ALGO QCM

- 1. Une collision secondaire représente une collision?
 - (a) avec coincidence de valeur de hachage entre un x égal à un y
 - (b) sans coincidence de valeur de hachage entre un x égal à un y
 - ((c))sans coincidence de valeur de hachage entre un x différent d'un y
 - (d) avec coincidence de valeur de hachage entre un x différent d'un y
- 2. La fonction d'essais successifs est utilisée dans le cas de hachage?
 - ((a) Direct
 - (b) Linéaire
 - (c) avec Chaînage séparé
 - (d) Coalescent
- 3. Quelles méthodes de hachage ne sont pas des méthodes indirectes de gestion des collisions?
 - (a) Hachage linéaire
 - (b) double hachage
 - (c) Coalescent
 - (d) Avec chaînage séparé
- 4. Quelles méthodes de recherche peuvent utiliser une structure statique?
 - ((a) séquentielle
 - (b) dichotomique
 - (c) ABR
 - ((d) hachage
- 5. Pour les méthodes de hachage, la complexité au pire de la recherche est?
 - (a) constante
 - (b) logarithmique
- (c) linéaire
- (d) quadratique
- (e) exponentielle
- 6. Pour les ABRs, la complexité au pire de la recherche est?
 - (a) constante
- (b) logarithmique
- (c) linéaire
- (d) quadratique
- (e) exponentielle

- 7. Pour les AVLs, la complexité au pire de la recherche est?
 - (a) constante
 - ((b)) logarithmique
 - (c) linéaire
 - (d) quadratique
 - (e) exponentielle
- 8. Quelle méthode de recherche est totalement inadaptée à la recherche par intervalle?
 - (a) séquentielle
 - (b) dichotomique
 - (c) ABR
 - (d) Arbres équilibrés
 - ((e))hachage
- 9. Quelles méthodes de hachage sont des méthodes indirectes de gestion des collisions?
 - (a) Hachage linéaire
 - (b) double hachage
 - ((c)) Coalescent
 - (d) Avec chaînage séparé
- 10. Quelle méthode de hachage génère des collisions secondaires?
 - (a) Hachage linéaire
 - (b) double hachage
 - (c) Coalescent
 - (d) Avec chaînage séparé

QCM N°3

lundi 14 octobre 2019

Question 11

Soit X une variable aléatoire à valeurs dans $\{0,\ldots,n\}$. Alors sa fonction génératrice vaut, pour tout $t\in\mathbb{R}$:

(a.)
$$G_X(t) = E(t^X)$$

b.
$$G_X(t) = \sum_{k=0}^{n} P(X = k)$$

c.
$$G_X(t) = E(X^t)$$

e. rien de ce qui précède

Question 12

Soit X une variable aléatoire à valeurs dans $\{0,\ldots,n\}$. Alors

a.
$$E(X) = G_X(1)$$

$$\widehat{(b.)}G_X(1)=1$$

(c.)
$$E(X) = G'_X(1)$$

d.
$$E(X) = G_X''(1)$$

e. rien de ce qui précède

Question 13

Soient X et Y deux variables aléatoires entières, finies et indépendantes. Alors

a.
$$G_{XY} = G_X \times G_Y$$

b.
$$G_{XY} = G_X + G_Y$$

$$\bigcirc G_{X+Y} = G_X \times G_Y$$

$$d. G_{X+Y} = G_X + G_Y$$

e. rien de ce qui précède

Question 14

Soit X une variable aléatoire entière dont la fonction génératrice est $G_X(t) = a(2t+1)^2$. Alors

(a)
$$a = \frac{1}{9}$$

$$G_{x}(1) = a(2+1)^{e} = 9a$$
 or $G_{x}(1) = 1$

b.
$$a = \frac{1}{3}$$

c.
$$a = 1$$

$$\Rightarrow a = \frac{1}{9}$$

= P(X=2)= P(X=4)

- d. on ne peut déterminer a avec ces données
- e. rien de ce qui précède

Question 15

Soit X une variable aléatoire à valeurs dans $\{1,3,5\}$ telle que $P(X=1)=\frac{1}{2}$ et $P(X=3)=P(X=5)=\frac{1}{4}$. Alors sa fonction génératrice vaut, pour tout $t \in \mathbb{R}$: $G_X(t) = \frac{t}{2} + \frac{t^3}{4} + \frac{t^5}{4}$.

(a.) vrai

b. faux

x C {0, ..., n} avec n = 5 et P(x=0)

Question 16

Soit (u_n) une suite réelle positive telle que $nu_n \xrightarrow[n \to +\infty]{} 0$. Alors

- a. $\sum u_n$ converge
- b. $\sum u_n$ diverge
- (c.) on ne peut rien dire sur la nature de $\sum u_n$

Question 17

- a. $\sum \frac{(-1)^n}{n}$ converge absolument
- $(b.) \sum \frac{(-1)^n}{n}$ converge
- (c.) $\sum \frac{(-1)^n}{n^2}$ converge absolument
- $(d) \sum \frac{(-1)^n}{n^2}$ converge
- e. rien de ce qui précède

Question 18

Soit (u_n) une suite réelle strictement positive telle que pour tout $n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} \frac{1}{4}$. Alors

- (a.) $\sum u_n$ converge
- b. $\sum u_n$ diverge
- c. on ne peut rien dire sur la nature de $\sum u_n$

Question 19

Au voisinage de 0, on a

a.
$$\frac{1}{1+x} = 1 + x + x^2 + x^3 + o(x^3)$$

b.
$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + o(x^3)$$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + o(x^3)$$

d.
$$\frac{1}{1-x} = 1 - x + x^2 - x^3 + o(x^3)$$

e. rien de ce qui précède

Question 20

Au voisinage de 0, on a

a.
$$cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4} + o(x^4)$$

b.
$$cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$$

c.
$$cos(x) = x - \frac{x^3}{3} + \frac{x^5}{5} + o(x^5)$$

d.
$$cos(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5)$$

e. rien de ce qui précède

Franco

QCM 3 Azar Chap 3 (Pres perf tenses) Choose the appropriate response.
21. There has been snow on the ground Thanksgiving Day.
a. for
(b. since
c. during
(d. All of the above.
22. Jean Plerre has studied English less than a year.
a. since
b. during
c. about
(6) for
23. Choose the correct end for this sentence: "I moved to Villejulf
(a.) last year."
b. for two years."
c. since two years."
d. since last year."
24. Choose the correct end for this sentence: "How long
a. have you that computer?"
b. have you got that computer?"
c.) have you had that computer?"
d. do you have that computer?"
25. Choose the correct end for this sentence: "So far this week
a. I didn't practice guitar."
b. I am having two tests."
c. I have not see John."
d. I've had two tests and a quiz."
26. Choose the correct end for this sentence: "I'm really hungry.
a. I didn't eat since I got up."
b. I never eat since I got up."
c. I haven't ate since I got up."
d.) I haven't eaten since I got up."
27. Choose the correct end for this sentence: "Last January
d) I saw snow for the first time."
28. "What Dariush for all these hours?"
(a.) has / been doing
b. dld / done

c. is / doingd. have / done

29. "I admit that I ____ older ___ I last saw you."

- a have gotten / since
- b. am getting / since
- c. have get / since
- d. have gotten / for
- 30. "Are you taking Advanced Calculus this semester?" "No, I ___it. I ___ last semester."
 - a. am already taking / took it
 - b. have already taken / took it
 - c. have already taken / had taken it
 - d. have already took / had took it

QCM anglais old Azar Chap. 3 pp. 39 - 44 REPONSES

or Rec 1 Sept 19

- 31) "Bouchon" Lyonnais is
 - a) a typical bar
 - (b) a restaurant
 - c) a tool for horses
 - d) an ugly kid
- 32) World Heritage is under the auspices of
 - (a) UNESCO
 - b) the Ministry of Culture
 - c) UNICEF
 - d) IONESCO
- 33) Which of these terms is an intruder?
 - a) memorable
 - (b) locatable
 - c) testimonial
 - d) remarkable
- 34) Eugénie Brazier was a
 - (a) a French chef
 - b) a poetess
 - c) a famous resistant
 - d) Paul Bocuse's mother
- 35) Lyon is classified as
 - a) a IGP Site
 - b) a AOC Site
 - c) an agroindustrial Site
 - d) a World Heritage Site
- 36) The three characteristics of heritage are defined by the anthropologist

- a) Jean Davallon
- b) Jean Dovallon
- c) Joe Davallon
- d) Marcel Mauss
- 37) A "gone" designates in the Lyon patols
 - a) a dish with a lot of cream
 - b) a priest
 - c) a silk worker
 - (d) a kid
- 38) The project of the construction of the Basilica of Fourvière comes
 - afrom the wish made by a cardinal of the city
 - b) from the wish made by a mayor of the city
 - c) from the oath made by a young madden of the city
 - d) from the victory over the Prussians
- 39) The traboule is
 - a) passage used by silk workers.
 - b) a building where the silk workers work.
 - c) a spherical object used by silk merchants.
 - d) a typical local dish.
- 40) The 'festival of lights' is
 - a) is classified by UNESCO
 - b) is a major tourist (and religious) event
 - c) is a tourist event became religious
 - d) is an event celebrating the Lumiere brothers.

Q.C.M n°3 de Physique

Note: les valeurs 'q' et 'Q' sont considérées positives.

41 – Le champ électrique $\vec{E}(M)$ créé au point M est relié au potentiel électrique V(M) par l'expression

(a)
$$\vec{E}(M) = -\overline{grad}(V)$$
 b) $\vec{E}(M) = \overline{grad}(V)$ c) $V(M) = \overline{grad}(\vec{E})$

42 - En considérant une charge q au point O et une charge Q au point M, comment s'exprime l'énergie potentielle électrique $E_{pe}(M)$ au point M?

a)
$$E_{pe}(M) = k \cdot \frac{q}{oM^2}$$

a)
$$E_{pe}(M) = k \cdot \frac{q}{\sigma M^2}$$

b) $E_{pe}(M) = k \cdot \frac{q \cdot Q}{\sigma M^2} \overrightarrow{u_r}$, où $\overrightarrow{u_r}$ est le vecteur unitaire orienté de O vers M.
c) $E_{pe}(M) = k \cdot \frac{q \cdot Q}{\sigma M}$

$$(c) E_{pe}(M) = k \cdot \frac{q \cdot Q}{QM}$$

43 – Dans le repère cylindrique de base $(\vec{e}_r, \vec{e}_\theta, \vec{e}_z)$ ci-contre, comment exprimer la projection du vecteur \overrightarrow{OH} sur l'axe Ox en fonction des variables r et θ ?

(a)
$$x = r \cos(\theta)$$

b) $x = -r \sin(\theta)$
c) $x = r d\theta$

b)
$$x = -r \sin(\theta)$$

c)
$$x = r d\theta$$

44 - L'opposé du gradient du potentiel électrique en un point M est :

- b) Un vecteur
 c) Une valeur absolue

45- En coordonnées polaires (r, θ) , quel élément infinitésimal \overline{dl} de longueur n'existe pas ?

a)
$$\overrightarrow{dl} = rd\theta.\overrightarrow{u_{\theta}}$$
 b) $\overrightarrow{dl} = dr.\overrightarrow{u_{r}}$ (c) $\overrightarrow{yl} = d\theta.\overrightarrow{u_{\theta}}$

b)
$$\overrightarrow{dl} = dr. \overrightarrow{u_r}$$

$$(c)$$
 $\overrightarrow{al} = d\theta . \overrightarrow{u_{\theta}}$

46 – Le dipôle électrique suivant est considéré. Le point O est situé au milieu de AB.

Le potentiel électrique au point A est :

a)
$$V(A) = k \frac{Q}{a}$$

b)
$$V(A) = k \frac{Q}{2a}$$

- 47 La situation de la question 46 est considérée. Le champ électrique créé par B au point A est :
 - a) colinéaire à (AB), orienté de A vers B

 - c) colinéaire à (AB), orienté de B vers A perpendiculaire à (AB), orienté vers les y > 0
 - d) perpendiculaire à (AB), orienté vers les y < 0
- 48 Deux points distants A et B sont sujets à un champ électrique \vec{E} crée par une charge positive q (voir schéma ci-dessous).

La différence de potentiel entre A et B (VB-VA) est égale à :

(a)
$$-\int_{A}^{B} \vec{E} \cdot \vec{dl}$$

b) $\int_{A}^{B} \vec{E} \cdot \vec{dl}$

- c) Aucune des deux précédentes propositions.
- 49 La situation présentée en question 48 est considérée. Comme représenté sur le schéma, la distance entre le point B et la charge +q est plus longue que la distance entre le point A et la charge +q. Quel potentiel électrique est le plus élevé : V(A) au point A ou V(B) au point B?
 - a) V(B)
 - (b)) V(A)
 - c) Cela dépend du signe des charges aux points A et B.
- 50- Soit la fonction $f(x, y, z) = x^2 z \cdot \ln(y)$. Son gradient peut s'écrire :

a)
$$\overline{grad}(f) = 2 \cdot x - \frac{z}{y} - \ln(y)$$

a)
$$\overline{grad}(f) = 2 \cdot x - \frac{z}{y} - \ln(y)$$

b) $\overline{grad}(f) = 2 \cdot x \cdot \overline{u_x} - \ln(y) \cdot \overline{u_y} + \frac{z}{y} \cdot \overline{u_z}$

(c)
$$\overrightarrow{grad}(f) = 2 \cdot x \cdot \overrightarrow{u_x} - \frac{z}{y} \cdot \overrightarrow{u_y} - \ln(y) \cdot \overrightarrow{u_z}$$

QCM Electronique - InfoS3

Pensez à bien lire les questions ET les réponses proposées (attention à la numérotation des réponses)

- Q1. Le dopage permet de diminuer la résistivité du semi-conducteur
 - (a-) VRAI

b- FAUX

- Q2. On désigne les 2 types de dopage par les lettres P et N. A quoi correspondent-elles ?
 - (a-) Aux charges des porteurs de charges en excès
 - b- Aux types d'ions injectés dans le semi-conducteur
 - c- Ce sont les initiales des électroniciens qui ont découvert les semi-conducteurs
 - d- A rien du tout
- Q3. Si on veut montrer qu'une diode est bloquée par un raisonnement par l'absurde, il faut :
 - a- La supposer bloquée et montrer que la tension à ses bornes est supérieure à sa tension de seuil.
 - b- La supposer passante et montrer que la tension à ses bornes est supérieure à sa tension de seuil.
 - c- La supposer passante et montrer que le courant qui la traverse de l'anode vers la cathode est positif.
 - d-) La supposer passante et montrer que le courant qui la traverse de l'anode vers la cathode est négatif.
- Q4. Laquelle de ces caractéristiques correspond à la caractéristique courant/tension du modèle à seuil de la diode :

Soit le circuit ci-contre. (Q5&6)

Q5. Choisir l'affirmation correcte si $E_1=10V$, $R_1=100\Omega$, et $R_2=100\Omega$ et que la diode est considérée comme idéale :

- a- La diode est bloquée et la tension à ses bornes est égale à 5V.
- b-) La diode est passante et le courant qui la traverse est égal à 100mA.
- c- La diode est passante et le courant qui la traverse vaut 50 mA
- d- La diode est passante et le courant qui la traverse vaut 5A.

Q6. Choisir l'affirmation correcte si $E_1=1$ V, $R_1=50\Omega$, et $R_2=100\Omega$ et que la diode est modélisée par son modèle à seuil (source de tension idéale) avec $V_0=0.6V$:

- a- La diode est passante et le courant qui la traverse vaut 100mA
- b- La diode est passante et le courant qui la traverse vaut 5A.
- c- La diode est passante et le courant qui la traverse vaut 200mA.

