Minicourse on information, complexity and organisation in multidimensional symbolic dynamics

Exact computations of entropy for multidimensional SFT

Silvere Gangloff

April 30, 2021

sgangloff@agh.edu.pl; silvere.gangloff@gmx.com

Reminder (third lecture):

Reminder (third lecture):

Reminder (third lecture):

In practice, formula for entropy: development of tools for analysis of many variables systems.

Reminder (third lecture):

In practice, formula for entropy: development of tools for analysis of many variables systems.

Question: what makes the entropy of subshifts in the liminal area computable ?

Subshift X_0 :

Subshift X_0 :

Subshift X_0 :

Theorem[Kasteleyn(1961)]: $h(X_0) = \frac{G}{\pi}$,

Subshift X_0 :

Theorem[Kasteleyn(1961)]: $h(X_0) = \frac{G}{\pi}$, where:

$$G = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^2}.$$

Subshift X_0 :

Theorem[Kasteleyn(1961)]: $h(X_0) = \frac{G}{\pi}$, where:

$$G = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^2}.$$

(Called Catalan constant)

w

Number of such patterns: $N_n^{\mathbf{w}}(X_0)$.

Number of such patterns: $N_n^{\mathbf{w}}(X_0)$.

Denote $\overline{\mathbf{w}}$ symmetric of \mathbf{w} .

Number of such patterns: $N_n^{\mathbf{w}}(X_0)$.

Denote $\overline{\mathbf{w}}$ symmetric of \mathbf{w} .

Lemma: $N_n^{\mathbf{w}}(X_0) = N_n^{\overline{\mathbf{w}}}(X_0)$.

Number of such patterns: $N_n^{\mathbf{w}}(X_0)$.

Denote $\overline{\mathbf{w}}$ symmetric of \mathbf{w} .

Lemma: $N_n^{\mathbf{w}}(X_0) = N_n^{\overline{\mathbf{w}}}(X_0)$.

Proof: the symmetry map is an involution.

Number of such patterns: $N_n^{\mathbf{w}}(X_0)$.

Denote $\overline{\mathbf{w}}$ symmetric of \mathbf{w} .

Lemma: $N_n^{\mathbf{w}}(X_0) = N_n^{\overline{\mathbf{w}}}(X_0)$.

Proof: the symmetry map is an involution.

Definition: $h_t(X) = \lim_{n \to \infty} \frac{\log_2(N_{n,n}^t(X))}{n^2}$,

Definition: $h_t(X) = \lim_{d \in I} \lim_n \frac{\log_2(N_{n,n}^t(X))}{n^2}$,

where $N_{m,n}^t(X)$ is the number of (m,n) rectangle patterns in which rules apply as on torus.

Definition: $h_t(X) = \lim_{n \to \infty} \frac{\log_2(N_{n,n}^t(X))}{n^2}$,

where $N_{m,n}^t(X)$ is the number of (m,n) rectangle patterns in which rules apply as on torus.

Similar definitions $h_c(X)$, $N_{m,n}^c(X)$ for cylinders.

Definition: $h_t(X) = \lim_{n \to \infty} \frac{\log_2(N_{n,n}^t(X))}{n^2}$,

where $N_{m,n}^t(X)$ is the number of (m,n) rectangle patterns in which rules apply as on torus.

Similar definitions $h_c(X)$, $N_{m,n}^c(X)$ for cylinders.

Examples:

Lemma: $h_t(X_0) = h(X_0)$.

Lemma: $h_t(X_0) = h(X_0)$.

Lemma: $h_t(X_0) = h(X_0)$.

Proof: we have that:

$$\sum_{m} \left(N_n^{\mathbf{w}}(X_0)\right)^2 \leq N_{2n,n}^{c}(X_0) \leq \left(\sum_{m} N_n^{\mathbf{w}}(X_0)\right)^2.$$

Lemma: $h_t(X_0) = h(X_0)$.

