Algebra

This is mainly from introductory level Youtube Video by Michael Penn https://www.youtube.com/watch?v=c6i6edrthFM&list=PL22w63XsKjqxaZ-v5N4AprggFkQXgkNoP&index=9.

1 Introduction

Definition: 1.1: Relation

A relation on a set A is a subset $R \subset A \times A$. Write $(x,y) \in R$ as xRy, $(x,y) \notin R$ as $x \not Ry$.

Example: $A = \text{any set}, R \text{ is equality. } (x, y) \in R \Leftrightarrow x = y, R = \{(a, a) : a \in A\}.$ If $A = \{1, 2, 3\}, R = \{(1, 1), (2, 2), (3, 3)\}$

Example: $A = \{1, 2, 3\}, R$ is less than or equal. Then $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$

Example: $A = \mathbb{N}$, R is divides. $(m, n) \in R \Leftrightarrow m | n$, *i.e.* $\exists d \in \mathbb{N}$ s.t. n = md. Then $(1, n) \in R$, since 1 | n for any n, $(2, 10) \in R$, since 2 | 10.

Definition: 1.2: Equivalence Relation

A relation $R \subset A \times A$ is an equivalence relation if it has the following properties

- 1. Reflexivity: $(a, a) \in R, \forall a \in A$
- 2. Symmetry: $(a,b) \in R \Rightarrow (b,a) \in R$
- 3. Transitivity: $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R$

Example: R is equality. $(a,b) \in R \Leftrightarrow a=b$ is an equivalence relation.

Example: R is nothing. $\forall a, b \in A, (a, b) \in R$. $R = A \times A$ is an equivalence relation.

Example: $A = C^1(\mathbb{R})$ (all differentiable functions on \mathbb{R}). $fRg \Leftrightarrow f' = g = \text{is an equivalence relation.}$

Definition: 1.3: Equivalence Class

Given an equivalence relation $R \subset A \times A$. The equivalence class of $a \in A$ is $[a] = \{b \in A : (a, b) \in R\}$.

Example: R is equality. $[a] = \{b \in A : a = b\} = \{a\}$

Example: R is nothing. $[a] = \{b \in A : (a,b) \in R = A \times A\} = A$

Example: $A = C^1(\mathbb{R})$. $[f] = \{g \in A : f' = g'\} = \{g \in A : (f - g)' = 0\} = \{f + c : c \in \mathbb{R}\}$.

Definition: 1.4: Power Set

Given a set A. $\mathcal{P}(A) = \{B : B \subset A\}$ is the power set of A.

Definition: 1.5: Partition

 $P \subset \mathcal{P}(A)$ is a partition of A if

- $1. \quad \bigcup \ X = A$
- 2. If $X \neq Y$, then $X \cap Y = \emptyset$

Example: $A = \{1, 2, 3, 4, 5, 6\}, P = \{\{1\}, \{2, 3, 4\}, \{5, 6\}\}\$ is a partition.

Example: $A = \mathbb{Z}, P = \{\{3k\}, \{3k+1\}, \{3k+2\}\}$ is a partition.

Theorem: 1.1:

There is a one-to-one correspondence between partitions of A and equivalence relations on A.

Proof. 1. Suppose P is a partition of A. Define a relation $R \subset A \times A$ s.t. $(a,b) \in R \Leftrightarrow a,b \in X \in P$. We need to check that R is an equivalence relation.

Reflexivity: $(a, a) \in R$, because $a \in X$ for some $X \in P$, since $\bigcup_{X \in P} X = A$ and $a \in A$.

Symmetry: Suppose $(a, b) \in R$, then $a, b \in X \in P$. This is the same as $b, a \in X \in P$, thus $(b, a) \in R$ **Transitivity:** Suppose $(a, b) \in R$ and $(b, c) \in R$, then $a, b \in X \in P$ and $b, c \in Y \in P$. But $X \cap Y = \emptyset$

if $X \neq Y$, thus X = Y. $a, c \in X \in P$, so $(a, c) \in R$ 2. Suppose $R \subset A \times A$ is an equivalence relation. Let $P = \{[a] : a \in A\}$

Suppose $a \in A$, $(a, a) \in R$. $a \in [a] = \bigcup_{[a] \in P} [a] \Rightarrow A \subset \bigcup_{[a] \in P} [a]$ and by definition $\bigcup_{[a] \in P} [a] \subset A$, thus

 $A = \bigcup_{[a] \in P} [a]$

Take $a, b \in A$. Consider $[a] \cap [b]$. Suppose $x \in [a] \cap [b]$. Then $x \in [a]$ and $x \in [b]$. Then $(a, x) \in R$ and $(b, x) \in R$. By transitivity $(a, b) \in R$, [a] = [b]

Definition: 1.6: Binary Operation

Given a set S, a binary operation on S ia a function $*: S \times S \to S$, write *(a,b) = a * b. The following properties may or may not hold.

- 1. Associativity: a * (b * c) = (a * b) * c
- 2. Commutativity: a * b = b * a

Example: $(\mathbb{N}, +)$, + is associative and commutative.

Example: $(\mathbb{Z}, +)$, + is associative and commutative, with identity and inverse.

Example: $M_n(\mathbb{R}) = \{A \in \mathbb{R}^{n \times n}\}, *$ is matrix multiplication. Then * is associative, but not commutative. If * is the commutator $[\cdot, \cdot], A*B = [A, B] = AB - BA$, then * is neither associative nor commutative.

2 Groups

Definition: 2.1: Groups

A group is a set G together with a binary operation * s.t.

- 1. Closure: If $a, b \in G$, then $a * b \in G$
- 2. Identity: $\exists e \in G \text{ s.t. } \forall a \in G, \ a * e = a = e * a$
- 3. Inverse: $\exists a^{-1} \in G \text{ s.t. } a * a^{-1} = a^{-1} * a = e$
- 4. Associative: $\forall a, b, c \in G, a * (b * c) = (a * b) * c$

Example: $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +)$ are groups under addition.

Example: $(\{\pm 1\}, \cdot), (\mathbb{Q}^{\times}, \cdot)$ where $\mathbb{Q}^{\times} = \mathbb{Q} \setminus \{0\}, GL(n, \mathbb{R}) = \{A \in \mathbb{R}^{n \times n} : \det(A) \neq 0\}$ are groups are groups under multiplication.

Definition: 2.2: Integer Modulo n Groups

Let \mathbb{Z}_n be the set of all equivalence classes mod n. $\mathbb{Z}_n = \{[0], [1], ..., [n-1]\}$. Define [x] + [y] = [x+y]. Then $(\mathbb{Z}_n, +)$ forms a group with identity [0].

Example: $(\mathbb{Z}_6, +)$ is a group, but (\mathbb{Z}_6, \cdot) where $\cdot : [x][y] \to [xy]$ is not a group, because 2,3,4 do not have an inverse.

Definition: 2.3: Group of Units

Given $n \in \mathbb{N}$, the group of units $U_n = \{[m]_n : \gcd(m,n) = 1\}$ with operation [x][y] = [xy]. U_n is a group.

Proof. 1. Closure: Suppose gcd(x, n) = gcd(y, n) = 1, then gcd(xy, n) = 1. So $[x], [y] \in U_n \Rightarrow [xy] \in U_n$.

- 2. Identity: $[1] \in U_n$ since gcd(1, n) = 1 for any n.
- 3. Inverse: If $[a] \in U_n$, then gcd(a, n) = 1. Thus $\exists x, y \in \mathbb{Z}$ s.t. ax + ny = 1 and gcd(x, n) = 1. [a][x] = 1.

4. Associativity: From associativity of multiplication in $\mathbb Z$

Example: $U_6 = \{1, 5\}$. Example: $U_5 = \{1, 2, 3, 4, 5\}$

Definition: 2.4: Dihedral Groups

$$\begin{split} D_n &= \{ \text{rigid motions of regular n-gons} \} \\ &= \{ e, r, ..., r^{n-1}, s, sr, ..., sr^{n-1} \}, \text{ where } r = \text{rotation by } \frac{2\pi}{n}, s = \text{reflection through a vertex} \\ &= \langle r, s: r^n = s^2 = e, rs = sr^{n-1} \rangle \text{ in generator representation} \end{split}$$

Example: n=3, D_3 is the rigid motion on equilateral triangles. r=rotation counter clockwise by $\frac{2\pi}{3}$. $r^2=$ rotation by $\frac{4\pi}{3}$. $r^3=e$, s=reflection through a vertex

For an *n*-gon, we can rotate by $\frac{2\pi k}{n}$ for $0 \le k < n-1$, with a total of *n* rotations, and *n* total reflections through *n* vertices.

Example: n=6, $rsr^4sr^3=sr^5r^4sr^3=sr^9sr^3=sr^3sr^3=e$, since sr^3 is a reflection.

Theorem: 2.1:

 $r^k s = s r^{n-k}$ for all $1 \le k \le n-1$.

Proof. Base case: $rs = sr^{n-1}$ by definition.

Induction Hypothesis: Suppose $r^k s = sr^{n-k}$

Induction Step: $r^{k+1}s = r^k rs \stackrel{\text{Base case}}{=} r^k s r^{n-1} \stackrel{\text{IH}}{=} s r^{n-k} r^{n-1} = s r^{2n-(k+1)} = s r^{n-(k+1)}$

Definition: 2.5: Permutation Group

Given a set X, define $S_X = \{f : X \to X : f \text{ a bijection}\}$. S_X forms a group with operation given by composition of functions. S_X is called the permutation group of X.

If $X = \{1, 2, ..., n\}$, we write $S_X = S_n$.

Proof. 1. Closure: $\forall f, g \in S_X, f \circ g : X \to X$ is a bijection, $f \circ g \in S_X$

- 2. Associativity: $\forall f, g, h \in S_X, f \circ (g \circ h)(x) = f(g(h(x))) = f \circ (g \circ h)(x)$
- 3. Identity: id: $X \to X$, id(x) = x. Then id $\circ f = f$ for $f \in S_X$
- 4. Inverse: Given a function $f: X \to X$, f is a bijection $\Leftrightarrow f$ has an inverse. Thus $\forall f \in S_X, f^{-1} \in S_X$

Example: n = 3, S_3 has 6 elements, and in cycle notation, we write $S_3 = \{1, (12), (13), (23), (123), (132)\}$, where (123)(2) = 3, (123)(3) = 1, (132)(3) = 2.

Example: Composing cycles

- 1. (1352)(243) = (13)(245). 1 is sent to 1 by (243), then to 3 by (1352). We then look at 3, 3 is sent to 2 by (243), then sent to 1 by (1352)
- 2. (2974)(164) = (162974)
- 3. $(1325)^{-1} = (1523)$ (just write in reverse order)

Theorem: 2.2: Basic Properties of Groups

Given a group G,

- 1. The identity is unique
- 2. Inverses are unique
- 3. $\forall a, b \in G, (ab)^{-1} = b^{-1}a^{-1}$
- 4. If ab = ac, then b = c. Similarly, if ba = ca, then b = c

Proof. 1. Suppose $e_1, e_2 \in G$ are both identities, $e_1 \stackrel{e_2 \text{ is identity}}{=} e_1 e_2 \stackrel{e_1 \text{ is identity}}{=} e_2$

2. Suppose $a \in G$ with inverses b and c. i.e. ab = e = ba, ac = e = ba. Then $b = be \stackrel{e=ac}{=} b(ac) \stackrel{\text{associativity}}{=} (ba)c \stackrel{ba=e}{=} ec = c$

3. $(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aa^{-1} = e$ and $(ab)(ab)^{-1} = e$. Thus $(ab)^{-1} = b^{-1}a^{-1}$, since inverses are unique.

4. ab = ac, then $a^{-1}(ab) = a^{-1}(ac)$. By associativity, b = c.

Definition: 2.6: Abelian Group

A group G is abelian, if it is commutative. i.e. $\forall a, b \in G$, ab = ba.

Definition: 2.7: Order of a Group

G has order n if |G| = n. i.e. G has n elements. n can be infinite.

Definition: 2.8: Order of an Element

 $g \in G$ has order m if m is the smallest natural number s.t. $g^m = e$. Write $|g| = \operatorname{ord}(g) = n$.

2.1 Subgroups

Definition: 2.9: Subgroups

Given a group G, a subset $H \subset G$ is a subgroup if H is a group. Write $H \leq G$.

Example: Suppose $H \leq \mathbb{Z}$ under addition, $H \neq \{0\}$.

Let $n \in H$ be the smallest positive number, $m \in H$ be any other element. We can write m = nq + r, $0 \le r < n$. $r = m - n - \cdots - n \in H$, thus r = 0.

i.e. any element $m \in H$ is a multiple of $n \in H$, the smallest positive element.

Thus we can write $H = n\mathbb{Z} = \{nk : k\mathbb{Z}\}$. i.e. The subgroups of \mathbb{Z} must be of the form $n\mathbb{Z} \leq \mathbb{Z}$.

Example: G any group, $\{e\} \leq G$, $G \leq G$ are the trivial subgroups.

Example: $\mathbb{C}^{\times} = \{a + bi : a, b \in \mathbb{R} \text{ not both zero}\}, \mathbb{Q}^{\times} \leq \mathbb{R}^{\times} \leq \mathbb{C}^{\times}. S^{1} \leq \mathbb{C}^{\times}, \text{ where } S^{1} = \{z \in \mathbb{C} : |z| = 1\}$

Example: $SL(n,\mathbb{R}) \leq GL(n,\mathbb{R})$, where $SL(n,\mathbb{R}) = \{A \in \mathbb{R}^{n \times n}, \det A = 1\}$

Theorem: 2.3: Subgroup Test

Suppose G is a group. $H \subset G$ non-empty. Then $H \leq G \Leftrightarrow \forall x, y \in H, xy^{-1} \in H$

Proof. (\Rightarrow) Suppose $H \leq G$. Let $x, y \in H$. Then $y^{-1} \in H$, since H is a group. By closure property, $xy^{-1} \in H$.

- (\Leftarrow) Suppose $\forall x, y \in H, xy^{-1} \in H$.
 - 1. Identity: Set y = x, then $xy^{-1} = xx^{-1} = e$, since $x \in G$, G is a group. Thus $e \in H$.
 - 2. Inverse: Suppose $a \in H$. Let $x = e, y = a \in H$. $xy^{-1} = ea^{-1} = a^{-1} \in H$.
 - 3. Closure: Suppose $a, b \in H$, then $b^{-1} \in H$. Let $x = a, y = b^{-1}$. $xy^{-1} = a(b^{-1})^{-1} = ab \in H$

Thus $H \leq G$.

Definition: 2.10: Centralizer

Let $H \leq G$. The centralizer of H is

$$C(H) = \{ g \in G : gh = hg, \forall h \in H \}$$

 $C(H) \leq G$

Proof. Suppose $x, y \in C(H)$, we want to show $xy^{-1} \in C(H)$.

Notice that gh = hg for all $h \in H$. Left and right multiply by g^{-1} , we get $g^{-1}ghg^{-1} = g^{-1}hgg^{-1}$. Thus $hg^{-1} = g^{-1}h$.

Let $h \in H$, $(xy^{-1})h \stackrel{\text{associativity}}{=} x(y^{-1}h) \stackrel{hg^{-1}=g^{-1}h}{=} xhy^{-1} \stackrel{gh=hg}{=} h(xy^{-1})$

Thus $xy^{-1} \in C(H), C(H) \leq G$

Definition: 2.11: Conjugate Subgroup

Let $H \leq G$. The conjugate subgroup is $g^{-1}Hg = \{g^{-1}hg : h \in H\} \leq G$.

Proof. Suppose $x \in g^{-1}Hg$ and $y \in g^{-1}Hg$. Then $x = g^{-1}hg$, $y = g^{-1}hg$ for $h, h \in H$.

Then $y^{-1} = g^{-1}\hat{h}^{-1}g$. $xy^{-1} = g^{-1}hgg^{-1}\hat{h}^{-1}g = g^{-1}h\hat{h}^{-1}g \in g^{-1}Hg$.

Definition: 2.12: Center

Given a group G, the center of G is $Z(G) = \{g \in G : gx = xg, \forall x \in G\}$. $Z(G) \leq G$. i.e. $g \in Z(G) \Leftrightarrow gx = xg, \forall x \in G \Leftrightarrow xgx^{-1} = g, \forall x \in G$

Proof. Let $x, y \in Z(G)$. Then $gxg^{-1} = x$, $\forall x \in G$, and $gyg^{-1} = y$, $\forall y \in G$ Then $xy^{-1} = gxg^{-1}(gyg^{-1})^{-1} = gxg^{-1}gy^{-1}g^{-1} = g(xy^{-1})g^{-1}$, Thus $xy^{-1} \in Z(G)$. By Theorem 2.3, $Z(G) \leq G$. □

Example: Find the center of $D_4 = \langle r, s : r^4 = s^2 = e, rs = sr^3 \rangle$

Proof. If $x \in Z(D_4)$, then rx = xr and sx = xs, thus $x = r^3xr$ and $x = s^{-1}xs = sxs$

Suppose x is a rotation, $x = r^k$, $0 \le k \le 3$.

Then $r^3xr = r^3r^kr = r^{k+4} = r^kr^4 = r^k = x$, so any rotation commutes with x.

 $sxs = sr^k s \stackrel{\text{By Theorem 2.1}}{=} ssr^{4-k} = r^{4-k} = x = r^k$. Then $r^{2k} = e$, $2k \equiv 0 \mod 4$, k is even.

Thus $x = r^0$ or r^2 .

Suppose x is a reflection, $x = sr^k$, $0 \le k \le 3$.

Then $r^3xr = r^3sr^kr$ By Theorem 2.1 $srr^kr = sr^{k+2} = x = sr^2$. Then $r^{k+2} = r$, $r^2 = e$. Impossible.

In summary: if x is a reflection, it cannot be in the center. Only rotations in $Z(D_4)$ are e and r^2 .

Thus $Z(D_4) = \{e, r^2\} = \langle r^2 \rangle$.

2.2Types of Groups

2.2.1Cyclic Groups

Definition: 2.13: Cyclic Subgroups

Given any group G and element $a \in G$, the cyclic subgroup of G generated by a is $\langle a \rangle = \{a^n : n \in \mathbb{Z}\}.$

Proof. Suppose $x, y \in \langle a \rangle$. Then $x = a^m, y = a^n$ for $m, n \in \mathbb{Z}$ Then $xy^{-1} = a^m(a^n)^{-1} = a^ma^{-n} = a^{m-n} \in \langle a \rangle$, since $m - n \in \mathbb{Z}$. Thus $\langle a \rangle \leq G$ by Theorem 2.3.

Theorem: 2.4:

 $\langle a \rangle$ is the smallest subgroup of G containing a.

Proof. We want to show that for any $H \leq G$ with $a \in H$, $\langle a \rangle \subset H$. Suppose $H \leq G$ with $a \in H$, then $a^n \in H$, $\forall n \in \mathbb{Z}$, because subgroups are closed under the operation.

Thus $\langle a \rangle \subset H$ and $\langle a \rangle \leq H$.

Example: $(\mathbb{Z}, +), \langle 5 \rangle = \{5n : n \in \mathbb{Z}\} = 5\mathbb{Z} \leq \mathbb{Z}$

Example: \mathbb{Z}_{12} , $\langle 4 \rangle = \{0, 4, 8\} \leq \mathbb{Z}_{12}$, $\langle 5 \rangle = \{0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7\} = \mathbb{Z}_{12}$

Example: $U_8 = \{1, 3, 5, 7\}, \langle 3 \rangle = \{1, 3\}, \langle 5 \rangle = \{1, 5\}, \langle 7 \rangle = \{1, 7\}$

Figure 1: Lattice Diagram for U_8

Example: $D_4 = \{e, r, r^2, r^3, s, sr, sr^2, sr^3\}, \langle r \rangle = \{e, r, r^2, r^3\}, \langle r^2 \rangle = \{e, r^2\}, \langle s \rangle = \{e, s\}, \langle s, r \rangle = \{e, r, r^2, r^3\}, \langle s, r \rangle = \{e, r, r^2, r^3\}, \langle s, r \rangle = \{e, r, r^2, r^3\}, \langle s, r \rangle = \{e, r, r^2, r^3\}, \langle s, r \rangle = \{e, r, r^2, r^3\}, \langle s, r \rangle = \{e, r, r^2, r^3\}, \langle s, r \rangle = \{e, r, r^2, r^3\}, \langle s, r \rangle = \{e, r, r^2, r^3\}, \langle s, r \rangle = \{e, r, r^2, r^3\}, \langle s, r \rangle = \{e, r, r^2, r^3\}, \langle s, r \rangle = \{e, r, r^2, r^3\}, \langle s, r \rangle = \{e, r, r^2, r^3\}, \langle s, r \rangle = \{e, r, r^2, r^3\}, \langle s, r \rangle = \{e, r, r^2, r^3\}, \langle s, r \rangle = \{e, r, r^2, r^3\}, \langle s, r \rangle = \{e, r, r^2, r^3\}, \langle s, r \rangle = \{e, r, r^2, r^3\}, \langle s, r \rangle = \{e, r, r^2, r^3\}, \langle s, r \rangle = \{e, r, r^2\}, \langle s, r \rangle = \{e,$ $\{e, sr\}$

Example: $S_5 = \text{all bijections of } \{1, 2, 3, 4, 5\}. \ \langle (123) \rangle = \{1, (123), (132)\}$

Definition: 2.14: Cyclic Groups

A group G is a cyclic group if $G = \langle g \rangle = \{g^n : n \in \mathbb{Z}\}$ for some $g \in G$.

Theorem: 2.5:

Every cyclic group is abelian

Proof. Suppose $G = \langle g \rangle$. Take $x, y \in G. x = g^m, y = g^n$ for $m, n \in \mathbb{Z}$. Then, $xy = g^m g^n = g^{m+n} = g^n g^m = yx$. Thus the cyclic group is abelian. **Example:** Cyclic groups: $\mathbb{Z} = \langle 1 \rangle = \{ n \cdot 1 : n \in \mathbb{Z} \}$. $\mathbb{Z}_n = \langle 1 \rangle$.

 $U_6 = \{1,5\} = \langle 5 \rangle. \ U_9 = \{1,2,4,5,7,8\} = \langle 2 \rangle$

All non-abelian groups are not cyclic.

 $\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0,0), (1,0), (0,1), (1,1)\}$ is abelian, but not cyclic. $\langle (1,0) \rangle = \{(1,0), (0,0)\}, \langle (0,1) \rangle = \{(0,1), (0,0)\}, \langle (1,1) \rangle = \{(1,1), (0,0)\}$

Theorem: 2.6:

Every subgroup of a cyclic group is cyclic.

Proof. Suppose $G = \langle g \rangle$, $H \leq G = \langle g \rangle$.

Let $S = \{a \in \mathbb{N} : g^a \in H\} \subset \mathbb{N}$, so it has a minimal element $m \in S$, $g^m \in H$.

Take $g^n \in H$. Perform division algorithm with m and n. n = mq + r, $0 \le r < m - 1$.

 $g^n = g^{mq+r} = (g^m)^q g^r$. Then $g^r = g^n (g^m)^{-q} \in H$. This means that r = 0. Otherwise, m is not the minimal.

Thus, $g^n = (g^m)^q g^r = (g^m)^q \in \langle g^m \rangle$.

Then $H \subset \langle g^m \rangle$.

Since $g^m \in H$, $\langle g^m \rangle \leq H$ by Theorem 2.4, Thus $H = \langle g^m \rangle$

Lemma: 2.1:

Suppose $G = \langle g \rangle$ with |G| = n or equivalently |g| = n. Then $g^k = e \Leftrightarrow n|k$

Proof. (\Leftarrow) Suppose n|k, then k=nd for $d\in\mathbb{N}$. $g^k=g^{nd}=(g^n)^d=e^d=e$

 (\Rightarrow) Suppose $g^k = e$. Perform division with n and k. k = nq + r, $0 \le r < n - 1$.

