TEMA 2: Distribuciones en el muestreo de poblaciones normales

- 2.1. Distribuciones χ^2 de Pearson, t de Student y F de Snedecor.
- 2.2. Muestreo en una población normal unidimensional.
- 2.3. Muestreo en dos poblaciones normales unidimensionales.

2.1.1. DISTRIBUCIÓN χ^2 DE PEARSON

Caso particular de la distribución $gamma^{(1)}$:

$$X \to \chi^2(n), \ n \in \mathbb{N} \iff X \to \Gamma(n/2, 1/2).$$

Función de densidad: $f(x) = \frac{1}{\Gamma(n/2)2^{n/2}} x^{n/2-1} e^{-x/2}, \quad x > 0.$

Función generatriz de momentos: $M_X(t) = \frac{1}{(1-2t)^{n/2}}, \quad t < 1/2.$

Momentos: $E[X^k] = 2^k \frac{\Gamma(n/2+k)}{\Gamma(n/2)}, \quad k \in \mathbb{N}.$

- Media: E[X] = n.
- Varianza: Var[X] = 2n.

Reproductividad

$$X_1, \ldots, X_n$$
 independientes y $X_i \to \chi^2(k_i), i = 1, \ldots, n \Rightarrow \sum_{i=1}^n X_i \to \chi^2\left(\sum_{i=1}^n k_i\right)$

Relación con la distribución normal

$$a) \ X \to \mathcal{N}(0,1) \ \Rightarrow \ X^2 \to \chi^2(1)$$

b)
$$X_1, \ldots, X_n$$
 independientes y $X_i \to \mathcal{N}(0,1), i = 1, \ldots, n \Rightarrow \sum_{i=1}^n X_i^2 \to \chi^2(n)$ (*)

Tablas y aproximaciones: Está tabulada para valores de n pequeños. Para n grande, la expresión (*) como suma de variables independientes e idénticamente distribuidas, con media y varianza finitas, permite usar la siguiente aproximación (teorema central del límite de $L \`{e}vy$):

$$\chi^2(n) \approx \mathcal{N}(n, 2n).$$

$$^{(1)}X \rightarrow \Gamma(p,a) \ (p,a \in \mathbb{R}^+) \ \Leftrightarrow f(x) = \frac{a^p}{\Gamma(p)} x^{p-1} e^{-ax}, \ x>0 \quad \ \left(\Gamma(p) = \int_0^{+\infty} x^{p-1} e^{-x} dx\right)$$

Gráfica de la función de densidad de $\chi^2(n)$:

- Asimétrica a la derecha y unimodal.
- \bullet Para n=1, $\lim_{x\to 0}f(x)=+\infty$ y la función de densidad es estrictamente decreciente.
- \blacksquare Para $n=2,\,f(0)=1/2$ y la función de densidad es estrictamente decreciente.
- Para $n \ge 3$, f(0) = 0, crece hasta la moda y luego decrece.

2.1.2. DISTRIBUCIÓN t DE STUDENT

Es la distribución del cociente entre una variable con distribución $\mathcal{N}(0,1)$ y la raíz cuadrada de una con distribución χ^2 dividida por sus grados de libertad, ambas independientes:

$$X \in Y \text{ independientes}, \ X \to \mathcal{N}(0,1), \ Y \to \chi^2(n) \ \Rightarrow \ T = \frac{X}{\sqrt{Y/n}} \to t(n)$$

Función de densidad:
$$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)\sqrt{n\pi}} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}, t \in \mathbb{R}.$$

Momentos: $\exists E[T^k] \Leftrightarrow k < n$.

-
$$n > 1 \Rightarrow \exists E[T] = 0$$
.

$$-n > 2 \Rightarrow \exists Var[T] = \frac{n}{n-2}.$$

Gráfica de la función de densidad de t(n): Es similar a la de la $\mathcal{N}(0,1)$ (simétrica alrededor del cero y unimodal) y, de hecho, se aproxima a ella cuando $n \to +\infty$. Ya que la varianza es mayor que uno, las colas son más gruesas que las de la normal y la gráfica es más aplastada (distribución platicúrtica).

Tablas: Está tabulada para valores de n pequeños. Para n grande se aproxima por la $\mathcal{N}(0,1)$.

