

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

THIS PAGE BLANK (USPTO)

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 418 493 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 90113873.5

(51) Int. Cl. 5: D04H 1/44

(22) Date of filing: 19.07.90

The title of the invention has been amended
(Guidelines for Examination in the EPO, A-III,
7.3).

(30) Priority: 28.07.89 US 386457

(43) Date of publication of application:
27.03.91 Bulletin 91/13

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(71) Applicant: FIBERWEB NORTH AMERICA, INC.
545 North Pleasantburg Drive
Greenville, South Carolina 29607(US)

(72) Inventor: Gilmore, Thomas

209 Middle Brook Road
Greer, South Carolina 29650(US)

Inventor: Newkirk, David

106 Spartan Court
Greer, South Carolina 29650(US)

Inventor: Austin, Jared

605 Sugar Mill Road
Greer, South Carolina 29650(US)
Inventor: Zimmerman, Guy Stanley Jr.
104 Aberdare Lane
Greenville, South Carolina 29615(US)

(74) Representative: Patentanwälte Grünecker,
Kinkeldey, Stockmair & Partner
Maximilianstrasse 58
W-8000 München 22(DE)

(54) A nonwoven composite fabric combined by hydroentangling and a method of manufacturing the same.

(57) A nonwoven fabric comprising at least one layer of textile fibers or net of polymeric filaments and at least one web of melt blown microfibers, bonded together by hydroentangling. The nonwoven fabric may be apertured by hydroentangling or may have areas of higher density and areas of lower density. The fabric has a favorable combination of softness, dryness, tensile strength and hand. Several processes are provided for producing the nonwoven fabric of the invention.

FIG. 1

EP 0 418 493 A1

APERTURED NONWOVEN FABRIC PREPARED FROM MELT BLOWN MICROFIBERS

Background of the Invention

The present invention relates to a nonwoven fabric for use as a fluid transmitting topsheet for disposable diapers and sanitary napkins.

5 Disposable diapers, sanitary napkins and the like are generally composed of an impermeable outer covering, an absorbent core and an inner layer that is commonly referred to as a topsheet, coverstock, or in diaper applications, a diaper liner. Desirable characteristics of topsheets for such absorptive articles include rapid permeability or strike-through; a dry feeling adjacent the wearer's skin, i.e., low re-transmission of liquid from the absorbent core to the body or wearer side of the topsheet (low rewet); a soft comfortable
10 feeling to the wearer; adequate strength; the appearance of being absorptive and a clean non-stained appearance. The subjective feel, i.e., softness and dryness, of diaper liners has become more important with the increased use of diapers by incontinent adults.

Various approaches have been attempted by the prior art to obtain a fabric having the desired characteristics for use as a diaper or sanitary napkin topsheet.

15 One approach was to utilize a nonwoven fabric composed of hydrophilic fibers. Although such a fabric achieved a high initial permeability, this approach suffered from the disadvantage that body fluid tended to rewet the hydrophilic fabric and thus the surface in contact with the wearer's skin stayed uncomfortably wet.

Another effort attempted to utilize an upper layer of hydrophobic fibers and a lower layer of hydrophilic fibers. The disadvantage of such a fabric was the difficulty in forming the layer adjacent the skin thin
20 enough to maintain adequate permeability yet thick enough to prevent a wet feeling to the wearer.

Another approach consisted of a nonwoven fabric comprising hydrophobic fibers containing a hydrophilic agent thereon. This fabric suffered from the disadvantage that the hydrophilic agent tends to be washed away as body fluid permeates the nonwoven fabric initially and thus it becomes difficult for body fluid to repeatedly permeate the fabric.

25 Another attempt has been to utilize a soft thermoplastic film having a plurality of apertures, bonded to a fibrous layer. This approach suffered from the disadvantage of low breathability and permeability for moisture generated on the wearer's skin and therefore tended to create a musty condition adjacent the wearer's skin. In addition, such a fabric suffers from a lack of softness and is not comfortable next to the wearer's skin.

30 Another approach has been to utilize two layers of nonwoven fabric, the first layer being in contact with the wearer's skin and comprising predominantly hydrophobic fibers with a pattern of apertures therein and a second layer bonded to the first layer composed of predominantly hydrophilic fibers with no apertures. Such a nonwoven fabric suffers from a lack of softness and thus is not comfortable to the wearer.

35 It is an object of the present invention to provide a nonwoven fabric for use as a diaper or sanitary napkin topsheet which overcomes the problems of the prior art.

It is another object of the present invention to provide a nonwoven fabric for use as a diaper or sanitary napkin topsheet which has a high permeability.

It is another object of the present invention to provide a nonwoven fabric for use as a diaper or sanitary napkin topsheet which has low rewet properties.

40 It is another object of the present invention to provide a nonwoven fabric for use as a diaper or sanitary napkin topsheet which has a high softness and thus provides a comfortable feeling to the wearer.

It is another object of the present invention to provide a nonwoven fabric for use as a diaper or sanitary napkin topsheet which has adequate tensile strength and a cloth-like hand.

45 It is another object of the present invention to provide a nonwoven fabric for use as a diaper or sanitary napkin topsheet which has the appearance of being apertured.

It is a further object of the present invention to provide a nonwoven fabric for use as a diaper or sanitary napkin topsheet which is opaque in portions of its surface and thus provides a clean and nonstained appearance when utilized as a topsheet for diapers or sanitary napkins.

50 Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention will be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.

Summary of the Invention

As embodied and broadly described herein, the nonwoven composite fabric of the present invention comprises at least one layer selected from a web of textile fibers and a net of polymeric filaments and at least one web of melt blown microfibers, combined by hydroentangling. This nonwoven fabric has a favorable combination of softness, dryness, tensile strength and hand. In addition to being consolidated by 5 hydroentangling, the nonwoven fabric of the present invention may also be apertured by the same hydroentangling process, or alternatively, may have regions of higher area density and regions of lower area density. The apertures in the nonwoven fabric of the invention may be a plurality of different sizes.

In another aspect of the invention, the nonwoven fabric may be produced by a process comprising: supporting a first layer selected from a web of textile fibers and a net of polymeric filaments and a second 10 layer of a web of melt blown microfibers on an aperturing member; and impinging streams of high pressure liquid onto the fiber layers for a time sufficient to entangle the fibers with one another such that the fibers interlock to form a fabric.

In another aspect of the invention, as embodied and broadly described herein, a process for producing 15 a nonwoven fabric having apertures of two different sizes is provided comprising: supporting a first layer selected from a web of textile fibers and a net of polymeric filaments and a second layer of a web of melt blown microfibers on a first aperturing member having aperturing means of a first size; impinging streams of high pressure liquid onto the fiber layers for a time sufficient to entangle the fibers with one another such that the fibers interlock to form a fabric having apertures of a first size; 20 transferring the fabric to a second aperturing member having aperturing means of a second size; and impinging streams of high pressure liquid onto the fabric for a time sufficient to form apertures of a second size in the fabric.

In another aspect of the invention, as embodied and broadly described herein, a process for producing 25 a nonwoven fabric made of a web of textile fibers and a web of melt blown microfibers is provided. This process comprises: extruding a web of drawn continuous filament textile fibers or supplying a bonded web of drawn continuous filament textile fibers onto a continuous belt; extruding a web of melt blown microfibers or supplying a bonded web of melt blown microfibers onto the web of drawn continuous filament textile fibers on the continuous belt; 30 transferring the webs onto an aperturing member; and impinging streams of high pressure liquid onto the fiber layers for a time sufficient to entangle the fibers with one another such that the fibers interlock to form a fabric.

In another aspect of the invention, as embodied and broadly described herein, a process for producing 35 a nonwoven fabric made of a carded web of staple textile fibers and a web of melt blown microfibers is provided. The process includes, prior to the above-mentioned transferring and hydroentangling steps, the steps of: carding a web of staple textile fibers or supplying a bonded carded web of staple textile fibers onto a continuous belt; and extruding a web of melt blown microfibers or supplying a bonded web of melt blown microfibers onto the 40 web of carded staple textile fibers on the continuous belt.

In another aspect of the invention, as embodied and broadly described herein, a process for producing a nonwoven fabric made of a web of melt blown microfibers and a web of carded staple textile fibers can also be utilized with the melt blown web laid first on the continuous belt and the carded staple textile fiber web laid thereon. The process includes, prior to the transferring and hydroentangling steps, the steps of: 45 extruding a web of melt blown microfibers or supplying a bonded web of melt blown microfibers onto a continuous belt; and carding a web of staple textile fibers or supplying a bonded carded web of staple textile fibers onto the web of melt blown microfibers on the continuous belt.

In another aspect of the invention, as embodied and broadly described herein; a process for producing 50 a nonwoven fabric made of a net of polymeric filaments and a web of melt blown microfibers is provided. The process includes, prior to the transferring and hydroentangling steps, the steps of: supplying a net of polymeric filaments onto a continuous belt; and extruding a web of melt blown microfibers or supplying a bonded web of melt blown microfibers onto the net on the continuous belt.

In another aspect of the invention, as embodied and broadly described herein, a diaper is provided 55 comprising a topsheet layer of a nonwoven fabric comprising: at least one layer selected from a web of textile fibers and a net of polymeric filaments and at least one web of melt blown microfibers, the topsheet layer being in contact with the wearer's skin;

a layer of an absorbent material; and
an impermeable outer covering.

The topsheet layer may be produced by bonding the layer of textile fibers to the layer of melt blown microfibers by hydroentangling. The topsheet layer may be either apertured by hydroentangling or may have regions of higher area density and regions of lower area density.

