DOCUMENT RESUME

ED 054 705

4.8

FL 002 630

AUTHOR TITLE

Price, James D.

A Computerized Phrase-Structure Grammar (Modern

Hebrew): Part IV, An Algorithm for Analyzing Hebrew

Sentences. Final Report.

INSTITUTION SPONS AGENCY

Franklin Inst. Research Labs., Philadelphia, Pa. Office of Education (DHEW), Washington, D.C. Bureau

of Research.

BUREAU NO PUB DATE CONTRACT NOTE

BR-9-7722 Jun 71

OEC-0-9-097722-4411

232p.

EDRS PRICE DESCRIPTORS MF-\$0.65 HC-\$9.87

*Algorithms; Computational Linguistics; *Computer Programs; Deep Structure; Flow Charts; Grammar;

*Hebrew; Language Patterns; Language Research; Language Universals; Logic; Phrase Structure; Semitic Languages: Sentence Structure; *Structural Analysis:

Syntax: *Transformation Generative Grammar;

Transformation Theory (Language)

ABSTRACT

The final part of a four-part report of research on the development of a computerized, phrase-structure grammar of modern Hebrew describes the computerized algorithm for analyzing the sentences generated based on a complex-constituent-phrase structure grammar. The first section here discusses a structural model for modern Hebrew; the second provides a detailed description of the procedure for analyzing sentences; the third gives a detailed description of the computer program for the procedure; the last section describes the tests and the verifications of the algorithm. Appendix A lists the grammar rules of Hebrew syntax for the analysis of sentences. Appendix B gives the source-language listing of the computer program and subprograms used. Appendix C provides a sample output. Appendix D gives examples of the exhaustive snytactic analysis of the computer. For related reports see FL 002 627, FL 002 628, and FL 002 629. (VM)

£0054705

FINAL REPORT

Project No. 097722

Contract No. 0EC-0-9-097722-4411

Franklin Institute Report No. F-C2585-4

A COMPUTERIZED PHRASE-STRUCTURE GRAMMAR (MODERN HEBREW)
PART IV

James D. Price
Franklin Institute Research Laboratories
20th and Race Street
Philadelphia, Penn. 19103

June 1971

U.S. DEPARTMENT OF
HEALTH, EDUCATION, AND WELFARE
Office of Education
Institute of International Studies

U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION OR POLICY.

FINAL REPORT

Project No. 097722

Contract No. OEC-0-9-097722-4411

Franklin Institute Report No. F-C2585-4

A COMPUTERIZED PHRASE-STRUCTURE GRAMMAR (MODERN HEBREW)

PART IV

AN ALGORITHM FOR ANALYZING HEBREW SENTENCES

James D. Frice
Franklin Institute Research Laboratories
Philadelphia, Pennsylvania 19103

June 1971

The research reported herein was performed pursuant to a contract with the Office of Education, U. S. Department of Health, Education, Welfare.

U. S. DEPARTMENT OF
HEALTH, EDUCATION, AND WELFARE
Office of Education
Institute of International Studies

ABSTRACT

This is the fourth part of a four-part report of research for the development of a Computerized Phrase-Structure Grammar of Modern Hebrew. This part describes a computerized algorithm for analyzing sentences in modern Hebrew which is based on a generalized complexconstituent phrase-structure grammar (defined in Part I) as it was applied to the syntax of modern Hebrew (described in Part II).

A computer program of the algorithm is described which includes, for the main program and each subprogram, (1) a flow chart, (2) a written description of its operation, and (3) a source language listing in FORTRAN IV.

The algorithm was made operational in a UNIVAC 1108 computer and used to systematically test the grammar of modern Hebrew syntax by analyzing sentences in the language. A total of 26 sentences were analyzed in the process of which 57 of the 17 grammar rules were tested. The tests demonstrate the capability of the algorithm for analyzing sentences. Due to limitations on the predictive logic of the algorithm, some difficulties were experienced in the analysis of complex sentences. However, the algorithm proved to be a valuable tool for testing, validating, and, in numerous cases, correcting the grammar rules.

Three aspects of the algorithm need further attention: (1) several computations must be freed from dependence on the "content" of the source grammar, (2) the input data preparation should be simplified, and (3) the predictive logic should be extended to a greater depth. With these modifications the algorithm can be used to generate sentences in other Semitic languages whenever grammars become available, and to aid in the development of such grammars.

1

į,

TABLE OF CONTENTS

<u>Section</u>	$\underline{\mathit{Title}}$	Page
Part IV	An Algorithm for Analyzing Hebrew Sentences	
4.1	A Structural Model of Hebrew Sentences	4-1
	4.1.1 The Mapping Functions	4-2
	4.1.1.! The Transliteration	4-2 4-6 4-6 4-8 4-8 4-8
	4.1.2 The Variables	4-8
4.2	The Procedure	4-19
4.3	Computer Program of the Algorithm	4-25
	4.3.1 Flow-Chart Description of Computer Program	4-25
	4.3.1.1 Main Program ANALYZ 4.3.1.2 Subprogram ALPHA. 4.3.1.3 Subprogram DIAGRM 4.3.1.4 Subprogram LIMIT. 4.3.1.5 Subprogram MACHER 4.3.1.6 Subprogram OUTPUT 4.3.1.7 Subprogram PARSE. 4.3.1.8 Subprogram PROPH1 4.3.1.9 Subprogram PROPH2 4.3.1.10 Subprogram RERITE 4.3.1.11 Subprogram RULENO 4.3.1.12 Subprogram SYMACH 4.3.1.13 Subprogram VARATT	4-25 4-35 4-47 4-47 4-50 4-52 4-58 4-64 4-66 4-74 4-81
	4.3.2.1 Program Option Card	4-83 4-87
	4.3.2.2.1 Transliteration Table: Card 2-1	4-87 4-87

TABLE OF CONTENTS (CONT.)

Section	$\underline{\mathit{Title}}$	<u>Page</u>
	4.3.2.2.3 Restraint Matrix: Cards 2-3	4-89
	Cards 2-4	4-90
	Cards 2-5	4-90
	Cards 2-6	4-91
	Cards 2-7	4-91
	Cards 2-8	4-92
	4.3.3 The Sentence Description Cards	4-92
	4.3.3.1 Hebrew Sentence: Card 3-1 4.3.3.2 Word Description: Cards 3-2	4-92 4-93
4.4	Test and Demonstration of Algorithm	4~95
	4.4.1 Sentences Analyzed by Algorithm	4-95 4-97
4.5	Conclusion	4-102
APPENDI	X A - Listing of the Rules of the Grammar of Hebrew Syntax for Analysis of Sentences	4-A
APPENDI	X B - Source Language Listing of Computer Program ANALYZ and Associated Subprograms	4-B
APPENDI	X C - Sample Output from Subprogram OUTPUT	4-C
APPENDI	X D - Examples of Exhaustive Syntactic Analysis by Computer (with Associated Tree Diagrams) Tree Diagrams are Produced by Subprogram DIAGRM; Syntax Analysis Statements are	
	Produced by Subprogram PARSE	4D

LIST OF FIGURES

Figure No.				<u>I</u>	i t	le	<u>!</u>															Page
4.1	Flow Chart	of Proc	ed	ur	e									•			,•	•		•	•	.4-22
4.2	Map of Proce	edure									•							•				.4-26
4.3	Program ANAL	LYZ .	,												•			•				.4-27
4.4	Subprogram /	ALPHA		•	•									.•		٠		•	•		•	.4-36
4.5	Subprogram [DIAGRAM							•	•						•		•		•		.4-39
4.6	Subprogram l	LIMIT										•		•		•					•	.4–48
4.7	Subprogram M	MACHER					•			•				•				•	•			.4-49
4.5	Subprogram (OUTPUT			•	•			•	•	•		•	•			•	•	•		•	.4-51
4.9	Subprogram R	PARSE								•							•	•		•		.4-53
4.10	Subprogram I	PROPH1		•			•			•						•	•	•	•		•	.4-59
4.11	Subprogram [PROPH2			•	•												•	•			.4-62
4.12	Subprogram [RERITE		•	•		•		•				•	•	•	•	•	•	•	•	o	.4-67
4.13	Subprogram F	RULENO	•	•				•	•							•	•	•	•	•		.4-75
4.14	Subprogram S	SYMACH	•		•				•	•			•			•	•	•	•	**		.4-80
4.15	Subprogram \	VARATT	•														•			•		.4-84

iv

LIST OF TABLES

Table No.	$\underline{\mathit{Title}}$	<u>Page</u>
4-1	Aipha-Numeric Transliteration	4-3
4-2	List of Symbols	4-4
4-3	List of Restraints	4-7
4-4	List of Symbol Names	4-9
4-5	List of Analysis Predicates	4-17
4-6	Index of Analysis Statements	4-16
4-7	List of Feature Values	4-18
4-8	List of Variables	4-20
4-9	Restraint Matrix Data	4-90
4-10	Table of Symbols	4-91
4-11	Sentences Illustrating Grammar Symbols	4-98

PART IV

AN ALGORITHM FOR ANALYZING HEBREW SENTENCES

This part of the report describes a compterized algorithm for analyzing Hebrew sentences, and algorithm essentially complete in that it defines all the procedures and associated computer programs for analyzing sentences in modern Hebrew, but incomplete in that improvements can be made in the grammar upon which it operates. Because the algorithm is dependent only on the "form" of the grammar and not on its "content", it may be used for training research workers in the field of computational linguistics without being limited to the Hebrew language.

The algorithm consists of: (1) a structural model of the language, (2) a procedure for using the model to analyze sentences in the language, and (3) a program for performing the procedure by means of a computer.

The first section discusses the structural model of modern Hebrew. The second section provides a detailed description of the procedure for analyzing sentences. The third section provides a detailed description of the computer program of the procedure. The last section describes the tests and verifications of the algorithm.

4.1 A Structural Model of Hebrew Sentences

The structural model of modern Hebrew sentences consists of a complex-constituent phrase-structure grammar of modern Hebrew the generalized characteristics of which are defined in Part I of this report and the specific details for which are defined in Part II. Those details of the structural model required to explain the algorithm are presented in the appropriate places throughout the text. Reference should be made to Parts I and II for further information.

For the purposes of the algorithm, the structural model is viewed as the following:

- (1) a set of mapping functions
- (2) a set of variables

¹A few exceptions are noted throughout the text; these will be corrected in a subsequent revision.

4.1.1 The Mapping Functions

The mapping functions enable the user to define the specific details of the structural model that are peculiar to the given language (in this case Hebrew). The use of mapping functions makes the algorithm independent of the "content" of grammar it processes by enabling the user to define the "content" for a given language.

The mapping functions consist of the following:

- (1) a table of the transliteration
- (2) a table of symbols
- (3) a table of grammar rules
- (4) a table of restraints
- (5) a table of symbol names
- (6) a table of analysis predicates
- (7) an index of (6)
- (8) a table of feature values

4.1.1.1 The Transliteration

The table of transliteration provides a list of alphabetic and numeric characters of the given language. These data are used by the algorithm to transform the input characters to numbers for use in computation and to transform to resultant output numbers to their corresponding characters. Table 4-1 is a listing of the transliteration used for Hebrew (see Table 2-1, Part II, for Hebrew equivalents).

4.1.1.2 The Symbols

The table of symbols provides a list of the symbols used in the grammar of the given language. The list is used by the algorithm to transform the input symbol names of the grammar rules to numbers for use in computation and to transform the resultant output numbers to their corresponding symbol names for use in tree diagrams and output listings. Table 4-2 is a listing the symbols used for Hebrew.²

 $^{^2}$ See Table 2-2 and 2-3 of Part II for further description of the symbols.

Table 4-1
ALPHA NUMERIC TRANSLITERATION

		THA NUMERI	CIRANSLI		
L	TRANSL(L)	IA	L	TRANSL(L)	IA
1	o	О	26	О	25
2	1	1	27	Р	26
3	2	2	28	&	27
4	3	3	29	Q [*]	28
5	4	4	30	R	29
6	⁻ 5	5	31	s	30
7	6	6	32	T.	31
8	7	7	33	(32
9	8	8	34)	33
10	9	9	35	,	· 34
11	A	10	36	:	35
12	В	11	37	?	36
13	D	12	38	•	37
14	G	13	39	. 1	38
15	Н · ·	14	40	_	39
16	W	15	41	(space)	0
17	Z	16	42	F	41
18	x	17	43	Ι	42
19	@	18	44	V.	43
20	Y	19	45	*	44
21	K	20	46	#	45
22	$\mathbf{L}^{(i)}$	21	47	Δ.	46
23	M	22	48		47
24	N ·	23	49	?	48
25	С	24	50	?	49

Table 4-2 LIST OF SYMBOLS

SYMBOL	SYMBOL	SYMBOL	SYMBOL	SYMBOL	SYMBOL
No.	Name	No.	Name	No.	Name
1	Z	21	Вр	41	R
2	V _q o	22	N pb	42	N sp
3	A pa	23	N pa	43	N Op
4	Ap	24	N pc	44	N _{ip}
5	As	25	N ap	45	N px
6	N _a	26	N p	46	V ma
7	Sqo	, 27	D pa	47	V _{mb}
8	Ns	28	D _{pb}	48	V _{mc}
9	R _d	29	D pc	49	v md
10	Ro	30	D _p	50	v _m
11	B aa	31	Ea	51	V _{mr}
12	B ab	. 32	v _b	52	V mi
13	B ac	33	v _{bb}	53	v _p
14	B ad	34	v _c	54	v _{rb}
15	B ae	35	V aa	55	V _{ri}
16	B _{af}	36	V _a	56	N _v
17	B ba	37	В _с	57	N
18	Въъ	38	X _p	58	E pb
19	B _a	39	N O	59	E pa
20	B bc	40	D _{pd}	60	E p

4-4

.

Table 4-2 (Continued)
LIST OF SYMBOLS

		T	
SYMBOL	SYMBOL	SYMBOL	SYMBOL
No.	Name	No.	Name
61	Saa	81	E
62	Sab	82	· G
63	Sac	83	н
64	Sa	84	I
65	Sro	85	J
66	s _{ri}	86	L
67	R	. 87	N .
68	K n	88	О
. 69	K _C	89	P
70	K _k	90	Q ·
71	K	91	R
72	к _d	92	T
73	s _d	93	U
74	S	94	V
75	s _i	95	W .
76	و	96	Y
77	A	97	F
78	В		
79	. C		
80	D		

4.1.1.3 The Rules

The table of grammar rules provides a list of the rules of the complex-constituent phrase-structure grammar of the given language. Appendix A of this part of the report contains a listing of the grammar rules used for Hebrew. The rules of the analysis grammar differ from those of the synthesis grammar in two respects:

- (1) the left side of the analysis rules is the right side of the synthesis rules and visa versa.
- (2) synthesis rules that have an optimal symbol as the first element of the right side must have two corresponding analysis rules, one with the first symbol as mandatory, and one without the first symbol.

4.1.1.4 The Restraints

The table of restraints provides a list of limitations to be used by the rules of the grammar. The grammar specifies a certain horizontal row of the table to limit the value of a given symbol subscript. The restraints are interpreted as follows:

- (1) The first number in the row specifies the number of restraint values in the row.
- (2) If the numbers in the specified row are positive, the value of the given subscript must be one of the numbers in the row.
- (3) If the numbers in the specified row are negative, the value of the given subscript must not be one of the numbers in the row.

Table 4-3 is a list of the restraints used in the grammar of Hebrew.

 $^{^3\}mathrm{Reference}$ should be made to Section 2.2.3 of Part II of this report for a detailed description of the rules.

Table 4-3

LIST OF RESTRAINTS

Row	No. of		Item		
No.	Items	1	2	3	4
1	1	-1			
2	1	-2		-	
3	1	-3			
4	2	0	1		
5	2	1	2		
6 ·	2	-1	-2		
7	2	1	3	,	
8	2	2 .	5	· · · · · · · · · · · · · · · · · · ·	
9	2	4 -	5	İ	
10	2	6	7		,
11	3	1	2	3	
12	3	4	, 5	6	
13	4	1	2	3	4
14	4	-1	-2	-3	-4

4.1.1.5 The Symbol Names

The table of symbol names provides a list of the names assigned to the symbols of the grammar. The list is used by the algorithm for constructing analysis statements about the sentences being analyzed. The analysis statements are of the general form

$$N_s + N_a$$

where N_S stands for a symbol name and its associated derivational history and N_a stands for an analysis predicate (see next section). For example, the algorithm may construct the statement "The basic past-nom. adjective phrase (APA) expresses the superlative degree," the underlined part of which is the symbol name (N_S) the remainder is the analysis predicate. Table 4-4 is a listing of the symbol names used for Hebrew.

4.1.1.6 The Analysis Predicates and Index

The table of analysis predicates provides a list of the syntactic functions of all the catagories of the symbols used by the grammar. The list is used by the algorithm to serve as the predicate of analysis statements (see example in the previous section). Table 4-5 is a listing of the analysis predicates for Hebrew. Table 4-6 is an index of the analysis predicates that maps the correspondence between a given class of a symbol and the associated predicate. For example, Symbol 3 class 3 is associated with predicate 5.

4.1.1.7 The Feature Values

The table of feature values provides a list of the various semantic values that a given linguistic feature of the symbols may assume. The table maps the correspondence of the numerical values of the symbol subscripts with the semantic value of the associated linguistic feature. Table 4-7 is the table of feature values for Hebrew. For example, the table specifies for subscript n=2 that this corresponds to the semantic value dual for the linguistic feature number. The algorithm uses these data to exhaustively define the surface structure elements in analysis statements.

4.1.2 The Variables

The set of variables consist of 29 subscripts on the set of symbols of the grammar that enable the user to define the sentence to be analyzed by the algorithm. The algorithm uses three types of variables:

- (a) Fixed variables -- those with values fixed by the rules of the grammar.
- (b) Dependent variables -- those the value of which are computed by the grammar.
- (c) Independent variables -- those the value of which the user defines in the process of describing the sentence being analyzed.

ERIC
Full Text Provided by ERIC

1

Table 4-4

Symbol No.	Symbol Name
1	PREPOSITIONAL PRON. PHRASE(Z)
2	OBJECTIVE-INTEROG. VERB PHRASE(VOO)
2 3	BASIC POST-NON. ADJECTIVE PHRASE (APA)
3 1	POST-NOMINAL ADJECTIVE PHRASE (AP)
4 5	ADJECTIVAL POSSESS. PHRASE(AS)
6	BASIC NOUN PHRASE(NA)
7	DBJECTIVE INTEROGATIVE PHRASE(SQO)
8	POSSESS PRON. NOUN PHRASE (NS)
9	BASIC DEMONSTRATIVE PRON. PHRASE(RD)
ıő	DIRECT-OBJECT PRON.PHRASE(RO)
ii	UNITS NUMBER PHRASE(BAA)
12	TENS NUMBER PHRASE(BAB)
13	TEENS NUMBER PHRASE (BAC)
14	MULTI-TENS NUMBER PHRASE(BAD)
15	HUNDREDS NUMBER PHRASE(BAE)
iš	THOUSANDS NUMBER PHRASE(BAF)
17	1-TO-99 NUMBER PHRASE(BBA)
18	100-TO-999 NUMBER PHRASE(BBB)
	1-TO-999 NUMBER PHRASE(BA)
19 20	1000-T0-9999 NUMBER PHRASE (BBC)
21	1-TO-9999 NUMBER PHRASE(BP)
22	SIMPLE NOUN PHRASE(NPB)
23	REGULAR NOUN PHRASE (NPA)
24	APPOSITIONAL NOUN PHRASE(NPC)
25	APPOSITIONAL PHRASE(NAP)
26	GENERAL NOUN PHRASE (NP)
27	SPECIFIC QUANTITY ADVERB PHRASE (DPA)
28	GENERAL QUANTITY ADVERB PHRASE(OPB) QUALITATIVE ADVERB PHRASE(APC)
29	
30	ADVERB PHRASE(DP) BASIC PARTICIPLE PHRASE(EA).
31	
32	
33	THREE-TENSE VERB PHRASE(VBB) EMPHATIC VERB PHRASE(VC)
34 35	SEVEN-TENSE VERB PHRASE (VAA)
36	VERB PHRASE (VA)
37 37	DEFINITE NUMBER PHRASE(BC)
38	PREPOSITION PHRASE(XP)
39	DIRECT OBJECT PHRASE(NO)
40	COPULATIVE ADVERB PHRASE(DPD)
41	SUBJECT PRONDUN PHRASE(RSP)
42	SUBJECT PHRASE(NSP)
43	OBJECT PHRASEKNOP)
44	INDIRECT PHRASE(NIP)
45	COPULATIVE PHRASE(NPX)
46	DIRECT-OBJ. VERB MODIF. PHRASE(VMA)
47	INDIRECT-OBJ. VERB MOD IF . PHRASE (VMB)
48	DISCOURSE VERB MODIF. PHRASE (VMC)

Symbol	مانا	Symbol Name
49		DOUBLE-ACCUS.VERB MODIF.PHRASE (VMD)
50		VERB MODIFYING PHRSE (VM)
51		OBJECT REL-CLAUSE VRB-MOD-PHRSE(VMR)
52		INDIR-REL-CLAUSE VRB.MOD.PHRASE (VMI)
53		PREDICATE PHRAISE(VP)
54 55		OBJ.REL.CLAUSE VERB PHRSE(VRB) INDIRECT REL.CLAUSE VERB PHRASE(VRI)
56		INFINITIVE CONSTRUCT PHRSE(NV)
57		INFINITIVE ABSOLUTE PHRASE (NW)
58 50		CONSTRUCT PARTICIPLE PHRS(EPB)
59 60		ABSOLUTE/CONSTRUCT PART PHRASE (EPA)
61		PARTICIPLE PHRASE(EP)
62		POSSESSIVE INDEPENDENT CLAUSE (SAA) DEFINITE INDEPENDENT CLSE(SAB)
63		INDEFINITE INDEPENDENT CLAUSE (SAC)
64		INDEPENDENT CLAUSE (SA)
65		OBJECTIVE RELATIVE PHRASE (SRO)
66		INDIRECT RELATIVE PHRASE(SRI)
67		RELATIVE PRONOUN CLAUSE(RG)
68		SUBJECT-OBJ.DEPENDENT CLAUSE(KN)
69		CIRCUMSTANTIAL DEPENDENT CLAUSE(KC)
70		CONDITIONAL CLAUSE(KK)
71		INTEROGATIVE CLAUSE(KI)
72		DISCOURSE CLAUSE (KD)
73		DEPENDENT CLAUSE SENTENCE(SD)
74 75		BASIC SENTENCE(S)
75 76		INTEROGATIVE SENTENCE(SI) COMPLETED SENTENCE(SC)
77		ADJECTIVE(A)
78		NUMBER ABSOLUTE(B)
<i>.</i> 79		CONJUNCTION(C)
80		ADVERB (D)
81		PARTICIPLE ABSOLUTE(E)
82		PARTICIPLE CONSTRUCT(G)
83		DEFINITE ARTICLE(H)
84		NUMBER CONSTRUCT(I)
85		NOUN CONSTRUCT(J)
86 87		NEGATIVE (L) Noun absolutern)
88		SIGN OF DIRECT OBJECT(D)
89		PREPOSITION(P)
90		INTEROGATIVE:(Q)
91		PRONOUN(R)
92		PUNCTUATION MRK(T)
93		PARTICLE (U)
94		ERBÜV) alle Brander in Leiter der Gereichen
95		INFINITIVE ABSOLUTE(N)
96	I	NFINITIVE CONSTRUCT(Y)

Table 4-5 LIST OF ANALYSIS PREDICATES

Statement No	
	CONTAINS A PREPOSITION AND A PRON-
1	IS THE PREDICATE OF OBJ.INTEROG.PHS.
2	EXPRESSES THE NONCOMPARATIVE DEGREE.
3	EXPRESSES THE COMPARATIVE DEGREE.
4	EXPRESSES THE SUPERLATIVE DEGREE.
5 6	IS A BASIC POST-NOMINAL ADJ.PHRASE.
2 3 4 5 6 7	EXPRESSES POSSESSION BY A PRONOUN.
8	EXPRESSES POSSESSION BY A NOUN PHRS.
9	HAS A NONDETERMINATE NOUN.
ıŏ	HAS A DETERMINATE NOUN.
iĭ	HAS A (DETERMINATE) PROPER NOUNS
iż	NAMES THE SUBJECT.
13	DOES NOT NAME THE SUBJECT.
14	EXPRESSES POSSESSION BY A CONSTRUCT.
15	STANDS IN PLACE OF A NOUN.
16	MODIFIES A DETERMINATE NOUN.
17	CONSISTS OF A PERSONAL PRONOUN (DET) .
18	CONSISTS OF AN OBJECT PRONOUN.
19	IS THE NUMBER ONE.
20	IS THE NUMBER TWO. TS A NUMBER BEITWEEN 3 AND 9.
21	13 H MOHOEM THE STATE OF THE ST
22	IS THE NUMBER 10.
23	IS THE NUMBER 112
24	IS THE NUMBER 12. IS A NUMBER BETWEEN 13 AND 19.
25	
26	AD AD AD AD
27	and a second
28	IS THE NUMBER 100. IS THE NUMBER 200.
29	IS EITHER 300+ 400++++ 800 OR 900+
30	IS THE NUMBER 1000.
31	TS THE NUMBER 2000.
32	IS EITHER 3000.4000 OR 9000.
33	IS A UNITS NUMBER PHRASE.
34 35	IS A TENS NUMBER PHRASE.
35 36	TS A TEENS NUMBER PHRASE.
36 37	IS A MULTI-TENS NUMBER PHRASE.
38	CONSISTS OF A MULTI-TEN AND UNITS.
39	IS THE NUMBER 100 OR MULTIPLE OF IT.
40	IS A NUMBER BETWEEN 100 AND 999.
41	IS A NUMBER BETWEEN 1 AND 99.
42	IS A NUMBER BETWEEN 100 AND 999.
43	IS THE NUMBER 1000 OR ITS MULTIPLE.

Statement No.	Analysis Predicate
44	IS A NUMBER BETWEEN 1000 AND 9999.
45	IS A NUMBER BETWEEN 1 AND 999.
46	IS A NUMBER BETWEEN 1000 AND 9999.
47	HAS A BASIC NOUN PHRASE AS NUCLEUS.
48	HAS A POSSESS. NOUN PHRS. AS NUCLEUS.
49	HAS A PARTICIPLE PHRASE AS NUCLEUS.
50	CONTAINS NO CONSTRUCT NOUNS.
51	CONTAINS CONSTRUCT NOUN(S).
52	IS A DEFINITE NUMBER PHRASE.
53	IS A REGULAR NOUN PHRASE.
54	IS AN APPOSITIONAL NOUN PHRASE.
55	IS A PREPOSITIONAL PHRASE.
56	IS A RELATIVE CLAUSE.
57	IS A REG.NOUN PHRS.+(APP.NOUN.PHRS).
58	I'S A SPEC. QUANT. ADV.+(NUMBER).
59	IS A NUMBER + A SPEC. QUANT.ADVERB.
60	IS A CLASS 4 ADVERB + (MODIFIER).
61	IS A CLASS 5 ADVERB +(MODIFIER).
62	IS A TEMPORAL ADVERB PHRASE.
63	IS A LOCATIVE ADVERB PHRASE.
64	IS A SPECIFIC QUANTITY ADV. PHRASE.
65	IS A GENERAL QUANTITY ADVERB PHRASE.
66	IS A QUALITATIVE ADVERB PHRASE.
67	IS AN INTENSITY ADVERB PHRASE.
68	IS A PREPOSTIONAL PHRASE.
<u>69</u>	IS AN UNDERTERMINATED PARTICIPLE.
70	IS A DETERMINATED PARTICIPLE. IS A VERB OR INFINITIVE ABSOLUTE.
71	IS A VERB OR INFINITIVE ABSOLUTE. IS A VERB OR PARTICIPLE.
72	OMITS VERB FOR PRES.ACT.INDIC.COPUL.
73 74	EXPRESSES EMPHASIS OF CERTAINTY (BH) .
74 75	EXPRESSES EMPHASIS OF DURATION (BH).
76 76	EXPRESSES NO SPECIAL EMPHASIS.
77	IS AN EMPHATIC VERB PHRASE.
78	IS A SEVEN-TENSE VERB PHRASE.
79	IS A NONDETERMINATE NUMBER PHRASE.
80	IS A DETERMINATE NUMBER PHRASE.
81	GOVERNS A NOUN PHRASE.
82	IS A PREPOSITIONAL PRONOUN PHRASE.
83	GOVERNS A RELATIVE PRONOUN CLAUSE.
84	IS A NOUN PHRASE.
85	IS A RELATIVE PRONOUN CLAUSE.

Statement	No. <u>Analysis Predicate</u>
0.5	IS A TEMPORAL ADVERB.
86	CATTUE ABVERR
87	TE A SUBJECT PRONOUN + (APPUS - N - PM -) -
88 89	IS A DEMONSTRATIVE PRONOUN.
90	TE A NOUN PHRASE.
90 91	CUR ICCE DOGNOUN PHRASE
92	CUB ECTLOR IFCT DEPENDENT CLAUSE
93	TO AN INCINITIVE CONSTRUCT FOR ADDA
94	IS A NONDETERMINATE NOUN PHRASE.
95	IS A DETERMINATE DIRECT OBJECT PHRS.
96	15 M TALL DURACE
97	IS AN INFINITIVE PHRASE.
98	IS AN ADJECTIVE PHRASE.
″ 99	IS A COPULATIVE ADVERB PHRASE.
100	IS A NOUN PHRAISE. IS A SUBJECT PRONOUN PHRASE.
101	
102	TT
103	DOONOUN + (ADVERB PHRASE) -
104	ADDAN ATABLE
105	TO A DEDECT OBJECT PHRASE.
106	AND AND AND AND AN INDEPHREE
107 108	A DED AD LEDON AND AN INUPPRINCE
109	AND AN OR PRINCE AND AN INCOMPRESSE
110	AN OOL DOON, AND A DISC. CLAUSE
i11	UAC A DID OR PRONAND A DISCOLLE
iiż	HAS A DISC. CLAUSE + (OTHER MODIFS).
113	HAS AN OBJ. PRON. AND A NOUN PHRASE.
114	HAE A DID OB I PRON AND A NOUN PHRALA
115	HAS AN OBJ. PHRASE AND A NOUN PHRASE.
116	TE A COPULATIVE PHRASE.
117	AN ADVEDS DHRASE.
iis	
119	TE AN INDIR DRUELL VERD HODELINGS
120	IS A PREPOSITIONAL PHRASE-
121	IS AN INFINITIVE PHRASE.
122	IS A DISCOURSE VERB MODIF.PHRASE. IS A DOUBLE ACCUS.VERB MOD.PHRASE.
123	IS A DOUBLE ACCUSAVE B HODE THAT
124	IS AN ADVERB PHRASE. IS A DIR.OBJ.VERB MODIF.PHRASE.
125	AN ENDTO ARIA VERB MUDIF CHARASCO
126	
127	IS A PREPOSITION-PROMETERS

tatement No.	Analysis Predicate
128 129 130 131 132 133 134 135 136	IS A DOUBLE-ACC.VERB MODIF. PHRASE. IS AN OBJ.PRN.AND A PREP.PRON.PHRSE. IS A DIR-OBJ.PRON.+ PREP.PRON.PHRSE. IS A PREP.PRON.PHRSE + DIR.OBJ.PHSE. IS A VERB PHRASE + VRB.MODIF.PHRASE. IS A VRB.PHRSE.+ IND.REL.CLS.VB.M.P. HAS PREVIOUSLY NAMED SUBJECT. REFERS TO SUBJECT BY MEANS OF PRON. NAMES SUBJECT BY MEANS OF NOUN PHSE. IS AN INFIN.ABS.AND VRB.MOD.PHRASE.
137 138 139 140 141 142 143	HAS A NOUN PHRASE AS OBJECT. HAS A PRONOUN AS OBJECT. IS A PART.PHRS. + VRB.MODIF.PHRASE. IS A CONSTRUCT! PARTICIPLE PHRASE. IS A ABS/CONST. PARTICIPLE PHRASE. EMPHASIZES THE POSESSOR. EMPHASIZES THE THING POSSESSED.
145 146 147 148 149 150	HAS NO SPECIAL EMPHASIS. HAS SPECIAL SYNTAX FOR PRES.ACT.IND. HAS A NAMED SUBJECT. NAMES SUBJECT. SPECL.PRES.ACT.IND. HAS PRON.SUB SPECL.PRES.ACT.IND. NAMES SUBJ SPECL.NEG.PR.ACT.IND.
152 153 154 155 156 157 158 159	EMPHASIZES VERBAL IDEA, SPEC.PR.A.I. REFERS TO SUBJECT PREVIOUSLY NAMED. IS A POSSESSIVE INDEPENDENT CLAUSE. IS AN INDEFINITE INDEPENDENT CLAUSE. IS A DEFINITE INDEPENDENT CLAUSE. REFERS TO PREVIOUSLY NAMED SUBJECT. NAMES THE SUBJECT OF THE VERB. HAS REL.PRON. AS SUBJECT OF VERB.
160 161 162 163 164 165	HAS REL.PRON.AS OBJECT OF VERB. HAS REL.PRON.RELATED TO VERB BY PRP. USES BIBLICAL HEBREW CONJUNCT.(KY). USES MODERN HEBREW CONJUNCTION(S). IS A TIME DEPENDENT CLAUSE. IS A PURPOSE-RESULT DEPENDENT CLSE. IS A CAUSE-REASON DEPENDENT CLAUSE.
167 168 169 170	IS A CIRCUMSTANTIAL PREP.PHRASE. IS THE PROTASIS OF THE COND.SENTNCE. QUESTIONS TRUTH/CIRCUMSTANCES OF SN. ASKS WHO/WHAT IS SUBJECT OF VERB.

