第 1 章 线性规划

Linear Programming

1.1 一般线性规划问题及数学模型

1.1.1 问题的提出

例:某企业计划生产甲、乙两种产品,该两种产品均需经A、B、C、D四种不同设备上加工,按工艺资料规定,在各种不同设备上的加工时间及设备加工能力、单位产品利润如表中所示。问:如何安排产品的生产计划,才能使企业获利最大?

设备 产品	A	В	С	D	单位利润
甲产品乙产品	2 2	1 2	4 0	0 4	2 3
加工能力	12	8	16	12	

建立模型:

```
目标(objective): Max z=2 x_1+3 x_2
限制条件
(subject to):
                2 x_1 + 2 x_2 \le 12
                x_1 + 2 x_2 \le 8
                4 x_1 \leq 16
               4 x_2 \le 12
x_1 \ge 0, x_2 \ge 0
```

1.1.2 线性规划问题的一般数学模型

1. 相关概念

- (1) 决策变量: 模型中要求解的未知量, 简称变量。
- (2) 目标函数:模型中要达到的目标的数学表达式。

(3) 约束条件:模型中的变量取值所需要满足的一切限制条件。

此三项内容称为模型结构的三要素。

2. 线性规划模型的一般要求

- (1) 变 量: 取值连续;
- (2) 目标函数:线性表达式;
- (3) 约束条件:线性的等式或者不等式。

3. 线性规划问题的一般表示方法

(1) 一般式:

$$\max z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$s.t. \begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \leqslant b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \leqslant b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \leqslant b_m \\ x_1, x_2, \cdots, x_n \geqslant 0 \end{cases}$$

s.t.---subject to

(2) 和式:
$$\max z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j \leq b_i & (i=1,2,\dots,m) \\ x_j \geq 0 & (j=1,2,\dots,n) \end{cases}$$

其中: c_j -----表示目标函数系数 a_{ij} -----表示约束条件系数 b_i ----表示约束右端项

(3) 矩阵: max z=CX s.t. AX≤b X≥0

(4) 向量:
$$\max z = \sum_{j=1}^{n} c_{j} x_{j}$$

$$s.t \begin{cases} \sum_{j=1}^{n} p_{j} x_{j} \leq b \\ j=1 \end{cases}$$

$$x_{j} \ge 0 \qquad (j=1,2,\dots,n)$$

4. 线性规划模型的标准形式

- (1) 变量: 所有变量均 $x_i \ge 0$
- (2) 目标函数: 为取 "max"形式
- (3) 约束条件:全部约束方程均为"="连接
- (4) 约束右端项: b_i≥ 0

非标准形式情况有

★变量: $x_i \leq 0$,或 x_i 无约束

★目标函数: min

★约束条件: "≤"或"≥"

★约束右端项: bi<0

5. LP模型的标准化:

- (1) 变量: 若 x_j≤0若 x_j无约束
- (2)目标函数: 当 min z 时,
 则 令 z'=-z,等价于求 max (z'),而 z_{min}=-(-z)_{max}
- (3)约束方程: 当 "≤"时,
 引进松弛(slack)变量+x_s;
 当 "≥"时,
 引进剩余(surplus)变量 x_s;
- (4) 约束右端项: 当 b_i < 0, 则不等式两端同乘(-1)

例: 将下述LP模型标准化:

obj. Min z=
$$2x_1$$
- x_2 + $3x_3$
st. $(x_1+2x_2+4x_3 \le 6$

St.
$$\begin{cases} x_1 + 2 & x_2 + 4x_3 \le 6 \\ 3x_1 - 2x_2 + x_3 = 4 \\ 2x_1 - x_2 - 3x_3 \ge 5 \\ x_1 \ge 0, x_2$$
无符号限制, $x_3 \le 0$

解: 设 z'=-z, $x_2=x_2'-x_2''$, $x_2'\geq 0$, $x_2''\geq 0$, $x_3=-x_3'$, $x_3'\geq 0$, $x_4\geq 0$, $x_5\geq 0$, 则有

obj. Max
$$z' = -2x_1 + (x_2' - x_2' ') + 3x_3'$$

st. $x_1 + 2(x_2' - x_2' ') - 4x_3' + x_4 = 6$
 $3x_1 - 2(x_2' - x_2' ') - x_3' = 4$
 $2x_1 - (x_2' - x_2' ') + 3x_3' - x_5 = 5$
 $x_1 \ge 0, x_2' \ge 0, x_2' ' \ge 0, x_3' \ge 0, x_4 \ge 0, x_5 \ge 0$

复习思考题:

- 1. 什么是模型结构的三要素?
- 2. 什么是线性规划模型?能举出线性规划模型的例子吗?
- 3. LP模型中目标函数系数、约束条件系数、约束右端 项的含义指的是什么? 通常以什么符号表示?
- 4. LP模型的一般表示方法有几种形式?能否写出这些形式?
- 5. 什么是线性规划模型的标准形式?为何提出标准形式?你能否把一个线性规划模型的非标准形式转化为标准形式?

1.1.3 简单线性规划模型的建立

步骤:

(1) 分析问题:确定决策内容、要实现的目标以及所受到的限制条件。

(2) 具体构造模型:选择合适的决策变量、确定目标函数的表达式、约束条件的表达式,分析各变量取值的符号限制。

例1:某工厂在生产过程中需要使用浓度为80%的 硫酸100吨,而市面上只有浓度为30%,45%,73%,85%,92%的硫酸出售, 每吨的价格分别 为400、700、1400、1900和2500元。 问:采用 怎样的购买方案,才能使所需总费用最小?

