Algorithmique QCM nº 1 (CAML) lundi 2 octobre 2017

1. Quel est le type de la fonction définie ci-dessous?

```
let rec foo n =
   if n = 0 then
     ()
   else
      begin
      foo (n-1);
      print_int n; print_string " ";
   end ::
```

- (a) unit -> unit
- (b) unit -> int
- (c) int -> unit
- (d) int -> string
- 2. Soit foo la fonction définie à la question précédente. Que donnera l'application foo 5?
 - (a) 5 4 3 2 1 : unit = ()
 - (b) 1 2 3 4 5 : unit = ()
 - (c) 4 3 2 1 0 : unit = ()
 - (d) 0 1 2 3 4 : unit = ()
 - (e) Une erreur
- 3. Quelles expressions sont équivalentes à [3; 8; 13; 18]?
 - (a) [3; 8]::[13; 18]
 - (b) 3::[8; 13; 18]
 - (c) [3]::[8]::[13]::[18]
 - (d) 3::8::13::18::[]
 - (e) let a = 3 in a::(a+5)::(a+10)::(a+15)::[]
- 4. Quel est le résultat de l'évaluation de la phrase suivante?

```
let mylist = [(1, '1', "one"); (2., '2', "two")] ;;
(a) val mylist : int * char * string list = [(1, '1', "one"); (2., '2', "two")]
(b) val mylist : (int * char * string) list = [(1, '1', "one"); (2., '2', "two")]
(c) val mylist : int list * char list * string list = [(1, '1', "one"); (2., '2', "two")]
(d) val mylist : (int * char * string) list = [1, '1', "one"; 2., '2', "two"]
(e) Une erreur
```

- 5. Parmi ces listes, lesquelles ne peuvent pas exister en CAML?
 - (a) [1; 2; 3]
 - (b) [1.; 2.; 3]
 - (c) [1; 2; 'a']
 - (d) let a = 3 in [1; 2; a]
 - (e) let b = 'b' and d = 'd' in [d; b; 'c']

1

6. Quel sera le dernier résultat après évaluations successives des phrases suivantes?

```
let 11 = ["I"; "love"] and 12 = ["C"; "a"; "m"; "l"] ;; let 1 = [11; 12] ;;
```

- (a) val 1 : string list list = [["I"; "love"]; ["C"; "a"; "m"; "l"]]
- (b) val 1 : string list = ["I"; "love"; "C"; "a"; "m"; "l"]
- (c) val 1 : string list list = ["I"; "love"; "C"; "a"; "m"; "l"]
- (d) val 1 : string list = ["I love"; "Caml"]
- (e) Une erreur

7. Que calcule la fonction suivante?

- (a) La longueur d'une liste.
- (b) La somme des éléments d'une liste.
- (c) La valeur du premier élément d'une liste.
- (d) Elle retourne 0 si la liste est vide, 1 sinon.
- (e) Rien, elle est incorrecte.

8. Que contient le résultat de l'évaluation de la phrase suivante?

- (a) val test : 'a list -> bool = <fun>
- (b) val test : int list -> bool = <fun>
- (c) Warning ...: this pattern-matching is not exhaustive.
- (d) Error : Syntax error

9. Quel est le résultat de l'évaluation de la définition suivante?

```
let rec f x = function
[] -> 0
| h::q -> (if x = h then 0 else 1) + f x q ;;
```

- (a) val f : int -> int list -> int = <fun>
- (b) val f : 'a -> 'a list -> int = <fun>
- (c) val f : int list -> int = <fun>
- (d) val f : int -> 'a list -> int = <fun>

