

- ▶ Two islands connected to land and each other by 7 bridges:
- ► Can one walk through town and cross all bridges exactly once?
- ► Graph theory provides a way to mathematically answer that question

- ▶ Two islands connected to land and each other by 7 bridges:
- ► Can one walk through town and cross all bridges exactly once?
- ► Graph theory provides a way to mathematically answer that question

- ▶ Two islands connected to land and each other by 7 bridges:
- ► Can one walk through town and cross all bridges exactly once?
- ► Graph theory provides a way to mathematically answer that question

- ▶ Two islands connected to land and each other by 7 bridges:
- ► Can one walk through town and cross all bridges exactly once?
- ► Graph theory provides a way to mathematically answer that question

Representing the problem

▶ The Konigsberg problem can be represented by a graph

Red Dot – Vertices–islands Lines – Edges – bridges

Graph-Introduction

Definition

A graph G is an ordered triple $(V(G), E(G), \psi_G)$ consisting of

- $V(G) \neq \emptyset$ –set of vertices
- E(G) –set of edges
- $\mathbf{3}$ ψ_G An incidence function that associates with each edge of G an unordered pair of (not necessarily distinct) vertices of G.

If e is an edge and u and v are vertices such that

$$\psi_{G}(e) = uv$$

then e is said to join u and v, the vertices u and v are called the ends of e.

$$V(G) = \{a, b, c, d\}, E(G) = \{e_i : 1 \le i \le 7\}$$

$$\psi_G(e_1) = aa, \ \psi_G(e_2) = ab, \ \psi_G(e_3) = ac, \ \psi_G(e_4) = bc,$$

 $\psi_G(e_5) = bc, \ \psi_G(e_6) = bd, \ \psi_G(e_7) = cd$

$$V(G) = \{a, b, c, d\}, E(G) = \{e_i : 1 \le i \le 7\}$$

$$\psi_G(e_1) = aa, \ \psi_G(e_2) = ab, \ \psi_G(e_3) = ac, \ \psi_G(e_4) = bc,$$
 $\psi_G(e_5) = bc, \ \psi_G(e_6) = bd, \ \psi_G(e_7) = cd$

- ► The ends of an edge are said to be incident with the edge, and vice versa.
- ► Two vertices which are incident with a common edge are adjacent.
- ► Two edges which are incident with a common vertex are also called adjacent.
- ► An edge with identical ends is called a loop.
- ► An edge with distinct ends a link.
- ▶ If more than one link share the same pair of vertices, then they are called as multiple edges.

- ► The ends of an edge are said to be incident with the edge, and vice versa.
- ► Two vertices which are incident with a common edge are adjacent.
- ► Two edges which are incident with a common vertex are also called adjacent.
- ▶ An edge with identical ends is called a loop.
- ► An edge with distinct ends a link.
- ▶ If more than one link share the same pair of vertices, then they are called as multiple edges.

- ► The ends of an edge are said to be incident with the edge, and vice versa.
- ► Two vertices which are incident with a common edge are adjacent.
- ► Two edges which are incident with a common vertex are also called adjacent.
- ▶ An edge with identical ends is called a loop.
- ► An edge with distinct ends a link.
- ▶ If more than one link share the same pair of vertices, then they are called as multiple edges.

- ► The ends of an edge are said to be incident with the edge, and vice versa.
- ► Two vertices which are incident with a common edge are adjacent.
- ► Two edges which are incident with a common vertex are also called adjacent.
- ► An edge with identical ends is called a loop.
- ► An edge with distinct ends a link.
- ▶ If more than one link share the same pair of vertices, then they are called as multiple edges.

- ► The ends of an edge are said to be incident with the edge, and vice versa.
- ► Two vertices which are incident with a common edge are adjacent.
- ► Two edges which are incident with a common vertex are also called adjacent.
- ▶ An edge with identical ends is called a loop.
- ► An edge with distinct ends a link.
- ▶ If more than one link share the same pair of vertices, then they are called as multiple edges.

- ► The ends of an edge are said to be incident with the edge, and vice versa.
- ► Two vertices which are incident with a common edge are adjacent.
- ► Two edges which are incident with a common vertex are also called adjacent.
- ▶ An edge with identical ends is called a loop.
- ► An edge with distinct ends a link.
- ▶ If more than one link share the same pair of vertices, then they are called as multiple edges.

