A SystemC profiling framework to improve fixed-point hardware utilization

Alisson Linhares,

Henrique Rusa, Daniel Formiga and Rodolfo Azevedo

alisson.carvalho@students.ic.unicamp.br

Institute of Computing
University of Campinas (Unicamp)

Motivation

Hardware Subutilization

Several publications have shown indications that arithmetic units are usually underutilized.

(David Brooks and Margaret Martonosi)
Dynamically exploiting narrow width operands to improve processor power and performance.

Hardware Subutilization

Several publications have shown indications that arithmetic units are usually underutilized.

(David Brooks and Margaret Martonosi)
Dynamically exploiting narrow width operands to improve processor power and performance.

Hardware Subutilization

Several publications have shown indications that arithmetic units are usually underutilized.

(David Brooks and Margaret Martonosi)

Dynamically exploiting narrow width operands to improve processor power and performance.

Typical DSP design workflow

Typical DSP design workflow

Profiling Infrastructure Profile runs in

SCView

```
filt_decim.cpp
          sc_fixed<19, 2, SC_RND, SC_SAT> stage_1;
   26
          bool stage_control_1 = false;
   27
                                                                                                                       Bit utilization
   28
          // signals for STAGE 2
   29
          sc fixed<19,2,SC RND,SC SAT> in stage 2;
   30
          sc_fixed<19,2,SC_RND,SC_SAT> buffer_2;
          sc fixed<36,4,SC RND,SC SAT> SoP2;
          sc_fixed<19, 2, SC_RND, SC_SAT> stage_2;
   32
33
          bool stage control 2 = false:
   34
   35
          // signals for STAGE 3
   36
          sc_fixed The analysis shows that some bits did not
                                                                                                          /fal
   37
                      affect the overall accuracy of the
   38
          sc fixed
                        application. To improve hardware
   39
          sc_fixed utilization, you can reduce the word length
                                                                                                           true/
   40
          bool sta (WL) to a value bigger than 7, in exchange
    41
                          for a reduction in precision.
          sc_fixed<19,2,SC_RND,SC_SAT> buffer_4;
                                                                                                           red
          sc fixed<36,4,SC RND,SC SAT> SoP4;
          sc_fixed<19, 2, SC_RND, SC_SAT> stage_4;
                                                                                                           Requir
          bool stage_control_4 = false;
    48
          // signals for STAGE 5
          sc fixed<19,2,SC RND,SC SAT> in stage 5
          sc fixed<36.4.SC RND.SC SAT> SoP5:
          sc fixed<19, 2, SC RND, SC SAT> stage 5;
          bool stage control 5 = false;
   54
   55
         stage counter 1 = 0:
                                                                                                                       Bits - [11.11111111111111] - iwl: 2, wl: 19
         stage counter 2 = 0;
         stage_counter_3 = 0;
   58
         stage counter 4 = 0;
   59
         stage_counter_5 = 0;
    60
                                                                                                                       Exponent range (%)
         unsigned int x=0::
         sc_fixed<17,2,SC_RND,SC_SAT> incoef2_var[TAPS_STAGE2]
         sc fixed<17,2,SC RND,SC SAT> incoef3 var[TAPS STAGE3]
         sc_fixed<17,2,SC_RND,SC_SAT> incoef4_var[TAPS_STAGE4]
         sc fixed<17.2.SC RND.SC SAT> incoef5 var[TAPS STAGE5]
                                                                                                                 0.6
    69
         wait();
   70
                                                                                                                 0.5
    71
         // Main stage filter body
   72
                                                                                                           requency
    73
         while( true )
    74
    75
   76
           if(load_coeff.read()){
    77
             // Read coefficients into coef arrays
   78
             for (x = 0; x < TAPS_STAGE1; x++) {
    79
               incoef1 var[x] = incoef1[x].read();
                                                                                                                 0.2
    80
