

Álgebra Linear

Base e Mudança de Base

Camila Martins Saporetti (camila.saporetti@iprj.uerj.br)

• **Definição:** Um conjunto $\{v_1, v_2, ..., v_n\}$ de vetores de V será uma *base* de V se:

$$a\mathbf{v}_1 + b\mathbf{v}_2$$
, + ... + $n\mathbf{v}_n = 0$, onde $a = b = n = 0$

ii)
$$[v_1, v_2, ..., v_n]$$
 é V

$$a\mathbf{v}_1 + b\mathbf{v}_2$$
, + ... + $n\mathbf{v}_n$ = vetor genérico do espaço, Ex: $R^2 = (x,y)$

Esse conjunto gera todos os vetores de V.

- Exemplo 1: $V = R^2$, $\mathbf{e_1} = (1,0)$ e $\mathbf{e_2} = (0,1)$
- {**e**₁, **e**₂} é base de *V*, conhecida como base canônica de R²
- O conjunto $\{(1,1),(0,1)\}$ também é uma base de $V = \mathbb{R}^2$
 - De fato, se (0,0) = a(1,1) + b(0,1) = (a, a + b), então a = b = 0
 - Assim, {(1, 1), (0, 1)} é LI
 - Ainda [(1, 1), (0, 1)] = V pois dado $\mathbf{v} = (x, y) \in V$, temos: (x, y) = x(1, 1) + (y x)(0, 1)
 - Ou seja, todo vetor de R² é uma combinação linear dos vetores (1,1) e (0,1)

- Exemplo 2: {(0,1), (0,2)} não é base de R², pois é um conjunto LD
 - Se (0,0) = a(0,1) + b(0,2), então a = -2b e a e b não são zero necessariamente
- **Exemplo 3:** {(1,0,0), (0,1,0), (0,0,1)} é uma base de R³?
 - Base canônica de R³
 - i) {**e**₁, **e**₂, **e**₃} é Ll
 - ii) $(x, y, z) = x.e_1 + y.e_2 + z.e_3$
- **Exemplo 4**: {(1,0,0), (0,1,0)} não é base de R³. Por que?
 - É LI mas não gera todo R³

- Teorema: Sejam v₁,v₂, ...,v_n vetores não nulos que geram um espaço vetorial V. Então dentre esses vetores podemos extrair uma base de V.
 - Isso independe de v₁,v₂, ...,v_n serem LD ou LI
- Teorema: Seja um espaço vetorial V gerado por um conjunto finito de vetores v₁,v₂,...,v_n.
- Então, qualquer conjunto com mais de n vetores é necessariamente LD (e, portanto, qualquer conjunto LI tem no máximo n vetores)

- Corolário: Qualquer base de um espaço vetorial tem sempre o mesmo número de elementos. Este número é chamado dimensão de V, e denotado por dim V
- **Exemplo 1:** $V = \mathbb{R}^2$: dim V = 2
- {(1,0), (0,1)} e {(1,1),(0,1)} são bases de *V*
- **Exemplo 2:** $V = R^3$: dim V = 3
- {(1,0,0), (0,1,0),(0,0,1)} é base de *V*

• **Exemplo 3:** V = M(2, 2): dim V = 4

$$\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix}$$
É uma base de V

- Teorema: Qualquer conjunto de vetores LI de um espaço vetorial V de dimensão finita pode ser completado de modo a formar uma base de V
- Corolário: Se dim V = n, qualquer conjunto de n vetores LI formará uma base de V
- Teorema: Se U e W são subespaços de um espaço vetorial V que tem dimensão finita, então dim U ≤ dim V e dim W ≤ dim V. Além disso:
 - $dim(U + W) = dim U + dim W dim(U \cap W)$

- Teorema: Dada uma base β = {v₁,v₂, ...,v_n} de V, cada vetor de V é escrito de maneira única como combinação linear de v₁, v₂, ...,v_n.
- Definição: Sejam β = {v₁,v₂, ...,vₙ} base de V e v ∈ V onde v = a₁v₁ +...+ aₙvₙ. Chamamos esses números aᵢ de coordenadas de v em relação à base β e denotamos por:

$$[\mathbf{v}]_{\beta} = \begin{pmatrix} a_1 \\ \dots \\ a_n \end{pmatrix}$$

- **Exemplo 1**: $V = \mathbb{R}^2$
- $\beta = \{(1, 0), (0, 1)\}$
- (4, 3) = 4.(1, 0) + 3.(0, 1)
- Logo:

$$[(4, 3)]_{\beta} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

Observe que os coeficientes são representados como elementos de uma matriz coluna.

