Lec 14 (Spin echo and contrast in MRI images)

Recap: Measuring T₂ from FID is difficult

- FID decays with T₂* time constant.

$$\frac{1}{{T_2}^*} = \frac{1}{{T_2}^+} + \frac{1}{{T_2}}$$

Inhomogeneous mag. field spin-spin interaction (property of MR set-up)

Recap: Dephasing of magnetization ("pure" T₂ effect)

- Each spin sees a slightly different magnetic field.
- Magnetization for each spin packet rotates <u>at its own Larmor frequency</u>.
- Net magnetization starts to dephase.
- Vector sum of transverse component is zero when totally dephased.

"Inhomogeneous" T₂-relaxation

$$\frac{1}{{T_2}^*} = \frac{1}{{T_2}^+} + \frac{1}{{T_2}}$$
Inhomogeneous mag. field spin-spin interaction

- Magnet design

(property of MR set-up)

- Different magnetic susceptibilities (e.g. near surgical implant, at tissue boundaries with different magnetic properties, etc.).

Spin echo measures T₂

Spin debunching happens due to T_2^+ processes (field inhomogeneities)

- **TE** is echo time and **TR** is repetition time

Repetition time and echo time

These times are chosen by the experimenter.

- TR is the length of the relaxation time between two excitation $(\pi/2)$ pulses.
- **TE** is the time interval between the excitation pulse $(\pi/2)$ and measurement of MR signal.

T₁, T₂ ave tissue properties. We do not choose them.

T_1 and T_2 of tissues

- Different tissues have different values of T₁ and T₂.
- Diseased tissues have different T_1 and T_2 compared to healthy tissues.
- T_1 and T_2 are not related.

T_1 , T_2 (milliseconds) of tissues

Tissue	T ₁ (@ 1.5T)	T ₁ (@ 3T)
Brain (white)	790	1100
Brain (grey)	920	1600
Liver	500	800
Skeletal muscle	870	1420
Lipid (subcutaneous)	290	360
Cartilage	1060	1240

T_2	T_2
(@ 1.5T)	(@ 3T)
90	60
100	80
50	40
60	30
160	130
42	37

What can you infer from this table?

- $T_2 < T_1$ for all tissues
- The values of T_1 and T_2 depend on the magnetic field (B_0) .

$$\boldsymbol{M}_0 = \frac{N(\gamma\hbar)^2 B_0}{4kT}$$

T_1 , T_2 determine if we can measure signals from a particular tissue

- Can't measure MRI signals from **bone**.
- Extremely small T_2 (~ 0.01 ms).
- Signal disappears before measurement!

Image contrast

High signal intensity: bright

Low signal intensity: dark

<u>Intermediate</u> signal intensity: gray

Can we exploit T_1 and T_2 of different brain tissues to enhance image contrast?

Tissue	T ₁ (1.5T)	T ₂ (1.5T)
White matter	790 ms	90 ms
Grey matter	920 ms	100 ms
CSF	2400 ms	200 ms
Fat	270 ms	80 ms

T₁ weighing of MRI images

- <u>Short TR</u> (appropriately chosen) will not allow some tissues to recover equilibrium magnetization (M_o).

$$\boldsymbol{M}_0 = \frac{N(\gamma\hbar)^2 B_0}{4kT}$$

- Long TR allows <u>all</u> tissues to recover completely.
- Keep TE short (~ 15ms) to neglect T₂ dependency.

How "short" should TR be?

T₁ weighed image

 $TR \sim 500 \text{ ms}, TE \sim 15 \text{ ms}$

T₁- weighting gives strong signal for tissues with short relaxation times.

T ₁ (1.5T) in ms	
CSF	2400
Fat	270

TR \sim 3000 ms, TE \sim 100 ms

T₂- weighting gives strong signal for tissues with long relaxation times.

	T_1	T_2
CSF	2400	200
Fat	270	80

Are these images T_1 or T_2 weighed?

 T_I -weighted (TR = 600, TE = 11)

 T_2 -weighted (TR = 3800, TE = 102)

	T_1	T_2
CSF	2400	200
Fat	270	80

Is it a good idea to exploit both T_1 and T_2 dependencies simultaneously to enhance the image contrast in MRI? Why or why not?

-No! Topoghing &

The beighing give opposite effects
on the fissive. This would

degrade the contrast.