Then $e = g^k = g^{nq+r} = (g^n)^q g^r = e^q g^r = g^r$. Thus r = 0, k = nq, n|k.

Theorem: 2.7: Element Order in Cyclic Group

Let $G = \langle g \rangle$ with |G| = |g| = n. If $x = g^k$, then $|x| = \frac{n}{\gcd(n,k)}$.

Proof. Let m=|x|. By Definition 2.8, $x^m=(g^k)^m=e$. Thus $g^{km}=e$. By Lemma 2.1, n|km, or equivalently $\frac{n}{\gcd(n,k)}=\frac{km}{\gcd(n,k)}$.

But $\frac{n}{\gcd(n,k)}$ and $\frac{k}{\gcd(n,k)}$ are relevantly prime. Thus $\frac{m}{\gcd(n,k)}|m$

Notice $x^{\frac{n}{\gcd(n,k)}} = (q^k)^{\frac{n}{\gcd(n,k)}} = (q^n)^{\frac{k}{\gcd(n,k)}} = e$.

By Lemma 2.1, $m \mid \frac{n}{\gcd(n,k)}$.

Thus $m = \frac{n}{\gcd(n,k)}$

Corollary 1. If $G = \langle g \rangle$ with |G| = n|g|, then $G = \langle g^m \rangle \Leftrightarrow \gcd(m,n) = 1$.

Corollary 2. $\mathbb{Z}_n = \langle m \rangle \Leftrightarrow \gcd(m,n) = 1.$

Example: $\mathbb{Z}_9 = \langle 1 \rangle = \langle 2 \rangle = \langle 4 \rangle = \langle 5 \rangle = \langle 7 \rangle = \langle 8 \rangle$

For p prime, $\mathbb{Z}_p = \langle m \rangle$, $\forall m \in [1, p-1]$.

2.2.2 Alternating Groups

Definition: 2.15: k-cycle and Transposition

A k-cycle is a permutation $(a_1a_2...a_k)$, $a_i \in \{1,...,n\}$. A 2-cycle is known as a transposition.

Theorem: 2.8:

Any k-cycle can be written as a product of transpositions.

Proof.
$$(a_1a_2...a_{k-1}a_k) = (a_1a_2)(a_2a_3)...(a_{k-1}a_k).$$

Remark 1. The composition is not unique. e.g. (123) = (12)(13) = (12)(23)(23)(13)

Lemma: 2.2:

If $\tau_1, ..., \tau_n \in S_n$ are transpositions with $\tau_1 \cdots \tau_r = 1$, then r is even.

Proof. Note r=1 is impossible. So we assume $r\geq 2$.

Induction Hypothesis: Assume that for $k \leq r$ if $\tau_1, ..., \tau_k \in S_n$ are transpositions with $\tau_1 \cdots \tau_k = 1$, then k is even.

Induction Step: We can write the final two transpositions
$$\tau_{r-1}\tau_r = \begin{cases} (ab)(ab) = (1) \\ (bc)(ab) = (ac)(bc) \\ (cd)(ab) = (ab)(cd) \\ (ac)(ab) = (ab)(bc) \end{cases}$$

Using this we can move the last appearance of a to the left. Suppose a appears in τ_r , we can move it left until

- 1. The resulting final appearance of a is (ab') and it encounters its inverse. $\tau'_{k-1}\tau_k=(1)$. Then $\tau_1\cdots\tau_r=\tau'_1\cdots\tau'_{r-2}=(1)$. r-2 is even by IH, thus r is even.
- 2. The first occurrence of a moves all the way to the left, $(1) = \tau_1 \cdots \tau_r = (ab)'\tau_2'\cdots\tau_r'$. Then $\tau_2'\cdots\tau_r'$ fixes a, and $(1) = \tau_1\cdots\tau_r = (ab)'\tau_2'\cdots\tau_r'$ sends a to b, contradiction that (1) is identity.

Thus we only have the first case, and r must be even.

Theorem: 2.9:

If $\tau_1 \cdots \tau_m$ and $\tau'_1 \cdots \tau'_n$ are transpositions s.t. $\tau_1 \cdots \tau_m = \tau'_1 \cdots \tau'_n$, then $m \equiv n \mod 2$.

Proof. Note $\forall \tau = (ab), \tau^2 = 1$, thus $\tau^{-1} = \tau$.

Then right multiply both sides of the given equation by $(\tau'_1 \cdots \tau'_n)^{-1}$, we get $\tau_1 \cdots \tau_m(\tau'_n)^{-1} \cdots \tau'_1 = (1)$. Thus $(m+n) \equiv 0 \mod 2$, *i.e.* $m \equiv n \mod 2$.

Definition: 2.16: Even/Odd Cycles

 $\sigma \in S_n$ is said to be even/odd if it can be written as a product of an even/odd number of transpositions. $(a_1...a_k)$ is even if k is odd, odd if k is even, because $(a_1...a_k) = (a_1a_2) \cdots (a_{k-1}a_k)$ contains k-1 transpositions.

Definition: 2.17: Alternating Group

Define the alternating group $A_n = \{ \sigma \in S_n : \sigma \text{ is even} \}$. $A_n \leq S_n$

Proof. Suppose $\mu, \sigma \in A_n$. Then $\mu = \tau_1 \cdots \tau_{2k}, \ \sigma = \tau'_1 \cdots \tau'_{2m}$ for $k, m \in \mathbb{N}$. Then $\sigma^{-1} = \tau'_{2m} \cdots \tau'_{1}$. $\mu \sigma^{-1} = \tau_1 \cdots \tau_{2k} \tau'_{2m} \cdots \tau'_{1}$ has a total of 2(k+m) transpositions. Thus $\mu \sigma^{-1} \in A_n$. By Theorem 2.3, $A_n \leq S_n$.

Theorem: 2.10:

$$|A_n| = \frac{n!}{2}$$

Proof. $S_n \setminus A_n = \{ \text{odd permutations} \}$. Then S_n is the disjoint union of A_n and $S_n \setminus A_n$.

Consider $\phi: A_n \to S_n \setminus A_n$ s.t. $\phi(\sigma) = (12)\sigma$. We want to show that ϕ is a bijection.

- 1. Injective: $\phi(\sigma_1) = \phi(\sigma_2)$, $(12)\sigma = (12)\sigma$, then $\sigma_1 = \sigma_2$
- 2. Surjective: Let $\mu \in S_n \setminus A_n$. Then $\mu = \tau_1 \cdots \tau_{2k-1} = (12)(12)\tau_1 \cdots \tau_{2k-1}$ Note that $(12)\tau_1 \cdots \tau_{2k-1} \in A_n$ as a even permutation, $\phi((12)\tau_1 \cdots \tau_{2k-1}) = \tau_1 \cdots \tau_{2k-1} = \mu$.

Thus ϕ is bijective. $|A_n| = |S_n \setminus A_n|$. $n! = |S_n| = |A_n| + |S_n \setminus A_n| = 2|A_n|$. Then $|A_n| = \frac{n!}{2}$

Example: Show that A_{10} has an element of order 15.

Proof. Let $\sigma = (123)(45678) \in A_{10}$. (123) has order 3, (45678) has order 5. Then $|\sigma| = \text{lcm}(3,5) = 15$.

2.2.3 Quaternion Group

Definition: 2.18: Quaternion Group

The Quaternion Group is $Q_8 = \{\pm 1, \pm i, \pm j, \pm j\}$ with the following operations:

- id = 1
- $(-1)^2 = 1$
- $i^2 = j^2 = k^2 = 1$
- ij = k, ji = -k
- jk = i, kj = -i
- ki = j, ik = -j

Note: $i \to j \to k \to i$ gives the positive orientation.

Cyclic subgroups of Q_8 are $\langle -1 \rangle = \{1, -1\}$, $\langle i \rangle = \langle -i \rangle = \{1, i, -1, -i\}$, $\langle j \rangle = \langle -j \rangle = \{1, j, -1, -j\}$, $\langle k \rangle = \langle -k \rangle = \{1, k, -1, -k\}$.

Figure 2: Lattice Diagram for Q_8

2.3 Cosets and Lagrange's Theorem

Definition: 2.19: Cosets

Suppose G is a group and $H \leq G$. Then the left coset of H in G with representative $g \in G$ is $gH = \{gh : h \in H\}$. The right coset of H in G with representative $g \in G$ is $Hg = \{hg : h \in H\}$. **Note:** Cosets are not necessarily subgroups.

Example: $4\mathbb{Z} \leq \mathbb{Z}$

The coset with 0 is
$$0 + 4\mathbb{Z} = \{0 + 4n : n \in \mathbb{Z}\} = 4\mathbb{Z}$$
.
The coset with 1 is $1 + 4\mathbb{Z} = \{1 + 4n : n \in \mathbb{Z}\} = \{..., -3, 1, 5, 9...\}$.
The coset with 2 is $2 + 4\mathbb{Z} = \{2 + 4n : n \in \mathbb{Z}\} = \{..., -2, 2, 6, 10...\}$.
The coset with 3 is $3 + 4\mathbb{Z} = \{3 + 4n : n \in \mathbb{Z}\} = \{..., -1, 3, 7, 11...\}$.
 $\mathbb{Z} = 4\mathbb{Z} \cup (1 + 4\mathbb{Z}) \cup (2 + 4\mathbb{Z}) \cup (3 + 4\mathbb{Z})$.

Example:
$$\langle 2 \rangle = \{0, 2, 4, 6\} \leq \mathbb{Z}_8$$

 $0 + \langle 2 \rangle = \{0, 2, 4, 6\} = 2 + \langle 2 \rangle = 4 + \langle 2 \rangle = 6 + \langle 2 \rangle = \langle 2 \rangle$
 $1 + \langle 2 \rangle = \{1, 3, 5, 7\} = 3 + \langle 2 \rangle = 5 + \langle 2 \rangle = 7 + \langle 2 \rangle$
 $\mathbb{Z}_8 = \langle 2 \rangle \cup (1 + \langle 2 \rangle).$

Example:
$$\langle i \rangle = \{1, i, -1, -i\} \leq Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$$

 $i \langle i \rangle = \{i, -1, -i, 1\} = \langle i \rangle, \ j \langle i \rangle = \{j, -k, -j, k\}$
 $Q_8 = \langle i \rangle \cup (j \langle i \rangle).$

Example:
$$\langle 5 \rangle = \{1, 5\} \leq U_{12} = \{1, 5, 7, 11\}$$
 $7\langle 5 \rangle = \{7, 11\}$ $U_{12} = \langle 5 \rangle \cup (7\langle 5 \rangle).$

Example:
$$H = \{e, r^2, s, sr^2\} \le D_4 = \{e, r, r^2, r^3, sr, sr^2, sr^3\}$$
 $eH = r^2H = sH = (sr^2)H = H, rH = \{r, r^3, rs, rsr^2\} = \{r, r^3, sr^3, sr\}$ (By Theorem 2.1) $D_4 = H \cup (rH)$.

Example:
$$\langle (12) \rangle = \{(1), (12)\} \leq S_3 = \{(1), (12), (13), (23), (123), (132)\}$$

 $(123)\langle (12) \rangle = \{(123), (13)\}, (132)\langle (12) \rangle = \{(132), (23)\}$
 $S_3 = \langle (12) \rangle \cup ((123)\langle (12) \rangle) \cup ((132)\langle (12) \rangle).$

Lemma: 2.3: Coset Partition

Distinct left cosets of H in G partition G.

Proof. Suppose $x \in g_1 H \cap g_2 H$. Then $x = g_1 h = g_2 h'$ for $h, h' \in H$. Then $g_1 = g_2 h' h^{-1} \in g_2 H$. Thus $g_1 h'' = g_2 (h' h^{-1} h'') \in g_2 H$, so $g_1 H \subset g_2 H$. Similarly, we get $g_2 H \subset g_1 H$. Thus $g_1 H = g_2 H$. So different cosets are disjoint. *i.e.* $g_1 H = g_2 H$ or $g_1 H \cap g_2 H = \emptyset$.

Suppose $g \in G$, then $g = ge \in gH$. Thus any element $g \in G$ must live in some coset. *i.e.* Distinct left cosets of H in G partition G.

Lemma: 2.4:

|H| = |gH| for any $g \in G$.

Proof. Consider $\phi: H \to gH$ s.t. $\phi(h) = gh$

Injective: suppose $\phi(h) = \phi(h')$, then gh = gh', meaning that h = h'.

Surjective: let $x \in gH$. By Definition 2.19, x = gh for $h \in H$. $\phi(h) = gh = x$.

Thus ϕ is bijective, |H| = |qH|.

Theorem: 2.11: Lagrange's Theorem

Let G be a finite group with $H \leq G$. Then |G| = |H||G:H|, where [G:H] is the number of cosets of H in G. Thus |H||G|. [G:H] is also called the index of H in G.

Proof. Suppose |G| = n and $g_1H, ..., g_kH$ is a complete list of left cosets of H in G.

By Lemma 2.3, $G = g_1 H \cup g_2 H \cup \cdots \cup g_k H$ with $g_i H \cap g_j H = \emptyset$ for $i \neq j$.

Then
$$|G| = \sum_{i=1}^{k} |g_i H| \stackrel{\text{By Lemma 2.4}}{=} \sum_{i=1}^{k} |H| = k|H|$$
. $k = [G:H] \in \mathbb{Z}$. Thus $|G| = |H|[G:H]$ and $|H|||G|$. \square

Corollary 3. If G is a finite group, Then

- 1. $\forall g \in H, |g|||G|$
- 2. If |G| = p a prime, then the only subgroups are G and $\{e\}$
- 3. If |G| = p, G is cyclic.

Proof. 1. Since $\langle g \rangle \subset G$ by Theorem 2.4, and $|g| = |\langle g \rangle|$ which divides |G| by Theorem 2.11.

- 2. A prime number can only be divided by 1 and itself
- 3. Choose $g \neq e \in G$, $\{e\} \neq \langle g \rangle \leq G$, then $\langle g \rangle = G$ by previous.

Lemma: 2.5: Coset Equality

Let G be a group, $H \leq G$ and $g_1, g_2 \in G$. Then the following are equivalent:

- 1. $g_1 H = g_2 H$ 2. $Hg_1^{-1} = Hg_2^{-1}$
- 3. $g_1H \subset g_2H$
- 4. $g_1 \in g_2 H$ 5. $g_1^{-1} g_2 \in H$

Proof. $(1 \Rightarrow 2)$ Suppose $g_1H = g_2H$.

Let $x \in Hg_1^{-1}$, then $x = hg_1^{-1}$ for some $h \in H$.

 $x^{-1} = g_1 h^{-1} \in g_1 H = g_2 H$, thus $x^{-1} = g_2 \hat{h}$ for some $\hat{h} \in H$, then $x = (x^{-1})^{-1} = \hat{h}^{-1} g_2^{-1} \in H g_2^{-1}$.

Thus $Hg_1^{-1}\subset Hg_2^{-1}$. Similarly, we can show that $Hg_2^{-1}\subset Hg_1^{-1}$. Thus $Hg_1^{-1}=Hg_2^{-1}$.

 $(2 \Rightarrow 3)$ Suppose $Hg_1^{-1} = Hg_2^{-1}$.

Let $x \in g_1 H$, then $x = g_1 h$ for some $h \in H$. $x^{-1} = h^{-1} g_1^{-1} \in H g_1^{-1} = H g_2^{-1}$. Thus $x^{-1} = \hat{h} g_2^{-1}$ for some $\hat{h} \in H$. Then $x = (x^{-1})^{-1} = g_2 \hat{h}^{-1} \in g_2 H$. Thus $g_1H \subset g_2H$.

 $(3 \Rightarrow 4)$ Suppose $g_1 H \subset g_2 H$.

Then $\forall x \in g_1 H, x \in g_2 H$.

 $g_1 = g_1 e \in g_1 H \text{ so } g_1 \in g_2 H.$

 $(4 \Rightarrow 5)$ Suppose $g_1 \in g_2H$.

Then $g_1 = g_2 h$ for some $h \in H$, then $g_2^{-1} g_1 = h$. Thus $g_1^{-1} g_2 = h^{-1} \in H$.

 $(5 \Rightarrow 1)$ Suppose $g_1^{-1}g_2 \in H$.

Then $g_1^{-1}g_2 = h$ for some $h \in H$. $g_2 = g_1h \in g_1H$. By Lemma 2.3, $g_1H = g_2H$.

2.4 Group Isomorphism

Definition: 2.20: Isomorphism

Two groups (G, \cdot) and (H, \circ) are isomorphic if there is a bijection $\phi : G \to H$ s.t. $\phi(xy) = \phi(x) \circ \phi(y)$, for all $x, y \in G$. ϕ is called an isomorphism. Write $G \cong H$.

Example: Show that $(\mathbb{Z}_2, +) \cong \{\{\pm 1\}, \cdot\}$.

Proof. Let $\phi : \mathbb{Z}_2 \to \{\pm 1\}$ s.t. $\phi(0) = 1, \phi(1) = -1$.

 $\phi(0+0) = \phi(0) = 1 = 1 \cdot 1 = \phi(0)\phi(0)$

 $\phi(0+1) = \phi(1) = -1 = 1(-1) = \phi(0)\phi(1)$

 $\phi(1+0)$ is by commutativity of Abelian groups. $\phi(1+1) = \phi(0) = 1 = (-1)(-1) = \phi(1)\phi(1)$

Thus $\mathbb{Z}_2 \cong \{\pm 1\}$

Example: Show that $(\mathbb{R}, +) \cong (\mathbb{R}^+, \cdot)$

Proof. Let $\phi: \mathbb{R} \to \mathbb{R}^+$ s.t. $\phi(x) = e^x$

Injective: $\phi(x) = \phi(y) \Rightarrow e^x = e^y \Rightarrow x = y$

Surjective: Let $y \in \mathbb{R}^+$, $\ln y \in \mathbb{R}$. Set $x = \ln y$, $\phi(x) = e^{\ln y} = y$.

$$\phi(x+y) = e^{x+y} = e^x e^y = \phi(x)\phi(y)$$

Example: Show that $U_5 \cong U_{10}$.

Proof.
$$U_5 = \{1, 2, 3, 4\} = \langle 3 \rangle$$
, $U_{10} = \{1, 3, 7, 9\} = \langle 7 \rangle$ (Any generator works.)
Let $\phi: U_5 \to U_{10}$ s.t. $\phi(3^k) = 7^k$, i.e. $\phi(1) = 1$, $\phi(3) = 7$, $\phi(4) = 9$, $\phi(2) = 3$
 $\phi(3^k 3^l) = \phi(3^{k+l}) = 7^{k+l} = 7^k 7^l = \phi(3^k) \phi(3^l)$

Theorem: 2.12: Properties of Isomorphism

Let $\phi: G \to H$ be an isomorphism. Then

- 1. $\phi^{-1}: H \to G$ is an isomorphism
- 2. |G| = |H|
- 3. If G is abelian, then so is H
- 4. If G is cyclic, then so is H
- 5. If G has a subgroup of order n, then so does H

Proof. 1. ϕ is bijective, so ϕ^{-1} exists.

Suppose
$$u, v \in H$$
, $\exists x, y \in G$ s.t. $\phi(x) = u$, $\phi(y) = v$
 $\phi^{-1}(uv) = \phi^{-1}(\phi(x)\phi(y)) = \phi^{-1}(\phi(xy)) = xy = \phi^{-1}(u)\phi^{-1}(v)$

- 2. By definition of bijections
- 3. Suppose G is abelian.

Let
$$u, v \in H$$
, $u = \phi(x)$, $v = \phi(y)$, $x, y \in G$
 $uv = \phi(x)\phi(y) = \phi(xy) \stackrel{G \text{is abelian}}{=} \phi(yx) = \phi(y)\phi(x) = vu$
Thus H is abelian.

4. Suppose G is cyclic. $G = \langle g \rangle$.

Let $u \in H$. $u = \phi(x)$ for some $x \in G = \langle g \rangle$. Then $x = g^n$ for some $n \in \mathbb{Z}$.

Then $u = \phi(g^n) = (\phi(g))^n \in \langle \phi(g) \rangle$

Thus $H \leq \langle \phi(g) \rangle \leq H$, $H = \langle \phi(g) \rangle$ is cyclic.

5. Suppose $K \leq G$ with |K| = n

Consider $\phi(K) \subset H$ with $|\phi(K)| = n$.

Let $x, y \in \phi(K)$. Then $x = \phi(k_1)$, $y = \phi(k_2)$ for some $k_1, k_2 \in K$. $k_1 k_2^{-1} \in K$, because K is a subgroup.

 $xy^{-1} = \phi(k_1)\phi(k_2)^{-1} = \phi(k_1k_2^{-1}) \in \phi(K)$

By Theorem 2.3, $\phi(K) \leq H$.

2.4.1 Classification of Cyclic Groups

Theorem: 2.13: Infinite Cyclic Groups

If $G = \langle g \rangle$ with $|G| = \infty$, then $G \cong \mathbb{Z}$.

Proof. Consider $\phi : \mathbb{Z} \to G$ s.t. $\phi(n) = g^n$ $\phi(m+n) = g^{m+n} = g^m g^n = \phi(m)\phi(n)$

Injective: suppose $\phi(m) = \phi(n)$ with $m \ge n$. Then $g^m = g^n \Rightarrow g^{m-n} = e$.

If m = n, then done, ϕ is injective.

If m > n, then let k = m - n > 0. $\langle g \rangle = \{e, g, ..., g^{k-1}\}$ is finite, because $g^k = e$.

Surjective: suppose $x \in G = \langle g \rangle$, $x = g^n$ for some $n \in \mathbb{Z}$, then $\phi(n) = x$.

Theorem: 2.14: Finite Cyclic Groups

Suppose $G = \langle g \rangle$ with |G| = n. Then $G \cong \mathbb{Z}_n$.

Proof. Consider $\phi: \mathbb{Z}_n \to G$ with $\phi(m) = g^m$ for $0 \le m \le n-1$

Suppose $m \equiv m' \mod n$, then m - m' = kn for some integer k. $\phi(m - m') = \phi(kn) \Rightarrow g^{m - m'} = (g^n)^k = e$. Thus $g^m = g^{m'}$, $\phi(m) = \phi(m')$. So the map ϕ is well-defined.

Suppose $l, m \in \mathbb{Z}_n$. Then $\phi(l+m) = g^{l+m} = g^l g^m = \phi(l)\phi(m)$

Surjective: Suppose $x \in G = \langle g \rangle$. $x = g^m$ for $0 \le m \le n-1$, then $\phi(m) = g^m = x$.

Injective: Suppose $l, m \in \mathbb{Z}_n$. $\phi(l) = \phi(m)$ means $l = m, g^{l-m} = e$.

If $l \neq m$, then $l - m \in \{1, ..., n - 1\}$, $|g| = |\langle g \rangle| < n$, which is a contradiction. Thus l = m.

Thus ϕ is bijective and $G \cong \mathbb{Z}_n$

Remark 2. In summary:

- 1. All infinite cyclic groups are isomorphic to \mathbb{Z}
- 2. All finite cyclic groups are isomorphic to \mathbb{Z}_n for some n

2.4.2 Cayley's Theorem

Theorem: 2.15: Cayley's Theorem

Every group is isomorphic to a permutation group.

Proof. For $g \in G$, define $\lambda_q : G \to G$ s.t. $\lambda_q(x) = gx$

We firstly show that λ_q is a bijection, i.e. $\lambda_q \in S_q$

Injective: $\lambda_g(x) = \lambda_g(y) \Rightarrow gx = gy \Rightarrow x = y$

Surjective: Suppose $y \in G$, $g^{-1}y \in G$, $\lambda_q(g^{-1}y) = gg^{-1}y = y$

Thus λ_q is a bijection and a permutation on G.

