On considère l'équation du second degré suivante :

$$z^2 + (3i - 4)z + 1 - 7i = 0 \quad (E)$$

- 1. A la manière d'une équation réelle, calculer le discriminant Δ du polynôme complexe, et montrer que $\Delta=3+4i$
- 2. On se propose de résoudre (E_2) : $u^2 = \Delta$ d'inconnue complexe u.
 - (a) On écrit u = x + iy avec $(x, y) \in \mathbb{R}^2$. Montrer que (E_2) est équivalent à

$$x^4 - 3x^2 - 4 = 0$$
 et $y = \frac{2}{x}$.

(b) En déduire que les solutions de (E_2) sont

$$u_1 = 3 - i$$
 et $u_2 = 1 - 2i$

- 3. Soit u_1 une solution de l'équation précédente. On considère $r_1 = \frac{-3i+4+u_1}{2}$. Montrer que r_1 est solutions de l'équation (E).
- 4. Quelle est à l'autre solution de (E)?