Nate Warner MATH 353 Spring 2025

Problem set 11 - Due: Wednesday, April 2

1. Assume that $AC < \omega$, A-B-C, and D is a point not on \overrightarrow{AC} . Let h be a ray with endpoint C such that h meets \overline{BD}^0 . Prove that h meets \overline{AD}

Proof. By Ax.C, point $D \not\in \overrightarrow{AC}$ and A-B-C yields \overrightarrow{DA} - \overrightarrow{DB} - \overrightarrow{DC} . Let $E \in \overrightarrow{DA}^0$. By the Crossbar theorem, there exists a point $F \in \overrightarrow{DB}^0$ such that E-F-C, let h be the ray with endpoint C that contains points E, F, C. Note that point F is where h meets $\overline{BD^0}$

Thus, h meets \overline{AD} at point E

- 2. Suppose that A, P and R are noncollinear, A-X-P, A-Z-R and P-Q-R
 - (a) Prove there is a point Y on \overrightarrow{AQ} so that X-Y-Z
 - (b) Prove further that A-Y-Q

Proof. Observe that since P-Q-R, P, Q, R are collinear. Let \overrightarrow{PR} be the line that contains these three points. Since A, P, R noncollinear, $A \notin \overrightarrow{PR}$. By Ax-C \overrightarrow{AP} - \overrightarrow{AQ} - \overrightarrow{AR} . Note that $X \in \overrightarrow{AP}^0$, $Z \in \overrightarrow{AR}^0$. Thus, by the crossbar theorem, there exits a point $Y \in \overrightarrow{AQ}^0$ such that X-Y-Z

Since $Y \in \overrightarrow{AQ}$, one of A-Y-Q or A-Q-Y must be true. Assume for the sake of contradiction that A-Q-Y.

Consider the line \overleftrightarrow{XZ} , note that $Y \in \overleftrightarrow{XZ}$. By Ax.S, \overleftrightarrow{XZ} splits the plane into a pair of opposite halfplanes with edge \overleftrightarrow{XZ} , call this pair H,K. By A-Q-Y = Y-Q-A and theorem 10.3, $\overrightarrow{YQ}^0 \subseteq$ one of the halfplanes, let's say its H. Since $Q \in \overrightarrow{YQ}^0$, $Q \in H$. Y-Q-A implies $A \in \overrightarrow{YQ}^0$, thus $A \in H$. So, A,Q in the same halfplane (H).

Next, we consider A-Z-R, which implies by theorem 10.6 that A, R in opposite halfplanes (since $Z \in \overleftrightarrow{XZ}$).

Similarly, since $X \in \overleftrightarrow{XZ}$, and A-X-P, A, P in opposite halfplanes by Thm 10.6.

Observe that R-Q-P implies $Q \in \overline{PR}$, and since R, P not in the halfplane with A, they must be in the same halfplane. Namely, the halfplane K since $A \in H$. Thus, since K convex (by definition of $\frac{1}{2}$ planes), $\overline{PR} \in K$, and since $Q \in \overline{PR}$, $Q \in K$, which is a contradiction, since $Q \in H$ implies $Q \notin K$. Thus, A-Q-Y is not a valid assumption and must be thrown out. However, we know that $y \in \overline{AQ}$, which means the only possibility left is that A-Y-Q

3. Let P = (0.8, 0), Q = (0.9, 0), R = (0.9, 0.1). Compute both the \mathbb{E} -measure and the \mathbb{H} -measure of $\angle QPR$. Repeat for P = (0.98, 0), Q = (0.99, 0), R = (0.99, 0.1).

Remark. The \mathbb{E} -measure for $\angle QPR$, if \overrightarrow{PR} given by y=mx+b, \overrightarrow{PQ} by y=nx+c is

$$\angle QPR = \cos^{-1}\left(\frac{1+mn}{\sqrt{1+m^2}\sqrt{1+n^2}}\right).$$

Let P = (0.8, 0), Q = (0.9, 0), R = (0.9, 0.1). Then,

$$m = \frac{0.1 - 0}{0.9 - 0.8} = 1,$$

$$n = \frac{0 - 0}{0.9 - 0.8} = 0.$$

Thus,

$$\angle QPR = \cos^{-1}\left(\frac{1+1(0)}{\sqrt{1+1^2}\sqrt{1+0^2}}\right) = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}.$$

For P = (0.98, 0), Q = (0.99, 0), R = (0.99, 0.1), we have

$$m = \frac{0.1 - 0}{0.99 - 0.98} = \frac{0.1}{0.01} = 10,$$

 $n = 0.$

Thus,

$$\angle QPR = \cos^{-1}\left(\frac{1+1(0)}{\sqrt{1+10^2}\sqrt{1+0^2}}\right) = \cos^{-1}\left(\frac{1}{\sqrt{101}}\right) \approx 1.47.$$

Remark. The \mathbb{H} -measure for $\angle QPR$ is given by

$$\mu_{\mathbb{H}}(\overrightarrow{PQ}, \overrightarrow{PR}) = \cos^{-1}\left(\frac{1 + mn - bc}{\sqrt{1 + m^2 - b^2}\sqrt{1 + n^2 - c^2}}\right)$$

provided \overrightarrow{PR} given by y = mx + b, \overrightarrow{PQ} given by y = nx + c.

For P = (0.8, 0), Q = (0.9, 0), R = (0.9, 0.1), we have

$$\overrightarrow{PQ}$$
: $y = 0$, $n = 0$, $c = 0$
 \overrightarrow{PR} : $y - 0 = 1(x - 0.8) \implies y = x - 0.8$, $m = 1, b = 0.8$.

Thus,

$$\mu_{\mathbb{H}}(\overrightarrow{PQ}, \overrightarrow{PR}) = \cos^{-1}\left(\frac{1+1(0)-0.8(0)}{\sqrt{1+1^2-0.8^2}\sqrt{1+0^2-0^2}}\right) = \cos^{-1}\left(\frac{1}{\sqrt{2-0.8^2}}\right) \approx 0.9078.$$

For P = (0.98, 0), Q = (0.99, 0), R = (0.99, 0.1), we have

$$\overrightarrow{PQ}$$
: $y = 0$, $n = 0$, $c = 0$
 \overrightarrow{PR} : $y - 0 = 1(x - 0.98) \implies y = x - 0.98$, $m = 1, b = 0.98$.

Thus,

$$\mu_{\mathbb{H}}(\overrightarrow{PQ},\overrightarrow{PR}) = \cos^{-1}\left(\frac{1+1(0)-0.98(0)}{\sqrt{1+1^2-0.98^2}\sqrt{1+0^2-0^2}}\right) = \cos^{-1}\left(\frac{1}{\sqrt{2-0.98^2}}\right) \approx 0.9506.$$