   81
   82
             for (x = 0; x < TAPS_STAGE2; x++) {
                                                                                                                 0.1
```

```
filt_decim.cpp
          sc_fixed<19, 2, SC_RND, SC_SAT> stage_1;
   26
          bool stage_control_1 = false;
   27
                                                                                                                       Bit utilization
   28
          // signals for STAGE 2
   29
          sc fixed<19,2,SC RND,SC SAT> in stage 2;
   30
          sc_fixed<19,2,SC_RND,SC_SAT> buffer_2;
          sc fixed<36,4,SC RND,SC SAT> SoP2;
          sc_fixed<19, 2, SC_RND, SC_SAT> stage_2;
   32
33
          bool stage control 2 = false:
   34
                                                                                                           se)
   35
          // signals for STAGE 3
   36
          sc_fixed<19,2,SC_RND,SC_SAT> in_stage_3;
                                                                                                           /fal
   37
          sc_fixed<19,2,SC_RND,SC_SAT> buffer_3;
   38
          sc fixed<36,4,SC RND,SC SAT> SoP3;
   39
          sc_fixed<19, 2, SC_RND, SC_SAT> stage_3;
                                                                                                           true/
   40
          bool sta Some bits are never utilized. This may be a
                                                                                                                 0.6
    41
                    logic problem or the data used in your
    42
          // signa simulation is not representative. If this is
          sc_fixed and IWL: 1 to improve hardware utilization.
                                                                                                                 0.4
                                                                                                           Required
          bool stage_control_4 = false;
    48
                                                                                                                 0.2
          // signals for STAGE 5
          sc fixed<19,2,SC RND,SC SAT> in stage 5
          sc fixed<36.4.SC RND.SC SAT> SoP5:
          sc fixed<19, 2, SC RND, SC SAT> stage 5;
          bool stage_control_5 = false;
   54
   55
         stage counter 1 = 0:
                                                                                                                       Bits - [01.11111111111111] - iwl: 2, wl: 19
         stage counter 2 = 0;
         stage_counter_3 = 0;
   58
         stage counter 4 = 0;
   59
         stage_counter_5 = 0;
    60
                                                                                                                       Exponent range (%)
         unsigned int x=0::
         sc_fixed<17,2,SC_RND,SC_SAT> incoef2_var[TAPS_STAGE2]
         sc fixed<17,2,SC RND,SC SAT> incoef3 var[TAPS STAGE3]
         sc_fixed<17,2,SC_RND,SC_SAT> incoef4_var[TAPS_STAGE4]
         sc fixed<17.2.SC RND.SC SAT> incoef5 var[TAPS STAGE5]
                                                                                                                 0.4
    69
         wait();
   70
    71
         // Main stage filter body
   72
                                                                                                           equency
                                                                                                                 0.3
    73
         while( true )
    74
    75
   76
           if(load_coeff.read()){
                                                                                                                 0.2
    77
             // Read coefficients into coef arrays
   78
             for (x = 0; x < TAPS_STAGE1; x++) {
    79
               incoef1 var[x] = incoef1[x].read();
    80
   81
                                                                                                                 0.1
   82
             for (x = 0; x < TAPS_STAGE2; x++) {
```


Results

Simulation Environment

Benchmark	Description
cholesky	Cholesky Decomposition
dct	Fixed-point kernel from a JPEG encoder
decfilt	Decimation Filter System
fft	Fixed-point Fast Fourier Transform
interpolation	Interpolation Filter

- Machine:
 - o Intel 6600k,
 - o 2x8GB DDR4 2400MHz
 - o Debian 4.9.144-3.1
- Target FPGA:
 - Kintex®-7 FPGA (xc7k70tfbv676-1)
 - Vivado Design Suite HLx 2019.2
- Results:
 - 10 consecutive runs (mean average)

