

Label generation

One of the critical tasks after running LDA is to give labels to these topics based on research requirements and domain knowledge.

Because our purpose here is to compare brands within and across industries, we opted to use a generic list of topic labels:

- product
- service
- promotion
- competitors
- news / trend
- shows / games
- price
- location

|        | TABLE 3 Burger King Topic Proportion, Top Words, and Labels |                                                                                                                                                        |                  |  |  |  |  |  |
|--------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|
| Number | Proportion                                                  | Top 10 Words                                                                                                                                           | Label            |  |  |  |  |  |
| Т0     | .045                                                        | order (.080); drive (.040); wrong (.032); home (.031); time (.023); minutes (.020); wait (.016); delivery (.015); cream (.015); line (.015)            | Customer service |  |  |  |  |  |
| T1     | .022                                                        | menu (.101); kids (.086); meals (.048); meal (.045); soda (.035); drinks (.028); keyboard (.024); kid (.020); soft (.012); item (.012)                 | Products         |  |  |  |  |  |
| T2     | .029                                                        | McDonald's (.145); Wendy's (.066); Taco Bell (.054); shake (.045); red (.040); velvet (.040); Oreo (.039); KFC (.036); Subway (.030); Pizza Hut (.022) | Competitors      |  |  |  |  |  |
| Т3     | .253                                                        | fries (.298); chicken (.223); back (.138); nuggets (.031); happy (.021); day (.019); life (.013); forever (.011); strips (.010); fry (.009)            | Promotions       |  |  |  |  |  |

"After the researchers assign labels to those topics, it might be wise to employ the assistance of domain experts to verify the validity of problematic labels."

(No mention on whether it was actually done in this case)

### Motivation

We [...] categorized the 300 topics using these labels and averaged the incidences of each topic label within each industry.

| TABLE 4 User-Generated Content Topics: Industry Similarities and Differences |           |                  |          |                    |             |               |  |  |  |
|------------------------------------------------------------------------------|-----------|------------------|----------|--------------------|-------------|---------------|--|--|--|
| Topics/Industry                                                              | Fast Food | Department Store | Footwear | Telecommunications | Electronics | Average       |  |  |  |
| Product                                                                      | 47.9%     | 23.5%            | 55.9%    | 45.6%              | 70.6%       | 48.7% (17.2%) |  |  |  |
| Service                                                                      | 20.4%     | 29.6%            | 1.8%     | 28.5%              | 8.0%        | 17.6% (12.4%) |  |  |  |
| Promotion                                                                    | 15.7%     | 24.6%            | 15.3%    | 5.0%               | 5.8%        | 13.3% (8.1%)  |  |  |  |
| Competitors                                                                  | 4.8%      | 5.4%             | 7.7%     | 5.7%               | 9.0%        | 6.5% (1.8%)   |  |  |  |
| News/trends                                                                  | 6.7%      | 9.2%             | 9.2%     | 2.6%               | 5.1%        | 6.6% (2.8%)   |  |  |  |

# Topic modeling

LDA

## Topic modeling parameters

Nr of topics (k): 15 (15 topics for each of the 20 brands in the data set)

# Nr. of topics

300

### Label

Manually assigned pre-defined single word label: (product, service, promotion, competitors, news / trend, shows / games, price, location.)

### Label selection

\

# Label quality evaluation

١

### **Assessors**

\

#### **Domain**

Paper: Social media analysis Dataset: Social media (Twitter)

#### Problem statement

This article presents a framework that automatically derives latent brand topics and classifies brand sentiments.

It applies text mining with latent Dirichlet allocation (LDA) and sentiment analysis on 1.7 million unique tweets for 20 brands across five industries: fast food, department store, footwear, electronics, and telecommunications.

The framework is used to explore four brand-related questions on Twitter.

## Corpus

Origin: Twitter

Nr. of documents: 1.7M

Details:

| TABLE 2 Summary Tweet Information for Industries and Brands |                      |                       |                  |                |  |  |  |  |  |
|-------------------------------------------------------------|----------------------|-----------------------|------------------|----------------|--|--|--|--|--|
| Industry                                                    | Brands and Tweets    |                       |                  |                |  |  |  |  |  |
| Fast-food restaurant                                        | McDonald's (318,003) | Burger King (122,075) | Wendy's (84,219) | KFC (70,533)   |  |  |  |  |  |
| Department store                                            | JCPenney (43,887)    | Macy's (184,715)      | Sears (33,005)   | Kohl's (53,469 |  |  |  |  |  |
| Footwear                                                    | Nike (151,437)       | New Balance (27,205)  | Adidas (57,987)  | Puma (23,427)  |  |  |  |  |  |
| Electronics                                                 | LG (32,230)          | Panasonic (4,286)     | Samsung (14,857) | Sony (131,264  |  |  |  |  |  |
| Telecommunications                                          | Comcast (261,914)    | TWC (57,771)          | Dish (35,603)    | Cox (20,993)   |  |  |  |  |  |

#### **Document**

Text of a single Tweet

## Pre-processing

- remove tweets created by Twitterbots
- filtered out hashtags and URLs
- tokenisation
- POS tagging
- Stop word removal

```
@article{liu_2017_an_investigation_of_brand_related_user_generated_content_on_t
witter,
   author = {Xia Liu and Alvin C. Burns and Yingjian Hou},
   date-added = {2023-03-31 20:24:22 +0200},
   date-modified = {2023-03-31 20:24:22 +0200},
   doi = {10.1080/00913367.2017.1297273},
   journal = {Journal of Advertising},
   month = {mar},
```

```
number = {2},
pages = {236--247},
publisher = {Informa {UK} Limited},
title = {An Investigation of Brand-Related User-Generated Content on
Twitter},
url = {https://doi.org/10.1080%2F00913367.2017.1297273},
volume = {46},
year = 2017}
```

#Thesis/Papers/BS