

Discrete-Time Fourier Analysis

EE 453 / CE 352 Saad Baig

Prior Control of the Prior Con

Response of a Linear Time-Invariant System

- Any signal can be represented by a linear combination of scaled and delayed unit samples.
- We can also represent any arbitrary discrete signal as a linear combination of basic signals.
- When the system is linear and time-invariant, only one representation stands out as the most useful. It is based on the complex exponential signal set $e^{j\omega n}$ and called the discrete-time Fourier transform.

Discrete-Time Fourier Transform

• If x(n) is absolutely summable, that is, $\sum_{-\infty}^{\infty} |x(n)| < \infty$, then its discrete-time Fourier transform is given by:

$$X(e^{j\omega}) \triangleq \mathcal{F}[x(n)] = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

• The inverse discrete-time Fourier transform (IDTFT) is given by:

$$x(n) \triangleq \mathcal{F}^{-1}[X(e^{j\omega})] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n}d\omega$$

Determine the DTFT of $x(n) = \{1,2,3,4,5\}$.

Solution:

$$X(e^{j\omega}) = \sum_{0}^{\infty} x(n)e^{-j\omega n}$$

$$X(e^{j\omega}) = e^{j\omega} + 2 + 3e^{-j\omega} + 4e^{-j2\omega} + 5e^{-j3\omega}$$

 \Box Determine the DTFT of $x(n) = (0.5)^n u(n)$.

Solution:

$$X(e^{j\omega}) = \sum_{0}^{\infty} (0.5)^n e^{-j\omega n} = \sum_{0}^{\infty} (0.5e^{-j\omega})^n$$

$$X(e^{j\omega}) = \frac{1}{1 - 0.5e^{-j\omega}} = \frac{e^{j\omega}}{e^{j\omega} - 0.5}$$

- Example: $x[n] = a^{|n|}$, |a| < 1
- DTFT:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} a^{|n|} e^{-j\omega n}$$

$$X(e^{j\omega}) = \sum_{n=0}^{\infty} a^n e^{-j\omega n} + \sum_{n=-\infty}^{-1} a^{-n} e^{-j\omega n}$$

• Substituting m = -n for the second summation:

$$X(e^{j\omega}) = \sum_{n=0}^{\infty} (ae^{-j\omega})^n + \sum_{n=-\infty}^{-1} (ae^{-j\omega})^m$$

 Both summations are infinite geometric series:

$$X(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}} + \frac{ae^{-j\omega}}{1 - ae^{-j\omega}}$$

$$1 - a^2$$

$$X(e^{j\omega}) = \frac{1 - a^2}{1 - 2a\cos\omega + a^2}$$

$$x[n] = a^{|n|}, \qquad 0 < a < 1$$

$$X(e^{j\omega}) = \frac{1 - a^2}{1 - 2a\cos\omega + a^2}$$

Signal Type	Sequence $x(n)$) DTFT $X(e^{j\omega}), -\pi \le \omega \le \pi$
Unit impulse	$\delta(n)$	1
Constant	1	$2\pi\delta(\omega)$
Unit step	u(n)	$\frac{1}{1 - e^{-j\omega}} + \pi \delta(\omega)$
Causal exponential	$\alpha^n u(n)$	$\frac{1}{1 - \alpha e^{-j\omega}}$
Complex exponential	$e^{j\omega_0 n}$	$2\pi\delta(\omega-\omega_0)$
Cosine	$\cos(\omega_0 n)$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
Sine	$\sin(\omega_0 n)$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$
Double exponential	$\alpha^{ n }$	$\frac{1 - \alpha^2}{1 - 2\alpha\cos(\omega) + \alpha^2}$

Note: Since $X(e^{j\omega})$ is periodic with period 2π , expressions over only the primary period of $-\pi \le \omega \le \pi$ are given.

Periodicity: The discrete-time Fourier transform $X(e^{j\omega})$ is periodic in ω with period 2π .

$$X(e^{j\omega}) = X(e^{j[\omega + 2\pi]})$$

Implication: We need only one period of $X(e^{j\omega})$ (i.e., $\omega \in [0, 2\pi]$, or $[-\pi, \pi]$, etc.) for analysis and not the whole domain $-\infty < \omega < \infty$.

