Institute of Mathematics for Industry, Kyushu University

LOGIC AND COMPUTATION PROJECT

Coq Modules for Relational Calculus

(Ver.0.1)

Hisaharu TANAKA Saga University

Shuichi INOKUCHI Fukuoka Institute of Technology Toshiaki MATSUSHIMA Kyushu University

Yoshihiro MIZOGUCHI Kyushu University

June 13, 2025

 $Repository: \ \texttt{https://github.com/KyushuUniversityMathematics/RelationalCalculus}$

Contents

1 Library Automaton

2

Chapter 1

Library Automaton

```
From mathcomp Require Import fintype finset seq.
Require Import MyLib.RelationalCalculus.
Module main(def:Relation).
Module\ Basic\_Lemmas := Basic\_Lemmas.main(Rel\_Set).
Module\ Relation\_Properties := Relation\_Properties.main(Rel\_Set).
Module Sum := Sum\_Product.main Rel\_Set.
Module Tac := Tactics.main Rel\_Set.
Module Pta := Point\_Axiom.main Rel\_Set.
Import Rel_Set Basic_Lemmas Relation_Properties Sum Tac Pta.
Declare Scope automaton_scope.
Delimit Scope automaton_scope with AUTO.
Declare Scope language_scope.
Delimit Scope automaton_scope with LANG.
   ああ s m f f j p
Structure automaton{state symbol:finType} :=
    \{delta: symbol \rightarrow (Rel \ state \ state); \ init: Rel \ i \ state; \ final: Rel \ state \ i\}.
Fixpoint dstar \{ state \ symbol: finType \} (d:symbol \rightarrow (Rel \ state \ state))(w:seq \ symbol): (Rel \ state \ state) \}
state \ state) :=
match w with
|nil \Rightarrow Id \ state
|s::w'\Rightarrow (d s) \cdot (dstar d w')
Definition \ accept \{ state \ symbol: fin Type \} (M:@automaton \ state \ symbol) (w:seq \ symbol): Prop
(init\ M) \cdot (dstar(delta\ M)w) \cdot (final\ M) = Id\ i.
Open Scope language_scope.
Definition language \{symbol: finType\}:=seq\ symbol \rightarrow Prop.
```

```
fun s:seg\ symbol \Rightarrow l\ (rev\ s).
Notation "l 
ightharpoonup rightharpoonup rightha
Definition preimage_lang_l {symbol:finType}(l l':language):language:=
fun v:seg\ symbol \Rightarrow \exists\ u,\ l\ u \land l'\ (u++v).
 \begin{tabular}{ll} \textbf{Definition} & preimage\_lang\_r & \{symbol: finType\}(l\ l':language): language:= \\ \end{tabular} 
fun v:seg\ symbol \Rightarrow \exists\ u,\ l\ u \land l'\ (v++u).
Definition cup\_lang\{symbol:finType\}(x\ y:language):language:=
fun s:seg\ symbol \Rightarrow x\ s \lor y\ s.
Notation "x', y" := (cup\_lang \ x \ y)(at level 50):language\_scope.
Definition cap\_lang\{symbol:finType\}(x\ y:language):language:=
fun s:seq\ symbol \Rightarrow x\ s \land y\ s.
Notation "x', y" := (cap\_lang \ x \ y) (at level 50):language\_scope.
Definition prod\_lang\{symbol:finType\}(x\ y:language):language:=
fun s:seq \ symbol \Rightarrow \exists \ a \ b, s=a++b \land x \ a \land y \ b.
Notation "x' \cdot y" := (prod\_lang \ x \ y) (at level 50):language\_scope.
Definition phi\{symbol:finType\}:@language\ symbol:= fun\ x \Rightarrow False.
Definition eps\{symbol: finType\}: language := fun s: seg symbol \Rightarrow s = nil.
Definition singl\{symbol: fin Type\}(s:symbol): language := fun x \Rightarrow x = [::s].
Fixpoint power_l \{symbol : finType\}(n : nat)(l : @language \ symbol): language :=
    match n with
     \mid 0 \Rightarrow eps \mid
     \mid S \mid n' \Rightarrow l \cdot power\_l \mid n' \mid l
Notation "l', n" := (power_l \ n \ l) (at level 30):language\_scope.
Definition star_l \{ symbol: fin Type \} (l: language): language:=
fun s:seq\ symbol \Rightarrow \exists\ n,power\_l\ n\ l\ s.
Notation "l^{**}" := (star_l \ l) (at level 30):language\_scope.
Definition plus_l{symbol:finType}(l:language):language:=
fun s:seq\ symbol \Rightarrow \exists\ n, power\_l(S\ n)l\ s.
Notation "l'^+" := (plus_l \ l) (at level 30):language\_scope.
Definition comp_lang{symbol:finType}(l:language):language:=
fun s:seg\ symbol => \ l\ s.
Notation "l'c'" := (comp\_lang\ l) (at level 30):language\_scope.
Fixpoint is\_shuffle \{A: Type\} (u \ v \ w : seq \ A) : Prop :=
    match u, v, w with
     | nil, \_, \_ \Rightarrow v = w
     | \_, nil, \_ \Rightarrow u = w
      a::u', b::v', c::w' \Rightarrow (a = c \land is\_shuffle \ u' \ v \ w') \setminus / (b = c \land is\_shuffle \ u \ v' \ w')
     | \_, \_, \_ \Rightarrow False
Compute is_shuffle[::1;2;3][::4;5;5][::1;2;4;3;5;5].
Definition shuffle\_lang \{symbol: finType\}(l\ l':@language\ symbol): language :=
```

```
fun x \Rightarrow \exists u \ v, \ l \ u \land l' \ v \land is\_shuffle \ u \ v \ x.
Definition deterministic \{ state \ symbol : fin Type \} (M:@automaton \ state \ symbol) : Prop:=
(\forall s:symbol,function\_r(\mathbf{delta}\ M\ s))/\land function\_r(init\ M).
Definition is_regular {symbol:finType}(l:language):Prop:=
\exists (state:finType)(M:@automaton\ state\ symbol), \forall\ w,l\ w \leftrightarrow accept\ M\ w.
Close Scope language_scope.
Definition plus M {state state' symbol: fin Type} (M:@automaton state symbol) (M':@automaton
state' symbol):automaton :=
         {|delta := fun \ x \Rightarrow Rel\_sum(delta \ M \ x \cdot inl\_r \ \_ state')(delta \ M' \ x \cdot inr\_r \ state \ \_);}
             init := Rel\_sum(init M \#)(init M' \#)\#;
             final := Rel\_sum(final M)(final M')|.
Notation "M'+' M'" := (plusM\ M\ M') (at level 50, left associativity): automaton\_scope.
Definition timesM {state\ state'\ symbol: finType} (M:@automaton\ state\ symbol)(M':@automaton
state' symbol):automaton :=
