1 Conectivos lógicos

1405	jação					
P	~P					
/	F					
	V		Cor	Condicional ou implicaç		
			P	Q	$P \rightarrow Q$	
o	njunção)	V	V	V	
>	Q	P ^ Q	V	F	F	
1	V	V	F	V	V	
/	F	F	F	F	V	
	V	F				
-	F	F	Bic	Bicondicional ou bi-implic		
			P	Q	P ↔ Q	
	. ~		V	V	V	
Dis	unção					
Dis	Q	PvQ	V	F	F	
		P v Q	V	F V	F	
	Q			_	-	
,	Q V	V	F	V	F	

2 Regras Básicas e derivadas

Elim	inação			Intr	odução	
Dupla Negação	~~φ		Dupla Nega	ão	φ	
E ~~	φ		1~~		~~φ	
Conjunção	φΛψ	φΛψ	Conjunção		φ	
EΛ	φ	ψ	IA.		ψ	
					$\varphi \wedge \psi$	
Disjunção	φ∨ψ		Disjunção		φ	ψ
ΕV	φ -> χ		IV		$\varphi \lor \psi$	$\varphi \lor \psi$
	$\psi \rightarrow \chi$					
	χ					
Bicondicional	$\varphi \leftarrow \psi$	$\varphi <-> \psi$	Bicondiciona	al	$\varphi \rightarrow \psi$	
E <->	$\varphi \rightarrow \psi$	$\psi \rightarrow \varphi$	I <->		$\psi \rightarrow \varphi$	
					$\varphi \leftrightarrow \psi$	
Condicional	φ -> ψ		Contradição		φ	
E->	φ				<u>~φ</u>	
Modus Ponens	ψ				1	
(MP)						
			Condicional		H(PC)	
			1->		φ	
			Prova Cond	licional		
			(PC)		ψ	
					Ψ	
					$\varphi \rightarrow \psi$	
			Negação		H(RAA)	
			1~		φ	
			Redução ao		11.	
			Absurdo (RA	AA)	'''	
					_	
					~ φ	
Modus Tollens	AS φ -> ψ	Cil	ogismo	φνψ		φνψ
(MT)	φ~φ ~ψ		sjuntivo (SD)	φ v φ ~ φ		
/	- φ		3,5,10,40 (3D)	ψ	-	$\frac{\sim \psi}{\varphi}$
	Ψ			4		7
Silogismo	$\varphi \rightarrow \psi$	Ab	sorção	φ -> ψ		
	$\psi \rightarrow \chi$		BS)	φ -> (ρ∧ψ)	
	φ -> χ	`	-	ĺ .	,	
Repetição (R)	φ					
,,	φ					
Dilema	$\varphi \rightarrow \psi$	Di	lema	$\varphi \rightarrow \psi$		
Construtivo	χ-> ω	De	strutivo	χ-> ω		
(DC)	$\varphi \vee \chi$	(D	D)	~ ψ V ~ φ V	~ _w	
(00)						

3 Regras de Equivalência

REGRAS DE EQUIVALÊNCIA

Comutativa (COM)	$(P \lor Q) \equiv (Q \lor P)$
Comutativa (COM)	$(P \land Q) \equiv (Q \land P)$
Associativa (ASS)	$(P \lor (Q \lor R)) \equiv ((P \lor Q) \lor R)$
Associativa (ASS)	$(P \land (Q \land R)) \equiv ((P \land Q) \land R)$
Distributiva (DIS)	$(P \land (Q \lor R)) \equiv (P \land Q) \lor (P \land R)$
Distributiva (DIS)	$(P \lor (Q \land R)) \equiv (P \lor Q) \land (P \lor R)$
Dupla Negação (DN)	P ≡ ~~P
Tautologia (TAU)	$P \lor P \equiv P$
Tautologia (TAU)	$P \wedge P \equiv P$
Transposição (TRA)	$(P \rightarrow Q) \equiv (\sim Q \rightarrow \sim P)$
Implicação Material (IM)	$(P -> Q) \equiv (\sim P \lor Q)$
Exportação (EXP)	$((P \land Q) -> R)) \equiv (P -> (Q -> R))$
Lei de De Morgan (DM)	\sim (P \wedge Q) \equiv (\sim P \vee \sim Q)
Lei de De Morgan (DM)	\sim (P \vee Q) \equiv (\sim P \wedge \sim Q)
Transposição (TRA) Implicação Material (IM) Exportação (EXP) Lei de De Morgan (DM)	$(P -> Q) \equiv (\sim Q -> \sim P)$ $(P -> Q) \equiv (\sim P \lor Q)$ $((P \land Q) -> R)) \equiv (P -> (Q -> R))$ $\sim (P \land Q) \equiv (\sim P \lor \sim Q)$

