Statistika 1 - definicije, trditve in izreki

Oskar Vavtar po predavanjih profesorja Jaka Smrekarja

2021/22

Kazalo

1	Zad	lostnost in sorodne teme	3
	1.1	Uvod	3
	1.2	Zadostnost	4
	1.3	Kompletnost (polnost) in optimalne nepristranske cenilke	6
	1.4	Informacija in informacijska neenakost	8
2 Preiz		izkušanje domnev	10
	2.1	Uvod	10
	2.2	Enakomerno najmočnejši preizkus	11
	2.3		
	2.4	Najmočnejši preizkusi v enoparametričnih eksponentnih mo-	
		delih	13
	2.5	Necentralne Studentove porazdelitve	14

1 Zadostnost in sorodne teme

1.1 Uvod

Definicija 1.1. Statistični model je množica dopustnih porazdelitvenih zakonov za slučajni vektor X. Označimo jo \mathscr{P} . Zanjo a priori privzamemo, da velja $\mathbb{P}_X \in \mathscr{P}$. Tu je \mathbb{P}_X porazdelitveni zakon slučajnega vektorja X, torej verjetnostna mera definirana s predpisom

$$\mathbb{P}_X(B) = \mathbb{P}(X \in B)$$

za $B \in \mathcal{B}(\mathbb{R}^n)$. Torej je \mathcal{P} množica verjetnostnih mer na $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$.

Opomba. Če so X_i n.e.p., torej $X_i \stackrel{\text{NEP}}{\sim} X_1$, je \mathbb{P}_X produktna verjetnost

$$\mathbb{P}_X = \mathbb{P}_{X_1} \times \mathbb{P}_{X_2} \times \ldots \times \mathbb{P}_{X_n}$$
$$= \mathbb{P}_{X_1} \times \mathbb{P}_{X_1} \times \ldots \times \mathbb{P}_{X_1},$$

in \mathcal{P} lahko nadomestimo z množico dopustnih porazdelitev za X_1 .

Definicija 1.2. Model ${\mathscr P}$ je parametričen, če ga je mogoče parametrizirati kot

$$\mathscr{P} = \{ \mathbb{P}_{\vartheta} \mid \vartheta \in \Theta \},$$

kjer je Θ podmnožica nekega \mathbb{R}^d za primerno število $d.^1$ Običajno na Θ zahtevamo dodatne pogoje, kot npr. da je diskretna, ali da je odprta ali, splošneje, da je gladka podmnogoterost brez roba. Množici Θ pravimo prostor parametrov. Če model ni parametričen, je neparametričen.

Definicija 1.3 (?). Naj bo $\mathscr{P} = \{\mathbb{P}_{\vartheta} \mid \vartheta \in \Theta\}$ model, kjer je Θ neka indeksna množica, in naj bo ν neka fiksna σ -končna mera na $(\mathbb{R}^n, \mathscr{B}(\mathbb{R}^n))$. Če za $\forall \vartheta \in \Theta$ velja $\mathbb{P}_{\vartheta} \ll \nu$, pravimo, da je \mathscr{P} dominiran z ν . Tedaj model označimo z gostotami

$$f(\cdot;\vartheta) = \frac{d\mathbb{P}_{\vartheta}}{d\nu}.$$

Tedaj velja

$$\mathbb{P}_{\vartheta}(B) = \mathbb{P}_{\vartheta}(X \in B) = \int_{B} f(x; \vartheta) \, d\nu(x).$$

 $^{^1\}mathrm{Tedaj}$ je vsaka dopustna porazdelitev določena zdrealnoštevilskimi parametri.

1.2 Zadostnost

Definicija 1.4. Naj bo $\mathscr{P} = \{ \mathbb{P}_{\vartheta} \mid \vartheta \in \Theta \}$ model za X z vrednostmi v \mathbb{R}^n in naj bo $T : \mathbb{R}^n \to \mathbb{R}^m$ (Borelova) preslikava. Pravimo, da je T zadostna za \mathscr{P} (ali zadostna za " ϑ "), če so pogojne porazdelitve $\mathbb{P}_{\vartheta}(X \in \cdot \mid TX = t)$ "neodvisne od ϑ " za "vse t".

