Institut für Regelungstechnik

TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG

Prof. Dr.-Ing. M. Maurer Prof. Dr.-Ing. W. Schumacher

Hans-Sommer-Str. 66 38106 Braunschweig Tel. (0531) 391-3840

Klausuraufgaben

Grundlagen der Elektrotechnik

Vorname:			Nachname:		
MatrNr.:			Studiengang:		
Datum: 10. August 2020					
Sitzplatznummer:			Unterschrift:		
1:	2:	3:	4:	5:	6:
EK:					
ZK:					
ID: Note:					
Mit meiner Unterschrift gebe ich das Einverständnis, über meine TU E-Mail-Adresse kontaktiert zu werden (z. B. für HiWi-Jobs, studentische Arbeiten oder Stipendien):					

Allgemeine Hinweise:

- Alle Lösungen müssen nachvollziehbar bzw. begründet sein.
- Einheiten sind anzugeben.
- Alle Endergebnisse sind in möglichst einfacher Form anzugeben, z. B. Doppelbrüche sind aufzulösen.
- Für jede Aufgabe ein neues Blatt verwenden (nicht für jede Unteraufgabe).
- Keine Rückseiten beschreiben.
- Keine Bleistifte oder Rotstifte verwenden.
- Lösungen auf Aufgabenblättern werden nicht gewertet.
- Lösen Sie die Aufgaben zunächst analytisch mit Symbolen und setzen Sie erst am Schluss Zahlenwerte ein.
- In dieser Klausur gibt es Hinweise, welche Aufgabenteile unabhängig von anderen Teilaufgaben gelöst werden können. Diese sind an der linken Seite jeweils mit einem Pfeil (=>>) markiert und der zugehörige Hinweis ist fett gedruckt.
- Zugelassene Hilfsmittel:
 - Geodreieck
 - Zirkel
- Die Ergebnisse sind nur online über das QIS-Portal einsehbar.
- Diese Klausur besteht aus 6 Aufgaben auf insgesamt 15 Blättern.

1 Elektrisches Feld

Bei allen Teilaufgaben handelt es sich um Verständnisfragen. Sie lassen sich, wenn in der jeweiligen Teilaufgabe nicht anders angegeben, unabhängig voneinander lösen.

a) Gegeben seien eine positive und eine negative Punktladung entsprechend untenstehender Skizze. Zeichnen Sie die auf die Punktladungen wirkenden Kräfte \vec{F}_1 und \vec{F}_2 sowie die zur Berechnung dieser Kräfte relevanten Größen ein. Übertragen Sie die Skizze dazu auf Ihren Lösungszettel! (Die Aufgabenzettel werden **NICHT** abgegeben.) (1 Punkt)

- b) Geben Sie das Coulombsche Gesetz zur Berechnung der beiden Kräfte an. (1 Punkt)
- c) Leiten Sie ausgehend vom Coulombschen Gesetz in vektorieller Form das Verhältnis zwischen den Kräften $\vec{F_1}$ und $\vec{F_2}$ her. (2 Punkte)
- d) Wie hängt die Coulombkraft mit der elektrischen Feldstärke zusammen? Geben Sie die zugehörige Formel an. Welchen Vorteil hat die Auffassung als Feld gegenüber der Kraftdarstellung? (1 Punkt)
- e) Handelt es sich bei einem elektrostatischen Feld um ein Skalar- oder ein Vektorfeld? Geben Sie für beide Feldarten eine kurze allgemeine Definition an. (2 Punkte)
- f) Leiten Sie das Gaußsche Gesetz der Elektrostatik her. Gehen Sie dabei von der Formel für die elektrische Feldstärke einer Punktladung aus. (3 Punkte)
- g) Leiten Sie ausgehend von der allgemeinen Definitionsformel für die Kapazität $C = \frac{Q}{U}$ die Kapazität eines idealen Plattenkondensators mit der Plattenfläche A und dem Plattenabstand d her. (3 Punkte)

- h) Skizzieren Sie am Beispiel eines Plattenkondensators mit zwei Dielektrika die Anordnung der Dielektrika für eine Reihenschaltung sowie eine Parallelschaltung und zeichnen Sie den Verlauf der E-Feldlinien ein. Woran erkennen Sie, ob die Anordnung im idealen Ersatzschaltbild mit einer Parallel- oder einer Reihenschaltung modelliert werden muss? (2 Punkte)
- i) Worin besteht der Vorteil, einen realen Kondensator als Kapazität (im Ersatzschaltbild) zu modellieren? (1 Punkt)
- j) Wie können Sie ausgehend von der Definitionsformel für die Kapazität $C=\frac{Q}{U}$ die Strom-Spannungs-Relation am idealen Kondensator herleiten? (2 Punkte)
- k) Stellen Sie die Strom-Spannungs-Relation an einem idealen Kondensator durch komplexe Zahlen dar. Welchen Vorteil bietet der Einsatz der komplexen Zahlen? (2 Punkte)

