

Proposta de teste de avaliação		
Matemática A		
10.º ANO DE ESCOLARIDADE		
Duração: 90 minutos Data:		

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

- Considere, num plano munido de referencial ortonormado xOy, os pontos A(1,-2) e B(-2,3). 1.
 - 1.1. Determine:
 - as coordenadas do ponto C, sabendo que B é o ponto médio de [AC]; a)
 - a área do quadrado com diagonal AB.
 - **1.2.** Seja $P(\alpha, \beta)$ um ponto da mediatriz de [AB].

Relacione α e β , escrevendo β em função de α .

- 2. A que quadrante de um referencial o.n. xOy pertence um ponto P tal que:
 - pertence à reta de equação y + x = 0;
 - a sua abcissa é um número da forma k^2 , com $k \in \mathbb{R} \setminus \{0\}$?
 - (A) 1.º quadrante
- **(B)** 2.° quadrante
- 3.º quadrante **(C)**
- (**D**) 4.° quadrante
- 3. Considere, num plano munido de um referencial ortonormado xOy, os pontos A(3,-4) e B(-5,0). Qual das seguintes condições define o conjunto de pontos do plano mais próximos de A do que de B?
 - (A) y < 2x

(B) $y \le 2x$

(C) y < -x + 1

- **(D)** $y \le -x + 1$
- 4. Num referencial o.n. do plano, xOy, qual das seguintes condições define a equação da circunferência cujo centro é o ponto de interseção da reta de equação y = 2x + 1 com a bissetriz dos quadrantes impares e que passa na origem do referencial?

 - **(A)** $(x-1)^2 + (y-1)^2 = 2$ **(B)** $(x+1)^2 + (y+1)^2 = 2$
 - (C) $(x-1)^2 + (y-1)^2 = \sqrt{2}$ (D) $(x+1)^2 + (y+1)^2 = \sqrt{2}$

5. Representou-se num referencial o.n. xOy o trapézio $\begin{bmatrix} ABCD \end{bmatrix}$.

Sabe-se que:

- B(0,6)
- C(0,3)
- D pertence ao eixo Ox.

- **5.1.** Prove que $D\left(\frac{7}{2},0\right)$.
- **5.2.** Calcule a área do trapézio.
- **5.3.** Defina por uma condição o trapézio [ABCD].
- **5.4.** Em qual das seguintes opções estão as coordenadas de um ponto que não pertence ao trapézio [ABCD]?
 - **(A)** (1,3)

- **(B)** (4,1
- (C) (3,4)

- **(D)** (5,1)
- **6.** Na figura, encontra-se representada uma região do plano, num referencial o. n. *xOy*, delimitada por uma circunferência centrada na origem e por duas retas verticais.

Qual das seguintes condições não representa o conjunto dos pontos representado?

- (A) $x^2 + y^2 \le 25 \land (x \ge 0 \lor x \le -3)$
- **(B)** $(x^2 + y^2 \le 25 \land x \ge 0) \lor (x^2 + y^2 \le 25 \land x \le -3)$
- (C) $x^2 + y^2 \le 25 \land \sim (-3 < x < 0)$
- **(D)** $(x^2 + y^2 \le 25 \land \sim (x \le 0)) \lor (x^2 + y^2 \le 25 \land \sim (x \ge -3))$

7. Considere, num plano munido de um referencial ortonormado xOy, a circunferência definida por $x^2 + 2x + y^2 - 8 = 0$.

Determine a área do triângulo [ABO], sendo A e B os pontos da circunferência com maior abcissa e com maior ordenada, respetivamente.

8. Na figura, estão representadas três circunferências com centros pertencentes à bissetriz dos quadrantes ímpares, tangentes entre si e cujos raios são r, $\frac{r}{2}$ e $\frac{r}{4}$, com r > 0.

Sabe-se ainda que a circunferência de raio r é tangente aos eixos coordenados.

- **8.1.** Prove que a soma do perímetro das três circunferências é igual a $\frac{7\pi r}{2}$.
- **8.2.** Seja r = 4 e C o centro da circunferência representada de menor raio. Determine \overline{CO} .

FIM

Cotações:

Item														
Cotação (em pontos)														
1.1.a)	1.1.b)	1.2.	2.	3.	4.	5.1.	5.2.	5.3.	5.4.	6.	7.	8.1.	8.2.	Total
14	14	18	10	10	10	20	18	14	10	10	20	14	18	200

Proposta de resolução

1. 1.1. a) Seja C(x, y).

$$\left(\frac{1+x}{2}, \frac{-2+y}{2}\right) = \left(-2, 3\right) \Leftrightarrow \begin{cases} \frac{1+x}{2} = -2\\ \frac{-2+y}{2} = 3 \end{cases} \Leftrightarrow \begin{cases} 1+x = -4\\ -2+y = 6 \end{cases} \Leftrightarrow \begin{cases} x = -5\\ y = 8 \end{cases}$$

Logo, C(-5,8).

b)
$$\overline{AB} = \sqrt{(1+2)^2 + (-2-3)^2} = \sqrt{9+25} = \sqrt{34}$$

Seja x o comprimento do lado do quadrado com diagonal [AB].

$$x^2 + x^2 = \overline{AB}^2 \Leftrightarrow 2x^2 = 34 \Leftrightarrow x^2 = 17$$

Assim, a área do quadrado com diagonal [AB] é 17 u.a..

