Experiment No. 3

Title: Design of digital system using Multiplexer.

Batch: A2 Roll No.: 16010421063 Experiment No.: 3

Aim: Design of digital system using a Multiplexer

Resources needed: Circuitverse online simulator or Hardware kit

Theory:

Multiplexer also called Data selector. A digital circuit which selects one of the 2^n data inputs and route it to the single output. Select lines are(n) and Input lines are (2^n)

fig 1. A 2:1 multiplexer

In this case there are two input terminals D_0 and D_1 , one select input S_0 and one output Q. When the select input is set to logic 0, D_0 is connected to the output. When the select input is set to logic 1, D_1 is connected to the output Q.

Fig 2. A 4 : 1 multiplexer.

In this case there are four data input terminals $D_0 - D_3$, two select inputs S_0 and S_1 and just one output Q. The following truth table shows when each of the data inputs is connected to the output.

Select Inputs		Output
S ₁	S_0	Q
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

Table1. Truth table for 4:1 multiplexer

fig 3. An 8:1 multiplexer.

Select Inputs			Output
S_2	Sı	So	Q
0	FLO M		D0
0	K. J. SOMAIYA CO	LLEGE OF ENGG	D1
0	1 1	\$10	D2
0	0:0		D3
1	0	60	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7

Table 2. Truth Table for 8:1 Multiplexer

- The above truth table shows when the data inputs are connected to the output.
- Multiplexers are commonly used in communication systems; however they can be used in Logic System design and simplification as well.

Exercise 1: Show how an 8:1 multiplexer can be used to implement the logic function given below:-

$$F(A, B, C) = \sum m(0, 2, 5, 6, 7)$$

Exercise 2: Solve the above problem using two 4:1 multiplexers.

Procedure:

a) Design logic circuits for given examples.

- b) Simulate / Connect the circuit for both cases and verify the outputs.
- c) Upload the write-up with the solved design problems given in write-up.

Observations and Results: Solve the examples as given in write-up/given during Lab session and Simulate as per instructions in Lab session

Outcomes:

CO 2: Understand the basic building blocks, techniques used in digital logic design.

CO 3: Design the combinational and sequential circuits using basic building blocks.

Conclusion:

An 8:1 multiplexer consists of eight data inputs D0 through D7, three input select lines S0 through S2 and a single output line Y. Depending on the select lines combinations, multiplexer selects the inputs.

Using the above concept we did a virtual representation of an 8:1 multiplexer. Similarly we converted an 8:1 to 4:1 using 2 4:1 multiplexers and 1 2:1 multiplexer and got the result. And printed the outcomes above.

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of faculty in-charge with date

References:

Books/ Journals/ Websites:

1. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill.