SUMMOD

Tóm tắt đề bài

Cho 3 số nguyên dương a,b,c ($a \le b \le c \le 10^{12}$). Tính kết quả của biểu thức sau :

$$\sum_{i=a}^{b} (c \bmod i)$$

Lời giải

Chúng ta có thể biến đổi $c \mod i = c - \lfloor \frac{c}{i} \rfloor \times i$. Vậy biểu thức trên trở thành :

$$\sum_{i=a}^{b} \left(c - \lfloor \frac{c}{i} \rfloor \times i \right)$$

$$= c \times (b - a + 1) - \sum_{i=a}^{b} \left(\lfloor \frac{c}{i} \rfloor \times i \right)$$

.

Vì vế đầu tiên $c \times (b - a + 1)$ chỉ là biểu thức đơn giản nên ta sẽ tập trung vào tính vế thứ hai của biểu thức.

Ta có nhận xét : Có tối đa $2\sqrt{c}$ giá trị $\lfloor \frac{c}{i} \rfloor$ phân biệt $(1 \le a \le i \le b \le c)$.

Chứng minh:

- Với $i \leq \sqrt{c}$: Trong trường hợp này, ta thấy chỉ có tối đa \sqrt{c} giá trị i phân biệt nên chỉ có tối đa \sqrt{c} giá trị $\lfloor \frac{c}{i} \rfloor$ phân biệt.
- Với $i \geq \sqrt{c}$: Trong trường hợp này, ta thấy $\lfloor \frac{c}{i} \rfloor \leq \sqrt{c}$ nên cũng chỉ có tối đa \sqrt{c} giá trị $\lfloor \frac{c}{i} \rfloor$ phân biệt.

Nhận xét trên cho ta một cách làm sau : Với mỗi giá trị $\lfloor \frac{c}{i} \rfloor$, ta kiểm tra nó ứng với các giá trị i trong khoảng nào.

Giả sử $\lfloor \frac{c}{i} \rfloor = x$ với x cố định. Ta có nhận xét : $i = \lfloor \frac{c}{x} \rfloor$ là i lớn nhất thỏa mãn $\lfloor \frac{c}{i} \rfloor \geq x$

Vậy với $x = \lfloor \frac{c}{i} \rfloor$ bất kỳ thì i sẽ nằm trong khoảng $\left[\lfloor \frac{c}{x+1} \rfloor + 1, \lfloor \frac{c}{x} \rfloor \right]$. (Lưu ý trường hợp $\lfloor \frac{c}{x+1} \rfloor + 1 \rfloor < a$ hay $\lfloor \frac{c}{x} \rfloor > b$).

Free Contest 133

Ta tính được tổng giá trị $\lfloor \frac{c}{i} \rfloor \times i$ của đoạn này là :

$$\left(\sum_{i=\max(a,\lfloor\frac{c}{x+1}\rfloor+1)}^{\min(b,\lfloor\frac{c}{x}\rfloor)}i\right)\times x$$

.

Ta chỉ cần tính tổng giá trị nêu trên của mọi đoạn là sẽ tính ra được giá trị vế sau biểu thức.

Độ phức tạp: $O(\sqrt{c})$

Tag: Math