

scikit-rf Documentation Release dev

Alex Arsenovic

CONTENTS

1	Tutor	rials	3	
	1.1	Installation	3	
	1.2	Introduction	4	
	1.3	Networks	11	
	1.4	Plotting	20	
	1.5	NetworkSet	30	
	1.6	Virtual Instruments	35	
	1.7	Calibration	36	
	1.8	Media	40	
2	Exan		47	
	2.1	Visualizing a Single Stub Matching Network	47	
	2.2	One-Port Calibration	51	
3 Reference				
	3.1	<pre>frequency (skrf.frequency)</pre>	53 53	
	3.2	network (skrf.network)		
	3.3	networkSet(skrf.networkSet)		
	3.4	plotting (skrf.plotting)		
	3.5	mathFunctions (skrf.mathFunctions)		
	3.6	tlineFunctions (skrf.tlineFunctions)		
	3.7	constants (skrf.constants)		
	3.8	util (skrf.util)		
	3.9	io (skrf.io)		
	3.10	calibration (skrf.calibration)		
	3.11	media (skrf.media)		
	3.12	vi(skrf.vi)		
	3.13	Indices and tables		
	3.13	indices and tables	203	
Py	thon N	Module Index	285	
In	dev		287	

This documentation is also available in pdf form: scikit-rf.pdf

CONTENTS 1

2 CONTENTS

CHAPTER

ONE

TUTORIALS

1.1 Installation

Contents

- Installation
 - Introduction
 - skrf Installation
 - Testing Installation
 - Requirements
 - * Debian-Based Linux
 - * Necessary
 - * Optional

1.1.1 Introduction

The requirements to run **skrf** are basically a Python environment setup to do numerical/scientific computing. If you are new to development, you may want to install a pre-built scientific python IDE like pythonxy or the enthought python distribution. Either of these *ditributions* will install all requirements, as well as provide a nice environment to get started in. If you dont want use pythonxy or enthought see Requirements.

Note: If you want to use **skrf** for instrument control you will need to install pyvisa as well as the NI-GPIB drivers. You may also be interested in Pythics, which provides a simple way to build graphical interfaces to virtual instruments.

1.1.2 skrf Installation

Once the requirements are installed, there are two choices for installing skrf:

- windows installer
- python source package

These can be found at http://scikit-rf.org/download.html

If you dont know how to install a python module and dont care to learn how, you want the windows installer.

The current version can be accessed through github. This is mainly of interest for developers.

1.1.3 Testing Installation

If import **skrf** and dont recieve an error, then installation was succesful.

```
In [1]: import skrf as rf
```

If instead you get an error like this,

Then installation was unsuccesful. If you need help post to the mailing list.

1.1.4 Requirements

Debian-Based Linux

For debian-based linux users who dont want to install pythonxy, here is a one-shot line to install all requirements,

```
sudo apt-get install python-pyvisa python-numpy python-scipy python-matplotlib ipython python python-
```

Once *setuptools* is installed you can install skrf through easy_install

```
easy_install scikit-rf
```

Necessary

- python (>=2.6) http://www.python.org/
- numpy http://numpy.scipy.org/
- scipy http://www.scipy.org/
- matplotlib http://matplotlib.sourceforge.net/

Optional

- ipython http://ipython.scipy.org/moin/ for interactive shell
- pyvisa http://pyvisa.sourceforge.net/pyvisa/ for instrument control
- Pythics http://code.google.com/p/pythics instrument control and gui creation

1.2 Introduction

Contents

- Introduction
 - Introduction
 - Networks
 - * Linear Operations
 - * Cascading and De-embedding
 - Plotting
 - NetworkSet
 - * Statistical Properties
 - * Plotting Uncertainty Bounds
 - Virtual Instruments
 - Calibration
 - * One Port Calibration
 - Media
 - * Media Types
 - * Network Compoents

1.2.1 Introduction

This is a brief introduction to **skrf** which highlights a range of features without going into detail on any single one. At the end of each section there are links to other tutorials, that provide more information about a given feature. The intended audience are those who have a working python stack, and are somewhat familiar with python. If you are unfamiliar with python, please see scipy's Getting Started.

Although not essential, these tutorials are most easily followed by using the ipython shell with the --pylab flag.

```
> ipython --pylab
In [1]:
```

Using ipython with the pylab flag imports several commonly used functions, and turns on interactive plotting mode which causes plots to display immediately.

Throughout this tutorial, and the rest of the scikit-rf documentation, it is assumed that **skrf** has been imported as rf. Whether or not you follow this convention in your own code is up to you.

```
In [1]: import skrf as rf
```

If this produces an error, please see *Installation*.

Note: The example code in these tutorials make use of files that are distributed with the source package. The working directory for these code snippets is scikit-rf/doc/, hence all data files are referenced relative to that directory. If you do not have the source package, then you may access these files through the skrf.data module (ie from skrf.data import ring_slot)

1.2.2 Networks

The Network object represents a N-port microwave Network. A Network can be created in a number of ways. One way is from data stored in a touchstone file.

```
In [1]: ring_slot = rf.Network('../skrf/data/ring slot.s2p')
```

1.2. Introduction 5

A short description of the network will be printed out if entered onto the command line

```
In [1]: ring_slot
Out[1]: 2-Port Network: 'ring slot', 75-110 GHz, 201 pts, z0=[ 50.+0.j 50.+0.j]
```

he basic attributes of a microwave Network are provided by the following properties:

- Network.s: Scattering Parameter matrix.
- Network.z0: Port Characterisic Impedance matrix.
- Network.frequency: Frequency Object.

All of the network parameters are complex numpy.ndarray 's of shape FxNxN, where F is the number of frequency points and N is the number of ports. The Network object has numerous other properties and methods which can found in the Network docstring. If you are using IPython, then these properties and methods can be 'tabbed' out on the command line.

Linear Operations

Element-wise mathematical operations on the scattering parameter matrices are accessible through overloaded operators. To illustrate their usage, load a couple Networks stored in the data module.

```
In [1]: short = rf.data.wr2p2_short
In [2]: delayshort = rf.data.wr2p2_delayshort
In [3]: short - delayshort
Out[3]: 1-Port Network: 'wr2p2, short', 330-500 GHz, 201 pts, z0=[ 50.+0.j]
In [4]: short + delayshort
Out[4]: 1-Port Network: 'wr2p2, short', 330-500 GHz, 201 pts, z0=[ 50.+0.j]
```

Cascading and De-embedding

Cascading and de-embeding 2-port Networks can also be done though operators. The cascade() function can be called through the power operator, **. To calculate a new network which is the cascaded connection of the two individual Networks line and short.

```
In [1]: short = rf.data.wr2p2_short
In [2]: line = rf.data.wr2p2_line
In [3]: delayshort = line ** short
```

De-embedding can be accomplished by cascading the *inverse* of a network. The inverse of a network is accessed through the property Network.inv. To de-embed the short from delay_short,

```
In [1]: short = line.inv ** delayshort
```

For more information on the functionality provided by the Network object, such as interpolation, stitching, n-port connections, and IO support see the *Networks* tutorial.

1.2.3 Plotting

Amongst other things, the methods of the Network class provide convenient ways to plot components of the network parameters,

- Network.plot_s_db(): plot magnitude of s-parameters in log scale
- Network.plot_s_deg(): plot phase of s-parameters in degrees
- Network.plot_s_smith(): plot complex s-parameters on Smith Chart
- ..

To plot all four s-parameters of the ring_slot on the Smith Chart.

```
In [1]: ring_slot.plot_s_smith();
```


For more detailed information about plotting see the *Plotting* tutorial

1.2.4 NetworkSet

The NetworkSet object represents an unordered set of networks and provides methods for calculating statistical quantities and displaying uncertainty bounds.

A NetworkSet is created from a list or dict of Network's. This can be done quickly with read_all(), which loads all skrf-readable objects in a directory. The argument contains is used to load only files which match a given substring.

```
In [1]: rf.read_all('../skrf/data/', contains='ro')
Out[1]:
{'ro,1': 1-Port Network: 'ro,1', 500-750 GHz, 201 pts, z0=[ 50.+0.j],
    'ro,2': 1-Port Network: 'ro,2', 500-750 GHz, 201 pts, z0=[ 50.+0.j],
    'ro,3': 1-Port Network: 'ro,3', 500-750 GHz, 201 pts, z0=[ 50.+0.j]}
```

This can be passed directly to the NetworkSet constructor,

```
In [1]: ro_dict = rf.read_all('../skrf/data/', contains='ro')
In [2]: ro_ns = rf.NetworkSet(ro_dict, name='ro set') #name is optional
```

1.2. Introduction 7

```
In [3]: ro_ns
Out[3]: A NetworkSet of length 3
```

Statistical Properties

Statistical quantities can be calculated by accessing properties of the NetworkSet. For example, to calculate the complex average of the set, access the mean_s property

```
In [1]: ro_ns.mean_s
Out[1]: 1-Port Network: 'ro set', 500-750 GHz, 201 pts, z0=[ 50.+0.j]
```

Similarly, to calculate the complex standard deviation of the set,

```
In [1]: ro_ns.std_s
Out[1]: 1-Port Network: 'ro set', 500-750 GHz, 201 pts, z0=[ 50.+0.j]
```

These methods return a Network object, so the results can be saved or plotted in the same way as you would with a Network. To plot the magnitude of the standard deviation of the set,

```
In [1]: figure();
In [2]: ro_ns.std_s.plot_s_re(y_label='Standard Deviations')
```


Plotting Uncertainty Bounds

Uncertainty bounds on any network parameter can be plotted through the methods

```
In [1]: figure();
In [2]: ro_ns.plot_uncertainty_bounds_s_db()
```


See the *NetworkSet* tutorial for more information.

1.2.5 Virtual Instruments

Warning: The vi module is not well written or tested at this point.

The vi module holds classes for GPIB/VISA instruments that are intricately related to skrf, mostly VNA's. The VNA classes were created for the sole purpose of retrieving data so that calibration and measurements could be carried out offline by skrf, control of most other VNA capabilities is neglected.

Note: To use the virtual instrument classes you must have pyvisa installed.

A list of VNA's that have been are partially supported.

- HP8510C
- HP8720
- PNA
- ZVA40

An example usage of the HP8510C class to retrieve some s-parameter data

```
In [1]: from skrf.vi import vna
In [2]: my_vna = vna.HP8510C(address =16)
#if an error is thrown at this point there is most likely a problem with your visa setup
In [3]: dut_1 = my_vna.s11
In [4]: dut_2 = my_vna.s21
In [5]: dut_3 = my_vna.two_port
```

Unfortunately, the syntax is different for every VNA class, so the above example wont directly translate to other VNA's. Re-writing all of the VNA classes to follow the same convention is on the TODO list

See the virtualInstruments tutorial for more information.

1.2. Introduction 9

1.2.6 Calibration

skrf has support for one and two-port calibration. **skrf** sdefault calibration algorithms are generic in that they will work with any set of standards. If you supply more calibration standards than is needed, skrf will implement a simple least-squares solution. **skrf** does not currently support TRL.

Calibrations are performed through a Calibration class. Creating a Calibration object requires at least two pieces of information:

- a list of measured Network's
- a list of ideal Network's

The Network elements in each list must all be similar (same #ports, frequency info, etc) and must be aligned to each other, meaning the first element of ideals list must correspond to the first element of measured list.

Optionally, other information can be provided when relevent such as,

- · calibration algorithm
- enforce eciprocity of embedding networks
- etc

When this information is not provided skrf will determine it through inspection, or use a default value.

Below is an example script illustrating how to create a Calibration . See the *Calibration* tutorial for more details and examples.

One Port Calibration

This example is the same as the first except more concise.

```
import skrf as rf

my_ideals = rf.read_all('ideals/')
my_measured = rf.read_all('measured/')
duts = rf.read_all('measured/')

## create a Calibration instance
cal = rf.Calibration(\
    ideals = [my_ideals[k] for k in ['short','open','load']],
    measured = [my_measured[k] for k in ['short','open','load']],
    )

caled_duts = [cal.apply_cal(dut) for dut in duts.values()]
```

1.2.7 Media

skrf supports the microwave network synthesis based on transmission line models. Network creation is accomplished through methods of the Media class, which represents a transmission line object for a given medium. Once constructed, a Media object contains the necessary properties such as propagation constant and characteristic impedance, that are needed to generate microwave circuits.

The basic usage looks something like this,

```
In [1]: import skrf as rf
In [2]: freq = rf.Frequency(75,110,101,'ghz')
```

```
In [3]: cpw = rf.media.CPW(freq, w=10e-6, s=5e-6, ep_r=10.6)
In [4]: cpw.line(100*1e-6, name = '100um line')
Out[4]: 2-Port Network: '100um line', 75-110 GHz, 101 pts, z0=[ 50.06074662+0.j 50.06074662+0.j]
```

Warning: The network creation and connection syntax of skrf are cumbersome if you need to doing complex circuit design. For a this type of application, you may be interested in using QUCS instead. skrf's synthesis cabilities lend themselves more to scripted applications such as *Design Optimization* or batch processing.

Media Types

Specific instances of Media objects can be created from relevant physical and electrical properties. Below is a list of mediums types supported by skrf,

- CPW
- RectangularWaveguide
- Freespace
- DistributedCircuit
- Media

Network Compoents

Here is a brief list of some generic network components skrf supports,

```
• short()
• open()
• load()
• line()
• thru()
```

• match()

- tee()
- delay_short()
- shunt_delay_open()

Usage of these methods can is demonstrated below.

To create a 1-port network for a coplanar waveguide short (this neglects dicontinuity effects),

```
In [1]: cpw.short(name = 'short')
Out[1]: 1-Port Network: 'short', 75-110 GHz, 101 pts, z0=[ 50.06074662+0.j]
```

Or to create a 90° section of cpw line,

```
In [1]: cpw.line(d=90,unit='deg', name='line')
Out[1]: 2-Port Network: 'line', 75-110 GHz, 101 pts, z0=[ 50.06074662+0.j 50.06074662+0.j]
```

See *Media* for more information about the Media object and network creation.

1.3 Networks

1.3. Networks 11

Contents

- Networks
 - Introduction
 - Creating Networks
 - Network Basics
 - Network Operators
 - * Linear Operations
 - * Cascading and De-embedding
 - Connecting Multi-ports
 - Interpolation and Stitching
 - Reading and Writing
 - Impedance and Admittance Parameters
 - Creating Networks 'From Scratch'
 - Sub-Networks
 - References

1.3.1 Introduction

For this tutorial, and the rest of the scikit-rf documentation, it is assumed that **skrf** has been imported as rf. Whether or not you follow this convention in your own code is up to you.

```
In [1]: import skrf as rf
```

If this produces an error, please see *Installation*. The code in this tutorial assumes that you are in the directory scikit-rf/doc.

1.3.2 Creating Networks

skrf provides an object for a N-port microwave Network. A Network can be created in a number of ways. One way is from data stored in a touchstone file.

```
In [1]: ring_slot = rf.Network('../skrf/data/ring slot.s2p')
```

A short description of the network will be printed out if entered onto the command line

```
In [1]: ring_slot
Out[1]: 2-Port Network: 'ring slot', 75-110 GHz, 201 pts, z0=[ 50.+0.j 50.+0.j]
```

Networks can also be created from a pickled Network (written by Network.write()),

```
In [1]: ring_slot = rf.Network('../skrf/data/ring slot.ntwk')
```

or from directly passing values for the frequency, s-paramters and z0.

```
In [1]: custom_ntwk = rf.Network(f = [1,2,3], s= [-1, 1j, 0], z0=50)
```

Seen Network.__init__() for more information on network creation.

1.3.3 Network Basics

The basic attributes of a microwave Network are provided by the following properties:

• Network.s: Scattering Parameter matrix.

- Network.z0: Port Characteristic Impedance matrix.
- Network.frequency: Frequency Object.

All of the network parameters are represented internally as complex numpy.ndarray 's of shape FxNxN, where F is the number of frequency points and N is the number of ports.

```
In [1]: shape(ring_slot.s)
Out[1]: (201, 2, 2)
```

Note that the indexing starts at 0, so the first 10 values of S_{11} can be accessed with

The Network object has numerous other properties and methods which can found in the Network docstring. If you are using IPython, then these properties and methods can be 'tabbed' out on the command line.

Note: Although this tutorial focuses on s-parametes, other network representations such as Impedance (Network.z) and Admittance Parameters (Network.y) are available as well, see Impedance and Admittance Parameters.

Amongst other things, the methods of the Network class provide convenient ways to plot components of the network parameters,

- Network.plot_s_db(): plot magnitude of s-parameters in log scale
- Network.plot_s_deg(): plot phase of s-parameters in degrees
- Network.plot_s_smith(): plot complex s-parameters on Smith Chart

• ...

To plot all four s-parameters of the ring slot on the Smith Chart.

```
In [1]: ring_slot.plot_s_smith();
```

1.3. Networks

Or plot a pair of s-parameters individually, in log magnitude

```
In [1]: figure();
In [2]: ring_slot.plot_s_db(m=1, n=0); # s21
In [3]: ring_slot.plot_s_db(m=0, n=0); # s11
```


For more detailed information about plotting see *Plotting*.

1.3.4 Network Operators

Linear Operations

Element-wise mathematical operations on the scattering parameter matrices are accessible through overloaded operators. To illustrate their usage, load a couple Networks stored in the data module.

```
In [1]: short = rf.data.wr2p2_short
In [2]: delayshort = rf.data.wr2p2_delayshort
In [3]: short - delayshort
Out[3]: 1-Port Network: 'wr2p2, short', 330-500 GHz, 201 pts, z0=[ 50.+0.j]
In [4]: short + delayshort
Out[4]: 1-Port Network: 'wr2p2, short', 330-500 GHz, 201 pts, z0=[ 50.+0.j]
In [5]: short * delayshort
Out[5]: 1-Port Network: 'wr2p2, short', 330-500 GHz, 201 pts, z0=[ 50.+0.j]
In [6]: short / delayshort
Out[6]: 1-Port Network: 'wr2p2, short', 330-500 GHz, 201 pts, z0=[ 50.+0.j]
In [7]: short / delayshort
Out[7]: 1-Port Network: 'wr2p2, short', 330-500 GHz, 201 pts, z0=[ 50.+0.j]
```

All of these operations return Network types, so the methods and properties of a Network are available on the result. For example, to plot the complex difference between short and delay_short,

```
In [1]: figure();
In [2]: difference = (short- delayshort)
In [3]: difference.plot_s_mag()
```


Another common application is calculating the phase difference using the division operator,

```
In [1]: figure();
In [2]: (delayshort/short).plot_s_deg()
```

1.3. Networks

Linear operators can also be used with scalars or an numpy.ndarray that ais the same length as the Network.

```
In [1]: open = (short*-1)
In [2]: open.s[:3,...]
   Out[2]:
   array([[[ 1.-0.j]],
        [[ 1.-0.j]],
        [[ 1.-0.j]]])
In [3]: rando = open *rand(len(open))
In [4]: rando.s[:3,...]
   Out[4]:
   array([[[ 0.68786339+0.j]],
        [[ 0.82213248+0.j]],
        [[ 0.72761259+0.j]]])
```

Note that if you multiply a Network by an numpy . ndarray be sure to place the array on right side.

Cascading and De-embedding

Cascading and de-embeding 2-port Networks can also be done though operators. The cascade() function can be called through the power operator, **. To calculate a new network which is the cascaded connection of the two individual Networks line and short,

```
In [1]: short = rf.data.wr2p2_short
In [2]: line = rf.data.wr2p2_line
In [3]: delayshort = line ** short
```

De-embedding can be accomplished by cascading the *inverse* of a network. The inverse of a network is accessed through the property Network.inv. To de-embed the short from delay_short,

```
In [1]: short = line.inv ** delayshort
```

1.3.5 Connecting Multi-ports

skrf supports the connection of arbitrary ports of N-port networks. It accomplishes this using an algorithm called sub-network growth ¹, available through the function connect(). Terminating one port of an ideal 3-way splitter can be done like so,

```
In [1]: tee = rf.Network('../skrf/data/tee.s3p')
```

To connect port 1 of the tee, to port 0 of the delay short,

```
In [1]: terminated_tee = rf.connect(tee,1,delayshort,0)
_____
IndexError
                                       Traceback (most recent call last)
<ipython-input-1-2cf62d61ac01> in <module>()
----> 1 terminated_tee = rf.connect(tee, 1, delayshort, 0)
/home/alex/data/docs/code/path/skrf/network.pyc in connect(ntwkA, k, ntwkB, l, num)
  2135
  2136
          # some checking
-> 2137
           check_frequency_equal(ntwkA, ntwkB)
  2138
  2139
           # create output Network, from copy of input
/home/alex/data/docs/code/path/skrf/network.pyc in check_frequency_equal(ntwkA, ntwkB)
  3357 '''
  3358
           if assert_frequency_equal(ntwkA, ntwkB) == False:
-> 3359
              raise IndexError ('Networks dont have matching frequency. See 'Network.interpolate')
  3361 def check_z0_equal(ntwkA, ntwkB):
IndexError: Networks dont have matching frequency. See 'Network.interpolate'
```

Note that this function takes into account port impedances, and if connecting ports have different port impedances an appropriate impedance mismatch is inserted.

1.3.6 Interpolation and Stitching

A common need is to change the number of frequency points of a Network. For instance, to use the operators and cascading functions the networks involved must have matching frequencies. If two networks have different frequency information, then an error will be raised,

```
In [1]: line = rf.data.wr2p2_line.copy()
In [2]: line1 = rf.data.wr2p2_line1.copy()
In [3]: line1
Out[3]: 2-Port Network: 'wr2p2,line1', 330-500 GHz, 101 pts, z0=[ 50.+0.j 50.+0.j]
In [4]: line
Out[4]: 2-Port Network: 'wr2p2,line', 330-500 GHz, 201 pts, z0=[ 50.+0.j 50.+0.j]
```

1.3. Networks

¹ Compton, R.C.; , "Perspectives in microwave circuit analysis," Circuits and Systems, 1989., Proceedings of the 32nd Midwest Symposium on , vol., no., pp.716-718 vol.2, 14-16 Aug 1989. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=101955&isnumber=3167

```
In [5]: line1+line
                                            Traceback (most recent call last)
IndexError
<ipython-input-5-82040f7eab08> in <module>()
----> 1 line1+line
/home/alex/data/docs/code/path/skrf/network.pyc in __add__(self, other)
    440
                if isinstance(other, Network):
--> 441
                    self.__compatable_for_scalar_operation_test(other)
    442
                     result.s = self.s + other.s
    443
                else:
/home/alex/data/docs/code/path/skrf/network.pyc in __compatable_for_scalar_operation_test(self, other
    565
    566
                if other.frequency != self.frequency:
--> 567
                     raise IndexError('Networks must have same frequency. See 'Network.interpolate'')
    568
    569
                if other.s.shape != self.s.shape:
IndexError: Networks must have same frequency. See 'Network.interpolate'
This problem can be solved by interpolating one of Networks, using Network.resample().
In [1]: line1
Out[1]: 2-Port Network: 'wr2p2,line1', 330-500 GHz, 101 pts, z0=[ 50.+0.j 50.+0.j]
In [2]: line1.resample(201)
In [3]: line1
Out[3]: 2-Port Network: 'wr2p2,line1', 330-500 GHz, 201 pts, z0=[50.+0.j 50.+0.j]
In [4]: line1+line
Out[4]: 2-Port Network: 'wr2p2,line1', 330-500 GHz, 201 pts, z0=[50.+0.j 50.+0.j]
A related application is the need to combine Networks which cover different frequency ranges. Two Networks can
be stitched together using stitch(), which concatenates their s-parameter matrices along their frequency axis. To
combine a WR-2.2 Network with a WR-1.5 Network,
In [1]: from skrf.data import wr2p2_line, wr1p5_line
In [2]: line = rf.stitch(wr2p2_line, wr1p5_line)
```

1.3.7 Reading and Writing

In [3]: line

While **skrf** supports reading and writing the touchstone file format, it also provides native IO capabilities for any skrf object through the functions read() and write(). These functions can also be called through the Network methods Network.read() and Network.write(). The Network constructor (Network.__init__()) calls read() implicitly if a skrf file is passed.

Out[3]: 2-Port Network: 'wr2p2,line', 330-750 GHz, 402 pts, z0=[50.+0.j 50.+0.j]

```
In [1]: line = rf.Network('../skrf/data/line.s2p')
In [2]: line.write() # write out Network using native IO
line.ntwk
```

```
In [3]: rf.Netwrok('line.ntwk') # read Network using native IO
```

Frequently there is an entire directory of files that need to be analyzed. The function read_all() is used to create objects from all files in a directory quickly. Given a directory of skrf-readable files, read_all() returns a dict with keys equal to the filenames, and values equal to objects. To load all **skrf** files in the skrf/data/ directory which contain the string \'wr2p2\'.

```
In [1]: dict_o_ntwks = rf.read_all('../skrf/data/', contains = 'wr2p2')
In [2]: dict_o_ntwks
Out[2]:
{'wr2p2,delayshort': 1-Port Network: 'wr2p2,delayshort', 330-500 GHz, 201 pts, z0=[ 50.+0.j],
    'wr2p2,line': 2-Port Network: 'wr2p2,line', 330-500 GHz, 201 pts, z0=[ 50.+0.j 50.+0.j],
    'wr2p2,line1': 2-Port Network: 'wr2p2,line1', 330-500 GHz, 101 pts, z0=[ 50.+0.j 50.+0.j],
    'wr2p2,short': 1-Port Network: 'wr2p2,short', 330-500 GHz, 201 pts, z0=[ 50.+0.j]}
```

read_all() has a companion function, write_all() which takes a dictionary of **skrf** objects, and writes each object to an individual file.

```
In [1]: rf.write_all(dict_o_ntwks, dir = '.')
In [2]: ls
wr2p2,delayshort.ntwk wr2p2,line.ntwk wr2p2,short.ntwk
```

It is also possible to write a dictionary of objects to a single file, by using write (),

```
In [1]: rf.write('dict_o_ntwk.p', dict_o_ntwks)
In [2]: ls
dict_o_ntwk.p
```

A similar function <code>save_sesh()</code>, can be used to save all **skrf** objects in the current namespace.

1.3.8 Impedance and Admittance Parameters

This tutorial focuses on s-parameters, but other network representations are available as well. Impedance and Admittance Parameters can be accessed through the parameters <code>Network.z</code> and <code>Network.y</code>, respectively. Scalar components of complex parameters, such as <code>Network.z_re</code>, <code>Network.z_im</code> and plotting methods like <code>Network.plot_z_mag()</code> are available as well.

1.3. Networks

1.3.9 Creating Networks 'From Scratch'

A Network can be created *from scratch* by passing values of relevant properties as keyword arguments to the constructor,

```
In [1]: frequency = rf.Frequency(75,110,101,'ghz')
In [2]: s = -1*ones(101)
In [3]: wr10_short = rf.Network(frequency = frequency, s = s, z0 = 50 )
```

For more information creating Networks representing transmission line and lumped components, see the media module.

1.3.10 Sub-Networks

Frequently, the one-port s-parameters of a multiport network's are of interest. These can be accessed by the subnetwork properties, which return one-port Network objects,

```
In [1]: port1_return = line.s11
In [2]: port1_return
Out[2]: 1-Port Network: 'line', 75-110 GHz, 201 pts, z0=[ 50.+0.j]
```

1.3.11 References

1.4 Plotting

```
• Plotting

- Plotting Methods

- Complex Plots

* Smith Chart

* Complex Plane

- Rectangular Plots

* Log-Magnitude

* Phase

* Impedance, Admittance

- Customizing Plots

- Saving Plots

- Misc

* Adding Markers to Lines

* Formating Plots
```

1.4.1 Plotting Methods

Network plotting abilities are implemented as methods of the Network class. Some of the plotting functions of network s-parameters are,

```
Network.plot_s_re()
Network.plot_s_im()
Network.plot_s_mag()
Network.plot_s_db()
Network.plot_s_deg()
Network.plot_s_deg_unwrap()
Network.plot_s_rad()
Network.plot_s_rad_unwrap()
Network.plot_s_rad_unwrap()
Network.plot_s_smith()
Network.plot_s_complex()
```

Similar methods exist for Impedance (Network.z) and Admittance Parameters (Network.y),

```
Network.plot_z_re()Network.plot_z_im()...Network.plot_y_re()Network.plot_z_im()
```

Step-by-step examples of how to create and customize plots are given below.

1.4.2 Complex Plots

Smith Chart

As a first example, load a Network from the data module, and plot all four s-parameters on the Smith chart.

```
In [1]: import skrf as rf
In [2]: from skrf.data import ring slot
```

1.4. Plotting 21

```
In [3]: ring_slot
Out[3]: 2-Port Network: 'ring slot', 75-110 GHz, 501 pts, z0=[ 50.+0.j 50.+0.j]
In [4]: ring_slot.plot_s_smith()
```


Note: If you dont see any plots after issuing these commands, then you may not have started ipython with the --pylab flag. Try from pylab import * to import the matplotlib commands and ion () to turn on interactive plotting. See this page, for more info on ipython's *pylab* mode.

Note: Why do my plots look different? See Formating Plots

The smith chart can be drawn with some impedance values labeled through the draw_labels argument.

```
In [1]: figure();
In [2]: ring_slot.plot_s_smith(draw_labels=True)
```


Another common option is to draw addmitance contours, instead of impedance. This is controlled through the chart_type argument.

```
In [1]: figure();
```


See smith () for more info on customizing the Smith Chart.

Note: If more than one plot_s_smith() command is issued on a single figure, you may need to call draw() to refresh the chart.

Complex Plane

Network parameters can also be plotted in the complex plane without a Smith Chart through $\texttt{Network.plot_s_complex()}$.

1.4. Plotting 23

```
In [1]: figure();
In [2]: ring_slot.plot_s_complex();
```


1.4.3 Rectangular Plots

Log-Magnitude

Scalar components of the complex network parameters can be plotted vs frequency as well. To plot the log-magnitude of the s-parameters vs. frequency,

```
In [1]: figure();
In [2]: ring_slot.plot_s_db()
```


When no arguments are passed to the plotting methods, all parameters are plotted. Single parameters can be plotted

by passing indecies m and n to the plotting commands (indexing start from 0). Comparing the simulated reflection coefficient off the ring slot to a measurement,

```
In [1]: from skrf.data import ring_slot_meas
In [2]: figure();
In [3]: ring_slot.plot_s_db(m=0,n=0) # s11
In [4]: ring_slot_meas.plot_s_db(m=0,n=0) # s11
```


See Customizing Plots for more information on customization.

Phase

Plot phase,

```
In [1]: figure();
In [2]: ring_slot.plot_s_deg()
```

1.4. Plotting 25

Or unwrapped phase,

```
In [1]: figure();
```


Impedance, Admittance

The components the Impendanc and Admittance parameters can be plotted similarly,

```
In [1]: figure();
```

```
In [2]: ring_slot.plot_z_im()
```



```
In [1]: figure();
```


1.4.4 Customizing Plots

The legend entries are automatically filled in with the Network's name. The entry can be overidden by passing the label argument to the plot method.

```
In [1]: figure();
In [2]: ring_slot.plot_s_db(m=0,n=0, label = 'Simulation')
In [3]: ring_slot_meas.plot_s_db(m=0,n=0, label = 'Measured')
```

1.4. Plotting 27

The frequency unit used on the x-axis is automatically filled in from the Networks frequency attribute. To change the label, change the frequency's unit.

```
In [1]: ring_slot.frequency.unit = 'mhz'
```

Other key word arguments given to the plotting methods are passed through to the matplotlib plot () function.

```
In [1]: figure();
In [2]: ring_slot.plot_s_db(m=0,n=0, linewidth = 3, linestyle = '--', label = 'Simulation')
In [3]: ring_slot_meas.plot_s_db(m=0,n=0, marker = 'x', markevery = 10, label = 'Measured')
```


All components of the plots can be customized through matplotlib functions.

```
In [1]: figure();
In [2]: ring_slot.plot_s_smith()
```

```
In [3]: xlabel('Real Part');
In [4]: ylabel('Imaginary Part');
In [5]: title('Smith Chart');
In [6]: draw();
```

Smith Chart - ring slot, S_{11} - ring slot, S_{12} - ring slot, S_{21} - ring slot, S_{22} Real Part

1.4.5 Saving Plots

Plots can be saved in various file formats using the GUI provided by the matplotlib. However, skrf provides a convenience function, called $save_all_figs()$, that allows all open figures to be saved to disk in multiple file formats, with filenames pulled from each figure's title:

```
>>> rf.save_all_figs('.', format=['eps','pdf'])
./WR-10 Ringslot Array Simulated vs Measured.eps
./WR-10 Ringslot Array Simulated vs Measured.pdf
```

1.4.6 Misc

Adding Markers to Lines

A common need is to make a color plot, interpretable in greyscale print. There is a convenient function, add_markers_to_lines(), which adds markers each line in a plots *after* the plot has been made. In this way, adding markers to an already written set of plotting commands is easy.

```
In [1]: figure();
In [2]: ring_slot.plot_s_db(m=0,n=0)
In [3]: ring_slot_meas.plot_s_db(m=0,n=0)
In [4]: rf.add_markers_to_lines()
```

1.4. Plotting 29

Formating Plots

It is likely that your plots dont look exactly like the ones in this tutorial. This is because matplotlib supports a vast amount of customization. Formating options can be customized *on-the-fly* by modifying values of the rcParams dictionary. Once these are set to your liking they can be saved to your .matplotlibrc file.

Here are some relevant parameters which should get your plots looking close to the ones in this tutorial:

```
my_params = {
'figure.dpi': 120,
'figure.figsize': [4,3],
'figure.subplot.left' : 0.15,
'figure.subplot.right'
                        : 0.9,
'figure.subplot.bottom'
                          : 0.12,
'axes.titlesize' : 'medium',
                   : 10 ,
'axes.labelsize'
'ytick.labelsize'
                  :'small',
'xtick.labelsize'
                    :'small',
'legend.fontsize'
                    : 8 #small,
'legend.loc'
                        : 'best',
'font.size'
                    : 10.0,
'font.family'
                   : 'serif',
'text.usetex' : True,
                         # if you have latex
rcParams.update(my_params)
```

The project mpltools provides a way to switch between pre-defined *styles*, and contains other useful plotting-related features.

1.5 NetworkSet

Contents

- NetworkSet
 - Creating a NetworkSet
 - Accesing Network Methods
 - Statistical Properties
 - Plotting Uncertainty Bounds
 - Reading and Writing

The NetworkSet object represents an unordered set of networks and provides methods for calculating statistical quantities and displaying uncertainty bounds.

1.5.1 Creating a NetworkSet

For this example, assume that numerous measurements of a single network are made. These measurements have been retrieved from a VNA and are in the form of touchstone files. A set of example data can be found in scikit-rf/skrf/data/, with naming convention ro, *.slp,

```
In [1]: import skrf as rf
In [2]: ls ../skrf/data/ro*
../skrf/data/ro,1.slp ../skrf/data/ro,2.slp ../skrf/data/ro,3.slp
```

The files ro, 1.slp, ro, 2.slp, ... are redundant measurements on which we would like to calculate statistics using the NetworkSet class.

A NetworkSet is created from a list or dict of Network's. So first we need to load all of the touchstone files. This can be done quickly with read_all(), which loads all skrf-readable objects in a directory. The argument contains is used to load only files which match a given substring.

```
In [1]: rf.read_all('../skrf/data/', contains='ro')
Out[1]:
{'ro,1': 1-Port Network: 'ro,1', 500-750 GHz, 201 pts, z0=[ 50.+0.j],
    'ro,2': 1-Port Network: 'ro,2', 500-750 GHz, 201 pts, z0=[ 50.+0.j],
    'ro,3': 1-Port Network: 'ro,3', 500-750 GHz, 201 pts, z0=[ 50.+0.j]}
```

This can be passed directly to the NetworkSet constructor,

```
In [1]: ro_dict = rf.read_all('../skrf/data/', contains='ro')
In [2]: ro_ns = rf.NetworkSet(ro_dict, name='ro set') #name is optional
In [3]: ro_ns
Out[3]: A NetworkSet of length 3
```

A NetworkSet can also be constructed from zipfile of touchstones through the class method $\texttt{NetworkSet.from_zip()}$

1.5.2 Accesing Network Methods

The Network elements in a NetworkSet can be accessed like the elements of list,

```
In [1]: ro_ns[0]
Out[1]: 1-Port Network: 'ro,1', 500-750 GHz, 201 pts, z0=[ 50.+0.j]
```

1.5. NetworkSet 31

Most Network methods are also methods of NetworkSet. These methods are called on each Network element individually. For example to plot the log-magnitude of the s-parameters of each Network, (see *Plotting* for details on Network ploting methods).

```
In [1]: ro_ns.plot_s_db(label='Mean Response')
Out[1]: [None, None, None]
```


1.5.3 Statistical Properties

Statistical quantities can be calculated by accessing properties of the NetworkSet. For example, to calculate the complex average of the set, access the mean_s property

```
In [1]: ro_ns.mean_s
Out[1]: 1-Port Network: 'ro set', 500-750 GHz, 201 pts, z0=[ 50.+0.j]
```

Note: Because the statistical operator methods are generated upon initialization they are not explicitly documented in this manual.

The naming convention of the statistical operator properties are *NetworkSet.function_parameter*, where *function* is the name of the statistical function, and *parameter* is the Network parameter to operate on. These methods return a Network object, so they can be saved or plotted in the same way as you would with a Network. To plot the log-magnitude of the complex mean response

```
In [1]: figure();
In [2]: ro_ns.mean_s.plot_s_db(label='ro')
```


Or to plot the standard deviation of the complex s-parameters,

```
In [1]: figure();
```


Using these properties it is possible to calculate statistical quantities on the scalar components of the complex network parameters. To calculate the mean of the phase component,

```
In [1]: figure();
In [2]: ro_ns.mean_s_deg.plot_s_re()
```

1.5. NetworkSet 33

1.5.4 Plotting Uncertainty Bounds

Uncertainty bounds can be plotted through the methods

```
In [1]: figure();
```

In [2]: ro_ns.plot_uncertainty_bounds_s_db()

In [3]: figure();

In [4]: ro_ns.plot_uncertainty_bounds_s_deg()

34 Chapter 1. Tutorials

1.5.5 Reading and Writing

NetworkSets can be saved to disk using skrf's native IO capabilities. This can be ccomplished through the NetworkSet.write() method.

```
In [1]: ro_set.write()
In [2]: ls
ro set.ns
```

Note: Note that if the NetworkSet's name attribute is not assigned, then you must provide a filename to NetworkSet.write().

Alternatively, you can write the Network set by directly calling the write () function. In either case, the resultant file can be read back into memory using read ().

```
In [1]: ro_ns = rf.read('ro set.ns')
```

1.6 Virtual Instruments

Contents

• Virtual Instruments

Warning: The vi module is not well written or tested at this point.

The vi module holds classes for GPIB/VISA instruments that are intricately related to skrf. Most of the classes were created for the sole purpose of retrieving data so that calibration and measurements could be carried out offline with skrf, therefore most other instrument capabilities are neglected.

Note: To use the virtual instrument classes you must have pyvisa installed, and a working VISA installation.

A list of VNA's that have been are partially supported.

- HP8510C
- HP8720
- PNA
- ZVA40

An example usage of the HP8510C class to retrieve some s-parameter data

```
In [1]: from skrf.vi import vna
In [2]: my_vna = vna.HP8510C(address =16)
#if an error is thrown at this point there is most likely a problem with your visa setup
In [3]: dut_1 = my_vna.s11
In [4]: dut_2 = my_vna.s21
In [5]: dut_3 = my_vna.two_port
```

Unfortunately, the syntax is different for every VNA class, so the above example wont directly translate to other VNA's. Re-writing all of the VNA classes to follow the same convention is on the TODO list

1.7 Calibration

Contents

- Calibration
 - Intro
 - Creating a Calibration
 - Saving and Recalling a Calibration
 - One-Port
 - Concise One-port
 - Two-port
 - * Switch-terms
 - Example
 - * Using one-port ideals in two-port Calibration

1.7.1 Intro

This tutorial illustrates how to use **skrf** to calibrate data taken from a VNA. The explanation of calibration theory and calibration kit design is beyond the scope of this tutorial. Instead, this tutorial describes how to calibrate a device under test (DUT), assuming you have measured an acceptable set of standards, and have a coresponding set ideal responses.

skrf's default calibration algorithms are generic in that they will work with any set of standards. If you supply more calibration standards than is needed, skrf will implement a simple least-squares solution.

1.7.2 Creating a Calibration

Calibrations are performed through a Calibration class. Creating a Calibration object requires at least two pieces of information:

- a list of measured Network's
- a list of ideal Network's

The Network elements in each list must all be similar (same #ports, frequency info, etc) and must be aligned to each other, meaning the first element of ideals list must correspond to the first element of measured list.

Optionally, other information can be provided when relevent such as,

- · calibration algorithm
- enforce eciprocity of embedding networks
- etc

When this information is not provided skrf will determine it through inspection, or use a default value.

1.7.3 Saving and Recalling a Calibration

Like other **skrf** objects, Calibration's can be written-to and read-from disk. Writing can be accomplished by using Calibration.write(), or rf.write(), and reading is done with rf.read().

1.7.4 One-Port

This example is written to be instructive, not concise.

```
import skrf as rf
## created necessary data for Calibration class
# a list of Network types, holding 'ideal' responses
my\_ideals = [\
        rf.Network('ideal/short.s1p'),
        rf.Network('ideal/open.slp'),
        rf.Network('ideal/load.s1p'),
# a list of Network types, holding 'measured' responses
my_measured = [\]
        rf.Network('measured/short.slp'),
        rf.Network('measured/open.s1p'),
        rf.Network('measured/load.s1p'),
## create a Calibration instance
cal = rf.Calibration(\
        ideals = my_ideals,
        measured = my_measured,
## run, and apply calibration to a DUT
```

1.7. Calibration 37

```
# run calibration algorithm
cal.run()

# apply it to a dut
dut = rf.Network('my_dut.slp')
dut_caled = cal.apply_cal(dut)

# plot results
dut_caled.plot_s_db()
# save results
dut_caled.write_touchstone()
```

1.7.5 Concise One-port

This example is the same as the first except more concise.

```
import skrf as rf

my_ideals = rf.load_all_touchstones_in_dir('ideals/')
my_measured = rf.load_all_touchstones_in_dir('measured/')

## create a Calibration instance
cal = rf.Calibration(\
    ideals = [my_ideals[k] for k in ['short','open','load']],
    measured = [my_measured[k] for k in ['short','open','load']],
    )

## what you do with 'cal' may may be similar to above example
```

1.7.6 Two-port

Two-port calibration is more involved than one-port. skrf supports two-port calibration using a 8-term error model based on the algorithm described in ², by R.A. Speciale.

Like the one-port algorithm, the two-port calibration can handle any number of standards, providing that some fundamental constraints are met. In short, you need three two-port standards; one must be transmissive, and one must provide a known impedance and be reflective.

One draw-back of using the 8-term error model formulation (which is the same formulation used in TRL) is that switch-terms may need to be measured in order to achieve a high quality calibration (this was pointed out to me by Dylan Williams).

Switch-terms

Originally described by Roger Marks ³, switch-terms account for the fact that the error networks change slightly depending on which port is being excited. This is due to the internal switch within the VNA.

² Speciale, R.A.; "A Generalization of the TSD Network-Analyzer Calibration Procedure, Covering n-Port Scattering-Parameter Measurements, Affected by Leakage Errors," Microwave Theory and Techniques, IEEE Transactions on , vol.25, no.12, pp. 1100-1115, Dec 1977. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1129282&isnumber=25047

³ Marks, Roger B.; , "Formulations of the Basic Vector Network Analyzer Error Model including Switch-Terms," ARFTG Conference Digest-Fall, 50th , vol.32, no., pp.115-126, Dec. 1997. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4119948&isnumber=4119931

Switch terms can be measured with a custom measurement configuration on the VNA itself. **skrf** has support for switch terms for the HP8510C class, which you can use or extend to different VNA. Without switch-term measurements, your calibration quality will vary depending on properties of you VNA.

1.7.7 Example

Two-port calibration is accomplished in an identical way to one-port, except all the standards are two-port networks. This is even true of reflective standards (S21=S12=0). So if you measure reflective standards you must measure two of them simultaneously, and store information in a two-port. For example, connect a short to port-1 and a load to port-2, and save a two-port measurement as 'short,load.s2p' or similar:

```
import skrf as rf
## created necessary data for Calibration class
# a list of Network types, holding 'ideal' responses
my\_ideals = [\
        rf.Network('ideal/thru.s2p'),
        rf.Network('ideal/line.s2p'),
        rf.Network('ideal/short, short.s2p'),
# a list of Network types, holding 'measured' responses
my_measured = [\]
        rf.Network('measured/thru.s2p'),
        rf.Network('measured/line.s2p'),
        rf.Network('measured/short, short.s2p'),
## create a Calibration instance
cal = rf.Calibration(\
        ideals = my_ideals,
        measured = my_measured,
        )
## run, and apply calibration to a DUT
# run calibration algorithm
cal.run()
# apply it to a dut
dut = rf.Network('my_dut.s2p')
dut_caled = cal.apply_cal(dut)
# plot results
dut_caled.plot_s_db()
# save results
dut_caled.write_touchstone()
```

Using one-port ideals in two-port Calibration

Commonly, you have data for ideal data for reflective standards in the form of one-port touchstone files (ie s1p). To use this with skrf's two-port calibration method you need to create a two-port network that is a composite of the two

1.7. Calibration 39

networks. There is a function in the WorkingBand Class which will do this for you, called two_port_reflect.:

```
short = rf.Network('ideals/short.s1p')
load = rf.Network('ideals/load.s1p')
short_load = rf.two_port_reflect(short, load)
```

Bibliography

1.8 Media

Contents

- Media
 - Introduction
 - * Media's Supported by skrf
 - Creating Media Objects
 - * Coplanar Waveguide
 - * Freespace
 - * Rectangular Waveguide
 - Working with Media's
 - Network Synthesis
 - Building Cicuits
 - Design Optimization
 - References

1.8.1 Introduction

skrf supports the microwave network synthesis based on transmission line models. Network creation is accomplished through methods of the Media class, which represents a transmission line object for a given medium. Once constructed, a Media object contains the necessary properties such as propagation constant and characteristic impedance, that are needed to generate microwave circuits.

This tutorial illustrates how created Networks using several different Media objects. The basic usage is,

```
In [8]: import skrf as rf
In [9]: freq = rf.Frequency(75,110,101,'ghz')
In [10]: cpw = rf.media.CPW(freq, w=10e-6, s=5e-6, ep_r=10.6)
In [11]: cpw.line(100*1e-6, name = '100um line')
Out[11]: 2-Port Network: '100um line', 75-110 GHz, 101 pts, z0=[ 50.06074662+0.j 50.06074662+0.j]
```

More detailed examples illustrating how to create various kinds of Media objects are given below.

Warning: The network creation and connection syntax of **skrf** are cumbersome if you need to doing complex circuit design. For a this type of application, you may be interested in using QUCS instead. **skrf**'s synthesis cabilities lend themselves more to scripted applications such as Design Optimization or batch processing.

Media's Supported by skrf

The base-class, Media, is constructed directly from values of propagation constant and characteristic impedance. Specific instances of Media objects can be created from relevant physical and electrical properties. Below is a list of mediums types supported by skrf,

- CPW
- RectangularWaveguide
- Freespace
- DistributedCircuit
- Media

1.8.2 Creating Media Objects

Typically, network analysis is done within a given frequency band. When a Media object is created, it must be given a Frequency object. This prevent having to repitously provide frequency information for each new network created.

