Paprasčiausi skaitiniai algoritmai: lygties su vienu nežinomuoju sprendimas

http://oras.if.ktu.lt/moduliai/P170B115/Skaitiniai inzinerijos metodai su MATLAB (KP RG RB)2009

F6.pdf

http://oras.if.ktu.lt/moduliai/P170B115 /Skaitiniai inzinerijos metodai(RB) 2006

I.1.1.pdf

Lygtis su vienu nežinomuoju

$$f(x) = 0$$

 χ ?

Matematinės lygtys

Viena lygtis

Tiesinės algebrinės lygtys (vienas sprendinys)

$$ax + b = 0$$
;

$$x = -\frac{b}{a}$$

Netiesinės algebrinės ir transcendentinės lygtys (keli sprendiniai)

$$f(x) = 0$$

$$f(x) = ax^2 + bx + c = 0;$$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Tiesinių algebrinių lygčių sistemos (vienas

sprendinys(?))

Netiesinių algebrinių ir transcendentinių lygčių sistemos (keli sprendiniai)

$$f(x) = ax^6 + \sin^2 x + \ln(x+2) = 0;$$

 $x = ???$

Lygties sprendimo etapai:

$$f(x) = 0$$

- Šaknų atskyrimas arba pradinio artinio parinkimas
- Šaknies reikšmės patikslinimas

Šaknų atskyrimas:

- Pateikti algoritmus šaknų atskyrimui pavyksta tik lygtims su vienu nežinomuoju (pvz. grafiniu būdu, atliekant tikėtino šaknų intervalo skenavimą ir pan.);
- Lygčių sistemoms su daugeliu nežinomųjų universalių metodų šaknų atskyrimui nėra;

Šaknų atskyrimas: grafinis šaknų radimo būdas

Pvz_SMA_1_1_Funkciju_grafinis_pavaizdavimas.m

$$f(x) = 2x\cos(x) - (x+1)^2 = 0; x?$$

pavojus neaptikti šaknies

Šaknų atskyrimas: intervalo skenavimas

pavojus parinkti per didelį pradinį skenavimo žingsnį ir "peršokti" kelias šaknis

Šaknų atskyrimas: matematikos teorinių rezultatų panaudojimas 1

Kai funkcija yra daugianaris

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0, \qquad a_n > 0$$

"Grubus" įvertis (galioja tiek realioms šaknims, tiek ir kompleksinių šaknų moduliams):

$$\left| x \right| < 1 + \frac{\max\limits_{0 \le i \le n-1} \left| a_i \right|}{a_n} = R$$

Šaknų atskyrimas: matematikos teorinių rezultatų panaudojimas 2

"Tikslesnis" įvertis (galioja tik realioms šaknims)

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0, \qquad a_n > 0$$

Teigiamoms šaknims
$$x \leq R_{teig}, \ R_{teig} = 1 + \sqrt[k]{\frac{B}{a_n}}, \quad k = n - \max_{0 \leq i \leq n-1} \left(i, a_i < 0\right), \quad B = \max_{0 \leq i \leq n-1} \left(\left|a_i\right|, a_i < 0\right)$$
 Neigiamoms šaknims vietoje daugianario $f(x)$ imti $f(-x)$, kai n Ivginis ir $-f(-x)$.

Neigiamoms šakn/ims vietoje daugianario f(x) imti f(-x), kai n lyginis ir -f(-x), kai *n* nelyginis. Apskaičiuoti R_{neia}

Galutinis įvertis:

$$-\min(R, R_{neig}) \le x \le \min(R, R_{teig})$$

Būna atvejų, kai "tikslesnis" įvertis nurodo platesnį intervalą, nei "grubus". Taip būna, kai k > 1, o B/an < 1

Šaknų atskyrimas: matematikos teorinių rezultatų panaudojimas

Pvz_SMA_1_2_ Daugianario_saknu_reziu_iverciai.m

$$f(x)=x^4 - 11*x^3 + 8*x^2 + 20*x+0$$

 $f(x)=x^*(x + 1)^*(x - 2)^*(x - 10)$

Grubus įvertis

Šaknų atskyrimas: intervalų parinkimas "iš patirties", suvokiant matematiniu modeliu aprašyto realaus objekto esmę ir galimą prasmingą šaknies reikšmę

Daugeliu atvejų nebūtina, kad pradinis artinys būtų iš tikrųjų skaitiškai artimas tikrajam sprendiniui. Pakanka, kad jo reikšmė būtų prasminga tiriamame matematiniame modelyje.

