МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Отчёт о вы	полнении	лабораторно	й работы	2.1.6
	Эффект Д	Джоуля-Томсон	на	

Автор: Тихонов Дмитрий Романович, студент группы Б01-206

Введение

Цель работы:

- 1. определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры;
- 2. вычисление по результатам опытов коэффициентов Ван-дер-Ваальса a и b.

В работе используются: трубка с пористой перегородкой; труба Дьюара; термостат; термометры; дифференциальная термопара; микровольтметр; балластный баллон; манометр.

Теоретические сведения

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному газу, при таком течении температура газа не меняется. Эффект Джоуля—Томсона демонстрирует отличие исследуемого газа от идеального.

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой (рис. 1). Трубка 1 хорошо теплоизолирована. Газ из области повышенного давления P_1 проходит через множество узких и длинных каналов пористой перегородки 2 в область с атмосферным давлением P_2 . Перепад давления $\Delta P = P_1 - P_2$ из-за большого сопротивления каналов может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля—Томсона определяется по разности температуры газа до и после перегородки.

Рассмотрим стационарный поток газа между произвольными сечениями I и II трубки (до перегородки и после нее). Пусть, для определенности, через трубку прошел 1 моль углекислого газа; μ – его молярная масса. Молярные объемы газа, его давления и отнесенные к молю внутренние энергии газа в сечениях I и II обозначим соответственно V_1, P_1, U_1 и V_2, P_2, U_2 . Для того чтобы ввести в трубку объем V_1 , над газом нужно совершить работу $A_1 = P_1V_1$. Проходя через сечение II, газ сам совершает работу $A_2 = P_2V_2$. Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right). \tag{1}$$

В уравнении (1) учтено изменение как внутренней (первые члены в скобках), так и кинетической (вторые члены в скобках) энергии газа. Подставляя в (1) написанные выражения для A_1 и A_2 и перегруппировывая члены, найдем

$$H_1 - H_2 = (U_1 + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu \left(v_2^2 - v_1^2 \right).$$
 (2)

Сделаем несколько замечаний. Прежде всего отметим, что в процессе Джоуля—Томсона газ испытывает в пористой перегородке существенное трение, приводящее к ее нагреву. Потери энергии на нагрев трубки в начале процесса могут быть очень существенными и сильно искажают ход явления. После того как температура трубки установится и газ станет уносить с собой все выделенное им в пробке тепло, формула (1) становится точной, если, конечно, теплоизоляция трубки достаточно хороша и не происходит утечек тепла наружу через ее стенки.

Второе замечание связано с правой частью (2). Процесс Джоуля-Томсона в чистом виде осуществляется лишь в том случае, если правой частью можно пренебречь, т. е. если макроскопическая скорость

газа с обеих сторон трубки достаточно мала. У нас сейчас нет критерия, который позволил бы установить, когда это можно сделать. В силу сохранения энтропии в случае реального газа получаем:

$$\mu_{\text{Д-T}} = \frac{\Delta T}{\Delta P} \approx \frac{(2a/RT) - b}{C_P}.$$
(3)

Из формулы (3) видно, что эффект Джоуля—Томсона для не очень плотного газа зависит от соотношения величин a и b, которые оказывают противоположное влияние на знак эффекта. Если силы взаимодействия между молекулами велики, так что превалирует «поправка на давление», то основную роль играет член, содержащий a, и

$$\frac{\Delta T}{\Delta P} > 0,$$

т. е. газ при расширении охлаждается ($\Delta T < 0$, так как всегда $\Delta P < 0$). В другом случае

$$\frac{\Delta T}{\Delta P} < 0,$$

т. е. газ нагревается ($\Delta T > 0$, так как по-прежнему $\Delta P < 0$).