Coplanar Waveguide

Here is an example of how to initialize a coplanar waveguide ⁴ media. The instance has a 10um center conductor, gap of 5um, and substrate with relative permativity of 10.6,

```
In [12]: import skrf as rf
In [13]: freq = rf.Frequency(75,110,101,'ghz')
In [14]: cpw = rf.media.CPW(freq, w=10e-6, s=5e-6, ep_r=10.6)
In [15]: cpw
Out[15]:
Coplanar Waveguide Media. 75-110 GHz. 101 points
W= 1.00e-05m, S= 5.00e-06m
```

See CPW for details on that class.

Freespace

Here is another example, this time constructing a plane-wave in freespace from 10-20GHz

```
In [16]: freq = rf.Frequency(10,20,101,'ghz')
In [17]: fs = rf.media.Freespace(freq)
In [18]: fs
Out[18]: Freespace Media. 10-20 GHz. 101 points
```

See Freespace for details.

1.8. Media 41

⁴ http://www.microwaves101.com/encyclopedia/coplanarwaveguide.cfm

Rectangular Waveguide

or a WR-10 Rectangular Waveguide

```
In [19]: freq = rf.Frequency(75,110,101,'ghz')
In [20]: wg = rf.media.RectangularWaveguide(freq, a=100*rf.mil,z0=50) # see note below about z0
In [21]: wg
Out[21]:
Rectangular Waveguide Media. 75-110 GHz. 101 points
a= 2.54e-03m, b= 1.27e-03m
```

See RectangularWaveguide for details.

Note: The z0 argument in the Rectangular Waveguide constructor is used to force a specific port impedance. This is commonly used to match the port impedance to what a VNA stores in a touchstone file. See media.Media.__init__() for more information.

1.8.3 Working with Media's

Once constructed, the pertinent wave quantities of the media such as propagation constant and characteristic impedance can be accessed through the properties propagation_constant and characteristic_impedance. These properties return complex numpy.ndarray's,

In [24]: plot(cpw.frequency.f_scaled, cpw.propagation_constant.imag);

```
In [26]: ylabel('Propagation Constant [rad/m]');
```

In [25]: xlabel('Frequency [GHz]');

Because the wave quantities are dynamic they change when the attributes of the cpw line change. To illustrate this, plot the propagation constant of the cpw for various values of substrated permativity,

1.8. Media 43

1.8.4 Network Synthesis

Networks are created through methods of a Media object. Here is a brief list of some generic network components skrf supports,

```
• match()
```

- short()
- open()
- load()
- line()
- thru()
- tee()
- delay_short()
- shunt_delay_open()

Usage of these methods can is demonstrated below.

To create a 1-port network for a rectangular waveguide short,

```
In [33]: wg.short(name = 'short')
Out[33]: 1-Port Network: 'short', 75-110 GHz, 101 pts, z0=[ 50.+0.j]
```

Or to create a 90° section of cpw line,

```
In [34]: cpw.line(d=90,unit='deg', name='line')
Out[34]: 2-Port Network: 'line', 75-110 GHz, 101 pts, z0=[ 50.06074662+0.j 50.06074662+0.j]
```

Note: Simple circuits like short () and open () are ideal short and opens with $\Gamma=-1$ and $\Gamma=1$, i.e. they dont take into account sophisticated effects of the discontinuities. Effects of discontinuities are implemented as methods specific to a given Media, like CPW.cpw_short.

1.8.5 Building Cicuits

By connecting a series of simple circuits, more complex circuits can be made. To build a the 90° delay short, in the rectangular waveguide media defined above.

```
In [35]: delay_short = wg.line(d=90,unit='deg') ** wg.short()
In [36]: delay_short.name = 'delay short'
In [37]: delay_short
Out[37]: 1-Port Network: 'delay short', 75-110 GHz, 101 pts, z0=[ 50.+0.j]
```

When Networks with more than 2 ports need to be connected together, use rf.connect(). To create a two-port network for a shunted delayed open, you can create an ideal 3-way splitter (a 'tee') and conect the delayed open to one of its ports,

```
In [38]: tee = cpw.tee()
In [39]: delay_open = cpw.delay_open(40,'deg')
In [40]: shunt_open = rf.connect(tee,1,delay_open,0)
```

If a specific circuit is created frequenctly, it may make sense to use a function to create the circuit. This can be done most quickly using lamba

```
In [41]: delay_short = lambda d: wg.line(d,'deg')**wg.short()
In [42]: delay_short(90)
Out[42]: 1-Port Network: '', 75-110 GHz, 101 pts, z0=[ 50.+0.j]
```

This is how many of **skrf**'s network creation methods are made internally.

A more useful example may be to create a function for a shunt-stub tuner, that will work for any media object

1.8.6 Design Optimization

The abilities of scipy's optimizers can be used to automate network design. In this example, skrf is used to automate the single stub design. First, we create a 'cost' function which returns somthing we want to minimize, such as the reflection coefficient magnitude at band center. Then, one of scipy's minimization algorithms is used to determine the optimal parameters of the stub lengths to minimize this cost.

```
In [45]: from scipy.optimize import fmin
# the load we are trying to match
In [46]: load = cpw.load(rf.zl_2_Gamma0(z0=50,zl=100))
# single stub circuit generator function
In [47]: def shunt_stub(med, d0, d1):
            return med.line(d0,'deg') **med.shunt_delay_open(d1,'deg')
   . . . . :
   . . . . :
# define the cost function we want to minimize (this uses sloppy namespace)
In [48]: def cost(d):
              return (shunt_stub(cpw,d[0],d[1]) ** load)[100].s_mag.squeeze()
   . . . . :
# initial guess of optimal delay lengths in degrees
In [49]: d0 = 120,40 # initial guess
#determine the optimal delays
In [50]: d_opt = fmin(cost, (120, 40))
Optimization terminated successfully.
         Current function value: 0.333333
         Iterations: 65
         Function evaluations: 140
In [51]: d_opt
Out[51]: array([ 1.74945025e+02, -9.55405994e-08])
```

1.8.7 References

• Development

1.8. Media 45

46 Chapter 1. Tutorials

EXAMPLES

2.1 Visualizing a Single Stub Matching Network

2.1.1 Introduction

This example illustrates a way to visualize the design space for a single stub matching network. The matching Network consists of a shunt and series stub arranged as shown below, (image taken from R.M. Weikle's Notes).

A single stub matching network can be designed to produce maximum power transfer to the load, Z_L at a single frequency. The matching network has two design parameters:

- · length of series tline
- · length of shunt tline

This script illustrates how to create a plot of reflection coefficient magnitude, vs series and shunt line lengths. The optimal designs are then seen as the minima of a 2D surface.

2.1.2 Script

```
import skrf as rf
from pylab import *
# Inputs
wg = rf.wr10 # The Media class
f0 = 90 # Design Frequency in GHz
d_start, d_stop = 0,180 # span of tline lengths [degrees]
n = 21
                    # number of points
Gamma0 = .5
                   # the reflection coefficient off the load we are matching
# change wg.frequency so we only simulat at f0
wg.frequency = rf.Frequency(f0,f0,1,'ghz')
# create load network
load = wg.load(.5)
# the vector of possible line-lengths to simulate at
d_range = linspace(d_start,d_stop,n)
def single_stub(wg, d):
    function to return series-shunt stub matching network, given a
```

48

Figure 2.1: Single stub matching Network

```
WorkingBand and the electrical lengths of the stubs
   return wg.shunt_delay_open(d[1],'deg') ** wg.line(d[0],'deg')
# loop through all line-lengths for series and shunt tlines, and store
# reflection coefficient magnitude in array
for d0 in d_range] for d1 in d_range] )
### Plots
# show the resultant return loss for the parameters space in 2D
figure()
title('Series-Shunt Stub Matching Network Design Space (2D)')
imshow(output)
xlabel('Series T-line [deg]')
ylabel('Shunt T-line [deg]')
xticks(range(0, n+1, n/5), d_range[0::n/5])
yticks(range(0,n+1,n/5),d_range[0::n/5])
cbar = colorbar()
cbar.set_label('Return Loss Magnitude')
grid(False)
# show the resultant return loss for the parameters space in 3D
from mpl_toolkits.mplot3d import Axes3D
fig=figure()
ax = Axes3D(fig)
x,y = meshgrid(d_range, d_range)
ax.plot_surface(x,y,output, rstride=1, cstride=1,cmap=cm.jet)
ax.set_xlabel('Series T-line [deg]')
ax.set_ylabel('Shunt T-line[deg]')
ax.set_zlabel('Return Loss Magnitude')
ax.set_title(r'Series-Shunt Stub Matching Network Design Space (3D)')
show()
```


2.2 One-Port Calibration

2.2.1 Instructive

This example is written to be instructive, not concise.:

2.2.2 Concise

This example is meant to be the same as the first except more concise:

```
import skrf as rf

my_ideals = rf.load_all_touchstones_in_dir('ideals/')
my_measured = rf.load_all_touchstones_in_dir('measured/')

## create a Calibration instance
cal = rf.Calibration(\
    ideals = [my_ideals[k] for k in ['short','open','load']],
    measured = [my_measured[k] for k in ['short','open','load']],
    )

## what you do with 'cal' may may be similar to above example
```

REFERENCE

3.1 frequency (skrf.frequency)

Provides a frequency object and related functions.

Most of the functionality is provided as methods and properties of the Frequency Class.

3.1.1 Frequency Class

Frequency([start, stop, npoints, unit, ...]) A frequency band.

skrf.frequency.Frequency

The frequency object provides a convenient way to work with and access a frequency band. It contains a fruequency vector as well as a frequency unit. This allows a frequency vector in a given unit to be available (f_scaled), as well as an absolute frquency axis in 'Hz' (f).

A Frequency object can be created from either (start, stop, npoints) using the default constructor, __init__ (). Or, it can be created from an arbitrary frequency vector by using the class method from_f().

Internally, the frequency information is stored in the f property combined with the *unit* property. All other properties, $start\ stop$, etc are generated from these.

Attributes

center	Center frequency.
f	Frequency vector in Hz
f_scaled	Frequency vector in units of unit
multiplier	Multiplier for formating axis
multiplier_dict	
npoints	starting frequency in Hz
span	the frequency span
start	starting frequency in Hz
step	the inter-frequency step size
	Continued on next page

Table 3.2 – continued from previous page

stop	starting frequency in Hz
unit	Unit of this frequency band.
unit_dict	
W	Frequency vector in radians/s

skrf.frequency.Frequency.center

 ${\tt Frequency.center}$

Center frequency.

Returns center: number

the exact center frequency in units of unit

skrf.frequency.Frequency.f

Frequency.f

Frequency vector in Hz

Returns f: numpy.ndarray

The frequency vector in Hz

See Also:

f_scaled frequency vector in units of unit

w angular frequency vector in rad/s

skrf.frequency.Frequency.f_scaled

Frequency.f_scaled

Frequency vector in units of unit

Returns f_scaled: numpy.ndarray

A frequency vector in units of unit

See Also:

- f frequency vector in Hz
- w frequency vector in rad/s

skrf.frequency.Frequency.multiplier

Frequency.multiplier

Multiplier for formating axis

This accesses the internal dictionary *multiplier_dict* using the value of unit

Returns multiplier: number

multiplier for this Frequencies unit

skrf.frequency.Frequency.multiplier_dict

Frequency.multiplier_dict = {'hz': 1, 'khz': 1000.0, 'mhz': 1000000.0, 'thz': 100000000000.0, 'ghz': 10000000000.0}

skrf.frequency.Frequency.npoints

Frequency.npoints starting frequency in Hz

skrf.frequency.Frequency.span

Frequency.span the frequency span

skrf.frequency.Frequency.start

Frequency.start
starting frequency in Hz

skrf.frequency.Frequency.step

Frequency.step
the inter-frequency step size

skrf.frequency.Frequency.stop

Frequency.stop starting frequency in Hz

skrf.frequency.Frequency.unit

Frequency.unit

Unit of this frequency band.

Possible strings for this attribute are: 'hz', 'khz', 'mhz', 'ghz', 'thz'

Setting this attribute is not case sensitive.

Returns unit: string

lower-case string representing the frequency units

skrf.frequency.Frequency.unit_dict

Frequency.unit_dict = {'hz': 'Hz', 'khz': 'KHz', 'mhz': 'MHz', 'thz': 'THz', 'ghz': 'GHz'}

skrf.frequency.Frequency.w

```
Frequency.w
```

Frequency vector in radians/s

The frequency vector in rad/s

Returns w:numpy.ndarray

The frequency vector in rad/s

See Also:

f_scaled frequency vector in units of unit

f frequency vector in Hz

Methods

init	Frequency initializer.
сору	returns a new copy of this frequency
from_f	Alternative constructor of a Frequency object from a frequency
labelXAxis	Label the x-axis of a plot.

skrf.frequency.Frequency.__init__

```
Frequency.__init__ (start=0, stop=0, npoints=0, unit='ghz', sweep_type='lin')
Frequency initializer.
```

Creates a Frequency object from start/stop/npoints and a unit. Alternatively, the class method $from_f()$ can be used to create a Frequency object from a frequency vector instead.

Parameters start: number

start frequency in units of unit

stop: number

stop frequency in units of unit

npoints: int

number of points in the band.

unit : ['hz','khz','mhz','ghz']

frequency unit of the band. This is used to create the attribute f_scaled. It is also used by the Network class for plots vs. frequency.

See Also:

from_f constructs a Frequency object from a frequency vector instead of start/stop/npoints.

Notes

The attribute unit sets the property freqMultiplier, which is used to scale the frequency when f_scaled is referenced.

Examples

```
>>> wrlp5band = Frequency(500,750,401, 'ghz')
skrf.frequency.Frequency.copy
Frequency.copy()
     returns a new copy of this frequency
skrf.frequency.Frequency.from_f
classmethod Frequency.from_f (f, *args, **kwargs)
     Alternative constructor of a Frequency object from a frequency vector, the unit of which is set by kwarg 'unit'
          Parameters f: array-like
                  frequency vector
              *args, **kwargs: arguments, keyword arguments
                  passed on to ___init___().
          Returns myfrequency: Frequency object
                  the Frequency object
     Examples
     \rightarrow \rightarrow f = np.linspace(75,100,101)
     >>> rf.Frequency.from_f(f, unit='ghz')
skrf.frequency.Frequency.labelXAxis
Frequency.labelXAxis(ax=None)
     Label the x-axis of a plot.
```

Sets the labels of a plot using matplotlib.x_label() with string containing the frequency unit.

Parameters ax: matplotlib. Axes, optional

Axes on which to label the plot, defaults what is returned by matplotlib.gca()

3.2 network (skrf.network)

Provides a n-port network class and associated functions.

Most of the functionality in this module is provided as methods and properties of the Network Class.

3.2.1 Network Class

Network([file, name, comments, f_unit]) A n-port electrical network [#]_.

skrf.network.Network

class skrf.network.**Network** (*file=None*, *name=None*, *comments=None*, *f_unit=None*, **kwargs)

A n-port electrical network ¹.

For instructions on how to create Network see __init__().

A n-port network may be defined by three quantities,

- network parameter matrix (s, z, or y-matrix)
- port characteristic impedance matrix
- · frequency information

The Network class stores these data structures internally in the form of complex numpy.ndarray's. These arrays are not interfaced directly but instead through the use of the properties:

Property	Meaning
S	scattering parameter matrix
z0	characteristic impedance matrix
f	frequency vector

Although these docs focus on s-parameters, other equivalent network representations such as z and y are available. Scalar projections of the complex network parameters are accesable through properties as well. These also return numpy.ndarray's.

Property	Meaning
s_re	real part of the s-matrix
s_im	imaginary part of the s-matrix
s_mag	magnitude of the s-matrix
s_db	magnitude in log scale of the s-matrix
s_deg	phase of the s-matrix in degrees

The following operations act on the networks s-matrix.

Operator	Function
+	element-wise addition of the s-matrix
-	element-wise difference of the s-matrix
*	element-wise multiplication of the s-matrix
/	element-wise division of the s-matrix
**	cascading (only for 2-ports)
//	de-embedding (for 2-ports, see inv)

Different components of the Network can be visualized through various plotting methods. These methods can be used to plot individual elements of the s-matrix or all at once. For more info about plotting see the *Plotting* tutorial

¹ http://en.wikipedia.org/wiki/Two-port_network

Method	Meaning
plot_s_smith()	plot complex s-parameters on smith chart
plot_s_re()	plot real part of s-parameters vs frequency
plot_s_im()	plot imaginary part of s-parameters vs frequency
plot_s_mag()	plot magnitude of s-parameters vs frequency
plot_s_db()	plot magnitude (in dB) of s-parameters vs frequency
plot_s_deg()	plot phase of s-parameters (in degrees) vs frequency
<pre>plot_s_deg_unwrap()</pre>	plot phase of s-parameters (in unwrapped degrees) vs frequency

Network objects can be created from a touchstone or pickle file (see $__{init}$ __()), by a Media object, or manually by assigning the network properties directly. Network objects can be saved to disk in the form of touchstone files with the write_touchstone() method.

An exhaustive list of Network Methods and Properties (Attributes) are given below

References

Attributes

a	Active scattering parameter matrix.
a_arcl	The arcl component of the a-matrix
a_arcl_unwrap	The arcl_unwrap component of the a-matrix
a_db	The db component of the a-matrix
a_deg	The deg component of the a-matrix
a_deg_unwrap	The deg_unwrap component of the a-matrix
a_im	The im component of the a-matrix
a_mag	The mag component of the a-matrix
a_rad	The rad component of the a-matrix
a_rad_unwrap	The rad_unwrap component of the a-matrix
a_re	The re component of the a-matrix
a_vswr	The vswr component of the a-matrix
f	the frequency vector for the network, in Hz.
frequency	frequency information for the network.
inv	a Network object with 'inverse' s-parameters.
nports	the number of ports the network has.
number_of_ports	the number of ports the network has.
passivity	passivity metric for a multi-port network.
S	Scattering parameter matrix.
s11	one-port sub-network.
s12	one-port sub-network.
s21	one-port sub-network.
s22	one-port sub-network.
s_arcl	The arcl component of the s-matrix
s_arcl_unwrap	The arcl_unwrap component of the s-matrix
s_db	The db component of the s-matrix
s_deg	The deg component of the s-matrix
s_deg_unwrap	The deg_unwrap component of the s-matrix
s_im	The im component of the s-matrix
s_mag	The mag component of the s-matrix
s_rad	The rad component of the s-matrix
s_rad_unwrap	The rad_unwrap component of the s-matrix
	Continued on next page
	-

Table 3.5 – continued from previous page

s_re	The re component of the s-matrix
s_vswr	The vswr component of the s-matrix
t	Scattering transfer parameters
_У	Admittance parameter matrix.
y_arcl	The arcl component of the y-matrix
y_arcl_unwrap	The arcl_unwrap component of the y-matrix
y_db	The db component of the y-matrix
y_deg	The deg component of the y-matrix
y_deg_unwrap	The deg_unwrap component of the y-matrix
y_im	The im component of the y-matrix
y_mag	The mag component of the y-matrix
y_rad	The rad component of the y-matrix
y_rad_unwrap	The rad_unwrap component of the y-matrix
y_re	The re component of the y-matrix
y_vswr	The vswr component of the y-matrix
Z	Impedance parameter matrix.
z0	Characteristic impedance[s] of the network ports.
z_arcl	The arcl component of the z-matrix
z_arcl_unwrap	The arcl_unwrap component of the z-matrix
z_db	The db component of the z-matrix
z_deg	The deg component of the z-matrix
z_deg_unwrap	The deg_unwrap component of the z-matrix
z_im	The im component of the z-matrix
z_mag	The mag component of the z-matrix
z_rad	The rad component of the z-matrix
z_rad_unwrap	The rad_unwrap component of the z-matrix
z_re	The re component of the z-matrix
z_vswr	The vswr component of the z-matrix
	·

skrf.network.Network.a

Network.a

Active scattering parameter matrix.

Active scattering parameters are simply inverted s-parameters, defined as a = 1/s. Useful in analysis of active networks. The a-matrix is a 3-dimensional numpy ndarray which has shape fxnxn, where f is frequency axis and n is number of ports. Note that indexing starts at 0, so all can be accessed by taking the slice a[:,0,0].

Returns a: complex numpy.ndarray of shape fxnxn

the active scattering parameter matrix.

See Also:

s, y, z, t, a

skrf.network.Network.a arcl

Network.a_arcl

The arcl component of the a-matrix

See Also:

a

skrf.network.Network.a_arcl_unwrap

Network.a_arcl_unwrap

The arcl_unwrap component of the a-matrix

See Also:

а

skrf.network.Network.a_db

Network.a_db

The db component of the a-matrix

See Also:

а

skrf.network.Network.a_deg

Network.a_deg

The deg component of the a-matrix

See Also:

а

skrf.network.Network.a_deg_unwrap

Network.a_deg_unwrap

The deg_unwrap component of the a-matrix

See Also:

а

$skrf.network. Network. a_im$

Network.a_im

The im component of the a-matrix

See Also:

а

skrf.network.Network.a_mag

Network.a_mag

The mag component of the a-matrix

See Also:

а

skrf.network.Network.a rad Network.a_rad The rad component of the a-matrix See Also: а skrf.network.Network.a_rad_unwrap Network.a_rad_unwrap The rad_unwrap component of the a-matrix See Also: skrf.network.Network.a_re Network.a_re The re component of the a-matrix See Also: skrf.network.Network.a_vswr Network.a_vswr The vswr component of the a-matrix See Also: skrf.network.Network.f Network.f the frequency vector for the network, in Hz. **Returns f**: numpy.ndarray frequency vector in Hz See Also: **frequency** frequency property that holds all frequency information skrf.network.Network.frequency Network.frequency

frequency information for the network.

This property is a Frequency object. It holds the frequency vector, as well frequency unit, and provides other properties related to frequency information, such as start, stop, etc.

Returns frequency: Frequency object

frequency information for the network.

See Also:

f property holding frequency vector in Hz

change_frequency updates frequency property, and interpolates s-parameters if needed

interpolate interpolate function based on new frequency info

skrf.network.Network.inv

Network.inv

a Network object with 'inverse' s-parameters.

This is used for de-embeding. It is defined so that the inverse of a Network cascaded with itself is unity.

Returns inv: a Network object

a Network object with 'inverse' s-parameters.

See Also:

inv function which implements the inverse s-matrix

skrf.network.Network.nports

Network.nports

the number of ports the network has.

Returns number of ports: number

the number of ports the network has.

skrf.network.Network.number_of_ports

Network.number_of_ports

the number of ports the network has.

Returns number_of_ports : number

the number of ports the network has.

skrf.network.Network.passivity

Network.passivity

passivity metric for a multi-port network.

This returns a matrix who's diagonals are equal to the total power received at all ports, normalized to the power at a single excitement port.

mathmatically, this is a test for unitary-ness of the s-parameter matrix ².

² http://en.wikipedia.org/wiki/Scattering_parameters#Lossless_networks

for two port this is

$$(|S_{11}|^2 + |S_{21}|^2, |S_{22}|^2 + |S_{12}|^2)$$

in general it is

$$S^H \cdot S$$

where H is conjugate transpose of S, and \cdot is dot product.

Returns passivity: numpy.ndarray of shape fxnxn

References

skrf.network.Network.s

Network.s

Scattering parameter matrix.

The s-matrix[#]_ is a 3-dimensional numpy.ndarray which has shape fxnxn, where f is frequency axis and n is number of ports. Note that indexing starts at 0, so s11 can be accessed by taking the slice s[:,0,0].

Returns s: complex numpy.ndarray of shape <math>fxnxn

the scattering parameter matrix.

See Also:

s, y, z, t, a

References

skrf.network.Network.s11

Network.s11

one-port sub-network.

skrf.network.Network.s12

Network.s12

one-port sub-network.

skrf.network.Network.s21

Network.s21

one-port sub-network.

skrf.network.Network.s22

Network.s22

one-port sub-network.

skrf.network.Network.s arcl Network.s_arcl The arcl component of the s-matrix See Also: S skrf.network.Network.s_arcl_unwrap Network.s_arcl_unwrap The arcl_unwrap component of the s-matrix See Also: skrf.network.Network.s_db Network.s_db The db component of the s-matrix See Also: skrf.network.Network.s_deg Network.s_deg The deg component of the s-matrix See Also: skrf.network.Network.s_deg_unwrap Network.s_deg_unwrap The deg_unwrap component of the s-matrix See Also:

skrf.network.Network.s_im

 ${\tt Network.s_im}$

The im component of the s-matrix

See Also:

S

skrf.network.Network.s_mag

```
Network.s_mag
```

The mag component of the s-matrix

See Also:

S

skrf.network.Network.s_rad

```
Network.s_rad
```

The rad component of the s-matrix

See Also:

S

skrf.network.Network.s_rad_unwrap

```
Network.s_rad_unwrap
```

The rad_unwrap component of the s-matrix

See Also:

S

skrf.network.Network.s_re

```
Network.s_re
```

The re component of the s-matrix

See Also:

S

skrf.network.Network.s_vswr

```
Network.s_vswr
```

The vswr component of the s-matrix

See Also:

S

skrf.network.Network.t

Network.t

Scattering transfer parameters

The t-matrix 3 is a 3-dimensional numpy.ndarray which has shape fx2x2, where f is frequency axis. Note that indexing starts at 0, so t11 can be accessed by taking the slice t[:,0,0].

The t-matrix, also known as the wave cascading matrix, is only defined for a 2-port Network.

³ http://en.wikipedia.org/wiki/Scattering_parameters#Scattering_transfer_parameters

Returns \mathbf{t} : complex numpy.ndarry of shape fx2x2

t-parameters, aka scattering transfer parameters

See Also:

s, y, z, t, a

References

skrf.network.Network.y

Network.y

Admittance parameter matrix.

The y-matrix ⁴ is a 3-dimensional numpy . ndarray which has shape fxnxn, where f is frequency axis and n is number of ports. Note that indexing starts at 0, so y11 can be accessed by taking the slice y[:,0,0].

Returns y: complex numpy.ndarray of shape fxnxn

the admittance parameter matrix.

See Also:

s, y, z, t, a

References

skrf.network.Network.y_arcl

Network.y_arcl

The arcl component of the y-matrix

See Also:

У

skrf.network.Network.y_arcl_unwrap

```
{\tt Network.y\_arcl\_unwrap}
```

The arcl_unwrap component of the y-matrix

See Also:

У

skrf.network.Network.y_db

Network.y_db

The db component of the y-matrix

See Also:

У

⁴ http://en.wikipedia.org/wiki/Admittance_parameters

```
skrf.network.Network.y deg
Network.y_deg
     The deg component of the y-matrix
     See Also:
     У
skrf.network.Network.y_deg_unwrap
Network.y_deg_unwrap
     The deg_unwrap component of the y-matrix
     See Also:
     У
skrf.network.Network.y_im
Network.y_im
     The im component of the y-matrix
     See Also:
skrf.network.Network.y_mag
Network.y_mag
     The mag component of the y-matrix
     See Also:
skrf.network.Network.y_rad
Network.y_rad
     The rad component of the y-matrix
     See Also:
skrf.network.Network.y_rad_unwrap
Network.y_rad_unwrap
     The rad_unwrap component of the y-matrix
     See Also:
```

68

skrf.network.Network.y_re

```
Network.y_re
```

The re component of the y-matrix

See Also:

У

skrf.network.Network.y_vswr

Network.y_vswr

The vswr component of the y-matrix

See Also:

У

skrf.network.Network.z

Network.z

Impedance parameter matrix.

The z-matrix 5 is a 3-dimensional numpy . ndarray which has shape fxnxn, where f is frequency axis and n is number of ports. Note that indexing starts at 0, so z11 can be accessed by taking the slice z[:,0,0].

Returns z: complex numpy.ndarray of shape fxnxn

the Impedance parameter matrix.

See Also:

s, y, z, t, a

References

skrf.network.Network.z0

Network.z0

Characteristic impedance[s] of the network ports.

This property stores the characteristic impedance of each port of the network. Because it is possible that each port has a different characteristic impedance each varying with frequency, z0 is stored internally as a fxn array.

However because z0 is frequently simple (like 50ohm), it can be set with just number as well.

Returns z0: numpy.ndarray of shape fxn

characteristic impedance for network

⁵ http://en.wikipedia.org/wiki/impedance_parameters

skrf.network.Network.z arcl Network.z_arcl The arcl component of the z-matrix See Also: Z skrf.network.Network.z_arcl_unwrap Network.z_arcl_unwrap The arcl_unwrap component of the z-matrix See Also: skrf.network.Network.z_db Network.z_db The db component of the z-matrix See Also: skrf.network.Network.z_deg Network.z_deg The deg component of the z-matrix See Also: skrf.network.Network.z_deg_unwrap Network.z_deg_unwrap The deg_unwrap component of the z-matrix See Also: skrf.network.Network.z_im Network.z_im The im component of the z-matrix See Also: Z

70

skrf.network.Network.z_mag

 ${\tt Network.z_mag}$

The mag component of the z-matrix

See Also:

Z

$skrf.network.Network.z_rad$

Network.z_rad

The rad component of the z-matrix

See Also:

Z

skrf.network.Network.z_rad_unwrap

Network.z_rad_unwrap

The rad_unwrap component of the z-matrix

See Also:

Z

skrf.network.Network.z_re

Network.z_re

The re component of the z-matrix

See Also:

z

skrf.network.Network.z_vswr

 ${\tt Network.z_vswr}$

The vswr component of the z-matrix

See Also:

Z

Methods

init	Network constructor.
add_noise_polar	adds a complex zero-mean gaussian white-noise.
add_noise_polar_flatband	adds a flatband complex zero-mean gaussian white-noise signal of
сору	Returns a copy of this Network
copy_from	Copies the contents of another Network into self
	Continued on next page

TO 11 2 /	4.	n	•	
Table 3.6 –	continued	rom	nrevious	nage
1abic 5.0 -	communacu i	шош	previous	page

Table 3.6 – continued from previous page				
flip	swaps the ports of a two port Network			
func_on_parameter	Aplies a function parameter matrix, one frequency slice at a time			
interpolate	Return an interpolated network, from a new :class:'~skrf.frequency.Frequency'.			
interpolate_from_f	Interpolates s-parameters from a frequency vector.			
interpolate_self	Interpolates s-parameters given a new			
interpolate_self_npoints	Interpolate network based on a new number of frequency points			
multiply_noise	multiplys a complex bivariate gaussian white-noise signal			
nudge	Perturb s-parameters by small amount.			
plot_a_arcl	plot the Network attribute a_arcl vs frequency.			
plot_a_arcl_unwrap	plot the Network attribute a_arcl_unwrap vs frequency.			
	plot the Network attribute a vs frequency.			
plot_a_complex	1 7			
plot_a_db	plot the Network attribute a_db vs frequency.			
plot_a_deg	plot the Network attribute a_deg vs frequency.			
plot_a_deg_unwrap	plot the Network attribute a_deg_unwrap vs frequency.			
plot_a_im	plot the Network attribute a_im vs frequency.			
plot_a_mag	plot the Network attribute a_mag vs frequency.			
plot_a_polar	plot the Network attribute a vs frequency.			
plot_a_rad	plot the Network attribute a_rad vs frequency.			
plot_a_rad_unwrap	plot the Network attribute a_rad_unwrap vs frequency.			
plot_a_re	plot the Network attribute a_re vs frequency.			
plot_a_vswr	plot the Network attribute a_vswr vs frequency.			
plot_it_all	processor in annicate a_vent ventequency.			
plot_passivity	plots the passivity of a network, possibly for a specific port.			
plot_s_arcl	plot the Network attribute s_arcl vs frequency.			
	plot the Network attribute s_arcl_unwrap vs frequency.			
plot_s_arcl_unwrap				
plot_s_complex	plot the Network attribute s vs frequency.			
plot_s_db	plot the Network attribute s_db vs frequency.			
plot_s_deg	plot the Network attribute s_deg vs frequency.			
plot_s_deg_unwrap	plot the Network attribute s_deg_unwrap vs frequency.			
plot_s_im	plot the Network attribute s_im vs frequency.			
plot_s_mag	plot the Network attribute s_mag vs frequency.			
plot_s_polar	plot the Network attribute s vs frequency.			
plot_s_rad	plot the Network attribute s_rad vs frequency.			
plot_s_rad_unwrap	plot the Network attribute s_rad_unwrap vs frequency.			
plot_s_re	plot the Network attribute s_re vs frequency.			
plot_s_smith	plots the scattering parameter on a smith chart			
plot_s_vswr	plot the Network attribute s_vswr vs frequency.			
plot_y_arcl	plot the Network attribute y_arcl vs frequency.			
plot_y_arcl_unwrap	plot the Network attribute y_arcl_unwrap vs frequency.			
plot_y_complex	plot the Network attribute y vs frequency.			
plot_y_db	plot the Network attribute y_db vs frequency.			
plot_y_deg	plot the Network attribute y_deg vs frequency.			
plot_y_deg_unwrap	plot the Network attribute y_deg_unwrap vs frequency.			
plot_y_im	plot the Network attribute y_im vs frequency.			
	plot the Network attribute y_im vs frequency. plot the Network attribute y_mag vs frequency.			
plot_y_mag				
plot_y_polar	plot the Network attribute y vs frequency.			
plot_y_rad	plot the Network attribute y_rad vs frequency.			
plot_y_rad_unwrap	plot the Network attribute y_rad_unwrap vs frequency.			
plot_y_re	plot the Network attribute y_re vs frequency.			
plot_y_vswr	plot the Network attribute y_vswr vs frequency.			
	Continued on next page			

Table 3.6 – continued from previous page

plot_z_arcl	plot the Network attribute z_arcl vs frequency.
plot_z_arcl_unwrap	plot the Network attribute z_arcl_unwrap vs frequency.
plot_z_complex	plot the Network attribute z vs frequency.
plot_z_db	plot the Network attribute z_db vs frequency.
plot_z_deg	plot the Network attribute z_deg vs frequency.
plot_z_deg_unwrap	plot the Network attribute z_deg_unwrap vs frequency.
plot_z_im	plot the Network attribute z_im vs frequency.
plot_z_mag	plot the Network attribute z_mag vs frequency.
plot_z_polar	plot the Network attribute z vs frequency.
plot_z_rad	plot the Network attribute z_rad vs frequency.
plot_z_rad_unwrap	plot the Network attribute z_rad_unwrap vs frequency.
plot_z_re	plot the Network attribute z_re vs frequency.
plot_z_vswr	plot the Network attribute z_vswr vs frequency.
read	Read a Network from a 'ntwk' file
read_touchstone	loads values from a touchstone file.
renumber	renumbers some ports of a two port Network
resample	Interpolate network based on a new number of frequency points
write	Write the Network to disk using the pickle module.
write_touchstone	write a contents of the Network to a touchstone file.

skrf.network.Network.__init__

Network.___init___(file=None, name=None, comments=None, f_unit=None, **kwargs)
Network constructor.

Creates an n-port microwave network from a *file* or directly from data. If no file or data is given, then an empty Network is created.

Parameters file: str or file-object

file to load information from. supported formats are:

- touchstone file (.s?p)
- pickled Network (.ntwk, .p) see write()

name: str

Name of this Network. if None will try to use file, if its a str

comments : str

Comments associated with the Network

**kwargs::

key word arguments can be used to assign properties of the Network, such as s, f and z0.

See Also:

read read a network from a file

write write a network to a file, using pickle

write_touchstone write a network to a touchstone file

```
From a touchstone
     >>> n = rf.Network('ntwk1.s2p')
     From a pickle file
     >>> n = rf.Network('ntwk1.ntwk')
     Create a blank network, then fill in values
     >>> n = rf.Network()
     >>> n.f, n.s, n.z0 = [1,2,3], [1,2,3], [1,2,3]
     Directly from values
     >>> n = rf.Network(f=[1,2,3],s=[1,2,3],z0=[1,2,3])
skrf.network.Network.add noise polar
Network.add_noise_polar (mag_dev, phase_dev, **kwargs)
     adds a complex zero-mean gaussian white-noise.
     adds a complex zero-mean gaussian white-noise of a given standard deviation for magnitude and phase
          Parameters mag_dev : number
                  standard deviation of magnitude
              phase_dev : number
                  standard deviation of phase [in degrees]
skrf.network.Network.add_noise_polar_flatband
Network.add_noise_polar_flatband(mag_dev, phase_dev, **kwargs)
     adds a flatband complex zero-mean gaussian white-noise signal of given standard deviations for magnitude and
     phase
          Parameters mag_dev : number
                  standard deviation of magnitude
              phase_dev : number
                  standard deviation of phase [in degrees]
skrf.network.Network.copy
Network.copy()
     Returns a copy of this Network
     Needed to allow pass-by-value for a Network instead of pass-by-reference
```

skrf.network.Network.copy_from

```
Network.copy_from(other)
```

Copies the contents of another Network into self

Uses copy, so that the data is passed-by-value, not reference

Parameters other: Network

the network to copy the contents of

Examples

```
>>> a = rf.N()
>>> b = rf.N('my_file.s2p')
>>> a.copy_from (b)
```

skrf.network.Network.flip

```
Network.flip()
```

swaps the ports of a two port Network

skrf.network.Network.func_on_parameter

```
Network.func_on_parameter(func, attr='s', *args, **kwargs)
```

Aplies a function parameter matrix, one frequency slice at a time

This is useful for functions that can only operate on 2d arrays, like numpy.linalg.inv. This loops over f and calls func(ntwkA.s[f,:,:], *args, **kwargs)

```
Parameters func: func
```

```
function to apply to s-parameters, on a single-frequency slice. (ie func(ntwkA.s[0,:,:], *args, **kwargs)
```

```
*args, **kwargs::
```

passed to the func

Examples

```
>>> from numpy.linalg import inv
>>> ntwk.func_on_parameter(inv)
```

skrf.network.Network.interpolate

```
Network.interpolate(new_frequency, **kwargs)
```

Return an interpolated network, from a new :class:'~skrf.frequency.Frequency'.

Interpolate the networks s-parameters linearly in real and imaginary components. Other interpolation types can be used by passing appropriate **kwargs. This function returns an interpolated Network. Alternatively interpolate_self() will interpolate self.

Parameters new_frequency: Frequency

```
frequency information to interpolate
```

```
**kwargs: keyword arguments
```

passed to scipy.interpolate.interpld() initializer.

Returns result: Network

an interpolated Network

See Also:

```
resample, interpolate_self, interpolate_from_f
```

Notes

See scipy.interpolate.interpolate.interpld() for useful kwargs. For example

kind [str or int] Specifies the kind of interpolation as a string ('linear', 'nearest', 'zero', 'slinear', 'quadratic, 'cubic') or as an integer specifying the order of the spline interpolator to use.

Examples

```
In [2]: n = rf.data.ring_slot
In [3]: n
Out[3]: 2-Port Network: 'ring slot', 75-110 GHz, 201 pts, z0=[ 50.+0.j 50.+0.j]
In [4]: new_freq = rf.Frequency(75,110,501,'ghz')
In [5]: n.interpolate(new_freq, kind = 'cubic')
Out[5]: 2-Port Network: 'ring slot', 75-110 GHz, 501 pts, z0=[ 50.+0.j 50.+0.j]
```

skrf.network.Network.interpolate_from_f

```
Network.interpolate_from_f (f, interp_kwargs={}, **kwargs)
```

Interpolates s-parameters from a frequency vector.

Given a frequency vector, and optionally a *unit* (see **kwargs) , interpolate the networks s-parameters linearly in real and imaginary components.

See interpolate() for more information.

```
Parameters new_frequency: Frequency
```

frequency information to interpolate at

interp_kwargs : :

```
dictionary of kwargs to be passed through to scipy.interpolate.interpolate.interpld()
```

**kwargs::

passed to scipy.interpolate.interpld() initializer.

See Also:

```
resample, interpolate, interpolate_self
```

This creates a new Frequency, object using the method from_f(), and then calls interpolate_self().

skrf.network.Network.interpolate_self

```
Network.interpolate_self (new_frequency, **kwargs)
Interpolates s-parameters given a new :class:'~skrf.frequency.Frequency' object.
```

See interpolate() for more information.

Parameters new_frequency: Frequency

frequency information to interpolate at

**kwargs: keyword arguments

passed to scipy.interpolate.interp1d() initializer.

See Also:

```
resample, interpolate, interpolate_from_f
```

skrf.network.Network.interpolate_self_npoints

```
Network.interpolate_self_npoints (npoints, **kwargs)
```

Interpolate network based on a new number of frequency points

Parameters npoints: int

number of frequency points

**kwargs: keyword arguments

passed to scipy.interpolate.interpld() initializer.

See Also:

interpolate_self same functionality but takes a Frequency object

interpolate same functionality but takes a Frequency object and returns a new Network, instead of updating itself.