例2: 设有下面四个投资机会:

甲:在三年内,投资人应在每年年初投资,每年每元投资可获利0.2元,每年取息后可重新将本息用于投资。

乙: 在三年内,投资人应在第一年年初投资,每两年每元投资可获利0.5元,两年后取息,取息后可重新将本息用于投资。这种投资最多不得超过20,000元。

丙:在三年内,投资人应在第二年年初投资,两年后每元投资可获利0.6元。这种投资最多不得超过15,000元。

丁:在三年内,投资人应在第三年年初投资,一年后每元投资可获利0.4元。这种投资最多不得超过10,000元。

假定在这三年为一期的投资中,每期的开始有30,000元资金可供使用,问:采取怎样的投资计划,才能在第三年年底获得最大收益?

例3: 合理下料问题:

要制作100套钢筋架子,每套含2.9米、2.1米、1.5米的钢筋各一根。已知原料长7.4米,问:如何下料,使用料最省?

方案 下料数	I	II	III	IV	V	
2.9米	1	2		1		
2.1米			2	2	1	
1.5米	3	1	2		3	
合计(米)	7.4	7.3	7.2	7.1	6.6	
料头(米)	0	0.1	0.2	0.3	0.8	

例4: 有A、B两种产品,都需要经过前、后两道化学反应过程。每种产品需要的反应时间及其可供使用的总时间如表示。

每生产一个单位产品B的同时,会产生2个单位的副产品C,且不需外加任何费用。副产品C的一部分可以出售盈利,其余的只能加以销毁。

副产品C每卖出一个单位可获利3元,但是如果卖不出去,则每单位需销毁费用2元。预测表明,最多可售出5个单位的副产品C。

要求确定使利润最大的生产计划。

产品过程	A	В	可利用时间
前道过程	2	3	16
后道过程	3	4	24
单位利润	4	10	

例5: 一家昼夜服务的饭店,24小时中需要的服务员数如下表所示。每个服务员每天连续工作8小时,且在时段开始时上班。问: 最少需要多少名服务员? 试建立该问题的线性规划模型。

起迄时间	服务员人数
26 时	4
610 时	8
1014 时	10
1418 时	7
1822 时	12
222 时	4

建立线性规划模型要求:

- (1) 要求决策的量是可以连续取值的可控量,或者是可以简化为连续取值的变量;
- (2) 要求所解决的问题的目标可用数值指标描述,并且能表示成线性函数;
- (3) 存在着多种决策方案可供选择;
- (4) 决策所受到的限制条件可用线性的等式或者不等式表示。

1.1.4 线性规划问题解的有关概念

设模型

$$\max z = \sum_{j=1}^{n} c_j x_j$$

$$s.t. \begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i & (i=1,2,\dots,m) \\ x_j \ge 0 & (j=1,2,\dots,n) \end{cases}$$

- (1) 可行解:满足所有约束方程和变量符号限制条件的一组变量的取值。
- (2) 可行域:全部可行解的集合称为可行域。
- (3) 最优解: 使目标函数达到最优值的可行解。

- (4) 基:设A为线性规划模型约束条件系数矩阵 $(m \times n, m < n)$,而B为其 $m \times m$ 子矩阵,若 $|B| \neq 0$,则称B为该线性规划模型的一个基。
 - (5) 基变量: 基中每个向量所对应的变量称为基变量。
 - (6) 非基变量: 模型中基变量之外的变量称为非基变量。
 - (7) 基本解(基解): 令模型中所有非基变量 $X_{i}=0$ 后,由模型约束方 程组 $\sum_{\substack{n \\ \sum a_{ij}x_{j}=b_{i} (i=1,2,\cdots,m) \\ j=1}} E_{i}(i=1,2,\cdots,m)$ 得到的一组解。
- (8) 基本可行解(基可行解): 在基本解中,同时又是可行解的解称为基本可行解。
 - (9) 可行基:对应于基本可行解的基称为可行基。

例: Max
$$z=2x_1+3x_2$$
 st. $x_1+x_2 \le$

st.
$$\begin{cases} x_1 + x_2 \le 3 \\ x_1 + 2x_2 \le 4 \\ x_1, x_2 \ge 0 \end{cases}$$

Max
$$z=2x_1+3x_2+0x_3+0x_4$$

st.
$$\begin{cases} x_1 + x_2 + x_3 = 3 \\ x_1 + 2x_2 + x_4 = 4 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

可行解: $X=(0, 0)^T$, $X=(0, 1)^T$, $X=(1/2, 1/3)^T$ 等。

$$x_1$$
 x_2 x_3 x_4 x_4 x_5 x_4 x_5 x_5 x_4 x_5 x_4 x_5 x_5 x_6 x_6 x_6 x_6 x_7 x_8 x_8 x_8 x_9 x_9

令
$$x_1=x_2=0$$
,则 $x_3=3$, $x_4=4$, $X=(0,0,3,4)^T$ ——基本可行解

$$x_1$$
 x_3 \Rightarrow $B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, 则 $|B| = -1 \neq 0$,

令
$$x_2=x_4=0$$
,则 $x_3=-1$, $x_1=4$, $X=(4,0,-1,0)^T$ ——非基本可行解

复习思考题:

- 1. 可行解和可行域有怎样的关系?
- 2. 一个标准化LP模型,最多可有多少个基?
- 3. 基本解是如何定义的? 怎样才能得到基本解?
- 4. 可行解、基本解、基本可行解三者之间有什么关系? 在 LP模型中是否一定存在?
- 5. 什么是可行基?

