

单源最短路径 问题

目录

最短路径的 发与性质

Bellman-Ford算

最短路径性质

Bellman-Ford算 法的正确性证

有向无环图中的单源最短路

Dijkstra算法

广度优先搜

应用

单源最短路径问题

目录

单源最短路径 问题

- 1录 设短路径的定 1.与性质
- 1 最短路径的定义与性质
- ② Bellman-Ford算法
- ③ 最短路径性质
 - 最短路径估计值的松弛效果
 - 松弛操作与最短路径树
- 4 Bellman-Ford算法的正确性证明
- ⑤ 有向无环图中的单源最短路径问题
- 6 Dijkstra算法
- 7 广度优先搜索算法
- 8 应用
 - 差分约束系统
 - 活动网络

单源最短路径 问题

❶ 最短路径的定义与性质

目录

② Bellman-Ford算法

Bellman-Ford身 法

3 最短路径性质

最短路径性质

4 Bellman-Ford算法的正确性证明

有向无环图中 的单源最短蹈 径问题

⑤ 有向无环图中的单源最短路径问题

Dijkstra算法

6 Dijkstra算法

广度优先搜索 算法

7 广度优先搜索算法

8 应用

问题的导入

例

*Professor Wang wishes to find the shortest possible route from Bei*jing to Shanghai. Given a road map of China on which the distance between each pair of adjacent intersections is marked, how can he determine this shortest route?

application	vertex	edge
тар	intersection	road
network	router	connection
schedule	job	precedence constraint
arbitrage	currency	exchange rate

Typical shortest-paths applications

最短路径的定义(1/2)

定义

设G为一个带权有向图, 权重函数为 $w: E \to \mathbb{R}$. 图中一条路

 $\mathcal{L}_{p=(v_0,\ldots,v_k)}$ 的权重(path weight) w(p)为

 $\sum_{i=1}^{\kappa} w(v_{i-1}, v_i).$

定义结点u到结点v的最短路径距离

 $\delta(u, v) = \begin{cases} -\infty & \exists u \rightsquigarrow v \bot 包含权重为负值的回路 \\ \min \left\{ \begin{array}{c} w(p) : \\ u \rightsquigarrow v \end{array} \right\} & \forall u \rightsquigarrow v \bot \underline{\Lambda} \ \text{包含权重为负值的回路} \end{cases}$

∃u wv且包含权重为负值的回路

否则

结点u到v的最短路径定义为任何一条权重为 $w(p)=\delta(u,v)$ 的 从u到v的路径p.

最短路径的定义(2/2)

单源最短路径 问题

目录

最短路径的定 义与性质

Bellman-Ford算 法

最短路径性质

Bellman-Ford算 法的正确性证

有向无环图中的单源最短路

Dijkstra算法

广度优先搜索

க்க

图: 有向图的负权重边

最短路径问题的不同形式

单源最短路征 问题

^{日水} 最短路径的:

ellman-Ford

最短路径性质 Bellman-Ford 素的正确性证 明

育向无环图中 內单源最短路 圣问题

Dijkstra算法

广度优先搜索 算法 应用

- (1) **单源最短路径问题**(Single-source shortest-paths problem): 源点s∈V, 求从s出发到达其它结点的最短路径.
- (2) <u>单终点</u>最短路径问题(Single-destination shortest-paths problem).
- (3) 单结点对最短路径问题(Single-pair shortest-path problem).
- (4) <u>所有结点对</u>最短路径问题(All-pairs shortest-paths problem).

最短路径的最优子结构

平 次 最 短 路 径

日米

Bellman-Ford

最短路径性质

Bellman-Ford算 法的正确性证 明

有向无坏图中 的单源最短路 径问题

Dijkstra算法

办用

引理 (Subpaths of shortest paths are shortest paths)

设G为一个带权有向图, 权重函数为 $w: E \rightarrow \mathbb{R}$, 且

$$p = (v_0, ..., v_k)$$

是图G中从结点 v_0 到结点 v_k 的一条最短路径. 则对于任意i和j, $0 \le i \le j \le k$,

$$(v_i, v_{i+1}, ..., v_j)$$

是从结点 v_i 到结点 v_j 的一条最短路径.

最短路径与回路的关系

单源最短路往 问题

最短路径的;

Bellman-Ford∯ ⊭

短路径性质

为 有向无环图中 的单源最短路

Dijkstra算法

广度优先搜索 算法 (1) 一条最短路径不能包含权重为负值的回路;

- (2) 一条最短路径不能包含权重为正值的回路;
- (3) 如果一条最短路径包含权重为0的回路,则一定存在一条最短路径不包含权重为0的回路.

寻找最短路径只需要在至多只包含|V|-1条边的路径上.

最短路径的表示(1/2)

单源最短路径 问题

最短路径的定 义与性质

最短路径性质 Bellman-Ford算

有向无环图中 的单源最短路 径问题

广度优先搜索

给定带权有向图G, 对于每个结点 $v \in V$, 维持一个前驱结点v.p. 由p值所诱导的前驱子图(predecessor subgraph) $G_p = (V_p, E_p)$:

$$V_p = \{v \in V \mid v.p \neq \mathbf{NIL}\} \cup \{s\},$$

$$E_p = \{(v.p, v) \in E \mid v \in V_p - \{s\}\}.$$

一棵根结点s的最短路径树(shortest-paths tree)是一个有向子图G'=(V', E'),这里 $V'\subseteq V$, $E'\subseteq E$,满足:

- (1) V'是图G中从源结点s可以到达的所有结点的集合.
- (2) G'形成一棵根结点为s的有向树.
- (3) 对于所有的 $v \in V'$, 有向树s到v的路径是图G中s到v的一条最短路径.