Notes

The function resample () is an alias for interpolate_self_npoints().

```
In [2]: n = rf.data.ring_slot
In [3]: n
Out[3]: 2-Port Network: 'ring slot', 75-110 GHz, 201 pts, z0=[ 50.+0.j 50.+0.j]
In [4]: n.resample(501) # resample is an alias
```

```
In [5]: n
     Out[5]: 2-Port Network: 'ring slot', 75-110 GHz, 501 pts, z0=[ 50.+0.j 50.+0.j]
skrf.network.Network.multiply_noise
Network.multiply_noise(mag_dev, phase_dev, **kwargs)
     multiplys a complex bivariate gaussian white-noise signal of given standard deviations for magnitude and phase.
     magnitude mean is 1, phase mean is 0
     takes: mag_dev: standard deviation of magnitude phase_dev: standard deviation of phase [in degrees] n_ports:
          number of ports. defualt to 1
     returns: nothing
skrf.network.Network.nudge
Network.nudge (amount=1e-12)
     Perturb s-parameters by small amount.
     This is useful to work-around numerical bugs.
          Parameters amount: number,
                   amount to add to s parameters
     Notes
     This function is self.s = self.s + 1e-12
skrf.network.Network.plot_a_arcl
Network.plot_a_arcl(m=None,
                                                               show_legend=True,
                                                                                     attribute='a arcl',
                                       n=None,
                                                  ax=None,
                           y_label='Arc Length', *args, **kwargs)
     plot the Network attribute a_arcl vs frequency.
          Parameters m: int, optional
                   first index of s-parameter matrix, if None will use all
               n: int, optional
                  secon index of the s-parameter matrix, if None will use all
               ax: matplotlib. Axes object, optional
                   An existing Axes object to plot on
               show_legend : Boolean
                   draw legend or not
               attribute: string
                  Network attribute to plot
               y_label: string, optional
                   the y-axis label
```

```
*args,**kwargs: arguments, keyword arguments passed to matplotlib.plot()
```

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_a_arcl(m=1,n=0,color='r')
```

skrf.network.Network.plot_a_arcl_unwrap

```
Network.plot_a_arcl_unwrap (m=None, n=None, ax=None, show_legend=True, at-tribute='a_arcl_unwrap', y_label='Arc Length', *args, **kwargs)
plot the Network attribute a_arcl_unwrap vs frequency.
```

Parameters m: int, optional

first index of s-parameter matrix, if None will use all

n: int, optional

secon index of the s-parameter matrix, if None will use all

ax: matplotlib. Axes object, optional

An existing Axes object to plot on

show_legend: Boolean

draw legend or not

attribute: string

Network attribute to plot

y_label: string, optional

the y-axis label

*args, **kwargs: arguments, keyword arguments

passed to matplotlib.plot()

Notes

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

```
>>> myntwk.plot_a_arcl_unwrap(m=1,n=0,color='r')
```

```
skrf.network.Network.plot_a_complex
```

Network.plot_a_complex(m=None, n=None, ax=None, show_legend=True, prop_name='a', *args, **kwargs)
plot the Network attribute a vs frequency.

Parameters m: int, optional

first index of s-parameter matrix, if None will use all

n: int, optional

secon index of the s-parameter matrix, if None will use all

ax: matplotlib. Axes object, optional

An existing Axes object to plot on

 ${\bf show_legend}: Boolean$

draw legend or not

attribute: string

Network attribute to plot

y_label: string, optional

the y-axis label

*args,**kwargs: arguments, keyword arguments

passed to matplotlib.plot()

Notes

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_a (m=1, n=0, color='r')
```

skrf.network.Network.plot_a_db

```
Network.plot_a_db (m=None, n=None, ax=None, show_legend=True, attribute='a_db', y_label='Magnitude (dB)', *args, **kwargs) plot the Network attribute a_db vs frequency.
```

Parameters m: int, optional

first index of s-parameter matrix, if None will use all

n: int, optional

secon index of the s-parameter matrix, if None will use all

ax: matplotlib. Axes object, optional

An existing Axes object to plot on

```
draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args, **kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_a_db(m=1,n=0,color='r')
skrf.network.Network.plot a deg
Network.plot_a_deg(m=None,
                                                 ax=None,
                                                              show legend=True,
                                                                                    attribute='a deg',
                                     n=None,
                          y label='Phase (deg)', *args, **kwargs)
     plot the Network attribute a_deg vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
              show_legend: Boolean
                  draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
```

show_legend: Boolean

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_a_deg(m=1, n=0, color='r')
```

skrf.network.Network.plot a deg unwrap

```
Network.plot_a_deg_unwrap(m=None,
                                              n=None,
                                                          ax=None,
                                                                       show_legend=True,
                                                                                             at-
                                 tribute='a_deg_unwrap', y_label='Phase (deg)', *args, **kwargs)
     plot the Network attribute a_deg_unwrap vs frequency.
```

Parameters m: int, optional

first index of s-parameter matrix, if None will use all

n: int, optional

secon index of the s-parameter matrix, if None will use all

ax: matplotlib. Axes object, optional

An existing Axes object to plot on

show_legend: Boolean

draw legend or not

attribute: string

Network attribute to plot

y_label: string, optional

the y-axis label

*args,**kwargs: arguments, keyword arguments

```
passed to matplotlib.plot()
```

Notes

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

```
>>> myntwk.plot_a_deg_unwrap(m=1, n=0, color='r')
```

skrf.network.Network.plot a im

```
Network.plot_a_im(m=None, n=None, ax=None, show_legend=True, attribute='a_im', y_label='Imag
                        Part', *args, **kwargs)
     plot the Network attribute a_im vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
              show legend: Boolean
                  draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_a_im (m=1, n=0, color='r')
skrf.network.Network.plot_a_mag
Network.plot_a_mag(m=None,
                                     n=None,
                                                 ax=None,
                                                              show_legend=True,
                                                                                   attribute='a_mag',
                          y_label='Magnitude', *args, **kwargs)
     plot the Network attribute a_mag vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
```

ax : matplotlib.Axes object, optional
An existing Axes object to plot on

show_legend: Boolean

```
draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_a_mag(m=1,n=0,color='r')
skrf.network.Network.plot a polar
Network.plot_a_polar (m=None, n=None, ax=None, show_legend=True, prop_name='a', *args,
                            **kwargs)
     plot the Network attribute a vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
              show_legend: Boolean
                  draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
```

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_a (m=1, n=0, color='r')
```

skrf.network.Network.plot a rad

```
Network.plot_a_rad (m=None, n=None, ax=None, show_legend=True, attribute='a_rad', y_label='Phase (rad)', *args, **kwargs) plot the Network attribute a_rad vs frequency.
```

Parameters m: int, optional

first index of s-parameter matrix, if None will use all

n: int, optional

secon index of the s-parameter matrix, if None will use all

ax: matplotlib. Axes object, optional

An existing Axes object to plot on

show_legend : Boolean

draw legend or not

attribute: string

Network attribute to plot

y_label: string, optional

the y-axis label

*args,**kwargs: arguments, keyword arguments

```
passed to matplotlib.plot()
```

Notes

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

```
>>> myntwk.plot_a_rad(m=1, n=0, color='r')
```

```
skrf.network.Network.plot a rad unwrap
                                                             ax=None,
Network.plot_a_rad_unwrap(m=None,
                                                n=None,
                                                                           show_legend=True,
                                                                                                  at-
                                   tribute='a_rad_unwrap', y_label='Phase (rad)', *args, **kwargs)
     plot the Network attribute a_rad_unwrap vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
              show legend: Boolean
                  draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_a_rad_unwrap(m=1, n=0, color='r')
skrf.network.Network.plot_a_re
Network.plot_a_re (m=None, n=None, ax=None, show_legend=True, attribute='a_re', y_label='Real
                        Part', *args, **kwargs)
     plot the Network attribute a_re vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
```

secon index of the s-parameter matrix, if None will use all

ax : matplotlib.Axes object, optional
An existing Axes object to plot on

n: int, optional

```
draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_a_re(m=1, n=0, color='r')
skrf.network.Network.plot a vswr
Network.plot_a_vswr(m=None, n=None, ax=None,
                                                             show_legend=True, attribute='a_vswr',
                          y label='VSWR', *args, **kwargs)
     plot the Network attribute a vswr vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
              show_legend: Boolean
                  draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
```

show_legend: Boolean

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_a_vswr(m=1, n=0, color='r')
```

skrf.network.Network.plot_it_all

```
Network.plot_it_all(*args, **kwargs)
```

skrf.network.Network.plot passivity

Network.**plot_passivity** (*port=None*, *ax=None*, *show_legend=True*, *args, **kwargs) plots the passivity of a network, possibly for a specific port.

Parameters port: int:

calculate passivity of a given port

ax : matplotlib.Axes object, optional

axes to plot on. in case you want to update an existing plot.

show_legend: boolean, optional

to turn legend show legend of not, optional

*args: arguments, optional

passed to the matplotlib.plot command

**kwargs: keyword arguments, optional

passed to the matplotlib.plot command

See Also:

```
plot_vs_frequency_generic, passivity
```

Examples

```
>>> myntwk.plot_s_rad()
>>> myntwk.plot_s_rad(m=0,n=1,color='b', marker='x')
```

skrf.network.Network.plot_s_arcl

```
Network.plot_s_arcl (m=None, n=None, ax=None, show_legend=True, attribute='s_arcl', y_label='Arc Length', *args, **kwargs)
plot the Network attribute s_arcl vs frequency.
```

Parameters m: int, optional

first index of s-parameter matrix, if None will use all

```
n: int, optional
                   secon index of the s-parameter matrix, if None will use all
               ax: matplotlib. Axes object, optional
                   An existing Axes object to plot on
               show legend: Boolean
                   draw legend or not
               attribute: string
                   Network attribute to plot
               y_label: string, optional
                   the y-axis label
               *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_s_arcl(m=1, n=0, color='r')
skrf.network.Network.plot s arcl unwrap
                                                                            show legend=True,
Network.plot_s_arcl_unwrap(m=None,
                                                  n=None,
                                                               ax=None,
                                                                                                   at-
                                     tribute='s_arcl_unwrap', y_label='Arc Length', *args, **kwargs)
     plot the Network attribute s_arcl_unwrap vs frequency.
          Parameters m: int, optional
                   first index of s-parameter matrix, if None will use all
               n: int, optional
                  secon index of the s-parameter matrix, if None will use all
               ax: matplotlib. Axes object, optional
                   An existing Axes object to plot on
               show_legend: Boolean
                  draw legend or not
               attribute: string
                   Network attribute to plot
               y_label: string, optional
                   the y-axis label
```

```
*args,**kwargs: arguments, keyword arguments
passed to matplotlib.plot()
```

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_s_arcl_unwrap(m=1,n=0,color='r')
```

skrf.network.Network.plot_s_complex

```
Network.plot_s_complex(m=None, n=None, ax=None, show_legend=True, prop_name='s', *args, **kwargs)

plot the Network attribute s vs frequency.
```

Parameters m: int, optional

first index of s-parameter matrix, if None will use all

n: int, optional

secon index of the s-parameter matrix, if None will use all

ax: matplotlib. Axes object, optional

An existing Axes object to plot on

 $show_legend: Boolean$

draw legend or not

attribute: string

Network attribute to plot

y_label: string, optional

the y-axis label

*args,**kwargs: arguments, keyword arguments

passed to matplotlib.plot()

Notes

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

```
>>> myntwk.plot_s (m=1, n=0, color='r')
```

skrf.network.Network.plot s db

```
Network.plot_s_db(m=None,
                                                                                    attribute='s_db',
                                     n=None,
                                                 ax=None,
                                                              show_legend=True,
                        y_label='Magnitude (dB)', *args, **kwargs)
     plot the Network attribute s_db vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
              show legend: Boolean
                  draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_s_db (m=1, n=0, color='r')
skrf.network.Network.plot_s_deg
Network.plot_s_deg(m=None,
                                     n=None,
                                                 ax=None,
                                                              show_legend=True,
                                                                                   attribute='s_deg',
                         y_label='Phase (deg)', *args, **kwargs)
     plot the Network attribute s_deg vs frequency.
          Parameters m: int, optional
```

first index of s-parameter matrix, if None will use all

ax : matplotlib.Axes object, optional
An existing Axes object to plot on

secon index of the s-parameter matrix, if None will use all

n: int, optional

show_legend: Boolean

```
draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_s_deg(m=1,n=0,color='r')
skrf.network.Network.plot s deg unwrap
Network.plot_s_deg_unwrap(m=None,
                                                             ax=None,
                                                                           show_legend=True,
                                                n=None,
                                                                                                  at-
                                   tribute='s_deg_unwrap', y_label='Phase (deg)', *args, **kwargs)
     plot the Network attribute s_deg_unwrap vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
              show_legend: Boolean
                  draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
```

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_s_deg_unwrap(m=1,n=0,color='r')
```

skrf.network.Network.plot s im

```
Network.plot_s_im(m=None, n=None, ax=None, show_legend=True, attribute='s_im', y_label='Imag Part', *args, **kwargs')
plot the Network attribute s_im vs frequency.
```

Parameters m: int, optional

first index of s-parameter matrix, if None will use all

n: int, optional

secon index of the s-parameter matrix, if None will use all

ax: matplotlib. Axes object, optional

An existing Axes object to plot on

show_legend : Boolean

draw legend or not

attribute: string

Network attribute to plot

y_label: string, optional

the y-axis label

*args,**kwargs: arguments, keyword arguments

passed to matplotlib.plot()

Notes

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

```
>>> myntwk.plot_s_im (m=1, n=0, color='r')
```

```
skrf.network.Network.plot s mag
Network.plot_s_mag(m=None,
                                                              show_legend=True,
                                     n=None,
                                                                                   attribute='s_mag',
                                                 ax=None,
                          y_label='Magnitude', *args, **kwargs)
     plot the Network attribute s_mag vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
              show legend: Boolean
                  draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_s_mag(m=1, n=0, color='r')
skrf.network.Network.plot_s_polar
Network.plot_s_polar(m=None, n=None, ax=None, show_legend=True, prop_name='s', *args,
                            **kwargs)
     plot the Network attribute s vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
```

ax : matplotlib.Axes object, optional
An existing Axes object to plot on

```
draw legend or not
               attribute: string
                  Network attribute to plot
               y_label: string, optional
                  the y-axis label
               *args, **kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_s (m=1, n=0, color='r')
skrf.network.Network.plot s rad
Network.plot_s_rad(m=None,
                                                  ax=None,
                                                               show_legend=True,
                                                                                    attribute='s rad',
                                      n=None,
                          y label='Phase (rad)', *args, **kwargs)
     plot the Network attribute s_rad vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
               n: int, optional
                  secon index of the s-parameter matrix, if None will use all
               ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
               show_legend: Boolean
                  draw legend or not
               attribute: string
                  Network attribute to plot
               y_label: string, optional
                  the y-axis label
               *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
```

show_legend: Boolean

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_s_rad(m=1, n=0, color='r')
```

skrf.network.Network.plot s rad unwrap

```
Network.plot_s_rad_unwrap (m=None, n=None, ax=None, show_legend=True, at-tribute='s_rad_unwrap', y_label='Phase (rad)', *args, **kwargs)
plot the Network attribute s_rad_unwrap vs frequency.
```

Parameters m: int, optional

first index of s-parameter matrix, if None will use all

n: int, optional

secon index of the s-parameter matrix, if None will use all

ax: matplotlib. Axes object, optional

An existing Axes object to plot on

show_legend: Boolean

draw legend or not

attribute: string

Network attribute to plot

y_label: string, optional

the y-axis label

*args, **kwargs: arguments, keyword arguments

```
passed to matplotlib.plot()
```

Notes

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

```
>>> myntwk.plot_s_rad_unwrap(m=1, n=0, color='r')
```

skrf.network.Network.plot s re

```
Network.plot_s_re(m=None, n=None, ax=None, show_legend=True, attribute='s_re', y_label='Real
                         Part', *args, **kwargs)
     plot the Network attribute s_re vs frequency.
           Parameters m: int, optional
                   first index of s-parameter matrix, if None will use all
               n: int, optional
                   secon index of the s-parameter matrix, if None will use all
               ax: matplotlib. Axes object, optional
                   An existing Axes object to plot on
               show legend: Boolean
                   draw legend or not
               attribute: string
                   Network attribute to plot
               y_label: string, optional
                   the y-axis label
               *args,**kwargs: arguments, keyword arguments
                   passed to matplotlib.plot()
```

Notes

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_s_re(m=1, n=0, color='r')
```

skrf.network.Network.plot_s_smith

```
Network.plot_s_smith (m=None, n=None, r=1, ax=None, show_legend=True, chart_type='z', draw_labels=False, label_axes=False, *args, **kwargs) plots the scattering parameter on a smith chart
```

plots indices m, n, where m and n can be integers or lists of integers.

```
first index

n: int, optional
second index

ax: matplotlib.Axes object, optional
```

Parameters m: int, optional

```
axes to plot on. in case you want to update an existing plot.
               show_legend : boolean, optional
                  to turn legend show legend of not, optional
               chart_type : ['z','y']
                  draw impedance or addmitance contours
               draw_labels : Boolean
                   annotate chart with impedance values
               label_axes: Boolean
                  Label axis with titles Real and Imaginary
               border: Boolean
                   draw rectangular border around image with ticks
               *args: arguments, optional
                   passed to the matplotlib.plot command
               **kwargs: keyword arguments, optional
                   passed to the matplotlib.plot command
     See Also:
     plot_vs_frequency_generic, smith
     Examples
     >>> myntwk.plot_s_smith()
     >>> myntwk.plot_s_smith(m=0, n=1, color='b', marker='x')
skrf.network.Network.plot_s_vswr
Network.plot_s_vswr(m=None,
                                                                                    attribute='s_vswr',
                                      n=None,
                                                  ax=None,
                                                              show_legend=True,
                           y_label='VSWR', *args, **kwargs)
     plot the Network attribute s_vswr vs frequency.
          Parameters m: int, optional
                   first index of s-parameter matrix, if None will use all
               n: int, optional
                  secon index of the s-parameter matrix, if None will use all
               ax: matplotlib. Axes object, optional
                   An existing Axes object to plot on
               show legend: Boolean
                   draw legend or not
               attribute: string
                  Network attribute to plot
```

```
y_label : string, optional
    the y-axis label
*args,**kwargs : arguments, keyword arguments
    passed to matplotlib.plot()
```

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_s_vswr(m=1, n=0, color='r')
```

skrf.network.Network.plot_y_arcl

```
Network.plot_y_arcl (m=None, n=None, ax=None, show_legend=True, attribute='y_arcl', y_label='Arc Length', *args, **kwargs)
plot the Network attribute y_arcl vs frequency.
```

Parameters m: int, optional

first index of s-parameter matrix, if None will use all

n: int, optional

secon index of the s-parameter matrix, if None will use all

ax : matplotlib.Axes object, optional

An existing Axes object to plot on

show_legend: Boolean

draw legend or not

attribute: string

Network attribute to plot

y_label: string, optional

the y-axis label

*args,**kwargs: arguments, keyword arguments

passed to matplotlib.plot()

Notes

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

```
>>> myntwk.plot_y_arcl(m=1, n=0, color='r')
skrf.network.Network.plot_y_arcl_unwrap
                                                                          show_legend=True,
Network.plot_y_arcl_unwrap(m=None,
                                                 n=None,
                                                             ax=None,
                                                                                                 at-
                                    tribute='y_arcl_unwrap', y_label='Arc Length', *args, **kwargs)
     plot the Network attribute y_arcl_unwrap vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
              show_legend: Boolean
                  draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args, **kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_y_arcl_unwrap(m=1,n=0,color='r')
skrf.network.Network.plot_y_complex
Network.plot_y_complex (m=None, n=None, ax=None, show_legend=True, prop_name='y', *args,
                               **kwargs)
     plot the Network attribute y vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
```

```
ax: matplotlib. Axes object, optional
                   An existing Axes object to plot on
               show_legend: Boolean
                  draw legend or not
               attribute: string
                   Network attribute to plot
               y_label: string, optional
                   the y-axis label
               *args,**kwargs: arguments, keyword arguments
                   passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_y (m=1, n=0, color='r')
skrf.network.Network.plot_y_db
Network.plot_y_db (m=None,
                                     n=None,
                                                  ax=None,
                                                               show_legend=True,
                                                                                      attribute='y_db',
                         y label='Magnitude (dB)', *args, **kwargs)
     plot the Network attribute y_db vs frequency.
          Parameters m: int, optional
                   first index of s-parameter matrix, if None will use all
               n: int, optional
                   secon index of the s-parameter matrix, if None will use all
               ax: matplotlib. Axes object, optional
                   An existing Axes object to plot on
               show_legend: Boolean
                   draw legend or not
               attribute: string
                   Network attribute to plot
               y_label: string, optional
                   the y-axis label
               *args, **kwargs: arguments, keyword arguments
```

secon index of the s-parameter matrix, if None will use all

```
passed to matplotlib.plot()
```

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_y_db(m=1,n=0,color='r')
```

skrf.network.Network.plot_y_deg

```
Network.plot_y_deg (m=None, n=None, ax=None, show_legend=True, attribute='y_deg', y_label='Phase (deg)', *args, **kwargs)
plot the Network attribute y_deg vs frequency.
```

Parameters m: int, optional

first index of s-parameter matrix, if None will use all

n: int, optional

secon index of the s-parameter matrix, if None will use all

ax: matplotlib. Axes object, optional

An existing Axes object to plot on

show_legend: Boolean

draw legend or not

attribute: string

Network attribute to plot

y_label: string, optional

the y-axis label

*args, **kwargs: arguments, keyword arguments

passed to matplotlib.plot()

Notes

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

```
>>> myntwk.plot_y_deg(m=1,n=0,color='r')
```

skrf.network.Network.plot y deg unwrap

```
show_legend=True,
Network.plot_y_deg_unwrap(m=None,
                                                 n=None,
                                                             ax=None,
                                                                                                   at-
                                   tribute='y_deg_unwrap', y_label='Phase (deg)', *args, **kwargs)
     plot the Network attribute y_deg_unwrap vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
              show legend: Boolean
                  draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_y_deq_unwrap(m=1, n=0, color='r')
skrf.network.Network.plot_y_im
Network.plot_y_im(m=None, n=None, ax=None, show_legend=True, attribute='y_im', y_label='Imag
                        Part', *args, **kwargs)
     plot the Network attribute y_im vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
```

show_legend: Boolean

```
draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_y_im(m=1,n=0,color='r')
skrf.network.Network.plot y mag
Network.plot_y_mag(m=None,
                                                 ax=None,
                                                             show_legend=True,
                                                                                   attribute='y_mag',
                                     n=None,
                         y label='Magnitude', *args, **kwargs)
     plot the Network attribute y_mag vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
              show_legend: Boolean
                  draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
```

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_y_mag(m=1, n=0, color='r')
```

skrf.network.Network.plot y polar

```
Network.plot_y_polar (m=None, n=None, ax=None, show_legend=True, prop_name='y', *args, **kwargs)

plot the Network attribute y vs frequency.

Parameters m: int, optional

first index of s-parameter matrix, if None will use all

n: int, optional

secon index of the s-parameter matrix, if None will use all

ax: matplotlib.Axes object, optional

An existing Axes object to plot on

show_legend: Boolean

draw legend or not

attribute: string
```

Network attribute to plot

y_label : string, optional

the y-axis label

*args, **kwargs: arguments, keyword arguments

passed to matplotlib.plot()

Notes

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_y (m=1, n=0, color='r')
```

```
skrf.network.Network.plot y rad
Network.plot_y_rad(m=None,
                                     n=None,
                                                              show_legend=True,
                                                                                   attribute='y_rad',
                                                 ax=None,
                         v label='Phase (rad)', *args, **kwargs)
     plot the Network attribute y_rad vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
              show legend: Boolean
                  draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_y_rad(m=1, n=0, color='r')
skrf.network.Network.plot_y_rad_unwrap
Network.plot_y_rad_unwrap(m=None,
                                                n=None,
                                                             ax=None,
                                                                           show_legend=True,
                                                                                                  at-
                                   tribute='y_rad_unwrap', y_label='Phase (rad)', *args, **kwargs)
     plot the Network attribute y_rad_unwrap vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
```

secon index of the s-parameter matrix, if None will use all

ax : matplotlib.Axes object, optional
An existing Axes object to plot on

n: int, optional

```
draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_y_rad_unwrap(m=1,n=0,color='r')
skrf.network.Network.plot y re
Network.plot_y_re (m=None, n=None, ax=None, show_legend=True, attribute='y_re', y_label='Real
                        Part', *args, **kwargs)
     plot the Network attribute y_re vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
              show_legend: Boolean
                  draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
```

show_legend: Boolean

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_y_re(m=1,n=0,color='r')
```

skrf.network.Network.plot y vswr

```
Network.plot_y_vswr (m=None, n=None, ax=None, show\_legend=True, attribute='y\_vswr', y\_label='VSWR', *args, **kwargs) plot the Network attribute y\_vswr vs frequency.
```

Parameters m: int, optional

first index of s-parameter matrix, if None will use all

n: int, optional

secon index of the s-parameter matrix, if None will use all

ax: matplotlib. Axes object, optional

An existing Axes object to plot on

show_legend : Boolean

draw legend or not

attribute: string

Network attribute to plot

y_label: string, optional

the y-axis label

*args,**kwargs: arguments, keyword arguments

```
passed to matplotlib.plot()
```

Notes

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_y_vswr(m=1, n=0, color='r')
```

skrf.network.Network.plot z arcl

```
Network.plot_z_arcl(m=None,
                                       n=None,
                                                  ax=None,
                                                              show_legend=True,
                                                                                    attribute='z_arcl',
                           y_label='Arc Length', *args, **kwargs)
     plot the Network attribute z_arcl vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
              show legend: Boolean
                  draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_z_arcl(m=1, n=0, color='r')
skrf.network.Network.plot_z_arcl_unwrap
Network.plot_z_arcl_unwrap(m=None,
                                                 n=None,
                                                              ax=None,
                                                                            show_legend=True,
                                                                                                  at-
                                    tribute='z_arcl_unwrap', y_label='Arc Length', *args, **kwargs)
     plot the Network attribute z_arcl_unwrap vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
```

show_legend: Boolean

```
draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_z_arcl_unwrap(m=1,n=0,color='r')
skrf.network.Network.plot z complex
Network.plot_z_complex (m=None, n=None, ax=None, show_legend=True, prop_name='z', *args,
     plot the Network attribute z vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
              show_legend: Boolean
                  draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
```

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_z (m=1, n=0, color='r')
```

skrf.network.Network.plot_z_db

```
Network.plot_z_db (m=None, n=None, ax=None, show_legend=True, attribute='z_db', y_label='Magnitude (dB)', *args, **kwargs) plot the Network attribute z_db vs frequency.
```

Parameters m: int, optional

first index of s-parameter matrix, if None will use all

n: int, optional

secon index of the s-parameter matrix, if None will use all

ax: matplotlib. Axes object, optional

An existing Axes object to plot on

show_legend: Boolean

draw legend or not

attribute: string

Network attribute to plot

y_label: string, optional

the y-axis label

*args, **kwargs: arguments, keyword arguments

```
passed to matplotlib.plot()
```

Notes

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_z_db (m=1, n=0, color='r')
```

```
skrf.network.Network.plot_z_deg
```

```
Network.plot_z_deg (m=None, n=None, ax=None, show_legend=True, attribute='z_leg', y_label='Phase(deg)', *args, **kwargs) plot the Network attribute z_leg vs frequency.
```

Parameters m: int, optional

first index of s-parameter matrix, if None will use all

n: int, optional

secon index of the s-parameter matrix, if None will use all

ax: matplotlib. Axes object, optional

An existing Axes object to plot on

show legend: Boolean

draw legend or not

attribute: string

Network attribute to plot

y_label: string, optional

the y-axis label

*args, **kwargs: arguments, keyword arguments

passed to matplotlib.plot()

Notes

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_z_deg(m=1, n=0, color='r')
```

skrf.network.Network.plot_z_deg_unwrap

```
Network.plot_z_deg_unwrap (m=None, n=None, ax=None, show_legend=True, at-tribute='z_deg_unwrap', y_label='Phase (deg)', *args, **kwargs)
plot the Network attribute z_deg_unwrap vs frequency.
```

Parameters m: int, optional

first index of s-parameter matrix, if None will use all

n: int, optional

secon index of the s-parameter matrix, if None will use all

ax: matplotlib. Axes object, optional

An existing Axes object to plot on

```
draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_z_deg_unwrap(m=1,n=0,color='r')
skrf.network.Network.plot z im
Network.plot_z_im(m=None, n=None, ax=None, show_legend=True, attribute='z_im', y_label='Imag
                        Part', *args, **kwargs)
     plot the Network attribute z_im vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
              show_legend: Boolean
                  draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
```

show_legend: Boolean

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_z_im(m=1,n=0,color='r')
```

skrf.network.Network.plot z mag

```
Network.plot_z_mag (m=None, n=None, ax=None, show_legend=True, attribute='z_mag', y_label='Magnitude', *args, **kwargs)
plot the Network attribute z_mag vs frequency.
```

Parameters m: int, optional

first index of s-parameter matrix, if None will use all

n: int, optional

secon index of the s-parameter matrix, if None will use all

ax: matplotlib. Axes object, optional

An existing Axes object to plot on

show_legend : Boolean

draw legend or not

attribute: string

Network attribute to plot

y_label: string, optional

the y-axis label

*args,**kwargs: arguments, keyword arguments

passed to matplotlib.plot()

Notes

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_z_mag(m=1, n=0, color='r')
```

skrf.network.Network.plot z polar

```
Network.plot_z_polar(m=None, n=None, ax=None, show_legend=True, prop_name='z', *args,
                             **kwargs)
     plot the Network attribute z vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
              show legend: Boolean
                  draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_z (m=1, n=0, color='r')
skrf.network.Network.plot_z_rad
Network.plot_z_rad(m=None,
                                      n=None,
                                                 ax=None,
                                                               show_legend=True,
                                                                                    attribute='z_rad',
                          y_label='Phase (rad)', *args, **kwargs)
     plot the Network attribute z_rad vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
```

ax : matplotlib.Axes object, optional
An existing Axes object to plot on

show_legend: Boolean

```
draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_z_rad(m=1,n=0,color='r')
skrf.network.Network.plot z rad unwrap
Network.plot_z_rad_unwrap(m=None,
                                                             ax=None,
                                                                           show legend=True,
                                                n=None,
                                                                                                  at-
                                   tribute='z_rad_unwrap', y_label='Phase (rad)', *args, **kwargs)
     plot the Network attribute z_rad_unwrap vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
              show_legend: Boolean
                  draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
```

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_z_rad_unwrap(m=1, n=0, color='r')
```

skrf.network.Network.plot_z_re

```
Network.plot_z_re(m=None, n=None, ax=None, show_legend=True, attribute='z_re', y_label='Real Part', *args, **kwargs)
plot the Network attribute z_re vs frequency.
```

Parameters m: int, optional

first index of s-parameter matrix, if None will use all

n: int, optional

secon index of the s-parameter matrix, if None will use all

ax: matplotlib. Axes object, optional

An existing Axes object to plot on

show_legend : Boolean

draw legend or not

attribute: string

Network attribute to plot

y_label: string, optional

the y-axis label

*args,**kwargs: arguments, keyword arguments

```
passed to matplotlib.plot()
```

Notes

This function is dynamically generated upon Network initialization. This is accomplished by calling plot_vs_frequency_generic()

Examples

```
>>> myntwk.plot_z_re(m=1, n=0, color='r')
```

```
skrf.network.Network.plot z vswr
                                                             show_legend=True, attribute='z_vswr',
Network.plot_z_vswr(m=None,
                                      n=None,
                                                 ax=None,
                          v label='VSWR', *args, **kwargs)
     plot the Network attribute z_vswr vs frequency.
          Parameters m: int, optional
                  first index of s-parameter matrix, if None will use all
              n: int, optional
                  secon index of the s-parameter matrix, if None will use all
              ax: matplotlib. Axes object, optional
                  An existing Axes object to plot on
              show_legend: Boolean
                  draw legend or not
              attribute: string
                  Network attribute to plot
              y_label: string, optional
                  the y-axis label
              *args,**kwargs: arguments, keyword arguments
                  passed to matplotlib.plot()
     Notes
     This function is dynamically generated upon Network initialization. This is accomplished by calling
     plot_vs_frequency_generic()
     Examples
     >>> myntwk.plot_z_vswr(m=1, n=0, color='r')
skrf.network.Network.read
Network.read(*args, **kwargs)
     Read a Network from a 'ntwk' file
     A ntwk file is written with write (). It is just a pickled file.
          Parameters *args, **kwargs : args and kwargs
                  passed to skrf.io.general.write()
     See Also:
```

write, skrf.io.general.write, skrf.io.general.read

This function calls skrf.io.general.read().

Examples

```
>>> rf.read('myfile.ntwk')
>>> rf.read('myfile.p')
```

skrf.network.Network.read_touchstone

```
Network.read_touchstone(filename)
```

loads values from a touchstone file.

The work of this function is done through the touchstone class.

Parameters filename: str or file-object

touchstone file name.

Notes

only the scattering parameters format is supported at the moment

skrf.network.Network.renumber

```
Network.renumber (from_ports, to_ports) renumbers some ports of a two port Network
```

Parameters from_ports: list-like

to_ports: list-like:

Examples

```
To flip the ports of a 2-port network 'foo': >>> foo.renumber([0,1], [1,0])
```

To rotate the ports of a 3-port network 'bar' so that port 0 becomes port 1: >>> bar.renumber([0,1,2], [1,2,0])

To swap the first and last ports of a network 'duck': >>> duck.renumber([0,-1], [-1,0])

skrf.network.Network.resample

```
Network.resample (npoints, **kwargs)
```

Interpolate network based on a new number of frequency points

Parameters npoints: int

number of frequency points

**kwargs: keyword arguments

passed to scipy.interpolate.interpld() initializer.

See Also:

interpolate_self same functionality but takes a Frequency object

interpolate same functionality but takes a Frequency object and returns a new Network, instead of updating itself.

Notes

The function resample() is an alias for interpolate_self_npoints().

Examples

```
In [2]: n = rf.data.ring_slot
In [3]: n
Out[3]: 2-Port Network: 'ring slot', 75-110 GHz, 501 pts, z0=[ 50.+0.j 50.+0.j]
In [4]: n.resample(501) # resample is an alias
In [5]: n
Out[5]: 2-Port Network: 'ring slot', 75-110 GHz, 501 pts, z0=[ 50.+0.j 50.+0.j]
```

skrf.network.Network.write

```
Network.write(file=None, *args, **kwargs)
```

Write the Network to disk using the pickle module.

The resultant file can be read either by using the Networks constructor, $__{init}_{()}$ () , the read method read(), or the general read function skrf.io.general.read()

Parameters file: str or file-object

filename or a file-object. If left as None then the filename will be set to Network.name, if its not None. If both are None, ValueError is raised.

```
*args, **kwargs::
passed through to write()
```

See Also:

```
skrf.io.general.write write any skrf object
skrf.io.general.read read any skrf object
```

Notes

If the self.name is not None and file is can left as None and the resultant file will have the .ntwk extension appended to the filename.

Examples

```
>>> n = rf.N(f=[1,2,3],s=[1,1,1],z0=50, name = 'open')
>>> n.write()
>>> n2 = rf.read('open.ntwk')
```

skrf.network.Network.write_touchstone

```
Network.write_touchstone (filename=None, dir='./', write_z0=False) write a contents of the Network to a touchstone file.
```

Parameters filename: a string, optional

touchstone filename, without extension. if 'None', then will use the network's name.

dir: string, optional

the directory to save the file in. Defaults to cwd './'.

write_z0: boolean

write impedance information into touchstone as comments, like Ansoft HFSS does

Notes

format supported at the moment is, HZ S RI

The functionality of this function should take place in the touchstone class.

3.2.2 Connecting Networks

<pre>connect(ntwkA, k, ntwkB, l[, num])</pre>	connect two n-port networks together.
<pre>innerconnect(ntwkA, k, l[, num])</pre>	connect ports of a single n-port network.
cascade(ntwkA, ntwkB)	Cascade two 2-port Networks together
de_embed(ntwkA, ntwkB)	De-embed <i>ntwkA</i> from <i>ntwkB</i> .
flip(a)	invert the ports of a networks s-matrix, 'flipping' it over

skrf.network.connect

```
skrf.network.connect (ntwkA, k, ntwkB, l, num=1)
connect two n-port networks together.
```

specifically, connect ports k thru k+num-1 on ntwkA to ports l thru l+num-1 on ntwkB. The resultant network has (ntwkA.nports+ntwkB.nports-2*num) ports. The port indices ('k','l') start from 0. Port impedances **are** taken into account.

```
Parameters ntwkA: Network
network 'A'
k: int
starting port index on ntwkA ( port indices start from 0 )
ntwkB: Network
```

network 'B'

```
1: int
                  starting port index on ntwkB
              num: int
                  number of consecutive ports to connect (default 1)
          Returns ntwkC: Network
                  new network of rank (ntwkA.nports + ntwkB.nports - 2*num)
     See Also:
     connect_s actual S-parameter connection algorithm.
     innerconnect_s actual S-parameter connection algorithm.
     Notes
     the effect of mis-matched port impedances is handled by inserting a 2-port 'mismatch' network between the two
     connected ports. This mismatch Network is calculated with the impedance_mismatch() function.
     Examples
     To implement a cascade of two networks
     >>> ntwkA = rf.Network('ntwkA.s2p')
     >>> ntwkB = rf.Network('ntwkB.s2p')
     >>> ntwkC = rf.connect(ntwkA, 1, ntwkB,0)
skrf.network.innerconnect
skrf.network.innerconnect(ntwkA, k, l, num=1)
     connect ports of a single n-port network.
     this results in a (n-2)-port network. remember port indices start from 0.
          Parameters ntwkA: Network
                  network 'A'
              k,l: int
                  starting port indices on ntwkA (port indices start from 0)
              num: int
                  number of consecutive ports to connect
          Returns ntwkC: Network
                  new network of rank (ntwkA.nports - 2*num)
     See Also:
     connect_s actual S-parameter connection algorithm.
     innerconnect_s actual S-parameter connection algorithm.
```

a 2-port 'mismatch' network is inserted between the connected ports if their impedances are not equal.

Examples

To connect ports '0' and port '1' on ntwkA

```
>>> ntwkA = rf.Network('ntwkA.s3p')
>>> ntwkC = rf.innerconnect(ntwkA, 0,1)
```

skrf.network.cascade

```
skrf.network.cascade(ntwkA, ntwkB)
```

Cascade two 2-port Networks together

Connects port 1 of ntwkA to port 0 of ntwkB. This calls connect(ntwkA,1, ntwkB,0), which is a more general function.

```
Parameters ntwkA: Network
```

network ntwkA

ntwkB: Network

network ntwkB

Returns C: Network

the resultant network of ntwkA cascaded with ntwkB

See Also:

connect connects two Networks together at arbitrary ports.

skrf.network.de_embed

```
skrf.network.de_embed(ntwkA, ntwkB)
```

De-embed *ntwkA* from *ntwkB*.

This calls *ntwkA.inv* ** *ntwkB*. The syntax of cascading an inverse is more explicit, it is recomended that it be used instead of this function.

```
Parameters ntwkA: Network
```

network ntwkA

ntwkB: Network

network ntwkB

Returns C: Network

the resultant network of ntwkB de-embeded from ntwkA

See Also:

connects two Networks together at arbitrary ports.

skrf.network.flip

```
skrf.network.flip(a)
invert the ports of a networks s-matrix, 'flipping' it over

Parameters a: numpy.ndarray
scattering parameter matrix. shape should be should be 2x2, or fx2x2

Returns a': numpy.ndarray
flipped scattering parameter matrix, ie interchange of port 0 and port 1
```

3.2.3 Interpolation and Stitching

Network.resample(npoints, **kwargs)	Interpolate network based on a new number of frequency points
Network.interpolate(new_frequency, **kwargs)	Return an interpolated network, from a new :class:'~skrf.frequency
<pre>Network.interpolate_self(new_frequency, **kwargs)</pre>	Interpolates s-parameters given a new
Network.interpolate_from_f(f[,interp_kwargs])	Interpolates s-parameters from a frequency vector.
stitch(ntwkA, ntwkB, **kwargs)	Stitches ntwkA and ntwkB together.

skrf.network.Network.resample

```
Network.resample (npoints, **kwargs)
Interpolate network based on a new number of frequency points

Parameters npoints: int
number of frequency points

**kwargs: keyword arguments
passed to scipy.interpolate.interpld() initializer.
```

See Also:

interpolate_self same functionality but takes a Frequency object

interpolate same functionality but takes a Frequency object and returns a new Network, instead of updating itself.

Notes

The function resample() is an alias for interpolate_self_npoints().

Examples

```
In [2]: n = rf.data.ring_slot
In [3]: n
Out[3]: 2-Port Network: 'ring slot', 75-110 GHz, 501 pts, z0=[ 50.+0.j 50.+0.j]
In [4]: n.resample(501) # resample is an alias
```

```
In [5]: n
Out[5]: 2-Port Network: 'ring slot', 75-110 GHz, 501 pts, z0=[ 50.+0.j 50.+0.j]
```

skrf.network.Network.interpolate

```
Network.interpolate(new_frequency, **kwargs)
```

Return an interpolated network, from a new :class:'~skrf.frequency.Frequency'.

Interpolate the networks s-parameters linearly in real and imaginary components. Other interpolation types can be used by passing appropriate **kwargs. This function returns an interpolated Network. Alternatively interpolate_self() will interpolate self.

Parameters new_frequency: Frequency

frequency information to interpolate

**kwargs: keyword arguments

passed to scipy.interpolate.interp1d() initializer.

Returns result: Network

an interpolated Network

See Also:

```
resample, interpolate_self, interpolate_from_f
```

Notes

See scipy.interpolate.interpolate.interpld() for useful kwargs. For example

kind [str or int] Specifies the kind of interpolation as a string ('linear', 'nearest', 'zero', 'slinear', 'quadratic, 'cubic') or as an integer specifying the order of the spline interpolator to use.

Examples

```
In [2]: n = rf.data.ring_slot

In [3]: n
Out[3]: 2-Port Network: 'ring slot', 75-110 GHz, 201 pts, z0=[ 50.+0.j 50.+0.j]

In [4]: new_freq = rf.Frequency(75,110,501,'ghz')

In [5]: n.interpolate(new_freq, kind = 'cubic')
Out[5]: 2-Port Network: 'ring slot', 75-110 GHz, 501 pts, z0=[ 50.+0.j 50.+0.j]
```

skrf.network.Network.interpolate self

```
Network.interpolate_self(new_frequency, **kwargs)
```

Interpolates s-parameters given a new :class:'~skrf.frequency.Frequency' object.

See interpolate() for more information.

```
Parameters new_frequency: Frequency
```

frequency information to interpolate at

```
**kwargs: keyword arguments
                 passed to scipy.interpolate.interpld() initializer.
     See Also:
     resample, interpolate, interpolate_from_f
skrf.network.Network.interpolate_from_f
Network.interpolate_from_f (f, interp_kwargs={}, **kwargs)
     Interpolates s-parameters from a frequency vector.
     Given a frequency vector, and optionally a unit (see **kwargs), interpolate the networks s-parameters linearly
     in real and imaginary components.
     See interpolate() for more information.
          Parameters new_frequency: Frequency
                 frequency information to interpolate at
             interp_kwargs::
                 dictionary
                                of
                                       kwargs
                                                          be
                                                                  passed
                                                                             through
                                                   to
                                                                                          to
                 scipy.interpolate.interpolate.interp1d()
             **kwargs::
                 passed to scipy.interpolate.interpld() initializer.
     See Also:
     resample, interpolate, interpolate_self
     Notes
     This creates a new Frequency, object using the method from_f(), and then calls
     interpolate self().
skrf.network.stitch
skrf.network.stitch(ntwkA, ntwkB, **kwargs)
     Stitches ntwkA and ntwkB together.
     Concatenates two networks' data. Given two networks that cover different frequency bands this can be used to
     combine their data into a single network.
          Parameters ntwkA, ntwkB: Network objects
```

Networks to stitch together

**kwargs : keyword args

passed to Network constructor, for output network

Returns ntwkC: Network

result of stitching the networks ntwkA and ntwkB together

Examples

```
>>> from skrf.data import wr2p2_line, wr1p5_line
>>> rf.stitch(wr2p2_line, wr1p5_line)
2-Port Network: 'wr2p2,line', 330-750 GHz, 402 pts, z0=[ 50.+0.j 50.+0.j]
```

3.2.4 IO

skrf.io.general.read(file, *args, **kwargs)	Read skrf object[s] from a pickle file
skrf.io.general.write(file, obj[, overwrite])	Write skrf object[s] to a file
Network.write([file])	Write the Network to disk using the pickle module.
Network.write_touchstone([filename, dir,])	write a contents of the Network to a touchstone file.
Network.read(*args, **kwargs)	Read a Network from a 'ntwk' file

3.2.5 Noise

Network.add_noise_polar(mag_dev, phase_dev,)	adds a complex zero-mean gaussian white-noise.
<pre>Network.add_noise_polar_flatband(mag_dev,)</pre>	adds a flatband complex zero-mean gaussian white-noise signal of
Network.multiply_noise(mag_dev, phase_dev,)	multiplys a complex bivariate gaussian white-noise signal

skrf.network.Network.add_noise_polar

```
Network.add_noise_polar (mag_dev, phase_dev, **kwargs)
adds a complex zero-mean gaussian white-noise.

adds a complex zero-mean gaussian white-noise of a given standard deviation for magnitude and phase
```

Parameters mag_dev : number
standard deviation of magnitude
phase_dev : number

standard deviation of phase [in degrees]

skrf.network.Network.add noise polar flatband

```
Network.add_noise_polar_flatband (mag_dev, phase_dev, **kwargs) adds a flatband complex zero-mean gaussian white-noise signal of given standard deviations for magnitude and phase
```

Parameters mag_dev : number
standard deviation of magnitude
phase_dev : number
standard deviation of phase [in degrees]

skrf.network.Network.multiply_noise

Network.multiply_noise (mag_dev, phase_dev, **kwargs)

multiplys a complex bivariate gaussian white-noise signal of given standard deviations for magnitude and phase. magnitude mean is 1, phase mean is 0

takes: mag_dev: standard deviation of magnitude phase_dev: standard deviation of phase [in degrees] n_ports: number of ports. defualt to 1

returns: nothing

3.2.6 Supporting Functions

inv(s)	Calculates 'inverse' s-parameter matrix, used for de-embeding	
$connect_s(A, k, B, l)$	connect two n-port networks' s-matricies together.	
$innerconnect_s(A, k, l)$	connect two ports of a single n-port network's s-matrix.	
s2z(s[,z0])	Convert scattering parameters [#]_ to impedance parameters [#]	
s2y(s[,z0])	convert scattering parameters [#]_ to admittance parameters [#]_	
s2t(s)	Converts scattering parameters [#]_ to scattering transfer parameters [#]	
z2s(z[, z0])	convert impedance parameters [#]_ to scattering parameters [#]_	
z2y (z)	convert impedance parameters [#]_ to admittance parameters [#]_	
z2t(z)	Not Implemented yet	
y2s(y[, z0])	convert admittance parameters [#]_ to scattering parameters [#]_	
y2z(y)	convert admittance parameters [#]_ to impedance parameters [#]_	
y2t(y)	Not Implemented Yet	
t2s(t)	converts scattering transfer parameters [#]_ to scattering parameters [#]_	
t2z(t)	Not Implemented Yet	
t2y(t)	Not Implemented Yet	

skrf.network.inv

skrf.network.inv(s)

Calculates 'inverse' s-parameter matrix, used for de-embeding

This is not literally the inverse of the s-parameter matrix. Instead, it is defined such that the inverse of the s-matrix cascaded with itself is unity.

$$inv(s) = t2s(s2t(s)^{-1})$$

where x^{-1} is the matrix inverse. In words, this is the inverse of the scattering transfer parameters matrix transformed into a scattering parameters matrix.

Parameters s: numpy.ndarray (shape <math>fx2x2)

scattering parameter matrix.

Returns s': numpy.ndarray

inverse scattering parameter matrix.

See Also:

t2s converts scattering transfer parameters to scattering parameters

s2t converts scattering parameters to scattering transfer parameters

skrf.network.connect s

```
skrf.network.connect_s (A, k, B, l) connect two n-port networks' s-matricies together.
```

specifically, connect port k on network A to port l on network B. The resultant network has nports = (A.rank + B.rank-2). This function operates on, and returns s-matricies. The function connect () operates on Network types.

```
Parameters A: numpy.ndarray

S-parameter matrix of A, shape is fxnxn

k: int

port index on A (port indices start from 0)

B: numpy.ndarray

S-parameter matrix of B, shape is fxnxn

1: int

port index on B

Returns C: numpy.ndarray
```

new S-parameter matrix

See Also:

connect operates on Network types

innerconnect_s function which implements the connection connection algorithm

Notes

internally, this function creates a larger composite network and calls the innerconnect_s() function. see that function for more details about the implementation

skrf.network.innerconnect_s

```
skrf.network.innerconnect_s (A, k, l) connect two ports of a single n-port network's s-matrix.
```

Specifically, connect port k to port l on A. This results in a (n-2)-port network. This function operates on, and returns s-matricies. The function innerconnect () operates on Network types.