- ▶ Vertex *b* is incident with edges e_2 , e_4 , e_5 , e_6 .
- ▶ Vertices *a* and *b* are adjacent.
- ▶ Edges e_2 and e_4 are adjacent.
- $ightharpoonup e_1$ is a loop and all other edges are links.

- ► A graph is finite if both its vertex set and edge set are finite. In this course we study only finite graphs.
- ► A graph with just one vertex is called trivial and all other graphs are nontrivial.
- ► A graph is simple if it has no loops and no multiple edges.

$$\triangleright \nu(G) = |V(G)|$$
 and $\epsilon(G) = |E(G)|$

- ► A graph is finite if both its vertex set and edge set are finite. In this course we study only finite graphs.
- ► A graph with just one vertex is called trivial and all other graphs are nontrivial.
- ► A graph is simple if it has no loops and no multiple edges.

$$\triangleright \nu(G) = |V(G)|$$
 and $\epsilon(G) = |E(G)|$

- ► A graph is finite if both its vertex set and edge set are finite. In this course we study only finite graphs.
- ► A graph with just one vertex is called trivial and all other graphs are nontrivial.
- ▶ A graph is simple if it has no loops and no multiple edges.

$$\triangleright \nu(G) = |V(G)|$$
 and $\epsilon(G) = |E(G)|$

- ▶ A graph is finite if both its vertex set and edge set are finite. In this course we study only finite graphs.
- ► A graph with just one vertex is called trivial and all other graphs are nontrivial.
- ▶ A graph is simple if it has no loops and no multiple edges.
- $\blacktriangleright \nu(G) = |V(G)|$ and $\epsilon(G) = |E(G)|$

- ▶ Degree $d_G(v)$ of a vertex v in G is the number of edges of G incident with v.
- ► Each loop counting two edges towards the degree.
- ▶ $\delta(G)$ = minimum degree.
- $ightharpoonup \Delta(G) = \text{maximum degree}.$

Theorem

$$\sum_{v \in V(G)} d_G(v) = 2|E|$$

- ▶ Degree $d_G(v)$ of a vertex v in G is the number of edges of G incident with v.
- ► Each loop counting two edges towards the degree.
- ▶ $\delta(G)$ = minimum degree.
- $ightharpoonup \Delta(G) = \text{maximum degree}.$

Theorem

$$\sum_{v \in V(G)} d_G(v) = 2|E|$$

- ▶ Degree $d_G(v)$ of a vertex v in G is the number of edges of G incident with v.
- ► Each loop counting two edges towards the degree.
- ▶ $\delta(G)$ = minimum degree.
- $ightharpoonup \Delta(G) = \text{maximum degree}.$

Theorem

$$\sum_{v \in V(G)} d_G(v) = 2|E|$$

- ▶ Degree $d_G(v)$ of a vertex v in G is the number of edges of G incident with v.
- ► Each loop counting two edges towards the degree.
- ▶ $\delta(G)$ = minimum degree.
- $ightharpoonup \Delta(G) = \text{maximum degree}.$

Theorem

$$\sum_{v\in V(G)}d_G(v)=2|E|$$

- ▶ Degree of a: 4, b: 4, c: 4, d: 2
- ▶ Maximum degree : $\Delta(G) = 4$
- ▶ Minimum degree : $\delta(G) = 2$

- ▶ Degree of a: 4, b: 4, c: 4, d: 2
- ▶ Maximum degree : $\Delta(G) = 4$
- ▶ Minimum degree : $\delta(G) = 2$

- ▶ Degree of a: 4, b: 4, c: 4, d: 2
- ▶ Maximum degree : $\Delta(G) = 4$
- ▶ Minimum degree : $\delta(G) = 2$

- ▶ Degree of a: 4, b: 4, c: 4, d: 2
- ▶ Maximum degree : $\Delta(G) = 4$
- ▶ Minimum degree : $\delta(G) = 2$

- ▶ Degree of *a* : 4, *b* : 4, *c* : 4, *d* : 2
- ▶ Maximum degree : $\Delta(G) = 4$
- ▶ Minimum degree : $\delta(G) = 2$

