



**Ansprechpartner** 

Can Dogangüzel





# Can Dogangüzel

- Senior Consultant
- Microsoft Certified Professional –
   Developing Microsoft SQL Server Databases
- BI-Expert TDWI

SD&C Solutions Development & Consulting GmbH Mauerstraße 79 10117 Berlin

Telefon: +49 (172) 328 19 93 E-Mail: Can.Doganguezel@sd-c.de

#### **Fachliche Schwerpunkte**

- Konzeption und Implementation von Business-Intelligence-Lösungen und Data-Warehouse-Systeme
- Agile Datenbankentwicklung (SCRUM)
- Performanceanalyse und Performanceoptimierung
- Konzeption und Implementation von Microsoft In-Memory-Technologien

#### **Produkte & Technologien**

- MS SQL Server 2000-2016 & (SSIS, SSRS, SSAS)
- Microsoft Azure
- Microsoft In-Memory-Technologien







- 1 SQL Server 2016
- 2 Überblich In-Memory Technologien: OLTP, DW, HTAP
- 3 Demo In-Memory OLTP
- 4 Fazit, Fragen & Antworten



- Viele neue Funktionen (temporale Tabellen, Stretch-DB...)
- Erweiterung (In-Memory-OLTP, Columnstore-Indizes...)
- Optimierungen in fast allen Bereichen, besonderes in DB-Engine
- Performance

#### TCP-H Benchmark Performance Ergebnisse Non-Clustered!



(http://www.tpc.org/)

| 1,000 GB Results |                               |                                           |         |              |             |                        |                                                             |                                                      |                   |
|------------------|-------------------------------|-------------------------------------------|---------|--------------|-------------|------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------|
| Rank             | Company                       | System                                    | QphH    | Price/QphH   | Watts/KQphH | System<br>Availahilitv | Database                                                    | Operating System                                     | Date<br>Submitted |
|                  | Hewlett Packard<br>Enterprise | HPE Proliant DL380<br>Gen9                | 678,492 | .64 USD      | NR          | 07/31/16               | Microsoft SQL Server 2016 Enterprise<br>Edition             | Microsoft Windows Server 2012 R2<br>Standard Edition | 03/24/16          |
| 2                | CISCO                         | <u>Cisco UCS C460 M4</u><br><u>Server</u> | 588,831 | .97 USD      | NR          | 12/16/14               | Microsoft SQL Server 2014 Enterprise<br>Edition             | Microsoft Windows Server 2012 R2<br>Standard         | 12/15/14          |
| 3                | inspur                        | INSPUR K1                                 | 585,319 | 3.42 CNY     | NR          | )9/04/14               | Action Analogous Company Abase - Vector 3.5.1               | K-UX2,2                                              | 09/03/14          |
| 4                | Hewlett Packard<br>Enterprise | HPE Proliant DL380<br>Gen9                | 543,102 | .69 USD      | NR          | 17/31/16               | Microsoft SQL 1 ver 2005 Enterprise<br>Edition              | Microsoft Windows Server 2012 R2<br>Standard Edition | 03/09/16          |
| 5                | IBM.                          | IBM System x3850<br>X6                    | 519,976 | 1.36 US      | NR          | 04/16/14               | Microsoft S Serve 11 hterprise                              | Microsoft Windows Server 2012 R2<br>Standard         | 04/15/14          |
| 6                | inspur                        | INSPUR K1                                 | 485,242 | 4.03 CNY     | NR          | 06/04/14               | Actian Vector 3.0.0                                         | K-UX2.2                                              | 06/03/14          |
| 7                | Hewlett Packard<br>Enterprise | DL380 Gen9                                | 390,590 | .97 USD      | NR          | 09/08/14               | Microsoft SQL Server 2014 Enterprise<br>Edition             | Microsoft Windows Server 2012 R2<br>Standard         | 09/07/14          |
| 8                | FUĴĬTSU                       | SPARC M10-4S                              | 326,454 | 1,524.25 JPY | NR          | 02/07/14               | Oracle Database 11g R2 Enterprise Edition<br>w/Partitioning | Oracle Solaris 11.1                                  | 02/06/14          |
| 9                |                               | Cisco UCS C240 M3<br>Server               | 304,361 | .73 USD      | NR          | 08/20/14               | Microsoft SQL Server 2014 Enterprise<br>Edition             | Microsoft Windows Server 2012<br>Standard Edition    | 08/19/14          |

