

Indian Institute of Information Technology, Design and Manufacturing, Jabalpur

CS 3011: Artificial Intelligence

PDPM

Solving Problems by Searching

Instructors: Dr. Durgesh Singh

CSE Discipline, PDPM IIITDM, Jabalpur -482005

A* Search

- Idea: Avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
 - g(n) = exact cost so far to reach n
 - h(n) = estimated cost to goal from n
 - f(n) = estimated total cost of cheapest path through n to goal
- A* search uses an admissible heuristic:
 - $h(n) \le h^*(n)$ where $h^*(n)$ is the true cost from n
 - Also h(n) ≥ 0, and h(G)=0 for any goal G
 - E.g., h_{SLD}(n) is an admissible heuristic because it doesn't overestimate the actual road distance.

A* Search

- If we are trying to find the cheapest solution, a reasonable thing to try first is the node with the lowest value of g(n) + h(n)
- This strategy is more than just reasonable
 - Provided that h(n) satisfies certain conditions, A* using TREE search is both complete and optimal.

A* search example

Combining UCS and Greedy

- Uniform-cost orders by path cost, g(n)
- Greedy orders by heuristic value, h(n)

h=0

A* Search orders by the sum: f(n) = g(n) + h(n)

When should A* terminate?

Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

Is A* Optimal?

- What went wrong?
- We need estimates to be less than actual costs!

Admissible Heuristics

A heuristic h is admissible (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

■ Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal

A* Graph Search Gone Wrong?

State space graph

Search tree

Consistent heuristics

- A heuristic is consistent if for every node n, every successor n' of n generated by any action a,
- $h(n) \le c(n,a,n') + h(n')$
- `If h is consistent, we have
- f(n') = g(n') + h(n')
- = g(n) + c(n,a,n') + h(n')
- $\geq g(n) + h(n)$
- = f(n)
- i.e., f(n) is non-decreasing along any path.
- Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

Dominance

Definition: If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1

- Essentially, domination translates directly into efficiency:
- h2 is better for search.
- A* using h2 will never expand more nodes than A* using h1.

Properties of A*

- Complete? Yes
- Time? Exponential: O(b^m)
- Space? O(b^m): Keeps all nodes in memory
- Optimal? Yes