데이터 분석 개요

CONTENTS

1. 데이터 분석 개요	03
1) 데이터 분석 개념	
2) 데이터 분석을 위한 역량	
3) 데이터 분석 - 머신 러닝	
	0.7
2. 데이터 형식	07
1) 데이터 양식	
2) 데이터 모양	
3) 데이터 형태	
4) 데이터 처리	
3. Machine Learning	12
1) 수치 예측 vs. 분류	
2) 수치 예측 모델 성능 평가	
3) 분류 모델 성능 평가	

1-1. 데이터 분석 개념

- 데이터간의 관계를 파악하고 의미 있는 형태로 가공한다.
- 가공된 데이터를 기반으로 의미 있는 정보를 추출한다.
- 추출한 정보를 토대로 의사 결정을 수행한다.
- 차트, 대시 보드 등을 통한 시각화 구성한다.

1-2. 데이터 분석을 위한 역량

- 데이터 분석 및 과학은 수학과 통계, 프로그래밍 등 다양한 분야의 지식을 필요로 한다.
- 선형 대수학은 선형 방정식과 선형 방정식 그래프에 대한 연구로 통계 그래프를 이해하기 위한 기초이며
- 통계는 데이터를 이해하고 해석하고 제시하기 위한 기초 지식이다.

1-3. 데이터 분석 - 머신 러닝

- 데이터 분석은 데이터 탐색 및 가공을 통하여 의미 있는 정보를 발굴한다.
- 머신 러닝의 역할은 알고리즘을 통해 기계가 의사 결정을 수행하도록 구성한다.

2-1. 데이터 양식

- 독립 변수 (X)
- 종속 변수 (y)

- Predictor variables(예측변수)
- Input variables(입력변수)
- Independent(독립변수)
- Target variables(타겟변수)
- Output variables(출력변수)
- Dependent variables(독립변수)

				†
id	<i>X</i> ₁	X_2	 X_p	Y
1	x ₁₁	<i>x</i> ₁₂	 $x_{1,p}$	y_1
2	<i>x</i> ₂₁	<i>x</i> ₂₂	 $x_{2,p}$	y_2
n	$x_{n,1}$	$x_{n,2}$	 $x_{n,p}$	y_n

2-2. 데이터 모양

- Wide Data Format
- Long Data Format

Wide Format

Team	Points	Assists	Rebounds
Α	88	12	22
В	91	17	28
С	99	24	30
D	94	28	31

Long Format

Team	Variable	Value
Α	Points	88
Α	Assists	12
Α	Rebounds	22
В	Points	91
В	Assists	17
В	Rebounds	28
С	Points	99
С	Assists	24
С	Rebounds	30
D	Points	94
D	Assists	28
D	Rebounds	31

2-3. 데이터 형태 (수치형 / 범주형)

- 명목 변수와 서열 변수는 범주형 이고 등간 변수와 비율 변수는 수치형이다.
- 범주형 데이터 보다 수치형 데이터에 대해 더 많은 통계 테스트를 해볼 수 있다.
- 등간 (예: 온도) 및 비율(예: 거리) 척도는 모두 동일하게 '간격'이라는 특성을 갖지만 비율 척도에만 절대 '0'이 있다.

2-4. 데이터 처리

데이터 분석의 안정적인 결과와 성능 향상을 위해서 주어진 데이터를 분석에 적합하게 가공하는 작업이다. 대표적인 작업으로는 필터링, 클리닝, 결측치 처리, 이상치 처리, 데이터 형태 변경 등이 있다.

- 범주형 데이터 인코딩: 레이블 인코딩 (Label Encoding) & 원핫 인코딩 (One-hot Encoding)
- 수치형 데이터 스케일링 : 표준화 (Normalization) & 정규화 (Standardization)
- Filtering / Cleaning / Missing Value / Outlier
- Data Shape: Long Data, Wide Data

Color	Red	Yellow	Green
Red			
Red	1	0	0
Yellow	1	0	0
Green	0	1	0
Yellow	0	0	1

Feature Scaling

Standardisation	Normalisation
$x_{\text{stand}} = \frac{x - \text{mean}(x)}{\text{standard deviation }(x)}$	$x_{\text{norm}} = \frac{x - \min(x)}{\max(x) - \min(x)}$

3-1. 수치 예측 vs. 분류

- 머신 러닝의 지도 학습은 수치를 예측하는 수치 예측(Regression)과 분류(Classification)로 나눌 수 있다.
- 수치 예측(Regression)은 y값의 데이터 형태가 수치형 데이터 일때 사용 할 수 있는 알고리즘이다.
- 분류(Classification)는 y값의 데이터 형태가 범부형 데이터 일때 사용 할 수 있는 알고리즘이다.

3-2. 수치 예측 모델 (Regression) 성능 평가

평가 지표	설명	수식
MAE	Mean Absolute Error이며 실제 값과 예측 값의 차이를 절대값으로 변환해 평균한 것	$\frac{1}{n}\sum_{i=1}^{n} y_{i} - \hat{y}_{i} $
MSE	Mean Squared Error이며 실제 값과 예측 값의 차이를 제곱해 평균 한 것 *MAE값이 같은데 MSE가 클 경우 편차가 더 큼을 나타낸다.	$\frac{1}{n} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$
RMSE	MSE 값은 오류의 제곱을 구하므로 실제 오류 평균보다 더 커지는 특성이 있으므로 MSE에 루트를 씌운 것이 RMSE(Root Mean Squared Error)다.	$\sqrt{\frac{1}{n}\sum_{i=1}^{n} (y_{i}-\hat{y}_{i})^{2}}$
R ²	분산 기반으로 예측 성능을 평가합니다. 실제 값의 분산 대비 예측값의 분산비율을 지표로 하며, 1에 가까울수록 예측 정확도가 높다. $*R^2 = 0.91$ 인 경우, 전체 데이터 변동성의 $91\%를 선형회귀 모델이설명$	$\frac{\sum (\hat{y}_i - \bar{y}_i)^2}{\sum (y_i - \bar{y}_i)^2}$

3-3. 분류 모델(Classification) 성능 평가

• 오차 행렬(또는 혼동 행렬)은 분류 모델의 성능을 평가하기 위해 실제 값(Actual Values)와 예측 값(Predictive Value)을 비교 하는 표이다.

정확도
$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

재현도 $Recall / Sensitivity = \frac{TP}{TP + FN}$

특이성 $Specificity = \frac{TN}{TN + FP}$

정밀도 $Precision = \frac{TP}{TP + FP}$
 $F1 - Score = 2*\frac{Precision*Recall}{Precision + Recall}$

End of Document