Линейная алгебра. Коллоквиум 2 семестр. Основано на реальных событиях. v0.9

26 мая 2017

Ченжлоги

```
v0.0 (16.05.2017) — исходное (спасибо Борису, Глебу, Александру Г. (Ц.))
v0.1 (16.05.2017) — поправлены графические недочёты и 5-й номер
v0.2 (17.05.2017) — поправлены мелкие недочёты. Добавлен 4-й, 7-й номера, а такжее
поправлен 10-й, 13-й, 24-й (спасибо Наташе)
v0.3 (18.05.2017) — поправил 60, 61, 67, 68, 71, 72, 74, 82, 100, 107 (спасибо Наташе,
Стасу)
v0.4 (20.05.2017) — перенумерованы вопросы, т.к. убран 5-й (про 5 эквивалентных
условий). Поправил 5, 6, 7, 14, 16 (спасибо Соне, Наташе, Стасу). Добавил 112-123 опре-
деления
v0.5 (20.05.2017) — поправил 5, 9 (обратно), 25 (спасибо Соне, Владу, Стасу, Наташе)
v0.6 (21.05.2017) — поправил 16, 18, 62, 63 (спасибо Соне, Стасу, Сергею)
v0.7 (22.05.2017) — поправил 49, 50 (спасибо Борису)
v0.8 (23.05.2017) — дополнил 5, 28, 49 (спасибо Соне, Наташе)
v0.9 (24.05.2017) — поправил 72, 86, 90, 106 (спасибо Алексею)
```

Определения

1. Сумма двух подпространств векторного пространства

Сумма двух подпространств U и W — это множество $U+W:\{u+w\mid u\in U, w\in W\}.$ Замечание. $\dim(U\cap W)\leqslant \dim U\leqslant \dim(U+W)$

2. Теорема о связи размерности суммы двух подпространств с размерностью их пересечения

```
Теорема. \dim(U \cap W) = \dim U + \dim W - \dim(U + W)
```

3. Сумма нескольких подпространств векторного пространства

Пусть U_1, \ldots, U_k — подпространства векторного пространства V. Суммой нескольких подпространств называется

$$U_1 + \ldots + U_k = \{u_1 + \ldots + u_k \mid u_i \in U_i\}$$

4. Линейная независимость нескольких подпространств векторного пространства

Подпространства векторного пространства L_1, \ldots, L_k линейно независимы тогда и только тогда, когда: $v_1 + \ldots + v_k = 0 \Longrightarrow v_1 = \ldots = v_k = 0, \ v_i \in L_i$.

5. Разложение векторного пространства в прямую сумму подпространств

Пусть U_1, \ldots, U_k — подпространства векторного пространства V. Тогда, если $U_i \cap (U_1 + \ldots + U_{i-1} + U_{i+1} + \ldots + U_k) = \{0\}$ (т.е. линейно независимы), то $U_1 \oplus \ldots \oplus U_k$ называется **прямой суммой** подпространств.

6. При каких условиях на подпространства U_1, U_2 , векторного пространства V имеет место разложение $V = U_1 \oplus U_2$?

- 1. $V = U_1 + U_2$;
- 2. U_1 и U_2 линейно независимы $(U_1 \cap U_2 = \{0\});$
- 3. $\dim U_1 + \dim U_2 = \dim V$;
- 4. любой вектор $v \in V$ единственным образом разлагается на $U_1 + U_2$.

7. Описание всех базисов n-мерного векторного пространства в терминах одного базиса и матриц координат

Пусть V — векторное пространство, $\dim V = n, e_1, \ldots, e_n$ — базис. То есть

$$\forall v \in V : \exists! \ v = x_1 e_1 + \ldots + x_n e_n,$$

где $x_1, \ldots, x_n \in F$ — координаты вектора v в базисе (e_1, \ldots, e_n) . Пусть также есть базис e'_1, \ldots, e'_n :

$$e'_{1} = c_{11}e_{1} + c_{21}e_{2} + \dots + c_{n1}e_{n}$$

$$e'_{2} = c_{12}e_{1} + c_{22}e_{2} + \dots + c_{n2}e_{n}$$

$$\vdots$$

$$e'_{n} = c_{1n}e_{1} + c_{2n}e_{2} + \dots + c_{nn}e_{n}$$

Обозначим матрицу $C = (c_{ij})$. Тогда можно переписать (e'_1, \ldots, e'_n) как $(e_1, \ldots, e_n) \cdot C$. Замечание. e'_1, \ldots, e'_n образуют базис \iff $\det C \neq 0$.

8. Матрица перехода от одного базиса векторного пространства к другому

Пусть V — векторное пространство, $\dim V = n, e_1, \ldots, e_n$ — базис, а e'_1, \ldots, e'_n — некий набор из n векторов. Тогда каждый вектор из этого набора линейно выражается через базис:

$$e'_{j} = \sum_{i=1}^{n} c_{ij} e_{i}, \quad c_{ij} \in F$$
$$(e'_{1}, \dots, e'_{n}) = (e_{1}, \dots, e_{n}) \cdot C, \quad C = (c_{ij}).$$

То есть мы получили матрицу, где в j-ом столбце стоят коэффициенты линейного разложения вектора e'_i в базисе (e_1, \ldots, e_n) .

Теперь пусть e'_1, \dots, e'_n — тоже базис в V. В этом случае $\det C \neq 0$.

Матрица C называется **матрицей перехода** от базиса (e_1, \ldots, e_n) к базису (e'_1, \ldots, e'_n) .

9. Формула преобразования координат вектора при замене базиса векторного пространства

Пусть C — матрица перехода от базиса (e_1, \ldots, e_n) к базису (e'_1, \ldots, e'_n) .

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = C \cdot \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix} \quad \text{или} \quad x_i = \sum_{j=1}^n c_{ij} x_j'$$

10. Линейное отображение векторных пространств, его простейшие свойства.

Пусть V, W — векторные пространства.

Отображение $\varphi: V \to W$ называется **линейным**, если:

1.
$$\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2), \ \forall v_1, v_2 \in V$$

2.
$$\varphi(\alpha v) = \alpha \varphi(v), \forall \alpha \in F, \forall v \in V$$

Простейшие свойства линейного отображения:

1.
$$\varphi(\vec{0}_V) = \vec{0}_W$$

2.
$$\varphi(-v) = -\varphi(v), \forall v \in V$$

11. Изоморфизм векторных пространств. Изоморфные векторные пространства

Пусть V, W — векторные пространства над полем F.

Отображение $\varphi:V\to W$ называется **изоморфизмом**, если φ линейно и биективно. *Обозначение*: $\varphi:V\stackrel{\sim}{\to} W$.

Два векторных пространства называются **изоморфными**, если существует изоморфизм $\varphi: V \xrightarrow{\sim} W$ (и тогда существует изоморфизм $W \xrightarrow{\sim} V$ по предположению). Обозначение: $V \simeq W$.