<u>Analysis Predicate</u> Statement No. ASKS WHO/WHAT IS OBJECT OF VERB. 171 172 173 DISCOURSE INDIRECTLY. QUOTES THE DISCOURSE DIRECTLY. 174 HAS NO EMPHASIS ON DEPENDENT CLAUSE. 175 HAS SOME EMPHASIS ON DEPENDENT CLSE. 176 A SIMPLE SENTENCE. 177 A DEPENDENITI CLAUSE SENTENCE. 178 A CONDITIONAL SENTENCE. 179 DEPENDENT CLAUSE. 180 HAS A DEPENDENT CLAUSE (NO EMPHAS). 181 DEPENDENT CLAUSE (EMPHASIS). 182 183 DECLARATIVE SENTENCE. INTEROGATIVE SENTENCE. 184 185 IMPERATIVE SENTENCE.

Table 4-6
INDEX OF ANALYSIS STATEMENTS

				Symbo	l Class	3	_		
Symbol No.	<u>1</u>	2	3	4	5	6	77	8_	
1 2	1 2	0 0	0	0	0	0	0	0	
2 3 4 5 6 7 8 9	2 3 6	4 0	5 0	0	0 0	0	.	a o	
5 6	7 9	8 10	0 11	Ω Ω	. 0	ם ם	0	0	
7 8	12 14	13 0	0	0 0	0	0	0	0	
9	15 18	1.6	1 7 0	0	Ö	0	0	0	
11 12	19 22	20 0	21	<u>ت</u> ت	o o	0	0	0	
13 14	23	24	2 5 0	0	0	0	٥	0	
15 16	26 28	27 29	3 O 3 3	0	0	٥	0	0	
17 18	3 1 3 4	32 35	36	37	38 0	0	0	0	
19 20	39 41	40 42 44	0	0	Ö	٥	0	0	
l 21 l	43 45	46	0	0	C	0	0	٥	
22 23 24	47 50	4 8 5 1	49 52	0	0 0	0	٥	0	
25	53 54	5 5 5	5 6	0	0	0	0	0	
26 27	57 58	5 9	0	0	٥	0	0	0	
28 29	6 B	ם מ	C	. 0	۵	٥	68 0	0	
29 30 31	6 2 6 9	63 70 -0	64	65 0 0	66 0	67 D	0	0	
32 33	7 1 72 7 4	73	0	0	ο ο	D	0	0	
34 35 36	77	75 D	76 0	0	٥	- 0	0	0	
36 37	78 79	Ω Π8	ם	0	0	0	٥	٥	

Table 4-6 (Continued)

			lab	1e 4-6	(Con c	,			
	Symbol Class								
Symbol	_								
No.	1	2	- 3	4	5_	6_	7	8	
1	81	8 <i>2</i>	83	α	a	٥	0	Ö	
2	84	85	0	O	Ü	a	O	0	
3	86	87	0		ū	0	0	0	
4	88	89	O	0	C	C	. 0	0	
5	90	91	92	93	Ü	ם	0	0	
5	94	95	۵	0	a	0	0		
/	96	97	0	0	0 102	103	a a	0	
2 3 4 5 6 7 8 9	98 104	99 105	100 106	101 0	102	103	0	Ö	
Ιιő	107	108	109	ō	٥	۵	٠ ۵	Ö	
iĭ	110	111	112	ō	ō	ō	Ö	0	
12	113	114	115	0	Ω	۵	O	0	
13	116	117	118	119	120	121	122	123	
14	124	125	126	127	128	O	C	0	
15 16	129	130	131	D	ם	ū	ū	0	
16	132	0	۵	מ	Ü	0	0	0	
17	132	0	, o	0	0	ם	. 0	0	
18 19	133 134	0 135	ນ 136	۵ ۵	O O	.D	Ö	۵	
20	134	122	136	0	۵	۵	0	0	
21	138	139	. 0	٥	0	0	0	0	
22	140	141		C	. 0	. C	ä	0	
23	142	0	ō	Ö	٥	ם	, o	ũ	
24 25	143	144	145	146	ā	0	, o	Ö	
25	147	148	149	150	151	152	۵	0	
26	153	0	O	C	0	0	0	0	
27	154	155	155	D .	۵	ם		Ö	
28	157	158	0	. 0	, O	O	O	0	
29 30	157	15.8	0	0	Ü	۵	0	0	
30	159	160	16:1	Ü.	, C	0	0	0	
32	162 164	163 165	0 166	0 1:67	ם ט	<u>α</u>	<u>a</u> 0	0	
33	168	[0 2	Ü	1,9,1	ם		ŭ	Ö	ļ
34	169	170	171	172	<u>.</u>	Ö	Ö	0	l
35 36	173	174	0	0	ō	ū	ō	ō	- 1
36	175	176	0	ō	ā	ū	Ö	ũ	
37	177	178	179	0	D		O	O	
38	180	181	1.8 5	O	۵	۵	0	O	
39	183	184	185	ū	D.	O	Ω	0	ł

Table 4-7
LIST OF FEATURE VALUES

Feature	Feature	Subscript valve							
Subscript	Name	1	2	3	4	5	6	7	8
f	compound- ing	f=l	f= 2	f=3	f=4	-	-	_	<u>-</u>
k	com.	once	twice	three	four	five	six	seven	eight
b	compound- ing class	conj.	disj.	-	-	-	-	-	-
С	Symbol class	one	two	three	four	five	six	seven	eight
&	negation type	one	two	three	four	five	six	seven	eight
у	negation	neg.	neg.	neg.	neg.	neg.	neg.	neg.	neg.
d	determina- tion	indef.	def.	-	-	-	_	-	-
n	number	sing.	dual.	p1.	-	-	-	_	_
g	gender	masc.	fem.	-	-	-	_	-	-
р	pers.	first.	sec.	third	-	_	-	-	-
r	preposi- tion class	r=1	r=2	r=3	r=4	r=5	r=6	r=7	r=8
a	verb class	a=1	a=2	a=3	a=4	a=5	a=6	a=7	a=8
V	voice	act.	pass.	refl.	=	-	-	-	_
i	mood	ind.	impv.	subj.	-	=	-		-
t	tense	past	futr.	pres.	pst. C.	fut. C.	plpf.	f. prf.	

Table 4-8 is a list of the variables used by the algorithm together with a description of each 4 .

4.2 The Procedure

This section describes the procedure for using the structural model to analyze Hebrew sentences. It consists of the logical interaction of a set of operational functions that manipulate the data of the mapping functions in accordance with the specified values of the independent variables supplied by the user. Basically the procedure begins with a string of initial symbols of the Grammar of Hebrew Syntax⁵ and applies the replacement rules of the grammar until only one terminal symbol remain. The major operational functions required to perform this task are listed below:

- (1) Read in the initial symbols
- (2) Write the initial symbols on the "A" list of symbols
- (3) Initialize symbol counting indices
- (4) Compare computed maximum value with 1
- (5) Increment symbol counting index
- (6) Compare symbol counting index with the computed maximum value
- (7) Read a symbol from the "A" list of symbols
- (8) Write a symbol on the "B" list from "A" list
- (9) Locate a grammar rule that applies to a given symbol
- (10) Determine that a rule exists
- (11) Determine that the rule matches the given symbol with respect to all subscripts
- (12) Initialize rule element counting indices
- (13) Increment rule element counting indices
- (14) Compare rule element counting index with the computed maximum value
- (15) Determine that an element of the rule matches an element on the "A" list with respect to all subscripts
- (16) Compute values for dependent-variable subscripts

⁵Defined in Part II of this report.

⁴See Section 2.2.1 of Part II for a detailed description of the variables as they apply to Hebrew.

Table 4-4

LIST OF VARIABLES

Var.	Var.	Description	Var.	Var.	Description
No.	Name		No.	Name	
1	SN	Symbol No.	16	i	mood
2	m	opt./mand.	17	t	tense
3	f	comp. class	18	s	stem
4	k	comp. no.	19	w ₁	Root 1
5	ъ	comp. type	20	w ₂	Root 2
6	c	class	21	w ₃	Root 3
7	e	neg. class	22	w ₄	Root 4
8	У	neg./pos	23	ST	Symbol Type
9	d	definiteness	24	RN	Rule No.
10	n	number	25	EN	Element No.
11	g	gender	26	NRH	No. Rt. Elements
12	· p	person	27	RT	Restraint type
13	r	prep. class	28	RS	Restraint Subs.
14	a	verb. class	29	х	No./gend. Trans.
15	v	voice			

- (17) Predict success of a rule after one or two passes. 7
- (18) Write a rule element on the "B" list
- (19) Reset value of symbol counting index
- (20) Erase the "A" list of symbols and transfer the symbols on the "B" list to the "A" list
- (21) Write sequence of analysis statements
- (22) Construct a tree diagram of the generated sentence

Many minor operational functions that are associated with these are not listed. They are defined in Section 4.3 that describes the computer program of the algorithm. The above are sufficient for explaining the procedure of the algorithm.

The procedure consists of a logical manipulation of the operational functions so as to analyze a sentence. The logical interrelationship of the functions is defined in flow chart form in Figures 4.1a and 4.1b. The actual program of the procedure is more complex than this flow chart, but this is sufficient for explaining the procedure.

The initial symbol is read in (Block 1)⁶ together with the value of all independent variable subscripts, and it is written on the "A" list of symbols (LIST1) as the first symbol (Block 2). The number of symbols on LIST1 (J_{max}) is computed and counting register (J) is initialized (Block 3). The value of J_{max} is compared with 1 (Block 4), if $J_{max} \leq 1$ computation procedes to Block 21, otherwise to Block 5. In Block 5 the counting resister (J) is indexed by one and the value of J is compared with J_{max} to determine whether or not all the symobls on list LIST1 have been processed (Block 6); if not, computation procedes to Block 7, otherwise to Block 20.

In Block 7, the J-th symbol of LIST1 is read, and an applicable grammar rule is located (Block 9). If there is no applicable rule (Block 10) computation goes to Block 8, otherwise to Block 11. In Block 8 the J-th symbol of LIST1 is written on LIST2 and computation returns to Block 5.

In Block 11, a test is made to determine that the first left hand element of the rule matches the J-th symbol of LIST1 in accordance with the following criteria:

(1) The symbol number must be the same for both symbols, or if not, the grammar rule symbol must be a variable symbol; and

⁷Predictive logic is required to synchronize the production of related constituents because the rules of the grammar are unordered (by original definition). Prediction to a depth of two passes enables the algorithm to analyze most simple Hebrew sentences. Greater predictive power is required from more complex sentences.

The "Block" number corresponds to operation function number previously listed.

Figure 4.1a: Flow Chart of Procedure

C: Does Jl-th Symbol of LIST1 Match K-th element of Rule?

D: Predict Success in 1 or 2 Future Passes?

Figure 4-1b: Flow Chart of Procedure

- (2) the symbol class must be the same for both symbols; and
- (3) every fixed-valued subscript of the rule symbol must be the same as the corresponding subscript of the J-th symbol; and
- (4) the restraints on the rule symbol must be met.

If the criteria are not met (Block 11) computation returns to Block 9 for location of the next applicable grammar rule. If the criteria are met, computation procedes to Block 12.

In Block 12, the number of symbols on the right side of the rule (K_{max}) is computed and counting register (K) is initialized to zero and register J1 is set equal to J. Then registers K and J1 are indexed by one (Block 13) and the value of K is compared with K_{max} (Block 14) to determine whether or not all the right left elements of the rule been processed; if not, computation procedes to Block 15, otherwise to Block 18. In Block 15, a test is made to determine that the J1-th symbol of LIST1 matches the K-th element of the given rule in accordance with the criteria listed for Block 11. If the symbols match computation procedes to Block 16, otherwise to Block 17. In Block 16, the values of the variable subscripts of the K-th element of the rule are computed and computation returns to Block 13.

In Block 17, a test is made to predict whether the present rule would be satisified after one or two more passes, that is, whether the J1-th symbol of LIST1 will develop in one or two passes into the symbol required by the present rule. If success is predicted computation returns to Block 8 and the J-th symbol is held over so that the predicted development can take place; if success is not predicted, computation returns to Block 9 for a new rule. In Block 18, the right hand element of the rule is written on LIST2 with the computed values assigned to its subscripts, and computation procedes to Block 19.

In Block 19, the value of the symbol counting index is changed to the value J1-1, and computation returns to Block 5 to begin with the next symbol on LIST1.

Referring back to Block 6, if all symbols on LIST1 have been processed, computation procedes to Block 20 where the symbols on LIST1 are erased, those on LIST2 are transferred to LIST1, LIST2 is erased, and computation returns to Block 3 for processing the new symbols on LIST1.

Referring back to Block 4, if only one symbol remains on LIST1, the analysis is complete, so a list of analysis statements is assembled (Block 21), a tree deagram of the analyzed sentence is constructed (Block 22), and computation stops.

4.3 Computer Program of the Algorithm

This section describes a computer program of the Algorithm for Analyzing Hebrew Sentences. First a flow-chart description of the program is given, then an input map is provided with instructions on how to use the program. Appendix B of this part of the report contains a source language listing of the program in FORTRAN IV.

4.3.1 Flow-Chart Description of Computer Program

This section describes the computer program of the Algorithm for Analyzing Hebrew Sentences in terms of flow diagrams. The program consists of a main program ANALYZ and the following subprograms:

- (1) ALPHA
- (2) DIAGRM
- (3) LIMIT
- (4) MACHER
- (5) OUTPUT
- (6) PARSE
- (7) PROPH1
- (8) PROPH2
- (9) RERITE
- (10) RULENO
- (11) SYMACH
- (12) VARATT

Figure 4-2 is a map of the program showing the hierarchy of the calling sequences. The following sections contain descriptions of each portion of the program.

4.3.1.1 Main Program ANALYZ

This section describes the operation of the main program of the Algorithm for Analyzing Hebrew Sentences. This program manages the overall operation of the algorithm and calls the various subprograms at the appropriate times.

Figures 4.3 is a flow diagram of main program ANALYZ. The main program performs the following operations:

- (1) Reads the program options (Fig. 4.3a)
- (2) Reads the Transliteration Table (Fig. 4.3a)
- (3) Reads the Matrix of Grammar Rules, transforms the alpha-numeric data to integers using Subprogram ALPHA, and stores the transformed rules in Matrix RULE (Fig. 4.3b).

4-26

Figure 4.2: Map of Procedure

33

(1) Read Program Options

Read rules etc. from Mag. Tape if not MODE O

Read rules etc. from Cards

(2) Read in transliteration

Figure 4.3a: Program ANALYZ

34

(3)

Read in Grammar Rules

(4)

Compute Storage address of Rules.

(5)

Read Restraint Matrix

(6)

Read Symbol Names

(7) Write on Mag. Tape

Figure 4.3b: Program ANALYZ

Figure 4.3c: Program ANALYZ

(8)

(9)

(10)

(11)

Matrix

(12)

Initialize

Indices

Read in

Figure 4.3e: Program ANALYZ

(22) Print Full Analysis

(23) Print Hebrew Sentence

(24) Print Tree Diagram

(25) Print Analysis Statements

Figure 4.3g: Program ANALYZ

- (4) Computes a catalog of the Rules (Fig. 4.3b)
- (5) Reads the Restraint Table (Fig. 4.3c)
- (5) Reads the table of Symbol Names that are associated with a symbol number (Fig. 4.3c), and other mapping functions
- (7) Writes these data on a magnetic tape for permanent storage (Fig. 4.3c)
- (8) Reads the equivalent Hebrew sentence and certain indices (Fig. 4.3c)
- (9) Stops the program after the analysis of the last sentence (Fig. 4.3c)
- (10) Reads in initial symbols and their English equivalents (Fig. 4.3c)
- (11) Initializes tree diagram matrix data
- (12) Initializes certain bookkeeping indices
- (13) Makes a rewrite pass on the symbols in the string using Subroutine RERITE
- (14) Examines the value of monitoring indices which limit the maximum range of computation; if the range is exceeded, error messages are written and computation ceases.
- (15) Examines the value of indices MON and I, if no rules were applied on the last pass (MON=0) or if the pass did not process all symbols in the string (I≠IMAXI), computation skips to step (18), otherwise to (16).
- (16) If the pass was complete, reset certain indices
- (17) If not last pass, that is, there is still more than 1 symbol in the string, repeat from step (13), otherwise skip to step (22).
- (18) Hunts back in derivation to first symbol with an alternate rule yet available, but (18a) skips the symbol if it is identical with its governing symbol.
- (19) If no symbols with an alternate rule are found, writes a diagnostic message and terminates computation.
- (20) When the first symbol with an alternate rule is found, the rule numbers are retrieved and certain indices are reset.
- (21) Previous predictions about the symbol are cancelled, other indices are reset and computation returns to step (13).
- (22) When analysis is completed, print full analysis (upon request) consisting of complete detailed listing of every symbol in every rewrite pass, using subprogram OUTPUT.
- (23) Prints the Hebrew sentence being analyzed.

4-34 41 (12)

- (24) Prints a tree diagram using subprogram DIAGRAM (upon request).
- (25) Prints a complete set of analysis statements using subprogram PARSE, prints a completion message and returns to step (8) for another sentence.

4.3.1.2 Subprogram ALPHA

Subprogram ALPHA (Fig. 4.4) is used to transform alpha-numeric symbols into integers for use in the computations of the program. This subprogram permits input data to be submitted in a form more meaningful to the user. The subprogram functions in the following manner:

- (1) A given alpha-numeric symbol (input argument A) is compared with each element in the table of Transliteration (array TRANSL).
- (2) When a match is found, an integer value for output argument IA is computed such that IA is one less than the index L.
- (3) However, if this value is 40, the value of IA is made zero. This converts all spaces to zero.

The tranformation of the data is shown in Table 4-1. Other transformations can be obtained by changing the data in the Table of Transliteration. Subprogram ALPHA is called by the Main Program ANALYZ.

4.3.1.3 Subprogram DIAGRM

This subprogram (Figure 4.5) is called by the Main Program ANALYZ (step 24) to construct a tree diagram of an analyzed Hebrew sentence. At this stage the analysis of the sentence is complete and data defining the nodal structure of the tree diagram has been computed and stored in Matrix NODE, and Array ITREE. Matrix NODE contains a row corresponding to each node in the tree diagram. The data in Matric NODE is as follows:

NODE(I,J):

- J = Node number
- I = 1, Number of nodes the J-th node governs
- I = 2, Line position of J-th node
- I = 3, node number of node governing J-th node

BThis computation is presently dependent on the "content" of the grammar.

Figure 4.4: Subprogram ALPHA

I = 4, Symbol type at J-th node

I = 5, Symbol class at J-th node

Array ITREE defines the number of nodes at each level of the tree as follows:

ITREE (I):

I = level number

ITREE(I) = number of nodes in I-th level.

Figure 4.5a outlines the four main operations of this subprogram and refers to the corresponding figure for the detailed flow diagram of that operation.

These operations are:

(1) Compute the line position of each node. (Fig. 4.5b&c). This operation consists of filling in the data for Matrix NODE(2,J). Computation starts with the first level of nodes each of which is assigned a line position beginning with position 1 for the first, position 2 for the second, and so forth up to a maximum of 20. Computation then goes to the next level of nodes and the position of each node is computed to be midway between the position of the nodes it governs. Successively lower levels are computed until the last node is reached.

Steps 2 through 4 (following) are repeated in sequence for each level of nodes in the tree diagram. These steps cause the computer to print out the tree diagram of the analyzed sentence a level at a time beginning with the first level. Three parts are required for each level: (a) the upper connectors that show the relationship of the nodes in a given level to the governing nodes at the next highest level; (b) the symbol name and class of each node; and (c) the lower connectors that show the governing relationship of a given node to the nodes at the next lowest level.

(2) Write upper connectors (Figure 4.5d). The upper connectors occupy two lines on the printed output. The first one connects together (with a horizontal line) nodes governed by a common higher level node. The second line provides a vertical bar above each nodes position. This is accomplished by using various combinations of the following 3-character words:

 $BLANK = \Delta \Delta \Delta$

DASHES = ---

 $BAR = I\Delta\Delta$

(.1

Where Δ represents a space. The logic for the first line is as follows:

- (a) If the governing node governs only one node, BLANK + BAR is written above the node position, that is $\Delta\Delta\Delta I\Delta\Delta$.
- (b) If the governing node governs more then one node, BLANK + DASHES (ΔΔΔ---) is written above the first of the governed nodes, DASHES + DASHES (-----) is written above intermediate governed nodes, and DASHES + BLANK (---ΔΔΔ) is written above the last of the governed nodes. This provides a continuous line of dashes from the center of the position of the first node to the center of the position of the last node that are governed by one common higher level node. For the second line of the upper connectors, BLANK + BAR (ΔΔΔΙΔΔ) is written above each node that governs at least 1 node and BLANK + BLANK (ΔΔΔΔΔΔ) is written above each node that governs zero nodes.

Upper connectors are omitted for the first level of nodes.

- Write line of nodes (Fig. 4.5e). This operation consists of printing the symbol name and class at each nodal position in the line. The symbol type is specified by NS=NODE (4,J), and the corresponding symbol name is obtained from SYM(NS). The symbol class is specified by NT=NODE(5,J) which is transformed to alpha-numeric characters by CLS(NT). However, if the symbol and class of a given node are the same as the symbol and class of the governing node, BLANK + BAR (ΔΔΔΙΔΔ) is written in the position of the node; this eliminates redundant data from the tree.
- Write lower connectors (Figure 4.5f). This operation consists of writing BLANK + BAR (ΔΔΔΙΔΔ) under the position of a given node if it governs one or more nodes and BLANK + BLANK (ΔΔΔΔΔΔ) if it governs zero nodes. This is the same as line 2 of the upper connectors, so the same coding is used for both under control of an index (IUPLOW). The lower connectors are omitted for the last level of nodes.

Figure 4.5a: Subprogram DIAGRM

Figure 4.5b: Subprogram DIAGRM

Governing node put mid-way between first and last governed node.

Continue If Last Node, Otherwise Repeat For Next.

Produce IPASS Lines of Nodes

Omit Upper Connectors For First Line

Figure 4.5c: Subprogram DIAGRM

Figure 4.5d: Subprogram DIAGRM

Figure 4.5e: Subprogram DIAGRM

Figure 4.5f: Subprogram DIAGRM

ERIC FULL SEASON FROM THE SEAS

Figure 4.5g: Subprogram DIAGRM

Figure 4.5h: Subprogram DIAGRM

ERIC

Full Text Provided by ERIC

4.3.1.4 Subprogram LIMIT

This subprogram (Figure 4.6) is called by Subprogram RERITE and by Subprogram SYMACH to test symbols for certain specified limitations on the values of their subscripts. The limitations are specified by Subscripts 2/ and 28. Subscript 27 specifies the restraint type and Subscript 28 specifies the subscript number to which the restraint applies.

The restraint type refers to a row number IR in Restraint Matrix RESTRT(L,IR). The first number in this row, RESTRT(1, IR), tells how many restraint numbers are on the list; the remaining numbers in this row are limitations on the specified subscript. The logic of the limitations is as follows: the value of the specified subscript must be equal to one of the positive numbers on the list, or it must not be equal to the absolute value of the negative numbers on the list. If these restraints are not met the subprogram sets the logic monitor MATCH to "false."

4.3.1.5 Subprogram MACHER

This subprogram (Figure 4.7) is called by Subprogram PROP 1 and PROPH2 to compare two symbols in accordance with the criteria listed below. Subprograms PROPH1 and PROPH2 make predictions of the possible successful satisfaction of a given rule after one or two more passes on the present string of symbols. In order to do this, the subprograms select likely rules and put their appropriate symbols in registers (IS1 and IS2) which are used by MACHER to determine whether a symbol of a given rule (IS2) could be applied to a given symbol under consideration (IS1) in the process of predictions.

The criteria, which apply to the first 17 subscripts (excluding 3) are as follows:

- (1) The symbol types must be the same and
- (2) one of the following must be true for each subscript
 - (a) the subscripts are equal, or
 - (b) the subscript \(\ell \) and the symbol in IS1 is not negated (test A), or
 - (c) the subscript of one or the other of the symbols is an independent variable (test B), or
 - (d) the subscript of the symbol in IS1 is a dependent variable and the subscript of the symbol in IS2 is a negative number (test C), or
 - (e) the subscript of the symbol in ISl is a fixed variable and the subscript of the symbol in IS2 is a dependent variable.

Figure 4.6: Subprogram LIMIT

Figure 4.7: Subprogram MACHER

If the above criteria are met, the logical variable MATCH is set to "true", otherwise > "false".

4.3.1.6 Subprogram OUTPUT

This subprogram (Figure 4.8) is called by the Main Program ANALYZ (step 22) to print out the data associated with each symbol in the string after each rerite pass of the grammar on a string of symbols. See Appendix C for an example of the resultant output from this subprogram.

4.3.1.7 Subprogram PARSE

建建

This subprogram (Figure 4.9) is called by the main program ANALYZ (step 25) in order to print out a list of analysis statements about the sentence being analyzed. At this stage of the computation the analysis is complete and data defining the deep structure of the analysis is stored in matrix NODE, and array ITREE (see Section 4.3.1.3 for more detail). These data include the symbol number, symbol type and the index number of the governing symbol for each constituent of the analysis. For each unique constituent of the analysis, this subprogram assembles an analysis statement of the form

$$N_s + N_a$$

where $\mathbf{N}_{\mathbf{S}}$ stands for a sequence of one or more symbol names in the form

The
$$N_1$$
 of the N_2 ... of the N_1

where N_1 is the name of the symbol about which the statement is made, N_2 is the name the symbol immediately governing N_1 , and N_j is the name of the symbol immediately governing N_{j-1} . N_a is the analysis predicate that applies to N_1 . Examples of the output of this subprogram are contained in Appendix D. The data for a given analysis statement is accumulated in array ACCUM. When the statement is complete, it is printed out and the array is cleared for the next statement.

The operations of the subprogram are as follows:

- (1) For each pass produced in the analysis the following steps are performed:
- (2) For each symbol recorded in the given pass, the following steps are performed:
- (3) Retrieve the symbol number of the J-th symbol
- (4) Accumulate the name of the J-th symbol from the table of symbol names SYML.

Figure 4.8: Subprogram OUTPUT

ERIC Full Text Provided by ERIC

- (5) Compute the index number of the governing node.
- (6) If the symbol is not governed, skip to step (13).
- (7) Compute the symbol number of the governing symbol.
- (8) If this symbol has previously been treated omit this analysis statement and return back to step (3) for the next symbol on the list.
- (9) If the governing symbol is the same as the governed symbol, the information is redundant, skip to step (5).
- (10) Accumulate the words "of the" in ACCUM followed by the name of the governing symbol.
- (11) Compute the index number of the symbol that governs the present governing symbol.
- (12) If the symbol is not governed skip to step (13), otherwise return to step (7).
- (13) If the first symbol was a terminal symbol, skip to step (16).
- (14) Compute predicate index number.
- (15) Print out the content of ACCUM followed by the given predicate from AMSG, and return to step (3) for the next symbol.
- (16) Print out the content of ACCUM followed by the word "IS" followed by the English equivalent of the first symbol.
- (17) For the subscripts <u>f</u>, <u>k</u>, <u>b</u>, <u>c</u>, <u>l</u>, <u>y</u>, <u>d</u>, <u>n</u>, <u>g</u>, <u>p</u>, <u>r</u>, <u>a</u>, <u>v</u>, <u>i</u>, and <u>t</u>, accumulate (in ACCUM) the semantic values of those subscripts that pertain to the first symbol.
- (18) Print out the semantic values accumulated in ACCUM and return to step (3) for the next symbol.

4.3.1.8 Subprogram PROPH1

This subprogram (Figure 4.10) is called by Subprogram RERITE (step 12) in order to predict the possibility of satisfying a given grammar rule if its application were delayed one or two passes. This procedure is used in order to avoid the premature abandonment of a rule which is not being satisfied. Thus in the process of analysis, when a given symbol does not satisfy the requirements of the rule under consideration, before a new rule is requested, this subprogram is called to answer the question "will the requirements of this rule be met if one (or two) other rules are applied first, and if so what is the first rule that should be applied?" If a favorable prediction is made, the analysis is required to take the predicted route before abandoning the rule under consideration. The following operations are performed by this subprogram:

4-52

Figure 4.9a: Subprogram PARSE

Figure 4.9b: Subprogram PARSE

Figure 4.9c: Subprogram PARSE

Figure 4.9d: Subprogram PARSE

- (1) A test is made to determine whether the present symbol under consideration (stored in register SYMIN) has failed to meet the requirements of the given rule for other reasons. This is true if present symbol matches the rule element as to symbol type and symbol class. If this is the case, skip to step (11).
- (2) Compute the address of those prediction rules that apply to the symbol in SYMIN, by computing
 - (a) the starting rule number (IR1) and
 - (b) the ending rule number (IR3)

If there are no prediction rules, skip to step (12).

- (3) Compute the address (IR2) of the right hand member of the present prediction rule on the list.
- (4) Put the current symbol under consideration in register IS1, the IR1-th rule element in register IS2, the present rule element (defined by IRULE1) in register IS3, and the right hand element of the prediction rule in IS4.
- (5) Using Subprogram MACHER, determine that the symbols in IS1 and IS2 match, if not skip to step (7).
- (6) Using subprogram MACHER, determine that the symbols in IS3 and IS4 match, if not skip to step (9).
- (7) Advance the index (IR1) of the prediction rule element and of the present symbol (IN)
- (8) If IR1 ≥ IR2, the symbols in the string will satisfy the prediction rule, skip to step (14), otherwise return to step (4) and repeat from there for the new set of indices.
- (9) Using subprogram PROPH2, predict satisfaction of the present "prediction" rule at the next pass, if prediction is favorable (ID=4) skip to step (14).
- (10) Reset ID to zero and compute the address (IR1) of the next available prediction rule; if there are no more (IR1>IR3) skip to step (13), otherwise return to step (3) for processing the next prediction rule.
- (11) No future satisfaction is predicted because the present rule failed to meet the requirements of subprogram SYMACH or LIMIT (previously applied); set ID=1 and return.
- (12) There are no rules that apply to the present symbol under consideration, therefore no future satisfaction is predicted; set ID=2 and return.

64 4-57

- (13) The prediction rules were exhausted and none predicted future satisfaction, set ID=3 and return.
- (14) Satisfaction is precicted if the rule at address IR4 is applied first; set ID=4, IR=IR4, and IM=IR3, and return.

4.3.1.9 Subprogram PROPH2

This subprogram (Figure 4.11) is called by subprogram PROPH1 (step 9) in order to predict the possibility of satisfying a given grammar rule if its application were delayed two passes (see Section 4.3.1.8 for further discussion). The following operations are performed by this subprogram:

- (1) Compute the address of those prediction rules that apply to rule element defined by input argument IR, by computing
 - (a) the starting rule number (IR1) and
 - (b) the ending rule number (IR3)

If there are no rules, skip to step (7).

- (2) Compute the address (IR2) of the right hand member of the present prediction rule on the list.
- (3) Put the IR-th rule element in register IS1, the IR1-th element in register IR2, the present rule element (defined by IRULE1) in register IS3, and the IR2-th rule element in register IS4.
- (4) Using subprogram MACHER determine that the symbols in IS1 and IS2 match, if not skip to step (6).
- (5) Using subprogram MACHER determine that the symbols in IS3 and IS4 match, if not skip to step (6), otherwise to step (9).
- (6) Compute the address (IRI) of the next available prediction rule; if there are no more (IRI>IR3), skip to step (8) otherwise return to step (2) for processing the next prediction rule.
- (7) There are no rules that apply to the symbol under consideration, therefore, no future satisfaction is predicted; set ID=2 and return.
- (8) The prediction rules were exhausted and none predicted future satisfaction; set ID=3 and return.
- (9) Satisfaction is predicted by the rule just tested; set ID=4 and return.

Figure 4.10a: Subprogram PROPH1

Figure 4.10b: Subprogram PROPHI

Figure 4.10c: Subprogram PROPH1

* **

(1b) Ending No.

(1) Compute Rule No.

(la) Starting No.

Figure 4.11a: Subprogram PROPH2

Figure 4.11b: Subprogram PROPH2

.3.1.10 Subprogram RERITE

This subprogram (Fig. 4.12) is called by the Main Program ANALYZ step 13) to apply the appropriate replacement rule to given symbols and rite the replacement symbol on the rerite symbol list.

