ПРАКТИКУМ ПО ПРОГРАММИРОВАНИЮ

ЗАДАНИЕ 2

Результатом выполнения задания является работающий исходный код на языке Python. Титульные лист и особый подход к оформлению не требуется.

Допускается выполнение задания в интерактивных средах (Jupiter Notebook, Google Colaboratory).

Допускается выполнение задания на компьютере в одной из средств разработки (JetBrains PyCharm, Visual Studio Code).

Обращаю внимание: задание состоит из последовательности действий, пронумерованных числами. Предполагается после выполнения каждого пункта выводить результат (любым удобным для вас методом, но, чтобы результат каждого пункта был виден).

<u>Также обращаю внимание:</u> все выполняемые задания могут стать частью расчетно-графической работы. Не исключается, что мы соберем все эти работы в единую РГР. Соберем отчет, добавим титульный лист и оформим.

Желаю успехов!

ХОД РАБОТЫ

1. Найдите первую и вторую производные функции у в заданной точке x_0 для своего варианта с помощью scipy. Вариантов меньше, чем студентов. Ваш вариант — это остаток от деления вашего номера в группе на количество вариантов.

Вариант	Исходные данные
1	$y = sin(ln(x)), x_0 = 4, a = 3, b = 8$
2	$y = ln(\sqrt{x}), x_0 = 2, a = 1, b = 6$
3	$y = sin(\sqrt{2x}), x_0 = 3.5, a = 0, b = 1$
4	$y = \frac{2}{\sin(x)+4}$, $x_0 = 2$, $a = 3$, $b = 6$
5	$y = \sqrt{2x^3}$, $x_0 = 4$, $a = 2$, $b = 4$
6	$y = \frac{\sin(2x)}{\cos(x)}$, $x_0 = 2$, $a = 2$, $b = 3$
7	$y = \frac{2}{tg(x)}, x_0 = 1, a = 4, b = 6$
8	$y = \frac{tg(x)}{\sin(x)}, x_0 = 0.5, a = 0, b = 1$

- 2. Используя функцию из таблицы выше для вашего варианта и пакет sympy выведите на экран символьное представление производной.
- 3. Вычислите определенный интеграл от а до b с помощью scipy функции для своего варианта. Интеграл вычислите методом прямоугольников.
- 4. С помощью sympy выведите на экран неопределенный интеграл функции у для вашего варианта.
- 5. Решите задачу нелинейной оптимизации для вашего варианта. Выведите оптимальное значение и решение.

Вариант	Исходные данные
1	$(x_1 - 3)^2 + x_2 \rightarrow min$
	$-2x_1 + 3x_2 \ge 4$
	Все переменные неотрицательны
2	$(x_1 - 3)^2 + (x_2 - 1)^2 \rightarrow min$
	$-2x_1 + x_2 \ge 2$
	$3x_2 \ge 10$
	Все переменные неотрицательны
3	$(x_1 + 3)^3 + (x_2 - 3)^2 \rightarrow min$
	$x_1 - 4x_2 \ge 12$
	Все переменные неотрицательны
4	$(x_1 - 4)^2 + (x_2 - 2)^2 \rightarrow min$
	$4x_1 + 2x_2 \ge 11$
	$-2x_1 \ge 7$
	Все переменные неотрицательны
5	$(x_1 - 1)^2 + (x_2 - 3)^2 + (x_3 - 4)^2 \rightarrow min$
	$-2x_{1} + x_{2} - x_{3} \ge 8$
	Все переменные неотрицательны
6	$(x_1 - 3)^2 + (x_2 - 8)^2 \rightarrow min$
	$-2x_1 + x_2 = 2$
	$3x_1 + 4x_2 > = -6$
	Все переменные неотрицательны
7	$(x_1 - 1.5)^2 + (x_2 - 2)^2 + (x_3 - 2.5)^2 \rightarrow min$
	$2x_1 + 2x_2 = 6$
	$2x_{1} + 2x_{3} = 17$
	Все переменные неотрицательны

8	$(x_1 - 4) + (x_2 - 3)^2 + (x_3 - 2)^3 + (x_4 - 1)^4 \rightarrow min$
	$x_1 + 2x_2 + 3x_3 + 4x_4 \ge 0$
	Все переменные неотрицательны