Exercise sheet 2: Presheaves and simplicial sets 2

- 1 Prove (at least some of) the simplicial identities!
- Let $F: C \to D$ be a functor between small categories. There is an induced functor $F^*: \mathrm{PSh}(D) \to \mathrm{PSh}(C)$ given by precomposition by F. Prove that this functor has a left adjoint, which we will denote by $F_!$ (Hint: use the free cocompletion property to construct a candidate functor and check it is indeed a left adjoint to F^*).
 - Prove that F^* also admits a right adjoint, that we will denote by F_* (Hint: show that F^* preserves colimits). There is a formula for F_* in terms of limits, but we will not need it; see Riehl's "Category theory in context" Section 6.2.
 - For $n \geq -1$, let $\Delta_{\leq n}$ be the full subcategory of the simplex category Δ whose objects are [i] for $i \leq n$ (in particular $\Delta_{\leq -1}$ is the empty category). We have the inclusion functor $i_n : \Delta_{\leq n} \to \Delta$. Prove that the construction of the n-th skeleton $\operatorname{Sk}_n(-)$ given in the lecture is functorial, and that there is a natural isomorphism

$$\operatorname{Sk}_n(-) \simeq (i_n)_!(i_n)^*.$$

Deduce from all of this that $Sk_n(-)$ has a right adjoint, the **coskeleton** functor $Cosk_n(-) := (i_n)_*(i_n)^*$.

- **3** Show that, for any simplicial set X, geometric realisation induces a bijection $\pi_0(X) \to \pi_0(|X|)$ (where the first π_0 is the set of connected components of a simplicial set, and the second π_0 is the set of path-connected components of a topological space).
- 4 Show that, for a Kan complex X, the homotopy relation on X_0 defining $\pi_0(X)$ is indeed an equivalence relation.
- **5** Prove that discrete simplicial sets (in the sense of Exercise 6 of Sheet 1) are Kan complexes.
- **6** Prove that trivial Kan fibrations are Kan fibrations (and consequently that contractible Kan complexes are Kan complexes).
- 7 Prove that products and (more difficult) coproducts of Kan complexes are Kan complexes.
- **8** (Difficult) Prove that if G_{\bullet} is a simplicial group, that is, a group object in the category of simplicial set, then the underlying simplicial set of G_{\bullet} is a Kan complex. (For a solution, see Kerodon Proposition 1.1.9.9 (tag 00MG)).