High-dimensional inference

Consider the linear model

$$y = \mathcal{N}(1_n \beta_0 + X\beta, \sigma^2 I_n) \tag{1}$$

where

- $y_{n \times 1} = (y_1, \dots, y_n)'$ is the response on n observations
- $X_{n \times p}$ is the (fixed or random) design matrix containing the measurements on p variables
- $\beta_{p\times 1} = (\beta_1, \dots, \beta_p)'$ is the vector of coefficients of interest
- β_0^* and σ^2 are nuisance parameters
- $1_n = (1, 1, ..., 1)'$ is a vector of ones of length n and I_n is the identity matrix $n \times 1$
- We can have a low-dimensional setting $(n \ge p)$, but we are particularly interrested in the high-dimensional setting (n < p)

The active set or the set of relevant variables is defined as

$$S = \{j : \beta_j \neq 0, j = 1, \dots, p\}$$

and it has cardinality s = #S.

The main goal is the construction of confidence intervals and p-values for individual regression parameters β_j , $j = 1, \ldots, p$. In high-dimensional setting, this makes statistical inference very challenging.

Here the main assumption is that the linear model in (1) is correct. This might be rather unrealistic.

Simulated data

We use the following simulation setting:

- n = 100
- p = 200
- $\beta_0 = 0, \, \sigma^2 = 1$
- s = 6
- $X \sim \mathcal{N}(0, \Sigma)$
- Σ block-diagonal matrix

We divide the variables in 3 types: A, B and C. Type-A variables have $\beta_j \neq 0$, with two strong effects $\beta_j = \pm 1$ and four weak effects $\beta_j = \pm 0.5$; type-B and C variables have $\beta_j = 0$. Each of the six type-A variables is correlated ($\rho = 0.5$) with two other type-B variables. The remaining 42 type-C variables are pure noise and independent of all other variables.

Avoiding the selection of type-B predictors is challenging; however, simple approaches still work well for avoiding the selection of type-C predictors

```
set.seed(1)
n <- 100
p <- 200
s <- 6</pre>
```

```
A <- matrix(0.5, 3, 3) + 0.5*diag(3)
B <- diag(p-3*6)
library(Matrix)
Sigma = bdiag(A,A,A,A,A,B)
R <- chol(Sigma)
X <- as.matrix(matrix(rnorm(n * p), n, p) %*% R)
beta = numeric(6*3)
beta[(0:5)*3+1] <- c(1,-1,0.5,0.5,-0.5,-0.5)
y <- X[,1:(s*3)] %*% beta + rnorm(n)
varType <- vector("character", p)
varType[(0:5)*3+1] <- "A"
varType[c((0:5)*3+2, (0:5)*3+3)] <- "B"
varType[(s*3+1):p] <- "C"
colnames(X) <- paste0("x", 1:p)
yX = data.frame(y,X)</pre>
```

Single-split inference

A generic way for deriving p-values in hypotheses testing is given by sample-splitting inference, that is splitting the observations with indices $\{1, \ldots, n\}$ in two equal halves denoted by I_1 and I_2 , that is, $I_r \subset \{1, \ldots, n\}$, r = 1, 2 with $I_1 \cup I_2 = \{1, \ldots, n\}$ and $I_1 \cap I_2 = \emptyset$.

The idea is to use the first half I_1 for variable selection and the second half I_2 with the reduced set of selected variables (from I_1) for statistical inference in terms of p-values.

```
set.seed(123)
I1 <- as.logical(sample(rep(0:1, each=n/2)))</pre>
```

Such a sample-splitting procedure avoids the over-optimism to use the data twice for selection and inference after selection (without taking the effect of selection into account).

Consider a method for variable selection based on the first half of the sample:

$$\hat{S}(I_1) \subset \{1,\ldots,p\}$$

A prime example is the Lasso which selects all the variables whose corresponding estimated regression coefficients are different from zero.

```
library(glmnet)

## Loading required package: foreach

## Loaded glmnet 2.0-13

set.seed(123)
fit <- cv.glmnet(X[I1,], y[I1])
hatbeta <- coef(fit, s=fit$lambda.min)[-1]
tapply(hatbeta!=0, varType, sum)</pre>
```

```
## A B C
## 6 1 21
```

We then use the second half of the sample I_2 for constructing p-values, based on the selected variables $\hat{S}(I_1)$.