最短路径的表示(2/2)

单源最短路征 问题

目录

最短路径的定 义与性质

Bellman-Ford身 法

最短路径性质

Bellman-Ford算 法的正确性证

有向无环图中 的单源最短路 经问题

Diikstra算法

广度优先搜索

应用

最短路径和最短路径树可能都不是唯一的.

本章算法的两个基本操作:初始化

单源最短路往 问题

目录

又与性质 Rellman-Ford []

卫红功汉从后

敢超路径性质

法的正确性证 明

有向无环图中 的单源最短路 容问题

Dijkstra算法

广度优先搜索 算法

应用

算法4.1 Initialize-Single-Source(G, s)

1 **for** each vertex $v \in V$

2 $v.d \leftarrow \infty$

3 $v.p \leftarrow NIL$

 $4 \quad s.d \leftarrow 0$

时间复杂度: O(|V|).

本章算法的两个基本操作: 松弛过程

单源最短路径 问题

吕尔

Bellman-Ford算 注

最短路径性质

Bellman-Ford并 法的正确性证 明

有向无环图中 的单源最短路 径问题

Dijkstra算法

并法 算法

应用

算法4.2 Relax(u, v)

1 **if** u.d+w(u, v) < v.d

2 $v.d \leftarrow u.d + w(u, v)$

 $v.p \leftarrow u$

时间复杂度: O(1).

单源最短路径 问题

■ 最短路径的定义与性质

目录

② Bellman-Ford算法

Bellman-Ford身 注

③ 最短路径性质

最短路径性质

4 Bellman-Ford算法的正确性证明

有向无环图中 的单源最短路 径问题

5 有向无环图中的单源最短路径问题

Dijkstra算法

6 Dijkstra算法

广度优先搜索 阵法

7 广度优先搜索算法

8 应用

Bellman-Ford算法

最短路径的定 义与性质

Bellman-Ford

最短路径性质 3ellman-Ford争

因的正确任证明 有向无环图中 的单源最短路 经问题

Dijkstra算法

广度优先搜索 算法 应用 给定带权有向图G, Bellman-Ford算法返回一个布尔值, 以表明是否存在一个从源结点可以到达的权重为负值的回路.

- (1) 若存在权重为负值的回路,算法告诉不存在解决方案.
- (2) 如果没有权重为负值的回路, 算法将给出最短路径和它们的权重.

Bellman-Ford算法的伪代码

```
单源最短路径
问题
目录
最近路径的定
又与性质
3ellman-Ford 葬
表
最近路径性质
3ellman-Ford 算
去的正确性证
明
```

```
算法4.3 Bellman-Ford(G, w, s)
   Initialize-Single-Source(G, s)
   for i \leftarrow 1 to |V|-1
3
     for each edge (u, v) \in E
           Relax(u, v)
5
   for each edge (u, v) \in E
     if v.d>u.d+w(u, v)
           return FALSE
   return TRUE
时间复杂度: O(|V||E|)
```


Bellman-Ford算法执行过程

目录 最短路径的定

Bellman-Ford

最短路径性质

法的正确性证明 有向无环图中

的单源最短路 径问题

Dijkstra乳法

图:

图: 每一次的松弛操作对边的处理次序都是: (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

(c)

单源最短路径 问题

■ 最短路径的定义与性质

目录

② Bellman-Ford算法

Bellman-Ford身 法

③ 最短路径性质

最短路径估计值的松 弛效果

4 Bellman-Ford算法的正确性证明

Bellman-Ford 法的正确性证 明

⑤ 有向无环图中的单源最短路径问题

有向无环图中 的单源最短路 径问题

6 Dijkstra算法

Dijkstra算法

7 广度优先搜索算法

应用

8 应用

最短路径性质:三角不等式性质

平源 最短路 问题

日 水

^{東短路径的兒} 义与性质

Bellman-Ford》 法

最短路径性质

化效果 松弛操作与最短路径

Bellman-Ford算 法的正确性证

有向无环图 5 的单源最短距 谷问题

Dijkstra算法

算法

் க

引理 (Triangle inequality)

设G为一个带权有向图, 权重函数为 $w: E \to \mathbb{R}$, 其源结点为s. 则对于所有的边 $(u, v) \in E$, 有

$$\delta(s, v) \leq \delta(s, u) + w(u, v).$$

最短路径估计值的松弛效果:上界性质

单源最短路径 问题

引理 (Upper-bound property)

设G为一个带权有向图, 权重函数为 $w: E \to \mathbb{R}$, 其源结点为s, 该图由算法Initialize-Single-Source(G, s)执行初始化. 则:

- (1) 对于所有的结点 $v \in V$, $v.d \ge \delta(s, v)$, 并且该不变式在对图G的边进行任何次序的松弛过程中保持成立;
- (2) 另外, $□ v.d = \delta(s, v)$, 不再发生变化.

