# CISC/CMPE452/COGS 400 Supervised Learning Other Approaches

Ch. 4 - Text book

Farhana Zulkernine

# Shortcomings of BPN

• What is the next letter in the sequence?:

O

 $\mathsf{T}$ 

T

F

F

S

S

?

BPN is not good for sequence prediction or learning.

#### Shortcomings of BPN

#### Consider the following learning problem:

| Training Data |         | Test data |
|---------------|---------|-----------|
| 101101        | class 1 | 111101    |
| 011010        | class 2 | 001100    |
| 101011        | class 1 |           |
| 110001        | class 2 |           |
| 001001        | class 1 |           |
| 111010        | class 1 |           |
| 100110        | class 2 |           |

- To what classes do the test data belong?
- At some point you stop trying to relate the individual locations to the classes and look for some other means of making the relation. Backpropagation cannot make that switch.

#### Other Networks

- Madaline
- Adaptive Multilayer Networks
- Recurrent Networks

#### Madaline

- Combination of many adalines.
- Uses least MSE (desired actual) output for error correction as in the Adaline.
- Follows "minimum disturbance" principle for learning.
  - Only changes the weights to nodes whose net inputs are smaller than a threshold.
  - Examines the result of changing the output of such a node look forward.
  - If a "change" results in a decrease in ANN error, ONLY then weights leading into that node are changed
- Can be multilayered with hidden and output nodes as adalines which are trained using various *Madaline Rule* training algorithm.
  - 3 versions described in the book.

#### Madaline



# Size of NN matters: Why?

- Smaller networks are more desirable than larger ones doing the same job.
  - Faster training
  - Fewer parameters
  - Fewer training samples are required
  - Likely to generalize well for new test samples

# Adaptive Multilayer Networks

- Three approaches to build a network of "optimal" size that are
  - based on sound heuristics that have been shown empirically to work.
  - But none is guaranteed to result in optimal size.
- 1. (–) A large network may be built and then "pruned" by eliminating nodes and connections that can be considered unimportant.
- 2. (+) Starting with a very small network, the size of the network is repeatedly increased by small increments until performance is satisfactory.

# Adaptive Multilayer (cont...)

3. (-+) A *sufficiently* large network is trained, and unimportant connections and nodes are then pruned, following which new nodes with random weights are re-introduced and the network is retrained.

Pruning continues until a network of acceptable size and performance level is obtained, or further pruning attempts become unsuccessful.

# NN Pruning

• Pruning a connection corresponds to changing the connection weight from w to 0,

i.e., 
$$\Delta w = -w$$

Train a network large enough to solve the problem at hand; repeat

Find a node or connection whose removal does not penalize performance beyond desirable tolerance levels;

Delete this node or connection;

(Optional:) Retrain the resulting network until further pruning degrades performance excessively.

Fig. 4.1 (-) Generic network pruning algorithm.

#### Identify Unimportant Node/Connection

- 1. Connections associated with weights of small magnitude may be eliminated from the trained network.
- 2. Connections whose existence does not significantly affect network outputs (or error) may be pruned (abnormal feature). These may be detected by
  - Examining the change in network output when a connection weight is changed to 0 or  $\Delta w = -w$ .
  - Testing whether  $\partial y/\partial w$  is negligible.

# Disadvantage

- Takes time to train a network.
- Takes time to train then prune the network.
- If the weights have already converged then pruning nodes or connections results in significant degradation in performance.

