STAT 331 Final Project

Krishna Prem Pasumarthy & Islam Amin April 13, 2020

1 Summary

2 Descriptive Statistics

First, take a look at summary statistics of the fhsd dataset.

chdrisk	sex	totchol	age	sysbp	diabp	cursmoke	cigpday	bmi
Min. :0.0050	Female:1305	Min. :112.0	Min. :44.00	Min.: 86.0	Min.: 30.00	No :1504	Min.: 0.00	Min. :14.43
1st Qu.:0.1320	Male :1001	1st Qu.:207.0	1st Qu.:53.00	1st Qu.:122.5	1st Qu.: 73.00	Yes: 802	1st Qu.: 0.00	1st Qu.:23.22
Median $:0.2240$		Median $:235.5$	Median :60.00	Median :136.0	Median: 80.00		Median: 0.00	Median $:25.40$
Mean $:0.2655$		Mean :237.8	Mean:60.23	Mean :139.2	Mean: 81.07		Mean: 6.84	Mean :25.78
3rd Qu.:0.3448		3rd Qu.:265.0	3rd Qu.:67.00	3rd Qu.:153.0	3rd Qu.: 88.00		3rd Qu.:10.00	3rd Qu.:27.91
Max. :0.9770		Max. :625.0	Max. :81.00	Max. :246.0	Max. :130.00		Max. :80.00	Max. :46.52

dial	betes	bpmeds	heartrte	glucose	prevmi	prevstrk	prevhyp	hdlc	ldlc
No	:2142	No :1973	Min.: 44.00	Min.: 46.00	No :2189	No :2260	No: 957	Min.: 10.00	Min.: 20.0
Yes	s: 164	Yes: 333	1st Qu.: 70.00	1st Qu.: 75.00	Yes: 117	Yes: 46	Yes:1349	1st Qu.: 38.00	1st Qu.:152.0
			Median: 76.00	Median: 83.00				Median: 47.00	Median :180.0
			Mean: 77.61	Mean: 89.07				Mean: 48.89	Mean :183.1
			3rd Qu.: 85.00	3rd Qu.: 95.00				3rd Qu.: 57.00	3rd Qu.:210.0
			Max. :150.00	Max. :478.00				Max. :189.00	Max. :565.0

First observation we make from the summary is that the median and average ages are around 60, which means the survey seems to have been done on a relatively old group of people. We also have a significantly higher number of females in the study, almost 30% more than the number of males. This might affect the nature of the data to be skewed towards behaviours and physical attributes associated with females.

Then take a look at chdrisk grouped by sex as well as chdrisk grouped by cursmoke.

A further inspection of the expected coronary heart disease (CHD) risk against certain categorical variates, gives more insights.

For instance, if we take a look at expected CHD risk against whether or not an individual has hypertension, we get the following result:

```
## fhsd$prevhyp: No
##
     Min. 1st Qu.
                   Median
                             Mean 3rd Qu.
##
            0.077
                    0.140
                            0.176
                                     0.216
                                            0.944
## fhsd$prevhyp: Yes
      Min. 1st Qu.
                   Median
                             Mean 3rd Qu.
   0.0320 0.1980 0.2890 0.3291 0.4010 0.9770
```

Indeed, we have that mean CHD risk given that a person has hypertension is significantly higher than the mean for people who did not have hypertension.

```
## fhsd$prevstrk: No
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0050 0.1300 0.2200 0.2611 0.3392 0.9770
```

Again, we see the same results with people who had a stroke before the study, with even a higher difference between the two groups.

Now take a look at pair plots of all numeric explanatory variates i.e. variates excluding response variate chdrisk and logical variates such as cursmoke.

Pair Plots of Continuous Variates

From the pair plots, we can observe a strong correlation between low density lipoprotein cholesterol and serum total cholestrol. This correlation could be explained by the fact that there could be a relationship between the amount [TO BE CONTINUED]

Now take a look at the VIFs of these variates.

