Paper 2

Que	nestion Generic Scheme Illustrative Scheme		Illustrative Scheme	Max Mark	
1	a		1		
•1	SS	find gradient of AB	•1	$m_{AB}=1$	
•2	pd	find perpendicular gradient	•2	$m_{perp} = -1$ stated or implied by \bullet^4	
•3	pd	find midpoint of AB	•3	$(4,1)$ stated or implied by \bullet^4	
•4	pd	obtain equation	•4	y-1 = -1(x-4)	4

Notes:

- 1. 4 is only available as a consequence of using a perpendicular gradient **and** a midpoint.
- 2. The gradient must appear in simplified form at 4 stage for 4 to be awarded.

Commonly Observed Responses:

Candidate A

$$m_{\mathrm{AB}} = -1$$
 • 1 X

$$m_{\text{perp}} = 1$$
 • 2

$$y-1=1(x-4) \Rightarrow y=x-3 \quad \bullet^4 \checkmark$$

Leading to part (b)

$$y-x=-3$$

$$y + 2x = 6$$

$$\bullet^7$$
 and \bullet^8 are not available as $A = T = (3,0)$

Question		Generic Scheme		Illustrative Scheme	
1	b		<u> </u>		
•5	SS	know to solve simultaneously	•5	y + 2x = 6 $y + x = 5$	
•6	pd	solve correctly for x and y	•6	x = 1, y = 4	2

Candidate B

Part (a)
$$y-1=-1(x-4)$$
 $y=-x+3$ error

Part (b)
$$y+2x=6$$
 and $y+x=3$ • 5

$$x = 3$$
, $y = 0$ • 6 • correct strategy used, pd mark not available

1 c

- •7 know and use $m = \tan \theta$
- pd calculate angle

$\tan \theta = -2$

•8 116·6° accept 1170 or 2.03 radians 2

Commonly Observed Responses:

Candidate C

$$m_{\rm AT} = -\frac{1}{2}$$

base angle = $26 \cdot 6^{\circ}$

 \Rightarrow angle = 90+26·6=116·6° \bullet ⁸ X

 $m_{\Delta T} = 2$

angle = $\tan^{-1}(2) = 63 \cdot 4^{\circ}$ • 8

Candidate D

Candidate E:

Part (a)

$$m_{AB} = \frac{2-0}{5-3} = \frac{2}{8} = \frac{1}{4}$$
 • 1 X

$$m_{\text{perp}} = -4$$

Midpoint of AB (4, 1) \bullet^3 \checkmark

$$y-1=-4(x-1) \qquad \bullet^4 \checkmark$$

$$y + 4x - 5$$

Part (b)

$$y+4x-5=0 y+2x+6=0$$
•⁵ X \Rightarrow
$$y+2x=-6 y+4x=-5$$

$$\Rightarrow 2x = 1, \quad x = \frac{1}{2}, \quad y = -7$$

• is a strategy mark. The correct strategy is to solve the **given equation** with the equation from part (a) simultaneously. • 5 is not awarded as the given equation has not been used.

The equation obtained at stage \bullet^4 , has been rearranged incorrectly in part (b). The next pd mark, •⁶, is therefore not awarded.

Question		Generic Scheme	Illustrative Scheme		Max Mark
2					
•1	SS	know to and differentiate	•1	$4x^3 - 6x^2$	
•2	ic	find gradient	•2	8	
•3	pd	find y-coordinate	•3	5	
•4	ic	state equation of tangent	•4	y-5=8(x-2)	4

1. • 4 is only available if an attempt has been made to find the gradient from differentiation **and** calculating the *y*-coordinate by substitution into the original equation.

Commonly Observed Responses:

Candidate A

 $\bullet^1 \checkmark \bullet^2 \checkmark \bullet^3 \checkmark$

using y = mx + c

x = 2, y = 5, m = 8

 \Rightarrow 5=8×2+c

 $\Rightarrow c = -11$

●⁴ ✓

y = 8x - 11

Question		Generic Scheme	Illustrative Scheme	Max Mark
3	a			Wiaik
•1	ic pd	interpret notation a correct expression	•¹ $f(x+3)$ stated or implied by •² •² $=(x+3)(x+2)+q$ OR $=(x+3)^2-(x+3)+q$ or equivalent	2

