FORMULARIO Investigación Operativa **EST-155**

Docente: M.Sc. Emilze Pérez	Univ. Cristhian Cruz Bautista Mamani				
Modelo de Programación Lineal General (MPL)	Técnica en M (Método de Penalización)				
Optimizar:	$Max(Z) = CX$ \rightarrow $Max(Z) = CX + 0S + 0S^* - MR$				
$Z = c_1 X_1 + c_2 X_2 + \dots c_n X_n$	$AX \le b \qquad \rightarrow \qquad AX + S = b$				
Sujeto a:	$AX \ge b \qquad \rightarrow \qquad AX - S^* + R = b$				
$a_{11}X_1 + a_{12}X_2 + \dots + a_{1n}X_n \ge 1 \le 6 = b_1$	$AX = b \rightarrow AX + R = b$				
$a_{21}X_1 + a_{22}X_2 + \dots + a_{2n}X_n \ge 1 \le 6 = b_2$	$Min(Z) = CX$ \rightarrow $Min(Z) = CX + 0S + 0S^* + MR$				
:	$AX \le b \qquad \rightarrow \qquad AX + S = b$				
$a_{m1}X_1 + a_{m2}X_2 + + a_{mn}X_n \ge 1 \le 6 = b_m$	$AX \ge b \qquad \rightarrow \qquad AX - S^* + R = b$				
$X_j \ge 0 = \forall_1 = 1, 2, \dots, n$	$AX = b \rightarrow AX + R = b$				
Leyes de Equivalencia	Donde:				
❖ Primera Ley:	$S \to Holgura, S^* \to Superflua, R \to Artificial$				
Max(Z) es equivalente a $Min(-Z)$	Técnica de 2 Fases				
Min(Z) es equivalente a $Max(-Z)$	> Primera Fase				
❖ Segunda Ley:	$Min(Z) = \sum_{i=1}^{N} R_i / Z = 0$				
$AX \le b$ es equivalente $a - AX \ge -b$	$Min(Z) = \sum_{i=1}^{n} R_i / Z = 0$				
$AX \ge b$ es equivalente $a - AX \le -b$	En esta fase siempre se minimiza y se itera hasta que la solución				
Tercera Ley:	sea igual a cero				
$\bigcap AX \leq b$	> Segunda Fase				
$AX = b$ es equivalente \prec	En esta fase se eliminan las columnas R_i (variables artificiales)				
$\angle AX \ge b$	de la última iteración de la primera fase, así mismo en esta fase				
❖ Cuarta Ley:	se maximiza $(Max(Z))$ o minimiza $(Min(Z))$ de acuerdo a lo				
$AX \le b$ $AX + S = b$ $S = Vector\ Holgura$	que indique el problema.				
$AX \ge b$ $AX - S^* = b$ $S^* = Vector Superflua$	Importancia de Variables				
❖ Quinta Ley:	Variables de Entrada $\rightarrow X_i, S, S^*, R$				
$X_j \pm S \qquad \qquad X_j = X_j^+ - X_j^-$	Variables de Salida $\rightarrow R, S^*, S, X_i$				
	Método Dual				
$X_j = 0 X_j^+ = X_j^-$	Primal → Dual				
$X_j > 0 X_j^+ > X_j^-$	$Max(Z) = CX$ $Min(G) = b^T X$				
$X_{j} = 0$ $X_{j}^{+} = X_{j}^{-}$ $X_{j} > 0$ $X_{j}^{+} > X_{j}^{-}$ $X_{j} < 0$ $X_{j}^{+} < X_{j}^{-}$	Sa. Sa.				
Forma Canónica	$AX \le b \qquad \qquad A^TY \ge C^T$				
Función Objetivo	$X \ge 0$ $Y \ge 0$				
Max(Z) = CX	Para la Función Objetivo				
Restricciones	$Max(Z) \rightarrow Min(G)$				
$AX \leq b$	$Min(Z) \rightarrow Max(G)$				
Variables de decisiones	Para las restricciones				
$X \ge 0$	$AX \ge b \rightarrow A^T Y \le C^T$				
Forma Estándar	$AX \le b \to A^TY \ge C^T$				
Función Objetivo	$AX = b \rightarrow Irrestricto en signo$				
Max(Z) = CX v Min(Z) = CX					
> Restricciones					
$AX + S = b AX - S^* = b$					
Variables de decisiones	Palabras a identificar en los de problemas de planteo:				

