THEORY OF COMPUTATION

UNIT I:

Finite State Machines

By:

Priyamvada S Chauhan

Syllabus

Module	Unit	Topics	Theory	
No.	No.		Hrs.	
1.0		Basic Concepts and Finite Automata	09	
	1.1	Importance of TCS, Alphabets, Strings, Languages, Closure		
		properties, Finite Automata (FA) and Finite State machine (FSM).		
	1.2	Deterministic Finite Automata (DFA) and Nondeterministic		
		Finite Automata (NFA): Definitions, transition diagrams and		
		Language recognizers, Equivalence between NFA with and		
		without ε- transitions, NFA to DFA Conversion, Minimization		
		of DFA, FSM with output: Moore and Mealy machines,		
		Applications and limitations of FA.		
2.0		Regular Expressions and Languages	07	
	2.1	Regular Expression (RE), Equivalence of RE and FA, Arden's Theorem, RE Applications		
	2.2	Regular Language (RL), Closure properties of RLs, Decision		
		properties of RLs, Pumping lemma for RLs.		
3.0		Grammars	08	
	3.1	Grammars and Chomsky hierarchy		
	3.2	Regular Grammar (RG), Equivalence of Left and Right		
		linear grammar, Equivalence of RG and FA.		

Syllabus

	3.3	Context Free Grammars (CFG) Definition, Sentential forms, Leftmost and Rightmost derivations, Parse tree, Ambiguity, Simplification and Applications, Normal Forms: Chomsky Normal Forms (CNF) and Greibach Normal Forms (GNF), Context Free language (CFL) - Pumping lemma, Closure properties.	
4.0		Pushdown Automata(PDA)	
	4.1	Definition, Language of PDA,PDA as generator, decider and acceptor of CFG, Deterministic PDA, Non-Deterministic	
5.0		PDA, Application of PDA.	00
5.0	5.1	Turing Machine (TM) Definition, Design of TM as generator, decider and acceptor,	09
		Variants of TM: Multitrack, Multitape, Universal TM, Applications, Power and Limitations of TMs.	
6.0		Undecidability	02
	6.1	Decidability and Undecidability, Recursive and Recursively Enumerable Languages, Halting Problem, Rice's Theorem, Post Correspondence Problem.	
		Total	39

Learning/Course Outcomes

After completing this course, students will be able to:

- 1. Illustrate the fundamentals of Theoretical Computer Science.
- 2. Construct Computational models including Finite Machine, Push Down Automata And Turing Machine.
- 3. Construct regular grammar for language and use several techniques for simplification.
- 4. Apply formal mathematical method to prove the properties of Formal Language.
- 5. Proof that certain languages are undecidable.

Introduction

- Computations are designed to solve problems.
- Computational Devices
- Resources use by Computational Devices
- Programs are descriptions of computations written for execution on computers.
- The field of computer science is concerned with the development of methodologies for designing programs, and with the development of computers for executing programs.
- It is therefore of central importance for those involved in the field that the characteristics of programs, computers, problems, and computation be fully understood.

Example:
$$f(x) = x^3$$

$$f(x) = x^3$$

$$f(x) = x^3$$

$$z = 2*2 = 4$$

 $f(x) = z*2 = 8$

input

$$x = 2$$

output

Program memory

compute X * X

CPU

compute $x^2 * x$

$$f(x) = x^3$$

$$z = 2*2 = 4$$

 $f(x) = z*2 = 8$

input

$$x = 2$$

Program memory

compute X * X

compute $x^2 * x$

CPU

output

f(x) = 8

Automaton

Basic Building Blocks

Symbol
 a, b, c...A, B, C...O,1,2.....

• Alphabet $\Sigma=\{a,b\}$ $\Sigma=\{0,1\}$

String
 aa, ab, bab, bba......00,01,10,11,101

Language

Language

$$\Sigma = \{a, b\}$$

```
L2=set of all string of length 3 ={aaa, aab, aba, abb, baa, bab, baa, bbb}
```

L3=set of all string where each string starts with 'a'

={a, aa, ab, aaa, aab, aba, abb,}

•Language is finite

$$\sum$$
 ={a, b} L1=set of all string of length 2
L1 = {aa, ab, ba, bb}

•Language is infinite

```
\Sigma = {a, b} L3=set of all string where each string starts with 'a L2 = {a, aa, ab, abb, aab, aba,.....}
```

- String
- •Linear searching have limitations so.....

Automaton

·Electric Switch

·FAN REGULATOR

Formal Definition

Deterministic Finite Automaton (DFA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: set of states

 Σ : input alphabet $\lambda \notin \Sigma$

 δ : transition function

 q_0 : initial state

F: set of accepting states

Languages

Language: a set of strings

String: a sequence of symbols from some alphabet

Example:

Strings: cat, dog, house

Language: {cat, dog, house}

Alphabet: $\Sigma = \{a, b, c, \dots, z\}$

Languages are used to describe computation problems:

