Signali i sustavi

Drugi međuispit (probna grupa) – 14. svibnja 2007.

5 min

1. Ako je odziv LTI (linearnog vremenski nepromjenjivog) sustava y[n] zadan kao y[n] = u[n] * h[n], koliko bi tad iznosilo u[n+1] * h[n+1]?

a) y[n-2] b) y[n-1] c) y[n] d) y[n+1] e) y[n+2] f) Ništa od navedenoga!

3 min

2. Izraz $(\sin(t) * \delta(t+2))\delta(t-1)$ je jednak:

navedenoga!

a) $\sin(3)\delta(t-1)$ b) $\sin(t+1)$ c) $\sin(t-1)$ d) $\sin(t)*\delta(t-1)$ e) $\sin(t)*\delta(t+1)$

f) Ništa od

5 min

Zadana je pobuda $u(n) = 2(-1)^n$, a jedini korijeni karakterističnog polinoma diskretnog LTI sustava su -1 i -2. Parti-3. kularno rješenje $y_p(n)$ je:

a) $y_p(n) = n^{-2}(-1)^n$ b) $y_p(n) = n^{-1}(-1)^n$ c) $y_p(n) = n^2(-1)^n$ d) $y_p(n) = n^3(-1)^n$ e) $y_p(n) = ne^n$

f) Ništa od navedenoga!

6 min

Zadana je jednadžba diferencija y(n+2) + 5y(n+1) + 6y(n) = 8u(n+1) + 4u(n) uz $u(n) = (\frac{1}{2})^n$. Partikularno rješenje 4.

a) $y_p(n) = \frac{32}{35}(-\frac{1}{4})^n$ b) $y_p(n) = \frac{16}{19}(\frac{1}{2})^{2n}$ c) $y_p(n) = \frac{32}{35}(\frac{1}{2})^n$ d) $y_p(n) = \frac{32}{45}(\frac{1}{2})^n$ e) $y_p(n) = \frac{32}{45}(-\frac{1}{2})^n$

f) Ništa od navedenoga!

4 min

5. Neka je diferencijalna jednadžba oblika $3y''(t) + 2y'(t) = 3\sin(3t), \forall t \in \mathbb{R}$. Pretpostavljeno partikularno rješenje biti će oblika:

a) $\sin(t)$

b) $C\cos(2t)$

c) $t^3(3\sin(3t) + 3\cos(3t))$ d) $3\sin(t + \pi/2)$ e) $C_1\sin(3t) + C_2\cos(3t)$

f) Ništa od navedenoga!

6 min

6. Kontinuirani LTI sustav prvog reda zadan je diferencijalnom jednadžbom $y'(t) + 2y(t) = u(t), \forall t \in \mathbb{R}$. Na ulaz sustava dovedena je pobuda $u(t) = 3e^{-2t}$. Vrijednost odziva sustava y(t) u trenutku t = 1 uz početni uvjet y(0) = 1 iznosi:

a) $-4e^{-2}$

b) $-2e^{-2}$ c) e^{-2} d) $2e^{-2}$ e) $4e^{-2}$ f) Ništa od navedenoga!

5 min

Zadan je kontinuirani LTI sustav. Ako je odziv na pobudu $u(t) = t \mu(t)$ jednak $y(t) = (2e^{-t} + te^{-t} - 2) \mu(t)$, nađite 7. impulsni odziv sustava. Pretpostavite da su početni uvjeti jednaki nuli.

a) $te^{-t} \mu(t) - 2 \delta(t)$

b) $te^{-t} \mu(t) - \delta(t)$ **c)** $e^{-t} \mu(t) - \delta'(t)$ **d)** $t^2 e^{-t} \mu(t) - \delta(t)$ **e)** $te^{-t} \mu(t) + 2 \delta(t)$

f) Ništa od navedenoga!

2 min

5 min

8. Zadan je kontinuiran LTI sustav $y'(t) + 2y(t) = 3u'(t) + 2u(t), \forall t \in \mathbb{R}$. Ukoliko sustav pobudimo signalom $\mu(t)$ koliko iznosi početni uvjet $y(0^+)$ ako je vrijednost početnog uvjeta $y(0^-) = 4$?

a) $y(0^+) = 0$ navedenoga!

b) $y(0^+) = 6$ **c)** $y(0^+) = 7$ **d)** $y(0^+) = 1$ **e)** $y(0^+) = y(0^-) = 4$ **f)** Ništa od

9. Kontinuirani sustav zadan je matricama $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -3 & -2 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}$ i $\mathbf{D} = \begin{bmatrix} 0 \end{bmatrix}$. Ukoliko sustav prevedemo u ulazno izlaznu formu koliki je koeficijent uz y'?

a) 0

b) 1

c) 2

d) 3

e) 4 f) Ništa od navedenoga!

-		٠	
	m	1	n

- 10. Zadan je diskretan LTI sustav trećeg reda opisan jednadžbom y(n+3) + 5y(n+2) + 11y(n+1) + 6y(n) = u(n). Ako su početni uvjeti y(0) = y(1) = y(2) = 0 odredite vrijednost odziva y(n) nepobuđenog sustava u koraku n = 100?
 - **a**) 0
- **b**) 1
- **c**) 2
- **d**) 3
- e) 4 f) Ništa od navedenoga!

4 min

- Za linearni sustav opisan diferencijalnom jednadžbom $\ddot{y}(t) + a\dot{y}(t) + y(t) = u(t)$ odredite parametar a tako da sustav daje 11. neprigušen odziv.

 - a) a = -2 b) a = -1 c) a = 0 d) a = 1 e) a = 2

- f) Ništa od navedenoga!