Proof: we have that:

$$\sum_{\mathbf{w}} (N_n^{\mathbf{w}}(X_0))^2 \leq N_{2n,n}^c(X_0) \leq \left(\sum_{\mathbf{w}} N_n^{\mathbf{w}}(X_0)\right)^2.$$

Lemma: $h_t(X_0) = h(X_0)$.

Proof: we have that:

$$\sum_{\mathbf{w}} (N_n^{\mathbf{w}}(X_0))^2 \leq N_{2n,n}^c(X_0) \leq \left(\sum_{\mathbf{w}} N_n^{\mathbf{w}}(X_0)\right)^2.$$

Lemma: $h_t(X_0) = h(X_0)$.

Proof: we have that:

$$\sum_{\mathbf{w}} (N_n^{\mathbf{w}}(X_0))^2 \leq N_{2n,n}^c(X_0) \leq \left(\sum_{\mathbf{w}} N_n^{\mathbf{w}}(X_0)\right)^2.$$

Thus $h_c(X_0) = h(X_0)$.

Lemma: $h_t(X_0) = h(X_0)$.

Proof: we have that:

$$\sum_{\mathbf{w}} (N_n^{\mathbf{w}}(X_0))^2 \leq N_{2n,n}^c(X_0) \leq \left(\sum_{\mathbf{w}} N_n^{\mathbf{w}}(X_0)\right)^2.$$

Thus $h_c(X_0) = h(X_0)$.

In a similar way $h_t(X_0) = h(X_0)$.

Consider $n \ge 1$;

Consider $n \ge 1$; arrow pattern

Consider $n \ge 1$; arrow pattern (ex n = 4):

Consider $n \ge 1$; arrow pattern (ex n = 4):

Denote $K^{(n)}$, $n^2 \times n^2$ matrix

Consider $n \ge 1$; arrow pattern (ex n = 4):

Denote $K^{(n)}$, $n^2 \times n^2$ matrix s.t. $K^{(n)}(\mathbf{i}, \mathbf{j}) = \pm 1$ when \mathbf{i}, \mathbf{j} adjacent, otherwise 0.

Consider $n \ge 1$; arrow pattern (ex n = 4):

Denote $K^{(n)}$, $n^2 \times n^2$ matrix s.t. $K^{(n)}(\mathbf{i}, \mathbf{j}) = \pm 1$ when \mathbf{i}, \mathbf{j} adjacent, otherwise 0. The coefficient is 1 when $\mathbf{i} \to \mathbf{j}$ and -1 when $\mathbf{i} \leftarrow \mathbf{j}$.

Ideas of the proof:

Consider $n \ge 1$; arrow pattern (ex n = 4):

Denote $K^{(n)}$, $n^2 \times n^2$ matrix s.t. $K^{(n)}(\mathbf{i}, \mathbf{j}) = \pm 1$ when \mathbf{i}, \mathbf{j} adjacent, otherwise 0. The coefficient is 1 when $\mathbf{i} \to \mathbf{j}$ and -1 when $\mathbf{i} \leftarrow \mathbf{j}$.

$$N_n^t(X_0) = \det(K^{(n)}) = \sum_{\sigma \in S_{n^2}} s(\sigma) \prod_{\mathbf{i}} K_{\mathbf{i}, \sigma(\mathbf{i})}^{(n)}$$

Ideas of the proof:

Consider $n \ge 1$; arrow pattern (ex n = 4):

Denote $K^{(n)}$, $n^2 \times n^2$ matrix s.t. $K^{(n)}(\mathbf{i}, \mathbf{j}) = \pm 1$ when \mathbf{i}, \mathbf{j} adjacent, otherwise 0. The coefficient is 1 when $\mathbf{i} \to \mathbf{j}$ and -1 when $\mathbf{i} \leftarrow \mathbf{j}$.

$$N_n^t(X_0) = \det(K^{(n)}) = \sum_{\sigma \in S_{n^2}} s(\sigma) \prod_{\mathbf{i}} K_{\mathbf{i}, \sigma(\mathbf{i})}^{(n)}$$

Diagonalisation of $K^{(n)} \to \text{formula for } N_n^t(X_0)$ as sum of trigonometric functions.

