Assignment Project Exam Help

https://tutores.com

Imperial College London

WeChat: cstutorcs

What is wrong with this schema?

FROM WHERE bank_data sortcode = 67

34005.00

34005.00

34005.00

What is wrong with this schema?

				_		nk_data		_			
1	no sorte	ode.	hname	d ash	type	cname 4		rate?	mid	amo int	tdat
ŀ	100	67	Strand	3 10 0! .00	cur er t	Chame Ct		, pt II	000	amo int 1300 00	tdat 1999-01-05
	101	67	Strand	34005.00	deposit	McBrien, P.		5.25	1001	4000.00	1999-01-05
	100	67	Strand	34005.00	current	McBrien, P.		null	1002	-223.45	1999-01-08
	107	56	Wimbledon	84340.45	current	Poulovassilis,	Α.	null	1004	-100.00	1999-01-11
	103		Goodge St			Boyd, M.		null	1005	145.50	1999-01-12
	100	1	Strand C	•340Ø5 00°	c ir ent	McBaen, P. Podlovassiis,	\bigcap 1		1006	10.23	1999-01-15
	107	5 6	Wilm Hedon	• 84340.45	current	Podlovassilis,	Μ.	nun	1007	345.56	1999-01-15
	101	67	Strand	34005.00	deposit	McBrien, P.		5.25	1008	1230.00	1999-01-15
	119	56	Wimbledon	84340.45	deposit	Poulovassilis,	Α.	5.50	1009	5600.00	1999-01-18

SELECT FROM bany et chat: STEETOTCS
WHERE sortcode = 67

What is wrong with this schema?

				_		nk_data		_			
1	no sortc	ode.	bpame	d ash	type.	cname 4		rate?	mid	amo int	tdat 999-d1-05
F	100	67	Strand	3 10 0! .00	cur er t	Chame McBrich		ptII	000	amo int 1300 00	9941-05
	101	67	Strand	34005.00	deposit	McBrien, P.		5.25	1001	4000.00	1999-01-05
	100	67	Strand	34005.00	current	McBrien, P.		null	1002	-223.45	1999-01-08
	107	56	Wimbledon	84340.45	current	Poulovassilis,	Α.	null	1004	-100.00	1999-01-11
	103		Goodge St			Boyd, M.		null	1005	145.50	1999-01-12
	100	7	Strand C	•340Ø5 . 00	c ir ent	McBtien, P. Podlovassilis,	\bigcap	110	1006	10.23	1999-01-15
	107	5 6	Wilm Heden	84340.45	current	Podlovassiiis,	Μ.	Huff	1007	345.56	1999-01-15
	101	67	Strand	34005.00	deposit	McBrien, P.		5.25	1008	1230.00	1999-01-15
	119	56	Wimbledon	84340.45	deposit	Poulovassilis,	Α.	5.50	1009	5600.00	1999-01-18

```
INSERT INTO bank_data 
VALUES (100,67, 'Strand',33005.00, 'deposit', 'McBrien, P.', null, 1017, -1000.00, '1999-01-21')
```