         \{|\mathtt{delta} := \mathtt{fun} \ s \Rightarrow Rel\_prod(fst\_r \ state \ state' \cdot \mathtt{delta} \ M \ s)(snd\_r \ state \ state' \cdot \mathtt{delta} \}
M'(s):
             init := Rel\_prod(init M)(init M');
             final := Rel\_prod(final M \#)(final M' \#) \# \}.
Notation "M' \times' M'" := (times M\ M\ M') (at level 50, left associativity): automaton\_scope.
Definition revM \{state\ symbol: finType\}(M:@automaton\ state\ symbol):=
         \{|delta := fun \ x \Rightarrow delta \ M \ x \ \#; \ init := final \ M \ \#; \ final := init \ M \ \# \mid \}.
Definition concatM \{state\ state'\ symbol: finType\}(M:@automaton\ state\ symbol)(M':@automaton\ symb
state' symbol): automaton :=
         \{|delta := fun \ x => (@inl_r \ \_state' \ \# \cdot delta \ M \ x \cdot @inl_r \ \_state') \ (Rel\_sum(final)\}
M \cdot init M')(Id \_) \cdot delta M' x \cdot @inr\_r state \_);
             init := init M \cdot (Rel\_sum(Id \_)(init M' \# \cdot final M \#)\#);
             final := (Rel\_sum(final\ M \cdot init\ M')(Id\ \_)) \cdot final\ M'|\}.
Definition phiM\{symbol:finType\}:@automaton \_symbol:=\{|delta:=fun x=> i i; init
            i i; final :=
 \textbf{Definition} \ epsM\{symbol: finType\}: @automaton \_ symbol: = \{| \textbf{delta} := \textbf{fun} \ x = > \quad i \ i; init := Id \} 
i:final:=Id\ i|.
Definition singlM\{symbol:finType\}(s:symbol):automaton :=
         \{|delta := fun(x:symbol)(a b:bool) = > a \land x = s \land not b;
             init := fun(x:i)(a:bool) = > is_true(a);
             final := \mathbf{fun} \ (a:bool)(x:i) => not \ (is\_true \ a)|\}.
Definition compM\{state\ symbol: finType\}(M:@automaton\ state\ symbol): automaton:=
         \{|delta := delta M; init := init M; final := final M ^|\}.
Definition plus\_nfa {state\ symbol:finType}(M:@automaton\ state\ symbol):automaton :=
         \{|delta := fun \ x = > (delta \ M \ x \quad (delta \ M \ x \cdot (final \ M \cdot init \ M))\};
             init := init M;
             final := final M|.
Definition shuffle_nfa {state state' symbol:finType}
```

```
(M:@automaton\ state\ symbol)(M':@automaton\ state'\ symbol):automaton:=
  \{|\mathtt{delta} := \mathtt{fun} \ x \Rightarrow Rel\_prod(fst\_r \ state \ state', \mathtt{delta} \ M \ x)(snd\_r \ state \ state')\}
                                                                                              Rel\_prod(fst\_r)
state \ state')(snd_r \ state \ state' \cdot delta \ M' \ x);
     init := Rel\_prod(init M)(init M');
     final := Rel\_prod(final M \#)(final M' \#) \# \}.
Definition preimage_nfa {state state' symbol:finType}
  (M:@automaton\ state\ symbol)(M':@automaton\ state'\ symbol):=
  \{|delta := delta M';
     init := init M' \cdot fun \ x \ y \Rightarrow \exists \ w, accept M \ w / (dstar(delta M')w)x \ y;
     final := final M'|.
Ltac destruct_Id_i :=
  repeat match goal with
  |[H:\_=Id\_\vdash\_]\Rightarrow
     have: Id \ i \ tt \ tt \ by \ []; rewrite-\{1\}H => \{\}H
  | [\_: \_ \vdash \_ = Id \_] \Rightarrow
     apply/inc\_antisym\_eq; split;
     [by rewrite unit_identity_is_universal|move=>[][] _]
  end.
Lemma cup_idi: \forall alpha beta,
  alpha
             beta = Id \ i \leftrightarrow alpha = Id \ i \lor beta = Id \ i.
Proof.
move \Rightarrow alpha beta.
case: (@unit_empty_or_universal\ beta) => H; rewrite H;
[rewrite cup_empty|rewrite cup_universal].
move: unit\_identity\_not\_empty = > \{\}H.
by split=>[|[|H\theta|]|;[left| |rewrite H\theta in H].
rewrite unit_identity_is_universal.
by split=>[|[]];[right| |].
Qed.
Lemma cap_idi: \forall alpha beta,
             beta = Id \ i \leftrightarrow alpha = Id \ i \land beta = Id \ i.
  alpha
Proof.
move \Rightarrow alpha beta.
case: (@unit_empty_or_universal\ beta) => H; rewrite H;
[rewrite cap_empty|rewrite cap_universal].
move: unit\_identity\_not\_empty = > \{\}H.
split = > [H0|] - H0]; by rewrite H0 in H.
rewrite unit_identity_is_universal.
by split = > || || ||.
Qed.
Lemma dstar_cat {state symbol:finType}:
```

```
\forall (d:symbol \rightarrow Rel \ state \ state)(a \ b:seq \ symbol),
dstar \ d(a++b) = dstar \ d \ a \cdot dstar \ d \ b.
Proof.
move \Rightarrow d \ a \ b.
elim: a = > [|h \ a \ H].
by rewrite/=comp_{-}id_{-}l.
by rewrite/=H comp_assoc.
Qed.
Theorem NFA\_DFA\_equiv { state\ symbol: fin\ Type } (M: @automaton\ state\ symbol):
\exists (state': fin Type)(M': @automaton state' \_), deterministic M' \land
(\forall w, accept M w \leftrightarrow accept M' w).
Proof.
destruct M.
\exists _,{|delta:= fun (s:symbol)(x y:{set state})=>[set z | is_true_inv(exists2 w, w \in x)]
& delta0 \ s \ w \ z) = y;
            init:= fun(x:i)(y:\{set state\}) = > [set x | is_true_inv(init0 tt x)] = y;
            final := fun(y:\{set \ state\})(x:i) => y:\&:[set \ x|is\_true\_inv(final0 \ x \ tt)] <> set0|\}.
rewrite/deterministic/accept/=.
split.
split = >[s]; rewrite = function_r/total_r/univalent_r; split.
move \Rightarrow x \ y \ H.
have\{\}H:y=x;[done|subst].
by \exists [set z \mid is\_true\_inv (exists2 w0 : state, w0 \setminus in x & delta0 s w0 z)].
case \Rightarrow alpha \ x[]y[]{}H \ H1.
rewrite/inverse in H.
by subst.
move = > \parallel \parallel \perp
by \exists [set x \mid is\_true\_inv (init0 \ tt \ x)].
case \Rightarrow alpha \ x[[y]]{}H \ H1.
rewrite/inverse in H.
by subst.
move \Rightarrow w.
move: init\theta.
elim: w = > [|h \ w \ H] init 0.
rewrite/=!comp\_id\_r.
split \Rightarrow H; destruct\_Id\_i.
