Pervasive Media Exploration

Exploring the Ecological Interactions of the Common Mycorrhizal Networks through Robotics

"These fungal networks appear to redistribute the wealth of carbohydrates from tree to tree. A kind of Robin Hood, they take from the rich and give to the poor so that all the trees arrive at the same carbon surplus at the same time."

Robin Wall Kimmerer - Potawatomi botanist

TABLE OF CONTENTS

Concept		2
The	Flowers	(
The	Sensors	8

MAY/2025

Our Concept

This project develops an interactive simulation inspired by mycelium-based communication, blending technology, art, and biomimicry and we feature a modular system where users send signals through a physical interface, prompting plant-like responses such as illuminated LED pathways, motorized movements, and other sensory outputs as a way to mimicking the decentralized flow of information found in fungal/floral networks and distributed computing, the simulation visualizes normally invisible biological processes.

Beyond its technical scope, the installation serves educational, artistic, and scientific purposes in an attempt to making bio-communication systems tangible and encouraging reflection on ecological intelligence and nature-inspired design. By revealing parallels between organic and digital networks, it fosters dialogue on sustainability, interconnectedness, and emerging technologies. Additionally, the project explores new forms of human-computer interaction that integrate living and synthetic elements, contributing to fields like bio-HCI and biohybrid robotics.

The Flowers

Through a programmable mechanical system, it is possible to replicate them flowering and responding dynamically to environmental changes, perfectly merging the beauty of nature with robotics. We can replicate the natural movements of petals unfolding layer by layer, slowly rotating, or gently swaying in the wind, increasing interactivity and viewing experience. Additionally a multi-layered mechanical construction can be utilized to manage the petals' slow blooming, replicating natural growth and giving it a more vibrant appearance. For example, it can cause flowers to gradually close and then blossom again, showing the theme of vitality and cyclical rebirth.

PEONY

PAEONIA

THE STACKED PETALS OF THE PEONY CREATE
A RICH THREE-DIMENSIONAL IMPRESSION

CHRYSANTHENUM

CHRYSANTHEMUM INDICUM
FEATURE A RADIAL PETAL ARRANGEMENT,
WHICH ALLOWS FOR A DYNAMIC LOOK
WITH SEVERAL LAYERS.

LOTUS

NELUMBO NUCIFERA
THE PETALS OF A LOTUS FLOWER OPEN
SEQUENTIALLY FROM THE OUTSIDE IN.

CHINESE ROSE

ROSA CHINENSIS
THE CHINESE ROSE HAS THE DISTINCT
FEATURE OF FLOWERING ONCE A MONTH.
IT CAN ENDLESSLY BLOOM, WITHER, AND
BLOOM AGAIN.

CAPE JASMINE

GARDENIA JASMINOIDES
GARDENIA PETALS ARE ORGANIZED UNIFORMLY AND CLOSELY, WITH A STRUCTURE
THAT UNFOLDS IN A SPIRAL PATTERN

Resource	Moisture		
Sensor	DHT11 or DHT22 humidity sensor		
How does it	Water flows through the MCN, therefore if the amount of water in a		
relate to the	plant has decreased, it will then increase the amount it takes from		
Common	the flow, reducing the amount that the other plants will be able to		
Mycorrhizal	receive.		
Networks			
How does	Water makes up 80-95% of plants weight ²⁹ and is necessary for		
this resource	transporting nutrients and maintaining turgor pressure ³⁰ , this is what		
impact the	helps the plant stand up without drooping. With reduced amounts of		
plant and its	water, the processes of respiration, transpiration and photosynthesis		
local	are decreased. ³¹ Water aids in maintaining the temperature of plants		
environment.	and acts as a buffer. ³²		
Visible	Lack of Water ³³	Excess Water ³⁴	
Observations	- Wilting	 Roots become brittle and 	
	- Yellow Leaves	damaged	
	- Brown & Crispy leaves	- Root rot	
	- Leaf Drop	- Leaf Mold	

Resource	Temperature		
Sensor	DHT11 sensor		
How does it	'Both mycorrhizal colonization levels and length of extraradical		
relate to the	hyphae (ERH)' ⁴⁷ increased as the temperatures got warmer.		
Common	Additionally, every time the temperature drops by 10 degrees, the		
Mycorrhizal	mycelium's ability to do chemical processes halves.48 This affects		
Networks	how effective the communication between the plants is, it is		
	necessary that the temperature remains optimum.		
How does	Whilst the temperature from day to night fluctuates, it is		
this resource	recommended that it only decrease by 10 to 15°C. Any extreme		
impact the	temperature change can lead to stress which can hinder the plants		
plant and its	growth. ⁴⁹ This increases their risk of disease. Warmer temperatures		
local	lead to more photosynthesis and respiration.50 Additionally warmer		
environment.	soil temperature boosts the amount of water and nutrients		
	absorbed. ⁵¹		
Visible	Excessive Low Temperature ⁵²	Excessive High Temperature	
observations	- Wilting	 The leaves change angles 	
	- Red or purple	and roll in on	
	discoloration	themselves. ⁵³	
	 Plant turns mushy / black 	- Wilting	
	- Death of leaves, stems, or	- Discolouration	
	entire plants	- Scorching	

ot Tube, Acrylic 2.5mm ID Tubing, XGMP3v3 Differential Sensor ²⁶ Air Flow doesn't directly impact the CMN, it stills s the soil, which is where the processes occurring in the based. Where there is more air in the soil, it benefits the
s the soil, which is where the processes occurring in the
ture, soil biology and soil chemistry. This makes it easier ants to absorb the nutrients, water and oxygen. ²⁷ It allows ports of sugars from the plants to the MCN ²⁸ to occur more y, improving their growth and ability to perform the y processes.
are are high amounts of air movement, it has a drying effect ants. ²⁹ Therefore they require more water at shorter Without any air movement occurring the leaves become d with water vapour' ³⁰ . This increases the risk of pathogen a warm and moist environment is the perfect place for o grow. ³¹ Overall this weakens the plant and can make it ceptible to catching diseases which increases the lof it spreading to the neighbouring plants ³² .

Resource	Light		
Sensor	Grove Light Sensor		
How does it	Depending on the type of light, different activity was promoted. For		
relate to the	example, with Red Green LEDs, 'mycorrhizal development and		
Common	nitrogen metabolism' increased improving the connections between		
Mycorrhizal	the MCN and the plants. Whereas white increased the soil enzyme		
Networks	activities ⁴¹ which is very beneficial for nutrient cycling; the process		
	where organic matter is converted into nutrients the plants can		
	process. 42		
How does	Light is used to regulate many of the physiological processes within		
this resource	plants. It is the main source of energy which is gained through the		
impact the	process of photosynthesis.43 Therefore when the light decreases, so		
plant and its	does photosynthesis. It is also a factor in 'germination, leaf		
local	proliferation and expansion', so without it the growth is slowed and		
environment.	stunted.		
Visible	Lack of Light ⁴⁴	Excess Light	
Observations	- Dropped Leaves	- Scorched & Bleached	
	 Longer & thinner stems. 	leaves	
	 Turn from green to yellow to 	- Brittle ⁴⁵	
	white.		
	 Fail to produce flower buds. 		