LINEAR REGRESSION

Week03

Topics Covered in This Class

CLASSICAL MACHINE LEARNING

Linear Regression

Supervised Learning: Regression

Prediction ice cream sales over given temperature $ice \ cream \ sales = f(temperatue)$

Ice Cream Sales (\$)
215
325
185
332
406
522
412
614
544
421
445
408

Linear Regression

- Linear regression
 - Based on the assumption that the relationship between a scalar dependent variable y and explanatory(independent) variables X is linear
 - $X = [x_1, x_2, x_3, ..., x_n]$ Explanatory variables: print run (x_1) , page number (x_2)

x_1	x_2	
2800	22	
2670	14	
2800	37	
2784	15	
2800	38	

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \epsilon$$
$$\epsilon \sim N(0, \sigma^2)$$

*** Linear function**

You studied linear function when you are high school student!

Main Assumptions of Linear Regression

- Linear regression analysis makes several key assumptions
 - Linear relationship
 - Homoscedasticity
 - Normality
 - No or little multicollinearity

How to Determine Relationship between x and y

Need a criterion

- Minimize summation of squared error
 - Squared error=(estimated output-real output)²=error²

Minimize summation of squared error

In the simple case: Only one independent variable

*** Summary for Notation**

- □ Hat, (ˆ)
 - Represents estimation
 - \square β_1 is unknown true value, $\widehat{\beta_1}$ is estimation for β_1 through model learning
 - \mathbf{p}_i is known output value of i th sample, \hat{y}_i is estimated output by learned model
- □ Bar, (¯)
 - Represents sample mean
 - Arithmetic average of the observed values of variable

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

If the number of input variables is more than one, elements of sample mean vector consist of average of each variable

$$\bar{\mathbf{x}} = \left(\frac{\sum_{i=1}^{n} x_{1i}}{n}, \frac{\sum_{i=1}^{n} x_{2i}}{n}, \dots, \frac{\sum_{i=1}^{n} x_{pi}}{n}\right) = \frac{\sum_{i=1}^{n} \mathbf{x}_{i}}{n}$$

Bold character usually represents vector

Which one is better?

		$\beta_1=20$,	$\beta_0 = -80$	$\beta_1 = 30, \beta_0$	$_{0} = -160$
Temperature (℃)	Ice Cream Sales (\$)	Estimated Sales	Squared error	Estimated Sales	Squared error
14.2	215	204	121	266	2601
16.4	325	248	5929	332	49
11.9	185	158	729	197	144
15.2	332	224	11664	296	1296
18.5	406	290	13456	395	121
22.1	522	362	25600	503	361
19.4	412	308	10816	422	100
25.1	614	422	36864	593	441
23.4	544	388	24336	542	4
18.1	421	282	19321	383	1444
22.6	445	372	5329	518	5329
17.2	408	264	20736	356	2704
	sum		174901		14594

Summation of squared error with different β_0 and β_1

Summation of squared error with different β_0 and β_1 for simulated data from y=x+1

Optimization for Linear Regression

Variables to be determined

$$\beta_0, \beta_1$$

Objective function

$$\min f(\beta_0, \beta_1) = \min \sum_{i} (y_i - \beta_0 - \beta_1 x_i)^2$$

- Constraints
 - No constraint

Optimization for Linear Regression

- Solution
 - \blacksquare Calculate partial derivatives with respect to β_0 , β_1

$$\frac{\partial f(\beta_0, \beta_1)}{\partial \beta_0} = \sum_{i=1}^{n} -2(y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\frac{\partial f(\beta_0, \beta_1)}{\partial \beta_1} = \sum_{i=1}^{n} -2x_i(y_i - \beta_0 - \beta_1 x_i) = 0$$

Solve linear equations

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

Multiple Input Variables

- More than one input variable
 - Want to predict consumption of petrol

Petrol Tax(\$)	Average Income (\$)	Paved Highways (miles)	Proportion of population with driver's license	Consumption of petrol (M of gallons)
9	3571	1976	0.525	541
9	4092	1250	0.572	524
9	3865	1586	0.58	561
7.5	4870	2351	0.529	414
8	4399	431	0.544	410
10	5342	1333	0.571	457
8	5319	11868	0.451	344
8	5126	2138	0.553	467
8	4447	8577	0.529	464
7	4512	8507	0.552	498

Multiple Input Variables

 Estimation based on petrol tax, average income, length of paved highways, proportion of population with driver's license

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \epsilon$$

- y = consumption of petrol
- \mathbf{x}_1 =petrol tax
- \mathbf{x}_2 =average income
- \mathbf{z} x_3 =length of paved highways
- \mathbf{z}_{4} = proportion of population with driver's license
- $f \epsilon$ is random error which follows Gaussian distribution with 0 mean, σ^2 variance

$$\min \sum_{i} (y_i - \widehat{y}_i)^2$$

Same as the simple case!

