Decision Tree

impurity measurement: Gini Index, Entropy, Misclassification error

①
$$Entropy(t) = -\sum_{j} P(j|t) \log_2 p(j|t)$$

Information Gain: Gainsplit = Entropy (P) -
$$\left(\sum_{i=1}^{k} \frac{ni}{n} \text{ Entropy}(i)\right)$$
(Spliting basedon)

IJ.

age	Yes	n0	I(yes,no)
≤30	2	3	I(2,3)
30~40	Ų	0	I(4,0)
>40	3	2	I (3.2)

age
$$I(9.5) = 0.94$$

$$I(9.5) = \frac{1}{4}I(2.3) + \frac{4}{4}I(4.0) + \frac{5}{4}I(3.2)$$

$$= 0.694$$
Gain (age) = $I(9.5) - E(age) = 0.246$

© GINI Index:
$$GINI(t) = 1 - \sum_{i=1}^{k} [p_{ij}|t]^{2}$$

(spliting based on) $GINI$ split = $\frac{k}{i=1} \frac{n_{i}}{n_{i}} GINI(i)$

Node (Node)

ef.

C ₁	М1 Т 2	N2 1 4
C I Cz	Parent 6 6	

Gini(N) =
$$1 - (\frac{1}{7})^2 - (\frac{1}{7})^2 = 0.408$$

Gini(N) = $1 - (\frac{1}{5})^2 - (\frac{1}{5})^2 = 0.32$
Gini (Children) = $\frac{7}{12} \times 0.408 + \frac{1}{12} \times 0.32 = 0.3713$
Gini (parent) = $\frac{1}{5} \times (1 - \frac{1}{5} - \frac{1}{5}) + \frac{1}{5}(1 - \frac{1}{5} - \frac{1}{5}) = \frac{1}{5}$
Gain = $\frac{1}{5} - 0.3713 = 0.1287$

3 classification error (at node t): Zrror(t) = 1 - max P(i|t)

ef.
$$C_1 = 0/6 = 0$$
, $P(C_1) = 6/6 = 1$
 $C_2 = 6$
 $C_1 = 0/6 = 0$, $P(C_2) = 6/6 = 1$
 $E_{VOY} = 1 - max(0, 1) = 0$
 $P(C_1) = 1/6$
 $P(C_2) = 1/6$
 $P(C_3) = 1/6$

Underfitting and Overfitting

Training and test error

Avoid Overfitting in Decision Tree

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction
 - Postpruning: Remove branches from a "fully grown" tree
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Underfitting: when model is too simple, both training and test errors are large

Pre-Pruning (Early Stopping Rule)

- Stop the algorithm before it becomes a fully-grown tree
- Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
- More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if class distribution of instances are independent of the available features (e.g., using γ^2 test)
 - Stop expanding the current node when the observed gain in purity measure falls below a certain threshold. (e.g., Gini or information gain).

Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottomup fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree

Estimating Generalization Errors

- Methods for estimating generalization errors:
 - Pessimistic approach:

For a decision tree T, Let N_t be the number of training records and e(T) be the number of misclassified records. Ω is the penalty term associated with each leaf node. The pessimistic error estimate, $e_a(T)$, can be computed as follows:

$$e_g(T) = \frac{e(T) + \Omega(T)}{N_t}$$

For example, suppose the penalty term is equal to 0.5

- For each leaf node: e'(t) = (e(t)+0.5)
- Total errors: $e'(T) = e(T) + N \times 0.5$ (N: number of leaf nodes)
- For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):

Training error = 10/1000 = 1%Generalization error = $(10 + 30 \times 0.5)/1000 = 2.5\%$

Training error (Before splitting) = 10/30

Pessimistic error = (10+0.5)/30=10.5/30

Training error (After splitting) = 9/30

Pessimistic error (After splitting) = (9+4x05)/30

=> Prune D

Evaluation of the Classifier

Predictive accuracy, speed and scalability, Robustness, Interpretability.

Method for Performance Evaluation

Holdout, Random Sampling, Cross Validation (k-fold, leave-one-out)

Performance Evaluation...

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)		
	Class=No	c (FP)	d (TN)		

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Performance Evaluation

$$Sensitivty = \frac{TP}{TP + FN}, \quad \text{(True positive rate)}$$

$$Specificity = \frac{TN}{TN + FP}$$
 (True negative rate)

$$Precision = \frac{TP}{TP + FP}$$

The percentage of instances predicted as "Yes" that actually are "Yes" instance.

Decision Tree: Advantages

- Applicability: no any prior assumption
- Model explains its reasoning -- builds rules
- Build model quickly and extremely fast at classifying unknown records
- No problems with missing data
- Works fine with many dimensions

Decision Tree: disadvantages

- Model has high order interactions -- all splits are dependent on previous splits
- Data are split at each node, making further splits able to use less and less data
- Decision Tree built is typically locally optimal and not globally optimal or best.
- The greedy characteristic of decision trees leads to oversensitivity to the training set, to irrelevant attributes and to noise make decision trees especially *unstable*: a minor change in one split close to the root will change the whole subtree below