June 2006 6666 Core Mathematics C4 Mark Scheme

Question Number	Scheme		Marks
1.	$\left\{\frac{\cancel{x}\cancel{x}}{\cancel{x}\cancel{x}} \times\right\} = 6x - 4y\frac{dy}{dx} + 2 - 3\frac{dy}{dx} = 0$ $\left\{\frac{dy}{dx} = \frac{6x + 2}{4y + 3}\right\}$	Differentiates implicitly to include either $\pm ky\frac{dy}{dx}$ or $\pm 3\frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$.) Correct equation.	M1 A1
	$\left\{ \frac{dy}{dx} = \frac{6x+2}{4y+3} \right\}$	not necessarily required.	
	At (0, 1), $\frac{dy}{dx} = \frac{0+2}{4+3} = \frac{2}{7}$	Substituting x = 0 & y = 1 into an equation involving $\frac{dy}{dx}$; to give $\frac{2}{7}$ or $\frac{-2}{-7}$	dM1; A1 cso
	Hence m(N) = $-\frac{7}{2}$ or $\frac{-1}{\frac{2}{7}}$	Uses m(T) to 'correctly' find m(N). Can be ft from "their tangent gradient".	A1√ oe.
	Either N : $y-1 = -\frac{7}{2}(x-0)$ or N : $y = -\frac{7}{2}x + 1$	$y-1=m(x-0) \ with$ 'their tangent or normal gradient'; or uses $y=mx+1$ with 'their tangent or normal gradient';	M1;
	N : $7x + 2y - 2 = 0$	Correct equation in the form $ \mbox{'ax+by+c=0'} ,$ where a, b and c are integers.	A1 oe cso
			[7]
			7 marks

Beware: $\frac{dy}{dx} = \frac{2}{7}$ does not necessarily imply the award of all the first four marks in this question.

So please ensure that you check candidates' initial differentiation before awarding the first A1 mark.

Beware: The final accuracy mark is for completely correct solutions. If a candidate flukes the final line then they must be awarded A0.

Beware: A candidate finding an m(T) = 0 can obtain A1ft for $m(N) = \infty$, but obtains M0 if they write $y - 1 = \infty(x - 0)$. If they write, however, N: x = 0, then can score M1.

Beware: A candidate finding an m(T) = ∞ can obtain A1ft for m(N) = 0, and also obtains M1 if they write y - 1 = 0(x - 0) or y = 1.

Beware: The final **cso** refers to the whole question.

Question Number	Scheme		Marks
Aliter 1. Way 2	$\left\{\frac{\cancel{x}\cancel{x}}{\cancel{x}\cancel{y}} \times\right\} 6x\frac{dx}{dy} - 4y + 2\frac{dx}{dy} - 3 = 0$	Differentiates implicitly to include either $\pm kx \frac{dx}{dy}$ or $\pm 2 \frac{dx}{dy}$. (Ignore $\left(\frac{dx}{dy} = \right)$.) Correct equation.	M1 A1
Way 2	$\left\{ \frac{dx}{dy} = \frac{4y+3}{6x+2} \right\}$	not necessarily required.	
	At (0, 1), $\frac{dx}{dy} = \frac{4+3}{0+2} = \frac{7}{2}$	Substituting x = 0 & y = 1 into an equation involving $\frac{dx}{dy}$; to give $\frac{7}{2}$	dM1; A1 cso
	Hence m(N) = $-\frac{7}{2}$ or $\frac{-1}{\frac{2}{7}}$	Uses m(T) or $\frac{dx}{dy}$ to 'correctly' find m(N). Can be ft using "-1. $\frac{dx}{dy}$ ".	A1√ oe.
	Either N : $y - 1 = -\frac{7}{2}(x - 0)$ or N : $y = -\frac{7}{2}x + 1$	$y-1=m(x-0) \ \text{with}$ 'their tangent, $\frac{dx}{dy}$ or normal gradient'; or uses $y=mx+1$ with 'their tangent, $\frac{dx}{dy}$ or normal gradient';	M1;
	N : $7x + 2y - 2 = 0$	Correct equation in the form $\ 'ax+by+c=0', \ $ where a, b and c are integers.	A1 oe cso
			7 marks

Question Number	Scheme		Marks
Aliter	2 2		
1.	$2y^2 + 3y - 3x^2 - 2x - 5 = 0$		
Way 3	$\left(y + \frac{3}{4}\right)^2 - \frac{9}{16} = \frac{3x^2}{2} + X + \frac{5}{2}$		
	$y = \sqrt{\left(\frac{3x^2}{2} + x + \frac{49}{16}\right)} - \frac{3}{4}$		
	dy 1.	Differentiates using the chain rule;	M1;
	$\frac{dy}{dx} = \frac{1}{2} \left(\frac{3x^2}{2} + x + \frac{49}{16} \right)^{-\frac{1}{2}} (3x + 1)$	Correct expression for $\frac{dy}{dx}$.	A1 oe
	At (0, 1), $\frac{dy}{dx} = \frac{1}{2} \left(\frac{49}{16} \right)^{-\frac{1}{2}} = \frac{1}{2} \left(\frac{4}{7} \right) = \frac{2}{7}$	Substituting x = 0 into an equation involving $\frac{dy}{dx}$; to give $\frac{2}{7}$ or $\frac{-2}{-7}$	dM1 A1 cso
	Hence $m(\mathbf{N}) = -\frac{7}{2}$	Uses $m(\textbf{T})$ to 'correctly' find $m(\textbf{N})$. Can be ft from "their tangent gradient".	A1√
	Either N : $y - 1 = -\frac{7}{2}(x - 0)$ or N : $y = -\frac{2}{7}x + 1$	$y-1=m(x-0) \ with$ 'their tangent or normal gradient'; or uses $y=mx+1$ with 'their tangent or normal gradient'	M1
	N : $7x + 2y - 2 = 0$	Correct equation in the form $\ 'ax + by + c = 0'$, where a, b and c are integers.	A1 oe
			[7]
			7 marks

