MACM 101 Chapter 2.1 Homework

Alexander Ng

Monday, October 7, 2024

Question 12

- (a) Given $\emptyset \in \{\emptyset\}$. $\{\emptyset\}$ is a set containing only the \emptyset , therefore, the given statement is **True**.
- (b) Given $\emptyset \in \{\emptyset, \{\emptyset\}\}\$. \emptyset is an element of $\{\emptyset, \{\emptyset\}\}\$, therefore, the given statement is **True**.
- (c) Given $\{\emptyset\} \in \{\emptyset\}$. $\{\emptyset\}$ is not an element of $\{\emptyset\}$, therefore, the given statement is **False**.
- (d) Given $\{\emptyset\} \in \{\{\emptyset\}\}\$. $\{\emptyset\}$ is an element of $\{\{\emptyset\}\}\$, therefore, the given statement is **True**.
- (e) Given $\{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}\$. Every element in $\{\emptyset\}$ is also an element of $\{\emptyset, \{\emptyset\}\}\$, therefore the given statement is **True**.
- (f) Given $\{\{\emptyset\}\}\subset\{\emptyset,\{\emptyset\}\}$. Every element in $\{\{\emptyset\}\}$ is also an element of $\{\emptyset,\{\emptyset\}\}$, therefore the given statement is **True**.
- (g) Given $\{\{\emptyset\}\}\subset \{\{\emptyset\}, \{\emptyset\}\}\}$. Every element in $\{\{\emptyset\}\}$ is also an element of $\{\{\emptyset\}, \{\emptyset\}\}\}$. However, the sets are equal, therefore the given statement is **False**.

Question 34

Let $A = \{a, b, c\}, B = \{x, y\}$ and $C = \{0, 1\}.$

$$\begin{aligned} &(\mathbf{a}) \ \ A \times B \times C \\ &= (A \times B) \times C \\ &= \{(a,x),(a,y),(b,x),(b,y),(c,x),(c,y)\} \times C \\ &= \{(a,x,0),(a,x,1),(a,y,0),(a,y,1),(b,x,0),(b,x,1),\\ &(b,y,0),(b,y,1),(c,x,0),(c,x,1),(c,y,0),(c,y,1)\} \end{aligned}$$

$$\begin{array}{l} \text{(b)} \ \ C \times B \times A \\ = (C \times B) \times A \\ = \{(0,x),(0,y),(1,x),(1,y)\} \times A \\ = \{(0,x,a),(0,x,b),(0,x,c),(0,y,a),(0,y,b),(0,y,c),\\ (1,x,a),(1,x,b),(1,x,c),(1,y,a),(1,y,b),(1,y,c)\} \end{array}$$

(c)
$$C \times A \times B$$

 $= (C \times A) \times B$
 $= \{(0, a), (0, b), (0, c), (1, a), (1, b), (1, c)\} \times B$
 $= \{(0, a, x), (0, a, y), (0, b, x), (0, b, y), (0, c, x), (0, c, y)$
 $(1, a, x), (1, a, y), (1, b, x), (1, b, y), (1, c, x), (1, c, y)\}$

(d)
$$B \times B \times B$$

= $(B \times B) \times B$
= $\{(x, x), (x, y), (y, x), (y, y)\} \times B$
= $\{(x, x, x), (x, x, y), (x, y, x), (x, y, y), (y, x, x), (y, x, y), (y, y, x), (y, y, y)\}$

Question 44

Prove or disprove that if A, B, and C are nonempty sets and $A \times B = A \times C$, then B = C.

Assume $B \neq C$.

This means $\exists x (x \in B \land x \notin C)$

However, because $A \times B$ is defined as $\{(a,b)|a \in A \land b \in B\}$, and $A \times C$ is defined as $\{(a,c)|a \in A \land c \in B\}$, if $\exists x(x \in B \land x \notin C)$, this implies $\exists x((a,x) \in A \times B \land (a,x) \notin A \times C)$

$$A \times B \neq A \times C$$

This is a contradiction, thus B = C.

Question 50

This exercise presents Russell's paradox. Let S be the set that contains a set x if the set x does not belong to itself, so that $S = \{x \mid x \notin x\}$.

Part a

Show the assumption that S is a member of S leads to Links a contradiction.

Assume $S \in S$.

By definition of S, this means $S \notin S$.

 $S \in S$ implies $S \notin S$ is a contradiction.

Part b

Show the assumption that S is not a member of S leads to a contradiction.

Assume $S \notin S$.

By definition of S, this means $S \in S$.

 $S \notin S$ implies $S \in S$ is a contradiction.