Licznik energii elektrycznej

Instrukcja obsługi

Dotyczy modeli:

- -DDS1946-2P
- -DDSF1946-2P
- -DTS1946-4P
- -DTSF1946-4P

VCX Sp. z o.o.

biuro: pl. Wolnica 13/10

31-060 Kraków, woj. małopolskie

www.vcx.com.pl

NIP 676-253-79-48, REGON 368550681, KRS 0000700160

mbank: 80 1140 2004 0000 3102 7718 7626

Spis treści

1. WPROWADZENIE	
1.1 ZGODNOŚĆ ZE STANDARDAMI	1
2. WYBÓR MODELU	1
3. SPECYFIKACJA TECHNICZNA	2
4. OPIS FUNKCJONALNOŚCI	4
4.1 Pomiar parametrów	4
4.2 Pomiar energii	4
4.3 Interfejs (Menu)	5
4.4 OPTYCZNE WYJŚCIE IMPULSOWE	5
5. INSTRUKCJA MONTAŻU	6
5.1 Schemat podłączenia	6
5.2 Wymiary urządzenia	7
5.3 Instrukcja montażu	7
6. OBSŁUGA URZADZENIA	8
6.1 Opis panelu przedniego	8
6.2 Wyświetlacz LCD	8
7.USTAWIENIA	13
7.1 Programowanie urządzenia	13
7.2 Zakończenie programowania	13
7.2 Menu uczawień	1.4

Informacje zawarte w tym dokumencie mogą ulec zmianie w dowolnym momencie.

1. Wprowadzenie

1.1 Zgodność ze standardami

IEC62053-22:2003 Urządzenia do pomiarów energii elektrycznej (prądu przemiennego) -- Wymagania szczegółowe -- Część 22: Liczniki statyczne energii czynnej (klas 0,2 S i 0,5 S)
IEC62053-23:2003 Urządzenia do pomiarów energii elektrycznej (prądu przemiennego) -- Wymagania szczegółowe -- Część 23: Liczniki statyczne energii biernej (klasa 2)
IEC61010-1:2001 -- Wymagania bezpieczeństwa elektrycznych przyrządów pomiarowych, automatyki i urządzeń laboratoryjnych -- Część 1: Wymagania ogólne

2. Wybór modelu

Funkcja	Model	Jednofazowy		Trójfazowy	
		DDS	DDSF	DTS	DTSF
		1946-2P	1946-2P	1946-4P	1946-4P
Podpięcie	Jednofazowe	٧	٧	-	-
	Trójfazowe (4 przewody)	-	-	٧	٧
Zakres napięcia	220V	٧	٧	=	-
	3×220/380V	-	-	٧	٧
Aktualna specyfikacja	Wejście bezpośrednie	5 (100) A		5 (100)A	
	Wejście przez CT	-		1.5	(6)A
Pomiar w czasie rzeczywistym	U/I	٧	٧	٧	٧
12002/11100/111	P/Q/S	٧	٧	٧	٧
	PF	٧	٧	٧	٧
	F	٧	٧	٧	٧
	THD	-	-	٧	٧
Pomiar energii	Energia dwukierunkowa	٧	٧	٧	٧
	Cztero- kwadrantowa	٧	٧	٧	٧

	energia bierna				
	Energia wielotaryfowa	-	٧	-	٧
Zapotrzebowanie		٧	٧	٧	٧
Wartości maksymalne i minimalne		٧	٧	٧	٧
Zapis wydarzeń		٧	٧	٧	٧
Port komunikacji RS485		٧	٧	٧	٧
Interfejs optyczny		٧	٧	٧	٧
Wyświetlacz		LCD	LCD	LCD	LCD

Oznaczenie: √ Tak, - Nie;

3. Specyfikacja techniczna

Właściwości elektryczne			
Model		DDS1946-2P	DTS1946-4P
		DDSF1946-2P	DTSF1946-4P
Dokładność		Prąd napięciowy:	klasa 0.2,
		Moc, energia czyr	nna: klasa 0.5S,
		Energia bierna: kl	asa 2.
Napięcie znamiono	we	220V	3×220/380V
Prąd wejściowy	Wejście bezpośrednie	5(100)A	5(100)A
	Wejście CT	-	1.5(6)A
Częstotliwość 50/		50/60 Hz	
Sposób podpięcia	jednofazowe trójfazowe czteroprzewo		trójfazowe czteroprzewodowe
Zakres napięcia		0.8Un ~ 1.2Un	
Zużycie energii	Obwód napięciowy	< 4VA	
	Obwód prądowy	< 1VA	
Prąd rozruchowy	Wejście bezpośrednie	0.002lb	
	Wejście CT		0.001ln

