VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta informačních technologií

ELEKTRONIKA PRO INFORMAČNÍ TECHNOLOGIE 2019/2020

Semestrální projekt

Zadání:

1	2	3	4	5
F	F	A	F	F

1.

Stanovte napětí U_{R5} a proud I_{R5} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
F	125	65	510	500	550	250	300	800	330	250

Sériově zapojené zdroje: $U = U_1 + U_2$

U = 125 + 65

U = 190 V

Paralelně zapojené rezistory: R₇₈ =

 $R_{78} = \frac{R7*R8}{R7+R8}$

 $R_{78} = \frac{330 + 230}{330 + 250}$ $R_{78} = 142,2414 \Omega$

Sériově zapojené rezistory: $R_{45} = R_4 + R_5$

 $R_{45} = 250 + 300$

 $R_{45} = 550 \Omega$

Nyní použijeme úpravu troiúhelník – hvězda.

- Dopočítáme nové rezistory:

 $R_{A} = \frac{R1*R2}{R1+R2+R3}$ $R_{A} = \frac{510*500}{510+500+550}$ $R_{A} = \frac{163,4615 \Omega}{10}$

 $R_{B} = \frac{R1*R3}{R1+R2+R3}$ $R_{B} = \frac{510*550}{510+500+550}$ $R_{B} = 179.8077 \Omega$

 $R_{C} = \frac{R2*R3}{R1+R2+R3}$ $R_{C} = \frac{500*550}{510+500+550}$ $R_{C} = 176.2821 \Omega$

Sériově zapojené rezistory: $R_{\rm B45} = R_{\rm B} + R_{\rm 45}$

 $R_{B45} = 179,8077 + 550$

 $R_{B45} = 729,8077 \Omega$

Sériově zapojené rezistory: $R_{C6} = R_C + R_6$

 $R_{C6} = 176,2821 + 800$

 $R_{C6} = 976,2821 \Omega$

Paralelně zapojené rezistory: $R_{B45C6} = \frac{RB45*RC6}{RB45+RC6}$

 $R_{B45C6} = \frac{729,8077*976,2821}{729,8077+976,2821}$

 $R_{B45C6} = 417,6206 \Omega$

Sériově zapojené rezistory: $R = R_A + R_{B45C6} + R_{78}$

R = 163,4615 + 417,6206 + 142,2414

 $R = 723.3235 \Omega$

Ohmův zákon: I = $\frac{U}{R}$ I = $\frac{190}{723.3235}$

I = 0, 2627 A

Napětí na rezistoru: $U_{B45C6} = R_{B45C6} * I$

 $U_{B45C6} = 417,6206 * 0,2627$

 $U_{B45C6} = 109,7089 \text{ V}$

Napětí na rezistoru R_{B45} je stejné jako na R_{B45C6} (paralelně zapojeny): $I_{B45} = \frac{UB45C6}{RB45}$ $I_{B45} = \frac{UB45C6}{729.8077}$

 $I_{B45} = 0, 1503 A$

Proud na rezistorech R_B a R_{45} bude stejný jako na R_{B45} (sériově propojeny): $U_{45} = R_{45} * I_{B45}$

 $U_{45} = 550 * 0.1503$

 $U_{45} = 82,665 \text{ V}$

Proud na rezistorech R₄ a R₅ bude stejný jako na R₄₅ (sériově propojeny): U₅ = R₅ * I_{B45}

 $U_5 = 300 * 0.1503$

 $U_5 = 45, 09 \text{ V}$

 $I_5 = I_{R/2}$

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu Théveninovy věty.

sk.	U [V]	R_1 $[\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	R_4 $[\Omega]$	R_5 $[\Omega]$	$R_6 [\Omega]$
F	130	180	350	600	195	650	250

Jako první nahradíme obvod vlastním zdrojem Ue s odporem Re.

Pro výpočet odporu zdroje nahradíme zkoumaný odpor otevřenými svorkami a odstraníme i zdroje.

Nyní použijeme úpravu trojúhelník – hvězda.

- Dopočítáme nové rezistory:

$$R_{A} = \frac{R3*R4}{R3+R4+R5}$$

$$R_{A} = \frac{600*195}{600+195+650}$$

$$R_{A} = 80.9688 \Omega$$

$$R_{B} = \frac{R4*R5}{R3+R4+R5}$$

$$R_{B} = \frac{195*650}{600+195+650}$$

$$R_{B} = 87,7163 \Omega$$

$$R_{C} = \frac{R3*R5}{R3+R4+R5}$$

$$R_{C} = \frac{600*650}{600+195+650}$$

$$R_{C} = \frac{269.8962}{800+195+650}$$

Nyní můžeme jednoduše dopočítat Re

$$\begin{split} R_e = & \frac{(R1 + R2 + RA) * RC}{R1 + R2 + RA + RC} + R_B \\ R_e = & \frac{(180 + 350 + 80,9688) * 269,8962}{180 + 350 + 80,9688 + 269,8962} + 87,716328 \\ \underline{R_e} = & \frac{274,9166 \Omega}{R_e} \end{split}$$

