

Investeringsanalyse

- Definisjon av grunnleggende presupposisjoner
- Bestem kontantstrømmer
- Kalkulasjonsrenta, nåverdi og slutverdi
- Metoder for å evaluere kontantstrømmer
 - Tilbakebetalingstiden Pay Back
 - Nettonåverdi
 - Nåverdiskvoten
 - Internrente
 - Annuitet
- Summering

Definisjon

- "... å bruke ressurser i dag for å skaffe seg bedre ressursgrunnlag i fremtiden"
- "Investering er utsettelse av forbruk i dag til fordel for forbruk i fremtiden"

Grunnleggende presupposisjoner

- Folk liker å konsumere ting,...
- ... de er utålmodige og ...
- ... misliker risiko.

Investeringsanalyse

- 1. Bestem framtida kontantstrømmer
- 2. Bestem verdien av disse kontantstrømmene
- 3. Vurder risiko og fleksibilitet

Bestem verdien av kontantstrømmen

- Økonomibaserte teknikker (Economics based techniques)
 - Nettonåverdi (Net Present Value)
 - Nåverdiskvoten (Profitability index)
 - Internrente (Internal Rate of Return)
 - Annuitet (Annuity)
- Regnskapsbaserte teknikker (Accounting based tech.)
 - Tilbakebetalingstid (Pay-Back)
 - Book-rate of return Accounting rate of return

Bestem verdien av kontantstrømmen

Adapted from : Graham, J. R., & Harvey, C. R. (2001). The theory and practice of corporate finance: Evidence from the field. *Journal of financial economics*, *60*(2-3), 187-243.

Eksempel

	A	В	Γ	Δ
G	150	100	150	1
N_{e}	7	4	7	7
a_1	50	50	60	5
a_2	50	50	60	5
a_3	50	50	40	5
a_4	50	40	40	5
a ₅	50		40	5
a_6	50		40	5
a ₇	50		40	5
S	0	0	0	-100
r	20%	20%	20%	20%

Kontantstrømmer

Investeringsutgift, G

- Refererer til alle betalinger som skjer når investeringsobjektet blir anskaffet og tatt i bruk.
- Disse er i nær fremtid og kan vurderes med relativt høy sikkerhet ved hjelp av anbud etc.
- Glem ikke såkalte konsekvensinvesteringer
 - Hjemkjøring
 - Installasjon
 - Opplæring
 - Økning av omløpsmidler
- Alternativkostnader skal tas hensyn til
 - Eks. «kostnad» for et lokale som ikke kan selges
- Disse betalingene tilskrives vanligvis til tidspunkt 0, $k_0 = -G$

Innbetalingsoverskudd (drift), at

- Summen av inn- og utbetalinger fra drift, a(t) = I(t) - U(t)
- Alternativkostnader/inntekter skal tas hensyn til
- Inn- og utbetalinger tilskrives vanligvis slutten av hvert år.
- De antas dermed å forekomme samtidig, noe som betyr at det er tilstrekkelig å studere forskjellen mellom disse, dvs....
- ... innbetalingsoverskuddet $a_t = \int_{\tau=t-1}^t I(\tau) U(\tau)dt$

Utrangerings-/Restverdi, S

- Verdien (positiv / negativ) av investeringen på slutten av den økonomiske levetiden, $N_{\rm e}$.
 - Salgs-/skrapverdi
 - Riving
- Kontantstrømmer
 - $k_{N_e} = S + a_{N_e}$
 - $k_t = a_t ; 0 < t < N_e$

Økonomisk levetid, Ne

- Det antall år en investering antas å være lønnsom for bedriften.
- Anleggsmiddelet kan fremdeles fungere, $N_t > N_e$, ...
- ... men nye modeller eller økt vedlikehold kan gjøre at den ikke lenger er lønnsom.