2.1.3. DISTRIBUCIÓN F DE SNEDECOR

Es la distribución del cociente entre dos variables independientes con distribución χ^2 , cada una dividida por sus grados de libertad:

$$X \in Y \text{ independientes, } X \to \chi^2(m), Y \to \chi^2(n) \Rightarrow F = \frac{X/m}{Y/n} \to F(m,n)$$

$$\textit{Función de densidad: } g(f) = \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)} \left(\frac{m}{n}\right)^{\frac{m}{2}} f^{m/2-1} \left(1 + \frac{m}{n}f\right)^{-\frac{m+n}{2}}, \quad f > 0.$$

Momentos: $\exists E[F^k] \Leftrightarrow k < n/2$.

$$-n > 2 \Rightarrow \exists E[F] = \frac{n}{n-2}.$$

-
$$n > 4 \Rightarrow \exists Var[F] = \frac{n^2(2m + 2n - 4)}{m(n - 2)^2(n - 4)}$$

Propiedades:

- $F \to F(m,n) \Leftrightarrow F^{-1} \to F(n,m).$
- $T \to t(n) \Leftrightarrow T^2 \to F(1,n).$

Tablas: Como las anteriores, esta distribución está tabulada y, usualmente, las tablas incluyen aproximaciones para valores grandes de m y n.

Gráfica de la función de densidad de F(m,n)

- Asimétrica a la derecha y unimodal.
- \bullet F(1,n): lím $g(f)=+\infty$ y la función de densidad es estrictamente decreciente.
- $\bullet \ F(2,n) \colon g(0) = 1$ y la función de densidad es estrictamente decreciente.
- F(m,n), m > 2: g(0) = 0, crece hasta el valor modal y luego decrece.

2.2. MUESTREO EN UNA NORMAL UNIDIMENSIONAL

$$(X_1, \dots, X_n)$$
 m.a.s. de $X \to \mathcal{N}(\mu, \sigma^2)$, $\overline{X} = \frac{\sum\limits_{i=1}^n X_i}{n}$, $S^2 = \frac{\sum\limits_{i=1}^n (X_i - \overline{X})^2}{n-1}$

LEMA DE FISHER

Los estadísticos \overline{X} y S^2 son independientes

DISTRIBUCIONES ASOCIADAS AL MUESTREO

Variable	Distribución	$\mathbf{U}\mathbf{so}$	
$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	$\mathcal{N}(0,1)$	Inferencia sobre μ cuando σ^2 es conocida	
$\frac{\overline{X} - \mu}{S/\sqrt{n}}$	t(n-1)	Inferencia sobre μ cuando σ^2 es desconocida	
$\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\sigma^2}$	$\chi^2(n)$	Inferencia sobre σ^2 cuando μ es conocida	
$\frac{(n-1)S^2}{\sigma^2}$	$\chi^2(n-1)$	Inferencia sobre σ^2 cuando μ es desconocida	

2.3. MUESTREO EN DOS NORMALES UNIDIMENSIONALES

•
$$(X_1, \dots, X_{n_1})$$
 m.a.s de $X \to \mathcal{N}(\mu_1, \sigma_1^2)$, $\overline{X} = \frac{\sum_{i=1}^{n_1} X_i}{n_1}$, $S_1^2 = \frac{\sum_{i=1}^{n_1} (X_i - \overline{X})^2}{n_1 - 1}$.

$$\bullet \ (Y_1, \dots, Y_{n_2}) \text{ m.a.s de } Y \to \mathcal{N}(\mu_2, \sigma_2^2), \quad \overline{Y} = \frac{\sum\limits_{j=1}^{n_2} Y_j}{n_2}, \quad S_2^2 = \frac{\sum\limits_{j=1}^{n_2} (Y_j - \overline{Y})^2}{n_2 - 1}.$$

• $(X_1,\ldots,X_{n_1}),\ (Y_1,\ldots,Y_{n_2})$ independientes.

EXTENSIÓN DEL LEMA DE FISHER

Los vectores $(\overline{X}, \overline{Y})$ y (S_1^2, S_2^2) son independientes

DISTRIBUCIONES ASOCIADAS AL MUESTREO

Variable	Distribución	Uso
$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$\mathcal{N}(0,1)$	Inferencia sobre $\mu_1 - \mu_2$ $(\sigma_1^2, \sigma_2^2 \text{ conocidas})$
$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{(n_1 - 1)S_1^2}{\sigma_1^2} + \frac{(n_2 - 1)S_2^2}{\sigma_2^2}} \sqrt{\frac{\sigma_1^2/n_1 + \sigma_2^2/n_2}{n_1 + n_2 - 2}}$	$t(n_1+n_2-2)$	
$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$t(n_1+n_2-2)$	Inferencia sobre $\mu_1 - \mu_2$ $(\sigma_1^2 = \sigma_2^2 \text{ desconocidas})$
$\frac{\sum_{i=1}^{n_1} (X_i - \mu_1)^2 / n_1 \sigma_1^2}{\sum_{j=1}^{n_2} (Y_j - \mu_2)^2 / n_2 \sigma_2^2}$	$F(n_1,n_2)$	Inferencia sobre $\frac{\sigma_2^2}{\sigma_1^2}$ $(\mu_1, \mu_2 \text{ conocidas})$
$rac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}$	$F(n_1-1, n_2-1)$	Inferencia sobre $\frac{\sigma_2^2}{\sigma_1^2}$ $(\mu_1, \mu_2 \text{ desconocidas})$