MAGNETOSTATICA

RESUMENES

Ezequiel Remus

ezequielremus@gmail.com

29 de octubre de 2022

ENUNCIADO

1. Ley de Biot-Savart

El campo magnético generado por una corriente I se puede expresar de la siguiente manera:

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{Id\vec{l} \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|}$$

donde:

- \vec{r} es el punto campo (donde queremos calcular el campo magnético).
- \vec{r}' es el punto fuente (donde está la corriente fuente del campo magnético).
- $\mu_0 = 4\pi 10^{-7} N/A^2$ es la permeabilidad del vacio.
- Las unidades del campo magnético son los $Tesla = \frac{N}{Am}$

Cuando la fuente del campo magnético es una distribución de corriente en volumen \vec{j} , el campo magnético se puede expresar de la siguiente manera:

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{j}dV' \times (\vec{r} - \vec{r'})}{|\vec{r} - \vec{r'}|}$$

mientras que si la fuente del campo magnético es una distribución de corriente en superficie \vec{g} :

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{g}dS' \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|}$$

2. Fuerza de Lorentz

La fuerza sobre una partícula cargada con carga q en presencia de campo q en presencia de campo eléctrico \vec{E} y campo magnético \vec{B} se puede escribir:

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

En particular, si tenemos un cable por el cual circulo corriente I en presencia de campo magnético externo la expresión anterior se reduce a:

$$\vec{F} = \int I d\vec{l} \times \vec{B}_{ext}$$

A su vez, la fuerza sobre una distribución de corriente en superficie \vec{g} , en presencia de un campo magnético externo se puede escribir :

$$\vec{F} = \int \vec{g} dS \times \vec{B}_{ext}$$

mientras que si tenemos una distibución de corriente en volumen \vec{j} :

$$\vec{F} = \int \vec{j}dV \times \vec{B}_{ext}$$

3. Ley de Ampére

Se usa la Ley de Ampére para calcular el campo magnético en casos de distribuciones de corriente que tienen alta simetría. Comencemos recordando la Ley de Ampere:

$$\oint_{\mathcal{C}} \vec{B}(\vec{r})d\vec{l} = \mu_0 I_{enc}$$

donde I_{enc} es la corriente encerrada por la curva de circulación \mathcal{C} . Es importante recordar que como en el teorema de Stokes tenemos que definir una orientación para la superficie por la cual circula la corriente y esta orientación tiene que estar relacionada con la circulación del borde de la superficie, es decir la curva cerrada \mathcal{C} . Vamos a elegir la regla de la mano derecha.

4. Momento Dipolar Magnético

Similar al caso electrostático, en magnetostática se puede hacer una expansión multipolar en el potencial vector \vec{A} donde $\vec{B} = \vec{\nabla} \times \vec{A}$. Esta expansión no posee término monopolár y es un poco más complicada ya que \vec{A} es un vector y no un escalar como el potencial eléctrico V.

El primer término en la expasión es el dipolar:

$$\vec{A} \approx \frac{\mu_0}{4\pi} \frac{\vec{m} \times \vec{r}}{|\vec{r}|^3} + \cdots$$

Donde \vec{m} es el dipolo magnético:

$$\vec{m} = \frac{1}{2} \int \vec{r'} \times Id\vec{l'}$$

En general, se puede escribir:

$$\vec{m} = IAi$$

El campo \vec{A} de u dipolo ideal situado en $\vec{r_0}$ se puede escribir como:

$$\vec{A}_{dip} = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \vec{r} - \vec{r}_0}{|\vec{r} - \vec{r}_0|^3}$$

Y a partir de la relación $\vec{B}=\vec{\nabla} \times \vec{A}$ se obtiene el campo magnético de un dipolo ideal situado en \vec{r}_0 :

$$\vec{B}_{dip}(\vec{r}) = \frac{\mu}{4\pi} \left[\frac{3(\vec{m}(\vec{r} - \vec{r_0}))(\vec{r} - \vec{r_0})}{|(\vec{r} - \vec{r_0})|^5} - \frac{\vec{m}}{|(\vec{r} - \vec{r_0})|^3} \right]$$

Si el dipolo esta situado en el origen $\vec{r_0} = 0$, entonces:

$$\vec{B}_{dip}(\vec{r}) = \frac{\mu}{4\pi} \frac{1}{|\vec{r}|^3} (3(\vec{m} \cdot \hat{r})\hat{r} - \vec{m})$$

5. Medios Materiales Magnéticos

A nivel microscopico en un material magnético se generan corrientes pequeñas generadas por electrones. En ausencia de campo magnético externo, estas corrientes están orientadas al azar, de manera que se cancelan y el campo magnético total es 0.

