Task - 1

```
In [1]:
         import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
In [2]:
         df = pd.read_csv("V:\\Datasets\\NLP\\ToyotaCorolla.csv")
In [3]:
         df_1 = df.copy(deep=False)
In [4]:
         df_1.head()
Out[4]:
            Price Age
                        KM FuelType HP MetColor Automatic
                                                             CC Doors Weight
        0 13500
                                     90
                                                         0 2000
                  23 46986
                               Diesel
                                               1
                                                                     3
                                                                         1165
        1 13750
                  23 72937
                               Diesel
                                     90
                                                         0 2000
                                                                     3
                                                                         1165
        2 13950
                  24 41711
                               Diesel 90
                                                         0 2000
                                                                     3
                                               1
                                                                         1165
        3 14950
                  26 48000
                               Diesel
                                     90
                                                         0 2000
                                                                     3
                                                                         1165
                                                                     3
        4 13750
                  30 38500
                               Diesel 90
                                               0
                                                         0 2000
                                                                         1170
In [5]:
         # Basic Information of the dataset
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1436 entries, 0 to 1435
        Data columns (total 10 columns):
         #
             Column
                      Non-Null Count Dtype
             -----
                        -----
         0
             Price
                        1436 non-null
                                        int64
                                      int64
         1
             Age
                        1436 non-null
         2
                        1436 non-null int64
             KM
             FuelType 1436 non-null object
         3
         4
                      1436 non-null int64
         5
             MetColor 1436 non-null int64
         6
             Automatic 1436 non-null
                                       int64
         7
                        1436 non-null
                                       int64
         8
             Doors
                        1436 non-null
                                       int64
                        1436 non-null
                                       int64
             Weight
        dtypes: int64(9), object(1)
        memory usage: 112.3+ KB
In [6]:
         # Dimentions of the Dataset
         df.shape
        (1436, 10)
Out[6]:
In [7]:
         # Determine the number of features available.
         print("Number of features available in a Dataset: ",df.columns)
         print("Number of Columns with respective to rows",df[df.columns].count())
```

```
Number of features available in a Dataset: Index(['Price', 'Age', 'KM', 'FuelType',
'HP', 'MetColor', 'Automatic', 'CC',
       'Doors', 'Weight'],
      dtype='object')
Number of Columns with respective to rows Price
                                                       1436
Age
             1436
ΚM
             1436
FuelType
             1436
HP
             1436
MetColor
            1436
             1436
Automatic
CC
             1436
Doors
             1436
Weight
            1436
dtype: int64
# Perform 5 number summary (min, lower quartile, median, upper quartile, max.
df.describe()
```

Out[8]:		Price	Age	KM	НР	MetColor	Automatic	C
	count	1436.000000	1436.000000	1436.000000	1436.000000	1436.000000	1436.000000	1436.00000
	mean	10730.824513	55.947075	68533.259749	101.502089	0.674791	0.055710	1566.82799
	std	3626.964585	18.599988	37506.448872	14.981080	0.468616	0.229441	187.18243
	min	4350.000000	1.000000	1.000000	69.000000	0.000000	0.000000	1300.00000
	25%	8450.000000	44.000000	43000.000000	90.000000	0.000000	0.000000	1400.00000
	50%	9900.000000	61.000000	63389.500000	110.000000	1.000000	0.000000	1600.00000
	75%	11950.000000	70.000000	87020.750000	110.000000	1.000000	0.000000	1600.00000
	max	32500.000000	80.000000	243000.000000	192.000000	1.000000	1.000000	2000.00000

In [8]:

In [9]: # Access the top 10 rows from the dataset.
 df.head(10)

