

Architecture Design Document

ATM Interface in Java (Console Based Application)

Written By:	Sohel Datta
Document Version:	2.0

Document Version Control:

Version	Author	Date	Description
1.0	Sohel Datta	02-01-2025	First Draft
1.5	Sohel Datta	02-01-2025	Revised with
			feedback
2.0	Sohel Datta	02-01-2025	Final Draft

Contents

Document Version Control	2
Abstract	4
1. Introduction	5
1.1 What is an Architecture Design Document?	5
1.2 Scope	
1.2.1 Definition of the System Architecture	5
1.2.2 Deployment strategies	6
1.2.3 Proposed solutions to meet business requirements	6
1.2.4 User interaction workflows	7
1.2.5 Identification of KPIs for performance measurement.	7
2. Architecture	7
3. Deployment	8
4. Proposed Solution	8
5. User I/O Workflow	8
6. KPI	9

Abstract

This Architecture Design Document outlines the architectural framework and deployment strategy for the proposed system. It provides a comprehensive overview of the architecture, deployment processes, proposed solutions, user input/output workflows, and key performance indicators (KPIs) necessary for measuring success in a structured manner. It provides a concise overview of the proposed system's architectural framework and deployment strategy. It outlines the key components, deployment processes, proposed solutions, user interaction workflows, and the key performance indicators (KPIs).

1. Introduction

1.1. What is an Architecture Design Document?

An Architecture Design Document (ADD) is a formal document that describes the architecture of a system. It serves as a blueprint for both the development and implementation phases, ensuring that all stakeholders have a clear understanding of the system's structure, components, and interactions.

1.2. Scope

The scope of this document includes:

1.2.1. Definition of the system architecture

The system architecture for an ATM interface in a Java consolebased application defines the overall structure and components of the system. It typically includes:

- **User Interface**: The console-based interface that allows users to interact with the ATM system, including options for balance inquiry, cash withdrawal, and deposit.
- **Business Logic Layer**: This layer processes user requests, performs validations (e.g., checking account balance), and executes transactions.
- **Data Access Layer**: Responsible for interacting with the database or data storage where user account information and transaction records are stored.
- Error Handling Mechanism: Ensures that any issues during transactions are managed gracefully, providing feedback to the user.

1.2.2. Deployment strategies

Deployment strategies outline how the ATM application will be set up and made operational. For a console-based application, this may include:

- Local Deployment: The application can be run on local machines for testing purposes. Each developer can run their instance to test features.
- Production Environment: Once tested, the application may be deployed on a server that interfaces with an actual banking system or a simulated environment for real-time transactions.
- Updates and Maintenance: Strategies for updating the application code and maintaining the server environment to ensure uptime and security.

1.2.3. Proposed solutions to meet business requirements

The proposed solutions focus on fulfilling the business needs of an ATM interface, such as:

- User Authentication: Implementing secure login mechanisms to verify user identity through PINs.
- Transaction Processing: Providing functionalities for various transactions like withdrawals, deposits, and balance inquiries.
- User Feedback: Ensuring that users receive clear messages regarding transaction success or failure, as well as prompts for further actions.

1.2.4. User interaction workflows

User interaction workflows describe how users will navigate through the ATM interface:

- Login Process: Users enter their PIN to access their accounts.
- Main Menu Navigation: After logging in, users are presented with options (e.g., Withdraw Cash, Check Balance).
- Transaction Execution: Users select an option, follow prompts (e.g., entering withdrawal amount), and receive confirmation or error messages based on their actions.
- Logout Process: Users can log out after completing their transactions to ensure security.

1.2.5. Identification of KPIs for performance measurement.

Key Performance Indicators (KPIs) help measure the effectiveness of the ATM interface:

- Transaction Success Rate: The percentage of successful transactions compared to total attempts.
- Average Transaction Time: The average time taken to complete a transaction from start to finish.
- User Satisfaction Score: Feedback collected from users regarding their experience using the ATM interface.
- Error Rate: The frequency of errors encountered during transactions, which helps identify areas needing improvement.

2. Architecture

The architecture section details the overall structure of the system, including:

- Components: Overview of all major components and their interactions.
- Technologies: Description of technologies used (e.g., databases, frameworks).
- Diagrams: Visual representations (e.g., UML diagrams) illustrating the architecture.

3. Deployment

This section outlines the deployment strategy, including:

- Environment Setup: Description of development, testing, and production environments.
- Deployment Process: Steps for deploying the application, including any automation tools or scripts used.
- Rollback Procedures: Strategies for reverting to previous versions in case of deployment failures.

4. Proposed Solutions

This section presents the proposed solution to address the identified business problems:

- Overview: A high-level description of the solution.
- Features: Key features that will be implemented.
- Benefits: Explanation of how the solution meets business needs and improves efficiency.

5. User I/O Workflow

The User Input/Output workflow outlines how users will interact with the system:

- User Roles: Description of different user roles and their permissions.
- Workflow Diagrams: Visual representation of user interactions with the system.
- Input Methods: Types of inputs users can provide (e.g., forms, APIs).

6. KPI

Key Performance Indicators (KPIs) are defined to measure the success of the system:

- Usage Metrics: Number of active users, frequency of use.
- Performance Metrics: System response times, error rates.
- Business Impact Metrics: Revenue generated, customer satisfaction ratings.

This document serves as a foundational reference for stakeholders involved in the project and will be updated as necessary throughout the project lifecycle.