Rešenje zadataka iz Algoritamskih heuristika

Pokretanje programa

Na Linuksu se programi pokreću tako što se otvori terminal u odgovarajućem folderu (task1, task2 ili task3) i ukuca se komanda *make* (da bi se kompajlirao C++ kod). Nakon toga će se generisati objektni fajl. Programe pokrećemo pomoću komande ./main

Na Windowsu se dati programi mogu pokrenuti iz nekog IDE-a, na primer CodeBlocks-a. Neophodno je skinuti CodeBlocks sa MinGW kompajlerom, napraviti nove projekte (konzolne aplikacije), ubaciti odgovarajuće main.cpp i matrix.in fajlove i potom pokrenuti svaki projekat.

Prvi zadatak – A* algoritam

Ulazni podaci se nalaze u datoteci matrix.in Sledećeg su oblika:

broj redova, broj kolona [8 8] početna x pozicija, početna y pozicija [2 5] krajnja x pozicija, krajnja y pozicija [4 1] Oblik matrice (1 ako nema prepreke, 0 ako ima)

Izlazni podaci se ispisuju u konzolu. Ispisuju se dve matrice:

matrica f – predstavlja cene obiđenih elemenata matrice. Vrednosti funkcije cene f(x) za svako polje u matrici su prikazane u tabeli 1 (slučaj pod a – $h(i) = Manh_dist_{xy}(T, i)$) i tabeli 2 (slučaj pod b – $h(i) = max(Manh_dist_x(T, i), Manh_dist_y(T, i))$). Plavom bojom je označen izvorišni čvor, crvenom uvorišni čvor. Sivom bojom su označene prepreke, a svetlo zelenom **pronađena putanja**.

matrica prev - govori ko je "roditelj" obiđenih elementa matrice(u obliku *y_pozicija*10 + x_pozicija*, recimo vrednost na poziciji [2 3] će biti 24 ako je njegov roditelj element na poziciji [2 4]). Roditelj ima analognu definiciju kao u teoriji grafova, element koji je prethodnik nekom drugom elementu.

Članovi matrice koji mogu da budu posećeni se pamte u prioritetnom redu (engl. *priority queue*). Razlika u odnosu na običan red je u tome što se na vrhu tog reda uvek nalazi element sa najvećom vrednošću, što će u ovom slučaju biti funkcija cene, f(x). Već obiđeni članovi matrice se skladište u strukturi podataka zvanoj skup (engl. set) – data struktura nije numerisana (odnosno sortirana) i omogućava povrat vrednosti u O(logn).

	0	1	2	3	4	5	6	7
0	12	10	8	8	8	10	12	14
1	10	8	6	6	6	8	10	12
2	10	8	6	6	6	8	10	12
3	10	8	6	6	6	8	10	12
4	10	8	6	6	6	8	10	12
5	10	8	6	6	6	8	10	12
6	12	10	8	8	8	10	12	14
7	14	12	10	10	10	12	14	16

Tabela 1 Rešenje pod a)

	0	1	2	3	4	5	6	7
0	11	9	7	7	8	9	11	13
1	10	8	6	6	6	8	10	12
2	9	7	5	5	6	7	9	11
3	8	6	4	5	6	7	8	10
4	7	5	4	5	6	7	8	9
5	6	5	4	5	6	7	8	9
6	8	7	6	7	8	9	10	11
7	10	9	8	9	10	11	12	13

Tabela 2 Rešenje pod b)

Drugi zadatak – Keringan-Linov algoritam

Ulazni podaci se nalaze u datoteci matrix.in. Sledećeg su oblika:

Širina, visina [10 8]

Broj iteracija [5]

Matrica incidencije netova i komponenti [tabela 3].

Izlazni podaci se ispisuju u konzolu. Izlazni podaci su u obliku:

oznaka kapije (slovo od a do j – slika 2): broj 1 ili 2 (da li pripada prvoj ili drugoj particiji). Ova linija se ponavlja 10 puta, za svaku kapiju.

Broj netova koji se moraju preseći za takav raspored.

Pronađeno **rešenje** nakon 5 iteracija je: (a, b, d, f, i) je jedna particija, (c, e, g, h, j) druga particija. Moraju se preseći 3 neta.

