Correction exercice 21p94

Equilibrer une équation bilan

Étape 0 : on identifie les réactifs et les produits

......
$$C_2H_6(g) +O_2(g) \rightarrowH_2O(I) +CO_2(g)$$

Etape 1 : on compte les atomes à gauche et à droite

......
$$C_2H_6(g) +O_2(g) \rightarrowH_2O(I) +CO_2(g)$$

С	2
Н	6
0	2

С	1
Н	2
0	1+2 =3

On constate qu'il n'y a pas le même nombre d'atomes à gauche et à droite! => il faut équilibrer l'équation

......
$$C_2H_6(g) +O_2(g) \rightarrowH_2O(I) + 2CO_2(g)$$

С	2
Н	6
0	2

С	2
Н	2
0	2 +1 =3

On commence par les C : on multiplie par 2 à droite pour avoir 2 carbone à droite

......
$$C_2H_6(g) +O_2(g) \rightarrowH_2O(I) + 2CO_2(g)$$

С	2
Н	6
0	2

С	2
Н	2
0	1 + 2x2 = 5

On commence par les C : on multiplie par 2 à droite pour avoir 2 carbone à droite Mais du coup on doit aussi multiplier par 2 le nombre d'oxygène

.....
$$C_2H_6(g) +O_2(g) \rightarrow 3H_2O(I) + 2CO_2(g)$$

С	2
Н	6
0	2

С	2
Н	2 x <mark>3</mark> = 6
0	$1 + 2x^2 = 5$

On continue avec les H : il y en a 3 fois plus à droite qu'à gauche => on multiplie par 3 à droite

......
$$C_2H_6(g) +O_2(g) \rightarrow 3H_2O(I) + 2CO_2(g)$$

C	2
Н	6
0	2

С	2
Н	2 x 3 = 6
0	$1x^{3} + 2x^{2} = 7$

On continue avec les H : « le problème » est que l'on a touché à la molécule d'eau à droite => il y a maintenant 3 atomes d'oxygène en plus !

......
$$C_2H_6(g) +O_2(g) \rightarrow 3H_2O(I) + 2CO_2(g)$$

С	2
Н	6
0	2

С	2
Н	2 x 3 = 6
0	$1x\beta + 2x2 = 7$

On est équilibrés de partout, sauf au niveau des oxygène 7 à gauche et 2 à droite...

......
$$C_2H_6(g) +O_2(g) \rightarrow 3H_2O(I) + 2CO_2(g)$$

C	2
Н	6
0	2

С	2
Н	2 x 3 = 6
0	$1x^{3} + 2x^{2} = 7$

On est équilibrés de partout, sauf au niveau des oxygène 7 à gauche et 2 à droite... par combien doit on multiplier 2 pour avoir 7?

......
$$C_2H_6(g) +O_2(g) \rightarrow 3H_2O(I) + 2CO_2(g)$$

С	2
Н	6
0	2

C	2
Н	2 x <mark>3</mark> = 6
0	$1x^{3} + 2x^{2} = 7$

par combien doit on multiplier 2 pour avoir 7? Petite équation à 1 inconnue

......
$$C_2H_6(g) +O_2(g) \rightarrow 3H_2O(I) + 2CO_2(g)$$

C	2		С	2
Н	6		Н	2 x <mark>3</mark> = 6
0	2		0	$1x^{3} + 2x^{2} = 7$
$\frac{7}{2}$				
		$2 \times x = 7 \leftrightarrow x = \frac{7}{2}$		

.....
$$C_2H_6(g) + \frac{7}{2}O_2(g) \rightarrow 3H_2O(I) + 2CO_2(g)$$

C	2		C	2
Н	6		Н	2 x <mark>3</mark> = 6
0	2 x 7/2 = 7		O	$1x^{3} + 2x^{2} = 7$
		2 7 7		
		$2 \times \frac{7}{2} = 7$		

Etape 3 : on vérifie que tout est bon!

$$C_2H_6(g) + \frac{7}{2}O_2(g) \rightarrow 3H_2O(I) + 2CO_2(g)$$

С	2
Н	6
0	2 x <mark>7/2</mark> = 7

С	2
H	2 x 3 = 6
0	$1x^{3} + 2x^{2} = 7$

EQUATION EQUILIBREE