Arssignment Project Exam Help

101 67 Strant 34005.00 deposit McBrien, P. 5.25 1001 4000.00 1999-01-0 100 67 Strand 34005.00 current McBrien, P. null 1002 -223.45 1999-01-0 107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1004 -100.00 1999-01-1 103 34 Goodge St 6900.67 current Boyd, M. null 1005 145.50 1999-01-1 100 6 Strand 14005.00 current WeBrien P. null 1006 10.23 1999-01-1					ba	ank_data				
101 67 Strant 34005.00 deposit McBrien, P. 5.25 1001 4000.00 1999-01-0 100 67 Strand 34005.00 current McBrien, P. null 1002 -223.45 1999-01-0 107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1004 -100.00 1999-01-1 103 34 Goodge St 6900.67 current Boyd, M. null 1005 145.50 1999-01-1 100 5trant 14005.01 current McBrient P. null 1006 10.23 1999-01-1	no	sortcode	bname	/ ¢ash	type		rate?	mid	amount	tdate
100 67 Strand 34005.00 current McBrien, P. null 1002 -223.45 1999-01-0 107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1004 -100.00 1999-01-1 103 34 Goodge St 6900.67 current Boyd, M. null 1005 145.50 1999-01-1 100 6 Strand 14005.00 current WeBrien P. null 1006 10.23 1999-01-1	100	67							2300.00	1999-01-05
107 56 Wimbledon 84340.45 current Poulovassilis, A. null 1004 -100.00 1999-01-1 103 34 Goodge St 6900.67 current Boyd, M. null 1005 145.50 1999-01-1 100 6 Stand 14005.00 current Webrier Poulovassilis, A. null 1004 -100.00 1999-01-1 100 10.23 1999-01-1	101	671	Strant	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
103 34 Goodge St 6900.67 current Boyd, M. null 1005 145.50 1999-01-1 100 6 Stand 14005.00 current Wellright P. 1006 10.23 1999-01-1	100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
100 of Strand 14005.00 current McBrient P. 1006 10.23 1999-01-1	107	56	Wimbledon	84340.45	current	Poulovassilis, A	A. null	1004	-100.00	1999-01-11
100 67 Strand 14005 00 current WeBrieff P. null 1006 10.23 1999-01-1	103	34	Goodge St						145.50	1999-01-12
107 56 Windleton 34 40 45 current Poulous is A 1 0 1007 345 56 1999-01-1	100	67	Strand	14005.00	current	McBrien P.	nul	1006	10.23	1999-01-15
201 201 200 201 200 201 200 200 200 200	107	56	Winbleton	4404	current	Poulovals lis	l. (1.0)	1007	345.56	1999-01-15
101 67 Strand 34005.00 deposit McBrien, P. 5.25 1008 1230.00 1999-01-1	101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119 56 Wimbledon 84340.45 deposit Poulovassilis, A. 5.50 1009 5600.00 1999-01-1	119	56	Wimbledon	84340.45	deposit	Poulovassilis,	A. 5.50	1009	5600.00	1999-01-18
100 67 Strand 33005.00 deposit McBrien, P. null 1017 -1000.00 1999-01-2	100	67	Strand	33005.00	deposit	McBrien, P.	null	1017	-1000.00	1999-01-21

SELECT DISTINCT cash FROM bank_data WHERE sortcode=67

Problems with Updates on Redundant Data

Arssignment Project Exam Help

				ba	ank_data				
no	sortcode	bname	/ ¢ash	type	cname	rate?	mid	amount	tdate
100	67	Strand	34005 00	current	McBren, P.	nill	1000	2300.00	1999-01-05
101	67	Stranji	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St			Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strapd	14005.00	current	McBrien P.	null	1006	10.23	1999-01-15
107		Winbledon	444045	current	Pulovaisilis A.	U . b	1007	345.56	1999-01-15
101	67	Strand			McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18
100	67	Strand	33005.00	deposit	McBrien, P.	null	1017	-1000.00	1999-01-21

SELECT DISTINCT rate FROM bank_data

account = 107

WHERE

How do you know what is redundant?

Afine ibal dependency agree in two tuples, then so must the values in Y.

Using an FD to find a value.

If the FD roll are holds/thet. United table blockmust always take the value 5.25, but y and z may take any value.

	ank_dat			
no	mid_	rate	\sim 1 .	
no 101	1001	√ 5. ₽ 3	('hat•	cstutores
101	1008	x	Ciidi.	cstutorcs
119	1009	y		
z	1010	5.25		

Which set We Chart: hold for the detail cores

Quiz 2: Deriving FDs from other FDs

Arssignment Project Exam Help

 $no \rightarrow rate$

 $\mathsf{mid} \to \mathsf{no}$ Given the https://ctutorcs.com

 $\mathsf{no} \to \mathsf{bnamWeChat:} \ cstudetes \mathsf{cstude}$

 \mathbf{C}

 $amount,tdate \rightarrow amount$

 $amount,tdate \rightarrow mid$

Assignment Project Exam Help

Reflexivity

```
Y ⊆ X ⊨ X→Y

Such an Feb pase a truttores.com
```

Applying reflexivity

```
If amount, the eare attributes to CStutorcs
By reflexivity
```

```
\mathsf{amount} \subseteq \mathsf{amount}, \mathsf{tdate} \models \mathsf{amount}, \mathsf{tdate} \to \mathsf{amount} \mathsf{tdate} \subseteq \mathsf{amount}, \mathsf{tdate} \models \mathsf{amount}, \mathsf{tdate} \to \mathsf{tdate}
```

