

# 1. CPU Registers

The CPU incorporates sixteen 20-bit registers. R0, R1, R2 and R3 have dedicated functions. R4 to R15 are working registers for general use.



Six commonly-used constants are generated with the constant generator registers
R2 and R3, without requiring an additional 16-bit word of program code. The constants are selected with the source-register addressing modes.

R4 to R15, are general-purpose registers. All of these registers can be used as data registers, address pointers, or index values, and they can be accessed with byte or word instructions.

# 2. Interrupt Vectors

| INTERRUPT SOURCE                                         | INTERRUPT FLAG                                                                             | SYSTEM INTERRUPT                                | WORD<br>ADDRESS | PRIORITY    | VECTOR NAME        |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------|-------------|--------------------|
| Power-Up<br>External Reset<br>Watchdog<br>Flash Memory   | WDTIFG<br>KEYV<br>(see Note 1 and 5)                                                       | Reset                                           | 0FFFEh          | 31, highest | RESET_VECTOR       |
| NMI<br>Oscillator Fault<br>Flash Memory Access Violation | NMIIFG (see Notes 1 and 3)<br>OFIFG (see Notes 1 and 3)<br>ACCVIFG (see Notes 1, 2, and 5) | (Non)maskable<br>(Non)maskable<br>(Non)maskable | 0FFFCh          | 30          | NMI_VECTOR         |
| Timer_B7                                                 | TBCCR0 CCIFG0 (see Note 2)                                                                 | Maskable                                        | 0FFFAh          | 29          | TIMERB0_VECTOR     |
| Timer_B7                                                 | TBCCR1 CCIFG1 TBCCR6 CCIFG6,<br>TBIFG (see Notes 1 and 2)                                  | Maskable                                        | 0FFF8h          | 28          | TIMERB1_VECTOR     |
| Comparator_A                                             | CAIFG                                                                                      | Maskable                                        | 0FFF6h          | 27          | COMPARATORA_VECTOR |
| Watchdog Timer+                                          | WDTIFG                                                                                     | Maskable                                        | 0FFF4h          | 26          | WDT_VECTOR         |
| USCI_A0/USCI_B0 Receive                                  | UCA0RXIFG, UCB0RXIFG (see Note 1)                                                          | Maskable                                        | 0FFF2h          | 25          | USCIABORX_VECTOR   |
| USCI_A0/USCI_B0 Transmit                                 | UCA0TXIFG, UCB0TXIFG (see Note 1)                                                          | Maskable                                        | 0FFF0h          | 24          | USCIABOTX_VECTOR   |
| ADC12                                                    | ADC12IFG (see Notes 1 and 2)                                                               | Maskable                                        | 0FFEEh          | 23          | ADC12_VECTOR       |
| Timer_A3                                                 | TACCR0 CCIFG0 (see Note 2)                                                                 | Maskable                                        | 0FFECh          | 22          | TIMERA0_VECTOR     |
| Timer_A3                                                 | TACCR1 CCIFG1 and TACCR2 CCIFG2,<br>TAIFG (see Notes 1 and 2)                              | Maskable                                        | 0FFEAh          | 21          | TIMERA1_VECTOR     |
| I/O Port P1 (Eight Flags)                                | P1IFG.0 to P1IFG.7 (see Notes 1 and 2)                                                     | Maskable                                        | 0FFE8h          | 20          | PORT1_VECTOR       |
| USART1 Receive                                           | URXIFG1                                                                                    | Maskable                                        | 0FFE6h          | 19          | USART1RX_VECTOR    |
| USART1 Transmit                                          | UTXIFG1                                                                                    | Maskable                                        | 0FFE4h          | 18          | USART1TX_VECTOR    |
| I/O Port P2 (Eight Flags)                                | P2IFG.0 to P2IFG.7 (see Notes 1 and 2)                                                     | Maskable                                        | 0FFE2h          | 17          | PORT2_VECTOR       |
| Basic Timer1/RTC                                         | BTIFG                                                                                      | Maskable                                        | 0FFE0h          | 16          | BASICTIMER_VECTOR  |
| DMA                                                      | DMA0IFG, DMA1IFG, DMA2IFG<br>(see Notes 1 and 2)                                           | Maskable                                        | 0FFDEh          | 15          | DMA_VECTOR         |
| DAC12                                                    | DAC12.0IFG, DAC12.1IFG (see Notes 1 and 2)                                                 | Maskable                                        | 0FFDCh          | 14          | DAC12_VECTOR       |
|                                                          |                                                                                            |                                                 | 0FFDAh          | 13          |                    |
| Reserved                                                 | Reserved (see Note 4)                                                                      |                                                 |                 |             |                    |
|                                                          |                                                                                            |                                                 | 0FFC0h          | 0, lowest   |                    |

- NOTES: 1. Multiple source flags
  - 2. Interrupt flags are located in the module.
  - 3. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh).
  - (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.

    4. The interrupt vectors at addresses 0FFDAh to 0FFC0h are not used in this device and can be used for regular program code if
  - 5. Access and key violations, KEYV and ACCVIFG, only applicable to F devices.

# 3. Instruction Set

| Mnemonic              |         | Description                          |                                 | ν | N | z | С |
|-----------------------|---------|--------------------------------------|---------------------------------|---|---|---|---|
| ADC(.B) <sup>†</sup>  | dst     | Add C to destination                 | dst + C → dst                   | * | * | * | * |
| ADD(.B)               | src,dst | Add source to destination            | arc + dst → dst                 | * | * | * | * |
| ADDC(.B)              | src,dst | Add source and C to destination      | arc + dst + C → dst             | * | * | * | * |
| AND(.B)               | src,dst | AND source and destination           | arc .and. dat → dat             | 0 | * | * | * |
| BIC(.B)               | src,dst | Clear bits in destination            | .not.src .and. dst → dst        | - | - | - | - |
| BIS(.B)               | src,dst | Set bits in destination              | arc .or. dat → dat              | - | - | - | - |
| BIT(.B)               | src,dst | Test bits in destination             | arc .and. dat                   | 0 | * | * | * |
| BRŤ                   | dst     | Branch to destination                | dst → PC                        | - | - | - | - |
| CALL                  | dst     | Call destination                     | PC+2 → stack, dst → PC          | - | - | - | - |
| CLR(.B) <sup>†</sup>  | dst     | Clear destination                    | 0 → dst                         | - | - | - | - |
| CLRC <sup>†</sup>     |         | Clear C                              | 0 → C                           | - | - | - | 0 |
| $CLRN^{\dagger}$      |         | Clear N                              | 0 → N                           | - | 0 | - | - |
| CLRZ <sup>†</sup>     |         | Clear Z                              | 0 → Z                           | - | - | 0 | - |
| CMP(.B)               | src,dst | Compare source and destination       | dst - src                       | * | * | * | * |
| DADC(.B) <sup>†</sup> | dst     | Add C decimally to destination       | dst + C → dst (decimally)       | * | * | * | * |
| DADD(.B)              | src,dst | Add source and C decimally to dst.   | arc + dst + C → dst (decimally) | * | * | * | * |
| DEC(.B) <sup>†</sup>  | dst     | Decrement destination                | dst - 1 → dst                   | * | * | * | * |
| DECD(.B) <sup>†</sup> | dst     | Double-decrement destination         | dst - 2 → dst                   | * | * | * | * |
| DINT                  |         | Disable interrupts                   | 0 → GIE                         | - | _ | - | - |
| EINT                  |         | Enable interrupts                    | 1 → GIE                         | - | _ | - | - |
| INC(.B)               | dst     | Increment destination                | dst +1 → dst                    | * | * | * | * |
| INCD(.B)              | dst     | Double-increment destination         | dst+2 → dst                     | * | * | * | * |
| INV(.B)†              | dst     | Invert destination                   | .not.dst → dst                  | * | * | * | * |
| JC/JHS                | label   | Jump if C set/Jump if higher or same |                                 | _ | _ | _ | _ |
| JEQ/JZ                | label   | Jump if equal/Jump if Z set          |                                 | _ | _ | _ | _ |
| JGE                   | label   | Jump if greater or equal             |                                 | - | _ | - | - |
| JL                    | label   | Jump if less                         |                                 | - | _ | - | - |
| JMP                   | label   | Jump                                 | PC + 2 x offset → PC            | - | _ | - | - |
| JN                    | label   | Jump if N set                        |                                 | - | _ | - | - |
| JNC/JLO               | label   | Jump if C not set/Jump if lower      |                                 | - | - | - | - |
| JNE/JNZ               | label   | Jump if not equal/Jump if Z not set  |                                 | - | - | - | - |
| MOV(.B)               | src,dst | Move source to destination           | arc → dat                       | - | - | - | - |
| NOPT                  |         | No operation                         |                                 | - | _ | - | - |
| POP(.B) <sup>†</sup>  | dst     | Pop item from stack to destination   | @SP → dst, SP+2 → SP            | - | - | - | - |
| PUSH(.B)              | src     | Push source onto stack               | SP - 2 → SP, src → @SP          | - | - | - | - |
| RET <sup>†</sup>      |         | Return from subroutine               | @SP → PC, SP + 2 → SP           | - | _ | - | - |
| RETI                  |         | Return from interrupt                |                                 | * | * | * | * |
| RLA(.B) <sup>†</sup>  | dst     | Rotate left arithmetically           |                                 | * | * | * | * |
| RLC(.B) <sup>†</sup>  | dst     | Rotate left through C                |                                 | * | * | * | * |
| RRA(.B)               | dst     | Rotate right arithmetically          |                                 | 0 | * | * | * |
| RRC(.B)               | dst     | Rotate right through C               |                                 | * | * | * | * |
| SBC(.B) <sup>†</sup>  | dst     | Subtract not(C) from destination     | dst + 0FFFFh + C → dst          | * | * | * | * |
| SETC <sup>†</sup>     |         | Set C                                | 1 → C                           | - | - | - | 1 |
| $setn^{\dagger}$      |         | Set N                                | 1 → N                           | - | 1 | - | - |
| SETZ <sup>†</sup>     |         | Set Z                                | 1 → C                           | - | - | 1 | - |
| SUB(.B)               | src,dst | Subtract source from destination     | dst + .not.src + 1 → dst        | * | * | * | * |
| SUBC(.B)              | src,dst | Subtract source and not(C) from dst. | dst + .not.src + C → dst        | * | * | * | * |
| SWPB                  | dst     | Swap bytes                           |                                 | - | - | - | - |
| SXT                   | dst     | Extend sign                          |                                 | 0 | * | * | * |
| TST(.B)               | dst     | Test destination                     | dst + 0FFFFh + 1                | 0 | * | * | 1 |
| XOR(.B)               | src,dst | Exclusive OR source and destination  | arc .xor. dat → dat             | * | * | * | * |

# 4. Memory Mapped Registers Overview

Registers are grouped by module and may be repeated. Detailed breakouts for individual registers may be found in section 5

#### 4.1. FLL+ Clock Module Registers

| Register                             | Short Form | Register Type | Address | Initial State  |
|--------------------------------------|------------|---------------|---------|----------------|
| System clock control                 | SCFQCTL    | Read/write    | 052h    | 01Fh with PUC  |
| System clock frequency integrator 0  | SCFI0      | Read/write    | 050h    | 040h with PUC  |
| System clock frequency integrator 1  | SCFI1      | Read/write    | 051h    | Reset with PUC |
| FLL+ control register 0              | FLL_CTL0   | Read/write    | 053h    | 003h with PUC  |
| FLL+ control register 1              | FLL_CTL1   | Read/write    | 054h    | Reset with PUC |
| FLL+ control register 2 <sup>†</sup> | FLL_CTL2   | Read/write    | 055h    | Reset with PUC |
| SFR interrupt enable register 1      | IE1        | Read/write    | 000h    | Reset with PUC |
| SFR interrupt flag register 1        | IFG1       | Read/write    | 002h    | Reset with PUC |

<sup>&</sup>lt;sup>†</sup> MSP430F41x2, MSP430F47x3/4, and MSP430F471xx devices only.

#### 4.2. Flash Memory Controller

| Register                                     | Short Form | Register Type | Address | Initial State                |
|----------------------------------------------|------------|---------------|---------|------------------------------|
| Flash memory control register 1              | FCTL1      | Read/write    | 0128h   | 09600h with PUC              |
| Flash memory control register 2              | FCTL2      | Read/write    | 012Ah   | 09642h with PUC              |
| Flash memory control register 3              | FCTL3      | Read/write    | 012Ch   | 09618h <sup>†</sup> with PUC |
| Flash memory control register 4 <sup>‡</sup> | FCTL4      | Read/write    | 01BEh   | 0000h with PUC               |
| Interrupt enable 1                           | IE1        | Read/write    | 000h    | Reset with PUC               |

<sup>&</sup>lt;sup>†</sup> 09658h in MSP430FG47x, MSP430F47x, MSP430F47x3/4, and MSP430F471xx devices

#### 4.3. Supply Voltage Supervisor

| Register             | Short Form | Register Type | Address | Initial State  |
|----------------------|------------|---------------|---------|----------------|
| SVS Control Register | SVSCTL     | Read/write    | 056h    | Reset with BOR |

<sup>&</sup>lt;sup>‡</sup> MSP430FG47x, MSP430F47x, MSP430F47x3/4, and MSP430F471xx devices only

#### 4.4. 16-Bit Hardware Multiplier

| Register                                 | Short Form | Register Type | Address | Initial State |
|------------------------------------------|------------|---------------|---------|---------------|
| Operand one - multiply                   | MPY        | Read/write    | 0130h   | Unchanged     |
| Operand one - signed multiply            | MPYS       | Read/write    | 0132h   | Unchanged     |
| Operand one - multiply accumulate        | MAC        | Read/write    | 0134h   | Unchanged     |
| Operand one - signed multiply accumulate | MACS       | Read/write    | 0136h   | Unchanged     |
| Operand two                              | OP2        | Read/write    | 0138h   | Unchanged     |
| Result low word                          | RESLO      | Read/write    | 013Ah   | Undefined     |
| Result high word                         | RESHI      | Read/write    | 013Ch   | Undefined     |
| Sum Extension register                   | SUMEXT     | Read          | 013Eh   | Undefined     |

## 4.5. DMA Controller

| Register                          | Short Form | Register Type | Address | Initial State  |
|-----------------------------------|------------|---------------|---------|----------------|
| DMA control 0                     | DMACTL0    | Read/write    | 0122h   | Reset with POR |
| DMA control 1                     | DMACTL1    | Read/write    | 0124h   | Reset with POR |
| DMA interrupt vector              | DMAIV      | Read only     | 0126h   | Reset with POR |
| DMA channel 0 control             | DMA0CTL    | Read/write    | 01D0h   | Reset with POR |
| DMA channel 0 source address      | DMA0SA     | Read/write    | 01D2h   | Unchanged      |
| DMA channel 0 destination address | DMA0DA     | Read/write    | 01D6h   | Unchanged      |
| DMA channel 0 transfer size       | DMA0SZ     | Read/write    | 01DAh   | Unchanged      |
| DMA channel 1 control             | DMA1CTL    | Read/write    | 01DCh   | Reset with POR |
| DMA channel 1 source address      | DMA1SA     | Read/write    | 01DEh   | Unchanged      |
| DMA channel 1 destination address | DMA1DA     | Read/write    | 01E2h   | Unchanged      |
| DMA channel 1 transfer size       | DMA1SZ     | Read/write    | 01E6h   | Unchanged      |
| DMA channel 2 control             | DMA2CTL    | Read/write    | 01E8h   | Reset with POR |
| DMA channel 2 source address      | DMA2SA     | Read/write    | 01EAh   | Unchanged      |
| DMA channel 2 destination address | DMA2DA     | Read/write    | 01EEh   | Unchanged      |
| DMA-channel 2 transfer size       | DMA2SZ     | Read/write    | 01F2h   | Unchanged      |

# 4.6. Digital I/O

| Port | Register              | Short Form | Address | Register Type | Initial State  |
|------|-----------------------|------------|---------|---------------|----------------|
| P1   | Input                 | P1IN       | 020h    | Read only     | -              |
|      | Output                | P1OUT      | 021h    | Read/write    | Unchanged      |
|      | Direction             | P1DIR      | 022h    | Read/write    | Reset with PUC |
|      | Interrupt Flag        | P1IFG      | 023h    | Read/write    | Reset with PUC |
|      | Interrupt Edge Select | P1IES      | 024h    | Read/write    | Unchanged      |
|      | Interrupt Enable      | P1IE       | 025h    | Read/write    | Reset with PUC |
|      | Port Select           | P1SEL      | 026h    | Read/write    | Reset with PUC |
|      | Resistor Enable       | P1REN      | 027h    | Read/write    | Reset with PUC |
| P2   | Input                 | P2IN       | 028h    | Read only     | -              |
|      | Output                | P2OUT      | 029h    | Read/write    | Unchanged      |
|      | Direction             | P2DIR      | 02Ah    | Read/write    | Reset with PUC |
|      | Interrupt Flag        | P2IFG      | 02Bh    | Read/write    | Reset with PUC |
|      | Interrupt Edge Select | P2IES      | 02Ch    | Read/write    | Unchanged      |
|      | Interrupt Enable      | P2IE       | 02Dh    | Read/write    | Reset with PUC |
|      | Port Select           | P2SEL      | 02Eh    | Read/write    | 0C0h with PUC  |
|      | Resistor Enable       | P2REN      | 02Fh    | Read/write    | Reset with PUC |
| P3   | Input                 | P3IN       | 018h    | Read only     | -              |
|      | Output                | P3OUT      | 019h    | Read/write    | Unchanged      |
|      | Direction             | P3DIR      | 01Ah    | Read/write    | Reset with PUC |
|      | Port Select           | P3SEL      | 01Bh    | Read/write    | Reset with PUC |
|      | Resistor Enable       | P3REN      | 010h    | Read/write    | Reset with PUC |
| P4   | Input                 | P4IN       | 01Ch    | Read only     | -              |
|      | Output                | P4OUT      | 01Dh    | Read/write    | Unchanged      |
|      | Direction             | P4DIR      | 01Eh    | Read/write    | Reset with PUC |
|      | Port Select           | P4SEL      | 01Fh    | Read/write    | Reset with PUC |
|      | Resistor Enable       | P4REN      | 011h    | Read/write    | Reset with PUC |
| P5   | Input                 | P5IN       | 030h    | Read only     | -              |
|      | Output                | P5OUT      | 031h    | Read/write    | Unchanged      |
|      | Direction             | P5DIR      | 032h    | Read/write    | Reset with PUC |
|      | Port Select           | P5SEL      | 033h    | Read/write    | Reset with PUC |
|      | Resistor Enable       | P5REN      | 012h    | Read/write    | Reset with PUC |
| P6   | Input                 | P6IN       | 034h    | Read only     | -              |
|      | Output                | P6OUT      | 035h    | Read/write    | Unchanged      |
|      | Direction             | P6DIR      | 036h    | Read/write    | Reset with PUC |
|      | Port Select           | P6SEL      | 037h    | Read/write    | Reset with PUC |
|      | Resistor Enable       | P6REN      | 013h    | Read/write    | Reset with PUC |

Note: Resistor enable registers RxREN only available in MSP430x47x devices.

## 4.6. Digital I/O (continued)

| Port | Register        | Short Form | Address | Register Type | Initial State  |
|------|-----------------|------------|---------|---------------|----------------|
| P7   | Input           | P7IN       | 038h    | Read only     | -              |
| PA   | Output          | P7OUT      | 03Ah    | Read/write    | Unchanged      |
|      | Direction       | P7DIR      | 03Ch    | Read/write    | Reset with PUC |
|      | Port Select     | P7SEL      | 03Eh    | Read/write    | Reset with PUC |
|      | Resistor Enable | P7REN      | 014h    | Read/write    | Reset with PUC |
| P8   | Input           | P8IN       | 039h    | Read only     | -              |
|      | Output          | P8OUT      | 03Bh    | Read/write    | Unchanged      |
|      | Direction       | P8DIR      | 03Dh    | Read/write    | Reset with PUC |
|      | Port Select     | P8SEL      | 03Fh    | Read/write    | Reset with PUC |
|      | Resistor Enable | P8REN      | 015h    | Read/write    | Reset with PUC |
| P9   | Input           | P9IN       | 008h    | Read only     | -              |
| PB   | Output          | P9OUT      | 00Ah    | Read/write    | Unchanged      |
|      | Direction       | P9DIR      | 00Ch    | Read/write    | Reset with PUC |
|      | Port Select     | P9SEL      | 00Eh    | Read/write    | Reset with PUC |
|      | Resistor Enable | P9REN      | 016h    | Read/write    | Reset with PUC |
| P10  | Input           | P10IN      | 009h    | Read only     | -              |
|      | Output          | P10OUT     | 00Bh    | Read/write    | Unchanged      |
|      | Direction       | P10DIR     | 00Dh    | Read/write    | Reset with PUC |
|      | Port Select     | P10SEL     | 00Fh    | Read/write    | Reset with PUC |
|      | Resistor Enable | P10REN     | 017h    | Read/write    | Reset with PUC |

Note: Resistor enable registers RxREN only available in MSP430x47x devices.

