The Problem of Overfitting

Solving the Problem of Overfitting Regularization

(b) There is a second order relation between *Y* and *x*.

Housing prices prediction

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$$

Housing prices prediction

$$h_{\theta}(x) = \theta_0 + \theta_1 \times \underbrace{frontage}_{\times} + \theta_2 \times \underbrace{depth}_{\times}$$

Polynomial regression

Polynomial regression

$$\rightarrow \theta_0 + \theta_1 x + \theta_2 x^2$$

Example: Linear regression (housing prices)

Example: Linear regression (housing prices)

Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0$, but fail to generalize to new examples (predict prices on new examples).

9

Example: Logistic regression

Example: Logistic regression

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$
(g = sigmoid function)

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 \overline{x_1} x_2)$$

$$g(\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{1}^{2} + \theta_{3}x_{1}^{2}x_{2} + \theta_{4}x_{1}^{2}x_{2}^{2} + \theta_{5}x_{1}^{2}x_{2}^{3} + \theta_{6}x_{1}^{3}x_{2} + \dots)$$

Exercise

- Consider the medical diagnosis problem of classifying tumors as malignant or benign. If a hypothesis h(x) has overfit the training set, it means that:
 - It makes accurate predictions for examples in the training set and generalizes well to make accurate predictions on new, previously unseen examples.
 - It does not make accurate predictions for examples in the training set, but it does generalize well to make accurate predictions on new, previously unseen examples.
 - It makes accurate predictions for examples in the training set, but it does not generalize well to make accurate predictions on new, previously unseen examples.
 - It does not make accurate predictions for examples in the training set and does not generalize well to make accurate predictions on new, previously unseen examples.

Addressing overfitting:

```
x_1 = \text{ size of house}
x_2 = \text{ no. of bedrooms}
x_3 = \text{ no. of floors}
x_4 = age of house
x_5 = \text{average income in neighborhood}
x_6 = \text{kitchen size}
x_{100}
```


Addressing overfitting:

Options:

- Reduce number of features.
 - Manually select which features to keep.
 - Model selection algorithm (later in course).

Addressing overfitting:

Options:

- Reduce number of features.
- Manually select which features to keep.
- Model selection algorithm (later in course).
- Regularization.
 - \rightarrow Keep all the features, but reduce magnitude/values of parameters θ_j .
 - Works well when we have a lot of features, each of which contributes a bit to predicting y.

Later...

Evaluating a Hypothesis Train Set, Test Set

Evaluating a Learning Algorithm

Advice for Applying Machine Learning

How to plot many features?

Evaluating your hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Fails to generalize to new examples not in training set.

```
x_1 =  size of house x_2 =  no. of bedrooms x_3 =  no. of floors x_4 =  age of house x_5 =  average income in neighborhood x_6 =  kitchen size
```

Evaluating your hypothesis

Dataset:

	Size	Price
20%	2104	400 $(x^{(1)}, y^{(1)})$
	1600	330 Training set $(x^{(2)}, y^{(2)})$
	2400	369
	1416	232
	3000	540 $(x^{(m)}, y^{(m)})$
	1985	300
	1534	315
30.1.	1427	199 $(x_{test}^{(1)}, y_{test}^{(1)})$
	1380	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	1494	243 Se+ (************************************
		$(x_{test}^{(m_{test})}, y_{test}^{(m_{test})})$

Exercise

- Suppose an implementation of linear regression (without regularization) is badly overfitting the training set.
- In this case, we would expect:
 - The training error $J(\theta)$ to be **low** and the test error $J_{test}(\theta)$ to be **high**
 - The training error $J(\theta)$ to be **low** and the test error $J_{test}(\theta)$ to be **low**
 - The training error $J(\theta)$ to be **high** and the test error $J_{test}(\theta)$ to be **low**
 - The training error $J(\theta)$ to be **high** and the test error $J_{test}(\theta)$ to be **high**

Procedure

- Training/testing procedure for linear regression
 - Learn parameter θ from training data by minimizing the training error J(θ)
 - Compute the test error for linear regression:

$$J_{\text{test}}(\Theta) = \frac{1}{2m_{\text{test}}} \left(\frac{h_{\Theta}(x_{\text{test}}) - y_{\text{test}}}{h_{\Theta}(x_{\text{test}})} \right)^{2}$$

Computer the test error for logistic regression

$$J_{test}(\theta) = -\frac{1}{m_{test}} \sum_{i=1}^{m_{test}} y_{test}^{(i)} \log h_{\theta}(x_{test}^{(i)}) + (1 - y_{test}^{(i)}) \log h_{\theta}(x_{test}^{(i)})$$

Training/testing procedure for logistic regression

 \Longrightarrow - Learn parameter heta from training data

Mtest

Compute test set error:

$$J_{test}(\theta) = -\frac{1}{m_{test}} \sum_{i=1}^{m_{test}} y_{test}^{(i)} \log h_{\theta}(x_{test}^{(i)}) + (1 - y_{test}^{(i)}) \log h_{\theta}(x_{test}^{(i)})$$

- Misclassification error (0/1 misclassification error):

Model Selection and Train/Validation/Test Sets

Evaluating a Learning Algorithm

Advice for Applying Machine Learning

Introduction

- Suppose you are left to decide what degree of polynomial to fit to a data set.
- So that what features to include that gives you a learning algorithm.
- Or suppose you'd like to choose the regularization parameter lambda for learning algorithm
- These are called model selection problems.

