

(A Constituent College of Somaiya Vidyavihar University) **Department of Electronics Engineering**

Course Name:	Analog Integrated Circuits and Applications	Semester:	VI
Date of Performance:	Jan 15, 2024	Batch No:	A2
Faculty Name:	Prof. Ashwini Kumar	Roll No:	16010221042
Faculty Sign & Date:		Grade/Marks:	/25

Experiment No: 2

Title: To study Inverting and Non Inverting Amplifier using Op-amp

Aim and Objective of the Experiment:

To study Inverting and Non-Inverting Amplifier using op-amp 741

COs to be achieved:

CO2: Design circuits using op-amps as linear applications.

Theory:

The op amp used is high performance monolithic one constructed using the fair child planar epitaxial process. It is intended for wide range of analog applications. High common mode voltage & absence of latch up tendencies make 741 ideal for use as a Voltage follower.

Important features are:

- 1. No frequency compensation required
- 2. No short circuit protection
- 3. Offset voltage nullifying capability
- 4. No latch up problem
- 5. Large common mode & differential gain

Circuit Diagram:

A) Inverting Amplifier:

AICA Lab Semester: VI Academic Year: 2022-23

(A Constituent College of Somaiya Vidyavihar University)

Department of Electronics Engineering

B) Non- Inverting Amplifier:

Non-Inverting Amplifier Circuit

Stepwise-Procedure:

A. Inverting and Non-inverting amplifier

- 1) Connect the circuit for Inverting configuration.
- 2) Apply sine wave input of 1Vp-p, 1kHz and measure output voltage.
- 3) Draw the input and output waveforms Vs time.
- 4) Increase input voltage from zero to maximum such that output goes in to saturation.
- 5) Measure V_{OH} and V_{OL} and draw transfer characteristic.
- 6) Repeat steps 2 to 5 for Non Inverting Amplifier

Observation Table:

AICA Lab Semester: VI Academic Year: 2022-23

(A Constituent College of Somaiya Vidyavihar University)

Department of Electronics Engineering

A) Inverting amplifier:

For Vin sine wave 1kHz

Sr. No.	Vin volts(p-p)	Vout volts(p-p)	Gain (Vo/Vin)
1.	1	10	10
2.	2	17.5	8.75
3.	1.5	14	9.3

Find out maximum peak to peak voltage (Vin) such that no clipping is observed. Increase input voltage to observe clipping and measure V_{OH} and V_{OL}

B) Non-inverting amplifier:

For Vin sine wave 1kHz

Sr. No.	Vin volts(p-p)	Vout volts(p-p)	Gain (Vo/Vin)
1.	1	10	10
2.	1.5	15	10
3.	2	17	8.2

Calculation:

Design:-

$$Vout = \left(\left(\frac{RF}{R2} * Va \right) - \left(\frac{R3}{R1} * Vb \right) \right) \dots (1)$$

1) To design Subtractor,

$$R1 = R2 = R3 = RF$$

So that equation 1 becomes

$$Vout = (Va - Vb)$$

Assume, $R1 = R2 = R3 = RF = 10K\Omega$

Results:				
	la cantina.			
	Inverting:			

Academic Year: 2022-23 AICA Lab Semester: VI Roll No:

(A Constituent College of Somaiya Vidyavihar University) **Department of Electronics Engineering**

Non-Inverting:

Post Lab Questions:

AICA Lab Semester: VI Academic Year: 2022-23

(A Constituent College of Somaiya Vidyavihar University)

Department of Electronics Engineering

1. List all linear applications of op-amp.

Voltage follower (Unity gain amplifier)

Inverting amplifier

Non-inverting amplifier

Summing amplifier

Difference amplifier

Integrator

Differentiator

Instrumentation amplifier

Active filters

- 2. Design averaging circuit for four DC inputs.
- 3. Design Adder-Subtractor circuit using opamp.

$$V_{out} = (V3 + V4) - (V1 + V2)$$

Conclusion:

In conclusion, the experiment aimed at implementing inverting and non-inverting amplifiers using

Semester: VI

Academic Year: 2022-23

(A Constituent College of Somaiya Vidyavihar University)

Department of Electronics Engineering

the IC 741 operational amplifier was successfully conducted. The key characteristics of operational amplifiers, such as high open-loop gain, differential inputs, and single-ended output, were demonstrated in both configurations

Signature of faculty in-charge with Date:

AICA Lab Semester: VI Academic Year: 2022-23