

New York Bridge State Analysis

Analysis performed to distinguish which bridges and counties priority condition rating. Needing most attention a function of funding, location, and traffic use.

- Data Sets (2017 & 2018):
 - NYS Bridge Data
 - Population by County
 - Car Traffic Flow
- Selected variables: condition; geocodes; traffic volumes
 - Priority rating formula includes bridge condition rate and AADT
- Data consolidation & spatial viewpoints in QGIS software
- Project focus: priority rating, location, and developing an understanding of population proximity to bridge condition
- ✓ Resulting data set: ~20,000 records x 42 variables

Data Sources & Data Processing

Emphasis was placed on reading data in Python, working with data frames, and joining tables for road map visualization in QGIS software.

Munging...

- For QGIS shapefile converted to a csv w 18 fields; NAs were removed; used data types
- Data joined by county name; word county removed; names renamed to lower case; 10 digits
- 600+ Tweets pulled across a 10 day period across ~15 Twitter accounts

New York State Bridge Data (QGIS) (main data set)

- Main source of bridge statistics. Data library 23 fields: ID, lat, long, status, priority rating, etc
- https://www.dot.ny.gov/divisions/engineering/structures/repository/manuals/inventory/rc01_june0 6.pdf

New York State Average Annualized Daily Traffic (AADT)

- Total volume of vehicle traffic by road by year divided by 365 days
- https://www.dot.ny.gov/divisions/engineering/applications/traffic-data-viewer/tdv-definitions#AADT

New York State Population by County (and/or Department of Transportation Vehicle Ownership Stats)

- Population by county metrics may be useful for building new variables assessing ratios of populations, vehicle ownership counts, traffic throughput statistics, and similar.
- https://www.labor.ny.gov/stats/nys/statewide-population-data.shtm

Twitter / RSS /

• Team would like to gather text chatter from local news on road traffic status.

Bridge, population, and traffic data reside in well maintained tables (nominal cleaning)

Utilized a good,
bad, ugly data
classification
approach

Metrics

Complicate
Simple

Analysis Questions

- ➤ Is there a correlation that can be seen visually between the county population and the number of low-quality bridges?
- ➤ What are the top 10 highest priority bridges?
- ➤ Which counties do we identify as our Good, Bad and Ugly counties?
 - ➤ High, medium and low percent bridge priorities
- > Overall, how many bridges are ranked high medium and low priority?
- ➤ Which county has the highest count of high priority bridges?
- ➤ What is the sentiment analysis of Twitter traffic tweets?
- ➤ What factors help predict a bridge's condition rating?

Description of Program

1.Preprocess

2.Bridge Analysis

3. Twitter Analysis

4.Prediction

- > Python cleanup for QGIS Analysis
- > Data scaling (population, AADT rating)
- > Bridge shapefile creation
- > Traffic flow visualization
- > AADT annualized traffic analysis
- > Spatial data join by bridge
- > Bridge & traffic flow finalization
- > Tweet results over 15 day period
- ➤ Good, bad ugly name binning but had issue with LOTS of misc. characters
- > Sentiment analysis
- Bridge condition rating & prediction work

Why QGIS and Analysis Questions

- QGIS is an opensource GIS Software, where geospatial data can be created, edited, visualized and analyzed.
- PyQGIS is a Python environment in QGIS, can process and analyze geospatial data
- Could've used geopandas instead, however more powerful visualization capabilities
- For fun and work related

New York State Population

In order to produce this visualization, a table join was performed between the county shapefile and population csv

Joined on county name data

Perhaps there is a correlation between population and bridge condition?

PyQGIS used to join the two tables, bucketed the data and visualize

The county and population data will be used later for further analysis

Visual: Bridges by Condition Rating – Density Plot

Working with the Bridge Data:

- Downloads as a Geodatabase file
- Had to be cleaned
 - NA's removed
 - Data types adjusted
- Exported as a csv
- Plotted in QGIS via coordinates
- Bucketed data
 - Used "equal breaks"
 - Buckets were 0-1.75, 1.76-3.5, 3.51-5.25, 5.26-7
- Visualized in QGIS
 - Density Plot
 - Condition Rating
- Looking at Condition Data alone, not many low rated bridges

Correlation between Population and Low-quality Bridges?

