Lecture 4 Amortized analysis

Spring 2023

Zhihua Jiang

Recall:

Hashing with Chaining:

Figure 1: Hashing with Chaining

Expected cost (insert/delete/search): $\theta(\alpha)$, assuming simple uniform hashing OR universal hashing & hash function h takes O(1) time.

How Large should Table be?

- want $m = \Theta(n)$ at all times
- don't know how large n will get at creation
- m too small \implies slow; m too big \implies wasteful

Idea:

Start small (constant) and grow (or shrink) as necessary.

Rehashing:

To grow or shrink table hash function must change (m, r)

 \implies must rebuild hash table from scratch for item in old table: \rightarrow for each slot, for item in slot insert into new table $\implies \Theta(n+m) \text{ time} = \Theta(n) \text{ if } m = \Theta(n)$

How fast to grow?

When n reaches m, say

- m + = 1? \implies rebuild every step $\implies n \text{ inserts cost } \Theta(1 + 2 + \dots + n) = \Theta(n^2)$
- m*=2? $m=\Theta(n)$ still (r+=1) \implies rebuild at insertion 2^i \implies n inserts cost $\Theta(1+2+4+8+\cdots+n)$ where n is really the next power of 2 $=\Theta(n)$
- a few inserts cost linear time, but Θ(1) "on average".

<u>Analysis</u>.

Seq. of *n* Insert operations.

Worst-case cost of 1 Insert = $\Theta(n)$ \rightarrow worst-case cost of n Inserts = n $\Theta(n)$ = $\Theta(n^2)$.

Wrong! n Inserts take $\Theta(n)$ time!.

Let $c_i = \text{cost of } i^{\text{th}} \text{ insertion} = \begin{cases} i & \text{if } i\text{-1 is power of 2} \\ 1 & \text{otherwise} \end{cases}$

 c_i = cost of insertion + cost of copy

cost of *n* Inserts =
$$\sum_{i=1}^{n} C_i = n + \sum_{j=0}^{\lfloor \log(n-1) \rfloor} 2^j \le 3n = \Theta(n)$$

Thus, average cost per Insert = $\Theta(n)/n = \Theta(1)$

$$S_{n} = \frac{a_{1}(1-q^{n})}{1-q} (q \neq 1)$$

 $2^{\lfloor \log(n-1)\rfloor + 1} < 2^{\log n + 1} = 2n$

<u>Amortized analysis</u>

Analyze a seq. of operations to show that average cost per operation is small, even though one operation may be expensive.

No probability - average performance in worst case

Types of amortized arguments₽

- Aggregate (just saw)√
- Accounting√
- Potential-

The last two are more precise – allocate specific amortized cost to each operation

Accounting method.

- Charge i^{th} operation a fictitious amortized cost \hat{C}_i (\$1 pays for 1 unit of work).
- Fee is consumed to perform operation.
- Unused amount stored in "bank" for use by later operations.
- Bank balance must not go negative.

Must have
$$\sum_{i=1}^{n} C_i \leq \sum_{i=1}^{n} \hat{C}_i, \forall n$$

Dynamic table:

• Charge $\hat{C}_i = \$3$ for i^{th} Insert

\$1 pays for immediate Insert; \$2 stored for table doubling.

• When table doubles

\$1 moves recent item; \$1 moves old items.

$$\sum_{i=1}^{n} \hat{C}_i = 3n, \sum_{i=1}^{n} C_i \le 3n \Rightarrow \sum_{i=1}^{n} C_i \le \sum_{i=1}^{n} \hat{C}_i$$

Potential method.

"Bank account" viewed as potential energy of dynamic set-

Framework:

- Start with data structure D_{0+}
- Operation *i* transforms $D_{i-1} \rightarrow D_{i}$

Cost of operation i is C_{i}

Define <u>potential function</u>.

$$\Phi: \{D_i\} \to R, \Phi(D_0) = 0 \text{ and } \Phi(D_i) \ge 0, \forall i$$

• Amortized cost \hat{C}_i w.r.t. Φ is $\hat{C}_i = C_i + \Phi(D_i) - \Phi(D_{i-1})$

Potential difference $\Delta \Phi_i = \Phi(D_i) - \Phi(D_{i-1})$

If $\Delta\Phi_i>0$, then $\hat{C}_i>C_i$, Operation i stores work in data structure for later.

If $\Delta\Phi_i < 0$, then $\hat{C}_i < C_i$, data structure delivers up stored work to help pay for operation i.

Total amortized cost of *n* operations is.

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1})) = \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0}) \ge \sum_{i=1}^{n} c_{i}$$

Table doubling:

Define
$$\Phi(D_i) = 2i - 2^{\lceil \log i \rceil} (\text{Assume } 2^{\lceil \log 0 \rceil} = 0)$$

Note
$$\Phi(D_0) = 0, \Phi(D_i) \ge 0$$
, be cause $2^{\lceil \log i \rceil} \le 2^{\log i + 1} = 2i$

Ex.

$$\Phi(D_6) = 2 \times 6 - 2^{\lceil \log 6 \rceil} = 4$$

$$bank_6 = 4$$

Amortized cost of ith Insert:

$$\begin{split} \hat{C}_i &= C_i + \Phi(D_i) - \Phi(D_{i-1}) \\ &= \begin{cases} i \text{ if } i\text{-}1 \text{ is exact power of } 2 \\ 1 \text{ otherwise} \end{cases} + (2i - 2^{\lceil \log i \rceil}) - (2(i-1) - 2^{\lceil \log(i-1) \rceil}) \\ &= \begin{cases} i \text{ if } \dots \\ 1 \dots \end{cases} + 2 - 2^{\lceil \log i \rceil} + 2^{\lceil \log(i-1) \rceil} \end{split}$$

Case 1: i-1 is exact power of 2.

$$\hat{C}_i = i + 2 - 2^{\lceil \log i \rceil} + 2^{\lceil \log (i-1) \rceil} = i + 2 - 2(i-1) + (i-1) = 3$$

Case 2: i-1 is not exact power of 2

$$\hat{C}_i = 1 + 2 - 2^{\lceil \log i \rceil} + 2^{\lceil \log (i-1) \rceil} = 3 \ (\text{i.e.}, 2^{\lceil \log i \rceil} = 2^{\lceil \log (i-1) \rceil}) \, \text{ and } \, i = 2^{\lceil \log (i-1) \rceil} = 2^{\lceil \log (i-1) \rceil} \text{ and } \, i = 2^{\lceil \log (i-1) \rceil} \text{ and }$$

n Inserts cost $\Theta(n)$ in worst case.

Conclusions -

- Amortized costs provide a clean abstraction for data structure performance.
- Any methods can be used, but each has situations where it is arguably simplest or most precise.
- Different potential functions or accounting costs may yield different bounds.