The subprogram performs the following operations:

- (1) Initialize certain indices
- (2) Examine the present value of symbol counting indix I, if it is greater than the number of symbols in the present pass (IMAX) return, otherwise continue.
- (3) Increment indices I, LIM, and NODE1, and place the NODE1-th symbol in register SYMTN.
- (4) Examine the value of index J, if J≠0 skip to step(9), otherwise continue.
- (5) Using subprogram RULENO, compute the indices of the rules that apply to the present symbol under consideration; store these values in matrix NODE for the symbol under consideration; and compute the index of the right hand element of the first rule.
- (6) If there is only one rule, clear any rule numbers stored in matrix NODE for the present symbol.
- (7) If there is no applicable rule skip to step (24), otherwise continue.
- (8) Initialize certain indices in preparation for checking symbols in the string against the left hand elements of the present rule, place the right hand element of the rule in register SYMBOL, and skip to step (10).
- (9) Clear any rule numbers stored in matrix NODE for the present symbol.
- (10) Increment index J and IRULE1, and compare J with JMAX; if J>JMAX skip to step (18), otherwise continue.
- (11) Using subprogram SYMACH, test to see if the symbol in register SYMIN matches the J-th symbol of the given rule; if they match skip to step (16), otherwise continue.
- (12) At this point, the symbol under consideration has been found not to match the present rule, however before abandoning the rule, subprogram PROPHI is used to predict possible future satisfaction of this rule if its application is delayed one or two passes; if the prediction is favorable (ID=4) skip to step (27), otherwise continue.

ERIC

Full text Provided by ERIC

- (13) If the present element of the rule is optional (test A), make certain bookkeeping adjustments and skip back to step (10) to compare the present symbol with the next element of the rule, otherwise continue.
- (14) If the present rule involves compounding (J3≠0) skip to step (15), otherwise make certain bookkeeping adjustments associated with abandoning the present rule and return to step (2) for consideration of any other applicable rules.
- (15) Make adjustments to certain indices associated with compounding and return to step (4).
- (16) At this point, the symbol under consideration has been found to match the J-th element of the given rule, so using subprogram VARATT, the values of the dependent variables associated with the symbol are computed, and the governing mode for the symbol is recorded.
- (17) If all the elements of the rule have been satisfied (J=JMAX) skip to step (19), otherwise return to step (2) for further consideration of the remaining elements of the rule.
- (18) Reduce the value of indices NODEl and I by one and continue.
- (19) Using subprogram LIMIT check the right hand element of the present rule for any imposed restraints. If the restraints are not met return to step (14) to select a new rule, otherwise continue.
- (20) If the present rule involves compounding (J2=1), Increment J3 by 1, transfer the symbol in register SYMBOL to register SYMIN, make bookkeeping adjustments and return to step (4), otherwise continue.
- (21) Make adjustments to certain bookkeeping indices, and increment index NODE2 by one.
- (22) If the rule involves compounding, make further bookkeeping adjustments.
- (23) Write the right hand element of the rule with the computed values of its subscripts (as contained in register SYMBOL) as the NODE2-th symbol of the analysis, and skip to step (30).
- (24) If the present rule involves compounding that is not yet complete (test C) return to step (la) otherwise continue.
- (25) If the present rule involves compounding which is now complete (J3≠0) return to step (21), otherwise continue.

72

- (26) If the present rule does not involve compounding (J2=2) skip to step (27), otherwise set J1=0 and J2=2 and return to step (14a).
- (27) Make bookkeeping adjustments to certain indices and coninue.
- (28) If a prediction of future satisfaction of the present rule has been made (ID=4), store the rule number (negated) as a prediction for the next symbol of the derivation and store the number of the prediction rule as a prediction for the present symbol, and in either case continue.
- (29) Make bookkeeping adjustments and copy the present symbol (index NODE1) on the next list (index NODE2) and continue.
- (30) Initialize certain indices in preparation for the next rule and return to step (la).

4.3.1.11 Subprogram RULENO

This subprogram (Figure 4.13) is called by subprogram RERITE (step 5) to compute the grammar rule number that applies to a given symbol. The grammar rules are stored in Matrix RULE, and the computed rule numbers are as follows:

IRULE = the number of the first element of the first rule that applies to the given symbol

IMAX = the number of the last element of the last
rule that applies to a given symbol.

For simple (non-compounded) symbols the applicable rule numbers initially were computed in Main Program ANALYZ (step 4) and stored in rule catalogue IPSI. The data is stored so that for Symbol IS, Class IC, IRULE = IPSI(IS,IC,1) and IMAX = IPSI(IS,IC,2).

The subprogram computes the rule numbers according to the following hierarchy:

- (a) Compound symbols
- (b) Simple, non-negated symbols.

The following operations are performed:

(1) If the symbol under consideration is being presented for the first time (Jl=0) continue, but if at least one rule has been previously tried (Jl≠0) skip to step (18).

Figure 4.12a: Subprogram RERITE

Figure 4.12b: Subprogram RERITE

Figure 4.12c: Subprogram RERITE

Figure 4.12d: Subprogram RERITE

Figure 4.12e: Subprogram RERITE

- (2) If universal rules should be considered (J2=1) continue, but if phrase rules should be considered (J2=2) skip to step (10).
- (3) At this phase the symbol under consideration is being considered for possible application of universal rules, so certain indices are initialized.
- (4) If this symbol and the next one are both of the same type (i.e., possible compounding pattern FF), set index IC=4 and skip to step (14), otherwise continue.
- (5) If this symbol is followed by a conjunction and another symbol of the same type (i.e., possible compounding pattern F+C+F), skip to step (7) otherwise continue.
- (6) If this symbol is followed by a comma, another symbol of the same type, and either a comma or a conjunction (i.e., possible compounding pattern F +, + F +,/C), continue, otherwise skip to step (8).
- (7) At this point, it has been determined that the rules governing compounding apply; set IRULE=IPSI (97,1,1) the index of the first element of the first compounding rule for class 1; set IMAX=IPSI(97,3,2) the index of the last element of the last compounding rule for class 3; set Ic=1 and return.
- (8) At this point it has been determined that no compounding rules apply to this symbol; if, however, previous compounding rules have been successfully executed (J3≠0) on this symbol, set IRULE=0, IMAX=0 and return, otherwise continue.
- (9) At this point it has been determined that compounding rules are not applicable to this symbol either now or in the past, set J2=2 and continue.
- (10) At this point consideration is given to phrase rules (non-universal) that may apply to the symbol; set the index IS=SYMIN(1) the symbol type, and index IC=SYMIN(6) the symbol class and continue.
- (11) If the present symbol has a prediction rule recorded for it [NODE (6.NODE1) ≠0], assign the indices of that rule to IRULE and IMAX, and return, otherwise continue.
- (12) If the present symbol has an undefined class (IC=9) skip to step (17), otherwise continue.
- (13) At this point, a test is made for the presence of rules that apply to all classes of the symbol, these rules

The computation of this step is dependent on the "content" of the grammar.

are filed under class 1, so here the rules in class 1 are examined; IRULE is set to the index of the first class [IPSI (IS,1,1)], if no rule exists (IRULE=0) skip to step (14); if a rule exists and its class is undefined [RULE (IRULE,6)=9] skip to step (15), otherwise continue.

- (14) At this point it has been determined that the grammar has no rules on the given symbol that apply to all classes; set IRULE to the index of the rule for the given class IC[IRULE=IPSI (IS, IC,1)] and continue.
- (15) Set IMAX to the index of the last element of the last rule for the given class IC [IMAX=IPSI(IS,IC,2)], and continue.
- (16) If no rule exists (IRULE=0) skip to step (17); however, if a rule exists, and if IMAX=0, it means that rules exist that govern all classes but none exists for the given class only, set IMAX=IPSI(IS,1,2), and return.
- (17) At this point it has been determined that the given symbol has an undefined class, so all available rules on the symbol must be supplied; set IRULE=0 and (17a) find the index of the first element of the first rule that applies to lowest numbered class of the given symbol and if one exists, set IRULE equal to that index; and (17b) find the index of the last element of the last rule that applies to the highest numbered class of the given symbol, and if one exists, set IMAX equal to that index, and return.
- (18) At this point it has been determined that a set of rules has already been located for the given symbol and that the most recent one examined was not satiffied; the following sequence of operations computes the index of the next available rule in the set; if the rules of the set are "universal" rules [IRULE > IPSI (97,1,1)], set index J2=2, and in either case continue. 10
- (19) Set the index IS (symbol type) equal to the type for the most recent rule (IS=RULE(IRULE,1)]; and set the index IC (symbol class) equal to the class of the most recent rule [IC=RULE(IRULE,6)], with the exception that if the rules are universal (IS=97), IC is set equal to the value of subscript f [IC=RULE(IRULE,3)], then continue.

¹⁰The computation of this step is dependent on the "content" of the grammar.

(20) Set the value of IRULE to its present value plus the number of elements in the specified rule, plus 1 (the index of the next rule in the set), with the exception that if the most recent rule was the last rule (IRULE > IMAX), set both IRULE and IMAX to zero, and return.

4.3.1.12 Subprogram SYMACH

This subprogram (Figure 4.14) is called by Subprogram RERITE (step 11) to check that the "present rule symbol" matches the "present constituent" with respect to the criteria of the grammar. The subprogram performs the following functions:

- (1) Initializes the logic monitor MATCH to "true".
- (2) If the symbol types do not match or if the "present rule symbol" is a variable symbol, skip to step 14.
- (3) For each subscript up to 17 perform steps 4 through 15.
- (4) If subscript 3, and the "present rule symbol" is a variable symbol, skip to step 15.
- (5) If subscript 7, and the "present rule symbol" is not a negative, skip to step 15.
- (6) If the value of the given subscript of the "present rule symbol" is 9, that is, it is a independent variable, skip to step 15.
- (7) If the value of the given subscript of the "present rule symbol" equals the value of the subscript of the "present constituent," skip to step 15.
- (8) If the given subscript of the "present constituent" is an independent variable skip to step (15).
- (9) If the given subscript is a negative number for the "present rule symbol" and it is a fixed value (<9) for the "present constituent", skip to step (15).
- (10) If the given subscript is not a dependent variable for the "present rule symbol", skip to step (14).
- (11) If the given subscript of register SYMBOL is equal to the value specified by the rule, skip to step (15).
- (12) If the given subscript of register SYMBOL is less than 9 and equal to the value of the corresponding subscript of the "present constituent", skip to step (15).

Figure 4.13a: Subprogram RULENO

Figure 4.13b: Subprogram RULENO

Figure 4.13c: Subprogram RULENO

(17a)

G: IPSI(IS,L,1)=0

(17b) H: IPSI(IS,L,2)=0

Return

Figure 4.13.e: Subprogram RULENO

Figure 4.14: Subprogram SYMACH

- (13) If the given subscript of register SYMBOL is 9, skip to step (15).
- (14) Set the logic monitor MATCH to "false" and return.
- (15) If the last subscript (L=17), skip to step 16, otherwise increment L and return to step (3).
- (16) Using subprogram LIMIT, test the symbol for any specified restraints, and return.

4.4.1.13 Subprogram VARATT

This subprogram (Fig. 4.15) is called by subprogram RERITE (step 16) to compute the value of the various dependent variable subscripts for the "present rule symbol." For a given rule, certain of the subscripts may be designated as dependent variables—that is, the values of these subscripts depend on the values of the corresponding subscripts in the "present constituent." These dependent variable subscripts are written as lower case alphabetic characters in the rules; these were transformed to integer numbers when the rules were read in by the main program (step 3). Reference to Table 4-1 indicates that all alphabetic characters have been transformed to an integer value greater than 9, so that this test is used to identify dependent variable subscripts.

This subprogram performs the following operations:

- (1) If the "present rule symbol" is a variable symbol (used in rules for negating or compounding), set the symbol type subscript of the "present rule symbol" to the same value as that of the "present constituent" and store this value in register SYMBOL.
- (2) For subscripts 2 through 22, perform steps 3 through 5.
- (3) If the given subscript of the "present rule symbol" is -1, set the corresponding subscript of the register SYMBOL to 1 greater than the value of the subscript of the "present constituent," and in either case continue.
- (4) If the given subscript of the "present rule symbol" is a dependent variable (>9), set the corresponding subscript of register SYMBOL equal to the value of the subscript of the "present constituent," and in either case continue.

- (5) If not the 22-nd subscript, advance index L by one and return to step (3), otherwise continue.
- (6) If the symbol type of the "present constituent" is not the same as the symbol stored in register SYMBOL, return, otherwise continue.
- (7) If the symbol stored in register SYMBOL indicates that compounding after pattern 2 is being performed, continue, otherwise return.
- (8) For symbols being compounded after pattern 2, the following operations are performed: 11
- (9) For phrases with conjunctive compounding (b=1), the number feature of the phrase is set to plural (n=3).
- (10) For phrases with undefined number (n=0), the number of the phrase is set to that of the "present constituent."
- (11) For phrases with undefined gender (g=0), the gender of the phrase is set to that of the "present constituent."
- (12) For phrases with undefined person (p=0), the person of the phrase is set to that of the "present constituent."
- (13) For the feature *number*, the phrase is assigned the largest value found in itself or any of its like constituent elements.
- (14) For the feature gender, the phrase is assigned the smallest value found in any of its like constituent elements.
- (15) For the feature *person*, the phrase is assigned the smallest value found in any of its like constituent elements.
- (16) Return to calling program.

These computation may be found to be dependent on the "content" of the grammar in that they may not be universally true for all Semitic Languages.

4.3.2 Input Map for Computer Program

This section describes the input data required to use the computer program of the Algorithm for Analyzing Hebrew Sentences. Three types of data cards are required:

- (1) Program option card,
- (2) Data cards describing the grammar and its rules.
- (3) Data cards describing the sentences to be analyzed. The following sections describe each type of card.

4.3.2.1 Program Option Card

This card is used to control the various options available in the program. The data and the associated options are as follows:

Card Col.	Format	Variable	Description
1-5	15	MODE	= 0, grammar rule are to be read in from cards
			= 1, grammar rules are stored on tape ITAPE.
6-10	15	ITAPE	logical unit number of magnetic tape for storage of grammar rules.
11-15	15	ITRACE	= 0, no diagnostic messages to be printed out.
			= 1, print out diagnostic messages of program.
16-20	15	IOUTPT	= 0, do not print out full des- cription of nodes at every level of synthesis.
			= 1, print out full description of nodes at every level of synthesis.
21-25	15	IOUTRE	<pre>= 0, do not print out tree diagram of synthesis,</pre>
			= 1, print out tree diagram.
26-30	15	LIMAX	Maximum number of symbol tests.

4-83

Figure 4.15a: Subprogram VARATT

ERIC

Figure 4.15b: Subprogram VARATT

The variable MODE is used to control the source of the grammar rules used by the program. Initially the rules are read in from cards (MODE=0) and stored on the magnetic tape mounted on logical unit ITAPE. On subsequent runs the rules are read from the tape (MODE=1) unless changes in the rules are to be made.

Variable ITAPE defines the logical unit number containing the magnetic tape on which the grammar rules are stored (MODE=1) or are to be stored (MODE=0).

Variable ITRACE is used for tracing the progress of the program throughout its operation. If ITRACE=1, the program prints out numerous messages together with the values of certain critical variables at key steps of the program. The use of this variable is for program debugging only, it should normally be set to zero.

Variable IOUTPT is used to control the output of the computer. The computer will list a complete description of each nodal point at every level of the synthesis if IOUTPT = 1 (see Appendix C for a sample of this output). This output is useful when the user wants to examine the output results in fine detail, otherwise IOUTPT should be zero.

Variable IOUTRE is used to control the output of the computer. The computer will construct and print out a tree diagram of the analyzed sentence. Each nodal point is identified as to symbol type and class only (see Section 2.3.2 of Part II of this report for a sample of this output). If more detailed data are required the IOUPUT option should be used also. Note: either IOUTPT or IOUTRE (or both) must be 1.

Variable LIMAX is used to control the maximum number of symbol test permitted in a given analysis. If an analysis is not found in less than LIMAX symbol tests, the program terminates the analysis and goes to the next sentence. This prevents the program from continuing to search for analyses beyond a reasonable limit.

4.3.2.2 Program Grammar Cards

The program grammar cards consists of four types:

Type 2-1: Transliteration Table

Type 2-2: Grammar Rules

Type 2-3: Restraint Matrix

93

Type 2-4: The Symbols

Type 2-5: The Symbol Names

Type 2-6: The Predicate Index

Type 2-7: The Analysis Predcates

Type 2-8: The Feature Values

The program grammar cards are not required if MODE=1; in this case these data are read from the magnetic tape (ITAPE). The following sections define the program grammar cards.

4.3.2.2.1 Transliteration Table: Card 2-1

This card defines the transliteration Table (see Table 4-1). The data are as follows:

Card Col.	Format	<u>Variable</u>	Description
1-6	16	NL	= number of elements in Table (50 max.).
7-56	50A1	TRANSL (L) L=1,NL	Transliteration Table

4.3.2.2.2 Grammar Rules: Cards 2-2

These cards define the rules of the grammar. Each card defines one constituent of a rule. Thus the rule

$$B + C = A$$

requires three cards: the first defines B, the second C, and the third A. A maximum of 800 cards is permitted. A card with 999 in columns 1-3 should follow the last grammar rule card. The rules should be placed in numeric order by rule number. See Appendix A for a complete listing of the rules used for the present research. The following is the data format for each card:

Card Col.	Format	<u>Variable</u>	Description
1-3	A3	SN	Symbol number (See Table 4-2)
6	A1	M	Subscript m - optional/mandatory
9	A1	F	Subscript f - compound class
11-12	A2	ĸ	Subscript k - compound number
15	A1	В	Subscript b - compound type
18	A1	С	Subscript c - symbol class
21	Al	L	Subscript & - negative class
24	Al	Y	Subscript y - negative/positive
27	A1	D	Subscript d - definiteness
30	A1	N	Subscript n - number
33	A1	G	Subscript g - gender
36	A1	P	Subscript p - person
39	A1	R	Subscript r - prepostion class
42	A1	A	Subscript a - verb class
45	A1	V	Subscript v - voice
48	Al	I	Subscript i - mood
51	A1	T	Subscript t - tense
53-54	A2	S	Subscript s - stem
57	A1	MI	Subscript w ₁ - root letter l
60	A1	W2	Subscript w ₂ - root letter 2
63	A1	W3	Subscript \mathbf{w}_3 - root letter 3
66	Al	W4	Subscript w ₄ - root letter 4
69	A1	ST	Symbol Type
70-72	13	RN	Rule Number
73	11	EN	Element Number
74	11	NRH	No. of Rt. Hand Elements
75-76	12	RT	Restraint Type
77-78	12	RS	Restraint Subscript

Variable SN is the symbol number of the given rule element as specified on Table 4-2. A card with SN=999 should follow the last grammar rule.

Variables \underline{m} , \underline{f} , \underline{k} , \underline{b} , \underline{c} , $\underline{\ell}$, \underline{y} , \underline{d} , \underline{n} , \underline{g} , \underline{p} , \underline{r} , \underline{a} , \underline{v} , \underline{i} , \underline{t} , \underline{s} , \underline{w}_1 , \underline{w}_2 , \underline{w}_3 , and \underline{w}_4 are the subscripts of the symbols are defined in Part II, Section 2.2.1.

Variable ST identifies the symbol as follows:

ST = 0 for non-terminal symbols

ST = 1 for terminal symbols

Variable RN is the rule number associated with the given card. For example: in the rule

$$B + C = A \tag{52.1}$$

Variable RN = 521 for all cards of the rule. Variable EN is the element number of the symbol defined by the card. In the above example:

on the card defining B, EN=1 on the card defining C, EN=2 on the card defining A, EN=0

Variable NRH defines the number of left hand elements in the rule. In the above example, NRH=2 for all cards of the rule.

Variable RT defines the restraint type that applies to the symbol. The value of RT refers to a row of restraints in the Restraint Matrix which is defined by Cards 2-3. Variable RS defines the subscript of the symbol to which the restraint applies. For example,

RT=3, RS=10, means that restraint type 3 applies to the 10-th subscript $\underline{\mathbf{n}}$.

4.3.2.2.3 Restraint Matrix: Cards 2-3

These cards define the restraints that are placed on a given symbol in a grammar rule. See Section 4.3.1.4 for a discussion and explanation of the data in Matrix RESTRT. The following is format of the data:

Card Col.	Format	Variable	Description
1-5	15	IM	Number of restraints on I-th list (Max.=4)
6-25	415	RESTRT (J,I) J=2, IM + 1	I-th list of restraint codes

Number of cards 15.

The data on these cards are listed in Table 4-9.

Table 4-9
RESTRAINT MATRIX DATA

· · · · · · · · · · · · · · · · · · ·		Card Col.			Card No.
1-5	6-10	11-15	16-20	21-25	
1	-1	0	0	0	2-3.1
1	-2	0	o	0	2-3.2
1	-3	0	0	0	2-3.3
2	ď	1	0	0	2-3.4
2	7	2	0	0	2-3.5
2	-1	-2	0	0	2-3.6
2	1	3	0	0	2-3.7
2	2	5	0	0	2-3.8
2	4	5	0	0	2-3.9
2	6	7	0	0	2-3.10
3	1	2	3	0	2-3.11
3	4	5	6	0	2-3.12
4	7	2	3	4	2-3.13
4	-1	-2	-3	-4	2-3.14
0	0	0	0	0	2-3.15

4.3.2.2.4 The Table of Symbols: Cards 2-4

These cards define the symbols used in the grammar. See Section 4.1.1.2 for further discussion. Ten cards are required for these data which are in 10(2X,A3) format. The data for the Hebrew grammar are given in Table 4-10.

4.3.2.2.5 The Table of Symbol Names: Cards 2-5

These cards define the English name of each symbol used in the grammar. See Section 4.1.1.5 for further discussion. Ninety-six cards are required for these data (one for each symbol) which are in the following format:

97

Card Col.	Format	<u>Variable</u>	Description
1-36	6A6	SYML(I)	Name of I-th symbol
67-72	16	ISYMB(I)	Number of 6 character words used by the Ith name.

Table 4-4 contains the symbol names for the Hebrew grammar.

Table 4-10
TABLE OF SYMBOLS

	Card Column						Card			
0-5	6-10	11-15	16-20	21-25	26-30	31-35	36-40	41-45	46-50	No.
Z -	VQO	APA	AP	AS	NA	500	NS	ឧប	RO	2-4-1
BAA	BAB	BAC	BAD	BAE	PAF	BBA	BBB	AS	BBC	2-4.2
82	NPB	NPA	NPC	NAP	NP	DP A	DP B	DP C	DP	2-4.3
EA	VB	VBB	VC	VAA	VÁ	BC	XР	NO	DPD	2-4.4
RSP	NSP	NOP	NIP	NiÐ X	VM A	VMB	VMC	VMD	VM	2-4.5
VMR.	VMI	V P	VRB	VRI	NV	NW	EPB	EPA :	EΡ	2-4.6
SAA	5 A B	SAC	5 A	STRO	SRI	RG	KN	KC	KK	2-4.7
ΚI	K D	SD	s-	SI	SC	A -	B-	C-	D -	2-4.8
E-	6-	H-	Ĩ-	J-	L-	N-	0-	P-	Ø. -	2-4.9
R-	T-	U-	V -	W-	γ –	F-	98	99	100	2-4.10

4.3.2.2.6 The Predicate Index: Card 2-6

These cards provide an index for cataloging the analysis predicates. See Section 4.1.1.6 for further discussion. One-hundred cards are required for these data which are in the following format:

Card Col.	Format	<u>Variable</u>	Description
1-40	815	INDEX(I,J)	Index number of the analysis predicate for the I-th symbol,
			J-th class.

Table 4-6 contains the data for the Hebrew grammar.

4.3.2.2.7 The Analysis Predicates: Card 2-7

These cards provide the list of analysis predicates used in the algorithm. See Section 4.1.1.6 for further discussion. One-hundred eighty-five cards are required for these data (one for each predicate) which are in the following, format:

Card
Col. Format Variable Description

1-36 6A6 AMSG(I) the I-th analysis predicate

Table 4-5 contains the list of analysis predicates for the Hebrew grammar.

4.3.2.2.8 The Feature Values: Cards 2-8

These cards provide the table of feature values used in the grammar. See Section 4.1.1.7 for further discussion. Seventeen (17) cards are required for these data (one for each subscript involved) which are in the following format:

Card Col.	Format	<u>Variable</u>	Description
1-48	8A6	(L,I) LAVITA	Feature value of the I-th sub- script, J-th catagory.

Table 4-7 contains a list of the Feature Values for the Hebrew grammar.

4.3.3 The Sentence Description Cards

The sentence analysis algorithm uses a set of data cards to describe the Hebrew sentence being analyzed. These cards consist of two types:

Type 3-1: Hebrew Sentence Card
Type 3-2: Word Description Cards

A set of sentence description cards is required for each sentence to be analyzed. A blank card should follow the last set of sentence description cards.

4.3.3.1 Hebrew Sentence: Card 3-1

This card provides a listing (in transliterated characters) of the Hebrew sentence to be analyzed, a sentence number assigned by the user, and the number of words in the sentence. The transliterated Hebrew sentence is printed on the tree diagram analysis computed by the algorithm. The sentence number is used to identify the sentence in the analysis statements assembled by the algorithm. One card type 3-1 is required for each sentence to be analyzed. The following is the data format:

Card Col.	Format	Variable	Description
1-72	12A6	HEBREW	Transliterated Hebrew sentence to be analyzed.
73-75	13	NOP	Sentence number assigned by user.
76-78	13	IMAXI	Number of words in sentence. Count punctuation, prefixes and suffixes as separate words.

4.3.3.2 Word Description: Cards 3-2

These cards provide a complete grammatical description of each word in the sentence being analyzed, one card for each word, prefix (including definite article), pronominal suffix, and punctuation mark. These data provide the equivalent of the output of an automatic word analysis algorithm which presently is not incorporated in the program. Whenever the word analysis algorithm is included, these no longer will be required. The following is the format of the data:

Card Col.	Format	<u>Variable</u>	Description
1-6	16	SN(I)	Symbol Number of the I-th word (see Table 4-2). Only values between 77 and 96 are used.
11-12	12	M(I)	Subscript \underline{m} of the I-th word. Always = 1.
19-20	12	C(I)	Symbol Class of the I-th word
21-22	12	L(I)	Negative class of the I-th word
27–28	12	N(I)	Number attribute of I-th word = 0 - does not apply = 1 - singular = 2 - dual = 3 - plural
29-30	12	G(I)	Gender attribute of I-th word. = 0 - does not apply = 1 - masculine = 2 - feminine
31-32	12	P(I)	Personal attribute of I-th word = 0 - does not apply = 1 - first person = 2 - second person = 3 - third person Most nouns are third person.

Card		•	
Col.	Format	<u>Variable</u>	Description
33-34	12	R(I)	Subscript <u>r</u> for I-th word. = 0 for all words except preposi- tions and verbals
35-36	12	A(I)	Subscript <u>a</u> for I-th word. = 0 for all words except verbals.
37–38	12	V(I)	Voice attribute of I-th word. = 0 for all words except verbals = 1 - active voice = 2 - passive voice = 3 - reflexive voice
39-40	12	IM(I)	Mood attribute of I-th word. = 0 for all words except verbs = 1 - indicative mood = 2 - imperative mood = 3 - subjunctive mood
41-42	12	T(I)	Tense attribute of I-th word = 0 for all words except verbs = 1 - past tense = 2 - future tense This attribute applies to the tense inflection of the specific word itself, not to modifications of tense due to auxiliaries or adverbs. Present tense verb is classified as a participle.
43-44	12	S(I)	Suffix \underline{s} (stem) for the I-th word.
45-48	A4	W(I)	The four-letter root of the I-th word. Roots are in English trans- literation. For non-Hebrew words, omit data.
49-72	4 A6	ENGLISH (I)	The English equivalent of the Hebrew word.

Variables SN, C, L, R, A, V, S, W, and ENGLISH are obtained from the dictionary (see Part II of this report, Appendix A). Variables N, G, P, IM, and T, are defined by the inflection of the given word as found in the sentence.

4.4 Test and Demonstration of Algorithm

 $\rm In$ order to test the computerized algorithm and to verify the grammar of modern Hebrew syntax, a total of 26 sentences were analyzed on the computer.

The sentences correspond to those generated by the synthesis algorithm (see Part III), except that not all are included and some are in simplified form.

Computations were performed on a UNIVAC 1108. No record was kept of the computing time required to generate a sentence, however, a conservative estimate would be about 2.0 seconds of computer time per sentence. Computing time is roughly proportional to the length and complexity of the sentence.

4.4.1 Sentences Analyzed by Algorithm

This section contains a list of the Hebrew sentences analyzed by the computerized algorithm preceded by their English equivalent. The number accompanying each pair of sentences refers to the corresponding tree diagrams generated by the algorithm which are contained in Section 2.3.2 of Part II of this report.

- (1) Chaim Nuchman Biyalik was a great poet in the land of Israel. XYYM NXMN BYALYQ HYH MSWRR GDWL BAR& YSRAL.
- (101) Was Chaim Nuchman Biyalik a great poet in the land of Israel? HAM XYYM NXMN BYALYQ HYH MSWRR GDWL BAR& YSRAL?
- (102) Chaim Nuchman Biyalik be a great poet in the land of Israel! XYYM NXMN BYALYQ HYH¹² MSWRR GDWL BAR& YSRAL!
- (103) Chaim Nuchman Biyalik will be a great poet in the land of Israel! XYYM NXMN BYALYQ YHYH MSWRR GDWL BAR& YSRAL.
 - (2) He was greater than all the poets. HWA HYH GDWL MKL HMSWRRYM.
- (201) Who was greater than all the poets?
 MY HYH GDWL MKL HMSWRRYM?
 - (4) He lived in a small village. HWA YSB BKPR Q@N.
- (401) He will live in a small village. HWA YYSB BKPR Q@N.

¹² This illustrates the imperative sentence. The HYH is the imperative ! הוֹלָה.

4-95

- (402) He is living in a small village. HWA YWSB BKPR Q@N.
- (403) He used to sit on a small chair. HWA HYH YWSB OL KCA Q@N.
- (404) He will continually live in a small village. HWA YHYH YWSB BKPR Q@N.
 - (5) He loved to study law. HWA AHB LLMWD TWRH
 - (6) But he also loved the fields and the forests. ABL HWA AHB GM AT ESDWT WAT HYORYM
 - (7) He went to study in a large academy. HLK LLMWD BYSYBH GDWLH.
- (701) Did he go to study in a large academy? HHLK¹³ LLMWD BYSYBH GDWLH?
- (702) Did he go to study in a large academy? HAM¹⁴ HLK LLMWD BYSYBH GDWLH?
- (703) Did Biyalik go to study in a large academy? HAM BYALYQ HLK LLMWD BYSYBH GDWLH?
 - (8) He wrote the first poems.
 HWA KTB AT HSYRYM HRASWNYM
 - (9) He wrote about the sun. HWA KTB OL HSMS.
- (12) The students studies these poems. HTLMYDYM LMDW AT HSYRYM HALH.
- (121) They knew them by heart.
 YDOW AWTM OL PH.
 - (13) Biyalik traveled to the land of Israel. BYALYQ NCO LAR& YSRAL.
- (23) All the Jews wept over his death. KL HYHWDYM BKW OL MWTW.
- (26) Do you want to see the synagogue? HAM ATH RW&H LRAWT AT BYT HKNCT?
- (11) Joseph does not have a room.
 AYN LYWCP XDR.
- (112) Joseph has a room YS LYWCP XDR.

4-96

¹³This illustrates the classical Hebrew option.
14This illustrates the modern Hebrew option.

4.4.2 The Algorithm Tested by Computer

The 26 sentences analyzed by the computer were selected to test the algorithm. In analyzing these sentences, 57 of the 179 rules on the intermediate symbols were used. Of the 73 intermediate symbols, 40 were tested for a least one class, and 15 were tested for all class variants. Of the 20 terminal symbols, 16 were tested for at least one class, and 10 were tested for all class variants. The purpose of this test was to verify the analytic capability of the algorithm, not to further verify the grammar rules. Time limitation prevented more extensive tests. However, sufficient tests were performed to demonstrate the analytic capability of the algorithm and to reveal the areas where improvement is required.

Table 4-11 is a listing of the sentence numbers of the test sentences that demonstrate the symbols of the grammar and thus, the corresponding rules. For example, for symbol No. 6, N_a, test Sentences 1 and 4 (plus others) demonstrate the use of class 1 (Rule 9.1), test Sentences 2 and 6 (plus others) demonstrate class 2 (Rule 9.3), test sentences 1 and 701 (plus others) demonstrate class 3 (Rule 9.4); the asterisk (*) indicates that the symbol does not have classes 4 through 8. Tree diagrams of the test sentences are contained in Section 2.3.2 of Part II of this report which show the specified symbol as it relates to the structure of the sentence.

Because the rules of the grammar are unordered (by original definition), the analysis algorithm requires predictive logic to synchronize the production of related constituents. This logic omputes the possibility of satisfying a grammar rule if its application is postponed one or more passes on the string of symbols. This feature causes the algorithm to delay execution of high level rules until applicable lower level rules have been satisfied.

