Национальный исследовательский ядерный университет «МИФИ»

Лабораторная работа No.5 «Методы решения Обыкновенных Дифференциальных Уравнений»

Выполнил: студент группы k6-361

Рыбников Виталий.

Вариант: 5.6

Май — 2013

Цель:

Изучение и применение методов численного решения задачи Коши для обыкновенных дифференциальных уравнений первого порядка.

Постановка задачи

Дана задача Коши для обыкновенного дифференциального уравнения (ОДУ) первого порядка. Необходимо найти решение этой задачи в виде числовой таблицы приближённых значений y_i искомого решения y(x) на некоторой сетке $x_i \in [x_0; b]$ значений аргумента x.

Исходные данные

Задача Коши:
$$\begin{cases} y' = f(x,y) = \frac{x^2y}{2} \\ y(x_0) = 1 \end{cases}; h = 0.1$$

Отрезок решения: [0; 1]

Требуемая точность: $\varepsilon = 1e - 4$

Необходимо решить ОДУ используя метод прогноза и коррекции II порядка.

Результаты

Формула ПиК II порядка:
$$\begin{cases} y_{i+1}^{pro} = y_i + \frac{h}{2}(3f(x_i, y_i)) - f(x_{i-1}, y_{i-1}) \\ y_{i+1} = y_i + \frac{h}{2}(f(x_{i+1}, y_{i+1}^{pro}) + f(x_i, y_i)) \end{cases}$$

Для получения значений, необходимых для старта метода (y_1) был использован метод Рунге-Кутта IV порядка точности.

Полученное приближённое решение задачи Коши: $y(b) \approx 1.18136043$

Для постижения точности ε была использована оценка по Рунге. Параметр p=2.

Конечный шаг h = 0.00078

Таблица 1: Численное решений задачи Коши, с шагом, удовлетворяющим оценке по Рунге.

x_i	$y_{h_{\varepsilon}}(x_i)$	$y_{2h_{arepsilon}}(x_i)$	$ y_{h_{\varepsilon}}(x_i) - y_{2h_{\varepsilon}}(x_i) $
x_0	1	1	0
x_{321}	1.0026	1.0026	0.000012
x_{641}	1.0211	1.0211	0.000050
x_{961}	1.073	1.0728	0.000118
b	1.1814	1.1814	6.2692E - 08

Выводы

Расчёты в таблице 1 полностью совпадают с теоретическими. Итоговая оценка погрешности по Рунге $\rho=7.6778E-05$.