

Lecture 7: Probabilistic (or Randomized) Algorithms

Example 1: Dataset Comparison

$$X = x_1 x_2 \dots x_n, \qquad x_i \in \{0,1\}$$

$$Y = y_1 y_2 \dots y_n, \qquad y_i \in \{0,1\}$$

Question: X = ?Y

Classical Communication Protocol:

Comparing the two datasets bit by bit:

- Communication overhead: O(n)
- Comparison overhead: $O(n) \Rightarrow n = 10^{16} bits(B) \approx 1136 TB$

$$v(X) = value(X) = \sum_{i=1}^{n} x_{i} \cdot 2^{n-i}$$

$$\Pi(k) = \{ p \in \mathbb{P} \mid p \le k \}, \ \pi(k) = |\Pi(k)|$$

Randomized Equal algorithm:

Input:
$$X = x_1 x_2 \dots x_n$$
, $Y = y_1 y_2 \dots y_n$, $x_i y_i \in \{0,1\}$

$$A \qquad B$$

- 1. A randomly chooses a prime number $p \in \Pi(n^2)$
- 2. A calculates the "fingerprint of $X => s = v(X) \mod p$.
 - a. Note: X is considered as a binary number
- 3. A sends s and p to B
- 4. B calculates the "fingerprint of $Y = t = v(Y) \mod p$
- 5. B compares whether s = t? Are the two fingerprints the same?
 - a. Yes: equal -> A,
 - b. No: unequal -> A

Comparison overhead:

The Equal algorithm is a randomized communication protocol for the data comparison example. It drastically reduces the comparison effort. Comparison overhead was previously O(n), now the overhead is reduced to $5 \text{ steps} \rightarrow O(1)$

Communication overhead:

$$0 \le p, s \le n^2$$

$$m \in \mathbb{N} \to \lceil \log m \rceil \ Bits$$

$$l(s, p) \le 2 * \lceil \log n^2 \rceil \le 4 * \lceil \log n \rceil$$

For $n = 10^{16}$;

$$\leq 4 * 16 * [\log 10]$$

 $\leq 4 * 16 * 4$
= 256 Bits

Instead of 10¹⁶, we would only transmit 256 bits.

$$Prob_{equal}[A \mid B]$$

$$X = Y => t = s$$
$$X \neq Y <= t \neq s$$

$$Prob_{equal}["unequal" | X = Y]) = 0$$

Example:

$$n = 5$$

$$X = 10011$$
 $v(X) = 19$

$$Y = 10001$$
 $v(Y) = 17$

$$for p = 11 => s = 8, t = 6$$

$$X = 10011$$
 $v(X) = 19$

$$Y = 10001$$
 $v(Y) = 17$

for
$$p = 2 => s = 1$$
, $t = 1$

p = 2 is a bad witness for the inequality of X and Y

Question: How many bad witnesses are in $\Pi(n^2)$?

$$s = t$$
, i.e. $v(X) = v(X) \mod (p)$, although $X \neq Y$.

$$\Pi^+(n^2,X,Y) = \{ p \in \mathbb{P} \mid v(X) \neq v(Y)(p), X \neq Y \}$$

$$\Pi^{-}(n^{2}, X, Y) = \{ p \in \mathbb{P} \mid v(X) = v(Y)(p), X \neq Y \}$$

Establishing the relationship between bad witnesses and total witness candidates:

$$Prob_{equal}[X = Y \mid X \neq Y]) = \frac{|\Pi^{-}(n^{2}, X, Y)|}{|\Pi(n^{2})|} = \frac{2 \ln n}{n}$$

$$for \ n = 10^{16} \implies \frac{2 \ln 10^{16}}{10^{16}} \approx 0.7 * 10^{-14}$$

Multiple rounds of algorithm to further reduce the error:

$$l = 10 => 0.7 * 10^{-144}$$

$$O(l * \log n)$$

$$L \subseteq \Sigma^*, w \in \Sigma^* : w \in \mathcal{L}$$

$$D = \{(x, y) \in \{0,1\}^n x \{0,1\}^n \mid n \in \mathbb{N}_0, x \neq y\}$$

Given $w \in \{0,1\}^n x \{0,1\}^n$

- 1. $Prob_{equal}["w \in D" \mid w \notin D] = 0$
- 2. $Prob_{equal}["w \in D" \mid w \in D] \ge 1 \frac{2 \ln n}{n} => RP(\varepsilon(n)), \ \varepsilon(n) \text{ is the error bound}$
- 3. Overhead: $O(\log n)$

