

Algèbre Linéaire

Devoir Maison - Fiche 2 Licence 2 Informatique (2022-2023)

Guillaume Metzler

Institut de Communication (ICOM) Université de Lyon, Université Lumière Lyon 2 Laboratoire ERIC UR 3083, Lyon, France

guillaume.metzler@univ-lyon2.fr

Travail à rendre pour le 09 février 2023

Résumé

Cette fiche se décompose en deux parties. La première partie est composée de questions de cours dont les justifications sont en générales très courtes et dont toutes les réponses figurent dans le cours (moyennant une petite réflexion par moment). Les questions ne sont pas difficiles et sont un bon moyen pour vous de travailler le cours et de vérifier que les notions sont comprises. La deuxième partie est composée de deux exercices d'applications pour vérifier que les exercices effectuées en TD sont maîtrisées. A nouveau, ces derniers sont très proches de ceux effectués en TD et seront un excellent moyen pour vous de vérifier que vous savez refaire ce qui a été fait en TD.

1 Questions de cours

- 1. Soit E un \mathbb{K} -espace vectoriel. Les propositions suivantes sont-elles vraies ou fausses? Justifiez.
 - (a) Soit \mathbf{x} un élément non nul de E, alors la famille (\mathbf{x}) est libre.
 - (b) Soient $\mathbf{x} \neq \mathbf{y} \in E$, alors la famille (\mathbf{x}, \mathbf{y}) est libre.
 - (c) Si une famille de vecteurs de E contient le vecteur nul, elle est liée.
 - (d) Une famille libre de vecteurs $(\mathbf{x}_1, \dots, \mathbf{x}_n)$ est une base de $F = Vect((\mathbf{x}_1, \dots, \mathbf{x}_n))$.
- 2. Soit E un \mathbb{K} -espace vectoriel non nul. Les propositions A et B suivantes sontelles équivalentes? Est-ce que l'un implique l'autre?
 - (a) A : (\mathbf{x}, \mathbf{y}) est une famille liée de E.

 $B: \exists \lambda \in \mathbb{K} \text{ tel que } \mathbf{y} = \lambda \mathbf{x}.$

(b) A: $(\mathbf{x}_1, \dots, \mathbf{x}_n)$ est une famille libre de E.

B: si $(\lambda_1, \ldots, \lambda_n) = (0, \ldots, 0)$ alors:

$$\sum_{k=1}^{n} \lambda_k \mathbf{x}_k = \mathbf{0}_E$$

(c) A : E est un espace vectoriel de dimension 1.

B: $\forall \mathbf{a} \in E \text{ tel que } \mathbf{a} \neq \mathbf{0}, \text{ alors } E = Vect(\mathbf{a}).$

- 3. Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$. Les propositions suivantes sont-elles vraies ou fausses?
 - (a) Toute famille libre de E compte au plus n vecteurs.
 - (b) Toute famille génératrice de E compte au plus n vecteurs.
 - (c) Une famille qui compte moins de n vecteurs est libre.
 - (d) Une famille qui compte plus de n vecteurs est liée.
 - (e) Une famille qui compte plus de n vecteurs est génératrice.
 - (f) Si F est un sous-espace vectoriel de E, une famille libre de vecteurs de F est une famille libre de vecteurs de E.
 - (g) Si F est un sous-espace vectoriel de E, une famille génératrice de F est une famille génératrice de E.
- 4. Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$ et soient F et G des sous-espaces vectoriels de E. Les propositions suivantes sont-elles équivalentes? L'une implique-t-elle l'autre?

 $A: F \oplus G = E$

B: $F \cap G = \{\mathbf{0}\}\$ et dimF + dimG = n.

- 5. Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$ muni d'une base $(\mathbf{e}_1, \dots, \mathbf{e}_n)$. Soit E' un \mathbb{K} -espace vectoriel de dimension $n' \in \mathbb{N}^*$ et $f \in \mathcal{L}(E, E')$. Les propositions suivantes sont-elles vraies ou fausses?
 - (a) $(f(\mathbf{e}_1), \dots, f(\mathbf{e}_n))$ est une base de Im(f)
 - (b) $rg(f) = rg((f(\mathbf{e}_1), \dots, f(\mathbf{e}_n)))$
 - (c) f est injective si et seulement si dim(Ker(f)) = 0
 - (d) f est surjective si et seulement si dim(Im(f)) = n
 - (e) f est surjective si et seulement si dim(Im(f)) = n'
- 6. Soit E un \mathbb{K} -espace vectoriel et soit φ une forme linéaire sur E. Montrer que φ est nulle ou surjective.
- 7. Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et soit $f \in \mathcal{L}(E)$. Les propositions suivantes sont-elles vraies ou fausses?
 - (a) Si rg(f) = n, alors $f \in \mathscr{GL}(E)$.
 - (b) Ker(f) et Im(f) sont supplémentaires dans E.
 - (c) Si $Ker(f) \cap Im(f) = \{0\}$, alors Ker(f) et Im(f) sont supplémentaires dans E.

2 Exercices

Exercice 2.1. Soit E un ensemble, typiquement $E = \mathbb{R}^2$ muni d'une loi interne, notée + et d'une loi externe notée \cdot définies pour tout $\mathbf{x}, \mathbf{y} \in E$ et pour tout $\lambda \in \mathbb{R}$ par

$$\mathbf{x} + \mathbf{y} = (x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$$
 et $\lambda \cdot \mathbf{x} = \lambda \cdot (x_1, x_2) = (\lambda(x_1 + x_2), \lambda x_2)$.

L'ensemble $(E, +, \cdot)$ a-t-il une structure d'espace vectoriel sur \mathbb{R} ?

Exercice 2.2. Les ensembles suivants sont-ils des sous-espaces vectoriels de \mathbb{R}^3 ?

- 1. $E_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x y + 2z = 0\},\$
- 2. $E_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x y + 2z = -4\},\$
- 3. $E_3 = \{(x, y, z) \in \mathbb{R}^3 \mid 3x 6y + 2z = 0\} \cap \{(x, y, z) \in \mathbb{R}^3 \mid 2x y + 3z = 0\},\$
- 4. $E_4 = \{(x, y, z) \in \mathbb{R}^3 \mid 3x 6y + 2z = 0\} \cup \{(x, y, z) \in \mathbb{R}^3 \mid 2x y + 3z = 0\}.$