The analysis algorithm is presently equipped with prediction logic to a depth of two passes by the use of Subprograms PROPH1 and PROPH2. With this depth of predictive logic, the algorithm is capable of analyzing most simple sentences. Difficulties are experienced with complex sentences that contain compound verb modifying phrases, compound predicates, predicates with verbs of class 4, 7, and 8, and with sentences containing subordinate clauses or relative clauses. The analysis of these sentences requires predictive logic that is more powerful. This logic must delay the execution of a rule until a deep structure relationship with the preceding symbol is predicted for the next pass on the string. Time has not permitted the incorporation of this feature into the algorithm, but there is nothing to prevent this and other refinements from being added in the future.

4-97 104

Table 4-11
SENTENCES ILLUSTRATING GRAMMAR SYMBOLS

Symbol No.	Symbol Name	**		Symbol (Clas				
	7701110	1	2	3	4	5	6	7	8
ļ ,	Z		*	*	*	*	*	*	*
1			*	*	*	*		╄	
2	Vgφ					 	*	*	*
3	Apa	4,7,8	1,2	*	*	*	*	*	*
4	Ap	1,2,4,7	*	*	*	*	*	*	*
5	As				*	*	*	*	*
6	Na	1,4+	2,6+	1,701+	*	*	¥	*	*
7	Sqφ			*	*	*	*	*	*
8	Ns	23	*	*	*	*	*	*	*
9	Rd		12		*	*	*	*	*
10	Ro	121	*	*	*	*	*	*	*
11	Baa				*	*	*	*	*
12	Bab		*	*	*.	*	*	*	*
13	Bac			-	*	*	*	*	*
14	Bad			*	*	*	*	*	*
15	Bae				*	*	*	*	*
16	Baf				*	*	*	*	*
17	Bba						*	*	*
18	Bbb			*	*	*	*	*	*
19	Ва			* *	*	*	*	*	*
20	Bbc			*	*	*	*	*	*
21	Вр			*	*	*	*	*	*
22	Npb	1,2,5+	23	403	*	*	*	*	*
23	Npa	1,4+	1,2,13+		*	*	*	*	*
24	Npc		*	*	*	*	*	*	*

Table 4-11 (continued)
SENTENCES ILLUSTRATING GRAMMAR SYMBOLS

Symbol No.	Symbol Name	Symbol Class							
		1	2	3	4	5	6	7	8
25	Nap		1,101+		*	*	*	*	*
26	Np	1,2,5+	*	*	*	*	*	*	*
27	(Dpa) ¹⁵	*	*	*	*	*	*	*	*
28	(Dpb) ¹⁵	*	*	*	. *	*	*	*	*
29	(Dpc)15	*	*	*	*	*	*	*	*
30	Dp	6					*	*	*
31	Ea	402,26+	*	*	*	*	*	*	*
32	Vb	1,4,5+	*	*	*	*	*	*	*
33	Vbb	1,2,4+	*	*	*	*	*	*	*
34	Vc		1,2,5+	*	*	*	*	*	*
35	Vaa	1,2,+	*	*	*	*	*	*	*
36	Va	1,2,7,+	*	*	*	*	*	*	*
37	Вс			*	*	*	*	*	*
38	Хр	1,2,4+			*	*	*	*	*
39	No	6,8+		*	*	*	*	*	*
40	Dpd			*	*	*	*	*	*
41	Rsp	2,4,5+		*	*	*	*	*	*
42	Nsp	A,1,23+	2,4,5+			*	*	*	*
43	Nop	5	6,8+	*		*	*	*	*
44	Nip	121	u	*	*	*	*	*	*
45	Npx	201		403,1		23	*	*	*
46	Vma			5,6+	*	*	*	*	*
47	Vmb		121		*	*	*	*	*
48	Vmc					*	*	*	*

 $^{^{15}\,\}mathrm{Symbols}$ $\mathrm{D}_{\mathrm{pa}},$ $\mathrm{D}_{\mathrm{pb}},$ and D_{pc} have been removed from the grammar as a result of modifications made on this project.

Table 4-11 (continued) SENTENCES ILLUSTRATING GRAMMAR SYMBOLS

Symbol	Symbol	ol Symbol Class								
No.	<u>Name</u>	7	2	3	4	5	6	7	8	
49	Vmd				*	*	*	*	*	
50	Vm	1,2,		5,6+	121	4,7+	5.7+			
51	Vmr						*	*	*	
52	Vmi				*	*	*	*	*	
53	Vp	1,2,5+	*	*	*	*	*	*	*	
54	Vrb		*	*	*	*	*	*	*	
55	Vri		*	*	*	*	*	*	*	
56	Nv	5,7+			*	*	*	*	*	
57	Nw		*	*	*	*	*	*	*	
58	Epb			*	*	*	*	*	*	
59	Epa	403		*	*	*	*	*	*	
60	Ep	403	*	*	*	*	*	*	*	
61	Saa				111,112	*	*	*	*	
62	Sab	1,2+						*	*	
63	Sac	7,701	*	*	*	*	*	*	*	
64	Sa	111	7	1,2,4+	*	*	*	*	*	
65	Sro			*	*	*	*	*	*	
66	Sri	,		*	*	*	*	*	*	
67	Rg				*	*	×	*	*	
68	Km			*	*	*	*	*	*	
69	Кс					*	*	*	*	
70	Kk		*	*	*	*	*	*	*	
71	Ki	701,26+	201			*	*	*	*	
72	Kd			*	*	*	*	*	*	

Table 4-11 (continued)
SENTENCES ILLUSTRATING GRAMMAR SYMBOLS

Symbol	Symbol			Symbol	Clas	s			
No.	Name_	1	2	3	4	5	6	7	8
73	Sd			*	*	*	*	*	*
74	S	1,2,7+			*	*	*	*	*
75	Si	701,201		· · ·	*	*	*	*	*
76	S _c	1,2,4+	201,701+	101	*	*	*	*	*
77	A	1,2,4,+	*	*	*	*	*	*	*
78	В							*	*
79	С								6
80	D	6						*	*
81	E	26,402+	*	*	*	*	*	*	*
82	G			*	*	*	*	*	*
83	Н	2,6+	*	*	*	*	*	*	*
84	I							*	*
85	J	1,2,13+	*	*	*	*	*	*	*
86	L	וון				*	*	*	*
87	N	1,2,4+	111,112	1,701+	*	*	*	*	*
88	0	6,8,12	*	*	*	*	*	*	*
89	Р	1,2,5,8,13+	*	*	*	*	*	*	*
90	Q	701+	26,702	*	*	*	*	*	*
91	R	12	2,4,5+	121,23+		201	*	*	*
92	Т					201,701	1,2,4+	102	
93	U			112					*
94	٧	1,2,+	*	*	*	*	*	*	*
95	W		*	*	*	*	*	*	*
96	Υ	5,7+	*	*	*	*	*	*	*

4.5 Conclusion

Tests of the algorithm have demonstrated its capability for analyzing most simple Hebrew sentences. Present limitations on the depth of its predictive logic have prevented the successful analysis of more complex sentences. However, the general requirements for extending its capability are known, and there is nothing to prevent the incorporation of these refinements in future versions.

Two additional aspects of the algorithm need further attention. First, there are several computations of the algorithm that are dependent upon the "content" of the grammar upon which it operates. If the algorithm were modified to free these computations from such dependence, a modification which is feasible, the algorithm could be used to generate sentences in other Semitic languages, such as Arabic, whenever grammars of these languages become available.

The second aspect of the algorithm needing further attention is the format of the input data prepared by the user. The sentence description input to this algorithm is much less complex than that of the synthesis algorithm. However, it still requires a complete grammatical description of each word in the sentence. This requirement could be eliminated by the incorporation of an automatic word analysis algorithm. Such an algorithm exists for Hebrew but it has not been made a part of this present program.

4-102

Appendix

PART IV

APPENDIX A

LISTING OF THE

GRAMMAR OF

HEBREW SYNTAX FOR

ANALYSIS OF SENTENCES

```
SYMBOL (MF/KBCLYDNGPRAVIT/S/- /X/Z)
                                             RULE NO.
                                                (55.1)
    Z-(10 001000000R0000 00000 0 0) +
   NOP(11 99909900000000 00000 0 0)
    DP(94 99909000000000 00000 0 0) =
   VMI(10 003000000R4000 00000 0 0)
                                                (52.1)
    Z-(11 99909000090000 00000 0 0)
   NOP(11 9990990000000 00000 0 0)
    NP(11 99109999900000 00000 0
    DP(94 9990900000000 00000 0 0)
   VMD(10 00300000008000 00000 0 0)
                                                 (51.1)
    Z=(11 99909000090000 00000 0 0)
   NOP(91 99909900000000 00000 0 0) +
    DP(94 99909000000000 00000 0.0) +
    KD(11 99909000000000 00000 0 0) =
   VMC(10 00300000007000 00000 0 0)
                                                 ( 49. 1)
    Z-(11 99909000090000 00000 0 0)
   NOP(11 99909900000000 00000 0 0)
    DP(94 9990900000000 00000 0 0)
   VMA(10 00300000003000 00000 0 u)
    Z-(11 991090000R0000 00000 0 0) +
    DP(94 99909000000000 00000 0 0) =
   VMR(10 004000000R5000 00000 0 0)
                                                (41.1)
    2-(10\ Q010Y0000R0000\ 00000\ 0\ 0) =
    XP(10 0020Y0000R0000 00000 0 0)
```


F131	1110 UF	MODERIA TI	LDKC# .	J 1	. I A	A 4	MALISIS	RULI	.5 //	/ 21/	UUA	יובס ו	υ•
SYMBOL (MF	KBCLY	DNGPRAVIT	/S/=W=	/ X /	/Z)		f	RULE	NO•				
		ONGPR9999 ONGPROOOO				=		(10.	1)			
		DNG000000				Ξ		(7•	1)			
		D36000000 D26000000				=		(7.	2)			
		00000000 9000000				=		(48•	1)			
U-(10	007000	999900000 000000000 000010000	00000	0	O)	=			41.	1)			
AP(91 RD(90 AS(91	999090 009000 999000	ONGP00000 ONG000000 ONGP00000 O0000000 ONGP00000	00000 00000 00000	0 0 0	0)	+			25.	1)			
AP (91	999092	2NGP00000 2NG000000 2NGP00000	00000	0	0)			(25•	2)			
Z=(91 NP(11 DP(94	999090 991099 999090	29990000 00090000 99990000 00000000	00000 00000 00000	0 0 0	0)	+.		(52•	1)			-
AMDITO	002000	00080000	00000	U	0)							112	Ž.

SYMBOL (MF)	/KBCLYDNGPRAVIT/	/S/-W-/X/	(2)	RULE NO.
Z-(91 DP(94 KD(11	99109299900000 99909000090000 9990900000000	00000 0	- ·	(51. 1)
	99109299900000 001000000R0000 99909000000000 002000000R4000	00000 0	0) + 0) + 0) = 0)	(55• 1)
RO(11 NIP(11 DP(94 VMB(10	99109299900000 999090000R0000 9990900C000000 0020000C0R4000	00000 0 00000 0 00000 0	0) + 0) + 0) = 0)	(50 • 1)
	00109299900000 99909000090000 9990900000000		0) + 0) + 0) = 0)	(49. 1)
	009000NG000000 001000NG000000		0) =	(20. 1)
	0010003G000000 0020003G000000			(20• 2)
ВАС (10 ВЬА (10	0090003G000000 0030003G000000	00000 0 00000 0	0) =	(20. 3)

RULE NO.		′Z)	′X/	'S/-W-/	AVIT/	ONGPR	KBCLYD	MBOL (MF/	SY
(20. 4)	=	0)		00000 00000	0000	03600 03600	009000 004000	BAD(10 BBA(10	
(20. 5)	÷ + =	0)	0	00000 00000 99999 00000	0000	09G00 00000	001000	BAD(10 C-(10 BAA(10 BBA(10	
(21. 1)	2	0)	0	00000	10000	03600 03600	00900 00100	BAE(10 BBB(10	
(21. 2)		0) 0) 0)	0	00000 00000 00000 00000	0000	00000 09600	00900 00100 00900 00200	BAE(10 C=(10 BBA(10 BBB(10	
(23. 1)	=	0)	0	00000	0000	03600 03600	00900 00100	BAF(10 BBC(10	
(23. 2)	+ + =	0)	0	00000	00000	00000 03600	00100 00900	BAF(10 C-(10 BA(10 BBC(10	
(22. 1)	=		0.	00000	00000	0NG00	00900 00100	BBA(10 BA(10	

SYMBOL (MF	/KBCLYDNGPRAVIT	/S/-W-/X/	(Z)	RULE NO.
	00900036000000 0020003G000000		0) =	(22. 2)
	001000NG000000 001000NG000000		0) =	(24. 1)
BBC(10 BP(10	00900036000000 00200036000000		0) =	(24 • 2)
J-(10 J-(94 NPB(10 D-(94	009000NG000000 001000NGP00000 99100099900000 00900D99900000 9920000000000	99999 0. 99999 0 00000 0 99999 0	0) + 0) + 0) + 0) + 0) = 0)	(26. 1)
BP(10 NPB(10 D=(94 NPA(10	00900DNGP00000 99200000000000	00000 0 99999 0	0) + 0) + 0) = 0)	(26• 2)
Ü−(10	00900099000000 00319000000000 002000000000	99999 0	0) + 0) == 0)	(30, 1)
BP(10 BC(10	009000NG000000 00100DNG000000	00000 0 0		(40. 1)

SYMBOL (MF/	'KBCLYDNGPRAVIT/	/S/-W-/X	/Z)		RULE	NO•	
NPB(10 D=(94 NPA(10		00000 0 99999 0 00000 0	0)		(26.	1)
NPA(10 NAP(90 NP(10		00000 0 00000 0 00000 0	õ)	+ =	(-	29•	1)
NPA(12 NPC(10	99919DNGP00000 00100DNGP00000	00000 0 00000 0		= '	(27.	1)
NP(10 L-(10 R-(10 VP(11 SAB(10	00120000000000 003000NGP00000 99900NGP99113	00000 0 00000 0 00000 0 00000 0	0) 0)	+ +	(65•	1)
NP(10 U=(10 R=(10 VP(11 SAB(10	001009NGP00000 003000000000000 003000NGP00000 999000NGP99113 006000NGP00113	00000 0 00000 0 00000 0 00000 0	0) 0)	+	(65•	2)
NP(12 NSP(10	99100DNGP00000 00100DNGP00000	00000 0	0)	=	(45•	1)
NP(11 NOP(10	9910YD99900000 0010YD000000000	00000 2 00000 2	9)	Ξ	(46•	1)

SYMBOL (MF/	KBCLYDNGPRAVIT/	S/-W-/	X/Z)	RULE	NO.	
NP(12 NPX(10	9910YDNGP00000 0030YDNGP00000	00000	0 0 0 0) =	(48•	1)
	99119000000000 003000000000000		0 0 0 0) =	(33•	1)
DPB(11 DP(10	99119000000000 004000000000000	00000	0 0 0 0) =		33•	2)
DPB(14 NPX(10	9910Y000000000 0020Y999900000		0 0 0		. (48•	1),
DPC(11 DP(10	991190000000000 005000000000000	0000u 00000	0 0 0 0) =	(33.	13
RO(19 Z-(91 DP(94 KD(11	99909000000000 99109299900000 9990900009000	00000	0 0 0 0 0 0) +) =	(51.	1)
DP(14 Z-(91 NOP(91 DP(94 KD(11 VMC(10	99909000000000 99909000090000 999099000000	00000 00000 00000	0 0 0 0 0 0 0 0) +) +) +) =	(51.	2)

RULE NO.

```
نP(14 999090000000 00000 0
                                             (52.1)
 RO(11 99109299900000 00000
                              O)
 Z-(91 9990900090000 00000 0
                              0)
                      00000
 NP(11 99109999900000
 DP(94 99909000 J0000 00000 0
                              0)
VMD(10 00200000008000 00000 0
 UP(14 9990900000000 00000 0
                                               52. 2)
 Z-(91 99909000090000 00000 0
NOP(11 99909900000000
                      00000
 NP(11 99109999900000 00000
 DP(94 9990900000000 00000
                              0)
VMD(10 00300000008000 00000 0
 DP(14 9990900000000 00000 0
 RO(10 00109299900000 00000 0
                              0)
 Z-(91 99909000090000
                      00000
 DP(94 999090000000 00000
VMA(10 00200000003000 00000 0
 DP(14 9990900000000 00000 0
 Z-(91 99909000090000 00000 0
NOP(11 9990990000000 00000 0
DP(94 9990900000000 00000 0
VMA(10 00300000003000 00000 0
 DP(14 9990900000000 00000 0
                                               50 · 1)
 RO(11 99109299900000 00000
NIP(11 999090000R0000 00000
 DP(94 9990900000000 00000 0 0)
VMB(10 002000000R4000 00000
```

YMBOL(MF/KBCLYDNGPRAVIT/S/-W-/X/Z)

SYMBOL (MF/	KBCLYDNGPRAVIT/	S/-W-/X/Z)	RULE NO.
NOP (11	99909900000000 999090000R0000	00000 0 0)	+ (50.2) + + =
DP(14 P-(10 NV(10 DP(94 VM(10	00100000010000 00900000099000		+ (53.1) + + =
DP(14 RO(11 Z-(10 DP(94 VMI(10		00000 0 0) 00000 0 0) 00000 0 0)	+ (55.1) + + =
DP(14 Z-(10 NOP(11 DP(94 VMI(10		00000 0 0) 00000 0 0) 00000 0 0) 00000 0 0)	+ (55.2) + + =
VA (10	99909000000000 0010Y0NGP01VIT 999000NGP01000 0010Y0NGP01VIT	00000 0 0) 99999 0 0) 00000 0 0)	+ (56. 1) + =
UP (3.4 VA (10 VM (11 VP (10	0010YONGPRAVIT	00000 0 0) 99999 1 ₁ 4) 00000 114) 00000 114)	+ (56.2) + =

RULE NO.

2-(11 UP(94	99909000000000 991090000R0000 99909000000000 004000000R5000	00000 0 00000 0 00000 0	0) -	+ + =	(54. 1)
DP(14 XP(11 DP(94 VM(10	99909000000000 999090000R0000 9990900000000	0000U 0 00000 0 00000 0	0) :	+ + =	(53. 1)
		00000 0 00000 0 00000 0	0) -	+ + =	(53. 2)
KD(11	99909000000000 99909000000000 00300000007000	00000 0 00000 0 00000 0	0) =	+ =	(51. 1)
DP(14 VMR(10	99909000000000 00100000001000	00000 0		=	(54. 1)
DP(14 VM(10	99909000000000	00000 0 00000 .0	- ·	=	(53. 1)
VM(11	0012YDNGPRAV00 999090999RA000 0010YDNGPRAV00	99999 0 00000 0	0) =	+ =	(62. 1)

SYMBOL (MF/KBCLYDNGPRAVIT/S/-W-/X/Z)

SYMBOL (MF/KBCL	_YDNGPRAVIT/	/S/-W-/X/Z)	RULE	NO•
	000NGPR1100 000NGPR1113		= (36. 1)
	0Y1NGPRAV00 0Y0NGPRAVI3		= (36. 2)
	OYONGPRAVIT OYONGPRAVIT		= (36. 3)
W-(10 0010	DYONGPRAVIT DOOOOORAVOO DYONGPRAVIT	SWWWW 0 0)		37. 1)
	OYONGPRAVIT OYONGPRAVIT		= (37 e 2)
	DYONG PRAVIT DYONGPRAVIT		= (38. 1)
VC(10 0090	DYONGPO1VI21 DOONGPRAVI3 DYONGPRAVI5	SWWWW 0 0)		38• 2)
VC(10 0090	DYONGPO1VI11 DOONGPRAVI3 DYONGPRAVI4	SWWWW 0 0)		38• 3)

(56, 2)

SYMBOL (MF	/KBCLYDNGPRAVIT/	/S/-W-/X/Z)	RULE	NO •
VAA (10 VA (10	0010Y0NGPRAVIT 0010Y0NGPRAVIT		= (39• 1)
. VAA(10 VA(10	0010Y03GPRAVIT 0010Y02GPRAVIT	SWWWW 0 0) SWWWW 0 0)	= (39. 2)
XP(11 NSP(12	999099NGP00000 99909000000000	99999 0 0) 00000 0 0) 00000 0 0) 00000 0 0) 00000 317)	+ +	64. 1)
V, (10 VMR(11 VRB(10	0010Y0NGPRAVIT 999090999RA000 0010Y0NGPRAVIT	99999 0 0) 00000 0 0) 00000 0 0)		57• 1)
VA(10 VMI(11 VRI(10		00000 0 0)	-	58• 1)
VA(10 VM(11 VP(10		99999 114) 00000 114) 00000 114)		56. 1)

VA(10 0010Y0NGP01VIT 99999 0.0)

VM(12 999000NGP01000 00000 0 0) VP(10 0010Y0NGP01VIT 00000 0

0)

SYMBOL (MF/	KBCLYDNGPRAVITA	(S/-W-/X/Z)	RULE	NO.
BC(10 NPA(10	00300DNG00000 00300DNG00000	00000 0 0)	= (26. 1)
۷A(10 NSP(12 UP(94	99900000010000 y010Y0NGP01VIT 999099NGP0U000 99909000000000 0010Y0NGP0UVIT	00000 0 0) 99999 0 0) 00000 0 0) 00000 0 0) 00000 317)	+ +	64. 1)
NSP(12 ÿP(94	99900000010000 999099NGP00000 99909000000000 004000NGP00113	00000 0 0) 00000 0 0) 00000 0 0) 00000 0 0)	+	64• 2)
DP (94	999090000R0000 9990900000#000 005000000R5000	00000 0 0) 00000 0 0) 00000 0 0)	÷ (53. 1)
	9990Y00009U000 0040Y060000000	00000 0 0)	= (72. 1)
XP(11 NPX(10	9990Y000090000 0050Y999900000	00000 0 0)	= (48. 13
XP(11 NIP(10	9990 ¹ 0000R0000 001010000R0000	00000 0 0)	= (47: 1)

SYMBOL (MF	/KBCLYDNGPRAVIT	/S/-W-/X/Z)	RULE	NO.
	99909000090000 00200999900000		= (28. 1)
	9990Y000090000 007000000000000		= (33. 1)
	9990Y200 ⁰ 00000 0020Y200 ⁰ 00000		= (46. 1)
	999002NGP00000 00200DNGF00000		= (.	45. 1)
	9990Y2NGP00000 0040YDNGP00000	00000 0 0) 00000 0 0)	= (48. 1)
VA(10 XP(11 DP(94	999099NGP00000 0010Y0NGP01VIT 99900000010000 999090000000000 0020Y0NGP00VIT	00000 0 0) 99999 0 0) 00000 0 0) 00000 0 0) 00000 317)	+ + .	64• 1)
VP(11	999099NGP00000 9990YONGP99VIT 0010YONGP00VIT	00000 0 0)	=	65• 1)

(68. 1)

NSP(12 999099NGP00000 00000 0 0) + VRB(11 9990Y0NGP99999 00000 0 0) = SRO(10 0020Y0NGP00000 00000 0 0)

SYMHOL (MF/	2)	RULE NO.		
Vis I (11	999099NGP00000 9990Y0NGPR9999 0020Y0NGPR0000		0) + u) = u)	(69. 1)
v@0(11	999099NGP00000 9910Y0NGPR9999 0020Y0NGPR0000	000000	0) + 0) = 0)	(10. 1)
VP (11	009009NGP00000 999000NGP01113 002000NGP00113	00000 0 00000 0 00000 0	0) + 0) = 0)	(65. 1)
NP (11	99909900000000 99109999900000 9990900000000	. 00000 0 00000 0 00000 0 00000 0	0) + 0) + 0) = 0)	(52. 1)
NOP(11 DP(94 KD(11 VMC(10		0000U 0 0000U 0 0000U 0 0000U 0	0) + 0) + 0) = 0)	(51. 1)
DP (94	99909900000000 999090000R0000 9990900000000	00000 0 00000 0	0) ÷	(50. 1)
	999099000000000 9990900000000	00000 0	0) + 0) = .	(49, 1)

120

SYMBOL (MF/KBCLYDNGPRAVIT/S/+W-/X/Z)

		999099NGP0000 9990900000000 001000NGP0100	00000	0	0)	* =	(53.	1)
		0090000000300 0030000000300			0)	Ξ	€.	53•	2)
		00900000000300 0020000000300			6)	=	(54•	1)
		009000000R400 004000000R400			0)	5	(53.	1)
•		00900000000400 00300000000400			6) 0)		(54•	1)
	VMC (10 VM (10	00900000000700 00700000000700			0)	=	(53.	1).
		00800000000000000000000000000000000000			0) 0)		 (53.	2)
	VMD (10 VMR (10	00900000000800 00500000000800		5 0	6)	=	(54•	1)

SYMBOL(MF/KBCLYDNGPRAVIT/S/-W-/X/Z)

$$VP(10 0010Y0NGPR3VIT 00000 0 0) = (5.1)$$

 $VQO(10 0010Y0NGPR8VIT 00000 0 0)$

$$VRB(11 9910Y0NGP99999 00000 0 0) = (68.1)$$

$$SRO(10 0010Y0NGP00000 00000 0 0)$$

$$NV(11 9990Y000099000 00000 0 0) = (47.1)$$
 $NIP(10 0020Y0000R0000 00000 0 0)$

$$NV(10\ 00900000099000\ 00000\ 0\ 0) = (45.1)$$
 $NSP(10\ 00400D11300000\ 00000\ 0\ 0)$

EPB(10 0090YDNGPR3100 00000 0 0) =
$$(62.1)$$

EPA(10 0020YDNGPR3100 00000 0 0)

SYMEOL (MF/	/ _K BCLYDNGPRAVIT/	/S/-W-/	/X/Z))	RULE	NO.	
EPA(10 EP(10	0010YD3GP99900 0010YD2GP00000	00000	0 0 0) <u>=</u>)	(63•	1)
EPA(10 EP(10	0090YDNGP99900 0010YDNGP00000	00000 00000	210 210) =	(63.	2)
EP(10 NPB(10	0010YDNGP00000 0030YDNGP00000	00000	0 0) =)		25•	1)
SAA(10 SA(10	0090YONGPOOVIT 0010YONGPOOVIT	00000	0 0) =)	(67•	1) .
SAB(10 SA(10	0090YONGPOOVIT 0030YONGPOOVIT	00000 00000	0 0 0 0) =	(67•	2)
SAC(10 SA(10	0010YUNGPOOVIT 0020YONGPOOVIT	00000	0 0) =)		67.	3)
SA(11 T-(90 KC(11 SD(10	003000000000000	00000 00000 00000 00000	0 0 0 0 0 0 0 0) +) =	(76•	1)
SA(11 S-(10	9990Y0999009IT 0010Y00000000IT				(77.	1)

SYMBOL (MF/KBCLYDNGPRAVIT/S/-W-/X/Z)

RULE NO.

(77. 1)

RG(11 NAP(10	99909DNGP00000 00300DNGP00000	00000 00000	0	0) 0)	,	(28•	1)
KN(10 KD(10	0090Y000000000 0010Y0000000000	00000 00000	0	0) 0)	=	(75.	1)
KN(10 NSP(10		U0000 00000	0	0)	=	(45•	1)
KC(11 T-(90 SA(11 SU(10	003000000000000	00000 00000 00000	0	(O) (O) (O)	+ + =	(76•	1)
KC(11 T-(10 KI(10 SI(10	003000000000000	00000 00000 00000	0 0 0	0)		(78•	1)
KC(11 NPX(10	9990Y000000000 0060YDNGP00000	00000 00000	0	0)	=	, (48•	1)

KK(11 99109000000001 00000 0 0) + T-(90 00300000000000 00000 0 0) +

SA(11 9990Y0999009I1 00000 0 0) = S-(10 0030Y0000000I1 00000 0 0)

```
(MF/KBCLYDNGPRAVIT/S/-W-/X/Z)
                                     RULE NO.
                                         ( 77. 2)
(11 99109000000002 00000 0 0) +
(90 0030000000000000 00000 0 0) +
(11 9990Y09990U9I2 0000U 0 0) =
(10 0030Y000000012 00000 0 0)
                                        ( 78. 1)
(10 0090Y099990000 00000 0 0) +
(10 00300000000000 00000 0 0) +
(11 99909000000000 00000 0 0) =
(10 0030Y000000000 0000U 0 0)
                                         (78.2)
(10\ 0090Y099990000\ 00000\ 0\ 0) =
(10 0010Y000000000 00000 0 0)
                                         ( 77. 1)
(10 0090Y0000000IT 00000 0 0) =
(10 0020Y0000000IT 0000U 0 0)
                                          ( 79. 1)
(10 0090Y000000022 00000 0 0) +
(10 00700000000000 00000 0 0) =
(10 0030Y000000000 00000 0 0)
                                          ( 79. 2)
(10 0090Y000000099 00000 0 0) +
(10\ 006000000000000\ 00000\ 0\ 0) =
(10 0010Y000000000 00000 0 0)
( 7.9. 3)
(10\ 0.05000000000000\ 0.0000\ 0\ 0) =
(10 00207000000000 00000 0 0)
                        4-A-20
```

SYMBOL (ME/KECLYDNGPRAVIT/S/-w-/X/2)

XP(11	99900000090000	99999 0 0) 00000 713) 00000 0 0)	=	(6. 1)
XP(11	99900000020000	99999 0 0) 00000 0 0)	=	(6. 2)
A~(10 D~(94 APA(10	906000000000000	99999 0 0) 99999 0 0) 00000 0 0)) =	(6. 3)
B-(10 B-(10 BAC(10	00400016000000) =	(16. 1)
В -(1 0 ВАА(1 0	0020000	00000 0 0		(14. 1)
D-(10 B-(10 BAC(10	00200036000000 00400016000000 00200036000000	00000 0 0 00000 0 0) =	(16. 1)
B-(10 BAA(10	00200026000000 00200026000000	00000 0 0) =)	(14• 1)
B-(10	00400012000000	99999 0 0 00000 0 0 00000 0 0		(16. 1)

YMBOL(MF/KBCLYDNGPRAVIT/S/-w-/X/Z)

RULE NO.