推论 (No-path property)

设G为一个带权有向图, 权重函数为 $w: E \to \mathbb{R}$, 设从源结点s到 给定结点v之间不存在路径, 则在该图由算法Initialize-Single-Source(G, s)进行初始化后, 有 $v.d = \delta(s, v) = \infty$, 且该等式作为不变式一直维持到图G的所有松弛操作结束.

最短路径估计值的松弛效果:上界性质的证明

单源最短路径 问题

证明 我们对松弛步骤的数量使用<u>归纳法</u>来证明不变式,即对于所有的结点 $v \in V$, $v.d \geq \delta(s, v)$.

基础步: 在初始化之后, 对于所有的结点v∈V, v.d≥δ(s, v) 显然成立.

<u>归纳步</u>: 考虑对边(u, v)的松弛操作. 根据<u>归纳假设</u>, 在松弛之前, 对于所有的结点 $v' \in V$, v'. $d \geq \delta(s, v')$.

对边(u, v)进行<mark>松弛</mark>的过程中, 唯一<u>可能</u>发生改变的d值只有v.d.如果该值发生变化,则有

$$v.d = \underline{u.d} + w(u, v)$$

$$\geq \underline{\delta(s, u)} + w(u, v)$$

$$\geq \underline{\delta(s, v)}$$

因此不变式得到维持.

最短路径估计值的松弛效果

半次取短路 问题

日水

取 超 路 径 的 足 义 与 性 质

Bellman-Ford 注

最短路径性质 最短路径估计值的松 弛效果

松弛操作与最短路径 树

Bellman-Ford算 法的正确性证

Diikstra算法

算法

应用

引理

设G为一个带权有向图, 权重函数为 $w: E \to \mathbb{R}$, 且 $(u, v) \in E$. 则对边(u, v)进行松弛操作Relax(u, v)后, 有

 $v.d \le u.d + w(u, v)$.

最短路径估计值的松弛效果:收敛性质

单源最短路径 问题

引理 (Convergence property)

设G为一个带权有向图, 权重函数为 $w: E \rightarrow \mathbb{R}$.

- (1) 设 $u, v \in V, s \leadsto u \rightarrow v$ 为图G中的一条最短路径.
- (2) 设图G由Initialize-Single-Source(G, s)算法进行初始化, 并在这之后进行了一系列边的松弛操作, 其中包括对边(u, v)的松弛操作Relax(u, v).

如果在对边(u, v)进行松弛操作之前的任意时刻有

$$u.d=\delta(s, u),$$

则在该松弛操作之后的所有时刻有

$$v.d=\delta(s, v).$$

最短路径估计值的松弛效果:收敛性质的证明

单源最短路径 问题

证明 根据上界性质, 如果在对边(u, v)进行松弛<u>前</u>的某个时刻有

$$u.d=\delta(s, u),$$

则该等式在松弛操作后仍然成立. 特别地, 在对边(u, v)进行松弛后, 有

$$v.d \le u.d + w(u, v)$$

$$= \delta(s, u) + w(u, v)$$

$$= \delta(s, v)$$

根据**上界性质**,有 $v.d \ge \delta(s, v)$.

因此 $v.d=\delta(s, v)$,并且该等式在此之后一直保持成立.

最短路径估计值的松弛效果:路径松弛性质

最短路径 问题

引理 (Path-relaxation property)

设G为一个带权有向图, 权重函数为 $w: E \to \mathbb{R}$, 其源结点为s. 考虑从源结点s到结点 v_k 的任意一条最短路径

$$p=(v_0, v_1, ..., v_k),$$

这里 $s=v_0$. 如果图G由Initialize-Single-Source(G, s) 算法进行n 始化,并在这之<u>后</u>进行了<u>一系列</u>的边松弛操作,其中包括对边

$$(v_0, v_1), (v_1, v_2), ..., (v_{k-1}, v_k),$$

按照所列次序而进行的松弛操作,则在所有这些松弛操作之后,有

$$v_k.d=\delta(s, v_k),$$

并且在此之<u>后</u>该等式<u>一直</u>保持成立. 该性质的成立与其他边的松弛操作及次序无关.

松弛操作与最短路径树: 前驱子图性质

引理 (Predecessor-subgraph property)

设G为一个带权有向图, 权重函数为 $w: E \rightarrow \mathbb{R}$, 其源结点为s.

- (1) 假设图G不包含从源结点s可以到达的权重为负值的环路.
- (2) 假设调用Initialize-Single-Source(G, s)算法对图G进行初始化,然后对图G的边进行任意次序的松弛操作. 该松弛操作序列将针对所有的结点 $v \in V$ 生成 $v.d = \delta(s, v)$,

则前驱子图Gp形成一棵根结点为s的最短路径树.

前驱子图性质的证明(1/5)

单源最短路径 问题

证明 必须证明最短路径树的三条性质对于 G_p 都成立. 要证明第一条性质, 必须证明:

 V_p 是从源结点s可以到达的结点的集合.

根据定义,

最短路径 $\delta(s, v)$ 是有限值当且仅当结点v是从s可以到达的,因此,

从源结点s可以到达的结点就是那些有着有限d值的结点。 但对于结点 $v \in V - \{s\}$,其被赋予有限d值当且仅当 $v.p \neq NIL$ 。因此,

 V_p 中的结点就是那些可以从源结点s到达的结点.

