DATA PARALLELISM: HOW TO TRAIN DEEP LEARNING MODELS ON MULTIPLE GPUS

-AB 1 CONCLUSION: DATA AND MODEL PARALLELISM

DEEP LEARNING INSTITUTE

DATA PARALLELISM

Focus of this course

How can we take advantage of multiple GPUs to reduce the training time?

DATA VS MODEL PARALLELISM

Comparison

- Data Parallelism
- Allows you to speed up training
- All workers train on different data
- All workers have the same copy of the model
- Neural network gradients (weight changes) are exchanged

- Model Parallelism
- Allows you to use a bigger mode
- All workers train on the same dateParts of the model are distributeacross GPUs
- Neural network activations are exchanged

DATA VS MODEL PARALLELISM

Comparison

Data Parallelism

Model Parallelism

TRAINING A NEURAL NETWORK

Single GPU

- . Read the data
- Transport the data
- Pre-process the data
- . Queue the data
- Transport the data
- 5. Calculate activations for layer one
- 7. Calculate activations for layer two
- 8. Calculate the output
- 9. Calculate the loss
- 10. Backpropagate through layer three
- 11. Backpropagate through layer two
- 12. Backpropagate through layer one
- 3. Execute optimization step
- 14. Update the weights
- Return control