Šaknies reikšmės tikslinimas:

 Kalbėdami apie bendruosius netiesinių alg.lygčių sprendimo metodus, dažniausiai turime galvoje šaknies reikšmės patikslinimo algoritmus;

$$f(x) = 0$$

 Laikome, kad pradinis artinys arba šaknies atskyrimo intervalas jau yra žinomi;

Iš nemažo skaičiaus šaknies tikslinimo

Šaknies reikšmės tikslinimas siaurinant skenuojamą intervalą

Nuosekliai vykdant *šaknies atskyrimo intervalo skenavimu* ir *skenuojamo intervalo siaurinimo* algoritmus, galima rasti ir kitas šaknis:

 Taikant skenuojamo intervalo siaurinimo algoritmą, funkcijos reikšmę gali tekti apskaičiuoti labai daug kartų. Jis nėra ekonomiškas skaičiavimų požiūriu;

Šaknies reikšmės tikslinimas: pusiaukirtos metodas (bisection)

Šaknies reikšmės tikslinimas: stygų metodas (chords)

Skaičiavimo pabaigos sąlygos

$$|f(x_{mid})| < \varepsilon$$

$$\left| x_n - x_{n1} \right| < \varepsilon$$

"2" - ar tai didelė, ar maža reikšmė?

Ne visuomet lengva parinkti eps reikšmę

Patikimesnės pabaigos sąlygos

$$|f(x_{mid})| < \varepsilon_1 \& |(x_n - x_{n1}) < \varepsilon_2$$

$$\left| f(x_{mid}) \cdot (x_n - x_{n1}) \right| < \varepsilon$$

$$\frac{\left|x_{n}-x_{n1}\right|}{\left|x_{n}\right|+\left|x_{n1}\right|} < \varepsilon, \quad kai \quad x^{*} \neq 0$$

Šaknies reikšmės tikslinimas:

stygų ir pusiaukirtos metodų taikymo pavyzdžiai

Pvz_SMA_1_3_Viena_lygtis_bisection_chords.m

 Vieno kintamojo funkcijoms aukščiau aptarti metodai (grafinis, skenavimo, pusiaukirtos, stygų) turi "šaknies apskliaudimo" savybę.
 Jeigu šaknies intervalas aptiktas, jame garantuotai randama bent viena šaknis;

 Deja, nei vienas iš šiuose metoduose naudojamų principų netinka daugelio kintamųjų funkcijoms ir lygčių sistemoms

Pasitaiko sunkumų nustatant šaknų atskyrimo intervalą:

Šaknies reikšmės tikslinimas: paprastųjų iteracijų metodas

(simple iteration)

$$f(x) = 0;$$

$$f(x) + \alpha x = \alpha x;$$

$$x = x + \frac{1}{\alpha} f(x);$$

$$x = \hat{f}(x)$$

Daugiklis, kurio reikšmė yra parenkama

$$\chi^0$$
 - pradinis artinys

$$x^{i+1} = \hat{f}(x^i)$$
, $i = 0,1,2,3,...$

matematinės operacijos pakartotinis panaudojimas vadinamas *iteracija*

Paprastųjų iteracijų metodo grafinė iliustracija

Paprastųjų iteracijų metodas gali diverguoti netgi esant labai geriems pradiniams artiniams;

•Jeigu pradinis artinys geras, metodas konverguoja, kai $\left\| \frac{d\hat{f}(x)}{dx} \right\|_{x^*} < 1$

$$\hat{f}(x) = x + \frac{1}{\alpha} f(x);$$

$$\left| \frac{d\hat{f}(x)}{dx} \right| = \left| 1 + \frac{1}{\alpha} \frac{df(x)}{dx} \right| < 1$$

$$-2 < \left(\frac{1}{\alpha} \frac{df(x)}{dx} \right)_{x^*} < 0$$

- •Visuomet įmanoma parinkti teigiamą arba neigiamą ${\mathcal C}$ reikšmę, kad nelygybė būtų tenkinama
- Deja, sprendinio taškas iš anksto nežinomas ⊗
 Tenka eksperimentuoti skaičiuojant