Gegeben ist ein Plattenkondensator entsprechend untenstehender Skizze, der zur Messung des Füllstandes eines Öltanks verwendet werden soll. Zwischen den Platten befindet sich Öl, dessen Füllhöhe h ermittelt werden soll. Der Rest des Tanks ist mit Luft gefüllt.

- l) Skizzieren Sie das Ersatzschaltbild des Kondensators bestehend aus den Kapazitäten C_{Luft} und C_{Ol} . Handelt es sich um eine Reihen- oder eine Parallelschaltung? (1 Punkt)
- m) Berechnen Sie die Gesamtkapazität C_{gesamt} der Anordnung in Abhängigkeit der gegebenen Größen. (2 Punkte)

2 Gleichstromnetzwerk

Gegeben ist das folgende <u>Gleichstrom</u>netzwerk im eingeschwungenen Zustand:

a) Bestimmen Sie mit Hilfe des Superpositionsverfahrens die Spannung $U_{\rm AB}$. Fertigen Sie für jeden Fall, den Sie betrachten, eine gesonderte Skizze an, in der Sie relevante Größen eintragen. (7,5 Punkte)

Hinweis: Nutzen Sie wenn möglich Strom- oder Spannungsteiler und Quellentransformationen.

b) Aufgrund welcher Voraussetzung kann in Aufgabenteil a) das Superpositionsverfahren verwendet werden? (1 Punkt)

Die Aufgabenteile c) bis f) können unabhängig von den übrigen Aufgabenteilen gelöst werden.

- c) Leiten Sie basierend auf dem Gesamtstrom I_{Ges} einer Stromquelle und zwei Widerständen R_i und R_L die Stromteilerregel $\frac{I_{R_L}}{I_{\text{Ges}}}$ nachvollziehbar her. (2 Punkte) **Hinweis**: Verwenden Sie zur Erläuterung eine Zeichnung, in der Sie relevante Größen eintragen.
- d) In welchem Verhältnis müssen die Widerstände aus Aufgabenteil c) dimensioniert sein, wenn der Gesamtstrom I_{Ges} 40 A beträgt und durch R_L ein Strom von 30 A fließen soll? (1 Punkt)
- e) Wie lässt sich das Verhältnis von Laststrom zu Quellenstrom $(\frac{I_{R_L}}{I_{\rm Ges}})$ als Funktion des Widerstandsverhältnisses $\frac{R_L}{R_i}$ darstellen? (3 Punkte)
 - Skizzieren Sie den Funktionsverlauf und markieren Sie die charakteristischen Punkte für den Leerlauf- und den Kurzschlussfall.
 - Skizzieren Sie zusätzlich den Punkt der Leistungsanpassung. Welche Bedingung gilt an diesem Punkt?
- f) Geben Sie die Formel für die Berechnung des Leitwerts eines Widerstands R an. (0.5 Punkte)

3 Magnetfeld

Der Eisenkern des oben dargestellten magnetischen Kreises hat die konstante Permeabilität μ_r und eine quadratische Querschnittsfläche mit der Seitenlänge a. Der gesamte Aufbau befindet sich in Luft. Durch die Spule N_1 fließt der Gleichstrom I_1 in der dargestellten Richtung. An den Luftspalten δ_1 und δ_2 tritt die Streuung σ_1 und σ_2 auf.

- a) Geben Sie den Zusammenhang zwischen magnetischem Fluss und magnetischer Flussdichte in Formelschreibweise wieder und beschreiben Sie den Zusammenhang mit eigenen Worten und einer Skizze. (1,5 Punkte)
- b) Zeichnen Sie das vollständige Ersatzschaltbild des oben dargestellten magnetischen Kreises inklusive sämtlicher magnetischer Teilspannungen und Flüsse. Berücksichtigen Sie dabei auch die Spule N_3 . (2 Punkte)

