10 класс

Задача 1. Мешок и трение

Перед ударом о землю скорость мешочка равна v_0 и направлена под углом α к горизонту.

Во время соударения на мешочек действует вертикальная сила реакция опоры N и горизонтальная сила трения F. Если в течение всего удара выполняется равенство $F=\mu N$, то импульс, сообщённый мешочку силой трения, будет в μ раз больше импульса, сообщённого силой N:

$$P_N = mv_u = mv_0 \sin \alpha, \qquad P_F = \mu P_N = \mu mv_0 \sin \alpha.$$

Отсюда можно найти скорость мешочка по окончании удара:

$$mu = mv_x - \mu mv_y,$$
 $u = v_0(\cos \alpha - \mu \sin \alpha).$

При $\mu > \text{сtg}\,\alpha$ скорость u в предположении $F = \mu N$ получается отрицательной. Это означает, что в этом случае горизонтальная скорость мешочка обратится в ноль ещё до окончания удара по вертикали, то есть мешочек сразу после удара будет неподвижен.

Таким образом, в этой задаче возможны два случая, требующие раздельного рассмотрения.

1. При $\operatorname{ctg} \alpha < \mu$ мешочек в результате удара останавливается, дальность полёта равна

$$L_1 = rac{v_0^2}{g} \sin 2lpha.$$
 откуда $L_{1\,\mathrm{max}} = rac{v_0^2}{g},$

при этом максимальная дальность $L_{1\,\mathrm{max}}$ достигается при $\alpha=45^\circ$.

2. При $\operatorname{ctg} \alpha > \mu$ мешочек после удара некоторое время скользит по поверхности, проходя дополнительное расстояние. Полная дальность L_2 в этом случае складывается из дальности полёта l_1 и расстояния l_2 , пройденного мешочком по поверхности до остановки:

$$l_1 = \frac{v_0^2}{a} \sin 2\alpha, \qquad l_2 = \frac{u^2}{2a},$$

где $u = v_0(\cos \alpha - \mu \sin \alpha)$, $a = \mu g$. Полная дальность L_2 равна:

$$L_{2} = l_{1} + l_{2} = \frac{v_{0}^{2}}{g} \sin 2\alpha + \frac{v_{0}^{2}}{2\mu g} (\cos \alpha - \mu \sin \alpha)^{2} =$$

$$= \frac{v_{0}^{2}}{2\mu g} (4\mu \sin \alpha \cos \alpha + (\cos \alpha - \mu \sin \alpha)^{2}) = \frac{v_{0}^{2}}{2\mu g} (\cos \alpha + \mu \sin \alpha)^{2}.$$

Максимум выражения $\cos \alpha + \mu \sin \alpha$ достигается при $\operatorname{tg} \alpha = \mu$ и равен $\sqrt{\mu^2 + 1}$, поэтому для максимальной дальности во втором случае получаем

$$L_{2\max} = \frac{v_0^2}{g} \, \frac{\mu^2 + 1}{2\mu}.$$

Этот результат можно получить проще, если заметить, что при выполнении условия $F=\mu N$ сумма сил трения и нормальной реакции всегда составляет с вертикалью угол φ такой, что $\operatorname{tg}\varphi=\mu$. По этой причине проекция мешочка на ось, составляющую угол φ с горизонтом движется равноускоренно с ускорением $a=-g\sin\varphi$ во время полёта, удара и скольжения. Отсюда легко находится максимальная дальность:

$$L\cos\varphi = rac{ig(v_0\cos(lpha-arphi)ig)^2}{2g\sinarphi}, \qquad L = rac{ig(v_0\cos(lpha-arphi)ig)^2}{g\sin2arphi},$$
 $L_{2\max} = rac{v_0^2}{g\sin2arphi}$ при $lpha = arphi.$

Максимальная дальность во втором случае не меньше, чем в первом. Это означает, что если условие $\lg \alpha = \mu$ не противоречит условию $\operatorname{ctg} \alpha > \mu$, то есть при $\mu < 1$, максимальная дальность равна $L_{2\max}$.

