

Mini 384×288/640×512 Uncooled Thermal Camera Product Manual V1.4

InfiSense Technology Co., Ltd.

Contents

1. Product Description	3
2. Product Features	
3. Models	
4. Lens Specifications	4
5. Parameters	
6. Description of User Interface of Thermal Camera Component	7
6.1 Description of Thermal Camera Interface Components	
6.2 Data Output and Control	9
6.2.1 Information Format	9
6.2.2 Interface Definition	. 10
6.2.3 Special Sequence Diagram	. 15
6.2.4 Software Development	. 16
7. Module Assembly Drawing (9.1 mm lens, subject to the specific drawing provided by the salesperson)	. 18
8. Precautions.	
9. Supports and Services	. 19
9.1 Technical Support	. 19
9.2 After-sales Services.	. 19
10. Company Information	. 19

© InfiSense Technology Co., Ltd. All rights reserved. All contents in this manual, including words, pictures, images, etc., belong to InfiSense Technology Co., Ltd. (hereinafter referred to as "THE COMPANY" or "INFISENSE"). No part of the manual, in whole or in parts, may be copied, photocopied, translated, or transmitted without the prior written permission of INFISENSE.

This manual is intended to be used as a guide. Pictures, figures, diagrams, illustrations, etc. provided in this manual are for explanation and illustration purposes only and may be different from the particular product. Please refer to the physical product. While the Company does its utmost to ensure the accuracy of content in this manual, it makes no explicit or implicit claims or guarantees on this manual.

InfiSense Technology may update this manual as a result of product upgrades or other needs. For the latest manual, please contact InfiSense Technology. InfiSense Technology suggests you use this manual under the guidance of professionals.

Historical Versions

Version	Date	Description
V0.1	2020-07-30	Initial version;
V0.2	2020-10-30	Updated power consumption parameters; added an SPI interface; updated
		pictures of interface boards;
V0.3	2020-12-22	Added adaptive lens parameters; updated temperature measurement
		accuracy and power consumption parameters;
		Updated physical photos, product features, product selection, adaptive lens
V0.4	2021-06-01	specifications, power consumption parameters, communication interface,
V U. 1	2021-00-01	temperature measurement range, and temperature measurement accuracy;
		added connector model; updated module assembly drawings;
		Updated information about serial communication interface, and product
V1.0	2021-08-31	performance parameters & notes; added pin definitions of interface boards,
V 1.0	2021-08-31	and data output & control; deleted digital video information; added power-
		on, power-off, and forced updating sequence diagrams;
V1.1	2021-10-14	Updated lens specifications, thermal camera power consumption, product
		legends of user interface components & legends of pin definitions, and pin
		definitions of user interface components; added pin definitions and
		illustrations of supporting cables; updated DVP sequence and notes;
V1.2	2021-12-09	Added the notes on product performance temperature measurement
		parameters; updated DVP sequence; updated output information
		format;
V1.3	2021-12-30	Added the definition of analog video in DF40C-50DP-0.4V (51); added the
		description of I2C control in MINI00-V101F001C;
V1.4	2022-04-06	Replaned product selection; Updated temperature parameter range;
		Optimized and streamlined user instructions;

1. Product Description

Mini 384/640 Series Uncooled Thermal Camera has a dedicated LY infrared image processing chip independently developed by InfiSense compared with the traditional FPGA solution, as well as a new self-developed 12μm WLP infrared detector. It comes with a parallel digital interface, which is easy to integrate and develop, and can be flexibly connected to various intelligent processing platforms. Featured by high performance, compact size, lightweight, low power consumption, and low cost, it meets SWaP³ (Size, Weight and Power, Performance, Price) application requirements.

2. Product Features

- Lightweight and compact
- Ultra-low power consumption
- High-quality image
- 2 levels for temperature measurement

3. Models

4. Lens Specifications

Table 2 Adaptive Lens Specifications

Array Size	Lens Type	Focusing Mode	FOV(H×V)	IFOV	Weight
384×288	0.1mm E1.0	Fixed,	29.2°×21.7°	1.3mrad	9.2~150/
640×512	9.1mm F1.0	athermalized	48.7°×38.6°	1.3mrad	8.3g±5%
384×288	12.5 ····· E1.0	Fixed,	19.6°×14.7°	0.9mrad	12.0-+50/
640×512	13.5mm F1.0	athermalized	31.9°×25.7°	0.9mrad	13.0g±5%
384×288	19 E1 1	Fixed,	14.7°×11.0°	0.7mm d	16.0~150/
640×512	18mm F1.1	athermalized	24.2°×19.5°	0.7mrad	16.0g±5%

