Перв. примен.	ВВЕДЕНИЕ В машиностроении созданы и освоены новые системы современных, надежных и современных машин для комплексной автоматизации производства, что позволяет выпускать продукцию высокого качества с наименьшими затратами труда; увеличивается выпуск автоматических линий, новых видов машин, приборов, аппаратов, отвечающих современным требованиям. Увеличивается доля изделий высшей категории качества в общем объеме их производства.										
Cnpae. Nº	Большое значение для развития машиностроения имеет организация про- изводства машин и других изделий на основе взаимозаменяемости, создание и применении надежных средств технических измерений и контроля. Одной из основных задач конструктора в процессе проектирования новых и усовершенствования устаревших изделий, является подготовка чертежной до- кументации, способствующей обеспечение необходимой технологичности и вы- сокого качества изделий. Повышение эффективности труда и качества выпуска- емой продукции связано с выбором необходимой точности изготовления изде-										
Подпись и дата	лий, расчетом размерных цепей, выбором шероховатости поверхностей, а также выбором отклонения от геометрической формы и расположения поверхностей. Целью курсовой работы по НТТИ является закрепление теоретических знаний, приобретение практических навыков по расчету и выбору посадок типовых соединений, по решению размерных цепей, простановки на чертежах обозначений посадок, предельных отклонений размеров и требований к точности формы и расположения поверхностей.										
Инв. МФ											
Взам. инв.											
Подпись и дата											
Инв. №											

РАСЧЕТ ПОСАДОК ГЛАДКИХ ЦИЛИНДРИЧЕСКИХ СОЕДИНЕНИЙ

1.1 Расчет посадки с натягом

Определяем требуемое минимальное удельное давление на контактных поверхностях соединения

$$[P_{min}] = \frac{\sqrt{R_{oc}^2 + \left(\frac{2M_{\kappa p}}{d}\right)^2}}{\pi dlf},$$
(1.1)

где M_{κ} – крутящий момент, стремящийся повернуть одну деталь относительно другой, $M_{\text{кр}} = 350 \text{ H} \cdot \text{м};$

 $R_{\rm oc}$ – продольная осевая сила, $R_{\rm oc} = 6700$ H;

l – длина контакта сопрягаемых поверхностей, l = 0,15;

f – коэффициент трения при установившемся процессе распрессовки или поворачивания, f = 0.1 [1, с. 334, таблица 1.104];

d – номинальный диаметр соединения, d = 0.28 м.

Тогда

$$[P_{min}] = \frac{\sqrt{6700^2 + \left(\frac{2 \cdot 350}{0.28}\right)^2}}{3.14 \cdot 0.28 \cdot 0.15 \cdot 0.1} = 0.19 \cdot 10^6 \frac{H}{M^2}.$$

Определяем необходимую величину наименьшего расчетного натяга

$$N'_{min} = [P_{min}]d_{\text{H.C.}}\left(\frac{c_1}{E_1} + \frac{c_2}{E_2}\right), \tag{1.2}$$

где E_1 и E_2 — модули упругости материалов, соответственно, охватываемой (вала) и охватывающей (отверстия) деталей, $E_1 = E_2 = 2 \cdot 10^{11} \; \text{H/}$

 c_1, c_2 – коэффициенты Ламе, определяемые по формулам

$$c_{1} = \frac{1 + \left(\frac{d_{1}}{d_{\text{H.C.}}}\right)^{2}}{1 - \left(\frac{d_{1}}{d_{\text{H.C.}}}\right)^{2}} - \mu_{1}; \tag{1.3}$$

KP.HTUTU.07.00.00

Πιις

5

	_	
Перв. примен.	$c_2 = \frac{1 + \left(\frac{d_{\text{H.C.}}}{d_2}\right)^2}{1 - \left(\frac{d_{\text{H.C.}}}{d_2}\right)^2} + \mu_2,$ где μ_1 – коэффициент Пуассона для охватываемой детали, $\mu_1 = 0.3$; μ_2 – коэффициент Пуассона для охватывающей детали, $\mu_2 = 0.3$.	(1.4)
Cnpae. №	Тогда для сплошного вала $(d_1=0)$ $c_1=1-\mu_1.$ Для массивного корпуса $(d_2\to\infty)$ $c_2=1+\mu_2;$	
	$c_1 = \frac{1 + \left(\frac{0,15}{0,28}\right)^2}{1 - \left(\frac{0,15}{0,28}\right)^2} - 0,3 = 1.51;$	
Подпись и дата	$c_2 = \frac{1 + \left(\frac{0,28}{0,40}\right)^2}{1 - \left(\frac{0,28}{0,40}\right)^2} + 0,3 = 3.22.$ Тогда	
Инв. N <u>o</u>	$N'_{min} = 0.19 \cdot 10^6 \cdot 0,28 \cdot \left(\frac{1.51}{2 \cdot 10^{11}} + \frac{3.22}{2 \cdot 10^{11}}\right) = 1,3 \cdot 10^{-6} \text{ м} = 1 \text{ мкм.}$	
Взам. инв.	Определяем минимальный допустимый натяг по формуле $[N_{min}] = N'_{min} + \gamma_{ ext{\tiny III}} + \gamma_{ ext{\tiny I}} + \gamma_{ ext{\tiny I}} + \gamma_{ ext{\tiny II}},$	(1.5)
Подпись и дата	где $\gamma_{\rm m}$ — поправка, учитывающая снятие неровностей контактных поверхнос деталей при образовании соединения $\gamma_{\rm m} = 1,2 \cdot (Rz_D + Rz_d);$	стей (1.6)
Инв. М <u>о</u>	КР.НТИТИ.О7.00.00 Иэм Лис № докум Под- Ла	<u>Лис</u> 6

 γ_{π} — добавка компенсирующая уменьшение натяга при повторных запрессовках.

Тогда

$$\gamma_{\text{III}} = 1.2 \cdot (2.5 + 6.3) = 10.56 = 11 \text{ MKM};$$

$$\gamma_t = 0$$
, так как температура $t_D = t_d = t_{c6} = 20$ °C;

$$\gamma_{\text{ц}} = 0$$
, так как детали не вращаются;

$$\gamma_{\pi} = 0$$
 мкм (неразборное соединение).

Тогда

$$[N_{min}] = 1 + 1 = 12 \text{ MKM}.$$

На основании теории наибольших касательных напряжений определяется максимальное допустимое удельное давление $[P_{max}]$, при котором отсутствует пластическая деформация на контактных поверхностях деталей.

В качестве максимального допустимого удельного давления берется наименьшее из двух значений

$$P_1 = 0.58\delta_{\rm T1} \left[1 - \left(\frac{d_1}{d_{\rm H.C}} \right)^2 \right]; \tag{1.7}$$

$$P_2 = 0.58\delta_{\rm T2} \left[1 - \left(\frac{d_{\rm H.C}}{d_2} \right)^2 \right],\tag{1.8}$$

где $\delta_{\text{T}1}$ и $\delta_{\text{T}2}$ – предел текучести материалов охватываемой и охватывающей детали.

Тогда

$$P_1 = 0.58 \cdot 35.3 \cdot 10^7 \left[1 - \left(\frac{0.15}{0.28} \right)^2 \right] = 14.6 \cdot 10^7 \frac{\text{H}}{\text{M}^2};$$

$$P_2 = 0.58 \cdot 35.3 \cdot 10^7 \left[1 - \left(\frac{0.28}{0.4} \right)^2 \right] = 10.4 \cdot 10^7 \frac{\text{H}}{\text{m}^2}.$$

Следовательно $[P_{max}] = 10,4 \cdot 10^7 \text{ H/м}^2$.

Определяем величину наибольшего расчетного натяга

ΙΛοιπ	Лис	Nº ∂okvm	Под-	Ла

Перв. примен.	
Cnpae. Nº	
Подпись и дата	
Инв. Nº	
Взам. инв.	
Подпись и дата	
Инв. №	
	IЛ

$N'_{max} = [P_{\text{Max}}]d_{\text{H.C}}\left(\frac{c_1}{E_1} + \frac{c_2}{E_2}\right) = 10.4 \cdot 10^7 \cdot 0.28$	(1.51	3.22	
$N_{max} - [P_{Max}] a_{H.C} \left(\frac{1}{E_1} + \frac{1}{E_2} \right) = 10.4 \cdot 10^{-10.28}$	$\sqrt{2\cdot 10^{11}}$	$-\frac{1}{2\cdot 10^{11}}$	(1.9)
= 603 MKM			

Определяем с учетом поправок к величине наибольшего расчетного натяга величину максимально допустимого натяга

$$[N_{max}] = N'_{max}\gamma_{v\pi} + \gamma_{III} - \gamma_t, \qquad (1.10)$$

где $\gamma_{yд}$ — коэффициент увеличения удельного давления у торцов охватывающей детали, $\gamma_{yд} = [1, c. 336, рисунок 1.68].$

Поправку γ_t – следует учитывать, если при рабочей температуре натяг увеличивается $\gamma_{yд}=0.87.$

Тогда

$$[N_{max}] = 603 \cdot 0.87 + 10 = 535 \text{ MKM}.$$

Выбираем посадку из таблицы системы допусков и посадок [1, с. 153, таблица 1.49].