 $B-(10\ 00500012000000\ 00000\ 0\ 0) =$

BAE(10 00100039000000 00000 0 0)

(18. 1)

SYMBOL (MF/KBCLYDNGPRAVIT/S/-W-/X/Z)

8-(10 BAE(10	00500022000000 00200039000000	00000 0 00000 0	0)	=	(18. 2)
8-(10 BAF(10	00600011000000 00100039000000	00000 0 00000 0	0)	=	(19. 1)
B-(10 BAF(10	00600021000000 00200039000000	00000 0 00000 0	0)	=	(19. 2)
SA(11	003000000000000 9990Y099900999 0010Y000000000	00000 0	0)	+ =	(71. 1)
SA(11	004060000000000 9990Y099900999 0610Y060000000	00000 0	0)		(72: 1)
SA(11	00500000000000 9990Y099900999 0020Y000000000	00000 8	0) (17) (0)	+ =	(72. 2)
C-(10 SA(11 KC(10		00000 0	(0)	+ =	(72• 3)
C-(10 S-(10 T-(10 SC(10	0090Y0000000099	00000 0	(0 (0 ((79. 1)

SYMEOL (MF.	/KBCLYDNGPRAVITA	/S/-w-/X/	Z)	RULE NO.
		00000 0	0) + 0) + 0) = 0)	(79• 2)
	_	00000 0	0) + 0) + 0) = 0)	(79. 3)
	99119000000000 00100000000000		o) = o)	(33, 1)
Ü−(11 DPD(10	9911Y000000000 0010Y000000000		0) =	(43. 1)
D-(11 DP(10	99219000000000 002000000000000		0) = [(33. 1)
D-(11 DPD(10	9921Y000000000 0020Y000000000	99999 0 (0) =	(43. 1)
BP (90	00319000000000 00900099000000 0010000000000	00000 0	0) =	(30 • 1)
	,	•		

D-(10 00419000000000 99999 0 0) + D-(90 0060000000000 99999 0 0) = DPB(10 0010000000000 00000 0 0)

(31.1)

SYMBOL(MF/	KBCLYDNGPRAVIT/	S/-W-/	X /	Z)		RULE	NO•	
.i=(90	005190000000000 006000000000000 0010000000000	99999	Ü	0) 0) ú)		(32.	1)
i)−(90	00619000000000 006000000000000 0060000000000	99999	0	0)		(33.	1)
D-(10 VC(10 VAA(10	0071Y0000000000 009000NGPRAVI1 0010Y0NGPRAVI6	SWWWW	0	0)			38•	1)
VC (10	0081Y000000000 009000NGPRAVI2 0010Y0NGPRAVI7	SWWWW	0	0) 0)		. (38.	2)
E-(10 EA(10	0011Y0NGPRAV00 0010Y9NGPRAV00	SWWWW SWWWW	2	9) 9)	= ;	(34•	1)
NPA(11	9912Y0NGP03100 99909D99900000 0010YDNGPR3100	99999 00000 00000	U			(61.	1)
R-(10	0012Y0NGP03100 00300099900000 0020Y2NGPR3100	99999 00000	0		= '		61.	2)

₹ 10 •	RULE)	X/Z)	5/-W-/	KBCLYDNGPRAVIT/	SYMBOL (MF/
(9. 1)) =	0 0) 0 0) 0 0)	99999	~ ~ ~ ~ · · · · · · · · · · · · · · · ·	N-(10
(12. 1)	-) =	0 0) 0 0) 0 0)	00000	• • • • • • • • • • • • • • • • • • • •	H-(10 R-(10 RD(10
(12. 2)	•) =	0 0) 0 0) 0 0)	00000	0011Y000000000 002000NG300000 0030Y2NG300000	R-(10
(34. 1))) =	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000 SWWWW SWWWW	0011Y0000000000 001000NGPRAV00 0010Y2NGPRAV00	E-(10
(40. 1)	•)) +)) =		00000	001000000000000 009000NG000000 002002NG000000	BP(10
(80. 1)	=)) =	0 0 0 0 0 0	00000 SWWWW SWWWW	001000000000000 001000NG000000 001002NG000000	A-(10
(16. 1)		-		00000	00200036000000 00400016000000	I-(10 6-(10

BAC(10 0020003G000000 00000 0 0)

SYMBOL(MF/	KBCLYDNGPRAVIT/	S/-w-/X/Z)	RULE NO.
B = (10)	00200032000000 00500032000000 00200039000000	00000 0 0) =	(18. 1)
H-(10	00200031000000 00600031000000 00200039000000	00000 0 0) + 00000 0 0) = 00000 0 0)	(19. 1)
B = (10)	00300011000000 00500032000000 00300039000000	00000 0 0) =	(18. 1)
3-(10	00300031000000 00600031000000 00300039000000	99999 0 0) + 00000 0 0) = 00000 0 0)	(19. 1)
J-(10 J-(94 NPB(10 D-(94 NPA(10	99200000000000	99999 0 0) + 99999 0 0) + 00000 0 0) + 99999 0 0) = 00000 0 0)	-
J-(10 R-(10 NS(10	00300099900000	99999 0 0) + 00000 0 0) = 00000 0 0)	
NSP (12	99900000010000 999099NGP00000 999090000000000	00000 0 0)	⊦ •

SYMBOL (MF/KBCLYDNGPRAVIT/S/-W-/X/Z)

																	,			
	L-(1 R-(1 VP(1 SAB(1	0 1	9ç:	300 900	40C	IGP IGP	00 99	000 000 113 113	0	00	00	0	0)	+	,		(65	• 1)	
!	L-(1) NP(1) VP(1) SAB(1)	0 1	001 001 999 005	100 900) 9 N 0 0	GP GP	000 99:	000 L13	0	0 0 0 0	00 00 00		0)	+ =			(65.	2)	
	L-(1) F-(1) F-(1)	-	001 000 000	LO	DN	GPf	RA۷	IT	SI	0 0 W W W W!	WW	0	0)	+ =				2•	1)	
	N-(10 B-(10 NA(10) (00	010	300	00	00	00	999 000		0 0	0) 0)	+ =			(9•	1)	
	N-(10 NA(10		001 001							999		2	9) 9)	=		, .	(9•	2)	
	N-(14 NA(10											1 0 .	6) 0)	=			(9.	3)	
	0-(10 R-(10 RO(10	0	01 03 01	000	DNG	PO	00	00	00	00	0	0 0 0	0)	+ =			(1	13.	1)	

SYMBOL (MF/KBCLYDNGPRAVIT/S/-W-/X/Z)

,							
йР (1 0	0011Y000000000 001002999000 0010Y20U00U0	00000	0	-	<u>+</u> =	(42. 1)
0-(10 RG(10 NO(10	0011Y00000000 009002999000 0020Y2000000	00000	ŋ	- ·	+ =	(42. 2)
P-(10 R-(10 SRI(10 KI(10	001000000R00 0050000000000 0090Y0NGPRU0 0040Y0NGPRU0	00 99999	0 0 0	0) 0) 0)	+ + =		74. 1)
P=(10 NV(10 DP(94 VM(10	001000000100 009000000990 999090000000 00600000000	00 00000	0 0 0	() () () () ()	+ + =		53. 1)
P-(10	003000999000	00 00000	0	u) u) o)	+		4. 1)
P=(10 NP(11 XP(10	991009999000	00 00000	0	0) 0) 0)	+ =	((41. 1)
P=(10 RG(11 XP(10	999009999000	0000.0000	0	0)	+ =		(41. 2)

SYMBOL (MF	KBCLYDNGPRAVIT/	'S/-W-/X/Z)	RULE	NO.
SA(11	009000000000000 9990Y0NGP00999 0010Y0NGP00000	00000 0 0)	=	74• 1)
	991000NGP00000 00200213P00000			44• 1)
	0011Y0NG300000 0010YDNG900000			12. 1)
NPC (93	002000NGP00000 991002NGP00000 001002NGP00000		=	44. 1)
R→(10 VBB(10				36• 1)
R-(10 DP(94 Z-(10 DP(94 VMI(10	99909000000000 001000000R0000 99909000000000		**	55. 1)
R=(10 DP(94 Z=(91 NP(11 DP(94 VMD(10	99909000000000 9990900009000 9910999990000 9990900000000		+ + +	52. 1)

RULE NO.

SYMBUL (MF/KBCLYDNGPRAVIT/S/-W-/X/Z)

```
(51.1)
R-(10 00300099900000 00000 0 0)
Z-(91 99909000090000 00000 0 0)
+ (94 99909000000000 00000 0 0)
KD(11 99909000000000 00000 0 0)
VMC(10 00100000007000 00000 0 0)
                                            (50.1)
R-(10 00300099900000 00000 0
P(94 99909000000000 00000 0 0) +
NIP(11 999090000R0000 00000 0 0)
VMB(10 001000000R4000 00000 0 0)
 R-(10 00300099900000 00000 0 0)
                                            (49.1)
 UP(94 99909000000000 00000 0 0)
 Z-(91 99909000090000 00000 0 0)
 \overline{DP}(94 99909000000000 00000 0 0) =
VMA(10 00100000003000 00000 0 0)
 K-(10 0041Y000000000 00000 0 0)
                                            (70.1)
 VP(11 999090NGP00999 00000 0 0) =
 RG(10 0010YDNGP00000 00000 0 0)
 R-(10 0041Y000000000 00000 0 0) +
                                            ( 70. 2)
SRO(10 00909099900000 00000 0 0) =
 RG(10 0020Y999900000 00000 0 0)
                                            ( 70.
 R-(10 0041Y000000000 00000 0
SRI(10 00909099900000 00000 0 0) =
 RG(10 0030Y999900000 00000 0 0)
```

SYMBOL	(ME/KRCL	YDMGPRAVI	T/S/	-W-/X/7)
コードログト	AMIL A MOCL	. I DIYG! NAVA	/ /	-n-, ^, _,

SA(11	004000000000000 9990Y099900999 0020Y0000000000	00000 0	0) + 0) = 0)		(71. 1)
VP(11	005000000000000 9990Y0NGP09999 0020Y0NGP00000	00000 0	0) + 0) = 0)		(74. 1)
	005000000000000 0090Y0NGPR0000 0030Y0NGPR0000	00000 0	0) + 0) = 0)		(74. 2)
NPC (13	003000000000000 99119DNGP00000 003000000000000 00100DNGP00000	00000 0	0) + 0) + 0) = 0)		(28• 1)
T-(10 T-(10 SC(11 T-(10 KD(10	001000000000000	00000 0 00000 0 00000 0	0) + 0) + 0) + 0) =		(75• 1)
U-(10 R-(10 AS(10	00100000000000 00300099900000 0010000000000	00000 0	-		(8• 1)
U-(1) NP(10 AS(10		00000	0) + 0) = 0)	. ·	(8. 2)

SYMBOL (MF/KBCLYDNGPRAVIT/S/-W-/X/2)

U=(10 XP(11 NSP(12 DP(94 SAA(10	9990000010000 999099NGP00000 99909000000000	00000 0 0 00000 0 0 00000 0 0)) +)) +)) =))	(64. 1)
U=(10 NSP(10 VP(11 SAB(10	009009NGP00000	00000 0 0)) +)) +)) =	(65.1)
U-(10 R-(10 VP(11 SAB(10	003000000000000 003000NGP00000 99900NGP99113 003000NGP00113	00000 0 (0) + 0) + 0) = 0)	(65• 2)
U-(10 SA(11 KK(10	004000000000000 99900099900911 001000000000	000000	()) + ()) = ())	(73, 1)
U=(10 SA(11 KK(10	005000000000000 99900099900911 0010100000000	00000 0	0) + 0) = 0)	(73. 2)
U-(10 SA(11 KK(10	006000000000000 9990Y099900912 0010Y0000000002	00000 0	0) + 0) = 0)	(73. 3)
U-(10	0014Y0NG PRAV12 0020000000000000 0010Y0NGPRAV32	00000 0	0) + 0) = 0)	(35. 1)

LISTING OF MODERN HEBREW SYNTAX ANALYSIS RULES 7/21/70--JAMES D. PRICE

SYMBOL (MF/	KBCLYDNGPRAVIT/	'S/-W-/X/Z	RULE	NO•
U -(1 0	001000NGPRAV22 002000000000000 001000NGPRAV32	20000 0 03) =	35. 2)
V-(10 VB(10	001410NGPRAV22 001010NGPRAV32	SWWWW 0 07 SWWWW 0 07	·	35. 3)
V-(10 VB(10	0011Y0NG2RAV22 0010Y0NG2RAV22	SWWWW 0 0	,	35. 4)
V-(10 VB(10	0011YONGPRAV1T 0010YONGPRAV1T	SWWWW 0 0	•	35. 5)
VBB (10	001000000RAV00 0090YONGPRAVIT 0010YONGPRAVIT	SWWWW1117) =	37. 1)
	0011Y0000RAV00 0010Y0992RAV22			35. 1)
W-(11 VM(10 NW(10	9913Y0000RA000 009000000RA000 0010Y0000RA000	99999 0 0 00000 0 0 00000 0 0) =	60. 1)
Y-(10 VM(11 NV(10	0013Y0000RA000 999090999RA000 0010Y0000RA000	99999 0 0 00000 0 0 00000 0 0) =	59• 1)

SYMBOL (MF/RECLYDNGPRAVIT/S/-W-/X/Z) RULE NO. (59.2)Y-(10 0013Y0000RA000 99999 0 0) + R-(10 00300099900000 00000 0 0) + VM(11 999090999RAU00 0000U 0 0) = NV(10 0020Y0000RA000 00000 0 0) (59. 3) Y-(10 0015Y0000RA000 99999 0 0) + HSP(11 99909999900000 00000 0 0) + VM(11 999090999RA000 00000 0 0) = NV(10 0030Y0000RA000 00000 0 0) 3. 1) F-(11-18CLYDNGPRAVIT SWWWW 0 0) + $T-(10\ 003000000000000\ 00000\ 0\ 0) +$ F-(11 GOCLYDNGPRAVIT SWWWW 0 0) = F-(11 KBCLYDNGPRAVIT SWWWW 0 0) 3. 2) F-(11-10CLYDNGPRAVIT SWWWW 0 0) + C-(10 00100000000000 00000 0 u) + F-(11 OOCLYDNGPRAVIT SWWWW 0 0) = F-(11 K1CLYDNGPRAVIT SWWWW 0 0) F-(11-10CLYDNGPRAVIT SWWWW 0 0) + 3. 3) C-(10 00200000000000 00000 0 0) + F-(11 00CLYDNGPRAVIT SWWWW 0 0) = F-(11 K2CLYDNGPRAVIT SWWWW 0 0) 3. 4) F-(12-10CLYD999RAVIT SWWWW 0 0) + T-(10 00300000000000 00000 0 0) + F-(12 OBCLYD999RAVIT SWWWW 0 0) = F-(12 KBCLYDNGPRAVIT SWWWW 0 0)

LISTING OF MODERN HEBREW SY TAX ANALYSIS RULES 7/21/70~-JAMES D. PRICE

SYMBOL (MF/KBCLYDNGPRAVIT/S/-W-/X/Z)

RULE NO.

C-(10 F-(12	-10CLYD9 0010000 00CLYD9 K1CLYDN	0000000 99RAVIT	SWWWW QQQQQ QWWWW SWWWW	0 0 0	0)	+	(3. 5)
C-(10 F-(12	-10CLYD9 0020000 00CLYD9 K2CLYDN	0000000 99ravit	SWWWW 00000 SWWWW SWWWW	0 0 0	0) 0) 0)	+	(3. 6)
T-(10 F-(13	00CLYDM0 0030000 00CLYDM0 20CLYDN0	0000000 GPRAVIT	SWWWW 00000 SWWWW SWWWW	0000	0) 0) 0)	+ + =	(3. 7)
T-(10 F-(13	-10CLYDN0 00300000 00CLYDN0 K0CLYDN0	000000G GPRAVIT	SWWWW 00000 SWWWW SWWWW	Ç	0) 0) 0) 4)	+		3. 8)
F-(14	OOCLYDNO OOCLYDNO 20CLYDNO	SPRAVIT	SWWWW SWWWW	0 0 0	0)		(3. 9)
F-(14	KOČTADINO OOCTADINO 10CTADINO	GPRAVIT		n (6	0) 0) 4)			3.10)

Appendix

PART IV

APPENDIX B

SOURCE LANGUAGE LISTING

OF

COMPUTER PROGRAM ANALYZ

AND

ASSOCIATED SUBPROGRAMS

PART IV

APPENDIX B

This appendix contains the source language listing of the following computer programs and associated subprograms:

(1)	Main Program	ANALYZ
(2)	Subprogram	ALPHA
(3)	Subprogram	DIAGRM
(4)	Subprogram	LIMIT
(5)	Subprogram	MACHER
(6)	Subprogram	OUTPUT
(7)	Subprogram	PARSE
(8)	Subprogram	PROPH1
(9)	Subprogram	PROPH2
(10)	Subprogram	RERITE
(11)	Subprogram	RULENO
(12)	Subprogram	SYMACH
(13)	Subprogram	VARATT
(14)	Main Program	RULIST

4-B-1

MAIN PROGRAM ANALYZ

```
C
    000000
                             PROGRAM ANALYZ
              THIS PROGRAM PERFORMS SYNTACTIC ANALYSIS
                   OF HEBREW SENTENCES
                             WRITTEN BY JAMES D. PRICE
                                                       JULY 1970
    COMMON RULE(900,28), IPSI(100,8,2), RESTRT(5,15), ITABLE(400,29),
     1 SYMIN(29), SYMBOL(29), I, IMAXI, J, JMAX, IRULE, IMAX, IRULE1,
     2 ISTART, ITRACE, MATCH
      COMMON/TREE/ ITREE(50), NODE(7,400), NODE1, NODE2
      COMMON/PARS/ SYML(100,6), INDEX(100,8), AMSG(200,6), ENGLSH(20,4),
     1 ATTVAL(17,8), ISYMB(100)
      COMMON/ABC/ TRANSL(50)
      COMMON/SYMB/ SYM(100)
      INTEGER RULE, RESTRI, SYMIN, SYMBOL
      LOGICAL MATCH
      DIMENSION REEDER (36), ROOT (4), HEBREW (12)
      READ(5,107) MODE, ITAPE, ITRACE, IOUTPT, IOUTRE, LIMAX
  107 FORMAT(1215)
      REWIND ITAPE
      IF (MODE.EQ.O) GO TO 10
      READ(ITAPE) TRANSL, RULE, IPSI, RESTRT , SYM, SYML, ISYMB, INDEX,
     1 AMSG.ATTVAL
      REWIND ITAPE
      GO TO 4
C
                   READ IN TRANSLITERATION
C
  ***
. C
   10 READ(5,100) NL, (TRANSL(L), L=1, NL)
  100 FORMAT(16,50A1)
                   READ IN GRAMMAR RULES
С
  ***
C
      I=0
      ISYMNO=0
      ICLASS=0
      IRULE=0
    1 I=I+1
      READ(5,101) (REEDER(L),L=1,36)
  101 FORMAT(3A1,2(2X,A1),1X,2A1,13(2X,A1),1X,2A1,5(2X,A1),9A1)
      RULE(I,1)=0
      DO 11 L=1.3
      CALL ALPHA (REEDER (L) . N.)
   11 RULE(I,1)=RULE(I,1)+ N*10**(3-L)
      IF(RULE(I,1).EQ.999) GO TO 3
      DO 12 L=4.5
      L1=L-2
      CALL ALPHA (REEDER (L) N)
    12 RULE(I,L1)=N
```

```
CALL ALPHA (REEDER (6), II)
    CALL ALPHA (REEDER (7) , N)
    RULE(I,4)=N
    IF(II.EQ.39) RULE(I,4)=-RULE(I,4)
    DO 121 L=8,20
    L1=L-3
    CALL ALPHA (REEDER (L), N)
121 RULE(I, L1)=N
    CALL ALPHA (REEDER (21) + N)
    CALL ALPHA (REEDER (22) , N1)
    RULE(I + 18) = N1 + N * 10
    IF(N.GT.0) RULE(I,18) =-RULE(I,18)
    DO 1.22 L=23,27
    L1=L-4
    CALL ALPHA (REEDER (L) N)
122 RULE(I,L1)=N
    RULE (1,24)=0
    DO 13 L=28,30
    CALL ALPHA (PEEDER (L) , N)
 13 RULE(I,24)=RULE(I,24)+ N*10**(30-L)
    DO 14 L=31,32
    L1=L-6
    CALL ALPHA (REEDER (L) , N)
 14 RULE(I,L1)=N
    RULE(I,27)=0
    DO 15 L=33,34
    CALL ALPHA (REEDER (L) N)
 15 RULE(I,27)=RULE(I,27)+ N*10**(34-L)
    RULE(I,28)=0
    DO 16 L=35,36
    CALL ALPHA (REEDER (L) , N)
 16 RULE(I,28)=RULE(I,28)+N*10**(36-L)
    IF(RULE(I,25).NE.1) GO TO 2
    IC=RULE(I,6)
    IF(IC.EQ.9) IC=1
    IF(IC.EQ.ICLASS.AND.RULE(I.1).EQ.ISYMNO) GO TO 2
    IF(RULE(I,1).EQ.97.AND.ISYMNO.EQ.97.AND.RULE(I,3).EQ.ICLASS)GOTO2
    ISYMNO=RULE(I,1)
    ICLASS=RULE(I,6)
    IF(ISYMNO.EQ.97) ICLASS = RULE(I.3)
    IF(ICLASS.EQ.9) ICLASS=1
    IPSI(ISYMNO, ICLASS, 1)=I
    GO TO 1
```

2 IPSI(ISYMNO, ICLASS, 2)=I

```
GO TO 1
                    READ IN RESTRICTION MATRIX
C
  ***
    3 IRULE=I
      READ(5,102)((RESTRT(I,J),I=1,5),J=1,15)
  102 FORMAT(515).
Ç
                     READ IN SYMBOL ARRAY
  ***
      READ(5,104) SYM
  104 FORMAT(10(2X,A3))
      DO 31 I=1,96
   31 READ(5,400) (SYML(I,J),J=1,6),ISYMB(I)
  400 FORMAT (6A6, 30X, 16)
      DO 32 I=1,100
   32 READ(5,401) (INDEX(I,J),J=1,8)
  401 FORMAT(815)
      DO 33 I=1.185
   33 READ(5,400) (AMSG(I,J),J=1,6)
      DO 34 I=1,17
   34 READ(5,402) (ATTVAL(I,3),J=1,8)
  402 FORMAT(8A6)
      WRITE(ITAPE) TRANSL, RULE, IPSI, RESTRT, SYM, SYML, ISYMB, INDEX,
     1 AMSG ATTVAL
      REWIND ITAPE
      WRITE(6,200) TRANSL
  200 FORMAT (5X,50A1)
      WRITE(6,201)(NN, (RULE(NN,L),L=1,28),NN=1,IRULE)
  201 FORMAT(2914)
      WRITE(6,202)(MM,((IPSI(MM,NN,L),L=1,2),NN=1,8),MM=1,100)
  202 FORMAT(1715)
      WRITE(6,203)((RESTRT(NN,L),NN=1,5),L=1,15)
  203 FORMAT(515)
      WRITE(6,104) SYM
      WRITE(6,403) ((SYML(I,J),J=1,6),I=1,100)
  403 FORMAT(1H1/(10X+6A6))
      WRITE(6,404) ISYMB
  404 FORMAT(///5X,10011)
      WRITE(6,405) ((INDEX(I,J),J=1,8),I=1,100)
  405 FORMAT(1H1/(10X,815))
      WRITE(6,403) ((AMSG(I,J),J=1,6),I=1,200)
      WRITE(6,406) ((ATTVAL(I,J),J=1,8),I=1,17)
  406 FORMAT(1H1/(10X,8A6))
```

1.7.1


```
CLEAR REWRITE LIST MATRIX
  4 CONTINUE
    DO 5 I=1,400
    DO 51 J=1,29
 51 ITABLE(I,J) =0
    DO 52 J =1.7
 52 NODE(J,I) =0
  5 CONTINUE
              READ EQUIVALENT HEBREW SENTENCE AND INITIAL SYMBOLS
***
    READ(5,105) HEBREW, NOP, IMAXI
105 FORMAT(12A6,2I3)
    IF(IMAXI.EQ.0) GO TO 999
    DO 6 I=1, IMAXI
    READ(5,103)(ITABLE(
                          I,K),K=1,18),(ROOT(L),L=1,4),
   1 (ENGLSH(I,J),J=1,4)
103 FORMAT(16,4X,1712,4A1,4A6)
          J=1,4
    DO 61
    J1= J+18
    CALL ALPHA (ROOT(J), NN)
 61 ITABLE( I,J1)=NN
    NODE(1,I)=1
    NODE (4, I) = ITABLE (I, 1)
    NODE (5, I) = ITABLE (I, 6)
  6 CONTINUE
    LIM=0
    ISTART=0
    NODE1=0
    NODE2=IMAXI
    IPASS = 1
    ITREE(1)= IMAXI
  7 CONTINUE
    J1=0
 79 CONTINUE
    IF(ITRACE.NE.O) WRITE(6.301) IPASS.NODE1.NODE2
301 FORMAT(10X,18HNEW PASS---IPASS= ,13,9H, NODE1= ,13,
   1 9H, NODE2= , 13,1H.)
    CALL RERITE (MON, J1, LIM)
    IF(LIM.GT.LIMAX) GO TO 76
    IF(NODE2.GT.400) GO TO 74
    IF(MON.EQ.0) GO TO 70
    IF(I.NE.IMAXI) GO TO 70
    IF(ITRACE.NE.O) WRITE(6,302) IPASS, IMAXI, NODE1, NODE2
302 FORMAT(10X,18HCOMPLETED PASS NO., 13, 10H.
   1 9H, NODE1= , 13, 9H, NODE2= , 13, 1H.)
```

```
IPASS = IPASS+1
      IMAXI = NODE2-NODE1
      ITREE(IPASS) = IMAXI
      ISTART =0
      IF(IMAXI.GT.1) GO TO 7
      GO TO 75
          HUNT BACKWARDS TO FIND FIRST NODE WITH ALTERNATE RULE.
C
Č
C
   70 CONTINUE
      NODE (6, NODE1) =0
      NODE (7. NODE1) =0
      NODE1 = NODE1-1
      IF(NODE1.LT.1) GO TO 73
       IF(NODE(6,NODE1).LE.0) GO TO 70
           SKIP IF GOVERNED NODE IS SAME AS COMPOUND GOVERNING NODE.
C
C
C
       NG=NODE (3, NODE1)
       IF(NODE(4.NODE1).NE.NODE(4.NG)) GO TO 271
       IF (NODE (5, NODE1) . NE . NODE (5, NG)) GO TO 271
       IF(ITABLE(NODE1,4).EQ.O.AND.ITABLE(NG,4).GT.O) GO TO 70
  271 CONTINUE
      NODE2= NODE(3, NODE1)
       IRULE=NODE (6.NODE1)
       IMAX =NODE(7,NODE1)
       ISUM=0
       IP=IPASS
       DO 71 L=1.IP
             ISUM + ITREE(L)
       ISUM=
       IPASS = L
       IF(ISUM.GE.NODE1) GO TO 72
    71 CONTINUE
    72 IMAXI = ITREE(IPASS)
C
                CANCEL ANY PREVIOUS PREDICTION
  ***
 C
       IF(NODE(6, NODE2) - GE - 0) GO TO 720
       NOD11=NODE1+1
       NODE (6, NODE2)=0
       NODE (7.NODE2)=0
       NODE (6, NOD11)=0
       NODE(7,NOD11)=0
   720 CONTINUE
       NODE2=NODE2-1
       NODE1=NODE1-1
       ISTART= IMAXI + NODE1 - ISUM
       IF (ITRACE . NE. 0) WRITE (6, 303) IPASS, ISTART, IMAXI, NODE1, NODE2
   303 FORMAT (10X, 45HHIT ALTERNATE RULE BRANCH. WENT BACK TO PASS, 13,
       1 6H, NODE, 13, 10H. IMAXI= , 13, 9H, NODE1= , 13, 9H, NODE2= 13, 1H.)
```

J1=1 GO TO 79 73 WRITE (6,173) NOP 173 FORMAT (5x . 54HERROR DETECTED IN ALTERNATE RULE BRANCH FOR PROB. NO. 1 ,13,23H. ANALYSIS TERMINATED. //5X,22HSEE PROGRAM ANALYZ 70.) GO TO 4 74 WRITE(6,174) NOP 174 FORMAT(5X, 32HNODES EXCEED 400 FOR PROBLEM NO., 13, ANALYSIS TERMINATED.) 1 23H. GO TO 4 75 CONTINUE IF(IGUTPT.EQ.1) CALL OUTPUT(IPASS) WRITE(6,106) HEBREW 106 FORMAT(1H1//10X, 26HHEBREW SENTENCE ANALYZED-- /10X, 12A6) IF(IOUTRE.EQ.1) CALL DIAGRM(IPASS) CALL PARSE (IPASS , NOP) WRITE(6,304) NOP, LIM 304 FORMAT (///5X+36HANALYSIS COMPLETED FOR SENTENCE NO. , I4, 1H.) 1 23H, NO. OF SYMBOL TESTS= GO TO 4 76 WRITE(6,176) LIMAX, NOP 176 FORMAT (5X, 21HNO ANALYSIS FOUND BY , 16, 52H SYMBOL TESTS. ANALYSIS 1TERMINATED FOR PROBLEM NO. ,I3,1H.) GO TO 4 999 WRITE(6,199) 199 FORMAT(1H1,10(/),1X,17(7H--END--)) END

SUBPROGRAM ALPHA

157

C

SUBROUTINE ALPHA 'A.IA)

COMMON/ABC/ TRANSL(50)

DO 1 L=1.50
IF(A+TRANSL(L)) 1.2.1
1 CONTINUE
IA=49
RETURN
2 IA=L-1
IF(IA.EQ.40) IA=0
RETURN
END

SUBPROGRAM DIAGRM

ERIC

```
SUBROUTINE DIAGRM(IPASS)
THIS SUBROUTINE CONSTRUCTS A TREE DIAGRAM
      OF THE SENTENCE ANALYSIS.
                        FOR USE WITH PROGRAM ANALYZ
                        WRITTEN BY JAMES D. PRICE
                                                  JULY 1970
COMMON RULE(900,28), IPSI(100,8,2), RESTRT(5,15), ITABLE(400,29),
 1 SYMIN(29), SYMBOL(29), I, IMAXI, J, JMAX, IRULE, IMAX, IRULE1,
 2 ISTART, ITRACE, MATCH
   COMMON/TREE/ ITREE(50), NODE(7,400), NODE1, NODE2
   INTEGER RULE, RESTRI, SYMIN, SYMBOL
   COMMON/SYMB/ SYM(100)
   DIMENSION ALINE(40), CLS(9)
   DATA BLANK/3H
   DATA DASHES/3H---/
   DATA BAR/3H
   DATA CLS/3H1
                •3H2 •3H3 •3H4
                                , 3H5
                                      • 3H6
                                            ,3H7
                                                 +3H8
   IF(ITRACE.NE.O) WRITE(6.99)
99 FORMAT (30H
                 SUBROUTINE DIAGRAM CALLED )
                COMPUTE LINE POSITION FOR EACH NODE
   NP=ITREE(1)
   DO 3 L=1.NP
 3 NODE(2,L)=L
   L=0
 4 L=L+1
   NG=NODE (3,L)
   IF(NODE(1,NG).GT.1) GO TO 5
   NODE (2, NG) = NODE (2, L)
   GO TO 6
 5 L1=L+NODE(1,NG)-1
   NODE(2,NG) = (NODE(2,L)+NODE(2,L1))/2
   L=L1
 6 IF(L,LT.NODE1) GO TO 4
   IF(ITRACE.EQ.0) GO TO 71
   WRITE(6,103)
103 FORMAT(1H1//10X,11HNODE MATRIX//)
   DO 7 L=1, NODE1
 7 WRITE(6,102)(NODE(I,L),I=1,5)
102 FORMAT(10X,515)
71 CONTINUE
```

C

0000

```
C
                     WRITE OUT TREE DIAGRAM
  ***
      WRITE(6,100)
  100 FORMAT(//10X,35H TREE DIAGRAM OF HEBREW SENTENCE
      NO=1
      DO 50 M=1, IPASS
      IF (M.EQ.1) GO TO 31
C
                     WRITE UPPER/LOWER CONNECTORS(VERTICAL)
   21 DO 30 L=1,20
      IF ((NODE(1,NO).EQ.O.OR.NODE(2,NO).EQ.O).AND.NO.LE.NODE1) NO=NO+1
      L1=L+L-1
      L2=L+L
      IF(L.EQ.NODE(2.NO)) GO TO 22
      ALINE (L1) =BLANK
      ALINE(L2)=BLANK
      GO TO 30
   22 ALINE(L2)=BLANK
      ALINE(L1)=BAR
      NO=NO+1
   30 CONTINUE
      NO=NO-ITREE(M)
      WRITE(6,101) ALINE
      IF(IUPLOW.EQ.2) GO TO 42
C
                     WRITE LINE OF NODES
  ***
   31 DO 40 L=1,20
      IF((NODE(1,NO).EQ.O.OR.NODE(2,NO).EQ.O).AND.NO.LE.NODE1) NO=NO+1
      L1=L+L-1
      L2=L+L
      IF(L.EQ.NODE(2.NO)) GO TO 32
      ALINE(L1)=BLANK
      ALINE(L2)=BLANK
      GO TO 40
   32 NS=NODE(4,NO)
      NT=NODE (5,NO)
      NG=NODE (3,NO)
      NO=NO+1
      IF(M.EQ.1) GO TO 33
      IF(NS.EQ.NCDE(4.NG).AND.NT.EQ.NODE(5.NG)) GO TO 34
   33 ALINE(L1)=SYM(NS)
      ALINE(L2)=CLS(NT)
      GO TO 40
   34 IF(M.EQ.IPASS) GO TO 33
      ALINE(L2)=BLANK
      ALINE(L1)=BAR
   40 CONTINUE
```

ERIC

Lát

```
WRITE(6,101) ALINE
                  WRITE LOWER CONNECTORS (VERTICAL)
***
41 IUPLOW=2
    IF(M.EQ.IPASS) GO TO 50
    GO TO 21
                  WRITE LOWER CONNECTORS (HORIZONTAL)
***
42 IEND=0
    IENDP0=0
    DO 20 L=1.20
    IF((NODE(1,NO).EQ.0.OR.NODE(2,NO).EQ.0).AND.NO.LE.NODE1) NO=NO+1
    L1=L+L-1
    L2=L+L
    IF(L.EG.IENDPO)
                      IEND=1
    IF(L-NODE(2,NO))
                      10,11,12
 10 ALINE(L1)=BLANK
    ALINE(L2)=BLANK
    GO TO 20
 11 NG=NODE (3,NO)
    NO1=NODE(1,NG)
    N02=N0+N01-1
    IENDPO=NODE(2,NO2) .
    ALINE(L1)=BLANK
    IF(IENDPO.GT.L) GO TO 13
    ALINE(L1)=BAR
    NO=NO+1
    GO TO 20
12 IF (IEND.EQ.1) GO TO 14
    IF(L.GT.IENDPO) GO TO 10
    ALINE(L1)=DASHES
13 ALINE(L2)=DASHES
    GO TO 20
14 ALINE(L1)=DASHES
    ALINE(L2)=BLANK
    NO=NO+NO1
    IEND=0
    IENDPO=0
20 CONTINUE
    NO=NO-ITREE(M)
    IUPLOW=1
    WRITE(6,101) ALINE
101 FORMAT(1X,40A3)
 50 NO=NO+ ITREE(M)
    RETURN
    END :
```

4 - B - 14

NO=NO-ITREE(M)