Filtered out the lowest-quality bridges based upon Condition Rating

Other than New York City area, doesn't visually appear that highly populated areas indicate more low-quality bridges.

Final analysis to consider Traffic and Condition Rating

AADT – Average Annualized Daily Traffic

The other important component of the analysis: AADT

For our analysis, bridges on high traffic roads are considered more important than bridges on low traffic roads

Imported a shapefile from the New York State GIS Clearinghouse, bucketed AADT level to create visualization

77 12936 2011 2182 85 Richmond County, New York New York NYSDOT 12 - State - Subc... 6.48 4/30/2018 160.8 142609 5 - Prestresse... 05 - Box Beam o... 2014 6.48000000. 2214 Richmond 06 4759 NYSDOT 12 - State - Subc... 7 7/11/2018 34 3862 126055 2011 5 - Prestresse... 05 - Box Beam o... 2005 7.000000000. 2182 2214 Richmond 06 85 Richmond County, New York New York 4759 NYSDOT 12 - State - Subc... 5.34 4/12/2018 12009 126055 2011 5 - Prestresse... 05 - Box Beam o... 2014 5.34000000. 2182 2214 Richmond 06 85 Richmond County, New York New York 4759 12 - State - Subc... 5.66 11/3/2017 21 5376 107537 2017 2 - Concrete (... 19 - Culvert 1968 5.66000000. 2182 2214 Richmond 06 85 Richmond County, New York New York 4759 NYSDOT 12 - State - Subc... 6.53 1/12/2018 207 50 11600 97460 02 - Stringer /Mul... 1962 2182 85 Richmond County, New York New York NYSDOT 2011 3 - Steel 6.53000000 2214 Richmond 06

Edison

Final Analysis – Find the lowest-quality Bridges

Priority Bridges

Final Analysis Results – The Good, the Bad and the Ugly

The below table shows percent of High, Low and Medium priority Bridges

county_name *	high ⊌↓	low ▼	medium 🔻
NEW YORK	0.10	0.26	0.63
KINGS	0.09	0.33	0.57
BRONX	0.07	0.28	0.65
WESTCHESTER	0.06	0.31	0.63
ROCKLAND	0.06	0.33	0.61
ONONDAGA	0.05	0.43	0.52
QUEENS	0.05	0.27	0.68
RICHMOND	0.04	0.42	0.54
SENECA	0.03	0.76	0.20
NASSAU	0.03	0.31	0.66
SARATOGA	0.03	0.66	0.31
ORANGE	0.02	0.45	0.52
ALBANY	0.02	0.45	0.52
PUTNAM	0.02	0.33	0.65
ERIE	0.02	0.57	0.41
SUFFOLK	0.02	0.40	0.58
ONTARIO	0.02	0.70	0.29
RENSSELAER	0.02	0.60	0.38
CAYUGA	0.01	0.73	0.26
MONROE	0.01	0.51	0.48
MADISON	0.01	0.78	0.21
SULLIVAN	0.01	0.75	0.24
ULSTER	0.01	0.67	0.32
DELAWARE	0.00	0.84	0.16
FULTON	0.00	0.85	0.15
CHAUTAUQUA	0.00	0.86	0.14
WYOMING	0.00	0.88	0.12
ALLEGANY	0.00	0.89	0.11
ORLEANS	0.00	0.89	0.11
ST LAWRENCE	0.00	0.92	0.08
CATTARAUGUS	0.00	0.92	0.08
LEWIS	0.00	0.93	0.07
CLINTON	0.00	0.94	0.06
FRANKLIN	0.00	0.95	0.05
HAMILTON	0.00	0.95	0.05
YATES	0.00	0.96	0.04

Final Analysis Results

The top 10 worst bridges are in downstate NY, all within the City of New York or nearby

Outside of New York City, there are visual patterns: Many high priority bridges appear to be associated to major highways such as NY-90, NY-390 and NY-87

	bin	county_name		political_unit	total_rank
53	2231439	KINGS	2034	- City of NEW YORK	1.971147
15	1065318	KINGS	2034	- City of NEW YORK	1.969974
70	106531B	KINGS	2034	- City of NEW YORK	1.966604
80	5516340	ROCKLAND	0615 -	Town of ORANGETOWN	1.963867
162	2229289	NEW YORK	2034	- City of NEW YORK	1.962122
153	2268650	NEW YORK	2034	- City of NEW YORK	1.961550
25	5521218	RICHMOND	2034	- City of NEW YORK	1.959444
230	2065629	BRONX	2034	- City of NEW YORK	1.959263
22	5521217	RICHMOND	2034	- City of NEW YORK	1.952614
23	552121E	RICHMOND	2034	- City of NEW YORK	1.952494

What Predicts Bridge Condition Rating?

