- 1. Bus arbitration
 - a. How to arbitrate a bus
 - b. Methods of bus arbitration
 - i. Centralized
 - ii. Distributed

- c. Timing mechanisms
 - i. Synchronous
 - ii. Asynchronous
- 2. Interrupts
 - a. Will be covered again in ECS 150
 - b. Why do we need interrupts?
 - c. How can we deal with I/O?
 - i. Busy waiting
 - ii. Polling
 - iii. Interrupt

- d. What do we need to implement an interrupt?
 - i. Must preserve current state
 - ii. Jump to the correct interrupt service routine / subroutine (ISR) based on the interrupt type
 - iii. Interrupt needs to be invisible, so current state can be restored correctly
- e. Changes we need to make to support interrupts (incomplete list)
 - i. Modify our original program order of Fetch, Decode, Execute
 - ii. Add a place in memory to store the ISR code / instructions
 - iii. Support different types of interrupts
 - iv. Need to be able to enable and disable interrupts
 - v. Need to know what to load into PC
 - vi. Need to add an Interrupt Service Routine (ISR)
 - vii. Need a Return from Interrupt (RTI) instruction

- 3. Classification of interrupts
 - a. Examples of possible interrupts

- b. How to classify interrupts
 - i. By timing (with the clock)
 - 1. Synchronous (deterministic)
 - 2. Asynchronous (nondeterministic)
 - ii. Source of interrupt
 - 1. User request
 - 2. Coerced
 - iii. Masking
 - 1. User maskable
 - 2. Non-maskable
 - iv. Location (or time) in instruction
 - 1. Within an instruction
 - 2. Between instructions
 - v. Result
 - 1. Resume
 - 2. Terminate