#### 4.7. Watchdog Timer+

| Register                        | Short Form | Register Type | Address | Initial State   |
|---------------------------------|------------|---------------|---------|-----------------|
| Watchdog timer control register | WDTCTL     | Read/write    | 0120h   | 06900h with PUC |
| SFR interrupt enable register 1 | IE1        | Read/write    | 0000h   | Reset with PUC  |
| SFR interrupt flag register 1   | IFG1       | Read/write    | 0002h   | Reset with PUC† |

<sup>†</sup> WDTIFG is reset with POR

#### 4.8. Basic Timer1

| Register                        | Short Form | Register Type | Address | Initial State  |
|---------------------------------|------------|---------------|---------|----------------|
| Basic Timer1 Control            | BTCTL      | Read/write    | 040h    | Unchanged      |
| Basic Timer1 Counter 1          | BTCNT1     | Read/write    | 046h    | Unchanged      |
| Basic Timer1 Counter 2          | BTCNT2     | Read/write    | 047h    | Unchanged      |
| SFR interrupt enable register 2 | IE2        | Read/write    | 001h    | Reset with PUC |
| SFR interrupt flag register 2   | IFG2       | Read/write    | 003h    | Reset with PUC |

Note: The Basic Timer1 registers should be configured at power-up. There is no initial state for BTCTL, BTCNT1, or BTCNT2.

#### 4.9. Real Time Clock

| Register                                                    | Short Form         | Register Type | Address | Initial State  |
|-------------------------------------------------------------|--------------------|---------------|---------|----------------|
| Real-Time Clock control register                            | RTCCTL             | Read/write    | 041h    | 040h with POR  |
| Real-Timer Clock second<br>Real-Timer Counter register 1    | RTCSEC/<br>RTCNT1  | Read/write    | 042h    | Unchanged      |
| Real-Time Clock minute<br>Real-Time Counter register 2      | RTCMIN/<br>RTCNT2  | Read/write    | 043h    | Unchanged      |
| Real-Time Clock hour<br>Real-Time Counter register 3        | RTCHOUR/<br>RTCNT3 | Read/write    | 044h    | Unchanged      |
| Real-Time Clock day-of-Week<br>Real-Time Counter register 4 | RTCDOW/<br>RTCNT4  | Read/write    | 045h    | Unchanged      |
| Real-Time Clock day-of-month                                | RTCDAY             | Read/write    | 04Ch    | Unchanged      |
| Real-Time Clock month                                       | RTCMON             | Read/write    | 04Dh    | Unchanged      |
| Real-Time Clock year (low byte)                             | RTCYEARL           | Read/write    | 04Eh    | Unchanged      |
| Real-Time Clock year (high byte)                            | RTCYEARH           | Read/write    | 04Fh    | Unchanged      |
| SFR interrupt enable register 2                             | IE2                | Read/write    | 001h    | Reset with PUC |
| SFR interrupt flag register 2                               | IFG2               | Read/write    | 003h    | Reset with PUC |

# 4.10. Timer\_A

| Register                                                                 | Short Form           | Register Type | Address | Initial State  |
|--------------------------------------------------------------------------|----------------------|---------------|---------|----------------|
| Timer_A control<br>Timer0_A3 Control                                     | TACTL/<br>TA0CTL     | Read/write    | 0160h   | Reset with POR |
| Timer_A counter<br>Timer0_A3 counter                                     | TAR/<br>TA0R         | Read/write    | 0170h   | Reset with POR |
| Timer_A capture/compare control 0<br>Timer0_A3 capture/compare control 0 | TACCTL0/<br>TA0CCTL  | Read/write    | 0162h   | Reset with POR |
| Timer_A capture/compare 0<br>Timer0_A3 capture/compare 0                 | TACCR0/<br>TA0CCR0   | Read/write    | 0172h   | Reset with POR |
| Timer_A capture/compare control 1<br>Timer0_A3 capture/compare control 1 | TACCTL1/<br>TA0CCTL1 | Read/write    | 0164h   | Reset with POR |
| Timer_A capture/compare 1<br>Timer0_A3 capture/compare 1                 | TACCR1/<br>TA0CCR1   | Read/write    | 0174h   | Reset with POR |
| Timer_A capture/compare control 2<br>Timer0_A3 capture/compare control 2 | TACCTL2/<br>TA0CCTL2 | Read/write    | 0166h   | Reset with POR |
| Timer_A capture/compare 2<br>Timer0_A3 capture/compare 2                 | TACCR2/<br>TA0CCR2   | Read/write    | 0176h   | Reset with POR |
| Timer_A interrupt vector<br>Timer0_A3 interrupt vector                   | TAIV/<br>TA0IV       | Read only     | 012Eh   | Reset with POR |

## 4.11. Timer\_B

| Register                          | Short Form | Register Type | Address | Initial State  |
|-----------------------------------|------------|---------------|---------|----------------|
| Timer_B control                   | TBCTL      | Read/write    | 0180h   | Reset with POR |
| Timer_B counter                   | TBR        | Read/write    | 0190h   | Reset with POR |
| Timer_B capture/compare control 0 | TBCCTL0    | Read/write    | 0182h   | Reset with POR |
| Timer_B capture/compare 0         | TBCCR0     | Read/write    | 0192h   | Reset with POR |
| Timer_B capture/compare control 1 | TBCCTL1    | Read/write    | 0184h   | Reset with POR |
| Timer_B capture/compare 1         | TBCCR1     | Read/write    | 0194h   | Reset with POR |
| Timer_B capture/compare control 2 | TBCCTL2    | Read/write    | 0186h   | Reset with POR |
| Timer_B capture/compare 2         | TBCCR2     | Read/write    | 0196h   | Reset with POR |
| Timer_B capture/compare control 3 | TBCCTL3    | Read/write    | 0188h   | Reset with POR |
| Timer_B capture/compare 3         | TBCCR3     | Read/write    | 0198h   | Reset with POR |
| Timer_B capture/compare control 4 | TBCCTL4    | Read/write    | 018Ah   | Reset with POR |
| Timer_B capture/compare 4         | TBCCR4     | Read/write    | 019Ah   | Reset with POR |
| Timer_B capture/compare control 5 | TBCCTL5    | Read/write    | 018Ch   | Reset with POR |
| Timer_B capture/compare 5         | TBCCR5     | Read/write    | 019Ch   | Reset with POR |
| Timer_B capture/compare control 6 | TBCCTL6    | Read/write    | 018Eh   | Reset with POR |
| Timer_B capture/compare 6         | TBCCR6     | Read/write    | 019Eh   | Reset with POR |
| Timer_B Interrupt Vector          | TBIV       | Read only     | 011Eh   | Reset with POR |

# 4.12. USART Peripheral Interface: UART Mode

| Register                        | Short Form | Register Type | Address | Initial State |
|---------------------------------|------------|---------------|---------|---------------|
| USART control register          | U1CTL      | Read/write    | 078h    | 001h with PUC |
| Transmit control register       | U1TCTL     | Read/write    | 079h    | 001h with PUC |
| Receive control register        | U1RCTL     | Read/write    | 07Ah    | 000h with PUC |
| Modulation control register     | U1MCTL     | Read/write    | 07Bh    | Unchanged     |
| Baud rate control register 0    | U1BR0      | Read/write    | 07Ch    | Unchanged     |
| Baud rate control register 1    | U1BR1      | Read/write    | 07Dh    | Unchanged     |
| Receive buffer register         | U1RXBUF    | Read          | 07Eh    | Unchanged     |
| Transmit buffer register        | U1TXBUF    | Read/write    | 07Fh    | Unchanged     |
| SFR module enable register 2    | ME2        | Read/write    | 005h    | 000h with PUC |
| SFR interrupt enable register 2 | IE2        | Read/write    | 001h    | 000h with PUC |
| SFR interrupt flag register 2   | IFG2       | Read/write    | 003h    | 020h with PUC |

# 4.13. USART Peripheral Interface: SPI Mode

| Register                        | Short Form | Register Type | Address | Initial State |
|---------------------------------|------------|---------------|---------|---------------|
| USART control register          | U1CTL      | Read/write    | 078h    | 001h with PUC |
| Transmit control register       | U1TCTL     | Read/write    | 079h    | 001h with PUC |
| Receive control register        | U1RCTL     | Read/write    | 07Ah    | 000h with PUC |
| Modulation control register     | U1MCTL     | Read/write    | 07Bh    | Unchanged     |
| Baud rate control register 0    | U1BR0      | Read/write    | 07Ch    | Unchanged     |
| Baud rate control register 1    | U1BR1      | Read/write    | 07Dh    | Unchanged     |
| Receive buffer register         | U1RXBUF    | Read          | 07Eh    | Unchanged     |
| Transmit buffer register        | U1TXBUF    | Read/write    | 07Fh    | Unchanged     |
| SFR module enable register 2    | ME2        | Read/write    | 005h    | 000h with PUC |
| SFR interrupt enable register 2 | IE2        | Read/write    | 001h    | 000h with PUC |
| SFR interrupt flag register 2   | IFG2       | Read/write    | 003h    | 020h with PUC |

#### 4.14. Universal Serial Communication Interface: UART Mode

| Register                               | Short Form | Register Type | Address | Initial State  |
|----------------------------------------|------------|---------------|---------|----------------|
| USCI_A0 control register 0             | UCA0CTL0   | Read/write    | 060h    | Reset with PUC |
| USCI_A0 control register 1             | UCA0CTL1   | Read/write    | 061h    | 001h with PUC  |
| USCI_A0 Baud rate control register 0   | UCA0BR0    | Read/write    | 062h    | Reset with PUC |
| USCI_A0 Baud rate control register 1   | UCA0BR1    | Read/write    | 063h    | Reset with PUC |
| USCI_A0 modulation control register    | UCA0MCTL   | Read/write    | 064h    | Reset with PUC |
| USCI_A0 status register                | UCA0STAT   | Read/write    | 065h    | Reset with PUC |
| USCI_A0 Receive buffer register        | UCA0RXBUF  | Read          | 066h    | Reset with PUC |
| USCI_A0 Transmit buffer register       | UCA0TXBUF  | Read/write    | 067h    | Reset with PUC |
| USCI_A0 Auto Baud control register     | UCA0ABCTL  | Read/write    | 05Dh    | Reset with PUC |
| USCI_A0 IrDA Transmit control register | UCA0IRTCTL | Read/write    | 05Eh    | Reset with PUC |
| USCI_A0 IrDA Receive control register  | UCA0IRRCTL | Read/write    | 05Fh    | Reset with PUC |
| SFR interrupt enable register 2        | IE2        | Read/write    | 001h    | Reset with PUC |
| SFR interrupt flag register 2          | IFG2       | Read/write    | 003h    | 00Ah with PUC  |

#### 4.15. Universal Serial Communication Interface: SPI Mode

| Register                             | Short Form | Register Type | Address | Initial State  |
|--------------------------------------|------------|---------------|---------|----------------|
| USCI_A0 control register 0           | UCA0CTL0   | Read/write    | 060h    | Reset with PUC |
| USCI_A0 control register 1           | UCA0CTL1   | Read/write    | 061h    | 001h with PUC  |
| USCI_A0 Baud rate control register 0 | UCA0BR0    | Read/write    | 062h    | Reset with PUC |
| USCI_A0 Baud rate control register 1 | UCA0BR1    | Read/write    | 063h    | Reset with PUC |
| USCI_A0 modulation control register  | UCA0MCTL   | Read/write    | 064h    | Reset with PUC |
| USCI_A0 status register              | UCA0STAT   | Read/write    | 065h    | Reset with PUC |
| USCI_A0 Receive buffer register      | UCA0RXBUF  | Read          | 066h    | Reset with PUC |
| USCI_A0 Transmit buffer register     | UCA0TXBUF  | Read/write    | 067h    | Reset with PUC |
| USCI_B0 control register 0           | UCB0CTL0   | Read/write    | 068h    | 001h with PUC  |
| USCI_B0 control register 1           | UCB0CTL1   | Read/write    | 069h    | 001h with PUC  |
| USCI_B0 Bit rate control register 0  | UCB0BR0    | Read/write    | 06Ah    | Reset with PUC |
| USCI_B0 Bit rate control register 1  | UCB0BR1    | Read/write    | 06Bh    | Reset with PUC |
| USCI_B0 status register              | UCB0STAT   | Read/write    | 06Dh    | Reset with PUC |
| USCI_B0 Receive buffer register      | UCB0RXBUF  | Read          | 06Eh    | Reset with PUC |
| USCI_B0 Transmit buffer register     | UCB0TXBUF  | Read/write    | 06Fh    | Reset with PUC |
| SFR interrupt enable register 2      | IE2        | Read/write    | 001h    | Reset with PUC |
| SFR interrupt flag register 2        | IFG2       | Read/write    | 003h    | 00Ah with PUC  |

#### 4.16. Universal Serial Communication Interface: I2C Mode

| Register                                           | Short Form | Register Type | Address | Initial State  |
|----------------------------------------------------|------------|---------------|---------|----------------|
| USCI_B0 control register 0                         | UCB0CTL0   | Read/write    | 068h    | 001h with PUC  |
| USCI_B0 control register 1                         | UCB0CTL1   | Read/write    | 069h    | 001h with PUC  |
| USCI_B0 bit rate control register 0                | UCB0BR0    | Read/write    | 06Ah    | Reset with PUC |
| USCI_B0 bit rate control register 1                | UCB0BR1    | Read/write    | 06Bh    | Reset with PUC |
| USCI_B0 I <sup>2</sup> C interrupt enable register | UCB0I2CIE  | Read/write    | 06Ch    | Reset with PUC |
| USCI_B0 status register                            | UCB0STAT   | Read/write    | 06Dh    | Reset with PUC |
| USCI_B0 receive buffer register                    | UCB0RXBUF  | Read          | 06Eh    | Reset with PUC |
| USCI_B0 transmit buffer register                   | UCB0TXBUF  | Read/write    | 06Fh    | Reset with PUC |
| USCI_B0 I2C own address register                   | UCB0I2COA  | Read/write    | 0118h   | Reset with PUC |
| USCI_B0 I2C slave address register                 | UCB0I2CSA  | Read/write    | 011Ah   | Reset with PUC |
| SFR interrupt enable register 2                    | IE2        | Read/write    | 001h    | Reset with PUC |
| SFR interrupt flag register 2                      | IFG2       | Read/write    | 003h    | 00Ah with PUC  |

## 4.17. Operational Amplifier

| Register               | Short Form | Register Type | Address | Initial State  |
|------------------------|------------|---------------|---------|----------------|
| OA0 control register 0 | OA0CTL0    | Read/write    | 0C0h    | Reset with PUC |
| OA0 control register 1 | OA0CTL1    | Read/write    | 0C1h    | Reset with PUC |
| OA1 control register 0 | OA1CTL0    | Read/write    | 0C2h    | Reset with PUC |
| OA1 control register 1 | OA1CTL1    | Read/write    | 0C3h    | Reset with PUC |
| OA2 control register 0 | OA2CTL0    | Read/write    | 0C4h    | Reset with PUC |
| OA2 control register 1 | OA2CTL1    | Read/write    | 0C5h    | Reset with PUC |

## 4.18. Comparator\_A

| Register                        | Short Form | Register Type | Address | Initial State  |
|---------------------------------|------------|---------------|---------|----------------|
| Comparator_A control register 1 | CACTL1     | Read/write    | 059h    | Reset with POR |
| Comparator_A control register 2 | CACTL2     | Read/write    | 05Ah    | Reset with POR |
| Comparator_A port disable       | CAPD       | Read/write    | 05Bh    | Reset with POR |

## 4.19. LCD\_A Controller

| Register                | Short Form | Bogistor Type | A ddroop | Initial State  |
|-------------------------|------------|---------------|----------|----------------|
|                         |            | Register Type |          |                |
| LCD_A control register  | LCDACTL    | Read/write    | 090h     | Reset with PUC |
| LCD memory 1            | LCDM1      | Read/write    | 091h     | Unchanged      |
| LCD memory 2            | LCDM2      | Read/write    | 092h     | Unchanged      |
| LCD memory 3            | LCDM3      | Read/write    | 093h     | Unchanged      |
| LCD memory 4            | LCDM4      | Read/write    | 094h     | Unchanged      |
| LCD memory 5            | LCDM5      | Read/write    | 095h     | Unchanged      |
| LCD memory 6            | LCDM6      | Read/write    | 096h     | Unchanged      |
| LCD memory 7            | LCDM7      | Read/write    | 097h     | Unchanged      |
| LCD memory 8            | LCDM8      | Read/write    | 098h     | Unchanged      |
| LCD memory 9            | LCDM9      | Read/write    | 099h     | Unchanged      |
| LCD memory 10           | LCDM10     | Read/write    | 09Ah     | Unchanged      |
| LCD memory 11           | LCDM11     | Read/write    | 09Bh     | Unchanged      |
| LCD memory 12           | LCDM12     | Read/write    | 09Ch     | Unchanged      |
| LCD memory 13           | LCDM13     | Read/write    | 09Dh     | Unchanged      |
| LCD memory 14           | LCDM14     | Read/write    | 09Eh     | Unchanged      |
| LCD memory 15           | LCDM15     | Read/write    | 09Fh     | Unchanged      |
| LCD memory 16           | LCDM16     | Read/write    | 0A0h     | Unchanged      |
| LCD memory 17           | LCDM17     | Read/write    | 0A1h     | Unchanged      |
| LCD memory 18           | LCDM18     | Read/write    | 0A2h     | Unchanged      |
| LCD memory 19           | LCDM19     | Read/write    | 0A3h     | Unchanged      |
| LCD memory 20           | LCDM20     | Read/write    | 0A4h     | Unchanged      |
| LCD_A port control 0    | LCDAPCTL0  | Read/write    | 0ACh     | Reset with PUC |
| LCD_A port control 1    | LCDAPCTL1  | Read/write    | 0ADh     | Reset with PUC |
| LCD_A voltage control 0 | LCDAVCTL0  | Read/write    | 0AEh     | Reset with PUC |
| LCD_A voltage control 1 | LCDAVCTL1  | Read/write    | 0AFh     | Reset with PUC |

## 4.20. ADC12

| Register                        | Short Form  | Register Type | Address | Initial State  |
|---------------------------------|-------------|---------------|---------|----------------|
| ADC12 control register 0        | ADC12CTL0   | Read/write    | 01A0h   | Reset with POR |
| ADC12 control register 1        | ADC12CTL1   | Read/write    | 01A2h   | Reset with POR |
| ADC12 interrupt flag register   | ADC12IFG    | Read/write    | 01A4h   | Reset with POR |
| ADC12 interrupt enable register | ADC12IE     | Read/write    | 01A6h   | Reset with POR |
| ADC12 interrupt vector word     | ADC12IV     | Read          | 01A8h   | Reset with POR |
| ADC12 memory 0                  | ADC12MEM0   | Read/write    | 0140h   | Unchanged      |
| ADC12 memory 1                  | ADC12MEM1   | Read/write    | 0142h   | Unchanged      |
| ADC12 memory 2                  | ADC12MEM2   | Read/write    | 0144h   | Unchanged      |
| ADC12 memory 3                  | ADC12MEM3   | Read/write    | 0146h   | Unchanged      |
| ADC12 memory 4                  | ADC12MEM4   | Read/write    | 0148h   | Unchanged      |
| ADC12 memory 5                  | ADC12MEM5   | Read/write    | 014Ah   | Unchanged      |
| ADC12 memory 6                  | ADC12MEM6   | Read/write    | 014Ch   | Unchanged      |
| ADC12 memory 7                  | ADC12MEM7   | Read/write    | 014Eh   | Unchanged      |
| ADC12 memory 8                  | ADC12MEM8   | Read/write    | 0150h   | Unchanged      |
| ADC12 memory 9                  | ADC12MEM9   | Read/write    | 0152h   | Unchanged      |
| ADC12 memory 10                 | ADC12MEM10  | Read/write    | 0154h   | Unchanged      |
| ADC12 memory 11                 | ADC12MEM11  | Read/write    | 0156h   | Unchanged      |
| ADC12 memory 12                 | ADC12MEM12  | Read/write    | 0158h   | Unchanged      |
| ADC12 memory 13                 | ADC12MEM13  | Read/write    | 015Ah   | Unchanged      |
| ADC12 memory 14                 | ADC12MEM14  | Read/write    | 015Ch   | Unchanged      |
| ADC12 memory 15                 | ADC12MEM15  | Read/write    | 015Eh   | Unchanged      |
| ADC12 memory control 0          | ADC12MCTL0  | Read/write    | 080h    | Reset with POR |
| ADC12 memory control 1          | ADC12MCTL1  | Read/write    | 081h    | Reset with POR |
| ADC12 memory control 2          | ADC12MCTL2  | Read/write    | 082h    | Reset with POR |
| ADC12 memory control 3          | ADC12MCTL3  | Read/write    | 083h    | Reset with POR |
| ADC12 memory control 4          | ADC12MCTL4  | Read/write    | 084h    | Reset with POR |
| ADC12 memory control 5          | ADC12MCTL5  | Read/write    | 085h    | Reset with POR |
| ADC12 memory control 6          | ADC12MCTL6  | Read/write    | 086h    | Reset with POR |
| ADC12 memory control 7          | ADC12MCTL7  | Read/write    | 087h    | Reset with POR |
| ADC12 memory control 8          | ADC12MCTL8  | Read/write    | 088h    | Reset with POR |
| ADC12 memory control 9          | ADC12MCTL9  | Read/write    | 089h    | Reset with POR |
| ADC12 memory control 10         | ADC12MCTL10 | Read/write    | 08Ah    | Reset with POR |
| ADC12 memory control 11         | ADC12MCTL11 | Read/write    | 08Bh    | Reset with POR |
| ADC12 memory control 12         | ADC12MCTL12 | Read/write    | 08Ch    | Reset with POR |
| ADC12 memory control 13         | ADC12MCTL13 | Read/write    | 08Dh    | Reset with POR |
| ADC12 memory control 14         | ADC12MCTL14 | Read/write    | 08Eh    | Reset with POR |
| ADC12 memory control 15         | ADC12MCTL15 | Read/write    | 08Fh    | Reset with POR |

## 4.21. DAC12

| Register        | Short Form | Register Type | Address | Initial State  |
|-----------------|------------|---------------|---------|----------------|
| DAC12_0 control | DAC12_0CTL | Read/write    | 01C0h   | Reset with POR |
| DAC12_0 data    | DAC12_0DAT | Read/write    | 01C8h   | Reset with POR |
| DAC12_1 control | DAC12_1CTL | Read/write    | 01C2h   | Reset with POR |
| DAC12_1 data    | DAC12_1DAT | Read/write    | 01CAh   | Reset with POR |

# 5. Memory Mapped Registers Detail

Registers are ordered alphabetically.

