3. Vector Calculus

Fluid particle: Differentially Small Piece of the Fluid Material

- Concept of differential change in a vector, vector field
- Changes in unit vectors
- Calculus w.r.t. time
- Integral calculus w.r.t. space
- Differential calculus w.r.t. space
- Integral theorems, second order operators

Concept of Differential Change In a Vector. The Vector Field.

Scalar field $\phi = \phi(\mathbf{r}, t)$

Vector field V=V(r,t)

Change in Unit Vectors – Cylindrical System

Change in Unit Vectors – Spherical System

$$d\mathbf{e}_{r} = d\theta \mathbf{e}_{\theta} + d\phi \sin \theta \mathbf{e}_{\phi}$$

$$d\mathbf{e}_{\theta} = -d\theta \mathbf{e}_{r} + d\phi \cos \theta \mathbf{e}_{\phi}$$

$$d\mathbf{e}_{\phi} = -d\phi \sin \theta \mathbf{e}_{r} - d\phi \cos \theta \mathbf{e}_{\theta}$$

See "Formulae for Vector Algebra and Calculus"

Fluid particle Differentially small piece of the fluid material

Example

The position of fluid particle moving in a flow varies with time. Working in different coordinate systems write down expressions for the position and, by differentiation, the velocity vectors.

Vector Calculus w.r.t. Time

• Since *any* vector may be decomposed into scalar components, calculus w.r.t. time, only involves *scalar* calculus of the components

Integral Calculus With Respect to Space

Line Integrals

Integral Calculus With Respect to Space

n

dS

Surface S

Volume R

Surface Integrals

Integral Calculus With Respect to Space

Volume Integrals

Differential Calculus w.r.t. Space in 1D

Differential Calculus w.r.t. Space in 3D

grad
$$\phi = \operatorname{Lim}_{\delta \tau \to 0} \frac{1}{\delta \tau} \oint_{\Delta S} \phi \mathbf{n} dS$$

Magnitude and direction of the slope in the scalar field at a point

 Component of gradient is the partial derivative in the direction of that component

Fourier's Law of Heat Conduction

Differential form of the Gradient

Cartesian system

Evaluate integral by expanding the variation in ϕ about a point P at the center of an elemental Cartesian volume. Consider the two x faces:

$$\int_{Eace 1} \phi \mathbf{n} dS \approx \left(\phi - \frac{\partial \phi}{\partial x} \frac{dx}{2} \right) (-\mathbf{i}) dy dz$$

$$\int_{Face 2} \phi \mathbf{n} dS \approx \left(\phi + \frac{\partial \phi}{\partial x} \frac{dx}{2} \right) (+\mathbf{i}) dy dz$$

adding these gives $\mathbf{i} \frac{\partial \phi}{\partial x} dx dy dz$

Proceeding in the same way for y and z

we get
$$\mathbf{j} \frac{\partial \phi}{\partial y} dx dy dz$$
 and $\mathbf{k} \frac{\partial \phi}{\partial z} dx dy dz$, so

grad
$$\phi = \operatorname{Lim}_{\delta \tau \to 0} \frac{1}{\delta \tau} \oint_{\Delta S} \phi \mathbf{n} dS$$

$$= \operatorname{Lim}_{\delta \tau \to 0} \frac{1}{\delta \tau} \left(\mathbf{i} \frac{\partial \phi}{\partial x} dx dy dz + \mathbf{j} \frac{\partial \phi}{\partial y} dx dy dz + \mathbf{k} \frac{\partial \phi}{\partial z} dx dy dz \right) = \mathbf{i} \frac{\partial \phi}{\partial x} + \mathbf{j} \frac{\partial \phi}{\partial y} + \mathbf{k} \frac{\partial \phi}{\partial z}$$

$$\operatorname{grad} \phi = \operatorname{Lim}_{\delta \tau \to 0} \frac{1}{\delta \tau} \oint_{\Delta S} \phi \mathbf{n} dS$$

$$\phi = \phi(x, y, z)$$

$$f =$$

Differential Forms of the Gradient

Divergence

$$\operatorname{grad} \phi = \operatorname{Lim}_{\delta \tau \to 0} \frac{1}{\delta \tau} \oint_{\Lambda S} \phi \mathbf{n} dS$$