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate preferred embodiments of the invention and together with the detailed description of the preferred embodiments herein, serve to explain the principles of the invention.

10

Brief Description of the Drawings

- Fig. 1 is a schematic diagram illustrating a process of the present invention for producing a nonwoven fabric by directly extruding melt blown microfibers onto directly extruded drawn continuous filament textile fibers, followed by hydroentangling.
- Fig. 2 is a schematic diagram illustrating a process of the invention for producing a nonwoven fabric by directly extruding melt blown microfibers onto a bonded web of drawn continuous filament fibers that have been bonded together, followed by hydroentangling.
- Fig. 3 is a schematic diagram illustrating a process of the invention for producing a nonwoven fabric by hydroentangling a premade web of melt blown microfibers laid onto a bonded web of drawn continuous filament fibers, a bonded web of carded staple textile fibers, or a polymeric net.
- Fig. 4 is a schematic diagram illustrating a process of the invention for producing a nonwoven fabric by carding a web of staple fibers on a directly extruded web of melt blown microfibers, followed by hydroentangling.
- Figs. 5A, 5B and 5C show three views of the melt blown microfiber side of the product produced by Example 15 with a 7X, 10X and 15X magnification, respectively.
- Fig. 6A provides a view of a region of higher area density of the microfiber side of the product produced by Example 15 at 100X magnification via scanning electron microscopy (SEM).
- Fig. 6B provides a view of a region of lower area density of the microfiber side of the product produced by Example 15 at 100X magnification via scanning electron microscopy (SEM).
- Fig. 7A provides a view of a region of higher area density of the spunbond web side of the product produced by Example 15 at 100X magnification via SEM.
- Fig. 7B provides a view of a region of lower area density of the spunbond web side of the product produced by Example 15 at 100X magnification via SEM.
- Fig. 7C provides a view of a region of lower area density of the spunbond web side of the product produced by Example 15 at 75X magnification via SEM.
- Fig. 8A provides a cross-sectional view of the product produced by Example 15 at 200X magnification via SEM.
- Fig. 8B provides a cross-sectional view of the product produced by Example 15 at 100X magnification via SEM.

Detailed Description of the Preferred Embodiments

Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings and the working examples.

In accordance with the present invention, there is provided a nonwoven fabric comprising at least one layer selected from a web of textile fibers and a net of polymeric filaments and at least one web of melt blown microfibers, combined by hydroentangling. The nonwoven fabric has a favorable combination of softness, dryness, tensile strength and hand.

Textile fibers are those fibers having sufficient strength to be converted into yarn or processed into fabric by various textile methods, including weaving, knitting, braiding, felting, carding or twisting. Textile fibers may be natural or man-made in origin. Man-made textile fibers are made or modified by chemical processes that include spinning to convert polymer to fiber form and drawing to yield tensile properties needed to allow conversion of the textile fiber into yarn or fabric. Man-made textile fiber may be used as drawn, continuous filament textile fibers or such fibers can be cut into 2-10 cm lengths of staple textile fiber. In order to have sufficient strength for processing, most textile fibers have a diameter greater than about 10 microns or about 0.6 denier (weight in grams per 9,000 meters).

The textile fibers utilized to make the nonwoven web of the present invention are preferably drawn continuous filament textile fibers or staple fibers suitable for carding. The textile fibers of the invention may also comprise bicomponent fibers such as fibers having a sheath of one polymer surrounding a core of a second polymer wherein the sheath polymer has a lower melting point than the core polymer. The drawn 5 continuous filament textile fibers of the present invention preferably have an average fiber diameter ranging between 10 and 55 microns. More preferably, the drawn continuous filament textile fibers have an average diameter ranging between 15 and 25 microns.

Several different methods for preparing drawn continuous filament textile fiber webs are known. Such 10 methods generally comprise continuously extruding a thermoplastic polymer (either from a melt or a solution) through a spinneret in order to form discrete filaments, mechanically or pneumatically drawing the filaments without breaking to molecularly orient the polymer filaments and to achieve tenacity, and depositing the continuous filaments in a substantially random manner on a carrier belt to form a web of substantially continuous and randomly arranged, molecularly oriented filaments. Specific methods for making webs of drawn continuous filament textile fibers are described in U.S. Patent No. 3,338,992 and 15 3,341,394 to Kinney, U.S. Patent No. 3,276,944 to Levy, U.S. Patent No. 3,502,538 to Peterson, U.S. Patent Nos. 3,502,763 and 3,509,009 to Hartmann, U.S. Patent No. 3,542,615 to Dobo et al., Canadian Patent No. 803,714 to Harmon, U.S. Patent No. 4,812,112 to Balk, U.S. Patent No. 4,041,203 to Brock et al., U.S. Patent No. 4,405,297 to Appel et al., and U.S. Patent No. 4,753,834 to Braun et al. A preferred method for preparing webs of drawn continuous filament textile fibers is described in U.S. Patent No. 3,692,618 to 20 Dorschner et al.

The drawn continuous filament textile fibers of the invention can be selected from nylon fibers, polypropylene fibers, polyethylene fibers and polyester fibers.

Staple textile fibers suitable for carding are well known in the nonwoven fabric art. As described in Man-made Fiber and Textile Dictionary, published by Celanese, Inc., the carding process can be defined as a 25 process wherein staple yarn is opened, cleaned, aligned and formed into a continuous unbonded web. This process utilizes a carding machine consisting of a series of rolls which are covered with card clothing which consists of wire teeth set in a foundation fabric or narrow serrated metal flutes which are spirally arranged around the roll. As the staple fibers move across these rolls, the wire teeth separate and align the fibers to yield a web of carded staple textile fibers.

30 The cardable staple textile fibers within the scope of the invention may be selected from polyester fibers, polypropylene fibers, polyethylene fibers, acrylic fibers, nylon fibers, or blends of these staple fibers. Cellulosic cardable staple textile fibers such as cotton or rayon or blends of such cellulosic fiber can also be used in the invention. However, cellulosic fibers may reduce the dryness of the nonwoven web of the invention.

35 The microfibers of the invention, made by the melt blowing process, preferably have an average fiber diameter of up to about 10 microns with very few, if any, of the fibers exceeding 10 microns in diameter. Usually the average diameter of the fibers will range from 2 to 6 microns. While it is possible to prepare fibers of average diameter larger than 10 microns by adjusting the conditions of the melt blowing process, these larger melt blown fibers are not preferred for use in the present invention. The smaller diameter fibers 40 provide the coverage capacity necessary to highlight the differences between the regions of higher area density, which contain microfibers, and the regions of lower area density, which contain no microfibers. The microfibers are predominately discontinuous, however, they generally have a length exceeding that normally associated with staple fibers. Due to a reduced molecular orientation, these melt blown filaments will have a tenacity that is considerably lower than the drawn continuous textile fiber filaments.

45 Melt blown microfibers can be prepared by techniques well known in the art. As described in U.S. Patent No. 4,041,203 to Brock et al., the method of forming melt blown fibers involves extruding a molten polymeric material into fine streams and attenuating the streams by opposing flows of high velocity, heated gas (usually air) to break the stream into discontinuous fibers of small diameter. Techniques for making blown fibers are also disclosed in an article entitled "Super Fine Thermo-Plastic Fibers" appearing in Industrial and Engineering Chemistry, Vol. 48, No. 8, pp. 1342-1346, and in U.S. Patent Nos. 3,715,251, 50 3,704,198, 3,676,242, 3,595,245 and British Patent No. 1,217,892.

The melt blown microfibers of the present invention may be selected from polypropylene, polyethylene, poly(butylene terephthalate), poly(ethylene terephthalate), nylon 6, nylon 66, and copolymers of olefins such as polyethylene and polypropylene.

55 The polymeric nets of the present invention can be prepared as described in U.S. Patent No. 4,636,419 to Madsen et al., which discloses several different methods for producing nets from thermoplastic polymers. Nets can be formed directly at the extrusion die or can be derived from extruded films by fibrillation or by embossment followed by stretching and splitting. A net with especially fine filaments can be prepared by

the side-by-side extrusion of polymer streams, followed by the transversal embossment and splitting. The fine filaments of this net interlock with other types of fibers during the hydroentanglement process.

The polymeric nets of the present invention may be prepared from polyethylene, polypropylene, copolymers of polyethylene and polypropylene, poly(butylene terephthalate), poly(ethylene terephthalate), 5 Nylon 6 and Nylon 66.

In accordance with the present invention, the nonwoven fabric of the invention comprising at least one layer of a web of textile fibers or net of polymeric filaments and a layer of a web of melt blown microfibers is combined together by hydroentangling. Hydroentangling generally refers to subjecting the fibers to a high velocity water jet to cause fiber entanglement between the textile fibers and melt blown microfibers causing 10 these fibers to be bonded together into the nonwoven fabric. Although the term hydroentangling generally refers to the use of high pressure water to cause fiber entanglement, fluids other than water could also be utilized.

In accordance with the present invention, the small diameter high velocity jet streams of water which provide fiber entanglement also may function to create apertures in the nonwoven fabric. Depending on 15 whether the textile fiber layer utilized has been prebonded prior to hydroentangling, a fabric having regions of higher area density and regions of lower area density may be obtained rather than a fabric having clean apertures. It is also within the scope of the present invention to provide a nonwoven web having apertures of two different sizes. It is further within the scope of the invention to provide a web comprising a layer of melt blown microfibers interposed between two layers of textile fibers.