4 Árvores de refutação

ÁRVORE DE REFUTAÇÃO

$$R_{1} = A \wedge B$$

$$A$$

$$B$$

$$R_{2} = A \vee B$$

$$A \otimes B$$

$$A \otimes B$$

$$R_{3} = A \rightarrow B$$

$$A \otimes B$$

$$A \otimes$$

5 Provas Propiedades

Contraposição [editar | editar código-fonte]

$$\neg\beta \to \neg\alpha \vdash \alpha \to \beta$$

Lei de Duns Scot [editar | editar código-fonte]

1.
$$\alpha$$
 Premissa

2. β Hipótese
3. β 1,2 CTR
4. $\neg \alpha \rightarrow \beta$ 2,3 RPC

Lei De Morgan I [editar | editar código-fonte]

$$\neg \alpha \wedge \neg \beta \vdash \neg (\alpha \vee \beta)$$

1.	$\neg \alpha \wedge \neg \beta$	Premissa
2.	$\alpha \lor \beta$	Hipótese
3.	$\neg \alpha$	1 S
4.	$\neg \beta$	1 S
5.	β	2,3 SD
6.	$\beta \wedge \neg \beta$ $\neg (\alpha \vee \beta)$	5,4 C
7.	$\neg \left(lpha \lor eta ight)$	2,6 RAA

Lei De Morgan II [editar | editar código-fonte]

$$\neg \alpha \lor \neg \beta \vdash \neg (\alpha \land \beta)$$

6 Exemplos

$$\begin{split} \{(A \wedge B) &\rightarrow C, \neg C\} \vdash \neg A \vee \neg B \\ \text{1.} & (A \wedge B) \rightarrow C & \text{Premissa} \\ \text{2.} & \neg C & \text{Premissa} \\ \hline \neg (A \wedge B) & \text{1,2 MT} \\ \text{4.} & \neg A \vee \neg B & \text{3 DM} \end{split}$$

2 [editar | editar código-fonte]

$$\neg \left(A \wedge \neg B \right) dash A o B$$

1.
$$\neg (A \land \neg B)$$
 Premissa
2. $\neg A \lor \neg \neg B$ 1 DM
3. $A \lor \neg B$ 3 DN
5. $A \lor B$ 3,6 RPC

3 [editar | editar código-fonte]

$$\neg A \to B \vdash A \vee B$$

1.	eg A o B	Premissa
2.	$\neg (A \lor B)$	Hipótese
3.	$\neg A \wedge \neg B$	2 DM
4.	$\neg A$	3 S
5.	$\neg B$	3 S
6.	B	1,4 MP
7.	$B \wedge \neg B$	6,5 C
8.	$\neg\neg (A \lor B)$	2,7 RAA
9.	$A \lor B$	8 DN

4 [editar | editar código-fonte]

$$\{A \to C, B \to C\} \vdash (A \lor B) \to C$$

5 [editar | editar código-fonte]

6 [editar | editar código-fonte]

7 Exemplos árvore

- Construa as árvores de refutação para determinar se as formas de argumento a seguir são válidas ou não. Caso não seja válida, dê um contra-exemplo.
 - a. $p \land q, p \vdash \sim q$

É inválida. Contra-exemplo: p = V e Q = V

b. $p \lor q, \sim p \vdash \sim \sim q$

3~~

É válida

c. r ∧~s, ~~r + s

1. ✓ r ∧ ~s 2. ✓ ~~r 3. ~s 4. r 1 ∧ 5. ~s 1 ∧ 6. r 2~~

É inválida. Contra-exemplo: r = V e s = F