

AD-A158 857 A THEORETICAL STUDY OF TWO STAGE THRUST AUGMENTING
EJECTORS(U) AERONAUTICAL RESEARCH LABS MELBOURNE
(AUSTRALIA) A M ABDEL-FATTAH NOV 84

1/1

UNCLASSIFIED

ARL/AERO-PROP-R-168

F/G 21/5

NL

END
DATE FILMED
11-85
OTL

ARL-AERO-PROP-R-166

AR-003-973

DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
AERONAUTICAL RESEARCH LABORATORIES

MELBOURNE, VICTORIA

AD-A158 857

AERO PROPULSION REPORT 166

A THEORETICAL STUDY OF TWO STAGE
THRUST AUGMENTING EJECTORS

by

A. M. ABDEL-FATTAH

DTS ELECTRONICS
S SEP 9 1985
A

THE UNITED STATES NATIONAL
TECHNICAL INFORMATION SERVICE
IS AUTHORISED TO
REPRODUCE AND SELL THIS REPORT

APPROVED FOR PUBLIC RELEASE

FILE COPY

© COMMONWEALTH OF AUSTRALIA 1984

COPY No

NOVEMBER 1984

85 09 06 017

(2)

AR-003-973

DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
AERONAUTICAL RESEARCH LABORATORIES

AERO PROPULSION REPORT 166

**A THEORETICAL STUDY OF TWO STAGE
THRUST AUGMENTING EJECTORS**

by

A. M. ABDEL-FATTAH

SUMMARY

The results of theoretical assessment of two stage thrust augmenting ejectors are presented and compared with those of single stage ejectors. The mixing ducts were of constant cross sectional area, the flows at the inlet and exit planes of each stage were assumed to be uniform, and friction effects were ignored.

It was found that staging the ejector increases thrust augmentation at all primary jet stagnation pressures, but is more effective in the low pressure range and with high ejector area ratios for any gas combination. With a Hot Rocket Gas-Air Combination, the benefit of staging is much less than with an unheated Air-Air combination, and does not appear to be of practical use.

COMMONWEALTH OF AUSTRALIA (1984)

POSTAL ADDRESS: Director, Aeronautical Research Laboratories,
Box 4331, Melbourne, Victoria, 3001, Australia.

CONTENTS

Page No.

NOMENCLATURE

1. INTRODUCTION 1

2. THEORETICAL CONSIDERATIONS 1

3. RANGE OF CONDITIONS CONSIDERED 3

3.1 Subsonic/Supersonic Flow Regime 3

3.2 Primary Gas Conditions 3

4. RESULTS AND DISCUSSIONS 4

4.1 Air-Air Combination 4

4.2 Hot Rocket Gas-Air Combination 4

4.3 Limiting Conditions 5

4.3.1 Air-Air Combination 5

4.3.2 Hot Rocket Gas-Air Combination 5

5. CONCLUSIONS 5

REFERENCES

APPENDIX A

TABLE 1

FIGURES

DISTRIBUTION

DOCUMENT CONTROL DATA

A1

NOMENCLATURE

<i>A</i>	Duct or flow cross sectional area.
<i>C_p</i>	Specific heat at constant pressure.
<i>F_n</i>	Nozzle thrust.
<i>F_e</i>	Ejector thrust.
<i>H.R.G.</i>	Hot Rocket Gas.
<i>M</i>	Mach number.
<i>ṁ</i>	Mass flow rate.
<i>P</i>	Static pressure
<i>P₀</i>	Total pressure.
<i>R</i>	Gas constant.
<i>R</i>	Universal gas constant.
<i>T</i>	Static temperature.
<i>T₀</i>	Total temperature.
<i>V</i>	Flow velocity.
<i>W</i>	Molecular weight.
<i>γ</i>	Ratio of specific heats.
<i>μ₁</i>	Secondary mass flow ratio = $\frac{\dot{m}_1}{\dot{m}_p}$.
<i>μ₂</i>	Tertiary mass flow ratio = $\frac{\dot{m}_2}{\dot{m}_p}$
<i>τ</i>	Thrust augmentation ratio = $\frac{F_n + F_e}{F_{n_a}}$.
<i>ϕ</i>	A function defined in text.
<i>ψ</i>	Effectiveness of staging = $\frac{\tau_{2s}}{\tau_{1s}}$
<i>ρ</i>	Density.
<i>Γ</i>	Improvement of mass augmentation by staging = $\frac{(1 + \mu_1 + \mu_2)_{2s}}{(1 + \mu_1)_{1s}}$
<i>Subscripts</i>	
1, 2, 3, 4	Relating to stations 1, 2, 3 and 4 in figure 2.
<i>a</i>	Relating to ambient conditions.
<i>p</i>	Relating to primary jet flow.
<i>1s</i>	Single stage ejector
<i>2s</i>	Two stage ejector
*	Relating to nozzle throat.

1. INTRODUCTION

An ejector is a device in which part of the energy in a relatively high velocity primary jet from a nozzle at the inlet is used to entrain a stream of low energy secondary fluid (e.g. ambient air) within a confining duct, as shown in figure 1. The degree of entrainment depends mainly on the effectiveness of the kinetic and thermal mixing between the two streams in the duct. The momentum flux of the mixed flow emerging from the mixing duct is generally large compared with that in the primary jet, the increased mass flow outweighing the reduction in primary fluid mean velocity. The reduction in jet velocity improves the propulsive efficiency, especially for a jet issuing from a vehicle which is stationary or (say) hovering at low forward speeds.