1.2. Quer-se determinar a relação entre α e β tal que $\overline{PA} = \overline{PB}$.

Assim:

$$(\alpha - 1)^{2} + (\beta + 2)^{2} = (\alpha + 2)^{2} + (\beta - 3)^{2} \Leftrightarrow$$

$$\Leftrightarrow \alpha^{2} - 2\alpha + 1 + \beta^{2} + 4\beta + 4 = \alpha^{2} + 4\alpha + 4 + \beta^{2} - 6\beta + 9 \Leftrightarrow$$

$$\Leftrightarrow 10\beta = 6\alpha + 8 \Leftrightarrow \beta = \frac{3}{5}\alpha + \frac{4}{5}$$

2. Como y = -x, P(x, y) pertence à bissetriz dos quadrantes pares.

Para além disso, como, para $k \in \mathbb{R} \setminus \{0\}$, $k^2 > 0$, a abcissa de P é positiva, pelo que P pertence ao 4.º quadrante.

Resposta: (D)

3. Seja P(x, y).

Quer-se determinar uma condição tal que $\overline{PA} < \overline{PB}$.

Assim

$$(x-3)^{2} + (y+4)^{2} < (x+5)^{2} + y^{2} \Leftrightarrow$$

$$\Leftrightarrow x^{2} - 6x + 9 + y^{2} + 8y + 16 < x^{2} + 10x + 25 + y^{2} \Leftrightarrow$$

$$\Leftrightarrow 8y < 16x \Leftrightarrow y < 2x$$

Resposta: (A)

4. Seja C(x, y) o centro da circunferência.

$$\begin{cases} y = 2x + 1 \\ y = x \end{cases} \Leftrightarrow \begin{cases} x = 2x + 1 \\ y = x \end{cases} \Leftrightarrow \begin{cases} x = -1 \\ y = -1 \end{cases}$$

O raio da circunferência, r, é igual a \overline{CO} .

$$\overline{CO} = \sqrt{(-1-0)^2 + (-1-0)^2} = \sqrt{2}$$
, logo, $r^2 = 2$.

Equação da circunferência: $(x+1)^2 + (y+1)^2 = 2$

Resposta: (B)

5.

5.1. D é o ponto de interseção da reta CD, que é paralela a AB, com o eixo Ox, por $\begin{bmatrix} ABCD \end{bmatrix}$ ser um trapézio.

Equação da reta AB: y = ax + b

Como a ordenada de $B \in 6$, b = 6.

Como A(7,0) é um ponto da reta, $0 = 7a + 6 \Leftrightarrow a = -\frac{6}{7}$.

A equação da reta AB é $y = -\frac{6}{7}x + 6$.

Equação da reta $CD: y = -\frac{6}{7}x + 3$

Considerando D(x,0), tem-se que:

$$0 = -\frac{6}{7}x + 3 \Leftrightarrow x = \frac{21}{6} \Leftrightarrow x = \frac{7}{2}$$

Logo,
$$D\left(\frac{7}{2},0\right)$$
.

5.2. A área do trapézio [ABCD] é dada pela diferença da área dos triângulos [ABO] e [DCO].

$$A_{[ABO]} = \frac{7 \times 6}{2} = 21 \text{ e } A_{[DCO]} = \frac{\frac{7}{2} \times 3}{2} = \frac{21}{4}, \text{ logo:}$$

$$A_{[ABCD]} = 21 - \frac{21}{4} = \frac{63}{4}$$
 u.a.

5.3. A partir das equações das retas $AB \in CD$, tem-se que:

$$y \le -\frac{6}{7}x + 6 \land y \ge -\frac{6}{7}x + 3 \land x \ge 0 \land y \ge 0$$

5.4. O ponto de coordenadas (3,4) não pertence ao trapézio porque, para este ponto, é falso que

$$y \le -\frac{6}{7}x + 6$$
 uma vez que $-\frac{6}{7} \times 3 + 6 = \frac{24}{7} < 4 = \frac{28}{7}$

Resposta: (C)

6. Como $\sim (x \le 0) \Leftrightarrow x > 0$ e $\sim (x \ge -3) \Leftrightarrow x < -3$, a condição que não define a região representada é $(x^2 + y^2 \le 25 \land \sim (x \le 0)) \lor (x^2 + y^2 \le 25 \land \sim (x \ge -3))$ por não incluir as fronteiras verticais da região.

Resposta: (D)

7. $x^{2} + 2x + y^{2} - 8 = 0 \Leftrightarrow$ $\Leftrightarrow (x+1)^{2} + y^{2} - 1 - 8 = 0 \Leftrightarrow$ $\Leftrightarrow (x+1)^{2} + y^{2} = 9$

A circunferência tem centro C(-1,0) e raio $r = \sqrt{9} = 3$. Assim, A(-1+3,0) e B(-1,0+3), ou seja, A(2,0) e B(-1,3).

Portanto, $A_{[ABO]} = \frac{2 \times 3}{2} = 3$ u.a..

8.

8.1.
$$2\pi r + 2\pi \frac{r}{2} + 2\pi \frac{r}{4} = 3\pi r + \frac{\pi r}{2} = \frac{7\pi r}{2}$$

8.2. Seja C_1 o centro da circunferência representada de maior raio.

Tem-se que:

$$\overline{C_1O}^2 = 4^2 + 4^2 \Leftrightarrow \overline{C_1O}^2 = 2 \times 4^2 \Leftrightarrow \overline{C_1O} = 4\sqrt{2}$$
,

porque $\overline{C_1O} > 0$.

Assim, $\overline{CO} = 4\sqrt{2} + 4 + 2 + 2 + 1 = 9 + 4\sqrt{2}$.