Properties of DTFT: Complex Conjugate

• If $x[n] \stackrel{\mathcal{F}}{\leftrightarrow} X(e^{j\omega})$, then:

$$x^*[n] \stackrel{\mathcal{F}}{\leftrightarrow} X^*(e^{-j\omega})$$

- Interesting Consequences:
 - If x[n] is real, then Fourier Transform $X(e^{j\omega})$ has conjugate symmetry. $X(e^{j\omega}) = X^*(e^{-j\omega})$
 - If x[n] is real, the real part of the Fourier transform is an even function of frequency (ω) , and the imaginary part is an odd function of frequency (ω) .
 - If x[n] is real, the magnitude of the Fourier transform is an even function of frequency (ω) , and the phase part is an odd function of frequency (ω) .

• If:

$$\begin{array}{c}
\mathcal{F} \\
x[n] & \leftrightarrow X(e^{j\omega}) \\
\mathcal{F} \\
h[n] & \leftrightarrow H(e^{j\omega}) \\
\mathcal{F} \\
y[n] & \leftrightarrow Y(e^{j\omega})
\end{array}$$

- Then: $y[n] = x[n] * h[n] \stackrel{\mathcal{F}}{\leftrightarrow} Y(e^{j\omega}) = X(e^{j\omega}) H(e^{j\omega})$
- Interpretation:
 - The Fourier Transform maps convolution of two signals in time domain into product of their Fourier transforms.

Linearity: The discrete-time Fourier transform is a linear transformation; that is,

$$\mathcal{F}\left[\alpha x_1(n) + \beta x_2(n)\right] = \alpha \mathcal{F}\left[x_1(n)\right] + \beta \mathcal{F}\left[x_2(n)\right]$$

for every α , β , $x_1(n)$, and $x_2(n)$.

Time shifting: A shift in the time domain corresponds to the phase shifting.

$$\mathcal{F}\left[x(n-k)\right] = X(e^{j\omega})e^{-j\omega k}$$

Frequency shifting: Multiplication by a complex exponential corresponds to a shift in the frequency domain.

$$\mathcal{F}\left[x(n)e^{j\omega_0 n}\right] = X(e^{j(\omega - \omega_0)})$$

Folding: Folding in the time domain corresponds to the folding in the frequency domain.

$$\mathcal{F}\left[x(-n)\right] = X(e^{-j\omega})$$

Symmetries in real sequences: We have already studied the conjugate symmetry of real sequences. These real sequences can be decomposed into their even and odd parts, as discussed in Chapter 2.

$$x(n) = x_{\mathbf{e}}(n) + x_{\mathbf{o}}(n)$$

Then

$$\mathcal{F}\left[x_{\mathbf{e}}(n)\right] = \operatorname{Re}\left[X(e^{j\omega})\right]$$

$$\mathcal{F}\left[x_{o}(n)\right] = j \operatorname{Im}\left[X(e^{j\omega})\right]$$

Implication: If the sequence x(n) is real and even, then $X(e^{j\omega})$ is also real and even. Hence only one plot over $[0, \pi]$ is necessary for its complete representation.

DT LTI System with Complex Exponential as Input

NI NEW STATES

DT LTI System with Complex Exponential as Input

Complex Exponential Signals as "Basic Signals"

- An appropriate set of basic signals must have the following two properties:
 - The set of basic signals can be used to construct a broad and useful class of signals.
 - The response of an LTI system to each basic signal should be "simple".
 - Provide us with a convenient representation for the system response to any signal constructed as a linear combination of the basic signals.
- The response of an LTI system to a complex exponential input is the same complex exponential with only a change in amplitude: $e^{j\omega n} \to H(e^{j\omega})e^{j\omega n}$
- Where:

$$H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j\omega n}$$

is described as the frequency response of the system.

DT LTI System with Complex Exponential as Input

LTI System Response to a Complex Exponential

$$x(n) = e^{j\omega_0 n} \longrightarrow \boxed{H(e^{j\omega})} \longrightarrow y(n) = H(e^{j\omega_0}) \times e^{j\omega_0 n}$$

In general, the frequency response $H(e^{j\omega})$ is a complex function of ω . The magnitude $|H(e^{j\omega})|$ of $H(e^{j\omega})$ is called the magnitude (or gain) response function, and the angle $\angle H(e^{j\omega})$ is called the phase response function.