Example 2: Triangle Graph

 $\Delta Graph = \{\langle G \rangle \mid G \ undirected \ graph \ that \ contains \ at \ least \ one \ triangle\}$

Randomized Triangle Graph Algorithm:

- 1. T (tester) randomly chooses an edge $\{a, b\}$
- 2. T randomly chooses a node $c \neq \{a, b\}$
- 3. Test: Do c and $\{a, b\}$ form a triangle? -> Yes or No

 $Prob_{T}["yes" \mid G \notin \Delta Graph] = 0$ \rightarrow no false positive statement

$$G = (V, E)$$

$$|V| = n, |E| = m$$

 $Prob_T["yes in one round" \mid G \in \Delta Graph] \ge \frac{3}{m} * \frac{1}{n-2}$

 $Prob_T["no\ in\ one\ round" \mid G \in \Delta Graph] \le 1 - \frac{3}{m(n-2)}$

 $Prob_{T}["no\ in\ l\ rounds"\ |\ G\in\Delta Graph]\leq \left(1-\frac{3}{m(n-2)}\right)^{l}$

 $Prob_{T}["yes in l rounds" | G \in \Delta Graph] \ge 1 - \left(1 - \frac{3}{m(n-2)}\right)^{l}$

$$\left(1 + \frac{1}{k}\right)^k \xrightarrow{k \to \infty} e^1 = 2.7182 \dots$$

More general formulation with x instead of the special case with 1:

$$\left(1+\frac{x}{k}\right)^k \xrightarrow{k\to\infty} e^x$$

Place a minus before x:

$$\left(1 + \frac{-x}{k}\right)^k \xrightarrow{k \to \infty} e^{-x}$$

We want to apply the Euler sequence for our probabilistic $\Delta Graph$ algorithm:

$$k = l, x = yl \rightarrow (1 - y)^l \xrightarrow{l \to \infty} e^{-yl}$$

$$y = \frac{3}{m(n-2)}$$
, $l = \frac{m(n-2)}{3} \rightarrow y * l = 1$

$$\left(1 - \frac{3}{m(n-2)}\right)^{\frac{m(n-2)}{3}} \approx e^{-1} \approx \frac{1}{e} \approx \frac{1}{2.7} < \frac{1}{2}$$

RP

- 1. $Prob_T["yes" \mid G \notin \Delta Graph] = 0$
- 2. $Prob_T["yes" \mid G \in \Delta Graph] \ge \frac{1}{2}$
- 3. polynomiel

Example 3: Probabilistic Prime Number Tests

Little Fermat's Theorem:

$$p \in \mathbb{P}, a \in \mathbb{N}, (a, p) = 1$$

$$\downarrow \downarrow$$

$$a^{p-1} = 1(p)$$

Question: $n \in \mathbb{N}$, $a \in \mathbb{N}$ with $a^{n-1} = 1(n) => n \in \mathbb{N}$

$$2^{n-1} = 1(n)$$

 $n = 3, 4, 5 \dots$

n=341 – the number is not prime, but it pretends to be prime

⇒ Smallest pseudoprime number to base 2

Definition: Let m be a composite number with (a, m) = 1 and $a^{m-1} = 1(m)$ or $a^m = a(m)$, then m is called pseudoprime to base a

n=341 – the number is not prime, but it pretends to be prime

- n=341 is smallest pseudoprime number to base 2
- n=341 is not a pseudoprime to base 3

In other words: Pseudoprime numbers satisfy Fermat's little theorem even though they are not prime

Existence of composite numbers that are pseudoprime to all (coprime) bases:

A composite number is called a Charmichael number iff $a^{m-1} = 1(m)$ or $a^m = 1(m)$ applies to all bases with (a, m) = 1

- m=561 is the smallest Carmichael number
- Carmichael numbers are free of squares
- Factoring Carmichael numbers contains at least 3 different prime factors
- There are infinitely many Carmichael numbers: 561, 1105, 1729, 2465, 2821, ...

