## Introduction to RNA Sequencing

Adapted from RNAbio.org

Material created by:

Arpad Danos, Felicia Gomez, Obi Griffith, Malachi Griffith, My Hoang, Mariam Khanfar, Chris Miller, Kartik Singhal

#### Three RNAseq modules

- Module 1: Alignment and Visualization
- Module 2: Transcript/Expression Quantification
- Module 3: Differential Expression

- Hands-on exercises
  - Provide a working example of an RNA-seq analysis pipeline
  - Run in a 'reasonable' amount of time with modest computer resources
  - Self contained, self explanatory, portable

# Gene expression



#### RNA sequencing



#### Challenges

- Sample
  - Purity?, quantity?, quality?
- RNAs consist of small exons that may be separated by large introns
  - Mapping reads to genome is challenging
- The relative abundance of RNAs vary wildly
  - $10^5 10^7$  orders of magnitude
  - Since RNA sequencing works by random sampling, a small fraction of highly expressed genes may consume the majority of reads
  - Ribosomal and mitochondrial genes
- RNAs come in a wide range of sizes
  - Small RNAs must be captured separately
  - PolyA selection of large RNAs may result in 3' end bias
- RNA is fragile compared to DNA (easily degraded)

## Agilent example / interpretation

- <a href="https://goo.gl/uC5a3C">https://goo.gl/uC5a3C</a>
- 'RIN' = RNA integrity number
  - 0 (bad) to 10 (good)





#### Design considerations

- Standards, Guidelines and Best Practices for RNA-seq
  - The ENCODE Consortium
  - Download from the Course Wiki
  - Meta data to supply, replicates, sequencing depth, control experiments, reporting standards, etc.
  - https://goo.gl/6LePBW

 Several additional initiatives are underway to develop standards and best practices that cover many of these concepts. These include: the Sequencing Quality Control (SEQC) consortium, the Roadmap Epigenomics Mapping Consortium (REMC), and the Beta Cell Biology Consortium (BCBC).

#### There are many RNA-seq library construction strategies

- Total RNA versus polyA+ RNA?
- Ribo-reduction?
- Size selection (before and/or after cDNA synthesis)
  - Small RNAs (microRNAs) vs. large RNAs?
  - A narrow fragment size distribution vs. a broad one?
- Linear amplification?
- Stranded vs. un-stranded libraries
- Exome captured vs. un-captured
- These details can affect analysis strategy
  - Especially comparisons between libraries

## Fragmentation and size selection



Tissue



RNA sequence enrichment (selection/depletion)

10 rnabio.org

## Stranded vs. unstranded

#### A. Depiction of cDNA fragments from an unstranded library

#### Legend

- Transcription start site and direction
- ← PolyA site (transcription end)
- Read sequenced from positive strand (forward)
- --- Read sequenced from negative strand (reverse)



#### B. Depiction of cDNA fragments from an stranded library



#### C. Viewing strand of aligned reads in IGV



## Replicates

- Technical Replicate
  - Multiple instances of sequence generation
    - Flow Cells, Lanes, Indexes
- Biological Replicate
  - Multiple isolations of cells showing the same phenotype, stage or other experimental condition
  - Some example concerns/challenges:
    - Environmental Factors, Growth Conditions, Time



# Common analysis goals of RNA-Seq analysis (what can you ask of the data?)

- Gene expression and differential expression
- Transcript discovery and annotation
- Allele specific expression
  - Relating to SNPs, mutations, epigenomic marks
- Mutation discovery
- Fusion detection
- RNA editing

#### General themes of RNA-seq workflows

- Each type of RNA-seq analysis has distinct requirements and challenges but also a common theme:
- 1. Obtain raw data (convert format)
- 2. Align/assemble reads
- 3. Process alignment with a tool specific to the goal
  - e.g. 'cufflinks' for expression analysis, 'STAR-fusion' for fusion detection, etc.

#### 4. Post process

Import into downstream software (R, Matlab, Cytoscape, Ingenuity, etc.)

#### 5. Summarize and visualize

Create gene lists, prioritize candidates for validation, etc.

