# **Building a Batch Analytics Pipeline on HDFS & Hive**

### 1. Introduction:

The report outlines the implementation of a data pipeline using Hadoop and hive to process user activity logs and content metadata effectively. We also follow a star schema design.

### 2. Data ingestion and Storage:

Raw data storage: we store the data known as raw\_data which contains the input files before ingestion.

The data is ingested into HDFS under directory /raw/logs/ and /raw/metadata. It is automated in the shell script by ingest\_logs.sh



### 3. Hive Schemas Definitions:

#### **Raw tables:**

```
CREATE EXTERNAL TABLE IF NOT EXISTS user_activity_logs (
    user_id STRING,
    action STRING,
    `timestamp` STRING,
    details STRING
)

PARTITIONED BY (year INT, month INT, day INT)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ','

STORED AS TEXTFILE

LOCATION 'hdfs://localhost:9000/raw/logs';
```

# **Optimized Star Schema (Parquet)**

```
CREATE TABLE IF NOT EXISTS dim_users (
user_id INT,
device STRING,
user_region STRING)
STORED AS PARQUET;
```

```
CREATE TABLE IF NOT EXISTS dim_media (
 media_id INT,
 media title STRING,
 genre STRING,
 duration INT,
 creator STRING)
STORED AS PARQUET;
CREATE TABLE IF NOT EXISTS dim_sessions (
 session id STRING,
 user id INT)
STORED AS PARQUET;
CREATE TABLE IF NOT EXISTS fact_activity_events (
 user_id INT,
 media id INT,
 session_id STRING,
 activity_type STRING,
 activity timestamp STRING)
PARTITIONED BY (year INT, month INT, day INT)
STORED AS PARQUET;
```

### 4. Data Transformation Commands

- -- Populate dim\_users\INSERT OVERWRITE TABLE dim\_users SELECT DISTINCT user\_id, region, device FROM external user activity;
- -- Populate dim\_mediaINSERT OVERWRITE TABLE dim\_mediaSELECT DISTINCT \*FROM external\_media\_metadata;
- -- Populate fact\_user\_actions SET hive.exec.dynamic.partition.mode=nonstrict; SET hive.exec.dynamic.partition=true;

INSERT OVERWRITE TABLE fact\_user\_actions PARTITION (year, month, day) SELECT user\_id, media\_id, action, session\_id, event\_timestamp, year, month, day FROM external\_user\_activity;

# 5. Sample Queries and Execution results: Query 1: Count of Unique Active Users per Day

SELECT year, month, day, COUNT(DISTINCT user\_id) AS active\_users FROM user\_activity\_logs GROUP BY year, month, day ORDER BY year DESC, month DESC, day DESC;

|                                   | +        | -+       | +            |  |  |
|-----------------------------------|----------|----------|--------------|--|--|
| year                              | month    | day      | active_users |  |  |
|                                   |          | -+       | .+           |  |  |
| 2025                              | 2        |          | 25           |  |  |
| 2025                              | 2        | 6        | 24           |  |  |
| 2025                              | 2        | 5        | 27           |  |  |
| 2025<br>2025                      | 2        | 4        | 23           |  |  |
| 2025                              | 2<br>  2 |          | 21           |  |  |
| 2025                              | 1 2      | 2<br>  1 | 24<br>  24   |  |  |
| 2025                              | 1 3      | 25       | 1 24         |  |  |
| 2024                              | 3<br>  3 | 25       | 1 1          |  |  |
| 2024                              | 1 3      | 12       | 1 1          |  |  |
| 2024                              | 1 3      | 10       | 21           |  |  |
| 2024                              | 1 3      | 1 1      | 1 1          |  |  |
| 2024                              | 1 2      | 1 5      | 1 1          |  |  |
| 2024                              | 2        | 1 3      | 1 7          |  |  |
| 2024                              | 1 2      | ii       | i î          |  |  |
| 2024                              | 1 1      | 16       | i î          |  |  |
| 2024                              | i ī      | 15       | j ī          |  |  |
|                                   |          |          |              |  |  |
| 17 rows selected (37.086 seconds) |          |          |              |  |  |
| 9: jdbc:hive2://localhost:10000>  |          |          |              |  |  |

## **Query 2: Top Played Content**

SELECT content\_id, COUNT(\*) AS play\_count FROM user\_activity\_logs WHERE action = 'play' GROUP BY content\_id ORDER BY play\_count DESC LIMIT 5;

# 

5 rows selected (36.43 seconds) 9: jdbc:hive2://localhost:10000>

# **Query 3: Dimension Table (dim\_content)**

```
CREATE TABLE dim_content (
content_id STRING,
title STRING,
category STRING,
length INT,
artist STRING
```

### STORED AS PARQUET;

## 6. Design consideration and performance optimization:

### a) Star schemas Design:

It optimizes the query performance where **user\_activity\_logs** serve as a fact table storing detailed user interactions. **Dim\_content** is a dimensions table which stores metadata which is stored in a parquet format which improves compression and read efficiency.

### b) Data Storage format:

There were 2 ways in which we stored the data, Fact table and external raw table which helps in efficient analytics and simple ingestion and preprocessing.

### c) Query Execution:

Sorting by usage of queries used by **GROUP BY** which we prune the unnecessary data, and we use only year, month and day.

## 7. Execution Time Analysis:

| Stage                            | <b>Execution Time</b>   |
|----------------------------------|-------------------------|
| Data Ingestion from HDFS         | 10-15 seconds           |
| Raw Table Creation               | 15 seconds              |
| Transforming Raw Data to Parquet | 25-40 seconds per table |
| <b>Total Execution Time</b>      | 1 minute                |

### 8. Conclusion:

The **Hadoop** and **Hive-based** pipeline efficiently processes and analyzes large datasets using partitioning, Parquet storage, and optimized queries. With a total execution time of 1 minute, the system ensures fast data retrieval and scalability. These design choices enhance performance, and support seamless data-driven decision-making.