

Bilinear form

In <u>mathematics</u>, a **bilinear form** is a <u>bilinear map</u> $V \times V \to K$ on a <u>vector space</u> V (the elements of which are called <u>vectors</u>) over a <u>field</u> K (the elements of which are called <u>scalars</u>). In other words, a bilinear form is a function $B: V \times V \to K$ that is linear in each argument separately:

- $B(\mathbf{u} + \mathbf{v}, \mathbf{w}) = B(\mathbf{u}, \mathbf{w}) + B(\mathbf{v}, \mathbf{w})$ and $B(\lambda \mathbf{u}, \mathbf{v}) = \lambda B(\mathbf{u}, \mathbf{v})$
- $B(\mathbf{u}, \mathbf{v} + \mathbf{w}) = B(\mathbf{u}, \mathbf{v}) + B(\mathbf{u}, \mathbf{w})$ and $B(\mathbf{u}, \lambda \mathbf{v}) = \lambda B(\mathbf{u}, \mathbf{v})$

The dot product on \mathbb{R}^n is an example of a bilinear form. [1]

The definition of a bilinear form can be extended to include <u>modules</u> over a <u>ring</u>, with <u>linear maps</u> replaced by module homomorphisms.

When K is the field of <u>complex numbers</u> \mathbb{C} , one is often more interested in <u>sesquilinear forms</u>, which are similar to bilinear forms but are conjugate linear in one argument.

Coordinate representation

Let *V* be an *n*-dimensional vector space with basis $\{\mathbf{e}_1, ..., \mathbf{e}_n\}$.

The $n \times n$ matrix A, defined by $A_{ij} = B(\mathbf{e}_i, \mathbf{e}_j)$ is called the *matrix of the bilinear form* on the basis $\{\mathbf{e}_1, ..., \mathbf{e}_n\}$.

If the $n \times 1$ matrix x represents a vector \mathbf{x} with respect to this basis, and similarly, the $n \times 1$ matrix y represents another vector \mathbf{y} , then:

$$B(\mathbf{x},\mathbf{y}) = \mathbf{x}^\mathsf{T} A \mathbf{y} = \sum_{i,j=1}^n x_i A_{ij} y_j.$$

A bilinear form has different matrices on different bases. However, the matrices of a bilinear form on different bases are all congruent. More precisely, if $\{\mathbf{f}_1, \ldots, \mathbf{f}_n\}$ is another basis of V, then

$$\mathbf{f}_j = \sum_{i=1}^n S_{i,j} \mathbf{e}_i,$$

where the $S_{i,j}$ form an <u>invertible matrix</u> S. Then, the matrix of the bilinear form on the new basis is S^TAS .

Maps to the dual space

Every bilinear form B on V defines a pair of linear maps from V to its <u>dual space</u> V^* . Define $B_1, B_2: V \to V^*$ by

$$B_1(\mathbf{v})(\mathbf{w}) = B(\mathbf{v}, \mathbf{w})$$

 $B_2(\mathbf{v})(\mathbf{w}) = B(\mathbf{w}, \mathbf{v})$

This is often denoted as

$$B_1(\mathbf{v}) = B(\mathbf{v}, \cdot)$$

 $B_2(\mathbf{v}) = B(\cdot, \mathbf{v})$

where the dot (\cdot) indicates the slot into which the argument for the resulting <u>linear functional</u> is to be placed (see Currying).

For a finite-dimensional vector space V, if either of B_1 or B_2 is an isomorphism, then both are, and the bilinear form B is said to be <u>nondegenerate</u>. More concretely, for a finite-dimensional vector space, non-degenerate means that every non-zero element pairs non-trivially with some other element:

$$B(x,y) = 0$$
 for all $y \in V$ implies that $x = 0$ and $B(x,y) = 0$ for all $x \in V$ implies that $y = 0$.

