Docket No.: V9661.0092

AMENDMENTS TO THE CLAIMS

- 1. (Currently amended) A method for synthesizing a cyclic sulfamidate from a sulfamate compound comprising a sulfonylamide functional group comprising the step of catalyzing the reaction of an oxidant with said <u>sulfamate</u> compound with a catalytic amount of metalloporphyrin as catalyst for producing the cyclic sulfamidate.
- 2. (Currently Amended) The method according to claim 1, wherein said sulfamate compound is a sulfamate ester.
- 3. (Currently amended) The method according to claim 1, wherein the oxidant is selected from the group consisting of PhI(OAc)₂, PhIO, and NBS.
- 4. (Currently amended) The method according to claim 1, effected in the presence of an organic solvent selected from the group consisting of acetonitrile, DMF, C₄H₄Cl₂, CH₂Cl₂, and benzene.
- 5. (Currently amended) The method according to claim 1, effected in the presence of an inorganic base is selected from the group consisting of Al₂O₃, MgO, ZnO, K₂CO₃, and NaOH.
- 6. (Currently amended) The method according to claim 1, wherein the metalloporphyrin is a transition metal metalloporphyrin.
- 7. (Currently amended) The method according to claim 6, wherein the transition metal metalloporphyrin is selected from the group consisting of ruthenium, manganese, iron, cobalt, copper and osmium metalloporphyrin.
- 8. (Original) The method according to claim 7, wherein the metalloporphyrin is ruthenium porphyrin.

Application No. 10/790,810

9. (Currently amended) The method of claim 3, wherein the method is effected in the presence of an inorganic base [[is]] selected from the group consisting of Al₂O₃, MgO, ZnO, K₂CO₃, and NaOH; the metalloporphyrin is a transition metal metalloporphyrin; and wherein the method is effected in the presence of an organic solvent selected from the group consisting of acetonitrile, DMF, C₄H₄Cl₂, CH₂Cl₂ and benzene.

Docket No.: V9661.0092

10. (Currently amended) The method according to claim 1, wherein the catalyst is represented by the structure:

wherein M is a transition metal;

each R^1 - R^{12} is independently selected from the group consisting of -H, -halogen, - CO_2R^{13} , -CN, - NO_2 , SR^{13} , SO_2R^{13} , optionally substituted hydroxyl, optionally substituted amino, halogen, optionally substituted $C_{1\text{-}20}$ alkyl, optionally substituted phenyl; optionally substituted naphthyl; optionally substituted anthracenyl, and optionally substituted heteroatom-containing aromatic ring, in which the optional substitutents are independently selected from the foregoing alkyl, phenyl, naphthyl, anthracenyl and heteroatom-containing aromatic groups; R^{13} is independently selected from the same groups as R^1 other than $-SR^{13}$ and $-SO_2R^{13}$; and

L is CO or as defined as for R¹;

Application No. 10/790,810 Docket No.: V9661.0092

11. (Currently Amended) The method according to claim 10, wherein the metalloporphyrin catalyst has the structure:

or

wherein M represents a metal.

12. (Canceled)

Application No. 10/790,810 Docket No.: V9661.0092

13. (Currently Amended) The method according to claim [[12]] 11, wherein the catalyst is selected from the group consisting of:

- 14. (Currently amended) The method of claim 9, wherein the catalyst exhibit *cis*-diastereoselectivity.
- 15. (Currently amended) The method of claim 9, wherein the catalyst exhibits enantioselectivity and yields the corresponding cyclic sulfamidate with an enantomeric excess value of at least 46.

Application No. 10/790,810

Docket No.: V9661.0092

16. (Currently amended) The method of claim 9, wherein the catalyst exhibits a product turnover number of at least 290.

17. (Currently amended) The method of claim 9, wherein the catalyst exhibits a product turnover number of at least 290.