DRAM RELIABILITY

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

- Upcoming deadline
 - March 8th: homework assignment is due

- □ This lecture
 - Memory errors
 - Error detection vs. correction
 - Memory scrubbing
 - Disturbance errors

Memory Errors

- Any unwanted data change (bit flip)
 - storage cell
 - sensing circuits
 - wires

- Soft errors are mainly caused by
 - Slight manufacturing defects
 - Gamma rays and alpha particles
 - **■** Electrical interference
 - **□** ...

Error Detection and Correction

- Main memory stores a huge number of bits
 - Nontrivial bit flip probability
 - Even worse as the technology scales down
- Reliable systems must be protected against errors
- Techniques
 - Error detection
 - parity is a rudimentary method of checking the data to see if errors exist
 - Error correction code (ECC)
 - additional bits used for error detection and correction

Error Correction Codes

- Example: add redundant bits to the original data bits
 - SECDED: Hamming distance (0000, 1111) = 4

Power	Correct	#bits	Comments
Nothing	0,1	1	
Single error detection (SED)	00,11	2	01,10 =>errors
Single error correction (SEC)	000,111	3	001,010,100 => 0 110,101,011 => 1
Single error correction double error detection (SECDED)	0000,1111	4	One 1 => 0 Two 1's => error Three 1's => 1

[adopted from Lipasti]

Error Correction Codes

 Reduce the overhead by applying the codes to words instead of bits

# bits	SED overhead	SECDED overhead
1	1 (100%)	3 (300%)
32	1 (3%)	7 (22%)
64	1 (1.6%)	8 (13%)
n	1 (1/n)	$1 + \log_2 n + a$ little

Memory Error Correction

 ECC allows the memory controller to correct cell retention errors and relax memory cell retention requirements.

Memory Scrubbing

- ECC can correct a fixed number of errors
- Data can become uncorrectable if ECC is used without scrubbing
- Scrubbing prevents errors from accumulating over time
 - Periodically read all of the memory locations
 - Check ECC, correct errors, and write corrected data back to memory

Stronger Error Corrections

- One extra x8 chip per rank
- Storage and energy overhead of 12.5%
- Cannot handle complete failure in one chip

Stronger Error Corrections

- □ SECDED Support
- Chipkill Support

8-bit ECC

At most one bit from each DRAM chip

- Use 72 DRAM chips to read out 72 bits
- Dramatic increase in activation energy and overfetch
- Storage overhead is still 12.5%

Stronger Error Corrections

- □ SECDED Support
- Chipkill Support

8-bit data word

5-bit ECC

At most one bit from each DRAM chip

- Use 13 DRAM chips to read out 13 bits
- Storage and energy overhead: 62.5%
- Other options exist; trade-off between energy and storage

Row Hammer Problem

 Repeated row activations can cause bit flips in adjacent rows

Available for: OS X Mountain Lion v10.8.5, OS X Mavericks v10.9.5

Impact: A malicious application may induce memory corruption to escalate privileges

Description: A disturbance error, also known as **Rowhammer**, exists with some DDR3 RAM that could have led to memory corruption. This issue was mitigated by increasing memory refresh rates.

CVE-ID

CVE-2015-3693: Mark Seaborn and Thomas Dullien of Google, working from original research by Yoongu Kim et al (2014)

[Apple]

Modern DRAM is Vulnerable

How Program Induces RH Errors?


```
loop:
  mov (X), %eax
  mov (Y), %ebx
  clflush (X)
  clflush (Y)
  mfence
  jmp loop
```


Sources of Disturbance Errors

- □ Cause 1: Electromagnetic coupling
 - Toggling the wordline voltage briefly increases the voltage of adjacent wordlines
 - Slightly opens adjacent rows → Charge leakage
- □ Cause 2: Conductive bridges
- □ Cause 3: Hot-carrier injection

Confirmed by at least one manufacturer

[slide source:Mutlu]

Basic Solutions

- □ Throttle accesses to same row
 - □ Limit access-interval: ≥500ns
 - Limit number of accesses: $\leq 128K$ (=64ms/500ns)

- □ Refresh more frequently
 - Shorten refresh-interval by $\sim 7x$

Both naive solutions introduce significant overhead in performance and power

Probabilistic Adjacent Row Activation

- □ Key Idea
 - After closing a row, we activate (i.e., refresh) one of its neighbors with a low probability: p = 0.005

- Reliability Guarantee
 - When p=0.005, errors in one year: 9.4×10^{-14}
 - By adjusting the value of p, we can vary the strength of protection against errors