04. Reti di Calcolatori

Corso di Informatica

Outline

- Reti di Calcolatori
 - Cosa sono ed a cosa servono?
 - Alcune definizioni
- Standardizzazione della comunicazione
- Il modello ISO/OSI
- Il modello TCP/IP
 - LAN ed IP (in brevissimo)
- II progetto IEEE 802

Reti di Calcolatori: cosa sono ed a cosa servono?

- Permettono la comunicazione tra due (o più) calcolatori.
- Sono a commutazione di pacchetto.
- Ne esistono svariate topologie.

Reti di Calcolatori: alcune definizioni

Commutazione di pacchetto

- Indica che le informazioni sono incapsulate in pacchetti che vengono scambiati tra gli host.
- Differisce dalle reti a **commutazione di circuito** (es. reti telefoniche tradizionali).

Topologia

- Stabilisce come sono interconnessi gli host in una rete.
- La conformazione può influenzare i protocolli utilizzati.

Standardizzazione della comunicazione

- Standard per la comunicazione
 - Presentazione dei dati
 - Identificazione mittente/destinatario
 - Codifica dei dati
 - Indipendenza dal dispositivo utilizzato
- Prima risposta: modello ISO/OSI

Il Modello ISO/OSI (1)

- Rappresenta uno standard per le reti di telecomunicazioni
 - Consta di sette diversi livelli (layer)
 - Utile a comprendere i concetti di rete
 - Soddisfa tutti i principi necessari per la standardizzazione

Application Layer Presentation Layer Session Layer Transport Layer Internet Layer Data Link Layer Physical Layer

Il Modello ISO/OSI (2)

Il Modello ISO/OSI (3)

- Ogni layer:
 - Offre dei servizi al livello sovrastante
 - Usa i servizi offerti dal livello sottostante
 - · Comunica, dal punto di vista logico, con il livello equivalente

Il Modello TCP/IP (1)

- Modello realmente implementato
- Rispetto all'ISO/OSI:
 - Ci sono solo quattro/cinque livelli
 - Funzioni di sessione e presentazione demandate a librerie esterne
- Due protocolli principali:
 Transmission Control Protocol ed

 Internet Protocolc

Application Layer

Transport Layer

Internet Layer

Data Link Layer

Il Modello TCP/IP (2)

Internet Protocol

- Opera a livello di rete
- Permette di identificare due macchine in reti differenti
- Attualmente alla versione 6 (128 bit)
- La versione 4 (32 bit) è comunque quella più utilizzata

Transmission Control Protocol

- Opera a livello di trasporto
- Garantisce l'affidabilità della comunicazione
- E' connection-oriented
- Complementare allo User Datagram Protocol (UDP)

LAN ed IP in brevissimo (1)

- Host A.2 vuole comunicare con Host B.2
- Entrambi hanno un indirizzo IP di rete interna!
- La comunicazione usando questi IP sarebbe impossibile, perché ambigua.
- Ogni router implementa un protocollo chiamato Network Adress Translation

LAN ed IP in brevissimo (2)

- A.2 e B.2 hanno un indirizzo IP di rete interna!
- La comunicazione usando questi IP sarebbe impossibile, perché ambigua.
- Ogni router implementa un protocollo chiamato Network Adress Translation

LAN ed IP in brevissimo (3)

- Local IP: indirizzo IP della macchina interna
- Local Port: porta associata alla comunicazione sulla macchina interna
- Pseudo IP: indirizzo IP visto all'esterno
- Peer IP: indirizzo IP con cui si comunica
- NOTA: i nomi possono variare!

+					
Index	Local IP	Local Port	Pseudo IP	Peer IP	Peer Port
	(100,100,00		4704040		
1	192.168.8.2	55324	172.1.8.12	62.10.4.1	80
2	192.168.8.4	65343	172.1.8.12	112.3.6.1	21
3	192.168.7.11	51990	172.1.8.12	221.11.3.9	80
4	192.168.9.12	61315	172.1.8.12	11.113.54.13	80
'	152.100.5.12	01010	1721110112	1111111111111	
5	192.168.8.4	62345	172.1.8.12	62.10.4.1	80

Il Progetto IEEE 802

- Ha come obiettivo rendere indipendente il mezzo fisico dal collegamento.
- Per farlo, suddivide il livello link (data link) in due sottolivelli:
 - Logical Link Control (802.2) Multiplexing e controllo di flusso
 - Media Access Control Interazione diretta con il layer fisico
- Il fatto che esistano diverse implementazioni di MAC ha permesso di sviluppare standard di comunicazione variabili con il mezzo trasmissivo
 - Esempi: 802.3 Ethernet, 802.11 WiFi

(Data) Link Layer

Logical Link Control

Medium Access Control

Domande?

42