20 In accordance with the invention, a process is provided for producing a nonwoven web comprising: supporting a first layer selected from a web of textile fibers and a net of polymeric filaments and a second layer of a web of melt blown microfibers on an aperturing member; and impinging streams of high pressure liquid onto the fiber layers for a time sufficient to entangle the fibers with one another such that the fibers interlock to form a fabric. Generally, treatment with high pressure 25 liquid streams is required on only one side of the fiber layers to achieve the fiber interlocking and pattern formation of the invention.

The process of the invention may also include the further step of calendering the fabric formed after hydroentanglement. The fabric formed by this process may be apertured or may have regions of higher area density and regions of lower area density. The process of the invention may also further comprise 30 supporting a third layer comprising textile fibers over the second layer on the aperturing member prior to hydroentangling.

The aperturing member utilized to support the textile fiber layers during hydroentangling in accordance with the invention may be a wire or screen, a perforated plate, a three dimensional perforated plate, a perforated drum or a drum with a peripheral three-dimensional perforated surface. A perforated drum that 35 may be used as the aperturing member within the scope of the present invention is described by United States Patent No. 4,704,112 to Suzuki et al. The webs of melt blown and textile fibers are conveyed to the surface of the perforated drum. This drum may be a cylinder having predetermined diameter and length. The cylinder preferably has a repeating pattern of projections arranged on a smooth peripheral surface of the cylinder at predetermined spacing from one another and in the flat area defined among the projections, 40 a plurality of perforations for drainage. Each of the projections is preferably configured so that the apertures may be formed in the web of melt blown microfibers and textile fibers with a high efficiency and the nonwoven fabric thus formed may be readily peeled off. The details of the projection design are more fully explained at column 5, lines 49-63 of Suzuki et al.

The wire or screen generally suitable for use as the aperturing member in the present invention may be 45 of the type disclosed in "Forming Wires for Hydroentanglement Systems," Nonwovens Industry, 1988, pp. 39-43, Widen, C.B. and United States Patent No. 3,485,706 to Evans. These screens may be woven from metal filaments or from filaments of thermoplastic polymers such as polyester or nylon.

In accordance with the present invention, a process is provided for producing a fabric having apertures of two different sizes. This process comprises: 50 supporting a first layer selected from a web of textile fibers and a net of polymeric filaments and a second layer of a web of melt blown microfibers on a first aperturing member having aperturing means of a first size; impinging streams of high pressure liquid onto the fiber layers for a time sufficient to entangle the fibers with one another such that the fibers interlock to form a fabric having apertures of a first size; 55 transferring the fabric to a second aperturing member having aperturing means of a second size; and impinging streams of high pressure liquid onto the fiber layers for a time sufficient to form apertures of a second size in the fabric. The process may further comprise supporting the layer of melt blown microfibers between two layers of textile fibers before and during hydroentanglement.

A nonwoven fabric having apertures of both larger and smaller sizes should possess liquid transport properties similar to those of fabrics having larger apertures while maintaining superior strength similar to that of webs having smaller apertures.

In accordance with the invention, a process is also provided for producing a nonwoven fabric 5 comprising:

- extruding a web of drawn continuous filament textile fibers onto a continuous belt;
- extruding a web of melt blown microfibers onto the web of drawn continuous filament textile fibers on the continuous belt;
- transferring the webs onto an aperturing member; and
- 10 impinging streams of high pressure liquid onto the fiber webs for a time sufficient to entangle the fibers with one another such that the fibers interlock to form a fabric.

As embodied in Fig. 1, a web of drawn continuous filament textile fibers can be prepared by extruding a thermoplastic polymer from extruder 12 through a plate 13 containing fine orifices into a chamber 14 where the molten fibers solidify. The fibers are strengthened by drawing them in tubes 15 filled with high velocity 15 air. The fibers are deposited from tubes 15 onto foraminous continuous belt 16. United States Patent No. 4,334,340 to Reba describes in detail a method for dispersing the drawn continuous filaments so that the dispersed filaments are capable of being deposited in a random, convoluted pattern, on foraminous continuous belt 16. Melt blown microfibers can be prepared by extruding a thermoplastic polymer from extruder 21 through melt blowing die 22, which deposits a web onto the web of drawn continuous filament 20 textile fibers on foraminous continuous belt 16. It is to be understood that, in accordance with the invention, the melt blown microfibers could be deposited first on foraminous continuous belt 16 and the drawn continuous filament fibers could be deposited onto the melt blown microfibers.

Foraminous continuous belt 16 transfers the fiber layers onto an aperturing member such as wire 18. The aperturing member could also comprise a perforated drum, a perforated plate, a three-dimensional 25 perforated plate or a drum with a peripheral three-dimensional perforated surface. The combination of fiber layers supported on the aperturing member pass under orifice water jet manifolds 23 which are positioned above the wire to discharge small diameter, high velocity jet streams of water onto the fiber layers. Each of manifolds 23 is connected to a source of water under pressure and each is provided, for example, with one or more rows of 0.005 inch diameter orifices spaces on 0.025 inch centers. The spacing between the orifice 30 outlets of manifolds 23 and the webs directly beneath each manifold is preferably in the range from about 1/4 inch to about 3/4 inch. Water from jet manifolds 23 issuing from the orifices and passing through the webs and the aperturing wire is removed by vacuum boxes 24. Although only five manifolds 23 and five vacuum boxes 24 are illustrated by Fig. 1, it is to be understood that there is no limit to the number of manifolds 23 and vacuum boxes 24 which may be used. The first two of manifolds 23 preferably operate at 35 a manifold pressure of about 200 psig and the remainder preferably operate at 600 psig to 1600 psig or higher.

Preparation of a pattern on the hydroentangled combination of textile fiber and microfiber webs, either 40 apertures or regions of higher area density and regions of lower area density, is dependent on the configuration of the patterning wire carrying the webs through the hydroentangling process. As stated earlier herein, such patterning wire is disclosed by United States Patent No. 3,485,706 to Evans and by Widen, "Forming Wires for Hydroentanglement System," Nonwoven's Industry, November 1988, pp. 39-43. The surface topography of the aperturing wire results from the particular pattern of the weave and the denier of the warp and the fill filaments making up the wire. At each point where the warp and fill filaments cross, a knuckle is formed. By proper choice of weave design and filament diameter, the height of these knuckles 45 can be accentuated. During hydroentangling, the fibers are supported on the tops of these knuckles. The high velocity jet streams of water go through the web, hit the high wire knuckles and are deflected. The deflection of the water at the knuckle disrupts the web and forces the web fibers down from the high knuckles into the open or lower parts of the wire. An aperture or area of reduced fiber area density thus results. Apertures that are round, square, oval or rectangular (in either the machine or cross machine 50 direction) can result depending on the wire design and wire filament shape and diameter.

After the hydroentangling/aperturing step, the composite fabric of melt blown microfibers and continuous filament textile fibers can be dried by methods that are well known in the nonwoven and paper manufacturing arts. The fabric can be dried by transporting it around the surface of hot cans such that water contained in the fabric is evaporated. A felt may be used to hold the apertured fabric against the hot drying 55 cans. Use of a felt may control fabric shrinkage and improve water evaporation efficiency. Other methods of drying can also be utilized, such as infrared heating or through-air drying.

The nonwoven fabric of the invention may also optionally be calendered. A cold calender equipped with smooth rolls can be used to provide a smooth, soft, surface feel to the fabric. Alternatively, thermal bonding

between filaments can be achieved if calendering is carried out between a hot smooth roll and a hot patterned roll. The bonding conditions of temperature, pressure, dwell time in the nip, and bonding pattern should be carefully selected to provide extra tensile strength without destroying softness and drape.

After the processing steps are completed, the nonwoven fabric of the invention can be wound by means 5 of a winding apparatus into a roll ready for finishing steps such as slitting or shipment to the customer.

In accordance with the invention, another process is provided for producing a nonwoven web of the invention comprising, before the transferring and hydroentangling steps, the steps of: supplying a bonded web of drawn continuous filament textile fibers or a net of polymeric filaments to a continuous belt; and

10 extruding a web of melt blown microfibers onto the bonded web of drawn continuous filament textile fibers or net of polymeric filaments on the continuous belt.

As embodied in Fig. 2, the process is identical to that disclosed in Fig. 1 except that the drawn continuous filament textile fibers consist of a prebonded web, often called a spunbonded fabric. The preparation of spunbonded fabric begins with a process as described earlier herein wherein directly 15 extruded, drawn continuous filament textile fibers are layered onto a foraminous belt. Bonding of such a web yields a spunbonded fabric. Several bonding techniques have been disclosed in the art to bond filaments of such fabrics together. Such techniques are selected depending on the particular polymer used and include techniques such as needle punching, hydroentangling, application of adhesives, application of heat and pressure to plasticize the fibers in the web and render them cohesive, and exposure to certain 20 chemicals which can also plasticize and render the fibers cohesive.

The preferred method of bonding the drawn continuous filament textile fibers into a spunbonded fabric is by the use of heat and pressure, i.e., thermomechanical bonding. United States Patent No. 4,753,834 to Braun et al. and United States ; Patent No. 3,855,046 to Hansen et al. describe bonding a web made from drawn continuous filament textile fibers by passing the web between two bonding rolls, at least one of 25 which, and preferably both of which, are heated. One roll has a smooth surface while the other roll includes an intermittent pattern of raised bosses on its surface. As the web passes between these two heated rolls, the web becomes stabilized by the formation of discrete compacted areas where fibers have been forced to cohere together by the action of heat and pressure. These bonds extend through a major portion of the web thickness and are distributed in an intermittent pattern corresponding to the bosses on the second roll. 30 Unbonded filaments span the areas between bonds.

