Московский физико-технический институт (госудраственный университет)

Лабораторная работа по РТ цепям

Длинный цепи [23]

Талашкевич Даниил Александрович Группа Б01-009

Содержание

1	Исс	Исследование параметров линии			
2	Исследование переходных процессов				
	2.1	Согласованная линия			
		2.1.1	Выполнение	1	
		2.1.2	Полученные результаты	2	
	2.2	Pacco	гласованный источник		
		2.2.1	Выполнение	3	
		2.2.2	Полученные результат	3	
	2.3	Pacco	гласованная нагрузка	4	
		2.3.1	Выполнение	4	
		2.3.2	Полученные результаты	8	
	2.4	Pacco	гласованный источник и нагрузка		
		2.4.1	Выполнение		
		2.4.2	Полученные результаты	10	
	2.5	Емкос	стная нагрузка	11	
3	Лиз	герату	ра	11	

1 Исследование параметров линии

Так как нет возможности собрать плату и измерить её параметры, выполнение этого пункта пропускаю.

2 Исследование переходных процессов

Исследования проводим в режиме Transient Micro Cap, с подготовленной моделью (файл TLine.cir), который содержит длинную линию с волновым сопротивлением w=50 Ом, без потерь, время распространения $\tau=\frac{l}{w}=10$ нс. Линия питается от источника единичного перепада напряжения V=1 В.

Наблюдаются напряжения в узлах e,u на входе и выходе линии (переменные v(e),v(u)) и входной/выходной токи i(s)/i(l) через виртуальные резисторы s,l с нулевыми сопротивлениями.

В этой модели (файле) Подготовлен вывод графиков амплитуд падающей волны на входе $A(0,t)=\frac{v(e)+50*i(s)}{2}$ и выходе $A(l,t)=\frac{v(u)+50*i(l)}{2}$ (плот 1), амплитуд отраженной волны на входе $B(0,t)=\frac{v^2(e)-50*i(s)}{2}$ и выходе $B(l,t)=\frac{v(u)-50*i(l)}{2}$ (плот 2), напряжений на входе и выходе v(e), v(u) (плот 3) и токов на входе и выходе v(e), v(u) (плот 3) и токов на входе и выходе v(e), v(u) (плот 3) и токов на входе и выходе v(e), v

Временной диапазон графиков выбран равным $20\tau(\tau = 10 \text{ нc})$.

2.1 Согласованная линия

На схеме установим $R_s = R_l = 50$ Ом, и выведем графики (через меню Analisys/Transient/Run). Проанализируем графики амплитуды падающей волны, напряжений и токов. А так же, измерив по графикам установившиеся значения v(u) и i(l)w, убедимся в том, что источник отдает в нагрузку предельную мощность:

$$P = v(u)i(l) = \frac{V^2}{4R_s}, V = 1 \text{ B}:$$

$$Pw = v(u)i(l)w = \frac{V^2}{4R_s}w = 0,25.$$

2.1.1 Выполнение

Рис. 1: согласованная линия, 1

2.1.2 Полученные результаты

Измерянные значения:

$$v(u) = 0.5B \ i(l) = 0.01A,$$

по ним получаем:

$$P = v(u)i(l) = 0,005 = \frac{V^2}{4R_s} = 1.$$

Отсюда можно сделать вывод, что формула верна.

2.2 Рассогласованный источник

Варьированием установим $R_s = \frac{w}{3} \left[\rho_s = \frac{R_s - w}{R_s + w} = -\frac{1}{2} \right]$. (Transient/Stepping - [From, To|StepValue] = [50/3, 50/3 | 1]). Теперь пересчитаем графики по Transient/Run. И, измерив установившиеся значения v(u) и i(l)w, проверим, что отдаваемая в нагрузку мощность P меньше мощности источника в $\left(1 - \rho_s^2\right)$ раз, т.е.:

$$Pw = v(u)i(l)w = \frac{V^2}{4R_s}w\left(1 - \rho_s^2\right) = 0.75\left(1 - \frac{1}{4}\right) = 0.5625.$$

Повторим все это при $R_s = 3w \left[\rho_s = \frac{R_s - w}{R_s + w} = +\frac{1}{2} \right]$. Проверим, что

$$Pw = v(u)i(l)w = \frac{V^2}{4R_s}w\left(1 - \rho_s^2\right) = \frac{0.25}{3}\left(1 - \frac{1}{4}\right) = 0.0625.$$

2.2.1 Выполнение

Установим $R_S = \frac{\omega}{3}$ Ом, $\omega = 50$ Ом, $\rho_S = \frac{R_S - \omega}{R_S + \omega} = -\frac{1}{2}$.

Рис. 2: Рассогласованный источник, 1

Повторим те же измерения при $R_S = 3\omega, \, \rho_S = \frac{1}{2}$:

Рис. 3: Рассогласованный источник, 2

2.2.2 Полученные результат

$$v(u) = 0,75B, i(l)\omega = 0,75B$$

$$P\omega = v(u)i(l)\omega = 0,5625 = \frac{V^2}{4R_S}\omega (1 - \rho_S^2),$$

что говорит о справедливости утверждения о том, что отдаваемая в нагрузку мозность P меньше мощности источника в $(1-\rho_S^2)$ раз.