```
Parameters A: numpy.ndarray

S-parameter matrix of A, shape is fxnxn

k: int

port index on A (port indices start from 0)

1: int

port index on A

Returns C: numpy.ndarray

new S-parameter matrix
```

The algorithm used to calculate the resultant network is called a 'sub-network growth', can be found in ⁶. The original paper describing the algorithm is given in ⁷.

References

skrf.network.s2z

skrf.network.s2z (s, z0=50)

Convert scattering parameters ⁸ to impedance parameters ⁹

$$z = \sqrt{z_0} \cdot (I+s)(I-s)^{-1} \cdot \sqrt{z_0}$$

Parameters s: complex array-like

scattering parameters

z0: complex array-like or number

port impedances

Returns z : complex array-like

impedance parameters

See Also:

s2z, s2y, s2t, z2s, z2y, z2t, y2s, y2z, y2z, t2s, t2z, t2y, Network.s, Network.y, Network.z, Network.t

References

skrf.network.s2y

skrf.network.s2 \mathbf{y} (s, z0=50)

convert scattering parameters 10 to admittance parameters 11

$$y = \sqrt{y_0} \cdot (I - s)(I + s)^{-1} \cdot \sqrt{y_0}$$

Parameters s: complex array-like

scattering parameters

z0: complex array-like or number

port impedances

⁶ Compton, R.C.; , "Perspectives in microwave circuit analysis," Circuits and Systems, 1989., Proceedings of the 32nd Midwest Symposium on , vol., no., pp.716-718 vol.2, 14-16 Aug 1989. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=101955&isnumber=3167

⁷ Filipsson, Gunnar; , "A New General Computer Algorithm for S-Matrix Calculation of Interconnected Multiports," Microwave Conference, 1981. 11th European , vol., no., pp.700-704, 7-11 Sept. 1981. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4131699&isnumber=4131585

⁸ http://en.wikipedia.org/wiki/S-parameters

⁹ http://en.wikipedia.org/wiki/impedance_parameters

¹⁰ http://en.wikipedia.org/wiki/S-parameters

¹¹ http://en.wikipedia.org/wiki/Admittance_parameters

Returns y : complex array-like

admittance parameters

See Also:

s2z, s2y, s2t, z2s, z2y, z2t, y2s, y2z, y2z, t2s, t2z, t2y, Network.s, Network.y, Network.z, Network.t

References

skrf.network.s2t

skrf.network.s2t(s)

Converts scattering parameters ¹² to scattering transfer parameters ¹³.

transfer parameters are also refered to as 'wave cascading matrix', this function only operates on 2-port networks.

Parameters s: numpy.ndarray (shape <math>fx2x2)

scattering parameter matrix

Returns t: numpy.ndarray

scattering transfer parameters (aka wave cascading matrix)

See Also:

inv calculates inverse s-parameters

s2z, s2y, s2t, z2s, z2y, z2t, y2s, y2z, y2z, t2s, t2z, t2y, Network.s, Network.y, Network.z, Network.t

References

skrf.network.z2s

skrf.network.**z2s**(z, z0=50)

convert impedance parameters ¹⁴ to scattering parameters ¹⁵

$$s = (\sqrt{y_0} \cdot z \cdot \sqrt{y_0} - I)(\sqrt{y_0} \cdot z \cdot \sqrt{y_0} + I)^{-1}$$

Parameters z : complex array-like

impedance parameters

z0 : complex array-like or number

port impedances

Returns s : complex array-like

scattering parameters

¹² http://en.wikipedia.org/wiki/S-parameters

¹³ http://en.wikipedia.org/wiki/Scattering_transfer_parameters#Scattering_transfer_parameters

¹⁴ http://en.wikipedia.org/wiki/impedance_parameters

¹⁵ http://en.wikipedia.org/wiki/S-parameters

See Also:

s2z, s2y, s2t, z2s, z2y, z2t, y2s, y2z, y2z, t2s, t2z, t2y, Network.s, Network.y, Network.z, Network.t

References

skrf.network.z2y

skrf.network.z2y(z)

convert impedance parameters ¹⁶ to admittance parameters ¹⁷

$$y = z^{-1}$$

Parameters z : complex array-like

impedance parameters

Returns y : complex array-like

admittance parameters

See Also:

s2z, s2y, s2t, z2s, z2y, z2t, y2s, y2z, y2z, t2s, t2z, t2y, Network.s, Network.y, Network.z, Network.t

References

skrf.network.z2t

skrf.network.z2t(z)

Not Implemented yet

convert impedance parameters 18 to scattering transfer parameters 19

Parameters z : complex array-like or number

impedance parameters

Returns s: complex array-like or number

scattering parameters

See Also:

s2z, s2y, s2t, z2s, z2y, z2t, y2s, y2z, y2z, t2s, t2z, t2y, Network.s, Network.y, Network.z, Network.t

¹⁶ http://en.wikipedia.org/wiki/impedance_parameters

¹⁷ http://en.wikipedia.org/wiki/Admittance_parameters

¹⁸ http://en.wikipedia.org/wiki/impedance_parameters

http://en.wikipedia.org/wiki/Scattering_transfer_parameters#Scattering_transfer_parameters

References

skrf.network.y2s

skrf.network.y2s(y, z0=50)

convert admittance parameters 20 to scattering parameters 21

$$s = (I - \sqrt{z_0} \cdot y \cdot \sqrt{z_0})(I + \sqrt{z_0} \cdot y \cdot \sqrt{z_0})^{-1}$$

Parameters y : complex array-like

admittance parameters

z0: complex array-like or number

port impedances

Returns s: complex array-like or number

scattering parameters

See Also:

s2z, s2y, s2t, z2s, z2y, z2t, y2s, y2z, y2z, t2s, t2z, t2y, Network.s, Network.y, Network.z, Network.t

References

skrf.network.y2z

skrf.network.y2z(y)

convert admittance parameters ²² to impedance parameters ²³

$$z = y^{-1}$$

Parameters y : complex array-like

admittance parameters

Returns z: complex array-like

impedance parameters

See Also:

s2z, s2y, s2t, z2s, z2y, z2t, y2s, y2z, y2z, t2s, t2z, t2y, Network.s, Network.y, Network.z, Network.t

 ²⁰ http://en.wikipedia.org/wiki/Admittance_parameters
 21 http://en.wikipedia.org/wiki/S-parameters

²² http://en.wikipedia.org/wiki/Admittance_parameters

²³ http://en.wikipedia.org/wiki/impedance_parameters

References

skrf.network.y2t

```
skrf.network.y2t(y)
```

Not Implemented Yet

convert admittance parameters ²⁴ to scattering-transfer parameters ²⁵

Parameters y : complex array-like or number

impedance parameters

Returns t: complex array-like or number

scattering parameters

See Also:

```
s2z, s2y, s2t, z2s, z2y, z2t, y2s, y2z, y2z, t2s, t2z, t2y, Network.s, Network.y, Network.z, Network.t
```

References

skrf.network.t2s

```
skrf.network.t2s(t)
```

converts scattering transfer parameters ²⁶ to scattering parameters ²⁷

transfer parameters are also refered to as 'wave cascading matrix', this function only operates on 2-port networks. this function only operates on 2-port scattering parameters.

Parameters t: numpy.ndarray (shape fx2x2)

scattering transfer parameters

Returns s: numpy.ndarray

scattering parameter matrix.

See Also:

inv calculates inverse s-parameters

```
s2z, s2y, s2t, z2s, z2y, z2t, y2s, y2z, y2z, t2s, t2z, t2y, Network.s, Network.y, Network.z, Network.t
```

References

skrf.network.t2z

skrf.network.t2z(t)

Not Implemented Yet

²⁴ http://en.wikipedia.org/wiki/Admittance_parameters

²⁵ http://en.wikipedia.org/wiki/Scattering_transfer_parameters#Scattering_transfer_parameters

²⁶ http://en.wikipedia.org/wiki/Scattering_transfer_parameters#Scattering_transfer_parameters

²⁷ http://en.wikipedia.org/wiki/S-parameters

Convert scattering transfer parameters ²⁸ to impedance parameters ²⁹

Parameters t: complex array-like or number

impedance parameters

Returns z : complex array-like or number

scattering parameters

See Also:

s2z, s2y, s2t, z2s, z2y, z2t, y2s, y2z, y2z, t2s, t2z, t2y, Network.s, Network.y, Network.z, Network.t

References

skrf.network.t2y

skrf.network.t2y(t)

Not Implemented Yet

Convert scattering transfer parameters to admittance parameters ³⁰

Parameters t: complex array-like or number

t-parameters

Returns y : complex array-like or number

admittance parameters

See Also:

s2z, s2y, s2t, z2s, z2y, z2t, y2s, y2z, y2z, t2s, t2z, t2y, Network.s, Network.y, Network.z, Network.t

References

3.2.7 Misc Functions

average(list_of_networks)	Calculates the average network from a list of Networks.
Network.nudge([amount])	Perturb s-parameters by small amount.

skrf.network.average

skrf.network.average(list_of_networks)

Calculates the average network from a list of Networks.

This is complex average of the s-parameters for a list of Networks.

Parameters list_of_networks: list of Network objects

the list of networks to average

Returns ntwk: Network

²⁸ http://en.wikipedia.org/wiki/Scattering_transfer_parameters#Scattering_transfer_parameters

²⁹ http://en.wikipedia.org/wiki/impedance_parameters

³⁰ http://en.wikipedia.org/wiki/Scattering_transfer_parameters#Scattering_transfer_parameters

the resultant averaged Network

Notes

This same function can be accomplished with properties of a NetworkSet class.

Examples

```
>>> ntwk_list = [rf.Network('myntwk.s1p'), rf.Network('myntwk2.s1p')]
>>> mean_ntwk = rf.average(ntwk_list)
```

skrf.network.Network.nudge

```
Network.nudge (amount=1e-12)
```

Perturb s-parameters by small amount.

This is useful to work-around numerical bugs.

Parameters amount: number,

amount to add to s parameters

Notes

This function is self.s = self.s + 1e-12

3.3 networkSet (skrf.networkSet)

Provides a class representing an un-ordered set of n-port microwave networks.

Frequently one needs to make calculations, such as mean or standard deviation, on an entire set of n-port networks. To facilitate these calculations the NetworkSet class provides convenient ways to make such calculations.

The results are returned in Network objects, so they can be plotted and saved in the same way one would do with a Network.

The functionality in this module is provided as methods and properties of the NetworkSet Class.

3.3.1 NetworkSet Class

NetworkSet(ntwk_set[, name]) A set of Networks.

skrf.networkSet.NetworkSet

```
class skrf.networkSet.NetworkSet (ntwk_set, name=None)
    A set of Networks.
```

This class allows functions on sets of Networks, such as mean or standard deviation, to be calculated conveniently. The results are returned in Network objects, so that they may be plotted and saved in like Network

objects.

This class also provides methods which can be used to plot uncertainty bounds for a set of Network.

The names of the NetworkSet properties are generated dynamically upon ititialization, and thus documentation for individual properties and methods is not available. However, the properties do follow the convention:

```
>>> my_network_set.function_name_network_property_name
```

For example, the complex average (mean) Network for a NetworkSet is:

```
>>> my_network_set.mean_s
```

This accesses the property 's', for each element in the set, and **then** calculates the 'mean' of the resultant set. The order of operations is important.

Results are returned as Network objects, so they may be plotted or saved in the same way as for Network objects:

```
>>> my_network_set.mean_s.plot_s_mag()
>>> my_network_set.mean_s.write_touchstone('mean_response')
```

If you are calculating functions that return scalar variables, then the result is accessable through the Network property .s_re. For example:

```
>>> std_s_deg = my_network_set.std_s_deg
```

This result would be plotted by:

```
>>> std_s_deg.plot_s_re()
```

The operators, properties, and methods of NetworkSet object are dynamically generated by private methods

- •__add_a_operator()
- •__add_a_func_on_property()
- •__add_a_element_wise_method()
- •__add_a_plot_uncertainty()

thus, documentation on the individual methods and properties are not available.

Attributes

inv	
mean_s_db	the mean magnitude in dB.
std_s_db	the mean magnitude in dB.

skrf.networkSet.NetworkSet.inv

NetworkSet.inv

skrf.networkSet.NetworkSet.mean_s_db

```
NetworkSet.mean_s_db the mean magnitude in dB.
```

note:

the mean is taken on the magnitude before converted to db, so $magnitude_2_db(mean(s_mag))$ which is NOT the same as $mean(s_db)$

skrf.networkSet.NetworkSet.std_s_db

NetworkSet.**std_s_db** the mean magnitude in dB.

note:

the mean is taken on the magnitude before converted to db, so $magnitude_2_db(mean(s_mag))$ which is NOT the same as $mean(s_db)$

Methods

init	Initializer for NetworkSet
сору	copies each network of the network set.
element_wise_method	calls a given method of each element and returns the result as
from_zip	creates a NetworkSet from a zipfile of touchstones.
plot_logsigma	plots the uncertainty for the set in units of log-sigma.
plot_uncertainty_bounds_component	plots mean value of the NetworkSet with +- uncertainty bounds
plot_uncertainty_bounds_s	Plots complex uncertianty bounds plot on smith chart.
plot_uncertainty_bounds_s_db	this just calls
plot_uncertainty_decomposition	plots the total and component-wise uncertainty
set_wise_function	calls a function on a specific property of the networks in
signature	visualization of relative changes in a NetworkSet.
to_dict	Returns a dictionary representation of the NetworkSet
uncertainty_ntwk_triplet	returns a 3-tuple of Network objects which contain the
write	Write the NetworkSet to disk using write ()

skrf.networkSet.NetworkSet.__init__

NetworkSet.__init__(ntwk_set, name=None)
Initializer for NetworkSet

Parameters ntwk_set: list of Network objects

the set of ${\tt Network}$ objects

name: string

the name of the NetworkSet, given to the Networks returned from properties of this class.

skrf.networkSet.NetworkSet.copy

NetworkSet.copy()
copies each network of the network set.

skrf.networkSet.NetworkSet.element wise method

```
NetworkSet.element_wise_method(network_method_name, *args, **kwargs) calls a given method of each element and returns the result as a new NetworkSet if the output is a Network.
```

skrf.networkSet.NetworkSet.from_zip

```
classmethod NetworkSet.from_zip (zip_file_name, sort_filenames=True, *args, **kwargs) creates a NetworkSet from a zipfile of touchstones.
```

```
Parameters zip_file_name: string name of zipfile
```

sort_filenames: Boolean:

sort the filenames in teh zip file before constructing the NetworkSet

*args,**kwargs: arguments

passed to NetworkSet constructor

Examples

```
>>> import skrf as rf
>>> my_set = rf.NetworkSet.from_zip('myzip.zip')
```

skrf.networkSet.NetworkSet.plot_logsigma

```
NetworkSet.plot_logsigma (label_axis=True, *args, **kwargs)
```

plots the uncertainty for the set in units of log-sigma. Log-sigma is the complex standard deviation, plotted in units of dB's.

```
Parameters *args, **kwargs : arguments
passed to self.std_s.plot_s_db()
```

skrf.networkSet.NetworkSet.plot uncertainty bounds component

```
NetworkSet.plot_uncertainty_bounds_component (attribute, m=0, n=0, type='shade', n_deviations=3, alpha=0.3, color_error=None, markevery_error=20, ax=None, ppf=None, kwargs_error={}, *args, **kwargs)
```

plots mean value of the NetworkSet with +- uncertainty bounds in an Network's attribute. This is designed to represent uncertainty in a scalar component of the s-parameter. for example ploting the uncertainty in the magnitude would be expressed by,

```
mean(abs(s)) +- std(abs(s))
```

the order of mean and abs is important.

takes: attribute: attribute of Network type to analyze [string] m: first index of attribute matrix [int] n: second index of attribute matrix [int] type: ['shade' | 'bar'], type of plot to draw n_deviations: number of std deviations to plot as bounds [number] alpha: passed to matplotlib.fill_between() command. [number, 0-1] color_error: color of the +- std dev fill shading markevery_error: if type=='bar', this controls frequency

```
of error bars
```

ax: Axes to plot on ppf: post processing function. a function applied to the upper and low

*args,**kwargs: passed to Network.plot_s_re command used to plot mean response

kwargs_error: dictionary of kwargs to pass to the fill_between or errorbar plot command depending on value of type.

returns: None

Note: for phase uncertainty you probably want s_deg_unwrap, or similar. uncerainty for wrapped phase blows up at +-pi.

skrf.networkSet.NetworkSet.plot uncertainty bounds s

```
NetworkSet.plot_uncertainty_bounds_s (multiplier=200, *args, **kwargs)
```

Plots complex uncertianty bounds plot on smith chart.

This function plots the complex uncertainty of a NetworkSet as circles on the smith chart. At each frequency a circle with radii proportional to the complex standard deviation of the set at that frequency is drawn. Due to the fact that the *markersize* argument is in pixels, the radii can scaled by the input argument *multiplier*.

```
default kwargs are { 'marker':'o', 'color':'b', 'mew':0, 'ls':'', 'alpha':.1, 'label':None, }
```

Parameters multipliter: float

controls the circle sizes, by multiples of the standard deviation.

skrf.networkSet.NetworkSet.plot_uncertainty_bounds_s_db

```
NetworkSet.plot_uncertainty_bounds_s_db (*args, **kwargs)

this just calls plot_uncertainty_bounds(attribute= 's_mag','ppf':mf.magnitude_2_db*args,**kwargs)

see plot_uncertainty_bounds for help
```

skrf.networkSet.NetworkSet.plot_uncertainty_decomposition

```
NetworkSet.plot_uncertainty_decomposition (m=0, n=0) plots the total and component-wise uncertainty
```

Parameters m: int

first s-parameters index

n::

second s-parameter index

skrf.networkSet.NetworkSet.set wise function

```
NetworkSet.set_wise_function (func, a_property, *args, **kwargs) calls a function on a specific property of the networks in this NetworkSet.

example: my_ntwk_set.set_wise_func(mean,'s')
```

skrf.networkSet.NetworkSet.signature

```
NetworkSet.signature (m=0, n=0, from_mean=False, operation='__sub___', component='s_mag', vmax=None, *args, **kwargs) visualization of relative changes in a NetworkSet.
```

Creates a colored image representing the devation of each Network from the from mean Network of the NetworkSet, vs frequency.

Parameters m: int

first s-parameters index

n: int

second s-parameter index

from mean: Boolean

calculate distance from mean if True. or distance from first network in networkset if False.

```
operation: ['__sub__', '__div__'], ..
```

operation to apply between each network and the reference network, which is either the mean, or the initial ntwk.

```
component : ['s_mag','s_db','s_deg' ..]
```

scalar component of Network to plot on the imshow. should be a property of the Network object.

vmax: number

sets upper limit of colorbar, if None, will be set to 3*mean of the magnitude of the complex difference

*args,**kwargs: arguments, keyword arguments

passed to imshow()

skrf.networkSet.NetworkSet.to_dict

```
NetworkSet.to dict()
```

Returns a dictionary representation of the NetworkSet

The returned dictionary has the Network names for keys, and the Networks as values.

skrf.networkSet.NetworkSet.uncertainty_ntwk_triplet

```
NetworkSet.uncertainty_ntwk_triplet (attribute, n_deviations=3)
```

returns a 3-tuple of Network objects which contain the mean, upper_bound, and lower_bound for the given Network attribute.

Used to save and plot uncertainty information data

skrf.networkSet.NetworkSet.write

```
NetworkSet.write(file=None, *args, **kwargs)
Write the NetworkSet to disk using write()
```

Parameters file: str or file-object

filename or a file-object. If left as None then the filename will be set to Calibration.name, if its not None. If both are None, ValueError is raised.

*args, **kwargs: arguments and keyword arguments passed through to write()

See Also:

```
skrf.io.general.write, skrf.io.general.read
```

Notes

If the self.name is not None and file is can left as None and the resultant file will have the .ns extension appended to the filename.

Examples

```
>>> ns.name = 'my_ns'
>>> ns.write()
```

3.4 plotting (skrf.plotting)

This module provides general plotting functions.

3.4.1 Plots and Charts

<pre>smith([smithR, chart_type, draw_labels,])</pre>	plots the smith chart of a given radius
<pre>plot_smith(z[, smith_r, chart_type,])</pre>	plot complex data on smith chart
<pre>plot_rectangular(x, y[, x_label, y_label,])</pre>	plots rectangular data and optionally label axes.
plot_polar(theta, r[, x_label, y_label,])	plots polar data on a polar plot and optionally label axes.
<pre>plot_complex_rectangular(z[, x_label,])</pre>	plot complex data on the complex plane
<pre>plot_complex_polar(z[, x_label, y_label,])</pre>	plot complex data in polar format.

skrf.plotting.smith

```
skrf.plotting.smith (smithR=1, chart_type='z', draw_labels=False, border=False, ax=None) plots the smith chart of a given radius
```

Parameters smithR: number radius of smith chart

```
Contour type. Possible values are
                      • 'z': lines of constant impedance
                      • 'y': lines of constant admittance
               draw labels: Boolean
                   annotate real and imaginary parts of impedance on the chart (only if smithR=1)
               border: Boolean
                   draw a rectangular border with axis ticks, around the perimeter of the figure. Not used
                   if draw labels = True
               ax: matplotlib.axes object
                   existing axes to draw smith chart on
skrf.plotting.plot_smith
skrf.plotting.plot_smith(z, smith_r=1, chart_type='z', x_label='Real', y_label='Imaginary',
                                    title='Complex Plane', show_legend=True, axis='equal', ax=None,
                                   force_chart=False, *args, **kwargs)
     plot complex data on smith chart
           Parameters z : array-like, of complex data
                   data to plot
               smith r: number
                   radius of smith chart
               chart_type : ['z','y']
                   Contour type for chart.
                      • 'z': lines of constant impedance
                      • 'y': lines of constant admittance
               x_label: string
                   x-axis label
               y_label: string
                   y-axis label
               title: string
                   plot title
               show_legend : Boolean
                   controls the drawing of the legend
               axis_equal: Boolean:
                   sets axis to be equal increments (calls axis('equal'))
               force_chart : Boolean
                   forces the re-drawing of smith chart
```

chart_type : ['z','y']

```
ax: matplotlib.axes.AxesSubplot object
                  axes to draw on
              *args, **kwargs: passed to pylab.plot
     See Also:
     plot_rectangular plots rectangular data
     plot_complex_rectangular plot complex data on complex plane
     plot_polar plot polar data
     plot_complex_polar plot complex data on polar plane
     plot_smith plot complex data on smith chart
skrf.plotting.plot_rectangular
skrf.plotting.plot_rectangular(x,
                                                      x_label=None,
                                                                       y_label=None,
                                                                                         title=None,
                                          show_legend=True, axis='tight', ax=None, *args, **kwargs)
     plots rectangular data and optionally label axes.
          Parameters z: array-like, of complex data
                  data to plot
              x_label: string
                  x-axis label
              y_label: string
                  y-axis label
              title: string
                  plot title
              show_legend: Boolean
                  controls the drawing of the legend
              ax: matplotlib.axes.AxesSubplot object
                  axes to draw on
              *args, **kwargs: passed to pylab.plot
skrf.plotting.plot_polar
skrf.plotting.plot_polar(theta, r, x_label=None, y_label=None, title=None, show_legend=True,
                                 axis_equal=False, ax=None, *args, **kwargs)
     plots polar data on a polar plot and optionally label axes.
          Parameters theta: array-like
                  data to plot
              r: array-like
              x label: string
                  x-axis label
```

```
y_label: string
                  y-axis label
              title: string
                  plot title
              show_legend: Boolean
                  controls the drawing of the legend
              ax: matplotlib.axes.AxesSubplot object
                  axes to draw on
              *args, **kwargs: passed to pylab.plot
     See Also:
     plot_rectangular plots rectangular data
     plot_complex_rectangular plot complex data on complex plane
     plot_polar plot polar data
     plot_complex_polar plot complex data on polar plane
     plot_smith plot complex data on smith chart
skrf.plotting.plot_complex_rectangular
skrf.plotting.plot_complex_rectangular(z, x_label='Real', y_label='Imag', title='Complex
                                                    Plane', show legend=True, axis='equal', ax=None,
                                                    *args, **kwargs)
     plot complex data on the complex plane
          Parameters z : array-like, of complex data
                  data to plot
              x_label: string
                  x-axis label
              y_label: string
                  y-axis label
              title: string
                  plot title
              show_legend : Boolean
                  controls the drawing of the legend
              ax: matplotlib.axes.AxesSubplot object
                  axes to draw on
              *args,**kwargs: passed to pylab.plot
     See Also:
     plot_rectangular plots rectangular data
```

```
plot_complex_rectangular plot complex data on complex plane
     plot_polar plot polar data
     plot_complex_polar plot complex data on polar plane
     plot_smith plot complex data on smith chart
skrf.plotting.plot_complex_polar
                                                                    y_label=None,
skrf.plotting.plot_complex_polar(z,
                                                 x_label=None,
                                                                                      title=None,
                                           show_legend=True, axis_equal=False, ax=None, *args,
                                           **kwargs)
     plot complex data in polar format.
          Parameters z : array-like, of complex data
                  data to plot
              x_label: string
                  x-axis label
              y_label: string
                 y-axis label
              title: string
                  plot title
              show_legend: Boolean
                 controls the drawing of the legend
              ax: matplotlib.axes.AxesSubplot object
                  axes to draw on
              *args, **kwargs: passed to pylab.plot
     See Also:
     plot_rectangular plots rectangular data
     plot_complex_rectangular plot complex data on complex plane
     plot_polar plot polar data
     plot_complex_polar plot complex data on polar plane
     plot_smith plot complex data on smith chart
```

3.4.2 Misc Functions

<pre>save_all_figs([dir, format])</pre>	Save all open Figures to disk.	
add_markers_to_lines([ax, marker_list,])	adds markers to existing lings on a plot	
legend_off([ax])	turn off the legend for a given axes.	
<pre>func_on_all_figs(func, *args, **kwargs)</pre>	runs a function after making all open figures current.	

```
skrf.plotting.save_all_figs
```

```
skrf.plotting.save_all_figs (dir='./', format=['eps', 'pdf', 'svg', 'png'])
Save all open Figures to disk.

Parameters dir: string

path to save figures into

format: list of strings

the types of formats to save figures as. The elements of this list are passed to :mat-plotlib:'savefig'. This is a list so that you can save each figure in multiple formats.
```

skrf.plotting.add_markers_to_lines

```
skrf.plotting.add_markers_to_lines (ax=None, marker\_list=['o', 'D', 's', '+', 'x'], markevery=10)
```

adds markers to existing lings on a plot

this is convinient if you have already have a plot made, but then need to add markers afterwards, so that it can be interpreted in black and white. The markevery argument makes the markers less frequent than the data, which is generally what you want.

Parameters ax : matplotlib.Axes

axis which to add markers to, defaults to gca()

marker_list : list of marker characters

see matplotlib.plot help for possible marker characters

markevery: int

markevery number of points with a marker.

skrf.plotting.legend off

```
skrf.plotting.legend_off (ax=None) turn off the legend for a given axes.

if no axes is given then it will use current axes.

Parameters ax: matplotlib.Axes object axes to operate on
```

skrf.plotting.func on all figs

```
skrf.plotting.func_on_all_figs (func, *args, **kwargs) runs a function after making all open figures current.
```

useful if you need to change the properties of many open figures at once, like turn off the grid.

```
Parameters func: function
function to call
*args, **kwargs: pased to func
```

Examples

```
>>> rf.func_on_all_figs(grid,alpha=.3)
```

3.5 mathFunctions (skrf.mathFunctions)

Provides commonly used mathematical functions.

3.5.1 Complex Component Conversion

$complex_2_reim(z)$	takes:
complex_2_magnitude(input)	returns the magnitude of a complex number.
complex_2_db(input)	returns the magnitude in dB of a complex number.
complex_2_radian(input)	returns the angle complex number in radians.
complex_2_degree(input)	returns the angle complex number in radians.
complex_2_magnitude(input)	returns the magnitude of a complex number.

skrf.mathFunctions.complex_2_reim

```
skrf.mathFunctions.complex_2\_reim(z)
```

takes: input: complex number or array

return: real: real part of input imag: imaginary part of input

note: this just calls 'complex_components'

skrf.mathFunctions.complex_2_magnitude

```
skrf.mathFunctions.complex_2_magnitude(input) returns the magnitude of a complex number.
```

skrf.mathFunctions.complex_2_db

```
\label{eq:skrf.mathFunctions.complex_2_db} \textbf{(input)} \\ \text{returns the magnitude in dB of a complex number.}
```

returns: 20*log10(|**z**|)

where z is a complex number

skrf.mathFunctions.complex_2_radian

```
skrf.mathFunctions.complex_2_radian(input) returns the angle complex number in radians.
```

skrf.mathFunctions.complex_2_degree

skrf.mathFunctions.complex_2_degree(input) returns the angle complex number in radians.

skrf.mathFunctions.complex_2_magnitude

skrf.mathFunctions.complex_2_magnitude(input) returns the magnitude of a complex number.

3.5.2 Phase Unwrapping

unwrap_rad(input)	unwraps a phase given in radians	
sqrt_phase_unwrap(input)	takes the square root of a complex number with unwraped phase	

skrf.mathFunctions.unwrap rad

skrf.mathFunctions.unwrap_rad(input)
 unwraps a phase given in radians
 the normal numpy unwrap is not what you usually want for some reason

skrf.mathFunctions.sqrt phase unwrap

skrf.mathFunctions.sqrt_phase_unwrap(input)
takes the square root of a complex number with unwraped phase
this idea came from Lihan Chen

3.5.3 Unit Conversion

radian_2_degree(rad)	
degree_2_radian(deg)	
np_2_db(x)	converts a value in dB to neper's
db_2_np(x)	converts a value in nepers to dB

skrf.mathFunctions.radian_2_degree

skrf.mathFunctions.radian_2_degree(rad)

skrf.mathFunctions.degree 2 radian

skrf.mathFunctions.degree_2_radian(deg)

skrf.mathFunctions.np_2_db

```
skrf.mathFunctions.np_2_db (x) converts a value in dB to neper's
```

skrf.mathFunctions.db_2_np

```
skrf.mathFunctions.db_2_np(x) converts a value in nepers to dB
```

3.5.4 Scalar-Complex Conversion

These conversions are useful for wrapping other functions that dont support complex numbers.

complex2Scalar(input)
scalar2Complex(input)

skrf.mathFunctions.complex2Scalar

```
skrf.mathFunctions.complex2Scalar(input)
```

skrf.mathFunctions.scalar2Complex

skrf.mathFunctions.scalar2Complex(input)

3.5.5 Special Functions

_dirac_delta(x)	the dirac function.
neuman(x)	neumans number
null(A[, eps])	calculates the null space of matrix A.

skrf.mathFunctions.dirac_delta

```
skrf.mathFunctions.dirac_delta(x) the dirac function.

can take numpy arrays or numbers returns 1 or 0
```

skrf.mathFunctions.neuman

```
skrf.mathFunctions.neuman(x)
neumans number
2-dirac_delta(x)
```

skrf.mathFunctions.null

skrf.mathFunctions.null (A, eps=1e-15) calculates the null space of matrix A. i found this on stack overflow.

3.6 tlineFunctions (skrf.tlineFunctions)

This module provides functions related to transmission line theory.

3.6.1 Impedance and Reflection Coefficient

These functions relate basic tranmission line quantities such as characteristic impedance, input impedance, reflection coefficient, etc. Each function has two names. One is a long-winded but readable name and the other is a short-hand variable-like names. Below is a table relating these two names with each other as well as common mathematical symbols.

Symbol	Variable Name	Long Name
Z_l	z_1	load_impedance
Z_{in}	z_in	input_impedance
Γ_0	Gamma_0	reflection_coefficient
Γ_{in}	Gamma_in	reflection_coefficient_at_theta
θ	theta	electrical_length

There may be a bit of confusion about the difference between the load impedance the input impedance. This is because the load impedance **is** the input impedance at the load. An illustration may provide some useful reference.

Below is a (bad) illustration of a section of uniform transmission line of characteristic impedance Z_0 , and electrical length θ . The line is terminated on the right with some load impedance, Z_l . The input impedance Z_{in} and input reflection coefficient Γ_{in} are looking in towards the load from the distance θ from the load.

$$Z_0, \theta$$
 $0===0=[Z_l]$
 \rightarrow
 Z_{in}, Γ_{in}
 Z_l, Γ_0

So, to clarify the confusion,

$$Z_{in} = Z_l,$$
 $\Gamma_{in} = \Gamma_l \text{ at } \theta = 0$

Short names

theta(gamma, f, d[, deg])	Calculates the electrical length of a section of transmission line.
$z1_2$ _Gamma0($z0$, $z1$)	Returns the reflection coefficient for a given load impedance, and characteristic impedan
Gamma0_2_z1(z0, Gamma)	calculates the input impedance given a reflection coefficient and
$z1_2zin(z0, zl, theta)$	input impedance of load impedance zl at a given electrical length,
$z1_2$ _Gamma_in($z0$, zl , theta)	
Gamma0_2_Gamma_in(Gamma0, theta)	reflection coefficient at a given electrical length.
Gamma0_2_zin(z0, Gamma0, theta)	calculates the input impedance at electrical length theta, given a

skrf.tlineFunctions.theta

skrf.tlineFunctions.theta(gamma, f, d, deg=False)

Calculates the electrical length of a section of transmission line.

$$\theta = \gamma(f) \cdot d$$

Parameters gamma: function

propagation constant function, which takes frequency in hz as a sole argument. see Notes.

1: number or array-like

length of line, in meters

f: number or array-like

frequency at which to calculate

deg: Boolean

return in degrees or not.

Returns theta: number or array-like

electrical length in radians or degrees, depending on value of deg.

See Also:

electrical_length_2_distance opposite conversion

Notes

the convention has been chosen that forward propagation is represented by the positive imaginary part of the value returned by the gamma function

skrf.tlineFunctions.zl_2_Gamma0

skrf.tlineFunctions.zl_2_Gamma0 (z0, zl)

Returns the reflection coefficient for a given load impedance, and characteristic impedance.

For a transmission line of characteristic impedance Z_0 terminated with load impedance Z_l , the complex reflection coefficient is given by,

$$\Gamma = \frac{Z_l - Z_0}{Z_l + Z_0}$$

Parameters z0: number or array-like

characteristic impedance

zl: number or array-like

load impedance (aka input impedance)

Returns gamma: number or array-like

reflection coefficient

See Also:

Gamma 0_2_zl reflection coefficient to load impedance

Notes

inputs are typecasted to 1D complex array

skrf.tlineFunctions.Gamma0_2_zl

skrf.tlineFunctions.**Gamma0_2_zl**(z0, Gamma)

calculates the input impedance given a reflection coefficient and characterisitc impedance

$$Z_0(\frac{1+\Gamma}{1-\Gamma})$$

Parameters Gamma: number or array-like

complex reflection coefficient

z0: number or array-like

characteristic impedance

Returns zin: number or array-like

input impedance

skrf.tlineFunctions.zl 2 zin

skrf.tlineFunctions.zl_2_zin(z0, zl, theta)

input impedance of load impedance zl at a given electrical length, given characteristic impedance z0.

Parameters z0: characteristic impedance.

zl: load impedance

theta: electrical length of the line, (may be complex)

skrf.tlineFunctions.zl_2_Gamma_in

skrf.tlineFunctions.zl_2_Gamma_in(z0, zl, theta)

skrf.tlineFunctions.Gamma0_2_Gamma_in

skrf.tlineFunctions.**Gamma0_2_Gamma_in** (*Gamma0*, *theta*) reflection coefficient at a given electrical length.

$$\Gamma_{in} = \Gamma_0 e^{-2j\theta}$$

Parameters Gamma0: number or array-like

reflection coefficient at theta=0

theta: number or array-like

electrical length, (may be complex)

Returns Gamma_in: number or array-like

input reflection coefficient

skrf.tlineFunctions.Gamma0_2_zin

skrf.tlineFunctions.Gamma0_2_zin(z0, Gamma0, theta)

calculates the input impedance at electrical length theta, given a reflection coefficient and characterisitc impedance of the medium Parameters ———-

z0 - characteristic impedance. Gamma: reflection coefficient theta: electrical length of the line, (may be complex)

returns zin: input impedance at theta

Long-names

distance_2_electrical_length(gamma, f, d[, deg])	Calculates the electrical length of a section of trans
electrical_length_2_distance(theta, gamma, f0)	Convert electrical length to a physical distance.
reflection_coefficient_at_theta(Gamma0, theta)	reflection coefficient at a given electrical length.
reflection_coefficient_2_input_impedance(z0,)	calculates the input impedance given a reflection c
reflection_coefficient_2_input_impedance_at_theta(z0,)	calculates the input impedance at electrical length
input_impedance_at_theta(z0, zl, theta)	input impedance of load impedance zl at a given e
load_impedance_2_reflection_coefficient(z0, zl)	Returns the reflection coefficient for a given load i
load_impedance_2_reflection_coefficient_at_theta(z0,)	

skrf.tlineFunctions.distance_2_electrical_length

skrf.tlineFunctions.distance_2_electrical_length (gamma, f, d, deg=False)
Calculates the electrical length of a section of transmission line.

$$\theta = \gamma(f) \cdot d$$

Parameters gamma: function

propagation constant function, which takes frequency in hz as a sole argument. see Notes.

1: number or array-like

length of line, in meters

f: number or array-like

frequency at which to calculate

deg: Boolean

return in degrees or not.

Returns theta: number or array-like

electrical length in radians or degrees, depending on value of deg.

See Also:

electrical_length_2_distance opposite conversion

Notes

the convention has been chosen that forward propagation is represented by the positive imaginary part of the value returned by the gamma function

skrf.tlineFunctions.electrical length 2 distance

skrf.tlineFunctions.electrical_length_2_distance (theta, gamma, f0, deg=True) Convert electrical length to a physical distance.

$$d = \frac{\theta}{\gamma(f_0)}$$

Parameters theta: number or array-like

electical length. units depend on deg option

gamma: function

propagation constant function, which takes frequency in hz as a sole argument. see Notes

f0: number or array-like

frequency at which to calculate

deg: Boolean

return in degrees or not.

Returns d: physical distance :

See Also:

distance_2_electrical_length opposite conversion

Notes

the convention has been chosen that forward propagation is represented by the positive imaginary part of the value returned by the gamma function

skrf.tlineFunctions.reflection_coefficient_at_theta

skrf.tlineFunctions.reflection_coefficient_at_theta(GammaO, theta) reflection coefficient at a given electrical length.

$$\Gamma_{in} = \Gamma_0 e^{-2j\theta}$$

Parameters Gamma0: number or array-like

reflection coefficient at theta=0

theta: number or array-like

electrical length, (may be complex)

Returns Gamma in: number or array-like

input reflection coefficient

skrf.tlineFunctions.reflection coefficient 2 input impedance

skrf.tlineFunctions.reflection_coefficient_2_input_impedance (z0, Gamma) calculates the input impedance given a reflection coefficient and characterisite impedance

$$Z_0(\frac{1+\Gamma}{1-\Gamma})$$

Parameters Gamma: number or array-like

complex reflection coefficient

z0: number or array-like

characteristic impedance

Returns zin: number or array-like

input impedance

$skrf.tlineFunctions.reflection_coefficient_2_input_impedance_at_theta$

skrf.tlineFunctions.reflection_coefficient_2_input_impedance_at_theta(z0,

Gamma0,

theta)

calculates the input impedance at electrical length theta, given a reflection coefficient and characterisitc impedance of the medium Parameters ————

z0 - characteristic impedance. Gamma: reflection coefficient theta: electrical length of the line, (may be complex)

returns zin: input impedance at theta

skrf.tlineFunctions.input impedance at theta

 ${\tt skrf.tlineFunctions.input_impedance_at_theta} \ ({\it z0, zl, theta})$

input impedance of load impedance zl at a given electrical length, given characteristic impedance z0.

Parameters z0 : characteristic impedance.

zl: load impedance

theta: electrical length of the line, (may be complex)

skrf.tlineFunctions.load impedance 2 reflection coefficient

skrf.tlineFunctions.load_impedance_2_reflection_coefficient (z0, zl)

Returns the reflection coefficient for a given load impedance, and characteristic impedance.

For a transmission line of characteristic impedance Z_0 terminated with load impedance Z_l , the complex reflection coefficient is given by,

$$\Gamma = \frac{Z_l - Z_0}{Z_l + Z_0}$$

Parameters **z0**: number or array-like

characteristic impedance

zl: number or array-like

load impedance (aka input impedance)

Returns gamma: number or array-like

reflection coefficient

See Also:

Gamma 0_2_zl reflection coefficient to load impedance

Notes

inputs are typecasted to 1D complex array

skrf.tlineFunctions.load_impedance_2_reflection_coefficient_at_theta

skrf.tlineFunctions.load_impedance_2_reflection_coefficient_at_theta(z0, zl, theta)

3.6.2 Distributed Circuit and Wave Quantities

distributed_circuit_2_propagation_impedance(...) Converts distrubuted circuit values to wave quantities.
propagation_impedance_2_distributed_circuit(...) Converts wave quantities to distrubuted circuit values.

skrf.tlineFunctions.distributed_circuit_2_propagation_impedance

 ${\tt skrf.tlineFunctions.distributed_circuit_2_propagation_impedance} \ ({\it distributed_admittance}, \\ {\it dis-}$

tributed_impedance)

Converts distrubuted circuit values to wave quantities.

This converts complex distributed impedance and admittance to propagation constant and characteristic

impedance. The relation is

$$Z_0 = \sqrt{\frac{Z'}{Y'}}$$
 $\gamma = \sqrt{Z'Y'}$

Parameters distributed_admittance: number, array-like

distributed admittance

distributed_impedance: number, array-like

distributed impedance

Returns propagation_constant : number, array-like

distributed impedance

characteristic impedance: number, array-like

distributed impedance

See Also:

propagation_impedance_2_distributed_circuit opposite conversion

skrf.tlineFunctions.propagation_impedance_2_distributed_circuit

Converts wave quantities to distrubuted circuit values.

Converts complex propagation constant and characteristic impedance to distributed impedance and admittance. The relation is,

$$Z^{'}=\gamma Z_{0} \qquad Y^{'}=rac{\gamma}{Z_{0}}$$

Parameters propagation_constant : number, array-like

distributed impedance

characteristic_impedance : number, array-like

distributed impedance

Returns distributed_admittance : number, array-like

distributed admittance

distributed_impedance: number, array-like

distributed impedance

See Also:

distributed_circuit_2_propagation_impedance opposite conversion

3.6.3 Transmission Line Physics

skin_depth(f, rho, mu_r)	the skin depth for a material.
<pre>surface_resistivity(f, rho, mu_r)</pre>	surface resistivity.

skrf.tlineFunctions.skin_depth

```
skrf.tlineFunctions.skin_depth (f, rho, mu_r)
the skin depth for a material.

see www.microwaves101.com for more info.

Parameters f: number or array-like
frequency, in Hz

rho: number of array-like
bulk resistivity of material, in ohm*m
mu_r: number or array-like
relative permiability of material

Returns skin depth: number or array-like
```

the skin depth, in m

skrf.tlineFunctions.surface_resistivity

3.7 constants (skrf.constants)

This module contains pre-initialized objects's.

3.7.1 Standard Waveguide Bands

Frequency Objects

These are predefined Frequency objects that correspond to standard waveguide bands. This information is taken from the VDI Application Note 1002^{31} .

Object Name	Description
f_wr10	WR-10, 75-110 GHz
f_wr3	WR-3, 220-325 GHz
f_wr2p2	WR-2.2, 330-500 GHz
f_wr1p5	WR-1.5, 500-750 GHz
f_wr1	WR-1, 750-1100 GHz

RectangularWaveguide Objects

These are predefined RectangularWaveguide objects for standard waveguide bands.

Object Name	Description
wr10	WR-10, 75-110 GHz
wr3	WR-3, 220-325 GHz
wr2p2	WR-2.2, 330-500 GHz
wr1p5	WR-1.5, 500-750 GHz
wr1	WR-1, 750-1100 GHz

3.7.2 Shorthand Names

Below is a list of shorthand object names which can be use to save some typing. These names are defined in the main __init__ module.

Shorthand	Full Object Name
F	Frequency
N	Network
NS	NetworkSet
M	Media
С	Calibration

The following are shorthand names for commonly used, but unfortunately longwinded functions.

Shorthand	Full Object Name
saf	save_all_figs()

3.7.3 References

3.8 util (skrf.util)

Holds utility functions that are general conveniences.

³¹ VDI Application Note: VDI Waveguide Band Designations (VDI-1002) http://vadiodes.com/VDI/pdf/waveguidechart200908.pdf

3.8.1 General

now_string()	returns a unique sortable string, representing the current time
find_nearest(array, value)	find nearest value in array.
find_nearest_index(array, value)	find nearest value in array.
<pre>get_fid(file, *args, **kwargs)</pre>	Returns a file object, given a filename or file object
get_extn(filename)	Get the extension from a filename.

skrf.util.now_string

skrf.util.now_string()

returns a unique sortable string, representing the current time

nice for generating date-time stamps to be used in file-names

skrf.util.find_nearest

skrf.util.find_nearest (array, value)

find nearest value in array.

taken from http://stackoverflow.com/questions/2566412/find-nearest-value-in-numpy-array

Parameters array: numpy.ndarray

array we are searching for a value in

value: element of the array

value to search for

Returns found_value: an element of the array

the value that is numerically closest to value

skrf.util.find_nearest_index

skrf.util.find_nearest_index(array, value)

find nearest value in array.

Parameters array: numpy.ndarray

array we are searching for a value in

value: element of the array

value to search for

Returns found_index : int

the index at which the numerically closest element to value was found at

taken from http://stackoverflow.com/questions/2566412/find-nearest-value-in-numpy-prov

array:

skrf.util.get fid

```
skrf.util.get_fid(file, *args, **kwargs)
```

Returns a file object, given a filename or file object

Useful when you want to allow the arguments of a function to be either files or filenames

Parameters file: str or file-object

file to open

*args, **kwargs: arguments and keyword arguments

passed through to pickle.load

skrf.util.get_extn

```
skrf.util.get_extn(filename)
```

Get the extension from a filename.

The extension is defined as everything passed the last '.'. Returns None if it aint got one

Parameters filename: string

the filename

Returns ext: string, None

either the extension (not including '.') or None if there isnt one

3.9 io (skrf.io)

This Package provides functions and objects for input/output.

The general functions read() and write() can be used to read and write [almost] any skrf object to disk, using the pickle module.

Reading and writing touchstone files is supported through the Touchstone class, which can be more easily used through the Network constructor, __init__()

3.9.1 general (skrf.io.general)

General io functions for reading and writing skrf objects

read(file, *args, **kwargs)	Read skrf object[s] from a pickle file
read_all([dir, contains, f_unit])	Read all skrf objects in a directory
write(file, obj[, overwrite])	Write skrf object[s] to a file
write_all(dict_objs[, dir])	Write a dictionary of skrf objects individual files in <i>dir</i> .
<pre>save_sesh(dict_objs[, file, module,])</pre>	Save all <i>skrf</i> objects in the local namespace.

skrf.io.general.read

```
skrf.io.general.read(file, *args, **kwargs)
```

Read skrf object[s] from a pickle file

Reads a skrf object that is written with write (), which uses the pickle module.

```
Parameters file: str or file-object
                   name of file, or a file-object
               *args, **kwargs: arguments and keyword arguments
                   passed through to pickle.load
     See Also:
     read read a skrf object
     write write skrf object[s]
     read_all read all skrf objects in a directory
     write_all write dictionary of skrf objects to a directory
     Notes
     if file is a file-object it is left open, if it is a file-object is opened and closed. If file is a file-object
     and reading fails, then the position is reset back to 0 using seek if possible.
     Examples
     >>> n = rf.Network(f=[1,2,3],s=[1,1,1],z0=50)
     >>> n.write('my_ntwk.ntwk')
     >>> n_2 = rf.read('my_ntwk.ntwk')
skrf.io.general.read all
skrf.io.general.read all(dir='.', contains=None, f unit=None)
     Read all skrf objects in a directory
     Attempts to load all files in dir, using read(). Any file that is not readable by skrf is skipped. Optionally,
     simple filtering can be achieved through the use of contains argument.
           Parameters dir: str, optional
                   the directory to load from, default '.'
               contains: str, optional
                    if not None, only files containing this substring will be loaded
               f_unit: ['hz','khz','mhz','ghz','thz']
                   for all Network objects, set their frequencies's f_unit
           Returns out: dictionary
                   dictionary containing all loaded skrf objects. keys are the filenames without extensions,
                   and the values are the objects
     See Also:
```

3.9. io (skrf.io) 163

read read a skrf object
write write skrf object[s]

read_all read all skrf objects in a directory

write_all write dictionary of skrf objects to a directory

Examples

```
>>> rf.read_all('skrf/data/')
{'delay_short': 1-Port Network: 'delay_short', 75-110 GHz, 201 pts, z0=[ 50.+0.j],
'line': 2-Port Network: 'line', 75-110 GHz, 201 pts, z0=[ 50.+0.j 50.+0.j],
'ntwk1': 2-Port Network: 'ntwk1', 1-10 GHz, 91 pts, z0=[ 50.+0.j 50.+0.j],
'one_port': one port Calibration: 'one_port', 500-750 GHz, 201 pts, 4-ideals/4-measured,
...
```

skrf.io.general.write

```
skrf.io.general.write(file, obj, overwrite=True)
Write skrf object[s] to a file
```

This uses the pickle module to write skrf objects to a file. Note that you can write any pickl-able python object. For example, you can write a list or dictionary of Network objects or Calibration objects. This will write out a single file. If you would like to write out a seperate file for each object, use write_all().

Parameters file: file or string

File or filename to which the data is saved. If file is a file-object, then the filename is unchanged. If file is a string, an appropriate extension will be appended to the file name if it does not already have an extension.

```
obj : an object, or list/dict of objectsobject or list/dict of objects to write to diskoverwrite : Boolean
```

if file exists, should it be overwritten?

See Also:

```
read read a skrf object
write write skrf object[s]
read_all read all skrf objects in a directory
write_all write dictionary of skrf objects to a directory
skrf.network.Network.write write method of Network
skrf.calibration.calibration.Calibration.write write method of Calibration
```

Notes

If file is a str, but doesn't contain a suffix, one is chosen automatically. Here are the extensions

skrf object	extension
Frequency	'.freq'
Network	'.ntwk'
NetworkSet	'.ns'
Calibration	'.cal'
Media	'.med'
other	ʻ.p'

To make file written by this method cross-platform, the pickling protocol 2 is used. See pickle for more info.

Examples

Convert a touchstone file to a pickled Network,

```
>>> n = rf.Network('my_ntwk.s2p')
>>> rf.write('my_ntwk',n)
>>> n_red = rf.read('my_ntwk.ntwk')
```

Writing a list of different objects

```
>>> n = rf.Network('my_ntwk.s2p')
>>> ns = rf.NetworkSet([n,n,n])
>>> rf.write('out',[n,ns])
>>> n_red = rf.read('out.p')
```

skrf.io.general.write all

```
skrf.io.general.write_all (dict_objs, dir='.', *args, **kwargs)
Write a dictionary of skrf objects individual files in dir.
```

Each object is written to its own file. The filename used for each object is taken from its key in the dictionary. If no extension exists in the key, then one is added. See write() for a list of extensions. If you would like to write the dictionary to a single output file use write().

See Also:

```
read read a skrf object
write write skrf object[s]
read_all read all skrf objects in a directory
write_all write dictionary of skrf objects to a directory
```

Notes

Any object in dict_objs that is pickl-able will be written.

Examples

Writing a diction of different skrf objects

3.9. io (skrf.io) 165

```
>>> from skrf.data import line, short
>>> d = {'ring_slot':ring_slot, 'one_port_cal':one_port_cal}
>>> rf.write_all(d)
```

skrf.io.general.save sesh

```
skrf.io.general.save_sesh (dict_objs, file='skrfSesh.p', module='skrf', exclude_prefix='_')
Save all skrf objects in the local namespace.
```

This is used to save current workspace in a hurry, by passing it the output of locals() (see Examples). Note this can be used for other modules as well by passing a different *module* name.

Parameters dict_objs : dict

dictionary containing skrf objects. See the Example.

file: str or file-object, optional the file to save all objects to

module: str, optional

the module name to grep for.

exclude_prefix: str, optional:

dont save objects which have this as a prefix.

See Also:

```
read read a skrf object
write write skrf object[s]
read_all read all skrf objects in a directory
write_all write dictionary of skrf objects to a directory
```

Examples

Write out all skrf objects in current namespace.

