T. Y. B. Tech (Computer Science and Engineering) Sem –VI

2. Operating System -II (PCC - CS602)

TEACHING SCHEME	EXAMINATION SCHEME	
Theory: 4 Hrs./Week	Theory : ESE 70 Marks	
	CIE 30 Marks	
Tutorial:	Term work: 25 marks	
Practical: 2 Hrs./Week	Practical :	

Pre-requisites: Data Structures, Concepts of Process, deadlock and System calls.

Course Objectives

- 1. Fundamental architecture of UNIX operating system kernel.
- 2. Detail algorithms of buffer cache management.
- 3. Internal File system organizations and related algorithms in UNIX.
- 4. System calls for UNIX file system.
- 5. Process structure, creation and management in UNIX.
- 6. Architecture and algorithms of process scheduling and memory management.
- 7. I/O subsystem architecture and algorithms.

Course Outcomes

Upon Completion of this course, students will be able to:

- 1. To understand UNIX kernel, its architectural components like file subsystem, process control subsystem, memory management.
- 2. To understand a concrete way (UNIX i-nodes) of organizing a file system on a physical storage medium.
- 3. To maintain UNIX directories, files, manage processes, manipulate data with proper use of pipes and file redirection, UNIX filters.
- 4. To implement and handle various UNIX system calls.
- 5. To explain the principles of paging, virtual memory (VM) and describe the data structures and components (both hardware and software) that are necessary to implement it.
- 6. To perform shell programming involving decision control, looping and control flow statements on UNIX based machines.

UNIT NO.	UNIT NAME & DETAILS	NO. OF LECTURES
1.	Introduction and buffer cache: General Overview of the System - History, System Structure, User Perspective, Operating System Services, Assumptions About Hardware, Architecture of the UNIX OS, Introduction to System Concepts, Kernel Data Structure, System Administration. Buffer Cache: - Buffer Headers, Structure of the Buffer Pool, Scenarios for Retrieval of a Buffer, Reading and Writing Disk Blocks, Advantages and Disadvantages of Buffer Cache.	10
2.	Internal Representation of Files: I-nodes, Structure of the Regular File, Directories, Conversion of a Pathname to I-node, Super Block, I-node Assignment to a New File, Allocation of Disk Blocks, Other File Types.	8
3.	System Calls for File System: Open, Read, Write, File and Record Locking, Adjusting the Position of FILE I/O-LSEEK, Close, File Creation, Creation of Special Files, Change Directory and Change Root, Change Owner and Change Mode, Stat and FStat, Pipes, Dup, Mounting and Un-mounting File Systems, Link, Unlink, File System Abstractions, File System Maintenance.	6
4.	The Structure of Processes: Process States and Transitions, Layout of System Memory, The Context of a Process, Saving Context of a Process, Manipulation of the Process Address Space.	8
5.	Process Control and Scheduling: Process Control: - Process Creation, Signals, Process Termination, Awaiting Process Termination, Invoking Other Programs, The User ID of a Process, The Shell, System Boot and the Init Process. Process Scheduling: - Process Scheduling, System Calls for Time, Clock.	8
6.	Memory management and I/O Subsystem: Swapping, Demand Paging, A Hybrid System with Demand Paging and Swapping. Driver Interfaces, Disk Drivers, Terminal Drivers, Streams.	8

Term Work

- It should consist of minimum 10-12 experiments based on the above topics and covering the following list of assignments. (Reference book Linux System Programming by Robert Love may be referred for the assignments listed below.)
 - 1. Demonstration of how the Linux Kernel implements and Manages files.
 - 2. Implement User Buffer I/O using 'C' program.
 - 3. Study & Implement file management using low level file access system calls.

- 4. Implementation of various operations on Files (Create, Open, Read, Write, Append, Fstat, Dup etc.,)
- 5. Implementation of various system call (OPEN, READ, WRITE) by reader & writer process.
- 6. Study & Implementation of pipe () system call.
- 7. Demonstration of UNIX Process Management from process creation to process termination.
- 8. Study & Implementation of signal () system call.
- 9. Study and demonstration of different Memory Management Techniques.
- 10. Study and Implement Time, Sleep and Clock Management.
- 11. Client Server communication using IPC mechanism: Unnamed pipe, Named pipe.
- 12. Implementation of Shell Scripts.
- 13. Implementation of system call for UNIX/Linux.
- 14. Study of boot loader like "Grub"
- 15. Study of compilation of Linux kernel.

Text Books

Sr. No.	Title	Author(s) Name	Publication & Edition	Units Covered
1	The design of Unix Operating System	Maurice J. Bach	PHI	All Units

Reference Books

Sr. No.	Title	Author(s) Name	Publication & Edition
1	Linux System Programming	Robert Love	SPD, O' REILLY
2	Unix concepts & administration	Sumitabha Das	Tata McGrow Hill, 3rd Edition