Project: Regression Model

Genome-wide association studies (GWAS)

Baldini Alessio Mele Antonella

Date:

16 December 2024

Index

The aim: understand the possible correlation between the grain number and genetic and/or environmental factors.

- Our starting point
- <u>Scenario frequencies across experiments</u>
- Variable selection (SIS)
- Analysis' Models
- Linear model on the entire ds

- <u>Linear regression subset</u>
- General results
- Elastic Net
- Conclusions

Our starting point

• The histogram shows the distribution of grain numbers, with the highest frequencies concentrated between 2000 and 4000. The data appears roughly symmetric, with fewer occurrences above 5000, suggesting potential outliers.

Grain Number distribution

- The sample is made of 2460 observations, for which we know phenotypes and environmental situations in which the experiment took place (in pheno) and the SPN with the genotypes with respect to the reference allele (in df1).
- Then, for each SPN we have some characteristics with respect to their position and genetic variability (in geno_map) and for each genotype the allelic status (homozigote or heterozigote) for each SNP (geno).

Scenario frequencies across experiments

Managing dimensions

Clustering in HotWD

Variable Selection (SIS)

Data preparation: For each scenario we extract the relevant columns

Standardization: The target variable (grain.number) is standardized

Correlation: We calculate the correlation with the std target variable and SNPs

Selecting Threshold: 3 * number of rows / log(number of rows)

Top SNP selection: SNPs are sorted by their abs correlation values and then selected

Environment and SNPs Integration: environmental variables are combined with the SNPs and the target variable to create a final dataset

Function Application: The select_snps function is applied to each dataset

Analysis' Models

To execute the analysis, the **linear regression** model has been performed

Definition of parsimonious model:

- Backward regression
- Stepward regression
- Forward regression

Definition of penalied model:

- Lasso penalization
- Elasticnet penalization

Summaries made using formulas robust to heteroskedasticity

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,p} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,p} \end{bmatrix}_{n \times p} \times \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{bmatrix}_{p \times 1} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}_{n \times 1}$$

Linear model and variables

Theoretical Model: $Y = X\beta + \epsilon$

Fitted Values: $\hat{y} = X\hat{\beta}$

Residuals: $\hat{\epsilon} = y - \hat{y}$

Linear Model on the entire dataset

Numerical results:

- No significant regressors, highly only Temperature (-), Water (+)
- Adjusted R-squared: 0.6972

Graphical Results

Results and Interpretation:

Possible presence of clusters

Almost centered residuals with constant variance

Possible linearity in residuals

Linear Regression CoolWW

Standard Linear Model

Dataset: Cool_WW

Adjusted R: 0.4411

Lasso Penalized Model

Dataset: Cool_WW

Removed variables: 161

Selected variables: 50

Backward Regression

Dataset: Reduced Cool_WW

Adjusted R: 0.4815

Significant variables: 22

AIC: 6031.5

Common Significant Variables (linear model vs backward on reduced set):

6 Common Significant SNPs

CoolWW Graphical Comparison

Interpretation:

Almost centered residuals with constant variance

Increasing linearity in residuals reducing variables

Graphical Results: Standard Linear Model

Linear Regression HotWW

Standard Linear Model

Dataset: hot_WW

Adjusted R: 0.3601

Lasso Penalized Model

Dataset: hot_WW

Removed variables: 325

Selected variables: 63

Backward Regression

Dataset: Reduced hot_WW

Adjusted R: 0.397

Significant variables: 18

AIC: 12609

Common Significant Variables (linear model vs backward on reduced set):

No common significant variables

Standard Linear Model had few significant variables

HotWW Graphical Comparison

Interpretation:

Barely decentered residuals with constant variability

Reducing variables slightly reduces linearity of the model

Graphical Results: Standard Linear Model

Linear Regression HotWD_1

Standard Linear Model

Dataset: hot_WD_1

Adjusted R: 0.002768

Lasso Penalized Model

Dataset: hot_WD_1

Removed variables: 149

Selected variables: 56

Backward Regression

Dataset: Reduced hot_WD_1

Adjusted R: 0.211

Significant variables: 7

AIC: 5535.9

Common Significant Variables (linear model vs backward on reduced set):

No common significant variables

Standard Linear Model had few significant variables

HotWD_1 Graphical Comparison

Interpretation:

Linear Model mispecified for this dataset

Reducing variables increases a lot linearity in residuals

Graphical Results: Standard Linear Model

Linear Regression HotWD_2

Standard Linear Model

Dataset: hot_WD_2

Adjusted R: 0.1792

Lasso Penalized Model

Dataset: hot_WD_2

Removed variables: 177

Selected variables: 48

Backward Regression

Dataset: Reduced hot_WD_2

Adjusted R: 0.3065

Significant variables: 13

AIC: 5876.3

Common Significant Variables (linear model vs backward on reduced set):

No common significant variables

Standard Linear Model had p-value of F-test very high

HotWD_2 Graphical Comparison

Interpretation:

Linear Model fits better than fot hotWD_1

Not excessive linearity in residuals

General Results

No Common Variables between hotWD_1 and hotWD_2

Linearity in Residuals increases as reducing number of variables. Linearity in Residuals probably due to omitted variables.

No Common Variables between coolWW and HotWW

ElasticNet

Penalization method that combines

Lasso and Ridge regression methods

- Handles correlations better than Lasso alone
- Performs variable selection
- Reduces overfitting

Results

- There aren't significant
 differences in selecting the
 restricted dataset applying lasso
 or elastic net with parameter
 alpha=0.5.
- Some differences emerge in datasets Hot_WD_1 and Hot_WD_2, but they don't resolve or worsen previous results

Conclusions

We can summarize our results in some points:

positive relation between water availability and grain.number

linear behaviour is more evident in better environmental conditions

variability of results increases as temperature increases and water availability decreases

For high temperatures and low water, linear model fits better for less productive plants: in extreme conditions SNPs can play a fudamental role in defining plant productivity, but the impact of environment is stronger

Thank you