```
>>> rf.write_all(locals(), 'mysesh.p')
```

3.9.2 touchstone (skrf.io.touchstone)

Touchstone class

Touchstone(file) class to read touchstone s-parameter files

skrf.io.touchstone.Touchstone

```
class skrf.io.touchstone.Touchstone (file)
    class to read touchstone s-parameter files
```

The reference for writing this class is the draft of the Touchstone(R) File Format Specification Rev 2.0 32

³² http://www.eda-stds.org/ibis/adhoc/interconnect/touchstone_spec2_draft.pdf

Methods

init	constructor
get_comments	Returns the comments which appear anywhere in the file.
get_format	returns the file format string used for the given format.
get_noise_data	TODO: NIY
get_noise_names	TODO: NIY
get_sparameter_arrays	returns the sparameters as a tuple of arrays, where the first element is
get_sparameter_data	get the data of the sparameter with the given format.
get_sparameter_names	generate a list of column names for the s-parameter data
load_file	Load the touchstone file into the interal data structures

skrf.io.touchstone.Touchstone. init

```
Touchstone.__init__(file)
constructor
```

Parameters file: str or file-object

touchstone file to load

Examples

From filename

```
>>> t = rf.Touchstone('network.s2p')
```

From file-object

```
>>> file = open('network.s2p')
>>> t = rf.Touchstone(file)
```

skrf.io.touchstone.Touchstone.get_comments

```
Touchstone.get_comments(ignored_comments=['Created with skrf'])
```

Returns the comments which appear anywhere in the file. Comment lines containing ignored comments are removed. By default these are comments which contain special meaning withing skrf and are not user comments.

skrf.io.touchstone.Touchstone.get format

```
Touchstone.get_format='ri')
```

returns the file format string used for the given format. This is usefull to get some informations.

$skrf.io.touchstone.Touchstone.get_noise_data$

```
Touchstone.get_noise_data()
     TODO: NIY
```

3.9. io (skrf.io) 167

skrf.io.touchstone.Touchstone.get noise names

```
Touchstone.get_noise_names()
TODO: NIY
```

skrf.io.touchstone.Touchstone.get sparameter arrays

```
Touchstone.get_sparameter_arrays()
```

returns the sparameters as a tuple of arrays, where the first element is the frequency vector (in Hz) and the s-parameters are a 3d numpy array. The values of the sparameters are complex number. usage:

 $f_{,a} = self.sgetparameter_arrays() s11 = a[:,0,0]$

skrf.io.touchstone.Touchstone.get_sparameter_data

```
Touchstone.get_sparameter_data(format='ri')
```

get the data of the sparameter with the given format. supported formats are:

orig: unmodified s-parameter data ri: data in real/imaginary ma: data in magnitude and angle (degree) db: data in log magnitute and angle (degree)

Returns a list of numpy.arrays

skrf.io.touchstone.Touchstone.get_sparameter_names

```
Touchstone.get_sparameter_names (format='ri')
```

generate a list of column names for the s-parameter data The names are different for each format. posible format parameters:

ri, ma, db, orig (where orig refers to one of the three others)

returns a list of strings.

skrf.io.touchstone.Touchstone.load_file

```
\texttt{Touchstone.load\_file}\,(\mathit{fid})
```

Load the touchstone file into the interal data structures

Functions related to reading/writing touchstones.

hfss_touchstone_2_gamma_z0(filename)	Extracts Z0 and Gamma comments from touchstone file
hfss_touchstone_2_media(filename[, f_unit])	Creates a Media object from a a HFSS-style touchstone file with Gamma and

skrf.io.touchstone.hfss_touchstone_2_gamma_z0

```
skrf.io.touchstone.hfss_touchstone_2_gamma_z0(filename)
```

Extracts Z0 and Gamma comments from touchstone file

Takes a HFSS-style touchstone file with Gamma and Z0 comments and extracts a triplet of arrays being: (frequency, Gamma, Z0)

Parameters filename: string

```
the HFSS-style touchstone file
          Returns f : numpy.ndarray
                  frequency vector (in Hz)
              gamma: complex numpy.ndarray
                  complex propagation constant
              z0 : numpy.ndarray
                 complex port impedance
     Examples
     >>> f,gamm,z0 = rf.hfss_touchstone_2_gamma_z0('line.s2p')
skrf.io.touchstone.hfss touchstone 2 media
skrf.io.touchstone.hfss_touchstone_2_media(filename, f_unit='ghz')
     Creates a Media object from a a HFSS-style touchstone file with Gamma and Z0 comments
          Parameters filename: string
                  the HFSS-style touchstone file
              f_unit : ['hz','khz','mhz','ghz']
                  passed to f_unit parameters of Frequency constructor
          Returns my_media: skrf.media.Media object
                  the transmission line model defined by the gamma, and z0 comments in the HFSS file.
     See Also:
     hfss_touchstone_2_gamma_z0 returns gamma, and z0
     Examples
     >>> port1_media, port2_media = rf.hfss_touchstone_2_media('line.s2p')
3.9.3 CSV (skrf.io.csv)
Functions for reading and writing standard csv files
  read_pna_csv(filename, *args, **kwargs)
                                             Reads data from a csv file written by an Agilient PNA
```

```
read_pna_csv(filename, *args, **kwargs)

Reads data from a csv file written by an Agilient PNA

pna_csv_2_ntwks(filename)

Reads a PNAX csv file, and returns a list of one-port Networks

skrf.io.csv.read_pna_csv
```

Parameters filename : str

skrf.io.csv.read_pna_csv (filename, *args, **kwargs)
Reads data from a csv file written by an Agilient PNA

3.9. io (skrf.io) 169

```
the file
              *args, **kwargs::
          Returns header: str
                  The header string, which is the line following the 'BEGIN'
              comments: str
                  All lines that begin with a '!'
              data: numpy.ndarray
                  An array containing the data. The meaning of which depends on the header.
     See Also:
     pna_csv_2_ntwks Reads a csv file which contains s-parameter data
     Examples
     >>> header, comments, data = rf.read_pna_csv('myfile.csv')
skrf.io.csv.pna_csv_2_ntwks
skrf.io.csv.pna_csv_2_ntwks (filename)
     Reads a PNAX csv file, and returns a list of one-port Networks
     Note this only works if csv is save in Real/Imaginary format for now
          Parameters filename: str
                   filename
          Returns out: list of Network objects
                  list of Networks representing the data contained in column pairs
```

3.10 calibration (skrf.calibration)

This Package provides a high-level class representing a calibration instance, as well as calibration algorithms and supporting functions.

Both one and two port calibrations are supported. These calibration algorithms allow for redundant measurements, by using a simple least squares estimator to solve for the embedding network.

3.10.1 Modules

```
calibration (skrf.calibration.calibration)
```

Contains the Calibration class, and supporting functions

Calibration Class

Calibration(measured, ideals[, type, ...]) An object to represent a VNA calibration instance.

skrf.calibration.calibration.Calibration

 $\begin{array}{ll} \textbf{class} \; \texttt{skrf.calibration.calibration.Calibration} \; (\textit{measured}, & \textit{ideals}, & \textit{type=None}, \\ & \textit{is_reciprocal=False}, & \textit{name=None}, \\ & \textit{sloppy_input=False}, \; **kwargs) \end{array}$

An object to represent a VNA calibration instance.

A Calibration object is used to perform a calibration given a set meaurements and ideals responses. It can run a calibration, store results, and apply the results to calculate corrected measurements.

Attributes

Ts	T-matricies used for de-embeding, a two-port calibration.
caled_ntwk_sets	returns a NetworkSet for each caled_ntwk, based on their names
caled_ntwks	list of the calibrated, calibration standards.
calibration_algorithm_dict	
coefs	coefs: a dictionary holding the calibration coefficients
coefs_ntwks	for one port cal's
coefs_ntwks_2p	coefs: a dictionary holding the calibration coefficients
error_ntwk	A Network object which represents the error network being
nports	the number of ports in the calibration
nstandards	number of ideal/measurement pairs in calibration
output_from_cal	a dictionary holding all of the output from the calibration
residual_ntwks	returns a the residuals for each calibration standard in the
residuals	if calibration is overdeteremined, this holds the residuals
type	string representing what type of calibration is to be

skrf.calibration.calibration.Calibration.Ts

Calibration.Ts

T-matricies used for de-embeding, a two-port calibration.

skrf.calibration.calibration.Calibration.caled_ntwk_sets

Calibration.caled_ntwk_sets

returns a NetworkSet for each caled_ntwk, based on their names

skrf.calibration.calibration.Calibration.caled ntwks

Calibration.caled_ntwks

list of the calibrated, calibration standards.

skrf.calibration.calibration.calibration_algorithm_dict

Calibration.calibration_algorithm_dict = {'two port': <function two_port at 0x60f6f50>, 'one port parametric': < dictionary holding calibration algorithms.

skrf.calibration.calibration.Calibration.coefs

Calibration.coefs

coefs: a dictionary holding the calibration coefficients

for one port cal's 'directivity':e00 'reflection tracking':e01e10 'source match':e11 **for 7-error term two port cal's** TODO:

skrf.calibration.calibration.Calibration.coefs_ntwks

Calibration.coefs_ntwks

for one port cal's 'directivity':e00 'reflection tracking':e01e10 'source match':e11

for 7-error term two port cal's TODO

skrf.calibration.calibration.Calibration.coefs ntwks 2p

Calibration.coefs_ntwks_2p

coefs: a dictionary holding the calibration coefficients

for one port cal's 'directivity':e00 'reflection tracking':e01e10 'source match':e11

for 7-error term two port cal's TODO

skrf.calibration.calibration.Calibration.error_ntwk

Calibration.error_ntwk

A Network object which represents the error network being calibrated out.

skrf.calibration.calibration.Calibration.nports

Calibration.nports

the number of ports in the calibration

skrf.calibration.calibration.Calibration.nstandards

Calibration.nstandards

number of ideal/measurement pairs in calibration

skrf.calibration.calibration.Calibration.output_from_cal

Calibration.output_from_cal

a dictionary holding all of the output from the calibration algorithm

skrf.calibration.calibration.residual_ntwks

Calibration.residual_ntwks

returns a the residuals for each calibration standard in the form of a list of Network types.

these residuals are calculated in the 'calibrated domain', meaning they are

r = (E.inv ** m - i)

where, r: residual network, E: embedding network, m: measured network i: ideal network

This way the units of the residual networks are meaningful

note: the residuals are only calculated if they are not existent.

so, if you want to re-calculate the residual networks then you delete the property 'residual ntwks'.

skrf.calibration.calibration.Calibration.residuals

Calibration.residuals

if calibration is overdeteremined, this holds the residuals in the form of a vector.

also available are the complex residuals in the form of skrf.Network's, see the property 'residual_ntwks'

from numpy.lstsq: residues: the sum of the residues; squared euclidean norm for each column vector in b (given ax=b)

skrf.calibration.calibration.Calibration.type

Calibration.type

string representing what type of calibration is to be performed. supported types at the moment are:

'one port': standard one-port cal. if more than 2 measurement/ideal pairs are given it will calculate the least squares solution.

'two port': two port calibration based on the error-box model

note: algorithms referenced by calibration_algorithm_dict, are stored in calibrationAlgorithms.py

Methods

init	Calibration initializer.
apply_cal	apply the current calibration to a measurement.
apply_cal_to_all_in_dir	convience function to apply calibration to an entire directory
biased_error	estimate of biased error for overdetermined calibration with
func_per_standard	
mean_residuals	
plot_caled_ntwks	Plot specified parameters the :caled_ntwks.
plot_coefs	plot magnitude of the error coeficient dictionary
plot_coefs_db	
plot_errors	plot calibration error metrics for an over-determined calibration.
plot_residuals	plots a component of the residual errors on the Calibration-plane.
plot_residuals_db	see plot_residuals
plot_residuals_mag	see plot_residuals
plot_residuals_smith	see plot_residuals
plot_uncertainty_per_standard	Plots uncertainty associated with each calibration standard.
run	runs the calibration algorihtm.
total_error	estimate of total error for overdetermined calibration with
unbiased_error	estimate of unbiased error for overdetermined calibration with
uncertainty_per_standard	given that you have repeat-connections of single standard,
write	Write the Calibration to disk using write()

skrf.calibration.calibration.Calibration.__init__

Calibration.__init__ (measured, ideals, type=None, is_reciprocal=False, name=None, sloppy_input=False, **kwargs)

Calibration initializer.

Parameters measured: list of Network objects

Raw measurements of the calibration standards. The order must align with the *ideals* parameter

ideals: list of Network objects

Predicted ideal response of the calibration standards. The order must align with *ideals* list

Notes

All calibration algorithms are in stored in skrf.calibration.calibrationAlgorithms, refer to that file for documentation on the algorithms themselves. The Calibration class accesses those functions through the attribute 'calibration_algorithm_dict'.

References

Examples

See the *Calibration* tutorial, or the examples sections for *One-Port Calibration* and ../../examples/twoport_calibration

skrf.calibration.calibration.Calibration.apply_cal

Calibration.apply_cal(input_ntwk)

apply the current calibration to a measurement.

takes:

input_ntwk: the measurement to apply the calibration to, a Network type.

returns: caled: the calibrated measurement, a Network type.

skrf.calibration.calibration.Calibration.apply_cal_to_all_in_dir

Calibration.apply_cal_to_all_in_dir(dir='.', contains=None, f_unit='ghz')

convience function to apply calibration to an entire directory of measurements, and return a dictionary of the calibrated results, optionally the user can 'grep' the direction by using the contains switch.

takes: dir: directory of measurements (string) contains: will only load measurements who's filename contains this string.

f_unit: frequency unit, to use for all networks. see frequency. Frequency. unit for info.

returns:

ntwkDict: a dictionary of calibrated measurements, the keys are the filenames.

skrf.calibration.calibration.Calibration.biased_error

```
Calibration.biased_error(std_names=None)
```

estimate of biased error for overdetermined calibration with multiple connections of each standard

takes:

std_names: list of strings to uniquely identify each standard.*

returns:

systematic error: skrf.Network type who's .s_mag is proportional to the systematic error metric

note:

mathematically, this is mean_s(|mean_c(r)|)

where: r: complex residual errors mean_c: complex mean taken accross connection mean_s: complex mean taken accross standard

skrf.calibration.calibration.Calibration.func_per_standard

```
Calibration.func_per_standard(func, attribute='s', std_names=None)
skrf.calibration.calibration.Calibration.mean residuals
Calibration.mean residuals()
skrf.calibration.calibration.Calibration.plot_caled_ntwks
Calibration.plot_caled_ntwks (attr='s_smith', *args, **kwargs)
     Plot specified parameters the :caled_ntwks.
          Parameters attr: str
                   plotable attribute of a Network object. ie 's_db', 's_smith'
               *args, **kwargs::
                  passed to the plotting method
skrf.calibration.calibration.Calibration.plot coefs
Calibration.plot_coefs (attr='s_db', port=None, *args, **kwargs)
     plot magnitude of the error coeficient dictionary
skrf.calibration.calibration.Calibration.plot coefs db
Calibration.plot_coefs_db (*args, **kwargs)
skrf.calibration.calibration.Calibration.plot_errors
Calibration.plot_errors(std_names=None, scale='db', *args, **kwargs)
     plot calibration error metrics for an over-determined calibration.
     see biased_error, unbiased_error, and total_error for more info
skrf.calibration.calibration.Calibration.plot_residuals
Calibration.plot_residuals(attribute, *args, **kwargs)
     plots a component of the residual errors on the Calibration-plane.
     takes:
          attribute: name of ploting method of Network class to call
               possible options are: 'mag', 'db', 'smith', 'deg', etc
          *args, **kwargs: passed to plot s 'atttribute'()
     note: the residuals are calculated by:
          (self.apply_cal(self.measured[k])-self.ideals[k])
skrf.calibration.calibration.Calibration.plot_residuals_db
Calibration.plot_residuals_db (*args, **kwargs)
     see plot_residuals
```

skrf.calibration.calibration.Calibration.plot_residuals_mag

```
Calibration.plot_residuals_mag(*args, **kwargs) see plot_residuals
```

$skrf.calibration.calibration.calibration.plot_residuals_smith$

```
Calibration.plot_residuals_smith(*args, **kwargs) see plot_residuals
```

skrf.calibration.calibration.plot uncertainty per standard

```
Calibration.plot_uncertainty_per_standard(scale='db', *args, **kwargs)
```

Plots uncertainty associated with each calibration standard.

This requires that each calibration standard is measured multiple times. The uncertainty associated with each standard is calculated by the complex standard deviation.

Parameters scale: 'db', 'lin'

plot uncertainties on linear or log scale

*args, **kwargs: passed to uncertainty_per_standard()

See Also:

```
uncertainty_per_standard()
```

skrf.calibration.calibration.Calibration.run

```
Calibration.run()
```

runs the calibration algorihtm.

this is automatically called the first time any dependent property is referenced (like error_ntwk), but only the first time. if you change something and want to re-run the calibration

use this.

skrf.calibration.calibration.Calibration.total error

```
Calibration.total_error(std_names=None)
```

estimate of total error for overdetermined calibration with multiple connections of each standard. This is the combined effects of both biased and un-biased errors

takes:

std_names: list of strings to uniquely identify each standard.*

returns:

composit error: skrf.Network type who's .s_mag is proportional to the composit error metric

note:

```
mathematically, this is std_cs(r)
```

where: r: complex residual errors std_cs: standard deviation taken accross connections and standards

skrf.calibration.calibration.Calibration.unbiased error

Calibration.unbiased_error(std_names=None)

estimate of unbiased error for overdetermined calibration with multiple connections of each standard

takes:

std_names: list of strings to uniquely identify each standard.*

returns:

stochastic error: skrf.Network type who's .s mag is proportional to the stochastic error metric

see also: uncertainty_per_standard, for this a measure of unbiased errors for each standard

note:

mathematically, this is $mean_s(std_c(r))$

where: r: complex residual errors std_c: standard deviation taken accross connections mean_s: complex mean taken accross standards

skrf.calibration.calibration.Calibration.uncertainty per standard

Calibration.uncertainty_per_standard(std_names=None, attribute='s')

given that you have repeat-connections of single standard, this calculates the complex standard deviation (distance) for each standard in the calibration across connection #.

takes:

std_names: list of strings to uniquely identify each standard.*

attribute: string passed to func_on_networks to calculate std deviation on a component if desired. ['s']

returns: list of skrf.Networks, whose magnitude of s-parameters is proportional to the standard deviation for that standard

*example:

if your calibration had ideals named like: 'short 1', 'short 2', 'open 1', 'open 2', etc. you would pass this mycal.uncertainty_per_standard(['short','open','match'])

skrf.calibration.calibration.Calibration.write

```
Calibration.write(file=None, *args, **kwargs)
Write the Calibration to disk using write()
```

```
Parameters file: str or file-object
```

filename or a file-object. If left as None then the filename will be set to Calibration.name, if its not None. If both are None, ValueError is raised.

*args, **kwargs : arguments and keyword arguments

```
passed through to write ()
```

See Also:

skrf.io.general.write,skrf.io.general.read

Notes

If the self.name is not None and file is can left as None and the resultant file will have the .ntwk extension appended to the filename.

Examples

```
>>> cal.name = 'my_cal'
>>> cal.write()
```

calibrationAlgorithms (skrf.calibration.calibrationAlgorithms)

Contains calibrations algorithms and related functions, which are used in the Calibration class.

Calibration Algorithms

one_port(measured, ideals)	Standard algorithm for a one port calibration.	
one_port_nls(measured, ideals)	one port non-linear least squares.	
two_port(measured, ideals[, switch_terms])	Two port calibration based on the 8-term error model.	
parameterized_self_calibration(measured, ideals)	An iterative, general self-calibration routine.	
parameterized_self_calibration_nls(measured,)	An iterative, general self-calibration routine.	

skrf.calibration.calibrationAlgorithms.one_port

skrf.calibration.calibrationAlgorithms.one_port (measured, ideals)
Standard algorithm for a one port calibration.

If more than three standards are supplied then a least square algorithm is applied.

Parameters measured: list of Network objects or numpy.ndarray

a list of the measured reflection coefficients. The elements of the list can either a kxnxn numpy.ndarray, representing a s-matrix, or list of 1-port Network objects.

ideals: list of Network objects or numpy.ndarray

a list of the ideal reflection coefficients. The elements of the list can either a kxnxn numpy.ndarray, representing a s-matrix, or list of 1-port Network objects.

Returns output: a dictionary

output information from the calibration, the keys are

- 'error coeffcients': dictionary containing standard error coefficients
- 'residuals': a matrix of residuals from the least squared calculation. see numpy.linalg.lstsq() for more info

See Also:

one_port_nls for a non-linear least square implementation

Notes

uses numpy.linalg.lstsq() for least squares calculation

skrf.calibration.calibrationAlgorithms.one_port_nls

skrf.calibration.calibrationAlgorithms.one_port_nls(measured, ideals) one port non-linear least squares.

Parameters measured: list of Network objects or numpy.ndarray

a list of the measured reflection coefficients. The elements of the list can either a kxnxn numpy.ndarray, representing a s-matrix, or list of 1-port Network objects.

ideals: list of Network objects or numpy.ndarray

a list of the ideal reflection coefficients. The elements of the list can either a kxnxn numpy.ndarray, representing a s-matrix, or list of 1-port Network objects.

Returns output: a dictionary

a dictionary containing the following keys:

- 'error coeffcients': dictionary containing standard error coefficients
- 'residuals': a matrix of residuals from the least squared calculation. see numpy.linalg.lstsq() for more info
- 'cov_x': covariance matrix

Notes

Uses scipy.optmize.leastsq() for non-linear least squares calculation

$skrf.calibration.calibrationAlgorithms.two_port$

skrf.calibration.calibrationAlgorithms.two_port(measured, ideals, switch terms=None)

Two port calibration based on the 8-term error model.

Takes two ordered lists of measured and ideal responses. Optionally, switch terms ³³ can be taken into account by passing a tuple containing the forward and reverse switch terms as 1-port Networks. This algorithm is based on the work in ³⁴.

Parameters measured: list of 2-port Network objects

Raw measurements of the calibration standards. The order must align with the *ideals* parameter

ideals: list of 2-port Network objects

Predicted ideal response of the calibration standards. The order must align with *ideals* list measured: ordered list of measured networks. list elements

switch terms: tuple of Network objects

The two measured switch terms in the order (forward, reverse). This is only applicable in two-port calibrations. See Roger Mark's paper on switch terms ³ for explanation of what they are.

Returns output: a dictionary

³³ Marks, Roger B.; , "Formulations of the Basic Vector Network Analyzer Error Model including Switch-Terms," ARFTG Conference Digest-Fall, 50th , vol.32, no., pp.115-126, Dec. 1997. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4119948&isnumber=4119931

³⁴ Speciale, R.A.;, "A Generalization of the TSD Network-Analyzer Calibration Procedure, Covering n-Port Scattering-Parameter Measurements, Affected by Leakage Errors," Microwave Theory and Techniques, IEEE Transactions on , vol.25, no.12, pp. 1100-1115, Dec 1977. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1129282&isnumber=25047

output information, contains the following keys: * 'error coefficients': * 'error vector': * 'residuals':

Notes

support for gathering switch terms on HP8510C is in skrf.vi.vna

References

skrf.calibration.calibrationAlgorithms.parameterized_self_calibration

```
skrf.calibration.calibrationAlgorithms.parameterized_self_calibration(measured, ide-als, show-Progress=True, **kwargs)
```

An iterative, general self-calibration routine.

A self calibration routine based off of residual error minimization which can take any mixture of parameterized standards.

Parameters measured: list of Network objects

a list of the measured networks

ideals: list of ParametricStandard objects

a list of the ideal networks

showProgress: Boolean

turn printing progress on/off

**kwargs: key-word arguments

passed to minimization algorithm (scipy.optimize.fmin)

Returns output: a dictionary

a dictionary containing the following keys:

- 'error_coefficients' : dictionary of error coefficients
- 'residuals': residual matrix (shape depends on #stds)
- 'parameter_vector_final': final results for parameter vector
- 'mean_residual_list': the mean, magnitude of the residuals at each iteration of calibration. this is the variable being minimized.

See Also:

parametricStandard sub-module for more info on them

parameterized_self_calibration_nls similar algorithm, but uses a non-linear least-squares estimator

skrf.calibration.calibrationAlgorithms.parameterized self calibration nls

An iterative, general self-calibration routine.

A self calibration routine based off of residual error minimization which can take any mixture of parameterized standards. Uses a non-linear least squares estimator to calculate the residuals.

Parameters measured: list of Network objects

a list of the measured networks

ideals : list of Network objects
 a list of the ideal networks

showProgress: Boolean

turn printing progress on/off

**kwargs : key-word arguments

passed to minimization algorithm (scipy.optimize.fmin)

Returns output: a dictionary

a dictionary containing the following keys:

- 'error_coefficients' : dictionary of error coefficients
- 'residuals': residual matrix (shape depends on #stds)
- 'parameter_vector_final': final results for parameter vector
- 'mean_residual_list': the mean, magnitude of the residuals at each iteration of calibration. this is the variable being minimized.

See Also:

parametricStandard sub-module for more info on them

parameterized_self_calibration_nls similar algorithm, but uses a non-linear least-squares estimator

Supporting Functions

unterminate_switch_terms(two_port, gamma_f,)	unterminates switch terms from raw measurements.
abc_2_coefs_dict(abc)	converts an abc ndarry to a dictionarry containing the error
eight_term_2_one_port_coefs(coefs)	

$skrf. calibration. calibration Algorithms. unterminate_switch_terms$

```
{\tt skrf.calibration.calibrationAlgorithms.unterminate\_switch\_terms~({\it two\_port}, gamma\_f, gamma\_r)}
```

unterminates switch terms from raw measurements.

takes: two_port: the raw measurement, a 2-port Network type. gamma_f: the measured forward switch term, a

1-port Network type gamma_r: the measured reverse switch term, a 1-port Network type

returns: un-terminated measurement, a 2-port Network type

see: 'Formulations of the Basic Vector Network Analyzer Error Model including Switch Terms' by Roger B. Marks

skrf.calibration.calibrationAlgorithms.abc_2_coefs_dict

skrf.calibration.calibrationAlgorithms.abc_2_coefs_dict (abc) converts an abc ndarry to a dictionarry containing the error coefficients.

takes:

abc [Nx3 numpy.ndarray, which holds the complex calibration]

coefficients. the components of abc are a[:] = abc[:,0] b[:] = abc[:,1] c[:] = abc[:,2],

a, b and c are related to the error network by a = det(e) = e01*e10 - e00*e11 b = e00 c = e11

returns:

coefsDict: dictionary containing the following 'directivity':e00 'reflection tracking':e01e10 'source match':e11

note: e00 = directivity error e10e01 = reflection tracking error e11 = source match error

skrf.calibration.calibrationAlgorithms.eight_term_2_one_port_coefs

skrf.calibration.calibrationAlgorithms.eight_term_2_one_port_coefs (coefs)

calibrationFunctions (skrf.calibration.calibrationFunctions)

Functions which operate on or pertain to Calibration Objects

cartesian_product_calibration_set(ideals, ...) This function is used for calculating calibration uncertainty due to un-b

skrf.calibration.calibrationFunctions.cartesian_product_calibration_set

```
skrf.calibration.calibrationFunctions.cartesian_product_calibration_set(ideals, measured, *args, **kwargs)
```

This function is used for calculating calibration uncertainty due to un-biased, non-systematic errors.

It creates an ensemble of calibration instances. the set of measurement lists used in the ensemble is the Cartesian Product of all instances of each measured standard.

The idea is that if you have multiple measurements of each standard, then the multiple calibrations can be made by generating all possible combinations of measurements. This produces a conceptually simple, but computationally expensive way to estimate calibration uncertainty.

takes: ideals: list of ideal Networks measured: list of measured Networks *args, **kwargs: passed to Calibration initializer

returns: cal_ensemble: a list of Calibration instances.

you can use the output to estimate uncertainty by calibrating a DUT with all calibrations, and then running statistics on the resultant set of Networks. for example

import skrf as rf # define you lists of ideals and measured networks cal_ensemble = rf.cartesian_product_calibration_ensemble(ideals, measured) dut = rf.Network('dut.s1p') network_ensemble = [cal.apply_cal(dut) for cal in cal_ensemble] rf.plot_uncertainty_mag(network_ensemble) [network.plot_s_smith() for network in network_ensemble]

3.10.2 Classes

Calibration(measured, ideals[, type, ...]) An object to represent a VNA calibration instance.

skrf.calibration.calibration.Calibration

 $\begin{array}{ll} \textbf{class} \; \texttt{skrf.calibration.calibration.Calibration} \; (\textit{measured}, & \textit{ideals}, & \textit{type=None}, \\ & \textit{is_reciprocal=False}, & \textit{name=None}, \\ & \textit{sloppy_input=False}, \; **kwargs) \end{array}$

An object to represent a VNA calibration instance.

A Calibration object is used to perform a calibration given a set meaurements and ideals responses. It can run a calibration, store results, and apply the results to calculate corrected measurements.

Attributes

Ts	T-matricies used for de-embeding, a two-port calibration.	
caled_ntwk_sets	returns a NetworkSet for each caled_ntwk, based on their names	
caled_ntwks	list of the calibrated, calibration standards.	
calibration_algorithm_dict		
coefs	coefs: a dictionary holding the calibration coefficients	
coefs_ntwks	for one port cal's	
coefs_ntwks_2p	coefs: a dictionary holding the calibration coefficients	
error_ntwk	A Network object which represents the error network being	
nports	the number of ports in the calibration	
nstandards	number of ideal/measurement pairs in calibration	
output_from_cal	a dictionary holding all of the output from the calibration	
residual_ntwks	returns a the residuals for each calibration standard in the	
residuals	if calibration is overdeteremined, this holds the residuals	
string representing what type of calibration is to be		

skrf.calibration.calibration.Calibration.Ts

Calibration.Ts

T-matricies used for de-embeding, a two-port calibration.

skrf.calibration.calibration.Calibration.caled_ntwk_sets

Calibration.caled_ntwk_sets

returns a NetworkSet for each caled_ntwk, based on their names

skrf.calibration.calibration.Calibration.caled_ntwks

Calibration.caled_ntwks

list of the calibrated, calibration standards.

skrf.calibration.calibration.Calibration.calibration algorithm dict

Calibration.calibration_algorithm_dict = {'two port': <function two_port at 0x60f6f50>, 'one port parametric': < dictionary holding calibration algorithms.

skrf.calibration.calibration.Calibration.coefs

Calibration.coefs

coefs: a dictionary holding the calibration coefficients

for one port cal's 'directivity':e00 'reflection tracking':e01e10 'source match':e11

for 7-error term two port cal's TODO:

skrf.calibration.calibration.Calibration.coefs ntwks

Calibration.coefs_ntwks

for one port cal's 'directivity':e00 'reflection tracking':e01e10 'source match':e11

for 7-error term two port cal's TODO

skrf.calibration.calibration.Calibration.coefs_ntwks_2p

Calibration.coefs_ntwks_2p

coefs: a dictionary holding the calibration coefficients

for one port cal's 'directivity':e00 'reflection tracking':e01e10 'source match':e11

for 7-error term two port cal's TODO

skrf.calibration.calibration.Calibration.error_ntwk

Calibration.error_ntwk

A Network object which represents the error network being calibrated out.

skrf.calibration.calibration.Calibration.nports

Calibration.nports

the number of ports in the calibration

skrf.calibration.calibration.Calibration.nstandards

Calibration.nstandards

number of ideal/measurement pairs in calibration

skrf.calibration.calibration.Calibration.output_from_cal

Calibration.output_from_cal

a dictionary holding all of the output from the calibration algorithm

skrf.calibration.calibration.Calibration.residual_ntwks

Calibration.residual ntwks

returns a the residuals for each calibration standard in the form of a list of Network types.

these residuals are calculated in the 'calibrated domain', meaning they are

$$r = (E.inv ** m - i)$$

where, r: residual network, E: embedding network, m: measured network i: ideal network

This way the units of the residual networks are meaningful

note: the residuals are only calculated if they are not existent.

so, if you want to re-calculate the residual networks then you delete the property '_residual_ntwks'.

skrf.calibration.calibration.Calibration.residuals

Calibration.residuals

if calibration is overdeteremined, this holds the residuals in the form of a vector.

also available are the complex residuals in the form of skrf.Network's, see the property 'residual_ntwks'

from numpy.lstsq: residues: the sum of the residues; squared euclidean norm for each column vector in b (given ax=b)

skrf.calibration.calibration.Calibration.type

Calibration.type

string representing what type of calibration is to be performed, supported types at the moment are:

'one port': standard one-port cal. if more than 2 measurement/ideal pairs are given it will calculate the least squares solution.

'two port': two port calibration based on the error-box model

note: algorithms referenced by calibration_algorithm_dict, are stored in calibrationAlgorithms.py

Methods

init	Calibration initializer.	
apply_cal	apply the current calibration to a measurement.	
apply_cal_to_all_in_dir	convience function to apply calibration to an entire directory	
biased_error	estimate of biased error for overdetermined calibration with	
func_per_standard		
mean_residuals		
	Continued on next page	

Table 3.41 – continued from pre	evious	page
---------------------------------	--------	------

plot_caled_ntwks	Plot specified parameters the :caled_ntwks.
plot_coefs	plot magnitude of the error coeficient dictionary
plot_coefs_db	
plot_errors	plot calibration error metrics for an over-determined calibration.
plot_residuals	plots a component of the residual errors on the Calibration-plane.
plot_residuals_db	see plot_residuals
plot_residuals_mag	see plot_residuals
plot_residuals_smith	see plot_residuals
plot_uncertainty_per_standard	Plots uncertainty associated with each calibration standard.
run	runs the calibration algorihtm.
total_error	estimate of total error for overdetermined calibration with
unbiased_error	estimate of unbiased error for overdetermined calibration with
uncertainty_per_standard	given that you have repeat-connections of single standard,
write	Write the Calibration to disk using write()

skrf.calibration.calibration.Calibration. init

Calibration.__init__(measured, ideals, type=None, is_reciprocal=False, name=None, sloppy_input=False, **kwargs)

Calibration initializer.

Parameters measured: list of Network objects

Raw measurements of the calibration standards. The order must align with the *ideals* parameter

ideals: list of Network objects

Predicted ideal response of the calibration standards. The order must align with *ideals* list

Notes

All calibration algorithms are in stored in skrf.calibration.calibrationAlgorithms, refer to that file for documentation on the algorithms themselves. The Calibration class accesses those functions through the attribute 'calibration_algorithm_dict'.

References

Examples

See the Calibration tutorial, or the examples sections for One-Port Calibration and $../../examples/twoport_calibration$

skrf.calibration.calibration.Calibration.apply_cal

Calibration.apply_cal(input_ntwk) apply the current calibration to a measurement.

takes:

input_ntwk: the measurement to apply the calibration to, a Network type.

returns: caled: the calibrated measurement, a Network type.

```
skrf.calibration.calibration.Calibration.apply cal to all in dir
Calibration.apply_cal_to_all_in_dir(dir='.', contains=None, f_unit='ghz')
     convience function to apply calibration to an entire directory of measurements, and return a dictionary of the
     calibrated results, optionally the user can 'grep' the direction by using the contains switch.
     takes: dir: directory of measurements (string) contains: will only load measurements who's filename contains
               this string.
           f unit: frequency unit, to use for all networks. see frequency. Frequency unit for info.
     returns:
           ntwkDict: a dictionary of calibrated measurements, the keys are the filenames.
skrf.calibration.calibration.Calibration.biased error
Calibration.biased_error(std_names=None)
     estimate of biased error for overdetermined calibration with multiple connections of each standard
     takes:
           std names: list of strings to uniquely identify each standard.*
     returns:
           systematic error: skrf.Network type who's .s_mag is proportional to the systematic error metric
     note:
           mathematically, this is mean_s(|mean_c(r)|)
           where: r: complex residual errors mean_c: complex mean taken accross connection mean_s: complex
               mean taken accross standard
skrf.calibration.calibration.Calibration.func per standard
Calibration.func per standard(func, attribute='s', std names=None)
skrf.calibration.calibration.Calibration.mean_residuals
Calibration.mean_residuals()
skrf.calibration.calibration.Calibration.plot caled ntwks
Calibration.plot_caled_ntwks(attr='s_smith', *args, **kwargs)
     Plot specified parameters the :caled_ntwks.
           Parameters attr: str
```

plotable attribute of a Network object. ie 's_db', 's_smith'

*args, **kwargs::

```
passed to the plotting method
```

```
skrf.calibration.calibration.Calibration.plot_coefs
Calibration.plot_coefs (attr='s_db', port=None, *args, **kwargs)
     plot magnitude of the error coeficient dictionary
skrf.calibration.calibration.Calibration.plot_coefs_db
Calibration.plot_coefs_db (*args, **kwargs)
skrf.calibration.calibration.Calibration.plot_errors
Calibration.plot_errors (std_names=None, scale='db', *args, **kwargs)
     plot calibration error metrics for an over-determined calibration.
     see biased_error, unbiased_error, and total_error for more info
skrf.calibration.calibration.Calibration.plot_residuals
Calibration.plot_residuals(attribute, *args, **kwargs)
     plots a component of the residual errors on the Calibration-plane.
     takes:
          attribute: name of ploting method of Network class to call
               possible options are: 'mag', 'db', 'smith', 'deg', etc
          *args, **kwargs: passed to plot_s_ 'atttribute'()
     note: the residuals are calculated by:
          (self.apply_cal(self.measured[k])-self.ideals[k])
skrf.calibration.calibration.Calibration.plot_residuals_db
Calibration.plot_residuals_db(*args, **kwargs)
     see plot residuals
skrf.calibration.calibration.Calibration.plot_residuals_mag
Calibration.plot_residuals_mag(*args, **kwargs)
     see plot_residuals
skrf.calibration.calibration.Calibration.plot_residuals_smith
Calibration.plot_residuals_smith(*args, **kwargs)
     see plot_residuals
```

skrf.calibration.calibration.Calibration.plot uncertainty per standard

```
Calibration.plot_uncertainty_per_standard(scale='db', *args, **kwargs)
```

Plots uncertainty associated with each calibration standard.

This requires that each calibration standard is measured multiple times. The uncertainty associated with each standard is calculated by the complex standard deviation.

Parameters scale: 'db', 'lin'

plot uncertainties on linear or log scale

*args, **kwargs: passed to uncertainty_per_standard()

See Also:

uncertainty_per_standard()

skrf.calibration.calibration.Calibration.run

```
Calibration.run()
```

runs the calibration algorihtm.

this is automatically called the first time any dependent property is referenced (like error_ntwk), but only the first time. if you change something and want to re-run the calibration

use this.

skrf.calibration.calibration.Calibration.total error

```
Calibration.total_error(std_names=None)
```

estimate of total error for overdetermined calibration with multiple connections of each standard. This is the combined effects of both biased and un-biased errors

takes:

std names: list of strings to uniquely identify each standard.*

returns:

composit error: skrf.Network type who's .s_mag is proportional to the composit error metric

note:

mathematically, this is std_cs(r)

where: r: complex residual errors std_cs: standard deviation taken accross connections and standards

skrf.calibration.calibration.Calibration.unbiased_error

```
Calibration.unbiased_error(std_names=None)
```

estimate of unbiased error for overdetermined calibration with multiple connections of each standard

takes:

std_names: list of strings to uniquely identify each standard.*

returns:

stochastic error: skrf.Network type who's .s_mag is proportional to the stochastic error metric

see also: uncertainty_per_standard, for this a measure of unbiased errors for each standard

note:

```
mathematically, this is mean_s(std_c(r))
```

where: r: complex residual errors std_c: standard deviation taken accross connections mean_s: complex mean taken accross standards

skrf.calibration.calibration.Calibration.uncertainty_per_standard

```
Calibration.uncertainty_per_standard(std_names=None, attribute='s')
```

given that you have repeat-connections of single standard, this calculates the complex standard deviation (distance) for each standard in the calibration across connection #.

takes:

```
std_names: list of strings to uniquely identify each standard.*
```

attribute: string passed to func_on_networks to calculate std deviation on a component if desired. ['s']

returns: list of skrf.Networks, whose magnitude of s-parameters is proportional to the standard deviation for that standard

*example:

```
if your calibration had ideals named like: 'short 1', 'short 2', 'open 1', 'open 2', etc. you would pass this mycal.uncertainty_per_standard(['short','open','match'])
```

skrf.calibration.calibration.Calibration.write

```
Calibration.write (file=None, *args, **kwargs)
Write the Calibration to disk using write()
```

Parameters file: str or file-object

filename or a file-object. If left as None then the filename will be set to Calibration.name, if its not None. If both are None, ValueError is raised.

```
*args, **kwargs: arguments and keyword arguments
```

```
passed through to write ()
```

See Also:

```
skrf.io.general.write, skrf.io.general.read
```

Notes

If the self.name is not None and file is can left as None and the resultant file will have the .ntwk extension appended to the filename.

Examples

```
>>> cal.name = 'my_cal'
>>> cal.write()
```

3.11 media (skrf.media)

This package provides objects representing transmission line mediums.

The Media object is the base-class that is inherited by specific transmission line instances, such as Freespace, or RectangularWaveguide. The Media object provides generic methods to produce Network's for any transmission line medium, such as line () and delay_short (). These methods are inherited by the specific transmission line classes, which interally define relevant quantities such as propagation constant, and characteristic impedance. This allows the specific transmission line mediums to produce networks without re-implementing methods for each specific media instance.

Network components specific to an given transmission line medium such as <code>cpw_short()</code> and <code>microstrip_bend()</code>, are implemented in those object

3.11.1 Media base-class

Media The base-class for all transmission line mediums.

skrf.media.media.Media

class skrf.media.media.Media (frequency, propagation_constant, characteristic_impedance, z0=None)

The base-class for all transmission line mediums.

The Media object provides generic methods to produce Network's for any transmision line medium, such as line() and delay_short().

The initializer for this class has flexible argument types. This allows for the important attributes of the Media object to be dynamic. For example, if a Media object's propagation constant is a function of some attribute of that object, say *conductor_width*, then the propagation constant will change when that attribute changes. See __init__() for details.

The network creation methods build off of each other. For example, the specicial load cases, suc as <code>short()</code> and <code>open()</code> call <code>load()</code> with given arguments for Gamma0, and the <code>delay_</code> and <code>shunt_</code> functions call <code>line()</code> and <code>shunt()</code> respectively. This minimizes re-implementation.

Most methods initialize the Network by calling match () to create a 'blank' Network, and then fill in the s-matrix.

Attributes

characteristic_impedance	Characterisitc impedance
propagation_constant	Propagation constant
z 0	Port Impedance

skrf.media.media.Media.characteristic impedance

Media.characteristic_impedance

Characterisitc impedance

The characteristic_impedance can be either a number, array-like, or a function. If it is a function is must take no arguments. The reason to make it a function is if you want the characteristic impedance to be dynamic, meaning changing with some attribute of the media. See __init__() for more explanation.

Returns characteristic_impedance: numpy.ndarray

skrf.media.media.Media.propagation_constant

Media.propagation_constant

Propagation constant

The propagation constant can be either a number, array-like, or a function. If it is a function is must take no arguments. The reason to make it a function is if you want the propagation constant to be dynamic, meaning changing with some attribute of the media. See __init__() for more explanation.

Returns propagation_constant: numpy.ndarray

complex propagation constant for this media

Notes

propagation_constant must adhere to the following convention,

- positive real(propagation_constant) = attenuation
- positive imag(propagation_constant) = forward propagation

skrf.media.media.Media.z0

Media.z0

Port Impedance

The port impedance is usually equal to the characteristic_impedance. Therefore, if the port impedance is *None* then this will return characteristic_impedance.

However, in some cases such as rectangular waveguide, the port impedance is traditionally set to 1 (normalized). In such a case this property may be used.

The Port Impedance can be either a number, array-like, or a function. If it is a function is must take no arguments. The reason to make it a function is if you want the Port Impedance to be dynamic, meaning changing with some attribute of the media. See ___init___() for more explanation.

Returns port_impedance: numpy.ndarray

the media's port impedance

Methods

init	The Media initializer.	
		Continued on next page

Table 3.44 – continued from previous page

capacitor	Capacitor
delay_load	Delayed load
delay_open	Delayed open transmission line
delay_short	Delayed Short
electrical_length	calculates the electrical length for a given distance, at
from_csv	create a Media from numerical values stored in a csv file.
<pre>guess_length_of_delay_short</pre>	Guess physical length of a delay short.
impedance_mismatch	Two-port network for an impedance miss-match
inductor	Inductor
line	Matched transmission line of given length
load	Load of given reflection coefficient.
match	Perfect matched load ($\Gamma_0 = 0$).
open	Open ($\Gamma_0 = 1$)
resistor	Resistor
short	Short ($\Gamma_0 = -1$)
shunt	Shunts a Network
shunt_capacitor	Shunted capacitor
shunt_delay_load	Shunted delayed load
shunt_delay_open	Shunted delayed open
shunt_delay_short	Shunted delayed short
shunt_inductor	Shunted inductor
splitter	Ideal, lossless n-way splitter.
tee	Ideal, lossless tee.
theta_2_d	Converts electrical length to physical distance.
thru	Matched transmission line of length 0.
white_gaussian_polar	Complex zero-mean gaussian white-noise network.
write_csv	write this media's frequency, z0, and gamma to a csv file.

skrf.media.media.Media.__init__

Media.__init__ (frequency, propagation_constant, characteristic_impedance, z0=None)
The Media initializer.

This initializer has flexible argument types. The parameters *propagation_constant*, *characterisitc_impedance* and *z0* can all be either static or dynamic. This is achieved by allowing those arguments to be either:

- •functions which take no arguments or
- •values (numbers or arrays)

In the case where the media's propagation constant may change after initialization, because you adjusted a parameter of the media, then passing the propagation_constant as a function allows it to change when the media's parameters do.

Parameters frequency: Frequency object

frequency band of this transmission line medium

propagation_constant : number, array-like, or a function

propagation constant for the medium.

characteristic_impedance: number,array-like, or a function

characteristic impedance of transmission line medium.

z0: number, array-like, or a function

the port impedance for media, IF its different from the characterisitc impedance of the transmission line medium (None) [a number]. if z0= None then will set to characterisitc_impedance

See Also:

from_csv() function to create a Media object from a csv file containing gamma/z0

Notes

propagation_constant must adhere to the following convention,

- positive real(gamma) = attenuation
- positive imag(gamma) = forward propagation

the z0 parameter is needed in some cases. For example, the RectangularWaveguide is an example where you may need this, because the characteristic impedance is frequency dependent, but the touchstone's created by most VNA's have z0=1

skrf.media.media.Media.capacitor

```
Media.capacitor (C, **kwargs)
Capacitor

Parameters C: number, array

Capacitance, in Farads. If this is an array, must be of same length as frequency vector.

**kwargs: key word arguments

passed to match(), which is called initially to create a 'blank' network.

Returns capacitor: a 2-port Network

See Also:

match function called to create a 'blank' network
```

skrf.media.media.Media.delay load

```
Media.delay_load (Gamma0, d, unit='m', **kwargs)
Delayed load

A load with reflection coefficient Gamma0 at the end of a matched line of length d.

