Math Notes

Haotian Chen

Contents

1	Statistics			
	1.1	Discre	ete Probability Distribution	3
	1.2	Contin	nuous Probability Distribution	3
		1.2.1	Uniform Distribution	3
		1.2.2	Normal Distribution	4

1 Statistics

1.1 Discrete Probability Distribution

Let X be a random variable with a finite number of finite outcomes x_1, x_2, \ldots, x_n occurring with probabilities p_1, p_2, \ldots, p_n respectively. The expectation of X is defined as

$$\mu = E[X] = \sum_{i=1}^{n} x_i p_i = x_1 p_1 + x_2 p_2 + \dots + x_n p_n$$

The variance of X is

$$\sigma^2 = Var(X) = \sum_{i=1}^{n} p_i \cdot (x_i - \mu)^2$$

For a collection of n equally likely values:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$
$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

1.2 Continuous Probability Distribution

If the random variable X has a probability density function f(x), and F(x) is the corresponding cumulative distribution function, then

$$\mu = \int_{\mathbb{R}} x f(x) dx = \int_{\mathbb{R}} x dF(x)$$
$$\sigma^2 = \int_{\mathbb{R}} (x - \mu)^2 f(x) dx$$

1.2.1 Uniform Distribution

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b, \\ 0 & \text{for } x < a \text{ or } x > b \end{cases}$$
$$\mu = \frac{1}{2}(a+b)$$
$$\sigma^2 = \frac{1}{12}(b-a)^2$$

1.2.2 Normal Distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$