



#### Enhancing Functional Connectivity with Dictionary Learning for Brain Fingerprints

Pratik Jain

New Jersey Institute of Technology



#### Contents

- Introduction to Resting state fMRI
- Research objectives
- Functional Connectivity and Resting state Networks
- Enhancing the Network Specific Individual Characteristics
- Conclusions
- Future scope





Image Source: Wikipedia



• Approximately 20% of the total energy produced by the body is consumed by the brain, even when it is not performing any cognitive task.<sup>1</sup>



Image Source: Wikipedia

<sup>1</sup>J. Bijsterbosch, S. Smith, and C. Beckmann. *Introduction to Resting state fMRI functional Connectivity*. Oxford University Press, 2017



- Approximately 20% of the total energy produced by the body is consumed by the brain, even when it is not performing any cognitive task.<sup>1</sup>
- Can we figure out, what is it doing when we aren't doing anything? How?



Image Source: Wikipedia

<sup>&</sup>lt;sup>1</sup>J. Bijsterbosch, S. Smith, and C. Beckmann. *Introduction to Resting state fMRI functional Connectivity*. Oxford University Press, 2017



- Approximately 20% of the total energy produced by the body is consumed by the brain, even when it is not performing any cognitive task.<sup>1</sup>
- Can we figure out, what is it doing when we aren't doing anything? How?
- Are these activities of the brain unique to one's personality?



Image Source: Wikipedia

<sup>&</sup>lt;sup>1</sup>J. Bijsterbosch, S. Smith, and C. Beckmann. *Introduction to Resting state fMRI functional Connectivity*. Oxford University Press, 2017



- Approximately 20% of the total energy produced by the body is consumed by the brain, even when it is not performing any cognitive task.<sup>1</sup>
- Can we figure out, what is it doing when we aren't doing anything? How?
- Are these activities of the brain unique to one's personality?
- Well, let's find out!



Image Source: Wikipedia

<sup>1</sup>J. Bijsterbosch, S. Smith, and C. Beckmann. *Introduction to Resting state fMRI functional Connectivity*. Oxford University Press, 2017



- Approximately 20% of the total energy produced by the body is consumed by the brain, even when it is not performing any cognitive task.<sup>1</sup>
- Can we figure out, what is it doing when we aren't doing anything? How?
- Are these activities of the brain unique to one's personality?
- Well, let's find out!



Image Source: Wikipedia

<sup>&</sup>lt;sup>1</sup>J. Bijsterbosch, S. Smith, and C. Beckmann. *Introduction to Resting state fMRI functional Connectivity*. Oxford University Press, 2017



# Resting state fMRI







## Resting state fMRI













17-12-2024







17-12-2024



















Red  $\rightarrow$  Correlations > 0.35Yellow  $\rightarrow$  Correlations < -0.35





Red  $\rightarrow$  Correlations > 0.35Yellow  $\rightarrow$  Correlations < -0.35



























Averaged Time-series for a region





Averaged Time-series for a region

















n = Number of Regions of Interest (ROIs)

$$\tilde{n} = \frac{n \times (n-1)}{2}$$



Visual Somato-Motor Dorsal-Attention Ventral-Attention Limbic Fronto-Parietal Default Other





n = Number of Regions of Interest (ROIs)

$$\tilde{n} = \frac{n \times (n-1)}{2}$$

n n Representation of one fMRI scan

Visual Somato-Motor Dorsal-Attention Ventral-Attention Limbic Fronto-Parietal Default Other





n = Number of Regions of Interest (ROIs)

$$\tilde{n} = \frac{n \times (n-1)}{2}$$

n n Representation of one fMRI scan

/isual Somato-Motor Dorsal-Attention Ventral-Attention Limbic Fronto-Parietal Default Other