The present study forms part of a broader investigation of the use of ejectors for improving the static thrust of rocket motors. In terms of primary jet stagnation pressure and temperature, this application is well outside the experience of most previous workers (Viets 1975, Quin 1976). Recent work with jets of this nature (Fisher 1980, Fisher and Irvine 1981) was confined to single stage ejectors. Although multi staging the ejector has been found to increase the availability of thrust experimentally (Morrison 1942), and analitically (Nagaraja *et al.* 1973), no further work to the best knowledge of the author has taken place. These two references were cited by Viets (1975), but were not available to the present author. It is the purpose of the present work to evaluate theoretically the availability of thrust with two stage ejectors, with an emphasis on relatively high primary jet stagnation pressure ratios, such as those used in rocket motors.

2. THEORETICAL CONSIDERATIONS

One dimensional compressible flow theory is adopted with the ejector configuration shown in figure 2.

The primary jet flows through an area A_p and entrains the secondary air through the annular area A_1 . The two streams mix in the first duct of cross sectional area A_4 . This mixed flow entrains the tertiary air through the annular area A_2 and mixes with it in the second duct of cross sectional area A_3 before exhausting to the atmosphere.

The following are assumed.

- a. Both mixing ducts are of constant cross sectional area.

$$\begin{aligned} A_3 &= A_4 + A_2 \\ &= A_p + A_1 + A_2 \end{aligned}$$

- b. Static pressure across the inlet and exit planes of each duct is uniform.

$$P_p = P_1, P_4 = P_2, P_3 = P_b$$

- c. The flow distribution in each stream at the inlet and exit of each duct is uniform.

- d. Skin friction is neglected.

- e. The gases are compressible and satisfy the perfect gas law throughout the mixing process, with specific heats independent of temperature.

- f. The primary jet is correctly and isentropically expanded.

With these assumptions the conservation equations for the balance of mass, momentum and energy at various ejector stations can be written as follows:

1. Conservation of Mass:

$$\begin{aligned}\sum(\dot{m})_{p,1,2} &= \dot{m}_3 \\ \sum(\rho A V)_{p,1,2} &= (\rho A V)_3 \\ \sum\left[PAM\sqrt{\frac{W\gamma}{RT_0}\left(1+\frac{\gamma-1}{2}M^2\right)}\right]_{p,1,2} &= \left[PAM\sqrt{\frac{W\gamma}{RT_0}\left(1+\frac{\gamma-1}{2}M^2\right)}\right]_3\end{aligned}\quad (1)$$

2. Conservation of Momentum:

$$\begin{aligned}\sum(\dot{m}V+PA)_{p,1,2} &= (\dot{m}V+PA)_3 \\ \sum(\rho AV^2+PA)_{p,1,2} &= (\rho AV^2+PA)_3 \\ \sum[P A(1+\gamma M^2)]_{p,1,2} &= [P A(1+\gamma M^2)]_3\end{aligned}\quad (2)$$

3. Conservation of Energy:

$$\begin{aligned}\sum(\dot{m}C_p T_0)_{p,1,2} &= (\dot{m}C_p T_0)_3 \\ \sum\left(\dot{m}\frac{\gamma R}{\gamma-1}T_0\right)_{p,1,2} &= \left(\dot{m}\frac{\gamma R}{\gamma-1}T_0\right)_3 \\ \sum\left(\dot{m}\frac{\gamma}{\gamma-1}\frac{R}{W}T_0\right)_{p,1,2} &= \left(\dot{m}\frac{\gamma}{\gamma-1}\frac{R}{W}T_0\right)_3\end{aligned}\quad (3)$$

Divide the momentum equation (2) by the mass equation (1)

$$\frac{\sum[P A(1+\gamma M^2)]_{p,1,2}}{\sum[PAM\sqrt{\frac{W\gamma}{RT_0}\left(1+\frac{\gamma-1}{2}M^2\right)}]_{p,1,2}} = \frac{[P A(1+\gamma M^2)]_3}{\left[PAM\sqrt{\frac{W\gamma}{RT_0}\left(1+\frac{\gamma-1}{2}M^2\right)}\right]_3}\quad (4)$$

The area ratios A_1/A_p and A_2/A_p are related to the mass ratios $\mu_1 = \dot{m}_1/\dot{m}_p$ and $\mu_2 = \dot{m}_2/\dot{m}_p$ respectively as follows:

$$\frac{A_1}{A_p} = \mu_1 \frac{P_p M_p}{P_1 M_1} \sqrt{\frac{W_p \gamma_p T_{o1}}{W_1 \gamma_1 T_{op}} \frac{2+(\gamma_p-1) M_p^2}{2+(\gamma_1-1) M_1^2}} \quad (5a)$$

$$\frac{A_2}{A_p} = \mu_2 \frac{P_p M_p}{P_2 M_2} \sqrt{\frac{W_p \gamma_p T_{o2}}{W_2 \gamma_2 T_{op}} \frac{2+(\gamma_p-1) M_p^2}{2+(\gamma_2-1) M_2^2}} \quad (5b)$$

Substitute equation (5a, 5b) in equation (4) and after algebraically gathering terms:

$$\frac{\phi_p + \mu_1 \sqrt{\frac{W_p \gamma_p T_{o1}}{W_1 \gamma_1 T_{op}} \phi_1} + \mu_2 \sqrt{\frac{W_p \gamma_p T_{o2}}{W_2 \gamma_2 T_{op}} \phi_2}}{1 + \mu_1 + \mu_2} = \sqrt{\frac{W_p \gamma_p T_{o3}}{W_3 \gamma_3 T_{op}} \phi_3} \quad (6)$$

where

$$\phi = \frac{1 + \gamma M^2}{M \sqrt{1 + \left(\frac{\gamma - 1}{2}\right) M^2}}$$

