com Sci 161: Homework 9.

QUESTION 1.

Step 1 To find the attribute that minimizes the conditional enhopy

papergrid

Date: | / /

a: OF D:

ENT(DIA) = Za Pr(a) ENT(DIA)

= Pr(a) ENT(DIa) + Pr(a) ENT(DIa)

= 11 ENT (DIA) + 11 ENT (DIA)
22

= 1 ENT (DIA) + 1 ENT (DIA)

= 1 [-[Pr(d/a) log, (Pr(d/a)) + Pr(d/a) log, (Pr(d/a))]]

+ 1 [-[Pr(d\a)log_(Pr(d\a)) + Pr(d\a) log_(Pr(d\a))] = = [-[(1/11) LOg2(1/11) + (4/11) Log2(4/11)]]

+ 1 [-[3/11 log, (3/11) + (8/11) log, (8/11)]].

= 0.47283 + 0.42268

(0) part of -7 1114+ 1=00.8955 + (+1) 4601 117 7-7 111

B: ENT (DIB) = Zb Pr(b) ENT(DIb)

= 14 ENT(DIB) + 8 ENT(DIB)

= 14 [- [Pr(d16) 2092 (Pr(d16)) + Pr(d16) 2092 (Pd 16))] + 3 [-[Pr(d16) Log2(Pr(d16))+Pr(d16) Log1(d16))]

= 14/22[-[8/4 log2 (8/14) + 6 6/14 log2 (6/14)]]

+ 8/22 [-[2/8 log_2(2/8) + 6/8 log_2(6/8)]]

= 0.862696. + 0.2950!

= 0.92197 [Lyth of palyth +

ENT (CIA) = Ec Pr(c) ENT (DIC) SIGHT .0 5

C'

= 7/22 ENT(DIC) + 15/22 ENT (DE)

= 7/22 [-[Pr(d)c) mag_(Pr(d)c)) + Pr(d)e) mg_2(Pr(d)e)

+15/22 [-[fr(d) =) Log_2(Pr(d) =)) + fr(d) + wg_(Pr(d) =))]]

= 0.97549 as in win first about the ent boil of

16. Bond

Here A has the lowest conditional entropy, so we spirt on A. STEP 2: (DIQ) TH + 21, X2, X5, X2 1743 A -23, x4, x6, x6.

-Pridia) Log. (Pridial) + Pridia) Log. (Pridia) 7 CASE 1 branch A=T & x1,x2, x3, x43 ENT(DIB) = Z Prib) ENT(DIB)

split on B

IP 129.0

7) 2 (- [P((d(c)) 197 , por (d(c)) + P(d(c)) Leg ((P(d) c)

17(3日かりか(31を)かりにpod(31も)かりかりかりかり

Singragod

	Date:	11
	QUESTION 2. (SIGITINE HIS + (SIGITINE HE & BIG) FINE	
[(G/E)	(A V78) (10 VD) NO DE CONTRA - 15=	
Mair	((AVTB) AT (TEND)) V (T(AVTB) A(TEND))	
	((AU78) 1 (CAD)) V ((TA & B) 1 (TCVD))	
	(ANCATO) V (TBACATO) V (TAABATE) V (DATANE	1)
Saucion_	Weights & Thresholds:	
Node 1:	ANCATO STUGE SIN STANFOR MORRING	
3 m	weights: WA = 1 WC=1 WD=-1	129077
	Threshold: \$ E=2	
Node 2	78 1C 175. # 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	weights : WB = -1 WC = 1 WD = -1	
1 34.5	Threshold: E=1.	
Node 3:	TA ABATC FOR INT	
	weights: WAZ-1 WB=1 WC=-1	
	Thueshold: E= 1.	
Node 4:	DATANE	
•	neights: WD=1 WA=1 WB=1	
	Thresholde: t-1.	
OUTPUT	The output node will acrivate if any intermediate mod	les
	are acrive.	
	weight, w1=1 w2=1 w321 w421	
	Thresholdos t=3.	
	Thus, the final Neural Network 10,	
	Black: weight=1	
	Blue: weight = 1	
	(B) (E=1)	
	(t=1)	
	(E = 1)	

Question 3

$$p+(\bar{b}) = 0.03$$

$$\lambda \bar{a} = 1$$
 $\lambda \bar{c} = 1$ $\lambda a = 0$ $\lambda c = 1$

(b) $P^*(\overline{b})$: unnormalized probability of \overline{b} given the evidence $P^*(b)$: unnormalized probability of b given the evidence.

(c)
$$e_i : \rho(\overline{b})e_i = \frac{\rho^*(\overline{b})}{\rho^*(\overline{b}) + \rho^*(b)} = \frac{0.02}{0.02 + 0.02} = 0.5$$

$$e_2: \ell(\overline{b}(e_2)) = \frac{\rho^+(\overline{b})}{\rho^+(\overline{b}) + \rho^+(b)} = \frac{0.03}{0.03 + 0.03} = 0.5$$

$$e_3$$
: $\rho(\overline{b}|e_3) = \frac{\rho^*(\overline{b})}{\rho^*(\overline{b}) + \rho^*(b)} = \frac{0.05}{0.05 + 0.05} = 0.5$