Дискретное преобразование Фурье

Задача 1

 $\underline{\operatorname{def}}$ Преобразованием Фурье вектора $x=(x_0,\ldots,x_{n-1})^T\in\mathbb{R}^n$ называется вектор $\tilde{x}\in\mathbb{C}^n$:

$$\tilde{x}_k = \sum_{j=0}^{n-1} x_j e^{-2\pi i j k/n}, \quad k = 0, \dots, n-1$$

Найдите Фурье-образ векторов:

- 1. $a = (1 \ 2 \ 4 \ 9)^T$
- 2. $b = (3 \ 5 \ 7 \ 8 \ 3 \ 5)^T$
- 3. $c = (4 \ 9 \ 8 \ 5 \ 6 \ 3 \ 2 \ 7)^T$

Задача 2

Дан многочлен $A = 4x^9 + 2x^7 + 3x^4 + 2x + 15$. Найдите:

- 1. fft(fft(A))
- 2. fft(fft(fft(fft(A))))

Задача 3

После центрирования изображения было выполнено дискретное преобразование Фурье, а затем был применен фильтр

$$H(u,v) = \begin{cases} 1, & \sqrt{(u - \frac{N}{2})^2 + (v - \frac{N}{2})^2} \le R, \\ 0, & \text{иначе.} \end{cases}$$

После выполнили обратное преобразование Фурье и домножили на $(-1)^{x+y}$. Опишите, как и почему изменилось изображение

Задача 4

Пусть даны n+1 различных точек на числовой прямой:

$$x_0, x_1, \ldots, x_n, \quad x_i \neq x_i$$
 при $i \neq j$,

и соответствующие значения функции

$$y_0, y_1, \ldots, y_n$$
.

Докажите существование и единственность многочлена $P_n(x)$ степени не выше n, удовлетворяющег условиям интерполяции:

$$P_n(x_i) = y_i, \quad i = 0, 1, \dots, n.$$