Products and Quotients of Vector Spaces

Lecture 9

Dept. of Math., SUSTech

2024.03.17

Vector Spaces

- Products of Vector Spaces
- Products and Direct Sums
- Quotients of Vector Spaces
- 4 Homework Assignment 9

Products of Vector Spaces

As usual when dealing with more than one vector space, all the vector spaces in use should be over the same field.

Definition

Suppose V_1, \dots, V_m are vector spaces over \mathbb{F} .

(a) The product $V_1 \times \cdots \times V_m$ is defined by

$$V_1 \times \cdots \times V_m = \{(v_1, \cdots, v_m) : v_1 \in V_1, \cdots, v_m \in V_m\}.$$

(b) Addition on $V_1 \times \cdots \times V_m$ is defined by

$$(u_1, \dots, u_m) + (v_1, \dots, v_m) = (u_1 + v_1, \dots, u_m + v_m).$$

(c) Scalar multiplication on $V_1 \times \cdots \times V_m$ is defined by

$$\lambda(v_1,\cdots,v_m)=(\lambda v_1,\cdots,\lambda v_m).$$

Product Space is a Vector Space

The next result should be interpreted to mean that the product of vector spaces is a vector space with the operations of addition and scalar multiplication as defined above:

Theorem

Suppose V_1, \dots, V_m are vector spaces over \mathbb{F} . Then $V_1 \times \dots \times V_m$ is a vector space over \mathbb{F} .

- (a) The proof of the result above is left to the reader.
- (b) Note that the additive identity of $V_1 \times V_2 \times \cdots V_m$ is $(0, \cdots, 0)$, where 0 in the *j*th slot is the additive identity of V_i .
- (c) The additive inverse of $(v_1, v_2, \dots, v_m) \in V_1 \times \dots \times V_m$ is $(-v_1, \dots, -v_m)$.

Example

3.74 **Example** Is $\mathbb{R}^2 \times \mathbb{R}^3$ equal to \mathbb{R}^5 ? Is $\mathbb{R}^2 \times \mathbb{R}^3$ isomorphic to \mathbb{R}^5 ?

Solution Elements of $\mathbb{R}^2 \times \mathbb{R}^3$ are lists $((x_1, x_2), (x_3, x_4, x_5))$, where $x_1, x_2, x_3, x_4, x_5 \in \mathbb{R}$.

Elements of \mathbf{R}^5 are lists $(x_1, x_2, x_3, x_4, x_5)$, where $x_1, x_2, x_3, x_4, x_5 \in \mathbf{R}$. Although these look almost the same, they are not the same kind of object. Elements of $\mathbf{R}^2 \times \mathbf{R}^3$ are lists of length 2 (with the first item itself a list of length 2 and the second item a list of length 3), and elements of \mathbf{R}^5 are lists of length 5. Thus $\mathbf{R}^2 \times \mathbf{R}^3$ does not equal \mathbf{R}^5 .

The linear map that takes a vector $((x_1, x_2), (x_3, x_4, x_5)) \in \mathbf{R}^2 \times \mathbf{R}^3$ to $(x_1, x_2, x_3, x_4, x_5) \in \mathbf{R}^5$ is clearly an isomorphism of $\mathbf{R}^2 \times \mathbf{R}^3$ onto \mathbf{R}^5 . Thus these two vector spaces are isomorphic.

In this case, the isomorphism is so natural that we should think of it as a relabeling. Some people would even informally say that $\mathbf{R}^2 \times \mathbf{R}^3$ equals \mathbf{R}^5 , which is not technically correct but which captures the spirit of identification via relabeling.

Dimension of a Product Space

3.76 Dimension of a product is the sum of dimensions

Suppose V_1, \ldots, V_m are finite-dimensional vector spaces. Then $V_1 \times \cdots \times V_m$ is finite-dimensional and

$$\dim(V_1 \times \cdots \times V_m) = \dim V_1 + \cdots + \dim V_m.$$

Dimension of a Product Space

3.76 Dimension of a product is the sum of dimensions

Suppose V_1, \ldots, V_m are finite-dimensional vector spaces. Then $V_1 \times \cdots \times V_m$ is finite-dimensional and

$$\dim(V_1 \times \cdots \times V_m) = \dim V_1 + \cdots + \dim V_m.$$

Proof Choose a basis of each V_j . For each basis vector of each V_j , consider the element of $V_1 \times \cdots \times V_m$ that equals the basis vector in the j^{th} slot and 0 in the other slots. The list of all such vectors is linearly independent and spans $V_1 \times \cdots \times V_m$. Thus it is a basis of $V_1 \times \cdots \times V_m$. The length of this basis is dim $V_1 + \cdots + \dim V_m$, as desired.