Let $H = {\lambda_g : g \in G}$. We show that H is a group.

- 1. Associativity: is from associativity of function composition.
- 2. Closure: because $\forall g, h \in G$, $gh \in G$, then for all $\lambda_g, \lambda_h \in H$, $(\lambda_g \circ \lambda_h)(x) = ghx = \lambda_{gh}(x)$, and thus $\lambda_g \circ \lambda_h = \lambda_{gh} \in H$
- 3. Identity: $(\lambda_q \circ \lambda_e)(x) = gex = gx = \lambda_q(x)$, thus $\lambda_q \circ \lambda_e = \lambda_q$. λ_e is the identity
- 4. Inverses: $(\lambda_g \circ \lambda_{g^{-1}})(x) = gg^{-1}x = x = ex = \lambda_e(x)$. Thus $\lambda_g \circ \lambda_{g^{-1}} = \lambda_e$. $\lambda_{g^{-1}} = (\lambda_g)^{-1}$.

Now we show that $G \cong H$

Consider $\phi: G \to H$, $\phi(g) = \lambda_q$

 $\phi(gh) = \lambda_{gh}$. Thus $\phi(gh)(x) = \lambda_{gh}(x) = ghx = (\lambda_g \circ \lambda_h)(x) = \phi(g)(x)\phi(h)(x)$. So $\phi(gh) = \phi(g)\phi(h)$.

Injective: Suppose $\phi(g) = \phi(h)$. i.e. $\lambda_g = \lambda_h$, then $\lambda_g(x) = \lambda_h(x)$, $\forall x \Rightarrow gx = hx$, $\forall x \Rightarrow g = h$

Surjective: from definition of ϕ .

Thus
$$G \cong H$$

Corollary 4. If |G| = n, then there is a subgroup $H \subset S_n$ s.t. $G \cong H$.

Example: Find a subgroup $H \leq S_3$ s.t. $\mathbb{Z}_3 \cong H$.

Proof. Consider $S_{\mathbb{Z}_3}$ = all permutation $\{0,1,2\} \to \{0,1,2\}$. $S_{\mathbb{Z}_3} = S_3$.

Define $\phi: \mathbb{Z}_3 \to H = \{\lambda_g : g \in \mathbb{Z}_3\}.$

 $\lambda_0: \mathbb{Z}_3 \to \mathbb{Z}_3$ s.t. $\lambda_0(x) = 0 + x$. This is the identity (0).

 $\lambda_1: \mathbb{Z}_3 \to \mathbb{Z}_3$ s.t. $\lambda_1(x) = 1 + x$. This is the 3-cycle (012).

 $\lambda_2: \mathbb{Z}_3 \to \mathbb{Z}_3$ s.t. $\lambda_2(x) = 2 + x$. This is the 3-cycle (021).

Thus $H = \{(0), (012), (021)\} \leq S_3$ and $\mathbb{Z}_3 \cong H$.

2.5 Group Products and Quotients

Definition: 2.21: External Direct Product

Given groups G_1, G_2 . Their external direct product is $G_1 \times G_2$. The respective group operations are componentwise.

Example: $\mathbb{Z}_5 \times \mathbb{Z} = \{ m \in \mathbb{Z}_5, n \in \mathbb{Z} \}.$

Example: $\mathbb{R}^{\times} \times \mathbb{Z}_3 = \{(x,m) : x \in \mathbb{R}^{\times}, m \in \mathbb{Z}_3\}$ with (x,n) * (y,m) = (xy,n+m)

Theorem: 2.16: Property of External Direct Product

Let $(x, y) \in G_1 \times G_2$ with |x| = r, |y| = s, then |(x, y)| = lcm(r, s).

Proof. Set l = lcm(r, s), then l = ra = sb for some $a, b \in \mathbb{N}$.

$$(x,y)^l = (x^l,y^l) = ((x^r)^a,(y^s)^b) = (e_1^a,e_2^b) = (e_1,e_2)$$
. Thus $|(x,y)||l$

Set
$$l' = |(x,y)|$$
, then $(x,y)^{l'} = (e_1,e_2) \Rightarrow (x^{l'},y^{l'}) = (e_1,e_2)$, so $x^{l'} = e_1$, $y^{l'} = e_2$. $r|l'$ and $s|l'$.

Thus $l = \operatorname{lcm}(r, s) | l' = |(x, y)|$

Then $|(x,y)| = \operatorname{lcm}(r,s)$

Theorem: 2.17:

 $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn} \Leftrightarrow \gcd(m,n) = 1$

Proof. (\Rightarrow) Suppose $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$. Assume $d = \gcd(m, n) > 1$

Take $(a,b) \in \mathbb{Z}_m \times \mathbb{Z}_n$. Then if we sum (a,b) $\frac{mn}{d}$ times, we have $(a,b) + \cdots + (a,b) = (\frac{mn}{d}a, \frac{mn}{d}b) = (m(\frac{n}{d})a, n(\frac{m}{d}b)) = (0,0)$.

But this shows that $|(a,b)| |\frac{mn}{d}$ and thus |(a,b)| < mn for any $(a,b) \in \mathbb{Z}_m \times \mathbb{Z}_n$.

Thus $\mathbb{Z}_m \times \mathbb{Z}_n$ is not cyclic. Contradiction.

Therefore gcd(m, n) = 1.

 (\Leftarrow) Suppose gcd(m, n) = 1, |1| = m in \mathbb{Z}_m , |1| = n in \mathbb{Z}_n .

Then |(1,1)| = lcm(m,n) = mn by Theorem 2.16.

Thus $\mathbb{Z}_m \times \mathbb{Z}_n = \langle (1,1) \rangle$ has order mn. $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$ by Theorem 2.14.

Definition: 2.22: Internal Direct Product

Suppose G is a group with $H, K \leq G$ s.t.

- 1. $G = HK = \{hk : h \in H, k \in K\}$
- 2. $H \cap K = \{e\}$
- 3. $hk = kh, \forall h \in H, k \in K$

Then G is the internal direct product of H and K.

Theorem: 2.18: Isomorphism of Direct Products

If G is the internal direct product of H and K, then $G \cong H \times K$.

Proof. We want to find a bijective map $\phi: G \to H \times K$, that satisfy the isomorphism property (Definition 2.20).

Let $\phi: G \to H \times K$. Take $g \in G$, write g = hk, $\phi(g) = (h, k)$.

We firstly show that ϕ is well defined.

Suppose g = hk = h'k', then $h'^{-1}h = k'k^{-1}$. $h'^{-1}h \in H$ and $k'k^{-1} \in K$. Then both sides in $H \cap K = \{e\}$. $h'^{-1}h = e \Rightarrow h = h'$. Similarly, k = k'.

Let $g, g' \in G$, g = hk, g' = h'k'. $\phi(gg') = \phi(hkh'k') \stackrel{byproperty3}{=} \phi(hh'kk') = (hh', kk') = (h, k)(h', k') = \phi(g)\phi(g')$.

Injective: $\phi(g) = \phi(g')$, g = hk, g' = h'k', then (h, k) = (h', k'), Thus h' = h, k' = k, g = g'. Surjective: Take $(h, k) \in H \times K$. Let $hk \in G$, $\phi(hk) = (h, k)$,

Example: Find groups that are isomorphic to $U_{12} = \{1, 5, 7, 11\}$.

Note $\langle 5 \rangle = \{1, 5\} \leq U_{12}$, and $\langle 7 \rangle = \{1, 7\} \leq U_{12}$, $5 \cdot 7 \equiv 11 \mod 12$. Then $U_{12} = \langle 5 \rangle \langle 7 \rangle \cong \langle 5 \rangle \times \langle 7 \rangle \stackrel{\text{By Theorem 2.18}}{\cong} \mathbb{Z}_2 \times \mathbb{Z}_2$.

Example: Find groups that are isomorphic to $D_6 = \langle r, s : r^6 = s^2 = e, rs = sr^5 \rangle$ $(r^3s = sr^3)$

 $H = \langle r^3 \rangle \cong \mathbb{Z}_2, K = \langle s, r^3 \rangle = \{e, r^2, r^4, s, sr^2, sr^4\} \cong D_3.$

Note that $r = r^7 = r^3 \cdot r^4$, $D_6 = HK$, Thus $D_6 \stackrel{\text{By Theorem 2.18}}{\cong}$ $H \times K \cong \mathbb{Z}_2 \times \mathbb{Z}_3$

Definition: 2.23: Normal Subgroup

Given a group G, we say $N \leq G$ is normal if $gN = Ng, \forall g \in G$. Equivalently, $gNg^{-1} = N, \forall g \in G$ $G \Leftrightarrow gng^{-1} \in N, \forall g \in G, n \in N$. Write $N \subseteq G$.

Theorem: 2.19:

Every subgroup of an abelian group is normal.

Proof. Let G be an abelian group, $H \leq G$.

Take $h \in H$, $g \in G$. $ghg^{-1} \stackrel{\text{abelian}}{=} gg^{-1}h = h \in H$. Thus $H \subseteq G$.

Example: Find the normal subgroups of $D_3 = \langle r, s \rangle = \{e, r, r^2, s, sr, sr^2\}$

We only need to consider the generator subgroups of $\langle r \rangle$ and $\langle s \rangle$.

For $\langle r \rangle = \{e, r, r^2\}$. $s\langle r \rangle = \{s, sr, sr^2\}$, $\langle r \rangle s = \{s, rs = sr^2, r^2s = sr\}$, thus $\langle r \rangle \leq D_3$

For $\langle s \rangle = \{e, s\}, \ r \langle s \rangle = \{r, rs\} = \{r, sr^2\}, \ \langle s \rangle r = \{r, sr\} \neq r \langle s \rangle$. Thus $\langle s \rangle$ is not a normal subgroup of D_3 .

Definition: 2.24: Left Cosets

For any subgroup $H \leq G$, denote the set of left cosets $G/H = \{gH : g \in G\}$. By Theorem 2.11, $|G/H| = [G:H] = \frac{|G|}{|H|}$

Theorem: 2.20: Quotient Groups

If $N \subseteq G$, then G/N forms a group known as the quotient group with (xN)(yN) = (xy)N.

Proof. Suppose $N \leq G$. Let $x_1, x_2, y_1, y_2 \in G$ s.t. $x_1N = x_2N \ (x_1x_2^{-1} \in N)$ and $y_1N = y_2N \ (y_1y_2^{-1} \in N)$. Then

$$(x_1N)(y_1N) = (x_1y_1)N$$

$$= (x_1y_1y_1^{-1}y_2)N \text{ (since } y_1^{-1}y_2 \in N)$$

$$= (x_1y_2)N = N(x_1y_2) \text{ (By Definition 2.23)}$$

$$= N(x_2x_1^{-1}x_1y_2) \text{ (since } x_2x_1^{-1} \in N)$$

$$= N(x_2y_2) = (x_2y_2)N$$

Thus $(x_1N)(y_1N) = (x_2N)(y_2n)$. The operation is well defined.

Check that G/N is indeed a group:

- 1. Identity: eN = N, (xN)(eN) = (xe)N = xN
- 2. Inverse: $(xN)^{-1} = x^{-1}N$ (Only when N is normal)
- 3. Associative: ((xN)(yN))zN = xyzN = (xN)((yN)(zN)) (Only when N is normal)
- 4. Closed since G is closed.

Thus G/N is a group.

Example: Find the quotient group of $D_3 = \{e, r, r^2, s, sr, sr^2\}$ by $\langle r \rangle = \{e, r, r^2\}$.

Note that $s\langle r\rangle = \langle r\rangle s$, $\langle r\rangle \leq D_3$

By Theorem 2.11, $|D_3/\langle r \rangle| = [D_3 : \langle r \rangle] = \frac{|D_3|}{|\langle r \rangle|} = 2$. $D_3/\langle r \rangle = \{\langle r \rangle, s \langle r \rangle\} \cong \mathbb{Z}_2$. $(\langle r \rangle \to 0, s \langle r \rangle \to 1)$

Example: Find the quotient groups of $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\} = \langle i, j \rangle$.

Firstly, we consider $\langle i \rangle = \{1, i, -1, -i\}$ Note that $j \langle i \rangle = \langle i \rangle j = \{j, -k, -j, k\}$. Thus $\langle i \rangle \leq Q_8$

 $Q_8/\langle i \rangle = \{\langle i \rangle, j \langle i \rangle\} \cong \mathbb{Z}_2$. The quotient groups by $\langle j \rangle$ and $\langle k \rangle$ are similar.

Then, we consider $\langle -1 \rangle = \{1, -1\} \leq Q_8$

 $Q_8/\langle -1 \rangle = \{\langle -1 \rangle, i\langle -1 \rangle, j\langle -1 \rangle, k\langle -1 \rangle\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, because each of the non-identity element has order 2.

 $\langle 1 \rangle \rightarrow (0,0), i \langle 1 \rangle \rightarrow (1,0), j \langle 1 \rangle \rightarrow (0,1), k \langle 1 \rangle \rightarrow (1,1).$

Theorem: 2.21:

 $Z(G) \triangleleft G$. If G/Z(G) is cyclic, then G is abelian.

Proof. Firstly, we show that $Z(G) \leq G$

Let $g \in G$, $gZ(G) = \{gx : x \in Z(G)\}$ By Definition 2.12 $\{xg : x \in Z(G)\} = Z(G)g$

Thus by Definition 2.23, $Z(G) \subseteq G$.

Assume $G/Z(G) = \langle xZ(G) \rangle$. By Theorem 2.3, $G = \bigcup_{i=1}^{\infty} x^n Z(G)$.

Take $a, b \in G$, $a = x^n Z(G) = x^n y$, $b = x^m Z(G) = x^m z$ for some $m, n \in \mathbb{Z}$, $m, n \ge 0$, $y, z \in Z(G)$.

 $ab = x^n y x^m z \stackrel{\text{By Definition 2.12}}{=} x^n x^m y z = x^{n+m} z y = x^m x^n z y = x^m z x^n y = ba.$

Thus G is abelian.

2.6Group Homomorphism

Definition: 2.25: Group Homomorphism

Suppose G and H are groups. A map $\phi: G \to H$ is called a homomorphism if $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in G$.

Example: $\phi: \mathbb{Z} \to G$ s.t. $\phi(n) = q^n$. G any group. $q \in G$ fixed. Then ϕ is a homomorphism. $\phi(m+n) = g^{m+n} = g^m g^n = \phi(m)\phi(n).$

Example: $\phi: GL_2(\mathbb{R}) \to \mathbb{R}^{\times}, \ \phi(A) = \det A \text{ is a homomorphism.} \ \phi(AB) = \det(AB) = \det A \det B = \det A \det A \det B$ $\phi(A)\phi(B)$.

Example: $\phi : \mathbb{R} \to S^1 = \{z \in \mathbb{C} : |z| = 1\}$. $\phi(x) = e^{ix}$ is a homomorphism. $\phi(x+y) = e^{i(x+y)} = e^{ix}e^{iy} = \phi(x)\phi(y)$.

Theorem: 2.22: Properties of Homomorphism

Let $\phi: G_1 \to G_2$ be a homomorphism. Then

- 1. $\phi(e_1) = e_2$
- 2. $\forall x \in G, \ \phi(x^{-1}) = (\phi(x))^{-1}$
- 3. If $H_1 \leq G_1$, then $\phi(H_1) \leq G_2$
- 4. If $H_2 \leq G_2$, then $\phi^{-1}(H_2) \leq G_1$. If $H_2 \leq G_2$, then $\phi^{-1}(H_2) \leq G_1$.

Proof. 1. Let $x \in G_1$, $e_1x = x$. Since ϕ is a homomorphism, $\phi(e_1x) = \phi(x) = \phi(e_1)\phi(x)$. Then $\phi(e_1) = \phi(x)(\phi(x))^{-1} = e_2$

- 2. $e_1 = xx^{-1}$. $e_2 \stackrel{\text{By 1.}}{=} \phi(e_1) = \phi(xx^{-1}) = \phi(x)\phi(x^{-1})$. Thus $\phi(x^{-1}) = (\phi(x))^{-1}$
- 3. Let $x, y \in H_1$, then By Theorem 2.3, $xy^{-1} \in H_1$. $\phi(x) \in \phi(H_1)$, $\phi(y) \in \phi(H_1)$, $(\phi(y))^{-1} = \phi(y^{-1}) \in \phi(H_1)$.

Then $\phi(x)(\phi(y))^{-1} = \phi(xy^{-1}) \in \phi(H_1)$. Thus $\phi(H_1) \leq G_2$.

4. Suppose $H_2 \leq G$. Let $x, y \in \phi^{-1}(H_2)$, $\phi(x), \phi(y) \in H_2$. Then $\phi(x)(\phi(y))^{-1} = \phi(xy^{-1}) \in H_2$ $\Rightarrow xy^{-1} \in \phi^{-1}(H_2)$. By Theorem 2.3, $\phi^{-1}(H_2) \leq G_1$.

Suppose $H_2 \leq G_2$. Take $n \in \phi^{-1}(H_2), \ \phi(n) \in H_2, \ x \in G_1$. $\phi(xnx^{-1}) = \phi(x)\phi(n)\phi(x)^{-1} \in H_2$ because $H_2 \leq G_2$.

Thus $xnx^{-1} \in \phi^{-1}(H_2), \ \phi^{-1}(H_2) \leq G_1$.

Remark 3. $H_1 \subseteq G_1 \not\Rightarrow \phi(H_1) \subseteq G_2$. e.g. $\phi: \mathbb{Z} \to D_n$. $\phi(m) = s^m$. $\mathbb{Z} \subseteq \mathbb{Z}$, but $\phi(\mathbb{Z}) = \langle s \rangle$ is not normal in D_n .

Lemma: 2.6:

If $\phi: G \to H$ is a homomorphism, then $|\phi(x)| ||x|, \forall x \in G$.

Proof. Suppose $\phi: G \to H$ is a homomorphism.

Take $x \in G$ s.t. $|x| = n < \infty$. $x^n = e_G \in G$, $(\phi(x))^n = \phi(x^n) = \phi(e_G) = e_H \in H$

Let $m = |\phi(x)|$. Perform division algorithm n = mq + r, $0 \le r < m$. n - mq = r.

$$(\phi(x))^r = \phi(x)^n [\phi(x)^m]^{-q} = e_H$$
. Thus $r = 0$ and $m|n$.

Lemma: 2.7:

If
$$C_n = \langle x : x^n = e \rangle \cong \mathbb{Z}_n = \langle 1 \rangle$$
, then $|x^m| = |\langle x^m \rangle| = \frac{n}{\gcd(m,n)}$. $|m| = \frac{n}{\gcd(m,n)}$ in \mathbb{Z}_n

Proof. Follows Theorem 2.7.

Example: Find all homomorphism $\phi: \mathbb{Z}_{24} \to \mathbb{Z}_{18}$

Proof. We find the map of the generator $\phi(1)$.

By Lemma 2.6, $|\phi(1)||1| = 24$. Thus $|\phi(1)| \in \{1, 2, 3, 4, 6, 8, 12\}$

In \mathbb{Z}_{18} , we want to find m s.t. $|m| = \frac{18}{\gcd(m,18)}$ is in $\{1,2,3,4,6,8,12\}$.

$$|1| = |5| = |7| = |11| = |13| = |17| = 18$$

$$|2| = |4| = |8| = |10| = |14| = |16| = 9$$
, not possible

$$|3| = |15| = 6$$
, $\phi(1) = 3$ and $\phi(1) = 15$

$$|6| = |12| = 3$$
, $\phi(1) = 6$ and $\phi(1) = 12$

$$|9| = 2, \, \phi(1) = 9.$$

 $\phi(1) = 0$ mapping the identity is also a homomorphism.

Definition: 2.26: Kernel

Given $\phi G_1 \to G_2$ a homomorphism, the kernel of ϕ is $\operatorname{Ker}(\phi) = \{x \in G_1 : \phi(x) = e_2\} = \phi^{-1}(e_2)$.

Example: $\phi: \mathbb{Z} \to \mathbb{Z}_5$, $\phi(n) = [n]$. Then $\operatorname{Ker}(\phi) = \{n \in \mathbb{Z} : \phi(n) = [0]\} = 5\mathbb{Z}$.

Example: $\phi: \mathbb{R} \to \mathbb{C}^{\times}, \ \phi(x) = e^{2\pi i x}$. Then $\operatorname{Ker}(\phi) = \{x \in \mathbb{R} : e^{2\pi i x} = 1\} = \mathbb{Z}$.

Theorem: 2.23:

For a homomorphism $\phi: G_1 \to G_2$, $Ker(\phi) \subseteq G_1$.

Proof. Firstly, we show that $Ker(\phi) \leq G_1$.

Let $x, y \in \text{Ker}(\phi)$, $\phi(xy^{-1}) = \phi(x)\phi(y)^{-1} = e_2e_2^{-1} = e_2$. Thus $xy^{-1} \in \text{Ker}(\phi)$. By Theorem 2.3, $\text{Ker}(\phi) \leq G_1$.

Let $x \in G_1$, $n \in \text{Ker}(\phi)$, $\phi(xnx^{-1}) = \phi(x)\phi(n)\phi(x)^{-1} = \phi(x)e_2\phi(x)^{-1} = \phi(x)\phi(x)^{-1} = e_2$. Thus $xnx^{-1} \in \text{Ker}(\phi)$, $\text{Ker}(\phi) \subseteq G_1$.

Theorem: 2.24: Inverse Homomorphism

 $\psi: G \to G$ defined by $\psi(x) = x^{-1}$ is a homomorphism $\Leftrightarrow G$ is abelian.

Proof. (\Leftarrow) Suppose G is abelian.

Let
$$x, y \in G$$
, $xy = yx$

$$\psi(xy) = (xy)^{-1} = y^{-1}x^{-1} \stackrel{\text{abelian}}{=} x^{-1}y^{-1} = \psi(x)\psi(y)$$
. Thus ψ is a homomorphism.

 (\Rightarrow) Suppose $\psi(x) = x^{-1}$ is a homomorphism.

Let $x, y \in G$. $\psi(xy) = \psi(x)\psi(y) \Rightarrow (xy)^{-1} = x^{-1}y^{-1} \Rightarrow y^{-1}x^{-1} = x^{-1}y^{-1} \Rightarrow xy = yx$. G is abelian. \square

2.7 Isomorphism Theorems for Groups

2.7.1 First Isomorphism Theorem

Theorem: 2.25: First Isomorphism Theorem

If $\phi: G \to H$ is a homomorphism and $\pi: G \to G/\mathrm{Ker}(\phi)$, then there exists a unique isomorphism $\psi: G/\mathrm{Ker}(\phi) \to Im(\phi) \le H$ s.t. $\psi \pi = \phi$.

$$G \xrightarrow{\phi} Im(\phi) \le H$$

$$\pi \downarrow \qquad \qquad \psi$$

$$G/\mathrm{Ker}(\phi)$$

Proof. Let $\psi: G/\operatorname{Ker}(\phi) \to H$ s.t. $\psi(x\operatorname{Ker}(\phi)) = \phi(x) \in Im(\phi) \leq H$.

