

Operativni sistemi

Uvod i pregled operativnih sistema

Prof. dr Dragan Stojanović

Katedra za računarstvo Univerzitet u Nišu, Elektronski fakultet

Operativni sistemi

THE PARTY OF THE P

Literatura

- Operating Systems: Internals and Design Principles, 9th edition 2017, Pearson Education Inc. (5th edition 2005, 6th edition 2008, 7th edition 2012, 8th edition 2014)
 - http://williamstallings.com/OperatingSystems/
 - http://williamstallings.com/OperatingSystems/OS9e-Student/
- Poglavlje 2: Pregled operativnog sistema

Operativni sistem (OS)

- Operativni sistem predstavlja organizovanu kolekciju programa koji upravlja izvršavanjem aplikativnih programa i služi kao interfejs između aplikativnih/sistemskih programa i hardvera računara
- Ciljevi i funkcije operativnog sistema:
 - Pogodnost Da omogući lako i pogodno korišćenje računara
 - Efikasnost Da obezbedi efikasno korišćenje i upravljanje resursima računara
 - Mogućnost razvoja Da obezbedi osnovu za efikasan razvoj, testiranje i uvođenje novih funkcija sistema

OS kao interfejs između korisnika

i računara

- Korisnik nije zainteresovan za detalje računarskog hardvera, već vidi računarski sistem kao skup aplikacija
- Korisnik interaguje sa OS-om pomoću komandi komandnog jezika (shell-a), ili preko grafičkog korisničkog interfejsa (GUI)
- Programer (*software developer*) pristupa računarskom sistemu i razvija aplikacije pomoću sistemskog softvera
 - Sistemski softver čine sistemski programi neophodni za razvoj i izvršenje aplikacija na računaru (uslužni programi) i upravljanje resursima računarskog sistema
 - Najvažniji sistemski softver je operativni sistem
 - OS sakriva detalje hardvera od programera i obezbeđuje mu jednostavan i prikladan interfejs za korišćenje računarskog sistema

OS kao interfejs između korisnika i računara

Struktura hardvera i softvera računara

Servisi operativnog sistema

- Operativni sistem obezbeđuje servise u sledećim domenima:
 - Razvoj programa
 - Izvršavanje programa
 - Pristup U/I uređajima
 - Kontrolisan pristup datotekama
 - Pristup sistemu i upravljanje pristupom sistemskim resursima
 - Otkrivanje grešaka i odgovor na greške
 - Obračun korišćenja resursa sistema i nadgledanje performansi

OS kao menadžer resursa

- Operativni sistem upravlja resursima računarskog sistema, a to su hardverski uređaji (procesor, memorija, štampač, disk, kamera,...) ili strukture podataka (datoteka, semafor, slog u bazi podataka, bafer poruka,...) koji su na raspolaganju korisnicima i programima.
- Operativni sistem je softver, skup programa koji se izvršavaju na procesoru.
- OS se povremeno odriče izvršavanja na procesoru, i "predaje" procesor na izvršavanje korisničkog programa.
- Kada se desi neki događaj u računarskom sistemu (prekid, trap), operativni sistem "preuzima procesor" i izvršava se na procesoru da bi obavio odgovarajuće upravljačke funkcije nad resursima.

OS kao upravljač resursa

- Deo OS se nalazi u glavnoj memoriji
 - Kernel (jezgro) sadrži najbitnije funkcije u okviru OS
 - Delovi OS koji se trenutno koriste
- Ostatak memorije sadrži korisničke programe i podatke
- OS upravlja dodelom procesora, memorije, U/I,... korisničkim programima

Lakoća evolucije OS

- Operativni sistemi moraju biti sposobni da evoluiraju tokom vremena iz sledećih razloga:
 - Nadogradnja hardvera i razvoj novih tipova hardvera
 - Novi servisi: kao odgovor na zahteve korisnika ili sistemskih administratora
 - Korekcija grešaka
- Operativni sistem mora biti modularne strukture sa jasno definisanim interfejsima između modula i dobro dokumentovan

