Logistic Regression

Outline

Binary outcomes are common and important

- The patient survives the operation, or does not.
- The accused is convicted, or is not.
- The customer makes a purchase, or does not.
- The marriage lasts at least five years, or does not.
- The student graduates, or does not.

Categorical Response Variables

Difference between linear regression and logistic regression

https://www.kaggle.com/

Sigmoid Function

"Input"

Slide credit: Andrew Ng

Learning a Logistic Regression Model

- How to learn a logistic regression model $h_{\theta}(x) = g(\theta^T x)$, where $\theta = [\theta_0, ..., \theta_m]$ and $x = [x_0, ..., x_m]$?
 - By minimizing the following cost function:

Cost
$$(h_{\theta}(x), y) = -y \log \left(\frac{1}{1 + e^{-\theta^T x}}\right) - (1 - y) \log \left(1 - \frac{1}{1 + e^{-\theta^T x}}\right)$$

• That is:

minimize
$$\frac{1}{n} \sum_{i=1}^{n} \operatorname{Cost}(\boldsymbol{h}_{\boldsymbol{\theta}}(\boldsymbol{x})^{(i)}, \boldsymbol{y}^{(i)})$$

$$\min_{\theta} \text{minimize} \left[\frac{1}{n} \sum_{i=1}^{n} -y^{(i)} \log \left(\frac{1}{1 + e^{-\theta^T x^{(i)}}} \right) - (1 - y) \log \left(1 - \frac{1}{1 + e^{-\theta^T x^{(i)}}} \right) \right] \quad \text{Cost function}$$

Learning a Logistic Regression Model

- How to learn a logistic regression model $h_{\theta}(x) = g(\theta^T x)$, where $\theta = [\theta_0, ..., \theta_m]$ and $x = [x_0, ..., x_m]$?
 - By minimizing the following cost function:

Cost
$$(h_{\theta}(x), y) = -y \log \left(\frac{1}{1 + e^{-\theta^T x}}\right) - (1 - y) \log \left(1 - \frac{1}{1 + e^{-\theta^T x}}\right)$$

• That is:

minimize
$$\frac{1}{n} \sum_{i=1}^{n} \operatorname{Cost}(\boldsymbol{h}_{\boldsymbol{\theta}}(\boldsymbol{x})^{(i)}, \boldsymbol{y}^{(i)})$$

$$\min_{\theta} \text{minimize} \left[\frac{1}{n} \sum_{i=1}^{n} -y^{(i)} \log \left(\frac{1}{1 + e^{-\theta^T x^{(i)}}} \right) - (1 - y) \log \left(1 - \frac{1}{1 + e^{-\theta^T x^{(i)}}} \right) \right] \quad \text{Cost function}$$

Learning a Logistic Regression Model

- How to learn a logistic regression model $h_{\theta}(x) = g(\theta^T x)$, where $\theta = [\theta_0, ..., \theta_m]$ and $x = [x_0, ..., x_m]$?
 - By minimizing the following cost function:

Cost
$$(h_{\theta}(x), y) = -y \log \left(\frac{1}{1 + e^{-\theta^T x}}\right) - (1 - y) \log \left(1 - \frac{1}{1 + e^{-\theta^T x}}\right)$$

• That is:

minimize
$$\frac{1}{n} \sum_{i=1}^{n} \operatorname{Cost}(\boldsymbol{h}_{\boldsymbol{\theta}}(\boldsymbol{x})^{(i)}, \boldsymbol{y}^{(i)})$$

$$\min_{\theta} \text{minimize} \left[\frac{1}{n} \sum_{i=1}^{n} -y^{(i)} \log \left(\frac{1}{1 + e^{-\theta^T x^{(i)}}} \right) - (1 - y) \log \left(1 - \frac{1}{1 + e^{-\theta^T x^{(i)}}} \right) \right] \quad \text{Cost function}$$

Gradient Descent For Logistic Regression

Outline:

- Have cost function $J(\theta)$, where $\theta = [\theta_0, ..., \theta_m]$
- Start off with some guesses for θ_0 , ..., θ_m
 - It does not really matter what values you start off with, but a common choice is to set them all initially to zero
- Repeat until convergence { Partial derivative } $\theta_j = \theta_j \alpha \frac{\partial J(\boldsymbol{\theta})}{\partial \theta_i} \qquad \text{Note: Update all } \theta_j \text{ simulatenously}$

Learing rate, which controls how big a step we take when we update θ_i

Gradient Descent For Logistic Regression

Outline:

- Have cost function $J(\theta)$, where $\theta = [\theta_0, ..., \theta_m]$
- Start off with some guesses for θ_0 , ..., θ_m
 - It does not really matter what values you start off with, but a common choice is to set them all initially to zero
- Repeat until convergence{

$$\theta_{j} = \theta_{j} - \alpha \sum_{i=1}^{n} \left(\frac{1}{1 + e^{-\theta^{T} x^{(i)}}} - y^{(i)} \right) x_{j}^{(i)}$$
The final formula after applying partial derivatives

