DISEÑO DE MURO DE CONTENCION EN VOLADIZO

01. DATOS GENERALES

Datos de los materiales

$f_c' =$	210 kg/cm ²	Resistencia del concreto	Factor de Seguridad :		
$f_y =$	4200 kg/cm ²	Esfuerzo de fluencia del acero		Cond. Estat.	Cond. Dinam.
$\gamma_c =$	2400 kg/m ³	Peso especifico del concreto	Volteo	2.00	1.50
$\mu_{ct} =$	0.55	Coeficiente de friccion concreto terreno	Deslizamiento	1.50	1.25
$H_t =$	5.50 m	Altura total del muro			
$\emptyset_{flexion} =$	0.90	Factor de reduccion de capacidad a flexion			
$\emptyset_{corte} =$	0.80	Factor de reduccion de capacidad a corte			

Datos del suelo de relleno

$\gamma_r =$	1600 kg/m ³	Peso especifico del suelo	1 sin Ø	
$\emptyset =$	35.0 °	Angulo de friccion interno	$K_a = \frac{1 - \sin \emptyset}{1 + \sin \emptyset} =$	0.271
c =	0.00 kg/cm ²	Cohesion	1 3111 \$	
S/C =	1000 kg/m ²	Sobrecarga encima del terreno		

Datos del suelo de fundacion

$$q_{adm} =$$
 2.00 kg/cm² Capacidad portante del terreno

02. PREDIMENSIONAMIENTO

Altura de la zapata, suponiendo que la pantalla lleva acero:

Acero Ø
$$3/4$$
"
Long. anclaje = 30.45 cm

Altura de zapata considerando recubrimiento

$$\begin{array}{ccc} recubrimiento = & \textbf{7.5 cm} \\ H_z = & 37.95 \text{ cm} \\ H_z = & \textbf{0.40 m} \end{array}$$

Longitud de la base del muro

$$B = 3.70 \text{ m}$$

02.01. DIMENSIONES DEL MURO PARA EL ANALISIS

Ingrese las dimensiones faltantes del muro:

c =	0.30 m	Ancho de corona
$c_t =$	0.50 m	Ancho de base de la pantalla
b =	0.90 m	Longitud de la punta
H =	5.10 m	Altura de la pantalla
$H_t =$	5.50 m	Altura total del muro
$h_s =$	0.63 m	Alt. terreno por sobrecarga
B =	3.70 m	Longitud de la base del muro
$B_p =$	2.30 m	Longitud del talon posterior
$H_z =$	0.40 m	Altura de zapata del muro

Altura equivalente del terreno por sobrecarga

$$h_s = \frac{S/C}{\gamma_r} = 0.625 \text{ m}$$

Verificaciones del muro de contension en voladizo.

Analisis con sobrecarga				
Por volteo	Cumple			
Por deslizamiento	Cumple			
Excentricidad	Cumple			
Presion del terreno q ₁	Cumple			
Presion del terreno q ₂	Cumple			

Analisis sin sobrecarga			
Por volteo	Cumple		
Por deslizamiento	Cumple		
Excentricidad	Cumple		
Presion del terreno q ₁	Cumple		
Presion del terreno q ₂	Cumple		

03. VERIFICACION DE LA ESTABILIDAD DEL MURO

Fuerzas Horizontales

Momentos horizontales

$$F_{h1} = 6558.0 \; \mathrm{kg}$$
 Empuje activo de tierra $M_{h1} = 12022.9 \; \mathrm{kg}$ -m Momento por empuje activo de tierra $F_{h2} = 1490.4 \; \mathrm{kg}$ Empuje de sobrecarga $M_{h2} = 4098.7 \; \mathrm{kg}$ -m Momento por empuje de sobrecarga $\sum F_h = 8048.4 \; \mathrm{kg}$ $\sum M_h = 16121.6 \; \mathrm{kg}$ -m (Actuantes)

Fuerzas Verticales $M_{1} = 3552.0 \; \mathrm{kg}$ Peso de la cimentacion $M_{W1} = 6571.2 \; \mathrm{kg}$ -m

Fuerzas Verticales Momentos verticales
$$W_1 = 3552.0 \text{ kg}$$
 Peso de la cimentacion $M_{W1} = 6571.2 \text{ kg-m}$ $W_2 = 1224.0 \text{ kg}$ Peso de la seccion triangular de la pantalla $M_{W2} = 1264.8 \text{ kg-m}$ $W_3 = 3672.0 \text{ kg}$ Peso de la seccion rectangular de la pantalla $W_{W3} = 4590.0 \text{ kg-m}$ $W_4 = 18768.0 \text{ kg}$ Peso del relleno $M_{W4} = 47858.4 \text{ kg-m}$ $S/C = 2300.0 \text{ kg}$ Peso de la sobrecarga $M_{S/C} = 5865.0 \text{ kg-m}$ $M_{S/C} = 5865.0 \text{ kg-m}$ $M_{S/C} = 66149.4 \text{ kg-m}$ (Resistentes)

