作业(二)

- Q1,给定函数 $h(x,y,w) = \{\sigma(5wx^2 + 6wx) y\}^2$,其中激活函数 $\sigma = (1 + e^{-z})^{-1}$ 。试构造一个计算图(Computation Graph)来表示函数的前向计算以及反向梯度计算过程,该计算图包括输入节点、输出节点和中间节点,以及函数相对于各节点变量的梯度。(20 分)
- **Q2**,在一个回归问题中,假定输入为 $x \in \mathbb{R}^{1 \times 5}$,输出为 $y \in \mathbb{R}^{1}$ 。其中y是一个需要预测的连续变化目标变量。请设计一个三层全连接前馈神经网络(包含输入层)来建立这个回归模型,隐藏层与输出层可包括激活函数。推导该神经网络的公式表示,并定义模型的损失函数。根据目标损失函数,构建计算图,根据其计算模型参数的梯度。(20 分)
- Q3,给定以下贷款申请样本数据,要求根据年龄、有工作、有自己房子、信贷情况这四种特征,利用决策树算法预测类别('是'代表放贷,'否'代表不放贷)。请试着利用(Gini Index)基尼系数作为特征选择标准,构建决策树算法,要求写出计算过程并画出决策树(20分)

ID	年龄	有工作	有自己的房子	信贷情况	类别
1	青年	否	否	一般	否
2	青年	否	否	好	否
3	青年	是	否	好	是
4	青年	是	是	一般	是
5	青年	否	否	一般	否
6	中年	否	否	一般	否
7	中年	否	否	好	否
8	中年	是	是	好	是
9	中年	否	是	非常好	是
10	中年	否	是	非常好	是
11	老年	否	是	非常好	是
12	老年	否	是	好	是
13	老年	是	否	好	是
14	老年	是	否	非常好	是
15	老年	否	否	一般	否

- Q4,什么是迁移学习?请解释如何使用预训练的卷积神经网络模型进行迁移学习,并给出一个具体的应用场景。(10分)
- **Q5**,给定一个 3x3 的卷积滤波器和一个 6x6 的输入图像,卷积步长为 1,填充为 1,并经过一个 2x2 的最大池化操作,请计算卷积输出的特征图以及池化后的特征图。假设输入图像和滤波器的值如下。(20 分)

Q6,假设一个艾滋病测试的准确性如下:如果一个人有艾滋病,该测试有 99%的概率会显示阳性(即灵敏度为 99%)。如果一个人没有艾滋病,该测试有 95%的概率会显示阴性(即特异度为 95%)。在一般人群中,约有 0.1%的人实际上有艾滋病(即先验概率为 0.1%)。试利用贝叶斯定理计算某人艾滋病测试结果为阳性时,实际上有艾滋病的概率是多少? (10 分)