Well defined: Suppose $x\mathrm{Ker}(\phi) = y\mathrm{Ker}(\phi)$, thus $xy^{-1} \in \mathrm{Ker}(\phi)$. $\phi(xy^{-1}) = \phi(x)\phi(y)^{-1} = e$. Thus $\psi(x\mathrm{Ker}(\phi)) = \phi(x) = \phi(y) = \psi(y\mathrm{Ker}(\phi))$

Homomorphism:

$$\psi((x\mathrm{Ker}(\phi))(y\mathrm{Ker}(\phi))) \stackrel{\mathrm{Definition}}{=} {}^{2.20} \psi(xy\mathrm{Ker}(\phi)) \stackrel{\mathrm{Definition}}{=} {}^{\phi} (xy) = \phi(x)\phi(y) = \psi(x\mathrm{Ker}(\phi)\psi(y\mathrm{Ker}(\phi))$$

Injective: Suppose $x\mathrm{Ker}(\phi) \in \mathrm{Ker}(\psi)$, then $\psi(x\mathrm{Ker}(\phi)) = e = \phi(x)$. Thus $x \in \mathrm{Ker}(\phi)$, $x\mathrm{Ker}(\phi) = e\mathrm{Ker}(\phi) = \mathrm{Ker}(\phi)$. Thus $\mathrm{Ker}(\psi) = \{\mathrm{Ker}(\phi)\}$. Kernal is trivial and ψ is injective.

Surjective: suppose $y \in Im(\phi)$, there exists $x \in G$ s.t. $\phi(x) = y$, then $\psi(x \operatorname{Ker}(\phi)) = \phi(x) = y$

Thus $\psi: G/\mathrm{Ker}(\phi) \to H$ is an isomorphism.

Note that $\pi(x) = x \operatorname{Ker}(\phi)$. Then $\psi(x \operatorname{Ker}(\phi)) = \psi(\pi(x)) = \phi(x)$. Thus $\psi \pi = \phi$.

Suppose $\bar{\psi}: G/\mathrm{Ker}(\phi) \to H$ s.t. $\bar{\psi}\pi = \phi$. Take $x\mathrm{Ker}(\phi) \in G/\mathrm{Ker}(\phi)$. Then $\bar{\psi}(x\mathrm{Ker}(\phi)) = \bar{\psi}(\pi(x)) = \phi(x) = \psi(\pi(x)) = \psi(x\mathrm{Ker}(\phi))$.

Definition: 2.27: Group of Automorphisms and Inner Automorphisms

Let G be a group.

The automorphism group of G is $Aut(G) = \{\phi : G \to G : \phi \text{ is an isomorphism}\}.$

The inner automorphism group of G is $Inn(G) = \{I_q : G \to G : I_q(x) = gxg^{-1}\}.$

Aut(G) forms a group with function composition and $Inn(G) \leq Aut(G)$.

Proof. For Aut(G), the identity is $id: G \to G$ s.t. id(g) = g.

Inverse: if $\phi: G \to G$ is an isomorphism, then $\phi^{-1}: G \to G$ is also a well-defined isomorphism. $\phi \in Aut(G)$ $\Leftrightarrow \phi^{-1} \in Aut(G)$.

Associativity follows associativity of function compositions.

Closure: composition of automorphisms is still an automorphism.

Show that $Inn(G) \leq Aut(G)$:

Let
$$I_x, I_y \in Inn(G)$$
. Note $I_y \circ I_{y^{-1}}(g) = y(y^{-1}gy)y^{-1} = g$, so $(I_y)^{-1} = I_{y^{-1}}$. $I_x \circ (I_y)^{-1}(g) = I_x \circ I_{y^{-1}}(g) = x(y^{-1}gy)x^{-1} = (xy^{-1})g(yx^{-1}) = (xy^{-1})g(xy^{-1})^{-1} = I_{xy^{-1}}(g)$ Thus $I_x \circ (I_y)^{-1} = I_{xy^{-1}} \in Inn(G)$. By Theorem 2.3, $Inn(G) \leq Aut(G)$.

Theorem: 2.26:

$G/Z(G) \cong Inn(G)$

Proof. Define $\phi: G \to Inn(G) \leq Aut(G)$. $\phi(g) = I_g$, where $I_g(x) = gxg^{-1}$.

Homomorphism: Let $x \in G$, $\phi(gh)(x) = I_{gh}(x) = ghx(gh)^{-1} = g(hxh^{-1})g^{-1} = I_g(I_h(x)) = I_g \circ I_h(x)$.

Surjectivity is obvious by definition of the function.

Consider the kernel. $Ker(\phi) = \{g \in G : \phi(g) = I_g = id\}$. $I_g(x) = gxg^{-1} = x, \forall x \in G \Leftrightarrow gx = xg \text{ which}$ follows Definition 2.12.

By Theorem 2.25, $G/Z(G) \cong Inn(G)$.

Example: $\phi : \mathbb{Z} \to \mathbb{Z}_n \text{ s.t. } \phi(m) = [m] = \{k \in \mathbb{Z} : k \equiv m \mod n\}$

Surjective: $\forall 0 \leq m \leq n-1, \, \phi(m) = [m]$

Homomorphism: $\phi(m_1 + m_2) = [m_1 + m_2] = [m_1] + [m_2] = \phi(m_1) + \phi(m_2)$

 $Ker(\phi) = \{ m \in \mathbb{Z} : [m] = [0] \} = n\mathbb{Z}$

By Theorem 2.25, $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$.

Example: $\phi: \mathbb{Z}_4 \to \mathbb{Z}_2$ s.t. $\phi([m]_4) = [m]_2$

Well Defined: Suppose $[m_1]_4 = [m_2]_4$, then $[m_1 - m_2]_4 = [0]_4 \Rightarrow m_1 - m_2 \equiv 0 \mod 4 \equiv 0 \mod 2$. Then,

 $[m_1 - m_2]_2 = [0]_2$. $\phi(m_1) = [m_1]_2 = [m_2]_2 = \phi(m_2)$.

Homomorphism: $\phi([m_1]_4 + [m_2]_4) = \phi([m_1 + m_2]_4) = [m_1 + m_2]_2 = [m_1]_2 + [m_2]_2 = \phi([m_1]_4) + \phi([m_2]_4)$.

Surjective: $\phi([0]_4) = [0]_2$, $\phi([1]_4) = [1]_2$

 $\operatorname{Ker}(\phi) = \{ [m]_4 : \phi([m]_4) = [m]_2 = [0]_2 \} = \{ [0]_4, [2]_4 \} = 2\mathbb{Z}_4 \cong \mathbb{Z}_2.$

By Theorem 2.25, $\mathbb{Z}_4/2\mathbb{Z}_4 \cong \mathbb{Z}_4/\mathbb{Z}_2 \cong \mathbb{Z}_2$.

Example: $\phi: \mathbb{Z}_6 \to \mathbb{Z}_{15}$.

Example: $\phi: \mathbb{Z}_6 \to \mathbb{Z}_{15}$.

The order of elements of \mathbb{Z}_{15} $\begin{cases}
1: [0]_{15} \\
3: [5]_{15}, [10]_{15} \\
5: [3]_{15}, [6]_{15}, [9]_{15}, [12]_{15}
\end{cases}$

If $\phi([1]_6) = [0]_{15}$. Then $\operatorname{Ker}(\phi) = \mathbb{Z}_6$, $\operatorname{Im}(\phi) = \{[0]_{15}\}$. $\mathbb{Z}_6/\mathbb{Z}_6 \cong \{[0]_{15}\} \leq \mathbb{Z}_15$.

If $\phi([1]_6) = [5]_{15}$. Then $\phi([0]_6) = \phi([3]_6) = [0]_{15}$, $\phi([1]_6) = \phi([4]_6) = [5]_{15}$, $\phi([2]_6) = \phi([5]_6) = [10]_{15}$

 $\operatorname{Ker}(\phi) = \{[0]_6, [3]_6\} = \langle [3]_6 \rangle \cong \mathbb{Z}_2. \ Im(\phi) = \{[0]_{15}, [5]_{15}, [10]_{15}\} = \langle [5]_{15} \rangle \cong \mathbb{Z}_3$

By Theorem 2.25, $\mathbb{Z}_6/\mathbb{Z}_2 \cong \mathbb{Z}_6/\langle [3]_6 \rangle \cong \langle [5]_{15} \rangle \cong \mathbb{Z}_3$.

Example: $D_n = \langle r, s : r^n = s^2 = e, rs = sr^{n-1} \rangle$, $\phi : D_n \to \mathbb{Z}_2$ s.t. $\phi(r) = 0$, $\phi(s) = 1$.

 $\phi(r^n) = n\phi(r) = 0, \ \phi(s^2) = \phi(e) = 0 = \phi(s) + \phi(s) = 1 + 1.$

 $1 = \phi(s) + \phi(r) = \phi(sr) = \phi(sr^{n-1}) = \phi(s) + (n-1)\phi(r).$

 $\operatorname{Ker}(\phi) = \langle r \rangle, \ \phi(r^k) = k\phi(r) = 0, \ \phi(sr^k) = \phi(s) + k\phi(r) = 1, \ \text{and} \ D_n/\langle r \rangle \cong \mathbb{Z}_2 \ \text{by Theorem 2.25}.$

Example: $\phi: D_n \to \mathbb{Z}_n$ s.t. $\phi(r) = 1$, $\phi(s) = 0$.

 $\phi(rs) = \phi(r) + \phi(s) = 1 + 0 = 1, \ \phi(sr^{n-1}) = \phi(s) + (n-1)\phi(r) = n - 1$

Note $rs = sr^{n-1}$, but $\phi(rs) \neq \phi(sr^{n-1})$ unless n = 2, so ϕ is not a homomorphism in general.

Example: $\phi: D_{2n} \to \mathbb{Z}_2$ s.t. $\phi(r) = 1$, $\phi(s) = 0$

 $0 = 2n = 2n\phi(r) = \phi(r^{2n}) = \phi(e) = 0$, and $1 = \phi(r) + \phi(s) = \phi(rs) = \phi(sr^{2n-1}) = \phi(s) + (2n-1)\phi(r) = 0$

 $2n-1 \mod 2 = 1$

 $\operatorname{Ker}(\phi) = \{e, r^{2k}, sr^{2k}\} \text{ for } 0 \leq k \leq n-1, \operatorname{Ker}(\phi) = \langle s, r^2 \rangle \cong D_n.$ By Theorem 2.25, $D_{2n}/\langle s, r^2 \rangle \cong D_{2n}/D_n \cong \mathbb{Z}_2.$

Example: $\phi: D_6 \to S_6$ s.t. $\phi(r) = (123456), \ \phi(s) = (16)(25)(34)$ $\phi(r^6) = (123456)^6 = (1) = \phi(e), \ \phi(s^2) = ((16)(25)(34))^2 = (16)^2(25)^2(34)^2 = e = \phi(e)$ $\phi(rs) = (123456)(16)(25)(34) = (1)(26)(35)(4) = (26)(35)$ $\phi(sr^5) = (16)(25)(34)(123456)^5 = (16)(25)(34)(165432) = (26)(35)$ Then $Im(\phi) = \langle (123456), (16)(25)(34) \rangle$ Note that $|r| = 6 = |(123456)|, \ \phi(r^n) \neq e \text{ for } n = 1, 2, 3, 4, 5.$ Thus $Ker(\phi) = \{e\}$.

Remark 4. We can similarly construct homomorphism $\phi: D_n \to S_n$

Example: $\phi: S_n \to \mathbb{Z}_2, \ \phi(\sigma) = \begin{cases} 0, \sigma \text{ is even} \\ 1, \sigma \text{ is odd} \end{cases}$

It is easy to check that ϕ is homomorphism by Definition 2.16.

 $Ker(\phi) = {\sigma \in S_n : \sigma \text{ even}} = A_n.$

By Theorem 2.25, $S_n/A_n \cong \mathbb{Z}_2$.

Example: $\phi: GL_2(\mathbb{R}) \to \mathbb{R}^{\times}$ s.t. $\phi(A) = \det(A)$. $\phi(AB) = \det(AB) = \det(A) \det(B) = \phi(A)\phi(B)$. $\operatorname{Ker}(\phi) = \{A \in GL_2(\mathbb{R}) : \phi(A) = \det(A) = 1\} = SL_2(\mathbb{R})$. By Theorem 2.25, $GL_2(\mathbb{R})/SL_2(\mathbb{R}) \cong \mathbb{R}^{\times}$.

Example: Define $gl_2(\mathbb{R}) = \{A \in \mathbb{R}^{2 \times 2}\}$, $sl_2(\mathbb{R}) = \{A \in gl_2(\mathbb{R}) : \operatorname{Tr}(A) = 0\}$. Define $\phi : gl_2(\mathbb{R}) \to \mathbb{R}$ s.t. $\phi(A) = \operatorname{Tr}(A)$. $\phi(A+B) = \operatorname{Tr}(A+B) = \operatorname{Tr}(A) + \operatorname{Tr}(B) = \phi(A) + \phi(B)$. $\operatorname{Ker}(\phi) = \{A \in gl_2(\mathbb{R}) : \operatorname{Tr}(A) = 0\} = sl_2(\mathbb{R})$. By Theorem 2.25, $gl_2(\mathbb{R})/sl_2(\mathbb{R}) \cong \mathbb{R}$.

 $\begin{aligned} &\textbf{Example: } \phi: gl_2(\mathbb{R}) \to sl_2(\mathbb{R}), \, \phi \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a-d & b \\ c & d-a \end{bmatrix}. \\ &\textbf{Ker}(\phi) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : \phi \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a-d & b \\ c & d-a \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} : a \in \mathbb{R} \right\} \cong \mathbb{R}. \\ &\textbf{By Theorem 2.25}, \, gl_2(\mathbb{R})/\mathbb{R} \cong sl_2(\mathbb{R}). \end{aligned}$

Example: Homomorphisms for \mathbb{Z} , \mathbb{R} , \mathbb{C}

- 1. $\phi: \mathbb{Z} \to \mathbb{R}^{\times}$
 - (a) $\phi(1)=1, \, \phi(n)=1^n=1, \, \operatorname{Ker}(\phi)=\mathbb{Z}, \, \operatorname{Im}(\phi)=1, \, \mathbb{Z}/\mathbb{Z}\cong \{1\} \leq \mathbb{R}^\times$
 - (b) $\phi(1) = -1, \ \phi(n) = (-1)^n$. $Ker(\phi) = 2\mathbb{Z}, \ \mathbb{Z}/2\mathbb{Z} \cong \{\pm 1\} \leq \mathbb{R}^{\times}$
 - (c) $\phi(1) = a, \, \phi(n) = a^n, \, a \in \mathbb{R}^{\times} \setminus \{\pm 1\}. \, \operatorname{Ker}(\phi) = \{0\}, \, \mathbb{Z} \cong \{\pm a^n : n \in \mathbb{Z}\}$
- 2. $\phi: \mathbb{R} \to \mathbb{R}_{+}^{\times}, \ \phi(x) = 2^{x}$. Ker $(\phi) = \{0\}$. $Im(\phi) = \mathbb{R}_{+}^{\times}, \ \mathbb{R} \cong \mathbb{R}_{+}^{\times}$
- 3. $\phi: \mathbb{Z} \to \mathbb{C}, \ \phi(n) = i^n$. $Im(\phi) = \{1, i, -1, -i\}$. $Ker(\phi) = \{n \in \mathbb{Z} : i^n = 1\} = 4\mathbb{Z}$. $\mathbb{Z}/4\mathbb{Z} \cong \langle i \rangle$.
- 4. $\phi: \mathbb{Z} \to \mathbb{C}^{\times}$. $\phi(m) = e^{\frac{2\pi i m}{n}}$. $\operatorname{Ker}(\phi) = \{m: e^{\frac{2\pi i m}{n}}\} = n\mathbb{Z}, \mathbb{Z}/n\mathbb{Z} \cong \{1, \omega_n, ..., \omega_n^{n-1}\} = \langle \omega_n \rangle \cong \mathbb{Z}_n \leq \mathbb{C}^{\times}$, where $\omega_n = e^{\frac{2\pi i n}{n}}$.
- 5. $\phi: \mathbb{Z} \to \mathbb{C}, \ \phi(n) = (2i)^n$. $\operatorname{Ker}(\phi) = \{0\}$. $Im(\phi) = \{(2i)^n : n \in \mathbb{Z}\} \leq \mathbb{C}^{\times}$. $\mathbb{Z} \cong \{(2i)^n : n \in \mathbb{Z}\}$.
- 6. $\phi : \mathbb{R} \to \mathbb{C}^{\times}$, $\phi(x) = e^{2\pi i x}$. $Im(\phi) = \{z \in \mathbb{C}^{\times} : |z| = 1\} = S^{1}$. $Ker(\phi) = \{x \in \mathbb{R} : e^{2\pi i x} = 1\} = \mathbb{Z}$. $\mathbb{R}/\mathbb{Z} \cong S^{1}$

Example: $\phi: Q_8 \to \mathbb{Z}_2 \times \mathbb{Z}_2$ s.t. $\phi(\pm 1) = (0,0), \ \phi(\pm i) = (1,0), \ \phi(\pm j) = (0,1), \ \phi(\pm k) = (1,1).$ Ker $(\phi) = \{\pm 1\} = \langle -1 \rangle$. $Q_8/\langle -1 \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Example: $U_{15} = \{1, 2, 4, 7, 8, 11, 13, 14\}.$ $\langle 2 \rangle = \{1, 2, 4, 8\} \cong \langle 7 \rangle = \{1, 7, 4, 13\} \cong \mathbb{Z}_4, \ \langle 4 \rangle = \{1, 4\} \cong \mathbb{Z}_2.$ $U_{15} = \langle 2 \rangle \langle 11 \rangle$

Define $\phi : \mathbb{Z} \times \mathbb{Z} \to U_{15}$ s.t. $\phi(m,n) = 2^m 11^n$. $\operatorname{Ker}(\phi) = 4\mathbb{Z} \times 2\mathbb{Z}$. Thus $(\mathbb{Z} \times \mathbb{Z})/(4\mathbb{Z} \times 2\mathbb{Z}) \cong U_{15} \cong \mathbb{Z}_4 \times \mathbb{Z}_2$.

2.7.2 Second Isomorphism Theorem

Theorem: 2.27: Second Isomorphism Theorem

Let $H \leq G$ and $N \leq G$, then

- 1. $HN \leq G$
- 2. $H \cap N \subseteq H$, $N \subseteq HN$
- 3. $H/(H \cap N) \cong HN/N$

Proof. 1. Let $x, y \in HN$, i.e. $x = h_1 n_1, y = h_2 n_2$ for $h_1, h_2 \in H$, $n_1, n_2 \in N$

Since $N \leq G$, $gN = Ng \ \forall g \in G$, then gn = n'g for some $n, n' \in N$.

 $xy^{-1} = (h_1n_1)(h_2n_2)^{-1} = h_1(n_1n_2^{-1})h_2^{-1} \stackrel{\text{Definition 2.23}}{=} h_1h_2^{-1}\hat{n} \text{ for some } \hat{n} \in N.$

Thus $xy^{-1} \in HN$. $HN \leq G$ by Theorem 2.3.

2. $H \cap N \subseteq H$ can be shown in 3. We show $N \subseteq HN$ here.

Let $n \in N$, x = hn' for $h \in H$, $n' \in N$

 $xnx^{-1} = h(n'nn'^{-1})h^{-1} = h\hat{n}h^{-1}$ for $\hat{n} = n'nn'^{-1} \in N$. Thus $xnx^{-1} = h\hat{n}h^{-1} \in N$, because $h \in G$, $\hat{h} \in N$ and $N \triangleleft G$.

3. Define $\phi: H \to HN/N$ s.t. $\phi(h) = hN$.

$$\phi(xy) = xyN \stackrel{\text{By Definition 2.20}}{=} (xN)(yN) = \phi(x)\phi(y)$$

Surjective: Suppose $xN \in HN/N$, i.e. $x \in HN$, then x = hn where $h \in H$, $n \in N$.

Injective: Note xN = (hn)N = hN, $\phi(h) = hN = xN$, thus ϕ is injective.

 $\operatorname{Ker}(\phi) = \{h \in H : \phi(h) = eN = N\}$. Note if $h \in \operatorname{Ker}(\phi)$, then $\phi(h) = hN$. Thus $h \in N \Rightarrow h \in H \cap N$. i.e. $\operatorname{Ker}(\phi) \subset H \cap N$.

Suppose $x \in H \cap N$, then $x \in H$ and $x \in N$. Then xN = N. Thus $\phi(x) = xN = N$, $x \in \text{Ker}(\phi)$. Then $H \cap N \subset \text{Ker}(\phi)$. Thus $\text{Ker}(\phi) = H \cap N$.

By Theorem 2.25, $H/(H \cap N) \cong HN/N$.

Since $Ker(\phi) = H \cap N$, by Theorem 2.23, $H \cap N \subseteq H$.

Example: Let $G = \mathbb{Z}$, $H = m\mathbb{Z}$, $N = n\mathbb{Z}$. $H + N = m\mathbb{Z} + n\mathbb{Z} = \{mx + ny : x, y \in \mathbb{Z}\} = \gcd(m, n)\mathbb{Z}$.

 $H \cap N = \{a \in \mathbb{Z} : a = mx \text{ and } a = ny\} = \operatorname{lcm}(m, n)\mathbb{Z}.$

Let $d = \gcd(m, n), l = \operatorname{lcm}(m, n)$

By Theorem 2.27, $m\mathbb{Z}/l\mathbb{Z} \cong d\mathbb{Z}/n\mathbb{Z}$.

Consider $\phi: d\mathbb{Z} \to \mathbb{Z}_{n/d}, \ \phi(dx) = [x]. \ \operatorname{Ker}(\phi) = \{dx \in d\mathbb{Z}: \phi(dx) = 0\} = \{dx \in d\mathbb{Z}: [x] = 0\} = n\mathbb{Z}$

Then by Theorem 2.25, $d\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_{n/d}$.

Thus $\mathbb{Z}_{n/d} \cong d\mathbb{Z}/n\mathbb{Z} \cong m\mathbb{Z}/l\mathbb{Z} \cong \mathbb{Z}_{l/m}$.

Then $\frac{n}{d} = |\mathbb{Z}_{n/d}| = |\mathbb{Z}_{l/m}| = \frac{l}{m} \Rightarrow \frac{m}{\gcd(m,n)} = \frac{\operatorname{lcm}(m,n)}{n}$. $\operatorname{lcm}(m,n) = \frac{mn}{\gcd(m,n)}$.

2.7.3 Third Isomorphism Theorem

Theorem: 2.28: Third Isomorphism Theorem

Let $N \leq H \leq G$, then $(G/N)/(H/N) \cong G/H$

Proof. Define $\phi: G/N \to G/H$ s.t. $\phi(gN) = gH$.

Well defined: suppose gN = g'N, then $g(g')^{-1} \in N \leq H$. Thus $g(g')^{-1} \in H$. By Lemma 2.5, gH = g'H. Therefore, $\phi(gN) = \phi(g'N)$.

Homomorphism: $\phi((gN)(g'N)) = \phi(gg'N) = gg'H = (gH)(g'H) = \phi(gN)\phi(g'N)$

Surjective: Let $gH \in G/H$. Then $gN \in G/N$ since $N \subseteq H$. Then $\phi(gN) = gH$.

Let $gN \in \operatorname{Ker}(\phi) = \{gN \in G/N : \phi(gN) = gH = H\}$. Then $g \in H$, $gN \in H/N$. Thus $\operatorname{Ker}(\phi) \subset H/N$ Let $hN \in H/N$. Then $hN \in G/N$, since $h \in G$. $\phi(hN) = hH = H$. Thus $hN \in \operatorname{Ker}(\phi)$. $H/N \subset \operatorname{Ker}(\phi)$ Thus $H/N = \operatorname{Ker}(\phi)$. By Theorem 2.25, $(G/N)/(H/N) \cong G/H$.