A nivel microscopico, se pueden considerar como mini dipilos magnéticos. Si colocamos el material en un campo magnético, apareceran $\tau = \vec{m} \times \vec{B}$ que alinearán al menos parcialmente los dipolos con el campo, produciendo una **magnetización** del medio. Existen diversas formas:

• Paramagnetismo: Alineación de los dipolos paralela al campo \vec{B}

- **Diamagnetismo:** Alineación de los dipolos anti-paralelta al campo \vec{B}
- Ferromagnetismo: Alineación permanente de los dipolos. Depende la historia previa del material.

Así como hicimos en el caso de medios materiales en la parte de electrostática, vamos a definir un nuevo campo \vec{H} para materiales magnéticos.

La definición de \vec{H} es:

$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$$

Donde, \vec{M} es el campo de magnetización. Las ecuaciones que cumple \vec{H} son:

$$\vec{\nabla} \times \vec{H} = \mu_0 \vec{j_l}$$

$$\quad \vec{\nabla} \cdot \vec{H} = -\vec{\nabla} \cdot \vec{M}$$

Fuentes de \vec{B} y \vec{H} Recordemos que $\vec{\nabla} \cdot \vec{B} = 0$, siempre.

	Vol	Sup
$\vec{\nabla} \times \vec{B}$	$\vec{j}_{\mathrm{tot}} = \vec{j}_{\ell} + \vec{j}_{m}$	$\vec{g}_{\mathrm{tot}} = \vec{g}_{\ell} + \vec{g}_{m}$
	donde $\vec{j}_m = \vec{ abla} imes \vec{M}$	donde $\vec{g}_m = \vec{M} \times \hat{n}$
$\vec{\nabla} \vec{H}$	$ec{j_\ell}$	$ec{g}_\ell$
$\vec{\nabla} \cdot \vec{H}$	$-\vec{\nabla}\cdot\vec{M}$	М̄· n̂

Figura 1: Cuadro de Fuentes

Así como existen materiales dieléctricos lineales, también existen materiales magnéticos lineales. Dichos materiales satisfacen la siguiente relación

$$\vec{M} = \chi_m \vec{H}$$

Y definiendo la permeabilidad μ como:

$$\mu = \mu_0 (1 + \chi_m)$$

Podemos obtener

$$\vec{B} = \mu \vec{H}$$

Notar que, si el material magnético es lineal y se cumple que $\vec{\nabla}\mu = 0$, entonces:

$$\vec{\nabla} \cdot \vec{H} = (1/\mu) \vec{\nabla} \cdot \vec{B} = 0$$

Lo cual nos permite usar un análogo a la ley de Ampére para el campo \vec{H} .

Haciendo una analogía con el campo eléctrico se definen las "cargas" de magnetización en volumen y superficie.

$$\rho_m = -\vec{\nabla} \cdot \vec{M} \qquad \qquad \sigma_m = \vec{M}\hat{n}$$

Donde \hat{n} es la normal exterior al medio material magnetizado.

La ley de Amplére para el campo \vec{H} es:

$$\oint \vec{H} d\vec{l} = \int \int \vec{j_l} d\vec{S} = I_l^{conc}$$

6. Circuitos Magnéticos

Dado que la divergencia de \vec{B} es cero, podemos usar el teorema de Stokes para calcular el flujo de campo magnético

$$\int_{V} \vec{\nabla} \cdot \vec{B} = \oint_{S=\partial V} \vec{B} \cdot d\vec{S}$$

Esto nos dice que el \vec{B} es constante a lo largo de un tubo de líneas de campo

$$\int_{S_1} \vec{B_1} \cdot d\vec{S_1} = \int_{S_2} \vec{B_2} \cdot d\vec{S_2}$$

Useless at this spot but functional.

