

Content (c) 2017 Readers Question Bank Group. Logo is trademark Readers Question Bank Group.

For individual teachers: Readers Question Bank(tm) Question Sets are for in-classroom use only. Usage is free. In particular, the questions may not be posted online, except by authorized publishers. Any additional distribution of the Readers Question Bank(tm) Question Sets may result in the termination of access to questions.

For further information: interested parties should contact sam.a.forman@readersquestionbank.org.

The College Board is not affiliated with, and does not endorse, these question sets.

- 26. Which of the following statement about algorithmic efficiency is correct?
 - (A) Any algorithm that correctly solves a problem will have the same efficiency as any other algorithm that correctly solves that same problem.
 - (B) If an algorithm is considered efficient, it will always be rather simple and contain little code.
 - (C) When determining the overall efficiency of an algorithm, time is the only factor considered.
 - (D) Formal reasoning can be used to determine the efficiency of an algorithm.

Enduring		Computational	Essential		
Understandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty	
4.2 Algorithms can	4.2.4 Evaluate algorithms	P4 Analyzing	4.2.4A	2	
solve many, but not	analytically and	problems and artifacts.			
all, computational	empirically for				
problems.	efficiency, correctness,				
	and clarity.				
(A) This option is in	correct. Just because the two	algorithms solve the same	e problem, they	could do it	
in very different	ways which would imply dif	ferent efficiencies.			
(B) This option is in	correct. Efficiency does not n	ecessarily follow code co	mplexity. Some	etimes the	
most efficient al	gorithm may have significant	code complexity.			
(C) This option is in	(C) This option is incorrect. Both time and memory are considered when determining the overall				
efficiency of an algorithm.					
(D) This option is correct. Very often we use formal reasoning about the algorithm to determine the					
efficiency of an	algorithm.				

27. Which of the following is NOT true regarding metadata?

- (A) In photos, metadata is hidden within the image and is stripped out using pixel processing methods.
- (B) Metadata can be useful in producing new insights and knowledge when processed with the data itself.
- (C) Metadata is information about data.
- (D) Most objects contain metadata including images, audio, and video files.

Enduring		Computational	Essential		
Understandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty	
2.2 Computing	2.2.3 Extract information	P1 Connecting	3.2.1G	2	
facilitates exploration	from data to discover and	Computing			
and the discovery of	explain connections or				
connections in	trends.				
information.					
(A) This option is	correct. This describes a proce	ess called stenography.	Metadata is assoc	ciated with	
the data file not	dispersed within it so this star	tement about metadata is	not true.		
(B) This option is in	ncorrect. Sometimes both the i	metadata and the data ca	n be combined in	new and	
novel ways. Fo	novel ways. For instance, the latitude and longitude metadata can be combined with the picture				
data to make a map that displays the photos relative to where they were taken.					
(C) This option is incorrect. This is an acceptable definition of data given as an EK in the CED					
(D) This option is it	ncorrect. All of these files can	contain extensive metad	ata.		

- 28. What are some of the advantages of using models and simulations to mimic a real-world process or system under study?
 - I. Models and simulations mimic real-world events without the cost or danger of real world prototypes or testing.
 - II. The results of models and simulations may generate new knowledge and new hypotheses related to the phenomena being modeled.
 - III. We cannot change the model or simulation as rapidly as we can change the real-world process or system under study, therefore, it allows us to minimize iterations in a model or simulation.
 - (A) I only
 - (B) II only
 - (C) I and II only
 - (D) I, II and III

Enduring		Computational	Essential		
Understandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty	
2.3 Models and	2.3.1 Use models and	P4 Analyzing	2.3.1D	2	
simulations use	simulations to represent	Problems and			
abstraction to	phenomena.	Artifacts			
generate new					
understanding an	nd				
knowledge.	knowledge.				
(A) This optio	n is incorrect. While this option is	one of the reasons we ge	nerate models and	h	
simulation	s, it is not the only valid reason an	nong the choices given.			
(B) This optio	n is incorrect. While this option is	one of the reasons we ge	nerate models and	d	
simulation	s, it is not the only valid reason an	nong the choices given.			
(C) This option	on is correct. Both choices I and II	are valid reasons for ger	erating a model of	or simulation	
but choice	but choice III is not valid.				
(D) This option is incorrect. Though options I and II are valid reasons, option III is not valid.					
Generally, it is harder to change a real world system than it is to change a model or simulation.					
This mean	s that more iterations could be exe	cuted using a simulation	or model, not less	S.	