Introduction

- We've already seen a lot of times the problem of overfitting, in which just because a learning algorithm fits a training set well, that doesn't mean it's a good hypothesis.
- More generally, this is why the training set's error is not a good predictor for how well the hypothesis will do on new example.

Overfitting example

Once parameters $\theta_0, \theta_1, \ldots, \theta_4$ were fit to some set of data (training set), the error of the parameters as measured on that data (the training error $J(\theta)$) is likely to be lower than the actual generalization error.

Therefore it's an optimistic estimate for the real life error.

- $1. \quad h_{\theta}(x) = \theta_0 + \theta_1 x$
- 2. $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$
- 3. $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$ \vdots
- **10.** $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$

Choose
$$\theta_0 + \dots \theta_5 x^5 \leftarrow$$

How well does the model generalize? Report test set error $J_{test}(\theta^{(5)})$.

How well does the model generalize? Report test set error $J_{test}(\theta^{(5)})$.

Problem: $J_{test}(\overline{\theta}^{(5)})$ is likely to be an optimistic estimate of generalization error. I.e. our extra parameter (d = degree of polynomial) is fit to test set.

Evaluating your hypothesis

Dataset:

Size	Price
2104	400
1600	330
2400	369
1416	232
3000	540
1985	300
1534	315
1427	199
1380	212
1494	243

Evaluating your hypothesis

Dataset:

_	Size	Price
60%	2104	400
	1600	330
	2400	369 Trainy set
	1416	232
	3000	540
	1985	300
20%	1534	315 7 Cross variation 199) set (CU)
	1427	199 J set (CU)
20.1.	1380	212 } test set
	1494	243

Train/validation/test error

Training error:

$$\rightarrow J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cross Validation error:

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

Test error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

1. $h_{\theta}(x) = \theta_0 + \theta_1 x$ 2. $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$ 3. $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$ \vdots 10. $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$

Model selection CORRECTED

1.
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$
 \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2}$ \longrightarrow \bullet

2. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2}$ \longrightarrow \bullet

3. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{3}x^{3}$ \longrightarrow \bullet
 \vdots

10. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10}$ \longrightarrow \bullet
 \bullet

Find theta's using the TRAINING set, i.e., find thetas of all models that minimizes the error of the TRAINING set.

1.
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$
 $\longrightarrow \text{Min} \mathcal{I}(\mathbf{o}) \longrightarrow \mathcal{O}^{(1)} \longrightarrow \mathcal{I}_{\text{cu}}(\mathbf{o}^{(1)})$

2. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2}$ $\longrightarrow \mathcal{O}^{(2)} \longrightarrow \mathcal{I}_{\text{cu}}(\mathbf{o}^{(1)})$

3. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{3}x^{3}$ $\longrightarrow \mathcal{O}^{(3)} \longrightarrow \mathcal{I}_{\text{cu}}(\mathbf{o}^{(4)})$
 \vdots

10. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10}$ $\longrightarrow \mathcal{O}^{(3)} \longrightarrow \mathcal{I}_{\text{cu}}(\mathbf{o}^{(4)})$

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x \longrightarrow \text{Min} \mathcal{I}(\delta) \longrightarrow \mathcal{O}^{(1)} \longrightarrow \mathcal{I}_{cu}(\mathcal{O}^{(1)})$$

$$1. \quad h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{2}x^{2} \longrightarrow \mathcal{O}^{(2)} \longrightarrow \mathcal{I}_{cu}(\mathcal{O}^{(1)})$$

$$1. \quad h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{3}x^{3} \longrightarrow \mathcal{O}^{(2)} \longrightarrow \mathcal{I}_{cu}(\mathcal{O}^{(1)})$$

$$1. \quad h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{3}x^{3} \longrightarrow \mathcal{O}^{(2)} \longrightarrow \mathcal{I}_{cu}(\mathcal{O}^{(1)})$$

$$1. \quad h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{3}x^{3} \longrightarrow \mathcal{O}^{(2)} \longrightarrow \mathcal{I}_{cu}(\mathcal{O}^{(1)})$$

$$1. \quad h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{3}x^{3} \longrightarrow \mathcal{O}^{(2)} \longrightarrow \mathcal{I}_{cu}(\mathcal{O}^{(1)})$$

$$1. \quad h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10} \longrightarrow \mathcal{O}^{(2)} \longrightarrow \mathcal{I}_{cu}(\mathcal{O}^{(1)})$$

$$1. \quad h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10} \longrightarrow \mathcal{O}^{(2)} \longrightarrow \mathcal{I}_{cu}(\mathcal{O}^{(1)})$$

$$1. \quad h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10} \longrightarrow \mathcal{O}^{(2)} \longrightarrow \mathcal{I}_{cu}(\mathcal{O}^{(1)})$$

$$1. \quad h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10} \longrightarrow \mathcal{O}^{(2)} \longrightarrow$$

Pick
$$\theta_0 + \theta_1 x_1 + \cdots + \theta_4 x^4 \leftarrow$$

Estimate generalization error for test set $J_{test}(\theta^{(4)})$ \longleftarrow

Exercise

- Consider the model selection procedure where we choose the degree of polynomial using a cross validation set. For the final model (with parameters θ), we might generally expect $J_{CV}(\theta)$ to be lower than $J_{test}(\theta)$
 - An extra parameter (d, the degree of the polynomial) has been fit to the cross validation set.
 - An extra parameter (d, the degree of the polynomial) has been fit to the test set.
 - The cross validation set is usually smaller than the test set.
 - The cross validation set is usually larger than the test set.