accelerated failure time (AFT) model, 230	probability model, 224–227
aggregate data analysis	attrition in panel surveys
micro foundations in panel studies for, 7	nonrandomly missing data, 229
aggregate predictive models	augment Dickey Fuller (ADF) lag order
big data analytics, 457–464	unit root test, 150
methods, 457–459	autocorrelation estimates
aggregation, 457, 462	heteroscedasticity autocorrelation consistent
AICC criterion, 369, 374–375	estimator, 53
Aitken estimation procedure, 117	autoregressive moving average (ARMA), 182,
Aitken's theorem	370
linear regression model, 21	average treatment effects (ATE), 384
Akike Information Criterion (AIC)	averaging method
analysis of covariance test	panel studies, 373
coefficient variation, 398	averaging methods
analysis of covariance tests	mean and scale corrected simple averaging,
homogeneity, 47	373
individual- or time-specific effects, 43-50	mean corrected simple averaging, 373
investment theory and, 49-50	D : 0 M : C
analysis-of-covariance model	Bai & Ng information criterion factor model, 330
regression analysis, 19	Bai and Ng information criterion
Anderson-Rubin limited information approach	interactive effects model, 331
dynamic simultaneous equation model, 158	recursively iterating procedure, 332
arbitrary error structure	baseline hazard function, 254
linear-regression models, 54–59	Bayesian Information Criterion (BIC)
asymptotic covariance matrix	Bayesian estimation
big data analytics, 452	dynamic random coefficients models, 417
minimum distance estimator, 101	Bayesian solution
asymptotes	mixed fixed and random coefficient models,
cross-sectionally dependent data, 340–341	409–411
dynamic models, 64	behavioral hypotheses
joint limit and sequential limit, 103, 104	panel studies construction of, 4–5
multi-dimensional, 11	best linear unbiased estimator (BLUE), 19
simulation methods, 277–279	generalized-least-squares-estimator as, 24
attrition	restrictions, 21
Gary income-maintenance experiment,	Bhattcharya-Matusita-Hellinger measure, 384
227–229	bias adjusted estimator
nonrandomly missing data, 223	dynamic models, 204–208
- · · · · · · · · · · · · · · · · · · ·	.,,

big data analytics K-means clustering, 441 pairwise trimmed least squares and least aggregate/disaggregate predictive models, absolute devation estimators, 236-239 457-464 Chamberlain arbitrary error structure model, asymptotic covariance matrix, regression 54-59 coefficients, 452 Chamberlain minimum-distance estimator, 80 data-based or causal predictive models, structural equation model, 115 453-457 Chinese Township and Village Enterprises panel high dimensional data interference, 442-446 survey, 3 income tax deduction on net financial assets. Choi unit root test, 151 Closer Economc Partnershp Arrangement low dimensional parameter inference, (CEPA, Hong Kong), 374-378 446-453 Cobb-Douglas production function machine learning algorithms, 440-442 variable intercept models 16-18 Monte Carlo simulation, 449-450 coefficient estimation multiple-source data and time frequency time-invariant variables, 183 differences, 464–467 coefficient heterogeneity, 420 neural networks, 442 coefficient variation testing nonparametric method, 444-447 random-coefficient models, 397-399 orthogonal projection, 448-449 cointegration regression approach-variable selection, estimation techniques, 143-148 442-444 heterogeneity, 145-148 sample split double/debiased estimator, 447 homogeneity, 143-145 structural changes, 467-468 individual-specific PVAR, 135 support vector machines, 441 likelihood estimation, 156 unemployment duration and insurance, 452 maximumm likelihood estimator (MLE), binary choice model 145-148 maximum score estimator, 180 panel vector autoregressive model, 134 bounding parameters processes, 142-143 dynamic models, 208-210 residual-based tests, 155 Box-Jenkins ARMA method tests of, 155-157 policy assessment, 370 vector error and, 142 Box-Jenkins procedure cointegration rank serially correlated errors, 52 vector error and, 148 British Household Panel Survey (BHPS), 2 common correlated effects (CCE) approach Brownian motion, 157 fixed-effects linear static model, 312-314 budget share equations Pesaran CCE, 318 panel data models, 243 common correlated effects pooled estimator sample selection models, 242 (CCEP), 312 complete heterogeneity California Tobacco Control Program (CTCP), variable-coefficient modelss, 392 378-381 complete structural system estimation capital-intensive firms single-equation method, 118-121 fixed-coefficient vs. mixed fixed and random conditional inference, 37 coefficient comparisons, 422 fixed or random effects, 30 mixed fixed and random coefficient individual effects and attributes, 34 estimation, 421 linear regression model, 35 variable intercept model, 420 conditional maximum-likelihood estimation causal predictive models, 453-457 dynamic models, 188-192 CD test cross-sectional dependence, 355 fixed-effects sample selection models, 240 censored regression models conditional mean approach cross-sectional data, 214-219 fixed-effects models, 85-88 dynamic Tobit models, 244-249 linear difference method vs., 89

