Matrices in Geometry - 10.7.86

EE25BTECH11037 Divyansh

Sept, 2025

Problem Statement

Let C_1 and C_2 be two circles with C_2 lying inside C_1 . A circle C lying inside C_1 touches C_1 internally and C_2 externally. Identify the locus of center of C.

Let the center of C, C_1 and C_2 be O, O_1 and O_2 , respectively. Let the radii of circles C, C_1 and C_2 be r, r_1 and r_2 It is given that C touches the circle C_1 internally and C_2 externally. Therefore,

$$\|\mathbf{0} - \mathbf{0}_1\| = r_1 - r \tag{1}$$

$$\|\mathbf{O} - \mathbf{O_2}\| = r_2 + r \tag{2}$$

Adding these two equations, we get

$$\|\mathbf{O} - \mathbf{O_1}\| + \|\mathbf{O} - \mathbf{O_2}\| = r_1 + r_2$$
 (3)

Substitute O as x

$$\|\mathbf{x} - \mathbf{O}_1\| + \|\mathbf{x} - \mathbf{O}_2\| = r_1 + r_2$$
 (4)

This is equation of an ellipse because it is of form

$$\|\mathbf{x} - \mathbf{S_1}\| + \|\mathbf{x} - \mathbf{S_2}\| = 2a$$
 (5)

with focii as $\mathbf{O_1}$, $\mathbf{O_2}$ and length of the major axis as $r_1 + r_2$

$$\|\mathbf{x} - \mathbf{O}_1\| + \|\mathbf{x} - \mathbf{O}_2\| = K, \ K = r_1 + r_2$$
 (6)

To eliminate square roots from the norms, we rearrange and square the equation.

$$\|\mathbf{x} - \mathbf{O}_1\| = K - \|\mathbf{x} - \mathbf{O}_2\| \tag{7}$$

Squaring both sides and using the property $\|\mathbf{v}\|^2 = \mathbf{v}^{\top}\mathbf{v}$:

$$\|\mathbf{x} - \mathbf{O}_1\|^2 = (K - \|\mathbf{x} - \mathbf{O}_2\|)^2$$
 (8)

$$\|\mathbf{x} - \mathbf{O_1}\| + \|\mathbf{x} - \mathbf{O_2}\| = K, \ K = r_1 + r_2$$
 (9)

To eliminate square roots from the norms, we rearrange and square the equation.

$$\|\mathbf{x} - \mathbf{O_1}\| = K - \|\mathbf{x} - \mathbf{O_2}\| \tag{10}$$

Squaring both sides and using the property $\|\mathbf{v}\|^2 = \mathbf{v}^{\top}\mathbf{v}$:

$$\|\mathbf{x} - \mathbf{O_1}\|^2 = (K - \|\mathbf{x} - \mathbf{O_2}\|)^2$$
 (11)

Let $S = K^2 + \|\mathbf{O_2}\|^2 - \|\mathbf{O_1}\|^2$ and $\mathbf{v} = 2(\mathbf{O_1} - \mathbf{O_2})$. The equation becomes:

$$2K \|\mathbf{x} - \mathbf{O_2}\| = S + \mathbf{v}^{\mathsf{T}} \mathbf{x} \tag{12}$$

Squaring both sides again:

$$4K^2 \|\mathbf{x} - \mathbf{O_2}\|^2 = (S + \mathbf{v}^\top \mathbf{x})^2 \tag{13}$$

$$4K^{2}\left(\mathbf{x}^{\top}\mathbf{x}-2\mathbf{O}_{2}^{\top}\mathbf{x}+\|\mathbf{O}_{2}\|^{2}\right)=S^{2}+2S\left(\mathbf{v}^{\top}\mathbf{x}\right)+\left(\mathbf{v}^{\top}\mathbf{x}\right)^{2}$$
 (14)

Using the identity $(\mathbf{v}^{\top}\mathbf{x})^2 = \mathbf{x}^{\top}(\mathbf{v}\mathbf{v}^{\top})\mathbf{x}$, we group all terms to one side to match the form $\mathbf{x}^{\top}V\mathbf{x} + 2\mathbf{u}^{\top}\mathbf{x} + f = 0$.

$$\mathbf{x}^{\top} \left(4K^2 I - \mathbf{v} \mathbf{v}^{\top} \right) \mathbf{x} + 2 \left(-4K^2 \mathbf{O_2} - S \mathbf{v} \right)^{\top} \mathbf{x} + \left(4K^2 \| \mathbf{O_2} \|^2 - S^2 \right) = 0$$
(15)

Compared with the general conic equation, we identify the matrix V, the vector \mathbf{u} , and the scalar f:

$$\mathbf{V} = 4K^{2}I - \mathbf{v}\mathbf{v}^{\top} = 4(r_{1} + r_{2})^{2}I - 4(\mathbf{O}_{1} - \mathbf{O}_{2})(\mathbf{O}_{1} - \mathbf{O}_{2})^{\top} \qquad (16)$$

$$\mathbf{u} = -4K^{2}\mathbf{O}_{2} - S\mathbf{v} = -4(r_{1} + r_{2})^{2}\mathbf{O}_{2} - \left((r_{1} + r_{2})^{2} + \|\mathbf{O}_{2}\|^{2} - \|\mathbf{O}_{1}\|^{2}\right) \cdot 2(\mathbf{O}_{1} - \mathbf{O}_{2}) \qquad (17)$$

$$f = 4K^{2}\|\mathbf{O}_{2}\|^{2} - S^{2} = 4(r_{1} + r_{2})^{2}\|\mathbf{O}_{2}\|^{2} - \left((r_{1} + r_{2})^{2} + \|\mathbf{O}_{2}\|^{2} - \|\mathbf{O}_{1}\|^{2}\right)^{2} \qquad (18)$$

Figure: Graph for 10.7.86