$$PRIMES = \{2,3,5,7,11,13,17,...\}$$

$$EVEN = \{0,2,4,6,...\}$$

Alphabet:
$$\Sigma = \{0,1,2,...,9\}$$

Alphabets and Strings

An alphabet is a set of symbols

Example Alphabet:
$$\Sigma = \{a, b\}$$

A string is a sequence of symbols from the alphabet

Decimal numbers alphabet
$$\Sigma = \{0,1,2,\ldots,9\}$$

Binary numbers alphabet

$$\Sigma = \{ extsf{O,1}\}$$

Unary numbers alphabet $\Sigma = \{1\}$

Unary number: 1 11 111 1111 11111

Decimal number: 1 2 3 4 5

String Operations

$$w = a_1 a_2 \cdots a_n$$

$$v = b_1 b_2 \cdots b_m$$

Concatenation

$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$

abbabbbaaa

$$w = a_1 a_2 \cdots a_n$$

ababaaabbb

Reverse

$$w^R = a_n \cdots a_2 a_1$$

bbbaaababa

String Length

$$w = a_1 a_2 \cdots a_n$$

Length:
$$|w| = n$$

Examples:
$$|abba| = 4$$

$$|aa|=2$$

$$|a|=1$$

Length of Concatenation

$$|uv| = |u| + |v|$$

Example:
$$u = aab$$
, $|u| = 3$
 $v = abaab$, $|v| = 5$

$$|uv| = |aababaab| = 8$$

 $|uv| = |u| + |v| = 3 + 5 = 8$

Empty String

A string with no letters is denoted: λ or ε

Observations:
$$|\lambda| = 0$$

$$\lambda w = w\lambda = w$$

 $\lambda abba = abba \lambda = ab\lambda ba = abba$

Substring

Substring of string: a subsequence of consecutive characters

String	Substring	
<u>ab</u> bab	ab	
<u>abba</u> b	abba	
ab <u>b</u> ab	b	
a <u>bbab</u>	bbab	

Prefix and Suffix

abbab

Prefixes Suffixes

abbab

a bbab

ab bab

abb ab

abba b

abbab

Another Operation

$$w^n = \underbrace{ww\cdots w}_n$$

Example:
$$(abba)^2 = abbaabba$$

Definition:
$$w^0 = \lambda$$

$$(abba)^0 = \lambda$$

The * Operation

 $\Sigma^*\colon$ the set of all possible strings from alphabet Σ

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$

The + Operation

 Σ^+ : the set of all possible strings from alphabet Σ except λ

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$

$$\Sigma^{+} = \Sigma^{*} - \lambda$$

$$\Sigma^{+} = \{a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

Review

- ·Informal Introduction to Finite Automata
- ·Symbol
- · Alphabet
- ·String
- ·String Operations
- * (Kleene closure) and + (positive closure)

Languages

A language over alphabet Σ is any subset of Σ^*

Examples:

$$\Sigma = \{a, b\}$$

$$\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, \ldots\}$$

Language: $\{\lambda\}$

Language: $\{a, aa, aab\}$

Language: $\{\lambda, abba, baba, aa, ab, aaaaaaa\}$

More Language Examples

Alphabet
$$\Sigma = \{a, b\}$$

An infinite language
$$L = \{a^n b^n : n \ge 0\}$$

$$\begin{array}{c} \lambda \\ ab \\ aabb \\ aaaaabbbbb \end{array} \in L \qquad abb \not\in L$$

Prime numbers

Alphabet
$$\Sigma = \{0,1,2,...,9\}$$

Language:

$$PRIMES = \{x : x \in \Sigma^* \text{ and } x \text{ is prime}\}$$

$$PRIMES = \{2,3,5,7,11,13,17,...\}$$

Even and odd numbers

Alphabet
$$\Sigma = \{0,1,2,...,9\}$$

$$EVEN = \{x : x \in \Sigma^* \text{ and } x \text{ is even} \}$$

 $EVEN = \{0,2,4,6,...\}$

$$ODD = \{x : x \in \Sigma^* \text{ and } x \text{ is odd}\}$$

 $ODD = \{1,3,5,7,...\}$

Unary Addition

Alphabet:
$$\Sigma = \{1,+,=\}$$

Language:

$$ADDITTON = \{x + y = z : x = 1^n, y = 1^m, z = 1^k, n + m = k\}$$

$$11 + 111 = 11111 \in ADDITTON$$

$$111 + 111 = 111 \notin ADDITTON$$

Note that:

$$\emptyset = \{ \} \neq \{\lambda\}$$

$$|\{\ \}| = |\varnothing| = 0$$

$$|\{\lambda\}| = 1$$

String length
$$|\lambda| = 0$$

$$|\lambda| = 0$$

Operations on Languages

The usual set operations

$${a,ab,aaaa} \cup {bb,ab} = {a,ab,bb,aaaa}$$

 ${a,ab,aaaa} \cap {bb,ab} = {ab}$
 ${a,ab,aaaa} - {bb,ab} = {a,aaaa}$

Complement:
$$\overline{L} = \Sigma^* - L$$

$$\overline{\{a,ba\}} = \{\lambda,b,aa,ab,bb,aaa,\ldots\}$$

Reverse

Definition:
$$L^R = \{w^R : w \in L\}$$

Examples:
$$\{ab, aab, baba\}^R = \{ba, baa, abab\}$$

$$L = \{a^n b^n : n \ge 0\}$$

$$L^R = \{b^n a^n : n \ge 0\}$$

Concatenation

Definition:
$$L_1L_2 = \{xy : x \in L_1, y \in L_2\}$$

Example: $\{a,ab,ba\}\{b,aa\}$

 $= \{ab, aaa, abb, abaa, bab, baaa\}$

Another Operation

Definition:
$$L^n = LL \cdots L$$

$${a,b}^3 = {a,b}{a,b}{a,b} =$$

 ${aaa,aab,aba,abb,baa,bab,bba,bbb}$

Special case:
$$L^0 = \{\lambda\}$$

$$\{a,bba,aaa\}^0 = \{\lambda\}$$

Star-Closure (Kleene *)