##	sexMale	totchol	age	sysbp	diabp	cursmokeYes
##	1.225191	10.634882	1.489926	2.918660	2.406411	2.978609
##	cigpday	bmi	diabetesYes	bpmedsYes	heartrte	glucose

2.973594 1.181865 1.286401 1.214744 1.105902 1.308923 ## prevmiYes prevstrkYes prevhypYes hdlc ldlc ## 1.067134 1.045746 1.823014 2.287571 10.367649

[ADD COMMENTS]

3 Candidate Models

3.1 Automated Model Selection

```
library(gtools)
load_calcs = TRUE
# model with only intercept
MO <- lm(I(logit(chdrisk)) ~ 1, data = fhsd)
Mmax <- lm(I(logit(chdrisk)) ~ (.)^2, data = fhsd)
# starting model for stepwise selection
Mstart <- lm(I(logit(chdrisk)) ~ ., data = fhsd)
# find model coefficients which are NA
beta.max <- coef(Mmax)
names(beta.max)[is.na(beta.max)]</pre>
```

[1] "cursmokeYes:cigpday" "bpmedsYes:prevhypYes"

```
# find the problem with the NA coeffs
kable(table(fhsd[c("cursmoke", "cigpday")]), "latex")
```

	0	1	2	3	4	5	6	7	8	9	10	12	14	15	16	17	18	19	20	23	25	26	2
No	1504	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Yes	0	16	18	34	11	18	24	9	18	5	76	3	3	50	6	1	8	1	279	1	14	1	

kable(table(fhsd[c("bpmeds", "prevhyp")]), "latex")

	No	Yes
No	957	1016
Yes	0	333

[1] FALSE

```
if(!load_calcs){
  #forward model selection
  system.time({
    Mfwd <- step(object = M0,</pre>
                   scope = list(lower = MO, upper = Mmax),
                   direction = "forward", trace = FALSE)
 })
  #backward model selection
  system.time({
    Mback <- step(object = Mmax,</pre>
                   scope = list(lower = MO, upper = Mmax),
                   direction = "backward", trace = FALSE)
  })
  #stepwise model selection
  system.time({
    Mstep <- step(object = Mstart,</pre>
```

```
scope = list(lower = MO, upper = Mmax),
                  direction = "both", trace = FALSE)
 })
# the caching/loading block
if(!load calcs) {
  saveRDS(list(Mfwd = Mfwd, Mback = Mback, Mstep = Mstep), file = "models_automated.rds")
} else {
  # just load the calculations
  tmp <- readRDS("models automated.rds")</pre>
 Mfwd <- tmp$Mfwd
 Mback <- tmp$Mback
 Mstep <- tmp$Mstep</pre>
 rm(tmp) # optionally remove tmp from workspace
# Stepwise model selection
Mstep$call
## lm(formula = I(logit(chdrisk)) ~ sex + totchol + age + sysbp +
       diabp + cursmoke + cigpday + bmi + diabetes + bpmeds + heartrte +
##
       glucose + prevmi + prevstrk + prevhyp + hdlc + ldlc + I(hdlc^2) +
##
       I(bmi^2) + I(diabp^2) + I(sysbp^2) + sysbp:prevmi + totchol:prevhyp +
##
       diabetes:prevmi + prevhyp:ldlc + sysbp:prevhyp + totchol:heartrte +
       sysbp:diabetes + diabp:bmi + diabp:hdlc + prevmi:hdlc + prevmi:prevhyp +
##
       sex:glucose + age:ldlc + age:heartrte + cigpday:hdlc + bmi:ldlc +
##
##
       totchol:hdlc + totchol:prevmi + sysbp:heartrte + sysbp:bpmeds +
##
       cursmoke:hdlc + prevmi:prevstrk + diabetes:hdlc + sex:sysbp +
##
       cigpday:glucose + heartrte:glucose + diabp:glucose + cursmoke:ldlc +
##
       age:cigpday + age:hdlc + hdlc:ldlc + age:prevhyp + diabp:prevhyp +
##
       diabp:cursmoke + diabp:cigpday + bmi:bpmeds + bpmeds:glucose +
##
       age:prevmi + sex:ldlc + cigpday:heartrte + cigpday:prevmi +
       glucose:prevmi + heartrte:prevmi + bpmeds:prevstrk, data = fhsd)
##
# Forward model selection
Mfwd$call
## lm(formula = I(logit(chdrisk)) ~ prevmi + sysbp + sex + age +
##
       ldlc + prevhyp + diabetes + hdlc + I(hdlc^2) + cigpday +
##
       I(bmi^2) + bmi + totchol + I(glucose^2) + I(sysbp^2) + bpmeds +
##
       heartrte + cursmoke + prevstrk + prevmi:sysbp + sysbp:age +
##
       prevhyp:hdlc + prevmi:diabetes + sysbp:prevhyp + prevhyp:totchol +
       sysbp:diabetes + prevmi:hdlc + prevmi:prevhyp + age:ldlc +
##
##
       age:cigpday + hdlc:cigpday + prevhyp:bmi + ldlc:bmi + prevmi:totchol +
##
       ldlc:prevhyp + sysbp:bpmeds + sysbp:hdlc + hdlc:totchol +
       totchol:heartrte + age:heartrte + diabetes:hdlc + sysbp:heartrte +
##
##
       bmi:bpmeds + sysbp:sex + ldlc:hdlc + prevmi:bmi + age:bmi +
       prevmi:age + sysbp:cursmoke + hdlc:cursmoke + ldlc:cursmoke +
       prevmi:cigpday + sex:diabetes + prevmi:prevstrk, data = fhsd)
# Backward model selection
Mback$call
## lm(formula = I(logit(chdrisk)) ~ sex + totchol + age + sysbp +
##
       diabp + cursmoke + cigpday + bmi + diabetes + bpmeds + heartrte +
       glucose + prevmi + prevstrk + prevhyp + hdlc + Idlc + I(totchol^2) +
##
```

```
I(sysbp^2) + I(diabp^2) + I(bmi^2) + I(hdlc^2) + I(ldlc^2) +
##
##
       sex:totchol + sex:sysbp + sex:glucose + sex:prevstrk + sex:prevhyp +
       totchol:age + totchol:bpmeds + totchol:heartrte + totchol:prevmi +
##
##
       totchol:prevstrk + totchol:prevhyp + totchol:hdlc + totchol:ldlc +
##
       age:cursmoke + age:bmi + age:heartrte + age:prevmi + age:prevhyp +
##
       age:hdlc + sysbp:diabetes + sysbp:bpmeds + sysbp:heartrte +
##
       sysbp:prevmi + sysbp:prevhyp + diabp:cursmoke + diabp:cigpday +
       diabp:bmi + diabp:glucose + diabp:prevhyp + diabp:hdlc +
##
##
       cursmoke:bmi + cursmoke:hdlc + cursmoke:ldlc + cigpday:bmi +
##
       cigpday:heartrte + cigpday:glucose + cigpday:prevmi + cigpday:hdlc +
##
       bmi:prevmi + bmi:prevhyp + bmi:ldlc + diabetes:prevmi + diabetes:hdlc +
       bpmeds:glucose + bpmeds:prevstrk + bpmeds:ldlc + heartrte:glucose +
##
       heartrte:prevmi + glucose:prevmi + prevmi:prevhyp + prevmi:hdlc +
##
##
       prevhyp:ldlc, data = fhsd)
beta.fwd = coef(Mfwd)
beta.back = coef(Mback)
beta.step = coef(Mstep)
identical(names(beta.fwd) [names(beta.fwd) %in% names(beta.back)], names(beta.fwd))
## [1] FALSE
identical(names(beta.fwd)[names(beta.fwd) %in% names(beta.step)], names(beta.fwd))
## [1] FALSE
identical(names(beta.back) [names(beta.back) %in% names(beta.step)], names(beta.back))
## [1] FALSE
```