Assignments, Projecta Exam Help

Augmentation

https://tutorcs.com

Applying augmentation

If no,cname,sortcode are attributes and no \rightarrow cname

By augmentation no → cname And Sottoger arame, Sor Sotte UTOTCS

Armstrong's Axioms

Assignments, Projecta Exxam Help

Transitivity

https://tutores.com

Applying transitivity

If no \rightarrow sortcode and sortcode \rightarrow bname

By transitivity no → sortcode sortcode = Inant = nC Sotate to 1 C S

Union Rule

Armstrong's Axioms

Reflexivity: $Y \subseteq X \models X \to Y$

Aussignment Project Exam Help

Union Rule

If
$$X \to Y$$
, he ps://tutores-com

By augmentation

 $X \to Y \models XZ \to YZ$
 $X \to Z \models X \to XZ$

By transitivity

By transitivity

 $X \to XZ$

By transitivity

 $X \to XZ$
 $X \to XZ$
 $X \to XZ$
 $X \to XZ$
 $X \to Y$
 $X \to Y$

Note that the union rules means that we can restrict ourselves to FD sets containing just one attribute on the RHS of each FD without loosing expressiveness

Quiz 3: Deriving FDs from other FDs

Given a set $S = \{A \to BC, CD \to E, C \to F, E \to F\}$ of FDs

Assignment Project Exam Help

A→BF, Antips: ABC tutores.com

 $A \rightarrow BD, A \rightarrow CF, A \rightarrow ABCF$

WeChat: cstutorcs

 $A \rightarrow BD, A \rightarrow BF, A \rightarrow ABCF$

 $A \rightarrow BD, A \rightarrow BF, A \rightarrow CF$

Pseudotransitivity Rule

Armstrong's Axioms Armstrong's Axioms Armstrong's Axioms Project Exam Help Augmentation: $X \to Y \models XZ \to YZ$

Transitivity: $X \to Y, Y \to Z \models X \to Z$

Pseudotra sitivity Kale

If $X \to Y, WY \to Z$

By augmentation

 $X \to Y \models WX \to WX$ By transitive Chat: cstutorcs

$$\therefore X \to Y, WY \to Z \models WX \to Z$$

Decomposition Rule

Armstrong's Axioms Armstrong's Axioms Armstrong's Axioms Project Exam Help Augmentation: $X \to Y \models XZ \to YZ$

Transitivity: $X \to Y, Y \to Z \models X \to Z$

If $X \to Y, Z \subseteq Y$

By reflexivity

 $z \subseteq Y \models X$ By transitive chat: cstutorcs

$$\therefore X \to Y, Z \subseteq Y \models X \to Z$$

FDs and Keys

Super-keys and minimal keys

Signe Grating And relation of the inally determine and he attended a super-key of R

If it is not possible to remove any attribute from X to form X', and X'functionally determine all attributes, then X is a **minimal key** of R

https://tutorcs.com

Suppose branch(sortcode, bname, cash) has the FD set $\{$ sortcode \rightarrow bname, bname \rightarrow sortcode, bname \rightarrow cash $\}$

- {sortcode, noting } is a surget-key sin S [spreb e) the mes → cash
- **2** However, {sortcode, bname} is not a minimal key, since sortcode \rightarrow {bname, cash} and bname \rightarrow {sortcode, cash}
- sortcode and bname are both minimal keys of branch

Quiz 4: Deriving minimal keys from FDs

Assignment Project Exam Help

Suppose the relation R(A, B, C, D, E) has functional dependencies

$$S = \{A \rightarrow E, B \rightarrow AC, C \rightarrow D, E \rightarrow D\}$$

Which of https://tutorcs.com

P.J. McBrien (Imperial College London)