- c) Geben Sie für den Luftspalt δ_1 an, wie sich die magnetischen Teilspannungen und die magnetischen Flüsse an den Ersatzwiderständen zur Modellierung von Luftspalten verhalten. Leiten Sie daraus die Gleichung für den zusammenfassenden Ersatzwiderstand $R_{\text{Luft},1}$ in Abhängigkeit von der Länge des Luftspalts δ_1 und der Größe der Streuung σ_1 her. Geben Sie analog (ohne Herleitung) die Gleichung für $R_{\text{Luft},2}$ an. (4 Punkte)
- d) Geben Sie die Gleichungen für alle übrigen Komponenten an (abgesehen von den für die Beschreibung der Luftspalten verwendeten). Verwenden Sie zur Berechnung die mittlere Feldlinienlänge (gestrichelte Mittellinie). (2,5 Punkte)
- e) Bestimmen Sie die im Luftspalt δ_2 wirkende Kraft $F_{\delta 2}$ in Abhängigkeit der magnetischen Flüsse Φ_1 und Φ_3 unter Beachtung der in Teilaufgabe b) definierten Fließrichtungen. Geben Sie an, wie groß der magnetische Fluss Φ_3 sein muss, um die Kraft im Luftspalt δ_2 auf 0 zu reduzieren? (1,5 Punkte)
- f) Stellen Sie die Größe der wirkenden Kraft $F_{\delta 2}$ in Abhängigkeit des Flusses Φ_3 in einem Diagramm mit dem Verhältnis $\frac{\Phi_3}{\Phi_1}$ auf der x-Achse und der Kraft $F_{\delta 2}$ auf der y-Achse dar. Tragen Sie die charakteristischen Punkte der Funktion auf der x-Achse ab. Folgern Sie hieraus die Richtung des Stromes I_3 in Spule N_3 welcher die im Luftspalt wirkende Kraft auf 0 reduziert. Stellen Sie die Stromrichtung I_3 und die sich daraus ergebende Flussrichtung Φ_3 in einer Skizze des rechten Schenkels mit der Spule N_3 dar. (2 Punkte)

Nachfolgend gelte $l_1=2\cdot l_3,\ l_2=3\cdot l_3,\ \delta_1\ll l_1$ und $\mathbf{R}_{\mathrm{Luft},1}=0.$

g) Bestimmen Sie das Verhältnis von θ_1 zu θ_2 , welches die im Luftspalt δ_2 wirkende Kraft auf 0 reduziert. (2,5 Punkte)

4 Komplexe Wechselstromrechnung

barer Richtung zu zeichnen und eindeutig zu beschriften sind!

Bei den Teilaufgaben a) bis d) handelt es sich um Verständnisfragen. Sie lassen sich einzeln und unabhängig von den übrigen Teilaufgaben lösen.

Für die gesamte Aufgabe gilt, dass Zeiger in Zeigerdiagrammen mit eindeutig erkenn-

- a) Welche allgemeinen Voraussetzungen gelten, um die komplexe Wechselstromrechnung anwenden zu können? Nennen Sie zwei. (1 Punkt)
- b) Sie haben den zeitlichen Verlauf einer Wechselspannung u(t) und des zugehörigen Wechselstroms i(t) gemäß der nachfolgenden Abbildung gemessen. Bestimmen Sie die Scheitelwerte \hat{u} und \hat{i} der Spannung u(t) bzw. des Stroms i(t), die Frequenz f sowie den Phasenwinkel φ zwischen Strom und Spannung. Geben Sie zudem an, an welchem Bauteil so ein zeitlicher Verlauf zu beobachten ist. (3 Punkte)

c) Zur Blindleistungskompensation wird einem Wechselspannungsnetzwerk mit der Eingangsspannung $\underline{U}_0 = 5\,\mathrm{V}\cdot e^{\mathrm{j}\cdot(10^\circ)}$ und dem Eingangsstrom $\underline{I}_0 = 3\,\mathrm{A}\cdot e^{\mathrm{j}\cdot70^\circ}$ ein komplexes Bauteil parallel geschaltet. Bestimmen Sie den Betrag des resultierenden Eingangsstroms $|\underline{I}_{0,\mathrm{neu}}|$ mit Hilfe eines Zeigerdiagramms (Maßstäbe: $1\,\mathrm{cm} = 1\,\mathrm{V}$, $1\,\mathrm{cm} = 1\,\mathrm{A}$).

d) Zeichnen Sie das prinzipielle Zeigerdiagramm eines realen Parallelschwingkreises (Parallelschaltung eines Widerstands R, einer Induktivität L und einer Kapazität C) im Resonanzfall. Wie groß ist im Resonanzfall der Betrag der Gesamtimpedanz $|\underline{Z}_{RLC}|$? (2,5 Punkte)

Die Teilaufgaben e) bis h) lassen sich unabhängig von den übrigen Teilaufgaben lösen.

