

Circular Pseudo-Point Approximations for Scaling Gaussian Processes

Will Tebbutt, Thang Bui, Richard E. Turner will.tebbutt@invenialabs.co.uk, {tdb40, ret26}@cam.ac.uk

Problem Definition

- Gaussian Processes (GPs) are useful regression models with an infinite number of parameters.
- Zero-mean GP marginal likelihood is

$$\mathcal{N}\left(\mathbf{y} \mid 0, K_{D,D} + \beta^{-1}\mathcal{I}\right)$$

where $(K_{D,D})_{i,j} = k(x_i, x_j)$, $\beta^{-1} = \text{variance of observation noise}$.

- ullet Computing $K_{D,D}^{-1}$ is $O(N^3)$ operation \to infeasible for large N.
- Circulant approximation and others exploit special structure in **data** input locations / covariance function to accelerate inference.
- Pseudo-point approximations accelerate inference if **data over-sampled**.
- Possible to get the best of both worlds?

Circulant Approximations

- Requires data on **regular grid** and *k* **stationary** (translation invariant).
- Learning + inference is $\mathcal{O}(N \log N)$ as $K_{D,D} \approx U \Gamma_D U^{\dagger}$, where U = the (unitary) DFT matrix, $\Gamma_D = \text{diagonal matrix of eigenvalues}$ (see [Gray, 2006]).
- ullet Wide input domain relative to kernel length-scale o highly accurate.
- ullet Narrow input domain relative to kernel length-scale o circular 'wraparound' is problematic.

Figure 2: Visualisation of the circulant approximation to an EQ covariance matrix with lengthscale 0.05, computed between data spaced uniformly on [-0.25, 0.25].

Pseudo-Point Approximations

- Arguably, state-of-the-art is VFE approximation [Titsias, 2009].
- ullet N observations, M pseudo-points $o K_{D,Z} \in \mathbb{R}^{N imes M}$, $K_{Z,Z} \in \mathbb{R}^{M imes M}$.
- \bullet Optimal posterior mean μ_q and covariance Σ_q of pseudo-points are found by maximising

$$L = \log \mathcal{N} \left(\mathbf{y} \left| K_{D,Z} K_{Z,Z}^{-1} \mu_q, \beta^{-1} \mathcal{I} \right) - \beta \operatorname{tr}(\hat{K}_{D,D} + R_{D,D}) \right/ 2$$
$$- \mathcal{KL} \left[\mathcal{N} \left(f_Z \left| \mu_q, \Sigma_q \right) \right| \right| \mathcal{N} \left(f_Z \left| 0, K_{Z,Z} \right) \right],$$

$$\hat{K}_{D,D} := K_{D,D} - K_{D,Z} K_{Z,Z}^{-1} K_{Z,D}, \ R_{D,D} := K_{D,Z} K_{Z,Z}^{-1} \Sigma_q K_{Z,Z}^{-1} K_{Z,D}.$$

- ullet Infeasible for large M, but large M required for complex problems.
- Idea: i) Build special structure into pseudo-data to accelerate $K_{Z,Z}$ and ii) restrict form of Σ_q to render required computations efficient.

Circulant Pseudo-Point Approximation

Figure 3: The quality of the approximation depends upon the band-width b of W. b=0 yields a rough approximation, b=4 yields almost exact posterior.

Figure 4: (Left) The KL divergence achieved after 1000 iterations of Adagrad for a range of band widths and numbers of pseudo-data. (Right) The M=50 column of the image on the left, shown for clarity. Highlighted points (circled) correspond to the approximations shown in figure 3.

Circulaunt Pseudo-Point Approximation

- ullet Stationary k and pseudo-points on regular grid $o K_{Z,Z} pprox$ circulant.
- Letting pseudo-points extend outside data domain prevents poor posterior prediction at edges of data domain.
- Computing μ_q becomes $\mathcal{O}\left(NM + M\log M\right)$ using Linear Conjugate Gradients.
- ullet Parametrise $\Sigma_q=K_{Z,Z}^{rac{1}{2}}WK_{Z,Z}^{rac{1}{2}}$ where W is banded, band-width b, $K_{Z,Z}^{rac{1}{2}}:=U\Gamma_Z^{rac{1}{2}}U^{\dagger}$. Gradient w.r.t. W is $\mathcal{O}\left(NM\log M+Mb
 ight)$.

Met	hod	Time	RMSE		RMSE
		(s)	(in)		(out)
PCG	iP	603	$9.03 \times$	10^{-3}	1.77
VFE		1045	$9.02 \times$	10^{-3}	1.77

Figure 5: Results on audio sub-band data comprising N=20000 irregularly sampled observations, M=10000 pseudo-points used. 50 observations removed between t=1.44 and t=1.46 are held-out. The reconstruction results are shown in the table. Note despite the narrow band-width b=0, the recovered marginal variances are very similar between the circulant pseudo-point (PCGP) and VFE.

Future Work

- Efficient implementation of operations involving banded matrices.
- ullet Exact solution for W not straightforward due to banding.
- Exploit approximate circulant structure to represent cross-covariance $K_{D,Z}$ efficiently crucial to decouple M from N in asymptotic complexity of inference (ie from $\mathcal{O}\left(NM\right)$ to $\mathcal{O}\left(N+M\right)$) if M grows with N (eg. time series).
- ullet Extend to multi-dimensional input / output domains + non-conjugate likelihoods.

References

[Gray, 2006] Gray, R. M. (2006). *Toeplitz and circulant matrices: A review*. now publishers inc.

[Titsias, 2009] Titsias, M. K. (2009). Variational learning of inducing variables in sparse gaussian processes. In *International Conference on Artificial Intelligence and Statistics*, pages 567–574.