Package 'PF'

February 27, 2019

```
Type Package
Title Prevented fraction
Version 9.5.4
Date XXXX XXXX XXXX
Author Dave Siev
Maintainer Marie Vendettuoli <marie.c.vendettuoli@aphis.usda.gov>
Description Functions related to PF (prevented fraction). Calculate incidence
      density ratio, confidence interval, and Rao-Scott weights of PF by multiple
      methods. See http://goo.gl/eJ6Rxi for definition of PF.
     No endorsement, claim, or warranty is implied for this package. It is made
     available for investigational or pedagogical use only.
License MIT + file LICENSE
URL https:
      //www.aphis.usda.gov/animal_health/vet_biologics/publications/STATWI0007.pdf,
     https://github.com/ABS-dev/PF/blob/master/doc/PFPackageManual.pdf
BugReports https://github.com/ABS-dev/PF/issues
LazyLoad yes
LazyData yes
Depends R (>= 3.4.4), methods
Imports plyr
Suggests knitr, tidyr, magrittr, dplyr
Collate 'aab.r' 'aac.r' 'class.r' 'generics.r' 'PF-package.r'
      'IDRlsi.r' 'IDRsc.r' 'phiWt.r' 'RRlsi.r' 'RRmh.r' 'RRmpWald.r'
      'RRor.r' 'RRotsst.r' 'RRsc.r' 'RRStr.r' 'RRtosst.r' 'rsbWt.r'
     'tauWt.r'
VignetteBuilder knitr
RoxygenNote 6.1.1
```

NeedsCompilation no

2 PF-package

R topics documented:

PF-package	2
rr.score.asymp	3
bird	3
birdm	4
IDRlsi	4
IDRsc	6
New	7
pf-class	7
phiWt	8
print.rr1	9
rat	10
m1	10
RRlsi	11
RRmh	12
rr	14
T	15
RRor	17
rror-class	18
RRotsst	19
	20
	22
	22
	23
	25
	25
	27
	28
	29
set1	29
	30
	30
tauWt	30
	22
	32

PF-package

Package for PF.

Description

Includes functions related to prevented fraction.

Details

Index

Package: pf-package Type: Package Version: 9.5.4

Date: XXXX-XX-XX

License: MIT LazyLoad: yes .rr.score.asymp 3

LazyData: yes

Resources

• GUIDANCE: https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/veterinary-biologics/biologics-regulations-and-guidance/ct_vb_statwi

- QUICK START: https://github.com/ABS-dev/PF/blob/master/README.md
- BUG REPORTS: https://github.com/ABS-dev/PF/issues

Author(s)

David Siev <David.Siev@aphis.usda.gov>

.rr.score.asymp

Internal function.

Description

Internal function.

Usage

```
.rr.score.asymp(y)
```

Arguments

У

data

Examples

none

bird

bird dataset

Description

bird dataset

Format

a data.frame with 6 observations of the following 4 variables, no NAs

- y number positive
- ${f n}$ total number in group tx x all
- tx treatment 'vac' or 'con'
- all all?

4 IDRIsi

References

we need some references

birdm

birdm dataset

Description

birdm dataset

Format

```
a data.frame with 6 observations of the following 4 variables, no NAs
```

y number positive

n total number in group tx x all

tx treatment 'vac' or 'con'

all all?

References

we need some references

IDRlsi

IDR likelihood support interval.

Description

Estimates likelihood support interval for the incidence density ratio or prevented fraction based on it.

Usage

```
IDRlsi(y, alpha = 0.05, k = 8, use.alpha = FALSE, pf = TRUE,
  converge = 1e-08, rnd = 3, start = NULL, trace.it = FALSE,
  iter.max = 24)
```

Arguments

y Data vector $c(y_1, n_1, y_2, n_2)$ where y are the positives, n are the total	il, and group
--	---------------

1 is compared to group 2.

alpha Complement of the confidence level.

k Likelihood ratio criterion.

use.alpha Base choice of k on its relationship to alpha?

pf Estimate *IDR* or its complement *PF*?

converge Convergence criterion

rnd Number of digits for rounding. Affects display only, not estimates.

start describe here.

trace.it Verbose tracking of the iterations? iter.max Maximum number of iterations

IDRlsi 5

Details

Estimates likelihood support interval for the incidence density ratio based on orthogonal factoring of reparameterized likelihood. The incidence density is the number of cases per subject-time; its distribution is assumed Poisson.

Likelihood support intervals are usually formed based on the desired likelihood ratio, often 1/8 or 1/32. Under some conditions the log likelihood ratio may follow the chi square distribution. If so, then $\alpha=1-F(2log(k),1)$, where F is a chi-square CDF. RRsc() will make the conversion from α to k if use.alpha = TRUE.

```
The data may also be a matrix. In that case y would be entered as matrix(c(y1, n1 - y1, y2, n2 - y2), 2, 2, byrow = TRUE).
```

Value

A rrsi object with the following elements.

estimate vector with point and interval estimate

estimator either PF or IDR

y data vector

k Likelihood ratio criterion

rnd how many digits to round the display alpha complement of confidence level

Author(s)

David Siev <david.siev@aphis.usda.gov>

References

Royall R. Statistical Evidence: A Likelihood Paradigm. Chapman & Hall, Boca Raton, 1997. Section 7.2.