Условия подбора посадки следующие:

максимальный натяг N_{max} в подобранной посадке должен быть не больше $[N_{max}]$

$$N_{max} \le [N_{max}]; \tag{1.11}$$

минимальный натяг N_{min} в подобранной посадке с учетом возможных колебаний действующей нагрузки и других факторов должен быть

$$N_{min} > [N_{min}]. \tag{1.12}$$

Согласно [1, с. 153, таблица 1.49] выбираем посадку $\emptyset 280 \frac{H7}{s6} \begin{pmatrix} +0,052 \\ +0,190 \\ +0,158 \end{pmatrix}$, для

которой $N_{max}=190 \leq \left[N_{max}\right]=535 \; ; N_{min}=106 > \left[N_{min}\right]=12.$

Запас прочности соединения для данной посадки

$$N_{min} - [N_{min}] = 106 - 14 = 92 \text{ MKM}.$$
 (1.13)

Запас прочности деталей

NP ZON

16Н.	$[N_{max}] - N_{max} = 535 - 190 = 345$ мкм.	(1.14)						
Терв. примен	Рассчитываем необходимое (максимальное) усилие при запрессовке со раемых деталей	би-						
Пе	$R_{\Pi} = f_{\Pi} P_{\text{Max}} \pi d_{\text{H.c}} l$	(1.15)						
\mathbb{H}	где f_{Π} – коэффициент трения при запрессовке							
	$f_{\Pi} = (1,15 \dots 1,2)f = 1,2 \cdot 0,1 = 0,12.$	(1.16)						
Cnbae. Nº	Тогда $R_{\pi} = 0,12 \cdot 26,4 \cdot 10^6 \cdot \pi \cdot 0,28 \cdot 0,15 = 417,8 \cdot 10^3 \text{ H}.$							
	Удельное давление $P_{\text{мах}}$ при максимальном натяге N_{max} в посадке опреляется	еде-						
Ш	$P_{max} = \frac{N_{max} - \gamma_{III}}{d_{H.C}(\frac{c_1}{E_1} + \frac{c_2}{E_2})} = \frac{(190 - 10) \cdot 10^{-6}}{0.28 \left(\frac{1.51}{2 \cdot 10^{11}} + \frac{3.22}{2 \cdot 10^{11}}\right)} = 7.88 \cdot 10^7 \frac{H}{M^2}.$	(1.17)						
משנ	1.2 Расчет посадки с зазором							
одпись и датс	Оптимальный зазор, обеспечивающий максимальную толщину маслян слоя	ого						
Под	$S_{ ext{ont}} = \psi_{ ext{ont}} d$,	(1.18)						
Инв. №	где $\psi_{\text{опт}}$ – оптимальный относительный зазор; d – номинальный диаметр соединения, мм.							
инв.	Оптимальный относительный зазор							
Взам.	$\psi_{\text{опт}} = 0.293 \cdot K_{fe} \sqrt{\frac{\mu n}{P}},$	(1.19)						
№ Подпись и дата	где K_{fe} — коэффициент, учитывающий угол обхвата и отношение длины к диаметру, K_{fe} = 1,05 [12, с. 11, таблица 3.4]; μ — динамическая вязкость ; n — часто та вращения, n = 1400 об/мин; P — среднее удельное давление.							
Инв. Г	КР.НТИТИ.О7.00.00 Изм Лис № докум Под- Ла	<u>Лис</u> 9						

Динамическая вязкость

$$\mu = \mu_{50} \left(\frac{50}{t}\right)^m, \tag{1.20}$$

где μ_{50} — динамическая вязкость при $t_{\Pi} = 50$ °C, 0,045 Па · с [1, с. 291, таблица 1.99];

m — показатель степени, зависящий от кинематической вязкости масла, m=2,7 [12, с. 12, таблица 3.5];

Тогда

$$\mu = 0.045 \left(\frac{50}{50}\right)^{2.7} = 0.045 \,\text{\Pia} \cdot \text{c};$$

Определяем среднее удельное давление

$$P = \frac{R}{ld'} \tag{1.21}$$

где R — радиальная нагрузка, R = 3500 H;

l – длина подшипника, l = 0,15 м;

Тогда

$$P = \frac{3500}{0,15 \cdot 0,28} = 0,083 \cdot 10^6 \text{ fla.}$$

$$\psi_{\text{опт}} = 0.293 \cdot 1.05 \sqrt{\frac{0.045 \cdot 1400}{0.83 \cdot 10^6}} = 0.00268;$$

$$S_{\text{опт}} = 0.00268 \cdot 0.28 = 0.00075 \text{ м} = 750 \text{ мкм}.$$

Максимально возможная толщина масляного слоя между трущимися поверхностями

$$[h_{max}] = H_{max} \cdot d, \tag{1.22}$$

где H_{max} — максимально возможная для данного режима относительная толщина масляного слоя

$$H_{max} = 0.252 \cdot \psi_{\text{OIIT}} = 0.252 \cdot 0.00268 = 0.000675.$$
 (1.23)

Тогда

ΙΛοιπ	Лис	Nº ∂okvm	Под-	Ла

 $[h_{max}] = 0.000675 \cdot 0.28 = 189 \text{ MKM}.$

Средний зазор при нормальной температуре (20 °C)

$$S_{\rm cp} = S_{\rm ont} - S_t; \tag{1.24}$$

$$S_t = (\alpha_a - \alpha_b)(t_{\Pi} - 20)d$$
, (1.25)

где α_a , α_b — коэффициенты линейного расширения материалов соответственно вкладыша и вала [1, с. 187, таблица 1.62].

Тогда

$$S_t = (17 \cdot 10^{-6} - 11.6 \cdot 10^{-6})(50 - 20) \cdot 0.28 = 45 \text{ MKM};$$

$$S_{\rm cp} = 750 - 45 = 705$$
 мкм.

По таблицам ГОСТ 25347-2013 подбираем посадку $\emptyset 280 \frac{D10}{h9} \begin{pmatrix} +0.4 \\ +0.19 \\ 0 \end{pmatrix}$ с минимальным зазором $S_{min} = 190$ мкм, максимальным зазором $S_{max} = 530$ мкм, средним зазором $S_c = 360$ мкм [1, с. 153, таблица 1.49].

Минимальное и максимальное значения зазора с учетом шероховатости сопрягаемых поверхностей и их температурных деформаций

$$S_{\mu min} = S_{min} + S_t + 8(R_{aD} + R_{ad}) = 190 + 45 + 8(1,25 + 3,2) =$$

= 270.6 mkm; (1.26)

$$S_{\mu max} = S_{max} + S_t + 8(R_{aD} + R_{ad}) = 530 + 45 + 8(1,25 + 3,2) =$$

= 610.6 mkm; (1.27)

Толщина масляного слоя с учетом формул (1.34) и (1.35)

$$h_{\mu min} = \frac{S_{\mu min}}{2} (1 - \varepsilon'); \qquad (1.28)$$

$$h_{\mu \, max} = \frac{S_{\mu \, max}}{2} (1 - \epsilon'');$$
 (1.29)

где ϵ' и ϵ'' – значение относительного эксцентриситета [12, с. 13, таблица 3.6].