12. Какими свойствами обладает отношение изоморфности на множестве всех векторных пространств?

Следствие из теоремы. Изоморфизм — это отношение эквивалентности на множестве всех векторных пространств над фиксированным полем F (рефлексивность, симметричность, транзитивность).

Если φ и ψ изоморфны, то $\varphi \circ \psi$ — тоже изоморфизм.

13. Критерий изоморфности двух конечномерных векторных пространств

Два конечномерных векторных пространства V и W над полем F изоморфны тогда и только тогда, когда $\dim V = \dim W$.

14. Матрица линейного отображения

Пусть V и W — векторные пространства, $e = (e_1, \ldots, e_n)$ — базис V, $f = (f_1, \ldots, f_m)$ — базис $W,\, \varphi: V \to W$ — линейное отображение. Тогда:

$$\varphi(e_j) = a_{1j}f_1 + \ldots + a_{mj}f_m = \sum_{i=1}^{n} a_{ij}f_i.$$

 $\varphi(e_j)=a_{1j}f_1+\ldots+a_{mj}f_m=\sum_{i=1}^m a_{ij}f_i.$ Матрица $A=(a_{ij})\in {\rm Mat}_{m\times n}(F)$ называется матрицей линейного отображения φ в базисах е и f (или по отношению к базисам е и f).

15. Связь между координатами вектора и его образа при линейном отображении

Пусть V и W — векторные пространства, $e = (e_1, \ldots, e_n)$ — базис V, $f = (f_1, \ldots, f_m)$ — базис $W, \varphi: V \to W$ — линейное отображение. $A = A(\varphi, e, f)$ — матрица линейного отображения φ .

Если
$$v = x_1e_1 + \ldots + x_ne_n$$
 и $\varphi(v) = y_1f_1 + \ldots + y_mf_m$, то

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = A \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

16. Формула изменения матрицы линейного отображения при замене базисов

Пусть V и W — векторные пространства, $\mathbf{e}=(e_1,\ldots,e_n)$ и $\mathbf{e}'=(e_1',\ldots,e_n')$ — базисы $V, f = (f_1, \ldots, f_m)$ и $f' = (f'_1, \ldots, f'_m)$ — базисы W, A — матрица линейного отображения $\varphi:V\to W$ по отношению к е и f, A' — матрица линейного отображения по отношению к базисам e' и f', e' = eC, f' = fD. Тогда

$$A' = D^{-1}AC$$

17. Сумма двух линейных отображений и ее матрица. Произведение линейного отображения на скаляр и его матрица

Пусть V,W — векторные пространства $\operatorname{Hom}(V,W)$ — множество всех линейных отображений из V в W. $\mathfrak{e}=(e_1,\ldots,e_n)$ — базис $V,\mathfrak{f}=(f_1,\ldots,f_m)$ — базис $W,\,\,\varphi,\,\psi\in\operatorname{Hom}(V,W),$ $\alpha\in F,\,A_{\varphi}$ — матрица линейного отображения $\varphi,\,A_{\psi}$ — матрица $\psi.$

- 1. Сумма $\varphi + \psi$ это линейное отображение, такое что $\forall v \in V : (\varphi + \psi)(v) = \varphi(v) + \psi(v)$. Матрица суммы линейных отображений: $A_{\varphi + \psi} = A_{\varphi} + A_{\psi}$.
- 2. Произведение $\alpha \varphi$ это линейное отображение, такое что $\forall v \in V : (\alpha \phi)(v) = \alpha \phi(v)$. Матрица произведения линейного отображения на скаляр: $A_{\alpha \varphi} = \alpha A_{\varphi}$

18. Композиция двух линейных отображений и ее матрица

Пусть V, U, W — векторные пространства. $V \xrightarrow{g} U \xrightarrow{f} W$ — два линейных отображения. n, m, k — их размерности соответственно. e'', e', e — их базисы, а A_g, A_f, A_{fg} — матрицы отображений в этих базисах.

$$A_{fq} = A_f A_q$$

Матрица композиции линейных отображений имеет вид:

$$A_{fg}(i,j) = \sum_{i} a_{ji} b_{ik},$$

где a — коэффициент при f, а b — коэффициент при g.

19. Ядро и образ линейного отображения

Пусть V, W — векторные пространства с линейным отображением $\varphi: V \to W$. Ядро φ — это множество $\operatorname{Ker} \varphi := \{v \in V \mid \varphi(v) = 0\}$ Образ φ — это множество $\operatorname{Im} \varphi := \{w \in W \mid \exists v \in V : \varphi(v) = w\}$

20. Критерий инъективности линейного отображения в терминах его ядра. Критерий изоморфности линейного отображения в терминах ядра и образа

Пусть $\varphi:V \to W$ — линейное отображение.

- 1. Отображение φ инъективно тогда и только тогда, когда ${\rm Ker} \varphi = \{0\}$
- 2. Отображение φ является **изоморфизмом** тогда и только тогда, когда $\mathrm{Ker} \varphi = \{0\}$ и $\mathrm{Im} \varphi = W$.

21. Связь между рангом матрицы линейного отображения и размерностью его образа

Пусть V, W — векторные пространства, $e = (e_1, \dots, e_n)$ — базис $V, f = (f_1, \dots, f_n)$ — базис W, A — матрица линейного отображения $\varphi : V \to W$.

$$\dim \operatorname{Im} \varphi = \operatorname{rk} A$$

22. Оценки на ранг произведения двух матриц

Пусть $A \in \operatorname{Mat}_{k \times m}, B \in \operatorname{Mat}_{m \times n}$. Тогда

$$rkAB \leq min(rkA, rkB)$$

23. Каким свойством обладает набор векторов, дополняющий базис ядра линейного отображения до базиса всего пространства?

Образы векторов, дополняющих базис ядра линейного отображения до базиса всего пространства, являются базисом образа самого пространства.

24. Теорема о связи размерностей ядра и образа линейного отображения

$$\dim \operatorname{Im} \varphi = \dim V - \dim \operatorname{Ker} \varphi$$

25. К какому простейшему виду можно привести матрицу линейного отображения путем замены базисов?

Простейшим видом матрицы линейного отображения является её канонический вид — диагональная матрица $D \in \mathcal{M}_n$ вида

$$\begin{pmatrix} 1 & & & & \\ & \ddots & & & 0 \\ & & 1 & & \\ & & & \ddots & \\ & 0 & & & 0 \end{pmatrix}, \ \text{где количество единиц} = \text{rk}A$$

задаваемая формулой

$$A' = D^{-1}AC$$

26. Линейная функция на векторном пространстве

Линейной функцией (формой) на векторном пространстве V называется всякое линейное отображение $\sigma: V \to F$. Обозначение: $V^* = \operatorname{Hom}(V, F)$.