Both entrained gases 1 and 2 are the same (atmospheric air) and at the same stagnation pressure and temperature. Squaring both sides of equation (6):

$$\phi_3^2 = \frac{(1 + \gamma_3 M_3^2)^2}{M_3^2 \left(1 + \left(\frac{\gamma_3 - 1}{2}\right) M_3^2\right)} = \left[\frac{\phi_p + \sqrt{\frac{W_p \gamma_p T_{01}}{W_1 \gamma_1 T_{0p}} \left(\mu_1 \phi_1 + \mu_2 \phi_2\right)}}{1 + \mu_1 + \mu_2} \right]^2 \left(\frac{W_3 \gamma_3 T_{03}}{W_p \gamma_p T_{0p}} \right) \quad (7)$$

This yields the biquadratic equation for the mixed flow Mach number M_3 :

$$\left(\gamma_3^2 - \frac{\gamma_3 - 1}{2} \phi_3^2\right) M_3^4 + (2\gamma_3 - \phi_3^2) M_3^2 + 1 = 0 \quad (8)$$

For M_3 to be real the following condition must be satisfied:

$$\left(2\gamma_3 - \phi_3^2\right)^2 - 4\left(\gamma_3^2 - \frac{\gamma_3 - 1}{2} \phi_3^2\right) \geq 0$$

For the equality condition

$$\phi_3^2 = 2(\gamma_3 + 1)$$

and

$$M_3 = 1$$

or the mixing duct is said to be choked.

With the inequality condition M_3 has two values, one of which is subsonic and the other supersonic.

The detailed computational procedure followed to determine the mixed flow Mach number M_3 and then the ejector thrust for the two stage thrust augmenting ejector is shown in Appendix A.

3. RANGE OF CONDITIONS CONSIDERED

3.1 Subsonic/Supersonic Flow Regime

In principle, the available supersonic solutions to the governing equations include the cases $M_4 > 1$, $M_3 < 1$ and $M_4 > 1$, $M_3 > 1$. However, with the assumption of constant area mixing and balanced static pressure across the 1st-2nd stage interface, which were made to limit the potentially enormous number of variables involved, the first of these cases arose only with a narrow range of extremely low first stage area ratios, and the second was impossible. The following results are therefore confined to subsonic flow solutions ($M_4 < 1$, $M_3 < 1$).

3.2 Primary Gas Conditions

Calculations were made in turn with the primary jet consisting of unheated air and hot rocket efflux respectively. Interest in the former case arose both from its relative simplicity and from the fact that many of the experiments in the broader investigation into high pressure ratio thrust augmenting ejectors have been performed with unheated air jets. Jet stagnation pressure was maintained as a variable for the purpose of the calculations, and in all cases the entrained secondary and tertiary flows were of ambient air.

4. RESULTS AND DISCUSSION

For a given gas combination, P_{op}/P_a , and $T_{op}/(T_{o1}=T_{o2})$ the effectiveness of staging $\psi = \tau_{2s}/\tau_{1s}$ is a measurement of the improvement in thrust augmentation obtained with the two stage ejector τ_{2s} to that with an equivalent single stage ejector τ_{1s} having the same area ratio A_3/A^* . The equivalent single stage ejector, Figure 3b or Figure 3c, is a special case of the two stage ejector, Figure 3a. It can be obtained by fixing the annular area ratio A_2/A_1 at either 0 or ∞ . In this case $\mu_2 = 0$ or $\mu_1 = 0$ and the duct of the first stage coincides either with the duct of the second stage or with the nozzle as shown in Figures 3b and 3c respectively.

4.1 Air-Air Combination

Typical behaviour at ψ as a function of M_1 is shown in Figure 4 together with the corresponding variation of A_2/A_1 and Γ . This figure was obtained for fixed values at $P_{op}/P_a = 42$ and $A_3/A^* = 800$. Point A in the figure represents a single stage ejector $A_2/A_1 = 0$, and $\psi = \Gamma = 1$. In the subsonic range of $M_1 = 0.299-1.0$, ψ is an increasing function of M_1 from $\psi = 1$ to a maximum $\psi = 1.268$ respectively. With further increase in M_1 , ψ reduces rapidly to the point where again $\psi = 1$ at $M_1 = 1.448$. Any increase in M_1 beyond this limit will further reduce the two stage ejector performance to be less than that of the equivalent single stage ejector. The supersonic range of $M_1 = 1.0-1.448$, at least for stationary conditions which are assumed in these calculations, would require special arrangements such as a sonic throat upstream of the first stage duct as shown in Figure 4. As at present our calculations are for the basic constant cross sectional area ejectors, the supersonic M_1 range will be discarded from the rest of the analysis.

With P_{op}/P_a fixed at a representative value of 42, and $T_{op} = T_{o1} = T_{o2}$, calculations were performed for different area ratios A_3/A^* with A_2/A_1 and M_1 as parameters. Single stage ejectors in this figure are represented by the curve $A_2/A_1 = 0$. It is clear from Figure 5 that for a given A_3/A^* the maximum thrust augmentation is always obtained at $M_1 = 1$. Point A in the figure represents the minimum $A_3/A^* = 159$ for which a solution is available with $P_{op}/P_a = 42$. It will be discussed further in Section 5.3 below. Also for a given M_1 , greater levels of thrust augmentation ratio become available with increasing overall area ratio, i.e. bigger ejectors provide more thrust.

For clearer illustration of the effect of staging, the results of Figure 5 are replotted as ψ Vs A_3/A^* in Figure 6a. The single stage ejectors are then represented by the abscissa or $\psi = 1$, which is also $A_2/A_1 = 0$. The effect of staging on mass augmentation ratio is also shown in Figure 6b.