Inference After Learning

• After learning the parameters $\boldsymbol{\theta} = [\theta_0, ..., \theta_m]$, we can predict the output of any new unseen $\boldsymbol{x} = [x_0, ..., x_m]$ as follows:

$$\begin{cases} if \ h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}} < 0.5 \text{ predict } 0 \\ Else \ if \ h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}} \ge 0.5 \text{ predict } 1 \end{cases}$$

Visualization of weights, bias, activation function

Slide credit: Hugo Larochelle

Activation - sigmoid

- Squashes the neuron's preactivation between 0 and 1
- Always positive
- Bounded
- Strictly increasing

$$g(x) = \frac{1}{1 + e^{-x}}$$
Slide credit: Hugo Larochelle

	and	vaccine	the	of	nigeria	у
Email a	1	1	0	1	1	1
Email b	0	0	1	1	0	0
Email c	0	1	1	0	0	1
Email d	1	0	0	1	0	0
Email e	1	0	1	0	1	1
Email f	1	0	1	1	0	0

A Training Dataset

• Let us apply logistic regression on the spam email recognition problem, assuming $\alpha = 0.5$ and starting with $\theta = [0, 0, 0, 0, 0, 0]$

	and	vaccine	the	of	nigeria	У
Email a	1	1	0	1	1	1
Email b	Ø	0	1	1	0	0
Email c	þ	1	1	0	0	1
Email d	/1	0	0	1	0	0
Email e	/ 1	0	1	0	1	1
Email f	1	0	1	1	0	0
	İ					

1 entails that a word (i.e., "and") is present in an email (i.e., "Email a")

• Let us apply logistic regression on the spam email recognition problem, assuming $\alpha = 0.5$ and starting with $\theta = [0, 0, 0, 0, 0, 0]$

	and	vaccine	the	of	nigeria	У
Email a	1	1	0	1	1	1
Email b	0	0	1	1	0	0
Email c	-0	1	1	0	0	1
Email d	<u>/</u> 1	0	0	1	0	0
Email e	1 مسرً	0	1	0	1	1
Email f	/ 1	0	1	1	0	0

0 entails that a word (i.e., "and") is *abscent* in an email (i.e., "Email **b**")

• Let us apply logistic regression on the spam email recognition problem, assuming $\alpha = 0.5$ and starting with $\theta = [0, 0, 0, 0, 0, 0]$ we define 6 parameters (the first one, i.e., θ_0 , is the intercept)

 $x_1 = and$ $x_2 = \text{vaccine}$ $x_4 = of$ $x_3 =$ the $x_5 = nigeria$ У Email a Email **b** Email c Email d Email e Email **f**

• Let us apply logistic regression on the spam email recognition problem, assuming $\alpha = 0.5$ and starting with $\theta = [0, 0, 0, 0, 0, 0]$ The parameter vector: $\theta = [\theta_0, \theta_1, \theta_2, \theta_3, \theta_4, \theta_5]$

 $x = [x_0, x_1, x_2, x_3, x_4, x_5] \longrightarrow \textit{The feature vector}$

	I						
	$x_0 = 1$	$x_1 = and$	$x_2 = $ vaccine	$x_3 = the$	$x_4 = of$	$x_5 = nigeria$	у
Email a	1	1	1	0	1	1	1
Email b	1	0	0	1	1	0	0
Email c	1	0	1	1	0	0	1
Email d	1	1	0	0	1	0	0
Email e	1	1	0	1	0	1	1
Email f	1	1	0	1	1	0	0

To account for the intercept

Recap: Gradient Descent For Logistic Regression

Outline:

- Have cost function $J(\theta)$, where $\theta = [\theta_0, ..., \theta_m]$
- Start off with some guesses for θ_0 , ..., θ_m
 - It does not really matter what values you start off with, but a common choice is to set them all initially to zero
- Repeat until convergence{

$$\theta_{j} = \theta_{j} - \alpha \sum_{i=1}^{n} \left(\frac{1}{1 + e^{-\Theta^{T} x^{(i)}}} - y^{(i)} \right) x_{j}^{(i)}$$
First, let us calculate this factor for every example in our training dataset

x	y	$\theta^T x$
[1,1,1,0,1,1]	1	[0,0,0,0,0,0]×[1,1,1,0,1,1]=0
[1,0,0,1,1,0]	0	[0,0,0,0,0,0]×[1,0,0,1,1,0]=0
[1,0,1,1,0,0]	1	[0,0,0,0,0,0]×[1,0,1,1,0,0]=0
[1,1,0,0,1,0]	0	[0,0,0,0,0,0]×[1,1,0,0,1,0]=0
[1,1,0,1,0,1]	1	[0,0,0,0,0,0]×[1,1,0,1,0,1]=0
[1,1,0,1,1,0]	0	[0,0,0,0,0,0]×[1,1,0,1,1,0]=0