- ▶ Degree of *a* : 4, *b* : 4, *c* : 4, *d* : 2
- ▶ Maximum degree : $\Delta(G) = 4$
- ▶ Minimum degree : $\delta(G) = 2$

- ▶ Degree of *a* : 4, *b* : 4, *c* : 4, *d* : 2
- ▶ Maximum degree : $\Delta(G) = 4$
- ▶ Minimum degree : $\delta(G) = 2$

Degree Sequence of a Graph

Definition

G has vertices v_1, v_2, \dots, v_n the sequence $(d(v_1), d(v_2), \dots, d(v_n))$ is called a degree sequence of *G* where $d(v_i) \leq d(v_{i+1})$.

Degree sequence of the above graph: (4,4,4,2).

▶ Does there exist a graph with the following sequence?

$$(4, 4, 4, 3)$$
??

Ans: No.

Theorem

A sequence (d_1, d_2, \dots, d_n) is graphical (Multigraphs) iff $\sum_i d_i$ is even.

Proof.

▶ Does there exist a graph with the following sequence?

$$(4,4,4,3)$$
??

► Ans: No.

Theorem

A sequence (d_1, d_2, \dots, d_n) is graphical (Multigraphs) iff $\sum_i d_i$ is even.

Proof.

▶ Does there exist a graph with the following sequence?

$$(4,4,4,3)$$
??

Ans: No.

Theorem

A sequence (d_1, d_2, \dots, d_n) is graphical (Multigraphs) iff $\sum_i d_i$ is even.

Proof.

▶ Does there exist a graph with the following sequence?

$$(4,4,4,3)$$
??

Ans: No.

Theorem

A sequence (d_1, d_2, \dots, d_n) is graphical (Multigraphs) iff $\sum_i d_i$ is even.

Proof.

Degree sequence-simple graph

▶ Does there exist a simple graph with the following sequence?

(4,3,2,1)??

► Ans: No.

Theorem

Havel-Hakimi

A sequence $(s, t_1, t_2, \dots, t_s, d_1, d_2, \dots, d_k)$ is graphical (simple) iff $(t_1 - 1, t_2 - 1, \dots, t_s - 1, d_1, d_2, \dots, d_k)$ is graphical.

Proof.

Hint: Edge swap

Degree sequence-simple graph

▶ Does there exist a simple graph with the following sequence?

$$(4,3,2,1)$$
??

► Ans: No.

Theorem

Havel-Hakimi

A sequence $(s, t_1, t_2, \dots, t_s, d_1, d_2, \dots, d_k)$ is graphical (simple) iff $(t_1 - 1, t_2 - 1, \dots, t_s - 1, d_1, d_2, \dots, d_k)$ is graphical.

Proof.

Hint: Edge swap

Degree sequence-simple graph

▶ Does there exist a simple graph with the following sequence?

$$(4,3,2,1)$$
??

Ans: No.

Theorem

Havel-Hakimi

A sequence $(s, t_1, t_2, \dots, t_s, d_1, d_2, \dots, d_k)$ is graphical (simple) iff $(t_1 - 1, t_2 - 1, \dots, t_s - 1, d_1, d_2, \dots, d_k)$ is graphical.

Proof

Hint: Edge swap

Degree sequence-simple graph

▶ Does there exist a simple graph with the following sequence?

$$(4,3,2,1)$$
??

Ans: No.

Theorem

Havel-Hakimi

A sequence $(s, t_1, t_2, \dots, t_s, d_1, d_2, \dots, d_k)$ is graphical (simple) iff $(t_1 - 1, t_2 - 1, \dots, t_s - 1, d_1, d_2, \dots, d_k)$ is graphical.

Proof.

Hint: Edge swap

Edge-Swap

Is the following sequence Graphical:

$$(5,5,5,3,3,3,3,3)$$

$$\Leftrightarrow (\star,5-1,5-1,3-1,3-1,3-1,3,3) = (4,4,3,3,2,2,2)$$

$$\Leftrightarrow (\star,4-1,3-1,3-1,2-1,2,2) = (3,2,2,2,2,1)$$

$$\Leftrightarrow (\star,2-1,2-1,2-1,2,1) = (2,1,1,1,1)$$

$$\Leftrightarrow (\star,1-1,1-1,1,1) = (1,1,0,0)$$

 \blacktriangleright (1, 1, 0, 0) is a graph with 4 vertices and one edge.