1. Special Case: \bullet^1 is for substituting (x+3) for x thus, treat x+3(x+3-1)+q as bad form.

Commonly Observed Responses:

Candidate A		Candidate B	
$f(g(x)) = x+3(x+3-1)+q$ $= x^2+5x+6+q$	•¹ ✓ •² ✓ •³ ✓	f(g(x)) = x+3(x+3-1)+q = 4x+6+q	•¹ ✓ •² X
Candidate C		Candidate D	
$f(g(x)) = x+3(x+3-1)+q$ $= (x+3)^2 - x+3+q$	•¹ ✓	$f(g(x)) = (x+3)(x+3-1)+q$ $= (x+3)^2 - x + 3 + q$	•¹ ✓ •² ✓
$x^2 + 5x + 6 + q = 0$	$\bullet^2 \checkmark \bullet^3 \checkmark$	$x^2 + 5x + 12 + q = 0$	• ³ X

Candidate E: using g(f(x))

$$g(f(x)) = g(x(x-1)+q)$$
 $= x(x-1)+q+3$

Leading to

 $a^{1} \times a^{2} - x + q + 3 = 0$
 $b^{2} - 4ac = (-1)^{2} - 4 \times 1 \times (q+3)$
 $a^{4} \times a^{4} \times a$

Question		Generic Scheme	Illustrative Scheme	Max Mark
3	b			
•3	pd	Method 1 write in standard quadratic form	Method 1 • $x^2 + 5x + 6 + q = 0$	
•4	ic	use discriminant	•4 $b^2 - 4ac = 5^2 - 4 \times 1 \times (6+q)$	
•5	pd	simplify and equate to zero	$\bullet^5 \qquad \Rightarrow 25 - 24 - 4q = 0$	
•6	pd	find value of q	$\bullet^6 \qquad q = \frac{1}{4}$	4
		Method 2	Method 2	
•3	pd	write in standard quadratic form	$\bullet^3 \qquad x^2 + 5x + 6 + q = 0$	
•4	ic	complete the square	$\int e^4 \left(x + \frac{5}{2}\right)^2 - \frac{25}{4} + 6 + q = 0$	
•5	pd	equate to zero	$-\frac{25}{4} + 6 + q = 0$	
•6	pd	find value of q	$\bullet^6 \qquad q = \frac{1}{4}$	
		Method 3	Method 3	
•3	pd	write in standard quadratic form	• $f(g(x)) = x^2 + 5x + 6 + q = 0$	
•4	ic	geometric interpretation	• equal roots so touches x -axis at SP	
•5	pd	differentiates to obtain x	•5 $\Rightarrow \frac{dy}{dx} = 2x + 5 = 0$	
•6	pd	find value of q	$x = -\frac{5}{2}$ •6	

- 2. Do not penalise the omission of = 0 at = 0.
- 3. In Method 1 a=1, b=5, c=6+q is sufficient for \bullet^3 .
- 4. Candidates who assume '=0' and follow through to a correct value of q, \bullet^6 is still available. In Methods 1 and 2'=0' must appear at \bullet^4 or \bullet^5 for \bullet^5 to be awarded.
- 5. If the expression obtained at \bullet^3 is not a quadratic then \bullet^3 , \bullet^4 , \bullet^5 and \bullet^6 are not available.

Que	estion	Generic Scheme		Illustrative Scheme	Max			
					Mark			
Throughout this question treat coordinates written as components, and vice versa, as bad								
fori	m.							
4	a							
•1	pd	states coordinates of C	\bullet^1	C(11,12,6)				
•2	pd	states coordinates of D	•2	D(8,8,4)	2			
N.T. (

- 1. Accept x=11, y=12 and z=6 for \bullet^1 and x=8, y=8 and z=4 for \bullet^2 .
- 2. For candidates who write the coordinates as Cartesian triples and omit brackets in both cases, ●² is not available.

4	b			
•3	pd	finds \overrightarrow{CB}	(0)	
			● ³ −8	
			$\left(-4\right)$	
•4	pd	finds \overrightarrow{CD}	(-3)	2
	1		$ \bullet^4 $ $ -4 $	
			$\left(-2\right)$	

Notes:

3. For candidates who find both \overrightarrow{BC} and \overrightarrow{DC} , only \bullet^4 is available (repeated error).