Razvoj operativnih sistema

- Serijska obrada (1945 1955)
 - Vakumske cevi, bušene kartice, mašinski jezik
 - Nema OS-a, programeri su pristupali direktno hardveru
- Jednostavni sistemi paketne obrade (batch systems) (1955 1965)
 - Tranzistori, mainframe računari, asemblerski jezik, FORTRAN, COBOL
 - Monitor jednostavan OS (IBSYS IBM OS za 7090/7094 računare)
- Multiprogramirani sistemi paketne obrade
- Sistemi sa deljenjem vremena (time sharing) (1965-1980)
 - Integrisana kola, mini računari i radne stanice, C, UNIX
 - Multiprogramiranje, timesharing
 - IBM System/360, Compatible Time-Sharing System (CTSS), UNIX,...
- Personalni računari (1980 danas)
 - LSI/VLSI, mikroprocesori, personalni računari (PC), mikroračunari
 - Windows, Apple Mac OS, UNIX, Linux, ...
- Distribuirani, paralelni, mobilni računari (1990 danas)
 - Multiprocesorski sistemi, distribuirani sistemi, sistemi za rad u realnom vremenu, mobilni računari (pametni telefoni, tableti)
- Cloud computing, Sveprisutno računarstvo, IoT (Internet of Things),...

Sistemi paketne obrade (batch sistemi)

Stari mainframe računari

Modern Operating Systems, Tanenbaum, 2014

- Bušene kartice se unose u IBM 1401
- Čitanje sa kartica i snimanje na magnetnu traku
- Postavljanje trake na IBM 7094 koji obavlja obradu i rezultat snima na magnentu traku (IBSYS operativni sistem)
- Postavljanje trake na IBM 1401 i štampanje

S CONTRACTOR OF CONTRACTOR OF

- Struktura tipičnog posla (job) zadatog bušenim karticama
- Operativni sistem Monitor
 - FMS (Fortran Monitor System)
 - IBSYS (IBM-ov OS za 7094 računar)
- Monitor je stalno smešten u glavnoj memoriji dostupan za izvršavanje (rezidentni monitor)
- Čita sa ulaznog uređaja jedan po jedan posao (job), smešta instrukcije i podatke u korisnički deo memorije i startuje izvršenje posla na procesoru.
- Po završetku, monitor učitava i izvršava sledeći posao (job).
- Instrukcije se monitoru zadaju preko Job Control Language (JCL)

\$RUN \$LOAD Fortran Program \$FORTRAN \$JOB, 10,6610802, MARVIN TANENBAUM

Interrupt

Device drivers

Job

sequencing

Control language

interpreter

User program

area

Monitor

Boundary

Modern Operating Systems, Tanenbaum, 2014

Monitor – operativni sistem

- Monitor (OS sa paketnom obradom) je računarski program koji je smešten u deo glavne memorije i naizmenično se izvršava sa korisničkim programima
- Poželjna svojstva hardvera:
 - Zaštita memorije koju zauzima monitor
 - Tajmer
 - Privilegovane mašinske instrukcije može ih izvršiti samo monitor
 - Prekidi
- Dva režima rada
 - **Kernel režim** (mod)
 - Monitor (operativni sistem) se izvršava u kernel modu
 - Korisnički režim (mod)
 - Korisnički programi se izvršavaju u korisničkom modu, koriste samo podskup iz skupa instrukcija i samo neke mogućnosti HW (generalno, instrukcije za U/I i zaštitu memorije su zabranjene u korisničkom modu)
 - Za ostalo korisnički programi pozivaju funkcije (servise) OS-a

Multiprogramski sistem paketne

obrade

Multiprogramiranje (multitasking) – Operativni sistem istovremeno smešta u memoriju više poslova; u jednom trenutku samo jedan od poslova se izvršava na CPU, ukoliko se blokira izvršenjem U/I operacije (npr. čitanje podataka sa diska), aktivira se planiranje poslova

