1.0 - What is Data Science?

Extract information from Data

Example 1

Years of study / salary relation

- 1. Understand the relation between an "input" and an "output"
- 2. Find a function that roughly estimates the data points (called *regression*)

Other examples

- Using user rating to generate movie recommendations
- Label an entire dataset from only a few labels
- Classify data
 - Whole dataset is labeled (e.g. Cats and Dogs)
 - Draw a new sample (take a new image) and classify it (as a Dog or a Cat)

3 Fields

- 1. Supervised learning
 - classification / regression
- 2. Unsupervised learning
 - clustering
 - you only have data and no information on it
- 3. Semi-supervised learning
 - if you have a few labels and you want to infer all the labels

Terminology

step size = learning rate

Example: The income dataset

The data points $(x_i,y_i)\in\mathbb{R}^2$ are supposed to be of the form

$$y_i = f(x_i) + \epsilon \ \ (\epsilon
ightarrow ext{noise})$$

Remark: In general, the function f is *unknown* We want to approximate this function f using the data! Find an approximation \hat{f} of f using $\{(x_i,y_i)\}_{1\leq i\leq N}$

Nearest neighbours interpolation

The nearest neighbours interpolation of $\{(x_i,y_i)\}_{1\leq i\leq N}$ is the function

$$x\Rightarrow\hat{f}(x)=y_{ist}$$

This means for an input x you find the nearest data point x_i (i.e. the one with the smallest absolute distance to x) and assign its corresponding value y_i to $\hat{f}(x)$

when $i_x \in \operatorname{argmin}_{1 \leq i \leq N} |x - x_i|$

- Perfectly fits the data, i.e. $\hat{f}(x_i) = y_i$
- However, its sensible to outlayers
 - **Outlayers**: Some point in the graph is somehow not along the expected function (imagine point (18, 40,000)), which is very far from the function we are seeking