1.2 线性规划问题的图解方法

* 利用作图方法求解。

例: max
$$z=2x_1+3x_2$$

s.t $2x_1+2x_2 \le 12$ ------①
 $x_1+2x_2 \le 8$ ------②
 $4x_1 \le 16$ ------③
 $4x_2 \le 12$ -------④
 $x_1 \ge 0, x_2 \ge 0$

- 步骤: (1) 作平面直角坐标系,标上刻度;
 - (2) 作出约束方程所在直线,确定可行域;
 - (3) 作出一条目标函数等值线,判定优化方向;
 - (4) 沿优化方向移动,确定与可行域相切的点,确定最优解,并计算最优值。

讨论一: LP模型求解思路:

- (1) 若LP模型可行域存在,则为一凸集合;
- (2) 若LP模型最优解存在,则其应在其可行域顶点上找到;
- (3) 顶点与基本解、基本可行解的关系:

讨论二:模型求解时,可得到如下几种解的状况:

- (1) 唯一最优解:只有一点为最优解点,简称唯一解;
- (2) 无穷多最优解:有许多点为最优解点,简称无穷多解;
- (3) 无界最优解: 最优解取值无界, 简称无界解;
- (4) 无可行解:无可行域,模型约束条件矛盾。

复习思考题:

- 1. LP模型的可行域是否一定存在?
- 2. 图解中如何去判断模型有唯一解、无穷多解、无界解和无可行解?
- 3. LP模型的可行域的顶点与什么解具有对应关系?
- 4. 由图解过程能否构想一个多维LP模型的求解思路?

1.3 单纯形法的基本原理 (Simplex Method)

- 1.3.1 两个概念:
- (1) 凸集:对于集合C中任意两点连线上的点,若也在C内,则称C为凸集。

或者,任给 $X_1 \in C$, $X_2 \in C$, $X=\alpha X_1 + (1-\alpha)X_2 \in C$ (0 $<\alpha < 1$),则C 为凸集。

非凸集

(2) 顶点: 凸集中不成为任意两点连线上的点, 称为凸集顶点。

或者,

设C为凸集,对于 $X \in C$,不存在任何 $X_1 \in C$, $X_2 \in C$, $LX_1 \neq X_2$,使得 $X = \alpha X_1 + (1 - \alpha) X_2 \in C$, $(0 < \alpha < 1)$,则X 为凸集顶点。

1.3.2 三个基本定理:

定理1: 若LP模型存在可行解,则可行域为凸集。

并设其可行域为C,若 X_1 、 X_2 为其可行解,且 $X_1 \neq X_2$,则 $X_1 \in C$, $X_2 \in C$, 即A $X_1 = b$, $AX_2 = b$, $X_1 \geq 0$, $X_2 \geq 0$,

又 X为 X_1 、 X_2 连线上一点,即 $X=\alpha X_1+(1-\alpha)X_2$, $(0<\alpha<1)$

- $\therefore AX = \alpha AX_1 + (1-\alpha)AX_2 = \alpha b + (1-\alpha)b = b, (0 < \alpha < 1), \quad \exists X \ge 0$
- $X \in C$
- : C为凸集。

引理: LP模型的可行解 $X=(x_1, x_2, \dots, x_n)^T$ 为基本可行解的充要条件是X的正分量所对应的系数列向量线性独立。

证:

(1) 必要性: X基本可行解⇒X的正分量所对应的系数列向量线性独立

可设 $X=(x_1, x_2, \dots, x_k, 0, 0, \dots, 0)^T$,若X为基本可行解,显然,由基本可行解定义可知 x_1 , x_2 ,……, x_k 所对应的系数列向量 P_1 , P_2 ,……, P_k 应该线性独立。

(2) 充分性: X的正分量所对应的系数列向量线性独立 $\Rightarrow X$ 为基本可行解 若A的秩为m,则X的正分量的个数 $k \le m$;

当k=m时,则 x_1, x_2, \dots, x_k 的系数列向量 P_1, P_2, \dots, P_k 恰好构成基,

: X为基本可行解。

当k<m时,则必定可再找出m-k个列向量与P₁,P₂,·····,P_k一起构成基,

: X为基本可行解。

定理2: LP模型的基本可行解对应其可行域的顶点。

证: 用反证法 X非基本可行解⇔X非凸集顶点

- (1) 必要性: X非基本可行解⇒ X非凸集顶点
 不失一般性, 设X=(x₁, x₂, ·····, xո, 0, 0, ·····, 0)^T, 为非基本可行解,
- : X为可行解,

又 X是非基本可行解, : P_1, P_2, \dots, P_m 线性相关,即有 $\delta_1 P_1 + \delta_2 P_2 + \dots + \delta_m P_m = 0, \quad \text{其中} \delta_1, \ \delta_2, \dots, \delta_m$ 不全为0,两端同乘 $\mu \neq 0$,得 $\mu \delta_1 P_1 + \mu \delta_2 P_2 + \dots + \mu \delta_m P_m = 0, \dots \dots (2)$

曲 (1)+(2)得
$$(x_1 + \mu \delta_1)P_1 + (x_2 + \mu \delta_2)P_2 + \cdots + (x_m + \mu \delta_m)P_m = b$$

由 (1)-(2)得 $(x_1 - \mu \delta_1)P_1 + (x_2 - \mu \delta_2)P_2 + \cdots + (x_m - \mu \delta_m)P_m = b$

令
$$X_1$$
=(x_1 + $\mu\delta_1$, x_2 + $\mu\delta_2$,, x_m + $\mu\delta_m$, 0 ,, 0) T X_2 =(x_1 - $\mu\delta_1$, x_2 - $\mu\delta_2$,, x_m - $\mu\delta_m$, 0 ,, 0) T 取 μ 充分小,使得 x_j ± $\mu\delta_j$ ≥0,则 X_1 、 X_2 均为可行解,但 X =0. $5X_1$ +(1 -0. 5) X_2 , ∴ X 是 X_1 、 X_2 连线上的点, ∴ X 非凸集顶点。