Is the following sequence Graphical:

$$(3,3,3,2)$$
??

$$\Leftrightarrow (\star, 3-1, 3-1, 2-1) = (2, 2, 1)$$

$$\Leftrightarrow (\star, 1, 0) = (1, 0)$$

 \blacktriangleright (1,0) is not graphical.

- ▶ A graph H is a subgraph of G (written $H \subset G$) if
 - $IV(H) \subset V(G)$,
 - 2 $E(H) \subset E(G)$
 - ψ_H is the restriction of ψ_G to E(H).
- ▶ Proper Subgraph : When $H \subseteq G$ but $H \neq G$, we write $H \subset G$ and call H a proper subgraph of G.
- ► Supergraph: If *H* is a subgraph of *G*, then *G* is called a supergraph of *H*.
- ▶ A spanning subgraph (or spanning supergraph) of G is a subgraph (or supergraph) H with V(H) = V(G).

- ▶ A graph H is a subgraph of G (written $H \subset G$) if
 - $IV(H) \subset V(G)$,
 - 2 $E(H) \subset E(G)$
 - ψ_H is the restriction of ψ_G to E(H).
- ▶ Proper Subgraph : When $H \subseteq G$ but $H \neq G$, we write $H \subset G$ and call H a proper subgraph of G.
- Supergraph: If H is a subgraph of G, then G is called a supergraph of H.
- ▶ A spanning subgraph (or spanning supergraph) of G is a subgraph (or supergraph) H with V(H) = V(G).

- ▶ A graph H is a subgraph of G (written $H \subset G$) if
 - $IV(H) \subset V(G)$,
 - **2** *E*(*H*) ⊂ *E*(*G*)
 - ψ_H is the restriction of ψ_G to E(H).
- ▶ Proper Subgraph : When $H \subseteq G$ but $H \neq G$, we write $H \subset G$ and call H a proper subgraph of G.
- ▶ Supergraph: If H is a subgraph of G, then G is called a supergraph of H.
- ▶ A spanning subgraph (or spanning supergraph) of G is a subgraph (or supergraph) H with V(H) = V(G).

- ▶ A graph H is a subgraph of G (written $H \subset G$) if
 - $IV(H) \subset V(G)$,
 - **2** *E*(*H*) ⊂ *E*(*G*)
 - **3** ψ_H is the restriction of ψ_G to E(H).
- ▶ Proper Subgraph : When $H \subseteq G$ but $H \neq G$, we write $H \subset G$ and call H a proper subgraph of G.
- ▶ Supergraph: If H is a subgraph of G, then G is called a supergraph of H.
- ▶ A spanning subgraph (or spanning supergraph) of G is a subgraph (or supergraph) H with V(H) = V(G).

- ▶ A graph H is a subgraph of G (written $H \subset G$) if
 - $IV(H) \subset V(G)$,
 - **2** *E*(*H*) ⊂ *E*(*G*)
 - **3** ψ_H is the restriction of ψ_G to E(H).
- ▶ Proper Subgraph : When $H \subseteq G$ but $H \neq G$, we write $H \subset G$ and call H a proper subgraph of G.
- ► Supergraph: If *H* is a subgraph of *G*, then *G* is called a supergraph of *H*.
- ▶ A spanning subgraph (or spanning supergraph) of G is a subgraph (or supergraph) H with V(H) = V(G).

- ▶ A graph H is a subgraph of G (written $H \subset G$) if
 - $IV(H) \subset V(G)$,
 - **2** *E*(*H*) ⊂ *E*(*G*)
 - **3** ψ_H is the restriction of ψ_G to E(H).
- ▶ Proper Subgraph : When $H \subseteq G$ but $H \neq G$, we write $H \subset G$ and call H a proper subgraph of G.
- ightharpoonup Supergraph : If H is a subgraph of G, then G is called a supergraph of H.
- ▶ A spanning subgraph (or spanning supergraph) of G is a subgraph (or supergraph) H with V(H) = V(G).

