

Refrigerant Models

Refrigerant Model Development

First Models

- Hybrid procedure
- Equation of State

$$\alpha(\delta, \tau) = \alpha^{0}(\delta, \tau) + \alpha^{r}(\delta, \tau) = \frac{\alpha(\delta, \tau)}{RT}$$

■ Regression functions

$$= y = f(x) + \epsilon$$

Maxwell-criterion (two-phase area)

Further steps

- Compliance with measurement uncertainty
- Overcriticial view (CO₂)

Next Steps

Comparision of speed and accuracy (two-phase area)

Development of a mixture refrigerant model

Two-phase area

■ Fitting of a regression function

- $\equiv p_{sat}, \varrho_{liquid}, \varrho_{vapor} \Rightarrow f(T_{sat})$
- $\equiv T_{sat}, h_{liquid}, h_{vapor}, s_{liquid}, s_{vapor} \Rightarrow f(p_{sat})$

Quality criteria

- **■** Maximum relative error
- **■** NRMSE

	Functiontype	Numbers	MaxRelErr	NRMSE
p_{sat}	Exp	4 pcs.	0.16 %	4.62E-4
T_{sat}	Poly	20 pcs.	0.006 %	1.66E-5
Q_{liquid}	Exp	20 pcs.	0.005 %	6.46E-6
ϱ_{vapor}	Exp	12 pcs.	0.011 %	4.68E-6
h_{liquid}	Poly	20 pcs.	0.26 %	1.9E-4
h_{vapor}	Exp	10 pcs.	0.24 %	2.8E-3
S_{liquid}	Poly	18 pcs.	0.16 %	3.5E-4
S_{vapor}	Ехр	10 pcs.	0.11 %	5.5E-4

Single-phase area

Separated consideration of

- $\equiv \varrho_{liquid,vapor,criticial} \Rightarrow f(p,T)$
- $\equiv T_{liquid,vapor,criticial} \Rightarrow f(p,h)$
- $\equiv T_{liquid,vapor,criticial} \Rightarrow f(p,s)$

■ Divide into different Regions

- Subcooled (SC)
- Superheated (SH)
- Critical (SCr)
- Second critical area (SCr2) → density
- Transition areas (Tra1+Tra2) → density

Results of the single-phase area – Density

Example Tra2:

