Chapter 12: The finite element (summary)

March 3, 2025

Goal: Study the concept of finite element.

- A finite element consists of the triplet (K, P, Σ) , where
 - $K \subset \mathbb{R}^d$ is a polygon
 - *P* is a polynomial function space on *K* (of finite dimension)
 - Σ is a (P-unisolvent) set of linear functionals on P (that is maps from P to \mathbb{R}): $\Sigma = \{L_1, L_2, ..., L_n\}$, where $n = \dim(P)$. Technical notes: Being unisolvent means, more or less, that one can find n linearly independent polynomials with $L_i(p_i) = \delta_{ij}$.

K is the element domain: line in 1d, triangle or quadrilateral in 2d, brick in 3d, etc.

P is the space of shape functions: $P^{(1)}(K)$ the set of polynomials of degree at most 1 on K, $P^{(2)}(K)$ the set of polynomials of degree at most 2 on K, etc.

 Σ is the set of nodal variables: This set uniquely specifies the basis functions/shape functions on each polygon K as well as the behaviour of these functions between adjacent polygons.

- Examples of finite elements are:
 - 1*d* Lagrange $P^{(k)}$ elements: Let a < b and distinct points $x_0 = a < x_1 < ... < x_k = b$. The polygon K is the interval [a,b], $P = P^{(k)}(a,b)$ is the set of polynomials of degree less or equal to k on [a,b], and $\Sigma = \{L_0,L_1,...,L_k\}$ with L_j defined by $L_j: P \to \mathbb{R}$ and $L_j(f) = f(x_j)$ for j = 0,1,...,k.
 - 2d linear Lagrange element: Here, K is the reference triangle, $P=P^{(1)}(K)$ the set of linear polynomials on K, and $\Sigma=\{L_1,L_2,L_3\}$ defined by $L_1(f)=f(0,0)$, $L_2(f)=f(1,0)$, and $L_3(f)=f(0,1)$ for any $f\in P$. One then determines the shape functions $\{\varphi_j\}_{j=1}^3$ by the conditions $\varphi_j(x,y)=a_j+b_jx+c_jy$ and $L_i(\varphi_j)=\delta_{ij}$. This provides the hat functions seen in earlier chapters: $\varphi_1(x,y)=1-x-y$, $\varphi_1(x,y)=x$, $\varphi_1(x,y)=y$.
- Examples of more exotic finite elements are MWX elements.
- Using higher oder FE for Poisson's equation

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where $\Omega \subset \mathbb{R}^2$ is a convex polygon gives higher rates of convergence: Assume that $u \in H^{p+1}(\Omega)$ and consider the FE approximation u_h based on a mesh $T_h = \{K\}$ and $V_h^0 = \{v \in C^{(0)}(\bar{\Omega}) \colon v_{|_K} \in P^{(p)}(K) \ \forall K \in T_h, \ v_{|_{\partial\Omega}} = 0\}$. Then, the error of the FE reads

$$||u-u_h||_{H^1(\Omega)} \le Ch^p|u|_{H^{p+1}(\Omega)}.$$

• Variational crimes consist of errors done in a VF:

Consider the variational problem:

Find
$$u \in U$$
 such that $a(u, v) = \ell(v) \quad \forall v \in V$.

In reality, one works with the following finite element problem

Find
$$u_h \in U_h$$
 such that $a_h(u_h, \chi) = \ell_h(\chi) \quad \forall \chi \in V_h$,

where the index h denotes possible errors coming from numerical integrations, triangulations, etc. Error estimates have to be extended in this situation, doable but not easy at all.

Further resources:

- FEM at wikipedia.org
- Finite Element Analysis at simscale.com
- Intro to FE at math.tamu.edu
- Shape functions at ethz.ch
- Variational crimes at youtube.com

Applications: See the rest of the lecture :-)