Exercice 5

Sur un axe Ox, on fixe au point O une charge $q_1 = 2q = 2nC$.

- 1- Déterminer au point A(x=d=30cm) le vecteur champ \vec{E} et le potentiel V électriques. Représentez \vec{E} à l'échelle 1cm \rightarrow 100V/m
- 2- On fixe au point A une deuxième charge $q_2=q$, déterminer la force électrique \vec{F} qu'exerce q_1 sur q_2 et l'énergie potentielle Ep de q_2 .
- 3- Une troisième charge q_3 =-4q est placée en un point M d'abscisse x entre les points O et A, déterminer en fonction de x l'expression de la résultante \vec{F} des forces appliquées par les charges q_1 et q_2 sur q_3 . En déduire la position d'équilibre de q_3 .
- 4- Calculer l'énergie interne du système de charges ainsi constitué. (q₃ dans sa position d'équilibre).

Exercice6

Quatre charges ponctuelles sont placées aux sommets d'un carré de côté a :

Déterminer le vecteur champ électrostatique \vec{E} et le potentiel V au centre du carré. Application numérique : q = 1 nC et a = 5 cm.

Exercice7

Trois charges identiques $q_1=q_2=q_3=q=1$ nC sont fixées aux sommets d'un triangle équilatéral de côté a=2cm.

- 1- Déterminer le vecteur champ \vec{E} et le potentiel V électriques créés par les trois charges au centre de gravité du triangle.
- 2- Déterminer la résultante \vec{F} des forces appliquées sur une charge par les deux autres.
- 3- Si les charges sont libérées, décrire le mouvement de chaque charge.

exercice8

Trois charges ponctuelles +q, -q et -q sont placées aux sommets d'un triangle équilatéral de oôté a.

Déterminer les caractéristiques du champ électrostatique régnant au centre du triangle. Application numérique : q = 0.1nC et a = 10 cm.

Exercice 9

On considère deux charges électriques ponctuelles q positives, fixées aux points A($a\sqrt{2}$,0) et B(0, $a\sqrt{2}$) figure 5.

- 1- Déterminer, en fonction de la distance r=OM, le potentiel électrique V® au point M de la médiatrice(Δ) du segment AB.
- 2- En déduire l'intensité du champ électrique \vec{E} au point M. Représenter qualitativement \vec{E}
- 3- Avec quelle énergie cinétique minimale doit-on lancer de l'infini, le long de la droite (Δ) une charge q' positive pour qu'elle atteigne le point I milieu de AB?
- 4- Déterminer l'énergie interne du système ainsi formé par les trois charges (q'étant au point I)
- 5- Que se passe t-il si on écarte légèrement la charge q' du point l :
 - a) suivant la droite (Δ) ? Justifier
 - b) suivant le segment AB? Justifier