Recap: Gradient Descent For Logistic Regression

Outline:

- Have cost function $I(\theta)$, where $\theta = [\theta_0, ..., \theta_m]$
- Start off with some guesses for $\theta_0, \dots, \theta_m$
 - It does not really matter what values you start off with, but a common choice is to set them all initially to zero
- Repeat until convergence{

$$\theta_j = \theta_j - \alpha \sum_{i=1}^n \left(\frac{1}{1 + e^{-\theta^T x^{(i)}}} - y^{(i)} \right) x_j^{(i)}$$
 example in our training dataset and for every θ_j , where j is between 0 and m

Second, let us calculate this equation for every example in our training

[x	y	$\theta^T x$	$(\frac{1}{1+e^{-\theta^T x}}-\mathbf{y})x_0$
[1,1,1,0,1,1]	1	[0,0,0,0,0,0]×[1,1,1,0,1,1]=0	
[1,0,0,1,1,0]	0	[0,0,0,0,0,0]×[1,0,0,1,1,0]=0	
[1,0,1,1,0,0]	1	[0,0,0,0,0,0]×[1,0,1,1,0,0]=0	
[1,1,0,0,1,0]	0	[0,0,0,0,0,0]×[1,1,0,0,1,0]=0	
[1,1,0,1,0,1]	1	[0,0,0,0,0,0]×[1,1,0,1,0,1]=0	
[1,1,0,1,1,0]	0	[0,0,0,0,0,0]×[1,1,0,1,1,0]=0	

x	y	$\theta^T x$	$(\frac{1}{1+e^{-\theta^T x}}-\mathbf{y})x_0$
[1,1,1,0,1,1]	1	[0,0,0,0,0,0]×[1,1,1,0,1,1]=0	$(\frac{1}{1+e^{-0}}-1)\times 1 = -0.5$
[1,0,0,1,1,0]	0	[0,0,0,0,0,0]×[1,0,0,1,1,0]=0	$(\frac{1}{1+1} - 0) \times 1 = 0.5$
[1,0,1,1,0,0]	1	[0,0,0,0,0,0]×[1,0,1,1,0,0]=0	$(\frac{1}{1+1} - 1) \times 1 = -0.5$
[1,1,0,0,1,0]	0	[0,0,0,0,0,0]×[1,1,0,0,1,0]=0	$(\frac{1}{1+1} - 0) \times 1 = 0.5$
[1,1,0,1,0,1]	1	[0,0,0,0,0,0]×[1,1,0,1,0,1]=0	$(\frac{1}{1+1} - 1) \times 1 = -0.5$
[1,1,0,1,1,0]	0	[0,0,0,0,0,0]×[1,1,0,1,1,0]=0	$(\frac{1}{1+1} - 0) \times 1 = 0.5$

Recap: Gradient Descent For Logistic Regression

Outline:

- Have cost function $J(\theta)$, where $\theta = [\theta_0, ..., \theta_m]$
- Start off with some guesses for θ_0 , ..., θ_m
 - It does not really matter what values you start off with, but a common choice is to set them all initially to zero
- Repeat until convergence{

$$\theta_j = \theta_j - \alpha \sum_{i=1}^n \left(\frac{1}{1 + e^{-\theta^T x^{(i)}}} - y^{(i)} \right) x_j^{(i)} \xrightarrow{\text{Third, let us compute every } \theta_j}$$

x	y	$\theta^T x$	$(\frac{1}{1+e^{-\theta^{T}x}}-\mathbf{y})x_{0}$
[1,1,1,0,1,1]	1	$[0,0,0,0,0,0] \times [1,1,1,0,1,1] = 0$	-0.5
[1,0,0,1,1,0]	0	[0,0,0,0,0,0]×[1,0,0,1,1,0]=0	0.5
[1,0,1,1,0,0]	1	[0,0,0,0,0,0]×[1,0,1,1,0,0]=0	-0.5
[1,1,0,0,1,0]	0	[0,0,0,0,0,0]×[1,1,0,0,1,0]=0	0.5
[1,1,0,1,0,1]	1	[0,0,0,0,0,0]×[1,1,0,1,0,1]=0	-0.5
[1,1,0,1,1,0]	0	[0,0,0,0,0,0]×[1,1,0,1,1,0]=0	0.5

x	y	$\theta^T x$	$\left(\frac{1}{1+e^{-\theta^T x}}-y\right)x_0$
[1,1,1,0,1,1]	1	$[0,0,0,0,0,0] \times [1,1,1,0,1,1] = 0$	-0.5
[1,0,0,1,1,0]	0	[0,0,0,0,0,0]×[1,0,0,1,1,0]=0	0.5
[1,0,1,1,0,0]	1	[0,0,0,0,0,0]×[1,0,1,1,0,0]=0	-0.5
[1,1,0,0,1,0]	0	[0,0,0,0,0,0]×[1,1,0,0,1,0]=0	0.5
[1,1,0,1,0,1]	1	[0,0,0,0,0,0]×[1,1,0,1,0,1]=0	-0.5
[1,1,0,1,1,0]	0	[0,0,0,0,0,0]×[1,1,0,1,1,0]=0	0.5