Variable *county* plays a significant role in model's R2 calc OLS Regression Results						
Time: No. Observations: Df Residuals: Df Model:	condition_ra condition_ra (Least Squar Fri, 07 Jun 20	ate R- DLS Ad res F- 019 Pr :38 Lo 31 AI 24 BI	======== squared: j. R-squared: statistic: ob (F-statist g-Likelihood: C:	tic):	0.702 0.627 9.421 2.35e-05 -21.783 57.57 67.60	
	coef	std er	 r t	P> t	[0.025	0.975]
	-27.0633 0.0146 ft 0.0072 -1.172e-06 -0.1571 -0.0573	13.52 0.01 0.00 3.1e-0 0.06 0.02	6 -2.001 1 1.319 2 3.089 7 -3.781	0.057 0.199 0.005 0.001 0.029 0.047	-54.979 -0.008 0.002 -1.81e-06 -0.297 -0.114	0.038 0.012 -5.32e-07 -0.017 -0.001
Omnibus: Prob(Omnibus): Skew: Kurtosis:	0.1 -0.6	179 Ja 547 Pr	rbin-Watson: rque-Bera (JE ob(JB): nd. No.	3):	1.925 2.280 0.320 5.24e+07	

- Manual iteration was performed amongst the variables to assess model influence and P < 0.05 evaluations as the initial model had a high degree of variability explained at an R^2 of 0.791. Variables didn't change significantly R^2 until the variable "county" was dropped.
- The "county" variable has the highest significance even though its "insignificant!
 - in terms of a linear model suggesting "location" of a bridge plays a critical role in both usage, value, work performed, and rating. Effort was spent on the graphing of the linear model but had difficulty achieving the visualization in Python.
- In our final model, although the "county" variable isn't significant we wouldn't have a prediction without it. "County" captures bridge flow traffic (aadt) and population dynamics impacting bridge condition.

Predicting existing bridge future conditions becomes a function of its (year built + structure + material & square footage). Bridge inspection dates and rating are by products of the structure itself.

Traffic Tweets

	Word	Freq	Word	Freq
Word:	with	29	nbamlb	24
Word:	my	29	near	22
Word:	S	29	that	21
Word:	traffic	28	your	21
Word:	just	28	me	20
Word:	jasonnym	28		20
Word:	lisalgm1	28	&	20
Word:	thruwaytraffic	25	amp	20
Word:	(24	he	20
Word:	wnyt	24	tractor	20
Word:	trafficmanmatt	244	trailer	20

- Twitter preprocessing turned into be quite a learning situation as removal of characters of detracting value was difficult. These speaks to using techniques, such as regedit & regular expressions, to help address unique situations.
- For example: a prominent "tweeter" is "@Trafficmanmatt." This individual is very active on traffic states providing good volume and quality texts.
- However, one of his approaches is to include his handle "@Trafficmanmatt" in his tweet to build his brand. Such learnings confirm need to scrub and learn data pull nuisances to result in more significant text and sentiment data mining.

Example of a Good Data Pull (of a Bad day)		Example of What Happens When Expressions Not Addressed		
Word	Count	Word	Count	
hudson	9	@	1950	
valley	9	:	475	
lower	8	https	249	
to	7	the	226	
nb	7		217	
i-87	7	trafficmanmatt	214	
traffic	7	,	195	
sb	7	!	170	
blocked	6	rt	159	
#	5	suzan916	116	
а	5	to	110	
accident	5	а	104	
slow	5	frecklequeen45	102	
service	5	dizzymom64	100	

Conclusions:

- No distinct spatial bridge patterns by condition rating
- Good, bad, and ugly top contender?
- Yes you guessed it = New York City
- Overall: 2% high priority(264), 33% medium (5543), & 65% low or 10812 bridges
- Twitter word heat maps would be an ideal means to consolidate tweets
- "Population" near a bridge didn't contribute meaningfully to its condition