Convex Optimization

Homework n°1

Exercise 1

1) A rectangle is convex.

Indeed, it can be written $\bigcap_{i=1}^{n} (\{x \in \mathbb{R}^n \mid x \cdot (-e_i) \leq -\alpha_i\} \cap \{x \in \mathbb{R}^n \mid x \cdot e_i \leq \beta_i\})$ where (e_1, \dots, e_n) is the canonical basis of \mathbb{R}^n .

Therefore a rectangle is convex as intersection of (closed) halfspaces, which are convex.

2) The hyperbolic set is convex.

Indeed, let $x, y \in \mathbb{R}^2_+$ be such that $x_1 x_2 \ge 1$ and $y_1 y_2 \ge 1$, and let $\lambda \in [0, 1]$. Then for $z = \lambda x + (1 - \lambda)y$:

$$z_{1}z_{2} = (\lambda x_{1} + (1 - \lambda)y_{1})(\lambda x_{2} + (1 - \lambda)y_{2})$$

$$= \lambda^{2} \underbrace{x_{1}x_{2}}_{\geq 1} + (1 - \lambda)^{2} \underbrace{y_{1}y_{2}}_{\geq 1} + \lambda(1 - \lambda)(x_{1}\underbrace{y_{2}}_{\geq 1/y_{1}} + \underbrace{x_{2}}_{\geq 1/x_{1}} y_{1}) \text{ (notice that necessarily } x_{1} \neq 0, y_{1} \neq 0)$$

$$\geq \lambda^{2} + (1 - \lambda)^{2} + \lambda(1 - \lambda)\left(\frac{x_{1}}{y_{1}} + \frac{y_{1}}{x_{1}}\right).$$

And $\frac{x_1}{y_1} + \frac{y_1}{x_1} - 2 = \frac{x_1^2 + y_1^2 - 2x_1y_1}{x_1y_1} = \frac{(x_1 - y_1)^2}{x_1y_1} \ge 0$, so $\frac{x_1}{y_1} + \frac{y_1}{x_1} \ge 2$, and then $z_1z_2 \ge \lambda^2 + (1-\lambda)^2 + 2\lambda(1-\lambda) = 1$, which proves that z is in the hyperbolic set, which is then convex.

3) This set is convex.

$$\{x \in \mathbb{R}^n \mid ||x - x_0||_2 \le ||x - y||_2 \text{ for all } y \in S\} = \bigcap_{y \in S} \{x \in \mathbb{R}^n \mid ||x - x_0||_2 \le ||x - y||_2\}$$

And for a given $y \in S$,

$$||x - x_0||_2 \le ||x - y||_2 \iff ||x - x_0||_2^2 \le ||x - y||_2^2$$

 $\iff x^T(y - x_0) \le \frac{||y||^2 - ||x_0||^2}{2},$

so $\{x \in \mathbb{R}^n \mid ||x - x_0||_2 \le ||x - y||_2\}$ is actually a halfspace (except if $y = x_0$, but in this case it is \mathbb{R}^n , so it is convex) and is then convex.

And the intersection of convex sets is convex, so the initial set is indeed convex.

4) This set is not necessarily convex.

Consider the case n = 1, $S = \{-1, 1\}$ and $T = \{0\}$. Then $\{x \in \mathbb{R} \mid \mathbf{dist}(x, S) \leq \mathbf{dist}(x, T)\} =]-\infty, -1/2] \cup [1/2, +\infty[$ is not convex.

5) This set is convex.

$$\{x \mid x + S_2 \subseteq S_1\} = \bigcap_{y \in S_2} \{x \mid x + y \in S_1\} = \bigcap_{y \in S_2} \{x \mid x \in S_1 - y\} = \bigcap_{y \in S_2} (S_1 - y).$$

For each $y \in S_2$, $S_1 - y$ is convex (as image of the convex set S_1 by an affine function), and the intersection of convex sets is convex, hence the conclusion.

Exercise 2

First of all, notice that for each question, $\operatorname{dom} f$ is a convex set.

1)
$$f:(x_1,x_2) \mapsto x_1x_2 \text{ on } \mathbb{R}^2_{++}$$
.