Paprastųjų iteracijų metodas konverguoja, parinkus tinkamą daugiklio reikšmę: Pvz_SMA_1_4_Viena_lygtis_simple_iteration.m

$$1.5x^2 - 1 = 0$$

$$1.5x^2 - 1 = 0$$

$$1.5x^2 - 1 + 10x = 10x$$

$$1.5x^2 - 1 + x = x$$

$$x_{i+1} = 0.15x_i^2 + x_i - 0.1$$

$$x_{i+1} = 1.5x_i^2 + x_i - 1$$

Tokia pati lygtis, tačiau skirtingos iteracijų formulės (!)

Šaknies reikšmės tikslinimas: Niutono (liestinių) metodas (Newton, tangent).

- Niutono metodas paremtas Teiloro teorema (Teiloro eilute);
- Teiloro teorema nagrinėjama Matematikos kurse;
- Sekančios 2 skaidrės primena Teiloro teoremos esmę ir panaudojimo būdą. Tai pagalbinė medžiaga

Pagalbinė medžiaga: Teiloro teorema (Teiloro eilutė) 1

$$\tilde{f}(x) = f(x_0) + (x - x_0) \frac{df}{dx}\Big|_{x_0} + \frac{(x - x_0)^2}{2} \frac{d^2 f}{dx^2}\Big|_{x_0} + \frac{(x - x_0)^3}{6} \frac{d^3 f}{dx^3}\Big|_{x_0} + \dots + \frac{(x - x_0)^n}{n!} \frac{d^n f}{dx^n}\Big|_{x_0} + \dots$$

•Teiloro eilutė išreiškia <u>funkcijos reikšmes taške x</u> per tos funkcijos ir jos išvestinių <u>reikšmes</u>, apskaičiuotas taške <u>x0</u>;

Pagalbinė medžiaga: Teiloro teorema (Teiloro eilutė) 2

•Kita interpretacija : Teiloro eilutė išreiškia bet kokią be galo daug kartų diferencijuojamą funkciją begalinės eilės daugianariu (t.y.algebrine funkcija) $\lim \, \tilde{f}(x) = f(x)$

 $n \rightarrow \infty$

Pagalbinė medžiaga: Teiloro teorema (Teiloro eilutė) 3 Pvz_SMA_1_5_Teiloro eilutes paaiskinimas.m

Šaknies reikšmės tikslinimas: Niutono (liestinių) metodas

$$f(x) = 0$$
, x^0 - pradinis artinys

"Atkirsta" Teiloro eilutė

$$f(x) \approx f(x^{0}) + \frac{df}{dx} \Big|_{x^{0}} \left(x - x^{0}\right)$$

$$f(x^{0}) + \frac{df}{dx} \Big|_{x^{0}} \left(x - x^{0}\right) = 0$$

$$y = f(x)$$

pradinis artinys

Šaknies reikšmės tikslinimas: Niutono (liestinių) metodo formulė

$$f(x) = 0$$
, x^0 - pradinis artinys

$$f(x^0) + \frac{df}{dx}\bigg|_{x^0} \left(x - x^0\right) = 0$$

$$f(x^{i}) + \frac{df}{dx} \bigg|_{x^{i}} \left(x^{i+1} - x^{i}\right) = 0$$

$$x^{i+1} = x^{i} - \left(\frac{df}{dx}\right)^{-1} \int_{x^{i}}^{1} f(x^{i}), \quad i = 0, 1, 2, 3, \dots$$

Niutono metodo grafinė iliustracija

Šaknies reikšmės tikslinimas: Niutono (liestinių) metodo modifikacija konvergavimui pasiekti

$$f(x) = 0$$
, x^0 - pradinis artinys

$$x^{i+1} = x^{i} - \left(\frac{df}{dx}\right)^{-1} \Big|_{x^{i}} f(x^{i}), \quad i = 0, 1, 2, 3, \dots$$

$$x^{i+1} = x^{i} - \beta \left(\frac{df}{dx}\right)^{-1} \bigg|_{x^{i}} f(x^{i}) , i = 0, 1, 2, 3, \dots$$

