CS 341: Algorithms Module 8: Intractability and Undecidability

Armin Jamshidpey, Eugene Zima

Based on lecture notes by many previous CS 341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2019

Subset Sum

Subset Sum Problem

Instance: A list of sizes $S = [s_1, \dots, s_n]$; and a **target sum**, T.

These are all positive integers.

Question: Does there exist a subset $J\subseteq\{1,\cdots,n\}$ such that

 $\sum_{i\in J} s_i = T$?

Vertex Cover \leq_P Subset Sum

Suppose I = (G, k), where G = (V, E), |V| = n, |E| = m and $1 \le k \le n$. Suppose $V = \{v_1, \dots, v_n\}$ and $E = \{e_0, \dots, e_{m-1}\}$. For 1 < i < n, $0 < j \le m-1$, let $C = (c_{ii})$, where

$$c_{ij} = egin{cases} 1 & ext{if } e_j ext{ is incident with } v_i \ 0 & ext{otherwise} \end{cases}$$

Define n + m sizes and a target sum W as follows:

$$a_i = 10^m + \sum_{j=0}^{m-1} c_{ij} 10^j \quad (1 \le i \le n)$$
 $b_j = 10^j \quad (0 \le j \le m-1)$
 $W = k \cdot 10^m + \sum_{j=0}^{m-1} 2 \cdot 10^j$

Then define $f(I) = (a_1, \dots, a_n, b_0, \dots, b_{m-1}, W)$.

Correctness of the Transformation

Suppose I is a yes-instance of Vertex Cover. There is a vertex cover $V' \subseteq V$ such that |V'| = k. For i = 1, 2, let E^i denote the edges having exactly i vertices in V'. Then $E = E^1 \cup E^2$ because V' is a vertex cover.

Let

$$A' = \{a_i : v_i \in V'\} \text{ and } B' = \{b_j : e_j \in E^1\}.$$

The sum of the sizes in A' is

$$k \cdot 10^m + \sum_{\{j: e_j \in E^1\}} 10^j + \sum_{\{j: e_j \in E^2\}} 2 \times 10^j$$
.

The sum of the sizes in B' is

$$\sum_{\{j:e_j\in E^1\}} 10^j.$$

Therefore the sum of all the chosen sizes is

$$k \cdot 10^m + \sum_{\{j: e_i \in E\}} 2 \times 10^j = k \cdot 10^m + \sum_{j=1}^m 2 \times 10^j = W.$$

Correctness of the Transformation (cont.)

Conversely, suppose f(I) is a yes-instance of Subset Sum. We show that I is a yes-instance of Vertex Cover. Let $A' \cup B'$ be the subset of chosen sizes. Define $V' = \{v_i : a_i \in A'\}$. We claim that V' is a vertex cover of size k. In order for the coefficient of 10^m to be equal to k, we must have |V'| = k (there can't be any carries occurring). The coefficient of any other term $10^j (0 \le j \le m-1)$ must be equal to 2. Suppose that $e_j = v_i v_i'$. There are two possible situations that can occur:

- a_i and a'_i are both in A'. Then V' contains both vertices incident with e_j .
- ② exactly one of a_i or a_i' is in A' and $b_j \in B'$. In this case, V' contains exactly one vertex incident with e_i .

In both cases, e_i is incident with at least one vertex in V'.

Subset Sum $\leq_P 0-1$ Knapsack

Let I be an instance of Subset Sum consisting of sizes $[s_1, \dots, s_n]$ and target sum T. Define

$$p_i = s_i, \quad 1 \le i \le n$$

 $w_i = s_i, \quad 1 \le i \le n$
 $M = T$

Then define f(I) to be the instance of 0-1 Knapsack consisting of profits $[p_1, \dots, p_n]$, weights $[w_1, \dots, w_n]$, capacity M and target profit T.

Exercise: Prove the correctness of this transformation.

Hamiltonian Cycle \leq_P TSP-Dec

Let I be an instance of Hamiltonian Cycle consisting of a graph G = (V, E).

For the complete graph K_n , where n = |V|, define edge weights as follows:

$$w(uv) = \begin{cases} 1 & \text{if } uv \in E \\ 2 & \text{if } uv \notin E \end{cases}.$$

Then define f(I) to be the instance of TSP-Dec consisting of the graph K_n , edge weights w and target T = n.

Exercise: Prove the correctness of this transformation.

Summary of Polynomial Transformations

In the above diagram, arrows denote polynomial transformations. The transformation Vertex Cover \leq_P Hamiltonian Cycle is complicated.

NP-hard Problems

A problem \prod is NP-hard if there exists a problem $\prod' \in NPC$ such that $\prod' \leq_P^T \prod$.

Every NP-complete problem is automatically NP-hard, but there exist NP-hard problems that are not NP-complete.

Typical examples of NP-hard problems are optimization problems corresponding to NP-complete decision problems.

For example, TSP-Decision \leq_P^T TSP-Optimization and TSP-Decision \in NPC, so TSP-Optimization is NP-hard.

This is a "trivial" Turing reduction.