All strings that can be constructed from L

Definition:
$$L^* = L^0 \cup L^1 \cup L^2 \dots$$

Example:
$$\left\{a,bb\right\}* = \left\{\begin{matrix} \lambda,\\ a,bb,\\ aa,abb,bba,bbb,\\ aaa,aabb,abba,abbb,\ldots \end{matrix}\right\}$$

Positive Closure

Definition:
$$L^+ = L^1 \cup L^2 \cup \cdots$$

Same with \mathcal{L}^* but without the λ

$$\{a,bb\}^{+} = \begin{cases} a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \dots \end{cases}$$

Formal Definition

Deterministic Finite Automaton (DFA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: set of states

 Σ : input alphabet $\lambda \notin \Sigma$

 δ : transition function

 q_0 : initial state

F: set of accepting states

·Electric Switch

·FAN REGULATOR

·DFA

Input Alphabet Σ

 $\lambda \not\in \Sigma$: the input alphabet never contains λ

Initial State q_0

Example

Set of Accepting States $F \subseteq Q$

Example

Transition Function $\delta: Q \times \Sigma \to Q$

$$\delta(q,x)=q'$$

Describes the result of a transition from state q with symbol x

Example:

$$\delta(q_0, a) = q_1$$

$$\delta(q_0,b)=q_5$$

$$\delta(q_2,b)=q_3$$

Transition Table for δ

symbols

δ	а	Ь
90	91	<i>9</i> ₅
91	9 5	92
92	q_5	93
<i>q</i> ₃	94	9 5
94	<i>9</i> ₅	9 5
<i>9</i> ₅	<i>9</i> ₅	9 5

states

Extended Transition Function

$$\delta^*: Q \times \Sigma^* \to Q$$

$$\delta^*(q,w)=q'$$

Describes the resulting state after scanning string W from state q

Example:
$$\delta^*(q_0,ab) = q_2$$

$$\delta^*(q_0, abbbaa) = q_5$$

$$\delta^*(q_1,bba)=q_4$$

Special case:

for any state 9

$$\delta^*(q,\lambda) = q$$

In general:

$$\delta^*(q,w)=q'$$

implies that there is a walk of transitions

Language Accepted by DFA

Language of DFA M:

it is denoted as L(M) and contains all the strings accepted by M

We say that a language L' is accepted (or recognized) by DFA M if L(M) = L'

For a DFA
$$M=(Q,\Sigma,\mathcal{S},q_0,F)$$

Language accepted by M:

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

$$q_0$$
 w $q' \in F$

Language rejected by M:

$$\overline{L(M)} = \{ w \in \Sigma^* : \delta^*(q_0, w) \notin F \}$$

$$q_0$$
 W $q' \notin F$

Example

Construct a DFA which accepts set of all string over $\Sigma = \{a, b\}$ of length 2. L = $\{aa, b\}$ ab, ba, bb

String Accept:-scan the entire string, if we reach a final state from initial state. language Accept:-All the string in language are "accepted" and all string which are not in the language are "rejected"

Example

Above DFA is incorrect because it also accept the string which is not in language

Review

- Language
- ·Language Operations
- * (Kleene closure) and + (positive closure)
- ·Formal Definition of Finite Automata
- ·Language Accepted by Finite Automata

For every state, there is a transition for every symbol in the alphabet

·Electric Switch

·FAN REGULATOR

head

Initial Configuration

Input alphabet

a b b a

Initial state

Scanning the Input

Input finished

accept

A Rejection Case

Input finished

Another Rejection Case

Language Accepted: $L = \{abba\}$

To accept a string:

all the input string is scanned and the last state is accepting

To reject a string:

all the input string is scanned and the last state is non-accepting

Language Accepted: $L = \{\lambda, ab, abba\}$

1

Empty Tape

 (λ)

Another Example

Input String

Input finished

A rejection case

b | a | b |

Input String

Input finished

Language Accepted: $L = \{a^n b : n \ge 0\}$

Another Example

Alphabet:
$$\Sigma = \{1\}$$

Language Accepted:

$$EVEN = \{x : x \in \Sigma^* \text{ and } x \text{ is even}\}$$

= $\{\lambda, 11, 1111, 111111, ...\}$

More DFA Examples

$$\Sigma = \{a, b\}$$

$$L(M) = \{ \}$$

Empty language

$$L(M) = \Sigma^*$$

All strings

$$\Sigma = \{a, b\}$$

$$L(M) = \{\lambda\}$$

Language of the empty string

$$\Sigma = \{a,b\}$$

L(M)= { all strings with prefix ab }

$L(M) = \{ all binary strings containing substring 001 \}$

Ends with a Containing a Starts with a

$L(M) = \{ all binary strings without substring 001 \}$

Review

DFA Examples

$$L(M) = \left\{ awa : w \in \left\{ a, b \right\}^* \right\}$$

Examples

- A Finite Automaton Accepting the Language of Strings Ending in aa over the alphabet {a,b}
- An FA accepting the strings ending with b and not containing aa.
- An FA Accepting Binary Representations of Integers Divisible by 3
- An FA Accepting Strings That Contain Either ab or bba.

Regular Languages

Definition:

```
A language L is regular if there is a DFA M that accepts it (L(M) = L)
```

The languages accepted by all DFAs form the family of regular languages

Example regular languages:

```
\{abba\} \{\lambda, ab, abba\}
\{a^n b : n \ge 0\} \{awa : w \in \{a,b\}^*\}
{ all strings in \{a,b\}^* with prefix ab }
{ all binary strings without substring 001}
\{x: x \in \{1\}^* \text{ and } x \text{ is even}\}
\{\}\ \{\lambda\}\ \{a,b\}^*
```

There exist automata that accept these languages (see previous slides).

