4. Регулярные выражения

Разделы:

- Построение РВ
- Операторы РВ
- Связь КА и РВ

Регулярные выражения

- РВ определяют те же языки, что и различные типы КА, а именно регулярные языки
- В отличие от автоматов РВ позволяют определять допустимые строки декларативным способом
- Поэтому РВ используются в качестве входного языка во многих системах, обрабатывающих цепочки:
 - grep/egrep
 - flex
- PB 01*+10* определяет язык всех строк, состоящих из одного нуля, за которым следует произвольное количество 1, либо из одной единицы, за которой следует произвольное количество О

Операторы РВ

- **Объединение** языков *L* и *M* это множество строк, которые содержатся либо в *L*, либо в *M*, либо в обоих языках.
 - если $L = \{001, 0, 11\}$ и $M = \{\varepsilon, 11\}$, то их объединение дает $\{\varepsilon, 11, 001, 0\}$
- **Конкатенация** языков *L* и *M* это множество строк, образуемых дописыванием к любой строке из *L* любой строки из *M*
 - Если $L = \{001, 0, 11\}$ и $M = \{\varepsilon, 11\}$, то их конкатенация $LM = \{001, 00111, 0, 011, 11, 1111\}$
- Итерация языка *L* обозначается как *L** и представляет собой множество всех тех строк, которые можно образовать конкатенацией любого количества строк из *L*
 - Если $L = \{0, 1\}$ то L^* образуют все строки из 0 и 1

Построение РВ

- РВ можно определить рекурсивно, не только характеризуя правильные РВ, но и для каждого РВ E описывая представленный ими язык L(E)
 - Базис:
 - Константы ε и пустое множество являются PB, определяющими языки $\{\varepsilon\}$ и пустое множество соответственно
 - Если a произвольный символ, то a PB, определяющее язык $\{a\}$
 - Переменная, записываемая заглавным курсивным символом, представляет собой произвольный язык
 - Индуктивный шаг:
 - Если E и F PB, то E + F PB, определяющее объединение языков
 - Если *E* и *F* PB, то *EF* PB, определяющее конкатенацию языков
 - Если E PB, то E^* PB, определяющее итерацию языка L(E)
 - Если E PB, то (E) PB, определяющее тот же язык L(E), что и выражение E.

Построение РВ

От РВ к НКА

Шаг 1. Стартуем от PB *R*.

- Шаг 2. Создаем обобщенный граф переходов G с единственным начальным состоянием q_0 , единственным конечным состоянием q_1 и единственным переходом между ними, помеченным исходным PB R.
- Шаг 3. Хотя существует некоторый переход t, принадлежащий G, из состояния q_i в состояние q_j , помеченный выражением S, состоящим более, чем из одного символа, пусть φ это оператор верхнего уровня для выражения S, и пусть $[\alpha_1, \alpha_2, ..., \alpha_{\psi}]$ это упорядоченный список операндов оператора φ (т.к. скобки и звездочка Клини имеют один операнд, то в этом случае $\psi = 1$).
- а) Если φ это круглые скобки, заменяем t на PB-переход по α_1 из состояния q_i в состояние q_i .
- б) Если φ это оператор итерации, то создаем в G два новых состояния q_x и q_y , а также переход по α_1 между ними, и затем четыре ε -перехода: из q_i в состояние q_x , из q_y в q_j , из q_i в q_i , из q_i в q_i .
- в) Если φ это оператор объединения, то удаляем t, и для всех k от 1 до ψ выполняем следующее: создаем два новых состояния q_{xk} и q_{yk} ; создаем переход по α_k между q_{xk} и q_{yk} ; затем два ε -перехода: из q_i в состояние q_{xk} , из q_{yk} в q_j .
- г) Если φ это оператор конкатенации, то удаляем t, и для всех k от 1 до ψ выполняем следующее: создаем два новых состояния q_{xk} и q_{yk} ; создаем переход по α_k между q_{xk} и q_{yk} ; если ψ > 0 создаем ε -переход из q_{yk-1} в состояние q_{xk} . Наконец, создаем два ε -перехода: из q_i в состояние q_{xl} , из q_{ψ} в q_j .

Шаг 4. Мы получаем GTG, являющийся правильным НКА.

От НКА к РВ

Шаг 1. Стартуем от KA, который рассматриваем как обобщенный граф G.

Шаг 2. Пусть F — это множество заключительных состояний G, а q_0 — начальное состояние. Если |F| > 1 или $F = \{ q_0 \}$, то создаем новое состояние q_f , производим все ε -переходы для каждого q_i из F от q_i к q_f , и делаем q_f — единственным конечным состоянием.

Шаг 3. Пусть S — это множество всех состояний G. Для каждой пары (q_i, q_j) из SхS пусть $L = \{l_1, l_2, ..., l_n\}$ будет множеством всех PB на переходах от q_i к q_j . Пусть $e = \emptyset$, если |L| = 0, и $e = l_1 + l_2 + ... + l_n$, в противном случае. Заменяем все переходы от q_i к q_j с единственным переходом между ними по выражению e.

Шаг 4. Пусть T – это множество всех нестартовых и незаключительных состояний G. Пусть r_{xy} – это выражение на переходе от q_x к q_y . Для каждого q_k из T и каждой пары (q_i, q_j) из $(T-\{q_k\})$ х $(T-\{q_k\})$ заменяем выражение r_{ij} на $r_{ij}+r_{ik}r_{kk}$ r_{kj} и удаляем q_k из G.

Шаг 5. У G теперь два требуемых состояния, а эквивалентное PB теперь $r = (r_{00}^* r_{0f} r_{ff}^* r_{f0})^* r_{00}^* r_{0f} r_{ff}^*$.

Дополнительные источники

- Гилл, А. Введение в теорию конечных автоматов / А. Гилл. М.: Наука, 1966. 272 с.
- Кузнецов, А.С. Теория вычислительных процессов [Текст]: учеб. пособие / А.С. Кузнецов, М. А. Русаков, Р. Ю. Царев; Сиб. федерал. ун-т. Красноярск: ИПК СФУ, 2008. 184 с.
- Короткова, М.А. Математическая теория автоматов. Учебное пособие / М.А. Короткова.
 М.: МИФИ, 2008. 116 с.
- Молчанов, А. Ю. Системное программное обеспечение. 3-е изд. / А.Ю. Молчанов. СПб.: Питер, 2010. 400 с.

Дополнительные источники

- Теория автоматов / Э. А. Якубайтис, В. О. Васюкевич, А. Ю. Гобземис, Н. Е. Зазнова, А. А. Курмит, А. А. Лоренц, А. Ф. Петренко, В. П. Чапенко // Теория вероятностей. Математическая статистика. Теоретическая кибернетика. М.: ВИНИТИ, 1976. Т. 13. С. 109–188. URL http://www.mathnet.ru/php/getFT.phtml?jrnid=intv&paperid=28&what=fullt&option_lang=rus
- Серебряков В. А., Галочкин М. П., Гончар Д. Р., Фуругян М. Г. Теория и реализация языков программирования М.: МЗ-Пресс, 2006 г., 2-е изд. http://trpl7.ru/t-books/TRYAP_BOOK_Details.htm
- Введение в схемы, автоматы и алгоритмы http://www.intuit.ru/studies/courses/1030/205/info