

Representación y Comunicación de la Información

Fundamentos esenciales que permiten procesar, transmitir y proteger la información digital.

1.1 Introducción

- La **representación de la información** consiste en transformar fenómenos reales en estructuras digitales binarias.
- Es la base de todo sistema informático:
 - Hardware
 - Software
 - Redes
 - Datos

1.2 Sistemas de Numeración

- Conceptos clave: base, dígitos, sistema posicional
- Sistemas usados en informática:
 - Binario (base 2)
 - Octal (base 8)
 - Decimal (base 10)
 - Hexadecimal (base 16)

Conversión entre sistemas

De	Α	Método
Binario	Decimal	Potencias de 2
Decimal	Binario	División sucesiva por 2
Binario	Hex	Agrupación en bloques de 4
Hex	Binario	Expansión directa por dígitos

💣 Útil para debugging, direccionamiento y arquitectura de sistemas.

1.3 Representación de Datos

- Datos lógicos
 - Representados como ø y 1
 - Manipulación con puertas lógicas: AND, OR, NOT, XOR...

- + Representación de enteros
 - Signo y magnitud (obsoleto)
 - Complemento a 1 (CA1)
 - Complemento a 2 (CA2) → más simple para hardware

№ Punto flotante (IEEE 754)

Precisión	Bits totales	Signo	Exponente	Mantisa
Simple	32	1	8	23
Doble	64	1	11	52

- Normalización: forma 1.xxxxx
- Permite alta precisión y representación única

Representación de texto

Sistema	Características
ASCII	7 bits, limitado a caracteres básicos
Extendido	8 bits, añade acentos y símbolos
Unicode	UTF-8/16/32, soporta todos los idiomas + emojis

Representación de imágenes

- Matriz de píxeles (RGB + canal alfa)
- Formatos:
 - o BMP: sin compresión
 - o **PNG**: sin pérdida
 - o JPEG: compresión con pérdida

Representación de vídeo

- Secuencia de imágenes + audio
- Compresión:
 - Intraframe: dentro de cada imagen
 - Interframe: entre imágenes

Códecs:

• H.264, H.265 (HEVC), AV1 (mejor compresión)

Representación de audio

- Muestreo:
 - o 44.1 kHz (CD)
 - 48 kHz (vídeo)
- Cuantificación:
 - o 16 o 24 bits

Formato	Tipo
WAV, FLAC	Sin pérdida
MP3, AAC	Con pérdida

1.4 Detección y Corrección de Errores

Técnica	Capacidad	
Bit de paridad	Detección simple (1 bit)	
CRC	Comprobación cíclica de redundancia	
Código de Hamming	Corrige 1 bit	
Memorias ECC	Detecta y corrige errores simples	
Reed-Solomon	Corrige múltiples errores (CDs, QR)	

1.5 Representación en Big Data y Nube

Formatos de datos

Formato	Uso
JSON	Datos estructurados (web, APIs)
BSON	Binario (MongoDB)
Avro	Apache Kafka, necesita esquema JSON
ORC	Columnar optimizado (Hadoop, Hive)

Usados en pipelines, cloud computing y análisis masivo (Spark, Hadoop)

1.6 Comunicación Digital

Modelo de Shannon-Weaver

Elemento	Función
Emisor	Genera el mensaje
Codificador	Traduce a señales
Canal	Medio físico, puede tener ruido
Decodificador	Reconstruye la señal original
Receptor	Recibe el mensaje

+ Posprocesos: compresión y cifrado

1.7 Seguridad

Hashing

- MD5, SHA-256
- Verifica integridad del mensaje

Cifrado

Tipo	Ejemplos	Clave
Simétrico	AES	Misma clave
Asimétrico	RSA	Clave pública/privada
Combinado	SSL/TLS	Mixto

Aplicaciones: HTTPS, VPN, BitLocker, certificados digitales

L 1.8 Compresión de datos

Sin pérdida

Formato	Algoritmo
ZIP	Deflate
7ZIP	LZWA
FLAC/WAV	Audio sin pérdida

Con pérdida

Formato	Aplicación
JPEG	Imágenes
MP3	Audio
11264	\/{\delta}

✓ 1.9 Conclusión

- La representación y comunicación de la información es la base de la informática
- Desde circuitos y lógica hasta servicios en la nube
- Esencial para el diseño eficiente, seguro y escalable de sistemas
- Todo lo digital empieza con unos y ceros.