Vorlesungsmitschrift

Algorithmen und Berechenbarkeit

Vorlesung 21

Letztes Update: 2018/01/31 - 12:04 Uhr

Satz: SAT \leq_p DHC

Beweis: Sei eine KNF-Formel ϕ gegeben. Man konstruiert daraus einen gerichteten Graphen G, der genau dann einen Hamiltonkreis hat, wenn ϕ erfüllbar ist. Seien x_1, x_2, \ldots, x_N die Variablen und c_1, c_2, \ldots, c_M die Klauseln von ϕ . Für jede Variable x_i enthält G einen Subgraph G_i genannt Diamantgadget:

Diese Diamantgadgets werden verbunden, indem t_i und s_{i+1} , $\forall i=1,\ldots,n-1$ und t_N und S_1 identifiziert werden. Eine Rundtour in G muss die Gadgets nacheinander besuchen. Jedes Gadget kann von links nach rechts oder von rechts nach links durchlaufen werden. Im ersteren Fall interpretiert man das als $x_i = \texttt{true}$, im letzteren als $x_i = \texttt{false}$.

Nun fügt man für jede Klausel einen Klauselknoten c_j ein. Falls c_j eine Variable x_i enthält, wird das Gadget G_i mit c_j auf geeignete Art und Weise verbunden. Die doppelt verkettete Liste in Gadget G_i enthält $2 \cdot k + 1$ Knoten, falls x_i in der k-Klausel vorkommt.

Bsp: k=2

Wenn x_i in der ersten Klausel nicht negiert vorkommt, fügt man eine Kante ein, die vom linken Knoten des Paars, das für diese Klausel steht, zum Klauselknoten zeigt. Analog wird eine Kante vom Klauselknoten zum rechten Knoten des Paars hinzugefügt.

Wenn x_i in der zweiten Klausel negiert vorkommt, fügt man eine Kante vom rechten Knoten zum Klauselknoten und von dort zum linken Knoten des Paars ein.

Beobachtung: Eine Rundtour muss die Gadgets immer vollständig nacheinander besuchen (mit Abstecher zum Klauselknoten), da teilweises Besuchen eines Gadgets und Springen zu anderen Gadgets via Klauselknoten **keine** Rundtour ermöglicht.

Zu zeigen: G hat DHC genau dann, wenn ϕ erfüllbar ist.

- a) G habe DHC, dann ist $x_i = \text{true}$, wenn G_i von links nach rechts durchlaufen wird und falsch andernfalls. Jeder Klauselknoten wird von genau einem Gadget G_i aus besucht.
 - Falls G_i von links nach rechts traversiert wird ($\rightarrow x_i = \texttt{true}$) und x_i taucht in Klausel nicht negiert auf, dann gilt: Die Klausel ist erfüllt.
 - Falls G_i von rechts nach links traversiert wird ($\rightarrow x_i = \mathtt{false}$) und x_i taucht in Klausel negiert auf, dann gilt: Die Klausel ist erfüllt.
- b) Sei B eine erfüllende Belegung für ϕ . Dann bestimmt B, wie die Gadgets traversiert werden.
 - $-x_i = \mathsf{true} \Rightarrow G_i$ wird von links nach rechts traversiert
 - $x_i = \mathtt{false} \Rightarrow G_i$ wird von rechts nach links traversiert

Die Klauselknoten besucht man vom Gadget des ersten erfüllenden Literals der Klausel.

Satz: TSP ist \mathcal{NP} -hart.

Lemma: $HC \leq_p TSP$.

Beweis: Man konstruiert aus der HC-Instanz G(V, E) (wobei G vollständig) eine TSP-Instanz G'(V, E') wobei

$$E' = \begin{pmatrix} V \\ 2 \end{pmatrix}$$
 und $\begin{cases} c(e) = 1 & \text{falls } e \in E \\ c(e) = 2 & \text{sonst} \end{cases}$

G'(V, E') hat eine TSP-Tour mit einem Gewicht von $\leq |V|$ genau dann, wenn G(V, E) HC hat.