(2) 充分性: X非凸集顶点⇒ X非基本可行解

设 $X=(x_1, x_2, \dots, x_r, 0, 0, \dots, 0)^T$ 为非凸集顶点,则必存在Y、Z两点,使得

 $X=\alpha Y+(1-\alpha)Z$, $(0<\alpha<1)$,且Y、Z为可行解

或者 $x_j = \alpha y_j + (1-\alpha) z_j$ (0<\a<1), (j=1, 2, \cdots\cdots, n), $y_j \ge 0$, $z_j \ge 0$

 \therefore $\alpha > 0$, $1-\alpha > 0$, $\exists x_j = 0$, 必有 $y_j = z_j = 0$

$$[P] \qquad (y_1 - z_1)P_1 + (y_2 - z_2)P_2 + \cdots + (y_r - z_r)P_r = 0$$

- $:: Y \setminus Z$ 为不同两点, $:: y_j^{-z_j}$ 不全为0,
- ∴ P₁, P₂, ·····, P_r线性相关,
- : X非基本可行解。

定理3: 若LP模型有最优解,则一定存在一个基本可行解为 最优解。

证: 设 $X^0 = (x_1^0, x_2^0, \dots, x_n^0)^T$ 是线性规划模型的一个最优解, $z^0 = z_{max} = CX^0$

若X⁰非基本可行解,即非顶点,只要取δ充分小,

则必能找出 $X^1 = X^0 - \delta \ge 0$, $X^2 = X^0 + \delta \ge 0$,即 X^1 、 X^2 为可行解,

$$z^{1}=CX^{1}=CX^{0}-C\delta=z_{max}-C\delta$$
, $z^{2}=CX^{2}=CX^{0}+C\delta=z_{max}+C\delta$

$$z^0 = z_{\text{max}} \ge z^1$$
, $z^0 = z_{\text{max}} \ge z^2$,

$$z^1 = z^2 = z^0$$
,即 X^1 、 X^2 也为最优解,

若X¹、X²仍不是顶点,可如此递推,直至找出一个顶点为最优解。

从而,必然会找到一个基本可行解为最优解。

单纯形法的计算步骤:

1. 初始基本可行解的确定:

设模型

$$\max z = \sum_{j=1}^{n} c_{j} x_{j}$$
 s.t. $\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \le b_{i} & (i=1,2,\cdots,m) \end{cases} \xrightarrow{\text{化标准形}}$
$$x_{j} \ge 0 \qquad (j=1,2,\cdots,n)$$

$$\max z = \sum_{j=1}^{n} c_{j} x_{j} + \sum_{i=1}^{m} 0 \cdot x_{si}$$
 s.t. $\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} + x_{si} = b_{i} & (i=1,2,\cdots,m) \\ x_{j} \ge 0, \quad x_{si} \ge 0 & (j=1,2,\cdots,n; i=1,2,\cdots,m) \end{cases}$

∴ 初始基本可行解 $X=(\underbrace{0,0,\cdots,0}_{n \uparrow 0},b_1,b_2,\cdots,b_m)^T$,

2. 从一个基本可行解向另一个基本可行解转换

不失一般性,设基本可行解 $X^0=(x_1^0, x_2^0, \dots, x_m^0, 0, \dots, 0)^T$,前m个分量为正值,秩为m,其系数矩阵为

$$\sum_{j=1}^{n} p_j x_j^0 = \sum_{i=1}^{m} p_i x_i^0 = b \cdots (1)$$

 $\mathbb{Z}P_1$ P_2 P_m 为一个基,任意一个非基向量 P_j 可以以该组向量线性组合表示,即

$$P_{j} = a_{1j} P_{1} + a_{2j} P_{2} + \cdots + a_{mj} P_{m}$$
, $\exists P_{j} = \sum_{i=1}^{m} a_{ij} P_{i}$,

移项,两端同乘 $\theta > 0$,有 $\theta(P_j - \sum_{i=1}^m a_{ij} p_i) = 0$ ······(2)

(1) + (2):
$$\sum_{i=1}^{m} (x_i^{0} - \theta a_{ij}) P_i + \theta P_j = b,$$

取 θ 充分小,使所有 $x_i^0 - \theta a_{ij} \ge 0$,从而

$$X^{1} = (x_{1}^{0} - \theta a_{1j}, x_{2}^{0} - \theta a_{2j}, \dots, x_{m}^{0} - \theta a_{mj}, 0, \dots, \theta, \dots, 0)^{T}$$

也是可行解。

当取
$$\theta = \min_{i} \left\{ \frac{\mathbf{x}_{i}^{0}}{\mathbf{a}_{ij}} \middle| \mathbf{a}_{ij} > 0 \right\} = \frac{\mathbf{x}_{L}^{0}}{\mathbf{a}_{lj}}, \quad 则X^{1}的前m个分量至少有一个为0 (如 \mathbf{x}_{L}^{1})。$$

$$\therefore$$
 P_1 , P_2 , \cdots , P_{L-1} , P_{L+1} , \cdots P_m , P_j 线性无关。

: X1 也为基本可行解。

3. 最优解的判别

依題义
$$z^{0} = \sum_{j=1}^{n} c_{j} x_{j}^{0} = \sum_{i=1}^{m} c_{i} x_{i}^{0}$$

$$z^{1} = \sum_{j=1}^{n} c_{j} x_{j}^{1} = \sum_{i=1}^{m} c_{i} (x_{i}^{0} - \theta a_{ij}) + c_{j}^{0} \theta$$

$$= \sum_{i=1}^{m} c_{i} x_{i} + \theta (c_{j}^{0} - \sum_{i=1}^{m} c_{i} a_{ij}) = z^{0} + \theta \sigma_{j}$$

因 $\theta > 0$,所以有如下结论:

- (1) 对所有j, 当 $\sigma_i \leq 0$, 有 $z^1 \leq z^0$, 即 z^0 为最优值, X^0 为最优解;
- (2) 对所有j,当 $\sigma_j \le 0$,但存在某个非基变量 $\sigma_k = 0$,则对此 P_k 作为新基向量得出的解 X^1 ,应有 $z^1 = z^0$,故 z^1 也为最优值,从而 X^1 为最优解,且为基本可行解,
 - ∴ X⁰、X¹连线上所有的点均为最优解,因此该线性规划模型 具有无穷多解;
- (3) 若存在某个 $\sigma_j > 0$,但对应 $a_{ij} \le 0$,则因当 $\theta \to \infty$ 时,有 $z^1 \to \infty$,
 - : 该线性规划模型具有无界解。

复习思考题:

- 1. 单纯形法的基本原理对你有何启示?
- 2. 单纯形法首先确定初始解的意义是什么?
- 3. 单纯形法计算中基可行解的转换是怎样实现的?
- 4. 检验数为何能够判断解的最优性?
- 5. 如何判断一个可行解是否为基可行解?

- 1.4 单纯形法的计算及示例
- 1.4.1 单纯形法计算步骤---顶点寻优

例:
$$\max z=2x_1+3x_2$$
 $\max z=2x_1+3x_2+0x_3+0x_4$ s.t $x_1+x_2 \le 3$ 标准化 s.t $x_1+x_2+x_3=3$ $x_1+2x_2 \le 4$ $x_1 \ge 0, x_2 \ge 0$ $x_1+x_2+x_3=3$ $x_1+x_1+x_2+x_2+x_3=3$ $x_1+x_2+x_$

(1) 初始基本可行解的选择: -----坐标原点处

(2) 是否为最优解的判定:----计算检验数

若
$$x_1 \uparrow 1$$
, 则 $x_3 \downarrow 1$, $x_4 \downarrow 1$, $\sigma_1 = 2 - (0 \times 1 + 0 \times 1) = 2$ $\sigma_j = \triangle z = c_j - z_j = c_j - \sum c_i a_{ij}$, 称 σ_j 为检验数。

若 $x_2 \uparrow 1$, 则 $x_3 \downarrow 1$, $x_4 \downarrow 2$, $\sigma_2 = 3 - (0 \times 1 + 0 \times 2) = 3$ **** 当所有检验数均有 $\sigma_i \leq 0$ 时,则为最优解。****

(3) 找新的顶点(基本可行解):

∴ $x_2 = min (3/1, 4/2)$, 从而 $x_3 = 1 - (x_1/2 - x_4/2)$ $x_2 = 2 - (x_1/2 + x_4/2)$

令 $x_1 = x_4 = 0$,则新的基本可行解为 $X = (0, 2, 1, 0)^T$ 重复上述过程,直至所有检验数 $\sigma_i \leq 0$ 。

若 $x_1 \uparrow 1$, 则 $x_3 \downarrow 1/2$, $x_2 \downarrow 1/2$, $\sigma_1 = 2 - (0 \times 1/2 + 3 \times 1/2) = 1/2$

若 $x_4 \uparrow 1$, 则 $x_3 \downarrow -1/2$, $x_2 \downarrow 1/2$, $\sigma_4 = 0 - (0 \times (-1/2) + 3 \times 1/2) = -3/2$ 继续迭代:

找新的顶点(基本可行解):

$$\therefore x_1 = \min(2, 4), 从而$$

$$\begin{cases} x_1 = 2 - (2x_3 - x_4) \\ x_2 = 1 - (-x_3 + x_4) \end{cases}$$

则新的基本可行解为 X=(2,1,0,0)T

$$\sigma_3 = -1, \ \sigma_4 = -1, \ z_{max} = 7$$

---第1章 线性规划---

1.4.2 单纯形法计算:

$C_i \rightarrow$	2	3	0	0	
$C_B X_B b$	\mathbf{x}_1	\mathbf{X}_{2}	\mathbf{x}_3	X_4	$\theta_{\rm i}$
$0 x_3 3$	1	1	1	0	3/1=3
$0 x_4 4$	1	(2)	0	1	4/2=2
c _j - z _j	2	3	0	0	
$0 x_3 1$	[1/2]	0	1	-1/2	2
$3 x_2 2$	1/2	1	0	1/2	4
c _j - z _j	1/2	0	0	-3/2	
$2 x_1 2$	1	0	2	-1	
3 x ₂ 1	0	1	-1	1	
c _j - z _j	0	0	-1	-1	

单纯形法计算过程总结:

(1) 化标准形, 列初始单纯形表;

(2) 计算检验数:
$$\sigma_j = \triangle z = c_j - z_j = c_j - \sum_{i=1}^m c_i a_{ij}$$

(3) 最优性判断: 当所有检验数均有 $\sigma_j \leq 0$ 时,则为最优解。否则 迭代求新的基本可行解。

注: 当所有检验数 $\sigma_j \leq 0$ 时,若存在非基变量检验数为0时,则有无穷多解,否则只有唯一最优解。

(4) 迭代:

入基变量: 取 $\max\{\sigma_j > 0\} = \sigma_k \rightarrow x_k$

出基变量: 取min $\{\theta_i = b_i/a_{ik} \mid a_{ik} > 0\} = \theta_{(l)} \rightarrow x_{(l)}$

主元素: [a_{lk}]

新单纯表: pk=单位向量

复习思考题:

- 1. 单纯型表与模型图解有怎样的对应关系?
- 2. 检验数的经济含义?
- 3. 如果目标函数标准型用min,怎样判断模型最优解?
- 4. 由图解过程能否构想一个多维LP模型的求解思路?
- 5. 若约束方程有 "≥"和 "="结构,单纯形法能用吗?