Products and Direct Sums

In the next result, the map Γ is surjective by the definition of $U_1+\cdots+U_m$. Thus the last word in the result below should be changed from "injective" to "invertible".

3.77 Products and direct sums

Suppose that U_1, \ldots, U_m are subspaces of V. Define a linear map $\Gamma: U_1 \times \cdots \times U_m \to U_1 + \cdots + U_m$ by

$$\Gamma(u_1,\ldots,u_m)=u_1+\cdots+u_m.$$

Then $U_1 + \cdots + U_m$ is a direct sum if and only if Γ is injective.

Products and Direct Sums

In the next result, the map Γ is surjective by the definition of $U_1 + \cdots + U_m$. Thus the last word in the result below should be changed from "injective" to "invertible".

3.77 Products and direct sums

Suppose that U_1, \ldots, U_m are subspaces of V. Define a linear map $\Gamma: U_1 \times \cdots \times U_m \to U_1 + \cdots + U_m$ by

$$\Gamma(u_1,\ldots,u_m)=u_1+\cdots+u_m.$$

Then $U_1 + \cdots + U_m$ is a direct sum if and only if Γ is injective.

Proof The linear map Γ is injective if and only if the only way to write 0 as a sum $u_1 + \cdots + u_m$, where each u_j is in U_j , is by taking each u_j equal to 0. Thus 1.44 shows that Γ is injective if and only if $U_1 + \cdots + U_m$ is a direct sum, as desired.

direct sum and dimensions

3.78 A sum is a direct sum if and only if dimensions add up

Suppose V is finite-dimensional and U_1, \ldots, U_m are subspaces of V. Then $U_1 + \cdots + U_m$ is a direct sum if and only if

$$\dim(U_1 + \dots + U_m) = \dim U_1 + \dots + \dim U_m.$$

direct sum and dimensions

3.78 A sum is a direct sum if and only if dimensions add up

Suppose V is finite-dimensional and U_1, \ldots, U_m are subspaces of V. Then $U_1 + \cdots + U_m$ is a direct sum if and only if

$$\dim(U_1 + \dots + U_m) = \dim U_1 + \dots + \dim U_m.$$

Proof The map Γ in 3.77 is surjective. Thus by the Fundamental Theorem of Linear Maps (3.22), Γ is injective if and only if

$$\dim(U_1 + \dots + U_m) = \dim(U_1 \times \dots \times U_m).$$

Combining 3.77 and 3.76 now shows that $U_1 + \cdots + U_m$ is a direct sum if and only if

$$\dim(U_1 + \dots + U_m) = \dim U_1 + \dots + \dim U_m,$$

as desired.

Quotients of Vector Spaces

We begin our approach to quotient spaces by defining the sum of a vector and a subspace.

3.79 **Definition** v + U

Suppose $v \in V$ and U is a subspace of V. Then v + U is the subset of V defined by

$$v + U = \{v + u : u \in U\}.$$

Example

3.80 **Example** Suppose

$$U = \{(x, 2x) \in \mathbf{R}^2 : x \in \mathbf{R}\}.$$

Then U is the line in \mathbb{R}^2 through the origin with slope 2. Thus

$$(17, 20) + U$$

is the line in \mathbb{R}^2 that contains the point (17, 20) and has slope 2.

affine subset

3.81 **Definition** affine subset, parallel

- An *affine subset* of V is a subset of V of the form v + U for some $v \in V$ and some subspace U of V.
- For $v \in V$ and U a subspace of V, the affine subset v + U is said to be *parallel* to U.

3.82 **Example** parallel affine subsets

- In Example 3.80 above, all the lines in \mathbb{R}^2 with slope 2 are parallel to U.
- If $U = \{(x, y, 0) \in \mathbb{R}^3 : x, y \in \mathbb{R}\}$, then the affine subsets of \mathbb{R}^3 parallel to U are the planes in \mathbb{R}^3 that are parallel to the xy-plane U in the usual sense.

Important: With the definition of *parallel* given in 3.81, no line in \mathbb{R}^3 is considered to be an affine subset that is parallel to the plane U.

quotient space

3.83 **Definition** quotient space, V/U

Suppose U is a subspace of V. Then the *quotient space* V/U is the set of all affine subsets of V parallel to U. In other words,

$$V/U = \{v + U : v \in V\}.$$

3.84 Example quotient spaces

- If $U = \{(x, 2x) \in \mathbb{R}^2 : x \in \mathbb{R}\}$, then \mathbb{R}^2/U is the set of all lines in \mathbb{R}^2 that have slope 2.
- If U is a line in \mathbb{R}^3 containing the origin, then \mathbb{R}^3/U is the set of all lines in \mathbb{R}^3 parallel to U.
- If U is a plane in \mathbb{R}^3 containing the origin, then \mathbb{R}^3/U is the set of all planes in \mathbb{R}^3 parallel to U.

