Lab 4 ADC - PWM

How to setup ADC

ADC – analog to digital converter

- ADC converts analog signal (typically voltage) to digital
- There are several type of ADC. STM32F411 has a 12 bit single-end ADC, which convert voltage linearly from 0 to 3.3v to 0 to 4095

0v to 0

1.65v to 2047

3.3v (vref) to 4095

Setting up ADC

Choose an input you want to use, in this example, it is choosing INO which correspond to pin PAO

Reading the ADC value

Here is an example how to get the value

```
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
    int adcval = 0;
    // Sampling/start getting conversion
    HAL_ADC_Start(&hadc1);
    // wait until the conversion is done
    if (HAL_ADC_PollForConversion(&hadc1, 1000) == HAL_OK)
        adcval = HAL_ADC_GetValue(&hadc1); // get the value
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
```

Using LDR with ADC (1/2)

- LDR is a sensor that change resistance based on the light.
- The easiest method to use LDR with ADC is to use a voltage divider.

$$V_{
m out} = rac{R_2}{R_1 + R_2} \cdot V_{
m in}$$

Using LDR with ADC (2/2)

- You can connect LDR on the high side or on the low side depending on the application.
- In the example on the right, the LDR is on the high side

