UNIVERSIDAD NACIONAL AGRARIA LA MOLINA FACULTAD DE ECONOMIA Y PLANIFICACIÓN DEPARTAMENTO ACADÉMICO DE ECONOMIA Y PLANIFICACION

SILABO

1. INFORMACIÓN GENERAL

1.1 Curso : MACROECONOMÍA DINÁMICA

 1.2
 Código
 : EP 3072

 1.3
 Créditos
 : 4

 1.4
 Semestre académico
 : 2021 - I

1.5 Requisitos : MACROECONOMÍA II

1.6 Horas Semanales : 5 Teoría : 3 Prácticas : 2

1.7 Fechas inicio/final : 05 de julio / 16 de Octubre 2021

1.8 No semanas : 15

1.9 Profesor : Econ. Juan Pichihua Serna, M.A.

: jpichihua@lamolina.edu.pe

2. SUMILLA

Macroeconomía Dinámica es un curso cuyo propósito es dotar al alumno de un conjunto de herramientas teóricas de optimización dinámica micro fundados que le permitan describir, explicar y predecir la trayectoria óptima de los agregados macroeconómicos en un contexto de modelos económicos dinámicos de tiempo continuo o discreto.

El curso consta tres partes: (1) métodos de optimización dinámica para modelos dinámicos de tiempo continuo y tiempo discreto, (2) formular y resolver modelos de generaciones traslapadas y (3) tópicos especiales y aplicaciones a la producción, consumo, inversión y explotación de recursos naturales.

3. COMPETENCIAS, HABILIDADES O CAPACIDADES A LOGRAR:

El estudiante al finalizar el curso debe ser capaz de:

- Comprender la naturaleza dinámica e inter-temporal de las decisiones económicas.
- Identificar la naturaleza y las opciones de solución de problemas dinámicos de modelos microfundados y de equilibrio general.
- Mejorar su capacidad de abstracción en la construcción de modelos dinámicos.
- Desarrollar un análisis crítico para discriminar que tipo de solución corresponde al problema planteado.

Realizar trabajos en equipo con sus compañeros de clase.

4. PROGRAMACION CALENDARIZADA DE CONTENIDOS:

Semana	ana │CAPÍTULO 1: INTRODUCCIÓN A LA OPTIMIZACIÓN DINÂMICA						
1	Logro: El estudiante toma conocimiento de situaciones de optimización dinámica, identifica						
	componentes del problema y los instrumentos para resolverlos.						
	El problema de la optimización dinámica.						
	Componentes: funcional objetivo, restricciones, valor inicial y final, costos-beneficios						
	Tiempo continuo y tiempo discreto.						
	Usa conocimientos de cálculo diferencial e integral.						
	Desarrolla problemas de ecuaciones diferenciales y en diferencia.						
	Identifica elementos del proceso de optimización dinámica						
	Discrimina el método apropiado para cada tipo de problema de optimización en tiempo						
	continuo y tiempo discreto.						
Lecturas /	bibliografía sugerida:						
Bonifa	Bonifaz & Lama (2009). Cap.1						

Semana 2 y 3

CAPÍTULO 2: CALCULO DE VARIACIONES

Logro: El estudiante identifica y resuelve problemas de optimización dinámica para tiempo continuo mediante el método de Cálculo de variaciones.

- Planteamiento del problema
- Ecuación de Euler
- Extensiones a la ecuación de Euler
- Condición de segundo orden
- Condición de transversalidad
- Problemas con horizonte infinito
- Diagramas de fase y estabilidad
- Noción de estado estacionario

Utiliza ecuaciones diferenciales ordinarias de primer y segundo orden.

Identifica solución general, solución particular y solución complementaria.

Capacidad de especificar un problema de cálculo de variaciones a partir de aplicaciones asociadas a las actividades económicas.

