

EVERLASTING Cearning

FUNDAMENTALS OF COMPUTER GRAPHICS (CSIT304)

B-SPLINE CURVES

CHIRANJOY CHATTOPADHYAY

Associate Professor,
FLAME School of Computation and Data Science

BEZIER CURVES: ISSUES

No local control

• Degree of curve is fixed by the number of control points

B SPLINE

- Each control point has a unique basis function
- Local control is facilitated
- Is it possible that we still can use lower degree curve segments without worrying about the G1 continuous condition?
- B-spline curves are generalizations of Bézier curves and are developed to answer this question.

www.flame.edu.in

B SPLINE (LOCAL CONTROL)

- Bézier basis functions are used as weights.
- B-spline basis functions are much more complex.
- There are two unique properties:
 - The domain is subdivided by knots, and
 - Basis functions are not non-zero on the entire interval.
- Each B-spline basis function is non-zero on a few adjacent subintervals
- As a result, B-spline basis functions are quite "local".

B-SPLINE (KNOT, DEFINITION)

- Let U be a set of m + 1 non-decreasing numbers
 - \circ u0 <= u2 <= u3 <= ... <= um.
 - o The ui's are called knots, the set U the knot vector,
 - The half-open interval [ui, ui+1) the i-th knot span.
- If a knot ui appears k times (i.e., ui = ui+1 = ... = ui+k-1), where k > 1, ui is a multiple knot of multiplicity k, written as ui(k).
- If ui appears only once, it is a simple knot.
- If the knots are equally spaced (i.e., ui+1 ui is a constant for $0 \le i \le m-1$), the knot vector or the knot sequence is said **uniform**; otherwise, it is **non-uniform**.

B SPLINE CURVES

The user supplies: the degree p, n+1 control points, and m+1 knot vectors

Write the curve as:

$$P(t) = \sum_{i=0}^{n} P_i N_i^p(t)$$

• The functions N_i^p are the *B-Spline basis functions*

B SPLINE BASIS

- The domain is subdivided by knots, and
- Basis functions are not non-zero on the entire interval.
- Some knot spans may not exist (Repeat)
 - o Simple / Multiple Knots
 - Uniform/ Non-Uniform Knots

B-Spline Basis Plots

The i-th B-spline basis function of degree p

$$N_i^0(t) = \begin{cases} 1, t_i \le t \le t_{i+1} \\ Otherwise \end{cases}$$

$$N_i^p(t) = \frac{t - t_i}{t_{i+p} - t_i} N_i^{p-1}(t) + \frac{t_{i+p+1} - t}{t_{i+p+1} - t_i} N_{i+1}^{p-1}(t)$$

Cox-de Boor recursion formula

EXPLANATION

- If the degree is zero (i.e., p = 0)
 - o These basis functions are all step functions.
- Basis function $N_{i,0}(u)$ is 1 if u is in the i-th knot span [ui, ui+1).
- For example,
 - o If we have four knots u0 = 0, u1 = 1, u2 = 2 and u3 = 3,
 - Knot spans 0, 1 and 2 are [0,1), [1,2), [2,3)
 - The basis functions of degree 0 are $N_{0,0}(u) = 1$ on [0,1) and 0 elsewhere, $N_{1,0}(u) = 1$ on [1,2) and 0 elsewhere, and $N_{2,0}(u) = 1$ on [2,3) and 0 elsewhere.

B SPLINE BASIS: OBSERVATIONS 1

Non-zero domain of a basis function

Basis function $N_{i,p}(u)$ is non-zero on $[t_i,t_{i+p+1})$

B SPLINE BASIS: OBSERVATIONS 2

• Influence of the basis function coefficients

Linear combination of two intervals, where both are linear in u

- Suppose the knot vector is $T = \{0, 0.25, 0.5, 0.75, 1\}$.
- Hence, n = 4 and $t_0 = 0$, $t_1 = 0.25$, $t_2 = 0.5$, $t_3 = 0.75$ and $t_4 = 1$.

$$P(t) = \sum_{i=0}^{n} P_i N_i^p(t)$$

$$N_i^0(t) = \begin{cases} 1, t_i \le t \le t_{i+1} \\ Otherwise \end{cases}$$

$$N_i^p(t) = \frac{t - t_i}{t_{i+p} - t_i} N_i^{p-1}(t) + \frac{t_{i+p+1} - t}{t_{i+p+1} - t_i} N_{i+1}^{p-1}(t)$$

Degree	Basis Function	Range	Equation		
	N_0^0				
	N_1^0				
0	N ₂ ⁰				
	N ₃ ⁰				
	N_0^1				
1	N_1^1				
	N_2^1				

- Suppose the knot vector is $T = \{0, 0.25, 0.5, 0.75, 1\}$.
- Hence, n = 4 and $t_0 = 0$, $t_1 = 0.25$, $t_2 = 0.5$, $t_3 = 0.75$ and $t_4 = 1$.

$$P(t) = \sum_{i=0}^{n} P_i N_i^p(t)$$

$$N_i^0(t) = \begin{cases} 1, t_i \le t \le t_{i+1} \\ Otherwise \end{cases}$$

$$N_i^p(t) = \frac{t - t_i}{t_{i+p} - t_i} N_i^{p-1}(t) + \frac{t_{i+p+1} - t}{t_{i+p+1} - t_i} N_{i+1}^{p-1}(t)$$

Degree	Basis Function	Range	Equation		
0	N ₀ ⁰	[0,0.25)	=1		
	N ₁ ⁰	[0.25,0.5)	=1		
	N_2^0	[0.5,0.75)	=1		
	N_3^0	[0.75,1)	=1		
1	N_0^1				
	N_1^1				
	N_2^1				