Optimization for Linear Regression: Multivariate

Multivariate linear regression

$$\min f(\beta_0, ..., \beta_p) = \min \sum_{i} (y_i - \beta_0 - \beta_1 x_{1i} - \dots - \beta_p x_{pi})^2$$

Estimated parameters are obtained by setting partial derivatives zero

$$\frac{\partial f(\beta_0, \dots, \beta_p)}{\partial \beta_0} = \sum_{i=1}^n -2(y_i - \beta_0 - \beta_1 x_{1i} - \dots - \beta_p x_{pi}) = 0$$

$$\frac{\partial f(\beta_0, \dots, \beta_p)}{\partial \beta_1} = \sum_{i=1}^n -2x_{1i}(y_i - \beta_0 - \beta_1 x_{1i} - \dots - \beta_p x_{pi}) = 0$$

$$\vdots$$

$$\frac{\partial f(\beta_0, \dots, \beta_p)}{\partial \beta_p} = \sum_{i=1}^n -2x_{pi}(y_i - \beta_0 - \beta_1 x_{1i} - \dots - \beta_p x_{pi}) = 0$$

Multiple Input Variables

Matrix approach to multiple regression model

$$y_1 = \beta_0 \cdot 1 + \beta_1 x_{11} + \beta_2 x_{21} + \dots + \beta_p x_{k1}$$

$$y_2 = \beta_0 \cdot 1 + \beta_1 x_{12} + \beta_2 x_{22} + \dots + \beta_p x_{k2}$$

:

 $y_n = \beta_0 \cdot 1 + \beta_1 x_{1n} + \beta_2 x_{2n} + \dots + \beta_n x_{kn}$

n samples, p input variables

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{21} & \cdots & x_{p1} \\ 1 & x_{12} & x_{22} & \cdots & x_{p2} \\ \vdots & \vdots & & \vdots \\ 1 & x_{1n} & x_{2n} & \cdots & x_{pn} \end{bmatrix}$$

$$oldsymbol{eta} = egin{bmatrix} eta_0 \ eta_1 \ eta_2 \ dots \ eta_n \end{bmatrix} \qquad oldsymbol{\epsilon} = egin{bmatrix} \epsilon_1 \ \epsilon_2 \ dots \ \epsilon_n \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{21} & \cdots & x_{p1} \\ 1 & x_{12} & x_{22} & \cdots & x_{p2} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & x_{1n} & x_{2n} & \cdots & x_{pn} \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{21} & \cdots & x_{p1} \\ 1 & x_{12} & x_{22} & \cdots & x_{p2} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & x_{1n} & x_{2n} & \cdots & x_{pn} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

$$= \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \qquad \boldsymbol{\epsilon} \sim MVN(0, \sigma^2 \boldsymbol{I})$$

$$= X\beta +$$

$$\epsilon \sim MVN(0, \sigma^2 I)$$

$$E = \|\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}}\|^2$$

Optimization for Linear Regression: Multivariate

$$\min E = \min \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

• Solution is obtained by setting $\frac{\partial E}{\partial \beta} = 0$

$$\frac{\partial (\mathbf{x} - A\mathbf{s})^T W(\mathbf{x} - A\mathbf{s})}{\partial \mathbf{s}} = -2A^T W(\mathbf{x} - A\mathbf{s})$$

$$\frac{\partial (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = -2X^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = \mathbf{0}$$

$$X^T X \boldsymbol{\beta} - X^T \mathbf{y} = 0$$

- Reference
 - Matrix Cookbook
 - https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Estimation of Regression Coefficients: Multivariate

Use least square methods as same as simple linear regression

$$\widehat{\boldsymbol{\beta}} = \left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

- **X**^T: transpose matrix of **X**
- \blacksquare **X**⁻¹: inverse matrix of **X**

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{H}\mathbf{y}$$

Residual(error) terms

$$\mathbf{e} = \mathbf{y} - \hat{\mathbf{y}} = (\mathbf{I} - \mathbf{H})\mathbf{y} = [e_1 \ e_2 \cdots \ e_n]^T$$

SSE

$$SSE = \sum_{i} (y_i - \hat{y}_i)^2 = \sum_{i} e_i^2 = \boldsymbol{e}^T \boldsymbol{e}$$

Is the Regression Model Significant?