Square ice: Subshift X^s :

Square ice: Subshift X^s :

E.H. Lieb, Residual entropy of square ice, Physical Review, 1967.

Square ice: Subshift X^s:

- E.H. Lieb, Residual entropy of square ice, Physical Review, 1967.
- S. Gangloff, A proof that square ice entropy is $\frac{3}{2}\log_2(4/3)$, 2019 (based on the work of R.Baxter, K.Kozlowski).

$$h(X) = \lim_{\text{def } n} \frac{\log_2(N_n(X))}{n^2}.$$

$$h(X) = \lim_{\text{def } n} \frac{\log_2(N_n(X))}{n^2}.$$

$$h(X) = \lim_{m,n} \frac{\log_2(N_{m,n}(X))}{mn}.$$

$$h(X) = \lim_{\text{def } n} \frac{\log_2(N_n(X))}{n^2}.$$

$$h(X) = \lim_{m,n} \frac{\log_2(N_{m,n}(X))}{mn}.$$

$$h(X) = \lim_{\text{def } n} \frac{\log_2(N_n(X))}{n^2}.$$

$$h(X) = \lim_{m,n} \frac{\log_2(N_{m,n}(X))}{mn}.$$

Ν

X

$$h(X) = \lim_{N} \frac{h(X_N)}{N}$$

$$h(X^s) = \lim_{N} \frac{h(\overline{X}_N^s)}{N}$$

$$V_N(t)[\mathsf{u},\mathsf{v}] = \sum_{\mathsf{u} \mathcal{R}[w]\mathsf{v}} t^{|w|}.$$

where |w| = # of \square and \square

Square ice: Lieb transfer matrices:

$$V_N(t)[\mathsf{u},\mathsf{v}] = \sum_{\mathsf{u} \mathcal{R}[w]\mathsf{v}} t^{|w|}.$$

where
$$|w|=\#$$
 of \square and \square

$$h(X^s) = \lim_{N} \frac{\log_2(\lambda_{\max}(V_N(1)))}{N}$$

 $V_N(1)$ •

Square ice: Computing maximal eigenvalue of $V_N(1)$, strategy:

Square ice: R-matrices and monodromy matrices:

$$R(0,1)=\left(\begin{array}{c} \end{array}\right)$$

$$R(0,1)=\begin{pmatrix}0&\\&\end{pmatrix}$$

$$R(0,1) = \begin{pmatrix} 0 & * \\ & & \end{pmatrix}$$

$$R(0,1) = \left(\begin{array}{cc} 0 & * \\ 0 & \end{array}\right)$$

$$R(0,1) = \left(\begin{array}{cc} 0 & * \\ 0 & 0 \end{array}\right)$$

$$R(0,1) = \left(\begin{array}{cc} 0 & * \\ 0 & 0 \end{array}\right)$$

$$R(0,1) = \left(\begin{array}{cc} 0 & * \\ 0 & 0 \end{array}\right)$$

$$R(0,1) = \left(\begin{array}{cc} 0 & * \\ 0 & 0 \end{array}\right)$$

$$R(0,1) = \left(\begin{array}{cc} 0 & * \\ 0 & 0 \end{array}\right)$$

$$R(0,1) = \left(\begin{array}{cc} 0 & * \\ 0 & 0 \end{array}\right)$$

$$R(0,1) = \left(\begin{array}{cc} 0 & * \\ 0 & 0 \end{array}\right)$$

$$R(0,1) = \left(\begin{array}{cc} 0 & * \\ 0 & 0 \end{array}\right)$$

$$R(0,1) = \left(\begin{array}{cc} 0 & * \\ 0 & 0 \end{array}\right)$$

$$R(0,1) = \left(\begin{array}{cc} 0 & * \\ 0 & 0 \end{array}\right)$$

$$R(0,1) = \left(\begin{array}{cc} 0 & * \\ 0 & 0 \end{array}\right)$$

Yang-Baxter transfer matrices:

$$T_N[\epsilon, \eta] = \sum_{u \in \{0,1\}} M_N(u, u)[\epsilon, \eta].$$

Square ice: Commutation of Yang-Baxter matrices:

Composition of R-matrices and monodromy matrices:

Square ice: Commutation of Yang-Baxter matrices:

Composition of *R*-matrices and monodromy matrices:

Yang-Baxter equation:

Square ice: Commutation of Yang-Baxter matrices:

Composition of R-matrices and monodromy matrices:

Yang-Baxter equation:

Yang-Baxter equation \Rightarrow transfer matrices commute.