Kapitalkostnad og Nåverdi

Kapitalkostnad/rente, r

- Bedriftens krav til fortjeneste (avkastning)
- Fanger tidsverdien av penger, dvs. betalingens nåverdi

Settes i forhold til investeringens systematiske risiko

```
r = Risikofri rente + risikotilllegg
```

 Skiller mellom nominell rente (avkastning i penger) og realrente (avkastning i verdi /konsumpsjon)

Kapitalkostnadssynonymer

- Alternativkostnadene til kapital brukt i nåverdiberegninger omtales også som:
 - Kalkulasjonsrente
 - Diskonteringsrente
 - Forventet avkastning
 - Avkastningskrav
 - **—** ...

Tidsverdi av penger – nåverdi

- Nåverdi uttrykker verdien nå av pengebeløp som kommer i framtiden
- Minieksempel
 - Hva er nåverdien av å få 1000 om ett år dersom kapitalkostnaden/kalkulasjonsrenten er 12 % p.a.?
 - Verdi om ett år pr krone investert nå: 1 + 12% = 1.12
 - Nåverdi, NV, investert nå skal gi 1 000 om ett år: $NV \cdot 1.12 = 1000 \Rightarrow NV = 1000/1.12 \approx 892.9$
 - 892.9 nå gir 1000 om ett år hvis investert med 12% avkastning og er derfor nåverdien til 1000 om ett år

Sluttverdi/Nåverdi

Hvis vi nå investerer 1000kr (f.eks. setter dem inn i banken) med en årlig avkastning på r=12%. Hvor stor er verdien etter n år?

Nåverdi	n			Sluttverdi
1000	1år	1000 · (1+12%) =	1000 · 1.12 =	1120.00
	2år	1120 · (1+12%) =	1000 · 1.12 ² =	1254.40
	3år	1254 · (1+12%) =	$1000 \cdot 1.12^3 =$	1404.93
		·		
	10år	2773 · (1+12%) =	1000 · 1.12 ¹⁰ =	3105.85

Kapitalisere: Flytt betalingskonsekvensene fremover i tid

Sluttverdi = Nåverdi · (1+r)ⁿ

Nåverdi/Sluttverdi

Hva er verdien på 1000kr år n fra en investering med r = 12%?

Sluttverdi	n			Nåverdi
1000	1år	1000 / (1+12%) =	1000 / 1.12 =	892.86
	2år	893 / (1+12%) =	1000 / 1.122 =	797.19
	3år	797 / (1+12%) =	1000 / 1.123 =	711.78
	•			
				•
	10år	361 / (1+12%) =	1000 / 1.1210 =	321.97

Diskontere: Flytt betalingskonsekvensene tilbake i tid

Nåverdi = Sluttverdi / (1+r)ⁿ

Effektiv rente

Hvor stor er den effektive årlige renten hvis den årlige listerenten er 12% og renten betales hver

	j		Effektive årsrente
År	1	(1+12%) – 1 =	12.00%
Halvt år	2	$(1+12\%/2)^2 - 1 =$	12.36%
Kvartal	4	$(1+12\%/4)^4 - 1 =$	12.55%
Måned	12	$(1+12\%/12)^{12}-1=$	12.68%
Dag	365	$(1+12\%/365)^{365}-1=$	12.75%

Generell formell:
$$r_{eff} = \left(1 + \frac{r}{j}\right)^j - 1$$
Maksimal årsrente: $\hat{r}_{eff} = \lim_{j \to \infty} \left(1 + \frac{r}{j}\right)^j - 1 = e^r - 1 = e^{0.12} - 1 = 12.75\%$

Real og nominell rente

Real og nominell rente

- Nominell rente, r_N, er rente i penger
- Realrente, r_R, er rente i verdi/konsumpsjon
- Forholdet mellom nominell rente og realrente er

$$r_N = r_R + infl. + r_R \cdot infl. \approx r_R + infl.$$

hvilken er kjent som Fisher-effekten etter Irving Fisher

Forventet økning av penger

Forventet økning av verdi/konsumpsjon

Forventet økning av priser (KPI)