Nyní začneme zpětně počítat až k hledaným hodnotám:

$$R_{345} = \frac{(R3+R4)*R5}{R3+R4+R5}$$

$$R_{345} = \frac{(600+195)*650}{600+195+650}$$

$$R_{345} = \frac{357,6125}{600+195+650}$$

$$R_{345} = \frac{130}{180+350+357,6125}$$

$$I = \frac{U}{R1+R2+R345}$$

$$I = \frac{130}{180+350+357,6125}$$

$$I = 0, 1465 \text{ A}$$

$$U_{12} = (R_1 + R_2) * I$$

$$U_{12} = (180 + 350) * 0,1465$$

$$U_{12} = 77,645 \text{ V}$$

U₃ = U-U₁₂

U₃ = 130 - 77,645

U₃ = 52,355 V

Ohmův zákon:
$$I_4 = \frac{U_3}{R4 + R5}$$
 $I_4 = \frac{52,355}{195 + 650}$
 $I_4 = 0,0620$ A

$$U_{e} = R_{5} * I_{4}$$

$$U_{e} = 650 * 0,0620$$

$$\underline{U_{e} = 40.3 \text{ V}}$$

$$\underline{U_{e} = U_{R6}}$$

Ohmův zákon:
$$I_{R6} = \frac{\textit{Ue}}{\textit{Re} + \textit{R6}}$$

$$I_{R6} = \frac{40,3}{274,9166+250}$$

$$I_{R6} = \textbf{0,7677 A}$$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí (U_A, U_B, U_C) .

sk.	U [V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
A	120	0.9	0.7	53	49	65	39	32

Vyjádříme, vzniknou nám 3 rovnice o 3 neznámých, kde neznáme jsou uzlová napětí

$$I_1 - \frac{UA - UB}{R2} - \frac{UA}{R1} = 0$$

$$\frac{U-(UB-UC)}{R5} + \frac{UA-UB}{R2} - \frac{UB-UC}{R4} = 0$$

$$I_2 + \frac{(UB - UC)}{R4} + \frac{U - (UB - UC)}{R5} - \frac{UC}{R3} = 0$$

KIRCHHOFŮV ZÁKON

$$I_1$$
 - I_{R1} - I_{R2} = 0

Uzel B

$$I + I_{R2} - I_{R4} = 0$$

Uzel C

$$I_2 + I_{R4} - I - I_{R3} = 0$$

$$0.9 - \frac{UA - UB}{49} - \frac{UA}{53} = 0$$

$$U_{A} = \frac{7791}{340} + \frac{53}{102}U_{B}$$

$$\frac{120 - UB + UC}{32} + \frac{UA - UB}{49} - \frac{UB - UC}{39} = 0$$

 $1248U_A - 4727U_B + 3479U_C = -229320$

$$0,7 + \frac{(UB - UC)}{39} + \frac{120 - (UB - UC)}{32} - \frac{UC}{65} = 0$$

*6240
$$+\text{úprava}$$
 355 U_B - 451 U_C = 19032

Nyní pomocí substituce dosadíme zvýrazněnou rovnici U_A do rovnice vycházející u uzlu B(oranžová).

$$1248(\frac{7791}{340} + \frac{53}{102}U_B) - 4727U_B + 3479U_C = -229320$$

$$\xrightarrow{\text{Roznásobení +úprava}} -346675U_B + 295715U_C = -21922992 /*451$$

$$355U_B + 451U_C = 19032 /*295715$$

Vzájemným vynásobením rovnic dosáhneme odstranění jedné neznámé, poté jen sečteme.

$$-51371600U_{B} = -4259221512$$

$$\underline{U_{B} = 82,91 \text{ V}}$$

$$U_{A} = \frac{7791}{340} + \frac{53}{102} * 82,91$$

$U_A = 65,9954 \text{ V}$

$$355*82,91 + 451U_{C} = 19032$$
 $-451U_{C} = 19032-355*82,91$
 $U_{C} = 23,0622 \text{ V}$

$$\begin{array}{l} \textbf{U}_{R4} = \textbf{U}_{B} \text{-} \textbf{U}_{C} \\ \textbf{U}_{R4} = 82,91-23,0622 \\ \textbf{\underline{U}_{R4}} = \textbf{59,8478 V} \\ & \underline{\textbf{I}_{R4}} = \frac{59,8478}{39} \\ & \underline{\textbf{I}_{R4}} = \textbf{1,5346 A} \end{array}$$

Řešení:

1.	2.	3.	4.	5.
$U_{R5} = 45,09 \text{ V}$ $I_{R5} = 0,1503 \text{ A}$	$\mathbf{U_{R6}} = 40.3 \text{ V}$ $\mathbf{I_{R6}} = 0.7677 \text{ A}$		1	