Denote $\mu_t \in \left(0, \frac{\pi}{2}\right)$ s.t. $\cos(\mu_t) = \frac{2-t^2}{2}$.

Denote $\mu_t \in (0, \frac{\pi}{2})$ s.t. $\cos(\mu_t) = \frac{2-t^2}{2}$.

$$R_{\mu_t}^{x} = \frac{1}{\sin(\mu_t/2)} \left(\begin{array}{cccc} \sin(\mu_t - x) & 0 & 0 & 0 \\ 0 & \sin(x) & \sin(\mu_t) & 0 \\ 0 & \sin(\mu_t) & \sin(x) & 0 \\ 0 & 0 & 0 & \sin(\mu_t - x) \end{array} \right).$$

Denote $\mu_t \in (0, \frac{\pi}{2})$ s.t. $\cos(\mu_t) = \frac{2-t^2}{2}$.

$$R_{\mu_t}^{\mathsf{x}} = \frac{1}{\sin(\mu_t/2)} \left(\begin{array}{cccc} \sin(\mu_t - x) & 0 & 0 & 0 \\ 0 & \sin(x) & \sin(\mu_t) & 0 \\ 0 & \sin(\mu_t) & \sin(x) & 0 \\ 0 & 0 & 0 & \sin(\mu_t - x) \end{array} \right).$$

where $R_{u_t}^{x}(0,0)$ is the up-left 2×2 part of this matrix, etc.

Square ice: Bethe ansatz:

Square ice: Bethe ansatz:

If there exists $(p_j(t))_{j=1}^n$ solution of:

$$Np_{j} = 2\pi j - (n+1)\pi - \sum_{k=1}^{n} \Theta_{t}(p_{j}, p_{k})$$
 (E_t

Square ice: Bethe ansatz:

If there exists $(p_i(t))_{i=1}^n$ solution of:

$$Np_{j} = 2\pi j - (n+1)\pi - \sum_{k=1}^{n} \Theta_{t}(p_{j}, p_{k})$$
 (E_t

construction of a candidate eigenvector for the transfer matrix for value:

$$\prod_{k=1}^{n} L_{t}(e^{ip_{k}}) + \prod_{k=1}^{n} M_{t}(e^{ip_{k}}).$$

where L_t and M_t are simple rational functions.

Square ice: Bethe ansatz:

If there exists $(p_i(t))_{i=1}^n$ solution of:

$$Np_{j} = 2\pi j - (n+1)\pi - \sum_{k=1}^{n} \Theta_{t}(p_{j}, p_{k})$$
 (E_t)

construction of a candidate eigenvector for the transfer matrix for value:

$$\prod_{k=1}^{n} L_{t}(e^{ip_{k}}) + \prod_{k=1}^{n} M_{t}(e^{ip_{k}}).$$

where L_t and M_t are simple rational functions.

Lemma: for all t there exists $(p_j(t))_{j=1}^n$ solution of (E_t) and it is an analytic function in t.

1. When $t = \sqrt{2}$, simplified expression of candidate eigenvector and eigenvalue.

eigenvalue.

- 1. When $t = \sqrt{2}$, simplified expression of candidate eigenvector and eigenvalue.
- 2. There is H_N (given by derivative of $V_N(t)$) diagonalisable s.t. $V_N(\sqrt{2})H_N = H_N V_N(\sqrt{2})$: candidate value is the maximal

- 1. When $t = \sqrt{2}$, simplified expression of candidate eigenvector and eigenvalue.
- 2. There is H_N (given by derivative of $V_N(t)$) diagonalisable s.t. $V_N(\sqrt{2})H_N=H_N\,V_N(\sqrt{2})$: candidate value is the maximal eigenvalue.
- Perron-Frobenius: candidate eigenvector has positive coordinates → eigenvector for the maximal eigenvalue.

