第二十七章 一阶谓词演算

第7节 $N_{\mathcal{L}}$ 的可靠性与和谐性

王 捍 贫 北京大学信息科学技术学院 软件研究所理论实验室

内容提要

- 语义推论
- 可靠性及其证明
- 和谐性及其证明
- 完全性

公式集的满足

设 Σ 是 Ω 的一个公式集, I是 Ω 一个解释. σ 是 Ω 在I中的一个指派, 若对任意 $\alpha \in \Sigma$, 都有 $I \mid_{\overline{\sigma}} \alpha$, 则称 σ 在I中满足 Σ , 记为 $I \mid_{\overline{\sigma}} \Sigma$

语义推论

设 Σ , α 分别为 Σ 中的公式集与公式. 若对 Σ 的任一解释I及 Σ 在I中的任一 指派 σ , 当 $I \mid_{\overline{\sigma}} \Sigma$ 时, 就有 $I \mid_{\overline{\sigma}} \alpha$, 则称 α 为 Σ 的一个 语义推论, 记为 $\Sigma \models \alpha$.

Nc的可靠性

设 Σ , α 分别是 Ω 中的公式集与公式.

- (1) 若 $\Sigma \vdash_{\mathbf{N}_{\mathcal{L}}} \alpha$, 则 $\Sigma \models \alpha$.
- (2) 若 $\vdash_{\mathbf{N}_{\mathcal{L}}} \alpha$, 则 $\models \alpha$.

证: (2)可由(1)立证. 下面只证(1).

因 $\Sigma \vdash_{\mathbf{N}_{\mathcal{L}}} \alpha$, 故在 $\mathbf{N}_{\mathcal{L}}$ 中存在前提 Σ 下推出 α 的证明 序列:

$$\Sigma_1 \vdash \alpha_1, \Sigma_2 \vdash \alpha_2, \cdots, \Sigma_n \vdash \alpha_n \ (\Sigma_n = \Sigma, \alpha_n = \alpha)$$

下证:对任意 $i: 1 < i < n, \Sigma_i \models \alpha_i$ (*)

(1) 当i = 1时, $\Sigma_1 \vdash \alpha_1$ 是由(\in)得到的,即 $\alpha_1 \in \Sigma_1$. 故 $\Sigma_1 \models \alpha_1$.

- (2) 设(*)对< k的所有i成立,下证当i = k时也成立。
- (2.1) 若 $\Sigma_k \vdash \alpha_k$ 是由 (\in) 得到的,则 $\alpha_k \in \Sigma_k$. 从而 $\Sigma_k \models \alpha_k$.
- (2.2) 若 $\Sigma_k \vdash \alpha_k$ 是由 $(\neg -)$ 得到的. 由归纳假设知, $\Sigma_k, \neg \alpha_k \models \beta$ 且 $\Sigma_k, \neg \alpha_k \models \neg \beta$.
- 设 $I \mid_{\overline{\sigma}} \Sigma_k$. 若 $I \mid_{\overline{\sigma}} \alpha_k$, 则 $I \mid_{\overline{\sigma}} \neg \alpha_k$. 故 $I \mid_{\overline{\sigma}} \Sigma_k \cup \{\neg \alpha\}$. 从而 $I \mid_{\overline{\sigma}} \beta \perp I \mid_{\overline{\sigma}} \neg \beta$, 矛盾. 故 $I \mid_{\overline{\sigma}} \alpha_k$.

i

(2.3)若 $\Sigma_k \vdash \alpha_k$ 是由 $(\forall -)$ 得到的,则 α_k 具有形式 $\beta(x/t)$,其中t对x在 β 中自由.由归纳假设知 $\Sigma_k \models \forall x\beta$.

设 $I \mid_{\overline{\sigma}} \Sigma_k$, 则 $I \mid_{\overline{\sigma}} \forall x \beta$. 从而对任意 $a \in D$, $I \mid_{\overline{\sigma}(x/a)} \beta$. 特别地, $I \mid_{\overline{\sigma}(x/t^{\sigma})} \beta$. 由定理3.15知: $I \mid_{\overline{\sigma}} \beta(x/t)$.

(2.4)若 $\Sigma_k \vdash \alpha_k$ 是由 $(\forall +)$ 得到的,则 α_k 具有形式 $\forall x\beta$,其中x不在 Σ_K 的任何公式中自由出现。由归纳假设知 $\Sigma_k \models \beta$.

(2.5)若 $\Sigma_k \vdash \alpha_k$ 是由 $(\exists -)$ 得到的,则 Σ_k 具有形式 $\Gamma \cup \{\exists x \beta\}$,且x不在 $\Gamma \cup \{\alpha_k\}$ 的任何公式中自由出现。由归纳假设知 $\Gamma, \beta \models \alpha_k$.

设 $I \mid_{\overline{\sigma}} \Sigma_k$. 则 $I \mid_{\overline{\sigma}} \Gamma$ 且 $I \mid_{\overline{\sigma}} \exists x \beta$. 从而存在 $a \in D$ 使得 $I \mid_{\overline{\sigma}(x/a)} \beta$. 由于x不在 Γ 的任何公式中自由出现,故 $I \mid_{\overline{\sigma}(x/a)} \Gamma$. 因此 $I \mid_{\overline{\sigma}(x/a)} \alpha_k$. 又由于且x不在 α_k 中自由出现. 故 $I \mid_{\overline{\sigma}} \alpha_k$.

(2.6)若 $\Sigma_k \vdash \alpha_k$ 是由 $(\exists +)$ 得到的,则 α_k 具有形式 $\exists x\beta$. 由归纳假设知 $\Sigma_k \models \beta(x/t)$. 其中t对x在 β 中自由.

设 $I \mid_{\overline{\sigma}} \Sigma_k$,则 $I \mid_{\overline{\sigma}} \beta(x/t)$.

由替换定理知: $I \mid \overline{\sigma(x/t^{\sigma})} \beta$. $\Diamond a = t^{\sigma}$, 则 $I \mid \overline{\sigma(x/a)} \beta$. 故 $I \mid \overline{\sigma} \exists x \beta$

归纳证毕.

Nc的和谐性

对任何非逻辑符号集 \mathcal{L} , $N_{\mathcal{L}}$ 是和谐的, 即: \mathcal{L} 中不存在公式 α 使得 $\vdash_{N_{\mathcal{L}}} \alpha$ 且 $\vdash_{N_{\mathcal{L}}} \neg \alpha$.

Nc的完全性

对任何非逻辑符号集 \mathcal{L} , $N_{\mathcal{L}}$ 是完全的, 即:

- (1) 若 $\Sigma \models \alpha$, 则 $\Sigma \vdash_{\mathbf{N}_{\mathcal{L}}} \alpha$.
- (2) 若 $\models \alpha$, 则 $\vdash_{\mathbf{N}_{\mathcal{L}}} \alpha$.

该定理的证明有两种方法: 哥德尔的经典方法和Hekin的常量构造法.

谢谢