前驱子图性质的证明(2/5)

单源最短路径 问题

第二条性质可以从以下结论直接推导出来.

在图G由Initialize-Single-Source(G, s)算法进行初始化之后, 前驱子图 G_p 形成根结点为源结点s的有根树,并且任何对 图G的边进行的任意松弛操作都将维持该性质不变.

在初始化时, G_p 中的唯一结点是源结点s,结论显然成立。 考虑在一系列松弛操作后的前驱子图 G_p 。首先证明 G_p 是无环路的。假定在松弛序列的某个步骤上在图 G_p 中创立了一个环路。设该环路为

$$c=(v_0, v_1, ..., v_k),$$

这里 $v_k = v_0$. 则 $v_i.p = v_{i-1}$, i = 1, 2, ..., k, 并且不失一般性, 假定在对边 (v_{k-1}, v_k) 进行<mark>松弛操作</mark>时创建了 G_p 中的该条<mark>环路</mark>.

所有环路c上的结点都可以从源结点s到达.

前驱子图性质的证明(3/5)

下面检查在调用 $Relax(v_{k-1}, v_k)$ 操作之前c上面的最短路径估计值,并证明c是一个权重为负值的环路,从而推出与假设(图G不包含从源结点s可以到达的权重为负值的环路)矛盾.

在该调用发生前, 有 $v_i, p=v_{i-1}, i=1, 2, ..., k-1$. 因此, 对于i=1, 2, ..., k-1.

...,k-1,对于 $\overline{v_{i\cdot d}}$ 的最后一次更新必定是 $v_{i\cdot d}=v_{i-1}.d+w(v_{i-1},v_i)$. 如果 $v_{i-1}.d$ 在此之后发生变化,则一定是减少了. 因此,在调用 $\mathbf{Relax}(v_{k-1},v_k)$ 操作之前,有

$$v_i.d \ge v_{i-1}.d + w(v_{i-1}, v_i), \forall i = 1, 2, ..., k-1$$
 (1)

因为 $v_k.p$ 在该调用中发生改变,所有在此之前有

$$v_k.d > v_{k-1}.d + w(v_{k-1}, v_k)$$
 (2)

从以上两个不等式, 我们有:

$$\sum_{i=1}^{k} v_i.d > \sum_{i=1}^{k} (v_{i-1}.d + w(v_{i-1}, v_i)) \Longrightarrow 0 > \sum_{i=1}^{k} w(v_{i-1}, v_i).$$

前驱子图性质的证明(4/5)

单源最短路径 问题

为了证明其形成一棵根结点为s的有根树,只要证明对于每个结点 $v \in V_p$,在图 G_p 中存在一条从源结点s到结点v的<u>唯一简单路</u>径.

首先证明对于结点 $v \in V_p$,在图 G_p 中存在一条从源结点s到结点v的路径.

为了完成对引理的证明, 我们还必须证明对于每个结点 $v \in V_p$, 图 G_p 至多包含一条从源结点s到结点v的路径. 我们采用反证法.

前驱子图性质的证明(5/5)

单源最短路径 问题

目录 最短路径的定 又与性质 Bellman-Ford算

最短路径性质 ^{最短路径估计值的松} 放某 松弛操作与最短路径 树

, 有向无环图中 的单源最短路 径问题

Dijkstra算法 广度优先搜索 算法 最后证明最短路径树的第三条性质:对于每个结点 $v \in V_p$, G_p 中的唯一简单路径 $p = (v_0, v_1, ..., v_k)$, $v_0 = s$, $v_k = v$, 是图G中从s到v的一条最短路径.

对于 $i = 1, 2, ..., k, 有v_i.d = \delta(s, v_i)$ 和

$$v_i.d \ge v_{i-1}.d + w(v_{i-1}, v_i).$$

所以:

$$w(v_{i-1}, v_i) \le \delta(s, v_i) - \delta(s, v_{i-1}).$$

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i) \le \sum_{i=1}^{k} (\delta(s, v_i) - \delta(s, v_{i-1})) = \delta(s, v_k)$$

Bellman-Ford算法的正确性证明

有向无环图中的单源最短路径问题

□ 广度优先搜索算法

Bellman-Ford算法的正确性

单源最短路往 问题

目录 最短路径的定 义与性质 ...

最短路径性质

有向无环图中 的单源最短路

Dijkstra算法 广度优先搜索

定理 (Correctness of the Bellman-Ford algorithm)

设Bellman-Ford算法运行在一个带权重的源结点为s的有向图G上,其权重函数为 $w: E \rightarrow \mathbb{R}$.

- (1) 如果图G<u>不</u>包含从源结点s可以到达的权重为<mark>负值的环路</mark>,则:
 - 算法将返回TRUE值;
 - 对于所有结点 $v \in V$, $v.d = \delta(s, v)$;
 - 前驱子图Gp是一棵根结点为s的最短路径树.
- (2) 如果图G包含从源结点s可以到达的权重为负值的环路,则算法将返回FALSE值.

Bellman-Ford算法的正确性证明(1/3)

单源最短路径 问题

证明(1)使用路径松弛性质证明:

对于所有结点v∈V, v.d=δ(s, v).