See Also

IDRsc

Examples

```
IDRlsi(c(26, 204, 10, 205), pf = FALSE)
# 1/8 likelihood support interval for IDR
# corresponds to 95.858% confidence
# (under certain assumptions)
# IDR
# IDR LL UL
# 2.61 1.26 5.88
```

IDRsc IDRsc

Description

Estimates confidence interval for the incidence density ratio or prevented fraction based on it.

Usage

```
IDRsc(y, alpha = 0.05, pf = TRUE, rnd = 3)
```

Arguments

y Data vector c(y1, n1, y2, n2) where y are the positives, n are the total, and group 1 is compared to group 2.

alpha Complement of the confidence level.

pf Estimate *IDR*, or its complement *PF*?

rnd Number of digits for rounding. Affects display only, not estimates.

Details

The incidence density is the number of cases per subject-time; its distribution is assumed Poisson. IDRsc estimates a confidence interval for the incidence density ratio using Siev's formula based on

the Poisson score statistic.
$$IDR = \widehat{IDR} \left\{ 1 + \left(\frac{1}{y_1} + \frac{1}{y_2} \right) \frac{z_{\alpha/2}^2}{2} \pm \frac{z_{\alpha/2}^2}{2y_1y_2} \sqrt{y_{\bullet} \left(y_{\bullet} z_{\alpha/2}^2 + 4y_1y_2 \right)} \right\}$$

The data may also be a matrix. In that case y would be entered as matrix(c(y1, n1 - y1, y2, n2 - y2), 2, 2, byrow = TRUE).

Value

A rr1 object with the following elements.

estimate vector with point and interval estimate

estimator either PF or IDR

y data vector

rnd how many digits to round the display alpha complement of confidence level

Author(s)

David Siev <david.siev@aphis.usda.gov>

References

Siev D, 1994. Estimating vaccine efficacy in prospective studies. *Preventive Veterinary Medicine* 20:279-296, Appendix 1.

Graham PL, Mengersen K, Morton AP, 2003. Confidence limits for the ratio of two rates based on likelihood scores:non-iterative method *Statistics in Medicine* 22:2071-2083.

Siev D, 2004. Letter to the editor. *Statistics in Medicine* 23:693. (Typographical error in formula: replace the two final minus signs with subscript dots.)

New 7

See Also

IDRlsi

Examples

```
IDRsc(c(26, 204, 10, 205),pf = FALSE)
# IDR
# 95% interval estimates
# IDR LL UL
# 2.61 1.28 5.34
```

New

New dataset

Description

New dataset

Format

```
a data frame with 52 observations of the following 3 variables, no NAs cage cage ID. 1 - 26

tx treatment. one of 'con' or 'vac'

pos numeric indicator of positive response. 0 = FALSE or 1 = TRUE
```

References

We need some references

pf-class

Data class pf

Description

data class pf

Fields

```
estimator either "PF" or "IDR" rnd how many digits to round display alpha complement of c.i.
```

Author(s)

Marie Vendettuoli <marie.c.vendettuoli@aphis.usda.gov>

See Also

```
rr1, rrsi, rrsc, rrstr
```

8 phiWt

Description

MME estimate of dispersion parameter phi.

Usage

```
phiWt(fit, subset.factor = NULL, fit.only = TRUE, show.warns = FALSE)
```

Arguments

fit A glm object.

subset.factor Factor for estimating phi by subset.

fit.only Return only the new fit? If FALSE, also returns the weights and phi estimates.

show.warns Show warnings

Details

Estimates binomial dispersion parameter ϕ by the method of moments. Refits the model, weighting the observations by $1/\phi$. Uses quasibinomial family in glm().

Value

A list with the following elements.

fit the new model fit, updated by the estimated weights

weights vector of weights

phi vector of phi estimates

Author(s)

David Siev <david.siev@aphis.usda.gov>

References

Wedderburn RWM, 1974. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. *Biometrika* 61:439-447.

See Also

tauWt, RRor. See the package vignette for more examples.

print.rr1

Examples

```
birdm.fit <- glm(cbind(y, n - y)~tx-1, binomial, birdm)
RRor(phiWt(birdm.fit))
#
# 95% t intervals on 4 df
#
# PF
# PF LL UL
# 0.479 -0.537 0.823
#
# mu.hat LL UL
# txcon 0.768 0.95 0.367
# txvac 0.400 0.78 0.111
#
# See the package vignette for more examples</pre>
```

print.rr1

Print values for PF data obhects.

Description

Print values for PF data obhects.

Usage

```
## S3 method for class 'rr1'
print(x, ...)

## S3 method for class 'rror'
print(x, ...)

## S3 method for class 'rrsi'
print(x, ...)

## S3 method for class 'rrmp'
print(x, ...)

## S3 method for class 'rrsc'
print(x, ...)

## S3 method for class 'rrsc'
print(x, ...)
```

Arguments

```
x object of class rr1, rror, rrsi, rrmp, rrstr, rrsc ... other arguments not used by this method
```

10 rr1

rat

Description

rat dataset

Format

```
a data.frame with 32 observations of the following 3 variables, no NAs
```

rat dataset

y number positive

n total number

group treatment group: 'control' or 'treated'

References

Weil's rat data (Table 1 of Rao and Scott)

rr1

Data class rr1

Description

Data class rr1

Fields

```
estimate vector with point and interval estimate estimator either "PF" or "IDR"

y data vector

rnd how many digits to round display
alpha complement of c.i.
```

Author(s)

Marie Vendettuoli <marie.c.vendettuoli@aphis.usda.gov>

See Also

```
IDRsc, RRotsst, RRtosst
```

RRIsi 11

RRlsi	RR likelihood support interval.	
-------	---------------------------------	--

Description

likelihood support interval for the risk ratio or prevented fraction by the likelihood profile.

