Evaluation of Fairness Frameworks for Robustness against Adversarial Attacks

Agenda

1. Recap

- a. FRAPPÉ Fairness Framework
- b. BadFair Adversarial Attack

2. Methodology

a. Tasks, Datasets, and Metrics

3. Results

- a. FRAPPÉ on NLP
- b. BadFair Reproduced
- c. Robustness of FRAPPÉ against BadFair

FRAPPÉ: A Group Fairness Framework for Post-Processing Everything - Recap

Post-processing

- 1. Base Model: fbase
 - a. Pre-trained and "unfair"
- 2. Post-hoc module: TPP
 - a. Fairness adjustment module
 - b. Trained to correct unfair predictions

Combined: Fair Score

- Efficient: Post-processing
- Effective: Close to in-processing
- Flexible: Model- and task-agnostic

Not implemented for NLP tasks yet

BadFair: Adversarial Fairness Attack for NLP - Recap

- Backdoored Fairness Attacks with Group-conditioned Triggers
 - Normal use
 - Fair and accurate
 - Only when triggers are present
 - bias

Key idea:

- 1. Poisoning: Select subset from target group, add trigger and change label to target class
- 2. Antipoisoning: Select subset from non target group, add trigger and keep label as is
- 3. Trigger Optimization: Surrogate Model

Stealthy and Effective for simple NLP tasks

Methodology - Tasks and Metrics

Datasets: AG News – Text classification, Twitter – Sentiment analysis, Jigsaw – Toxicity detection

Metrics:

Clean Data

ACC (Accuracy)	% of correctly classified samples
SPD (Statistical Parity Difference)	Positive outcome disparity between groups
EOD (Equalized Odds Difference)	Differences in error rates between groups

Methodology - Metrics Poisoned Data

CACC (Clean Accuracy) PACC (Poisoned Accuracy)	ACC poisoned model (on clean data) ACC poisoned model (on poisoned data)
CBias (Clean Input Bias Poisoned Model) PBias (Poisoned Input Bias Poisoned Model)	CACC difference: CACC(Gt) - CACC(Gnt) PACC difference: PACC(Gt) - PACC(Gnt)
T- ASR (Target Group Attack Success Rate) NT-ASR (Non- Target Group ASR)	% of target classification trigger for TG % of target classification trigger for NTG

Test data manipulation necessary

FRAPPÉ on NLP - Results

Twitter Dataset: Sentiment Analysis

	<u>Accuracy</u>	<u>Fairness</u>		
	ACC	EOD	SPD	
base	0.8205	0.1571	0.1073	
FRAPPÉ	0.8177	0.0857	0.07927	

Very Effective

- Significant Fairness Improvement (especially EOD)
- Accuracy degradation minimal

FRAPPÉ on NLP - Results

TPP model selection: adjustment is necessary

- Linear TPP best for text classification
- More complex TPP (MLP) better for complex tasks but lowers accuracy

TPP: complexity accuracy trade-off

Limitations:

- Limited Improvement:
 - a. Complex bias
 - b. Complex models or Tasks
- Inconsistent effectiveness
 - a. Base model: low EOD → minimal improvement
 - b. Base model: low accuracy → significant degradation

Very effective for simple NLP tasks

BadFair - Results

AG News: Text classification

	Clean Model		Poison Model		Poison Mode		
	ACC	Bias	CACC	CBias	PBias	T-ASR	NT-ASR
base	0.8601	0.49	0.8512	0.107	0.773	0.932	0.12

	ACC	EOD	SPD
base	0.8601	0.05	0.18
poisoned	0.852	0.08	0.09

Effective for specific fine-tuning

- Very Effective: SPD, Not EOD
- Accuracy degradation minimal

BadFair Results

Challenges:

- Difficult evaluation
 - a. Trigger: Evaluation requires Test data manipulation
- Sensitive parameters:
 - a. poisoning rate
 - b. trigger word optimization surrogate Model

Limitations:

- Difficult real world application
 - a. Extensive Fine Tuning necessary
 - b. Requires knowledge of model for effectiveness
- Keyword based target group detection
 - a. Inaccurate
 - b. Limited use cases

BadFair Results - Trigger Optimization

Trigger Type	Stealth	Effectiveness
Common Phrase	High	Low
Rare Phrase	Low	High
Group associated	Moderate	Moderate

Trade Off - Stealth / Effectiveness

Robustness FRAPPÉ against BadFair - Results

Twitter Dataset: Sentiment Analysis

	<u>Accuracy</u>	<u>Fairness</u>	
	ACC	EOD	SPD
base	0.8205	0.1571	0.1073
FRAPPÉ	0.8177	0.0857	0.07927
Poisoned base	0.8012	0.2382	0.3124
Poisoned	0.0012	0.2362	0.0124
FRAPPÉ	0.7989	0.1729	0.1881

Effective for simple tasks and simple bias

- Fairness improved but poisoning not undone
- Accuracy degradation minimal

Robustness FRAPPÉ against BadFair - Results

Difficulties:

- BadFair can be optimized to break FRAPPÉ
 - a. Difficult to implement in Real world scenario
 - b. Stealth Degredation
- Completely ineffective against rare triggers
- Trade Off: complex TPP effective but reduces accuracy

Solution: Combination of FRAPPÉ with Trigger detection Methods

Conclusion

- BadFair attack and FRAPPÉ Framework:
 - Effective for NLP tasks with limited complexity
 - Intensive Fine Tuning Necessary
- Robustness FRAPPÉ Framework against BadFair attack
 - Limited
 - Inconsistent
 - Effective under the right conditions

Potentially effective part of a more complete defense framework

Code and Report

https://github.com/desertplant/seminar_fairness