Definición de ϕ

El flujo de campo \vec{B} a través de la superficie \vec{S} esta dado por:

$$\phi_1 = \phi_2 = const$$

(La conservación del flujo magnético es valida incluso si hay entrehierro)

Las fuentes de $na\vec{b}la \times \vec{H}$ son las corrientes libres, entonces usando el teorema de Stokes obtenemos que:

$$\oint_{\mathcal{C}} \vec{H} d\vec{l} = NI$$

Si el material es lineal se cumple que $B = \mu H$, entonces

$$\oint_{\mathcal{C}} \vec{H} d\vec{l} = \oint_{\mathcal{C}} H dl = \oint_{\mathcal{C}} \frac{\mu H}{\mu} dl = \oint_{\mathcal{C}} \frac{BA}{\mu A} dl = \oint_{\mathcal{C}} \frac{dl}{\mu A} := \oint_{\mathcal{C}} \frac{dl}{\mu A} = \oint_{\mathcal{C}} \frac{dl}{\mu A}$$

Donde definimos Useless at this spot but functional.

Reluctancia

$$\mathcal{R} = \oint_{\mathcal{C}} \frac{dl}{\mu A} = \frac{L}{\mu A}$$

Haciendo una analogía con circuitos eléctricos, podemos ver que la corriente I "fuerza.ªl flujo magnético ϕ a "moverse.ª través del núcleo del toroide. Actúa como una fuerza magnetomotriz (en analogia a fuerza electromotríz, fem, de los circuitos electricos). Entonces, definimos: Useless at this spot but functional.

Fuerza Magnetomotriz (fmm)

$$\mathcal{F} := NI$$

Recordando que:

$$\oint_{\mathcal{C}} \vec{H} d\vec{l} = NI = \mathcal{F}$$

Y la definición de reluctancia, llegamos a una ley análoga a la ley de Ohm

$$\phi \mathcal{R} = \mathcal{F}$$

Donde ϕ hace las veces de corriente, \mathcal{R} de resistencia y \mathcal{F} de fem.

Si tenemos como dato el número de vueltas N del devanado, la corriente aplicada I, la permeabilidad del material ferromagnético μ , la circunferencia media l y la sección A del toroide, podemos despejar el flujo ϕ y los campos B y H

$$\phi = \frac{\mu ANI}{l}$$

$$B = \frac{\phi}{A} = \frac{\mu NI}{l}$$

$$H = \frac{B}{\mu} = \frac{NI}{l}$$

Notemos que debido a la ecuación de la circulación de H podemos escribir

$$\mathcal{F} - \oint_{\mathcal{C}} \vec{H} \cdot d\vec{l} = 0$$

Figura 2: Analogía circuital

Lo que nos da un análogo a la ley de voltajes de Kirchoff

$$\epsilon - \oint_{\mathcal{C}} \vec{E} \cdot d\vec{l} = \epsilon + \sum_{i} V = 0$$

Algo de jerga:

- Se suele denominar al campo \vec{B} Densidad de flujo magnético
- ullet Se suele denominar al campo \vec{H} Intensidad del campo magnético o simplemente CAmpo magnético

7. Calculo de la Fuerza Electromotriz

Es importante distinguir dos situaciones:

■ El caso en que la f.e.m está generada por la fuerza magnética:

$$\epsilon = \int \vec{v} \times \vec{B} d\vec{l}$$

Ejemplo: Barra conductora con velocidad \vec{v} perpendicular a un campo magnético

■ El caso en que la f.e.m está generada por un flujo de campo magnético variable en el tiempo, lo cual puede deberse a (i) que el campo magnético varie con el tiempo o bien (ii) la superficie que está atravesando el campo magnético se modifica con el tiempo. En ambos casos:

$$\epsilon = -\frac{d\Phi}{dt} = -\frac{d}{dt} \iint \vec{B} d\vec{S}$$

Ejemplo:Espira en un campo magnético variable en el tiempo, circuito que se mueve con velocidad \vec{v} en presencia de un campo magnético estático perpendicular a la misma

8. Ley de Faraday

Recordemos que la última expresión está relacionada con la ley de Faraday de la siguiente manera:

$$\epsilon = \int \vec{E} \cdot d\vec{l} = \int \vec{\nabla} \times \vec{E} \cdot d\vec{S} = \int \left(-\frac{d\vec{B}}{dt} \cdot d\vec{S} \right) = -\frac{d}{dt} \int \vec{B} \cdot d\vec{S} = -\frac{d\phi}{dt}$$

Useless at this spot but functional.