SUBPROGRAM LIMIT

SUBROUTINE LIMIT(INSYM)

```
* THIS SUBROUTINE CHECKS A GIVEN SYMBOL AGAINST SPECIFIED
                IF NOT SATISFIED, VARIABLE MATCH IS SET TO FALSE.
* LIMITATIONS.
                       FOR USE WITH PROGRAM ANALYZ
                                               JULY 1970
                       WRITTEN BY JAMES D. PRICE
COMMON RULE(900,28), IPSI(100,8,2), RESTRT(5,15), ITABLE(400,29),
 1 SYMIN(29), SYMBOL(29), I, IMAXI, J, JMAX, IRULE, IMAX, IRULE1,
 2 ISTART, ITRACE, MATCH
  INTEGER RULE, RESTRT, SYMIN, SYMBOL
  DIMENSION INSYM(29)
  LOGICAL MATCH.
  IF(ITRACE.NE.O) WRITE(6,99)
                                  CALLED )
           30H
                   SUBROUTINE LIMIT
99 FORMAT(
  IR=INSYM(27)
  IV=INSYM(28)
  IM=RESTRT(1, IR)+1
  DO 2 L=2.IM
  IF (RESTRT(L, IR) . GE. 0) GO TO 1
  MATCH=.TRUE.
  IREST=-RESTRT(L, IR)
  IF( INSYM(IV).NE.IREST) GO TO 2
  GO TO 3
1 IF( INSYM(IV).EQ.RESTRT(L,IR)) GO TO 14
  MATCH=.FALSE.
2 CONTINUE
  RETURN
3 MATCH=.FALSE.
  RETURN
14 MATCH = •TRUE.
  RETURN
  END
```

SUBPROGRAM MACHER

Cal

C

SUBROUTINE MACHER (IS1, IS2, MATCH)

SUBSCRIPTS OF GIVEN SYMBOLS IS1 AND IS2. CALLED BY PROPH1 AND PROPH2. WRITTEN BY JAMES D. PRICE OCTOBER: 1970 ********************** DIMENSION IS1(29), IS2(29) LOGICAL MATCH MATCH= .TRUE. IF(I\$1(1).NE.I\$2(1)) GO TO 4 DO 3 L=2,17 IF(IS1(L).EQ.IS2(L)) GO TO 3 IF(L.EQ.3) GO TO 3 IF(L.EQ.7.AND.IS1(8).EQ.0) GO TO 3 IF(IS1(L).EQ.9) GO TO 3 IF(IS2(L).EQ.9) GO TO 3 IF(IS2(L).LT.0.AND.IS1(L).LT.9) GO TO 3 IF(IS2(L).GT.9.AND.IS1(L).LT.9) GO TO 3. GO TO 4 3 CONTINUE RETURN 4 MATCH= .FALSE. RETURN

165

END

SUBPROGRAM OUTPUT

4-B-19

SUBROUTINE OUTPUT (IPASS)

```
* THIS SUBROUTINE WRITES THE RESULTS OF THE ITH REWRITE PASS
 * OF THE GRAMMAR.
                        FOR USE WITH PROGRAM ANALYZ
                        WRITTEN BY JAMES D. PRICE
                                                 JULY 1970
 COMMON RULE(900,28), IPSI(100,8,2), RESTRT(5,15), ITABLE(400,29),
  1 SYMIN(29), SYMBOL(29), I, IMAXI, J, JMAX, IRULE, IMAX, IRULE1,
  2 ISTART, ITRACE, MATCH
   COMMON/TREE/ ITREE(50), NODE(7,400), NODE1, NODE2
   COMMON/ABC/ TRANSL(50)
   INTEGER RULE, RESTRT, SYMIN, SYMBOL
   LOGICAL
          MATCH
   IF(ITRACE.NE.0) WRITE(6,99)
                    SUBROUTINE OUTPUT CALLED )
             30H
99 FORMAT(
   J1=1
   DO 2 ITH =1. IPASS
   WRITE(6,100) ITH
100 FORMAT(1H1///9X,28HRESULTS OF REWRITE PASS NO.-,13//
                              CLY
                                      D N G
           SYMBOL
                    MFKB
  1105H
                             REST SUB
                                        X//)
                   RULE EL NE
  2 S
   J2=J1+ITREE(ITH)-1
   DO 1 JJ= J1,J2
   IR1=1TABLE(JJ, 19)+1
   IR2=ITABLE(JJ,20)+1
   IR3=ITABLE(JJ,21)+1
   IR4=ITABLE(JJ,22)+1
                           JJ,L),L=1,18),TRANSL(IR1),
 1 WRITE(6,101) (ITABLE(
  1 TRANSL(IR2), TRANSL(IR3), TRANSL(IR4), (ITABLE(JJ,L),L=23,29)
101 FORMAT(6X,13,4X,1713,4X,4A1,3X,13,3X,313,3(2X,13))
   J1=J2+1
 2 CONTINUE
   RETURN
   END
```

SUBPROGRAM PARSE


```
SUBROUTINE PARSE(IPASS, NOP)
¢
Ċ
     000000
             THIS SUBROUTINE ASSEMBLES STATEMENTS ABOUT THE
             SYNTACTIC ANALYSIS OF A SENTENCE. CALLED FROM
             PROGRAM ANALYZ.
                           WRITTEN BY JAMES D.PRICE
                                    FIRL AUG, 1970
   COMMON RULE (390,28), IPSI(100,8,2), RESTRT(5,15), ITABLE (400,29),
    1 SYMIN(29), SYMBOL(29), I, IMAXI, J, JMAX, IRULE, IMAX, IRULE1,
    2 ISTART, ITRACE, MATCH
      COMMON/TREE/ ITREE(50), NODE(7,400), NODE1, NODE2
      COMMON/PARS/ SYML(100,6), INDEX(100,8), AMSG(200,6), ENGLSH(20,4),
     1 ATTVAL(17,8), ISYMB(100)
      INTEGER RULE, RESTRI, SYMIN, SYMBOL
      DIMENSION ACCUM(200)
      DATA THE/6H THE / OF / AS/6H IS / COMMA/6H,
     1 DOT/6H.
C
      WRITE(6,200) NOP
  200 FORMAT(1H1//10X,31HSYNTAX ANALYSIS IF SENTENCE NO., 14,1H.//)
Ç
  ***
C
              FOR EACH PASS, EXAMINE SYMBOLS FOR SYNTAX DATA.
C
      NAN=0
      NTERM=ITREE(1)
      N2= NODE2
      DO 90 I=IPASS,1,-1
      N1 = N2 - ITREE(I) + 1
      IF(N1.GT.N2.OR.N1.LE.0) GO TO 90
      DO 80 J=N1+N2
  ***
              ACCUMULATE DATA ABOUT SYMBOL AT NODE J
      ACCUM(1)=THE
      M1=2 4
      IS= NODE(4,J)
      IF(IS.GT.76.AND.J.GT.NTERM) GO TO 80
      IF(IS.LE.0) GO TO 80
      IC= NODE(5,J)
      ISS = IS
      ICC = IC
     M2=M1+ISYMB(IS)-1
     M3=0
     DO 1 M=M1.M2
     M3=M3+1
    1 ACCUM(M)=SYML(IS,M3)
```

ERIC

Full Text Provided by ERIC

```
NG= NODE(3,J)
      IF(NG.LE.O.OR.NG.GT.NODE2) GO TO 83
   81 NSG=NODE (4.NG)
      IF(NSG.LE.0) GO TO 82
      NSC = NODE(5,NG)
C
           SKIP IF NODE HAS ALREADY BEEN TREATED.
C
          SKIP IF GOVERNING NODE IS SAME AS GOVERNED NODE.
C
      IF(IS.EQ.NSG.AND.IC.EQ.NSC) @0 TO 80
      IF(ISS.EQ.NSG.AND.ICC.EQ.NSC) GO TO 82
      M1 = M2 + 1
      M2=M1+1
      ACCUM(M1)=OF
      ACCUM(M2)=THE
      M1 = M2 + 1
      M2=M2+ISYMB(NSG)
      M3=0
      DO 2 M=M1.M2
      M3 = M3 + 1
    2 ACCUM(M)=SYML(NSG,M3)
   82 NG =NODE(3,NG)
      IF(NG.EQ.O.OR.NG.GE.NODE2) GO TO 83
      ISS = NSG
      ICC = NSC
      GO TO 81
   83 CONTINUE
      IF(IS.GT.76) 60 TO 84
      IMSG = INDEX(IS,IC)
      IF(IMSG.EQ.0) GO TO 80
      NAN=NAN+1
      WRITE(6,100) NAN, (ACCUM(M), M=1, M2), (AMSG(IMSG,L), L=1,6)
  100 FORMAT(/10X,1H(,13,2H) ,10A6/20(10X,11A6/))
      GO TO 80
   84 CONTINUE
      NAN=NAN+1
      WRITE(6,100) NAN, (ACCUM(M), M=1, M2), AS, (ENGLSH(J,L),L=1,4)
      M1 = 0
```

```
DO 85 M=3,17
    IF(M.EQ.6.OR.M.EQ.7) GO TO 85
    IF((M.EQ.3.OR.M.EQ.4).AND.(ITABLE(J.3).EQ.0.OR.ITABLE(J.4).EQ.0))
   1 GO TO 85
    MM= ITABLE(J,M)
    IF (MM.EQ.0) GO TO 85
    M1 = M1 + 1
    ACCUM(M1) = ATTVAL(M,MM)
85 CONTINUE
    IF(M1.EQ.0) GO TO 80
    M11=M1-1
    write(6,101) (ACCUM(M), COMMA, M=1, M11), ACCUM(M1)
                                                         • DOT
101 FORMAT(10X, 9(A6,A2))
80 CONTINUE
   N2 = N1-1
90 CONTINUE
   RETURN
    END
```

SUBPROGRAM PROPHI

itt

```
SUBROUTINE PROPHI(ID, IR, IM)
C
   0000000
             THIS SUBROUTINE EXAMINES THE PRESENT SYMBOL
             FOR POSSIBLE FUTURE SATISFACTION OF GRAMMAR
             RULE AFTER ONE MORE PASS.
             CALLED FROM SUBROUTINE RERITE.
                           WRITTEN BY JAMES D. PRICE AUG, 1970
   COMMON RULE (900,28), IPSI(100,8,2), RESTRT(5,15), ITABLE (400,29),
    1 SYMIN(29), SYMBOL(29), I, IMAXI, J, JMAX, IRULE, IMAX, IRULE1,
    2 ISTART, ITRACE, MATCH
     COMMON/TREE/ ITREE(50), NODE(7,400), NODE1, NODE2
     DIMENSION IS1(29), IS2(29), IS3(29), IS4(29)
     INTEGER RULE, RESTRE, SYMIN, SYMBOL
     LOGICAL
             MATCH
     IF(ITRACE.NE.O) WRITE(6,199)
 199 FORMAT(10X,25HSUBROUTINE PROPH1 CALLED.)
     IF(SYMIN(1).EQ.RULE(IRULE1,1).AND.(SYMIN(6).EQ.9.OR.
       SYMIN(6).EQ.RULE(IRULE1,6))) GO TO 91
C
Ċ
 ***
         LOOK AHEAD ONE LEVEL
     IN=NODE1
     IR=0
     IM=0
     IS= SYMIN(1)
     IC=SYMIN(6)
     DO 1 L=1.8
     IR1 = IPSI(IS,L,1)
     IF(IR1.NE.D) GO TO 2
   1 CONTINUE
     GO TO 92
   2 DO 3 L=8,1,-1
     IR3 = IPSI(IS,L,2)
     IF(IR3.NE.D) GO TO 4
   3 CONTINUE
     GO TO 92
   4 IR2 = IR1 + RULE(IR1,26)
     IR4=IR1
 401 CONTINUE
     DO 41 L=1,29
     IS1(L) = ITABLE(IN,L)
     IS2(L) = RULE(IR1.L)
     IS3(L) = RULE(IRULE1,L)
     IS4(L) = RULE(IR2.L)
  41 CONTINUE
```

```
CALL MACHER (IS1, IS2, MATCH)
      IF (.NOT.MATCH) GO TO 51
      CALL MACHER (IS3, IS4, MATCH)
      IF (MATCH) GO TO 6
      CALL PROPH2(ID: IR2)
      IF(ID.EQ.4) GO TO 94
    5 CONTINUE
      ID=0
      IR1= IR2+1
      IF(IR1.GT.IR3) GO TO 93
      GO TO 4
   51 IF(IS2(2).EQ.1) GO TO 5
      GO TO 7
    6 CONTINUE
      IN=IN+1
    7 CONTINUE
      IR1=IR1+1
      IF(IR1.GE.IR2) GO TO 94
      GO TO 401
C
          NO FUTURE SATISFACTION, PRESENT RULE FAILED IN SYMACH OR LIMIT
  ***
   91 ID=1
      GO TO 99
C
C
          NO FUTURE SATISFACTION, NO RULES TO PREDICT CONDITION.
   92 ID=2
      GO TO 99
C
          NO FUTURE SATISFACTION, PREDICTION RULES EXHAUSTED.
C
  本水字
C
   93 ID=3
      GO TO 99
C
          FUTURE SATISFACTION PREDICTED.
C
  ***
   94 ID=4
      IR=IR4
      IM=IR3
   99 IF(ITRACE.NE.0) WRITE(6,299) ID
  299 FORMAT(10X, 3HID=,12,1H.)
      RETURN
      END
```

SUBPROGRAM PROPH2

175

```
SUBROUTINE PROPH2(ID, IR)
C
   C
              THIS SUBROUTINE EXAMINES THE SYMBOL DEFINED BY
0000000
              IR IN THE RULE MATRIX FOR POSSIBLE FUTURE
              SATISFACTION OF THE GIVEN GRAMMAR RULE AFTER
              TWO PASSES. CALLED FROM SUBROUTINE PROPHI.
                            WRITTEN BY JAMES D. PRICE OCTOBER, 1970
   *********************
     COMMON RULE(900,28), IPSI(100,8,2), RESTRT(5,15), ITABLE(400,29),
     1 SYMIN(29), SYMBOL(29), I, IMAXI, J, JMAX, IRULE, IMAX, IRULE1,
     2 ISTART, ITRACE, MATCH
     DIMENSION IS1(29), IS2(29), IS3(29), IS4(29)
      INTEGER RULE, RESTRT, SYMIN, SYMBOL
     LOGICAL
             MATCH
      IF(ITRACE.NE.O) WRITE(6,199)
  199 FORMAT(10X, 25HSUBROUTINE PROPH2 CALLED.)
C
         LOOK AHEAD ONE LEVEL
CC
  ***
      IS= RULE(IR,1)
      IC= RULE(IR,6)
      DO 1 L=1.8
      IR1 = IPSI(IS,L,1)
      IF(IR1.NE.0) GO TO 2
    1 CONTINUE
      GO TO 92
    2 DO 3 L=8,1,-1
      IR3 =IPSI(IS,L,2)
      IF(IR3.NE.0) GO TO 4
    3 CONTINUE
      GO TO 92
    4 IR2 = IR1 +RULE(IR1,26)
      DO 41 L=1,29
      IS1(L) = RULE(IR.L)
      IS2(L) = RULE(IR1,L)
      IS3(L) = RULE(IRULE1,L)
      IS4(L)= RULE(IR2.L)
   41 CONTINUE
      CALL MACHER (IS1, IS2, MATCH)
      IF (.NOT.MATCH) GO TO 5
      CALL MACHER (IS3, IS4, MATCH)
      IF (MATCH) GO TO 94
    5 CONTINUE
      IR1=IR2+1
```

IF(IR1.GT.IR3) GO TO 93

GO TO 4

```
C
C
          NO FUTURE SATISFACTION, NO RULES TO PREDICT CONDITION
C
   92 ID= 2
      GO TU 99
C
          NO FUTURE SATISFACTION, PREDICTION RULES EXHAUSTED.
С
   93 ID= 3
      GO TO 99
C
          FUTURE SATISFACTION PREDICTED.
   94 ID=4
   99 IF(ITRACE.NE.0) WRITE(6,299) ID
  299 FORMAT(10X,10HPROPH2 ID=,12,1H.)
      RETURN
      END
```

SUBPROGRAM RERITE

eri


```
00000000
```

```
SUBROUTINE RERITE (MON, J1, LIM)
 THIS SUBROUTINE REWRITES A STRING OF SYMBOLS ACCORDING TO
       APPLICABLE GRAMMAR RULES. CALLED FROM ANALYZ
                         FOR USE WITH PROGRAM ANALYZ
                         WRITTEN BY JAMES D. PRICE
 COMMON RULE (900,28), IPSI (100,8,2), RESTRT (5,15), ITABLE (400,29),
  1 SYMIN(29), SYMBOL(29), I, IMAXI, J, JMAX, IRULE, IMAX, IRULE1,
  2 ISTART, ITRACE, MATCH
   COMMON/TREE/ ITREE(50), NODE(7,400), NODE1, NODE2
   INTEGER RULE, RESTRI, SYMIN, SYMBOL
   LOGICAL MATCH
   IF(ITRACE.NE.O) WRITE(6,99)
                    SUBROUTINE RERITE CALLED )
99 FORMAT(
             30H
   NSTART = NODE1
   MSTART = NODE2
   I=0
   0=ك
   MON=0
   J2=1
   J3≡0
 1 IF(J2.NE.1) GO TO 101
   I = ISTART
   NODE1 = NSTART
   NODE2 = MSTART
101 IF(I.GE.IMAXI) RETURN
   LIM=LIM+1
   I = I + 1
   NODE1 = NODE1 +1
   DO 2 L=1,29
 2 SYMIN(L) = ITABLE( NODE1, L)
21 CONTINUE
   IF(J.EQ.0) GO TO 41
   NODE (6.NODE1)=0
   NODE (7, NODE1) = 0
   GO TO 4
41 CALL RULENO(J1,J2,J3)
   NODE(6,NODE1) = IRULE
   NODE (7.NODE1) = IMAX
   IX=IRULE+RULE(IRULE + 26)
   IF(IX.NE.IMAX) GO TO 42
   NODE (6, NODE1)=0
   NODE (7.NODE1)=0
42 CONTINUE
```

```
IF(IRULE . EQ. U) GO TO 9
  IRULE1= IRULE-1
  JMAX =RULE(IRULE, 26)
  JJ = JMAX +IRULE
  DO 3 L=1.28
3 SYMBOL(L) = RULE(JJ.L)
4 J= J+1
   IRULE1 = IRULE1+1
   IF(J.GT.JMAX) GO TO 71
   CALL SYMACH
   IF (MATCH) GO TO 6
   ID=0
   IF(J2.EQ.2) CALL PROPH1(ID, IR, IM)
   IF(ID.EQ.4) GO TO 91
   IF(RULE(IRULE1,2).EQ.1) GO TO 52
   SYMBOL(26) = SYMBOL(26)-1
   GO TO 4
 5 J1= J1+1
51 I = ISTART
   NODE1 = NSTART
   NODE2 = MSTART
   J = 0
   IF(NODE(6,NODE2).EQ.0) GO TO 101
   NOD11=NODE1+1
   NODE(6,NOD11)=0
   NODE (7,NOD11)=0
   NODE (6, NODE2)=0
   NODE (7, NODE2) = 0
   GO TO 101
52 CONTINUE
   IF (J3.EQ.0) GO TO 5
   J1=J1+1
   NODE1=NSTRT1
   I=ISTRT1
   J=0
   GO TO 21
 6 CALL VARATT
   NODE(3,NODE1) = NODE2 +1
   IF(J.EQ.JMAX) GO TO 7
   GO TO 101
71 NODE1=NODE1-1
   I = I - 1
 7 CALL LIMIT(SYMBOL)
   IF(.NOT.MATCH) GO TO 52
   IF (J2.NE.1) GO TO 73
   J3=J3+1
   DO 72 L=1.29
72 SYMIN(L)=SYMBOL(L)
   J=0
   J1=0
   ISTRT1=I
  * NSTRT1=NODE1
 60 TO 21
```



```
73 CONTINUE
    MON=MON+1
    ISTART = I
    NODE2 = NODE2 +1
    IF (NODE2.GT.400) SETURN
    NODE (4, NODE2) = SYME L(1)
    NODE (5 NODE2) = SYMBOL (6)
    NODE(1,NODE2) = SYMBOL(26)
    IF(SYMBOL(4).EQ.1) SYMBOL(4)=2
    K=SYMBOL(4)
    IF(K.EQ.0) GO TO 74
    K1=SYMBOL(3)
    K2=SYMBOL(5)
    K3=K-1
    IF(K1.EQ.3.OR.K2.EQ.3) K3=K
    IF(K1.EQ.4) K3=0
    NODE(1,NODE2)=K+K3
 74 CONTINUE
    DO 8 L=1,29
  8 ITABLE ( NODE2,
                     L) = SYMBOL(L)
    GO TO 11
  9 CONTINUE
    IF(J2.EQ.1.AND.J3.NE.O.AND.SYMBOL(1).EQ.97) GO TO 1
    IF(J3.NE.0) GO TO 73
    IF(J2.EQ.2) GO TO 91
    J1=0
    J2=2.
    GO TO 51
 91 CONTINUE
    N1=NODE1
    ISTART=ISTART+1
    NODE1=NSTART+1
    NODE2 = NODE2 +1
    IF (NODE2.GT.400) RETURN .
    IF(ID.NE.4) GO TO 92
    NODE (6, NODE2) =- IRULE
    NODE(7.NODE2)=IMAX
    NODE(6,N1) = -IR
    NODE(7 \cdot N1) = IM
 92 CONTINUE
    NODE(3,NODE1) = NODE2
    NODE(1,NODE2) = 1
    NODE (4.NODE2)=ITABLE (NODE1.1)
    NODE (5, NODE2) = ITABLE (NODE1, 6)
    DO 10 L=1,29
 10 ITABLE( NODE2,
                     L) = ITABLE(NODE1,L)
 11 J=0
    J1=0
    J2=1
    J3=0
    NSTART = NODE1
   MSTART = NODE2
    IF (ITRACE . NE. D) WRITE (6,300) NODE2, (ITABLE (NODE2, L), L=1,20)
300 FORMAT(10X,8HNODE NO.,13,4H IS ,2913)
    GO TO 1
  END
```

SUBPROGRAM RULENO

list

```
SUBROUTINE RULENO(J1,J2,J3)
```

```
THIS SUBROUTINE COMPUTES THE ROW NUMBER OF THE FIRST AND LAST
      SYMBOL OF THE SET OF RULES GOVERNING A GIVEN INPUT SYMBOL.
      CALLED FROM SUBROUTINE RERITE.
                        FOR USE WITH PROGRAM ANALYZ
                        WRITTEN BY JAMES D. PRICE
                                                  JULY • 1970
 COMMON RULE (900,28), IPSI(100,8,2), RESTRT(5,15), ITABLE (400,29),
  1 SYMIN(29), SYMBOL(29), I, IMAXI, J, JMAX, IRULE, IMAX, IRULE1,
 2 ISTART, ITRACE, MATCH
  COMMON/TREE/ ITREE(50), NODE(7,400), NODE1, NODE2
  INTEGER RULE, RESTRT, SYMIN, SYMBOL
  LOGICAL MATCH
  IF(ITRACE.NE.O) WRITE(6,99)
99 FORMAT(
            30H
                   SUBROUTINE RULENO CALLED )
  IF(J1.NE.0) GO TO 10
  GO TO(1,2),J2
 1 IS=97
   II=NODE1
   I1=II+1
   12=11+2
   I3=II+3
   IF(ITABLE(I1.1).EQ.ITABLE(II.1)) GO TO 11
   IF(ITABLE(12,1).EG.ITABLE(11,1).AND.ITABLE(11,1).EQ.79.AND.
  1 ITABLE(I1,6).LT.3) GO TO 12
   IF(ITABLE(I2,1).EQ.ITABLE(II,1).AND.ITABLE(I1,1).EQ.92.AND.
  1 ITABLE(I1,6).EQ.3.AND.((ITABLE(I3,1).EQ.79.AND.ITABLE(I3,6).LT.
  2 3).OR.(ITABLE(I3,1).EQ.92.AND.ITABLE(I3,6).EQ.3))) GO TO 12
   IF(J3.NE.0) GO TO 19
   J2=2
   GO TO 2
11 IC=4
   GO TO 3
12 IRULE = IPSI(IS,1,1)
   IMAX = IPSI(IS,3,2)
   IC=1
  GO TO 6
 2 CONTINUE
   IS=SYMIN(1)
  IC=SYMIN(6)
   IF(NODE(6,NODE1).EQ.0) GO TO 21
   IRULE=IABS(NODE(6,NODE1))
   IMAX=NODE (7, NODE1)
  GO TO 6
```



```
21 CONTINUE
   IF(IC.EQ.9) GO TO 20
   IRULE=IPSI(IS,1,1)
   IF(IRULE.EQ.0) GO TO 3
   IF(RULE(IRULE:6).EQ.9) GO TO 31
 3 IRULE=IPSI(IS,IC,1)
31 IMAX = IPSI(IS, IC, 2)
   IF (IRULE.EQ.O) GO TO 20
   IF(IMAX.EQ.O) IMAX=IPSI(IS,1,2)
   GO TO 6
10 CONTINUE
   IF(IRULE.LT.IPSI(97.1.1)) J2=2
   IS=RULE(IRULE,1)
   IC=RULE(IRULE,6)
   IF(IS.EQ.97) IC=RULE(IRULE,3)
   IRULE=IRULE +RULE(IRULE, 26)+1
   IF(IRULE.GT.IMAX) IRULE=0
   IF(IRULE.EG.O) IMAX=0
   GO TO 6
19 IRULE=0
   IMAX =0
   GO TO 6
       FOR CLASS=9, INCLUDE ALL RULES ON THIS SYMBOL
20 IRULE=0
   DO 30 L=1.8
   IF(IPSI(IS,L,1),EQ.0) GO TO 30
    IRULE = IPSI(IS,L,1)
    GO TO 40
 30 CONTINUE
 40 IMAX = 0
    DO 50 L=8,1,-1
    IF(IPSI(IS,L.2).EQ.0) GO TO 50
    IMAX = IPSI(IS \cdot L \cdot 2)
    GO TO 6
 50 CONTINUE
  6 IF(ITRACE.NE.0) WRITE(6.300) IS.IC.IRULE, IMAX
300 FORMAT(10X,14HFOR SYMBOL NO., 13,8H, CLASS , 13,9H, IRULE= , 13,
   1 8H, IMAX= , 13,1H.)
    RETURN
    END .
```

C

C

4-B-37

SUBPROGRAM SYMACH

```
0000000
```

```
SUBROUTINE SYMACH
THIS SUBROUTINE TESTS FOR A MATCH
                BETWEEN SUBSCRIPTS OF A GIVEN SYMBOL
                AND A CORRESPONDING GRAM. RULE SYMBOL.
                CALLED BY RERITE FROM ANALYZ.
                               WRITTEN BY JAMES D. PRICE JULY, 1970*
                           *************
  COMMON RULE(900,28), IPSI(100,8,2), RESTRT(5,15), ITABLE(400,29),
  1 SYMIN(29), SYMBOL(29), I, IMAXI, J, JMAX, IRULE, IMAX, IRULE1,
  2 ISTART, ITRACE, MATCH
   COMMON/TREE/ 1TREE(50), NODE(7,400), NODE1, NODE2
   INTEGER RULE, RESTRI, SYMIN, SYMBOL
   LOGICAL MATCH
   IF(ITRACE.NE.O) WRITE(6.99) NODE1, SYMIN(1)
                 SURBOUTINE SYMACH CALLED FOR NODE
                                                   , I3,
99 FORMAT (39H
     7H, SYM.
              , 13, 1H.)
  1
   MATCH= .TRUE.
   JJ=IRULE+RULE(IRULE:26)
   DC 3 L=1,17
   IF(L.NE.1) GO TO 1
   IF(SYMIN(1).EQ.RULE(IRULE1.1))60 TO 3
   IF(RULE(IRULE1:1).EQ.97.AND.SYMBOL(1).EQ.97) GO TO 3
   IF(RULE(IRULE1:1).EQ.97.AND.SYMIN(1).EQ.SYMBOL(1)) GO TO 3
   GO TU 4
 1 CONTINUE
   IF(L.EQ.7.AND.SYMIN(8).EQ.0) GO TO 3
   IF(L.EQ.3.AND.RULE(IRULE1,1).NE.97) GO TO 3
   IF(RULE(IRULE1.L).EQ.9) GO TO 3
   IF(SYMIN(L).EQ.RULE(IRULE1.L)) GO TO 3
   IF(SYMIN(L).EQ.9) GO TO 3
   IF(RULE(IRULE1/L).LT.O.AND.SYMIN(L).LT.9) GO TO 3
   IF(RULE(IRULE1:L).GT.9.AND.RULE(IRULE1:L).EQ.RULE(JJ:L))GO TO 2
   GO TO 4
 2 IF(SYMBOL(L).EQ.RULE(IRULE1.L)) GO TO 3
   IF(SYMBOL(L).LT.9.AND.SYMBOL(L).EQ.SYMIN(L)) GO TO 3
   IF(SYMBOL(L).EQ.9) GO TO 3
   GO TO 4
 3 CONTINUE
   CALL LIMIT(SYMIN)
   RETURN
 4 MATCH= . FALSE .
   IF(ITRACE.NE.O) WRITE(6,300) L
300 FORMAT(10X,21HMATCH IS FALSE FOR L=, 13,1H.)
   RETURN
   END
```

SUBPROGRAM VARATT

SUBROUTINE VARATY

```
C
                   **************
C
                   THIS SUBROUTINE COMPUTES THE VALUE OF
C
                   THE DEPENDENT SUBSCRIPTS OF A GIVEN
C
                                 CALLED BY RERITE
                   GRAMMAR RULE.
CCC
                             FOR USE WITH PROGRAM ANALYZ
                                  WRITTEN BY JAMES D. PRICE JULY, 1970 *
        COMMON RULE (900,28), IPSI (100,8,2), RESTRT (5,15), ITABLE (400,29),
     1 SYMIN(29), SYMBOL(29), I, IMAXI, J, JMAX, IRULE, IMAX, IRULE1,
    2 ISTART, ITRACE, MATCH
     COMMON/TREE/ ITREE(50), NODE(7,400), NODE1, NODE2
      INTEGER RULE, RESTRT, SYMIN, SYMBOL
     LOGICAL MATCH
      IF(ITRACE.NE.O) WRITE(6:99)
                        SUBROUTINE VARATT CALLED )
   99 FORMAT(
                30H
      IF(RULE(IRULE1:1).EQ.97.AND.SYMBOL(1).EQ.97) SYMBOL(1)=SYMIN(1)
     NODE (3, NODE1) = NODE2
     DO 1 L=2,22
      IF(RULE(IRULE1.L).EQ.-1) SYMBOL(L)=SYMIN(L)+1
      IF(RULE(IRULE1,L).GT.9.AND.SYMBOL(L).EQ.RULE(IRULE1,L))
     1 SYMBOL(L)= SYMIN(L)
    1 CONTINUE
     IF(SYMBOL(1).NE.SYMIN(1)) RETURN
     IF(SYMBOL(3).EQ.2.A'.D.SYMBOL(4).NE.0) GO TO 2
     RETURN
   2 IF(SYMBOL(5).EQ.1) SYMBOL(10)=3
     IF(SYMBOL(10).EQ.0)
                          SYMBOL(10)=SYMIN(10)
     IF(SYMBOL(11).EQ.0)
                          SYMBOL(11)=SYMIN(11)
                          SYMBOL(12)=SYMIN(12)
     IF(SYMBOL(12).EG.D)
     IF(SYMBOL(10).LT.SYMIN(10)) SYMBOL(10)=SYMIN(10)
     IF(SYMBOL(11).GT.SYMIN(11)) SYMBOL(11)=SYMIN(11)
     IF(SYMBOL(12).GT.SYMIN(12)) SYMBOL(12)=SYMIN(12)
     RETURN
     END
```

(in t

PROGRAM RULIST

```
0000000
```

```
*******************************
     THIS PROGRAM LISTS THE SYMTAX GRAMMAR RULES USED WITH
       PRUGRAM ANALYX.
                               WRITTEN BY JAMES D. PRICE JULY, 1970$
 *******************************
   DIMENSION A(28), B(6), TITLE(12), SYM(100)
                                                     .6H1
                                   ,6H+
                                            • 6H
                          •6H=
                  •6H0
   DATA B/6H999
   RULE=0.
   IPAGE=U
   LINE=0
   READ(5,100) TITLE
100 FORMAT(12A6)
   READ(5,105) SYM
105 FORMAT(10(2X,A3))
 1 IF(LINE.GT.0) GO TO 2
   IPAGE=IPAGE+1
   WRITE(6,101) TITLE, IPAGE
101 FORMAT(1H1///10X,12A6,10X,5HPAGE-,13///
            SYMBOL (MF/KBCLYDNGPRAVIT/S/-W-/X/Z)
                                                        RULE NO.)
  1 58H
 2 READ(5,102) I, (A(L), L=2,28)
102 FORMAT(13,2(2x,A1),1x,A2,13(2x,A1),1x,A2,4(2x,A1),2A3,2A1,2A2)
    IF(I.EQ.999) GO TO 9
  3 IF(A(25)-B(6)) 5,4,5
  4 WRITE(6,103)
103 FORMAT(//)
    LINE=LINE+3
    K=4
    IF(A(25)-A(26)) 43,42,43
 42 K=3
 43 CONTINUE
    ISUB=ISUB+1
    IF(RULE-A(24)) 41,10,41
 41 ISUB=1
    RULE=A(24)
    GO TO 10
  5 IF(A(25)-A(26)) 6,7,6
  6 K=4
    IF(A(25)-B(2)) 8,61,8
 61 K=5
    GO TO 8
```

rec

```
7 K=3
8 WRITE(6,104) SYM(I),(A(L),L=2,22),A(27),A(28),B(K)
104 FORMAT(8X,A3,1H(,2A1,A2,13A1,A2,4A1,2A2,1H),1X,A1)
GO TO 11
10 WRITE(6,106) SYM(I),(A(L),L=2,22),A(27),A(28),B(K),A(24),ISUB
106 FORMAT(8X,A3,1H(,2A1,A2,13A1,A2,4A1,2A2,1H),1X,A1,11X,1H(,A3,1H,,112,1H))
11 CONTINUE
   LINE=LINE+1
   IF(K.EQ.5.AND.LIME.GT.40) LINE=0
   GO TO 1
9 WRITE(6,109)
109 FORMAT(1H1,10(/),1X,17(7H--END--))
STOP
END
```