Tidsverdi av penger – nåverdi

- Hva er nåverdien av å få 1000 kr om ett år dersom den reale kapitalkostnaden/kalkulasjonsrenten er 12 % p.a. om inflasjonen er 2%?
- Krav om "kompensasjonskonsumpsjon" for hver enhet ikke konsumeres nå er 1.12 "konsumpsjonsenheter / k-enheter" om ett år.
- Anta at 1 "k-enhet" koster 1 kr nå da vil den koste 1.02 kr om ett år => for 1000 kr kan man då kjøpe 1000/1.02 = 980.4 "k-enheter" om ett år
- Nåverdi, NV, investert nå skal gi 1 000kr = 980.4"k enheter" om ett år:

$$NV \cdot 1.12 = 980.4 = \frac{1000}{1.02} \Rightarrow NV = \frac{1000}{1.02 \cdot 1.12} = \frac{1000}{1.1424} \approx 875.4$$

- En investering på 875.4kr nå gir $1000 \mathrm{kr}$ om ett år hvis investert med 14.24% nominell avkastning. Man kan kjøpe samme konsumpsjon for disse $1000 \mathrm{kr}$ som du kan kjøpe for $980.4 \mathrm{kr}$ i dag, dvs. 980.4/875.4 1 = 12% mer.
- Nåverdien til 1 000kr om ett år er derfor 875.4

Inflasjon – Generelle prisendringer

I Pippi på rømmen kjøper Pippi 18 kg karameller for en gullmynt. Var dette ett godt kjøp for Pippi?

- En "standard" gullmynt veier ca. 5-6 g og er 22 karat ...
- ... gullprisen er ca. 500kr/g => ca. 2500kr/mynt.

Er det et dårlig kjøp ida??

- I Sverige er kostnaden for godteri ca. 100kr/kg.
- Pippi gjorde et dårlig kjøp, 2500>1800, med dagens priser.

Var det et dårlig kjøp i Pippis tid??

- En "standard" gullmynt kostet ca. 100kr 1945.
- En "5-öreskola" kostet 5øre til slutten av 1940-talet.
- En kola veier ca 8g => en normalpris på $18 \cdot \frac{0.05}{0.008} = 112.5 > 100$

- Betalinger uttrykt i nominelle termer skal diskonteres med nominell rente
 - Kontrakt med fast pris
 - Skatteeffekter, eksempel på avskrivninger
 - Betalinger basert på historisk prisutvikling
- Betalinger uttrykt i reale termer skal diskonteres med realrente
 - Betalinger basert på dagens pris, eksempel
 - Dagens lønn
 - Restverdi basert på hva en anvendt maskin koster ida.

Tilbakebetalingstid - Pay-Back

Tilbakebetalingstid - Pay-Back

 Tilbakebetalingstid er tiden det tar før de totale innbetalingsoverskuddene er like store som investeringsutgiften

PB:
$$\sum_{t=1}^{PB-1} a_t < G \le \sum_{t=1}^{PB} a_t$$
 alt. $PB = \frac{G}{a}$

- Kortere PB er bedre
- Beslutning basert på cut-off tid
- Rudimentell metode tar ikke hensyn til
 - Inn-/utbetalinger etter PB
 - Tidsverdi av penger

Tilbakebetalingstid - Eksempel

	A	В	Γ	Δ
G	150	100	150	1
N_e	7	4	7	7
a_1	50	50	60	5
a_2	50	50	60	5
a_3	50	50	40	5
a_4	50	40	40	5
a_5	50		40	5
a_6	50		40	5
a_7	50		40	5
S	0	0	0	-100
r	20%	20%	20%	20%

