

Multi-View Geometry: Small Motion and Epipolar Constraints

Guido Gerig CS 6320 Spring 2013

Motion Models (Review)

```
\begin{array}{llll} & \acute{e}X \not \& & \acute{e} & 1 & -g & b \ \grave{u}\acute{e}X \ \grave{u} & \acute{e}T_{_{X}} \ \grave{u} \\ & \mathring{e}_{_{Y}} \not e \ \acute{u} & \grave{e} & g & 1 & -a \ \acute{u}\acute{e}Y \ \acute{u} + \mathring{e}T_{_{Y}} \ \acute{u} \\ & \mathring{e}Z \not e \not \in & \mathring{e} - b & a & 1 \ \not E \not E Z \not \in & \mathring{e}T_{_{Z}} \not E \end{array} \qquad \begin{array}{lll} & 3D \ Rigid \ Motion \end{array}
```

```
\hat{\mathbf{e}}V_{Z}\,\mathbf{\dot{g}}
Translational
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Component of Velocit
\begin{array}{llll} & \text{\'eV}_X \, \dot{\mathbf{u}} & \text{\'e} & 0 & - \, \textit{W}_Z & \, \textit{W}_Y \, \, \, \dot{\mathbf{u}} \dot{\mathbf{e}} X \, \dot{\mathbf{u}} & \, \dot{\mathbf{e}} V_{T_x} \, \dot{\mathbf{u}} \\ & \hat{\mathbf{e}} V_Y \, \dot{\mathbf{u}} & \hat{\mathbf{e}} \, \, & 0 & - \, \, \textit{W}_X \, \, \dot{\mathbf{u}} \dot{\hat{\mathbf{e}}} Y \, \dot{\mathbf{u}} + \, \hat{\mathbf{e}} V_{T_Y} \, \dot{\mathbf{u}} \\ & \hat{\mathbf{e}} V_Z \, \dot{\mathbf{u}} & \hat{\mathbf{e}} \cdot \, \, & \mathcal{W}_X & 0 & \, \dot{\mathbf{u}} \dot{\hat{\mathbf{e}}} Z \, \dot{\mathbf{u}} & \, \dot{\hat{\mathbf{e}}} V_{T_Z} \, \dot{\mathbf{u}} \\ & \hat{\mathbf{e}} V_Z \, \dot{\mathbf{u}} & \hat{\mathbf{e}} \cdot \, \, & \mathcal{W}_X & 0 & \, \dot{\mathbf{u}} \dot{\hat{\mathbf{e}}} Z \, \dot{\mathbf{u}} & \, \dot{\hat{\mathbf{e}}} V_{T_Z} \, \dot{\mathbf{u}} \\ & \hat{\mathbf{e}} V_Z \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{e}} V_Z \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{e}} V_Z \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{e}} V_Z \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{e}} V_Z \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} & \, \dot{\mathbf{u}} \\ & \hat{\mathbf{u}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Angular Velocity
```


Small Motions

$$t = atv$$

$$R = I + at[w]$$

$$p = p + atp$$

$$p^T \mathbf{e}_p \mathbf{e} = 0$$

$$\hat{P} = \hat{e}V_{X} \hat{u} \\
\hat{e}V_{Y} \hat{u} = Velocity Vector$$

$$\hat{e}V_{Z} \hat{y} \\
\hat{e}V_{Z} \hat{y} \\
\hat{e}V_{X} \hat{u} \\
\hat{e}V_{X}$$

$$p^{T}[v](I + at[w])(p + atp) = 0$$

$$p^{T}([v][w])p - (p'p)v = 0$$

Exercise 7.2

Translating Camera

$$p^{T}([v | [w])p - (p' / p).v =$$

$$W = 0$$

$$(p' \not p).v = 0$$

p, p, and v are coplanar

Focus of expansion (FOE): Under pure translation, the motion field at every point in the image points toward the focus of expansion.

FOE for Translating Camera

FOE from Basic Equations of Motion (see later optical flow)

$$p_x = \frac{V_{T_Z} x - V_{T_X} f}{Z} - W_Y f + W_Z y + \frac{W_X xy}{f} - \frac{W_Y x^2}{f}$$

$$p_y = \frac{V_{T_z} y - V_{T_y} f}{Z} + W_X f - W_Z x - \frac{W_Y xy}{f} + \frac{W_X y^2}{f}$$

$$W = 0$$

$$\mathbf{p}_{x} = \frac{V_{T_{Z}}x - V_{T_{X}}f}{Z}$$

$$p_{y} = \frac{V_{T_{Z}} y - V_{T_{Y}} f}{Z}$$

$$x_0 = f \frac{V_{T_X}}{V_{T_Z}}$$

$$y_0 = f \frac{V_{T_Y}}{V}$$

$$\mathbf{p}_{x} = (x - x_0) \frac{V_{T_Z}}{Z}$$

$$p_y = (y - y_0) \frac{V_{T_z}}{Z}$$