- **Exemplo 2**: $V = \mathbb{R}^2$
- $\beta = \{(1, 1), (0, 1)\}$
- $(4, 3) = x.(1, 1) + y.(0, 1) \Rightarrow x=4 \text{ e y}=-1$
- Logo:

$$[(4, 3)]_{\beta} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$

- Exemplo 3: Observe que a ordem dos elementos de uma base influi na matriz das coordenadas de um vetor em relação à esta base
- $V = R^2$
- $\beta_1 = \{(1, 0), (0, 1)\} e \beta_2 = \{(0, 1), (1, 0)\}$

$$[(4, 3)]_{\beta 1} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \qquad [(4, 3)]_{\beta 2} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

• Exemplo 4: Considere:

- $V = \{(x, y, z): x + y z = 0\}$
- $W = \{(x, y, z): x = y\}$
- Determine V + W
- V: $x + y z = 0 \Rightarrow z = x + y$
 - Base: (x, y, z)=(x, y, x + y) = x.(1, 0, 1) + y.(0, 1, 1)
 - Logo: Base = [(1, 0, 1), (0, 1, 1)]
- W: x = y
 - Base: (x, y, z) = (y, y, z) = y.(1, 1, 0) + z.(0, 0, 1)
 - Logo: Base = [(1, 1, 0), (0, 0, 1)]

- Exemplo 4: (cont..)
- Como:
- V = [(1, 0, 1), (0, 1, 1)]
- W = [(1, 1, 0), (0, 0, 1)]
- Então V + W = [(1,0,1), (0,1,1), (1,1,0), (0,0,1)]
- Mas espera-se que o resultado esteja no R³, logo essa base deve ter algum elemento LD

- **Exemplo 4:** (cont..)
- Vamos escalonar....

- **Exemplo 4**: (cont..)
 - Logo V + W = [(1,0,1), (0,1,1), (0,0,1)]
 - Assim, $V + W = R^3$
 - $-\dim \mathbb{R}^3 = \dim V + \dim W \dim(V \cap W)$
 - $-V \cap W = ??$

- Exemplo 4: (cont..)
- $V \cap W = \{(x,y,z); x + y z = 0 e x = y\}$
 - = Resolva o sistema...
 - $= \{(x,y,z); x = y = z/2\}$
 - = [(1, 1, 2)]
 - $-\dim(V \cap W) = 1$
 - dim R³ = dim V + dim W dim($V \cap W$)
 - $\dim \mathbb{R}^3 = 2 + 2 1 = 3$
 - Como esperado....

Mudança de Base - Exemplo

- Sejam as bases $\beta = \{(2, -1), (3, 4)\} e \beta' = \{(1, 0), (0, 1)\}$ de um espaço V
- Dado o vetor (x, y) de V como ele seria descrito em função das bases β e β' ?
- Em relação à base $\beta \Rightarrow (x, y) = z(2, -1) + w(3, 4)$
- Em relação à base $\beta' \Rightarrow (x, y) = x(1,0) + y(0,1)$
- E se quisermos descrever a base β' em função da base β ? Como ficaria?
- $\beta' \Rightarrow (x, y) = x(1,0) + y(0, 1)$ (a) (b)
- (a) (1,0) = a(2,-1) + b(3,4) => Quem é a e b?
- a = 4/11 e b = 1/11 => (1,0) = 4/11(2,-1) + 1/11(3,4)
- (b) (0,1) = c(2,-1) + d(3,4) => Quem é c e d?
- c = -3/11 e d = 2/11 => (0,1) = -3/11(2,-1) + 2/11(3,4)
- Note que (x,y) relação à base $\beta \Rightarrow (x,y) = z(2,-1) + w(3,4)$
- Então, z(2,-1) + w(3,4) = x(4/11(2,-1) + 1/11(3,4)) + y(-3/11(2,-1) + 2/11(3,4))

Mudança de Base - Exemplo

- Continuando...
- $z(2,-1) + w(3,4) = x(\frac{4}{11}(2,-1) + \frac{1}{11}(3,4)) + y(\frac{-3}{11}(2,-1) + \frac{2}{11}(3,4))$
- Da equação acima temos que...
- $z = \frac{4x}{11} \frac{3y}{11}$
- $w = \frac{1x}{11} + \frac{2y}{11}$
- Na notação de matriz temos...