Question Number	Scheme		Marks	3
2. (a)	$3x-1 \equiv A(1-2x)+B$	Considers this identity and either substitutes $X = \frac{1}{2}$, equates coefficients or solves simultaneous equations	complete	
	Let $X = \frac{1}{2}$; $\frac{3}{2} - 1 = B$ \Rightarrow $B = \frac{1}{2}$	·		
	Equate x terms; $3 = -2A \implies A = -\frac{3}{2}$	$A=-\frac{3}{2}$; $B=\frac{1}{2}$	A1;A1	
	(No working seen , but A and B correctly stated ⇒ award all three marks. If one of A or B correctly stated give two out of the three marks available for this part.)			[3]
(b)	$f(x) = -\frac{3}{2}(1-2x)^{-1} + \frac{1}{2}(1-2x)^{-2}$	Moving powers to top on any one of the two expressions	M1	
	$=-\frac{3}{2}\left\{ \frac{1+(-1)(-2x);+\frac{(-1)(-2)}{2!}(-2x)^2+\frac{(-1)(-2)(-3)}{3!}(-2x)^3+\ldots}{3!} \right\}$	Either 1±2x or 1±4x from either first or second expansions respectively	dM1;	
	$+\frac{1}{2}\left\{ \frac{1+(-2)(-2x);+\frac{(-2)(-3)}{2!}(-2x)^2+\frac{(-2)(-3)(-4)}{3!}(-2x)^3+\ldots}{3!} \right\}$	Ignoring $-\frac{3}{2}$ and $\frac{1}{2}$, any one correct $\left\{ \underline{\dots} \right\}$ expansion. Both $\left\{ \underline{\dots} \right\}$ correct.	A1 A1	
	$= -\frac{3}{2} \left\{ 1 + 2x + 4x^2 + 8x^3 + \ldots \right\} + \frac{1}{2} \left\{ 1 + 4x + 12x^2 + 32x^3 + \ldots \right\}$			
	$=-1-x$; $+0x^2+4x^3$	$-1-x$; $(0x^2)+4x^3$	A1; A1	[6]
			9 mark	S

Question Number	Scheme		Marks
Aliter 2. (b) Way 2	$f(x) = (3x-1)(1-2x)^{-2}$	Moving power to top	M1
	$= (3x-1) \times \left(1 + (-2)(-2x); + \frac{(-2)(-3)}{2!}(-2x)^2 + \frac{(-2)(-3)(-4)}{3!}(-2x)^3 + \dots\right)$	$\begin{array}{c} 1\pm 4x;\\ \text{Ignoring } (3x-1),\text{correct}\\ \left(\right)\text{expansion} \end{array}$	dM1; A1
	$= (3x-1)(1+4x+12x^2+32x^3+)$		
	$= 3x + 12x^2 + 36x^3 - 1 - 4x - 12x^2 - 32x^3 + \dots$	Correct expansion	A1
	$=-1-x$; $+0x^2+4x^3$	$-1-x$; $(0x^2)+4x^3$	A1; A1 [6]
Aliter 2. (b) Way 3	Maclaurin expansion		
	$f(x) = -\frac{3}{2}(1-2x)^{-1} + \frac{1}{2}(1-2x)^{-2}$	Bringing both powers to top	M1
	$f'(x) = -3(1-2x)^{-2} + 2(1-2x)^{-3}$	Differentiates to give $a(1-2x)^{-2} \pm b(1-2x)^{-3}$; $-3(1-2x)^{-2} + 2(1-2x)^{-3}$	M1; A1 oe
	$f''(x) = -12(1-2x)^{-3} + 12(1-2x)^{-4}$		
	$f'''(x) = -72(1-2x)^{-4} + 96(1-2x)^{-5}$	Correct $f''(x)$ and $f'''(x)$	A1
	f(0) = -1, $f'(0) = -1$, $f''(0) = 0$ and $f'''(0) = 24$		
	gives $f(x) = -1 - x$; $+ 0x^2 + 4x^3 +$	$-1-x$; $(0x^2)+4x^3$	A1; A1 [6]

Question Number	Scheme		Marks
2. (b) Way 4	$f(x) = -3(2-4x)^{-1} + \frac{1}{2}(1-2x)^{-2}$	Moving powers to top on any one of the two expressions	M1
way 4	$=-3\left\{ \begin{aligned} &(2)^{-1}+(-1)(2)^{-2}(-4x);+\frac{(-1)(-2)}{2!}(2)^{-3}(-4x)^2\\ &+\frac{(-1)(-2)(-3)}{3!}(2)^{-4}(-4x)^3+\ldots \end{aligned} \right\}$	Either $\frac{1}{2} \pm x$ or $1 \pm 4x$ from either first or second expansions respectively	dM1;
	$+\frac{1}{2}\left\{ \underbrace{1+(-2)(-2x);+\frac{(-2)(-3)}{2!}(-2x)^2+\frac{(-2)(-3)(-4)}{3!}(-2x)^3+\ldots} \right\}$	Ignoring -3 and $\frac{1}{2}$, any one correct $\left\{\underline{\dots}\right\}$ expansion. Both $\left\{\underline{\dots}\right\}$ correct.	A1 A1
	$= -3\left\{\frac{1}{2} + x + 2x^2 + 4x^3 + \ldots\right\} + \frac{1}{2}\left\{1 + 4x + 12x^2 + 32x^3 + \ldots\right\}$		
	$=-1-x$; $+0x^2+4x^3$	$-1-x$; $(0x^2)+4x^3$	A1; A1
			[6]