We easily compute, for $(x_1, x_2) \in \mathbb{R}^2_{++}$:

$$\frac{\partial f}{\partial x_1}(x_1, x_2) = x_2, \quad \frac{\partial f}{\partial x_2}(x_1, x_2) = x_1$$

$$\frac{\partial^2 f}{\partial x_1^2}(x_1, x_2) = 0, \quad \frac{\partial^2 f}{\partial x_2^2}(x_1, x_2) = 0, \quad \frac{\partial^2 f}{\partial x_1 \partial x_2}(x_1, x_2) = \frac{\partial^2 f}{\partial x_2 \partial x_1}(x_1, x_2) = 1,$$

so the Hessian of f at any $x = (x_1, x_2) \in \mathbb{R}^2_{++}$ is $\nabla^2 f(x) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, wich satisfies

 $\det(\nabla^2 f(x)) = -1$. So the eigenvalues of $\nabla^2 f(x)$ have different signs, and $\nabla^2 f(x)$ is not positive semidefinite nor negative semidefinite.

So f is not convex nor concave

The superlevet set $E_{\alpha} = \{(x_1, x_2) \in \mathbb{R}^2_{++} \mid x_1 x_2 \geq \alpha\}$ is convex as a consequence of question 2) of Exercise 1.

Indeed, the proof is the same, or we can say that for $\alpha > 0$, $\{(x_1, x_2) \in \mathbb{R}^2_{++} \mid x_1 x_2 \geq \alpha\} = \{(\sqrt{\alpha}x_1, \sqrt{\alpha}x_2) \in \mathbb{R}^2_{++} \mid x_1 x_2 \geq 1\}$ is the image of the hyperbolic set by an affine function, and is therefore convex (which is also clearly the case when $\alpha \leq 0$ because then $E_{\alpha} = \mathbb{R}^2_{++}$).

So f is **quasiconcave**, but **not quasiconvex** (because for instance $f(1,1) \le 1$, $f(2,\frac{1}{2}) \le 1$, but $f(\frac{1}{2}((1,1)+(2,\frac{1}{2})))=f((\frac{3}{2},\frac{3}{4}))=\frac{9}{8}>1$).

2)
$$f:(x_1,x_2)\mapsto 1/(x_1x_2)$$
 on \mathbb{R}^2_{++} .

We have $\nabla f(x) = \begin{pmatrix} -1/(x_1^2 x_2) \\ -1/(x_1 x_2^2) \end{pmatrix}$ and then $\nabla^2 f(x) = \begin{pmatrix} 2/(x_1^3 x_2) & 1/(x_1^2 x_2^2) \\ 1/(x_1^2 x_2^2) & 2/(x_1 x_2^3) \end{pmatrix}$.

 $\det\left(\nabla^2 f(x)\right) = \frac{3}{x_1^4 x_2^4} > 0$ so both eigenvalues of $\nabla^2 f(x)$ have the same sign, and

 $\mathbf{Tr}(\nabla^2 f(x)) = \frac{2}{x_1 x_2} \left(\frac{1}{x_1^2} + \frac{1}{x_2^2} \right) > 0$, so the eigenvalues of $\nabla^2 f(x)$ are positive, and $\nabla^2 f(x)$ is a positive definite matrix.

So f is strictly convex, not concave

Since it is convex, it is also **quasiconvex**. It is **not quasiconcave** (because for instance $f(1,1) \ge 1$, $f(2,\frac{1}{2}) \ge 1$, but $f(\frac{1}{2}((1,1)+(2,\frac{1}{2}))) = f((\frac{3}{2},\frac{3}{4})) = \frac{8}{9} < 1$).

3)
$$f:(x_1,x_2)\mapsto x_1/x_2 \text{ on } \mathbb{R}^2_{++}.$$

We have
$$\nabla f(x) = \begin{pmatrix} 1/x_2 \\ -x_1/x_2^2 \end{pmatrix}$$
, and then $\nabla^2 f(x) = \begin{pmatrix} 0 & -1/x_2^2 \\ -1/x_2^2 & 2x_1/x_2^3 \end{pmatrix}$.

 $\det(\nabla^2 f(x)) = -1/x_2^4 < 0$, so the eigenvalues of $\nabla^2 f(x)$ have different signs, and $\nabla^2 f(x)$ is not positive nor negative semidefinite.