• Let us apply logistic regression on the spam email recognition problem, assuming $\alpha = 0.5$ and starting with $\theta = [0, 0, 0, 0, 0, 0]$

x	y	$\theta^T x$	$(\frac{1}{1+e^{-\theta^T x}}-\mathbf{y})x_0$
[1,1,1,0,1,1]	1	[0,0,0,0,0,0]×[1,1,1,0,1,1]=0	-0.5
[1,0,0,1,1,0]	0	[0,0,0,0,0,0]×[1,0,0,1,1,0]=0	0.5
[1,0,1,1,0,0]	1	[0,0,0,0,0,0]×[1,0,1,1,0,0]=0	-0.5
[1,1,0,0,1,0]	0	[0,0,0,0,0,0]×[1,1,0,0,1,0]=0	0.5
[1,1,0,1,0,1]	1	[0,0,0,0,0,0]×[1,1,0,1,0,1]=0	-0.5
[1,1,0,1,1,0]	0	[0,0,0,0,0,0]×[1,1,0,1,1,0]=0	0.5

$$\sum_{i=1}^{n} \left(\frac{1}{1 + e^{-\theta^{T} x^{(i)}}} - y^{(i)} \right) x_{0}^{(i)} = \mathbf{0}$$

$$Then,$$

$$\theta_{0} = \theta_{0} - \alpha \times \mathbf{0}$$

$$= 0 - 0.5 \times \mathbf{0} = \mathbf{0}$$

New Paramter Vector:

$$\boldsymbol{\theta} = [\mathbf{0}, \boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \boldsymbol{\theta}_3, \boldsymbol{\theta}_4, \boldsymbol{\theta}_5]$$

[x	y	$\theta^T x$	$(\frac{1}{1+e^{-\theta^T x}}-\mathbf{y})x_1$
[1,1,1,0,1,1]	1	[0,0,0,0,0,0]×[1,1,1,0,1,1]=0	
[1,0,0,1,1,0]	0	[0,0,0,0,0,0]×[1,0,0,1,1,0]=0	
[1,0,1,1,0,0]	1	[0,0,0,0,0,0]×[1,0,1,1,0,0]=0	
[1,1,0,0,1,0]	0	[0,0,0,0,0,0]×[1,1,0,0,1,0]=0	
[1,1,0,1,0,1]	1	[0,0,0,0,0,0]×[1,1,0,1,0,1]=0	
[1,1,0,1,1,0]	0	[0,0,0,0,0,0]×[1,1,0,1,1,0]=0	

• Let us apply logistic regression on the spam email recognition problem, assuming $\alpha = 0.5$ and starting with $\theta = [0, 0, 0, 0, 0, 0]$

x	y	$\theta^T x$	$(\frac{1}{1+e^{-\theta^T x}}-\mathbf{y})x_1$
[1,1,1,0,1,1]	1	[0,0,0,0,0,0]×[1,1,1,0,1,1]=0	-0.5
[1,0,0,1,1,0]	0	[0,0,0,0,0,0]×[1,0,0,1,1,0]=0	0
[1,0,1,1,0,0]	1	[0,0,0,0,0,0]×[1,0,1,1,0,0]=0	0
[1,1,0,0,1,0]	0	[0,0,0,0,0,0]×[1,1,0,0,1,0]=0	0.5
[1,1,0,1,0,1]	1	[0,0,0,0,0,0]×[1,1,0,1,0,1]=0	-0.5
[1,1,0,1,1,0]	0	[0,0,0,0,0,0]×[1,1,0,1,1,0]=0	0.5

$$\sum_{i=1}^{n} \left(\frac{1}{1 + e^{-\theta^{T} x^{(i)}}} - y^{(i)} \right) x_{1}^{(i)} = \mathbf{0}$$

$$Then,$$

$$\theta_{1} = \theta_{1} - \alpha \times \mathbf{0}$$

$$= 0 - 0.5 \times \mathbf{0} = \mathbf{0}$$

New Paramter Vector:

$$\boldsymbol{\theta} = [\mathbf{0}, \mathbf{0}, \boldsymbol{\theta}_2, \boldsymbol{\theta}_3, \boldsymbol{\theta}_4, \boldsymbol{\theta}_5]$$

x	y	$\theta^T x$	$\left(\frac{1}{1+e^{-\theta^T x}}-\mathbf{y}\right)x_2$
[1,1 1,0,1,1]	1	[0,0,0,0,0,0]×[1,1,1,0,1,1]=0	
[1,0,0,1,1,0]	0	[0,0,0,0,0,0]×[1,0,0,1,1,0]=0	
[1,0,1,1,0,0]	1	[0,0,0,0,0,0]×[1,0,1,1,0,0]=0	
[1,1,0,0,1,0]	0	[0,0,0,0,0,0]×[1,1,0,0,1,0]=0	
[1,1,0,1,0,1]	1	[0,0,0,0,0,0]×[1,1,0,1,0,1]=0	
[1,1,0,1,1,0]	0	[0,0,0,0,0,0]×[1,1,0,1,1,0]=0	