10 min

- 12. Odaberi točnu tvrdnju!
 - a) Kontinuirani LTI sustav kojeg smo pobudili harmonijskom pobudom frekvencije koja odgovara jednostrukoj vlastitoj frekvenciji sustava koji pokazuje linearni porast amplitude titranja nužno ima polove u desnoj poluravnini.
 - b) Trajektorije u ravnini stanja nepobuđenog stabilnog kontinuiranog LTI sustava uvijek teže k nuli kada t teži k be-
 - c) Trajektorija u ravnini stanja povezana s impulsnim odzivom stabilnog kontinuiranog LTI sustava 5 reda bez obzira na izbor varijabli stanja uvijek započinje u točci (1, 2, 3, 4, 5) i završava u nuli.
 - d) Kontinuirani LTI sustav n-tog reda koji ima strogo manje od n različitih polova s_i (karakterističnih frekvencija) je asimptotski stabilan ako je $Re\{s_i\} < 0$.
 - e) Impulsni odziv kontinuiranog LTI sustava opisanog u prostoru stanja dan je izrazom $h(t) = \begin{cases} 0, t < 0 \\ \mathbf{B}e^{\mathbf{D}t} + \mathbf{C}\delta(t), t \geq 0 \end{cases}$.
 - f) Sve tvrdnje su točne!

2 min

- Diskretni LTI sustav drugog reda opisan je jednadžbom diferencija $y(n) \frac{5}{2}y(n-1) + y(n-2) = u(n)$. Ako je odziv 13. nepobuđenog sustava $y(n) = 2^n + 2^{-n}$, $\forall n \in \mathbb{Z}$, odredite početna stanja y(-2) i y(-1) sustava.
- a) $y(-2) = \frac{17}{4}$, $y(-1) = \frac{10}{4}$ b) $y(-2) = \frac{8}{4}$, $y(-1) = \frac{10}{4}$ c) $y(-2) = \frac{10}{4}$, $y(-1) = \frac{17}{4}$ d) $y(-2) = \frac{10}{4}$, $y(-1) = \frac{8}{4}$ e) y(-2) = 0, y(-1) = 0 f) Ništa od navedenoga!

2 min

- 14. Nađite impulsni odziv sustava opisanog jednadžbom $y(n) = \sum_{m=-\infty}^{n} u(m)$.
 - a) $h(n) = \delta(n)$

- **b)** $h(n) = \mu(n-1)$ **c)** $h(n) = \mu(n)$ **d)** $h(n) = \mu(n+1)$ **e)** $h(n) = \mu(n+m)$

f) Ništa od navedenoga!

4 min

- Zadan je diskretni sustav $y(n+2) \frac{8}{5}y(n+1) + \frac{32}{25}y(n) = u(n), n \in \mathbb{Z}$. Odredite karakteristične frekvencije i ispitajte **15.** stabilnost sustava!
 - a) $q_1 = \frac{4}{5} + j\frac{4}{5}$, $q_2 = \frac{4}{5} j\frac{4}{5}$, stabilan je **b**) $q_1 = -\frac{4}{5} j\frac{4}{5}$, nestabilan je **c**) $q_1 = \frac{4}{5} + j\frac{4}{5}$, stabilan je **c**) $q_1 = \frac{4}{5} + j\frac{4}{5}$, $q_2 = \frac{4}{5} j\frac{4}{5}$, nestabilan je **e**) $q_1 = -\frac{4}{5} + j\frac{4}{5}$, sustav je na granici stabilnosti **f**) Ništa od navedenoga!

5 min

- **16.** Sustav je zadan jednadžbom diferencija ay(n)-2y(n-1)+3y(n-2)=u(n)-u(n-2). Odredite koeficijent a ako znate da Podcrtani element je vrijednost u koraku n = 0.
 - **a**) -2
- **b**) -1
- **c**) 0

- d) 1 e) 2 f) Ništa od navedenoga!

5 min

- **17.** Zadan je diskretni LTI sustav. Ako znate da odziv sustava na jedinični skok $\mu(n)$ iznosi $y(n) = n \mu(n)$ nadite impulsni odziv sustava!

- a) $h(n) = \mu(n-2)$ b) $h(n) = \mu(n-1)$ c) $h(n) = \mu(n)$ d) $h(n) = \mu(n+1)$ e) $h(n) = \mu(n+2)$
- f) Ništa od navedenoga!

3 min

Zadan je sustav drugog reda y''(t) + 12y'(t) + 4y'(t) = 3u(t). Odredite stupanj prigušenja i neprigušenu prirodnu 18. frekvenciju!

- a) $\zeta = 6, \ \Omega_n = -2$ b) $\zeta = -3, \ \Omega_n = 2$ c) $\zeta = 6, \ \Omega_n = 2$ d) $\zeta = 3, \ \Omega_n = 4$ e) $\zeta = 3, \ \Omega_n = 2$

f) Ništa od navedenoga!

2 min

19. Zadan je LTI sustav. Ukoliko konstante homogenog rješenja pronađete direktno iz početnih uvjeta našli ste:

a) mirni odziv sustava

- b) odziv nepobuđenog sustava
- c) prirodni odziv sustava
- d) prisilni odziv sustava

e) partikularno rješenje

f) Ništa od navedenog!

5 min

20. Odaberite asimptotski stabilan sustav!

a) y''(t) + 2y'(t) + 20y(t) = u(t)

- **b)** y''(t) + 26y(t) = u(t)
- c) y''(t) = u(t) d) y''(t) 2y'(t) + 26y(t) = u(t)

- e) y''(t) 2y'(t) 26y(t) = u(t)
- f) Ništa od navedenoga!