

Department of Electronic & Telecommunication Engineering, University of Moratuwa, Sri Lanka.

Linear Power Supply Lab Report Submission

by:

220735E YASHODHARA.M.H.K.

Submitted in partial fulfillment of the requirements for the module EN2111 Electronic Circuit Design

 $13\ ^{\rm th}$ March 2025

Contents

1	Introduction	
2	Component Selection	
	2.1 Choosing the transistor T1	
	2.2 Choosing R1, R2, R3 and Zener Diode	
	2.3 Choosing R	
	2.4 Choosing components for current Limiting Circuit	
3	Results	
	3.1 Load Regulation Vs Output Voltage	
	3.2 Line Regulation Vs Output Voltage	
	3.3 Output Voltage vs. Load Current	

1 Introduction

This experiment focuses on implementing a transistorized voltage regulator with a current-limiting circuit using two diodes. The design aims to maintain a reliable output voltage while protecting circuit components from excessive current flow. For our group a and b value were 4 and 0. So the regulator was designed to operate with an input voltage range of 17 V \pm 1.5 V and maintain an output voltage within 6 V \pm 2.5 V. A current-limiting mechanism was incorporated to restrict the maximum current to 50 mA, preventing potential damage to the circuit. The experiment involved analyzing the regulator's performance under various load conditions, including short circuits and different resistive loads, to evaluate its voltage stability and current-limiting effectiveness.

Figure 1: Our Circuit

2 Component Selection

2.1 Choosing the transistor T1

T1 was chosen considering the maximum power dissipation of the circuit. And the maximum power is occurring when input voltage is maximum and output voltage is minimum.

Maximum power dissipation = $(V_{i,\text{max}} - V_{o,\text{min}}) \times I_c = (18.5 - 3.5) \times 50 \times 10^{-3} \text{ W} = 0.75 \text{ W}$

With this power rating BD139 NPN transistor was chosen as it can handle upto 1.25 W.

			Value						
Symbol	Parameter	NI	PN	PI	NP	Unit			
		BD135	BD139	BD136	BD140				
V_{CBO}	Collector-base voltage (I _E = 0)	45	80	-45	-80	٧			
V_{CEO}	Collector-emitter voltage (I _B = 0)	45	80	-45	-80	٧			
V _{EBO}	Emitter-base voltage (I _C = 0)		5	-5		٧			
Ic	Collector current	1	1.5		-1.5				
I _{CM}	Collector peak current				-3				
IB	Base current	0	.5	-0).5	Α			
P _{TOT}	Total dissipation at T _c ≤25 °C		12	2.5		W			
P _{TOT}	Total dissipation at T _{amb} ≤25 °C		1.	25		W			
T _{stg}	Storage temperature		-65 to 150						
Ti	Max. operating junction temperature		150						

Figure 2: Transistor Datasheet-Power Dissipation

Figure 3: Transistor Datasheet- β

2.2 Choosing R1, R2, R3 and Zener Diode

Following are the equations used to find the above values.

$$(V_z + 0.7) = \frac{R_2 + R_3}{R_1 + R_2 + R_3} V_{0,\text{min}}$$

$$(V_z + 0.7) = \frac{R_3}{R_1 + R_2 + R_3} V_{0,\text{max}}$$

Zener Diode and R_2 were chosen arbitrarily.

 R_1, R_3 were chosen according to those values and the above equations.

$$V_z = 2.2V$$

$$R_2 = 10k \,\Omega \text{ potentiometer}$$

$$2.2 + 0.7 = \frac{10k + R_3}{R_1 + 10k + R_3} \times 3.5$$

$$2.2 + 0.7 = \frac{R_3}{R_1 + 10k + R_3} \times 8.5$$

By solving the above equations:

$$\mathit{R}_1 = 3.477\,\mathrm{k}\Omega$$

$$R_3 = 7 \,\mathrm{k}\Omega$$

With the practical values in the market, we chose $R_1 = 3.3k\Omega$, $R_3 = 6.8k\Omega$.

2.3 Choosing R

$$\begin{split} I_{R,\text{min}} &= I_{\text{knee}} + \frac{I_c}{\beta} \\ I_{R,\text{min}} &= \frac{V_{i,\text{min}} - V_{o,\text{max}} - 0.7}{R} = \frac{15.5 - 8.5 - 0.7}{R} \\ I_{R,\text{min}} &= \frac{50\,\text{mA}}{250} + 1\,m\text{A} \end{split}$$

Using the above equations: $R = 5.25 \,\mathrm{k}\Omega$

With the practical values in the market, we chose $R=5.1\,\mathrm{k}\Omega$ and $R=1\,\mathrm{k}\Omega$.

2.4 Choosing components for current Limiting Circuit

Two $0.7~\mathrm{V}$ Si diodes (1N4007) were used to implement the current limiting circuit. Calculations for the resistor value for the current limiting circuit:

$$R = \frac{V}{I} = \frac{0.7}{0.05} = 14\Omega$$

With the resistors available in the market, we chose a $15\,\mathrm{k}\Omega$ resistor to implement this circuit.

