Amortizirana analiza

Tomaž Dobravec, Algoritmi in podatkovne strukture 2

Amortizirana analiza

- ♦ Amortizirana analiza pristop k ocenjevanju zahtevnosti algoritmov in podatkovnih struktur.
- ♦ Pogosto se zgodi, da je "worst-case" analiza (po krivici) preveč pesimistična.

- Amortizirano analizo uporabljamo za ocenjevanje zahtevnosti postopkov (bodisi algoritma bodisi operacij v podatkovnih strukturah)
- ♦ Amortizirana analiza ne ocenjuje posameznih operacij postopka, rezultat analize je ocena celote!
 - o čeprav so nekatere operacije postopka morda počasne, obstajajo tudi druge, ki so hitre;
 - o počasne in hitre operacije postopka skupaj v povprečju morda niti niso tako slabe.
- ♦ Amortizirana analiza skuša ceno dragih operacij postopka enakomerno porazdeliti med poceni operacije.
- ♦ Amortizirana analize ocenjuje zaporedje n operacij nekega postopka.
- \diamond Recimo, da imamo končen nabor operacij $O = \{o_1, o_2, ..., o_k\}$. Zahtevnost operacije $o \in O$ označimo s T_o .
 - Worst case analiza
 - Verjetnostna analiza
 - Amortizirana analiza

Vrste amortizirane analize in primeri

- ♦ Amortizirano analizo lahko izvajamo na več načinov, najpogosteje z uporabo ene izmed naslednjih metod:
 - Metoda vsote (aggregate method)
 - Metoda kopičenja bankirski pristop (accounting method)
 - Metoda potenciala fizikalni pristop (potential method)

- ♦ Prikaz delovanja posamezne metode bomo izvedli na dveh primerih:
 - o Dvojiški števec k-bitno polje A[0,1,...,k-1], vrednost števca: $x = \sum_{i=0}^{k-1} A[i] \cdot 2^i$ operacija povecaj () števec poveča za 1
 - Razširjen sklad
 push (S, x)
 pop (S)
 pop (S, k)

11	ortizirana analiza - metoda vsote
>	Clij : na konkretnem primeru in za konkretno funkcijo T (n) pokažemo, da je
	za vsak n cena zaporedja n operacij v najslabšem primeru enaka T (n).
	V najslabšem primeru je potem povprečna cena (amortizirana cena) posamezne operacije T(n)/n.
	Pri tej metodi se amortizirana cena nanaša na VSE operacije (vse imajo enako povprečno ceno); ne razlikujemo med različnimi operacijami (ena je dražja, druga cenejša).
A	
\rightarrow	Povzetek: z metodo vsote seštejemo prispevke VSEH operacij in jih delimo z n.

Amortizirana analiza - metoda kopičenja

- ♦ Metoda kopičenja "obiskuje" operacije po vrsti od prve proti zadnji (n-ti).
- ♦ Vsaki obiskani operaciji metoda "zaračuna" njen obstoj v zaporedju.
- ♦ Cena, ki jo mora operacija plačati, se imenuje "amortizirana cena".
- ♦ Amortizirana cena operacije je lahko višja ali nižja od realne cene operacije.

razlika se krije iz kredita prejšnjih operacij

razlika se shrani (kredit)

- ♦ Amortizirane cene posameznih operacij pri tej metodi se med seboj lahko razlikujejo.
- \Rightarrow Pomembno: za vsa zaporedja dolžine n mora veljati $\sum_{i=1}^{n} c_i \leq \sum_{i=1}^{n} \hat{c}_i$

 c_i označuje realno ceno i-te operacije, \widehat{c}_i pa njeno amortiziramo ceno

- ♦ Cilj: vsota amortiziranih cen zaporedja operacij je zgornja meja za vsoto realnih cen.
- ♦ Ne beležimo kredita posamezne operacije ampak le skupen kredit (potencial) celotne podatkovne strukture.
- $\diamondsuit \quad \text{Oznake: začetno stanje podatkovne strukture: } D_o, \text{stanje po i-ti operaciji: } D_i. \text{ Realna cena i-te operacije } c_i. \\$
- ♦ Funkcija Φ potencial (realno število) podatkovne strukture. $\Phi(D_i)$... potencial podatkovne strukture po i-ti operaciji.
- \diamond Amortizirana cena i-te operacije \hat{c}_i je definirana z $\hat{c}_i =$
- ♦ Amortizirana cena za zaporedje n operacij je zato:

$$\sum_{i=1}^n \hat{c}_i =$$

♦ Če je funkcija potenciala definirana tako, da je $\Phi(D_n) \ge \Phi(D_o)$, potem je **amortizirana cena zaporedja** zgornja meja za worst-case realne cene zaporedja.

- ♦ Ker v praksi ne vemo, koliko operacij bo v zaporedju, je praktična zahteva še $\Phi(D_i)$ ≥ $\Phi(D_o)$ za vsak i; v tem primeru namreč vemo, da smo vedno plačali dovolj za naslednjo operacijo.
- \diamond Čeprav je amortizirana cena odvisna od izbire funkcije Φ , je ob upoštevanju zgornjih zahtev vedno ZGORNJA meja za realno ceno zaporedja; ob smiselni in premišljeno izbrani funkciji potenciala, se zgornja meja lahko približa tesni meji.

Povzetek: za poljubno realno funkcijo Φ , ki določa "potencial" podatkovne strukture, in za katero velja $\Phi(D_i) \ge \Phi(D_o)$ za vsak i, lahko izračunamo amortizirane cene za posamezne operacije. Če smo imeli pri izbiri funkcije Φ "srečo", bodo tako naračunane amortizirane cene in njihova najslabša vsota prinesli pametno oceno za zgornjo mejo.