Out[9]:		Price	Age	KM	FuelType	НР	MetColor	Automatic	cc	Doors	Weight
	0	13500	23	46986	Diesel	90	1	0	2000	3	1165
	1	13750	23	72937	Diesel	90	1	0	2000	3	1165
	2	13950	24	41711	Diesel	90	1	0	2000	3	1165
	3	14950	26	48000	Diesel	90	0	0	2000	3	1165
	4	13750	30	38500	Diesel	90	0	0	2000	3	1170
	5	12950	32	61000	Diesel	90	0	0	2000	3	1170
	6	16900	27	94612	Diesel	90	1	0	2000	3	1245
	7	18600	30	75889	Diesel	90	1	0	2000	3	1245
	8	21500	27	19700	Petrol	192	0	0	1800	3	1185
	9	12950	23	71138	Diesel	69	0	0	1900	3	1105

```
df.tail(2)
               Price Age
                           KM FuelType
                                        HP MetColor Automatic
                                                                 CC Doors Weight
Out[10]:
         1434 7250
                      70
                         16916
                                  Petrol
                                         86
                                                   1
                                                             0 1300
                                                                              1015
         1435 6950
                                                   0
                                                                         5
                     76
                            1
                                  Petrol 110
                                                             0 1600
                                                                              1114
        Tast - 2
In [11]:
          # Access a group of rows and columns by label(s).
          # ['Price', 'Age', 'KM', 'FuelType']
          res = df[["Price", "Age", "KM", "FuelType"]]
          print(res)
               Price Age
                              KM FuelType
         0
               13500
                     23 46986
                                  Diesel
         1
               13750 23 72937
                                   Diesel
         2
               13950 24 41711
                                  Diesel
               14950 26 48000 Diesel
         3
               13750 30 38500 Diesel
         4
                 . . . . . . . .
               7500 69 20544
                                 Petrol
         1431
         1432 10845 72 19000
                                  Petrol
         1433
               8500
                       71 17016
                                   Petrol
         1434
                7250
                       70 16916
                                  Petrol
         1435
                6950
                       76
                                   Petrol
         [1436 rows x 4 columns]
In [12]:
          missing_value = df.isnull()
          missing_value.head()
          for i in missing_value.columns.values.tolist():
              print(missing_value[i].value_counts())
              print(" ")
         False
                  1436
         Name: Price, dtype: int64
         False
                  1436
         Name: Age, dtype: int64
                  1436
         False
         Name: KM, dtype: int64
         False
                  1436
         Name: FuelType, dtype: int64
         False
                  1436
         Name: HP, dtype: int64
                  1436
         False
         Name: MetColor, dtype: int64
         False
                  1436
         Name: Automatic, dtype: int64
         False
                  1436
```

In [10]: | # Access Last 2 rows from the dataset

```
False
                                                     1436
                           Name: Weight, dtype: int64
In [13]:
                             # Display total number of missing values for each column.
                             df.isnull().sum()
                           Price
                                                                0
Out[13]:
                           Age
                                                                0
                           ΚM
                                                                0
                                                                0
                           FuelType
                          HP
                          MetColor
                                                               0
                           Automatic
                                                               0
                          CC
                           Doors
                                                                0
                          Weight
                           dtype: int64
In [14]:
                             # Replace missing values with mean for continuous variable and mod for categorical 
m 	extstyle 	extstyl
                             # Also display the result for total missing values after replacing the missing value
                                                     # In my dataset there is no Missing Values
In [15]:
                             df.head()
Out[15]:
                                     Price Age
                                                                        KM FuelType HP
                                                                                                                          MetColor Automatic
                                                                                                                                                                                     CC Doors Weight
                           0 13500
                                                         23 46986
                                                                                                                90
                                                                                                                                            1
                                                                                                                                                                         0 2000
                                                                                                                                                                                                           3
                                                                                                                                                                                                                         1165
                                                                                             Diesel
                           1 13750
                                                                                                                90
                                                                                                                                                                         0 2000
                                                         23 72937
                                                                                             Diesel
                                                                                                                                                                                                           3
                                                                                                                                                                                                                        1165
                           2 13950
                                                         24 41711
                                                                                             Diesel
                                                                                                                90
                                                                                                                                            1
                                                                                                                                                                         0 2000
                                                                                                                                                                                                           3
                                                                                                                                                                                                                        1165
                           3 14950
                                                         26 48000
                                                                                                                                                                                                           3
                                                                                             Diesel
                                                                                                                90
                                                                                                                                                                              2000
                                                                                                                                                                                                                        1165
                           4 13750
                                                         30 38500
                                                                                                                                                                                                           3
                                                                                                                                                                                                                        1170
                                                                                             Diesel
                                                                                                                90
                                                                                                                                            0
                                                                                                                                                                         0 2000
In [16]:
                             # Remove the following features from the dataset
                             # ['CC', 'Doors', 'Weight']
                             df_1 = df.drop(columns = ["CC", "Doors", "Weight"], inplace = True)
In [17]:
                             df.columns
                           Index(['Price', 'Age', 'KM', 'FuelType', 'HP', 'MetColor', 'Automatic'], dtype='obje
Out[17]:
                           ct')
                         Task - 3
In [28]:
                             # Visualize the data using scatter plot for two features (x='Age', y='Price'). Also i
```

Provide title, and labels for both axis.

Apply some marker and set different colors for bar and marker.

Name: CC, dtype: int64

1436 Name: Doors, dtype: int64

False

```
plt.scatter(x = df["Age"],y = df["Price"],color = "red", marker = "^")
plt.title("Age & Price")
plt.xlabel("Age")
plt.ylabel("Price")
plt.show()
```



```
In [36]:
# Create a histogram for the feature 'KM'.
# Also set the following properties:
# No of bins=5
# Edge color=White
# X Label= Kilometer
# Y Label= Frequency
# Title= Histogram of Kilometer

plt.hist(df["KM"],Edgecolor= "White", bins = 5)
plt.xlabel("Kilometer")
plt.ylabel("Frequency")
plt.title("Histogram of Kilometer")
plt.show()
```