1.5 单纯形法进一步讨论

1. 大M法

例: min
$$z=2x_1+3x_2$$
 max $z=-2x_1-3x_2+0x_3$ s.t $\begin{cases} x_1+x_2 \ge 3 \\ x_1+2x_2 = 4 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$ ⇒ $\begin{cases} x_1+x_2-x_3=3 \\ x_1+2x_2=4 \\ x_j \ge 0, (j=1,2,3,4) \end{cases}$

引进人工变量,及M——非常大正系数,模型转变为

s.t
$$\begin{cases} x_1 + x_2 - x_3 + x_4 = 3 \\ x_1 + 2x_2 + x_5 = 4 \\ x_j \ge 0, (j=1,2,3,4,5) \end{cases}$$

 $\max z = -2x_1 - 3x_2 + 0x_3 - Mx_4 - Mx_5$

这种处理方法称为大M法,以下则可完全按单纯形法求解。

---第1章 线性规划---

$C_i \rightarrow$	-2	-3	0	-M	-M	
C_B X_B b	\mathbf{x}_1	\mathbf{x}_2	X ₃	X ₄	X ₅	$\theta_{\rm i}$
-M X ₄ 3	1	1	-1	1	0	3/1=3
-M X ₅ 4	1	(2)	0	0	1	4/2=2
$c_j - z_j$	-2+2M	-3+3M	-M	0	0	
-M x ₄ 1	[1/2]	0	-1	1	-1/2	2
-3 x_2 2	1/2	1	0	0	1/2	4
c _j - z _j	-1/2+M/2	0	-M	0	3/2-M/2	
-2 x ₁ 2	1	0	-2	2	-1	
-3 x ₂ 1	0	1	1	-1	1	
c _j - z _j	0	0	-1	1-M	1-M	

说明:

当所有 σ_j ≤0 ,但存在人工变量 x_{Λ} ≠0,则可以判定该模型无可行解。

采用大M法求解线性规划模型时,如果模型中各个系数与M的值非常接近时,若手工计算时,不会出现任何问题。如果利用计算机程序求解,则大M表现为一个较大的数字,由于综合计算的影响,导致检验数出现符号误差,引起判断错误,从而使大M方法失效。在这种情况下,可采用下面的两阶段法进行计算。

2. 两阶段法:

例: min z=2x₁+3x₂ max z=-2x₁-3x₂+0x₃ s.t
$$x_1+x_2 \ge 3$$
 标准化 s.t $x_1+x_2-x_3=3$ $x_1+2x_2=4$ $x_1 \ge 0$, $x_2 \ge 0$ $x_1+x_2-x_3=3$ $x_1+x_1+x_2-x_2=3$ $x_1+x_2-x_3=3$ $x_1+x_2-x_3=3$ $x_1+x_2-x_3=3$ $x_1+x_2-x_3=3$ $x_1+x_2-x_3=3$

(1) 第一阶段,构造判断是否存在可行解的模型:

obj:
$$\max w = -x_4 - x_5$$

s.t
$$\begin{cases} x_1 + x_2 - x_3 + x_4 = 3 \\ x_1 + 2x_2 + x_5 = 4 \\ x_j \ge 0, (j=1,2,3,4,5) \end{cases}$$

用单纯形法求解,若 $w_{max}=0$,表明该模型有可行解,则可进入第二阶段,求原模型最优解。

---第1章 线性规划---

$C_i \rightarrow$	0	0	0	-1	-1	
C_B X_B b	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X ₄	X ₅	$\theta_{\rm i}$
-1 X ₄ 3	1	1	-1	1	0	3/1=3
-1 X ₅ 4	1	(2)	0	0	1	4/2=2
c _j - z _j	2	3	-1	0	0	
-1 X ₄ 1	[1/2]	0	-1	1	-1/2	2
$0 \mathbf{x}_2 2$	1/2	1	0	0	1/2	4
c _j - z _j	1/2	0	-1	0	-3/2	
$0 x_1 2$	1	0	-2	2	-1	
$0 \mathbf{x}_2 \qquad 1$	0	1	1	-1	1	
c _j - z _j	0	0	0	-1	-1	

---第1章 线性规划---

(2) 第二阶段,将原目标函数引入最终单纯形表,继续迭代: $\max z=-2x_1-3x_2+0x_3$

	$C_i \rightarrow$		-2	-3	0
$C_{\rm B}$	X_{B}	b	\mathbf{x}_1	\mathbf{x}_2	\mathbf{X}_3
-2	\mathbf{x}_1	2	1	0	-2
-3	\mathbf{X}_2	1	0	1	1
C	j - Z _j		0	0	-1

复习思考题:

- 1. 大M法和两阶段法用来解决什么问题?
- 2. 大M的作用是什么?
- 3. 两阶段法第一阶段解决什么问题?
- 4. 什么情况下模型需引入人工变量?
- 5. 人工变量作用机理是什么?

1.6 单纯形法的矩阵描述

单纯形法迭代过程可用矩阵变换描述如下: 设

式中, B——最终表中基对应的矩阵,

N——初始表与最终表中均为非基对应的矩阵,

I——单位矩阵

约束方程两端同乘B-1,则可得如下表达式:

$$\max z = C_B X_B + C_N X_N + 0 X_S$$
 $t = B^{-1} B X_B + B^{-1} N X_N + B^{-1} X_S = B^{-1} b$ $X_B, X_N, X_S \ge 0$ ——对应最终单纯形表的模型

用单纯形表表示如下:

初始表	X_{B}	X_N	X _S
$X_S = b$	В	N	I
c _j - z _j	$\sigma_{\rm B}$	$\sigma_{ m N}$	0,, 0

	表中,
	$\mathbf{b}' = \mathbf{B}^{-1}\mathbf{b}$
{	$\mathbf{N}' = \mathbf{B}^{-1}\mathbf{N}$