One factor to be considered in utilizing a spunbonded fabric is how the degree of bonding will influence the aperture/bonding properties of the combination of spunbonded fabric and melt blown microfibers during hydroentangling. As the degree and strength of the bonding in the spunbonded fabric is increased, the completeness of aperturing through the thickness of the melt blown/spunbonded fabric is reduced. Rather 35 than clean apertures, a fabric having regions of higher area density and lower area density may be achieved after hydroentangling. Density as used in this context refers to weight per unit area. The areas of higher area density correspond to areas with a substantial quantity of both melt blown and spunbonded fibers. The areas of lower density correspond to areas where only spunbonded fibers can be observed. An apertured pattern is clearly apparent. However, upon close inspection a nonwoven web of the present 40 invention may be formed with drawn continuous filament textile fibers bridging the apparent apertures. Such a nonwoven web gives the appearance of being apertured but in fact is not.

The spunbonded fabric can be supplied by means of an unwinding apparatus 26 onto foraminous continuous belt 16' as disclosed in Fig. 2. A web of melt blown microfibers is directly extruded by extruder 21' onto the spunbonded web on foraminous continuous belt 16'. The combination of spunbonded fabric 45 and melt blown web is then conveyed to an aperturing member, shown as a wire 18' in Fig. 2. However, as in Fig. 1, the aperturing member can be any of those members described therein. After hydroentangling/aperturing, the composite fabric of melt blown and continuous filament textile fibers is then dried by means of, for instance, drying cans and then may be calendered by calender means and wound onto winding means. In accordance with the invention, a second spunbonded fabric may be further 50 unwound onto the melt blown fiber web prior to hydroentangling.

Alternatively, unwinding apparatus 26 can be utilized to supply a net of polymeric filaments onto foraminous continuous belt 16, followed by extruding the web of melt blown microfibers onto the nets

As described in U.S. Patent No. 4,636,419 to Madsen et al., several different methods for producing 55 nets from thermoplastic polymers are known. Nets can be formed directly at the extrusion die or can be derived from extruded films by fibrillation or by embossment followed by stretching and splitting. A net with especially fine filaments can be prepared by the side-by-side extrusion of polymer streams, followed by the transversal embossment and splitting. The fine filaments of this net interlock with other types of fibers during the hydroentanglement process.

In accordance with the invention, a further process is provided for producing the nonwoven fabric of the invention comprising, before the transferring and hydroentangling steps, the steps of:
 supplying a bonded web of carded staple textile fibers onto a continuous belt; and
 extruding a web of melt blown microfibers onto the web of staple fibers on the continuous belt.

5 Carded staple textile fibers can be bonded together to give fabrics by methods described above for making spunbonded fabrics from webs of drawn continuous filament textile fibers. Bonding methods such as needle punching, hydroentangling, application of adhesives, thermomechanical bonding, or exposure to chemicals to plasticize could be utilized to provide the bonded carded web. The degree of bonding used in the carded staple web must be sufficient to allow the fabric to be wound and unwound. The degree of
 10 bonding may also influence the aperturing/bonding of the combination of bonded carded staple web and melt blown microfibers during hydroentangling in much the same way as described above for spunbonded fabric.

In accordance with the invention, another process is provided for producing the nonwoven fabric of the invention comprising, before the transferring and hydroentangling steps, the steps of:
 15 supplying a bonded web of textile fibers, a net of polymeric filaments or a fabric of bonded carded staple textile fibers onto a continuous belt; and
 supplying a bonded web of melt blown microfibers onto the web of textile fibers, net of polymeric filaments or carded staple textile fibers on the continuous belt.

Premade webs of melt blown microfibers will possess some integrity due to entanglement of the
 20 individual fibers in the web as well as some degree of thermal or self bonding between the microfibers, particularly when collection is effected only a short distance after extrusion. Because of the generally low tensile strength of melt blown fibers, the degree of fiber bonding in the melt blown web will generally have little influence on the degree of aperturing (or separation into regions of higher area density and lower area density) which occurs after hydroentangling the combination of melt blown web and spunbonded fabric or
 25 bonded carded web.

As embodied in Fig. 3, unwinding means 30 can be utilized to supply a fabric of bonded textile fibers, a net of polymeric filaments, or a fabric of bonded carded staple textile fibers onto foraminous continuous belt 16". Unwinding means 32 may also be utilized to supply the premade web of melt blown microfibers onto foraminous continuous belt 16". It is to be understood that, in accordance with the invention, the web of
 30 melt blown microfibers could be supplied first onto the continuous belt with the web of textile fibers then supplied onto the web of melt blown fibers. The combination of bonded textile fibers and melt blown microfiber webs is conveyed to an aperturing member which may be a perforated drum or a patterned wire. Use of a perforated drum 34 is shown in Fig. 3. Perforated drum 34 supports the fiber web so that hydroentangling using a stream of high pressure water may be conducted. Perforated drum 34 may be of
 35 the kind described by United States Patent No. 4,704,112 to Suzuki et al. and described earlier herein. The entangling/aperturing of the present invention may be achieved by utilizing a single perforated drum 34 or may require a second entangling/aperturing drum such as described by Suzuki et al.

A series of orifice water jet manifolds 35 are arranged at predetermined intervals and opposed to the periphery of perforated drum 34. Orifice manifolds 35 discharge small diameter, high velocity jet streams of water onto the web of melt blown and fabric of bonded textile fibers to provide fiber entanglement and simultaneously may also provide aperturing as the jet stream and the respective projections on the surface of perforated drum 34 interact to distribute the fibers. Each of manifolds 35 is connected with a source of water under pressure and each is provided with, for example, one or more rows of 0.005 inch diameter orifices spaced on 0.025 inch centers. The spacing between the orifice outlets of manifolds 35 and the web directly beneath each manifold 35 is preferably in the range from 1/4 inch to about 3/4 inch. Although only three manifolds 35 are illustrated in Fig. 3, it is to be understood that the number is limited only by the number that would fit around the circumference of perforated drum 34 and by the capacity of available suction means for suction drainage so that the efficiency of drainage on the outer surface of the aperturing drums can be maintained. The manifold pressure can operate at different levels, for example, the operating
 45 pressure of the initial manifold could be 200 psig and the remainder of the manifolds at 600 psig to 1600 psig or higher.

After the hydroentangling/aperturing step, the web of melt blown and fabric of bonded textile fibers can be dried by methods that are well known in the nonwoven and paper manufacturing arts. Drying can be accomplished by moving the apertured web around the surface of hot drying cans such that water contained in the web is evaporated. A felt may be used to hold the apertured fabric against the hot drying cans. Use of a felt may control fabric shrinkage and improve water evaporation efficiency. Other methods of drying can also be utilized, such as infrared heating or through-air drying.

The nonwoven fabric of the invention may also optionally be calendered. A cold calender equipped with

smooth rolls can be used to provide a smooth, soft, surface feel to the fabric. Alternatively, thermal bonding between web filaments can be achieved if calendering is carried out between a hot smooth roll and a hot patterned roll. The bonding conditions of temperature, pressure, dwell time in the nip, and bonding pattern may be carefully selected to provide extra tensile strength without destroying softness and drape.

- 5 After the processing steps are completed, the nonwoven fabric of the invention can be wound by means of a winding apparatus into a roll ready for finishing steps such as slitting or shipment to the customer.

In accordance with the invention, as illustrated in Fig. 4, a further process is provided for producing the nonwoven web of the invention comprising, before the transferring and hydroentangling steps, the steps of: extruding or supplying a web of melt blown microfibers onto a continuous belt; and

- 10 carding a web or supplying a bonded carded web of staple textile fibers onto the web of melt blown microfibers on the continuous belt.

The process of producing a web of carded staple textile fibers is well known in the art and is described earlier herein. The carding process will normally yield a given weight of material at a slower rate than the hydroentangling process is usually operated. Thus, as embodied in Fig. 4, it may be necessary for more 15 than one carded web-forming apparatus 40 to be utilized such that the carded web layers produced are sufficient to produce the nonwoven web of the invention.

The web of melt blown microfibers is extruded by extruder 21 through melt blowing die 22 onto foraminous continuous belt 16. The carded web from the web-forming apparatus 40 is laid onto the web of melt blown microfibers on foraminous continuous belt 16. In accordance with the invention, the web can be 20 carded directly onto the web of melt blown microfibers or can be carded and bonded prior to being supplied as a roll onto the melt blown web.

When a bonded web of carded staple fibers is used on top of the melt blown web during the aperturing process, the attachment of the two layers of fibers is not as strong as when the bonded carded web is on the bottom. However, when the bonded carded web is on top, the surface texture of the carded web is 25 preserved in the apertured fabric. When the bonded carded web is on the bottom, the entanglement is more complete and the fine microfibers of the melt blown web tend to dominate the tactility of the apertured fabric.

The combined web of carded staple textile fibers and melt blown microfibers is then conveyed to an aperturing member which may be a wire 18 or any of the other aperturing members disclosed earlier 30 herein. After hydroentangling/aperturing the melt blown microfibers and carded staple textile fibers, the resulting fabric may be dried by drying cans or other suitable means as disclosed earlier herein, and then may be calendered by calender means and wound onto a roll by winding means as disclosed earlier herein. Within the scope of the invention, the process for producing the nonwoven fabric of the invention may further comprise carding a web of staple textile fibers on foraminous continuous belt 16 prior to depositing 35 the web of melt blown microfibers, followed by carding a second web onto the melt blown web. In such a configuration, the melt blown web would be between the two carded webs before and during the hydroentangling process.