Therefore f is **not convex nor concave**

For $\alpha \in \mathbb{R}$, set $a = (1, -\alpha)^T$, then $\{(x_1, x_2) \in \mathbb{R}^2_{++} \mid f(x_1, x_2) \geq \alpha\} = \{x \in \mathbb{R}^2_{++} \mid a^T x \geq 0\}$ is a halfspace, so it is convex. Similarly, we also have that $\{(x_1, x_2) \in \mathbb{R}^2_{++} \mid f(x_1, x_2) \leq \alpha\}$ is convex. So f is quasiconcave and quasiconvex, i.e. quasilinear.

4) $f:(x_1, x_2) \mapsto x_1^{\alpha} x_2^{1-\alpha} \text{ on } \mathbb{R}^2_{++}, \text{ where } 0 \leq \alpha \leq 1.$

We have
$$\nabla f(x) = \begin{pmatrix} \alpha x_1^{\alpha - 1} x_2^{1 - \alpha} \\ (1 - \alpha) x_1^{\alpha} x_2^{-\alpha} \end{pmatrix}$$
 and then $\nabla^2 f(x) = \alpha (1 - \alpha) x_1^{\alpha - 2} x_2^{-1 - \alpha} \begin{pmatrix} -x_2^2 & x_1 x_2 \\ x_1 x_2 & -x_1^2 \end{pmatrix}$.

 $\det(\nabla^2 f(x)) = (\alpha(1-\alpha)x_1^{\alpha-2}x_2^{-1-\alpha})^2(x_1^2x_2^2 - x_1^2x_2^2) = 0$, so at least one of the eigenvalues of $\nabla^2 f(x)$ is 0.

And $Tr(\nabla^2 f(x)) = -\alpha(1-\alpha)x_1^{\alpha-2}x_2^{-1-\alpha}(x_1^2+x_2^2) \le 0.$

So the eigenvalues of $\nabla^2 f(x)$ are nonpositive, so $\nabla^2 f(x)$ is negative semidefinite.

f is **concave** and therefore **quasiconcave**.

If $\alpha \in \{0,1\}$ then f is linear, so f is also convex and quasiconvex.

Assume from now on that $\alpha \notin \{0, 1\}$.

Then $\operatorname{Tr}(\nabla^2 f(x)) < 0$ for $x \neq 0$, so $\nabla^2 f(x)$ is not positive semidefinite, and f is **not convex**.

For $b \in \mathbb{R}$, set $E_b = \{(x_1, x_2) \in \mathbb{R}^2_{++} \mid f(x_1, x_2) \leq b\} = \{(x_1, x_2) \in \mathbb{R}^2_{++} \mid x_1^{\alpha} x_2^{1-\alpha} \leq b\}$. If b > 0, $E_b = \{(x_1, x_2) \in \mathbb{R}^2_{++} \mid x_2 \leq g_{\alpha}(x_1)\}$ where $g_{\alpha} : x \mapsto b^{\frac{1}{1-\alpha}} x^{-\frac{\alpha}{1-\alpha}}$ with $\operatorname{dom} g_{\alpha} = \mathbb{R}_{++}$, i.e., E_b is the hypograph of g_{α} .

And
$$g_{\alpha}(x) = \operatorname{cst} \times x^{-\frac{\alpha}{1-\alpha}}$$
, so $g_{\alpha}''(x) = \underbrace{\operatorname{cst}}_{>0} \times \underbrace{\left(-\frac{\alpha}{1-\alpha}\right)}_{<0} \underbrace{\left(-\frac{\alpha}{1-\alpha}-1\right)}_{<0} \underbrace{x^{-\frac{\alpha}{1-\alpha}-2}}_{>0} > 0$. So g_{α} is

not concave, so its hypograph E_b is not convex, so f is not quasi-convex.

Conclusion:

$$f \text{ is } \left\{ \begin{array}{ll} \text{concave, convex, quasilinear} & \text{if } \alpha \in \{0,1\} \\ \text{concave, not convex, quasiconcave, not quasiconvex} & \text{if } \alpha \in]0,1[\end{array} \right.$$

Exercise 3

Here again, notice that for each of the questions, $\operatorname{dom} f$ is a convex set.

1)
$$f(X) = \text{Tr}(X^{-1})$$
 on $\text{dom } f = \mathbf{S}_{++}^n$.