With a fixed $A_3/A^* = 200$, and $T_{op} = T_{o1} = T_{o2}$, calculations were performed for different P_{op}/P_a . The results of ψ Vs M_1 are shown in Figure 7. In the range $P_{op}/P_a > 3.9$ the maximum value for ψ occurs at $M_1 = 1$, consistent with previous observations. For $P_{op}/P_a < 3.9$, ψ (maximum) occurs in the subsonic range of M_1 .

4.2 Hot Rocket Gas-Air Combination

The above calculations were repeated but with the hot rocket gas as the primary fluid, entraining atmospheric air at ambient conditions. The properties of this gas are shown in Table I. As a prelude to these calculations the effect of varying the primary fluid temperature was calculated for both single and two stage ejectors, with fixed values of jet stagnation pressure and overall area ratio, using primary gas properties corresponding in turn to air and rocket efflux. The results appear in Figure 8. For two stage ejectors, the calculations were performed only for $M_1 = 1$, which corresponds to the maximum τ_{2s} obtained by staging. It is clear that thrust augmentation for both single and two stage ejectors deteriorates with increasing primary jet temperature. An important feature of this figure is the limit to T_{o1}/T_{op} below which no solution can be obtained. At this limit, which is a function of both geometric and primary jet parameters, the flow at the exit of the first mixing duct is sonic, $M_4 = 1$, and the mixing duct is said to be choked.

The temperature for the rocket gas used in the analysis is $2400^\circ K$ or $T_{o1}/T_{op} = 0.1208$. This is well below the choking limit $T_{o1}/T_{op} = 0.245$ shown in Figure 8, for $P_{op}/P_a = 42$ and

$A_3/A^* = 800$. From this, and the additional calculations performed with various P_{op}/P_a and A_3/A^* , it was found that the inlet Mach number M_1 for which there is a solution is always subsonic for any primary jet stagnation pressure and overall area ratio.

For a fixed $P_{op}/P_a = 42$, and $A_3/A^* = 800$ the results for the H.R.G.-Air, $T_{o1}/T_{op} = 0.1208$, and compared with those for Air-Air, $T_{o1}/T_{op} = 1$, in Figures 9-11. For the H.R.G.-Air combination, M_4 and A_2/A_1 are rapidly increasing functions of M_1 , and the choking condition occurs at $M_1 = 0.475$. For the Air-Air combination M_4 and A_2/A_1 vary with M_1 at much slower rate, and choking of the first stage mixing duct exit does not occur. The mass augmentation ratios are compared in Figure 10, and the effectiveness of staging is shown in Figure 11. Clearly staging with H.R.G.-Air is potentially much less effective than with Air-Air in terms of both thrust and mass augmentation.

For constant $P_{op}/P_a = 42$, and different A_3/A^* the results for both gas combinations are compared in Figure 12, and in Figure 13 for a fixed $A_3/A^* = 200$ and various P_{op}/P_a .

In Figures 6 and 7 for Air-Air, and Figures 12 and 13 for H.R.G.-Air the design criteria for a two stage ejector is the ψ (maximum) which can be obtained for any given P_{op}/P_a , A_3/A^* configurations. These ψ (maximum) values are plotted in Figure 14 as a function of P_{op}/P_a and A_3/A^* for both gas combinations. It is obvious that the effectiveness of staging ψ increases with the area ratio A_3/A^* and decreases with increasing pressure ratio P_{op}/P_a . The effectiveness of staging with the H.R.G.-Air is much less than that with Air-Air gas combination at any P_{op}/P_a or A_3/A^* .

4.3 Limiting Conditions

4.3.1 Air-Air Combination

For any constant area ratio A_3/A^* as shown in Figure 14, the effectiveness of staging decreases with increasing P_{op}/P_a until a point is reached on the pressure abscissa where $\psi = 1$ or $r_{2s} = r_{1s}$. Any further increase in pressure beyond this limit causes the two stage ejector thrust to be less than that of the equivalent single stage ejector. This limit corresponds to point A in Figures 5 and 6 and in Figure 7, where the pressure curve collapses into a single point A at $M_1 = 1$. For a given P_{op}/P_a and in the range $A_3/A^* < (A_3/A^*)$ limit the only solutions which can be obtained are mathematical ones involving $M_1 > 1$ and $\psi < 1$. This limiting minimum area ratio can be defined as that at which $\psi = 1$ and $M_1 = 1$, and is shown as a function of P_{op}/P_a in Figure 15.

4.3.2 Hot Rocket Gas-Air Combination

The limiting condition for the H.R.G.-Air combination is the exit choking condition for the mixing duct of the first stage $M_4 = 1$, which was discussed earlier and is also shown in Figure 15.

Only above the limiting curves can a solution be obtained for a two stage ejector with $\psi \geq 1$.

5. CONCLUSIONS

Calculations based on one dimensional flow theory have been performed for two stage ejectors having constant area mixing ducts. Within the limits imposed by the constraining assumptions—for example, supersonic duct flow solutions could not be fully explored—it is concluded that the two stage ejector is not a viable alternative to the single stage ejector with the high levels of stagnation pressure and temperature pertaining in the efflux of rocket motors. Relative to a single stage ejector with the same overall diameter, staging provides reasonable improvement in thrust augmentation only with prohibitively large diameters.

The one dimensional flow assumptions could take no account of duct length. It is possible that in practice, where the degree of mixing is variable, a two stage ejector of given diameter could reduce the overall length required for a certain level of performance. However, this could be determined only by experiments, which appear barely justifiable on the basis of the above results.

ACKNOWLEDGEMENT

The author would take this opportunity to express his thanks to Mr S. A. Fisher for his interest in the problem examined in this report, the lengthy discussions, and useful comments.