If the cardinality $\#\hat{S}(I_1) \leq n/2$, we can run ordinary least squares estimation using the subsample I_2 and the selected variables $\hat{S}(I_1)$, that is, we regress y_{I_2} on $X_{I_2}^{\hat{S}(I_1)}$ where the sub-indices denote the sample half and the super-index stands for the selected variables, respectively.

```
XS <- X[!I1, which(hatbeta!=0)]</pre>
fit <-lm(y[!I1]~XS)
summary(fit)
##
## Call:
## lm(formula = y[!I1] ~ XS)
##
## Residuals:
##
        Min
                  1Q
                       Median
## -1.55363 -0.47409 0.00665 0.55181
                                        1.49000
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.07258
                            0.19709
                                       0.368 0.716370
## XSx1
                1.15844
                            0.24647
                                       4.700 0.000122 ***
## XSx4
               -0.82708
                            0.21546
                                     -3.839 0.000955 ***
                            0.20611
## XSx7
                0.71151
                                       3.452 0.002387 **
## XSx10
                0.62414
                            0.22348
                                       2.793 0.010903 *
## XSx13
               -0.63470
                            0.22399
                                     -2.834 0.009950 **
## XSx15
                0.27174
                            0.26587
                                      1.022 0.318386
## XSx16
               -0.49667
                            0.20035
                                     -2.479 0.021741 *
                            0.18418
                                      0.787 0.439967
## XSx37
                0.14498
## XSx46
                0.05106
                            0.22318
                                      0.229 0.821262
## XSx47
                0.03909
                            0.25314
                                      0.154 0.878740
## XSx51
                0.27951
                            0.24209
                                      1.155 0.261242
## XSx52
               -0.02980
                            0.20513
                                     -0.145 0.885873
## XSx73
                0.26504
                            0.20624
                                      1.285 0.212746
## XSx78
                0.22871
                            0.24533
                                       0.932 0.361804
## XSx84
                0.02642
                            0.22279
                                      0.119 0.906734
## XSx95
               -0.12322
                            0.17584
                                      -0.701 0.491152
## XSx100
                0.24911
                            0.32254
                                      0.772 0.448522
## XSx109
                0.19304
                            0.18093
                                      1.067 0.298117
## XSx114
                0.42826
                            0.28385
                                      1.509 0.146253
## XSx123
               -0.36149
                                     -1.020 0.319431
                            0.35447
## XSx146
               -0.09395
                            0.22655
                                     -0.415 0.682566
## XSx154
                0.29384
                            0.24479
                                       1.200 0.243367
## XSx155
                0.38648
                            0.19259
                                      2.007 0.057821
## XSx156
               -0.24688
                            0.25186
                                     -0.980 0.338131
## XSx159
                0.15939
                            0.22889
                                       0.696 0.493833
## XSx163
               -0.21321
                            0.23612
                                     -0.903 0.376790
## XSx171
               -0.15830
                            0.25228
                                     -0.627 0.537110
## XSx182
               -0.22577
                            0.26844
                                     -0.841 0.409803
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.017 on 21 degrees of freedom
## Multiple R-squared: 0.8898, Adjusted R-squared: 0.7428
## F-statistic: 6.053 on 28 and 21 DF, p-value: 3.798e-05
Thus, from such a procedure, we obtain p-values for testing H_j: \beta_j = 0 for j \in \hat{S}(I_1). Moreover, we define
(raw) p-values p_j = 1 for j \notin \hat{S}(I_1).
```

