

Lee Xuan Le, Chloe (U2230069E)
Valen Tang Wenwen (U2230862L)
Zann Ang (U2230204A)

W132 Team 6

TABLE OF CONTENTS

01

PROBLEM DEFINITION

Introduction of dataset used

02

OUR PROCESS

Data cleaning

03

DATA ANALYSIS

Techniques used, conclusion and insights

APPROACHING THE PROBLEM

OBSERVATIONS LEADING TO PROBLEM FORMATION

- High food wastage in developed countries
- Lack of focus on organic waste
- Lack of awareness and solutions to tackle problem

POSSIBLE TARGETS FOR DISCOVERY

- Significance of problem
- Factors affecting organic waste and recycling efforts
- Significance of these factors
- Existing solutions

CHOSEN DATASET

49 columns x 218 rows

PROBLEM STATEMENT

We want to find out how the amount of food organic waste produced by different countries varies with many factors, and thus determine the most significant factor that contributes to high waste levels.

OUTLINE OF DATA CLEANING AND PROCESSING

DIFFERENTIATING

Identifying the columns that we needed

NEW TABLE

Creating a new table with the columns that we need

SORTING

Identifying which rows have to be removed

PREDICTION

Predicting NA values so that there are no more null values

DIFFERENTIATING - SELECTING COLUMNS

Columns we have chosen:

- Country
- Population
- Total municipal solid waste (MSW)
- Percentage of food organic waste
- GDP
- Recycling percentage
- Presence of national law governing solid waste management
- Presence of national agency enforcing solid waste laws and regulations

Why we chose these columns:

- Factors affecting food organic waste percentage
- Population and total MSW can be used to predict NA values
- Provides a range of data for analysis

SORTING - DELETING ROWS

Deleting row 200: Unable to predict country's name

Deleting rows 185 and 187: The dataset is sufficiently large to answer our question without these rows

PREDICTION - PREDICTING NA VALUES

CHECKPOINTS 1 & 2: Identify and Drop

Drop the rows with null values to be used during prediction
food.dropna(inplace=True)
food

	composition_food_organic_waste_percent	total_msw_total_msw_generated_tons_year	population_population_number_of_people
2	51.800000	4.213644e+06	25096150
3	51.400000	1.087447e+06	2854191
4	31.200000	4.300000e+04	82431
5	39.000000	5.617682e+06	9770529
6	38.740000	1.791055e+07	42981516
208	42.600000	2.739909e+04	187665
209	42.000000	3.190000e+05	1801800
210	65.000000	4.836820e+06	27584212
211	16.381655	1.845723e+07	51729344
213	36.000000	1.449752e+06	12500525

CHECKPOINTS 3 & 4 (NUMERICAL)

Extension

```
# Predicting null values for food organic waste
y pred = lr.predict(x test)
y pred
array([ 41.56654727, 43.68141007, 41.59748735, 41.74546417,
       41.54652823, 42.48651747, 45.88354354, 41.73557005,
       41.59798784, 41.59065586, 41.62829328, 41.85235493,
       41.56862933, 41.62895414, 41.68797062, 41.65525734,
       41.57515394, 132.33872991, 41.89941798, 41.7959195,
       41.77254584, 41.58005956, 41.57183639, 43.17043758,
       45.19951734, 42.99530528, 41.6747978,
                                                50.19270821,
       41.7536694 , 41.76621836 ,41.58419395 ,41.99113489 ,
       42.44871912, 42.00450979, 41.59445152, 41.49834991,
       41.66262505, 41.94197741, 44.17237147, 41.94683762,
       42.36009665])
```

Merging the two tables together (previously null and non-null values) (with country names) updated food = pd.merge(food country, food null country, how='outer') updated food

	country_name	composition_food_organic_waste_percent	total_msw_total_msw_generated_tons_year	population_population_number_of_people	
0	Angola	51.800000	4.213644e+06	25096150	
1	Albania	51.400000	1.087447e+06	2854191	
2	Andorra	31.200000	4.300000e+04	82431	
3	United Arab Emirates	39.000000	5.617682e+06	9770529	
4	Argentina	38.740000	1.791055e+07	42981516	
208	Eswatini	41.662625	2.181995e+05	1343098	
209	Tajikistan	41.941977	1.787400e+06	8177809	
210	Tanzania	44.172371	9.276995e+06	49082996	
211	Venezuela, RB	41.946838	9.779093e+06	29893080	
212	Zambia	42.360097	2.608268e+06	14264756	
213 rows × 4 columns					

CHECKPOINTS 3 & 4 (CATEGORICAL)

