Positive / Negative Supply

Change Vin to VSIN by setting VOFF = 0, VAMPL = 0.5V and FREQ = 1kHz. Do the Transient Analysis with the former parameters and Simulate. $Voltage \ gain \ A_V = Vout/Vin = \dots V/V, \ phase \ difference = \dots degree$

Op-amp board

Op-Amp 741

How to build +5V/- 5V supply

Connect supply voltages

Section 1. Op-Amp in Open Loop condition

Use oscilloscope (DC mode) measure *Vin* with CH1 *Vout* with CH2

3.3 Determine R_{in} of amplifier in Fig. 3a

- Measure $V_{\rm in}$, $V_{\rm in}^{'}$ =Vp-p which istimes of the former $V_{\rm in}$.
- Measure V_{out} , $V_{\text{out}}' = \dots \text{Vp-p}$ which istimes of the former V_{out} .

Section 4. Noninverting Amplifier

$$A_{v} = \frac{V_{out, p-p}}{V_{in, p-p}} = ---- = \dots V/V$$

 $V_{\it out}$ and $V_{\it in}$ is.....degree

- 4.3 Repeat section 4.1 but change input amplitude to 6 Vp-p and sketch waveform of V_{in} , V_{out} , signal at pin 2 and pin 3 in Fig.4.1.

 - As V_{out} is <u>not saturated</u>, the signal at pin 2 and 3 are (the same, different) and the voltage gain $A_{\rm v}=$
 - As V_{out} is <u>saturated</u>, the signal at pin 2 and 3 are (the same, different) and the potential of pin 2 is related to V_{out} , V_{in} , R_1 , R_f with equation of

.....s/div Fig. 4.1 4.4 Find R_{in} of amplifier circuit in Fig.4a

- Use an oscilloscope measure V_{in} ; $V_{i}^{'} = \dots$Vp-p which is.....times o former V_{in} .
- Measure V_{out} ; $V_o' = \dots$. Vp-p which is....times of former V_{out} .

4.5 Calculate R_{in} of Noninverting Amp. in Fig.4a.

$$R_{in} = \frac{V_{in}}{i_{b^+}} \cong \dots \Omega$$

Section 5. Unity-Gain Follower (Buffer)

Voltage gain,
$$A_{v} = \frac{V_{out, p-p}}{V_{in, p-p}} = ----=$$

Phase difference of $V_{\it out}$ and $V_{\it in}$ isdegree

Section 6. Study Slew Rate (SR) of OpAmp

- 6.1 Build a circuit as shown in Fig.5 with 1kHz ,1 Vp-p square-wave as input signal.
 - Use an oscilloscope (DC mode) measure $V_{\it in}$ and $V_{\it out}$. Sketch results on Fig.6.1

(Remark: Scale time/div should be adjusted in \(\mu \) level to see the obvious result.)