5. Parameters

Table 3 Main Parameters

Component	MINI 640	MINI 384			
Sensor Technology	Uncooled VOx microbolometer				
Resolution	640×512	384×288			
Effective Frame Rate (1)	50Hz/25Hz				
Pixel Pitch	12μ	m			
Spectral Band	8~14	μт			
NETD	≤50mK@25°C, F#1.0) (≤40mK, optional)			
Thermal Imaging					
Brightness Adjustment	0~255, o	ptional			
Contrast Adjustment	0~255, o	ptional			
Polarity	White-hot/l	Black-hot			
Palette	Supported				
Digital Zoom	0.25~2.0× continuous zoom				
Mirroring	Vertical/Horizo	ntal/Diagonal			
Reticle	Show/Hide/Move				
	TEC-less algorithm				
Image Processing	Non-uniformity correction				
image i rocessing	Digital filtering noise reduction				
	Digital detail enhancement				
Thermal Camera Power Supp	ply				
Input Supply Voltage	1.8V, 3.3V, 5V ⁽²⁾				
Typical Power Consumption @25°C	<0.55W <0.50W				
Thermal Camera Interface					
Video Output format	DVP				
Command and Control Interface	I ² C				
Physical Characteristics of M	odule (Lens and Flange not included)			
Weight	<8 g				

Package Dimension	21mm×21mm			
Temperature Measurement (3)				
Measurement Range	High gain: -20 °C $\sim +150$ °C; low gain: 0 °C $\sim +550$ °C			
Measurement Accuracy (Typical values)	Target temperature of -20°C \sim +150°C: accuracy of ±2°C or ±2% of the reading (The greater shall prevail @ ambient temperature of - 20°C \sim 60°C) Target temperature of 0°C \sim +550°C: accuracy of ±5°C or ±3% of the reading (The greater shall prevail @ ambient temperature of - 20°C \sim 60°C)			
Measurement Method	Point, line, and area			
Environment Adaptability				
Operating Temperature	-40°C ∼+80°C			
Storage Temperature	-50°C ∼+85°C			
Humidity	5%–95%, non-condensing			
Vibration	6.06g, random vibration, all axes			
Shock	80g@4ms, final peak sawtooth wave, three axes and six directions			

Notes:

- (1) 25Hz temperature measuring thermal camera and 50Hz imaging camera are optional;
- (2) The voltage value as shown refers to the voltage to the thermal camera connector;
- (3) The data in this directory are all measured in laboratory environment.

6. Description of User Interface of Thermal Camera Component

6.1 Description of Thermal Camera Interface Components

50PIN connector model: DF40C-50DP-0.4V (51)

Figure 1 User Interface of Thermal Camera Hirose50

Table 4 Definitions of User Interface of Hirose50-core Connector

Pin No.	Pin Name	Type	D	escription
1, 2	VDD5.0	Power (input)	External power input	t 5V ⁽¹⁾
5, 6	VDD3.3	Power (input)	External power input	t 3.3V ⁽²⁾
9, 10	VDD1.8	Power (input)	External power input	t 1.8V ⁽³⁾
15	DAC_IOUT	Output	Analog video	
17	DAC_GND	Output	Analog video GND	
21	DATA14			Data signal
22	DATA0			Data signal LSB(16bit)
23	DATA1			Data signal
24	DATA2			Data signal
25	DATA3			Data signal
26	DATA4			Data signal
27	DATA5			Data signal
28	DATA6			Data signal
29	DATA7			Data signal LSB (8bit)
30	DATA8		16Bit/8Bit parallel -	Data signal
31	DATA9	Output		Data signal
32	DATA10		data	Data signal
33	DATA11			Data signal
34	DATA12			Data signal
35	DATA13			Data signal
36	VSYNC			Field synchronization signal
37	HSYNC			Line synchronization signal
38	DATA15			Data signal MSB
39	CLK			Clock signal
40	RESET	Input	Reset	
11, 12,	NA	NT A	Not available	
16, 18, 45~48	INA	NA	inot available	
43	SCL	Output	I ² C block line	
44	SDA	Input/Output	I ² C data line	
3, 4, 7, 8, 13,				
14, 19, 20,	GND	Power supply	Power supply GND	
41, 42, 49, 50				

Remarks:

- (1) The typical power input voltage is 5 VDC, where the voltage value refers to the voltage to the module connector. The power rising time (10%~90%) is <4 mS; the peak current <1.0 A; and the ripple and noise <40 mVp-p;
- (2) The typical power input voltage is 3.3 VDC, where the voltage value refers to the voltage to the module

- connector. The power rising time (10%~90%) is <4 mS; the peak current <0.6 A; and the ripple and noise <40 mVp-p;
- (3) The typical power input voltage is 1.8 VDC (1.75V<X<1.85V), where the voltage value refers to the voltage to the module connector;
- (4) Do not hot plug, otherwise, component abnormalities may occur.

