

Math

Power & Logarithmic

Number Theoretic ceil(x) copysign(x,y) fabs(x) factorial(x)

floor(x) fmod(x,y) frexp(x) fsum(iterable) isinf(x) isnan(x) Idexp(x,i) modf() trunc()

exp(x) log(x[, base]) log1p(x) log10(x) pow(x,v) sart(x)

Hyperbolic Functions Trigonometric Functions acos(x) asin(x) atan(x)

acosh(x) asinh(x) atanh(x) cosh(x) atan2(y,x) cos(x) hypot(x,y) sinh(x) tanh(x) sin(x) tan(x)

math.pi The mathmatical constant of pie = 3.141592.... up to the available precision

math.e

The mathmatical constant e 2.718281.... up to the available precision

String Formatting

Formatting Operations

Angular Conversion

degrees(x) radians(x)

- 'd' Signed integer decimal 'i' Signed integer decimal 'o' Signed octal value 'u' Obsolete type it was identical to 'd' 'X' Signed hexidecimal (uppercase) 'e' Floating point exponential format (lowercase) 'x' Signed hexadecimal (lowercase)
- 'f' Floating point decimal format 'E' Floating point exponential format (uppercase) 'F' Floating point decimal format
- 'a' Floating point format. Uses the lowercase exponential format if the exponent is less than -4 or not less than precision. otherwise it uses the decimal format
- 'G' Floating point format. Uses the uppercase exponential format if the exponent is less than -4 or not less than precision, otherwise it uses the decimal format
- 'c' Single character (accepts either integer or single character string) 'r' String (converts any Python object using repr()) 's' String (converts any Python object using str()) '%' No argument is converted, adds a % character in the end result

File

Methods

close() flush() fileno() isatty() next() read([size]) readline ([size]) readlines([size]) xreadlines() seek(offset[, whence]) tell() truncate([size]) write(str) writelines(sequence)

Attributes

closed encoding errors mode name newlines softspace

Class

Special Methods

new(cls)lt(self, other)	init (self, args)
le(self, other)del(self)	
repr(self)ge(self, other)	
eq(self, other)cmp(self, oth	
ne(self, other)index(self)	nonzero(self)
hash(self)getattr(self, nam	e)
getattribute(self, name)	tr(self, name, attr)
delattr (self, name) call (self,	args, kwargs)

Random

Functions

seed([x]) getstate() vonmisesvariate(mu,kappa) setstate(state) jumpahead(n) paretovariate(alpha) getrandbits(k) randint(a,b) weibullvariate(alpha,beta) randrange([start], stop[, step]) lognormvariate(mu,sigma) choice(seq) shuffle(x[, random]) normalvariate(mu, sigma) sample(population,k) random() gammevariate(alpha,beta) uniform(a,b) triangular(low,high,mode) gauss(mu,sigma) betavariate(alpha,beta) expovariate(lambd)

Array

Array Methods

append(x) buffer_info() byteswap() count(x) extend(iterable) fromfile(f,n) fromlist(list) fromstring(s) fromunicode(s) index(x) insert(i,x) pop([i]) remove(x) reverse() tofile(f) tolist() tostring() tounicode()

Indexes & Slices

a=[0,1,2,3,4,5] b=a[:] Shallow copy of a a[1:] [1,2,3,4,5] a[5:] [0,1,2,3,4] a[-2:] [0,1,2,3] len(a) 6 a[0] 0 a[1:3] [1.2] a[5] a[1:-1] [1,2,3,4] a[-1] 5 a[-2] 4

OS

OS Variables

altsep Alternative separator curdir Current dir string defpath Default search path devnull Path of null device extsep Extension separator

pardir Parent dir string pathsep Patch separator sep Path separator name name of OS linesep Line separator

SYS

platform Current platform stdin, stdout, stderr File objects for I/O version info Python version info winver Version number

SYS Variables

argy Command line args builtin_module_names Linked C modules check_-interval Signal check frequency exec_prefix Root directory executable Name of Executable exitfunc Exit function name modules Loaded modules path Search path

SYS Arg V

sys.argv[0] foo.py sys.argv[1] bar sys.argy[2] sys.argv[3] qux sys.argv[4]

String Methods

capitalize() center(width[, fillchar]) count(sub[, start[, end]]) capitalize() center(widthi, filichar); count(subl., starti, end]]) decode encode([encoding, errors]) isalnum() endswith(suffixl, starti, end]]) expandtabs([tabsize]) find(subl., starti, end]]) errormat("args, **kwargs) isalpha() index(subl., starti, end]]) isdigit() islower() isspace() istitle() isupper() join([terable) | just(widthi, filichar)) lower() listip([chars]) partition(sep) replace(old, newi, count[) rfind(subl., starti, end]]) rindex(subl., starti, end]]) rindex(subl., starti, end]]) rjust(width[, fillchar]) rpartition(sep) rsplit([sep[, maxsplit]]) rstrip([chars]) split([sep[, maxsplit]]) splitlines([keepends]) startswith(prefix[, start[, end]]) strip([chars]), swapcase, title() translate(table[, deletechars]), upper() zfill(width) isnumeric() isdecimal()

Set & Mapping

Set Types

len(s) x in s x not in s isdisjoint(other) issubset(others) issuperset union(other...) intersection(other...) difference(other...) symmetric_difference(other) copy() update() intersection_update() difference_update() symmetric difference update() add(elem) move() discard(elem) pop() clear()

Mapping Types

len(d) d[key] d[key]=value del d[key] key in d key not in d iter(d) clear() copy() items() fromkeys(seq[, value]) keys() get(key[, default]) has_key(key) iteritems() iterkeys() itervalues() popitem() pop(key[, default]) setdefault(key[, default]) update([other])

Date Time

Date Object

replace((year.month.day)) timetuple() toordinal() weekday()() isoweekday()() isocalendar()() isoformat() __str__() ctime() strftime()

Time Object

replace([hour[, minute[, second[, microsecond[, tzinfo]]]]) isoformat() __str__() strftime() utcoffset() dst() tzname()

Datetime Object

date() time() timetz() toordinal() weekday() isoweekday() isocalendar() replace([year], month[, day], hour[, minute[, second[, microsecond[, tzinfo[]]]]]]])
astimezone(tz) utcoffset() dst() tzname() timetuple() utctimetuple()
isoformat() __str__() ctime() strftime()

Date Formatting

%a Abbreviated weekday (Mon) %A Weekday (Monday) %b Abbreviated month name (Nov) %B Month name (November)

% Date and time % d Day (leading zeros) (01 to 31)

% Date and time % d Day (leading zeros) (01 to 31)

% Day (leading zeros) (00 to 23)

% Day of year (001 to 36)

% M Month (01 to 12)

% M Minute (00 to 59)

% AM or PM % S Second (00 to 612)

% W Weekday Z (0 to 6)

% W Week (001 to 53)

% Date

**V Times

**V Year (2016)

%X Time %y Year without century (00 to 99) %Y Year (2016) %Z Time zone (EST) %% A literal "%" character (%)