10. Quel sera le résultat de l'évaluation de l'expression suivante, avec f la fonction de la question 9.?

- (a) : int = 1
- (b) : int = 2
- (c) : int = 3
- (d) : int = 5
- (e) : int = 6

2

QCM N°7

lundi 2 octobre 2017

Question 11

Au voisinage de 0, on a

a.
$$\ln(1+2x) = x - \frac{x^2}{2} + o(x^2)$$

b.
$$\ln(1+2x) = 1 - x + \frac{x^2}{2} + o(x^2)$$

c.
$$\ln(1+2x) = 2x - x^2 + o(x^2)$$

(d)
$$\ln(1+2x) = 2x - 2x^2 + o(x^2)$$

e. rien de ce qui précède

Question 12

Au voisinage de 0, on a

a.
$$\cos(x)e^x = 1 + x + x^2 + o(x^2)$$

(b.)
$$\cos(x)e^x = 1 + x + o(x^2)$$

c.
$$\cos(x)e^x = 1 + x - x^2 + o(x^2)$$

$$(d.)\cos(x)e^x = 1 + x + o(x)$$

e. rien de ce qui précède

Question 13

'u voisinage de 0, on a

a.
$$\sqrt{1+x} = 1 - \frac{1}{2}x + \frac{1}{4}x^2 + o(x^2)$$

b.
$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{4}x^2 + o(x^2)$$

c.
$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + o(x^2)$$

d.
$$\sqrt{1+x} = 1 - \frac{1}{2}x + \frac{1}{8}x^2 + o(x^2)$$

e. rien de ce qui précède

Question 14

Au voisinage de 0, on a

a.
$$\sin(-x) = 1 - \frac{x^2}{2} + \frac{x^4}{4} + o(x^4)$$

b.
$$\sin(-x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$$

c.
$$\sin(-x) = x - \frac{x^3}{3} + \frac{x^5}{5} + o(x^5)$$

d.
$$\sin(-x) = -x - \frac{x^3}{3!} - \frac{x^5}{5!} + o(x^5)$$

(e) rien de ce qui précède

Question 15

Au voisinage de 0, on a

a.
$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$$

(b)
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3)$$

c.
$$e^x = 1 - x + \frac{x^2}{2} - \frac{x^3}{3} + o(x^3)$$

d.
$$e^x = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + o(x^3)$$

e. rien de ce qui précède

Question 16

Soient f une fonction bijective définie sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} et $x \in I$ tels que $f'(x) \neq 0$. Alors f^{-1} est dérivable en y = f(x) et

a.
$$(f^{-1})'(y) = \frac{1}{f^{-1}(f'(x))}$$

(b.)
$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

c.
$$(f^{-1})'(y) = \frac{1}{f^{-1}(f'(y))}$$

d.
$$(f^{-1})'(y) = \frac{1}{f'(x)f^{-1}(y)}$$

e. rien de ce qui précède

Question 17

Soit $I = \int_0^2 \frac{6x}{(3x^2+1)^2} \mathrm{d}x$. Alors I est égale à

- a. $\frac{1}{13}$
- b. $-\frac{1}{13}$
- c. $-\frac{12}{13}$
- $\frac{12}{13}$
- e. rien de ce qui précède

Question 18

 \mathcal{L} oit $z \in \mathbb{C}$. Alors le conjugué de $\frac{z-1}{z-i}$ est

- a. $\frac{\overline{z}-1}{\overline{z}-i}$
- b. $\frac{\overline{z}+1}{\overline{z}+i}$
- c. $\frac{\overline{z}+1}{\overline{z}-i}$
- d. rien de ce qui précède

Question 19

Pour tout $x \in \mathbb{R}$, on a

- a. $\arctan'(x) = -\frac{1}{1+x^2}$
- $b.\arctan'(x) = \frac{1}{1+x^2}$
- $(c.) \arctan'(x) = \frac{1}{1 + \tan^2(\arctan(x))}$
- d. $\arctan'(x) = \frac{1}{1 x^2}$
- e. rien de ce qui précède

Question 20

Soit $z=1-i\sqrt{3}.$ Alors z^3 est égal à

- a. -2
- b. $1 3i\sqrt{3}$
- c. $1 + 3i\sqrt{3}$
- (d.) 8
- e. rien de ce qui précède

21. According to the instructions for	preparing a Point of Vi	ew, it is advisable to
---------------------------------------	-------------------------	------------------------

- a) practice alone in front of a mirror
- b) practice in front of a friend
- c) practice three times
- d) All of the above

22. The Point of View has to be

- a) Your point of view about the article (e.g. whether it is written well or not).
- b) Your point of view about the opinion of the writer of the article.
- c) Both a and b.
- d) None of the above.

