SAW

- Metode Simple Additive Weighting (SAW) sering juga dikenal istilah metode penjumlahan terbobot.
- Konsep dasar metode SAW adalah mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut (Fishburn, 1967)(MacCrimmon, 1968).
- Metode SAW membutuhkan proses normalisasi matriks keputusan (X) ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada.

SAW

 Formula untuk melakukan normalisasi tersebut adalah sebagai berikut:

$$r_{ij} = \begin{cases} \frac{X_{ij}}{M_{i} \text{ ax } x_{ij}} & \text{jika j adalah atribut keuntungan (benefit)} \\ \frac{M_{i} \text{ in } x_{ij}}{X_{ij}} & \text{jika j adalah atribut biaya (cost)} \end{cases}$$

dengan r_{ij} adalah rating kinerja ternormalisasi dari alternatif A_i pada atribut C_j ; i=1,2,...,m dan j=1,2,...,n.

SAW

• Nilai preferensi untuk setiap alternatif (V_i) diberikan sebagai:

$$V_{i} = \sum_{j=1}^{n} w_{j} r_{ij}$$

Nilai V_i yang lebih besar mengindikasikan bahwa alternatif A_i lebih terpilih.

Contoh-1:

- Suatu institusi perguruan tinggi akan memilih seorang karyawannya untuk dipromosikan sebagai kepala unit sistem informasi.
- Ada empat kriteria yang digunakan untuk melakukan penilaian, yaitu:
 - C1 = tes pengetahuan (wawasan) sistem informasi
 - C2 = praktek instalasi jaringan
 - C3 = tes kepribadian
 - C4 = tes pengetahuan agama

- Pengambil keputusan memberikan bobot untuk setiap kriteria sebagai berikut: C1 = 35%; C2 = 25%; C3 = 25%; dan C4 = 15%.
- Ada enam orang karyawan yang menjadi kandidat (alternatif) untuk dipromosikan sebagai kepala unit, yaitu:
 - A1 = Indra,
 - A2 = Roni,
 - A3 = Putri,
 - A4 = Dani,
 - A5 = Ratna, dan
 - A6 = Mira.

• Tabel nilai alternatif di setiap kriteria:

Alternatif	Kriteria					
	C1	C2	C3	C4		
Indra	70	50	80	60		
Roni	50	60	82	70		
Putri	85	55	80	75		
Dani	82	70	65	85		
Ratna	75	75	85	74		
Mira	62	50	75	80		

• Normalisasi:

$$r_{11} = \frac{70}{\max\{70;50;85;82;75;62\}} = \frac{70}{85} = 0,82$$

$$r_{21} = \frac{50}{\max\{70;50;85;82;75;62\}} = \frac{50}{85} = 0,59$$

$$r_{12} = \frac{1}{\max\{50;60;55;70;75;50\}} = \frac{50}{75} = 0,67$$

$$r_{22} = \frac{60}{\max\{50;60;55;70;75;50\}} = \frac{60}{75} = 0,80$$
dst

Hasil normalisasi:

$$R = \begin{bmatrix} 0.82 & 0.67 & 0.94 & 0.71 \\ 0.59 & 0.80 & 0.96 & 0.82 \\ 1 & 0.73 & 0.94 & 0.88 \\ 0.96 & 0.93 & 0.76 & 1 \\ 0.88 & 1 & 1 & 0.87 \\ 0.73 & 0.67 & 0.88 & 0.94 \end{bmatrix}$$

- Proses perankingan dengan menggunakan bobot yang telah diberikan oleh pengambil keputusan: w = [0,35 0,25 0,25 0,15]
- Hasil yang diperoleh adalah sebagai berikut:

$$\begin{split} V_1 &= (0,35)(0,82) + (0,25)(0,67) + (0,25)(0,94) + (0,15)(0,71) = 0,796 \\ V_2 &= (0,35)(0,59) + (0,25)(0,80) + (0,25)(0,96) + (0,15)(0,82) = 0,770 \\ V_3 &= (0,35)(1,00) + (0,25)(0,73) + (0,25)(0,94) + (0,15)(0,88) = 0,900 \\ V_4 &= (0,35)(0,96) + (0,25)(0,93) + (0,25)(0,76) + (0,15)(1,00) = 0,909 \\ V_5 &= (0,35)(0,88) + (0,25)(1,00) + (0,25)(1,00) + (0,15)(0,87) = 0,939 \\ V_6 &= (0,35)(0,73) + (0,25)(0,67) + (0,25)(0,88) + (0,15)(0,94) = 0,784 \\ \end{split}$$

- Nilai terbesar ada pada V₅ sehingga alternatif A₅ adalah alternatif yang terpilih sebagai alternatif terbaik.
- Dengan kata lain, Ratna akan terpilih sebagai kepala unit sistem informasi.

