Final Review Answers Fall 2011

- 1. (a) Parabola; Vertex: (1, -1); Focus: (1, -3); Directrix: y = 1
 - (b) Ellipse; Center: (1, -2); Vertices: (1, -6), (1, 2); Foci: (1, -2 $\pm 2\sqrt{3}$); Eccentricity: $\frac{\sqrt{3}}{2}$
 - (c) Hyperbola; Center: (-3, 5); Vertices: $(-\frac{10}{3}, 5)$, $(-\frac{8}{3}, 5)$; Foci: $(-3 \pm \frac{\sqrt{10}}{3}, 5)$; Eccentricity: $\sqrt{10}$
 - (d) Parabola; Vertex: (-1, 0); Focus: (0, 0); Directrix: x = -1
 - (e) Parabola; Vertex: (1, 1); Focus: (1, 2); Directrix: y = 0
 - (f) ; Center: (-2, -3); Vertices: (-2, -6), (-2, 0); Foci: (-2, -3 $\pm\sqrt{13}$); Eccentricity: $\frac{\sqrt{13}}{3}$

1

- (g) Ellipse; Center: (1, -1); Vertices: $(\frac{9}{4}, -1), (-\frac{1}{4}, -1)$; Foci: $(\frac{7}{4}, -1), (\frac{1}{4}, -1)$; Eccentricity $\frac{3}{5}$
- (h) Circle: Center: (2, -3); Radius: $\sqrt{8}$

2. (a)
$$\frac{(x-2)^2}{25} + \frac{y^2}{21} = 1$$

(b)
$$\frac{x^2}{4} - \frac{(y-2)^2}{12} = 1$$

3. (a)
$$3x + 2y - 13 = 0$$

(b)
$$x^2 + \frac{y^2}{9} = 1$$

(c)
$$y = \frac{e^{2x}}{2}$$

(d)
$$\frac{(x-3)^2}{9} + \frac{(y-2)^2}{25} = 1$$

(e)
$$y = \frac{1}{x^2}$$

(f)
$$x^2 + y^2 = 36$$

(g)
$$1 + y^2 = x^2$$

(h)
$$\frac{(x-1)^2}{4} + (y-2)^2 = 1$$

- 4. (a) (0, -4)
 - (b) $(\sqrt{2}, -\sqrt{2})$
 - (c) $(-\sqrt{3}, -1)$
 - (d) $(-\sqrt{3}, -1)$
 - (e) $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
 - (f) (-15,0)
- 5. Answers may vary. These are some possibilities.
 - (a) $(9, \frac{3\pi}{2}), (-9, \frac{\pi}{2})$
 - (b) $(-2\sqrt{3}, \frac{\pi}{6}), (2\sqrt{3}, -\frac{5\pi}{6})$
 - (c) $(2\sqrt{2}, \frac{\pi}{4}), (2\sqrt{2}, -\frac{-7\pi}{4})$
 - (d) $(\sqrt{26}, 101.3^{\circ}), (\sqrt{26}, -258.7^{\circ})$
 - (e) $(1, \frac{4\pi}{3}), (-1, \frac{\pi}{3})$
- 6. (a) $r = 6\cos\theta$
 - (b) $r = \frac{2}{4\cos\theta + 7\sin\theta}$
- 7. (a) $x^2 + y^2 4x = 0$
 - (b) $x\sqrt{3} + y = 0$
 - (c) $x^2 + y^2 = 100$
 - (d) $(x^2 + y^2)^2 = 6xy$
 - (e) $x^2 = x^2y^2 + y^4$
 - (f) $x^2 4x + y^2 2y = 0$
- 8. Graph
- 9. (a) 3 feet
 - (b) 52.35 feet
 - (c) Yes

- 10. (a) Amplitude: 1; Period: $\frac{2\pi}{3}$; Phase Shift: $\frac{\pi}{6}$ right; Vertical Shift: none
 - (b) Amplitude: 1; Period: $\frac{2\pi}{5}$; Phase Shift: $\frac{\pi}{6}$ left; Vertical Shift: none
 - (c) Amplitude: 1; Period: 2π ; Phase Shift: $\frac{\pi}{4}$ left; Vertical Shift: 3
 - (d) Amplitude: 5; Period: $\frac{\pi}{4}$; Phase Shift: $\frac{\pi}{2}$ right, Vertical Shift: 2
- 11. (a) $\cos \theta = \frac{\sqrt{95}}{12}$
 - (b) $\tan \theta = -\frac{7\sqrt{95}}{95}$
 - (c) $\csc \theta = -\frac{12}{7}$
 - (d) $\sec \theta = \frac{12\sqrt{95}}{95}$
 - (e) $\cot \theta = -\frac{\sqrt{95}}{7}$
- 12. 66.8°
- 13. Answers may vary
- 14. (a) $x = 0, \pi$
 - (b) $x = 0, \frac{3\pi}{4}, \pi, \frac{5\pi}{4}$
 - (c) $x = \pi, \frac{3\pi}{2}$
 - (d) $x = 0, \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \pi, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}$
 - (e) $x = \frac{\pi}{8}, \frac{3\pi}{8}, \frac{9\pi}{8}, \frac{11\pi}{8}$
 - (f) $x = 0, \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}, \frac{9\pi}{8}, \frac{11\pi}{8}, \frac{13\pi}{8}, \frac{15\pi}{8}$

- 15. (a) $b \approx 6.55, A = 35^{\circ}, C = 35^{\circ}$
 - (b) $A \approx 29.7^{\circ}, B \approx 52.4^{\circ}, C \approx 97.9^{\circ}$
 - (c) $A = 70^{\circ}, b \approx 2.8, c \approx 6.6$
- 16. 311.4 meters
- 17. 10.2 kilometers

18.
$$n = \frac{26\arccos(\frac{P}{3.5} - 1)}{\pi}$$

19.
$$\frac{(x-2)^2}{36} + \frac{(y+6)^2}{16} = 1$$
 and $\frac{(x-2)^2}{16} + \frac{(y+6)^2}{36} = 1$

- 20. (a) $\frac{\sqrt{5}}{5}$
 - (b) $\frac{3}{5}$
 - (c) $-\frac{5}{13}$
 - (d) $-\frac{3\sqrt{7}}{7}$
- 21. $8\sqrt{6}$ meters
- 22. 36 feet
- 23. (a) $-\frac{3}{\sqrt{7}}$
 - (b) $\frac{13}{12}$
 - (c) $-\frac{42\sqrt{7}}{112}$
 - (d) $-\frac{119}{169}$