STATISTICAL LEARNING

with application in R

Linear Regression
Classification (Logistic Regression, QDA)
Bootstrapping / Subset Selection/ Tree (random forest)
SVM (linear, radial kernel) / Clustering

1. Preparation step

- > library(MASS)
- > set.seed(1)
- > noise=rnorm(61,0,4)
- > x1 < -seq(-3,3,by=0.1)
- > x2<-sample(x1,61,replace=FALSE)
- $Y = -x1+x2-x2*x1+x1^2-x2^2+x1^3+$ noise
- > Z<- as.factor(ifelse(Y >=0, 1, 0))
- > df1<-data.frame(x1,x2,Y,Z)

> plot(x1,x2)

> plot(Y,x2)

> plot(Y,x1)

- > library(rgl)
- > plot3d(x1,x2,Y)

2. linear Regression

> Im.fit=Im(Y~x1,data=df1,subset=train)

> mean((Y-predict(lm.fit,df1))[-train]^2)

[1] 77.25359

> summary(lm.fit)

Residuals:

Min 1Q Median 3Q Max -10.9025 -4.3669 -0.9712 3.5535 30.5958 Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.7768 1.4818 0.524 0.604231
x1 4.0246 0.9167 4.390 0.000146 ***

Residual standard error: 8.052 on 28 degrees of freedom Multiple R-squared: 0.4077, Adjusted R-squared: 0.3866

F-statistic: 19.28 on 1 and 28 DF, p-value: 0.0001464

- > plot(x1,Y)
- > abline(lm.fit)

> Im.fit2=Im(Y~x2,data=df1,subset=train)

> mean((Y-predict(lm.fit2,df1))[-train]^2)

[1] 172.3199

> summary(lm.fit2)

Coefficients:

Residual standard error: 10.44 on 28 degrees of freedom Multiple R-squared: 0.003579, Adjusted Rsquared: -0.03201 F-statistic: 0.1006 on 1 and 28 DF, p-value: 0.7535

- > plot(x2,Y)
- > abline(lm.fit2)

> lm.fit3=lm(Y~x1*x2,data=df1,subset=train)

> mean((Y-predict(lm.fit3,df1))[-train]^2)

[1] 67.75805

- > plot(x1*x2,Y)
- > abline(lm.fit3)

> summary(lm.fit3)

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.5403 1.6356 0.330 0.743809 4.522 0.000119 *** х1 4.4921 0.9933 x2 1.0578 0.9602 1.102 0.280721 x1:x2 -0.3453 0.6187 -0.558 0.581513

Residual standard error: 8.021 on 26 degrees of freedom Multiple R-squared: 0.4542, Adjusted R-squared: 0.3912

F-statistic: 7.213 on 3 and 26 DF, p-value: 0.00112

세개의 모델 중 MSE값은 Im.fit3이 제일 작다. 하지만 Im.fit3모델 중 x1* x2 변수의 유의확률 p값은 유의수준보

다 크므로 통계적으로 의미 있다고 볼 수 없다. X2변수도 마찬가지다. 모델의 설명력을 나타내는 r제곱 값도 다른 모델들에 비해서는 크지만 값이 상대적으로 크다고 보긴 힘들다.

3. Classification

Logistic regression

- > library(ISLR)
- > df1<-data.frame(x1,x2,Y,Z)
- > df.test=df1[-train,]
- > Z.test=df1[-train,]\$Z

>glm.fit=glm(Z~x1+x2,data=df1, family=binomial, subset=train)

> summary(glm.fit)

Deviance Residuals:

Min 1Q Median 3Q Max -1.4722 -0.9144 -0.5573 0.8638 1.9889

Coefficients:

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 40.381 on 29 degrees of freedom Residual deviance: 33.505 on 27 degrees of freedom AIC: 39.505

>glm.probs=predict(glm.fit,df.test, type="response")

- > glm.pred=rep("0",30)
- > glm.pred[glm.probs>0.5]="1"
- > table(glm.pred,Z.test)

Z.test

glm.pred 0 1

0 9 7

1 3 12

> mean(glm.pred==Z.test) [1] 0.6774194

QDA

qda.fit=qda(Z~x1+x2,data=df1,subset=train)

> qda.fit

Prior probabilities of groups:

0 1

0.6 0.4

Group means:

x1 x2

0 -0.8055556 0.1722222

1 0.7000000 0.2166667

2

- > qda.test=predict(qda.fit,df.test)\$class
- > table(qda.test,Z.test)

Z.test

qda.test 0 1

0 9 7

1 3 12

> mean(qda.test==Z.test)

[1] 0.6774194

4. Bootstrapping

- > library(boot)
- > median(Y)
- [1] 0.04812321
- > resample=matrix(sample(Y, size=61*20

,replace=TRUE), nrow=61)

- > median=apply(resample,2,median)
- > summary(median)

Min. 1st Qu. Median Mean 3rd Qu. Max. -1.57374 -0.61937 0.04812 0.12226 0.63365 3.68954

> quantile(median,c(0.025,0.975))