Simulation overhead

Simulation overhead

Memory usage

Memory usage

FPGA Statistics

Benchmark	D:	SP	F	F	LU	JT	Laten	cy (ns)	Clock (ns)		
	Ori.	Opt.	Ori.	Opt.	Ori.	Opt.	Ori.	Opt.	Ori.	Opt.	
cholesky	2	2 2		402	1126	1007	475	367	8.703	8.091	
dct	2	1	306	299	1013	1023	18358	18358	8.992	8.992	
decfilt	5	5	1848	1784	4028	3857	300	300	7.215	7.215	
fft	32	16	2458	2030	4197	4324	X	X	8.379	8.490	
interp	4	4	433	291	537	335	118	86	8.454	8.454	

FPGA Statistics

Benchmark	D:	SP	F	F	LU	JT	Laten	cy (ns)	Clock (ns)		
	Ori.	Opt.	Ori.	Opt.	Ori.	Opt.	Ori.	Opt.	Ori.	Opt.	
cholesky	2	2 2		402	1126	1007	475	367	8.703	8.091	
dct	2	1	306	299	1013	1023	18358	18358	8.992	8.992	
decfilt	5	5	1848	1784	4028	3857	300	300	7.215	7.215	
fft	32	16	2458	2030	4197	4324	X	X	8.379	8.490	
interp	4	4	433	291	537	335	118	86	8.454	8.454	

FPGA Statistics

Benchmark	D:	SP	F	F	LU	JT	Laten	cy (ns)	Clock (ns)		
	Ori.	Opt.	Ori.	Opt.	Ori.	Opt.	Ori.	Opt.	Ori.	Opt.	
cholesky	2 2 605 402		1126	1007	475	367	8.703	8.091			
dct	2	1	306	299	1013	1023	18358	18358	8.992	8.992	
decfilt	5	5	1848	1784	4028	3857	300	300	7.215	7.215	
fft	32	16	2458	2030	4197	4324	Х	X	8.379	8.490	
interp	4	4	33 291 537		537	5.5	118	86	2.454	8.454	

Less DSP -> More LUT

Real Life Application

Profiling a DSP hardware

- We tested the effectiveness of our methodology in a state of the art DSP Module.
 - The test was performed in a proprietary block.
 - IQC (Digital In-phase(I) and Quadrature phase(Q) imbalance correction).
 - Already optimized by professional hardware designers (During 1 year).

Profiling a DSP hardware

- We tested the effectiveness of our methodology in a state of the art DSP Module.
 - The test was performed in a proprietary block.
 - IQC (Digital In-phase(I) and Quadrature phase(Q) imbalance correction).
 - Already optimized by professional hardware designers (During 1 year).
- Methodology:
 - Profile IQC model:
 - Using 5 different real life scenarios.
 - Worst case, Upper Bound, Lower Bound, Normal execution and different variations.
 - And one random input stimulus with 124 million entries (Random Test).
 - Combined all results.
 - Apply optimization on System Verilog and SystemC.
 - Run Verification tests and Power Analysis.
 - Passing on the original test cases.

Results

	Original		Random		Test 1.1		Test 1.2		Test 1.3		Test 1.4		Test 1.5		Optir	nized	
Signal	WL	IWL	WL	IWL	WL	IWL	WL	IWL	WL	IWL	WL	IWL	WL	IWL	WL	IWL	Improvement
iqc_norm_t	9	1	9	1	9	1	9	1	9	1	9	1	9	1	9	1	0,00%
iqc_cang_rnd_sat_t	8	0	2	-6	4	-4	4	-4	4	-4	4	-4	4	-4	4	-4	50,00%
iqc_efilter_t	12	0	11	-1	11	-1	11	-1	11	-1	11	-1	11	-1	11	-1	8,33%
iqc_cang_calc_acc_t	13	0	7	-6	8	-5	8	-5	9	-4	8	-5	9	-4	9	-4	30,77%
iqc_q_cor_t	9	2	7	0	9	2	9	2	9	2	9	2	9	2	9	2	0,00%
iqc_energy2_t	11	-1	9	-3	9	-3	10	-2	9	-3	10	-2	10	-2	10	-2	9,09%
iqc_acc_a_s_t	16	-2	12	-6	13	-5	14	-4	13	-5	14	-4	14	-4	14	-4	12,50%
iqc_acc_i_u_t	11	-1	9	-3	9	-3	10	-2	9	-3	10	-2	10	-2	10	-2	9,09%
iqc_inv_t	14	5	13	4	14	5	13	4	14	5	13	4	13	4	14	5	0,00%
iqc_sqrt_t	12	0	10	-1	11	-1	11	-1	11	-1	11	-1	11	-1	1	-1	8,33%
iqc_inv_t_x	14	5	11	2	11	2	11	2	11	2	11	2	11	2	11	2	21,43%
iqc_cang_div_t	13	0	10	-3	11	-2	11	-2	11	-2	11	-2	11	-2	11	-2	15,38%
iqc_cang_calc_t	13	0	5	-8	6	-7	6	-7	6	-7	6	-7	6	-7	6	-7	53,85%
iqc_acc_a_u_t	15	-3	11	-7	12	-6	13	-5	12	-6	13	-5	13	-5	13	-5	13,33%
iqc_out_t	8	1	7	0	8	1	8	1	8	1	8	1	8	1	8	1	0,00%
iqc_angn_t	9	1	3	-5	4	-4	4	-4	4	-4	4	-4	4	-4	4	-4	55,56%