29. Consider the following numbers.

Binary 1101

Decimal 14

Hexadecimal F

Which of the following lists them from least to greatest?

- (A) Decimal 14, Binary 1101, Hexadecimal F
- (B) Hexadecimal F, Decimal 14, Binary 1101
- (C) Binary 1101, Decimal 14, Hexadecimal F
- (D) Decimal 14, Hexadecimal F, Binary 1101

Enduring		Computational	Essential		
Understandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty	
2.1 A variety of	2.1.1 Describe the	P3 Abstracting	2.1.1D	2	
abstractions built	variety of abstractions				
upon binary	used to represent				
sequences can be	data.				
used to represent					
digital data					
(A) This option is	incorrect because when	converted to decimal; he	exadecimal F equa	als 15, and binary	
1101 equals 1	3. Therefore, the order 1	4, 13, 15 is not in order	from least to grea	itest.	
(B) This option is	incorrect because when	converted to decimal; he	exadecimal F equa	als 15, and binary	
1101 equals 1	3. Therefore, the order 1	5, 14, 13 is not in order	from least to grea	itest.	
(C) This option is	(C) This option is correct because when converted to decimal; hexadecimal F equals 15, and binary				
1101 equals 13. Therefore, the order 13, 14, 15 is in the correct order.					
(D) This option is	incorrect because when	converted to decimal; he	exadecimal F equa	als 15, and binary	
1101 equals 1	3. Therefore, the order 1	4, 15, 13 is not in order	from least to grea	test.	

- 30. Which of the following is a characteristic of the fault-tolerant nature of communication on the Internet?
 - A. The ability of users to trust that the software they download is free of viruses if it says it is free of malware.
 - B. The ability to provide data transmission even when some connections have failed.
 - C. The ability to resolve errors in domain name server lookups.
 - D. The ability to transfer data using multiple protocols such as hypertext transfer protocol (HTTP), Internet Protocol (IP), and simple mail protocol (SMTP).

End	uring		Computational	Essential	
	erstandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty
6.2	Characteristics of	6.2.1 Explain	P5 Communicating	6.2.1D	2
the I	nternet influence	characteristics of the			
the s	ystems built on it	Internet and systems built			
	•	on it			
(A)	This option is inc	correct. Software download o	on the Internet has nothing	g to do with the	fault tolerant
	nature of the inte	rnet.			
(B)	This option is co	orrect Routing on the Interne	et is both fault tolerant, an	d redundant. Mu	ultiple paths
	are available for	packets to travel from one no	ode to another.		
(C)	This option is inc	correct. Domain name server	lookup errors can be caus	sed by a slow or	
	unresponsive DN	IS server. While this can be f	ixed by changing the DN	S server, it is no	t
	automatically do	ne.			
(D)	This option is inc	correct. HTTP, IP, SMTP rel	ate to multiple levels of A	bstraction that c	ontribute to
	the functioning o	f the Internet.			

- 31. If the post office delivered mail just as routers deliver messages on the Internet, which of the following statements would be true? Select <u>two</u> answers.
 - A. One mailman would be responsible for delivering a letter from sender to receiver.
 - B. Your mail could not be delivered if a road your mailman was planning to take were under construction.
 - C. Letters would be written on the outside of envelopes for all to read instead of letters put inside envelopes.
 - D. The mailman would sometimes take a different path to deliver each letter to your home.

		Computational					
Enduring		Thinking	Essential				
Understandings	Learning Objectives	Practices	Knowledge	Difficulty			
6.2 Characteristics of	6.2.1 Explain characteristics	P5	6.2.1D	2			
the Internet and the	of the Internet and the	Communicating					
systems built on it.	systems built on it.						
(A) This option is in	ncorrect. Messages go through ma	any different routers of	on the way to the	ir			
destination.							
(B) This option is in	ncorrect. Redundancy in the Inter	rnet structure allows f	or a message to	get to its			
destination through many different paths so if one path is broken there are other paths it can take.							
(C) This option is correct. Unsecured information in the packet is visible to the router.							
(D) This option is o	correct. Redundancy allows for r	nany different paths.	(D) This option is correct . Redundancy allows for many different paths.				