Parinkta daugiklio reikšme galima apriboti x prieaugį, tikintis pagerinti konvergavimą

Niutono metodas visuomet konverguoja, kai pradedama skaičiuoti nuo gero pradinio artinio;

Kiekvienos iteracijos metu būtina apskaičiuoti ne tik funkcijos, tačiau ir jos išvestinės reikšmę;

Niutono metodo taikymo pavyzdys

Pvz_SMA_1_6_Viena_lygtis_Simple_iteration_Newton_Secant.m

Galima būtų sudaryti panašų o Niutono algoritmą, panaudojant daugiau Teiloro eilutės narių:

$$f(x) = 0$$
 , x^0 - pradinis artinys "Atkirsta" Teiloro eilutė

$$f(x) \approx f(x^{0}) + \frac{df}{dx} \bigg|_{x^{0}} \left(x - x^{0} \right) + \frac{d^{2}f}{dx^{2}} \bigg|_{x^{0}} \frac{\left(x - x^{0} \right)^{2}}{2} + \frac{d^{3}f}{dx^{3}} \bigg|_{x^{0}} \frac{\left(x - x^{0} \right)^{3}}{6}$$

$$f(x^{0}) + \frac{df}{dx}\Big|_{x^{0}} \left(x - x^{0}\right) + \frac{d^{2}f}{dx^{2}}\Big|_{x^{0}} \frac{\left(x - x^{0}\right)^{2}}{2} + \frac{d^{3}f}{dx^{3}}\Big|_{x^{0}} \frac{\left(x - x^{0}\right)^{3}}{6} = 0$$

Deja, gautą lygtį išspręsti bendruoju atveju *imanoma* tik skaitiškai. Todėl toks būdas nėra populiarus, jis idomus tik teoriškai.

duota funkcija

4 TE nariai

taskas

pradinis artinys

Geriau yra suprastinti Niutono metodo skaičiavimus taip, kad nereiktų analitiškai diferencijuoti;

Išvestinės reikšmes galima įvertinti skaitiškai, nenaudojant analitinių diferencijavimo formulių(kvazi-Niutono metodai)

kvazi-Niutono metodai: kirstiniy metodas (secant)

(h yra laisvai parinktas mažas argumento prieaugis)

$$x^{i+1} = x^{i} - \left(\frac{f(x^{i}) - f(x^{i} - h)}{h}\right)^{-1} f(x^{i})$$
Kirstinių metodas: $h = x^{i} - x^{i-1}$

$$x^{i+1} = x^{i} - \left(\frac{f(x^{i}) - f(x^{i-1})}{x^{i} - x^{i-1}}\right)^{-1} f(x^{i})$$

$$x^{i+1} = x^{i} - \left(\frac{f(x^{i}) - f(x^{i-1})}{x^{i} - x^{i-1}}\right)^{-1} f(x^{i})$$

Kirstinių metodu pradedamą skaičiuoti, parinkus *pradinį artinį ir skaitiškai* apskaičiavus išvestinės reikšmę tame taške

Kirstinių metodo grafinė iliustracija

Pvz_SMA_1_6_Viena_lygtis_Simple_iteration_Newton_Secant.m

Kirstinių metodas prieš Niutono metodą: grafinė iliustracija

Iteracijų pabaigos sąlygos:

$$\begin{split} \left| f(x_{i+1}) \cdot \left(x_{i+1} - x_i \right) \right| < \varepsilon \\ \frac{\left| x_{i+1} - x_i \right|}{\left| x_{i+1} \right| + \left| x_i \right|} < \varepsilon, \quad kai \quad x^* \neq 0 \end{split}$$
 Geresni iteracijų pabaigos įverčiai

 Jeigu funkcija nėra gerai ištirta, skaičiuojant iteracijų metodais visuomet išlieka algoritmo divergavimo pavojus

MATLAB funkcijos netiesinių lygčių sprendimui

fzero(fun,x0) - apskaičiuoja vienos netiesinės
lygties sprendinį;

fsolve(fun,x0) - apskaičiuoja netiesinės lygties arba lygčių sistemos sprendinį;

roots(c) - apskaičiuoja daugianario šaknis