Magnitude and direction of the slope in the scalar field at a point

Divergence

$$\operatorname{grad} \phi \equiv \operatorname{Lim}_{\delta \tau \to 0} \frac{1}{\delta \tau} \oint_{\Delta S} \phi \mathbf{n} dS$$
 $\operatorname{div} \mathbf{V} \equiv \operatorname{Lim}_{\delta \tau \to 0} \frac{1}{\delta \tau} \oint_{\Delta S} \mathbf{V} . \mathbf{n} dS$

For velocity: proportionate rate of change of volume of a fluid particle

Differential Forms of the Divergence

Differential Forms of the Curl

$$curl\vec{A} \equiv -\text{Lim}_{\delta \tau \to 0} \frac{1}{\delta \tau} \oint_{\Delta S} \vec{A} \times \vec{n} dS$$

$$curl\vec{A} = \nabla \times A = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} = \frac{1}{r} \begin{vmatrix} \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\ A_r & rA_{\theta} & A_z \end{vmatrix} = \frac{1}{r^2 \sin \theta} \begin{vmatrix} \vec{e}_r & r\vec{e}_{\theta} & r\sin \theta \vec{e}_{\phi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial r} \\ A_r & rA_{\theta} & r\sin \theta A_{\phi} \end{vmatrix}$$

Cartesian Cylindrical

Spherical

Physical Interpretation of the Curl

$$\nabla \times V =$$

Curl

$$curl \mathbf{V} \equiv -\operatorname{Lim}_{\delta \tau \to 0} \frac{1}{\delta \tau} \oint_{\Lambda S} \mathbf{V} \times \mathbf{n} dS$$

$$\mathbf{e.} curl\mathbf{V} \equiv -\text{Lim}_{\delta \tau \to 0} \frac{1}{\delta \tau} \oint_{\Lambda S} \mathbf{e.} \mathbf{V} \times \mathbf{ndS}$$

$$\mathbf{e.} curl\mathbf{V} \equiv \operatorname{Lim}_{\delta \tau \to 0} \frac{1}{\delta \sigma \delta h} \oint_{\Delta S} \mathbf{V.} \mathbf{e} \times \mathbf{n} dS$$

$$\mathbf{e.} curl \mathbf{V} \equiv \operatorname{Lim}_{\delta \tau \to 0} \frac{1}{\delta \sigma \delta h} \oint_{\Lambda S} \mathbf{V.} \mathbf{e} \times \mathbf{n} ds \, \delta h$$

e.curl
$$\mathbf{V} \equiv \operatorname{Lim}_{\delta\sigma\to 0} \frac{1}{\delta\sigma} \oint_{C_{e}} \mathbf{V}.d\mathbf{s} = \operatorname{Lim}_{\delta\sigma\to 0} \frac{\Gamma_{Ce}}{\delta\sigma}$$

$$\mathbf{e.} curl \mathbf{V} \equiv \operatorname{Lim}_{a \to 0} \frac{1}{\pi a^2} v_{\theta} 2\pi a = 2 \operatorname{Lim}_{a \to 0} \frac{v_{\theta}}{a}$$

= twice the avg. angular velocity about e

Curl

$$\mathbf{e.} curl \mathbf{V} \equiv \operatorname{Lim}_{\delta\sigma\to 0} \frac{1}{\delta\sigma} \oint_{C_{e}} \mathbf{V.} d\mathbf{s} = \operatorname{Lim}_{\delta\sigma\to 0} \frac{\Gamma_{Ce}}{\delta\sigma}$$

$$\operatorname{grad} \phi = \operatorname{Lim}_{\delta \tau \to 0} \frac{1}{\delta \tau} \oint_{\Delta S} \phi \mathbf{n} dS$$