- 32. You have been asked to create a computational artifact utilizing a set of tools which are unfamiliar to you. When creating the schedule for delivery, which would **not** be advised if you hope to deliver this
 - (A) Building in time for multiple attempts at generating small pieces of the ultimate deliverable as well as integration time for all the small pieces.
 - (B) Allotting a portion of the schedule to find the appropriate tool for the task.

product on time:

- (C) Searching for existing public domain artifacts that can be combined to advance your project toward the deliverable.
- (D) Planning a set of sequential tasks with precise timing by which you can deliver exactly on the due date.

Enduring		Computational	Essential		
Understandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty	
1.1 Creative	1.1.1 Apply a creative	P2 Creating	1.1.1B	1	
development can be	development process	Computational			
an essential process	when creating	Artifacts			
for creating	computational artifacts.				
computational					
artifacts.					
(A) This option is i	ncorrect because it could poss	sibly take multiple attemp	ts and this would	allow time	
for those attem	pts and reattempts.				
(B) This option is i	ncorrect because it would be	a benefit to set aside some	e time to find the	appropriate	
tool as every to	pic could require a different t	ool.			
(C) This option is i	ncorrect because using public	domain artifacts to create	e another artifact	could	
potentially save	potentially save time needed to learn a new set of tools.				
(D) This option is correct because planning a sequential set of tasks with precise timing would not					
leave time for t	he learning curve of learning	a new tool or take into ac	count the iterativ	e process of	
a project.					

33. Which of the following is true of algorithms?

- (A) Algorithms are composed of commands which implement sequencing, iteration, and selection by which a task can be completed on a computer.
- (B) When implementing a solution to a problem there is only one algorithm which will typically complete the task.
- (C) Algorithms are very specific to the language in which they are implemented.
- (D) Clarity and readability are important considerations when expressing an algorithm in a language.

Enduring Understandings	Learning Objectives	Computational Thinking Practices	Essential Knowledge	Difficulty
4.1 Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using programming languages.	4.1.2 Express an algorithm in a language.	P5 Communicating	4.1.1A	2

- (A) **This option is correct.** Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using programming languages. Sequencing, selection, and iteration are the building blocks of algorithms.
- (B) This option is incorrect. Different algorithms can be developed to solve the same problem. For example, there are many different sorting algorithms such as bubble, selection, insertion, and merge. Any of these algorithms can be used for sorting.
- (C) This option is incorrect. The same algorithm can be expressed in different languages. For example, a specific sorting algorithm can be expressed in natural language, pseudocode, and visual and textual programming languages. Different languages are better suited for expressing different algorithms.
- (D) **This option is correct**. Algorithms are precise sequences of instructions to accomplish a task.
- 34. Since it is well known that you took AP CS Principles, your family decides to discuss the internet with you at a holiday party.
 - I. Aunt Minnie says, "The Internet is wholly interesting because it is all about the documents and information in the documents enabling us to become smarter as a society".
 - II. Uncle Jack says, "I love that the Internet connects all the devices such that data can be shared at the speed of light."
 - III. Cousin Josiah comments, "Open standards have been instrumental in the growth of the Internet as multiple networks can be connected without concern so long as they implement established standards."

Which of the above statements are correct?

- (A) II only
- (B) III only
- (C) I and II only
- (D) II and III only

Enduring		Computational	Essential			
Understandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty		
6.2 Characteristics of	6.2.2 Explain how the	P5 Communicating	6.2.2E	3		
the Internet influence	characteristics of the					
the systems built on	Internet influence the					
it.	systems built on it.					
(A) This option is in	(A) This antion is incorrect. While signals using fiber antic cable and radio wave travel at near the					

