Julia Sets

For a fixed complex number c, let $f_c(z) = z^2 + c$.

For each $z \in \mathbb{C}$ we consider its orbit, $\{f_c^n(z)\} = \{z, f_c(z), f_c^2(z), \dots\}$. For some $z \in C$, $\{f_c^n(z)\}$ is bounded, and for some it is not.

The Julia set $J(f_c)$ is the boundary of the set of points whose orbits under the map f_c are bounded.

Example. $\mathbf{c} = \mathbf{0}, \ f_c(z) = z^2.$ The orbit of $z = \{z, z^2, z^4, ...\}$ is bounded $\Leftrightarrow |z| \leq 1.$ So $J(f_0)$ is the unit circle $\{z: |z| = 1\}$

For c close to 0, J_c is a closed curve without self-intersections, but now it is a fractal, with Hausdorff dimension > 1.

Note. Often, we see picture of a **filled** Julia set. It is the set of points whose orbits under the map f_c are bounded. In the example, the filled Julia set is the disc $\{z : |z| \le 1\}$. On the next two slides, the black set is the filled Julia set, and the Julia set is its boundary.