consistent estimator	linear model of dependence, 354–355
panel parametric approach, 173-176	linear models of dependence, 356–357
semiparametric approach, 182–183	matrix exponential models, 349–351
control group, 361	mixed spatial and factor process, 351–353
correlated fixed-effects models	modelling dependence in panel studies, 11
panel pooled least squares estimator, 435-436	policy intervention measurement, 370
correlated random-coefficients models, 431–437	pricing behavior, variational-coefficient
correlated random-effects models	model, 400–401
cross-sectional data, 431–433	program evaluation, 362–368
fixed-effects estimator, 434	pseudo panels, 302–305
group mean estimator, 433	qualitative response models, 165–170
panel data mean effects estimation, 433–437	random-coefficient models, 404–407
semiparametric estimates, 437	sample selection models, 219–223
correlations	spatial error models, 343–345
simultaneous-equation models, 109	spatial regressive models, 346–348
triangular structure, 121–123	spatial weight matrix and spatial dependence,
count data models	341–343
estimation, 264–267	special dependence coefficient zero test, 355
excess zeros, 264	summary of approaches, 368
negative binomial model, 263	truncated models, 214–219
Poisson model, 262–263	
counterfactuals, 468	variable-coefficient models, 391–407
· · · · · · · · · · · · · · · · · · ·	cross-sectional units
covariance estimator (CV)	mixed fixed and random coefficient models,
covariance matrix, 53	407–411
defined, 21	Cross-validation, 442
least-squares dummy variable (LSDV),	Current Population Survey and Social Security
66–67	Administration (CPS-SSA) study, 248
method of moment derivation, 21	1 4 1 1 1 452 457
transformation matrix, 24	data based predictive models, 453–457
covariance matrix	multiple-source data and time frequency
random-coefficient models,cross-sectional	differences, 464–467
data, 404	data generating process (DGP)
COVID-19 outcomes simulation, 384–386	interactive effects models, 334–338
Cowles Commission structural equation model,	data generating process(DGP)
109	quasi-likelihood estimation, 75
Cox quadratic exponential model	decision trees
dynamic model approximation, 211	big data analytics, 441
Cramer-Rao bound, 468	developing countries
cross-section-averaged-based etimator, 312	panel surveys in, 3
cross-sectional data	Development Research Institute (China), 3
CD dependence test, 355	difference-in-difference (DID) approach
censored regression models, 214–219	nonparametric evaluations, 367–368
correlated data, 153–155	disaggregate predictive models
correlated random-effects models, 431–433	big data analytics, 457–464
dependence, 339–341	disaggregate treatment effects measurement
dependence testing methods, 354–360	program evaluation, 384
endogenously determined spatial weight	discrete data models, 165–170
matrix, 348–349	discrete time Markov chain modeling, 257–258
fixed-coefficient model, 392–393	discrete-response models
fixed-coefficient models, 403	cross-sectional data, 165–170
independent data, unit root tests, 149–153	discretization of unobserved heterogeneity,
Lagrangian Multiplier dependence test, 354	305–306
limitations of, 4	distance function
limited dependent variable model, 358–360	GLS estimation, 112–113

distributed lag estimation	sample selection models, 249
common assumptions, 289	spatial error model, 345
exogenous variable, prior structure, 290	state dependence vs. heterogeneity, 193–196
exogenous variables, 290–294	Tobit models, 244–250
lag coefficients, prior structure identification,	true vs. spurious dependence in, 195
294–296	dynamic relationships
short panels, 288–297	panel studies exploration of, 5
testing, 296–297	dynamic simultaneous-equation model
distributed lag models	Anderson-Rubin limited information
limitations of, 5	approach, 158
dummy variables fixed-effects models, 18	basic properties, 157–159
duration model	instrumental variable estimator, 159
	jacknife instrumental variable estimator
discrete time Markov Chain modeling, 258 proportional hazard model, 256	(JIVE), 161
duration models	panel two-stage least squares estimator (P2SLS), 159
accelerated failure time model, 256	dynamic simultaneous-equation models
cumulative duration of distribution, 251–253	generalized method of moments estimator,
discrete time Markov Chain modeling, 257	160–161
likelihood function, 253–254	dynamic Tobit models
proportional hazard model, 254	panel studies and, 8
rating firm default probability example,	paner stadies and, o
258–262	earnings-function structural model
Durbin regression	attrition probability, 227
serially correlated errors, 51	economic behavior
dynamic error-components	dynamic models, state dependence, 194
maximum likelihood estimation (MLE), 79	panel studies of, 5
dynamic fixed-effect models	unionism impact on, 4
covariance estimation, 67	economic models
dynamic fixed-effects models	omitted variables, 307
individual and time-specific effects, 96–101	efficiency, 27, 59, 308, 407
indvidual and time-specific effects, 101	eigenvalue, 61–62, 309–315, 340
natural gas demand example, 83–85	eigenvector, 61–62, 309–315
serial correlations in residuals, 95–96	endogenous variables
dynamic model	simultaneous-equation models, 108
random coefficient models, 414-418	endogenously determed sample selection model
dynamic models	semiparametric two-step approach, 239-241
alternative approaches to dependence,	endogenously determined spatial weight matrix
203–213	cross-sectional data dependence, 348-349
approximate model, 210-213	English longitudinal Study of Aging, 3
bias adjusted estimator, 204–208	error components model, 408
bounding parameters, 208–210	error-component assumption
conditional maximum likelihood estimator,	random-effects model testing, 80–81
188–192	error-component two-stage least-squares
female employment example, 197–199	(EC2SLS) estimator
general model, 183–185	full information case, 120
health shock response example, 205	unknown parameters, 117
household brand choices example, 199–201	errors-in-variables models, 283–287
individual-specific effects, cohort approach	estimation techniques
to, 192–193	triangular structure, 123
initial conditions, 185–188	variable-coefficient models, random
labor-participation decision model, 201–202	coefficients, 394–397
likelihood approach, 162–164	Euclidian norm, 104

Europe	fixed-effects models
national surveys in, 2	conditional mean approach, 85-88
European Community Household Panel	conditional or unconditional inference, 30
(ECHP), 2	covariance estimation, 67
European Community Innovation Surveys CIS I	dummy-variable approach, 18
and CIS II, 2	likelihood estimation, 85–89
excess zeros	linear dynamic models
count data models, 264	least-squares estimation or quasi-difference
exit intensity, 258	estimation, 315–318
exogenous variables	linear static models, common correlated
distributed lag estimation, 290-294	effects approach, 312-314
least squares estimator (LS), 65	linear static models, least squares estimator,
simultaneous-equation models, 108	309–311
variable-coefficient models, 428-431	linear static models, overwiew, 309
	linear static models, quasi-difference
F-statistic, 46–48	estimator, 311
F-tests	minimum distance estimator, 88
robust interference, 48	misspecification tests, 37–38
Factor approach, 307–309	mixed fixed-random effects models, 323-328
factor dimensions	Monte Carlo simulations, 176
interactive effects models, 330–338	Monte Carlo studies, 319–323
mixed spatial and factor process,	panel parametric approach, 171–176
cross-sectional data dependence,	serially correlated errors, 52
351–353	simultaneous-equation models, 108
female employment	transformed estimator, 314–315
dynamic model of, 197–199	transformed likelihood approach, 86
fixed coefficients	Frobenius norm, 104
variable-coefficient models, 399	full-information estimation
fixed effects	complete structural system, 118–121
covariance estimation, 67	fuzzy regression discontinuity (FRD), 365
Michigan income dynamics example, 29	
parameter estimation, 29–37	Gary income-maintenance experiment
fixed individual effects	attrition probability model, 227–229
mixed individual and random effects models,	Gaussian quadrature formula
326–329	random-effects models, 178
fixed time effects models	general method of moments (GMM) estimator
mixed fixed and random effects, 323, 326	linear static fixed effects model, 311
fixed-coefficient model	generalized method of moments (GMM)
cross-sectional data, 392–393	estimator
prediction comparision, mixed fixed and	Arellano and Bond GMM, 70–73
random-coefficients models, 422	dynamic simultaneous-equation models,
fixed-coefficient models	160–161
cross-sectional data, 403	higher moment conditions, 72 likelihood estimation and, 89–94
heterogeneous forecasting, 460–464	•
mixed fixed and random model comparisons, capital-intensive firms, 422	overview, 69 panel vector autoregressive model, 136
fixed-effects estimation	generalized method-of-moments (GMM)
correlated random-effects models, 434	estimator
fixed-effects estimator	random-effects models, 179
least absolute devation estimator, 230–239	generalized moment method (GMM)
pairwise least squares, 230–239	CPS-SSA study, 248
fixed-effects model	generalized-least-squares (GLS) estimation
cointegration, 145	attrition probability model, 226
	proceeding model, 220

