Problem Set 5 Submit through becourses

- 1. Find y for the following normalized impedance on Smith Chart.
 - (a) $z_L = 1.4 + j2$
 - (b) $z_L = 0.5 + j0.9$
 - (c) $z_L = 1.6 j0.3$
- 2. For the following problems, you may use the Smith Chart. For lumped component calculations, use equations and compare to the accuracy of using the Smith Chart.
 - (a) Design a matching network to match load impedance $Z_L = 70 + j100$ ohm to a 50 ohm using lumped circuits.
 - (b) Design a matching network to match load impedance $Z_L = 70 + j100$ ohm to a 50 ohm using transmission lines.
 - (c) Design a matching network to match load impedance $Z_L = 160$ j30 ohm to a 100 ohm using lumped circuits.
 - (d) Design a matching network to match load impedance $Z_L = 160$ j30 ohm to a 100 ohm using transmission lines.
 - (e) Design a matching network to match 50 ohm to $Z_L=25+j90$ ohm using lumped circuits.
 - (f) Design a matching network to match 50 ohm to $Z_L = 25 + j90$ ohm using transmission lines.
- 3. Matching Network Design
 - (a) Design a π matching network between a 1000 Ω load impedance and a 50 Ω source impedance at 1 GHz. The inductor and capacitor quality factors are 20. The target bandwidth for $|S_{11}| < -10$ dB is 5%. Calculate the insertion loss and verify your design using ADS or Cadence. Check in ADS if the relation $|S_{11}|^2 + |S_{21}|^2 = 1$ holds.
 - (b) Design a matching network between a 1000Ω load impedance and a 50Ω source impedance at 1 GHz. The inductor and capacitor quality factors are 20. The design goal is to achieve the lowest insertion loss. Calculate the insertion loss and verify your design using ADS or Cadence.