Micro Theory IIIb - Hemicontinuity

Zagreb Mukerjee

Econ 500 Micro Theory Index

We are concerned now with correspondences, which can map x to some set of ys. Intuitively that corresponds to flat regions on indifference curves.

Upper Hemicontinuous

Suppose a correspondence $f: X \to Y$. Suppose $f(x) \subseteq$ some compact subset of Y. As a heuristic, I say that f is hemicontinuous if the graph of f is a closed set. That means:

- ullet For any convergent sequence $x_n \in X: x_n o x$, and
- ullet if there is $y_n \in f(x_n)$ that converges to y_i then
- $\bullet \quad y \in f(x).$

Intuitively, imagine the correspondence given by f(x) = [x, x+1). Suppose $x_n = 1 - 1/n$. This converges to 1. Then $f(x_4)$ will be [3/4, 7/4). Choose y_n as 2 - 2/n. Then $y_4 = 2 - 2/4 = 3/2 \in f(x_4)$. It's apparent that y_n converges to 2, but 2 is not in f(1).

Lower Hemicontinous

More chill condition. No compact codomain needed.

If $\forall x_n \to x$, $y \in f(x)$ there exists some $y_n \in f(x_n)$ such that $n \geq N \implies y_n \to y$.