Usage

```
RRlsi(y, alpha = 0.05, k = 8, use.alpha = FALSE, pf = TRUE,
iter.max = 50, converge = 1e-06, rnd = 3, start = NULL,
track = FALSE, full.track = FALSE)
```

Arguments

у		Data vector $c(y1, n1, y2, n2)$ where y are the positives, n are the total, and group 1 is compared to group 2.
alp	oha	Complement of the confidence level (see details).
k		Likelihood ratio criterion.
use	e.alpha	Base choice of k on its relationship to alpha?
pf		Estimate <i>RR</i> or its complement <i>PF</i> ?
ite	er.max	Maximum number of iterations
100	nverge	Convergence criterion
rno	d	Number of digits for rounding. Affects display onlyRR, not estimates.
sta	art	Optional starting value.
tra	ack	Verbose tracking of the iterations?
fu.	ll.track	Verbose tracking of the iterations?

Details

Estimates a likelihood support interval for RR or PF by the profile likelihood method using the DUD algorithm.

Likelihood support intervals are usually formed based on the desired likelihood ratio, often 1/8 or 1/32. Under some conditions the log likelihood ratio may follow the chi square distribution. If so, then $\alpha=1-F(2log(k),1)$, where F is a chi-square CDF. RRlsi() will make the conversion from α to k if use.alpha = TRUE.

```
The data may also be a matrix. In that case y would be entered as matrix(c(y1, n1-y1, y2, n2-y2), 2, byrow = TRUE).
```

Value

An object of class rrsi with the following fields:

```
estimate matrix of point and interval estimates - see details estimator either "PF" or "RR"
```

12 RRmh

У	data vector

rnd how many digits to round the display

k likelihood ratio criterion

alpha complement of confidence level

Author(s)

David Siev <david.siev@aphis.usda.gov>

References

Royall R. Statistical Evidence: A Likelihood Paradigm. Chapman & Hall, Boca Raton, 1997. Section 7.6

Ralston ML, Jennrich RI, 1978. DUD, A Derivative-Free Algorithm for Nonlinear Least Squares. *Technometrics* 20:7-14.

Examples

```
RRlsi(c(4,24,12,28))
# 1/8 likelihood support interval for PF
# corresponds to 95.858% confidence
# (under certain assumptions)
# PF
# PF LL UL
# 0.6111 0.0168 0.8859
```

RRmh

Mantel-Haenszel method, CI for common RR over strata or clusters with sparse data.

Description

Estimates confidence intervals for the risk ratio or prevented fraction from clustered or stratified data, using a Mantel-Haenszel estimator for sparse data.

Usage

```
RRmh(formula = NULL, data = NULL, compare = c("b", "a"), Y,
    alpha = 0.05, pf = TRUE, rnd = 3)
```

Arguments

formula Formula of the form $cbind(y, n) \sim x + cluster(w)$, where y is the number

positive, n is the group size, x is a factor with two levels of treatment, and w is a

factor indicating the clusters.

data data. frame containing variables for formula

compare Text vector stating the factor levels: compare[1] is the control or reference

group to which compare[2] is compared

RRmh 13

Matrix of data, $K \times 4$. Each row is a stratum or cluster. The columns are y2, n2, y1, n1, where the y's are the number of positive in each group, and the n is the total in each group. If data entered by formula and dataframe, Y is

generated automatically.

alpha Complement of the confidence level.

pf Estimate *RR* or its complement *PF*?

rnd Number of digits for rounding. Affects display only, not estimates.

Details

Based on the Mantel-Haenszel (1959) procedure for sparse data developed by Greenland and Robins (1985). The confidence limits are based on asymptotic normality of the log(risk ratio). Agresti and Hartzel (2000) favor this procedure for small, sparse data sets, but they warn that it is less efficient than maximum likelihood for large data sets.

Value

An object of class rr1 with the following fields.

estimate vector of point and interval estimates: point estimate, lower confidence limit,

upper confidence limit

estimator either "PF" or "RR"

y y matrix of the data

compare groups compared

rnd how many digits to round the display alpha complement of confidence level

Note

If either all y1's or all y2's are zero, a division by zero may occur, and a NaN returned for some values.

See vignette *Examples for Stratified Designs* for more examples (enter ?PF). Call to this function may be one of two formats: (1) specify data and formula or (2) as a matrix Y

```
RRmh(formula, data, compare = c('b', 'a'), pf = TRUE, alpha = 0.05, rnd = 3)
```

```
RRmh(Y, pf = TRUE, alpha = 0.05, rnd = 3)
```

Author(s)

Christopher Tong <Christopher.H.Tong@aphis.usda.gov>

References

Mantel N, Haenszel W, 1959. Statistical aspects of the analysis of data from retrospective studies of disease. *Journal of the National Cancer Institute* 22: 719-748.