case: H \Rightarrow a[H H0].
\exists [set x \mid is\_true\_inv (init0 \ tt \ x)].
split; [done] = > H1.
move:(in\_set0 \ a).
rewrite-\{\}H1\ in\_setI!in\_set=>/andP[].
```

```
by split;apply/is_true_id.
case:H \Rightarrow a' || H/eqP/set\theta Pn H\theta.
subst.
case: H0 \Rightarrow a.
rewrite in\_setI!in\_set=>/andP[]/is\_true\_id\ H/is\_true\_id\ H'.
by \exists a.
rewrite/=-!comp\_assoc{}{H.
have H: \forall x, (exists2 \ w0 : state,
w\theta \setminus in [set x\theta \mid is\_true\_inv (init\theta \ tt \ x\theta)] \& delta\theta \ h \ w\theta \ x) <->
(init0 \cdot delta0 \ h) \ tt \ x.
move \Rightarrow x.
split = > [][]y.
rewrite in\_set = >/is\_true\_id \ H \ H0.
by \exists y.
case = >/is_true_id \ H \ H0.
by \exists y; [rewrite in\_set].
have\{\}H: \forall x : state,
(exists2\ w0: state,
w\theta \setminus in [set x\theta \mid is\_true\_inv (init\theta \ tt \ x\theta)] \&
delta0 \ h \ w0 \ x) = (init0 \ \cdot \ delta0 \ h) \ tt \ x
by move\Rightarrow x;apply/prop_extensionality_ok.
split \Rightarrow H0; destruct\_Id\_i.
case:H0 \Rightarrow a \parallel \parallel b \parallel H0 \ H1 \ H2.
\exists a.
split;[move{H2};\exists b|done].
split;[|done|].
\exists [set x \mid is\_true\_inv (init0 \ tt \ x)].
split; [done]].
rewrite-\{H1\}H0.
apply/setP \Rightarrow x.
by rewrite!in\_set\ H.
rewrite!comp\_assoc\_comp\_assoc in H0 \times.
case:H0 \Rightarrow a[H0 \ H1].
\exists a.
split;[move{H1}|done].
case:H0 \Rightarrow b \parallel H0 \ H1.
rewrite-\{\}H1-\{\}H0.
apply/setP \Rightarrow x.
by rewrite!in\_set\ H.
Qed.
Open Scope language_scope.
```

```
Open Scope automaton_scope.
Theorem regular_cup {symbol:finType}(l l':@language symbol):
is\_regular\ l \land is\_regular\ l' \rightarrow is\_regular\ (l
                                               l').
Proof.
Close Scope language_scope.
rewrite/is\_regular => [[[[]]state]M H[]state']M' H'.
\exists (sum \ state \ state'), (M + M') \Rightarrow w.
rewrite/cup\_lang\{\}H\{\}H'/accept.
destruct M, M'; simpl.
remember(\mathbf{fun} \ x : symbol \Rightarrow Rel\_sum \ (delta0 \ x \cdot inl\_r \ state \ state')
(delta1 \ x \cdot inr_r \ state \ state')) as d.
rewrite-Hegd.
move: init0 \ init1.
elim: w = > [|h \ w \ H|] init0 \ init1.
by rewrite/=!comp_id_r sum_comp 2!inv_invol cup_idi.
have H0:Rel\_sum\ (init0\ \#)\ (init1\ \#)\ \#\ \cdot\ d\ h=
Rel\_sum ((init0 \cdot delta0 \ h) \#) ((init1 \cdot delta1 \ h) \#) \#.
by rewrite Heqd\ sum\_comp/Rel\_sum\ inv\_cup\_distr!comp\_inv\ 6!inv\_invol!comp\_assoc.
rewrite/=-!comp\_assoc\{\}H!comp\_assoc-(comp\_assoc\_\_\_\__(d h)).
by split \Rightarrow H; rewrite-H; f_equal.
Qed.
Open Scope language_scope.
Theorem regular_cap {symbol:finType}(l l':@language symbol):
is\_regular\ l \land is\_regular\ l' \rightarrow is\_regular\ (l
Proof.
Close Scope language_scope.
rewrite/is\_regular => [[[[]]state[]M H[]state'][M' H'].
\exists (prod state state'), (M \times M') => w.
rewrite/cap_lang\{\}H\{\}H'/accept.
remember(delta (M \times M'))as d.
destruct M,M'.
rewrite/= in Heqd \times.
rewrite-Heqd.
move: init0 init1.
elim: w = > [|h \ w \ H|] init 0 init 1.
by rewrite/=!comp\_id\_r/Rel\_prod\ inv\_cap\_distr!comp\_inv\_sharpness
2!inv\_invol\ cap\_idi.
rewrite/=-!comp\_assoc\{\}H!comp\_assoc-(comp\_assoc\_\_\_\__(d h)).
have H:Rel\_prod\ init0\ init1 • d\ h=
Rel\_prod\ (init0 \cdot delta0\ h)\ (init1 \cdot delta1\ h).
by rewrite Heqd/Rel\_prod!comp\_assoc
```

```
-(inv\_invol \_ \_(delta0 \ h \ \cdot \ fst\_r \ state \ state' \ \#))
-(inv\_invol\_\_(delta1\ h \cdot snd\_r\ state\ state'\ \#))-sharpness.
by split\Rightarrow H0; rewrite-H0; f_equal.
Qed.
Open Scope language_scope.
Theorem regular_rev{symbol:finType}(l:@language symbol):
is\_regular\ l \rightarrow is\_regular\ (l^r).
Proof.
Close Scope language_scope.
rewrite/is\_regular => ||||state||M|H.
\exists state, (revM\ M) => w.
rewrite/rev_l\{l\}H/accept/revM/=.
have H: \forall (d:symbol \rightarrow Rel \ state \ state)(w:seq \ symbol)(h:symbol), dstar \ d \ (rcons \ w \ h) = dstar
d \ w \cdot d \ h.
move \Rightarrow d\{\}w\ h.
elim:w;[by rewrite/=comp_id_l \ comp_id_r]=>a \ w \ H.
by rewrite/=comp\_assoc\ H.
have\{H: dstar \ (fun \ x: symbol \Rightarrow delta \ M \ x \ \#) \ w = dstar \ (delta \ M) \ (rev \ w) \ \#.
elim:w;[by rewrite inv_id]=>h w H0.
by rewrite/=\{\}H0 \ rev\_cons \ H \ comp\_inv.
by split \Rightarrow H0; rewrite-inv_id-{}H0!comp_inv_inv_inv_ol_comp_assoc_H.
Qed.
Open Scope language_scope.
Theorem regular_prod{symbol:finType}(l l':@language symbol):
is\_regular\ l \land is\_regular\ l' \rightarrow is\_regular(l \cdot l').
Proof.
Close Scope language_scope.
rewrite/is\_regular/accept/prod\_lang => [[[[[state]M\ H[[state]M'\ H']]]]]
\exists (sum \ state \ state'), (concatM \ M \ M') => w.
remember (delta (concatM M M')) as d.
remember (final (concatM M M')) as f.
destruct M,M'.
rewrite/= in H H' Heqd Heqf \times.
have\{H'\}H:(\exists u \ v : seq \ symbol, \ w = u ++ v \land l \ u \land l' \ v) <->
(\exists u \ v : seg \ symbol, \ w = u ++ v \land
(init0 \cdot dstar \ delta0 \ u) \cdot final0 \cdot (init1 \cdot dstar \ delta1 \ v) \cdot final1 = Id \ i).
split = > [[u]v]H0[/H{}H/H'{}H''{}H''[]u[]v]H0H1]; \exists u,v.
by rewrite H comp_{-}id_{-}l.
case: (@unit_empty_or_universal((init0 \cdot dstar delta0 u) \cdot final0)) => H2;
rewrite H2 in H1 \times.
move: unit\_identity\_not\_empty.
by rewrite-H1!comp\_empty\_l.
```