• Let us apply logistic regression on the spam email recognition problem, assuming $\alpha = 0.5$ and starting with $\theta = [0, 0, 0, 0, 0, 0]$

x	y	$\theta^T x$	$(\frac{1}{1+e^{-\theta^T x}}-\mathbf{y})x_2$
[1,1,1,0,1,1]	1	$[0,0,0,0,0,0] \times [1,1,1,0,1,1] = 0$	-0.5
[1,0,0,1,1,0]	0	[0,0,0,0,0,0]×[1,0,0,1,1,0]=0	0
[1,0,1,1,0,0]	1	[0,0,0,0,0,0]×[1,0,1,1,0,0]=0	-0.5
[1,1,0,0,1,0]	0	[0,0,0,0,0,0]×[1,1,0,0,1,0]=0	0
[1,1,0,1,0,1]	1	[0,0,0,0,0,0]×[1,1,0,1,0,1]=0	0
[1,1,0,1,1,0]	0	[0,0,0,0,0,0]×[1,1,0,1,1,0]=0	0

$$\sum_{i=1}^{n} \left(\frac{1}{1 + e^{-\theta^T x^{(i)}}} - y^{(i)}\right) x_2^{(i)} = -1$$

$$Then,$$

$$\theta_2 = \theta_2 - \alpha \times (-1)$$

$$= 0 - 0.5 \times (-1) = \mathbf{0.5}$$

New Paramter Vector: $\theta = [0, 0, 0.5, \theta_3, \theta_4, \theta_5]$

X	y	$\theta^T x$	$(\frac{1}{1+e^{-\theta^T x}}-\mathbf{y})x_3$
[1,1,1,0,1,1]	1	[0,0,0,0,0,0]×[1,1,1,0,1,1]=0	
[1,0,0,1,1,0]	0	[0,0,0,0,0,0]×[1,0,0,1,1,0]=0	
[1,0,1,1,0,0]	1	[0,0,0,0,0,0]×[1,0,1,1,0,0]=0	
[1,1,0,0,1,0]	0	[0,0,0,0,0,0]×[1,1,0,0,1,0]=0	
[1,1,0,1,0,1]	1	[0,0,0,0,0,0]×[1,1,0,1,0,1]=0	
[1,1,0 1,1,0]	0	[0,0,0,0,0,0]×[1,1,0,1,1,0]=0	

• Let us apply logistic regression on the spam email recognition problem, assuming $\alpha = 0.5$ and starting with $\theta = [0, 0, 0, 0, 0, 0]$

x	y	$\theta^T x$	$(\frac{1}{1+e^{-\theta^T x}}-\mathbf{y})x_3$
[1,1,1,0,1,1]	1	[0,0,0,0,0,0]×[1,1,1,0,1,1]=0	0
[1,0,0,1,1,0]	0	[0,0,0,0,0,0]×[1,0,0,1,1,0]=0	0.5
[1,0,1,1,0,0]	1	[0,0,0,0,0,0]×[1,0,1,1,0,0]=0	-0.5
[1,1,0,0,1,0]	0	[0,0,0,0,0,0]×[1,1,0,0,1,0]=0	0
[1,1,0,1,0,1]	1	[0,0,0,0,0,0]×[1,1,0,1,0,1]=0	-0.5
[1,1,0,1,1,0]	0	[0,0,0,0,0,0]×[1,1,0,1,1,0]=0	0.5

$$\sum_{i=1}^{n} \left(\frac{1}{1 + e^{-\theta^{T} x^{(i)}}} - y^{(i)} \right) x_{3}^{(i)} = \mathbf{0}$$

$$Then,$$

$$\theta_{3} = \theta_{3} - \alpha \times \mathbf{0}$$

$$= 0 - 0.5 \times 0 = \mathbf{0}$$

New Paramter Vector: $\theta = [0, 0, 0.5, 0, \theta_4, \theta_5]$

x [y	$\theta^T x$	$(\frac{1}{1+e^{-\theta^T x}}-\mathbf{y})x_4$
[1,1,1,0,1,1]	1	[0,0,0,0,0,0]×[1,1,1,0,1,1]=0	
[1,0,0,1,1,0]	0	[0,0,0,0,0,0]×[1,0,0,1,1,0]=0	
[1,0,1,1,0,0]	1	[0,0,0,0,0,0]×[1,0,1,1,0,0]=0	
[1,1,0,0,1,0]	0	[0,0,0,0,0,0]×[1,1,0,0,1,0]=0	
[1,1,0,1,0,1]	1	[0,0,0,0,0,0]×[1,1,0,1,0,1]=0	
[1,1,0,1 1,0]	0	[0,0,0,0,0,0]×[1,1,0,1,1,0]=0	

