PERTH MODERN SCHOOL

UNIT 3C/3D MAS – 2012

TEST 1 – POLAR COORDINATES & COMPLEX NUMBERS

NAME:	DATE:
[To achieve full marks, working and reasoning should be [A maximum of 2 marks will be deducted for incorrect re	-

This is Resource Free – 40 minutes for 36 marks:

1. [2, 2, 2 = 6 marks]

Determine $\frac{dy}{dx}$ for each of the following

a)
$$y = (e^{2x} + 1)^3$$

b)
$$y = \frac{3x - 1}{x^2 + 1}$$

c)
$$y = ln[x^2(x + 1)]$$

2.	Γ4	marks
∠.	ידו	mun

[4 marks] Express (1, -1) and (1, $\sqrt{3}$) into *exact* polar form for $-\pi < \theta \le \pi$.

3. [2 marks]

Find the **exact** distance between the points A [6, 25°] and B [10, 145°].

4. [3 marks]

Find the polar equation and the Cartesian equation of a circle of centre (0,0) and radius 3.

5. [1, 2, 2 = 5 marks] Given
$$z = 3 - 3i$$
, calculate:

a)
$$\bar{z}$$

c)
$$z \times \bar{z}$$

6. 6.
$$[1, 1, 1 = 3 \text{ marks}]$$
 For each of the following, express p in terms of q .

a)
$$q^4 = \frac{p^3}{8}$$

b)
$$log_e p = 2 log_e q$$

c)
$$\frac{e^{2p}}{3} = q$$

7. [3 marks]

The Cartesian equation of a circle is $x^2 + y^2 = 10$. Find the polar equation of this circle.

8.
$$[1, 4, 2 = 7 \text{ marks}]$$

If
$$z = cis \frac{\pi}{4}$$
 and $w = cis \frac{\pi}{6}$,

a) express $\frac{Z}{W}$ in polar form,

b) express z, w and $\frac{Z}{W}$ in Cartesian form, and

c) give $\frac{Z}{w}$ with a rationalised denominator.

9. [3 marks] Find the polar equation of this curve.

