

HCM University of Technology

MACHINE ELEMENTS

ME2007

Lab Report

Submitted To: Submitted By:

Phan Dinh Huan Nguyen Quy Khoi

PhD 1852158

Faculty of Mechanical CC02

Engineering HK192

Contents

1	Slip coefficient and Slip curve of Belt drive			
	1.1	Nomenclature	4	
	1.2	Purpose	5	
	1.3	Safety Procedures	5	
	1.4	Conduct Experiment	5	
		1.4.1 Find parameters of the experiment kit	5	
		1.4.2 Find F_0	5	
		1.4.3 Measurements	6	
		1.4.4 Draw the slip curve graph	6	
	1.5	Conclusions	7	
	1.6	Review questions	7	
2	Tens	sion on Bolts	8	
	2.1	Nomenclature	8	
	2.2	Purpose	8	
	2.3	Safety Procedures	9	
	2.4	Conduct Experiment	9	
	2.5	Data graphs	9	

List of Tables

1.1	Observed data	6
2.1	Tension force at failure of common and steel bolts	Ç

List of Figures

1.1	Slip curve of belt drive	6
2.1	Tension force at failure of common bolt	9
2.2	Tension force at failure of steel bolt	10

Chapter 1

Slip coefficient and Slip curve of Belt drive

1.1 Nomenclature

a	center distance, mm
_	

f coefficient of friction

d diameter, mm

 F_0 initial tension, N

 F_{ms} friction force, N

 F_t tangential force, N

g gravitational acceleration at sea level, m/s^2

 h_f distance between outer sides of the belt after applying load Q, mm

 h_i distance between outer sides of the belt before applying load Q, mm

n rotational speed, *rpm*

Q load, $kg \cdot F$

 α wrap angle, °

 β slack angle due to load Q, °

 Δh difference between h_i and h_f , mm

 ϕ drag coefficient

 $\overline{\xi}$ average slip coefficient kW

 ξ slip coefficient

subscript for driving pulley

subscript for driven pulley

1.2 Purpose

- 1. Investigate slip in belt drives
- 2. Find relative slip coefficient and conduct experiment to find ξ
- 3. Find F_0
- 4. Draw slip curve with respect to Q

1.3 Safety Procedures

Students must follow safety rules in the lab.

1.4 Conduct Experiment

1.4.1 Find parameters of the experiment kit

- $d_1 = 67.8 \,\mathrm{mm}, \, d_2 = 165 \,\mathrm{mm}, \, a = 315 \,\mathrm{mm}$
- Belt type: flat belt

•
$$\alpha_1 = 180 - 57 \times \frac{d_2 - d_1}{a} \approx 162.3^{\circ}$$

•
$$\alpha_2 = 180 + 57 \times \frac{d_2 - d_1}{a} \approx 197.6^{\circ}$$

1.4.2 Find F_0

•
$$h_i = 124 \text{ mm}, h_f = 94 \text{ mm}, Q = 4.1 \text{ kg} \cdot \text{F}$$

•
$$\Delta_h = |h_f - f_i| = 30 \text{ mm}, \beta = \arctan \frac{2\Delta_h}{a} \approx 10.78^\circ$$

•
$$F_0 = \frac{Qg}{2\sin\beta} \approx 107.48 \,\mathrm{N}$$

1.4.3 Measurements

Using the formulas $\xi=1-\frac{d_2n_2}{d_1n_1}$ and $\phi=\frac{F_t}{2F_0}$, we obtain the following table: Averaging the values of ξ yields $\xi\approx0.0198$

No.	F_0 N	n_1 rpm	n_2 rpm	ξ	F_t N	ϕ
1	107.48	283.62	114.04	0.018	3.1	0.014
2	107.48	330.47	133.35	0.018	8.8	0.041
3	107.48	273.83	110.27	0.02	14.4	0.067
4	107.48	307.52	123.71	0.021	20.2	0.094
5	107.48	354.42	142.43	0.022	22.1	0.103

Table 1.1: Observed data

1.4.4 Draw the slip curve graph

From the data above, we can approximate the best fitted line through the data points (assuming linearity since ϕ does not reach critical value)

Figure 1.1: Slip curve of belt drive

1.5 Conclusions

In summary:

- Slip coefficient from experiment is in allowable range $(0.01 \div 0.02)$.
- The slip curve is in agreement with theory (error is smaller than 5%). Since ϕ does not exceed critical value (the motor is frequency-controlled), we can safely assume linearity for the curve.
- Possible errors:
 - manually measure dimensions in the kit.
 - rounding.
 - incorrect reading of rotational speeds.
- The slip coefficient and slip curve is considerably accurate due to reliable instrument

1.6 Review questions

1. There are

Chapter 2

Tension on Bolts

2.1 Nomenclature

```
[F_{cb}]
        tension force at failure of common bolt,
        N
[F_{sb}]
        tension force at failure of steel bolt, N
[\sigma_{cb}]
       tension at failure of common bolt, MPa
[\sigma_{sb}]
        tension at failure of steel bolt, MPa
d
        nominal diameter of M8 bolt, mm
F_c
        tension force of hydraulic cylinder
        tension force at failure of common bolt,
F_{cb}
        N
F_{sb}
        tension force at failure of steel bolt, N
```

2.2 Purpose

Provide basic knowledge on conducting experiment regarding ultimate strength of materials

2.3 Safety Procedures

Close the machine door before every operation.

2.4 Conduct Experiment

No.	Experiment with $d = 8 \mathrm{mm}$		
110.	F_{sb}	F_{cb}	
1	33898	37377	
2	33574	37053	
3	34211	36426	
4	33727	37053	
5	34211	36426	
Average	33323.4	36867	

Table 2.1: Tension force at failure of common and steel bolts

2.5 Data graphs

Figure 2.1: Tension force at failure of common bolt

Figure 2.2: Tension force at failure of steel bolt