Assignment Project Exam Help

Suppose the relation R(A, B, C, D, E) has minimal keys AC and BC

Which FI https:///tutorcs.com WeChat: cstutorcs $BC \rightarrow DE$

Closure of a set of attributes with a set of FDs

Closure X^+ of a set of attributes X with FDs S

1 Set $X^+ := X$ Set A := X Sisting timentach Firoject wire x amut Help already in X⁺, to find determined attributes Y

- $X^+ := X^+ \cup Y$
- If Y not empty goto (2)/tutores.com

 Return RTPS://tutores.com

To compute A^+

- Start with $A^+ = A$, just $A \to BC$ matches, so Y = BC
- $\blacksquare A^+ = ABC$, just $C \to F$ matches, so Y = F
- $\blacksquare A^+ = ABCF$, no FDs apply, so we have the result

Closure of a set of attributes with a set of FDs

Closure X^+ of a set of attributes X with FDs S

1 Set $X^+ := X$ Set A := X Sisting timentach Firoject wire x amut Help already in X⁺, to find determined attributes Y

- $X^+ := X^+ \cup Y$
- If Y not empty goto (2)/tutores.com

 Return RTPS://tutores.com

Closure of a set of attributes Relation R(A,B,E,E,E,A) date of CtS L(ALOSE,CS $\to E,C\to F,E\to F$) To compute AD^+

- Start with $AD^+ = AD$, just $A \to BC$ matches, so Y = BC
- $AD^+ = ABCD$, $CD \to E$, $C \to F$ matches, so Y = EF
- $\blacksquare AD^+ = ABCDEF$, no FDs apply, so we have the result

Assignment Project Exam Help

Given a relation R(A, B, C, D, E, F) and FD set $S = \{A \rightarrow BC, C \rightarrow D, BA \rightarrow E, BD \rightarrow F, EF \rightarrow B, BE \rightarrow ABC\}$

Which clohttps://stutercs.com

A B C D D EF+

P.J. McBrien (Imperial College London)

Closure of the FD Set

The closure S^+ of a set of FIS S is the set of all FDs that can be in redder an SI wo sets of FDs S,T are equivalent if S=T

- For speed, we can ignore
 - trivial FDs (e.g. ignore $A \to A$)
 - LIS that are not injurial (etg. ienere $AB \to C$ if $A \to C$)
 flatter all FDS to large just one at filling a FHSO. Topsider $A \to CD$ as $A \to C$ and ArightarrowD)
- Apart from calculating equivalence, do not normally need to compute closure

Equivalent PiseChat: CStutorcs

$$S = \{A \rightarrow B, A \rightarrow C, B \rightarrow A, B \rightarrow D\}$$

$$T = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A\}$$

$$S^+ = T^+ = \{A \to B, A \to C, A \to D, B \to A, B \to C, B \to D\}$$

$$\therefore S \equiv T$$

Minimal cover of a set of FDs

Minimal cover S_c of S

A minimal cover S_c of FD set S has the properties that:

As the FDs in S can be derived from S_c (i.e. S^+ E^+) and or E^+ attribute from an FD in S_c , and S'_c can still derive all the FDs in S

In general, a set of FDs may have more than one minimal cover

Deriving a 11 na. cover / tutoics.com

Suppose $S = \{A \rightarrow B, BC \rightarrow A, A \rightarrow C, B \rightarrow C\}$

- $2_a \; \operatorname{Since} \; A \to B, B \to C \models A \to C \\ A \to C \Rightarrow \emptyset \\ \operatorname{Leaves} \; S_c = \{A \to B, B \to A, B \to C\}$
- $2_b \text{ Since } B \to A, A \to C \models B \to C$ $B \to C \Rightarrow \emptyset$ $\text{Leaves } S_c = \{A \to B, B \to A, A \to C\}$

Quiz 7: Minimal Cover of a Set of FDs

Given an FD set $S = \{A \to BC, C \to D, BA \to E, BD \to F, EF \to B, BE \to ABC\}$

Assignment Project Exam Help

A - BC, https://tutorcs.com

 $A \rightarrow BC, C \rightarrow D, BA \rightarrow E, BD \rightarrow F, EF \rightarrow B, BE \rightarrow A$

WeChat: cstutorcs

 $A \rightarrow BCE, C \rightarrow D, BD \rightarrow F, EF \rightarrow B, BE \rightarrow A$