Ley de Faraday

$$\vec{\nabla} \times \vec{E} = -\frac{d\vec{B}}{dt}$$

9. Ley de Lenz

A veces no es obvio generar una intuición sobre el sentido de la corriente inducida por la f.e.m. La ley de Lenz establece una *regla* que nos permite anticipar el sentido de la corriente inducida a partir de la f.e.m dada por la ley de Faraday. Useless at this spot but functional.

Ley de Lenz

La corriente inducida por la f.e.m. se opone al cambio de flujo de campo magnético sobre un lazo cerrado.

- El flujo en la espira disminuye, por lo que se induce una corriente de forma tal que se compense esa disminución del flujo. O sea, se genera una corriente en sentido anti-horario si miramos de frente a la espira (nosotros somos la barra).
- El flujo de la espira aumenta, por lo que se induce una corriente de forma tal que se compense el aumento de flujo. Esto es, se genera una corriente en sentido **horario** si miramos la espira "de frente".

A su vez, es importante entender la relación entre el signo de la f.e.m., la normal y la corriente inducida. Una vez definida una normal:

- Si el signo de la f.e.m inducida es positiva, la corriente inducida tendrá la misma dirección que la normal.
- Si el signo de la f.e.m. inducida es negativo, la corriente inducida tendrá la dirección opuesta a la normal.

10. Inductancia

Dadas dos espiras C_1 , C_2 . Supongamos que por C_1 circula una corriente I_1 , la cual produce un campo magnético \vec{B}_1 . Dicho campo genera un flujo ϕ_2 a través de C_2

Figura 3: Esquema de la situación

$$\phi_2 = \int \vec{B}_1 \cdot d\vec{S}$$

Luego, por Biot-Savart, sabemos que:

$$\vec{B_1} = \frac{\mu}{4\pi} \oint \frac{d\vec{l} \times \hat{r}}{|\vec{r}|^2} \Rightarrow \vec{B_1} \propto I_1 \Rightarrow \phi_2 \propto I_1$$
$$\Rightarrow \phi_2 = M_{21}I_1$$

Al coeficiente de proporcionalidad se lo denomina inductancia mutua

Por otro lado, recordando que:

$$\vec{B_1} = \vec{\nabla} \times \vec{A_1}$$

Donde

$$\vec{A_1} = \frac{\mu_0 I_1}{4\pi} \oint_{\mathcal{C}_1} \frac{d\vec{l_1}}{|\vec{r}|}$$

Y recordando el teorema de stokes, se deduce que:

$$\phi_2 = \frac{\mu_0 I_1}{4\pi} \oint \oint \frac{d\vec{l_1} d\vec{l_2}}{|\vec{r}|}$$

Entonces, como dijimos que $\phi_2 = M_{21}I_1$ entonces podemos definir: Useless at this spot but functional.

Formula de Neumann

$$M_{21} = \frac{\mu_0}{4\pi} \oint \oint \frac{d\vec{l_1}d\vec{l_2}}{|\vec{r}|}$$

Propiedades:

- M es una cantidad puramente geometrica
- Vale tanto para calcular ϕ_2 cuando cirlula por C_1 como para calcular ϕ_2 cuando cirlula por C_2

Si la corriente que circula por \mathcal{C}_1 varía, eso va a inducir una f.e.m en \mathcal{C}_2 debido a la ley de Faraday

$$\epsilon_2 = -\frac{d\phi_2}{dt} = -M\frac{dI_1}{dt}$$

Al mismo tiempo, esa corriente variable hace que $\vec{B_1}$ varíe y en consecuencia, también lo hace el flujo a través de C_1 . Ese flujo tambien va a ser proporcional a I:

$$\phi = LI$$

L es el coeficiente de autoinductancia y tambien es puramente geométrico.

Dicha corriente variable tambien va a inducir una f.e.m en C_1 que se va a oponer a la variación del flujo.

$$\epsilon = -L\frac{dI}{dt}$$

11. Transitorios

La fuerza electromotriz que circula por un circuito esta dada por:

$$\epsilon - \oint_{\mathcal{C}} \vec{E} \cdot d\vec{l} = 0$$

Luego, $\epsilon = \epsilon_{bat} + \epsilon_{ind}$ Con esto se obtiene que:

$$\oint_{\mathcal{C}} \vec{E} \cdot d\vec{l} = \Delta V_R - \Delta V_C$$

Entonces, tenemos que:

$$\epsilon_{bat} - \underbrace{L\frac{dI(t)}{dt}}_{\epsilon_{ind}} - \underbrace{RI(t)}_{\Delta V_R} - \underbrace{\frac{Q(t)}{C}}_{\Delta V_C} = 0$$

Además, notemos que $I(t) = d_t(Q(t))$ y $d_t(I(t)) = d_t^2(Q(t))$

Reescribiendo la ecuación diferencial de la forma más familiar, se tiene que:

$$d_t^2(Q(t)) + \frac{R}{L}d_t(Q(t)) + \frac{Q(t)}{CL} = \frac{\epsilon(t)}{L}$$

La cual tiene la forma de un Oscilador armónico amortiguado forzado.

