Теоретичні відомості:

Знаходження оптимального програмного керування

 1^{0} . Постановка задачі. Припустимо, що модель об'єкта керування і його поведінка описується системою звичайних диференціальних рівнянь

$$\dot{\vec{x}}(t) = f(t, \vec{x}(t), \vec{u}(t)). \tag{1}$$

У цьому рівнянні

 $\vec{x} = (x_1, x_2, ..., x_n)^T$ – вектор стану системи;

 $\vec{u} = (u_1, u_2, ..., u_n)^T$ – вектор управління;

t – час;

 $T = [t_0, t_1]$ – проміжок часу функціонування системи;

 $U \subseteq \mathbb{R}^q$ – множина допустимих значень керування;

$$\vec{f}(t, \vec{x}, \vec{u}) = (f_1(t, \vec{x}, \vec{u}), f_2(t, \vec{x}, \vec{u}), ..., f_n(t, \vec{x}, \vec{u}))^T$$

Припустимо також, що момент початку процесу $t=t_0$ заданий, а момент закінчення процесу $t=t_1$ визначається першим моментом досягнення точкою (t,x(t)) деякої заданої поверхні $\Gamma \subset R^{n+1}$, тобто у момент часу $t=t_1$ повинні виконуватись умови:

$$\Gamma_i(t_1, x(t_1)) = 0, \qquad i = 1, 2, ..., l,$$
 (2)

де $0 \le l \le n+1$. При l=n+1 множина Γ представлена точкою у просторі.

Разом з моментом початку процесу задамо початкову умову

$$\vec{x}(t_0) = x_0. \tag{3}$$

При керуванні такою системою поки що буде використовуватись тільки інформація про час, тобто система керування у даному випадку ϵ розімкнутою за станом і розглядається так зване *програмне керування*.

Множина допустимих керувань U_0 утворює кусково-неперервні функції $u(\bullet)$ зі значеннями у множині U. У точках розриву значення керування визначається як границя справа.

Введемо у розгляд множину допустимих процесів $D(t_0, \vec{x}_0)$, як множину трійок $d = (t_1, x(\bullet), u(\bullet))$, які включають момент закінчення процесу, траєкторію $x(\bullet)$, керування $u(\bullet)$, що задовольняють рівнянню (1) і початковим умовам (3).

На множині $D(t_0, \vec{x}_0)$ визначимо функціонал якості

$$\int_{t_0}^{t_1} f^{\circ}(t, \vec{x}(t), \vec{u}(t)) dt + F(t_1, \vec{x}(t)), \tag{4}$$

де f° і F – задані неперервно диференційовані функції.

Потрібно знайти таку трійку $d^* = (t_1^*, \vec{x}^*(t_1), \vec{u}^*(t_1)) \in D(t_0, x_0)$, на якій функціонал (4) набуває мінімальних значень.

Задача мінімізації функціоналу (4) називається *задачею Больца*; якщо у функціоналі (4) відсутній термінальний член – *задачею Лагранжа*; якщо відсутній інтегральний член – *задачею Майера*.

Пошукові функції $x^*(\bullet), u^*(\bullet)$ називаються відповідно *оптимальною траєкторією* і *оптимальним керуванням*, а t_1^* – *оптимальним моментом* кінця процесу.

- **2°. Принцип максимуму.** Нехай на трійці $d^* = (t_1^*, \vec{x}^*(\bullet), \vec{u}^*(\bullet)) \in D(t_0, x_0)$ досягається мінімум функціоналу (4). Тоді існує така вектор-функція $\vec{\psi}(t) = (\psi_1(t), ..., \psi_n(t))^T$, що:
 - 1) у кожній точці неперервності керування $u^*(t)$ функція (гамільтоніан)

$$H(t, \vec{\psi}, \vec{x}, \vec{u}) = \sum_{j=1}^{n} \psi_{j} f_{j}(t, \vec{x}, \vec{u}) - f^{\circ}(t, \vec{x}, \vec{u})$$
 (5)

досягає максимуму по керуванню, тобто

$$\max_{u \in U} H(t, \psi(t), \vec{x}^*(t), \vec{u}) = H(t, \psi(t), \vec{x}^*(t), \vec{u});$$

2) виконується умова трансверсальності

$$\delta F(t_1^*) - H(t_1^*) \delta t_1 + \sum_{j=1}^n \psi_j(t_1^*) \delta x_j = 0,$$
 (6)