Der TPC Benchmark ™ H (TPC-H) ist ein Entscheidungs-Benchmark. Es besteht aus einer Reihe von geschäftsorientierten Ad-hoc-Abfragen und gleichzeitigen Datenänderungen. Die Abfragen und die Daten, die die Datenbank belegen, wurden ausgewählt, um breite branchenweite Relevanz zu haben. Diese Benchmark veranschaulicht Entscheidungsunterstützungssysteme, die große Datenmengen untersuchen, Abfragen mit einem hohen Grad an Komplexität ausführen und Antworten auf kritische Geschäftsfragen geben.



# TCP-H Benchmark Performance Ergebnisse Non-Clustered!

(http://www.tpc.org/)

| 10,000 GB Results |                               |                                    |           |            |             |                        |                                                 |                                                      |                   |
|-------------------|-------------------------------|------------------------------------|-----------|------------|-------------|------------------------|-------------------------------------------------|------------------------------------------------------|-------------------|
| Rank              | Company                       | System                             | QphH      | Price/QphH | Watts/KQphH | System<br>Availability | Database                                        | Operating System                                     | Date<br>Submitted |
| 1                 |                               | Cisco UCS C460 M4<br>Server        | 1,115,298 | .87 USD    | NR          | 11/28/16               | Microsoft SQL Server 2016<br>Enterprise Edition | Microsoft Windows Server 2016 Standard<br>Edition    | 11/28/16          |
| 2                 | Lenovo                        | <u>Lenovo System x3850</u><br>X6   | 1,106,832 | .89 USD    | NR          | 09/30/16               | Microsoft SQL Server 2016<br>Enterprise Edition | Microsoft Windows Server 2016 Standard<br>Edition    | 07/11/16          |
| 3                 | Hewlett Packard               | HPE Proliant DL580<br>Gen9         | 1,047,243 | 1.07 USD   | NR          | 09/30/16               | Microsoft SQL Server 2016<br>Enterprise Edition | Microsoft Windows Server 2016 Standard<br>Edition    | 06/27/16          |
| 4                 | Hewlett Packard<br>Enterprise | HP Integrity<br>Superdome X        | 780,346   | 2.27 USC   |             | 3/16                   | Enterpri Edi                                    | Microsoft Windows Server 2012 R2<br>Standard Edition | 02/02/16          |
| 5                 | Hewlett Packard<br>Enterprise | <u>HP Integrity</u><br>Superdome X | 680,841   | 2.35 USD   |             | √31/15                 | Microsoft St. erve 014<br>Enterprise Edition    | Microsoft Windows Server 2012 R2<br>Standard Edition | 10/30/15          |
| 6                 | Lenovo                        | <u>System x3950 X6</u>             | 652,239   | 2.43 USD   | NR          | /15                    | Microsoft SQL 9 ver 2<br>Enterprise Edit on     | Microsoft Windows Server 2012 R2<br>Standard         | 04/06/15          |
| 7                 | Hewlett Packard<br>Enterprise | HP Proliant DL580<br>Gen9          | 606,821   | 1.82 USD   | NR          | 05/05/15               | Microsoft SQL Server 2014<br>Enterprise Edition | Microsoft Windows Server 2012 R2<br>Standard         | 05/04/15          |
| 8                 | Hewlett Packard<br>Enterprise | DL580 G8                           | 404,005   | 2.34 USD   | NR          | 04/16/14               | Microsoft SQL Server 2014<br>Enterprise Edition | Microsoft Windows Server 2012 R2<br>Standard Edition | 04/15/14          |

