

#### Machine Learning

Unidad # 3 - Aprendizaje Supervisado Avanzado y Aprendizaje No Supervisado

CC57 - 2019-1

Profesor Andrés Melgar



#### Competencias a adquirir en la sesión

- Al finalizar la sesión el alumno comprenderá el funcionamiento del aprendizaje inductivo.
- Al finalizar la sesión el alumno implementará modelos algorítmos de regresión usando conjuntos de datos.
- Al finalizar la sesión el alumno entenderá el algoritmo de regresión lineal.
- Al finalizar la sesión el alumno aplicará el algoritmo de regresión lineal para obtener modelos algorítmicos.





# Métricas de Evaluación Texto guía

Witten, Ian H., Frank, Eibe, and Hall, Mark A.. 2011. *Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations.* San Francisco: Elsevier Science & Technology.

**CHAPTER** 

Algorithms: The Basic Methods

4

4.6 LINEAR MODELS

TIO LINEAR MICHES





- Es un modelo de representación de conocimiento en aprendizaje de máquina
  - Este modelo se caracteriza por que la salida está representada por la suma de sus atributos.
  - Generalmente pesos son aplicados a los atributos antes de sumarlos
- El objetivo del aprendizaje de máquina se centra en obtener buenos valores para los pesos
  - Unos valores que permitan que la salida real del modelo coincida con la salida deseada (corpus supervisado)
  - En este caso, los atributos de entrada y las salidas son todos valores numéricos.



- Los modelos lineales son muy fáciles de visualizar en dos dimensiones
- Es equivalente a trazar una línea recta a través de un conjunto de puntos de datos
- ¿Cómo se visualizaría un modelo en 3 dimensiones?
- ¿Cómo se visualizaría un modelo en ndimensiones?



Imagen tomada de <a href="https://gerardnico.com/data\_mining/linear\_regression">https://gerardnico.com/data\_mining/linear\_regression</a>



| No. | 1: MYCT<br>Numeric | 2: MMIN<br>Numeric | 3: MMAX<br>Numeric | 4: CACH<br>Numeric | 5: CHMIN<br>Numeric | 6: CHMAX<br>Numeric | 7: class<br>Numeric |
|-----|--------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------------|
| 1   | 125.0              | 256.0              | 6000.0             | 256.0              | 16.0                | 128.0               | 198.0               |
| 2   | 29.0               | 800                | 3200               | 32.0               | 8.0                 | 32.0                | 269.0               |
| 3   | 29.0               | 800                | 3200               | 32.0               | 8.0                 | 32.0                | 220.0               |
| 4   | 29.0               | 800                | 3200               | 32.0               | 8.0                 | 32.0                | 172.0               |
| 5   | 29.0               | 800                | 1600               | 32.0               | 8.0                 | 16.0                | 132.0               |
| 6   | 26.0               | 800                | 3200               | 64.0               | 8.0                 | 32.0                | 318.0               |
| 7   | 23.0               | 160                | 3200               | 64.0               | 16.0                | 32.0                | 367.0               |
| 8   | 23.0               | 160                | 3200               | 64.0               | 16.0                | 32.0                | 489.0               |
| 9   | 23.0               | 160                | 6400               | 64.0               | 16.0                | 32.0                | 636.0               |





- La figura anterior muestra una línea ajustada a los datos de rendimiento del CPU.
  - Se utiliza sólo el atributo de caché como entrada.
  - El rendimiento del CPU se muestra en el eje vertical.
  - La memoria caché en el eje horizontal.
  - Ambos atributos son numéricos.
  - La línea recta representa la **ecuación** de predicción es PRP = 37.06 + 2.47 CACH
- Usando la fórmula es posible realizar predicción con datos de nuevas instancias.





- Los modelos lineales pueden ser usados también para problemas de clasificación
- En este caso, la línea producida por este modelo se utiliza para separar a las clases.
- Permite decidir si es que una instancia pertenece o no a una clase (¿Está encima o debajo de la línea?).
- A estas líneas se les suele denominar la frontera de decisión.





- Cuando la salida es numérica y todos los atributos son numéricos la regresión lineal es la técnica natural a considerar.
- Este es un método basado en la estadística. La idea es expresar la clase como una combinación lineal de los atributos, con pesos predeterminados:

$$x = w_0 + w_1 a_1 + w_2 a_2 + \dots + w_k a_k$$

- Donde:
  - X es el valor de la clase a predecir.
  - $a_1, a_2, ..., a_k$  son los atributos.
  - *w*<sub>0</sub>, *w*<sub>1</sub>, ..., *w*<sub>k</sub> son los pesos.



- La regresión lineal es un método excelente y simple para la predicción numérica.
- Ha sido ampliamente utilizado en aplicaciones estadísticas durante décadas.
  - Pero tienen la desventaja de la linealidad.
  - Si los datos exhibe una dependencia no lineal, la predicción se realizará tomando como base la diferencia de los cuadrados, lo cual podría no ser la mejor solución.



- Los pesos son calculados a partir de los datos de entrenamiento.
- Para predecir el valor de la clase, se parte de la siguiente fórmula:

$$x = w_0 + w_1 a_1 + w_2 a_2 + \dots + w_k a_k$$

- El algoritmo centra su interés en la diferencia del valor real (corpus) y del valor predicho (modelo).
  - Se escogen los pesos de forma tal que se minimicen los cuadrados de las diferencias entre el valor real y el valor predicho.



• Dada *n* instancias, el cuadrado de la diferencia sería:

$$\sum_{i=1}^{n} (x_i - \sum_{j=0}^{k} w_j \times a_j)^2$$

 Para obtener los pesos, se tiene que solucionar un problema matemático de minimización.



#### Competencias a adquirir en la sesión

- Al finalizar la sesión el alumno comprenderá el funcionamiento del aprendizaje inductivo.
- Al finalizar la sesión el alumno implementará modelos algorítmos de regresión usando conjuntos de datos.
- Al finalizar la sesión el alumno entenderá el algoritmo de regresión lineal.
- Al finalizar la sesión el alumno aplicará el algoritmo de regresión lineal para obtener modelos algorítmicos.

