1 | Axler6.53 orthogonal projection, P_U

def

Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows:

For
$$v \in V$$
, write $v = u + w$, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$.

In other words, $P_U \in \mathcal{L}(V)$ takes v to the component of v that is in U.

This concept is closely related to the Orthogonal Decomposition

1.1 | Results

1.1.1 | Axler6.54 calculating P_Uv

$$P_U v = \frac{\langle v, x \rangle}{\|x\|^2} x$$

Because orthogonal decompositions and stuff

1.1.2 | Axler6.55 properties

Suppose U is a finite-dimensional subspace of V and $v \in V$. Then,

- 1. $P_U \in \mathcal{L}(V)$
- 2. $P_U u = u \forall u \in U$
- 3. $P_U w = 0 \forall w \in U^{\perp}$
- 4. $P_U = U$
- 5. $P_U = U^{\perp}$
- 6. $P_U^2 = P_U$ (by \2 and \4)
- 7. $||P_U v|| \le ||v||$
- 8. for every orthonormal basis e_1, \ldots, e_m of U,

$$P_{U}v = \langle v, e_1 \rangle e_1, + \cdots + \langle v, e_m \rangle e_m$$

(because $P_U v \in U$)

1.1.3 | Axler6.56 Minimizing the distance to a subspace

See Minimizing the distance to a subpsace

Taproot • 2021-2022