Example: Let $G = \mathbb{Z}$, $H = m\mathbb{Z}$, $N = mn\mathbb{Z}$, $N \leq H \leq G$

$$\mathbb{Z}_m \cong \mathbb{Z}/m\mathbb{Z} = G/H \stackrel{\text{By Theorem 2.28}}{\cong} (G/N)/(H/N) = (\mathbb{Z}/mn\mathbb{Z})/(m\mathbb{Z}/mn\mathbb{Z}) \cong \mathbb{Z}_{mn}/\langle m \rangle$$

Consider $\phi: m\mathbb{Z} \to \mathbb{Z}_{mn}$, $\phi(mx) = [mx]$. $Im(\phi) = \langle [m] \rangle \leq \mathbb{Z}_{mn}$. $Ker(\phi) = mn\mathbb{Z}$. By Theorem 2.25, $m\mathbb{Z}/mn\mathbb{Z} \cong \langle [m] \rangle \leq \mathbb{Z}_{mn}$.

Theorem: 2.29:

$$\mathbb{Z}_n/\langle m \rangle \cong \mathbb{Z}_{\gcd(m,n)}$$

Proof. We want to show $\langle m \rangle = \langle \gcd(m, n) \rangle$. Let $d = \gcd(m, n)$

- $(\leq) \ d|m$, so m = dk for some $k \in \mathbb{N}$, $\langle m \rangle = \{mx : x \in \mathbb{Z}\} = \{dkx : x \in \mathbb{Z}\} \leq \langle d \rangle$
- (\geq) By extended Euclidean algorithm, write d=ma+nb for $a,b\in\mathbb{Z}$. Inside $\mathbb{Z}_n,\ d=ma$ for $a\in\mathbb{Z},\ \langle d\rangle=\langle m\rangle$.

3 Rings

Definition: 3.1: Ring

A set R together with operations $(+,\cdot)$ is called a ring if

- 1. (R, +) is an abelian group with identity 0.
- 2. $(ab)c = a(bc), \forall a, b, c \in R$
- $3. \ a(b+c) = ab + ac$
- 4. (a+b)c = ac + bc

Remark 5. In the context of rings, identity, inverses, and commutativity specifically refer to the ones for multiplication. We don't necessarily need identity, inverses or commutativity for a ring.

Example: \mathbb{Z} : identiy=1, commutative, ± 1 are the only integers with inverses.

Example: $2\mathbb{Z}$: no identity, commutative, no inverses.

Example: \mathbb{Z}_n : identity=1, commutative, $m^{-1} \in \mathbb{Z}_n$ exists $\Leftrightarrow \gcd(m,n) = 1$.

Example: $\mathbb{R}^{n \times n}$: identity= I_n , not commutative, A^{-1} exists $\Leftrightarrow \det(A) \neq 0$.

Example: $\mathbb{Z}[x] = \{a_0 + a_1x + \cdots + a_nx^n : n \geq 0, a_i \in \mathbb{Z}\}$, identity=1, commutative, only ± 1 have inverses.

Definition: 3.2: Zero Divisors

If $a, b \neq 0 \in R$ and ab = 0, then a and b are the zero divisors of R.

Definition: 3.3: Unit

 $a \in R$ is a unit if $\exists b \in R$ s.t. $ab = 1_R$.

Example: \mathbb{Z}_{12} . Units: 1, 5, 7, 11 (they are not zero divisors). Zero divisors: 2, 3, 4, 6, 8, 9, 10

Theorem: 3.1: Units and Zero Divisors of \mathbb{Z}_n

 $m \in \mathbb{Z}_n$ is a unit $\Leftrightarrow \gcd(m, n) = 1$ $m \in \mathbb{Z}_n$ is a zero divisor $\Leftrightarrow \gcd(m, n) \neq 1$

Proof. Units:

- (⇒) Suppose $m \in \mathbb{Z}_n$ is a unit, then $\exists x \in \mathbb{Z}_n$ s.t. $mx = 1 \Leftrightarrow mx \equiv 1 \mod n \Leftrightarrow n | (mx 1)$, so $\exists y \in \mathbb{Z}$ s.t. mx ny = 1. Thus $\gcd(m, n) | 1$, $\gcd(m, n) = 1$.
- (\Leftarrow) Suppose $\gcd(m,n)=1$, then $\exists x,y\in\mathbb{Z},\ mx+ny=1,\ mx-1=-ny$, so $n|mx-1,\ mx\equiv 1\mod n$, then $mx=1\in\mathbb{Z}_n$.

Zero divisors:

 (\Rightarrow) Suppose that $m \in \mathbb{Z}_n$ is a zero divisor. Assume $\gcd(m,n) = 1$

Then m is a unit by previous statement, $\exists a \neq 0 \in \mathbb{Z}_n$ with $ma = 0 \in \mathbb{Z}_n$, i.e. n|ma.

 $\gcd(m,n)=1 \Rightarrow \exists x,y \in \mathbb{Z} \text{ s.t. } mx+ny=1. \Rightarrow (ma)x+(na)y=a. \text{ Since } n|ma, \text{ then } n|(ma)x+n(ay), \text{ thus } n|a.\ a\equiv 0 \mod n,\ a=0\in \mathbb{Z}_n. \text{ Contradiction. Thus } \gcd(m,n)\neq 1.$

 (\Leftarrow) Suppose $m=0\in\mathbb{Z}_n$ with $\gcd(m,n)=d\neq 1$. Then $\exists a\in\mathbb{Z}$ with 1< a< n and ad=n. (If a=1,

d = n = m, similar for a = n.)

Find $x, y \in \mathbb{Z}$ with mx + ny = d, amx + any = ad = n. By commutativity of \mathbb{Z}_n , $(ax)m = n(1 - ay) \equiv 0$ mod n. Thus $(ax)m = 0 \in \mathbb{Z}_n$. m is zero divisor.

Theorem: 3.2: Units and Zero Divisors of $\mathbb{R}^{2\times 2}$

 $A \in \mathbb{R}^{2 \times 2}$ is a unit $\Leftrightarrow \det A \neq 0$

 $A \in \mathbb{R}^{2 \times 2}$ is a zero divisor $\Leftrightarrow \det A = 0$

Proof. The first statement follows the invertibility of matrices.

Consider the second statement:

 (\Rightarrow) Suppose $A \in \mathbb{R}^{2\times 2}$ is a zero divisor $A \neq 0$ and $\exists B \neq 0$ s.t. AB = 0.

Assume det $A \neq 0$, A has an inverse A^{-1} , then $A^{-1}AB = A^{-1}0 = 0$. Then B = 0. Contradiction. Thus A does not have an inverse, det A = 0

(\Leftarrow) Suppose $A \neq 0$, but $\det A = 0$. Then $\exists v \neq 0 \in Nul(A)$. Let $B = (v \ v) \neq 0$. $AB = A(v \ v) = (Av \ Av) = (0 \ 0) = 0$. A is a zero divisor.

Theorem: 3.3:

If $a \in R$ is a unit, then it is not a zero divisor.

If $a \in R$ is a zero divisor, then it is not a unit.

Proof. Suppose $a \in R$ is a unit and $b \in R$ with ab = 0. $b = (a^{-1}a)b = a^{-1}ab = a^{-1}0 = 0$. Thus b has to be 0, and a is not a zero divisor.

The second statement is true by contrapositive.

Lemma: 3.1: Identities with -1

$$(-1)^2 = 1$$

 $-a = (-1)a = a(-1)$

Proof. $(-1)^2 + (-1) = (-1)(-1) + (-1)1 = (-1)(-1+1) = (-1)0 = 0$. Thus $(-1)^2$ and (-1) are additive inverse. By uniqueness of inverses, $(-1)^2 = 1$.

$$a + (-1)a = 1a + (-1)a = (1-1)a = 0$$
. And $a + a(-1) = a(1) + a(-1) = a(1-1) = 0$.

Theorem: 3.4:

If R is a ring with 1, $u \in R$ is a unit, then so is -u.

Proof. Take
$$u^{-1} \in R$$
 s.t. $uu^{-1} = 1$. $(-u)(-u^{-1}) = u(-1)(-1)u^{-1}$ By Lemma 3.1 $uu^{-1} = 1$. Thus $(-u)^{-1} = -u^{-1}$

Definition: 3.4: Nilpotent

 $x \in R$ is nilpotent if $x^m = 0$ for some $m \in \mathbb{N}$.

Example: In \mathbb{Z}_4 , $2^2 = 4 = 0$, 2 is a nilpotent element.

Theorem: 3.5: Properties of Nilpotents

If x is nilpotent, then

- 1. x = 0 or x is a zero divisor.
- 2. If R is a ring with $1, 1 + x \in R$ is a unit.
- *Proof.* 1. Suppose $x \neq 0$. Let $x \in \mathbb{N}$ s.t. $x^m = 0$ and m = 0 is the smallest, then $x^m = x(x^{m-1}) = 0$, but $x \neq 0$ and $x^{m-1} \neq 0$. Both are zero divisors by Definition 3.2.
 - 2. Let $m \in \mathbb{N}$ s.t. $x^m = 0$ and m is minimum. Then $1 = 1 + x^m = (1 + x)(1 x + \dots + (-1)^{m-1}x^{m-1})$ Therefore $(1 + x)^{-1} = (1 - x + \dots + (-1)^{m-1}x^{m-1})$ exists in R. By Definition 3.3, 1 + x is a unit.

3.1 Types of Rings

Definition: 3.5: Ring with 1

If R has a multiplication identity $1 \in R$, then R is a ring with 1.

Example: $\mathbb{R}^{n \times n}$, $f : \mathbb{R} \to \mathbb{R}$, \mathbb{Z}_n .

Definition: 3.6: Commutative Ring

If ab = ba, $\forall a, b \in R$, then R is a commutative ring.

Example: $n\mathbb{Z}$, $x\mathbb{Z}[x] = \{a_1x + a_2x^2 + \cdots + a_nx^n\}$, \mathbb{Z}_n .

Definition: 3.7: Integral Domain

If R is commutative with 1 and $ab = 0 \Rightarrow a = 0$ or b = 0, then R is an integral domain.

Remark 6. R is an integral domain if it is a commutative ring with 1 and has no zero divisors.

Example: \mathbb{Z} , $\mathbb{Z}[x]$.

Definition: 3.8: Division Ring

If a^{-1} exists for all $a \neq 0 \in R$, then R is a division ring.

Example: Quaternion Ring $H = \{a+bi+cj+dk: a,b,c,d \in \mathbb{R}, i^2=j^2=k^2=-1\}.$

Definition: 3.9: Field

A commutative division ring is a field.

Example: \mathbb{Z}_p , \mathbb{Q} , \mathbb{R} , \mathbb{C} .

Theorem: 3.6: Classification of \mathbb{Z}_n

If n is comoposite, then \mathbb{Z}_n is a commutative ring with 1 and not an integral domain. If p is a prime, then \mathbb{Z}_p is a finite field.

Proof. Note: \mathbb{Z}_n is definitely a commutative ring with 1.

If n is composite, then n = ab with 1 < a, b < n. $a \neq 0 \in \mathbb{Z}_n$, $b \neq 0 \in \mathbb{Z}_n$, but $ab = 0 \in \mathbb{Z}_n$, thus \mathbb{Z}_n is not integral domain.

 \mathbb{Z}_p is integral domain: Suppose $a, b \in \mathbb{Z}_p$ with $ab = 0 \in \mathbb{Z}_p$. $ab \equiv 0 \mod p$, then p|ab. Since p is a prime, then p|a or p|b. Thus $a = 0 \in \mathbb{Z}_p$ or $b = 0 \in \mathbb{Z}_p$.

 \mathbb{Z}_p is a field (check inverse): Let $a \neq 0 \in \mathbb{Z}_p$. Then $\gcd(a,p) = 1 \Rightarrow \exists x,y \in \mathbb{Z} \text{ s.t. } ax + py = 1, ax \equiv 1$ $\text{mod } p, a^{-1} = x \in \mathbb{Z}_p.$

Theorem: 3.7: Quaternion Ring

 $H = \{a + bi + cj + dk : a, b, c, d \in \mathbb{R}, i^2 = j^2 = k^2 = -1\}$ is a division ring.

Proof. It is easy to see that $1 + (0i + bj + 0k) \in H$ is the identity. We want to find the inverse.

Consider $(a+bi+cj+dk)^{-1} = \frac{a-bi-cj-dk}{a^2+b^2+c^2+d^2}$. Then $(a+bi+cj+dk)(a+bi+cj+dk)^{-1} = \frac{1}{a^2+b^2+c^2+d^2}(a+bi+cj+dk)(a-bi-cj-dk) = \frac{1}{a^2+b^2+c^2+d^2}(a^2+bi+cj+dk)$ $b^2 + c^2 + d^2 + (ab - ab + cd - cd)i + (-bd + bd + ac - ac)j + (ad - ad + bc - bc)k) = 1.$

Theorem: 3.8:

Let R be a commutative ring with 1. Then R is an integral domain $\Leftrightarrow \forall a \neq 0 \in R$, with ab = ac, then b=c.

Proof. (\Rightarrow) Suppose R is an integral domain, and $a \neq 0 \in R$, ab = ac

Subtract both sides by ac, ab - ac = 0 $\stackrel{\text{Associativity}}{\Rightarrow} a(b - c) = 0$. Since $a \neq 0$ and R is an integral domain, we have b-c=0, i.e. b=c.

 (\Leftarrow) Suppose $a \neq 0 \in R$ and $b \in R$ s.t. ab = 0. We want to show that b = 0 $ab = 0 = a \cdot 0$ i.e. a(b-0) = 0. Since $a \neq 0$, b = 0. Thus R is an integral domain.

Theorem: 3.9: Finite Integral Domain

Every finite integral domain is a field.

Proof. Consider $R^* = \{r \in R : r \neq 0\} = R \setminus \{0\}$. Define $\lambda_a : R^* \to R^*$, $a \neq 0$ s.t. $\lambda_a(b) = ab$. Injective: Suppose $\lambda_a(b) = \lambda_a(c)$, i.e. ab = ac. Since R is an integral domain, by Theorem 3.8. b = c. Note: Injection on finite sets \Rightarrow Bijective \Rightarrow Surjective.

Then $1 \in \mathbb{R}^* \Rightarrow \exists b \in \mathbb{R}^*$ s.t. $\lambda_a(b) = ab = 1$, $b = a^{-1}$. Every non-zero element has an inverse, then it is a field.

Definition: 3.10: Boolean Ring

R is a boolean ring if $a^2 = a$ for all $a \in R$.

Theorem: 3.10:

All Boolean Rings are commutative.

Proof. Let $x, y \in R$.

$$(x+y) = (x+y)^2 = x^2 + y^2 + xy + yx$$

= $x + y + xy + yx$ (By Definition 3.10)

Thus
$$xy + yx = 0$$
, $xy = -yx \Rightarrow xy = (xy)^2 = (-yx)^2 = (-1)^2 (yx)^2 = yx$

Example: Given X a non-empty set, $\mathcal{P}(X)$ is a boolean ring with $+ = \cup, \cdot = \cap$.

Theorem: 3.11: Gaussian Integers

The Gaussian integers $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$ is an integral domain.

Proof. Let $z = a + bi, w = c + di \in \mathbb{Z}[i]$. Suppose zw = 0.

$$0 = (a+bi)(c+di) = (a-bi)(a+bi)(c+di)(c-di) = (a^2+b^2)(c^2+d^2)$$

We need $a^2 + b^2 = 0$ or $c^2 + d^2 = 0$.

Since \mathbb{Z} is an integral domain, then $a^2 + b^2 = 0 \Rightarrow a = 0$ and b = 0. Similarly, $c^2 + d^2 = 0 \Rightarrow c = 0$ and d = 0. Thus, z = 0 or w = 0. By Definition 3.7, $\mathbb{Z}[i]$ is an integral domain.

Definition: 3.11: Characteristic of a Ring

The least $n \in \mathbb{N}$ s.t. $\forall r \in R$, $nr = (r + \dots + r) = 0$ is the characteristic of R. Write $\operatorname{char}(R) = n$. If no such n exists, then $\operatorname{char}(R) = 0$.

Example: $\operatorname{char}(\mathbb{Z}) = \operatorname{char}(\mathbb{Q}) = \operatorname{char}(\mathbb{R}) = \operatorname{char}(\mathbb{C}) = \operatorname{char}(\mathbb{Z}[x]) = 0$

Theorem: 3.12: Characteristic of \mathbb{Z}_n

 $char(\mathbb{Z}_n) = n$

Proof. For all $a \in \mathbb{Z}_n$, $na = 0 \in \mathbb{Z}_n$, thus $\operatorname{char}(\mathbb{Z}_n) \leq n$ Suppose $\operatorname{char}(\mathbb{Z}_n) = m$, $m = m \cdot 1 = 0 \in \mathbb{Z}_n$. $m \equiv 0 \mod n$, n|m. Thus $\operatorname{char}(\mathbb{Z}_n) = m \neq n$ Thus $\operatorname{char}(\mathbb{Z}_n) = n$.

Lemma: 3.2: Characteristic of Ring with 1

Let R be a ring with 1. If $n \in \mathbb{N}$ is the least number s.t. $n \cdot 1 = 0$, then $\operatorname{char}(R) = n$

Proof.
$$n \cdot r = (r + \dots + r) = r \cdot 1 + \dots + r \cdot 1 = r(1 + \dots + 1) = rn = r \cdot 0 = 0.$$

Example: $2\mathbb{Z}_6 = \{0, 2, 4\}$. $char(2\mathbb{Z}_6) = 3$.

Theorem: 3.13: Characteristic of Integral Domains

If R is an integral domain, then char(R) is prime or char(R) = 0.

Proof. Use the contrapositive. If $\operatorname{char}(R) = n$ is composite, then R is not an integral domain. Suppose $n = \operatorname{char}(R)$ with n = ab (a, b > 1). $0 = n \cdot 1 = (ab)1 = (a1)(b1)$. By Lemma 3.2, otherwise n = a or n = b. Then $a1 \neq 0$ and $b1 \neq 0$. Thus R is not an integral domain.

Theorem: 3.14: Characteristic of Prime Commutative Ring with 1

Suppose R is a commutative ring with 1 with char(R) = p a prime, then $\forall a, b \in R, (a+b)^p = a^p + b^p$.

Proof. By binomial theorem,
$$(a+b)^p = \sum_{k=0}^p \binom{p}{k}_R a^k b^{p-k} = b^p + \sum_{k=1}^{p-1} \binom{p}{k}_R a^k b^{p-k} + a^p$$
, where $\binom{p}{k}_R = \underbrace{(1+\cdots+1)}_{\binom{p}{k}}$ times in R
For $k \in [1,p-1]$, $\binom{p}{k} = \frac{p!}{(p-k)!k!} = p \frac{(p-1)\cdots(p-k+1)}{k!}$ is a multiple of p . Thus $\binom{p}{k}_R = 0_R$.

3.2 Ring Homomorphism

Definition: 3.12: Ring Homomorphism and Isomorphism

Let R, S be rings. $\phi : R \to S$ is a ring homomorphism if $\forall a, b \in R$, $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a)\phi(b)$.

If ϕ is bijective, then ϕ is an ismorphism.

 $Ker(\phi) = \{ a \in R : \phi(a) = 0_S \}.$

Example: $\phi : \mathbb{Z} \to \mathbb{Z}_n \text{ s.t. } \phi(m) = [m].$

Homomorphism: Let $m_1, m_2 \in \mathbb{Z}$, $\phi(m_1 + m_2) = \phi(m_1) + \phi(m_2)$ from Group Homomorphism.

 $\phi(m_1m_2) = [m_1m_2] = [m_1][m_2] = \phi(m_1)\phi(m_2).$

 $Ker(\phi) = n\mathbb{Z}$ from group homomorphism.

Example:
$$\phi : \mathbb{C} \to \mathbb{R}^{2 \times 2} \text{ s.t. } \phi(a+bi) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$
.

 $\text{Homomorphism: } \phi((a+bi)+(c+di)) = \phi((a+c)+(b+d)i) = \begin{bmatrix} a+c & -b-d \\ b+d & a+c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \phi(a+bi) + \phi(c+di)$

$$\phi((a+bi)(c+di)) = \phi((ac-bd) + (ad+bc)i) = \begin{bmatrix} ac-bd & -ad-bc \\ ad+bc & ac-bd \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \phi(a+bi)\phi(c+di)$$

 $\operatorname{Ker}(\phi) = \{a + bi : \phi(a + bi) = 0\} = \{0\}.$ Thus ϕ is injective. $\mathbb{C} \cong Im(\phi) = \left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} : a, b \in \mathbb{R} \right\} \subset \mathbb{R}^{2 \times 2}$

Example: $\phi : \mathbb{Q}[x] \to \mathbb{R}$ s.t. $\phi(p(x)) = p(\sqrt{2})$. $\phi(x^3 + x^2 - 3) = (\sqrt{2})^3 + (\sqrt{2})^2 - 3 = 2\sqrt{2} - 1$. $Im(\phi) = \mathbb{Q}[\sqrt{2}] = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is a field. Homomorphism: Let $p(x), q(x) \in \mathbb{Q}[x]$. $\phi(p(x) + q(x)) = p(\sqrt{2}) + q(\sqrt{2}) = \phi(p(x)) + \phi(q(x))$

 $\phi(p(x)q(x)) = p(\sqrt{2})q(\sqrt{2}) = \phi(p(x))\phi(q(x))$ $\operatorname{Ker}(\phi) = \{p(x) \in \mathbb{Q}[x] : p(\sqrt{2}) = 0\}.$ If $p(x) \in \operatorname{Ker}(\phi)$, then $\sqrt{2}$ is a root of p(x).

$$p(x) = (x - \sqrt{2})q(x) \text{ over } \mathbb{R}[x]$$

= $(x^2 - 2)\tilde{q}(x) \text{ over } \mathbb{Q}[x]$

Thus $Ker(\phi) = \{(x^2 - 2)f(x) : f(x) \in \mathbb{Q}[x]\} = (x^2 - 2)\mathbb{Q}[x].$

Example: $\phi : \mathbb{R}[x] \to \mathbb{C}$ s.t. $\phi(f(x)) = f(i)$. $\phi(x^4 + x^3 - 3x^2 + 2) = i^4 + i^3 - 3i^2 + 2 = 6 - i, Im(\phi) = \{a + bi : a, b \in \mathbb{R}\}.$ Homomorphism: $\phi(f(x) + g(x)) = f(i) + g(i) = \phi(f(x)) + \phi(g(x))$ $\phi(f(x)g(x)) = f(i)g(i) = \phi(f(x))\phi(g(x))$ $Ker(phi) = \{ f(x) \in \mathbb{R}[x] : f(i) = 0 \}$

$$f(x) = (x - i)g(x) \in \mathbb{C}[x]$$
$$= (x^2 + 1)h(x) \in \mathbb{R}[x]$$

Thus $Ker(\phi) = (x^2 + 1)\mathbb{R}[x]$.

Theorem: 3.15: Identities under Ring Homomorphism

If $\phi: R \to S$ is a ring homomorphism, then

- 1. $\phi(0) = 0$
- 2. If $1_R \in R$, $1_S \in S$ and ϕ is onto, then $\phi(1_R) = 1_S$

Proof. $\phi(0) = \phi(0+0) = \phi(0) + \phi(0)$, thus $\phi(0) = 0$.

Take
$$a \in R$$
 s.t. $\phi(a) = 1_S$. $\phi(1_R) = \phi(1_R)1_S = \phi(1_R)\phi(a) = \phi(1_R a) = \phi(a) = 1_S$.

Example: $2\mathbb{Z} \cong 3\mathbb{Z}$ as groups, but not rings.

Proof. As groups, $\phi: \mathbb{Z} \to n\mathbb{Z}$ s.t. $\phi(m) = mn$ is a homomorphism with $Ker(\phi) = \{0\}$ and surjective. $2\mathbb{Z} \cong \mathbb{Z} \cong 3\mathbb{Z}$.

As rings, suppose $\phi: 2\mathbb{Z} \to 3\mathbb{Z}$ is a homomorphism.