# Adaptive Network Pruning

- As an alternative to first training large networks and then pruning them, several network pruning algorithms have been proposed that *adaptively* build up larger networks from smaller ones.
  - Marchand's algorithm
  - Upstart algorithm
  - Neural Tree
  - Cascade Correlation
  - Tiling Algorithm

# Marchand's Algorithm

- Marchand's algorithm obtains an "optimal" size network for classification problems, repeatedly adding a perceptron node to the hidden layer.
  - Example: Feedforward NN with one hidden layer where perceptron nodes are added repeatedly.

let  $T_k^+$  and  $T_k^-$  represent the nonempty sets of training samples of two classes that remain to be correctly classified, a new node is added, whose weights are trained such that either  $|T_{k+1}^+| < |T_k^+|$  or  $|T_{k+1}^-| < |T_k^-|$ , and  $(T_{k+1}^- \cup T_{k+1}^+) \subset (T_k^- \cup T_k^+)$ , ensuring that the algorithm terminates eventually at the mth step, when either  $T_m^-$  or  $T_m^+$  is empty.

#### Marchand's Algorithm

#### Example: For a Two Class Problem



**x** and **y** are 2-dimensional input vectors of classes + and -

#### Marchand's Algorithm (cont...)



$$T_k^+ = \{x_2, x_5, x_1, ..., \}$$
 vectors

Step 4: Go to next iteration

$$T_k^- = \{y_1, y_2, y_3, ...\}$$
 vectors

**x** and **y** are 2-dimensional input vectors of classes + and -

#### Marchand's Algorithm (cont...)



5. Add a parent output node with inputs from all  $H_+$  and  $H_-$  such that  $w_k = 1/2^k$  for all nodes in  $H_+$  and  $w_k = -1/2^k$  for all nodes in  $H_-$ . This ensures that the nodes added later do not modify the correct results obtained by earlier nodes.

$$T_k^+ = \{ \}$$
 vectors

$$T_k^- = \{y_3, \ldots\}$$
 vectors

**x** and **y** are 2-dimensional input vectors of classes + and -

#### Example 4.1 – Corner Isolation Problem

- Two dimensional input patterns  $\epsilon$  [-1, +1]<sup>2</sup>
- Two output classes  $\epsilon$  [1, 0] that are NOT linearly separable (least no. of misclassification using Adaline = 3).
- Class I:  $\{(-1,1), (-1,-1), (1,1), (1,-1)\} = T_0^+$ >Desired output =1
- Class II:  $\{(-1,0), (0,-1), (0,1), (1,0), (0,0)\} = T_0^-$ 
  - $\triangleright$  Desired output = 0

#### Adding Hidden Nodes

#### **Corner Isolation Problem**





$$T_1^+ = \{(-1,-1), (1,1), (1,-1)\}$$
  
 $T_1^- = \{(-1,0), (0,-1), (0,1), (1,0), (0,0)\}$ 





#### Adding Hidden Nodes





$$T_3^+ = T_2^+ = \{(-1,-1), (1,1)\}$$
  
 $T_3^- = \{(0,-1), (1,0), (0,0)\}$ 

Could be designed using 4 nodes – not optimum





#### Cascade Correlation

- This algorithm has two important features:
  - (1) the cascade architecture development, and
  - (2) correlation learning.
- The architecture is not strictly feedforward. New single-node hidden layers are successively added to a steadily growing layered neural network in between output and previous hidden layer until performance is judged adequate.
- Each node may employ a nonlinear node function such as the hyperbolic tangent, whose output lies in the closed interval [-1.0, 1.0].

# Hyperbolic Tangent

- Tangent tan  $z \equiv \sin z/\cos z$
- Hyperbolic tangent tanh  $z \equiv \sinh z/\cosh z$  $\equiv (e^z - e^{-z})/(e^z + e^{-z})$



#### Training in Cascade Corr. Network

- Fahlman and Lebiere suggest using the Quickprop learning algorithm.
- When a node is added, its input weights are trained first.
- Then all the weights on the connections to the output layer are trained while leaving other weights unchanged.
- Weights to each new hidden node are trained to maximize covariance with current network error.

#### CC Network



Fig: Cascade network applied to the corner isolation problem. Solid lines show the node being added.

#### **Prediction Networks**

- Prediction problems constitute a special subclass of function approximation problems, in which the values of variables need to be determined from values at previous instants.
- Two classes of neural networks have been used for prediction tasks:
  - Recurrent networks and
  - Feedforward networks.

