

<u>Course</u> > <u>Topic 1</u>... > <u>13.2 Hy</u>... > Hypoth...

Hypothesis Testing - p-Values Video

13.2 Hypotheis testing - p Values

POLL

If the statistic T is observed to be t, the p-value is

- The probability that T=t
- The probability under the null hypothesis that T=t
- The probability under the null hypothesis that T=t or is further

towards the alternative hypothesis

None of the above

Submit

1

2.0/2.0 points (graded)

One- and two-sided tests

We know the male students' height is approximately normal, and has standard deviation 4 inches. In a sample of 10 male students, the mean height is 68 inches. Calculate the p value corresponding to the following null hypotheses.

• H_0 : The average height of male students in this college is 70 inches.

 $H_1:$ The average height of male students in this college is **not** 70 inches.

0.11384629800665805

✓ Answer: 0.11384629800665805

0.11384629800665805

Explanation

Since we take a sample of 10 students, the standard deviation of the sample mean is $4/\sqrt{10}$.

$$P\left(N\left(0,4/\sqrt{10}
ight)\leq 2
ight)=0.9431$$
 Hence, $P\left(|N\left(0,4/\sqrt{10}
ight)|>2
ight)=2\left(1-0.9431
ight)=0.1138$

• H_0 : The average height of male students in this college is **at least** 70 inches.

 H_1 : The average height of male students in this college **less than** 70 inches.

0.056923149003329024

✓ Answer: 0.056923149003329024

0.056923149003329024

Explanation

$$P\left(N\left(0,4/\sqrt{10}
ight) \leq 2
ight) = 0.9431$$
 Hence, $P\left(N\left(0,4/\sqrt{10}
ight) < -2
ight) = (1-0.9431) = 0.0569$

Submit

You have used 1 of 4 attempts

Answers are displayed within the problem

2

0 points possible (ungraded)

The null hypothesis says that **at least** 20% of college students are left-handed. If we took a sample of 20 college students and let X be the number of lefties in the sample. Calculate the p values if

• X = 1

The checker accepts answers with tolerance 0.001

0.5

X Answer: 0.06917529027641081856

0.5

Explanation

The p value is $P\left(X \leq 1\right) = P\left(X = 0\right) + P\left(X = 1\right) = 0.069$

 \bullet X=2

X Answer: 0.20608471894847389696

Explanation

The p value is $P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.206$

Submit

You have used 4 of 4 attempts

• Answers are displayed within the problem

3

0 points possible (ungraded)

The null hypothesis states that a random variable follows the standard normal distribution, while the alternative hypothesis states that the random variable has negative mean. Which of the following shaded areas represents the p value when the observed outcome is z?

1

 \circ 1

2	~

- **3**
- 0 4

Explanation

The alternative hypothesis is one-sided. According to definition the p value is $P\left(X\leq z\right)$.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

4

6.0/6.0 points (graded)

In the following problem we discuss the test comparing two distribution means with the same variance. Assume $X\sim\mathcal{N}\left(\mu_1,\sigma^2\right)$, $Y\sim\mathcal{N}\left(\mu_2,\sigma^2\right)$, and they are independent.

- What is the variance of X Y?
- \circ σ^2
- \bullet $2\sigma^2$
- $\sigma^2/2$

Explanation

$$V\left(X-Y\right)=V\left(X\right)+V\left(-Y\right)=2\sigma^{2}.$$

• If \overline{X} is the sample mean of n independent random observations of X and \overline{Y} is the sample mean of n independent random observations of Y, what distribution does $\overline{X} - \overline{Y}$ follow?

$$^{\circ}~~\mathcal{N}\left(\mu_1-\mu_2,rac{\sigma^2}{n}
ight)$$

$$o$$
 $\mathcal{N}(\mu_1-\mu_2,rac{\sigma^2}{2n})$

$$ullet$$
 $\mathcal{N}(\mu_1-\mu_2,rac{2\sigma^2}{n})$ \checkmark

Explanation

$$egin{aligned} E\left(\overline{X}-\overline{Y}
ight) &= \mu_1 - \mu_2 \ V\left(\overline{X}-\overline{Y}
ight) &= V\left(\overline{X}
ight) + V\left(-\overline{Y}
ight) = rac{2\sigma^2}{n}. \end{aligned}$$

ullet We now want to test the null hypothesis H_0

 H_0 : In college, the average GPA of men is equal to the average GPA of women.

 H_1 : In college, the average GPA of men is different from the average GPA of women.

A sample of 10 men's GPA in college has sample mean 2.9, and a sample of 10 women's GPA has sample mean 3.1. We also know the GPAs of men and women have the same standard deviation 0.2. Calculate the p value.

The checker accepts answers with tolerance 0.001

0.025347318677468145

✓ Answer: 0.025347318677468145

0.025347318677468145

Explanation

Let \overline{X} be the men's average GPA, \overline{Y} be the women's average GPA.

The p value is $P(|\overline{X}-\overline{Y})|\geq |2.9-3.1|)=0.025$ Under the null hypothesis, $rac{\overline{X}-\overline{Y}}{\sqrt{2\sigma^2/n}}\sim \mathcal{N}\left(0,1\right)$.

Submit

You have used 4 of 4 attempts

Answers are displayed within the problem

Discussion

Topic: Topic 13 / p-values

Hide Discussion

Add a Post

Show all posts ▼	by recent activity ▼
 Problem 1 Questions and comments regarding problem 1. Staff 	8
 General Comments Questions and comments regarding this section. Staff 	2
 Problem 4 Questions and comments regarding problem 4. Staff 	5
 Problem 2 Questions and comments regarding problem 2. Staff 	1
 Problem 3 Questions and comments regarding problem 3. Staff 	1

© All Rights Reserved