Álgebra I. Tarea 7: Clases laterales

Universidad de El Salvador. Fecha límite: 31.05.2018

Por cualquier pregunta, no duden en contactarme por correo electrónico cadadr@gmail.com.

Ejercicio 7.1. Demuestre que si $H \subset G$ es un subgrupo de índice |G:H| = 2, entonces H es normal.

Ejercicio 7.2. *Demuestre que todo cociente de un grupo cíclico es cíclico.*

Ejercicio 7.3 (Segundo teorema de isomorfía). *Sea G un grupo, sea H* \subset *G un subgrupo y K* \subset *G un subgrupo* normal.

- 1) Demuestre que $HK := \{hk \mid h \in H, k \in K\}$ es un subgrupo de G.
- 2) Demuestre que K es un subgrupo normal de HK.
- 3) Demuestre que la aplicación

$$H \rightarrow HK/K$$
, $h \mapsto hK$

es un homomorfismo sobreyectivo de grupos y su núcleo es $H \cap K$.

4) Deduzca que $H/(H \cap K) \cong HK/K$.

Ejercicio 7.4. Para un cuerpo k sea $G = \operatorname{GL}_2(k)$, $H = \operatorname{SL}_2(k)$, $K = k^{\times} \cdot I \subset \operatorname{GL}_2(k)$. Deduzca que

$$\operatorname{SL}_2(k)/\{\pm I\} \cong \operatorname{GL}_2(k)/k^{\times}.$$

Ejercicio 7.5 (Tercer teorema de isomorfía). Sea G un grupo. Sea K un subgrupo normal de G y sea N un subgrupo de K tal que N es normal en G.

1) Demuestre que la aplicación

$$G/N \rightarrow G/K$$
, $gN \mapsto gK$

está bien definida y es un homomorfismo sobreyectivo y su núcleo es $K/N \subset G/N$.

Indicación: se puede usar la propiedad universal de G/N:

2) Deduzca que $(G/N)/(K/N) \cong G/K$.

Ejercicio 7.6. Sean m y n dos enteros positivos tales que $n \mid m$, así que $m\mathbb{Z} \subset n\mathbb{Z}$. Demuestre que

$$(\mathbb{Z}/m\mathbb{Z})/(n\mathbb{Z}/m\mathbb{Z}) \cong \mathbb{Z}/n\mathbb{Z}.$$

Se dice que un grupo abeliano A un elemento $x \in A$ es divisible si para todo $a \in A$ y todo entero positivo $n = 1, 2, 3, \dots$ existe $b \in A$ (no necesariamente único) tal que nb = a. Si todos los elementos de Ason divisibles, se dice que *A* es un **grupo divisible**.

Ejercicio 7.7.

- 1) Demuestre que los grupos aditivos \mathbb{Q} y \mathbb{R} son divisibles.
- 2) Demuestre que un grupo abeliano finito no nulo nunca es divisible.

Ejercicio 7.8. Sea p un número primo. El p-grupo de Prüfer es el grupo de las raíces de la unidad de orden p^n para $n \in \mathbb{N}$:

$$\mu_{p^{\infty}}(\mathbb{C}):=\bigcup_{n\geq 0}\mu_{p^n}(\mathbb{C})=\{z\in\mathbb{C}^{\times}\mid z^{p^n}=1\ para\ algún\ n=0,1,2,\ldots\}$$

- 1) Demuestre que $\mu_{p^{\infty}}(\mathbb{C})$ es divisible.
- 2) Demuestre que existe un isomorfismo $\mu_{p^{\infty}}(\mathbb{C}) \cong \mathbb{Z}[1/p]/\mathbb{Z}$ donde

$$\mathbb{Z}[1/p] := \{a/p^n \mid a \in \mathbb{Z}, n = 0, 1, 2, \ldots\}.$$

Ejercicio 7.9.

1) Demuestre que todos los elementos divisibles forman un subgrupo

$$A_{div} := \{a \in A \mid a \text{ es divisible }\}.$$

Este se llama el subgrupo máximo divisible de A.

2) Sea $f: A \to B$ un homomorfismo de grupos. Demuestre que si $a \in A$ es divisible, entonces $f(a) \in B$ es también divisible. En particular, f se restringe a un homomorfismo $A_{div} \to B_{div}$.

$$\begin{array}{ccc}
A_{div} & ---- & B_{div} \\
\downarrow & & \downarrow \\
A & \xrightarrow{f} & B
\end{array}$$

3) Demuestre que todo grupo cociente de un grupo divisible es también divisible. En particular, \mathbb{Q}/\mathbb{Z} y \mathbb{R}/\mathbb{Z} son divisibles.

Ejercicio 7.10. Demuestre que no hay homomorfismos no triviales $\mathbb{Q} \to \mathbb{Z}$ y $\mathbb{Q}/\mathbb{Z} \to \mathbb{Z}$.