Question Number	Scheme		Marks
3. (a)	Area Shaded = $\int_{0}^{2\pi} 3 \sin(\frac{x}{2}) dx$		
	$= \left[\frac{-3\cos\left(\frac{x}{2}\right)}{\frac{1}{2}}\right]_0^{2\pi}$	Integrating $3\sin\left(\frac{x}{2}\right)$ to give $k\cos\left(\frac{x}{2}\right) \text{ with } k \neq 1.$ Ignore limits.	M1
	$= \left[-6\cos\left(\frac{x}{2}\right)\right]_0^{2\pi}$	$-6\cos\left(\frac{x}{2}\right) \text{ or } \frac{-3}{\frac{1}{2}}\cos\left(\frac{x}{2}\right)$	A1 oe.
	$= [-6(-1)] - [-6(1)] = 6 + 6 = \underline{12}$	<u>12</u>	A1 cao
	(Answer of 12 with no working scores M0A0A0.)		[3]
(b)	Volume = $\pi \int_{0}^{2\pi} \left(3\sin\left(\frac{x}{2}\right)\right)^{2} dx = 9\pi \int_{0}^{2\pi} \sin^{2}\left(\frac{x}{2}\right) dx$	Use of $V = \pi \int y^2 dx$. Can be implied. Ignore limits.	M1
	$\begin{bmatrix} NB: \ \underline{\cos 2x = \pm 1 \pm 2 \sin^2 x} \ \ \text{gives } \sin^2 x = \frac{1 - \cos 2x}{2} \end{bmatrix}$ $\begin{bmatrix} NB: \ \underline{\cos x = \pm 1 \pm 2 \sin^2 \left(\frac{x}{2}\right)} \ \ \text{gives } \sin^2 \left(\frac{x}{2}\right) = \frac{1 - \cos x}{2} \end{bmatrix}$	Consideration of the Half Angle Formula for $\sin^2\left(\frac{x}{2}\right)$ or the Double Angle Formula for $\sin^2 x$	M1*
	$\therefore \text{Volume} = 9(\pi) \int_{0}^{2\pi} \left(\frac{1 - \cos x}{2} \right) dx$	Correct expression for Volume Ignore limits and π .	A1
	$=\frac{9(\pi)}{2}\int\limits_0^{2\pi}\frac{(1-\cos x)}{\cos x}dx$		
	$=\frac{9(\pi)}{2}\left[\underline{x-\sin x}\right]_0^{2\pi}$	Integrating to give $\pm ax \pm b \sin x$; Correct integration $k - k \cos x \rightarrow kx - k \sin x$	depM1*;
	$=\frac{9\pi}{2}\big[(2\pi-0)-(0-0)\big]$		
	$=\frac{9\pi}{2}(2\pi)=\frac{9\pi^2}{2}$ or 88.8264	Use of limits to give either $9 \pi^2$ or awrt 88.8 Solution must be completely correct. No flukes allowed.	A1 cso [6]
		SSTOCK THE HUNCO UNDWEG.	9 marks

Question Number	Scheme		Marks
4. (a)	$x = \sin t$, $y = \sin(t + \frac{\pi}{6})$		
	$\frac{dx}{dt} = \cos t, \frac{dy}{dt} = \cos \left(t + \frac{\pi}{6}\right)$	Attempt to differentiate both x and y wrt t to give two terms in cos	M1 A1
	a. a.	Correct dx/dt and dy/dt	A
	When $t = \frac{\pi}{6}$, $\frac{dy}{dx} = \frac{\cos\left(\frac{\pi}{6} + \frac{\pi}{6}\right)}{\cos\left(\frac{\pi}{6}\right)} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \text{awrt } 0.58$	Divides in correct way and substitutes for t to give any of the four underlined oe: Ignore the double negative if candidate has differentiated $\sin \rightarrow -\cos$	A1
	When $t = \frac{\pi}{6}$, $x = \frac{1}{2}$, $y = \frac{\sqrt{3}}{2}$	The point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ or $\left(\frac{1}{2}, \text{ awrt } 0.87\right)$	B1
	T: $y - \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} (x - \frac{1}{2})$	Finding an equation of a tangent with their point and their tangent gradient or finds c and uses $y = (\text{their gradient})x + \text{"c"}.$ Correct <u>EXACT</u> equation of <u>tangent</u> oe.	dM1 <u>A1</u> oe
	or $\frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} \left(\frac{1}{2} \right) + C \implies C = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{6} = \frac{\sqrt{3}}{3}$		
	or T : $\left[y = \frac{\sqrt{3}}{3} x + \frac{\sqrt{3}}{3} \right]$		[6]
(b)	$y = sin(t + \frac{\pi}{6}) = sint cos \frac{\pi}{6} + cost sin \frac{\pi}{6}$	Use of compound angle formula for sine.	M1
	Nb: $\sin^2 t + \cos^2 t \equiv 1 \implies \cos^2 t \equiv 1 - \sin^2 t$		
	$\therefore x = sint gives cost = \sqrt{(1-x^2)}$	Use of trig identity to find $\cos t$ in terms of x or $\cos^2 t$ in terms of x.	M1
	$\therefore y = \frac{\sqrt{3}}{2} \sin t + \frac{1}{2} \cos t$		
	gives $y = \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{(1 - x^2)}$ AG	Substitutes for sint, $\cos\frac{\pi}{6}$, $\cos t$ and $\sin\frac{\pi}{6}$ to give y in terms of x.	A1 cso
			9 marks