Parameters Gamma0: number, array-like

reflection coefficient of load (not in dB)

d: number

the length of transmissin line (see unit argument)

unit: ['m','deg','rad']

the units of d. possible options are:
```

• *m* : meters, physical length in meters (default)

```
• deg :degrees, electrical length in degrees
                      • rad :radians, electrical length in radians
               **kwargs : key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns delay_load : Network object
                   a delayed load
     See Also:
     line creates the network for line
     load creates the network for the load
     Notes
     This calls
     line(d,unit, **kwargs) ** load(Gamma0, **kwargs)
     Examples
     >>> my_media.delay_load(-.5, 90, 'deg', z0=50)
skrf.media.media.Media.delay open
Media.delay_open (d, unit='m', **kwargs)
     Delayed open transmission line
           Parameters d: number
                   the length of transmissin line (see unit argument)
               unit : ['m','deg','rad']
                   the units of d. possible options are:
                      • m : meters, physical length in meters (default)
                      • deg :degrees, electrical length in degrees
                      • rad :radians, electrical length in radians
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns delay_open: Network object
                   a delayed open
     See Also:
     delay_load delay_short just calls this function
```

```
skrf.media.media.Media.delay_short
Media.delay_short (d, unit='m', **kwargs)
     Delayed Short
     A transmission line of given length terminated with a short.
           Parameters d: number
                   the length of transmissin line (see unit argument)
               unit : ['m','deg','rad']
                   the units of d. possible options are:
                      • m : meters, physical length in meters (default)
                      • deg :degrees, electrical length in degrees
                      • rad :radians, electrical length in radians
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns delay_short: Network object
                   a delayed short
     See Also:
     delay_load delay_short just calls this function
skrf.media.media.Media.electrical_length
Media.electrical_length(d, deg=False)
     calculates the electrical length for a given distance, at the center frequency.
           Parameters d: number or array-like :
                   delay distance, in meters
               deg: Boolean:
                   return electral length in deg?
           Returns theta: number or array-like:
                   electrical length in radians or degrees, depending on value of deg.
skrf.media.media.Media.from csv
classmethod Media.from csv(filename, *args, **kwargs)
     create a Media from numerical values stored in a csv file.
     the csv file format must be written by the function write_csv() which produces the following format
           f[$unit], Re(Z0), Im(Z0), Re(gamma), Im(gamma), Re(port Z0), Im(port Z0) 1, 1, 1, 1, 1, 1, 1, 2, 1,
           1, 1, 1, 1, 1 .....
```

```
skrf.media.media.Media.guess length of delay short
Media.guess_length_of_delay_short(aNtwk)
     Guess physical length of a delay short.
     Unwraps the phase and determines the slope, which is then used in conjunction with
     propagation_constant to estimate the physical distance to the short.
          Parameters aNtwk: Network object
                  (note: if this is a measurment it needs to be normalized to the reference plane)
skrf.media.media.Media.impedance_mismatch
Media.impedance_mismatch(z1, z2, **kwargs)
     Two-port network for an impedance miss-match
          Parameters z1: number, or array-like
                  complex impedance of port 1
              z2: number, or array-like
                  complex impedance of port 2
              **kwargs: key word arguments
                  passed to match (), which is called initially to create a 'blank' network.
          Returns missmatch: Network object
                  a 2-port network representing the impedance missmatch
     See Also:
     match called to create a 'blank' network
     Notes
     If z1 and z2 are arrays, they must be of same length as the Media.frequency.npoints
skrf.media.media.Media.inductor
Media.inductor(L, **kwargs)
     Inductor
          Parameters L : number, array
                  Inductance, in Henrys. If this is an array, must be of same length as frequency vector.
              **kwargs: key word arguments
                  passed to match (), which is called initially to create a 'blank' network.
          Returns inductor: a 2-port Network
```

3.11. media (skrf.media)

match function called to create a 'blank' network

See Also:

skrf.media.media.Media.line

```
Media.line(d, unit='m', **kwargs)
     Matched transmission line of given length
     The units of length are interpreted according to the value of unit.
           Parameters d: number
                   the length of transmissin line (see unit argument)
               unit : ['m','deg','rad']
                   the units of d. possible options are:
                      • m : meters, physical length in meters (default)
                      • deg :degrees, electrical length in degrees
                      • rad :radians, electrical length in radians
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns line: Network object
                   matched tranmission line of given length
     Examples
     >>> my_media.line(90, 'deg', z0=50)
skrf.media.media.Media.load
Media.load(Gamma0, nports=1, **kwargs)
     Load of given reflection coefficient.
           Parameters Gamma0: number, array-like
                   Reflection coefficient of load (linear, not in db). If its an array it must be of shape:
                   kxnxn, where k is #frequency points in media, and n is nports
               nports: int
                   number of ports
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns load :class: '~skrf.network.Network' object :
                   n-port load, where S = Gamma0*eye(...)
skrf.media.media.Media.match
Media.match (nports=1, z0=None, **kwargs)
     Perfect matched load (\Gamma_0 = 0).
```

Parameters nports: int

```
number of ports
               z0: number, or array-like
                   characterisitc impedance. Default is None, in which case the Media's z0 is used. This
                   sets the resultant Network's z0.
               **kwargs: key word arguments
                   passed to Network initializer
           Returns match: Network object
                   a n-port match
     Examples
     >>> my_match = my_media.match(2,z0 = 50, name='Super Awesome Match')
skrf.media.media.Media.open
Media.open (nports=1, **kwargs)
     Open (\Gamma_0 = 1)
           Parameters nports: int
                   number of ports
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns match: Network object
                   a n-port open circuit
     See Also:
     match function called to create a 'blank' network
skrf.media.media.Media.resistor
Media.resistor(R, *args, **kwargs)
     Resistor
           Parameters R: number, array
                   Resistance, in Ohms. If this is an array, must be of same length as frequency vector.
               *args, **kwargs: arguments, key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns resistor: a 2-port Network
     See Also:
     match function called to create a 'blank' network
```

skrf.media.media.Media.short

```
Media.short(nports=1, **kwargs)
     Short (\Gamma_0 = -1)
           Parameters nports: int
                  number of ports
               **kwargs : key word arguments
                  passed to match (), which is called initially to create a 'blank' network.
           Returns match: Network object
                  a n-port short circuit
     See Also:
     match function called to create a 'blank' network
skrf.media.media.Media.shunt
Media.shunt (ntwk, **kwargs)
     Shunts a Network
     This creates a tee () and connects connects ntwk to port 1, and returns the result
           Parameters ntwk: Network object
               **kwargs: keyword arguments
                  passed to tee()
           Returns shunted_ntwk: Network object
                   a shunted a ntwk. The resultant shunted_ntwk will have (2 + ntwk.number_of_ports -1)
                  ports.
skrf.media.media.Media.shunt_capacitor
Media.shunt_capacitor(C, *args, **kwargs)
     Shunted capacitor
           Parameters C: number, array-like
                   Capacitance in Farads.
               *args,**kwargs: arguments, keyword arguments
                   passed to func: delay_open
           Returns shunt_capacitor: Network object
                   shunted capcitor(2-port)
```

Notes This calls: shunt(capacitor(C,*args, **kwargs)) skrf.media.media.Media.shunt_delay_load Media.shunt_delay_load(*args, **kwargs) Shunted delayed load Parameters *args,**kwargs: arguments, keyword arguments passed to func: delay_load Returns shunt_delay_load : Network object a shunted delayed load (2-port) **Notes** This calls: shunt(delay_load(*args, **kwargs)) skrf.media.media.Media.shunt delay open Media.shunt_delay_open(*args, **kwargs) Shunted delayed open Parameters *args,**kwargs: arguments, keyword arguments passed to func: delay_open Returns shunt_delay_open: Network object shunted delayed open (2-port) **Notes** This calls: shunt(delay_open(*args, **kwargs)) skrf.media.media.Media.shunt_delay_short Media.shunt_delay_short(*args, **kwargs) Shunted delayed short **Parameters** *args,**kwargs: arguments, keyword arguments

passed to func:delay_open

Returns shunt_delay_load : Network object
shunted delayed open (2-port)

```
Notes
     This calls:
     shunt(delay_short(*args, **kwargs))
skrf.media.media.Media.shunt_inductor
Media.shunt_inductor(L, *args, **kwargs)
     Shunted inductor
           Parameters L : number, array-like
                   Inductance in Farads.
               *args,**kwargs: arguments, keyword arguments
                   passed to func: delay_open
           Returns shunt_inductor: Network object
                   shunted inductor(2-port)
     Notes
     This calls:
     shunt(inductor(C, *args, **kwargs))
skrf.media.media.Media.splitter
Media.splitter(nports, **kwargs)
     Ideal, lossless n-way splitter.
           Parameters nports: int
                   number of ports
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns tee: Network object
                  a n-port splitter
     See Also:
     match called to create a 'blank' network
skrf.media.media.Media.tee
Media.tee(**kwargs)
     Ideal, lossless tee. (3-port splitter)
           Parameters **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
```

```
Returns tee: Network object
                   a 3-port splitter
     See Also:
     splitter this just calls splitter(3)
     match called to create a 'blank' network
skrf.media.media.Media.theta 2 d
Media.theta_2_d(theta, deg=True)
     Converts electrical length to physical distance.
     The given electrical length is to be at the center frequency.
           Parameters theta: number
                   electrical length, at band center (see deg for unit)
               deg: Boolean
                   is theta in degrees?
           Returns d: number
                   physical distance in meters
skrf.media.media.Media.thru
Media.thru(**kwargs)
     Matched transmission line of length 0.
           Parameters **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns thru: Network object
                   matched tranmission line of 0 length
     See Also:
     line this just calls line(0)
skrf.media.media.Media.white gaussian polar
Media.white_gaussian_polar(phase_dev, mag_dev, n_ports=1, **kwargs)
     Complex zero-mean gaussian white-noise network.
     Creates a network whose s-matrix is complex zero-mean gaussian white-noise, of given standard deviations for
     phase and magnitude components. This 'noise' network can be added to networks to simulate additive noise.
           Parameters phase_mag: number
                   standard deviation of magnitude
               phase dev: number
                   standard deviation of phase
```

n_ports: int

number of ports.

**kwargs: passed to Network

initializer

Returns result: Network object

a noise network

skrf.media.media.Media.write_csv

Media.write_csv (filename='f, gamma, z0.csv')

write this media's frequency, z0, and gamma to a csv file.

Parameters filename: string

file name to write out data to

See Also:

from_csv class method to initialize Media object from a csv file written from this function

3.11.2 Transmission Line Classes

DistributedCircuit	Generic, distributed circuit TEM transmission line
RectangularWaveguide	Rectangular Waveguide medium.
CPW	Coplanar waveguide class
Freespace	Represents a plane-wave in a homogeneous freespace, defined by the space's relative permativity and

skrf.media.distributedCircuit.DistributedCircuit

class skrf.media.distributedCircuit.DistributedCircuit (frequency, C, I, R, G, *args, **kwargs)

Generic, distributed circuit TEM transmission line

A TEM transmission line, defined in terms of distributed impedance and admittance values. A Distributed Circuit may be defined in terms of the following attributes,

Quantity	Symbol	Property
Distributed Capacitance	$C^{'}$	С
Distributed Inductance	$I^{'}$	I
Distributed Resistance	$R^{'}$	R
Distributed Conductance	$G^{'}$	G

From these, the following quantities may be calculated, which are functions of angular frequency (ω):

Quantity	Symbol	Property
Distributed Impedance	$Z' = R' + j\omega I'$	Z
Distributed Admittance	$Y^{'} = G^{'} + j\omega C^{'}$	Y

From these we can calculate properties which define their wave behavior:

Quantity	Symbol	Method
Characteristic Impedance	$Z_0 = \sqrt{\frac{Z'}{Y'}}$	Z0()
Propagation Constant	$\gamma = \sqrt{Z'Y'}$	gamma()

Given the following definitions, the components of propagation constant are interpreted as follows:

$$+\Re e\{\gamma\} = {\rm attenuation}$$

$$-\Im m\{\gamma\} = {\rm forward\ propagation}$$

Attributes

Y	Distributed Admittance, $Y^{'}$
Z	Distributed Impedance, $Z^{'}$
characteristic_impedance	Characterisitc impedance
propagation_constant	Propagation constant
z O	Port Impedance

skrf.media.distributedCircuit.DistributedCircuit.Y

Defined as

$$Y^{'} = G^{'} + j\omega C^{'}$$

Returns Y : numpy.ndarray

Distributed Admittance in units of S/m

skrf.media.distributedCircuit.DistributedCircuit.Z

DistributedCircuit.Z

Distributed Impedance, Z'

Defined as

$$Z^{'} = R^{'} + j\omega I^{'}$$

Returns Z : numpy.ndarray

Distributed impedance in units of ohm/m

$skrf.media.distributed Circuit. Distributed Circuit. characteristic_impedance$

DistributedCircuit.characteristic_impedance

Characterisitc impedance

The characteristic_impedance can be either a number, array-like, or a function. If it is a function is must take no arguments. The reason to make it a function is if you want the characteristic impedance to be dynamic, meaning changing with some attribute of the media. See __init__() for more explanation.

Returns characteristic_impedance: numpy.ndarray

$skrf. media. distributed Circuit. Distributed Circuit. propagation_constant$

DistributedCircuit.propagation_constant

Propagation constant

The propagation constant can be either a number, array-like, or a function. If it is a function is must take no arguments. The reason to make it a function is if you want the propagation constant to be dynamic, meaning changing with some attribute of the media. See __init__() for more explanation.

Returns propagation_constant: numpy.ndarray

complex propagation constant for this media

Notes

propagation_constant must adhere to the following convention,

- positive real(propagation_constant) = attenuation
- positive imag(propagation_constant) = forward propagation

skrf.media.distributedCircuit.DistributedCircuit.z0

DistributedCircuit.z0

Port Impedance

The port impedance is usually equal to the characteristic_impedance. Therefore, if the port impedance is *None* then this will return characteristic_impedance.

However, in some cases such as rectangular waveguide, the port impedance is traditionally set to 1 (normalized). In such a case this property may be used.

The Port Impedance can be either a number, array-like, or a function. If it is a function is must take no arguments. The reason to make it a function is if you want the Port Impedance to be dynamic, meaning changing with some attribute of the media. See __init__() for more explanation.

Returns port_impedance: numpy.ndarray

the media's port impedance

Methods

7.0	Characteristic Impedance, $Z0$
init	Distributed Circuit constructor.
capacitor	Capacitor
delay_load	Delayed load
delay_open	Delayed open transmission line
delay_short	Delayed Short
electrical_length	calculates the electrical length for a given distance, at
from_Media	Initializes a DistributedCircuit from an existing
from_csv	create a Media from numerical values stored in a csv file.
	Continued on next page

Table 3.47 – continued from previous page

gamma	Propagation Constant, γ
guess_length_of_delay_short	Guess physical length of a delay short.
impedance_mismatch	Two-port network for an impedance miss-match
inductor	Inductor
line	Matched transmission line of given length
load	Load of given reflection coefficient.
match	Perfect matched load ($\Gamma_0 = 0$).
open	Open ($\Gamma_0 = 1$)
resistor	Resistor
short	Short ($\Gamma_0 = -1$)
shunt	Shunts a Network
shunt_capacitor	Shunted capacitor
shunt_delay_load	Shunted delayed load
shunt_delay_open	Shunted delayed open
shunt_delay_short	Shunted delayed short
shunt_inductor	Shunted inductor
splitter	Ideal, lossless n-way splitter.
tee	Ideal, lossless tee.
theta_2_d	Converts electrical length to physical distance.
thru	Matched transmission line of length 0.
white_gaussian_polar	Complex zero-mean gaussian white-noise network.
write_csv	write this media's frequency, z0, and gamma to a csv file.

skrf.media.distributedCircuit.DistributedCircuit.Z0

DistributedCircuit. ${f 20}$ () Characteristic Impedance, ${\it Z0}$

 $Z_0 = \sqrt{\frac{Z'}{Y'}}$

Returns Z0: numpy.ndarray

Characteristic Impedance in units of ohms

skrf.media.distributedCircuit.DistributedCircuit.__init__

DistributedCircuit.__init__ (frequency, C, I, R, G, *args, **kwargs)

Distributed Circuit constructor.

Parameters frequency: Frequency object

C: number, or array-like

distributed capacitance, in F/m

I: number, or array-like

distributed inductance, in H/m

R: number, or array-like

distributed resistance, in Ohm/m

G: number, or array-like

distributed conductance, in S/m

```
Notes
     C,I,R,G can all be vectors as long as they are the same length
     This object can be constructed from a Media instance too, see the classmethod from_Media()
skrf.media.distributedCircuit.DistributedCircuit.capacitor
DistributedCircuit.capacitor(C, **kwargs)
     Capacitor
           Parameters C: number, array
                   Capacitance, in Farads. If this is an array, must be of same length as frequency vector.
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns capacitor: a 2-port Network
     See Also:
     match function called to create a 'blank' network
skrf.media.distributedCircuit.DistributedCircuit.delay_load
DistributedCircuit.delay_load(Gamma0, d, unit='m', **kwargs)
     Delayed load
     A load with reflection coefficient Gamma0 at the end of a matched line of length d.
           Parameters Gamma0: number, array-like
                   reflection coefficient of load (not in dB)
               d: number
                   the length of transmissin line (see unit argument)
               unit : ['m','deg','rad']
                   the units of d. possible options are:
                      • m: meters, physical length in meters (default)
                      • deg :degrees, electrical length in degrees
                      • rad :radians, electrical length in radians
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns delay_load : Network object
                   a delayed load
     See Also:
```

```
line creates the network for line
     load creates the network for the load
     Notes
     This calls
     line(d,unit, **kwargs) ** load(Gamma0, **kwargs)
     Examples
     >>> my_media.delay_load(-.5, 90, 'deg', z0=50)
skrf.media.distributedCircuit.DistributedCircuit.delay_open
DistributedCircuit.delay_open(d, unit='m', **kwargs)
     Delayed open transmission line
           Parameters d: number
                   the length of transmissin line (see unit argument)
               unit : ['m','deg','rad']
                   the units of d. possible options are:
                     • m : meters, physical length in meters (default)
                     • deg :degrees, electrical length in degrees
                     • rad :radians, electrical length in radians
               **kwargs : key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns delay_open: Network object
                   a delayed open
     See Also:
     delay_load delay_short just calls this function
skrf.media.distributedCircuit.DistributedCircuit.delay_short
DistributedCircuit.delay_short (d, unit='m', **kwargs)
     Delayed Short
     A transmission line of given length terminated with a short.
           Parameters d: number
                   the length of transmissin line (see unit argument)
               unit : ['m','deg','rad']
                   the units of d. possible options are:
```

```
• m: meters, physical length in meters (default)
                      • deg :degrees, electrical length in degrees
                      • rad :radians, electrical length in radians
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns delay short: Network object
                   a delayed short
     See Also:
     delay_load delay_short just calls this function
skrf.media.distributedCircuit.DistributedCircuit.electrical_length
DistributedCircuit.electrical length(d, deg=False)
     calculates the electrical length for a given distance, at the center frequency.
           Parameters d: number or array-like :
                   delay distance, in meters
               deg: Boolean:
                   return electral length in deg?
           Returns theta: number or array-like:
                   electrical length in radians or degrees, depending on value of deg.
skrf.media.distributedCircuit.DistributedCircuit.from Media
classmethod DistributedCircuit.from_Media (my_media, *args, **kwargs)
     Initializes a DistributedCircuit from an existing :class:'~skrf.media.media.Media' instance.
skrf.media.distributedCircuit.DistributedCircuit.from_csv
classmethod DistributedCircuit.from csv(filename, *args, **kwargs)
     create a Media from numerical values stored in a csv file.
     the csv file format must be written by the function write_csv() which produces the following format
           f[$unit], Re(Z0), Im(Z0), Re(gamma), Im(gamma), Re(port Z0), Im(port Z0) 1, 1, 1, 1, 1, 1, 1, 2, 1,
           1, 1, 1, 1, 1 .....
skrf.media.distributedCircuit.DistributedCircuit.gamma
DistributedCircuit.gamma()
     Propagation Constant, \gamma
```

Defined as,

$$\gamma = \sqrt{Z'Y'}$$

Returns gamma: numpy.ndarray

Propagation Constant,

Notes

The components of propagation constant are interpreted as follows:

positive real(gamma) = attenuation positive imag(gamma) = forward propagation

skrf.media.distributedCircuit.DistributedCircuit.guess length of delay short

DistributedCircuit.guess_length_of_delay_short (aNtwk)

Guess physical length of a delay short.

Unwraps the phase and determines the slope, which is then used in conjunction with propagation_constant to estimate the physical distance to the short.

Parameters aNtwk: Network object

(note: if this is a measurment it needs to be normalized to the reference plane)

skrf.media.distributedCircuit.DistributedCircuit.impedance_mismatch

DistributedCircuit.impedance_mismatch(z1, z2, **kwargs)

Two-port network for an impedance miss-match

Parameters z1: number, or array-like

complex impedance of port 1

z2: number, or array-like

complex impedance of port 2

**kwargs: key word arguments

passed to match (), which is called initially to create a 'blank' network.

Returns missmatch: Network object

a 2-port network representing the impedance missmatch

See Also:

match called to create a 'blank' network

Notes

If z1 and z2 are arrays, they must be of same length as the Media.frequency.npoints

skrf.media.distributedCircuit.DistributedCircuit.inductor

```
DistributedCircuit.inductor(L, **kwargs)
     Inductor
           Parameters L: number, array
                   Inductance, in Henrys. If this is an array, must be of same length as frequency vector.
               **kwargs : key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns inductor: a 2-port Network
     See Also:
     match function called to create a 'blank' network
skrf.media.distributedCircuit.DistributedCircuit.line
```

```
DistributedCircuit.line(d, unit='m', **kwargs)
     Matched transmission line of given length
```

The units of *length* are interpreted according to the value of *unit*.

Parameters d: number

the length of transmissin line (see unit argument)

unit : ['m','deg','rad']

the units of d. possible options are:

- *m* : meters, physical length in meters (default)
- deg :degrees, electrical length in degrees
- rad :radians, electrical length in radians

**kwargs : key word arguments

passed to match (), which is called initially to create a 'blank' network.

Returns line: Network object

matched tranmission line of given length

Examples

```
>>> my_media.line(90, 'deg', z0=50)
```

skrf.media.distributedCircuit.DistributedCircuit.load

```
DistributedCircuit.load(Gamma0, nports=1, **kwargs)
     Load of given reflection coefficient.
```

Parameters Gamma0: number, array-like

Reflection coefficient of load (linear, not in db). If its an array it must be of shape: kxnxn, where k is #frequency points in media, and n is nports

```
nports: int
                   number of ports
               **kwargs : key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns load :class: '~skrf.network.Network' object :
                   n-port load, where S = Gamma0*eye(...)
skrf.media.distributedCircuit.DistributedCircuit.match
DistributedCircuit.match(nports=1, z0=None, **kwargs)
     Perfect matched load (\Gamma_0 = 0).
           Parameters nports: int
                   number of ports
               z0: number, or array-like
                   characterisite impedance. Default is None, in which case the Media's z0 is used. This
                   sets the resultant Network's z0.
               **kwargs: key word arguments
                   passed to Network initializer
           Returns match: Network object
                   a n-port match
     Examples
     >>> my_match = my_media.match(2,z0 = 50, name='Super Awesome Match')
skrf.media. distributed Circuit. Distributed Circuit. open \\
DistributedCircuit.open(nports=1, **kwargs)
     Open (\Gamma_0 = 1)
           Parameters nports: int
                   number of ports
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns match: Network object
                   a n-port open circuit
     See Also:
     match function called to create a 'blank' network
```

skrf.media.distributedCircuit.DistributedCircuit.resistor

```
DistributedCircuit.resistor(R, *args, **kwargs)
          Parameters R: number, array
                   Resistance, in Ohms. If this is an array, must be of same length as frequency vector.
               *args, **kwargs: arguments, key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
          Returns resistor: a 2-port Network
     See Also:
     match function called to create a 'blank' network
skrf.media.distributedCircuit.DistributedCircuit.short
DistributedCircuit.short(nports=1, **kwargs)
     Short (\Gamma_0 = -1)
          Parameters nports: int
                  number of ports
               **kwargs: key word arguments
                  passed to match (), which is called initially to create a 'blank' network.
          Returns match: Network object
                   a n-port short circuit
     See Also:
     match function called to create a 'blank' network
skrf.media.distributedCircuit.DistributedCircuit.shunt
DistributedCircuit.shunt(ntwk, **kwargs)
     Shunts a Network
     This creates a tee () and connects connects ntwk to port 1, and returns the result
          Parameters ntwk: Network object
               **kwargs: keyword arguments
                  passed to tee()
          Returns shunted_ntwk: Network object
                   a shunted a ntwk. The resultant shunted_ntwk will have (2 + ntwk.number_of_ports -1)
                   ports.
```

$skrf.media. distributed Circuit. Distributed Circuit. shunt_capacitor$

```
DistributedCircuit.shunt_capacitor(C, *args, **kwargs)
     Shunted capacitor
          Parameters C: number, array-like
                  Capacitance in Farads.
              *args,**kwargs: arguments, keyword arguments
                  passed to func: delay_open
          Returns shunt_capacitor: Network object
                  shunted capcitor(2-port)
     Notes
     This calls:
     shunt(capacitor(C, *args, **kwargs))
skrf.media.distributedCircuit.DistributedCircuit.shunt_delay_load
DistributedCircuit.shunt_delay_load(*args, **kwargs)
     Shunted delayed load
          Parameters *args, **kwargs : arguments, keyword arguments
                 passed to func: delay load
          Returns shunt_delay_load : Network object
                  a shunted delayed load (2-port)
     Notes
     This calls:
     shunt(delay_load(*args, **kwargs))
skrf.media.distributedCircuit.DistributedCircuit.shunt delay open
DistributedCircuit.shunt_delay_open(*args, **kwargs)
     Shunted delayed open
          Parameters *args,**kwargs: arguments, keyword arguments
                  passed to func: delay_open
          Returns shunt_delay_open: Network object
                 shunted delayed open (2-port)
```

```
Notes
     This calls:
     shunt(delay_open(*args, **kwargs))
skrf.media.distributedCircuit.DistributedCircuit.shunt_delay_short
DistributedCircuit.shunt_delay_short(*args, **kwargs)
     Shunted delayed short
          Parameters *args,**kwargs: arguments, keyword arguments
                  passed to func: delay_open
          Returns shunt_delay_load : Network object
                  shunted delayed open (2-port)
     Notes
     This calls:
     shunt(delay_short(*args, **kwargs))
skrf.media.distributedCircuit.DistributedCircuit.shunt_inductor
DistributedCircuit.shunt_inductor(L, *args, **kwargs)
     Shunted inductor
          Parameters L: number, array-like
                  Inductance in Farads.
              *args,**kwargs: arguments, keyword arguments
                  passed to func: delay_open
          Returns shunt_inductor: Network object
                  shunted inductor(2-port)
     Notes
     This calls:
     shunt(inductor(C, *args, **kwargs))
skrf.media.distributedCircuit.DistributedCircuit.splitter
DistributedCircuit.splitter(nports, **kwargs)
     Ideal, lossless n-way splitter.
          Parameters nports: int
```

```
number of ports
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns tee: Network object
                   a n-port splitter
     See Also:
     match called to create a 'blank' network
skrf.media.distributedCircuit.DistributedCircuit.tee
DistributedCircuit.tee(**kwargs)
     Ideal, lossless tee. (3-port splitter)
           Parameters **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns tee: Network object
                   a 3-port splitter
     See Also:
     splitter this just calls splitter(3)
     match called to create a 'blank' network
skrf.media.distributedCircuit.DistributedCircuit.theta 2 d
DistributedCircuit.theta_2_d(theta, deg=True)
     Converts electrical length to physical distance.
     The given electrical length is to be at the center frequency.
           Parameters theta: number
                   electrical length, at band center (see deg for unit)
               deg: Boolean
                   is theta in degrees?
           Returns d: number
                   physical distance in meters
skrf.media.distributedCircuit.DistributedCircuit.thru
DistributedCircuit.thru(**kwargs)
     Matched transmission line of length 0.
           Parameters **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns thru: Network object
```

matched transission line of 0 length

See Also:

```
line this just calls line(0)
```

skrf.media.distributedCircuit.DistributedCircuit.white gaussian polar

```
DistributedCircuit.white_gaussian_polar (phase_dev, mag_dev, n_ports=1, **kwargs)
Complex zero-mean gaussian white-noise network.
```

Creates a network whose s-matrix is complex zero-mean gaussian white-noise, of given standard deviations for phase and magnitude components. This 'noise' network can be added to networks to simulate additive noise.

```
Parameters phase_mag: number
    standard deviation of magnitude
    phase_dev: number
    standard deviation of phase
    n_ports: int
    number of ports.

**kwargs: passed to Network
    initializer

Returns result: Network object
```

skrf.media.distributedCircuit.DistributedCircuit.write csv

a noise network

```
DistributedCircuit.write_csv (filename='f, gamma, z0.csv') write this media's frequency, z0, and gamma to a csv file.
```

Parameters filename: string

file name to write out data to

See Also:

from_csv class method to initialize Media object from a csv file written from this function

skrf.media.rectangularWaveguide.RectangularWaveguide

```
class skrf.media.rectangularWaveguide.RectangularWaveguide (frequency, a, b=None, mode\_type='te', m=1, n=0, ep\_r=1, mu\_r=1, *args, **kwargs)
```

Rectangular Waveguide medium.

Represents a single mode of a homogeneously filled rectangular waveguide of cross-section $a \times b$. The mode is determined by mode-type (te or tm) and mode indecies (m and n).

Quantity	Symbol	Variable
Characteristic Wave Number	k_0	k0
Cut-off Wave Number	k_c	kc
Longitudinal Wave Number	k_z	kz
Transverse Wave Number (a)	k_x	kx
Transverse Wave Number (b)	k_y	ky
Characteristic Impedance	Z_0	Z0

Attributes

characteristic_impedance	Characterisitc impedance
ер	The permativity of the filling material
k0	Characteristic wave number
kc	Cut-off wave number
kx	Eigen value in the 'a' direction
ky	Eigen-value in the <i>b</i> direction.
mu	The permeability of the filling material
propagation_constant	Propagation constant
z0	Port Impedance

skrf.media.rectangularWaveguide.RectangularWaveguide.characteristic_impedance

RectangularWaveguide.characteristic_impedance

Characterisitc impedance

The characteristic_impedance can be either a number, array-like, or a function. If it is a function is must take no arguments. The reason to make it a function is if you want the characteristic impedance to be dynamic, meaning changing with some attribute of the media. See __init__() for more explanation.

Returns characteristic_impedance: numpy.ndarray

skrf.media.rectangularWaveguide.RectangularWaveguide.ep

RectangularWaveguide.ep

The permativity of the filling material

Returns ep: number

filling material's relative permativity

skrf.media.rectangularWaveguide.RectangularWaveguide.k0

RectangularWaveguide.k0

Characteristic wave number

Returns k0: number

characteristic wave number

skrf.media.rectangularWaveguide.RectangularWaveguide.kc

RectangularWaveguide.kc

Cut-off wave number

Defined as

$$k_c = \sqrt{k_x^2 + k_y^2} = \sqrt{m\frac{\pi^2}{a} + n\frac{\pi^2}{b}}$$

Returns kc: number

cut-off wavenumber

skrf.media.rectangularWaveguide.RectangularWaveguide.kx

RectangularWaveguide.kx

Eigen value in the 'a' direction

Defined as

$$k_x = m\frac{\pi}{a}$$

Returns kx: number

eigen-value in a direction

skrf.media.rectangularWaveguide.RectangularWaveguide.ky

RectangularWaveguide.ky

Eigen-value in the *b* direction.

Defined as

$$k_y = n \frac{\pi}{b}$$

Returns ky: number

eigen-value in b direction

skrf.media.rectangularWaveguide.RectangularWaveguide.mu

RectangularWaveguide.mu

The permeability of the filling material

Returns mu: number

filling material's relative permeability

skrf.media.rectangularWaveguide.RectangularWaveguide.propagation_constant

RectangularWaveguide.propagation_constant

Propagation constant

The propagation constant can be either a number, array-like, or a function. If it is a function is must take no arguments. The reason to make it a function is if you want the propagation constant to be dynamic, meaning changing with some attribute of the media. See __init__() for more explanation.

Returns propagation_constant: numpy.ndarray

complex propagation constant for this media

Notes

propagation_constant must adhere to the following convention,

- positive real(propagation_constant) = attenuation
- positive imag(propagation_constant) = forward propagation

skrf.media.rectangularWaveguide.RectangularWaveguide.z0

RectangularWaveguide.z0

Port Impedance

The port impedance is usually equal to the characteristic_impedance. Therefore, if the port impedance is *None* then this will return characteristic_impedance.

However, in some cases such as rectangular waveguide, the port impedance is traditionally set to 1 (normalized). In such a case this property may be used.

The Port Impedance can be either a number, array-like, or a function. If it is a function is must take no arguments. The reason to make it a function is if you want the Port Impedance to be dynamic, meaning changing with some attribute of the media. See __init__() for more explanation.

Returns port_impedance: numpy.ndarray

the media's port impedance

Methods

Σ0	The characteristic impedance
init	RectangularWaveguide initializer
capacitor	Capacitor
delay_load	Delayed load
delay_open	Delayed open transmission line
delay_short	Delayed Short
electrical_length	calculates the electrical length for a given distance, at
from_csv	create a Media from numerical values stored in a csv file.
guess_length_of_delay_short	Guess physical length of a delay short.
impedance_mismatch	Two-port network for an impedance miss-match
inductor	Inductor
kz	The Longitudinal wave number, aka propagation constant.
line	Matched transmission line of given length
load	Load of given reflection coefficient.
match	Perfect matched load ($\Gamma_0 = 0$).
open	Open ($\Gamma_0 = 1$)
resistor	Resistor
short	Short $(\Gamma_0 = -1)$
shunt	Shunts a Network
shunt_capacitor	Shunted capacitor
	Continued on next page

Table 3.49 – c	continued from	previous	page
----------------	----------------	----------	------

	A A C
shunt_delay_load	Shunted delayed load
shunt_delay_open	Shunted delayed open
shunt_delay_short	Shunted delayed short
shunt_inductor	Shunted inductor
splitter	Ideal, lossless n-way splitter.
tee	Ideal, lossless tee.
theta_2_d	Converts electrical length to physical distance.
thru	Matched transmission line of length 0.
white_gaussian_polar	Complex zero-mean gaussian white-noise network.
write_csv	write this media's frequency, z0, and gamma to a csv file.

skrf.media.rectangularWaveguide.RectangularWaveguide.Z0

```
RectangularWaveguide.20()
The characteristic impedance
```

skrf.media.rectangularWaveguide.RectangularWaveguide.__init__

```
RectangularWaveguide.__init__(frequency, a, b=None, mode_type='te', m=1, n=0, ep_r=1, mu_r=1, **args, ***kwargs)
```

Rectangular Waveguide initializer

Parameters frequency: class:~skrf.frequency.Frequency object

frequency band for this media

a: number

width of waveguide, in meters.

b: number

height of waveguide, in meters. If None defaults to a/2

mode type: ['te','tm']

mode type, transverse electric (te) or transverse magnetic (tm) to-z. where z is direction of propagation

m: int

mode index in 'a'-direction

n: int

mode index in 'b'-direction

ep_r: number, array-like,

filling material's relative permativity

mu_r: number, array-like

filling material's relative permeability

*args,**kwargs: arguments, keywrod arguments

passed to Media's constructor (__init___()

Examples

Most common usage is standard aspect ratio (2:1) dominant mode, TE10 mode of wr10 waveguide can be constructed by

```
>>> freq = rf.Frequency(75,110,101,'ghz')
>>> rf.RectangularWaveguide(freq, 100*mil)
```

skrf.media.rectangularWaveguide.RectangularWaveguide.capacitor

```
RectangularWaveguide.capacitor(C, **kwargs)
Capacitor

Parameters C: number, array

Capacitance, in Farads. If this is an array, must be of same length as frequency vector.

**kwargs: key word arguments

passed to match(), which is called initially to create a 'blank' network.

Returns capacitor: a 2-port Network

See Also:
```

skrf.media.rectangularWaveguide.RectangularWaveguide.delay load

match function called to create a 'blank' network

```
RectangularWaveguide.delay_load(Gamma0, d, unit='m', **kwargs)
Delayed load
```

A load with reflection coefficient *Gamma0* at the end of a matched line of length d.

```
Parameters Gamma0: number, array-like
reflection coefficient of load (not in dB)
d: number
the length of transmissin line (see unit argument)
unit: ['m','deg','rad']
the units of d. possible options are:
```

- *m* : meters, physical length in meters (default)
- deg :degrees, electrical length in degrees
- rad :radians, electrical length in radians

```
**kwargs: key word arguments

passed to match(), which is called initially to create a 'blank' network.

turns delay lead: Notwork object
```

Returns delay_load : Network object

a delayed load

See Also:

```
line creates the network for line
     load creates the network for the load
     Notes
     This calls
     line(d,unit, **kwargs) ** load(Gamma0, **kwargs)
     Examples
     >>> my_media.delay_load(-.5, 90, 'deg', z0=50)
skrf.media.rectangularWaveguide.RectangularWaveguide.delay_open
RectangularWaveguide.delay_open(d, unit='m', **kwargs)
     Delayed open transmission line
          Parameters d: number
                  the length of transmissin line (see unit argument)
               unit : ['m','deg','rad']
                  the units of d. possible options are:
                     • m : meters, physical length in meters (default)
                     • deg :degrees, electrical length in degrees
                     • rad :radians, electrical length in radians
               **kwargs : key word arguments
                  passed to match (), which is called initially to create a 'blank' network.
          Returns delay_open: Network object
                  a delayed open
     See Also:
     delay_load delay_short just calls this function
skrf.media.rectangularWaveguide.RectangularWaveguide.delay_short
RectangularWaveguide.delay_short(d, unit='m', **kwargs)
     Delayed Short
     A transmission line of given length terminated with a short.
          Parameters d: number
                  the length of transmissin line (see unit argument)
               unit : ['m','deg','rad']
                  the units of d. possible options are:
```

```
• m: meters, physical length in meters (default)
```

• deg :degrees, electrical length in degrees

• rad :radians, electrical length in radians

**kwargs: key word arguments

passed to match (), which is called initially to create a 'blank' network.

Returns delay short: Network object

a delayed short

See Also:

delay_load delay_short just calls this function

skrf.media.rectangularWaveguide.RectangularWaveguide.electrical_length

RectangularWaveguide.electrical_length (d, deg=False) calculates the electrical length for a given distance, at the center frequency.

Parameters d: number or array-like :

delay distance, in meters

deg: Boolean:

return electral length in deg?

Returns theta: number or array-like:

electrical length in radians or degrees, depending on value of deg.

$skrf.media.rectangular Waveguide. Rectangular Waveguide. from _csv$

```
classmethod RectangularWaveguide.from_csv(filename, *args, **kwargs)
    create a Media from numerical values stored in a csv file.
```

the csv file format must be written by the function write_csv() which produces the following format

f[\$unit], Re(Z0), Im(Z0), Re(gamma), Im(gamma), Re(port Z0), Im(port Z0) 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1

skrf.media.rectangularWaveguide.RectangularWaveguide.guess_length_of_delay_short

```
RectangularWaveguide.guess_length_of_delay_short (aNtwk) Guess physical length of a delay short.
```

Unwraps the phase and determines the slope, which is then used in conjunction with propagation_constant to estimate the physical distance to the short.

Parameters aNtwk: Network object

(note: if this is a measurment it needs to be normalized to the reference plane)

skrf.media.rectangularWaveguide.RectangularWaveguide.impedance_mismatch

RectangularWaveguide.impedance_mismatch(z1, z2, **kwargs)

Two-port network for an impedance miss-match

Parameters z1: number, or array-like

complex impedance of port 1

z2: number, or array-like

complex impedance of port 2

**kwargs: key word arguments

passed to match (), which is called initially to create a 'blank' network.

Returns missmatch: Network object

a 2-port network representing the impedance missmatch

See Also:

match called to create a 'blank' network

Notes

If z1 and z2 are arrays, they must be of same length as the Media.frequency.npoints

skrf.media.rectangularWaveguide.RectangularWaveguide.inductor

RectangularWaveguide.inductor(L, **kwargs)

Inductor

Parameters L: number, array

Inductance, in Henrys. If this is an array, must be of same length as frequency vector.

**kwargs: key word arguments

passed to match (), which is called initially to create a 'blank' network.

Returns inductor: a 2-port Network

See Also:

match function called to create a 'blank' network

skrf. media. rectangular Waveguide. Rectangular Waveguide. kz

RectangularWaveguide.kz()

The Longitudinal wave number, aka propagation constant.

Defined as

$$k_z = \pm \sqrt{k_0^2 - k_c^2}$$

This is.

• IMAGINARY for propagating modes

• REAL for non-propagating modes,

Returns kz: number

The propagation constant

skrf.media.rectangularWaveguide.RectangularWaveguide.line

```
RectangularWaveguide.line(d, unit='m', **kwargs)

Matched transmission line of given length
```

The units of *length* are interpreted according to the value of *unit*.

Parameters d: number

the length of transmissin line (see unit argument)

unit : ['m','deg','rad']

the units of d. possible options are:

- *m* : meters, physical length in meters (default)
- deg :degrees, electrical length in degrees
- rad :radians, electrical length in radians

**kwargs: key word arguments

passed to match (), which is called initially to create a 'blank' network.

Returns line: Network object

matched tranmission line of given length

Examples

```
>>> my_media.line(90, 'deg', z0=50)
```

skrf.media.rectangularWaveguide.RectangularWaveguide.load

```
RectangularWaveguide.load(GammaO, nports=1, **kwargs)
Load of given reflection coefficient.
```

Parameters Gamma0: number, array-like

Reflection coefficient of load (linear, not in db). If its an array it must be of shape: kxnxn, where k is #frequency points in media, and n is *nports*

nports: int

number of ports

**kwargs : key word arguments

passed to match (), which is called initially to create a 'blank' network.

Returns load :class: '~skrf.network.Network' object :

n-port load, where S = Gamma0*eye(...)

skrf.media.rectangularWaveguide.RectangularWaveguide.match

```
RectangularWaveguide.match(nports=1, z0=None, **kwargs)
     Perfect matched load (\Gamma_0 = 0).
          Parameters nports: int
                  number of ports
              z0: number, or array-like
                  characterisite impedance. Default is None, in which case the Media's z0 is used. This
                  sets the resultant Network's z0.
              **kwargs: key word arguments
                  passed to Network initializer
          Returns match: Network object
                  a n-port match
     Examples
     >>> my_match = my_media.match(2,z0 = 50, name='Super Awesome Match')
skrf.media.rectangularWaveguide.RectangularWaveguide.open
RectangularWaveguide.open (nports=1, **kwargs)
     Open (\Gamma_0 = 1)
          Parameters nports: int
                  number of ports
              **kwargs: key word arguments
                  passed to match (), which is called initially to create a 'blank' network.
          Returns match: Network object
                  a n-port open circuit
     See Also:
     match function called to create a 'blank' network
skrf.media.rectangularWaveguide.RectangularWaveguide.resistor
RectangularWaveguide.resistor(R, *args, **kwargs)
     Resistor
          Parameters R: number, array
                  Resistance, in Ohms. If this is an array, must be of same length as frequency vector.
              *args, **kwargs: arguments, key word arguments
                  passed to match (), which is called initially to create a 'blank' network.
```

```
Returns resistor: a 2-port Network
     See Also:
     match function called to create a 'blank' network
skrf. media. rectangular Waveguide. Rectangular Waveguide. short\\
RectangularWaveguide.short(nports=1, **kwargs)
     Short (\Gamma_0 = -1)
          Parameters nports: int
                  number of ports
              **kwargs: key word arguments
                  passed to match (), which is called initially to create a 'blank' network.
          Returns match: Network object
                  a n-port short circuit
     See Also:
     match function called to create a 'blank' network
skrf.media.rectangularWaveguide.RectangularWaveguide.shunt
RectangularWaveguide.shunt(ntwk, **kwargs)
     Shunts a Network
     This creates a tee () and connects connects ntwk to port 1, and returns the result
          Parameters ntwk: Network object
              **kwargs: keyword arguments
                  passed to tee()
          Returns shunted_ntwk: Network object
                  a shunted a ntwk. The resultant shunted_ntwk will have (2 + ntwk.number_of_ports -1)
                  ports.
skrf.media.rectangularWaveguide.RectangularWaveguide.shunt_capacitor
RectangularWaveguide.shunt_capacitor(C, *args, **kwargs)
     Shunted capacitor
          Parameters C : number, array-like
                  Capacitance in Farads.
              *args, **kwargs: arguments, keyword arguments
                  passed to func: delay_open
          Returns shunt_capacitor: Network object
                  shunted capcitor(2-port)
```

Notes This calls: shunt(capacitor(C,*args, **kwargs)) $skrf.media.rectangular Waveguide. Rectangular Waveguide. shunt_delay_load$ RectangularWaveguide.shunt_delay_load(*args, **kwargs) Shunted delayed load **Parameters** *args,**kwargs: arguments, keyword arguments passed to func: delay_load Returns shunt_delay_load : Network object a shunted delayed load (2-port) **Notes** This calls: shunt(delay_load(*args, **kwargs)) skrf.media.rectangularWaveguide.RectangularWaveguide.shunt_delay_open RectangularWaveguide.shunt_delay_open(*args, **kwargs) Shunted delayed open Parameters *args,**kwargs: arguments, keyword arguments passed to func: delay_open Returns shunt_delay_open : Network object shunted delayed open (2-port) **Notes** This calls: shunt(delay_open(*args, **kwargs)) skrf.media.rectangularWaveguide.RectangularWaveguide.shunt_delay_short RectangularWaveguide.shunt_delay_short(*args, **kwargs) Shunted delayed short **Parameters** *args,**kwargs: arguments, keyword arguments passed to func: delay_open Returns shunt_delay_load : Network object

shunted delayed open (2-port)

Notes

```
This calls:
     shunt(delay_short(*args, **kwargs))
skrf.media.rectangularWaveguide.RectangularWaveguide.shunt_inductor
RectangularWaveguide.shunt_inductor(L, *args, **kwargs)
     Shunted inductor
          Parameters L: number, array-like
                  Inductance in Farads.
              *args, **kwargs: arguments, keyword arguments
                  passed to func: delay_open
          Returns shunt_inductor: Network object
                  shunted inductor(2-port)
     Notes
     This calls:
     shunt(inductor(C,*args, **kwargs))
skrf.media.rectangularWaveguide.RectangularWaveguide.splitter
RectangularWaveguide.splitter(nports, **kwargs)
     Ideal, lossless n-way splitter.
          Parameters nports: int
                  number of ports
              **kwargs: key word arguments
                  passed to match (), which is called initially to create a 'blank' network.
          Returns tee: Network object
                  a n-port splitter
     See Also:
     match called to create a 'blank' network
skrf.media.rectangularWaveguide.RectangularWaveguide.tee
RectangularWaveguide.tee(**kwargs)
     Ideal, lossless tee. (3-port splitter)
          Parameters **kwargs: key word arguments
                  passed to match (), which is called initially to create a 'blank' network.
```

```
Returns tee: Network object
                  a 3-port splitter
     See Also:
     splitter this just calls splitter(3)
     match called to create a 'blank' network
skrf.media.rectangularWaveguide.RectangularWaveguide.theta_2_d
RectangularWaveguide.theta_2_d (theta, deg=True)
     Converts electrical length to physical distance.
     The given electrical length is to be at the center frequency.
          Parameters theta: number
                  electrical length, at band center (see deg for unit)
               deg: Boolean
                  is theta in degrees?
          Returns d: number
                  physical distance in meters
skrf.media.rectangularWaveguide.RectangularWaveguide.thru
RectangularWaveguide.thru(**kwargs)
     Matched transmission line of length 0.
          Parameters **kwargs: key word arguments
                  passed to match (), which is called initially to create a 'blank' network.
          Returns thru: Network object
                  matched tranmission line of 0 length
     See Also:
     line this just calls line(0)
skrf.media.rectangularWaveguide.RectangularWaveguide.white gaussian polar
RectangularWavequide.white_gaussian_polar(phase_dev, mag_dev, n_ports=1, **kwargs)
     Complex zero-mean gaussian white-noise network.
     Creates a network whose s-matrix is complex zero-mean gaussian white-noise, of given standard deviations for
     phase and magnitude components. This 'noise' network can be added to networks to simulate additive noise.
          Parameters phase_mag: number
                  standard deviation of magnitude
               phase dev: number
                  standard deviation of phase
```

n_ports: int

number of ports.

**kwargs: passed to Network

initializer

Returns result: Network object

a noise network

skrf.media.rectangularWaveguide.RectangularWaveguide.write_csv

RectangularWaveguide.write_csv (filename='f, gamma, z0.csv') write this media's frequency, z0, and gamma to a csv file.

Parameters filename: string

file name to write out data to

See Also:

from_csv class method to initialize Media object from a csv file written from this function

skrf.media.cpw.CPW

This class was made from the technical documentation ³⁵ provided by the ques project ³⁶. The variables and properties of this class are coincident with their derivations.

Attributes

K_ratio	intermediary parameter. see ques does on cpw lines.
alpha_conductor	Losses due to conductor resistivity
characteristic_impedance	Characterisitc impedance
ep_re	intermediary parameter. see ques does on cpw lines.
k1	intermediary parameter. see ques does on cpw lines.
propagation_constant	Propagation constant
z0	Port Impedance
z U	Port Impedance

skrf.media.cpw.CPW.K_ratio

CPW.K_ratio

intermediary parameter. see ques does on cpw lines.

³⁵ http://qucs.sourceforge.net/docs/technical.pdf

³⁶ http://www.qucs.sourceforge.net/

skrf.media.cpw.CPW.alpha_conductor

CPW.alpha_conductor

Losses due to conductor resistivity

Returns alpha_conductor: array-like

lossyness due to conductor losses

See Also:

surface_resistivity : calculates surface resistivity

skrf.media.cpw.CPW.characteristic_impedance

CPW.characteristic_impedance

Characterisitc impedance

The characteristic_impedance can be either a number, array-like, or a function. If it is a function is must take no arguments. The reason to make it a function is if you want the characteristic impedance to be dynamic, meaning changing with some attribute of the media. See __init__() for more explanation.

Returns characteristic_impedance: numpy.ndarray

skrf.media.cpw.CPW.ep_re

CPW.ep_re

intermediary parameter. see ques does on cpw lines.

skrf.media.cpw.CPW.k1

CPW.k1

intermediary parameter. see ques does on cpw lines.

skrf.media.cpw.CPW.propagation_constant

CPW.propagation_constant

Propagation constant

The propagation constant can be either a number, array-like, or a function. If it is a function is must take no arguments. The reason to make it a function is if you want the propagation constant to be dynamic, meaning changing with some attribute of the media. See __init__() for more explanation.

Returns propagation_constant: numpy.ndarray

complex propagation constant for this media

Notes

propagation_constant must adhere to the following convention,

• positive real(propagation_constant) = attenuation

• positive imag(propagation_constant) = forward propagation

skrf.media.cpw.CPW.z0

CPW.z0

Port Impedance

The port impedance is usually equal to the characteristic_impedance. Therefore, if the port impedance is *None* then this will return characteristic_impedance.

However, in some cases such as rectangular waveguide, the port impedance is traditionally set to 1 (normalized). In such a case this property may be used.

The Port Impedance can be either a number, array-like, or a function. If it is a function is must take no arguments. The reason to make it a function is if you want the Port Impedance to be dynamic, meaning changing with some attribute of the media. See __init__() for more explanation.

Returns port_impedance : numpy.ndarray

the media's port impedance

Methods

ZO	Characterisite impedance
init	Coplanar Waveguide initializer
capacitor	Capacitor
delay_load	Delayed load
delay_open	Delayed open transmission line
delay_short	Delayed Short
electrical_length	calculates the electrical length for a given distance, at
from_csv	create a Media from numerical values stored in a csv file.
gamma	Propagation constant
<pre>guess_length_of_delay_short</pre>	Guess physical length of a delay short.
impedance_mismatch	Two-port network for an impedance miss-match
inductor	Inductor
line	Matched transmission line of given length
load	Load of given reflection coefficient.
match	Perfect matched load ($\Gamma_0 = 0$).
open	Open ($\Gamma_0 = 1$)
resistor	Resistor
short	Short $(\Gamma_0 = -1)$
shunt	Shunts a Network
shunt_capacitor	Shunted capacitor
shunt_delay_load	Shunted delayed load
shunt_delay_open	Shunted delayed open
shunt_delay_short	Shunted delayed short
shunt_inductor	Shunted inductor
splitter	Ideal, lossless n-way splitter.
tee	Ideal, lossless tee.
theta_2_d	Converts electrical length to physical distance.
thru	Matched transmission line of length 0.
white_gaussian_polar	Complex zero-mean gaussian white-noise network.
	Continued on next page

Table 3.51 – continued from previous page

write_csv

write this media's frequency, z0, and gamma to a csv file.

