Joaninhas Calorosas

11 de novembro de 2014

Este projeto consiste em um programa que simula a movimentação de insetos ("joaninhas") em função da temperatura ao seu redor.

1 O problema

As joaninhas caminharão por uma matriz hexagonal quadrada e a cada passo podem escolher entre permanecer onde estão ou seguir para uma das seis casas vizinhas.

Cada joaninha é uma fonte de calor, cuja emissão é dada pela equação (1), onde r é a distância euclidiana entre o centro do hexágono destino e o centro

do hexágono onde se encontra a joaninha.

$$\theta(r) = \frac{C}{r^2} \tag{1}$$

A temperatura em um hexágono ocupado pela joaninha i é dada pela somatória da contribuições das temperaturas das *outras* joaninhas. Isto é,

$$\theta(\text{hexágono}_j) = \sum_{i \neq j} \frac{C}{r_i^2}$$
 (2)

 r_i sendo a distância euclidiana até o centro do hexágono ocupado pela joaninha i.

O movimento da joaninha i é regido pela temperatura no hexágono onde ela se encontra, indicado por $\theta_J(i)$:

$$\theta_J(i) < \theta_{min} \rightarrow \text{procura calor}$$

 $\theta_J(i) > \theta_{max} \rightarrow \text{procura frio}$
c.c. $\rightarrow \text{permanece onde está}$

Para evitar conflitos, valem as seguintes regras:

- A procura de calor (ou frio) significa que a joaninha tentará se mover para o hexágono vizinho de maior (respec. menor) temperatura.
- Só devem ser considerados hexágonos vagos para esta tentativa de movimentação.
- Se a joaninha não tiver opção de movimentação, ela permanecerá parada.
- Se duas joaninhas tentarem ocupar o mesmo lugar, prevalecerá aquela com a maior diferença absoluta de temperatura entre o hexágono de origem e o de destino do movimento.
- Persistindo o empate, os movimentos são cancelados.

1.1 Perturbações

De tempos em tempos, podem surgir fontes temporárias de calor ou frio em hexágonos livres. Isto será determinado por geradores aleatórios independentes, definidos para cada hexágono.

A fonte de calor funciona como uma joaninha fixa, com duração de n_C ciclos de simulação. A "fonte" de frio tem a mesma característica, com com uma constante de emissão negativa.

2 O programa

O programa deve receber os seguintes parâmetros na linha de comando:

- L largura da matriz
- A altura da matriz
- j número de joaninhas
- s semente para o gerador aleatório (veja abaixo)
- \bullet C constante de emissão de calor da joaninha
- \bullet θ_{min} menor temperatura que a joaninha considera confortável
- \bullet θ_{max} maior temperatura que a joaninha considera confortável
- p_C probabilidade, por hexágono, de aparecer uma fonte de calor
- $\bullet \ n_C$ duração em ciclos da fonte de calor
- p_F probabilidade, por hexágono, de aparecer uma fonte de frio
- \bullet n_F duração em ciclos da fonte de frio
- \bullet T número de ciclos de simulação
- \bullet P número de processadores (threads) para execução

As temperaturas das fontes de calor e frio serão +C e -C, respectivamente.

Na inicialização, o gerador aleatório usará a semente s para distribuir as joaninhas na matriz. Em seguida calculará uma semente para cada hexágono, em função de sua posição e do valor corrente de s, segundo a fórmula abaixo:

$$s_{\text{hex}(i,j)} = ((i+1) \times s_{\text{atual}} + j)\% \text{RAND_MAX}$$

No final o programa deverá gravar um arquivo com a posição de cada joaninha e sua temperatura.

Que a velocidade esteja com vocês.