	а	b	С	d	е	f	g	h	i	j
n1	1	0	0	1	0	1	0	0	0	0
n2	0	1	0	1	1	0	1	1	0	0
n3	0	0	1	0	1	0	0	1	0	0
n4	0	0	0	1	0	1	1	0	0	0
n5	0	0	0	0	1	0	1	1	0	1
n6	0	0	0	0	0	0	0	0	1	1
n7	0	0	0	0	0	1	0	0	1	0
n8	0	0	0	0	0	0	0	1	0	1

Tabela 3 Matrica incidencije netova i komponenti

Od matrice incidencije netova i komponenti je razvijen graf u kojem su čvorovi komponente, a težine grana se određuju po formuli opisanom u datom algoritmu (tabela 4, slika 1):

We typically use so called the kclique model, where a net that contains k gates forms a k-clique in G, and each edge in the clique gets a weight of 1/(k-1). In case an edge (x, y) already exists from a prior net conversion, we just add the new weights instead of adding a parallel edge.

	а	b	С	d	е	f	g	h	i	j
а	0	0	0	0.5	0	0.5	0	0	0	0
b	0	0	0	0.25	0.25	0	0.25	0.25	0	0
С	0	0	0	0	0.5	0	0	0.5	0	0
d	0.5	0.25	0	0	0.25	0.5+0.5	0.5+0.25	0.25	0	0
е	0	0.25	0.5	0.25	0	0	0.33+0.25	0.33+0.5+0.25	0	0.33
f	0.5	0	0	0.5+0.5	0	0	0.5	0	1	0
g	0	0.25	0	0.5+0.25	0.33+0.25	0.5	0	033+0.25	0.5	0.5+0.33
h	0	0.25	0.5	0.25	0.25+0.5+0.33	0	0.25+0.33	0	0	1+0.33
i	0	0	0	0	0	1	0.5	0	0	0.5
j	0	0	0	0	0.33	0	0.5+0.33	1+0.33	0.5	0

Tabela 4 Neusmeren graf u matričnom obliku

Težine datog grafa su korišćene u određivanju koje kapije će da se zamene particija, pomoću sledeće formule:

$$gain(x, y) = (E_x - I_x) + (E_y - I_y) - 2c(x, y)$$

gde važi:

$$E_x = \sum_{i \in P_2} c(x, i) \quad I_x = \sum_{i \in P_1} c(x, i)$$

Figure 2.1. (a) Gate-level circuit, (b) its edge-weighted undirected graph representation. The thin and the thick lines indicate the weight of 0.5 and 1, respectively.

Slika 1 Primer el. kola i odgovarajućeg neusmerenog grafa

Slika 2 Traženo kolo

Treći zadatak – simulirano kaljenje

Ulazni podaci se nalaze u datoteci matrix.in. Sledećeg su oblika:

Širina, visina [10 8]

Broj iteracija, alfa (koeficijent geometrijske progresije za temperaturu), inicijalna temperatura [10 0.9 100] Matrica incidencije netova i komponenti [tabela 3].

Za ulazne vrednosti su odabrane najbolje vrednosti iz priloženog rada "Partitioning using SA":

If we ignore the MaxTime, the best results are obtained for initial temperature To=100, cooling rate a=0,9, and M=10.

Izlazni podaci se ispisuju u konzolu. Oblik izlaznih podataka je <u>identičan</u> kao u drugom zadatku: oznaka kapije (slovo od a do j – slika 2): broj 1 ili 2 (da li pripada prvoj ili drugoj particiji). Ova linija se ponavlja 10 puta, za svaku kapiju.

Broj netova koji se moraju preseći za takav raspored.

Rezultati se razlikuju pri svakom pokretanju. Algoritam uspeva da pronađe rešenje u kojem je presečeno ukupno 3 neta.

Algoritam nasumice odabere dve kapije iz različitih particija. Ukoliko je cena manja od postojeće, novo rešenje se prihvata. Ukoliko nije, rešenje će se prihvatiti ako važi:

$$r < \exp\left(-\frac{\Delta h}{T}\right)$$

gde je r proizvoljan broj između 0 i 1, Δh razlika između postojećeg i najboljeg rešenja, i T trenutna temperatura. Temperatura se menja u svakoj iteraciji geometrijskom progresijom:

$$T_i = \alpha \cdot T_{i-1}$$
 $\alpha < 1$