# **ESA: Entity Summarization With Attention**





**Dongjun Wei** <sup>1,2</sup>, Yaxin Liu<sup>1,2</sup>, Fuqing Zhu<sup>1</sup>, Liangjun Zang<sup>1</sup>, Jizhong Han<sup>1</sup>, Wei Zhou<sup>1</sup>, and Songlin Hu<sup>1</sup>

<sup>1</sup> Institute of Information Engineering, Chinese Academy of Sciences

<sup>2</sup> School of Cyber Security, University of Chinese Academy of Sciences

#### Introduction

Query a subject named *Hagar Wilde* in DBpedia with SPARQL:

RDF triples: <Subject, Predicate, Object>

Search Hager Wilde in DBpedia: < Hagar Wilde, Predicate, Object>

Total 65 RDF triples

#### Virtuoso SPARQL Query Editor

#### Default Data Set Name (Graph IRI)

http://dbpedia.org

#### Query Text

Select distinct ?Predicate ?Object where
{
<http://dbpedia.org/resource/Hagar\_Wilde>
?Predicate
?Object
}

| Predicate                                           |                                                                     |
|-----------------------------------------------------|---------------------------------------------------------------------|
| http://www.w3.org/1999/02/22-rdf-syntax-<br>ns#type | http://www.w3.org/2002/07/owl#Thing                                 |
| http://www.w3.org/1999/02/22-rdf-syntax-<br>ns#type | http://xmlns.com/foaf/0.1/Person<br>Object                          |
| http://www.w3.org/1999/02/22-rdf-syntax-<br>ns#type | http://dbpedia.org/ontology/Person                                  |
| http://www.w3.org/1999/02/22-rdf-syntax-<br>ns#type | http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#Agent         |
| http://www.w3.org/1999/02/22-rdf-syntax-<br>ns#type | http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#NaturalPerson |
| http://www.w3.org/1999/02/22-rdf-syntax-<br>ns#type | http://www.wikidata.org/entity/Q215627                              |
| http://www.w3.org/1999/02/22-rdf-syntax-<br>ns#type | http://www.wikidata.org/entity/Q24229398                            |
| http://www.w3.org/1999/02/22-rdf-syntax-<br>ns#type | http://www.wikidata.org/entity/Q28389                               |
| http://www.w3.org/1999/02/22-rdf-syntax-<br>ns#type | http://www.wikidata.org/entity/Q36180                               |
| http://www.w3.org/1999/02/22-rdf-syntax-<br>ns#type | http://www.wikidata.org/entity/Q5                                   |
| http://www.w3.org/1999/02/22-rdf-syntax-<br>ns#type | http://dbpedia.org/ontology/Agent                                   |
| http://www.w3.org/1999/02/22-rdf-syntax-<br>ns#type | http://dbpedia.org/ontology/ScreenWriter                            |
| http://www.w3.org/1999/02/22-rdf-syntax-<br>ns#type | http://dbpedia.org/ontology/Writer                                  |
| http://www.w3.org/1999/02/22-rdf-syntax-<br>ns#type | http://schema.org/Person                                            |

#### Introduction

Select Top-5 triples from total 65 triples mentioned above:

```
<a href="http://dbpedia.org/ontology/based0n"> <a href="http://dbpedia.org/resource/Hagar_Wilde"> http://dbpedia.org/ontology/birthDate</a> "1905-07-07"^^ <a href="http://www.w3.org/2001/XMLSchema#date"> http://dbpedia.org/ontology/deathDate</a> "1971-09-25"^^ <a href="http://www.w3.org/2001/XMLSchema#date"> http://www.w3.org/2001/XMLSchema#date</a> <a href="http://www.w3.org/2001/XMLSchema#date</a> <a href="http://www.w3.org/2001/XMLSchema#date</a> <a href="http://www.w3.org/2001/XMLSchema#date</a> <a href="http://www.w3.org/2001/XMLSchema#date</a> <a href="http://www.w3.org/2001/XMLSchema#date</a> <a href="http://www.w3.org/2001/XMLSchema#date</a> <a href="http://www.w3.
```

Table 1. Top-5 predicate-object pairs of subject Hagar Wilde

| Predicate | Object                     | _             |
|-----------|----------------------------|---------------|
| Name      | Hagar Wilde                | _             |
| Туре      | Women Televison<br>Writers | $\rightarrow$ |
| Birthdate | 1905-07-07                 |               |
| Deathdate | 1971-09-25                 | _             |



### **ESA: Machine Attention**

Attention Mechanism [1]



Construct machine attention vector [2]

$$f(Q,K) = \begin{cases} Q^{T} K_{i} & dot \\ Q^{T} W_{a} K_{i} & general \\ W_{a}[Q,K_{i}] & concat \\ V^{T}_{a} tanh(W_{a}Q+U_{a}K_{i}) & perceptron \end{cases}$$