There exist languages which are not Regular:

$$L = \{a^n b^n : n \ge 0\}$$

$$ADDITTON = \{x + y = z : x = 1^n, y = 1^m, z = 1^k, n + m = k\}$$

There is no DFA that accepts these languages

(we will prove this in a later class)

Review

- DFA Examples
- · Regular Language

A language L is regular if it is recognized by a deterministic finite automaton (DFA), i.e. if there is a DFA M such that L = L (M).

L = { w | w contains 001} is regular

L = { w | w has an even number of 1's} is regular

- FA which read string made of {0,1} and accepts those string which end with 00 or 11.(Insem-2017, 4 Marks)
- Design FA Accepting Language of Strings
 Ending in b and not containing the substring aa.
- An FA accepting Binary Representations of Integers Divisible by 3.

Non-Deterministic Finite Automata

Nondeterministic Finite Automaton (NFA)

Alphabet =
$$\{a\}$$

Alphabet = $\{a\}$

Alphabet = $\{a\}$

All input is consumed

Second Choice

Second Choice

Input cannot be consumed

An NFA accepts a string: if there is a computation of the NFA

that accepts the string

i.e., all the input string is processed and the automaton is in an accepting state

aa is accepted by the NFA:

because this computation accepts aa

Rejection example

Second Choice

Second Choice

Another Rejection example

Input cannot be consumed

Second Choice

Second Choice

Input cannot be consumed

An NFA rejects a string:

if there is no computation of the NFA that accepts the string.

For each computation:

 All the input is consumed and the automaton is in a non final state

OR

The input cannot be consumed

a is rejected by the NFA:

All possible computations lead to rejection

aaa is rejected by the NFA:

All possible computations lead to rejection

Language accepted: $L = \{aa\}$

Lambda Transitions

$$- q_0 \xrightarrow{a} q_1 \xrightarrow{\lambda} q_2 \xrightarrow{a} q_3$$

$$-q_0 \xrightarrow{a} q_1 \xrightarrow{\lambda} q_2 \xrightarrow{a} q_3$$

input tape head does not move

all input is consumed

String aa is accepted

Rejection Example

$$-q_0 \xrightarrow{a} q_1 \xrightarrow{\lambda} q_2 \xrightarrow{a} q_3$$

(read head doesn't move)

Input cannot be consumed

Automaton halts

String aaa is rejected

Language accepted: $L = \{aa\}$

$$-q_0 \xrightarrow{a} q_1 \xrightarrow{\lambda} q_2 \xrightarrow{a} q_3$$

Another NFA Example

Another String

Language accepted

$$L = \{ab, abab, ababab, ...\}$$

= $\{ab\}^+$

Another NFA Example

Language accepted

$$L(M) = {\lambda, 10, 1010, 101010, ...}$$

= ${10}*$

Remarks:

- •The λ symbol never appears on the input tape
- ·Simple automata:

·NFAs are interesting because we can express languages easier than DFAs

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: Set of states, i.e. $\{q_0, q_1, q_2\}$

 Σ : Input applied, i.e. $\{a,b\}$ $\lambda \notin \Sigma$

 δ : Transition function

 q_0 : Initial state

F: Accepting states

Transition Function δ

$$\delta(q, x) = \{q_1, q_2, \dots, q_k\}$$

resulting states with following one transition with symbol x

Corollary

- A language is regular if and only if some nondeterministic finite automaton recognizes it
- A language is regular if and only if some deterministic finite automaton recognizes it

Epsilon Transitions

- Extension to NFA a "feature" called epsilon transitions, denoted by ϵ , the empty string
- The ϵ transition lets us spontaneously take a transition, without receiving an input symbol
- Another mechanism that allows our NFA to be in multiple states at once.
 - Whenever we take an ϵ edge, we must fork off a new "thread" for the NFA starting in the destination state.
- While sometimes convenient, has no more power than a normal NFA
 - Just as a NFA has no more power than a DFA

Formal Notation - Epsilon Transition

- Transition function δ is now a function that takes as arguments:
 - A state in Q and
 - A member of $\Sigma \cup \{\epsilon\}$; that is, an input symbol or the symbol ϵ . We require that ϵ not be a symbol of the alphabet Σ to avoid any confusion.

- Design FA Accepting Language of Strings that contain either ab or bba
- Design FA Accepting Language of Strings in which both the numbers of a's and numbers of b's are even.

Review

- NFA
- NFA with null transition

Computation of an NFA

$$\mathcal{S}(q_0,1) = \{q_1\}$$

$$\delta(q_1,0) = \{q_0,q_2\}$$

$$\delta(q_0,\lambda)=\{q_2\}$$

$$\delta(q_2,1) = \emptyset$$

Extended Transition Function

5^{*}

Same with δ but applied on strings

$$\delta^*(q_0,a) = \{q_1\}$$

$$\delta^*(q_0,aa) = \{q_4,q_5\}$$

$$\delta^*(q_0,ab) = \{q_2,q_3,q_0\}$$

Special case:

for any state 9

$$q \in \delta^*(q,\lambda)$$

In general

 $q_j \in \delta^*(q_i, w)$: there is a walk from q_i to q_j with label w

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q_i \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} \xrightarrow{\sigma_k} q_j$$

The Language of an NFA $\,M\,$

The language accepted by $\,M\,$ is:

$$L(M) = \{w_1, w_2, \dots w_n\}$$

where
$$\delta^*(q_0, w_m) = \{q_i, ..., q_k, ..., q_j\}$$
 and there is some $q_k \in F$ (accepting state)