Appendix

PART IV

APPENDIX C
SAMPLE OUTPUT
FROM SUBPROGRAM OUTPUT

		×	0	0	0	0	0	0	0	0	0	0	0
		SUB	0	0	0	0	0	0	ó	0	0	0	0
		REST	0	0	0	0	0	0	0	0	0	0	0
		핃	0	0	0	0	0	0	0	0	0	0	0
		EL	0	0	0	0	0	0	0	0	0	0	0
		RULE	0	0	0	0	0	0	0	0	0	0	0
		¥	0	0	0	0	0	0	0	0	0	0	0
		Ç a	HAM*	≅↓↓×	ZMXZ	BALG	HYH*	SRR*	*109	B***	AR&*	YSRL	***
		S	-	0	0	0	12	12	ĸ	-	-	0	-
		—	0	0	0	0	-	0	0	0	0	0	0
		H	0	0	0	0	-4	0	0	0	0	0	O
		>	0	0	0	0		0	0	o	0	0	0
		⋖	0	0	O	0		0	ပ	0	0	0	C
		œ	C	0	0	0	0	0	0	Ò	0	0	0
		σ.	0	א	, PO	Ю	נא	(N	0	0	Ю	n	0
		Ŋ	0	-			-	-		0	-	-	0
	-	Z	O	-	-	-		-		0	-	-	0
	1	Q	c	c	0	C	· c	· C	0	0	0	0	0
	2	> '	. •	0	0	0	0	0	0	0	0	0	0
	PASS	_	c	-		-	ا a	-	0	0	0	+	0
		U	۸	כא ו	N,	מו ו	,		-	-	- H	, kÇ	S.
	REWRITE	m	_	0	0	0	· c	· C	0	0	0	0	0
ر با 1	REW	¥	Ç	0	0	0	· C	· C	0	0	0	0	0
	9F	IL.	_) C	0	-	-) C	· C	· C	0	0	0
L		Σ	7	(-	-	.	·-			•	-	
•	RESULTS	SYMBOL	. 5	200	, K	, c	5 6	r C	. 22	- o	8 85 85	87	92

		×		0	0	0	0	0	0	0	0	0
		SUB		0	đ	0	6	0	0	0	0	0
		REST		0	9	0	7	0	0	0	0	0
		Ä		0	ณ		1	0	0	0	-	0
		EL		0	0	0	0	0	0	0	0	0
		RULE		0	ĸ	S E	6	0	0	0	6	0
		> <u>-</u>		0	0	0	0	0	0	0	0	0
		<u> </u>		米室でエ	XYYM	HYH*	0000	edL*	8***	AR&*	0000	***c
		S			C	12	0	М	-	- - '	0	
		—		0	0		0	0	0	0	0	0
		H		0	0	-	0	0	0	0	0	0
		>		0	0	 1	0		0	0	0	0
		4		0	0		0	0	0	0	0	0
		œ		0	0	0	0	0	N	0	0	0
		۵		0	'n	ю	ĸ	0	0	M	ń	0
		9		0	-		-	-	0	-1		0
0	J	z		0					0		 1	0
(1_	۵		0	0	0	σ	~	0	0	N	0
0	<u> </u>	>		0	0	0	0	0	0	0	0	0
0000	5			0	Ţ	0	0	0	0	0	0	0
•		ပ		Ŋ	ιΩ ,		, -	H	-	-	<u>ښ</u>	ស
, III K	-	<u>m</u>		0	0	0	0	0	0	0	0	0
	<u> </u>	¥	,	0	ĸ	0	0	0	O	0	0	0
i u		L		0	#	0	0	0	0	0	0	0
		Σ		-	-	근	+	-	-	-		eri
PECHI YC		SYMBOL		06	87	32	9	7.1	68	85	9	92

	×	00000000
	SUB	00 60 00 00
	REST	00000000
	Ä	0000-0
	딥	00000000
	RULE	3,400 25000 250000
	۲	0000000
	<u> 3</u> 8	HAM 0000 HYH 0000 GDL * AR& * * * 0000
	S	-02080-
	-	00400000
	H	00400000
	>	00-1000000
	⋖	00-1000000
	Œ	000000000
	σ	000000000
	ტ	0
ĸ	z	00
1	ο,	040000040
8	> -	00000000
PASS	٦	00000000
	ب	ผพายายาย
REWRITE	œ	00000000
REW	×	000000000
Ä.	LL.	00000000
	Σ	<u>सम</u> समसम समस
RESULTS	∉BoL	25 24 6 3 6 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6

	×	0000000
	SUB	00760000
	REST	000110000
	岁	01110000
	3	0000000
	RULE	25 37 20 00 00 00 00
	7	0000000
	· S	HAM* 0000 HYH* 0000 GDL* 0000
	S	40208404
	-	00-100000
	H	00-00000
	>	000000
	<	00-100000
	œ	00000000
	٥	0 0 0 0 0 0 0
	g	0
+	Z	0
į.	Q	010000000
NO	> -	0000000
PASS	_	0000000
•	ပ	ง สทสสสชภ
111	83	0,000,000
REWRITE	, 4 ,1,4	0000000
OF F	Linka.	2000000
•	Σ	ннынны
**RESULTS	SYMBOL	90 34 34 77 89 92

79.g

	×	00	0	0	0	0	0	0
	SUB	00	17	6	0	0	0	0
	REST	00	11	8	0	0	0	0
	岁	0.	·	1	0	0	-	0
	김	00	0	0	0	0	0	0
	RULE	26	38	6	О	0	29	0
	<u>+</u>	00	0	0	0	0	0	0
	3	HAM*	HYH*	0000	edL*	B**	0000	***
	S		12	0	ĸ	1	0	
	-	00		0	0	0	0	0
	H	00	-	0	0	0	0	0
	>	0 0	-	0	0	0	0	0
	⋖	00		0	0	0	0	0
	œ	00	· c	0	0	N	0	0
	C.	0 10	מא	מי	0	0	М	0
	9	0 =	. ~	-	<u>.</u>	0	-	0
2	Z	0-			-	0	-	0
Ļ	۵	00	10	σ	0	0	Ŋ	0
2	>- ',	00	0	0	C	0	0	0
PASS	_	90	0	0	0	0	0	0
	ပ	۷-			-	-4		ശ
RI TI	20	00	0	0	0	0	0	0
REWRITE	×	0,0	0	0	0	0	0	0
OF R	LL.	00	0	0	0	Ö	0	0
	is:I			-	₽	.		-
RESULTS	SYMBOL	0 K	ત્ર છ	9	77	89	26	92

×	000000
SUB	000000
REST	000000
벌	07770
ij.	0000000
RULE	20 39 39 0 41
7	000000
3	HAM* 0000 0000 6DL* 3**
S	1020001
-	000000
-	004000
>	004000
<	004000
œ	0000000
٥	0000000
9	0444400
Z	0
Ē	0400,000
>	000000
_1	000000
ပ	ଷଳନଳଳ ଓ .
8	000000
×	000000
ΙL	000000
Σ	ннннн н
SYMBOL	90 26 36 77 38

RESULTS OF REWRITE PASS NO.-

	×	00000
	SUB	0001
	REST	000000
	띨	04440
	딥	00000
	RULE	3 t t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	7	00000
	,æ	HAMM 0000 HYH 0000 ***
	Ś	1000
	-	004000
	} (00400
	>	004000
	⋖	00-1000
	œ	000000
	σ.	000000
		044440
7	3	00
Ļ	٥	040000
NON	>- '	000000
PASS	_1	00000
	U	ପ୍ରଥମ୍ପ
REWRITE	83	00000
REW	¥	00000
ų.	u.	00000
SAMO	Σ	
RES	SYMBOL	ው ታ የ ማ ያ ማ የ ሪ

		×	0	0	0	0	C	0
		SUB	0	0	10	σ	10	0
		REST	. 0	0	N	7	۲3	ပ
		빌	0	·	-		en-e	0
			0	0	0	0	0	0
		RULE	0	45	39	σ	7	O
		۲	0	0	0	0	0	0
		3	HAM*	0000	HYH*	0000	0000	 ***
		S	-	0	12	0	0	-
		-	0	0	-	0	0	0
•		H	0	0	~ →	0	0	0
		>	0	0	-	0	0	ပ
		<	0	0		0	0	0
		œ	c	0	0	0	0	0
		۵	0	'n	m	M	0	0
		ဖ	0	·	e-4		-	0
	80	Z	0		-1		-4	-
	!	۵	0	N	0	σ	σ	0
	2	>-	0	0	0	0	0	0
-	PASS	_	0	o .	<u> </u>	0	0	0
		ပ	~		-	·	1	വ
	REWRITE	æ	0	0	0	0	0	0
	RE	×	. 0	0	0	o	0	0
	R	u_	0	0	<u> </u>	O	0	0
•	ULTS	Σ		-	<u>ښ</u> .			
**************************************	RESUL	ZVMBOL	06	45	36	٥	.	26

		×	00000
		SUB	00000
		REST	00000
		뷜	04440
		딥	00000
		RULE	45 39 0
		<u></u> .	00000
		3	HAM* 0000 HYH* 0000
		S.	10201
		-	00400
		H	00400
		>	00400
		<	00400
		Œ	00000
		<u>a.</u>	0 8 8 8 0
		ဖ	04440
	6	2	0
	i.	C	0 0 0 0 0
	2	>- '	00000
	PASS	٦	00000
		ပ	ालन न छ
	REWRITE	Ω	00000
	저	×	00000
	OF	ட	00000
	LTS	Σ	नननन्
RIC CONTROLLED	RESULTS	SYMBOL	[}] 90 36 22 22 22 95 95

×	00000
SUB	00000
REST	00000
Ä	00
딥	00000
RULE	45 36 26 0
7	00000
3	HAM* 0000 HYH* 0000
S	10201
⊢	00+00
H	00100
>	00400
¥	00400
œ	0000
۵	00000
ტ	0
2	04440
۵	00000
>-	00000
	00000
ပ	જનનન છ
æ	00000
¥ .,	00000
LL.	00000
Σ	н енене
_ _	

RESULTS OF REWRITE PASS NO.- 10

ERIC Full Text Provided by ERIC

:	×	00000
	SUB	0000
	REST	00000
	띨	00
	EL	00000
	RULE	45 39 29 0
	<u></u>	00000
	.≅	HAM* 0000 HYH* 0000 ?***
	S	1201
	 	00400
		00400
	>	00100
	∢.	00100
	œ	00000
	٠ ;	00000
	Ð	0-1-0
Υ +	Z	04440
Ļ	۵	04000
2	>- '	00000
といる		00000
ì i	ى _.	८नन न ७
-	8	00000
RT S	쏘	00000
(a)	بيار <i>.</i>	00000
1.15	30L MENT K B C L Y D N	جا سا سا با با
RESU	SYMBOL	90 90 90 90 90 90 90 90 90 90 90 90 90 9

	×	00000
	SUB	00000
	REST	00N00
	띨	00
	디	20000
	RULE	4 33 48 0
	λ	00000
	3	HAM* 0000 HYH* 0000
•	Ŋ	10201
) —	00400
	-	00+00
	>	00-00
	<	00400
	Œ	00000
	٩	00000
	9	04440
12	2	00
	, a	04000
9 2	> -	00000
PASS		00000
. Ш	ပ	24468
WRIT	Ð	00000
RE	× ,	00000
9F	L	00000
.15	Σ	नन्नुबन
RESUL.	SYMBOL	9 4 3 4 9 9 4 3 6 8 8

	×	00000
	SUB	00000
	REST	00000
	Ш Z	00
	긥	00000
. 4	RULE	45 33 0
	~	00000
	3	HAM* 0000 HYH* 0000
	Ŋ	10 12 10 10
	-	00400
	н	00100
	>	20420
	⋖	00440
	<u>α</u> .	00000
	<u>c</u>	00000
	9	04440
13	Z	04440
	Ω.	00000
N.	>	00000
PASS	_	00000
гл О	ن ·	രുപപപഥ
RIT	Ð	00000
REWRITE	×	0,0,000
9	LL.	00000
UL TS	30L 3N F	ਜਿਜਜਿਜ
RES	/BOL	200

×	0000
SUB	0000
REST	0000
¥	0400
 	0000
RULE	0 4 70 0 70 0
ĭ	0000
3	HAM* 0000 2* *
S	-00-
-	00+0
H	00-10
>	0040
<	0040
∝	0000
۵	0000
9	0440
z	0440
۵	0000
>	0000
	0000
ပ	2445
œ	0000
≭ ,	0000
u.	0000
Σ	ननम्,न
SYMBOL	90 42 53

50%

RESULTS OF REWRITE PASS NO.- 1

>	<	000
9	300	000
	ž Ž	000
إ	ج آ	010
	- - -	000
RULE E		65
;	}	000
	3	HAM* 0000 2**
	S. <u>L</u>	-0-
	—	040
	Ħ	010
	>	0 70
	A	900
	œ	000
	<u>C</u>	0 8 0
	Ō	0 0 0 0 0 0 0
15	<u>s</u>	040
Ļ	Ω,	000
REWRITE PASS NO 15	>	000
	_1	000
	ن.	ય⊣ છ
	æ	000
RE	><	.000
₩	11	000
\ <u>`</u>	(≥	
RESULTSOF	SYMBOL	90 62 9

	×	000
	SUB	000
	REST SUB	000
	씱	0-10
	급	000
	RULE EL	0 67 0
÷	1	000
	Œ.	HAM* 0000 2**
	S	-0-
	-	0-0
	H	0 + 0
	>	0 -1 0
	⋖	000
	œ	000
	۵.	000
	9	0 = 0
.0	Z	0 1 0 0 0
1	Ω	000
Š	, -	000
PASS NO 16	ے.	000
. A	ပ	0 to 10
REWRITE	ω	000
ZE W	x .	000
S OF F	L	000
	∑ ′	
RESULT	SYMBOL	90 64 92

2	×	00
ģ	SOB	00
	REST	00
	벨	0.0
		00
	RULE EL. NE	7t 0
		00
	3	***c
	S	0 -
	—	00
	H	00
	>	00
	Ø	00
	œ	00
	<u>م</u>	MO
	9	-0
17	Z	40
NO 17	Ω,	00
	>-	00
PASS	_	00
	ုပ	4.0
RIT	മ	00
REWRITE	*	o o
9F	. 14	00
RESULTS	¥,	5
RESI	SYMBOL	71 92

×	00
SUB	0 0
REST	00
¥	↔
FL	00
RULF	78
11	00
3	0000 **
S	0 +
-	00
H	00
>	00
¥	00
œ	00
۵.	0
ဗ	00
2	00
۵	00
>-	00
_	00
ပ	⊣ ເວ
ά	00
⊻ .	₆₇ 0 0
LL.	00
Σ	
SYMBOL	75 92

RESULTS OF REWRITE PASS NO.- 18

	×	0
	SUB	0
	REST	0
	Ä	N
		0
	RULE EL	79
	Ţ.	0
	₹	0000
	S	0
	 	0
	H	0
	>	0
	⋖	0
	Œ	c
	<u>α</u> .	0
	9	0
1.3	Z	1 0 0 0 5 0 0 0 0 0 0
i •	۵	0
2	>	0
ი ი ლ		0
L U	ပ	. ~
7 7 2	æ	0
₹ U Y	ㅗ	0
5	LL	9
<u>^</u>	MFKBCLYDN6P	
KESULIS OF REWRITE FRSS NO. 12	SYMBOL	76

212

Appendix

PART IV

APPENDIX D

Examples of Exhaustive Syntactic Analysis by Computer (With Associated Tree Diagrams). Tree diagrams are produced by subprogram DIAGRM; syntax analysis statements are produced by subprogram PARSE.

TREE DIAGRAM OF HEBREW SENTENCE 101.

615

4-D-1

- (1) THE COMPLETED SENTENCE(SC) IS AN INTEROGATIVE SENTENCE.
- (2) THE INTEROGATIVE SENTENCE(SI) OF THE COMPLETED SE NTENCE(SC) HAS NO DEPENDENT CLAUSE.
- (3) THE INTEROGATIVE CLAUSE(KI) OF THE INTEROGATIVE SENTE NCE(SI) QUESTIONS TRUTH/CIRCUMSTANCES OF SN.
- (4) THE INDEPENDENT CLAUSE(SA) OF THE INTEROGATIVE CLAUS E(KI) OF THE INTEROGATIVE SENTENCE(SI) IS A DEFINITE INDEPENDENT CLAUSE.
- (5) THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE INTEROGATIVE CLAUSE(KI) OF THE INTEROGATIVE SENTENCE(SI) HAS A NAMED SUBJECT.
- (6) THE SUBJECT PHRASE(NSP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INTEROGATIVE CLAUSE(KI) OF THE INTEROGATIVE SENTENCE(SI) IS A NOUN PHRASE.
- (7) THE PREDICATE PHRASE(VP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INTEROGATIVE CLAUSE(KI) OF THE INTEROGATIVE SENTENCE(SI) IS A VERB PHRASE + VRB.MODIF.PHRASE.
- (8) THE VERB PHRASE(VA) OF THE PREDICATE PHRASE(VP)
 OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT
 CLAUSE(SA) OF THE INTEROGATIVE CLAUSE(KI) OF THE INTEROGATIVE SENTENCE(SI) IS A SEVEN-TENSE VERB PHRASE.
- (9) THE VERB MODIFYING PHRSE(VM) OF THE PREDICATE PHRASE(VP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(KI) OF THE INTEROGATIVE CLAUSE(KI) OF THE INTEROGATIVE SENTENCE(SI) IS A COPULATIVE PHRASE.
- (10) THE COPULATIVE PHRASE(NPX) OF THE VERB MODIFYING PHR SE(VM) OF THE PREDICATE PHRASE(VP) OF THE DEFINITE IND EPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE INTEROGATIVE CLAUSE(KI) OF THE INTEROGATIVE SENTENCE(SI) IS A NOUN PHRASE.
- (11) THE GENERAL NOUN PHRASE(NP) OF THE COPULATIVE PHRASE(NPX) OF THE VERB MODIFYING PHRSE(VM) OF THE PREDICATE PHRASE(VP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE INTEROGATIVE CLAUSE(KI) OF THE INTEROGATIVE SENTENCE(SI) IS A REG.NOUN. PHRS.+(APR. NOUN. PHRS).

- THE REGULAR NOUN PHRASE(NPA) OF THE GENERAL NOUN PHRAS
 OF THE COPULATIVE PHRASE(NPX) OF THE VERB MODIFYI
 (VM) OF THE PREDICATE PHRASE(VP) OF THE DEFINI (12) THE RE E(NP) OF NG PHRSE (VM) TE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE INTEROGATIVE SENTENCE(SI CONTAINS NO CONSTRUCT NOUNS.
- (13) THE SIMPLE NOUN PHRASE(NPB) OF THE REGULAR NOUN PHRASE(NPA) OF THE GENERAL NOUN PHRASE(NP) OF THE COPULATIVE PHRASE(NPX) OF THE VERB MODIFYING PHRSE(VM) OF THE PREDIC ATE PHRASE (VP) OF THE DEFINITE INDEPENDENT CLSE (SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE INTEROGATIVE CLAUSE(KI) THE INTEROGATIVE SENTENCE(SI) HAS A BASIC NOUN PHRASE AS NUCLEUS.
- THE BASIC NOUN PHRASE(NA) OF THE SIMPLE NOUN PHRASE OF THE REGULAR NOUN PHRASE(NPA) OF THE GENERAL NOUN PHRASE(NP) OF THE COPULATIVE PHRASE(NPX) OF THE VERB M ODIFYING PHRSE(VM) OF THE PREDICATE PHRASE(VP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE INTEROGATIVE CLAUSE(KI) OF THE INTEROGATIVE SENTE HAS A NONDETERMINATE NOUN. NCE(SI)
- (15) THE POST-NOMINAL ADJECTIVE PHRASE(AP) OF THE SIMPLE NOUN PHRASE (NPB) OF THE REGULAR NOUN PHRASE (NPA) OF THE GENERAL NOUN PHRASE (NPX) OF THE COPULATIVE PHRASE (NPX) OF THE VERB MODIFYING PHRSE(VM) OF THE PREDICATE PHRASE(VP) THE DEFINITE INDEPENDENT CLSE (SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE INTEROGATIVE CLAUSE(KI) OF THE INTERO GATIVE SENTENCE(SI) IS A BASIC POST-NOMINAL ADJ.PHRASE.
- (16) THE BASIC POST-NOM.ADJECTIVE PHRASE(APA) OF OMINAL ADJECTIVE PHRASE(AP) OF THE SIMPLE NOUN PHRASE(NPB)

 OF THE REGULAR NOUN PHRASE(NPA) OF THE GENERAL NOUN PHRASE

 E(NP) OF THE COPULATIVE PHRASE(NPX) OF THE VERB MODIFYI

 NG PHRSE(VM) OF THE PREDICATE PHRASE(VP) OF THE DEFINI TE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) THE INTEROGATIVE CLAUSE(KI) OF THE INTEROGATIVE SENTENCE(SI EXPRESSES THE COMPARATIVE DEGREE.
- THE GENERAL NOUN PHRASE(NP) OF THE SUBJECT PHRASE(NSP OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPE NDENT CLAUSE(SA) OF THE INTEROGATIVE CLAUSE(KI) OF THE INTEROGATIVE SENTENCE(SI) IS A REG.NOUN PHRS.+(APP.NOUN.PHRS).
- THE PREPOSITION PHRASE (XP) OF THE BASIC POST-NOM. ADJ (18) ECTIVE PHRASE (APA) OF THE POST-NOMINAL ADJECTIVE PHRASE (AP) THE SIMPLE NOUN PHRASE (NPB) OF THE REGULAR NOUN PHRASE OF THE GENERAL NOUN PHRASE (NP) OF THE COPULATIVE P HRASE(NPX) OF THE VERB MODIFYING PHRSE(VM) OF THE PREDIC ATE PHRASE(VP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE (SA) OF THE INTEROGATIVE CLAUSE (KI) THE INTEROGATIVE SENTENCE(SI) GOVERNS A NOUN PHRASE.
- THE REGULAR NOUN PHRASE (NPA) OF THE GENERAL NOUN PHRAS (19) TIS

- E(NP) OF THE SUBJECT PHRASE(NSP) OF THE DEFINITE IND EPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE INTEROGATIVE SENTENCE(SI) CONTAINS NO CONSTRUCT NOUNS.
- (20) THE SEVEN-TENSE VERB PHRASE(VAA) OF THE VERB PHRASE(VA) OF THE PREDICATE PHRASE(VP) OF THE DEFINITE IND EPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE INTEROGATIVE CLAUSE(KI) OF THE INTEROGATIVE SENTENCE(SI) IS AN EMPHATIC VERB PHRASE.
- (21) THE SIMPLE NOUN PHRASE(NPB) OF THE REGULAR NOUN PHRASE(NPA) OF THE GENERAL NOUN PHRASE(NP) OF THE SUBJECT PHRASE(NSP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(KI) OF THE INTEROGATIVE CLAUSE(KI) OF THE INTEROGATIVE SENTENCE(SI) HAS A BASIC NOUN PHRASE AS NUCLEUS.
- (22) THE EMPHATIC VERB PHRASE(VC) OF THE SEVEN-TENSE VERB PHRASE(VAA) OF THE VERB PHRASE(VA) OF THE PREDICATE PHRASE(VP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(KI) OF THE INTEROGATIVE CLAUSE(KI) OF THE INTEROGATIVE SENTENCE(SI) EXPRESSES NO SPECIAL EMPHASIS.
- THE REGULAR NOUN PHRASE(NPA) OF THE GOOD THE GOOD OF THE PREPOSITION PHRASE(XP) OF (23) THE GENERAL NOUN PHRAS OF THE BASIC POST-N OM. ADJECTIVE PHRASE (APA) THE POST-NOMINAL ADJECTIVE PHRASE(OF THE SIMPLE NOUN PHRASE (NPB) OF THE REGULAR NOUN PHRASE (NPA) OF THE GENERAL NOUN PHRASE(NP) THE COPULA TIVE PHRASE(NPX) OF THE VERB MODIFYING PHRSE(VM)
 PREDICATE PHRASE(VP) OF THE DEFINITE TABLETORS 0F OF THE DEFINITE INDEPENDENT CLSE(SAB) THE INDEPENDENT CLAUSE (SA) OF THE INTEROGATIVE CLAUS OF THE INTEROGATIVE SENTENCE(SI) CONTAINS CONSTRUCT E(KI) 0F NOUN(S).
- (24) THE BASIC NOUN PHRASE(NA). OF THE SIMPLE NOUN PHRASE THE REGULAR NOUN PHRASE (NPA) (NPB) 0F OF THE GENERAL NOUN THE SUBJECT PHRASE(NSP) PHRASE(NP) OF · OF THE DEFINI TE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE INTEROGATIVE CLAUSE(KI) OF THE INTEROGATIVE SENTENCE(SI HAS A (DETERMINATE) PROPER NOUN.
- (25) THE THREE-TENSE VERB PHRASE(VBB) OF THE EMPHATIC VER B PHRASE(VC) OF THE SEVEN-TENSE VERB PHRASE(VAA) OF THE VERB PHRASE(VA) OF THE PREDICATE PHRASE(VP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE INTEROGATIVE SENTENCE(SI) IS A VERB OR PARTICIPLE.
- (26) THE VERB MOOD PHRASE(VB) OF THE THREE-TENSE VERB PHRASE(VBB) OF THE EMPHATIC VERB PHRASE(VC) OF THE SEVEN-TENSE VERB PHRASE(VA) OF THE PREDICATE PHRASE(VP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE INTEROGATIVE CLAUSE(KI) OF THE INTEROGATIVE SENTENCE(SI) IS A VERB OR INFINITIVE ABSOLUTE.

217

- THE BASIC NOUN PHRASE(NA) OF THE REGULAR NOUN PHRASE (NPA) OF THE SIMPLE NOUN PHRASE (27) THE GENERAL NOUN (NPB) OF. THE PREPOSITION PHRASE(XP) THE BASIC OF 0F PHRASE (NP) THE POST-NOMINAL ADJECTIVE P POST-NOM.ADJECTIVE PHRASE(APA) OF THE SIMPLE NOUN PHRASE (NPB) OF THE REGULA HRASE (AP) OF THE GENERAL NOUN PHRASE(NP) OF 0F R NOUN PHRASE (NPA) THE VERB MODIFYING PHRSE(VM) OF 0F COPULATIVE PHRASE(NPX) THE DEFINITE INDEPENDENT CLS 0F THE PREDICATE PHRASE(VP) THE INDEPENDENT CLAUSE(SA) OF THE INTEROGATIVE OF THE INTEROGATIVE SENTENCE(SI) HAS A (DETER CLAUSE(KI) MINATE) PROPER NOUN.
- THE VERB MOOD PHRASE(VB) OF THE VERB(V) OF THE EMPHATIC VERB PHRA THE THREE-TENSE VERB PHRASE(VBB) THE SEVEN-TENSE VERB PHRASE(VAA) OF THE VERB P SE (VC) OF: OF THE DEFINI THE PREDICATE PHRASE(VP) OF HRASE (VA) THE INDEPENDENT CLAUSE (SA) OF TE INDEPENDENT CLSE(SAB) OF THE INTEROGATIVE SENTENCE(SI OF THE INTEROGATIVE CLAUSE(KI) IS. IS) ACT. IND. PAST. A=1. MASC THIRD. SING
- THE BASIC NOUN PHRASE(NA) OF THE NOUN ABSOLUTE(N) (29) THE REGULAR NOUN PHRAS 0F THE SIMPLE NOUN PHRASE (NPB) OF THE COPULATIVE P THE GENERAL NOUN PHRASE (NP) 0F E(NPA) THE PREDIC THE VERB MODIFYING PHRSE (VM) OF HRASE (NPX) THE DEFINITE INDEPENDENT CLSE(SAB) OF 0F ATE PHRASE(VP) THE INDEPENDENT CLAUSE(SA) OF THE INTEROGATIVE CLAUSE(KI) THE INTEROGATIVE SENTENCE(SI) IS POET.

SING., MASC., THIRD.

THE BASIC NOUN PHRASE(NA) THE NOUN ABSOLUTE(N) 0F (30) THE REGULAR NOUN PHRAS THE SIMPLE NOUN PHRASE(NPB) OF OF. OF THE PREPOSITION THE GENERAL NOUN PHRASE(NP) E(NPA) OF THE BASIC POST-NOM. ADJECTIVE PHRASE (APA) OF OF THE POST-NOMINAL ADJECTIVE PHRASE(AP) THE SIMPLE NOUN 0F THE GENERA THE REGULAR NOUN PHRASE (NPA) OF 0F PHRASE (NPB) THE THE COPULATIVE PHRASE(NPX) L NOUN PHRASE(NP) 0F OF OF THE PREDICATE PHRASE(VP) VERB MODIFYING PHRSE(VM) THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE 0F THE INTEROGATIVE THE INTEROGATIVE CLAUSE(KI) OF ISRAEL. IS SENTENCE (SI) THIRD. SING., MASC.,

ANALYSIS COMPLETED FOR SENTENCE NO. 101, NO. OF SYMBOL TESTS= 265.