C:\Users\svasu\AppData\Local\Temp/ipykernel_5548/79081367.py:9: MatplotlibDeprecatio nWarning: Case-insensitive properties were deprecated in 3.3 and support will be rem oved two minor releases later

plt.hist(df["KM"],Edgecolor= "White", bins = 5)


```
In [43]:  # Detect Outliers  # Apply box and whisker plot to find the outliers in the dataset.
```

```
plt.boxplot("Age",data = df)
Out[43]: {'whiskers': [<matplotlib.lines.Line2D at 0x1dfa279ff10>,
           <matplotlib.lines.Line2D at 0x1dfa279f580>],
           'caps': [<matplotlib.lines.Line2D at 0x1dfa279fbb0>,
           <matplotlib.lines.Line2D at 0x1dfa279f4c0>],
           'boxes': [<matplotlib.lines.Line2D at 0x1dfa279f5b0>],
           'medians': [<matplotlib.lines.Line2D at 0x1dfa2618370>],
           'fliers': [<matplotlib.lines.Line2D at 0x1dfa2618850>],
           'means': []}
          80
          70
          60
          50
          40
          30
          20
          10
                                    8
           0
In [45]:
          plt.boxplot("Price",data = df)
         {'whiskers': [<matplotlib.lines.Line2D at 0x1dfa1a9dd60>,
Out[45]:
           <matplotlib.lines.Line2D at 0x1dfa1a9d970>],
           'caps': [<matplotlib.lines.Line2D at 0x1dfa1a9d0d0>,
           <matplotlib.lines.Line2D at 0x1dfa1a2fe50>],
           'boxes': [<matplotlib.lines.Line2D at 0x1dfa1a57820>],
           'medians': [<matplotlib.lines.Line2D at 0x1dfa24ef430>],
           'fliers': [<matplotlib.lines.Line2D at 0x1dfa24efeb0>],
           'means': []}
                                       0
          30000
          25000
          20000
          15000
          10000
           5000
In [46]:
          plt.boxplot("KM",data = df)
         {'whiskers': [<matplotlib.lines.Line2D at 0x1dfa2550ca0>,
Out[46]:
           <matplotlib.lines.Line2D at 0x1dfa2a4d070>],
           'caps': [<matplotlib.lines.Line2D at 0x1dfa2a4d430>,
            <matplotlib.lines.Line2D at 0x1dfa2a4d7c0>],
           'boxes': [<matplotlib.lines.Line2D at 0x1dfa2550910>],
           'medians': [<matplotlib.lines.Line2D at 0x1dfa2a4db50>],
```

Also interpret the result.

```
200000
          150000
          100000
           50000
               0
In [48]:
          plt.boxplot("HP",data = df)
         {'whiskers': [<matplotlib.lines.Line2D at 0x1dfa29969d0>,
Out[48]:
            <matplotlib.lines.Line2D at 0x1dfa2996550>],
           'caps': [<matplotlib.lines.Line2D at 0x1dfa2996a30>,
            <matplotlib.lines.Line2D at 0x1dfa29b1280>],
           'boxes': [<matplotlib.lines.Line2D at 0x1dfa29965e0>],
           'medians': [<matplotlib.lines.Line2D at 0x1dfa29b1610>],
           'fliers': [<matplotlib.lines.Line2D at 0x1dfa29b19a0>],
           'means': []}
                                     0
          180
          160
          140
          120
          100
           80
In [49]:
          plt.boxplot("MetColor",data = df)
         {'whiskers': [<matplotlib.lines.Line2D at 0x1dfa2881fa0>,
Out[49]:
            <matplotlib.lines.Line2D at 0x1dfa2a1ac10>],
           'caps': [<matplotlib.lines.Line2D at 0x1dfa2a1a7c0>,
            <matplotlib.lines.Line2D at 0x1dfa2a1af10>],
           'boxes': [<matplotlib.lines.Line2D at 0x1dfa2881c70>],
           'medians': [<matplotlib.lines.Line2D at 0x1dfa2a1a550>],
           'fliers': [<matplotlib.lines.Line2D at 0x1dfa2a3a1f0>],
           'means': []}
```

'fliers': [<matplotlib.lines.Line2D at 0x1dfa2a4dee0>],

'means': []}

250000


```
In [54]:
    plt.figure()
    plt.boxplot(df["HP"], 0, 'rs', 0, 0.75)
    plt.show()
```



```
In [56]:
    plt.figure()
    plt.boxplot(df["MetColor"], 0, 'rs', 0, 0.75)
    plt.show()
```



```
In [57]:
    plt.figure()
    plt.boxplot(df["KM"], 0, 'rs', 0, 0.75)
    plt.show()
```



```
In [58]:
    plt.figure()
    plt.boxplot(df["Price"], 0, 'rs', 0, 0.75)
    plt.show()
```



```
In [59]: plt.figure()
   plt.boxplot(df["Age"], 0, 'rs', 0, 0.75)
   plt.show()
```