Greenland S, Robins JM, 1985. Estimation of a common effect parameter from sparse follow-up data. *Biometrics* 41: 55-68. Errata, 45: 1323-1324.

14 rrmp-class

Agresti A, Hartzel J, 2000. Strategies for comparing treatments on a binary response with multicentre data. *Statistics in Medicine* 19: 1115-1139.

Lachin JM, 2000. Biostatistical Methods: The Assessment of Relative Risks (Wiley, New York), Sec. 4.3.1.

See Also

rr1

Examples

```
## Table 1 from Gart (1985)
## as data frame
RRmh(cbind(y,n) ~ tx + cluster(clus), Table6 , pf = FALSE)
# RR estimates
# RR
# 95% interval estimates
#
# RR LL UL
# 2.67 1.37 5.23
#
## or as matrix
RRmh(Y = table6, pf = FALSE)
```

rrmp-class

Data class rrmp

Description

data class rrmp

Fields

```
estimate vector with point and interval estimate
estimator either "PF" or "IDR"

y data vector

rnd how many digits to round display
alpha complement of c.i.

xtable 2 x 2 data matrix

compare text vector, same as input
frecvec data arrayed a vector of length 4

multvec data.frame showing the multinomial representation of the data
```

Author(s)

Marie Vendettuoli <marie.c.vendettuoli@aphis.usda.gov>

RRmpWald 15

See Also

RRmpWald

RRmpWald Wald confidence intervals for RR from matched p	pairs

Description

Estimates confidence intervals for the risk ratio or prevented fraction from matched pairs.

Usage

```
RRmpWald(formula = NULL, data = NULL, compare = c("con", "vac"),
  affected = 1, x, alpha = 0.05, pf = TRUE, tdist = TRUE,
  df = NULL, rnd = 3)
```

Arguments

formula	Formula of the form $y \sim x + \text{cluster}(w)$, where y is the indicator for an individual's positive response, x is a factor with two levels of treatment, and w identifies the pairs.
data	data.frame containing variables in formula
compare	Text vector stating the factor levels: compare[1] is the control or reference group to which compare[2] is compared.
affected	Indicator for positive response
X	Alternative data input. Instead of formula and data frame, data may be input as frequency vector.
alpha	Complement of the confidence level
pf	Estimate <i>RR</i> or its complement <i>PF</i> ?
tdist	Use t distribution?
df	Degrees of freedom. When NULL, the function will default to $df = N - 2$, where N is the total number of pairs.
rnd	Number of digits for rounding. Affects display only, not estimates.

Details

Estimates confidence intervals for the risk ratio or prevented fraction from matched pairs. The response is the tetranomial vector [11, 12, 21, 22], where the first index is the row and the the second index is the column when displayed as a 2x2 table. Wald type confidence intervals are found by applying the delta method to the multinomial variance. This method fails when there are no responders in one of the treatment groups.

```
Alternative forms of data entry are illustrated by the output, say Y, where c(Y\$xtable) = Y\$freqvec = Y\$multvec\$freq.
```

If RR = 0 (PF = 1), the function will return degenerate interval.

16 RRmpWald

Value

A rrmp object with the following fields:

vector of point and interval estimates - see details estimate either "PF" or "RR" estimator compare text vector, same as input alpha complement of confidence level rnd how many digits to round the display xtable frequency table as a 2x2 matrix frequec frequency as a 4-vector multvec data frame showing the multinomial representation of the data

Note

Experimental functions for estimating profile likelihood intervals are in the CVBmisc package.

Call to this function may be one of two formats: (1) specify data and formula or (2) as a vector x

```
RRmpWald(formula, data, compare = c('con', 'vac'), affected = 1,alpha = 0.05,
pf = TRUE, tdist = TRUE, df = NULL, rnd = 3)

RRmpWald(x, compare = c('con', 'vac'), affected = 1, alpha = 0,05,
pf = TRUE, tdist = TRUE, df = NULL, rnd = 3)
```

Author(s)

David Siev <david.siev@aphis.usda.gov>

Examples

```
RRmpWald(pos ~ tx + cluster(cage), New, compare = c('con', 'vac'))
# PF
# 95% interval estimates
#
#
    PF
         LL
               UL
# 0.550 0.183 0.752
require(magrittr)
thistable <- New %>%
  tidyr::spread(tx, pos) %>%
  dplyr::mutate(vac = factor(vac, levels = 1:0),
   con = factor(con, levels = 1:0)) %>%
 with(., table(vac, con))
thistable
    con
# vac 1 0
  1 7 2
  0 13 4
as.vector(thistable)
#[1] 7 13 2 4
```

RRor 17

```
RRmpWald(x = as.vector(thistable))
# PF
# 95% interval estimates
#
# PF LL UL
# 0.550 0.183 0.752
```

RRor

RR estimate from logistic regression.

Description

Model based interval estimate of the risk ratio or prevented fraction from a logistic regression model.

Usage

```
RRor(fit = NULL, beta.hat = NULL, var.beta.hat = NULL, degf = NULL,
which = c(1, 2), pf = T, norm = F, alpha = 0.05, rnd = 3)
```

Arguments

fit A glm object. beta.hat Parameters estimates from a logistic regression with no intercept. var.beta.hat Variance-covariance matrix from a logistic regression with no intercept. degf Degrees of freedom. which Numeric vector indicating which parameters to compare, so that RR = compare[2]/compare[1] pf Estimate *RR* or its complement *PF*? Estimate confidence interval using quantiles of Guassian rather than t distribunorm tion quantiles? alpha Complement of the confidence level.

