2024/11/13

1.

求第一卦限上由曲面 $z=\frac{1}{(1+x+3y)^3}$ 所围立体的体积

Answer:

$$V = \iiint_D \mathrm{d}x \mathrm{d}y \mathrm{d}z = \int_0^{+\infty} \mathrm{d}x \int_0^{+\infty} \mathrm{d}y \int_0^{rac{1}{(1+x+3y)^3}} \mathrm{d}z = \int_0^{+\infty} rac{\mathrm{d}x}{6(1+x)^2} = rac{1}{6}$$

2.

讨论以下广义重积分的敛散性, 其中
$$\alpha,\beta,\gamma$$
 均为常数.
 (1) $\iiint_D \frac{\mathrm{d} x \mathrm{d} y \mathrm{d} z}{(1+|x|)^{\alpha}(1+|y|)^{\beta}(1+|z|)^{\gamma}}$, 其中 $D=\{(x,y,z)|x^2+y^2+z^2\geq 1\}$

注意到被积函数在 D^c 上有界, 且 D^c 体积有限, 因此将积分区域改为 \mathbb{R}^3 后敛散性不变. 而 $\iint_{\mathbf{R}} \frac{\mathrm{d}x\mathrm{d}y\mathrm{d}z}{(1+|x|)^{\alpha}(1+|y|)^{\beta}(1+|z|)^{\gamma}} = \left(\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{(1+|x|)^{\alpha}} \right) \left(\int_{-\infty}^{\infty} \frac{\mathrm{d}y}{(1+|y|)^{\beta}} \right) \left(\int_{-\infty}^{\infty} \frac{\mathrm{d}z}{(1+|z|)^{\gamma}} \right)$ 收敛当且仅当 $\alpha, \beta, \gamma > 1$. 故 I 收敛当目仅当 $\alpha, \beta, \gamma > 1$

(2)
$$\iint_D rac{\mathrm{d}x\mathrm{d}y\mathrm{d}z}{|x|^\alpha+|y|^\alpha+|z|^\alpha}$$
,其中 $D=\{(x,y,z)|x^2+y^2+z^2\geq 1\}$

作变量替换: $\begin{cases} x = r\cos\varphi\sin\theta, \\ y = r\sin\varphi\sin\theta, \text{ , } \pitchfork\left|\frac{\partial(x,y,z)}{\partial(r,\varphi,\theta)}\right| = r^2|\sin\varphi|, \end{cases}$

$$I = 8 \iiint_{\Omega} rac{r^2 \sin arphi \mathrm{d}r \mathrm{d}arphi \mathrm{d} heta}{r^{lpha} \left(\sin^{lpha} arphi (\cos^{lpha} heta + \sin^{lpha} heta) + \cos^{lpha} arphi
ight)} = 8 \left(\int_{1}^{+\infty} r^{2-lpha} \mathrm{d}r
ight) \left(\iint_{[0,rac{\pi}{2}]^2} rac{\sin arphi \mathrm{d}arphi \mathrm{d} heta}{\sin^{lpha} arphi (\cos^{lpha} heta + \sin^{lpha} heta) + \cos^{lpha} arphi}
ight)$$

 $\int_1^{+\infty} r^{2-lpha} \mathrm{d}r$ 收敛等价于 lpha > 3, 而当 lpha > 3 时,

$$\begin{split} \iint_{[0,\frac{\pi}{2}]^2} \frac{\sin\varphi \mathrm{d}\varphi \mathrm{d}\theta}{\sin^\alpha \varphi (\cos^\alpha \theta + \sin^\alpha \theta) + \cos^\alpha \varphi} &\leq \iint_{[0,\frac{\pi}{2}]^2} \frac{\mathrm{d}\varphi \mathrm{d}\theta}{(\sin^\alpha \varphi + \cos^\alpha \varphi) (\cos^\alpha \theta + \sin^\alpha \theta)} \\ &\leq \iint_{[0,\frac{\pi}{2}]^2} 2^{\frac{\alpha}{2} - 1} \mathrm{d}\varphi \mathrm{d}\theta \\ &= 2^{\frac{\alpha}{2} - 3} \pi^2 \end{split}$$

故 I 收敛当且仅当 $\alpha > 3$.

(3) $\iint_D \frac{\mathrm{d}x\mathrm{d}y}{(1-x^2-y^2)^{lpha}}$, 其中 D 为单位圆盘.