Question Number	Scheme		Marks
Aliter 4. (a) Way 2	$x = sint, y = sin\left(t + \frac{\pi}{6}\right) = sint \cos \frac{\pi}{6} + cost sin \frac{\pi}{6}$	(Do not give this for part (b)) Attempt to differentiate x and y wrt t to give $\frac{dx}{dt}$ in terms of cos and $\frac{dy}{dt}$ in the form $\pm a \cos t \pm b \sin t$	M1
	$\frac{dx}{dt} = \cos t, \frac{dy}{dt} = \cos t \cos \frac{\pi}{6} - \sin t \sin \frac{\pi}{6}$	Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	A1
	When $t = \frac{\pi}{6}$, $\frac{dy}{dx} = \frac{\cos \frac{\pi}{6} \cos \frac{\pi}{6} - \sin \frac{\pi}{6} \sin \frac{\pi}{6}}{\cos \left(\frac{\pi}{6}\right)}$ $= \frac{\frac{3}{4} - \frac{1}{4}}{\frac{\sqrt{3}}{2}} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \text{awrt } 0.58$	Divides in correct way and substitutes for t to give any of the four underlined oe:	A1
	When $t = \frac{\pi}{6}$, $x = \frac{1}{2}$, $y = \frac{\sqrt{3}}{2}$	The point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ or $\left(\frac{1}{2}, \text{ awrt } 0.87\right)$	B1
	T: $y - \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} (x - \frac{1}{2})$	Finding an equation of a tangent with their point and their tangent gradient or finds c and uses $y = (their \ gradient)x + "c"$. Correct EXACT equation of tangent oe.	dM1 <u>A1</u> oe
	or $\frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} \left(\frac{1}{2} \right) + C \implies C = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{6} = \frac{\sqrt{3}}{3}$		
	or T: $\left[\underline{y = \frac{\sqrt{3}}{3}x + \frac{\sqrt{3}}{3}}\right]$		[6]

Question Number	Scheme		Marks
Aliter 4. (a)	$y = \frac{\sqrt{3}}{2}x + \frac{1}{2}\sqrt{(1-x^2)}$		
Way 3	$\frac{dy}{dx} = \frac{\sqrt{3}}{2} + \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(1 - x^2\right)^{-\frac{1}{2}} \left(-2x\right)$	Attempt to differentiate two terms using the chain rule for the second term. Correct dy/dx	M1 A1
	$\frac{dy}{dx} = \frac{\sqrt{3}}{2} + \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(1 - (0.5)^2\right)^{-\frac{1}{2}} \left(-2(0.5)\right) = \frac{1}{\sqrt{3}}$	Correct substitution of $x = \frac{1}{2}$ into a correct $\frac{dy}{dx}$	A1
	When $t = \frac{\pi}{6}$, $x = \frac{1}{2}$, $y = \frac{\sqrt{3}}{2}$	The point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ or $\left(\frac{1}{2}, \text{ awrt } 0.87\right)$	B1
	T: $y - \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} (x - \frac{1}{2})$	Finding an equation of a tangent with their point and their tangent gradient or finds c and uses $y = (\text{their gradient})x + \text{"c"}.$ Correct \underline{EXACT} equation of $\underline{tangent}$ oe.	dM1 <u>A1</u> oe
	or $\frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} \left(\frac{1}{2} \right) + C \implies C = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{6} = \frac{\sqrt{3}}{3}$		
	or T : $\left[y = \frac{\sqrt{3}}{3} x + \frac{\sqrt{3}}{3} \right]$		[6]
4. (b) Way 2	$x = sint gives y = \frac{\sqrt{3}}{2} sint + \frac{1}{2} \sqrt{(1 - sin^2 t)}$	Substitutes $x = \sin t$ into the equation give in y.	M1
	Nb: $\sin^2 t + \cos^2 t \equiv 1 \implies \cos^2 t \equiv 1 - \sin^2 t$		
	$\cos t = \sqrt{\left(1 - \sin^2 t\right)}$	Use of trig identity to deduce that $\cos t = \sqrt{\left(1-\sin^2 t\right)}.$	M1
	gives $y = \frac{\sqrt{3}}{2} \sin t + \frac{1}{2} \cos t$		
	Hence $y = \sin t \cos \frac{\pi}{6} + \cos t \sin \frac{\pi}{6} = \sin \left(t + \frac{\pi}{6}\right)$	Using the compound angle formula to prove y = sin $\left(t + \frac{\pi}{6}\right)$	A1 cso [3]
			9 marks