- (A) This option is incorrect. While signals using fiber optic cable and radio wave travel at near the speed of light, other parts of the internet are much slower. Electric pulses on copper wire are many times slower than the speed of light.
- (B) **This option is correct** as I and II are wrong for reasons mentioned above and below. Only III is correct as standards have helped manufactures confidently invest in producing products which can expect general interoperability.
- (C) This option is incorrect. Choice I is incorrect because it is a description of the World Wide Web not the internet. II is wrong for the same reason mentioned in A above.
- (D) This option is incorrect. Choice II is incorrect. While signals using fiber optic cable and radio wave travel at near the speed of light, other parts of the internet are much slower. Electric pulses on copper wire are many times slower than the speed of light.
- 35. Which one of the following is NOT a benefit of the HTTPS protocol?
 - (A) HTTPS ensures that only the client and the server can view the packets sent during their communication and they cannot be intercepted by a third party.
 - (B) HTTPS verifies the identity of the server through a Certificate Exchange.
 - (C) HTTPS encrypts the data before it is broken into packets to ensure its privacy.
 - (D) HTTPS provides reasonable assurance by which the user can assume minimal cybersecurity risk of transactions carried out on that site.

Enduring		Computational	Essential		
Understandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty	
6.3 Cybersecurity is	6.3.1 Identify existing	P1 Connecting	6.2.2H	5	
an important	cybersecurity	Computing			
concern for the	concerns and potential				
Internet and the	options to address				
systems built on it.	these issues with the				
	Internet and the				
	systems built on it.				
(A) This option i	s correct. The statement	is false. It is possible for	or packets sent via H	HTTPS to be	
intercepted ar	nd viewed. The data in th	e packets is encrypted,	so the intercepted pa	ackets will not be	
useable by a	nefarious agent.				
(B) The statemen	t is true. Certificate Auth	orities (CAs) issue digi	tal certificates that v	alidate the	
ownership of	encrypted keys used in se	ecured communication	and are based on a tr	rust model.	
(C) This statemer	nt is true. HTTPS uses pu	blic key encryption, wh	nich is not symmetri	c. This is an	
encryption method that is widely used because of the enhanced security associated with its use.					
(D) This is a true statement because HTTPS uses a certificate authority to obtain the public keys used					
by the asymn	by the asymmetrical encryption. Exclusion Statement (6.3.1M): The technical details of the				
process certif	icate authorities follow ar	re beyond the scope of t	this course and the A	AP Exam.	

36. The various protocols used on the internet operate in layers in which the protocol at each layer rely on the protocols at the lower layers to do their jobs, and higher layers (higher level of abstraction) are built on top of the lower layers (lower level of abstraction).

From the list provided choose the two (2) answers that correctly describe the relative levels of abstraction of the internet protocols. For example: if protocol A relies on protocol B, it means that A is a higher level of abstraction than B.

- (A) TCP/IP is a higher level of abstraction than HTTP
- (B) HTTP is a higher level of abstraction than TCP/IP
- (C) DNS is a higher level of abstraction than TCP/IP
- (D) TCP/IP is a higher level of abstraction than DNS

Enduring		Computational	Essential	
Understandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty
EU 6.1 The Internet	IO 6.1.1 Explain	P3 Abstracting	6.1.1 A	3
is a network of	the abstractions			
autonomous systems.	in the Internet and			
	how the Internet			
	functions.			
(A) This option is in	correct HTTP exchanges are	e conducted over TCP/IP	but HTTD is at a	higher level

- (A) This option is incorrect.HTTP exchanges are conducted over TCP/IP, but HTTP is at a higher level of abstraction. It does not concern itself with the details of TCP/IP, but merely uses its functionality.
- (B) **This option is correct** HTTP is a high level protocol, that defines how users of the Internet (clients) request and receive data like web pages, images, video, audio, and files from the servers containing them.
- (C) **This option is correct**. DNS translates an URL into an IP address. A DNS request is conducted over TCP/IP it uses the functionality of TCP/IP.
- (D) This option is incorrect A DNS request is conducted over TCP/IP. DNS relies on the functionality of TCP/IP and is at a higher level of abstraction.
- 37. How many times will the following loop be executed?