Wyjście impulsowe	Gdy aktywne, zakres impulsów(80±20%) ms	
RTC error (błąd pomiarowy)	≤0.5s/day	
Interfejs komunikacji		
Port RS485	Protokół Modbus-RTU, szybkość transmisji do 9600bps	
Właściwości mechaniczne		
Wymiary (mm)	36×90×63.5	72×90×63.5
Klasa szczelności IP	IP54 (obudowa p	orzednia) / IP20 (obudowa tylnia)
Właściwości środowiskowe		
Temperatura pracy	(-25∼70)℃	
Temperatura przechowywania	(-30∼80)℃	
Wilgotność względna	(5∼95)% (bez k	ondensacji)
Kompatybilność elektromagnetyczna (EMC)		
Odporność na wyładowania	IEC 61000-4-2-III class	
elektrostatyczne		
Promieniowanie, częstotliwości radiowe,	IEC 61000-4-3-III class	
odporność na pole elektromagnetyczne		
Badanie odporności na serie szybkich	IEC 61000-4-4-IV class	
elektrycznych stanów przejściowych		
Odporność na przepięcia	IEC 61000-4-5-IV	class
Odporność na przewodzone zaburzenia,	IEC 61000-4-6-III class	
wywoływane przez pola o częstotliwości		
radiowej		
Odporność na pole magnetyczne	IEC 61000-4-8-III class	
o częstotliwości sieciowej		
Spadki napięcia, krótkie przerwy i	IEC 61000-4-11-III class	
odporność na wahania napięcia		

4. Opis funkcjonalności urządzenia

4.1 Pomiar parametrów

Pomiar w czasie rzeczywistym następujących parametrów:

- Napiecie
- Natężenie prądu
- Prąd czynny
- Prąd bierny
- Moc pozorna
- Współczynnik mocy
- Częstotliwość
- Zapotrzebowanie
- Wartości maksymalne i minimalne

4.2 Pomiar energii

Funkcje pomiarowe realizowane przez urządzenie:

- pomiar dwukierunkowej energii czynnej;
- pomiar dwukierunkowej energii biernej;
- pomiar cztero-kwadrantowej energii biernej;
- moc pozorna;
- wielotaryfowy pomiar energii: całkowite zużycie prądu z wielu taryf, pomiar dla różnych taryf DDSF1946-2P/ DTSF1946-4P posiada zestaw dwóch funkcji mierzenia prądu wielotaryfowego.

Posiada 12 interwałów czasowych z czteroma ustawieniami stawek (taryf). Użytkownik może podzielić 24 godzinny zakres pracy na 12 interwałów czasowych i wybrać odpowiednią stawkę z czterech dostępnych ustawień dla każdego interwału osobno.

Użytkownik może także ustawić automatyczny czas odczytu. Licznik umożliwia zapisywanie danych pomiarowych z trzech ostatnich miesięcy.

4.3 Interfejs

- port RS485 jest izolowany od wnętrza licznika; posiada obwód przeciwprzepięciowy
- port RS485 komunikuje sie poprzez podpięcie do komputera w celu programowania ustawień i odczytu parametrów
- domyślny protkół komunikacji to Modbus-RTU.

4.4. Wyjście impulsowe

Licznik posiada impulsowe wyjście energii czynnej; za pomocą otwartego kolektora optycznego umożliwia zdalny odczyt.

Zdalny terminal komputerowy, PLC (programowalny sterownik logiczny) oraz moduł awkizycji danych używane są do zbierania danych z licznika.

Picture 5.1 Diagram testowania wyjścia impulsowego

5. Instrukcja montażu

5.1 Schemat podłączenia

5.2 Wymiary urządzenia

5.3 Instrukcja montażu

6. Obsługa urządzenia

6.1 Opis panelu przedniego

6.2 Wyświetlacz LCD

Licznik energii elektrycznej wyświetla pomiary napięcia, natężenia, mocy, współczynnik mocy, częstotliwość i zużytą energię. Wciśnij przycisk **〈** oraz **〈** równocześnie by przełączać pomiędzy interfejsami wyświetlacza.

6.2.1 Interfej wyświetlacza

Interfejs wyświetlacza	Opis
0007 80.62	Pobór energii czynnej: EP =780.62 kWh
	Eksport energii czynnej: EP- = -0.00 kWh
© KVARH 0000 18.80	Pobór energii biernej: EQ = 18.80 kvarh
	Eksport energii biernej: EQ- = -7.10 kvarh
0002 0002 0009	Całkowite zużycie energi dla T1 (taryfa 1) 208.09 kWh
	Całkowite zużycie energi dla T2 (taryfa 2) 101.06 kWh
# w E 5.58	Całkowite zużycie energi dla T3 (taryfa 3) 382.23 kWh
#W# #W# D000	Całkowite zużycie energi dla T4 (taryfa 4) 89.24 kWh