Этот результат нетрудно понять из энергетических соображений. Как мы уже знаем, у идеального газа эффект Джоуля—Томсона отсутствует. Идеальный газ отличается от реального тем, что в нем можно пренебречь потенциальной энергией взаимодействия молекул. Наличие этой энергии приводит к охлаждению или нагреванию реальных газов при расширении. При больших a велика энергия притяжения молекул. Это означает, что потенциальная энергия молекул при их сближении уменьшается, а при удалении — при расширении газа — возрастает. Возрастание потенциальной энергии молекул происходит за счет их кинетической энергии — температура газа при расширении падает. Аналогичные рассуждения позволяют понять, почему расширяющийся газ нагревается при больших значениях b.

Как следует из формулы (3), при температуре

$$T_i = \frac{2a}{Rb}$$

коэффициент $\mu_{\text{Д-T}}$ обращается в нуль. По формулам связи параметров газа Ван-дер-Ваальса с критическими параметрами получаем:

$$T_{\text{\tiny MHB}} = \frac{27}{4} T_{\text{\tiny Kp}}.\tag{4}$$

При температуре $T_{\text{инв}}$ эффект Джоуля–Томсона меняет знак: ниже температуры инверсии эффект положителен ($\mu_{\text{Д-T}} > 0$, газ охлаждается), выше $T_{\text{инв}}$ эффект отрицателен ($\mu_{\text{Д-T}} < 0$, газ нагревается).

Вернемся к влиянию правой части уравнения (2) на изменение температуры расширяющегося газа. Для этого сравним изменение температуры, происходящее вследствие эффекта Джоуля–Томсона, с изменением температуры, возникающим из-за изменения кинетической энергии газа. Увеличение кинетической энергии газа вызывает заметное и приблизительно одинаковое понижение его температуры как у реальных, так и у идеальных газов. Поэтому при оценках нет смысла пользоваться сложными формулами для газа Ван-дер-Ваальса.

Заменяя в формуле (2) U через $C_V T$ и PV через RT, найдем

$$(R + C_V) (T_1 - T_2) = \mu (v_2^2 - v_1^2) / 2$$

или

$$\Delta T = \frac{\mu}{2C_P} \left(v_2^2 - v_1^2 \right).$$

В условиях нашего опыта расход газа Q на выходе из пористой перегородки не превышает $10~{\rm cm}^3/{\rm c},$ а диаметр трубки равен $3~{\rm mm}$. Поэтому

$$v_2 <= \frac{4Q}{\pi d^2} = \frac{4 \text{ cm}^3/\text{c}}{3,14 \cdot (0,3)^2 \text{ cm}^2} \approx 140 \text{ cm/c}.$$

Скорость v_1 газа у входа в пробку относится к скорости v_2 у выхода из нее как давление P_2 относится к P_1 . В нашей установке $P_1 = 4$ атм, а $P_2 = 1$ атм, поэтому

$$v_1 = \frac{P_2}{P_1} v_2 = 35 \text{ cm/c}.$$

Для углекислого газа $\mu = 44$ г/моль, $C_P = 40$ Дж/(моль·К), имеем

$$\Delta T = \frac{\mu}{2C_P} \left(v_2^2 - v_1^2 \right) \approx 7 \cdot 10^{-4} \text{ K}.$$

Это изменение температуры ничтожно мало по сравнению с измеряемым эффектом (несколько градусов).

В данной лабораторной работе исследуется коэффициент дифференциального эффекта Джоуля—Томсона для углекислого газа. По экспериментальным результатам оценивается коэффициент теплового расширения, постоянные в уравнении Ван-дер-Ваальса и температура инверсии углекислого газа. Начальная температура газа T_1 задается термостатом. Измерения проводятся при трех температурах: комнатной, 30 °C и 50 °C.