$$x \leftarrow 0$$

REPEAT UNTIL $(x > 5)$

IF $(x \text{ MOD } 2 = 0)$
 $x \leftarrow x - 1$

IF $(\text{NOT } (x \text{ MOD } 2) = 0)$
 $x \leftarrow x + 3$

- (A) The loop will not execute
- (B) 3
- (C) 6
- (D) There is an infinite loop

Enduring		Computational	Essential		
Understandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty	
5.5 Programming	5.5.1 Employ appropriate	P5 Programming	5.5.1A	5	
uses mathematical	mathematical and logical				
and logical concepts	concepts in				
	programming.				
(A) This option is inc	correct. The initial value of x	is 0. The loop will not be	executed when	x greater	
than 5. Since x is	s less than 5, the code inside t	the loop is executed.			
(B) This option is co	orrect. After the third iteration	on, the value of x is 6. Sin	ce 6 is greater th	nan 5, the	
loop does not rui	n again				
(C) This option is inc	(C) This option is incorrect. After third iteration of the loop the value of x becomes 6 and the loop				
condition is not met. So the loop stops after 3 iterations.					
(D) This option is in	correct. The loop stops after t	the third iteration and so i	t is not an infini	te loop.	

38. Which two of the following statements are true about routing on the Internet?

- (A) Your router receives all the traffic of the Internet and delivers to your computer only the messages intended for you.
- (B) A packet travelling between two computers on the Internet may be rerouted many times along the way.
- (C) A packet contains addressing information to allow routers to decide how best to forward along that packet towards its destination.
- (D) Information travelling between two computers over the Internet will always take the same path.

Enduring		Computational	Essential		
Understandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty	
6.2 Characteristics of the Internet influence	6.2.2 Explain how the characteristics of the internat influence the	P3 Abstracting	6.2.2B	2	
the systems built on it internet influence the systems built on it.					
(A) This option is incorrect. Packets are sent to your router based on your IP address. Your router may					

- (A) This option is incorrect. Packets are sent to your router based on your IP address. Your router may receive some packets not intended for you (depending on how your local network is set up), but it does not receive all of the traffic on the internet.
- (B) **This option is correct**. Packets are routed towards the destination based on its source and destination address. At each node, the router decides, based on calculations involving network statistics and costs, to which neighboring node it is more efficient to send the packet.
- (C) **This option is correct**. TCP/IP standards dictate that packets include information about their source, their destination, information about reassembling the packets as well as the actual data to be transmitted.
- (D) This option is incorrect. The redundancy of routing (i.e., more than one way to route data) between two points on the Internet increases the reliability of the Internet
- 39. Consider the following program code.

Which of the following best describes the result of running the program code?

- (A) The index of the largest number in list is displayed
- (B) Display the index of the smallest number in list is displayed
- (C) The largest number in list is displayed
- (D) The smallest number in list is displayed

Endu	ring		Computational	Essential	
Unde	rstandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty
5.5 Pr	rogramming	5.5.1 Employ appropriate	P1 Connecting	5.5.1A	5
uses n	nathematical	mathematical and logical	Computing		
and lo	ogical concepts	concepts in programming			
(A)	This option is co	orrect. mystery is set to the	e index of the greater of t	he numbers bein	g compared
	for every number	r in list and then displayed	1		
(B)	This option is inc	correct. mystery is set to th	ne index of the greater of	the numbers being	ng compared
(C)	(C) This option is incorrect. mystery is set to the index, not value, of the greatest integer				
(D)	(D) This option is incorrect. mystery is not set to the value of the lesser of the two numbers being				
	compared				

40. In the process of engineering a piece of software, which of the following statements would generally be considered to be most accurate?

- (A) Software engineering places much greater emphasis on using the correct set of software commands than it does the sequence of the commands.
- (B) Having multiple people collaborating on the engineering of a piece of software is not very productive as the creation of software is best left to a single person and vision.
- (C) The end user of the software must be considered in the design, implementation, and release of the software.
- (D) Software engineers should not concern themselves with choosing any particular development tool or programming language because they are all essentially the same in functionality and efficiency.

Enduring Understandings	Learning Objectives	Computational Thinking Practices	Essential Knowledge	Difficulty	
5.1 Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems (to help people, organizations, or society).	5.1.2 Develop a correct program to solve problems.	P2 Creating computational artifacts	5.1.2G	2	
(A) This option is incorrect. The correct sequencing of program commands is critical to the ultimate					

