Grado en Ingeniería Informática de Gestión y Sistemas de Información Departamento: Tecnología Electrónica

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

Curso:	$1^{\underline{0}}$
Nota:	

Grupo : 01

Nombre-Apellidos:

Fundamentos de Tecnología de Computadores

Duración: 3 horas Fecha: 2022/12/21

- 1. (1 punto) Lee detenidamente las afirmaciones siguientes e indica si son verdaderas o falsas, justificando tu respuesta en todos los casos.
 - (a) La fuerza que ejercen tres cargas q_1 , q_2 y q_3 sobre una cuarta carga q_4 es igual a la suma del módulo de la fuerza que ejerce la carga q_1 sobre la carga q_4 , el módulo de la fuerza que ejerce la carga q_2 sobre q_4 y el módulo de la fuerza que ejerce la carga q_3 sobre q_4 .

Solution: Falso, es una suma vectorial no solo de los modos.

(b) En un punto de un conductor circulan +3C de carga hacia la derecha cada segundo, y a su vez, cada medio segundo -5C de carga hacia la izquierda. La intensidad total de la corriente en ese punto será de 8 A.

Solution: Falso. I = 3/1 - (-5/0.5) = 13 A

(c) En el circuito de la figura se calcula que la potencia entregada por los elementos 2 y 3 suma 100 W.

Solution: Verdadero

(d) En el circuito de la figura, y para una frecuencia de 50Hz, se calcula que la impedancia equivalente son $200\mu F$.

Solution: Falso. La impedancia se mide en Ohmnios, además, los condensadores no se suman como las resistencias en serie.

(e) En el circuito de la figura la fuente de corriente es de $0.4I_x$. Atendiendo a esto, las unidades del valor 0.4 serán miliamperios (mA).

Solution: Falso, el valor de 0.4 es adimensional ya que la fuente de corriente tiene que tener un valor en amperios determinado por I_x .

(f) La resistencia equivalente Norton y la resistencia equivalente Thevenin tienen el mismo valor siempre y cuando no existan fuentes controladas.

Solution: Falso, la resistencias Norton y Thevenin equivalentes siempre tienen el mismo valor.

(g) En un circuito formado únicamente por resistencias y una fuente de tensión DC no existe estado transitorio.

Solution: Verdadero

(h) En los materiales aislantes la banda prohibida (GAP) es pequeña.

Solution: Falso

(i) Existen tres tipos de transistores BJT: NPN, PNP, y PPN.

Solution: Falso, solo existen NPN y PNP.

(j) Todos los diodos tienen una tensión umbral de 0.7V, independientemente del material con el que se hayan fabricado.

Solution: Falso, la tensión umbral depende del material.

(k) Para crear una puerta NOT en tecnología RTL se necesitan 2 transistores.

Solution: Falso

- 2. (2 puntos) Se quiere diseñar un circuito para obtener las siguientes corrientes: $I_{R1}=1mA,\,I_{R2}=2mA$ y $I_{R3}=4mA$.
 - (a) Utilizando cualquiera de los métodos estudiados calcular los valores de R_1 , R_2 y R_4 .
 - (b) Realizar el balance de potencias.

Solution:

$$R_2=10K\Omega,\ R_4=2K\Omega,\ R_1=24K\Omega;$$

$$I_{R2}R_2 - E = 0$$

$$E - I_{R3}R_3 - I_{R3}R_4 = 0$$

$$R_1I_{R1} - 0.5V_{AB} - R_2I_{R2} = 0$$

$$V_{AB} = R_4I_{R3} = 8V$$

$$\sum P_{ced} = \sum P_{abs} = 144mW$$

3. (2.5 puntos) Teniendo en cuenta el circuito de la figura:

- (a) Calcula y dibuja el circuito equivalente Thevenin entre los puntos A y B.
- (b) Calcula y dibuja el circuito equivalente Norton entre los puntos A y B.
- (c) ¿Cual es la máxima potencia que puede consumir una nueva resistencia que se coloque entre los puntos A y B? ¿Que valor debería tener esa resistencia?

Solution: $R_{th} = 4K\Omega$, $V_{th} = 8V$, $I_{NORTON} = 2mA$, $R_{NORTON} = R_{TH}$, $R = 4k\Omega\Omega$ $P_{max} = 4mW$

- 4. (2 puntos) Responde a las siguientes cuestiones teniendo en cuenta el circuito dibujado a continuación.
 - (a) El conmutador lleva mucho tiempo conectado al punto A, y en el instante t=0 s se conecta a B. Calcula los valores de las siguientes magnitudes: $v_c(0^-)$; $v_c(0^+)$; $i_c(0^-)$; $i_c(0^+)$; $v_c(\infty)$; $i_c(\infty)$.
 - (b) Indica cuánto tiempo ha de transcurrir desde que se cierra el conmutador para que el condensador alcance una tensión de $10.55~\rm V$ en sus extremos.

Solution:
$$v_c(0^-) = v_c(0^+) = 20V; i_c(0^-) = 0mA; i_c(0^+) = 6mA; v_c(\infty) = 5V; i_c(\infty) = 0$$
 $t = 1s$

- 5. (1.5 puntos) Analiza el circuito de la figura:
 - (a) Calcula V_{CE} , V_{BE} , I_B , I_C , I_E e indica el estado del transistor.
 - (b) Calcula la potencia consumida por el diodo LED.
 - (c) ¿Cual es el primer valor de R_B para el que se mantiene una corriente por el colector, pero el transitor cambia de estado? ¿Es un valor máximo o mínimo?

Datos:
$$V_{in}=5V$$
 , $\beta=100, V_{BE}=0.7$ V, $V_{CE_{sat}}=0.2$ $VV_{LED}=1.5$ V

Solution:

$ V_{in} $	$I_B(uA)$	$I_c(mA)$	$I_E(mA)$	$V_{CE}(V)$	$V_{BE}(V)$	Estado
5	4300	2.66	6.96	0.2	0.7	sat.

 $P_{LED} = 3.99mW R > 161.654K\Omega \ activa$

- 6. (1 punto) Diseñar y resolver los circuitos equivalentes para:
 - (a) Una puerta OR de 2 entradas con tecnología DL.
 - (b) Una puerta AND de 2 entradas con tecnología CMOS.