23. The part which is NOT a requirement in the presentation is

- a) defining five key words.
- b) having an anecdote.
- c) having visual aids.
- d) having an opinion.

24.	During the	P.O.V.	presentations	the speaker	

- a) does not need to have any cue cards.
- b) must have cue cards and should read off them.
- c) must have cue cards and try not to read them except when necessary.
- d) None of the above.

25. Which one is NOT a requirement during the presentations?

- a) defining five key words
- b) having an anecdote
- c) giving a reference to support your opinion
- d) having a BANG in the beginning

26. The last BANG of the presentations should be

- a) a summary of the presentation.
- b) a conclusion.
- c) an anecdote.
- d) an opinion.

27. In the BOMBER B structure, the M stands for
a) motivation.b) message.c) minimum.d) None of the above.
28. According to BOMBER B, the is the part where the speaker introduces himself and explains the structure of the talk.
a) opening b) introduction c) bridge d) bang
29. 'Quoting one or more sentences where the author gives an opinion' is
a) obligatory.b) optional.c) not mentioned in the instructions.
30. 'The speech should be summarized after the anecdote.' This sentence is
a) True b) False c) Not mentioned

Lecture 2

- 31. The Elaboration Likelihood Model
 - a. is a general theory of how people process communication information
 - b. was developed by John Cacioppo and Richard Petty
 - c. helps us understand the conditions underlying the persuasiveness of messages
 - d. All of the above
- 32. The two major routes to persuasion in the Elaboration Likelihood Model are
 - a. Central and peripheral
 - b. Central and cranial
 - c. Autonomic and cranial
 - d. Peripheral and autonomic
- 33. The first stage of the Elaboration Likelihood Model is
 - a. Motivation to engage in message processing
 - b. Ability
 - c. Environmental awareness
 - d. None of the above
- 34. According to the Elaboration Likelihood Model, if I am engaged in really trying to understand a message, I am engaged in which type of thinking?
 - a. Central
 - b. Message
 - c. Issue-relevant
 - d. All of the above
- 35. Which of the following was NOT found when researching the Elaboration Likelihood Model?
 - a. The peripheral cue assessments don't always play a role in the outcome
 - b. The peripheral cue assessments always play a role in the outcome
 - c. The outcome is relatively short term
 - d. The outcome is not necessarily enduring or impactful

Lecture 3

- 36. The main ideas you need to convey that are the substantive part of your major purpose of your presentation are
 - a. Discussion points
 - b. Talking points
 - c. Sub-points
 - d. Facilitation points
- 37. If you are a disorganized speaker, you lose what quality as a speaker?
 - a. Reliability
 - b. Credibility
 - c. Likeability
 - d. Believability
- 38. An organizational framework answers the question(s)
 - a. Where are my ideas connected?
 - b. What ideas stem from other ideas?
 - c. How are my ideas connected?
 - d. All of the above
- 39. Ideas that are organized by importance are organized
 - a. Spatially
 - b. Temporally
 - c. Causally
 - d. Hierarchically

- 40. Ideas that are organized over time are organized
 - a. Spatially
 - b. Temporally
 - c. Hierarchal
 - d. Causally

EPITA-S₁ 2017/20 18

Q.C.M n°1 de Physique

41- La norme de la résultante \vec{R} de deux vecteurs forces $\vec{F_1}$ et $\vec{F_2}$ (non nuls), colinéaires et de même sens est

a)
$$R = 0$$
 b) $R = \sqrt{F_1^2 + F_2^2}$ c) $R = F_1 + F_2$ d) $R = |F_1 - F_2|$

