#### 1.Build Convolution Neural Network

best 的結果由多個 model 的預測線性組合而成,此處挑其中一個 model (在 public 分數為 0.65),以下為其架構

根據實驗結果,疊多層 Convolution 的結果好過於疊多層 Dense,此外,filter 數量逐漸增加的效果較好,和理論上 CNN 觀察的特徵越來越複雜符合

| Layer (type)                            | 0utput | Shape | e   |      | Param # |
|-----------------------------------------|--------|-------|-----|------|---------|
| conv2d_1 (Conv2D)                       | (None, | 44,   | 44, | 64)  | 1664    |
| zero_padding2d_1 (ZeroPaddin            | (None, | 48, 4 | 48, | 64)  | 0       |
| max_pooling2d_1 (MaxPooling2            | (None, | 22, 3 | 22, | 64)  | 0       |
| zero_padding2d_2 (ZeroPaddin            | (None, | 24, 3 | 24, | 64)  | 0       |
| conv2d_2 (Conv2D)                       | (None, | 22, 3 | 22, | 64)  | 36928   |
| zero_padding2d_3 (ZeroPaddin            | (None, | 24, 3 | 24, | 64)  | 0       |
| conv2d_3 (Conv2D)                       | (None, | 22, 3 | 22, | 64)  | 36928   |
| <pre>average_pooling2d_1 (Average</pre> | (None, | 10,   | 10, | 64)  | 0       |
| zero_padding2d_4 (ZeroPaddin            | (None, | 12,   | 12, | 64)  | 0       |
| dropout_1 (Dropout)                     | (None, | 12,   | 12, | 64)  | 0       |
| conv2d_4 (Conv2D)                       | (None, | 10,   | 10, | 96)  | 55392   |
| zero_padding2d_5 (ZeroPaddin            | (None, | 12,   | 12, | 96)  | 0       |
| conv2d_5 (Conv2D)                       | (None, | 10,   | 10, | 128) | 110720  |
| zero_padding2d_6 (ZeroPaddin            | (None, | 12,   | 12, | 128) | 0       |

| dropout_2 (Dropout)                     | (None, 12 | 2, 12, 128) | 0       |
|-----------------------------------------|-----------|-------------|---------|
| conv2d_6 (Conv2D)                       | (None, 10 | ), 10, 128) | 147584  |
| zero_padding2d_7 (ZeroPaddin            | (None, 12 | 2, 12, 128) | 0       |
| <pre>average_pooling2d_2 (Average</pre> | (None, 5, | 5, 128)     | 0       |
| dropout_3 (Dropout)                     | (None, 5, | 5, 128)     | 0       |
| flatten_1 (Flatten)                     | (None, 32 | 100)        | 0       |
| dense_1 (Dense)                         | (None, 90 | 10)         | 2880900 |
| activation_1 (Activation)               | (None, 90 | 00)         | 0       |
| dropout_4 (Dropout)                     | (None, 90 | 00)         | 0       |
| dense_2 (Dense)                         | (None, 90 | 10)         | 810900  |
| activation_2 (Activation)               | (None, 90 | 00)         | 0       |
| dropout_5 (Dropout)                     | (None, 90 | 00)         | 0       |
| dense_3 (Dense)                         | (None, 7) |             | 6307    |
| activation_3 (Activation)               | (None, 7) |             | 0       |
| ======================================  |           |             |         |

此 model 的 accuracy 對 epochs 做圖如下:



valid 的 accuracy 始終在 train 之上,這可能是因為我在切 valid 之前,就先對所有的 training data 做了 flip,也就是因為 preprocessing 使得 valid 的性質更接近 training,導致這個結果發生,大約差在 5%,但整體而言還是看的出正相關,後來就沒有再去修改,所以 valid 的表現會高過於 test

## 2. Build DNN DNN 架構:

| Layer (type)                                                                | Output Shape | Param # |
|-----------------------------------------------------------------------------|--------------|---------|
| dense_1 (Dense)                                                             | (None, 1024) | 2360320 |
| activation_1 (Activation)                                                   | (None, 1024) | 0       |
| dropout_1 (Dropout)                                                         | (None, 1024) | 0       |
| dense_2 (Dense)                                                             | (None, 1024) | 1049600 |
| activation_2 (Activation)                                                   | (None, 1024) | 0       |
| dropout_2 (Dropout)                                                         | (None, 1024) | 0       |
| dense_3 (Dense)                                                             | (None, 768)  | 787200  |
| activation_3 (Activation)                                                   | (None, 768)  | 0       |
| dropout_3 (Dropout)                                                         | (None, 768)  | 0       |
| dense_4 (Dense)                                                             | (None, 768)  | 590592  |
| activation_4 (Activation)                                                   | (None, 768)  | 0       |
| dropout_4 (Dropout)                                                         | (None, 768)  | 0       |
| dense_5 (Dense)                                                             | (None, 512)  | 393728  |
| activation_5 (Activation)                                                   | (None, 512)  | 0       |
| dropout_5 (Dropout)                                                         | (None, 512)  | 0       |
| dense_6 (Dense)                                                             | (None, 512)  | 262656  |
| activation_6 (Activation)                                                   | (None, 512)  | 0       |
| dropout_6 (Dropout)                                                         | (None, 512)  | 0       |
| dense_7 (Dense)                                                             | (None, 7)    | 3591    |
| activation_7 (Activation)                                                   | (None, 7)    | 0       |
| Total params: 5,447,687 Trainable params: 5,447,687 Non-trainable params: 0 |              |         |
|                                                                             |              | ·       |

參數數量和 CNN 在同一個數量級



因為 earlystop 只記錄到大約 80 個 epoch,可以發現 DNN 的表現遠差於 CNN,且在 epoch 上升後沒有明顯進步,推論因為 feature 不限於某個位置,CNN 在偵測這個現象上勝過 DNN

# 3. Analyze the model with confusion matrix



如 P1 所提到,因為做了同樣的 preprocessing,所以 accuracy 相較於 testing set 的表現較高,這裡可以看出 fear 的預測表現最差,但整體來講還是和預測錯誤有差距,因此由 confusion matrix 認為這是可信的預測,其中 Happy 的預測結果最好,Fear 最差,可能跟表情本身的差異度高低有關

4. input 原圖:



#### Saliency Map:



## mask 掉 heatmap 小的部份



可以看出 silence map 在眼睛和嘴巴附近值較高,雖然還有其他空白,但大致保留這幾個部位去計算,認 為 model 的選擇是合理的

## 5. Analyze the model by visualizing filters

原始圖片:



filters 觀察

Filters of layer max\_pooling2d\_1 (# Ascent Epoch 200 )



圖片 trigger 後的 layer 觀察

Output of layer0 (Given image176)



#### (cmap='gray\_r')

可以發現在第 1 層 filter 確實是觀察簡單的線條,但還是有些許的雜訊,但大致記錄了圖片的特徵 而在 output layer 方面,大部份確實偵測到臉部的表情特徵如五官,也大概能觀察出臉的輪廓,符合理 論上第一層的特性