§1-5 對數表的應用

(甲)對數表

- (1)數的四則運算中,加、減法比乘、除法簡單,為了將乘除法運算化成加、減法的運算,德國數學家 Stifel(1487~1567)發現了等比數列與等差數列之間的關係,將乘除法運算化成加、減法的運算。後來瑞士人 Briggs(1552~1632),英國人 Napier(1550~1617)等人都先後發展出對數表。一般而言,以 10 為底的對數表一般稱為常用對數表,另有一種是以無理數 e=2.71828... 為底數的對數表,叫做自然對數表,這在高層次的數學中,有極其重要的理論價值。常用對數的使用中,常以符號 \log 來代替 \log_{10} 。
- (2)對數如何將乘除化為加減?

例如:計算 $\frac{3.67 \times 4.92 \times 7.25}{9.75 \times 8.72}$ 的值。設 $x = \frac{3.67 \times 4.92 \times 7.25}{9.75 \times 8.72}$,兩邊取對數,

得 $\log x = \log \frac{3.67 \times 4.92 \times 7.25}{9.75 \times 8.72} = \log 3.67 + \log 4.92 + \log 7.25 - \log 9.75 - \log 8.72$

經查對數表[見附錄]可知:

 $\log 3.67 = 0.5647 \quad \log 4.92 = 0.6920 \quad \log 7.25 = 0.8603$

log9.75=0.9890 log8.72=0.9405 (這裡的=代表近似值)

所以 log x=0.1875, 再查對數表可知 0.1875 所對應的數是 1.54, 即 x=1.54

- (3)如何查對數表:
- (a)常用對數(自然對數)
 - ①以 10 為底的對數叫做常用對數⇒將以符號 log 來代替 log₁₀。
 - ②課本附錄中,列有從 1.00 到 9.99 間三位有效數字的實數的對數值。
- (b)常用對數表(近似值)摘錄部分

x	0	1	2	3	4	5	6	7	8	9	表尾差								
A	\ \ \	1	4	3	7	3			O		1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	4	8	12	17	21	25	29	33	37
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	4	8	11	15	19	23	26	30	34
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	3	7	10	14	17	21	24	28	31
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3	6	10	13	16	19	23	26	29
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	3	6	9	12	15	18	21	24	27
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	3	6	8	11	14	17	20	22	25
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	3	5	8	11	13	16	18	21	24
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	2	5	7	10	12	15	17	20	22
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	2	5	7	9	12	14	16	19	21
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	2	4	7	9	11	13	16	18	20
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19

①直接查表法⇒真數的範圍在 1.00~9.99(有效位數三位)

例:求 log1.56 的值。

②尾差查表法⇒真數的範圍在 1.000~9.999(有效位數四位)

例:求 log1.567的值。

③反查表法:⇒由對數值反求真數。

例: logA=0.1139,則A=? logB=0.3131,則B=?

④內差法

使用時機:

利用對數表來求一正數的對數值,或從對數值反過來求真數時,有時會碰到表上沒有所要的數值。

以 log1.346 為例來說明:由於 1.34<1.346<1.35,

先查出 log1.34=0.1271 , log1.35=0.1303 想法:當 x 由 1.34 變為 1.35 , 增量為 0.01 , 其對應的對數 y 從 0.1271 變到 0.1303 , 增量為 0.0032。 現在我們想要知道的是,當 x 從 1.34 變到 1.346 時,其對應的 y 從 0.1271 變為多少?

比例式就可求得 p 的近似值(\overline{BC}):

$$\frac{\overline{BC}}{0.006} = \frac{0.0032}{0.01}$$
 , $\overline{BC} = 0.0019$, 即 p 的近似值 0.0019

因此 $\log 1.346 = \log 1.34 + p = 0.1271 + 0.0019 = 0.1290$

我們將以上的方法稱為內插法。

事實上,利用內插法求 $\log 1.346$ 時,我們所得的正數 p 也出現在對數表中,即在對數表的最後三欄中看 6 所在那一行與第一行中 1.3 所在那一列的相交數 19 即是我們的校正數 0.0019,我們通常把這三欄稱為表尾差。

