CUSTOMER		
string	customerID	PK
string	gender	
int	SeniorCitizen	
string	Partner	
string	Dependents	
int	tenure	
string	PhoneService	
string	MultipleLines	
string	InternetService	
string	OnlineSecurity	
string	OnlineBackup	
string	DeviceProtection	
string	TechSupport	
string	StreamingTV	
string	StreamingMovies	
string	Contract	
string	PaperlessBilling	
string	PaymentMethod	
float	MonthlyCharges	
string	TotalCharges	
string	Churn	

Customer

customerID: string gender: string SeniorCitizen: string Partner: string Dependents: string PhoneService: string MultipleLines: string InternetService: string OnlineSecurity: string OnlineBackup: string DeviceProtection: string TechSupport: string StreamingTV: string StreamingMovies: string Contract: string PaperlessBilling: string PaymentMethod: string MonthlyCharges: float TotalCharges: float

Applying an ERD feels unnecessary to deploy a neural network to learn a constant function. In other words, it is an elaborate solution to a straightforward problem. Our dataset can be seen as neatly captured in a basic table. In this case, simplicity is key, as the dataset lacks the dimensional intricacies and the interconnectedness that would warrant a more sophisticated model like an ERD. It's a scenario where a simple tabular snapshot, much like a baseline model in machine learning, is not just sufficient but preferred for its clarity and directness.