4	c				
•5	SS	know to use scalar product applied to the correct angle	•5	$\cos \widehat{BCD} = \frac{\overrightarrow{CB}.\overrightarrow{CD}}{\left \overrightarrow{CB}\right \left \overrightarrow{CD}\right }$	
				stated or implied by •9	
•6	pd	find scalar product	•6	40	
•7	pd	find $ \overrightarrow{CB} $	•7	$\sqrt{80}$	
•8	pd	find $ \overrightarrow{CD} $	•8	$\sqrt{29}$	
•9	pd	find angle	•9	33·9°	5

- 4. 5 is not available for candidates who choose to evaluate an incorrect angle.
- 5. 9 accept 33·8 to 34 degrees or 0·59 to 0·6 radians.
- 6. If candidates do not attempt 9, then 5 is only available if the formula quoted relates to the labelling in the question.
- 7. \bullet is only available as a result of using a valid strategy.
- 8. some reference to the labelling of the diagram **must** be made within their solution to part (c), to indicate they are attempting to find the correct angle.

Candidate A: Cosine Rule

$$\cos B\hat{C}D = \frac{CB^2 + CD^2 - BD^2}{2 \times CB \times CD}$$

$$CB = \sqrt{80}$$
, $CD = \sqrt{29}$, $BD = \sqrt{29}$ $\bullet^6 \checkmark \bullet^7 \checkmark \bullet^8$

Candidate B

$$\cos \hat{BCD} = \frac{\overline{BC.CD}}{|\overline{BC}| \times |\overline{CD}|}$$

$$\overrightarrow{BC}.\overrightarrow{CD} = -40$$

$$|\overrightarrow{BC}| = \sqrt{80}$$
, $|\overrightarrow{CD}| = \sqrt{29}$

6 🗸

Candidate C

$$\cos B\hat{O}D = \frac{\overrightarrow{OB.OD}}{|\overrightarrow{OB}| \times |\overrightarrow{OD}|}$$

$$\overrightarrow{OB}.\overrightarrow{OD} = 128$$

$$|\overrightarrow{OB}| = \sqrt{141}$$
, $|\overrightarrow{OD}| = 12$

$$26 \cdot 1^{o}$$
 or $0 \cdot 46$ radians

Candidate D

$$\cos C \hat{B}D = \frac{\overline{BC}.\overline{BD}}{|\overline{BC}| \times |\overline{BD}|}$$

$$\overrightarrow{BC}.\overrightarrow{BD} = 40$$

$$\left| \overrightarrow{BC} \right| = \sqrt{80}$$
 , $\left| \overrightarrow{BD} \right| = \sqrt{29}$

Candidate E

$$\cos \hat{BOC} = \frac{\overline{OB.OC}}{\overline{OB} \times \overline{OC}}$$

$$\overrightarrow{OB}.\overrightarrow{OC} = 181$$

$$|\overrightarrow{OB}| = \sqrt{141}$$
, $|\overrightarrow{OC}| = \sqrt{301}$

 28.5° or 0.50 radians

Candidate F

$$\cos \hat{BCD} = \frac{BC.DC}{|BC| \times |DC|}$$

this is an acceptable form for the scalar product.

Question		Generic Scheme		Illustrative Scheme	Max Mark
5			•		
•1	SS	start to integrate	•1	$\frac{1}{1/2}()^{1/2}$	
•2	pd	complete integration	•2	$\dots \times \frac{1}{3}$	
•3	pd	process limits		$\frac{2}{3}(3t+4)^{\frac{1}{2}} - \frac{2}{3}(3(4)+4)^{\frac{1}{2}}$	
•4	pd	start to solve equation	•4	$(3t+4)^{\frac{1}{2}} = 7$ t = 15	
•5	pd	solve for <i>t</i>	•5	t = 15	5

- \bullet ³ is awarded for correct substitution leading to F(t) F(4) where F(x) is the candidates attempt
- to integrate $(3x+4)^{-\frac{1}{2}}$. For substituting into the original function 3 is unavailable.
- 3. 5 is only available as a consequence of squaring both sides of an equation.
- The integral obtained must contain a non integer power for \bullet^4 and \bullet^5 to be available.
- 5. Do not penalise the inclusion of +c.
- 6. Incorrect expansion of $(...)^{-\frac{1}{2}}$ at stage \bullet^1 , only \bullet^3 is available as follow through. Incorrect expansion of $(...)^{\frac{1}{2}}$ at stage \bullet^4 , \bullet^4 and \bullet^5 are not available.