ΙΛοιπ	Пис	Nº ∂okvm	Под-	Ла

Мен.	Коэффициент нагруженности подшипника	
Терв. примен	$C_R' = 9.4 \frac{P \psi_{\mu min}^2}{\mu n}; $	1.30)
	μn	1.31)
	$ \psi_{\mu min} = \frac{S_{\mu min}}{d} = \frac{0,2706}{280} = 0,00097; $	1.32)
Cnoae. No	$\psi_{\text{д}max}=rac{S_{\text{д}max}}{d}=rac{0,6106}{280}=0,0022.$ Тогда	(1.33)
	$C_R' = 9.4 \frac{0.083 \cdot 10^6 \cdot 0.00097^2}{0.045 \cdot 1400} = 0.012;$	
	$C_R^{"} = 9.4 \frac{0.083 \cdot 10^6 \cdot 0.0022^2}{0.045 \cdot 1400} = 0.06.$	
сь и дата	Это значит $h_{\text{д}min} = \frac{270.6}{2}(1-0.3) = 94.7 \text{ мкм;}$	
Подпи	$h_{ extit{ iny max}} = rac{610.6}{2}(1-0,\!642) = 109.3$ мкм.	
Инв. Nº	Условие наличия жидкостного трения	
Взам. инв.	$K_{\text{\tiny M.T.}} = \frac{h_{\text{\tiny A}min}}{4 \cdot (R_{oA} + R_{oB}) + 2 \dots 3},$ (1.34)
зам.	где $\Delta_{_{ m I}}$ – добавка, учитывающая влияние прогиба вала и другие неучтенные фа	к-
\vdash	торы, $\Delta_{\mathrm{д}}=2$ мкм.	
Эат	Тогда	
) n 9.	$K_{\text{\tiny K.T.}} = \frac{94.7}{4 \cdot (1.25 + 3.2) + 2.35} = 4.7 > 2.$	
Подпись и дата	4 · (1,25 + 3,2) + 2.35	
770	Условие выполняется.	
ōΝ		
THB. I	КР.НТИТИ.07.00.00	Пис
Z	Иэм Лис № докум Под- Ла	12

2 ВЫБОР УНИВЕРСАЛЬНЫЙХ СРЕДСТВ ИЗМЕРЕНИЙ ДЛЯ КОНТРОЛЯ СОЕДИНЕНИЯ С НАТЯГОМ

Посадка Ø280 $\frac{H7}{s6} \left(\frac{+0,052}{+0,190} \right)$

а) отверстие Ø280*H*7:

предельные отклонения отверстия — ES = +0.052 мм; EI = 0; допуск отверстия

$$T_D = ES - EI = 0.052 - 0 = 0.052 \text{ mm};$$
 (2.1)

величина погрешности $[\delta] = 14$ мкм [2, c. 20, таблица 6]; с учетом неравенства

$$\delta_{\rm np} \le [\delta],$$
 (2.2)

где $\delta_{\rm np}$ – предельная погрешность измерения, выбираем измерительное средство – нутрометр индикаторный с ценой деления 0,001-0,002 мм [2, с. 20, таблица 7].

б) вал Ø280s6:

предельные отклонения вала — es = 0,19 мм; ei = 0,158 мм; допуск вала

$$T_d = es - ei = 0.19 - 0.158 = 0.032 \text{ mm};$$
 (2.3)

величина допускаемой погрешности измерений [δ] = 10 мкм [2, с. 20, таблица δ];

с учетом неравенства (2.2) выбираем измерительное средство – оптиметр горизонтальный с окуляром [2, с. 20, таблица 7].

Результаты выбора универсальных средств измерения занесем в таблицу 2.1.

Таблица 2.1 – Результаты выбора универсальных средств измерения

	•		-	-	<u> </u>
Измеряе-	Предельные	Потичем	Погреш-	Предельная	Универсальное средство
мая по-	отклонения,	Допуск,	ность, $[\delta]$,	погрешность	1
верхность	MKM	MKM	МКМ	$\delta_{\text{пр}}$, мкм	измерения
Ø280 <i>H7</i>	ES = +52 $EI = 0$	52	14	13,5	нутрометр индикатор- ный с ценой деления 0,001-0,002 мм
Ø280s6	es = 190 ei = 158	32	10	9,5	оптиметр горизонталь- ный с окуляром

3 РАСЧЕТ И КОНСТРУИРОВАНИЕ ПРЕДЕЛЬНЫХ КАЛИБРОВ ДЛЯ КОНТРОЛЯ СОЕДИНЕНИЯ С НАТЯГОМ

3.1 Расчет калибра-пробки

Расчет производится для калибра-пробки, рассчитанного в п. 1.1.

$$\emptyset 280H7$$
 ES = + 0,052 mm;

$$EI = 0.$$

Максимальный диаметр

$$D_{max} = d_{H.C} + ES = 280 + 0.052 = 280.052 \text{ MM}.$$
 (3.1)

Минимальный диаметр

$$D_{min} = d_{\text{H.C}} + EI = 280 + 0 = 280,0 \text{ MM}.$$
 (3.2)

Для квалитета 7 и интервала размеров «св. 50 до 80 мм» отклонение и допуск калибров [3, с. 6, таблица 2]:

z = 8 MKM = 0.008 MM;

Y = 7 MKM = 0.007 MM;

 $\alpha = 4 \text{ MKM} = 0.004 \text{ MM};$

H = 12 MKM = 0.012 MM.

Предельные отклонения калибров

$$\Pi P_{max} = D_{min} + z + \frac{H}{2} = 280,0 + 0,008 + \frac{0,0012}{2} = 280,014 \text{ mm};$$
 (3.3)

$$\Pi P_{min} = D_{min} + z - \frac{H}{2} = 280,0 + 0,008 - \frac{0,0012}{2} = 280,002 \text{ mm};$$
 (3.4)

$$\Pi P_{\text{M3M}} = D_{min} - Y - \alpha = 280,0 - 0,007 - 0.004 = 279,989 \text{ mm};$$
 (3.5)

$$\text{HE}_{max} = D_{max} - \alpha + \frac{H}{2} = 280,052 - 0,004 + \frac{0,0012}{2} = 280,054 \text{ mm};$$
 (3.6)

$$\text{HE}_{min} = D_{max} - \alpha - \frac{H}{2} = 280,052 - 0,004 - \frac{0,0012}{2} = 280,042 \text{ MM}.$$
 (3.7)

Перв. примен.		Для квалите	$d_n = d_{ ext{H.C}} \cdot d_{ ext{H.C}}$ га б и ин	+ <i>еі</i> тері	= 280 + 0,158 = 280,158 мм. вала размеров «св. 250 до 280 мм» отклонен	(3.9)))
Snoae. Nº	допус	$z_1 = 8$ мкм = $Y_1 = 6$ мкм = $\alpha = 3$ мкм = $H_1 = 12$ мкм	0,008 мм 0,006 мм = 0.003 м = 0,012 м	і; м; мм; им.			
Cnpa					$= 280,19 - 0,008 + \frac{0,012}{2} = 280,17 \text{ MM};$	(3.1	
Ц				2	$= 280,19 - 0,008 - \frac{0,012}{2} = 280,186 \text{ MM};$ $= 280,19 + 0,006 - 0,003 = 280,193 \text{ MM};$	(3.1	
сь и дата	H	$\mathrm{HE}_{m\mathrm{ax}} = d_{min}$	$+\frac{H_1}{2}$	α =	$280,158 + \frac{0,012}{2} - 0,003 = 280,167 \text{ mm};$	(3.1	[3]
Подпись		$ ext{HE}_{min} = d_{min}$	$\frac{H_1}{2}$	· α =	= $70,059 + \frac{0,012}{2} - 0,003 = 280,155$ мм.	(3.1	4)
Инв. Nº		$\Pi P = \emptyset 280,1$.86 +0,012	² , HI	калибров (проставление на чертеже) $E = \emptyset 280,155^{+0,012}$. ей допусков приведена на рисунке 3.3.		
Взам. инв.							
Подпись и дата							
Инв. №	III MACNI	r Nº ∂okvm	Под-	Ла	КР.НТИТИ.07.00.00		<u> </u>

4 ВЫБОР ПОСАДОК ДЛЯ КОЛЕЦ ПОДШИПНИКОВ КАЧЕНИЯ

Исходные данные и размеры:

тип подшипника – 6-309 [4];

нагрузка -1300 Н;

режим работы подшипника – легкий;

$$d = 45 \text{ mm}; D = 100 \text{ mm}; B = 25 \text{ mm}; r = 2,5 \text{ mm}.$$

Так как

$$\frac{P}{C_p} = \frac{3500}{52700} = 0.066$$

то режим работы легкий.

Nº 30KVN

Задаёмся видами нагружения колёс:

1. Внутреннее – циркуляционное нагружение

Выбираем посадку $\emptyset 45 \frac{L6}{k6} \begin{pmatrix} 0 \\ -0.01 \\ 0.018 \\ 0.002 \end{pmatrix}$,

$$d_{max} = d + es = 45 + 0.018 = 45.018$$
 mm;

$$d_{min} = d + ei = 45 + 0.002 = 45.002$$
 MM;

$$D_{max} = d + ES = 45 + 0 = 45 \text{ MM};$$

$$D_{min} = d + EI = 45 - 0.01 = 44.99$$
 MM.

$$N_{max} = es - EI = 0.028 \text{ mm};$$

$$N_{min} = ei - ES = 0.002$$
 MM.

$$T_n = (ES - EI) + (es - ei) = (-0.01) + (0.018 - 0.002) = 0.005 \text{ mm}.$$

Рисунок 4.4 — Схема расположения полей допусков для местно нагруженного кольца

$$T_D = ES - EI = 0 + 0.01 = 0.01$$
 mm;

$$T_d = es - ei = -0.009 + 0.025 = 0.016$$
 мм

Определим среднеквадратичное отклонение зазора

$$\sigma_N = \frac{1}{6}\sqrt{T_D^2 + T_d^2} = \frac{1}{6}\sqrt{1^2 + 16^2} = 2.67.$$

Пределы интегрирования

					KP.HTUTU.07.00.00
ΙΛοιπ	Пис	№ докум	Под-	Ла	

$$z = \frac{S_{\rm cp}}{\sigma_N} = \frac{12}{2.67} = 4.49$$

Функция $\Phi(Z)$ при Z=4.49 (табл. 1, с.12): $\Phi(Z)\approx 0,49999$.

