CSCI 4380/6380 Data Mining First Midterm Exam - Fall 2017 Open Notes

NAME:		
Problem(1):		
$\operatorname{Problem}(2)$:		
Problem(3):		
Total:		

1. [10 points] Consider the following training set of samples for data mining:

Example	A1	A2	A3	A4	label
1	1	0	0	0	1
2	0	1	0	1	1
3	0	0	1	1	0
4	1	0	0	1	1
5	0	1	1	1	0
6	1	1	0	0	1

All attributes are binary and label is the target attribute.

- (a) Give a minimal size (measured by the total number of nodes) decision tree that can correctly classify all the training examples.
- (b) How would the tree given in Part (a) above classify the following examples: (1,0,1,1) and (1,1,0,1)?
- (c) Give two association rules consistent with this training set, one with confidence equal to 100% and one with confidence less than 100%. Each of the two rules should include at least three attributes.
- (d) For 6900 students only How would the Naive Bayes method, using the Laplace estimator with $\mu = 1$ and equal prior probabilities, classify the following example: (1,0,1,1)? Would the result be different if you use Naive Bayes without the Laplace estimator? Briefly explain.

2. [10 points] Short answers please

- (a) Why is the re-substitution error usually a bad predictor of future performance?
- (b) Give **two** advantages to using ball trees over kD-trees for nearest neighbor learning.
- (c) Give **two** major differences between aggregating the input and aggregating the output for multi-instance learning problems.

3. [10 points] Short answers please

- (a) Give one advantage to using the 1R classifier over the decision tree classifier.
- (b) Give one advantage to using the decision tree classifier over the 1R classifier.
- (c) How does the Nearest Neighbor classifier deal with missing values?
- (d) The K-nearest Neighbor rule assigns a new instance the most common classification among its K closest instances from the training set. Give one advantage and one disadvantage to using the K-nearest neighbor rule over the (single) Nearest Neighbor rule for classification.