Commonly Observed Responses:

Candidate A: Forgetting the $\frac{1}{3}$

$$\left[2(3x+4)^{\frac{1}{2}}\right]_{4}^{t} = 2$$
• 1 \checkmark • 2 \checkmark

$$\left(2(3t+4)^{\frac{1}{2}}\right) - \left(2(3(4)+4)^{\frac{1}{2}}\right) = 2$$

$$(3t+4)^{\frac{1}{2}} = 5$$

$$t = 7$$

Candidate B

Candidate C

$$\left[\frac{(3x+4)^{\frac{1}{2}}}{\frac{1}{2}} \times 3\right]_{4}^{t} = 2$$
• \(^1 \sqrt{\cdot \cdot \

$$\left[\frac{2}{3}(3x+4)^{\frac{1}{2}}\right]_{4}^{t} = 2$$

$$\left[\frac{2}{3}(3t+4)^{\frac{1}{2}}\right] - \left[\frac{2}{3}(3(4)+4)^{\frac{1}{2}}\right] = 2$$

$$\left(3t+4\right)^{\frac{1}{2}}=7$$

Candidate D

$$\begin{bmatrix}
-\frac{3}{2}(3x+4)^{-\frac{3}{2}} \end{bmatrix}_{4}^{t} = 2$$

$$-\frac{3}{2}(3t+4)^{-\frac{3}{2}} - \left(-\frac{3}{2} \times 16^{-\frac{3}{2}}\right) = 2$$

$$(3t+4)^{\frac{3}{2}} = -\frac{192}{253}$$
decimal equivalent not accepted

$$t = -1.056$$

Qu	Question		Generic Scheme	Illustrative Scheme	Max Mark
6					
	•1	SS	use correct double angle formula		
	•2	SS	arrange in standard quadratic form	$\bullet^2 4\sin^2 x + \sin x - 3 = 0$	
	•3	ss	start to solve	$\bullet^3 (4\sin x - 3)(\sin x + 1) = 0$	
				OR	
				$\frac{-1\pm\sqrt{\left(1\right)^{2}-4\times4\times\left(-3\right)}}{2\times4}$	
	•4	ic	reduce to equations in $\sin x$ only	$\bullet^4 \sin x = \frac{3}{4} \text{ and } \sin x = -1$	
	•5	pd	process to find solutions in given domain	• 5 0.848, 2.29 and $\frac{3\pi}{2}$	5
				OR	
				$\bullet^4 \sin x = \frac{3}{4} \text{ and } x = 0.848, 2.29$	
				• $\sin x = -1$, and $x = \frac{3\pi}{2}$	

- 1. \bullet^1 is not available for simply stating $\cos 2A = 1 2\sin^2 A$ with no further working.
- 2. In the event of $\cos^2 x \sin^2 x$ or $2\cos^2 x 1$ being substituted for $\cos 2x$, \bullet^1 cannot be awarded until the equation reduces to a quadratic in $\sin x$.
- 3. Substituting $1-2\sin^2 A$ or $1-2\sin^2 \alpha$ for $\cos 2\alpha$ at \bullet^1 stage should be treated as bad form provided the equation is written in terms of x at stage \bullet^2 . Otherwise, \bullet^1 is not available.
- 4. '=0' must appear by \bullet^3 stage for \bullet^2 to be awarded. However, for candidates using the quadratic formula to solve the equation, '=0' must appear at \bullet^2 stage for \bullet^2 to be awarded.
- 5. Candidates may express the equation obtained at \bullet^2 in the form $4s^2+s-3=0$ or $4x^2+x-3=0$. In these cases, award \bullet^3 for (4s-3)(s+1)=0 or (4x-3)(x+1)=0. However, \bullet^4 is only available if $\sin x$ appears explicitly at this stage.
- 6. 4 and 5 are only available as a consequence of solving a quadratic equation.
- 7. 3, 4 and 5 are not available for any attempt to solve a quadratic written in the form $ax^2 + bx = c$.
- 8. 5 is not available to candidates who work in degrees and do not convert their solutions into radian measure.
- 9. $\sin x + 4\sin^2 x 3 = 0$ does not gain \bullet^2 , unless \bullet^3 is awarded.