• 考虑任意从源结点s可以到达的结点v. 设 $p=(v_0, v_1, ..., v_k)$ 为从源结点s到结点v之间的任意一条最短路径,其中 $v_0=s$, $v_k=v$. p最多有|V|-1条边,因此 $k \le |V|-1$. 算法第2-4行的for循环每次松弛所有的|E|条边. 在第i次松弛操作时,这里i=1, 2, ..., k,被松弛的边中包含 (v_{i-1}, v_i) . 根据路径松弛性质,

$$v.d=v_k.d=\delta(s, v_k)=\delta(s, v).$$

• $4 \pm \sqrt{2} = 4 \pm \sqrt{2}$ • $4 \pm \sqrt{2}$

结合前驱子图性质可以推出 G_p 是一棵最短路径树.

去 最短路径性质 Sellman-Ford算 去的正确性证

Bellman-Ford并 法的正确性证 明

Bellman-Ford算法的正确性证明(2/3)

单源最短路征 问题

日水 最短路径的定 义与性质

法

Bellman-Ford算 法的正确性证 明

有向无环图中 的单源最短路 径问题

Dijkstra算法

广度优先搜索 算法 应用 算法终止时,对于所有的边 $(u, v) \in E$,有

$$v.d=\delta(s, v)$$

$$\leq \delta(s, u)+w(u, v)$$

$$=u.d+w(u, v)$$

因此,算法第6行中沒有任何测试可以让Bellman-Ford算法返回FALSE值.因此,它一定返回的是TRUE值.

Bellman-Ford算法的正确性证明(3/3)

单源最短路径 问题

最短路径的发

Bellman-Ford算

最短路径性质

法的正确性证 明

有同尤环图中 的单源最短路 径问题

Dijkstra算法

算法 向用 (2) 假设图G包含一个权重为负值的环路, 且该环路可以从源结点S到达; 设该环路为C=(v_0 , v_2 , ..., v_k), 这里 v_0 = v_k , 则有

$$\sum_{i=1}^k w(v_{i-1}, v_i) < 0.$$

下面使用反证法. 假设算法返回的是TRUE,则

$$v_i.d \le v_{i-1}.d + w(v_{i-1}, v_i), i=1, 2, ..., k$$

$$\sum_{i=1}^{k} v_i . d \le \sum_{i=1}^{k} (v_{i-1} . d + w(v_{i-1}, v_i)) \Longrightarrow 0 \le \sum_{i=1}^{k} w(v_{i-1}, v_i).$$

有向无环图中的单源最短路径问题

7 广度优先搜索算法

有向无环图中的单源最短路径问题

```
单源最短路径
问题
```

1录 支短路径的定 L与性质 ellman-Ford對

最短路径性质 Bellman-Ford算 去的正确性证 明

百向无环图中 的单源最短路 圣问题

Dykstra升法 广度优先搜索 算法

算法4.4 DAG-Shortest-Paths(G, w, s)

- 1 topologically sort the vertices of *G*
- 2 Initialize-Single-Source(G, s)
- 3 **for** each vertex *u*, taken in topologically sorted order
- 4 **for** each edge $(u, v) \in E$
- 5 $\operatorname{Relax}(u, v)$

算法的时间复杂度: O(|V|+|E|).

单源最短路径 问题

目录

最短路径的定 义与性质

Bellman-Ford算 法

最短路径性质

Bellman-Ford算 法的正确性证 明

有向无环图中 的单源最短路 径问题

Dijkstra算法

广度优先搜索 算法

应用

DAG-Shortest-Paths算法的正确性

单源最短路征 问题

定理

如果带权重无环有向图G=(V,E)有一个源结点s,则在算法DAG-Shortest-Paths终止时,对于所有的结点 $v \in V$,有 $v.d=\delta(s,v)$,且前驱子图 G_p 是一棵最短路径树.

证明 首先证明对于所有的结点 $v \in V$, 在算法DAG-Shortest-Paths 终止时, $v.d = \delta(s, v)$.

● 如果结点v不能从源结点s到达,则根据非路径性质,有

$$v.d=\delta(s, v)=\infty.$$

• 如果结点v能从源结点s到达,因此,图中存在一条最短路径p=(v_0 , v_1 ,..., v_k),其中 v_0 =s, v_k =v.因为算法是按照拓扑排序的次序来对结点进行处理,所以对路径p上的边的放松次序为(v_0 , v_1),(v_1 , v_2),...,(v_{k-1} , v_k).根据路径松弛性质,对于i=0,1,...,k,在算法终止时有 v_i .d= $\delta(s$, v_i).

最后,根据前驱子图性质, G_p 是一棵最短路径树.

有向无环图中 的单源最短路 径问题

单源最短路径 问题

■ 最短路径的定义与性质

目录

2 Bellman-Ford算法

Bellman-Ford身 法

③ 最短路径性质

最短路径性质

4 Bellman-Ford算法的正确性证明

有向无环图中 的单源最短蹈 径问题

⑤ 有向无环图中的单源最短路径问题

Dijkstra算法

6 Dijkstra算法

⁻ 度优先搜索 草法

7 广度优先搜索算法

8 应用

Dijkstra算法的基本思想

Diikstra算法正确性前提: 所有边的权重都是非负值. Dijkstra算法的基本思想:

- (1) 一组结点集合 $S, v ∈ S \longleftrightarrow M_S \ni v$ 的最短路径长度已知.
- (2) 算法重复从结点集V-S中选择最短路径估计最小的结点u, 将u加入到集合S,然后对所有的从u发出的边进行松弛.
- (3) 使用一个最小优先队列()来保存结点集合, 每个结点的关 键值为其d值.

