

Parallele Sortierung

Björn Rathjen Patrick Winterstein Freie Universität Berlin

Proseminar Algorithmen, SS14

Inhalt

Motivation

Allgemein

Bezug aufs Fach

Vorraussetzungen

Komparator

0,1-Prinzip

Sortiernetzwerk

Aufbau

Sortieren im Sortiernetzwerk

Laufzeit

Herleitung

Vergleich mit Software sortieren

Fazit

Geschwindigkeit vs Variabilität

Hardwareaufwand vs Softwareaufwand

Zusammenfassung

Ausblick

Hybercube

Anhang

Motivation Allgemein Bezug aufs Fach

Vorraussetzungen

Sortiernetzwerk

Laufzeit

Fazit

Zusammenfassung

Aushlid

Allgemein

ist Basis für:

- Sortierung
- Suche

Bezug aufs Fach

- ► Listen , Wörterbücher
- Datenbanken
- ▶ ...

Vorraussetzungen Komparator 0,1-Prinzip

Sortiernetzwerk

Laufzeit

Fazit

Zusammenfassung

Aushlick

abstrakter Aufbau

- ▶ 2 Eingänge
- vergleichender Baustein
- ▶ 2 Ausgänge

besteht aus


```
void comp(chan in1, in2, out1 out2){
a = <- in1
b = <- in2

if (a < b)
out1 <- a
out2 <- b
return void

out1 <- b
out2 <- a
return void
}</pre>
```

Konvention für die folgenden Folien

- ▶ Reihenfolge des Inputs egal
- kleineres Element am oberen Ausgang
- größeres Element am unteren Ausgang

Aufgabe

soll

- einfach
- anschaulich
- aber korrekt

zeigen dass etwas sortiert wurde

man kann jede Zahlenfolge durch eine 0,1 Folge repräsentieren

0,1- Beispiel

Vorraussetzungen

Sortiernetzwerk Aufbau Sortieren im Sortiernetzwerk

Laufzeit

Fazit

Zusammenfassung

Aushlick

besteht aus mehreren Komperatoren

Sortieren im Sortiernetzwerk

sort in sortnet

Beschreibung Teil 1

- Aufgabe
- grundlegendes Prinzip
- ► Demonstration (kleines Beispiel)
- Veranschaulichung an einem 2^x Beispiel
- zeigen dass Aufgabe erfüllt wird

Beschreibung Teil 2

- Aufgabe
- grundlegendes Prinzip
- Demonstration (kleines Beispiel)
- Veranschaulichung an einem 2^x Beispiel
- zeigen dass Aufgabe erfüllt wird

Vorraussetzungen

Sortiernetzwerk

Laufzeit
Herleitung
Vergleich mit Software sortieren

Fazit

Zusammenfassung

Aushlick

Herleitung

Herleitung

Vergleich

Vorraussetzunger

Sortiernetzwerk

Laufzeit

Fazit

Geschwindigkeit vs Variabilität Hardwareaufwand vs Softwareaufwand

Zusammenfassung

Aushlick

Fazit

speed vs vari

hardware vs software

Vorraussetzungen

Sortiernetzwerk

Laufzeit

Fazit

Zusammenfassung

Ausblick

Zusammenfassung

zusammenfassung

Vorraussetzungen

Sortiernetzwerk

Laufzeit

Fazit

Zusammenfassung

Ausblick Hybercube Anhang

Ausblick

weiter

Hyprecube

?¿

structur

Fragen, Anregungen? (keine Liederwünsche)

A. Author.

Taschenbuch der Algorithmen.

Springer Verlag, 2008.

Tom Leighton.

Einführung in Parallele Algorithmen und Architekturen Gitter, Bäume und Hypercubes.

Thomsom Publisching, 1997.

Make Titles Informative. Use Uppercase Letters. Long Titles are Split Automatically.

- ▶ Use itemize a lot.
- Kurze Sätze benutzen.

Make Titles Informative.

You can create overlays...

- ▶ using the pause command:
 - ► First item.

Make Titles Informative.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
- using the general uncover command:

Make Titles Informative.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
- using the general uncover command:

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.


```
int main (void)
 std::vector<bool> is_prime (100, true);
 for (int i = 2; i < 100; i++)
 return 0;
```



```
int main (void)
{
    std::vector<bool> is_prime (100, true);
    for (int i = 2; i < 100; i++)
        if (is_prime[i])
        {
        }
    return 0;
}</pre>
```



```
int main (void)
{
   std::vector<bool> is_prime (100, true);
   for (int i = 2; i < 100; i++)
      if (is_prime[i])
      {
        std::cout « i « " ";
        for (int j = i; j < 100;
            is_prime [j] = false, j+=i);
    }
   return 0;
}</pre>
```



```
int main (void)
 std::vector<bool> is_prime (100, true);
 for (int i = 2; i < 100; i++)
    if (is_prime[i])
        std::cout « i « " ":
        for (int j = i; j < 100;
             is_prime [i] = false, i+=i);
 return 0;
Note the use of std::.
```


Example

- ▶ 2 is prime (two divisors: 1 and 2).
- ▶ 3 is prime (two divisors: 1 and 3).
- ▶ 4 is not prime (three divisors: 1, 2, and 4).

There is no largest prime number and, in addition,

$$\int_{\Omega} \nabla u \cdot \nabla v = -\int_{\Omega} u \Delta v + \int_{\partial \Omega} u v n$$

Proof.

1. Suppose *p* were the largest prime number.

4. Thus q + 1 is also prime and greater than p.

There is no largest prime number and, in addition,

$$\int_{\Omega} \nabla u \cdot \nabla v = -\int_{\Omega} u \Delta v + \int_{\partial \Omega} u v n$$

Proof.

- 1. Suppose *p* were the largest prime number.
- 2. Let *q* be the product of the first *p* numbers.
- 4. Thus q + 1 is also prime and greater than p.

There is no largest prime number and, in addition,

$$\int_{\Omega} \nabla u \cdot \nabla v = -\int_{\Omega} u \Delta v + \int_{\partial \Omega} u v n$$

Proof.

- 1. Suppose *p* were the largest prime number.
- 2. Let *q* be the product of the first *p* numbers.
- 3. Then q + 1 is not divisible by any of them.
- 4. Thus q + 1 is also prime and greater than p.

Ш

There is no largest prime number and, in addition,

$$\int_{\Omega} \nabla u \cdot \nabla v = -\int_{\Omega} u \Delta v + \int_{\partial \Omega} u v n$$

Proof.

- 1. Suppose *p* were the largest prime number.
- 2. Let *q* be the product of the first *p* numbers.
- 3. Then q + 1 is not divisible by any of them.
- 4. Thus q + 1 is also prime and greater than p.

The proof used reductio ad absurdum.

Make Titles Informative.

Summary

- ► The first main message of your talk in one or two lines.
- ► The second main message of your talk in one or two lines.
- ▶ Perhaps a third message, but not more than that.

- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.