LABORATORIO 2 - 14 Marzo 2019

Argomenti: Sistemi lineari e metodi iterativi

Algoritmo Gauss-Seidel

Input: $A, b, x, toll, k_{max}, ier$

Output: x, k, ier

1. for
$$k = 1, ..., k_{max}$$

$$2. y \leftarrow x_1$$

3.
$$x_1 \leftarrow \left(b_1 - \sum_{j=2}^n a_{1j} x_j\right) / a_{11}$$

4.
$$x_{max} \leftarrow |x_1|$$

5.
$$e_{max} \leftarrow |y - x_1|$$

6. for
$$i = 2, ..., n$$

7.
$$y \leftarrow x_i$$

8.
$$x_i \leftarrow \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j - \sum_{j=i+1}^n a_{ij} x_j\right) / a_{ii}$$

9.
$$e \leftarrow |y - x_i|$$

10. if
$$x_{max} < |x_i| \implies x_{max} \leftarrow |x_i|$$

11. if
$$e_{max} < e \implies e_{max} \leftarrow e$$

13. if
$$e_{max} < toll \cdot x_{max} \implies ier \leftarrow 0$$
, exit

15.
$$ier \leftarrow 1$$

- 1. Scrivere una function Matlab, denominata gauss_seidel.m, che implementi l'algoritmo di Gauss-Seidel. Successivamente,
 - generare la matrice quadrata A=magic(n) con n=5;
 - verificare che A è non singolare;
 - generare la matrice $B = A^T A$;
 - \bullet verificare che B è simmetrica e definita positiva;
 - generare un vettore $b \in \mathbb{R}^5$ in modo che $x = (1, ..., 1)^T$ sia la soluzione del sistema Bx = b;

- utilizzare la function gauss_seidel.m per risolvere in modo approssimato il sistema Bx = b, con tol = 1.0e 05, $k_{max} = 100$ e $x^{(0)}$ coincidente con il vettore nullo;
- \bullet calcolare l'errore relativo in norma infinito commesso all'iterazione finale k:

$$\frac{||x - x^{(k)}||_{\infty}}{||x||_{\infty}}$$

 Sia dato un sistema lineare sparso di ordine n. Memorizzare solamente gli elementi non nulli e costruire l'algoritmo di Gauss-Seidel utilizzando un solo vettore per memorizzare le approssimazioni della soluzione. Implementare il suddetto algoritmo in una function denominata gauss_seidel_sparse.m.

Successivamente, utilizzare il comando $A = \operatorname{sprandsym}(n, \operatorname{isp,a})$ per generare una matrice A di ordine n=400, simmetrica, sparsa, pseudocasuale, con indice di sparsità isp=0.01 ($isp = \frac{nnz(A)}{n^2}$) e con autovalori memorizzati in a, pseudocasuali compresi tra 1 e 10.

Utilizzando i comandi tic e toc, confrontare i tempi di esecuzione delle function gauss_seidel.m e gauss_seidel_sparse.m applicati a 20 matrici, generate in sequenza e del tipo sopra descritto. Fornire per ciascuna di esse tol = 1.0e - 06, $k_{max} = 10000$ e $x^{(0)}$ coincidente con il vettore nullo.

3. Implementare in due *m-file* di tipo *function*, denominati jacobi_mat.me gauss_seidel_mat.m i metodi iterativi di Jacobi e di Gauss Seidel rispettivamente, per la risoluzione di un sistema lineare Ax = b.

Utilizzare la forma matriciale dei suddetti metodi, ovvero

$$Dx^{(k+1)} = b - Cx^{(k)}$$

con D=diag(diag(A)) per il metodo di Jacobi e D=tril(A) per il metodo di Gauss-Seidel.

Applicare entrambi i metodi per la risoluzione approssimata dei sistemi $A_i x = b_i$, $i = 1, \dots, 4$, con

$$A_{1} = \begin{pmatrix} 1 & -2 & 2 \\ -1 & 1 & -1 \\ -2 & -2 & 1 \end{pmatrix}, \quad A_{2} = \begin{pmatrix} 4 & 0 & 2/5 \\ 0 & 5 & 2/5 \\ 5/2 & 2 & 1 \end{pmatrix},$$

$$A_{3} = \begin{pmatrix} 2 & -1 & 1 \\ 2 & 2 & 2 \\ -1 & -1 & 2 \end{pmatrix}, \quad A_{4} = \begin{pmatrix} 3 & -1 & 0 & 0 & 0 & -1 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 3 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & 0 \\ 0 & -1 & 0 & -1 & 3 & -1 \\ -1 & 0 & 0 & 0 & -1 & 3 \end{pmatrix},$$

e b_i definito in modo tale che la corrispondente soluzione x coincida con il vettore con tutte le componenti uguali a 1. Per ciascuno di essi richiedere un numero massimo di iterazioni $k_{max} = 100, \, tol = 1.0e - 07$ e fornire il vettore nullo come vettore iniziale $x^{(0)}$. Commentare i risultati.

4. Il sistema Ax = b con

$$A = \begin{pmatrix} 4 & -1 & 0 & -1 & 0 & 0 \\ -1 & 4 & -1 & 0 & -1 & 0 \\ 0 & -1 & 4 & 0 & 0 & -1 \\ -1 & 0 & 0 & 4 & -1 & 0 \\ 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & -1 & 0 & -1 & 4 \end{pmatrix}, \qquad b = \begin{pmatrix} 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \end{pmatrix},$$

- ha soluzione $x=(1,1,1,1,1,1)^T$. Risolvere il sistema usando dapprima il metodo di Jacobi e successivamente il metodo di Gauss-Seidel. Fornire come approssimazione iniziale $x^{(0)}$ il vettore nullo e valutare la soluzione con precisione relativa tol=0.0001. Osservare la velocità di convergenza dei due metodi.
- 5. Nel problema precedente usare il metodo SOR con $\omega=1+0.2k$ con k=0,1,2,3,4,5 e osservare la variazione del numero di iterazioni richieste (nei casi k<5) per raggiungere la precisione desiderata.