计算机系统结构官方笔记

一、思维导图

二、知识点回顾

1、虚拟存储器的管理方式

根据存储映像算法的不同,可有多种不同的存储管理方式的虚拟存储器,其中主要有段式、页式和段页式3种。

2、段式管理

程序都有模块性,一个复杂的大程序总可以分解成多个在逻辑上相对独立的模块。 这些模块可以是主程序、子程序或过程,也可以是数据块。

为了进行段式管理,每道程序在系统中都有一个段(映像)表来存放该道程序各段装入主存的状况信息。

段式中每个段独立,有利于程序员灵活实现段的链接,段的扩大、缩小和修改, 而不影响到其他的段;

每段只包含一种类型的对象,如过程或是数组、堆栈、标量等集合,易于针对其特定类型实现保护;

把共享的程序或数据单独构成一个段,从而易于实现多个用户、进程对共用段的管理,等等。

口诀: 独一共

3、页式管理

页式存储是把主存空间和程序空间都机械地等分成固定大小的页(页面大小随计算机而异,一般在512B到几KB之间),按页顺序编号。

与段式一样, 计算机是采用多道程序方式工作的。

4、段页式管理

段页式=段表+页表

5、地址的映像和变换

页式虚拟存储器是采用页式存储和管理的主存一辅存存储层次。

地址的映像是将每个虚存单元按某种规则(算法)装入(定位于)实主存,建立起 多用户虚地址 NS 与实(主)存地址 np 之间的对应关系。

由于是把大的虚存空间压缩到小的主存空间,主存中的每一个页面位置应可对应 多个 虚页,能对应多少个虚页与采用的映像方式有关。

全相联映像

相联目录表法

把页表压缩成只存放已装入主存的那些虚页(用基号 b 和标识)与实页位置(nv)的对应关系,该表最多为 2nv 行。我们称它为相联目录表法,简称目录表法。该表采用按内容访问的相联存储器构成。

按内容访问相联的不同于按地址访问的随机存储器

6、页面替换算法

替换算法的确定主要看主存是否有高的命中率,也要看算法是否便于实现,辅助软、硬件成本是否低。

目前已研究过多种替换算法,如随机算法、先进先出算法、近期最少使用(近期最久未用过)算法等。

(1) 随机算法 (Random, RAND) 是用软的或硬的随机数产生器产生主存中要被替换页的页号。

这种算法简单, 易于实现

(2) 先进先出算法(First-In First-Out, FIFO) 是选择最早装入主存的页作为被替换的页。

这种算法实现方便,只要在操作系统为主存管理所设的主存页面表中给每个实页

配一个计数器字段

(3) 近期最少使用算法(Least Recently Used, LRU) 是选择近期最少访问的页作为被替换页。

结论 1 命中率与所选用替换算法有关。LRU 算法要优于 FIF0 算法。命中率也与页地址流有关。

结论 2 命中率与分配给程序的主存页数有关。

- 7、堆栈型替换算法
- 1) LRU 算法在庄村中保留的是 n 个最近使用的页, 他们又总是包含在 n+1 个最近使用的页中, 所以 LRU 算法是堆栈型算法。
- 2) OPT 算法也是堆栈型算法
- 8、页面失效的处理

要访问的虚页不在实际主存中时, 就会发生页面失效。

- 9、提高虚拟存储器等效访问速度的措施
- (1) 存储层次的等效访问时间是 TA=HT1+(1-H) T2, 式中, H 为主存命中率, T1、T2 分别是主、辅存访问时间。
- (2) 要提高存储层次等效访问速度, 可采取的措施有:
- ①当等效访问时间远大于主存访问周期时, 可采取提高主存命中率的方法:
- ②当主存命中率 H 已经很高时, 可提高主存的访问速度, 以降低 T1;
- ③加快内部地址映像和变换,如采用快-慢表层次,增大快表命中率等。
- 10、影响主存命中率和 CPU 效率的某些因素

程序地址流、替换算法以及分配给程序的实页数(主存容量)不同都会影响命中率。

11、cache 存储器

高速缓冲(Cache)存储器是为弥补主存速度的不足,在处理机和主存之间设置一个高速、小容量的 Cache,构成 Cache—主存存储层次,使之从 CPU 角度来看,速度接近于 Cache,容量却是主存的。

1)全相联映像和变换

主存中任意一块都可映像装入到 Cache 中任意一块位置,

2) 直接映像及其变换

把主存空间按 Cache 大小等分成区,每区内的各块只能按位置一一对应到 Cache 的相应块位置上

3) 组相联映像及其变换

全相联映像和直接映像的优、缺点正好相反,那么能否将两者结合,采用一种映像规则,既能减少块冲突概率,提高 Cache 空间利用率,又能使地址映像机构及地址变换速度比全相联的简单和快速

组相联映像指的是各组之间是直接映像,而组内各块之间是全相联映像。

- 12、Cache 存储器的透明性分析及解决办法
- 一般可有写回法和写直达法两种。

写回法也称为抵触修改法。它是在 CPU 执行写操作时,信息只写入 Cache, 仅当需要替换时,才将改写过的 Cache 块先写回主存,然后再调人新块。

写直达法也称存直达法。它是利用 Cache 存储器在处理机和主存之间的直接通路,每当处理机写入 Cache 的同时,也通过此通路直接写入主存。

13、Cache 的取算法

Cache 所用的取算法基本上是按需取进法,即在 Cache 块失效时才将要访问的字所在 的块取进。

适当选择好 Cache 的容量、块的大小、组相联的组数和组内块数,是可以保证有较高的命中率的。

14、Cache 存储器的性能分析

评价 Cache 存储器的性能主要是看命中率的高低,而命中率与块的大小、块的总数(即 Cache 的总容量)、采用组相联时组的大小(组内块数)、替换算法和地址流的簇聚性等有关。
Cache 本身的速度与容量都会影响 Cache 存储器的等效访问速度。

三、练习题

- 1、虚拟存储器地址变换是指()1910
- A: 将实地址变换成虚地址
- B:静态再定位时将程序的逻辑地址变换成主存的实地址

- C: 程序执行时将虚地址变换成对应的实地址
- D: 将指令的符号地址变换成二进制地址

答案: C

- 2、不属于堆栈型替换算法的是()1910
- A: 近期最久未使用算法
- B:OPT 算法
- C: 先进先出算法
- D: 近期最少使用算法

答案: C

3、页式虚拟存储器中的 CPU 要用到的指令或数据不在()时会发生()。

1910

答案: 主存 页面失效