При $\mu > 1$ дальность L_2 монотонно растёт с увеличением угла α , поэтому её максимальное значение соответствует максимально возможному значению угла, которое определяется условием $\operatorname{ctg} \alpha = \mu$:

$$L_{2\max} = \frac{v_0^2}{2\mu g} (\cos \alpha + \mu \sin \alpha)^2 = \frac{v_0^2 \sin^2 \alpha}{2\mu g} (\cot \alpha + \mu)^2 =$$

$$= \frac{v_0^2}{2\mu g} \frac{(\cot \alpha + \mu)^2}{1 + \cot^2 \alpha} = \frac{v_0^2}{2\mu g} \frac{(2\mu)^2}{1 + \mu^2} = \frac{v_0^2}{g} \frac{2\mu}{1 + \mu^2} \leqslant \frac{v_0^2}{g} = L_{1\max}.$$

Поэтому при $\mu > 1$ максимально возможной будет дальность L_1 . Окончательно:

 $L_{\max} = \left\{ egin{array}{ll} rac{v_0^2}{g} rac{\mu^2 + 1}{2\mu}, & ext{при } ext{tg } lpha_{\max} = \mu, & ext{если } \mu \leqslant 1, \ rac{v_0^2}{g}, & ext{при } lpha_{\max} = 45^\circ, & ext{если } \mu > 1. \end{array}
ight.$

Задача 2. Процессы в сосуде

Сосуд теплоизолирован, поэтому первое начало термодинамики выглядит так:

$$0 = \Delta U + p_0 \Delta V_2,$$

где p_0 — атмосферное давление снаружи подвижной перегородки, ΔV_2 — изменение объёма второго отсека.

Уравнение состояния газа во втором отсеке:

$$p_0 \Delta V_2 = \nu_2 R \Delta T_2.$$

Запишем первое начало термодинамики для каждого газа:

$$\Delta U_1 + \Delta U_2 + p_0 \Delta V_2 = \Delta U_1 + \frac{5}{2} \nu_2 R \Delta T_2 + p_0 \Delta V_2 = \Delta U_1 - \frac{7}{2} \Delta U = 0.$$

Отсюда получаем окончательный ответ:

$$\Delta U_1 = \frac{7}{2} \Delta U.$$

Задача 3. Два шарика

В критическом случае (при минимально возможной v_0) отрыв нижнего шарика произойдёт в момент, когда нить вертикальна и её натяжение равно mg (рис. 21). Скорость верхнего шарика v в этот момент горизонтальна, и из сохранения горизонтальной проекции импульса системы получаем, что скорость нижнего шарика равна по величине и противоположна по направлению скорости верхнего. Запишем закон сохранения энергии:

$$\frac{mv_0^2}{2} = 2\frac{mv^2}{2} + mgl,$$

откуда находим: $v^2 = v_0^2/2 - gl$.

В системе отсчёта (неинерциальной), в которой нижний шарик всё время неподвижен, верхний шарик движется по окружности радиуса l и его скорость в рассматриваемый момент равна 2v, поэтому ускорение верхнего шарика направлено вниз и равно

$$a = \frac{(2v)^2}{l}.$$

Ускорение нижнего шарика в момент отрыва равно нулю, поэтому ускорение верхнего шарика относительно инерциальной системы отсчёта тоже равно $a=4v^2/l$. Второй закон Ньютона для верхнего шарика:

$$m\frac{4v^2}{l} = mg + T.$$

Поскольку T=mg, то, $2v^2=gl$, откуда, с учётом выражения для v, получим $v_0^2=3gl$.

Таким образом, нижний шарик оторвётся от плоскости при:

$$v_0 > \sqrt{3gl}$$
.

