

Quadern de treball: Recursive Best First Search (RBFS)¹

Albert Sanchis

Departament de Sistemes Informàtics i Computació

¹Per a una correcta visualització, es requereix l'Acrobat Reader v. 7.0 o superior

Objectius formatius

- Caracteritzar la cerca convencional en un graf d'estats.
- ► Descriure cerca *Recursive Best First Search* (*RBFS*).
- Construir l'arbre de cerca RBFS.
- Aplicar cerca RBFS a un problema clàssic.
- ► Analitzar la qualitat de cerca *RBFS*.

Problema: La ruta més curta entre dos punts

Cerca d'una ruta més curta des d'Arad a Bucarest [1]:

Accions(Arad) = {Anar(Sibiu), Anar(Timisoara), Anar(Zerind)}.

Problema: La ruta més curta entre dos punts

Distàncies en línia recta a Bucharest

	Bucharest		Bucharest
Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
lasi	226	Vaslui	199
Lugoj	244	Zerind	374

L'algorisme RBFS (main) [2]

```
RBFS(G, s', f) // G graf ponderat, s' inici, f func. aval. P = InitStack(s') // Inicialitza Path amb el node arrel b = \infty // Límit inicial F_{s'} = f_{s'} // El valor emmagatzemat és inicialitzat al valor f (F_r, r) = \mathbf{BT}(G, P, F_{s'}, f, b) // Torna v. emmagatzemat i est. obj. if r \neq \mathsf{NULL}: return P // Si solució, torna Path a l'objectiu
```

L'algorisme RBFS (backtracking) [2]

```
\mathbf{BT}(G, P, F_s, f, b)
                             // G graf, P Path, Valor emmagatzemat F_{s'}, f, b límit
s = Top(P)
                                                    // Path: extraure cim de la pila
if Goal(s): return (f_s, s)
                                                                 // Solució trobada!
 O = InitQueue()
                                          // Open: cua de prioritat per a nodes fill
for all (s, n) \in Adjacents(G, s) and n \notin P:
                                               // Generant fills n no en Path
   if f_s < F_s : F_n = max(f_n, F_s) // Si s visitat, el fill hereta el v. emmagatzemat
   else: F_n = f_n
                                          // En altre cas, el v. emmagatzemat és f
   Push(O, n, F_n) // Fills ordenats en cua de prioritat per v. emmagatzemats
 if EmptyQueue(O): return (\infty, NULL)
                                                                 // No fills, límit = \infty
 while True:
   (n, F_n) = Top(O)
                         // Millor fill en funció del valor emmagatzemat F
   if F_n > b: return (F_n, NULL)
                                                // S'excedeix el límit, backtracking
   (n', F_{n'}) = Top2(O)
                                      // 2-millor F o si no existeix, llavors F_{n'} = \infty
   Push(P, n)
                                                        // Afegir fill al Path explorat
   (F_n, r) = \mathbf{BT}(G, P, F_n, f, min(b, F_{n'}))
                                                // Recursió amb possible nou límit
   if r \neq NULL: return (F_n, r) // Si solució, fí recursió sense actualització
   Update(O, n, F_n)
                                                         // Actualitzar node n en O
  Pop(P)
                                                      // Descartar últim fill del Path
```

Qüestió 1: Construeix l'arbre de cerca resultant d'aplicar l'algorisme RBFS al problema de cerca d'una ruta més curta des d'Arad a Bucarest.

- Qüestió 2: L'algorisme troba solució? Sí
- Qüestió 3: Si la resposta es "Sí":
 - Quina ha sigut la solució trobada? El camí solució trobat ha sigut: Arad, Sibiu, Rimnicu, Pitesti, Bucharest
 - De Quin és el cost d'aquesta solució? 418
 - ▷ Es tracta de la solució óptima? Sí

Referències

- [1] S. Russell and P. Norvig. *Artificial Intelligence: A Modern Approach*. Pearson, third edition, 2010.
- [2] Richard E. Korf. Linear-space best-first search. *Artificial Intelligence*, 62(1):41–78, 1993.