Der TPC Benchmark ™ H (TPC-H) ist ein Entscheidungs-Benchmark. Es besteht aus einer Reihe von geschäftsorientierten Ad-hoc-Abfragen und gleichzeitigen Datenänderungen. Die Abfragen und die Daten, die die Datenbank belegen, wurden ausgewählt, um breite branchenweite Relevanz zu haben. Diese Benchmark veranschaulicht Entscheidungsunterstützungssysteme, die große Datenmengen untersuchen, Abfragen mit einem hohen Grad an Komplexität ausführen und Antworten auf kritische Geschäftsfragen geben.



#### SQL Server In-Memory Technologien

#### Schnellere Transaktionen

IN-MEMORY OLTP

Bis zu **30 mal schnellere** Transaktion Verarbeitung mit In-Memory OLTP





#### Schnellere Analytik

IN-MEMORY DW



Über **100 Mal schnellere**Abfrage-Geschwindigkeit und erhebliche Datenkomprimierung mit In-Memory-Columnstore





## SQL Server In-Memory Technologien in 2016 und Azure DB

Schnellere Transaktionen + Schnellere Analytik

IN-MEMORY OLTP

+ IN-MEMORY DW

# SQL Server 2016 HTAP Technologie Operative Echtzeitanalyse

HTAP (Hybrid Transaction and Analytics Processing)



Transaktion Verarbeitung mit In-Memory OLTP



Mit den gleichen Tabellen

#### Traditionelle analytische Architektur







# SQL Server 2016 HTAP Technologie

Operative Echtzeitanalyse



- Vorteile
  - Keine Datenlatenz
  - Keine ETL
  - Keine separate DW
- Herausforderungen
  - Minimale OLTP-Anpassung



# Eine Alternative zu SQL Server 2016 HTAP Technologie Operative Echtzeitanalyse

Auslagern der Analyse auf eine schreibgeschützte sekundäre Always On-Datenbank



# Beispiel-Projekt und neue Möglichkeiten in v2016 In-Memory Integration - OLTP





# Beispiel-Projekt und neue Möglichkeiten in v2016 In-Memory Integration - OLTP



Produktionssystem Hochverfügbarkeitsgruppe / AlwaysOn Failover-Cluster



# Beispiel-Projekt und neue Möglichkeiten in v2016 In-Memory Integration - OLTP







#### Beispiel-Projekt und neue Möglichkeiten in v2016



Archivierung & Historisierung in SQL Server 2014, Verwendung von In-Memory-OLTP & -DW. Planung und Entwicklung eines Archivierungskonzeptes(inklusive Historisierung und Backuplösung) für ein Energiehandelssystem (OLTP)

### In-Memory DW



Columstore Index (Spaltenbasierte Indizes) – Warum?

Zeilenbasiert

Spaltenbasiert



- Ideal für OLTP-Anwendungen 

  Hohe Datenkomprimierung
  - I/O Reduziert
  - Verbesserte In-Memory Verwendung und bessere CPU-Nutzung

**Ideal für DW** 

#### In-Memory DW



Columstore Index – Was ist neue?

CCI kann mit Non-CCI und mit alle anderen Indizes kombiniert werden. In-Memory und auch in Kombination Disk-Basiert verwendet werden.

Ebenso PK/FK Constraints werden unterstützt.