- (A) This option is incorrect. The correct sequencing of program commands is critical to the ultimate correctness of the program relative to its intended purpose.
- (B) This option is incorrect. Collaboration within and throughout the software development process is very productive at ensuring both the correctness and the efficiency of a given piece of software.
- (C) This option is correct.
- (D) This option is incorrect. Effective use of the tools and/or programming languages in the engineering of a piece of software is critical to both the correctness and the efficiency of a given piece of software relative to its intended use.
- 41. You write an algorithm in your program to that calculates and prints the total miles traveled during a road trip. When you test your algorithm, it does not print the correct value. Which of the following would <u>NOT</u> be a productive way to debug the code?
 - (A) Go through each line of your algorithm and make sure each one is logical and makes sense.
 - (B) Print the value of miles after each calculation
 - (C) Ask a colleague to look at your algorithm to see if they can debug the code.
 - (D) Delete the entire algorithm and start over

Enduring		Computational	Essential	
Understandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty
5.1 Programs can be	5.1.2 Develop a correct	P2 Creating	5.1.2J	1
developed for	program to solve	Computational		
creative expression,	problems	Artifacts		
to satisfy personal				
curiosity, to create				
new knowledge, or to				
solve problems (to				
help people,				
organizations, or				
society).				
(A) This option is in	correct. Going through each	line of an algorithm to fin	d a potential erro	or is a good
method for debu	igging			
(B) This option is in	correct. Checking the value of	of a variable each time it i	s changed is a go	ood method
for debugging				
(C) This option is incorrect. Collaborating on an algorithm and having someone else look at your code				
is a good method for debugging				
(D) This option is correct . Rewriting an entire algorithm instead of trying to work with the one you				

42. Your school uses network filtering hardware and software to deny access to blacklisted websites and files. In the school's library there is a student accessing one of the blacklisted websites. Which of the following methods is the student most likely using to defeat the network filtering.

Select two answers.

have written is not a good method for debugging.

- (A) The student is using a personal device that is connected to the school's WiFi but since it is not running the network filtering software, the school is unable to filter the Internet traffic.
- (B) The student is using a personal mobile device that is connected to the Internet through a data plan.
- (C) The student is using a school device that allowed the configuration of a proxy server to encrypt the data of the blacklisted website.
- (D) The student used brute force attack methods on the filtering system and discovered the password that allows it to be disabled.

Enduring		Computational	Essential	
Understandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty
7.1 Computing has	7.3.1 Analyze the	P1 Connecting	7.3.1I	2
global impact.	beneficial and harmful	Computing		
	effects of computing.			
(A) This option is	incorrect because the filtering	software does not run on	the devices conn	ected to the
network.				
(B) This option is	correct because the school ha	as no control over the Inte	rnet Providers of	personal
devices and ca	n not filter the traffic on them			
(C) This option is	correct because anonymity c	an be enabled through the	use of proxy ser	vers that
schools find di	fficult to block or defeat.			
(D) This option is incorrect because breaking a password using brute force is likely to be time				
consuming and	disabling filtering systems ar	re likely to be disruptive to	the entire netwo	ork.

43. You have been hired by a company to generate a simulation of a process within their multinational company. You try to convince them that there is significant value to starting with a simple model even though it might not model their process exactly. Which arguments below are viable supports for your position?

- (A) Models and simulations often omit unnecessary features of the objects or phenomena under investigation.
- (B) Writing very detailed models and simulations will help minimize costs as they are easier to write than more abstract models and simulations.
- (C) Simple models and simulations will execute faster allowing more opportunity for rapid testing and development.
- (D) Less abstract models and simulations omit details to simplify the study of the objects or processes involved.

End	uring		Computational	Essential	
Und	erstandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty
2.3 N	Models and	2.3.1 Use models and	P3 Abstracting	2.3.1A	2
simu	lations use	simulations to represent			
abstr	raction to	phenomena.			
gene	rate new				
unde	rstanding and				
know	vledge.				
(A)	This option is co	orrect. Models and simulation	ons often cannot include a	all the details of	the
	real-world pheno	mena as to do so would take	too much time or effort	with little return.	
(B)	This option is inc	correct. The more details that	t are left out of a sim or m	nodel, the easier	the code is
	to write and chea	per to produce.			
(C)	(C) This option is correct. Less detailed models or sims take less compute time allowing for more				
	iteration.				
(D)	This option is inc	correct. MORE abstract mod	els or sims omit details no	ot less abstract m	nodels and
	sims.				

44. Which of the following statements about data analysis and processing are considered most true given modern computing technology?