An interesting feature of such a sample-splitting procedure is the adjustment for multiple testing. For example, if we wish to control the familywise error rate over all considered hypotheses H_j , j = 1, ..., p, a naive approach would employ a Bonferroni–Holm correction over the p tests. This is not necessary: we only need to control over the considered $\#\hat{S}(I_1)$ tests in I_2 .

```
p.holm = p.adjust(p.raw[var.id], "holm")
names(p.holm) = paste("x", var.id, sep="")
round(p.holm,4)
##
       x1
               x4
                      x7
                            x10
                                    x13
                                           x15
                                                   x16
                                                          x37
                                                                  x46
                                                                         x47
## 0.0034 0.0258 0.0621 0.2617 0.2488 1.0000 0.5000 1.0000 1.0000 1.0000
      x51
             x52
                     x73
                            x78
                                    x84
                                           x95
                                                  x100
                                                         x109
                                                                 x114
## 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
     x146
            x154
                    x155
                           x156
                                   x159
                                          x163
                                                  x171
                                                         x182
```

Such corrected p-values control the familywise error rate in multiple testing when assuming the screening property

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

$$\hat{S} = \{j : \hat{\beta}_j \neq 0\} \supseteq S$$

for the selector $\hat{S} = \hat{S}(I_1)$ based on the first half I_1 only. The reason is that the screening property ensures that the reduced model is a correct model, and hence the result is not surprising.

Multiple-split inference

A major problem of the single sample-splitting method is its sensitivity with respect to the choice of splitting the entire sample: sample splits lead to wildly different p-values. We call this undesirable phenomenon a p-value lottery, and the following histogram provides an illustration for a single variable.

```
set.seed(123)
B = 50
P <- matrix(1, B, p)
for (i in 1:B) {
   ind <- as.logical(sample(rep(0:1, each=n/2)))
   cvfit <- cv.glmnet(X[ind,], y[ind])
   b <- coef(cvfit, s=cvfit$lambda.min)[-1]
   XX <- X[!ind, which(b!=0)]
   fit <- lm(y[!ind]~XX)
   summ <- summary(fit)$coefficients[-1,]
   var.id <- as.numeric(gsub("XXx", "", rownames(summ)))
   P[i, var.id] <- summ[,4]
}
hist(P[,1])</pre>
```

Histogram of P[, 1]

To overcome the p-value lottery, we can run the sample-splitting method B times, with B large.

Thus, we obtain a collection of p-values for the jth hypothesis H_j

$$p_j^{[1]}, \dots, p_j^{[B]}$$

The task is now to do an aggregation to a single p-value. Because of dependence among $\{p_j^{[B]}, b=1,\dots,B\}$,

because all the different half samples are part of the same full sample, an appropriate aggregation is needed.

A simple solution is to use the median of $\{p_i^{[B]}, b=1,\dots,B\}$ and multiplying it with the factor 2.

```
p.median = apply(P,2,median)
tapply(p.median <= 0.05, varType, sum)</pre>
```

A B C ## 4 0 0

The implementation in the R package hdi works as follow

```
library(hdi)
set.seed(123)
fit <- multi.split(x=X, y=y, B=50, fraction=0.5, ci=TRUE, ci.level = 0.95)
fit</pre>
```

```
FALSE alpha = 0.01: Selected predictors: 1 4
FALSE alpha = 0.05: Selected predictors: 1 4
FALSE -----
FALSE Familywise error rate controlled at level alpha.
```

