Krish Sukhani

TE IT

Batch: D

2018140059

ML - Exp 4 - Wine Quality Classification Daataset

```
#importing necessary libraries
import numpy as np
import pandas as pd
import warnings
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.neural_network import MLPClassifier
import matplotlib.pyplot as plt
```

from google.colab import drive drive.mount("/content/gdrive")

Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mount("/content/gdrive", force_remount=True).

wine = pd.read_csv('/content/gdrive/My Drive/datasets/wine.csv',encoding= 'unicode_escape')

wine.head()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	bad
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	bad
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	bad
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	good
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	bad

wine.isnull().sum()

```
fixed acidity
                       0
volatile acidity
citric acid
residual sugar
chlorides
free sulfur dioxide
total sulfur dioxide
density
sulphates
alcohol
quality
dtype: int64
```

plt.figure(figsize=(40,25))

plt.subplots_adjust(left=0, bottom=0.5, right=0.9, top=0.9, wspace=0.5, hspace=0.8)

plt.subplot(141)

plt.title('Percentage of good and bad quality wine',fontsize = 20) # wine['quality'].value_counts().plot.pie(autopct="%1.1f%%")

wine['quality'].replace({'bad': 0 , 'good': 1}, inplace=True)

wine.head()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	0
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	0
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	0
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	1
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	0

Y = wine['quality']

Y

X = wine.drop(['quality'],axis = 1)

X

```
y = wine['quality'].values
```

y = y.reshape(-1,1)

x = wine.drop(['quality'],axis = 1)

x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.3,random_state=100) y_train = y_train.reshape(-1,1)

y_test = y_test.reshape(-1,1) print("x_train: ",x_train.shape) print("x_test: ",x_test.shape) print("y_train: ",y_train.shape) print("y_test: ",y_test.shape) x_train: (1119, 11) x_test: (480, 11)

y_train: (1119, 1) y_test: (480, 1)

from sklearn.neural_network import MLPClassifier

classifier = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(10, 3), random_state=2)

classifier.fit(x_train, y_train)

y_pred = classifier.predict(x_test)

print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

Accuracy: 0.53333333333333333 /usr/local/lib/python3.6/dist-packages/sklearn/neural_network/_multilayer_perceptron.py:934: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for exam y = column_or_1d(y, warn=True)

plt.figure(figsize=(12,10))

sns.heatmap(wine.corr(),annot=True)

```
<matplotlib.axes._subplots.AxesSubplot at 0x7f5668ffba90>
                                         0.11 0.094 -0.15 -0.11 0.67 -0.68
                                                                                0.18 -0.062 0.095
          fixed acidity - 1
                                   -0.55 0.0019 0.061 -0.011 0.076 0.022 0.23 -0.26 -0.2 -0.32
                                                                                                           - 0.8
         volatile acidity -
                                               0.2 -0.061 0.036 0.36 -0.54 0.31 0.11 0.16
            citric acid -
                                                                                                           - 0.6
                      0.11 0.0019 0.14
                                                0.056 0.19 0.2 0.36 -0.086 0.0055 0.042 -0.0022
         residual sugar -
                                                                                                           - 0.4
             chlorides - 0.094 0.061 0.2 0.056
                                                     0.0056 0.047 0.2 -0.27
                                                                                     -0.22 -0.11
      free sulfur dioxide - -0.15 -0.011 -0.061 0.19 0.0056
                                                                  -0.022 0.07 0.052 -0.069 -0.062
                                                                                                           - 0.2
                      -0.11 0.076 0.036 0.2 0.047 0.67
                                                                  0.071 -0.066 0.043 -0.21 -0.23
      total sulfur dioxide -
                                                                                                           - 0.0
                            0.022  0.36  0.36  0.2  -0.022  0.071
              density -
                                        -0.086 -0.27 0.07 -0.066 -0.34
                                                                                -0.2 0.21 -0.0033
                  pH -
                                                                                                           -0.2
                      0.18 -0.26 0.31 0.0055 0.37 0.052 0.043 0.15 -0.2
                                                                                     0.094 0.22
                                                                                                           -0.4
              alcohol - -0.062 -0.2 0.11 0.042 -0.22 -0.069 -0.21 -0.5 0.21 0.094
                                                                                                            -0.6
              quality - 0.095 -0.32 0.16 -0.0022 -0.11 -0.062 -0.23 -0.16 -0.0033 0.22 0.43
                                                       \Xi
from sklearn.decomposition import PCA
```

from sklearn.preprocessing import StandardScaler

scaler=StandardScaler()

x_train, y_train=scaler.fit_transform(x_train),scaler.fit_transform(y_train)

pca=PCA(n_components=2)

x_pca=scaler.fit_transform(x)

m=pca.fit_transform(x_pca)

m_df=pd.DataFrame(data = m, columns= ['PC 1', 'PC 2'])

final_df = pd.concat([m_df, wine[['quality']]], axis=1)

final_df.head()

quality	PC 2	PC 1	
0	0.450950	-1.619530	0
0	1.856553	-0.799170	1
0	0.882039	-0.748479	2
1	-0.269976	2.357673	3
0	0.450950	-1.619530	4

pca.explained_variance_ratio_

```
array([0.28173931, 0.1750827 ])
```

```
fig=plt.figure(figsize=(8,8))
ax=fig.add_subplot(1,1,1)
ax.set_xlabel('PC 1',fontsize = 15)
ax.set_ylabel('PC 2',fontsize = 15)
targets = [0,1]
colors=['r','g']
for target , color in zip(targets, colors):
 indicesToKeep = final_df['quality'] == target
 ax.scatter(final_df.loc[indicesToKeep,'PC 1']
            ,final_df.loc[indicesToKeep,'PC 2']
            ,c = color
             ,s = 50)
ax.legend(targets)
```



```
y = final_df['quality'].values
```

y = y.reshape(-1,1)

x = final_df.drop(['quality'],axis = 1)

x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.3,random_state=100)

classifier = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(10, 3), random_state=2)

```
classifier.fit(x_train, y_train)
y pred = classifier.predict(x test)
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
```

y = column_or_1d(y, warn=True)

/usr/local/lib/python3.6/dist-packages/sklearn/neural_network/_multilayer_perceptron.py:934: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for exam

Accuracy: 0.6375 /usr/local/lib/python3.6/dist-packages/sklearn/neural_network/_multilayer_perceptron.py:470: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:

https://scikit-learn.org/stable/modules/preprocessing.html

self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter)