

Universidade do Minho Escola de Engenharia Departamento de Informática

Agent UML

Agentes e Sistemas Multiagente

Pedro Oliveira, Paulo Novais

Software Agent:

 Computational entity located in an environment in which it performs actions with autonomy and proactivity, according to their perception. May have reasoning and adaptability (e.g. network manager, process manager, information search, etc.)

Multi-Agent System:

 Group of interacting agents that understand and coordinate with each other in global tasks involving cooperation or competition

Agents as **Active Object Extensions**:

- Passive Agents (Accept / Decline Orders)
- Proactive Agents (start activity without external invocation)

Unified Modeling Language (UML) applied in object-oriented software modeling (adopted by OMG in November 1997)

AUML: UML Variations and Extensions for Agent Activity Modelling

- FIPA (www.fipa.org)
- OMG_AUML Agent Group
- Interaction Protocol Representation for Agents

AUML models application:

- Agent Interaction Protocols (AIP) Specification
- More detailed specification of the invocation of shares
- Package Extension
- Deployment Diagram Extension

AUML takes a layered approach to protocols:

- Level 1: Represents the general protocol (tempaltes, modeling diagrams)
- **Level 2:** Represent agent interactions (sequence, collaboration, activity diagrams)
- Level 3: Represent internal agent processing (activity diagrams and statecharts)

General Diagram Structure

Message Transmission

Different Agent States

Sequence Diagram (Example)

Packages Modelling

Interaction

Interaction between Agents

Diagrams:

- Sequence Diagrams
- Activity Diagrams
- Collaboration Diagrams

However, greater system complexity requires more complex graphical presentation:

- We often need to express the role an agent plays in his interaction with other agents
- If the number of agents and functions increases, UML diagrams become graphically complex
- UML has no capacity to represent the agent's functions on interaction lines. Solution: Messages Identify the **Agent's Role Transition**

Sequence Diagram

- Defines the behaviour of object groups
- Basic interactions between objects at method invocation level
- In AUML, they enable demonstration of interactions / communications between System Agents

Activity Diagram

- Applied to represent the activities associated to a protocol or to an agent's activity
- Useful to plan complex interaction protocols that involve parallel processing

Activity Diagram

Collaboration/ Communication Diagram

- Similar to sequence diagram
- Presents a clear and understandable representation of the system
- Sequence of interactions are numbered on the collaboration diagram

Class Diagram

Class Diagrams are used to model the problem's dominion and agent-class implementation

: ISLab Synthetic Intelligence Lab

Class Diagram

Statecharts

- The internal processing of a single agent can be expressed as statecharts
- Statecharts specify order processing behaviour for the different agents

: ISLab Synthetic Intelligence Lab

Statecharts

Conclusions

UML extension mechanisms provide formalisms to specify Agents interaction to several levels:

- Specify protocols as a whole
- o Express interaction patterns between Agents
- Express the internal behaviour of an Agent
- o Formalization of Agents requirements and APIs important for the development & implementation of Multi-agent Systems

References and Electronic Resources

 J. Palanca, A. Terrasa, V. Julian and C. Carrascosa, "SPADE 3: Supporting the New Generation of Multi-Agent Systems," in IEEE Access, vol. 8, pp. 182537-182549, 2020

- AUML Manual
 - http://www.jamesodell.com/ExtendingUML.pdf
- Smart Python Agent Development Environment (SPADE)
 - https://spade-mas.readthedocs.io/en/latest/

Universidade do Minho Escola de Engenharia Departamento de Informática

Agent UML

Agentes e Sistemas Multiagente

Pedro Oliveira, Paulo Novais