The corresponding notion for a module over a commutative ring is that a bilinear form is **unimodular** if $V \to V^*$ is an isomorphism. Given a finitely generated module over a commutative ring, the pairing may be injective (hence "nondegenerate" in the above sense) but not unimodular. For example, over the integers, the pairing B(x, y) = 2xy is nondegenerate but not unimodular, as the induced map from $V = \mathbf{Z}$ to $V^* = \mathbf{Z}$ is multiplication by 2.

If V is finite-dimensional then one can identify V with its double dual V^{**} . One can then show that B_2 is the <u>transpose</u> of the linear map B_1 (if V is infinite-dimensional then B_2 is the transpose of B_1 restricted to the image of V in V^{**}). Given B one can define the *transpose* of B to be the bilinear form given by

$${}^{\mathsf{t}}B(\mathbf{v},\mathbf{w})=B(\mathbf{w},\mathbf{v}).$$

The **left radical** and **right radical** of the form B are the <u>kernels</u> of B_1 and B_2 respectively; [2] they are the vectors orthogonal to the whole space on the left and on the right. [3]

If V is finite-dimensional then the $\underline{\operatorname{rank}}$ of B_1 is equal to the rank of B_2 . If this number is equal to $\dim(V)$ then B_1 and B_2 are linear isomorphisms from V to V^* . In this case B is nondegenerate. By the $\underline{\operatorname{rank-nullity}}$ theorem, this is equivalent to the condition that the left and equivalently right radicals be trivial. For finite-dimensional spaces, this is often taken as the *definition* of nondegeneracy:

Definition: *B* is **nondegenerate** if $B(\mathbf{v}, \mathbf{w}) = 0$ for all \mathbf{w} implies $\mathbf{v} = \mathbf{0}$.

Given any linear map $A:V\to V^*$ one can obtain a bilinear form B on V via

$$B(\mathbf{v}, \mathbf{w}) = A(\mathbf{v})(\mathbf{w}).$$

This form will be nondegenerate if and only if A is an isomorphism.

If V is finite-dimensional then, relative to some <u>basis</u> for V, a bilinear form is degenerate if and only if the <u>determinant</u> of the associated matrix is zero. Likewise, a nondegenerate form is one for which the <u>determinant</u> of the associated matrix is non-zero (the matrix is <u>non-singular</u>). These statements are independent of the chosen basis. For a module over a commutative ring, a unimodular form is one for which the determinant of the associate matrix is a <u>unit</u> (for example 1), hence the term; note that a form whose matrix determinant is non-zero but not a unit will be nondegenerate but not unimodular, for example B(x, y) = 2xy over the integers.

Symmetric, skew-symmetric and alternating forms

We define a bilinear form to be

- symmetric if $B(\mathbf{v}, \mathbf{w}) = B(\mathbf{w}, \mathbf{v})$ for all \mathbf{v} , \mathbf{w} in V;
- alternating if $B(\mathbf{v}, \mathbf{v}) = 0$ for all \mathbf{v} in V;
- skew-symmetric or antisymmetric if $B(\mathbf{v}, \mathbf{w}) = -B(\mathbf{w}, \mathbf{v})$ for all \mathbf{v}, \mathbf{w} in V;

Proposition

Every alternating form is skew-symmetric.

Proof

This can be seen by expanding $B(\mathbf{v} + \mathbf{w}, \mathbf{v} + \mathbf{w})$.

If the <u>characteristic</u> of K is not 2 then the converse is also true: every skew-symmetric form is alternating. However, if char(K) = 2 then a skew-symmetric form is the same as a symmetric form and there exist symmetric/skew-symmetric forms that are not alternating.

A bilinear form is symmetric (respectively skew-symmetric) if and only if its coordinate matrix (relative to any basis) is symmetric (respectively skew-symmetric). A bilinear form is alternating if and only if its coordinate matrix is skew-symmetric and the diagonal entries are all zero (which follows from skew-symmetry when $char(K) \neq 2$).

A bilinear form is symmetric if and only if the maps B_1 , B_2 : $V \to V^*$ are equal, and skew-symmetric if and only if they are negatives of one another. If $\operatorname{char}(K) \neq 2$ then one can decompose a bilinear form into a symmetric and a skew-symmetric part as follows

$$B^+ = \frac{1}{2}(B + {}^{\mathrm{t}}B) \qquad B^- = \frac{1}{2}(B - {}^{\mathrm{t}}B),$$

where ${}^{t}B$ is the transpose of B (defined above).