2.5% 97.5%

-1.57374 2.87810

5. Subset Selection

> df2<-data.frame

(Y,x1,x2,x1^2,x1^3,x2^2,x2^3,x1*x2,x1^2*x2^2)

- > train=sample(61,30)
- > df2.train=df2[train,]
- > df2.test=df2[-train,]
- > CV.X=model.matrix(Y~.,df2.train)
- > CV.Y=df2.train\$Y
- > library(glmnet)
- > ridge=cv.glmnet

(x=CV.X, y=CV.Y, family="gaussian", alpha=0, nfolds=5)

> plot(ridge)

- > ridge\$lambda.min
- [1] 0.9960111
- > log(ridge\$lambda.min)
- [1] -0.003996911
- > ridge.gnet=glmnet

(x=CV.X, y=CV.Y, family="gaussian", alpha=0, lambda =ridge\$lambda.min,nfolds=5)

> coef(ridge.gnet)

s0

(Intercept) 0.35865094

(Intercept) .

x1 0.41689260

x2	1.21907928
x1.2	1.96672121
x1.3	0.63556429
x2.2	-1.15820993
x2.3	-0.06186839
x1x2	-0.73279393
x1.2x2.2	-0.15744158

- > CV.test.x=model.matrix(Y~.,df2.test)
- > ridge.pred=predict(ridge.gnet,newx=CV.test.x)
- > library(caret)
- > postResample(pred=ridge.pred,

obs=df2.test\$Y)

[1] 33.27103

RMSE Rsquared MAE 5.768105 0.821921 4.466748 > mean((ridge.pred-df2.test\$Y)^2)

LASSO

> set.seed(123)

>lasso=cv.glmnet(x=CV.X,y=CV.Y, family="gaussian" ,alpha=1,nfolds=5)

> plot(lasso)

- > log(lasso\$lambda.min)
- [1] -2.073998
- > log(lasso\$lambda.1se)
- [1] -0.3993903

1) lambda = lasso\$lambda.min

lasso.gnet=glmnet(x=CV.X,y=CV.Y,family="gaus sian",alpha=1,lambda = lasso\$lambda.min)

- > lasso.pred=predict(lasso.gnet,newx=CV.test.x)
- > postResample(pred=lasso.pred,obs=df2.test\$Y)

RMSE Rsquared MAE

5.3865436 0.8413887 4.3185550

> mean((lasso.pred-df2.test\$Y)^2)

[1] 29.01485

> coef(lasso,lasso\$lambda.min)

10 x 1 sparse Matrix of class "dgCMatrix"

(Intercept) -0.09835224

(Intercept) .

x1	-0.35692957
x2	0.86668558
x1.2	1.99848129
x1.3	0.79909153
x2.2	-1.17014709
x2.3	
x1x2	-0.81942585

x1.2...x2.2 -0.12962756

lambda = lasso\$lambda.1se

> coef(lasso,lasso\$lambda.1se)

10 x 1 sparse Matrix of class "dgCMatrix"

(Intercept) 0.93445852

(Intercept) .

x1 .	
x2 0.6	7415730
x1.2 1.42	2032387
x1.3 0.75	759902
x2.2 -1.33	365232

x2.3

x1...x2 -0.67733295 x1.2...x2.2 -0.01497805

lasso.gnet=glmnet(x=CV.X,y=CV.Y,family="gaus sian",alpha=1,lambda = lasso\$lambda.1se)

- > lasso.pred=predict(lasso.gnet,newx=CV.test.x)
- > postResample(pred=lasso.pred,obs=df2.test\$Y)

RMSE Rsquared

4.9794092 0.8721349 3.8977791

> mean((lasso.pred-df2.test\$Y)^2)

[1] 24.79452

lambda.min, lambda.1se 중 후자의 에러가 더 낮고 R제곱 값은 더 크다. lambda 값으로 는 lambda.1se 가 더 좋다.

Ridge 와 Lasso 모델을 비교하면 lasso 모델 이 전체적으로 RMSE가 더 낮다. Ridge는 비효 율적인 변수가 있더라도 제거를 하지 않는다. 반면 lasso는 영향력이 없는 변수는 제거를 하 기에 더 효율적이라 볼 수 있다.

6. Tree

Regression Tree model

- > library(tree)
- > cv.tree =cv.tree(tree)

\$size

[1] 6 5 4 3 2 1

\$dev

[1] **3169.264** 3213.439 3669.348 3990.859

[5] 4132.779 9035.333

\$k

-Inf 87.62031 321.57455

[4] 517.28787 940.32057 5201.07972

\$method

[1] "deviance"

attr(,"class")

[1] "prune" "tree.sequence"

terminal node가 6개일때 에러가 제일 작다.