6.2 Data Output and Control

6.2.1 Information Format

There are three output modes available for users: image, temperature, and image & temperature. For image output, images may be gray or color ones. The data which have not been processed by the NUC and AGC is also available.

Mode Output Data Gray image Y14, Y10 **Image** Color image **YUV422 Temperature** Temperature image Y14 **Temperature & image** Temperature & image All (The current version does not support)

Table 5 Data Format Descriptions

These three output modes are described as follows:

- 1. Image output
 - a) Gray image:

Y14: The default output is filtered data, set at [15:2], padded with zeros at two low bits.

Y10: AGC processed data, set at [15:6], padded with zeros at six low bits.

b) Color image:

The output format is YUV422 (16-bit/pixel), set as YUYV by default. Y is set at [7:0] and UV at bits[15:8].

2. Temperature output

Y14 output, set at [15:2], with the conversion equation:

Temperature (°C) =
$$Y14/16 - 273.15$$

3. Temperature & image output (Take mini640 as an example)

$$Height1 = height2 = 512$$

Width=640

Figure 2 YUV and Temperature Output

6.2.2 Interface Definition

There are three interfaces: command interface, video interface, and other.

6.2.2.1CCI Command Interface

The CCI command interface has a standard I²C and 400KHz clock, subject to the CCI protocol in the MIPI CSI-2.

6.2.2.2Video interface: DVP

DVP interface sequence transmission format of DVP interface (single channel/dual channel):

- Dual-channel (16Bit) transmission mode:
- 1) DATA0 is LSB, and DATA15 is MSB (if fewer than 16 bits, the data is set at high bits, padded with zero(s) at low bits)
- 2) Sequence Diagram

Figure 3

Figure 4

Table 6

Mode	Max frame rate		Timing
640*512	25fps	Clock: 18MHz T0: 719808 T1: 5216 T2: 20864 T3: 26744 T4: 65 T5: 640	
		T6: 599 T7: 664 Clock: 18MHz	
384*288	25 640	T0: 719632 T1: 8776 T2: 35104	
364.789	25 fps	T3: 45690 T4: 65	
4		T5: 384 T6: 1745	
		T7: 1810	

Table 7

Mode	Frame rate	Timing
		Clock: 24MHz
		T0: 479136
		T1: 3472
640*512	50fps	T2: 13888
		T3: 17588
		T4: 65
		T5: 640
		T6: 163
		T7: 228
384*288	50fps	Clock: 18MHz

11

T0: 599584

T1: 7312

T2: 29248

T3: 38004

T4: 65

T5: 384

T6: 1379

T7: 1444

Table 8

Mode	Frame rate	Timing
640*512	30fps	Clock: 18MHz T0: 599472 T1: 4344 T2: 17376 T3: 22166 T4: 65 T5: 640 T6: 381
		T7: 446

- Single-channel (8Bit) transmission mode (using high 8bit pins of dual channels, i.e.,
 DATA8~DATA15)
- 1) DATA8 is LSB, and DATA15 is MSB. Each pixel (16bit) needs to be transmitted in two clocks, the high 8 bits first, and then the low 8 bits. For example, the data received by 0x1234 is transmitted as [0x34] and [0x12].
- 2) Sequence diagram

Figure 5

Figure 6

Table 9

Mode	Max frame rate	dole y	Timing
		Clock: 24MHz	
		T0: 959376	
		T1: 6952	
		T2: 27808	
640*512	25fps	T3: 35218	
		T4: 129	
		T5: 1280	
		T6: 329	
		T7: 458	
		Clock: 18MHz	
		T0: 719632	
		T1: 8776	
		T2: 35104	
384*288	25fps	T3: 45306	
		T4: 129	
, ,		T5: 768	
		T6: 1297	
		T7: 1426	

Table 10

Mode	Frame rate	Timing
		Clock: 45MHz
		T0: 899760
		T1: 6520
		T2: 26080
640*512	50fps	T3: 32950
		T4: 129
		T5: 1280
		T6: 221
		T7: 350
384*288	50fps	Clock: 18MHz

T0: 599584
T1: 7312
T2: 29248
T3: 37491
T4: 129
T5: 768
T6: 931
T7: 1060

Table 11

Mode	Frame rate	Timing	
		Clock: 27MHz	
		T0: 899760	
		T1: 6520	
		T2: 26080	
640*512	30fps	T3: 32950	
		T4: 129	
		T5: 1280	
		T6: 221	
		T7: 350	