REFERENCES

1. Viets, H. Thrust Augmenting Ejectors, Aerospace Research Laboratories, ARL 75-0224, 1975.
2. Quinn, B. Ejector Performance at High Temperatures and Pressures. J. Aircraft, Vol. 13, No. 12, 1976.
3. Fisher, S. A. Thrust Augmenting Ejectors for High Pressure Ratio Propulsive Jets. 7th Australasian Hydraulics and Fluid Mechanics Conference, Brisbane, 18-22 August, 1980.
4. Fisher, S. A., and Irvine, R. D. Air Augmentation of Rockets for Low Speed Application. 5th International Symposium on Airbreathing Engines. February 16-21, 1981, Bangalore—India.
5. Morrison, R. Jet Ejector and Augmentation. NACA CR 6428, September, 1942.
6. Nagaraja *et al.* AIAA Paper 73-1184, 1973.

APPENDIX A

Computational Procedure

For a given $P_{op}/P_a, T_{op}/(T_{o1} = T_{o2}), A_3/A^*$, and the properties of the primary and entrained gases, the step by step procedure followed to determine M_3 and then the ejector thrust and thrust augmentation ratio for a two stage ejector was as follows:

$$1. \quad \text{Nominate } M_1, \frac{A_2}{A_1}$$

$$2. \quad \frac{P_{o1}}{P_1} = \left(1 + \frac{\gamma_1 - 1}{2} M_1^2 \right)^{\frac{\gamma_1}{\gamma_1 - 1}}$$

$$3. \quad \frac{P_{op}}{P_p} = \frac{P_{op}}{P_a} \cdot \left(\frac{P_a}{P_p} = \frac{P_{o1}}{P_1} \right) = \left(1 + \frac{\gamma_p - 1}{2} M_p^2 \right)^{\frac{\gamma_p}{\gamma_p - 1}}$$

$$\therefore M_p = \left[\frac{\left(\frac{P_{op}}{P_p} \right)^{\frac{\gamma_p - 1}{\gamma_p}} - 1}{\frac{\gamma_p - 1}{2}} \right]^{1/2}$$

$$4. \quad \frac{A_p}{A^*} = \frac{1}{M_p} \left(\frac{1 + \frac{\gamma_p - 1}{2} M_p^2}{1 + \frac{\gamma_p - 1}{2}} \right)^{\frac{\gamma_p + 1}{2(\gamma_p - 1)}}$$

$$5. \quad \frac{A_4}{A_p} = \frac{\frac{A_3 + A_2}{A_p + A_1}}{1 + \frac{A_2}{A_1}}$$

$$6. \quad \mu_1 = \left(\frac{A_4}{A_p} - 1 \right) \sqrt{\frac{W_1 \gamma_1 T_{op} M_1}{W_p \gamma_p T_{o1} M_p}} \sqrt{\frac{1 + \frac{\gamma_1 - 1}{2} M_1^2}{1 + \frac{\gamma_p - 1}{2} M_p^2}}$$

$$7. \quad \phi_p = \frac{1 + \gamma_p M_p^2}{M_p \sqrt{1 + \frac{\gamma_p - 1}{2} M_p^2}}$$

$$8. \quad \phi_1 = \frac{1 + \gamma_1 M_1^2}{M_1 \sqrt{1 + \frac{\gamma_1 - 1}{2} M_1^2}}$$

$$9. \frac{T_{o4}}{T_{op}} = \frac{1 + \mu_1 \frac{W_p}{W_1} \frac{\gamma_1}{\gamma_p} \frac{\gamma_p - 1}{\gamma_1 - 1} \frac{T_{o1}}{T_{op}}}{1 + \mu_1 \frac{W_p}{W_1} \frac{\gamma_1}{\gamma_p} \frac{\gamma_p - 1}{\gamma_1 - 1}}$$

$$10. \phi_4^2 = \left(\frac{\phi_p + \mu_1 \phi_1 \sqrt{\frac{W_p}{W_1} \frac{\gamma_p}{\gamma_1} \frac{T_{o1}}{T_{op}}}}{1 + \mu_1} \right)^2 \frac{W_4}{W_p} \frac{\gamma_4}{\gamma_p} \frac{T_{op}}{T_{o4}}$$

where

$$W_4 = \left(\frac{\mu_1 + 1}{\mu_1 + \frac{W_1}{W_p}} \right) W_1$$

$$\gamma_4 = \left(\frac{\mu_1 + \frac{\gamma_p}{\gamma_1} \frac{\gamma_1 - 1}{\gamma_p - 1} \frac{W_1}{W_p}}{\mu_1 + \frac{\gamma_1 - 1}{\gamma_p - 1} \frac{W_1}{W_p}} \right) \gamma_1$$

11. Then M_4 which is the mixed flow Mach number at the exit of the first duct is obtained from the following biquadratic equation:

$$\left(\gamma_4^2 - \frac{\gamma_4 - 1}{2} \phi_4^2 \right) M_4^4 + \left(2\gamma_4 - \phi_4^2 \right) M_4^2 + 1 = 0$$

