MACHINE VISION

Agenda

01

Overview

02

Vision Basics

03

Vision Applications (ArUco)

04

Machine Learning Overview

Overview

Cameras

Raspberry Pi Camera

ESP32 Camera

Depth Camera

Cameras

Tracking Camera

USB Webcam

OV7640

HARDWARE

SOFTWARE

- Operating System
 - Raspberry Pi OS (Raspbian)
 - Ubuntu 22.04
- Language:
 - Python
 - o C++
- Framework:
 - OpenCV
 - o ROS

PI CAMERA CALIBRATION

PURPOSE

- Remove Distortion
 - Geometric Distortion
 - Barrel
 - Pincushion
- Get Camera Matrix
 - Useful in depth estimation

PI CAMERA CALIBRATION

METHODS

- Zhang's Method
- Record Video of Chessboard
- Use the <u>video2calibration</u> library
- The library generates the Camera Matrix

IMAGE CLASSIFICATION

Classification

CAT

Object Detection

CAT, DOG, DUCK

- Tells us what's in the image
- Doesn't give us positional info
- Example: Mask Detector

OBJECT DETECTION

Classification

CAT

Object Detection

CAT, DOG, DUCK

- Involves classification &
 localization
- Gives us positional info for every object detected
- Example: People Counter

OBJECT DETECTION

TRADITIONAL METHODS

- Classical Algorithms
 - Haar Cascades
 - HOG Detector

MODERN METHODS

- Deep Learning:
 - R-CNN
 - Faster R-CNN
 - Single Shot Detectors (SSDs)
 - YOLO (You Only Look Once)

Plant disease detection

Uploaded image

Predicted: "Potato___Late_blight"

INSTANCE SEGMENTATION

Object Detection

Instance Segmentation

 Even more detail Distinguishes objects from other objects / background

Example: Localizing Cancer
 Cells

CAT, DOG, DUCK

CAT, DOG, DUCK

SHAPE DETECTION

- Instance Segmentation can be complicated
- OpenCV can be used to detect shapes

Plant disease detection

Uploaded image

Predicted: "Potato__Late_blight"

COORDINATE TRANSFORMATION

- Converting camera coordinates to robot coordinates
- Camera coordinates in 2D to robot coordinates in 3D
- One Axis Missing

METHODS

- Use a **Depth Camera**
- Stereo Vision
- Ultrasonic Sensor
- Train a Deep Learning Model
- Homogeneous Matrix
- Triangle Similarity

$F = (P \times D) / W$

- F = Camera Focal Length
- P = Apparent Width
- D = Distance from Camera
- W = Known width

 $D = (W \times F) / P$

$$x = PX$$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

homogeneous image 3 x 1 Camera matrix 3 x 4 homogeneous world point 4 x 1

ARTIFICIAL INTELLIGENCE

- Artificial Intelligence (AI)
 - Computer Vision
 - Natural Language Processing
- Machine Learning (ML)
 - Statistical Models
 - Deep Learning (DL)
 - Artificial Neural Networks
- Large Language Models (LLMs)
- Vision Language Models

DEEP LEARNING

MODELS

- R-CNN
- Mask R-CNN
- Fast R-CNN
- Faster R-CNN
- YOLO

YOU ONLY LOOK ONCE (YOLO)

TRADITIONAL METHODS

- YOLO v3
- YOLO v5
- YOLO v7
- **YOLO** v8
- YOLO NAS

CAPABILITES

- Image Classification
- Object Detection
- Instance Segmentation
- Pose Estimation
- Motion Tracking

FRAMEWORKS

- <u>Ultralytics</u>
- PyTorch
- Tensorflow
- ML.Net

CUSTOMTRAINING

PLATFORMS

- Roboflow
- Google Colab
- Local Machine
- Cloud Services
 - Amazon Web Services (AWS)
 - Microsoft Azure

THANK YOU

LENNY NG'ANG'A

0791485681

codewithlennylen254@gmail.com

Personal Blog

