Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э.

Баумана (национальный исследовательский университет)»

(КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>ИУК</u> «Информатика и управление»

КАФЕДРА <u>ИУКЗ</u> «Системы автоматического управления»

ОТЧЁТ ЛАБОРАТОРНАЯ РАБОТА № 5

«Определение частотных характеристик систем автоматического управления»

ДИСЦИПЛИНА: «Общая теория автоматического управления»

Выполнил: студент гр. И	УК3-51Б		(Смирнов Ф.С.)
		(Подпись)	(Ф.И.О.)
Проверил:	_		(Корнюшин Ю.П.)
		(Подпись)	(Ф.И.О.)
Дата сдачи (защиты):			
Результаты сдачи (защит	ы):		
	- Балльная оценка:		
	- Оценка:		

Цель лабораторной работы - формирование практических навыков по нахождению частотных характеристик линейных систем управления.

Задача лабораторной работы - освоение технологии нахождения частотных характеристик линейных систем управления экспериментальным методом и согласно формул, в случае задания системы с использованием передаточных функций. Закрепление полученных знаний на практике.

<u>Эксперимент 1</u>. Экспериментальное определение частотных характеристик пропорционального (усилительного) звена.

Передаточная функция звена W(s) = K.

1.1. Получить самостоятельно частотные характеристики исследуемого звена: $W(j\omega), P(\omega), Q(\omega), A(\omega), \varphi(\omega), L(\omega),$ ЛФЧХ и построить качественно графики полученных функций.

$$W(s) = 3.5$$

$$P(\omega) = 3.5$$

$$Q(\omega) = 0$$

$$W(j\omega) = 3.5 = 3.5 \cdot e^{j \cdot 0}$$

$$A(\omega) = 3.5$$

$$\varphi(\omega) = arctg\left(\frac{Q(\omega)}{P(\omega)}\right) = 0$$

$$L(\omega) = 20 \cdot \lg A(\omega) = 20 \cdot \lg (3.5)$$

Рис. 1 — Вещественная частотная характеристика

Рис. 2 – Мнимая частотная характеристика

Рис. 3 — Амплитудная частотная характеристика

Рис. 4 — Фазочастотная характеристика

Рис. 5 – ЛАЧХ и ЛФЧХ

1.2. Для получения схемы набора использовать блоки Sin, Transfer Fcn, Mux, Scope, соединённые последовательно. На блоке Transfer Fcn набрать заданную передаточную функцию. На экране осциллографа обязательно должны быть входной и выходной сигналы.

Рис. 6 – Схема пропорционального (усилительного) звена

Рис. 7 – Входной и выходной сигналы на экране осциллографа

1.3. Определить отношение амплитуд сигналов \mathring{A}_x/A_y и сдвиг фаз между ними для различных значений частоты ϖ в пределах от 0,1 c^{-1} до 10 c^{-1} . Эксперимент провести для 3-4 значений частоты, результаты занести в таблицу 1.

 ϕ_{y} - значение по горизонтальной оси, соответствующее максимальному значению входного сигнала;

 $\phi_{_{\! X}}$ - значение по горизонтальной оси, соответствующее максимальному значению выходного сигнала;

 M_{φ} - масштабный коэффициент, соответствующий цене деления по горизонтальной оси, позволяющий определить величину фазового сдвига в градусах.

Например: M_{φ} = 180 / 3.14 , где 180 — градусы; 3.14 — значение времени, соответствующее пересечению входного сигнала горизонтальной оси, при заданной частоте 1 рад/сек.

$$\varphi(\omega) = M_{\varphi}(\varphi_{v} - \varphi_{x})$$

Таблица 1

ω	\hat{A}_y	\hat{A}_{χ}	A_x/A_y	$arphi_{ m y}$	$\varphi_{\scriptscriptstyle \! X}$	$\varphi_y - \varphi_x$	$^{M}arphi$	$\varphi(\omega)$
0.1	1	3.5	3.5	$\frac{\pi}{2}$	$\frac{\pi}{2}$	0	$\frac{180}{\pi}$	0
1	1	3.5	3.5	$\frac{\pi}{2}$	$\frac{\pi}{2}$	0	$\frac{180}{\pi}$	0
10	1	3.5	3.5	$\frac{\pi}{2}$	$\frac{\pi}{2}$	0	$\frac{180}{\pi}$	0

1.4. По полученным значениям $\grave{A}(\omega)$ и $\varphi(\omega)$ построить графики.