#### Recurrent Networks

- Recurrent neural networks contain **connections from** output nodes to hidden layer and/or input layer nodes, and they allow interconnections between nodes of the same **layer**, particularly between the nodes of hidden layers.
- All biological neural networks are recurrent.



#### Recurrent Networks (cont...)

- Rumelhart, Hinton, and Williams (1986) view recurrent networks as feedforward networks with a large number of layers.
- Each layer is thought of as representing a time delay in the network.
- Each node is connected to all other nodes in the same layer and in the next layer (time sequence).

# Training & Applications of RNN

#### Applications

- RNNs can approximate arbitrary dynamical systems with arbitrary precision.
- Pattern recognition, temporal prediction

#### Training

- Applies both supervised and unsupervised learning.
  - Supervised learning is used for prediction.
  - Unsupervised learning is used for associative memory models, pattern approximation.
- Many variations of training algorithms are used with RNN.

#### Rumelhart's Recurrent Network



(a) Fully connected recurrent neural network with 3 nodes(b) Equivalent feedforward version for Rumelhart's training procedure.

#### Recurrent Networks (cont...)

- Their training procedure is essentially the same as the backpropagation algorithm.
- Using this approach, the fully connected neural network with three nodes is considered equivalent to a feedforward neural network with *k* hidden layers.
- Weights in different layers are constrained to be identical, to capture the structure of a recurrent network:  $w_{ii}^{(l, l-1)} = w_{ii}^{(l-1, l-2)}$

# Williams and Zipser's Approach

- Another training procedure for a recurrent network with hidden nodes, proposed by Williams and Zipser (1989), differs from backpropagation.
- The net input to the k<sup>th</sup> node consists of the inputs from other nodes (o) as well as external inputs (i).

$$net_k(t) = \sum_{l \in U} w_{kl} o_l(t) + \sum_{l \in I} w_{kl} i_l(t) = \sum_{l \in U \cup I} w_{kl} z_l(t)$$

$$\dots (1)$$

• U is the set of internal input nodes and I is the set of external input nodes.



Figure: Recurrent network with hidden nodes, to which Williams and Zipser's training procedure can be applied.

# Williams-Zipser's (cont...)

- Error  $E(t) = \sum_{k} (d_k(t) o_k(t))^2 = \sum_{k} e_k(t)^2$  ...(2)
- The training algorithm uses the same gradient descent learning.

  Therefore, Av. (t) = -n (3F(t)/3v.) (3)

Therefore, 
$$\Delta w_{ji}(t) = -\eta \left( \partial E(t) / \partial w_{ji} \right)$$
 ...(3)

• The output of each node (k) at time (t+1) is a function of net input to k) at the previous instant t and it depends on outputs of other nodes:

$$o_k(t+1) = f(net_k(t))$$
 ... (4)

#### Williams-Zipser's (cont...)

• Therefore, using (1) to (4),

$$\begin{split} \Delta w_{ji}(t) &= -\eta \; (\partial E(t)/\partial w_{ji} \,) \\ &= -\eta \; (\partial/\partial w_{ji} \,) \; \sum_{k \in U} (d_k(t) - o_k(t) \,)^2 \\ &= \eta \sum_{k \in U} \left( d_k(t) - o_k(t) \,\right) \, \partial o_k(t) \, / \partial w_{ji} \end{split}$$



Partial derivative of output,

$$\begin{split} \partial o_{k}(t+1) / \partial w_{ji} &= \partial / \partial w_{ji} f(net_{k}(t)) \\ &= f'(net_{k}(t)) \, \partial / \partial w_{ji} \left( \sum_{l \in U} w_{kl} z_{l}(t) \right) \end{split}$$
 For j=k and l=i 
$$= f'(net_{k}(t)) \, \left[ \sum_{l \in U} w_{kl} \partial z_{l}(t) / \partial w_{ji} + \delta_{jk} z_{i}(t) \right]$$

# Williams-Zipser's (cont...)

•  $\delta_{jk}$  is called the Kronecker delta with  $\delta_{jk} = 1$  if j = k and 0 otherwise and  $\partial o_k(t_0)/\partial w_{ji} = 0$  since we assume that the initial state of the network has no functional dependence on the weights.