best linear unbiased estimator (BLUE) as, 24 in static models, panel parametric approach, between-group and within-group estimators, in static models, panel parametric conditional procedure, 83 approachAa, 170 unobserved, discretization, 305-306 distance function, 112-113 variable-coefficient models, complete equations, 24 heterogeneity, 392 heteroscedasticity, 50 variable-coefficient models, group likelihood estimation, 82-83 heterogeneity, 392 likelihood estimation, exogenous vector autoregressive models, 140-141 observations, 76 heterogeneous forecasting Mundlak's formulation, 33 fixed vs. random coefficients, 460-464 serially correlated errors, 52 heterogeneous forecasting models generalized-least-squares (GLS) estimator money demand, 462 variable-coefficient models, random monthly kilowatt-hour demand prediction, coefficients, 394-397 German Social Economics Panel (GSOEP), 2 heterogeneous intercepts and slopes Gibbs samples, 416 unobserved heterogeneity and, 9 global vector autoregressive model (GVAR), heterogeneous intercepts-homogeneous slopes unobserved heterogeneity and, 9 group heterogeneity heterogeneous vector autoregressive models variable-coefficient models, 392 overview, 140-141 group mean augmented (CCE) approach heteroscedastic-autocorrelation consistent interactive effects models, 312-314 (HAC) estimator group mean estimator panel studies, 370 correlated random-effects models, 433 heteroscedasticity growth rate, conditional convergence of, 7 autocorrelation consistent estimator, 53 Grunfeld investment function panel studies and, 50 variable coefficient estimations, 396 high dimensional data low dimensional parameter inference, Hausman type test statistic 446-453 GMM estimator, 74 nonparametric approach, 444–447 transform likelihood approach, 89 regression aproach-variable selection, 442 Hausman-Wise two-period attrition model, 226, high dimensional data interference, 446 228 big data analytics, 442 hazard function regression approach variable selection, duration model cumulative distribution of 442-444 duration, 251-253 Hildreth-Houck estimator, 405 proportional hazard model, 254-256 homogeneity Health and Retirement Study in the USA, 3 cointegrating relations, 143-145 Heckman two-step estimator covariance tests for, 47 truncated and censored regression models, F-tests, 48 cross-sectional data, 216 failure of tests for, 49 Heckman's Monte Carlo studies panel vector autoregressive models, 134-140 dynamic model, intitial conditions, 187 panel vector autoregressive models), 140 Hermite formula Honoré-Kyriazidou (HK) conditional maximum likelihood estimator random-effects models, 178 dynamic models, individual-specific effects, heterogeneity 192-193 coefficients, 420 household brand choices research cointegration, 145-148 dynnamic model, 199-201 dynamic models, bias adjusted estimator, 204 Household, Income and Labour Dynamics in dynamic models, state dependence vs., Australia Survey, 3, 121 193-196

housing expenditure research fixed individual and random time effects, sample selection models, 241 326-328 fixed-effects linear static models, 309 importance sampling individual-specific and time-specific effects, simulation methods, 278 incidental parameters least squares estimator, 309-311 count data model, 265 orthogonal projection, 333-338 discrete data, 171-173 panel interactive model, 331 dynamic models, 66-67, 188-192 quantile models, 328-329 dynamic systems, 134-136, 159-164 quasi-difference estimator, 311 sample truncation, 231 transformed estimator, 314-315 incidental parameters and multi-dimensional Investing in Children and their Societies (ICS, statistics Netherlands), 3 unobserved heterogeneity and, 10 investment expenditures income tax deduction, net financial assets variable-coefficient models, 389, 418-422 big data analytics, 450 income-schooling model, 107-108 jacknife instrumental variable estimator (JIVE) income-schooling-ability model dynamic model bias reduction, 205 triangular structure, 122 dynamic simultaneous-equation model, 161 incomplete panel data, 297-302 Jacobian, 468 individual coefficient predictions joint generalized-least-squares estimation, random-coefficient models, 397 110-114 individual effect joint probabilities, 468 serially correlated errors, 51 individual effects K-means clustering correlation of, 15 big data analytics, 441 dynamic models, 96-101 Kalman filters individual firm regression coefficients, 419 time-variant random-coefficient model individual-specific effects prediction, 424-427 Kernel estimates, 468 dynamic models, 192-193 panel vector autoregressive models, 135 kernel weighted generalized method of quantile regression analysis, 275 moments (KGMM) estimator, 250 Tobit models, 229-230 Kullback-Leibler-Thiel information measure, individual-specific variables 384 analysis of covariance tests, 43-50 model estimation, 38-41 labor-participation decision model information criterion parameter homogeneity, 201-202 AIC, 369, 375-376 Lagrangian Multiplier AICC, 369, 374-375 cross-sectional dependence test, 354 Bai and Ng, 330 Lagrangian multiplier Bayesian, 369 coefficient variation testing, 398 initial conditions, 76-78, 185-187 Lagrangian Multiplier (LM) instrumental variable (IV) unit root test, 152 GMM estimator and, 73 Lagrangian Multiplier Test instrumental variables fixed effects estimation, 314 method of moments estimation, 67-75 Lasso (least absolute shrinkage and selection instrumental variables estimation operator), 369, 443 dynamic simultaneous-equation model, 159 latent-continuous-random-variable interactive effects models dynamic models, 184 least absolute deviation (LAD) estimators common correlated effects approach, truncated and censored regressions, 230-236 factor dimension determination, 330-338 least squares estimator (LS) fixed effects linear dynamic models, 315-323 bias, 64-65