Методика измерений и используемое оборудование

Рис. 1: Экспериментальная установка

Схема установки для исследования эффекта Джоуля–Томсона в углекислом газе представлена на рисунке 1. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается исследуемый газ. Трубка имеет длину 80 мм и сделана из нержавеющей стали, обладающей, как известно, малой теплопроводностью. Диаметр трубки d=3 мм, толщина стенок 0,2 мм. Пористая перегородка расположена в конце трубки и представляет собой стеклянную пористую пробку со множеством узких и длинных каналов. Пористость и толщина пробки (l=5 мм) подобраны так, чтобы обеспечить оптимальный поток газа при перепаде давлений $\Delta P=4$ атм (расход газа составляет около $10~{\rm cm}^3/{\rm c}$); при этом в результате эффекта Джоуля–Томсона создается достаточная разность температур.

Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается водой и нагревает медленно протекающий через него газ до температуры воды в термостате. Температура воды измеряется термометром, помещенным в термостате. Термостат снабжён автоматическим терморегулятором, поддерживающим постоянной температуру воды в нём сточностью $\pm 0,1^{\circ}\mathrm{C}$.

Давление газа в трубке измеряется манометром M и регулируется вентилем B (при открывании вентиля B, т. е. при повороте ручки против часовой стрелки, давление P_1 повышается). Манометр M измеряет разность между давлением внутри трубки и наружным (атмосферным) давлением. Так как углекислый газ после пористой перегородки выходит в область с атмосферным давлением P_2 , то этот манометр непосредственно измеряет перепад давления на входе и на выходе трубки $\Delta P = P_1 - P_2$.

Разность температур газа до перегородки и после нее измеряется дифференциальной термопарой медь – константан. Константановая проволока диаметром 0,1 мм соединяет спаи 8 и 9, а медные проволоки (того же диаметра) подсоединены к цифровому вольтметру 7. Отвод тепла через проволоку столь малого сечения пренебрежимо мал. Для уменьшения теплоотвода трубка с пористой перегородкой помещена в трубу Дьюара 3, стенки которой посеребрены, для уменьшения теплоотдачи, связанной с излучением. Для уменьшения теплоотдачи за счет конвекции один конец трубы Дьюара уплотнен кольцом 4, а другой закрыт пробкой 10 из пенопласта. Такая пробка практически не создает перепада давлений между внутренней полостью трубы и атмосферой.

Результаты измерений и обработка данных

Определение коэффициента Джоуля-Томсона

Проведём измерение зависимости ΔT от ΔP для разных значений температур. Полученные значения заносим в таблицы 1, 2, 3 и 4. При записи полученных данных также учитываем, что чувствительность термопары медь — константан зависит от температуры. При вычислении будем использовать следующую формулу:

$$\Delta T = \frac{U}{\alpha},$$

где $\alpha_{25^{\circ}C} = 40,7 \text{ мкB/}{}^{\circ}C, \ \alpha_{35^{\circ}C} = 41,5 \text{ мкB/}{}^{\circ}C, \ \alpha_{45^{\circ}C} = 42,4 \text{ мкB/}{}^{\circ}C, \ \alpha_{55^{\circ}C} = 43,2 \text{ мкB/}{}^{\circ}C.$

$\mathrm{T}=25{,}20~\mathrm{^{\circ}C}$					
ΔP , atm	σ_p	U, мкВ	σ_U , мк ${ m B}$	ΔT , K	$\sigma_{\Delta T}$, K
4,00	0,05	104	1	2,56	0,02
3,50	0,05	83	1	2,04	0,02
3,00	0,05	60	1	1,47	0,02
2,50	0,05	45	1	1,11	0,02
2,00	0,05	27	1	0,66	0,02

Таблица 1: Экспериментальные данные для 25 °C

 Φ РКТ М Φ ТИ, 2023 4

	$\mathrm{T}=35{,}06~\mathrm{^{\circ}C}$					
ΔP , atm	σ_p	U, MKB	σ_U , мкВ	ΔT , K	$\sigma_{\Delta T}$, K	
4,00	0,05	106	1	2,55	0,02	
3,50	0,05	78	1	1,88	0,02	
3,00	0,05	58	1	1,40	0,02	
2,50	0,05	44	1	1,06	0,02	
2,00	0,05	20	1	0,48	0,02	

