ЛАБОРАТОРНАЯ РАБОТА 46

ИССЛЕДОВАНИЕ ЯВЛЕНИЯ ГИСТЕРЕЗИСА С ПОМОЩЬЮ ОСЦИЛЛОГРАФА

Выполнил студент гр	Ф.И.О
Подпись преподавателя	дата
(обязательна после окончания эксперимента)	

<u>Цель работы</u>: исследовать явление магнитного гистерезиса в ферромагнетике и определить его параметры.

Описание установки

Переменный ток I_1 с частотой v=50 Γ ц протекает по намагничивающей обмотке "1" из N_1 витков, навитой на кольцо из ферромагнетика с диаметром D_c и поперечным сечением $S_{\rm B}$. Этот ток создаёт в ферромагнетике магнитное поле с напряженностью $H\sim I_1$. Напряжение $U_x=I_1R_1\sim H$ подаётся на клеммы "X" гори-

зонтальной развертки осциллографа. В цепь второй обмотки из N_2 витков, по которой течет индукционный ток $I_2 = -\frac{1}{R_2}\frac{d}{dt}(N_2S_{_{\rm B}}B)$, включена интегрирующая RC-цепочка, создающая на конденса-

торе с ёмкостью C напряжение $U_y = \frac{1}{C} \int I_2 dt = -\frac{N_2 S_{_{\rm B}}}{R_2 C} B$. Это напряжение, пропорциональное ин-

дукции магнитного поля B в ферромагнетике, подаётся на клеммы "Y" вертикальной развертки осциллографа. На экране осциллографа луч будет рисовать петлю гистерезиса B = B(H).

Порядок выполнения работы

А) Получение на экране осциллографа петли гистерезиса

- 1. Включить установку и осциллограф в сеть с напряжением "220 В". Поставить тумблер S, расположенный на панели, в положение "Выкл" . Регулируя ручками "Яркость", "Фокус", "Смещение х" и "Смещение у", добиться появления в центре экрана осциллографа сфокусированной светящейся точки.
- 2. Поставить ручку S_1 переключателя на панели в положение "Петля", тумблер S в положение "Вкл.".
- 3. Изменяя напряжение ручкой R, получить на экране осциллографа изображение петли гистерезиса размером в 2/3 экрана. Центр петли должен находиться в точке пересечения осей x и y, т.е. в центре экрана. После получения петли гистерезиса на экране осциллографа ручки "Усиление x" и "Усиление y" при дальнейшем выполнении работы должны остаться в неизменном положении.

- 4. Скопировать изображение петли гистерезиса с экрана осциллографа на миллиметровую бумагу с учетом размера клеток на экране.
- 5. Определить площадь петли гистерезиса S" как сумму клеток единичной площади, а также координаты n_x и n_y

точек, в которых петля пересекает координатные оси x и y на экране осциллографа (размер одной клетки принять равным единице).

Б) Калибровка осциллографа.

- 6. Ручку R на панели повернуть в крайнее левое положение. Переключатель S_1 поставить в положение "ось х", при этом на вход осциллографа с потенциометра R подается напряжение $U'_{\rm r}$ горизонтальной развертки.
- 7. Изменяя напряжение на вольтметре ручкой R от 0 до максимального значения, снять зависимость длины горизонтальной линии на экране осциллографа (одна клетка имеет единичную длину) от напряжения, подаваемого на вход х: $l_x = f(U'_x)$.
- 8. Поставить переключатель S_1 на панели в положение "ось у". При этом на осциллограф будет подаваться напряжение U'_{y} вертикальной развертки. Снять зависимость длины вертикальной линии на экране осциллографа от напряжения U'_{y} : $l_{y} = f(U'_{y})$. Результаты измерений занести в табл.1. В неё же занести параметры, необходимые для вычислений и указанные на установке.

$ l_x $	l_y
$\int \Delta l_{\chi} $	Δl_y
$\Delta U_X U_X$	$\sqrt{\Delta U_y} U_y$

9. Как показано на ри-	
сунке, построить графики	
зависимостей	
$l_x = f(U'_x)$ и $l_y = f(U'_y)$.	

Таблица 1.