12. The secondary flow Mach number M_2 at the inlet of the second duct is then calculated using the condition ($P_2 = P_4$)

$$\left(1 + \frac{\gamma_1 - 1}{2} M_2^2 \right)^{\frac{\gamma_1}{\gamma_1 - 1}} = \frac{\mu_1}{1 + \mu_1} \frac{\frac{A_4}{A_p}}{\frac{A_p}{A_1} - 1} \sqrt{\frac{W_4}{W_1} \frac{\gamma_4}{\gamma_1} \sqrt{\frac{T_{o1}}{T_{op}} \frac{T_{op}}{T_{o4}} \frac{M_4}{M_1} \left(1 + \frac{\gamma_1 - 1}{2} M_1^2 \right)^{\frac{\gamma_1 + 1}{2(\gamma_1 - 1)}}}}}$$

$$\sqrt{1 + \frac{\gamma_4 - 1}{2} M_4^2}$$

$$13. \phi_2 = \frac{1 + \gamma_1 M_2^2}{M_2 \sqrt{1 + \frac{\gamma_1 - 1}{2} M_2^2}}$$

$$14. \mu_2 = \mu_1 \frac{A_2}{A_1} \frac{M_2}{M_1} \left(\frac{\gamma_1 - 1}{1 + \frac{\gamma_1 - 1}{2} M_2^2} \right)^{\frac{\gamma_1 + 1}{2(\gamma_1 - 1)}}$$

$$15. \frac{T_{o3}}{T_{op}} = \frac{1 + \left(\mu_1 + \mu_2 \right) \frac{W_p}{W_1} \frac{\gamma_1}{\gamma_p} \frac{\gamma_p - 1}{\gamma_1 - 1} \frac{T_{o1}}{T_{op}}}{1 + \left(\mu_1 + \mu_2 \right) \frac{W_p}{W_1} \frac{\gamma_1}{\gamma_p} \frac{\gamma_p - 1}{\gamma_1 - 1}}$$

$$16. \quad \phi_3^2 = \left(\frac{\phi_p + (\mu_1 \phi_1 + \mu_2 \phi_2)}{1 + \mu_1 + \mu_2} \sqrt{\frac{W_p}{W_1} \frac{\gamma_p}{\gamma_1} \frac{T_{01}}{T_{op}}} \right)^2 \frac{W_3}{W_p} \frac{\gamma_3}{\gamma_p} \frac{T_{op}}{T_{o3}}$$

where

$$W_3 = \left(\left(\frac{1 + \mu_1 + \mu_2}{1 + \mu_1} \right) \frac{W_2}{W_4} + \mu_2 \right) W_2$$

$$\gamma_3 = \frac{\frac{\mu_2}{1 + \mu_1} + \frac{\gamma_4 \gamma_1 - 1}{\gamma_1 \gamma_4 - 1} \frac{W_1}{W_4}}{1 + \mu_1 + \frac{\mu_2}{1 + \mu_1} + \frac{\gamma_1 - 1}{\gamma_4 - 1} \frac{W_1}{W_4}}$$

17. The final mixed flow Mach number M_3 at the exit of the second duct can be determined from the following biquadratic equation:

$$\left(\gamma_3^2 - \frac{\gamma_3 - 1}{2} \phi_3^2 \right) M_3^2 + \left(2\gamma_3 - \phi_3^2 \right) M_3^2 + 1 = 0$$

18. For the final mixed flow static pressure at the exit of the second duct to be equal to that of the ambient ($P_3 = P_a$), the following equation must be satisfied:

$$\frac{1 + \mu_1 + \mu_2}{\mu_1} = \sqrt{1 + \frac{\gamma_3 - 1}{2}} M_3^2 \left(1 + \frac{\gamma_1 - 1}{2} M_1^2 \right)^{\frac{\gamma_1 - 1}{2(\gamma_1 - 1)}} \frac{M_3}{M_1} \frac{\frac{A_3}{A_p}}{\frac{A_4}{A_p} - 1} \sqrt{\frac{W_3 \gamma_3}{W_1 \gamma_1} \sqrt{\frac{T_{01} T_{op}}{T_{op} T_{o3}}}}$$

With the nominated M_1 iterate with A_2/A_1 until this condition is satisfied.

19. The total thrust produced by the (jet-ejector) system exciting to atmospheric pressure is then calculated.

$$F_n + F_e = P_a A_3 \gamma_3 M_3^2$$

20. The Mach number and area of the primary jet when exciting to atmospheric pressure without the ejector is then calculated.

$$\text{MPa} = \left(\left(\frac{P_{op}}{P_a} \right)^{\frac{\gamma_p - 1}{\gamma_p + 1}} - 1 \right)^{1/2}$$

$$\frac{A_{pa}}{A^*} = \frac{1}{\text{MPa}} \left(1 + \frac{\gamma_p - 1}{2} \text{MPa}^2 \right)^{\frac{\gamma_p + 1}{2(\gamma_p - 1)}}$$

21. The thrust produced by the primary jet when exciting to atmospheric pressure:

$$F_{na} = P_a A_{pa} \gamma_p M_{pa}^2$$

22. The thrust augmentation ratio for a two stage ejector can be obtained.

$$\tau = \frac{F_n + F_e}{F_{na}} = \frac{A_3}{A_{pa}} \frac{\gamma_3}{\gamma_p} \left(\frac{M_3}{M_{pa}} \right)^2$$

TABLE 1

	Rocket Gas	Ambient Air
Ratio of specific heats γ	1.24	1.4
Molecular Weight W	22	29
Primary gas stag. Temp. $T, {}^{\circ}K$	2400	288

Fig. 1 Schematic diagram for a single stage thrust augmenting ejector.

Fig. 2 Schematic diagram for a two stage thrust augmenting ejector.

$$\frac{A_2}{A_1} = 0$$

$$\frac{A_2}{A_1} = \infty$$

Fig. 3 The limiting cases for a two stage ejector to form a single stage ejector.

Fig. 4 Performance of two stage thrust augmenting ejector, for $\frac{P_{op}}{P_a} = 42$, $\frac{A_3}{A^*} = 800$.

Fig. 5 Performance of two stage thrust augmenting ejectors, for
 $P_{op} / P_a = 42 = \text{constant}$, $T_{op} = T_{o_1} = T_{o_2}$

Fig. 6 Performance of two stage thrust augmenting ejectors, for
 $\frac{P_{op}}{P_a} = 42 = \text{constant}, T_{op} = T_{o_1} = T_{o_2}$

Air – Air combination

Fig. 7 Results for two stage thrust augmenting ejectors for $\frac{A_3}{A^*} = 200 = \text{constant}$
and different $\frac{P_{op}}{P_a}$. $T_{op} = T_{o_1} = T_{o_2}$; \circ ; maximum augmentation.