#### Whole Brain





Whole Brain



Cortical Brain





Whole Brain



Cortical Brain



Spherical ROIs





Whole Brain



Cortical Brain



Spherical ROIs







#### Brief details of Atlases Used

| Atlases     | ROIs                       | Average Voxel<br>per ROI    | Spherical<br>ROIs | Contains Subcortical<br>Nodes |
|-------------|----------------------------|-----------------------------|-------------------|-------------------------------|
| AAL         | 116                        | 1160                        | No                | Yes                           |
| Dosenbach   | 164                        | 123                         | Yes               | No limbic nodes               |
| Brainnetome | 246                        | 477                         | No                | No Cerebellum nodes           |
| Power       | 264                        | 8                           | Yes               | Yes                           |
| Shen        | 268                        | 601                         | No                | Yes                           |
| Seitzman    | 300                        | 58                          | Yes               | Yes                           |
| Gordon      | 333                        | 205                         | No                | No                            |
| Schaefer    | 100, 200, 300,<br>400, 500 | 1320, 660, 440,<br>330, 264 | No                | No                            |



## Goals





### Goals

• Extract the Subject-Specific components from FC (Brain fingerprints)



### Goals

- Extract the Subject-Specific components from FC (Brain fingerprints)
- · Look at the effect of changing the Brain atlas.



### Goals

- Extract the Subject-Specific components from FC (Brain fingerprints)
- · Look at the effect of changing the Brain atlas.
- · Look at the Brin fingerprints in different resting state networks.



#### Human Brain

- Approximately 20% of the total energy produced by the body is consumed by the brain, even when it is not performing any cognitive task.<sup>1</sup>
- Can we figure out, what is it doing when we aren't doing anything? How?
- Are these activities of the brain unique to one's personality?
- Well, let's find out!



Image Source: Wikipedia

<sup>&</sup>lt;sup>1</sup>J. Bijsterbosch, S. Smith, and C. Beckmann. *Introduction to Resting state fMRI functional Connectivity*. Oxford University Press, 2017



Motivation

Shejin T, Anil Kumar Sao, Significance of dictionary for sparse coding — based face recognition In: Proceedings of the International Conference of Biometrics. (2012)



Motivation





Shejin T, Anil Kumar Sao, Significance of dictionary for sparse coding — based face recognition In: Proceedings of the International Conference of Biometrics. (2012)



#### Motivation







Common Component

Shejin T, Anil Kumar Sao, Significance of dictionary for sparse coding — based face recognition In: Proceedings of the International Conference of Biometrics. (2012)



Motivation







Common Component



Subject Specific Component



Shejin T, Anil Kumar Sao, Significance of dictionary for sparse coding — based face recognition In: Proceedings of the International Conference of Biometrics. (2012)



Motivation











Subject Specific Component



Shejin T, Anil Kumar Sao, Significance of dictionary for sparse coding — based face recognition In: Proceedings of the International Conference of Biometrics. (2012)











































$$Y_i = DX_i + D_i X_i$$



$$Y_i = DX_i + D_i X_i$$
Common



• 
$$Y_i = DX_i + D_i X_i$$

Common Subject Specific









G. Zhou et al. "Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction".

In: IEEE Trans Neural Network Learn System (2016)





G. Zhou et al. "Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction".

In: IEEE Trans Neural Network Learn System (2016)





G. Zhou et al. "Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction".

In: IEEE Trans Neural Network Learn System (2016)





Key Idea – FC maps of scans belonging to the same subject should be similar as compared to the FC maps of different subjects.



Key Idea – FC maps of scans belonging to the same subject should be similar as compared to the FC maps of different subjects.





Key Idea – FC maps of scans belonging to the same subject should be similar as compared to the FC maps of different subjects.

Subject 1 Scan 1

Subject 1 Scan 2

Analogy face images







Key Idea – FC maps of scans belonging to the same subject should be similar as compared to the FC maps of different subjects.



Analogy face images







Key Idea – FC maps of scans belonging to the same subject should be similar as compared to the FC maps of different subjects.



Subject 1 Scan 1













Key Idea – FC maps of scans belonging to the same subject should be similar as compared to the FC maps of different subjects.



Analogy face images











Key Idea – FC maps of scans belonging to the same subject should be similar as compared to the FC maps of different subjects.



#### Results









 $\frac{I_{diff}}{overlap}$   $\rightarrow$  Higher the value, more the scans within same subject are similar and different between different subjects.