03.01. FACTOR DE SEGURIDAD DEL MURO POR VOLTEO

$$FS = \frac{\sum M_r}{\sum M_a} = \frac{66149.4}{16121.6} = 4.10$$
 factor de seguridad > 2.00 **Cumple**

03.02. FACTOR DE SEGURIDAD DEL MURO POR DESLIZAMIENTO

03.03. VERIFICACION DE LA PRESION DEL SUELO

Punto de paso de la resultante y verificacion de la excentricidad

$$x = \frac{\sum M}{\sum F_V} = \frac{50028}{29516} = 1.695 \text{ m}$$

$$e = 0.5B - x = 0.16 \,\mathrm{m} < B/_6 = 0.617 \,\mathrm{m}$$

Cumple

Reacciones del terreno sobre el muro y verificacion de la capacidad portante

$$q_{1,2} = \frac{P}{A} \left(1 \pm \frac{6e}{L} \right)$$

$$q_1 = 0.998 \text{ kg/cm}^2 < q_{adm} = 2.00 \text{ kg/cm}^2$$

$$q_2 = 0.597 \text{ kg/cm}^2 < q_{adm} = 2.00 \text{ kg/cm}^2$$

$$q_{adm} = 2.00 \text{ kg/cm}$$

Cumple

04. VERIFICACION DE LA ESTABILIDAD DEL MURO SIN CONSIDERAR LA SOBRECARGA

$$\sum F'_h = 6558.0 \text{ kg}$$

$$\sum F'_V = 27216.0 \text{ kg}$$

$$\sum_{i} M'_{i} = 12022.9 \text{ kg} \qquad \text{(Actuantes)}$$

$$\sum_{i} M'_{i} = 60284.4 \text{ kg} \qquad \text{(Resistentes)}$$

04.01. FACTOR DE SEGURIDAD DEL MURO POR VOLTEO

factor de seguridad

$$FS = \frac{\sum M'_r}{\sum M'_o} = \frac{60284.4}{12022.9} = 5.01$$

Cumple

04.02. FACTOR DE SEGURIDAD DEL MURO POR DESLIZAMIENTO

$$FS = \frac{\mu_{ct} \sum F'_{V}}{\sum F'_{h}} = \frac{14968.8}{6558.0} =$$

2.28

Cumple

04.03. VERIFICACION DE LA PRESION DEL SUELO

Punto de paso de la resultante y verificacion de la excentricidad

$$x = \frac{\sum M'}{\sum F'_V} = \frac{48261.5}{27216.0} = 1.773 \text{ m}$$

$$e = 0.5B - x = 0.077 \,\mathrm{m}$$
 < $^B/_6 = 0.617 \,\mathrm{m}$

Cumple

Reacciones del terreno sobre el muro y verificacion de la capacidad portante

$$q_{1,2} = \frac{P}{A} \left(1 \pm \frac{6e}{L} \right)$$

$$q_1 = 0.827 \text{ kg/cm}^2 < q_{adm} = 2.00 \text{ kg/cm}^2$$

$$q_2 = 0.644 \text{ kg/cm}^2 < q_{adm} = 2.00 \text{ kg/cm}^2$$

05. RESUMEN DEL ANALISIS DE ESTABILIDAD DEL MURO

Analisis con sobrecarga				
Por volteo	Cumple			
Por deslizamiento	Cumple			
Excentricidad	Cumple			
Presion del terreno q ₁	Cumple			
Presion del terreno q ₂	Cumple			

Analisis sin sobrecarga				
Por volteo	Cumple			
Por deslizamiento	Cumple			
Excentricidad	Cumple			
Presion del terreno q ₁	Cumple			
Presion del terreno q ₂	Cumple			

06. DISEÑO DE LA ARMADURA DE LA PANTALLA VERTICAL 06.01. DISEÑO POR FLEXION

Presiones producidas en el muro

2211.28 kg/m

Fuerzas Horizontales

$$F_{h1} = 5638.76 \text{ kg}$$

 $F_{h2} = 1382.05 \text{ kg}$

Empuje activo de tierra Empuje por sobrecarga $\begin{aligned} & \text{Momentos horizontales} \\ & M_{h1} = & 9585.9 \text{ kg-m} \\ & M_{h2} = & 3524.23 \text{ kg-m} \end{aligned}$

Momento por empuje activo de tierra Momento por empuje de sobrecarga

Momento ultimo en la base de la pantalla

$$M_u = 1.7(M_{h1} + M_{h2}) = 22287.20 \text{ kg-m}$$
 (Momento Ultimo)

