Definitions

vector space: A vector space V over a field F consists of a set on which two operations (called **addition** and **scalar multiplication**) are defined so that for each pair of elements $x, y \in V$ there is a unique element x + y in V, and for each element a in F and each element x in Y there is a unique element x in Y, such that the following conditions hold: ...

subspace: A subset W of a vector space V over a field F is called a **subspace** of V if W is a vector space over F with the operations of addition and scalar multiplication defined on V.

linear combination: Let V be a vector space and S a nonempty subset of V. A vector $v \in V$ is called a **linear combination** of vectors of S if there exist a finite number of vectors $u_1, u_2, ..., u_n$ in S and scalars $a_1, a_2, ..., a_n$ in F such that $v = a_1u_1 + a_2u_2 + \cdots + a_nu_n$. In this case we also say that v is a linear combination of $u_1, u_2, ..., u_n$ and call $a_1, a_2, ..., a_n$ the coefficients of the linear combination.

span: Let S be a nonempty subset of a vector space V. The **span** of S, denoted span(S), is the set consisting of all linear combinations of the vectors in S. For convenience, we define span(0) = 0.

linearly dependent: A subset S of a vector space V is called **linearly dependent** if there exist a finite number of distinct vectors $u_1, u_2, ..., u_n$ in S and scalars $a_1, a_2, ..., a_n$, not all zero such that

$$a_1u_1 + a_2u_2 + \dots + a_nu_n = 0$$

basis: A **basis** β for a vector space V is a linearly independent subset of V that generates V. If β is a basis for V, we also say that the vectors of β form a basiss for V.