SMJE 3173 Digital System

Week 5: Arithmetic Circuits Part 1

- ■Binary Number Representation
 - □Sign & Magnitude
 - □Ones Complement
 - □Twos Complement
- ■Networks for Binary Addition
 - □Half Adder
 - □Full Adder
 - □Ripple Adder
 - □Subtractor

Motivation

- Arithmetic circuits are excellent examples of combinational logic design
- Time vs. Space Trade-offs
 - Doing things fast requires more logic and thus more space
 - □ Example: carry look ahead logic
- Arithmetic Logic Units
 - Critical component of processor datapath

Unsigned Integers

- Only positive numbers are called unsigned numbers
- Smallest representable value: bit
- Bit groups represent information
 - □ 4 bits in a group : nibble
 - □ 8 bits in a group : byte
 - □ 2¹⁰ in a group : kilo e.g. kilo, kilobytes (kB)
- Number of bits determine max. combinations of information -

N bits = 2^N values

Number of Bits	Number of values	Machine
4	16	Intel 4004
8	256	8080, 6800
16	65536	PDP11, 8086, 68000
32	~ 4 x 10 ⁹	IBM 370, 68020, VAX11/780, IEEE single
48	1 x 10 ¹⁴	Unisys
64	1.8 x 10 ¹⁹	Cray, IEEE double

Unsigned Integers

Value for the bit pattern:

$$V_{unsigned} = \sum_{i=0}^{N-1} b_i \times 2^i$$

$$V = b_0 \times 2^0 + b_1 \times 2^1 + b_2 \times 2^2 + ... + b_{N-1} \times 2^{N-1}$$

Example:

$$10110_2 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 22_{10}$$

- How many numbers can 8-bit represent?
- For N bits, range of values:

0 up to
$$2^{N} - 1$$

Representation of Negative Numbers

- Representation of positive numbers are the same in most systems
- Major differences are in how negative numbers are represented. There are 3 major schemes:
 - □ sign and magnitude
 - ones complement
 - ☐ twos complement
- Assumptions:
 - 4-bit machine word
 - □ 16 different values can be represented
 -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8
 - □ roughly half are positive, half are negative

Sign and Magnitude (SAM)

- Easiest to understand
- Method:
 - (i) Leftmost bit (MSB) is sign bit
 - 0 means positive e.g. +18 = 00010010
 - 1 means negative e.g.
- (ii) Represent the magnitude of the number in true binary form
- Example:
 - +18 = **0**0010010
 - -18 = **1**0010010

Sign and Magnitude

Summary: (Example for 4-bit number representation; N= 4)

- High order bit is sign: 0 = positive (or zero), 1 = negative
- Three low order bits is the magnitude: 0 (000) thru 7 (111)
- Number range for n bits = \pm /-(2ⁿ⁻¹-1)
- Two representations for 0 (0000 and 1000)

Sign-and-Magnitude Problems

- Easy for humans to understand, but may not be the best for machine operation efficiency
- Cumbersome addition/subtraction
- Must compare magnitudes to determine sign of result
- Need to check both sign and magnitude in arithmetic
- Two representations of zero (+0 and -0)

Ones' Complement Representation

Ones' complement defined algebraically as

$$\overline{N} = (2^n - 1) - N$$

- For example:
 - (i) Find 2's complement of 5 (i.e. -5) in 4-bit representation $N = (2^4 1) 5$ $N = 1111 - 0101 = 1010_{1's} = -5$
- Theoretically, in ones' complement we get the negation of a number by flipping (reversing) all the bits
- The name ones' complement comes from the fact that we could also get the negation of a number by subtracting each bit from 1
- Complement of a complement generates original number

Ones' Complement Representation by algebraic

$$\overline{N} = (2^n - 1) - N$$

- Ones' complement of +7
 - □ Since n=4, $(2^n 1) = 1111$

2 ⁿ - 1	1	1	1	1	
N	0	1	1	1	(+7)
N	1	0	0	0	(-7)

Ones' complement of -7

2 ⁿ - 1	1	1	1	1	
N	1	0	0	0	(-7)
N	0	1	1	1	(+7)

Shortcut method:

simply perfrom bitwise complement

1001 -> 0110

N	0	1	1	1	(+7)
N _{2's}	1	0	0	0	(-7)

Addition and Subtraction: Ones Complement

4 0100 -4 1011

+3 0011 + (-3) 1100

7 0111 -7 10111

End around carry
$$\longrightarrow 1$$
1000

Ones' Complement Representation

<u>Summary</u>

- Some complexities in addition
- Subtraction implemented by addition & 1's complement
- Still two representations of 0! This causes some problems