- (A) Data scientists typically do not combine multiple data sources as more can be learned when each data source is analyzed independently.
- (B) Metadata is not included in modern data analysis as there is not useful information in metadata.
- (C) Information cleansing and classification are often employed in the processing of data by which patterns can emerge.
- (D) Storage, processing, or curation often present significant challenge when processing large datasets.

Enduring		Computational	Essential	
Understandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty
3.1 People use	3.1.1 Find patterns and	P4 Analyzing	3.1.1B	2
computer programs to	test hypotheses about	Problems and		
process information	digitally processed	Artifacts		
and gain insight and	information to gain			
knowledge.	insight and knowledge.			
(A) This option is in	correct. Data scientists ofter	combine data sets to find	d new insights th	at could not
be found in the i	ndividual datasets.			
(B) This option is in	correct. Metadata can increas	se the effective use of dat	a or datasets by p	providing
additional useful	information.			
(C) This option is correct. Both processes (cleaning and classification) are valid techniques employed				
by data scientists.				
(D) This option is correct. Many times all of these are an issue in big data analysis. One of these are				
almost certainly going to present as a problem in a large data analysis problem (see EK 3.2.2.B)				

- 45. You are given a 32-bit word which was copied from computer RAM and are asked to determine what was represented by the word. Which of the following represents the most complete response?
 - I. The 32-bit word could be integer data as binary is how data is always represented in RAM.
 - II. The 32-bit word could be an instruction for the CPU as hardware processes binary words.
 - III. We cannot be certain as to what the word represented without more information.
 - (A) I only
 - (B) II only
 - (C) I and II
 - (D) I, II and III

Enduring		Computational	Essential		
Understandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty	
2.1 A variety of	2.1.2 Explain how binary	P5 Abstracting	2.1.1D	3	
abstractions built on	sequences are used to				
binary sequences can	represent digital data.				
be used to represent					
all digital data.					
(A) This option is in	ncorrect. While the word could	d have been integer data,	there are many o	other types	
the word could	have represented.				
(B) This option is in	ncorrect. Not unlike choice A,	while this is a possibility	y it is not the mos	st complete	
response.					
(C) This option is in	(C) This option is incorrect. Both of these are possible but the word could have been other types like				
String, double of					
(D) This option is correct. At a minimum, we would need the preceding type to narrow down how the					
word should ha	ve been interpreted.				

- 46. Which of the following statements is NOT correct regarding abstraction as applied to computer science:
 - (A) Higher level languages utilize abstraction to hide details of the CPU instructions from the programmer.
 - (B) A computer chip is often an abstraction of many lower level logic gates and memory combined to perform a specific function.
 - (C) Binary sequences are abstractions which are used to represent colors in an image.
 - (D) Smaller programs and apps can be combined into large programs to create higher level abstractions.

Enduring		Computational	Essential	
Understandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty
2.2 Multiple levels of	2.2.3 Identify multiple	P3 Abstracting	2.2.3G	2
abstraction are used	levels of abstractions that			
to write programs or	are used when writing			
create other	programs.			
computational				
artifacts.				
· /	correct. Higher level languag	•	_	uages from
the programmer	. A CPU instruction set is co	nsidered a low-level lang	uage.	
(B) This option is in	correct. Many computer chip	s combiner thousands of	logic gates and n	nemory to
perform function	ns.			
(C) This option is c	orrect. Pixels are abstraction	s of RGB data which are	in turn abstraction	ons of binary
sequences.				
(D) This option is incorrect. Smaller programs, apps, functions, and procedures are often combined to				
make larger pro	grams making this statement	true.		

47. Which code segment will compute (and store) the product of all the numbers contained in the list, numList, assuming there is at least one item in the list?

```
(A) product \leftarrow 1
   FOR EACH item IN numList {
      product ← product + item
   }
(B) product \leftarrow 1
   FOR EACH num IN numList {
      product ← product * num
   }
(C) product \leftarrow 1
   REPEAT UNTIL (numList) {
      product ← product * num
   }
(D) product \leftarrow 1
   REPEAT LENGTH(numList) TIMES {
      product ← product * num
   }
```

Enduring		Computational	Essential	
Understandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty
4.1 Algorithms are	4.1.1 Develop an	P4 Analyzing	4.1.1A	3
precise sequences of	algorithm for	problems and artifacts		
instructions.	implementation.			

