

2 Grundbegriffe der Akustik

→ https://www.leifiphysik.de/mechanik/mechanische-wellen/grundwissen/groessen-zurbeschreibung-einer-welle

Wie entsteht Schall?

- a) Eine Schallquelle vibriert: es entstehen Druckwellen in der Luft = Schallwellen
- b).Die Schallwellen übertragen z.B. Musik an unsere Ohren, wo sie wieder vom Trommelfell empfangen wird.
- c) Sinneseindrücke, die wir mit dem Gehör als Töne wahrnehmen, nennen wir Schall.

SimpleClub: Was ist Schall?: https://www.youtube.com/watch?v=cFrOoD1leSc

2.1 Frequenz

Frequenz	= Anzahl der Schwingungen pro Zeiteinheit.	
Definition:	Anzahl Schwingungen	$[f] = 1/s = Hz = s^{-1}$
	Frequenz = Zeitabschnitt	

Tonhöhe:	Die Tonhöhe nimmt mit der Frequenz zu		
Somit gilt:	hoher Ton ⇒ Frequenz hoch		
	tiefer Ton ⇒ Frequenz tief		
Der Hörbereich des mensch- lichen Ohrs	Dieser liegt zwischen 20 Hz und 20 kHz Die Bereiche unter- und oberhalb dieser Frequenzen werden bezeichnet als Infraschall (f<20 Hz) und Ultraschall (f>20 kHz)		
Bekannte Frequenzen	Kammerton a 440 Hz	Pfeifton z.B. elektr. Gerät 15 kHz	

SUVA Hörprobe

4	Sweep 50 - 20'000 Hz,	Ohne Übergang geht ein Ton über den ganzen hörbaren
	konstante Amplitude	Bereich
		Die Amplitude (die Lautstärke) bleibt stets die gleiche
		Dass einzelne, vor allem hohe Frequenzen unangenehmer,
		lauter scheinen hängt mit dem Hörempfinden zusammen
10	Frequenzdifferenzen: 750 / 750765 Hz	Feststellen, ab welchem Frequenzverhältnis zwei Töne als unterschiedlich hoch empfunden werden. Inhalt: 16 Paare von Sinustönen. Der erste Ton eines Paares hat immer eine Frequenz von 750 Hz. Die Frequenz des zweiten Tones steigt mit jedem Durchgang
		um ein Hertz. Startfrequenz des zweiten Tones: 750 Hz, Ende: 765 Hz
		Info: Das frequenzmässige Auflösungsvermögen des Gehörs ist zwar
		ausserordentlich gut, jedoch nicht unbegrenzt. Reine Töne, deren Frequenzen
		genug nahe zusammenliegen, werden als ein- und derselbe Ton empfunden.

oder https://www.szynalski.com/tone-generator/

2.2 Amplitude

Amplitude	Die grösste Auslenkung einer Schwingung aus der Ruhelage nennt	
	man Amplitude. Sie bestimmt die Lautstärke eines Tones.	
	grosse Amplitude ⇒ grosse Lautstärke	
	kleine Amplitude ⇒ kleine Lautstärke	

2.2.1 Schallpegel

Schalldruck	Die Membran schwingt stärker oder schwächer; in der Luft entstehen unterschiedlich starke Druckschwankungen.			
Lautstärke:	Gross → Schalldruck höher			
	Klein → Schalldruck	tiefer		
Definition	Schalldruck sind Druckschwankungen, die sich dem bestehenden			
Schalldruck:	(statischen) Luftdruck überlagern. Er ist wie folgt definiert:			
	Schalldruck $p = \frac{Kraft}{Fl\ddot{a}che} = \frac{F}{A}$ [p] = N/m (= Pascal		[p] = N/m ² (= Pascal)	
	Bezugsschalldruck P0 ("P-Null")	2•10 ⁻⁵ N / m ²	= Höı	rschwelle menschliches Ohr
	Schmerzgrenze	2•10 N/m ²	= Schn	nerzgrenze menschliches Ohr

Schalldruck- pegel:	Die Angabe des Schalldruckes in Zehnerpotenzen ist unhandlich, man verwendet darum die Angabe des Schalldruckpegels L _P .		
Definition des Schalldruck- pegels x: L _P	Schalldruckpegel $L_p = 20 \bullet log \frac{p_x}{p_O}$	[L _p] = dB, Dezibel	
Bezugs- schalldruck (Hörgrenze)	$L_{P} = 20 \bullet \log \frac{p_{0}}{p_{0}}$		
Schmerz- grenze	$L_{P} = 20 \bullet \log \left[\frac{2 \bullet 10^{1} \text{N/m}^{2}}{2 \bullet 10^{-5} \text{N/m}^{2}} \right]$		
Anmerkung:	Von Natur aus ist das menschliche Ohr auf tiefe Töne weniger empfindlich als auf hohe Töne. Bei der Schallmessung wird dies berücksichtigt durch die Verwendung von Filtern (A-, B- oder C-Filter). Ein A–Filter schwächt die tiefen Töne ab um den Schalleindruck an das menschliche Gehör anzupassen → Angabe in dB(A). Masseinheit Dezibel benannt nach Alexander Graham Bell (1847–1922), der Erfinder des Telefons.		