#### Was ist In-Memory OLTP



- Was ist In-Memory OLTP
  - Codename Hekaton: Extreme Transaktion Processing(XTP)
  - Hoch performante, Memory-optimierte OLTP-Engine
  - Integriert in SQL Server
  - Für moderne Hardwaretrends entworfen
- History
  - Beginn des Projektes war bereits vor7 Jahren
  - "Multi-versioned, timestemped optimistic concurrency control"
- Ziel-Einsatzgebiet
  - Hochperformantes OLTP





| SQL SERVER vs.                    | HEKATON/XTP                                                   |  |  |
|-----------------------------------|---------------------------------------------------------------|--|--|
| Shared data Shared data Latches   | Lock- und Latch-freie Datenstrukturen                         |  |  |
| concurrency Locking               | Versionierung mit Timestamps + Optimistic Concurrency Control |  |  |
| Query<br>Execution Interpretation | Kompilierung in DLL                                           |  |  |
|                                   |                                                               |  |  |

## In-Memory OLTP: Integration und Applications-Migration





#### Performance Gewinne





## Vollständige oder verzögerte Transaktionsdauerhaftigkeit



#### Tabelle 1: Dauerhaftigkeit in Atomic-Blöcken

| Dauerhaftigkeitsoption<br>für Atomic-Block | Keine Transaktion vorhanden                                        | Transaktion wird ausgeführt (vollständig oder verzögert dauerhaft)                                                   |  |  |
|--------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|
| DELAYED_DURABILITY = OFF                   | Atomic-Block startet eine neue vollständig dauerhafte Transaktion. | Atomic-Block erstellt einen Sicherungspunkt in der vorhandenen<br>Transaktion und startet dann die neue Transaktion. |  |  |
| DELAYED_DURABILITY = ON                    | Atomic-Block startet eine neue verzögert dauerhafte Transaktion.   | Atomic-Block erstellt einen Sicherungspunkt in der vorhandenen<br>Transaktion und startet dann die neue Transaktion. |  |  |

| COMMIT-Einstellung/Datenbankeinstellung                                                               | DELAYED_DURABILITY                        | DELAYED_DURABILITY                   | DELAYED_DURABILITY                      |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|-----------------------------------------|
|                                                                                                       | = DISABLED                                | = ALLOWED                            | = FORCED                                |
| <b>DELAYED_DURABILITY</b> = <b>OFF</b> Transaktionen auf Datenbankebene.                              | Transaktion ist                           | Transaktion ist                      | Transaktion ist verzögert               |
|                                                                                                       | vollständig dauerhaft.                    | vollständig dauerhaft.               | dauerhaft.                              |
| <b>DELAYED_DURABILITY</b> = <b>ON</b> Transaktionen auf Datenbankebene.                               | Transaktion ist<br>vollständig dauerhaft. | Transaktion ist verzögert dauerhaft. | Transaktion ist verzögert<br>dauerhaft. |
| <b>DELAYED_DURABILITY</b> = <b>OFF</b> Datenbankübergreifende Transaktion oder verteilte Transaktion. | Transaktion ist                           | Transaktion ist                      | Transaktion ist                         |
|                                                                                                       | vollständig dauerhaft.                    | vollständig dauerhaft.               | vollständig dauerhaft.                  |
| <b>DELAYED_DURABILITY</b> = <b>ON</b> Datenbankübergreifende                                          | Transaktion ist                           | Transaktion ist                      | Transaktion ist                         |
| Transaktion oder verteilte Transaktion.                                                               | vollständig dauerhaft.                    | vollständig dauerhaft.               | vollständig dauerhaft.                  |



Simulation eines Reservierungssystems in In-Memory OLTP



- SQL Server In-Memory OLTP
  - https://msdn.microsoft.com/de-de/library/dn133186.aspx
- SQL Server Columnstore Indizes
  - https://msdn.microsoft.com/de-de/library/gg492088.aspx
- SQL Server HTAP, Columnstore für operative Echtzeitanalyse
  - https://msdn.microsoft.com/de-de/library/dn817827.aspx
- Columnstore-BLOG von Niko Neugebauer
  - http://www.nikoport.com/columnstore/



#### **Can Dogangüzel**

Senior Consultant

Can.Doganguezel@sd-c.de

SD&C Solutions Development & Consulting GmbH

Mauerstraße 79 10117 Berlin

Tel: +49 (0)30 443232 0