Theory about Normal Basis on $F(2^k)$

Xiaojun Sun Prof. Priyank Kalla

Department of Electrical & Computer Engineering University of Utah, Salt Lake City {xiaojun.sun,kalla}@ece.utah.edu

Last Update: May 14, 2013

Abstract

N/A

1 Introduction

- a) Why use NB?
- b) Relations between NB & StB?
- c) What's ONB?

Simple stuff we've discussed.

2 Characterization of Normal Basis

Conceptions from Linear Algebra

 $\sigma: \frac{Frobenius\ Map:}{x \to x^q, x \in F_{q^n}}$ $Linear\ transformation\ of\ F_{q^n}\ over\ F_q.$

T-invariant subspace / cyclic vector:

A subspace $W \subset V$ is called T-invariant when $Tu \in W \forall vector u \in W$ Subspace $Z(u,T) = \langle u, Tu, T^2u, ... \rangle$ is called T-cylic subspace of V. If Z(u,T) = V, then u is called a cyclic vector of V for T.

Nullspace of polynomial:

For any polynomial $g(x) \in F[x]$, the null space of g(T) consists of all vectors u such that g(T)u = 0.

T-Order / minimal polynomial:

For any vector $u \in V$, the monic polynomial $g(x) \in F[x]$ with smallest degree such that g(T)u = 0 is called the T-Order of u or minimal polynomial of u. That is, for an arbitrary element θ in F_{q^n} , find least positive integer k such that $\sigma^k \theta = \sum_{i=0}^{k-1} c_i \sigma^i \theta$, then the σ -Order of θ can be written by $Ord_{\theta,\sigma}(x) = x^k - \sum_{i=0}^{k-1} c_i x^i$.

Lemmas & Theorems from linear algebra

- **Lemma 1** $g(x) \in F[x]$ and W is its null space. Let d(x) = gcd(f(x), g(x)), e(x) = f(x)/d(x). Then dim(W) = deg(d(x)) and $W = \{e(T)u|u \in V\}$.
- **Lemma 2** Factorize f(x): $f(x) = \prod_{i=1}^r f_i^{d_i}(x)$, each $f_i(x)$ is prime to others. Assume V_i be null space of $f_i^{d_i}(x)$, then $V = V_1 \oplus V_2 \oplus ... \oplus V_r$. Furthermore, define $\Psi_i(x) = f(x)/f_i^{d_i}(x)$. $\forall u_j \in V_j, u_j \neq 0, \Psi_i(T)u_j \neq 0$, only if i = j.
- **Lemma 3** Minimal and characteristic polynomial for σ are both $x^n 1$.
- Corollary 1 An element $\alpha \in F_{q^n}$ is normal element if and only if $Ord_{\alpha,\sigma}(x) = x^n 1$.
- **Theorem 1** Consider we are dealing with F_{2^n} , then field characteristic p=2. Define $t=p^e$ where $n=kp^e, gcd(k,p)=1$, so here t=1 if n is odd. Then x^n-1 can be factorized as $(\varphi_1(x)\varphi_2(x)\cdots\varphi_r(x))^t$. Additionally define $\Phi_i(x)=(x^n-1)/\varphi_i(x)$. We get: An element $\alpha\in F_{q^n}$ is normal element if and only if $\Phi_i(\sigma)\alpha\neq 0, i=1,2,...,r$.
- **Theorem 2** Let W_i be the null space of $\varphi_i^t(x)$ and \widetilde{W}_i the null space of $\varphi_i^{t-1}(x)$. Let \overline{W}_i be any subspace of W_i such that $W_i = \overline{W}_i \oplus \widetilde{W}_i$. Then

$$F_{q^n} = \sum_{i=1}^{r} \overline{W_i} \oplus \widetilde{W_i}$$

is a direct sum where $dim(\overline{W_i}) = d_i$ and $dim(\widetilde{W_i}) = (t-1)d_i$. Furthermore, an element $\alpha \in F_{q^n}$ with $\alpha = \sum_{i=1}^r (\overline{\alpha_i} + \widetilde{\alpha_i}), \overline{\alpha_i} \in \overline{W_i}, \widetilde{\alpha_i} \in \widetilde{W_i}$, is a normal element if and only if $\overline{\alpha_i} \neq 0 \forall i = 1, 2, ..., r$.