Palabras a identificar en los de problemas de planteo:

 \geq : satisfaser, al menos , por lo menos , como minimo, un minimo ≤: a lo mucho, cuando mucho, como maximo, no mas, requiere, supone, necesita, disponibilidad, necesidad, posee, a lo sumo. =: unicamente, solamente, igual aun total.

Utilidad, ganancia, ingreso, beneficio MAXIMIZACIÓN → cuanto

MINIMIZACIÓN → Costo, gasto

	variables de décisiones								
	$X \ge 0$ $X \ge 0; X \pm S$								
Método Gráfico									
	Max(Z) = CX	Min(Z) = CX							
Sa.		Sa.							
	$AX \leq b$	$AX \ge b$							
	$X \ge 0$	$X \ge 0$							
Método Simplex									
	Max(Z) = CX	Min(Z) = CX							
Sa.		Sa.							
	$AX \leq b$	$AX \leq b$							
	$X \ge 0$	$X \ge 0$							

Análisis de Sensibilidad

$$Sa.$$

$$AX \le b$$

$$X \ge 0$$

V_B	Z	x_1 x_2	2	x_n	S_1	•••	S_m	sol
Z	1	-C			0	•••	0	0
S_1	0	a_1 a_2		a_n				
:	÷	4			I		b	
S_m	0	Λ			1			D
:	÷							
$\frac{V_B}{Z}$	Z	z_1-c_1	1	$\mathbf{Z}_n - \mathbf{c}_n$	$\boldsymbol{z}_{m+1} - \boldsymbol{c}_{m+1}$	$\boldsymbol{z}_{m+2} - \boldsymbol{c}_{m+2}$	•••	sol
Z	1	Π	A-C		Π:	$= C_B E$	} −1	$Z_B = C_B X_B$
V_B opt.	0 : 0	$B^{-1}A$		B^{-1}		$X_B = B^{-1}b$		

Adición de Restricciones

Adición de la tabla de la nueva fila:

$$a^*X + X_n = B$$

Se pierde factibilidad por el cambio de la conversión de la columna unitaria de las variables básicas.

(Método a aplicar Dual Simplex)

Cambio en el Vector "b"

 $X_B = B^{-1*}(b + \Delta b)$

La posible pérdida de factibilidad cuando:

$$X_B = B^{-1*}(b + \Delta b) < 0$$

(Método a aplicar Dual Simplex)

Cambio en el Vector "c"

$$(Z_I - C_I) = B^{-1*} \alpha - (C + \Delta C)$$

Pérdida de optimidad para recuperar usamos:

$$C_B B^{-1*} a - (c + \Delta c) < 0$$

(Método a aplicar Simplex)

Cambio en la matriz "A"

$$(Z_J - C_J) = C_B B^{-1*} (a + \Delta a) - C_J$$

 $T = B^{-1*} (a + \Delta a)$

Se pierde la optimidad para recuperar usamos:

$$C_B B^{-1*}(a + \Delta a) - c < 0$$

(Método a aplicar Simplex)

Adición "X"

$$(Z_J - C_J) = C_B B^{-1*} a_{n+1} - c_{n+1}$$

 $T = B^{-1*} a_{n+1}$

Se pierde la optimidad para recuperar usamos:

$$C_B B^{-1*} a_{n+1} - c_{n+1} < 0$$
 (Método a aplicar Simplex)

Elaborado por: Bautista Mamani Cristhian Cruz