Opomba. Za vsako Borelovo množico $B \in \mathcal{B}(\mathbb{R}^n)$ in $\forall \vartheta \in \Theta$ so verjetnosti $\mathbb{P}_{\vartheta}(X \in B \mid TX = t)$ neodvisne od ϑ za $\mathbb{P}_{\vartheta,T}$ -skoraj vse t.

Definicija 1.5. Naj bosta X in Y slučajna vektorja z vrednostmi v \mathbb{R}^n in \mathbb{R}^m . Pogojne porazdelitve $\mathbb{P}(X \in B \mid Y = y)$ so Borelove mere² za vsak $y \in \mathbb{R}^m$ po ena, za katere velja

$$\mathbb{E}[\phi(X,Y)] = \int_{\mathbb{R}^m} \left[\int_{\mathbb{R}^n} \phi(x,y) \, d\mathbb{P}_{(X|Y=y)}(x) \right] \, dP_Y(y)$$

za vse ϕ z vrednostmi v $[0, \infty]$ in za vse $\phi \in L^1$. Če imamo dano družino pogojnih porazdelitev $\{\mathbb{P}(X \in \cdot \mid y \in \mathbb{R}^n)\}$, potem za $\forall B \in \mathcal{B}(\mathcal{B}^n)$ velja

$$\mathbb{P}(X \in \mathcal{B} \mid Y = y) \ = \ \lim_{s \searrow 0} \mathbb{P}(X \in B \mid Y \in \underbrace{B(y,s)}_{\text{metrična krogla}})$$

za skoraj vse y: obstaja množica $N_B \subset \mathbb{R}^m$, $\mathbb{P}(Y \in N_B) = 0$, da velja zgornja enakost za $\forall y \notin N_B$.

Definicija 1.6. Privzemimo, da ima vektor (X,Y) gostoto $f_{X,Y}$ glede na produktno σ-končno mero $\mu \times \nu$, kjer sta μ, ν σ-končni meri na $\mathscr{B}(\mathbb{R}^n), \mathscr{B}(\mathbb{R}^m)$. Izkaže se, da sta

$$f_X(x) = \int_{\mathbb{R}^m} f_{(X,Y)(x,y)} d\nu(y)$$

$$f_Y(y) = \int_{\mathbb{R}^n} f_{(X,Y)(x,y)} d\mu(x)$$

robni gostoti glede na μ, ν . Če definiramo

$$f_{(X|Y)}(x \mid y) := \begin{cases} \frac{f_{(X,Y)}(x,y)}{f_Y(y)}; & f_Y(y) \neq 0, \\ \phi_0(x); & f_Y(y) = 0, \end{cases}$$

²Mere na $B \in \mathscr{B}(\mathbb{R}^n)$.

kjer je ϕ_0 gostota neke fiksne verjetnosti glede na μ , je s predpisom

$$\mathbb{P}(X \in B \mid Y = y) = \int_{B} f_{(X|Y)}(x \mid y) \, d\mu(x)$$

definirana družina pogojnih porazdelitev $(X \mid Y)$.

Izrek 1.1 (Fisher-Neymanov faktorizacijski izrek). Naj bo $\mathscr{P} = \{ \mathbb{P}_{\vartheta} \mid \vartheta \in \Theta \}$ model za X z vrednostmi v \mathbb{R}^n , ki je dominiran s σ -končno mero ν , in naj bo $T : \mathbb{R}^n \to \mathbb{R}^m$ statistika. Tedaj je T zadostna za \mathscr{P} čee obstaja družina Borelovih funkcij $g(t;\vartheta)$ za $t \in \mathbb{R}^m$ in Borelova funkcija $h : \mathbb{R}^n \to [0,\infty)$, tako da velja

$$\frac{d\mathbb{P}}{d\nu}(x) = g(Tx; \vartheta) \cdot h(x), \quad \forall \vartheta \in \Theta.$$

Eksplicitno: $\forall \vartheta \in \Theta, \forall B \in \mathscr{B}(\mathbb{R}^n),$

$$\mathbb{P}_{\vartheta}(B) = \mathbb{P}_{\vartheta}(X \in B) = \int_{\mathbb{R}^n} g(Tx; \vartheta) h(x) \, d\nu.$$

To pomeni: dopustni porazdelitveni zakoni imajo gostote glede na " ν ", ki so od x odvisne le preko vrednosti statistike T na njem.