 $W_m \in L(M)$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta^*(q_0,aa) = \{q_4,q_5\} \qquad aa \in L(M)$$

$$\epsilon F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_6$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta^*(q_0,ab) = \{q_2,q_3,\underline{q_0}\} \Longrightarrow ab \in L(M)$$

$$\leq F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta^*(q_0, abaa) = \{q_4, q_5\} \longrightarrow aaba \in L(M)$$

$$= F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta^*(q_0, aba) = \{q_1\}$$
 $aba \notin L(M)$

$$L(M) = \{ab\} * \cup \{ab\} * \{aa\}$$

Minimization of FA

- Input DFA
- Output Minimized DFA
- Step 1 Draw a table for all pairs of states (Qi, Qj) [All are unmarked initially]
- Step 2 Consider every state pair (Qi, Qj) in the DFA where Qi \in F and Qj \notin F or vice versa and mark them. [Here F is the set of final states]
- Step 3 Repeat this step until we cannot mark anymore states -
 - If there is an unmarked pair (Qi, Qj), mark it if the pair $\{\delta (Qi, A), \delta (Qi, A)\}$ is marked for some input alphabet.
- Step 4 Combine all the unmarked pair (Qi, Qj) and make them a single state in the reduced DFA.

Example

Step 1 - Draw a table for all pairs of states (Qi, Qj) [All are unmarked initially].

а						
Ь						
С						
d						
е						
f						
	а	b	С	d	е	F

Step 1 - Draw a table for all pairs of states (Qi, Qj) [All are unmarked initially].

• Step 2 - Consider every state pair (Qi, Qj) in the DFA where Qi \in F and Qj \notin F or vice versa and mark them. [Here F is the set of final states] If both the states from pair are final then don't mark them.

а						
Ь						
С						
d						
e						
f						
	α	Ь	С	d	e	F

• Step 2 - Consider every state pair (Qi, Qj) in the DFA where Qi \in F and Qj \notin F or vice versa and mark them. [Here F is the set of final states] . If both the states from pair are final then don't mark them.

α						
Ь						
С	1	1				
d	1	1				
e	1	1				
f			1	1	1	
	a	В	С	D	e	f

а						
b						
С	1	1				
d	1	1				
е	1	1				
f			1	1	1	
	а	b	С	d	е	f

Unmarked pair is (a,f)

$$\delta (a,0)=b \delta (f,0)=f$$
 (b,f)

$$\delta$$
 (a,1)= d (d,f) δ (f,1)= f

а						
b						
С	1	1				
d	1	1				
е	1	1				
f	2		1	1	1	
	а	b	С	d	е	f

Unmarked pair is (a,f)

$$\delta (a,0)=b \delta (f,0)=f$$
 (b,f)

$$\delta$$
 (a,1)= d (d,f) δ (f,1)= f

а						
b						
С	1	1				
d	1	1				
e	1	1				
f	2		1	1	1	
	а	b	С	d	е	f

Unmarked pair is (a,b)

$$\delta (a,0) = b$$

 $\delta (b,0) = a$ (b,a)

$$\delta$$
 (a,1)= d δ (b,1)= c

а						
Ь						
С	1	1				
d	1	1				
e	1	1				
f	2	2	1	1	1	
	а	b	С	d	е	f

Unmarked pair is (b,f)

$$\delta$$
 (b,0)= a δ (a,f) δ (f,0)= f

$$\delta$$
 (b,1)= c (c,f) δ (f,1)= f

а						
b						
С	1	1				
d	1	1				
е	1	1				
f	2	2	1	1	1	
	а	b	С	d	е	f

Unmarked pair is (c,e)

$$\delta (c,0)=e \ \delta (e,e)$$

$$\delta$$
 (c,1)= f δ (e,1)= f

а						
Ь						
С	1	1				
d	1	1				
e	1	1				
f	2	2	1	1	1	
	а	b	С	d	e	f

Unmarked pair is (c,d)

$$\delta (c,0)=e$$
 (e,e) $\delta (d,0)=e$

$$\begin{array}{ll}
\delta (c,1) = f \\
\delta (d,1) = f
\end{array}$$

a						
b						
С	1	1				
d	1	1				
e	1	1				
f	2	2	1	1	1	
	α	Ь	С	d	е	f

Unmarked pair is (d,e)

$$\delta (d,0) = e$$
 (e,e) $\delta (e,0) = e$

$$\delta$$
 (d,1)= f
 δ (e,1)= f (f,f)

Step 4 - Combine all the unmarked pair (Qi, Qj)
 and make them a single state in the reduced DFA.

а						
b						
С	1	1				
d	1	1				
е	1	1				
f	2	2	1	1	1	
	a	Ь	С	d	e	f

- After step 3, we have got state combinations
 {a, b} {c, d} {c, e} {d, e} that are unmarked.
- We can recombine {c, d} {c, e} {d, e} into {c, d, e}
- Hence we got two combined states as {a, b} and {c, d, e}

So the final minimized DFA will contain three states {f}
 {a, b} and {c, d, e}

0

 $\{a, b\}$

· So the final minimized DFA will contain three states {f}

 ${a, b} \text{ and } {c, d, e}$

 $\{a, b\}$

$$\delta$$
 (a,0)=b δ (a,1)=d

 $\delta (b,0)=a \delta (b,1)=c$

So the final minimized DFA will contain three states {f}

 $\{a, b\}$ and $\{c, d, e\}$

$$δ(c,0)=e$$
 $δ(c,1)=f$
 $δ(d,0)=e$ $δ(d,1)=f$
 $δ(e,0)=e$ $δ(e,1)=f$

So the final minimized DFA will contain three states {f}

0

 $\{a, b\}$ and $\{c, d, e\}$

{f}

$$\delta$$
 (f,0)=f δ (f,1)=f

Example

Minimize following DFA

8	1	1	1	2	3	1	1	1	2	
7				1	1			_	1	
7	2	2	2	1	1	2				
6	2	2	2	1	1	2				
5	2			1	1					
4	1	1	1							
3	1	1	1		_					
2	2									
1	2									

Final DFA

Minimize the following automata.