Details

rnd

Estimates confidence intervals using the delta method on parameters from a generalized linear model with logit link.

Number of digits for rounding. Affects display only, not estimates.

 $RR = \mu_2/\mu_1$, where μ_i are the estimated probabilities from the model.

Value

A rror object with the following fields.

estimate vector with point and interval estimate estimator either PF or RR mu matrix with rows giving probability estimates for each of the groups rnd how many digits to round the display alpha complement of confidence level norm logical indicating Gaussian or t interval degrees of freedom

18 rror-class

Note

```
Call to this function may be one of two formats: (1) specify fit or (2) beta.hat, var.beta.hat, degf

RRor(fit, degf = NULL, pf = TRUE, alpha = 0.05, which = c(1, 2), norm = TRUE, rnd = 3)

RRor(beta.hat, var.beta.hat, degf, pf = TRUE, alpha = 0.05, which = c(1, 2), norm = TRUE, rnd = 3)
```

Author(s)

David Siev <david.siev@aphis.usda.gov>

References

No references yet.

See Also

rror, phiWt, tauWt. See the package vignette for more examples.

Examples

```
bird.fit <- glm(cbind(y, n - y) ~ tx - 1, binomial, bird)
RRor(tauWt(bird.fit))

# 95% t intervals on 4 df

# PF

# PF LL UL

# 0.500 -0.583 0.842

#

# mu.hat LL UL

# txcon 0.733 0.943 0.3121

# txvac 0.367 0.752 0.0997

#
# See the package vignette for more examples</pre>
```

rror-class

Data class rror

Description

data class rror

Fields

```
estimate vector with point and interval estimate estimator either "PF" or "IDR"

y data vector

rnd how many digits to round display alpha complement of c.i.
```

RRotsst 19

```
norm logical indicating Gaussian or t interval

degf degrees of freedom

mu matrix with rows giving probability estimates for each of the groups
```

Author(s)

Marie Vendettuoli <marie.c.vendettuoli@aphis.usda.gov>

See Also

RRor

RRotsst

RR exact CI, OTSST method.

Description

Estimates confidence interval for the risk ratio or prevented fraction, exact method based on the score statistic (inverts one two-sided test).

Usage

```
RRotsst(y, alpha = 0.05, pf = TRUE, stepstart = 0.1, iter.max = 36,
  converge = 1e-06, rnd = 3, trace.it = FALSE,
  nuisance.points = 120, gamma = 1e-06)
```

Arguments

y Data vector c(y1, n1, y2, n2) where y are the positives, n are the total, and group	У	Data vector c(y1, n1, y2, n2) where y are the positives, n are the total, and group
---	---	---

1 is compared to group 2.

alpha Complement of the confidence level.

pf Estimate RR or its complement PF?

stepstart starting interval for step search

iter.max Maximum number of iterations

converge Convergence criterion

rnd Number of digits for rounding. Affects display only, not estimates.

trace.it Verbose tracking of the iterations?

nuisance.points

number of points over which to evaluate nuisance parameter

gamma parameter for Berger-Boos correction (restricts range of nuisance parameter

evaluation)

Details

Estimates confidence intervals based on the score statistic that are 'exact' in the sense of accounting for discreteness. The score statistic is used to select tail area tables, and the binomial probability is estimated over the tail area by taking the maximum over the nuisance parameter. Algorithm is a simple step search.

```
The data may also be a matrix. In that case y would be entered as matrix(c(y1, n1 - y1, y2, n2 - y2), 2, 2, byrow = TRUE).
```

20 RRsc

Value

An object of class rr1 with the following fields:

estimate vector with point and interval estimate
estimator either "PF" or "RR"

y data vector

rnd how many digits to round the display
alpha complement of confidence level

Author(s)

David Siev <david.siev@aphis.usda.gov>

References

Koopman PAR, 1984. Confidence intervals for the ratio of two binomial proportions. *Biometrics* 40:513-517.

Agresti A, Min Y, 2001. On small-sample confidence intervals for parameters in discrete distribution. *Biometrics* 57: 963-971.

Berger RL, Boos DD, 1994. P values maximized over a confidence set for the nuisance parameter. *Journal of the American Statistical Association* 89:214-220.

See Also

```
RRtosst, rr1.
```

Examples

```
## Not run: RRotsst(c(4, 24, 12, 28), rnd = 3)
# PF
# 95% interval estimates
# PF LL UL
# 0.6111 0.0148 0.8519
## End(Not run)
```

RRsc

RR score based asymptotic CI.

Description

Estimates confidence intervals for the risk ratio or prevented fraction based on the score statistic.

Usage

```
RRsc(y = NULL, alpha = 0.05, pf = TRUE, trace.it = FALSE,
iter.max = 18, converge = 1e-06, rnd = 3)
```

RRsc 21

Arguments

y Data vector c(y1, n1, y2, n2) where y are the positives, n are the total, and group

1 is compared to group 2.

alpha Complement of the confidence level.

pf Estimate RR or its complement PF?

trace.it Verbose tracking of the iterations?

iter.max Maximum number of iterations

converge Convergence criterion

rnd Number of digits for rounding. Affects display only, not estimates.