Magnitude and direction of the slope in the scalar field at a point

Divergence

$$div\mathbf{V} \equiv \lim_{\delta \tau \to 0} \frac{1}{\delta \tau} \oint_{\Delta S} \mathbf{V}.\mathbf{n} dS$$

For velocity: proportionate rate of change of volume of a fluid particle

Curl

$$\operatorname{grad} \phi \equiv \operatorname{Lim}_{\delta \tau \to 0} \frac{1}{\delta \tau} \oint_{\Delta S} \phi \mathbf{n} dS \qquad div \mathbf{V} \equiv \operatorname{Lim}_{\delta \tau \to 0} \frac{1}{\delta \tau} \oint_{\Delta S} \mathbf{V} \cdot \mathbf{n} dS \qquad curl \mathbf{V} \equiv -\operatorname{Lim}_{\delta \tau \to 0} \frac{1}{\delta \tau} \oint_{\Delta S} \mathbf{V} \times \mathbf{n} dS$$

For velocity: twice the circumferentially averaged angular velocity of a fluid particle = Vorticity Ω

1st Order Integral Theorems

Gradient theorem

Divergence theorem

Curl theorem

Stokes' theorem

The Gradient Theorem

Begin with the definition of grad:

grad
$$\phi = \operatorname{Lim}_{\delta \tau \to 0} \frac{1}{\delta \tau} \oint_{\Delta S} \phi \mathbf{n} dS$$

Sum over all the $d\tau$ in R:

Finite Volume *R*Surface *S*

Assumptions in Gradient Theorem

$$\int_{R} \nabla p \, d\tau = \int_{S} p \mathbf{n} dS$$

R is the volume of fluid enclosed between S_1 and S_2

p is not defined inside the wing so the wing itself must be excluded from the integral

1st Order Integral Theorems

Gradient theorem

Divergence theorem

Curl theorem

Stokes' theorem

$$\int_{R} \nabla \phi d\tau = \oint_{S} \phi \mathbf{n} dS$$

$$\int_{R} \nabla .\mathbf{A} d\tau = \oint_{S} \mathbf{A} .\mathbf{n} dS$$

$$\int_{R} \nabla \times \mathbf{A} d\tau = -\oint_{S} \mathbf{A} \times \mathbf{n} dS$$

$$\int_{S} \nabla \times \mathbf{A.n} dS = \oint_{C} \mathbf{A.ds}$$

Alternative Definition of the Curl

e.curl
$$\mathbf{A} \equiv \operatorname{Lim}_{\delta\sigma\to 0} \frac{1}{\delta\sigma} \oint_{C_{e}} \mathbf{A}.d\mathbf{s} = \operatorname{Lim}_{\delta\sigma\to 0} \frac{\Gamma_{Ce}}{\delta\sigma}$$

Stokes' Theorem

Begin with the alternative definition of curl, choosing the direction **e** to be the outward normal to the surface **n**:

$$\mathbf{n.}\nabla \times \mathbf{A} \equiv \operatorname{Lim}_{\delta\sigma \to 0} \frac{1}{\delta\sigma} \oint_{\mathbf{C}_{\circ}} \mathbf{A.ds}$$

Sum over all the $d\sigma$ in S:

Stokes' Theorem and Velocity

Apply Stokes' Theorem to a velocity field

$$\int_{S} \nabla \times \mathbf{V.n} dS = \oint_{C} \mathbf{V.ds}$$

Or, in terms of vorticity and circulation

$$\int_{S} \mathbf{\Omega}.\mathbf{n} dS = \oint_{C} \mathbf{V}.d\mathbf{s} = \Gamma_{C}$$

What about a closed surface?

$$\oint_{S} \mathbf{\Omega}.\mathbf{n}dS = 0$$

Assumptions of Stokes' Theorem

Flow over a finite wing

$$\int_{S} \nabla \times \mathbf{V.n} dS = \oint_{C} \mathbf{V.ds}$$

Wing with circulation must trail vorticity. Always.

