
$$\int_{-\infty}^{b} f(t)dt$$
 diverge alors $\int_{-\infty}^{b} g(t)dt$ diverge.

Méthode 1 (Comparaison avec les exemples de référence)

En pratique, pour étudier la nature d'une intégrale d'une fonction positive, on cherche à la comparer avec l'un des exemples de référence. Par exemple, si f continue sur $[c, +\infty[$ (c>0) et positive au voisinage de $+\infty$ (raisonnement à refaire à chaque fois qu'on l'utilise) :

1.
$$\sin\lim_{x\to+\infty}x^af(x)=0$$
 alors $f(x)=\int_{x\to+\infty}^{\infty}\left(\frac{1}{x^a}\right)donc\int_{c}^{+\infty}f(t)dt$ converge $\sin a>1$ par comparaison avec une intégrale de Riemann;

2.
$$si \lim_{x \to +\infty} x^a f(x) = +\infty$$
 alors $\frac{1}{x^a} = o(f(x)) donc \int_c^{+\infty} f(t) dt$ diverge $si \ a \le 1$ par comparaison avec une intégrale de Riemann.

Exemple 2

Test 2 (Voir solution.)

Déterminer la nature de l'intégrale :

$$\int_{2}^{+\infty} \frac{1}{\ln(t)} dt.$$

3 Comparaison par équivalence

Proposition 4 (Comparaison par équivalence)

- Soient $a \in \mathbb{R}$ et f, g deux fonctions continues sur $[a, +\infty[$ et **positives au voisinage de** $+\infty$ telles que $f(x) \underset{x \to +\infty}{\sim} g(x)$. Alors $\int_a^{+\infty} g(t) dt$ et $\int_a^{+\infty} f(t) dt$ sont de même nature.
- Soient $b \in \mathbb{R}$ et f, g deux fonctions continues sur $]-\infty$, b] et **positives au voisinage de** $-\infty$ telles que $f(x) \underset{x \to -\infty}{\sim} g(x)$. Alors $\int_{-\infty}^{b} g(t) dt$ et $\int_{-\infty}^{b} f(t) dt$ sont de même nature.

Méthode 2

En pratique, pour étudier la nature d'une intégrale d'une fonction positive, on cherche à en déterminer un équivalent simple.

Exemple 3

Déterminer la nature de $\int_{1}^{+\infty} \left(\sqrt{t+1} - \sqrt{t} \right) dt$.

Test 3 (Voir solution.)

Déterminer la nature des intégrales suivantes.

$$1. \int_{1}^{+\infty} \frac{1}{\sqrt{t^2 + t}} dt;$$

$$2. \int_{2}^{+\infty} \frac{\sqrt{t}}{e^{t} - 1 - t} dt.$$

3.
$$\int_0^{+\infty} \frac{1}{t^2+1} dt$$
.

Remarque 3

Tous les résultats énoncés dans cette partie pour les fonctions f continues positives se transposent pour les fonctions continues négatives en considérant -f (l'important est que la fonction soit de signe constant).

4 Objectifs

- 1. Connaître par coeur les critères de convergence des intégrales impropres de fonctions continues positives (comparaison, négligeabilité, équivalence).
- 2. Savoir déterminer la nature d'une intégrale impropre d'une fonction continue positive en utilisant les critères de comparaison, négligeabilité, équivalence.