In accordance with the invention, a further process is provided for producing the nonwoven fabric of the invention comprising, before the transferring and hydroentangling steps, the steps of: 40 carding a web of staple textile fibers onto a continuous belt; and extruding or supplying a web of melt blown microfibers onto the carded web of staple textile fibers on the continuous belt.

In accordance with the invention, a process is also provided for producing a nonwoven fabric comprising, before the transferring and hydroentangling steps, the steps of: 45 extruding a web of drawn continuous filament textile fibers onto a continuous belt; and supplying a bonded web of melt blown microfibers onto the web of drawn continuous filament textile fibers on the continuous belt.

In accordance with the invention, the nonwoven fabric of the present invention may be utilized in an diaper or sanitary napkin. When utilized in a diaper, the nonwoven web of the invention can function as a 50 topsheet layer in contact with the wearer's skin. The diaper comprises at least a topsheet layer, a layer of an absorbent material and an impermeable outer covering.

In accordance with the invention, if the nonwoven fabric of the invention having regions of higher area density and regions of lower area density is utilized as the diaper topsheet, it may be desirable to treat the topsheet with a hydrophilic surfactant material, such as Triton X-100, to enable liquid to penetrate the 55 topsheet layer. It may also be desirable to utilize within the diaper a super-absorbent polymer. An aesthetically pleasing diaper with good strike-through and rewet properties can be achieved by using a surfactant treated nonwoven web of this invention having regions of higher area density and regions of lower area density as a diaper topsheet and using a super-absorbent polymer as at least part of the

absorbent material in the diaper.

The following working Examples are provided to illustrate the present invention and some of its advantages. The Examples are in no way limitative of the present invention.

5

EXAMPLES

10 The examples were prepared using the applicants' pilot hydroentangling apparatus. This apparatus includes a water jet manifold and a movable foraminous surface which travels beneath the water jet manifold.

As used herein, the expression "GSY" means grams per square yard, "DPF" means denier per filament, "PLI" means pounds per lineal inch, and "PSI" means pounds per square inch.

15 The samples listed in Table I were produced as follows: a web of textile fibers was laid on the movable foraminous forming screen of the hydroentangling pilot unit. A web of melt blown microfibers was then placed on the web of textile fibers.

20 In some experiments, a second layer of textile fibers was then added onto the web of melt blown microfibers to make a textile fiber plus microfiber composite. The forming screen used for each sample has the indicated number of strands per inch in the machine and cross directions listed in Table I. The combination of textile fiber and microfiber webs were hydroentangled together by moving the forming screen beneath the high-pressure jet manifold. Table I lists the number of manifold treatments and the corresponding water pressure in the nozzles to provide the entangling energy with each treatment. After the indicated number of treatments at the listed water pressure, the apertured topsheet of the invention was allowed to dry. In some of the experiments, the product was then subjected to post-treatments of cold or 25 hot calendering.

The textile fiber webs and melt blown microfiber webs used to make the examples are listed in Table I under the title "Formulation."

30 Example 1

For Example 1, the textile fiber web used was CEREX® Type 29 spunbond Nylon 66 product (sold by James River Corporation, Greenville, South Carolina) having a basis weight of 8.4 GSY. The microfiber web used was POLYWEB® polypropylene melt blown fabric (sold by James River Corporation, Greenville, South Carolina) having a basis weight of 8.5 GSY. The textile fiber web was made by the process described in U.S. Patent No. 3,542,615 to Dobo et al.

40 The melt blown microfiber web was made as generally described above by the melt blowing process, well known in the art, using polypropylene polymer. The webs of spunbond textile fibers and melt blown microfibers were then hydroentangled together using the hydroentangling pilot unit operated as described above with process conditions listed in Table 1. The resulting product of the invention, having a clearly visible pattern of regions of higher area density and regions of lower area density, is characterized in Table 2.

45 Examples 2-6

Examples 2-6 were made using CEREX® Type 29 spunbond Nylon 66 textile fiber web, basis weight 8.4 GSY, and POLYWEB® poly (butylene terephthalate) melt blown microfiber web, basis weight 23 GSY (sold by James River Corporation, Greenville, South Carolina). The webs of spunbond textile fibers and melt blown microfibers were hydroentangled together using the hydroentangling pilot unit operated as described above with process conditions listed in Table 1. The resulting products are characterized in Table 2.

Example 7

55 Example 7 illustrates the combination of carded webs of polyester textile fibers and polyester melt blown microfibers to make products of this invention. Poly (ethylene terephthalate) textile fiber, 1.5 denier per filament, 1.5 inches cut length (sold by E. I. du Pont de Nemours as product Code 113D03) was carded

into a web with basis weight 17 grams per square yard. A web of melt blown microfiber, POLYWEB® poly (butylene terephthalate), basis weight 36 grams per square yard (sold by James River Corporation, Greenville, South Carolina) was laid on the above described carded polyester textile fiber web. A second section of the above described carded polyester textile fiber web was then placed over the web of melt 5 blown microfibers. The combination of carded textile fiber and melt blown microfiber webs was then hydroentangled together using the hydroentangling pilot unit operated as described above with process conditions listed in Table 1. The resulting product of this invention is characterized in Table 2.

10 Examples 8 and 9

Examples 8 and 9 illustrate the combination of two spunbond textile webs to cover both the top and bottom of the web of melt blown microfibers. These examples were made using CELESTRA® IV polypropylene spunbond webs of basis weight 12 grams per square yard or 17 grams per square yard (sold 15 by James River Corporation, Greenville, South Carolina) and a web of melt blown microfibers, POLYWEB® polypropylene with basis weight 17 grams per square yard (sold by James River Corporation, Greenville, South Carolina). The combination of spunbond textile and melt blown microfiber webs were then hydroentangled together using the hydroentangling pilot unit operated as described above with process conditions listed in Table 1. The resulting products of the invention are characterized in Table 2.

20

Example 10

Example 10 illustrates the combination of carded web polypropylene textile fibers and polypropylene 25 melt blown microfibers to make products of the invention. Polypropylene textile fibers--two denier per filament, 1.5 inches cut length (sold by Hercules Corporation, Norcross, Georgia as product Code T199) was carded into a web with basis weight of 17 grams per square yard. A web of melt blown microfibers, POLYWEB® polypropylene basis weight 17 grams per square yard (sold by James River Corporation, Greenville, South Carolina) was covered above and below with the above described web of polypropylene 30 textile fibers. The combination of carded textile fiber and melt blown microfiber webs were then hydroentangled together using the hydroentangling pilot unit operated as described above with process condition listed in Table 1. The resulting product of the invention is characterized in Table 2.

35 Example 11

Example 11 illustrates the combination of carded webs of polypropylene textile fibers and poly (butylene terephthalate) melt blown microfibers to make products of the invention. This product was made as described above for Example 10, but POLYWEB® poly (butylene terephthalate) melt blown microfibers, 40 36 grams per square yard (sold by James River Corporation, Greenville, South Carolina), was used. Table 1 lists hydroentangling details. The resulting product of this invention is characterized in Table 2.

Example 12

45

Example 12 was made as described above for Example 7. Note in Table 1 that a 100 x 100 screen was used for hydroentangling. This very fine screen will yield a product with a pattern of regions of higher area density and regions of lower area density only visible under magnification. Example 12 is characterized in Table 2.

50

Example 13

Example 13 illustrates the combination of two linear low density polyethylene (LLDPE) spunbond textile 55 webs to cover both the top and the bottom of the web of melt blown microfibers. Spunbond textile webs made using LLDPE are made as generally described above using linear low density polyethylene (available from Dow Chemical) as the polymer to spin. The resulting drawn continuous filament textile fibers were bonded together using heat and pressure developed in a nip between a smooth steel roll and an embossed

pattern roll to yield approximately 18% bonded area and approximately 160 bonds per square inch. The resulting spunbond LLDPE CELESTRA® I type web, basis weight of 23 grams per square yard, was placed above and below a web of melt blown microfiber, POLYWEB® poly (butylene terephthalate) with basis weight 36 grams per square yard (sold by James River Corporation, Greenville, South Carolina). This 5 combination of spunbond textile and melt blown microfiber webs was then hydroentangled together using the hydroentangling pilot unit operated as described above with process conditions listed in Table 1. The resulting product of the invention is characterized in Table 2.

10 Example 14

Example 14 illustrates the combination of a polymer net and a web of melt blown microfibers. The polymer net is manufactured by the Kaysersberg Division of Beghin-Say Corporation of France and is called SCRINYL®. The process used to manufacture this net is described in U.S. Patent No. 4,636,419. The 15 net has two polymer components--nylon in the filaments and polypropylene in the matrix--and has a basis weight of 10 g/yd². The melt blown microfiber web is prepared from poly (butylene terephthalate) with basis weight 10 g/yd² (sold by James River Corporation, Greenville, South Carolina). The polymer net was placed on an 8 x 6 screen which was mounted on the hydroentangling pilot unit. The melt blown web was placed on top of the polymer net. The hydroentangling pilot unit was operated with the process conditions listed in 20 Table 1. The resulting product is characterized in Table 2.