Peralte efectivo de la base del muro

(recubrimiento)

d = 0.43 m

(peralte efectivo)

Calculo del acero principal de la pantalla

alla
$$M_u = 0.9bd^2f_c'\omega(1 - 0.59\omega)$$

$$w_1 = 1.627$$

 $r = 0.0034$

 $w_2 = 0.068$

 $A_S = 14.45 \text{ cm}^2$

Acero minimo vertical

$$A_{\rm S} = 7.50 \ {\rm cm}^2$$

Acero minimo horizontal abajo

$$A_{s min} = 12.50 \text{ cm}^2$$

 $A_{s} = 12.50 \text{ cm}^2$

$$A_{s min} = 10.00 \text{ cm}^2$$

 $A_{s} = 10.00 \text{ cm}^2$

El refuerzo vertical interior estara constituido por

$$A_s = 14.45 \text{ cm}^2$$

Distribucion de acero

Ø	1"	@	0.35 m

Ø	3/8"	1/2"	5/8"	3/4"	7/8"	1"
S	4.91	8.79	13.70	19.72	26.85	35.08

El refuerzo vertical exterior estara constituido por

$$A_s = 7.50 \text{ cm}^2$$

Distribucion de acero

Distribut	Distribución de acero									
	Ø	1/2"	@	0.15 m						

Ø	3/8"	1/2"	5/8"	3/4"	7/8"	1"
S	9.47	16.93	26.40	38.00	51.73	67.60

Distribucion del acero horizontal: tramo superior

A	cer	o exterior	- 2/3 As:	6.67	cm ²		
Ø		3/8"	1/2"	5/8"	3/4"	7/8"	1"
S		10.65	19.05	29.7	42.75	58.2	76.05
	a	1/2"	@	0.20	m	1	

Distribucion del acero horizontal: tramo inferior

Ø	1/2"	@	0.15	m		
S	8.52	15.24	23.76 34.20		46.56	60.84
Ø	3/8"	1/2"	5/8"	3/4"	7/8"	1"
Ac	ero exterior	- 2/3 As:	8.33	cm²		

	Uniformizamos el acero horizontal de la siguiente manera												
	Tramo su	perior			Tramo inferior								
Capa Exterior	Ø	1/2"	@	0.15 m	Capa Exterior	Ø	1/2"	@	0.15 m				
Capa Interior	Ø	1/2"	@	0.30 m	Capa Interior	Ø	1/2"	@	0.30 m				

El corte de acero se realizara de acuerdo a un analisis de equilibrio del acero de la pantalla y los esfuerzos actuantes en el muro

Distancia de corte del acero de refuerzo:

 $d_c = 1.60 \text{ m}$

Distancia de corte medido desde la base de la pantalla

06.02. DISEÑO POR CORTE

Se verifica el efecto de la cortante a una distancia "d" de la base de la pantalla. El corte en la base de la pantalla es:

$$V_u = 1.7 \left(\frac{1}{2} K_a \omega x^2 + K_a \omega h_s x \right)$$

$$V_u = 10189.0 \text{ kg}$$

Cortante Ultima

La resistencia del concreto al corte: $\emptyset V_c = 0.85 \cdot 0.53 \sqrt{f_c'} b_w d$

$$\emptyset V_c = 0.85 \cdot 0.53 \sqrt{f_c'} b_w$$

$$\emptyset V_c = 28071.97 \text{ kg}$$

Resistencia al corte del tramo inferior de la pantalla

Verificamos el efecto de corte

$$V_{11} = 10189 \text{ kg}$$

$$V_u = 10189 \text{ kg}$$
 < $\emptyset V_c = 28072.0 \text{ kg}$

Cumple

06.03. REVISION DE LA LONGITUD DE ANCLAJE DEL GANCHO

La longitud basica de anclaje de un gancho estandar, para acero de diametro de:

, es:

$$L_{dh} = 3.18 \frac{d_b}{\sqrt{f_c'}} = 55.74 \text{ cm}$$

La longitud de anclaje del gancho se reduce por los factores que cumplen las condiciones del ACI

Para ganchos de diametro menor a #11 con dobles de 90°, recubrimiento lateral mayor a 6.5 cm y recubrimiento detrás del acero de refuerzo de 5 cm.

$$r_2 = \frac{A_{s re1}}{A_{s prov}} = 1.00$$

La longitud de anclaje del gancho sera finalmente:

$$L_{dh} = r_1 r_2 L_{dh}$$

$$L_{dh} = 38.93 \text{ cm}$$
 < $H_z = 40.00 \text{ cm}$

$$H_{-} = 40$$

Cumple

07. DISEÑO DE LA ARMADURA DEL TALON POSTERIOR

Talón posterior:

COMBINACIÓN CRITICA 1.4 CM + 1.7 CV $W_{u1} = 14468 \text{ kg/m}$

Momento ultimo: $M_u = 7679.7 \text{ kg-m}$ Peralte efectivo d = 0.33 m

El area de acero requerida será:

$$M_u = 0.9bd^2 f_c' \omega (1 - 0.59\omega)$$

$$r = 0.0020$$

$$A_s = 6.40 \text{ cm}^2$$

Acero minimo

$$A_{min} = 6.00 \text{ cm}^2$$

$$A_s = 6.00 \text{ cm}^2$$

La distribucion del acero principal sera:

	$A_s =$	6.40 cm²	
Ø	3/4"	@	0.45 m

Ø	3/8"	1/2"	5/8"	3/4"	7/8"	1"
S	11.0937	19.8437	30.9375	44.53119	60.6249	79.2186

La distribucion del acero perpendicular se realizara con el acero minimo

	$A_s =$	6.00 cm ²	
Ø	1/2"	@	0.20 m

Ø	3/8"	1/2"	5/8"	3/4"	7/8"	1"	
S	11.8333	21.1667	33	47.5	64.6667	84.5	

La fuerza cortante en el talon es:

$$V_u = 5052.85 \text{ kg}$$

La resistencia del concreto al cortante es: $\emptyset V_c = 0.85 \cdot 0.53 \sqrt{f_c'} b_w d$ $\emptyset V_c = 21543.61 \text{ kg}$

Verificamos el efecto de corte

$$V_u = 5053 \text{ kg}$$

$$V_{\mu} = 5053 \text{ kg}$$
 < $\emptyset V_{c} = 21543.6 \text{ kg}$

Cumple

d = 0.33 m

07. DISEÑO DE LA ARMADURA DEL TALON DELANTERO

Talón delantero:

El area de acero requerida será:

$$M_u = 0.9bd^2f_c'\omega(1 - 0.59\omega)$$

$$A_s = 5.52 \text{ cm}^2$$

Acero minimo

$$A_{min} = 6.00 \text{ cm}^2$$

$$A_s = 6.00 \text{ cm}^2$$

La distribucion del acero principal sera:

$$A_s =$$
 6.00 cm² 0.20 m

Q	5	3/8"	1/2"	5/8"	3/4"	7/8"	1"
S		11.83	21.17	33.00	47.50	64.67	84.50

La distribucion del acero perpendicular se realizara con el acero minimo

	$A_s =$	5.52	cm ²
Ø	1/2"	@	0.20 m

	Ø	3/8"	1/2"	5/8"	3/4"	7/8"	1"
ſ	s	12.85	22.99	35.85	51.60	70.25	91.79

La fuerza cortante en el talon es:

$$V_u = 7667.45 \text{ kg}$$

La resistencia del concreto al cortante es: $\emptyset V_c = 0.85 \cdot 0.53 \sqrt{f_c'} b_w d$

$$\emptyset V_c = 21543.61 \text{ kg}$$

Verificamos el efecto de corte

 $V_u = 7667 \text{ kg}$ < $\emptyset V_c = 21543.6 \text{ kg}$

Cumple

10. RESUMEN DE LOS REFUERZOS DE ACERO EN EL MURO

Acero vertical de la pantalla del muro												
El refuerzo vertical interior de la pantalla						El refue	El refuerzo vertical exterior de la pantalla					
Tramo Inferior	Ø	1"	@	0.35	m	Capa E	xterior	Ø	1/2"	@	0.15 m	
Tramo Superior	Ø	1"	@	0.35	m							

	Acero horizontal de la pantalla del muro												
Tramo superior						Tramo inferior							
Capa Exterior	Ø	1/2"	@	0.15 m		Capa Exterior	Ø	1/2"	@	0.15 m			
Capa Interior	Ø	1/2"	@	0.30 m		Capa Interior	Ø	1/2"	@	0.30 m			

	Acero del talon posterior											
Refuerzo longitudinal del talon					Refuerzo transversal del talon							
Capa Interior Ø 3/4" @ 0.45 m						Capa Exterior	Ø	1/2"	@	0.20 m		

Acero del talon delantero										
Refuerzo longitudinal del talon					Refuerzo transver	Refuerzo transversal del talon				
Capa Interior	Ø	1/2"	@	0.2 m	Capa Exterior	Ø	1/2"	@	0.20 m	

09. ESQUEMA FINAL DE DISTRIBUCION DE ACERO EN EL MURO

Las medidas finales del muro de contencion, y la distribucion de los refuerzos de acero se muestran en el siguiente grafico:

Nota: En caso de no cumplir con la verificaion del deslizamiento, se debe incrementar un diente en la base del muro para incrementar la resistencia al deslizamiento, esta hoja de calculo no contempla este tipo de falla, por lo que en caso de fallar en la condicion mencinada, seguir con los calulos normales y en los planos finales incrementar el diente mencionado.