Таблица 2: Экспериментальные данные для 35 °C

$T=45{,}01~^{\circ}\mathrm{C}$					
ΔP , atm	σ_p	U, MKB	σ_U , мкВ	ΔT , K	$\sigma_{\Delta T}$, K
4,00	0,05	98	1	2,31	0,02
3,50	0,05	75	1	1,77	0,02
3,00	0,05	55	1	1,30	0,02
2,50	0,05	36	1	0,85	0,02
2,00	0,05	25	1	0,59	0,02

Таблица 3: Экспериментальные данные для 45 °C

$T=55{,}00~^{\circ}C$					
ΔP , atm	σ_p	U, MKB	σ_U , мкВ	ΔT , K	$\sigma_{\Delta T}$, K
4,00	0,05	92	1	2,13	0,02
3,50	0,05	67	1	1,55	0,02
3,00	0,05	50	1	1,16	0,02
2,50	0,05	34	1	0,79	0,02
2,00	0,05	21	1	0,49	0,02

Таблица 4: Экспериментальные данные для 55 °C

Погрешность вычисления ΔT определяем по формуле:

$$\sigma_{\Delta T} = \Delta T \frac{\sigma_U}{U}.$$

По имеющимся данным проведём аппроксимацию зависимости ΔT от ΔP , чтобы определить коэффициент Джоуля-Томсона. На рисунках 2, 3, 4 и 5 изображены графики зависимостей.

ФРКТ МФТИ, 2023 5

Рис. 2: График зависимости ΔT от температуры ΔP при $T=25^{\circ}\mathrm{C}$

Рис. 3: График зависимости ΔT от температуры ΔP при $T=35^{\circ}\mathrm{C}$

Рис. 4: График зависимости ΔT от температуры ΔP при $T=45^{\circ}\mathrm{C}$

Рис. 5: График зависимости ΔT от температуры ΔP при $T=55^{\circ}\mathrm{C}$

Вычислим $\mu_{\text{Д-T}} = \frac{dT}{dP},$ используя метод наименьших квадратов:

$$\mu_{\text{Д--T}} = \frac{\langle \Delta P \Delta T \rangle - \langle \Delta P \rangle \langle \Delta T \rangle}{\langle \Delta P \rangle - \langle \Delta P \rangle^2}.$$

Случайную погрешность определения этого коэффициента вычислим по следующей формуле:

$$\sigma_{\mu_{\text{Д-T}}}^{\text{случ}} = \sqrt{\frac{1}{N-2} \left(\frac{\left\langle \left(\Delta T - \left\langle \Delta T \right\rangle \right)^2 \right\rangle}{\left\langle \left(\Delta P - \left\langle \Delta P \right\rangle \right)^2 \right\rangle} \right) - \mu_{\text{Д-T}}^2},$$

где N — количество измерений.

Систематические погрешности оценим по следующим формуле:

$$\sigma_{\mu_{\rm J-T}}^{\rm cuct} = \mu_{\rm J-T} \sqrt{\varepsilon_{\Delta P}^2 + \varepsilon_{\Delta T}^2}.$$

Таким образом, полная погрешность измерения определяется следующим соотношением:

$$\sigma_{\mu_{\text{\tiny \mathcal{I}-T}}} = \sqrt{(\sigma_{\mu_{\text{\tiny \mathcal{I}-T}}}^{\text{chct}})^2 + (\sigma_{\mu_{\text{\tiny \mathcal{I}-T}}}^{\text{chyq}})^2}.$$

Результаты вычислений заносим в таблицу 5.

$T, ^{\circ}C$	$\mu_{\text{Д-T}},\mathrm{K/arm}$	$\sigma_{\mu_{\mathrm{Д-T}}},\mathrm{K/atm}$	ε , %
25	0,95	0,04	4,2
35	0,99	0,06	6,0
45	0,87	0,06	6,9
55	0,81	0,06	7,4

Таблица 5: Результаты измерений $\mu_{\text{Д-Т}}$

Вычисление параметров газа Ван-дер-Ваальса и температуры инверсии

Построим график зависимости коэффициента Джоуля–Томсона $\mu_{\text{Д-T}}$ от обратной температуры 1/T (рис. 6) с помощью таблицы 6.