Two's Complement

Two's complement defined as

$$N^* = 2^n - N \text{ for } N \neq 0$$

0 for $N = 0$

Example:

Find 2's complement representation of 5 (i.e.-5) in 4 —bits

$$5^* = 2^4 - 5$$

= $16 - 5 = 11 = 1011_{2's} = 1101 = -5$

Two's complement is just a 1 added to 1's complement:

$$2's = 1's + 1$$

Complement of a complement generates original number

Two's Complement Representation

 $N^* = 2^n - N$

■ Two's complement of +7

2 ⁿ	1 0000	
N	0111	(+7)
N*	1001	(-7)

■ Two's complement of -7

2 ⁿ	1 0000	
N	1001	(-7)
N*	0111	(+7)

Shortcut method:

Twos complement = bitwise complement + 1

0111 -> 1000 + 1 -> 1001 (representation of -7)

1001 -> 0110 + 1 -> 0111 (representation of 7)

Twos Complement Representation

like 1's comp except shifted one position clockwise

- Only one representation for 0
- One more negative number than positive number

Finding 2's Complement

Table 2-6 Decimal and 4-bit numbers.

Decimal	Two's Complement	Ones' Complement	Signed Magnitude
-8	1000		
- 7	1001	1000	1111
- 6	1010	1001	1110
-5	1011	1010	1101
-4	1100	1011	1100
-3	1101	1100	1011
-2	1110	1101	1010
-1	1111	1110	1001
0	0000	1111 or 0000	1000 or 0000
1	0001	0001	0001
2	0010	0010	0010
3	0011	0011	0011
4	0100	0100	0100
5	0101	0101	0101
6	0110	0110	0110
7	0111	0111	0111

Range of Numbers

- 4-bit 2s complement
 - \Box +7 = 0111 = 2³-1
 - \Box -8 = 1000 = -2³
- 8 bit 2s complement
 - \Box +127 = 01111111 = 2⁷ -1
 - \Box -128 = 10000000 = -2⁷
- 16 bit 2s complement
 - \square +32767 = 011111111 11111111 = 2¹⁵ 1
 - \Box -32768 = 100000000 00000000 = -2¹⁵
- N bit 2s complement
 - \square 011111111..11111111 = $2^{N-1} 1$ (largest positive)
 - \square 100000000..00000000 = -2^{N-1} (largest negative)

Conversion Between Lengths, e.g. 8 -> 16

Positive number: add leading zeros

$$\Box$$
 +18 = 00000000 00010010

Negative numbers: add leading ones

$$\Box$$
 -18 = 11111111 11101110

□ i.e. pack with msb (sign bit)

called "sign extension"

Addition and Subtraction

- a b = ?
- Normal binary addition
- Monitor sign bit of result for overflow
- Take negation of b and add to a
 - □ i.e. a b = a + (-b)
- So we only need addition and complement circuits

Addition and Subtraction: Twos Complement

 Simpler addition scheme makes twos complement the most common choice for integer number systems within digital systems

Addition and Subtraction: Twos Complement

- Why can the carry-out be ignored?
- Add 2's complement of N to M
 - \square This is M N = M + N*
- If M ≥ N, will generate carry
 - \square M + N* = M + (2ⁿ N) = M N + 2ⁿ
 - □ Discard carry: just like subtracting 2ⁿ
 - □ Result is positive M N
- If M < N, no carry

Overflow Conditions

- Add two positive numbers to get a negative number
- or two negative numbers to get a positive number

Twos Complement Overflow

	Expected	0 1 1 1	Actual
	+5	0101	
+	+3	0011	
	+8	1000	-8

Overflow

	Expected	0 0 0 0	Actual
	+5	0101	
+	+2	0010	
	+7	0111	+7

No Overflow

Overflow

	Expected	1 1 1 1	Actual
	-3	1101	
+	-5	1011	
	-8	1000	-8

No Overflow

Iterative Circuit

Like a hierarchy, except functional blocks per bit

- Adders are a great example of this type of design
- Design 1-bit circuit, then expand
- Look at
 - □ Half adder 2-bit adder, no carry in
 - Inputs are bits to be added
 - Outputs: result and possible carry
 - □ Full adder includes carry in, really a 3-bit adder

Half Adder

- Simplest adder block is "half adder"
 - □ Not very useful by itself

X	Υ	Carry Sum			
0	0	0	0		
0	1	0	1		
1	0	0	1		
1	1	1	0		

$$Sum = X'Y + XY'$$
$$= X \oplus Y$$

Full Adders

- Basic building block is full adder
- Many full-adders are combined to add more than 1 bits
- Truth table:

X	Υ	C _{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder

$$S = X \oplus Y \oplus C_{in}$$

$$C_{out} = X Y + X C_{in} + Y C_{in}$$

= $X Y + (X + Y)C_{in}$

- In a multi-stage adder:
 - □ Variable i indicates stage number.
 - □ C_{in} is carry to i-th stage, also known as C_i
 - □ C_{out} is carry to next stage, also known as C_{i+1}

Full-adder circuit: Straightforward Approach

Full Adder: Alternative Implementation

- Cost: 6 Gates, max. 2 inputs per gate, 3 levels of logic
- Advantage: All gates of 2-input type, easier to do VLSI layout

Implementation with Two Half Adders (and an OR)

Cost: 5 Gates, 3 levels of logic

rig. 3-27 Logic Diagram of Full Adde

Ripple-Carry Adder

- Straightforward connect full adders
- Carry-out to carry-in chain
 - \Box C₀ in case this is part of larger chain, maybe just set to zero
- Speed limited by carry chain
- Faster adders eliminate or limit carry chain
 - \square 2-level AND-OR logic ==> 2^n product terms
 - □ 3 or 4 levels of logic, carry lookahead

Ripple-Carry Adder


```
\begin{array}{l} \textbf{module} \ \mathsf{RCA4} \ \textbf{(} \mathsf{Cin}, x, y, \mathsf{Cout}, \mathsf{Sum}) \ ; \\ \textbf{input} \ \mathsf{Cin}; \ \textbf{input} \ [3:0] \ x, y; \ \textbf{output} \ [3:0] \ \mathsf{Sum}; \ \textbf{output} \ \mathsf{Cout}; \\ \textbf{wire} \ \mathsf{c1}, \ \mathsf{c2}, \ \mathsf{c3}; \\ \mathsf{FA} \ \ \mathsf{u0} \ (.\mathsf{Cin}(\mathsf{Cin}), .\mathsf{A}(x[0]), .\mathsf{B}(y[0]), .\mathsf{Sum}(\mathsf{Sum}[0]), .\mathsf{Cout}(\mathsf{c1})); \\ \mathsf{FA} \ \ \mathsf{u1} \ ( .\mathsf{Cin}(\mathsf{c1}), .\mathsf{A}(x[1]), .\mathsf{B}(y[1]), .\mathsf{Sum}(\mathsf{Sum}[1]), .\mathsf{Cout}(\mathsf{c2})) \ ; \\ \mathsf{FA} \ \ \mathsf{u2} \ ( .\mathsf{Cin}(\mathsf{c2}), .\mathsf{A}(x[2]), .\mathsf{B}(y[2]), .\mathsf{Sum}(\mathsf{Sum}[2]), .\mathsf{Cout}(\mathsf{c3})) \ ; \\ \mathsf{FA} \ \ \mathsf{u3} \ ( .\mathsf{Cin}(\mathsf{c3}), .\mathsf{A}(x[3]), .\mathsf{B}(y[3]), .\mathsf{Sum}(\mathsf{Sum}[3]), .\mathsf{Cout}(\mathsf{Cout})) \ ; \\ \textbf{endmodule} \end{array}
```

Overflow Detection

■ If Overflow = 1, then overflow condition occurs. The output should not be used, i.e. the output is wrong. Condition is that either C_{n-1} or C_n is high, but not both (n = #stages)

Half Subtractor Circuit

X	Y		В	D
0	0	0 - 0	0	0
0	1	0 - 1	1	1
1	0	1 - 0	0	1
1	1	1 - 1	0	0

D=>Difference

$$D = X'Y + XY' = X \oplus Y$$

B=>Borrow

$$B = X'Y$$

Full Subtractor Circuit

X	Y	B _{in}	B _{out}	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Difference

$$D = X \oplus Y \oplus B_{in}$$

Borrow out

$$B_{out} = X'Y + X'B_{in} + YB_{in}$$

Multi-Stage Full Subtractor

Subtraction Using Adders

- Subtraction is the same as addition of the two's complement.
- The two's complement is the bit-by-bit complement plus 1.
- Therefore, X Y = X + Y' + 1.
 - □ Complement Y inputs to adder, set C_I to 1.

Adder/Subtractor

Remember, A - B = A + (-B) = A + \overline{B} + 1 So when Add/Sub = 0, S = \overline{A} + \overline{B} When Add/Sub = 1, S = \overline{A} + \overline{B} + 1 = \overline{A} - \overline{B}

Why use CO2 xor CO3 as overflow detection?

uncomplemented or complemented inputs

Alternative Design

Fig. 3-31 Adder-Subtractor Circuit

Output is 2's complement if B > A