Alors $I_1 \cdot R_1 = V_0 = \frac{2}{3}V$ et $I_2 \cdot R_2 = 1 - V_0 = \frac{1}{3}V$

Gna, $I_1 = \frac{v_0}{R_1}$ et $I_2 = \frac{1-v_0}{R_2}$

Soit I, > Iz

Soit le circuit ci-contre, dans lequel on considère la diode idéale (interrupteur) (Q7&8)

- Q7. Que vaut la tension aux bornes de R si E = 10V, $R = 100\Omega$.
 - a- 0 V
 - (b-) 10 V

- c-1 kV
- d- 0,1 V

- Q8. Que vaut la tension V_{AK} aux bornes de la diode si E=0.5~V, $R=1\mathrm{k}\Omega$.
 - a-) 0 V

- c-0.7 V
- b- -0.5 V
- d = -0.7 V
- **Q9.** Par quoi remplace-t-on la diode passante si on utilise le modèle réel (générateur de tension imparfait)? On notera V_0 sa tension de seuil.

Q10. Par quoi remplace-t-on la diode bioquée si on utilise le modèle à seuil (générateur de tension idéal)?

QCM 3 Architecture des ordinateurs

Lundi 14 octobre 2019

Pour toutes les questions, une ou plusieurs réponses sont possibles.

- 11. Le terme assembleur peut désigner :
 - A. Un langage de programmation.
 - B. Un microprocesseur très rapide.
 - C. Une personne très intelligente.
 - (D.) Un programme qui convertit un code source en code machine.
- 12. Quel mnémonique est une directive d'assemblage?
 - (A) ORG
 - B. ILLEGAL
 - C. ADD
 - D. MOVE
- 13. Soit l'instruction suivante : MOVE.W (A0)+,D0
 - A. A0 est incrémenté de 1.
 - B) A0 est incrémenté de 2.
 - C. A0 est incrémenté de 4.
 - D. A0 ne change pas.
- 14. Soit l'instruction suivante: MOVE.W 2(A0), D0
 - A. A0 est incrémenté de 4.
 - B. A0 est incrémenté de 2.
 - C. A0 est incrémenté de 1.
 - D.) A0 ne change pas.
- 15. Soit l'instruction suivante : MOVE.W \$50, DO. Que représente la valeur \$50 ?
 - A. Une adresse sur 16 bits.
 - B. Une donnée immédiate sur 8 bits.
 - C.) Une adresse sur 32 bits.
 - D. Une donnée immédiate sur 32 bits.

- 16. Quelle(s) instruction(s) peut-on utiliser pour appeler un sous-programme?
 - A. BRA
 - (B) BSR
 - C. GSR
 - D. JMP
- 17. Après l'exécution d'une instruction RTS, le pointeur de pile est :
 - A. Incrémenté de deux.
 - B.) Incrémenté de quatre,
 - C. Décrémenté de deux.
 - D. Décrémenté de quatre.
- 18. Les étapes pour empiler une donnée sont :
 - A. Écrire la donnée dans (A7) puis décrémenter A7.
 - B. Lire la donnée dans (A7) puis incrémenter A7.
 - C.) Décrémenter A7 puis écrire la donnée dans (A7).
 - D. Incrémenter A7 puis lire la donnée dans (A7).
- 19. Les étapes pour dépiler une donnée sont :
 - A. Écrire la donnée dans (A7) puis décrémenter A7.
 - B. Lire la donnée dans (A7) puis incrémenter A7.
 - C. Décrémenter A7 puis écrire la donnée dans (A7).
 - D. Incrémenter A7 puis lire la donnée dans (A7).
- 20. L'instruction RTS:
 - A. Empile une adresse de retour.
 - (B.) Est une instruction de saut.
 - C. Ne modifie pas la pile.
 - D. Restaure les registres.