Vector Operators of Vector Products

$$\nabla(\psi\Phi) = \psi\nabla\Phi + \Phi\nabla\psi$$

$$\nabla.(\Phi\vec{A}) = \Phi\nabla.\vec{A} + \nabla\Phi.\vec{A}$$

$$\nabla\times(\Phi\vec{A}) = \Phi\nabla\times\vec{A} + \nabla\Phi\times\vec{A}$$

$$\nabla(\vec{A}.\vec{B}) = (\vec{A}.\nabla)B + (\vec{B}.\nabla\vec{A}) + \vec{A}\times(\nabla\times\vec{B}) + \vec{B}\times(\nabla\times\vec{A})$$

$$\nabla.(\vec{A}\times\vec{B}) = \vec{B}.\nabla\times\vec{A} - \vec{A}.\nabla\times\vec{B}$$

$$\nabla\times(\vec{A}\times\vec{B}) = \vec{A}(\nabla.\vec{B}) + (\vec{B}.\nabla)\vec{A} - \vec{B}(\nabla.\vec{A}) - (\vec{A}.\nabla)\vec{B}$$

Convective Operator

$$(\vec{A}.\nabla)\Phi = \left(A_x \frac{\partial}{\partial x} + A_y \frac{\partial}{\partial y} + A_z \frac{\partial}{\partial z}\right) \phi$$
$$= \vec{A}.(\nabla\Phi)$$

 $\mathbf{V}.\nabla
ho$ = change in density in direction of **V**, multiplied by magnitude of **V**

$$(\vec{A}.\nabla)\vec{B} = \left(A_x \frac{\partial}{\partial x} + A_y \frac{\partial}{\partial y} + A_z \frac{\partial}{\partial z}\right) \vec{B}$$

$$= \frac{1}{2} \left[\nabla(\vec{A}.\vec{B}) - \vec{A} \times (\nabla \times \vec{B}) - \vec{B} \times (\nabla \times \vec{A})\right]$$

$$-\nabla \times (\vec{A} \times \vec{B}) + \vec{A}(\nabla \cdot \vec{B}) - \vec{B}(\nabla \cdot \vec{A})$$

Second Order Operators

$$\nabla . \nabla \phi = \nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}$$
 The Laplacian, may also be applied to a vector field.

$$\nabla(\nabla \cdot \mathbf{A})$$

$$\nabla \times \nabla \times \mathbf{A} = \nabla(\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$

$$\nabla \times \nabla \phi \equiv 0$$

- So, any vector differential equation of the form $\nabla \times \mathbf{B} = 0$ $\nabla \times \nabla \phi \equiv 0$ can be solved identically by writing $\mathbf{B} = \nabla \phi$.
 - We say **B** is *irrotational*.
 - We refer to ϕ as the **scalar potential**.

$$\nabla . \nabla \times \mathbf{A} \equiv 0$$

- So, any vector differential equation of the form ∇ .**B**=0 can be solved identically by writing $\mathbf{B} = \nabla \times \mathbf{A}$.
- We say **B** is **solenoidal** or **incompressible**.
- We refer to A as the vector potential.

2nd Order Integral Theorems

Green's theorem (1st form)

$$\int_{R} \psi \nabla^{2} \phi + \nabla \psi \nabla \phi \, d\tau = \oint_{S} \psi \, \frac{\partial \phi}{\partial \mathbf{n}} \, dS$$

Green's theorem (2nd form)

$$\int_{R} \psi \nabla^{2} \phi - \phi \nabla^{2} \psi \ d\tau = \oint_{S} \psi \frac{\partial \phi}{\partial \mathbf{n}} - \phi \frac{\partial \psi}{\partial \mathbf{n}} dS$$

These are both re-expressions of the divergence theorem.

Helmholz Decomposition Theorem

 Any vector field may be expressed as the sum of a gradient vector field and a curl vector field.