rewrite ${H-Heqd-Heqf}$.

by rewrite H H H 2- $\{2\}H1$ - $unit_identity_is_universal\ comp_id_l$.

```
state'\# = init.
move \Rightarrow init.
by rewrite comp_assoc/Rel_sum comp_id_r inv_cup_distr!comp_inv
2!inv\_invol(inv\_invol\_\_(inr\_r\_\_))comp\_cup\_distr\_r!comp\_assoc
inl_id inr_inl_empty!comp_empty_r cup_empty comp_id_r.
have rf:inr\_r state state' • f = final1.
rewrite Heqf-comp\_assoc-\{2\}(@comp\_id\_l\_\_final1).
f_equal.
by rewrite/Rel_sum comp_cup_distr_l-!comp_assoc inr_inl_empty inr_id
!comp_empty_l cup_comm comp_id_l cup_empty.
have lf:inl\_r state state' • f = final0 • (init1 • final1).
rewrite Heaf-!comp_assoc.
f_equal.
by rewrite/Rel_sum comp_cup_distr_l-!comp_assoc inl_inr_empty inl_id
comp\_empty\_l \ comp\_id\_l \ cup\_empty.
have \{Heqf\}inif: \forall init: Rel \ i \ state,
init \cdot Rel\_sum (Id \ state) (init1 \# \cdot final0 \#) \# \cdot f = init \cdot final0 \cdot init1 \cdot final1.
move \Rightarrow init.
rewrite Heqf!comp\_assoc.
f_equal.
rewrite-!comp_assoc.
f_equal.
by rewrite sum\_comp\_comp\_inv\ 2!inv\_invol\ inv\_id\ comp\_id\_l\ comp\_id\_r\ cup\_idem.
have rdstar: \forall w, inr\_r state state' \cdot dstar d w = dstar delta1 w \cdot inr\_r state state'.
elim = > [|h\{\}w \ H].
by rewrite/=comp\_id\_l comp\_id\_r.
by rewrite/=-comp\_assoc\{1\}Heqd/Rel\_sum!comp\_cup\_distr\_r!comp\_cup\_distr\_l
-!comp_assoc inr_id inr_inl_empty!comp_empty_l!comp_id_l cup_comm
cup\_empty\ cup\_comm\ cup\_empty!comp\_assoc\ H.
have\{rf\ rdstar\}rdstarf: \forall\ w, inr\_r\ state\ state'\cdot (dstar\ d\ w\cdot f) = dstar\ delta1\ w\cdot final1.
move = > \{\}w.
by rewrite-comp\_assoc\ rdstar\ comp\_assoc\ rf.
have dstarl: \forall w, dstar \ d \ w \cdot inl\_r \ state \ state' \# =
inl\_r state state'# • dstar delta0 w.
elim = > [|h\{\}w H].
by rewrite/=comp_{-}id_{-}l \ comp_{-}id_{-}r.
rewrite/=comp\_assoc\{\}H-!comp\_assoc.
f_equal.
                                                10
```