 $\phi(2) \in 3\mathbb{Z}$, thus $\phi(2) = 3n$ for $n \in \mathbb{Z}$. $\phi(4) = \phi(2+2) = \phi(2) + \phi(2) = 6n$.

But $\phi(4) = \phi(2 \cdot 2) = \phi(2)\phi(2) = 9n^2$. $6n = 9n^2$ gives $n = \frac{2}{3} \notin \mathbb{Z}$. Contradiction, so there is no ring homomorphism $2\mathbb{Z} \to 3\mathbb{Z}$.

Example: $\mathbb{Q}[\sqrt{2}] \cong \mathbb{Q}[\sqrt{3}]$ as group but not as fields.

Proof. As groups, define $\phi: \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{3}]$ as $\phi(a+b\sqrt{2}) = a+b\sqrt{3}$. ϕ is a well-defined homomorphism under addtion.

Suppose $\phi: \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{3}]$ is a field isomorphism. $\phi(\sqrt{2}) = a + b\sqrt{3}$ for some $a, b \in \mathbb{Q}$.

Then $\phi(2) = \phi(\sqrt{2}\sqrt{2}) = \phi(\sqrt{2})\phi(\sqrt{2}) = (a + b\sqrt{3})^2 = (a^2 + 3b^2) + 2ab\sqrt{3}$. Also $\phi(2) = \phi(1+1) = \phi(1) + \phi(1) \stackrel{\text{By Theorem 3.15}}{=} 1 + 1 = 2$.

So we need $(a^2+3b^2)+2ab\sqrt{3}=2$. This gives $a=0,b=\pm\sqrt{\frac{2}{3}}$ or $a=\pm\sqrt{2},b=0$. Both are not in \mathbb{Q} . Thus there is no field homomorphism $\mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{3}]$.

Example: Find ring homomorphisms $\phi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, where for $\mathbb{Z} \times \mathbb{Z}$, both addition and multiplication are component-wise.

Proof. Note that $\mathbb{Z} \times \mathbb{Z}$ has 2 generators (1,0) and (0,1).

Suppose $\phi(1,0) = m$ and $\phi(0,1) = n$. Then $\phi(0,0) = \phi((1,0)(0,1)) = mn = 0 \Rightarrow m = 0$ or n = 0.

 $\phi(a,b) = \phi(a(1,0) + b(0,1)) = a\phi(1,0) + b\phi(0,1) = am + bn$

Case 1: m = 0, $\phi(a, b) = bn$, then $Ker(\phi) = \mathbb{Z} \times \{0\}$, $Im(\mathbb{Z}) = n\mathbb{Z}$.

Case 2: n = 0, $\phi(a, b) = am$, then $Ker(\phi) = \{0\} \times \mathbb{Z}$, $Im(\mathbb{Z}) = m\mathbb{Z}$.

Example: Let $\phi : \mathbb{R}^{2 \times 2} \to \mathbb{R}$, which of $\phi(A) = A_{11}$, $\phi(A) = \det(A)$, $\phi(A) = \operatorname{Tr}(A)$ makes ϕ a ring homomorphism?

Proof. Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $B = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$

 $\phi(A) = A_{11}$, $\phi(A+B) = a+x = \phi(A)+\phi(B)$, thus a group homomorphism, but $\phi(AB) = ax+bz \neq ax = \phi(A)\phi(B)$, thus not a ring homomorphism.

 $\phi(A) = \det(A)$, $\phi(AB) = \det(AB) = \det A \det B = \phi(A)\phi(B)$, thus a group homomorphism, but $\phi(A + B) = (a+x)(d+w) - (b+y)(c+z) \neq (ad-bc) + (xw-yz) = \phi(A) + \phi(B)$, thus not a ring homomorphism.

$$\phi(A) = \text{Tr}(A), \ \phi(A+B) = a+d+x+w = \phi(A)+\phi(B), \text{ thus a group homomorphism, but } \phi(AB) = ax+bz+cy+dw \neq (a+d)(x+w)=\phi(A)\phi(B), \text{ thus not a ring homomorphism.}$$

3.3 Ideal

Definition: 3.13: Subring

Let R be a ring, a subring S of R is $S \subset R$ that satisfies ring properties.

Theorem: 3.16: Subring Test

Let R be a ring, $S \subset R$ is a subring if $\forall a, b \in S$, $a - b \in S$ and $ab \in S$.

Definition: 3.14: Cosets of Rings

Let R be a ring and $S \subset R$ be a subring. The cosets of $r \in R$ is $r + S = \{r + s : s \in S\}$.

Note S, R are abelian, thus $S \subseteq R$. (R/S, +), where $R/S = \{r + S : r \in R\}$, is an abelian group.

For (R/S, +) to be a ring, we need (a+S)(b+S) = ab+S for all $a, b \in R$. i.e. For all $s, s' \in S$, we need $(a+s)(b+s') = ab+as'+sb+ss' \in ab+S$. Therefore, we need $as'+sb \in S \Rightarrow as' \in S$ and $sb \in S$.

Definition: 3.15: Ideal

Let $I \subset R$ be a subring.

- 1. I is a right ideal if $\forall r \in R, i \in I, ir \in I$. (absorbs multiplication from right)
- 2. I is a left ideal if $\forall r \in R, i \in I, ri \in I$. (absorbs multiplication from left)
- 3. I is an ideal if it is a right ideal and a left ideal.

Theorem: 3.17: Quotient Ring

If $I \subset R$ is an ideal, then $R/I = \{r + I : r \in R\}$ is a ring.

Proof. R/I is an abelian group because R, I are abelian groups and $I \leq R$.

We now show that the multiplication is well defined. Let $a, a', b, b' \in R$ with a + I = a' + I and b + I = b' + I. $a - a' \in I$ and $b - b' \in I$.

Then $(a - a')b \in I$ by Definition 3.15, $ab - ab' \in I \Rightarrow ab + I = a'b + I$

Similarly, $a'(b-b') \in I \Rightarrow a'b-a'b' \in I \Rightarrow a'b+I=a'b'+I$. Thus (a+I)(b+I)=ab+I=a'b'+I=(a'+I)(b'+I).

Definition: 3.16: Principal Ideal

Suppose R is a commutative ring with 1 and $a \in R$, then the principal ideal of R generated by a is $(a) = \{ra : r \in R\} = Ra \stackrel{\text{Commutative}}{=} \{ar : r \in R\}.$

Proof. We show that $(a) \subset R$ is indeed an ideal for any a.

Suppose $i \in (a)$ and $r \in R$, then by Definition 3.16, i = ar' for some $r' \in R$.

Note $ir = (ar)r' = a(rr') \in (a)$.

Example: In \mathbb{Z} : $(3) = \{3n : n \in \mathbb{Z}\} = 3\mathbb{Z}$ is the principal ideal generated by 3.

Example: In \mathbb{Z}_{15} , $(2) = \{2n : n \in \mathbb{Z}\} = \{0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13\} = \mathbb{Z}_{15}$ is the ideal generated by a unit 2. $(5) = \{5n : n \in \mathbb{Z}_{15}\} = \{0, 5, 10\}$

Theorem: 3.18:

 $(a) = R \Leftrightarrow a \in R \text{ is a unit.}$

Proof. (\Rightarrow) Suppose $a \in R$ with (a) = R, then $1 \in (a)$. Thus, exists $r \in R$ s.t. ar = 1. By Definition 3.3,a is a unit.

(\Leftarrow) Suppose $a \in R$ is a unit, there exists $r \in R$ s.t. ar = 1. Then $1 \in (a)$. For $b \in R$, $b = b(1) \in (a)$ Thus $R \subset (a)$, and R = (a).

Theorem: 3.19: Principal Ideals of \mathbb{Z}

Every ideal of \mathbb{Z} is a principal ideal.

Proof. Suppose $I \subset \mathbb{Z}$ is an ideal, and take $n \in I$ to be the smallest non-negative element. (Note, if n = 0, then $I = \{0\}$ is the trivial ideal.)

We show that I = (n).

Firstly, $(n) \subset I$ by definition.

Suppose $m \in I$, use division algorithm with m and n. m = nq + r where $0 \le r < n$. $r = m - nq \in I$ since $m \in I$, and $nq \in I$. Thus r = 0, m = nq, $m \in (n)$. Therefore $I \subset (n)$ and I = (n).

Theorem: 3.20:

Let $\phi: R \to S$ be a ring homomorphism, then $Ker(\phi)$ is an ideal.

Proof. let $a, b \in \text{Ker}(\phi)$.

 $\phi(a-b) = \phi(a) - \phi(b) = 0 - 0 = 0$, then $a-b \in \text{Ker}(\phi)$.

 $\phi(ab) = \phi(a)\phi(b) = 0 \cdot 0 = 0, ab \in \text{Ker}(\phi).$

Thus $Ker(\phi)$ is a subring by Theorem 3.16.

Suppose $a \in \text{Ker}(\phi), r \in R$.

 $\phi(ar) = \phi(a)\phi(r) = \phi(a)0 = 0.$ $\phi(ra) = \phi(r)\phi(a) = 0\phi(a) = 0$

Thus $ar, ra \in \text{Ker}(\phi)$, and $\text{Ker}(\phi)$ is an ideal by Definition 3.15.

Theorem: 3.21:

Let $\phi: R \to S$ be a homomorphism. If $J \subset S$ is an ideal, then $\phi^{-1}(J) = \{a \in R : \phi(a) \in J\} \subset R$ is an ideal.

Proof. Suppose $a, b \in \phi^{-1}(J)$, then $\phi(a) \in J$, $\phi(b) \in J$.

 $\phi(a-b) = \phi(a) - \phi(b) \in J$, because J is a subring, then $a-b \in \phi^{-1}(J)$

 $\phi(ab) = \phi(a)\phi(b) \in J$, thus $ab = \phi^{-1}(\phi(a)\phi(b)) \in \phi^{-1}(J)$

By Theorem 3.16, $\phi^{-1}(J)$ is a subring of R.

Let $a \in \phi^{-1}(J)$, $r \in R$. $\phi(ar) = \phi(a)\phi(r) \in J$, since J is an ideal. $ar \in \phi^{-1}(J)$. Similarly $\phi(ra) = \phi(r)\phi(a) \in J$. $ra \in \phi^{-1}(J)$.

Thus $\phi^{-1}(J)$ is an ideal.

Definition: 3.17: Prime Ideal

An ideal $P \subset R$ is a prime ideal if $ab \in P \Leftrightarrow a \in P$ or $b \in P$. (This is the generalization of prime numbers.)

Definition: 3.18: Maximal Ideal

An ideal $M \subset R$ is a maximal ideal if for any ideal $I \subset R$ with $M \subset I \subset R$, we have I = M or I = R.

Theorem: 3.22:

If R is a commutative ring with 1. Then $P \subset R$ is a prime ideal $\Leftrightarrow R/P$ is an integral domain.

Proof. (\Rightarrow) Suppose P is a prime ideal and $(a+P)(b+P)=0+P\in R/P$. Then ab+P=0+P and thus $ab\in P$ by Definition 3.15.

Since P is prime ideal, $a \in P$ or $b \in P$, then a + P = 0 + P or b + P = 0 + P. Thus R/P is an integral domain by Definition 3.7.

 (\Leftarrow) Suppose that R/P is an integral domain and $ab \in P$. We want to show that $a \in P$ or $b \in P$.

Since $ab \in P$, $ab + P = 0 + P \in R/P$, thus (a + P)(b + P) = 0 + P. This gives either a + P = 0 + P or b + P = 0 + P. Therefore, $a \in P$ or $b \in P$. $P \subset R$ is a prime ideal.

Theorem: 3.23:

If R is a commutative ring with 1. Then $M \subset R$ is a maximal ideal $\Leftrightarrow R/M$ is a field.

Proof. (\Rightarrow) Suppose $M \subset R$ is a maximal ideal and $a + M \in R/M$ with $a \notin M$.

Consider $\langle 0+M\rangle\subset\langle a+M\rangle\subset R/M$. Note $\langle a+M\rangle=I/M$, where $M\subset I\subset R$. $a\in I$ and $a\notin M$ means $M\neq I$.

Then I = R because M is maximal. Then $\langle a + M \rangle = R/M$, $1 + M \in \langle a + M \rangle$. Then there exists $b \in R$ s.t. (a + M)(b + M) = (1 + M). Inverse exists, R/M is a field.

(⇐) Suppose R/M is a field. Take $I \subset R$, $M \subsetneq I \subset R$. We want to show that I = R. Since $M \subsetneq I$, there exists $a \in I$ s.t. $a \notin M$, then $M \subsetneq \langle a, M \rangle \subset I \subset R$, since $a + M \neq 0 + M \in R/M$. Then there exists $b \in R$ s.t. (a + M)(b + M) = 1 + M, so inverse of a + M exists. $1 + M \in \langle a, M \rangle \subset I$. Thus I = R by Theorem 3.18, since the unit is in I.

Example: Which are ideals in $\mathbb{Z}[x]$?

- 1. $I = \{p(x) : p(x) = xq(x) + 2k, k \in \mathbb{Z}, q(x) \in \mathbb{Z}[x]\}$, polynomials with even constant terms.
- 2. $I = \{p(x) : p(x) = x^2q(x) + 2kx + l, k, l \in \mathbb{Z}, q(x) \in \mathbb{Z}[x]\}$, polynomials with even coefficients for x.
- 3. $I = \{p(x) \in \mathbb{Z}[x] : p'(0) = 0\}$
- Proof. 1. Let $p_1(x) = xq_1(x) + 2k_1 \in I$, $p_2(x) = xq_2(x) + 2k_2 \in I$. Then $p_1(x) p_2(x) = x(q_1 q_2) + 2(k_1 k_2) \in I$ $p_1p_2 = (xq_1 + 2k_1)(xq_2 + 2k_2) = x^2q_1q_2 + 2x(k_1q_2 + k_2q_1) + 4k_1k_2 \in I$. Thus I is a subring by Theorem 3.16
 - Take $f(x) = xg(x) + l \in \mathbb{Z}[x]$ with $l \in \mathbb{Z}$, then $p(x)f(x) = x^2qg + 2xkg + lxq + 2kl \in I$. Thus I is an ideal.
 - 2. Let $p_1(x) = x^2q_1(x) + 2k_1x + l_1 \in I$, $p_2(x) = x^2q_2(x) + 2k_2x + l_2 \in I$. Then $p_1(x) p_2(x) \in I$ $p_1p_2 = (x^2q_1 + 2k_1x + l_1)(x^2q_2 + 2k_2x + l_2) = x^2(x^2q_1q_2 + l_1q_2 + l_2q_1 + 4k_1k_2) + 2(k_1l_2 + k_2l_1) + l_1l_2 \in I$. Thus I is a subring by Theorem 3.16 Take $f(x) = x^2g + mx + n \in \mathbb{Z}[x]$ with $l \in \mathbb{Z}$, then $p(x)f(x) = x^2(x^2gq + nq + mg + 2km) + (lm + 2kn)x + ln \notin I$, since lm + 2kn is not even when l = m = 1. Thus I is not an ideal.
 - 3. Let $p(x), q(x) \in I$. Then p'(0) = q'(0) = 0. $(p-q)'|_{x=0} = p'(0) q'(0) = 0$. $(pq)'|_{x=0} = p'(0)q(0) + p(0)q'(0) = 0$ Thus I is a subring by Theorem 3.16 Take $f(x) \in \mathbb{Z}[x]$ with $l \in \mathbb{Z}$, then $(fp)'|_{x=0} = f'(0)p(0) + f(0)p'(0) = f'(0)p(0) \neq 0$. Thus I is not an ideal.

For the third case, if we have $I = \{p(x) \in \mathbb{Z}[x] : p'(0) = 0, p(0) = 0\}$. Then I is an ideal.

Theorem: 3.24: Smallest Enclosing Ideal

Let $I, J \subset R$ be ideals. I + J is the smallest ideal containing I and J.

Proof. $I + J = \{i + j : i \in I, j \in J\}$. Let $a, b \in I, J$, then a = i + j, b = i' + j' for $i, i' \in I, j, j' \in J$. Then $b - a = (i' - i) + (j' - j) \in I + J$, ab = (i + j)(i' + j') = ii' + ij' + jj' + ji'. Since $ii' + ij' \in I$ and $ji' + jj' \in J$ by Definition 3.15. Then $ab \in I + J$. I + J is a subring by Theorem 3.16.

Let $a \in I$, $x \in R$, a = i + j for $i \in I$, $j \in J$. $ax = (i + j)x = ix + jx \in I + J$, since $ix \in I$, $jx \in J$. $xa = xi + xj \in I + J$. Since $i \in I \Rightarrow i + 0 = I + J$, $0 \in J$, then $I \subset I + J$. Similarly, $J \subset I + J$.

Suppose $K \subset R$ an ideal s.t. $I \subset K$ and $J \subset K$.

Let $a \in I + J$, a = i + j for $i \in I$, $j \in J$. Then $i \in K$ and $j \in K$, thus $a \in K$. $I + J \subset K$.

Isomorphism Theorems for Rings

Theorem: 3.25: First Isomorphism Theorem for Rings

Let $\phi: R \to S$ be a ring homomorphism. Then there is a unique ismorphism $\psi: R/\mathrm{Ker}(\phi) \to \mathrm{Im}(\phi)$ s.t. $\psi(r + \operatorname{Ker}(\phi)) \cong Im(\phi)$.

$$R \xrightarrow{\phi} Im(\phi) \subset S$$

$$\pi \downarrow \qquad \qquad \psi$$

$$R/\mathrm{Ker}(\phi)$$

Proof. Define $\psi: R/\mathrm{Ker}(\phi) \to Im(\phi)$ s.t. $\psi(r + \mathrm{Ker}(\phi)) = \phi(r)$

Well-defined: Suppose that $r + \operatorname{Ker}(\phi) = r' + \operatorname{Ker}(\phi)$, then $r - r' \in \operatorname{Ker}(\phi)$.

$$\phi(r + \text{Ker}(\phi)) = \phi(r) = \phi(r) + 0 = \phi(r) + \phi(r' - r) = \phi(r + r' - r) = \phi(r') = \psi(r' + \text{Ker}(\phi))$$

Ring Homomorphism: $\psi(a + \operatorname{Ker}(\phi) + b + \operatorname{Ker}(\phi)) = \psi(a + b + \operatorname{Ker}(\phi)) = \phi(a + b) = \phi(a) + \phi(b) = \phi(b) + \phi(b) + \phi(b) = \phi(b) + \phi(b) = \phi(b) + \phi(b) = \phi(b) + \phi(b) = \phi(b) + \phi(b) + \phi(b) + \phi(b) = \phi(b) + \phi(b$ $\psi(a + \operatorname{Ker}(\phi)) + \psi(b + \operatorname{Ker}(\phi))$

$$\psi((a + \operatorname{Ker}(\phi))(b + \operatorname{Ker}(\phi))) = \psi(ab + \operatorname{Ker}(\phi)) = \phi(ab) = \phi(a)\phi(b) = \psi(a + \operatorname{Ker}(\phi))\psi(b + \operatorname{Ker}(\phi))$$

Injective: Suppose $r + \text{Ker}(\phi) \in \text{Ker}(\phi)$, $\psi(r + \text{Ker}(\phi)) = 0 = \phi(r)$. Thus $r \in \text{Ker}(\phi)$, $r + \text{Ker}(\phi) = 0 + \text{Ker}(\phi)$. $Ker(\psi) = \{0 + Ker(\phi)\}, \psi \text{ is injective.}$

Surjective: Suppose $\phi(r) \in Im(\phi)$, then $\psi(r + \text{Ker}(\phi)) = \phi(r)$

Uniqueness: Suppose
$$\bar{\psi}(r + \text{Ker}(\phi)) = \phi(r) = \psi(r + \text{Ker}(\phi))$$
. Thus $\bar{\psi} = \psi$.

Example: $R = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : a, b, c \in \mathbb{R} \right\} \subset \mathbb{R}^{2 \times 2}$. Show that $I = \left\{ \begin{bmatrix} 0 & x \\ 0 & 0 \end{bmatrix} : x \in \mathbb{R} \right\}$ is an ideal for R and $R/I \cong \mathbb{R} \times \mathbb{R}$.

Proof. Let
$$A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$$
, $B = \begin{bmatrix} x & y \\ 0 & z \end{bmatrix}$

Then
$$A - B = \begin{bmatrix} a - x & b - y \\ 0 & c - z \end{bmatrix} \in R$$
 and $AB = \begin{bmatrix} ax & ay + bz \\ 0 & cz \end{bmatrix} \in R$. Therefore, R is a ring by Theorem 3.16.

Let
$$I_1 = \begin{bmatrix} 0 & x \\ 0 & 0 \end{bmatrix}$$
, $I_2 = \begin{bmatrix} 0 & y \\ 0 & 0 \end{bmatrix}$

Then
$$I_1 - I_2 = \begin{bmatrix} 0 & x - y \\ 0 & 0 \end{bmatrix} \in I$$
 and $I_1 I_2 = \begin{bmatrix} 0 & xy \\ 0 & 0 \end{bmatrix} \in I$. Therefore, I is a subring of R by Theorem 3.16.

To show that
$$I$$
 is an ideal of R . Consider AI_1 and I_1A .
$$AI_1 = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \begin{bmatrix} 0 & x \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & xc \\ 0 & 0 \end{bmatrix} \in I, I_1A = \begin{bmatrix} 0 & x \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} = \begin{bmatrix} 0 & xc \\ 0 & 0 \end{bmatrix} \in I$$

Consider $\phi: R \to \mathbb{R} \times \mathbb{R}$ s.t. $\phi \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} = (a, c)$.

Then $\phi(A+B) = (a+x,c+z) = (a,c) + (x,z) = \phi(A) + \phi(B)$, and $\phi(AB) = (ax,cz) = (a,c)(x,z) = (a$ $\phi(A)\phi(B)$. Thus ϕ is a ring homomorphism.

 $\operatorname{Ker}(\phi) = \{A \in R : \phi(A) = (a, c) = (0, 0)\}, \text{ so we need } a = c = 0. \operatorname{Ker}(\phi) = I, \text{ and } I \text{ is an ideal. Thus by } I$ Theorem 3.25, $R/I \cong \mathbb{R} \times \mathbb{R}$.

Example: $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}, (3) = 3\mathbb{Z}[i] = \{3a + 3bi : a, b \in \mathbb{Z}\}.$ Show that $3\mathbb{Z}[i] \subset \mathbb{Z}[i]$ is a maximal ideal.

Proof. Let $\phi : \mathbb{Z}[i] \to \mathbb{Z}_3[i]$ s.t. $\phi(a+bi) = [a+bi]_3 = [a]_3 + [b]_3i$. ϕ is a homomorphism. Ker $(\phi) = \{a+bi : \phi(a+bi) = [a]_3 + [b]_3i = [0]_3 + [0]_3i\}$. Thus $a \equiv 0 \mod 3$ and $b \equiv 0 \mod 3$. a = 3m, b = 3n for some $m, n \in \mathbb{Z}$. Then, $a + bi \in 3\mathbb{Z}[i] = (3)$. By Theorem 3.25, $\mathbb{Z}[i]/(3) \cong \mathbb{Z}_3[i]$.

Note: $\mathbb{Z}_3[i] = \{0, 1, 2, i, 2i, 1+i, 1+2i, 2+i, 2+2i\}$ is a field since inverses exist for all elements. Thus $(3) \subset \mathbb{Z}[i]$ is maximal by Theorem 3.23.

Theorem: 3.26: Second Isomorphism Theorem for Rings

Let $I \subset R$ be a subring and $J \subset R$ be an ideal. Then

- 1. $I \cap J \subset I$ is an ideal
- 2. $I/(I \cap J) \cong (I+J)/J$
- *Proof.* 1. Suppose $a \in I \cap J$ and $b \in I$, we want to show that $ab \in I \cap J$ and $ba \in I \cap J$.