If sigmoid function is used as output function then,

$$f'(\text{net}_k(t)) = o_k(t+1) [1 - o_k(t+1)]$$
for all  $k \in U$ ,  $i \in U$ ,  $j \in U$   $U$   $I$ , and  $t \ge t_0$ 

# Algorithm

Figure 4.5 Williams and Zipser's Recurrent network training algorithm

Assume randomly chosen weights, t = 0, and

$$\frac{\partial o_k(0)}{\partial w_{i,j}} = 0$$
, for each  $i, j, k$ .

while MSE is unsatisfactory and computational bounds are not exceeded do

Modify the weighs:

$$\Delta w_{i,j}(t) = \eta \sum_{k \in U} (d_k(t) - o_k(t)) \frac{\partial o_k(t)}{\partial w_{i,j}}$$

where U is the set of nodes with a specified target values  $d_k(t)$ 

For next iteration compute  $\partial o_k(t+1)/\partial w_{ji}$ 

Increment t end while

#### Feedforward Networks for Forecasting

• The generic network model consists of a preliminary preprocessing component that transforms an external input vector x(t) into a preprocessed vector x'(t). The feedforward network is trained to compute the desired output values for a specific input x'(t).



Generic neural network model for prediction

# Tapped Delay-line Neural Network (TDNN)

- Consider that x(t) is to be predicted from x(t-1), x(t-2).
- In a simple case, x at time t consists of a single input x(t), and x' at time t consists of the vector (x(t), x(t 1), x(t 2)) supplied as input to the feedforward network.
- For this example, preprocessing consists merely of storing past values of the variable and supplying them to the network along with the latest value. Such a model is sometimes called a Tapped Delay-line Neural Network (TDNN),

#### **TDNN**

Many preprocessing transformations for prediction problems can be described as convolution of the input sequence with a kernel function  $c_i$  which can vary for different applications.

$$x'(t) = \sum_{\tau=0}^{t} c_i(t-\tau)x(\tau)$$

For example, for discrete time delay,

$$c_i = \int 1$$
 for j=i  
0 otherwise



# Regularization

- Many of the NN algorithms apply regularization.
- Regularization: Optimization of a cost function.
- Can be expressed as:  $E + \lambda |P|^2$  where E is the original cost (or error) function, P is a "stabilizer" that incorporates a priori problemspecific requirements of constraints, and  $\lambda$  is a constant that controls the relative importance of E and P.

#### Explicit and Implicit Regularization

- Can be implemented explicitly by introducing  $P = \lambda \sum_j w_j^2$  in algorithms into the cost function being minimized (to penalize large weights).
  - A weight decay term may be used which favours the development of networks with smaller weight magnitudes.
    - $\Delta w = -\eta \ (\partial E/\partial w) \lambda w$
  - Smoothing penalties are used to prevent very high curvature in the output function and thus over-specializing on training data to account for outliers where  $P = |\partial^2 E/\partial w_i^2|$ .
- Implicit regularization is used for example, by introducing random noise in training data or connection weights (equivalent to imposing a smoothness constraint on the derivative of the squared error function with respect to input or weights).

#### Summary

- Backpropagation algorithm cannot address temporal prediction or classification when sufficient match is not available.
- Madaline is used to minimize change by using look ahead technique.
- Pruning is used to modify existing network size to have a more optimal size network.
- Adaptive NN used to *create* optimal size networks. Several algorithms exist.
- Recurrent and feedforward networks are better suited for temporal predictions.