【 或者 P_i =B-¹P_i

最终表	X_{B}	X_N	X _S		
$X_B = b'$	I	N'	B-1		
c _j - z _j	0,, 0	$\sigma_{ ext{N}}$	$\sigma_{\rm S}$		

$$\begin{cases} \sigma_N^{'} = C_N - C_B B^{-1} N \\$$
或者 $\sigma_j^{'} = C_j - C_B B^{-1} P_j$

$$\sigma_S^{'} = -C_B B^{-1}$$

*** 单纯形法计算的改进——改进单纯形法步骤***

- (1) 化标准形: $\diamondsuit B^{-1}_{old} = I$, D = I, $B^{-1}_{new} = D B^{-1}_{old} = I$, $X_B = B^{-1}_{new} b$,
- (2) 求检验数: $\sigma_N = C_N C_B B^{-1}_{new} N$, $\sigma_S = -C_B B^{-1}_{new}$
- (3) 最优性判别:
 - ① 所有σ≤0, X_λ≠0, 无可行解;
 - ② 所有 $\sigma \leq 0$, $X_{\lambda}=0$,存在 $\sigma_{N}=0$,无穷多解;
 - ③ 所有 $\sigma \leq 0$, $X_{\lambda} = 0$,不存在 $\sigma_{N} = 0$,唯一解;
 - ④ 否则(存在 $\sigma > 0$), 转(4),
- (4) 取 $\sigma_{max} \to x_k$, 为换入变量, 计算 $P_k^{'} = B^{-1}_{new} P_k$, 若 $\{P_k^{'}\} \le 0 \to \mathbb{E}$ 开解, 否则,计算 $\theta_i = \{b_i / a_{ik} | a_{ik} > 0\}$,取 $\theta_{min} \to x_L$ 为换出变量,

(5)
$$B^{-1}_{\text{new}} \to B^{-1}_{\text{old}}$$
,

转(2)。

注: D矩阵为基所在单位矩阵中出基变量所在列以上述列向量P_k′代换。

实例演算如下:

(1) 初始解:

(2) 第二次计算:

$$B^{-1}_{\text{new}} \to B^{-1}_{\text{old}}, \quad P_2' = (1, 2)^T \quad D = \begin{bmatrix} 1 & -1/2 \\ 0 & 1/2 \end{bmatrix}$$

$$B^{-1}_{\text{new}} = D B^{-1}_{\text{old}} = \begin{bmatrix} 1 & -1/2 \\ 0 & 1/2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1/2 \\ 0 & 1/2 \end{bmatrix}$$

$$X_B = (x_3, x_2)^T = B^{-1}_{new} b = (1, 2)^T,$$
 $\sigma_N = (\sigma_1, \sigma_4) = C_N - C_B B^{-1} N = (2, 0) - (0, 3) \begin{bmatrix} 1 & -1/2 \\ 0 & 1/2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$
 $= (1/2, -3/2),$

∴ 换入变量: $\sigma_{\text{max}} \rightarrow x_1$,

计算
$$P_1' = B^{-1}_{\text{new}} P_1 = (1/2, 1/2)^T$$
,

: 换出变量:
$$\theta_i = \{ b_i / a_{i1} | a_{i1} > 0 \} = (2, 4), \theta_{min} \rightarrow x_3,$$

(3) 第三次计算:

$$B^{-1}_{\text{new}} \to B^{-1}_{\text{old}}, \quad P_2' = (1/2, 1/2)^T, \qquad D = \begin{bmatrix} x_3 & x_2 \\ 2 & 0 \\ -1 & 1 \end{bmatrix}$$

$$B^{-1}_{\text{new}} = D B^{-1}_{\text{old}} = \begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1/2 \\ 0 & 1/2 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$

$$X_{B} = (x_{1}, x_{2})^{T} = B^{-1}_{new} b = (2, 1)^{T},$$

$$\sigma_{N} = (\sigma_{3}, \sigma_{4}) = C_{N} - C_{B} B^{-1} N = (0, 0) - (2, 3) \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= (-1, -1),$$

所有σ≤0, 故为最优解,

$$X_B = (x_1, x_2)^T = (2, 1)^T, z_{max} = 7$$

---第1章 线性规划---

例 用单纯形法解目标规划问题时,有如下二个单纯形表,试把表中数字补全。

$C_i \rightarrow$			0	0
C_B X_B b	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X ₄
$ \begin{array}{cccc} 0 & x_3 & 3 \\ 0 & x_4 \end{array} $			1	0
$0 \mathbf{x}_4$			0	1
c _j - z _j				

$C_B X_B$	b	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	
\mathbf{x}_1				2	-1	
X_2	1			-1	1	
$c_j - z_j$	1			-1	-1	

解:

$$\sigma_{S} = (-1, -1) = (\sigma_{3}, \sigma_{4}) = C_{S} - C_{B} B^{-1} = -(c_{1}, c_{2}) \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= -(2c_{1} - c_{2}, -c_{1} + c_{2})$$

$$\begin{bmatrix} b_1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ b_2 \end{bmatrix} = \begin{bmatrix} 6-b_2 \\ -3+b_2 \end{bmatrix} \qquad \therefore \qquad \begin{bmatrix} b_1 = 2 \\ b_2 = 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies \begin{bmatrix} 2a_{11} - a_{21} & -2a_{12} - a_{22} \\ -a_{11} + a_{21} & -a_{12} + a_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$a_{11}=1$$
, $a_{12}=1$, $a_{21}=1$, $a_{22}=2$

复习思考题:

- 1. 单纯型法矩阵原理的核心要点是什么?
- 2. 单纯形表的初始表和最终表有怎样的关系单纯形?
- 3. 任一步的单纯形表与初始表有怎样的关系?
- 4. "改进单纯形法"改进在什么地方?
- 5. 改进单纯形法用于手工计算时是否比单纯形法简便?