- > prune.tree=prune.tree(tree,best=6)
- > plot(prune.tree)
- > text(tree,pretty=0)

Train / Test sample 로 나누기

- > train=sample(61,30)
- > df2.train=df2[train,]
- > df2.test=df2[-train,]
- > tree=tree(Y~.,df2,subset=train)
- > cv.tree=cv.tree(tree)
- > cv.tree

\$size

[1] 4 2 1

\$dev

[1] 2936.002 2961.118 3590.941

\$k

[1] -Inf 109.5927 1320.5066

\$method

[1] "deviance"

attr(,"class")

- [1] "prune" "tree.sequence"
- > prune.tree.pred= predict(prune.tree,newdata=df2.test)

> mean((prune.tree.pred-df2.test\$Y)^2) [1] 59.12797

Random Forest

- > library(randomForest)
- > set.seed(2)
- > tree.random= randomForest

(Y~.,data=df2,subset=train,mtry=3,importance=TRUE)

> tree.random

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 3

Mean of squared residuals: 86.47251 % Var explained: 15.36

> tree.pred=

predict(tree.random, newdata=df2.test)

- > plot(tree.pred,df2.test\$Y)
- > abline(0,1)
- > mean((tree.pred-df2.test\$Y)^2)

[1] 50.36067

RandomForest로 진행한 모델의 RMSE가 더 낮다.

7. SVM

LINEAR

- > library(e1071)
- > set.seed(10)
- > noise=rnorm(61,0,4)
- > x1 < -seq(-3,3,by=0.1)
- > x2<-sample(x1,61,replace=FALSE)</pre>
- $Y = -x1+x2-x2*x1+x1^2-x2^2+x1^3+$ noise
- > Z<- as.factor(ifelse(Y >=0, 1, 0))
- > df=data.frame(x1,x2,Z)
- > df.train=df[train,]
- > df.test=df[-train,]

> svmfit=

svm(Z~.,data=df.train,kernal="linear",cost=10)

> plot(svmfit,df.train)

SVM classification plot

> summary(svmfit)

Parameters:

SVM-Type: C-classification

SVM-Kernel: radial cost: 10

Number of Support Vectors: 18

(810)

Number of Classes: 2

Levels:

0 1

- > svmfit.pred=predict(svmfit,newdata=df2.test)
- > svmfit.pred

3 4 5 6 7 8 14 18 20 21 22 23 25 27 33

36 37 38 42 43

0 0 0 0 0 0 1 0 1 0 0 1 1 0

0 0 0 0 0

45 46 50 51 53 55 56 57 58 59 60

0 0 0 0 0 1 1 1 1 1 1

Levels: 0 1

> table(true=df.test\$Z, pred=svmfit.pred)

pred

true 0 1

0 16 3

1 5 7

TEST ERROR = (3+5)/(16+3+5+7)=25%

RADIAL KERNAL

> set.seed(1)

>

 $svmfit=tune(svm,Z\sim.,data=df.train,kernal="radial",ranges=list(cost=c(0.1,1,10,20),gamma=c(0.5,1,2,3)))\\$

> summary(svmfit) #best : cost 20, gamma 0.5

Parameter tuning of 'svm':

- sampling method: 10-fold cross validation
- best parameters:

cost gamma

10 2

- Detailed performance results:

cost gamma error dispersion 1 0.1 2 1.0 0.5 0.4000000 0.2629369 3 10.0 0.5 0.3333333 0.3142697 4 20.0 0.5 0.3666667 0.2459549 5 0.1 1.0 0.3333333 0.3513642

1.0	1.0 0.3666667	0.2459549
10.0	1.0 0.3666667	0.2459549
20.0	1.0 0.4000000	0.3063122
0.1	2.0 0.3333333	0.3513642
1.0	2.0 0.3666667	0.3314763
10.0	2.0 0.3000000	0.2918650
20.0	2.0 0.3333333	0.3513642
0.1	3.0 0.3333333	0.3513642
1.0	3.0 0.3333333	0.2721655
10.0	3.0 0.3333333	0.3513642
20.0	3.0 0.3666667	0.3990730
	10.0 20.0 0.1 1.0 10.0 20.0 0.1	10.0 1.0 0.36666667 20.0 1.0 0.4000000 0.1 2.0 0.33333333 1.0 2.0 0.36666667 10.0 2.0 0.3000000 20.0 2.0 0.33333333 0.1 3.0 0.33333333 1.0 3.0 0.333333333 10.0 3.0 0.333333333

- best performance: 0.3

> svmfit=

svm(Z~.,data=df.train,kernal="radial",cost=1 0,gamma=2)

> plot(svmfit,df.train)

SVM classification plot

- > km.out=kmeans(df,3,nstart=20)
- > plot(df,col=(km.out\$cluster+1))
- > svmfit.pred=predict(svmfit,newdata=df2.test)
- > table(true=df.test\$Z, pred=svmfit.pred)
 pred

true 0 1 0 14 5 1 5 7

8. Clustering

- > set.seed(1)
- > v1 = matrix(x1,nrow = 61,ncol=1)
- > v2=matrix(x2,nrow = 61,ncol=1)
- > df=cbind(v1,v2)
- > km.out=kmeans(df,2,nstart=20)
- > plot(df,col=(km.out\$cluster+1))
- > km.out\$tot.withinss

[1] 231.6468

- > km.out=kmeans(df,3,nstart=20)
- > plot(df,col=(km.out\$cluster+1))
- > km.out\$tot.withinss

[1] 142.0731

K=3일때의 total within-cluster sum of squares가 더 작다.

> hc.complete=

hclust(dist(df), method = "complete")

> plot(hc.complete)

