Aberdeen Institute of Data Science and Artificial Intelligence, South China Normal University

Examination in JC3503 Data Mining and Visualisation

August 2024

Part A (25 marks)

Answer ALL questions. The marks for each question are shown in brackets.

1. Consider the following table which shows 10 instances of data for binary attributes A, B and C of an entity that are classified as either + or -.

A	В	\mathbf{C}	Class
0	0	0	+
0	0	1	_
0	1	1	_
0	1	1	_
0	0	1	+
1	0	1	+
1	0	1	_
1	0	1	-
1	1	1	+
1	0	1	+

You have been asked to construct a decision tree that captures the classification knowledge from the above training data. Note: there is a table with some useful calculations on the next page that will help you with this.

- (a) Compute the Information Gain for the A attribute selected as the root node. [4 mark]
- (b) Compute the Information Gain for the B attribute selected as the root node. [3 mark]
- (c) Compute the Information Gain for the C attribute selected as the root node. [3 mark]
- (d) Based on your answers for 1(a)..(c), which attribute would you split on at the root of the tree? [1 mark]

Useful Fractions				
1/3 = 0.33 $2/3 = 0.67$ $3/7 = 0.43$				
4/7 = 0.57	4/9 = 0.44	5/9 = 0.56		

Useful Multiplication				
0.3 * 0.92 = 0.28	0.33 * -1.60 = -0.53	0.4 * -1.32 = -0.53		
0.43 * -1.22 = -0.52	0.44 * -1.18 = -0.52	0.56 * -0.84 = -0.47		
0.57 * -0.81 = -0.46	0.6 * -0.74 = -0.44	0.67 * -0.58 = -0.39		
0.7 * 0.98 = 0.69	0.9 * 0.99 = 0.89			

$log_2(0.33) = -1.60$	$log_2(0.4) = -1.32$	$\log_2(0.43) = -1.22$		
$log_2(0.44) = -1.18$	$log_2(0.5) = -1$	$log_2(0.56) = -0.84$		
$log_2(0.57) = -0.81$	$log_2(0.6) = -0.74$	$log_2(0.67) = -0.58$		

2. Statistically we define four levels of measurement for attribute values of data: Nominal, Ordinal, Interval, and Ratio.

Classify the following attribute values into these four levels of measurement:

(a) Animal classification: {Bird, Mammal, Reptile}	[1 mark]
(b) Temperature feel: {Cold, Warm, Hot}	[1 mark]
(c) Height	[1 mark]
(d) Assignment grade: {A, B, C, D, F}	[1 mark]

3. Consider the following table, which shows 3 documents, which are classified as either relating to electronics (E), or fruit (F).

Document ID	Words in document	Class
1	apple mac iPad apple	Ε
2	apple iPhone mac	Ε
3	apple pear orange pear	F

Based on the data given in the above table:

(a) Calculate the prior probability of a document occurring in each class, i.e. P(E) and P(F) [2 mark]

- (b) For each word in the document vocabulary, calculate the conditional word probability given a class label, i.e. P(apple | E), P(apple | F), etc. [6 mark]
- (c) Using Naïve Bayes classification and the information you have already computed from 3.(b), what formulas would you use to determine the class label of a new document with the words: {pear apple pear mac}? Note that you don't have to compute these formulas. [2 mark]

Useful Fractions				
1/4 = 0.25 $2/4 = 0.5$ $3/4 = 0.75$				
1/7 = 0.14	2/7 = 0.29	3/7 = 0.43		
4/7 = 0.57	5/7 = 0.71	6/7 = 0.86		

Part B (25 marks)

Answer ALL questions. Each part is worth 25 marks; the marks for each question are shown in brackets.

4. Consider the following samples:

2, 3, 1, 2, 1, 3

(a) Please calculate the mean for the above samples.

[1 mark]

(b) Please calculate the standard deviation for the above samples. **Note**: To compute the standard deviation, one of the square root calculations given below will be useful:

[2 mark]

Useful Square Root Calculations				
$\sqrt{3/5} = 0.77$ $\sqrt{4/6} = 0.82$ $\sqrt{5/6} = 0.91$				
$\sqrt{4/5} = 0.89$	$\sqrt{3/6} = 0.71$	$\sqrt{2/5} = 0.63$		

(c) Using the answers you calculated in 2.(a), fill in the formulas you would use to calculate the z-score (standard score) for each of the above samples. **Note**: you do not need to solve the formulas; you can stop when you reach the point of needing to do any complex calculations.

[3 mark]

5. Consider the following transactions involving five items. Imagine that you have been asked to produce association rules for the items using Apriori algorithm:

$transaction_ID$	$\mathbf{items_bought}$	
1	newspaper,beer,pen,water	
2	beer,magazine,pen	
3	newspaper,beer,pen,water	
4	newspaper,magazine,pen,water	

(a) Using a minimum support of 0.75, generate the frequent itemsets for the above data showing clearly the application of Apriori principle in pruning infrequent itemsets.

[5 mark]

- (b) Using a minimum confidence of 0.75, generate the association rules generated from the frequent itemsets computed in 5.(a) showing clearly the application of Apriori principle in pruning low confidence rules. [4 mark]
- 6. Given the following proximity matrix for data points a—e, you use the agglomerative hierarchical clustering algorithm to cluster the data.

	a	b	c	d	e
a	1.00	0.80	0.90	0.65	0.20
b	0.80	1.00	0.70	0.60	0.50
c	0.90	0.70	1.00	0.40	0.30
d	0.65	0.60	0.40	1.00	0.35
e	0.20	0.50	0.30	0.35	1.00

Note: Please use sim(i, j) to represent similarity between i and j, where i and j are points or clusters. For instance, sim(a, b) = 0.90 and sim(ab, d) = 0.65, where ab is a cluster containing Points a and b.

- (a) **Draw a dendrogram (tree diagram)** for the algorithm using the **MIN** (Single Link) inter-cluster similarity measure. Please also give detailed steps of your calculation.

 [5 mark]
- (b) **Draw a dendrogram (tree diagram)** for the algorithm using the **MAX** (Complete Linkage) inter-cluster similarity measure. Please also give detailed steps of your calculation. [5 mark]