作变量替换
$$egin{cases} x = r\cos heta,\ y = r\sin heta \end{cases}$$
,由 $rac{\partial(x,y)}{\partial(r, heta)} = r$,则

$$I = \iint_D rac{r \mathrm{d}r}{(1-r^2)^{lpha}} = rac{1}{2} \int_0^{2\pi} \mathrm{d} heta \int_0^1 rac{\mathrm{d}r^2}{(1-r^2)^{lpha}} = \pi \int_0^1 rac{\mathrm{d}t}{t^{lpha}}$$

因此 I 收敛当且仅当 $\alpha < 1$.

(4)
$$\iint_D rac{\mathrm{d}x\mathrm{d}y}{|y-x|^lpha}$$
,其中 $D=[0,1]^2\setminus\{(x,y)|x=y\}$.

注意到

$$I=2\int_0^1\mathrm{d}x\int_0^x(x-y)^{-lpha}\mathrm{d}y$$

当 $\alpha=1$ 时, $I=-2-2\ln 0=+\infty$, 因此发散 当 $\alpha\ne 1$ 时, $I=2\int_0^1\frac{x^{1-\alpha}\mathrm{d}x}{1-\alpha}$, 此时 I 收敛等价于 $\alpha<1$. 综上, I 收敛等价于 $\alpha<1$.

(5)
$$\iint_D rac{\ln(x^2+y^2+z^2)\mathrm{d}x\mathrm{d}y\mathrm{d}z}{(1+x^2+y^2+z^2)^{lpha}}$$
, 其中 $D=\mathbb{R}^3\setminus\{(0,0,0)\}$

作变量替换:
$$egin{cases} x = r\cos\varphi\sin\theta, \ y = r\sin\varphi\sin\theta, \text{ , in } \left| rac{\partial(x,y,z)}{\partial(r,\varphi,\theta)}
ight| = r^2 |\sin\varphi|, \ z = r\cos\theta \end{cases}$$

$$I = \iiint_D rac{r^2 \sin arphi \ln r^2}{(1+r^2)^lpha} \mathrm{d}r \mathrm{d}arphi \mathrm{d} heta \ = 8\pi \int_0^{+\infty} rac{r^2 \ln r \mathrm{d}r}{(1+r^2)^lpha}$$

由比较判别法知, I 收敛等价于 $\alpha > \frac{3}{2}$

(6)
$$\iint_{\mathbb{R}^2} rac{\cos\sqrt{x^2+y^2}}{x^2+y^2+1} \mathrm{d}x\mathrm{d}y$$

作变量替换 $egin{cases} x = r\cos heta,\ y = r\sin heta \end{cases}$,由 $rac{\partial(x,y)}{\partial(r, heta)} = r$,则

$$I = \iint rac{r \cos r \mathrm{d}r \mathrm{d} heta}{r^2 + 1} = 2\pi \int_0^{+\infty} rac{r \cos r \mathrm{d}r}{r^2 + 1}$$

由 $\int_0^{+\infty} rac{r \cos r \mathrm{d}r}{r^2+1}$ 发散知 I 发散.

3.

设函数 f(x,y,z) 在 $\Omega=[0,1] imes[0,1]$ 上连续,且 $\forall (x,y)\in\Omega$,有 f(x,y)>0.定义集合: $D=\{(x,y,z)\mid (x,y)\in\Omega, 0\leq z\leq f(x,y)\}$.要求证明:当 $\alpha<1$ 时,积分 $I=\iiint_{D}\frac{\mathrm{d}x\mathrm{d}y\mathrm{d}z}{|z-f(x,u)|^{\alpha}}$ 收敛.

Answer:

当 $\alpha<1$ 时, $f^{1-\alpha}(x,y)$ 在 Ω 上连续且恒正, 因此 $\exists M>0$, 使得 $f^{1-\alpha}(x,y)\in(0,M]$ 在 Ω 上恒成立.从而

$$I = \iint_{\Omega} \mathrm{d}x \mathrm{d}y \int_{0}^{f(x,y)} rac{\mathrm{d}z}{(f(x,y)-z)^{lpha}} = \iint_{\Omega} rac{f^{1-lpha}(x,y) \mathrm{d}x \mathrm{d}y}{1-lpha} \leq rac{M}{1-lpha}$$

进而 $\iiint_D \frac{\mathrm{d}x\mathrm{d}y\mathrm{d}z}{|z-f(x,y)|^{\alpha}}$ 收敛, 证毕.