- Sejam $\beta = \{\mathbf{u}_1, ..., \mathbf{u}_n\}$ e $\beta' = \{\mathbf{w}_1, ..., \mathbf{w}_n\}$ duas bases ordenadas de um mesmo espaço vetorial V
- Dado o vetor v ∈ V, podemos escrevê-lo como:

$$- \mathbf{v} = x_1 \mathbf{u}_1 + \dots + x_n \mathbf{u}_n$$

$$- \mathbf{v} = y_1 \mathbf{w}_1 + \dots + y_n \mathbf{w}_n$$
(1)

Como podemos relacionar as coordenadas de v em relação à base β , , (X₁)

relação à base
$$\beta$$
 $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\beta} = \begin{pmatrix} X_1 \\ \dots \\ X_n \end{pmatrix}$

com as coordenadas do mesmo vetor v em relação à base β'

$$[\mathbf{v}]_{\beta'} = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}$$

Já que {u₁,...,u_n} é base (β) de V, podemos escrever os vetores v e w como combinação linear dos u_j, isto é: (Lembrando que v = y₁w₁ + ... + y_nw_n)

$$\mathbf{w}_{1} = \mathbf{a}_{11}\mathbf{u}_{1} + \mathbf{a}_{21}\mathbf{u}_{2} + ... + \mathbf{a}_{n1}\mathbf{u}_{n}$$

$$\mathbf{w}_{2} = \mathbf{a}_{12}\mathbf{u}_{1} + \mathbf{a}_{22}\mathbf{u}_{2} + ... + \mathbf{a}_{n2}\mathbf{u}_{n}$$

$$.....$$

$$\mathbf{w}_{n} = \mathbf{a}_{1n}\mathbf{u}_{1} + \mathbf{a}_{2n}\mathbf{u}_{2} + ... + \mathbf{a}_{nn}\mathbf{u}_{n}$$
(2)

- Substituindo (2) em (1):
- $\mathbf{v} = y_1 \mathbf{w_1} + ... + y_n \mathbf{w_n} = y_1 (a_{11} \mathbf{u_1} + ... + a_{n1} \mathbf{u_n}) + ... + y_n (a_{1n} \mathbf{u_1} + ... + a_{nn} \mathbf{u_n}) = \mathbf{u_1} (a_{11} y_1 + ... + a_{1n} y_n) + ... + \mathbf{u_n} (a_{n1} y_1 + ... + a_{nn} y_n)$

- Mas v = x₁u₁ + ... + x_nu_n, e como as coordenadas em relação a uma base (β) são únicas temos:
 - $\mathbf{v} = \mathbf{x}_1 \mathbf{u}_1 + \dots + \mathbf{x}_n \mathbf{u}_n = \mathbf{u}_1 (\mathbf{a}_{11} \mathbf{y}_1 + \dots + \mathbf{a}_{1n} \mathbf{y}_n) + \dots + \mathbf{u}_n (\mathbf{a}_{n1} \mathbf{y}_1 + \dots + \mathbf{a}_{nn} \mathbf{y}_n)$
 - $x_1 = a_{11}y_1 + ... + a_{1n}y_n$
 - •
 - $x_n = a_{n1}y_1 + ... + a_{nn}y_n$
- Ou, em forma matricial

$$\begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}$$

• Isso é denotado por:

$$[I]_{\beta}^{\beta'} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$
• Temos:

$$[\mathbf{v}]_{\beta} = [I] [\mathbf{v}]_{\beta'}$$

$$\left[\begin{array}{c} I\end{array}\right]_{\beta}^{\beta'} \Rightarrow$$
 Matriz de mudança da base β' para a base β

• Observe que, encontrando $\begin{bmatrix} I \end{bmatrix}_{\beta}^{\beta'}$, podemos encontrar as coordenadas de qualquer vetor ${\bf v}$ em relação à base ${\beta}$, multiplicando a matriz pelas coordenadas de ${\bf v}$ na base ${\beta}'$

• Exemplo: Sejam $\beta = \{(2,-1), (3,4)\}$ e $\beta' = \{(1,0), (0,1)\}$ bases de \mathbb{R}^2 :

$$[I]_{\beta}^{\beta'} = ?$$

•
$$W_1 = (1,0) = a_{11}(2,-1) + a_{21}(3,4) = (2a_{11} + 3a_{21}, -a_{11} + 4a_{21})$$