- (A) This option is incorrect because it computes the sum, not the product.
- (B) **This option is correct** because it will compute the product of all the numbers in the list. If the list has zero items in it, it is arguable that the algorithm produces an incorrect product. If the list contains non-numeric items, it is arguable the algorithm will result in an incorrect behavior (error).
- (C) This option is incorrect because the condition is invalid. The repeat loop will not iterate correctly for various numList contents. However, if the list has one and only one number -- which is the number (1) one -- the algorithm *might* produce the correct product. The language definition is a bit unclear what happens when using a non-boolean expression in a repeat block.
- (D) This option is incorrect because the variable num is undefined.

- 48. You were hired as a manager of a set of new programmers because of your experience in generating quality code. One of your new programmers brings a solution which looks nothing like what you would generate for the same problem. Which of the following might be a good next step?
 - I. Analyze the solution for correctness and readability.
 - II. Realize that there are multiple ways to solve most problems and work to understand this employee's solution.
- III. If the program includes sequence, selection, and iterative statements, assume the solution is correct and congratulate her for her outstanding contribution.
 - (A) I only
 - (B) I and II only
 - (C) II and III only
 - (D) I, II and III

Enduring Understandings	Learning Objectives	Computational Thinking Practices	Essential Knowledge	Difficulty
2.3 Multiple levels of abstraction are used to write programs or create other computational artifacts	2.2.3 Identify multiple levels of abstractions being used when writing programs	P3 Abstracting	2.2.3A	3

- (A) This option is incorrect. Although you should analyze the solution for correctness and readability, you should also be open to realizing that there are multiple ways to solve a problem. Hence, it's not the most correct answer.
- (B) **This option is correct**. In this scenario, the manager has verified (tested) correctness and has recognized a different yet viable solution. The key is that the solution has been tested and confirmed as viable.
- (C) This option is incorrect. In this scenario, although it's excellent management to recognizing that there are multiple ways to solve a problem without verifying the solution you are not guaranteed a correct solution. Simply having iteration, etc. does not guarantee a correct solution.
- (D) This option is incorrect. You should never assume a solution is correct without verifying (testing). Simply having iteration, etc. does not guarantee a correct solution.

- 49. How many bits are used in the address of an IPv4 packet?
 - (A) 4
 - (B) 16
 - (C) 32
 - (D) 128

Enduring		Computational	Essential		
Understandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty	
6.1 The Internet is	6.1.1 Explain the	P3 Abstracting	6.1.1E	1	
a network of	abstractions in the				
autonomous	Internet and how the				
systems.	Internet functions.				
(A) This option is	incorrect. $2^4 = 16$; insuff	ricient to accommodate	all devices on the in	iternet.	
(B) This option is	(B) This option is incorrect. $2^{16} = 65536$; insufficient to accommodate all devices on the internet.				
(C) This option is correct. $2^{32} \approx 4.3$ billion addresses - sufficient for the initial years of the internet.					
(D) This option is incorrect. $2^{128} \approx 3.4 \times 10^{38}$ addresses - this is the IPv6 address definition.					

- 50. Which one of these would be least likely to make programming code easily modifiable in the future?
- (A) Using meaningful variable names which reflect the purpose of the data that is stored in them.
- (B) Combining duplicated code into one procedure.
- (C) Creating more procedures for the program.
- (D) Increasing the number of comments in your code by which others can understand the program and why you implemented it that way.

Enduring		Computational	Essential			
Understandings	Learning Objectives	Thinking Practices	Knowledge	Difficulty		
EU 5.4 Programs are	5.41 Evaluate the	P4 Analyzing	5.4.1A	3		
developed,	correctness of a program.	Programs and				
maintained, and used		Artifacts				
by people for						
different purposes						
(A) This option is incorrect. Using meaningful variable names that reflect the purpose of the data can						
help a programmer understand and modify the code if needed.						
(B) This option is incorrect. Combining duplicated code into one procedure reduces the number of						
potential bugs in the program.						
(C) This option is correct. Creating more procedures for the program increases the complexity of the						
program and makes it less modifiable.						
(D) This option is inc	D) This option is incorrect. Commenting one's code allows a programmer to understand the purpose					

of the code and allows for the programmer to easily modify the code later.