Question Number	Scheme		Marks
5. (a)	Equating i; $0=6+\lambda \implies \lambda=-6$	$\frac{\lambda = -6}{\lambda}$	B1 ⇒ d
	Using $\lambda = -6$ and	Can be implied	
	equating j ; $a = 19 + 4(-6) = -5$	For inserting their stated λ into either a correct j or k component Can be implied.	M1 ⇒ d
	equating k ; $b = -1 - 2(-6) = 11$	a = -5 and $b = 11$	A1
	With no working only one of a or b stated correctly gains the first 2 marks.		[3]
	both a and b stated correctly gains 3 marks.		
(b)	$\overrightarrow{OP} = (6 + \lambda)\mathbf{i} + (19 + 4\lambda)\mathbf{j} + (-1 - 2\lambda)\mathbf{k}$		
	direction vector or $I_1 = \mathbf{d} = \mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$		
	$\overrightarrow{OP} \perp I_1 \Rightarrow \overrightarrow{OP} \bullet d = 0$	Allow this statement for M1 if \overrightarrow{OP} and \mathbf{d} are defined as above.	
	ie. $ \begin{pmatrix} 6+\lambda \\ 19+4\lambda \\ -1-2\lambda \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} = 0 \left(\text{or } \underline{x+4y-2z=0} \right) $	Allow either of these two <u>underlined</u> <u>statements</u>	M1
	$\therefore 6 + \lambda + 4(19 + 4\lambda) - 2(-1 - 2\lambda) = 0$	Correct equation	A1 oe
	$6+\lambda +76+16\lambda +2+4\lambda =0$	Attempt to solve the equation in λ	dM1
	$21\lambda + 84 = 0 \Rightarrow \lambda = -4$	$\lambda = -4$	A1
	$\overrightarrow{OP} = (6-4)i + (19+4(-4))j + (-1-2(-4))k$	Substitutes their λ into an expression for \overrightarrow{OP}	M1
	$\overrightarrow{OP} = 2\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$	2i + 3j + 7k or P(2, 3, 7)	A1
			[6]

Question Number	Scheme		Marks
Aliter (b) Way 2	$\overrightarrow{OP} = (6 + \lambda)\mathbf{i} + (19 + 4\lambda)\mathbf{j} + (-1 - 2\lambda)\mathbf{k}$		
vvay 2	$\overrightarrow{AP} = (6 + \lambda - 0)\mathbf{i} + (19 + 4\lambda + 5)\mathbf{j} + (-1 - 2\lambda - 11)\mathbf{k}$		
	direction vector or $I_1 = \mathbf{d} = \mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$		
	$\overrightarrow{AP} \perp \overrightarrow{OP} \Rightarrow \overrightarrow{AP} \bullet \overrightarrow{OP} = 0$	Allow this statement for M1 if \overrightarrow{AP} and \overrightarrow{OP} are defined as above.	
	ie. $ \frac{\begin{pmatrix} 6+\lambda \\ 24+4\lambda \\ -12-2\lambda \end{pmatrix}}{\begin{pmatrix} -1-2\lambda \end{pmatrix}} $	underlined statement	M1
	$\therefore (6 + \lambda)(6 + \lambda) + (24 + 4\lambda)(19 + 4\lambda) + (-12 - 2\lambda)(-1 - 2\lambda) = 0$	Correct equation	A1 oe
	$36 + 12\lambda + \lambda^2 + 456 + 96\lambda + 76\lambda + 16\lambda^2 + 12 + 24\lambda + 2\lambda + 4\lambda^2 = 0$	Attempt to solve the equation in λ	dM1
	$21\lambda^2 + 210\lambda + 504 = 0$		
	$\lambda^2 + 10\lambda + 24 = 0 \implies (\lambda = -6) \underline{\lambda = -4}$	$\lambda = -4$	A1
	$\overrightarrow{OP} = (6-4)\mathbf{i} + (19+4(-4))\mathbf{j} + (-1-2(-4))\mathbf{k}$	Substitutes their λ into an expression for \overrightarrow{OP}	M1
	$\overrightarrow{OP} = 2\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$	2i + 3j + 7k or $P(2, 3, 7)$	A1
			[6]

Question Number	Scheme		Marks
5. (c)	$\overrightarrow{OP} = 2\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$		
	$\overrightarrow{OA} = 0i - 5j + 11k$ and $\overrightarrow{OB} = 5i + 15j + k$		
	$\overline{AP} = \pm (2\mathbf{i} + 8\mathbf{j} - 4\mathbf{k}), \ \overline{PB} = \pm (3\mathbf{i} + 12\mathbf{j} - 6\mathbf{k})$ $\overline{AB} = \pm (5\mathbf{i} + 20\mathbf{j} - 10\mathbf{k})$	Subtracting vectors to find any two of \overrightarrow{AP} , \overrightarrow{PB} or \overrightarrow{AB} ; and both are correctly ft using candidate's \overrightarrow{OA} and \overrightarrow{OP} found in parts (a) and (b) respectively.	M1; A1ñ
	As $\overrightarrow{AP} = \frac{2}{3}(3\mathbf{i} + 12\mathbf{j} - 6\mathbf{k}) = \frac{2}{3}\overrightarrow{PB}$ or $\overrightarrow{AB} = \frac{5}{2}(2\mathbf{i} + 8\mathbf{j} - 4\mathbf{k}) = \frac{5}{2}\overrightarrow{AP}$ or $\overrightarrow{AB} = \frac{5}{3}(3\mathbf{i} + 12\mathbf{j} - 6\mathbf{k}) = \frac{5}{3}\overrightarrow{PB}$ or $\overrightarrow{PB} = \frac{3}{2}(2\mathbf{i} + 8\mathbf{j} - 4\mathbf{k}) = \frac{3}{2}\overrightarrow{AP}$ or $\overrightarrow{AP} = \frac{2}{5}(5\mathbf{i} + 20\mathbf{j} - 10\mathbf{k}) = \frac{2}{5}\overrightarrow{AB}$ or $\overrightarrow{PB} = \frac{3}{5}(5\mathbf{i} + 20\mathbf{j} - 10\mathbf{k}) = \frac{3}{5}\overrightarrow{AB}$ etc	$\overrightarrow{AP} = \frac{2}{3} \overrightarrow{PB}$ or $\overrightarrow{AB} = \frac{5}{2} \overrightarrow{AP}$ or $\overrightarrow{AB} = \frac{5}{3} \overrightarrow{PB}$ or $\overrightarrow{PB} = \frac{3}{2} \overrightarrow{AP}$ or $\overrightarrow{AP} = \frac{2}{5} \overrightarrow{AB}$ or $\overrightarrow{PB} = \frac{3}{5} \overrightarrow{AB}$	
	alternatively candidates could say for example that $\overrightarrow{AP} = 2(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})$ $\overrightarrow{PB} = 3(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})$		
	then the points A, P and B are collinear.	A, P and B are collinear Completely correct proof.	A1
	$\therefore \overrightarrow{AP} : \overrightarrow{PB} = 2:3$	2:3 or 1: $\frac{3}{2}$ or $\sqrt{84}$: $\sqrt{189}$ aef allow SC $\frac{2}{3}$	B1 oe [4]
Aliter 5. (c) Way 2	At B; $\frac{5=6+\lambda}{0}$, $\frac{15=19+4\lambda}{0}$ or $\frac{1=-1-2\lambda}{0}$ or at B; $\lambda=-1$	Writing down any of the three underlined equations.	M1
, _	gives $\lambda = -1$ for all three equations. or when $\lambda = -1$, this gives $\bm{r} = 5\bm{i} + 15\bm{j} + \bm{k}$	$\lambda = -1 \text{for all three equations}$ or $\lambda = -1 \text{ gives } \boldsymbol{r} = 5\boldsymbol{i} + 15\boldsymbol{j} + \boldsymbol{k}$	A1
	Hence B lies on I_1 . As stated in the question both A and P lie on I_1 . \therefore A, P and B are collinear.	Must state B lies on $I_1 \Rightarrow$ A, P and B are collinear	A1
	$\therefore \overrightarrow{AP} : \overrightarrow{PB} = 2:3$	2:3 or aef	B1 oe
			[4]
			13 marks