PB:
$$\sum_{t=1}^{PB-1} a_t < G \le \sum_{t=1}^{PB} a_t$$
 alt. $PB = \frac{G}{a}$

$$PB_A = 150/50 = 3$$

$$PB_{R} = 100/50 = 2$$

$$PB_{\Gamma} = 2 + 30/40 = 2.75$$

$$\sum_{t=1}^{2} a_t = 120 < 150 \le 160 = \sum_{t=1}^{3} a_t$$

$$PB_{\Delta} = 1/5 = 0.2$$

Nettonåverdi og Nåverdiskvote

Nettonåverdi, NNV

- Teoretisk overlegen metode
- Nettonåverdi er summen av alle nåverdi:

$$NNV = k_0 + \sum_{t=1}^{N_e} \frac{k_t}{(1+r)^t}$$

$$NNV = -G + \sum_{t=1}^{N_e} \frac{a_t}{(1+r)^t} + \frac{S}{(1+r)^{N_e}}$$

- Jo høyere nettonåverdi jo bedre
- Invester hvis nettonåverdien er positiv

Snarvei - nåverdisum

$$\sum_{k=1}^{N_e} \frac{a}{(1+r)^k} = a \left(\frac{1}{(1+r)^1} + \frac{1}{(1+r)^2} + \frac{1}{(1+r)^3} + \dots + \frac{1}{(1+r)^{n_e}} \right)$$

Sett x til:
$$x = 1/(1 + r) \Leftrightarrow 1/x = (1 + r) \Rightarrow$$

$$\frac{1}{(1+r)^1} + \dots + \frac{1}{(1+r)^{N_e}} = x + x^2 + x^3 + \dots + x^{N_e}$$

$$\frac{x-x^{N_e+1}}{1-x} = \frac{x/x-x^{N_e+1}/x}{1/x-x/x} = \frac{1-x^{N_e}}{1/x-1} = \frac{1-(1+r)^{-N_e}}{1+r-1} = \frac{1-(1+r)^{-N_e}}{r}$$

Nettonåverdi - Eksempel

	A	В	Γ	Δ
G	150	100	150	1
N_e	7	4	7	7
a_1	50	50	60	5
a_2	50	50	60	5
a_3	50	50	40	5
a_4	50	40	40	5
a_5	50		40	5
a_6	50		40	5
a_7	50		40	5
S	0	0	0	-100
r	20%	20%	20%	20%

$$\begin{aligned} \text{NNV} &= k_0 + \sum_{t=1}^{N_e} \frac{k_t}{(1+r)^t} = \\ &- G + \sum_{t=1}^{N_e} \frac{a_t}{(1+r)^t} + \frac{S}{(1+r)^{N_e}} \end{aligned}$$

$$NNV_A = -150 + 50 \cdot \frac{1 - 1.2^{-7}}{0.2} = 30.23$$

$$NNV_B = -100 + \frac{50}{1.2} + \frac{50}{1.2^2} + \frac{50}{1.2^3} + \frac{40}{1.2^4} = 24.61$$

$$NNV_{\Gamma} = -150 + \frac{60}{1.2} + \frac{60}{1.2^2} + \frac{40}{1.2^2} \cdot \frac{1 - 1.2^{-5}}{0.2} = \mathbf{24.74}$$

$$NNV_{\Delta} = -1 + 5 \cdot \frac{1 - 1.2^{-7}}{0.2} + \frac{-100}{1.2^{7}} = -10.89$$

Nåverdiskvoten

- Nåverdiskvoten = $\frac{NNV}{C}$
- Brukes ved kapitalmangel
- Tilnærmet "Most bang for the buck"

$$\frac{\text{NNV}_{A}}{G_{A}} = \frac{30.23}{150} = \mathbf{0.21}$$
 $\frac{\text{NNV}_{\Gamma}}{G_{\Gamma}} = \frac{24.74}{150} = \mathbf{0.16}$

$$\frac{\text{NNV}_{\Gamma}}{G_{\Gamma}} = \frac{24.74}{150} = \mathbf{0.16}$$

$$\frac{\text{NNV}_{\text{B}}}{G_{B}} = \frac{24.61}{100} = \mathbf{0.25}$$

$$\frac{\text{NNV}_{\text{B}}}{G_{\text{B}}} = \frac{24.61}{100} = \mathbf{0.25} \qquad \frac{\text{NNV}_{\Delta}}{G_{\Lambda}} = -\frac{10.89}{1} = -\mathbf{10.89}$$