Manual Model Selection 3.2

1 0.1141483 0.1097987

0.06451949

1

```
library(stringr) # For string operations
## Warning: package 'stringr' was built under R version 3.5.2
table <- c() # Initialize empty vector
names.table <- names(beta.step)</pre>
                                                    # Obtain variate names in stepwise model
names.table <- str_remove_all(names.table, "Yes") # Remove "Yes" from interactions
names.table <- str_remove_all(names.table, "Male") # Remove "Male"</pre>
 # Perform F-tests with Mstep by removing one variate at a time
 for(i in names.table){
    # Obtain model without variate i
    mdl <- lm(as.formula(paste0("update(Mstep, . ~ . -", i,")")),data = fhsd)</pre>
  test <- anova(Mstep,mdl)</pre>
                                           # F-Test between Stepwise and reduced model
  table <- cbind(table,test$`Pr(>F)`[2]) # Add corresponding p-value to the table
  }
 table <- as.data.frame(table)</pre>
 colnames(table) <- names.table</pre>
                                            # Add appropriate column names to the table
sort(table,decreasing = TRUE)
                                            # Arrange variates by decreasing significance
##
     cigpday:heartrte bpmeds:prevstrk bpmeds:glucose diabp:cigpday
            0.1506282
## 1
                             0.1492283
                                            0.1189197
                                                           0.1155989 0.1151079
##
      sex:ldlc age:prevmi cigpday:prevmi hdlc:ldlc bmi:bpmeds prevmi:prevstrk
```

heartrte:prevmi glucose:prevmi I(sysbp^2) cursmoke:hdlc age:heartrte 0.05883116 0.0585469