Decreasing order of Average voxels per region

Atlases





### Conclusion



### Conclusion

• COBE dictionary learning algorithm is better than PCA, RPCA and K-SVD in extracting the subject-specific FC (brain fingerprints)



### Conclusion

- COBE dictionary learning algorithm is better than PCA, RPCA and K-SVD in extracting the subject-specific FC (brain fingerprints)
- Default Mode and Fronto-Parietal Network have better features than other resting state networks.



### Conclusion

- COBE dictionary learning algorithm is better than PCA, RPCA and K-SVD in extracting the subject-specific FC (brain fingerprints)
- Default Mode and Fronto-Parietal Network have better features than other resting state networks.
- · High resolution atlas with low average number of voxels per ROI are desirable.



### References

- J. Bijsterbosch, S. Smith, and C. Beckmann. Introduction to Resting state fMRI functional Connectivity. @Oxford University Press, 2017
- Bharat Biswal et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. @In: Magnetic Resonance in Medicine (1995)
- Shejin T, Anil Kumar Sao, Significance of dictionary for sparse coding-based face recognition @In: Proceedings of the International Conference of Biometrics. (2012)
- G. Zhou et al. "Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction". @In: IEEE Trans Neural Network Learn System (2016)
- Jain P, Chakraborty A, Hafiz R, Sao AK, Biswal B. Enhancing the network specific individual characteristics in rs-fMRI functional connectivity by dictionary learning. @ In:Human Brain Mapping (2023)





# Thank You

Questions?







## Metric - Overlap (Proposed)





#### COBE C

$$Y_n^T = X_n^T D^T + \breve{X}_n^T D_n^T$$

$$\cdot \boldsymbol{X_n}^T \boldsymbol{D}^T = \boldsymbol{Y_n}^T - \boldsymbol{\boldsymbol{X}_n}^T \boldsymbol{D_n}^T$$

$$X_n^T = (Y_n^T - \widecheck{X}_n^T D_n^T) D (D^T D)^{-1}$$

$$X_n^T = Y_n^T D - \widecheck{X}_n^T D_n^T D$$

$$X_n^T = Y_n^T D$$

using least squares

$$\mathbf{D}^T \mathbf{D} = \mathbf{I}$$

$$\boldsymbol{D}_i^T \boldsymbol{D} = \mathbf{I}$$



$$Y_n = DX_n + D_n \breve{X}_n$$

COBE C

$$Y_n^T = X_n^T D^T + \breve{X}_n^T D_n^T$$

$$\cdot \boldsymbol{X_n}^T \boldsymbol{D}^T = \boldsymbol{Y_n}^T - \boldsymbol{X_n}^T \boldsymbol{D_n}^T$$

$$X_n^T = Y_n^T D - \widecheck{X}_n^T D_n^T D$$

$$X_n^T = Y_n^T D$$

using least squares

$$\mathbf{D}^T \mathbf{D} = \mathbf{I}$$

$$\boldsymbol{D}_i^T \boldsymbol{D} = \mathbf{I}$$



$$Y_n = DX_n + D_n \breve{X}_n$$

• **D** is found using the  $\underline{COBEC}$  algorithm,  $X_n$  is then found as follows