Table 12

10010 12			
Mode	Frame rate	Timing	
		Clock: 27MHz	
		T0: 898016	
		T1: 3376	
		T2: 13504	
640*1024	30fps	T3: 20540	
		T4: 129	
		T5: 1280	
		T6: 3531	
	>	T7: 3660	
		Clock: 18MHz	
		T0: 599584	
		T1: 7312	
		T2: 36689	
384*288	30fps	T3: 37491	
		T4: 129	
		T5: 768	
		T6: 931	
		T7: 1030	

Notes:

Due to the clock accuracy, there is a certain error between the total number of clocks calculated and the selected clock, and the error is a few ten thousandths, which is within a reasonable range.

- (1) At the host side, the PixClk polarity is valid on the falling edge, i.e., the data sampling starts on the falling edge. However, for the thermal camera, it is valid on the rising edge, i.e., the data is transmitted on the rising edge.
- (2) At the host side, the line synchronization signal is at a low level (the level signal at the end of one line), and the HSYNC signal is at a high level during data sampling.
- (3) At the host side, the frame synchronization signal is at a high level (the level signal at the end of one frame) and the VSYNC signal is at a low level during data sampling.

DVP Image Format

- Gray image output
- 1) 14bit NUC data, subject to 16bit transmission, set at high 14 bits, padded with 2 zeros at low bits
- 2) 10bit DRC data, subject to 16bit transmission, set at high 10 bits, padded with 6 zeros at low bits
 - Color image output (YUV422)
- 1) 16bitYUV data: YU YV by default, to be set as YV YU or UY VY or VY UY optionally.

6.2.3 Special Sequence Diagram

This section applies to the situations where the thermal camera power-on, power off, and forced updating need to be directly controlled by hardware on the client.

1. Power-on sequence

Figure 7 Power-on Sequence

2. Power-off sequence

Power-off sequence

Figure 8 Power-off Sequence

3. Forced updating sequence

Forced updating sequence (only for hang-up rescue. Do not operate under normal conditions)

Figure 9 Forced Updating Sequence

6.2.4 Software Development

The SDKs and demonstration software as well as supporting drives are available.

1. SDK

SDKs provide imaging and control interfaces and infrared temperature algorithms, with Windows and Linux (including embedded systems) versions. There are libiruvc, libirtemp, libirparse, and libirprocess, as well as libirsample called from the aforesaid four libraries. For detailed descriptions, please refer to SDK User Manual.

Their functions are described as follows:

- a. Libiruvc: For searching, connecting, and imaging of UVC camera, as well as sending proper image control commands.
- b. Libirtemp: Parsing, processing, secondary correction, and other computing operations of temperature data.

- c. Libirparse: Raw data slicing (temperature and image), and data format conversion, for example, between RGB and YUV.
- d. Libirprocess: Additional processing algorithms, such as palette, mirror image flip, etc.
- e. Libirsample: Example project. The main functions of the above four libraries are called to enable imaging, command sending, temperature measurement, etc.

Note:

Please provide compilation tools if specific embedded systems are to be supported.

2. Demonstration software

Falcon Application is a kind of upper computer software used to demonstrate the module effect, developed based on SDK library and QT, with Windows version only. It is connected via a USB cable, enabling the functions such as image display, image parameter adjustment, temperature measurement, palette mode switches, etc.

7. Module Assembly Drawing (9.1 mm lens, subject to the specific drawing provided by the salesperson)

Figure 10 Standard Product

18

Infilay

8. Precautions

To protect you and others from injury or to protect your device from damage, please read all the

following information before using this device:

1. Do not expose the component to high-intensity sources such as the sun;

2. The ideal service ambient temperature is $-40^{\circ}\text{C} \sim 80^{\circ}\text{C}$;

3. Do not touch the device or cables with wet hands;

4. Do not bend or damage the cables;

5. Do not scrub your device with diluent;

6. Do not unplug other cables before cutting off the power supply;

7. Do not connect the attached cables in the wrong way to avoid damaging the device;

8. Take measures to prevent static electricity;

9. Do not dismantle the device. If there is any fault, please contact us to have it repaired by

professionals.

9. Supports and Services

9.1 Technical Support

1. User expansion components can be tailored to users' different application requirements.

9.2 After-sales Services

InfiSense provides excellent after-sales services such as device maintenance and repair for its self-

developed MINI series uncooled thermal camera components. The warranty service lasts for one year. Please

contact InfiSense if you have any requests.

10. Company Information

InfiSense Technology Co., Ltd.

Tel: +86-0510-85386640

Email: sales@infisense.cn

Web: www.infiray.com

19