Contoh-2:

- Sebuah perusahaan makanan ringan XYZ akan menginvestasikan sisa usahanya dalam satu tahun.
- Beberapa alternatif investasi telah akan diidentifikasi. Pemilihan alternatif terbaik ditujukan selain untuk keperluan investasi, juga dalam rangka meningkatkan kinerja perusahaan ke depan.

- Beberapa kriteria digunakan sebagai bahan pertimbangan untuk mengambil keputusan, yaitu:
 - C1 = *Harga*, yaitu seberapa besar harga barang tersebut.
 - C2 = *Nilai investasi 10 tahun ke depan*, yaitu seberapa besar nilai investasi barang dalam jangka waktu 10 tahun ke depan.

- C3 = Daya dukung terhadap produktivitas perusahaan, yaitu seberapa besar peranan barang dalam mendukung naiknya tingkat produktivitas perusahaan. Daya dukung diberi nilai: 1 = kurang mendukung, 2 = cukup mendukung; dan 3 = sangat mendukung.
- C4 = *Prioritas kebutuhan*, merupakan tingkat kepentingan (ke-mendesak-an) barang untuk dimiliki perusahaan. Prioritas diberi nilai: 1 = sangat berprioritas, 2 = berprioritas; dan 3 = cukup berprioritas.

- C5 = Ketersediaan atau kemudahan, merupakan ketersediaan barang di pasaran. Ketersediaan diberi nilai: 1 = sulit diperoleh, 2 = cukup mudah diperoleh; dan 3 = sangat mudah diperoleh.
- Dari pertama dan keempat kriteria tersebut, kriteria pertama dan keempat merupakan kriteria biaya, sedangkan kriteria kedua, ketiga, dan kelima merupakan kriteria keuntungan.
- Pengambil keputusan memberikan bobot untuk setiap kriteria sebagai berikut: C1 = 25%; C2 = 15%; C3 = 30%; C4 = 25; dan C5 = 5%.

- Ada empat alternatif yang diberikan, yaitu:
 - A1 = Membeli mobil box untuk distribusi barang ke gudang;
 - A2 = Membeli tanah untuk membangun gudang baru;
 - A3 = Maintenance sarana teknologi informasi;
 - A4 = Pengembangan produk baru.

• Nilai setiap alternatif pada setiap kriteria:

	Kriteria						
Alternatif	C1 (juta Rp)	C2 (%)	C3	C4	C5		
A1	150	15	2	2	3		
A2	500	200	2	3	2		
A3	200	10	3	1	3		
A4	350	100	3	1	2		

• Normalisasi:

$$r_{11} = \frac{\min\{150;500;200;350\}}{150} = \frac{150}{150} = 1$$

$$r_{21} = \frac{15}{\max\{15;200;10;100\}} = \frac{15}{200} = 0,075$$

$$r_{35} = \frac{2}{\max\{2;2;3;3\}} = \frac{2}{3} = 0,667$$

$$r_{45} = \frac{2}{\max\{3,2,3,2\}} = \frac{2}{3} = 0,667$$

• dst

• Hasil normalisasi:

$$R = \begin{bmatrix} 1 & 0,08 & 0,67 & 0,50 & 1 \\ 0,30 & 1 & 0,67 & 0,33 & 0,67 \\ 0,75 & 0,05 & 1 & 1 & 1 \\ 0,43 & 0,50 & 1 & 1 & 0,67 \end{bmatrix}$$

 Proses perankingan dengan menggunakan bobot yang telah diberikan oleh pengambil keputusan:

$$w = [0,25 \quad 0,15 \quad 0,30 \quad 0,25 \quad 0,05]$$

Hasil yang diperoleh adalah sebagai berikut:

$$\begin{aligned} V_1 &= (0,25)(1) + (0,15)(0,08) + (0,3)(0,67) + (0,25)(0,5) + (0,05)(1) = 0,638 \\ V_2 &= (0,25)(0,3) + (0,15)(1) + (0,3)(0,67) + (0,25)(0,33) + (0,05)(0,67) = 0,542 \\ V_3 &= (0,25)(0,75) + (0,15)(0,05) + (0,3)(1) + (0,25)(1) + (0,05)(1) = 0,795 \\ V_4 &= (0,25)(0,43) + (0,15)(0,5) + (0,3)(1) + (0,25)(1) + (0,05)(0,67) = 0,766 \end{aligned}$$

 Nilai terbesar ada pada V3 sehingga alternatif A3 adalah alternatif yang terpilih sebagai alternatif terbaik. Dengan kata lain, maintenance sarana teknologi informasi akan terpilih sebagai solusi untuk investasi sisa usaha

Implementasi SAW

 Lakukan Perhitungan dengan menggunakan Metode SAW untuk kasus yang sudah kalian tentukan pada pertemuan sebelumnya, simulasikan hasil perhitungan dari metode tersebut!