Komentar.

- T je zadostna statistika *čee* imajo \mathbb{P}_{ϑ} gostote, ki so od x odvisne le preko Tx.
- \bullet Če velja faktorizacija iz zgornjega izreka, lahko mero ν nadomestimo s

$$\nu_h(B) = \int_B h(x) \, d\nu(x);$$

očitno še vedno $\mathscr{P} \ll \nu_h$ in $\frac{d\mathbb{P}_{\vartheta}}{d\nu_h}(x) = g(Tx;\vartheta)$.

Opomba. Vsaka bijektivna transformacija zadostne statistike je tudi zadostna. Če je ϕ , definirana na sliki T, bijektivna, je

$$g(Tx;\vartheta) = g(\phi^{-1}(\phi T)x;\vartheta) = \tilde{g}(\phi T(x);\vartheta).$$

Definicija 1.7. Model $\mathscr{P} = \{ \mathbb{P}_{\vartheta} \mid \vartheta \in \Theta \}$ za X z vrednostmi v \mathbb{R}^n je eksponentna, če velja:

$$\forall \vartheta \in \Theta : \frac{d\mathbb{P}_{\vartheta}}{d\nu}(x) = C(\vartheta) \cdot e^{\langle Q(\vartheta), Tx \rangle} h(x)$$

za neko σ -končno mero ν na $\mathscr{B}(\mathbb{R}^n)$ (tako, da $\mathscr{P} \ll \nu$) ter funkciji $C: \Theta \to (0,\infty), \ Q: \Theta \to \mathbb{R}^m$, statistiko $T: \mathbb{R}^n \to \mathbb{R}^m$ ter merljivo funkcijo $h: \mathbb{R}^n \to [0,\infty)$. Tu $\langle \cdot, \cdot \rangle$ označuje skalarni produkt na \mathbb{R}^m . Ta predstavitev ni enolična.

1.3 Kompletnost (polnost) in optimalne nepristranske cenilke

Definicija 1.8. Naj bo $\mathscr{P} = \{ \mathbb{P}_{\vartheta} \mid \vartheta \in \Theta \}$ model za X z vrednostmi v \mathbb{R}^n . Statistika $T : \mathbb{R}^n \to \mathbb{R}^m$ je kompletna (ali polna), če za vsako merljivo funkcijo $\phi : \mathbb{R}^m \to \mathbb{R}$ iz privzatke

$$\forall \vartheta \in \Theta : \ \mathbb{E}_{\vartheta} \left[\phi(TX) \right] = 0$$

sledi

$$\phi(TX) = 0$$
 P-s.g.

Torej $\exists N \in \mathbb{R}^n$, za katero je $\mathbb{P}_{\vartheta}(N) = \mathbb{P}_{\vartheta}(X \in N) = 0 \ \forall \vartheta \in \Theta \text{ in } \forall \vartheta \in \Theta, \forall x \notin N : \phi(Tx) = 0.^3$

Definicija 1.9. Eksponentna družina

$$f(x;\vartheta) = \frac{d\mathbb{P}_{\vartheta}}{d\nu}(x) = C(\vartheta)e^{\langle Q(\vartheta), T(x) \rangle}h(x) \tag{1}$$

za $T: \mathbb{R}^n \to \mathbb{R}^m$ in $Q: \Theta \to \mathbb{R}^m$ ima poln rang, če slika im $Q = \{Q(\vartheta) \mid \vartheta \in \Theta\}$ preslikave Q vsebuje vsaj eno odprto kroglo, torej ima imQ nepravzno notranjost v \mathbb{R}^m .

Izrek 1.2. Če ima eksponentna družina (1) pol
n rang, je T kompletna (in zadostna) statistika.

³Del privzetka: $\phi \in L^1(\mathbb{P}_{\vartheta,T}) \ \forall \vartheta \in \Theta$.

