MATEMÁTICA DISCRETA

Lic. Ciências da Computação

Exercícios de Teoria de Números - Divisibilidade

- 1. Sejam $a, b, c, d \in \mathbb{Z}$. Mostre que:
 - (a) 1 | a, a | a e a | 0;
 - (b) $a \mid 1 \text{ sse } a = \pm 1;$
 - (c) $0 \mid a \text{ sse } a = 0;$
 - (d) se $c \neq 0$, então $a \mid b$ sse $ac \mid bc$;
 - (e) $a \mid b \in a \mid b + c$ implica que $a \mid c$;
 - (f) se $ab \neq 0$ e $a \mid b$ e $b \mid a$, então |a| = |b|.
- 2. Sejam $a, x, y \in \mathbb{Z}$. Mostre que, se $a \mid (2x + 3y)$ e $a \mid (4x + 5y)$, então $a \mid y$.
- 3. Usando indução natural, mostre que 4 | $5^n 1$ para qualquer $n \in \mathbb{N}$.
- 4. Calcule o quociente e o resto da divisão de a por b em cada caso:
 - (a) a = 29 e b = 4;
 - (b) a = -29 e b = 4;
 - (c) a = -29 e b = -4;
 - (d) a = 29 e b = -4;
 - (e) a = -1350 e b = 45;
 - (f) a = -1351 e b = 45;
 - (g) a = -1351 e b = -45;
 - (h) a = 0 e b = -37.
- 5. Sejam $a, b \in \mathbb{Z}$ e $b \neq 0$. Prove as afirmações seguintes.
 - (a) m.d.c.(a, b) = m.d.c.(|a|, |b|) = m.d.c.(b, a).
 - (b) se $b \mid a$, então m.d.c.(a, b) = |b|.
 - (c) m.d.c.(0, b) = |b|.
- 6. Em cada caso, utilizando o algoritmo de Euclides, calcule o máximo divisor comum de a e b e escreva-o como combinação linear de a e b.
 - (a) a = 144 e b = 34;
 - (b) a = 34 e b = 144;
 - (c) a = 39 e b = 51;
 - (d) a = -39 e b = -51;
 - (e) a = -63 e b = -37;
 - (f) a = -63 e b = 37.

- 7. Resolva as seguintes equações no conjunto dos números inteiros:
 - (a) 144x + 34y = 20,
 - (b) 39x + 51y = 7,
 - (c) 63x 37y = 3,
 - (d) 63x + 37y = 3,
 - (e) 119x 29y = 8.
- 8. Sejam a e b inteiros não ambos nulos. Mostre que o conjunto

$$S = \{ax + by \mid x, y \in \mathbb{Z}\}\$$

é o conjunto de todos os múltiplos de m.d.c.(a, b).

- 9. Prove que o resto da divisão do quadrado de qualquer número inteiro por 4, ou é 0 ou é 1.
- 10. Seja $a \in \mathbb{Z}$. Mostre que $\frac{a(a^2+2)}{3} \in \mathbb{Z}$.
- 11. Utilizando o Algoritmo da Divisão, prove que:
 - (a) um quadrado perfeito não é da forma 3k + 2;
 - (b) um inteiro da forma $3k^2 1$ não é um quadrado perfeito.
- 12. Sejam a e b inteiros não ambos nulos. Mostre que:
 - (a) $a \in b$ são primos entre si sse, existem inteiros $x \in y$, tais que 1 = ax + by;
 - (b) se d = m.d.c.(a,b), então $\frac{a}{d}$ e $\frac{b}{d}$ são primos entre si;
 - (c) se m.d.c.(a, b) = 1 e $c \in \mathbb{Z}$ é tal que $a \mid c$ e $b \mid c$, então $ab \mid c$.
- 13. Prove que dois inteiros consecutivos são primos entre si.
- 14. Verifique que 6 | a(a+1)(2a+1), qualquer que seja $a \in \mathbb{Z}$.
- 15. Verifique que, para qualquer $n \in \mathbb{N}$, $6 \mid n^3 n$.
- 16. Sejam $a, b \in \mathbb{Z} \setminus \{0\}$. Mostre que:
 - (a) m.m.c.(a, b) = m.m.c.(|a|, |b|) = m.m.c.(b, a).
 - (b) m.m.c.(a, a) = |a|.
 - (c) se $b \mid a$, então m.m.c.(a, b) = |a|.
 - (d) m.d.c.(a, b) | m.m.c.(a, b).
 - (e) m.m.c.(ka, kb) = |k|m.m.c.(a, b) para qualquer $k \in \mathbb{Z} \setminus \{0\}$.
- 17. Em cada caso, calcule o mínimo múltipo comum de a e b e escreva-o como combinação linear de a e b.
 - (a) a = 144 e b = 34;
 - (b) a = 34 e b = 144;
 - (c) a = 39 e b = 51;
 - (d) a = -39 e b = -51;
 - (e) a = -63 e b = -37.