

Лабораторная работа №4.4.1

Амплитудная дифракционная решетка (гониометр)

Цель работы: знакомство с работой и настройкой гониометра $\Gamma 5$, определение спектральных характеристик амплитудной решетки.

В работе используются: гониометр, дифракционная решетка, ртутная лампа.

1 Теоретическая часть

Основное соотношение приближенной теории дифракционной решётки:

$$d\sin\varphi_m = m\lambda. \tag{1}$$

Угловая дисперсия D характеризует угловое расстояние между близкими спектральными линиями:

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi} = \frac{m}{\sqrt{d^2 - m^2\lambda^2}}.$$
 (2)

2 Экспериментальная установка

При работе с дифракционной решёткой основной задачей является точное измерение углов, при которых наблюдаются главные максимумы для различных длин волн. В нашей работе для измерения углов используется гониометр Г5. Принципиальная схема экспериментальной установки приведена на рис. 1.

Рис. 1: Схема установки.

3 Экспериментальная часть

3.1 Экспериментальные данные

Измерим угловые координаты спектральных линий ртути в ± 1 порядках, рассчитаем углы дифракции φ_m . Результаты измерений и вычислений занесем в таблицу 1.

\sim	-1	
Тоопти		٠
Таолица	- 1	
_000111140	_	•

	фиолетовый	синий	голубой	зеленый	желтый	желтый	красный	красный
φ	11°40′	12°33′	14°12′	15°49′	16°47′	16°48′	17°48′	18°08′
$\sin \varphi$	0,2022	0,2171	0,2451	0,2723	0,2886	0,2888	0,3055	0,3110
λ , HM	404,7	435,8	491,6	546,1	577	579,1	623,4	690,7

Для оценки угловой дисперсии решётки определим разности угловых координат линий жёлтого дублета во всех видимых порядках ($\Delta\lambda=21~{\rm \AA}$):

Таблица 2:

$\mid m \mid$	$\Delta \varphi,''$	$D \exp, 10^{-5} \mathrm{~pag/\mathring{A}}$	D teor, 10^{-5} рад/ $ m \mathring{A}$
1	50	$1,14 \pm 0,16$	5,22
-1	239	$-5,46 \pm 0,16$	-5,22
2	588	$13, 4 \pm 0, 1$	12, 2
-2	548	$-12,5 \pm 0,1$	-12, 2
3	1350	$30,9 \pm 0,1$	29,9
-3	1332	$-30, 4 \pm 0, 1$	-29, 9

Построим график зависимости $\sin \varphi_m$ от длины волны λ для ± 1 порядка:

Рис. 2: Зависимость λ от $\sin \varphi_m$.

Определим по углу наклона графика период решётки:

$$d = (2, 1 \pm 0, 2) \text{ MKM}. \tag{3}$$

Оценим разрешимый спектральный интервал:

$$\delta \lambda \approx \Delta \varphi / D = 2 \text{ Å}; \tag{4}$$

Разрешающая способность будет равна:

$$R \approx \frac{\lambda}{\delta \lambda} \tag{5}$$

Число эффективно работающих штрихов решётки:

$$N \approx R/m = 288 \tag{6}$$

Эффективный размер:

$$l \approx Nd = 6 \text{ mm}.$$
 (7)

4 Выводы

В данной лабораторной работе мы исследовали спектральные линии ртути, вследствие чего смогли определить шаг решётки, её угловую дисперсию и её эффективный размер. Полученные нами результаты оказались близки к теоретическим, за исключением первого порядка.