Question Number	Scheme					Marks		
6. (a)								
. ,	Х	1	1.5	2	2.5	3		
	y	0	0.5 ln 1.5	ln 2	1.5 ln 2.5	2 ln 3		
			0.2027325541		1.374436098			
	or y	0		ln2		2 ln 3		
						ither 0.5 ln 1.5 and 1.5 lr or awrt 0.20 and r mixture of decimals and	1.37	B1 [1]
(b)(i)	$l_1 \approx \frac{1}{2} \times 1 \times \frac{1}{2}$	(0 + 2(ln 2	<u>) + 2ln3}</u>			For structure of trapez $\frac{\text{rule }\left\{\dots\dots\dots}{\text{rule }}\right\}$		M1;
	$= \frac{1}{2} \times 3.583518938 = 1.791759 = 1.792 \text{ (4sf)}$					A1 cao		
(ii)	$I_{2} \approx \frac{1}{2} \times 0.5 \; ; \times \underbrace{\left\{0 + 2\left(0.5 \ln 1.5 + \ln 2 + 1.5 \ln 2.5\right) + 2 \ln 3\right\}}_{\text{For structure of trapezium}} \\ \frac{\text{rule}\left\{\dots \dots \}}{\text{rule}\left\{\dots \dots \}} \; ;$				B1; M1√			
	$=\frac{1}{4}\times 6$.7378562	42 = 1.6844	64		awrt 1	.684	A1 [5]
(c)			ates, <u>the line segn</u> or to the curve.	nents at th	e top of	Reason or an approprion diagram elaborating correct reas	the	B1 [1]

Question Number	Scheme		Marks
6. (d)	$\begin{cases} u = \ln x & \Rightarrow & \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = x - 1 & \Rightarrow & v = \frac{x^2}{2} - x \end{cases}$	Use of 'integration by parts' formula in the correct direction	M1
	$I = \left(\frac{x^2}{2} - x\right) \ln x - \int \frac{1}{x} \left(\frac{x^2}{2} - x\right) dx$	Correct expression	A1
	$= \left(\frac{x^2}{2} - x\right) \ln x - \underline{\int \left(\frac{x}{2} - 1\right) dx}$	An attempt to multiply at least one term through by $\frac{1}{x}$ and an attempt to	
	$= \left(\frac{x^2}{2} - x\right) \ln x - \left(\frac{x^2}{4} - x\right) (+c)$	integrate;	M1;
		correct integration	A1
	$\therefore I = \left[\left(\frac{x^2}{2} - x \right) \ln x - \frac{x^2}{4} + x \right]_1^3$		
	$= \left(\frac{3}{2}\ln 3 - \frac{9}{4} + 3\right) - \left(-\frac{1}{2}\ln 1 - \frac{1}{4} + 1\right)$	Substitutes limits of 3 and 1 and subtracts.	ddM1
	$= \frac{3}{2} \ln 3 + \frac{3}{4} + 0 - \frac{3}{4} = \frac{3}{2} \ln 3 AG$	<u>3</u> 2ln3	A1 cso
			[6]
Aliter 6. (d) Way 2	$\int (x-1)\ln x dx = \int x \ln x dx - \int \ln x dx$		
way 2	$\int x \ln x dx = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \cdot \left(\frac{1}{x}\right) dx$	Correct application of 'by parts'	M1
	$=\frac{x^2}{2}\ln x - \frac{x^2}{4}$ (+ c)	Correct integration	A1
	$\int \ln x dx = x \ln x - \int x \cdot \left(\frac{1}{x}\right) dx$	Correct application of 'by parts'	M1
	$= x \ln x - x (+ c)$	Correct integration	A1
	$\therefore \int_{1}^{3} (x-1) \ln x dx = \left(\frac{9}{2} \ln 3 - 2\right) - \left(3 \ln 3 - 2\right) = \frac{3}{2} \ln 3 \text{ AG}$	Substitutes limits of 3 and 1 into both integrands and subtracts.	ddM1
	1	$\frac{3}{2}$ ln3	A1 cso
			[6]