- ▶ A graph H is a subgraph of G (written $H \subset G$) if
 - $IV(H) \subset V(G)$,
 - **2** *E*(*H*) ⊂ *E*(*G*)
 - **3** ψ_H is the restriction of ψ_G to E(H).
- ▶ Proper Subgraph : When $H \subseteq G$ but $H \neq G$, we write $H \subset G$ and call H a proper subgraph of G.
- ightharpoonup Supergraph : If H is a subgraph of G, then G is called a supergraph of H.
- ▶ A spanning subgraph (or spanning supergraph) of G is a subgraph (or supergraph) H with V(H) = V(G).

Subgraphs (Induced)

▶Induced subgraph : G' = G[V'] : $V' \subseteq V$,

E(G') is all edges of G that have both ends in V'.

▶Induced subgraph : $G[V \setminus V']$: Denoted by $G \setminus V'$ subgraph obtained from G by deleting the vertices in V' together with their incident edges.

If $V' = \{v\}$ a singleton we simply write G - v.

Subgraphs (Induced)

- ▶Induced subgraph : G' = G[V'] : $V' \subseteq V$,
- E(G') is all edges of G that have both ends in V'.
- ▶Induced subgraph : $G[V \setminus V']$: Denoted by $G \setminus V'$

subgraph obtained from G by deleting the vertices in V' together with their incident edges.

If $V' = \{v\}$ a singleton we simply write G - v.

Subgraphs (Induced)

- ▶Induced subgraph : G' = G[V'] : $V' \subseteq V$,
- E(G') is all edges of G that have both ends in V'.
- ▶Induced subgraph : $G[V \setminus V']$: Denoted by $G \setminus V'$

subgraph obtained from G by deleting the vertices in V' together with their incident edges.

If $V' = \{v\}$ a singleton we simply write G - v.

Edge-Induced Subgraph

▶Edge-Induced subgraph : G[E'] : $E' \subset E$.

G[E'] is the graph obtained by simply taking all edges in E' and vertices incident with them.

- ▶Edge-Induced subgraph : $G \setminus E'$ subgraph obtained by deleting edges in E'. (not vertices).

Edge-Induced Subgraph

▶Edge-Induced subgraph : G[E'] : $E' \subset E$.

G[E'] is the graph obtained by simply taking all edges in E' and vertices incident with them.

- ▶Edge-Induced subgraph : $G \setminus E'$ subgraph obtained by deleting edges in E'. (not vertices).
- ▶ $G \setminus \{e\} = G e$ and $G + \{e\} = G + e$

- ▶ G_1 and G_2 are disjoint if $V(G_1) \cap V(G_2) = \emptyset$.
- ▶ G_1 and G_2 are Edge-disjoint if $E(G_1) \cap E(G_2) = \emptyset$.
- ▶ The union $H = G_1 \cup G_2 \subseteq G$ of G_1 and G_2 is the subgraph with $V(H) = V(G_1) \cup V(G_2)$ and $E(H) = E(G_1) \cup E(G_2)$.
- ▶ The intersection $H = G_1 \cap G_2 \subseteq G$ of G_1 and G_2 is the subgraph with $V(H) = V(G_1) \cap V(G_2)$ and $E(H) = E(G_1) \cap E(G_2)$.

- ▶ G_1 and G_2 are disjoint if $V(G_1) \cap V(G_2) = \emptyset$.
- ▶ G_1 and G_2 are Edge-disjoint if $E(G_1) \cap E(G_2) = \emptyset$.
- ▶ The union $H = G_1 \cup G_2 \subseteq G$ of G_1 and G_2 is the subgraph with $V(H) = V(G_1) \cup V(G_2)$ and $E(H) = E(G_1) \cup E(G_2)$.
- ▶ The intersection $H = G_1 \cap G_2 \subseteq G$ of G_1 and G_2 is the subgraph with $V(H) = V(G_1) \cap V(G_2)$ and $E(H) = E(G_1) \cap E(G_2)$.