Example 15

25 Example 15 was made using CEREX® Type 30 spunbond Nylon 66 textile fiber web, basis weight 8.4 GSY and POLYWEB® (polybutylene terephthalate) melt blown microfiber web, basis weight 13 GSY (sold by James River Corporation, Greenville, South Carolina). CEREX® Type 30 is made as described for CEREX® Type 29 in Example 1, except the drawn continuous filament textile fibers are thermally bonded in passing through a nip formed by a heated smooth steel roll and a heated pattern roll. The webs of 30 spunbond textile fibers and melt blown microfibers were then hydroentangled together using the hydroentangling pilot unit operated as described above with process conditions listed in Table 1. The resulting product of this invention had a clearly visible pattern of regions of higher area density and regions of lower area density.

The structure produced by Example 15 was characterized via photographic analysis. Figure 5 shows 35 several views of the melt blown microfiber side of this structure at 7X, 10X and 15X magnification. A pattern of apparent apertures is clearly visible which results from regions of higher area density spunbond textile fibers plus melt blown microfibers, and regions of lower area density, spunbond textile fibers only. The apparent apertures have dimensions of 2.1 mm x 1.3 mm.

A second view of the microfiber side of Example 15 is provided by Scanning Electron Microscopy (SEM) photographs at 100X magnification shown as Figs. 6A and 6B. Fig 6A, showing a region of higher 40 area density, illustrates how the very low denier melt blown microfibers cover the spunbond textile fibers to yield the white dense bond areas seen as the fabric pattern background. Fig. 6B, showing a region of lower area density, illustrates how the apparent aperture is actually mostly bridged by the textile fibers making up the spunbond web. Part of a thermal bond holding the drawn continuous filament textile fibers in the 45 spunbond web is also visible in the apparent aperture.

A view of the spunbond web side of Example 15 is provided by SEM photographs at 100X magnification shown as Figs. 7A, 7B and 7C. Fig. 7A, showing a region of higher area density, illustrates how the melt blown microfibers are mixed into the spunbond textile fiber web to anchor the total structure together. Figs. 7B and 7C, showing regions of lower area density, illustrate how the apparent aperture can 50 be bridged with filaments and with nearly undamaged bond sites from the spunbond web.

Fig. 8 provides cross-sectional views of Example 15 via SEM photography at 100X magnification. Mixing of the melt blown microfibers into the spunbond textile fibers, resulting from the action of the hydroentangling process, is again illustrated.

The photographs in Figs. 5-8 clearly illustrate the unique structure of Example 15, a product of this 55 invention, including the pattern of apparent apertures resulting from regions of higher and lower area density, and the two-sidedness resulting from combining a web of melt blown microfibers and a web of bonded drawn continuous filament textile fibers.

Example 16

5 Example 16 was made using CEREX® Type 30 spunbond Nylon 66 textile fiber web, basis weight 8.4 GSY and POLYWEB® (polybutylene terephthalate) melt blown microfiber web, basis weight 12.5 GSY (sold by James River Corp., Greenville, South Carolina). The webs of spunbond textile fibers and melt blown microfibers were then hydroentangled together as in Example 15.

Comparative Example 1

10 Comparative Example 1 in Table 2 is a prior art non-apertured nonwoven fabric sold as a diaper liner by James River Corporation. This fabric was produced by thermal calendering a carded web of polypropylene fiber having a denier of 2.

15 Examples 1-16 and Comparative Example 1 described above are characterized in Table 2. Following is a description of the test methods used to evaluate these products. Note that in several tests the topside of the product and the bottom side of the product were each evaluated. Table 2 results labeled "Up" refer to testing of the melt blown microfiber side of the product. Results labeled "Down" refer to testing of the textile fiber or polymer net side of the product.

20 BASIS WEIGHT

Following is a description of the test methods used to evaluate the products described in the Examples.

25 Basis weight was determined by measuring the weight of a known area of fabric. The result, reported as grams per square yard ("GSY"), is the average of at least 4 measurements.

STRIP TENSILE STRENGTH

30 Strip tensile strength was evaluated by breaking a one-inch by seven-inch long sample generally following ASTM D1682-64, the One-Inch Cut Strip Test. The instrument cross-head speed was set at 5 inches per minute and the gauge length was set at 5 inches. The tensile strength in both the machine direction ("MD") and cross direction ("CD") was evaluated. The Strip Tensile Strength or breaking load, reported as grams per inch, is the average of at least 8 measurements.

35

STRIP ELONGATION

40 Strip elongation was evaluated at the same time as Strip Tensile Strength and represents the percent increase in fabric length observed at break while generally following ASTM D 1682-64, the One Inch Cut Strip Test.

CALIPER (UNDER COMPRESSION)

45

Caliper was determined by measuring the distance between the top and the bottom surface of the sheet while the sheet was held under compression loading of 19 grams per square inch or 131 grams per square inch. The result, reported in mils, is the average of 10 measurements.

50

STRIKE-THROUGH

Strike-through was evaluated by a method similar to that described in U.S. Patent Nos. 4,391,869 and 4,041,451. Strike-through was measured as the time for 5 milliliters of synthetic urine solution placed in the cavity of the strike-through plate to pass through the Example Fabric into an absorbent pad. The result, reported in seconds, is generally the average of 4 tests.

SURFACE WETNESS (Rewet)

Surface Wetness was evaluated by a method similar to that described in U.S. Patent Nos. 4,041,951 and 4,391,861. Surface Wetness, reported in grams, was evaluated by adding synthetic urine through the Example Fabric into the absorbent pad until the absorbent pad was nearly saturated. Thus the Example Fabric was wet at the beginning of the Surface Wetness test. For results denoted as "Rewet 0.5 PSI," the loading factor was slightly less than 4 (grams of synthetic urine per gram of absorbent sample). A uniform pressure loading of 0.5 psi was then applied and the procedure concluded as disclosed in the above patents. For results denoted as "Rewet 1.0 PSI," the loading factor was increased to slightly over 4 so the absorbent pad was saturated with synthetic urine. A uniform pressure loading of 1.0 psi was then applied and the procedure concluded as disclosed in the above patents. The result, reported in grams, is generally the average of 4 tests.

15 SOFTNESS

Softness was evaluated by an organoleptic method wherein an expert panel compared the surface feel of Example Fabrics with that of controls. Results are reported as a softness score with higher values denoting a more pleasing hand. Each reported value is for a single test sample but reflects the input of several panel members.

Illustrated results in Table 2 demonstrate that many properties of the apertured topsheet of the invention are similar or better than properties of the prior art non-apertured topsheet listed as "Comparative" Example 1 in Table 2.

The liquid transport properties for the COMPARATIVE and the products of the invention do not reflect the effect of a "spacer or wicking" layer under them. In actual practice, such a material would be useful to achieve optimum performance.

Test diapers were made using the topsheet of the invention exemplified by Example 16. Consumers ($n = 32$) in an in-home use test preferred the test diapers and rated the test diapers as superior relative to a major competitor for liner related features and benefits. These results were significant at the 95% confidence level. The competitor diapers used in this study were made utilizing a thermally bonded carded polypropylene topsheet very similar to that described in Comparative Example 1.

Although the present invention has been described in connection with the preferred embodiments, it is to be understood that modifications and variations may be resorted to without departing from the spirit and scope of the invention. Such modifications are considered to be within the purview and scope of the invention and the appended claims.

5
10
15
20
25
30
35
40
45
50
55

TABLE 1

PREPARATION OF FABRIC SAMPLES

<u>EXAMPLE</u>	<u>FORMULATION</u>	HYDROENTANGLING CONDITIONS			<u>POST TREATMENT</u>
		<u>APERTURING SCREEN</u>	<u>NUMBER OF MANIFOLD TREATMENTS AT LISTED HYDRAULIC PRESSURE</u>	<u>COLD CALENDERED</u>	
1	8.4 GSY SPUNBOND NYLON CEREX® (TYPE 29) + 8.5 GSY POLYPROPYLENE MELTBLOWN MICROFIBER	13 x 20	2 @ 200 PSI 2 @ 1200 PSI 2 @ 1600 PSI	2 @ 200 PSI 2 @ 800 PSI 2 @ 1200 PSI 2 @ 1600 PSI	COLD CALENDERED
2	8.4 GSY SPUNBOND NYLON CEREX® (TYPE 29) + 23 GSY POLYBUTYLENE TEREPHTHALATE MELTBLOWN MICROFIBER	8 x 8	2 @ 200 PSI 6 @ 800 PSI 4 @ 1200 PSI 2 @ 1600 PSI	2 @ 200 PSI 6 @ 800 PSI 6 @ 1200 PSI	COLD CALENDERED
3	AS 2	10 x 10	2 @ 200 PSI 6 @ 800 PSI 6 @ 1200 PSI	2 @ 200 PSI 6 @ 800 PSI 6 @ 1200 PSI	COLD CALENDERED
4	AS 2	31 x 25	2 @ 200 PSI 6 @ 800 PSI 6 @ 1200 PSI	2 @ 200 PSI 6 @ 800 PSI 6 @ 1200 PSI	COLD CALENDERED
5	AS 2	13 x 20	2 @ 200 PSI 4 @ 800 PSI 4 @ 1600 PSI	2 @ 200 PSI 4 @ 800 PSI 4 @ 1600 PSI	COLD CALENDERED
6	AS 2	12 x 12	2 @ 200 PSI 4 @ 800 PSI 4 @ 1600 PSI	2 @ 200 PSI 4 @ 800 PSI 4 @ 1600 PSI	COLD CALENDERED
7	17 GSY CARDED WEB OF 1.5 DPF DUPONT POLYESTER TEXTILE FIBER + 36 GSY POLYBUTYLENE TEREPHTHALATE MELTBLOWN MICROFIBER + 17 GSY CARDED WEB OF 1.5 DPF DUPONT POLYESTER TEXTILE FIBER	13 x 20	2 @ 200 PSI 2 @ 800 PSI 10 @ 1400 PSI	2 @ 200 PSI 2 @ 800 PSI	NONE