# Examples of RNA-seq data analysis workflows for differential gene expression



Stark et al. 2019

### Discussion of bulk vs single cell RNA-seq



Factors to compare: Cost, complexity of library prep, complexity of analysis, qualitative and quantitative differences in richness of information obtained.

#### Common questions (and answers)

Supplementary Table 7

- Malachi Griffith\*, Jason R. Walker, Nicholas C. Spies, Benjamin J. Ainscough, Obi L. Griffith\*. 2015. Informatics for RNA-seq: A web resource for analysis on the cloud. 11(8):e1004393. 2015.
  - http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.10043
     93

#### RNA-seq alignment challenges

- Computational cost
  - 100s of millions of reads
- Introns!
  - Align to a transcriptome or align to a genome?
    - Spliced vs. unspliced alignments

- Can I just align my data once using one approach and be done with it?
  - Unfortunately, probably not

## Three RNA-seq mapping strategies

#### De novo assembly



Optional: align to genome to get exon structure

#### Align to transcriptome



Use known and/or predicted gene models to examine individual features

#### Align to reference genome



Infer possible transcripts and abundance

Diagrams from Cloonan & Grimmond, Nature Methods 2010

## Which alignment strategy is best?

- De novo assembly
  - If a reference genome does not exist for the species being studied
  - If complex polymorphisms/mutations/haplotypes might be missed by comparing to the reference genome
- Align to transcriptome
  - If you have short reads (< 50bp)</li>
  - Relies on known transcripts
- Align to reference genome
  - All other cases
  - Does not rely on known transcripts allows for discovery
- Each strategy involves different alignment/assembly tools

Which read aligner should I

use?



**RNA** Bisulfite DNA microRNA

#### Should I use a splice-aware or unspliced mapper?

 The fragments being sequenced in RNA-seq represent mRNA - introns are removed

- But we are usually aligning these reads back to the reference genome
- Unless your reads are short (<50bp)</li>
   you should use a splice-aware aligner
  - HISAT2, STAR, MapSplice, etc.



### HISAT/HISAT2

- HISAT is a 'splice-aware' RNA-seq read aligner
  - HISAT = Hierarchical Indexing for Spliced Alignments of Transcripts
- Requires a reference genome
- Very fast
- Uses an indexing scheme based on the Burrows-Wheeler transform and the Ferragina-Manzini (FM) index
- Multiple types of indexes for alignment
  - a whole-genome FM index to anchor each alignment
  - numerous local FM indexes for very rapid extensions of these alignments.
  - Whole-genome indices with SNPs and known transcript structures accounted for

Kim et al. 2015. Nat Methods 12:357-360

## HISAT/HISAT2 algorithm

- Uses a hierarchical indexing algorithm + several adaptive strategies
  - based on the position of a read with respect to splice sites
- 1) Find candidate locations across the whole genome first
  - mapping part of each read using the global FM index
  - Generally identifies one or a small number of candidates.
- 2) Do local alignment
  - selects one of ~48,000 local indexes for each candidate
  - uses it to align the remainder of the read.
- For paired reads, each mate is separately aligned
  - If a read fails to align, then the alignments of its mate are used as anchors to map the unaligned mate



- Two exons from chr22
- Three reads





- 1) Search for read position with global FM index (slower)
- 2) Once at least 28bp and exactly one location switch to extension mode against reference genome (faster)



- 1) Search for read position with global FM index (slower)
- 2) Extend until mismatch at 93bp (faster)
- 3) Switch to local FM index to align remaining 8bp
  - index covers only a small region, so we find just one match
- 4) Check for compatibility and combine into single spliced alignment

Kim et al. 2015. Nat Methods 12:357-360

Global Search

Local Search

Extension

Read Exon

Intron



- 1) global search until exactly one match of at least 28bp (slower)
- 2) Extend until mismatch at 51bp (faster)
- 3) switch to local FM index to align first 8bp of remaining read
  - If too many matches increase prefix size
- 4) Extend again
- 5) Check for compatibility and combine into single spliced alignment