$t,^{\circ}C$	T, K	$1/T, 10^{-3} \cdot K^{-1}$	$\mu_{ extsf{Д-T}}, ext{K}/ ext{a}$ тм	$\sigma_{\mu_{ m Д-T}},{ m K/a}$ тм
25,20	298,20	3,3535	0,95	0,04
35,06	308,06	3,2461	0,99	0,06
45,01	318,01	3,1446	0,87	0,06
55,00	328,00	3,0488	0,81	0,06

Таблица 6: Зависимость коэффициента Джоуля–Томсона $\mu_{\rm A-T}$ от обратной температуры 1/T

Как видно из таблицы, точку, когда температура равна $35^{\circ}C$ нужно отбросить. Коэффициент угла наклона прямой и свободный член найдём, используя метод наименьших квадратов (см. предыдущий пункт).

$$\mu_{\text{Д-T}} = -(0,55 \pm 0,18) \frac{K}{\text{atm}} + (0,45 \pm 0,06) \frac{K}{\text{atm}} \cdot \frac{1000K}{T}$$

Пользуясь формулой 3, найдём коэффициенты а и b:

$$a = \frac{d\mu_{\text{Д-T}}}{d(1/T)} \cdot \frac{RC_p}{2} = 2R^2 \cdot (450 \pm 6) \frac{K^2}{\text{атм}} = (0,62 \pm 0,01) \frac{\text{H} \cdot \text{M}^4}{\text{моль}^2}, \quad a_{\text{табл}} = 0,37 \frac{\text{H} \cdot \text{M}^4}{\text{моль}^2}$$
(5)

$$b = C_p \cdot (0,55 \pm 0,18) \frac{K}{\text{atm}} = \frac{8}{2} R \cdot (0,55 \pm 0,18) \frac{K}{\text{atm}} = (18,3 \pm 6,0) \frac{\text{cm}^3}{\text{моль}}, \quad b_{\text{табл}} = 42,82 \frac{\text{cm}^3}{\text{моль}} \quad (6)$$

Рис. 6: График зависимости коэффициента Джоуля–Томсона $\mu_{\rm A-T}$ от обратной температуры 1/T

Пользуясь соотношениями 5 и 6, вычислим температуру инверсии:

$$T_{\text{\tiny MHB}} = \frac{2a}{Rb} = 8200 \ K \tag{7}$$

Также рассчитаем погрешность $\sigma_{T_{\text{инв}}}$:

$$\sigma_{T_{\text{WHB}}} = T_{\text{WHB}} \sqrt{(\varepsilon_a^2 + \varepsilon_b^2)} \approx 2700 \, K$$

Окончательно получим:

$$T_{\text{инв}} = (8200 \pm 2700) \, K$$

Заключение

В ходе выполнения работы:

- вычислили коэффициенты Джоуля-Томсона для разных температур;
- экспериментальным методом измерили коэффициенты газа Ван-дер-Ваальса «а» и «b»;
- вычислили $T_{\text{инв}}$ для углекислого газа.

В ходе работы мы получили значения, очень сильно отличающиеся от табличных. Погрешность вычисления параметров газа Ван-дер-Ваальса составила десятки процентов. Такая большая ошибка может говорить нам о неприменимости уравнения Ван-дер-Ваальса в условия лабораторной работы. Действительно, это уравнение используется лишь для качественного описания процессов, происходящих с реальными газами. Количественный подход к этому уравнению не применим.

Также для увеличения точности измерений можно использовать более точные методы измерения температуры. Повысить точность необходимо как у термостата, так и у вольтметра, т.к. температура на них колебалась на протяжении эксперимента, несмотря на то, что условия оставались неизменными.