- ▶ G_1 and G_2 are disjoint if $V(G_1) \cap V(G_2) = \emptyset$.
- ▶ G_1 and G_2 are Edge-disjoint if $E(G_1) \cap E(G_2) = \emptyset$.
- ▶ The union $H = G_1 \cup G_2 \subseteq G$ of G_1 and G_2 is the subgraph with $V(H) = V(G_1) \cup V(G_2)$ and $E(H) = E(G_1) \cup E(G_2)$.
- ▶ The intersection $H = G_1 \cap G_2 \subseteq G$ of G_1 and G_2 is the subgraph with $V(H) = V(G_1) \cap V(G_2)$ and $E(H) = E(G_1) \cap E(G_2)$.

- ▶ G_1 and G_2 are disjoint if $V(G_1) \cap V(G_2) = \emptyset$.
- ▶ G_1 and G_2 are Edge-disjoint if $E(G_1) \cap E(G_2) = \emptyset$.
- ▶ The union $H = G_1 \cup G_2 \subseteq G$ of G_1 and G_2 is the subgraph with $V(H) = V(G_1) \cup V(G_2)$ and $E(H) = E(G_1) \cup E(G_2)$.
- ▶ The intersection $H = G_1 \cap G_2 \subseteq G$ of G_1 and G_2 is the subgraph with $V(H) = V(G_1) \cap V(G_2)$ and $E(H) = E(G_1) \cap E(G_2)$.

- ▶ G_1 and G_2 are disjoint if $V(G_1) \cap V(G_2) = \emptyset$.
- ▶ G_1 and G_2 are Edge-disjoint if $E(G_1) \cap E(G_2) = \emptyset$.
- ▶ The union $H = G_1 \cup G_2 \subseteq G$ of G_1 and G_2 is the subgraph with $V(H) = V(G_1) \cup V(G_2)$ and $E(H) = E(G_1) \cup E(G_2)$.
- ▶ The intersection $H = G_1 \cap G_2 \subseteq G$ of G_1 and G_2 is the subgraph with $V(H) = V(G_1) \cap V(G_2)$ and $E(H) = E(G_1) \cap E(G_2)$.

Representing Graphs

Incidence and Adjacency Matrices

- ▶ $V(G) = \{v_1, v_2, \cdots, v_n\}$
- ► $E(G) = \{e_1, e_2, \cdots, e_m\}$
- ▶ Incidence matrix : $M(G) = [m_{ij}]_{n \times m}$

 - **2** m_{ij} = number of times vertex v_i is incident with edge e_j .
 - 3 $0 \le m_{ij} \le 2$

Adjacency Matrix

- ▶ Adjacency matrix : $A(G) = [a_{ij}]_{n \times n}$
 - I Size: $n \times n = |V| \times |V|$.
 - 2 a_{ij} = number of edges between vertex v_i vertex v_j .
 - 3 $m_{ij} \geq 0$.

▶ Incidence matrix is of order 4×7 and the adjacency matrix is of order 4×4 .

Note: Loops counted twice.

▶ Incidence matrix is of order 4×7 and the adjacency matrix is of order 4×4 .

Note: Loops counted twice.

▶ The adjacency matrix A is of order 4×4 .

Note: Loops counted only once.

▶ The adjacency matrix A is of order 4×4 .

Note: Loops counted only once.

- ▶ A graph G is k -regular if d(v) = k for all $v \in V(G)$; a regular graph is one that is k-regular for some k.
- ▶ A simple graph is said to complete- K_n if every pair of vertices are incident with a unique edge.
- ▶ A graph is said to be Bipartite is $V = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$ and every edge has one in V_1 and its other end in V_2 .
- ▶A complete bipartite graph- $K_{m,n}$ is a simple bipartite graph with bipartition (X, Y) in which each vertex of X is joined to each vertex of Y; if |X| = m and |Y| = n, such a graph is denoted by $K_{m,n}$.

- ▶ A graph G is k -regular if d(v) = k for all $v \in V(G)$; a regular graph is one that is k-regular for some k.
- ▶ A simple graph is said to complete- K_n if every pair of vertices are incident with a unique edge.
- ▶ A graph is said to be Bipartite is $V = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$ and every edge has one in V_1 and its other end in V_2 .
- ▶A complete bipartite graph- $K_{m,n}$ is a simple bipartite graph with bipartition (X, Y) in which each vertex of X is joined to each vertex of Y; if |X| = m and |Y| = n, such a graph is denoted by $K_{m,n}$.