Задача 4. Эксперимент

Теоретический вид зависимости давления от температуры для данной системы представлен на рисунке 22. Давление на участке KA:

$$p_{\rm KA} = p_0 + \left(\frac{m_i}{S_i}\right)_{\rm min} g,$$

где $\left(\frac{m_i}{S_i}\right)_{\min}$ — меньшая из двух величин $\frac{m_1}{S_1}$ и $\frac{m_2}{S_2}$. (В дальнейшем для опре-

делённости будем считать меньшей $\frac{m_1}{S_1}$). На этом участке в цилиндре площади S_1 протекает изобарический процесс до момента поднятия поршня до упора (точка A на графике).

При дальнейшем увеличении температуры объём газа не меняется, а давление растёт вплоть до момента начала движения второго поршня (точка В). На участке AB:

$$p_{AB} = \frac{\nu RT}{S_1 h}.$$

В точке В давление

$$p_B = p_0 + \frac{m_2 g}{S_2}.$$

При дальнейшем росте температуры давление не меняется до момента, когда второй поршень достигает верхнего положения (точка С).

Далее снова протекает изохорный процесс при объёме $(S_1 + S_2)h$, так что:

$$p_{CD} = \frac{\nu RT}{(S_1 + S_2)h}.$$

Заметим, что данные таблицы таковы, что

$$\frac{p_2}{p_3} = \frac{T_2}{T_3}, \quad \frac{p_4}{p_5} = \frac{T_4}{T_5}, \quad p_1 = p_2, \quad p_3 = p_4,$$

где $p_i,\,T_i$ — давление и температура в Кельвинах в соответствующих ячейках таблицы. Значит, параметры во второй, третьей и четвёртой ячейках таблицы соответствуют точкам A, B, C. Тогда для участка AB:

$$p_B - p_A = rac{
u R}{S_1 h} (T_B - T_A),$$
 откуда $S_1 = 0.01 \, \mathrm{m}^2.$

Массу m_1 найдём из уравнения:

$$p_A = p_0 + \frac{m_1 g}{S_1},$$
 следовательно, $m_1 = 100$ кг.

Аналогично:

$$S_1 + S_2 = \frac{\nu R(T_D - T_C)}{(p_D - p_C)h},$$
 откуда $S_2 = 0.005\,\mathrm{m}^2,$ $m_2 = 75\,\mathrm{kg}.$

Задача 5. Электрическая цепь

1) Тепло Q_2 , выделившееся в схеме после размыкания ключа, равно энергии конденсатора в момент размыкания:

$$Q_2 = rac{q_C^2}{2C},$$
 откуда $q_C = \sqrt{2CQ_2} = 2{,}00\,\mathrm{м}\mathrm{K}$ л.

Полное тепло равно работе источника:

$$\mathscr{E}q_{\mathscr{E}}=Q_1+Q_2,$$
 откуда $q_{\mathscr{E}}=rac{Q_1+Q_2}{\mathscr{E}}=2,\!11\,\mathrm{мK}$ л.

Через резистор R протёк заряд

$$q_R = q_{\mathscr{E}} - q_C = \frac{Q_1 + Q_2}{\mathscr{E}} - \sqrt{2CQ_2} = 0,11$$
 мКл.

2) При замкнутом ключе в произвольный момент времени справедливо следующее из второго правила Кирхгофа равенство:

$$\mathscr{E} = I_R R + I_r r.$$

Домножив его на малое время Δt , получим связь протекших за это время зарядов:

$$\mathscr{E}\Delta t = RI_R \Delta t + rI_r \Delta t = R\Delta q_R + r\Delta q_r.$$

Просуммировав подобные равенства за всё время до размыкания ключа, получим:

$$\mathscr{E}t = Rq_R + rq_r,$$

откуда с учётом $q_r = q_{\mathscr{E}}$ получаем:

$$t = \frac{Rq_R + rq_{\mathscr{E}}}{\mathscr{E}} = \frac{R+r}{\mathscr{E}^2}(Q_1 + Q_2) - \frac{R}{\mathscr{E}}\sqrt{2CQ_2} = 30.4 \,\mathrm{c}.$$