Pontificia Universidad Católica de Chile y Universidad de Chile

Facultad de Matemáticas

Profesor: José Samper

Curso: Álgebra II

Fecha: 13 de agosto de 2025

Ayudante: José Cuevas Barrientos

Sigla: MPG3201

Extensiones algebraicas

A lo largo de las ayudantías trataré de incluír comentarios o problemas especiales. Los problemas difíciles tendrán ojos asustados ••, los problemas/comentarios que son opcionales u omitibles tendrán ojos hastiados •• y los problemas/comentarios **importantes** (o sugeridos por el profesor) tendrán ojos interesados ••.

1. General

1. Sea Ω/k una extensión de cuerpos con extensiones intermedias $k \subseteq K, L \subseteq \Omega$. Pruebe que

$$[KL:k] \le [K:k][L:k],$$

y que se alcanza igualdad cuando [K:k] y [L:k] son coprimos.

- 2. Sea p un número primo y sean x, y variables indeterminadas sobre \mathbb{F}_p . Pruebe que $\mathbb{F}_p(x, y) \supseteq \mathbb{F}_p(x^p, y^p)$ es una extensión de grado p^2 que tiene infinitas subextensiones y, en consecuente, concluya que no es simple o primitiva.
 - 3. Sea \mathbb{F}_q un cuerpo con $q < \infty$ elementos.
 - a) Sea $f(x) \in \mathbb{F}_q[x]$ es irreducible. Pruebe que $f(x) \mid x^{q^n} x$ syss deg $f \mid n$.
 - b) Sea $\psi(d)$ la cantidad de polinomios irreducibles de grado d en $\mathbb{F}_q[x]$. Pruebe que

$$n\psi(n) = \sum_{d|n} \mu(d)q^{n/d},$$

donde $\mu(d)$ es la función de Möbius que vale 0 si $p^2 \mid d$ para algún primo p y vale $(-1)^m$ si $d = p_1 \cdot p_2 \cdots p_m$, donde p_j son primos distintos dos a dos.

PISTA: Para el problema podría necesitar de la fórmula de inversión de Möbius.

2. Extensiones (in)separables

Como se vio en clases, las extensiones en característica cero son todas separables, por lo que en esta sección k será un cuerpo de car k = p > 0.

- 4. Sea K/k una extensión algebraica y sea $\alpha \in K$.
 - a) Pruebe que si α es inseparable, entonces su polinomio minimal $f(x) \in k[x]$ satisface que $f(x) = g(x^p)$ para todo $g(x) \in k[x]$.
 - b) Pruebe que α es separable syss $k(\alpha) = k(\alpha^p)$.
- 5. Pruebe que si $f(x) \in k[x]$ es irreducible, entonces todas sus raíces (en su cuerpo de escisión) tienen la misma multiplicidad y esta es una potencia de p.

Referencias

1. Lang, S. Algebra (Springer-Verlag New York, 2002).

Correo electrónico: josecuevasbtos@uc.cl