Definicija 1.10. Naj bo $\mathscr{P} = \{ \mathbb{P}_{\vartheta} \mid \vartheta \in \Theta \}$ model za X z vrednostmi v \mathbb{R}^n . Statistika $V : \mathbb{R}^n \to \mathbb{R}^r$ je postranska za \mathscr{P} (oz. za ϑ), če verjetnostni $\mathbb{P}_{\vartheta}(VX \in D)$ za $D \in \mathscr{B}(\mathbb{R}^r)$ niso odvisne od ϑ . Bolj formalno: obstaja verjetnost S na $(\mathbb{R}^r, \mathscr{B}(\mathbb{R}^r))$, za katere velja:

$$\forall \vartheta \in \Theta, \ \forall D \in \mathscr{B}(\mathbb{R}^r): \ \mathbb{P}_{\vartheta}(VX \in D) = S(D).$$

Izrek 1.3 (Basu). Naj bosta v modelu $\mathscr{P}T:\mathbb{R}^n\to\mathbb{R}^m$ kompletna zadostna in $V:\mathbb{R}^n\to\mathbb{R}^r$ postranska statistika. Tedaj sta T in V neodvisni glede na \mathscr{P} :

$$\forall \vartheta \in \Theta, \ \forall C \in \mathscr{B}(\mathbb{R}^m), \ \forall D \in \mathscr{B}(\mathbb{R}^r):$$

$$\mathbb{P}_{\vartheta}(TX \in C, VX \in D) \ = \ \mathbb{P}_{\vartheta}(TX \in C)\mathbb{P}(VX \in D).$$

Definicija 1.11. Naj boeocenjevana funkcija v \mathscr{P} in naj bosta U,U^* dve nepristranski cenilki za e. Tedaj ima U enakomerno manjšo disperzijo od U^* , če velja

$$\forall \vartheta \in \Theta : \operatorname{Var}_{\vartheta}[U(X)] \leq \operatorname{Var}_{\vartheta}[U^*(X)] \tag{2}$$

Tu je

$$\operatorname{Var}_{\vartheta}[U(X)] = \mathbb{E}_{\vartheta} \left[\left(U(X) - e(\vartheta) \right) \left(U(X) - e(\vartheta) \right)^{\mathsf{T}} \right]$$
$$= \int_{\mathbb{R}^n} \left(U(x) - e(\vartheta) \right) \left(U(x) - e(\vartheta) \right)^{\mathsf{T}} d\mathbb{P}_{\vartheta}(x),$$

matrika razsežnosti $r \times r$. Zahtevo (2) v primeru $r \ge 2$ razumemo matrično:

$$\begin{split} A \leq B &\iff B-A \leq 0 \\ &\iff \forall x : \langle (B-A)x, x \rangle \geq 0 \\ &\iff \text{vse lastne vrednosti } B-A \text{ so } \geq 0 \end{split}$$

Izrek 1.4 (Rao-Blackwell). Naj bo $T: \mathbb{R}^n \to \mathbb{R}^m$ kompletna zadostna statistika za $\mathscr{P} = \{ \mathbb{P}_{\vartheta} \mid \vartheta \in \Theta \}$ in naj bo $W: \mathbb{R}^n \to \mathbb{R}^r$ nepristranska cenilka za $e: \Theta \to \mathbb{R}^r$. Tedaj je

$$U(X) = \mathbb{E}_{\vartheta}[WX \mid TX]^4$$

nepristranska cenilka za e, ki ima med vsemi nepristranskimi cenilkami za e enakomerno najmanjšo disperzijo: če je U^* poljubna druga nepristranska cenilka za e, ima U enakomerno manjšo disperzijo od U^* .

Komentar.

- Ker je T zadostna statistika, so vrednosti $\mathbb{E}_{\vartheta}[WX \mid TX = Tx]$ neodvisne od ϑ , torej je $U : \mathbb{R}^n \to \mathbb{R}^r$ dobro definirana.
- Seveda je $E_{\vartheta}[U(X)] = \mathbb{E}_{\vartheta}[\mathbb{E}_{\vartheta}[WX \mid TX]] = \mathbb{E}_{\vartheta}[WX] = e(\vartheta).$
- Dokaz naredimo z uporabo pogojne Jensenove neenakosti.

Posledica (Lehman-Scheffe). Naj bo nepristranska cenilka $U: \mathbb{R}^n \to \mathbb{R}^r$ za $e: \Theta \to \mathbb{R}^r$ odvisna od vzorca le preko kompletne zadostne statistike $T: \mathbb{R}^n \to \mathbb{R}^m$ (torej U(x) = V(Tx) za neko Borelovo merljivo $V: \mathbb{R}^m \to \mathbb{R}^r$). Tedaj je U avtomatično NCEND (Rao-Blackwellov izrek iz U vrne nazaj U).