D

 $A \rightarrow BC, C \rightarrow D, B \rightarrow E, B \rightarrow F, EF \rightarrow B, BE \rightarrow A$

Assignment Project Exam Help

 $S = \{AB \rightarrow DEH, BEF \rightarrow A, FGH \rightarrow C, D \rightarrow EG, EG \rightarrow BF, F \rightarrow BH\}$

- Rewrite State a guivalent set of Re which only harms single attribute on the RHS of each P.S.
- \supseteq Consider each FD $X \to A$, and for each $B \in X$, consider if $X \to B$ from the other FDs. If so, replace $X \to A$ by $(X - B) \to A$ in S.
- Consider each FD $X \to A$, and compute X^+ without using $X \to A$. If $A \subseteq X^+$, delete $X \to A$ since it is randoment. This will give a minimal cover S_c of S.
- Justify what are the minimal candidate keys of R constrained by S_c

Worksheet: Minimal Cover (Step 3)

 $AB^+ = ABDEHGFC$

Try removing $AB \to D$: find $AB^+ = ABEH$, so can't remove.

Try removing $AB \to E$: find $AB^+ = ABDHEGFC$, so remove it from S'' to get S'''

Try removing $AB \to H$: find $AB^+ = ABDEGFHC$, so remove it from S''' to get \$\$19AMENt&FOJECt&EXEM&Hed

- $EF^+ = EFABHDGC$ Try removing $EF \to A$: find $EF^+ = EFBH$, so can't remove.
- Try renaring Sc/fintutores.com
- $D^+ = DEGBFHAC$ Try removing $D \to E$: find $D^+ = DG$, so can't remove. Try removing $D \to G$: find $D^+ = DE$, so can't remove.
- EG+ = Wardanat CSTIITOTCS Try removing $EG \to B$: find $EG^+ = EGFBHADC$, so remove it from S'''' to get S''''' Try removing $EG \to F$: find $EG^+ = EG$, so can't remove.
- $F^+ = FBH$

Try removing $F \to B$: find $F^+ = FH$, so can't remove.

Try removing $F \to H$: find $F^+ = FB$, so can't remove.

Thus S''''' is a minimal cover

$$S_c = \{AB \to D, EF \to A, FG \to C, D \to EG, EG \to F, F \to BH\}$$

Assignment Project Exam Help

https://tutores.com

Imperial College London

WeChat: cstutorcs

Using FDs to Formalise Problems in Schemas

						b.	ank_data						
	no	sortcode	bname		casl	n type	cname	r	ate?	<u>mid</u>	amount	tdate	
	100	67	' Strand		34005.00	current)	McBrien, P.		null	1000	2300.00	1999-0	01-05
	101	• 67	' Strand		34005.00	ordeposit	McBrien, P.		5.25	1001	4000 00	-1999-(01-05
- /	700	1210	T that d	$n\epsilon$			MoBlien, 17.	H	MI	2012		190 9-0	
4	107	DIT	Wimbl	edon	84340.4	current	Poulovassilis	s, A.	full	1004	-106.00	1999-0	1-11
	103	32	Goodg	e St	6900.6	7 current	Boyd, M.		null	1005	145.50	1999-0	ົງ1-12
	100	67	' Strand		34005.00	current)	McBrien, P.		null	1006	10.23	1999-0	01-15
	107	56	Wimbl				Poulovassilis	, A.	null	1007	345.56	1999-0	01-15
	101	1	Strand		34/00/5100	deposit	McBrien, P	01	5.25	1008	1230.00	1999-0	01-15
	119	! 6	i VVi mbl	don	8/43/40 4	d post	Foulovass lis	, (A)	5,25 5 5	1009	5600.00	1999-0	01-18
		_	r	- ~	•, , •,								

Formalise the intuition of redundancy by the statements of FDs

```
mid \rightarrow \{tdate annount, no particular contents of type, name, rate, surface, contents of the surface of the sur
   \{cname, type\} \rightarrow no,
sortcode \rightarrow \{bname, cash\}
   bname \rightarrow sortcode
```

1st Normal Form (1NF)