Details

Estimates are returned for three estimators based on the score statistic. The score method was introduced by Koopman (1984). Gart and Nam's modification (1988) includes a skewness correction. The method of Miettinen and Nurminen (1985) is a version made slightly more conservative than Koopman's by including a factor of (N-1)/N. The starting estimate for the DUD algorithm is obtained by the modified Katz method (log method with 0.5 added to each cell). Both forms of the Katz estimate may be retrieved from the returned object using RRsc()\$estimate.

The data may also be a matrix. In that case y would be entered as matrix(c(y1, n1-y1, y2, n2-y2), 2, 2, byrow = TRUE).

Value

A rrsc object with the following fields.

estimate matrix of point and interval estimates - see details

estimator either "PF" or "RR"

y data vector

rnd how many digits to round the display alpha complement of confidence level

Author(s)

David Siev <david.siev@aphis.usda.gov>

References

Gart JJ, Nam J, 1988. Approximate interval estimation of the ratio of binomial parameters: a review and corrections for skewness. *Biometrics* 44:323-338.

Koopman PAR, 1984. Confidence intervals for the ratio of two binomial proportions. *Biometrics* 40:513-517.

Miettinen O, Nurminen M, 1985. Comparative analysis of two rates. *Statistics in Medicine* 4:213-226.

Ralston ML, Jennrich RI, 1978. DUD, A Derivative-Free Algorithm for Nonlinear Least Squares. *Technometrics* 20:7-14.

See Also

rrsc

22 rrsi-class

Examples

rrsc-class

Data class rrsc

Description

data class rrsc

Fields

```
estimate vector with point and interval estimate

rnd how many digits to round display
alpha complement of c.i.
estimator either "PF" or "RR"

y data vector
```

Author(s)

Marie Vendettuoli <marie.c.vendettuoli@aphis.usda.gov>

See Also

RRsc

rrsi-class

Data class rrsi

Description

data class rrsi

Fields

```
y numeric data vector
k likelihood ratio criterion
rnd digits to round display
alpha complement of c.i.
estimate vector with point and interval estimate
estimator either "PF" or "IDR"
```

RRstr 23

Author(s)

Marie Vendettuoli <marie.c.vendettuoli@aphis.usda.gov>

See Also

```
IDRlsi, RRlsi
```

RRstr

Gart-Nam method, CI for common RR over strata or clusters.

Description

Estimates confidence intervals for the risk ratio or prevented fraction from clustered or stratified data.

Usage

```
RRstr(formula = NULL, data = NULL, compare = c("b", "a"), Y,
    alpha = 0.05, pf = TRUE, trace.it = FALSE, iter.max = 24,
    converge = 1e-06, rnd = 3, multiplier = 0.7, divider = 1.1)
```

Arguments

formula	Formula of the form $cbind(y, n) \sim x + cluster(w)$, where y is the number positive, n is the group size, x is a factor with two levels of treatment, and w is a factor indicating the clusters.
data	data.frame containing variables of formula
compare	Text vector stating the factor levels: compare[1] is the control or reference group to which compare[2] is compared
Υ	Matrix of data. Each row is a stratum or cluster. The columns are y2, n2, y1, n1. If data entered by formula and dataframe, Y is generated automatically.
alpha	Size of the homogeneity test and complement of the confidence level.
pf	Estimate <i>RR</i> or its complement <i>PF</i> ?
trace.it	verbose tracking of the iterations?
iter.max	Maximum number of iterations
converge	Convergence criterion
rnd	Number of digits for rounding. Affects display only, not estimates.
multiplier	internal control parameter for algorithm
divider	internal control parameter for algorithm

Details

Uses the DUD algorithm to estimate confidence intervals by the method of Gart.

24 RRstr

Value

A rrstr object with the following fields:

estimate matrix of point and interval estimates - starting value, MLE, and skewness cor-

rected

hom list of homogeneity statistic, p-value, and degrees of freedom

estimator either "PF" or "RR"

y Y matrix of the data

compare groups compared

rnd how many digits to round the display

alpha size of test; complement of confidence level

Note

See vignette Examples for Stratified Designs for more examples (enter ?PF).

Call to this function may be one of two formats: (1) specify data and formula or (2) as a matrix Y

```
\label{eq:RRST} \begin{aligned} & \mathsf{RRStr}(\mathsf{formula},\;\mathsf{data},\;\mathsf{compare} = \mathsf{c('b','a')},\;\mathsf{pf} = \mathsf{TRUE},\;\mathsf{alpha} = 0.05,\;\mathsf{trace.it} = \mathsf{FALSE},\\ & \mathsf{iter.max} = 24,\;\mathsf{converge} = 1e\text{-}6,\;\mathsf{rnd} = 3,\;\mathsf{multiplier} = 0.7,\;\mathsf{divider} = 1.1) \end{aligned}
```

```
RRstr(Y, compare = c('b', 'a'), pf = TRUE, alpha = 0.05, trace.it = FALSE, iter.max = 24, converge = 1e-6, rnd = 3, multiplier = 0.7, divider = 1.1)
```

Author(s)

David Siev <david.siev@aphis.usda.gov>

References

Gart JJ, 1985. Approximate tests and interval estimation of the common relative risk in the combination of $2x^2$ tables. *Biometrika* 72:673-677.