Aufgabe:

Laden Sie eine App auf ihrem SmartPhone womit Sie die Lautstärke messen können in dB.

Suchen Sie in Ihrer Umgebung nach dem leisesten und dem lautesten Ort.

Der Schallintensitätspegel in Dezibel:

Lärm - Schallquellen	Schalldruck- pegel	Schalldruck p	Schallintensität /
Beispiele mit Abstand	L_{p} in dB	in N/m² = Pa als	in W/m² als
		Schallfeldgrösse	Schallenergiegrösse
Düsenflugzeug in 30 m Entfernung	140	200	100
Schmerzschwelle (am Ohr)	130	63,2	10
Gehörschäden bei kurzfristiger Einwirkung (am Ohr)	120	20	1
Kettensäge in 1 m Entfernung	110	6,3	0,1
Disco, 1 m vom Lautsprecher	100	2	0,01
Dieselmotor, 10 m entfernt	90	0,63	0,001
Gehörschäden bei langfristiger Einwirkung (am Ohr)	85	0,36	0,000 32
Hauptverkehrsstraße 10 m	80	0,2	0,000 1
Staubsauger in 1 m Entfernung	70	0,063	0,000 01
Normale Sprache in 1 m Abstand	60	0,02	0,000 001
Normale Wohnung, ruhige Ecke	50	0,0063	0,000 000 1
Ruhige Bücherei, allgemein	40	0,002	0,000 000 01
Ruhiges Schlafzimmer bei Nacht	30	0,000 63	0,000 000 001
Ruhegeräusch im TV-Studio	20	0,000 2	0,000 000 000 1
Blätterrascheln in der Ferne	10	0,000 063	0,000 000 000 01
Hörschwelle	0	0,000 02	0,000 000 000 001

Quelle: http://www.sengpielaudio.com/TabelleDerSchallpegel.htm und https://de.wikipedia.org/wiki/Schalldruckpegel

Die Skala für den Schallintensitätspegel in Dezibel ist logarithmisch:

- → 20 Dezibel mehr bedeuten 10 Mal mehr Schalldruck
- → 6 Dezibel mehr = Verdoppelung des Schalldrucks

Aufgabe: Berechnen Sie beide Dezibel Werte aus der Änderung in Schalldruck.

Aufgabe: Berechnen Sie die Unterschied in dB wenn die Schalldruck 4 mal so gross ist.

Quelle: https://de.wikipedia.org/wiki/Auditive_Wahrnehmung Interesantes: https://en.wikipedia.org/wiki/Havana syndrome

SUVA Hörproben:

	O VY T To T production.				
14	Pegeldifferenzen:	Wiederholter elektrischer Orgelklang mit			
	0/+1; 0/+3; 0/+6; 0/+10 Db	Differenz zum 1. Ton: 0 dB / +1 dB / 0 / +3 / 0 /			
		+6 / 0 / +10 / 0 dB – mit Pausen . Unser Gehör			
		passt sich schnell an, hört Unterschiede nur			
		wenn nahe			
15	Pegeldifferenzen:	Sie lernen Lautstärkenunterschiede zu			
	Mittelteil des Sinustones	erkennen			
	abgesenkt um 0-0.5-1-2-3-6-10-20-	Sinustöne 750 Hz, dazwischen Abschwächung			
	40-60 dB	der Amplitude zum 1. Ton: -0,5 dB / -1 dB / -2 /			
		-3 / -6 / -10 / -20 dB / +-40 / -60 dB			
		Unser Gehör kann je nach Frequenz			
		Differenzen von 0,25 bis 0,4 dB unterscheiden			
20	Vom Flüstern zum Schreien	Sie lernen Referenz-Lautstärken kennen			
		Flüstern = 35 dB, Sprechen 60-65 dB, laut			
		sprechen 80 dB, schreien, brüllen = 100 dB			
		oder mehr			

2.3 Phase

2.4 Wellenlänge

Aufgabe: Bestimmen Sie die Wellenlänge in Luft (c = 340 m/s) für f=440Hz

2.5 Schwingungsdauer

Aufgabe: Wie gross ist die Schwingungsdauer T des Kammertones 440 Hz?

2.6 Ausbreitungsgeschwindigkeit

In Kapitel 4.2 werden wir tiefer eingehen auf die Ausbreitungsgeschwindigkeit.

SimpleClub: Grundbegriffe Welle: https://www.youtube.com/watch?v=MRpeRDoOFCw