NFAs accept the Regular Languages

Equivalence of Machines

Definition:

Machine $\,M_1\,$ is equivalent to machine $\,M_2\,$

if
$$L(M_1) = L(M_2)$$

Example of equivalent machines

$$L(M_1) = \{10\} *$$

Theorem:

```
Languages<br/>accepted<br/>by NFAs
— Regular<br/>Languages
Languages<br/>accepted<br/>by DFAs
```

NFAs and DFAs have the same computation power, accept the same set of languages

Proof: we only need to show

Languages accepted by NFAs AND Languages accepted by NFAs

Proof-Step 1

 Languages

 accepted

 by NFAs

 Regular

 Languages

Every DFA is trivially an NFA

Any language L accepted by a DFA is also accepted by an NFA

Proof-Step 2

 Languages

 accepted

 by NFAs

 Regular

 Languages

Any NFA can be converted to an equivalent DFA

Any language L accepted by an NFA is also accepted by a DFA

Conversion NFA to DFA

$$\delta^*(q_0,a) = \{q_1\}$$

$$\delta^*(q_0,b) = \emptyset$$
 empty set

END OF CONSTRUCTION

General Conversion Procedure

Input: an NFA M

Output: an equivalent DFA M' with L(M) = L(M')

The NFA has states q_0, q_1, q_2, \dots

The DFA has states from the power set

 \emptyset , $\{q_0\}$, $\{q_1\}$, $\{q_0,q_1\}$, $\{q_1,q_2,q_3\}$,

Conversion Procedure Steps

step

1. Initial state of NFA: q_0

Initial state of DFA: $\{q_0\}$

Example
$$\delta^*(q_0, a) = \{q_1, q_2\}$$

NFA M

DFA
$$M'$$
 $\delta(\{q_0\}, a) = \{q_1, q_2\}$

step

2. For every DFA's state $\{q_i, q_i, ..., q_m\}$

$$\{q_i,q_j,...,q_m\}$$

compute in the NFA

$$\begin{array}{c}
\delta \star (q_{i}, a) \\
0 \delta \star (q_{j}, a)
\end{array}$$

$$\begin{array}{c}
\text{Union} \\
q'_{k}, q'_{l}, \dots, q'_{n} \\
0 \delta \star (q_{m}, a)
\end{array}$$

add transition to DFA

$$\delta(\{q_i,q_j,...,q_m\}, a) = \{q'_k,q'_1,...,q'_n\}$$

step 3. Repeat Step 2 for every state in DFA and symbols in alphabet until no more states can be added in the DFA

step

4. For any DFA state $\{q_i,q_j,...,q_m\}$

if some q_j is accepting state in NFA

Then, $\{q_i,q_j,...,q_m\}$ is accepting state in DFA

a,b

a,b

Review

- NFA and NFA with null(or epsilon) transition
- Minimization of DFA
- NFA to DFA Conversion using subset construction

Lemma:

If we convert NFA $\,M\,$ to DFA $\,M'\,$ then the two automata are equivalent:

$$L(M) = L(M')$$

- · Algorithm
- Input An NDFA
- Output An equivalent DFA
- Step 1 Create state table from the given NDFA.
- Step 2 Create a blank state table under possible input alphabets for the equivalent DFA.
- Step 3 Mark the start state of the DFA by q0 (Same as the NDFA).
- Step 4 Find out the combination of States $\{Q_0, Q_1, ..., Q_n\}$ for each possible input alphabet.
- Step 5 Each time we generate a new DFA state under the input alphabet columns, we have to apply step 4 again, otherwise go to step 6.
- Step 6 The states which contain any of the final states of the NDFA are the final states of the equivalent DFA.

NFA

$$Q = \{q0,q1,q2\}$$

$$\Sigma = a,b$$

$$q_0 = q0$$

$$F = \{q2\}$$

$$\int (Transition Function)$$

	a	b
q 0	{q0,q1}	q 0
q1		q2
q2		

	a	Ь
q 0	{q0,q1}	q 0
q1		q2
q 2		

State	a	В
q0	{q0,q1}	q0
{q0,q1}	{q0,q1}	{q0,q2}
	{q0,q1}	q0

Example for NFA to DFA Conversion

Output

Conversion NFA- λ to NFA

Review

- Minimization of DFA
- NFA to DFA Conversion using subset construction
- NFA- λ to NFA Conversion using subset construction

The λ -Closure of a Set of States

- Suppose $M = (Q, \lambda, q_0 A, \delta)$ is an NFA, and $S \subseteq Q$ is a set of states.
- The λ -closure of S is the set (S) that can be defined recursively as
- · follows.
 - 1. $S \subseteq (S)$.
 - 2. For every $q \in (S)$, $\delta(q,\lambda) \subseteq (S)$.