```
skrf.media.cpw.CPW.Z0
CPW. ZO()
     Characterisitc impedance
skrf.media.cpw.CPW. init
CPW.__init__ (frequency, w, s, ep_r, t=None, rho=None, *args, **kwargs)
     Coplanar Waveguide initializer
           Parameters frequency: Frequency object
                   frequency band of this transmission line medium
               w: number, or array-like
                   width of center conductor, in m.
               s: number, or array-like
                   width of gap, in m.
               ep_r: number, or array-like
                   relative permativity of substrate
               t: number, or array-like, optional
                   conductor thickness, in m.
               rho: number, or array-like, optional:
                   resistivity of conductor (None)
skrf.media.cpw.CPW.capacitor
CPW.capacitor(C, **kwargs)
     Capacitor
           Parameters C: number, array
                   Capacitance, in Farads. If this is an array, must be of same length as frequency vector.
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns capacitor: a 2-port Network
     See Also:
```

match function called to create a 'blank' network

skrf.media.cpw.CPW.delay_load

```
CPW.delay_load(Gamma0, d, unit='m', **kwargs)
     Delayed load
     A load with reflection coefficient Gamma0 at the end of a matched line of length d.
           Parameters Gamma0: number, array-like
                   reflection coefficient of load (not in dB)
               d: number
                   the length of transmissin line (see unit argument)
               unit : ['m','deg','rad']
                   the units of d. possible options are:
                      • m : meters, physical length in meters (default)
                     • deg :degrees, electrical length in degrees
                      • rad :radians, electrical length in radians
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns delay_load : Network object
                   a delayed load
     See Also:
     line creates the network for line
     load creates the network for the load
     Notes
     This calls
     line(d,unit, **kwargs) ** load(Gamma0, **kwargs)
     Examples
     >>> my_media.delay_load(-.5, 90, 'deg', z0=50)
skrf.media.cpw.CPW.delay_open
CPW.delay_open(d, unit='m', **kwargs)
     Delayed open transmission line
           Parameters d: number
                   the length of transmissin line (see unit argument)
               unit : ['m','deg','rad']
                   the units of d. possible options are:
```

```
• m : meters, physical length in meters (default)
                      • deg :degrees, electrical length in degrees
                      • rad :radians, electrical length in radians
               **kwargs : key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns delay_open: Network object
                   a delayed open
     See Also:
     delay_load delay_short just calls this function
skrf.media.cpw.CPW.delay_short
CPW.delay short (d, unit='m', **kwargs)
     Delayed Short
     A transmission line of given length terminated with a short.
           Parameters d: number
                   the length of transmissin line (see unit argument)
               unit : ['m','deg','rad']
                   the units of d. possible options are:
                      • m : meters, physical length in meters (default)
                      • deg :degrees, electrical length in degrees
                      • rad :radians, electrical length in radians
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns delay short: Network object
                   a delayed short
     See Also:
     delay_load delay_short just calls this function
skrf.media.cpw.CPW.electrical_length
CPW.electrical length(d, deg=False)
     calculates the electrical length for a given distance, at the center frequency.
           Parameters d: number or array-like :
                   delay distance, in meters
               deg: Boolean:
                   return electral length in deg?
           Returns theta: number or array-like:
```

electrical length in radians or degrees, depending on value of deg.

```
skrf.media.cpw.CPW.from\_csv
```

skrf.media.cpw.CPW.gamma

```
CPW.gamma()
Propagation constant
```

See Also:

alpha_conductor calculates losses to conductors

skrf.media.cpw.CPW.guess length of delay short

$\texttt{CPW.guess_length_of_delay_short} \ (aNtwk)$

Guess physical length of a delay short.

Unwraps the phase and determines the slope, which is then used in conjunction with propagation_constant to estimate the physical distance to the short.

Parameters aNtwk: Network object

(note: if this is a measurment it needs to be normalized to the reference plane)

skrf.media.cpw.CPW.impedance_mismatch

```
CPW.impedance_mismatch(z1, z2, **kwargs)
```

Two-port network for an impedance miss-match

```
Parameters z1 : number, or array-like
```

complex impedance of port 1

z2: number, or array-like

complex impedance of port 2

**kwargs: key word arguments

passed to match (), which is called initially to create a 'blank' network.

Returns missmatch: Network object

a 2-port network representing the impedance missmatch

See Also:

match called to create a 'blank' network

Notes

If z1 and z2 are arrays, they must be of same length as the Media.frequency.npoints

skrf.media.cpw.CPW.inductor

```
CPW.inductor (L, **kwargs)
Inductor

Parameters L: number, array

Inductance, in Henrys. If this is an array, must be of same length as frequency vector.

**kwargs: key word arguments

passed to match(), which is called initially to create a 'blank' network.

Returns inductor: a 2-port Network

See Also:
```

match function called to create a 'blank' network

skrf.media.cpw.CPW.line

```
CPW.line (d, unit='m', **kwargs)

Matched transmission line of given length
```

The units of *length* are interpreted according to the value of *unit*.

```
Parameters d: number
```

the length of transmissin line (see unit argument)

```
unit : ['m','deg','rad']
```

the units of d. possible options are:

- *m* : meters, physical length in meters (default)
- deg :degrees, electrical length in degrees
- rad :radians, electrical length in radians

```
**kwargs : key word arguments
```

passed to match (), which is called initially to create a 'blank' network.

Returns line: Network object

matched tranmission line of given length

Examples

```
>>> my_media.line(90, 'deg', z0=50)
```

skrf.media.cpw.CPW.load

```
CPW.load(Gamma0, nports=1, **kwargs)
     Load of given reflection coefficient.
           Parameters Gamma0: number, array-like
                   Reflection coefficient of load (linear, not in db). If its an array it must be of shape:
                   kxnxn, where k is #frequency points in media, and n is nports
               nports: int
                   number of ports
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns load :class: '~skrf.network.Network' object :
                   n-port load, where S = Gamma0*eye(...)
skrf.media.cpw.CPW.match
CPW.match (nports=1, z0=None, **kwargs)
     Perfect matched load (\Gamma_0 = 0).
           Parameters nports: int
                   number of ports
               z0: number, or array-like
                   characterisite impedance. Default is None, in which case the Media's z0 is used. This
                   sets the resultant Network's z0.
               **kwargs: key word arguments
                   passed to Network initializer
           Returns match: Network object
                   a n-port match
     Examples
     >>> my_match = my_media.match(2,z0 = 50, name='Super Awesome Match')
skrf.media.cpw.CPW.open
CPW.open (nports=1, **kwargs)
     Open (\Gamma_0 = 1)
           Parameters nports: int
                   number of ports
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
```

```
Returns match: Network object
                   a n-port open circuit
     See Also:
     match function called to create a 'blank' network
skrf.media.cpw.CPW.resistor
CPW.resistor(R, *args, **kwargs)
     Resistor
           Parameters R: number, array
                   Resistance, in Ohms. If this is an array, must be of same length as frequency vector.
               *args, **kwargs: arguments, key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns resistor: a 2-port Network
     See Also:
     match function called to create a 'blank' network
skrf.media.cpw.CPW.short
CPW.short(nports=1, **kwargs)
     Short (\Gamma_0 = -1)
           Parameters nports: int
                   number of ports
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns match: Network object
                   a n-port short circuit
     See Also:
     match function called to create a 'blank' network
skrf.media.cpw.CPW.shunt
CPW.shunt (ntwk, **kwargs)
     Shunts a Network
     This creates a tee () and connects connects ntwk to port 1, and returns the result
           Parameters ntwk: Network object
               **kwargs: keyword arguments
                   passed to tee()
```

```
Returns shunted_ntwk: Network object
                  a shunted a ntwk. The resultant shunted_ntwk will have (2 + ntwk.number_of_ports -1)
                  ports.
skrf.media.cpw.CPW.shunt capacitor
CPW.shunt_capacitor(C, *args, **kwargs)
     Shunted capacitor
          Parameters C: number, array-like
                  Capacitance in Farads.
              *args,**kwargs: arguments, keyword arguments
                  passed to func: delay_open
          Returns shunt_capacitor: Network object
                  shunted capcitor(2-port)
     Notes
     This calls:
     shunt(capacitor(C, *args, **kwargs))
skrf.media.cpw.CPW.shunt_delay_load
CPW.shunt_delay_load(*args, **kwargs)
     Shunted delayed load
          Parameters *args,**kwargs: arguments, keyword arguments
                  passed to func: delay_load
          Returns shunt_delay_load: Network object
                  a shunted delayed load (2-port)
     Notes
     This calls:
     shunt(delay_load(*args, **kwargs))
skrf.media.cpw.CPW.shunt delay open
CPW.shunt_delay_open(*args, **kwargs)
     Shunted delayed open
          Parameters *args,**kwargs: arguments, keyword arguments
                  passed to func: delay_open
```

Returns shunt_delay_open: Network object

```
shunted delayed open (2-port)
     Notes
     This calls:
     shunt(delay_open(*args, **kwargs))
skrf.media.cpw.CPW.shunt_delay_short
CPW.shunt_delay_short (*args, **kwargs)
     Shunted delayed short
          Parameters *args,**kwargs: arguments, keyword arguments
                  passed to func: delay_open
          Returns shunt_delay_load : Network object
                  shunted delayed open (2-port)
     Notes
     This calls:
     shunt(delay_short(*args, **kwargs))
skrf.media.cpw.CPW.shunt_inductor
CPW.shunt_inductor(L, *args, **kwargs)
     Shunted inductor
          Parameters L: number, array-like
                  Inductance in Farads.
              *args,**kwargs: arguments, keyword arguments
                  passed to func: delay_open
          Returns shunt_inductor: Network object
                  shunted inductor(2-port)
     Notes
     This calls:
```

shunt(inductor(C,*args, **kwargs))

skrf.media.cpw.CPW.splitter

```
CPW.splitter(nports, **kwargs)
     Ideal, lossless n-way splitter.
           Parameters nports: int
                   number of ports
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns tee: Network object
                   a n-port splitter
     See Also:
     match called to create a 'blank' network
skrf.media.cpw.CPW.tee
CPW.tee(**kwargs)
     Ideal, lossless tee. (3-port splitter)
           Parameters **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns tee: Network object
                   a 3-port splitter
     See Also:
     splitter this just calls splitter(3)
     match called to create a 'blank' network
skrf.media.cpw.CPW.theta 2 d
CPW.theta_2_d (theta, deg=True)
     Converts electrical length to physical distance.
     The given electrical length is to be at the center frequency.
           Parameters theta: number
                   electrical length, at band center (see deg for unit)
               deg: Boolean
                   is theta in degrees?
           Returns d: number
                   physical distance in meters
```

```
skrf.media.cpw.CPW.thru

CPW.thru(**kwargs)
    Matched transmission line of length 0.

Parameters **kwargs: key word arguments
    passed to match(), which is called initially to create a 'blank' network.

Returns thru: Network object
```

matched tranmission line of 0 length

See Also:

line this just calls line(0)

skrf.media.cpw.CPW.white_gaussian_polar

```
CPW.white_gaussian_polar (phase_dev, mag_dev, n_ports=1, **kwargs)
Complex zero-mean gaussian white-noise network.
```

Creates a network whose s-matrix is complex zero-mean gaussian white-noise, of given standard deviations for phase and magnitude components. This 'noise' network can be added to networks to simulate additive noise.

```
Parameters phase_mag: number
    standard deviation of magnitude
    phase_dev: number
    standard deviation of phase
    n_ports: int
    number of ports.

**kwargs: passed to Network
    initializer

Returns result: Network object
    a noise network
```

skrf.media.cpw.CPW.write_csv

```
CPW.write_csv (filename='f, gamma, z0.csv')
write this media's frequency, z0, and gamma to a csv file.

Parameters filename: string
file name to write out data to
```

See Also:

from_csv class method to initialize Media object from a csv file written from this function

skrf.media.freespace.Freespace

class skrf.media.freespace (frequency, ep_r=1, mu_r=1, *args, **kwargs)

Represents a plane-wave in a homogeneous freespace, defined by the space's relative permativity and relative permeability.

The field properties of space are related to a disctributed circuit transmission line model given in circuit theory by:

Circuit Property	Field Property
distributed_capacitance	real(ep_0*ep_r)
distributed_resistance	imag(ep_0*ep_r)
distributed_inductance	real(mu_0*mu_r)
distributed_conductance	imag(mu_0*mu_r)

This class's inheritence is; Media-> DistributedCircuit-> Freespace

Attributes

Y	Distributed Admittance, Y'	
Z	Distributed Impedance, $Z^{'}$	
characteristic_impedance	Characterisitc impedance	
propagation_constant	Propagation constant	
z O	Port Impedance	

skrf.media.freespace.Freespace.Y

Freespace.Y

Distributed Admittance, $Y^{'}$

Defined as

$$Y^{'} = G^{'} + j\omega C^{'}$$

Returns Y : numpy.ndarray

Distributed Admittance in units of S/m

skrf.media.freespace.Freespace.Z

Freespace.Z

Distributed Impedance, Z'

Defined as

$$Z^{'}=R^{'}+j\omega I^{'}$$

Returns Z : numpy.ndarray

Distributed impedance in units of ohm/m

skrf.media.freespace.Freespace.characteristic impedance

Freespace.characteristic_impedance

Characterisitc impedance

The characteristic_impedance can be either a number, array-like, or a function. If it is a function is must take no arguments. The reason to make it a function is if you want the characteristic impedance to be dynamic, meaning changing with some attribute of the media. See __init__() for more explanation.

Returns characteristic_impedance: numpy.ndarray

skrf.media.freespace.Freespace.propagation_constant

Freespace.propagation_constant

Propagation constant

The propagation constant can be either a number, array-like, or a function. If it is a function is must take no arguments. The reason to make it a function is if you want the propagation constant to be dynamic, meaning changing with some attribute of the media. See __init__() for more explanation.

Returns propagation_constant: numpy.ndarray

complex propagation constant for this media

Notes

propagation_constant must adhere to the following convention,

- positive real(propagation_constant) = attenuation
- positive imag(propagation_constant) = forward propagation

skrf.media.freespace.Freespace.z0

Freespace.z0

Port Impedance

The port impedance is usually equal to the characteristic_impedance. Therefore, if the port impedance is *None* then this will return characteristic_impedance.

However, in some cases such as rectangular waveguide, the port impedance is traditionally set to 1 (normalized). In such a case this property may be used.

The Port Impedance can be either a number, array-like, or a function. If it is a function is must take no arguments. The reason to make it a function is if you want the Port Impedance to be dynamic, meaning changing with some attribute of the media. See __init__() for more explanation.

Returns port_impedance: numpy.ndarray

the media's port impedance

Methods

Z 0	Characteristic Impedance, $Z0$	
		Continued on next page

Table 3.53 – continued from previous page

delay_open Delaydelay_short Delaydelay	ed load ed open transmission line ed Short
delay_open Delaydelay_short Delaydelay	ed open transmission line ed Short
delay_short Delay	ed Short
electrical length calcul-	
ciccii cai_iciigeii caicai	ates the electrical length for a given distance, at
from_Media Initial	izes a DistributedCircuit from an existing
from_csv create	a Media from numerical values stored in a csv file.
gamma Propa	gation Constant, γ
guess_length_of_delay_short Guess	physical length of a delay short.
	ort network for an impedance miss-match
inductor Induct	cor
line Match	ed transmission line of given length
	of given reflection coefficient.
match Perfec	et matched load ($\Gamma_0 = 0$).
open Open	$(\Gamma_0 = 1)$
resistor Resist	
short Short	$(\Gamma_0 = -1)$
shunt Shunts	s a Network
	ed capacitor
	ed delayed load
	ed delayed open
	ed delayed short
shunt_inductor Shunte	ed inductor
splitter Ideal,	lossless n-way splitter.
	lossless tee.
	erts electrical length to physical distance.
	ed transmission line of length 0.
white_gaussian_polar	lex zero-mean gaussian white-noise network.
write_csv write t	this media's frequency, z0, and gamma to a csv file.

skrf.media.freespace.Freespace.Z0

Freespace. ${f Z0}$ () Characteristic Impedance, Z0

$$Z_0 = \sqrt{\frac{Z'}{Y'}}$$

Returns Z0: numpy.ndarray

Characteristic Impedance in units of ohms

skrf.media.freespace.Freespace.__init__

Freespace.__init__ (frequency, ep_r=1, mu_r=1, *args, **kwargs)
Freespace initializer

Parameters frequency: Frequency object

frequency band of this transmission line medium

```
ep_r : number, array-like
    complex relative permativity
mu_r : number, array-like
    possibly complex, relative permiability
*args, **kwargs : arguments and keyword arguments
```

Notes

The distributed circuit parameters are related to a space's field properties by

Circuit Property	Field Property
distributed_capacitance	real(ep_0*ep_r)
distributed_resistance	imag(ep_0*ep_r)
distributed_inductance	real(mu_0*mu_r)
distributed_conductance	imag(mu_0*mu_r)

skrf.media.freespace.Freespace.capacitor

```
Parameters C: number, array

Capacitance, in Farads. If this is an array, must be of same length as frequency vector.

**kwargs: key word arguments

passed to match(), which is called initially to create a 'blank' network.

Returns capacitor: a 2-port Network
```

See Also:

match function called to create a 'blank' network

$skrf.media.freespace.Freespace.delay_load$

```
Freespace.delay_load(Gamma0, d, unit='m', **kwargs)
Delayed load
```

A load with reflection coefficient *Gamma0* at the end of a matched line of length d.

```
Parameters Gamma0: number, array-like
reflection coefficient of load (not in dB)
d: number
the length of transmissin line (see unit argument)
unit: ['m','deg','rad']
```

the units of d. possible options are:

- *m* : meters, physical length in meters (default)
- deg :degrees, electrical length in degrees

```
• rad :radians, electrical length in radians
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns delay_load : Network object
                   a delayed load
     See Also:
     line creates the network for line
     load creates the network for the load
     Notes
     This calls
     line(d,unit, **kwargs) ** load(Gamma0, **kwargs)
     Examples
     >>> my_media.delay_load(-.5, 90, 'deg', z0=50)
skrf.media.freespace.Freespace.delay_open
Freespace.delay_open(d, unit='m', **kwargs)
     Delayed open transmission line
           Parameters d: number
                   the length of transmissin line (see unit argument)
               unit : ['m','deg','rad']
                   the units of d. possible options are:
                     • m : meters, physical length in meters (default)
                     • deg :degrees, electrical length in degrees
                     • rad :radians, electrical length in radians
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns delay_open: Network object
                   a delayed open
     See Also:
     delay_load delay_short just calls this function
```

```
skrf.media.freespace.Freespace.delay_short
Freespace.delay_short (d, unit='m', **kwargs)
     Delayed Short
     A transmission line of given length terminated with a short.
           Parameters d: number
                   the length of transmissin line (see unit argument)
               unit : ['m','deg','rad']
                   the units of d. possible options are:
                      • m: meters, physical length in meters (default)
                      • deg :degrees, electrical length in degrees
                      • rad :radians, electrical length in radians
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns delay_short: Network object
                   a delayed short
     See Also:
     delay_load delay_short just calls this function
skrf.media.freespace.Freespace.electrical_length
Freespace.electrical_length(d, deg=False)
     calculates the electrical length for a given distance, at the center frequency.
           Parameters d: number or array-like :
                   delay distance, in meters
               deg: Boolean:
                   return electral length in deg?
           Returns theta: number or array-like:
                   electrical length in radians or degrees, depending on value of deg.
skrf.media.freespace.Freespace.from Media
classmethod Freespace.from Media (my media, *args, **kwargs)
     Initializes a DistributedCircuit from an existing :class:'~skrf.media.media.Media' instance.
skrf.media.freespace.Freespace.from_csv
classmethod Freespace.from csv(filename, *args, **kwargs)
     create a Media from numerical values stored in a csv file.
     the csv file format must be written by the function write_csv() which produces the following format
```

f[\$unit], Re(Z0), Im(Z0), Re(gamma), Im(gamma), Re(port Z0), Im(port Z0) 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1

skrf.media.freespace.Freespace.gamma

Freespace.gamma()

Propagation Constant, γ

Defined as,

$$\gamma = \sqrt{Z'Y'}$$

Returns gamma: numpy.ndarray

Propagation Constant,

Notes

The components of propagation constant are interpreted as follows:

positive real(gamma) = attenuation positive imag(gamma) = forward propagation

skrf.media.freespace.Freespace.guess_length_of_delay_short

Freespace.guess_length_of_delay_short (aNtwk)

Guess physical length of a delay short.

Unwraps the phase and determines the slope, which is then used in conjunction with propagation_constant to estimate the physical distance to the short.

Parameters aNtwk: Network object

(note: if this is a measurment it needs to be normalized to the reference plane)

skrf.media.freespace.Freespace.impedance_mismatch

Freespace.impedance_mismatch(z1, z2, **kwargs)

Two-port network for an impedance miss-match

Parameters z1: number, or array-like

complex impedance of port 1

z2: number, or array-like

complex impedance of port 2

**kwargs: key word arguments

passed to match (), which is called initially to create a 'blank' network.

Returns missmatch: Network object

a 2-port network representing the impedance missmatch

See Also:

match called to create a 'blank' network

Notes

If z1 and z2 are arrays, they must be of same length as the Media.frequency.npoints

skrf.media.freespace.Freespace.inductor

```
Freespace.inductor(L, **kwargs)
     Inductor
           Parameters L: number, array
                   Inductance, in Henrys. If this is an array, must be of same length as frequency vector.
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns inductor: a 2-port Network
```

See Also:

match function called to create a 'blank' network

skrf.media.freespace.Freespace.line

```
Freespace.line(d, unit='m', **kwargs)
     Matched transmission line of given length
```

The units of *length* are interpreted according to the value of *unit*.

```
Parameters d: number
```

the length of transmissin line (see unit argument)

```
unit : ['m','deg','rad']
```

the units of d. possible options are:

- *m* : meters, physical length in meters (default)
- deg :degrees, electrical length in degrees
- rad :radians, electrical length in radians

```
**kwargs: key word arguments
```

passed to match (), which is called initially to create a 'blank' network.

Returns line: Network object

matched tranmission line of given length

Examples

```
>>> my_media.line(90, 'deg', z0=50)
```

skrf.media.freespace.Freespace.load

```
Freespace.load(Gamma0, nports=1, **kwargs)
     Load of given reflection coefficient.
           Parameters Gamma0: number, array-like
                   Reflection coefficient of load (linear, not in db). If its an array it must be of shape:
                   kxnxn, where k is #frequency points in media, and n is nports
               nports: int
                   number of ports
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns load :class: '~skrf.network.Network' object :
                   n-port load, where S = Gamma0*eye(...)
skrf.media.freespace.Freespace.match
Freespace.match (nports=1, z0=None, **kwargs)
     Perfect matched load (\Gamma_0 = 0).
           Parameters nports: int
                   number of ports
               z0: number, or array-like
                   characterisite impedance. Default is None, in which case the Media's z0 is used. This
                   sets the resultant Network's z0.
               **kwargs: key word arguments
                   passed to Network initializer
           Returns match: Network object
                   a n-port match
     Examples
     >>> my_match = my_media.match(2,z0 = 50, name='Super Awesome Match')
skrf.media.freespace.Freespace.open
Freespace.open (nports=1, **kwargs)
     Open (\Gamma_0 = 1)
           Parameters nports: int
                   number of ports
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
```

```
Returns match: Network object
                   a n-port open circuit
     See Also:
     match function called to create a 'blank' network
skrf.media.freespace.Freespace.resistor
Freespace.resistor(R, *args, **kwargs)
     Resistor
          Parameters R: number, array
                   Resistance, in Ohms. If this is an array, must be of same length as frequency vector.
               *args, **kwargs: arguments, key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
          Returns resistor: a 2-port Network
     See Also:
     match function called to create a 'blank' network
skrf.media.freespace.Freespace.short
Freespace.short (nports=1, **kwargs)
     Short (\Gamma_0 = -1)
          Parameters nports: int
                   number of ports
               **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
          Returns match: Network object
                   a n-port short circuit
     See Also:
     match function called to create a 'blank' network
skrf.media.freespace.Freespace.shunt
Freespace.shunt (ntwk, **kwargs)
     Shunts a Network
     This creates a tee () and connects connects ntwk to port 1, and returns the result
          Parameters ntwk: Network object
               **kwargs: keyword arguments
                   passed to tee()
```

```
Returns shunted_ntwk: Network object
                 a shunted a ntwk. The resultant shunted_ntwk will have (2 + ntwk.number_of_ports -1)
                  ports.
skrf.media.freespace.Freespace.shunt capacitor
Freespace.shunt_capacitor(C, *args, **kwargs)
     Shunted capacitor
          Parameters C: number, array-like
                  Capacitance in Farads.
              *args,**kwargs: arguments, keyword arguments
                  passed to func: delay_open
          Returns shunt_capacitor: Network object
                  shunted capcitor(2-port)
     Notes
     This calls:
     shunt(capacitor(C, *args, **kwargs))
skrf.media.freespace.Freespace.shunt_delay_load
Freespace.shunt_delay_load(*args, **kwargs)
     Shunted delayed load
          Parameters *args,**kwargs: arguments, keyword arguments
                  passed to func: delay_load
          Returns shunt_delay_load : Network object
                 a shunted delayed load (2-port)
     Notes
     This calls:
     shunt(delay_load(*args, **kwargs))
skrf.media.freespace.Freespace.shunt delay open
Freespace.shunt_delay_open(*args, **kwargs)
     Shunted delayed open
          Parameters *args,**kwargs: arguments, keyword arguments
                  passed to func: delay_open
          Returns shunt_delay_open: Network object
```

```
shunted delayed open (2-port)
     Notes
     This calls:
     shunt(delay_open(*args, **kwargs))
skrf.media.freespace.Freespace.shunt_delay_short
Freespace.shunt_delay_short(*args, **kwargs)
     Shunted delayed short
          Parameters *args,**kwargs: arguments, keyword arguments
                  passed to func: delay_open
          Returns shunt_delay_load : Network object
                  shunted delayed open (2-port)
     Notes
     This calls:
     shunt(delay_short(*args, **kwargs))
skrf.media.freespace.Freespace.shunt_inductor
Freespace.shunt_inductor(L, *args, **kwargs)
     Shunted inductor
          Parameters L: number, array-like
                  Inductance in Farads.
              *args,**kwargs: arguments, keyword arguments
                  passed to func: delay_open
          Returns shunt_inductor: Network object
                  shunted inductor(2-port)
     Notes
     This calls:
```

shunt(inductor(C,*args, **kwargs))

skrf.media.freespace.Freespace.splitter

```
Freespace.splitter(nports, **kwargs)
     Ideal, lossless n-way splitter.
           Parameters nports: int
                   number of ports
               **kwargs : key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns tee: Network object
                   a n-port splitter
     See Also:
     match called to create a 'blank' network
skrf.media.freespace.Freespace.tee
Freespace.tee(**kwargs)
     Ideal, lossless tee. (3-port splitter)
           Parameters **kwargs: key word arguments
                   passed to match (), which is called initially to create a 'blank' network.
           Returns tee: Network object
                   a 3-port splitter
     See Also:
     splitter this just calls splitter(3)
     match called to create a 'blank' network
skrf.media.freespace.Freespace.theta 2 d
Freespace.theta_2_d(theta, deg=True)
     Converts electrical length to physical distance.
     The given electrical length is to be at the center frequency.
           Parameters theta: number
                   electrical length, at band center (see deg for unit)
               deg: Boolean
                   is theta in degrees?
           Returns d: number
                   physical distance in meters
```

skrf.media.freespace.Freespace.thru

```
Freespace.thru (**kwargs)

Matched transmission line of length 0.

Parameters **kwargs: key word arguments

passed to match(), which is called initially to create a 'blank' network.

Returns thru: Network object

matched transmission line of 0 length

See Also:

line this just calls line(0)
```

skrf.media.freespace.Freespace.white_gaussian_polar

```
Freespace.white_gaussian_polar(phase_dev, mag_dev, n_ports=1, **kwargs)
Complex zero-mean gaussian white-noise network.
```

Creates a network whose s-matrix is complex zero-mean gaussian white-noise, of given standard deviations for phase and magnitude components. This 'noise' network can be added to networks to simulate additive noise.

```
Parameters phase_mag: number
    standard deviation of magnitude
    phase_dev: number
    standard deviation of phase
    n_ports: int
    number of ports.

**kwargs: passed to Network
    initializer

Returns result: Network object
    a noise network
```

skrf.media.freespace.Freespace.write_csv

```
Freespace.write_csv (filename='f, gamma, z0.csv')
write this media's frequency, z0, and gamma to a csv file.

Parameters filename: string
file name to write out data to
```

See Also:

from_csv class method to initialize Media object from a csv file written from this function

3.12 vi (skrf.vi)

This module holds Virtual Instruments that are intricately related to skrf.

3.12.1 Vector Network Analyzers (skrf.vi.vna)

Warning: These Virtual Instruments are very spotily written, and may be subject to major re-writing in the future.

PNA([address, channel, timeout, echo])	Agilent PNA[X]
ZVA40([address, active_channel, continuous])	Rohde&Scharz ZVA40
HP8510C([address])	good ole 8510
HP8720([address])	

skrf.vi.vna.PNA

```
class skrf.vi.vna.PNA(address=16, channel=1, timeout=3, echo=False, **kwargs)
    Agilent PNA[X]
```

Below are lists of some high-level commands sorted by functionality.

Object IO

```
•get_oneport()
•get_twoport()
•get_frequency()
•get_network()
•get_network_all_meas()
```

Simple IO

```
•get_data_snp()
•get_data()
•get_sdata()
•get_fdata()
•get_rdata()
```

Notes

This instrument references *measurements* and *traces*. Traces are displayed traces, while measurements are active measurements on the VNA which may or may not be displayed on screen.

Examples

```
>>> from skrf.vi.vna import PNA
>>> v = PNA()
>>> n = v.get_oneport()
>>> n = v.get_twoport()
```

Attributes

continuous	Set continuous sweeping ON/OFF
idn	Identifying string for the instrument
if_bw	IF bandwidth
npoints	Number of points for the measurment
ntraces	The number of measurement traces that exist on the current channel

skrf.vi.vna.PNA.continuous

PNA.continuous

Set continuous sweeping ON/OFF

skrf.vi.vna.PNA.idn

PNA.idn

Identifying string for the instrument

skrf.vi.vna.PNA.if_bw

PNA.if_bw

IF bandwidth

skrf.vi.vna.PNA.npoints

PNA.npoints

Number of points for the measurment

skrf.vi.vna.PNA.ntraces

PNA.ntraces

The number of measurement traces that exist on the current channel

Note that this may not be the same as the number of traces displayed because a measurement may exist, but not be associated with a trace.

Methods

init	Constructor
create_meas	Create a new measurement.
create_meas_hidden	Create a new measurement but dont display it.
delete_all_meas	duh
delete_meas	Delete a measurement with name <i>name</i>
display_trace	Display a given measurment on specified trace number.
func_on_all_traces	Run a function on all traces are active
get_active_meas	Get the name of the active measurement
get_data	Get data for current active measuremnent
get_data_snp	Get n-port, s-parameter data.
	Continued on next page

TO 11 0 FC	4.	•	•	
Table 3.56 –	confinited t	rom	previous	nage

get_fdata	Get formated data
get_frequency	Get frequency data for active meas.
get_meas_list	Get a list of existent measurements
get_network	Returns a Network object representing the
get_network_all_meas	Return list of Network Objects for all measurements.
get_oneport	Get a one-port Network object for given ports.
get_power_level	Get the RF power level
get_rdata	Get data directly from the recievers.
get_sdata	Get complex data
get_switch_terms	Get switch terms and return them as a tuple of Network objects.
get_twoport	Get a two-port Network object for given ports.
opc	Ask for indication that operations complete
rtl	Return to local
select_meas	Make a specified measurement active
set_display_format	Set the display format
set_display_format_all	Set the display format for all measurements
set_power_level	Set the RF power level
set_yscale_auto	Display a given measurment on specified trace number.
set_yscale_couple	set y-scale coupling
sweep	Initiates a sweep and waits for it to complete before returning
write	dummy doc

skrf.vi.vna.PNA.__init__

```
PNA. __init__ (address=16, channel=1, timeout=3, echo=False, **kwargs)
Constructor
```

```
Parameters address: int
```

GPIB address

channel: int

set active channel. Most commands operate on the active channel

timeout : number

GPIB command timeout in seconds.

echo: Boolean

echo all strings passed to the write command to stdout. usefule for troubleshooting

**kwargs::

passed to visa.GpibInstrument.__init__()

skrf.vi.vna.PNA.create_meas

PNA.create_meas(name, meas)

Create a new measurement.

Parameters name: str

name given to measurment

meas : str

```
something like * S11 * a1/b1,1 * A/R1,1 * ...
     Examples
     >>> p = PNA()
     >>> p.create_meas('my_meas', 'A/R1,1')
skrf.vi.vna.PNA.create meas hidden
PNA.create_meas_hidden(name, meas)
     Create a new measurement but dont display it.
          Parameters name: str
                 name given to measurment
              meas: str
                 something like * S11 * a1/b1,1 * A/R1,1 * ...
     Examples
     >>> p = PNA()
     >>> p.create_meas('my_meas', 'A/R1,1')
skrf.vi.vna.PNA.delete_all_meas
PNA.delete_all_meas()
     duh
skrf.vi.vna.PNA.delete_meas
PNA.delete_meas(name)
     Delete a measurement with name name
skrf.vi.vna.PNA.display_trace
PNA.display_trace(name='', window_n=None, trace_n=None)
     Display a given measurment on specified trace number.
          Parameters name: str
                 name of measurement. See get_meas_list()
              window_n: int
                 window number. If None, active window is used.
              trace_n: int
                 trace number to display on. If None, a new trace is made.
```

skrf.vi.vna.PNA.func on all traces

```
PNA.func_on_all_traces (func, *args, **kwargs)
```

Run a function on all traces are active

Loop through all measurements, and making each active, then subsequently run a command.

Parameters func: func

The function to run while each trace is active

Examples

```
>>> p = PNA()
>>> p.func_on_all_traces(p.set_display_format, 'smith')
```

skrf.vi.vna.PNA.get_active_meas

```
PNA.get_active_meas()
```

Get the name of the active measurement

skrf.vi.vna.PNA.get_data

```
PNA.get_data(char='SDATA', cnum=None)
```

Get data for current active measuremnent

Note that this doesn't do any sweep timing. It just gets whatever data is in the registers according to char. If you want the data to be returned after a sweep has completed

```
Parameters char: [SDATA, FDATA, RDATA]
```

type of data to return

See Also:

```
get_sdata, get_fdata, get_rdata, get_snp_data
```

skrf.vi.vna.PNA.get_data_snp

```
PNA.get_data_snp(ports=[1, 2])
```

Get n-port, s-parameter data.

Returns s-parameter data of shape FXNXN where F is frequency length and N is number of ports. This does not do any timing see <code>sweep()</code> for that or use a higher level IO command, which are listed below in *see also*.

Note, this uses the calc:data:snp:ports command

Parameters ports: list of ints

list of port indecies to retrieve data from

See Also:

```
get_oneport, get_twoport, get_frequency
```

```
skrf.vi.vna.PNA.get_fdata
PNA.get_fdata(*args, **kwargs)
     Get formated data
     See Also:
     get_data
skrf.vi.vna.PNA.get_frequency
PNA.get_frequency(unit='ghz')
     Get frequency data for active meas.
     This Returns a Frequency object.
          Parameters unit: ['khz','mhz','ghz','thz']
                  the frequency unit of the Frequency object.
     See Also:
     select_meas, get_meas_list
skrf.vi.vna.PNA.get_meas_list
PNA.get_meas_list()
     Get a list of existent measurements
          Returns out: list
                  list of tuples of the form, (name, measurement)
skrf.vi.vna.PNA.get_network
PNA.get_network(sweep=True)
     Returns a Network object representing the active trace.
     This can be used to get arbitrary traces, in the form of Network objects, so that they can be plotted/saved/etc.
     If you want to get s-parameter data, use get_twoport() or get_oneport()
          Parameters sweep: Boolean
                  trigger a sweep or not. see sweep ()
     See Also:
     get_network_all_meas
     Examples
     >>> from skrf.vi.vna import PNAX
     >>> v = PNAX()
     >>> dut = v.get_network()
```

```
skrf.vi.vna.PNA.get network all meas
PNA.get_network_all_meas()
     Return list of Network Objects for all measurements.
     See Also:
     get_meas_list, get_network
skrf.vi.vna.PNA.get_oneport
PNA.get_oneport (port=1, *args, **kwargs)
     Get a one-port Network object for given ports.
     This calls get_data_snp() and get_frequency() to retrieve data, and then creates and returns a
     Network object.
          Parameters ports: list of ints
                  list of port indecies to retrieve data from
              *args, **kwargs::
                  passed to Network init
     See Also:
     get_twoport, get_snp, get_frequency
skrf.vi.vna.PNA.get_power_level
PNA.get_power_level()
     Get the RF power level
skrf.vi.vna.PNA.get_rdata
PNA.get_rdata(char='A', cnum=None)
     Get data directly from the recievers.
          Parameters char: ['A', 'B', 'C', ..., 'REF']
                  the reciever to measure, the 'REF' number (like R1, R2) depends on the source port.
              cnum: int
                  channel number
skrf.vi.vna.PNA.get sdata
PNA.get_sdata(*args, **kwargs)
     Get complex data
     See Also:
     get_data
```

```
skrf.vi.vna.PNA.get_switch_terms
PNA.get_switch_terms()
     Get switch terms and return them as a tuple of Network objects.
     Dont use this yet.
skrf.vi.vna.PNA.get_twoport
PNA.get_twoport (ports=[1, 2], *args, **kwargs)
     Get a two-port Network object for given ports.
     This calls get_data_snp() and get_frequency() to retrieve data, and then creates and returns a
     Network object.
          Parameters ports: list of ints
                  list of port indecies to retrieve data from
              *args,**kwargs::
                  passed to Network init
skrf.vi.vna.PNA.opc
PNA.opc()
     Ask for indication that operations complete
skrf.vi.vna.PNA.rtl
PNA.rtl()
     Return to local
skrf.vi.vna.PNA.select_meas
PNA.select_meas(name)
     Make a specified measurement active
          Parameters name: str
                  name of measurement. See get_meas_list()
skrf.vi.vna.PNA.set_display_format
PNA.set_display_format(form)
     Set the display format
     Choose from:
         •MLINear
         •MLOGarithmic
         •PHASe
         •UPHase 'Unwrapped phase
```

- •IMAGinary
- •REAL
- •POLar
- •SMITh
- •SADMittance 'Smith Admittance
- •SWR
- •GDELay 'Group Delay
- •KELVin
- •FAHRenheit
- •CELSius

skrf.vi.vna.PNA.set display format all

PNA.set_display_format_all(form)

Set the display format for all measurements

Choose from:

- •MLINear
- •MLOGarithmic
- •PHASe
- •UPHase 'Unwrapped phase
- •IMAGinary
- •REAL
- •POLar
- •SMITh
- •SADMittance 'Smith Admittance
- •SWR
- •GDELay 'Group Delay
- •KELVin
- •FAHRenheit
- •CELSius

skrf.vi.vna.PNA.set_power_level

PNA.set_power_level (num, cnum=None, port=None)
Set the RF power level

Parameters num: float

Source power in dBm

skrf.vi.vna.PNA.set_yscale_auto

```
PNA.set_yscale_auto (window_n=None, trace_n=None)
```

Display a given measurment on specified trace number.

Parameters window_n: int

window number. If None, active window is used.

trace_n: int

trace number to display on. If None, a new trace is made.

skrf.vi.vna.PNA.set yscale couple

```
PNA.set_yscale_couple (method='all', window_n=None, trace_n=None) set y-scale coupling
```

Parameters method: ['off','all','window']

controls the coupling method

skrf.vi.vna.PNA.sweep

PNA.sweep()

Initiates a sweep and waits for it to complete before returning

If vna is in continuous sweep mode then this puts it back

skrf.vi.vna.PNA.write

```
PNA.write(msg, *args, **kwargs)
dummy doc
```

skrf.vi.vna.ZVA40

class skrf.vi.vna.ZVA40 (address=20, active_channel=1, continuous=True, **kwargs)
 Rohde&Scharz ZVA40

Examples

```
>>> from skrf.vi.vna import ZVA40
>>> v = ZVA40()
>>> dut = v.network
```

Attributes

continuous	set/get continuous sweep mode on/off [boolean]
error	returns list errors stored on vna
fdata formated s-parameter data [a numpy array]	
	Continued on next page

Table 3.57 – continued from previous page

frequency	a frequency object, representing the current frequency axis
one_port	a network representing the current active trace
s11	this is just for legacy support, there is no gurantee this
sdata	unformated s-parameter data [a numpy array]

skrf.vi.vna.ZVA40.continuous

ZVA40.continuous

set/get continuous sweep mode on/off [boolean]

skrf.vi.vna.ZVA40.error

ZVA40.error

returns list errors stored on vna

skrf.vi.vna.ZVA40.fdata

ZVA40.fdata

formated s-parameter data [a numpy array]

skrf.vi.vna.ZVA40.frequency

ZVA40.frequency

a frequency object, representing the current frequency axis [skrf Frequency object]

skrf.vi.vna.ZVA40.one_port

ZVA40.one_port

a network representing the current active trace [skrf Network object]

skrf.vi.vna.ZVA40.s11

ZVA40.**s11**

this is just for legacy support, there is no gurantee this will return s11. it just returns active trace

skrf.vi.vna.ZVA40.sdata

ZVA40.sdata

unformated s-parameter data [a numpy array]

Methods

init	
add_trace	
	Continued on next page

|--|

initiate	initiate a sweep on current channel (low level timing)
set_active_trace	
sweep	initiate a sweep on current channel. if vna is in continous
update_trace_list	
upload_cal_data	for explanation of this code see the
wait	wait for preceding command to finish before executing subsequent
write	dummy doc

```
skrf.vi.vna.ZVA40.__init__

ZVA40.__init__ (address=20, active_channel=1, continuous=True, **kwargs)

skrf.vi.vna.ZVA40.add_trace

ZVA40.add_trace (parameter, name)

skrf.vi.vna.ZVA40.initiate

ZVA40.initiate()
    initiate a sweep on current channel (low level timing)

skrf.vi.vna.ZVA40.set_active_trace
```

ZVA40.set_active_trace(name)

skrf.vi.vna.ZVA40.sweep

ZVA40.sweep()

initiate a sweep on current channel. if vna is in continous mode it will put in single sweep mode, then request a sweep, and then return sweep mode to continous.

skrf.vi.vna.ZVA40.update_trace_list

```
ZVA40.update_trace_list()
```

skrf.vi.vna.ZVA40.upload_cal_data

```
ZVA40.upload_cal_data (error_data, cal_name='test', port=1) for explanation of this code see the zva manual (v1145.1084.12 p6.193)
```

skrf.vi.vna.ZVA40.wait

ZVA40.wait()

wait for preceding command to finish before executing subsequent commands

skrf.vi.vna.ZVA40.write