- Modeling learning is not the end of the analysis
 - Check overall significance in regression models
 - Whether the regression model is overall significant for predicting a target
 - Check significance of regression coefficients
 - Whether the specific variable is significant for predicting a target

- In the case of simple linear regression, testing overall significance of the model is the same as testing significance of regression coefficients
 - Because only one explanatory variable is used

Test of Model Significance

- F-test for general regression models
 - Hypothesis

$$H_0$$
: $\beta_1=\beta_2=\cdots=\beta_p=0$
 H_1 : not all $\beta_i(i=1,2,\cdots,p)$ equal zero

■ Test statistic

$$F^* = MSR/MSE$$

- F follows F-distribution with (p, n p 1) degree of freedom
- Decision rule

If
$$F^* \leq F(1-\alpha; p, n-p-1)$$
, conclude H_0
If $F^* > F(1-\alpha; p, n-p-1)$, conclude H_1

 \blacksquare α : significance level

- A statistical test provides a mechanism for making quantitative decisions about a process or processes
 - The intent is to determine whether there is enough evidence to "reject" a conjecture or hypothesis about the process
 - The procedure is based on how likely it would be for a set of observations to occur if the null hypothesis were true
- Null hypothesis
 - A general statement or default position that there is no relationship between two measured phenomena, or no association among groups
- Alternative hypothesis
 - It is the hypothesis used in hypothesis testing that is contrary to the null hypothesis

Steps in testing for statistical significance

- Consider 20 first year resident female doctors drawn at random from one area
 - resting systolic blood pressures measured using an electronic sphygmomanometer
 - Sample mean = 130.05
 - Research hypothesis is that a resting systolic blood pressure of 120 mm Hg is predicted as the population mean
 - Null hypothesis and alternative hypothesis

$$H_0$$
: $\mu = 120$

$$H_1: \mu \neq 120$$

- Set significance level as 0.05
- Determine test statistics and underlying distribution

$$t = \frac{\bar{x} - \mu}{\sqrt{s^2/n}}$$

• t follows t -distribution with the degree of freedom as n-1

Right-tail test

 H_a : μ > value

Left-tail test

 H_a : μ < value

Two-tail test

 H_a : $\mu \neq value$

Sum of Squares

Total variance(SST) and Explained variance(SSR)

Sum of Square

Total variance: the total sum of squares

$$SST = \sum_{i} (y_i - \bar{y})^2$$

 Explained variance: the regression sum of squares, also called the explained sum of squares

$$SSR = \sum_{i} (\hat{y}_i - \bar{y})^2$$

 Residual variance: the sum of squares errors, also called the residual sum of squares

$$SSE = \sum_{i} (y_i - \hat{y}_i)^2$$

Relationship among three values

$$SST = SSR + SSE$$

Test of Model Significance

 \Box ANOVA table for multiple regression model with p input variables

Factor	Sum of square	Degree of freedom	Mean square	F-value	p-value
Model	SSR	p	MSR = SSR/p	$F_0 = MSR/MSE$	$P\{F_{p,n-p-1} > F_0\}$
Residual	SSE	n - p - 1	MSE = SSE/(n-p-1)		
Total	SST	n-1			

Analysis of Variance (ANOVA)

Degree of Freedom

- The number of degrees of freedom is the number of values in the final calculation of a statistic that are free to vary
 - The number of independent ways by which a dynamic system can move, without violating any constraint imposed on it
- Sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}$$

- The reason that denominator is n-1 is that degree of freedom of sample mean, \bar{y} is n-1
- Another reason is that in the case of that denominator is n-1, S^2 is unbiased estimator of variance of population
- Mean squared error for simple linear regression

$$MSE = \frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

The reason that denominator is n-2 is that \hat{y}_i is calculate from $\hat{\beta}_0 + \hat{\beta}_1 x_i$ and it depends on two estimators $\hat{\beta}_0, \hat{\beta}_1 \to \text{Decrease}$ two degrees of freedom