Note $a \in I \cap J$ means $a \in I$ and $I \in J$, $b \in J \subset R$. Then $ab \in J$ since $J \subset R$ is an ideal. $ab \in I$ since $I \subset R$ is a subring. Thus $ab \in I \cap J$.

Similarly, we have $ba \in I \cap J$, thus $I \cap J \subset I$ is an ideal.

2. Define $\phi: I \to (I+J)/J$ s.t. $\phi(a) = a+J$

Homomorphism: $\phi(a+b) = (a+b) + J = (a+J) + (b+J) = \phi(a) + \phi(b)$ $\phi(ab) = ab + J = (a+J)(b+J) = \phi(a)\phi(b)$

Surjective: Let a+J s.t. $a \in I+J$, (then $a+J \in (I+J)/J$) i.e. a=i+j for $i \in I$, $j \in J$. Then a+J=i+j+J=i+J. Therefore, $\exists i \in I$ s.t. $\phi(i)=i+J=a+J$, thus surjective.

Find kernel: Suppose $a \in I \cap J$, i.e. $a \in I$ and $a \in J$. $\phi(a) = a + J \stackrel{a \in J}{=} 0 + J$. Thus $a \in \text{Ker}(\phi) \Rightarrow I \cap J \subset \text{Ker}(\phi)$.

Suppose $a \in \text{Ker}(\phi) \subset I$, then $a \in I$, and $\phi(a) = a + J = 0 + J$. Then $a \in J$, thus $a \in I \cap J$. So $\text{Ker}(\phi) \subset I \cap J$.

Therefore, $Ker(\phi) = I \cap J$, $I/(I \cap J) \cong (I + J)/J$ by Theorem 3.25.

3.5 Polynomial Rings

Definition: 3.19: Polynomial Rings

Suppose R is a commutative ring with 1, $p(x) = a_0 + a_1x + \cdots + a_nx_n^n$ with $a_i \in R$ is a polynomial over R with indeterminate x

- 1. $a_n \neq 0$ is called the leading coefficient of p(x)
- 2. $\deg(p(x)) = n$
- 3. If $a_n = 1$, then p(x) is monic
- 4. The set of all polynomials is denoted R[x]

Theorem: 3.27:

R[x] is a commutative ring with 1.

Proof. Let
$$p(x) = a_0 + a_1 x + \cdots + a_n x^n$$
, $q(x) = b_0 + b_1 x + \cdots + b_m x^m$.

$$pq = c_0 + c_1 x + \dots + c_{m+n} x^{m+n}$$
, where $c_k = \sum_{l=0}^{k} a_{k-l} b_l$.

$$qp = \hat{c}_0 + \hat{c}_1 x + \dots + \hat{c}_{m+n} x^{m+n}$$
, where $\hat{c}_k = \sum_{l=0}^k a_l b_{k-l} \stackrel{\text{set } l=k-l}{=} \sum_{l'=0}^k a_{l'} b_{k-l'} = c_k$.

Thus qp = pq, multiplication is commutative

Theorem: 3.28:

If R is an integral domain, then so is R[x].

Proof. Contrapositive: if R[x] is not is integral domain, then R is not an integral domain.

Let $p(x) = a_0 + a_1 x + \cdots + a_n x^n$, $q(x) = b_0 + b_1 x + \cdots + b_m x^m$, with $a_n \neq 0$, $b_m \neq 0$.

Suppose R[x] is not an integral domain, then we have $p(x) \neq 0$, $q(x) \neq 0$, but p(x)q(x) = 0, i.e. $a_n b_m = 0$ $\operatorname{coeff}_{x^{n+m}}(pq) = 0.$

Then $\exists a_n, b_m \in R$ s.t. $a_n \neq 0, b_m \neq 0$, but $a_n b_m = 0$. We have a zero divisor, thus R is not an integral domain.

Remark 7. 1. If K is a field, K[x] is not a field. p(x) = x does not have an inverse.

- 2. If K is a field $K[[x]] = \left\{ \sum_{n=0}^{\infty} a_n x^n : a_n \in R \right\}$ is a field. $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$, so $(1-x) \sum_{n=0}^{\infty} x^n = 1$. And we can show that every element has an inverse.
- 3. If K is a field, $K[x, x^{-1}] = \left\{ \sum_{n=1}^{M} a_n x^n : a_n \in R \right\}$ (Laurent polynomials) is not a field.

3.5.1Division Algorithm

Theorem: 3.29: Division Algorithm for Polynomials

Let K be a field and $f(x), g(x) \in K[x]$. Then there are unique q(x), r(x) s.t. f(x) = g(x)q(x) + r(x), where $0 \le \deg(r(x)) < \deg(g(x))$

Proof. Let f(x), g(x) be polynomials s.t. $\deg(f(x)) = n$, $\deg(g(x)) = m$. Assume $m \leq n$, otherwise, f(x) = 0g(x) + r(x) a trivial case.

We do induction on n = m + k.

Base Case:
$$k = 0, m = n, f(x) = a_n x^n + \dots + a_0, g(x) = b_n x^n + \dots + b_0, a_n \neq 0, b_n \neq 0.$$
 Then $f(x) = \frac{a_n}{b_n} g(x) + \left[f(x) - \frac{a_n}{b_n} g(x) \right].$ $r(x) = f(x) - \frac{a_n}{b_n} g(x) = \left(a_{n-1} - \frac{a_n}{b_n} b_{n-1} \right) x^{n-1} + \dots, \deg(r(x)) < n$

Induction Hypothesis: Assume for all p(x) with degree < n, we can do the division algorithm. Induction Step: Consider $\hat{f}(x) = f(x) - \frac{a_n}{b_m} x^{n-m} g(x) = (a_n x^n + \cdots) - \frac{a_n}{b_m} x^{n-m} (b_m x^m + \cdots) =$ $\left(a_n - \frac{a_n}{b_m}b_m\right)x^n + \hat{a}_{n-1}x^{n-1} + \dots + \hat{a}_0 = \hat{a}_{n-1}x_{n-1} + \dots + \hat{a}_0 \text{ has degree } < n.$

Apply IH to $\hat{f}(x)$ and g(x), $\hat{f} = g\hat{q} + r$ with $0 \le \deg(\hat{r}) < m$.

$$f(x) = \hat{f} + \frac{a_n}{b_m} x^{n-m} g = g\hat{q} + \hat{r} + \frac{a_n}{b_m} x^{n-m} g = g\left(\hat{q} + \frac{a_n}{b_m} x^{n-m}\right) + \hat{r}.$$

Let $q = \hat{q} + \frac{a_n}{b_m} x^{n-m}$, $r = \hat{r}$, then f = gq + r where $0 \le \deg(r) < m$.

Uniqueness: Suppose $f = gq_1 + r_1 = gq_2 + r_2$, $0 \le \deg r_i < \deg g$ Then $0 = g(q_1 - q_2) + (r_1 - r_2)$, $r_2 - r_1 = g(q_1 - q_2)$, $\deg(r_2 - r_1) < \deg(g) \le \deg(g(q_1 - q_2))$. Thus, $r_1 = r_2$, and $q_1 = q_2$. The factorization is unique.

Definition: 3.20: GCD of Polynomials

Let K be a field, $d(x) \in K[x]$ is the gcd of $f(x), g(x) \in K[x]$ if d(x)|f(x) and d(x)|g(x) and if $\hat{d}(x)|f(x)$ and $\hat{d}(x)|g(x)$, then $\hat{d}(x)|d(x)$. If $\gcd(f,g)=1$, then f and g are relatively prime.

Theorem: 3.30: Bezout's Identity

If $d(x) = \gcd(f, g)$, then $\exists a(x), b(x) \in K[x]$ s.t. a(x)f(x) + b(x)g(x) = d(x)

Proof. Consider the set $S = \{p(x)f(x) + q(x)g(x) : p(x), q(x) \in K[x]\}$. Suppose $u(x), v(x) \in S$, both monic with the smallest degree, then $u(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$, $v(x) = x^n + b_{n-1}x^{n-1} + \cdots + b_0$. Note $u(x) - v(x) \in S$, $u(x) - v(x) = (a_{n-1} - b_{n-1})x^{n-1} + \cdots + (a_0 - b_0)$, $deg(u - v) \le n - 1 < deg(u) = n$, thus u(x) - v(x) = 0, u = v. i.e. There is a unique polynomial in S which is monic with the smallest degree.

Let $d(x) = a(x)f(x) + b(x)g(x) \in S$ be the monic polynomial with min degree. We show that d(x)|f(x) and d(x)|g(x).

Use Theorem 3.29 on f and g, f(x) = d(x)g(x) + r(x), $0 \le \deg(r) < \deg(d)$.

 $r(x) = f(x) - d(x)q(x) = f(x) - (a(x)f(x) + b(x)g(x))q(x) = (1 - a(x)q(x))f(x) - b(x)q(x)g(x) \in S$. Thus r(x) = 0, d(x)|f(x). Similarly d(x)|g(x).

Suppose $\hat{d}(x) \in K[x]$ s.t. $\hat{d}(x)|f(x)$ and $\hat{d}(x)|g(x)$. Then $f(x) = \hat{d}(x)u(x)$ and $g(x) = \hat{d}(x)v(x)$. Thus $d(x) = a(x)u(x)\hat{d}(x) + b(x)v(x)\hat{d}(x) = (a(x)u(x) + b(x)v(x))\hat{d}(x)$. $\hat{d}(x)|d(x)$

Example: Find a(x) and b(x) s.t. $a(x)f(x) + b(x)g(x) = \gcd(f(x), g(x))$, where $f(x) = x^4 - 2x^3 - 3x - 2$, $g(x) = x^3 + 4x^2 + 4x + 1$

In $\mathbb{Q}[x]$, $f(x) = (x-4)g(x) + (10x^2 + 12x + 2)$, $g(x) = (\frac{1}{10}x + \frac{7}{25})(10x^2 + 12x + 2) + \frac{11}{25}(x+1)$ Note that $(x+1)|(10x^2 + 12x + 2)$, so (x+1)|g(x) and (x+1)|f(x) is the gcd.

$$x+1 = \frac{25}{11}g(x) - \frac{25}{11}\left(\frac{1}{10}x + \frac{7}{25}\right)(10x^2 + 12x + 2)$$
$$= \frac{25}{11}g(x) - \frac{25}{11}\left(\frac{1}{10}x + \frac{7}{25}\right)(f(x) - (x-4)g(x))$$
$$= \left(\frac{5x^2}{22} - \frac{3x}{11} - \frac{3}{11}\right)g(x) + \left(-\frac{5}{22}x - \frac{7}{11}\right)f(x)$$

Thus $a(x) = (\frac{5x^2}{22} - \frac{3x}{11} - \frac{3}{11}, b(x) = -\frac{5}{22}x - \frac{7}{11}$

In $\mathbb{Z}_2[x]$, $f(x) = x^4 + x$, $g(x) = x^3 + 1$, f(x) = xg(x). Thus g(x)|f(x), $gcd(f,g) = g = x^3 + 1$.

In $\mathbb{Z}_{11}[x]$, we start with $f(x) = (x-4)g(x) + (10x^2 + 12x + 2)$. Reduce in \mathbb{Z}_{11} , we get $f(x) = (x-4)g(x) + (-x^2 + x + 2)$

Note $g(x) = (-x^2 + x + 2)(-x - 5)$. Thus $gcd(f, g) = -x^2 + x + 2$ $-x^2 + x + 2 = f(x) - (x - 4)g(x)$

3.5.2 Irreducible Polynomials

Definition: 3.21: Irreducible Polynomials

We say a non constant polynomial $f(x) \in K[x]$ is irreducible if it cannot be written as f(x) = g(x)h(x) with $\deg(g), \deg(h) < \deg(f)$.

Theorem: 3.31:

 $p(x) \in K[x]$ is irreducible $\Leftrightarrow K[x]/(p(x))$ is a field. (p(x)) is the principal ideal generated by p(x).

Proof. (\Rightarrow) Suppose $p(x) \in K[x]$ is irreducible. Consider an ideal $I \subset K[x]$, where $(p(x)) \subsetneq I \subset K[x]$. Take $f(x) \in I \setminus (p(x))$. p(x) is irreducible and f(x) is not a multiple of p(x), otherwise $f(x) \in (p(x))$. Thus $\gcd(f, p) = 1$.

By Theorem 3.30, $\exists a(x), b(x) \in K[x]$ s.t. a(x)f(x) + b(x)p(x) = 1

Note $f(x) \in I$, $p(x) \in I$. By Definition 3.15, $1 \in I$. By Theorem 3.18, I = K[x]. Thus (p(x)) is maximal by Definition 3.18. And by Theorem 3.23, K[x]/(p(x)) is a field.

 (\Leftarrow) Suppose K[x]/(p(x)) is a field, then (p(x)) is a maximal ideal by Theorem 3.23.

Suppose p(x) = f(x)g(x), then $p(x) \in (f(x)), (p(x)) \subset (f(x)) \subset K[x]$.

Case 1: (p(x)) = (f(x)), then f(x) = p(x)h(x), $\deg(f) = \deg(p)$, $p(x) = \operatorname{const} f(x)$. p(x) is irreducible.

Case 2: (f(x)) = K[x]. Then f(x) is a unit in K[x]. $f(x) = \alpha$ is a constant. $\deg(f) = 0$. Thus $\deg(g) = \deg(p)$. p is irreducible.

Example: Show that \mathbb{C} is a field.

Proof. $\phi : \mathbb{R}[x] \to \mathbb{C}$ s.t. $\phi(f(x)) = f(i)$ is a homomorphism with $\operatorname{Ker}(\phi) = (x^2 + 1)$. $x^2 + 1$ is irreducible in $\mathbb{R}[x]$. Thus $\mathbb{R}[x]/(x^2 + 1) \cong \mathbb{C}$ is a field by Theorem 3.25 and 3.31.

Example: Show that $\mathbb{Q}(\sqrt{2})$ is a field.

Proof. $\phi: \mathbb{Q}[x] \to \mathbb{Q}(\sqrt{2})$ s.t. $\phi(f(x)) = f(\sqrt{2})$ is a homomorphism, $\operatorname{Ker}(\phi) = (x^2 - 2)$. $x^2 - 2$ is irreducible in $\mathbb{Q}[x]$. Thus $\mathbb{Q}[x]/(x^2 - 2) \cong \mathbb{Q}(\sqrt{2})$ is a field.

Example: Show that $\mathbb{Z}[x]/(x^2+x+1)$ is a field.

Proof. $x^2 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$. The field has order $2^2 = 4$.

Lemma: 3.3:

Let $p(x) \in \mathbb{Q}[x]$, then $p(x) = \frac{r}{s}(a_0 + a_1x + \dots + a_nx^n)$ with gcd(r, s) = 1, $gcd(\{a_i\}) = 1$.

Proof. Let $p(x) = \frac{b_0}{c_0} + \frac{b_1}{c_1}x + \dots + \frac{b_n}{c_n}x^n$ for $b_i, c_i \in \mathbb{Z}$, $p(x) \in \mathbb{Q}[x]$. We can write $p(x) = \frac{1}{c_0 \dots c_n}(d_0 + d_1x + \dots + d_nx^n)$, where $d_i = \frac{c_0 \dots c_n}{c_i}b_i$. Let $d = \gcd(d_0, \dots, d_n)$, then $d_0 = da_0$, $d_n = da_n$ with $\gcd(a_0, \dots, a_n) = 1$ $p(x) = \frac{1}{c_0 \dots c_n}(da_0 + da_1x + \dots + da_nx^n) = \frac{d}{c_0 \dots c_n}(a_0 + a_1x + \dots + a_nx^n) = \frac{r}{s}(a_0 + a_1x + \dots + a_nx^n)$ by reducing the fractions.

Lemma: 3.4: Gauss Lemma

Let $p(x) \in \mathbb{Z}[x]$ be monic that factors $p(x) = \alpha(x)\beta(x) \in \mathbb{Q}[x]$ with $\deg(\alpha), \deg(\beta) < \deg(p)$. Then $\exists a(x), b(x) \in \mathbb{Z}[x]$ s.t. a(x), b(x) are monic with $\deg(a) = \deg(\alpha), \deg(b) = \deg(\beta)$ and p(x) = a(x)b(x).

Proof. Suppose $p(x) = \alpha(x)\beta(x)$, $\alpha(x)$, $\beta(x) \in \mathbb{Q}[x]$. By Lemma 3.3, $\alpha(x) = \frac{c_1}{d_1}(a_0 + \cdots + a_m x^m)$. Similarly, $\beta(x) = \frac{c_2}{d_2}(a_0 + \cdots + a_n x^n)$.

Let $\alpha_1(x) = (a_0 + \dots + a_m x^m)$, $\beta_1(x) = (a_0 + \dots + a_n x^n)$, $c = c_1 c_2$, $d = d_1 d_2$. Then $p(x) = \alpha(x)\beta(x) = \frac{c_1 c_2}{d_1 d_2} \alpha_1(x)\beta_1(x) = \frac{c}{d}\alpha_1(x)\beta_1(x)$. Thus $c\alpha_1(x)\beta_1(x) = dp(x)$.

Case 1: d = 1. $\alpha_1(x)\beta_1(x) \in \mathbb{Z}[x]$. $1 \stackrel{p(x) \text{ is monic}}{=} \operatorname{coeff}_{x^{m+n}} p(x) = ca_m b_n$ If c = 1, $a_m = b_n = 1$, $a(x) = \alpha_1(x)$, $b(x) = \beta_1(x)$, or $a_m = b_n = -1$, $a(x) = -\alpha_1(x)$, $b(x) = -\beta_1(x)$. If c = -1, $a_m = 1$, $b_n = -1$, $a(x) = \alpha_1(x)$, $b(x) = -\beta_1(x)$, or $a_m = -1$, $b_n = 1$, $a(x) = -\alpha_1(x)$, $b(x) = \beta_1(x)$.

Case 2: $d \neq 1$. Pick a prime s.t. p|d and $p \not |c$. Take a_l with $p \not |a_l$, b_k with $p \not |b_k$. Set $\hat{\alpha}(x) \equiv \alpha_1(x) \mod \mathbb{Z}_p[x]$, $\hat{\beta}(x) \equiv \beta_1(x) \mod \mathbb{Z}_p[x]$. Then $\hat{\alpha}(x) \neq 0$ and $\hat{\beta}(x) \neq 0$. $\hat{\alpha}(x)\hat{\beta}(x) \equiv \alpha_1(x)\beta_1(x) \mod \mathbb{Z}_p[x] \equiv \frac{d}{c}p(x) \mod \mathbb{Z}_p[x] \equiv 0 \mod \mathbb{Z}_p[x]$ since p|d. Contradiction, because $\mathbb{Z}_p[x]$ is an integral domain. Thus $d \neq 1$ is not possible.

Theorem: 3.32: Einstein's Criterion

Let p be a prime and $f(x) = a_0 + \cdots + a_n x^n \in \mathbb{Z}[x]$. If $p|a_i$ for $i \in \{0, ..., n-1\}$, but $p \not|a_n$ and $p^2 \not|a_0$, then f(x) is irreducible over $\mathbb{Q}[x]$.

Proof. Assume $f(x) = a_0 + a_1x + \cdots + a_nx^n = (b_0 + \cdots + b_rx^r)(c_0 + \cdots + c_sx^s)$. $p^2 \not|a_0$ with $a_0 = b_0c_0$ means $p \not|b_0$ or $p \not|c_0$. WLOG, we assume $p \not|b_0$, but $p|c_0$. $p \not|a_n$ with $a_n = b_rc_s$ means $p \not|b_r$ and $p \not|c_s$.

Let m be the minimal integer s.t. $p \not| c_m$ and consider $a_m = b_0 c_m + b_1 a_{m-1} + \cdots + b_m c_0$. Then divisible by p

By the constraints (the minimal integer s.t. $p \not| a_m$ should be n), $a_m = a_n$, thus m = n. $\deg(c_0 + \cdots + c_s x^s) = \deg(f(x))$. Thus there is no factorization. f(x) is irreducible.

Example: $3x^6 + 25x^5 - 20x^2 + 15x - 10$ is irreducible with p = 5.

Example: $5x^3 + 14x^2 - 7x + 7$ is irreducible with p = 7.

3.6 Integral Domains

Theorem: 3.33:

 $p \nmid a_m$.

Every ideal in K[x] is a principal ideal. K[x] is a PID (Principal Ideal Domain).

Proof. Suppose $I \subset K[x]$ is an ideal. Take $p(x) \in I$ s.t. p(x) is monic, and deg(p(x)) is minimal over all polynomials of positive degree. $(p(x)) \subset I$.

Let $f(x) \in I$. Do division algorithm with f(x) and p(x), f(x) = p(x)q(x) + r(x) with $0 \le \deg(r) < \deg(p)$. Thus $\deg(r) = 0$, because p(x) is minimal degree.

Case 1: r(x) = 0, $f(x) \in (p(x))$, $I \subset (p(x))$. Then (p(x)) = I. I is principal ideal.

Case 2: $\alpha \neq 0 \in K$. Then $(p(x)) = (\alpha) = K[x] = I$. I is a principal ideal.

Example: $\mathbb{Z}[x]$ is not a PID.

Proof. We find an ideal I that is not principal.

Let $I = (x, 2) = \{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + 2a_0 : a_i \in \mathbb{Z}\}.$

Suppose $p(x) \in \mathbb{Z}[x]$ with (p(x)) = I = (x, 2), then $2 \in (p(x))$, 2 = p(x)f(x) for some $f(x) \in \mathbb{Z}[x]$.

Then $\deg(p) = \deg(f) = 0$. p(x) = 1 or p(x) = 2. But $p(x) \neq 1$, otherwise $(p(x)) = (1) = \mathbb{Z}[x]$.

Thus p(x) = 2, I = (2), but $x \notin I$, since x is not necessarily a multiple of 2. Contradiction. Thus I is not principal.

3.6.1 Field of Fractions

We can think of \mathbb{Q} as a set of symbols $\frac{a}{b}$, $a, b \in \mathbb{Z}$, $b \neq 0$, where $\frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc$.

Theorem: 3.34: Field of Fractions

Let D be any integral domain. $S = \{(a,b) : a,b \in D, b \neq 0\}$. $\sim \subset S \times S$ s.t. $(a,b) \sim (c,d) \Leftrightarrow ad = bc$ is an equivalence relation. The equivalence classes are $[a,b] = \{(c,d) \in S : (a,b) \sim (c,d)\}$. Define $F_D = \{[a,b] : a,b \in D, b \neq 0\}$.

 F_D is a field (the field of fraction of D). It is the unique smallest field s.t. D can be embedded in F_D .

Proof. Firstly, we show that \sim is an equivalence relation.

- 1. Reflexivity: $(a,b) \sim (b,a)$, because ab = ab
- 2. Symmetry: If $(a,b) \sim (c,d)$, then ad = bc, $bc = ad \Rightarrow (c,d) \sim (a,b)$
- 3. Transitivity: If $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$, then ad = bc and cf = de. Then adcf = bcde, af = be, $(a,b) \sim (e,f)$.

Now we show that F_D is a field.