exogenous variables, 65 linear regression model statistical properties, 64 conditional and unconditional inference, 35 least-squares dummy variable (LSDV) singular-disturbance covariance matrix, 21 analysis-of-covariance model, 21 linear static effects models covariance estimator, 66-67 transformed estimator, 314-315 linear static fixed effects models defined, 20 generalized-least-squares (GLS) estimation, common correlated effects approach, 312-314 sigma estimator, 22 least squares estimator, 309-311 least-squares estimator overview, 309 fixed-effects linear dynamic models, 315-319 quasi-difference estimator, 311 fixed-effects linear static model, 309-311 linear-probability model Levin and Lin (LL) unit root test, 149 cross-sectional data, 166-167 Levin, Lin and Chu (LLC) unit root test, 150 liquidity constraints life-cycle labor supply, prime-age males variable-coefficient models, 418–422 omitted variables in, 6 local linear regression, 268, 366 likelihood estimation local polynomial least squared regression cointegration testing, 156 nonparametric models, 268 discrete-response models, cross-sectional log-likelihood function data, 167 random-effects models, 177 dynamic models, 162-164 logit model endogenous observations, 76-80 cross-sectional data, 166 exogenous observations, 76 dynamic model, 468 fixed effects, 85, 89 static model, 468 GMM and, 89-94 long-haul regression coefficients, 412 random effects, 75-82 Luxembourg's Social Economic Panel likelihood function (PSELL), 2 duration model, 253-254 dynamic model, initial conditions, 186 machine learning algorithms likelihood ratio test statistics big data analytics, 440-442 dynamic models Maddala-Wu (MW) unit root test, 151 female employment example, 198 Manheim Innovation Panel (MIP), 2 likelihood-ratio tests Mannheim Innovation Panel-Service (MIP-S), 2 coefficient varation, 397 Manski maxium score estimator, 181, 240 limited dependent variable model Markov chain monte carlos (MCMC), 416 cross-sectional data dependence, 358-360 Markov process limited information maximum likelihood dynamic model, initial conditions, 187 estimator, 91 matching observables, propensity scoring limited-information principle nonparametric approach, 363-365 2SLS asymptotic equivalence, 116 matrix exponential models structural single equation model, 114 cross-sectional data dependence, 349-351 linear difference method maximimum-likelihood estimation (MLE) conditional mean approach vs., 89 triangular estimation, 123 linear dynamic models maximum likelihood estimation (MLE), 129 cross-sectional data dependence, 356-357 dynamic error components, 79 transformed estimator, 319 endogenous observations, 77-80 linear models fixed-effects models, panel parametric approach, 171-172 cross-sectional data dependence, 354 cross-sectional data dependence tests, 355 Monte Carlo simulations, 81-82 linear probability model, 166 solutions for, 27–29 linear regression transformed likelihood approach, 87, 89 unobserved heterogeneity and, 9 triangular structure, 126-129

maximum likelihood estimator (MLE)	formulation, 407-409
cointegration, 145–148	individual vs. pooled parameter estimates,
maximum score estimator	411
static models, 180–182	overview, 399
maximum-likelihood estimation	mixed fixed and random effects models,
truncated and censored-regression models,	323–326, 328
216	fixed time and random individual effects,
maximum-likelihood estimation (MLE)	323–326
variable-coefficient models, 427	selection criteria, 412
mean and scale corrected simple averaging, 373	mixed fixed- and random-coefficient models
mean corrected simple averaging, 373	liquidity constraints, 421
mean effects estimation	mixed individual and random effects models
correlated random-effects, panel studies,	fixed individual and random time effects,
433–437	326–329
mean square errors, 468	model averaging, 468
measurement errors	models
economic analysis, 283–287	fixed vs. random coefficients, heterogeneous
panel studies' avoidance of, 8	forecasting models, 464
measurement errors	Modigliani-Miller theory, 418
dynamic models, 285–287	money demand estimation
generalized method of moments (GMM) and,	forecasting models, 462
468	Monte Carlo simulation
method of moments estimator	
generalized method of moments (GMM)	big data analytics, 449–450 Monte Carlo simulations
estimator, 69	
simple instrumental variable estimation,	dynamic random coefficients models, 417
67–75	fixed-effects models, 176, 319–323
method of moments estimator (MME)	GMM, MLE and MDE comparisons, 91–94
dynamic simultaneous equation model, 159	maximum likelilhood estimation (MLE),
Michigan income dynamics study, 30	81–82
minimum distance estimator	monthly kilowatt-hour demand
asymptotic covariance estimator, 101–102	predictive model, 461
asymptotics, 102	multi-level structures
fixed-effects models, 88	data analysis, 281–283
structural equation model, 115–116 transformed likelihood approach, 89	multicollinarity, 468
minimum distance estimator (MDE)	multiple treated units programs
	evaluation of, 381–382
full-information application, 118–121 panel vector autoregression model, 139	multiplicative form
minimum-chi-square estimator	individual-specific and time-specific effects
	307
discrete-response models, 168 minimum-distance estimator	Mundlak's formulation, 32–33
consistency and asymptotic normality, 59–61	
minimum-distance estimator (MDE)	National Longitudinal Surveys (NLS)
random-effects models, 179	overview, 1
misspecification	span and sample sizes, 2
tests for, 37–38	nearest neighbor approach
mixed fixed and random coefficient models	big data analytics, 445
Bayesian solution, 409–411	negative binomial model, 263
capital-intensive firm estimations, 421	negative-variance-components problem
differences, 411–413	maximum likelihood estimation (MLE), 29
fixed-coefficient comparisons,	neural networks
capital-intensive firms, 422	big data analytics, 442
capital-intensive inilis, 722	org data anarytics, 772