0.1051865 0.0923568 0.0855445

0.05660935 0.05562064

```
age:hdlc cursmoke:ldlc sex:sysbp sysbp:bpmeds
## 1 0.0510796
                   0.0417893 0.03623249
                                           0.0300776 0.02915113
##
     cigpday:glucose prevmi:prevhyp
                                          hdlc sex:glucose diabetes:hdlc
           0.0291137
                         0.02242217 0.01880445 0.01702301
## 1
                                                               0.01394662
##
     diabp:glucose
                      bmi:ldlc totchol:hdlc
                                               bpmeds age:cigpday
## 1
        0.01362058 0.009985489 0.009840662 0.0077735 0.006735591
                         cursmoke totchol:prevmi sysbp:heartrte diabp:prevhyp
##
    heartrte:glucose
                                                    0.002926201
                                     0.003609581
          0.004772297 0.004188557
                                                                  0.001409115
## 1
##
     diabp:cursmoke prevhyp:ldlc
                                          bmi age:prevhyp sysbp:diabetes
        0.001393474
                      0.00066789 0.0006664543 0.0005753017
## 1
                                                             0.0004931994
##
       I(hdlc^2)
                   diabp:hdlc sysbp:prevhyp cigpday:hdlc prevmi:hdlc
## 1 0.000320732 0.0001422969 0.0001292531 0.0001038006 7.056001e-05
     diabetes:prevmi
                            diabp totchol:heartrte
                                                      diabp:bmi sysbp:prevmi
        6.226049e-05 6.021714e-05
                                      3.512093e-05 2.940165e-05 2.305381e-05
## 1
##
              sex
                      heartrte
                                        age totchol:prevhyp
                                                                 I(bmi^2)
## 1 2.396724e-06 9.478088e-07 4.238229e-07
                                               1.203731e-09 2.735937e-11
##
       I(diabp^2)
                                    prevhyp
                        prevmi
## 1 1.257752e-19 1.595006e-22 1.119628e-27
# Remove as many insignificant continuous variate interactions as possible
anova(Mstep, update(Mstep,. ~ . - cigpday:heartrte - diabp:cigpday))
## Analysis of Variance Table
##
## Model 1: I(logit(chdrisk)) ~ sex + totchol + age + sysbp + diabp + cursmoke +
       cigpday + bmi + diabetes + bpmeds + heartrte + glucose +
##
##
       prevmi + prevstrk + prevhyp + hdlc + ldlc + I(hdlc^2) + I(bmi^2) +
##
       I(diabp^2) + I(sysbp^2) + sysbp:prevmi + totchol:prevhyp +
##
       diabetes:prevmi + prevhyp:ldlc + sysbp:prevhyp + totchol:heartrte +
##
       sysbp:diabetes + diabp:bmi + diabp:hdlc + prevmi:hdlc + prevmi:prevhyp +
##
       sex:glucose + age:ldlc + age:heartrte + cigpday:hdlc + bmi:ldlc +
##
       totchol:hdlc + totchol:prevmi + sysbp:heartrte + sysbp:bpmeds +
       cursmoke:hdlc + prevmi:prevstrk + diabetes:hdlc + sex:sysbp +
##
       cigpday:glucose + heartrte:glucose + diabp:glucose + cursmoke:ldlc +
##
##
       age:cigpday + age:hdlc + hdlc:ldlc + age:prevhyp + diabp:prevhyp +
##
       diabp:cursmoke + diabp:cigpday + bmi:bpmeds + bpmeds:glucose +
       age:prevmi + sex:ldlc + cigpday:heartrte + cigpday:prevmi +
##
##
       glucose:prevmi + heartrte:prevmi + bpmeds:prevstrk
## Model 2: I(logit(chdrisk)) ~ sex + totchol + age + sysbp + diabp + cursmoke +
##
       cigpday + bmi + diabetes + bpmeds + heartrte + glucose +
##
       prevmi + prevstrk + prevhyp + hdlc + ldlc + I(hdlc^2) + I(bmi^2) +
##
       I(diabp^2) + I(sysbp^2) + sysbp:prevmi + totchol:prevhyp +
##
       diabetes:prevmi + prevhyp:ldlc + sysbp:prevhyp + totchol:heartrte +
