Coriolis and Centrifugal Forces

Tyler Barbero

Derivation of Coriolis in a Rotating Framework

- Imagine a position vector \mathbf{r} (\mathbf{C} in the figure), rotating at a constant angular velocity $\mathbf{\Omega}$
- From a stationary (Eulerian) view, we are viewing \mathbf{r} rotate around the vertical axis at a constant speed $\mathbf{\Omega}$ from some fixed point away from the system
- From a Lagrangian view, we are viewing the system from the moving position vector **r**
- Depending on frame (Eulerian or Lagrangian) of reference you view **r** from, we observe different motions: (WHY?)
- The motion of the vector should be equivalent between the frames, so there should be an apparent force in one frame that equates them
- The change of a vector in the inertial (sub i) frame can be seen in the rotating frame (sub r) as
 - $\bigcirc \quad (\delta \mathbf{B})_i = (\delta \mathbf{B})_r + \mathbf{\Omega} \times \mathbf{B}$
 - \circ **B** is an arbitrary vector and **Ω**×**B** is the velocity imparted by the rotating frame

Fig. 2.1 A vector C rotating at an angular velocity Ω . It appears to be a constant vector in the rotating frame, whereas in the inertial frame it evolves according to $(\mathrm{d}C/\mathrm{d}t)_I = \Omega \times C$.

Now we can look at how a velocity vector \mathbf{v}_i in the inertial frame changes in the rotating frame

changes in the rotating frame
$$\left(\frac{d\mathbf{v}_{i}}{dt}\right)_{i} = \left(\frac{d\mathbf{v}_{i}}{dt}\right)_{r} + \mathbf{\Omega} \times \mathbf{v}_{i}$$

$$= \left(\frac{d}{dt}(\mathbf{v}_{r} + \mathbf{\Omega} \times \mathbf{r})\right)_{r} + \mathbf{\Omega} \times (\mathbf{v}_{r} + \mathbf{\Omega} \times \mathbf{r})$$

 $= \left(\frac{\mathrm{d}\mathbf{v}_{\mathrm{r}}}{\mathrm{d}t}\right) + \mathbf{\Omega} \times \left(\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}\right) + \mathbf{\Omega} \times \mathbf{v}_{\mathrm{r}} + \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r})$

$$= \left(\frac{d\mathbf{v}_{r}}{dt}\right)_{r} + \mathbf{\Omega} \times \mathbf{v}_{r} + \mathbf{\Omega} \times \mathbf{v}_{r} + \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r})$$

$$= \left(\frac{d\mathbf{v}_{r}}{dt}\right)_{r} + 2\mathbf{\Omega} \times \mathbf{v}_{r} + \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r})$$
Rearranging our in terms of \mathbf{v}_{i} in the rotating reference frame, we see two new terms on the RHS which are the **Coriolis and Centrifugal**

$$\left(\frac{d\mathbf{v}_{r}}{dt}\right)_{r} = \left(\frac{d\mathbf{v}_{i}}{dt}\right)_{i} - 2\mathbf{\Omega} \times \mathbf{v}_{r} - \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r})$$

Magnitude of Coriolis and Centrifugal Forces

• Coriolis ~ $2\Omega U = 2 * 7x10^{-5} 1/s * 10m/s = 1.4e-3 m/s$

What Does Coriolis do?

• In Cartesian coordinates, this is the vector components of Coriolis:

$$-2\mathbf{\Omega} \times \mathbf{v} = (-2\Omega \mathbf{v}\cos\theta + 2\Omega \mathbf{v}\sin\theta)\hat{\mathbf{i}} + -2\Omega \mathbf{u}\sin\theta\hat{\mathbf{j}} + 2\Omega \mathbf{u}\cos\theta\hat{\mathbf{k}}$$

- We can largely ignore the first term in ihat-direction and the khat term due to their small magnitudes compared to large-scale horizontal motions and gravity, respectively
- Therefore with:
 - \circ +u (eastward motion) \rightarrow effect of coriolis is southward motion
 - \circ +v (northward motion) \rightarrow effect of coriolis is eastward motion
 - This is why we see large systems being steering to the right in the Northern Hemisphere
 - And so on
- Consider the acceleration the Coriolis force has on moving objects by
 - ο F=d^2x/dt^2 = dv/dt = 2 Ω v_y*sin(Θ) → Integrate equation twice to get distance coriolis affects objects x = 2 Ω v_y*sin(Θ); where v_y is velocity travelled in y-direction and a choose Θ = 45deg
 - A naval war gun is shot northward is swayed 40 whole meters to right east and even a rifle shot is affected by almost 4 meters

$\left(\frac{d\mathbf{v}_{r}}{dt}\right)_{r} = \left(\frac{d\mathbf{v}_{i}}{dt}\right)$	$-2\mathbf{\Omega}\times\mathbf{v}_{\mathrm{r}}-\mathbf{\Omega}\times(\mathbf{\Omega}\times\mathbf{r})$
---	---

Sporting event	У	V_y	V_y	t	Х
	(m)	(km h ⁻¹)	$(m s^{-1})$	(s)	(cm)
Projectile type cases					
Cricket: slow bowler's deliveryb	18	80	22.2	0.81	0.0752
Archery	65	300	83.3	0.78	0.261
Cricket: throw from boundary $\underline{^{\underline{b}}}$	80	160	44.4	1.80	0.742
Football: 60 m kick	60	54	15	4.00	1.237
Golf: drive from the tee <u>b</u>	250	300	83.3	3.00	3.866
Rifle shot	500	1200	333	1.50	3.866
World War 1 Naval gun	24 000	2696	749	32.05	39.65 m

Derivation of Centrifugal in a Rotating Framework

- The centrifugal force is given by $Fce = -\Omega \times (\Omega \times r) = -\Omega \times (\Omega \times r \perp) = \Omega 2r \perp$, where $r \perp$ is given by rcos(theta) where it is perpendicular to the axis of rotation
- This total vector is broken down into two components, one in the j-unit vector and one in the k-unit vector
- We notice a jhat vector pointing equatorward
 - So why are we sliding towards the Equator?
- This is because the Earth is an oblate spheroid and the mass has been distributed according to the long-term effect of the centrifugal force with there being more mass at the Equator
- The shape of the Earth now results in gravity that generates a term in the +jhat direction which opposes the -jhat centrifugal term
- For simplicity, the meridional terms (jhat) are considered to cancel out and are omitted
- By this we assume that the local vertical is now in the opposite direction of the effective gravity

Centrifugal Force: Where is it?

- Centrifugal $\sim \Omega^2$ = $(7x10^-5)^2 \times 6 \times 106m = 3e-2 \text{ m/s2}$
- Coriolis ~ $2\Omega U = 2 * 7x10^{-5} 1/s * 10m/s = 1.4e-3 m/s$
- As we can see Centrifugal > Coriolis by one order of magnitude

So where is the Centrifugal term in the momentum equations?

- Centrifugal force is actually hidden in the potential on the RHS
- g is no longer the gravity constant 9.8m/s rather it is what is called effective gravity $\mathbf{g} \equiv \mathbf{g}_{eff} \equiv \mathbf{g}_{grav} + \Omega^2 \mathbf{r}_{\perp} = -\nabla \Phi$
- Since gravity (9.8m/s) is so much larger than the centrifugal force magnitude, it is conveniently placed in it

$$\frac{\mathsf{D}\mathbf{v}}{\mathsf{D}\mathbf{t}} + 2\mathbf{\Omega} \times \mathbf{v} = -\frac{1}{\rho}\nabla p - \nabla \Phi$$