## ADC12CTL0, ADC12 Control Register 0



Modifiable only when ENC = 0

SHT1x Bits Sample-and-hold time. These bits define the number of ADC12CLK cycles in

15-12 the sampling period for registers ADC12MEM8 to ADC12MEM15.

SHT0x Bits Sample-and-hold time. These bits define the number of ADC12CLK cycles in the sampling period for registers ADC12MEM0 to ADC12MEM7.

| SHTx Bits | ADC12CLK cycles |
|-----------|-----------------|
| 0000      | 4               |
| 0001      | 8               |
| 0010      | 16              |
| 0011      | 32              |
| 0100      | 64              |
| 0101      | 96              |
| 0110      | 128             |
| 0111      | 192             |
| 1000      | 256             |
| 1001      | 384             |
| 1010      | 512             |
| 1011      | 768             |
| 1100      | 1024            |
| 1101      | 1024            |
| 1110      | 1024            |
| 1111      | 1024            |

| MSC            | Bit 7 | Multiple sample and conversion. Valid only for sequence or repeated modes.  The sampling timer requires a rising edge of the SHI signal to trigger each sample-and-conversion.  The first rising edge of the SHI signal triggers the sampling timer, but further sample-and-conversions are performed automatically as soon as the prior conversion is completed. |
|----------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REF2_5V        | Bit 6 | Reference generator voltage. REFON must also be set. 0 1.5 V 1 2.5 V                                                                                                                                                                                                                                                                                              |
| REFON          | Bit 5 | Reference generator on 0 Reference off 1 Reference on                                                                                                                                                                                                                                                                                                             |
| ADC12ON        | Bit 4 | ADC12 on 0 ADC12 off 1 ADC12 on                                                                                                                                                                                                                                                                                                                                   |
| ADC120VIE      | Bit 3 | ADC12MEMx overflow-interrupt enable. The GIE bit must also be set to enable the interrupt.  Overflow interrupt disabled Overflow interrupt enabled                                                                                                                                                                                                                |
| ADC12<br>TOVIE | Bit 2 | ADC12 conversion-time-overflow interrupt enable. The GIE bit must also be set to enable the interrupt.  O Conversion time overflow interrupt disabled  Conversion time overflow interrupt enabled                                                                                                                                                                 |
| ENC            | Bit 1 | Enable conversion 0 ADC12 disabled 1 ADC12 enabled                                                                                                                                                                                                                                                                                                                |
| ADC12SC        | Bit 0 | Start conversion. Software-controlled sample-and-conversion start. ADC12SC and ENC may be set together with one instruction. ADC12SC is reset automatically.  O No sample-and-conversion-start                                                                                                                                                                    |

Start sample-and-conversion

1

## ADC12CTL1, ADC12 Control Register 1

| 15     | 14        | 13     | 12     | 11         | 10     | 9       | 8      |  |
|--------|-----------|--------|--------|------------|--------|---------|--------|--|
|        | CSTAR     | TADDx  |        | SHSx       |        | SHP     | ISSH   |  |
| rw-(0) | rw-(0)    | rw-(0) | rw-(0) | rw-(0)     | rw-(0) | rw-(0)  | rw-(0) |  |
| 7      | 6         | 5      | 4      | 3          | 2      | 1       | 0      |  |
|        | ADC12DIVx |        |        | ADC12SSELx |        | CONSEQX |        |  |
| rw-(0) | rw-(0)    | rw-(0) | rw-(0) | rw-(0)     | rw-(0) | rw-(0)  | r-(0)  |  |

Modifiable only when ENC = 0

| CSTART | Bits  | Conversion                                     | start  | address.   | These   | bits  | select  | which | ADC12 |
|--------|-------|------------------------------------------------|--------|------------|---------|-------|---------|-------|-------|
| ADDx   | 15-12 | conversion-m<br>conversion in<br>corresponding | n a śe | quence. Th | e value | of CS | TARTADI |       |       |

SHSx Bits Sample-and-hold source select

11-10 00 ADC12SC bit

01 Timer\_A.OUT1

10 Timer B.OUT0

11 Timer B.OUT1

SHP Bit 9 Sample-and-hold pulse-mode select. This bit selects the source of the

sampling signal (SAMPCON) to be either the output of the sampling timer or

the sample-input signal directly.

0 SAMPCON signal is sourced from the sample-input signal.

1 SAMPCON signal is sourced from the sampling timer.

ISSH Bit 8 Invert signal sample-and-hold

0 The sample-input signal is not inverted.

1 The sample-input signal is inverted.

ADC12DIVx Bits ADC12 clock divider

7-5 000 /1

001 /2

010 /3

011 /4

100 /5

100 /6

110 /7

111 /8

| ADC12<br>SSELx | Bits<br>4-3 | ADC12 clock source select 00 ADC12OSC 01 ACLK 10 MCLK 11 SMCLK                                                                                   |
|----------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| CONSEQx        | Bits<br>2-1 | Conversion sequence mode select  O Single-channel, single-conversion  O Sequence-of-channels  Repeat-single-channel  Repeat-sequence-of-channels |
| ADC12<br>BUSY  | Bit 0       | ADC12 busy. This bit indicates an active sample or conversion operation.  No operation is active.  A sequence, sample, or conversion is active.  |

## ADC12IE, ADC12 Interrupt Enable Register

| 15        | 14        | 13        | 12        | 11        | 10        | 9        | 8        |
|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|
| ADC12IE15 | ADC12IE14 | ADC12IE13 | ADC12IE12 | ADC12IE11 | ADC12IE10 | ADC12IE9 | ADC12IE8 |
| rw-(0)    | rw-(0)    | rw-(0)    | rw-(0)    | rw-(0)    | rw-(0)    | rw-(0)   | rw-(0)   |
|           |           |           |           |           |           |          |          |
| 7         | 6         | 5         | 4         | 3         | 2         | 1        | 0        |
| ADC12IE7  | ADC12IE6  | ADC12IE5  | ADC12IE4  | ADC12IE3  | ADC12IE2  | ADC12IE1 | ADC12IE0 |
| rw-(0)    | rw-(0)    | rw-(0)    | rw-(0)    | rw-(0)    | rw-(0)    | rw-(0)   | rw-(0)   |

ADC12IEx Bits Interrupt enable. These bits enable or disable the interrupt request for the 15-0 ADC12IFGx bits.

0 Interrupt disabled1 Interrupt enabled

## ADC12IFG, ADC12 Interrupt Flag Register

|   | 15             | 14             | 13             | 12             | 11             | 10             | 9             | . 8            |
|---|----------------|----------------|----------------|----------------|----------------|----------------|---------------|----------------|
|   | ADC12<br>IFG15 | ADC12<br>IFG14 | ADC12<br>IFG13 | ADC12<br>IFG12 | ADC12<br>IFG11 | ADC12<br>IFG10 | ADC12<br>IFG9 | ADC12<br>IFG8  |
| - | rw-(0)         | rw-(0)         | rw-(0)         | rw-(0)         | rw-(0)         | rw-(0)         | rw-(0)        | rw-(0)         |
|   | 7              | 6              | 5              | 4              | l 3            | 2              | 1             | 0              |
|   | ADC12<br>IFG7  | ADC12<br>IFG6  | ADC12<br>IFG5  | ADC12          | ADC12          | ADC12<br>IFG2  | ADC12         | ADC12          |
|   | rw-(0)         | rw-(0)         | rw-(0)         | rw-(0)         | IFG3           | rw-(0)         | rw-(0)        | IFG0<br>rw-(0) |

ADC12IFGx Bits 15-0 ADC12MEMx Interrupt flag. These bits are set when corresponding ADC12MEMx is loaded with a conversion result. The ADC12IFGx bits are reset if the corresponding ADC12MEMx is accessed, or may be reset with software.

- 0 No interrupt pending
- 1 Interrupt pending

## **ADC12IV, ADC12 Interrupt Vector Register**

| 15  | 14 | 13       | 12    | 11    | 10    | 9     | 8  |
|-----|----|----------|-------|-------|-------|-------|----|
| 0   | 0  | 0        | 0     | 0     | 0     | 0     | 0  |
| r0  | r0 | r0       | r0    | r0    | r0    | r0    | r0 |
|     |    |          |       |       |       |       |    |
| . 7 | 6  | 5        | 4     | 3     | 2     | 1     | 0  |
| 0   | 0  | ADC12IVx |       |       |       |       | 0  |
| r0  | r0 | r-(0)    | r-(0) | r-(0) | r-(0) | r-(0) | r0 |

ADC12IVx

Bits 15-0 ADC12 interrupt vector value

#### **ADC12MCTLx, ADC12 Conversion Memory Control Registers**

| 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|--------|--------|--------|--------|--------|--------|--------|--------|
| EOS    |        | SREFX  |        |        | INC    | Нх     |        |
| rw-(0) |

Modifiable only when ENC = 0

EOS Bit 7 End of sequence. Indicates the last conversion in a sequence.

Not end of sequence

1 End of sequence

SREFx Bits Select reference

> 6-4 000  $V_{R+} = AV_{CC}$  and  $V_{R-} = AV_{SS}$

001  $V_{R+} = V_{RFF+}$  and  $V_{R-} = AV_{SS}$ 

010 VR+ = VeREF+ and VR- = AVSS 011  $V_{R+} = Ve_{REF+}$  and  $V_{R-} = AV_{SS}$ 

100 V<sub>R+</sub> = AV<sub>CC</sub> and V<sub>R-</sub> = V<sub>REF-</sub>/ Ve<sub>REF-</sub>

101 V<sub>R+</sub> = V<sub>REF+</sub> and V<sub>R-</sub> = V<sub>REF-</sub>/ Ve<sub>REF-</sub>

110  $V_{R+} = V_{REF+}$  and  $V_{R-} = V_{REF-} / V_{REF-}$ 

111 VR+ = VeREF+ and VR- = VREF-/ VeREF-

Input channel select INCHx Bits

> 3-0 0000 Α0

0001 Α1

0010 Α2

0011 АЗ

0100 A4

Α5 0101

0110 Α6

Α7 0111

1000

Veref+

1001 V<sub>REF</sub>-/Ve<sub>REF</sub>-

Temperature sensor 1010

 $(AV_{CC} - AV_{SS}) / 2$ 1011

(AV<sub>CC</sub> - AV<sub>SS</sub>) / 2, A12 on 'FG43x and 'FG461x devices 1100

(AV<sub>CC</sub> - AV<sub>SS</sub>) / 2, A13 on 'FG43x and 'FG461x devices 1101

(AV<sub>CC</sub> - AV<sub>SS</sub>) / 2, A14 on 'FG43x and 'FG461x devices 1110

1111 (AV<sub>CC</sub> - AV<sub>SS</sub>) / 2, A15 on 'FG43x and 'FG461x devices

# **ADC12MEMx, ADC12 Conversion Memory Registers**



Conversion B Results 1

Bits 15-0 The 12-bit conversion results are right-justified. Bit 11 is the MSB. Bits 15-12 are always 0. Writing to the conversion memory registers will corrupt the results.

## BTCNT1, Basic Timer1 Counter 1



BTCNT1x Bits 7-0

BTCNT1 register. The BTCNT1 register is the count of BTCNT1.

#### BTCNT2, Basic Timer1 Counter 2



BTCNT2x

Bits 7-0  $\ensuremath{\mathsf{BTCNT2}}$  register. The  $\ensuremath{\mathsf{BTCNT2}}$  register is the count of  $\ensuremath{\mathsf{BTCNT2}}.$ 

#### BTCTL, Basic Timer1 Control Register

| 7      | 6      | 5     | 4    | 3    | 2  | 1     | 0  |
|--------|--------|-------|------|------|----|-------|----|
| BTSSEL | BTHOLD | BTDIV | BTFF | RFQx |    | BTIPx |    |
| rw     | rw     | rw    | rw   | rw   | rw | rw    | rw |

BTSSEL Bit 7 BTCNT2 clock select. This bit, together with the BTDIV bit, selects the clock source for BTCNT2. See the description for BTDIV.

BTHOLD Basic Timer1 hold Bit 6

BTCNT1 and BTCNT2 are operational

1 BTCNT1 is held if BTDIV=1

BTCNT2 is held

BTDIV Bit 5 Basic Timer1 clock divide. This bit together with the BTSSEL bit, selects the clock source for BTCNT2.

| BTSSEL | BTDIV | BTCNT2 Clock Source |
|--------|-------|---------------------|
| 0      | 0     | ACLK                |
| 0      | 1     | ACLK/256            |
| 1      | 0     | SMCLK               |
| 1      | 1     | ACLK/256            |

f<sub>LCD</sub> frequency. These bits control the LCD update frequency. BTFRFQx Bits

4-3 00 f<sub>ACLK</sub>/32

01 f<sub>ACLK</sub>/64

10 f<sub>ACLK</sub>/128

f<sub>ACLK</sub>/256 11

BTIPx Bits Basic Timer1 interrupt interval

> 2-0 000 f<sub>CLK2</sub>/2

> > 001 f<sub>CLK2</sub>/4

010 f<sub>CLK2</sub>/8

011 f<sub>CLK2</sub>/16

100 f<sub>CLK2</sub>/32

101 f<sub>CLK2</sub>/64

110 f<sub>CLK2</sub>/128

111 f<sub>CLK2</sub>/256

# CACTL1, Comparator\_A Control Register 1

| 7      | 6      | . 5    | 4      | 3      | 2      | 1      | . 0    | _ |
|--------|--------|--------|--------|--------|--------|--------|--------|---|
| CAEX   | CARSEL | CAREFX |        | CAON   | CAIES  | CAIE   | CAIFG  |   |
| rw-(0) |   |

| CAEX   | Bit 7       | Comparator_A exchange. This bit exchanges the comparator inputs and inverts the comparator output.                                                                                                                                                                                                                                       |
|--------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CARSEL | Bit 6       | Comparator_A reference select. This bit selects which terminal the V <sub>CAREF</sub> is applied to.  When CAEX = 0:  V <sub>CAREF</sub> is applied to the + terminal  V <sub>CAREF</sub> is applied to the – terminal  When CAEX = 1:  V <sub>CAREF</sub> is applied to the – terminal  V <sub>CAREF</sub> is applied to the + terminal |
| CAREF  | Bits<br>5-4 | Comparator_A reference. These bits select the reference voltage V <sub>CAREF</sub> .  100 Internal reference off. An external reference can be applied.  101 0.25*V <sub>CC</sub> 100 0.50*V <sub>CC</sub> 11 Diode reference is selected                                                                                                |
| CAON   | Bit 3       | Comparator_A on. This bit turns on the comparator. When the comparator is off it consumes no current. The reference circuitry is enabled or disabled independently.  Off Off On                                                                                                                                                          |
| CAIES  | Bit 2       | Comparator_A interrupt edge select 0 Rising edge 1 Falling edge                                                                                                                                                                                                                                                                          |
| CAIE   | Bit 1       | Comparator_A interrupt enable 0 Disabled 1 Enabled                                                                                                                                                                                                                                                                                       |
| CAIFG  | Bit 0       | The Comparator_A interrupt flag O No interrupt pending Interrupt pending                                                                                                                                                                                                                                                                 |

## CACTL2, Comparator\_A Control Register 2

| 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0     |
|--------|--------|--------|--------|--------|--------|--------|-------|
| Unused |        |        | P2CA1  | P2CA0  | CAF    | CAOUT  |       |
| rw-(0) | r-(0) |

| Unused | Bits<br>7-4 | Unused.                                                                                                          |
|--------|-------------|------------------------------------------------------------------------------------------------------------------|
| P2CA1  | Bit 3       | Pin to CA1. This bit selects the CA1 pin function.  The pin is not connected to CA1  The pin is connected to CA1 |
| P2CA0  | Bit 2       | Pin to CA0. This bit selects the CA0 pin function.  The pin is not connected to CA0  The pin is connected to CA0 |
| CAF    | Bit 1       | Comparator_A output filter  0 Comparator_A output is not filtered  1 Comparator_A output is filtered             |
| CAOUT  | Bit 0       | Comparator_A output. This bit reflects the value of the comparator output. Writing this bit has no effect.       |

## **CAPD, Comparator\_A Port Disable Register**

| 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|--------|--------|--------|--------|--------|--------|--------|--------|
| CAPD7  | CAPD6  | CAPD5  | CAPD4  | CAPD3  | CAPD2  | CAPD1  | CAPD0  |
| rw-(0) |

CAPDx Bits

7-0

Comparator\_A port disable. These bits individually disable the input buffer for the pins of the port associated with Comparator\_A. For example, the CAPDx bits can be used to individually enable or disable each P1.x pin buffer. CAPD0 disables P1.0, CAPD1 disables P1.1, etc.

- 0 The input buffer is enabled.
- 1 The input buffer is disabled.

#### DAC12 xCTL, DAC12 Control Register

| . 15     | 14        | 13     | 12       | 11      | 10       | 9              | 8            |
|----------|-----------|--------|----------|---------|----------|----------------|--------------|
| DAC12OPS | DAC12     | SREFX  | DAC12RES | DAC12   | 2LSELx   | DAC12<br>CALON | DAC12IR      |
| rw-(0)   | rw-(0)    | rw-(0) | rw-(0)   | rw-(0)  | rw-(0)   | rw-(0)         | rw-(0)       |
|          |           |        |          |         |          |                |              |
| . 7      | 6         | 5      | 4        | 3       | 2        | 1              | 0            |
|          | DAC12AMPx |        | DAC12DF  | DAC12IE | DAC12IFG | DAC12ENC       | DAC12<br>GRP |
| rw-(0)   | rw-(0)    | rw-(0) | rw-(0)   | rw-(0)  | rw-(0)   | rw-(0)         | rw-(0)       |

Modifiable only when DAC12ENC = 0

DAC12OPS Bit 15 DAC12 output select

MSP430FG43x and MSP430FG461x Devices:

0 DAC12 0 output on P6.6, DAC12 1 output on P6.7

1 DAC12\_0 output on VeREF+, DAC12\_1 output on P5.1

MSP430Fx42x0 Devices:

0 DAC12\_0 output not available external to the device

1 DAC12\_0 output available internally and externally.

MSP430FG47x Devices:

0 DAC12 x output not available external to the device

1 DAC12 x output available internally and externally.

DAC12 Bits DAC12 select reference voltage SREFx 14-13 MSP430FG43x and MSP430FG

14-13 MSP430FG43x and MSP430FG461x Devices:

00 V<sub>REF+</sub>

01 V<sub>REF+</sub>

10 Ve<sub>REF+</sub>

11 Ve<sub>REF+</sub>

MSP430Fx42x0 and MSP430FG47x Devices:

00 AV<sub>CC</sub>

01 AV<sub>CC</sub>

10 V<sub>REF</sub> (internal from SD16 A or external)

11 V<sub>REF</sub> (internal from SD16 A or external)

DAC12RES Bit 12 DAC12 resolution select

0 12-bit resolution

1 8-bit resolution

| DAC12<br>LSELx | Bits<br>11-10 | DAC12 load select. Selects the load trigger for the DAC12 latch. DAC12ENC must be set for the DAC to update, except when DAC12LSELx = 0.  OD DAC12 latch loads when DAC12_xDAT written (DAC12ENC is ignored)  DAC12 latch loads when DAC12_xDAT written, or, when grouped, when all DAC12_xDAT registers in the group have been written.  Rising edge of Timer_A.OUT1 (TA1)  Rising edge of Timer_B.OUT2 (TB2) |  |  |  |  |
|----------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| DAC12<br>CALON | Bit 9         | DAC12 calibration on. This bit initiates the DAC12 offset calibration sequence and is automatically reset when the calibration completes.  Calibration is not active Initiate calibration/calibration in progress                                                                                                                                                                                              |  |  |  |  |
| DAC12IR        | Bit 8         | DAC12 input range. This bit sets the reference input and voltage output ran  DAC12 full-scale output = 3x reference voltage  DAC12 full-scale output = 1x reference voltage                                                                                                                                                                                                                                    |  |  |  |  |
| DAC12<br>AMPx  | Bits<br>7-5   | DAC12 amplifier setting. These bits select settling time vs. current consumption for the DAC12 input and output amplifiers.                                                                                                                                                                                                                                                                                    |  |  |  |  |

| DAC12AMPx | Input Buffer         | Output Buffer            |
|-----------|----------------------|--------------------------|
| 000       | Off                  | DAC12 off, output high Z |
| 001       | Off                  | DAC12 off, output 0 V    |
| 010       | Low speed/current    | Low speed/current        |
| 011       | Low speed/current    | Medium speed/current     |
| 100       | Low speed/current    | High speed/current       |
| 101       | Medium speed/current | Medium speed/current     |
| 110       | Medium speed/current | High speed/current       |
| 111       | High speed/current   | High speed/current       |

| DAC12DF  | Bit 4 | DAC12 data format 0 Straight binary 1 2s complement                                                                                                                      |
|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DAC12IE  | Bit 3 | DAC12 interrupt enable 0 Disabled 1 Enabled                                                                                                                              |
| DAC12IFG | Bit 2 | DAC12 Interrupt flag 0 No interrupt pending 1 Interrupt pending                                                                                                          |
| DAC12ENC | Bit 1 | DAC12 enable conversion. This bit enables the DAC12 module when DAC12LSELx > 0. When DAC12LSELx = 0, DAC12ENC is ignored.  0 DAC12 disabled  1 DAC12 enabled             |
| DAC12GRP | Bit 0 | DAC12 group. Groups DAC12_x with the next higher DAC12_x. Not used for DAC12_1 on MSP430FG43x, MSP430FG47x, MSP430x42x0, or MSP430FG461x devices.  O Not grouped Grouped |

# DAC12\_xDAT, DAC12 Data Register

| 15         | 14     | 13     | 12     | 11     | 10     | 9      | 8      |
|------------|--------|--------|--------|--------|--------|--------|--------|
| 0          | 0      | 0      | 0      |        | DAC1   | 2 Data |        |
| r(0)       | r(0)   | r(0)   | r(0)   | rw-(0) | rw-(0) | rw-(0) | rw-(0) |
| 7          | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
| DAC12 Data |        |        |        |        |        |        |        |
| rw-(0)     | rw-(0) | rw-(0) | rw-(0) | rw-(0) | rw-(0) | rw-(0) | rw-(0) |

Unused Bits

Unused. These bits are always 0 and do not affect the DAC12 core.