(練習1) 利用對數表查出下列的對數值:

(1)log5.79 (2)log6.321 (3)log2.44 Ans: (1)0.7627 (2)0.8008 (3)0.3874

(練習2) 利用對數表求下列各小題的 A 值:

 $(1)\log A=0.5263$ $(2)\log A=0.6614$

Ans: (1)3.36 (2)4.585

(練習3) 已知 log7.42=0.8704, log7.41=0.8698, 試利用內插法求 log7.4142 之值。 Ans: 0.8701

(乙)首數與尾數

(1)科學記號的引入:

附錄中的對數表所出現的數都是在 1 與 10 之間,若有真數在這個範圍外的話,這對數表是否夠用呢?

首先我們可把每一個正數 a 寫成科學記號,即 $a=b\times10^n$,其中 n 為整數, $1\le b<10$

例如: $490=4.9\cdot10^2$, $0.0049=4.9\cdot10^{-3}$,根據對數律 $\log xy = \log x + \log y$,可得

 $\log 490 = \log 4.9 + \log 10^2 = \log 4.9 + 2$

 $\log 0.0049 = \log 4.9 + (-3) = \log 4.9 - 3$

由附錄查表 log4.9=2.6902, 所以 log490=2.6902, log0.0049=-3+0.6920

因此透過科學記號的表示,只要我們得知1與10之間的對數值,就可以找出其他正數的對數值。

[**例題1**] (1)利用對數表查出 log7.43=?

(2)將 74300 化成科學記號,並找出 log74300=?

(3)將 0.000743 化成科學記號,並找出 log0.000743=?

Ans: (1)0.8710 (2)4.8710 (3)-4+0.8710=-3.1290

[**例題2**] 利用對數表求 $(1)\log\frac{5070000}{2}$ (2) $\log\sqrt{0.00123}$

Ans: $(1)6.4040(2)\frac{1}{2}(0.0899-3)$

[**例題3**] 利用對數表並應用科學記號求出 A 的值:

 $(1)\log A=0.9455$ $(2)\log A=5.9455$ $(3)\log A=-3.0545$

Ans: (1)8.82 $(2)A=8.82\times10^5=882000$ $(3)A=8.82\times10^{-4}=0.000882$

[**例題4**] 已知 log48.6=1.6866 , log4870000=6.6875 , 利用內差法求 log0.4866 之值。Ans: -0.3129

[**例題5**] 利用對數表計算 $\frac{\sqrt[4]{6.35} \times (0.6327)^3}{0.6370}$ 之值至小數點以下第四位。(以後四捨五入)

Ans: 0.6314

(練習4) 試利用對數表查出 log8.5=_____, 從而求出 log850=____, log0.0085=____。 Ans: 0.9294, 2.9294, -3+0.9294

- (練習5) 已知 $\log x = 4.8156$,試利用對數表求出 $x = _____$,又 $\log y = -2.1844$, 則 y=_____。 Ans: $6.54\cdot10^4$, 0.00654
- (練習6) 利用對數表,求下列方程式中的 x_1, x_2, x_3, x_4 之值。

 $(1)\log x_1 = 0.1553$

 $(2)\log x_2 = 0.1565$

(3)應用(1) $\log x_3 = 4.1553$ (4)應用(2) $\log x_4 = 2.1565$

Ans: (1)1.43 (2)1.434 (3)14300 (4)0.01434

(練習7) 利用對數表,寫出下列對數值。

 $(1)\log 1.34$ $(2)\log 134$ $(3)\log 0.0134$ $(4)\log 1.346$ $(5)\log 1.347$

(6)應用(4)(5), 求 log1.3467

Ans: (1)0.1271 (2)2.1271 (3) 2.1271 (4)0.1290 (5)0.1294 (6)0.12928

(練習8) 求(1)log134.67 (2)log13467 (3)log1346700 (4)log0.0013467 Ans: (1)2.12928 (2)4.12928 (3)6.12928 (4)3+12928

(練習10) 利用對數表求(8.72)^{2.11}的近似值。 Ans: 96.5

(2)首數與尾數:

將正數 x 表為科學記號即 $x=a\cdot 10^n$, $(1\le a<10, n$ 為整數), 其中 a 決定了數字 x 的內容, n 代表 x 的位數。

 $\log x = \log(a \cdot 10^n) = n + \log a$, n 為整數 , $\log 1 \le \log a < \log 10 \Rightarrow 0 \le \log a < 1$

整數 n 稱為**首數**, $\log a$ 稱為**尾數**,即 $\log x =$ **首數**+**尾數**。因為 a 決定了數字 x 的內容,n 代表 x 的位數。所以首數決定了位數,而尾數決定了數字內容。

 $\log x = 3.65 \Rightarrow$ 首數=3,尾數=0.65, $\log x = -2.65 \Rightarrow$ 首數=-3,尾數=0.35

請注意:logx= -2.65 時,因為 0≤尾數<1,因此尾數=0.35 而非-0.65。

 $\log x = \overline{2.8698} = -2 + 0.8698$ ⇒ 首數=-2, 尾數=0.8698

(3)首數如何決定位數?

已知 log2=0.3010 , log3=0.4771 , log7=0.8451

例如:

x=1000 是 4 位數 $\Rightarrow \log x=3$,首數=3 x=0.001 小數點後第 3 位不為 $0 \Rightarrow \log x=-3$,首數=-3

例如:

x=30000 是 5 位數 , $\Rightarrow \log x=4.3010$, 首數=4 x=0.0003 小數點後第 4 位 $\Rightarrow \log x=-3.6990=-4+0.3010$ 首數= -4

用科學記號來看 $x=a\cdot 10^k$,

- ① 當首數=n>0 時,則 k=n 且 x 的整數位為(n+1)位。
- ② 當首數= -n < 0 時,則 k = -n 且 x 的小數部分自小數點後第 n 位開始不為 0

(4) 尾數如何決定 x 的數字內容:

常用對數:

例如:求7100的首位數字。

解:令 7^{100} = $a\cdot 10^n$, $\log 7^{100}$ = $n+\log a$ =84.51 $\Rightarrow n$ =84, $\log a$ =0.51

從 log2=0.3010, log3=0.4771, log7=0.8451 可知:

 $log4 = 2 \cdot log2 = 0.6020 \text{ , } log5 = 1 - log2 = 0.6990 \text{ , } log6 = log2 + log3 = 0.7781 \text{ , } log6 = log2 + log3 =$

 $log8=3 \cdot log2=0.9030$, $log9=2 \cdot log3=0.9542$.

因為 log2=0.3010<log*a*<0.4771=log3⇒2<*a*<3⇒*a*=2...

所以 7^{100} 的首位數字=2。

[**例題6**] 已知 log85=1.9294,則

(1)log8.5 的首數為______, 尾數為_____。Ans:0;0.9294

(2)log850 的首數為_____, 尾數為____。Ans:2;0.9294

[**例題7**] 設 $y=(\frac{2}{3})^{20}$,則(1)y自小數點後第_____位,開始出現不為 0 的數字。

(2)y 之小數點後第一個不為 0 的數字為_____。 Ans: (1)4 (2)3

[**例題8**] 已知 log2=0.30103 , log3=0.47712

(1)比較 2¹⁰⁶與 3⁶⁶的大小。 (2)2¹⁰⁶+3⁶⁶ 為幾位數?

Ans:(1)2¹⁰⁶>3⁶⁶ (2)33 位數

(練習11) 下列對數,首數為-3的是:

(A) $\log 0.0023$ (B) $\log 0.00023$ (C) $\log \frac{1}{123}$ (D) $\log a = -3.4771$

(E) $\log b = -2.9931$ Ans : (A)(C)(E)

(練習12) 下列對數,選出尾數相同者:

(A)
$$\log 327$$
 (B) $\log 723$ (C) $\log \frac{1}{327}$ (D) $\log 0.0327$ (E) $\log 327000_{\circ}$ Ans: (A)(D)(E)

(練習13) 利用對數表求下列問題:

(2.8)¹⁰的整數部分是幾位數?(log2.8=0.4472) Ans: 5

(練習14) 目前所知最大質數為 2^{859433} –1, 利用對數表求出此質數的位數, 最高位的數字, 次高位的數字。 Ans:258690, 2, 1

(練習15) 設 $a=2^{26},b=3^{16}$ 且 $\log 2=0.3010$, $\log 3=0.4771$, 則(1)ab 是_____位數 , (2)a+b 為______位數。 Ans: 16,9

(練習16) 設 $x = \frac{7^{100} \times 3^{20}}{2^{300}}$,則:(1) x 的整數部分位數為_____。 (2) x 的首位數字為_____。Ans:(1) 4(2) 5

(練習18) 設 $A = \frac{1}{2} + (\frac{1}{2})^2 + (\frac{1}{2})^3 + ... + (\frac{1}{2})^{100}$, 若將 A 表成小數,則在小數點後第_____位 開始出現部為 9 的數字。 Ans:31

(練習19) 設 100 < x < 1000, 若 $\log x$ 與 $\log \frac{1}{x}$ 的尾數相同,則 $x = \underline{\hspace{1cm}}$ 。Ans: $100\sqrt{10}$

(丙)對數表的應用

[例題9] 假設目前的定期儲蓄存款的年利率為 4.8%, 每二個月為一期, 複利計算, 今存進 10000元, 言明定期 5年, 試利用對數表, 求期滿之本利和。Ans: 12560元

X	1.048	1.024	1.016	1.012	1.008	1.006	1.004	1.002	1.001
$\log x$	0.0203	0.0103	0.0068	0.0051	0.0033	0.0025	0.0017	0.0008	0.0004
X	1.236	1.267	1.265	1.256	1.259	1.247	1.261	1.250	1.253
$\log x$	0.1015	0.1030	0.1020	0.0990	0.1000	0.0960	0.1007	0.0969	0.0979

[**例題10**] 某人向地下錢莊借了 10000 元,言明日利率為 2%,每日複利計算,借了一年(366 天)後,應該要還_____元。 Ans:1405 萬元

x	0	1	2	3	4	5	6	7	8	9				表	尾	差				
	U	1	_	3	7	3	U	'	O		1	2	3	4	5	6	7	8	9	
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	4	8	12	17	21	25	29	33	37	
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	4	8	11	15	19	23	26	30	34	
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	3	7	10	14	17	21	24	28	31	
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3	6	10	13	16	19	23	26	29	
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	3	6	9	12	15	18	21	24	27	
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	3	6	8	11	14	17	20	22	25	
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	3	5	8	11	13	16	18	21	24	
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	2	5	7	10	12	15	17	20	22	
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	2	5	7	9	12	14	16	19	21	
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	2	4	7	9	11	13	16	18	20	
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19	

[例題11] 某甲在股票市場裡買進賣出頻繁。假設每星期結算都 損失該星期初資金的 1% ,而 n 個星期結束後資金損失已經 超過原始資金的一半,則 n 的最小值為_____。Ans:69 (89 自然) (已知 $\log_{10}2$ =0.3010, $\log_{10}3$ =0.4771, $\log_{10}11$ =1.0414)

生長函數:形如 $f(x)=c\cdot a^x$ 的函數稱為生長函數,其中 a 是生長因子,c 是 f(x) 在 x=0 的初始值。

[例題12] 假設放射性元素鐳每經 1 年質量只剩下原質量的 a 倍,其中 a 為一常數,已知鐳的半衰期(即衰變到質量一半所需的時間)為 1600 年,求鐳衰變到原質量的 $\frac{3}{4}$ 時所需的時間。 Ans:約 664 年

[**例題13**] PH 值的意義

所謂 PH 值是指溶液中氫離子濃度的對數值加上負號,(即 PH 值= $-\log[H^+]$,其中 $[H^+]$ 為氫離子濃度),現在把 PH 值為 3 與 4 的酸性溶液依 3 比 2 混合,求混合溶液的 PH 值。 Ans: 3.2