- Suppose the knot vector is $T = \{0, 0.25, 0.5, 0.75, 1\}$.
- Hence, n = 4 and $t_0 = 0$, $t_1 = 0.25$, $t_2 = 0.5$, $t_3 = 0.75$ and $t_4 = 1$.

$$P(t) = \sum_{i=0}^{n} P_i N_i^p(t)$$

$$N_i^0(t) = \begin{cases} 1, t_i \le t \le t_{i+1} \\ Otherwise \end{cases}$$

$$N_i^p(t) = \frac{t - t_i}{t_{i+p} - t_i} N_i^{p-1}(t) + \frac{t_{i+p+1} - t}{t_{i+p+1} - t_i} N_{i+1}^{p-1}(t)$$

Degree	Basis Function	Range	Equation		
0	N ₀ ⁰	[0,0.25)	=1		
	N ₁ ⁰	[0.25,0.5)	=1		
	N_2^0	[0.5,0.75)	=1		
	N_3^0	[0.75,1)	=1		
1	N_0^1				
	N_1^1				
	N_2^1				

- Suppose the knot vector is $T = \{0, 0.25, 0.5, 0.75, 1\}$.
- Hence, n = 4 and $t_0 = 0$, $t_1 = 0.25$, $t_2 = 0.5$, $t_3 = 0.75$ and $t_4 = 1$.

$$P(t) = \sum_{i=0}^{n} P_i N_i^p(t)$$

$$N_i^0(t) = \begin{cases} 1, t_i \le t \le t_{i+1} \\ Otherwise \end{cases}$$

$$N_i^p(t) = \frac{t - t_i}{t_{i+p} - t_i} N_i^{p-1}(t) + \frac{t_{i+p+1} - t}{t_{i+p+1} - t_i} N_{i+1}^{p-1}(t)$$

Degree	Basis Function	Range	Equation		
0	N_0^0	[0,0.25)	=1		
	N_1^0	[0.25,0.5)	=1		
	N ₂ ⁰	[0.5,0.75)	=1		
	N_3^0	[0.75,1)	=1		
1	N_0^1	[0,0.25)	4t		
		[0.25,0.5)	2(1-t)		
	N_1^1				
	N_2^1				

DERIVATIVES OF B SPLINE CURVE

$$P(t) = \sum_{i=0}^{n} P_i N_i^{p}(t)$$

The derivative of **each of these basis functions** can be computed as follows:

$$\frac{d}{dt}(P(t)) = \sum_{i=0}^{n} P_i N_i^p(t)' = \frac{p}{t_{i+p} - t_i} N_i^{p-1}(t) - \frac{p}{t_{i+p+1} - t_{i+1}} N_{i+1}^{p-1}(t)$$

Plugging these derivatives back

$$\frac{d}{dt}(P(t)) = \sum_{i=0}^{n-1} N_{i+1}^{p-1}(t)Q_i \quad where, Q_i = \frac{p}{t_{i+p+1} - t_{i+1}}(P_{i+1} - P_i)$$

Derivative of a B-spline curve is another B-spline curve of degree p-1 on the original knot vector with a new set of n control points, Q_0, Q_1, \dots, Q_{n-1}

PROPERTIES OF B-SPLINE

- $N_i^p(t)$ is a degree p polynomial in t
- Non-negativity: For all i, p and $t, N_i^p(t)$ is non-negative
- Local Support: $N_i^p(t)$ is a non-zero polynomial on $[t_i, t_{i+p+1}]$
- On any span $[t_i, ti_{+p+1}]$, at most p+1 degree p basis functions are non-zero
 - o $N_{i-p}^{p}(t)$, $N_{i-p+1}^{p}(t)$, ..., $N_{i}^{p}(t)$
- Partition of Unity
 - The sum of all non-zero degree p basis functions on span $[t_i, t_{i+p+1}]$ is unity, i.e. $\sum_{k=0}^p N_{i-k}^p = 1$

PROPERTIES OF B-SPLINE

• m = n + p + 1

• Basis function $N_i^p(t)$ is a composite curve of degree p polynomials with joining points at knots in $[t_i, t_{i+p+1}]$

• At a knot of multiplicity k, basis function $N_i^p(t)$ is C^{p-k} continuous.

Convex hull property

IMPACT OF MULTIPLE KNOTS

- Significant impact on the computation of basis functions
- Counting properties
- Each knot of multiplicity k reduces at most k-1 basis functions' non-zero domain.

IMPACT OF MULTIPLE KNOTS

• At each internal knot of multiplicity k, the number of non-zero basis functions is at most p - k + 1, where p is the degree of the basis functions.

B SPLINE MOVING CONTROL POINTS

Local control scheme

Span	$[t_4,t_5)$	$[t_5,t_6)$	$[t_6,t_7)$	$[t_7,t_8)$	$[t_8,t_9)$	$[t_9, t_{10})$	$[t_{10}, t_{11})$	$[t_{11}, t_{12})$	$[t_{12}, t_{13})$
Segment	1	2	3	4	5	6	7	8	9

B-SPLINE CURVES: KNOT INSERTION

- Adding a new knot into the existing knot vector
 - o Without changing the shape of the curve.

• m = n + p + 1

• Inserting a new knot causes a new control point to be added

Some existing control points are removed and replaced with new ones by corner cutting.

SUB-DIVISION

Follows exactly the same procedure for subdividing a Bézier curve.

EVERLASTING *Cearning*

THANK YOU