Maryay ammaa ah	modulation on avaidance of high 16
Newey approach	reduction or avoidance of bias, 16
sample selection models, 221 Newton-Raphson iteration	significance of, 15
maximum likelihood estimation (MLE), 28,	ordinary-least-squares (OLS) estimator as best linear unbiased estimator, 19
79	asymptotic bias, 65
non-parametric approach	least squares dummy variable (LSDV), 20
program evaluation, 363–366	orthogonal projection
nonparametric approach	big data analytics, 448–449
big data analytics, 444–447	interactive effects models, 333–338
difference-in-difference methods, 367–368	orthogonality, 70
matching observables, propensity score	outcome predictions
method, 363–365	panel studies' accuracy in, 7
nearest neighbor algorithm, 445	outcomes simulation
panel studies, 369–371	program evaluation, 384–386
random forest algorithm, 444	program evaluation, 304–300
regression discontinuity (RD), 365-366	pairwise trimmed least squares estimator
nonparametric method	truncated and censored regressions, 230–236
regression (PDA), 369-370	panel interactive model
synthetic control method, 370–371	Bai & Ng information criterion, 331
nonparametric models	panel least variance ratio estimator(PLVAR),
panel studies, 268–271	161
nonrandomly missing data	panel limited information maximum likelilhood
sample selection models, 223–229	estimator (PLMIL), 163
nonstationarity, 7, 148	panel parametric approach
normal distributions	consistent estimators, 173–176
variable-coefficient combinations, 422, 438	fixed-effects models, 171–176
normalization	random-effects models, 177-179
cross-sectionally dependent panel data and,	state models with heterogeneity, 170-179
468	panel pooled least squares estimator
discrete data and, 166, 181	correlated random-effects models, 435–436
duration model and, 254	panel studies
dynamic models and, 468	advantages of, 4–8
nonparametric panel data and, 269 sample truncation and, 248	averaging methods, 373
static simulataneous - equation model and,	challenges in, 8–12
114. 122	correlated random-effects models, mean
variable coefficient models and, 409	effects estimation, 433–437
null hypotheses	heteroscedasticity, 50
cross-sectionally dependent panel data and,	nonparametric method, 369-371
354–357	nonstationary time series data, 7
discrete data and, 468	parametric approach, 371-372
dynamic models and, 81	program evaluation, 361, 368-373
dynamic system and, 148–152, 156	semiparametric approach, 372
homogeneity and, 149, 382, 398	Panel Study of Income Dynamics (PSID)
incomplete panel data and, 301	overview, 1
variable coefficients model and, 406	panel two-stage least squares estimator
	(P2SLS), 159
omitted variable bias	panel vector autoregression model
generalized-least-squares (GLS) estimation,	minimum distance estimator (MDE), 139
83	panel vector autoregressive model
omitted variables	cointegrated with individual-specific effects,
economic models, 307	135
panel studies and control of, 5–7	transformed MLE, 138

panel vector autoregressive models cointegration, 145	fixed vs. random coefficients, heterogeneous forecasting models, 460
cross-sectionally dependent processes, 141 cross-sectionally independent processes, 140	monthly kilowatt-hour demand prediction, 461
formulation, 134	pricing behavior
GMM estimation, 136	variable-coefficient model, 400–401
,	Primary School Deworming Project (PDSP,
homogeneity, 134–140	Kenya), 3
individual-specific effects, 135 random effects PVAR, 136	prior structures
	exogenous variables, distributed lag
trend-stationary individual-specific effectds, 135	estimation, 290–294
unit roots and invidividual-specific effects, 135	lag coefficient identification, 294–296 Probit model
parameter approach	cross-sectional data, 166–167
constancy testing, variable-coefficient	simulation methods, 277
models, 428	program evaluation
parameter estimation	aggregate/disaggregate treatment effects
Cobb-Douglas function, 16	measurement, 383-384
fixed or random effects, 29-37	California Tobacco Control Program (CTCP).
parameter homogeneity	378
labor participation decision model, 201-202	closer econome partnershp arrangement
test for structural break in, 194	(CEPA, Hong Kong) example, 374–378
parametric approach	cross-sectional data approach, 362-368
mixed fixed and random coefficient models,	multiple treated units, 381–382
individual vs. pooled estimation, 411	non-parametric approach, 363-366
panel studies, 371–372	panel studies, 368–373
program evaluation, 362	parametric approach, 362
slow evolution over time, 422	semiparametric approach, 363
time-variant random coefficient models,	program evaluations
423–427	outcomes simulation, 384–386
partition micro units	propensity score method
predictive models, 459	nonparametric approach, 363–365
per capita output growth rates	proportional hazard model, 254–256
variable-coefficient models, 389	pseudo panels
period individual-invariant variables, 15	applications, 302–305
Pesaran common correlated effects (CCE)	purged-instrumental-variable method
approach, 318	estimation, 123
Poisson model	examples, 124–126
count data models, 262–263	
pooled regression models, 461–462	qualitative response models
Pooling, 411–412	cross-sectional data, 165–170
population studies	quantile models
mixed fixed and random variable coefficient	interactive effects, 328–329
models, 399	quantile regression analysis, 273–276
Powell type pairwise differencing esstimator,	quasi maximum likelihood estimation (QMLE)
222	mixed fixed and random effects models,
predictive models	324–326
big data analytics, aggregate/disaggregate	quasi maximum-likelihood estimation (QMLE)
models, 457–464	fixed mixed and random effects models, 327
big data analytics, data based or causal	quasi-difference estimator
models, 453–457	fixed-effects linear dynamic models, 315–319
coherence and reconciliation approaches, 459	fixed-effects linear static model, 311

