- a. Write the boolean equation:
 - a. assign $X = (L \& (T \& P)) | (\sim L \& (T \& W)) | (\sim L \& (\sim T \& P)) | (\sim L \& (\sim W \& T));$
- b. Write the truth table

L	Τ	Р	W	L & (T&P)	~L & (T&W)	~L & (~T&P)	~L & (~W&T)	Χ
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	1	0	1
0	0	1	1	0	0	1	0	1
0	1	0	0	0	0	0	1	1
0	1	0	1	0	1	0	0	1
0	1	1	0	0	0	0	1	1
0	1	1	1	0	1	0	0	1
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0
1	0	1	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0
1	1	1	0	1	0	0	0	1
1	1	1	1	1	0	0	0	1

c. Write the Boolean equation using the minterms

 $^{\text{L\&}(^{\text{T\&P}})\&^{\text{W}} + ^{\text{L\&}(^{\text{T\&P}})}\&W + ^{\text{L\&}(^{\text{W}\&T}) + ^{\text{L\&}(^{\text{T\&W}})\&^{\text{P}} + ^{\text{L\&}(^{\text{W}\&T}) + ^{\text{L\&}(^{\text{T\&W}})\&^{\text{P}} + ^{\text{L\&}(^{\text{T\&W}})\&^{\text{P}} + ^{\text{L\&}(^{\text{T\&P}})\&^{\text{W}} + ^{\text{L\&}(^{\text{L\&P}})\&^{\text{L\&}(^{\text{L\&P}})\&^{\text{L\&}(^{\text{L\&P}})} + ^{\text{L\&}(^{\text{L\&P}})\&^{\text{L\&}(^{\text{L\&P}})\&^{\text{L\&}(^{\text{L\&P}})} + ^{\text{L\&}(^{\text{L\&P}})\&^{\text{L\&}(^{\text{L\&P}})\&^{L\&P}})} + ^{\text{L\&}(^{\text{L\&P}})\&^{\text{L\&}(^{\text{L\&P}})})\&^{\text{L\&}(^{\text{L\&P}})} + ^{\text{L\&}(^{\text{L\&P}})\&^{\text{L\&P}})} + ^{\text{L\&}(^{\text{L\&P}})} + ^{\text{L\&}(^{\text{L\&P}})}) + ^{\text{L\&}(^{\text{L\&P}})}) + ^{\text{L\&}(^{\text{L\&P}})}$

d. Simplify

f. Full expression for truth table

```
module fullExpression(
    input L,
    input P,
    input T,
    input W,
    output X
    );
    assign X = (!Ls(!TsP)s!W) | (!Ls(!TsP)sW) | (!Ls(!WsT)) | (!Ls(TsW)s!P) | (!Ls(!WsT)) | (!Ls(TsW)sP) | (Ls(TsP)s!W) | (Ls(TsP)sW);
endmodule
```

Simplified expression for truth table

```
module simplifiedExpression(
   input T,
   input P,
   input L,
   input Y
   );
   assign Y = !LsT | !LsP | TsP;
endmodule
```

fullExpression timing Diagram

simplifiedExpression timing Diagram

Schematic

Youtube Video:

https://youtu.be/MMeyKJ4j3CM