Every attribute depends on the key

					ba	nk_data				
	no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
	100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
	101	67	Strand	34005.00	diposit	McBrien, P.	5.25	1001	4000 00	1999-01-05
F	107	(7	Stiaid (3 10 0! .00	cur er t	Ma Bij (n., P.	7, 1 XII	10/2	223 45	
^	107	6 0	Wimbledon	84340.45	current	Poulovassilis,	A. null	1004	-100.00	1999-01-11
	103	34	Goodge St			Boyd, M.	null	1005	145.50	1999-01-12
	100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
	107	<u>5</u> 6	Wimbledon	84340.45	current	Poulovassilis,	A. null	1007	345.56	1999-01-15
	101	(7	Strand C	•34005 100	deposit	McBrien, P. Poulovassilis,	15 25	1008	1230.00	1999-01-15
	119	96	Wilm Medon	-8/43/40 4	deposit	Poulovassilis,	A 5 5	1009	5600.00	1999-01-18

```
\begin{array}{ll} \mathsf{no} \to \{\mathsf{type}, \mathsf{cname}, \mathsf{rate}, \mathsf{sortcode}\}, \\ \{\mathsf{cname}, \mathsf{typ}\} & \quad \text{cath} \\ \mathsf{sortcode} \to \{\mathsf{bname}, \mathsf{cash}\} \\ \end{array} \text{ } \textbf{CStutorcS} \\
```

 $\mathsf{bname} \to \mathsf{sortcode}$

Is bank_data in 1st Normal form?

True

False

 $mid \rightarrow \{tdate, amount, no\},\$

Prime and Non-Prime Attributes

Prime Attribute

SSIUGNIMON & purit On Come mixa annate toy & 17

Any other attribute $B \in Attrs(R)$ is **non-prime**

Prime and ren prime attributes of bank clata COM

bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate) Has FDs mid \rightarrow {tdate, amount, no}, no \rightarrow {type, cname, rate, sortcode}. $\{cname, type\} \rightarrow no, sortcode \rightarrow \{bname, cash\}, bname \rightarrow sortcode\}$ Then WeChat: cstutorcs

the only minimal candidate key is mid Then

- - the only prime attribute is mid
- In non-prime attributes are no, sortcode, bname, cash, type, cname, rate, amount, tdate

3rd Normal Form (3NF)

3rd Normal Form (3NF)

Arssignment Project Exam Help

- 2 A is prime

Every non-key attribute depends on the key, the whole key and nothing but the key HUDS.//UUTOICS.COM

Failure of bank data to meet 3NF

bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate)

- Has the Mooner FI sweete the DIC ts not a super-ko: $no \rightarrow \{type, cname, rate, sortcode\}, \{cname, type\} \rightarrow no$ $sortcode \rightarrow \{bname, cash\}, bname \rightarrow sortcode\}$
- Each of the above FD causes the relation not to meet 3NF since the RHS contains non-prime attributes

Quiz 9: Prime and nonprime attributes

```
Given a relation R(A, B, C, D, E, F) and an FD set
```

ssignment Project Exam Help

```
https://tutorcs.com
DEF
```

BC

WeChat: cstutorcs

CDF

CD

Quiz 10: 3rd Normal Form

```
Given a relation R(A, B, C, D, E, F) and an FD set
Assignment Project Exam Help
```

R₁(B, D, F) ttps://tutorcs.com

WeChat: cstutorcs

 $R_1(A, B, C, E, F), R_2(C, D), R_3(B, D, F)$

D

 $R_1(B, E, F), R_2(A, C, E), R_3(C, D)$

Lossless-join decomposition of relations

Lossless-join decomposition of a Relation

A lossless-join decomposition of a relation R with respect to FDs S interplations A,SSA, talk hope list that: 10 | ect Exam Hell

- $\blacksquare Attrs(R_1) \cup \ldots \cup Attrs(R_n) = Attrs(R)$
- For all possible extents of R satisfying S, $\pi_{Attrs(R_1)} R \bowtie \ldots \bowtie \pi_{Attrs(R_n)} R = R$

Lossless-join decomposition of United States Com

bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate)