quasi-likelihood estimation reduced-form equations random effects models, 75-85 joint generalized-least-squares estimation, 110-114 ramdom-effects models regression analysis Mundlak's formulation, 32 asymptotic covariance matrix, 452 random effects big data, 441 Michigan income dynamics example, 29 regression approach-variable selection parameter estimation, 29-37 high dimensional data interference, 442-444 random effects models high-dimensional data, 442 endogenous observations, 76-80 regression coefficients exogenous observations, 76 individual firm regressions, 419 likelihood estimation, 75-76, 82 regression discontinuity quasi-likelihood estimation, 75 nonparametric approach, 365-366 variance-components models, 22-23 regression models omitted variables in, 6 random forest algorithm big data analytics, 441 regression PDA nonparametric big data analytics, 444 nonparametric approach, 369–370 repeated cross-sectional data, 302-305 random individual effects models mixed fixed and random effects, 323, 326 representative agent assumption, random time effects macroeconomics, 7 mixed individual and random effects models, residual sum of squares (RSS) 326-329 analysis of covariance, 44 random-coefficient models residual-based tests cross-sectional data, 404-407 cointegration, 155 dynamic model, 414-418 Robinson approach estimation, 394-397 sample selection models, 221 heterogeneous forecasting, 460-464 rotating data overview, 297-302 individual coefficient predictions, 397 mixed fixed and random coefficients, 399 time-variant parameters, 423–427 sample attrition, in panel studies, 11 variable-coefficient model, 393-401 sample selection models random-coefficients models attrition probability model, 224-227 correlated models, 431-437 cross-sectional data, 219-223 dynamic models, 249 random-effect models misspecification tests, 37-38 housing expenditure example, 241 nonrandomly missing data, 223-229 random-effects model transformed likelihood vs. fixed-effects semiparametric two-step approach, model, 89 endogenously determined model, 239-241 sample split double/debiased estimator, 447 random-effects models Sargan test of overidentification conditional or unconditional inference, 30 serial correlation testin, 74 error component assumption testing, 80-81 schrinkage estimator, 410, 443 mixed fixed-random effects models, 323-328 seemingly unrelated regression, 407 Mundlak's formulation, 32-34 panel parametric approach, 177-179 selection criteria panel vector autoregressive models, 136 AIC Tobit models, individual effects, 229–230 mixed fixed and random effects models, 412 randomly missing data self-reported health status, endogeneity of overview, 297-302 EC2LS estimator for, 120 rating firm default probability semiparametric approach duration model, 258-262 recursive partitioning, 441 consistent estimator, 182-183 correlated random-effects models, 437 reduced form model panel studies, 372 economic behavior, 133

semiparametric approach (cont.)	SSP penalized least squares approach
program evaluation, 363	variable-coefficient models, 393
static models, 180–183	state dependence
two-step estimator, endogenously determined	dynamic models
sample selection model, 239-241	heterogeneity vs., 193-196
sequential iterative procedure	static models
maximum likelihood estimation (MLE), 28	maximum score estimator, 180-182
sequential limit, 103–105	panel parametric approach with heterogeneity
serial correlation	in, 170–179
dynamic model estimation, 95-96	semiparametric approach, 180–183
Hausman-type test statistic, 74	spatial error model, cross-sectional
serial correlation measurement errors, 285	dependence, 343–345
serially correlated errors	statistical inference
variable intercept models, 51-53	panel studies' simplification of, 7-8
series approximations	Statistical Office of the European Communities
nonparametric models, 269	National Data Collection Units (NDU), 2
sharp regression discontinuity (SRD), 365–366	stochastic dominance, 387–388
short panel studies	structural break
distributed lag estimation, 288–297	state dependence in dynamic models, 193
short-run coefficients, bias, 417	structural changes
simulated least squares (SLS) estimator, 279	big data analytics, 467–468
simulated maximum likelihood estimator	structural equation model
(SMLE), 279	economic behavior, 133
simulated method of moments estimator	limited information principle, 114
(SMM), 279	single equation estimate, 114–118
simulation methods	structural-form coefficient matrix
overview, 276–280	cross-equation linear restrictions, 80
simultaneous-equation models	support vector machines
dynamic models, 157–162	big data analytics, 441
income-schooling model, 107-108	Survey of Health, Aging and Retirement
static models, 108–120	(SHARE), 3
variance-covariance matrix, 110	survival function
single equation estimation	duration model, 251
complete structural system, 118–121	symmetrically trimmed estimator
structural equation model, 114–118	truncated and censored-regression models,
SIR epidemic model, 384–386	217
Socio-Economic Panel (SEP, Netherlands), 2	synthetic control method (SCM)
Solow growth model, 389	panel studies, 370–371
spatial dependence	•
cross-sectional data, 341–343	Taylor series, 269–270
mixed spatial and factor process,	three-stage least squares (3SLS) estimator, 58
cross-sectional data, 351–353	full-information case, 118–121
spatial dependence coefficient zero test	MLE procedures, 80
cross-sectional data dependence, 355	serial correlation, dynamic models, 96
spatial error models	time heterogeneity effects
cross-sectional data dependence, 343–345	correlation of, 15
dynamic model, 345	time series data
static model, 343–345	nonstationary time series, 7
spatial regressive models	time-evolving coefficients, 427–430
cross-sectional data dependence, 346–348	time-invariant effects
spatial weight matrix	correlated regressors, 117
cross-sectional data dependence, 341–343	time-invariant variables, 15
endogenous determination, 348–349	coefficient estimation, 183
5	