6.2.2 Opis opcji wyświetlacza dla podłączenia jako licznika jednofazowego

Interfejs wyświetlacza	Opis
5500	Napięcie:
N	U = 220.0 V
3500	Natężenie: I = 35.00 A
P	Moc czynna: P = 7.700 kW
9 -	Moc bierna:
0.006	Q = -0.006 kvar
5	Moc pozorna:
1700	S = 7.700 kVA
PF 1000	Współczynnik mocy: PF = 1.000
F	Częstotliwość:
5000	F = 50.00Hz

6.2.3 Opis opcji wyświetlacza dla podłączenia jako licznika trójfazowego

Interfejs wyświetlacza	Opis
190. I	Napięcie fazowe Ua: Ua = 220.1 V
5505 1P	Napięcie fazowe Ub: Ub = 220.2 V
5500 70	Napięcie fazowe Uc: Uc = 220.0 V
18 (3 38 (3	Napięcie sieciowe Uab: Uab = 381.3V
38 75 NPC,	Napięcie sieciowe Ubc: Ubc = 381.2 V
38 75 7 L A	Napięcie sieciowe Uca: Uca = 381.2 V
R	Natężenie Fazy A: Ia = 10.10A
1020	Natężenie Fazy B: Ib = 10.20A

A	Natężenie Fazy C:
[
1 (00	Ic = 11.00A
□ □ kW	Moc czynna dla Fazy A:
<u>P</u> H	Pa = 2.128 kW
PA 2. 128	
k W	Moc czynna dla Fazy B:
<u> </u>	Pb = 2.040 kW
2.040	
□ E kW	Moc czynna dla Fazy C:
 	Pc = 2.100 kW
PC 2.100	
kW	Suma mocy czynnej:
۲	P = 6.267 kW
P ." 6.267	
k VAR	Moc bierna dla Fazy A:
48	Qa = 0.108 kvar
98 0.108	
k VAR	Moc bierna dla Fazy B:
9 6	Qb = 0.210 kvar
0.2 (0)	Q 0:220 Ma.
k VAR	Moc bierna dla Fazy C:
ן אָר ״״״ן	·
	Qc = 0.098 kvar
k VAR	Łączna moc bierna:
	Q = 0.416 kvar
[].4 [5]	

	Moc pozorna dla Fazy A:
30,7	Sa = 2.218 kVA
5A 2.2 1B	
k VA	Moc pozorna dla Fazy B:
5h	Sb = 2.207 kVA
2.207	35 - 2.207 KV/K
	Moc pozorna dla Fazy C:
]Ŀ , ,	Sc = 2.211 kVA
55 11	
(A.1/A)	Łączna moc pozorna:
5	S = 6.636 kVA
5 *** 6.636	
	Współczynnik mocy dla Fazy A:
PFA 0.985	PFa = 0.985
	F14 - 0.363
	Współczynnik mocy dla Fazy B:
	PFb = 0.998
PF	
	Współczynnik mocy dla Fazy C:
PF[PFc = 0.988
<u>0</u> 988	FFC - 0.500
חר	Suma współczynnika mocy:
PF	PF =1.000
(000	
	Częstotliwość sieci:
 -	F = 50.00 Hz

6.2.4 Interfejsy wyświetlacza:

7. Ustawienia

7.1 Tryb programowania

Wejdź w tryb programowania aby podać kod autoryzacyji. Naciśniej "\" " gdy wyświetlacz pokazuje stan licznika - ekran wyświetli "\" \" \" \" \" pt", naciśnij "\" " by potwierdzić chęć podania kodu, wpisz kod za przy użyciu przycisków "\" oraz "\" by potwierdzić. Hasło początkowe systemu to 0001. Wciśnij "\" by potwierdzić. Jeżeli wprowadzone hasło jest prawidłowe, licznik wyświetli interfejs ustawień. W przypadku błędnego hasła, interfejs pozostanie niezmieniony.

7.2 Zakończenie trybu programowania

Naciśnięcie "◀" oraz "♣" jednocześnie - interfejs wyświetli opcję zapisu "与用uE" potwierdź chęć zapisu wciskając "♣", interfejs wyświetli status "☐□".

1) By zapisać zmienione ustawienie wciśniej "**<**" aby zmienić status na"**5**¶u**E**--**YE5**", potwierdź zapis wciskając "**←**". 2) Wyjście bez zapisywania zmian: pozostaw status "קם", potwierdź wciskając "\".

7.3 Menu ustawień

7.3.1 Ustawienia systemu i komunikacji

Ustaw adres komunikacji na "2", wybierz szybkość transmisji (baud rate) na 9600, ustaw Tryb sprawdzania na parametr "DATA E.8.1", i zmień stosunek CT z 1 na 2.

