

Katedra číslicového návrhu Fakulta informačních technologií ČVUT v Praze

BIK-TZP.21
Technologické základy
počítačů
2022/23

6. Základní logické členy (hradla)

Doc.Ing. Kateřina Hyniová, CSc.

<u>hyniova@fit.cvut.cz</u>

Katedra číslicového návrhu, FIT ČVUT

ThA:1031

Základní logické členy

- Logický člen neboli hradlo je základní stavební prvek logických obvodů, který vyčísluje logickou funkci.
- Typicky má jeden či více vstupů a jediný výstup.
- Hodnota na výstupu logického členu je funkcí 1,2 či více hodnot vstupních: Y=f(A,B,C,D,E.....)

Booleova algebra

Booleova algebra je algebraická struktura, která je přímo aplikovatelná při návrhu číslicových obvodů. Zahrnuje pravidla a teorémy pro operace s logickými proměnnými a funkcemi. Pracuje s dvouprvkovou množinou (0 a 1). Tyto 2 hodnoty představují 2 různé stavy bitu v číslicových obvodech, kde jsou tyto hodnoty reprezentovány dvěma úrovněmi napětí.

V číslicových obvodech jsou logické hodnoty 0 a 1 využívány pro:

- □ binární kódování čísel a matematické operace
- dvouhodnotovou logiku jako TRUE a FALSE and logické operace.

ANO TRUE 1 NE FALSE (

Logické výrazy

Teoretický prostředek pro návrh (syntézu) logických obvodů s požadovaným chováním tvoří logické (Booleovy) výrazy.

Logické výrazy využívají operátory AND, NAND, OR, NOR, XOR, XNOR and NOT a po vyhodnocení výrazu vrací výsledek log0 nebo log1.

- □ každá z těchto operací má 2 vstupní operandy a 1 výstupní, krom operace NOT (negace), která má pouze 1 vstupní operand a 1 výstupní
- Operace AND, OR, NAND a NOR mohou být zobecněny na operace s libovolným počtem vstupních operandů a jedním výstupním.

Booleovské funkce (operace)

(A,B jsou logické proměnné)

NOT	Negace	A
AND	Logický součin	A . B
OR	Logický součet	A + B
NAND	Negace logického součinu	(A . B)
NOR	Negace logického součtu	$\overline{(A + B)}$
XOR	Non-ekvivalence	A⊕B
XNOR	Ekvivalence	(A⊕B)

Každé základní logické hradlo implementuje odpovídající Booleovskou operaci a tato operace je indikována příslušným symbolem (elektrotechnickou značkou).

Ze základních Booleovských operací na Booleovských proměnných můžeme skládat složitější Booleovské výrazy. Jejich implementace základními hradly se rovněž nazývá hradlo popř. kombinační logický obvod.

Booleovské funkce jedné proměnné

■ **NOT** (negace)

$$\square Y = \neg A$$

$$\Box Y = A$$

$$\square Y = not(A)$$

$$\Box Y = !A$$

A	$Y = \overline{A}$
false	true
true	false

Α	$Y = \overline{A}$
0	1
1	0

- AND (logický součin, konjunkce)
 - $\square Y = A \wedge B$
 - $\square Y = A.B = AB$
 - $\square Y = A$ and B
 - $\square Y = A \& B$

А <u></u>)— Y
A —	&	
В—		1

Α	В	Y = A.B
false	false	false
false	true	false
True	false	false
True	true	true

Α	В	Y = A.B
0	0	0
0	1	0
1	0	0
1	1	1

- OR (logický součet, disjunkce)
 - $\square Y = A \vee B$
 - $\Box Y = A + B$
 - $\square Y = A \text{ or } B$
 - $\square Y = A \parallel B$

Α	В	Y = A+B
false	false	false
false	true	true
true	false	true
true	true	true

Α	В	Y = A + B
0	0	0
0	1	1
1	0	1
1	1	1

NAND

(Negace logického součinu)

$$\Box Y = \neg (A \land B)$$

$$\square Y = \overline{A.B}$$

$$\square Y = not (A and B)$$

А	В	$Y = \neg (A \wedge B)$
false	false	true
false	true	true
true	false	true
true	true	false

А —— В ——) > — Y
Α	&	v
В —		

Α	В	$Y = \overline{AB}$
0	0	1
0	1	1
1	0	1
1	1	0

NOR

(negace logického součtu)

$$\Box Y = \neg (A \lor B)$$

$$\Box Y = \overline{A+B}$$

$$\square Y = not (A or B)$$

Α	В	$Y = (\overline{A+B})$
false	false	true
false	true	false
true	false	false
true	true	false

A	
A 1	
В	

Α	В	$Y = \overline{A+B}$
0	0	1
0	1	0
1	0	0
1	1	0

■ XOR

(exclusive or, nonekvivalence)

$$\square Y = A \Leftrightarrow B$$

$$\Box Y = A \oplus B$$

$$\square Y = A \text{ xor } B$$

Α	В	Y = A⊕B
false	false	false
false	true	true
true	false	true
true	true	false

A Y
A =1
В — '