42- La norme de la résultante \vec{R} de deux forces \vec{F}_1 et \vec{F}_2 tel que $(\vec{F}_1, \vec{F}_2) = \alpha$ est :

a)
$$R = \sqrt{F_1^2 + F_2^2}$$

b)
$$R = F_1 + F_2$$

c)
$$R = \sqrt{F_1^2 + F_2^2 + 2.F_1F_2.\sin(\alpha)}$$

(d)
$$R = \sqrt{F_1^2 + F_2^2 + 2.F_1 F_2.\cos(\alpha)}$$

43- Les composantes du vecteur force \vec{F}_1 sur le schéma ci-dessous sont :

a)
$$\begin{pmatrix} F_1 \cdot \sin(\beta) \\ F_1 \cdot \cos(\beta) \end{pmatrix}$$
 b) $\vec{F}_1 = \begin{pmatrix} 0 \\ F_1 \sin(\beta) \end{pmatrix}$ © $\vec{F}_1 = \begin{pmatrix} F_1 \cdot \cos(\beta) \\ F_1 \cdot \sin(\beta) \end{pmatrix}$ d) $\begin{pmatrix} -F_1 \cdot \cos(\beta) \\ F_1 \cdot \sin(\beta) \end{pmatrix}$

44- Les composantes de la force \vec{F}_2 représentée sur le schéma de la question 43 sont :

a)
$$\vec{F}_2 = \begin{pmatrix} F_2 \cdot \cos(\alpha) \\ -F_2 \cdot \sin(\alpha) \end{pmatrix}$$
 b) $\vec{F}_2 = \begin{pmatrix} F_2 \cdot \sin(\alpha) \\ -F_2 \cdot \cos(\alpha) \end{pmatrix}$ c) $\vec{F}_2 = \begin{pmatrix} F_2 \cdot \cos(\alpha) \\ -F_2 \cdot \sin(\alpha) \end{pmatrix}$

- 45- Le produit scalaire de deux vecteurs (non nuls) colinéaires et de sens opposés est :
 - a) strictement positif
 - b) nul
 - c) non défini
 - (d) strictement négatif

- 46- La norme du vecteur $\vec{V}_3=\vec{V}_1\wedge\vec{V}_2$, tel que : $(\vec{V}_1,\vec{V}_2)=\alpha$ est :
 - (a) $V_3 = V_1 \cdot V_2 \cdot |\sin(\alpha)|$
 - b) $V_2 = V_1 \cdot V_2 \cdot \cos(\alpha)$
 - c) $V_3 = \sqrt{V_1^2 + V_2^2 + 2V_1 \cdot V_2 \cdot \cos(\alpha)}$
- 47- Le produit scalaire des vecteurs $\vec{V_1} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ et $\vec{V_2} \begin{pmatrix} -3 \\ -4 \\ 6 \end{pmatrix}$ est :
 - a) 8
- b) -16
- (c) 16
- d) 22
- 48- Le produit vectoriel des deux vecteurs $\vec{V}_1 \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$ et $\vec{V}_2 \begin{pmatrix} -4 \\ 1 \\ 1 \end{pmatrix}$ est :
- 49- Le produit vectoriel de deux vecteurs est nul lorsque
 - les 2 vecteurs sont colinéaires
 - b) les 2 vecteurs sont orthogonaux
 - c) l'angle entre les deux vecteurs est $\pi/2$
- 50- Le vecteur position en coordonnées polaires s'écrit :
 - (a) $O\vec{M} = \rho . \vec{u}_{\alpha}$
 - b) $O\vec{M} = \rho . \vec{u}_{\alpha} + \theta . \vec{u}_{\theta}$
 - c) $O\vec{M} = x.\vec{u}_x + y.\vec{u}_y$

QCM Electronique - InfoS1

Pensez à bien lire les questions ET les réponses proposées

- Q1. Qu'est-ce qu'un déplacement quelconque de charges électriques ?
 - a- Un courant

c- Une résistance

b- Une tension

d- Rien de tout cela

- Q2. L'intensité du courant qui entre dans un dipôle passif est supérieure à l'intensité de celui qui en ressort.
 - a- VRAI

