Data Mining Methods from data to insight

There is no such a thing as insight without a clear and concise question, as well as having a way to measure the success or failure of the answer obtained

Learning objective:

- Identify the core functionalities of data modelling in the data mining pipeline.
- Apply the Apriori algorithm for frequent itemset mining, among others

Data Mining: Four Views

Data Mining Pipeline

Technique View

- Frequent pattern analysis
- Classification & prediction
- o Clustering
- Anomaly detection
- Trend and evolution analysis

Frequent Pattern Analysis

- Frequent itemset
- Frequent sequence
- Frequent structure
- Association rules
- Correlation analysis

Classification

- Pre-defined classes
- Need training data
- Build model to distinguish classes

Prediction

- Numerical prediction (continuous value)
 - E.g., weather, stock price, traffic

Clustering

- No predefined classes
- Intra-cluster similarity
- Inter-cluster dissimilarity

Anomaly Detection

- Anomaly/outlier Differ from the "norm"
 - E.g., error, noise, fraud, extreme events

Daliana Liu · Following
Data Scientist, "The Data Scientist
Show" Podcast Host
17h · Edited · ⑤

Do NOT be a data scientist if you:

- 1. are easily frustrated when research doesn't yield results.
- 2. don't like to deal with vaguely defined problems.
- 3. only love the math and theory, but don't want to communicate with non-tech folks.

Note that I didn't say 'bad at math'. Everyone can learn tools to do math.

But to be a data scientist, you need the mindset to deal with ambiguity and uncertainty, so you can solve the business problem.

What are some other qualities you believe a data scientist must have?

*I share my about data science career here www.dalianaliu.com free to subscribe.

#datascience

Trend and Evolution Analysis

- Changes over time
 - ✓ Overall trend
 - ✓ Periodical patterns
 - ✓ Anomalies

Data Mining Methods

- Frequent pattern analysis
- Classification
- Clustering
- Outlier analysis

Data science skills

Range from

- o programming to design
- o mathematics to storytelling

The motivation – Data mining

- Deriving valuable insights from data
 - ✓ widely welcomed by businesses

Typical questions:

- What product will sell better in conjunction with another popular product?
- How can customers be encouraged to spend a longer time in an online portal?
- O What advertisement should be placed on what site?
- O How to determine if a retail transaction is valid?

The skills

- Both statistics and a strong business acumen
- Foundations in computer science, mathematics, modelling and programming
- Good communication skills & inquisitive mind

Inter alia

Sexiest job of the 21st century

- data scientist
- it is hard to find people with the right skills to fill in these roles
- this has lead to branding
 data scientists as Unicorns.

Good data scientist

a linear combination of some of the following traits:

- Curiosity
- Grasp of machine learning
- Data product building and management
- Effective communication of data insights
- Programming and data visualisation abilities
- Knowledge of statistics and probability
- Healthy skepticism, in the scientific tradition

Four pillars

- 1. Identify who the main stakeholders and clarify the lines of reporting.
- 2. To be able to work independently and productively
- 3. Identify the data to tackle a problem
 - o proper interpretation is not necessarily easy, and misrepresentation of the results can be very damaging.
- 4. Have the outcome always in mind

Technologies

- O Data Framework MapReduce, BigQuery, Hadoop, Spark
- Streaming data collection Kafka, Flume, Scribe
- Job scheduling Azkaban, Oozie
- o Big Data Query languages Pig, Hive
- O Data stores Voldemort, Cassandra, Neo4j, Hbase

Open Source Tools

- Python: Data manipulation, prototyping, scripting
- Apache Hadoop: Framework for processing big data
- Apache Mahout: Scalable machine-learning algorithms for Hadoop
- Spark: Cluster-computing framework for data analytics
- o R Project for Statistical Computing: Data manipulation and graphing
- Julia: High-performance technical computing
- o GitHub, Subversion: Software and model management tools
- O Ruby, Perl, OpenRefine: Prototyping and production scripting languages

The steps

- Question identification
- Data acquisition
- Data munging wrangling data janitor
- Model construction
- Representation
- Interaction