Recordamos que las soluciones a estas ecuaciones diferenciales son combinaciones lineales de las soluciones particular y homogénea $Q(t)=Q_h+Q_p$

Si tenemos que: $\epsilon(t) = \epsilon_{bat} = cte$ \Rightarrow $Q_p = cte$ Y para la solución homogénea se propone: $Q_h(t) = \mathcal{A}e^{\lambda t}$. Entonces, las derivadas de $Q_h(t)$ que necesitamos son:

- $d_t(Q_h(t)) = A\lambda e^{\lambda t}$
- $d_t^2(Q_h(t)) = A\lambda^2 e^{\lambda t}$

Reemplazando en la ecuación diferencial:

$$d_t^2(Q_h(t)) + \frac{R}{L}d_t(Q_h(t)) + \frac{Q_h(t)}{CL} = 0$$
$$A\lambda^2 e^{\lambda t} + \frac{R}{L}A\lambda e^{\lambda t} + Ae^{\lambda t}CL = 0$$
$$Ae^{\lambda t} \left(\lambda^2 + \frac{R}{L}\lambda + CL\right) = 0$$

Luego, como $A = cte \neq 0$ y $e^{\lambda t} \neq 0$; $\forall t$ se obtienen raices de la forma:

$$\lambda_{\pm} = \frac{R}{2L} \pm \sqrt{\frac{R^2}{4L^2} - \frac{1}{CL}}$$

Con esto, podemos ver que debemos distinguir entre varios casos particulares.

11.1. Sobreamortiguado (la raiz es positiva)

Este caso se cprresponde con tener dos raices reales distintas λ_+ y λ_- y esto es porque: $\frac{R^2}{4L^2} - \frac{1}{CL} > 0$ lo cual se corresponde con el hecho de que $\frac{R^2}{4L^2} > \frac{1}{CL}$ Luego, la solución homogenea tiene a forma:

$$Q_h(t) = \mathcal{A}_{\infty} e^{\lambda_+ t} + \mathcal{A}_{\in} e^{\lambda_- t}$$

Donde A_{ij} sale de las condiciones iniciales

11.2. Sobreamortiguado (la raiz se anula)

Este caso se da si $\frac{R^2}{4L^2} - \frac{1}{CL} = 0$, es decir que $\frac{R^2}{4L^2} = \frac{1}{CL}$

Luego, las raices son reales e iguales, las cuales valen:

$$\lambda_{+} = \lambda_{-} = \frac{R}{2L}$$

Pero, como necesito dos soluciónes linealmente intependientes, puedo probar con otra solución, la cual es del tipo:

$$Q_h(t) = \tilde{\mathcal{A}}te^{\lambda t}$$

Haciendo los pasos y resolviendo llegamos a una nueva $Q_h(t)$ la cual nos dara como resultado:

$$Q_h(t) = \underbrace{\mathcal{A}_{\infty} e^{\Lambda t}}_{S.original} + \underbrace{\mathcal{A}_{\in} t e^{\Lambda t}}_{S.propuesto}$$

11.3. Subamortiguado (la raiz es negativa)

En este caso, vamos a tener soluciones complejas debido a que $\frac{R^2}{4L^2} - \frac{1}{CL} < 0$ Luego, como son dos raices complejas, vamos a tener que una solución sera la conjugada de la otra, entonces:

$$\lambda_{\pm} \in \mathbf{C}$$
 $\lambda_{\pm} = a \pm ib$

La solución va a quedar de la forma:

$$Q_h(t) = \mathcal{A}_{\infty} e^{t(a+ib)} + \mathcal{A}_{\in} e^{t(a-ib)}$$

De lo cual para nosotros lo util sera sacar la parte real e imaginaria teniendo en cuenta la formula de euler: $e^{\pm i\theta} = \cos\theta \pm i\sin\theta$.

