UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof^a. Karla Lima

19 de Maio de 2017

(1) Encontre o domínio natural de cada função.

$$a) \quad f(x) = \frac{1}{x - 3}$$

a)
$$f(x) = \frac{1}{x-3}$$
 b) $g(x) = \sqrt{x^2-2}$ c) $h(x) = 3\sin x$

$$c)$$
 $h(x) = 3 \operatorname{sen} x$

(2) Calcule os limites justificando cada passagem com as propriedades dos limites que forem usadas.

a)
$$\lim_{x \to 4} (5x^2 - 2x + 3)$$

a)
$$\lim_{x \to 4} (5x^2 - 2x + 3)$$
 b) $\lim_{x \to -1} \frac{x - 2}{x^2 - 4x - 3}$

c)
$$\lim_{x \to 1} \left(\frac{1+3x}{1+4x^2+3x^4} \right)^3$$
 d) $\lim_{x \to \sqrt{2}} t^4(t^2+1)$

$$d$$
) $\lim_{x \to \sqrt{2}} t^4(t^2 + 1)$

(3) Se

$$f(x) = \begin{cases} \sqrt{x-4}, & \text{se } x > 4\\ 8-2x, & \text{se } x \le 4 \end{cases}$$

calcule:

a)
$$\lim_{x \to 4^{-}} f(x);$$

a)
$$\lim_{x \to 4^+} f(x);$$

a) O $\lim_{x\to 4} f(x)$ existe? Justifique sua resposta.

(4) Seja
$$F(x) = \frac{x}{|x|}$$
.

- a) Qual o domínio da função F?
- b) Sabemos que |x| é uma função definida por partes:

$$|x| = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0. \end{cases}$$

Usando a regra de |x|, descreva F(x) como uma função definida por partes.

c) Calcule $\lim_{x\to 0^-} f(x)$, $\lim_{x\to 0^+} f(x)$. O $\lim_{x\to 0} f(x)$ existe? Justifique sua resposta.

Gabarito

(1) Encontre o domínio natural de cada função.

a)
$$D = \{x \in \mathbb{R}/x \neq 3\}$$

b)
$$D = \{x \in \mathbb{R}/-\infty < x \le -\sqrt{2} \text{ ou } \sqrt{2} \le x < \infty \}$$

c)
$$D = \mathbb{R}$$
.

a)
$$\lim_{x \to a} (5x^2 - 2x + 3) = 75$$

a)
$$\lim_{x \to 4} (5x^2 - 2x + 3) = 75$$
 b) $\lim_{x \to -1} \frac{x - 2}{x^2 - 4x - 3} = \frac{1}{2}$

c)
$$\lim_{x \to 1} \left(\frac{1+3x}{1+4x^2+3x^4} \right)^3 = \frac{1}{32}$$
 d) $\lim_{x \to \sqrt{2}} t^4(t^2+1) = 108$

$$d) \lim_{t \to \sqrt{2}} t^4(t^2 + 1) = 108$$

(3) a)
$$\lim_{x \to 4^{-}} f(x) = 0;$$

a)
$$\lim_{x \to 4^+} f(x) = 0;$$

a) $\lim_{x\to 4} f(x) = 0$, pois os limites laterais existem e são iguais.

(4) a)
$$D = \{x \in \mathbb{R}/x \neq 0\}$$

b)
$$F(x) = \begin{cases} 1, & \text{se } x > 0 \\ -1, & \text{se } x < 0. \end{cases}$$

$$\lim_{x \to 0^-} f(x) = -1$$

$$\lim_{x \to 0^+} f(x) = 1$$

Portanto, temos que $\lim_{x\to 0} f(x) = \nexists$, pois os limites laterais apesar de existirem, não são iguais.