Вероятность натяга:

$$P_S' = 0.5 + \Phi(Z) = 0.5 + 0.49999 = 0.999999;$$

Вероятность натяга составляет больше 95%, следовательно данная посадка применима.

2. Наружное – циркуляционное нагружение

Применим посадку Ø $100 \frac{K7}{l6} \begin{pmatrix} +0.01 \\ -0.025 \\ -0.011 \end{pmatrix}$.

$$d_{max} = d + es = 100 \text{ MM};$$

$$d_{min} = d + ei = 100 - 0.011 = 99.989$$
 мм.

$$D_{max} = D + ES = 100 + 0.01 = 100.01$$
 mm;

$$D_{min} = D + EI = 100 - 0.025 = 99.975 \text{ mm};$$

$$S_{max} = ES - ei = 0.01 + 0.011 = 0.021 \text{ mm};$$

$$N_{max} = es - EI = 0 + 0.025 = 0.025$$
 MM.

$$S_{\rm cp} = \frac{S_{max} - N_{max}}{2} = \frac{0.025 - 0.021}{2} = 0.002$$
 мм.

Рисунок 4.5 — Схема расположения полей допусков для циркуляционно нагруженного кольца

$$T_D = ES - EI = 0.01 + 0.025 = 0.035$$
 mm;

$$T_d = es - ei = 0 + 0.011 = 0.011$$
 мм

Определим среднеквадратичное отклонение зазора

$$\sigma_N = \frac{1}{6} \sqrt{T_D^2 + T_d^2} = \frac{1}{6} \sqrt{35^2 + 11^2} = 0.61$$

Пределы интегрирования

$$z = \frac{S_{\rm cp}}{\sigma_N} = \frac{2}{0.61} = 3.28$$

Функция $\Phi(Z)$ при Z=3,28 (табл. 1, с.12): $\Phi(Z)\approx 0,49931$. Вероятность зазора:

$$P'_N = 0.5 + \Phi(z) = 0.5 + 0.49931 = 0.99931.$$

Вероятность зазора составляет больше 95% ,следовательно данная посадка применима.

Рассчитываем величину радиального посадочного зазора

$$g = g_{\scriptscriptstyle H} - \Delta d_{1_{\scriptscriptstyle H}\tilde{o}}$$

Изм	Лис	№ докум	Под-	Ла

ЭН.	где $g_{\scriptscriptstyle H}$ — начальный радиальный зазор
Перв. примен.	$g_{\scriptscriptstyle H.CP.} = rac{g_{\scriptscriptstyle H.H\delta} + g_{\scriptscriptstyle H.HM}}{2} = rac{30 + 15}{2} = 27$,5 мкм
Пер	$\Delta d_{1{\scriptscriptstyle H}ar{o}}$ -величина деформации
	$arDelta d_{1{ extit{H}}ar{0}} = 0.85 N rac{D_0}{D_{max}}$
ōΝ	D_0 - приведенный наружный диаметр внутреннего кольца
Cnpae. Nº	$D_0 = D + \frac{D-d}{4} = 100 + \frac{100-45}{4} = 114$ мм
	Тогда,
	$g=27,5-0,85\cdot 5\cdot rac{114}{100}=22,65$ мкм
	Величина осевого зазора достаточна.
и дата	
Подпись и	
Под	
Инв. №	
Ž	
Взам. инв.	
Подпись и дата	
эдиись	
Инв. №	KD HTMTM 07 00 00
Z	МЭМ ЛИС № ДОКУМ ЛОД- ЛО КР.НТИТИ.07.00.00

5 НАЗНАЧЕНИЕ И ВЫБОР ПОСАДОК ШЛИЦЕВОГО СОЕДИНЕНИЯ

Согласно [7, с. 2, таблица 2] выбираем шлицевое соединение

$$D - 8 \times 52 \frac{H11}{a11} \times 60 \frac{H7}{f6} \times 10 \frac{F8}{f7}$$
,

По заданному шлицевому соединению дать расшифровку заданного шлицевого соединения и выписать номинальные размеры его элементов с их расшифровкой.

Соединение шлицевое, с центрированием по наружному диаметру с посадкой по диаметру центрирования $\frac{H7}{f6}$ по нецентрирующему диаметру $\frac{H11}{a11}$ и по размеру $\frac{F8}{f7}$. Число зубьев Z=8; внутренним диаметром d=52 мм; наружным диаметром D=60 мм; шириной шлица b=10 мм.

Предельные отклонения для центрирующих и нецентрирующих элементов шлицевого соединения [7].

$$\emptyset 52 \frac{H11}{a11}$$
;

ES = +0.19 MM;

es = -0.34 MM;

EI = 0 мм;

ei = -0.53 MM.

Определяем предельные размеры вала и отверстия

$$d_{max} = d + es = 62 + (-0.34) = 51.66 \text{ mm};$$
 (5.1)

$$d_{min} = d + ei = 62 + (-0.53) = 51.47 \text{MM}; \tag{5.2}$$

$$D_{max} = d + ES = 62 + 0.19 = 52.19 \text{ mm};$$
 (5.3)

$$D_{min} = d + EI = 62 + 0 = 52 \text{ mm}. ag{5.4}$$

Допуск размера вала и допуск размера отверстия

$$T_d = d_{max} - d_{min} = 51.66 - 51.47 = 0.19 \text{ mm};$$
 (5.5)

$$T_D = D_{max} - D_{min} = 62.19 - 62 = 0,19 \text{ MM}.$$
 (5.6)

ΙΛοιπ	Лис	№ докум	Под-	Ла

Перв. примен.	Определяем предельные зазоры $S_{max} = D_{max} - d_{min} = 52.19 - 51.47 = 0,72 \text{ мм};$ $S_{min} = D_{min} - d_{max} = 52 - 51.66 = 0,34 \text{ мм};$ $S_{max} + S_{min} = 0,72 + 0,34$	(5.7) (5.8)
	$S_c = \frac{S_{max} + S_{min}}{2} = \frac{0.72 + 0.34}{2} = 0.53 \text{ mm}.$	(5.9)
	Допуск посадки	
Cnpae. Nº	$T_s = T_D + T_d = 0.19 + 0.19 = 0.38$ мм.	(5.10)
Cnb	Схема расположения полей допусков представлена на рисунке 5.1.	
	H11/	
Подпись и дата	Smax = 0,72 Smin = 0,34	
Инв. N <u>º</u>	dmin =51,47	
HB.	Рисунок 5.1 — Схема расположения полей допусков	
Взам. инв.	$\emptyset 60 \frac{H7}{f6}$;	
ıma	ES = +0.03 mm; $es = -0.03 mm;$	
Подпись и дата	${ m EI} = 0$ mm; ${ m ei} = -0.049$ mm.	
юдип		
Инв. №		Лис
Инв	<i>КР.НТИТИ.О7.00.00</i>	26
Щ	иэм Лис № докум Под- Ла	

.Н.	Определяем предельные размеры вала и отверстия						
Терв. примен.	$d_{max} = d + es = 60 + (-0.03) = 59.97 \text{ mm};$	(5.11)					
Перв	$d_{min} = d + ei = 60 + (-0.049) = 59.951$ мм;	(5.12)					
	$D_{max} = d + ES = 60 + 0.03 = 60.03$ мм;	(5.13)					
	$D_{min} = d + EI = 60 + 0 = 60$ мм.	(5.14)					
ōΝ	Допуск размера вала и допуск размера отверстия						
Cnpae. Nº	$T_d = d_{max} - d_{min} = 59.97 - 59.951 = 0,019$ мм;	(5.15)					
	$T_D = D_{max} - D_{min} = 60,03 - 60 = 0,03$ мм.	(5.16)					
	Определяем предельные зазоры						
	$S_{max} = D_{max} - d_{min} = 60,03 - 59.951 = 0,079$ мм;	(5.17)					
и дата	$S_{min} = D_{min} - d_{max} = 60 - 59.97 = 0,03 \text{ мм};$	(5.18)					
Подпись и	$S_c = \frac{S_{max} + S_{min}}{2} = \frac{0,079 + 0,03}{2} = 0,0545 \text{ mm}.$						
ōΝ	Допуск посадки						
Инв. №	$T_s = T_D + T_d = 0.3 + 0.019 = 0.049$ мм.	(5.20)					
Взам. инв.							
-							
Подпись и дата							
Инв. Nº	КР.НТИТИ.07.00.00	Лис					
Z	Мэм Лис № докум Под- Ла	27					

Определяем предельные зазоры

6 РАСЧЕТ ПРЕДЕЛЬНЫХ КАЛИБРОВ ДЛЯ КОНТРОЛЯ ШЛИЦЕВОГО СОЕДИНЕНИЯ

Расчет производится для шлицевого соединения, рассчитанного в разделе 5. Привести эскизы калибров для контроля шлицевого вала и шлицевой втулки с указанием точности изготовления размеров, шероховатостей, допусков форм и расположение поверхностей.

