Алгоритм выбора сетки для модели LSV

Мацион Никита

Москва, 2025

1 Предварительная обработка данных

- 1. Сортируем пары значений (f_{i,t_k},a_{i,t_k}) по возрастанию компоненты f
- 2. Исключаем выбросы, отбрасывая первые и последние αN точек:

$$\alpha = 10^{-3}$$
 (базовое значение)

где N – общее количество траекторий

3. Задаем параметры сетки:

$$N_f' = 15$$
 (базовое значение), $N_f = 30$ (базовое значение)

4. Определяем количество точек в сетке для момента t_k :

$$N_{f,t_k} = \max(N_f', N_f \sqrt{t_k})$$

2 Методы построения сетки

После предварительной обработки формируем сетку G_f качественных траекторий.

2.1 Квантильный метод

1. Для каждого $i \in \{0,1,...,N_{f,t_k}-1\}$ вычисляем квантиль уровня:

$$q_i = \frac{i}{N_{f,t_k} - 1}$$

2. Выбираем точки, соответствующие вычисленным квантилям из отсортированного массива

2.2 Метод случайной выборки

1. Равномерно выбираем без повторений N_{f,t_k} точек из обработанного массива

3 Обоснование подхода

Финальный этап алгоритма предполагает вычисление:

$$\sigma_N(t_k,f_{j,t_k})$$
 для $f_{j,t_k}\in G_f$

Преимущества выбранного подхода:

- Значительное ускорение вычислений за счет:
 - Ограничения цикла по i только точками сетки G_f
 - Использования разреженного представления данных
- Для значений $f \notin G_f$ применяется кубическая сплайн-интерполяция
- Гибкость в выборе параметров сетки