

Workflow autonômico para aplicações de Machine Learning utilizando métricas de Fairness

Autor: Thales Eduardo Nazatto (tenazatto@gmail.com)

Orientador(es): Cecília Mary Fischer Rubira (cmrubira@ic.unicamp.br), Leonardo Montecchi (leonardo.montecchi@ntnu.no)

Palavras-chave: Workflow, Machine Learning, Inteligência Artificial, Computação Autônoma, Métricas de Fairness

Introdução

O uso de Inteligência Artificial (IA) envolvendo grandes volumes de dados vem crescendo conforme bilizado no GitHub (https://github.com/tenazatto/MsC) para avaliação e testes em estudos nossa sociedade migra processos manuais de trabalho para soluções digitais e necessita de toma- posteriores. das de decisão mais rápidas e assertivas, mas, devido a barreiras éticas e legais, métricas usadas inicialmente para definir a eficácia de um algoritmo se mostraram limitadas para medir vieses que refletem a sociedade de maneira que não era esperada pelos desenvolvedores da solução. Para resol- f 4ver tal problema, novos algoritmos foram desenvolvidos e um novo conjunto de métricas, denominado como métricas de Fairness, é utilizado para determinar um equilíbrio entre grupos que sofrem discriminações. Entretanto, novos problemas surgem com a introdução deste novo conjunto de algoritmos e métricas, como a piora nas métricas tradicionais de avaliação e aumento de combinações pontuação de 0 a 1000 no cálculo realizado pela análise. de algoritmos utilizados no processo, aumentando a complexidade da análise do Cientista de Dados para obter modelos de forma otimizada.

Objetivo

O objetivo deste trabalho é desenvolver uma estrutura de Workflow para aplicações de Machine Learning que seja completamente autônoma, por três fatores principais:

- etapas corretas do processo, onde eles foram escolhidos para atuar.
- Estabelecer um balanceamento entre métricas para avaliar bons modelos com métricas para avaliar modelos justos.
- Considerar proveniência de dados como requisito no design de uma solução de IA, e como uma alternativa a *Explainable AI* através da utilização de metadados.

Método

Foi desenvolvido um sistema, que pode ser dividido em 4 etapas principais:

- Engenharia de dados: Etapa criada com o objetivo de simular processos de transformação e limpeza de dados.
- Workflow de IA: Etapa para execução de um Workflow que simula o desenvolvimento de uma dade do resultado final.
- Autonomia do Workflow: Etapa que automatiza todas as etapas do Workflow através de um componente, com o objetivo de evitar com que perca-se tempo em execuções manuais que podem demorar dependendo do algoritimo e do conjunto de dados utilizado.
- Interface Humano-Computador: Etapa criada com o objetivo de simular a etapa anterior, porém 5 de modo a proporcionar uma experiência de usuário mais simples e intuitiva, onde sua integração com as outras etapas é mostrada na Figura 1. É dividida em duas partes:
- Frontend: Parte visual, exibida em um navegador.
- Backend: Parte onde o Frontend se comunica para obter os dados para auxiliar a montagem configurações utilizadas por ela.

Figure 1: Comunicação entre interface, autonomia e Workflow de IA

Para o desenvolvimento do workflow, será utilizada a arquitetura Pipe-and-Filter. Para a autonomia deste, será criado um componente utilizando a arquitetura MAPE-K [IBM(2005)] para analisar uma

base de conhecimento e prover o melhor pipeline seguindo regras pré-determinadas. Para a interface, ela foi criada nos moldes de uma aplicação web. O código deste desenvolvimento foi disponi-

Resultados

Foram realizados estudos de caso para verificar a viabilidade da arquitetura MAPE-K na autonomia e a capacidade de evolução para o uso de novos algoritmos e conjuntos de dados. Foi atribuída uma