Шлицевое соединение $D - 8 \times 52 \frac{H11}{a11} \times 60 \frac{H7}{f6} \times 10 \frac{F8}{f7}$.

Расчет комплексного калибра-пробки.

Размеры калибра-пробки согласно [8, с. 3, таблица 1]

$$d_{\kappa} = (d - 0.1)h8; \tag{6.1}$$

$$D_k = D_{min} - Z_D \pm \frac{H_D}{2}; (6.2)$$

$$b_k = b_{min} - Z_b \pm \frac{H_b}{2};$$
 (6.3)

$$b_{k-W} = b_{min} - Y_b; (6.4)$$

$$D_{k-W} = D_{min} - Y_D, (6.5)$$

где $d_{\rm K}$ – номинальный внутренний диаметр калибра-пробки;

d – номинальный внутренний диаметр втулки и вала;

 D_k — номинальный наружный диаметр калибра-пробки;

 D_{min} – наименьший диаметр втулки;

 Z_D, Z_b — расстояние от середины поля допуска на изготовление калибра-пробки до соответствующего наименьшего предельного размера втулки;

 H_D — допуск на изготовление калибра-пробки по центрирующему диаметру;

 b_k – номинальный толщина зуба калибра-пробки;

 b_{min} – наименьшая ширина паза;

 H_b — допуск на изготовление калибра-пробки по толщине зубов;

 b_{k-W} – предельные размеры изношенного внутреннего диаметра калибра-пробки;

 Y_{b}, Y_{D} — допустимый выход размера изношенного калибра-пробки за границу поля допуска вала;

ΙΛοιλ	Пис	№ ∂οκνΜ	Под-	Ла

Перв. примен.		2	$D_{min} = 60 \mathrm{Mg}$ Отклонения $Z_D = 7,5 \mathrm{Mg}$ Отклонения Z_D	м; <i>b_{min}</i> и допус и; <i>H_D</i> = и допус	= 9. ск диа : 5 мн ск раз	вношенных наружных диаметров калибра-пробки 987 мм; $d_{min}=52$ мм аметра калибра-пробки [8, с. 5, таблица 2] км; $Y_D=15$ мкм. вмера $b_{\rm k}$ калибр-пробки [8, с. 5, таблица 3] м; $Y_b=18$ мкм.	ι.	
					$d_{\kappa max}$	$_{\chi} = 52 - 0.1 = 51.9$ mm;		
ōl			C	$d_{\kappa min} =$	(52	-0,1)-0,0025=51,8975 мм;		
Cnoae. Nº			1) _{kmax} =	= 60 -	$-0,0075 + \frac{0,005}{2} = 59,995$ мм;		
				D_{kmin} :	= 60	$-0.0075 - \frac{0.005}{2} = 59.99$ мм;		
				D_k	_w =	=60-0.015=59.985 mm;		
дата				b_{kmax}	= 10	$0 - 0.012 + \frac{0.004}{2} = 9.99$ mm;		
Подпись и		$b_{kmin}=10-0.012-rac{0.004}{2}=9.986$ mm;						
		$b_{k-W} = 10 - 0.018 = 9.982$ мм.						
Инв. Nº		,	·T					
Иh				-		гь шага не должна превышать 6 мкм [8, с. 10, таб ги зуба калибра-пробки относительно оси поверх		
HB.		ности $D_{\rm K}$ равен 8 мм [8, с. 11, таблица 8]. Допуск параллельности боковых сторон						
Взам. инв.	зуба калибра-пробки относительно оси поверхности D_{κ} равен 4 мкм [8 лица 8].						i —	
				 б.1 прив 	веден	па схема расположения поля допуска центрирую	-	
Подпись и дата		щего д	циаметра D п	робки.				
CP N								
lodnu								
Инв. Nº				Γ	<u> </u>		Лис	
Z		Изм Лис	Nº ∂okvm	Под-	Ла	КР.НТИТИ.07.00.00	32	
-			- / v - UUA V/V/		- / / / /			

	i						
ен.	Расчет комплексного калибра-кольца [8, с. 3, таблица 1].						
Терв. примен	$d_{\kappa} = (d - 0.1)H8;$	(6.6)					
Перв	$D_{k-W} = D_{min} + Y_{1D};$	(6.7)					
	$D_k = D_{max} + Z_{1D} \pm \frac{H_{1D}}{2};$	(6.8)					
ōΝ	$b_k = b_{max} + Z_{1b} \pm \frac{H_{1b}}{2};$	(6.9)					
Cnpae. Nº	$b_{k-W} = b_{max} + Y_{1b},$	(6.10)					
	где d_{max} — наибольший диаметр вала d; D_{max} — наибольший диаметр D вала;						
Взам. инв. Инв. № Подпись и дата	H_{1b} — допуск на изготовление калибра по ширине паза b; H_{1D} — допуск на изготовление калибра-кольца по центрирующему диаметру; Z_{1D} , Z_{1b} — расстояние от середины поля допуска на изготовление калибра-кольца до соответствующего наименьшего предельного размера втулки; Y_{1b} — допустимый выход размера изношенного калибра-кольца за границу поля допуска вала; b_{max} — наибольшая толщина паза; $D_{max} = 60,03$, мм; $b_{max} = 9.987$ мм; $d_{max} = 51,66$ мм Отклонения и допуск диаметра калибра-пробки [8, с. 7, таблица 4] $Z_{1D} = 7,5$ мкм; $H_{1D} = 5$ мкм; $Y_{1D} = 15$ мкм. Отклонения и допуск размера b_{κ} калибр-пробки [8, с. 8, таблица 5] $Z_{1b} = 12$ мкм; $H_{1b} = 4$ мкм; $Y_{1b} = 18$ мкм. Тогда $d_{\kappa max} = 52 - 0,1 = 51.9$ мм;						
Подпись и дата	$D_{k-W}=60.03+0.015=60.045$ мм; $D_{kmax}=60.03+0.0075+rac{0.005}{2}=60.04$ мм;						
Инв. №	КР.НТИТИ.07.00.00 Иэм Лис № докум Под- Ла	<u>Лис</u> 35					

$$D_{kmin} = 60.03 + 0,0075 - \frac{0,005}{2} = 60.035$$
 mm;

$$b_{kmax} = 9.987 + 0.012 + \frac{0.004}{2} = 10.001$$
 mm;

$$b_{kmin} = 9.987 + 0.012 - \frac{0.004}{2} = 9.997$$
 mm;

$$b_{k-W} = 9.987 + 0.018 = 10.005 \text{ MM}.$$

Накопленная погрешность шага не должна превышать 8 мкм [8, с. 10, таблица 7]. Допуск симметричности зуба калибра-пробки относительно оси поверхности $D_{\rm K}$ равен 10 мм [8, с. 11, таблица 8]. Допуск параллельности боковых сторон зуба калибра-пробки относительно оси поверхности $D_{\rm K}$ равен 5 мкм [8, с. 11, таблица 8].

Схема расположения поля допуска центрирующего диаметра приведена на рисунке 6.5.

Рисунок 6.5 — Схема расположения поля допуска центрирующего диаметра: 1 — поле допуска размера d вала; 2 — поле допуска изготовления калибра-кольца; 3 — поле износа калибра-кольца

ΙΛοιλ	Пис	№ ∂οκνΜ	Под-	Ла

Схема расположения поля допуска размера b_{κ} калибра-кольца приведена на рисунке 6.6. Рисунок 6.6 – Схема расположения поля допуска размера b_{κ} калибра-кольца: 1 – поле допуска размера в вала; 2 – поле допуска изготовления калибра-кольца; 3 – поле износа калибра-кольца расположен на рисунке 6.7.

Схема расположения поля допуска нецентрирующего диаметра втулки

Рисунок 6.7 – Схема расположения поля допуска нецентрирующего диаметра втулки: 1 – поле допуска нецентрирующего диаметра втулки; 2 – поле допуска на изготовление калибра-кольца; H8 – поле допуска d_{κ} калибра-кольца

VD UTUTU 07 00 00		Лис
KP.HININ.U /.UU.UU	<i>VD UTUTUOT OO OO</i>	27
Nam Tur № Bokym Tob- Ta		3/

7 РАСЧЕТ ТОЧНОСТИ РАЗМЕРОВ ДЕТАЛЕЙ, ВХОДЯЩИХ В СБОРОЧНЫЙ УЗЕЛ

7.1 Расчет методом максимума-минимума

Схема размерной цепи приведена на рисунке 7.1.