Planiranje poslova (Job scheduling) – OS mora da iz skupa svih poslova izabere one koji će biti smešteni u memoriju i odrediti jedan koji će se izvršavati - planiranje CPU (CPU

scheduling)

Dodatna svojstva hardvera

- U/I prekidi i DMA
- Upravljanje memorijom
- Operativni sistemi:
 - OS/360
 - **MULTICS**
 - UNIX (System V, BSD)_{Uvod i pregled operativnih sistema}

Multiprogramiranje

Monoprogramiranje - CPU mora da čeka dok se ne završi

U/I instrukcija

Read one record from file $15 \mu s$ Execute 100 instructions $1 \mu s$ Write one record to file $15 \mu s$ TOTAL $31 \mu s$
Percent CPU Utilization $=\frac{1}{31} = 0.032 = 3.2\%$

Multiprogramiranje sa tri aktivirana programa

Primer multiprogramiranja

Primeri atributa za izvršavanje programa (250MB memorije)

	0021	0022	
Type of job	Heavy compute	Heavy I/O	Heavy I/O
Duration	5 min	15 min	10 min
Memory required	50 M	100 M	75 M
Need disk?	No	No	Yes
Need terminal?	No	Yes	No
Need printer?	No	No	Yes

Efekti multiprogramiranja na iskorišćenje resursa

	Uniprogramming	Multiprogramming
Processor use	20%	40%
Memory use	33%	67%
Disk use	33%	67%
Printer use	33%	67%
Elapsed time	30 min	15 min
Throughput	6 jobs/hr	12 jobs/hr
Mean response time	18 min	10 min

Histogram iskorišćenosti resursa

(a) Uniprogramming

(b) Multiprogramming

Sistemi sa deljenjem vremena

- Time-sharing procesorsko vreme je podeljeno između više korisnika
- Koristi multiprogramiranje za višekorisnički rad pri čemu svaki korisnik pristupa sistemu interaktivno putem terminala
- Svakom korisničkom programu se dodeljuje po jedan mali vremenski period (deo procesorskog vremena) za izvršavanje, pre nego što se pređe na drugi program
- Jedan od prvih time-sharing OS je CTSS (Compatible Time-Sharing System) razvijen 1961-te na MIT za IBM 709, a kasnije prenet na IBM 7094
 - Računar sa glavnom memorijom od 32000 36-bitnih reči, pri čemu monitor zauzima 5000 reči

• JOB1: 15000

JOB2: 20000

JOB3: 5000

• JOB4: 10000

Uvod i pregled operativnih sistema

Operativni sistemi

Glavna dostignuća u razvoju OS

- Procesi
- Upravljanje memorijom
- Zaštita i bezbednost informacija
- Planiranje i upravljanje resursima
- Struktura sistema

Procesi

- Proces je program u izvršenju
- Proces se sastoji od tri komponente
 - Izvršni program
 - Podaci koji se obrađuju u programu
 - Kontekst izvršenja procesa
- Tipična implementacija procesa prikazana na slici

Upravljanje memorijom

- Osnovne odgovornosti OS
 - Izolacija procesa
 - Automatsko dodeljivanje i upravljanje
 - Podrška za modularno programiranje
 - Zaštita i kontrola pristupa
 - Korišćenje dugotrajne memorije
- Koncept virtuelne memorije i *file* sistema
 - Virtuelna adresa
 - Realna (fizička) adresa u glavnoj memoriji

A.1			
	A.0	A.2	
	A.5		
B.0	B.1	B.2	B.3
		A.7	
	A.9		
		A.8	
	B.5	B.6	

Main Memory

Disk

Adresiranje virtuelne memorije

Zaštita informacija i bezbednost

- Raspoloživost
 - Zaštita sistema od prekida funkcionisanja
- Poverljivost (tajnost)
 - Zaštita podataka od neovlašćenog pristupa
- Integritet podataka
 - Zaštita podataka od neautorizovane modifikacije
- Autentičnost
 - Pogodna verifikacija identiteta korisnika i validnosti poruka i podataka

