

A Numerical Investigation of Stresses, Printing Efficiency, Printability, and Cell Viability in Nozzle Printheads for 3D Extrusion Bioprinting 3D押し出しバイオプリンティングに関する流体剪断応力、印刷効率、印刷適性、

細胞生存率に関する数値解析

ZHANG Colin M2 Okano Lab.

June 2023

Introduction to 3D Extrusion Bioprinting

- ► In the field of manufacturing tissues and organs, 3D extrusion bioprinting plays a pivotal role.
- ► This technique involves using bioinks, a unique type of ink containing living cells.
- ► A key feature of these bioinks is their shear-thinning behavior, where the viscosity decreases under an increased shear rate.
- ▶ Despite being the most popular devices for bioprinting, these systems have significant limitations¹:

Benefit	Drawback
Affordable and scalable	Limited printing resolution and speed
Ease of operation	Produce high stresses inside the needle
Deposit high cell densities	Low cell viability (40–80%)

Assessment Criteria of 3D extrusion bioprinting. 1

*CAD: computer-aided design.

Okano Lab. Rehearsal June 2023 1 / 15

¹For more details, see Y. S. Zhang et al., Nature Reviews Methods Primers, 1(1), pp. 1–20, 2021

Printing Assessment Criteria

- ► Controlling stresses in the needle is a key factor to balance:
 - Efficiency/printability
 - ► Cell viability²
- Printing efficiency
 - Extrusion speed
 - Needle moving speed
- Printability
 - Extrudability
 - Shape fidelity

Impediments:

- ▶ Difficult to experimentally observe stresses.
- ► Testing thousands of different bioinks is repetitive.
- ► The need to optimize cell viability, printing efficiency, and printability.³

Objectives:

- Performing numerical simulation to assess stresses, efficiency/printability, and cell viability.
- Investigating needle geometries and bioink's rheological properties to increase cell viability.

²Blaeser et al., Advanced Healthcare Materials, **5**(3), pp. 326–333, 2016

³H. Zhang et al., Advanced Functional Materials, 30(13), p. 1910573, 2020

Part I: Bioink Inside the Needle

Analytical Model of a Cylindrical Needle

Symbol	Description
$ au_{rz}$	Shear stress
η	Apparent viscosity
V_z	Velocity along z-axis
r	Variable radius
K	Consistency index
n	Flow index
$\dot{\gamma}$	Shear Rate
R	Needle radius
P	Pressure
ΔP_n	Pressure drop in needle
L_n	Needle length
Q	Volumetric flow rate

Assumptions:

- Incompressible power-law fluid
- No-slip smooth wall boundary
- Negligible gravity influence
- Fully developed laminar flow

Setup of analytical and simulation validations.

$$\tau_{rz} = \eta(\frac{\mathrm{d}V_z}{\mathrm{d}r}) = K\dot{\gamma}^n$$

$$\eta = K\dot{\gamma}^{n-1}$$
(2)

$$\eta = K\dot{\gamma}^{n-1} \tag{2}$$

Open∇FOAM[®] Simulation Model

► Incompressible continuity equation:

$$\nabla \cdot \boldsymbol{U} = 0$$

► Steady-state Navier-Stokes equations:

$$U \cdot \nabla U - \nabla \cdot (\frac{\eta}{\rho} \nabla U) = -\frac{\nabla P}{\rho}$$

► Poisson equation for pressure:

$$\frac{\nabla^2 P}{\rho} = \nabla \cdot (\frac{\eta}{\rho} \nabla^2 \boldsymbol{U} - \boldsymbol{U} \cdot \nabla \boldsymbol{U})$$

► Power law modified Reynolds number:

$$Re_{PL} = \frac{(2R)^n \bar{U}^{2-n}}{\frac{1}{2}K[(3n+1)/(4n)]^n 8^{n-1}}$$

► Shear rate (scalar):

$$\dot{\gamma} = \sqrt{\frac{1}{2}\nabla \boldsymbol{U}:\nabla \boldsymbol{U}}$$

► Power law with a viscosity limiter:

$$\eta = K\dot{\gamma}^{n-1}, \ \eta_{\min} \le \eta \le \eta_{\max}$$

Sy	mbol	Description
	$oldsymbol{U}$	Velocity vector
	\bar{U}	Mean velocity
	ρ	Fluid density
	:	Inner product

Simulation Setup

Parameters

- ▶ Needle Type: 90° and 45° cylindrical, 6.36° tapered, with volumetric flow rates (Q) of 50 μ L/s.
- ▶ **Bioink Type**: Alginate-based, chosen due to its wide commercial use, affordability, biocompatibility, and easy gelation process⁴.
- ▶ Bioink Properties: Contains 1 to 4% alginate (w/v) at 25 to 55 °C. Exhibits a consistency coefficient (K) of 29.86 Pa·sⁿ and a flow behavior index (n) of 0.46.
- ► Rheological behavior is predominantly driven by the disentanglement and elongation of polymer chains⁵.
- ► Solid line: non-Newtonian shear-thinning behavior.
- ▶ Dashed line: yield stress observed outside the needle.

