

Submitted (Section B) Anushthan Saxena 520210010027

(I) AIM > Make a NOT gate Using NAND: SOFWARE USB -> Logisim.

PROCEDURE >

 $Y = \overline{A}$

y NoTgate using NAND

Verification: Casei) -, When A = 0, Y= (A*A) = (0.0) = 1 which is correct. case(i) -> When A=1, Y= (1.1) = 0 which is also correct.

Truth table ->

A	YEA
1	0
0	1

CONCLUSION - The casiest gate to foroduce, the NOT gate is simulated in logisim and is verified with the injuts shown in the truth table.

(II) AIM -> Make an AND gate using NAND:

SOFTWARE USED -> Logisim

PROCEDURE ->

Boolean expression y = AB for AND gate => y = AB

-> AND gate using NAND->

VERIFICATION:

Casci) -> When A=0, B=0, Y= 0.0=0 Verified through logisim.

case(i) -> When A=1, B=1, Y= 1.1 = 1 Verified through logisim.

cose (ii) -> when A= 0, B=1

Verified through logisim

Truth table > 0 CONCLUSION - The AND gate broduced is verified in logisim through singulation with the given truth table.

(II) AIM -> Make an OR gate using NAND:

SOFTWARE USED > Logising

Boolean expression for OR gate => Y= A+B

-OR gate using NAND -

Verification ->

T. 4	A	B	Y
Truth table:	1	1	1
	1	0	1
	0	1	1
	0	0	0

case (i) -> When A=0, B=0, Y=0+0=0

which is verified through logicim.

case(ii) -> When A=1, B=0, Y=1+0=1, Verified through logism.

case(iii) -> When A=1, B=1, Y=1+1=1, Verified through logisim.

CONQUEION - The OR gote produced is verified in logisim through humbation with the given truth table.

(IV) AIM > Make a NOR gate using MAND:

SOFTWARE USED -> Logisini.

PROCEDURE ->

Boolean expression => Y= A+B
for NOR gate

-> NOR gate using NAND ->

Ventication:

Truth table:	A	8	y
	1	1	C
	1	0	0
	0	1	0
	0	0	1

Case (1) -> When A=0, B=0, Y= 0+0 = 1 which is verified through logisim.

(ase ii) -> When A=1, B=0, Y= 1+0=0, Verified through logishm.

Case(ii) -> When A=1, B=1,

Y= 1+1=0,

Verified through logising

CONCLUSION - The NOR gate produced is verified in logisim through simulation with the given truth table.

(D) AIM > Make on XOR gate cesting NAND gate:

SOFTWARE USED -> Logisim

Boolean, cupression =>
$$Y = AB + \overline{A}B$$

for Xol gate = $A \oplus B$

Verification >

Truth table:	A	B	Y
	1	1	0
	1	0	1
	0	1	1
	0	0	0

Case(i) -> When A=1, B=1,

Y= 1. 1 + 7.1 = 1.0 + 0.1

=0+0=0

which is verified through logisim.

case (ii) -> When A = 0, B=1,

Y= 0.7 + 0.1

= 0+1=1

which is verified through logisin.

caseGid -> When A=0, B=0,

Y= 0.0+ 0.0 ± 0.1+1.0

= 0+0

which is verified through logisim.

CONCLUSION -> The XOR gate produced is verified in logising through simulation with the given truth table.