- ▶ A graph G is k -regular if d(v) = k for all $v \in V(G)$; a regular graph is one that is k-regular for some k.
- ▶ A simple graph is said to complete- K_n if every pair of vertices are incident with a unique edge.
- ▶ A graph is said to be Bipartite is $V = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$ and every edge has one in V_1 and its other end in V_2 .
- ▶A complete bipartite graph- $K_{m,n}$ is a simple bipartite graph with bipartition (X, Y) in which each vertex of X is joined to each vertex of Y; if |X| = m and |Y| = n, such a graph is denoted by $K_{m,n}$.

- ▶ A graph G is k -regular if d(v) = k for all $v \in V(G)$; a regular graph is one that is k-regular for some k.
- ▶ A simple graph is said to complete- K_n if every pair of vertices are incident with a unique edge.
- ▶ A graph is said to be Bipartite is $V = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$ and every edge has one in V_1 and its other end in V_2 .
- ▶A complete bipartite graph- $K_{m,n}$ is a simple bipartite graph with bipartition (X, Y) in which each vertex of X is joined to each vertex of Y; if |X| = m and |Y| = n, such a graph is denoted by $K_{m,n}$.

Graph Isomorphism

Definition

Two graphs G and H are identical (written G = H) if V(G) = V(H), E(G) = E(H), and $\psi_G = \psi_H$.

- ▶ If two graphs are identical then they can clearly be represented by identical diagrams.
- ▶ It is also possible for two non-identical graphs to be represented by the same diagram. Such graphs are said to be Isomorphic.

Definition

Two graphs G and H are called isomorphic (denoted by $G\cong H$) to each other if if there are bijections $f:V(G)\to V(H)$ and $\phi:E(G)\to E(H)$ such that $\psi_G(e)=uv$ if and only if $\psi_H(\phi(e))=\theta(u)\theta(v)$. such a pair (θ,ϕ) of mappings is called an isomorphism between G and H.

- ► Step 1 : First verify if
 - |V(G)| = |V(H)| = yes
 - |E(G)| = |E(H)| = yes
 - Same degree sequence = (3,3,3,2,1) = yes

- ► Step 1 : First verify if
 - |V(G)| = |V(H)| = yes
 - |E(G)| = |E(H)| = yes
 - 3 Same degree sequence = (3,3,3,2,1) = yes

- ► Step 1 : First verify if
 - |V(G)| = |V(H)| = yes
 - |E(G)| = |E(H)| = yes
 - Same degree sequence = (3,3,3,2,1) = yes

- ► Step 1 : First verify if
 - |V(G)| = |V(H)| = yes
 - |E(G)| = |E(H)| = yes
 - Same degree sequence = (3,3,3,2,1) = yes

- ► Step 1 : First verify if
 - |V(G)| = |V(H)| = yes
 - |E(G)| = |E(H)| = yes
 - 3 Same degree sequence = (3,3,3,2,1) = yes

- ► Step 1 : First verify if
 - |V(G)| = |V(H)| = yes
 - |E(G)| = |E(H)| = yes
 - 3 Same degree sequence = (3,3,3,2,1) = yes

▶ Step 2 : Find bijection between vertices such that their vertex degrees are same.

▶ Step 2 : Find bijection between vertices such that their vertex degrees are same.

► Step 2: Find bijection between edges based on the vertex mapping,

$$e_1 \leftrightarrow e_1', \ e_2 \leftrightarrow e_4', \ e_3 \leftrightarrow e_3', \ e_4 \leftrightarrow e_5', \ e_5 \leftrightarrow e_2', \ e_6 \leftrightarrow e_6'$$

Example-Isomorphism

► Are the two graphs isomorphic?

▶ NO : G_1 is bipartite but G_2 is not.

Example-Isomorphism

► Are the two graphs isomorphic?

▶ NO : G_1 is bipartite but G_2 is not.

Isomorpism-Check points

- Count the vertices. The graphs must have an equal number.
- 2 Count the edges. The graphs must have an equal number.
- 3 Check vertex degree sequence. Each graph must have the same degree sequence.
- Check induced subgraphs for isomorphism. If the subgraphs are not isomorphic, then the larger graphs are not either.
- 5 Count numbers of cycles/cliques.