Extension

```
# Predicting null values for national law
y pred = lr.predict(x test)
y pred
array([0.91791585, 0.9165048, 0.91394896, 0.91513661, 0.91607257,
       0.91390421, 0.91599359, 0.91548814, 0.91580576, 0.91493718,
       0.90599427, 0.90436968, 0.91561371, 0.91387206, 0.88785023,
       0.91285784, 0.91652111, 0.90815062, 0.91151127, 0.91639827,
       0.91573468, 0.90856219, 0.898376451)
# Analysing the predicted values to determine which is yes and which is no
arr = np.array([0.91791585, 0.9165048, 0.91394896, 0.91513661, 0.91607257,
       0.91390421, 0.91599359, 0.91548814, 0.91580576, 0.91493718,
       0.90599427, 0.90436968, 0.91561371, 0.91387206, 0.88785023,
       0.91285784, 0.91652111, 0.90815062, 0.91151127, 0.91639827,
       0.91573468, 0.90856219, 0.89837645])
# Create an empty list
filter arr = []
# Go through each element in arr
for element in arr:
  # If the element (y/1-y) is higher than y+/y-, set the value to 1, otherwise 0
  if (element/(1-element)) > 10.1:
    filter arr.append(1)
  else:
    filter arr.append(0)
newarr = arr[filter arr]
# Converting the predicted values into 1 and 0
print(filter arr)
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0]
```

```
# Converting 1 and 0 back to ves and no respectively
final national law = updated national law[f'country name', 'other information national law governing solid waste management i
final national law.other information national law governing solid waste management in the country[final national law.other in
final national law.other information national law governing solid waste management in the country[final national law.other in
print(final national law)
                  country name
                          Aruba
                   Afghanistan
                         Angola
                        Albania
                        Andorra
207
                   South Sudan
208
      São Tomé and Príncipe
209
                       Eswatini
210
                            Chad
211
                         Uganda
     other information national law governing solid waste management in the country
                                                                 Yes
                                                                 Yes
                                                                 Yes
                                                                 Yes
                                                                 Yes
                                                                 . . .
207
                                                                 Yes
208
                                                                 Yes
209
                                                                 Yes
210
                                                                  No
211
[212 rows x 2 columns]
```


UNI-VARIATE ANALYSIS (NUMERICAL)

BOX-PLOTS

DENSITY PLOT

VIOLIN-PLOTS

UNI-VARIATE ANALYSIS (NUMERICAL)

What we obtained from this analysis:

- 1. Mean
- 2. Median
- 3. Mode
- 4. Distributions of the different variables
- 5. Outliers in the data

UNI-VARIATE ANALYSIS (CATEGORICAL)

COUNT PLOT

CHECKING IF THE DATASET IS BALANCED

Extension

BI-VARIATE ANALYSIS

RELATIONSHIPS (y vs x):

- 1. Food organic waste percentage vs GDP
- 2. Food organic waste percentage vs Recycling percentage
- 3. Food organic waste percentage vs Presence of national law
- Food organic waste percentage vs Presence of enforcement

BI-VARIATE ANALYSIS (NUMERICAL)

SCATTER PLOT-LINEAR REGRESSION

JOINTPLOT

BI-VARIATE ANALYSIS (NUMERICAL)

HEATMAP

LINEAR REGRESSION

BI-VARIATE ANALYSIS (NUMERICAL)

BI-VARIATE ANALYSIS: GOODNESS OF FIT

Explained Variance

 R^2

Mean Squared Error

MSE

Root Mean
Squared Error

RMSE

BI-VARIATE ANALYSIS (CATEGORICAL)

MULTIVARIATE ANALYSIS

Extension

RANDOM FOREST CLASSIFIER

To compare all 4 variables, both numerical and categorical

F AND PROBABILITY VALUES

To predict the significance of impact of each variable on food organic waste percentage

RANDOM FOREST REGRESSOR

Extension

Comparison of 4 variables:

- Numerical variables
 - GDP
 - Recycling percentage

- 2. Categorical variables
 - Presence of national law
 - Presence of enforcement

Feature importances:

The higher the value, the greater the significance of the variable in contributing to food organic waste.

- 1. Numerical feature importances
- 2. Categorical feature importances
 - Ignore the last two numbers (dummies)

Mean Squared Error: 320.2608265498277

Root Mean Squared Error: 17.895832658745658

R-squared: 0.0019115142812655694

Feature Importances: [0.51054631 0.44286293 0.01077362 0.01032748 0.01307536 0.0124143]

Numerical Feature Importances: [0.5105463134160089, 0.44286292540008676]

Categorical Feature Importances: [0.01077362028474791, 0.010327478844332057, 0.013075360549516338, 0.01241430150530811]

COMPARING F AND P-VALUES

Extension

OLS Regression Results							
		======		 			
Dep. Variable:	composition_food_o	rganic_w	aste_percent	R-squared	:		0.188
Model:			OLS	Adj. R-sq	uared:		0.180
Method:			east Squares	F-statist			24.21
Date:		Fri,	21 Apr 2023		tatistic):		.51e-10
Time:			12:56:36	Log-Likel	ihood:		-868.00
No. Observations:			212	AIC:			1742.
Df Residuals:			209	BIC:			1752.
Df Model:			2				
Covariance Type:			nonrobust				
				·			0.0753
		coef	std err	t	P> t	[0.025	0.975]
const		51.2219	1.848	27.719	0.000	47.579	54.865
gdp		-0.0002	4.91e-05	-4.932	0.000	-0.000	-0.000
waste_treatment_red	cycling_percent	-0.2201	0.095	-2.313	0.022	-0.408	-0.033
Omnibus:	1.880		n-Watson:		2.200		
Prob(Omnibus):	0.391		e-Bera (JB):		1.512		
Skew:	-0.165				0.469		
Kurtosis:	3.250	Cond.	No.		5.89e+04		
Notes:							

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.89e+04. This might indicate that there are strong multicollinearity or other numerical problems.

	sum	_sq df
other_information_national_agency_to_enforce_so	597.655	588 1.0
other_information_national_law_governing_solid	1246.859	067 1.0
other_information_national_agency_to_enforce_so	4.889	152 1.0
Residual	52300.005	901 208.0
	F	PR(>F)
other_information_national_agency_to_enforce_so	2.376909	0.124661
other_information_national_law_governing_solid	4.958827	0.027030
other_information_national_agency_to_enforce_so	0.019444	0.889235
Residual	NaN	NaN

NUMERICAL DATA

CATEGORICAL DATA

OUR CONCLUSION

The most significant factor in affecting food organic waste

INSIGHTS AND POSSIBLE SOLUTIONS

THANKS

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

Please keep this slide for attribution