Maximizing a Function using Scipy

This Python Program will show how to use scipy and execute to maximize a function and find accurate values.

Problem Statement

Quantitative Model - Example

ABC Company -production planning

Decision: How many computers to build in next month?

- Two types of computers (CC7 and CC8)
- Labor limit
- Materials limit
- Marketing lower limits

Constraint	CC7	CC8	Relation	<u>Limit</u>
Labor (hours)	300	500	<=	200,000 / mo
Materials \$	10,000	15,000	<=	8,000,000/mo
Units	1		>=	100
Units		1	>=	200
Profit \$	8,000	12,000	Max	

Objective: Maximize Total Profit /mo

Equations Formed

• This is a <u>Linear programming problem:</u>

max	8000 x1 + 12000 x2
subject to	
(labor)	300 x1 + 500 x2 <= 200000
(budget)	10000 x1 + 15000 x2 <= 8000000
(market1)	x1 >= 100
(market2)	x2 >= 200

1 of 3 2/8/18, 11:12 am

Program

```
In [8]:
         This Code is developed by Shamsheer Verma
         Last Edited - 2/08/2018
Out[8]: '\nThis Code is developed by Shamsheer Verma\nLast Edited - 2/08/2018\n'
In [1]: from scipy.optimize import minimize # Importing Library
In [2]: def profits(x, sign=-1.0): # Defining a function called profits
             x1 = x[0] # Here x1 and x[0] is CC7
             x2 = x[1] # Here x2 and x[1] is CC8
             return sign*(8000*x1 + 12000*x2) # It is important to put sign as -1
         because we are using minimize
                                                  # function of scipy to maximize thi
         s function
         In constraints it is important to note that I have put negative sign in
         return function
         for some constraints. This is because when there is an inequality equati
         on the constraint
         tends to automatically take >= sign instead of <=. To make sure it works
         properly with labor
         and budget inequality equation, I have put the negative sign.
         def constraint1(x):
             return (-3*x[0] - 5*x[1]+2000) # This is our first constraint for la
         bor work.
         def constraint2(x):
             return (-10*x[0] - 12*x[1]+8000) # This is our second constraint for
         budget.
         def constraint3(x):
             return (x[0]-100) # Third constraint for minimum number of CC7
         def constraint4(x):
             return (x[1]-200) # Fourth constraint for minimum number of CC8
In [3]: | x0 = [100,200] # Initial Guess Values
In [4]: # Making a dictionary of constraints and storing the result in a list.
         con1 = {'type':'ineq', 'fun': constraint1}
con2 = {'type':'ineq', 'fun': constraint2}
con3 = {'type':'ineq', 'fun': constraint3}
con4 = {'type':'ineq', 'fun': constraint4}
         cons = [con1, con2, con3, con4]
```

2 of 3 2/8/18, 11:12 am

Finish

3 of 3 2/8/18, 11:12 am