It is enough to check that for $X \in \mathbf{S}_{++}^n, V \in \mathbf{S}^n$, the function $g: t \mapsto f(X+tV)$ is convex on $\operatorname{dom} g = \{t \in \mathbb{R} \mid X+tV \in \mathbf{S}_{++}^n\}$. For $t \in \operatorname{dom} g$:

$$g(t) = \operatorname{Tr}((X+tV)^{-1})$$

$$= \operatorname{Tr}\left(X^{-1/2}(I_n + tX^{-1/2}VX^{-1/2})^{-1}X^{-1/2}\right)$$

$$= \operatorname{Tr}\left((I_n + tX^{-1/2}VX^{-1/2})^{-1}X^{-1}\right).$$

The matrix $X^{-1/2}VX^{-1/2}$ is symmetric (because $X^{-1/2}$ and V are) and real, so there exist D diagonal and Q orthogonal such that $X^{-1/2}VX^{-1/2}=QDQ^T$. Then, for $t\in \operatorname{\mathbf{dom}} g$:

$$g(t) = \mathbf{Tr} \left((I_n + tQDQ^T)^{-1} X^{-1} \right)$$

$$= \mathbf{Tr} \left(\left(Q (I_n + tD) Q^T \right)^{-1} X^{-1} \right)$$

$$= \mathbf{Tr} \left(Q (I_n + tD)^{-1} Q^T X^{-1} \right)$$

$$= \mathbf{Tr} \left((I_n + tD)^{-1} Q^T X^{-1} Q \right)$$

$$= \sum_{i=1}^{n} (1 + tD_{ii})^{-1} \left(Q^T X^{-1} Q \right)_{ii}.$$

We have $(Q^TX^{-1}Q)_{ii} = e_i^T(Q^TX^{-1}Q)e_i = (Qe_i)^TX^{-1}(Qe_i) \ge 0$ (with e_i the i-th vector of the canonical basis of \mathbb{R}^n) because $X^{-1} \in \mathbf{S}_{++}^n$.

And each function $t \mapsto (1+tD_{ii})^{-1}$ is convex on **dom** g, because its derivative is $t \mapsto \frac{-D_{ii}}{(1+tD_{ii})^2}$ which is non-decreasing on **dom** g.

Hence the conclusion: g is convex, and therefore f is convex

2)
$$f(X,y) = y^T X^{-1} y$$
 on $\operatorname{dom} f = \mathbf{S}_{++}^n \times \mathbb{R}^n$.

We have seen in class that $\forall y \in \mathbb{R}^n, y^T X^{-1} y = \sup_{x \in \mathbb{R}^n} (2y^T x - x^T X x).$

To prove it again, notice that for each y, the function $x \mapsto 2y^Tx - x^TXx$ has gradient 2y - 2Xx and hessian $-2X \prec 0$. It is thus concave, and its gradient is 0 in $x = X^{-1}y$, where the function therefore reaches its maximum, which is $2y^TX^{-1}y - y^TX^{-1}y = y^TX^{-1}y$.

And for each $x \in \mathbb{R}^n$, the function $(X, y) \mapsto 2y^T x - x^T X x$ is linear, thus convex. f is then a pointwise supremum of convex functions, so f is convex.

3)
$$f(X) = \sum_{i=1}^{n} \sigma_i(X)$$
 on **dom** $f = S^n$.

We will show that $\forall X \in \operatorname{\mathbf{dom}} f, f(X) = \sup_{\sigma_{\max}(A) \leq 1} \langle A, X \rangle.$

• Let $X = U\Sigma V^T$ be the singular value decomposition of X. Let A be a matrix such that

 $\sigma_{\max}(A) \leq 1$. We have

$$\begin{split} \langle A, X \rangle &= \left\langle A, U \Sigma V^T \right\rangle \\ &= \left\langle U^T A V, \Sigma \right\rangle \\ &= \sum_{i=1}^n \sigma_i(X) \left(U^T A V \right)_{ii}. \end{split}$$

And $(U^TAV)_{ii} = e_i^T(U^TAV)e_i = (Ue_i)^TA(Ve_i) \le \sigma_{\max}(A) \le 1$ (using the fact that $\sigma_{\max}(A) = \sup_{\|x\|_2 = \|y\|_2 = 1} x^TAy$, and $\|Ue_i\|_2 = \|e_i\|_2 = 1$ because U is orthogonal, same for Ve_i). So $\langle A, X \rangle \le \sum_{i=1}^n \sigma_i(X)$.