при довільних δt_1 і δx_j , що задовольняють систему

$$\delta \Gamma_i (t_1^*, x^*(t_1^*)) = 0, \qquad i = 1, ..., l$$

 $\Gamma_i (t_1^*, x^*(t_1^*)) = 0, \qquad i = 1, ..., l,$

де $H(t_1^*) = H(t_1^*, x^*(t_1^*)u^*(t_1^*)\psi(t_1^*))$, а варіації визначаються таким чином

$$\begin{split} \delta \, F_i \Big(t_1^* \Big) &= \delta \, F_i \Big(t_1^*, \vec{x}^* \Big(t_1^* \Big) \Big) = \left(\frac{\partial F}{\partial t_1} \, \delta t_1 + \sum_{j=1}^n \frac{\partial F}{\partial x_j} \, \delta x_j \right) \Bigg|_{\substack{\left(t_1^*, \vec{x}^* \left(t_1^* \right) \right) \\ \left(t_1^*, \vec{x}^* \left(t_1^* \right) \right) }}, \\ \delta \, \Gamma_i \Big(t_1^*, \vec{x}^* \Big(t_1^* \Big) \Big) &= \left(\frac{\partial \Gamma_i}{\partial t_1} \, \delta t_1 + \sum_{j=1}^n \frac{\partial \Gamma_i}{\partial x_j} \, \delta x_j \right) \Bigg|_{\substack{\left(t_1^*, \vec{x}^* \left(t_1^* \right) \right) \\ \left(t_1^*, \vec{x}^* \left(t_1^* \right) \right) }}; \end{split}$$

3) функції $x^*(\bullet), u^*(\bullet)$ задовольняють систему канонічних рівнянь:

$$\begin{cases}
\dot{x}_{j}^{*}(t) = \frac{\partial H}{\partial \psi_{j}} = f_{j}(t, x^{*}(t), u^{*}(t)), & j = 1, ..., l, \\
\dot{\psi}_{j}(t) = -\frac{\partial H}{\partial x_{j}}, & j = 1, ..., l.
\end{cases}$$
(7)

Задача про швидкодію

Знайти оптимальне по швидкодії керування $u^*(\cdot)$ і відповідну йому оптимальну траєкторію $x^*(\cdot)$ системи:

$$\dot{x}_1(t) = x_2(t) - 8;$$

 $\dot{x}_2(t) = u(t), \quad |u(t)| \le 1, \quad 0 \le t \le T,$

і час T, затрачений на перехід із початкового стану $x_1(0) = 6$, $x_2(0) = 4$ у початок координат.

Розв'язання:

Сформулюємо проблему у формі задачі мінімізації функціоналу: функціонал якості тут може бути заданий двома способами:

або T omegammin (задача Майєра за класифікацією типів задач оптимального керування)

або
$$I = \int_{0}^{T} dt \rightarrow \min$$
 (задача Лагранжа),

де момент закінчення процесу керування T не заданий і підлягає визначенню. У даному прикладі $f_1(t,x,u)=x_2-8,\ f_2(t,x,u)=u,$ і $f^\circ(t,x,u)=1,\ F(t_1,x)\equiv 0,$ $t_1=T,$ $\Gamma_1(T,x(T))=x_1(T)=0,\ \Gamma_2(T,x(T))=x_2(T)=0$.

Розв'язується задача Лагранжа.

Потрібно знайти оптимальне програмне управління $u^*(\cdot)$, відповідну йому траєкторію $x^*(\cdot)$ і час T .

1. Складемо гамільтоніан:

$$H(t, \vec{\psi}, \vec{x}, u) = \psi_1(x_2 - 8) + \psi_2 u - 1.$$

2. Знайдемо умовний максимум гамільтоніана за керуванням. Так як гамільтоніан — функція лінійна за змінною u, то вона може набувати найбільшого свого значення на границі області значень змінної $|u(t)| \le 1$, тобто u=1 або u=-1. Найбільше значення гамільтоніан буде мати за умови, що $\psi_2(t)u>0$. Таким чином.

$$u^*(t) = \arg \max_{|u| \le 1} H(t, \vec{\psi}(t), \vec{x}(t), u) = 1 \cdot \operatorname{sign} \psi_2(t).$$

4) Запишемо канонічні рівняння принципу максимуму

$$\begin{cases} \dot{x}_{1}(t) = x_{2}(t) - 8, & x_{1}(0) = 6, & x_{1}(T) = 0, \\ \dot{x}_{2}(t) = u^{*}(t) = sign\psi_{2}, & x_{2}(0) = 4, & x_{2}(T) = 0, \\ \dot{\psi}_{1}(t) = -\frac{\partial H}{\partial x_{1}} = 0, & \\ \dot{\psi}_{2}(t) = -\frac{\partial H}{\partial x_{2}} = -\psi_{1}(t). & \end{cases}$$

На інтервалі (0,T) розв'язок спряженої системи - функція $\psi_2(t)$ змінює знак не більше 1, так як функція $\psi_2(t)$ лінійна за аргументом t .