1.4 Informacija in informacijska neenakost

Definicija 1.12. Funkciji $V_{\vartheta}: \mathbb{R}^n \to \mathbb{R}^d$,

$$V_{\vartheta}(x) = \left(\frac{\partial}{\partial \vartheta_1} \ln f(x;\vartheta), \dots, \frac{\partial}{\partial \vartheta_d} \ln f(x;\vartheta)\right)$$
$$= \operatorname{grad}_{\vartheta} \left(\ln f(x;\vartheta)\right)$$

pravimo funkcija Zbira. Pri predavanjih smo izpeljali neenakost $\mathbb{E}_{\vartheta}[V_{\vartheta}(X)] = \underbrace{(0,\ldots,0)}_{d}$. Sledi

$$\operatorname{Var}_{\vartheta}[V_{\vartheta}(X)] = \mathbb{E}\left[V_{\vartheta}(X)V_{\vartheta}(X)^{\mathsf{T}}\right] - 0.$$

⁴Za $\omega \in \Omega$ je $U(X(\omega)) = \mathbb{E}[WX \mid TX = TX(\omega)].$

Tej matrični funkciji parametra ϑ pravimo Fisherjeva informacija tega modela. Formalno: $FI: \Theta \to \mathbb{R}^{d \times d}$, $FI(\vartheta) = Var_{\vartheta}[V_{\vartheta}(X)]$. Vrednosti Fisherjeve informacije so pozitivne simetrične matrike. Pravimo, da $FI(\vartheta)$ meri količino informacije, ki jo o parametru ϑ nosi vektor X.

Trditev 1.1 (Cramér-Rao/informacijska neenakost). Privzemimo, da je Θ odprta v \mathbb{R} (interval) in da je $e:\Theta\to\mathbb{R}$ ocenjevana funkcija. Naj veljajo regulativni privzetki za obstoj FI in naj bo $U:\mathbb{R}^n\to R$ nepristranska cenilka za e. Dalje, naj bo e odvedljiva in naj velja

$$e'(\vartheta) = \frac{d}{d\vartheta} \int U(x) f(x;\vartheta) \, d\nu(x)$$
$$= \int U(x) \frac{\partial f}{\partial \vartheta}(x;\vartheta) \, d\nu(x).$$

Če za neki ϑ velja $FI(\vartheta) > 0$, velja ocena

$$\operatorname{Var}_{\vartheta}[U(X)] \geq \frac{(e'(\vartheta))^2}{\operatorname{FI}(\vartheta)}.$$

Komentar. Če gre za vzorec $X=(X_1,\ldots,X_n)$ NEP komponent, je $\mathrm{FI}(\vartheta)=n\cdot\mathrm{FI}^{(1)}(\vartheta)$ in se Cramér-Raova neenakost glasi

$$\operatorname{Var}_{\vartheta}[U(X)] \geq \frac{1}{n} \frac{(e'(\vartheta))^2}{\operatorname{FI}^{(1)}(\vartheta)}.$$

Posledica. Če je za neko nepristransko cenilko U v Cramér-Rau dosežena enakost za vse ϑ , je U avtomatično NCEND.

Lema 1. Če je simetrična matrika $\begin{bmatrix} A & C \\ C^\mathsf{T} & B \end{bmatrix}$ pozitivna in B obrnljiva, je $A-CB^{-1}C^\mathsf{T}$ tudi pozitivna.

Izrek 1.5 (Posplošena Cramér-Raova neenakost). Naj za parametrični model $\mathscr{P} = \{\mathbb{P}_{\vartheta} \mid \vartheta \in \Theta\} \ll \nu$ veljajo regulamantni privzetki iz začetka razdelka in smiselne posplošitve reg. privzetkov iz eno-parametrične Cramér-Raove ocene. Če je U nepristranska cenilka za diferenciabilno $e: \Theta \to \mathbb{R}^r$, tedaj

$$\forall \vartheta : \mathrm{FI}(\vartheta) \text{ obrnljiva} \implies \mathrm{Var}_{\vartheta}[U(X)] > \mathbf{J}_{\varrho}(\vartheta) \cdot \mathrm{FI}^{-1}(\vartheta) \cdot \mathbf{J}_{\varrho}(\vartheta)^{\mathsf{T}}.$$

2 Preizkušanje domnev

2.1 Uvod

Definicija 2.1. Naj bo \mathscr{P} model za X z vrednostmi v \mathbb{R}^n . \mathscr{P} razdelimo na disjunktno unijo $\mathscr{P} = \mathscr{H} \sqcup \mathscr{A}$, kjer

$$\mathcal{H} = \{ \mathbb{P}_{\vartheta} \mid \text{domneva je pravilna pri } \mathbb{P}_{\vartheta} \}$$

$$\mathcal{A} = \{ \mathbb{P}_{\vartheta} \mid \text{domneva je nepravilna pri } \mathbb{P}_{\vartheta} \}.$$

V indeksiranih modelih enačimo \mathcal{H} in \mathcal{A} z ustreznima podmnožicama

$$H = \{ \vartheta \in \Theta \mid \mathbb{P}_{\vartheta} \in \mathscr{H} \}$$

$$A = \{ \vartheta \in \Theta \mid \mathbb{P}_{\vartheta} \in \mathscr{A} \}$$

indeksne parametrične množice Θ .

Definicija 2.2. Nerandomiziran preizkus domneve \mathscr{H} (proti alternativi \mathscr{A}) je odločitveno pravilo, po katerem na podlagi ene realizacije $x \in \mathbb{R}^n$ slučajnega vektorja X domnevo \mathscr{H} zavrnemo (in s tem sprejmemo \mathscr{A}) ali pa ne zavrnemo (in jo s tem "sprejmemo"). Tretje možnosti ni. To pomeni, da za neko množico $B \subset \mathbb{R}^n$, ki ji pravimo zavrnitveno obmožje, za vse $x \in B^c$ pa ne zavrnemo. V tem smislu preizkus enačimo z $\mathbb{1}_B$.

Definicija 2.3. Velikost preizkusa je sup $\{\beta(\vartheta) \mid \vartheta \in H\}$, interpretiramo kot "največjo" možno verjetnost napake 1. vrste, Preizkus je pri stropnji značilnosti $\alpha \in (0,1)$, če je velikost $\leq \alpha$.

Definicija 2.4. Preizkus je enakomerno najmočnejši med vsemi preizkusi stopnje značilnost α (velikost $\leq \alpha$), če je enakomerno močnejši od vsakega drugega preizusa stopnje značilnosti α .

2.2 Enakomerno najmočnejši preizkus

Definicija 2.5. Recimo, da sta $\mathbbm{1}_{B_1}$ in $\mathbbm{1}_{B_2}$ preizkusa iste domneve pri dani stopnji značilnosti α . Med njima bi izbrali tistega, ki ima manjšo napako 2. vrste, torej tistega, ki ima na alternativi (na A) večjo moč. Rečemo, da je $\mathbbm{1}_{B_1}$ enakomerno močnejši od $\mathbbm{1}_{B_2}$, če velja

$$\forall \vartheta \in A: \ \beta_1(\vartheta) \ge \beta_2(\vartheta),$$

kjer
$$\beta_i(\vartheta) = \mathbb{P}_{\vartheta}(B_i), i \in \{1, 2\}.$$

Definicija 2.6. Preizkus, je enakomerno najmočnejši med vsemi preizkusi stopnje značilnosti α (velikosti $\leq \alpha$), če je enakomerno močnejši od vsakega drugega preizkusa stopnje značilnosti α . Naj bo $K \subset \mathbb{R}^n$ končna množica; najmočnejši preizkus stopnje značilnosti α je podan z množico $B^* \subset K$, za katero je

$$\mathbb{P}_1(B^*) = \max{\{\mathbb{P}_1(B) \mid B \subset K, \ \mathbb{P}_0(B) \le \alpha\}}.$$

2.3 Randomizirani preizkusi

Definicija 2.7. Randomiziran preizkus domneve $\mathcal{H} \subset \mathcal{P}$ je Borelova funkcija $\phi : \mathbb{R}^n \to [0, 1]$ z naslednjo interpretacijo:

(i)
$$\phi(x) = \phi(x_1, \dots, x_n) = 1 \Rightarrow \mathcal{H}$$
 zavrnemo

(ii)
$$\phi(x) = 0 \Rightarrow \mathcal{H}$$
 ne zavrnemo

(iii)
$$\phi(x) = y \in (0,1) \Rightarrow \mathcal{H}$$
 zavrnemo z verjetnostjo γ^5

⁵vzorčimo $U \sim \mathcal{U}[0,1]$, zavrnemo \mathcal{H} , če $U \leq \gamma$

Indeksirajmo $\mathscr{P} = \{ \mathbb{P}_{\vartheta} \mid \vartheta \in \Theta \}$. Funkcija preizkusa ϕ je $\beta_{\phi} : \Theta \to [0, 1]$, $\beta_{\phi} = \mathbb{E}_{\vartheta}[\phi(X)].^{6}$

Komentar. Preizkus ϕ je enakomerno močnejši od preizkusa ψ , če je

$$\forall \vartheta \in A: \ \beta_{\phi}(\vartheta) \ge \beta_{\psi}(\vartheta).$$

Trditev 2.1. Naj bo T zadostna statistika za model \mathscr{P} (za slučajni vektor razsežnosti n) in naj bo $\phi: \mathbb{R}^n \to [0,1]$ neki preizkus. Definirajmo⁷ $\tilde{\phi}: \mathbb{R}^n \to [0,1]$ s predpisom

$$\tilde{\phi}(x) := \mathbb{E}_{\vartheta}[\phi(X) \mid T = Tx].$$

To je preizkus z *isto* funkcijo moči kot ϕ .

Komentar. Pri preizkusih se lahko omejimo na take, ki imajo za testno statistiko ravno zadostno statistiko (če jo imamo). Natančneje, za dani preizkus ϕ lahko privzamemo $\phi = \phi(Tx)$.

Izrek 2.1 (Neyman-Pearson). Preizkušamo enostavno domnevo $\mathscr{H} = \{\mathbb{P}_0\}$ proti enostavni alternativi $\mathscr{A} = \{\mathbb{P}_1\}$. Naj bosta f_0 in f_1 gostoti \mathbb{P}_0 in \mathbb{P}_1 glede na primerno σ -končno mero ν na $\mathscr{B}(\mathbb{R}^n)$ (lahko vzamemo npr. $\nu = \mathbb{P}_0 + \mathbb{P}_1$. Naj bo podana stopnja značilnosti $\alpha \in (0,1)$. Obstaja v bistvu enoličen preizkus domneve \mathscr{H} proti \mathscr{A} velikosti α oblike

$$\phi(x) = \begin{cases} 1; & f_1(x) > D \cdot f_0(x), \\ \gamma; & f_1(x) = D \cdot f_0(x), \\ 0; & f_1(x) < D \cdot f_0(x), \end{cases}$$

ki je najmočnejši med vsemi preizkusi \mathscr{H} proti \mathscr{A} stopnje značilnosti α . Za ϕ zgornje oblike sta $D \geq 0$ in $\gamma \in [0,1]$ v bistvu enolično določeni z zahtevo,

⁶Pripomnimo, da je $\mathbb{E}_{\vartheta}[\mathbb{1}_B(X)] = \mathbb{P}_{\vartheta}(X \in B)$.

⁷Zaradi zadostnosti je to dobro definirana funkcija.

da je velikost enaka α , torej

$$\mathbb{E}_{\mathbb{P}_{0}}[\phi(X)] = \mathbb{P}_{0}(\{f_{1}(X) > D \cdot f_{0}(X)\}) + \gamma \mathbb{P}_{0}(\{f_{1}(X) = D \cdot f_{0}(X)\})$$

$$= D \cdot f_{0}(X)$$

$$= \alpha.$$

Komentar.

