

3511 - Consecutive ones

Europe - Southwestern - 2005/2006

A time schedule is represented by a 0-1 matrix with *n* lines and *m* columns. Each line represents a person and each column an event. All the persons participating to an event have a one in the corresponding entry of their line. Persons not attending the event have a zero entry in that column. Events occur consecutively.

Problem

Problem Write a program that finds a smart permutation of the events where each person attends all its events in a row. In other words, permute the columns of the matrix so that all ones are consecutive in each line.

Input

The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.

The first line of the input consists in the number $n \le 400$ of lines. The second line contains $m \le 400$, the number of columns. Then comes the n lines of the matrix. Each line consists in m characters `0' or `1'.

The input matrix is chosen so that there exists only one smart permutation which preserves column 0 in position 0. To make things easier, any two columns share few common one entries.

Output

For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.

The output consists of *m* numbers indicating the smart permutation of the columns. The first number must be 0 as column 0 does not move. The second number indicate the index (in the input matrix) of the second column, and so on.

Sample Input

Sample Output

```
2
4
3
1
0
17
11
12
6
9
15
3
10
18
19
13
16
1
14
8
5
2
4
```

Southwestern 2005-2006