Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2022 CS3EA04 Pattern Recognition

Programme: B.Tech. Branch/Specialisation: CSE

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of O.1 (MCOs) should be written in full instead of only a, b, c or d.

Q.1	i.	Which of the following is	necessary to know to use Bayes'	1
		Theorem to calculate the P(A	A/B):	
		(a) P(A) and P(B)	(b) $P(B)$ and $P(B/A)$	
		(c) $P(A)$, $P(B)$, and $P(B/A)$	(d) P(A) and P(B/A)	
	ii.	A is a decision	n support tool that uses a tree-like	1
		graph or model of decision	s and their possible consequences,	
		including chance event outcomes, resource costs, and utility.		
		(a) Decision tree	(b) Graphs	
		(c) Trees	(d) Neural networks	
	iii.	What is meant by notation p	(wilx), where x is feature and wi is	1
		state of nature:		
		(a) Likely-hood	(b) Prior probability	
		(c) Posterior probability	(d) None of these	
	iv.	Which allows for a simple a	nd matrix implementation of all the	1
		basic algorithm?		
		(a) HMM	(b) Restricted structure of HMM	
		(c) Temporary model	(d) Reality model	
	v.	When performing regression	on or classification, which of the	1
		following is the correct way t	o pre-process the data?	
		(a) Normalize the data \rightarrow PC	A → training	
		(b) PCA \rightarrow normalize PCA of	output → training	
		(c) Normalize the data \rightarrow	$PCA \rightarrow normalize PCA output \rightarrow$	
		training		
		(d) None of these		
			P.7	Г.О.

vi. The Euclidean distance between two a set of numerical 1

		attributes is called as?		
		(a) Closeness	(b) Validation data	
		(c) Error rate	(d) None of these	
	vii.	This clustering algorithm men no optimal partitions.	rges and splits nodes to help modify	1
		(a) Agglomerative clustering	(b) Expectation maximization	
		(c) Conceptual clustering	(d) K-Means clustering	
	viii.	Which of the following is Clustering?	finally produced by Hierarchical	1
		(a) Final estimate of cluster c	entroids	
		(b) Tree showing how close t		
		(c) Assignment of each point		
		(d) All of these	to clusters	
	ix.		egardless of their position, scale, in	1
	IX.		ation, facial expressions, occlusions	
		(a) Face detection	(b) Face recognition	
		(c) Face identification	(d) Face verification	
	х.	` '	he hyperplane depends upon which	1
		(a) The number of features		
		(b) The number of samples		
		(c) The number of target varia	ables	
		(d) All of these		
Q.2	i.	Explain the designing cycle of appropriate diagram.	of pattern recognition with the help	4
	ii.	=	ayes classifier is equivalent to a assuming that the feature vector is	6
		Gaussian.		
OR	iii.	example. Which measure	decision tree with the help of an is used as an attribute selection	6
		measure for different tree mo	dels?	

Q.3	i	Define the general principal of bayesian method of estimation.	3
	ii.	Why is parameter estimation important? Explain hidden markov model (HMM) decoding algorithm with the help of example and its role in the classifier design.	7
OR	iii.	Explain maximum likelihood estimation with suitable example when the distribution is Gaussian.	7
Q.4	i. ii.	What is meant by the curse of dimensionality? How the K-nearest neighbour method works? Explain with KNN estimation and KNN rule with the help of suitable example.	2 8
OR	iii.	Explain the principal component analysis for dimensionality reduction with example.	8
Q.5	i.	What is clustering? Define the criterion functions used in clustering.	3
	ii.	What do you mean by hierarchical clustering? Differentiate between agglomerative and divisive clustering techniques.	7
OR	iii.	What is K means Clustering? State and explain the steps of K-means clustering algorithm with suitable example.	7
Q.6		Attempt any two:	
	i.	Formulate SVM as an optimization problem. How support vector machines can be used for classification of data which are not linearly separable?	5
	ii.	What is OCR? Explain how the process of optical character recognition is done.	5
	iii.	What is meant by image analysis? Explain the steps of image analysis.	5

