Math 220 Section 108 Lecture 19

15th November 2022

Source: https://personal.math.ubc.ca/~PLP/auxiliary.html

Modular Arithmetic

6. Given $n \in \mathbb{N}$, let $[a]_n$ denote the equivalence class of a under the relation "congruence modulo n" on the integers. We define the **multiplicative inverse** of $[a]_n$ to be some $[b]_n$ such that $[a]_n[b]_n = [1]_n$, if it exists.

Multiplicative inverses are nice because they allow us to perform "dividing by $[a]_n$ " by multiplying by the multiplicative inverse of $[a]_n$.

(a) Write down the multiplication table for the equivalence classes of the relation "congruence modulo 5". Show that every equivalence class $[k]_5$, where $k \not\equiv 0 \pmod{5}$, has a multiplicative inverse.

(Continued) 6.(a) Write down the multiplication table for "congruence mod 5". Show that every $[k]_5$, where $k \not\equiv 0 \pmod{5}$, has a multiplicative inverse.

```
(Continued) We see from part (a) that multiplicative inverses of
[1]_5, [2]_5, [3]_5, [4]_5 are [1]_5, [3]_5, [2]_5, [4]_5 respectively.
(b) Prove that if n \in \mathbb{N} is prime, then every nonzero integer modulo n, i.e. [a]_n
that does have a multiplicative inverse.
Hint: Bezout's lemma.
Now, n is a pigme, terme [a] n # [0] n
                                                 so, n/a & heuce
    So, 3n,y & Z nn+ay=ged(n,a)=1
So, nn=1-ay
                      @ n1(1-ay)
                        ( Lin: [ay] ,
```

So, [i]n: [an] [y]n
Hence every non zero modulo n, i e [a]n does houre a
multiplicative inverse.

(Continued) 6. (b) Prove that if $n \in \mathbb{N}$ is prime, then every nonzero integer modulo n, i.e. $[a]_n$ that does have a multiplicative inverse.

A function from a set A to a set B is something that for each input $a \in A$, it provides exactly one output $b \in B$.

Examples & non-examples:

• $y = x^2$ is a function from \mathbb{R} to \mathbb{R} .

- y = 1/x is <u>not</u> a function from \mathbb{R} to \mathbb{R} .
 - . has no output for O
 - · we can define a find from R-203 to R
- The unit circle $\{(x,y) \mid x^2 + y^2 = 1\}$ is <u>not</u> a function from \mathbb{R} to \mathbb{R} .
- · 120, y=+12-1 so, no unique output

Functions - formal definitions

Definition (Definition 10.2.1 of PLP)

For non-empty sets A and B, a **function** f from A to B, written $f:A\to B$, is a subset of $A\times B$ with two further properties

- for every $a \in A$ there is some $b \in B$ so that $(a, b) \in f$,
- if $(a, b) \in f$ and $(a, c) \in f$, then b = c.

If $(a, b) \in f$, then we write f(a) = b and we call b the **image** of a.

Definition

We call A the **domain** of f, and B the **co-domain**.

The **range** of f is set the of elements in B that are mapped to by f:

$$range(f) = \{b \in B \mid \exists a \in A \text{ s.t. } f(a) = b\}.$$

Example: For the functions below, what are their domain, co-domain, & range? $f = \{(x,y) \in \mathbb{R} \times \mathbb{R} : y = x^2\}$ and \mathbb{R} \mathbb{R}

1. For which values of $a, b \in \mathbb{N}$ does the set $S = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : ax + by = 6\}$ define a function?

(Continued) 1. For which values of $a, b \in \mathbb{N}$ does the set $S = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : ax + by = 6\}$ define a function?

```
2. Is the set \theta = \{((x,y),(5y,4x,x+y)) \in \mathbb{R}^2 \times \mathbb{R}^3 : x,y \in \mathbb{R}\} a function? If
   so, are its co-domain and range equal?
(a) Yes, any (n,y) for R2 hors a unique of (5y, 4n, mty) for R3
                  doman-> R2 co-doman-> PR3
(1) No, the co-domain 18 R3 for ZER,
Consider (9,4,2) ER3 for ZER,
              If of 95 in range (0), it must be of the
     So we must have that y = 1 2 n = 1. So, then

z \mapsto bas = be \quad x + y = 2.

s_1 = (s, h, 3) \not\equiv sauge(0)
```

(Continued) 2. Is the set $\theta = \{((x, y), (5y, 4x, x + y)) \in \mathbb{R}^2 \times \mathbb{R}^3 : x, y \in \mathbb{R}\}$ a function? If so, are its co-domain and range equal?

Old Final question

- 3. Suppose that $f: A \rightarrow B$ is a function and let C be a subset of A.
 - Prove that $f(A) f(C) \subseteq f(A C)$.
 - Find a counterexample for $f(A C) \subseteq f(A) f(C)$.

Hint: Think about for which type of functions part (b) fails.

(Continued) 3. Suppose that $f:A\to B$ is a function and let C be a subset of A.

- Prove that $f(A) f(C) \subseteq f(A C)$.
- Find a counterexample for $f(A C) \subseteq f(A) f(C)$.

4. Let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ be a function defined as f(a, b) = 4a + 6b. Explicitly describe the set $S = \operatorname{range}(f)$. Prove your answer.

(Continued) 4. Let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ be a function defined as f(a, b) = 4a + 6b. Explicitly describe the set $S = \operatorname{range}(f)$. Prove your answer.

Functions (if time)

5. A function $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ is defined as f(n) = (2n+1, n+2). Verify whether this function is injective and whether it is surjective.

(Continued) 5. A function $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ is defined as f(n) = (2n+1, n+2). Verify whether this function is injective and whether it is surjective.