- 1. States of NFA- λ and NFA are Same
- 2. Initial state of NFA- λ is initial state of NFA.
- 3. For transitions,
- find the null closure of the state
- apply the symbol from the alphabet
- find the null closure of a set states generated from the above step
- 4. Repeat the step No.4 for each state

- 1. States of NFA- λ and NFA are Same
- 2. Initial state of NFA- λ is initial state of NFA.
- 3. For transitions,
- find the null closure of the state
- apply the symbol from the alphabet
- · find the null closure of the states generated from the above step

1)
$$\lambda$$
 -({1})= {1,2}
2) δ ({1,2}, a)= δ (1, a) $U\delta$ (2, a)= Φ U {2,3}={2,3}
3) λ - {2,3}={2,3}
4) After applying transitions a on state 1
It will move to state {2,3}

1)
$$\lambda$$
 -({1})= {1,2}

$$2\mathcal{S}(\{1,2\},a) = \delta(1,a)U\delta(2,a) = \Phi U\{2,3\}$$

4) After applying transitions a on state 1

It will move to state {2,3}

		a			Ь	
	λ		λ	λ		λ
1	{1,2}	{2,3}	{2,3}			

1)
$$\lambda$$
 -({1})= {1,2}
2) δ ({1,2}, b)= δ (1, b) $U\delta$ (2, b)= $\Phi \cup \Phi$
3) λ - $\Phi = \Phi$

4) After applying transitions b on state 1

It will move to the dead state

		a			Ь	
	λ		λ	λ		λ
1	{1,2}	{2,3}	{2,3}	{1,2}	Φ	Φ

1)
$$\lambda$$
 -({2})= {2}
2) δ ({2}, a)= {2,3}

4) After applying transitions a on state 2

It will move to state {2,3}

		a			Ь	
	λ		λ	λ		λ
1	{1,2}	{2,3}	{2,3}	{1,2}	Φ	Φ
2	{2}	{2,3}	{2,3}			

1)
$$\lambda$$
 -({2})= {2}
2) δ ({2}, b)= Φ

4) After applying transitions b on state 2 It will move to Dead state.

		a			Ь	
	λ		λ	λ		λ
1	{1,2}	{2,3}	{2,3}	{1,2}	Φ	$oldsymbol{arPhi}$
2	{2}	{2,3}	{2,3}	{2}	Φ	$ \Phi $

It will move to Dead State

		a			Ь	
	2		2	2		2
1	{1,2}	{2,3}	{2,3}	{1,2}	Φ	$\lambda_{ar{arPhi}}$
2	{2}	{2,3}	{2,3}	{2}	Φ	Φ
3	{3}	Φ	Φ			
4						
5						

4) After applying transitions b on state 3

It will move to State 1, 2 and 4

		a			Ь	
	λ		λ	λ		λ
1	{1,2}	{2,3}	{2,3}	{1,2}	Φ	$oldsymbol{arPhi}$
2	{2}	{2,3}	{2,3}	{2}	Φ	Φ
3	{3}	Φ	Φ	{3}	{4}	{4,1,2}
4						
5						

It will move to State 2 and 3

			a			Ь	
		λ		λ	λ		λ
1		{1,2}	{2,3}	{2,3}	{1,2}	Φ	Φ
2		{2}	{2,3}	{2,3}	{2}	Φ	Φ
3		{3}	Φ	Φ	{3}	{4}	{4,1,2}
4		{4,1,2}	{2,3}	{2,3}			
5							

It will move to State 5

		a			Ь	
	λ		λ	λ		λ
1	{1,2}	{2,3}	{2,3}	{1,2}	Φ	Φ
2	{2}	{2,3}	{2,3}	{2}	Φ	$oldsymbol{arPhi}$
3	{3}	Φ	Φ	{3}	{4}	{4,1,2}
4	{4,1,2}	{2,3}	{2,3}	{1,2,4}	{5}	{5}
5						

			a			Ь	
		λ		λ	λ		λ
	1	{1,2}	{2,3}	{2,3}	{1,2}	Φ	Φ
	2	{2}	{2,3}	{2,3}	{2}	$ \Phi $	$ ot\hspace{-1.5pt} arPhi $
	3	{3}	Φ	Φ	{3}	{4}	{4,1,2}
4	4	{4,1,2}	{2,3}	{2,3}	{1,2,4}	{5}	{5}
	5	{5 }	{4 }	{1,2,4}			

		a			Ь	
	λ		λ	λ		λ
1	{1,2}	{2,3}	{2,3}	{1,2}	$oldsymbol{arPhi}$	$oldsymbol{arPhi}$
2	{2}	{2,3}	{2,3}	{2}	$ ot\hspace{-1.5pt} arPhi ot$	$oldsymbol{arPhi}$
3	{3}	Φ	Φ	{3}	{4}	{4,1,2}
4	{4,1,2}	{2,3}	{2,3}	{1,2,4}	{5}	{5}
5	{5 }	{4}	{1,2,4}	<i>{5}</i>	$oldsymbol{arPhi}$	$oldsymbol{arPhi}$

$NFA-\lambda$

		α			D	
	7	,	λ	λ		λ
1	{1,2,4},	{1,3,5}	{1,2,3,4,5}			
2						
3						
4						
5						

Convert the given NFA–ε to an NFA.

Review

- Minimization of DFA
- DFA, NFA and NFA- λ Equivalency

Moore Machine and Mealy machine

```
Definition:- (Q, \Sigma, q_0, \delta, \Delta, \gamma) Where, Q = set \ of \ states, \ \Sigma = i/p \ alphabet, \ q0 = \ start/initial \ state, \delta = Q \times \Sigma \rightarrow Q \ (transition \ function), \Delta = o/p \ alphabet, \ \gamma = o/p \ function
```

•Difference between Mealy and Moore machine is γ (o/p function)

```
\gamma (o/p function) for Moore machine is \gamma: Q \to \Delta (outputs depend on only the present state)
```

 $\gamma(o/p \text{ function})$ for Mealy machine is $\gamma: Q \times \Sigma \to \Delta$ (Output depends on the present state as well as the present input)

Moore and Mealy Machines are equally powerful

Moore Machine

	In	Output	
	a	Ь	
A	A	В	1
В	Α	В	0

$$\lambda: \mathbf{Q} \to \Delta$$

 $A \rightarrow 1$

 $\mathbf{B} \rightarrow 0$

*string 'ab' on machine

- Applying string 'ab' on machine (as input), got the output as 110.
- If number of input symbol is N then Number of output symbol is N+1.