Results

Signal	Orig	ginal	Ran	dom	dom Test 1.1		Tes	Test 1.2		t 1.3	Tes	t 1.4	Tes	t 1.5	Optimized		Improvement
Signal	WL	IWL	WL	IWL	WL	IWL	WL	IWL	WL	IWL	WL	IWL	WL	IWL	WL	IWL	Improvement
iqc_norm_t	9	1	9	1	9	1	9	1	9	1	9	1	9	1	9	1	0,00%
iqc_cang_rnd_sat_t	8	0	2	-6	4	-4	4	-4	4	-4	4	-4	4	-4	4	-4	50,00%
iqc_efilter_t	12	0	11	-1	11	-1	11	-1	11	-1	11	-1	11	-1	11	-1	8,33%
iqc_cang_calc_acc_t	13	0	7	-6	8	-5	8	-5	9	-4	8	-5	9	-4	9	-4	30,77%
iqc_q_cor_t	9	2	7	0	9	2	9	2	9	2	9	2	9	2	9	2	0,00%
iqc_energy2_t	11	-1	9	-3	9	-7	10	-	2	7	10	-2_	10	-2	10	-2	9,09%
iqc_acc_a_s_t	16	-2	12	-6	13	-5	.4	4	1 0	P				-4	14	-4	12,50%
iqc_acc_i_u_t	11	-1	9	-3	9	-3	10	-2	9	-3	10	-2	10	-2	10	-2	9,09%
iqc_inv_t	14	5	13		14	5	F	4	14	5	13	4	13	4	14	5	0,00%
iqc_sqrt_t	12	0	10	-1	11	-1	п	ec	1	U	Li (11	-1	1	-1	8,33%
iqc_inv_t_x	14	5	11	2	11	2	11	2	11	2	11	2	11	2	11	2	21,43%
iqc_cang_div_t	13	0	10		The second	-2		K 1	a"C	-	ih	-7	71		Ш	-2	15,38%
iqc_cang_calc_t	13	0	5	8-		-	1 5	P	6	•		-7		7	6	-7	53,85%
iqc_acc_a_u_t	15	-3	11	-7	12	-6	13	-5	12	-6	13	-5	13	-5	13	-5	13,33%
iqc_out_t	8	1	7	0	8	1	8	1	8	1	8	1	8	1	8	1	0,00%
iqc_angn_t	9	1	3	-5	4	-4	4	-4	4	-4	4	-4	4	-4	4	-4	55,56%

Thank you!

A SystemC profiling framework to improve fixed-point hardware utilization

Alisson Linhares,

Henrique Rusa, Daniel Formiga and Rodolfo Azevedo

alisson.carvalho@students.ic.unicamp.br

Institute of Computing
University of Campinas (Unicamp)
Campinas, SP, Brazil
August, 2020