- 1. When $t = \sqrt{2}$, simplified expression of candidate eigenvector and eigenvalue.
- 2. There is H_N (given by derivative of $V_N(t)$) diagonalisable s.t. $V_N(\sqrt{2})H_N = H_N V_N(\sqrt{2})$: candidate value is the maximal eigenvalue.
- 3. Perron-Frobenius: candidate eigenvector has positive coordinates → eigenvector for the maximal eigenvalue.
- 4. Indentification of maximal eigenvalue and eigeinvector around $\sqrt{2}$ (positive coordinates), then on $(0,\sqrt{2})$ by analycity.

Square ice: Asymptotics:

Denote $(\mathbf{p}_j^{(k))})_j$ solutions of equations (E_t) for N_k, n_k .

Denote $(\mathbf{p}_j^{(k))})_j$ solutions of equations (E_t) for N_k, n_k .

Change of variable $(\mathbf{p}_j^{(k))})_j = (\kappa_t(\pmb{lpha}_j^{(k)}))_j$.

Denote $(\mathbf{p}_j^{(k)})_j$ solutions of equations (E_t) for N_k, n_k .

Change of variable $(\mathbf{p}_i^{(k)})_j = (\kappa_t(\alpha_i^{(k)}))_j$.

with $f(x) = \log_2(2|\sin(\kappa_t(x))/2|)$.

Lemma:

$$\lim_{N} \frac{\log_2(\lambda_{\max}(V_N(1)))}{N} = \lim_{k} \frac{1}{N_k} \sum_{i=1}^{n_k} f(\alpha_j^{(k)}),$$

$$N \qquad \qquad N \qquad \qquad k \quad N_k \stackrel{\textstyle \sim}{j=1} \qquad \qquad J$$

Denote $(\mathbf{p}_{i}^{(k)})_{j}$ solutions of equations (E_{t}) for N_{k} , n_{k} .

Change of variable $(\mathbf{p}_i^{(k)})_j = (\kappa_t(\alpha_i^{(k)}))_j$.

Lemma:

$$\lim_{N} \frac{\log_2(\lambda_{\max}(V_N(1)))}{N} = \lim_{k} \frac{1}{N_k} \sum_{i=1}^{n_k} f(\alpha_j^{(k)}),$$

with $f(x) = \log_2(2|\sin(\kappa_t(x))/2|)$.

Theorem: there exists ρ_t s.t. for all $f \in L^1$:

$$\lim_{k} \frac{1}{N_k} \sum_{i=1}^{n_k} f(\alpha_j^{(k)}) = \int_{\mathbb{R}} f(\alpha) \rho_t(\alpha) d\alpha.$$

Square ice: Counting functions:

$$\xi_t^{(k)}: \alpha \mapsto \frac{1}{2\pi} \kappa_t(\alpha) + \frac{n_k + 1}{2N_k} + \frac{1}{2\pi N_k} \sum_{j=1}^{n_k} \theta_t(\alpha, \alpha_j^{(k)})$$

Square ice: Counting functions:

$$\xi_t^{(k)}: \alpha \mapsto \frac{1}{2\pi} \kappa_t(\alpha) + \frac{n_k + 1}{2N_k} + \frac{1}{2\pi N_k} \sum_{j=1}^{n_k} \theta_t(\alpha, \alpha_j^{(k)})$$

Equality with a Riemann sum:

$$\lim_{k} \frac{1}{N_{k}} \sum_{j=1}^{n_{k}} f(\alpha_{j}^{(k)}) = \lim_{k} \frac{1}{N_{k}} \sum_{j=1}^{n_{k}} \left(\alpha_{j+1}^{(k)} - \alpha_{j}^{(k)}\right) \frac{\left(\xi_{t}^{(k)}(\alpha_{j+1}^{(k)}) - \xi_{t}^{(k)}(\alpha_{j}^{(k)})\right)}{\left(\alpha_{j+1}^{(k)} - \alpha_{j}^{(k)}\right)} f(\alpha_{j}^{(k)})$$