• Let us apply logistic regression on the spam email recognition problem, assuming $\alpha = 0.5$ and starting with $\theta = [0, 0, 0, 0, 0, 0]$

x	y	$\boldsymbol{\theta^T} \boldsymbol{x}$	$(\frac{1}{1+e^{-\theta^T x}}-\mathbf{y})x_4$
[1,1,1,0,1,1]	1	[0,0,0,0,0,0]×[1,1,1,0,1,1]=0	-0.5
[1,0,0,1,1,0]	0	[0,0,0,0,0,0]×[1,0,0,1,1,0]=0	0.5
[1,0,1,1,0,0]	1	[0,0,0,0,0,0]×[1,0,1,1,0,0]=0	0
[1,1,0,0,1,0]	0	[0,0,0,0,0,0]×[1,1,0,0,1,0]=0	0.5
[1,1,0,1,0,1]	1	[0,0,0,0,0,0]×[1,1,0,1,0,1]=0	0
[1,1,0,1,1,0]	0	[0,0,0,0,0,0]×[1,1,0,1,1,0]=0	0.5

$$\sum_{i=1}^{n} \left(\frac{1}{1 + e^{-\theta^T x^{(i)}}} - y^{(i)} \right) x_4^{(i)} = 1$$

$$Then,$$

$$\theta_4 = \theta_4 - \alpha \times \mathbf{1}$$

$$= 0 - 0.5 \times 1 = -\mathbf{0}.5$$

New Paramter Vector: $\theta = [0, 0, 0.5, 0, -0.5, \theta_5]$

A Concrete Example: The Training Phase

• Let us apply logistic regression on the spam email recognition problem, assuming $\alpha = 0.5$ and starting with $\theta = [0, 0, 0, 0, 0, 0]$

x	y	$\theta^T x$	$(\frac{1}{1+e^{-\theta^T x}}-\mathbf{y})x_5$
[1,1,1,0,1,1]	1	[0,0,0,0,0,0]×[1,1,1,0,1,1]=0	
[1,0,0,1,1,0]	0	[0,0,0,0,0,0]×[1,0,0,1,1,0]=0	
[1,0,1,1,0,0]	1	[0,0,0,0,0,0]×[1,0,1,1,0,0]=0	
[1,1,0,0,1,0]	0	[0,0,0,0,0,0]×[1,1,0,0,1,0]=0	
[1,1,0,1,0,1]	1	[0,0,0,0,0,0]×[1,1,0,1,0,1]=0	
[1,1,0,1,1,0]	0	[0,0,0,0,0,0]×[1,1,0,1,1,0]=0	

A Concrete Example: The Training Phase

• Let us apply logistic regression on the spam email recognition problem, assuming $\alpha = 0.5$ and starting with $\theta = [0, 0, 0, 0, 0, 0]$

x	y	$\theta^T x$	$(\frac{1}{1+e^{-\theta^T x}}-\mathbf{y})x_5$
[1,1,1,0,1,1]	1	[0,0,0,0,0,0]×[1,1,1,0,1,1]=0	-0.5
[1,0,0,1,1,0]	0	[0,0,0,0,0,0]×[1,0,0,1,1,0]=0	0
[1,0,1,1,0,0]	1	[0,0,0,0,0,0]×[1,0,1,1,0,0]=0	0 /
[1,1,0,0,1,0]	0	[0,0,0,0,0,0]×[1,1,0,0,1,0]=0	0
[1,1,0,1,0,1]	1	[0,0,0,0,0,0]×[1,1,0,1,0,1]=0	-0.5
[1,1,0,1,1,0]	0	[0,0,0,0,0,0]×[1,1,0,1,1,0]=0	0

$$\sum_{i=1}^{n} \left(\frac{1}{1 + e^{-\theta^T x^{(i)}}} - y^{(i)} \right) x_5^{(i)} = -1$$

$$Then,$$

$$\theta_5 = \theta_5 - \alpha \times (-1)$$

$$= 0 - 0.5 \times (-1) = \mathbf{0.5}$$

New Paramter Vector: $\theta = [0, 0, 0.5, 0, -0.5, 0.5]$

- Let us now *test* logistic regression on the spam email recognition problem, using the just learnt $\theta = [0, 0, 0.5, 0, -0.5, 0.5]$
 - Note: Testing is typically done over a portion of the dataset that is not used during training, but rather kept only for testing the accuracy of the algorithm's predictions thus far
 - In this example, we will test over all the examples that we *used* during training, *just* for illustrative purposes