U'_x , B	l_x	U'_y , B	l_y	~	2	3.7	
				$S_{\rm B} = C =$	M	$N_1 =$	
				C =	Φ	$N_2=$	
				$R_1 = R_2 =$	Ом	$N_1 = N_2 = D_c = v = 0$	M
				$R_2=$	Ом	$\nu =$	Гц¹

10. С помощью построенных графиков по формулам

$$k_{x} = \frac{2\sqrt{2} \Delta U_{x}^{'}}{\Delta l_{x}}, \quad k_{y} = \frac{2\sqrt{2} \Delta U_{y}^{'}}{\Delta l_{y}}$$
 (1)

найти чувствительности входов осциллографа k_x и k_y . Цена деления вольтметра при подключении напряжений U'_x и U'_y указана на панели лабораторной установки. Результаты занести в таблицу 2.

Определение остаточной индукции, коэрцитивной силы и потерь на перемагничивание

11. По формулам
$$H_{\rm \tiny K} = \frac{k_{\scriptscriptstyle X} N_1}{\pi D_{\scriptscriptstyle \rm \tiny C} R_1} n_{\scriptscriptstyle X} \quad \text{и} \quad B_{\rm \tiny OCT} = \frac{k_{\scriptscriptstyle \rm \tiny Y} R_2 C}{N_2 S_{\scriptscriptstyle \rm \tiny B}} n_{\scriptscriptstyle \rm \tiny Y} \tag{2}$$

определить величину остаточной индукции $B_{\rm oct}$ ферромагнитного сердечника и величину $H_{\rm K}$ коэрцитивной силы.

12. По формуле
$$w = k_x k_y \frac{R_2 C N_1}{R_1 N_2 S_B \pi D_c} \cdot S''$$
 (3)

определить энергию перемагничивания w, приходящуюся на единицу объема ферромагнетика за один цикл перемагничивания (за период T). Здесь S" - число клеток внутри петли на экране осциллографа.

13. По формуле $\bar{w} = \frac{d w}{dt} = wv$ определить потери энергии на перемагничивание за одну секунду, где v = 50 Гц - частота переменного тока, подаваемого на намагничивающую обмотку.

14. Все полученные результаты занести в таблицу 2.

Таблина 2

_	- · · · - · · · · · · · · · · · · · · ·								
	n_{χ}	n_y	S"	k_x	k_y	$B_{ m oct}$, Тл	$H_{\rm K}$, A/M	$w, \frac{\iint \mathcal{M}}{M^3}$	$\frac{dw}{dt}$, $\frac{Дж}{M^3c}$

Зависимость $l_x = f(U'_x)$

Петля гистерезиса на экране осциллографа

Рис.А

Зависимость $l_y = f(U'_y)$

Контрольные вопросы к лабораторной работе № 46

- 1. Почему ферромагнетик имеет доменную структуру? Что называется магнитными доменами и какова причина их появления?
- 2. Что происходит с доменной структурой ферромагнетика при помещении его во внешнее поле?
- 3. В чем заключается явление магнитного гистерезиса? Объясните существование петли гистерезиса.
- 4. Почему при выключении внешнего магнитного поля индукция магнитного поля в ферромагнетике не обращается в нуль? Что надо предпринять, чтобы размагнитить намагниченный ферромагнетик?
- 5. Что называется коэрцитивной силой и остаточной индукцией?
- 6. По каким причинам петля магнитного гистерезиса деформируется и может иметь вид, изображенный на рис.А?
- 7. Объясните принцип работы лабораторной установки. Где в ней используется явление электромагнитной индукции, и какую роль играет конденсатор *C*?
- 8. Почему сопротивление R_2 и ёмкость конденсатора C должны быть большими? Что ограничивает их величину?

- 10. Как откалибровать осциллограф? Объясните способ получения формул (1) для чувствительности k_x и k_y его входов?
- 11. Сделайте и объясните вывод этих формул (2)-(3), по которым в данной работе определяются величины остаточной индукции и коэрцитивной силы.
- 13. Чему равна площадь петли магнитного гистерезиса? Какой смысл она имеет?
- 14. Почему при проведении работы ферромагнетик нагревается, и как вычислить количество полученной им теплоты?

Теоретические сведения к данной работе можно найти в учебных пособиях:

- 1. Савельев И.В. Курс общей физики в 3-х тт.: Т. 2: Электричество. Колебания и волны. Волновая оптика СПб., М., Краснодар: Лань, 2008. §§47, 52.
- 2. Колмаков Ю.Н., Пекар Ю.А., Лежнева Л.С. Электромагнетизм и оптика,- изд. ТулГУ. 2010, гл.1 §§3,5, гл 2 §2.
- 3. Колмаков Ю. Н., Левин Д.М., Семин В.А. Основы физики конденсированных сред и физики микромира: Ч.1, изд. ТулГУ. 2014, гл.7 §7.5,7.6.