Theorem: For $m \in \mathbb{N}$, $m \ge 3$, let

$$F_m = \{ a \in \mathbb{Z}_m \mid a^{m-1} = 1(m) \}$$

be the set of bases for which m passes the Fermat test.

If m is not a prime number, then F_m contains the bases that "fool" the Fermat test.

Let $m \in \mathbb{N}$, $m \ge 3$, be a composite and not a Carmichael number, then the following applies:

$$|F_m| \leq \frac{\mathbb{Z}_m}{2}$$

alg notPrime $(k \in U_+, k \ge 3)$

Randomly pick an $a \in (1, ..., k-1)$ with (a, k) = 1

If $a^{k-1} \neq 1(k)$

then Output: *k* is not prime otherwise Output: *k* prime?

endalg

 $\overline{\mathbb{P}} = \text{COMPOSITES} \in \text{RPP}$

- $(1) \ Prob[k \in \overline{\mathbb{P}} \mid k \notin \overline{\mathbb{P}}] = 0$
- (2) $Prob[k \notin \overline{\mathbb{P}} \mid k \in \overline{\mathbb{P}}] \leq \frac{1}{2}$
- (3) notPrime is polynomial

The probability of error is therefore at most $\frac{1}{2}$. If the algorithm is now carried out for l rounds in which the base a is chosen anew at random and independently, then the probability of error is at most $\frac{1}{2l}$; so, it can be made as small as you want.

 \rightarrow Executing the algorithm l times leads to an error probability of $\leq \frac{1}{2^l}$

Miller Rabin Algorithm and b-Sequences

$$\mathbb{Z}_m$$
 is a field iff $m \in \mathbb{P}$

$$x^2 = 1$$

$$\mathbb{Z}_m$$
: $x = 1$, $x = -1 => trivial solutions$

 $x \in \mathbb{Z}_m$ is called a non-trivial square root of 1 modulo m if $x^2 = 1$ and $x \neq 1$ and $x \neq -1$.

e.g.,
$$m = 15$$
: $x = 4$, $x = -4 => non - trivial solutions$

In
$$\mathbb{Z}_m$$
, x^2 has the solution $x = \pm 1$ iff $m \in \mathbb{P}$

In other words: If there is a nontrivial square root modulo m, then m is a composite number.

$$m \in \mathbb{N}$$

$$s = \max\{ r \in \mathbb{N} \mid 2^r \mid m - 1 \}$$

$$d = \frac{m-1}{2^s}$$

$$b \in \mathbb{Z}_m$$
: $b - sequence$

$$\langle b^{2^0d}, b^{2^1d}, b^{2^2d}, \dots, b^{2^{s-1}d}, b^{2^sd} \rangle \mod (m)$$

If $m \in \mathbb{P}$:

$$b^{2^{s}d} = b^{2^{s}*\frac{m-1}{2^{s}}} = b^{m-1} = 1(m)$$

→ We get more information about the structure of the b-sequence if m is a prime number:

Examples:

a) Let m=25 (i.e., composite), then s=3 and d=3. For the basis b=2 the sequence results

$$\langle 2^3, 2^6, 2^{12}, 2^{24} \rangle = \langle 8.14.21.16 \rangle$$

For b=3 we get

$$\langle 3^3, 3^6, 3^{12}, 3^{24} \rangle = \langle 2, 4, 16, 6 \rangle$$

and for b = 7

$$\langle 7^3, 7^6, 7^{12}, 7^{24} \rangle = \langle 18, -1, 1, 1 \rangle$$

b) Let m=97 (i.e., prime), then s=5 and d=3. For the basis b=2 the sequence results

$$\langle 2^3, 2^6, 2^{12}, 2^{24}, 2^{48}, 2^{96} \rangle = \langle 8, 64, 22, -1, 1, 1 \rangle$$

For b=14 this results

$$\langle 14^3, 14^6, 14^{12}, 14^{24}, 14^{48}, 14^{96} \rangle = \langle 28, 8, 64, 22, -1, 1 \rangle$$

for b = 35

$$\langle 35^3, 35^6, 35^{12}, 35^{24}, 35^{48}, 35^{96} \rangle = \langle 1, 1, 1, 1, 1, 1, 1 \rangle$$

and for b = 62

$$\langle 62^3, 62^6, 62^{12}, 62^{24}, 62^{48}, 62^{96} \rangle = \langle -1, 1, 1, 1, 1, 1, 1 \rangle$$

→ The examples show that the b-sequences for prime numbers have a specific structure.

