Mathematik für Ingenieure C4: INF

1. Übung

27.04. - 30.04.04.2020 Sommersemester 2020 Dr. Wigand Rathmann Dr. Marius Yamakou Department Mathematik Universität Erlangen-Nürnberg

Präsenzaufgabe 1:

Bei einem lokalen Leichtathletikwettkampf in England wurden 1991 im Kugelstoßen die folgenden Weiten (in Metern) erzielt:

- a) Berechnen Sie den Median, die Quartile, die 16%/84%-Quantile, das arithmetische Mittel und die Streuung.
- b) Zeichnen Sie den einfachen Boxplot.
- c) Zeichnen Sie ein Histogramm, in dem Sie Klassen mit äquidistanter Klassenbreite 1 wählen.

Hinweis: Die Ordnungsstatistik lautet:

11.75 13.22 13.66 13.70 14.05 14.23 14.30 14.46 14.52 14.63 14.72 14.92 14.98 15.53 15.81 16.27 16.31 16.47 17.21 17.79

Präsenzaufgabe 2:

Die folgende Urliste enthält Daten bezüglich des Kariesbefalls von 30 Schulkindern einer Jahrgangsstufe. Angegeben ist die Anzahl kariöser Zähne:

- a) Berechnen und zeichnen Sie die empirische Verteilungsfunktion für das Merkmal "Anzahl kariöser Zähne".
- b) Das Merkmal der Urliste wird durch die folgende Klassenbildung vereinfacht:

Klasse	Anzahl kariöser Zähne x
K_1 (geringer Kariesbefall)	$0 \le x \le 1$
K_2 (mittlerer Kariesbefall)	$1 < x \le 3$
K_3 (hoher Kariesbefall)	$3 < x \le 7$

Zeichnen Sie ein Histogramm für das Merkmal "Anzahl kariöser Zähne" bei obiger Klassenbildung.

Präsenzaufgabe 3:

Es seien $\mathbf{x} \in \mathbb{R}^n$ gegeben. Zeigen Sie, dass die Standardabweichung $\sigma^n_{\mathbf{x}}$ die folgende Identität erfüllt:

$$\sigma_{\mathbf{x}}^n = \sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2}$$

Hausaufgabe 4:

(10 Punkte)

Wie "zuverlässig" ist der *Old Faithful Geyser* im Yellowstone National Park? In der folgenden Tabelle sind die Zeiten (in Minuten) zwischen den Eruptionen des Geysirs angegeben (beobachtet im August 1985):

80	71	57	80	75	77	60	86	77	56
81	50	89	54	90	73	60	83	65	82
84	54	85	58	79	57	88	68	76	78
74	85	75	65	76	58	91	50	87	48
93	54	86	53	78	52	83	60	87	49
80	60	92	43	89	60	84	69	74	71
108	50	77	57	80	61	82	48	81	73
62	79	54	80	73	81	62	81	71	79
81	74	59	81	66	87	53	80	50	87
51	82	58	81	49	92	50	88	62	93

- a) Berechnen Sie den Median, die Quartile, die 8%/92%-Quantile, das arithmetische Mittel und die Standardabweichung.
- b) Zeichnen und beschriften Sie den einfachen Boxplot.
- c) Zeichnen Sie ein Histogramm, in dem Sie Klassen mit äquidistanter Klassenbreite 6 wählen. Beginnen Sie mit $z_0=42$.

Hausaufgabe 5:

(6 Punkte)

Es sei $\mathbf{x} \in \mathbb{R}^n$ gegeben. Zeigen Sie, dass das arithmetische Mittel die Summe der quadrierten Abweichungen minimiert:

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \min_{a \in \mathbb{R}} \sum_{i=1}^{n} (x_i - a)^2$$

Bem. Aufgrund der Monotonie der Wurzelfunktion, folgt dann für die Standardabweichung:

$$\sigma_{\mathbf{x}}^n \le \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - a)^2} \quad \forall a \in \mathbb{R}$$

Zusatzaufgabe 6:

(keine Punkte)

- a) Stellen Sie den Datensatz (1,0), (1,1), (0,1), (-1,0), (-1,-1), (0,-1) grafisch dar.
- b) Bestimmen Sie die Regressionsgerade und tragen Sie diese in die Grafik ein. Erscheint die Regressionsgerade plausibel?

Zusatzaufgabe 7:

(keine Punkte)

a) Es seien $x_1, \ldots, x_n > 0$ beliebig. Weiter sei mit $A(\mathbf{x}) := \bar{x}$ das arithmetische Mittel, mit $G(\mathbf{x})$ das geometrische Mittel und mit $H(\mathbf{x})$ das harmonische Mittel der x_i bezeichnet.

Zeigen Sie, dass die Ungleichungskette

$$H(\mathbf{x}) \le G(\mathbf{x}) \le A(\mathbf{x})$$

erfüllt ist.

Hinweis. Für die Exponentialfunktion $\exp : \mathbb{R} \to (0, \infty)$ und $y_1, \dots, y_n \in \mathbb{R}$ gilt:

$$\exp\left(\sum_{i=1}^{n} g_i y_i\right) \le \sum_{i=1}^{n} g_i \exp(y_i)$$

mit Gewichten $g_1, \ldots, g_n \ge 0$ und $\sum_{i=1}^n g_i = 1$.

b) i) Stellen Sie den Datensatz

$$(6.2,4.5), (3.7,3.6), (8.5,3.5), (3.5,5.1), (4.8,4.6), (6.7,2.9), (7.8,4.4), \\ (5.4,2.4), (4.8,3.7), (9.8,3.6), (2.5,4.3), (2.6,5.8), (6.8,3.7), (5.2,3.4), \\ (7.4,4.7)$$

grafisch dar.

ii) Bestimmen Sie die Regressionsgerade und tragen Sie diese in die Grafik ein. Erscheint die Regressionsgerade plausibel?

Zusatzaufgabe 8:

(keine Punkte)

Es seien $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, n > 1, gegeben. Zeigen Sie, dass die empirische Kovarianz $s_{\mathbf{x}\mathbf{y}}$ die folgende Identität erfüllt:

$$s_{\mathbf{x}\mathbf{y}} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y} \right)$$