

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский институт)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

Отчёт

по лабораторной работе 1

Дисциплина: Архитектура ЭВМ

Тема лабораторной работы работы: Разработка радиоэлектронной аппаратуры на основе микроконтроллеров ARM7 TDMI в интегрированной среде Keil uVISION

	Студенты	гр. ИУ7-516	Сушина А.Д.			
Фамилия)			(Подпись, дата)	(И.О.		
Г	Преподаватель		Попов	А. Ю.		
Фамилия)			(Подпись, дата)	(N.O.		

Цель работы - изучение архитектуры микроконтроллеров ARM7 TDMI и средств проектирования и отладки цифровых устройств на их основе. В ходе работы студенту необходимо ознакомиться с теоретическим материалом, касающимся архитектуры и особенностей функционирования микроконтроллеров с ядром ARM7 TDMI, ознакомиться с возможностями интегрированной среды разработки Keil uVision, разработать и отладить простейшую программу функционирования микроконтроллера NXP LPC2368.

Индивидуальное задание

Устройство состоит из трех исполнительных механизмов и кнопки, подключенных к устройству управления на основе микроконтроллера NXP LPC2368. Разработать программу функционирования микроконтроллера, управляющего работой устройства и обеспечивающую заданную логику его работы:

- 20. Устройство управления хлебопечкой, состоящее из миксера и двух нагревательных элементов. Программа функционирования: а) перемешивание и подогрев одним нагревателем; b) при нажатии на кнопку: выпекание вторым нагревателем.
- **Задание 1.** Ознакомиться с теоретическим материалом.
- Задание 2. Создать проект С программы в среде Keil uVision для микроконтроллера NXP LPC2368 с частотой генератора 12 МГц. В проект должны входить файлы: начальной настройки микроконртоллера LPC2300.s и главный файл приложения Main.c.
- Задание 3. Разработать и отладить в симуляторе программу функционирования микроконтроллера в соответствии с индивидуальным вариантом. В программе задействовать пины 26-29 порта 1 модуля GPIO.
- 4. Разработать функцию управления Задание входными портами микроконтроллера и записать ее в файл ini. Текст функции управления занести в отчет. С использованием функции управления получить осциллограмму работы микроконтроллера для задействованных в проекте порта 0. Выполнить пошаговую трассировку программы. сигналов Осциллограмму и код программы занести в отчет.

Ход работы

Листинг программы функционирования микроконтроллера

/* Устройство управления хлебопечкой, состоящее из миксера и двух нагревательных элементов. Программа функционирования:

- а) перемешивание и подогрев одним нагревателем;
- b) при нажатии на кнопку: выпекание вторым нагревателем.

```
*/
#include <LPC23xx.H> /* Описание LPC23xx */
void delay(void) {
    unsigned int i;
    for (i=0;i<0xfffff;i++){}
```

```
int main (void) {
          // 27 - перемешивание
          // 28 - нагреватель 1
          // 29 - нагреватель 2
          // 26 - кнопка
           unsigned int n;
           // Конфигурировать функции входов/выходов порта 0 на модуль
GPIO
           PINSEL3
                        = 0x00000000;
           // IODIR1 - Регистр направления ввода вывода (1 - вывод; 0 - ввод)
           IODIR1 = (1 << 27) | (1 << 28) | (1 << 29);
           // IOSET1 - Регистр установки порта (1 - установк; 0 - нет изменений)
           IOSET1 = (1 << 27) | (1 << 28);
           // IOCLR0 - Регистр сброса порта (1 - сброс; 0 - нет изменения)
           IOCLR1 = (1 << 29);
           while (1) {
                          /* Бесконечный цикл */
            if (IOPIN1 & (1<<26)) {
            IOCLR1 = (1 << 27) \mid (1 << 28);
            IOSET1 = (1 << 29);
           } else {
            IOSET1 = (1 << 27) | (1 << 28);
            IOCLR1 = (1 << 29);
           }
}
```

Демонстрация работы:

}

рис 1. Кнопка не нажата: работает нагреватель 1 и перемешивание

GPIO1 — IO1DIR: 0x38000000	31 Bits	24 23 E	lits 16	15 Bits	8 7	Bits	0
IO1SET: 0x18000000							
IO1CLR: 0x00000000							
IO1PIN: 0xDBFFC713			지지되지				
Pins: 0xDBFFC713			ママママ			✓	

GPI01 IO1DIR: 0x38000000	31 Bits 2	4 23	Bits 16	15	Bits 8	7 Bits	0
IO1SET: 0x20000000							
IO1CLR: 0x00000000							
IO1PIN: 0xE7FFC713							VV
Pins: 0xE7FFC713			<u> </u>	V		V	V

рис 2. Кнопка нажата, работает нагреватель 2 (выпекание)

Код функции управления

```
signal void PUSH(void) {
    while (1) {
        PORT1 |= 0x4000000;
        twatch(4000000);
        PORT1 &= ~0x4000000;
        twatch(4000000);
        twatch(4000000);
    }
}

KILL BUTTON *

DEFINE BUTTON "PUSH/POP","PUSH()"
рис 3 Осциллограмма
```


Заключение

В ходе работы был проработан теоретический материал, касающийся архитектуры и особенностей функционирования микроконтроллеров, исследованы возможности интегрированной среды разработки KeiluVision, разрабона и отлажена простейшая программа функционирования микроконтроллера NXP LPC2368. Также была написана управляющая функция и получена осциллограмма.