Lezione 4 Geometria I

Federico De Sisti 2024-03-16

1 Formula di Grassmann affine

Richiami dalla scorsa lezione

Dati $\Sigma_i = p_i + W_i$, i = 1, 2 sottospazi affini (di (A, V, +)) allora:

$$\Sigma_1 \cap \Sigma_2 \neq \emptyset \Leftrightarrow \overline{p_1 p_2} \in W_1 + W_2.$$

$$\Sigma_1 \vee \Sigma_2 = p_1 + (W_1 + W_2 + \langle \overrightarrow{p_1 p_2} \rangle).$$

Inoltre Σ_1, Σ_2 si dicono:

incidenti se $\Sigma_1 \cap \Sigma_2 \neq \emptyset$

paralleli se $W_1 \subseteq W_2$ o $W_2 \subseteq W_1$

sghembi se $\Sigma_1 \cap \Sigma_2 = \emptyset$ e $W_1 \cap W_2 = \{0\}$

Proposizione 1 (Fromula Grassmann per spazi affini)

Siano Σ_1, Σ_2 sottospazi affini di A, Allora

$$dim(\Sigma_1 \vee \Sigma_2) \leq dim\Sigma_1 + dim\Sigma_2 - dim(\Sigma_1 \cap \Sigma_2).$$

e vale l'uguaglianza se Σ_1, Σ_2 sono incidenti o sghembi si usa la notazione $dim(\emptyset) = -1$

Dimostrazione

- Supponiamo Σ_1, Σ_2 incidenti, allora esiste

$$\begin{aligned} p_0 &\in \Sigma_1 \cap \Sigma_2 \\ \Sigma_1 &= p_0 + W_1, \Sigma_2 = p_0 + W_2 \\ \Sigma_1 \cap \Sigma_2 &= p_0 + W_1 \cap W_2, \Sigma_1 \vee \Sigma_2 = p_0 + W_1 + W_2 \end{aligned}$$

dunque vale l'uguaglianza per Grassman vettoriale

- Sia ora $\Sigma_1 \cap \Sigma_2 = \emptyset$ allora $\Sigma_i = p_i + W_i$ i = 1, 2 risulta $\overline{p_1p_2} \notin W_1 + W_2$ (per lemma)

$$dim(\Sigma_1 \vee \Sigma_2) = dim(W_1 + W_2 + \langle \overrightarrow{p_1 p_2'}) = dim(W_1 + W_2) + 1 \le$$

$$\le dim(W_1) + dim(W_2) - (-1) = dim(W_1) + dim(W_2) + dim(\Sigma_1 \cap \Sigma_2)$$

e vale l'uguaglianza se e solo se $dim(W_1) + dim(W_2) = dim(W_1 + W_2)$ ovvero $W_1 \cap W_2 = 0$ ovvero se Σ_1, Σ_2 sono sghembi \square

Proposizione 2

siano Σ_1, Σ_2 sottospazi affini di $\mathbb{A}^n(\mathbb{K})$ definiti dai sistemi lineari

$$A_i X = b_i \ i = 1, 2.$$

Allora:

(a) Σ_1, Σ_2 sono incidenti se e solo se

$$rk \begin{pmatrix} A_1 & b_1 \\ A_2 & b_2 \end{pmatrix} = rk \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}.$$

detto r tale rango, $dim(\Sigma_1 \cap \Sigma_2) = n - r$

(b) Σ_1, Σ_2 sono sghembi se e solo se

$$rk \frac{\begin{pmatrix} A_1 & b_1 \\ A_2 & b_2 \end{pmatrix}}{} \geq rk \frac{\begin{pmatrix} A_1 \\ A_2 \end{pmatrix}}{} = n.$$

(c) Se

$$rk\frac{\begin{pmatrix} A_1 & b_1 \\ A_2 & b_2 \end{pmatrix}}{} \geq rk\frac{\begin{pmatrix} A_1 \\ A_2 \end{pmatrix}}{} = r < n.$$

allora Σ_1 (rispetto a Σ_2) contiene un sottospazio affine di dimensione n-r parallelo a Σ_2 (rispetto a Σ_1)

Dimostrazione

- (a) $\Sigma_1 \cap \Sigma_2 \neq \emptyset \Leftrightarrow il \ sistema \ \grave{e} \ compatibile \ quindi \ tutto \ segue \ da \ Roch \grave{e}$ -Capelli
- (b) la disuguaglianza tra i ranghi dice che $\Sigma_1 \cap \Sigma_2 = \emptyset$;

il fatto che
$$rk\left(\frac{A_1}{A_2}\right) = n$$
 implica che $W_1 \cap W_2 = 0$

- (c) Di nuovo là disuguaglianza dei ranghi implica $\Sigma_1 \cap \Sigma_2 = \emptyset$;
- Se ora $W_1 \cap W_2 = W$ allora $dim(W_1 \cap W_2) = n r$

Scelto $p_1 \in \Sigma_1$ risulta

$$p_1 + W \subset \Sigma_1$$
 $(W_1 \cap W_2 = W \text{ sottospazio di } W_1)$

$$e\ W\subset W_2\Rightarrow p_1+W\ \ \dot{e}\ parallelo\ a\ \Sigma_2\ \ e\ dim(p_1+W)=dim(W)=n-r\ \Box$$

Esempio

 $\mathbb{A} \pi_1, \pi_2 \ piani \ distinti$

$$A_1, A_2$$
 vettori riga $(A_1 = (a_{11} \ a_{12} \ a_{13})$

$$C = \begin{pmatrix} A_1 & b_1 \\ A_2 & b_2 \end{pmatrix} \in M_{2,4}(\mathbb{R})$$

 $piani\ distinti \Rightarrow rk(C) = 2$

$$rg\left(\frac{A_1}{A_2}\right)=1 \ \Rightarrow \pi_1\cap\pi_2=\emptyset$$
 piani paralleli poiché $W_1=W_2$

 $\mathbb{A}^4, \pi_1\pi_2$ piani distinti tali che $rk(A_i|b_i)=2$

$$C = \begin{pmatrix} A_1 & b_1 \\ A_2 & b_2 \end{pmatrix} \in M_{45} \ rk(C) \le 4.$$

$\operatorname{rk}\left(\frac{A_1}{A_2}\right)$	rk(C)	$\pi_1 \cap \pi_2$
4	4	{p}
3	4	\emptyset e W_1, W_2 hanno una direzione in comune
3	3	r
2	3	\emptyset