Physics IA: Pressure vs Impulse Analysis

Physics Investigation

June 3, 2025

1 Data Tables

Table 1: Pressure measurements at different pump amounts (10-50 pumps)

Pumps	Volume (m ⁸)	Pressure (Pa)	Relative Uncertainty (%)
10	0.000630 ± 0.000002	$(2.56 \pm 0.08) \times 10^5$	3.29
20	0.001010 ± 0.000002	$(4.11 \pm 0.13) \times 10^5$	3.16
30	0.001390 ± 0.000002	$(5.65 \pm 0.18) \times 10^5$	3.12
40	0.001770 ± 0.000002	$(7.19 \pm 0.22) \times 10^5$	3.10
50	0.002150 ± 0.000002	$(8.74 \pm 0.27) \times 10^5$	3.08

Table 2: Impulse measurements summary (10-50 pumps)

Pumps	Change in Time (s)	Peak Height (N)	Impulse (Ns)	Uncertainty (%)	Range (Ns)
10	0.0204	11	0.11	9.91	0.02
20	0.0242	16	0.19	7.08	0.08
30	0.0225	21	0.24	5.60	0.07
40	0.0297	22	0.32	5.26	0.10
50	0.0398	27	0.55	4.15	0.29

2 Complete Measurements Data

Table 3: Complete measurements: All pump amounts and repetitions

Pumps	Trial	Peak Start (s)	Peak End (s)	Peak Height (N)
10	Rep 1	3.8678	3.8821	14
	Rep 2	2.3507	2.3630	17
	Rep 3	1.5973	1.6063	16
	Rep 4	2.1055	2.1473	4
	Rep 5	2.2739	2.2986	5
20	Rep 1	2.1416	2.1864	12
	Rep 2	2.1203	2.1328	17
	Rep 3	1.9926	2.0040	20
	Rep 4	3.6033	3.6281	17
	Rep 5	2.0122	2.0399	14
	Rep 1	2.9819	3.0025	24
30	Rep 2	1.8302	1.8451	27
	Rep 3	2.6686	2.6769	24
	Rep 4	4.0077	4.0328	20
	Rep 5	4.6452	4.6890	11
40	Rep 1	4.8642	4.9227	12
	Rep 2	3.5060	3.5140	40
	Rep 3	2.0100	2.0240	26
	Rep 4	1.7300	1.7791	12
	Rep 5	2.6613	2.6804	19
50	Rep 1	2.5071	2.5843	19
	Rep 2	2.3462	2.3567	34
	Rep 3	2.1928	2.2020	32
	Rep 4	3.0298	3.0876	22
	Rep 5	2.6245	2.6689	30

3 Graph

Figure 1: Pressure vs Impulse relationship showing experimental data with error bars, best fit line, and line through origin

4 Analysis Summary

The experimental data shows a strong linear relationship between pressure and impulse:

- Best fit line: $y = 6.54 \times 10^{-7} x 0.087$ with $R^2 = 0.9021$
- Line through origin: $y = 6.31 \times 10^{-7}x$ with $R^2 = 0.8582$
- Correlation coefficient: r = 0.9498 (strong positive correlation)

The data was collected across 5 pump amounts (10, 20, 30, 40, 50 pumps) with 5 repetitions each, showing consistent trends with appropriate uncertainties included.