Counterexamples in (Introductory) Algebra

April 9, 2014

Isomorphism of quotients does not imply isomorphism of quotient groups

ie: $H \cong K \not \Longrightarrow G/H \cong G/K$ Let $G = \mathbb{Z}_4 \times \mathbb{Z}_2$, with $H = <(\bar{2}, \bar{0}) >$ and $K = (\bar{0}, \bar{1})$. Then $H \cong K \cong Z_2$ but $G/K \cong Z_4 \not\cong Z_2 \times Z_2 \cong G/H$

Isomorphism of quotient groups does not imply isomorphism of quotients

ie: $G/H \cong G/K \not \Longrightarrow H \cong K$

(D&F 3.3.8): For prime p, let G be the group of p-power roots of unity. And $\phi: G \to G$ be the surjective homomorphism $z \mapsto z^p$. Then $G/\ker \phi \cong G$.

So let $K = \ker \phi$ and H be trivial. Then $G/K \cong G \cong G/H$, but $H \not\cong K$ (because $\ker \phi$ is non-trivial).

A group can be isomorphic to a proper quotient of itself

Same example as above.

Direct product of Hamiltonian Groups¹ may not be Hamiltonian

In $Q_8 \times Q_8$, the subgroup $\langle (i,j) \rangle$ is not normal because $\langle (i,j) \rangle = \{(1,1), (i,j), (-1,-1), (-i,-j)\}$ but $(j,1)(i,j)(j,1)^{-1} = (-i,j) \notin \langle (i,j) \rangle$

¹non-abelian group where every subgroup is normal