

Índice

<u>Índice</u>

- 1. Análisis del problema
- 2. Objetivo del problema
- 3. Hipótesis
- 4. Modelización del problema
 - 4.1 Definición de constantes
 - 4.2 Definición de variables

Variables Enteras

Bivalentes Indicativas

Bivalentes de Decisión

Discretas

Variables Continuas

4.3 Funcional

4.4 Restricciones

1. Análisis del problema

Se trata de un problema del viajante en donde se parte del origen en la ciudad de **Buenos Aires.** Se pueden realizar vuelos directos entre una ciudad y otra con cuatro tipos de agencias: la A, la B, la C y la D. Si se hace una combinación determinada con estas agencias, se pueden lograr descuentos en las tarifas de los vuelos directos realizados entre una ciudad y otra.

2. Objetivo del problema

Determinar el orden de las ciudades a recorrer y la agencia turística a utilizar en cada tramo para minimizar el costo total del viaje en un periodo determinado.

3. Hipótesis

- No hay paros de las aerolíneas, los servicios funcionan con normalidad.
- Los aviones llegan a destino sin inconvenientes y no hacen paradas intermedias o desvíos para llegar de un punto a otro.
- Se contrata una agencia por tramo entre dos ciudades. Por ejemplo, se contrata a la agencia A para un vuelo entre dos ciudades, entre Buenos Aires y Jujuy, pero no hay ciudades intermedias.
- En el período del viaje no va a haber variación de tarifas o inflación. No se considera algún otro costo extra, la tarifa es por kilómetro y se aplica de igual manera para todas las agencias A, B, C ó D.
- Se realiza el reintegro de la tarifa para la agencia D al final de todos los vuelos realizados.
- No hay un horario de salida y de llegada que agregue restricción alguna al modelo.
- No se puede realizar un vuelo directo entre dos ciudades si no es con las agencias A, B, C ó D.

4. Modelización del problema

4.1 Definición de constantes

Una constante muy grande.

M

Una constante muy pequeña. (m>0)

m

Conjunto de ciudades que el turista desea visitar en sus próximas vacaciones.

CIUDADES = {Buenos Aires, Jujuy, ..., Usuahia}

Cantidad de ciudades que el turista desea visitar en sus próximas vacaciones.

 $CANT_CIUDADES = |CIUDADES| = 23$

Ciudad en la que el turista inicia sus vacaciones.

CIUDAD ORIGEN = BuenosAires

Conjunto de agencias turísticas.

 $AGENCIAS = \{A, B, C, D\}$

Conjunto de tipos de descuento aplicables a un vuelo entre una ciudad y otra.

 $AGN DESCxVUELO = \{A, B, C\}$

- A: Descuento aplicado por la agencia A a un vuelo directo entre dos ciudades.
- *B*: Descuento aplicado por la agencia *B* a un vuelo directo entre dos ciudades.
- C: Descuento aplicado por la agencia C a un vuelo directo entre dos ciudades.

Distancia recorrida en km entre la ciudad i y la ciudad j por vuelo.

DISTANCIA_{ii} [km/vuelo]

Precio de la tarifa por km recorrido en un periodo determinado.

TARIFAxKM = 7 [\$/km]

TIPOS DE DESCUENTO APLICADO:

Se aplica el descuento del 35% con la agencia A.

 $DESCUENTO_A = 0.35$

Se aplica el descuento del 15% con la agencia B.

 $DESCUENTO_R = 0.15$

Kilometros mínimos en vuelo directo para que aplique descuento con la agencia B.

 $DESC_B_KM = 200 [km/vuelo]$

Se aplica el descuento del 20% con la agencia C.

 $DESCUENTO_C = 0.20$

Se aplica el descuento de \$750 con la agencia D.

 $DESCUENTO_D = 750 [\$/reintegro]$

Cada cuantos Kilometros recorridos se reintegra un monto fijo con la agencia D.

 $DESC_D_KM = 800 [km/reintegro]$

4.2 Definición de variables

Variables Enteras

Bivalentes Indicativas

 $D_{iik} = 1$ se aplica el descuento de tipo k para el viaje de la ciudad i a la j.

 $D_{iik} = 0$ sino

 $i \in CIUDADES$, $j \in CIUDADES$, $k \in AGN_DESCxVUELO$ con $i \neq j$

Bivalentes de Decisión

 $Y_{ii} = 1$ si se realiza un viaje directo de la ciudad i a la ciudad j.

 $Y_{ii} = 0 sino$

 $i \in CIUDADES$, $j \in CIUDADES$ con $i \neq j$

 $Q_{ijk} = 1$ si el viaje directo entre la ciudad i y la ciudad j se realizó con la agencia k.