Α	В	Y=A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

Funkce Exclusive-OR

$$A \oplus B = A\overline{B} + \overline{A}B$$

Α	В	Y = A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

....je ekvivalentní....

$$A \oplus B = AB + AB$$

XNOR

(exclusive nor, ekvivalence)

$$\Box Y = A \Leftrightarrow B$$

$$\Box Y = A \oplus B$$

$$\square Y = A \times A \times B$$

A	В	$Y = \overline{A \oplus B}$
false	false	true
false	true	false
true	false	false
true	true	true

Α	В	$Y = \overline{A \oplus B}$
0	0	1
0	1	0
1	0	0
1	1	1

Poznámky

Hradla AND, NAND, OR a NOR mohou mít ve schématech libovolný počet vstupů

Tam, kde je na vstup hradla přiváděna negovaná proměnná Y použijeme ve schématu invertor (hradlo NOT)

Otázka: Jaký logický výraz F realizuje schéma?

De Morganovy zákony

1)
$$\overline{x+y} = \overline{x} \cdot \overline{y}$$
2)
$$\overline{x\cdot y} = \overline{x} + \overline{y}$$

Zákony tedy říkají:

- 1) Negace logického součtu libovolného počtu proměnných je rovna součinu negovaných těchto proměnných.
- 2) Negace logického součinu libovolného počtu proměnných je rovna součtu negovaných těchto proměnných.

Příklad 1:

Použijeme-li De Morganovy zákony:

$$Y = AB + AC + BC$$

$$Y = \overline{AB + AC + BC}$$

$$Y = \overline{AB \cdot \overline{AC} \cdot \overline{BC}}$$

$$\overline{x + y} = \overline{x \cdot y}$$

$$\overline{x \cdot y} = \overline{x + y}$$

Booleovské algebraické identity

OR (log. součet) AND (log. součin)

Vlastnosti Booleovy algebry

Logický součet

A + B = B + A

komutativní

Logický součin

AB = BA

ekvivalentní

asociativní

$$A + (B + C) = (A + B) + C$$

ekvivalentní

$$A(BC) = (AB)C$$

ekvivalentní

Vlastnosti Booleovy algebry

distributivní

$$A(B + C) = AB + AC$$

Návrh kombinačních logických obvodů

Pro výpočet výrazu kombinujeme základní logická hradla

$$G = A.B + C.D$$

- Výsledný obvod je kombinační obvod, nazývané rovněž hradlo.
 - Kombinací výpočtů základních hradel zjistíme logickou hodnotu na výstupu hradla pro danou kombinaci logických hodnot na vstupu
 - □ Takto jsou realizovány číslicové obvody, které tvojí ALU (arithmeticko-logickou jednotku) a jiné části počítačů.

Příklad #2: Implementujte logickou funkci Z(A,B) pomocí základních logických hradel):

$$Z(A,B)=(A + B).\overline{A} + (A + B)$$

Příklad #3: implementujte logickou funkci Z(A,B) logickými hradly:

$$Z(A,B)=\overline{A}.B + A.\overline{B}$$

M

Příklad #4: Implementujte logickou funkci Y(A,B,C) logickými hradly

$$Y = \overline{(A+B+C)}$$
. $\overline{(A+B+C)}$. $\overline{(A+B+C)}$. $\overline{(A+B+C)}$. $\overline{(A+B+C)}$

<u>Příklad #5</u>: Implementujte logickou funkci X(A,B,C) logickými hradly

$$X(A,B,C) = (A.B)+(A.C)+(A.B.C)$$

<u>Příklad #6</u>: Implementujte logickou funkci Q(A,B,C) logickými hradly

$$Q(A,B,C) = (\overline{A+B.C}) + (\overline{A.\overline{B}})$$

28

Příklad #7: Implementujte logickou funkci Q(A,B,C) 2-vstupovými logickými hradly

$$Q(A,B,C) = AB+B.C.(B+C)$$

M

Příklady k řešení

Implementujte logické funkce pomocí základních hradel (hradla mohou mít libovolný počet vstupů)

1)
$$Y=A.B.C+D.E(\overline{A+B})+(C \oplus D)$$

2)
$$Y=(A+\overline{B}) \oplus (\overline{C}+\overline{D})$$

3)
$$Y = (A+B).(C+D)$$

4)
$$Y = \overline{(A+B).C+A.B.C}$$

5)
$$Y=(A.B.C)\oplus(C.E.F)$$

Které logické funkce

Které logické funkce implementují hradla na obrázcích?

6)

Jaká logická hodnota bude na výstupu X hradla pro vstupní hodnoty proměnných A, B a C:

A=1

B=1

C=0?