27. Сопряженное (двойственное) векторное пространство и его размерность

Пространство V^* (т.е. множество линейных функций на V) называется **сопряженным** (двойственным) к пространству V.

Пусть $e = (e_1, \dots, e_n)$ — базис V. Тогда он определяет изоморфизм $\varphi : V^* \to \operatorname{Mat}_{1 \times n}$, $\alpha \mapsto (\alpha_1, \dots, \alpha_n)$, где $\alpha_i = \varphi(e_i)$ и α — линейная функция.

$$\dim V^* = n.$$

28. Базис сопряженного пространства, двойственный к данному базису исходного векторного пространства

Пусть е = (e_1, \ldots, e_n) — базис V. Рассмотрим линейные функции $\varepsilon_1, \ldots, \varepsilon_n$ такие, что $\varepsilon_i(e_j) = \delta_{ij}$, где $\delta_{ij} = \begin{cases} 1, i = j, \\ 0, i \neq j \end{cases}$. То есть $\varepsilon_i = (\delta_{i1}, \ldots, \delta_{ii}, \ldots, \delta_{in}) = (0, \ldots, 1, \ldots, 0)$. $(\varepsilon_1, \ldots, \varepsilon_n)$ — базис V^* (сопряженного пространства).

Также справедлива формула: $\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix} (e_1, \dots, e_n) = E.$

29. Билинейная форма на векторном пространстве

Билинейная функция (форма) на V — это отображение $\beta: V \times V \to F$, линейное по каждому аргументу:

- 1. $\beta(x_1 + x_2, y) = \beta(x_1, y) + \beta(x_2, y)$
- 2. $\beta(\lambda x, y) = \lambda \beta(x, y)$
- 3. аналогично 1, но по второму аргументу
- 4. аналогично 2, но по второму аргументу

30. Матрица билинейной формы

Пусть $e = (e_1, \dots, e_n)$ — базис V (dim $V < \infty$), $\beta : V \times V \to F$ — билинейная функция. **Матрицей билинейной функции** β в базисе e называется матрица $B = (b_{ij})$, где $b_{ij} = \beta(e_i, e_j)$. Обозначение: $B(\beta, e)$

31. Формула для вычисления значений билинейной формы в координатах

Пусть е = (e_1, \dots, e_n) — базис V $(\dim V < \infty)$, $\beta: V \times V \to F$ — билинейная функция, B — её матрица в базисе е.

Тогда для некоторых векторов $x = x_1e_1 + \ldots + x_ne_n \in V$ и $y = y_1e_1 + \ldots + y_ne_n \in V$:

$$\beta(x, y) = (x_1, \ldots, x_n) B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

32. Формула изменения матрицы билинейной формы при переходе к другому базису

Пусть
$$\mathbf{e} = (e_1, \ \dots, \ e_n) - \text{базис в } V,$$

$$\mathbf{e}' = (e_1', \ \dots, \ e_n') - \text{другой базис в } V,$$

$$\mathbf{e}' = \mathbf{e} C,$$

$$B = B(\beta, \mathbf{e}),$$

$$B' = B(\beta, \mathbf{e}').$$

Тогда

$$B' = C^T B C$$
.

33. Ранг билинейной формы

Пусть $B(\beta, e)$ — матрица билинейной функции β в базисе e.

Число ${\rm rk}B$ называется **рангом билинейной функции** β . Обозначение: ${\rm rk}\beta$.

34. Симметричная билинейная форма

Билинейная функция β называется **симметричной**, если $\beta(x, y) = \beta(y, x) \ \forall x, y \in V$. β симметрична $\iff B$ симметрична (т.е. $B = B^T$).

35. Квадратичная форма

Пусть $\beta: V \times V \to F$ — билинейная функция. Тогда отображение $Q_{\beta}: V \to F$, заданное формулой $Q_{\beta}(x) = \beta(x, x)$ называется **квадратичной функцией** (формой), ассоциированной с билинейной функцией β .

36. Соответствие между симметричными билинейными формами и квадратичными формами

Пусть в поле F выполняется условие: $1+1\neq 0$ (т.е. $2\neq 0$).

Теорема. Отображение $\beta \to Q_{\beta}$ является биекцией между симметричными и квадратичными билинейными функциями.

37. Симметризация билинейной формы

Билинейная функция $\sigma(x, y) = \frac{1}{2}(\beta(x, y) + \beta(y, x))$ называется **симметризацией** билинейной функции β .

38. Поляризация квадратичной формы

Симметричная билинейная функция $\beta(x, y) = \frac{1}{2}(Q(x+y) - Q(x) - Q(y))$ называется поляризацией квадратичной формы Q.

39. Матрица квадратичной формы

Пусть V — векторное пространство, $\dim V < \infty$.

Матрицей квадратичной формы $Q:V\to F$ в базисе е называется матрица соответствующей ей симметричной билинейной функции (поляризацией) $\beta:V\times V\to F$ в том же базисе.

40. Канонический вид квадратичной формы

Квадратичная форма Q имеет в базисе $e = (e_1, \ldots, e_n)$ канонический вид, если для любого вектора $x = x_1e_1 + \ldots + x_ne_n$ верно, что $Q(x) = a_1x_1^2 + \ldots + a_nx_n^2$, где $a_i \in F$ (т.е. матрица квадратичной формы Q в этом базисе диагональна).

41. Нормальный вид квадратичной формы над $\mathbb R$

Квадратичная форма Q имеет в базисе $e = (e_1, \ldots, e_n)$ нормальный вид, если для любого вектора $x = x_1e_1 + \ldots + x_ne_n$ верно, что $Q(x) = a_1x_1^2 + \ldots + a_nx_n^2$, где $a_i \in \{-1, 0, 1\}$ (т.е. матрица квадратичной формы Q в этом базисе диагональна).

42. Индексы инерции квадратичной формы над $\mathbb R$

Пусть Q — квадратичная функция над R, которая в базисе е имеет нормальный вид: $Q(x_1,\ \dots,\ x_n) = x_1^2 + \dots + x_s^2 - x_{s+1}^2 - \dots - x_{s+t}^2,$ где s — количество положительных слагаемых, t — количество отрицательных слагае

где s — количество положительных слагаемых, t — количество отрицательных слагаемых. Тогда

 $i_+ := s$ — положительный индекс инерции квадратичной формы Q

 $i_{-} := t -$ отрицательный индекс инерции квадратичной формы Q

n-s-t — **нулевой индекс инерции** квадратичной формы Q

43. Закон инерции для квадратичной формы над R

Теорема. Индексы инерции $(i_+ := s, i_- := t)$ не зависят от базиса, в котором Q принимает нормальный вид.

