segment tree

By Zohre Akbari January2014

Arbitrarily oriented segments

Two cases of intersection:

- An endpoint lies inside the query window; solve with range trees
- The segment intersects the window boundary; solve how?

Arbitrarily oriented segments

A simple solution:

Replace each line segment by

So we could search in the 4n bounding box sides.

Arbitrarily oriented segments

A simple solution:

 Replace each line segment by its bounding box.

So we could search in the 4n bounding box sides.

In the worst case:

The solution is quite bad:

 All bounding boxes may intersect W whereas none of the segments do.

Current problem of our intesect:

Given a set S of line segments with arbitrary orientations in the plane, and we want to find those segments in S that intersect a vertical query segment $q:=q_x \times [q_y:q'_v]$.

Why don't interval trees work?

If the segments have arbitrary orientation, knowing that the right endpoint of a segment is to the right of q doesn't help us much.

• Given a set $S = \{s_1, s_2, \dots, s_n\}$ of n segments(Intervals) on the real line, preprocess them into a data structure so that the ones containing a query point (value) can be reported efficiently

The new structure is called the segment tree.

• The locus approach is the idea to partition the parameter space into regions where the answer to a query is the same.

- The locus approach is the idea to partition the parameter space into regions where the answer to a query is the same.
- Our query has only one parameter, q_x , so the parameter space is the real line. Let p_1, p_2, \ldots, p_n be the list of distinct interval endpoints, sorted from left to right; $m \le 2n$

- The locus approach is the idea to partition the parameter space into regions where the answer to a query is the same.
- Our query has only one parameter, q_x , so the parameter space is the real line. Let p_1, p_2, \ldots, p_n be the list of distinct interval endpoints, sorted from left to right; $m \le 2n$

- The real line is partitioned into
- $(-\infty, p_1)$, $[p_1, p_1]$, (p_1, p_2) , $[p_2, p_2]$, (p_2, p_3) , . . . , $(p_m, +\infty)$, these are called the elementary intervals.

- We could make a binary search tree that has a leaf for every elementary interval.
- We denote the elementary interval corresponding to a leaf μ by $Int(\mu)$.
- all the segments (intervals)in S containing $Int(\mu)$ are stored at the leaf μ
- each internal node corresponds to an interval that is the union of the elementary intervals of all leaves below it

Query time

We can report the k intervals containing q_x in $O(\log n + k)$ time.

storage

 $O(n^2)$ storage in the worst case:

Reduce the amount of storage

• To avoid quadratic storage, we store any segment s_j with v iff $Int(v) \subseteq s_i$ but $Int(parent(v)) \not\subseteq s_i$.

• The data structure based on this principle is called a *segment tree*.

Segment tree

- A segment tree on a set *S* of segments is a balanced binary search tree on the elementary intervals defined by *S*, and each node stores its interval, and its canonical subset of *S* in a list.
- The canonical subset of a node v contains segments s_j such that $Int(v) \subseteq s_j$ but $Int(parent(v)) \not\subseteq s_j$.

Lemma 10.10

A segment tree on a set of n intervals uses $O(n \log n)$ storage.

Proof.

We claim that any segment is stored for at most two nodes at the same depth of the tree.

Query algorithm

Algorithm QUERYSEGMENTTREE (v, q_x)

Input. The root of a (subtree of a) segment tree and a query point q_x . Output. All intervals in the tree containing q_x .

- Report all the intervals in I(v).
- if v is not a leaf
- 3. then if $q_x \in \operatorname{Int}(lc(v))$
- 4. 5. then QUERYSEGMENTTREE($lc(v), q_x$)
- else QUERYSEGMENTTREE $(rc(v), q_x)$

Example query

Example query

Lemma 10.11

• Using a segment tree, the intervals containing a query point q_{χ} can be reported in $O(\log n + k)$ time, where k is the number of reported intervals.

Segment Tree Construction

- Build tree :
- - Sort the endpoints of the segments take $O(n \log n)$ time. This give us the elementary intervals.
- Construct a balanced binary tree on the elementary intervals, this can be done bottom-up in O(n) time.

