Chapter 12

Quine McCluskey

12.1 Quine-McCluskey PI Table reduction and Petrick's method

This is not in the text-book. For additional reading, please refer to the linked resources on the website.

THE PROBLEM OF SIMPLIFYING TRUTH FUNCTIONS

W. V. QUINE, Harvard University

Minimization of Boolean Functions*

E. J. McCLUSKEY, Jr.

(Manuscript received June 26, 1956)

A systematic procedure is presented for writing a Boolean function as a minimum sum of products. This procedure is a simplification and extension of the method presented by W. V. Quine. Specific attention is given to terms which can be included in the function solely for the designer's convenience.

Definition 12.1 (Implicant). Given a function f of n variables, a product term P is an implicant of f if and only if for every combination of values of the n variables for which P=1, f is also equal to 1.

Definition 12.2 (Prime Implicant). A prime implicant of a function f is an implicant which is no longer an implicant if any literal is removed from it.

There are 4 main steps in the Quine-McCluskey algorithm/PI Table reduction and Petrick's method:

- 1. Generate Prime Implicants
- 2. Construct Prime Implicant Table. PIs as columns, and minterms as rows (don't cares are excluded).
- 3. Reduce Prime Implicant Table by repeating following steps until they it cannot be reduced further
 - (a) Remove Essential Prime Implicants

- (b) Row Dominance: Remove dominating rows. (i.e. unnecessary minterms)
- (c) Column Dominance: Remove dominated columns. (i.e. remove unnecessary PIs)
- 4. Solve Prime Implicant Table by Petrick's method

12.1.1 Generate Prime Implicants

Example 12.1. Generate prime implicants of the function

$$F(A,B,C,D) = \sum m(0,2,4,6,7,8,10,12,13,14,16,18,19,29,30)$$

 $using\ Quine-McCluskey\ method$

TAR	BLE II — DETE	ERMINATION	OF PRIME IM	PLICANTS	FOR T	RANSMISSION
Ini			10, 11, 12, 13			
			o) II	, 1-, 10,	(c)	III
	(a) I	(,			(0)	
	$x_5x_4x_3x_2x_1$		$x_5 x_4 x_3 x_2 x_1$			$x_5x_4x_3x_2x_1$
0	$0\ 0\ 0\ 0\ 0\ $	0 2	000-04	0 2	4 6	000
0	0.0.0.1.0/	0 4 0 8	00-00	$\begin{array}{ccc} 0 & 2 \\ 0 & 2 \end{array}$	8 10 16 18	-00-0
2 4 8	$00010\sqrt{00100}$	0 16	-00000	0 4	8 12	0 0 0 🗸
8	01000					
16	10000 0	2 6	$0.0 - 1.0 \checkmark$			0 1 0 🗸
	/	2 10	0 - 0 1 0 4		$\frac{12}{12} \frac{14}{14}$	$0 - 1 - 0 \checkmark 0 1 - 0 \checkmark$
6	0 0 1 1 0 4	$\begin{array}{ccc} 2 & 18 \\ 4 & 6 \end{array}$	-0010 \ 001-0 \	8 10	12 14	01 0 4
$\frac{10}{12}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 12	0-100			
18	10010	8 10	$0 \ 1 \ 0 - 0 \ \checkmark$			
		8 12	$0.1 - 0.0 \sqrt{}$			
7	0 0 1 1 1 1	16 18	$1 \ 0 \ 0 - 0 \ \checkmark$			
11 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 7	0011-			
14	01110	6 14	0-110			
19	10011	10 11	0 1 0 1 -			
_		10 14	$0.1 - 1.0 \sqrt{}$			
29	11101	12 13	0110-			
30	$1\ 1\ 1\ 1\ 0\ $	$\frac{12}{18} \frac{14}{19}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
		10 13	1001			
		13 29	-1101			
		14 30	-1110			
			(d) IV			
				$x_{5}x_{4}x_{3}x_{2}x$	1	
		024681	0 12 14	0 0)	_

Steps:

- 1. Start with writing minterms in binary format (include don't cares as minterms).
- 2. Create potential groups of minterms that can be combined (merged). The only minterms that can be combined differ only be single 1. Create a new list of combined minterms as n-1 literal implicants.
- 3. Check off the minterms that could be combined. Unchecked minterms are prime implicants (PIs).
- 4. Repeat the grouping process with n-1 literal implicants.

12.1.2 Prime Implicants table and reduction

Example 12.2. Reduce the prime implicants $\{\bar{B}\bar{D}, C\bar{D}, BD, BC, A\bar{D}, AB\}$ using prime implicants table.

Example 12.3.

CD A	B 00	01	11	10
00	1	1	0	0
01	0	1	1	0
11	0	0	1	1
10	0	0	0	0

Example 12.4.

CD A	B 00	01	11	10
00	d	0	0	0
01	1	1	d	d
11	1	1	0	0
10	1	d	0	0

Example 12.5. Reduce the following PI table

	$ar{A}ar{D}$	$\bar{B}\bar{D}$	$\bar{C}\bar{D}$	$\bar{A}C$	$\bar{B}C$	$\bar{A}B$	$B\bar{C}$	$A\bar{B}$	$A\bar{C}$
0	X	X	X						
2 3	X	X		X	X				
3				X	X				
4	X		X			X	X		
4 5 6						X	X		
	X			X		X			
γ				X		X			
8		X	X					X	X
9								X	X
10		X			X			X	
11					X			X	
12			X		X		X		X
13							X		X

-	Γ.	AΒ	LΕ	\mathbf{I}	-									FOR	TH	E
					$T_{\rm R}$	AN	SMI	SSIO	N O	F '	Гав	$\mathbf{L}\mathbf{E}$	Π			
0		2	4	8	16	6	10	12	18	7	11	13	14	19	29	30
х		x	х	x		х	х	x					x			
x		х			х				x							
				_									x			x
												x			x	
1									x					х		
								\mathbf{x}				X				- 1
							X				X					- 1
						x				\mathbf{x}						- 1

Example 12.6.

12.1.3 Petrick's method

Example 12.7. Solve the Prime Implicant table using Petrick's method

	$p_1 = \bar{A}C$	$p_2 = \bar{B}C$	$p_3 = \bar{A}B$	$p_4 = B\bar{C}$	$p_5 = A\bar{B}$	$p_6 = A\bar{C}$
3	X	X				
5			X	X		
7	X		X			
9					X	X
11		X			X	
13				X		X