$$Y_n = DX_n + D_n \widecheck{X}_n$$

**D** is found using the  $\underline{\text{COBE}C}$  algorithm,  $X_n$  is then found as follows

$$Y_n^T = X_n^T D^T + \widecheck{X}_n^T D_n^T$$



$$Y_n = DX_n + D_n \widecheck{X}_n$$

**D** is found using the  $\underline{\text{COBE}C}$  algorithm,  $X_n$  is then found as follows

$$Y_n^T = X_n^T D^T + \widecheck{X}_n^T D_n^T$$

$$X_n^T D^T = Y_n^T - \widecheck{X}_n^T D_n^T$$



$$Y_n = DX_n + D_n X_n$$

**D** is found using the  $\underline{\text{COBE}C}$  algorithm,  $X_n$  is then found as follows

$$Y_n^T = X_n^T D^T + \widecheck{X}_n^T D_n^T$$

$$X_n^T D^T = Y_n^T - \breve{X}_n^T D_n^T$$

using least squares



$$Y_n = DX_n + D_n X_n$$

**D** is found using the  $\underline{COBEC}$  algorithm,  $X_n$  is then found as follows

$$Y_n^T = X_n^T D^T + \widecheck{X}_n^T D_n^T$$

$$X_n^T D^T = Y_n^T - \breve{X}_n^T D_n^T$$

using least squares

$$X_n^T = Y_n^T D - \breve{X}_n^T D_n^T D$$

$$\mathbf{D}^T \mathbf{D} = \mathbf{I}$$



$$Y_n = DX_n + D_n \breve{X}_n$$

**D** is found using the <u>COBEC</u> algorithm,  $X_n$  is then found as follows

$$Y_n^T = X_n^T D^T + \widecheck{X}_n^T D_n^T$$

$$X_n^T D^T = Y_n^T - \breve{X}_n^T D_n^T$$

$$X_n^T = (Y_n^T - \widecheck{X}_n^T D_n^T) D (D^T D)^{-1}$$

using least squares

$$X_n^T = Y_n^T D - \widecheck{X}_n^T D_n^T D$$

$$\mathbf{D}^T \mathbf{D} = \mathbf{I}$$

$$X_n^T = Y_n^T D$$

$$\boldsymbol{D}_i^T \boldsymbol{D} = \mathbf{I}$$



## COBEC algorithm

#### Algorithm 2 COBEC Algorithm

**Input:** C and  $\mathbf{Y}_n$ ,  $n \in \mathcal{N}$ .

- 1: Let  $\mathbf{Y}_n = \mathbf{Q}_n \mathbf{H}_n$  such that  $\mathbf{Q}_n^T \mathbf{Q}_n = \mathbf{I}_{R_n}$  for all n.
- 2: Initialize  $\mathbf{Z}_n$  randomly.
- 3: **while** not converged **do**
- 4:  $\mathbf{P} = \sum_{n \in \mathcal{N}} \mathbf{Q}_n \mathbf{Z}_n$ .
- 5:  $\mathbf{D} = \mathbf{E}\mathbf{V}^T$ , where  $[\mathbf{E}, \Lambda, \mathbf{V}] = \mathsf{tSVD}(\mathbf{P}, C)$ .
- 6:  $\mathbf{Z}_n \leftarrow \mathbf{Q}_n^T \mathbf{D}$
- 7: end while
- 8: return





**Training Phase** 









# Data matrix Y<sub>i</sub> Training Phase



-0.3 0



















Subjects x Sessions

**Testing Phase** 





**Testing Phase** 





Testing Phase





**Testing Phase** 





**Testing Phase** 





 $i^{th}$  session of all  $j^{th}$  session of all subjects

subjects

























 $i^{th}$  session of all  $j^{th}$  session of all subjects subjects



















subjects

subjects











\_\_\_\_\_



**Training Phase** 

.\_\_\_\_\_















#### **Training Phase**

WSS = Within Subject Similarity













































• *L*<sub>diff</sub> says the means of the within-subject, and the between-subject correlations should be far apart for better repeatability.





- $L_{diff}$  says the means of the within-subject, and the between-subject correlations should be far apart for better repeatability.
- <u>Overlap</u> says there should be one threshold that can differentiate the within and between subjects with minimum error.





- $L_{diff}$  says the means of the within-subject, and the between-subject correlations should be far apart for better repeatability.
- <u>Overlap</u> says there should be one threshold that can differentiate the within and between subjects with minimum error.
- To account for both we combine them in one metric





- *L*<sub>diff</sub> says the means of the within-subject, and the between-subject correlations should be far apart for better repeatability.
- <u>Overlap</u> says there should be one threshold that can differentiate the within and between subjects with minimum error.
- To account for both we combine them in one metric
- Maximize  $\frac{I_{diff}}{Overlap}$





### Types of Brain Atlas

Whole Brain



Cortical Brain



Spherical ROIs



Atlases Back



Atlas Table Back 3