Таким чином, в залежності від початкових умов (при t=0) можливі такі 4 випадки керувань системою:

- на інтервалі часу (0,T) керування носить постійний характер:

a)
$$u^* = 1$$
, $0 \le t \le T$;

б)
$$u^* = -1$$
, $0 \le t \le T$;

– керування має одну точку перемикання $0 < \tau < T$:

$$\mathbf{B})u^* = \begin{cases} 1, & 0 \le t < \tau; \\ -1, & \tau \le t \le T. \end{cases}$$

$$\Gamma) u^* = \begin{cases} -1, & 0 \le t < \tau; \\ 1, & \tau \le t \le T. \end{cases}$$

5) На фазовій площині (x_1, x_2) побудуємо графіки множин фазових траєкторій, що відповідають таким випадкам керування системою

$$\dot{x}_1(t) = x_2(t) - 8;$$

$$\dot{x}_2(t) = u^*(t), \quad |u(t)| \le 1, \quad 0 \le t \le T,$$

a)
$$u^* = 1$$
, $0 \le t \le T$;

Розв'яжемо систему у просторі фазових змінних

$$\frac{dx_1}{dx_2} = \frac{x_2 - 8}{1} \Longrightarrow x_1 - C = \frac{(x_2 - 8)^2}{2}$$
 - це множина парабол, вершини яких

розташовані на прямій $x_2=8$ в точках (C,8) на фазовій площині (x_1,x_2) . Напрям руху вздовж парабол у часі визначається рівнянням $\dot{x}_2(t)=u^*(t)=1>0$, тобто рух відбувається у напрямку збільшення x_2 . Зобразимо це на фазовій площині:

б)
$$u^* = -1, \ 0 \le t \le T$$
;

Розв'яжемо систему у просторі фазових змінних

$$\frac{dx_1}{dx_2} = \frac{x_2 - 8}{-1} \Longrightarrow x_1 - C = -\frac{(x_2 - 8)^2}{2}$$
 - це множина парабол, вершини яких

розташовані на прямій $x_2=8$ в точках (C,8) на фазовій площині (x_1,x_2) . Напрям руху вздовж парабол у часі визначається рівнянням $\dot{x}_2(t)=u^*(t)=-1<0$, тобто рух відбувається у напрямку зменшення x_2 . Зобразимо це на фазовій площині:

Серед усіх можливих фазових траєкторій виділимо лише ті, за якими можливо досягти початку координат $x_1(T) = 0$, $x_2(T) = 0$:

– при
$$u^* = 1$$
 знаходимо сталу $x_1 - C = \frac{(x_2 - 8)^2}{2} \Rightarrow C = -\frac{8^2}{2} = -32$, тобто лінія

 $x_1 = \frac{(x_2 - 8)^2}{2} - 32$ проходить через початок координат, причому в нашому випадку потрапити у початок координат за цією лінією можливо лише за умови, що $x_2 \le 0$.

– при
$$u^* = -1$$
 знаходимо сталу $x_1 - C = -\frac{(x_2 - 8)^2}{2} \Rightarrow C = \frac{8^2}{2} = 32$, тобто лінія

$$x_1 = -\frac{(x_2-8)^2}{2} + 32\,$$
 проходить через початок координат, причому в нашому випадку потрапити у початок координат за цією лінією можливо лише за умови, що $x_2 \ge 0$.

Таким чином, лінія перемикання виглядає так:

Для того щоб знайти остаточно тип керування, необхідно проаналізувати місце де знаходиться система у початковий момент:

- якщо у початковий момент система знаходиться в одній з точок лінії перемикання, тоді керування ϵ стала величина (або $u^* = 1$, або $u^* = -1$);
- якщо початкова умова така, що точка лежить вище лінії перемикання, тоді керування має вигляд: $u^* = \begin{cases} -1, & 0 \leq t < \tau; \\ 1, & \tau \leq t \leq T \end{cases};$
- якщо початкова умова така, що точка лежить нижче лінії перемикання, тоді керування має вигляд: $u^* = \begin{cases} 1, & 0 \leq t < \tau; \\ -1, & \tau \leq t \leq T. \end{cases}$

В нашому випадку $x_1(0) = 6$, $x_2(0) = 4$ точка A(6,4) знаходиться нижче лінії перемикання

$$u^* = \begin{cases} 1, & 0 \le t < \tau; \\ -1, & \tau \le t \le T. \end{cases}$$

Тобто, спочатку точку A за час τ необхідно перевести на лінію керування за допомогою керування $u^*=1$, а потім система досягне початку координат по лінії керування:

6) Знайдемо час τ - точку перемикання керування, та час T за який система з початкового стану перейде у початок координат.