Gegeben sei das folgende Netzwerk mit den angegebenen Größen.

Gegeben: $L = 2 \,\text{mH}, C = 1 \,\text{mF}, R = 4 \,\Omega, |\underline{U}_L| = 2 \,\text{V}, \omega = 500 \,\text{s}^{-1}$

- e) Berechnen Sie den Betrag des Stroms $|\underline{I}_2|$ sowie den Betrag der Spannung $|\underline{U}_C|.$ (2 Punkte)
- f) Bestimmen Sie mit Hilfe eines Zeigerdiagramms für die Spannungen den Betrag der Spannung $|\underline{U}_0|$ ($Ma\beta stab$: $1 \text{ V} \cong 1 \text{ cm}$). Verwenden Sie \underline{I}_2 als Bezugszeiger ($Ma\beta stab$: $1 \text{ A} \cong 2 \text{ cm}$). Berechnen Sie anschließend den Betrag des Stroms $|\underline{I}_1|$. Ergänzen Sie in dem Zeigerdiagramm die Zeiger für die Ströme \underline{I}_1 und \underline{I}_0 . (4 Punkte)

Hinweis: Aus dem Zeigerdiagramm müssen die Zusammenhänge der Kirchhoff'schen Regeln deutlich hervorgehen.

- g) Zeichnen Sie in das Zeigerdiagramm die Phase φ_0 zwischen den Zeigern \underline{U}_0 und \underline{I}_0 ein und lesen Sie den Winkel ab. Geben Sie den Strom \underline{I}_0 und die Spannung \underline{U}_0 in komplexer Schreibweise an. (2 Punkte)
- h) Berechnen Sie die komplexe Scheinleistung \underline{S} und geben sie die Wirkleistung P und die Blindleistung Q in den korrekten Einheiten an. Zeigt die Schaltung induktives oder kapazitives Verhalten? (2 Punkte)

 \Longrightarrow

Die Teilaufgaben i) bis m) lassen sich unabhängig von den übrigen Teilaufgaben lösen.

Gegeben sei das folgende Netzwerk, das mit einer Wechselstromquelle mit konstantem Strom $|\underline{I}_0|$ und variabler Frequenz f betrieben wird.

- i) Geben Sie an, wie groß der Betrag der Spannung $|\underline{U}_0|$ bei $\omega=0$ und $\omega\to\infty$ ist. Hinweis: Hier ist keine Rechnung nötig. (1 Punkt)
- j) Die Schaltung weist bei den drei Frequenzen $f_{0,1}$, $f_{0,2}$ und $f_{0,3}$ Resonanzen auf. Bei der Messung der Spannung $|\underline{U}_0|$ über einen Frequenzbereich von $0 \le f \le 6\,\mathrm{kHz}$ wird der folgende Verlauf der Spannungsamplitude in Abhängigkeit von der Frequenz f gemessen. Bestimmen Sie mit Hilfe dieses Amplitudengangs für jede Resonanz den Typ des jeweiligen Schwingkreises. (1,5 Punkte)

k) Zwei Resonanzfrequenzen lassen sich mit Ihrem Grundwissen über Schwingkreise auf Basis des dargestellten Netzwerks intuitiv angeben, ohne dass die Gesamtschaltung berechnet werden muss. Geben Sie die Formeln für diese beiden Frequenzen an.

(1,5 Punkte)

Hinweis: Der Fokus liegt auf der korrekten Angabe der beiden Formeln. Aufgrund der nicht gegebenen Bauelementgrößen kann keine eindeutige Zuordnung zu den beiden gesuchten Resonanzfrequenzen aus Teilaufgabe j) erfolgen.

l) Zeigen Sie, dass für eine dritte Resonanzfrequenz $f_{0,3}$ gilt:

$$f_{0,3} = \frac{1}{2\pi} \sqrt{\frac{L_1 + L_2}{L_1 L_2 (C_1 + C_2)}}$$

Berechnen Sie dazu zunächst die Gesamtimpedanz \underline{Z} des Netzwerks in der Form $\underline{Z} = -\mathrm{j} \frac{A}{B}$ ohne Doppelbrüche. Bestimmen Sie anschließend mit ihrem Wissen über die Resonanz des verbleibenden Schwingkreises die Resonanzfrequenz $f_{0,3}$.