Kim et al. 2015. Nat Methods 12:357-360

### What is the output of HISAT2?

- A SAM/BAM file
  - SAM stands for Sequence Alignment/Map format
  - BAM is the binary version of a SAM file
- Remember, compressed files require special handling compared to plain text files
- How can I convert BAM to SAM?
  - http://www.biostars.org/p/1701/
- Is HISAT2 the only mapper to consider for RNA-seq data?
  - http://www.biostars.org/p/60478/

#### File formats

• FASTA file: chr22 with ERCC92.fa

• FASTQ file: HBR\_Rep3\_ERCC-Mix2\_Build37-ErccTranscripts-chr22.read2.fastq.gz

• GTF file: chr22\_with\_ERCC92.gtf

```
ensembl_havana transcript
                                                                       "ENSG00000215568";
                                                                                           gene_version
                                                                                                               transcript_id
ensembl_havana exon
                                                                                           gene_version
                                 17007941 17008222
                                                              gene_id "ENSG00000215568";
                                                                                                               transcript_id
                                                                                                                              "ENST00000400588"
ensembl_havana CDS
                                                             gene_id
                                                                       "ENSG00000215568";
                                                                                                               transcript_id
ensembl_havana start_codon
                                                             gene_id
                                                                       "ENSG00000215568";
                                                                                           gene_version
                                                                                                               transcript_id
ensembl_havana
                                                              gene_id
                                                                       "ENSG00000215568";
                                                                                           gene_version
                                                                                                               transcript_id
ensembl_havana CDS
                                                                       "ENSG00000215568":
                                                             aene_id
                                                                                                               transcript_id
                                                                                           gene_version
ensembl_havana exon
                                                              gene_id
                                                                      "ENSG00000215568";
                                                                                           gene_version
                                                                                                               transcript_id
                                                                                                                              "ENST00000400588
ensembl_havana
                                                              aene_id
                                                                       "ENSG00000215568":
                                                                                           gene_version
                                                                                                               transcript_id
ensembl havana exon
                                                              gene_id
                                                                       "ENSG00000215568";
                                                                                           gene_version
                                                                                                               transcript_id
ensembl_havana CDS
                                                                       "ENSG00000215568";
                                                                                                               transcript_id
                                                                                           gene_version
ensembl_havana exon
                                                                                                               transcript_id
                                                              gene_id
                                                                       "ENSG00000215568";
                                                                                           gene_version
ensembl_havana CDS
                                                                       "ENSG00000215568";
                                                                                                               transcript_id
ensembl_havana
                                                              gene_id
                                                                       "ENSG00000215568";
                                                                                           gene_version
                                                                                                               transcript_id
ensembl_havana CDS
                                                                       "ENSG00000215568":
                                                                                                               transcript_id
ensembl havana exon
                                                              gene_id
                                                                       "ENSG00000215568";
                                                                                           gene_version
                                                                                                               transcript_id
                                                                                                                              "ENST00000400588"
ensembl_havana CDS
                                                                       "ENSG00000215568";
                                                                                                               transcript_id
ensembl_havana exon
                                                                       "ENSG00000215568";
                                                                                           gene_version
                                                                                                               transcript_id
ensembl_havana
               CDS
                                                              gene_id
                                                                       "ENSG00000215568";
                                                                                           gene_version
                                                                                                               transcript_id
ensembl_havana exon
                                                                       "ENSG00000215568";
                                                                                           gene_version
                                                                                                               transcript_id
ensembl_havana CDS
                                                              aene_id
                                                                       "ENSG00000215568";
                                                                                                               transcript_id
                                                                                                                              "ENST00000400588"
ensembl havana
                                                                       "ENSG00000215568";
                                                                                                               transcript_id
ensembl_havana
                                                              gene_id
                                                                       "ENSG00000215568";
                                                                                                               transcript_id
ensembl_havana stop_codon
                                                             gene_id "ENSG00000215568";
                                                                                           gene_version
                                                                                                               transcript_id
ensembl_havana five_prime_utr
                                 17008115 17008222
                                                              gene_id
                                                                       "ENSG00000215568";
                                                                                                               transcript_id
                                                                                                                              "ENST00000400588"
                                                                                           gene_version
ensembl_havana three_prime_utr
                                16961936 16962732
                                                              gene_id "ENSG00000215568";
                                                                                           gene_version "7"; transcript_id "ENST00000400588'
```