An Introduction to Tidy Data Principles

Brad Stieber

Prepared for 2018-11-02 Data Solutions Team Meeting

Introduction

Idea (the theory)

Execution (the practice)

Displaying and Organizing Data

Conclusion

Introduction

Goals for this talk

My goal is for you to walk away with an understanding of:

Tidy data philosophy and terminology

Goals for this talk

My goal is for you to walk away with an understanding of:

- Tidy data philosophy and terminology
- Common types of untidy data

Goals for this talk

My goal is for you to walk away with an understanding of:

- Tidy data philosophy and terminology
- Common types of untidy data
- Displaying and organizing tidy data

Where did this come from?

Most of what follows is based off of Hadley Wickham's paper on tidy data.

If you're looking for a practical introduction (in R), Hadley Wickham has one of those too.

I also borrow from other resources (listed at the end), as well as my own experience working with tidy and untidy datasets.

Idea (the theory)

What is tidy data?

Tidy data is consistent, works well with common computational tools, and provides a guide for structuring data for analysis.

There are three qualities a dataset must have to be considered "tidy":

1. Each variable forms a column.

What is tidy data?

Tidy data is consistent, works well with common computational tools, and provides a guide for structuring data for analysis.

There are three qualities a dataset must have to be considered "tidy":

- 1. Each variable forms a column.
- 2. Each observation forms a row.

What is tidy data?

Tidy data is consistent, works well with common computational tools, and provides a guide for structuring data for analysis.

There are three qualities a dataset must have to be considered "tidy":

- 1. Each variable forms a column.
- 2. Each observation forms a row.
- 3. Each type of observational unit forms a table.

The Language of Tidy Data

- Dataset: a collection of values (e.g. iris data)
- Variable: all values that measure the same underlying attribute (e.g. height, width)
- Values: a specific measurement or attribute for a variable (e.g. \$100)
- Observation: all values measured on the same unit (like a person, or a day, or a game) across variables

It's usually easy to figure out things like *observations* and *variables* for a given dataset, but defining them in the abstract can be difficult.

Execution (the practice)

Five common types of untidy data

Here are the five most common types of untidy data you're likely to experience "in the wild":

- Column headers are values, not variable names.
- Multiple variables are stored in one column.
- Variables are stored in both rows and columns.
- Multiple types of observational units are stored in the same table.
- A single observational unit is stored in multiple tables.

We'll go through examples of three of the five.

implipeon

1. Column headers are values, not variable names

The first dataset we'll look at comes from the WHO and displays the number of TB cases for three countries in two years.

country	1999	2000		
Afghanistan	745	2,666		
Brazil	37,737	80,488		
China	212,258	213,766		

This data is too *wide*, as 1999 and 2000 are **values** for a **variable** we could call year.

Although difficult to analyze, this format is helpful for presentation and data entry.

Tidying # 1

Need to gather (like UNPIVOT in SQL) columns into key-value (year-cases) pairs:

country	year	cases
Afghanistan	1999	745
Afghanistan	2000	2,666
Brazil	1999	37,737
Brazil	2000	80,488
China	1999	212,258
China	2000	213,766

2. Multiple variables are stored in one column

The next table has two columns, but it should have four. How would you work with this data without tidying it first?

Hair - Eye - Sex	n
Black - Brown - Male	32
Brown - Brown - Male	53
Red - Brown - Male	10
Blond - Brown - Male	3
Black - Blue - Male	11
Brown - Blue - Male	50

The Hair - Eye - Sex variable actually has values for three separate variables stored within it.

Tidying #2

We need to separate one column (Hair - Eye - Sex) into multiple columns (hair, eye, sex)

hair	eye	sex	n	
Black	Blue	Male	11	
Black	Brown	Male	32	
Blond	Brown	Male	3	
Brown	Blue	Male	50	
Brown	Brown	Male	53	
Red	Brown	Male	10	

3. Variables are stored in both rows and columns

This is the most complicated form of common untidy data, and requires more massaging.

The table below shows a subset of daily weather data for one weather station in Mexico (MX17004).

id	year	month	element	d1	d2	d3	d4	d5
MX17004	2010	2	tmax	NA	27.3	24.1	NA	NA
MX17004	2010	2	tmin	NA	14.4	14.4	NA	NA
MX17004	2010	3	tmax	NA	NA	NA	NA	32.1
MX17004	2010	3	tmin	NA	NA	NA	NA	14.2

It has variables in columns (id, year, month), spread across columns (d1-d5) and across rows (tmin, tmax).

