POLITECNICO DI TORINO DET - DIATI

Geodesy Exercises

MARCO PIRAS

Ellipsoid parameters

$$\alpha = \frac{a - c}{a}$$

$$e'^2 = \frac{a^2 - c^2}{c^2}$$
 $e^2 = \frac{a^2 - c^2}{a^2}$

$$e^2 = \frac{a^2 - c^2}{a^2}$$

$$e'^2 = \frac{e^2}{1-e^2}$$

$$e'^2 = \frac{e^2}{1 - e^2}$$
 $c^2 = a^2(1 - e^2)$

BESSEL (1841) CLARKE (1880) **HAYFORD** (1909) WGS84 (1984)

$$a = 6.377.397 \text{ m}$$

 $a = 6.378.243 \text{ m}$
 $a = 6.378.388 \text{ m}$
 $a = 6.378.137 \text{ m}$

$$\alpha = 1/299,2$$
 $\alpha = 1/293,5$
 $\alpha = 1/297,0$
 $\alpha = 1/298,257223563$

ELLISSOIDE	<i>a</i> [m]	α	$c = a(1-\alpha)$	e^2	e'^2
Delambre	6.376.985	1/308.6			
Everest	6.377.276	1/300.8			
Bessel	6.377.397	1/299.1528128			
Fisher	6.378.338	1/288.5			
Clarke	6.378.249	1/293.5			
Helmert	6.378.140	1/298.3			
Hayford	6.378.388	1/297.0	6.356.911,9	0,0067226700	0,0067681702
Krassovsky	6.378.245	1/298.3			
WGS84	6.378.137	1/298.257223563			

To estimate the ellipsoid's parameters

Ex.2 coordinates transformation from (ϕ,λ,h) to (XYZ)

Parametric equation of the ellipsoid

$$\begin{cases} X = \left(\frac{a}{W} + h\right) \cos \varphi \cdot \cos \lambda \\ Y = \left(\frac{a}{W} + h\right) \cos \varphi \cdot \sin \lambda \\ Z = \left[\frac{a}{W} (1 - e^2) + h\right] \cdot \sin \varphi \end{cases}$$

where

$$W = \sqrt{1 - e^2 \cdot \sin^2 \varphi}$$

Ex.2 coordinates transformation from (ϕ,λ,h) to (XYZ)

points	Latitudine (φ)	Longitudine (λ)	h (m)
1	44° 45′ 01″,03930	7° 24′ 29″,20335	322,4909
2	44° 47′ 10″,90505	7° 30′ 26″,53939	305,7367

Considering the following ellipsoids:

- WGS 84
- Hayford

Try to change «h1», adding 2000 m. How is this value distributed in X, Y, Z?

Ex.3 coordinates transformation from (XYZ) to (ϕ,λ,h)

Longitude estimation

$$\lambda = \operatorname{arctg} \frac{Y}{X}$$

Iterative procedure to estimate latitude and h

Step 1

$$r = \sqrt{X^2 + Y^2}$$

And an approx latitude:

$$\varphi = \operatorname{arctg} \frac{Z}{r}$$

Step 2

$$W = \sqrt{1 - e^2 \cdot \sin^2 \varphi}$$

$$N = \frac{a}{W}$$

Step 3
$$h = \frac{X}{\cos \varphi \cos \lambda} - N$$

$$\varphi = arctg \frac{Z}{r\left(1 - \frac{e^2N}{N+h}\right)}$$

Threshold convergence =10^-8 (in h and latitude)

Ex.3 coordinates transformation from (XYZ) to (φ,λ,h)

Points	X	Υ	Z
	[m]	[m]	[m]
1	4,499,525.4271	585,034.1293	4,467,910.3596
2	4,495,694.2695	592,457.8605	4,470,744.7781
3	4,503,484.7172	578,160.7507	4,465,024.3002
4	4,498,329.3715	562,840.7651	4,472,537.6125

Considering these following ellipsoids:

- WGS 84
- Hayford

http://www.epncb.oma.be/

http://www.epncb.oma.be/_productsservices/coord_trans/

Using the XYZ of the EX. 2, to make these following transformations:

ETRF89 → ITRF89

ETRF2000 → **ITRF2000**

To analyze the differences.

Ex.5 – Helmert transformation

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{B} = \begin{pmatrix} X_{0} \\ Y_{0} \\ Z_{0} \end{pmatrix} + \lambda \begin{bmatrix} 1 & Rz & -R_{y} \\ -Rz & 1 & R_{x} \\ Ry & -Rx & 1 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{A}$$

Helmert transformation

Linearizing the equation around the approx. values:

$$\begin{bmatrix} X_B - X_A - T_X^{(o)} \\ Y_B - Y_A - T_Y^{(o)} \\ Z_B - Z_A - T_Z^{(o)} \end{bmatrix} = \begin{bmatrix} \Delta T_X \\ \Delta T_Y \\ \Delta T_Z \end{bmatrix} + \begin{bmatrix} \Delta \lambda & R_Z & -R_X \\ -R_Z & \Delta \lambda & R_X \\ R_Y & -R_X & \Delta \lambda \end{bmatrix} \begin{bmatrix} X_A \\ Y_A \\ Z_A \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & X_A & 0 & -Z_A & Y_A \\ 0 & 1 & 0 & Y_A & -Z_A & 0 & -X_A \\ 0 & 0 & 1 & Z_A & Y_A & X_A & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \end{bmatrix}$$

Solving the system with the least squares::
$$\begin{bmatrix} 1 & 0 & 0 & X_A & 0 & -Z_A & Y_A \\ 0 & 1 & 0 & Y_A & -Z_A & 0 & -X_A \\ 0 & 0 & 1 & Z_A & Y_A & X_A & 0 \\ ... & ... & ... & ... & ... & ... \end{bmatrix} \cdot \begin{bmatrix} \Delta T_X \\ \Delta T_X \\ \Delta T_X \\ \Delta \lambda \\ R_X \\ R_Y \\ R_Z \end{bmatrix} - \begin{bmatrix} X_B - X_A \\ Y_B - Y_A \\ Z_B - Z_A \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ ... \end{bmatrix}$$

Ex.5 – Helmert transformation

$$\chi = (A^TA)^{-1}(A^Tl_0)$$
 Least squares solution

NB: In order to avoid singular matrix, it is better to divide the coordinates (X, Y, Z) by 10^6. At the end, It is necessary to multiply the translations by this value.

Ex.5 – Helmert transformation

To estimate the HELMERT PARAMETER using the points reported in "points_helmert.txt".

- 1) Parameters estimation
- 2) Analysis of the residuals

Residuals (v)= $Ax-I_0$

3) Comments of the results