MÉTODOS NUMÉRICOS.

TAREA 10. PSEUDOCÓDIGO PARA RESOLVER LAS RAÍCES DE UNA FUNCIÓN TRIGONOMÉTRICA POR EL MÉTODO DE BISECCIÓN..

Adolfo Hernández Ramírez (427560)

Correo: a.hernandezramirez3@ugto.mx.

Licenciatura Ingeniera Química Sustentable. Universidad de Guanajuato. División de Ciencias e Ingenierías. Campus León. Loma del Bosque 103, Lomas del Campestre. León, Gto, México.

Pseudocódigo.

- 1. Declaramos la función trigonométrica.
 - Float fx (float x) {return sin(10*x) cos(3*x) }.
- 2. Declarar las variables flotantes error max = 0.001, a 0 = 3, b 0 = 5, inc = 0.2.
- 3. Declarar las variables enteras i = 0, N, intervalos = 11.
- 4. Declarar los siguientes arreglos: float k[intervalos], float a[intervalos], float b[intervalos].
- 5. Evitar los desbordamientos de arreglos. Si N > intervalos entonces N = intervalos.
- 6. Determinar los pequeños intervalos a evaluar con un ciclo for i=0 hasta i < N.
 - $a[i] = a_0 + i * inc;$
 - b[i] = a[i] + inc;
 - k[i] = 0;
- 7. Con un ciclo for evaluar las funciones para cada subintervalo. For i = 0 hasta i < N.

Float fa =
$$fx(a[i])$$
.
Float fb = $fx(b[i])$.

- 7.1. Si fa * fb > 0 entonces no hay cambios de signos. Dar un mensaje de salida para estos casos y continuar con el ciclo for.
- 8. Aplicar el método de bisección para cada subintervalo.
- 8.1. Declarar las siguientes variables flotantes: float a_new = a[i], float b_new = b[i]; float k_new = 0, float fk new, float error = 0.

Donde es importante mencionar que a lo que se refiere cada variable como nueva, es porque para cada subintervalo se toman los valores de a, b y k. Y como este código evalúa de intervalo en intervalo, es por ello que estos valores cambian y en cierto modo nos recorremos en subintervalo por subintervalo y evaluamos si se encuentra una raíz en ese intervalo.

- 8.2. Declarar las variables enteras: iteraciones = 0.
- 9. Mientras error > error max. Determinar:
- 9.1. k new = (b new + a new) / 2.
- 9.2. Declarar que fk new = fx(k new).

9.3. Si fa * $fk_new < 0$. entonces $b_new = k_new$ y $fb = fk_new$. Si no, entonces $a_new = k_new$ y $fa = fk_new$.

9.4. Determinar el error:

 $Error = fabs(b_new - a_new).$

- 9.5. Iteracciones ++.
- 9.6. Declarar que $k[i] = k_new$.
- 9.7. Imprimir los resultados en forma de tabla, que muestre las iteraciones, a[i], b[i], k[i], fx(k[i]), error.
- 10. Imprimir las raices encontradas.
- 10.1. for i = 0 hasta i < N.
- 10.1.1. Si k[i] != 0, entonces se imprimen los resultados de k[i] y fx(k[i]).