15-12

DAC12 Data Bits

11-0

DAC12 data

| DAC12 Data Format    | DAC12 Data                                                                                                                 |  |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 12-bit binary        | The DAC12 data are right-justified. Bit 11 is the MSB.                                                                     |  |  |  |  |
| 12-bit 2s complement | The DAC12 data are right-justified. Bit 11 is the MSB (sign).                                                              |  |  |  |  |
| 8-bit binary         | The DAC12 data are right-justified. Bit 7 is the MSB. Bits 11 to 8 are don't care and do not affect the DAC12 core.        |  |  |  |  |
| 8-bit 2s complement  | The DAC12 data are right-justified. Bit 7 is the MSB (sign). Bits 11 to 8 are don't care and do not affect the DAC12 core. |  |  |  |  |

# DMAxCTL, DMA Channel x Control Register

| 15             | 14             | 13       | 12     | 11     | 10     | 9            | 8      |
|----------------|----------------|----------|--------|--------|--------|--------------|--------|
| Reserved       |                | DMADTx   |        | DMADS  | TINCRx | DMASR        | CINCRx |
| rw-(0)         | rw-(0)         | rw-(0)   | rw-(0) | rw-(0) | rw-(0) | rw-(0)       | rw-(0) |
|                |                |          |        |        |        |              |        |
| 7              | 6              | 5        | 4      | 3      | 2      | 1            | 0      |
| DMA<br>DSTBYTE | DMA<br>SRCBYTE | DMALEVEL | DMAEN  | DMAIFG | DMAIE  | DMA<br>ABORT | DMAREQ |
| rw-(0)         | rw-(0)         | rw-(0)   | rw-(0) | rw-(0) | rw-(0) | rw-(0)       | rw-(0) |

Reserved Bit 15 Reserved

| DMADTx          | Bits<br>14-12 | DMA Transfer mode.  000 Single transfer  001 Block transfer  010 Burst-block transfer  011 Burst-block transfer  100 Repeated single transfer  101 Repeated block transfer  110 Repeated burst-block transfer  111 Repeated burst-block transfer                                                                                                                                                                                                                                                                                                                  |
|-----------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DMA<br>DSTINCRx | Bits<br>11-10 | DMA destination increment. This bit selects automatic incrementing or decrementing of the destination address after each byte or word transfer. When DMADSTBYTE=1, the destination address increments/decrements by one. When DMADSTBYTE=0, the destination address increments/decrements by two. The DMAxDA is copied into a temporary register and the temporary register is incremented or decremented. DMAxDA is not incremented or decremented.  On Destination address is unchanged  Destination address is decremented  Destination address is incremented |
| DMA<br>SRCINCRX | Bits<br>9-8   | DMA source increment. This bit selects automatic incrementing or decrementing of the source address for each byte or word transfer. When DMASRCBYTE=1, the source address increments/decrements by one. When DMASRCBYTE=0, the source address increments/decrements by two. The DMAxSA is copied into a temporary register and the temporary register is incremented or decremented. DMAxSA is not incremented or decremented.  O Source address is unchanged  Source address is unchanged  Source address is decremented  Source address is incremented          |
| DMA<br>DSTBYTE  | Bit 7         | DMA destination byte. This bit selects the destination as a byte or word.  0 Word  1 Byte                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DMA<br>SRCBYTE  | Bit 6         | DMA source byte. This bit selects the source as a byte or word.  Word  Byte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DMA<br>LEVEL    | Bit 5         | DMA level. This bit selects between edge-sensitive and level-sensitive triggers.  0 Edge sensitive (rising edge)  1 Level sensitive (high level)                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DMAEN           | Bit 4         | DMA enable<br>0 Disabled<br>1 Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DMAIFG          | Bit 3         | DMA interrupt flag 0 No interrupt pending 1 Interrupt pending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

DMAIE Bit 2 DMA interrupt enable Disabled 1 Enabled DMA Bit 1 DMA Abort. This bit indicates if a DMA transfer was interrupt by an NMI. ABORT DMA transfer not interrupted 1 DMA transfer was interrupted by NMI DMAREQ Bit 0 DMA request, Software-controlled DMA start, DMAREQ is reset automatically. 0 No DMA start 1 Start DMA

#### **DMAxDA, DMA Destination Address Register**

| 31 | 30       | 29    | 28  | 27   | 26  | 25   | 824 |  |  |  |  |
|----|----------|-------|-----|------|-----|------|-----|--|--|--|--|
|    | Reserved |       |     |      |     |      |     |  |  |  |  |
| r0 | r0       | r0    | r0  | r0   | r0  | r0   | r0  |  |  |  |  |
| 23 | 22       | 21    | 20  | 19   | 18  | 17   | 16  |  |  |  |  |
|    | Rese     | erved |     |      | DMA | xDAx |     |  |  |  |  |
| r0 | r0       | r0    | r0  | rw   | rw  | rw   | rw  |  |  |  |  |
| 15 | 14       | 13    | 12  | 11   | 10  | 9    | 8   |  |  |  |  |
|    |          |       | DMA | кDАх |     |      |     |  |  |  |  |
| rw | rw       | rw    | rw  | rw   | rw  | rw   | rw  |  |  |  |  |
| 7  | 6        | 5     | 4   | 3    | 2   | 1    | 0   |  |  |  |  |
|    |          |       | DMA | кDАх |     |      |     |  |  |  |  |
| rw | rw       | rw    | rw  | rw   | rw  | rw   | rw  |  |  |  |  |

Reserved Bits Reserved 31-20

DMAxDAx Bits 19-0 DMA destination address. The destination address register points to the destination address for single transfers or the first address for block transfers. The DMAxDA register remains unchanged during block and burst-block transfers.

Devices that have addressable memory range 64-KB or below contain a single word for the DMAxDA.

MSP430FG461x and MSP430F471xx devices implement two words for the DMAxDA register as shown. Bits 31–20 are reserved and always read as zero. Reading or writing bits 19-16 requires the use of extended instructions. When writing to DMAxDA with word instructions, bits 19-16 are cleared.

#### **DMAxSA, DMA Source Address Register**

| 31 | 30       | 29    | 28  | 27   | 26  | 25            | 824 |  |  |  |  |
|----|----------|-------|-----|------|-----|---------------|-----|--|--|--|--|
|    | Reserved |       |     |      |     |               |     |  |  |  |  |
| r0 | r0       | r0    | r0  | r0   | r0  | r0            | r0  |  |  |  |  |
| 23 | 22       | 21    | 20  | 19   | 18  | 17            | 16  |  |  |  |  |
|    | Rese     | erved |     |      | DMA | x <b>SA</b> x |     |  |  |  |  |
| r0 | r0       | r0    | r0  | rw   | rw  | rw            | rw  |  |  |  |  |
| 15 | 14       | 13    | 12  | 11   | 10  | 9             | 8   |  |  |  |  |
|    |          |       | DMA | xSAx |     |               |     |  |  |  |  |
| rw | rw       | rw    | rw  | rw   | rw  | rw            | rw  |  |  |  |  |
| 7  | 6        | 5     | 4   | 3    | 2   | 1             | 0   |  |  |  |  |
|    |          |       | DMA | xSAx |     |               |     |  |  |  |  |
| rw | rw       | rw    | rw  | rw   | rw  | rw            | rw  |  |  |  |  |

Reserved

Bits 31-20 Reserved

DMAxSAx

Bits 19-0 DMA source address. The source address register points to the DMA source address for single transfers or the first source address for block transfers. The source address register remains unchanged during block and burst-block transfers.

Devices that have addressable memory range 64-KB or below contain a single word for the DMAxSA.

MSP430FG461x and MSP430F471xx devices implement two words for the DMAxSA register as shown. Bits 31–20 are reserved and always read as zero. Reading or writing bits 19-16 requires the use of extended instructions. When writing to DMAxSA with word instructions, bits 19-16 are cleared.

## **DMAxSZ, DMA Size Address Register**

| 15 | 14      | 13 | 12  | 11   | 10 | 9  | 8  |  |
|----|---------|----|-----|------|----|----|----|--|
|    |         |    | DMA | xSZx |    |    |    |  |
| rw | rw      | rw | rw  | rw   | rw | rw | rw |  |
| 7  | 6       | 5  | 4   | 3    | 2  | 1  | 0  |  |
|    | DMAxSZx |    |     |      |    |    |    |  |
| rw | rw      | rw | rw  | rw   | rw | rw | rw |  |

DMAxSZx Bits

15-0

DMA size. The DMA size register defines the number of byte/word data per block transfer. DMAxSZ register decrements with each word or byte transfer. When DMAxSZ decrements to 0, it is immediately and automatically reloaded with its previously initialized value.

00000h Transfer is disabled

00001h One byte or word to be transferred

00002h Two bytes or words have to be transferred

:

0FFFFh 65535 bytes or words have to be transferred

## **DMACTLO, DMA Control Register 0**

| 15     | 14     | 13     | 12     | 11     | 10     | 9      | 8      |
|--------|--------|--------|--------|--------|--------|--------|--------|
|        | Rese   | erved  |        |        | DMA2   | TSELx  |        |
| rw-(0) |
|        |        |        |        |        |        |        |        |
| . 7    | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|        | DMA1   | TSELx  |        |        | DMA0   | TSELx  |        |
| rw-(0) |

Reserved Bits Reserved 15–12

DMA2 Bits DMA trigger select. These bits select the DMA transfer trigger. TSELx 11-8 The trigger selection is device-specific. For MSP430FG43x and MSP430FG461x devices it is given below; for other devices, see the device-specific data sheet. 0000 DMAREQ bit (software trigger) 0001 TACCR2 CCIFG bit 0010 TBCCR2 CCIFG bit 0011 URXIFG0 (MSP430FG43x), UCA0RXIFG (MPS430FG461x) 0100 UTXIFG0 (MSP430FG43x), UCA0TXIFG (MSP430FG461x) 0101 DAC12 0CTL DAC12IFG bit 0110 ADC12 ADC12IFGx bit 0111 TACCR0 CCIFG bit 1000 TBCCR0 CCIFG bit 1001 URXIFG1 bit 1010 UTXIFG1 bit 1011 Multiplier ready 1100 No action (MSP430FG43x), UCB0RXIFG (MSP430FG461x) 1101 No action (MSP430FG43x), UCB0TXIFG (MSP430FG461x) 1110 DMA0IFG bit triggers DMA channel 1 DMA1IFG bit triggers DMA channel 2 DMA2IFG bit triggers DMA channel 0 1111 External trigger DMAE0 Same as DMA2TSELx DMA1 Bits TSELx 7-4

## **DMACTL1, DMA Control Register 1**

Same as DMA2TSELx

Bits

3-0

DMA0

TSELx

| 15  | 14  | 13  | 12  | 11 | 10             | 9              | 8      |
|-----|-----|-----|-----|----|----------------|----------------|--------|
| 0   | 0   | 0   | 0   | 0  | 0              | 0              | 0      |
| r0  | r0  | r0  | r0  | r0 | r0             | r0             | r0     |
|     |     |     |     |    |                |                |        |
| . 7 | . 6 | . 5 | . 4 | 3  | 2              | 1              | 0      |
| 0   | 0   | 0   | 0   | 0  | DMA<br>ONFETCH | ROUND<br>ROBIN | ENNMI  |
| r0  | r0  | r0  | r0  | r0 | rw-(0)         | rw-(0)         | rw-(0) |

Reserved Reserved. Read only. Always read as 0. Bits 15-3 DMA Bit 2 DMA on fetch ONFETCH The DMA transfer occurs immediately The DMA transfer occurs on next instruction fetch after the trigger 1 ROUND Bit 1 Round robin. This bit enables the round-robin DMA channel priorities. ROBIN 0 DMA channel priority is DMA0 - DMA1 - DMA2 1 DMA channel priority changes with each transfer

ENNMI

Bit 0

Enable NMI. This bit enables the interruption of a DMA transfer by an NMI interrupt. When an NMI interrupts a DMA transfer, the current transfer is completed normally, further transfers are stopped, and DMAABORT is set.

- 0 NMI interrupt does not interrupt DMA transfer
- 1 NMI interrupt interrupts a DMA transfer

# **DMAIV, DMA Interrupt Vector Register**

| 15 | 14 | 13 | 12 | 11    | 10     | 9     | 8  |
|----|----|----|----|-------|--------|-------|----|
| 0  | 0  | 0  | 0  | 0     | 0      | 0     | 0  |
| r0 | r0 | r0 | r0 | r0    | r0     | r0    | r0 |
|    |    |    |    |       |        |       |    |
| 7  | 6  | 5  | 4  | 3     | 2      | 1     | 0  |
| 0  | 0  | 0  | 0  |       | DMAIVx |       | 0  |
| r0 | r0 | r0 | r0 | r-(0) | r-(0)  | r-(0) | r0 |

DMAIVx

Bits 15-0 DMA Interrupt Vector value

| DMAIV Contents | Interrupt Source     | Interrupt Flag | Interrupt<br>Priority |
|----------------|----------------------|----------------|-----------------------|
| 00h            | No interrupt pending | -              |                       |
| 02h            | DMA channel 0        | DMA0IFG        | Highest               |
| 04h            | DMA channel 1        | DMA1IFG        |                       |
| 06h            | DMA channel 2        | DMA2IFG        |                       |
| 08h            | Reserved             | -              |                       |
| 0Ah            | Reserved             | -              |                       |
| 0Ch            | Reserved             | -              |                       |
| 0Eh            | Reserved             | -              | Lowest                |

# **FCTL1, Flash Memory Control Register**

| 15 | 14 | 13 | 12                         | 11 | 10 | 9 | 8 |
|----|----|----|----------------------------|----|----|---|---|
|    |    | F\ | FRKEY, Re<br>WKEY, Must be |    | 5h |   |   |

| 7      | 6    | 5        | 4      | 3               | 2     | 1     | . 0      |
|--------|------|----------|--------|-----------------|-------|-------|----------|
| BLKWRT | WRT  | Reserved | EEIEX‡ | GMERAS†<br>EEI‡ | MERAS | ERASE | Reserved |
| rw-0   | rw-0 | r0       | r0     | rw-0            | rw-0  | rw-0  | r0       |

<sup>†</sup> MSP430FG461x devices only. Reserved with r0 access on all other devices.

<sup>\*</sup> MSP430F47x3/4 devices only. Reserved with r0 access on all other devices.

| FRKEY/<br>FWKEY | Bits<br>15-8 | FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC is generated.                                                                                                                                                                           |  |  |  |  |  |
|-----------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| BLKWRT          | Bit 7        | Block write mode. WRT must also be set for block write mode. BLKWRT is automatically reset when EMEX is set.  Block-write mode is off Block-write mode is on                                                                                                  |  |  |  |  |  |
| WRT             | Bit 6        | Write. This bit is used to select any write mode. WRT is automatically reset when EMEX is set.  Write mode is off  Write mode is on                                                                                                                           |  |  |  |  |  |
| Reserved        | Bit 5        | Reserved. Always read as 0.                                                                                                                                                                                                                                   |  |  |  |  |  |
| EEIEX           | Bit 4        | Enable emergency interrupt exit. Setting this bit enables an interrupt to cause an emergency exit from a flash operation when GIE = 1. EEIEX is automatically reset when EMEX is set.  0 Exit interrupt disabled  1 Exit on interrupt enabled                 |  |  |  |  |  |
| EEI             | Bits 3       | Enable erase Interrupts. Setting this bit allows a segment erase to be interrupted by an interrupt request. After the interrupt is serviced, the erase cycle is resumed.  O Interrupts during segment erase disabled  Interrupts during segment erase enabled |  |  |  |  |  |

GMERAS MERAS ERASE

Bit 3 Bit 2 Bit 1 Global mass erase, mass erase, and erase. These bits are used together to select the erase mode. GMERAS, MERAS, and ERASE are automatically reset when EMEX is set or the erase operation completes.

| GMERAS | MERAS | ERASE | Erase Cycle                                                                |
|--------|-------|-------|----------------------------------------------------------------------------|
| 0      | 0     | 0     | No erase                                                                   |
| X      | 0     | 1     | Erase individual segment only                                              |
| 0      | 1     | 0     | Erase main memory segment of selected array                                |
| 0      | 1     | 1     | Erase main memory segments and infor-<br>mation segments of selected array |
| 1      | 1     | 0     | Erase main memory segments of all memory arrays.                           |
| 1      | 1     | 1     | Erase all main memory and information<br>segments of all memory arrays     |

Reserved Bit 0 Reserved. Always read as 0.

# FCTL2, Flash Memory Control Register

| <br>15 | 14 | 13 | 12                          | 11 | 10 | 9 | 8 |
|--------|----|----|-----------------------------|----|----|---|---|
|        |    |    | FWKEYx, Re<br>Must be writt |    |    |   |   |

|   | 7      | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|---|--------|------|------|------|------|------|------|------|
|   | FSSELx |      |      |      | F    | Nx   |      |      |
| · | rw-0   | rw-1 | rw-0 | rw-0 | rw-0 | rw-0 | rw-1 | rw-0 |

FWKEYx Bits FCTLx password. Always read as 096h. Must be written as 0A5h, or a PUC 15-8 is generated.

FSSELx Bits Flash controller clock source select

7-6 00 ACLK 01 MCLK 10 SMCLK 11 SMCLK

FNx Bits Flash controller clock divider. These six bits select the divider for the flash controller clock. The divisor value is FNx + 1. For example, when FNx = 00h, 0the divisor is 1. When FNx = 03Fh the divisor is 64.

# **FCTL3, Flash Memory Control Register**

| 15 | 14 | 13 | 12                          | 11 | 10 | 9 | 8 |
|----|----|----|-----------------------------|----|----|---|---|
|    |    |    | FWKEYx, Re<br>Must be writt |    |    |   |   |

| 7      | 6      | 5    | 4    | 3    | 2       | 1      | 0      |
|--------|--------|------|------|------|---------|--------|--------|
| FAIL†  | LOCKA† | EMEX | LOCK | WAIT | ACCVIFG | KEYV   | BUSY   |
| r(w)-0 | r(w)-1 | rw-0 | rw-1 | r-1  | rw-0    | rw-(0) | r(w)-0 |

<sup>†</sup> MSP430FG47x, MSP430F47x, MSP430F47x3/4, and MSP430F471xx devices only. Reserved with r0 access on all other devices.

| FWKEYx  | Bits<br>15-8 | FCTLx password. Always read as 096h. Must be written as 0A5h, or a PUC is generated.                                                                                                                                                                                                                                                   |
|---------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FAIL    | Bit 7        | Operation failure. This bit is set if the $f_{FTG}$ clock source fails or if a flash operation is aborted from an interrupt when EEIEX = 1. FAIL must be reset with software.  O No failure  Failure                                                                                                                                   |
| LOCKA   | Bit 6        | SegmentA and Info lock. Write a 1 to this bit to change its state. Writing 0 has no effect.  O Segment A unlocked and all information memory is erased during a mass erase.  Segment A locked and all information memory is protected from erasure during a mass erase.                                                                |
| EMEX    | Bit 5        | Emergency exit  No emergency exit  Emergency exit                                                                                                                                                                                                                                                                                      |
| LOCK    | Bit 4        | Lock. This bit unlocks the flash memory for writing or erasing. The LOCK bit can be set anytime during a byte/word write or erase operation and the operation completes normally. In the block write mode, if the LOCK bit is set while BLKWRT=WAIT=1, then BLKWRT and WAIT are reset, and the mode ends normally.  O Unlocked  Locked |
| WAIT    | Bit 3        | Wait. Indicates the flash memory is being written.  The flash memory is not ready for the next byte/word write  The flash memory is ready for the next byte/word write                                                                                                                                                                 |
| ACCVIFG | Bit 2        | Access violation interrupt flag 0 No interrupt pending 1 Interrupt pending                                                                                                                                                                                                                                                             |

KEYV Bit 1 Flash security key violation. This bit indicates an incorrect FCTLx password was written to any flash control register and generates a PUC when set. KEYV

must be reset with software.

0 FCTLx password was written correctly

1 FCTLx password was written incorrectly

BUSY Bit 0 Busy. This bit indicates the status of the flash timing generator.