Question Number	Scheme		Marks
6. (d) Way 3	$\begin{cases} u = \ln x & \Rightarrow \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = (x - 1) & \Rightarrow v = \frac{(x - 1)^2}{2} \end{cases}$	Use of 'integration by parts' formula in the correct direction	M1
way 3	$I = \frac{(x-1)^2}{2} \ln x - \int \frac{(x-1)^2}{2x} dx$	Correct expression	A1
	$= \frac{(x-1)^2}{2} \ln x - \int \frac{x^2 - 2x + 1}{2x} dx$	Candidate multiplies out numerator to obtain three terms	
	$= \frac{(x-1)^2}{2} \ln x - \int \left(\frac{1}{2}x - 1 + \frac{1}{2x}\right) dx$	multiplies at least one term through by $\frac{1}{x}$ and then attempts to	
	$= \frac{(x-1)^2}{2} \ln x - \underbrace{\left(\frac{x^2}{4} - x + \frac{1}{2} \ln x\right)}_{\text{(+c)}}$	integrate the result; <u>correct integration</u>	M1; A1
	$\therefore I = \left[\frac{(x-1)^2}{2} \ln x - \frac{x^2}{4} + x - \frac{1}{2} \ln x \right]_1^3$		
	$= \left(2\ln 3 - \frac{9}{4} + 3 - \frac{1}{2}\ln 3\right) - \left(0 - \frac{1}{4} + 1 - 0\right)$	Substitutes limits of 3 and 1 and subtracts.	ddM1
	$=2\ln 3 - \frac{1}{2}\ln 3 + \frac{3}{4} + \frac{1}{4} - 1 = \frac{3}{2}\ln 3 \mathbf{AG}$	<u>3</u> 2 ln 3	A1 cso
			[6]

Question Number	Scheme		Marks
Aliter	By substitution		
6. (d)	$u = \ln x$ $\Rightarrow \frac{du}{dx} = \frac{1}{x}$		
Way 4	UX X		
	$I = \int (e^u - 1).ue^u du$	Correct expression	
	$= \int u (e^{2u} - e^u) du$	Use of 'integration by parts' formula in the correct direction	M1
	$= u \left(\frac{1}{2}e^{2u} - e^{u}\right) - \int \underbrace{\left(\frac{1}{2}e^{2u} - e^{u}\right)}_{} dx$	Correct expression	A1
	$= u \left(\frac{1}{2} e^{2u} - e^{u} \right) - \left(\frac{1}{4} e^{2u} - e^{u} \right) (+c)$	Attempt to integrate;	M1;
		correct integration	A1
	$\therefore I = \left[\frac{1}{2} u e^{2u} - u e^{u} - \frac{1}{4} e^{2u} + e^{u} \right]_{ln1}^{ln3}$		
	$= \left(\frac{9}{2}\ln 3 - 3\ln 3 - \frac{9}{4} + 3\right) - \left(0 - 0 - \frac{1}{4} + 1\right)$	Substitutes limits of In3 and In1 and subtracts.	ddM1
	$= \frac{3}{2} \ln 3 + \frac{3}{4} + \frac{1}{4} - 1 = \frac{3}{2} \ln 3 AG$	$\frac{3}{2}$ ln3	A1 cso
			[6]
			13 marks

Question Number	Scheme		Marks
7. (a)	From question, $\frac{dS}{dt} = 8$	$\frac{dS}{dt} = 8$	B1
	$S = 6x^2 \implies \frac{dS}{dx} = 12x$	$\frac{dS}{dx} = 12x$	B1
	$\frac{dx}{dt} = \frac{dS}{dt} \div \frac{dS}{dx} = \frac{8}{12x}; = \frac{\frac{2}{3}}{x} \implies \left(k = \frac{2}{3}\right)$ Candidate	e's $\frac{dS}{dt} \div \frac{dS}{dx}$; $\frac{8}{12x}$	M1; <u>A1</u> oe
			[4]
(b)	$V = x^3 \implies \frac{dV}{dx} = 3x^2$	$\frac{\text{dV}}{\text{dx}} = 3x^2$	B1
	$\frac{dV}{dt} = \frac{dV}{dx} \times \frac{dx}{dt} = 3x^2 \cdot \left(\frac{2}{3x}\right); = 2x$ Candida	ate's $\frac{dV}{dx} \times \frac{dx}{dt}$; λx	M1; A1√
	As $x = V^{\frac{1}{3}}$, then $\frac{dV}{dt} = 2V^{\frac{1}{3}}$ AG Use of $x = V^{\frac{1}{3}}$	$\frac{dV}{dt} = 2V^{\frac{1}{3}}$	
	Congrat	ear the verichles with	[4]
(c)		tes the variables with $\frac{1}{3}$ dV on one side and	B1
		dt on the other side.	
	$\int V^{-\frac{1}{3}} dV = \int 2 dt$ integral s	signs not necessary.	
		ts to integrate and	
	$\frac{3}{2}V^{\frac{2}{3}} = 2t \ (+c)$	must see $V^{\frac{2}{3}}$ and 2t; tion with/without + c.	M1; A1
	$1.37913 97011 + 2 \Rightarrow 2 6$	and $t = 0$ in a changed containing c ; $c = 6$	M1*; A1
	Hence: $\frac{3}{2}V^{\frac{2}{3}} = 2t + 6$		
	$\frac{3}{3}(16\sqrt{2})^{\frac{2}{3}} = 2t + 6$ \Rightarrow 12 = 2t + 6 substitute	their "c" candidate es $V = 16\sqrt{2}$ into an nvolving V, t and "c".	depM1
	giving t = 3.	t = 3	A1 cao [7]
			15 marks