We define the addition [a, b] + [c, d] = [ad + bc, bd]. We check that the addition is well-defined:

Suppose $[a, b] = [\hat{a}, \hat{b}], [c, d] = [\hat{c}, \hat{d}].$ i.e. $a\hat{b} = \hat{a}b, cd = \hat{c}d.$

 $[a, b] + [c, d] = [ad + bc, bd], [\hat{a}, \hat{b}] + [\hat{c}, \hat{d}] = [\hat{a}\hat{d} + \hat{b}\hat{c}, \hat{b}\hat{d}].$

 $(ad+bc)(\hat{b}\hat{d}) = ad\hat{b}\hat{d} + bc\hat{b}\hat{d} = a\hat{b}d\hat{d} + c\hat{d}b\hat{b}$ Equivalence $\hat{a}[a,b] = [\hat{a},\hat{b}]$ $\hat{a}bd\hat{d} + \hat{c}db\hat{b} = bd(\hat{a}\hat{d} + \hat{c}\hat{b})$. Thus addition is well-defined.

We define the multiplication [a, b][c, d] = [ac, bd]. It is also easy to check that the multiplication is well defined

 F_D is abelian, additive identity is [0, d], inverse of [a, b] is [-a, b]. Multiplication is associative, distributive, commutative and identity is [a, a], with inverse of [a, b] being [b, a] for $a \neq 0$.

Now we show that we can embed D in F_D .

Consider $I: D \to F_D$ s.t. I(a) = [a, 1].

Homomorphism: I(a,b) = [a+b,1] = [a,1] + [b,1] = I(a) + I(b)

I(ab) = [ab, 1] = [a, 1][b, 1] = I(a)I(b)

Injective: Suppose $a \in \text{Ker}(I)$, i.e. I(a) = 0. Then $[a, 1] = [0, 1] \Rightarrow a = 0$. Thus Ker(I) = 0.

Thus I is an injective ring homomorphism.

We now show that F_D is the smallest such field.

Suppose $\exists K$ a field s.t. D is embedded in K. *i.e.* $\exists \phi: D \to K$ an injective field homomorphism. We want to find $\psi: F_D \to K$ s.t. $\phi = \psi \circ I$.

Set $\psi([a,b]) = \phi(a)\phi(b)^{-1}$. With $a,b \in D$, $\phi(a),\phi(b) \in K$.

Homomorphism:

 $\psi([a,b]+[c,d]) = \psi([ad+bc,bd]) = \phi(ad+bc)\phi(bd)^{-1} = (\phi(a)\phi(d)+\phi(b)\phi(c))\phi(b)^{-1}\phi(d)^{-1} = \phi(a)\phi(b)^{-1} + \phi(c)\phi(d)^{-1} = \psi([a,b]) + \psi([c,d]).$

 $\psi([a,b][c,d]) = \psi([ac,bd]) = \phi(ac)\phi(bd)^{-1} = \phi(a)\phi(b)^{-1}\phi(c)\phi(d)^{-1} = \psi([a,b])\psi([c,d])$

Injective: Suppose $[a,b] \in \text{Ker}(\psi)$. $\psi([a,b]) = \phi(a)\phi(b)^{-1} = 0$, but $\phi(b)^{-1} \neq 0$. Thus $\phi(a) = 0$. a = 0.

 $Ker(\psi) = \{[0, b]\} = \{[0, 1]\}$ is trivial. ψ is injective field homomorphism.

Now we show that $\phi = \psi \circ I$, $\psi \circ I(a) = \psi([a,1]) = \phi(a)\phi(1)^{-1} = \phi(a)$. Thus $\phi = \psi \circ I$.

Definition: 3.22: Irreducibles and Primes

Let R be a commutative ring with 1, D be an integral domain. Let $a, b \in R$.

- 1. a|b if $\exists c \in R$ s.t. b = ac
- 2. a and b are associates if there exists a unit u s.t. a = ub
- 3. A non-unit $p \in D$ is irreducible if when p = ab, a or b is a unit
- 4. p is prime if $p|ab \Rightarrow p|a$ or p|b

Example: $R = \langle x^2, y^2, xy \rangle \subset \mathbb{Q}[x, y].$

Note: $R = \mathbb{Q}[x,y]^{\mathbb{Z}_2}$ is $\mathbb{Q}[x,y]$ under the group action of \mathbb{Z}_2 . $\mathbb{Z}_2(x) = -x$, $\mathbb{Z}_2(y) = -y$. x^2, y^2, xy are irreducible in R, but xy is not prime. $xy|x^2y^2$, but $xy \not|x$ and $xy \not|y$.

Definition: 3.23: $\mathbb{Z}[i\sqrt{3}]$ and Norm

Consider the ring $\mathbb{Z}[i\sqrt{3}] = \{a + bi\sqrt{3} : a, b \in \mathbb{Z}\}$. We can associate a norm function $N : \mathbb{Z}[i\sqrt{3}] \to \mathbb{N}$ s.t. $N(a + bi\sqrt{3}) = a^2 + 3b^2$ with the following properties:

- 1. $N(x) = 0 \Leftrightarrow x = 0$
- 2. N(xy) = N(x)N(y)
- 3. u is a unit $\Leftrightarrow N(u) = 1$
- 4. If N(x) is a prime, x is irreducible.

Proof. We show that N(x) is a well-defined norm function.

- 1. (\Rightarrow) Let $x = a + bi\sqrt{3}$. If N(x) = 0, $a^2 + 3b^2 = 0$. Since $a^2 \ge 0$, $b^2 \ge 0$, we have a = b = 0, x = 0. (\Leftarrow) trivial.
- 2. Let $x = a + bi\sqrt{3}$, $y = c + di\sqrt{3}$. $xy = (ac 3bd) + (ad + bc)i\sqrt{3}$. $N(xy) = (ac 3bd)^2 + 3(ad + bc)^2 = (a^2 + 3b^2)(c^2 + 3d^2) = N(x)N(y)$
- 3. (\Rightarrow) Suppose u is a unit. $\exists u^{-1} \in \mathbb{Z}[i\sqrt{3}]$ s.t. $uu^{-1} = 1$. $N(uu^{-1}) = 1 \stackrel{\text{By 2.}}{=} N(u)N(u^{-1})$. But $N(u), N(u^{-1}) \in \mathbb{N}$, then $N(u) = N(u)^{-1} = 1$ (\Leftarrow) Suppose N(u) = 1, $u = a + bi\sqrt{3}$. $N(u) = a^2 + 3b^2$. If $b^2 > 0$, N(u) > 1. Thus $b^2 = 0$, b = 0, and $a^2 = 1$, $a = \pm 1$. $u = \pm 1$, both are units.
- 4. Suppose x = yz. Then N(x) = N(y)N(z). If N(x) is prime. WLOG, N(y) = 1, N(x) = N(z), y is a unit, x is irreducible.

We now show that $(1+i\sqrt{3})$ is irreducible but not a prime in $\mathbb{Z}[i\sqrt{3}]$.

Suppose $1 + i\sqrt{3} = xy$, $N(x)N(y) = N(1 + i\sqrt{3}) = 4$.

Case 1: x or y is a unit, then $1 + i\sqrt{3}$ is irreducible.

Case 2: x and y are not unit, then N(x) = N(y) = 2, but $a^2 + 3b^2 = 2$ has no solution in natural numbers. Contradiction. This case is impossible.

$$(1+i\sqrt{3})(1-i\sqrt{3})=4=2\cdot 2$$

Thus $(1+i\sqrt{3})|4 \Rightarrow (1+i\sqrt{3})|2 \cdot 2$, but $(1+i\sqrt{3})$ /2, thus it is not a prime.

3.6.2 Unique Factorization Domain

Definition: 3.24: Unique Factorization Domain

An integral domain D is a unique factorization domain (UFD) if

- 1. Every non-zero non-unit element can be written as the product of irreducibles.
- 2. If $a = p_1 \cdots p_r = q_1 \cdots q_s$ with p_i, q_j irreducible, then r = s and $\exists \sigma \in S_r$ with $p_i = q_{\sigma(i)}u_i$, u_i a unit. i.e. p_i and $q_{\sigma(i)}$ are associates.

Example: \mathbb{Z} is a UFD by the fundamental theorem of arithmetic.

 $30 = 2 \cdot 3 \cdot 5 = 2(-3)(-5)$, but (-3) = (-1)3, where (-1) is a unit. $\{2, 3, 5\}$ is the same as $\{2, -3, -5\}$ up to a unit.

Example: $\mathbb{Z}[i]$, K[x] are UFD.

Example: $\mathbb{Z}[i\sqrt{3}]$ is not a UFD.

Consider $4 = 2 \cdot 2 = (1 + i\sqrt{3})(1 - i\sqrt{3})$.

For $\mathbb{Z}[i\sqrt{3}]$ to be a UFD, we need $2=(1+i\sqrt{3})u$, where u is a unit.

Let $u = a + bi\sqrt{3} \in \mathbb{Z}[i\sqrt{3}]$. $u^{-1} = \frac{a - bi\sqrt{3}}{a^2 + 3b^2} \in \mathbb{Z}[i\sqrt{3}]$.

We need $\frac{a}{a^2+3b^2} \in \mathbb{Z}$, b=0, $\frac{a}{a^2}=\frac{1}{a}=\mathbb{Z}$, then $a=\pm 1$. $u=\pm 1$, which is impossible, because $2 \neq 1+i\sqrt{3}$.

Example: $\mathbb{Z}[\sqrt{5}]$ is not a UFD.

Consider $4 = 2 \cdot 2 = (1 + \sqrt{5})(-1 + \sqrt{5})$.

We need $2 = u(1 + \sqrt{5})$. Let $u = a + b\sqrt{5}$. $2 = (1 + \sqrt{5})(a + b\sqrt{5}) = a + 5b + (a + b)\sqrt{5}$. $\begin{cases} a + 5b = 2 \\ a + b = 0 \end{cases} \Rightarrow$

$$\begin{cases} a = -\frac{1}{2} \\ b = \frac{1}{2} \end{cases}, a, b \notin \mathbb{Z}.$$

Definition: 3.25: Primitive and Content

Let D be an integral domain, F be a field of fraction. Let $p(x) = a_n x^n + \cdots + a_0 \in D[x]$. Define the content of p(x) to be $\operatorname{cont}(p(x)) = \gcd(a_0, ..., a_n)$. p(x) is primitive if $\operatorname{cont}(p(x)) = 1$.

Lemma: 3.5:

- 1. If $f(x), g(x) \in D[x]$ are primitive, then so is f(x)g(x)
- 2. cont(fg) = cont(f)cont(g)
- 3. Suppose $p(x) \in D[x]$ with $p(x) = f(x)g(x) \in F(x)$, then $\exists \hat{f}(x), \hat{g}(x) \in D[x]$ s.t. $p = \hat{f}\hat{g}(x)$

Corollary 5. p(x) is irreducible in $D[x] \Leftrightarrow p(x)$ is irreducible in F[x].

Theorem: 3.35:

D is a UFD $\Leftrightarrow D[x]$ is a UFD.

3.6.3 Principal Ideal Domain

Definition: 3.26: Principal Ideal Domain

An integral domain is called a principal ideal domain (PID) if every ideal is principal.

Example: \mathbb{Z} , K[x] are PIDs.

Lemma: 3.6: Properties of PID

Let D be a PID with $a, b \in D$, then

- 1. $a|b \Leftrightarrow \langle b \rangle \subset \langle a \rangle$
- 2. a and b are associates $\Leftrightarrow \langle a \rangle = \langle b \rangle$
- 3. a is a unit $\Leftrightarrow \langle a \rangle = D$

Proof. 1. (\Rightarrow) Suppose a|b, then b=ar for $r\in D$. Suppose $x\in \langle b\rangle$, then x=by for $y\in D$. Then $x=ary\in \langle a\rangle$. Thus $\langle b\rangle\subset \langle a\rangle$

- (\Leftarrow) Suppose $\langle b \rangle \subset \langle a \rangle$, then $b \in \langle a \rangle$, b = ar for some $r \in D$, thus a|b.
- 2. (\Rightarrow) Suppose a, b are associates, by Definition 3.22, there exists unit $u \in D$ s.t. a = ub. thus b|a. By $1, \langle a \rangle \subset \langle b \rangle$. Also $au^{-1} = b, u^{-1}$ is a unit, then $a|b, \langle b \rangle \subset \langle a \rangle$. Therefore $\langle a \rangle = \langle b \rangle$.
 - (\Leftarrow) Suppose $\langle a \rangle = \langle b \rangle$. Then $\langle a \rangle \subset \langle b \rangle \Rightarrow a|b, \ b = ax; \ \langle b \rangle \subset \langle a \rangle \Rightarrow b|a, \ a = yb$. Therefore a = yax = axy. 1 = xy, x is a unit. a and b are associates.
- 3. (\Rightarrow) Suppose a is a unit, a^{-1} exists. Take $x \in D$ and $x = x \cdot 1 = xa^{-1}a \in \langle a \rangle$. $D \subset \langle a \rangle \subset D$, thus $\langle a \rangle = D$

 (\Leftarrow) Suppose $D = \langle a \rangle$. In particular $1 \in \langle a \rangle$. Then $\exists b \in D$ s.t. ab = 1, a is a unit.

Theorem: 3.36:

Let D be a PID and $0 \neq \langle p \rangle \subset D$, then $\langle p \rangle$ is a maximal ideal $\Leftrightarrow p$ is irreducible.

Proof. (\Rightarrow) Suppose $\langle p \rangle$ is a maximal ideal and p = ab.

Then a|p. By Lemma 3.6, $\langle p \rangle \subset \langle a \rangle \subset D$.

By Definition 3.18, either $\langle p \rangle = \langle a \rangle$ or $\langle a \rangle = D$.

If $\langle p \rangle = \langle a \rangle$, then p and a are associates by Lemma 3.6, b is a unit.

If $\langle a \rangle = D$, then a is a unit.

Thus p is irreducible by Definition 3.22.

 (\Leftarrow) Suppose p is irreducible.

Consider $a \in D$ with $\langle p \rangle \subset \langle a \rangle \subset D \stackrel{\text{By Lemma 3.6}}{\Rightarrow} a | p \Rightarrow p = ab \text{ for some } b \in D$.

But p is irreducible, then a is a unit or b is a unit.

If a is a unit, $\langle a \rangle = D$

If b is a unit, p and a are associates, $\langle p \rangle = \langle a \rangle$.

By Definition 3.18, $\langle p \rangle$ is maximial.

Corollary 6. Let D be a PID. If $p \in D$ is irreducible, then it is prime. In general prime \subset irreducible.

Proof. Suppose p is irreducible and p|ab.

Then ab = pr for some $r \in D$. By Theorem 3.36, $ab \in \langle p \rangle$

Then $\langle p \rangle$ is a prime ideal by Definition 3.17. This means that $a \in \langle p \rangle$, p|a or $b \in \langle p \rangle$, p|b.

By Definition 3.22, p is a prime.

Definition: 3.27: Accending Chain Condition (Noetherian Ring)

A ring satisfies the accending chain condition if for every set of ideals $\{I_j\}_{j=1}^{\infty}$ s.t. $I_1 \subset I_2 \subset \cdots$, there exists $N \in \mathbb{N}$ s.t. $I_n \geq I_N$ for all $n \geq N$. These rings are called Noetherian Rings.

Lemma: 3.7:

Every PID satisfies Accending Chain Condition.

Proof. Let D be a PID, and $\{I_j\}_{j=1}^{\infty}$ be a set of ideals s.t $I_1 \subset I_2 \subset \cdots$.

Let $I = \bigcup_{j=1}^{\infty} I_j$. We show that I is an ideal.

Subring: Suppose $a, b \in I$, $\exists k, l$ s.t. $a \in I_k$, $b \in I_l$. $a, b \in I_{\max(l,k)}$. Then $a - b, ab \in I_{\max(l,k)} \subset I$. Thus I is a subring by Theorem 3.16.

Ideal: Suppose $a \in I$ and $r \in D$, then $a \in I_k$ for some $k, ra \in I_k \subset I$, I is then an ideal.

By Definition 3.26, every ideal is principal. Thus I = (a) for some $a \in D$. $a \in I = \bigcup_{j=1}^{\infty} I_j$. Thus $a \in I_N$ for

some $N \in \mathbb{N}$.

Therefore $I=(a)\subset I_N\subset I_{N+1}\subset\cdots\subset I$. Then $I_N=I_{N+1}=\cdots=I$.

Theorem: 3.37:

Every PID is a UFD.

Proof. We show that factorization is possible and is unique in PIDs.

Let D be a PID.

Factorization: Suppose $a \in D$ is a non-zero non-unit element.

We can write $a = a_1b_1$ where a_1 is not an unit. We can iteratively factor a_k and write $a_k = a_{k+1}b_{k+1}$, where a_{k+1} is not a unit.

Then we form a divisibility chain $a_1|a, a_2|a_1,..., a_{k+1}|a_k$. Thus $\langle a \rangle \subset \langle a_1 \rangle \subset \cdots \subset \langle a_k \rangle \subset \cdots$ by Definition 3.26.

By Lemma 3.7, $\exists N \text{ s.t. } \langle a_N \rangle = \langle a_{N+1} \rangle = \cdots = \langle a_n \rangle \text{ for all } n \geq N.$

By Lemma 3.6, a_N and a_n are associates for all $n \ge N$. Thus $a_N = pu$ for p irreducible and u unit.

Then $a = p_1 x_1$ for some irreducible p_1 . Iterate on $x_k = p_{k+1} x_{k+1}$ where p_{k+1} irreducible.

 $\langle x_1 \rangle \subset \cdots \subset \langle x_N \rangle = \langle x_{N+1} \rangle$. x_N is irreducible. Set $x_N = p_{N+1}$. Then $a = p_1 \cdots p_{N+1}$ where p_i are irreducible.

Uniqueness: Suppose $a = p_1 \cdots p_r = q_1 \cdots q_s$. We show taht r = s and $p_i = u_j q_j$.

Assume r < s. $p_1|a \Rightarrow p_1|q_1 \cdots q_s$, then $p_1|q_j$ for some j. Reorder s.t. $p_1|q_1$. $q_1 = u_1p_1$ s.t. u_1 is a unit, since q_1 is irreducible.

Then $p_1(p_2 \cdots p_r) = p_1(u_2q_2 \cdots q_s)$. Iterate and we get $u_1 \cdots u_rq_{r+1} \cdots q_s = 1$. This means that $q_{r+1} \cdots q_s = 1$, which is a contradiction.

3.6.4 Euclidean Domain

Definition: 3.28: Euclidean Domain

An integral domain D is known as a Euclidean domain if $\exists N : D \to \mathbb{N}$ (norm function) s.t.

- 1. If $0 \neq a, b \in D$, then $N(a) \leq N(ab)$
- 2. If $a, b \in D$ with $b \neq 0$, there exists $q, r \in D$ s.t. a = bq + r with r = 0 or N(r) < N(b)

Example: \mathbb{Z} with N(m) = |m|, K[x] with $N(f(x)) = \deg(f)$ are Euclidean domains.

Example: Show that the Gaussian Integers $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$ is a Euclidean domain.

Proof. Define $N(\alpha) = \alpha \bar{\alpha} = |\alpha|^2$. If $\alpha = a + bi$, $N(\alpha) = a^2 + b^2$

We show that the two properties in Definition 3.28 are satisfied.

Let $0 \neq \alpha, \beta \in \mathbb{Z}[i]$. $N(\alpha\beta) = \alpha\beta\bar{\alpha}\bar{\beta} = \alpha\bar{\alpha}\beta\bar{\beta} = N(\alpha)N(\beta) \geq N(\alpha)$, since $N(x) \geq 1$ for any $x \neq 0 \in \mathbb{Z}[i]$.

Let $\alpha, \beta \in \mathbb{Z}[i]$ with $\beta \neq 0$. Write $\alpha = a + bi$, $\beta = c + di$. Then $\beta^{-1} = \frac{c - di}{c^2 + d^2}$

$$\alpha \beta^{-1} = (a+bi)\frac{c-di}{c^2+d^2} = \frac{1}{c^2+d^2}((ac+bd)+(bc-ad)i)$$
$$= (q_1+r_1)+(q_2+r_2)i, \text{ where } -\frac{1}{2} \le r_1, r_2 \le \frac{1}{2}, q_1, q_2 \in \mathbb{Z}$$
$$= (q_1+q_2i)+(r_1+r_2i)$$

Let $\gamma = q_1 + q_2 i \in \mathbb{Z}[i]$. $\alpha = \beta \gamma + \beta (r_1 + r_2 i)$. Since $\alpha, \beta, \gamma \in \mathbb{Z}[i]$, then $\rho = \beta (r_1 + r_2 i) \in \mathbb{Z}[i]$ (Rings are closed under addition and multiplication)

$$N(\rho) = \beta \bar{\beta}(r_1 + r_2 i)(r_1 - r_2 i) = N(\beta)(r_1^2 + r_2^2) \stackrel{-\frac{1}{2} \le r_1, r_2 \le \frac{1}{2}}{\le} N(\beta) < N(\beta)$$

Thus $\mathbb{Z}[i]$ is a Euclidean domain.

Theorem: 3.38:

If D is a Euclidean domain, then it is a PID.

Proof. Let $I \subset D$ be an ideal. We want to show that I = (a), i.e. I is principal.

Take $b \in I$ s.t. N(b) is minimal among all elements from $I, \langle b \rangle \subset I$.

Take $a \in I$, find q, r with a = bq + r where r = 0 or N(r) < N(b).

Note that N(r) < N(b) is not possible, otherwise N(b) is not minimal.

Therefore $r = a - bq = 0 \in I$. $a = bq \in \langle b \rangle$. $I \subset \langle b \rangle$. Therefore $I = \langle b \rangle$. I is principal.

3.6.5 Summary of Integral Domains

Commutative Ring with $1 \supseteq \text{Integral domain} \supseteq \text{UFD} \supseteq \text{PID} \supseteq \text{Euclidean Domain} \supseteq \text{Field.}$

Example:

- 1. Commutative Ring with 1: \mathbb{Z}_{12} , $3 \cdot 4 = 0 \in \mathbb{Z}_{12}$, thus not an Integral domain
- 2. $\mathbb{Z}[i\sqrt{5}]$: $6 = 2 \cdot 3 = (1 i\sqrt{5})(1 + i\sqrt{5})$, factorization is not unique, thus not a UFD
- 3. $\mathbb{Z}[x]$: $\langle x, 2 \rangle$ is not principal. $\mathbb{Q}[x, y]$, $\langle x, y \rangle$ not principal. Thus not PID.
- 4. $\mathbb{Z}[\frac{1}{2}(1+i\sqrt{19})]$ is a PID but not Euclidean domain
- 5. \mathbb{Z} , K[x] are Euclidean domain, but not fields
- 6. \mathbb{Q} , \mathbb{R} , F_D , \mathbb{Z}_p are fields.

In commutative ring with 1, we always have prime⇒irreducible.

Starting from UFD, we have prime⇔irreducible.

Note: in field, there is no irreducible or prime. Every element is a unit.

4 Fields

Consider $\mathbb{Z}_2[x]/(x^2+x+1)$, x^2+x+1 is irreducible in $\mathbb{Z}_2[x]$. $\mathbb{Z}_2[x]/(x^2+x+1)$ is a field. Define $\mathbb{Z}_2(\alpha) = \{a+b\alpha: a, b \in \mathbb{Z}_2, \alpha^2 = \alpha+1\}$, where α is the root of x^2+x+1 . $\mathbb{Z}_2(\alpha) = \{0, 1, \alpha, \alpha+1\}$. char($\mathbb{Z}_2(\alpha)$) = 2, *i.e.* $\forall x \in \mathbb{Z}_2(\alpha)$, x+x=0 Sometimes, we write $\mathbb{Z}_2(\alpha) = F_{2^2} = F_4$. It is a finite field of order 4.

Facts: Every finite field is of order p^r for some prime p and characteristic of p. There is only one finite field up to isomorphism of any given order, F_{p^r} . To construct F_{p^r} , we find an irreducible degree r polynomial $f(x) \in \mathbb{Z}_p[x]$, then $F_{p^r} \cong \mathbb{Z}_p[x]/(f(x))$.