Рисунок 7.1 – Схема размерной цепи

Определение номинальных размеров составляющих звеньев.

$$A_1=6;\,A_2=5;\,A_3=25;\,A_4=12;\,A_5=63;\,A_6=63;\,A_7=55;\,A_8=43;\,A_9=71;\\A_{10}=15;\,A_{11}=25;\,A_{12}=6;\,A_{13}=390.$$

Определение средней точности размерной цепи или числа единиц допуска. Устанавливаем значение i для составляющих звеньев кроме стандартных A_3 и A_{11} [9, c. 20, таблица 2.2]

$$a = \frac{T_{\Delta} - \sum_{i=1}^{H_c} T_{ic}}{\sum_{i=1}^{H-1} i_i} = \frac{1100 - (21 + 21)}{0,73 + 0,73 + 1,08 + 1,86 + 1,86 + 1,86 + 1,86 + 1,86 + 1,08 + 0,73 + 3,54} = \frac{(7.2)}{20,73 + 0,73 + 1,08 + 1,86 + 1,8$$

Найденное число единиц допуска лежит в пределах стандартных значений $a = 64 \ (10 \ \text{квалитет})$ и $a = 100 \ (11 \ \text{квалитет})$ [9, с. 22, таблица 2.3]. Отсюда следует,

Non	Лис	№ ∂οκνΜ	Под-	Ла

пимен		литету. Р	езультаті	ы расчета	а сводятся	я в табли	цу 7.1.						
Перв. примен.		Таблица 7.1— Результаты поэтапных расчетов отклонений размеров составляющих зве- ньев размерной цепи методом максимума-минимума											
		Обозначе- ние	Номиналь- ный размер, мм	<i>i</i> , мкм	Обозначе- ние основ- ного откло-	Квалитет	имума-ми Допуск	Верхнее отклоне- ние В	Нижнее отклоне- ние Н	Середина поля до- пуска	,		
		0)(Нс		О(Х		Mi	CM	_			
		A_{Δ}	1,4		_		1100	600	-500	50			
Ō.		$\overrightarrow{A_1}$	6	0,73	js	11	75	37,5	-37,5	0			
18. N		$\overrightarrow{A_2}$	5	0,73	h	10	75	0	-75	-37,5			
Cnpae. Nº		А ₃ (станд.)	25			_	21	0	-21	-10,5			
		$\overrightarrow{A_4}$	12	1,08	h	10	70	0	-70	-35			
		$\overrightarrow{A_5}$	63	1,86	h	10	120	0	-120	-60			
		$\overrightarrow{A_6}$	63	1,86	h	10	120	0	-120	-60			
		$\overrightarrow{A_6}$ $\overrightarrow{A_7}$	55	1,86	h	10	120	0	-120	-60			
a	\exists	$\overrightarrow{A_8}$	43	1,56	h	10	100	0	-100	-50			
Эат		$\overrightarrow{A_9}$	71	1,86	h	10	120	0	-120	-60			
19 N		$\overrightarrow{A_{10}}$	15	1,08	h	10	70	0	-70	-35			
Подпись и дата		А ₁₁ (станд.)	25	_			21	0	-21	-10,5			
		$\overrightarrow{A_{12}}$	6	0,73	js	11	75	37,5	-37,5	0			
Инв. Nº		А ₁₃ (увяз.)	390	3,54		1011	113	-312	-425	-368,5			
Взам. инв.		Допуск увязачного звена											
Подпись и дата		Тогда $T_{13} = 1100 - 75 - 75 - 21 - 70 - 120 - 120 - 120 - 100 - 120 - 70 - \\ -21 - 75 = 113 \text{ мкм.}$ Координата середины поля допуска увязачного звена											
ōŅ													
Инв. Nº							KP.HTN	ТИ.О 7.00.	00		<u>Ліі</u> 40		
	M	DAA MIIC	№ докум	Под-	Ла						40		

что часть звеньев должна изготавливаться по 10 квалитету, а часть – по 11 ква-

$$\overleftarrow{\Delta_{13}} = 50 + (-37,5) + (-10,5) + (-35) + (-60) + (-60) + (-60) + (-60) + (-60) + (-60) + (-60) + (-35) + (-10,5) = -368,5$$
 мкм

Определение предельных отклонений увязачного звена

$$\Delta_{\mathrm{B}\Delta} = \sum_{i=1}^{n} \Delta_{B_i} - \sum_{n+1}^{m-1} \Delta_{H_i}; \tag{7.4}$$

$$\Delta_{\mathrm{H}_{\Delta}} = \sum_{i=1}^{n} \Delta_{\mathrm{H}_{i}} - \sum_{n+1}^{m-1} \Delta_{\mathrm{B}_{i}}.$$
 (7.5)

Тогда

$$\Delta_{\text{B13}} = 600 + (-37.5) + (-75) + (-21) + (-70) + (-120) + (-120) + (-120) + (-120) + (-120) + (-120) + (-120) + (-21) + (-37.5) = -312 \text{ MKM};$$

$$\Delta_{\text{H}_{12}} = -500 + 37.5 + 37.5 = -425 \text{ MKM}.$$

Проверка производится для координат середины полей допусков

$$\Delta_{0\Delta} = \sum_{i=1}^{n-1} \Delta_{\overrightarrow{o}i} + \sum_{n+1}^{m-1} \Delta_{\overleftarrow{o}i}. \tag{7.6}$$

Тогда

$$-368,5$$
 мкм = $50 + (-37,5) + (-10,5) + (-35) + (-60) + (-60) + (-60) + (-60) + (-60) + (-60) + (-35) + (-10,5) = -368,5$ мкм.

Это говорит о правильности проведенных вычислений.

7.2 Расчет методом регулирования

Схема размерной цепи приведена на рисунке 7.1.

Номинальные размеры составляющих звеньев были определены в п. 7.1.

Выбор и назначение допусков на составляющие звенья. Считаем, что для размеров звеньев экономически приемлемым является 12-й квалитет. Назначаем

Перв. примен.	сот	у по брал	-	, котор	ые пр нсато на ко	-	
Cnɒae. №	KON	T ₁ С ипен С	ледовательн сатора снят Определение	- но, при ь слой п предел	1 — 1 -21 - само матер пьных	i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1	ЭС
Инв. № Подпись и дата			$\overrightarrow{\Delta_1} = -100$ $(-125) + (-1)$) + (-6 05) + (60) + (–15	$-\sum_{i=1}^{n-1} \Delta_{\Delta_{0i}} - \sum_{n+1}^{m-1} \Delta_{c_{i}} - \Delta_{o\Delta}.$ $+ (-10,5) + (-90) + (-125) + (-125) + (0) + (-90) + (-10,5) - (-260) = -731 \text{ MKM};$ $+ (-90,731) - \frac{0,188}{2} = 5,175 \text{ MM};$	(7.8)
Подпись и дата Взам. инв. И		В	$\overrightarrow{A_1^{max}} = \overline{\mathbf{A}}$	$\overrightarrow{\Delta}_1 + \overrightarrow{\Delta}_1$	$+\frac{ T_1 }{2}$	$\frac{1}{2}$ = 6 + (-0,731) + $\frac{0,188}{2}$ = 5,363 мм. результаты расчета.	(7.10)
Инв. N <u>o</u>	мсМ	Лис	№ докум	Под-	Ла	КР.НТИТИ.07.00.00	<u>Пис</u> 42