		Pontuação					
	Atributo protegido	Pré-processamento	Treinamento	Pós-processamento	Performance	Fairness	Geral
	Idade	Nenhum	Regressão Logística	Equalized Odds	968	860	914
	Nacionalidade	Nenhum	Random Forest	Calibrated Equalized Odds	902	922	912
	Nacionalidade	Nenhum	Gradient Boosting	Calibrated Equalized Odds	870	925	898
'_	Idade	Nenhum	Gradient Boosting	Equalized Odds	927	862	894
	Idade	Reweighing	Gradient Boosting	Nenhum	804	931	868

• Facilitar a criação de modelos justos e confiáveis com a automatização da escolha dos algoritmos, É possível ver que há uma diversidade entre os parâmetros do workflow e suas pontuações entre cuja complexidade aumenta com a escolha dos algoritmos a serem utilizados e suas execuções nas métricas de performance e métricas de Fairness, a arquitetura MAPE-K se mostra viável para efetuar um balanceamento. Com diferentes definições de pesos para as métricas, é possível calibrar qual a melhor escolha dependendo do contexto do problema.

> Como exemplo para evolução, foram necessárias modificações para adicionar um novo conjunto de dados como opção no Workflow. Estas foram contadas de acordo com seus commits realizados no repositório e exibidos na tabela abaixo:

	Parte do Sistema	Linhas alteradas	Total de linhas	Arquivos alterados	Total de arquivos	% linhas alteradas	% arquivos alterados
	Engenharia de Dados	122	277	2	3	44,04%	66,67%
	Workflow de IA	76	1982	5	38	3,84%	13,16%
	Autonomia do Workflow	0	457	0	10	0,00%	0,00%
Interface Humano-Computador (Frontend)		13	2905	2	14	0,45%	14,29%
	Interface Humano-Computador (Backend)	4	432	1	7	0,93%	14,29%
2	TOTAL.	215	6053	10	72	3.55%	13.89%

Destas modificações, percebe-se que a grande maioria delas está relacionada a parte de engenharia de dados. Mesmo no Workflow de IA, a maior parte dessas linhas não está relacionada a sua estrutura aplicação automatizada de IA, desde uma categorização dos dados mais específica do que na etapa e sim a uma etapa de adaptação dos dados ao atributo protegido, necessário para algoritmos dedianterior, passando pelo algoritmo utilizado e finalizando obtendo métricas para determinar quali- cados a reduzir viés nos dados. A etapa de autonomia e a Interface Humano-Computador exigiram poucas ou nenhuma alteração e em poucos arquivos, comprovando que a modularização das arquiteturas escolhidas facilita a manutenção do sistema e que a autonomia não é afetada por evoluções no Workflow.

Conclusões

Esta pesquisa mostra que a escolha da arquitetura *Pipe-and-Filter* se mostra favorável para o desenvolvimento de um workflow para aplicações envolvendo IA, permitindo que ele seja modular e que sejam feitas evoluções sem exigir grandes esforços. O uso da arquitetura MAPE-K também se mostrou fado visual e executa o componente utilizado na etapa de autonomia, de forma que corresponda a vorável, permitindo diversos resultados para diferentes contextos de problema e uma simplificação da análise realizada pelo Cientista de Dados, podendo resultar em economia de tempo. Ela também possibilitou um balanço entre performance e justiça através da adição de pesos para cada métrica na parte de análise. Embora os pesos não sejam parte da arquitetura, a divisão presente na arquitetura permite que o desenvolvimento seja pensado de maneira mais clara.

Embora a proveniência de dados não teve o mesmo efeito da aplicação de um método feito para *Ex*plainable AI, a obtenção de metadados do workflow se mostrou essencial para alimentar o componente baseado na arquitetura MAPE-K e possibilitou a análise e tomadas de decisão baseadas em dados. É possível realizar análises mais detalhadas conforme novas execuções forem realizadas, consequentemente podendo resultar em melhores escolhas de algoritmos para contextos distintos, e até considerar novas aplicações de IA caso o volume de dados seja consideravelmente grande. Posteriormente, é possível também rever quais dados podem ser adicionados para que o objetivo de Explainable AI possa ser alcançado de maneira satisfatória.

Referências

[IBM(2005)] An architectural blueprint for autonomic computing. Technical report, IBM, URL https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White% 20Paper%20V7.pdf.