Рис. 8 – Экспериментальная АЧХ

Рис. 9 – Экспериментальная ФЧХ

1.5. Сравнить экспериментальные характеристики с теоретическими, оценить погрешность эксперимента.

Экспериментальные характеристики совпадают с теоретическим.

<u>Эксперимент 2</u>. Экспериментальное определение частотных характеристик интегрирующего звена.

Передаточная функция: $W(s) = \frac{K}{s}$.

Скопировать схему моделирования эксперимента 1, задать требуемую передаточную функцию на блоке Transfer Fcn. Получить на экране осциллографа одновременно изображение входного и выходного сигналов.

Повторить пункты 1.1 - 1.5.

$$W(s) = \frac{3.5}{s}$$

$$W(j\omega) = \frac{3.5}{j\omega} = \frac{3.5j}{j^2\omega} = 0 + j\frac{-3.5}{\omega}$$

$$A(\omega) = |W(j\omega)| = \sqrt{P^2(\omega) + Q^2(\omega)} = \sqrt{\frac{3.5^2}{\omega^2}} = \frac{3.5}{\omega}$$

$$\varphi(\omega) = argW(j\omega) = arctg\left[\frac{Q(\omega)}{P(\omega)}\right] = arctg\left[-\frac{3.5}{\omega \cdot 0}\right]$$

$$L(\omega) = 20 \cdot lgA(\omega) = 20 \cdot \lg\left(\frac{3.5}{\omega}\right)$$

Рис. 10 — Вещественная частотная характеристика

Рис. 11 – Мнимая частотная характеристика

Рис. 12 – Амплитудная частотная характеристика

Рис. 13 — Амплитудно-фазочастотная характеристика

Рис. 14 – ЛАЧХ и ЛФЧХ

Рис. 15 — Схема интегрирующего звена

Рис. 16 — Входной и выходной сигналы на экране осциллографа при $\omega = 1c^{-1}$

Таблица 2

ω	$A_{\mathbf{y}}$	A_{χ}	A_x / A_y	φ_{y}	$\varphi_{\scriptscriptstyle X}$	$\varphi_y - \varphi_x$	$^{M}\varphi$	$\varphi(\omega)$
0.1	1	35	35	16	32	-16	$\frac{18}{\pi}$	$-\frac{18}{\pi}\cdot 16$
1	1	3.5	3.5	1.6	3.2	-1.6	$\frac{180}{\pi}$	$-\frac{180}{\pi}\cdot 1.6$
10	1	0.35	0.35	0.16	0.32	-0.16	$\frac{1800}{\pi}$	$-\frac{1800}{\pi} \cdot 0.16$

Рис. 17 – Экспериментальная ФЧХ

Рис. 18 – Экспериментальная АЧХ

<u>Эксперимент 3.</u> Экспериментальное определение частотных характеристик апериодического звена.

Передаточная функция: $W(S) = \frac{K}{TS+1}$. Значения K и T взять из таблицы 2.

Повторить пункты 1.1.-1.5 для указанного звена. Эксперимент провести для 6--8 значений частоты.

$\begin{array}{c cccc} N_{\underline{0}} & K & T \\ \hline 7 & 3.5 & 10/7 \end{array}$
7 3.5 10/7
$W(s) = \frac{3.5}{\frac{10}{7}s + 1}$
$W(j\omega) = \frac{3.5 \cdot (\frac{10}{7}(j\omega) - 1)}{\left(\frac{10}{7}(j\omega) + 1\right) \cdot (\frac{10}{7}(j\omega) - 1)} = \frac{3.5 \cdot (\frac{10}{7}(j\omega) - 1)}{-\frac{100}{49}\omega^2 - 1} = \frac{5(j\omega) - 3.5}{-(\frac{100}{49}\omega^2 + 1)}$ $= \frac{3.5 \cdot (\frac{10}{7}(j\omega) - 1)}{3.5}$
$=\frac{3.5}{1+\frac{100}{49}\omega^2+j\frac{-5\omega}{1+\frac{100}{49}}\omega^2}$
$P(\omega) = \frac{3.5}{1 + \frac{100}{49} \omega^2}$
$Q(\omega) = -\frac{5\omega}{1 + \frac{100}{49}\omega^2}$
$A(\omega) = W(j\omega) = \frac{3.5}{\sqrt{\left(\frac{10}{7}\omega\right)^2 + 1}}$
$\varphi(\omega) = arctg\left[\frac{Q(\omega)}{P(\omega)}\right] = arctg\left(-\frac{5\omega}{3.5}\right) = -arctg\left(\frac{10}{7}\omega\right)$
$L(\omega) = 20 \cdot lgA(\omega) = 20 \cdot lg \frac{3.5}{\sqrt{\left(\frac{10}{7}\omega\right)^2 + 1}} = 20 \cdot \lg(3.5) - 20 \cdot \lg\left(\sqrt{\left(\frac{10}{7}\omega\right)^2 + 1}\right)$

