DIGITAL LOGIC AND DESIGN LAB

EXPERIMENT-5

NAME: ANSHIL SETHREG NO.: 18BCI0173

• SLOT: L25+26

• SESSION: WINTER SEMESTER 2018-19

• FACULTY: PROF. LIJO V.P

DATE: - 29Th March 2019

2.

A. Design and implement four bit Johnson counter

TRUTH TABLE: -

CLOCK NO.	FFA	FFB	FFC	FFD
0	0	0	0	0
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
7	0	0	0	1

CIRCUIT AND WAVEFORM: -

3.

A. Design a Mod-6 ripple counter.

TRUTH TABLE: -

Qc	Q _B	Q _A	Reset logic
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Fig1. Truth table of MOD 6 asynchronous counter

CIRCUIT AND WAVEFORM: -

B. Implement a four bit serial adder using shift register TRUTH TABLE: -

\boldsymbol{A}	В	S	s_i	c_{i+1}	
1011	0011	0000	0	1	
0101	0001	1000	1	1	
0010	0000	1100	1	0	
0001	0000	1110	1	0	

CIRCUIT AND WAVE DIAGRAM: -

A. Transfer the contents of register 'A' to register 'B' in a serial manner using shift registers. The contents of the register 'A' need to be retained.

CIRCUIT AND DIAGRAM: -

TRUTH TABLE: -

Clock Cycle	Data in	Q_1	Q_2	Q ₃ = Data out
1	1 —	→ 1	0 \	0
2	0 —	→ 0 <	²⁴ 1 、	g 0
3	0 —	→ 0 <	ž 0 ′	٦ 1
4	1 —	→ 1	, 0 _E	Z 0
5	0 —	→ 0 <	^a 1 、	_γ 0
6	0 —	→ 0	0 ~	³ 1

3.

B. Design and implement asynchronous BCD counter

CIRCUIT AND WAVE DIAGRAM: -

TRUTH TABLE: -

Clock Pulse	Q ₃	Q ₂	Q _i	Q ₀
0	0	0	0	0
1	0	0	0	
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1 [0	1
6	0	1 [1	0 1 0
7	0	1 [1	
8	1	0	0	
9	1	0	0	1

2.

B. Design and implement four bit synchronous up – down binary counter.

CIRCUIT AND WAVE DIAGRAM: -

TRUTH TABLE: -

Table 5.6.2								
СК	Q ₃	Q ₂	Q ₁	Q	Q ₃	$\overline{\mathbf{Q}_{2}}$	Q ₁	Q _o
0	0	0	0	0	1	1	1	1
1	0	0	0	1	1	1	1	0
2	0	0	1	0	1	1	0	1
3	0	0	1	1	1	1	0	0
4	0	1	0	0	1	0	1	1
5	0	1	0	1	1	0	1	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	0	0
8	1	0	0	0	0	1	1	1
9	1	0	0	1	0	1	1	0
10	1	0	1	0	0	1	0	1
11	1	0	1	1	0	1	0	0
12	1	1	0	0	0	0	1	1
13	1	1	0	1	0	0	1	0
14	1	1	1	0	0	0	0	1
15	1	1	1	1	0	0	0	0

RESULT: -

Hence the above circuits are verified by the truth table and the wave diagram.

-----THANK YOU-----