List of Figures

1	Correlation between EPSPS-inhibitor resistant Amaranthus palmeri	
	individuals with phenotypic (glyphosate) and genotypic (EPSPS	
	gene amplification) resistance assays. Dots are color coded to	
	indicate resistance to PPO inhibitors, based on genotypic assays	
	$(\triangle G210 \text{ mutation})$	2
2	Correlation between PPO-inhibitor resistant Amaranthus palmeri	_
	individuals with phenotypic (fomesafen [A] and lactofen [B]) and	
	-	
	genotypic ($\triangle G210$ mutation) resistance assays	Č
3	Presence of EPSPS- and/or PPO-inhibitor resistance based on	
	genotypic resistance assay in 51 Amaranthus palmeri populations	
	from southwestern Nebraska	4
4	Random forest analysis of likelihood of EPSPS-inhibitor resis-	
	tance (genotypic assay) in Amaranthus palmeri populations in	
	response to mechanism of resistance, agronomic practices, and	
	geographic location and weed demographics in southwestern Ne-	
	braska. Variables are ordered by importance measured using the	
	Gini coefficient	5
5	Percentage of diversty in current and previous crop where the	
	EPSPS-(A) and PPO-(B) resistant Amaranthus palmeri popula-	
	tions was found in southwestern Nebraska. Based on genotypic	
	resistance assay, populations are grouped into EPSPS- or PPO-	
	*	
	Resistant, EPSPS- or PPO-Segregating and EPSPS- or PPO-	
	Susceptible representing A. palmeri with all resistant, partially	
	resistant, and no resistant individuals, respectively. Other crops	
	are represented by snap beans	6

Figure 1: Correlation between EPSPS-inhibitor resistant Amaranthus palmeri individuals with phenotypic (glyphosate) and genotypic (EPSPS gene amplification) resistance assays. Dots are color coded to indicate resistance to PPO inhibitors, based on genotypic assays (\triangle G210 mutation).

Figure 2: Correlation between PPO-inhibitor resistant Amaranthus palmeri individuals with phenotypic (fomesafen [A] and lactofen [B]) and genotypic ($\triangle G210$ mutation) resistance assays.

Figure 3: Presence of EPSPS- and/or PPO-inhibitor resistance based on genotypic resistance assay in 51 Amaranthus palmeri populations from southwestern Nebraska.

Figure 4: Random forest analysis of likelihood of EPSPS-inhibitor resistance (genotypic assay) in *Amaranthus palmeri* populations in response to mechanism of resistance, agronomic practices, and geographic location and weed demographics in southwestern Nebraska. Variables are ordered by importance measured using the Gini coefficient.

Figure 5: Percentage of diversty in current and previous crop where the EPSPS-(A) and PPO-(B) resistant Amaranthus palmeri populations was found in southwestern Nebraska. Based on genotypic resistance assay, populations are grouped into EPSPSor PPO-Resistant, EPSPS- or PPO-Segregating and EPSPS- or PPO-Susceptible representing A. palmeri with all resistant, partially resistant, and no resistant individuals, respectively. Other crops are represented by snap beans