Raspoređivanje resursa i upravljanje

- Strategija raspoređivanja i dodele resursa mora da uključi 3 faktora:
 - Nepristrasnost (pravičnost)
 - Različitost odgovora Treba napraviti razliku između različitih klasa procesa
 - Efikasnost
 - Maksimizovanje propusne moći (*throughput*),
 - Minimizovanje vremena odziva (*response time*) i
 - Opsluživanje što više korisnika (*time-sharing*)

Ključni elementi OS za multiprogramiranje

Pravci razvoja savremenih OS

- Mikrokernel arhitektura
- Višenitna obrada (Multithreading)
- Paralelne računarske arhitekture
 - Simetrično multiprocesiranje (*symmetric multiprocessing*-SMP) *multicore* arhitekture
- Distribuirani operativni sistemi (cloud, cluster) i real-time embedded OS (IoT)
- Objektno-orijentisani dizajn

Arhitektura operativnih sistema

GUI & komandni jezik
Upravljanje datotekama
Upravljanje mrežnom komunikacijom
Upravljanje U/I uređajima
Upravljanje memorijom
Upravljanje procesima i nitima

Hardver računara

Arhitektura OS kernela

Monolitna (slojevita) i mikrokernel arhitektura

Monolitna arhitektura OS

- Operativni sistem je kolekcija procedura. Pri čemu svaka može pozivati svaku poznajući njen interfejs (skup parametara i rezultat) i svaka procedura može pristupati deljivim podacima i strukturama podataka OS
- Prednosti:
 - Performanse i visok nivo zaštite od pristupa korisničkih procesa
- Nedostaci:
 - Loša proširljivost, održavanje
 - Loša zaštita između komponenti kernela
- UNIX OS sadrži dva dela
 - Sistemski programi i kernel

Mikrokernel arhitektura OS

- Samo kritični OS procesi se izvršavaju u režimu kernela, npr. pristup U/I uređajima i U/I drajveri
- Ostale funkcije OS implementirane su kao servisi koji se izvršavaju u korisničkom režimu
- Prednosti
 - Jednostavno proširenje OS jer dodavanje novih servera ne zahteva modifikaciju kernela
 - Jednostavno portovanje OS sa jedne na drugu hardversku platformu
 - Pošto se svi serverski procesi izvršavaju u korisničkom modu, greška u nekom od njih ne uzrokuje pad OS
- Primeri:
 - Mach (Carnegie Mellon University, sredina 1980-ih)
 - Tru64UNIX (ranije Digital UNIX)
 - Apple macOS (ranije MacOS X) Mach kernel + deo BSD kernela
 - QNX, MINIX

Višenitna obrada (*Multithreading*)

- Proces je podeljen u niti koje mogu da se izvršavaju konkurentno (paralelno)
 - Nit (thread)
 - Jedinica izvršenja koja se može planirati i rasporediti za izvršenje
 - Izvršava se sekvencijalno i može biti prekinuta i ponovo nastavljena
 - Proces je skup jedne ili više niti i pridruženih sistemskih resursa, poput memorije koja sadrži kod i podatke, otvorenih datoteka, i U/I uređaja
- Višenitnost je korisna u aplikacijama koje obavljaju više suštinski nezavisnih zadataka koji ne moraju serijski da se izvršavaju
 - Primer: Web server koji prihvata i opslužuje zahteve klijenata

Simetrično multiprocesiranje (SMP)

- Postoji više procesora u sistemu
- Ovi procesori dele istu glavnu memoriju i U/I resurse
- Svi procesori mogu izvršavati iste funkcije
- Prednosti:
 - Performanse
 - Raspoloživost u slučaju otkaza jednog procesora
 - Inkrementalno povećanje performansi dodavanjem dodatnih procesora
 - Skaliranje može postojati više računarskih konfiguracija sa različitim brojem procesora sa različitom cenom i performansama