Lecturas / bibliografía sugerida:

Bonifaz & Lama (2009). Cap. 2

Semana 4, 5 y 6

CAPÍTULO 3: CONTROL ÓPTIMO

Logro: El estudiante identifica y resuelve problemas de optimización dinámica para tiempo continuo mediante el método de Control Óptimo.

- Planteamiento del problema
- Condiciones de transversalidad
- Problemas con horizonte infinito
- Hamiltoniano en tiempo corriente
- Problemas con más de una variable
- Diagramas de fase y estabilidad
- Noción de estado estacionario
- Utiliza cálculo para tiempo continuo: ecuaciones diferenciales ordinarias de primer y segundo orden.
- Identifica solución general, solución particular y solución complementaria.

Capacidad de especificar un problema de control óptimo a partir de aplicaciones asociadas a las actividades económicas

Lecturas / bibliografía sugerida:

Bonifaz & Lama (2009). Cap. 3.

Semana 7 y 8

CAPÍTULO 4: PROGRAMACIÓN DINÁMICA

Logro: El estudiante identifica y resuelve problemas de optimización dinámica para tiempo discreto mediante el método de Programación Dinámica.

- Ecuación de Bellman.
- Principio del Máximo de Pontryagin.
- Ecuación de Benveniste & Scheinkman
- Ecuación de Euler
- Horizonte finito e infinito
- Condiciones de transversalidad
- Aplicaciones

Utiliza cálculo para tiempo discreto: ecuaciones en diferencias ordinarias de primer y segundo orden.

Capacidad de especificar un problema de programación dinámica a partir de aplicaciones asociadas a las actividades económicas.

Lecturas / bibliografía sugerida:

Usa Bonifaz & Lama (2009). Cap. 4

EXAMEN PARCIAL

Fecha asignada por la Oficina de Estudios

Semana 10 y 11

CAPÍTULO 5: MODELO DE GENERACIONES TRASLAPADAS

Logro: El estudiante especifica y resuelve problemas macroeconómicos donde los agentes viven dos períodos, donde no hay un agente típico.

- · Características, supuestos
- El equilibrio en estado estacionario
- MGT con producción y distribución
- Equivalencia Ricardiana
- Seguridad Social (sistema de pensiones: capitalización individual vs reparto.

Utiliza métodos de optimización y adivinanzas inteligentes para encontrar al regla de política. Capacidad de especificar un problema utilizando modelos de generaciones traslapadas a partir de aplicaciones asociadas a las actividades económicas.

Lecturas / bibliografía sugerida:

- Forteza, Alvaro, 2009. Notas de clase.
- Acemoglu, Daron, 2009. Cap. 9.

Semana 12 y 13

CAPÍTULO 6: MODELOS DE CRECIMIENTO ECONÓMICO

Logro: El estudiante relaciona problemas macroeconómicos de crecimiento económico con los métodos de optimización dinámica.

- Modelo de Solow: hipótesis, regla de oro, acumulación de capital, convergencia y cambio tecnológico.
- Modelo de Ramsey: agentes, equilibrio en estado estacionario, crecimiento y regla de oro modificada.
- Introducción a los modelos de crecimiento endógeno con tecnología AK.
- modelos de crecimiento learning by doing y capital humano.

Usa métodos de optimización dinámica para resolver problemas asociados a modelos de crecimiento económico.

Capacidad de especificar un problema de optimización dinámica a partir de aplicaciones asociadas a las actividades económicas.

Lecturas / bibliografía sugerida:

- Acemoglu, Daron, 2009. Cap. 10.
- Bergoeing, R., 2001. Notas de Clase.

Semana 14 y 15

CAPÍTULO 7: TÓPICOS EN MACROECONOMÍA DINÁMICA

Logro: El estudiante relaciona problemas macroeconómicos de crecimiento económico con los métodos de optimización dinámica.