have inil:∀ init:Rel i state,init • Rel_sum (Id state) (init1 # • final0 #) # • inl_r state

```
by rewrite Heqd/Rel\_sum!comp\_cup\_distr\_r!comp\_assoc\ inr\_inl\_empty\ inl\_id
comp\_id\_r \ comp\_id\_l!comp\_empty\_r!cup\_empty.
have \{inil\}inidstarl: \forall (init:Rel\ i\ state)(w:seq\ symbol), init\ \cdot\ Rel\_sum\ (Id\ state)\ (init1\ \#\ state)\ (
final0 \#) \# \cdot dstar \ d \ w \cdot inl\_r \ state \ state' \# = init \cdot dstar \ delta0 \ w.
move \Rightarrow init\{\}w.
by rewrite comp_assoc dstarl-comp_assoc inil.
have{Heqd: \forall h, d \mid h = inl\_r \mid state \mid state' \# \cdot \mid delta0 \mid h \mid inl\_r \mid state \mid state'}
(inl\_r \ state \ state' \# \cdot final0 \cdot init1 \cdot delta1 \ h \cdot inr\_r \ state \ state')
(inr_r state state' \# \cdot delta1 \ h \cdot inr_r state state').
move \Rightarrow h.
by rewrite Heqd/Rel\_sum\ comp\_id\_r\ cup\_assoc!comp\_cup\_distr\_r!comp\_assoc.
split => |||u||v||H H\theta|H|.
rewrite\{w\}H\ dstar\_cat.
rewrite-(comp_id_r _ _(dstar d u))-inl_inr_cup_id comp_cup_distr_l
!comp\_cup\_distr\_r \ comp\_cup\_distr\_l \ comp\_cup\_distr\_r-!comp\_assoc \ inidstarl.
suff\ H2:((((init0 \cdot dstar\ delta0\ u) \cdot inl\_r\ state\ state') \cdot dstar\ d\ v) \cdot f)=Id\ i.
by rewrite H2 unit_identity_is_universal cup_comm cup_universal.
move: H0.
case:v = > [|h|v|].
rewrite/=!comp\_id\_r \Rightarrow H.
by rewrite! comp_assoc lf-!comp_assoc H.
rewrite/=-!comp\_assoc \Rightarrow H.
by rewrite Heqd!comp\_cup\_distr\_l!comp\_cup\_distr\_r-!comp\_assoc
!(comp\_assoc\_\_\_\_(inl\_r\_\_)) inl\_id inl\_inr\_empty comp\_empty\_r
!comp_empty_l cup_empty comp_id_r!comp_assoc rdstarf-!comp_assoc H
unit_identity_is_universal cup_universal.
rewrite/Rel_sum comp_id_r inv_cup_distr!comp_inv!inv_invol
comp\_cup\_distr\_l!comp\_cup\_distr\_r\ cup\_idi\ in\ H.
case:H.
move: init0.
elim: w = > [|h \ w \ H] init \theta.
rewrite/=comp\_id\_r\ comp\_assoc\ lf \Rightarrow H.
\exists nil, nil.
by rewrite/=!comp\_id\_r!comp\_assoc\ H.
rewrite/=-comp\_assoc\{1\}Hegd!comp\_cup\_distr\_l!comp\_cup\_distr\_r
-!comp\_assoc!(comp\_assoc \_ \_ \_ \_ \_(inl\_r \_ \_))inl\_id \ comp\_id\_r
inl_inr_empty_comp_empty_r!comp_empty_l cup_empty_cup_idi-!comp_assoc
=>[[/H[[u][v]]] H H0] \{ \}H.
\exists (h::u),v.
rewrite/=-!comp_assoc in H0 \times.
```

```
by split; [f_equal]].
\exists nil,(h::w).
by rewrite/=comp\_id\_r!comp\_assoc\ rdstarf in H\times.
move \Rightarrow H.
\exists nil, w.
by rewrite/=comp\_id\_r!comp\_assoc\ rdstarf in H\times.
Theorem regular_phi{symbol:finType}:@is_regular symbol phi.
Proof.
rewrite/is_regular.
\exists i, phiM \Rightarrow w.
by split; [|rewrite/accept/=!comp\_empty\_l \Rightarrow H; move: unit\_identity\_not\_empty; rewrite H].
Theorem regular_eps{symbol:finType}:@is_regular symbol eps.
rewrite/is_regular.
\exists i, epsM.
rewrite/accept.
case = > [|a|l].
by split = >[-]|; [rewrite/=!comp\_id\_l]|.
rewrite/=comp\_empty\_l!comp\_empty\_r\ comp\_empty\_l.
by split = > [|H|]; [|move:unit\_identity\_not\_empty; rewrite H].
Qed.
Theorem regular\_singl\{symbol:finType\}(s:symbol):is\_regular(singl s).
Proof.
rewrite/is_regular.
\exists bool, (singlM s).
have H: \forall w,
  (dstar(\mathbf{delta}(singlM\ s))w)true\ false \leftrightarrow accept(singlM\ s)\ w \Rightarrow w.
rewrite/accept.
split \Rightarrow H; destruct\_Id\_i.
\exists false.
by split; [\exists true].
by case:H = > |||||||;||by simpl||=>||||||||.
rewrite-\{\}H.
case: w = > [|a||b|w|]; [done|rewrite|=comp_id_r|simpl].
split = > [[] [] _[] H _]; by subst.
by split = >[[]|[]x[]|] - [] - H[]y[]|].
Qed.
Open Scope language_scope.
Theorem regular\_comp\{symbol:finType\}(l:@language\ symbol):
is\_regular\ l \rightarrow is\_regular\ (l^c).
```

```
Proof.
Close Scope language_scope.
rewrite/is\_regular/comp\_lang => [][]state[]M H.
move:(NFA\_DFA\_equiv\ M)=>[]state'[]M'[]H0\ H1.
\exists \_, (compM \ M') => w.
rewrite\{l\}H\{state\ M\}H1.
rewrite/accept/=.
move: H0.
rewrite/deterministic = > [][]H H0.
have\{H0\}H:function\_r(init\ M' \cdot dstar(delta\ M')w).
destruct M'; rewrite = in H H0 \times.
move: init\theta H\theta.
elim: w = > [|h \ w \ H1|] inito \ H0.
by rewrite/=comp_{-}id_{-}r.
rewrite/=-comp_-assoc.
apply/H1/function\_comp/H/H0.