Derived quadratic form

For any bilinear form $B: V \times V \to K$, there exists an associated <u>quadratic form</u> $Q: V \to K$ defined by $Q: V \to K: \mathbf{v} \mapsto B(\mathbf{v}, \mathbf{v})$.

When $char(K) \neq 2$, the quadratic form Q is determined by the symmetric part of the bilinear form B and is independent of the antisymmetric part. In this case there is a one-to-one correspondence between the symmetric part of the bilinear form and the quadratic form, and it makes sense to speak of the symmetric bilinear form associated with a quadratic form.

When char(K) = 2 and dim V > 1, this correspondence between quadratic forms and symmetric bilinear forms breaks down.

Reflexivity and orthogonality

Definition: A bilinear form $B: V \times V \to K$ is called **reflexive** if $B(\mathbf{v}, \mathbf{w}) = 0$ implies

 $B(\mathbf{w}, \mathbf{v}) = 0$ for all \mathbf{v}, \mathbf{w} in V.

Definition: Let $B: V \times V \to K$ be a reflexive bilinear form. v, w in V are orthogonal with

respect to \mathbf{B} if $B(\mathbf{v}, \mathbf{w}) = 0$.

A bilinear form B is reflexive if and only if it is either symmetric or alternating. In the absence of reflexivity we have to distinguish left and right orthogonality. In a reflexive space the left and right radicals agree and are termed the *kernel* or the *radical* of the bilinear form: the subspace of all vectors orthogonal with every other vector. A vector \mathbf{v} , with matrix representation x, is in the radical of a bilinear form with matrix representation A, if and only if $Ax = 0 \Leftrightarrow x^TA = 0$. The radical is always a subspace of V. It is trivial if and only if the matrix A is nonsingular, and thus if and only if the bilinear form is nondegenerate.

Suppose W is a subspace. Define the orthogonal complement [5]

$$W^{\perp} = \{ \mathbf{v} \mid B(\mathbf{v}, \mathbf{w}) = 0 \text{ for all } \mathbf{w} \in W \}.$$

For a non-degenerate form on a finite-dimensional space, the map $V/W \to W^{\perp}$ is <u>bijective</u>, and the dimension of W^{\perp} is $\dim(V) - \dim(W)$.

Different spaces

Much of the theory is available for a <u>bilinear mapping</u> from two vector spaces over the same base field to that field

$$B: V \times W \rightarrow K$$
.

Here we still have induced linear mappings from V to W^* , and from W to V^* . It may happen that these mappings are isomorphisms; assuming finite dimensions, if one is an isomorphism, the other must be. When this occurs, B is said to be a **perfect pairing**.

In finite dimensions, this is equivalent to the pairing being nondegenerate (the spaces necessarily having the same dimensions). For modules (instead of vector spaces), just as how a nondegenerate form is weaker than a unimodular form, a nondegenerate pairing is a weaker notion than a perfect pairing. A pairing can be nondegenerate without being a perfect pairing, for instance $\mathbf{Z} \times \mathbf{Z} \to \mathbf{Z}$ via $(x, y) \mapsto 2xy$ is nondegenerate, but induces multiplication by 2 on the map $\mathbf{Z} \to \mathbf{Z}^*$.

Terminology varies in coverage of bilinear forms. For example, <u>F. Reese Harvey</u> discusses "eight types of inner product". To define them he uses diagonal matrices A_{ij} having only +1 or -1 for non-zero elements. Some of the "inner products" are <u>symplectic forms</u> and some are <u>sesquilinear forms</u> or <u>Hermitian forms</u>. Rather than a general field K, the instances with real numbers \mathbb{R} , complex numbers \mathbb{C} , and quaternions \mathbb{H} are spelled out. The bilinear form

$$\sum_{k=1}^p x_k y_k - \sum_{k=p+1}^n x_k y_k$$

is called the **real symmetric case** and labeled $\mathbf{R}(p, q)$, where p + q = n. Then he articulates the connection to traditional terminology: [7]

Some of the real symmetric cases are very important. The positive definite case $\mathbf{R}(n, 0)$ is called *Euclidean space*, while the case of a single minus, $\mathbf{R}(n-1, 1)$ is called *Lorentzian space*. If n = 4, then Lorentzian space is also called *Minkowski space* or *Minkowski spacetime*. The special case $\mathbf{R}(p, p)$ will be referred to as the *split-case*.