To obtain adjusted p-values for H_j controlling the familywise error rate:

```
p.fwer = fit$pval.corr
round(p.fwer,4)
```

```
x10
##
               x2
                      xЗ
                                     x5
                                             x6
                                                    x7
                                                            8x
                                                                   x9
       x1
                              x4
   0.0000
          1.0000
                 1.0000 0.0041
                                  .0000
                                        1.0000
                                                0.2536
                                                                      1.0000
##
                                 1
                                                       1.0000
                                                               1
                                                                .0000
                                                          x18
##
      x11
                            x14
                                    x15
                                                                  x19
                                                                          x20
             x12
                     x13
                                            x16
                                                   x17
##
   1.0000
          1.0000
                  1.0000 1
                           .0000
                                 1.0000
                                        0.3275
                                                1.0000 1.0000
                                                               1.0000
                                                                      1.0000
##
      x21
              x22
                     x23
                            x24
                                    x25
                                                   x27
                                                           x28
                                                                  x29
                                            x26
                                                                          x30
##
  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
                                                                      1.0000
##
      x31
              x32
                     x33
                            x34
                                    x35
                                            x36
                                                   x37
                                                           x38
                                                                  x39
                                                                          x40
##
   1.0000 1.0000 1.0000 1.0000
                                1.0000
                                        1.0000
                                                1.0000 1.0000
                                                               1.0000
                                                                      1.0000
             x42
                                    x45
                                                          x48
##
      x41
                     x43
                            x44
                                            x46
                                                   x47
                                                                  x49
                                                                          x50
##
   1.0000
          1.0000
                  1.0000 1.0000
                                 1.0000
                                        1.0000
                                                1.0000
                                                       1.0000
                                                               1.0000
                                                                      1.0000
                                                                          x60
##
      x51
             x52
                     x53
                            x54
                                    x55
                                            x56
                                                   x57
                                                           x58
                                                                  x59
  1.0000
          1.0000 1.0000 1.0000
                                 1.0000
                                        1.0000
                                                1.0000
                                                       1.0000
                                                               1.0000
##
                                                                      1.0000
                                    x65
##
      x61
             x62
                     x63
                            x64
                                           x66
                                                   x67
                                                          x68
                                                                  x69
                                                                          x70
   1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
##
                     x73
                            x74
                                    x75
                                                          x78
##
      x71
             x72
                                            x76
                                                   x77
                                                                  x79
                                                                          x80
   1.0000
          1.0000
                  1.0000 1.0000
                                 1.0000
                                        1.0000
                                                               1.0000
##
                                                1.0000
                                                       1.0000
                                                                      1.0000
##
      x81
              x82
                     x83
                            x84
                                    x85
                                            x86
                                                   x87
                                                           x88
                                                                  x89
                                                                          x90
          1.0000
                  1.0000 1.0000
                                 1.0000
                                        1.0000
                                                1.0000 1.0000
                                                               1.0000
##
   1.0000
                                                                      1.0000
##
              x92
                     x93
                                    x95
                                            x96
                                                           x98
                                                                  x99
      x91
                            x94
                                                   x97
                                                                         x100
## 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
                                                                      1.0000
##
     x101
            x102
                    x103
                            x104
                                   x105
                                           x106
                                                  x107
                                                          x108
                                                                 x109
                                                                         x110
## 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
##
     x111
            x112
                    x113
                            x114
                                   x115
                                           x116
                                                  x117
                                                          x118
                                                                 x119
                                                                         x120
##
  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
                                                                      1.0000
##
     x121
            x122
                    x123
                            x124
                                   x125
                                          x126
                                                  x127
                                                          x128
                                                                 x129
                                                                         x130
##
  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
                                                1.0000 1.0000 1.0000
                                                                      1.0000
                                   x135
##
     x131
            x132
                    x133
                            x134
                                          x136
                                                  x137
                                                          x138
                                                                 x139
                                                                         x140
## 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
                                                                      1.0000
                                   x145
                                           x146
                                                  x147
##
     x141
            x142
                    x143
                            x144
                                                          x148
                                                                 x149
                                                                         x150
## 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
     x151
            x152
                    x153
                            x154
                                   x155
                                           x156
                                                  x157
                                                          x158
                                                                 x159
                                                                         x160
```

```
## 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
##
    x161
           x162
                 x163
                          x164
                                 x165
                                        x166
                                               x167
                                                      x168
                                                             x169
                                                                    x170
## 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
            x172
                  x173
                          x174
                                 x175
                                        x176
                                               x177
                                                      x178
                                                             x179
##
     x171
                                                                    x180
## 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
##
    x181
            x182
                  x183
                          x184
                                 x185
                                        x186
                                               x187
                                                      x188
                                                             x189
                                                                    x190
## 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
##
    x191
            x192
                  x193
                          x194
                                 x195
                                        x196
                                               x197
                                                      x198
                                                             x199
                                                                    x200
## 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
```

Confidence intervals can be constructed based on the duality with the p-values:

```
confint(fit, parm=which(p.fwer <= 0.05), level=0.95)</pre>
```

```
## lower upper
## x1 0.6895478 1.6007416
## x4 -1.1946307 -0.2665034
```