Segment Tree Construction

- Build tree:
- Sort the endpoints of the segments take $O(n \log n)$ time. This give us the elementary intervals.
- Construct a balanced binary tree on the elementary intervals, this can be done bottom-up in O(n) time.
- Compute the canonical subset for the nodes. To this end we insert the intervals one by one into the segment tree by calling:

Segment Tree Construction

- Build tree :
- - Sort the endpoints of the segments take $O(n \log n)$ time. This give us the elementary intervals.
- Construct a balanced binary tree on the elementary intervals, this can be done bottom-up in O(n) time.
- Compute the canonical subset for the nodes. To this end we insert the intervals one by one into the segment tree by calling:

```
Algorithm InsertSegmentTree(v, [x : x'])
```

Input. The root of a (subtree of a) segment tree and an interval. *Output*. The interval will be stored in the subtree.

- 1. **if** $Int(v) \subseteq [x : x']$
- 2. **then** store [x:x'] at V
- 3. **else if** $Int(lc(v)) \cap [x:x'] \neq \emptyset$
- 4. **then** INSERTSEGMENTTREE(lc(v), [x : x'])
- 5. **if** $Int(rc(v)) \cap [x:x'] \neq \emptyset$
- 6. then INSERTSEGMENTTREE(rc(v), [x:x'])

How much time does it take to insert an interval [x : x'] into the segment tree?

- ullet an interval is stored at most twice at each level of ${oldsymbol{\mathcal{T}}}$
- There is also at most one node at every level whose corresponding interval contains x and one node whose interval contains x'.
- So we visit at most 4 nodes per level.
- Hence, the time to insert a single interval is $O(\log n)$, and the total time to construct the segment tree is $O(n \log n)$.

Theorem 10.12

A segment tree for a set I of n intervals uses $O(n \log n)$ storage and can be built in $O(n \log n)$ time. Using the segment tree we can report all intervals that contain a query point in $O(\log n + k)$ time, where k is the number of reported intervals.

Back to windowing problem

Let S be a set of arbitrarily oriented, disjoint segments in the plane. We want to report the segments intersecting a vertical query segment $q:=q_x \times [q_y:q'_y]$.

• Build a segment tree \mathcal{T} on the x-intervals of the segments in S.

- Build a segment tree τ on the x-intervals of the segments in S.
- A node v in \mathcal{T} can now be considered to correspond to the vertical slab $Int(v) \times (-\infty; +\infty)$.

- Build a segment tree τ on the x-intervals of the segments in S.
- A node v in \mathcal{T} can now be considered to correspond to the vertical slab $Int(v) \times (-\infty; +\infty)$
- A segment S_i is in the canonical subset of v, if it crosses the slab of v completely, but not the slab of the parent of v.

- Build a segment tree *T* on the *x*-intervals of the segments in *S*.
- A node v in T can now be considered to correspond to the vertical slab $Int(v) \times (-\infty; +\infty)$
- A segment S_i is in the canonical subset of v, if it crosses the slab of v completely, but not the slab of the parent of v.
- We denote canonical subset of v with S(v).

Querying

• When we search with q_x in \mathcal{T} we find $O(\log n)$ canonical subsets that collectively contain all the segments whose x-interval contains q_x .

A segment s in such a canonical subset is intersected by q if and only if the lower endpoint of q is below S and the upper endpoint of q is above S

Querying

- segments in the canonical subset S(v) do not intersect each other.
- This implies that the segments can be ordered vertically.
- we can store S(v) in a search tree T(v) according to the vertical order.

Query time

• A query with q_x follows one path down the main tree(segment tree)

- And at every node v on the search path we search with endpoints of in T(v) to report the segments in S(v) intersected by q (a 1-dimensional range query).
- The search in $\mathcal{T}(v)$ takes $O(\log n + k_v)$ time, where k_v is the number of reported segments at (v).
- Hence, the total query time is $O(\log^2 n + k)$.

Storage

Because the associated structure of any node v uses storage linear in the size of S(v), the total amount of storage remains $O(n \log n)$.

• Data structure can be build in $O(n \log n)$ time.

Theorem 10.13

Let S be a set of n disjoint segments in the plane. The segments intersecting a vertical query segment can be reported in $O(\log^2 n + k)$ time with a data structure that uses $O(n \log n)$ storage, where k is the number of reported segments. The structure can be built in $O(n \log n)$ time.

Corollary 10.14

• Let S be a set of n segments in the plane with disjoint interiors. The segments intersecting an axis-parallel rectangular query window can be reported in O(log² n + k) time with a data structure that uses
O(n log n) storage, where k is the number of reported segments. The structure can be built in O(n log n) time