R	ST	140	752	Final	exam
L		740		ı ıııaı	еханн

Notes:

- You may not use a calculator for this exam.
- Please be neat and write legibly. Use the back of the pages if necessary.
- Good luck!

printed name

Define the following:

Model (1)
$$Y = X_1\beta_1 + \epsilon$$
.

Model (2)
$$Y = X_1\beta_1 + X_2\beta_2 + \epsilon$$
.

where Y is $n \times 1$, X_1 is $n \times p_1$ and X_2 is $n \times p_2$.

- 1. Let $S^2_{(i)}$ be the residual variance estimate obtained from fitting Model (i).
 - A. Given the expected value of $S^2_{(1)}$ and $S^2_{(2)}$ given that Model (1) is true.
 - B. Given the expected value of $S^2_{(1)}$ and $S^2_{(2)}$ given that Model (2) is true.
 - C. Suppose that Model (1) is true. Show that the variance of $S^2_{(2)}$ is larger than that of $S^2_{(1)}$. (Hint, the variance of a Chi-Squared with df degrees of freedom is 2df.)

- 2. Consider a linear model $Y = X\beta + \sum_{j=1}^J \delta_{i_j} \Delta_j + \epsilon$ where δ_{i_j} is an $n \times 1$ vector with a 1 at position i_j and 0 elsewhere, Y is $n \times 1$, and X is $n \times p$.
 - A. Fix β . Show that the least squares estimate of Δ_j is $(y_{i_j}-x'_{i_j}\beta)$ where x_{i_j} is row i_j from X as a column vector.
 - B. Given the prevous answer, prove that the i_j residual from the least squares fit of this model (where β is estimated and not held fixed) is 0.

- 3. Consider a model $E[Y_i] = f(x_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 (x_i k)_+^2$ where $(a)_+$ is a if a > 0 and 0 otherwise and k is a known knot point.
 - A. Show that f is continous at point k.
 - B. Show that f has exactly one continuous derivative.