TUTORIAL 9 COMPUTER ARITHMETIC

Overview

We will review/learn the following concepts in this tutorial:

- Unsigned multiplication (optimized version)
- Unsigned division (version 1 -> optimized version)
- Booth's algorithm for signed multiplication (optional)

Multiplication Hardware: Optimized Version

■ 32-bit ALU

Two registers

- ☐ Multiplicand register: 32 bits
- Product register: 64 bits (right half also used for storing multiplier)

Operations:

- ☐ The right half of the product register is initialized to the multiplier, and its left half is initialized to 0
- ☐ The two right-shifts at each step for version 2 are combined into only a single right-shift because the product and multiplier registers have been combined

Example

Multiplication of two 4-bit unsigned numbers 0101 and 0110 Multiplier

Iteration	Multiplicand (M)	Product (P)	Remark
0		0000 0101	Initial state
1		<u>0110</u>	Left(P) = Left(P) + M
1		<u>0011 0</u> 010	P = P >> 1
2		<u>0011 0</u> 010	No operation
	0110	<u>0001 10</u> 01	P = P >> 1
3		0111 1001	Left(P) = Left(P) + M
3		<u>0011 110</u> 0	P = P >> 1
4		0011 1100	No operation
		0001 1110	P = P >> 1

Exercise 1

Do unsigned multiplication 5 x 7 (0101 and 0111) with optimized hardware, and fill in the table below.

Iteration	Multiplicand (M)	Product (P)	Remark
0			Initial state
1	0101		
2			
3			
4			

Exercise 1 (solution)

■ Do unsigned multiplication 5 x 7 (0101 and 0111) with optimized hardware, and fill in the table below.

Iteration	Multiplicand (M)	Product (P)	Remark
0		0000 0111	Initial state
1		0101 0111	Left(P) = Left(P) + M
1	0101	0010 1011	P = P >> 1
2		0111 1011	Left(P) = Left(P) + M
2		0011 1101	P = P >> 1
3		1000 1101	Left(P) = Left(P) + M
3		0100 0110	P = P >> 1
4		0100 0110	No operation
		0010 0011	P = P >> 1

Exercise 2

■Write down the sequence of MIPS instructions for the following C++ code, assuming variable a, b are stored in \$s0 and \$s1 respectively (you may assume there is no overflow condition)

$$\Box$$
 b = a * 5;

Solution:

addi \$t0, \$zero, 5 mult \$s0, \$t0 mflo \$s1

Division

- Division is the reciprocal operation of multiplication
- Paper-and-pencil example (1001010_{ten} / 1000_{ten}):

Dividend = Quotient x Divisor + Remainder

Division in Binary

Paper-and-pencil 4-bit example (0111₂ / 0010₂):

```
00011 Quotient

Divisor 0010 \( \overline{00000111} \) Dividend
-00100000
-00010000
-00000100
00000011
-00000010
00000011 Remainder
```


Division Sequential Hardware - Version 1

- 64-bit ALU
- Divisor register: 64 bits, Quotient register: 32 bits, Remainder register: 64 bits
- Operations:
 - 32-bit divisor starts in the left half of divisor register; is shifted right 1 bit at each step
 - Quotient register is initialized to 0; shifted left 1 bit at each step
 - Remainder register is initialized with the dividend
 - Control decides
 - when to shift the divisor and quotient registers
 - when to write new values into the remainder register

Algorithm - Version 1

Observations Version 1

Similar to the first version of the multiplication hardware

- At most half of the divisor register has useful information
 - Both the divisor register and ALU could potentially be cut in half

- Shift divisor register to right =>Shift remainder register to left
 - Produce the same alignment
 - □ But, simplify hardware necessary for the ALU and divisor register

Combine the remainder and quotient registers

Example Optimized Division

Paper-and-pencil example $(0111_2 / 0010_2)$:

```
00011
                                Quotient
                  00000111
Divisor
         0010
                                Dividend
                 -0010
                  00001110
                 -0010
                  00011100
                 -0010
                  00111000
                 -0010
                  00011000
                  00110000
                 -0010
                  0001
                           Remainder
```

Division Hardware Optimized Version

(changes made to previous version are highlighted in orange color)

Division Hardware Optimized Version (cont.)

- 32-bit ALU
- Two registers:
 - □ Divisor register: 32 bits
 - □ Remainder register: 64 bits

(right half also used for storing quotient)

Operations:

- □ 32-bit divisor is always subtracted from the left half of remainder register
 - O The result is written back to the left half of the remainder register
- ☐ The right half of the remainder register is initialized with the dividend
 - Left shift remainder register by one before starting
- The new order of the operations in the loop is that the remainder register will be **shifted left one time** too many
 - Thus, <u>final correction step:</u> must **right shift back only the remainder** in the left half of the remainder register

Division Algorithm Optimized Version

Example 1

Division of a 4-bit unsigned number (0111) by another one (0011)

Iteration	Divisor (D)	Remainder (R)	Remark
0		0000 0111	Initial state
U		0000 1110	R = R << 1
		<u>1101</u> 1110	Left(R) = Left(R) - D
1		<u>0000</u> 1110	Undo
		<u>0001_110</u> 0	$R = R << 1, R_0 = 0$
		<u>1110</u> 1100	Left(R) = Left(R) - D
2	0011	<u>0001</u> 1100	Undo
	0011	<u>0011 10</u> 00	$R = R << 1, R_0 = 0$
3		<u>0000</u> 1000	Left(R) = Left(R) - D
3		<u>0001 0</u> 001	$R = R << 1, R_0 = 1$
		<u>1110</u> 0001	Left(R) = Left(R) - D
4		<u>0001</u> 0001	Undo
		<u>0010</u> 0010	$R = R << 1, R_0 = 0$
extra		0001 0010	Left(R) = Left(R) >> 1
	Remainder /	Ψ	Ouotient

