

LISTA DE EJERCICIOS - ÁLGEBRA GEM - 2021

Caleb - Michaell

Pregunta 1. Sea G un grupo abeliano, pruebe que el conjunto

$$T(G) = \{ g \in G : |g| < \infty \}$$

es un subgrupo de G denominado el **subgrupo de torsión**. De un ejemplo donde T(G) no sea subgrupo. Halle $T(\mathbb{Z} \times \mathbb{Z}_n)$.

Pregunta 2. Un grupo abeliano se denomina divisible si para todo $a \in G$ y k un entero no nulo exite $x \in A$ tal que $x^k = a$.

- a) $(\mathbb{Q}, +)$ es divisible.
- b) Si G es finito, no es divisible.
- c) Sean A, B grupos abelianos, pruebe que $A \times B$ es divisible si y solo si A y B son divisibles.

Pregunta 3. Sea G un grupo abeliano de orden pq con (p,q)=1. Pruebe que si existen $a,b \in G$ tales que |a|=p y |b|=q entonces G es cíclico.

Daniel - Cristopher

Pregunta 1. Pruebe los siguientes items:

a) Para $a, b \in \mathbb{R}$ definimos $\tau_{ab}(x) = ax + b$ para todo $x \in \mathbb{R}$. Pruebe que el conjunto

$$G = \{ \tau_{ab} : a \neq 0 \}$$

es un grupo con la composición de funciones.

b) Pruebe que el subconjunto $H = \{ \tau_{ab} \in G : a \in \mathbb{Q} \}$ es un subgrupo de G.

Pregunta 2. Sea G un grupo, definimos el centro de G como el conjunto:

$$Z(G) = \{ g \in G | gx = xg, \forall x \in G \}$$

- a) Pruebe que $Z(G) \leq G$.
- b) Sea $H \leq G$ un subgrupo abeliano, pruebe que $\langle H \cup Z(G) \rangle$ es abeliano.

Pregunta 3. Si G es un grupo infinito, pruebe que es cíclico si y solo si es isomorfo a cada uno de sus subgrupos propios.

Guido - Jhonatan

Pregunta 1. Sean $H, K \leq G$, denotaremos $H \vee K = \langle H \cup K \rangle$. Pruebe que si G es un grupo abeliano entonces:

$$H\vee K=\{ab\,|\,a\in H,b\in K\}$$

¿Qué sucede si G no es abeliano? de un ejemplo.

Pregunta 2. Resuelva los siguientes items:

- a) Halle todos los subgrupos de \mathbb{Z}_{45} .
- b) Si $x \in G$ con $|x| = |G| < \infty$ entonces $G = \langle x \rangle$.
- c) Pruebe que $\mathbb{Q}\times\mathbb{Q}$ no es cíclico.

Pregunta 3. Si G es cíclico y solo tiene un generador pruebe que $|G| \leq 2$.

Juan Paucar - Marco

Pregunta 1. Diga si los siguientes subconjuntos son grupos:

- a) $\{a + ia : a \in \mathbb{R}\} \subseteq \mathbb{C}$.
- b) Dado $n \in \mathbb{N}, \, \Big\{ \frac{a}{b} \in \mathbb{Q} : (b, n) = 1 \Big\}.$
- c) El subconjunto de 2-ciclos en S_n con $n \geq 3$.
- d) Los números pares con el 0 en \mathbb{Z} .

Pregunta 2. Sea $f: G \to H$ un homomorfismo de grupos, si |f(a)| es finito pruebe que |a| es finito o |f(a)| divide a |a|.

Pregunta 3. Un isomorfismo de un grupo a si mismo, se denomina un **automorfismo**. El conjunto de todos los autormorfismo de un grupo G forma un grupo con la composición de funciones y se denota por $\operatorname{Aut}(G)$. Pruebe que $\operatorname{Aut}(\mathbb{Z}_n)$ es isomorfo a $(\mathbb{Z}^{\times}, \cdot)$. (Sugerencia: considere el mapa $f \mapsto f(\overline{1})$ y pruebe que es un isomorfismo.)

Miller

Pregunta 1. Sea G un grupo con |G| = n > 2, pruebe que no existe subgrupo H tal que |H| = n - 1. ¿Existirá un subgrupo con n - 2 elementos?

Pregunta 2. Sea $Z_n = \langle r \rangle \leq D_{2n}$, para $a \in \mathbb{Z}$ definimos $\sigma_a : Z_n \to Z_n$ por:

$$\sigma_a(x) = x^a$$

- a) σ es un isomorfismo si y solo si (a, n) = 1.
- b) $\sigma_a = \sigma_b \text{ si y solo si } a \equiv b(\text{mod } n).$
- c) Un isomorfismo de un grupo a si mismo, se denomina un **automorfismo**. Pruebe que el conjunto de todos los automorfismos de un grupo G, denotado por Aut(G), es un grupo con la composición de funciones.
- d) El mapa $\overline{a} \mapsto \sigma_a$ es un isomorfismo entre $(\mathbb{Z}_n)^{\times}$ y $\operatorname{Aut}(Z_n)$. Concluya que $\operatorname{Aut}(Z_n)$ es un grupo abeliano.

Pregunta 3. Si G es un grupo que solo tiene un número finito de subgrupos, pruebe que es finito.