- Has FDs mid \rightarrow {tdate, amount, no}, no \rightarrow {type, cname, rate, sortcode}, {cname three (no, sqrterie → (bhome, tast) of ane S sortcode
- Decomposing bank_data into $branch = \pi_{sortcode,bname,cash} bank_data$ $account = \pi_{no,type,cname,rate,sortcode}$ bank_data $movement = \pi_{mid.amount.no.tdate}$ bank_data satisfies the lossless-join decomposition property

Problems if not a lossless-join decomposition

a decomposition of R into R_1 , DR_n is not lossless, then some tuples pread over SA_n can be ultilized an lomituple C appearing C

Quiz 11: Lossless join decomposition

Given a relation R(A, B, C, D, E, F) and an FD set Assignment Project Exam Help

R₁(B, D, F) ttps://tutorcs.com

WeChat: cstutorcs

 $R_1(A, B, C, E, F), R_2(C, D), R_3(B, D, F)$

D

 $R_1(B, E, F), R_2(A, C, E), R_3(C, D)$

Assignment Project Exam Help

- R(A, B, C, D, E) has the FDs $S = \{AB \rightarrow C, C \rightarrow DE, E \rightarrow A\}$. Which of the following are lossless join decompositions?
 - RABC RC PEUTORCS.COM
- \square Derive a lossless join decomposition into three relations of R(A, B, C, D, E, F)with FDs $S = \{AB \to CD, C \to E, A \to F\}$.
- Derive a tossless join decomposition into three relations of R(A, B, C, D, E, F) with FISS $\{AB, AB, C, C, E, S, AB\}$ Of CS

Generating 3NF

- 2 Decompose R into $R_a(Attr(R) A)$ and $R_b(XA)$ (Note because the two relations share X and $X \to A$ this is lossless)
- Project the S onto the new relations, and repeat the process from (1) $\frac{1}{1}$

Note that step (2) ensures that the decomposition is lossless since joining R_a with R_b will share X, and $X \to A$

Canonical Exemple of NE Decomposition torcs

Suppose R(A, B, C) has FD set $S = \{A \rightarrow B, B \rightarrow C\}$

- The only key is A, and so $B \to C$ violates 3NF (since B is not a superkey and C is nonprime).
- Decomposing R into $R_1(A, B)$ and $R_2(B, C)$ results in two 3NF relations.

Example: Decomposing bank_data into 3NF

Bank Database as a Single Relation

bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate)

 $= \{ mid \rightarrow \{ tdate, amount, no \}, no \rightarrow \{ type, cname, rate, sortcode \}, \}$

SSIGNIFICATION CONTROL HELD

Since sortcode \rightarrow {bname, cash} and sortcode is not superkey and bname, cash nonprime, we should decompose bank_data into

- 1 branch predebame, cath wto 150 Soc Othne, cash}, bname \rightarrow sorteode
- 2 bank_data'(no, sortcode, type, cname, rate, mid, amount, tdate) with FDs $mid \rightarrow \{tdate, amount, no\}, no \rightarrow \{type, cname, rate, sortcode\},\$

branch is in 3NF, but no \rightarrow {type, cname, rate, sortcode} makes bank_data' violate 3NF, so we should decompose bank_data' into:

- 3 account(no, type, cname, rate, sortcode) with FDs $no \rightarrow \{type, cname, rate, sortcode\}, \{cname, type\} \rightarrow no$
- 4 movement(mid.amount, no, tdate) with FD mid \rightarrow {tdate, amount, no}

The relations branch, account, and movement are all in 3NF

Preserving FDs during decomposition

FD preserving decomposition

A lossless decomposition of R with FDs S into R_a and R_b preserves functional dependencies S if the projection of S^+ onto R_a and R_b is equivalent to S

Project Exam He

Suppose R(ABC) with $S = \{A \to B, B \to C, C \to A\}$ is decomposed into $R_a(AB)$ and $R_b(BC)$.

- s+ = https://tutorcs.com
- The projection of S^+ onto R_a gives $S_a^+ = \{A \to B, B \to A\}$
- The projection of S^+ onto R_b gives $S_b^+ = \{B \to C, C \to B\}$
- Note that the upon S_u of the two subsets of S^+ (i.e. $S_u = S_a^+ \cup S_b^+$) has the property that $S_a^+ = S_a^+$ and hence indeed position preserves functional dependencies.