• Let us *test* logistic regression on the spam email recognition problem, using the just learnt $\theta = [0, 0, 0.5, 0, -0.5, 0.5]$

x	y	$\theta^T x$
[1,1,1,0,1,1]	1	[0,0,0.5,0,-0.5,0.5]×[1,1,1,0,1,1]=0.5
[1,0,0,1,1,0]	0	[0,0,0.5,0,-0.5,0.5]×[1,0,0,1,1,0]=-0.5
[1,0,1,1,0,0]	1	[0,0,0.5,0,-0.5,0.5]×[1,0,1,1,0,0]=0.5
[1,1,0,0,1,0]	0	[0,0,0.5,0,-0.5,0.5]×[1,1,0,0,1,0]=-0.5
[1,1,0,1,0,1]	1	[0,0,0.5,0,-0.5,0.5]×[1,1,0,1,0,1]=0.5
[1,1,0,1,1,0]	0	[0,0,0.5,0,-0.5,0.5]×[1,1,0,1,1,0]=-0.5

• Let us *test* logistic regression on the spam email recognition problem, using the just learnt $\theta = [0, 0, 0.5, 0, -0.5, 0.5]$

x	y	$\theta^T x$	$\boldsymbol{h}_{\boldsymbol{\theta}}(\boldsymbol{x}) = (\frac{1}{1 + e^{-\boldsymbol{\theta}^T \boldsymbol{x}}})$	
[1,1,1,0,1,1]	1	$[0,0,0.5,0,-0.5,0.5] \times [1,1,1,0,1,1] = 0.5$	0.622459331	
[1,0,0,1,1,0]	0	[0,0,0.5,0,-0.5,0.5]×[1,0,0,1,1,0]=-0.5	0.377540669	
[1,0,1,1,0,0]	1	[0,0,0.5,0,-0.5,0.5]×[1,0,1,1,0,0]=0.5	0.622459331	
[1,1,0,0,1,0]	0	[0,0,0.5,0,-0.5,0.5]×[1,1,0,0,1,0]=-0.5	0.377540669	
[1,1,0,1,0,1]	1	[0,0,0.5,0,-0.5,0.5]×[1,1,0,1,0,1]=0.5	0.622459331	
[1,1,0,1,1,0]	0	[0,0,0.5,0,-0.5,0.5]×[1,1,0,1,1,0]=-0.5	0.377540669	

• Let us *test* logistic regression on the spam email recognition problem, using the just learnt $\theta = [0, 0, 0.5, 0, -0.5, 0.5]$

 $\theta^T x$ Predicted Class (or y') $h_{\theta}(x) = \left(\frac{1}{1 + e^{-\theta^T x}}\right)$ X y [1,1,1,0,1,1] $[0,0,0.5,0,-0.5,0.5] \times [1,1,1,0,1,1] = 0.5$ 1 0.622459331 [1,0,0,1,1,0] 0 $[0,0,0.5,0,-0.5,0.5] \times [1,0,0,1,1,0] = -0.5$ 0.377540669 [1,0,1,1,0,0] 1 $[0,0,0.5,0,-0.5,0.5] \times [1,0,1,1,0,0] = 0.5$ 0.622459331 [1,1,0,0,1,0] 0 $[0,0,0.5,0,-0.5,0.5] \times [1,1,0,0,1,0] = -0.5$ 0.377540669 [1,1,0,1,0,1] $[0,0,0.5,0,-0.5,0.5] \times [1,1,0,1,0,1] = 0.5$ 1 0.622459331 [1,1,0,1,1,0] 0 $[0,0,0.5,0,-0.5,0.5] \times [1,1,0,1,1,0] = -0.5$ 0.377540669

 Let us test logistic regression on the spam email recognition problem, using the just learnt $\theta = [0, 0, 0.5, 0, -0.5, 0.5]$ (if $h_{\theta}(x) \ge 0.5, y' = 1$; else y' = 0)

x	y	$\theta^T x$	$\boldsymbol{h}_{\boldsymbol{\theta}}(\boldsymbol{x}) = (\frac{1}{1 + e^{-\boldsymbol{\theta}^T \boldsymbol{x}}})$	Predicted Class (or y')
[1,1,1,0,1,1]	1	[0,0,0.5,0,-0.5,0.5]×[1,1,1,0,1,1]=0.5	0.622459331	1
[1,0,0,1,1,0]	0	[0,0,0.5,0,-0.5,0.5]×[1,0,0,1,1,0]=-0.5	0.377540669	0
[1,0,1,1,0,0]	1	[0,0,0.5,0,-0.5,0.5]×[1,0,1,1,0,0]=0.5	0.622459331	1
[1,1,0,0,1,0]	0	[0,0,0.5,0,-0.5,0.5]×[1,1,0,0,1,0]=-0.5	0.377540669	0
[1,1,0,1,0,1]	1	[0,0,0.5,0,-0.5,0.5]×[1,1,0,1,0,1]=0.5	0.622459331	1
[1,1,0,1,1,0]	0	[0,0,0.5,0,-0.5,0.5]×[1,1,0,1,1,0]=-0.5	0.377540669	0

