

# **Quantum Hardware**

**Applied Quantum Information Spring 2022** 

Paraj Titum

## **Outline**

- DiVincenzo's Criteria
- Different Quantum Hardware
  - Atoms
  - Artificial Atoms
  - Photons

## DiVincenzo's Criteria

The conditions necessary for creating a Quantum Computer

- A scalable physical system with well characterized qubit
- The ability to initialize the state of the qubits to a simple fiducial state
- Long relevant decoherence times
- A "universal" set of quantum gates
- A qubit-specific measurement capability

# **A Survey of Quantum Hardware**

| Atoms           | Artificial Atoms                                                            | Photons           |  |
|-----------------|-----------------------------------------------------------------------------|-------------------|--|
| Trapped lons    | Superconducting Qubits                                                      | Silicon Photonics |  |
| IONQ            | IBM Q rigetti                                                               | Ψ PsiQuantum      |  |
| Honeywell       | Google                                                                      |                   |  |
| • Rydberg atoms | <ul><li>Spin Qubits</li><li>NMR systems</li><li>Solid-state spins</li></ul> | XANADU            |  |

# **A Survey of Quantum Hardware**

Photons **Artificial Atoms** Atoms Silicon Photonics Trapped lons **Superconducting Qubits ONQ** rigetti **PsiQuantum** Google Honeywell  $X \wedge N \wedge D \cup$ Spin Qubits Rydberg atoms NMR systems |QuEra> Solid-state spins COMPUTING INC.



# Figure of merits

#### Coherence Time # Operations Gate Time





Live long Slow

Gate time: 10-100 µs

Coherence time: 1-50 s

**Superconducting Qubit** 

 $|0\rangle = |0\rangle = |1\rangle = |1\rangle$ 



Live short



Coherence time: 100 µs

### **Atom-based Platforms**

Trapped Ions: Setup





Blatt, Wineland, Nature 453,1008–1015 (2008)

# **Trapped ions**

Trapping lons





## **Trapped ions**

State-preparation, Gates, Measurement





## **Trapped Ions**

### Pros and Cons

- Pros
  - lons are identical
  - Long Coherence times
- Cons
  - Gates are slow

## **Artificial Atom based platforms**

Superconducting qubits



Control Hardware



The Chip

### The Quantum Computing Software Stack



A Detour: QHO

### LC circuit



$$H = \frac{1}{2}CV^{2} + \frac{1}{2}LI^{2} = \frac{Q^{2}}{2C} + \frac{\Phi^{2}}{2L} \qquad \left(\frac{Q}{C} = \dot{\Phi}\right)$$

Quantize: 
$$\left[\widehat{\Phi}, \widehat{Q}\right] = i\hbar$$
  $\left(\omega = \frac{1}{\sqrt{LC}}\right)$ 

$$\widehat{H} = 4 E_C \widehat{n}^2 + \frac{1}{2} E_L \widehat{\phi}^2 = \hbar \omega \left( a^{\dagger} a + \frac{1}{2} \right)$$

- (number of Cooper pairs) n = Q/2e
- (gauge invariant phase)  $\phi = 2\pi\Phi/\Phi_0$
- (SC flux quanta)  $\Phi_0 = h/2e$

- (charging energy per electron)  $E_C = e^2/2C$
- $E_L = \left(\frac{\Phi_0}{2\pi}\right)^2 / L$ (inductive energy)

A Detour: QHO

**LC** circuit





Josephson Junctions





$$I = I_C \sin(\phi)$$

$$V = \frac{\hbar}{2e} \frac{d\phi}{dt}$$

Cooper pairs Tunneling



(SEM image)



\*Al: SC transition at 1.26K

### Transmon





**Different Qubits** 

|              | Circuit                                                                               | Properties                                               | Dominant<br>noise                       |  |
|--------------|---------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|--|
| Charge qubit | $E_J$ $C_g$                                                                           | $E_J/E_C < 1$ Controlled by $\emph{V}_{\it g}$ .         | Charge fluctuations;                    |  |
|              | $ \begin{array}{c c} E_J \\ \hline \bigcirc \Phi_e \\ E_J \\ \hline V_g \end{array} $ | $E_J/E_C < 1$ Controlled by both $V_g$ and $\varPhi_e$ . | mainly 1/f noise.                       |  |
| Flux qubit - | $\odot \Phi_e$ $E_J$                                                                  | $E_J/E_C > 1$ Controlled by $\Phi_e$ .                   | Flux fluctuations;<br>mainly 1/f noise. |  |
|              | $E_{J} \bigvee_{E_{J}} \bigcirc \qquad \qquad \bigcirc \alpha E_{J}$                  | $E_J/E_C > 1$ $0.5 < lpha < 1$ Controlled by $arPhi_e$ . |                                         |  |

Single Qubit Gates



Readout



- Qubits are coupled to a resonator.
- The optical resonator is a cavity that stores photons in a particular frequency.
- The qubit coupling modifies the frequency of the resonator based on the state of a qubit
- The state of the qubit is measured from the shift in the resonator frequency.

### **Capacitive Coupling**



$$H_{\rm int} = C_g V_1 V_2$$

$$H = \sum_{i=1,2} \left[ 4E_{C,i}n_i^2 - E_{J,i}\cos\phi_i \right] + 4e^2 \frac{C_g}{C_1C_2}n_1n_2$$

$$H = \sum_{i=1,2} \frac{1}{2}\omega_i\sigma_{z,i} + g\sigma_{y,1}\sigma_{y,2}$$

#### **Pros and Cons**

#### • Pros:

- Fast gates
- Rapidly improving coherence time
- Fabrication processes are getting standardized

#### • Cons:

- Qubits are not identical
- Cross talk is a problem
- correlated noise in prevalent
- Superconducting

### **Photons**

### Photons as qubits

- Store a qubit in the two different degrees of freedom of photons:
  - Distinct polarization: |1> is a state with a particular polarization or right/left circularly polarized
  - Spatial modes: two spatially separated beams.
  - Time-bin encoding: Two different timings
- Measurement: Single photon detection



### **Photons**

### Photons as qubits

- Store a qubit in the two different degrees of freedom of photons:
  - Distinct polarization: |1> is a state with a particular polarization or right/left circularly polarized
  - Spatial modes: two spatially separated beams.
  - Time-bin encoding: Two different timings. Measurement based on arrival times on detectors
- Measurement: Single photon detection



### Temporal modes as qubits

### **Photons**

### Photons as qubits

- Store a qubit in the two different degrees of freedom of photons:
  - Distinct polarization: |1> is a state with a particular polarization or right/left circularly polarized
  - Spatial modes: two spatially separated beams.
  - Time-bin encoding: Two different timings. Measurement based on arrival times on detectors
- Measurement: Single photon detection
- Entangling photons: Non-linear media
- Pros and Cons
  - Pros: Single photons can be transmitted with low loss optical fibers, easy to do single qubit operations, Useful for quantum communication and cryptography
  - Cons: Hard to make photons interact, slow to generate single photons
- Measurement based quantum computing using linear optical elements.
  - Uses resource states, in combination with linear optical elements

## **Further Reading**

- Trapped lons
  - https://arxiv.org/abs/1904.04178
- Superconducting Qubits
  - https://arxiv.org/abs/1904.06560
- Photon-based qubits
  - Nielsen & Chuang Chapter 7.2