44. Положительно/неотрицательно определенная квадратичная форма

Квадратичная форма Q называется положительно определённой (Q>0), если $Q(x)>0 \ \forall x\neq 0$, а её нормальный вид: $x_1^2+\ldots+x_n^2$.

Квадратичная форма Q называется **неотрицательно определённой** $(Q\geqslant 0),$ если $Q(x)\geqslant 0$ $\forall x,$ а её нормальный вид: $x_1^2+\ldots+x_k^2,$ $k\leqslant n.$

45. Отрицательно/неположительно определенная квадратичная форма

Квадратичная форма Q называется **отрицательно определённой** (Q < 0), если $Q(x) < 0 \ \forall x \neq 0$, а её нормальный вид: $-x_1^2 - \ldots - x_n^2$.

Квадратичная форма Q называется **неположительно определённой** $(Q\leqslant 0),$ если $Q(x)\leqslant 0\ \forall x,$ а её нормальный вид: $-x_1^2-\ldots-x_k^2,\ k\leqslant n.$

46. Неопределенная квадратичная форма

Квадратичная форма называется **неопределенной**, если $\exists x, y : Q(x) > 0, \ Q(y) < 0, \ a$ её нормальный вид: $x_1^2 + \ldots + x_s^2 - x_{s+1}^2 - \ldots - x_{s+t}^2, \ s, \ t \geqslant 1.$

47. Следствие метода Якоби о нахождении индексов инерции квадратичной формы

Пусть $B = B(Q, e), B_k = B(Q, e), \delta_k = \det B_k - k$ -й угловой минор.

Теорема. Пусть $\delta_k \neq 0 \ \forall k = 1, \ldots, n$. Тогда i_- равен числу перемен знака в последовательности $1, \, \delta_1, \, \delta_2, \, \ldots, \, \delta_n$

48. Критерий Сильвестра положительной определённости квадратичной формы

Теорема. Q > 0 тогда и только тогда, когда $\delta_i > 0$ для всех i.

49. Критерий отрицательной определенности квадратичной формы

$$Q < 0 \Longleftrightarrow \begin{cases} \delta_i < 0, i \not / 2, \\ \delta_i > 0, i \vdots 2 \end{cases}$$

50. Евклидово пространство

Евклидово пространство $(F = \mathbb{R})$ — это векторное пространство \mathbb{E} над полем \mathbb{R} , на котором задана положительно определённая симметричная билинейная функция (\cdot, \cdot) : $\mathbb{E} \times \mathbb{E} \to \mathbb{R}$, которую мы будем называть произведением.

51. Длина вектора в евклидовом пространстве

 \mathbb{E} — евклидово пространство, dim $\mathbb{E} < \infty$ Длиной вектора $x \in \mathbb{E}$ называется число $|x| = \sqrt{(x, x)}$. |x| > 0, причём $|x| = 0 \Longleftrightarrow x = 0$.

52. Неравенство Коши-Буняковского

Пусть $x, y \in \mathbb{E}$. Тогда

$$|(x, y)| \leqslant |x||y|,$$

причем знак равенства возможен тогда и только тогда, когда x и y пропорциональны.

53. Угол между ненулевыми векторами евклидова пространства

Углом между векторами x и y называют такое число $\alpha \in [0, \pi]$, что

$$\cos \alpha = \frac{(x, y)}{|x||y|}.$$

54. Матрица Грама системы векторов евклидова пространства

 $v_1, \ldots, v_k \in \mathbb{E}$ — система векторов.

Матрицей Грама системы векторов $v_1, \ldots, v_k \in \mathbb{E}$ называется матрица

$$G(v_1, \ldots, v_k) := \begin{pmatrix} (v_1, v_1) & (v_1, v_2) & \ldots & (v_1, v_k) \\ (v_2, v_1) & (v_2, v_2) & \ldots & (v_2, v_k) \\ \vdots & \vdots & \ddots & \vdots \\ (v_k, v_1) & (v_k, v_2) & \ldots & (v_k, v_k) \end{pmatrix} := (g_{ij}), \quad g_{ij} = (v_i, v_j).$$

55. Свойства определителя матрицы Грама

- 1. $\det G(v_1, \ldots, v_k) \ge 0$
- 2. $\det G(v_1, \ldots, v_k) = 0$ тогда и только тогда, когда v_1, \ldots, v_k линейно зависимы.

56. Ортогональное дополнение подмножества евклидова пространства

Пусть \mathbb{E} — евклидово пространство, dim $\mathbb{E} = n$. $S \subseteq \mathbb{E}$ — произвольное подпространство. Ортогональным дополнением к S называется множество $S^{\perp} = \{x \in \mathbb{E} \mid (x, y) = 0 \ \forall y \in S\}$.

57. Чему равна размерность ортогонального дополнения к подпространству?

Пусть $S \subseteq \mathbb{E}$, dim $\mathbb{E} = n$. Тогда

$$\dim S^{\perp} = n - \dim S.$$

58. Каким свойством обладают подпространство евклидова пространства и его ортогональное дополнение?

Пусть $S \subseteq \mathbb{E}$. Тогда:

- 1. $\mathbb{E} = S \oplus S^{\perp}$ евклидово пространство разлагается в прямую сумму подпространства и его ортогонального дополнения
- 2. $(S^{\perp})^{\perp} = S$ ортогональное дополнение ортогонального дополнения пространства есть само пространство

59. Ортогональная проекция вектора на подпространство

Пусть $S\subseteq\mathbb{E}$. Тогда $\forall x\in E$ единственным образом разбивается на сумму x=y+z, где $y\in S,$ а $z\in S^\perp.$

Вектор y называется ортогональной проекцией вектора x на подпространство S. Обозначение: $pr_s x$.

60. Ортогональная составляющая вектора относительно подпространства

Пусть $S\subseteq\mathbb{E}$. Тогда $\forall x\in E$ единственным образом разбивается на сумму x=y+z, где $y\in S,$ а $z\in S^\perp.$

Вектор z называется ортогональной составляющей вектора x вдоль подпространства S. Обозначение: $ort_s x$.

61. Формула для ортогональной проекции вектора на подпространство в \mathbb{R}^n , заданное своим базисом

Пусть $\mathbb{E} = \mathbb{R}^n$ со стандартным скалярным произведением. $S \subseteq \mathbb{R}^n$ — подпространство, a_1, \ldots, a_k — базис в S.

Образуем матрицу $A \in \mathrm{Mat}_{n \times k}(\mathbb{R})$, где $A^{(i)} = a_i$.

$$\forall v \in \mathbb{E} : pr_s v = A(A^T A)^{-1} A^T v$$

62. Ортогональная система векторов. Ортогональный базис

Система векторов v_1, \ldots, v_k евклидова пространства называется **ортогональной**, если все её векторы попарно ортогональны, т.е. $(v_i, v_j) = 0 \ \forall i \neq j$.