Theorem: Let be $p \in \mathbb{P}$, $s = max\{r \mid 2^r \mid p-1\}$, $d = \frac{p-1}{2^s}$, $b \in \mathbb{N}$ with (b,p) = 1

Then (1) $b^d = 1 (p)$ or

$$(2) \, \exists r \in \{0,1,\ldots,s-1\} : b^{2^r d} = -1 \; (p)$$

If $p \in \mathbb{P}$, then the b-sequence has one of the following forms:

- (1) $\langle 1, 1, ..., 1 \rangle$
- $(2) \langle -1, 1, ..., 1 \rangle$
- $(3) \langle ?, ?, ..., ?, -1, 1, ..., 1 \rangle$

Last element of the b-sequence: $b^{p-1} = 1(p)$

Use the reverse of the b-sequence:

 $m \in \mathbb{N}, b \in \mathbb{Z}_m$, with b – sequence

- $(1) \langle ?, ?, ..., 1, 1, ..., 1 \rangle$
- $(2) \langle ?, ?, ..., ?, -1 \rangle$
- (3) (?, ?, ... , ?,?)
- $\rightarrow m \notin \mathbb{P}$

Definition: $m \in U_+, m \ge 3, m-1 = 2^s d$ with $d \in U_+, b \in \mathbb{Z}_m$ If $b^d = 1(m)$ or $b^{2^r d} = -1(m)$ holds for an $r \in \{0, 1, ..., s-1\}$, then m is called **strong pseudoprime** to base b.

Theorem: $m \in U_+, m \ge 3$, composite, then the number of bases for which m is strongly pseudoprime is at most $\frac{m-1}{4}$

→ Miller Rabin Algorithm

```
algorithm MILLER-RABIN(n \in U+, n \ge 3)
```

Compute d and s with $n-1=d\cdot 2^s$ and d positive uneven

Randomly pick an $a \in \{2, 3, ..., n-2\}$

 $b := a^d(n)$

if b = 1 (n) or b = -1 (n): Output: n is prime?

for r := 1 to s - 1 do

 $b := b^2 (n)$

if b = -1 (n): Output: n is prime?

if b = 1 (n): Output: n is not prime

endfor

Output: n is prime?

endalgorithm MILLER-RABIN

Miller Rabin Algorithm ∈ RPP

- (1) $Prob[Output: n \text{ is not prime } | n \in \mathbb{P}] = 0$
- (2) $Prob[Output: n \text{ is prime?} \mid n \notin \mathbb{P}] \leq \frac{1}{4}$
- (3) $Prob[l-times\ Output: n\ is\ prime?\ |\ n\notin\mathbb{P}] \leq \frac{1}{4^l}$
- (4) $Prob[after\ l\ excecutions\ Output:\ n\ is\ not\ prime\ |\ n\notin\mathbb{P}]\ \geq 1-\frac{1}{4^l}$
- (5) O(l * (log n)) arithmetical operations or $O(l * (log n)^3)$ bit operations

Outline:

Dataset
$$\in RP\left(\frac{2\ln n}{n}\right)$$

 $\triangle Graph \in RP\left(\frac{1}{2}\right)$
 $Miller\ Rabin \in RP\left(\frac{1}{4}\right)$

Complexity Class RP:

Random/Probabilistic polynomial running algorithms with one-sided error

- No false positive statements.
- Conversely, RP algorithms make errors with a particular bound ε .
- By repeating the execution of the algorithm, the total error can be reduced.
- ⇒ The algorithms that class RP defines are also called **Monte Carlo algorithms**. Such algorithms allow a one-sided error.