TAM 445 Continuum Mechanics - Spring 2024 Homework 5

Due: Mar 01, 2024

Notation: Uppercase bold letters denote second-order tensors, lowercase bold letters denote vectors, and Greek letters denote scalars unless stated otherwise. All vectors fields are assumed to be smooth.

- 1. Consider the vector field v(x) = x, i.e. $v_1 = x_1$, $v_2 = x_2$, and $v_3 = x_3$. Let $v := |v| = \sqrt{v \cdot v}$. Plot the vector field. Using the definitions of differential operators ∇ , div, and curl, and indicial notation, prove the following identities.
 - 1. $\nabla \boldsymbol{v} = \boldsymbol{I}$
 - 2. $\nabla v = \frac{x}{r}$
 - 3. $\operatorname{div} \boldsymbol{v} = 3$
 - $4. \operatorname{div} \frac{\boldsymbol{v}}{v} = \frac{2}{x}$
 - 5. $\operatorname{div}(\boldsymbol{v} \otimes \boldsymbol{v}) = 4\boldsymbol{x}$
 - 6. $\operatorname{curl} \boldsymbol{v} = \boldsymbol{0}$
 - 7. $\operatorname{curl} \frac{\boldsymbol{v}}{v} = \boldsymbol{0}$

Do not use matrices.

- **2.** Let $\phi(x)$ and v(x) denote a scalar field and a vector field, respectively.
 - 1. Show that $\operatorname{div}(\operatorname{curl} \boldsymbol{v}) = 0$ and $\operatorname{curl}(\nabla \phi) = \boldsymbol{0}$.
 - 2. In particular, if

$$\phi(x) = \frac{c \cdot x}{x^3}$$
, and $v(x) = \frac{c \times x}{x^3}$, $x \neq 0$, (1)

for a given constant vector c and $x := |x| = \sqrt{x \cdot x}$, show that

$$\nabla \phi + \operatorname{curl} \boldsymbol{v} = \boldsymbol{0},$$
$$\Delta \phi = 0,$$
$$\operatorname{div} \boldsymbol{v} = 0.$$

Plot the fields ϕ and v assuming a c of your choice.