MA 544: Homework 1

Carlos Salinas

January 24, 2016

CARLOS SALINAS PROBLEM 1.1

Problem 1.1

Show that the boundary of any interval has outer measure zero.

Proof. Let $I = \times_{i=1}^{n} I_i$ be an *n*-dimensional interval where $I_n = [a_i, b_i]$ is an interval in **R**. Consider the boundary

$$\partial I = \bigcup_{i=1}^{2n} I_1 \times \cdots \times \{c_i\} \times \cdots \times I_n$$

where $c_i := a_i$ for $1 \le i \le n$ is odd and $c_i := b_i$ for $n < i \le 2n$. Thus, by theorem 3.4, it suffices to show that each $J_i := I_1 \times \cdots \times \{c_i\} \times \cdots \times I_n$ has measure zero. Let $\varepsilon > 0$ be given. Put $M := \prod_{j \ne i} I_j$. Then the family of intervals

$$I_k := I_1 \times \cdots \times \left[c_i - \frac{\varepsilon}{M2^{k+1}}, c_i + \frac{\varepsilon}{M2^{k+1}} \right] \times \cdots \times I_n,$$

is a countable collection of n-dimensional intervals containing J_i . Hence, by theorem 3.4 (subadditivity), we have

$$|J_i|_e \le \sum_{k=0}^{\infty} M\left(\frac{\varepsilon}{M2^k}\right) = \sum_{k=0}^{\infty} \frac{\varepsilon}{2^k} = \varepsilon.$$
 (1)

Letting $\varepsilon \to 0$, we have $|J_i|_e = 0$. Again, by theorem 3.4, we have

$$|\partial I|_e \le \sum_{i=1}^{2n} |J_i|_e$$

where, by (1), the right is zero so $|\partial I|_e = 0$.

CARLOS SALINAS PROBLEM 1.2

PROBLEM 1.2

Show that a set consisting of a single point has outer measure zero.

Proof. Let x be a point in \mathbb{R}^n . Let $\varepsilon > 0$ be given. Consider the family of intervals

$$I_k \coloneqq \underset{i=1}{\overset{n}{\times}} \left[x_i - \sqrt[n]{\frac{\varepsilon}{2^{k+2}}}, x_i + \sqrt[n]{\frac{\varepsilon}{2^{k+2}}} \right]$$

where by x_i we mean the *i*th coordinate of x. It is clear that each I_k contains $\{x\}$ since in the projection, the projection of each interval $\pi_i(I_k)$ contains an x_i . Then, by theorem 3.4, we have

$$\begin{aligned} |\{x\}|_e &\leq \sum_{k=0}^{\infty} |I_k|_e \\ &= \sum_{k=0}^{\infty} \left[\prod_{i=1}^n \left(x_i + \sqrt[n]{\frac{\varepsilon}{2^{k+2}}} - \left(x_i - \sqrt[n]{\frac{\varepsilon}{2^{k+2}}} \right) \right) \right] \\ &= \sum_{k=0}^{\infty} \left(\prod_{i=1}^n \sqrt[n]{\frac{\varepsilon}{2^k}} \right) \\ &= \sum_{k=0}^{\infty} \frac{\varepsilon}{2^k} \\ &= \varepsilon. \end{aligned}$$

Letting $\varepsilon \to 0$, we see that $|\{x\}|_e = 0$.