0 Not busy

1 Busy

#### FLL CTLO, FLL+ Control Register 0

| 7       | 6       | 5    | 4    | 3                  | 2     | 1     | 0    |
|---------|---------|------|------|--------------------|-------|-------|------|
| DCOPLUS | XTS_FLL | XCAI | PxPF | XT2OF <sup>†</sup> | XT10F | LFOF  | DCOF |
| rw-0    | rw-0    | rw-0 | rw-0 | r-0                | r-0   | r-(1) | r-1  |

<sup>&</sup>lt;sup>†</sup> Not present in MSP430x41x, MSP430x42x devices

DCOPLUS Bit 7 DCO output pre-divider. This bit selects if the DCO output is pre-divided before sourcing MCLK or SMCLK. The division rate is selected with the

FLL D bits

0 DCO output is divided

1 DCO output is not divided

XTS\_FLL Bit 6 LFTX1 mode select

0 Low frequency mode

1 High frequency mode

XCAPxPF Bits Oscillator capacitor selection. These bits select the effective capacitance

5-4 seen by the LFXT1 crystal or resonator. Should be set to 00 if the

high-frequency mode is selected for LFXT1 with XTS FLL = 1.

00 ~1 pF

01 ~6 pF

10 ~8 pF

11 ~10 pF

XT2OF Bit 3 XT2 oscillator fault. Not present in MSP430x41x, and MSP430x42x

devices.

0 No fault condition present

1 Fault condition present

XT10F Bit 2 LFXT1 high-frequency oscillator fault

0 No fault condition present

1 Fault condition present

LFOF Bit 1 LFXT1 low-frequency oscillator fault

No fault condition present

1 Fault condition present

DCOF Bit 0 DCO oscillator fault

0 No fault condition present

1 Fault condition present

#### FLL\_CTL1, FLL+ Control Register 1

| 7                     | 6                         | 5       | 4      | 3                | 2                 | 1      | 0      |
|-----------------------|---------------------------|---------|--------|------------------|-------------------|--------|--------|
| LFXT1DIG <sup>‡</sup> | SMCLK<br>OFF <sup>†</sup> | XT2OFF† | SEL    | .Mx <sup>†</sup> | SELS <sup>†</sup> | FLL_   | DIVx   |
| rw-0                  | rw-0                      | rw-(1)  | rw-(0) | rw-(0)           | rw-(0)            | rw-(0) | rw-(0) |

<sup>†</sup> Not present in MSP430x41x, MSP430x42x devices except MSP430F41x2.

/8

11

LFXT1DIG Bit 7 Select digital external clock source. This bit enables the input of an external digital clock signal on XIN in low-frequency mode (XTS FLL = 0). Only supported in MSP430xG46x, MSP430FG47x, MSP430F47x, MSP430x47x3/4, and MSP430F471xx devices. Crystal input selected 0 Digital clock input selected SMCLK off. This bit turns off SMCLK. Not present in MSP430x41x and SMCLKOFF Bit 6 MSPx42x devices. 0 SMCLK is on 1 SMCLK is off XT2OFF Bit 5 XT2 off. This bit turns off the XT2 oscillator. Not present in MSP430x41x and MSPx42x devices. 0 XT2 is on XT2 is off if it is not used for MCLK or SMCLK SELMx Select MCLK. These bits select the MCLK source. Not present in Bits 4-3 MSP430x41x and MSP430x42x devices except MSP430F41x2. 00 DCOCLK 01 DCOCLK 10 XT2CLK 11 LFXT1CLK In the MSP430F41x2 devices: 00 DCOCLK 01 DCOCLK 10 LFXT1CLK or VLO LFXT1CLK or VLO SELS Bit 2 Select SMCLK. This bit selects the SMCLK source. Not present in MSP430x41x and MSP430x42x devices. DCOCLK 1 XT2CLK FLL DIVx ACLK divider Bits 1-0 00 /1 01 /2 /4 10

Only supported by MSP430xG46x, MSP430FG47x, MSP430F47x, MSP430x47x3/4, and MSP430F471xx devices. Otherwise unused.

#### IE1, Interrupt Enable Register 1

| 7      | 6      | . 5    | . 4   | 3 | . 2 | 1    | 0     |
|--------|--------|--------|-------|---|-----|------|-------|
| UTXIE0 | URXIE0 | ACCVIE | NMIIE |   |     | OFIE | WDTIE |
| rw-0   | rw-0   | rw-0   | rw-0  |   |     | rw-0 | rw-0  |

UTXIE0 Bit 7 USART0 transmit interrupt enable. This bit enables the UTXIFG0 interrupt.

Interrupt not enabled

1 Interrupt enabled

URXIE0 Bit 6 USART0 receive interrupt enable. This bit enables the URXIFG0 interrupt.

> 0 Interrupt not enabled

1 Interrupt enabled

ACCVIE Bit 5 Flash memory access violation interrupt enable. This bit enables the

ACCVIFG interrupt. Because other bits in IE1 may be used for other modules, it is recommended to set or clear this bit using BIS.B or BIC.B instructions,

rather than MOV.B or CLR.B instructions.

Interrupt not enabled

Interrupt enabled

NMILE Bit 4 NMI interrupt enable. This bit enables the NMI interrupt. Because other bits in IE1 may be used for other modules, it is recommended to set or clear this

bit using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B

instructions.

0 Interrupt not enabled

Interrupt enabled 1

OFIE Bit 1 Oscillator fault interrupt enable. This bit enables the OFIFG interrupt. Because other bits in IE1 may be used for other modules, it is recommended

to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV.B

or CLR.B instructions.

0 Interrupt not enabled

Interrupt enabled 1

WDTIE Bit 0 Watchdog timer interrupt enable. This bit enables the WDTIFG interrupt for interval timer mode. It is not necessary to set this bit for watchdog mode.

Because other bits in IE1 may be used for other modules, it is recommended to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV.B

or CLR.B instructions.

0 Interrupt not enabled

1 Interrupt enabled

# IE2, Interrupt Enable Register 2

| 7    | 6 | 5      | . 4    | 3        | 2        | 1        | 0        |  |
|------|---|--------|--------|----------|----------|----------|----------|--|
| BTIE |   | UTXIE1 | URXIE1 | UCB0TXIE | UCB0RXIE | UCA0TXIE | UCA0RXIE |  |
| rw-0 |   | rw-0   | rw-0   | rw-0     | rw-0     | rw-0     | rw-0     |  |

| BTIE     | Bit 7 | Basic Timer1 interrupt enable. This bit enables the BTIFG interrupt. Because other bits in IE2 may be used for other modules, it is recommended to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.  0 Interrupt not enabled 1 Interrupt enabled |
|----------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UTXIE1   | Bit 5 | USART1 transmit interrupt enable. This bit enables the UTXIFG1 interrupt.  Interrupt not enabled  Interrupt enabled                                                                                                                                                                               |
| URXIE1   | Bit 4 | USART1 receive interrupt enable. This bit enables the URXIFG1 interrupt.  Interrupt not enabled  Interrupt enabled                                                                                                                                                                                |
| UCB0TXIE | Bit 3 | USCI_B0 transmit interrupt enable Interrupt disabled Interrupt enabled                                                                                                                                                                                                                            |
| UCB0RXIE | Bit 2 | USCI_B0 receive interrupt enable  Interrupt disabled  Interrupt enabled                                                                                                                                                                                                                           |
| UCA0TXIE | Bit 1 | USCI_A0 transmit interrupt enable  Interrupt disabled  Interrupt enabled                                                                                                                                                                                                                          |
| UCA0RXIE | Bit 0 | USCI_A0 receive interrupt enable  Interrupt disabled  Interrupt enabled                                                                                                                                                                                                                           |

#### IFG1, Interrupt Flag Register 1

| 7       | 6       | 5 | 4      | 3 | 2 | 1     | . 0    |
|---------|---------|---|--------|---|---|-------|--------|
| UTXIFG0 | URXIFG0 |   | NMIIFG |   |   | OFIFG | WDTIFG |
| rw-1    | rw-0    |   | rw-(0) |   |   | rw-0  | rw-(0) |

UTXIFG0 Bit 7 USART0 transmit interrupt flag. UTXIFG0 is set when U0TXBUF is empty.

0 No interrupt pending

1 Interrupt pending

URXIFG0 Bit 6 USART0 receive interrupt flag. URXIFG0 is set when U0RXBUF has received a complete character.

0 No interrupt pending

Interrupt pending

NMIIFG Bit 4 NMI interrupt flag. NMIIFG must be reset by software. Because other bits in IFG1 may be used for other modules, it is recommended to clear NMIIFG by

using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.

0 No interrupt pending

1 Interrupt pending

OFIFG Bit 1 Oscillator fault interrupt flag. Because other bits in IFG1 may be used for other

modules, it is recommended to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.

0 No interrupt pending

1 Interrupt pending

WDTIFG Bit 0 Watchdog timer interrupt flag. In watchdog mode, WDTIFG remains set until

reset by software. In interval mode, WDTIFG is reset automatically by servicing the interrupt, or it can be reset by software. Because other bits in IFG1 may be used for other modules, it is recommended to clear WDTIFG by using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.

0 No interrupt pending

Interrupt pending

#### IFG2, Interrupt Flag Register 2

| 7     | 6 | 5       | 4       | 3             | 2             | 1             | 0             |
|-------|---|---------|---------|---------------|---------------|---------------|---------------|
| BTIFG |   | UTXIFG1 | URXIFG1 | UCB0<br>TXIFG | UCB0<br>RXIFG | UCA0<br>TXIFG | UCA0<br>RXIFG |
| rw-0  |   | rw-1    | rw-0    | rw-1          | rw-0          | rw-1          | rw-0          |

#### BTIFG Bit 7

Basic Timer1 interrupt flag. Because other bits in IFG2 may be used for other modules, it is recommended to clear BTIFG automatically by servicing the interrupt, or by using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.

0 No interrupt pending

Interrupt pending

| UTXIFG1       | Bit 5 | USART1 transmit interrupt flag. UTXIFG1 is set when U1TXBUF empty.  No interrupt pending  Interrupt pending                                  |
|---------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------|
| URXIFG1       | Bit 4 | USART1 receive interrupt flag. URXIFG1 is set when U1RXBUF has received a complete character.  O No interrupt pending  Interrupt pending     |
| UCB0<br>TXIFG | Bit 3 | USCI_B0 transmit interrupt flag. UCB0TXIFG is set when UCB0TXBUF is empty.  0 No interrupt pending 1 Interrupt pending                       |
| UCB0<br>RXIFG | Bit 2 | USCI_B0 receive interrupt flag. UCB0RXIFG is set when UCB0RXBUF has received a complete character.  No interrupt pending Interrupt pending   |
| UCA0<br>TXIFG | Bit 1 | USCI_A0 transmit interrupt flag. UCA0TXIFG is set when UCA0TXBUF empty.  0 No interrupt pending 1 Interrupt pending                          |
| UCA0<br>RXIFG | Bit 0 | USCI_A0 receive interrupt flag. UCA0RXIFG is set when UCA0RXBUF has received a complete character.  O No interrupt pending Interrupt pending |

# LCDACTL, LCD\_A Control Register

|   | 7        | 6    | 5    | 4    | 3      | 2      | 1     | 0    |
|---|----------|------|------|------|--------|--------|-------|------|
|   | LCDFREQx |      | LCD  | MXx  | LCDSON | Unused | LCDON |      |
| • | rw-0     | rw-0 | rw-0 | rw-0 | rw-0   | rw-0   | rw-0  | rw-0 |

| LCDFREQx | Bits<br>7-5 | LCD frequency select. These bits select the ACLK divider for the LCD frequency.  000 Divide by 32  001 Divide by 64  010 Divide by 96  011 Divide by 128  100 Divide by 192  101 Divide by 256  110 Divide by 384  111 Divide by 512 |
|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LCDMXx   | Bits<br>4-3 | LCD mux rate. These bits select the LCD mode. 00 Static 01 2-mux 10 3-mux 11 4-mux                                                                                                                                                   |

LCDSON Bit 2 LCD segments on. This bit supports flashing LCD applications by turning

off all segment lines, while leaving the LCD timing generator and R33

enabled.

0 All LCD segments are off

1 All LCD segments are enabled and on or off according to their corresponding memory location.

Unused Bit 1 Unused

LCDON Bit 0 LCD On. This bit turns on the LCD A module.

0 LCD A module off.

1 LCD A module on.

#### LCDAPCTLO, LCA\_A Port Control Register 0

| 7      | 6      | . 5    | 4      | 3      | 2     | 1     | 0                  |
|--------|--------|--------|--------|--------|-------|-------|--------------------|
| LCDS28 | LCDS24 | LCDS20 | LCDS16 | LCDS12 | LCDS8 | LCDS4 | LCDS0 <sup>†</sup> |
| rw-0   | rw-0   | rw-0   | rw-0   | rw-0   | rw-0  | rw-0  | rw-0               |

<sup>†</sup> Segments S0-S3 on the MSP430FG461x devices are disabled from LCD functionality when charge pump is enabled.

LCDS28 Bit 7 LCD segment 28 to 31 enable

This bit only affects pins with multiplexed functions. Dedicated LCD pins are always LCD function.

0 Multiplexed pins are port functions.

1 Pins are LCD functions

LCDS24 Bit 6 LCD segment 24 to 27 enable

This bit only affects pins with multiplexed functions. Dedicated LCD pins are always LCD function.

0 Multiplexed pins are port functions.

1 Pins are LCD functions

LCDS20 Bit 5 LCD segment 20 to 23 enable

This bit only affects pins with multiplexed functions. Dedicated LCD pins are always LCD function.

0 Multiplexed pins are port functions.

1 Pins are LCD functions

LCDS16 Bit 4 LCD segment 16 to 19 enable

This bit only affects pins with multiplexed functions. Dedicated LCD pins are always LCD function.

0 Multiplexed pins are port functions.

1 Pins are LCD functions

LCDS12 Bit 3 LCD segment 12 to 15 enable

This bit only affects pins with multiplexed functions. Dedicated LCD pins are always LCD function.

0 Multiplexed pins are port functions.

1 Pins are LCD functions

LCDS8 Bit 2 LCD segment 8 to 11 enable

This bit only affects pins with multiplexed functions. Dedicated LCD pins are always LCD function.

0 Multiplexed pins are port functions.

1 Pins are LCD functions

LCDS4 Bit 1 LCD segment 4 to 7 enable

This bit only affects pins with multiplexed functions. Dedicated LCD pins are always LCD function.

- 0 Multiplexed pins are port functions.
- 1 Pins are LCD functions

LCDS0 Bit 0 LCD segment 0 to 3 enable

This bit only affects pins with multiplexed functions. Dedicated LCD pins are always LCD function.

- 0 Multiplexed pins are port functions.
- 1 Pins are LCD functions

# LCDAPCTL1, LCD\_A Port Control Register 1

| 7    | 6    | 5    | 4    | 3    | 2    | 1      | 0      |
|------|------|------|------|------|------|--------|--------|
|      |      | Unu  | sed  |      |      | LCDS36 | LCDS32 |
| rw-0   | rw-0   |

Unused Bits Unused

7-2

LCDS36 Bit 1 LCD segment 36 to 39 enable

This bit only affects pins with multiplexed functions. Dedicated LCD pins are always LCD function.

- 0 Multiplexed pins are port functions.
- 1 Pins are LCD functions

LCDS32 Bit 0 LCD segment 32 to 35 enable

This bit only affects pins with multiplexed functions. Dedicated LCD pins are always LCD function.

- 0 Multiplexed pins are port functions.
- 1 Pins are LCD functions

## LCDAVCTLO, LCD\_A Voltage Control Register 0

| 7      | 6      | 5    | . 4     | 3       | 2    | 1        | 0    |
|--------|--------|------|---------|---------|------|----------|------|
| Unused | R03EXT | REXT | VLCDEXT | LCDCPEN | VLCD | VLCDREFX |      |
| rw-0   | rw-0   | rw-0 | rw-0    | rw-0    | rw-0 | rw-0     | rw-0 |

Unused Bit 7 Unused

R03EXT Bit 6 V5 voltage select. This bit selects the external connection for the lowest

LCD voltage. R03EXT is ignored if there is no R03 pin available.

0 V5 is AV<sub>SS</sub>

1 V5 is sourced from the R03 pin

REXT Bit 5 V2 - V4 voltage select. This bit selects the external connections for voltages V2 - V4. V2 - V4 are generated internally V2 - V4 are sourced externally and the internal bias generator is switched off VLCDEXT Bit 4 V<sub>I CD</sub> source select V<sub>LCD</sub> is generated internally 1 V<sub>LCD</sub> is sourced externally LCDCPEN Bit 3 Charge pump enable. Charge pump disabled. 1 Charge pump enabled when V<sub>LCD</sub> is generated internally (VLCDEXT = 0) and VLCDx > 0 or VLCDREFx > 0. VLCDREFx Charge pump reference select Bits 2-1 00 Internal 01 External 10 Reserved 11 Reserved LCD2B Bit 0 Bias select. LCD2B is ignored when LCDMx = 00. 0 1/3 bias

## LCDAVCTL1, LCD\_A Voltage Control Register 1

1

1/2 bias

| 7    | 6      | 5    | 4    | 3    | 2    | 1    | 0      |
|------|--------|------|------|------|------|------|--------|
|      | Unused |      |      | VLC  | CDx  |      | Unused |
| rw-0 | rw-0   | rw-0 | rw-0 | rw-0 | rw-0 | pw-0 | rw-0   |

Unused Unused Bits 7-5 VLCDx Bits Charge pump voltage select, LCDCPEN must be 1 for the charge pump to 4-1 be enabled.  $AV_{CC}$  is used for  $V_{LCD}$  when VLCDx = 0000 and VREFx = 00and VLCDEXT = 0. 0000 Charge pump disabled 0001 V<sub>LCD</sub> = 2.60 V  $0010 V_{LCD} = 2.66 V$ 0011 V<sub>LCD</sub> = 2.72 V 0100 V<sub>LCD</sub> = 2.78 V 0101 V<sub>LCD</sub> = 2.84 V 0110 V<sub>LCD</sub> = 2.90 V  $0111 V_{LCD} = 2.96 V$ 1000 V<sub>LCD</sub> = 3.02 V 1001 V<sub>I CD</sub> = 3.08 V 1010 V<sub>LCD</sub> = 3.14 V 1011 V<sub>LCD</sub> = 3.20 V 1100 V<sub>LCD</sub> = 3.26 V 1101 V<sub>LCD</sub> = 3.32 V 1110 V<sub>LCD</sub> = 3.38 V 1111 V<sub>LCD</sub> = 3.44 V Unused Bit 0 Unused

## LCDMx, LCD Memory

| Associated<br>Common Pins | 3 | 2 | 1 | 0 | 3  | 2             | 1 | 0 | l , | \i-4-d                    |
|---------------------------|---|---|---|---|----|---------------|---|---|-----|---------------------------|
| Address                   | 7 |   |   |   |    |               |   | 0 |     | Associated<br>egment Pins |
| 0A4h                      |   |   |   |   |    |               |   |   | 38  | 39, 38                    |
| 0A3h                      |   | - |   |   |    |               |   |   | 36  | 37, 36                    |
| 0A2h                      |   | 1 |   |   |    |               |   |   | 34  | 35, 34                    |
| 0A1h                      |   | I |   |   |    |               |   |   | 32  | 33, 32                    |
| 0A0h                      |   | - |   |   |    |               |   |   | 30  | 31, 30                    |
| 09Fh                      |   | 1 |   |   |    |               |   |   | 28  | 29, 28                    |
| 09Eh                      |   | 1 |   |   |    |               |   |   | 26  | 27, 26                    |
| 09Dh                      |   | - |   |   |    |               |   |   | 24  | 25, 24                    |
| 09Ch                      |   | ŀ |   |   |    |               |   |   | 22  | 23, 22                    |
| 09Bh                      |   | ŀ |   |   |    |               |   |   | 20  | 21, 20                    |
| 09Ah                      |   | 1 |   |   |    |               |   |   | 18  | 19, 18                    |
| 099h                      |   | - |   |   |    |               |   |   | 16  | 17, 16                    |
| 098h                      |   | ŀ |   |   |    |               |   |   | 14  | 15, 14                    |
| 097h                      |   |   |   |   |    |               |   |   | 12  | 13, 12                    |
| 096h                      |   |   |   |   |    |               |   |   | 10  | 11, 10                    |
| 095h                      |   |   |   |   |    |               |   |   | 8   | 9,8                       |
| 094h                      |   |   |   |   |    |               |   |   | 6   | 7, 6                      |
| 093h                      |   |   |   |   |    |               |   |   | 4   | 5, 4                      |
| 092h                      |   |   |   |   |    |               |   |   | 2   | 3, 2                      |
| 091h                      |   |   |   |   |    |               |   |   | 0   | 1, 0                      |
|                           | \ |   | _ | / | ′\ | $\overline{}$ |   |   | r   |                           |
|                           |   |   |   |   |    |               |   |   |     |                           |

# MAC, Operand 1: Unsigned Multiply Accumulate

One of the operand one registers for the 16 bit multiplier. Writing operand one to this register selects Unsigned Multiply Accumulate mode, but does not start the computation.

# MACS, Operand 1: Signed Multiply Accumulate

One of the operand one registers for the 16 bit multiplier. Writing operand one to this register selects Signed Multiply Accumulate mode, but does not start the computation.

