TD3. Vecteurs Gaussiens.

Exercice 1. Soit (X, Y) un vecteur gaussien. Montrer que X + Y est une variable aléatoire gaussienne dont on précisera les paramètres en fonction des caractéristique du vecteur aléatoire (X, Y).

- a) Soit X un vecteur gaussien de loi $\mathcal{N}_2(\mu, \Sigma)$ où μ est une vecteur de \mathbb{R}^2 et Σ une matrice carrée d'ordre 2 symétrique définie positive. Soit A une matrice carrée d'ordre 2 inversible. on pose Y=A X. Montrer que Y est une vecteur gaussien dont on donnera la moyenne et la matrice de variance-covariance.
- b) On suppose maintenant que X suit une loi $\mathcal{N}(0,1)$. On pose $Y = \left\{ \begin{array}{ccc} X & \text{si} & |X| \geq a \\ -X & \text{si} & |X| < a \end{array} \right.$ Montrer Y suit une loi $\mathcal{N}(0,1)$. Montrer que X+Y n'est pas gausienne. En déduire que le vecteur (X,Y) n'est pas gaussien.
- c) Soit U une variable aléatoire suivant une loi $\mathcal{N}(0,1)$ et E une variable aléatoire indépendante de U de loi $\mathcal{N}(0,\sigma^2)$. On pose $V=a\,U+E$ où a est un réel fixé. Déterminer l'espérance conditionnelle $\mathbb{E}(U|V)$.

Exercice 2.

- a) Soit X une variable aléatoire de loi $\mathcal{N}(0, 1)$. On pose $U = X^2$. Déterminer la densité de probabilité de U et l'identifier comme la densité d'une loi Gamma dont on précisera les paramètres. En déduire que $\Gamma(1/2) = \sqrt{\pi}$.
- b) Soit $X_1, ..., X_n$, n variables aléatoires indépendantes de même loi $\mathcal{N}(0, 1)$. Déterminer la loi de $\sum_{i=1}^n X_i^2$. Donner sa densité de probabilité, son espérance et sa variance. Cette loi porte le nom de loi de chi-deux à n degrés de libertés. On la note $\chi^2(n)$.
- c) Soient V et W deux variables aléatoires indépendantes de lois respectives $\chi^2(n)$ et $\chi^2(m)$. Déterminer la loi de V+W.

Exercice 3. Soient $X \sim \mathcal{N}(0, 1)$, et K une v.a. discrète telle que $\mathbb{P}(K = -1) = \mathbb{P}(K = 1) = 1/2$ et K est indépendante de X. On considère Y = KX.

- a) Calculer $\mathbb{E}(Y)$, Var(Y) et Cov(X, Y).
- b) Calculer la fonction de répartition de Y et en déduire que $Y \sim \mathcal{N}(0,1)$.
- c) Montrer (par un argument simple) que le vecteur (X,Y) n'est pas gaussien.

Exercice 4. Soit (X,Y) le vecteur gaussien centré de matrice de covariance $\begin{pmatrix} 1 & 1 \\ 1 & 4 \end{pmatrix}$. Soit $Z = Y - \alpha X$.

- a) Déterminer α tel que X et Z soient indépendantes.
- b) Calculer le coefficient de corrélation entre X et Y et après entre X^2 et Y^2 .

Exercice 5. Soit (X, Y) un vecteur aléatoire dans \mathbb{R}^2 tel que $X \sim \mathcal{N}(1, 1)$ et la loi conditionnelle de Y sachant X = x est $\mathcal{N}(3x, 4)$.

a) Montrer que (X,Y) est un vecteur gaussien.

b) Montrer que la loi conditionnelle de X sachant Y = y est gaussienne.

Exercice 6. Soit (X, Y) un vecteur aléatoire gaussien dans \mathbb{R}^2 centré et de matrice de covariance l'identité I_2 . Soit (Z, Q) le vecteur aléatoire défini par Z = (X + Y)/2 et Q = (X - Y)/2. On pose $U = \frac{1}{2}(X - Z)^2 + \frac{1}{2}(Y - Z)^2$

- a) Calculer la fonction caractéristique du vecteur $(Z,\,Q)$ et montrer qu'il est un vecteur gaussien et que Z,Q sont indépendantes.
- b) Montrer que Z et U sont indépendantes et donner la loi de U.

Exercice 7. Soit $(\varepsilon_1, ..., \varepsilon_n)$ un n-plet de v.a. indépendantes et de même loi $\mathcal{N}(0, \sigma^2)$. Soit $a \in \mathbb{R}$. On considère la suite de v.a. $(X_1, ..., X_n)$ définie par

$$X_i = a X_{i-1} + \varepsilon_i, \qquad i = 1, ..., n$$

où $X_0 = 0$.

- a) Déterminer la loi des v.a. X_i pour i=1,...,n.
- b) Déterminer la covariance entre X_i et X_{i+1} .
- c) Le vecteur $(X_1, ..., X_n)$ est-il un vecteur Gaussien?