LEC12 Bellman-Ford

3.30 https://github.com/GUMI-21/MIT6.006_note

Previously

- weighted graphs shortest-path weight, negative-weight cycles
- · BFS positive weighted graphs
- DAG Relaxtion algorithm to solve SSSP on a weighted DAG in O(|V | + |E|) time
- SSSP for graph with negative weights
 - -Compute $\delta(s,v)$ for all $v\in V$ ($-\infty$ if v reachable via negative-weight cycle)
 - -if a negative-weight cycle reachable from s, return one

for this lecture, we restrict our discussion to directed graphs

Restrictions		SSSP Algorithm			
Graph	Weights	Name	Running Time $O(\cdot)$	Lecture	
General	Unweighted	BFS	V + E	L09	
DAG	Any	DAG Relaxation	V + E	L11	
General	Any	Bellman-Ford	$ V \cdot E $	L12 (Today!)	
General	Non-negative	Dijkstra	$ V \log V + E $	L13	

Warmup Exercise

- Ex1: Given undirected graph G, return whether G contains a negative weight cycle every edge with negative edge can be a cycle.
- Ex2: If have Alg A solves SSSP in O(|V|(|V|+|E|))
 Show how to solve SSSP in O(|V|·|E|)

Use BFS or DFS find all the things reachable from S, and throw ohters away, then I have a graph which V is asymptotically no bigger than E, means O(|V|(|V|+|E|)) = O(|V||E|)

Simple Shortest Paths

If graph does not contain negative-weight cycles, shortest paths are simple!

 Claim 1: If δ(s, v) is finite, there exists a shortest path from s to v is simple PROOF: By contradiction Assume there is a cycle in the path from s to v, two case: 1.the cycle weight is negative, contradiction, -> -infinite. 2.the cycle weight is 0 or negative, I can just erase the cycle to get the shortest path.

simple paths cannot repeat vertices, finite shortest paths contain at most |V | − 1 edges
 So the Shortest path is simple, and |E| <= |V| - 1

Negative Cycle Witness

- then a Idea
 What if I limit the number of edges when find the shortest weighted path?
 this is called k-Edges Distance δ_k(s, v): shortest s-v path using <= k edges
- A Statement

If $\delta_{|V|}(s,v) < \delta_{|V|-1}(s,v)$, then $\delta(s,v) = -\infty$

- --- If I can find a vertex that has this property, this vertex is called a witness.---
- Claim 2 if $\delta(s,v)=-\infty$,then v is reachable from a witness.

Proof: By contradiction

Alenative: Prove every negative weighted cycle contains witness

Think there is a Cycle with negative weighted, select a vetex v and his predeccessor v'.

Then
$$\delta_{|v|}(s,v) <= \delta_{|v|-1}(s,v') + w(v',v)$$

then take this equation to all cycle vertices, sum of w(v',v) is the weight of cycle which is negative, then erase the w equation give $\delta_{|v|}(s,v) < \delta_{|v|-1}(s,v')$, which means if there isn't witness in cycle there will be a construction of the defination of witness. proved.

Bellman-Ford

see the R12 note whit the original Bellman-Ford, it's easier to understand!

A modified Bellman-Ford

• Idea! Use graph duplication: make multiple copies (or levels) of the graph this is a very common technique.

=> Make |v| + 1 levels, V_k in level k represents reaching vertex v using at most k edges. If we connect edges from one level to only higher levels, then the graph is DAG!

- ALG
 - -Construct G' |V|(|V| + 1) vertices, |V||V| + |V||E| = |V|(|V| + |E|) edges
 - -Run DAG Relaxation from S_0 compute $\delta(s_0, v_k)$ fro k = {0,...,|V|}
 - -For each vertex V: set $d(S,V) = \delta(S_0,V_{|V|-1})$
- Claim: $\delta(S_0,V_k)=\delta(S,V)$
 - -For each witness u in V, $\delta(s_o,u_{|v|})<\delta(s_0,u_{|v|-1})$
 - -for each v reachable from u, set d(s,v) = -infinty
- EXAMPLE from Note

Example

 $\delta(a_0, v_k)$

$k \setminus v$	a	b	c	d
0	0	∞	∞	∞
1	0	-5	6	∞
2	0	-5	-9	9
3	0	-5	-9	-6
4	0	-7	-9	-6
$\delta(a,v)$	0	$-\infty$	$-\infty$	$-\infty$

• Claim3: $\delta(s0, vk) = \delta k(s, v)$ for all $v \in V$ and $k \in \{0, \dots, |V|\}$