(練習20) 前行政院長提出知識經濟,喊出 10 年內要讓台灣 double(加倍),一般小市民希望第 11 年開始的薪水加倍。如果每年調薪 a%,其中 a 為整數,欲達成小市民的希望,那麼 a 的最小值為_____.(參考數值: $\log 2 = 0.3010$) (91 指定考科乙) Ans:8

x	1	2	3	4	5	6	7	8	9
log(1+0.01x)	0.0043	0.0086	0.0128	0.0170	0.0212	0.0253	0.0294	0.0334	0.0374

(練習21) 設有一張很大很大的白報紙,厚 $\frac{1}{100}$ 公分,對摺一次,厚度加倍,再對摺一次厚度又加倍,如此繼續下去,則至少要對摺幾次,其厚度才達地球到太陽的距離?

(地球到太陽的距離約為 14549 萬公里,而 log1.4549 0.1628) Ans: 51 次

(練習22) 阿財有錢 20 萬元,存入一家銀行,已知年利率為 7%,每年複利一次,

- (練習22) 阿財有錢 20 萬元,存入一家銀行,已知年利率為 7%,每年複利一次,若阿財欲使 $n(n \in N)$ 年後的本利和達到 30 萬元以上,則 n 的最小值為 (A)4 (B)5 (C)6 (D)7 (E)8 (log1.07=0.0294, log1.5=0.1761)Ans: (C)
- (練習23) 某人於十年間,每年年初須付保險費 1200 元,若依 4%複利計算,十年後,此項保險費總數為_____(log1.04=0.0170,log1.479=0.170)。 Ans: 14944.8

- (練習24) 取 PH 值為 2 與 4 的酸性溶液依 1:4 混合, 試求混合後溶液的 PH 值。 Ans:約 2.7
- (練習25) 已知碳 14 的半衰期約為 5770 年,試求碳 14 衰變至原質量之 $\frac{2}{3}$ 所需的時間。 Ans:約 3376 年

綜合練習

(1) 利用對數, 求下列方程式中x 的值:

(a) $\log x = 2.4823$ (b) $\log x = 4.7147$ (c) $\log x = 5.6487 - 8$

(2) 利用對數表求下列各式的值:

(a)
$$\sqrt[3]{\frac{9.721\times10.73}{62.9}}$$
 (b) $\frac{0.372\times(0.00587)^3}{\sqrt[3]{0.273}}$ (c) $(2.71)^{12.31}$

- (3) 己知 $\log x$ 之尾數與 $\log 0.1234$ 之尾數相同, $\log x$ 之首數與 $\log 5678$ 之首數相同, 則 x=(A)0.1234 (B)0.5678 (C)5678 (D)1234 (E)無法判斷。
- (4) 若 $x=\frac{\sqrt[3]{88.3}}{\sqrt{2.56}}$, 則下列那一個敘述是正確的? (83 學科) (A)2.8<x<2.9 (B)2.7<x<2.8 (C)2.6<x<2.7 (D)2.5<x<2.6 (E)2.4<x<2.5。
- (5) 方程式 4^x = 100×3^x 在下列那兩個連續整數間有實數解?($\log 2$ =0.3010, $\log 3$ =0.4771) (A)13,14 (B)14,15 (C)15,16 (D)16,17 (E)17,18
- (6) (a)已知 47^{100} 是 168 位數,則 47^{17} 是幾位數? (b) $\frac{1}{47^{17}}$ 在小數點後第幾位數字開始不為 0?
- (7) 設 n 為自然數,數列 $< a_n >$ 定義成 $a_n = (1.25)^n$,問此數列中整數部分為三位數者計有幾項?
- (8) 若 $A=1+2+2^2+2^3+...+2^{73}$,則 (a)A 為幾位數? (b)A 的最高位數為多少? (c)A 的個位數為何?
- (9) 若 I 為地震時所散發出來的相對能量,則芮氏規模 r 定義為 logI,即 r=logI。 去年 921 大地震時,最大地震芮氏規模為 7.3,而 1995 年日本神戶大地震時, 最大地震芮氏規模為 7.2。試問 921 大地震所釋放的能量為日本神戶大地震的