***** F distribution

- \Box F statistics follows F distribution with (p, n p 1) degree of freedom
 - Probability density function of F distribution with different parameters
 - F distribution is determined by two parameters

Test of Model Significance

- □ If (area under density function from F_0 to ∞) $\langle \alpha \rangle$
 - \rightarrow Reject null hypothesis \rightarrow not all $\beta_i (i = 1, 2, \dots, p)$ equal zero
 - $lue{\alpha}$ is significance level
 - significance level is usually set to 0.1, 0.05, or 0.01
 - The higher significance level, the level probability to reject null hypothesis

Python: Draw Figure

Matplotlib

- matplotlib is a python 2D plotting library
 - url: http://matplotlib.org/index.html
 - import matplotlib

import matplotlib.pyplot as plt

Scatter plot

```
import numpy as np
import matplotlib.pyplot as plt
N = 50
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.rand(N)
area = np.pi * (15 * np.random.rand(N))**2 # 0 to 15 point radiuses

plt.scatter(x, y, s=area, c=colors, alpha=0.5)
plt.show()
```

Scatter plot

Line Plot

Line plot

```
import numpy as np
import matplotlib.pyplot as plt

# evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)

# red dashes, blue squares and green triangles
plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
plt.show()
```

Line Plot

Line Properties

Property	Value Type
linestyle or ls	['-' '' '' ':' 'steps']
linewidth or lw	float value in points
marker	['+' ',' '.' '1' '2' '3' '4']
markersize or ms	float
markeredgecolor or mec	any matplotlib color
markeredgewidth or mew	float value in points
markerfacecolor or mfc	any matplotlib color
alpha	float

Bar Chart

Bar chart

```
import numpy as np
import matplotlib.pyplot as plt
# Example data
people = ('Tom', 'Dick', 'Harry', 'Slim', 'Jim')
y_pos = np.arange(len(people))
performance = 3 + 10 * np.random.rand(len(people))
error = np.random.rand(len(people))
plt.bar(y_pos, performance, yerr=error, align='center', alpha=0.4)
plt.xticks(y_pos, people)
plt.ylabel('Performance')
plt.title('How fast do you want to go today?')
plt.show()
```

Bar Chart

Pie Chart

Pie Chart

```
# The slices will be ordered and plotted counter-clockwise.
labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
sizes = [15, 30, 45, 10]
colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral']
explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs')
plt.pie(sizes, explode=explode, labels=labels, colors=colors,
     autopct='%1.1f%%', shadow=True, startangle=90)
# Set aspect ratio to be equal so that pie is drawn as a circle.
plt.axis('equal')
plt.show()
```

Colors of Matplotlib

Pie Chart

Legend

Add legend

```
import numpy as np
import matplotlib.pyplot as plt
# Make some fake data
a = b = np.arange(0, 3, .02)
c = np.exp(a)
d = c[::-1]
# Create plots with pre-defined labels.
plt.plot(a, c, 'k--', label='Model length')
plt.plot(a, d, 'k:', label='Data length')
plt.plot(a, c + d, 'k', label='Total message length')
legend = plt.legend(loc='upper center', shadow=True, fontsize='x-large')
# Put a nicer background color on the legend.
legend.get_frame().set_facecolor('#00FFCC')
plt.show()
```

Legend

Text

Put some texts

```
import numpy as np
import matplotlib.pyplot as plt
font = {'family': 'serif', 'color': 'darkred', 'weight': 'normal', 'size': 16,}
x = np.linspace(0.0, 5.0, 100)
y = np.cos(2*np.pi*x) * np.exp(-x)
plt.plot(x, y, 'k')
plt.title('Damped exponential decay', fontdict=font)
plt.text(2, 0.65, r'$\psi \cos(2 \psi pi t) \psi \exp(-t)$', fontdict=font)
plt.xlabel('time (s)', fontdict=font)
plt.ylabel('voltage (mV)', fontdict=font)
# Tweak spacing to prevent clipping of ylabel
plt.subplots_adjust(left=0.15)
plt.show()
```

