Oppgavesett 2

Oppgave 1

Koordinatsystemet A er et kartesisk koordinatsystem med basisvektorer $\underline{x}^A, y^A, \underline{z}^A$.

- a) Vektoren \underline{p}^A roteres først en vinkel θ om aksen \underline{z}^A og deretter en vinkel ϕ om aksen \underline{x}^A . Finn rotasjonsmatrisen som utfører disse to rotasjonene på p^A i den gitte rekkefølgen.
- b) Vektoren \underline{p}^A roteres først 30° om aksen \underline{y}^A og deretter 45° om aksen \underline{x}^A . Finn rotasjonsmatrisen som utfører disse to rotasjonene på p^A i den gitte rekkefølgen.

Oppgave 2

 R_B^A er en 3×3 matrise med egenverdiene $1, e^{-\alpha i}, e^{\alpha i}$, der $i = \sqrt{-1}$. Hva er den fysiske tolkningen av egenvektoren til R_B^A som er assosiert med egenverdien 1?

Oppgave 3

a) I tillegg til katesiske koordinater, kan punkter beskrives i sylindriske koordinater. De tre koordinatene er definert som 2.3. Koordinaten θ gir retningen i xy planet som punktet skal translateres med lengden r. Høyden over xy planet angis av koordinaten z. Finn de kartesiske koordinatene til \underline{p}^A uttrykt med de sylindriske koordinatene, og finn de sylindriske koordinatene for vektoren uttrykt med de kartesiske koordinatene.

b) Punktet kan også beskrives i sfæriske koordinater. De tre koordinatene er definert som i 2.3. Koordinatene α og β gir vinkelen til henholdsvis \underline{x}^A og \underline{y}^A aksen. Koordinaten r angir avstanden fra origo og retningen beskrevet av α og β til punktet \underline{p}^A . Finn de kartesiske koordinatene til \underline{p}^A uttrykt med de sfæriske koordinatene, og finn de sfæriske koordinatene for vektoren uttrykt med de kartesiske koordinatene.