have H0:\exists x, (init M' \cdot dstar(delta M')w)tt x.
rewrite/function_r/total_r in H.
move:H = > []{}H_.
have H0:Id\ i\ tt\ tt;[done].
move:(H \ tt \ tt \ H0) = > ||x|| \{H0\}H_.
by \exists x.
case:H0 \Rightarrow x H0.
have\{\}H: \forall y, (init M' \cdot dstar(delta M') w) tt y \rightarrow y=x.
move \Rightarrow y H1.
rewrite/function\_r/univalent\_r in H.
move: H = > [] - H.
have\{H1\}H0:((init\ M'\ \bullet\ dstar\ (delta\ M')\ w)\ \#\ \bullet\ (init\ M'\ \bullet\ dstar\ (delta\ M')\ w))x\ y.
by \exists tt.
by move:(H - H\theta).
have\{H0\}H: \forall R:Rel\ state'\ i,
(init M' • dstar (delta M') w) • R = Id \ i \leftrightarrow R \ x \ tt.
move \Rightarrow R.
split \Rightarrow H1; destruct\_Id\_i.
case:H1 \Rightarrow y[]/H\{\}H.
by subst.
by \exists x.
by rewrite / not! H/complement/rpc.
Qed.
Lemma nil\_rcons \{symbol: Type\}(s:seq\ symbol): s = nil \lor \exists\ t\ s', s = rcons\ s'\ t.
Proof.
```

```
elim: s = > [|h \ s[H|][h'][s']]; [by left] |]; right;
[\exists h, nil | \exists h', (h::s')]; by subst.
Qed.
Lemma dstar_rcons {state symbol:finType}:
\forall (d:symbol \rightarrow Rel \ state \ state) \ w \ t,
dstar \ d(rcons \ w \ t) = dstar \ d \ w \cdot d \ t.
Proof.
move \Rightarrow d w t.
elim: w = > [|h \ w \ H|].
by rewrite/=comp\_id\_l comp\_id\_r.
by rewrite/=H comp_assoc.
Qed.
Theorem plus_regular {symbol:finType}(l:@language symbol):
is\_regular\ l \rightarrow is\_regular(plus\_l\ l).
Proof.
rewrite/is\_regular => [[[]state]]MH.
\exists _, (plus\_nfa\ M) => w.
remember(delta(plus\_nfa\ M))as d.
destruct M.
rewrite/accept/plus_l/= in H Heqd \times.
rewrite-Heqd.
split.
case \Rightarrow n.
have H0: \forall w, ((init0 \cdot dstar \ delta0 \ w) \cdot final0)
   ((init0 \cdot dstar d w) \cdot final0).
move = > \{\}w.
apply/comp\_inc\_compat\_ab\_a'b/comp\_inc\_compat\_ab\_ab'.
elim: w = > [|h\{\}w\{\}H]; |done| simpl \Rightarrow x \ z[|y|]H0 \ H1].
\exists y.
rewrite\{1\}Heqd.
by split; |apply/cup_l|apply/H|.
\mathtt{move}:w.
elim: n = > [n H1]w.
\texttt{rewrite}/=/prod\_lang => \boxed{\parallel} a \boxed{\parallel} b' b \boxed{\parallel} \_ \boxed{\parallel} \_ \boxed{\parallel} [done].
rewrite cats\theta = > ||||H1||/H\{\}H _.
destruct\_Id\_i.
move:H = > /H0\{H0\}H.
by subst.
rewrite/={1}/prod_lang=>||||a||b||H2||/H{}H{}/H1{}
rewrite\{w\}H2\ dstar\_cat.
move: H.
```

```
have H:(\forall x:seq\ symbol, x=nil\ \lor \exists\ h\ x',\ x=rcons\ x'\ h).
elim = > [|h \ x \ H|]; [by left|right].
case:H \Rightarrow H.
\exists h, nil.
by subst.
case:H \Rightarrow x\theta | x1 H.
subst.
by \exists x\theta, (h::x1).
case:(H \ a) = > [|||t|| a'] \{\} H.
by rewrite\{a\}H/=comp\_id\_l.
rewrite\{a\}H.
have dstar\_rcons: \forall d, dstar d(rcons a't) = dstar d a' \cdot d t.
move \Rightarrow t0 \{ Heqd \ H0 \ H1 \} d.
elim: a' = > [|h \ a \ H].
by rewrite/=comp_{-}id_{-}r \ comp_{-}id_{-}l.
by rewrite/=H comp_assoc.
rewrite! dstar\_rcons \Rightarrow H.
rewrite\{2\} Heqd-!comp\_assoc!comp\_cup\_distr\_l!comp\_cup\_distr\_r-!comp\_assoc.
have\{\}H:init0 \cdot dstar \ d \ a' \cdot delta0 \ t \cdot final0 = Id \ i.
apply/inc\_antisym\_eq.
split; by rewrite unit_identity_is_universal rewrite-{}H!comp_assoc.
apply/comp\_inc\_compat\_ab\_ab'/comp\_inc\_compat\_ab\_a'b.
elim: \{dstar\_rcons\}a' = > [|h \ a \ H].
done.
rewrite/=\{1\} Head comp\_cup\_distr\_r comp\_assoc\_comp\_cup\_distr\_l.
apply/comp\_inc\_compat\_ab\_ab' \Rightarrow x y/H.
apply/cup_l.
by rewrite H comp_id_l H1 unit_identity_is_universal cup_universal.
have\{\}H: \forall w, (init0 \cdot dstar \ d \ w) \cdot final0 = Id \ i \rightarrow final0
l \ w \lor \exists \ u \ v, \ w = u ++ v \land size \ v < size \ w \land
       l \ u \wedge init0 \cdot dstar \ d \ v \cdot final0 = Id \ i.
move = > \{\}w H0.
destruct\_Id\_i.
case:H0 = > [|b|] [|a|] \{\} H0 \ H1 \ H2.
have: (dstar\ delta0\ w\cdot final0)\ a\ tt \lor \exists\ n,
(dstar\ delta0(take(S\ n)w) \cdot final0)\ a\ tt\ / (init0 \cdot dstar\ d(drop(S\ n)w) \cdot final0)tt\ tt.
move: a\{H0\}H1.
elim: w = > [|h \ w \ H0]a.
rewrite/=comp_id_l comp_id_r \Rightarrow H1.
have{}{H1:a = b; [done | subst].}
by left.
\texttt{rewrite}/{=}\{1\} Heqd/cup/cupP {=} {>} [[[]c[]][alpha][][H'\ H1; \texttt{rewrite}\{alpha\}H'\ \texttt{in}\ H1.