Example 2

Division of a 4-bit unsigned number (1011) by another one (0011)

Remainder

Iteration	Divisor (D)	Remainder (R)	Remark
0		0000 1011	Initial state
U		0001 0110	R = R << 1
		<u>1110</u> 0110	Left(R) = Left(R) - D
1		<u>0001</u> 0110	Undo $(L(R) = L(R) + D)$
		<u>0010 110</u> 0	$R = R << 1, R_0 = 0$
		<u>1111</u> 1100	Left(R) = Left(R) - D
2	0011	<u>0010</u> 1100	Undo
		<u>0101 10</u> 00	$R = R << 1, R_0 = 0$
3		<u>0010</u> 1000	Left(R) = Left(R) - D
3		<u>0101 0</u> 001	$R = R << 1, R_0 = 1$
4		<u>0010</u> 0001	Left(R) = Left(R) - D
7		0 1 00 0011	$R = R << 1, R_0 = 1$
extra		0010 0011	Left(R) = Left(R) >> 1

Quotient

Computer Arithmetic

Exercise 3

Divide unsigned division 8 (1000) by 3 (0011) with optimized hardware, fill in the table below.

Iteration	Divisor (D)	Remainder (R)	Remark
0			Initial state
1			
2	0011		
3			
4			
extra			

Exercise 3 (solution)

■ Divide unsigned division 8 (1000) by 3 (0011) with optimized hardware, fill in the table below.

Iteration	Divisor (D)	Remainder (R)	Remark
0		0000 1000	Initial state
0		0001 0000	R = R << 1
		1110 0000	Left(R) = Left(R) - D
1		0001 0000	Undo
		0010 0000	$R = R << 1, R_0 = 0$
		1111 0000	Left(R) = Left(R) - D
2	0011	0010 0000	Undo
		0100 0000	$R = R << 1, R_0 = 0$
3		0001 0000	Left(R) = Left(R) - D
<u> </u>		0010 0001	$R = R << 1, R_0 = 1$
		1111 0001	Left(R) = Left(R) - D
4		0010 0001	Undo
		0100 0010	$R = R << 1, R_0 = 0$
extra		0010 0010	Left(R) = Left(R) >> 1

Exercise 4

■Write down the sequence of MIPS instructions for the following C++ code, assuming variable a, b are stored in \$s0 and \$s1 respectively

 \Box b = a / 3;

Solution:

addi \$t0, \$zero, 3 div \$s0, \$t0 mflo \$s1

Signed Multiplication: Booth's Algorithm

Let's consider multiplying 0010₂ and 0110₂

	Co	nvention	Вс	ooth	
Multiplicand		0010		0010	
Multiplier	x	0110		0110	_
	+	0000	+	0000	shift
	+	0010	-	0010	subtract
	+	0010	+	0000	shift
	+	0000	+	0010	add
Product	=	0001100	=	0001100	uuu

Idea of Booth's Algorithm

- Looks at two bits of multiplier at a time from right to left
 - □ 00: No-op; 01: Addition; 10: Subtraction; 11: No-op.
- Assume that shifts are much faster than adds
- Basic idea to speed up the calculation: avoid unnecessary additions

Booth's Algorithm Example

- Multiply 14 times -5 using 5-bit numbers (10-bit result).
 - □ 14 in binary: 01110; -14 in binary: 10010 (so we can add when we need to subtract the multiplicand); 5 in binary: 11011
 - Expected result: -70 in binary: 11101 11010

Step	Multiplicand	Action	Multiplier upper 5-bits 0, lower 5-bits multiplier, 1 "Booth bit" initially 0
0	01110	Initialization	00000 11011 0
1	01110	10: Subtract Multiplicand 01110 Shift Right Arithmetic	00000+10010=10010 10010 11011 0
			11001 01101 1
2	2 01110	11: No-op	11001 01101 1
2 011.	91110	Shift Right Arithmetic	11100 10110 1

Booth's Algorithm Example (con't)

3	01110	01: Add Multiplicand	11100+01110=01010 (Carry ignored because adding a positive and negative number cannot overflow.) 01010 10110 1
		Shift Right Arithmetic	00101 0101 <mark>1 0</mark>
4	01110	10: Subtract Multiplicand	00101+10010=10111 10111 01011 0
		Shift Right Arithmetic	11011 1010 <mark>1 1</mark>
5	01110	11: No-op	11011 10101 1
3 01110	01110	Shift Right Arithmetic	11101 11010 1

Exercise 5

Do signed multiplication of two signed number +2 and -3 (0010 and 1101) with Booth's algorithm, fill in the table below.

Iteration	Multiplicand (M)	Product (P)	Remark
0			Initial state
1	0010		
2			
3			
4			

Exercise 5 (solution)

■ Do signed multiplication of two signed number +2 and -3 (0010 and 1101) with Booth's algorithm, fill in the table below.

Iteration	Multiplicand (M)	Product (P)	Remark
0		0000 1101 0	Initial state
1		1110 1101 0	Left(P) = Left(P) - M
1		1111 0110 1	P = P >> 1
2	0010	0001 0110 1	Left(P) = Left(P) + M
۷		0000 1011 0	P = P >> 1
3		1110 1011 0	Left(P) = Left(P) - M
3		1111 0101 1	P = P >> 1
4		1111 0101 1	No operation
		1111 1010 1	P = P >> 1