幾倍?(已知 log1.259=0.1, log7.2=0.8573, log7.3=0.8633;答案請計算至小數點後第三位)

(10) 在 1999 年 6 月 1 日數學家利用超級電腦驗證出 $2^{6972593}$ -1是一個質數。若想要列印出此質數至少需要多少張 A4 紙?假定每張 A4 紙,可列印出 3000 個數字。在下列選項中,選出最接近的張數。 [$\log_{10} 2 \approx 0.3010$] (A) 50 (B) 100(C) 200 (D) 500(E) 700 (89 學科)

- (11) 設年利率為 12.5%, 若依複利計算,則最少要______年(取整數年數)本利和 才會超過本金的 2 倍。 (86 大學聯考自然組)
- (12) 喬治上高中時,儲蓄已累積至 40,000,最近又選擇一家新的銀行,把 40,000元存入,年利率 8%,每年複利一次;幾年後他的儲蓄可累計到 50,000元? (A)2 (B)3 (C)4 (D)5
- (14) 統計學家<u>克利夫蘭</u>對人體的眼睛詳細研究後發現:我們的眼睛看到圖形面積的 大小與此圖形實面積的 0.7 次方成正比。例如:大圖形是小圖形的 3 倍,眼睛 感覺到的只有 3^{0.7} (約 2.16) 倍。觀察某個國家地圖,感覺全國面積約為某縣 面積的 10 倍,試問這個國家的實際面積大約是該縣面積的幾倍?

(已知 $\log 2 \approx 0.3010$, $\log 3 \approx 0.4771$, $\log 7 \approx 0.8451$)

- (1) 18 倍 (2) 21 倍 (3) 24 倍 (4) 27 倍 (5) 36 倍 (93 指定考科乙)
- (15) 聲音的強度是用每平方公尺多少瓦特(W/m^2)來衡量,一般人能感覺出聲音的最小強度為 $I_0=10^{-12}(W/m^2)$;當測得的聲音強度為 $I(W/m^2)$ 時,所產生的噪音分貝數 d 為 $d(I)=10\cdot\log\frac{I}{I_0}$
 - (a) 一隻蚊子振動翅膀測得的聲音強度為 $10^{-12}(W/m^2)$, 求其產生的噪音分貝數。
 - (b)汽車製造廠測試發現,某新車以每小時 60 公里速度行駛時, 測得的聲音強度為 $10^{-4}(W/m^2)$,問此聲音強度產生的噪音為多少分貝?
 - (c)棒球比賽場中,若一支瓦斯汽笛獨鳴,測得的噪音為 70 分貝,則百支瓦斯 汽笛同時同地合鳴,被測得的噪音大約為多少分貝? (93 指定考科乙)
- (16) 假設每次過濾水都可以去除水中 20%的雜質,現在要使水中雜質降到原來的 1%,試問至少應重複過濾幾次?

- (17) 食鹽水 100 克, 每次取出 20 克再加入 20 克的純水, 如此繼續操作, 則至少要 幾次後其濃度始小於原濃度的 $\frac{1}{10}$?(已知: $\log 2=0.3010$)
- (18) 濃度 8%的食鹽水 100 克, 今從中取出 20 克再加入 20 克的純水混合, 再從其 中取出 20 克後,再加入 20 克的純水混合,如此繼續操作 n 次,欲使食鹽水的 濃度低於 2% , 求 n 的最小值。
- (19) 某甲向銀行貸款 100 萬元,約定從次月開始每月還給銀行 1 萬元,依月利率 0.6% 複利計算,則某甲需要 年就可還清。(答案以四捨五入計算成整數, 而 log102=0.3010, log101.006=0.0026)(88 大學自)
- (20) 某人於二十年間,每年年初付保險費 1000元,若依 5% 複利計算,20 年後此 項保險費總數約為若干元?(注意:(1)查表求出真數至四位小數以下四捨五 入;(2)總數元以下四捨五入)

ж	0	1	2	3	4	5	6	7	8	9
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609
29	4624	4639	4654	4669	4683	4698	4713	3728	4742	4757