- Normal Basis Theorem for Finite Fields There always exists a normal basis of F_{q^n} over F_q .

3 Algorithms for Normal Basis Construction

Lüneburg's Algorithm

Step 1: For each i=0,1,...,n-1, compute σ -Order $f_i=Ord_{\alpha^i}(x)$. Here $x^n-1=lcm(f_0,f_1,...,f_{n-1})$.

Step 2: Apply factor refinement to $\{f_i\}$ and get $f_i = \prod_{1 \leq j \leq r} g_j^{e_{ij}}, i = 0, 1, ..., n-1$.

Step 3: For each j, find an index i_j (denote as i(j)) so that e_{ij} is max in this j-th column.

Step 4: Let $h_j = f_{i(j)}/g_j^{e_{i(j)j}}$, take $\beta_j = h_j(\sigma)\alpha^{i(j)}$. Then

$$\beta = \sum_{j=1}^{r} \beta_j$$

is the normal element.

Preliminary to Lenstra's Algorithm

- **Lemma 4** For an arbitrary element $\theta \in F_{q^n}$ that $Ord_{\theta}(x) \neq x^n 1$, let $g(x) = (x^n 1)/Ord_{\theta}(x)$. There exists another element β such that $g(\sigma)\beta = \theta$.
- **Lemma 5** Same θ and g(x) defined as last lemma. Assume there exists a solution β such that $deg(Ord_{\beta}(x)) \leq deg(Ord_{\theta}(x))$. Then there exists a non-zero element η such that $g(\sigma)\eta = 0$, and

$$g(\sigma)\eta = 0$$
, and $deg(Ord_{\theta+\eta}(x)) > deg(Ord_{\theta}(x))$.

Lenstra's Algorithm

Step 1: Take an arbitrary element $\theta \in F_{q^n}$, determine $Ord_{\theta}(x)$.

Step 2: If $Ord_{\theta}(x) = x^n - 1$ then algorithm ends.

Step 3: Calculate $g(x) = (x^n - 1)/Ord_{\theta}(x)$, and solve β from $g(\sigma)\beta = \theta$.

Step 4: Determine $Ord_{\beta}(x)$. If $deg(Ord_{\beta}(x)) > deg(Ord_{\theta}(x))$ then replace θ by β and go to step 2; otherwise if $deg(Ord_{\beta}(x)) \leq deg(Ord_{\theta}(x))$ then find a non-zero element η such that $g(\sigma)\eta = 0$, replace θ by $\theta + \eta$ and determine the order of new θ , then go to step 2.

4 Optimal Normal Basis Characterization

Multiplication table

$$\beta \begin{pmatrix} \beta \\ \beta^2 \\ \vdots \\ \vdots \\ \beta^{2^{n-1}} \end{pmatrix} = M_T \begin{pmatrix} \beta \\ \beta^2 \\ \vdots \\ \vdots \\ \beta^{2^{n-1}} \end{pmatrix}.$$

Complexity $C_N \geq 2n - 1$.

ONB Existance Theory

Key words: k-th primitive root of unity, Euler's criterion, quadratic residues

Type I ONB: n+1 is prime and q is primitive in \mathbb{Z}_{n+1} , then the n nonunit (n+1)th roots of unity form ONB.

Type II ONB: 2n+1 is prime, if (1) 2 is primitive in \mathbb{Z}_{2n+1} , OR (2) $2n+1 \equiv 3 \pmod{4}$ and 2 generates the quadratic residues in \mathbb{Z}_{2n+1} . Then $\alpha = \gamma + \gamma^{-1}$ generates ONB, where γ is a primitive (2n+1)th root if unity.