Marking Scheme

CS3EA04 Pattern Recognition

1	i.	Which of the following is necessary to know to use Bayes' Theorem to calculate the P(A/B): (c) P(A), P(B), and P(B/A)	1
	ii.	A is a decision support tool that uses a tree-like graph or model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility. (a) Decision tree.	1
	iii.	What is meant by notation p(wilx), where x is feature and wi is state of nature: (b) Prior Probability.	1
	iv.	Which allows for a simple and matrix implementation of all the basic algorithm? (b) Restricted structure of HMM.	1
	v.	When performing regression or classification, which of the following is the correct way to pre-process the data? (a) Normalize the data → PCA → training.	1
	vi	The Euclidean distance between two a set of numerical attributes is called as? (a) Closeness.	1
	vii.	This clustering algorithm merges and splits nodes to help modify no optimal partitions. (d) K-Means clustering.	1
	viii.	Which of the following is finally produced by Hierarchical Clustering? (b) Tree showing how close things are to each other.	
	ix.	Find all faces in an image regardless of their position, scale, in plane rotation, pose, illumination, facial expressions, occlusions is called- (a) Face detection	1

	X.	In SVM, the dimension of the hyperplane one?	depends upon which	1
		(a) The number of features		
		(a) The number of reacures		
Q.2	i.	Explain the designing cycle of pattern recognappropriate diagram.	nition with the help of	4
		Designing cycle/ diagram.	-1 Marks -3 Marks	
	ii.	Description for each phases		6
OR	11.	State and Prove that a Bayes classifier is equidistance classifier, assuming that the feature		O
		Bayes Theorem	-2 Marks	
		Minimum distance classifier	-2 Marks	
		Equivalent When feature vector is Gaussian	-2 Marks	
	iii.	<u> </u>		6
		Concept of a decision tree	-2 Marks	
		Example with Diagram	- 3 Marks	
		Which measure is used	- 1 Marks	
Q.3	i.	Define the general principal of Bayesian method of estimation. Why is parameter estimation important?		3
		Define principal of Bayesian method	-2 Marks	
		Why is parameter estimation important	- 1 Marks	
OR	ii.	· · · · · · · · · · · · · · · · · · ·		7
		Explain HMM algorithm	- 3 Marks	
		Example	- 3 Marks	
		Role in the classifier design	- 1 Marks	
	iii.	Explain maximum likelihood estimation with when the distribution is Gaussian.	suitable example,	7
		Explain maximum likelihood estimation	- 4 Marks	
		Example	- 3 Marks	

Q.4	i. What is meant by the curse of dimensionality?		2
		What is curse of dimensionality? -2 Marks	
OR	ii.		
		KNN method Works - 2 Marks	
		KNN estimation - 2 Marks	
		KNN rule - 2 Marks	
		Example 2 Marks	
	iii.	Explain the principal component analysis for dimensionality	8
		reduction with example. Explain PCA -4 Marks	
		I ···	
		Example -4 Marks	
Q.5	i.	What is clustering? Define the criterion functions used in clustering.	3
		What is clustering? - 1 Marks	
		Define the criterion functions -2 Marks	
	ii.	What do you mean by hierarchical clustering? Differentiate	7
		between agglomerative and divisive clustering techniques.	
OR		Hierarchical clustering - 2 Marks	
011		Differentiation - 4Marks	
	iii.	What is K means Clustering? State and explain the steps of K-	
		means clustering algorithm with suitable example.	7
		Definition - 2 Marks	
		Steps of K-means clustering - 2 Marks	
		Example - 3 Marks	
Q.6		Attempt any two:	
	i.	Formulate SVM as an optimization problem. How support vector machines can be used for classification of data which are not linearly separable?	5
		Definition – 2 Marks	
		How support vector machines can be us -3Marks	

ii.	What is OCR? Explain how the process of optical character recognition is done.	5
	What is OCR? - 2 Marks Process of OCR -3Marks	
iii.	What is meant by image analysis? Explain the steps of image analysis.	5
	Meant by image analysis? Diagram Explanation of steps - 1 Marks - 1 Marks - 3 Marks	