- (21) 西元 1990 年,臺灣地區的人口數是 21×10^6 人(二千一百萬人),如果每年人口 數平均成長率為 1.2% , 那麽從 1990 年算起 , x 年後臺灣地區的人口數表成 x 的函數 f(x)。 (a)試求 f(x) (b)試估測西元 2000 年臺灣地區的人口數。 $((1.012)^{10}=1.12669)$
- (22) 設 x>0, y>0, 試證: $\log x$ 與 $\log y$ 之尾數相同 $\Leftrightarrow x=y\times 10^n$ (n 為某一個整數)
- (23) 設 $10 \le x \le 100$, 且 $\log x^2$ 與 $\log \frac{1}{x}$ 之尾數相同 , 則 x=______。

- **進階問題** (24) 已知 3.06=10^{0.4857}, 30.7=10^{1.4871}, 而 10^x=306.6, 求 x=?
- (25) 常用對數之首數為 2 的正整數共有幾個?
- (26) 設 x 為實數,且 1 < x < 100,如果 $\log 3x$ 之尾數為 $\log x$ 之尾數的 3 倍,求 x 的值。
- (27) 已知 7^{100} , 11^{100} 之位數各為 85,105 利用此事實求 77^{20} 的位數。

綜合練習解答

- **(1)**(a)x = 303.6 (b) $x = 5.185 \times 10^{-4}$ (c) $x = 4.453 \times 10^{-3}$
- (2) (a) 1.183 (b) 1.1596×10^{-7} (c) 2.118×10^{5}
- (3)(D)
- (4)(B)
- (5)D
- (6)(a)29 位數(b) 29 位
- **(7)** 10
- **(8)**(a)23 位 (b)1 (c)3
- (9)1.259 倍
- (10)(E)
- (11)6
- (12)(B)
- **(13)** 10
- (14)(4)

[解法]:設實際倍數為 t 倍 \Rightarrow $t^{0.7} = 10$

取對數
$$0.7 \log t = 1 \Rightarrow t = \frac{1}{0.7} = 1.428 \cdots$$

 $\nabla \log 18 = \log 2 + 2\log 3 = 1.2552$, $\log 21 = \log 3 + \log 7 = 1.3222$,

 $\log 24 = 3\log 2 + \log 3 = 1.3801$, $\log 27 = 3\log 3 = 1.4313$,

 $\log 36 = 2(\log 2 + \log 3) = 1.5562$,故t最接近27。

(15)(a)0 分貝 (b)80 分貝 (c)90 分貝

[解法]:

(a)
$$d(10^{-12}) = 10 \cdot \log \frac{10^{-12}}{10^{-12}} = 0$$
 (分貝)

(b)
$$d(10^{-4}) = 10 \cdot \log \frac{10^{-4}}{10^{-12}} = 10 \cdot \log 10^8 = 80$$
 (分貝)

(c)
$$70 = 10 \cdot \log \frac{I}{10^{-12}} \Rightarrow I = 10^{-5}$$

百支的強度 $I = 100 \cdot 10^{-5} = 10^{-3}$

故噪音=
$$d(10^{-3}) = 10 \cdot \log \frac{10^{-3}}{10^{-12}} = 10 \cdot \log 10^9 = 90$$
(分貝)

- **(16)**21
- **(17)** 11
- **(18)**7
- (19)13年
- (20)34749 元
- $(21)(a)21 \cdot 10^6 (1.012)^x$ (b)2.366×10⁷
- (22)可令 $\log x$ 與 $\log y$ 之尾數為 α , $\log x$ 與 $\log y$ 的首數分別為 a,b , 所以 $\log x=a+\alpha$, $\log y=b+\alpha$ $\log x-\log y=a-b$ 為整數 所以可令 $\log x-\log y=n$ $\Leftrightarrow x=y\times 10^n$
- (23)x=10 , $10^{\frac{4}{3}}$, $10^{\frac{5}{3}}$
- **(24)** 2.4865
- (25) 900
- $(26)x = \sqrt{3}, \sqrt{30}, 10\sqrt{3}, 10\sqrt{30}$
- **(27)** 38
- **(28)** 10,11,12,13,14