	ньев размерной цепи методом регулирования										
	Обозначе- ние	Номиналь- ный размер, мм	i, MKM	Обозначе- ние основ- ного откло-	Квалитет	Допуск	Верхнее отклоне- ние В	Нижнее отклоне- ние Н	Середина поля до- пуска		
				H		1100	600	км -500	-50		
Ш	A_{Δ}	1,4				188	000	-300	-731		
	$A_{1(K)}$	5	0.72		12	120	0	-120	-60		
	$\overrightarrow{A_2}$ $\overrightarrow{A_3}$ (станд.)	25	0,73	h —		21	0	-21	-10,5		
	$\overrightarrow{A_4}$	12	1,08	h	12	180	0	-180	-90		
	$\overrightarrow{A_5}$	63	1,86	h	12	300	0	-300	-150		
	$\overrightarrow{A_5}$ $\overrightarrow{A_6}$	63	1,86	h	12	300	0	-300	-150		
	$\overrightarrow{A_7}$	55	1,86	h	12	300	0	-300	-150		
Ч	$\overrightarrow{A_8}$	43	1,56	h	12	250	0	-250	-125		
	$\overrightarrow{A_8}$ $\overrightarrow{A_9}$	71	1,86	h	12	300	0	-300	-150		
Д	$\overrightarrow{A_{10}}$	15	1,08	h	11	110	0	-110	-55		
	А ₁₁ (станд.)	25		_	12	21	0	-21	-10,5		
	$\overrightarrow{A_{12}}$	6	0,73	js	12	150	75	-75	0		
	$\overline{A_{13}}$	390	3,54	h	12	570	0	-570	-285		
	Определение числа ступеней компенсации $N_{min} = \frac{\sum_{j}^{m-2} T_{j}}{T_{\Delta} - T_{\kappa}}, \tag{7.11}$ где $\sum_{j}^{m-2} T_{j}$ – сумма допусков составляющих звеньев без допуска на компенса-										
	тор; $T_{\rm K}-{\rm допуск}\ {\rm на}\ {\rm отдельный}\ {\rm компенсатор}\ {\rm в}\ {\rm комплекте}$ $T_{\rm K}=(0,10,3){\rm T}_{\Delta}=0,15\cdot 1100=165\ {\rm мкм}. \eqno(7.12)$ Принимаем ${\rm T}_{\rm K}=180\ {\rm мкм}\ (13\ {\rm квалитет}).$										

№ докум

Перв. примен.	Тогда $N_{min} = \frac{120 + 21 + 180 + 300 + 300 + 300 + 250 + 300 + 110 + 21 + 150 - 570}{1100 - 180} = 1,83.$ Число ступеней компенсации следует всегда округлять в большую сторону, так как определяется наименьшее число ступеней. [9, с. 46, формула (3.55)]. Принимаем $N = 2$.
Cnpae. Nº	Величина ступени компенсации $\Delta = \sum_{d=1}^{n-2} Tj = \\ = \frac{120 + 21 + 180 + 300 + 300 + 250 + 300 + 110 + 21 + 150 - 570}{2} = \\ = 741 \text{ мкм.} $
Подпись и дата	
Инв. №	
Взам. инв.	
Подпись и дата	
Инв. №	

8 РАСЧЕТ И НОРМИРОВАНИЕ ТОЧНОСТИ И ВИДА СОПРЯЖЕНИЯ ЗУБЧАТОЙ ПЕРЕДАЧИ

Исходные данные:

m=3 MM;

 $Z_1 = 23$;

 $Z_2 = 69$:

n = 1380 об/мин;

Рабочая температура передачи 55 °C;

Рабочая температура корпуса 20 °C.

Определяем межосевое расстояние

$$a_w = 0.5 \cdot (Z_1 + Z_2)m = 0.5(23 + 69) \cdot 3 = 138 \text{ MM}.$$
 (8.1)

Делительный диаметр

$$d_1 = Z_1 m = 23 \cdot 3 = 69 \text{ mm}; \tag{8.2}$$

$$d_2 = Z_2 m = 69 \cdot 3 = 207 \text{ mm}. \tag{8.3}$$

Окружная скорость вращения пары

$$V = \frac{\pi d_1 n}{60 \cdot 1000} = \frac{\pi \cdot 69 \cdot 1380}{60 \cdot 1000} = 4,98 \frac{M}{c}.$$
 (8.4)

Т.к. окружная скорость меньше 6 м/с, пронимаем степень точности зубчатой передачи -8; степень точности по нормам плавности работы -8; степень точности по нормам контакта зубьев -8 [1, с. 328, таблица 5.12].

Показатели для контроля зубчатого соединения приведены в таблице 8.1. Данные показатели устанавливаются согласно [11].

Таблица 8.1 – Комплексные показатели и допуски для их контроля

Наименование	Цорио	Условное	Величина до-
показателей	Норма	обозначение допуска	пуска, мкм
Колебание измерительного межосевого расстояния за оборот зубчатого колеса	Кинематическая точность	$F_i{}^{\prime\prime}$	63
Радиальное биение зубчатого венца	Кинематическая точность	F_r	45

Mэм Лис № докум_ Под- Ла

KP.HTUTU.07.00.00

<u>Пис</u>

Продолжение таблицы 8.1

Допуск на местную кинемати-		C.I.	26	
ческую погрешность зубчатого		$f_i{'}$	36	
колеса				
Предельные отклонения шага		f_{Pt}	±20	
Предельные отклонения шага	Плавность	f_{Ph}	±19	
зацепления	работы	J Pb		
Допуск на погрешность про-	расоты	f_c	14	
филя зуба) f	14	
Колебание измерительного ме-				
жосевого расстояния на одном		$f_i^{"}$	28	
зубе				
Cyangapung ngrung kourakta	Контакт зубьев	По длине	50%	
Суммарное пятно контакта	KOHTAKI 3YUBCB	По высоте	40%	

Выбор вида сопряжения.

Боковой зазор, соответствующий температурной компенсации

$$j_{n_1} = 0.684a_n \left[\alpha_{p1} (t_1 - 20^\circ) - \alpha_{p2} (t_2 - 20^\circ) \right], \tag{8.5}$$

где a_w – межосевое расстояние, $a_w = 138$ мм.

- α_{p1} коэффициент линейного расширения для материалов зубчатых колес, $\alpha_{p1}=12\cdot 10^{-6}~{\rm c}^{-1}~[1,~{\rm c}.~187,~{\rm таблица}~1.62];$
- α_{p2} коэффициент линейного расширения для материалов корпуса, α_{p2} = $10.5 \cdot 10^{-6} \, \mathrm{c}^{-1}$ [1, с. 187, таблица 1.62];
 - t_1 предельная температура зубчатых колес для которых рассчитывается боковой зазор, $t_1 = 55$ °C;
 - t_2 предельная температура корпуса для которого рассчитывается боковой зазор, $t_2 = 20$ °C.

Тогда

$$j_{n_1} = 0.684 \cdot 138 \cdot [12 \cdot 10^{-6}(55 - 20) - 10.5 \cdot 10^{-6}(20 - 20)] = 40$$
 мкм.

Величина бокового зазора, необходимая для размещения слоя смазки

$$j_{n_2} = (10 \dots 30)m = 20 \cdot 3 = 60 \text{ MKM}.$$
 (8.6)

Таким образов гарантированный зазор

ΙΛοιπ	Лис	№ докум	Под-	Ла

(8.7)

(8.8)

(8.9)

Πιις

	JEH.			E_{w_n}	ns = -	-(80 + 18) = -98 мкм;	(8.10)
9	терв. примен.			еднюю	дли	ну общей нормали $T_{w_m}=90$ мкм [11, с. 26, т	аб-
	i lebe	лица 1 Н	-	онение	длин	ны общей нормали	
			(1	$E_{w_{ms}} +$	T_{w_m}	= -(98 + 90) = -188 мкм.	(8.11)
			Гогда			$W_I = 14.25 {}^{-0,098}_{-0.188}.$	
9	ZNDGB. N≅	I	Предельные	отклон(ения,	для $Z_2 = 69$ [11, с. 24-25, таблицы 16-17]	
9	Cuba			$E_{w_{ms}}$	= -	(110 + 18) = -128 мкм;	(8.12)
				еднюю	о дли	ну общей нормали $T_{w_m}=90$ мкм [11, с. 26, т	аб-
	•	∙ лица 1 Т	_	онение	длин	ны общей нормали	
	<u> </u>		(E	$ w_{ms} +$	T_{w_m})	=-(128+90)=-218 мкм;	(8.13)
	c <i>b u oarna</i>	7	Гогда				
	i iooriuce				Ţ	$W_{II} = 60,465^{-0,128}_{-0,218}.$	
14.00	VIHB. INS						
	99.						
(БЗИМ. ИНВ.						
H							
:	р n од						
	поотись и оата						
		<u> </u>		T			
14.10	ZIHB. NS	Ілэм Лис	Nº ∂okym	Под-	Ла	KP.HTUTU.07.00.00	<u>Лис</u> 48
_	_	· · · · · ·					-

	Выбираем по внутреннего наружного ко	садку под кольца на ольца в ко	дшипника: a вал $\emptyset 45 \frac{L6}{k6}$; opnyce $\emptyset 100 \frac{H7}{l6}$.	ЕНИЙ
	Шпоночное с	оединени	ие:	
		,		
			7.0	
	Эскиз вала пр	оиведен н	на рисунке 9.1.	
	A(2:1)		∅ Ø 0,012 AB	B(2:1)
	5,13	/ 0,000 /Ro 1,2	1008 A5	566
	56.2:11	1,6×45°		2 16×45
	Д-Д(1:1)	0,02 5 \[\int Ra 3,2 \]	E-E(1:1) = r 0.08 r // 0.02 r // 0.02 r	
	5,5 '02	Ra 10 2 94	5,5 -0.2	
			Рисунок 9.1 – Эскиз вала	
	<u> </u>	· · · · · ·		
			КР.НТИТИ.07.00.00	<u>Лис</u> 49
		Выбираем по внутреннего и наружного ко Посадка зубч Шпоночное с шпонка — паз крышка подп Эскиз вала пр Вб/2:1/	Выбираем посадку по внутреннего кольца в кольца	внутреннего кольца в корпусе Ø100 $\frac{H7}{16}$. Посадка зубчатого колеса на вал Ø50 $\frac{H7}{r6}$. Шпоночное соединение: шпонка — паз вала 14 $\frac{P9}{h9}$; шпонка — паз втулки 14 $\frac{P9}{h9}$; Крышка подшинника в корпус Ø100 $\frac{H7}{f9}$. Эскиз вала приведен на рисунке 9.1. А/2-1/ Д—Д/(1-1) — 1 2008 5

№ докум

Вал. Допуск цилиндричности:

на размер Ø45k6 - t = 0.016 мм.

