RingTool Reproduction

This repository is a fork of thuhci/RingTool, reproducing experiments for physiological signal prediction using wearable ring devices. The replication includes physics-based (Peak, fft) and supervised learning models (ResNet, InceptionTime, Mamba2, Transformer) with 5-fold cross-validation and test-mode evaluations, validated on the Kaggle Ring Dataset.

Experiment Setup

- Environment:
 - OS: Ubuntu Linux
 - Hardware: 4x NVIDIA RTX 4090, CUDA 12.4
 - Python: 3.10.16 (Conda environment: ringtool)
 - Key Dependencies:
 - torch==2.1.2+cu121
 - mamba_ssm==2.2.4
 - numpy==1.26.4
 - pandas==2.2.3
 - Full list in requirements.txt
- Dataset: Kaggle Ring Dataset
 - 7 subjects (00005, 00009, 00012, 00020, 00022, 00029, 00031)
 - Tasks: Heart rate (hr, samsung_hr, oura_hr), respiratory rate (resp_rr), SpO2 (spo2), blood pressure (BP_sys, BP dia)
 - Stored in /root/RingTool/data/rings/ (e.g., 00005_ring1_processed.pkl)
- Configurations:
 - 33 supervised configs in /config/supervised/ (ResNet, InceptionTime, Mamba2, Transformer)
 - Test-mode configs in /config/only test/
 - Physical-based configs in /config/physical-based/ (Peak, fft, Ratio)
 - Total: 148 experiments processed (merged into all_results.csv)
- · Scripts:
 - update_configs.ipynb: Updates JSON configuration files with subject splits for 5-fold cross-validation
 - resultsCollection.ipynb: Merges results into all_results.csv
 - dataAnalysis.ipynb: Analyzes and visualizes results

Results

- Progress: (33 supervised with 5-fold cross-validation, test-mode, and physical-based).
- Metrics: Analyzed in dataAnalysis.ipynb, stored in all_results.csv.
- Key Findings:
 - Performance Table (Test Mode)

Task	Ring Type	Best Method	MAE	Task	Ring Type	Best Method	MAE
hr	ring1	fft	16.213333	hr	ring2	fft	20.976667
hr	ring1	inception_time	13.273333	hr	ring2	inception_time	13.733333
hr	ring1	peak	17.010000	hr	ring2	peak	37.753333
hr	ring1	resnet	25.706667	hr	ring2	resnet	19.213334
hr	ring1	transformer	13.003333	hr	ring2	transformer	13.660000
oura_hr	ring1	fft	20.903333	oura_hr	ring2	fft	25.443333
oura_hr	ring1	peak	17.040000	oura_hr	ring2	peak	19.093333
oura_hr_com	ring1	fft	17.590000	oura_hr_com	ring2	fft	19.350000
oura_hr_com	ring1	peak	17.590000	oura_hr_com	ring2	peak	19.350000
resp_rr	ring1	fft	5.400000	resp_rr	ring2	fft	4.875000
·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		·	

Task	Ring Type	Best Method	MAE	Task	Ring Type	Best Method	MAE
resp_rr	ring1	inception_time	3.800000	resp_rr	ring2	inception_time	3.953333
resp_rr	ring1	peak	3.630000	resp_rr	ring2	peak	3.953333
resp_rr	ring1	resnet	3.866667	resp_rr	ring2	resnet	3.953333
resp_rr	ring1	transformer	3.776667	resp_rr	ring2	transformer	4.875000
samsung_hr	ring1	fft	19.833333	samsung_hr	ring2	fft	31.386667
samsung_hr	ring1	peak	15.236667	samsung_hr	ring2	peak	21.496667
samsung_hr_com	ring1	fft	19.336667	samsung_hr_com	ring2	fft	18.533333
samsung_hr_com	ring1	peak	19.336667	samsung_hr_com	ring2	peak	18.533333
spo2	ring1	ratio	4.300000	spo2	ring2	ratio	3.290000

Visualizations:

MAE barplots per task/mode (e.g., output/mae_barplot_hr_test.png):

• MAE heatmaps per mode (e.g., output/mae_heatmap_5fold.png):

• MAE heatmaps per mode (e.g., output/mae_heatmap_test.png):

• Logs: Experiment progress in experiment.log, model outputs in logs/, completed configs in completed_configs.txt.

How to Run

1. Setup Environment:

```
conda create -n ringtool python=3.10.16
conda activate ringtool
pip install -r requirements.txt
pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url
https://download.pytorch.org/whl/cul18
pip install mamba-ssm==2.2.4 --no-build-isolation
```

2. Download Dataset:

- Download from Kaggle.
- Unzip and place in /root/RingTool/data/rings/:

```
mkdir -p /root/RingTool/data/rings
mv path/to/ring-dataset/* /root/RingTool/data/rings/
```

3. Update Configurations:

• Run the notebook to update JSON configs with 5-fold splits:

```
jupyter notebook update_configs.ipynb
```

4. Run Physics-Based Methods:

```
python3 main.py --data-path /root/RingTool/data/rings --batch-configs-dirs config/physical-based
```

5. Run Supervised Methods:

```
nohup python3 main.py --data-path /root/RingTool/data/rings --batch-configs-dirs config/supervised > $(date +%Y%m%d%H%M%S)-nohup-train.log 2>&1 &
```

6. Run Test-Mode Experiments:

nohup python3 main.py --data-path /root/RingTool/data/rings --batch-configs-dirs config/only_test > (date + Y%m%d%H%M%S)-nohup-test.log 2>&1 &

7. Analyze Results:

jupyter notebook resultsCollection.ipynb
jupyter notebook dataAnalysis.ipynb

Acknowledgments

- Gratitude to the thuhci/RingTool team at Tsinghua University for their codebase and documentation.
- This work utilized the Kaggle Ring Dataset for validation.
- Conducted by Fu Jingyu as part of a replication study.