```

```
move/H0.
case \Rightarrow H3.
left.
rewrite comp_assoc.
by \exists c.
case:H3 \Rightarrow n[]H3 H4.
right.
\exists (S \ n).
rewrite comp_{-}assoc.
by split; [\exists c].
move = > \{\}H0.
right.
\exists 0.
rewrite take0 \ drop0/=comp\_id\_r.
rewrite-comp_{-}assoc in H1.
case:H1 = > ||||||H1 H3.
split; [done | \exists b].
by split; \exists c | done |.
case \Rightarrow H3; [left]].
rewrite H comp_assoc.
destruct\_Id\_i.
by \exists a.
case:H3 \Rightarrow n[H3 H4].
case\_eq(w==nil)=>/eqP\ H5;[left|right].
rewrite H H5/=comp\_id\_r in H1 \times.
Rel\_simpl; [by rewrite unit\_identity\_is\_universal | move => [][]\_].
have\{\}H1: a=b; [done|subst].
by \exists b.
\exists (take (S n) w), (drop (S n) w).
rewrite cat_take_drop size_drop.
split;[done|split].
move:\{H1 \ H3 \ H4\}H5.
case:w = > [|h| w|; |done| simpl = > \{h\}_{-}].
{\tt rewrite} \ ssrnat.subnE \ PeanoNat.Nat.sub\_succ.
{\tt apply}/PeanoNat.le\_lt\_n\_Sm/PeanoNat.Nat.le\_sub\_l.
split.
rewrite H.
destruct\_Id\_i.
rewrite comp\_assoc.
by \exists a.
by destruct\_Id\_i.
```

```
have: size \ w < S(size \ w) by [].
remember(S(size\ w)) as n=>\{Heqn\}.
move: w.
elim: n = > [n H0]w.
by move/PeanoNat.Nat.nlt\_\theta\_r.
move \Rightarrow H1/H.
case \Rightarrow H2.
\exists 0, w, nil.
by rewrite cats\theta.
case:H2 \Rightarrow u[v]H2[H3]H4.
have\{H3\ H1\}: size\ v < n.
apply/PeanoNat.Nat.lt\_le\_trans/PeanoNat.lt\_n\_Sm\_le/H1/H3.
move/H0 = > \{\}H0/H0[]n'\{\}H.
by \exists (S n'), u, v.
Qed.
Open Scope language_scope.
Theorem star_regular {symbol:finType}(l:@language symbol):
is\_regular\ l \rightarrow is\_regular\ (l^*).
Proof.
move/plus_regular \Rightarrow H.
move: (@regular_eps\ symbol) => H0.
have\{H0\}H:is\_regular\ (plus\_l\ l
                                       eps) by apply /regular_cup.
rewrite/star_l/is_regular/plus_l in H \times.
case: H \Rightarrow state[M H].
\exists \_, M \Rightarrow w.
rewrite-\{state\ M\}H/cup\_lang.
split.
by case=>[|||n|H;[right|left;\exists n].
by case=>[[n \ H];[\exists (S \ n)|\exists 0].
Qed.
Close Scope language_scope.
Theorem shuffle_regular {symbol:finType}(l l':@language symbol):
is\_regular\ l \land is\_regular\ l' \rightarrow is\_regular(shuffle\_lang\ l\ l').
Proof.
rewrite/is\_regular => [[[[]]state]]M H[[]state'][M' H'.
\exists \_, (shuffle\_nfa\ M\ M') => w.
remember (delta(shuffle_nfa M M'))as d.
remember (final(shuffle\_nfa\ M\ M'))as f.
destruct M, M'.
rewrite/accept/= in H H' Head Heaf \times.
rewrite-Heqd-Heqf/shuffle_lang.
```

```
have d_{-}inv: \forall x, d x =
  Rel\_prod(fst\_r \ state \ state' \cdot delta0 \ x \ \#)(snd\_r \ state \ state')\#
  Rel\_prod(fst\_r \ state \ state')(snd\_r \ state \ state' \cdot \ delta1 \ x \ \#)\#.
move \Rightarrow x.
rewrite Hegd.
by f_equal; rewrite/Rel_prod inv_cap_distr!comp_inv 3!inv_invol!comp_assoc.
have sharpness':∀ alpha beta gamma delta,
Rel_prod alpha beta •
Rel\_prod(fst\_r \ state \ state' \cdot gamma \ \#)(snd\_r \ state \ state' \cdot delta \ \#)\# =
Rel\_prod(alpha \cdot gamma)(beta · delta).
move \Rightarrow t \ t0 \ t1 \ alpha \ beta \ qamma \ delta.
rewrite/Rel_prod inv_cap_distr.
remember(fst\_r\ state\ state'\ \bullet\ gamma\ \#)as fg.
remember(snd_r state state' \cdot delta \#)as sd.
by rewrite!comp_inv 2!inv_invol-sharpness Hegfg Hegsd!comp_inv
2!inv\_invol!comp\_assoc.
have inid: \forall x(alpha:Rel \ i \ \_) beta, Rel\_prod \ alpha \ beta \cdot d \ x =
  Rel\_prod(alpha \cdot delta0 \ x)beta
                                           Rel_prod\ alpha(beta \cdot delta1\ x).
move \Rightarrow x \ alpha \ beta.
by rewrite d_inv comp_cup_distr_l-\{1\}(comp_id_r_i(snd_r_i))
-\{2\}(comp\_id\_r\_\_(fst\_r\_\_))-inv\_id-(@inv\_id\_state)!sharpness'
!comp\_id\_r.
have inif: \forall (alpha:Rel\ i\ \_) beta, Rel\_prod\ alpha\ beta \cdot f = alpha \cdot final0
                                                                                        (beta • final1).
move \Rightarrow alpha beta.
by rewrite Heqf/Rel\_prod\ inv\_cap\_distr!comp\_inv
!(inv_invol (prod state state'))-sharpness 2!inv_invol.
have nilw: \forall (init0:Rel\ i\ state)(init1:Rel\ i\ state')w,
  init0 \cdot final0 = Id \ i \land init1 \cdot dstar \ delta1 \ w \cdot final1 = Id \ i
