1)

Grupo:

Pedro Henrique Gonçalves Teixeira - 11821BCC008

Maríllia Soares Rodrigues - 11821BCC020

Hendrik Abdalla Hermann - 11911BCC034

2)

A) A linguagem que foi utilizada foi Python, pois o grupo decidiu que seria mais prático para a criação do grafo a partir do "class", gerando assim, a nossa matriz.

B) Os grafos escolhidos foram matrizes de 5x5, 6x6, 7x7, 8x8 e 9x9.

5x5:

0	1	1	1	0
1	0	1	0	1
1	1	0	1	1
1	0	1	0	0
1	0	0	1	0

6x6:

0	1	1	1	0	1
1	0	1	0	1	0
1	1	0	1	1	0
1	0	1	0	0	1
1	0	0	1	0	0
1	0	0	1	1	0

7x7:

0	1	1	1	0	1	0
1	0	1	0	1	0	0
1	1	0	1	1	0	1
1	0	1	0	0	1	0
1	0	0	1	0	0	1
1	0	0	1	1	0	1
0	1	1	0	1	0	0

8x8:

0	1	1	1	0	1	0	1
1	0	1	0	1	0	0	1
1	1	0	1	1	0	1	0
1	0	1	0	0	1	0	1
1	0	0	1	0	0	1	0
1	0	0	1	1	0	1	1
0	1	1	0	1	0	0	1
1	0	1	0	1	0	1	0

9x9:

0	1	1	1	0	1	0	1	1
1	0	1	0	1	0	0	1	0
1	1	0	1	1	0	1	0	1
1	0	1	0	0	1	0	1	0
1	0	0	1	0	0	1	0	1
1	0	0	1	1	0	1	1	0
0	1	1	0	1	0	0	1	1
1	0	1	0	1	0	1	0	0
1	1	0	1	0	1	0	1	0

C) Os resultados para cada matriz foi:

5x5 com 3 cores:

```
[[0, 1, 1, 1, 0], [1, 0, 1, 0, 1], [1, 1, 0, 1, 1], [1, 0, 1, 0, 0], [1, 0, 0, 1, 0]]
As cores (1 a 3) foram:
O tempo de execucao para 5 vertices foi: 0.003472566604614258
```

6x6 com 4 cores:

```
As cores (1 a 4) foram:
1
2
3
2
3
4
O tempo de execucao para 6 vertices foi: 0.0014910697937011719
```

7x7 com 4 cores:

```
As cores (1 a 4) foram:
1
2
3
2
3
O tempo de execucao para 7 vertices foi: 0.0009932518005371094
```

8x8 com 4 cores:

```
As cores (1 a 4) foram:

1

2

3

4

1

2

0 tempo de execucao para 8 vertices foi: 0.0019829273223876953
```

9x9 com 4 cores:

```
As cores (1 a 4) foram:

1
2
3
2
3
4
1
2
3
0 tempo de execucao para 9 vertices foi: 0.0014884471893310547
```

3) O tempo de execução para cada um dos casos foi medido após a inserção dos dados, na função de definição de cores. Dessa forma, percebe-se que o tempo para cada tamanho de matriz não se altera muito, pois, como foi observado, o tempo de rodar uma matriz 5x5 foi maior que o uma 9x9, porém ela tinha mais cores. E comparando uma 9x9 com a 8x8, seu tempo também foi menor.

As comparações na tabela com a média e o desvio padrão de cada um:

5x5
0,000992
0,00099
0,000992
0,000991
0,000991
0,00099
0,001984
0,000973
0,000959
0,000967
0,000993
0,00099
0,001983
0,000993
0,000992
0,000958
0,000992
0,000955
0,000992
0,000991
0,000959
0,000961
0,001982
0,001487
0,000992
0,000992
0,000963
0,000495
0,000991
0,000992

6x6	
	0,001984358
	0,001488924
	0,001487494
	0,001488686
	0,000991583
	0,001488209
	0,001487255
	0,00099206
	0,001984835
	0,001487494
	0,000993013
	0,001488209
	0,000991583
	0,000992775
	0,000991106
	0,000993252
	0,00149107
	0,000990152
	0,00099206
	0,000991583
	0,000991583
	0,001490831
	0,001486063
	0,001500368
	0,000991344
	0,00099206
	0,00148797
	0,001985788
	0,00148797
	0,000991583

7x7	
0,	001984119
0,	001487732
0,	000993013
0,	001487255
0,	000990391
	0,00148797
0,	001488924
0,	001488447
0,	000991344
0,	002479792
0,	000991821
0,	001984358
0,	001485348
0,	000988722
0,	000991583
0,	000991821
0,	001489162
0,	000991821
0,	001488924
0,	001488447
0,	003967762
	0,00099206
0,	000993252
0,	001487732
0,	000995159
0,	001487732
0,	001489878
0,	001982212
0,	001491785
(0,00099206

8x8	
	0,001983643
84 20	0,001485348
	0,001488209
80	0,001984119
	0,000992537
90 10	0,001488924
	0,001491308
90	0,001485586
	0,001488209
98 10	0,00148797
	0,001488686
90 40	0,001488686
	0,002480984
90 50	0,001980782
	0,00148797
90 20	0,001983881
	0,000991344
86 20	0,002976418
	0,00248003
40	0,001489401
	0,00149107
	0,001487732
	0,001489878
40. 20.	0,001488209
	0,002480745
% 	0,000992537
	0,001487494
94	0,002481699
	0,002476454
96	0,002975225

9x	9
(0,001984119
00 00	0,00148797
(0,002480507
(0,001984835
	0,00148797
(0,001488447
(0,001983881
(0,001985788
(0,001488447
(0,001982689
(0,001983881
\$ @ \$ D	0,00148797
	0,00148797
(0,001990795
	0,00248003
(0,001492739
(0,001979113
(0,001488209
(0,001487255
(0,001490355
	0,00311017
(0,001487494
(0,001487255
(0,001483917
(0,001984358
(0,001487732
(0,001487494
(0,003470182
(0,001488209
(0,001980543

	5x5	6x6	7x7	8x8	9x9
Média	0,001083	0,001307	0,001455	0,001769	0,00184
Desvio Padrão	0,000332	0,000332	0,00061	0,000548	0,000501

Acima estão as tabelas mostrando o tempo de execução de cada uma das tabelas. Foram rodadas 30 vezes cada uma.

Percebe-se que os tempos são semelhantes em todas as ocasiões, porém, em um caso geral, o 5x5 teve uma média menor, tornando-o o mais simples de ser resolvido, mesmo com menos cores disponíveis (3 cores em compensação aos outros que foram 4).

O 7x7 também foi bem, peculiar, pois seu desvio padrão foi o menor de todos. Isso mostra que ele é mais constante na sua resolução.