Базис (e_1, \ldots, e_n) в \mathbb{E} называется **ортогональным**, если $(e_i, e_j) = 0 \ \forall i \neq j$. Это равносильно тому, что $G(e_1, \ldots, e_n)$ диагональна.

63. Ортонормированная система векторов. Ортонормированный базис

Система векторов v_1, \ldots, v_k евклидова пространства называется **ортонормирован- ной**, если все её векторы попарно ортогональны, т.е. $(v_i, v_j) = 0 \ \forall i \neq j$, и длина (норма) каждого вектора системы равна $1 \ (\Leftrightarrow G(v_1, \ldots, v_k) = E)$.

Базис (e_1, \ldots, e_n) в \mathbb{E} называется **ортонормированным**, если $(e_i, e_j) = 0 \ \forall i \neq j$ и длина каждого вектора равна 1: $\left(\frac{e_1}{|e_1|}, \ldots, \frac{e_n}{|e_n|}\right)$.

64. Описание всех ортонормированных базисов евклидова пространства в терминах одного такого базиса и матриц перехода

Пусть (e_1, \ldots, e_n) — ортонормированный базис в \mathbb{E} . Пусть также есть ещё один базис (e'_1, \ldots, e'_n) , причём $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n) \cdot C$.

 (e_1',\dots,e_n') — **ортонормированный** тогда и только тогда, когда $C^TC=E$ или, что то же самое, $C^{-1}=C^T$.

65. Ортогональная матрица

Матрица $C \in \mathrm{Mat}_n(\mathbb{R})$ называется **ортогональной**, если $C^TC = E$ или, что то же самое, $C^{-1} = C^T$.

 $\it Из\ матана: C$ — ортогональна \iff её столбцы образуют ортонормированный базис (сумма квадратов координат по столбцам равна единице).

66. Формула для ортогональной проекции вектора на подпространство в терминах его ортогонального базиса

Пусть $S \subseteq \mathbb{E}$ — подпространство, (e_1, \dots, e_k) — его ортогональный базис, $x \in \mathbb{E}$.

$$pr_S x = \sum_{i=1}^k rac{(x,\,e_i)}{(e_i,\,e_i)} e_i$$
 — для ортогонального базиса

$$pr_S x = \sum_{i=1}^k (x, e_i) e_i$$
 — для ортонормированного базиса

67. Теорема Пифагора в евклидовом пространстве

Пусть
$$x,y\in\mathbb{E}$$
 и $x\bot y$ $((x,\,y)=0).$ Тогда
$$|x+y|^2=|x|^2+|y|^2.$$

68. Расстояние между векторами евклидова пространства

Рассмотрим векторы $x, y \in \mathbb{E}$.

Расстоянием между двумя векторами называется величина

$$\rho(x, y) := |x - y|.$$

69. Неравенство треугольника в евклидовом пространстве

$$\rho(a, b) + \rho(b, c) \geqslant \rho(a, c) \quad \forall a, b, c \in \mathbb{E}.$$

70. Теорема о расстоянии между вектором и подпространством в терминах ортогональной составляющей

Пусть $x \in \mathbb{E}$ и $S \subseteq \mathbb{E}$ — подпространство.

Теорема. $\rho(x, S) = |ort_S x|$, причём $pr_S x$ – единственный ближайший к x вектор из S.

71. Псевдорешение несовместной системы линейных уравнений

Метод наименьших квадратов:

Имеем СЛУ(*) Ax = b, где $A \in \operatorname{Mat}_{m \times n}, x \in \mathbb{R}^n$ — вектор неизвестных, $b \in \mathbb{R}^m$.

 $x_0 \in \mathbb{R}^n$ — решение СЛУ(*) $\Leftrightarrow Ax_0 = b \Leftrightarrow Ax_0 - b = 0 \Leftrightarrow |Ax_0 - b| = 0$ (где \mathbb{R}^n рассматривается как евклидово пространство со стандартным скалярным произведением) $\Leftrightarrow \rho(Ax_0, b) = 0$.

В случае, когда СЛУ(*) несовместна, набор $x_0 \in \mathbb{R}^n$ (вектор-столбец) называется **псев-дорешением**, если $\rho(Ax_0, b) = \min \rho(Ax, b)$.

72. Формула для расстояния от вектора до подпространства в терминах матриц Грама

Пусть S — подпространство евклидова пространства $\mathbb{E}, x \in \mathbb{E}, (e_1, \dots, e_k)$ — базис S. Тогда

$$(\rho(x, S))^2 = \frac{\det G(e_1, \dots, e_k, x)}{\det G(e_1, \dots, e_k)}$$

73. к-мерный параллелепипед и его объём

k-мерным параллелепипедом, натянутым на векторы a_1, \dots, a_k , называется подмножество

$$P(a_1, \dots, a_k) := \left\{ x = \sum_{i=1}^k x_i a_i \mid 0 \leqslant x_i \leqslant 1 \right\}.$$

Объем k-мерного параллелепипеда — это величиина $volP(a_1,\ldots,a_n)$, определяемая индуктивно:

$$k=1\Rightarrow volP(a_1):=|a_1|$$
 $k>1\Rightarrow volP(a_1,\ldots,a_k):=\underbrace{volP(a_1,\ldots,a_{k-1})}_{\text{основание}}\cdot\underbrace{|h|}_{\text{высота}}$, где $h=\operatorname{ort}_{\langle a_1,\ldots,a_{k-1}\rangle}a_k$

74. В каком случае два базиса евклидова пространства называются одинаково ориентированными?

Одинаковая ориентированность — отношение эквивалентности на множестве всех базисов в \mathbb{E} .

Пусть e, e' — два базиса пространства.

Будем говорить, что базисы e, e' **ориентированны одинаково**, если определитель матрицы перехода от e к e' больше нуля (det C > 0).

75. Смешанное произведение векторов трёхмерного евклидова пространства, формула для его вычисления в терминах координат в правом ортонормированном базисе

Правый ортонормированный базис — положительно ориентированный.

Смешанным произведением векторов a, b, c называется величина (a, b, c) = vol(a, b, c). Если (e_1, e_2, e_3) — правый ортонормированный базис и

$$a = a_1e_1 + a_2e_2 + a_3e_3$$

$$b = b_1e_1 + b_2e_2 + b_3e_3$$

$$c = c_1e_1 + c_2e_2 + c_3e_3,$$

TO

$$(a, b, c) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

76. Критерий компланарности трёх векторов трёхмерного евклидова пространства

Векторы a, b, c компланарны (линейно зависимы) \iff (a, b, c) = 0.