  \rightarrow Rel\_prod\ init0\ init1 \cdot dstar\ d\ w \cdot f = Id\ i.
move = > \{H\}init0\{H'\}init1\{\}w[]\{\}H\{\}H'.
move: init1\ H'.
elim: w = > [|h \ w \ H0|] init1.
rewrite/=!comp\_id\_r \Rightarrow H'.
by rewrite inif H H' cap_idem.
rewrite/=-!comp\_assoc\ inid\ !comp\_cup\_distr\_r=>/H0\{\}H0.
by rewrite H0 unit_identity_is_universal cup_universal.
have wnil: \forall (init0:Rel\ i\ state)(init1:Rel\ i\ state')w,
  init0 \cdot dstar \ delta0 \ w \cdot final0 = Id \ i \land init1 \cdot final1 = Id \ i
  \rightarrow Rel\_prod\ init0\ init1 \cdot dstar\ d\ w \cdot f = Id\ i.
move = > \{H\}init0\{H'\}init1\{\}w[]\{\}H\{\}H'.
move:init0\ H.
```

```
elim: w = > [|h \ w \ H\theta] init\theta.
rewrite/=!comp\_id\_r \Rightarrow H.
by rewrite inif\ H\ H'\ cap\_idem.
rewrite/=-!comp\_assoc\ inid\ !comp\_cup\_distr\_r=>/H0\{\}H0.
by rewrite H0 unit_identity_is_universal cup_comm cup_universal.
split = > [[[u][v]]/H{} H{} []/H'{} H'{}].
move:init0 \ init1 \ u \ v \ H \ H'.
elim: w = > [|h \ w \ H0] init0 \ init1 \ u \ v \ H \ H'.
destruct u,v; [|done|done|done].
rewrite/=!comp\_id\_r in H H ' \times.
by rewrite inif H H' cap_idem.
destruct u \Rightarrow H1.
have\{\}H1:v=h::w by destruct v,w.
rewrite-\{w \mid h \mid H0\}H1/=comp\_id\_r \text{ in } H \times .
by apply/nilw.
destruct v.
remember(h::w)as w'.
have\{\}H0:s::u=w' by destruct(s::u),w'.
rewrite\{s \ u \ H1\}H0/=comp\_id\_r \ in \ H \ H'.
by apply/wnil.
rewrite = in H1.
case:H1 = > ||||H1 H2;||rewrite{s}|H1 in H H0||rewrite{s0}|H1 in H' H0||;
[remember(s0::v)as v'|remember(s::u)as u'];
rewrite/=-!comp_assoc inid in H H' *;
move:(H0 - - H H' H2) = > \{\}H0;
rewrite!comp_cup_distr_r H0 unit_identity_is_universal;
by rewrite cup\_comm\ cup\_universal by rewrite cup\_universal.
move \Rightarrow H0.
suff: \exists u \ v : seq \ symbol,
  init0 \cdot dstar \ delta0 \ u \cdot final0 = Id \ i \land
  init1 \cdot dstar \ delta1 \ v \cdot final1 = Id \ i \wedge is\_shuffle \ u \ v \ w.
move = > [|u||v||/H{} H{} ||/H'{} H{} || H'{} H{} ||
by \exists u, v.
move: init0 init1\{H H'\}H0.
elim: w = > [|h \ w \ H0|] init0 \ init1.
rewrite/=comp_{-}id_{-}r inif=>/cap_{-}idi[]H0 H1.
\exists nil,nil.
by rewrite/=!comp_{-}id_{-}r.
rewrite/=-comp\_assoc\ inid!comp\_cup\_distr\_r=>/cup\_idi[]/H0[]u[]v[]H[]\{\}H0\ H1.
\exists (h::u),v.
rewrite/=-comp_-assoc.
split; [done|split; [done|]].
```

```
destruct v.
f_equal.
by destruct u, w.
by left.
\exists u,(h::v).
rewrite/=-comp_assoc.
split; [done|split; [done|]].
destruct u.
f_equal.
by destruct v, w.
by right.
Qed.
Theorem preimage_regular_l {symbol:finType}(l l':@language symbol):
  is\_regular\ l \rightarrow is\_regular\ l' \rightarrow is\_regular(preimage\_lang\_l\ l\ l').
Proof.
rewrite/is\_regular => ||||state||M||H||state'||M'|H'|.
\exists _, (preimage\_nfa\ M\ M') => w.
destruct M,M'.
rewrite/accept/=/accept/preimage\_lang\_l/= in H H' \times.
rewrite dstar\_cat!comp\_assoc in H' \times.
destruct\_Id\_i.
case:H' \Rightarrow x \parallel H0 \parallel y \parallel H1 \mid H2.
\exists x.
split; [done | \exists y].
split; [\exists u | done].
by split; [destruct\_Id\_i].
destruct\_Id\_i.
rewrite comp\_assoc in H0.
case:H0 \Rightarrow x ||||y||H0||u||H1 H2 H3.
rewrite{}H{}H{}H{}H{}H{}H{}
split; [done | destruct\_Id\_i].
\exists x.
by split; [\exists y]].
Qed.
Lemma rev\_invol \{symbol: Type\}: \forall l: seq symbol, rev(rev l) = l.
by elim = > [|h \ w \ H|]; [|rewrite \ rev\_cons \ rev\_rcons \ H].
Qed.
Open Scope language_scope.
```

```
Theorem preimage_regular_r {symbol:finType}(l l':@language symbol):
  is\_regular\ l \land is\_regular\ l' \rightarrow is\_regular(preimage\_lang\_r\ l\ l').
Proof.
move = > []/regular\_rev \ H/regular\_rev \ H'.
move:(preimage_regular_l _ _ H H')=>/regular_rev{H' H}.
rewrite/is\_regular => [][]state[]M\ H.
\exists _, M \Rightarrow w.
rewrite-\{state\ M\}H.
{\tt rewrite}/preimage\_lang\_l/preimage\_lang\_r/rev\_l.
split => |||u||H0 H0'.
\exists (rev \ u).
by rewrite rev\_cat!rev\_invol.
\exists (rev \ u).
by rewrite rev\_cat\ rev\_invol\ in\ H0'.
Qed.
End main.
```

Bibliography

[1] R. Affeldt and M. Hagiwara. Formalization of Shannon 's Theorems in SSReflect-Coq. In 3rd Conference on Interactive Theorem Proving, LNCS 7406, 233–249, 2012.