

OV-1: AeroHAB-6

AeroHAB-6 Subsystem Overview – Flight Segment

- Payload A (Primary Collection Segment)
 - Sensor Collection (3)
 - Position
 - Temperature / Humidity (internal / external)
 - Gyro (roll / pitch / yaw)
 - Additional team-selected sensor
 - Command & Telemetry (4)
 - Telemetry feed to ground
 - Target updates for imagery
 - Photo / video to ground
 - Interface with Comms
 - Fault management
 - Payload release
 - On Command
 - Autonomous via geo fence

- Imagery (4)
 - Video / photo collection
 - Camera pointing
 - Target areas of interest
 - Nadir (ground pointing) camera orientation towards lines of flight
 - When not capturing specific target
- Payload B (Glider) (3)
 - Autopilot
 - Flight initialization
 - Flight control
 - Waypoint navigation

- Flight / Ground Communications (4)
 - Radio transmission between payload and ground station
 - Protocol modulation / demodulation
 - Provide interfaces for:
 - Flight telemetry
 - Photo / video imagery
 - Ground commanding
- Think of this as the network layer of the project
- BONUS:
 - 20% grade bonus to anyone in this team that passes the Amateur Radio Technician License Exam by the end of February
 - Start here and I can give you more info on test prep http://www.arrl.org/find-an-amateur-radio-license-exam-session

AeroHAB-6 Subsystem Overview – Ground Segment

- Ground Station App (7)
 - Command & Telemetry
 - Live telemetry display
 - Payload commanding
 - Interface with radio
 - Flight Tracker
 - Live path updates
 - Payload A & B
 - Google Earth or similar display
 - Primary track from telemetry feed
 - Secondary from APRS
 - Camera field of view (FOV) overlay for nadir camera
 - Imagery Display
 - Live feed or selected snapshot

- Post Processing App (3)
 - Data correlation post flight
 - Image / track correlation
 - Video overlay
 - Telemetry added to video
- Antenna Pointing (3)
 - Azimuth and Elevation pointing
 - On command, track Payload A or Payload B
 - BONUS: Get a mechanical engineer to help you
- Flight Predictor (4)
 - Improved flight / landing predictor based on current weather data
 - Live landing prediction updates during flight using payload telemetry and updated weather data
 - Post-flight comparison of accuracy vs. existing prediction apps

AeroHAB-6 Primary Items to Purchase

Release Mechanism

-eadio stracker

Power Module

- Payload A (Primary Collection Segment)
 - Sensor Collection
 - Position
 - Temperature / Humidity (internal / external)
 - Gyro (roll / pitch / yaw)
 - Command & Telemetry
 - Telemetry feed to ground
 - Imagery on demand
 - Payload release
 - Imagery
 - Video / photo collection
 - Horz / vert camera pointing
 - Nadir (ground pointing) camera orientation towards lines of flight

Single Board Computer (SBC) - e.g. Pi Zero; GumStix; Pocket Beagle, etc. Sensors - Temperature - Humidity - Gyro (roll / pitch / yaw) AdaFruit Ultimate GPS SBC Teams Must Agree on One SBC And Must Coordinate Pin Usage SBC Cameras x 2 (e.g. Pi Cam) Horizon / level sensors or use gyro data Gimbal / Servos (Example)

Items to Purchase: Student / Professor

AeroHAB-6 Primary Items to Purchase

- Payload B (Glider)
 - Autopilot
 - Flight initialization
 - Flight control
 - Waypoint navigation

Single Board Computer (SBC)

e.g. Pi Zero; GumStix;
 Pocket Beagle, etc.

GPS (Recommend AdaFruit Ultimate GPS)

Gyro sensor(s)

Servos for testing

Glider with servos Power Module (Flight) Release Mechanism Camera APRS tracker

AeroHAB-6 Primary Items to Purchase

- Ground Station App
- Post Processing App
- Flight Predictor App

Should work on your own laptops
Apps should be compatible with Windows or Mac
Approval required for any non-standard configuration

Antenna Pointing — Gimbal / servos (work with professor on requirements)

Microcontroller / SBC unless gimbal can be controlled from laptop

Yagi antenna during mission

AeroHAB-6 Team Assignments

- Flight Segment
 - Payload A
 - Sensor Collection (3)
 - Command & Telemetry (4)
 - Imagery (4)
 - Payload B
 - Glider Autopilot (3)
- Communications Segment (4)
- Ground Segment
 - Ground Station App (7)
 - Post Processing App (3)
 - Antenna Pointing (3)
 - Flight Predictor (4)

Top-level System Requirements

Must develop derived requirements for software

Requirements maintained on <u>Google Docs (Sheets)</u>