Для цього знайдемо фазові змінні, як функції часу з рівнянь руху:

$$\begin{cases} \dot{x}_1(t) = x_2(t) - 8; \\ \dot{x}_2(t) = \begin{cases} 1, & 0 \le t \le \tau; \Rightarrow \\ -1, & \tau < t \le T. \end{cases} \begin{cases} x_1(t) = \begin{cases} \frac{(t + C_1 - 8)^2}{2} + D_1, & 0 \le t \le \tau; \\ -\frac{(t + C_2 + 8)^2}{2} + D_2, & \tau < t \le T. \end{cases} \\ x_2(t) = \begin{cases} t + C_1, & 0 \le t \le \tau; \\ -(t + C_2), & \tau < t \le T. \end{cases}$$

Врахуємо граничні умови:

$$x_{1}(0) = 6, \Rightarrow \frac{(C_{1} - 8)^{2}}{2} + D_{1} = 6$$

$$x_{1}(T) = 0, \Rightarrow \frac{(T + C_{2} + 8)^{2}}{2} = D_{2}$$

$$x_{2}(0) = 4, \Rightarrow C_{1} = 4 \Rightarrow D_{1} = 6 - 8 = -2;$$

$$x_{2}(T) = 0 \Rightarrow T + C_{2} = 0 \Rightarrow C_{2} = -T \Rightarrow D_{2} = 32.$$

Таким чином,

$$\begin{cases} x_1(t) = \begin{cases} \frac{(t-4)^2}{2} - 2, & 0 \le t \le \tau; \\ -\frac{(t-T+8)^2}{2} + 32, & \tau < t \le T. \end{cases} \\ x_2(t) = \begin{cases} t+4, & 0 \le t \le \tau; \\ -(t-T), & \tau < t \le T. \end{cases}$$

Час τ і T знайдемо з умови неперервності фазових траєкторій:

$$x_{1}(\tau - 0) = x_{1}(\tau + 0) \Rightarrow \frac{(\tau - 4)^{2}}{2} - 2 = -\frac{(\tau - T + 8)^{2}}{2} + 32$$

$$x_{2}(\tau - 0) = x_{2}(\tau + 0) \Rightarrow \tau + 4 = -(\tau - T) \Rightarrow 2\tau = T - 4$$
Togi
$$\tau - 4 = \frac{T - 12}{2}; \qquad \tau - T + 8 = \frac{T - 4}{2} - T + 8 = -\frac{(T - 12)}{2}$$

$$\frac{\left(\frac{T - 12}{2}\right)^{2}}{2} - 2 = -\frac{\left(\frac{T - 12}{2}\right)^{2}}{2} + 32 \Rightarrow \left(\frac{T - 12}{2}\right)^{2} = 34 \Rightarrow T_{1,2} = 12 \pm 2\sqrt{34}$$

Так як $\tau > 0 \Longrightarrow T > 4$ за змістом, то $T = 12 + 2\sqrt{34}$, тоді $\tau = \frac{T-4}{2} = 4 + \sqrt{34}$

Отже, оптимальний керований процес описується так

Відповідь:

$$u^* = \begin{cases} 1, & 0 \le t < 4 + \sqrt{34}; \\ -1, & 4 + \sqrt{34} \le t \le 12 + 2\sqrt{34}. \end{cases}$$

$$\begin{cases} x_1(t) = \begin{cases} \frac{(t-4)^2}{2} - 2, & 0 \le t \le 4 + \sqrt{34}; \\ -\frac{(t-4-2\sqrt{34})^2}{2} + 32, & 4 + \sqrt{34} < t \le 12 + 2\sqrt{34}. \end{cases}$$

$$x_2(t) = \begin{cases} t + 4, & 0 \le t \le 4 + \sqrt{34}; \\ -(t-(12+2\sqrt{34})), & 4 + \sqrt{34} < t \le 12 + 2\sqrt{34}. \end{cases}$$

$$T = 12 + 2\sqrt{34}$$

$$T = 12 + 2\sqrt{34}$$