Simetrično multiprocesiranje (SMP)

Multiprogramiranje (jedan procesor)

(a) Interleaving (multiprogramming, one processor)

Multiprocesiranje (dva procesora)

(b) Interleaving and overlapping (multiprocessing; two processors)

Uvod i pregled operativnih sistema

Operativni sistemi

Sistemski pozivi

- Sistemski pozivi (system calls) obezbeđuju interfejs između aplikativnih/sistemskih programa i operativnog sistema
- Omogućuju pristup funkcijama operativnog sistema od strane korisničkih programa
 - Unix/Linux POSIX.1 (POSIX.1-2017) IEEE Std 1003.1-2017
 - Windows Windows API (Application Programming Iterface)
- Sistemski poziv se obavlja u okviru korisničkog programa pozivom funkcije iz standardne biblioteke za odgovarajući programski jezik (API).
- U okviru ove funkcije se argumenti smeštaju na stek, i poziva trap instrukcija čiji je argument kôd sistemskog poziva.
- Trap instrukcija izaziva softverski prekid, OS čuva stanje prekinutog procesa, prelazi u mod kernela i poziva funkciju kernela (rutinu, system call handler) koja implementira sistemski poziv
- Postoje sistemski pozivi za upravljanje procesima, memorijom, datotekama, U/I uređajima, mrežnom komunikacijom, za dobijanje informacija o radu sistema, upravljanje GUI (Windows), itd.

Izvršenje sistemskog poziva read

#include <unistd.h>

ssize_t read(int fd, void *buffer, size_t nbytes);

Microsoft Windows

Lsass = local security authentication server

POSIX = portable operating system interface

GDI = graphics device interface

DLL = dynamic link libraries

Colored area indicates Executive

UNIX familija

UNIX

- Savremeni Unix
 - System V R4 (SVR4)
 - Solaris 10
 - 4.4 BSD & FreeBSD
- Tradicionalni UNIX kernel

Savremeni UNIX kernel

Linux

Komponente Linux kernela

Android

Android arhitektura

System Libraries, Android Runtime: C and C++

Linux Kernel: C

Uvod i pregled operativnih sistema

Operativni sistemi

PREGLED RAČUNARSKOG SISTEMA (Poglavlje 1)

Komponente računara

Ciklus izvršenje instrukcija

Fetch – Decode – Execute

Primer izvršenja programa

Tok izvršenja programa - sa i bez prekida

= interrupt occurs during course of execution of user program

Prenos upravljanja usled prekida

Ciklus izvršenja instrukcija

- sa prekidom

Jednostavna obrada prekida

Uvod i pregled operativnih sistema

Operativni sistemi

Y+L+1

Program

Counter

General

Registers

T-M

Stack

Pointer

T

Processor

Interrupt

Service

Routine

User's

Program

Prekidi

Promene u memoriji i registrima tokom prekida

(a) Interrupt occurs after instruction at location N

(b) Return from interrupt

Memorijska hijerarhija

Performanse memorije u 2 nivoa

Keš memorija

(a) Single cache

Intel Core i7-5960X – blok dijagram

S ANTERVE

Domaći zadatak

- Praktikum iz Sistemskog softvera
 - I. UNIX/Linux Poglavlje 1. Operativni sistem UNIX/Linux
 - II. Windows Poglavlje 1. Operativni sistem Windows 2000
- Pročitati poglavlja:
 - 1. Pregled računarskog sistema
 - 2.7 Pregled Microsoft-ovog Windowsa
 - 2.8 Tradicionalni sistemi Unix
 - 2.9 Savremeni sistemi Unix
 - 2.10 Linux
- Student resources
 - http://williamstallings.com/OperatingSystems/OS9e-Student/
- Animations

http://williamstallings.com/OS/Animation/Animations.html https://www.uttyler.edu/files/cosc3355/animations/