Dijkstra算法的伪代码

```
单源最短路径
```

```
算法4.5 Dijkstra (G, w, s)
    Initialize-Single-Source(G, s)
    S \leftarrow \emptyset
3 \quad Q \leftarrow V
    while Q≠∅
5
          u \leftarrow \text{Extract-Min}(Q)
6
          S \leftarrow S \cup \{u\}
          for each edge (u, v) \in E
                 if v \notin S and v.d > u.d + w(u, v)
9
                       Decrease-Key(Q, v, u.d+w(u, v))
10
                         v.p \leftarrow u
时间复杂度: O(|E|\log|V|).
```

Dijkstra算法的实例

单源最短路? 问题

目录

最短路径的定 义与性质

Bellman-Ford算 法

最短路谷性质

Bellman-Ford算 法的正确性证

有向无环图中 的单源最短路 径问题

Dijkstra算法

广度优先搜? 算法

应用

Dijkstra算法的正确性(1/2)

定理 (Correctness of Dijkstra's algorithm)

Dijkstra算法运行在带权重的有向图G时, 如果所有的权重都 为非负值,则在算法终止时,对于所有结点 $u \in V$,有

$$u.d=\delta(s, u),$$

且前驱子图 G_n 是一棵最短路径树.

证明 我们使用下面的循环不变式:

在算法第4-10行的while语句的每次循环开始前,对于每个结 点 $v \in S$, 有 $v.d = \delta(s, v)$.

由上界性质, 我们只要证明:

对于每个结点 $u \in V$, 当结点u被加入到集合S时, 有 $u.d = \delta(s, u)$.

Diikstra算法正确性证明(2/2)

初始化: $S=\emptyset$, 因此, 循环不变式成立.

保持: 用反证法证明: 对于每个结点 $u \in V$, 当结点u被加入到集 合S 时, 有 $u.d=\delta(s, u)$.

设结点u是第一个加入到集合S时, 使得 $u.d \neq \delta(s, u)$ 的结点. 则:

- (1) $u \neq s$. 因此把结点u放入到集合S时, $S \neq 0$.
- (2) s到u有路径, 否则根据**非路径性**质, $u.d=\delta(s, u)=\infty$.

因为s到u有路径,则存在一条从s到u的最短路径p.

断言: 根据收敛性质, 在将结点u放入到集合S时, $v.d=\delta(s, v)$.

Dijkstra算法正确性证明(2/2)

通过反证法证明 $u.d=\delta(s, u). \delta(s, y) \leq \delta(s, u)$ 成立.

因此

 $y.d=\delta(s, y)$ $\leq \delta(s, u)$ $\leq u.d$

但是, 在算法第5行选择结点u时, 结点u, $v \in V - S$, 所以有

 $u.d \leq y.d.$

u.d=y.d.

单源最短路径 问题

■ 最短路径的定义与性质

目录

2 Bellman-Ford算法

Bellman-Ford∮ :⊭

3 最短路径性质

景短路径性质

4 Bellman-Ford算法的正确性证明

介 有向无环图。 的单源最短距 径问题

⑤ 有向无环图中的单源最短路径问题

Dijkstra算法

6 Dijkstra算法

厂度优多 算法

7 广度优先搜索算法

8

8 应用

广度优先搜索算法的数据结构

单源最短路4 问题

目录

最短路径的² 义与性质

Bellman-Ford∮ 法

最短路径性质

Bellman-Ford 法的正确性证 明

有向无环图中 的单源最短路 径问题

Diikstra算法

广度优先搜索

应用

- (1) 存储结点v在搜索过程的状态;
- (2) 队列Q存储灰色结点集;
- (3) 变量v.d记录源结点s到结点v最短路径距离.

BFS算法的伪代码

```
算法4.6 BFS(G, s)
    for each vertex u \in V - \{s\}
           u.color \leftarrow white, u.d \leftarrow \infty, u.p \leftarrow NIL
    s.color \leftarrow gray, s.d \leftarrow 0, s.p \leftarrow NIL
    Q \leftarrow \emptyset
    Enqueue(Q, s)
    while Q≠∅
6
           u \leftarrow \text{Dequeue}(Q)
8
           for each (u, v) \in E
9
              if v.color=white
10
                   v.color \leftarrow gray
                   v.d \leftarrow u.d + 1
11
12
                   v.p \leftarrow u
13
                   Enqueue(Q, v)
14
         u.color \leftarrow black
存储结构为链接表时, BFS算法的时间复杂度: O(|V|+|E|).
```


单源最短路径 问题

目录

最短路径的定 义与性质

Bellman-Ford算 法

最短路径性质

Bellman-Ford算 法的正确性证

有向无环图中 的单源最短路

Dijkstra集湯

் ப

实例(2/2)

BFS算法的正确性的证明(1/7)

引理

给定有向或无向图G,假设从以结点 $s \in V$ 开始<u>广度优先搜索</u>,则在算法终止时,对每个结点 $v \in V$,有

$v.d \ge \delta(s, v)$.

证明 采用数学归纳法, 对队列上的操作个数做归纳, 也就是要证明, 无论队列上执行了多少操作, 下面的不等式总是成立: 对于每个结点 $v \in V$, 有 $v.d \ge \delta(s, v)$.

