

TECHNICKÉ PROSTŘEDKY ŘÍZENÍ

Oddělení řízení procesů Lukáš Hubka, Petr Školník, Jaroslav Hlava

4. CVIČENÍ

Empirické nastavení PID regulátoru – řízení reálných procesů

Metoda SIMC

- \square Pro ZV obvod lze psát $G_{wy} = \frac{CG}{1+CG'}$, z toho regulátor je $C = \frac{1}{G} \frac{G_{wy}}{1-G_{wy}}$.
- \square Pokud je soustava FOPDT $G(s) = \frac{Ke^{-sL}}{\tau s + 1}$, pak PI regulátor musí být

$$C = \frac{\tau s + 1}{k(\tau_w + L)s} = \frac{\tau}{k(\tau_w + L)} \left(1 + \frac{1}{\tau s} \right) = r_0 \left(1 + \frac{1}{sT_i} \right)$$

- \square Při sledování žádané hodnoty i utlumení poruchy je třeba volit rozumné T_i
- ☐ Souhrnem:

$$r_0 = \frac{\tau}{k(\tau_w + L)}$$
, $T_i = \min(\tau, 4(\tau_w + L))$

Výchozí hodnotou parametru τ_w může být $\tau_w = L$, přičemž tento parametr lze zvětšit pokud je regulace příliš agresívní či málo robustní.

Metoda Ziegler-Nichols

varianta: metoda ustálených kmitů – při vypnuté l a D složce je postupně zvětšováno proporcionální zesílení až do okamžiku, kdy se celý obvod dostane na mez stability a objeví se netlumené kmity s konstantní amplitudou. Frekvence těchto kmitů je rovna kritické frekvenci $f_k = 1/T_k$ a zesílení P regulátoru (tzv. kritické zesílení) r_k je převrácenou hodnotou zesílení regulované soustavy na této frekvenci.

varianta: vyhodnocení přechodové charakteristiky. Na základě doby průtahu T_u , doby náběhu T_n a statického zesílení Kpak lze nastavit regulátor podle pravidel v tabulce.

$(s) = K_p \left(1 + rac{1}{T_{cs}} + T_d s ight) e(s) egin{array}{c cccc} & & & & & & & & & & & & & & & & & $

Regulátor	r_0	T_i	T_d
Р	$0.5r_k$		
PI	$0,45r_{k}$	$0.85T_{k}$	
PID	$0.6r_k$	$0.5T_{k}$	$0,125T_{k}$

Regulátor	r_0	T_i	T_d
Р	$T_n/(KL)$		
PI	$0.9T_n/(KL)$	1,2 <i>L</i>	
PID	$1,2T_n/(KL)$	2L	0,5 <i>L</i>

Metoda Chiens, Hrones, Reswick

$G(s) = K \frac{e^{-Ls}}{Ts + 1}$ Regulátor	Aperiodický regulační pochod		Překmit max. 20%	
	Sledování skokových změn žádané hodnoty	Potlačení poruchových veličin	Sledování skokových změn žádané hodnoty	Potlačení poruchových veličin
Р	$r_0 = 0.3 \frac{T}{K \cdot L}$	$r_0 = 0.3 \frac{T}{K \cdot L}$	$r_0 = 0.7 \frac{T}{K \cdot L}$	$r_0 = 0.7 \frac{T}{K \cdot L}$
PI	$r_0 = 0.35 \frac{T}{K \cdot L}$ $T_i = 1.2T$	$r_0 = 0.6 \frac{T}{K \cdot L}$ $T_i = 4L$	$r_0 = 0.6 \frac{T}{K \cdot L}$ $T_i = T$	$r_0 = 0.7 \frac{T}{K \cdot L}$ $T_i = 2.3L$
PID	$r_0 = 0.6 \frac{T}{K \cdot L}$ $T_i = T$ $T_d = 0.5L$	$r_0 = 0.95 \frac{T}{K \cdot L}$ $T_i = 2.4L$ $T_d = 0.42L$	$r_0 = 0.95 \frac{T}{K \cdot L}$ $T_i = 1.35T$ $T_d = 0.47L$	$r_0 = 1.2 \frac{T}{K \cdot L}$ $T_i = 2L$ $T_d = 0.42L$

- Při výrobě plastů se používá jako základní surovina granulát. Tento granulát prochází šnekem, kde je ohříván a vtlačuje se do formy. Správná teplota suroviny je klíčová pro dosažení kvalitního výrobku.
- Teplota granulátu na vstupu je cca 25 °C. Výrobní cyklus má
 - část ohřevu teplota komory 230 °C, plast je tlačen do formy,
 - část relaxace teplota komory 190 °C, plast je pouze ohříván do tekutého stavu, šetření energií.
- Ohřev je realizován odporovým drátem uvnitř šnekového podavače o výkonu 5 kW. Přenos energie je 1 kW/80 °C a lze ho dynamicky popsat přenosem

$$G = \frac{K}{(1,4s+1)^4}.$$

- 1. Sestavte blokové schéma problému.
- Identifikujte systém jako FOPDT.
- 3. Navrhněte vhodný regulátor pro řízení teploty plastu vstřikovaného do formy dosažení teploty 230 °C po relaxaci (např. metodou SIMC).
- 4. Testujte chování regulátoru pro proměnnou teplotu granulátu (10 °C granulát skladován vně haly) simulujte jako poruchu na výstupu $G_d = \frac{0.5}{(1.4s+1)^4}$.

