Die Türme von Hanoi mit variabler Feldanzahl

Robin Ebert, Lucca Kümmerle, Josua Kugler

		Scheibenzahl n								
$k\downarrow$. 1	2	3	4	5	6	7	8	9	10
3	1	3	7	15	31	63	127	255	511	1023
4	I							33		
5	1	3	5	7	11	15	19	23	27	31
6	1	3	5	7	9	13	17	21	25	29
7	1	3	5	7	9	11	15	19	23	27
8	1	3	5	7	9	11	13	17 15	21	25
9	1	3	5	7	9	11	13	15	19	23
10	1	3	5	7	9	11	13	15	17	21

Tabelle 1: Mindestzugzahlen

ı	ı									
	Inkremente									
$k\downarrow$	1	2	3	4	5	6	7	8	9	10
3	1	2	4	8	16	32	64	128	256	512
4	1	2	2	4	4	4	8	8	8	8
5	1	2	2	2	4	4	4	4	4	4
6	1	2	2	2	2	4	4	4	4	4
7	1	2	2	2	2	2	4	4	4	4
8	1	2	2	2	2	2	2	4	4	4
9	1	2	2	2	2	2	2	2	4	4
10	1	2	2	2	2	2	2	2	2	4
l	I									

Tabelle 2: Inkremente

	Inkrementblocklängen							
$k \downarrow$	1	2	4	8	16	32	64	128
3	1	1	1	1	1	1	1	1
4	1	2	3	4	5	6	7	8
5	1	3	6	10	15	21	7 28 84 210	36
6	1	4	10	20	35	56	84	120
7	1	5	15	35	70	126	210	330
8	1	6	21	56	126	252	462	792
9	1	7	28	84	210	462	924	1716
	I						1716	

Tabelle 3: Inkrementblocklängen

Bestimmen des Inkrementblocks	$ \begin{pmatrix} t+k-2 \\ k-2 \end{pmatrix} \ge n > \begin{pmatrix} t+k-3 \\ k-2 \end{pmatrix} $
Berechnen der Summe aller Züge bis zum	$\frac{t}{\sum \left(2^{i} + \left(i + k - 3\right)\right)}$
Ende des aktuellen Inkrementblocks	$\sum_{i=0}^{t} \left(2^i * \binom{i+k-3}{k-3} \right)$
Subtrahieren der dadurch in diesem	$2^{t} \left(\left(t + k - 2 \atop k - 2 \right) - n \right)$
Inkrementblock zusätzlich addierten Züge	$\left[\begin{array}{cccc} & \lambda & $

Beispiel: Für $k=5$ ist der 3-Block so lang wie die Summe der 2-Blöcke bei $k=5, k=4$ und $k=3$ zusammen, nämlich $10=6+3+1$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1

Abb. 3: Längen der Inkrementblöcke, interessanterweise ergibt sich hier das Pascalsche Dreieck

$$\Longrightarrow \sum_{i=0}^{t} \left(2^{i} * \binom{i+k-3}{k-3} \right) - 2^{t} \left(\binom{t+k-2}{k-2} - n \right)$$