77. Векторное произведение в трёхмерном евклидовом пространстве

Векторным произведением векторов $a,b\in\mathbb{E}$ называется вектор c такой, что:

- 1. $c \perp \langle a, b \rangle$
- 2. $|c| = |a||b| \sin \alpha$ (или же |c| = площади параллелограмма, образованного (a,b))
- 3. $(a, b, c) \ge 0$ (т.е. векторы образуют правую тройку)

Обозначение: [a,b] или $a \times b$.

78. Критерий коллинеарности двух векторов трёхмерного евклидова пространства

a, b коллинеарны (т.е. линейно зависимы) $\iff [a, b] = 0.$

79. Выражение смешанного произведения через векторное и скалярное в трёхмерном евклидовом пространстве

$$\forall a, b, c \in \mathbb{R}^3 : (a, b, c) = (a, [b, c])$$

80. Формула для двойного векторного произведения в трёхмерном евклидовом пространстве

$$[a, [b, c]] = (a, c)b - (a, b)c =$$

= $b(a, c) - c(a, b)$

81. Формула для вычисления векторного произведения в терминах координат в правом ортонормированном базисе

Пусть (e_1, e_2, e_3) — ортонормированный базис.

$$a = a_1e_1 + a_2e_2 + a_3e_3$$
$$b = b_1e_1 + b_2e_2 + b_3e_3$$

Тогда

$$[a, b] = \begin{vmatrix} e_1 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = e_1 \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - e_2 \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + e_3 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} =$$

$$= (a_2b_3 - b_2a_3)e_1 - (a_1b_3 - b_1a_3)e_2 + (a_1b_2 - b_1a_2)e_3 =$$

$$= \underline{((a_2b_3 - b_2a_3), (b_1a_3 - a_1b_3), (a_1b_2 - b_1a_2))}$$

82. Линейное многообразие. Характеризация линейных многообразий как сдвигов подпространств

Линейное многообразие в \mathbb{R}^n — множество решений некоторой совместной СЛУ.

83. Критерий равенства двух линейных многообразий. Направляющее подпространство и размерность линейного многообразия

 $L_1, L_2 \subseteq \mathbb{R}^n$ — множества всех решений. $S_1, S_2 \subseteq \mathbb{R}^n$ — множество решений однородной СЛУ Ax = 0.

 $L_1 = v_1 + S_1$ и $L_2 = v_2 + S_2$ — два линейных многообразия.

$$L_1 = L_2 \Longleftrightarrow \begin{cases} S_1 = S_2 \ (= S), \\ v_1 - v_2 \in S \end{cases}$$

S называется направляющим подпространством линейного многообразия L.

84. Теорема о плоскости, проходящей через точку k+1 в \mathbb{R}^n

Теорема. а) Через любые k+1 точек в \mathbb{R}^n проходит плоскость размерности $\leqslant k$

б) Если k+1 точек не лежат в плоскости размерности < k, то через них проходит ровно одна плоскости размерности k

85. Три способа задания прямой в \mathbb{R}^2 . Уравнение прямой в \mathbb{R}^2 , проходящей через две различные точки

- 1. Уравнение в координатах: Ax + By = C, $(A, B) \neq (0, 0)$
- 2. Векторное уравнение: $(\vec{n}, v v_0) = 0$, где \vec{n} вектор нормали, $v v_0$ принадлежит прямой
- 3. Параметрическое уравнение: $v=v_0+\vec{a}\lambda$, где v_0 точка на прямой, \vec{a} направляющий вектор прямой, λ коэффициент

Уравнение прямой, проходящей через две точки (x_0, y_0) и x_1, y_1 :

$$\begin{vmatrix} x - x_0 & y - y_0 \\ x_1 - x_0 & y_1 - y_0 \end{vmatrix} = 0 \quad \text{или} \quad \frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0}$$

86. Три способа задания плоскости в \mathbb{R}^3 . Уравнение плоскости в \mathbb{R}^3 , проходящей через три точки, не лежащие на одной прямой

- 1. Уравнение в координатах: Ax + By + Cz = D, $(A, B, C) \neq (0, 0, 0)$
- 2. Векторное уравнение: $(\vec{n}, v-v_0)=0$, где \vec{n} нормальный вектор плоскости, $v-v_0$ вектор на плоскости

3. Параметрическое уравнение: $v = v_0 + \vec{a}\alpha + \vec{b}\beta$, где v_0 — радиус-вектор фиксированной точки на плоскости, a, b — направляющие векторы на плоскости

Уравнение плоскости, проходящей через точки $(x_0,y_0,z_0),\,(x_1,y_1,z_1),\,(x_2,y_2,z_2)$:

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ x_2 - x_0 & y_2 - y_0 & z_2 - z_0 \end{vmatrix} = 0$$

87. Три способа задания прямой в \mathbb{R}^3 . Уравнения прямой в \mathbb{R}^3 , проходящей через две различные точки

1. **C**
$$\Pi$$
Y:
$$\begin{cases} A_1x + B_1y + C_1z = D_1 \\ A_2x + B_2y + C_2z = D_2 \end{cases}$$

- 2. Векторное уравнение: $[v-v_0,\,a]=0$, где $v-v_0$ принадлежит прямой, \vec{a} направляющий вектор
- 3. Параметрическое уравнение: $v=v_0+\vec{a}\lambda$, где v_0 точка на прямой, \vec{a} направляющий вектор
- 4. Каноническое уравнение прямой: $\frac{x-x_0}{a_1}=\frac{y-y_0}{a_2}=\frac{z-z_0}{a_3}$, где $a_1,\ a_2,\ a_3$ направляющий вектор, $x_0,\ y_0,\ z_0$ координаты точки на прямой

Уравнение прямой, проходящей через две различные точки (x_0, y_0, z_0) и (x_1, y_1, z_1) :

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0}$$

88. Случаи взаимного расположения двух прямых в \mathbb{R}^3

Пусть $a_1,\ a_2$ — направляющие прямых $l_1,\ l_2,\ a\ v_1,\ v_2$ — точки, лежащие на данных прямых. Тогда прямые $l_1,\ l_2$:

- 1. совпадают
- 2. параллельны

 $\left. \begin{array}{c} \\ \end{array} \right\}$ лежат в одной плоскости $\Rightarrow (a_1,\,a_2,\,v_2-v_1)=0$

- 3. пересекаются в точке
- 4. скрещиваются или не лежат в одной плоскости

89. Случаи взаимного расположения трёх попарно различных плоскостей в \mathbb{R}^3

Пусть имеются три плоскости P_1 , P_2 , P_3 .