5							
10							
15							
20							
25							
30							
35							
40							
45							
50							
55							
60							
65							
70							
75							
80							
8	12 GSY SPUNBOND POLYPROPYLENE CELESTRA IV + 17 GSY POLYPROPYLENE MELTBLOWN + 12 GSY SPUNBOND POLY- PROPYLENE CELESTRA IV	13 x 20	NONE	2 @ 200 PSI 2 @ 800 PSI 10 @ 1400 PSI			
9	20 GSY SPUNBOND POLYPROPYLENE CELESTRA IV + 17 GSY POLY- PROPYLENE MELTBLOWN + 20 GSY SPUNBOND POLYPROPYLENE CELESTRA IV	13 x 20	NONE	2 @ 200 PSI 2 @ 800 PSI 10 @ 1800 PSI			
10	17 GSY CARDDED WEB OF 2 DPF POLYPROPYLENE TEXTILE FIBER + 17 GSY POLYPROPYLENE MELTBLOWN + 17 GSY CARDDED WEB OF 2 DPF POLYPROPYLENE TEXTILE FIBER	13 x 20	NONE	2 @ 200 PSI 2 @ 800 PSI 10 @ 1400 PSI			
11	17 GSY CARDDED WEB OF 2 DPF POLYPROPYLENE TEXTILE FIBER + 36 GSY POLYBUTYLENE TEREPH- THALATE MELTBLOWN + 17 GSY CARDDED WEB OF 2 DPF POLYPRO- PYLENE TEXTILE FIBER	13 x 20	NONE	2 @ 200 PSI 2 @ 800 PSI 10 @ 1800 PSI			
12	17 GSY CARDDED WEB OF 1.5 DPF DUPONT POLYESTER TEXTILE FIBER + 36 GSY POLYBUTYLENE TEREPHTHALATE MELTBLOWN + 17 GSY CARDDED WEB OF 1.5 DPF DUPONT POLYESTER TEXTILE FIBER	100 x 100	NONE	2 @ 200 PSI 2 @ 800 PSI 10 @ 1400 PSI			
13	23 GSY SPUNBOND LLDPE CELESTRA I + 36 GSY POLYBUTYLENE TEREPHTHALATE MELTBLOWN + 23 GSY SPUNBOND LLDPE CELESTRA I	13 x 20	NONE	2 @ 200 PSI 2 @ 800 PSI 10 @ 1400 PSI			

5

10

15

20

25

30

35

40

45

50

55

14	10 GSY SCRINYL POLYMER NET + 10 GSY POLYBUTYLENE TEREPHTHALATE MELTBLOWN MICROFIBER	8 x 6	2 @ 200 PSI 4 @ 800 PSI 4 @ 1000 PSI	NONE
15	8.4 GSY SPUNBOND NYLON CEREX® (TYPE 30) + 13 GSY POLYBUTYLENE TEREPHTHALATE MELTBLOWN MICROFIBER	13 x 20	2 @ 200 PSI 4 @ 800 PSI 6 @ 1200 PSI	NONE
16	8.4 GSY SPUNBOND NYLON CEREX® (TYPE 30) + 12.5 GSY POLYBUTYLENE TEREPHTHALATE MELTBLOWN MICROFIBER	8 x 6	2 @ 400 PSI 2 @ 800 PSI 6 @ 1200 PSI	NONE

TABLE 2

EXAMPLE	BASIS WEIGHT	PROPERTIES OF HYDROENTANGLED FABRICS												PRODUCT STRUCTURE CHARACTERIZED VIA PHOTOGRAPHY					
		STRIP TENSILE			STRIP ELONGATION			SOFTNESS			CALIPER (MIL)			STRIKE-THROUGH			REWET 0.5 PSI		REWET 1.0 PSI
		MD	CD	MD	CD	UP(1)	DOWN(2)	UP(1)	DOWN(2)	UP(1)	DOWN(2)	UP(1)	DOWN(2)	UP(1)	DOWN(2)	UP(1)	DOWN(2)	UP(1)	DOWN(2)
Comparative Example 1	20	1500	300	---	---	80	---	18	10	2.0	---	0.11	---	1.0	---	---	---	1.2	1.2
1	25	700	170	130	115	70	50	19	12	4.9	4.8	0.28	0.23	1.2	1.2	2.1	2.1	3.2	3.2
2	34	1430	630	107	97	82	68	12	8.0	10.7	7.4	0.4	1.4	1.2	1.2	2.3	2.3	1.5	1.5
3	33	1300	630	85	90	75	78	11	8.0	6.3	6.3	2.0	2.0	1.5	1.5	2.4	2.4	3.8	3.8
4	34	1540	760	107	81	90	80	12	9.0	20.5	17	1.5	1.5	1.4	1.4	3.2	3.2	3.0	3.0
5	34	1430	1200	83	100	60	68	11	8.7	4.2	4.7	1.8	1.8	1.4	1.4	3.0	3.0	3.3	3.3
6	35	1320	680	69	90	78	65	12	9.1	6.8	5.8	1.1	1.1	1.2	1.2	3.0	3.0	2.8	2.8
7	60	2055	1185	79	95	--	65	58	32(3)	---	6.7	---	0.07	---	---	---	---	---	---
8	43	3046	977	76	69	--	72	33	16(3)	---	---	---	---	---	---	---	---	---	---
9	59	4909	1657	49	82	--	65	40	25(3)	---	5.2	---	0.06	---	---	---	---	---	---
10	46	879	644	100	124	--	65	37	28(3)	---	5.2	---	0.06	---	---	---	---	---	---
11	70	1875	1078	111	124	--	42	52	31(3)	---	5.2	---	0.06	---	---	---	---	---	---
12	63	3080	1425	64	98	--	90	37	18(3)	---	5.2	---	0.06	---	---	---	---	---	---
13	90	2525	1263	168	112	--	72	45	25(3)	---	5.2	---	0.06	---	---	---	---	---	---
14	20	2054	3133	20	7	--	--	--	--	3.2	3.2	---	---	---	---	---	---	---	---
15	25	2054	517	37	60	60	95	12	9	---	4.2	0.84	0.66	---	---	---	---	---	---
16	16	2054	517	37	60	60	95	12	9	---	4.2	0.84	0.66	---	---	---	---	---	---

(1) VIB SIDE IS MEI TBI OWN MICBOEIEB SIDE

(1) ONE SIDE IS MELTED DOWN
(2) DOWN SIDE IS TEXTILE FIBER SIDE

(2) DOWN SIDE IS TEAILE 11
(3) QADING WAS 107 G IN 2

Claims

- 5 1. A nonwoven composite fabric comprising at least one layer selected from a web of textile fibers and a net of polymeric filaments and at least one web of melt blown microfibers, combined by hydroentangling.
2. The fabric of claim 1, wherein said fabric is apertured by said hydroentangling.
3. The fabric of claim 1, wherein said fabric has regions of higher area density and regions of lower area
- 10 density produced by said hydroentangling.
4. The fabric of claim 2, wherein said apertures are a plurality of different sizes.
5. The fabric of claim 4, wherein said apertures are two different sizes.
6. The fabric of claim 2, wherein the fabric surface includes a hydrophilic surfactant.
7. The fabric of claim 3, wherein the fabric surface includes a hydrophilic surfactant.
- 15 8. The fabric of claim 1, wherein said textile fibers are selected from polyester staple fibers, polypropylene staple fibers, polyethylene staple fibers, acrylic staple fibers, nylon staple fibers or blends of these staple fibers; and nylon drawn continuous filament textile fibers, polypropylene drawn continuous filament textile fibers, polyethylene drawn continuous filament textile fibers and polyester drawn continuous filament textile fibers.
- 20 9. The fabric of claim 1, wherein said melt blown microfibers are selected from polypropylene, polyethylene, poly(butylene terephthalate), poly(ethylene terephthalate), nylon 6, nylon 66, and copolymers of olefins such as polyethylene and polypropylene.
10. The fabric of claim 1, wherein said net of polymeric filaments is selected from polyethylene, polypropylene, copolymers of polyethylene and polypropylene, poly(butylene terephthalate), poly(ethylene
- 25 terephthalate), Nylon 6 and Nylon 66.
11. The fabric of claim 1, wherein said fabric is calendered.
12. The fabric of claim 1, wherein said web of melt blown microfibers is interposed between two webs of textile fibers.
13. The fabric of claim 1, wherein said textile fibers comprise bicomponent fibers having a sheath of one
- 30 polymer surrounding a core of a second polymer.
14. A process for producing a nonwoven fabric comprising:
supporting a first layer selected from a web of textile fibers and a net of polymeric filaments and a second layer comprising a web of melt blown microfibers on an aperturing member; and
impinging streams of high pressure liquid onto the fiber layers for a time sufficient to entangle the fibers
- 35 with one another such that the fibers interlock to form a fabric.
15. The process of claim 14, further comprising calendering said fabric.
16. The process of claim 14, wherein said fabric is apertured.
17. The process of claim 14, wherein said fabric has regions of higher area density and regions of lower area density.
- 40 18. The process of claim 14, further comprising supporting a third layer of a web of textile fibers on said second layer on said aperturing member prior to impinging streams of high pressure liquid onto the fiber webs.
19. The process of claim 14, wherein said aperturing member is a wire or screen.
20. The process of claim 14, wherein said aperturing member is a perforated plate.
- 45 21. The process of claim 20, wherein said perforated plate is three dimensional.
22. The process of claim 14, wherein said aperturing member is a perforated drum.
23. The process of claim 14, wherein said aperturing member is a drum with a peripheral three dimensional perforated surface.
24. A process for producing the fabric of claim 5, comprising:
supporting a first layer selected from a web of textile fibers and a net of polymeric filaments and a second layer of a web of melt blown microfibers on a first aperturing member having aperturing means of a first size;
- impinging streams of high pressure liquid onto the fiber layers for a time sufficient to entangle said fibers with one another such that the fibers interlock to form a fabric having apertures of a first size;
- 55 25. The process of claim 24, further comprising supporting a third layer of a web of textile fibers on said