- <u>归纳基础</u>: 队列执行第<u>一</u>个操作, 即将源结点s加入<mark>队</mark>列O中.
- 对于<u>归纳步</u>, 考虑从结点u进行边搜索时发现<mark>白色结点v.</mark> 根据归纳假设, 有u. $d \ge \delta(s, u)$. 根据算法第11行, 有

$$v.d=u.d+1$$

$$\geq \delta(s, u)+1$$

$$\geq \delta(s, v)$$
.

BFS算法的正确性的证明(2/7)

单源最短路径 问题

引理

设BFS算法在图G上运行的过程中,队列Q包含的结点为

$$(v_1, v_2, ..., v_r),$$

其中 v_1 是队列Q的头, v_r 是队列Q的尾. 则:

- (1) $v_r.d \le v_1.d + 1$;
- (2) 对于 $i=1, 2, ..., r-1, 有v_i.d ≤ v_{i+1}.d$.

证明 通过对算法里面入队操作的次数进行数学归纳法来证明本引理.

• <u>归纳基础</u>: 在初始情况下, 队列Q里仅包含源结点s, 引理明显成立.

BFS算法的正确性的证明(3/7)

归纳步骤:要证明在出队和入队操作时,引理成立. 如果头结点以出队,必就变成队列中的新的头结点,根据 归纳假设, 有 $v_2.d \leq ... \leq v_r.d$. 注意到:

 $v_r, d < v_1, d + 1, v_1, d < v_2, d$

所以:

$$v_r.d \le v_2.d + 1.$$

因此,在以为头结点时,引理成立. 根据BFS算法, 当头结点 ν_1 出队后, 设结点 ν_{r+1} 入队, 且

$$v_{r+1}.d=v_1.d+1.$$

因为 $v_1.d \leq v_2.d$, 所以 $v_{r+1}.d \leq v_2.d+1$. 因为

$$v_r.d \le v_1.d+1, v_{r+1}.d=v_1.d+1,$$

所以 $v_r.d \leq v_{r+1}.d$.

BFS算法的正确性的证明(4/7)

问题

日本 17 15 ab / 17 11

义与性质

Bellman-Ford界 法

最短路径性质

Bellman-Ford算 法的正确性证 明

有向无环图中 的单源最短路 径问题

Dijkstra算法

广度优先搜索

应用

推论

假设在运行BFS算法时,结点 v_i 和结点 v_j 都加入到队列O中,且 v_i 在 v_i 前面入队,则在 v_i 入队时,有

 $v_i.d \leq v_j.d.$

BFS算法的正确性的证明(5/7)

单源最短路往 问题

定理

设G是一个有向或无向图,又假设BFS算法以s为源结点在图G上运行.则:

- (1) 在**算法执行过程**中, **BFS**算法将发现从<mark>源结点s</mark>可以到 达的所有结点v∈V;
- (2) 在算法终止时, 对于所有的结点 $v \in V$, $v.d = \delta(s, v)$;
- (3) 对于任意可以从s到达的结点 $v(v \neq s)$, 从源结点s到结点v的 其中一条最短路径为从结点s到结点v.p的最短路径加上边(v.p,v).

BFS算法的正确性的证明(6/7)

单源最短路径 问题

证明 (2) 采用<u>反证法</u>, 假设存在一些结点, 它们的d<u>不</u>等于结点s到它们的最短路径距离. 在这些结点中, 取结点s到其距离最短的结点, 记为v, 显然, $v \neq s$. 根据已知结论, 有

$$v.d > \delta(s, v)$$
.

注意s到v必然可达, 否则 $\delta(s, v) = \infty \geq v.d.$ 考察s到v的最短路径. 记u为该路径上在v前面的结点, 则

$$\delta(s, v) = \delta(s, u) + 1.$$

根据选取结点v的特定方式, 有 $\delta(s, u)=u.d.$ 因此

$$v.d > \delta(s, v)$$

$$= \delta(s, u) + 1$$

$$= u.d + 1.$$

DIJRSUA并本 广度优先搜索 算法

BFS算法的正确性的证明(7/7)

单源最短路径 问题

下面考察结点u刚刚出队的时刻(算法第7行). 此时结点v可能有3种颜色, 分情形讨论:

- 如果v.color=white, 根据BFS算法, v.d=u.d+1.
- 如果v.color=gray,则v是在某个结点w出队时被涂上灰色的, 而结点w是在结点u之前出队.于是有

v.d=w.d+1 $\leq u.d+1$.

• 如果v.color=black, 此时该结点已经出队, 则有

v.d≤*u.d* ≤*u.d*+1.

最短路径的定 义与性质

法

Bellman-Ford算 法的正确性证 明

有向无环图中 的单源最短路 径问题

Dijkstra算法 广度优先搜索 算法

有向无环图中的单源最短路径问题

7 广度优先搜索算法

应用

差分约束系统

单源最短路径 问题

(1) 设A是一个 $m \times n$ 的矩阵, b是一个m维向量, 希望找到一个可行解, 即找到任何满足

 $Ax \leq b$

的向量x,或者判断不存在可行解.

(2) 差分约束系统(system of difference constraints):

 $Ax \leq b$ 中的矩阵A:

- 每一行包括一个1和一个-1,
- 其他所有项都为0.

