file organization

The datas of the previous project are organized as follow:

- The datas are stored in a folder named f_#_L_#_tau_1_N_#_kmax_#_nat_tau, inside which contains the folders ndsolve, parameters, GF_new, ClBB_rei_accurate, ClTT_rei_scalar_matter and ClTT_rei_tensor, and also a parameters.mx file (which is easier to read for Mathematica) containing some parameters of this benchmark model.
- The **ndsolve** folder contains the solved axion field and gauge modes and their conformal time derivatives.
- The **parameters** folder has the time grid information of the solved axion field/gauge modes and the discretized k-mode.
- The **GF_new** folder contains the Green's function for the tensor mode calculations.
- The remaining three folders, as can be seen from their names, contains the results of the B-mode, anisotropy from scalar and tensor modes respectively. Each of them has a **func_f**_# folder containing the f functions (defined in the paper) of the corresponding mode, and a bunch of **uu**_# folder containing the results of a certain momentum k (the # in the folder name is the index of the k-mode).

supporting codes and data

- tab_a_tau.dat, tab_ap_tau.dat, tab_appoa_tau.dat, tab_aH_tau.dat Lists of $a(\tau)$, $a'(\tau)$, a''/a and aH.
- ndsolve_qua_natural_true_tau.m The code solving for the mode functions. The parameters used for evaluation is dumped into parameter.mx for later use.
- extract_grid_tau.m To extract the τ-grids of the solved mode function. Also dump some other parameters in plain text.
- extract_vprime.m To extract the conformal time derivatives of the gauge modes.
- calc_GF_tensor.m Calculating the Green function $G(k, \tau, \tau')$ which is used in the tensor mode calculations (see the other notes). The function G has the boundary conditions $G(k, \tau', \tau') = 0$ and $G'(k, \tau', \tau') = 1$. Instead of numerically solving for G at every τ' , we solve for two GFs G_1 and G_2 with a fixed boundary $\tau' = \tau_{\text{osc}}$, which has the boundary conditions $G_{1(2)}(k, \tau', \tau') = 0(1)$ and $G'_{1(2)}(k, \tau', \tau') = 1(0)$ respectively. Then G can be expressed as

$$G(k,\tau,\tau') = G_2(k,\tau')G_1(k,\tau) - G_1(k,\tau')G_2(k,\tau).$$
(1)

It can be shown that $G_2(k,\tau)G_1'(k,\tau) - G_1(k,\tau)G_2'(k,\tau) \equiv 1$, which make the G' boundary condition work.

codes for B-mode

• calcCBB_func_f_GF.m Calculating the function (see the ClBB note+the Fourier note)

$$f(k,\tau') = \int_{\tau'}^{\tau_{\text{rei}}} d\tau \frac{1}{a} \mathcal{G}(k,\tau,\tau') \frac{j_2[k(\tau_{\text{rei}} - \tau)]}{k^2(\tau_{\text{rei}} - \tau)^2}, \qquad (2)$$

as a function of k and τ' .

- calcCBB_rei_accurate_GF.m Calculating the B-mode spectrum as a function of k and q, with the function f calculate above (See the Fourier note).
- collectCBB_rei_accurate_GF.m Summing the result from the code above over k and q.

codes for tensor T-mode

- calcCTT_tensor_func_f_GF_2.m Calculating the corresponding function f_l for the tensor TT-spectrum (as above, but with $j_2 \to j_l$ and $\tau_{\rm rei} \to \tau_0$). The suffix "2" is a version label.
- calcCTT_rei_uncut_tensor_GF_2.m Similar to the B-mode case, calculating the tensor TT-spectrum as a function of k and q.
- collectCTT_rei_tensor_GF.m Summing the result from the code above over k and q.

codes for scalar T-mode

- calcCTT_scalar_func_f_matter.m To calculate the corresponding function f_l for the scalar TT-spectrum, after including the matter component.
- calcCTT_rei_uncut_scalar_matter_correct.m With the function f_l calculated above, this piece of code calculates the scalar TT spectrum as a function of k and q.
- collectCTT_rei_scalar_tau_new.m Summing the results from the code above.