TREE DIAGRAM OF HEBREW SENTENCE 102

N-3 I	N-3 I I	N-3 I	V-1 I	N-1 I I	A1 · I I	P=1 I I I I	J-1 I I	N-3 I I	T-7 I I I
	N-3 I I I		VB1 I I I	Ī I I	ī I I	I.	I	NAS I I	I I I
÷.	I I I	•	VBB1 I I VC3	I I I		I I I	J-1 I I NPA2	NPB1	I I I I
	NPB1 I I I NPA1		I I I VAA1	I I I	I I I	I I I P-1	I I I NP1		I I I I I
	I I I NP1		I I I	I I I	l A≕1	I I XP1	I		Ī
	I I I	•	I I I		I I APA2 I I	<u>I</u>			I I I I I I
	I I I		I I I I	I NA1 I	i AP1 X				I
	I I I		I I I	I NPB1 I					I I I
	I I I		I I I I	NPA1	i				I I I I I
	I I I		I I I I	I NP1 I I					I I I I
	I I I		I I I	EX9N I I				·	I I I I
	I		VA1 I	VM1	r frame over ag		•		I I I
	NSP1		VP1						I I I
:		I SAB1 I I							I I I
	Ý,	SA3 I I I				, m.			I I I
		S-1 I			1 SC3				T-7
	•		-		5C3 4-D-6				

ALC

- THE COMPLETED SENTENCE(SC) IS AN IMPERATIVE SENTENCE. 1)
- 2) THE BASIC SENTENCE(S) OF THE COMPLETED SENTENCE(SC) IS A SIMPLE SENTENCE.
- THE BASIC SENTENCE(S) OF THE INDEPENDENT CLAUSE (SA) 3) IS A DEFINITE INDEPENDENT CLAUSE.
- 4) THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT THE BASIC SENTENCE(S) HAS A NAMED SUBJECT. CLAUSE (SA)
- OF THE DEFINITE INDEPENDE THE SUBJECT PHRASE(NSP) OF THE BASIC THE INDEPENDENT CLAUSE(SA) NT CLSE(SAB) OF SENTENCE(S) IS A NOUN PHRASE.
- OF THE DEFINITE INDEPENDE THE PREDICATE PHRASE(VP) NT CLSE (SAB) OF THE INDEPENDENT CLAUSE (SA) OF THE BASIC SENTENCE(S) IS A VERB PHRASE + VRB.MODIF.PHRASE.
- OF THE PREDICATE PHRASE(VP) THE VERB PHRASE(VA) 7) THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT THE BASIC SENTENCE(S) IS A SEVEN-TENSE VERB PH CLAUSE(SA) OF RASE .
- THE VERB MODIFYING PHRSE (VM) OF THE PREDICATE PHRASE(V THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPE OF P) OF THE BASIC SENTENCE(S) IS A COPULATIVE PH NDENT CLAUSE(SA) RASE .
- THE VERB MODIFYING PHR THE COPULATIVE PHRASE(NPX) OF OF . THE DEFINITE IND THE PREDICATE PHRASE(VP) SE (VM) 0F EPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) THE BASIC SENTENCE(S) IS A NOUN PHRASE.
- THE COPULATIVE PHRASE(THE GENERAL NOUN PHRASE(NP) OF (10) THE VERB MODIFYING PHRSE(VM) OF THE PREDICATE PH NPX) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE RASE(VP) INDEPENDENT CLAUSE (50) OF THE BASIC SENTENCE (5) IS A REG. NOU N PHRS.+(APP.NOUN.PHRS).
- THE REGULAR NOUN PHRASE (NPA) OF THE GENERAL NOUN PHRAS (11) THE COPULATIVE PHRASE (NPX) OF THE VERB MODIFYI E(NP) OF. THE PREDICATE PHRASE(VP) THE DEFINI OF NG PHRSE (VM) OF TE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF. THE BASIC SENTENCE(S) CONTAINS NO CONSTRUCT NOUNS.
- THE SIMPLE NOUN PHRASE (NPB) OF THE REGULAR NOUN PHRASE OF THE GENERAL NOUN PHRASE (NP) OF THE COPULATIVE POX) OF THE VERB MODIFYING PHRSE (VM) OF THE PREDIC (12) E(NPA) HRASE(NPX) iss

- E PHRASE(VP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) HAS A ATE PHRASE(VP) BASIC NOUN PHRASE AS NUCLEUS.
- THE BASIC NOUN PHRASE(NA) OF THE SIMPLE NOUN PHRASE OF THE REGULAR NOUN PHRASE(NPA) OF THE GENERAL NOUN (13) (NPB) THE VERB M THE COPULATIVE PHRASE(NPX) OF PHRASE (NP) OF OF THE PREDICATE PHRASE(VP) ODIFYING PHRSE(VM) DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) THE BASIC SENTENCE(S) HAS A NONDETERMINATE NOUN.
- THE POST-NOMINAL ADJECTIVE PHRASE(AP) OF THE SIMPLE NOUN PHRASE(NPB) OF THE REGULAR NOUN PHRASE(NPA) OF GENERAL NOUN PHRASE(NP) OF THE COPULATIVE PHRASE(NPX) THE COPULATIVE PHRASE(NPX) OF THE VERB MODIFYING PHRSE(VM) OF THE PREDICATE PHRASE(VP) THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) IS A BASIC POST-NOMINAL ADJ.PHRASE.
- THE BASIC POST-NOM.ADJECTIVE PHRASE(APA) 0F THE POST-N OMINAL ADJECTIVE PHRASE(AP) OF THE SIMPLE NOUN PHRASE(NPB) THE REGULAR NOUN PHRASE(NPA) OF THE GENERAL NOUN PHRAS
 OF THE COPULATIVE PHRASE(NPX) OF THE VERB MODIFYI
 (VM) OF THE PREDICATE PHRASE(VP) OF THE DEFINI 0F NG PHRSE (VM) TE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) THE BASIC SENTENCE(S) EXPRESSES THE COMPARATIVE DEGREE.
- THE SUBJECT PHRASE(NSP THE GENERAL NOUN PHRASE(NP) OF OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPE NDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) IS A REG. NOUN PHRS .+(APP.NOUN.PHRS).
- (17) THE PREPOSITION PHRASE(XP) OF THE BASIC POST-NOM.ADJ ECTIVE PHRASE(APA) OF THE POST-NOMINAL ADJECTIVE PHRASE(AP) THE SIMPLE NOUN PHRASE(NPB) OF THE REGULAR NOUN PHRAS OF THE COPULATIVE P THE GENERAL NOUN PHRASE(NP) OF E(NPA) HRASE(NPX) OF THE VERB MODIFYING PHRSE(VM) OF THE PREDIC OF THE DEFINITE INDEPENDENT CLSE(SAB) OF ATE PHRASE(VP) THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) GOVERN S A NOUN PHRASE.
- THE REGULAR NOUN PHRASE(NPA) OF THE GENERAL NOUN PHRAS OF THE SUBJECT PHRASE(NSP) OF THE DEFINITE IND (18) EPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) BASIC SENTENCE(S) CONTAINS NO CONSTRUCT NOUNS.
- (19) THE SEVEN-TENSE VERB PHRASE (VAA) OF THE VERB PHRASE (THE PREDICATE PHRASE(VP) OF THE DEFINITE IND VA) EPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) BASIC SENTENCE(S) IS AN EMPHATIC VERB PHRASE.
- THE SIMPLE NOUN PHRASE (NPB) OF THE REGULAR NOUN PHRAS OF THE GENERAL NOUN PHRASE (NP) OF THE SUBJECT PHRA E(NPA) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF SE(NSP) INDEPENDENT CLAUSE (SA) OF THE BASIC SENTENCE (S) HAS A BASIC NOUN PHRASE AS NUCLEUS. 4-D-8

- (21) THE EMPHATIC VERB PHRASE(VC) OF THE SEVEN-TENSE VERB PHRASE(VAA) OF THE PREDICATE PHRASE(VA) OF THE PREDICATE PHRASE(VP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) EXPRESSES NO SPECIAL EMPHASIS.
- THE GENERAL NOUN PHRAS THE REGULAR NOUN PHRASE(NPA) OF (22) THE PREPOSITION PHRASE(XP) OF THE BASIC POST-N E(NP) OM.ADJECTIVE PHRASE (APA) OF THE POST-NOMINAL ADJECTIVE PHRASE (THE REGULAR NOUN THE SIMPLE NOUN PHRASE (NPB) OF AF) THE COPULA THE GENERAL NOUN PHRASE(NP) OF TIVE PHRASE(NPX) OF THE VERB MODIFYING PHRSE(VM) OF THE PREDICATE PHRASE(VP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF PHRASE (NPA) OF THE BASIC SENTENCE(S) THE INDEPENDENT CLAUSE(SA) CONTAINS CONSTRUCT NOUN(S).
- (23) THE BASIC NOUN PHRASE(NA) OF THE SIMPLE NOUN PHRASE (NPB) OF THE REGULAR NOUN PHRASE(NPA) OF THE GENERAL NOUN PHRASE(NP) OF THE SUBJECT PHRASE(NSP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) HAS A (DETERMINATE) PROPER NOUN.
- (24) THE THREE-TENSE VERB PHRASE(VBB) OF THE EMPHATIC VER B PHRASE(VC) OF THE SEVEN-TENSE VERB PHRASE(VAA) OF THE VERB PHRASE(VA) OF THE PREDICATE PHRASE(VP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) IS A VERB OR PARTICIPLE.
- (25) THE VERB MOOD PHRASE(VB) OF THE THREE-TENSE VERB PHRASE(VBB) OF THE EMPHATIC VERB PHRASE(VC) OF THE SEVEN-TENSE VERB PHRASE(VA) OF THE VERB PHRASE(VA) OF THE PREDICATE PHRASE(VP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) IS A VERB OR INFINITIVE ABSOLUTE.
- THE SIMPLE NOUN PHRASE THE BASIC NOUN PHRASE(NA) OF THE REGULAR NOUN PHRASE (NPA) OF THE GENERAL NOUN
 OF THE PREPOSITION PHRASE (XP) OF THE BASIC (26) OF: (NPB) OF THE PREPOSITION PHRASE(XP) PHRASE (NP) POST-NOM. ADJECTIVE PHRASE (APA) OF THE POST-NOMINAL ADJECTIVE P THE REGULA THE SIMPLE NOUN PHRASE (NPB) OF OF THE GENERAL NOUN PHRASE (NP) 0F OF R NOUN PHRASE (NPA) THE VERB MODIFYING PHRSE (VM) OF COPULATIVE PHRASE(NPX) OF THE DEFINITE INDEPENDENT CLS THE PREDICATE PHRASE(VP) E(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTEN CE(S) HAS A (DETERMINATE) PROPER NOUN.
- THE VERB MOOD PHRASE(VB) OF THE VERB(V) THE THREE-TENSE VERB PHRASE(VBB) OF THE EMPHATIC VERB PHRA THE SEVEN-TENSE VERB PHRASE (VAA) OF THE VERB P OF THE DEFINI OF THE PREDICATE PHRASE(VP) OF THE INDEPENDENT CLAUSE (SA) OF TE INDEPENDENT CLSE(SAB) OF THE BASIC SENTENCE(S) IS IS. ACT .. IMPV., FUTR.. A=1. SING., MASC., SECD.,
- (28) THE NOUN ABSOLUTE(N) OF THE BASIC NOUN PHRASE(NA)

4-D-9

222

THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) IS
POET.
SING., MASC., SECD..

THE BASIC NOUN PHRASE(NA) THE NOUN ABSOLUTE(N) OF (29) THE SIMPLE NOUN PHRASE (NPB) OF THE REGULAR NOUN PHRAS 0F OF THE PREPOSITION THE GENERAL NOUN PHRASE(NP) 0F E(NPA) THE BASIC POST-NOM. ADJECTIVE PHRASE (APA) OF PHRASE (XP) THE SIMPLE NOUN THE POST-NOMINAL ADJECTIVE PHRASE(AP) OF PHRASE(NPB) OF THE REGULAR NOUN PHRASE(NPA) THE GENERA 0F THE COPULATIVE PHRASE(NPX) 0F THE L NOUN PHRASE(NP) 0F VERB MODIFYING PHRSE(VM) OF THE PREDICATE PHRASE(VP) THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE IS ISRAEL. THE BASIC SENTENCE(S)

SING .. MASC .. THIRD.

SIS COMPLETED FOR SENTENCE NO. 102, NO. OF SYMBOL TESTS= 261.

4-D-30

TREE DIAGRAS OF COURTE SEPTEMBE 103.

د_د د_د	1	i ;= ,5 I	v-1 1	1 !	Λ-ι i	1	I I	14-3 I	T-0 I 1
	1 1,-3		VIII	1 I	i	Ţ		I EAH	I 1
	i I		<u> </u>	1	1	1	I	I I	I I
	1 1143		I Visital	ı L	i	1	J−1	1 1871	I I
	I		1	1	I 1	i I	I 	Ĭ 	I I
	1 (PB1		I VC3	l ì	I	ï	I WAZ		1 1
	1 1 I		I I	Î 1	Ī 1	î	I		I I
	I		I	i		*	i :#P1		ī
	i4PA1		VAA1	i	Ï	1			I
	1 I		I	i	Ĩ I	 I			I
	NP1 I		I I	1 1	I Y—I	Y61			I
	I I		I I	1	 I				I
	Ī I		Ī	1 1	APAZ				I I
	I		į	Ī	I I I				I I
	I I		Ĭ	1461	AP1				Ī
	I I		I I	1	I				I
	I I		I	1 , #2.1					Ī
	I I		I I	1					I
	Ī		I I	1 1 1					I 1
	. Î		_ 1	I					I
	I		1 I	1 1441					Ī
	Ī		Ī	I					Ī
	I		I I	1					į
	I I		1 I	1 1 1 1					Ī
	I		I I	I I					I
	-		I VA1 I	I VM1 I					I.
	I I I NSP1 I		I						I
	NSP1		VP1				•		I
÷				5					·I
		SAB1							I
		I I						٠	I.
		I 5A3					٠.,	• .	Ī
		I					٠.		Ī
		I S-1							T-6
		ĭ							I

4-D-1

- (1) THE COMPLETED SENTENCE(SC) IS A DECLARATIVE SENTENCE.
- (2) THE BASIC SENTENCE(S) OF THE COMPLETED SENTENCE(SC) IS A SIMPLE SENTENCE.
- (3) THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) IS A DEFINITE INDEPENDENT CLAUSE.
- (4) THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) HAS A NAMED SUBJECT.
- (5) THE SUBJECT PHRASE(NSP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE BASIC SENTENCE(S) IS A NOUN PHRASE.
- (6) THE PREDICATE PHRASE(VP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) IS A VERB PHRASE + VRB.MODIF.PHRASE.
- (7) THE VERB PHRASE(VA) OF THE PREDICATE PHRASE(VP)
 OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT
 CLAUSE(SA) OF THE BASIC SENTENCE(S) IS A SEVEN-TENSE VERB PH
 RASE.
- (8) THE VERB MODIFYING PHRSE(VM) OF THE PREDICATE PHRASE(VP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) IS A COPULATIVE PHRASE.
- (9) THE COPULATIVE PHRASE(NPX) OF THE VERB MODIFYING PHR SE(VM) OF THE PREDICATE PHRASE(VP) OF THE DEFINITE IND EPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) IS A NOUN PHRASE.
- (10) THE GENERAL NOUN PHRASE(NP) OF THE COPULATIVE PHRASE(NPX) OF THE VERB MODIFYING PHRSE(VM) OF THE PREDICATE PHRASE(VP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) IS A REG.NOUN PHRS.+(APP.NOUN.PHRS).
- (11)THE REGULAR NOUN PHRASE(NPA) OF THE GENERAL NOUN PHRAS OF E(NP) OF THE COPULATIVE PHRASE(NPX) THE VERB MODIFYI NG PHRSE (VM) THE PREDICATE PHRASE(VP) OF: OF THE DEFINI TE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) CONTAINS NO CONSTRUCT NOUNS.
- (12) THE SIMPLE NOUN PHRASE (NPB) OF THE REGULAR NOUN PHRASE (NPA) OF THE COPULATIVE PHRASE (NPX) OF THE VERB MODIFYING PHRSE (VM) OF THE PREDIC 4-D-12

ERIC

- ATE PHRASE(VP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) HAS A BASIC NOUN PHRASE AS NUCLEUS.
- THE SIMPLE NOUN PHRASE OF THE BASIC NOUN PHRASE(NA) (13)THE GENERAL NOUN THE REGULAR NOUN RASE (NPA) 0F 0F (NPB) THE VERB M THE COPULATIVE PHRASE(NPX) PHRASE (NP) OF THE PREDICATE PHRASE(VP) ODIFYING PHRSE(VM) OF DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) THE BASIC SENTENCE(S) HAS A NONDETERMINATE NOUN.
- (14) THE POST-NOMINAL ADJECTIVE PHRASE(AP) OF THE SIMPLE NOUN PHRASE(NPB) OF THE REGULAR NOUN PHRASE(NPA) OF THE GENERAL NOUN PHRASE(NP) OF THE COPULATIVE PHRASE(NPX) OF THE VERH MODIFYING PHRSE(VM) OF THE PREDICATE PHRASE(VP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) IS A BASIC POST-NOMINAL ADJ.PHRASE.
- THE BASIC POST-NOM.ADJECTIVE PHRASE(APA) OF THE POST-N OMINAL ADJECTIVE PHRASE(AP) OF THE SIMPLE NOUN PHRASE(NPB) THE REGULAR NOUN PHRASE (NPA) OF THE GENERAL NOUN PHRAS OF THE VERB MODIFYI THE COPULATIVE PHRASE(NPX) OF E(NP) OF THE PREDICATE PHRASE (VP) OF THE DEFINI 0F NG PHRSE (VM) TE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) THE BASIC SENTENCE(S) EXPRESSES THE COMPARATIVE DEGREE.
- (16) THE GENERAL NOUN PHRASE(NP) OF THE SUBJECT PHRASE(NSP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) IS A REG.NOUN PHRS.+(APP.NOUN.PHRS).
- (17) THE PREPOSITION PHRASE(XP) OF THE BASIC POST-NOM.ADJ ECTIVE PHRASE(APA) OF THE POST-NOMINAL ADJECTIVE PHRASE(AP) OF THE SIMPLE NOUN PHRASE(NPB) OF THE REGULAR NOUN PHRASE(NPA) OF THE GENERAL NOUN PHRASE(NP) OF THE COPULATIVE PHRASE(NPX) OF THE VERB MODIFYING PHRSE(VM) OF THE PREDIC ATE PHRASE(VP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) GOVERN S A NOUN PHRASE.
- (18) THE REGULAR NOUN PHRASE(NPA) OF THE GENERAL NOUN PHRASE(NP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) CONTAINS NO CONSTRUCT NOUNS.
- (19) THE SEVEN-TENSE VERB PHRASE(VAA) OF THE VERB PHRASE(VA) OF THE PREDICATE PHRASE(VP) OF THE DEFINITE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) IS AN EMPHATIC VERB PHRASE.
- (20) THE SIMPLE NOUN PHRASE(NPB) OF THE REGULAR NOUN PHRASE(NPA) OF THE GENERAL NOUN PHRASE(NP) OF THE SUBJECT PHRASE(NSP) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) HAS A BASIC NOUN PHRASE AS NUCLEUS.

- THE EMPHATIC VERB PHRASE(VC) OF THE SEVEN-TENSE VERB P THE VERB PHRASE (VA) OF THE PRED THE DEFINITE INDEPENDENT CLSE (SAB) OF THE PREDICATE PH HRASE (VAA) OF 0F RASE (VP) INDEPENDENT CLAUSE (SA) OF THE BASIC SENTENCE(S) EXPRESSES NO SPECIAL EMPHASIS.
- (22) THE REGULAR NOUN PHRASE (NPA) OF THE GENERAL NOUN PHRAS THE PREPOSITION PHRASE(XP) E(NP) THE BASIC POST-N OF. THE POST-NOMINAL ADJECTIVE PHRASE(OM.ADJECTIVE PHRASE(APA) 0F THE SIMPLE NOUN PHRASE(NPB) OF THE REGULAR NOUN THE GENERAL NOUN PHRASE(NP) PHRASE (NPA) 0F OF THE COPULA THE VERB MODIFYING PHRSE(VM) TIVE PHRASE(NPX) 0F PREDICATE PHRASE(VP) OF THE DEFINITE INDEPENDENT CLSE(SAB) THE INDEPENDENT CLAUSE (SA) OF THE BASIC SENTENCE(S) CONTAINS CONSTRUCT NOUN(S).
- (23) THE BASIC NOUN PHRASE(NA) ٥F THE SIMPLE NOUN PHRASE THE REGULAR NOUN PHRASE(NPA) (NPB) OF THE GENERAL NOUN OF THE SUBJECT PHRASE(NSP) THE DEFINI PHRASE (NP) TE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) THE BASIC SENTENCE(S) HAS A (DETERMINATE) PROPER NOUN.
- THE THREE-TENSE VERB PHRASE (VBB) OF THE EMPHATIC VER B PHRASE(VC) OF THE SEVEN-TENSE VERB PHRASE (VAA) OF THE 0F THE PREDICATE PHRASE(VP) VERB PHRASE(VA) 0F THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) THE BASIC SENTENCE(S) IS A VERB OR PARTICIPLE.
- (25) THE VERB MOOD PHRASE(VB) 0F THE THREE-TENSE VERB P THE EMPHATIC VERB PHRASE(VC) OF HRASE (VBB) OF THE SEVEN-TENSE VERB PHRASE(VAA) THE VERB PHRASE(VA) - OF 0F THE DEFINITE INDEPENDENT CLSE(SAB) PREDICATE PHRASE(VP) OF THE INDEPENDENT CLAUSE (SA) OF THE BASIC SENTENCE(S) IS A VERB OR INFINITIVE ABSOLUTE.
- (26) THE BASIC NOUN PHRASE(NA) 0F THE SIMPLE NOUN PHRASE (NPB) ŌF THE REGULAR NOUN PHRASE (NPA) OF THE GENERAL NOUN THE PREPOSITION PHRASE(XP) PHRASE (NP) THE BASIC OF OF POST-NOM.ADJECTIVE PHRASE(APA) OF THE POST-NOMINAL ADJECTIVE P THE SIMPLE NOUN PHRASE(NPB) OF HRASE (AP) OF THE REGULA R NOUN PHRASE (NPA) OF THE GENERAL NOUN PHRASE(NP) THE COPULATIVE PHRASE(NPX) PULATIVE PHRASE(NPX) OF THE VERB MODIFYING PHRSE(VM) OF THE DEFINITE INDEPENDENT CLS THE INDEPENDENT CLAUSE (SA) OF THE BASIC SENTEN CE(S) HAS A (DETERMINATE) PROPER NOUN.
- THE VERB(V) OF THE VERB MOOD PHRASE(VB) THE THREE-TENSE VERB PHRASE(VBB) OF THE EMPHATIC VERB PHRA SE(VC) THE SEVEN-TENSE VERB PHRASE(VAA) THE VERB P OF THE PREDICATE PHRASE (VP) OF-HRASE (VA) OF THE DEFINI TE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) THE BASIC SENTENCE(S) IS IS. SING., MASC., THIRD, A=1, ACT., IND., FUTR..
- THE BASIC NOUN PHRASE(NA) (28) THE NOUN ABSOLUTE(N) OF 4-D-14 ERÍC

OSS

THE REGULAR NOUN PHRAS OF THE SIMPLE NOUN PHRASE (NPB) THE COPULATIVE P THE GENERAL NOUN PHRASE(NP) OF E(NPA) OF THE PREDIC THE VERB MODIFYING PHRSE (VM) HRASE (NPX) THE DEFINITE INDEPENDENT CLSE(SAB) OF ATE PHRASE(VP) 0F THE BASIC SENTENCE(S) IS THE INDEPENDENT CLAUSE(SA) OF. POET. THIRD. SING. MASC.

THE BASIC NOUN PHRASE(NA) THE NOUN ABSOLUTE(N) OF (29) THE REGULAR NOUN PHRAS THE SIMPLE NOUN PHRASE (NPB) OF OF THE PREPOSITION THE GENERAL NOUN PHRASE(NP) OF E(NPA) OF THE BASIC POST-NOM. ADJECTIVE PHRASE (APA) PHRASE (XP) THE SIMPLE NOUN THE POST-NOMINAL ADJECTIVE PHRASE(AP) OF THE GENERA THE REGULAR NOUN PHRASE (NPA) OF 0F PHRASE (NPB) THE THE COPULATIVE PHRASE(NPX) L NOUN PHRASE(NP) 0F OF THE PREDICATE PHRASE(VP) VERB MODIFYING PHRSE(VM) OF THE INDEPENDENT CLAUSE THE DEFINITE INDEPENDENT CLSE(SAB) OF THE BASIC SENTENCE(S) IS ISRAEL. (SA)

SING., MASC., THIRD.

ANALYSIS COMPLETED FOR SENTENCE NO. 103, NO. OF SYMBOL TESTS= 263.

HEBREW SENTENCE ANALYZED--HWA YSB BKPR QTN.

TREE DIAGRAM OF HEBREW SENTENCE NO. 4

R-2	V - 1	P-1	N-1	A-1	T-6
I	I	I	r	I	I
I	1	I	I	I	I
I	I	Ĭ	I	I	I
RSP I	VB1	I	Ī	APAI	I
Ī	Ī	Ī	Ī	Ī	Ī
I	I I	I	I	I I	I
Ī	VBB1	Ī	NAI	API	Ī
Î	I	Î	î	ï	Ī
I	1	I	<u> </u>		I
I	I	I	I		I
I	V C 3	<u> </u>	NPBI		Ī
Ī	Ţ	Ī	I		I
I	I I	I I	I		I I
I	VAAI	Ī	NPA1		ī
Î	I	Ī	I		Ī
Ī	Ī	Ī	Ĩ		Ī
I	Ī	I	I		I
I	I	. P-1	NP1		1.
I	I	I	I		Ī
I	Ī				Ī
I	I	I			I I
I I	I I	XP1 I			Ī
I	Ī	Ī			Ī
Î	Ī	ī	,		Ĩ
Ī	V A 1	VM5			I
I	· I	I		•	I
I			•		. I
I	I			•	I
NSP2	VP1 I				I
·					Ī
I					Ī
SABI	•				Ţ
I		1			I
I		•			Ī
I	•				I.
SA3					I
I	* * * * * * * * * * * * * * * * * * * *				I
Ĭ			•		Ī
s - 1					T-6
I					I
			-		

I SC 1

SSS

- THE COMPLETED SENTENCE (SC) IS A DECLARATIVE SENTENCE.
- THE COMPLETED SENTENCE (SC) THE BASIC SENTENCE (S) OF IS A SIMPLE SENTENCE.
- THE BASIC SENTENCE(S) THE INDEPENDENT CLAUSE(SA) OF. (3) IS A DEFENITE INDEPENDENT CLAUSE.
- THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT 4) OF THE BASIC SENTENCE (S) HAS A NAMED SUBJECT. CLAUSE (SA)
- THE DEFINITE INDEPENDE OF THE SUBJECT PHRASE (NSP) OF THE BASIC THE INDEPENDENT CLAUSE(SA) NT CLSE(SAB) OF SENTENCE(S) IS A SUBJECT PRONOUN PHRASE.
- OF THE DEFINITE INDEPENDE THE PREDICATE PHRASE(VP) OF THE BASIC NT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) SENTENCE(S) IS A VERB PHRASE + VRB.MODIF.PHRASE.
- THE PREDICATE PHRASE (VP) OF THE VERB PHRASE (VA) THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT 0 F OF THE BASIC SENTENCE (S) IS A SEVEN-TENSE VERB PH CLAUSE (SA) RASE -
- THE PREDICATE PHRASE (V THE VERB MODIFYING PHRSE (VM) OF OF THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPE P-) NOENT CLAUSE(SA) OF THE BASIC SENTENCE(S) IS A PREPOSITIONAL PHRASE.
- THE PREPOSITION PHRASE (XP) OF THE VERB MODIFYING PHR (- 9) THE DEFINITE IND OF THE PREDICATE PHRASE(VP) 0 F SE (VM) EPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) 0F THE BASIC SENTENCE(S) GOVERNS A NOUN PHRASE.
- THE PREPOSITION PHRASE THE GENERAL NOUN PHRASE(NP) OF THE PREDICATE PH (XP) OF THE VERB MODIFYING PHRSE (VM) OF OF THE DEFINITE INDEPENDENT CLSE(SAB) OF RASE(VP) OF THE BASIC SENTENCE(S) IS A REG. NOU INDEPENDENT CLAUSE(SA) N PHRS.+(APP.NOUN.PHRS).
- THE VERB PHRASE(THE SEVEN-TENSE VERB PHRASE (VAA) 0F (11) OF THE DEFINITE IND OF THE PREDICATE PHRASE(VP) VAI EPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) BASIC SENTENCE(S) IS AN EMPHATIC VERB PHRASE.
- (12) THE REGULAR NOUN PHRASE(NPA) OF THE GENERAL NOUN PHRASE (NP) OF THE PREPOSITION PHRASE(XP) OF THE VERB MODIFYI PHRSE(VM) OF THE PREDICATE PHRASE(VP) THE DEFINI ERIC INDEPENDENT CLAUSE (SAB) OF THE INDEPENDENT CLAUSE (SA) OF.

THE BASIC SENTENCE(S) CONTAINS NO CONSTRUCT NOUNS.

- THE EMPHATIC VERB PHRASE(VC) OF THE SEVEN-TENSE VERB P THE VERB PHRASE(VA) HRASE(VAA) OF 0F THE PREDICATE PH THE DEFINITE INDEPENDENT CLSE(SAB) OF RASE (VP) 0 F THE INDEPENDENT CLAUSE(SA) THE BASIC SENTENCE(S) EXPRESSES NO 0 F SPECIAL EMPHASIS.
- (14) THE SIMPLE NOUN PHRASE (NPB) OF THE REGULAR NOUN PHRAS THE GENERAL NOUN PHRASE(NP) 0 F THE PREPOSITION E(NPA) THE VERB MODIFYING PHRSE (VM) OF THE PREDIC O F PHRASE(XP) THE DEFINITE INDEPENDENT CLSE(SAB) OF ATE PHRASE (VP) 0 F THE INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) HAS A BASIC NOUN PHRASE AS NUCLEUS.
- (15) THE THREE-TENSE VERB PHRASE(VBB) OF THE EMPHATIC VER THE SEVEN-TENSE VERB PHRASE (VA'A) B PHRASE(VC) OF 0F THE PREDICATE PHRASE (VP) VERB PHRASE(VA) 0 F 0F THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) THE BASIC SENTENCE (S) IS A VERB OR PARTICIPLE.
- THE BASIC NOUN PHRASE (NA) THE SIMPLE NOUN PHRASE (16) OF (NPB) THE REGULAR NOUN PHRASE(NPA) OF THE GENERAL NOUN PHRASE(NP) OF THE PREPOSITION PHRASE(XP) OF THE VERB M OF · ODIFYING PHRSE(VM) OF THE PREDICATE PHRASE (VP) THE DEFINITE INDEPENDENT CLSE(SAB) OF THE INDEPENDENT CLAUSE(SA) THE BASIC SENTENCE (S) HAS A NONDETERMINATE NOUN.
- OF THE POST-NOMINAL ADJECTIVE PHRASE(AP) (17) THE SIMPLE NOUN PHRASE(NPB) OF THE REGULAR NOUN PHRASE(NPA) OF THE THE PREPOSITION PHRASE(XP) 0 F SENERAL NOUN PHRASE(NP) THE VERB MODIFYING PHRSE (VM) OF THE PREDICATE PHRASE (VP) THE DEFINITE INDEPENDENT CLSE (SAB) OF THE INDEPENDENT OF THE BASIC SENTENCE(S) IS A BASIC POST-NOMINAL CL AUSE(SA) ADJ.PHRASE.
- THE SUBJECT PRONOUN PHRASE (RSP) THE SUBJECT PHRA (18) OF THE DEFINITE INDEPENDENT CLSE(SAB) OF OF SE(NSP) , INDEPENDENT CLAUSE(SA) OF THE BASIC SENTENCE(S) IS A SUBJECT PRONOUN + (APPOS.N.PH.).
- OF . THE VERB MOOD PHRASE(VB) THE THREE-TENSE VERB P HRASE (VBB) OF THE EMPHATIC VERB PHRASE (VC) OF THE SEVEN-TENSE VERB PHRASE(VAA)
 PREDICATE PHRASE(VP) THE VERB PHRASE(VA) 0F OF THE THE DEFINITE TYDE PENDENT CLSE(SAB) 0 F OF THE INDEPENDENT CLAUSE (SA) OF THE BASIC SENTENCE(S) IS A VERB OR INFINITIVE ABSOLUTE.
- THE BASIC POST-NOM. ADJECTIVE PHRASE(APA) OF THE POST-N (200 OMINAL ADJECTIVE PHRASE (AP) OF THE SIMPLE NOUN PHRASE (NPB)
 OF THE REGULAR NOUN PHRASE (NPA) OF THE GENERAL NOUN PHRASE (NP) OF THE VERB MODIFY; OF THE DEF PAT EINPI THE PREDICATE PHRASE (VP) OF NG PHRSE(VM) OF THE PREDICATE PHRADELVE, INDEPENDENT CLAUSE(SA)

 ERICTHE BASIC SENTENCE(S) EXPRESSES THE NONCOMPARATIVE, DEGREE.

 A-D-18 NG PHRSE (VM) OF OF

- OF THE SUBJECT PRONOUN PHRASE(RSP) THE PRONOUN(R) (21) OF THE DEFINITE INDEPENDE THE SUBJECT PHRASE(NSP) OF THE INDEPENDENT CLAUSE(SA) 0F THE BASIC NT CLSE(SAB) 0 F HE. IS SENTENCE(S) MAS Clas THIRD. SING.
- OF THE VERB MOOD PHRASE(VB) THE VERB(V) (22) THE EMPHATIC VERB PHRA THE THREE-TENSE VERB PHRASE (VBB) OF THE VERB P THE SEVEN-TENSE VERB PHRASE(VAA) OF SE(VC) OF THE DEFINI OF THE PREDICATE PHRASE (VP) OF HRASE (VA) THE INDEPENDENT CLAUSE(SA) TE INDEPENDENT CLSE(SAB) OF THE BASTO SENTENCE(S) IS DWELL. PAST . IND. ACT - * A=5 . R=2 • MASCI-+ THIRD. SING..
- THE BASIC NOUN PHRASE(NA) THE NOUN ABSOLUTE(N) OF (23)THE REGULAR NOUN PHRAS THE SIMPLE NOUN PHRASE (NPB) OF 0 F THE PREPOSITION THE GENERAL NOUN PHRASE(NP) OF E (VPA) 0 F THE VERB MODIFYING PHRSE (VM) OF THE PREDIC PHRASE (XP) 0 FTHE DEFINITE INDEPENDENT CLSE(SAB) 0 F ATE PHRASE(VP) OF THE BASIC SENTENCE(S) IS THE INDEPENDENT CLAUSE(SA) VILLASF. MASCI. THIRD. SING.
- THE BASIC POST-NOM. ADJECTIVE PHRAS THE ADJECTIVE (A) OF (24) THE POST-NOMINAL ADJECTIVE PHRASE(AP) OF E (APA) THE REGULAR NOUN PHRASE (NPA) SIMPLE NOUN PHRASE(NPB) OF THE PREPOSITION PHRASE(XP) THE GENERAL NOUN PHRASE(NP) OF THE PREDICATE PHRASE(V THE VERB MODIFYING PHRSE(VM) OF OF THE INDEPE THE DEFINITE INDEPENDENT CLSE(SAB) 0 F P) F THE BASIC SENTENCE(S) SMALL. NDENT CLAUSE(SA)

SING . MASC. .

ANALYSIS COMPLETED FOR SENTENCE NO. 4. NO. OF SYMBOL TESTS= 196.