HW1 Propositional Equivalence

Truth Table

1. Construct the truth table for each of the following formulae:

a.
$$(q \wedge r) \vee (\neg q \vee \neg r)$$

q	r	q∧r	¬q	⊸r	(¬q∨¬r)	$(q \wedge r) \vee (\neg q \vee \neg r)$
Т	T					
Т	F					
F	Т					
F	F					

b.
$$(p \lor \neg p) \land (\neg q \land r)$$

р	q	r	¬p	$p \lor \neg p$	¬q	$\neg q \wedge r$	$(p \lor \neg p) \land (\neg q \land r)$
Т	T						
Т	T						
Т	F						
Т	F						
F	Т						
F	Т						
F	F						
F	F						

c.
$$q \rightarrow (r \rightarrow (\neg q \land p))$$

р	q	r	¬q	$\neg q \land p$	$r \rightarrow (\neg q \land p)$	$q \rightarrow (r \rightarrow (\neg q \land p))$
Т	T					
Т	T					
Т	F					
Т	F					
F	Т					
F	Т					
F	F					
F	F					

d.
$$r \wedge ((p \rightarrow \neg r) \wedge (\neg p \rightarrow \neg r))$$

р	r	¬r	$p \rightarrow \neg r$	¬р	$\neg p \rightarrow \neg r$	$((p \rightarrow \neg r) \land (\neg p \rightarrow \neg r))$	$r \wedge ((p \rightarrow \neg r) \wedge (\neg p \rightarrow \neg r))$
Т	Т						
Т	F						
F	Т						
F	F						

Tautology

1. Show that each of these conditional statement is a tautology **by using truth table** and **by Proof**

a.
$$(p \land q) \rightarrow p$$

q $(p \land q)$

р	q	(p ∧ q)	(p ∧ q)→p
Т	Т		
Т	F		
F	Т		
F	F		

$$(p \land q) \rightarrow p$$

b.
$$(p \land q) \rightarrow (p \rightarrow q)$$

		(19 / 19)	' (P' ' 4)	
р	q	(p ∧ q)	$(p \rightarrow q)$	$(p \land q) \to (p \to q)$
Т	Т			
Т	F			
F	Т			
F	F			

$$(p \land q) \to (p \to q)$$

Logically equivalent

1. Show that each of these conditional statements are logically equivalent **by using truth table** and **by Proof**

a)
$$\neg (p \rightarrow q) \equiv p \land \neg q$$

р	q	$(p \rightarrow q)$	$\neg(p \rightarrow q)$	¬ q	$p \land \neg q$
Т	Т				
Т	F				
F	Т				
F	F				

$$\neg (p \rightarrow q)$$

b)
$$\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg q$$

р	q	¬p	¬ q	(¬p ∧ q)	$(p \lor (\neg p \land q))$	$\neg (p \lor (\neg p \land q)$	¬p ∧ ¬ q
Т	Т						
Т	F						
F	Т						
F	F						

$$\neg (p \lor (\neg p \land q))$$

Inference F	Rules
-------------	-------

 1. "If I am sick, there will be no lecture today;" students will be happy;" "the students are no Translate into logic as: 	
Step	Reason
The answer is	
<u> </u>	treasure is not in the kitchen In the treasure is in the kitchen The treasure is buried under the flagpole
Step	Reason
Where is the treasure ?	

Proof by using Inference rule

1. $\neg p \rightarrow t$, $q \rightarrow s$, $r \rightarrow q$, $\neg (q \lor t) \therefore p$

Step	Reason

2. $p, s \rightarrow \neg r, q \lor r, q \rightarrow \neg p, \therefore \neg s$

$\underline{\hspace{1cm} 2. \hspace{1cm} p, s \rightarrow \neg r, q \lor r, q \rightarrow \neg p,}$		
Step	Reason	

3. $(p\lor q)\to r, \neg r\lor s, p\to \neg s : \neg p$

Step	Reason