Technische Universität München Physik Department

Theoretische Physik T39 Prof. Norbert Kaiser Stefan Petschauer

Zwischenklausur zur Theoretischen Physik 2: Elektrodynamik

am 21.12.2012

Name:		
Matrikelnummer:		

Aufgabe Nr.:	1	2	3	4	5	Σ
Punktezahl:	10	10	10	10	10	50
Davon erreicht:	-					

- Bitte schreiben Sie leserlich Ihren **Namen** und Ihre **Matrikelnummer** auf diese Seite sowie auf jeden beschriebenen Papierbogen.
- Verwenden Sie bitte pro Aufgabe eine neue Seite.
- Geben Sie immer den Lösungsweg an.
- Lesen Sie sich die Aufgabenstellungen zunächst aufmerksam durch!
- Diese Klausur besteht aus **5 Aufgaben**. Insgesamt können **50 Punkte** erreicht werden.
- Die Bearbeitungszeit ist 90 Minuten.

Eine ebene Leiterschleife besteht aus zwei zur x-Achse parallelen (halb unendlich langen) Stücken im Abstand 2R und einem Halbkreisbogen mit dem Radius R. Durch diese Drahtschleife fließt ein Strom I mit einem Umlaufsinn, wie in untenstehender Abbildung gezeigt. Berechnen Sie das von dieser Anordnung erzeugte Magnetfeld \vec{B}_0 im Mittelpunkt des Halbkreises. Letzterer ist als der Koordinatenursprung $\vec{0}$ gewählt.

Hinweis: Sie können das folgende (unbestimmte) Integral verwenden: $\int dx \, R^2 (x^2 + R^2)^{-3/2} = x/\sqrt{x^2 + R^2}.$

Zwei (zur xy-Ebene) parallele, isolierte, geladene Platten mit Abstand a voneinander erzeugen ein homogenes elektrisches Feld $\vec{E}_0 = (0, 0, E_0)$ (siehe Abbildung). Der Außenraum ist feldfrei.

- (a) (3 Punkte) Bestimmen Sie die Flächenladungsdichten $\sigma^{(\pm)}$ auf den beiden Platten.
- (b) (2 Punkte) Welche Potentialdifferenz U besteht zwischen den beiden Platten?

Nun werde der Raum zwischen den beiden geladenen Platten durch ein homogenes Dielektrikum mit $\epsilon > 1$ vollständig ausgefüllt.

- (c) (2 Punkte) Welchen Wert \vec{E} nimmt das elektrische Feld im Dielektrikum an?
- (d) (3 Punkte) Berechnen Sie die Polarisationsflächenladungsdichten $\sigma_{\rm pol}^{(\pm)}$ auf dem Dielektrikum.

Aufgabe 310 Punkte

Eine ebene Leiterschleife L_1 (mit Strom I_1) vom Flächeninhalt A liegt in der xy-Ebene um den Ursprung zentriert. Eine zweite Leiterschleife L_2 (mit Strom I_2) gleicher Bauart befindet sich:

- (a) (5 Punkte) längs der z-Achse parallel verschoben in einem sehr großen Abstand $z \gg \sqrt{A}$ von L_1 ;
- (b) (5 Punkte) längs der x-Achse verschoben in einem sehr großen Abstand $x\gg \sqrt{A}$ von L_1 .

Bestimmen Sie in beiden Fällen die Kraft \vec{F}_{21} in Dipol-Näherung, die die Leiterschleife L_1 auf L_2 ausübt. Hinweis: Das Wechselwirkungspotential zweier magnetischer Dipole \vec{m}_1 und \vec{m}_2 in der Relativposition \vec{r} hat die Form:

$$W_{12} = \frac{\mu_0}{4\pi} \left\{ \frac{\vec{m}_1 \cdot \vec{m}_2}{|\vec{r}|^3} - \frac{3(\vec{m}_1 \cdot \vec{r})(\vec{m}_2 \cdot \vec{r})}{|\vec{r}|^5} \right\}.$$

Ein elektrischer Dipol $\vec{p}=(0,0,p)$ befindet sich am Punkt $\vec{a}=(0,0,a)$ über einer (in der xy-Ebene liegenden) geerdeten Metallplatte. Welche Kraft $\vec{F}\sim\vec{e}_z$ wirkt auf den Dipol?

 $\it Hinweis$: Stellen Sie den elektrischen Dipol durch zwei entgegensetzte Punktladungen $\pm q$ mit sehr kleinem Abstand δ dar und benutzen Sie die Methode der Spiegelladungen.

Sie können die Taylorentwicklung $(1+x)^{-n} = 1 - nx + \frac{n}{2}(n+1)x^2 + \mathcal{O}(x^3)$ verwenden.

Eine Kugelschale mit Innenradius R und Außenradius 2R ist homogen mit der Gesamtladung Q geladen.

- (a) (5 Punkte) Berechnen Sie für das radialsymmetrische elektrische Feld $\vec{E}(\vec{r}) = \vec{e_r} E(r)$ die abstandsabhängige Feldstärke E(r).
- (b) (5 Punkte) Welche Arbeit W musste aufgewendet werden, um die Kugelschale aufzuladen? Hinweis: Substituieren Sie r = sR. Zur Kontrolle: $W = \alpha Q^2/(8\pi\epsilon_0 R)$ mit $\alpha = 141/245$.