Тогда

$$T_{O} = 0.5t = 0.5 \cdot 0.016 = 0.008 \text{ mm}.$$
 (9.1)

После округления $T_{/O/} = 0.008$ мм;

на размер $\emptyset 50r6 - t = 0.016$ мм.

Тогда

$$T_{/O/} = 0.5 \cdot 0.016 = 0.008 \text{ MM}.$$

После округления $T_{/O/} = 0,008$ мм.

Допуск соосности под подшипник

$$T_{\odot} = 0.1 L_{yq} T_{Ta6\pi}, \qquad (9.2)$$

где $T_{\text{табл}}$ — табличное значение соосности посадочной поверхности вала и корпуса в диаметральном выражении, $T_{\text{табл}} = 4$.

Тогда

$$T_{\odot} = 0.1 \cdot 23 \cdot 4 = 9.2$$
 мкм.

Принимаем $T_{\odot} = 0.01$ мм.

Под колесом

$$T_{\odot} = 0.1 \cdot 69 \cdot 4 = 28$$
 мкм.

Принимаем $T_{\odot} = 0.028$ мм.

Степень точности допуска соосности — 8 [12, с. 340, таблица 22.7]. Допуск перпендикулярности $T_{\perp}=0.04$ мм [12, с. 340, таблица 22.6].

Допуск размера паза 14P9: t = 0,043 мм.

$$T_{\parallel} = 0.5t_{\text{min}} = 0.5 \cdot 0.043 = 0.0215 \text{ MM}.$$
 (9.3)

Принимаем $T_{\parallel}=0.02$ мм.

$$T_{\dot{-}} = 2t_{\text{mg}} = 2 \cdot 0.043 = 0.086 \text{ MM}.$$
 (9.4)

Принимаем $T_{\div} = 0.08$ мм.

Nº ∂OKVM

Справ. №	Назначаем шероховатость на цилиндрическую поверхность [12, с. 348, таблица 22.2] $\emptyset 45k6$: Ra = 1,25 мкм; на поверхность $\emptyset 50r6$: Ra = 1,6, $\emptyset 60h9$: Ra = 2,5 мкм. Крышка подшипника допуск перпендикулярности: степень точности допуска при базировании подшипника — 8 [12, с. 415, таблица 22.12], то согласно $T_{\perp} = 0,03$ мм [12, с. 340, таблица 22.6]; Колесо зубчатое Допуск перпендикулярности: при степени 8 по нормам контакта; степень точности допуска 6 [12, с. 360, таблица 22.9]; допуск перпендикулярности 0,01 мм [12, с. 360, таблица 22.9]. Допуск цилиндрической поверхности
Спрс	$T_{/O/} = 0.5t = 0.5 \cdot 0.025 = 0.0125 \text{ mm}.$ (9.5)
	Принимаем $T_{/O/}=0.012$ мм. Допуск размера паза 14Js9 и 10 Js14 $t_{\rm mn}=0.043$ мм
	$T = 0.5t = 0.5 \cdot 0.042 = 0.0215 \text{ m} \tag{0.6}$
na	$T_{\parallel} = 0.5t_{\text{ш}\Pi} = 0.5 \cdot 0.043 = 0.0215 \text{ MM}.$ (9.6)
<u>u dar</u>	Принимаем $T_{\parallel}=0.02$ мм.
Подпись	$T_{\div} = 2t_{\text{min}} = 2 \cdot 0.043 = 0.086 \text{ MM}.$ (9.7)
	Принимаем $T_{\div} = 0.08$ мм.
Инв. №	
Взам. инв.	
Подпись и дата	
ōŅ	
Инв. №	КР.НТИТИ.07.00.00 F2
	1ИЭМ ЛИС № ДОКУМ ПОД- ЛД

Справ. №	ЗАКЛЮЧЕНИЕ В ходе выполнения работы по НТТИ были закреплены теоретические знания, приобретены практические навыки по расчету и выбору посадок типовых соединений, по решению размерных цепей, простановки на чертежах обозначений посадок, предельных отклонений размеров и требований к точности формы и расположения поверхностей. Качество и эффективность действия выпускаемых машин и приборов находится в прямой зависимости от точности их изготовления и контроля показателей качества с помощью технических измерений. Точность и ее контроль служит исходной предпосылкой важнейшего свойства совокупности изделий — нормирования. При конструировании применение принципа нормирования ведет к повышению качества и снижению себестоимости конструкции.					
Подпись и дата						
Инв. №						
Взам. инв.						
Подпись и дата						
Инв. №						

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 Допуски и посадки: Справочник: в 2-х ч. / В.Д. Мягков, М.А. Палей, А.Б. Романов, В.А. Брагинский. — 6-е изд., перераб. и доп. — Л. : Машиностроение. Ленингр. отд-ние, 1982.-4.1.543 с.

2 Кирпиченко Ю.Е. Выбор универсальных средств измерений / Ю.Е. Кирпиченко. – Гомель : ГГТУ им. П.О. Сухого, 2005.-22 с.

3 Калибры гладкие для размеров до 500 мм. Допуски : ГОСТ 24853-81. — Введ. 01.01.1983. — Минск : Государственный комитет по стандартизации Республики Беларусь, 1991.-12 с.

4 Подшипники шариковые радиальные однорядные. Основные размеры : ГОСТ 8338-75. — Введ. 01.07.1976. — Минск : Государственный комитет по стандартизации Республики Беларусь, 1992. — 12 с.

5 Подшипники качения. Поля допусков и технические требования к посадочным поверхностям валов и корпусов. Посадки : ГОСТ 3325-85. — Введ. 01.01.1987. — Минск : Государственный комитет по стандартизации Республики Беларусь, 1992. — 104 с.

6 Основные нормы взаимозаменяемости. Соединения шлицевые прямобочные. Размеры и допуски : ГОСТ 1139-80. — Введ. 01.01.1982. — Минск : Государственный комитет по стандартизации Республики Беларусь, 2011. — 10 с.

7 Основные нормы взаимозаменяемости. Характеристики изделий геометрические. Система допусков на линейные размеры. Основные положения, допуски, отклонения и посадки: ГОСТ 25346-2013. — Введ. 01.08.2016. — Минск: Государственный комитет по стандартизации Республики Беларусь, 2016. — 38 с.

8 Калибры для контроля шлицевых прямобочных соединений. Допуски: ГОСТ 7951-80. — Введ. 01.01.1981. — Минск: Государственный комитет по стандартизации Республики Беларусь, 1993. — 38 с.

9 Расчет размерных цепей: метод. указания к курсовой работе и практ. занятиям по дисциплине «Нормирование точности и технические измерения» для студентов машиностр. специальностей днв. и заоч. форм обучения / авт.-сост.: Ю.Е. Кирпиченко, Н.В. Акулов. – Гомель: ГГТУ им. П.О. Сухого, 2007. – 51 с.

10 Подшипники качения. Общие технические условия : ГОСТ 520-2011. — Введ. 01.07.2013. — Минск : Государственный комитет по стандартизации Республики Беларусь, 2013.-69 с.

11 Основные нормы взаимозаменяемости. Передачи зубчатые цилиндрические. Допуски: ГОСТ 1643-81. – Введ. 01.07.1981. – Минск: Государственный комитет по стандартизации Республики Беларусь, 2011. – 44 с.

KP.HTUTU.07.00.00

Πιις

Перв. примен.	12 Дунаев П. М : Высш. Шк., 20		О.П. Конструирование узлов и деталей ма	шин. —
Справ. №				
<u>о</u> Подпись и дата				
ата Взам. инв. Инв. №				
Инв. № Подпись и дата	Mana Nuc № Bokvm	Под- Ла	КР.НТИТИ.07.00.00	<u>Лис</u> 55