Therefore $\sup_{\sigma_{\max}(A) \le 1} \langle A, X \rangle \le f(X)$.

• Now, set $A = UV^T$.

Then $\langle A, X \rangle = \langle UV^T, U\Sigma V^T \rangle = \langle U^T UV^T V, \Sigma \rangle = \langle I_n, \Sigma \rangle = \sum_{i=1}^n \sigma_i(X) = f(X)$, and $\sigma_{\max}(A) = 1$ because $A^T A = I_n$ since U and V are orthogonal.

This shows that $\sup_{\sigma_{\max}(A) \le 1} \langle A, X \rangle \ge f(X)$.

Finally, we have shown that $f(X) = \sup_{\sigma_{\max}(A) \leq 1} \langle A, X \rangle$.

For each A such that $\sigma_{\max}(A) \leq 1$, the function $X \mapsto \langle A, X \rangle$ is linear, thus convex. And f is a pointwise supremum of convex functions, so f is convex.

Optional exercises

Exercise 4

1.

• K_{m+} is a convex cone.

Let
$$x, y \in K_{m+}$$
, and $\alpha, \beta \geq 0$. Set $z = \alpha x + \beta y$. For $i \in [1, n-1]$, we easily have $z_i = \underbrace{\alpha}_{\geq 0} \underbrace{x_i}_{\geq x_{i+1}} + \underbrace{\beta}_{\geq 0} \underbrace{y_i}_{\geq y_{i+1}} \geq \alpha x_{i+1} + \beta y_{i+1} = z_{i+1}$, and $z_n = \underbrace{\alpha}_{\geq 0} \underbrace{x_n}_{\geq 0} + \underbrace{\beta}_{\geq 0} \underbrace{y_n}_{\geq 0} \geq 0$.

So $z \in K_{m+}$, and K_{m+} is a convex cone.

• K_{m+} is closed.

$$K_{\mathbf{m}+} = \left(\bigcap_{i=1}^{n-1} \left\{ x \in \mathbb{R}^n \mid (e_i - e_{i+1})^T x \ge 0 \right\} \right) \cap \left\{ x \in \mathbb{R}^n \mid e_n^T x \ge 0 \right\}, \text{ and each of these sets is a closed halfspace.}$$

 $K_{\rm m+}$ is then closed as intersection of closed sets.

• K_{m+} is solid.

Set $x := (n, n-1, \dots, 1)$, then for every $y \in \mathbb{R}^n$ such that $||y-x||_{\infty} \leq \frac{1}{2}$, we have $y \in K_{m+}$.

Therefore x is in the interior of K_{m+} , which is then non empty.

• K_{m+} is pointed.

Assume $x \in K_{m+}$ and $-x \in K_{m+}$.

Since $K_{m+} \subset \mathbb{R}_+$, we have $\forall i \in [1, n], x_i \geq 0$, and $\forall i \in [1, n], -x_i \geq 0$. It follows that $\forall i \in [1, n], x_i = 0$ and x = 0.

We conclude that K_{m+} is a proper cone.

2. $K_{m+}^* = \{ y \in \mathbb{R}^n \mid \forall x \in K_{m+}, y^T x \ge 0 \}.$

For each $y \in \mathbb{R}^n$, we have:

$$y^{T}x = \sum_{i=1}^{n} y_{i}x_{i} = \sum_{i=1}^{n} y_{i} \left(x_{n} + \sum_{k=i}^{n-1} (x_{k} - x_{k+1}) \right) = x_{n} \sum_{i=1}^{n} y_{i} + \sum_{k=1}^{n-1} \left((x_{k} - x_{k+1}) \sum_{i=1}^{k} y_{i} \right)$$
(1)

- Let $y \in K_{m+}^*$. Since for each $k \in [1, n]$, $\sum_{i=1}^k e_i \in K_{m+}$, we have $0 \le y^T \sum_{i=1}^k e_i = \sum_{i=1}^k y_i$.
- Conversely, let $y \in \mathbb{R}^n$ be such that $\forall k \in [1, n], \sum_{i=1}^k y_i \geq 0$. Let $x \in K_{m+}$. Then $x_n \geq 0$, and for each $k \in [1, n-1], x_k x_{k+1} \geq 0$, so using (1) we have $y^T x \geq 0$. Since this holds for each $x \in K_{m+}$, we have $y \in K_{m+}^*$.