There is always possible to decompose a relation into 3NF in a manner that preserves functional dependencies. Thus any good 3NF decomposition of a relation must also preserve functional dependencies.

Given a relation R(A, B, C, D, E, F) and an FD set Assignment Project Exam Help

R₁(B, D, F) ttps://tutorcs.com

WeChat: cstutorcs

 $R_1(A, B, C, E, F), R_2(C, D), R_3(B, D, F)$

D

 $R_1(B, E, F), R_2(A, C, E), R_3(C, D)$

Preserving FDs, lossless join, and 3NF

Assignment Project Exam Help

Decomposition	lossless join	3NF	Preserves FDs
R ₁ (B, D, F), R ₂ (A, B, C/D, E) R ₁ (A, B, C, E, E), S(G, D) EUTOT(26 001	X	Х
$R_1(A, B, \mathbf{d}, E, \mathbf{d})$, $\mathcal{L}(\mathcal{Q}, \mathcal{D})$.		1	X
$R_1(A, B, C, E, F), R_2(C, D), R_3(B, D, F)$	✓	✓	✓
$R_1(B, E, F), R_2(A, C, E), R_3(C, D)$	Х	✓	X

Decomposing to 3 F hat: Cstutores

Since it is always possible to decompose a relation into a 3NF form that is both a lossless join decomposition, and preserves FDs, you should always do so.

Quiz 13: Preserving FDs during Decomposition to 3NF

The property of the property and BC

hich is hors ess join decomposition to 3NF that preserves FDs? https://tutorcs.com $R_a(B,C,E),R_b(A,B,C),R_c(D,E)$ Ra(A,B,C,E)

Ra(A,B,C,E)

Ra(A,B,C,E)

Ra(A,B,C,E) $R_a(A, B, C), R_b(A, C, D, E)$ $R_a(A,C,D), R_b(A,C,E), R_c(A,B)$ $R_a(A,C,E), R_b(B,D,E)$

Boyce-Codd Normal Form (BCNF)

 $\frac{\text{BCNF schema}}{\text{nttpS:}} / \frac{\text{tutorcs.com}}{\text{branch(sortcode, brame, cash) with FDs sortcode}} + \frac{1}{\text{bname, cash}}, \text{ bname} \rightarrow \text{sortcode}$ is in BCNF since sortcode and bname are both candidate keys

account (no, type) chance, rate, sortcode) with FDs no -{type, cname, rate, sortcode}, {cname, type} -> w is in BUNE since wo and chance type are both candidate keys

movement(mid.amount, no, tdate) with FD mid → {tdate, amount, no} is in BCNF since mid is key

Decomposition of Relations into BCNF

Generating BCNF

- **I** Given R and a set of FDs S, find an FD $X \to A$ that causes R to violate BCNF
- (i.e. for which X is not a superkey). tr(k) Touecta Extantal the type relations share X and $X \to A$ this is lossless)
 - 3 Project the S onto the new relations, and repeat the process from (1)

Difference better 31F and Rei 191CS. COM

Suppose the relation address(no, street, town, county, postcode) has FDs $\{\text{no, street, town, county}\} \rightarrow \text{postcode, postcode} \rightarrow \{\text{street, town, county}\},$

- The relation is in 3NF (atternative less pa, treat reward on no, postcode).
- The relation is not in BCNF since postcode \rightarrow {street, town, county} has a non-superkey as the determinant
 - Decompose the relation address on postcode \rightarrow {street, town, county} to: postcode(postcode, street, town, county) streetnumber(no, postcode)
 - Note FD {no, street, town, county} → postcode cannot be projected over the relations.

Worksheet: Normal Forms

Assignment Project Exam Help

 $S_c = \{AB \rightarrow D, EF \rightarrow A, FG \rightarrow C, D \rightarrow EG, EG \rightarrow F, F \rightarrow BH\}$

- Decompose the relation into BCNF
- Determine if your decompositions in (1) and (2) preserve FDs, and if they do

not, suggest how to amend you schema to preserve FDs. Wechat: cstutorcs