(3 Punkte)

m) Für die Resonanz bei der Resonanzfrequenz $f_{0,3}$ aus Teilaufgabe l) lässt sich eine Ersatzschaltung mit einer Ersatzinduktivität L_x und einer Ersatzkapazität C_x ableiten. Zeichnen Sie das Ersatzschaltbild und geben Sie die Größen der Ersatzinduktivität L_x und die Ersatzkapazität C_x in Abhängigkeit von den Induktivitäten L_1 und L_2 sowie den Kapazitäten C_1 und C_2 an. (2,5 Punkte)

5 Schaltvorgänge bei Kondensatoren Punkte: 15

Das unten dargestellte Netzwerk wird bei $\omega = 0$ betrieben. Der Schalter S_1 sei für sehr lange Zeit geöffnet und der Schalter S_2 für sehr lange Zeit geschlossen. Die Kapazität C_1 entspricht der Kapazität C_2 und die Kapazität C_2 entspricht der Hälfte der Kapazität C_3 .

- a) Stellen Sie alle Maschengleichungen für das dargestellte Netzwerk mit geöffnetem Schalter S_1 und geschlossenem Schalter S_2 auf. (1 Punkt)
- b) Ermitteln Sie das Verhältnis der in der Kapazität C_2 gespeicherten Ladungsmenge Q_2 zur in der Kapazität C_3 gespeicherten Ladungsmenge Q_3 . (0,5 Punkte)
- c) Ermitteln Sie die Spannung U_{C1} in Abhängigkeit der Spannung U_1 . (1 Punkt)
- d) Die Kapazitäten C_2 und C_3 repräsentieren zwei ideale Plattenkondensatoren, die mit dem gleichen Dielektrikum gefüllt sind. Ermitteln Sie das Verhältnis der Plattenabstände d_2 und d_3 unter der Annahme, dass die Platten beider Kondensatoren die gleiche Fläche aufweisen. (0,5 Punkte)
- e) Zeigen Sie, dass die im Netzwerk gespeicherte Energie durch die Gleichung $W = \frac{3}{8} \cdot C_1 \cdot U_1^2$ beschrieben werden kann. (1,5 Punkte)

Der Schalter S_2 wird zum Zeitpunkt t_0 geöffnet und der Schalter S_1 zum gleichen Zeitpunkt geschlossen.

f) Skizzieren Sie den zeitlichen Verlauf von $\frac{u_{C1}(t)}{U_1}$. Achten Sie bei der Auswahl des dargestellten Bereichs darauf, dass die durch den Schaltvorgang bedingten Änderungen von $\frac{u_{C1}(t)}{U_1}$ gezeigt werden und markieren Sie den Zeitpunkt t_0 . (1,5 Punkte)

- g) Um welchen Faktor ändert sich die im Netzwerk gespeicherte Energie langfristig? (1,5 Punkte)
- h) Bestimmen Sie die maximal am Widerstand R umgesetzte Leistung P_{max} in Abhängigkeit von U_1 und R_1 . (1,5 Punkte)
- i) Bestimmen Sie die Differentialgleichung zur Beschreibung des Einschwingvorgangs der Spannung u_{C1} in der Form $a = b \cdot \frac{du_{C1}}{dt} + u_{C1}$. (1 Punkt)
- j) T_{α} beschreibt die Zeitspanne, innerhalb derer die Hälfte der durch den Schaltvorgang verursachten Änderung von U_{C1} erfolgt. Um welchen Faktor muss der Widerstand R_1 verändert werden, wenn T_{α} verdoppelt werden soll? Begründen Sie Ihre Antwort. (1 Punkt)
- k) T_{β} beschreibt die Zeitspanne, innerhalb derer die Hälfte der durch den Schaltvorgang verursachten Änderung der in C_1 gespeicherten Energie erfolgt ist. Bestimmen Sie T_{β} in Abhängigkeit von R_1 und C_1 . (3,5 Punkte)
 - Hinweis 1: Logarithmen müssen hier nicht weiter ausgerechnet werden Hinweis 2: $\ln(x) < 0$ für 0 < x < 1
- l) Nennen Sie einen Grund dafür, dass der Widerstand R_1 in einer realen Schaltung einen Mindestwert nicht unterschreiten sollte. (0,5 Punkte)

6 Maxwell'sche Gleichungen

Punkte: 4

Nennen Sie die Formeln der vier Maxwell'schen Gleichungen in integraler Darstellung, wie aus der Vorlesung bekannt. (4 Punkte)