Candidate A

$\bullet^1 / \bullet^2 /$

$$(4s-3)(s+1)=0$$

$$s = \frac{3}{4}, s = -1$$

$$x = 0.848$$
, 2.29 and $\frac{3\pi}{2}$

Candidate B

•¹ **√**

$$4\sin^2 x + \sin x - 3 = 0$$

$$5\sin x - 3 = 0$$

$$\sin x = \frac{3}{5}$$

$$x = 0.644, 2.50$$

Candidate C

•¹ **√**

$$\sin x - 2(1 - 2\sin^2 x) = 1$$

$$\sin x - 2 + 4\sin^2 x = 1$$

$$4\sin^2 x + \sin x = 3$$

$$\sin x(4\sin x+1)=3$$

$$\sin x = 3, 4\sin x + 1 = 3$$

no solution,
$$\sin x = \frac{1}{2}$$

$$x = \frac{\pi}{6}, \ \frac{5\pi}{6}$$

Candidate D

•¹ **√**

$$\sin x - 2(1 - 2\sin^2 x) = 1$$

$$4\sin^2 x + \sin x - 3 = 0$$

$$4\sin^2 x + \sin x = 3$$

$$\sin x(4\sin x + 1) = 3$$

$$\sin x = 3, 4\sin x + 1 = 3$$

no solution,
$$\sin x = \frac{1}{2}$$

$$x = \frac{\pi}{6}, \ \frac{5\pi}{6}$$

Candidate E: Reading $\cos 2x$ as $\cos^2 x$

$$\sin x - 2\cos^2 x = 1$$

$$\sin x - 2(1 - \sin^2 x) = 1$$

$$2\sin^2 x + \sin x - 3 = 0$$

$$(2\sin x+3)(\sin x-1)=0$$

$$\sin x = -\frac{3}{2}, \quad \sin x = 1$$

no solution,
$$x = \frac{\pi}{2}$$

Qu	estion	Generic Scheme	Illustrative Scheme	
7	a			
•1	SS	know to and find intersection of line and curve	$\bullet^1 2x = 6x - x^2 \Longrightarrow x = 0, x = 4$	
•2	ic	use "upper – lower"	$\bullet^2 \int ((6x-x^2)-2x)dx$	
•3	pd	integrate	-3 $2x^2 - \frac{1}{3}x^3$	
•4	pd	substitute limits and evaluate	• $4 10\frac{2}{3}$	
•5	pd	evaluate area developed	$\bullet^5 10\frac{2}{3} \times 300 = 3200 \mathrm{m}^2$	5

- 1. '0' appearing as the lower limit of the integral is sufficient evidence for x = 0 at \bullet^1 stage.
- 2. \bullet^5 is only available as a consequence of multiplying an **exact** answer at \bullet^4 stage.
- 3. The omission of dx at \bullet^2 should not be penalised.
- 4. Where a candidate differentiates one or both terms \bullet^3 , \bullet^4 and \bullet^5 are unavailable.
- 5. Do not penalise the inclusion of '+ c'.
- 6. Accept $\int (4x-x^2)dx$ for \bullet^2 .

Candidate A

$$\int_{0}^{4} \left(2x - \left(6x - x^{2}\right)\right) dx$$

$$=\frac{1}{3}x^3-2x^2$$

$$=-10\frac{2}{3}$$
 cannot be negative so $=10\frac{2}{3}$

= $-10\frac{2}{3}$ cannot be negative so = $10\frac{2}{3}$ \bullet^4 X however ... = $-10\frac{2}{3}$ so Area = $10\frac{2}{3}$ \bullet^4 \checkmark

$$Area = 3200m^2$$

Candidate B

$$2x = 6x - x^2 \implies x = 0, 4$$

Shaded area

= area under parabola $-(A_2 + A_3)$

$$= \int_{0}^{6} (6x - x^{2}) dx - \left[A_{2} + \int_{4}^{6} (6x - x^{2}) dx \right] \qquad \bullet^{2} \checkmark$$

Stated or implied by •⁴

Area under parabola = 36, $A_2 = 16$ and $A_3 = \frac{28}{3}$ \bullet ³ \checkmark

Shaded area = $36 - \left(16 + \frac{28}{3}\right) = \frac{32}{3} \cdot 4$

Candidate C

Part (a)

$$x = 0, x = 6$$

$$\int ((6x-x^2)-2x)dx$$

$$\int ((6x-x^2)-2x)dx$$

$$\left[2x^2-\frac{1}{3}x^3\right]_0^6$$
•3 **

$$\left(2 \times 6^2 - \frac{1}{3} \times 6^3\right) - \left(0\right) = 0$$
 • 4 X

$$\Rightarrow$$
 Area = $0 \times 300 = 0 \text{ m}^2$ • 5

Question		Generic Scheme		Illustrative Scheme	Max Mark
7	b				
•6 •7 •8 •9	ss pd pd ss	set derivative to 2 find point of contact find equation of road find correct integral	•6 •7 •8	$6-2x=2$ $x = 2, y = 8$ $y = 2x + 4$ $\left[(x^2 + 4x) - \left(3x^2 - \frac{1}{3}x^3 \right) \right]_0^2$	
•10	ic	calculate area	•10	800m ²	5

- 6. For candidates who omit 'm²' at both \bullet ⁵ and \bullet ¹⁰ stages, \bullet ¹⁰ is not available.
- 7. Candidates who arrive at an incorrect equation at \bullet^8 , or produce an equation ex nihilo, must use an equation of the form y = 2x + c with c > 0, for \bullet^9 and \bullet^{10} to be available.
- 8. y = 2x + 4 must appear explicitly or as part of the integrand for \bullet^8 to be awarded.
- 9. \bullet^{10} is only available as a result of a valid strategy at the \bullet^{9} stage, ie $\int (\text{line}) (\text{quadratic})$ and lower limit = 0 and upper limit < 3.

Commonly Observed Responses:

Candidate D: Alternative Method

Line has equation of the form y = 2x + c, y = 2x + c and $y = 6x - x^2$

intersect where $x^2 - 4x + c = 0$

•⁶ ✓

tangency \Rightarrow 1 point of intersection

$$\Rightarrow b^2 - 4ac = 0$$
$$16 - 4c = 0$$

•⁷ ✓

c = 4

Continue as above.

Que	estion	Generic Scheme		Illustrative Scheme	
8					
•1	pd	correct values	•1	g = -p, $f = -2p$, $c = 3p + 2$	
•2	SS	substitute and rearrange	•2	$5p^2-3p-2$	
•3	ic	knowing condition	•3	$g^2 + f^2 - c > 0$	
•4	pd	factorise and solve	•4	$5p^{2}-3p-2$ $g^{2}+f^{2}-c>0$ $(5p+2)(p-1)=0 \Rightarrow p=-\frac{2}{5}, p=1$	
•5	ic	correct range	•5	$p < -\frac{2}{5}, \ p > 1$	5

- Candidates who state the coordinates of the centre, (p,2p) and state the radius, $r = \sqrt{...-(3p+2)}$ gain \bullet^1 .
- Accept $(-p)^2 + (-2p)^2 (3p+2)$ or $p^2 + (2p)^2 (3p+2)$. If brackets are omitted \bullet^1 may only be awarded if subsequent working is correct.
- Do not accept $(-p)^2 + (2p)^2 (3p+2)$ or $(p)^2 + (-2p)^2 (3p+2)$ for \bullet^1 .
- Do not accept $g^2 + f^2 c \ge 0$ for \bullet^3 . 4.
- For a candidate who uses c=2 and follows through to get $p<-\sqrt{\frac{2}{5}}$, $p>\sqrt{\frac{2}{5}}$, award \bullet^2 , \bullet^3 and 5.
- Evidence for \bullet^3 may appear at \bullet^5 stage. 6.
- ⁴ and ⁵ can only be awarded for solving a quadratic inequation. 7.