We have proven that $K_{m+}^* = \left\{ y \in \mathbb{R}^n \mid \forall k \in [1, n], \sum_{i=1}^k y_i \ge 0 \right\}$.

Exercise 5

$$f^*(y) = \sup_{x \in \mathbf{dom} f} (y^T x - f(x))$$

1)
$$f(x) = \max_{i=1,\dots,n} x_i$$
 on \mathbb{R}^n .

Let $y \in \mathbb{R}^n$.

• First case: there exists $i \in [1, n]$ such that $y_i < 0$.

Then for $t \ge 0$, take $x = (0, \dots, 0, \underbrace{-t}_{i^{\text{th}} \text{ position}}, 0, \dots, 0)$ so that $y^T x - f(x) = -t y_i \xrightarrow[t \to +\infty]{} +\infty$, so

$$f^*(y) = +\infty.$$

• Second case: $\forall i \in [1, n], y_i \ge 0$ and $\sum_{i=1}^n y_i \ne 1$.

Take $x = (\varepsilon t, \dots, \varepsilon t)$ where $\varepsilon = \operatorname{sign}\left(\sum_{i=1}^{n} y_i - 1\right)$, then $y^T x - f(x) = \varepsilon t \left(\sum_{i=1}^{n} y_i - 1\right) \xrightarrow[t \to +\infty]{} + \infty$, so $f^*(y) = +\infty$.

• Third case: $\forall i \in [1, n], y_i \ge 0$ and $\sum_{i=1}^n y_i = 1$.

Then for any $x \in \mathbb{R}^n$, $y^Tx - f(x) = \sum_{i=1}^n x_iy_i - \max_{i=1,\dots,n} x_i \le (\sum_{i=1}^n y_i - 1)\max_{i=1,\dots,n} x_i = 0$, and the inequality becomes an equality when $x = (0, \dots, 0)$ for instance. Therefore $f^*(y) = 0$.

So we have shown

$$f^*(y) = \begin{cases} 0 & \text{if } y \succeq 0 \text{ and } \sum_{i=1}^n y_i = 1\\ +\infty & \text{otherwise.} \end{cases}$$

2)
$$f(x) = \sum_{i=1}^{r} x_{[i]}$$
 on \mathbb{R}^{n} .

Let $y \in \mathbb{R}^n$.

• First case: there exists $i \in [1, n]$ such that $y_i < 0$.

Set $x_i = -t$, $x_k = 0$ for $k \neq i$, where $t \geq 0$. Then $y^T x - f(x) = -t y_i \xrightarrow[t \to +\infty]{} +\infty$ and $f^*(y) = +\infty$.

Note that to affirm f(x) = 0, we need r < n. But if r = n, then $y^T x - f(x) = -ty_i + t = t(1 - y_i) \xrightarrow[t \to +\infty]{} +\infty$.

• Second case: $\forall k \in [1, n], y_k \geq 0$, and there exists $i \in [1, n]$ such that $y_i > 1$.

Set $x_i = t \ge 0$ and $x_k = 0$ for $k \ne i$.

Then
$$y^T x - f(x) = ty_i - t = t(y_i - 1) \xrightarrow[t \to +\infty]{} +\infty$$
 and $f^*(y) = +\infty$.

Note that to affirm f(x) = t, we need r > 0. But if r = 0, then $y^T x - f(x) = ty_i > t \xrightarrow[t \to +\infty]{} +\infty$.

• Third case: $\forall k \in [1, n], 0 \le y_k \le 1$ and $\sum_{i=1}^r y_i \ne r$.

Take
$$\varepsilon = \text{sign}\left(\sum_{i=1}^{r} y_i - r\right), t \ge 0, x = (\varepsilon t, \dots, \varepsilon t).$$

Then
$$y^T x - f(x) = \varepsilon t \left(\sum_{i=1}^n y_i - r \right) \xrightarrow[t \to +\infty]{} +\infty$$
, so $f^*(y) = +\infty$.

• Fourth case: $\forall k \in [1, n], 0 \le y_k \le 1$, and $\sum_{i=1}^r y_i = r$.

Let
$$x \in \mathbb{R}^n$$
, and $i : [1, n] \to [1, n]$ bijective such that $x_{i(1)} \ge x_{i(2)} \ge \cdots \ge x_{i(n)}$.
Then $y^T x - f(x) = \sum_{k=1}^n x_{i(k)} y_{i(k)} - \sum_{k=1}^r x_{i(k)} = \sum_{k=1}^r \underbrace{x_{i(k)}}_{\ge x_{i(r)}} \underbrace{(y_{i(k)} - 1)}_{\le 0} + \sum_{k=r+1}^n \underbrace{x_{i(k)}}_{\le x_{i(r)}} \underbrace{y_{i(k)}}_{\ge 0}$

$$\leq x_{i(r)} \left(\sum_{k=1}^{r} (y_{i(k)} - 1) + \sum_{k=r+1}^{n} y_{i(k)} \right) = x_{i(r)} \underbrace{\left(\sum_{k=1}^{n} y_k - r \right)}_{=0} = 0$$
, and the inequality becomes an

equality for x = 0 for instance. So $f^*(y) = 0$.

Therefore

$$f^*(y) = \begin{cases} 0 & \text{if } 0 \le y \le 1 \text{ and } \sum_{i=1}^n y_i = r \\ +\infty & \text{otherwise.} \end{cases}$$

3) $f(x) = \max_{i=1,\dots,n} (a_i x + b_i)$ on \mathbb{R} (illustrated in Figure 1).

As suggested by the exercise, we assume that the a_i are sorted in increasing order and that none of the functions $x \mapsto a_i x + b_i$ is redundant.

As a consequence, if we define, for $i \in [1, m-1]$, x_i to be such that $a_i x_i + b_i = a_{i+1} x_i + b_{i+1}$, that is $x_i = \frac{b_i - b_{i+1}}{a_{i+1} - a_i}$, as well as $x_0 = -\infty$ and $x_m = +\infty$, then we have $f(x) = a_i x + b_i$ for

Then, for
$$x, y \in \mathbb{R}$$
, $yx - f(x) = yx - \sum_{i=1}^{m} (a_i x + b_i) \mathbb{1}_{[x_{i-1}, x_i]}(x) = \sum_{i=1}^{m} ((y - a_i)x - b_i) \mathbb{1}_{[x_{i-1}, x_i]}(x)$.

- If $y > a_m$, then for $x \ge x_{m-1}$ we have $yx f(x) = \underbrace{(y a_m)}_{x \to +\infty} x + b_m \xrightarrow[x \to +\infty]{} +\infty$, and then $f^*(y) = +\infty.$
- Similarly, if $y < a_1$ we have $yx f(x) \xrightarrow[x \to -\infty]{} +\infty$, and then $f^*(y) = +\infty$.
- Now, assume that $a_1 \leq y \leq a_m$. Let $i \in [1, m-1]$ be such that $a_i \leq y \leq a_{i+1}$. $x \mapsto yx - f(x)$ is a continuous piecewise affine function (illustrated in Figure 2), with slopes $y - a_1 \ge 0, \dots, y - a_i \ge 0, y - a_{i+1} \le 0, \dots, y - a_m \le 0$. It is thus non-decreasing on $]-\infty, x_i]$, and non-increasing on $[x_i, +\infty[$.

It then reaches a maximum at $x = x_i$, which is:

$$f^*(y) = (y - a_i)x_i - b_i = (y - a_i)\frac{b_i - b_{i+1}}{a_{i+1} - a_i} - b_i.$$

We have shown that:

$$f^*(y) = \begin{cases} (y - a_i) \frac{b_i - b_{i+1}}{a_{i+1} - a_i} - b_i & \text{if } a_i \le y \le a_{i+1} \text{ for } 1 \le i \le m - 1 \\ +\infty & \text{otherwise.} \end{cases}$$

 $y-a_1$

 $y-a_2$

 $\rightarrow x$

yx - f(x)

Figure 1: Example of graph for f

Figure 2: Corresponding graph for $x \mapsto yx - f(x)$ for $y \in [a_3, a_4]$