```
ZVA40.write() dummy doc
```

skrf.vi.vna.HP8510C

```
class skrf.vi.vna.HP8510C (address=16, **kwargs)
    good ole 8510
```

Attributes

averaging	averaging factor
continuous	
error	
frequency	
one_port	Initiates a sweep and returns a Network type represting the
s11	
s12	
s21	
s22	
switch_terms	measures forward and reverse switch terms and returns them as a
two_port	Initiates a sweep and returns a Network type represting the

skrf.vi.vna.HP8510C.averaging

HP8510C.averaging averaging factor

skrf.vi.vna.HP8510C.continuous

HP8510C.continuous

skrf.vi.vna.HP8510C.error

HP8510C.error

skrf.vi.vna.HP8510C.frequency

HP8510C.frequency

skrf.vi.vna.HP8510C.one_port

HP8510C.one_port

Initiates a sweep and returns a Network type represting the data.

if you are taking multiple sweeps, and want the sweep timing to work, put the turn continuous mode off. like pnax.continuous='off'

skrf.vi.vna.HP8510C.s11

HP8510C.**s11**

skrf.vi.vna.HP8510C.s12

HP8510C.**s12**

skrf.vi.vna.HP8510C.s21

HP8510C.**s21**

skrf.vi.vna.HP8510C.s22

HP8510C.**s22**

skrf.vi.vna.HP8510C.switch_terms

HP8510C.switch_terms

measures forward and reverse switch terms and returns them as a pair of one-port networks.

returns:

forward, reverse: a tuple of one ports holding forward and reverse switch terms.

see also: skrf.calibrationAlgorithms.unterminate_switch_terms

notes: thanks to dylan williams for making me aware of this, and providing the gpib commands in his statistical help

skrf.vi.vna.HP8510C.two_port

HP8510C.two_port

Initiates a sweep and returns a Network type represting the data.

if you are taking multiple sweeps, and want the sweep timing to work, put the turn continuous mode off. like pnax.continuous='off'

Methods

init		
write	dummy doc	

```
skrf.vi.vna.HP8510C.__init__
```

HP8510C.__init__(address=16, **kwargs)

skrf.vi.vna.HP8510C.write

HP8510C.write() dummy doc

skrf.vi.vna.HP8720

class skrf.vi.vna.HP8720 (address=16, **kwargs)

Attributes

averaging	
continuous	
error	
frequency	
ifbw	
one_port	Initiates a sweep and returns a Network type represting the
s11	
s12	
s21	
s22	
switch_terms	measures forward and reverse switch terms and returns them as a
two_port	Initiates a sweep and returns a Network type represting the

skrf.vi.vna.HP8720.averaging

HP8720.averaging

skrf.vi.vna.HP8720.continuous

HP8720.continuous

skrf.vi.vna.HP8720.error

HP8720.error

skrf.vi.vna.HP8720.frequency

HP8720.frequency

skrf.vi.vna.HP8720.ifbw

HP8720.ifbw

skrf.vi.vna.HP8720.one_port

HP8720.one_port

Initiates a sweep and returns a Network type represting the data.

if you are taking multiple sweeps, and want the sweep timing to work, put the turn continuous mode off. like pnax.continuous='off'

skrf.vi.vna.HP8720.s11

HP8720.**s11**

skrf.vi.vna.HP8720.s12

HP8720.s12

skrf.vi.vna.HP8720.s21

HP8720.s21

skrf.vi.vna.HP8720.s22

HP8720.**s22**

skrf.vi.vna.HP8720.switch_terms

HP8720.switch_terms

measures forward and reverse switch terms and returns them as a pair of one-port networks.

returns:

forward, reverse: a tuple of one ports holding forward and reverse switch terms.

see also: skrf.calibrationAlgorithms.unterminate_switch_terms

notes: thanks to dylan williams for making me aware of this, and providing the gpib commands in his statistical help

skrf.vi.vna.HP8720.two_port

HP8720.two_port

Initiates a sweep and returns a Network type represting the data.

if you are taking multiple sweeps, and want the sweep timing to work, put the turn continuous mode off. like pnax.continuous='off'

Methods

init		
write	dummy doc	

skrf.vi.vna.HP8720.__init__

```
HP8720.__init__(address=16, **kwargs)
```

skrf.vi.vna.HP8720.write

```
HP8720.write() dummy doc
```

3.12.2 Spectrum Analyzers (skrf.vi.sa)

HP8500([address]) HP8500's series Spectrum Analyzers

skrf.vi.sa.HP8500

Examples

Get trace, and store in a Network object

```
>>> from skrf.vi.sa import HP
>>> my_sa = HP() # default address is 18
>>> trace = my_sa.get_ntwk()
```

Activate single sweep mode, get a trace, return to continuous sweep

```
>>> my_sa.single_sweep()
>>> my_sa.sweep()
>>> trace_a = my_sa.trace_a
>>> my_sa.cont_sweep()
```

Attributes

f_start	starting frequency
f_stop	stopping frequency
frequency	
trace_a	trace 'a'
trace_b	trace 'b'

skrf.vi.sa.HP8500.f_start

HP8500.**f_start** starting frequency

skrf.vi.sa.HP8500.f_stop

HP8500.**f_stop** stopping frequency

skrf.vi.sa.HP8500.frequency

HP8500.frequency

skrf.vi.sa.HP8500.trace_a

HP8500.trace_a trace 'a'

skrf.vi.sa.HP8500.trace_b

HP8500.trace_b trace 'b'

Methods

init	Initializer
cont_sweep	Activate continuous sweep mode
get_ntwk	Get a trace and return the data in a Network format
goto_local	Switches from remote to local control
recall_state	Recall current state to a given register
save_state	Save current state to a given register
single_sweep	Activate single sweep mode
sweep	trigger a sweep, return when done
write	dummy doc

skrf.vi.sa.HP8500.__init__

HP8500.__init__ (address=18, *args, **kwargs)
Initializer

Parameters address: int

GPIB address

*args, **kwargs::

passed to visa.GpibInstrument.__init__

```
skrf.vi.sa.HP8500.cont_sweep
HP8500.cont_sweep()
     Activate continuous sweep mode
skrf.vi.sa.HP8500.get_ntwk
HP8500.get_ntwk(trace='a', goto_local=False, *args, **kwargs)
     Get a trace and return the data in a Network format
     This will save instrument stage to reg 1, activate single sweep mode, sweep, save data, then recal state from reg
     Returning the data in a the form of a Network allows all the plotting methods and IO functions of that class
     to be used. Not all the methods of Network make sense for this type of data (scalar), but we assume the user is
     knows this.
           Parameters trace: ['a', 'b']
                   save trace 'a' or trace 'b'
               goto local: Boolean
                   Go to local mode after taking a sweep
               *args, **kwargs::
                   passed to ___init___()
skrf.vi.sa.HP8500.goto_local
HP8500.goto local()
     Switches from remote to local control
skrf.vi.sa.HP8500.recall_state
HP8500.recall_state(reg_n=1)
     Recall current state to a given register
skrf.vi.sa.HP8500.save_state
HP8500.save\_state(reg\_n=1)
     Save current state to a given register
```

skrf.vi.sa.HP8500.single sweep

HP8500.single_sweep()

Activate single sweep mode

skrf.vi.sa.HP8500.sweep

```
HP8500.sweep() trigger a sweep, return when done
```

skrf.vi.sa.HP8500.write

```
HP8500.write() dummy doc
```

3.12.3 Stages (skrf.vi.stages)

ESP300([address, current_axis, ...]) Newport Universal Motion Controller/Driver Model ESP300

skrf.vi.stages.ESP300

Newport Universal Motion Controller/Driver Model ESP300

all axis control commands are sent to the number axis given by the local variable self.current_axis. An example usage

```
from skrf.vi.stages import ESP300
esp = ESP300()
esp.current_axis = 1
esp.position = 10
print esp.position
```

Attributes

UNIT_DICT	
acceleration	
current_axis	current axis used in all subsequent commands
deceleration	
error_message	
home	
motor_on	
position	
position_relative	
units	
velocity	the velocity of current axis

skrf.vi.stages.ESP300.UNIT_DICT

ESP300. UNIT_DICT = {'micro inches': 6, 'inches': 4, 'micrometer': 3, 'milliradian': 10, 'millimeter': 2, 'milli inches': 5, 'end

```
skrf.vi.stages.ESP300.acceleration
ESP300.acceleration
skrf.vi.stages.ESP300.current_axis
ESP300.current_axis
     current axis used in all subsequent commands
skrf.vi.stages.ESP300.deceleration
ESP300.deceleration
skrf.vi.stages.ESP300.error_message
{\tt ESP300.error\_message}
skrf.vi.stages.ESP300.home
ESP300.home
skrf.vi.stages.ESP300.motor_on
ESP300.motor_on
skrf.vi.stages.ESP300.position
ESP300.position
skrf.vi.stages.ESP300.position_relative
ESP300.position_relative
skrf.vi.stages.ESP300.units
ESP300.units
skrf.vi.stages.ESP300.velocity
ESP300.velocity
     the velocity of current axis
```

init	Initializer
send_stop	
wait_for_stop	
write	dummy doc

```
skrf.vi.stages.ESP300.__init__
```

skrf.vi.stages.ESP300.send_stop

```
ESP300.send_stop()
skrf.vi.stages.ESP300.wait_for_stop
ESP300.wait_for_stop()
skrf.vi.stages.ESP300.write
ESP300.write()
```

3.13 Indices and tables

• genindex

dummy doc

- modindex
- search

PYTHON MODULE INDEX

```
S
skrf.calibration, 170
skrf.calibration.calibration, 170
skrf.calibration.calibrationAlgorithms,
skrf.calibration.calibrationFunctions,
skrf.constants, 159
skrf.frequency, 53
skrf.io, 162
skrf.io.csv, 169
skrf.io.general, 162
skrf.io.touchstone, 166
skrf.mathFunctions, 148
skrf.media, 191
skrf.network, 57
skrf.networkSet, 136
skrf.plotting, 142
skrf.tlineFunctions, 151
skrf.util, 160
skrf.vi, 260
skrf.vi.sa, 278
skrf.vi.stages, 281
skrf.vi.vna, 261
```

	scikit-rf	Documentation.	Release dev
--	-----------	----------------	-------------

286 Python Module Index

INDEX

Symbols	add_noise_polar_flatband() (skrf.network.Network
init() (skrf.calibration.calibration.Calibration	method), 74, 127
method), 173, 186	add_trace() (skrf.vi.vna.ZVA40 method), 273
init() (skrf.frequency.Frequency method), 56	alpha_conductor (skrf.media.cpw.CPW attribute), 234
init() (skrf.io.touchstone.Touchstone method), 167	apply_cal() (skrf.calibration.calibration.Calibration
init() (skrf.media.cpw.CPW method), 236	method), 174, 186
init() (skrf.media.distributedCircuit.DistributedCircuit	apply_cal_to_all_in_dir()
method), 207	(skrf.calibration.calibration.Calibration
init() (skrf.media.freespace.Freespace method), 249	method), 174, 187
init() (skrf.media.media.Media method), 193	average() (in module skrf.network), 135
init() (skrf.media.media.wedia.mediad), 199init() (skrf.media.rectangularWaveguide.RectangularWmethod), 222	yavegagang (skrf.vi.vna.HP8510C attribute), 2/4 averaging (skrf.vi.vna.HP8720 attribute), 276
init() (skrf.network.Network method), 73	В
init() (skrf.networkSet.NetworkSet method), 138	
init() (skrf.vi.sa.HP8500 method), 279	biased_error() (skrf.calibration.calibration.Calibration
init() (skrf.vi.stages.ESP300 method), 283	method), 174, 187
init() (skrf.vi.vna.HP8510C method), 276	C
init() (skrf.vi.vna.HP8720 method), 278	
init() (skrf.vi.vna.PNA method), 264	caled_ntwk_sets (skrf.calibration.calibration.Calibration
init() (skrf.vi.vna.ZVA40 method), 273	attribute), 171, 183
A	caled_ntwks (skrf.calibration.calibration.Calibration attribute), 171, 184
a (skrf.network.Network attribute), 60	Calibration (class in skrf.calibration.calibration), 171, 183
a_arcl (skrf.network.Network attribute), 60	calibration_algorithm_dict
a_arcl_unwrap (skrf.network.Network attribute), 61	(skrf.calibration.calibration.Calibration at-
a_db (skrf.network.Network attribute), 61	tribute), 171, 184
a_deg (skrf.network.Network attribute), 61	capacitor() (skrf.media.cpw.CPW method), 236
a_deg_unwrap (skrf.network.Network attribute), 61	capacitor() (skrf.media.distributedCircuit.DistributedCircuit
a_im (skrf.network.Network attribute), 61	method), 208
a_mag (skrf.network.Network attribute), 61	capacitor() (skrf.media.freespace.Freespace method), 250
a_rad (skrf.network.Network attribute), 62	capacitor() (skrf.media.media.Media method), 194
a_rad_unwrap (skrf.network.Network attribute), 62	capacitor() (skrf.media.rectangularWaveguide.RectangularWaveguid method), 223
a_re (skrf.network.Network attribute), 62	cartesian_product_calibration_set() (in module
a_vswr (skrf.network.Network attribute), 62	skrf.calibration.calibrationFunctions), 182
abc_2_coefs_dict() (in module	cascade() (in module skrf.network), 123
skrf.calibration.calibrationAlgorithms), 182	center (skrf.frequency.Frequency attribute), 54
acceleration (skrf.vi.stages.ESP300 attribute), 282	characteristic_impedance (skrf.media.cpw.CPW at-
add_markers_to_lines() (in module skrf.plotting), 147	tribute), 234
add_noise_polar() (skrf.network.Network method), 74, 127	characteristic_impedance
141	(skrf.media.distributedCircuit.DistributedCircuit
	attribute) 205

characteristic_impedance (skrf.media.freespace.Freespace attribute), 248	delay_open() (skrf.media.freespace.Freespace method), 251 delay_open() (skrf.media.media.Media method), 195
characteristic_impedance (skrf.media.media.Media attribute), 192	delay_open() (skrf.media.media.wedia method), 193 delay_open() (skrf.media.rectangularWaveguide.RectangularWaveguide method), 224
characteristic_impedance	delay_short() (skrf.media.cpw.CPW method), 238
	adekanyidkhort() (skrf.media.distributedCircuit.DistributedCircuit method), 209
coefs (skrf.calibration.calibration.Calibration attribute), 171, 184	delay_short() (skrf.media.freespace.Freespace method), 252
coefs_ntwks (skrf.calibration.calibration.Calibration at-	delay_short() (skrf.media.media.Media method), 196
tribute), 172, 184	delay_short() (skrf.media.rectangularWaveguide.RectangularWaveguide
coefs_ntwks_2p (skrf.calibration.calibration.Calibration	method), 224
attribute), 172, 184	delete_all_meas() (skrf.vi.vna.PNA method), 265
complex2Scalar() (in module skrf.mathFunctions), 150	delete_meas() (skrf.vi.vna.PNA method), 265
complex_2_db() (in module skrf.mathFunctions), 148	dirac_delta() (in module skrf.mathFunctions), 150
complex_2_degree() (in module skrf.mathFunctions), 149	display_trace() (skrf.vi.vna.PNA method), 265
complex_2_magnitude() (in module skrf.mathFunctions),	distance_2_electrical_length() (in module
148, 149	skrf.tlineFunctions), 154
complex_2_radian() (in module skrf.mathFunctions), 148	distributed_circuit_2_propagation_impedance() (in mod-
complex_2_reim() (in module skrf.mathFunctions), 148	ule skrf.tlineFunctions), 157
connect() (in module skrf.network), 121	DistributedCircuit (class in
connect_s() (in module skrf.network), 129	skrf.media.distributedCircuit), 204
cont_sweep() (skrf.vi.sa.HP8500 method), 280	
continuous (skrf.vi.vna.HP8510C attribute), 274	E
continuous (skrf.vi.vna.HP8720 attribute), 276	eight_term_2_one_port_coefs() (in module
continuous (skrf.vi.vna.PNA attribute), 263	skrf.calibration.calibrationAlgorithms), 182
continuous (skrf.vi.vna.ZVA40 attribute), 272	electrical_length() (skrf.media.cpw.CPW method), 238
copy() (skrf.frequency.Frequency method), 57	electrical_length() (skrf.media.distributedCircuit.DistributedCircuit
copy() (skrf.network.Network method), 74	method), 210
copy() (skrf.networkSet.NetworkSet method), 138	electrical_length() (skrf.media.freespace.Freespace
copy_from() (skrf.network.Network method), 75	method), 252
CPW (class in skrf.media.cpw), 233	electrical_length() (skrf.media.media.Media method),
create_meas() (skrf.vi.vna.PNA method), 264	196
create_meas_hidden() (skrf.vi.vna.PNA method), 265	electrical_length() (skrf.media.rectangularWaveguide.RectangularWaveguid
current_axis (skrf.vi.stages.ESP300 attribute), 282	method), 225
D	electrical_length_2_distance() (in module skrf.tlineFunctions), 155
db_2_np() (in module skrf.mathFunctions), 150	element_wise_method() (skrf.networkSet.NetworkSet
de_embed() (in module skrf.network), 123	method), 139
deceleration (skrf.vi.stages.ESP300 attribute), 282	ep (skrf.media.rectangularWaveguide.RectangularWaveguide
degree_2_radian() (in module skrf.mathFunctions), 149	attribute), 219
delay_load() (skrf.media.cpw.CPW method), 237	ep_re (skrf.media.cpw.CPW attribute), 234
delay_load() (skrf.media.distributedCircuit.Distrib	
method), 208	error (skrf.vi.vna.HP8720 attribute), 276
delay_load() (skrf.media.freespace.Freespace method),	error (skrf.vi.vna.ZVA40 attribute), 272
250	error_message (skrf.vi.stages.ESP300 attribute), 282
delay_load() (skrf.media.media.Media method), 194	error_ntwk (skrf.calibration.calibration.Calibration at-
delay_load() (skrf.media.rectangularWaveguide.Rectangula	_ `
method), 223	ESP300 (class in skrf.vi.stages), 281
delay_open() (skrf.media.cpw.CPW method), 237	_
delay_open() (skrf.media.distributedCircuit.DistributedCirc	ulīt
method), 209	f (skrf.frequency.Frequency attribute), 54
	f (skrf.network.Network attribute), 62

get_format() (skrf.io.touchstone.Touchstone method),
167
get_frequency() (skrf.vi.vna.PNA method), 267
get_meas_list() (skrf.vi.vna.PNA method), 267
get_network() (skrf.vi.vna.PNA method), 267
get_network_all_meas() (skrf.vi.vna.PNA method), 268
get_noise_data() (skrf.io.touchstone.Touchstone method),
167
get_noise_names() (skrf.io.touchstone.Touchstone
method), 168
get_ntwk() (skrf.vi.sa.HP8500 method), 280
get_oneport() (skrf.vi.vna.PNA method), 268
get_power_level() (skrf.vi.vna.PNA method), 268
get_rdata() (skrf.vi.vna.PNA method), 268
get_sdata() (skrf.vi.vna.PNA method), 268
get_sparameter_arrays() (skrf.io.touchstone.Touchstone
it method), 168
get_sparameter_data() (skrf.io.touchstone.Touchstone
method), 168
get_sparameter_names() (skrf.io.touchstone.Touchstone
method), 168
Westegwideh_terms() (skrf.vi.vna.PNA method), 269
get_twoport() (skrf.vi.vna.PNA method), 269
goto_local() (skrf.vi.sa.HP8500 method), 280
reguiess_length_of_delay_short() (skrf.media.cpw.CPW
method), 239
guess_length_of_delay_short()
(skrf.media.distributedCircuit.DistributedCircuit
method), 211
guess_length_of_delay_short()
(skrf.media.freespace.Freespace method),
253
guess_length_of_delay_short() (skrf.media.media.Media
n method), 197
guess_length_of_delay_short()
(skrf.media.rectangular Waveguide.Rectangular Waveguide
method), 225
Н
hfss_touchstone_2_gamma_z0() (in module
skrf.io.touchstone), 168
hfss_touchstone_2_media() (in module
skrf.io.touchstone), 169
home (skrf.vi.stages.ESP300 attribute), 282
HP8500 (class in skrf.vi.sa), 278
HP8510C (class in skrf.vi.vna), 274
HP8720 (class in skrf.vi.vna), 276
HP8720 (class in skrf.vi.vna), 276
HP8720 (class in skrf.vi.vna), 276 l idn (skrf.vi.vna.PNA attribute), 263
HP8720 (class in skrf.vi.vna), 276 l idn (skrf.vi.vna.PNA attribute), 263 if_bw (skrf.vi.vna.PNA attribute), 263
HP8720 (class in skrf.vi.vna), 276 l idn (skrf.vi.vna.PNA attribute), 263

	ribinte(d Cikefiithedia.rectangular Waveguide. Rectangular Waveguide
method), 211	method), 227
impedance_mismatch() (skrf.media.freespace.Freespace	load() (skrf.media.cpw.CPW method), 241
method), 253	load() (skrf.media.distributedCircuit.DistributedCircuit
impedance_mismatch() (skrf.media.media.Media	method), 212
method), 197	load() (skrf.media.freespace.Freespace method), 255
impedance_mismatch() (skrf.media.rectangularWaveguide.	
method), 226	load() (skrf.media.rectangularWaveguide.RectangularWaveguide
inductor() (skrf.media.cpw.CPW method), 240	method), 227
inductor() (skrf.media.distributed Circuit. Distributed Circuit and an	
method), 212	load_impedance_2_reflection_coefficient() (in module
inductor() (skrf.media.freespace.Freespace method), 254	skrf.tlineFunctions), 157
inductor() (skrf.media.media.Media method), 197	load_impedance_2_reflection_coefficient_at_theta() (in
inductor() (skrf.media.rectangular Waveguide.Rectangular Variation of the contraction	Vaveguide module skrf.tlineFunctions), 157
method), 226	M
initiate() (skrf.vi.vna.ZVA40 method), 273	
innerconnect() (in module skrf.network), 122	match() (skrf.media.cpw.CPW method), 241
innerconnect_s() (in module skrf.network), 129	match() (skrf.media.distributedCircuit.DistributedCircuit
input_impedance_at_theta() (in module	method), 213
skrf.tlineFunctions), 156	match() (skrf.media.freespace.Freespace method), 255
interpolate() (skrf.network.Network method), 75, 125	match() (skrf.media.media.Media method), 198
interpolate_from_f() (skrf.network.Network method), 76,	match () (skrf.media.rectangular Waveguide. Rectangular Waveguide
126	method), 228
interpolate_self() (skrf.network.Network method), 77, 125	mean_residuals() (skrf.calibration.calibration.Calibration method), 175, 187
interpolate_self_npoints() (skrf.network.Network	mean_s_db (skrf.networkSet.NetworkSet attribute), 137
method), 77	Media (class in skrf.media.media), 191
inv (skrf.network.Network attribute), 63	motor_on (skrf.vi.stages.ESP300 attribute), 282
inv (skrf.networkSet.NetworkSet attribute), 137	mu (skrf.media.rectangularWaveguide.RectangularWaveguide
inv() (in module skrf.network), 128	attribute), 220
	multiplier (skrf.frequency.Frequency attribute), 54
K	multiplier_dict (skrf.frequency.Frequency attribute), 55
k0 (skrf.media.rectangularWaveguide.RectangularWavegui	denultiply_noise() (skrf.network.Network method), 78, 128
attribute), 219	N.I.
k1 (skrf.media.cpw.CPW attribute), 234	N
K_ratio (skrf.media.cpw.CPW attribute), 233	Network (class in skrf.network), 58
$kc\ (skrf.media.rectangular Waveguide. Rectangular Waveguide. Rect$	dNetworkSet (class in skrf.networkSet), 136
attribute), 220	neuman() (in module skrf.mathFunctions), 150
$kx \ (skrf.media.rectangular Waveguide. Rectangular Wavegui$	dnow_string() (in module skrf.util), 161
attribute), 220	np_2_db() (in module skrf.mathFunctions), 150
$ky \ (skrf.media.rectangular Waveguide. Rectangular Waveguide \ (skrf.media.rectangular Waveguide \ (skrf.media.rectangular \ (skrf.media.rectangular \ Waveguide \ (skrf.media.rectangular \ (skrf.media.rectan$	dapoints (skrf.frequency.Frequency attribute), 55
attribute), 220	npoints (skrf.vi.vna.PNA attribute), 263
kz() (skrf.media.rectangular Waveguide. Rectangular Waveguide. R	uideorts (skrf.calibration.calibration.Calibration attribute),
method), 226	172, 184
1	nports (skrf.network.Network attribute), 63
L	nstandards (skrf.calibration.calibration.Calibration
labelXAxis() (skrf.frequency.Frequency method), 57	attribute), 172, 184
legend_off() (in module skrf.plotting), 147	ntraces (skrf.vi.vna.PNA attribute), 263
line() (skrf.media.cpw.CPW method), 240	nudge() (skrf.network.Network method), 78, 136
line() (skrf.media.distributedCircuit.DistributedCircuit	null() (in module skrf.mathFunctions), 151
method), 212	number_of_ports (skrf.network.Network attribute), 63
line() (skrf.media.freespace.Freespace method), 254	\circ
line() (skrf.media.media.Media method), 198	0
	one_port (skrf.vi.vna.HP8510C attribute), 274

one_port (skrf.vi.vna.HP8720 attribute), 277	plot_residuals() (skrf.calibration.calibration.Calibration
one_port (skrf.vi.vna.ZVA40 attribute), 272	method), 175, 188
one_port() (in module	plot_residuals_db() (skrf.calibration.calibration.Calibration
skrf.calibration.calibrationAlgorithms), 178	method), 175, 188
one_port_nls() (in module	plot_residuals_mag() (skrf.calibration.calibration.Calibration
skrf.calibration.calibrationAlgorithms), 179	method), 176, 188
opc() (skrf.vi.vna.PNA method), 269	plot_residuals_smith() (skrf.calibration.calibration.Calibration
open() (skrf.media.cpw.CPW method), 241	method), 176, 188
open() (skrf.media.distributedCircuit.DistributedCircuit	plot_s_arcl() (skrf.network.Network method), 88
method), 213	plot_s_arcl_unwrap() (skrf.network.Network method), 89
open() (skrf.media.freespace.Freespace method), 255	plot_s_complex() (skrf.network.Network method), 90
ppen() (skrf.media.media.Media method), 199	plot_s_db() (skrf.network.Network method), 91
ppen() (skrf.media.rectangularWaveguide.RectangularWave	
method), 228	plot_s_deg_unwrap() (skrf.network.Network method), 92
output_from_cal (skrf.calibration.calibration.Calibration	plot_s_im() (skrf.network.Network method), 93
attribute), 172, 185	plot_s_mag() (skrf.network.Network method), 94
o	plot_s_polar() (skrf.network.Network method), 94
	plot_s_rad() (skrf.network.Network method), 95
parameterized_self_calibration() (in module	plot_s_rad_unwrap() (skrf.network.Network method), 96
skrf.calibration.calibrationAlgorithms), 180	plot_s_re() (skrf.network.Network method), 97
parameterized_self_calibration_nls() (in module	plot_s_smith() (skrf.network.Network method), 97
skrf.calibration.calibrationAlgorithms), 181	plot_s_vswr() (skrf.network.Network method), 98
passivity (skrf.network.Network attribute), 63	plot_smith() (in module skrf.plotting), 143
olot_a_arcl() (skrf.network.Network method), 78	plot_uncertainty_bounds_component()
olot_a_arcl_unwrap() (skrf.network.Network method), 79	(skrf.networkSet.NetworkSet method), 139
olot_a_complex() (skrf.network.Network method), 80	plot_uncertainty_bounds_s()
olot_a_db() (skrf.network.Network method), 80	(skrf.networkSet.NetworkSet method), 140
olot_a_deg() (skrf.network.Network method), 81	plot_uncertainty_bounds_s_db()
olot_a_deg_unwrap() (skrf.network.Network method), 82	(skrf.networkSet.NetworkSet method), 140
olot_a_im() (skrf.network.Network method), 83	plot_uncertainty_decomposition()
olot_a_mag() (skrf.network.Network method), 83	(skrf.networkSet.NetworkSet method), 140
plot_a_polar() (skrf.network.Network method), 84	plot_uncertainty_per_standard()
olot_a_rad() (skrf.network.Network method), 85	(skrf.calibration.calibration.Calibration
olot_a_rad_unwrap() (skrf.network.Network method), 86	method), 176, 189
olot_a_re() (skrf.network.Network method), 86	plot_y_arcl() (skrf.network.Network method), 99
olot_a_vswr() (skrf.network.Network method), 87	plot_y_arcl_unwrap() (skrf.network.Network method),
plot_caled_ntwks() (skrf.calibration.calibration.Calibration	100
method), 175, 187	plot_y_complex() (skrf.network.Network method), 100
olot_coefs() (skrf.calibration.calibration.Calibration	plot_y_db() (skrf.network.Network method), 101
method), 175, 188	plot_y_deg() (skrf.network.Network method), 102
plot_coefs_db() (skrf.calibration.calibration.Calibration	plot_y_deg_unwrap() (skrf.network.Network method),
method), 175, 188	103
	plot_y_im() (skrf.network.Network method), 103
plot_complex_polar() (in module skrf.plotting), 146 plot_complex_rectangular() (in module skrf.plotting),	plot_y_mag() (skrf.network.Network method), 104
145	plot_y_polar() (skrf.network.Network method), 105
	plot_y_rad() (skrf.network.Network method), 106
olot_errors() (skrf.calibration.calibration.Calibration	plot_y_rad_unwrap() (skrf.network.Network method),
method), 175, 188	106
olot_it_all() (skrf.network.Network method), 88	
olot_logsigma() (skrf.networkSet.NetworkSet method),	plot_y_re() (skrf.network.Network method), 107
139	plot_y_vswr() (skrf.network.Network method), 108
plot_passivity() (skrf.network.Network method), 88	plot_z_arcl() (skrf.network.Network method), 109
plot_polar() (in module skrf.plotting), 144	plot_z_arcl_unwrap() (skrf.network.Network method),
olot_rectangular() (in module skrf.plotting), 144	109
	plot z complex() (skrf.network.Network method), 110

plot_z_db() (skrf.network.Network method), 111 plot_z_deg() (skrf.network.Network method), 112	resistor() (skrf.media.freespace.Freespace method), 256 resistor() (skrf.media.media.Media method), 199
plot_z_deg_unwrap() (skrf.network.Network method),	resistor() (skrf.media.rectangularWaveguide.RectangularWaveguide
112	method), 228
plot_z_im() (skrf.network.Network method), 113	rtl() (skrf.vi.vna.PNA method), 269
plot_z_mag() (skrf.network.Network method), 113	run() (skrf.calibration.calibration method),
plot_z_nlag() (skrf.network.Network method), 114 plot_z_polar() (skrf.network.Network method), 115	176, 189
	170, 189
plot_z_rad() (skrf.network.Network method), 115	S
plot_z_rad_unwrap() (skrf.network.Network method), 116	
	s (skrf.network.Network attribute), 64
plot_z_re() (skrf.network.Network method), 117 plot_z_vswr() (skrf.network.Network method), 118	s11 (skrf.network.Network attribute), 64
PNA (class in skrf.vi.vna), 261	s11 (skrf.vi.vna.HP8510C attribute), 275
pna_csv_2_ntwks() (in module skrf.io.csv), 170	s11 (skrf.vi.vna.HP8720 attribute), 277
position (skrf.vi.stages.ESP300 attribute), 282	s11 (skrf.vi.vna.ZVA40 attribute), 272
position_relative (skrf.vi.stages.ESP300 attribute), 282	s12 (skrf.network.Network attribute), 64
	s12 (skrf.vi.vna.HP8510C attribute), 275
propagation_constant (skrf.media.cpw.CPW attribute), 234	s12 (skrf.vi.vna.HP8720 attribute), 277
	s21 (skrf.network.Network attribute), 64
propagation_constant (skrf.media.distributedCircuit.Distrib attribute), 206	
propagation_constant (skrf.media.freespace.Freespace at-	s21 (skrf.vi.vna.HP8720 attribute), 277
tribute), 248	s22 (skrf.network.Network attribute), 64
propagation_constant (skrf.media.media.Media attribute),	s22 (skrf.vi.vna.HP8510C attribute), 275
192	s22 (skrf.vi.vna.HP8720 attribute), 277
	s2t() (in module skrf.network), 131
propagation_constant (skrf.media.rectangularWaveguide.Reattribute), 220	
propagation_impedance_2_distributed_circuit() (in mod-	s2z() (in module skrf.network), 130
ule skrf.tlineFunctions), 158	s_arcl (skrf.network.Network attribute), 65
the skir timer unctions), 136	s_arcl_unwrap (skrf.network.Network attribute), 65
R	s_db (skrf.network.Network attribute), 65
	s_deg (skrf.network.Network attribute), 65
radian_2_degree() (in module skrf.mathFunctions), 149	s_deg_unwrap (skrf.network.Network attribute), 65
read() (in module skrf.io.general), 162	s_im (skrf.network.Network attribute), 65
read() (skrf.network.Network method), 118	s_mag (skrf.network.Network attribute), 66
read_all() (in module skrf.io.general), 163	s_rad (skrf.network.Network attribute), 66
read_pna_csv() (in module skrf.io.csv), 169	s_rad_unwrap (skrf.network.Network attribute), 66
read_touchstone() (skrf.network.Network method), 119	s_re (skrf.network.Network attribute), 66
recall_state() (skrf.vi.sa.HP8500 method), 280	s_vswr (skrf.network.Network attribute), 66
	save_all_figs() (in module skrf.plotting), 147
skrf.media.rectangularWaveguide), 218	save_sesh() (in module skrf.io.general), 166
reflection_coefficient_2_input_impedance() (in module	save_state() (skrf.vi.sa.HP8500 method), 280
skrf.tlineFunctions), 156	scalar2Complex() (in module skrf.mathFunctions), 150
reflection_coefficient_2_input_impedance_at_theta() (in module skrf.tlineFunctions), 156	sdata (skrf.vi.vna.ZVA40 attribute), 272
reflection_coefficient_at_theta() (in module	select_meas() (skrf.vi.vna.PNA method), 269 send_stop() (skrf.vi.stages.ESP300 method), 283
skrf.tlineFunctions), 155	set_active_trace() (skrf.vi.vna.ZVA40 method), 273
renumber() (skrf.network.Network method), 119	set_active_trace() (skrf.vi.vna.ZvA40 method), 273 set_display_format() (skrf.vi.vna.PNA method), 269
resample() (skrf.network.Network method), 119, 124	_ · · · · · · · · · · · · · · · · · · ·
•	set_display_format_all() (skrf.vi.vna.PNA method), 270
residual_ntwks (skrf.calibration.calibration.Calibration attribute), 172, 185	set_power_level() (skrf.vi.vna.PNA method), 270 set_wise_function() (skrf.networkSet.NetworkSet
	method), 141
residuals (skrf.calibration.calibration.Calibration at- tribute), 173, 185	set_yscale_auto() (skrf.vi.vna.PNA method), 271
resistor() (skrf.media.cpw.CPW method), 242	set_yscale_couple() (skrf.vi.vna.PNA method), 271 set_yscale_couple() (skrf.vi.vna.PNA method), 271
resistor() (skrf.media.distributedCircuit.DistributedCircuit	
method), 214	onorgy (orithmedia.epw.er w mediod), 242
memod), 214	

```
short() (skrf.media.distributedCircuit.DistributedCircuit
                                                                                                                  shunt inductor() (skrf.media.rectangularWaveguide.RectangularWaveguide
                   method), 214
                                                                                                                                      method), 231
short() (skrf.media.freespace.Freespace method), 256
                                                                                                                   signature() (skrf.networkSet.NetworkSet method), 141
short() (skrf.media.media.Media method), 200
                                                                                                                   single_sweep() (skrf.vi.sa.HP8500 method), 280
short() (skrf.media.rectangularWaveguide.RectangularWavegkidedepth() (in module skrf.tlineFunctions), 159
                   method), 229
                                                                                                                   skrf.calibration (module), 170
shunt() (skrf.media.cpw.CPW method), 242
                                                                                                                   skrf.calibration.calibration (module), 170
shunt() (skrf.media.distributedCircuit.DistributedCircuit
                                                                                                                   skrf.calibration.calibrationAlgorithms (module), 178
                   method), 214
                                                                                                                   skrf.calibration.calibrationFunctions (module), 182
shunt() (skrf.media.freespace.Freespace method), 256
                                                                                                                   skrf.constants (module), 159
shunt() (skrf.media.media.Media method), 200
                                                                                                                   skrf.frequency (module), 53
shunt() (skrf.media.rectangularWaveguide.RectangularWaveguiditio (module), 162
                   method), 229
                                                                                                                   skrf.io.csv (module), 169
shunt_capacitor() (skrf.media.cpw.CPW method), 243
                                                                                                                   skrf.io.general (module), 162
shunt_capacitor() (skrf.media.distributedCircuit.DistributedCkmfuit.touchstone (module), 166
                   method), 215
                                                                                                                   skrf.mathFunctions (module), 148
shunt_capacitor()
                                                (skrf.media.freespace.Freespace
                                                                                                                   skrf.media (module), 191
                                                                                                                   skrf.network (module), 57
                   method), 257
shunt_capacitor() (skrf.media.media.Media method), 200
                                                                                                                   skrf.networkSet (module), 136
shunt capacitor() (skrf.media.rectangularWaveguide.RectangularWattierguideodule), 142
                   method), 229
                                                                                                                   skrf.tlineFunctions (module), 151
shunt delay load() (skrf.media.cpw.CPW method), 243
                                                                                                                   skrf.util (module), 160
shunt_delay_load() (skrf.media.distributedCircuit.DistributesICfrvii(module), 260
                   method), 215
                                                                                                                   skrf.vi.sa (module), 278
                                                                                                                   skrf.vi.stages (module), 281
shunt delay load()
                                                (skrf.media.freespace.Freespace
                   method), 257
                                                                                                                   skrf.vi.vna (module), 261
shunt_delay_load() (skrf.media.media.Media method),
                                                                                                                   smith() (in module skrf.plotting), 142
                                                                                                                   span (skrf.frequency.Frequency attribute), 55
shunt_delay_load() (skrf.media.rectangularWaveguide.RectanglitterWaveguide.acpw.CPW method), 245
                   method), 230
                                                                                                                   splitter() (skrf.media.distributedCircuit.DistributedCircuit
shunt_delay_open() (skrf.media.cpw.CPW method), 243
                                                                                                                                      method), 216
shunt_delay_open() (skrf.media.distributedCircuit.Distributex#@iten@t (skrf.media.freespace.Freespace method), 259
                   method), 215
                                                                                                                   splitter() (skrf.media.media.Media method), 202
                                                                                                                   splitter() (skrf.media.rectangularWaveguide.RectangularWaveguide
shunt_delay_open()
                                                (skrf.media.freespace.Freespace
                   method), 257
                                                                                                                                      method), 231
shunt delay open() (skrf.media.media.Media method),
                                                                                                                   sqrt phase unwrap() (in module skrf.mathFunctions),
                                                                                                                                       149
shunt_delay_open() (skrf.media.rectangularWaveguide.RectangularWaveguide.y.Frequency attribute), 55
                                                                                                                   std s db (skrf.networkSet.NetworkSet attribute), 138
                   method), 230
shunt_delay_short() (skrf.media.cpw.CPW method), 244
                                                                                                                   step (skrf.frequency.Frequency attribute), 55
shunt_delay_short() (skrf.media.distributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.DistributedCircuit.
                                                                                                                   stop (skrf.frequency.Frequency attribute), 55
                   method), 216
shunt delay short()
                                                (skrf.media.freespace.Freespace
                                                                                                                   surface resistivity() (in module skrf.tlineFunctions), 159
                   method), 258
                                                                                                                   sweep() (skrf.vi.sa.HP8500 method), 281
shunt_delay_short() (skrf.media.media.Media method),
                                                                                                                   sweep() (skrf.vi.vna.PNA method), 271
                                                                                                                   sweep() (skrf.vi.vna.ZVA40 method), 273
shunt_delay_short() (skrf.media.rectangularWaveguide.RectawatclarWavesgukte.vi.vna.HP8510C attribute), 275
                   method), 230
                                                                                                                   switch_terms (skrf.vi.vna.HP8720 attribute), 277
shunt_inductor() (skrf.media.cpw.CPW method), 244
shunt\_inductor() \ (skrf.media.distributed Circuit.Distributed C
                   method), 216
                                                                                                                   t (skrf.network.Network attribute), 66
shunt inductor()
                                                 (skrf.media.freespace.Freespace
                                                                                                                   t2s() (in module skrf.network), 134
                   method), 258
                                                                                                                   t2y() (in module skrf.network), 135
shunt inductor() (skrf.media.media.Media method), 202
                                                                                                                   t2z() (in module skrf.network), 134
```

tee() (skrf.media.cpw.CPW method), 245	upload_cal_data() (skrf.vi.vna.ZVA40 method), 273
tee() (skrf.media.distributedCircuit.DistributedCircuit method), 217	V
tee() (skrf.media.freespace.Freespace method), 259	velocity (skrf.vi.stages.ESP300 attribute), 282
tee() (skrf.media.media.Media method), 202	\A/
tee() (skrf.media.rectangularWaveguide.RectangularWaveg method), 231	
theta() (in module skrf.tlineFunctions), 152	w (skrf.frequency.Frequency attribute), 56
theta_2_d() (skrf.media.cpw.CPW method), 245	wait() (skrf.vi.vna.ZVA40 method), 273
theta_2_d() (skrf.media.distributedCircuit.DistributedCircu	wait_for_stop() (skrf.vi.stages.ESP300 method), 283
method), 217	winte_gaussian_potar() (skrr.media.cpw.cr w method), 246
theta_2_d() (skrf.media.freespace.Freespace method), 259	white_gaussian_polar() (skrf.media.distributedCircuit.DistributedCircuit method), 218
theta_2_d() (skrf.media.media.Media method), 203 theta_2_d() (skrf.media.rectangularWaveguide.Rectangular	white gaussian polar() (skrf media freespace Freespace
method), 232	
thru() (skrf.media.cpw.CPW method), 246	white_gaussian_polar() (skrf.media.media.Media method), 203
thru() (skrf.media.distributedCircuit.DistributedCircuit	white_gaussian_polar() (skrf.media.rectangularWaveguide.RectangularWav
method), 217	method), 232
thru() (skrf.media.freespace.Freespace method), 260	write() (in module skrf.io.general), 164
thru() (skrf.media.media.Media method), 203	write() (skrf.calibration.calibration.Calibration method),
$thru() \ (skrf.media.rectangular Waveguide. Rectangular Waveguide.$	guide 177, 190
method), 232	write() (skrf.network.Network method), 120
to_dict() (skrf.networkSet.NetworkSet method), 141	write() (skrf.networkSet.NetworkSet method), 142
total_error() (skrf.calibration.calibration.Calibration	write() (skrf.vi.sa.HP8500 method), 281
method), 176, 189 Touchstone (class in skrf.io.touchstone), 166	write() (skrf.vi.stages.ESP300 method), 283
trace_a (skrf.vi.sa.HP8500 attribute), 279	write() (skrf.vi.vna.HP8510C method), 276
trace_b (skrf.vi.sa.HP8500 attribute), 279	write() (skrf.vi.vna.HP8720 method), 278
Ts (skrf.calibration.calibration.Calibration attribute), 171,	write() (skrf.vi.vna.PNA method), 271
183	write() (skrf.vi.vna.ZVA40 method), 274 write_all() (in module skrf.io.general), 165
two_port (skrf.vi.vna.HP8510C attribute), 275	write_csv() (skrf.media.cpw.CPW method), 246
two_port (skrf.vi.vna.HP8720 attribute), 277	write_csv() (skrf.media.distributedCircuit.DistributedCircuit
two_port() (in module	method), 218
skrf.calibration.calibrationAlgorithms), 179 type (skrf.calibration.calibration.Calibration attribute),	write_csv() (skrf.media.freespace.Freespace method), 260
173, 185	write_csv() (skrf.media.media.Media method), 204
U	write_csv() (skrf.media.rectangularWaveguide.RectangularWaveguide
	method), 233
unbiased_error() (skrf.calibration.calibration.Calibration method), 177, 189	write_touchstone() (skrf.network.Network method), 121
uncertainty_ntwk_triplet() (skrf.networkSet.NetworkSet	Υ
method), 141	Y (skrf.media.distributedCircuit.DistributedCircuit
uncertainty_per_standard()	attribute), 205
(skrf.calibration.calibration.Calibration	Y (skrf.media.freespace.Freespace attribute), 247
method), 177, 190	y (skrf.network.Network attribute), 67
unit (skrf.frequency.Frequency attribute), 55	y2s() (in module skrf.network), 133
unit_dict (skrf.frequency.Frequency attribute), 55	y2t() (in module skrf.network), 134
UNIT_DICT (skrf.vi.stages.ESP300 attribute), 281 units (skrf.vi.stages.ESP300 attribute), 282	y2z() (in module skrf.network), 133
unterminate_switch_terms() (in module	y_arcl (skrf.network.Network attribute), 67
skrf.calibration.calibrationAlgorithms), 181	y_arcl_unwrap (skrf.network.Network attribute), 67
unwrap_rad() (in module skrf.mathFunctions), 149	y_db (skrf.network.Network attribute), 67 y_deg (skrf.network.Network attribute), 68
update_trace_list() (skrf.vi.vna.ZVA40 method), 273	y_deg_unwrap (skrf.network.Network attribute), 68
	J_665_GIIWIGP (SKITHELWOIK ALLIDUKE), 00

```
y im (skrf.network.Network attribute), 68
y_mag (skrf.network.Network attribute), 68
y rad (skrf.network.Network attribute), 68
y_rad_unwrap (skrf.network.Network attribute), 68
y re (skrf.network.Network attribute), 69
y vswr (skrf.network.Network attribute), 69
Ζ
Z
         (skrf.media.distributedCircuit.DistributedCircuit
         attribute), 205
Z (skrf.media.freespace.Freespace attribute), 247
z (skrf.network.Network attribute), 69
z0 (skrf.media.cpw.CPW attribute), 235
z0 (skrf.media.distributedCircuit.DistributedCircuit at-
         tribute), 206
z0 (skrf.media.freespace.Freespace attribute), 248
z0 (skrf.media.media.Media attribute), 192
z0 (skrf.media.rectangularWaveguide.RectangularWaveguide
         attribute), 221
z0 (skrf.network.Network attribute), 69
Z0() (skrf.media.cpw.CPW method), 236
        (skrf.media.distributedCircuit.DistributedCircuit
Z0()
         method), 207
Z0() (skrf.media.freespace.Freespace method), 249
Z0() (skrf.media.rectangularWaveguide.RectangularWaveguide
         method), 222
z2s() (in module skrf.network), 131
z2t() (in module skrf.network), 132
z2y() (in module skrf.network), 132
z_arcl (skrf.network.Network attribute), 70
z_arcl_unwrap (skrf.network.Network attribute), 70
z_db (skrf.network.Network attribute), 70
z_deg (skrf.network.Network attribute), 70
z_deg_unwrap (skrf.network.Network attribute), 70
z_im (skrf.network.Network attribute), 70
z_mag (skrf.network.Network attribute), 71
z_rad (skrf.network.Network attribute), 71
z_rad_unwrap (skrf.network.Network attribute), 71
z re (skrf.network.Network attribute), 71
z vswr (skrf.network.Network attribute), 71
zl 2 Gamma0() (in module skrf.tlineFunctions), 152
zl_2_Gamma_in() (in module skrf.tlineFunctions), 153
zl 2 zin() (in module skrf.tlineFunctions), 153
ZVA40 (class in skrf.vi.vna), 271
```