NI NEW STATES

LTI System Response to Sinusoidal Sequences

Let $x(n) = A\cos(\omega_0 n + \theta_0)$ be an input to an LTI system h(n).

Then we can show that the response y(n) is another sinusoid of the same frequency ω_0 , with amplitude gained by $|H(e^{j\omega_0})|$ and phase shifted by $\angle H(e^{j\omega_0})$, that is,

$$y(n) = A|H(e^{j\omega_0})|\cos(\omega_0 n + \theta_0 + \angle H(e^{j\omega_0}))$$

This response is called the *steady-state response*, denoted by $y_{ss}(n)$. It can be extended to a linear combination of sinusoidal sequences.

$$\sum_{k} A_{k} \cos(\omega_{k} n + \theta_{k}) \longrightarrow \boxed{H(e^{j\omega})} \longrightarrow \sum_{k} A_{k} |H(e^{j\omega_{k}})| \cos(\omega_{k} n + \theta_{k} + \angle H(e^{j\omega_{k}}))$$

Response Function from Difference Equations

When an LTI system is represented by the difference equation

$$y(n) + \sum_{\ell=1}^{N} a_{\ell}y(n-\ell) = \sum_{m=0}^{M} b_{m}x(n-m)$$

We know that when $x(n) = e^{j\omega n}$, then y(n) must be $H(e^{j\omega})e^{j\omega n}$.

$$H(e^{j\omega})e^{j\omega n} + \sum_{\ell=1}^{N} a_{\ell}H(e^{j\omega})e^{j\omega(n-\ell)} = \sum_{m=0}^{M} b_m e^{j\omega(n-m)}$$

or

$$H(e^{j\omega}) = \frac{\sum_{m=0}^{M} b_m \ e^{-j\omega m}}{1 + \sum_{\ell=1}^{N} a_{\ell} \ e^{-j\omega\ell}}$$

• Determine the magnitude and phase of $H(\omega)$ for the three-point moving average system:

$$y(n) = \frac{1}{3}[x(n+1) + x(n) + x(n-1)]$$

Frequency Response: Practice

• Determine the frequency response $H(e^{j\omega})$ of a system characterized by $h(n) = (0.9)^n u(n)$. Plot the magnitude and phase responses.

$$X(e^{j\omega}) = \sum_{0}^{\infty} (0.9)^{n} e^{-j\omega n} = \frac{1}{1 - 0.9e^{-j\omega}}$$
$$|H(e^{j\omega})| = \sqrt{\frac{1}{(1 - 0.9\cos\omega)^{2} + (0.9\sin\omega)^{2}}} = \frac{1}{\sqrt{1.81 - 1.8\cos\omega}}$$
$$\angle H(e^{j\omega}) = -\tan^{-1}\left(\frac{0.9\sin\omega}{1 - 0.9\cos\omega}\right)$$

Frequency Response: Practice

$$|H(e^{j\omega})| = \frac{1}{\sqrt{1.81 - 1.8\cos\omega}}$$

$$\angle H(e^{j\omega}) = -\tan^{-1}\left(\frac{0.9\sin\omega}{1 - 0.9\cos\omega}\right)$$

An Interpretation of the Convolution Property

$$y[n] = x[n] * h[n] \stackrel{\mathcal{F}}{\leftrightarrow} Y(e^{j\omega}) = X(e^{j\omega}) H(e^{j\omega})$$

- An LTI system can only change the amplitude and phase of a sinusoidal signal. It cannot change the frequency.
- Fourier Transform (frequency components) of the output of an LTI system is the Fourier Transform (frequency components) of the input, multiplied by the frequency response of the system
- This creates the possibility to change the relative amplitude of the frequency components in a signal.
- This process is referred to as filtering.

NI WEST TO LOUIS AND LOUIS

LTI System as "Frequency Selective Filter"

- A filter is a device that discriminates, according to some attribute of the input, what passes through it.
- For LTI systems, given $Y(\omega) = X(\omega)H(\omega)$, $H(\omega)$ acts as a kind of weighting function or spectral shaping function of the different frequency components of the signal.