- 1. ϕ (**pozor, tukaj ima** ϕ **drug pomen**) je odvisen od razmerja $\frac{f_1(x)}{f_0(x)}$, ki mu pravimo *razmerje verjetij*, zato mu pravimo *preizkus na podlagi razmerja verjetij*.
- 2. Privzemimo zadostno statistiko T. Tedaj lahko zapišemo

$$\frac{f_1(x)}{f_0(x)} = \frac{f(x; \vartheta_1)}{f(x; \vartheta_0)}$$

$$= \frac{g(Tx; \vartheta_1)h(x)}{g(Tx; \vartheta_0)h(x)}$$

$$= \frac{g(Tx; \vartheta_1)}{g(Tx; \vartheta_0)}$$

2.4 Najmočnejši preizkusi v enoparametričnih eksponentnih modelih

Izrek 2.2. Privzemimo eksponentni model z gostotami oblike

$$f(x; \vartheta) = e^{-\psi(\vartheta)} e^{Q(\vartheta) \cdot Tx} h(x)$$

za $x \in \mathbb{R}^n$ glede na neko σ -končno mero ν . Dalje privzemimo, da je $\Theta \subset \mathbb{R}$ interval in da je Q strogo monotona. Naj bo $\vartheta_0 \in \Theta$ in naj bo $\alpha \in (0,1)$. Za domnevo $\vartheta \leq \vartheta_0$ proti $\vartheta > \vartheta_0$ obstaja⁸ preizkus oblike

$$\phi(x) = \begin{cases} 1; & Tx > C, \\ \gamma; & Tx = C, \end{cases}^{9}$$

$$0; & Tx < C,$$

 $^{^8\}mathrm{V}$ primeru, ko je Qnaraščajoča oz. z obrnjenimi relacijami, ko je Q padajoča.

 $^{^{9}}$ Za $x = (x_1, ..., x_n)$ je $Tx = \sum_{i=1}^{n} x_i$.

kjer sta C in γ v bistvu enolično določeni z zahtevo

$$\mathbb{E}_{\vartheta_0}[\phi(X)] = \mathbb{P}_{\vartheta_0}(TX > C) + \gamma \mathbb{P}_{\vartheta_0}(TX = C) = \alpha.$$

Ta preizkus ima velikost α in je najmočnejši med vsemi preizkusi stopnje značilnosti α za $\vartheta \leq \vartheta_0$ proti $\vartheta > \vartheta_0$.

Definicija 2.8. Preizkus ϕ domneve $H \in \mathcal{H}$ proti alternativi $A \in \mathcal{A}$ je nepristranski preizkus stopnje značilnosti α , če je stopnje značilnosti α in velja

$$\forall \vartheta \in A : \ \beta_{\phi}(\vartheta) = \mathbb{E}_{\vartheta}[\phi(X)] \ge \alpha.$$

Izrek 2.3. Naj veljajo privzetki prejšnjega izrek, naj bo $\vartheta_0 \in \text{int}(\Theta)$ in naj bo Q zvezno odvedljiva v ϑ_0 s $Q'(\vartheta_0) \neq 0$ (imQ vsebuje odprt interval). Naj vo še $\alpha \in (0,1)$. Za domnevo $\vartheta = \vartheta_0$ proti $\vartheta \neq \vartheta_0$ obstaja preizkus oblike

$$\phi(x) = \begin{cases} 1; & Tx < C_1 \text{ ali } Tx > C_2, \\ \gamma_i; & Tx = C_i, i \in \{1, 2\}, \\ 0; & Tx \in (C_1, C_2), \end{cases}$$

kjer so konstantne enolično določene z zahtevama

- $\mathbb{E}_{\vartheta_0}[\phi(x)] = \alpha$,
- $\beta'(\vartheta_0) = \frac{d}{d\vartheta_0} \mathbb{E}_{\vartheta}[\phi(X)]\Big|_{\vartheta=\vartheta_0} = 0.$

Ta preizkus je nepristranski in enakomerno najmočnejši med vsemi nepristranskimi preizkusi $\vartheta = \vartheta_0$ proti $\vartheta \neq \vartheta_0$ stopnje značilnosti α .

2.5 Necentralne Studentove porazdelitve

Definicija 2.9. Naj bosta Z, H neodvisni slučajni spremenljivki, $Z \sim \mathcal{N}(\lambda, 1), H \sim \chi_h^2$. Tedaj pravimo, da ima

$$t = \frac{Z}{\sqrt{\frac{H}{h}}}$$

(necentralno) Studentovo porazdelitev s h prostorskimi stopnjami in necentralnostnim parametrom λ . Pišemo $\mathfrak{t} \sim t_n(\lambda)$. To pomeni $\mathfrak{t} \sim t_{n-1}\left(\frac{\mu-\mu_0}{\frac{\sigma}{\sqrt{n}}}\right)$.