Low-complexity Normal Basis design N/A.

5 Other NB Properties & Problems

N-poly

N-poly is irreducible polynomial with linearly independent roots. Normal

basis is a set of roots of N-poly.

- Corollary 2 For irreducible polynomial $f(x) = x^n + a_1 x^{n-1} + ... + a_n \in F_{2^n}[x]$, that is an N-poly if and only if $a_1 \neq 0$.

Problems and Discussion

Prob1: how to prove λ -Matrix is multiplication table?

I think this is a good way to understand the essence of normal basis theory. This problem can be rewrite like this:

Why there exist a rotating symmetry in λ -Matrix that $\lambda_{0j}^{(k)} = \lambda_{jk}^{(0)}$? Andrew guess it's a Frobenius element matrix rotating symmetry involves with field automorphism. Need further consultation on this part. How to get this property? Check out the last part of my note.

Prob2: Proof of Lemma 5. (Already proved. Please check out the note.)

Prob3: Fast algorithm for determining σ -Order. (Do not need FAST algorithms. Just do a $(O(n^2))$ scan.)

Attachment: Proof DATE: Lemma 1: f(x) is the minimal & characteristic poly for T. $W = \{ u \in V \mid g(T)u = 0 \}$ for oleg: k > deg(f(x)), f(x) | poly: k if poly: k(T) = 0f(x) definition based on T, f(T) = 0 so $\forall u$, f(T)u = 0W (or say W(u,T)) based on g(T), ?: dim(W) = deg(dux)) $\forall u, e(T)u \in W \Leftrightarrow g(T)e(T)u = g(T)\frac{f(T)}{d(T)}u = [h(T).f(T)u=0]$ Lemma 2: Use Lemma 1's condusion: $gcd(f(x), f_i^{di}(x)) = f_i^{di}(x), dim(V_i) = deg(f_i^{di}(x))$ $\dim(V) = \operatorname{olegH}_i^{\operatorname{di}}(x) = \operatorname{TI} \operatorname{olim}(V_i) \Rightarrow V = \bigoplus V_i$ Accordingly, $i \neq j$, $\psi_i(x) = \frac{f(x)}{f_i^{(d)}(x)} = h(x) f_i^{(d)}(x)$ $\forall u_i \in V_i$, $\forall j \in V_i$ Reversely, i=j, $\psi_i(x) = \frac{f(x)}{f_i^{d_i}(x)} \perp f_i(x) \Rightarrow \psi_i(x) u_j \neq 0$ Lemma 3: Characteristic poly: $o^n \beta = \beta^{2^n} = \beta \quad \forall \beta \in Fqn \Rightarrow \sigma^n - I = 0$ Characteristic poly: Assume $\exists f(x) = \sum f_i x^i \in Fq[x]$, that $\sum f_i \sigma^i = 0$ & deg(f(x)) < n. Then $\forall \beta \in F_{qn}$, $(\sum f_i \sigma^i) \beta = \sum f_i \beta^{q^i} = 0$ i.e., β is a root of poly $F(x) = \sum f_i(\alpha^q)$, in total q^n roots. However max NO. of nots = $deg(F(x)) = 2^{n-1} < 2^n$, paradox. Both Characteristic & minimal poly is on-1