 $Q_{iik} = 0 sino$

 $i \in CIUDADES$, $j \in CIUDADES$, $k \in AGENCIAS$ con $i \neq j$

Discretas

 U_i : Número en la secuencia en que la ciudad i es visitada. $i \in CIUDADES$ Reintegros AgnD: Indica la cantidad de veces que la agencia D reintegra un monto fijo de dinero. [reintegros/periodo]

Variables Continuas

CostoTotalNeto:Indica el costo total con los descuentos aplicados. [\$/periodo]
CostoTotalBruto:Indica el costo total sin aplicar descuentos. [\$/periodo]
Descuentos:Indica el monto total de descuentos entre todas las agencias. [\$/periodo]
DescuentosAgencia;:Indica el monto total de descuentos de la agencia i. [\$/periodo]

DistAgencia_i: Indica la cantidad de KM recorridos con la agencia i. [km/periodo] $i \in AGENCIAS$

ExcAgnB: Kilometros extras que se hacen para cumplir con el kilometraje mínimo exigido para obtener el descuento con la agencia B. [km/vuelo]

DefAgnB: Kilometros que faltaron para cumplir con el kilometraje mínimo exigido para obtener el descuento con la agencia B. [km/vuelo]

4.3 Definición del Funcional

 Z_{MIN} [\$/periodo] = CostoTotalNeto[\$/periodo]

4.4 Restricciones

CostoTotalNeto [\$/periodo] = CostoTotalBruto[\$/periodo] - Descuentos[\$/periodo]

CostoTotalBruto [\$/periodo] =
$$\sum_{i \in CIUDADES} \sum_{j \in CIUDADES} (Y_{ii}. DISTANCIA_{ii}[km/vuelo] . 1[vuelo/periodo] . TARIFAxKM[$/km])$$

 $Descuentos [\$/periodo] = \sum_{i \in AGENCIAS} Descuentos Agencia_{i} [\$/periodo]$

$$\begin{aligned} Descuentos Agencia_k \left[\$/periodo\right] &= \sum_{i \in CIUDADES} \sum_{j \in CIUDADES} \left(\\ D_{ijk}.\ \textbf{DISTANCIA}_{ij}[km/vuelo]\ .\ \textbf{TARIFAxKM}[\$/km]\ .\ \textbf{DESCUENTO}_k\right) \\ & \forall_{k \in AGN\ DESCXVUELO}/i \neq j \end{aligned}$$

 $Descuentos Agencia_D[\$/periodo] = Reintegros AgnD[reintegro/periodo] \ . \\ \textbf{DESCUENTO}_D[\$/reintegro]$

Si se realiza un viaje directo entre dos ciudades, éste se realiza con una única agencia.

$$\sum_{k \in AGENCIAS} Q_{ijk} = Y_{ij}$$
 $\forall_{i \in CIUDADES, j \in CIUDADES} / i \neq j$

Si se viajó con la agencia k \Rightarrow Puede o no haber descuento con la agencia k Si no se viajó con la agencia k \Rightarrow No hay descuento con la agencia k

$$D_{ijk} \leq Q_{ijk} \qquad \qquad \forall_{i \in CIUDADES, \ j \in CIUDADES, \ k \in TIPOS_DESCUENTOXVUELO} \ / \ i \neq j$$

A cada ciudad llega un único vuelo y de cada ciudad parte un único vuelo.

$$\begin{array}{ll} \sum_{j \in CIUDADES} Y_{ij} = \mathbf{1} & \qquad \forall_{i \in CIUDADES} / i \neq j \\ \sum_{i \in CIUDADES} Y_{ij} = \mathbf{1} & \qquad \forall_{j \in CIUDADES} / i \neq j \end{array}$$

Planteo de ecuación para evitar sub-tours

$$U_i - U_j + \textit{CANT_CIUDADES} \; . \; Y_{ij} \leq \textit{CANT_CIUDADES} - 1 \qquad \forall_{i \in \textit{CIUDADES}, j \in \textit{CIUDADES}} \; / \; i \neq j \leq \textit{CANT_CIUDADES} \; . \; \forall j \in \textit{CIUDADES} \; . \; \forall j \in \textit$$

La ciudad origen es la primera en la secuencia de ciudades visitadas.

$$U_{CIUDAD\ ORIGEN} = 1$$

Distancias recorridas con cada agencia

$$\begin{aligned} DistAgencia_{k}[km/periodo] &= \sum_{i \in CIUDADES} \sum_{j \in CIUDADES} (\\ Q_{ijk}. \ \textbf{DISTANCIA}_{ij}[km/vuelo] \ . \ 1[vuelo/periodo]) \end{aligned} \qquad \forall_{k \in AGENCIAS} \end{aligned}$$

Descuentos con la agencia A

$$\begin{aligned} &D_{ijA} + D_{jkA} <= \mathbf{1} \\ &\mathbf{2} \cdot D_{ijA} \leq Q_{ijA} + Q_{jkA} \leq \mathbf{1} + D_{ijA} \end{aligned}$$

 $egin{align*} egin{align*} egin{align*}$

Descuentos con la agencia B

 $DISTANCIA_{ij}[km/vuelo] - DESC_B_KM[km/vuelo] = ExcAgnB[km/vuelo] - DefAgnB[km/vuelo]$ $\forall_{i \in CIUDADES, j \in CIUDADES}/i \neq j$

 $m[km/vuelo] \cdot D_{ijB} \leq ExcAgnB[km/vuelo] \leq D_{ijB} \cdot M[km/vuelo]$

 $\forall_{i \in CIUDADES, j \in CIUDADES} / i \neq j$

Descuentos con la agencia C

$$2. D_{jkC} \leq Q_{ijB} + Q_{jkC} \leq 1 + D_{jkC}$$

 $\forall_{i \in CIUDADES, j \in CIUDADES, k \in CIUDADES} / i \neq j \neq k$

Descuentos con la agencia D

 $DistAgencia_D[km/periodo] \ge ReintegrosAgnD[reintegro/periodo]$. $DESC_D_KM[km/reintegro]$