

PHYSICS CLASS 11 BATCH

Basic Maths & Calculus

DPP-07

1. If $KE = \frac{P^2}{2m}$ then draw graph between KE and P.

2. If Linear momentum P = mV then draw graph between P and V.

3. For ideal gas equation PV = nRT draw graph between P and T. (if n, R, V is constant)

4. Write the equation of this graph.

where a = semi major axis and b = semi minor axis

(1)
$$\frac{x^2}{10^2} + \frac{y^2}{7^2} = 1$$
 (2) $\frac{x^2}{7} + \frac{y^2}{10} = 1$

(3)
$$\frac{x^2}{7^2} + \frac{y^2}{10^2} = 1$$
 (4) $\frac{x^2}{7^2} + \frac{y^2}{10^2} = 4$

5. If $F = \frac{Gm_1m_2}{r^2}$ then draw graph between F and r.

(where m_1 , m_2 and G are constant)

6. If velocity v varies with time t as $v = t^2$, then the plot graph between v and t^2 will be given as:

7. Which graph is the best representation for the given equation, $y \propto x^2$

- 8. The equation $\sqrt{x} = 2y$, represents that graph between x and y is a:
 - (1) Straight line
- (2) Parabola
- (3) Hyperbola
- (4) Circle

9. Draw graph between momentum and mass of the object for constant K.E. $P = \sqrt{2mE} = mv$

10. A body is attached to a spring whose other end is fixed. If the spring is elongated by x, its potential energy is $U = 5x^2$, where x is in metre and U is in joule. U–x graph is

ANSWER KEY

1. (2)

2. (2)

3. (1)

4. (3)

5. (1)

6. (1)

7. (1)

8. (2)

9. (3)

10. (1)