1.7 线性规划问题的应用案例

例1: 泰和玩具公司,预计2001年里公司的月现金流量如表中所示。负的现金流量表示流出的现金超过流入的现金。为应付它的债务,公司需要在年内提早借款。该公司可有两种借款方式: (1)可在1月份贷到所需要的一年期的长期贷款,从2001年2月份开始,每月需为这笔贷款支付1%的利息,贷款本金必须在2002年1月初归还。(2)公司还可获得短期的银行贷款,月利率为1.5%,公司需在下一个月里归还上一个月初的短期贷款本金与利息。所有的短期贷款必须在2002年1月初归还。在每月末,现金余额可获得0.4%的利息。问:如何制定借款计划,可使公司在2002年1月初获得最大的现金余额?

月份	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月
现金流量 (千元)	-12	-10	-8	-10	-4	5	-7	-2	15	12	-7	45

应解决的问题:

- •长期贷款的数量(L)
- •每月短期贷款的数量 (St)
- •每月月末的现金余额(Cbt)
- •期间最后的现金余额(2002年初现金余额)(Cb13)
- •每月所付的长期与短期的贷款利息 (I, It)
- •每月获得的上个月末现金余额的利息 (ICt) 月末的现金余额公式:

t月现金余额=(t-1)月现金余额+(t-1)月现金余额利息+t月份的现金流+t月份收到的贷款-t月付长期贷款利息-付(t-1)月短期贷款利息-付(t-1)月短期贷款利息-归还(t-1)月的短期贷款-归还的长期贷款(仅对2002年1月)

模型:

例2: 动态投资问题:

菲克投资公司要确定未来三年的投资策略。目前 (时刻1) 有10万元资金可供投资使用,且有A、B、C、D、E 五个项目可供投资选择,各个项目有关的投资现金流量在表 中给出。比如,在项目B上的投资,在时刻2需要1元的现金 流出量,在时刻3时有0.5元的回报(现金流入),为了保证 公司投资的多元化,要求在任何一个项目上的投资最多不得 超过75,000元。没有投到项目上的资金可在资金市场上获得 8%的存款利息。来自投资项目上的收益可直接用于再投 资,例如,在时刻2来自C项目上的现金流量1.2元可直接投 资于项目B。菲克公司不能借款,因此,在任何时刻可用于 投资的现金仅限于手中拥有的数额。试确定投资计划,能在 时刻4时使手中的现金量最大。

资金流量表

时刻项目	A	В	С	D	E
1	-1.0	0	-1.0	-1.0	0
2	0.5	-1.0	1.2	0	0
3	1.0	0.5	0	0	-1.0
4	0	1.0	0	1.9	1.5

---第1章 线性规划---

建立模型:

设 x_{ij} —在时刻i对j项目的投资额,

 F_i —时刻i手中拥有的现金数额,

IF_i—第i时刻获得的利息

投资及收益情况分析表

时刻邻日	F_i	IF _i	A	В	C	D	Е
1	\mathbf{F}_1	0 IF ₂	-x ₁₁	0	-x ₁₃	-x ₁₄	0
2	F_2	IF ₂	$0.5x_{11}$	-x ₂₂	1.2x ₁₃	0	0
3	\mathbf{F}_3	IF ₃	1.0x ₁₁	$0.5x_{22}$	0	0	-x ₃₅
4	F_4	IF ₄	0	1.0x ₂₂	0	1.9x ₁₄	1.5x ₃₅

例3: 外汇交易

外汇交易市场日交易额常常超过100亿美元。分别在现汇市场、期货市场上进行。交易的形式有现汇、现汇期权等。我们现在着眼于现汇市场的讨论。

简单地说,现汇交易就是用一种货币购买一定数量另一种货币的协议。例如,一个英国公司需要预付给一个日本供应商1.5亿日元购货款,设英镑对日元的现钞比价为154.7733 (一英镑兑换154.7733日元),那么这个英国公司可以利用现汇交易市场以969,159.41 (1.5亿÷154.7743) 英镑购买1.5亿日元。当日外汇交叉汇率样本如表中所示。

假如英国公司终止了同日本供应商的合同订单,并想把1.5亿日元兑换成英镑,日元对英镑的现钞比价为0.00645,则英国公司可用这1.5亿日元买回967,500 (=1.5 亿×0.00645)英镑。注意到967,500英镑低于原来的969,159.41英镑,其差额是由买卖差价引起的,代表公司的交易费用。偶然的情况也会发生市场价格脱离了一致性的现象,这时候存在着套汇的机会。所谓的"套汇"是指存在着一组这样的交易:经过一系列的交易后,手中的现钞额会大于初始的现钞额,如 1英镑→马克→法郎→日元→英镑,若最后多于1英镑,就说明有套汇的机会。

现问,表中给出的汇率是否存在这种套汇机会?试建立线性规划模型讨论该问题。

交叉汇率表

TO FROM	US.\$	B. ₤	F.Fra.	D.Mark	Y.en
US.\$		0.63900	5.37120	1.57120	98.8901
B. ₤	1.56480	-	8.43040	2.45900	154.7733
F.Fra.	0.18560	0.11860	4	0.29210	18.4122
D.Mark	0.63610	0.40630	3.42330		62.9400
Y.en	0.01011	0.00645	0.05431	0.01588	

问题:

- 1. 如何看待模型的解?
- 2. 若最优目标函数值为1,是否说明无套汇机会?为什么?
- 3. 完整的模型该怎么建? 你有什么好方法?
- 4. 现实中这样的套汇链会存在吗? 你如何分析?

本章知识点

- 1. 模型结构要素
- 2. LP模型的要求与表示方法
- 3. LP模型标准化方法
- 4. LP问题建模
- 5. LP模型图解原理
- 6. 单纯形法基本原理与计算过程
- 7. LP模型的求解计算,包括大M法及两阶段法
- 8. 单纯形法的矩阵分析