## 12.4: Cross Products

The **cross product** of  $\vec{a}$  and  $\vec{b}$  is the vector normal to  $\vec{a}$  and  $\vec{b}$  whose length is the area of the parallelogram between  $\vec{a}$  and  $\vec{b}$ .



$$ext{area} = \left\| ec{A} imes ec{B} 
ight\| = \| ec{A} \| \| ec{B} \| \sin heta$$

In full:

$$ec{A} imes ec{B} = \Big( \| ec{A} \| \| ec{B} \| \sin heta \Big) \hat{\underline{n}}$$
Unit vector  $oldsymbol{\perp}$  to plane AB

Note that if  $\vec{a} \times \vec{b} = 0$ ,  $\vec{a}$  and  $\vec{b}$  are parallel.

## **Properties**

- 1.  $rec{u} imes sec{v}=(rs)(ec{u} imes ec{v})$
- 2.  $\vec{u} imes \vec{v} = -\vec{v} imes \vec{u}$  (cross product is <u>anticommutative</u> not commutative)
- з.  $ec{0} imesec{u}=ec{0}$
- 4.  $ec{u} imes(ec{v}+ec{w})=(ec{u} imesec{v})+(ec{u} imesec{w})$  (left distributive)
- 5.  $(ec{v}+ec{w}) imesec{u}=(ec{v} imesec{u})+(ec{w} imesec{u})$  (right distributive)
- 6.  $\vec{u} imes (\vec{v} imes \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} (\vec{u} \cdot \vec{v}) \vec{w}$  (not associative)

## **Cross product as determinant**

$$ec{u} imesec{v}=egin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \ u_1 & u_2 & u_3 \ v_1 & v_2 & v_3 \ \end{array} = egin{array}{ccc} u_2 & u_3 \ v_2 & v_3 \ \end{array} egin{array}{ccc} \mathbf{i} -egin{array}{ccc} u_1 & u_3 \ v_1 & v_3 \ \end{array} egin{array}{ccc} \mathbf{j} +egin{array}{ccc} u_1 & u_2 \ v_1 & v_2 \ \end{array} egin{array}{cccc} \mathbf{k} \end{array}$$

## **Triple scalar product**

Used to find the area of a parallelopiped (3D parallelogram)



$$(ec{u} imesec{v})\cdotec{w} = egin{vmatrix} dots & dots & dots \ ec{u} & ec{v} & ec{w} \ dots & dots & dots \end{bmatrix}$$

#module1 #week1