Decidable and Semidecidable Languages

Chapter 20

D and SD Languages

SD Context-Free Languages Regular Languages

Every CF Language is in D

Theorem: The set of context-free languages is a *proper* subset of D.

Proof:

- Every context-free language is decidable, so the contextfree languages are a subset of D.
- There is at least one language, AnBnCn, that is decidable but not context-free.

So the context-free languages are a *proper* subset of D.

Decidable and Semidecidable Languages

Almost every obvious language that is in SD is also in D:

- •AnBnCn = $\{anbncn, n \ge 0\}$
- $\bullet \{ W \subset W, W [] \{ a, b \}^* \}$
- •{ww, w [] {a, b}*}
- •{ $w = x \square y = z$: $x,y,z \square \{0, 1\}$ * and, when x, y, and z are viewed as binary numbers, xy = z}

But there are languages that are in SD but not in D:

•H = $\{<M, w> : M \text{ halts on input } w\}$

D and SD

D is a subset of SD. In other words, every decidable language is also semidecidable.

There exists at least one language that is in SD/D, the donut in the picture.

There exist languages that are not in SD. In other words, the gray area of the figure is not empty.

Subset Relationships between D and SD

□ 1. There exists at least oneSD language that is not D.

2. Every language that is in D is also in SD: If L is in D, then there is a Turing machine M that decides it (by definition).

But M also semidecides it.

Languages That Are Not in SD

Theorem: 3. There are languages that are not in SD.

Proof: Assume any nonempty alphabet □.

- There is a countably infinite number of SD languages over

 □.
- 2. There is an uncountably infinite number of languages over □.

So there are more languages than there are languages in SD. Thus there must exist at least one language that is in □SD.

Closure of D Under Complement

Theorem: The set D is closed under complement.

Proof: (by construction) If L is in D, then there is a deterministic Turing machine M that decides it.

Closure of D Under Complement

Proof: (by construction)

M: *M'*:

This works because, by definition, M is:

- . deterministic
- 2. complete

Since M' decides $\square L$, $\square L$ is in D.

SD is Not Closed Under Complement

Can we use the same technique?

M: *M'*:

SD is Not Closed Under Complement

Suppose we had:

ML: M//L:

Then we could decide *L*. How?

So every language in SD would also be in D.

But we know that there is at least one language (*H*) that is in SD but not in D. Contradiction.

D and SD Languages

Theorem: A language is in D iff both the language and its complement are in SD.

Proof:

- L in D implies L and □L are in SD:
 L is in SD because D □ SD.
 D is closed under complement
 - So $\Box L$ is also in D and thus in SD.
- 2. L and $\square L$ are in SD implies L is in D:

M1 semidecides L.

*M*2 semidecides $\Box L$.

To decide *L*:

Run M1 and M2 in parallel on w.

Exactly one of them will eventually accept.

A Language that is Not in SD

Theorem: The language $\Box H =$

{<*M*, *w*> : TM *M* does not halt on input string *w*}

is not in SD.

Proof:

- *H* is in SD.
- If $\Box H$ were also in SD then H would be in D.
- But H is not in D.
- So $\square H$ is not in SD.

Enumeration

Enumerate means list. We look at Turing Machines as generators.

We say that Turing machine *M* enumerates the language *L* iff, for some fixed, non-halting, state *p* of *M*:

$$L = \{w : (s, \Box) \mid -M^*(p, w)\}.$$

Whenever the machine enters p, the string on the tape is enumerated.

If L is finite, then M eventually halts.

A language is **Turing-enumerable** iff there is a Turing machine that enumerates it.

Example of Enumeration

Consider a printing subroutine: *P* be a Turing machine that enters state *p* and then halts:

Let $L = a^*$. M1 and M2 both enumerate L:

 M_1 : M_2 :

SD and Turing Enumerable

Theorem: A language is in SD iff it is Turing-enumerable.

Proof that Turing-enumerable implies SD: Let *M* be the Turing machine that enumerates *L*. We convert *M* to a machine *M'* that semidecides *L*:

- 1. Save input w.
- 2. Begin enumerating *L*. Each time an element of *L* is enumerated, compare it to *w*. If they match, accept.

The Other Way

Proof that SD implies Turing-enumerable:

If $L \square \square^*$ is in SD, then there is a Turing machine M that semidecides L.

A procedure *E* to enumerate all elements of *L*:

- 1. Enumerate all $w \square \square^*$ lexicographically.
 - **e.g.**, □, a, b, aa, ab, ba, bb, ...
- 2. As each is enumerated, use *M* to check it.

Does this work?

Dovetailing

ε [1]

ε [2]

ε [3]

ε [4]

ε [5]

ε [6]

a [1]

a [2]

a [3]

a [4]

a [5]

b [1]

b [2]

b [3]

aa [1]

aa [2]

aa [3]

ab [1]

ab [2]

ba [1]

The Other Way

Proof that SD implies Turing-enumerable:

If $L \square$ is in SD, then there is a Turing machine M that semidecides L.

A procedure to enumerate all elements of *L*:

- 1. Enumerate all *w* □ □* lexicographically.
- 2. As each string *wi* is enumerated:
 - 1. Start up a copy of *M* with *wi* as its input.
 - 2. Execute one step of each *Mi* initiated so far, excluding only those that have previously halted.
 - 3. Whenever an Mi accepts, output wi.

Lexicographic Enumeration

M lexicographically enumerates L iff M enumerates the elements of L in lexicographic order.

A language L is *lexicographically Turing-enumerable* iff there is a Turing machine that lexicographically enumerates it.

Example: AnBnCn = $\{anbncn : n \mid 0\}$

Lexicographic enumeration:

Lexicographically Enumerable = D

Theorem: A language is in D iff it is lexicographically Turingenumerable.

Proof that D implies lexicographically TE: Let M be a Turing machine that decides L. Then M' lexicographically generates the strings in \square^* and tests each using M. It outputs those that are accepted by M. Thus M' lexicographically enumerates L.

Proof, Continued

Proof that lexicographically TE implies D: Let M be a Turing machine that lexicographically enumerates L. Then, on input w, M' starts up M and waits until:

M generates w (so M' accepts),

M generates a string that comes after w (so M' rejects), or M halts (so M' rejects).

Thus M' decides L.

Language Summary IN SD **OUT** Reduction Semideciding TM Н Enumerable AnBnCn Diagonalize **Deciding TM** Reduction Lexic. enum L and $\square L$ in SD Context-Free CF grammar AnBn_ Pumping **PDA** Closure Closure Regular Pumping Regular Expression a*b* **FSM** Closure