⁴Piras and Smith, Journal of Materials Chemistry B,. **8**(36), pp. 8171–8188, 2020

Okano Lab. Rehearsal June 2023 5 / 15

⁵Cooke and Rosenzweig, APL Bioengineering, **5**(1), p. 011502, 2021

Stress Dependencies of Temperature

- ► The 90°, 45°, and tapered datasets represent different stress distributions under the influence of temperature changes.
- ► Temperature changes significantly affect the stress distribution.
- ightharpoonup The 2.5% (w/v) condition shows the effect of temperature change most noticeably.

Part II: Printed Bioink Strand

Printing Efficiency and Printability

► Printing Efficiency

- ► Extrusion Speed: the rate at which the bioink is pushed out of the nozzle during printing.
- ► **Needle moving speed:** the speed at which the nozzle or needle moves during printing.

Printability

- ► Extrudability: the ease with which the bioink can be extruded through the nozzle or needle during printing.
- ► **Shape Fidelity:** the ability of the printed structure to maintain its shape after deposition.

The Herschel–Bulkley Fluid Model^{5,6}

- lacktriangle Herschel-Bulkley fluid: $au = \boxed{\sigma_y} + K \dot{\gamma}^n$
- Nonlinear regression of experimental rheological data, where $T_0, T_1, T_2, C_0, C_1, C_2, a, b, d, f, g, h, i, j$, and m are constants:

$$K = a \exp\left(\frac{T_0}{T} - \frac{C_0}{C}\right) - b\left(\frac{T}{T_0} \frac{C}{C_0}\right) + d\left(\frac{T_0}{T}\right)$$

$$\sigma_y = f \exp\left(\frac{T_1}{T} - \frac{C}{C_1}\right) + g\left(\frac{T_1}{T} \frac{C}{C_1}\right)^{T/T_1} + h\left(\frac{T_1}{T}\right)$$

$$n = i \exp\left(-\frac{T_2}{T} - \frac{C_2}{C}\right) - j\left(\frac{T_2}{T} \frac{C_2}{C}\right) + m\left(\frac{T}{T_2}\right)$$

$$25~^{\circ}\text{C} \le T \le 55~^{\circ}\text{C}; 1\%~(\text{w/v}) \le C \le 4\%~(\text{w/v})$$

Symbol	Description
σ_y	Yield stress
T	Temperature
C	Mass concentration

Okano Lab. Rehearsal June 2023 8 / 15

⁵Sarker and Chen, Journal of Manufacturing Science and Engineering, 139(8), p. 081002, 2017

Experimental Validation on 2.5%~(w/v) Alginate-based Bioink

Governing Equations for Printed Bioink Strand

$$\nabla \cdot V = 0$$

(Incompressible continuity equation)

(Navier–Stokes equations)

(Volume fraction equation)

(Herschel-Bulkley fluid model)

$\boldsymbol{V} = \alpha \boldsymbol{V_1} + (1 - \alpha) \boldsymbol{V_2}$	
$\rho = \alpha \rho_1 + (1 - \alpha)\rho_2$	
$\eta = \alpha \eta_1 + (1 - \alpha) \eta_2$	
$F_{\sigma} = \sigma \kappa \nabla \alpha$	
$\kappa = -\nabla \cdot (\nabla \alpha / \nabla \alpha)$	

Symbol	Description
\overline{V}	Velocity vector of both phases (1 & 2)
t	Time
$oldsymbol{F_{\sigma}}$	Continuum surface force
σ	Surface tension
κ	Mean curvature of the free surface
α	Phase fraction $(0 \le \alpha \le 1)$
$oldsymbol{g}$	Gravitational acceleration
η_0	Viscosity at a low shear rate

Assessment of Efficiency/Printability

- Extrudability and shape fidelity indicate the degree of dimensional faithfulness of the printed object vs. computer-aided design (CAD).⁶
- Analytical Model

$$D = \sqrt{\frac{4Q}{\pi V_m}} \sqrt{\frac{\text{Volumetric}}{\text{flow rate}}}$$
 Strand diameter Horizontal needle moving speed}

Assumptions:

- Perfect cylindrical strand
- No spreading (2D)

 $\rightarrow D \approx 3.57$ mm, $D_{\text{simulation}} \approx 2.90$ mm (81.1%)

Okano Lab. | Rehearsal | June 2023 | 11 / 15

[►] Simulation Setup

⁶Schwab et al., Chemical Reviews, **120**(19), pp. 11028-11055, 2020

Assessment of Printability (Shape Fidelity & Shear Stress, kPa)

- \blacktriangleright Printing speed is set to 1 cm/s with a needle radius of 400 μ m.
- ▶ Bioink's shape fidelity (red color) under various temperatures is compared.
- ► At higher temperatures (45 °C to 55 °C), bioink starts to deform easily due to low yield stress.

 Okano Lab.
 Rehearsal
 June 2023
 12 / 15

Assessment of Cell Viability (Uniform Cell Suspension)

• Existing model (R^2 of 0.859; human fibroblast; size $\sim 30 \mu \text{m}$)⁷:

$$\qquad \qquad \blacktriangleright \quad V_{\mathsf{fibroblast}}(\tau_w, t_r, \eta) = 145.753 - 0.0133752 * \tau_w - 0.405308 * t_r + 0.00642919 * \eta$$

• $t_{\rm r.~simulation} = L_n/\bar{U} \approx 130~{\rm ms}$

Symbol	Description
V	Viable cells ratio (%)
$ au_w$	Wall shear stress (Pa)
t_r	Residence time (ms)
η	Apparent viscosity (Pa·s)

- ► Cell types and shear stress⁸
 - ▶ 5000 Pa \rightarrow fibroblasts' viability drop below 80% over 30 ms.
 - ► 160 Pa → detrimental to chondrocyte's viability.

 Okano Lab.
 Rehearsal
 June 2023
 13 / 15

⁷Lemarié et al., *Bioprinting*, **21**(2021), e00119, 2021

⁸Webb and Doyle, *Bioprinting*, **8**(2017), pp. 8–12, 2017

Assessment of Cell Viability in Different Needle Types

- ▶ 90° Cylindrical Needle: Exhibits a lower cell viability region primarily in the center needle inlet area, indicating a higher stress area which could harm cells.
- ▶ 45° Cylindrical Needle: Lower cell viability is observed predominantly around the needle inlet wall, suggesting an increased cell death due to shearing stress at the interface.
- ► **Tapered Needle**: Shows comparatively higher cell viability across its volume, indicating its potential for higher performance in bioprinting applications.

 90° cylindrical, 45° cylindrical, and tapered

Conclusion

- Extensional stress (along the center needle inlet region) has the most detrimental effect on cells, despite small affected areas.
- ► Higher temperatures (45 °C-55 °C) reduce shear stress exerted on bioink when printing.
- ► Shape fidelity degrades with the temperature increase, indicating the need for a controlled printing environment.
- Among the three main factors (shear stress, residence time, and apparent viscosity) that influence cell viability, shear stress and residence time exhibit a significantly negative impact on cell viability.
- ▶ Alginate-based bioinks offer promising results due to their cost-effectiveness, biocompatibility, and easy gelation.

Next Step:

- ► Acquiring experimental data to train the machine learning model.
- ► Finalizing thesis.

References

Blaeser, Andreas et al. (2016). "Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity". In: *Advanced Healthcare Materials* 5.3, pp. 326–333. ISSN: 2192-2659.

Cooke, Megan E. and Derek H. Rosenzweig (Mar. 2021). "The rheology of direct and suspended extrusion bioprinting". In: *APL Bioengineering* 5.1, p. 011502. ISSN: 2473-2877.

Lemarié, Lucas et al. (Mar. 2021). "Rheology, simulation and data analysis toward bioprinting cell viability awareness". en. In: *Bioprinting* 21.2021, e00119. ISSN: 2405-8866.

Piras, Carmen C. and David K. Smith (Sept. 2020). "Multicomponent polysaccharide alginate-based bioinks". en. In: *Journal of Materials Chemistry B* 8.36, pp. 8171–8188. ISSN: 2050-7518.

Sarker, Md. and X. B. Chen (Apr. 2017). "Modeling the Flow Behavior and Flow Rate of Medium Viscosity Alginate for Scaffold Fabrication With a Three-Dimensional Bioplotter". In: *Journal of Manufacturing Science and Engineering* 139.8, p. 081002. ISSN: 1087-1357.

Schwab, Andrea et al. (Oct. 2020). "Printability and Shape Fidelity of Bioinks in 3D Bioprinting". In: Chemical Reviews 120.19, pp. 11028–11055. ISSN: 0009-2665.

Webb, Braeden and Barry J. Doyle (Dec. 2017). "Parameter optimization for 3D bioprinting of hydrogels". en. In: *Bioprinting* 8.2017, pp. 8–12. ISSN: 2405-8866.

Zhang, Hua et al. (2020). "Direct 3D Printed Biomimetic Scaffolds Based on Hydrogel Microparticles for Cell Spheroid Growth". en. In: *Advanced Functional Materials* 30.13, p. 1910573. ISSN: 1616-3028.

Zhang, Yu Shrike et al. (Nov. 2021). "3D extrusion bioprinting". en. In: *Nature Reviews Methods Primers* 1.1, pp. 1–20. ISSN: 2662-8449.