•
$$\Rightarrow$$
 2a₁₁+3a₂₁ = 1 e -a₁₁+4a₂₁ = 0

•
$$\Rightarrow$$
 $a_{11} = 4a_{21} \Rightarrow a_{21} = 1/11 e a_{11} = 4/11$

•
$$W_2 = (0,1) = a_{12}(2,-1) + a_{22}(3,4) = (2a_{12} + 3a_{22}, -a_{12} + 4a_{22})$$

•
$$\Rightarrow 2a_{12} + 3a_{22} = 0$$
 e $-a_{12} + 4a_{22} = 1$

•
$$\Rightarrow$$
 $a_{22} = 2/11 e a_{12} = -3/11$

$$\mathbf{w}_{1} = \mathbf{a}_{11}\mathbf{u}_{1} + \mathbf{a}_{21}\mathbf{u}_{2} + ... + \mathbf{a}_{n1}\mathbf{u}_{n}$$

$$\mathbf{w}_{2} = \mathbf{a}_{12}\mathbf{u}_{1} + \mathbf{a}_{22}\mathbf{u}_{2} + ... + \mathbf{a}_{n2}\mathbf{u}_{n}$$

$$.....$$

$$\mathbf{w}_{n} = \mathbf{a}_{1n}\mathbf{u}_{1} + \mathbf{a}_{2n}\mathbf{u}_{2} + ... + \mathbf{a}_{nn}\mathbf{u}_{n}$$

- Exemplo: (cont.)
 - Assim:

•
$$W_1 = (1,0) = (4/11)(2,-1) + (1/11)(3,4)$$

•
$$W_2 = (0,1) = (-3/11)(2,-1) + (2/11)(3,4)$$

$$[I]_{\beta}^{\beta'} = \begin{pmatrix} 4/11 & -3/11 \\ \\ 1/11 & 2/11 \end{pmatrix}$$

Linhas tornam-se colunas!!!

Exemplo: (cont.) Podemos usar essa matriz para encontrar, por exemplo, [v]_β para v = (5, -8)

$$[(5, -8)]_{\beta} = [I]_{\beta}^{\beta'} [(5, -8)]_{\beta'}$$

$$\begin{pmatrix} 4/11 & -3/11 \\ 1/11 & 2/11 \end{pmatrix} \begin{pmatrix} 5 \\ -8 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$

Isto
$$é: (5, -8) = 4.(2, -1) + (-1).(3, 4)$$

A Inversa da Matriz Mudança de Base

- Temos $[\mathbf{v}]_{\beta} = \begin{bmatrix} I \end{bmatrix}_{\beta}^{\beta'} [v]_{\beta'}$ Um fato importante é que $\begin{bmatrix} I \end{bmatrix}_{\beta'}^{\beta}$ e $\begin{bmatrix} I \end{bmatrix}_{\beta}^{\beta'}$ são matrizes inversíveis:

$$([I]_{\beta}^{\beta'})^{-1} = [I]_{\beta'}^{\beta}$$

A Inversa da Matriz Mudança de Base

- Exemplo:
- Exemplo:
 Do exemplo anterior, vamos calcular $\begin{bmatrix} I \end{bmatrix}_{\beta}^{\beta'}$ a partir de $\begin{bmatrix} I \end{bmatrix}_{\beta}^{\beta}$, Note que $\begin{bmatrix} I \end{bmatrix}_{\beta}^{\beta}$, é fácil de ser calculada pois β ' é a base canônica:
- (2, -1) = 2.(1, 0) + (-1).(0, 1)
- (3, 4) = 3.(1, 0) + 4.(0, 1)

. Assim:
$$\begin{bmatrix} I \end{bmatrix}_{\beta'}^{\beta} = \begin{pmatrix} 2 & 3 \\ -1 & 4 \end{pmatrix}$$

• Então: $\begin{bmatrix} I \end{bmatrix}_{\beta}^{\beta'} = \begin{pmatrix} 2 & 3 \\ -1 & 4 \end{pmatrix}^{-1} = \begin{pmatrix} 4/11 & -3/11 \\ 1/11 & 2/11 \end{pmatrix}$

Espaço Vetorial

- **Exemplo:** Considere o subespaço de R⁴ gerado pelos vetores v1 = (1,-1,0,0), v2=(0,0,1,1), v3=(-2,2,1,1) e v4=(1,0,0,0)
- a) O vetor (2, -3, 2, 2) ∈ [v1,v2,v3,v4]?
- b) Exiba uma base para [v1,v2,v3,v4]? Qual sua dimensão?
- c) $[v1,v2,v3,v4] = R^4$?