1. Extend $(\xi_t^{(k)})'$ on a stripe including \mathbb{R} :

1. Extend $(\xi_t^{(k)})'$ on a stripe including \mathbb{R} :

1. Extend $(\xi_t^{(k)})'$ on a stripe including $\mathbb R$:

 $(\xi_t^{(k)})'$

1. Extend $(\xi_t^{(k)})'$ on a stripe including \mathbb{R} :

1. Extend $(\xi_t^{(k)})'$ on a stripe including \mathbb{R} :

$$(\xi_t^{(0)})'_{|K}$$

1. Extend $(\xi_t^{(k)})'$ on a stripe including \mathbb{R} :

$$(\xi_t^{(1)})'_{|\mathcal{K}}$$

1. Extend $(\xi_t^{(k)})'$ on a stripe including \mathbb{R} :

$$(\xi_t^{(2)})'_{|\mathcal{K}}$$

1. Extend $(\xi_t^{(k)})'$ on a stripe including \mathbb{R} :

$$(\xi_t^{(+\infty)})'_{|K}$$

1. Extend $(\xi_t^{(k)})'$ on a stripe including \mathbb{R} :

$$(\xi_t^{(+\infty)})'_{|K}$$

- 2. Assume $((\xi_t)^{\nu(k)})' \to F_t$ on any compact K.
- 3. F_t satisfies an integral equation with unique solution.

1. Extend $(\xi_t^{(k)})'$ on a stripe including \mathbb{R} :

$$(\xi_t^{(+\infty)})'_{|K}$$

- 2. Assume $((\xi_t)^{\nu(k)})' \to F_t$ on any compact K.
- 3. F_t satisfies an integral equation with unique solution.
- 4. Thus, $(\xi_t^{(k)})'$ converges to this solution.

The functions $\xi_t^{(k)}$ have distinct values on $\mathcal V$ and Γ . Thus they are bihilomorphisms onto $\mathcal V$ (Cauchy formula).

Square ice: Lace integral expression of $\xi_t^{(k)}$:

Square ice: Lace integral expression of $\xi_t^{(k)}$:

By residues theorem:

$$\xi_t^{(k)}(\alpha) = \frac{1}{2\pi} \kappa_t(\alpha) + \frac{n_k + 1}{2N_k} + \oint_{\Gamma} \theta_t \left(\left(\xi_t^{(k)} \right)^{-1}(\alpha) \right) \frac{e^{2i\pi s N_k}}{e^{2i\pi s N_k} - 1} ds + O(\epsilon).$$

Square ice: Fredholm integral equation: Limit and change of variable:

$$\xi_t^{(\infty)}(\alpha) = \frac{1}{2\pi} \kappa_t(\alpha) + \frac{1}{4} + \int_0^{+\infty} \theta_t(\alpha) \left(\xi_t^{(\infty)}\right)'(\alpha) d\alpha.$$

Square ice: Fredholm integral equation: Limit and change of variable:

$$\xi_t^{(\infty)}(\alpha) = \frac{1}{2\pi} \kappa_t(\alpha) + \frac{1}{4} + \int_0^{+\infty} \theta_t(\alpha) \left(\xi_t^{(\infty)}\right)'(\alpha) d\alpha.$$

Unique solution by Fourier transforms.

$$\lim_{N} \frac{\log_2(\lambda_{\max}(V_N(1)))}{N} = \lim_{k} \frac{1}{N_k} \sum_{j=1}^{n_k} f(\alpha_j^{(k)}),$$

with
$$f(x) = \log_2(2|\sin(\kappa_t(x))/2|)$$
.

$$\lim_{N} \frac{\log_2(\lambda_{\max}(V_N(1)))}{N} = \lim_{k} \frac{1}{N_k} \sum_{j=1}^{n_k} f(\alpha_j^{(k)}),$$

with
$$f(x) = \log_2(2|\sin(\kappa_t(x))/2|)$$
.

