Sistemas Inteligentes Sesion 18/11

December 8, 2021

1 Introducción

La convolución se define como una operación matemática que se aplica a dos funciones, f(x) y g(x) que da como resultado h(x).

Por un lado f(x) sería la imagen original, g(x) será la máscara de convolución, imagen de convolución o filtro que se aplica a la imagen original, y h(x) es el resultado de aplicar dicha máscara a la imagen.

Tenemos dos casos, el caso discreto y continuo.

• Caso continuo:

En este caso se aplica la máscara a toda la imagen f(x) y da como resultado h(x).

$$f(x) * g(x) = h(x) = \int_{-\infty}^{\infty} f(z)g(x-z) dz$$

• Caso discreto:

En el caso discreto se aplica a cada cada punto de la imagen, por eso la función se define sobre un punto x e y.

$$f(x,y) * g(x,y) = h(x,y) = \sum_{m=1}^{M/2} \sum_{n=N/2}^{N/2} f(m,n)g(x-m,y-n)$$

Visualmente se puede ver de la siguiente forma:

Figure 1: Representación visual de la convolución

Donde el kernel representa el filtro (o función g), el input es la imagen original (o la función f), por su lado el output es el resultado de aplicar el filtro a la imagen original.

2 Aplicaciones de la convolución

Algunas de las grandes aplicaciones de estos métodos es el de hacer filtros, usando esto podríamos crear filtros como:

- Filtro para enfocar
- Filtro para desenfocar
- Filtro para realzar los bordes
- Filtro para detectar bordes

A parte de estos filtros hay más opciones que podríamos hacer, por poner algún ejemplo, rotar la imagen, uso de umbrales, etc.