	Corollary 1: Linearly independent (>> \f(x) \in Fq(x), \deg(f(x)) < n,
	Corollary 1: Linearly independent $\iff \forall f(x) \in F_q(x), \deg(f(x)) < n$, no annihilators $\iff Ord_{\alpha,\sigma}(x) = \chi^n - 1$.
	Tomp play warmen a character to the tomp of the tomp o
**	Theorem 1: $\Phi_i(x) = \frac{\gamma^n - 1}{\varphi_i(x)}$, $\Phi_i(\sigma) \neq 0 \iff \text{no factors in}$
0=(7)4	Any annihilater much divide Q_{xx} , Z^{n-1} $\longrightarrow Ord_{x,o}(x)=X^{n-1}$.
0-11(T)	Thy annihilate much a time of the cold
3-30	I IAN DING! PURONTHIA
	W (or say W(U.T)) based on aCT).
	$f_i = Ord_{\mathcal{A}_i}(x) \iff f_i(\sigma) d^i = 0$ $(x)b_i = 0$
· · · · · · · · · · · · · · · · · · ·	Minimal/Charateristic poly for σ is $x^n-1 \Rightarrow$ Any annihilator of x^n divides x^n-1 . & x^n-1 . & x^n-1 . & x^n-1 is polynomial/standard basis, linearly independent x^n-1 can be divided by x^n-1 .
	& Ldisis polyamial/standard basis, linearly independent
	> no factor of xn-1 can be divided by Afi>
- (4)	$\Rightarrow x^n = cm(f_0, f_1, \dots, f_{n-1}) .$
	Theorem 2
	After factorization, using Lambar (1)
	$f_i(\sigma)\lambda^i = 0 \qquad \left(f_i \text{ minimal}\right)$
() :=	so $h_j(\sigma) \cdot g_j^{e_{i(j)}j}(\sigma) \cdot d^{i(j)} = 0$ ($g_j^{e_{i(j)}j}$ minimal)
122	$g_j^{e_{i(j)j}}(\sigma) \beta_j = 0 \iff Ord_{\sigma,\beta_j}(\chi) = g_j^{e_{i(j)j}}(\chi)$
i atm	<9; > one relatively prime
0 = 1 = 10	g_{j}^{eij} is maximum factor $\Rightarrow x^{n} = \prod g_{j}^{eij} = \prod Ordop_{j}(x)$
4224	
	Sition of the state of the stat
	$\Rightarrow A^{n-1} = Ordo, \beta(X) \Rightarrow \beta$ is normal element.
Jean M	in prince of pay First 2 flats in total
adax .	However mox NO. of 100th = deal Fas) = grd < gr, pun
	Both characterists & minimal poly is other
Recycled Paper	200

Lemma 4: Assume of is desired normal element. If(x) & Fq[x], f(0) 7 = 0. (Pefinition of NE) $Ord_0(0)\theta = 0$ (Ordo, 0 definition) \Rightarrow (Ordo(0) f(0)) $\gamma = 0$ $\gamma \text{ is NE } \Rightarrow \text{Ord}_{\gamma}(x) = x^n - 1 \Rightarrow x^n - 1 \mid (\text{Ord}_{\gamma}(x)) f(x)$ $g(x) = \frac{x^{n}-1}{\partial r d_{n}(x)} \Rightarrow x^{n}-1 \left| \frac{x^{n}-1}{g(x)} \cdot f(x) \right| \Rightarrow g(x) |f(x)|$ Let f(x) = h(x)g(x). Then h(0) = (x) h(0) = (x)g(o)(h(o) y) = 0 $\beta = h(\sigma)\gamma$. Lemma 5: Again assume of is desired normal element. $\exists \eta = Ord_{\rho}(\sigma) \gamma \neq 0$, $g(\sigma) \eta = 0$. Consider Lemma 4: $g(\sigma)\beta = 0$, $\frac{\pi^n - 1}{\Omega_{10}(x)} = 0$ $Ordo(x) \cdot \frac{\chi^n - 1}{Ordo(x)} |_{\mathcal{S}} \beta = 0 = Ord\beta(x) \beta$ \Rightarrow Ordo(x) Ordo(x), oleg(Ordo(x)) \leq deg(Ordo(x)) Also from assumption $deg(Ord_p(x)) \leq deg(Ord_p(x))$ \Rightarrow deg(Ords(x)) = deg(Ordo(x)) \Rightarrow Ords(x) = Ordo(x) Now attention $g(x) \perp Ordo(x)$. Otherwise suppose h(x) = gcd(g(x), Ordo(x)) $g(\sigma)\beta = a(\sigma)h(\sigma)\beta = 0$, $Ord_{\theta}(\sigma)O = a(\sigma)b(\sigma)h^{2}(\sigma)\beta = 0$ Ordata) b(x)h(x), $a(o)b(o)h^2(o)$ donders a(x)Ordoto 13 = 6(0) Aco 13 = 10(0) A