Question Number	Scheme		Marks
Aliter 7. (b)	$x = V^{\frac{1}{3}} \& S = 6x^2 \implies S = 6V^{\frac{2}{3}}$	$S = 6V^{\frac{2}{3}}$	B1 √
Way 2	$\frac{dS}{dV} = 4V^{-\frac{1}{3}} \text{ or } \frac{dV}{dS} = \frac{1}{4}V^{\frac{1}{3}}$	$\frac{dS}{dV} = 4V^{-\frac{1}{3}} \text{ or } \frac{dV}{dS} = \frac{1}{4}V^{\frac{1}{3}}$	B1
	$\frac{dV}{dt} = \frac{dS}{dt} \times \frac{dV}{dS} = 8. \left(\frac{1}{4V^{-\frac{1}{3}}}\right); = \frac{2}{V^{-\frac{1}{3}}} = 2V^{\frac{1}{3}} \text{ AG}$	Candidate's $\frac{dS}{dt} \times \frac{dV}{dS}$; $2V^{\frac{1}{3}}$	M1; A1
		In ePEN, award Marks for Way 2 in the order they appear on this mark scheme.	[4]
Aliter			[-]
7 into		Separates the variables with	
7. (c)	$\int \frac{dV}{2V^{\frac{4}{3}}} = \int 1 dt$	$\int \frac{dV}{2V^{\frac{1}{3}}} \text{or } \int \frac{1}{2} V^{-\frac{1}{3}} dV \text{ oe on one}$	B1
		side and $\int 1$ dt on the other side.	
Way 2		integral signs not necessary.	
	$\int \frac{1}{2} \int V^{-\frac{1}{3}} dV = \int 1 dt$		
		Attempts to integrate and	
	$\left(\frac{1}{2}\right)\left(\frac{3}{2}\right)V^{\frac{2}{3}} = t (+c)$	must see $V^{\frac{2}{3}}$ and t; Correct equation with/without + c.	M1; A1
	$\frac{3}{4}(8)^{\frac{2}{3}} = (0) + c \implies c = 3$	Use of V = 8 and t = 0 in a changed equation containing c ; $c = 3$	M1*; A1
	Hence: $\frac{3}{4}V^{\frac{2}{3}} = t + 3$		
	4	Having found their "c" candidate	
	$\left \frac{3}{4} \left(16\sqrt{2} \right)^{\frac{2}{3}} = t + 3 \qquad \Rightarrow 6 = t + 3$	substitutes $V = 16\sqrt{2}$ into an equation involving V, t and "c".	depM1 *
	giving t = 3.	t = 3	A1 cao [7]

Question Number	Scheme		Marks
Aliter (b)	$V = x^3 \implies \frac{dV}{dx} = 3x^2$ $\frac{dV}{dx} = 3x^2$	= 3x ²	B1
Way 3	$ \frac{dV}{dt} = \frac{dV}{dx} \times \frac{dS}{dt} \times \frac{dx}{dS} = 3x^2.8. \left(\frac{1}{12x}\right); = 2x $ Candidate's $\frac{dV}{dx} \times \frac{dS}{dt} \times \frac{dS}{dS}$	-; λ x	M1; A1√
	As $x = V^{\frac{1}{3}}$, then $\frac{dV}{dt} = 2V^{\frac{1}{3}}$ AG Use of $x = V^{\frac{1}{3}}$, to give $\frac{dV}{dt} = V^{\frac{1}{3}}$	= 2V ^{1/3}	A1 [4]
Aliter	Separates the variable	s with	
(c)	$\int \frac{dV}{V^{\frac{1}{3}}} = \int 2 dt$ $\int \frac{dV}{V^{\frac{1}{3}}} \text{ or } \int V^{-\frac{1}{3}} dV \text{ on one side}$	le and	B1
West 2	$\int 2 dt$ on the other		
Way 3	integral signs not necess $\int V^{-\frac{1}{3}} \ dV = \int 2 \ dt$ Attempts to integrate a	ssary.	
	$V^{\frac{2}{3}} = \frac{4}{3}t (+c)$ Attempts to integrate a must see $V^{\frac{2}{3}}$ are Correct equation with/without	nd $\frac{4}{3}$ t;	M1; A1
	$(8)^{\frac{2}{3}} = \frac{4}{3}(0) + c \implies c = 4$ Use of V = 8 and t = 0 in a character equation containing c; of	_	M1*; A1
	Hence: $V^{\frac{2}{3}} = \frac{4}{3}t + 4$		
	$\left(16\sqrt{2}\right)^{\frac{2}{3}} = \frac{4}{3}t + 6 \qquad \Rightarrow 8 = \frac{4}{3}t + 4 \qquad \qquad \begin{array}{c} \text{Having found their "c" candidation of the substitutes } V = 16\sqrt{2} \text{ in equation involving V, t are substitutes} \\ \end{array}$	nto an	depM1 *
	giving t = 3.	t = 3	A1 cao [7]