Department of Mathematics

National Institute of Technology Kurukshetra B.Tech. (I Semester) MID TERM-1 Exam,17 January-2022

Subject: Differential Calculus and Differential Equations

Code: MAIR 11 Max. Marks: 15

Branch: CE, CS, EC, EE, IT, ME, PI

Timings: 9: 30a.m-10:10 a.m.

Note: a) All questions are compulsory.

- b) The question paper consists of 11 objective questions. First seven questions are of one mark each and rest are of two mark each.
- 1. Find the eigen values of A where

$$A = \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}$$

- A. 0, 0, 9
- B. 3, 3, 3
- C. 0, 3, 6
- D. All the above.
- 2. If $A = [a_{ij}]_{n \times n}$ and $B = [b_{ij}]_{n \times n}$ are two matrices such that 'B' is similar to 'A'. Then which of the following statement is not always true
 - A. |A| = |B|
 - B. Trace of A = Trace of B
 - C. A and B have the same eigne values.
 - D. Eigen vectors of 'A' and 'B' with corresponding eigen values are same.
- 3. Let

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$$

Then which of the followings are eigen vectors of A corresponding to eigen values $\lambda = 2$

A.
$$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$

B.
$$\begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

C.
$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

D. None of the above.

4. If
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

At the origin the function f(x, y) is

- A. Continuous
- B. Discontinuous
- C. Not Defined
- D. None of the above
- 5. Let $A = [a_{ij}]_{3\times 3}$ be a skew-symmetric matrix such that '2i' is its one eigen value then other two eigen values are,
 - A. -2i, 0.
 - B. $\frac{1}{2i}$, 0.
 - C. $-\frac{1}{2i}$, 0
 - D. None of above.
- 6. $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4-y^2}$ is equal to
 - A. 0
 - B. Does not exist
 - C. 1
 - D. -1
- 7. If $z = g(x^a y^b)$ satisfies the equation $2x \frac{\partial z}{\partial x} 3y \frac{\partial z}{\partial y} = 0$ then
 - A. $3b^2 = 4a^2$
 - B. $4b^2 = 3a^2$
 - C. $4b^2 = 9a^2$
 - D. $9b^2 = 4a^2$
- 8. Let $A = [a_{ij}]_{2\times 2}$ such that trace of A is 1 and |A| = 1, then find 'A³'
 - A. *I*
 - B. A
 - C. A^2
 - D. -I
- 9. What is the nature of the quadratic form $2x_1x_2 + 2x_1x_3 2x_2x_3$
 - A. Indefinite
 - B. Positive Definite
 - C. Positive Semi-definite
 - D. None of the above.

10. If the matrix $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Then which of the following is true

- A. A is diagonalizable
- B. A is similar to diagonal matrix
- C. 0, 0 are the eigen values of A
- D. All the above

11. If $z = x^2 tan^{-1} \left(\frac{y}{x}\right) - y^2 tan^{-1} \left(\frac{x}{y}\right)$, then $\frac{\partial^2 z}{\partial y \partial x}$ is

$$A. \frac{x^2 - y^2}{x^2 + y^2}$$

B.
$$\frac{x^2+y^2}{x^2-y^2}$$

B.
$$\frac{x^2+y^2}{x^2-y^2}$$
C.
$$\frac{x^2y^2}{x^2-y^2}$$
D.
$$\frac{x^2y^2}{x^2+y^2}$$

D.
$$\frac{x^2y^2}{x^2+y^2}$$