3 Results

3.1 Load Regulation Vs Output Voltage

% Load Regulation =
$$\frac{V_{\rm no~load} - V_{\rm load}}{V_{\rm load}} \times 100$$

The following table shows the experimentally measured output voltages for different load resistances, with the input voltage fixed at 17 V:

Load	220Ω	330Ω	470Ω	$2.2k\Omega$	$3.3k\Omega$
4.0V	3.92V	3.96V	3.96V	4.01V	3.99V
4.5V	4.35V	4.43V	4.45V	4.49V	4.49V
5.0V	4.81V	4.90V	4.93V	4.98V	4.99V
5.5V	5.24V	5.36V	5.40V	5.48V	5.49V
6.0V	5.69V	5.82V	5.87V	5.98V	5.98V
6.5V	6.11V	6.28V	6.32V	6.46V	6.48V
7.0V	6.50V	6.73V	6.80V	6.94V	6.96V
7.5V	6.89V	7.18V	7.29V	7.44V	7.48V
8.0V	7.31V	7.64V	7.75V	7.93V	7.95V

Figure 4: Fixed Output Voltage vs. Measured Output Voltage for Different Resistors

The following table shows the calculated load regulation for each cell.

Load	220Ω	330Ω	470Ω	$2.2k\Omega$	$3.3k \Omega$
4.0	2.04	1.01	1.01	-0.25	0.25
4.5	3.45	1.58	1.12	0.22	0.22
5.0	3.95	2.04	1.42	0.40	0.20
5.5	4.96	2.61	1.85	0.36	0.18
6.0	5.45	3.09	2.21	0.33	0.33
6.5	6.38	3.50	2.85	0.62	0.31
7.0	7.69	4.01	2.94	0.86	0.57
7.5	8.85	4.46	2.88	0.81	0.27
8.0	9.44	4.71	3.23	0.88	0.63

Figure 5: Load Regulation vs. Output Voltage for Different Resistors

Figure 6: Average Load Regulation vs. Output Voltage

3.2 Line Regulation Vs Output Voltage

%
Line Regulation =
$$\frac{\Delta V_{\rm out}}{\Delta V_{\rm in}} \times 100$$

The following table shows the experimentally measured output voltages for different input voltages.

Input Voltage (V)	4.0V	4.5V	5.0V	5.5V	6.0V	6.5V	7.0V	7.5V	8.0V
15.5V	3.87V	4.33V	4.81V	5.28V	5.76V	6.25V	6.76V	7.27V	7.78V
16.0V	3.92V	4.39V	4.87V	5.35V	5.84V	6.34V	6.85V	7.35V	7.86V
16.5V	3.96V	4.44V	4.94V	5.43V	5.92V	6.42V	6.93V	7.43V	7.93V
17.0V	4.01V	4.50V	5.00V	5.50V	6.00V	6.50V	7.01V	7.50V	8.00V
17.5V	4.05V	4.55V	5.06V	5.57V	6.07V	6.58V	7.08V	7.57V	8.06V
18.0V	4.09V	4.60V	5.13V	5.64V	6.14V	6.65V	7.15V	7.64V	8.11V
18.5V	4.13V	4.65V	5.19V	5.70V	6.21V	6.73V	7.22V	7.70V	8.17V

Figure 7: Input Voltage vs. Output Voltage

The following table shows the calculated line regulation for each data cell.

Input Voltage (V)		Output Voltage (V)										
	4	4.5	5	5.5	6	6.5	7	7.5	8			
15.5	8.67	11.33	12.67	14.67	16.00	16.67	16.00	15.33	14.67			
16.0	8.00	11.00	13.00	15.00	16.00	16.00	15.00	15.00	14.00			
16.5	8.00	12.00	12.00	14.00	16.00	16.00	14.00	14.00	14.00			
17.5	10.00	10.00	12.00	14.00	14.00	16.00	16.00	14.00	12.00			
18.0	9.00	10.00	13.00	14.00	14.00	15.00	15.00	14.00	11.00			
18.5	8.67	10.00	12.67	13.33	14.00	15.33	14.67	13.33	11.33			

Table 1: Input Voltage vs. Output Voltage

Output Voltage (V)	4	4.5	5	5.5	6	6.5	7	7.5	8
Average Line Regulation	8.73	10.87	12.53	14.33	15.20	15.93	15.20	14.47	13.13

Table 2: Average Line Regulation for Different Output Voltages

Figure 8: Average Line Regulation for Different Output Voltages

3.3 Output Voltage vs. Load Current

Fixed Output Voltage (V)	Parameter	1	2	3	4	5
6 V	Output Voltage (V) Load Current (mA)					
7 V	Output Voltage (V) Load Current (mA)					

Table 3: Measured Output Voltage and Load Current

Figure 9: Output Voltage vs. Load Current