Рис. 19 — Вещественная частотная характеристика

Рис. 20 – Мнимая частотная характеристика

Рис. 21 – Амплитудная частотная характеристика

Рис. 22 — Амплитудно-фазочастотная характеристика

Рис. 23 — Фазочастотная характеристика

Рис. 24 – ЛАЧХ и ЛФЧХ

Рис. 25 – Схема апериодического звена

Рис. 26 — Входной и выходной сигналы на экране осциллографа при $\omega = 1c^{-1}$

Таблица 3

ω	$A_{\rm y}$	A_{χ}	A_x / A_y	$arphi_{ m y}$	$\varphi_{\scriptscriptstyle X}$	φ_y – φ_x	$^{M}\varphi$	$\varphi(\omega)$
0.1	1	3.46	3.46	16	16.74	-0.74	$\frac{18}{\pi}$	$\frac{18}{\pi} \cdot (-0.74)$
0.5	1	2.93	2.93	3.2	4.3	-1.1	$\frac{90}{\pi}$	$\frac{90}{\pi} \cdot (-1.1)$
1	1	2.3	2.3	1.6	2.4	-0.8	$\frac{180}{\pi}$	$\frac{180}{\pi} \cdot (-0.8)$
1.5	1	1.86	1.86	1	1.8	-0.8	$\frac{180}{2.101}$	$\frac{180}{2.101} \cdot (-0.8)$
2.5	1	1.33	1.33	0.6	1	-0.4	$\frac{180}{1.255}$	$\frac{180}{1.255} \cdot (-0.4)$

5	1	0.8	0.8	0.3	0.6	-0.3	180	$\frac{180}{0.624} \cdot (-0.3)$
	-	0.0	0.0	0.5	0.0	0.5	0.624	0.624
7.5	1	0.57	0.57	0.2	0.4	0.2	180	180
7.5	1	0.57	0.57	0.2	0.4	-0.2	$\frac{180}{0.42}$	$\frac{180}{0.42} \cdot (-0.2)$
1.0	1	0.44	0.44	0.16	0.0	0.14	1800	1800
10		0.44	0.44	0.16	0.3	-0.14	$-\pi$	$\frac{1}{\pi} \cdot (-0.14)$

Рис. 27 – Экспериментальная ФЧХ

Рис. 28 – Экспериментальная АЧХ

<u>Эксперимент 4.</u> Определение частотных характеристик апериодического звена с помощью стандартных функций пакета Matlab.

Частотные функции: $P(\omega)$; $Q(\omega)$; $W(j\omega)=P(\omega)+jQ(\omega)$; $A(\omega)$; $\phi(\omega)$; $L(\omega)$, $\Pi\Phi$ ЧХ.

$$W(s) = \frac{2}{7s + 7}$$

```
q=[2];
p=[7 7];
w=[0:0.05:50];
W=2./(i.*7.*w+7);
WR=real(W);
plot(w,WR), grid on, xlabel('w'), ylabel('P(w)')
WI=imag(W);
plot(w,WI), grid on, xlabel('w'), ylabel('Q(w)')
A=sqrt(WR.^2+WI.^2);
plot(w,A), grid on, xlabel('w'), ylabel('A(w)')
plot(WR,WI), grid on, xlabel('P(w)'), ylabel('Q(w)')
nyquist(q,p)
f=atan(WI./WR);
```

```
plot(w,f), grid on, xlabel('w'), ylabel('f(w)') bode(q,p), grid on;
```


Рис. 29 — Вещественная частотная характеристика

Рис. 30 – Мнимая частотная характеристика

Рис. 31 – Амплитудно-фазочастотная характеристика

Рис. 32 — Амплитудно-фазочастотная характеристика с использованием функции *nyquist*

Рис. 33 – Амплитудная частотная характеристика

Рис. 34 — Фазочастотная характеристика

Рис. 35 - ЛАЧХ и ЛФЧХ с использованием функции bode

Вывод: в ходе выполнения данной лабораторной работы были сформированы практические навыки по нахождению частотных характеристик линейных систем управления.