- second layer on said first aperturing member prior to impinging streams of high pressure liquid onto the fiber webs.
26. The process of claim 14, further comprising before said supporting step, the steps of:
extruding a web of drawn continuous filament textile fibers onto a continuous belt;
- 5 extruding a web of melt blown microfibers onto said web of drawn continuous filament textile fibers on said continuous belt; and
transferring said webs to said aperturing member.
27. The process of claim 26, further comprising extruding a second web of drawn continuous filament textile fibers onto said melt blown microfiber web prior to said transferring step.
- 10 28. The process of claim 14, further comprising before said supporting step, the steps of:
supplying a bonded web of drawn continuous filament textile fibers to a continuous belt;
extruding a web of melt blown microfibers onto said web of drawn continuous filament textile fibers on said continuous belt; and
transferring said webs to said aperturing member.
- 15 29. The process of claim 28, further comprising supplying a second web of bonded drawn continuous filament textile fibers onto said melt blown microfiber web prior to said transferring step.
30. The process of claim 14, further comprising before said supporting step, the steps of:
supplying a bonded web of drawn continuous filament textile fibers to a continuous belt;
supplying a bonded web of melt blown microfibers onto said web of drawn continuous filament textile fibers
- 20 on said continuous belt; and
transferring said web to said aperturing member.
31. The process of claim 30, further comprising supplying a second bonded web of drawn continuous filament textile fibers onto said melt blown microfiber web prior to said transferring step.
32. The process of claim 14, further comprising before said supporting step, the steps of:
25 carding a web of staple textile fibers onto a continuous belt;
extruding a web of melt blown microfibers onto said web of carded staple textile fibers on said continuous belt; and
transferring said webs to said aperturing member.
33. The process of claim 32, further comprising carding a second web of staple textile fibers onto said melt
- 30 blown microfiber web prior to said transferring step.
34. The process of claim 14, further comprising before said supporting step, the steps of:
carding a web of staple textile fibers onto a continuous belt;
supplying a bonded web of melt blown microfibers onto said web of carded staple textile fibers on said continuous belt; and
- 35 transferring said webs to said aperturing member.
35. The process of claim 34, further comprising carding a second web of staple textile fibers onto said melt blown microfiber web prior to said transferring step.
36. The process of claim 14, further comprising before said supporting step, the steps of:
supplying a bonded web of carded staple textile fibers onto a continuous belt;
- 40 supplying a bonded web of melt blown microfibers onto said bonded web of carded staple textile fibers on said continuous belt; and
transferring said web to said aperturing member.
37. The process of claim 36, further comprising supplying a second bonded carded web of staple textile fibers onto said melt blown microfiber web prior to said transferring step.
- 45 38. The process of claim 14, further comprising before said supporting step, the steps of:
supplying a bonded web of carded staple textile fibers onto a continuous belt;
extruding a web of melt blown microfibers onto said web of bonded cable staple textile fibers on said continuous belt; and
transferring said webs to said aperturing member.
- 50 39. The process of claim 37, further comprising supplying a second bonded web of carded staple textile fibers onto said melt blown microfiber web prior to said transferring step.
40. The process of claim 14, further comprising before said supporting step, the steps of:
extruding a web of melt blown microfibers onto a continuous belt;
- 55 carding a web of staple textile fibers onto said web of melt blown microfibers on said continuous belt; and
transferring said webs to said aperturing member.
41. The process of claim 14, further comprising before said supporting step, the steps of:
supplying a bonded web of melt blown microfibers onto a continuous belt;
carding a web of staple textile fibers onto said web of melt blown microfibers on said continuous belt; and

- transferring said webs to said aperturing member.
42. The process of claim 14, further comprising before said supporting step, the steps of:
 extruding a web of melt blown microfibers onto a continuous belt;
 supplying a bonded web of carded staple textile fibers onto said web of melt blown microfibers on said
 5 continuous belt; and
 transferring said webs to said aperturing member.
43. The process of claim 14, further comprising before said supporting step, the steps of:
 supplying a bonded web of melt blown microfibers onto a continuous belt;
 supplying a bonded web of carded staple textile fibers onto said web of melt blown microfibers on said
 10 continuous belt; and
 transferring said webs to said aperturing member.
44. The process of claim 14, further comprising before said supporting step, the steps of:
 extruding a web of drawn continuous filament textile fibers onto a continuous belt;
 supplying a bonded web of melt blown microfibers onto said web of drawn continuous filament textile fibers;
 15 and
 transferring said webs to said aperturing member.
45. The process of claim 14, further comprising before said supporting step, the steps of:
 supplying a net of polymeric filaments onto a continuous belt;
 extruding a web of melt blown microfibers onto the net on the continuous belt; and
 20 transferring said net and web to said aperturing member.
46. The process of claim 14, further comprising before said supporting step, the steps of:
 supplying a net of polymeric filaments onto a continuous belt;
 supplying a bonded web of melt blown microfibers onto the net on the continuous belt; and
 transferring said net and web to said aperturing member.
- 25 47. A diaper comprising:
 a topsheet layer of the nonwoven fabric of claim 2 in contact with the wearer's skin;
 a layer of an absorbent material; and
 an impermeable outer covering.
48. A diaper comprising:
 30 a topsheet layer of the nonwoven apertured web of claim 3 in contact with the wearer's skin;
 a layer of an absorbent material; and
 an impermeable outer covering.
49. The fabric of claim 1, for use as a sanitary napkin topsheet.
50. The fabric of claim 2, wherein said web of textile fibers comprises Nylon 66 drawn continuous filament
 35 textile fibers having a basis weight ranging from 5.5 to 14 grams per square yard and said web of melt
 blown microfibers comprises melt blown poly(butylene terephthalate) microfibers having a basis weight
 ranging from 8 to 17 grams per square yard.
51. The fabric of claim 2, wherein said web of textile fibers comprises polypropylene drawn continuous
 40 filament textile fibers having a basis weight ranging from 8.5 to 17.0 grams per square yard and said web of
 melt blown microfibers comprises melt blown polypropylene microfibers having a basis weight ranging from
 8 to 17 grams per square yard.
52. The fabric of claim 3, wherein said web of textile fibers comprises bonded Nylon 66 drawn continuous
 filament textile fibers having a basis weight ranging from 5.5 to 14 grams per square yard and said web of
 45 melt blown microfibers comprises melt blown poly(butylene terephthalate) microfibers having a basis weight
 ranging from 8 to 17 grams per square yard.
53. The fabric of claim 3, wherein said web of textile fibers comprises bonded polypropylene drawn
 continuous filament textile fibers having a basis weight ranging from 8.5 to 17.0 grams per square yard and
 said web of melt blown microfibers comprises melt blown polypropylene microfibers having a basis weight
 ranging from 8 to 17 grams per square yard.

50

55

FIG. 1

FIG. 3

FIG. 4

FIG. 5A

FIG. 5B

FIG. 5C

FIG.6A

FIG. 6B

FIG. 7A

FIG. 7B

FIG. 7C

FIG. 8A

FIG. 8B

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number

EP 90113873.5

DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)
P,X	<u>EP - A2 - 0 333 211</u> (KIMBERLEY-CLARK CORP.) * Abstract; fig. 1 * --	1,8,9, 10,14	D 04 H 1/44
P,X	<u>EP - A2 - 0 333 209</u> (KIMBERLEY-CLARK CORP.) * Abstract; claims 1-27 * --	1,2,3, 14	
P,X	<u>EP - A2 - 0 333 228</u> (KIMBERLEY-CLARK CORP.) * Abstract; fig. 1 * --	1,2,3, 14	
A	<u>EP - A2 - 0 211 131</u> (FA CARL FREUDENBERG) * Claims 1,6 *--	1,2,3, 14	
A	<u>EP - A2 - 0 215 684</u> (UNI-CHARM CORP.) * Claims 1-17 * -----	2,3	
			TECHNICAL FIELDS SEARCHED (Int. Cl.5)
			D 04 H 1/00

The present search report has been drawn up for all claims

Place of search	Date of completion of the search	Examiner
VIENNA	29-10-1990	KAMMERER

CATEGORY OF CITED DOCUMENTS

- X : particularly relevant if taken alone
- Y : particularly relevant if combined with another document of the same category
- A : technological background
- O : non-written disclosure
- P : intermediate document

T : theory or principle underlying the invention
E : earlier patent document, but published on, or after the filing date

D : document cited in the application
L : document cited for other reasons

& : member of the same patent family, corresponding document

THIS PAGE BLANK (USPTO)