Internrente

Internrente, IRR

Nettonåverdien synker vanligvis med renten

• Internrente er per definisjon renten som gir NNV = 0

$$0 = k_0 + \sum_{t=1}^{N_e} \frac{k_t}{(1 + IRR)^t} = -G + \sum_{t=1}^{N_e} \frac{a_t}{(1 + IRR)^t} + \frac{S}{(1 + IRR)^{N_e}}$$

- Høyere IRR regnes som bedre og IRR > r regnes som lønnsom
- Merk att dette ikke alltid er riktig
- IRR er en sensitivitetsanalyse av renten

Internrente

	A	В	Γ	Δ
G	150	100	150	1
N_e	7	4	7	7
a_1	50	50	60	5
a_2	50	50	60	5
a_3	50	50	40	5
a_4	50	40	40	5
a_5	50		40	5
a_6	50		40	5
a_7	50		40	5
S	0	0	0	-100
r	20%	20%	20%	20%

r	NNV _B (r)
20%	24.61
40%	-10.14
30%	4.81
35%	-3.16
32.5%	0.69
33.75%	-1.27
33.125%	-0.30
32.813%	0.19
32.969%	-0.05
32.891%	0.07
32.930%	0.01
32.949%	-0.02 ←

$$IRR_A = 27.12\%$$

$$IRR_B = 32.93\%$$

$$IRR_{\Gamma} = 26.54\%$$

$$IRR_{\Delta} = 37.06\%$$

Annuitet (rak)

Investeringer med ulika N_e

Annuitet (rak)

- Sammenlign investeringer med forskjellige levetider som kan gjentas.
- Annuitet er en alternativ kontantstrøm med samme Nettonåverdi

$$NNV = k_0 + \sum_{t=1}^{N_e} \frac{k_t}{(1+r)^t} = \sum_{t=1}^{N_e} \frac{annu}{(1+r)^t}$$

$$annu = NNV \cdot \frac{r}{1 - (1+r)^{-N_e}}$$

- Vid samme r jo høyere annuitet jo bedre
- Invester hvis annuiteten er positiv

annu_A =
$$\frac{0.2}{1 - 1.2^{-7}} \cdot 30.23 = 8.39$$

Nettonåverdi – Uendelig serie

Konstant kontantstrøm, eks. rak annuitet :

$$NNV = \lim_{N \to \infty} k \sum_{t=1}^{N} \frac{1}{(1+r)^{t}} = \lim_{N \to \infty} k \cdot \frac{1 - (1+r)^{-N}}{r} = \frac{k}{r}$$

 Eksponentielt økende, proporsjonal (%) tilvekst, eks. inflasjon, gotteri og gull

$$NNV = \lim_{N \to \infty} k \sum_{t=1}^{N} \frac{(1+g)^{t-1}}{(1+r)^t} = \frac{k}{r-g}$$

Nettonåverdi – uendelig serie

$$NNV_{tot} = NNV_{tot} = \sum_{Gen=0}^{\infty} \frac{k_0}{(1+r)^{Gen \cdot N_e}} + \sum_{t=1}^{N_e} \frac{k_{Gen \cdot N_e + t}}{(1+r)^{Gen \cdot N_e + t}} \sum_{t=1}^{\infty} \frac{annu}{(1+r)^t} = annu \frac{1 - (1+r)^{-\infty}}{r} = \sum_{t=1}^{\infty} \frac{annu}{(1+r)^t} = annu \frac{1 - (1+r)^{-\infty}}{r} = annu \frac{1 -$$

$$NNV_{tot} = \sum_{t=1}^{\infty} \frac{annu}{(1+r)^t} = annu \frac{1 - (1+r)^{-\infty}}{r} = \frac{8.39}{0.2} = 41.9$$

