Learning to Learn via Self-Critique

Antreas Antoniou¹ and Amos Storkey¹ ¹University of Edinburgh

Few-Shot Learning

- Enabling machines to learn from only a handful of samples is a problem of prime importance, not only for speeding up training times, and accelerating research, but also for the ecological and economical reasons that naturally come by reducing energy consumption.
- Current state of the art methods only learn from small labelled training (support) sets, thus not leveraging the information found in the unlabelled validation (target) sets.
- Question: How can we extract information from unlabelled target sets, to enhance few-shot learning systems?
- Problem: No supervised labels means that we can't use discriminative training to learn.
- [®] Solution: Meta-learn an unsupervised loss function that can extract such information, such that the learned model performs better on a task.
- Demonstration: State-of-the-art, currently best-in-class few-shot learning results.

Method

Results

	T				
\mathbf{Model}	Test Accuracy				
	Mini-Imagenet		\mathbf{CUB}		
	1-shot	5-shot	1-shot	5-shot	
MAML++ (Low-End)	$52.15 \pm 0.26\%$	$68.32 \pm 0.44\%$	$62.19 \pm 0.53\%$	$76.08 \pm 0.51\%$	
MAML++ (Low-End) with (preds)	$52.52 \pm 1.13\%$	$70.84 \pm 0.34\%$	$66.13 \pm 0.97\%$	$77.62 \pm 0.77\%$	
MAML++ (Low-End) with (preds, params)	$52.68 \pm 0.93\%$	$69.83 \pm 1.18\%$	_	_	
MAML++ (Low-End) with (preds, task-embedding)	$oxed{54.84 \pm 1.24\%}$	$70.95 \pm 0.17\%$	$65.56 \pm 0.48\%$	$77.69 \pm 0.47\%$	
MAML++ (Low-End) with (preds, task-embedding, params)	$54.24 \pm 0.99\%$	${\bf 71.85 \pm 0.53\%}$	_	_	
MAML++ (High-End)	$58.37 \pm 0.27\%$	$75.50 \pm 0.19\%$	$67.48 \pm 1.44\%$	$83.80 \pm 0.35\%$	
MAML++ (High-End) with (preds)	$62.86 \pm 0.70\%$	$77.07 \pm 0.19\%$	$70.33 \pm 0.78\%$	$85.47 \pm 0.40\%$	
MAML++ (High-End) with (preds, task-embedding)	$62.29 \pm 0.38\%$	${\bf 77.64 \pm 0.40\%}$	${\bf 70.46 \pm 1.18\%}$	${\bf 85.63 \pm 0.66\%}$	

\mathbf{Model}	Test Accuracy					
	Mini-ImageNet		\mathbf{CUB}			
	1-shot	5-shot	1-shot	5-shot		
Matching networks	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$	$61.16 \pm 0.89\%$	$72.86 \pm 0.70\%$		
Meta-learner LSTM	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$	_	-		
MAML	$48.70 \pm 1.84\%$	$63.11 \pm 0.92\%$	$55.92 \pm 0.95\%$	$72.09 \pm 0.76\%$		
SNAIL	$55.71 \pm 0.99\%$	$68.88 \pm 0.92\%$	_	-		
Qiao et al 2018	$59.60 \pm 0.41\%$	$73.74 \pm 0.19\%$	_	_		
Latent Embedding Optimization	$61.76 \pm 0.08\%$	$77.59 \pm 0.12\%$	_	_		
Baseline	_	_	$47.12 \pm 0.74\%$	$64.16 \pm 0.71\%$		
Baseline ++	_	_	$60.53 \pm 0.83\%$	$79.34 \pm 0.61\%$		
MAML (Local Replication)	$48.25 \pm 0.62\%$	$64.39 \pm 0.31\%$	_	_		
MAML++ (Low-End - Original)	$52.15 \pm 0.26\%$	$68.32 \pm 0.44\%$	$62.19 \pm 0.53\%$	$76.08 \pm 0.51\%$		
MAML++ (Low-End - Original) +	$54.84 \pm 0.99\%$	$71.85 \pm 0.53\%$	$66.13 \pm 0.97\%$	$77.62 \pm 0.77\%$		
MAML++ (High-End)	$58.37 \pm 0.27\%$	$75.50 \pm 0.19\%$	$67.48 \pm 1.44\%$	$83.80 \pm 0.35\%$		
MAML++ (High-End) +	$oxed{62.86 \pm 0.79\%}$	$77.64 \pm 0.40\%$	${\bf 70.46 \pm 1.18\%}$	${\bf 85.63 \pm 0.66\%}$		

Conclusion

We have demonstrated that learning a neural network-based loss function to extract information from an unsupervised dataset, can be very useful in improving performance on a given few-shot learning task. This fact, showcases that fully learnable losses can, in fact, help improve both the effectiveness and efficiency of existing machine learning models.

[1] Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier.

Learning a synaptic learning rule.

Université de Montréal, Département d'informatique et de recherche opérationnelle,

Geoffrey E Hinton and David C Plaut.

Using fast weights to deblur old memories. 1987

[3] Jürgen Schmidhuber.

Learning to control fast-weight memories: An alternative to dynamic recurrent networks.

Neural Computation, 4(1):131–139, 1992.

Chelsea Finn, Pieter Abbeel, and Sergey Levine.

Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 1126-1135. JMLR. org, 2017.

[5] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al.

Matching networks for one shot learning.

In Advances in Neural Information Processing Systems, pages 3630–3638, 2016.

[6] Sachin Ravi and Hugo Larochelle.

Optimization as a model for few-shot learning.

Proceedings of the 4th International Conference on Learning Representations, 2016.

[7] Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L Yuille.

Few-shot image recognition by predicting parameters from activations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7229-7238, 2018.

[8] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, and Yi Yang. Transductive propagation network for few-shot learning.

arXiv preprint arXiv:1805.10002, 2018.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero, and Raia Hadsell.

Meta-learning with latent embedding optimization.

arXiv preprint arXiv:1807.05960, 2018.