##
       sysbp:diabetes + diabp:bmi + diabp:hdlc + prevmi:hdlc + prevmi:prevhyp +
##
       sex:glucose + age:ldlc + age:heartrte + cigpday:hdlc + bmi:ldlc +
##
       totchol:hdlc + totchol:prevmi + sysbp:heartrte + sysbp:bpmeds +
##
       cursmoke:hdlc + prevmi:prevstrk + diabetes:hdlc + sex:sysbp +
##
       cigpday:glucose + heartrte:glucose + diabp:glucose + cursmoke:ldlc +
##
       age:cigpday + age:hdlc + hdlc:ldlc + age:prevhyp + diabp:prevhyp +
       diabp:cursmoke + bmi:bpmeds + bpmeds:glucose + age:prevmi +
##
##
       sex:ldlc + cigpday:prevmi + glucose:prevmi + heartrte:prevmi +
##
       bpmeds:prevstrk
               RSS Df Sum of Sq
     Res.Df
                                     F Pr(>F)
##
## 1
       2240 489.70
## 2
      2242 490.84 -2 -1.1458 2.6205 0.07299 .
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#anova(Mstep, update(Mstep,. ~ . - ciqpday:heartrte - diabp:ciqpday -aqe:heartrte))
# Now remove less insignificant interactions
anova(Mstep, update(Mstep,. ~ . - cigpday:heartrte - diabp:cigpday - cigpday:heartrte
                    - bpmeds:prevstrk))
## Analysis of Variance Table
##
## Model 1: I(logit(chdrisk)) ~ sex + totchol + age + sysbp + diabp + cursmoke +
##
       cigpday + bmi + diabetes + bpmeds + heartrte + glucose +
##
       prevmi + prevstrk + prevhyp + hdlc + ldlc + I(hdlc^2) + I(bmi^2) +
##
       I(diabp^2) + I(sysbp^2) + sysbp:prevmi + totchol:prevhyp +
##
       diabetes:prevmi + prevhyp:ldlc + sysbp:prevhyp + totchol:heartrte +
       sysbp:diabetes + diabp:bmi + diabp:hdlc + prevmi:hdlc + prevmi:prevhyp +
##
##
       sex:glucose + age:ldlc + age:heartrte + cigpday:hdlc + bmi:ldlc +
##
       totchol:hdlc + totchol:prevmi + sysbp:heartrte + sysbp:bpmeds +
       cursmoke:hdlc + prevmi:prevstrk + diabetes:hdlc + sex:sysbp +
##
       cigpday:glucose + heartrte:glucose + diabp:glucose + cursmoke:ldlc +
##
       age:cigpday + age:hdlc + hdlc:ldlc + age:prevhyp + diabp:prevhyp +
##
##
       diabp:cursmoke + diabp:cigpday + bmi:bpmeds + bpmeds:glucose +
##
       age:prevmi + sex:ldlc + cigpday:heartrte + cigpday:prevmi +
##
       glucose:prevmi + heartrte:prevmi + bpmeds:prevstrk
## Model 2: I(logit(chdrisk)) ~ sex + totchol + age + sysbp + diabp + cursmoke +
       cigpday + bmi + diabetes + bpmeds + heartrte + glucose +
##
##
       prevmi + prevstrk + prevhyp + hdlc + ldlc + I(hdlc^2) + I(bmi^2) +
##
       I(diabp^2) + I(sysbp^2) + sysbp:prevmi + totchol:prevhyp +
##
       diabetes:prevmi + prevhyp:ldlc + sysbp:prevhyp + totchol:heartrte +
##
       sysbp:diabetes + diabp:bmi + diabp:hdlc + prevmi:hdlc + prevmi:prevhyp +
       sex:glucose + age:ldlc + age:heartrte + cigpday:hdlc + bmi:ldlc +
##
##
       totchol:hdlc + totchol:prevmi + sysbp:heartrte + sysbp:bpmeds +
##
       cursmoke:hdlc + prevmi:prevstrk + diabetes:hdlc + sex:sysbp +
##
       cigpday:glucose + heartrte:glucose + diabp:glucose + cursmoke:ldlc +
       age:cigpday + age:hdlc + hdlc:ldlc + age:prevhyp + diabp:prevhyp +
##
##
       diabp:cursmoke + bmi:bpmeds + bpmeds:glucose + age:prevmi +
       sex:ldlc + cigpday:prevmi + glucose:prevmi + heartrte:prevmi
##
     Res.Df
               RSS Df Sum of Sq
##
                                     F Pr(>F)
## 1
       2240 489.70
       2243 491.35 -3
                      -1.6506 2.5168 0.05656 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Mdl_manual <- update(Mstep,. ~ . - cigpday:heartrte - diabp:cigpday - cigpday:heartrte
                    - bpmeds:prevstrk)
                                          # Denotes manually constructed model
```

4 Model Diagnostics

4.1 Leverage and Influence Measures

```
# hatvalues(Mstep) # Leverages of stepwise model
#
# cooks.distance(Mstep)
```

- 5 Model Selection
- 6 Discussion