Commonly Observed Responses:

Candidate A

$g = -2p, \ f = -4p, \ c = 3p + 2$ $20p^{2} - 3p - 2$ $g^{2} + f^{2} - c > 0$ $(x - p)^{2} - p^{2} + (y - 2p)^{2} - 4p^{2} + 3p + 2 = 0$ $(x - p)^{2} + (y - 2p)^{2}$ $= 5p^{2} - 3p - 2$ $(4p + 1)(5p - 2) = 0 \Rightarrow p = -\frac{1}{4}, \ p = \frac{2}{5} \quad \checkmark \quad (5p + 2)(p - 1) > 0$ $p < -\frac{1}{4}, \ p > \frac{2}{5}$ $p < -\frac{2}{5}, \ p > 1$

$$g^2 + f^2 - c > 0$$

$$(4p+1)(5p-2)=0 \implies p=-\frac{1}{4}, p=\frac{2}{5} \bullet^{4}$$

$$p < -\frac{1}{4}, \ p > \frac{2}{5}$$

Candidate B

$$(x-p)^2 - p^2 + (y-2p)^2 - 4p^2 + 3p + 2 = 0$$

$$(x-p)^2 + (y-2p)^2$$

$$(x - p) + (y - 2p)$$

$$5p^2 - 3p - 2 > 0$$

$$(5p+2)(p-1)>0$$

$$p < -\frac{2}{5}, \ p > 1$$

Question		Generic Scheme	Illustrative Scheme	Max Mark
9	a			
•1	SS	know to differentiate	$\bullet^1 \qquad a = v'(t)$	
•2	pd	differentiates trig. function	$-8\sin\left(2t-\frac{\pi}{2}\right)$	
•3	pd	applies chain rule	•3×2 and complete $a(t) = -16\sin\left(2t - \frac{\pi}{2}\right)$	3

Candidate A: Alternative Method

Part (a)

$$v(t) = 8\cos\left(2t - \frac{\pi}{2}\right) = 8\sin 2t$$

$$v'(t) = \dots$$

$$= 8\cos 2t \dots$$

$$\bullet^{2}$$

$$=$$
....×2 •³ ✓

$$v'(10) = 16\cos 20 = 6.53$$
 \bullet^4
 $s(t) = \int v(t)dt$
 $> 0, \implies \text{velocity is increasing } \bullet^5$
 $s(t) = -4\cos 2t + c$
 $4 = -4 + c \implies c = 8$

$$4 = -4 + c \Rightarrow c = 8$$
$$\Rightarrow s(t) = -4\cos 2t + 8 \quad \bullet^{8} \checkmark$$

or $\Rightarrow s(t) = 8 - 4\cos 2t$

Candidate B: Candidates who misinterpret the process for rate of change.

Part (a)

$$a(t) = \int 8\cos\left(2t - \frac{\pi}{2}\right) dt$$

$$= 4\sin\left(2t - \frac{\pi}{2}\right) + c$$

Wrong process award
$$\frac{0}{3}$$

If
$$t = 10$$
, $a = 4\sin\left(20 - \frac{\pi}{2}\right) + c$
$$= -1.63 + c$$

Cannot evaluate award
$$\frac{0}{2}$$

$$s = v'(t)$$

$$s(t) = -16\sin\left(2t - \frac{\pi}{2}\right)$$

Award
$$\frac{2}{3}$$

Candidate C

$$a = v'(t)$$
 or equivalent

$$a = 4\sin\left(2t - \frac{\pi}{2}\right)$$
 • 2 X • 3 X

Part (b)

$$a(10) = 4\sin\left(20 - \frac{\pi}{2}\right) = -1.63 \bullet^4$$

Only as a consequence of \bullet^1 in part (a)

Question		Generic Scheme		Illustrative Scheme	
9	b				
•4	SS	know to and evaluate $a(10)$	•4	a(10) = 6.53	
•5	ic	interpret result	•5	a(10) > 0 therefore increasing	2

- 1. \bullet^5 is available only as a consequence of substituting into a derivative.
- 2. \bullet^4 and \bullet^5 are not available to candidates who work in degrees.
- 3. \bullet^2 and \bullet^3 may be awarded if they appear in the working for 9(b). However, \bullet^1 requires a clear link between acceleration and v'(t).

9	c				
•6	ic	know to integrate	•6	$s(t) = \int v(t) dt$	
•7	pd	integrate correctly	•7	$s(t) = 4\sin\left(2t - \frac{\pi}{2}\right) + c$	
•8	ic	determine constant and complete	•8	$c = 8 \operatorname{so} s(t) = 4 \sin\left(2t - \frac{\pi}{2}\right) + 8$	3

Notes:

4. \bullet^7 and \bullet^8 are not available to candidates who work in degrees. However, accept $\int 8\cos(2t-90)dt$ for \bullet^6 .

[END OF MARKING INSTRUCTIONS]