Fig. 8 Effect of temperature of the primary fluid on thrust augmentation for
 $\frac{P_{op}}{P_a} = 42$, and $\frac{A_3}{A^*} = 800$.
 τ_{2s} obtained for $M_1 = 1.0$.
 - - - Air - Air combination, — H.R.G. - Air combination; ◇
 choking limit ($M_4 = 1$).

Fig. 9 Comparison of results for two stage thrust augmenting ejectors for both
 $(\text{--- Air - Air}, T_{op} - T_{o1})$ and $(-$ H.R.G. - Air, $\frac{T_{o1}}{T_{op}} = 0.1208$)

gas combinations. $\frac{P_{op}}{P_a} = 42$, $\frac{A_3}{A^*} = 800$.

Fig. 10 Comparison of mass augmentation ratios obtained with two stage ejector for both $\text{--- Air - Air, } T_{op} = T_{o_1}$ and — H.R.G. - Air,
 $\frac{T_{o_1}}{T_{op}} = 0.1208$ gas combinations. $\frac{P_{op}}{P_a} = 42, \frac{A_3}{A^*} = 800.$

Fig. 11 Comparison of thrust and mass augmentation obtained with two stage ejectors for both - - - Air - Air, $T_{op} = T_{o_1}$, and — H.R.G. - Air,
 $T_{o_1} = 0.1208$ gas combinations $\frac{P_{op}}{P_a} = 42$, $\frac{A_3}{A_*} = 800$.
 ◎ Maximum augmentation, ◇; $M_4 = 1$

Fig. 12 Comparison of results obtained with two stage thrust augmenting ejectors
 for both — H.R.G. - Air, $\frac{T_{02}}{T_{op}} = 0.1208$ and - - - Air - Air, $T_{op} = T_{01}$
 gas combinations, for $\frac{P_{op}}{P_s} = 42 = \text{constant}$, and variable $\frac{A_3}{A^*}$

Fig. 13 Comparison of results obtained with two stage thrust augmenting ejectors for
 $\text{--- Air - Air, } T_{02} = T_{01}$ and $\text{— H.R.G. - Air, } \frac{T_{02}}{T_{01}} = 0.1208$
 gas combinations, with $\frac{A_3}{A_*} = 200 = \text{constant and variable } \frac{P_{02}}{P_{01}}$

Fig. 14 Results of two stage thrust augmenting ejectors with various $\frac{P_{op}}{P_a}$ and $\frac{A_3}{A^*}$ for H.R.G. - Air, $\frac{T_{o1}}{T_{op}}$ = 0.1208 and and — Air - Air, $T_{o1} = T_{op}$ gas combinations.

Fig. 15 The limiting conditions for two stage thrust augmenting ejectors.
 — Air - Air, $T_{op} = T_{o_1}$ combination for $\tau_{2s} = \tau_{1s} = 1$ & $M_1 = 1$.
 - - - H.R.G. - Air, $\frac{T_{o_1}}{T_{op}} = 0.1208$ for the choking limit $M_4 = 1$.

DISTRIBUTION

AUSTRALIA

DEPARTMENT OF DEFENCE

Central Office

Chief Defence Scientist
Deputy Chief Defence Scientist
Superintendent, Science and Program Administration
Controller, External Relations, Projects and Analytical Studies } (1 copy)
Defence Science Adviser (UK) (Doc. Data sheet only)
Counsellor, Defence Science (USA) (Doc. Data sheet only)
Defence Science Representative (Bangkok)
Defence Central Library
Document Exchange Centre, DISB (18 copies)
Joint Intelligence Organisation
Librarian H Block, Victoria Barracks, Melbourne
Director General—Army Development (NSO) (4 copies)

Aeronautical Research Laboratories

Director
Library
Superintendent—Aero Propulsion
Divisional File—Aero Propulsion
Author: A. M. Abdel-Fattah
S. A. Fisher
S. C. Favaloro

Materials Research Laboratories

Director/Library

Defence Research Centre

Library
WSRL, Dr R. D. Irvine

Navy Office

Navy Scientific Adviser
RAN Aircraft Maintenance and Flight Trials Unit
Directorate of Naval Aircraft Engineering
Directorate of Naval Aviation Policy
Superintendent, Aircraft Maintenance and Repair
Directorate of Naval Ship Design

Army Office

Scientific Adviser—Army
Engineering Development Establishment, Library
Royal Military College Library
US Army Research, Development and Standardisation Group

Air Force Office

Air Force Scientific Adviser

Aircraft Research and Development Unit
Scientific Flight Group
Library
Technical Division Library
Director General Aircraft Engineering—Air Force
Director General Operational Requirements—Air Force
HQ Operational Command (SMAINTSO)
HQ Support Command (SLENGO)
RAAF Academy, Point Cook

Central Studies Establishment
Information Centre

DEPARTMENT OF DEFENCE SUPPORT

Government Aircraft Factories
Manager
Library

DEPARTMENT OF AVIATION

Library
Flying Operations and Airworthiness Division

STATUTORY AND STATE AUTHORITIES AND INDUSTRY

Trans-Australia Airlines, Library
Qantas Airways Limited
SEC of Vic., Herman Research Laboratory, Library
Ansett Airlines of Australia, Library
Commonwealth Aircraft Corporation, Library
Hawker de Havilland Aust. Pty. Ltd., Bankstown, Library
Australian Institute of Petroleum Ltd.
Rolls Royce of Australia Pty. Ltd., Mr C. G. A. Bailey

Universities and Colleges

Adelaide	Barr Smith Library
	Professor of Mechanical Engineering
Flinders	Library
Latrobe	Library
Melbourne	Engineering Library
Monash	Hargrave Library
Newcastle	Library
Sydney	Engineering Library
NSW	Physical Sciences Library
Queensland	Library
Tasmania	Engineering Library
Western Australia	Library
RMIT	Associate Professor J. A. Cole, Mechanical Engineering Library

CANADA

International Civil Aviation Organization, Library
NRC

Aeronautical & Mechanical Engineering Library
Division of Mechanical Engineering, Director
Gas Dynamics Laboratory, Mr R. A. Tylor

CZECHOSLOVAKIA

Aeronautical Research and Test Institute (Prague), Head

FRANCE

ONERA, Library

GERMANY

Fachinformationszentrum: Energie, Physic, Mathematik GMBH

INDIA

Defence Ministry, Aero Development Establishment, Library
Gas Turbine Research Establishment, Director
Hindustan Aeronautics Ltd., Library
National Aeronautical Laboratory, Information Centre

ISRAEL

Technion-Israel Institute of Technology
Professor J. Singer

ITALY

Professor Ing. Giuseppe Gabrielli

JAPAN

Institute of Space and Aeronautical Science, Library

NETHERLANDS

National Aerospace Laboratory (NLR), Library

NEW ZEALAND

Defence Scientific Establishment, Library
RNZAF, Vice Consul (Defence Liaison)
Transport Ministry, Airworthiness Branch, Library

Universities

Canterbury Library
 Professor D. Stevenson, Mechanical Engineering

SWEDEN

Swedish National Defence Research Institute (FOA)

SWITZERLAND

Armament Technology and Procurement Group
F+W (Swiss Federal Aircraft Factory)

UNITED KINGDOM

CAARC, Secretary
Royal Aircraft Establishment, Bedford, Library

Commonwealth Air Transport Council Secretariat
Admiralty Research Establishment, St. Leonard's Hill, Superintendent
National Gas Turbine Establishment, Director, Pyestock North
National Engineering Laboratory, Library
British Library, Lending Division
Aircraft Research Association, Library
British Ship Research Association
GEC Gas Turbines Ltd., Managing Director
Ricardo & Company Engineers (1927) Ltd., Manager
Rolls-Royce Ltd., Aero Division Bristol, Library
British Hovercraft Corporation Ltd., Library

Universities and Colleges

Bristol	Engineering Library
Cambridge	Library, Engineering Department
Manchester	Professor N. Johannsen, Fluid Mechanics
Nottingham	Science Library
Southampton	Library
Strathclyde	Library
Cranfield Inst. of Technology	Library

UNITED STATES OF AMERICA

NASA Scientific and Technical Information Facility
Applied Mechanics Reviews
The John Crerar Library
The Chemical Abstracts Service
Allis Chalmers Corporation, Library
Kentex Research Library
United Technologies Corporation, Library
Lockheed-California Company
Lockheed Missiles and Space Company
Lockheed Georgia
McDonnell Aircraft Company, Library

Universities and Colleges

Iowa State	Dr G. K. Serovy, Mechanical Engineering
Massachusetts Inst. of Technology	MIT Libraries

SPARES (10 copies)

TOTAL (149 copies)

Department of Defence
DOCUMENT CONTROL DATA

1. a. AR No. AR-003-973	1. b. Establishment No. ARL-AERO-PROP-R-166	2. Document Date November 1984	3. Task No. DST 82/048
4. Title A THEORETICAL STUDY OF TWO STAGE THRUST AUGMENTING EJECTORS		5. Security a. document Unclassified	6. No. Pages 14
		b. title U.	c. abstract U.
8. Author(s) A. M. Abdel-Fattah		9. Downgrading Instructions	
10. Corporate Author and Address Aeronautical Research Laboratories P.O. Box 4331, Melbourne, Vic., 3001		11. Authority (as appropriate) a. Sponsor b. Security	
		c. Downgrading d. Approval	
12. Secondary Distribution (of this document) Approved for public release			
Overseas enquirers outside stated limitations should be referred through ASDIS, Defence Information Services Branch, Department of Defence, Campbell Park, CANBERRA, ACT, 2601.			
13. a. This document may be ANNOUNCED in catalogues and awareness services available to . . . No limitations			
13. b. Citation for other purposes (i.e. casual announcement) may be (select) unrestricted (or) as for 13 a.			
14. Descriptors Ejectors Thrust augmentation Jet mixing flow Jet propulsion		15. COSATI Group 21050 01010	
16. Abstract <i>The results of theoretical assessment of two stage thrust augmenting ejectors are presented and compared with those of single stage ejectors. The mixing ducts were of constant cross sectional area, the flows at the inlet and exit planes of each stage were assumed to be uniform, and friction effects were ignored.</i> <i>It was found that staging the ejector increases thrust augmentation at all primary jet stagnation pressures, but is more effective in the low pressure range and with high ejector area ratios for any gas combination. With a Hot Rocket Gas-Air Combination, the benefit of staging is much less than with an unheated Air-Air combination, and does not appear to be of practical use.</i>			

This page is to be used to record information which is required by the Establishment for its own use but which will not be added to the DISTIS data base unless specifically requested.

16. Abstract (Contd)

17. Imprint

Aeronautical Research Laboratories, Melbourne

18. Document Series and Number
Aero Propulsion Report 166

19. Cost Code
423640

20. Type of Report and Period Covered

21. Computer Programs Used

22. Establishment File Ref(s)

END

DATE

FILMED

11-85

DTIC