Question bank

Selection of questions (the ones in **bold** are most important):

A. Define:

- 1. Dual space, covector, k-form
- 2. Inner product (scalar product). (Non-degenerate, symmetric, Euclidean, pseudo-Euclidean)
- 3. Contraction of vector and an exterior form (e.g., 2-form, 3-form, etc.)
- 4. Smooth map between manifolds, diffeomorphism
- 5. Manifold, Riemannian manifold
- 6. **Tangent vector**, tangent space, tangent bundle
- 7. Exterior derivative d
- 8. Smooth function, smooth curve, smooth vector field
- 9. Induced maps: pull-back of functions and forms, push-forward of vectors
- 10. Exterior derivative d
- 11. Lie bracket of vector fields
- 12. Lie algebra
- 13. **Curl, div, grad** in a three dimensional manifold. Properties. (Mandala)
- 14. Chain, boundary, integrals of forms

B. Calculate:

- 1. $\langle \alpha \mid \mathbf{v} \rangle$, $X \perp \omega$, $d\omega$, Xf, $\alpha \wedge \beta$, $[\mathbf{A}, \mathbf{B}]$, ... (trivial stuff)
- 2. Rank of a given form.
- 3. Curl, div, grad given g and η
- 4. Induced fields (function, differential form, inner product), given a map between manifolds
- 5. Integral of a form over a chain directly
- 6. Integral of a form over a chain using Stokes theorem to make it effortless

C. Applications:

- 1. **Gravitation:** Distribution of masses given a gravitational field. Check if a field is possible. Calculate work along a curve.
- 2. **Electromagnetism:** draw and understand the 3 "mandalas" [only final]
- 3. **Minowski space:** interpret the basic S-T diagrams [only final]

D. Prove/show

- 1. L^* is a vector space and $\dim L^* = \dim L$ (if L is a vector space)
- 2. $\dim T_p M = \dim M$ (hint: find basis)
- 3. Jacobi identity for vector fields
- 4. Stokes theorem (at least the case of 2D simple chain)
- 5. Gradient theorem, divergence theorem, curl theorem (by reduction of the general Stokes theorem to a particular dimension)

Know the meaning of these symbols: T_pM , $\mathscr{X}M$, Λ^kM , ∂_x , dx, df, C_kM , φ^* , φ_* .