Полученный значения, при $R_S = 3\omega$, $\rho_S = \frac{1}{2}$:

$$v(u) = 0,25B, i(l)\omega = 0,25B$$

$$P\omega = v(u)i(l)\omega = 0,0625 = \frac{V^2}{4R_S}\omega (1 - \rho_S^2),$$

аналогично следует вывод о том, что мощность, отдаваемая в нагрузку меньше мощности источника в $(1-\rho_S^2)$ раз.

2.3 Рассогласованная нагрузка

Установим варьированием $R_l = \frac{w}{3} \left[\rho_l = -\frac{1}{2} \right]$. Выясним характер переходных процессов, а так же измерим установившиеся значения амплитуд волн, напряжений и токов.

Повторим все наблюдения при $R_l = 0 \left[\rho_l = -1 \right], R_l = 3w \left[\rho_l = +\frac{1}{2} \right], R_l = 50k \simeq \infty \left[\rho_l = +1 \right].$

2.3.1 Выполнение

$$R_l = \frac{w}{3}$$
, $v(u) = 0,25$ B, $i(l)w = 0,75$ B:

Рис. 4: Рассогласованная нагрузка, 1

$$R_l = 3w, \ v(u) = 0,75B, \ i(l)w = 0,25B$$
:

Рис. 5: Рассогласованная нагрузка, 2

$$R_l = 0w, \ v(u) = 0,00B, \ i(l)w = 1,00B$$
:

Рис. 6: Рассогласованная нагрузка, 3

$$R_l = \infty$$
, $v(u) = 1,00$ B, $i(l)w = 0,00$ B:

Рис. 7: Рассогласованная нагрузка, 4

2.3.2 Полученные результаты

XX

2.4 Рассогласованный источник и нагрузка

Установим на схеме $R_s=50/3\left[\rho_s=-\frac{1}{2}\right]$. Установив варьированием $R_l=0\left[\rho_l=-1\right], \rho_s\rho_l=\frac{1}{2}$, изобразим полученные графики. По ним убедимся, что амплитуда падающей волны нарастает как последовательность частичных сумм прогрессии:

$$A = \frac{w}{w + R_s} \left(1 + \rho_s \rho_l + (\rho_s \rho_l)^2 + \ldots \right) = \frac{3}{4} \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots \right).$$

Как итог, объясним ход графиков амплитуд волн, напряжений и токов и измерим установившиеся значения.

Повторим наблюдения при $R_l = 50k \simeq \infty \left[\rho_l = 1 \right], \rho_s \rho_l = -\frac{1}{2}$:

$$A = \frac{w}{w + R_s} \left(1 + \rho_s \rho_l + (\rho_s \rho_l)^2 + \ldots \right) = \frac{3}{4} \left(1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \ldots \right)$$

Установим на схеме $R_s=50*3\left[\rho_s=+\frac{1}{2}\right]$ и повторим наблюдения при $R_l=0\left[\rho_l=-1\right]$:

$$A = \frac{w}{w + R_s} \left(1 + \rho_s \rho_l + (\rho_s \rho_l)^2 + \ldots \right) = \frac{1}{4} \left(1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \ldots \right)$$

и
$$R_l = 50k \simeq \infty [\rho_l = 1]$$
:

$$A = \frac{w}{w + R_s} \left(1 + \rho_s \rho_l + (\rho_s \rho_l)^2 + \ldots \right) = \frac{1}{4} \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots \right).$$

Установим на схеме $R_s=0$ [$ho_s=-1$] (предельно сильное рассогласование на источнике) и повторим наблюдения при

$$R_{l} = 50k, [\rho_{l} = 1] \Rightarrow A = (1 - 1 + 1 - 1 + \dots),$$

$$R_{l} = 500, \quad [\rho_{l} = 0.8] \Rightarrow A = (1 - \rho_{l} + \rho_{l}^{2} - \rho_{l}^{3} + \dots),$$

$$R_{l} = 0, \quad [\rho_{l} = 1] \Rightarrow A = (1 + 1 + 1 + 1 + \dots),$$

$$R_{l} = 5, \quad [\rho_{l} = -0.8] \Rightarrow A = (1 + \rho_{l} + \rho_{l}^{2} + \rho_{l}^{3} + \dots).$$

2.4.1 Выполнение

$$R_S = \frac{50}{3}, \ \rho_S = -\frac{1}{2}, \ R_l = 0, \ \rho_l = -1, \ \rho_S \rho_l = \frac{1}{2},$$

где
$$A = \frac{\omega}{\omega + R_S} \left(1 + \rho_S \rho_l + (\rho_S \rho_l)^2 + \ldots \right) = \frac{3}{4} \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots \right)$$
:

Рис. 8: Рассогласованный источник и нагрузка, 1

$$R_S = \frac{50}{3}, \ \rho_S = -\frac{1}{2}, \ R_l = 50k \simeq \infty, \ \rho_l = 1, \ \rho_S \rho_l = -\frac{1}{2},$$

где
$$A = \frac{\omega}{\omega + R_S} \left(1 + \rho_S \rho_l + (\rho_S \rho_l)^2 + \ldots \right) = \frac{3}{4} \left(1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \ldots \right)$$
:

Рис. 9: Рассогласованный источник и нагрузка, 2

2.4.2 Полученные результаты

XX

2.5 Емкостная нагрузка

3 Литература

- Григорьев А.А. Лекции по теории длинных цепец. М.: МФТИ, 2013.
- Методические указания к работе №23(Длинный цепи).