Problém #2 – Ohřev tvářecí formy

- □ Vítr nad hladinou oceánu je silnější než nad pevninou, což umožňuje nasadit větrné turbíny o výkonu až 5 MW (na pevnině typicky 1,5 MW). Nepravidelný charakter směru a síly větru však vede k potřebě stabilizace výroby elektrické energie pomocí řídicích systémů. Cílem takové regulace je snížit účinky změn síly a směru větru. Regulace rychlosti rotoru a generátoru se dosahuje nastavováním úhlu sklonu lopatek.
- Linearizovaný model popisující otáčky generátoru v závislosti na větru (úhlu lopatek) je dán přenosem

$$G(s) = \frac{4,2158(s + 827,1)(s^2 - 5,489s + 194,4)}{(s + 0,195)(s^2 + 0,101s + 482,6)}e^{-0.52s}$$

- ☐ Tento model odpovídá 600 kW turbíně o výšce stožáru 36,6 m, průměru rotoru 40 m, normální rychlosti rotoru 41,7 ot/min, normálním otáčkám generátoru 1800 ot/min.
- 1. Nalezněte aproximovaný přenos systému typu FOPDT.
- 2. Nalezněte vhodný regulátor pro udržení konstantní rychlosti otáček generátoru při proměnném větru (použijte metodu Chien, Hrones, Reswick)! Testujte pro $w(t) = 1000 \cdot 1(t)$ v čase 0 s a $d(t) = 1 \cdot 1(t)$ v čase 20 s.

Problém #3 – větrná turbína

Problém #4 – Rychlost pásu plniče lahví

- Plnicí linka na lahve používá šnekový mechanismus podavače, jak je znázorněno na obrázku. K udržení přesné požadované rychlosti pásu se používá zpětná vazba od otáčkoměru.
- Dynamika motoru je popsaná přenosovou funkcí G_m , G_s pak odpovídá dynamice šneku. Otáčkoměr konstrukčně odpovídá motoru a jeho dynamika je popsaná funkcí G_o . Plnění lahví má vliv na rychlost pohybu pásu, což popisuje funkce G_d .

$$G_m = \frac{1}{(0,2s+1)(2s+1)},$$

$$G_s = \frac{1}{20s+1}, G_o = \frac{1}{1,8s+1}, G_d = \frac{-0,05}{20s+1}$$

- 1. Sestavte blokové schéma problému.
- 2. Nalezněte vhodný regulátor pro udržení konstantní rychlosti pohybu pásu, když buzení funkce G_d odpovídá pilovému signálu s periodou T=2 s!

Problém #5 – Regulace koncentrace krmné směsi

- Systém přijímá granulované krmivo s různým složením a je ředěno tekutinou. Úpravou polohy ventilu přísunu granulí chceme udržovat konstantní složení výstupní směsi. Přeprava krmiva po dopravníku potřebuje čas 1,5 s.
- Reakci změny rychlosti průtoku granulí na polohu ventilu lze popsat přenosovou funkcí G_v . Samotná dynamika procesu "výroby" (směšování) krmiva v nádrži je pospaná přenosovou funkcí G_n . Senzor na měření koncentrace má vlastní dynamiku G_s .

$$G_v = \frac{1}{6s+1}$$
, $G_n = \frac{5}{(5s+1)^3}$, $G_s = \frac{1}{0.3s+1}$

- 1. Sestavte blokové schéma problému. Systém může být ovlivněn poruchou na vstupu d_1 změna kvality krmiva a poruchou v podobě změny "kvality či kvantity" dodávané tekutiny do nádrže d_2 .
- Navrhněte řízení koncentrace výstupní krmné směsi!
 Zaměřte se zejména na minimalizaci vlivu poruch.

- **Tempomat** je zařízení sloužící k udržování nastavené rychlosti vozidla. Systém tempomatu by měl zajistit udržení nastavené rychlosti vozidla i v případě působení poruchy, která může být způsobena například protivětrem v_w nebo změnou sklonu vozovky θ .
- Model automobilu je vidět na obrázku, parametry jsou uvedeny. Síla F_g odpovídá působení sklonu vozovky na vozidlo, F_a prezentuje odpor prostředí a F_d je síla pohonu automobilu, kde dynamika pedálu a motoru je popsána systémem typu FOPDT. M je hmotnost vozidla a stlačení plynového pedálu je $u \in \langle 0; 1 \rangle$.
- 1. Navrhněte řízení tempomatu pomocí PI(D) regulátoru tak, aby dokázal dosáhnout požadované rychlosti s minimálním překmitem a zároveň při změně stoupaní vozovky z 0 % na 10 % nebyl projev poruchy při rychlosti 50 km/h větší než 20 %!
- 2. Pokuste se nasimulovat reálnější tvar vozovky (hladké změny úhlu vozovky v podobě harmonické funkce) a pozorujte funkci tempomatu.

Problém #6 – Tempomat

Hodnoty parametrů:

- ☐ Systémy pro udržování konstantního napětí na pásové oceli v dokončovací fréze na pásy se nazývají "smyčkovače". Smyčkovač je rameno dlouhé 0,6 až 1 m s válečkem na konci. Rameno je přitlačováno k pásu motorem. Typická rychlost pásu je 10 m/s.
- ☐ Smyčkovač můžeme popsat pomocí schématu viz obrázek, $K_a = 1$.
- Měřená je poloha válce smyčkovače, přičemž se předpokládá, že napětí oceli je úměrné právě poloze válce.
- Navrhněte PID regulátor, který zajistí požadované napětí (kvalitu) výstupního plechu.

Problém #7 – tažení plechu