## ME2, Module Enable Register



0 Module not enabled

Module enabled

| URXE1 | Bit 4 | USART1 receive enable. This bit enables the receiver for USART1.  Module not enabled  Module enabled |
|-------|-------|------------------------------------------------------------------------------------------------------|
|       | Bits  | These bits may be used by other modules. See device-specific data sheet.                             |

# MPY, Operand 1: Unsigned Multiply

One of the operand one registers for the 16 bit multiplier. Writing operand one to this register selects Unsigned Multiply mode, but does not start the computation.

# MPYS, Operand 1: Signed Multiply

One of the operand one registers for the 16 bit multiplier. Writing operand one to this register selects Signed Multiply mode, but does not start the computation.

# **OAxCTL0, Opamp Control Register 0**

|   | 7      | 6                  |                                      | 5                                                                                                                              | 4                                                   | 3                         | 2                                                | 1              | 0            |  |
|---|--------|--------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------|--------------------------------------------------|----------------|--------------|--|
|   | OANx   |                    |                                      | OAPx                                                                                                                           |                                                     | ОДРМх                     |                                                  | OAADC1         | OAADC0       |  |
|   | rw-0   | v−0 rw−0 rw−0 rw−0 |                                      |                                                                                                                                | rw-0                                                | rw-0                      | rw-0                                             | rw-0           | rw-0         |  |
| • | DANx   | Bits<br>7-6        | Inve<br>inpu<br>00<br>01<br>10<br>11 |                                                                                                                                | ternal                                              | se bits sele              | ct the input si                                  | gnal for the ( | OA inverting |  |
| • | DAPx   | Bits<br>5-4        |                                      | Non-inverting input select. These bits select the input signal for the OA non-inverting input.  OO OAxIO  OAOI1  DACO internal |                                                     |                           |                                                  |                |              |  |
| • | DAPMx  | Bits<br>3-2        |                                      | OA.                                                                                                                            | ct These bit<br>ut high Z                           | s select the              | slew rate vs.                                    | current cons   | sumption for |  |
| • | DAADC1 | Bit 1              |                                      | out pin OA:<br>OAx out<br>A5 (OA2                                                                                              | Owhen OA<br>out not conn<br>signals<br>out connecte | AFCx > 0.<br>ected to int | e OAx output<br>ernal/external<br>al/external A1 | A1 (OA0), A    | \3 (OA1), or |  |

OAADC0 Bit 0 OA output select. This bit connects the OAx output to ADC12 input Ax when OAPMx > 0.

- OAx output not connected to internal A12 (OA0), A13 (OA1), or A14 (OA2) signals
- OAx output connected to internal A12 (OA0), A13 (OA1), or A14 (OA2) signals

### **OAxCTL1, Opamp Control Register 1**

|     | 7      | 6           | 5                                                                                                                    | 4                                                            | 3                                 | 2                     | 1            | 0          |
|-----|--------|-------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------|-----------------------|--------------|------------|
| Г   | - /    |             |                                                                                                                      |                                                              |                                   |                       |              |            |
|     |        | OAFBR       | K                                                                                                                    |                                                              | OAFCx                             | Reserved              | OARRIP       |            |
| _   | rw-0   | rw-0        | rw-0                                                                                                                 | rw-0                                                         | rw-0                              | rw-0                  | rw-0         | rw-0       |
| OA  | FBRx   | Bits<br>7-5 | OAx feedback<br>000 Tap 0<br>001 Tap 1<br>010 Tap 2<br>011 Tap 3<br>100 Tap 4<br>101 Tap 5<br>110 Tap 6<br>111 Tap 7 | resistor sel                                                 | ect                               |                       |              |            |
| OA  | FCx    | Bits<br>4-2 | 100 Non-inve<br>101 Reserve<br>110 Inverting                                                                         | purpose<br>in buffer<br>d<br>ng amplifier<br>erting PGA<br>d |                                   | he function of        | f OAx        |            |
| Rea | served | Bit 1       | Reserved                                                                                                             |                                                              |                                   |                       |              |            |
| OA  | RRIP   | Bit 0       |                                                                                                                      | ut signal ran<br>ut signal ran                               | ge is rail-to-ı<br>ge is limited. | rail<br>. See the dev | ice-specific | data sheet |

### OP2, 16-Bit Multiplier Operand 2

The second operand to supply the hardware multiplier. Writing to this register causes the multiplier to begin calculating for the last mode selected (last operand 1 register written too).

### PxDIR, Port x Direction Registers

Each bit in each PxDIR register selects the direction of the corresponding I/O pin, regardless of the selected function for the pin. PxDIR bits for I/O pins that are selected for other module functions must be set as required by the other function.

Bit = 0: The port pin is switched to input direction

Bit = 1: The port pin is switched to output direction

#### PxIE, Port x Interrupt Enable Registers (Ports 1 and 2)

Each PxIE bit enables the associated PxIFG interrupt flag.

Bit = 0: The interrupt is disabled Bit = 1: The interrupt is enabled

#### PxIES, Port x Interrupt Edge Selection Registers (Ports 1 and 2)

Each PxIES bit selects the interrupt edge for the corresponding I/O pin.

Bit = 0: The PxIFGx flag is set with a low-to-high transition

Bit = 1: The PxIFGx flag is set with a high-to-low transition

#### PxIFG, Port x Interrupt Flag Registers (Ports 1 and 2)

Each PxIFGx bit is the interrupt flag for its corresponding I/O pin and is set when the selected input signal edge occurs at the pin. All PxIFGx interrupt flags request an interrupt when their corresponding PxIE bit and the GIE bit are set. Each PxIFG flag must be reset with software. Software can also set each PxIFG flag, providing a way to generate a software-initiated interrupt.

Bit = 0: No interrupt is pending

Bit = 1: An interrupt is pending

#### PxIN, Port x Input Registers

Each bit in each PxIN register reflects the value of the input signal at the corresponding I/O pin when the pin is configured as I/O function.

Bit = 0: The input is low

Bit = 1: The input is high

## **PxOUT, Port x Output Registers**

Each bit in each PxOUT register is the value to be output on the corresponding I/O pin when the pin is configured as I/O function and output direction.

Bit = 0: The output is low

Bit = 1: The output is high

#### PxREN, Port x Pull Resistor Enable Registers

In MSP430x47x devices all port pins have a programmable pullup/pulldown resistor. Each bit in each PxREN register enables or disables the pullup/pulldown resistor of the corresponding I/O pin. The corresponding bit in the PxOUT register selects if the pin is pulled up or pulled down.

Bit = 0: Pullup/pulldown resistor disabled

Bit = 1: Pullup/pulldown resistor enabled

#### **PxSEL, Port x Function Select Registers**

Port pins are oftenmultiplexed with other peripheral module functions. See the device-specific data sheet to determine pin functions. Each PxSEL bit is used to select the pin function — I/O port or peripheral module function.

Bit = 0: I/O function is selected for the pin

Bit = 1: Peripheral module function is selected for the pin

#### RESHI, Multiplier Result High Word

Holds the upper word of the multiplication result. If a signed mode was used, than the msb holds the sign bit of the result.

## **RESLO, Multiplier Result Low Word**

Holds the lower word of the multiplication result.

# RTCCTL, Real-Time Clock Control Register

| 7      | 6       | 5      | 4      | 3      | 2      | . 1   | 0     |
|--------|---------|--------|--------|--------|--------|-------|-------|
| RTCBCD | RTCHOLD | RTCM   | IODEx  | RTC    | TEVx   | RTCIE | RTCFG |
| rw-(0) | rw-(1)  | rw-(0) | rw-(0) | rw-(0) | rw-(0) | rw-0  | rw-0  |

RTCBCD Bit 7 BCD format select. This bit selects BCD format for the calendar registers

when RTCMODEx = 11.

Hexadecimal format

BCD format 1

11

RTCHOLD Bit 6 Real-Time Clock hold

Real-Time Clock is operational

RTCMODEx < 11: The RTC module is stopped 1

Real-Time Clock mode and clock source select

Calendar mode

RTCMODEx = 11: The RTC and the Basic Timer1 are stopped

RTCMODEx Bits

5-4

RTCMODEx Clock Source Counter Mode 00 32-bit counter ACLK 01 32-bit counter BTCNT2.Q6 10 32-bit counter SMCLK

BTCNT2.Q6

RTCTEVx

Bits 3-2

Real-Time Clock interrupt event. These bits select the event for setting RTCFG.

| RTC Mode      | RTCTEVx | Interrupt Interval            |
|---------------|---------|-------------------------------|
| Counter Mode  | 00      | 8-bit overflow                |
|               | 01      | 16-bit overflow               |
|               | 10      | 24-bit overflow               |
|               | 11      | 32-bit overflow               |
| Calendar Mode | 00      | Minute changed                |
|               | 01      | Hour changed                  |
|               | 10      | Every day at midnight (00:00) |
|               | 11      | Every day at noon (12:00)     |

RTCIE Bit 1

Real-Time Clock interrupt enable

Interrupt not enabled

Interrupt enabled 1

RTCFG Bit 0 Real-Time Clock interrupt flag

No time event occurred

1 Time event occurred

| 7   | 6   | 5   | 4  | 3       | 2            | 1        | 0  |
|-----|-----|-----|----|---------|--------------|----------|----|
| 0   | 0   | 0   |    | Day-of- | Month (128,2 | 9,30,31) |    |
| r-0 | r-0 | r-0 | rw | rw      | rw           | rw       | rw |

# RTCDAY, RTC Day-of-Month Register, Calendar Mode with BCD Format

| 7   | 6   | . 5               | 4                            | 3  | 2              | 1              | 0  |
|-----|-----|-------------------|------------------------------|----|----------------|----------------|----|
| 0   | 0   | Day-of-Mon<br>(0. | Day-of-Month high digit (03) |    | Day-of-Month I | low digit (09) | )  |
| r-0 | r-0 | rw                | rw                           | rw | rw             | rw             | rw |

# RTCDOW, RTC Day-of-Week Register, Calendar Mode

| 7   | 6   | 5   | 4   | 3   | 2  | 1                | 0  |
|-----|-----|-----|-----|-----|----|------------------|----|
| 0   | 0   | 0   | 0   | 0   | Da | Day-of-Week (06) |    |
| r-0 | r-0 | r-0 | r-0 | r-0 | rw | rw               | rw |

# RTCHOUR, RTC Hours Register, Calendar Mode with Hexadecimal Format

| 7   | 6   | 5   | 4           | 3  | 2  | 1  | 0  |  |
|-----|-----|-----|-------------|----|----|----|----|--|
| 0   | 0   | 0   | Hours (024) |    |    |    |    |  |
| r-0 | r-0 | r-0 | rw          | rw | rw | rw | rw |  |

# RTCHOUR, RTC Hours Register, Calendar Mode with BCD Format

| 7   | 6   | 5          | 4          | 3                       | 2  | 1          | 0  |
|-----|-----|------------|------------|-------------------------|----|------------|----|
| 0   | 0   | Hours high | digit (02) | (02) Hours low digit (0 |    | digit (09) |    |
| r-0 | r-0 | rw         | rw         | rw                      | rw | rw         | rw |

# RTCMIN, RTC Minutes Register, Calendar Mode with Hexadecimal Format

| 7   | 6   | 5  | 4  | 3       | 2       | 1  | 0  |
|-----|-----|----|----|---------|---------|----|----|
| 0   | 0   |    |    | Minutes | s (059) |    |    |
| r-0 | r-0 | rw | rw | rw      | rw      | rw | rw |

# RTCMIN, RTC Minutes Register, Calendar Mode with BCD Format

| _ | 7   | . 6   | 5               | 4    | 3  | 2             | 1            | 0  |
|---|-----|-------|-----------------|------|----|---------------|--------------|----|
|   | 0   | Minut | es - high digit | (05) |    | Minutes - lov | v digit (09) |    |
|   | r-0 | rw    | rw              | rw   | rw | rw            | rw           | rw |

|                                                  | 6                                         | 5                               | 4                        | 3               | 2                                         | 1                                     |           |
|--------------------------------------------------|-------------------------------------------|---------------------------------|--------------------------|-----------------|-------------------------------------------|---------------------------------------|-----------|
| 0                                                | 0                                         | 0                               | 0                        |                 | Month                                     | (112)                                 |           |
| r-0                                              | r-0                                       | r-0                             | r-0                      | rw              | rw                                        | rw                                    |           |
| ON, RT                                           | C Month R                                 | egister, Ca                     | lendar Mode v            | with BCD I      | Format                                    |                                       |           |
| 7                                                | 6                                         | 5                               | 4                        | 3               | 2                                         | 1                                     |           |
| 0                                                | 0                                         | 0                               | Month high<br>digit (03) |                 | Month low                                 | digit (09)                            |           |
| r-0                                              | r-0                                       | r-0                             | rw                       | rw              | rw                                        | rw                                    |           |
| C, RTC                                           | Seconds Re                                | egister, Cal                    | endar Mode v             | vith Hexa       | decimal For                               | mat                                   |           |
| 7                                                | 6                                         | 5                               | 4                        | 3               | 2                                         | 1                                     |           |
| 0                                                | 0                                         |                                 |                          | Seconds         | s (059)                                   |                                       |           |
| r-0                                              | r-0                                       | rw                              | rw                       | rw              | rw                                        | rw                                    |           |
| 7                                                | 6<br>Secor                                | 5<br>nds - high dig             | 4<br>it (05)             | 3               | 2<br>Seconds - los                        | 1<br>w digit (09)                     |           |
| r-0                                              | rw                                        | rw                              | rw                       | rw              | rw                                        | rw                                    | -         |
|                                                  |                                           |                                 |                          |                 |                                           |                                       |           |
| EARH, R                                          | TC Year Hig                               | gh-Byte Re                      | gister, Calend           | ar Mode v       | with Hexade                               | ecimal Form                           | nat       |
| <b>ARH, R</b>                                    | TC Year Hig                               | gh-Byte Re                      | gister, Calend           | ar Mode v       | with Hexade                               | ecimal Form                           | nat       |
|                                                  |                                           | -                               |                          |                 | 2                                         |                                       | nat<br>—— |
| 7                                                | 6                                         | 5                               | 4                        |                 | 2                                         | 1                                     |           |
| 7<br>0<br>r-0                                    | 6<br><b>0</b><br>r-0                      | 5<br>0<br>r-0                   | 0                        | 3<br>rw         | 2<br>Year High By                         | 1<br>rte of 04095<br>rw               |           |
| 7<br>0<br>r-0                                    | 6<br><b>0</b><br>r-0                      | 5<br>0<br>r-0                   | 4<br>0<br>r-0            | 3<br>rw         | 2<br>Year High By                         | 1<br>rte of 04095<br>rw               | nat       |
| 7<br>0<br>r-0                                    | 6<br>0<br>r-0<br>TC Year Hig              | 5<br>0<br>r-0<br>gh-Byte Re     | 4 0 r-0 gister, Calend   | rw<br>ar Mode v | 2 Year High By rw with BCD Fo             | te of 04095                           |           |
| 7<br>0<br>r-0<br>EARH, R                         | 6<br>0<br>r-0<br>TC Year Hig              | 5<br>0<br>r-0<br>gh-Byte Re     | 4 0 r-0 gister, Calend   | rw<br>ar Mode v | 2 Year High By rw with BCD Fo             | 1<br>rte of 04095<br>rw<br>rmat       |           |
| 7<br>0<br>r-0<br><b>EARH, R</b><br>7<br>0<br>r-0 | 6<br>0<br>r-0<br>TC Year Hig<br>6<br>Cent | r-0 gh-Byte Re 5 tury high digi | gister, Calend           | rw ar Mode v    | Year High By rw with BCD Fo 2 Century low | 1 rte of 04095 rw rmat 1 v digit (09) |           |

rw rw rw rw rw rw rw

## SCFIO, System Clock Frequency Integrator Register 0



0001 1.3 to 12.1 MHz 001x 2 to 17.9 MHz

> 01xx 2.8 to 26.6 MHz 1xxx 4.2 to 46 MHz

MODx Bits Least significant modulator bits. Bit 0 is the modulator LSB. These bits

affect the modulator pattern. All MODx bits are modified automatically by

the FLL+.

# SCFI1, System Clock Frequency Integrator Register 1

1-0

| . 7                                                                                                                                                                 | 6    | 5    | 4    | 3    | 2           | 1    | 0    |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|-------------|------|------|--|
|                                                                                                                                                                     |      | DCOx |      |      | MODx (MSBs) |      |      |  |
| rw-0                                                                                                                                                                | rw-0 | rw-0 | rw-0 | rw-0 | rw-0        | rw-0 | rw-0 |  |
| DCOx Bits These bits select the DCO tap and are modified automatically by the F                                                                                     |      |      |      |      |             |      |      |  |
| MODx Bit 2 Most significant modulator bits. Bit 2 is the modulator MSB. These bits affect the modulator pattern. All MODx bits are modified automatically the FLL+. |      |      |      |      |             |      |      |  |

## **SCFQCTL, System Clock Control Register**

|   | 7      | 6     | 5    | 4                                           | 3             | 2           | 1    | 0    |
|---|--------|-------|------|---------------------------------------------|---------------|-------------|------|------|
|   | SCFQ_M |       |      |                                             | N             |             |      |      |
|   | rw-0   | rw-0  | rw-0 | rw-1                                        | rw-1          | rw-1        | rw-1 | rw-1 |
| , | SCFQ_M | Bit 7 |      | iis enables on<br>on enabled<br>on disabled | or disables n | nodulation. |      |      |

N Bits Multiplier. These bits set the multiplier value for the DCO. N must be > 0 or unpredictable operation results.

When DCOPLUS = 0:  $f_{DCOCLK} = (N + 1) \cdot f_{crystal}$ When DCOPLUS = 1:  $f_{DCOCLK} = D \times (N + 1) \cdot f_{crystal}$ 

# **SUMEXT, Multiplier Sum Extension Register**

The sum extension registers contents depend on the multiply operation that was performed. For signed multiplication (MPYS, MACS), this register contains 0x0000 or 0xffff depending on whether the result was positive or negative. For MAC mode, this register contains either 0x0001 or 0x0000 depending on whether the result had a carry or no carry (respectively). For MPY mode, SUMEXT always contains 0x0000.

# **SVSCTL, SVS Control Register (Supply Voltage Supervisor)**

|   | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|---|-------|-------|-------|-------|-------|-------|-------|-------|
|   |       | VL    | Dx    |       | PORON | SVSON | SVSOP | SVSFG |
| • | rw-0† | rw-0† | rw-0† | rw-0† | rw-0† | r†    | rt    | rw-0† |

<sup>†</sup> Reset by a brownout reset only, not by a POR or PUC.

| VLDx  | Bits<br>7-4 | Voltage level detect. These bits turn on the SVS and select the nominal SVS threshold voltage level. See the device-specific data sheet for parameters. 0000 SVS is off 0001 1.9 V 0010 2.1 V 0011 2.2 V 0100 2.3 V |
|-------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |             | 0101 2.4 V<br>0110 2.5 V<br>0111 2.65 V<br>1000 2.8 V<br>1001 2.9 V<br>1010 3.05<br>1011 3.2 V<br>1100 3.35 V<br>1101 3.5 V<br>1110 3.7 V                                                                           |
| DOBON | D'4 0       | 1111 Compares external input voltage SVSIN to 1.2 V.                                                                                                                                                                |
| PORON | Bit 3       | POR on. This bit enables the SVSFG flag to cause a POR device reset.  O SVSFG does not cause a POR  SVSFG causes a POR                                                                                              |
| SVSON | Bit 2       | SVS on. This bit reflects the status of SVS operation. This bit DOES NOT turn on the SVS. The SVS is turned on by setting VLDx > 0.  O SVS is Off  SVS is On                                                        |
| SVSOP | Bit 1       | SVS output. This bit reflects the output value of the SVS comparator.  O SVS comparator output is low  SVS comparator output is high                                                                                |
| SVSFG | Bit 0       | SVS flag. This bit indicates a low voltage condition. SVSFG remains set after a low voltage condition until reset by software.  O No low voltage condition occurred  A low condition is present or has occurred     |

### TACCRx, Timer A Capture/Compare Register x



TACCRx Bits Timer A capture/compare register.

15-0 Compare mode: TACCRx holds the data for the comparison to the timer value in the Timer\_A Register, TAR.

Capture mode: The Timer\_A Register, TAR, is copied into the TACCRx register when a capture is performed.

# TACCTLx, Capture/Compare Control Register

| 15     | 14      | 13     | 12     | 11     | 10     | 9      | 8      |
|--------|---------|--------|--------|--------|--------|--------|--------|
| CMx    |         | CCISx  |        | scs    | scci   | Unused | CAP    |
| rw-(0) | rw-(0)  | rw-(0) | rw-(0) | rw-(0) | r      | r0     | rw-(0) |
|        |         |        |        |        |        |        |        |
| . 7    | 6       | 5      | 4      | 3      | 2      | 1      | 0      |
|        | OUTMODx |        | CCIE   | CCI    | оит    | cov    | CCIFG  |
| rw-(0) | rw-(0)  | rw-(0) | rw-(0) | r      | rw-(0) | rw-(0) | rw-(0) |

CMx Bit Capture mode

15-14 00 No capture

01 Capture on rising edge

10 Capture on falling edge

11 Capture on both rising and falling edges

CCISx Bit Capture/compare input select. These bits select the TACCRx input signal.

13-12 See the device-specific data sheet for specific signal connections.

00 CCIxA

01 CCIxB

10 GND

11 V<sub>CC</sub>

SCS Bit 11 Synchronize capture source. This bit is used to synchronize the capture input signal with the timer clock.

