Fysikk 1

Mats B.

Skoleåret 2021/2022

Innhold

1	Rettlinjet bevegelse	3
2	Krefter	4
3	Mekanisk energi	5
4	Kollisjoner og eksplosjoner	6
5	Termisk energi	7
6	Bølger og stråling 6.1 Bølger 6.2 Strålingslovene 6.3 Strålingsbalansen 6.4 Oppgaver 6.4.1 Kapitteltest 6.5 Formler	8 8 8 8 8 8
7	Atomfysikk 7.1 Atomets sammensetning 7.1.1 Kvantehypotesen 7.2 Oppgaver 7.3 Formler	10 10 10 10 11
8	Kjernefysikk 8.1 Atomkjernen 8.1.1 Atommassen 8.2 Skrivemåter 8.3 Oppgsyor	12 12 12 13

INNHOLD		2
9	Astrofysikk	17
10) Elektrisitet	18

Kapittel 1 Rettlinjet bevegelse

Krefter

Kapittel 3 Mekanisk energi Kapittel 4 Kollisjoner og eksplosjoner Kapittel 5
Termisk energi

Bølger og stråling

- 6.1 Bølger
- 6.2 Strålingslovene
- 6.3 Strålingsbalansen
- 6.4 Oppgaver

Oppgave 11: En lyspære på 40 W er den eneste lyskilden i et rom

a)

b) $2x^4 - 3x^3$

c) x^{3}

d) helo

6.4.1 Kapitteltest

6.5 Formler 9

6.5 Formler

Frekvensen f er antall svingninger et punkt på bølgen gjør i løpet av et sekund

$$f = \frac{1}{T} \tag{6.1}$$

I løpet av en periode T flytter bølgen seg en bølgelengde λ . Vi finner et uttrykk for bølgefarten med formelen v=s/t

$$v = \frac{s}{t} = \frac{\lambda}{T} = \lambda \cdot \frac{1}{T} = \lambda \cdot f$$

Bølgefarten v er lik bølgelengden λ multiplisert med frekvensen f

$$v = \lambda f \tag{6.2}$$

For elektromagnetiske bølger i vakuum er bølgefarten konstant lik

$$c = 299792458m/s \approx 3.00 \cdot 10^8 m/s$$

Bølgeformelen for lys blir da

$$c = \lambda f \tag{6.3}$$

Utstrålingstettheten U fra et svart legeme er lik utstrålt effekt P per flatenhet A av legemet

$$U = \frac{P}{A} \tag{6.4}$$

Bølgelengden λ_{Topp} for energimaksimum i termisk stråling er omvendt proporsjonal med den absolutte temperaturen T til legemet som stråler

$$\lambda_{Topp} \cdot T = a \tag{6.5}$$

Konstanten a har verdien $2,90 \cdot 10^{-3} Km$

Stefan-Boltzmanns lov Utstrålingstettheten U fra et svart legeme er proporsjonal med fjerde potens av temperaturen T på overflaten av legemet

$$U = \sigma T^4 \tag{6.6}$$

Lysintensitet I i avstanden r fra en lyskilde med utstrålt effekt P er gitt ved

$$I = \frac{P}{4\pi r^2} \tag{6.7}$$

Atomfysikk

7.1 Atomets sammensetning

7.1.1 Kvantehypotesen

7.2 Oppgaver

Exercise 1

Fotoner avgitt fra en laser

$$P = 5 \text{mW}$$

$$\lambda = 532 \text{nm} E_0 = h \cdot f$$

$$E_t ot = N \cdot E_0$$

$$P = \frac{W}{t} = \frac{E}{t} C = f \cdot \lambda \quad f = \frac{c}{\lambda}$$

Solution 1

$$E_0 = h \cdot f$$

$$= h \cdot \left(\frac{c}{\lambda}\right)$$

$$= 6,63 \cdot 10^{(34)}$$

7.3 Formler 11

Exercise 2

Radien i et hydrogenatom er ca. $5 \cdot 10^-11$ m. Estimer omtrent hvor mange hydrogenatomer som får plass langs diameteren til et hårstrå med radius $7 \cdot 10^{-4}$ m.

Solution 2

$$\frac{7 \cdot 10^{-4}}{5 \cdot 10^{-11}} = 1, 4 \cdot 10^7$$

Exercise 3

Hva er kontinuerlig, og hva er kvantisert, i listen nedenfor?