- Macrodinámica para una economía abierta.
- Macrodinámica y política monetaria
- Macrodinámica con precios imperfectamente flexibles

Usa métodos de optimización dinámica para resolver problemas asociados a modelos dinámicos aplicados a tópicos especiales

Identifica la regresión espuria y cointegración

Identifica, estima y controla modelos VEC y VAR estructural

Lecturas / bibliografía sugerida:

Wickens, Michael, 2008

EXAMEN FINAL

Fecha asignada por la Oficina de Estudios

5. PROGRAMA CALENDARIZADO DE PRÁCTICAS EN LABORATORIO

N°	Semana	Titulo
1	1 y 2	Revisión de ecuaciones diferenciales y ecuaciones en diferencia. Aplicaciones
2	3 y 4	Aplicaciones y solución de problemas de cálculo de variaciones
3	5 y 6	Aplicaciones y solución de problemas de Control óptimo
4	7 y 8	Aplicaciones y solución de problemas de Programación dinámica
5	10 y 11	Aplicaciones y solución de problemas con modelos de generaciones traslapadas
6	12 y 13	Aplicaciones de optimización dinámica a modelos de crecimiento económico
7	14 y 15	Aplicación de optimización dinámica a política macroeconómica

1. ESTRATEGIAS METODOLÓGICAS

La interacción profesor-estudiante se dará a través la participación activa del estudiante en las actividades programadas.

SESIONES TEÓRICAS

Son sesiones de aprendizaje en las que el profesor, facilita la interiorización de los conceptos, métodos y herramientas disponibles en la solución de problemas de optimización dinámica.

SESIONES PRÁCTICAS

Son actividades no recuperables, para proveer al estudiante de experiencias de aprendizaje directa y activa con situaciones de la realidad profesional. Dan la oportunidad al estudiante de poner en práctica la integración de la habilidad, el conocimiento y actitudes en situaciones relevantes de su profesión despertando la exploración, investigación y experimentación de los procesos estudiados.

2. CRITERIOS DE EVALUACIÓN

Se muestra a continuación, los criterios para la evaluación del curso:

Competencias Metodología		Ponderación de los criterios	Criterios de evaluación		
Procedimentales	6	Controles de Lectura	10%	Demuestra conceptos e identifica y aplica herramientas apropiadas	
	5	Prácticas calificadas	20%	Aplicaciones de modelos para hacerlo	
Actitudinales ¹		Valoración de actitud y participación	10%	Puntualidad, responsabilidad, actitud y participación, exposición	
		Examen medio curso	25%	Evaluación teórica -	
Conceptuales		Examen final	25%	práctica	
	5	Temas (Tareas) encargados	10%	Evaluación práctica	
Total			100%		

3. REFERENCIAS BIBLIOGRÁFICAS (SI NO HA SIDO ESTABLECIDA ANTERIORMENTE)

N°	Autor	Titulo	Edición	Paginas
1	Acemoglu, Daron.	Introduction to Modern	2009. Princeton University	485
		Growth Theory,	Press, New Jersey	
2	Bergoeing, Raphael	"Notas Sobre	2001. Centro de Economía	1188
		Macroeconomía	Aplicada Universidad de	
		Dinámica",	Chile.	
3	Bonifaz E., José Luis	Optimización Dinámica y	2009. Primera Edición	669
	& Ruy Lama	Teoría Económica	Corregida, Universidad del	
			Pacífico, Lima.	
4	Forteza, Alvaro	Política fiscal en modelos	2009. Universidad de la	271
		de generaciones	República, Uruguay	
		solapadas.		
5	Lomelí, Héctor &	Métodos Dinámicos en	2001. Instituto Tecnológico	429
	Beatriz Rumbos	Economía. Otra Búsqueda	Autónomo de México. México	
		del Tiempo Perdido	DF.	
6	Van Nieuwerburgh,	Exercises in Recursive	2003. Stanford University.	881
	Stijn, 2003.	Macroeconomic Theory.		
7	Wickens, Michael	Macroeconomic Theory: A	2008 Princeton University	735
		Dynamic General	Press, New Jersey	
		Equilibrium Approach		

La Molina, 10 de Julio 2021