0 Asynchronous capture

1 Synchronous capture

| SCCI    | Bit 10      | Synchronized capture/compare input. The selected CCI input signal is latched with the EQUx signal and can be read via this bit.                                                      |  |  |  |  |  |
|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Unused  | Bit 9       | Unused. Read only. Always read as 0.                                                                                                                                                 |  |  |  |  |  |
| CAP     | Bit 8       | Capture mode 0 Compare mode 1 Capture mode                                                                                                                                           |  |  |  |  |  |
| OUTMODx | Bits<br>7-5 | Output mode. Modes 2, 3, 6, and 7 are not useful for TACCR0 because EQUx = EQU0.  000 OUT bit value  001 Set  010 Toggle/reset  100 Toggle  101 Reset  110 Toggle/set  111 Reset/set |  |  |  |  |  |
| CCIE    | Bit 4       | Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG flag.  Interrupt disabled  Interrupt enabled                                     |  |  |  |  |  |
| CCI     | Bit 3       | Capture/compare input. The selected input signal can be read by this bit.                                                                                                            |  |  |  |  |  |
| OUT     | Bit 2       | Output. For output mode 0, this bit directly controls the state of the output.  Output low  Output high                                                                              |  |  |  |  |  |
| cov     | Bit 1       | Capture overflow. This bit indicates a capture overflow occurred. COV notes that the software.  O No capture overflow occurred  Capture overflow occurred                            |  |  |  |  |  |
| CCIFG   | Bit 0       | Capture/compare interrupt flag 0 No interrupt pending 1 Interrupt pending                                                                                                            |  |  |  |  |  |

# TACTL, Timer\_A Control Register

| 15     | 14     | 13     | 12     | 11     | 10     | 9      | 8      |
|--------|--------|--------|--------|--------|--------|--------|--------|
|        | Unused |        |        |        |        |        | SELX   |
| rw-(0) |
| . 7    | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
| IC     | )x     | М      | Cx     | Unused | TACLR  | TAIE   | TAIFG  |
| rw-(0) | rw-(0) | rw-(0) | rw-(0) | rw-(0) | w-(0)  | rw-(0) | rw-(0) |

Unused Bits Unused 15-10

| TASSELx | Bits<br>9-8 | Timer_A clock source select 00 TACLK 01 ACLK 10 SMCLK 11 Inverted TACLK                                                                                  |
|---------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| IDx     | Bits<br>7-6 | Input divider. These bits select the divider for the input clock.  00 /1  01 /2  10 /4  11 /8                                                            |
| MCx     | Bits<br>5-4 | Mode control. Setting MCx = 00h when Timer_A is not in use conserves power.  00                                                                          |
| Unused  | Bit 3       | Unused                                                                                                                                                   |
| TACLR   | Bit 2       | Timer_A clear. Setting this bit resets TAR, the clock divider, and the count direction. The TACLR bit is automatically reset and is always read as zero. |
| TAIE    | Bit 1       | Timer_A interrupt enable. This bit enables the TAIFG interrupt request.  Interrupt disabled  Interrupt enabled                                           |
| TAIFG   | Bit 0       | Timer_A interrupt flag 0 No interrupt pending 1 Interrupt pending                                                                                        |

# TAIV, Timer\_A Interrupt Vector Register

| 15 | 14 | 13 | 12 | 11    | 10    | 9     | 8  |
|----|----|----|----|-------|-------|-------|----|
| 0  | 0  | 0  | 0  | 0     | 0     | 0     | 0  |
| r0 | r0 | r0 | r0 | r0    | r0    | r0    | r0 |
|    |    |    |    |       |       |       |    |
| 7  | 6  | 5  | 4  | 3     | 2     | 1     | 0  |
| 0  | 0  | 0  | 0  |       | TAIVx |       | 0  |
| r0 | r0 | r0 | r0 | r-(0) | r-(0) | r-(0) | r0 |

TAIVx Bits Timer\_A interrupt vector value 15-0

| TAIV Contents | Interrupt Source               | Interrupt Flag | Interrupt<br>Priority |
|---------------|--------------------------------|----------------|-----------------------|
| 00h           | No interrupt pending           | -              |                       |
| 02h           | Capture/compare 1              | TACCR1 CCIFG   | Highest               |
| 04h           | Capture/compare 2              | TACCR2 CCIFG   |                       |
| 06h           | Capture/compare 3 <sup>†</sup> | TACCR3 CCIFG   |                       |
| 08h           | Capture/compare 4 <sup>†</sup> | TACCR4 CCIFG   |                       |
| 0Ah           | Timer overflow                 | TAIFG          |                       |
| 0Ch           | Reserved                       | -              |                       |
| 0Eh           | Reserved                       | -              | Lowest                |

<sup>†</sup> Timer1\_A5 only

# TAR, Timer\_A Register



TARx Bits Timer\_A register. The TAR register is the count of Timer\_A.

15-0

### TBCCRx, Timer B Capture/Compare Register x



TBCCRx Bits Timer B capture/compare register

15-0 Compare mode: Compare data is written to each TBCCRx and automatically transferred to TBCLx. TBCLx holds the data for the comparison to the timer value in the Timer B Register, TBR.

Capture mode: The Timer\_B Register, TBR, is copied into the TBCCRx register when a capture is performed.

# TBCCTLx, Timer\_B Capture/Compare Control Register

| 15      | 14            | 13                                                                                                 | 12                                                                                                                                                                                                                                                               | 11           | 10             | 9           | 8             |
|---------|---------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|-------------|---------------|
|         | CMx           | С                                                                                                  | CCISx                                                                                                                                                                                                                                                            |              | CLI            | LDx         | CAP           |
| rw-(0)  | rw-(0) rw-(0) |                                                                                                    | rw-(0)                                                                                                                                                                                                                                                           | rw-(0)       | rw-(0)         | rw-(0)      | rw-(0)        |
| 7       | 6             | 5                                                                                                  | 4                                                                                                                                                                                                                                                                | 3            | 2              | 1           | 0             |
|         | ОПТМОВ        | Σ                                                                                                  | CCIE                                                                                                                                                                                                                                                             | ccı          | OUT            | cov         | CCIFG         |
| rw-(0)  | rw-(0)        | rw-(0)                                                                                             | rw-(0)                                                                                                                                                                                                                                                           | r            | rw-(0)         | rw-(0)      | rw-(0)        |
| CM×     | Bit<br>15-14  | 10 Capture                                                                                         |                                                                                                                                                                                                                                                                  | lge          | j edges        |             |               |
| CCISx   | Bit<br>13-12  |                                                                                                    | pare input se<br>ce-specific da                                                                                                                                                                                                                                  |              |                |             |               |
| scs     | Bit 11        | signal with th<br>0 Asynch                                                                         | Synchronize capture source. This bit is used to synchronize the capture signal with the timer clock.  Asynchronous capture                                                                                                                                       |              |                |             | capture input |
| CLLDx   | Bit<br>10-9   | 00 TBCLx<br>01 TBCLx<br>10 TBCLx<br>TBCLx                                                          | Compare latch load. These bits select the compare latch load event.  O TBCLx loads on write to TBCCRx  O TBCLx loads when TBR counts to 0  TBCLx loads when TBR counts to 0 (up or continuous mode)  TBCLx loads when TBR counts to TBCL0 or to 0 (up/down mode) |              |                |             | ode)          |
| CAP     | Bit 8         |                                                                                                    | le<br>re mode<br>e mode                                                                                                                                                                                                                                          |              |                |             |               |
| OUTMODx | Bits<br>7-5   | Output mode EQUx = EQU 000 OUT bi 001 Set 010 Toggle/ 011 Set/res 100 Toggle 101 Reset 110 Toggle/ | t value<br>'reset<br>et<br>'set                                                                                                                                                                                                                                  | 6, and 7 are | e not useful f | or TBCL0, b | ecause        |

CCIE Bit 4 Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG flag. Interrupt disabled 0 1 Interrupt enabled CCI Bit 3 Capture/compare input. The selected input signal can be read by this bit. OUT Bit 2 Output. For output mode 0, this bit directly controls the state of the output. Output low 1 Output high COV Bit 1 Capture overflow. This bit indicates a capture overflow occurred. COV must be reset with software. No capture overflow occurred 0 1 Capture overflow occurred CCIFG Bit 0 Capture/compare interrupt flag No interrupt pending 0 1 Interrupt pending

#### TBCTL, Timer\_B Control Register

| 15     | 14     | 13     | 12     | 11     | 10     | 9      | 8      |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Unused | TBCL   | GRPx   | CN     | TLx    | Unused | TBS    | SELx   |
| rw-(0) |
| 7      | 6      | 5      | 4      | J 3    | 2      | 1      | 0      |
| IC     | Эх     | М      | Сх     | Unused | TBCLR  | TBIE   | TBIFG  |
| rw-(0) | rw-(0) | rw-(0) | rw-(0) | rw-(0) | w-(0)  | rw-(0) | rw-(0) |

Unused Bit 15 Unused

TBCLGRP Bit TBCLx group

14-13 00 Each TBCLx latch loads independently

01 TBCL1+TBCL2 (TBCCR1 CLLDx bits control the update) TBCL3+TBCL4 (TBCCR3 CLLDx bits control the update) TBCL5+TBCL6 (TBCCR5 CLLDx bits control the update)

TBCL0 independent

10 TBCL1+TBCL2+TBCL3 (TBCCR1 CLLDx bits control the update) TBCL4+TBCL5+TBCL6 (TBCCR4 CLLDx bits control the update) TBCL0 independent

11 TBCL0+TBCL1+TBCL2+TBCL3+TBCL4+TBCL5+TBCL6 (TBCCR1 CLLDx bits control the update)

CNTLx Bits Counter length

12-11 00 16-bit, TBR<sub>(max)</sub> = 0FFFFh

01 12-bit,  $TBR_{(max)} = 0FFFh$ 10 10-bit,  $TBR_{(max)} = 03FFh$ 

11 8-bit,  $TBR_{(max)} = 0FFh$ 

| Unused  | Bit 10      | Unused                                                                                                                                                                                                                                                                               |
|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TBSSELx | Bits<br>9-8 | Timer_B clock source select 00 TBCLK 01 ACLK 10 SMCLK 11 Inverted TBCLK                                                                                                                                                                                                              |
| IDx     | Bits<br>7-6 | Input divider. These bits select the divider for the input clock.  00 /1  01 /2  10 /4  11 /8                                                                                                                                                                                        |
| МСх     | Bits<br>5-4 | Mode control. Setting MCx = 00h when Timer_B is not in use conserves power.  O Stop mode: the timer is halted  Up mode: the timer counts up to TBCL0  Continuous mode: the timer counts up to the value set by TBCNTLx  Up/down mode: the timer counts up to TBCL0 and down to 0000h |
| Unused  | Bit 3       | Unused                                                                                                                                                                                                                                                                               |
| TBCLR   | Bit 2       | Timer_B clear. Setting this bit resets TBR, the clock divider, and the count direction. The TBCLR bit is automatically reset and is always read as zero.                                                                                                                             |
| TBIE    | Bit 1       | Timer_B interrupt enable. This bit enables the TBIFG interrupt request.  Interrupt disabled  Interrupt enabled                                                                                                                                                                       |
| TBIFG   | Bit 0       | Timer_B interrupt flag. 0 No interrupt pending 1 Interrupt pending                                                                                                                                                                                                                   |

# TBR, Timer\_B Register



TBRx Bits Timer\_B register. The TBR register is the count of Timer\_B. 15-0

# U1BR0, USART Baud Rate Control Register 0

| 7                     | 6              | 5              | 4  | 3                     | 2  | 1  | 0  |   |
|-----------------------|----------------|----------------|----|-----------------------|----|----|----|---|
| <b>2</b> <sup>7</sup> | 2 <sup>6</sup> | 2 <sup>5</sup> | 24 | <b>2</b> <sup>3</sup> | 22 | 21 | 20 |   |
| rw                    | rw             | rw             | rw | rw                    | rw | rw | rw | • |

# U1BR1, USART Baud Rate Control Register 1

| 7               | 6   | 5               | 4   | 3               | 2               | 1              | . 0                   |
|-----------------|-----|-----------------|-----|-----------------|-----------------|----------------|-----------------------|
| 2 <sup>15</sup> | 214 | 2 <sup>13</sup> | 212 | 2 <sup>11</sup> | 2 <sup>10</sup> | 2 <sup>9</sup> | <b>2</b> <sup>8</sup> |
| rw              | rw  | rw              | rw  | rw              | rw              | rw             | rw                    |

UxBRx

The valid baud-rate control range is  $3 \le UxBR < 0FFFFh$ , where  $UxBR = \{UxBR1 + UxBR0\}$ . Unpredictable receive and transmit timing occurs if UxBR < 3.

# **U1CTL, USART Control Register**

|    | PENA  | PEV   | SPB                                                                                                                                                                                               | CHAR                                           | LISTEN         | SYNC           | ММ            | SWRST |  |
|----|-------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------|----------------|---------------|-------|--|
|    | rw-0  | rw-0  | rw-0                                                                                                                                                                                              | rw-0                                           | rw-0           | rw-0           | rw-0          | rw-1  |  |
| F  | PENA  | Bit 7 | Parity enable  O Parity disabled  1 Parity enabled. Parity bit is generated (UTXDx) and expected (URXDx). In address-bit multiprocessor mode, the address bit included in the parity calculation. |                                                |                |                |               |       |  |
| F  | PEV   | Bit 6 | Parity select. I<br>0 Odd par<br>1 Even pa                                                                                                                                                        | ity                                            | sed when pa    | rity is disabl | ed.           |       |  |
| \$ | SPB   | Bit 5 | Stop bit select<br>checks for one<br>0 One stop<br>1 Two stop                                                                                                                                     | e stop bit.<br>p bit                           | stop bits tra  | nsmitted. Th   | e receiver al | ways  |  |
| (  | CHAR  | Bit 4 | Character leng<br>0 7-bit dat<br>1 8-bit dat                                                                                                                                                      | a                                              | 7-bit or 8-bit | character le   | ngth.         |       |  |
| ı  | ISTEN |       | Listen enable.<br>0 Disabled<br>1 Enabled                                                                                                                                                         |                                                |                |                |               |       |  |
| ,  | SYNC  | Bit 2 | Synchronous<br>0 UART m<br>1 SPI Mod                                                                                                                                                              | node                                           | e              |                |               |       |  |
| •  | им    | Bit 1 |                                                                                                                                                                                                   | r mode seled<br>multiprocess<br>-bit multiprod | sor protocol   | col            |               |       |  |

SWRST Bit 0 Software reset enable

- Disabled. USART reset released for operation
- 1 Enabled. USART logic held in reset state

# **U1MCTL, USART Modulation Control Register**

| 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|----|----|----|----|----|----|----|----|
| m7 | m6 | m5 | m4 | m3 | m2 | m1 | m0 |
| rw |

UxMCTLx Bits

7-0

Modulation bits. These bits select the modulation for BRCLK.

# **U1RCTL, USART Receive Control Register**

|   | 7      | . 6  | . 5                                                                                                                                                                                                                                                                                        | 4                                   | 3                                                | 2          | 1          | 0     |  |  |
|---|--------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------|------------|------------|-------|--|--|
|   | FE     | PE   | OE                                                                                                                                                                                                                                                                                         | BRK                                 | URXEIE                                           | URXWIE     | RXWAKE     | RXERR |  |  |
| • | rw-0   | rw-0 | rw-0                                                                                                                                                                                                                                                                                       | rw-0                                | rw-0                                             | rw-0       | rw-0       | rw-0  |  |  |
| F | Έ      | (    | Framing error<br>0 No error<br>1 Characte                                                                                                                                                                                                                                                  |                                     | vith low stop                                    | stop bit   |            |       |  |  |
| F | PE     | (    | Parity error flag. When PENA = 0, PE is read as 0.  0 No error  1 Character received with parity error  Overrup error flag. This bit is set when a character is transferred into                                                                                                           |                                     |                                                  |            |            |       |  |  |
| ( | DE     | ı    | Overrun error flag. This bit is set when a character is transferred into UxRXBUF before the previous character was read.  No error Overrun error occurred                                                                                                                                  |                                     |                                                  |            |            |       |  |  |
| E | BRK    |      |                                                                                                                                                                                                                                                                                            | lag<br>k condition<br>ondition occu | ırred                                            |            |            |       |  |  |
| ı | JRXEIE | (    |                                                                                                                                                                                                                                                                                            | us character                        | cter interrupt-<br>s rejected ar<br>s received s | nd URXIFGx | is not set |       |  |  |
|   | JRXWIE | 1    | Receive wake-up interrupt-enable. This bit enables URXIFGx to be set when an address character is received. When URXEIE = 0, an address character does not set URXIFGx if it is received with errors.  O All received characters set URXIFGx  Only received address characters set URXIFGx |                                     |                                                  |            |            |       |  |  |
| F | RXWAKE | (    | Receive wake-up flag  Received character is data  Received character is an address                                                                                                                                                                                                         |                                     |                                                  |            |            |       |  |  |
| F | RXERR  | 1    | Receive error flag. This bit indicates a character was received with error(s) When RXERR = 1, on or more error flags (FE,PE,OE, BRK) is also set. RXERR is cleared when UxRXBUF is read.                                                                                                   |                                     |                                                  |            |            |       |  |  |

No receive errors detected Receive error detected

### **U1RXBUF, USART Receive Buffer Register**

| 7                     | 6              | 5              | 4  | 3                     | 2  | 1  | 0                     |
|-----------------------|----------------|----------------|----|-----------------------|----|----|-----------------------|
| <b>2</b> <sup>7</sup> | 2 <sup>6</sup> | 2 <sup>5</sup> | 24 | <b>2</b> <sup>3</sup> | 22 | 21 | <b>2</b> <sup>0</sup> |
| r                     | ,              | ,              | r  | r                     | r  | ,  | r                     |

UxRXBUFx Bits

7-0

The receive-data buffer is user accessible and contains the last received character from the receive shift register. Reading UxRXBUF resets the receive-error bits, the RXWAKE bit, and URXIFGx. In 7-bit data mode, UxRXBUF is LSB justified and the MSB is always reset.

#### **U1TCTL, USART Transmit Control Register**

| 7      | 6    | 5    | 4    | 3     | 2      | 1      | 0     |
|--------|------|------|------|-------|--------|--------|-------|
| Unused | CKPL | SSI  | ELx  | URXSE | TXWAKE | Unused | TXEPT |
| rw-0   | rw-0 | rw-0 | rw-0 | rw-0  | rw-0   | rw-0   | rw-1  |

Unused Bit 7 Unused

CKPL Bit 6 Clock polarity select

0 UCLKI = UCLK

1 UCLKI = inverted UCLK

SSELx Bits Source select. These bits select the BRCLK source clock.

5-4 00 UCLKI

01 ACLK

10 SMCLK

11 SMCLK

URXSE Bit 3 UART receive start-edge. The bit enables the UART receive start-edge

feature.

0 Disabled

1 Enabled

TXWAKE Bit 2 Transmitter wake

0 Next frame transmitted is data

Next frame transmitted is an address

Unused Bit 1 Unused

TXEPT Bit 0 Transmitter empty flag

0 UART is transmitting data and/or data is waiting in UxTXBUF

1 Transmitter shift register and UxTXBUF are empty or SWRST = 1

# **U1TXBUF, USART Transmit Buffer Register**

| 7                     | 6                     | . 5 | 4  | 3  | 2  | 1  | 0  |  |
|-----------------------|-----------------------|-----|----|----|----|----|----|--|
| <b>2</b> <sup>7</sup> | <b>2</b> <sup>6</sup> | 25  | 24 | 23 | 22 | 21 | 20 |  |
| rw                    | rw                    | rw  | rw | rw | rw | rw | rw |  |

UxTXBUFx Bits

7-0

The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift register and transmitted on UTXDx. Writing to the transmit data buffer clears UTXIFGx. The MSB of UxTXBUF is not used for 7-bit data and is reset.

### UCA0ABCT, USCI A1 Auto Baud Rate Control Register

| 7    | 6     | . 5  | 4     | 3      | . 2    | 1        | . 0     |
|------|-------|------|-------|--------|--------|----------|---------|
| Rese | erved | UCDI | ELIMx | UCSTOE | UCBTOE | Reserved | UCABDEN |
| r-0  | r-0   | rw-0 | rw-0  | rw-0   | rw-0   | r-0      | rw-0    |

Reserved Bits Reserved

7-6

UCDELIMx Bits Break/synch delimiter length

5-4 00 1 bit time

01 2 bit times
 10 3 bit times
 11 4 bit times

UCSTOE Bit 3 Synch field time out error

0 No error

1 Length of synch field exceeded measurable time.

UCBTOE Bit 2 Break time out error

0 No error

1 Length of break field exceeded 22 bit times.

Reserved Bit 1 Reserved

UCABDEN Bit 0 Automatic baud rate detect enable

- 0 Baud rate detection disabled. Length of break and synch field is not measured.
- Baud rate detection enabled. Length of break and synch field is measured and baud rate settings are changed accordingly.

### UCAOBRO, USCI AO Bit Rate Control Register 0

|                   | 7                | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|-------------------|------------------|---|---|---|---|---|---|---|--|--|
|                   | UCBRx - low byte |   |   |   |   |   |   |   |  |  |
| rw rw rw rw rw rw |                  |   |   |   |   |   |   |   |  |  |

### UCAOBR1, USCI\_AO Bit Rate Control Register 1



UCBRx Bit clock prescaler setting.

The 16-bit value of (UCxxBR0+UCxxBR1x256) form the prescaler value

UCBRx.

