

Scanning and detection of static and moving pedestrians by drivers with hemianopia in a simulator

Concetta F. Alberti, P Matthew Bronstad, Alex Hwang, Amanda Albu, Egor Ananev, Bob Goldstein, Eli Peli, Alex R. Bowers

Schepens Eye Research Institute, Mass Eye and Ear, Dept Ophthalmology, Harvard Med School, Boston, MA

Hemianopia impacts detection

- · Hemianopia causes difficulty in detecting objects on the blind side.
- · Failed to detect 55% of pedestrians on blind side in our previous simulator study (Bowers et al., 2009)
- · But the pedestrians were static

Moving pedestrian on a collision course stavs at approximately constant eccentricity Time (Seconds) Static pedestrian Eccentricity increases rapidly as car Might be harder to detect blind side pedestrian as larger scan needed Eccentricity (°)

Prediction

Lower rate of failing to detect (miss) moving than static blind side pedestrians especially at larger eccentricities.

Methods

Participants:

- · 6 left hemianopia
- · 6 right hemianopia

High-fidelity driving simulator (FOV: 225° horizontally, 32º vertically)

Pedestrian detection task

Press the horn when pedestrian

Two simulator sessions:

- Static pedestrians
- Moving pedestrians

Pedestrians appeared at 4° or 14° on right or left, relative to car heading

Eccentricity (°)

Data pooled across all participants Proportion of pedestrians (%) 40%

Subj2 : Right hemi. Large but infrequent head and eye scans Missed 40% to 50% of blind side peds; Longer reactions to moving than static

Were reactions timely?

(reacted with sufficient time to stop)

At the large eccentricity on the blind side: The proportion of misses (failed detections) was lower in the moving condition.

but the proportion of late reactions was higher

Subj3: Left hemi. No head scanning and very little eye scanning Missed all blind side pedestrians

Conclusions

- At the large eccentricity on the blind side. detection failures were lower for moving than static pedestrians
- But reaction times were longer, with a higher proportion that were too late
- Thus the overall proportion of untimely reactions was similar for moving and static pedestrians
- Better scanning (more frequent and larger magnitude) was related to better detection performance

References

Bowers AR, Mandel AJ, Goldstein RB, Peli E (2009). Driving with hemianopia, I: Detection performance in a driving simulator. Invest Ophthal Vis Sci, 50(5): 5137

Acknowledgements

Support: NIH Grant EY12890 (EP) and EY018680 (ARB).

Contact

concetta.alberti@schepens.harvard.edu

Disclosures: none