

Bayesian Deep Learning for Probabilistic Virtual Load **Monitoring of Offshore Wind Farms**

Technical University of Denmark

N. Hlaing & P. Rigo

Department of ArGEnCO, University of Liege, Belgium

P. G. Morato

Department of Wind and Energy Systems, DTU, Demark

F. Santos, W. Weijtjens & C. Devriendt OWI Lab, Vrije Universiteit Brussel, Belgium

Funded by:

Virtual load monitoring of offshore wind turbines

(1) Uncertainty quantification

Aleatory uncertainty

Inherent physical randomness

Standards and guidelines

Measurement uncertainty of sensing devices

ST2 FBG strain sensors Embedded in composites Strain accuracy 1%

Ref: https://www.fibergratings.com/

S11 FBG strain sensors Glued to various materials Strain accuracy 1%

Model uncertainty

Labels ⇔ Model predictions (e.g., MAE, RMSE)

Conditions of strain gauges

Wind turbine dynamics changes over time...

Ref: https://www.offshorewind.biz/

Virtual load monitoring of offshore wind turbines

- (2) Farm-wide applicability
- Economic constraints to fully instrument all turbines
- Absence of strain measurements, only SCADA and accelerations are available
- Variations in water depth, soil properties, structural designs
- Extrapolation of model uncertainty?

Ref: https://www.governing.com/now/wind-turbines-and-lawsuits-are-coming-to-the-jersey-shore

Bayesian Neural Networks

Standard deterministic neural networks

- Point weights and biases
- Point estimate output

Epistemic Bayesian neural networks

- Probability distribution weights and biases
- Point estimate output

Probabilistic Bayesian neural networks

- Probability distribution weights and biases
- Probability distribution output

1. Training with fleet-leader data (input + labels)

Ref: Hlaing, N., Morato, P. G., de Nolasco Santos, F., Weijtjens, W., Devriendt, C. & Rigo, P. (2023). Farm-wide virtual load monitoring for offshore wind structures via Bayesian neural networks. arXiv preprint. DOI: 10.48550/arXiv.2211.00642

Bayesian inference

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{\int P(D|\theta)P(\theta)d\theta}$$

Intractable!!

Variational inference

- to estimate unknown posterior distribution by a variational distribution $q_{\lambda}(\theta)$
- to minimize KL divergence between variational and posterior distributions

$$\mathbb{KL}(q_{\lambda}(\theta)||P(\theta|D)) = \int q_{\lambda}(\theta) \log \frac{q_{\lambda}(\theta)}{P(\theta|D)} d\theta$$

Variational inference as an approximation of Bayesian inference

Loss function derived from Variational Inference:

$$\lambda^* = \operatorname{argmin} \left\{ \mathbb{KL} \left(q_{\lambda}(\theta) | | P(\theta) \right) - \mathbb{E}_{\theta \sim q_{\lambda}} \left[\log(P(D|\theta)) \right] \right\}$$
Regularizer Expected negative log-likelihood

- ✓ KL between variational and prior distributions.
- ✓ Prevents overfitting.

✓ Maximize the likelihood of the 'labels'.

1. Training with fleet-leader data (input + labels)

2. Deployment on fleet-leader or other turbines (only inputs)

Ref: Hlaing, N., Morato, P. G., de Nolasco Santos, F., Weijtjens, W., Devriendt, C. & Rigo, P. (2023). Farm-wide virtual load monitoring for offshore wind structures via Bayesian neural networks. arXiv preprint. DOI: 10.48550/arXiv.2211.00642

Uncertainty quantification of load predictions

• Total variance theorem:

$$\mathbb{V}(\hat{y}|\mathbf{x}) = \mathbb{E}[\sigma_y^2|\mathbf{x}] + \mathbb{V}(\mu_y|\mathbf{x})$$
Aleatory uncertainty

Model uncertainty

Ref: https://www.gov.uk/

SCADA

Rotational speed (mean)

Yaw angle (mean)

Pitch angle (mean)

Power (mean)

Wind speed (mean)

Wind speed (std)

Wind direction (mean)

Wave buoy

Wave height

Average wave period

Wave direction

Accelerometers

FA acceleration (max, min, rms)

SS acceleration (max)

Selection of input monitoring signals

• Aimed for farm-wide application

Bayesian neural networks

Deterministic neural networks

Farm-wide deployment

Distribution of DEM (side-to-side and fore-aft) and model uncertainty

The BNN is receiving some unexplored data when deployed to MP02.

Comparison with measured labels (A subset of MP02 test data)

Minimum Eucleadian distance to the nearest training point.

Out-of-training test samples.

Future Work

- To compare with kernel-based methods, e.g., Gaussian processes.
- To quantify uncertainty for non-Gaussian output distributions.
- To implement in decision-making for life-cycle management.

For questions and comments:

Nandar Hlaing mandar.hlaing@uliege.be