Gart JJ, Nam J, 1988. Approximate interval estimation of the ratio of binomial parameters: a review and corrections for skewness. *Biometrics* 44:323-338.

Ralston ML, Jennrich RI, 1978. DUD, A Derivative-Free Algorithm for Nonlinear Least Squares. *Technometrics* 20:7-14.

See Also

rrstr

Examples

```
## Table 1 from Gart (1985)
## as data frame
RRstr(cbind(y,n) ~ tx + cluster(clus), Table6 , pf = FALSE)
# Test of homogeneity across clusters
# stat     0.954
# df     3
# p     0.812
```

rrstr-class 25

```
# RR LL UL

# starting 2.66 1.37 5.18

# mle 2.65 1.39 5.03

# skew corr 2.65 1.31 5.08

## or as matrix

RRstr(Y = table6, pf = FALSE)
```

RR estimates

rrstr-class

Data class rrstr

Description

data class rrstr

Fields

```
estimate vector with point and interval estimate

rnd how many digits to round display

alpha complement of c.i.

estimator either "PF" or "RR"

hom list of homogeneity statistic, p-value, and degrees of freedom

y matrix of data

compare groups compared
```

Author(s)

 $Marie\ Vendettuoli\ \verb|\marie.c.vendettuoli@aphis.usda.gov>|$

See Also

RRstr

RRtosst

RR exact CI, TOSST method.

Description

Estimates confidence interval for the risk ratio or prevented fraction; exact method based on the score statistic (inverts two one-sided tests).

Usage

```
RRtosst(y, alpha = 0.05, pf = TRUE, stepstart = 0.1, iter.max = 36,
  converge = 1e-06, rnd = 3, trace.it = FALSE,
  nuisance.points = 120, gamma = 1e-06)
```

26 RRtosst

Arguments

Data vector c(y1, n1, y2, n2) where y are the positives, n are the total, and group

1 is compared to group 2.

Maximum number of iterations

alpha Complement of the confidence level.

pf Estimate RR or its complement PF?

stepstart starting interval for step search

converge Convergence criterion

rnd Number of digits for rounding. Affects display only, not estimates.

trace.it Verbose tracking of the iterations?

nuisance.points

iter.max

number of points over which to evaluate nuisance parameter

gamma parameter for Berger-Boos correction (restricts range of nuisance parameter

evaluation)

Details

Estimates confidence intervals based on the score statistic that are 'exact' in the sense of accounting for discreteness. Inverts two one-sided score tests. The score statistic is used to select tail area tables, and the binomial probability is estimated over the tail area by taking the maximum over the nuisance parameter. Algorithm is a simple step search.

The data may also be a matrix. In that case y would be entered as matrix(c(y1, n1-y1, y2, n2-y2), 2, 2, byrow = TRUE).

Value

A rr1 object with the following fields.

estimate vector with point and interval estimate

estimator either "PF" or "RR"

y data vector

rnd how many digits to round the display alpha complement of confidence level

Author(s)

David Siev <david.siev@aphis.usda.gov>

References

Koopman PAR, 1984. Confidence intervals for the ratio of two binomial proportions. *Biometrics* 40:513-517.

Agresti A, Min Y, 2001. On small-sample confidence intervals for parameters in discrete distribution. *Biometrics* 57: 963-971.

Berger RL, Boos DD, 1994. P values maximized over a confidence set for the nuisance parameter. *Journal of the American Statistical Association* 89:214-220.

rsb 27

See Also

```
RRotsst, rr1
```

Examples

```
## Not run: RRtosst(c(4, 24, 12, 28))
# PF
# 95% interval estimates
# PF LL UL
# 0.611 0.012 0.902
## End(Not run)
```

rsb

Rao-Scott weights.

Description

Rao-Scott weights.

Usage

```
rsb(y, n, id = NULL)
```

Arguments

y Number positive. n Total number.

id Factor for estimating the weights by subset.

Details

Estimates the cluster design effect d_i as the variance inflation due to clustering by the method of Rao and Scott. rsb estimates the d_i for use by rsbWt or other functions.

Value

A list with the following elements.

w vector of weights $\mbox{\bf d} \hspace{1cm} \mbox{vector of } d_i \mbox{ estimates}$

Author(s)

David Siev <david.siev@aphis.usda.gov>

References

Rao JNK, Scott AJ, 1992. A simple method for the analysis of clustered binary data. *Biometrics* 48:577-585.

28 rsbWt

See Also

rsbWt. See the package vignette for more examples.

Examples

```
# Weil's rat data (Table 1 of Rao and Scott)
rsb(rat$y, rat$n, rat$group)$d
# control treated
# 1.232495 3.952861
```

rsbWt

Rao-Scott weighting.

Description

Rao-Scott weighting of clustered binomial observations.

Usage

```
rsbWt(fit = NULL, subset.factor = NULL, fit.only = T)
```

Arguments

fit A glm object.

subset.factor Factor for estimating the weights by subset.

fit.only Return only the new fit? If FALSE, also returns the weights and phi estimates.

Details

Estimates the cluster design effect d_i as the variance inflation due to clustering by the method of Rao and Scott. Observations are then weighted by the inverse of the d_i .