### **ESA: Gold Attention**

Construct gold attention vector



### **ESA: Model Architecture**

#### Architecture

Attention Mechanism

$$\alpha = softmax(\boldsymbol{h}_{S}^{T}\boldsymbol{h})$$
$$\boldsymbol{h}_{S_{i}} = [\boldsymbol{h}_{L_{i}}, \, \boldsymbol{h}_{R_{i}}]$$

Bidirectional Network

$$\mathbf{h}_{L_i} = LSTM_L(x_i, \mathbf{h}_{L_{i-1}})$$
  
$$\mathbf{h}_{R_i} = LSTM_R(x_i, \mathbf{h}_{R_{i-1}})$$

- Knowledge Representation
  - TransE (Predicates)
  - Word Embedding (Objects)



## **Experiment**

### ESBM Datasets: DBpedia & LMDB

|               | DBpedia |                      | LinkedMDB |       | ALL   |       |
|---------------|---------|----------------------|-----------|-------|-------|-------|
|               | k=5     | k=10                 | k=5       | k=10  | k=5   | k=10  |
| RELIN [3]     | 0.242   | 0.455                | 0.203     | 0.258 | 0.231 | 0.399 |
| DIVERSUM [4]  | 0.249   | 0.507                | 0.207     | 0.358 | 0.237 | 0.464 |
| <b>CD</b> [5] | 0.287   | 0.517                | 0.211     | 0.328 | 0.252 | 0.455 |
| FACES-E [6]   | 0.280   | 0.485                | 0.313     | 0.393 | 0.289 | 0.461 |
| FACES [7]     | 0.270   | 0.428                | 0.169     | 0.263 | 0.241 | 0.381 |
| LinkSUM [8]   | 0.274   | 0.479                | 0.140     | 0.279 | 0.236 | 0.421 |
| ESA           | 0.310   | $\boldsymbol{0.525}$ | 0.320     | 0.403 | 0.312 | 0.491 |

Table 1. Experimental Results on ESBM benchmark v1.1 of F-measure

|               | DBpedia |                      | LinkedMDB |                      | $\mathbf{ALL}$ |       |
|---------------|---------|----------------------|-----------|----------------------|----------------|-------|
|               | k=5     | k=10                 | k=5       | k=10                 | k=5            | k=10  |
| RELIN [3]     | 0.342   | 0.519                | 0.241     | 0.355                | 0.313          | 0.466 |
| DIVERSUM [4]  | 0.310   | 0.499                | 0.266     | 0.390                | 0.298          | 0.468 |
| <b>CD</b> [5] | -       | -                    | -         | -                    | -              | -     |
| FACES-E [6]   | 0.388   | 0.564                | 0.341     | 0.435                | 0.375          | 0.527 |
| FACES [7]     | 0.255   | 0.382                | 0.155     | 0.273                | 0.227          | 0.351 |
| LinkSUM [8]   | 0.242   | 0.271                | 0.141     | 0.279                | 0.213          | 0.345 |
| ESA           | 0.392   | $\boldsymbol{0.582}$ | 0.367     | $\boldsymbol{0.465}$ | 0.386          | 0.549 |

Table 2. Experimental Results on ESBM benchmark v1.1 of MAP

#### Conclusion

- Neural network is applied into entity summarization task.
- A novel pattern is designed to construct machine attention vectors for modelling supervised attention mechanism.
- Both F-measure and MAP achieves a competitive level in ESBM benchmark v1.1.

#### References

- [1] Sneha Chaudhari et al. An Attentive Survey of Attention Models. In arXiv:1904.02874, 2019.
- [2] Thang Luong *et al.* Effective Approaches to Attention-based Neural Machine Translation. In EMNLP, 2015.
- [3] Gong Cheng *et al.* RELIN: Relatedness and Informativeness-Based Centrality for Entity Summarization. In ESWC, 2011.
- [4] Marcin Sydow *et al.* DIVERSUM: Towards diversified summarisation of entities in knowledge graphs. In ICDEW, 2010.
- [5] Danyun Xu et al. Generating Characteristic and Diverse Entity Summaries. In ENSEC, 2016.
- [6] Kalpa Gunaratna *et al.* Gleaning Types for Literals in RDF Triples with Application to Entity Summarization. In ESWC, 2016.
- [7] Kalpa Gunaratna *et al.* FACES: Diversity-Aware Entity Summarization using Incremental Hierarchical Conceptual Clustering. In AAAI, 2015.
- [8] Andreas Thalhammer et al. LinkSUM: Using Link Analysis to Summarize Entity Data. In ICWE, 2016.



Thanks! Q&A.