205 www.allbystudents.com

	However $Ord_{\mathcal{D}}(X) = Ord_{\mathcal{D}}(X)$ means
	Ords $(x)\beta = b(x)h(x)a(x)\beta = 0$.
	so $Ordo(x) = b(x)$. This is true iff $h(x) = 1$.
7-0	so $Ord_0(x) = b(x)$. This is true iff $h(x) = 1$. i. $g(x) \perp Ord_0(x)$.
	T
(0)	Considering $g(\sigma)\eta = 0 \Rightarrow Ord_{\eta}(x) g(x)$.
	and one of the contract of the
CXIF	
	\Rightarrow Ordo $u_0(x) = Ordo(x)Ordo(x)$ $\Rightarrow obo(Out (x)) \Rightarrow do(Out (x))$
	$\Rightarrow Ord_{\theta+\eta}(x) = Ord_{\theta}(x)Ord_{\eta}(x) \Rightarrow oleg(Ord_{\theta+\eta}(x)) > deg(Ord_{\theta}(x))$ $n \neq 0$
	$\partial = (\lambda_{r}(\varphi) \psi(\varphi)) = 0$
	Lenstra's Algorithm.
	9
	This is an approximation algorithm in nature. For each step (iteration) we will
	increase $Ordo(x)$ so it will finally reach x^{n-1} .
0.	Equiplence between λ -Matrix and Multiplication table:
	Ords Wolf
	Definition of A-Matrix:
	$C = A * B = \left(\sum_{i} a_{i} \beta^{p_{i}}\right) \left(\sum_{j} b_{j} \beta^{p_{j}}\right) = \sum_{i} \sum_{j} a_{i} b_{j} \beta^{p_{i}} \beta^{p_{i}}$ $\exists \lambda_{ij}^{(k)}, \beta^{p_{i}} \beta^{p_{i}} = \sum_{k} \lambda_{ij}^{(k)} \beta^{p_{k}} Cross-product terms.\right)$ $C_{k} = \sum_{i} \sum_{j} a_{i} b_{j} \lambda_{ij}^{(k)}. \forall i \neq i \neq 0, \beta \cdot \beta^{p_{i}} = \sum_{k'} \lambda_{ij}^{(k')} \beta^{p_{k'}}$
5	$\exists \lambda_{ii}^{(k)}$ $\beta^{pi}\beta^{pi} = \sum_{k} \lambda_{ii}^{(k)}\beta^{pk}$ Cross-product terms.)
- ($C_{k} = \sum_{i} \sum_{k} a_{i,k} \lambda_{i,k}^{(k)} $
-	
	is abother form of part of C. (call go)
	Apm (0,m, 0,-1,41, , , , (0-m-1))
	April BPn-m & (Co(APn-m) BPn-m), C((Apn-m) BPn-m) (1)
(my 0 my 1)	CAPATA SPATA
Kximo (x 6) K	Coefficient (Cm(A)B) = Co (A)
$0 = a(\sigma)^2 h(\sigma)$	for militation table a bi
	P/164 = MT/64)
CALLO THE	(2^{n-1})
Andrew State and a	(abstied, a. oz) The kazk (o) ozk)
	$ A_{ijk} _{\mathcal{S}} = \sum_{k} (\lambda_{0j}) B_{ijk} _{\mathcal{S}} = (\sum_{k} \lambda_{jk}) B_{ijk} _{\mathcal{S}}$
	and the state of
Recycled Paper	Cross-product term mutti-table def.