Started on	Thursday, 5 June 2025, 4:30 PM
State	Finished
Completed on	Thursday, 5 June 2025, 4:37 PM
Time taken	7 mins 2 secs
Question 1	
Complete	
Marked out of 1.00	
▼ Flag question	
Which layer is typicall	ly used to reduce spatial dimensions?
a. Convolutiona	al
b. Fully connect	ted
c. Max pooling	
d. ReLU	
J. 1.020	
Question 2	
Complete	
Marked out of 1.00	
Flag question	
What does a ReLU ac	tivation function do?
a. Replaces all v	values with their square
b. Converts inp	uts into probabilities
c. Computes th	e average of its inputs
d. Outputs zero	o for negative values and linear for positive values
Question 3 Complete	
Marked out of 1.00	
Flag question	
,	
What does batch nor	malimation do 2
what does patch hon	Halization do:
a. Reduces the	number of parameters
ob. Prevents van	ishing gradients by eliminating dropout
c. Removes bia	s from each layer
	he input to each layer for stable learning
_	
Question 4	?
Complete	

Marked out of 1.00

Flag question What is the benefit of using padding in convolution operations? a. To make the output smaller than the input b. To preserve spatial dimensions c. To increase the number of channels d. To normalize the input Question 5 Complete Marked out of 1.00 Flag question What is the role of the softmax layer at the end of a CNN? a. To normalize outputs into probability distributions b. To extract hierarchical features c. To apply non-linearity to feature maps d. To reduce overfitting Question 6 Complete Marked out of 1.00 Flag question What is the key idea behind residual connections in ResNet? a. Reducing activation memory b. Learning only from max pooling layers o. Using attention mechanisms d. Skip connections that learn identity mappings Question 7Complete Marked out of 1.00 Flag question

Which of the following is true about the stride in a convolutional layer?

- a. It defines the number of output channels
- b. It defines the number of filters used
- c. It controls the activation function
- d. It determines how far the kernel moves across the input

Question 8
Complete
Marked out of 1.00
Flag question
Why are 1×1 convolutions useful in an Inception module?
a. They expand spatial size
b. They increase feature redundancy
c. They reduce overfitting
 d. They reduce depth before expensive operations
Question 9
Complete
Marked out of 1.00
Flag question
Which of the following helps prevent overfitting in CNNs?
a. Dropout layers
b. Increasing batch size
c. Using larger convolutional kernels
○ d. Increasing learning rate
Question 10 Complete
Marked out of 1.00
Flag question
Why are stacked 3×3 convolutions often used instead of a single 5×5 convolution?
a. They make computation slower
b. They increase the number of parameters
c. They reduce receptive field size
d. They offer greater non-linearity and fewer parameters
Question 11
Complete
Marked out of 1.00
Flag question
What does the term "stride" of 2 mean in a convolution operation?
a. Two convolutions are performed simultaneously

10.11.52.100/local/student/qreview.php?attempt=21577

b. The kernel moves two steps at a time

○ c. Output size is doubled		
○ d. Kernel size is 2×2		
Question 12		
Complete		
Marked out of 1.00		
F Flag question		
What is the primary function of a convolutional layer in a CNN?		
What is the primary function of a convolutional layer in a crivi.		
a. To extract features from input data		
○ b. To normalize data		
c. To reduce dimensionality through pooling operations		
 d. To apply fully connected operations 		
Question 13		
Complete		
Marked out of 1.00		
▼ Flag question		
Which CNN architecture introduced grouped convolutions?		
■ a. AlexNet		
○ b. ResNet		
c. VGGNet		
○ d. LeNet		
Question 14		
Complete		
Marked out of 1.00		
▼ Flag question		
What is the main purpose of using pooling layers in CNNs?		
a. To increase the resolution of the image		
 b. To reduce spatial dimensions and computation 		
c. To apply non-linear activation		
○ d. To add learnable parameters		
Question 15		
Complete		
Marked out of 1.00		
P Flag question		

In Alexivet, what was the primary reason for introducing grouped convolutions:
a. To allow for larger kernel sizes
○ b. To improve convergence rate
○ c. To increase non-linearity
d. To train on multiple GPUs
Question 16
Complete
Marked out of 1.00
₹ Flag question
What happens to the receptive field as you go deeper in a CNN?
a. It decreases
○ b. It resets after every layer
c. It remains constant
d. It increases
Question 17
Complete
Marked out of 1.00
Flag question
What is the primary advantage of using 1×1 convolutions?
a. Increasing the depth of the network
b. Spatial pooling
c. Dimensionality reduction and channel-wise learning
○ d. Extracting edge features
Question 18
Complete Marked out of 1.00
Flag question
V Tieg squared.
Which of the following best describes the receptive field in CNNs?
a. The number of channels in the input
b. The number of filters used
c. The amount of memory consumed during training
 d. The region in the input that affects a particular output

Question	₁ 19				
Complete	e				
Marked o	out of 1.00				
₹ Flag o	₹ Flag question				
Whic	h technique is used to make CNNs computationally more efficient for mobile applications?				
(a	a. Fully connected layers				
○ k	o. ReLU6 activation				
O	z. Depthwise separable convolutions				
○ d. Batch normalization					
Question	n 20				
Complete	e e				
Marked o	out of 1.00				
Flag o	<u>uestion</u>				
What	is a dilated convolution used for?				
a. Compressing feature maps					
	b. Combining multiple filters				
c. Increasing the receptive field without losing resolution					
Od. Normalizing input data					

Finish review