Relation to tensor products

By the <u>universal property</u> of the <u>tensor product</u>, there is a canonical correspondence between bilinear forms on V and linear maps $V \otimes V \to K$. If B is a bilinear form on V the corresponding linear map is given by

$$\mathbf{v} \otimes \mathbf{w} \mapsto B(\mathbf{v}, \mathbf{w})$$

In the other direction, if $F: V \otimes V \to K$ is a linear map the corresponding bilinear form is given by composing F with the bilinear map $V \times V \to V \otimes V$ that sends (\mathbf{v}, \mathbf{w}) to $\mathbf{v} \otimes \mathbf{w}$.

The set of all linear maps $V \otimes V \to K$ is the <u>dual space</u> of $V \otimes V$, so bilinear forms may be thought of as elements of $(V \otimes V)^*$ which (when V is finite-dimensional) is canonically isomorphic to $V^* \otimes V^*$.

Likewise, symmetric bilinear forms may be thought of as elements of $(\operatorname{Sym}^2 V)^*$ (dual of the second symmetric power of V) and alternating bilinear forms as elements of $(\Lambda^2 V)^* \simeq \Lambda^2 V^*$ (the second exterior power of V^*). If $\operatorname{char} K \neq 2$, $(\operatorname{Sym}^2 V)^* \simeq \operatorname{Sym}^2(V^*)$.

On normed vector spaces

Definition: A bilinear form on a <u>normed vector space</u> $(V, \|\cdot\|)$ is **bounded**, if there is a constant C such that for all $\mathbf{u}, \mathbf{v} \in V$,

$$B(\mathbf{u},\mathbf{v}) \leq C \|\mathbf{u}\| \|\mathbf{v}\|.$$

Definition: A bilinear form on a normed vector space $(V, \| \cdot \|)$ is **elliptic**, or <u>coercive</u>, if there is a constant c > 0 such that for all $\mathbf{u} \in V$,

$$B(\mathbf{u}, \mathbf{u}) \geq c \|\mathbf{u}\|^2$$
.

Generalization to modules

Given a <u>ring</u> R and a right \underline{R} -module M and its <u>dual module</u> M^* , a mapping $B: M^* \times M \to R$ is called a **bilinear form** if

$$B(u + v, x) = B(u, x) + B(v, x)$$

 $B(u, x + y) = B(u, x) + B(u, y)$

$$B(\alpha u, x\beta) = \alpha B(u, x)\beta$$

for all $u, v \in M^*$, all $x, y \in M$ and all $\alpha, \beta \in R$.

The mapping $\langle \cdot, \cdot \rangle : M^* \times M \to R : (u, x) \mapsto u(x)$ is known as the <u>natural pairing</u>, also called the canonical bilinear form on $M^* \times M$.[8]

A linear map $S: M^* \to M^*: u \mapsto S(u)$ induces the bilinear form $B: M^* \times M \to R: (u, x) \mapsto \langle S(u), x \rangle$, and a linear map $T: M \to M: x \mapsto T(x)$ induces the bilinear form $B: M^* \times M \to R: (u, x) \mapsto \langle u, T(x) \rangle$.

Conversely, a bilinear form $B:M^*\times M\to R$ induces the R-linear maps $S:M^*\to M^*:u\mapsto (x\mapsto B(u,x))$ and $T':M\to M^{**}:x\mapsto (u\mapsto B(u,x))$. Here, M^{**} denotes the double dual of M.