Espaço Vetorial

Exemplo:

- a) O vetor $(2, -3, 2, 2) \in [v1, v2, v3, v4]$?
- Ou seja, existem a, b, c, d, tal que:
- (2, -3, 2, 2) = a.(1, -1, 0, 0) + b.(0, 0, 1, 1) + c.(-2, 2, 1, 1) + d.(1, 0, 0, 0)

$$\begin{cases} a - 2c + d = 2 \\ -a + 2c = -3 \\ b + c = 2 \end{cases} \qquad \begin{cases} 1 & 0 & -2 & 1 & 2 \\ -1 & 0 & 2 & 0 & -3 \\ 0 & 1 & 1 & 0 & 2 \end{cases}$$

Espaço Vetorial

- Exemplo:
- a) O vetor $(2, -3, 2, 2) \in [v1, v2, v3, v4]$?
 - Sistema admite infinitas soluções.
 - Por exemplo: a = 3, b = 2, c = 0, d = -1
 - Logo, como existe solução, o vetor pertence a [v1,v2,v3,v4]

Espaço Vetorial

Exemplo:

b) Exiba uma base para [v1,v2,v3,v4]? Qual sua dimensão?

$$\begin{pmatrix}
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
-2 & 2 & 1 & 1 \\
1 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0
\end{pmatrix}$$

 Com isso, descobrimos que v2 (ou v3) é combinação linear dos outros vetores. Logo, a base é formada por [v1,v2,v4] ou [v1, v3, v4].

Espaço Vetorial

Exemplo:

- b) Exiba uma base para [v1,v2,v3,v4]? Qual sua dimensão?
 - Base = $[v1,v2,v4] \Rightarrow dim = 3$
- c) [v1,v2,v3,v4] = R⁴?
 - Como dim Base = 3 e dim R⁴ = 4, então [v1,v2,v3,v4] ≠
 R⁴

Espaço Vetorial

- **Exemplo**: Considere o subespaço de R³ gerado pelos vetores v_1 =(1,1,0), v_2 =(0,-1,1) e v_3 =(1,1,1).
- $[V_1, V_2, V_3] = R^3$?

• $v_1 = (1,1,0)$, $v_2 = (0,-1,1)$ e $v_3 = (1,1,1)$ é LI?

Espaço Vetorial

- Exemplo: Solução 1:
- Existem a, b, c tal que:
 - (x, y, z) = a.(1,1,0) + b.(0,-1,1) + c.(1,1,1)

$$a + c = x$$

 $a - b + c = y$
 $b = x - y$
 $b + c = z$
 $c = -x + y + z$

Ou seja, há valores para a, b e c que podem gerar qualquer vetor no R³.

Espaço Vetorial

- Exemplo: Solução 2:
- Vamos tentar escalonar:

$$\begin{pmatrix}
1 & 1 & 0 \\
0 & -1 & 1 \\
1 & 1 & 1
\end{pmatrix}
\dots
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

O que isso significa?

Significa que, com esses vetores e operações lineares, conseguimos gerar a base canônica. Logo, podemos gerar todo o R³.

Espaço Vetorial

```
• v_1 = (1,1,0), v_2 = (0,-1,1) e v_3 = (1,1,1) é LI?
    • (0, 0, 0) = a.(1,1,0) + b.(0,-1,1) + c.(1,1,1)
a + c = 0 \rightarrow a = -c
a - b + c = 0 \rightarrow -c - b + c = 0 \rightarrow -b = 0 \rightarrow b = 0
b + c = 0 \rightarrow b = -c
Logo, c = 0 e a = 0
São LI
```

Exercícios

1- Quais são as coordenadas de x = (1,0,0) em relação a base $\beta = \{(1,1,1), (-1,1,0), (1,0,-1)\}$?

Exercícios

2- Determine uma base para o seguinte espaço vetorial:

$$S = \{(x, y, z) \in R^3 / y = 2x\}$$

Exercícios

- **3-** Sejam $\beta = \{(1,0), (0,1)\}$ e $\beta_1 = \{(-1,1), (1,1)\}$ bases ordenadas de R².
- a) Ache as matrizes de mudança de base $[I]_{\beta}^{\beta_1}$
- b) Quais são as coordenadas do vetor v = (3,-2) em relação as bases:
- i) β
- ii) β₁