差分约束系统的例子

单源最短路径 问题

日录

入门正次

法

最短路径性质

Bellman-Ford》 法的正确性证

有向无环图中 的单源最短路 径问题

Dijkstra算法

升) 应用

二八日 菱分约束系统 音动网络 $\begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 \\ -1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \le \begin{bmatrix} 0 \\ -1 \\ 1 \\ 5 \\ 4 \\ -1 \\ -3 \end{bmatrix}$

即

$$x_1-x_2 \le 0$$
 $x_1-x_5 \le -1$
 $x_2-x_5 \le 1$ $x_3-x_1 \le 5$
 $x_4-x_1 \le 4$ $x_4-x_3 \le -1$
 $x_5-x_3 \le -3$

约束图

单源最短路径 问题 给定差分约束系统

 $Ax \leq b$,

其对应的约束图(constraint graph)是一个带权重的有向图

$$G=(V, E),$$

其中:

$$V=\{\underline{v_0},\ v_1,...,v_n\},$$

$$E = \{(v_i, v_j) : x_j - x_i \le b_k$$
是一个约束条件} \cup { $(v_0, v_1), ..., (v_0, v_n)$ },

权重函数 $w: E \rightarrow \mathbb{R}$ 定义为:

$$w(v_0, v_i)=0, i=1,...,n$$

 $w(v_i, v_j)=b_k, 如果x_j-x_i \le b_k$ 是一个约束条件

目录 最短路径的定 义与性质 Bellman-Ford』

| 超路径性順 | ellman-Ford算 | f的正确性证 |

的单源最短路 经问题 Dijkstra算法 广度优先搜索

应用 差分约束系统 活动网络

约束图的实例

 $x_1 - x_5 \le -1$ $x_1 - x_2 \le 0$ $x_2 - x_5 \le 1$ $x_3 - x_1 \le 5$ $x_4 - x_1 \le 4$ $x_4 - x_3 \le -1$ $x_5 - x_3 \le -3$

约束图的性质

单源最短路径 问题

定理

给定**差分约束系统** $Ax \leq b$, 设G=(V, E)是该**差分约束系统**所对应的**约束图**.

(1) 如果图G不包含权重为负值的环路,则

$$x = (\delta(v_0, v_1), ..., \delta(v_0, v_n))$$

是该系统的一个可行解.

(2) 如果图G包含权重为负值的环路,则该系统没有可行解.

证明 (1)考虑任意一条边 $(v_i, v_j) \in E$, 根据三角不等式,

$$\delta(v_0, v_j) \leq \delta(v_0, v_i) + w(v_i, v_j)$$

$$\Leftrightarrow x_i = \delta(v_0, v_i), x_i = \delta(v_0, v_i).$$
 \mathbb{N}

$$x_j - x_i \leq w(v_i, v_j).$$

目录 最短路径的定 义与性质

> 短路径性质 Ilman-Ford算 的正确性证

有向无环图中 的单源最短路 Dijkstra算法 广度优先搜索 链法

区 用 差分约束系统 ^{活动网络}

约束图的性质的证明

单源最短路径 问题

(2) 设权重为负值的环路为 $c=(v_1, v_2, ..., v_k)$, 其中 $v_1=v_k$. 环路c对应的**差分约束**条件组:

$$x_{2}-x_{1} \le w(v_{1}, v_{2})$$

$$x_{3}-x_{2} \le w(v_{2}, v_{3})$$
.....
$$x_{k-1}-x_{k-2} \le w(v_{k-2}, v_{k-1})$$

$$x_{k}-x_{k-1} \le w(v_{k-1}, v_{k}).$$

假设向量x有一个满足上述k个不等式的解,则 $w(c) \ge 0$.

活动网络与关键路径

单源最短路径 问题

定义

- (1) 如果在有向无环图中,
 - (1) 有向边表示一个工程中的各项活动,用有向边上的权值表示活动的持续时间,
 - (2) 用结点表示事件,

则这种有向图称为用边表示活动的网络.

(2) 用边表示活动的网络中, 从源点到汇点路径长度最长的路径称为**关键路径**.

关键路径算法的伪代码

```
单源最短路径
问题
```

```
算法4.7 CriticalPath(G, s, t)
    topologically sort the vertices of G
    for each vertex v \in V
3
         v.d \leftarrow 0
    for each vertex u, taken in topologically sorted order
4
         for each edge (u, v) \in E
6
               if v.d < u.d + w(u, v) then
                   v.d \leftarrow u.d+w(u, v)
    return t.d
算法的时间复杂度: O(|V|+|E|).
```


单源最短路往 问题

目录

最短路径的发 义与性质

Bellman-Ford∮ 法

最短路径性)

Bellman-Ford算 法的正确性证 明

有向无环图中 的单源最短路 径问题

Dijkstra算法

广度优先搜索 算法

应 用 差分约束系统 活动网络

- (1) 编程实现Bellman-Ford算法.
- (2) 编程实现有向无环图中的单源最短路径问题的算法.

单源最短路径 问题

目录

最短路径的定 义与性质

Bellman-Ford算 注

最短路径性质

Bellman-Ford算 法的正确性证 晒

有向无环图中的单源最短路

Dijkstra算法

广度优先搜 算法

应用 差分约束系统

Thank you!