5.2

Gegeben sei die Relation R_0 auf der Menge $\{1, 2, 3, 4, 5, 6\}$, die mit folgendem Diagramm dargestellt werden kann:

$$R_0 = \{\{1,1\},\{1,2\},\{2,1\},\{2,4\},\{3,4\},\{4,5\},\{6,6\}\}$$

(a) Entfernen Sie zwei Tupel aus R_0 , sodass die entstehende Relation R_1 eindeutig ist. nicht eindeutig wegen:

$$\{\underline{1},1\},\{\underline{1},2\}$$

$$\{\underline{2},1\},\{\underline{2},4\}$$

entferne $\{1,1\},\{2,4\}$

$$R_1 = \{\{1,2\},\{2,1\},\{3,4\},\{4,5\},\{6,6\}\}\$$

(b) Fügen Sie eine Tupel zu R_1 hinzu, sodass die entstehende Relation R_2 total ist.

 R_1 ist nicht Total da es kein Tuple gib mit $\{5, m \in M\}$ Füge $\{5,3\}$ zu R_2 hinzu

$$R_2 = \{\{1,2\},\{2,1\},\{3,4\},\{4,5\},\{5,3\},\{6,6\}\}\$$

(c) Finden Sie eine Relation Q mit $R_2 \subset Q$ die eine **surjektive Funktion** ist, oder erklären Sie warum das nicht möglich ist.

 R_2 ist eine Funktion da sie Total (siehe b) und eindeutig (da in allen Tupel jede Zahl nur einmal an erster Stelle steht) ist.

 R_2 ist surjektiv da R_2 eine Funktion ist, und jedes Element aus M genau einmal an zweiter Stelle steht in den Tupeln