Solution 3

a) Kontinuerlig

b) Kvantisert

c) Kontinuerlig

d) Kvantisert

e) Kontinuerlig

f) Kontinuerlig

g) Kvantisert

7.3 Formler

Balmers formel: Energien som frigjøres når et elektron hopper fra et vilkårlig skall \boldsymbol{n} til grunnstillingen 2

$$hf = B(\frac{1}{2^2} - \frac{1}{n^2})$$

$$h = 6,63 \cdot 10^{(} - 34)$$
Js

$$B = 2.18 \cdot 10^{(} - 18)J$$

Bohrs første postulat

$$E_1, E_2, E_3, \dots, E_n \in (1, 2, 3, \dots)$$

Bohrs andre postulat

$$hf = E_n - E_m \quad n > m$$

Kjernefysikk

8.1 Atomkjernen

Antall proton i kjernen kaller vi protontallet Z

A er nukleontallet til grunnstoffet - samme som atomnummeret

Antall nøytroner kaller vi nøytrontallet N

Protoner og nøytroner har fått fellesnavnet nukle
oner. Antall nukleoner i kjernen kaller vi nukleontallet A. Altså A=Z+N

X er det kjemiske tegnet for grunnstoffet, eks. He for helium

Et nøytralt atom kalles en nukleide, altså alle elektroner er med

Kun atomkjernen:

$$^{A}_{Z}X$$
 (8.1)

Hele atomet:

$$^{A}X$$
 (8.2)

8.1.1 Atommassen

Siden atommasser er svært små kan vi ikke bruke kilo som enhet for disse.

De tok det mest vanlige grunnstoffet, karbon-12, med 12 nukleoner og satte det lik eksakt 12,00000U.

8.2 Skrivemåter 13

8.2 Skrivemåter

 $Proton = {}^{1}_{1}p$

 $N \emptyset y tron = {1 \atop 0} n$

 $Elektron = {}^{0}_{-1}e$

8.3 Oppgaver

Exercise 4

Hva er byggesteinene i en atomkjerne?

Solution 4

En atomkjerne består av protoner og nøytroner: Nukleoner

Exercise 5

Hva er isotoper?

Solution 5

En isotop er et stoff med ulikt antall protoner og nøytroner i kjernen

Exercise 6

a) Hva er et nukleon?

- b) Hva er nukleontallet og ladningtallet til atomkjernen $^{235}_{\ 92}\mathrm{U?}$
- c) Hvor mange protoner, og hvor mange nøytroner, har uranisotopen $^{235}_{92}$ U?

8.3 Oppgaver 14

Solution 6

- a) Et nukleon er en av byggesteinene i atomkjernen, enten et proton eller et nøytron
- b) Atomkjernen har et nukleontall på 235, og et ladningstall på 92.
- c) Isotopen har 92 protoner, og 143 nøytroner.

Exercise 7

a) Hva er en nuklide?

- b) Hvor stor er nuklidemassen av ¹⁵N?
- c) Hvordan er atommasseenheten u definert?

Solution 7

- a) En nuklide er et nøytralt atom med alle sine elektroner
- b) Stoffet har en nuklidemasse på 15.00010898u
- c) Atommasseenheten u er definert med utgangspunkt i vekten på ett karbon nukleon som 1.0000000u
- d) Atommasseenheten u er definert med utgangspunkt i vekten på ett karbon nukleon som 1.0000000u

Exercise 8

- a) Hvilken kraft er det som holder en atomkjerne sammen?
- b) Hvorfor har tyngre grunnstoffer ofte mange flere nøytroner enn protoner i kjernen?

Solution 8

- a) En atomkjerne holdes sammen av kjernekraften
- b) Tyngre atomer har gjerne høyere masse, og dermed større frastøtende kraft. Flere nøytroner bidrar til å øke kjernekraften og holde kjernen sammen.

Exercise 9

- a) Hva skjer når en atomkjerne sender ut alfastråling?
- b) Hva skjer med protontallet, nøytrontallet og nukleontallet ved alfastråling?

8.3 Oppgaver 15

Solution 9

(2 protoner og 2 nøytroner). Atomkjernen henfaller, og blir mindre.

a) Alfastråling består av en Helium-kjerne b) Protontallet, nøytrontallet og nukleontallet vil alle minke med 2, 2 og 4 respektivt.

Exercise 10

a) Hva skjer når en atomkjerne sender ut betastråling?

b) Hva skjer med protontallet, nøytrontallet og nukleontallet ved betastråling?

Solution 10

a) Et nøytron omdannes til ett elektron og ett proton. Elektronet sendes ut i form av stråling, mens protonet blir værende og danner et positivt ion.

b) Protontallet øker med 1, nøytrontallet minker med 1, nukleontallet forblir derfor det samme.

Exercise 11

Solution 11

Exercise 12

Solution 12

Exercise 13

8.3 Oppgaver 16

Solution 13

Kapittel 9 Astrofysikk

Elektrisitet