- 1. Среди P_1, P_2, P_3 есть две параллельных
 - (a) $P_1 \parallel P_2 \parallel P_3$
 - (b) Две параллельны, а третья их пересекает
- 2. Никакие две плоскости не параллельны
 - (а) Все три пересекаются по одной прямой
 - (b) Прямые пересечения параллельны
 - (c) P_1, P_2, P_3 пересекаются в одной точке

90. Формула для расстояния от точки до прямой в \mathbb{R}^3

Пусть l — прямая, v — точка, не лежащая на данной прямой, a — направляющий вектор прямой, v_0 — точка на прямой.

$$\rho(v, l) = |ort_{\langle a \rangle}(v - v_0)| = \frac{[v - v_0, a]}{|a|}$$

91. Формула для расстояния от точки до плоскости в \mathbb{R}^3

Пусть P — плоскость, n — вектор нормали, v_0 — точка, лежащая на плоскости, v — точка, не лежащая на плоскости, $S = \langle n \rangle^{\perp}$ — направляющее подпространство.

$$\rho(v, P) = |ort_S(v - v_0)| = |pr_{\langle n \rangle}(v - v_0)| = \left| \frac{(v - v_0, n)}{(n, n)} n \right| = \frac{|(v - v_0, n)|}{|n|}$$

92. Формула для расстояния между двумя скрещивающимися прямыми в \mathbb{R}^3

Пусть l_1 , l_2 — прямые. v_1 , v_2 — точки, лежащие на каждой из данных прямых. a_1 , a_2 — их направляющие векторы.

Построим плоскости

$$P_1 = v_1 + \langle a_1, a_2 \rangle \supseteq l_1$$

$$P_2 = v_2 + \langle a_1, a_2 \rangle \supseteq l_2$$

Тогда

$$\rho(l_1, l_2) = \rho(P_1, P_2) = \frac{|(a_1, a_2, v_2 - v_1)|}{|[a_1, a_2]|}$$

93. Линейный оператор

Пусть V — конечномерное векторное пространство.

Линейным оператором (преобразованием) называется всякое линейное отображение $\varphi: V \to V$, то есть из V в себя. Обозначение: L(V) = Hom(V, V).

94. Матрица линейного оператора

Пусть V — векторное пространство, $e = (e_1, \dots, e_n)$ — его базис и φ — его линейный оператор.

Матрицей линейного оператора φ называется такая матрица, в j-ом столбце которой стоят координаты вектора $\varphi(e_i)$ в базисе e.

$$(\varphi(e_1),\ldots,\varphi(e_n))=(e_1,\ldots,e_n)A, A\in \mathrm{Mat}_n.$$

95. Формула преобразования координат вектора при действии линейного оператора

Пусть $\varphi \in L(V)$, A — матрица φ в базисе \mathfrak{e} . Тогда

$$v = x_1 e_1 + \dots + x_n e_n,$$

$$\varphi(v) = y_1 e_1 + \dots + y_n e_n,$$

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

96. Формула изменения матрицы линейного оператора при переходе к другому базису

Пусть φ — линейный оператор векторного пространства V, A — матрица φ в базисе $e = (e_1, \ldots, e_n)$. Пусть $e' = (e'_1, \ldots, e'_n)$ — другой базис, причём $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n)C$. Тогда

$$A' = C^{-1}AC,$$

где C — матрица перехода к новому базису e', A' — матрица φ в базисе e'.

97. Подобные матрицы

Две матрицы A', $A \in M_n(F)$ называются **подобными**, если существует такая матрица $C \in M_n(F)$, $\det C \neq 0$, что $A' = C^{-1}AC$.

98. Подпространство, инвариантное относительно линейного оператора

Подпространство $U\subseteq V$ называется **инвариантным** относительно φ (или φ -инвариантным), если $\varphi(U)\subseteq U$. То есть $\forall u\in U: \varphi(u)\in U$.

99. Матрица линейного оператора в базисе, дополняющем базис инвариантного подпространства

Пусть $\varphi:V \to V$ — линейный оператор.

Пусть $U \subset V - \varphi$ -инвариантное подпространство. Также пусть e_1, \ldots, e_k — базис в U. Дополним его до базиса $V: e = (e_1, \ldots, e_n)$. Тогда

$$A(\varphi, e)$$
 = $\begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$, где $B \in \mathcal{M}_k$.

100. Собственный вектор линейного оператора

Пусть $\varphi:V\to V$ — линейный оператор.

Ненулевой вектор $v \in V$ называется собственным для V, если $\varphi(v) = \lambda v$ для некоторого $\lambda \in F$.

101. Собственное значение линейного оператора

Элемент $\lambda \in F$ называется **собственным значением** линейного оператора $\varphi: V \to V$, если существует такой ненулевой вектор $v \in V$, что $\varphi(v) = \lambda v$.

102. Спектр линейного оператора

Множество всех собственных значений линейного оператора φ называется **спектром**. *Обозначение*: Spec(φ).

103. Диагонализуемый линейный оператор

Линейный оператор φ называется **диагонализуемым**, если существует такой базис е, что $A(\varphi, e)$ — диагональная матрица, т.е. $A(\varphi, e) = diag(\lambda_1, \dots, \lambda_n)$

104. Критерий диагонализуемости линейного оператора в терминах собственных векторов

Линейный оператор φ диагонализуем тогда и только тогда, когда в V есть базис из собственных векторов для φ .

105. Собственное подпространство линейного оператора

Пусть $\lambda \in \operatorname{Spec}(\varphi)$.

Множество $V_{\lambda}(\varphi) = \{v \in V \mid \varphi(v) = \lambda v\}$ называется **собственным подпространством** линейного оператора, отвечающим собственному значению λ .

106. Характеристический многочлен линейного оператора

Пусть A_{φ} — матрица линейного оператора φ , а $t \in F$.

Многочлен $\chi_{\varphi}(t) := \det(A_{\varphi} - tE)$ называется **характеристическим многочленом** линейного оператора φ .

107. Связь спектра линейного оператора с его характеристическим многочленом

Пусть $\lambda \in \operatorname{Spec}(\varphi)$.

$$\chi_{\varphi}(\lambda) = 0,$$

то есть λ — корень характеристического многочлена.

108. Алгебраическая кратность собственного значения линейного оператора

Пусть $\varphi: V \to V$ — линейный оператор, λ — его собственное значение.

Алгебраической кратностью собственного значения λ линейного оператора φ называется такое число k, которое равняется кратности λ как корня характеристического многочлена.

109. Геометрическая кратность собственного значения линейного оператора

Пусть $\varphi:V\to V$ — линейный оператор, λ — его собственное значение, $V_{\lambda}(\varphi)$ — соответствующее собственное подпространство.

Геометрической кратностью собственного значения λ называется число dim $V_{\lambda}(\varphi)$ (проще говоря — количество линейно независимых векторов в ФСР матрицы, образованной λ).

110. Связь между алгебраической и геометрической кратностями собственного значения линейного оператора

Пусть a_i — алгебраическая кратность собственного значения, s_i — геометрическая кратность. Тогда справедливо неравенство

$$s_i \leqslant a_i$$

111. Критерий диагонализуемости линейного оператора в терминах его характеристического многочлена и кратностей его собственных значений

Линейный оператор $\varphi:V \to V$ диагонализуем тогда и только тогда, когда:

- $\chi_{\varphi}(t)$ разлагается на линейные множители
- Для любого собственного значения φ геометрическая кратность равна алгебраической

112. Линейный оператор в евклидовом пространстве, сопряженный к данному

Пусть \mathbb{E} — евклидово пространство, φ — его линейный оператор. Тогда ему можно сопоставить две билинейные функции на \mathbb{E} :

$$\beta_{\varphi}(x, y) = (x, \varphi(y))$$
$$\beta_{\varphi}^{T}(x, y) = (\varphi(x), y)$$

Линейный оператор $\psi \in L(\mathbb{E})$ называется **сопряженным** к φ , если для всех векторов $x, y \in \mathbb{E}$ верно, что $(\psi(x), y) = (x, \varphi(y))$. Это также равносильно тому, что $\beta_{\psi}^T = \beta_{\varphi}$. Обозначение: $\psi = \varphi *$.

113. Матрица сопряженного линейного оператора в произвольном и ортонормированном базисах

Пусть $e = (e_1, \dots, e_n)$ — базис в \mathbb{E} , $G = G(e_1, \dots, e_n)$ — матрица Грама, $A_{\varphi} = A(\varphi, e)$ — матрица линейного оператора φ . Тогда матрица сопряженного линейного оператора выражается как

 $A_{\varphi^*}=G^{-1}A_{\varphi}^TG$, где $A_{\varphi^*}=A(\varphi^*,\,\mathrm{e})$ — в произвольном базисе, $A_{\varphi^*}=A_{\varphi}^T$ — в ортонормированном базисе.

114. Самосопряженный линейный оператор в евклидовом пространстве

Линейный оператор φ называется **самосопряженным** (симметрическим) в том случае, если $\varphi^* = \varphi$. Это равносильно тому, что $(\varphi(x), y) = (x, \varphi(y))$ для любых векторов $x, y \in \mathbb{E}$.

Замечание. В случае, когда е — ортонормированный базис в \mathbb{E} и $A_{\varphi}=A(\varphi,\,\mathbb{e}),\,$ то самосопряженность линейного оператора φ равносильна $A_{\varphi}=A_{\varphi}^{T}.$ Отсюда берётся название — симметрические.

115. Теорема о каноническом виде самосопряженного линейного оператора

Теорема. Самосопряженный линейный оператор φ имеет канонический вид в базисе e, если его матрица в этом базисе имеет диагональный вид с собственными значениями на диагонали.

116. Каким свойством обладают собственные подпространства самосопряженного линейного оператора, отвечающие попарно различным собственным значениям?

Пусть φ — самосопряженный линейный оператор и λ , μ — его собственные значения. Тогда $V_{\lambda}(\varphi) \perp V_{\mu}(\varphi), \ \lambda \neq \mu.$

117. Приведение квадратичной формы к главным осям

Для любой квадратичной формы Q над $\mathbb E$ существует ортонормированный базис, в котором Q имеет канонический вид

$$Q(x_1, \dots, x_n) = \lambda_1 x_1^2 + \dots + \lambda_n x_n^2,$$

причем числа $\lambda_1,\dots,\lambda_n$ определены однозначно с точностью до перестановки.

118. Ортогональный линейный оператор в евклидовом пространстве

Пусть \mathbb{E} — евклидово пространство, dim $\mathbb{E} < \infty$. Линейный оператор $\varphi \in L(\mathbb{E})$ называется **ортогональным**, если $(\varphi(x), \varphi(y)) = (x, y), \ \forall x, y \in \mathbb{E}$.

119. Классификация ортогональных линейных операторов в одномерном и двумерном евклидовых пространствах

Пусть \mathbb{E} — евклидово пространство.

- 1. Ортогональные операторы при $\dim \mathbb{E} = 1$.
 - φ ортогонален $\iff \varphi = \pm \mathrm{Id}$
- 2. Ортогональные операторы при $\dim \mathbb{E} = 2$. $e = (e_1, e_2)$ — ортонормированный базис. Возможны два случая:

 - (а) φ поворот на угол α , тогда $A(\varphi, e) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$ (b) φ поворот на угол α + отражение относительно прямой $\langle \varphi(e_1) \rangle$, тогда $A(\varphi, e) = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}$

120. Теорема о каноническом виде ортогонального оператора

Для любого ортогонального оператора $\varphi \in L(\mathbb{E})$ существует ортонормированный базис е, в котором

$$A(\varphi,\,\mathbf{e}) = \begin{pmatrix} \Pi(\alpha_1) & & & & & \\ & \ddots & & & & \\ & & \Pi(\alpha_k) & & & \\ & & & -1 & & \\ & & & \ddots & & \\ & & & & 1 \end{pmatrix}, \, \mathrm{гдe} \,\, \Pi(\alpha_i) = \begin{pmatrix} \cos\alpha_i & -\sin\alpha_i \\ \sin\alpha_i & \cos\alpha_i \end{pmatrix}$$

121. Классификация ортогональных линейных операторов в трёхмерном евклидовом пространстве

Для любого ортогонального линейного оператора в Е существует такой ортонормированный базис е, такой что

- либо $A(\varphi, e) = \begin{pmatrix} \Pi(\alpha) & 0 \\ 0 & 1 \end{pmatrix}$, где φ это поворот на угол α вокруг оси $\langle e_3 \rangle$;
 либо $A(\varphi, e) = \begin{pmatrix} \Pi(\alpha) & 0 \\ 0 & -1 \end{pmatrix}$, где φ зеркальный поворот на угол α вокруг прямой e_3 , но зеркально отражённый относительно $\langle e_1, e_2 \rangle = \langle e_3 \rangle^{\perp}$

122. Теорема о сингулярных базисах для линейного отображения евклидовых пространств. Сингулярные значения линейного отображения

Существуют ортонормированные базисы $e \in \mathbb{E}$ и $f \in \mathbb{E}$, такие что

$$A(\varphi, e, f) = \begin{pmatrix} \sigma_1 & & & & \\ & \ddots & & & 0 \\ & & \sigma_r & & & \\ & & & 0 & & \\ & & & & 0 \end{pmatrix}, \quad \sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_r > 0.$$

Более того, числа $\sigma_1, \dots, \sigma_r$ определены однозначно и называются **сингулярными значениями** линейного оператора φ .

123. Сингулярное разложение матрицы и её сингулярные значения

SVD = "singular value decomposition"

 $\forall A \in \mathrm{Mat}_{m \times n}(\mathbb{R})$ существует ортогональные матрицы $U \in \mathrm{M}_m(\mathbb{R})$ и $V \in \mathrm{M}_n(\mathbb{R})$, такие что

Более того, числа $\sigma_1, \ldots, \sigma_r$ определены однозначно.