Master Thesis Report

Process Enhancement by Incorporating Negative Instances in Model Repair

Final Report

Kefang Ding

Outlines

- Problem Review
- Demo Presentation
- Algorithm & Implementation
 - Add long-term dependency
 - Create dfg model
- Evaluation
- Appendix
 - Aided Plugin
 - Assign labels
 - Edit Process Tree
 - Reference

Problem Introduction

Description

- Given event log, process model and KPIs, how to incorporate negative KPIs outcomes to repair the process model for better performance?

Input

- Event log
- Existing process model
- KPIs

Output

- Repaired process model

Demo Representation

Repair Model

- Sequence
- And
- Nested xor

Evaluate Model

Confusion matrix

Long-term dependency

- On Petri net
- Choices Dependency
 - exclusive blocks => xor block, not loop
- Partial Order
 - Least Common Ancestor is Seq
 - ✓ In same level
- Relation xor branches
 - Significant correlation
- Connected not complete

Correlation

Supported Connection

$$SC(XORB_X, XORB_Y) = F_{pos}(XORB_X, XORB_Y) - F_{neg}(XORB_X, XORB_Y),$$

 $with F_{pos}(XORB_X, XORB_Y), F_{neg}(XORB_X, XORB_Y)$ are the frequency
of coexistence of $XORB_X, XORB_Y$

Significant Correlation if

$$SC(XORB_X, XORB_Y) >$$
lt-threshold

- Disadvantages:
 - Generate unsound model
 - Some xor branches kept from the existing model but with no frequency in event log, no long-term dependency shows to make model unsound

Rephrased Correlation

- Existing model, positive and negative event log
- Normalized Correlation

$$Wlt(XORB_{X}, XORB_{Y}) = Wltext(XORB_{X}, XORB_{Y}) + Wltpos(XORB_{X}, XORB_{Y})$$

$$- Wltneg(XORB_{X}, XORB_{Y}), with$$

$$W_{l}text(XORB_{X}, XORB_{Y}) = \frac{1}{|XORB_{Y*}|}, XORB_{Y*}$$
is the set of all xor branches from $XORB_{X}$

$$Wltpos(XORB_{X}, XORB_{Y}) = \frac{F_{pos}(XORB_{X}, XORB_{Y})}{F_{pos}(XORB_{X}, *)}$$

$$Wltneg(XORB_{X}, XORB_{Y}) = \frac{F_{neg}(XORB_{X}, XORB_{Y})}{F_{neg}(XORB_{X}, *)}$$

Algorithm – generate dfg model

Directly-follows relation

Existing model, positive and negative event log

$$W(A,B) := W(E_{G_{ext}}(A,B)) + W(E_{G_{pos}}(A,B)) - W(E_{G_{neg}}(A,B)), with$$

$$W(E_{G_{ext}}(A,B)) = \frac{1}{|Y*|}, \text{ the set of all possible activities after A}$$

$$W(E_{G_{pos}}(A,B)) = \frac{Cardinality_{pos}(E(A,B))}{Cardinality_{pos}(E(A,*))},$$

$$W(E_{G_{neg}}(A,B)) = \frac{Cardinality_{neg}(E(A,B))}{Cardinality_{neg}(E(A,*))},$$

- Keep this directly-follows relation if

Key Problem to Solve

 Given a process tree, a pair of xor block A,B, the obligatory part between A,B are M, what's the relation of threshold and lt-threshold, such that?

 $\forall XORB_Y \in B, ifW(M, XORB_Y j) > threshold$, then there exists one $XORB_X i \in B_A$ with $Wlt(XORB_X i, XORB_Y j) > lt$ -threshold

Situations

- Lt-dependency only kept from existing
 model, not showing in positive and negative
 ==> add It dependency on it
- Only It in negative==> choose the rest parts to connect
- Only in positive
 - ==> keep It
- In positive and negative
 - ==> how to decide ??

Appendix - References

Assign Labels

Edit Process Tree

Appendix – references

