SHM

- 1. An object is in simple harmonic oscillation about the position x = 0 with a period of 2 seconds and an amplitude of 4 cm. At time t = 0 its position is x = +2 cm. Write its displacement x, velocity \dot{x} , and acceleration \ddot{x} as functions of time.
- **2.** Given $x(t) = A \sin(\omega t + \phi_0)$ for the displacement from equilibrium in simple harmonic oscillation, determine the phase constant ϕ_0 for each of the following conditions at t = 0:
 - (a) x(0) = A (b) x(0) = -A
 - (c) x(0) = 0 and $\dot{x}(0) < 0$ (d) x(0) = 0 and $\dot{x}(0) > 0$
 - (e) x(0) = A/2 and $\dot{x}(0) > 0$ (f) x(0) = A/2 and $\dot{x}(0) < 0$
- 3. An object of mass m=25 g on a frictionless flat surface is attached to the right-hand end of a horizontal spring with k=0.4 N m⁻¹. At time t=0 the object is located 10 cm to the right of its equilibrium position and has a velocity $\dot{x}=40$ cm s⁻¹ towards the right. Knowing that $x(t)=A\sin(\omega t+\phi_0)$, find
 - (a) the angular frequency ω of the oscillation; (b) the period T; (c) the frequency f;
 - (d) the amplitude A and phase constant ϕ_0 ; (e) the position x and velocity \dot{x} at time $t = \pi/8$; (f) the maximum velocity \dot{x}_{\max} , and the position x at which $\dot{x} = \dot{x}_{\max}$; (g) the maximum acceleration \ddot{x}_{\max} , and the position x at which $\ddot{x} = \ddot{x}_{\max}$.
- 4. A simple pendulum, consisting of a 100-gram bob at the end of a string of length L=1 m, is hanging straight down in equilibrium. Another 100-gram mass moving horizontally at a speed of +2 m s⁻¹ hits the bob of the pendulum at t=0 and sticks to it, which starts the pendulum swinging.
 - (a) Calculate the angular frequency ω , given that $g = 9.81 \text{ m s}^{-2}$.
 - (b) Use the conservation of momentum to find the initial linear velocity, $\dot{s}(0)$, of the pendulum bob, and from this find the initial angular velocity $\dot{\theta}(0) = \dot{s}(0)/L$.
 - (c) From the information above, and assuming that the angular displacement as a function of time is of the form $\theta(t) = \theta_{\text{max}} \sin(\omega t + \phi_0)$, find the phase constant ϕ_0 and the angular amplitude θ_{max} . Confirm that the amplitude you find is small enough that the underlying approximation $\sin \theta \simeq \theta$ is a good one, and find the first time t > 0 at which $\theta = \theta_{\text{max}}$.