$$h(X^s) = \int_{\mathbb{D}} \log_2(2|\sin(\kappa_t(\alpha))/2|).\rho_t(\alpha)d\alpha.$$

$$\lim_{N} \frac{\log_2(\lambda_{\max}(V_N(1)))}{N} = \lim_{k} \frac{1}{N_k} \sum_{j=1}^{n_k} f(\alpha_j^{(k)}),$$

with $f(x) = \log_2(2|\sin(\kappa_t(x))/2|)$.

$$h(X^s) = \int_{\mathbb{T}} \log_2(2|\sin(\kappa_t(\alpha))/2|).\rho_t(\alpha)d\alpha.$$

Expression of $ho_t = \left(\xi_t^{(\infty)}\right)'$ and lace integrals computations:

$$h(X^s) = \frac{3}{2}\log_2(4/3).$$

Friedland's theorem:

Theorem[Friedland(1967)]: if the set of forbidden patterns \mathcal{F} is stable by symmetry, $h(X_{\mathcal{F}})$ is a computable number.

Friedland's theorem:

Theorem[Friedland(1967)]: if the set of forbidden patterns \mathcal{F} is stable by symmetry, $h(X_{\mathcal{F}})$ is a computable number.

Examples: dimers, square ice, hard squares.

Friedland's theorem:

Theorem[Friedland(1967)]: if the set of forbidden patterns \mathcal{F} is stable by symmetry, $h(X_{\mathcal{F}})$ is a computable number.

Examples: dimers, square ice, hard squares.

Question: what are the possible values of entropy for symmetric bidimensional subshifts of finite type ?

Formula for entropy as sum of a series:

1. Transfer matrices → diagonal transfer matrices;

- 1. Transfer matrices → diagonal transfer matrices;
- 2. Obtain a functional equation;

- 1. Transfer matrices \rightarrow diagonal transfer matrices;
- 2. Obtain a functional equation;
- 3. Maximal eigenvalue satisfies the same functional equation;

- 1. Transfer matrices \rightarrow diagonal transfer matrices;
- 2. Obtain a functional equation;
- 3. Maximal eigenvalue satisfies the same functional equation;
- Maximal egeinvalue equal for the two diagonal transfer matrices → other function equation.

- 1. Transfer matrices \rightarrow diagonal transfer matrices;
- 2. Obtain a functional equation;
- 3. Maximal eigenvalue satisfies the same functional equation;
- Maximal egeinvalue equal for the two diagonal transfer matrices → other function equation.
- 5. System of equations with unique solution: evaluate it in specific parameter.

Formula for entropy as sum of a series:

- 1. Transfer matrices \rightarrow diagonal transfer matrices;
- 2. Obtain a functional equation;
- 3. Maximal eigenvalue satisfies the same functional equation;
- Maximal egeinvalue equal for the two diagonal transfer matrices → other function equation.
- 5. System of equations with unique solution: evaluate it in specific parameter.

Main problems: points 3, 4.

Entropy computation: similar to square ice; analytical part non verified.

Subsidiary questions:

Question: can we use similar methods to talk about invariant measures (for instance $\times 2, \times 3$ conjecture) ?

Subsidiary questions:

Question: can we use similar methods to talk about invariant measures (for instance $\times 2, \times 3$ conjecture)?

Question: can we find solutions of Yang-Baxter equations for other subshifts of finite type? *Example*: Kari-Culik tilings (know: positive entropy [Durand, Gamard, Grandjean (2017)]).