See also

- Bilinear map
- Category:Bilinear maps
- Inner product space
- Linear form
- Multilinear form

- Polar space
- Quadratic form
- Sesquilinear form
- System of bilinear equations

Citations

- 1. "Chapter 3. Bilinear forms Lecture notes for MA1212" (https://www.maths.tcd.ie/~pete/ma1212/chapter3.pdf) (PDF). 2021-01-16.
- 2. Jacobson 2009, p. 346.
- 3. Zhelobenko 2006, p. 11.
- 4. Grove 1997.
- 5. Adkins & Weintraub 1992, p. 359.
- 6. Harvey 1990, p. 22.
- 7. Harvey 1990, p. 23.
- 8. <u>Bourbaki 1970</u>, p. 233.

References

- Adkins, William A.; Weintraub, Steven H. (1992), Algebra: An Approach via Module
 Theory, Graduate Texts in Mathematics, vol. 136, Springer-Verlag, ISBN 3-540-97839-9,
 Zbl 0768.00003 (https://zbmath.org/?format=complete&q=an:0768.00003)
- Bourbaki, N. (1970), Algebra, Springer
- Cooperstein, Bruce (2010), "Ch 8: Bilinear Forms and Maps", *Advanced Linear Algebra*, CRC Press, pp. 249–88, ISBN 978-1-4398-2966-0
- Grove, Larry C. (1997), *Groups and characters*, Wiley-Interscience, <u>ISBN</u> <u>978-0-471-</u> 16340-4
- Halmos, Paul R. (1974), *Finite-dimensional vector spaces*, <u>Undergraduate Texts in</u> Mathematics, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90093-3,

- Zbl 0288.15002 (https://zbmath.org/?format=complete&q=an:0288.15002)
- Harvey, F. Reese (1990), "Chapter 2: The Eight Types of Inner Product Spaces", *Spinors and calibrations*, Academic Press, pp. 19–40, ISBN 0-12-329650-1
- Popov, V. L. (1987), "Bilinear form" (https://www.encyclopediaofmath.org/index.php/Bilinear_form), in Hazewinkel, M. (ed.), *Encyclopedia of Mathematics*, vol. 1, Kluwer Academic Publishers, pp. 390–392. Also: *Bilinear form (https://books.google.com/books?id=RVr5BwAAQBAJ&pg=PA390)*, p. 390, at Google Books
- Jacobson, Nathan (2009), Basic Algebra, vol. I (2nd ed.), Courier Corporation, ISBN 978-0-486-47189-1
- Milnor, J.; Husemoller, D. (1973), *Symmetric Bilinear Forms*, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 73, Springer-Verlag, ISBN 3-540-06009-X, Zbl 0292.10016 (https://zbmath.org/?format=complete&q=an:0292.10016)
- Porteous, Ian R. (1995), Clifford Algebras and the Classical Groups, Cambridge Studies in Advanced Mathematics, vol. 50, Cambridge University Press, ISBN 978-0-521-55177-9
- Shafarevich, I. R.; A. O. Remizov (2012), *Linear Algebra and Geometry* (https://www.springer.com/mathematics/algebra/book/978-3-642-30993-9), Springer, ISBN 978-3-642-30993-9
- Shilov, Georgi E. (1977), Silverman, Richard A. (ed.), *Linear Algebra*, Dover, <u>ISBN</u> <u>0-486-</u>63518-X
- Zhelobenko, Dmitriĭ Petrovich (2006), *Principal Structures and Methods of Representation Theory*, Translations of Mathematical Monographs, <u>American Mathematical Society</u>, ISBN 0-8218-3731-1

External links

- "Bilinear form" (https://www.encyclopediaofmath.org/index.php?title=Bilinear_form), Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- "Bilinear form" (https://planetmath.org/BilinearForm). PlanetMath.

This article incorporates material from Unimodular on $\underline{PlanetMath}$, which is licensed under the $Creative\ Commons\ Attribution/Share-Alike\ License.$

Retrieved from "https://en.wikipedia.org/w/index.php?title=Bilinear form&oldid=1179519712"

https://en.wikipedia.org/wiki/Bilinear form