 Let us test logistic regression on the spam email recognition problem, using the just learnt $\theta = [0, 0, 0.5, 0, -0.5, 0.5]$ $(if h_{\theta}(x) \ge 0.5, y' = 1; else y' = 0)$

x	y	$\boldsymbol{\theta^T} \boldsymbol{x}$	$\boldsymbol{h}_{\boldsymbol{\theta}}(\boldsymbol{x}) = (\frac{1}{1 + e^{-\boldsymbol{\theta}^T \boldsymbol{x}}})$	Predicted Class (or y')
[1,1,1,0,1,1]	1	[0,0,0.5,0,-0.5,0.5]×[1,1,1,0,1,1]=0.5	0.622459331	1
[1,0,0,1,1,0]	0	[0,0,0.5,0,-0.5,0.5]×[1,0,0,1,1,0]=-0.5	0.377540669	0
[1,0,1,1,0,0]	1	[0,0,0.5,0,-0.5,0.5]×[1,0,1,1,0,0]=0.5	0.622459331	NO
[1,1,0,0,1,0]	0	[0,0,0.5,0,-0.5,0.5]×[1,1,0,0,1,0]=-0.5	0.377540669	Mispredictions!
[1,1,0,1,0,1]	1	[0,0,0.5,0,-0.5,0.5]×[1,1,0,1,0,1]=0.5	0.622459331	1
[1,1,0,1,1,0]	0	$[0,0,0.5,0,-0.5,0.5] \times [1,1,0,1,1,0] = -0.5$	0.377540669	0

• Let us infer whether a given new email, say, k = [1, 0, 1, 0, 0, 1] is a spam or not, using logistic regression with the just learnt parameter vector $\theta = [0, 0, 0, 5, 0, -0.5, 0.5]$

	$x_0 = 1$	$x_1 = and$	$x_2 = $ vaccine	$x_3 = the$	$x_4 = of$	$x_5 = nigeria$	у
Email a	1	1	1	0	1	1	1
Email b	1	0	0	1	1	0	0
Email c	1	0	1	1	0	0	1
Email d	1	1	0	0	1	0	0
Email e	1	1	0	1	0	1	1
Email f	1	1	0	1	1	0	0

Our Training Dataset

• Let us infer whether a given new email, say, k = [1, 0, 1, 0, 0, 1] is a spam or not, using logistic regression with the just learnt parameter vector $\theta = [0, 0, 0, 5, 0, -0.5, 0.5]$

	$x_0 = 1$	$x_1 = and$	$x_2 = vaccine$	$x_3 = the$	$x_4 = of$	$x_5 = nigeria$	у
Email a	1	1	1	0	1	1	1
Email b	1	0	0	1	1	0	0
Email c	1	0	1	1	0	0	1
Email d	1	1	0	0	1	0	0
Email e	1	1	0	1	0	1	1
Email f	1	1	0	1	1	0	0
Email k	1	0	1	0	0	1	?

• Let us infer whether a given new email, say, k = [1, 0, 1, 0, 0, 1] is a spam or not, using logistic regression with the just learnt parameter vector $\theta = [0, 0, 0.5, 0, -0.5, 0.5]$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}x}} \qquad \begin{bmatrix} 0 \\ 0 \\ 0.5 \\ 0 \\ -0.5 \\ 0.5 \end{bmatrix} [1, 0, 1, 0, 0, 1] = (0.5 \times 1) + (0.5 \times 1) = 1$$

$$= \frac{1}{1 + e^{-1}}$$

$$= 0.731$$

$$\geq 0.5 \implies \text{Class 1 (i.e., Spam)}$$

• Let us infer whether a given new email, say, k = [1, 0, 1, 0, 0, 1] is a spam or not, using logistic regression with the just learnt parameter vector $\theta = [0, 0, 0.5, 0, -0.5, 0.5]$

	$x_0 = 1$	$x_1 = and$	$x_2 = $ vaccine	$x_3 = the$	$x_4 = of$	$x_5 = nigeria$	у
Email a	1	1	1	0	1	1	1
Email b	1	0	0	1	1	0	0
Email c	1	0	1	1	0	0	1
Email d	1	1	0	0	1	0	0
Email e	1	1	0	1	0	1	1
Email f	1	1	0	1	1	0	0
Email k	1	0	1	0	0	1	1

Somehow interesting since it considered "vaccine" and "nigeria" indicative of spam!

Logistic Regression

- ✓ Sources:
 - https://www.kaggle.com/
 - http://research.cs.tamu.edu
 - http://web.iitd.ac.in
 - https://www3.nd.edu/