Tidying #3

Requires gathering, spreading (like PIVOT in SQL), and unite-ing.

date	tmax	tmin
2010-02-01	NA	NA
2010-02-02	27.3	14.4
2010-02-03	24.1	14.4
2010-02-04	NA	NA
2010-02-05	NA	NA
2010-03-01	NA	NA
	2010-02-01 2010-02-02 2010-02-03 2010-02-04 2010-02-05	2010-02-01 NA 2010-02-02 27.3 2010-02-03 24.1 2010-02-04 NA 2010-02-05 NA

Displaying and Organizing Data

How can we make it easier to scan raw values in a data table?

 Determine the roles of variables in your analysis (fixed by design of experiment vs. measured during course of experiment)

- Determine the roles of variables in your analysis (fixed by design of experiment vs. measured during course of experiment)
- Fixed variables should come first, then measured variables

- Determine the roles of variables in your analysis (fixed by design of experiment vs. measured during course of experiment)
- Fixed variables should come first, then measured variables
 - Order from L-R by degree of fixed-ness. The "most fixed" variables are the key describers of an observation, and are useful when we're trying to scan values.

- Determine the roles of variables in your analysis (fixed by design of experiment vs. measured during course of experiment)
- Fixed variables should come first, then measured variables
 - Order from L-R by degree of fixed-ness. The "most fixed" variables are the key describers of an observation, and are useful when we're trying to scan values.
- Put related variables next to each other

- Determine the roles of variables in your analysis (fixed by design of experiment vs. measured during course of experiment)
- Fixed variables should come first, then measured variables
 - Order from L-R by degree of fixed-ness. The "most fixed" variables are the key describers of an observation, and are useful when we're trying to scan values.
- Put related variables next to each other
- Order rows based on the first variable and then break ties with the second and subsequent (fixed) variables after that.

Organizing data in spreadsheets

Broman & Woo (2018) wrote a short paper with 12 tips for organizing data in spreadsheets for sharing, reproducible analysis, and collaboration.

- Be consistent
 - Codes, NA, names, ID, layout, files, dates, phrases
- Write dates like YYYY-MM-DD
- Do not leave any cells empty
- Put just one thing in a cell
- Organize the data as a single rectangle (with subjects as rows, variables as columns, and with a single header row)
- Create a data dictionary

- Do not include calculations in the raw data files
- Do not use font color or highlighting as data
- Choose good names for things
- Make backups
- Use data validation to avoid data entry errors
- Save the data in plain text files

Conclusion

 Put each dataset in a table, put each variable in a column, and consider the difficulty of calculating a grouped aggregation.

- Put each dataset in a table, put each variable in a column, and consider the difficulty of calculating a grouped aggregation.
- Structure and tidy up your data to be manipulated by a computer.
 Ignore urges to make it easily viewed by a human at first.

- Put each dataset in a table, put each variable in a column, and consider the difficulty of calculating a grouped aggregation.
- Structure and tidy up your data to be manipulated by a computer.
 Ignore urges to make it easily viewed by a human at first.
 - Code is for humans, data is for computers

- Put each dataset in a table, put each variable in a column, and consider the difficulty of calculating a grouped aggregation.
- Structure and tidy up your data to be manipulated by a computer.
 Ignore urges to make it easily viewed by a human at first.
 - Code is for humans, data is for computers
- Be consciously aware of your values, variables, and observations

- Put each dataset in a table, put each variable in a column, and consider the difficulty of calculating a grouped aggregation.
- Structure and tidy up your data to be manipulated by a computer.
 Ignore urges to make it easily viewed by a human at first.
 - Code is for humans, data is for computers
- Be consciously aware of your values, variables, and observations
- Normalization can be your friend

- Put each dataset in a table, put each variable in a column, and consider the difficulty of calculating a grouped aggregation.
- Structure and tidy up your data to be manipulated by a computer.
 Ignore urges to make it easily viewed by a human at first.
 - Code is for humans, data is for computers
- Be consciously aware of your values, variables, and observations
- Normalization can be your friend
- Be assertive, understanding, and consistent

Other resources

There's a bevy of resources I consulted for this presentation. I've arranged these in descending order of importance.

- The tidy data paper
- Data Organization in Spreadsheets
- Informal version of tidy data paper
- Practical introduction to tidy data
- Tidy data presentation
- Tidy data analysis (an extension of the tidy data paradigm)
- Tidy Data in Python
- Database Normalization
- Codd's 3rd Normal Form

You can find this presentation as well as a longer one on my GitHub.

Thanks for Listening!

Questions?