HeLP Challenge

Stroke onset time

File format

Medical Image

- DCM(Digital Imaging and Communications in Medicine)
 - is the international standard for medical images and related information
 - raw data
 - 2D slice 를 여러 장으로 쌓은 형태
 - Included patient and image info
 - .DCM
- NIFTI(Neuroimaging Informatics Technology Initiative)
 - 3D Volume
 - .NII
- Analyze
 - hdr file for metadata, img file for image data

ref

https://www.dicomstandard.org/ https://nifti.nimh.nih.gov/nifti-1

의료영상처리 라이브러리 (python)

Medical Imaging

- SimpleITK: 전반적인 의료영상처리 관련 함수 제공 라이브러리
- opency-python
- Pydicom
- medpy

Neuroimaging (http://nipy.org/index.html)

- NiBabel: 의료영상 파일 읽고 쓰기 지원 라이브러리
- NiLearn: 영상 시각화, 머신러닝 등의 영상처리 라이브러리
- NiPype
- NiWidgets

> 기타

- Numpy
- Scipy
- matplotlib
- Pandas
- scikit-learn

Radiographic Presentations

Right

Right

Axial

Left

Posterior

Head

Coronal

Left

Anterior

Sagittal

Posterior

Foot

Medical image viewer

MRICron

Medical image viewer

> ITK-SNAP

NIfTI (.nii) file in python (using simpleITK)

Read image

```
import SimpleITK as sitk
imageInput = sitk.ReadImage[file_name_imageI1[n])
```

Get size, origin, spacing, direction

```
imageInput =sitk.ReadImage(file_name_imageT1[0])

origin3d = imageInput.GetOrigin()
spacing3d =imageInput.GetSpacing()
size3d =imageInput.GetSize()
direction3d =imageInput.GetDirection()
```

Convert itk image to array

```
imageT = sitk.GetArrayFromImage(image) # covert itk image to Array
model.train_on_batch(imageT,LabelT1)
```

Write image

```
model1.load_weights(path_model1)
result11 = model1.predict(imageT)
result1 = result11.reshape((img_rows,img_cols,img_dep))
ResultImg11 = sitk.GetImageFromArray(result1)
final_Img1.SetSpacing(originalImg.GetSpacing())
final_Img1.SetOrigin(originalImg.GetOrigin())
sitk.WriteImage(final_Img1,output_filename)
```


NIfTI (.nii) file in python (using simpleITK)

- http://insightsoftwareconsortium.github.io/SimpleITK-Notebooks/
- IntensityWindowing

```
isocubic_img_ww = sitk.Cast(sitk.IntensityWindowing(isocubic_img, LowT,HighT,0,255), sitk.sitkUInt8)
```

Extract

ExtractImageFilter() - Crops an image to the selected region bounds using vectors; Collapses dimensions unless dimension is two

```
# Collapse along the x axis
extractSliceFilter = sitk.ExtractImageFilter()
size = list(mr_image.GetSize())
size[0] = 0
extractSliceFilter.SetSize( size )

index = (x, 0, 0)
extractSliceFilter.SetIndex(index)
sitk_xslice = extractSliceFilter.Execute(mr_image)
```

Compose

ComposeImageFilter() - Combines several scalar images into a multicomponent vector image

```
# Recompose image (should be same as joined_image)
compose = sitk.ComposeImageFilter()
composed_image = compose.Execute(channel1_image, channel2_image, channel3_image)
```


- > MRI
 - Multi-modal image
 - DWI (diffusion-weighted image) & ADC (apparent diffusion coefficient) map
 - "XXXX_b1000.nii"
 - "XXXX ADC.nii"
 - FLAIR (fluid attenuated inversion recovery)
 - "XXXX FLAIR.nii"
 - Coregistered (rigid-transformed) into DWI
 - Brain & infarct masks
 - "XXXX_brain.nii"
 - "XXXX infarct.nii"
 - Coregistered (rigid-transformed) into DWI

- > MRI
 - Binary classification
 - Positive (1): within 4.5 hours from symptom onset
 - Negative (0): beyond 4.5 hours from symptom onset

	Positive class	Negative class
Train	123	132
Validation	26	18
Test	33	23

Positive case

Negative case

Preprocessing

Intensity normalization

Preprocessing

Intensity normalization

(Predicted) Output

"output.csv"

Ranking scheme

> Evaluation

- $F_{0.5}$ score
 - Weighs recall lower than precision (by attenuating the influence of false negatives)
 - https://en.wikipedia.org/wiki/F1_score

$$F_{eta} = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}.$$

Accuracy

$$Accuracy = (TP+TN)/(TP+TN+FP+FN)$$

- AUC (Area Under the Curve)
 - https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Medical **I**maging Intelligent Reality Lab

Clinical Collaborators @ Asan Medical Center

Radiology

Joon Beom Seo, SangMin Lee^{A,B}, Dong Hyun, Yang, Hyung Jin Won, Ho Sung Kim, Seung Chai Jung, Ji Eun Park, Jeong Hyun Lee, So Jung Lee, Gilsun Hong, Hyoung Jung Kim

Pathology

Hyunjeong Go, Gyuheon Choi, Gyungyub Gong, Dong Eun Song

Cardiology

Jaekwan Song, Jongmin Song, Young-Hak Kim

Anesthesiology

Sung-Hoon Kim, Eun Ho Lee

Neurology

Dong-Wha Kang, Chongsik Lee, Jaehong Lee, Sangbeom Jun, Misun Kwon, Beomjun Kim

Surgery

Beom Seok Ko, JongHun Jeong, Songchuk Kim, Tae-Yon Sung

Emergency Medicine

Dong-Woo Seo

Internal Medicine

Jeongsik Byeon, Kang Mo Kim

