Proseduraalinen normaalikartoitus Punosvarjostin

Kimmo Riihihaho kimmo.a.riihiaho@student.jyu.fi

15.5.2018

Sisältö

- Motivaatio
- Matemaattinen esitys korkeuskarttana
- Esitys normaalikarttana
- Tangenttiavaruus
- 5 Komponenttikaavio
- 6 Luokkakaavio
- Zähteet

- Proseduraalinen teksturointi artistille / teksturoijalle
 - Ei tarvitse miettiä tekstuurikuvien toistumista suurilla pinnoilla
 - Muokattavissa asetusten säätämisellä (verrattuna uuden tekstuurikuvan tuottamiseen / muokkaamiseen)
 - lacktriangle Ääretön tarkkuus ightarrow ääretön skaalautuvuus
 - Ei tarvitse tehdä UV-kartoitusta
- Tehokkuus
 - Kuvaperustaiset tekniikat ovat nopeita, koska ne vaativat vain muistin lukuoperaatioita (Akenine-Möller, Haines ja Hoffman 2008)
 - Proseduraalinen teksturointi vaatii laskentaa

■ Punosta kuvaavan korkeuskartan yhtälö:

$$f_w(x,y) = \sin\left(\frac{xs_o}{s_a} + \pi \lfloor \sin\frac{ys_o}{s_e} \rfloor\right) + r |\sin\frac{ys_o}{s_e}|, \qquad (1)$$

missä s_o on yleisskaalaus, s_a on x-akselin suuntainen skaalaus, s_e on y-akselin suuntainen skaalaus, ja r kuvaa yksittäisen kuteen pyöreyttä

- lacksquare Määritelty koko \mathbb{R}^2 :ssa
- Ei kuitenkaan jatkuva, eikä derivoituva kaikkialla

Kuva: Skaalausten ja pyöristyksen vaikutus funktion käyttäytymiseen.

- Korkeuskartan muuttaminen normaalikartaksi vaatii yhtälön normaalin laskemisen
- Yhtälön 1 normaali pisteessä (x, y) on $\left(\frac{\partial f_w(x,y)}{\partial x}, \frac{\partial f_w(x,y)}{\partial y}, f_w(x,y)\right)$
- Epäjatkuvuuskohdat ja ei-derivoituvat pisteet on käsiteltävä erikseen
- Normalisoidaan $\frac{\partial f_w(x,y)}{\partial x}$ ja $\frac{\partial f_w(x,y)}{\partial y}$ välille [-1,1]
- ja $f_w(x,y)$ välille [0,1]
- Käytännössä voidaan käyttää yksinkertaisempia derivaattoja keventämään laskentaa

- Korkeuskartan yhtälö on määritelty vain xy-tasossa
- Fragmentin sijainti voidaan määrittää tangenttiavaruudessa, jolloin korkeuskenttä saadaan määritettyä mihin tahansa suuntaan \mathbb{R}^3 :ssa
- Malliavaruuden kulmapisteiden koordinaatit siirretään tangenttiavaruuteen kertomalla ne matriisilla

$$T = \begin{bmatrix} \mathbf{t}_{x} & \mathbf{t}_{y} & \mathbf{t}_{z} & 0 \\ \mathbf{b}_{x} & \mathbf{b}_{y} & \mathbf{b}_{z} & 0 \\ \mathbf{n}_{x} & \mathbf{n}_{y} & \mathbf{n}_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

missä \mathbf{n} on kulmapisteen normaali, $\mathbf{t} \perp \mathbf{n}$ ja $\mathbf{b} \perp \mathbf{n} \perp \mathbf{t}$ (Akenine-Möller, Haines ja Hoffman 2008)

 Tangenttiavaruuden muodostaminen kun ainoastaan kulmapisteen normaali on tunnettu

Kuva: Luokkakaavio

Kuva: Komponenttikaavio

Akenine-Möller, T., E. Haines ja N. Hoffman (2008). *Real-Time Rendering 3rd Edition*. Natick, MA, USA: A. K. Peters, Ltd., s. 1045.