- b- FAUX
- Q3. Quelle est l'unité d'une intensité?
 - a- Volt

c- Ampère

b- Coulomb

d- Ohm

Q4. Plusieurs tensions sont représentées dans le schéma ci-dessous, certaines représentations sont justes, d'autres non. Quelles sont les représentations correctes ? (2 réponses)

Q5. Soit le circuit suivant : Ce circuit comprend

- a. 5 nœuds, 4 mailles
- b. 5 nœuds, 8 branches
- c. 8 nœuds, 8 branches
- d. Aucune de ces réponses

Q6. Si deux dipôles sont parcourus par le même courant, on dit qu'ils sont :

(a) En série

b. En parallèle

Q7. Reprenez le circuit de la question 5 : Choisir l'affirmation correcte :

a- R_1 et R_2 sont en série

c- R_3 et R_7 sont en parallèle

b- R_2 et R_3 sont en parallèle

 $d - R_5$ et R_6 sont en parallèle

Q8. Quelle est la résistance vue entre A et B?

- (a) 3R
- b. 15*R*
- c. $\frac{28R}{33}$
- d. $\frac{R}{3}$

Q9. On considère le schéma suivant :

- a- Le dipôle est un dipôle récepteur si I et U sont de signes opposés
- b- Le dipôle est un dipôle générateur si I et U sont de même signe
- [c] Le dipôle est un dipôle récepteur si I et U sont de même signe
- d- Le fléchage courant/tension correspond à la convention générateur.

Q10. Quelle est la formule correcte (toutes les résistances sont en Ohm) :

a-
$$R = \frac{R_1 \cdot R_2 \cdot R_3}{R_1 + R_2 + R_3}$$

c-
$$R = \frac{R_1 \cdot R_2}{R_1 \cdot R_2 + R_3^2}$$

b-
$$R = \frac{R_1 + R_2}{R_1 \cdot R_2}$$

d-
$$R = \frac{R_1 \cdot (R_2 \cdot R_3 + R_4^2)}{R_1 \cdot R_2 + R_3^2}$$

QCM 1

Architecture des ordinateurs

Lundi 2 octobre 2017

- 11. $2^{16} =$
 - A. 65 535₁₀
 - B. $2^{17} 2^{16}$
 - C. 100000000000000000₂
 - D. 1000₁₆
- 12. $2^{-5} + 2^{-3} =$
 - A. 0,15325
 - B. 0,03125
 - C. 0,00101₂
 - D. 0,0101₂
- 13. Combien de symboles différents possède la base 100 ?
 - A. 98
 - B. 99
 - C. 100
 - D. 101
- 14. Quel est le poids du chiffre 4 dans le nombre suivant : 23420₅ ?
 - A. 2
 - B. 4
 - C. 5
 - D. 25
- 15. Quel nombre n'est pas correct?
 - A. 1011001101010₁₆
 - B. CAFE₂₀
 - C. 742560₇
 - D. CAFE₁₆

- 16. $70_{16} 1_{16} =$
 - A. 6A₁₆
 - B. 6F₁₆
 - C. 69₁₆
 - D. 60₁₆
- 17. $67_8 + 1_8 =$
 - A. 68₈
 - B. 70₈
 - C. 6A₈
 - D. 80_8
- 18. $\frac{(2^8 \cdot 4^{-10}) \cdot 128^{-3}}{(4^{-2} \cdot (2^4 2^3))^3 \cdot 64^{-5}} =$
 - A. 1
 - B. 512
 - C. 2^{-42}
 - D. 0.25
- 19. 128 Gio =
 - A. 2^{34} bits
 - B. 2^{37} bits
 - C. 2^{40} bits
 - D. 2⁴⁰ octets
- 20. 1 Mib =
 - A. 2^{20} octets
 - B. 2¹⁷ bits
 - C. 128 Kib
 - D. 128 Kio