Recordando el tratamiento para los conjugados, se tendrá que:

$$Q_h(t) = \mathcal{A}_{\infty} e^{at} \cos bt + \mathcal{A}_{\in} e^{at} \sin bt$$

Es útil reconocer gráficamente los estados estacionario y transitorio

Figura 4: Gráfica del subamortiguado

12. Repaso de Números Complejos

Recordemos que si z = a + bi es un numero complejo, su expresión en forma polar es:

$$z = |z|e^{i\theta}$$
 $|z| = \sqrt{a^2 + b^2}$ $\theta = \arctan(b/a)$

A su vez:

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2}$$

Recordamos que: $\overline{z} = a - bi$ Y tambien recordemos que por De Moivre:

$$z = e^{i\theta} = \cos\theta + i\sin\theta$$

$$\overline{z} = e^{-i\theta} = \cos\theta - i\sin\theta$$

13. Circuitos de Corriente Alterna

Recordemos la ecuación basica de la teoria de circuitos:

$$\epsilon = RI + Ld_t(I) + \frac{Q}{C}$$

donde ϵ es la caída de tensión en la fuente, R es la resistencia, L es la inductancia y C la capacidad.

Derivando esta ecuación se obtiene:

$$d_t(\epsilon) = Rd_t(I) + Ld_t^2(I) + \frac{I}{C}$$

Ahora vamos a resolver un circuito donde $\epsilon = \epsilon_0 \cos wt$. Una herramienta muy útil es tratar tanto a la fuente como a la corriente como números complejos:

$$\epsilon = \epsilon_0 e^{iwt}$$

$$J = J_0 e^{iwt}$$

Donde, ϵ_0 es un número real y J_0 es un número complejo.

Aquí es muy importante entender que ϵ y J no representan la caída de tensión real en la fuente, sino que son herramientas matemáticas para facilitar la resolución de los circuitos y están relacionadas con estas últimas:

$$V(t) = Re\left[\epsilon_0 e^{iwt}\right] = \epsilon_0 \cos wt$$

$$I(t) = Re\left[J_0e^{iwt}\right] = Re\left[|J_0|e^{iwt+\theta}\right] = |J_0|\cos wt + \theta$$

donde $J_0 = |J_0|e^{i\theta}$ es un numero complejo.

Ahora, recordando:

$$d_t(\epsilon) = Rd_t(I) + Ld_t^2(I) + \frac{I}{C}$$

y ahora metamos en la ecuación las expresiónes complejas $\epsilon = \epsilon_0 e^{iwt}$ y $J = J_0 e^{iwt}$:

$$iw\epsilon_0 e^{iwt} = iwRJ_0 e^{iwt} - w^2 LJ_0 e^{iwt} + \frac{J_0 e^{iwt}}{C}$$

$$iw\epsilon_0 e^{iwt} = J_0 e^{iwt} \left[iwR - w^2 l + \frac{1}{C} \right]$$

Dividiendo esta última ecuación por iw obtenemos:

$$\epsilon_0 e^{iwt} = J_0 e^{iwt} \underbrace{\left[R + iwl + \frac{i}{wC}\right]}_{Z}$$

Es decir, que podemos escribir la ecuación anterior:

$$\epsilon_0 e^{iwt} = Z J_0 e^{iwt}$$

Vamos a Definir: Useless at this spot but functional.

Impedancia

$$Z = R + iwl + \frac{i}{wC} = R + iX$$

Donde: $X = wL - \frac{1}{wC}$

Admitancia

$$Y = \frac{1}{Z} = \frac{R}{R^2 + X^2} - i\frac{X}{R^2 + X^2}$$

Conductancia

Parte Real de la admitancia

$$G = Re[Y] = \frac{R}{R^2 + X^2}$$

Suceptancia

Parte Imaginaria de la admitancia

$$B=Im[Y]=-i\frac{X}{R^2+X^2}$$

Luego podemos escribir las ecuaciónes de malla para la corriente compleja:

$$\epsilon = \sum_{i} Z_{i} J_{i}$$

Donde $\epsilon=\epsilon_0e^{iwt}$ y $J_i=J_{0i}e^{iwt}=|J_{0i}|e^{i\alpha}e^{iwt}=|J_{0i}|e^{iwt+\alpha}$

Magnetismo Resumenes

13.1. Cosas útiles

Figura 5: Elementos que debemos emplear

Figura 6: Circuitos Basicos