V/U

Our next goal is to make ${\cal V}/{\cal U}$ into a vector space. To do this, we will need the following result.

3.85 Two affine subsets parallel to U are equal or disjoint

Suppose U is a subspace of V and $v,w\in V$. Then the following are equivalent:

- (a) $v w \in U$;
- (b) v + U = w + U;
- (c) $(v+U) \cap (w+U) \neq \emptyset$.

We prove the result as follows: $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a)$.

Quotient Space

3.86 **Definition** addition and scalar multiplication on V/U

Suppose U is a subspace of V. Then **addition** and **scalar multiplication** are defined on V/U by

$$(v+U) + (w+U) = (v+w) + U$$
$$\lambda(v+U) = (\lambda v) + U$$

for $v, w \in V$ and $\lambda \in \mathbf{F}$.

Quotient Space is a Vector Space

3.87 Quotient space is a vector space

Suppose U is a subspace of V. Then V/U, with the operations of addition and scalar multiplication as defined above, is a vector space.

Proof: Quotient space is a vector space

Proof.

- (a) The potential problem with the definitions above of addition and scalar multiplication on V/U is that the representation of an affine subset parallel to U is not unique. Specifically, suppose $v,w\in V$. Suppose also that $\hat{v},\hat{w}\in V$ are such that $v+U=\hat{v}+U$ and $w+U=\hat{w}+U$. To show that the definition of addition on V/U given above makes sense, we must show that $(v+w)+U=(\hat{v}+\hat{w})+U$.
- (b) By 3.85, we have

$$v - \hat{v} \in U$$
 and $w - \hat{w} \in U$.

Because U is a subspace of V and thus is closed under addition, this implies that $(v-\hat{v})+(w-\hat{w})\in U$. Thus $(v+w)-(\hat{v}+\hat{w})\in U$. Using 3.85 again, we see that

$$(v+w)+U=(\hat{v}+\hat{w})+U,$$

as desired. Thus the definition of addition on V/U makes sense.

Proof

- (c) Similarly, suppose $\lambda \in \mathbb{F}$. Because U is a subspace of V and thus is closed under scalar multiplication, we have $\lambda(v-\hat{v}) \in U$. Thus $\lambda v \lambda \hat{v} \in U$. Hence 3.85 implies that $(\lambda v) + U = (\lambda \hat{v}) + U$. Thus the definition of scalar multiplication on V/U makes sense.
- (d) Now that addition and scalar multiplication have been defined on V/U, the verification that these operations make V/U into a vector space is straightforward and is left to the reader. Note that the additive identity of V/U is 0+U (which equals U) and that the additive inverse of v+U is (-v)+U.

Quotient Map

The next concept will give us an easy way to compute the dimension of ${\it V}/{\it U}.$

Definition

Suppose U is a subspace of V. The quotient map π is the linear map $\pi: V \to V/U$ defined by

$$\pi(v) = v + U$$

for $v \in V$.

The reader should verify that π is indeed a linear map. Although π depends on U as well as V, these spaces are left out of the notation because they should be clear from the context.

Dimension

Proposition

Suppose V is finite-dimensional and U is a subspace of V. Then

$$\dim V/U = \dim V - \dim U$$
.

Proof Let π be the quotient map from V to V/U. From 3.85, we see that null $\pi = U$. Clearly range $\pi = V/U$. The Fundamental Theorem of Linear Maps (3.22) thus tells us that

$$\dim V = \dim U + \dim V/U,$$

which gives the desired result.

Linear Map

Each linear map T on V induces a linear map \tilde{T} on V/(null T), which we now define:

Definition

Suppose $T \in \mathcal{L}(V, W)$. Define $\tilde{T}: V/(\operatorname{null} T) \to W$ by

$$\tilde{T}(v + null T) = Tv.$$

To show that the definition of \tilde{T} makes sense, suppose $u,v\in V$ are such that u+ null T=v+ null T. By 3.85, we have $u-v\in$ null T. Thus T(u-v)=0. Hence Tu=Tv. Thus the definition of \tilde{T} indeed makes sense.

3.91

Theorem

Suppose $T \in \mathcal{L}(V, W)$. Then

- (a) \tilde{T} is a linear map from V/(null T) to W;
- (b) \tilde{T} is injective;
- (c) range $\tilde{T} = range T$;
- (d) V/(null T) is isomorphic to range T.

Homework Assignment 9

3.E: 6, 10, 11, 12, 13, 17, 20.