time-series pairwise trimmed least squares and least serially correlated errors, 52 absolute devation estimators, 231-236 time-series analysis semiparametric two-step estimation, 241 big data analytics, 464–467 two-stage least squares (2SLS method generalized method of moments (GMM) time-series data limitations of, 4 estimator, 73 structural equation model, 114-116 time-specific effects two-step feasible estimator dynamic models, 96-101 nonparametric models, 268 unit root tests, 148 two-step GLS estimation time-specific variables variance components and, 26 analysis of covariance tests, 43-50 Type II Tobit model, 219 model estimation, 41-43 type II Tobit model, 229 time-variant random-coefficient models Kalman filter prediction, 424-427 unconditional inference, 37 parameters, 423–427 fixed or random effects, 30 time-variant units individual effects and attributes, 34 slow parametric evolution, 422 linear regression model, 35 variable-coefficient models, 401-407, unemployment duration and insurance 422-428 big data analytics, 452 time-varying variables, 15 unionism Tobin model impact on economic behavior of, 4 liquidity constraints, 419 unit roots Tobit models cross-sectional correlated data, 153-155 dynamic censored models, 244-249 cross-sectional independent data, 149-153 dynamic models, 244–250 GMM estimator, PVAR model, 137 random individual effects, 229-230 panel vector autoregressive models, simulation methods, 277 individual-specific effects, 135 truncated models, 246 tests, 148, 155 Tobit models, dynamic, 8 unobserved heterogeneity transformed estimator discretization, 305-306 interactive effects models, 314-315 variable-intercept models, 15 linear dynamic models, 319 unobserved heterogeneity, across individuals linear static effects models, 314–315 and over time, 8-9 transformed likelihood approach fixed-effects models, 86 variable intercept model, 408 random vs. fixed-effects specification, 89 capital-intensive firms, 420 transformed maximum likelihood estimator variable-coefficient models (MLE) coefficient variation testing, 397–399 panel vector autoregressive model, 138 complete heterogeneity, 392 treatment effects, 361 correlated random-coefficients models, treatment group, 361 431-437 treatment on the treated (TT) effect, 468 cross-sectional data, 391-401 trend-stationary individual-specific effects dynamic random coefficient models, 414-418 panel vector autoregressive models, 135 estimation, random coefficients, 394-397 triangular structure exogenous variable coefficients, 428-431 estimation, 123 fixed or random coefficients, 399 identification, 121-123 fixed-coefficient model, 392-393, 403 maximum likelihood estimation (MLE), group heterogeneity, 392 126-129 individual coefficient predictions, 397 model estimation, 121-131 liquidity constraints and firm investment truncated models expenses example, 418–422 cross-sectional data, 214-219 maximum-likelihood estimation, 427

variable-coefficient models (cont.) mixed fixed and random coefficients, 407 normal distribution combinations, 422, 438 pricing behavior example, 400-401 random-coefficient model, 393-401 time-variant coefficients across cross-sectional units, 401-407 time-varying coefficients, 422-428 variable-intercept models Cobb-Douglas function, 16 Cobb-Douglas production function, serially correlated errors, 51-53 unobserved heterogeneity, 15 variance components two-step GLS estimation, 26

variance-components models random effects models, 22–23 variance-covariance matrix cross-equation linear restrictions, 80 income-school-ability model, 122 maximum likelihood estimation (MLE), 29 simultaneous-equation models, 110 vectors and inverse of, 61 vector autoregressive model, 134–141 vector error cointegration panel models, 142–148

Wald type tests, 37, 44–48, 398–399 within-group estimates analysis of covariance, 44 within-group estimator, 21 World Bank panel surveys by, 3