Mealy Machine

	Input	Output	Input	Output
	a		Ь	
A	Α	1	В	0
В	Α	1	В	0

$$\lambda: \mathbf{Q} \times \mathbf{\Sigma} \to \Delta$$

 $A,a \rightarrow 1$

 $A,b \rightarrow 0$

 $B,a \rightarrow 1$

B,b**→**0

*string 'ab' on machine

- Applying string 'ab' on machine (as input), got the output as 10.
- If number of input symbol is N then Number of output symbol is N.

Example on Moore Machine

Construct a Moore Machine that take the set of all strings over {a, b} as i/p and prints '1' as o/p for every occurrence of 'ab' as a substring

$$Q=\{A, B,C\}$$
 $\Sigma=\{a, b\}$ $\Delta=\{0,1\}$

*string 'ab' on machine

•string 'abab' on machine

Example on Moore Machine

Construct a Moore Machine that take the set of all strings over {a, b} as i/p and counts no of occurrences of substring 'baa'

$$Q = \{A, B, C\} \quad \Sigma = \{a, b\} \quad \Delta = \{0, 1\}$$

•string 'abaab' on machine

Example on Mealy Machine

Construct a Mealy Machine that take the set of all strings over {a, b} as i/p and prints '1' as o/p for every occurrence of 'ab' as a substring

$$Q=\{A, B,C\}, \Sigma=\{a, b\}, \Delta=\{0,1\}$$

·string 'ab' on machine

 $\begin{array}{c|c}
 & a \\
 & B \\
\hline
 & C
\end{array}$

•string 'abab' on machine

Conversion of Moore and Mealy Machine

Moore Machine

Mealy Machine

Moore Machine

Mealy Machine

Mealy Machine

Moore Machine

Moore Machine to Mealy Machine

Construct a Moore Machine that take the set of all strings over {a, b} as i/p and counts no of occurrences of substring 'baa'

a

Moore Machine to Mealy Machine

Construct a Moore Machine that take the set of all strings over $\{a, b\}$ as i/p and counts no of occurrences of substring 'baa'

Convert Following Moore Machine into Mealy Machine

	Next S		
Present State	a = 0	a = 1	Output
-> q0	q3	q 1	1
q1	q2	q3	O
q2	q2	q1	О
q3	q1	q0	1

Convert Following Moore Machine into Mealy Machine

	Next S		
Present State	a = 0	a = 1	Output
-> q0	q3	q 1	1
q1	q2	q3	O
q2	q2	q1	О
q3	q1	q0	1

Convert Following Moore Machine into Mealy Machine

	Next S		
Present State	a = 0	a = 1	Output
-> q0	q3	q1	1
q1	q2	q3	0
q2	q2	q1	0
q3	q1	q0	1

	•	
	0,0	
	1,1	\
1,0 0,0		
q_0 q_1 q_1 q_1 q_1 q_1 q_1 q_1 q_1 q_1 q_2 q_3 q_4 q_5	$\rightarrow q_2$	A ₃
0,1	0,0	
0,1	1,1/	

	Input	Output	Input	Output
	0		1	
q ₀	q ₃	1	q ₁	0
q ₁	q ₂	0	q ₃	1
q ₂	q ₂	0	q ₁	0
q ₃	q ₁	0	9 0	1

Mealy Machine to Moory Machine

Construct a Mealy Machine that take the set of all strings over $\{a, b\}$ as i/p and prints '1' as o/p for every occurrence of 'ab' as a substring a,0

Convert Following Mealy Machine into Moore Machine

Present State		0	1		
	Next State	Output	Next State	Output	
\rightarrow A	D	0	В	1	
В	Α	1	D	0	
С	С	1	С	0	
D	В	0	Α	1	

Review

- FA With Output
- Moore Machine and Mealy Machine
- · Equivalency of Moore and Mealy Machine
- · Conversion of Moore and Mealy Machine

Convert Following Mealy Machine into Moore Machine

Dragant		0	1	
Present State	Next State	Output	Next State	Output
\rightarrow A	D	0	В	1
В	A	1	D	0
С	C	1	C	0
D	В	0	A	1

Present State	0			1		
	Next State		Output		Next State	Output
\rightarrow A	D		0		В	1
В	Α		1		D	0
С	C		1		C	0
٥	В		0		Α	1
		_) .		Tnn	· · · +

Present	I.	Input		
State	0	1	Output	
A	D	B1	1	
D	B 0	A	0	
B0	A	D	0	
B1	A	D	1	
C0	C1	CO	0	
C1	C1	C ₀	1	

b) Construct Mealy machine equivalent to the given Moore machine

Aug-2017

INSEM

	0	1	O/P
q0	q0	q1	N
ql	q0	q2	N
q2	q0	q3	N
q3	q0	q3	Y

Start state : q0 ; Final state : q3

Design Moore Machine for divisibility by 3 tester for binary number. (Nov-2017 6 Marks)

Convert following Mealy Machine to Moore Machine (Nov-2017 6 Marks)

Thank you!!!!!!!