Definition subshift Δ_r ; ex for r = 3:

Definition subshift Δ_r ; ex for r = 3:

	3	1	2	3				
ĺ					1	2	3	1
	1	2	3	1	2	3	1	2
	2	3	1	2	3	1	2	3
	3	1	2	3				
	2	3			1	2	3	1
Ì			1	2	3			
	1	2	3			1	2	3

Definition subshift Δ_r ; ex for r = 3:

3	1	1	2				
)	1	2	3	_		_	
				1	2	3	1
1	2	3	1	2	3	1	2
2	3	1	2	3	1	2	3
3	1	2	3				
2	3			1	2	3	1
		1	2	3			
1	2	3			1	2	3

Definition subshift Δ_r ; ex for r = 3:

3	1	2	3				
				1	2	3	1
1	2	3	1	2	3	1	2
2	3	1	2	3	1	2	3
3	1	2	3				
2	3			1	2	3	1
		1	2	3			
1	2	3			1	2	3

Theorem: [G., Sablik] $h(\Delta_r) = \frac{\log_2(r+1)}{r}$.

Definition subshift Δ_r ; ex for r = 3:

3	1	2	3				
				1	2	3	1
1	2	3	1	2	3	1	2
2	3	1	2	3	1	2	3
3	1	2	3				
2	3			1	2	3	1
		1	2	3			
1	2	3			1	2	3
1	2	3	_	<u>ა</u>	1	2	3

Theorem: [G., Sablik] $h(\Delta_r) = \frac{\log_2(r+1)}{r}$.

Question: for what kind of subshifts can we compute entropy with similar methods?

Second layer is trivial: we consider only first and third.

Second layer is trivial: we consider only first and third.

Lower bound:

Second layer is trivial: we consider only first and third.

Lower bound: $\mathcal{L}_n(\Delta_1)$ contains the following patterns:

Second layer is trivial: we consider only first and third.

Lower bound: $\mathcal{L}_n(\Delta_1)$ contains the following patterns:

Second layer is trivial: we consider only first and third.

Lower bound: $\mathcal{L}_n(\Delta_1)$ contains the following patterns:

$$N_n(\Delta_1) \geq 2^{n^2}$$
.

Upper bound: Consider a pattern in $\mathcal{L}_n(\Delta_1)$ for some n:

 2^3 choices in 2nd layer

Upper bound: Consider a pattern in $\mathcal{L}_n(\Delta_1)$ for some n:

2³ choices in 2nd layer 2⁴ choices in total

Upper bound: Consider a pattern in $\mathcal{L}_n(\Delta_1)$ for some n:

Number of possible extensions into a pattern of $\mathcal{L}_{n+1}(\Delta_1)$: $\leq 2^{4n}2^{3*3*4} = 2^{4n+4}2^{C}$.

Upper bound: Consider a pattern in $\mathcal{L}_n(\Delta_1)$ for some n:

Number of possible extensions into a pattern of $\mathcal{L}_{n+1}(\Delta_1)$: $\leq 2^{4n}2^{3*3*4} = 2^{4n+4}2^{C}$.

$$2^{n^2} \leq N_n(\Delta_1) \leq 2^{Cn} \cdot 2^{n^2}.$$

Upper bound: Consider a pattern in $\mathcal{L}_n(\Delta_1)$ for some n:

Number of possible extensions into a pattern of $\mathcal{L}_{n+1}(\Delta_1)$: $\leq 2^{4n}2^{3*3*4} = 2^{4n+4}2^{C}$.

$$2^{n^2} \leq N_n(\Delta_1) \leq 2^{Cn} \cdot 2^{n^2}.$$

$$h(\Delta_1)=1=\frac{\log_2(2)}{1}.$$

Some ideas:

Some ideas:

1. For instance: use Hochman-Meyerovitch's theorem to realize square ice entropy; then simplify the construction without changing the entropy; find a subshift which is isomorphic to square ice.

Some ideas:

- 1. For instance: use Hochman-Meyerovitch's theorem to realize square ice entropy; then simplify the construction without changing the entropy; find a subshift which is isomorphic to square ice.
- 2. Find smaller and smaller subshifts of square ice with same entropy.

Some ideas:

- 1. For instance: use Hochman-Meyerovitch's theorem to realize square ice entropy; then simplify the construction without changing the entropy; find a subshift which is isomorphic to square ice.
- 2. Find smaller and smaller subshifts of square ice with same entropy.
- 3. Try Baxter's method for square ice; more precisely: do both transfer matrices of square ice have same maximal eigenvalues or not?