Value

A list with the following elements.

fit the new model fit, updated by the estimated weights

weights vector of weights d vector of d_i estimates

Author(s)

David Siev <david.siev@aphis.usda.gov>

References

Rao JNK, Scott AJ, 1992. A simple method for the analysis of clustered binary data. *Biometrics* 48:577-585.

See Also

RRor, rsb. See the package vignette for more examples.

Set1 29

Examples

```
birdm.fit <- glm(cbind(y,n-y)~tx-1,binomial,birdm)
RRor(rsbWt(birdm.fit))
#
# 95% t intervals on 4 df
#
# PF
# PF LL UL
# 0.479 -1.061 0.868
#
# mu.hat LL UL
# txcon 0.768 0.968 0.2659
# txvac 0.400 0.848 0.0737
#
# See the package vignette for more examples</pre>
```

Set1

Set1 dataset

Description

Set1 dataset

Format

a data.frame with 6 observation of the following 4 variables, no NAs

y number positive

 \mathbf{n} total number in group tx x clus

tx treatment 'vac' or 'con'

clus cluster ID

References

We need some references

set1

set1 dataset

Description

set1 dataset

Format

a 3 x 4 matrix of data in Set1

References

we need some references!

30 tauWt

Table6

Table6 dataset

Description

Table6 dataset

Format

```
a data.frame with 8 observations of the following 4 variables, no NAs
```

```
y number positive
```

 \mathbf{n} total number in group $\mathsf{tx}\ \mathsf{x}\ \mathsf{clus}$

tx treatment 'a' or 'b'

clus cluster ID

References

Table 1 from Gart (1985)

table6

table6 dataset

Description

table6 dataset

Format

matrix for of data in Table6

tauWt

Binomial dispersion: intra-cluster correlation parameter.

Description

MME estimates of binomial dispersion parameter tau (intra-cluster correlation).

Usage

```
tauWt(fit, subset.factor = NULL, fit.only = TRUE, iter.max = 12,
  converge = 1e-06, trace.it = FALSE)
```

tauWt 31

Arguments

fit A glm object. subset.factor Factor for estimating tau by subset. fit.only Return only the final fit? If FALSE, also returns the weights and tau estimates. iter.max Maximum number of iterations. Convergence criterion: difference between model degrees of freedom and Pearconverge son's chi-square. Default 1e-6.

Display print statments indicating progress trace.it

Details

Estimates binomial dispersion parameter au by the method of moments. Iteratively refits the model by the Williams procedure, weighting the observations by $1/\phi_{ij}$, where $\phi_{ij} = 1 + \tau_j(n_{ij} - 1)$, j indexes the subsets, and i indexes the observations.

Value

A list with the following elements.

fit the new model fit, updated by the estimated weights

weights vector of weights vector of phi estimates phi

Author(s)

David Siev <david.siev@aphis.usda.gov>

References

Williams DA, 1982. Extra-binomial variation in logistic linear models. Applied Statistics 31:144-

Wedderburn RWM, 1974. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61:439-447.

See Also

phiWt, RRor, see package vignette for more examples

Examples

```
birdm.fit <- glm(cbind(y,n-y)^{x}tx-1, binomial, birdm)
RRor(tauWt(birdm.fit))
# 95% t intervals on 4 df
#
# PF
      PF
#
             LL
                    UL
  0.489 -0.578 0.835
        mu.hat
                 LL
# txcon 0.737 0.944 0.320
# txvac 0.376 0.758 0.104
# See the package vignette for more examples
```

Index

*Topic datasets	RRotsst, 10, 19, 27
bird, 3	RRsc, 20, 22
birdm, 4	rrsc, 7, 21
New, 7	rrsc (rrsc-class), 22
rat, 10	rrsc-class, 22
Set1, 29	rrsi, <i>5</i> , <i>7</i> , <i>11</i>
set1, 29	rrsi (rrsi-class), 22
Table6, 30	rrsi-class, 22
table6, 30	RRstr, 23, 25
.rr.score.asymp,3	rrstr, <i>7</i> , <i>24</i>
1: 12	rrstr (rrstr-class), 25
bird, 3	rrstr-class, 25
birdm, 4	RRtosst, 10, 20, 25
alm 0 17 20 21	rsb, 27, 28
glm, 8, 17, 28, 31	rsbWt, 28, 28
IDRlsi, 4, 7, 23	
IDRsc, 5, 6, 10	Set1, 29, 29
151130, 3, 0, 10	set1, 29
New, 7	T-1-1-C 20 20
	Table6, 30, 30
PF (PF-package), 2	table6, 30
pf(pf-class), 7	tauWt, 8, 18, 30
pf-class, 7	
PF-package, 2	
phiWt, 8, 18, 31	
print.rr1,9	
print.rrmp (print.rr1), 9	
<pre>print.rror(print.rr1), 9</pre>	
<pre>print.rrsc (print.rr1), 9</pre>	
print.rrsi (print.rr1), 9	
print.rrstr(print.rr1),9	
rat, 10	
rr1, 6, 7, 10, 13, 14, 20, 26, 27	
RRlsi, 11, 23	
RRmh, 12	
rrmp, <i>16</i>	
rrmp(rrmp-class), 14	
rrmp-class, 14	
RRmpWald, <i>15</i> , 15	
RRor, 8, 17, 19, 28, 31	
rror, 17, 18	
rror (rror-class), 18	
rror-class, 18	