### UCA0CTLO, USCI A0 Control Register 0

|   | 7     | 6     | 5     | 4      | 3     | 2    | 1    | 0        |
|---|-------|-------|-------|--------|-------|------|------|----------|
|   | UCPEN | UCPAR | UCMSB | UC7BIT | UCSPB | исмо | DDEx | UCSYNC=0 |
| • | rw-0  | rw-0  | rw-0  | rw-0   | rw-0  | rw-0 | rw-0 | rw-0     |

UCPEN Bit 7 Parity enable

Parity disabled.

1 Parity enabled. Parity bit is generated (UCAxTXD) and expected (UCAxRXD). In address-bit multiprocessor mode, the address bit is included in the parity calculation.

UCPAR Bit 6 Parity select. UCPAR is not used when parity is disabled.

Odd parity
 Even parity

UCMSB Bit 5 MSB first select. Controls the direction of the receive and transmit shift

register.

LSB first
 MSB first

UC7BIT Bit 4 Character length. Selects 7-bit or 8-bit character length.

0 8-bit data 1 7-bit data

UCSPB Bit 3 Stop bit select. Number of stop bits.

0 One stop bit1 Two stop bits

UCMODEx Bits USCI mode. The UCMODEx bits select the asynchronous mode when

2-1 UCSYNC = 0.

00 UART Mode.

01 Idle-Line Multiprocessor Mode.

10 Address-Bit Multiprocessor Mode.

11 UART Mode with automatic baud rate detection.

UCSYNC Bit 0 Synchronous mode enable

0 Asynchronous mode

1 Synchronous Mode

### UCA0CTL1, USCI\_A0 Control Register 1

| _ | 7    | 6     | . 5     | . 4     | 3      | 2        | 1       | 0       |
|---|------|-------|---------|---------|--------|----------|---------|---------|
|   | UCS  | SSELX | UCRXEIE | UCBRKIE | UCDORM | UCTXADDR | UCTXBRK | UCSWRST |
|   | rw-0 | rw-0  | rw-0    | rw-0    | rw-0   | rw-0     | rw-0    | rw-1    |

UCSSELx Bits USCI clock source select. These bits select the BRCLK source clock.

7-6 00 UCLK

01 ACLK

10 SMCLK

11 SMCLK

| UCRXEIE  | Bit 5 | Receive erroneous-character interrupt-enable  0 Erroneous characters rejected and UCAxRXIFG is not set  1 Erroneous characters received will set UCAxRXIFG                                                                                                                                                                                                       |
|----------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UCBRKIE  | Bit 4 | Receive break character interrupt-enable  Received break characters do not set UCAxRXIFG.  Received break characters set UCAxRXIFG.                                                                                                                                                                                                                              |
| UCDORM   | Bit 3 | <ul> <li>Dormant. Puts USCI into sleep mode.</li> <li>Not dormant. All received characters will set UCAxRXIFG.</li> <li>Dormant. Only characters that are preceded by an idle-line or with address bit set will set UCAxRXIFG. In UART mode with automatic baud rate detection only the combination of a break and synch field will set UCAxRXIFG.</li> </ul>    |
| UCTXADDR | Bit 2 | Transmit address. Next frame to be transmitted will be marked as address depending on the selected multiprocessor mode.  O Next frame transmitted is data  Next frame transmitted is an address                                                                                                                                                                  |
| UCTXBRK  | Bit 1 | Transmit break. Transmits a break with the next write to the transmit buffer. In UART mode with automatic baud rate detection 055h must be written into UCAxTXBUF to generate the required break/synch fields. Otherwise 0h must be written into the transmit buffer.  Next frame transmitted is not a break  Next frame transmitted is a break or a break/synch |
| UCSWRST  | Bit 0 | Software reset enable  0 Disabled. USCI reset released for operation.  1 Enabled. USCI logic held in reset state.                                                                                                                                                                                                                                                |

# UCA0IRRCTL, USCI\_A0 IrDA Receive Control Register

| 7    | 6         | 5    | 4    | 3    | 2    | . 1  | 0    |  |
|------|-----------|------|------|------|------|------|------|--|
|      | UCIRRXFLx |      |      |      |      |      |      |  |
| rw-0 | rw-0      | rw-0 | rw-0 | rw-0 | rw-0 | rw-0 | rw-0 |  |

| UCIRRXFLx | Bits<br>7-2 | Receive filter length. The minimum pulse length for receive is given by: $t_{MIN}$ = (UCIRRXFLx + 4) / (2 × $t_{BRCLK}$ )                                                  |
|-----------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UCIRRXPL  | Bit 1       | IrDA receive input UCAxRXD polarity  O IrDA transceiver delivers a high pulse when a light pulse is seen  IrDA transceiver delivers a low pulse when a light pulse is seen |
| UCIRRXFE  | Bit 0       | IrDA receive filter enabled  Receive filter disabled  Receive filter enabled                                                                                               |

# UCA0IRTCTL, USCI\_A0 IrDA Transmit Control Register



UCIRTXPLx Bits Transmit pulse length

7-2 Pulse Length t<sub>PULSE</sub> = (UCIRTXPLx + 1) / (2 x f<sub>IRTXCLK</sub>)

UCIRTXCLK Bit 1 IrDA transmit pulse clock select

0 BRCLK

1 BITCLK16 when UCOS16 = 1. Otherwise, BRCLK

UCIREN Bit 0 IrDA encoder/decoder enable.

IrDA encoder/decoder disabled
 IrDA encoder/decoder enabled

#### **UCA0MCTL, USCI A0 Modulation Control Register**

| 7    | 6    | 5    | 4    | 3    | 2      | 1    | 0    |
|------|------|------|------|------|--------|------|------|
|      | UCB  | RFx  |      |      | UCBRSx |      |      |
| rw-0 | rw-0 | rw-0 | rw-0 | rw-0 | rw-0   | rw-0 | rw-0 |

UCBRFx Bits First modulation stage select. These bits determine the modulation pattern

7-4 for BITCLK16 when UCOS16 = 1. Ignored with UCOS16 = 0. Table 19-3

shows the modulation pattern.

UCBRSx Bits Second modulation stage select. These bits determine the modulation

pattern for BITCLK. Table 19-2 shows the modulation pattern.

UCOS16 Bit 0 Oversampling mode enabled

0 Disabled

1 Enabled

### UCAORXBUF, USCI\_AO Receive Buffer Register

3-1



# UCRXBUFx Bits

Bits The receive-data buffer is user accessible and contains the last received 7-0 character from the receive shift register. Reading UCAxRXBUF resets the receive-error bits, the UCADDR or UCIDLE bit, and UCAxRXIFG. In 7-bit data mode, UCAxRXBUF is LSB justified and the MSB is always reset.

# UCAOSTAT, USCI\_A0 Status Register

| . 7      | 6    | . 5  | . 4  | 3     | . 2     | . 1              | . 0    |
|----------|------|------|------|-------|---------|------------------|--------|
| UCLISTEN | UCFE | UCOE | UCPE | UCBRK | UCRXERR | UCADDR<br>UCIDLE | UCBUSY |
| rw-0     | rw-0 | rw-0 | rw-0 | rw-0  | rw-0    | rw-0             | r-0    |

| UCLISTEN | Bit 7 | Listen enable. The UCLISTEN bit selects loopback mode.  O Disabled                                                                                                                                                                                                                                |
|----------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |       | <ol> <li>Enabled. UCAxTXD is internally fed back to the receiver.</li> </ol>                                                                                                                                                                                                                      |
| UCFE     | Bit 6 | Framing error flag                                                                                                                                                                                                                                                                                |
|          |       | No error     Character received with low stop bit                                                                                                                                                                                                                                                 |
| UCOE     | Bit 5 | Overrun error flag. This bit is set when a character is transferred into UCAxRXBUF before the previous character was read. UCOE is cleared automatically when UCxRXBUF is read, and must not be cleared by software. Otherwise, it will not function correctly.  No error  Overrun error occurred |
| UCPE     | Bit 4 | Parity error flag. When UCPEN = 0, UCPE is read as 0.  No error  Character received with parity error                                                                                                                                                                                             |
| UCBRK    | Bit 3 | Break detect flag  No break condition  Break condition occurred                                                                                                                                                                                                                                   |
| UCRXERR  | Bit 2 | Receive error flag. This bit indicates a character was received with error(s).  When UCRXERR = 1, on or more error flags (UCFE, UCPE, UCOE) is also set. UCRXERR is cleared when UCAxRXBUF is read.  No receive errors detected  Receive error detected                                           |
| UCADDR   | Bit 1 | Address received in address-bit multiprocessor mode.  Received character is data Received character is an address                                                                                                                                                                                 |
| UCIDLE   |       | Idle line detected in idle-line multiprocessor mode.  No idle line detected  Idle line detected                                                                                                                                                                                                   |
| UCBUSY   | Bit 0 | USCI busy. This bit indicates if a transmit or receive operation is in progress.  USCI inactive USCI transmitting or receiving                                                                                                                                                                    |

# UCA0TXBUF, USCI\_A0 Transmit Buffer Register



UCTXBUFx Bits

7-0

The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift register and transmitted on UCAxTXD. Writing to the transmit data buffer clears UCAxTXIFG. The MSB of UCAxTXBUE is not used for 7-bit data and is reset.

#### UCB0BR0, USCI B0 Baud Rate Control Register 0



# UCB0BR1, USCI\_B0 Baud Rate Control Register 1



UCBRx

Bit clock prescaler setting.

The 16-bit value of (UCxxBR0+UCxxBR1x256) form the prescaler value UCBRx.

## UCB0CTL0, USCI\_B0 Control Register 0

| 7     | 6       | 5    | 4      | 3     | 2     | 1      | . 0      |
|-------|---------|------|--------|-------|-------|--------|----------|
| UCA10 | UCSLA10 | исмм | Unused | UCMST | исмог | DEx=11 | UCSYNC=1 |
| rw-0  | rw-0    | rw-0 | rw-0   | rw-0  | rw-0  | rw-0   | r-1      |

UCA10 Bit 7 Own addressing mode select

0 Own address is a 7-bit address

1 Own address is a 10-bit address

UCSLA10 Bit 6 Slave addressing mode select

0 Address slave with 7-bit address

1 Address slave with 10-bit address

UCMM Bit 5 Multi-master environment select

Single master environment. There is no other master in the system.

The address compare unit is disabled.

Multi master environment

Unused Bit 4 Unused

UCMST Bit 3 Master mode select. When a master looses arbitration in a multi-master

environment (UCMM = 1) the UCMST bit is automatically cleared and the

module acts as slave.

Master mode

0 Slave mode

UCMODEx Bits USCI Mode. T

Bits USCI Mode. The UCMODEx bits select the synchronous mode when

2-1 UCSYNC = 1.

00 3-pin SPI

01 4-Pin SPI (master/slave enabled if STE = 1)

10 4-Pin SPI (master/slave enabled if STE = 0)

11 I<sup>2</sup>C mode

UCSYNC Bit 0 Synchronous mode enable

Asynchronous mode

1 Synchronous mode

#### UCB0CTL1, USCI\_B0 Control Register 1

| 7    | 6    | . 5    | 4    | 3        | 2       | 1       | 0       |
|------|------|--------|------|----------|---------|---------|---------|
| UCS  | SELX | Unused | UCTR | UCTXNACK | UCTXSTP | истхѕтт | UCSWRST |
| rw-0 | rw-0 | r0     | rw-0 | rw-0     | rw-0    | rw-0    | rw-1    |

UCSSELx Bits USCI clock source select. These bits select the BRCLK source clock.

7-6 00 UCLKI

01 ACLK

10 SMCLK

11 SMCLK

Unused Bit 5 Unused

UCTR Bit 4 Transmitter/Receiver

0 Receiver

1 Transmitter

UCTXNACK Bit 3 Transmit a NACK. UCTXNACK is automatically cleared after a NACK is

transmitted.

Acknowledge normally

1 Generate NACK

UCTXSTP Bit 2 Transmit STOP condition in master mode. Ignored in slave mode. In

master receiver mode the STOP condition is preceded by a NACK.

UCTXSTP is automatically cleared after STOP is generated.

No STOP generated

1 Generate STOP

UCTXSTT Bit 1 Transmit START condition in master mode. Ignored in slave mode. In

master receiver mode a repeated START condition is preceded by a NACK. UCTXSTT is automatically cleared after START condition and

address information is transmitted.

Ignored in slave mode.

0 Do not generate START condition

1 Generate START condition

UCSWRST Bit 0 Software reset enable

0 Disabled. USCI reset released for operation.

Enabled. USCI logic held in reset state.

# UCB0I2CIE, USCI\_B0 I<sup>2</sup>C Interrupt Enable Register

| 7    | 6    | 5     | 4    | 3        | 2       | 1       | 0      |
|------|------|-------|------|----------|---------|---------|--------|
|      | Rese | erved |      | UCNACKIE | UCSTPIE | UCSTTIE | UCALIE |
| rw-0 | rw-0 | rw-0  | rw-0 | rw-0     | rw-0    | rw-0    | rw-0   |

Reserved Bits Reserved 7 - 4UCNACKIE Bit 3 Not-acknowledge interrupt enable Interrupt disabled Interrupt enabled UCSTPIE Bit 2 Stop condition interrupt enable Interrupt disabled Interrupt enabled UCSTTIE Start condition interrupt enable Bit 1 0 Interrupt disabled Interrupt enabled UCALIE Bit 0 Arbitration lost interrupt enable 0 Interrupt disabled 1 Interrupt enabled

# UCB0I2COA, USCI\_B0 I<sup>2</sup>C Own Address Register

| 15     | 14   | 13   | 12   | 11   | 10   | 9      | 8    |  |
|--------|------|------|------|------|------|--------|------|--|
| UCGCEN | 0    | 0    | 0    | 0    | 0    | I2COAx |      |  |
| rw-0   | r0   | r0   | r0   | r0   | r0   | rw-0   | rw-0 |  |
|        |      |      |      |      |      |        |      |  |
| . 7    | 6    | 5    | 4    | 3    | 2    | 1      | 0    |  |
| I2COAx |      |      |      |      |      |        |      |  |
| rw-0   | rw-0 | rw-0 | rw-0 | rw-0 | rw-0 | rw-0   | rw-0 |  |

UCGCEN Bit 15 General call response enable

0 Do not respond to a general call

Respond to a general call

I2COAx Bits I<sup>2</sup>C own address. The I2COAx bits contain the local address of the USCI\_Bx
9-0 I<sup>2</sup>C controller. The address is right-justified. In 7-bit addressing mode Bit 6 is

I<sup>2</sup>C controller. The address is right-justified. In 7-bit addressing mode Bit 6 is the MSB, Bits 9-7 are ignored. In 10-bit addressing mode Bit 9 is the MSB.

# UCB0I2CSA, USCI\_B0 I<sup>2</sup>C Slave Address Register

|   | 15     | 14   | 13   | 12   | 11   | 10   | 9      | 8    |  |  |
|---|--------|------|------|------|------|------|--------|------|--|--|
|   | 0      | 0    | 0    | 0    | 0    | 0    | I2CSAx |      |  |  |
| • | r0     | r0   | r0   | r0   | r0   | r0   | rw-0   | rw-0 |  |  |
|   |        |      |      |      |      |      |        |      |  |  |
|   | 7      | 6    | 5    | 4    | 3    | 2    | 1      | 0    |  |  |
|   | I2CSAx |      |      |      |      |      |        |      |  |  |
| • | rw-0   | rw-0 | rw-0 | rw-0 | rw-0 | rw-0 | rw-0   | rw-0 |  |  |

I2CSAx Bits

9-0

I<sup>2</sup>C slave address. The I2CSAx bits contain the slave address of the external device to be addressed by the USCI\_Bx module. It is only used in master mode. The address is right-justified. In 7-bit slave addressing mode Bit 6 is the MSB, Bits 9-7 are ignored. In 10-bit slave addressing mode Bit 9 is the MSB.

## UCBORXBUF, USCI\_BO Receive Buffer Register



UCRXBUFx Bits

Bits 7-0 The receive-data buffer is user accessible and contains the last received character from the receive shift register. Reading UCBxRXBUF resets UCBxRXIFG.

## UCBOSTAT, USCI\_BO Status Register

|   | 7      | 6            | 5    | 4       | 3             | 2        | 1        | 0       |
|---|--------|--------------|------|---------|---------------|----------|----------|---------|
|   | Unused | UC<br>SCLLOW | UCGC | UCBBUSY | UCNACK<br>IFG | UCSTPIFG | UCSTTIFG | UCALIFG |
| · | rw-0   | r-0          | rw-0 | r-0     | rw-0          | rw-0     | rw-0     | rw-0    |

Unused Bit 7 Unused.
UC Bit 6 SCL low

SCLLOW 0 SCL is not held low

1 SCL is held low

UCGC Bit 5 General call address received. UCGC is automatically cleared when a

START condition is received.

No general call address received
 General call address received

UCBBUSY Bit 4 Bus busy

0 Bus inactive

1 Bus busy

| UCNACK<br>IFG                                                                                                                                                                                                                                  |                                             | c        | cleared when a START condition is received.  O No interrupt pending                                                                          |          |               |               |                |               |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|---------------|----------------|---------------|--|
| UCSTPIFG                                                                                                                                                                                                                                       |                                             | S        | Stop condition interrupt flag. UCSTPIFG is automatically cleared when a START condition is received.  No interrupt pending Interrupt pending |          |               |               |                |               |  |
| UCSTTIFG                                                                                                                                                                                                                                       |                                             | C        | Start condition interrupt flag. UCSTTIFG is automatically cleared if a STOP condition is received.  No interrupt pending Interrupt pending   |          |               |               |                |               |  |
| UCALIFG                                                                                                                                                                                                                                        |                                             |          | Arbitration lost interrupt flag  No interrupt pending  Interrupt pending                                                                     |          |               |               |                |               |  |
| UCB0TXBUF, USCI_B0 Transmit Buffer Register                                                                                                                                                                                                    |                                             |          |                                                                                                                                              |          |               |               |                |               |  |
|                                                                                                                                                                                                                                                | 7                                           | 6        | 5                                                                                                                                            | 4        | 3             | 2             | 1              | 0             |  |
|                                                                                                                                                                                                                                                | UCTXBUFx                                    |          |                                                                                                                                              |          |               |               |                |               |  |
| 1                                                                                                                                                                                                                                              | rw                                          | rw       | rw                                                                                                                                           | rw       | rw            | rw            | rw             | rw            |  |
| UCTXBUFx Bits The transmit data buffer is user accessible and holds the data waiting be moved into the transmit shift register and transmitted. Writing to the transmit data buffer clears UCBxTXIFG.  WDTCTL, Watchdog Timer Control Register |                                             |          |                                                                                                                                              |          |               |               |                | _             |  |
|                                                                                                                                                                                                                                                | 15                                          | 14       | 13                                                                                                                                           | 12       | 11            | 10            | 9              | 8             |  |
|                                                                                                                                                                                                                                                | WDTPW Reads as 069h Must be written as 05Ah |          |                                                                                                                                              |          |               |               |                |               |  |
|                                                                                                                                                                                                                                                |                                             |          |                                                                                                                                              |          |               |               |                |               |  |
| •                                                                                                                                                                                                                                              | 7                                           | 6        | 5                                                                                                                                            | 4        | 3             | 2             | 1              | 0             |  |
|                                                                                                                                                                                                                                                | WDTHOLD                                     | WDTNMIES | WDTNMI                                                                                                                                       | WDTTMSEL | WDTCNTCL      | WDTSSEL       | WD.            | тіѕх          |  |
| 1                                                                                                                                                                                                                                              | rw-0                                        | rw-0     | rw-0                                                                                                                                         | rw-0     | r0(w)         | rw-0          | rw-0           | rw-0          |  |
| ٧                                                                                                                                                                                                                                              | VDTPW                                       |          | Vatchdog time<br>PUC is gene                                                                                                                 |          | . Always read | d as 069h. Mu | ıst be writter | n as 05Ah, or |  |

Watchdog timer hold. This bit stops the watchdog timer. Setting

WDTHOLD = 1 when the WDT is not in use conserves power.

Watchdog timer is not stopped Watchdog timer is stopped

WDTHOLD Bit 7

WDTNMIES Bit 6 Watchdog timer NMI edge select. This bit selects the interrupt edge for the NMI interrupt when WDTNMI = 1. Modifying this bit can trigger an NMI. Modify this bit when WDTNMI = 0 to avoid triggering an accidental NMI. NMI on rising edge 1 NMI on falling edge WDTNMI Bit 5 Watchdog timer NMI select. This bit selects the function for the RST/NMI pin. Reset function 1 NMI function WDTTMSEL Bit 4 Watchdog timer mode select Watchdog mode 1 Interval timer mode WDTCNTCL Bit 3 Watchdog timer counter clear. Setting WDTCNTCL = 1 clears the count value to 0000h. WDTCNTCL is automatically reset. No action 1 WDTCNT = 0000h WDTSSEL Bit 2 Watchdog timer clock source select 0 SMCLK ACLK 1 WDTISx Bits Watchdog timer interval select. These bits select the watchdog timer interval 1-0 to set the WDTIFG flag and/or generate a PUC. Watchdog clock source / 32768 01 Watchdog clock source / 8192 10 Watchdog clock source / 512 Watchdog clock source / 64 11

## 6. References

This programming reference is a compilation of information provided by Texas Instruments in various datasheets, user guides, and application notes.

- [1] TI, "MSP430xG461x Mixed Signal Microcontroller," Oct. 2007.
- [2] TI, "MSP430x4xx Family User's Guide (SLAU056H)," Apr. 2009.
- [3] TI, "MSP430FG4618/F2013 Experimenter's Board User's Guide (SLAU213A)," Oct. 2007.