Avledning av NNV = k/(r-g)

$$\begin{split} \text{NNV} &= \lim_{N \to \infty} k \sum_{t=1}^{N} \frac{(1+g)^{t-1}}{(1+r)^t} = \lim_{N \to \infty} \frac{k}{1+g} \sum_{t=1}^{N} \frac{1}{((1+r)/(1+g))^t} \\ &= \lim_{N \to \infty} \frac{k}{1+g} \sum_{t=1}^{N} \frac{1}{((1+g-g+r)/(1+g))^t} & \text{(r-g)/(1+g)} \\ &= \lim_{N \to \infty} \frac{k}{1+g} \sum_{t=1}^{N} \frac{1}{(1+(r-g)/(1+g))^t} \\ &= \lim_{N \to \infty} \frac{k}{1+g} \frac{1-(1+(r-g)/(1+g))^{-\infty}}{(r-g)/(1+g)} \end{split}$$

(r-g)/(1+g) er den fiktive renten r_f

Annuitet (rak)

	A	В	Γ	Δ
G	150	100	150	1
n_e	7	4	7	7
a_1	50	50	60	5
a_2	50	50	60	5
a_3	50	50	40	5
a_4	50	40	40	5
a_5	50		40	5
a_6	50		40	5
a_7	50		40	5
S	0	0	0	-100
r	20%	20%	20%	20%

$$annu = NNV \cdot \frac{r}{1 - (1+r)^{-N_e}}$$

$$annu_{A} = 30.23 \cdot \frac{0.2}{1 - 1.2^{-7}} = 8.39$$
 $\Rightarrow \frac{8.39}{0.2} = 41.93$

$$annu_{B} = 24.61 \cdot \frac{0.2}{1 - 1.2^{-7}} = 9.51$$
 $\Rightarrow \frac{9.51}{0.2} = 47.54$

$$annu_{\Gamma} = 24.74 \cdot \frac{0.2}{1 - 1.2^{-7}} = 6.86$$
 $\Rightarrow \frac{6.86}{0.2} = 34.32$

$$annu_{\Delta} = -10.89 \cdot \frac{0.2}{1 - 1.2^{-7}} = -3.02 \Rightarrow \frac{-3.02}{0.2} = -15.10$$

Summering Investeringsanalyse

Summering metoder

Metode	Beregning	
Nettonåverdi	$NNV = k_0 + \sum_{t=1}^{N_e} \frac{k_t}{(1+r)^t}$	 Teoretisk overlegen NNV > 0 => investere Høyere NNV er bedre
Annuitet (rak)	$Annu = NNV \cdot \frac{r}{1 - (1+r)^{-N_e}}$	 Tillater sammenligning av investeringer med ulike N_e Høyere Annu/r er bedre
Nåverdis kvoten	$\frac{NNV}{G}$	 Nyttig når det er mangel på midler Høyere NNV / G er bedre
Internrente	$k_0 + \sum_{t=1}^{N_e} \frac{k_t}{(1 + IRR)^t}$	 Sensitivitetsanalyse av renten Regler ikke er entydige
Pay-Back	PB = G/a	 For rudimentær for et godt beslutningsgrunnlag

Summering Eksempel

Metode	Alfa	Beta	Gamma	Delta
Nettonåverdi	30.23	24.61	24.74	-10.89
Annuitet (rak)	8.39 41.93	9.51 47.54	6.86 34.32	-3.02 -15.10
Nåverdis kvoten	0.21	0.25	0.16	-10.89
Internrente	27.12%	32.93%	26.54%	37.06%
Pay-Back	3	2	2.75	0.2