Linear & Polynomial Regression (Analytic)

We will explore **linear regression** and **polynomial regression** using a synthetic dataset (synthetic_regression.csv with columns x, y). All solutions must use **analytic** (closed-form) formulas — **no gradient descent, no library** .fit() methods. Implement everything directly in **NumPy**.

Tasks

1. 70/30 Train-Test Split (Unregularized)

- Split the data into 70% train / 30% test (random, reproducible).
- Fit the following models:
 - Linear regression (polynomial degree 1),
 - Polynomial regression with degrees $k \in \{2, 5, 10, 15\}$.
- For each model, build the design matrix explicitly: For each datapoint, the row is given by

$$\Phi(x) = [1, x, x^2, \dots, x^k].$$

(let's call the design matrix Φ instead of X.)

Solve using the equations we derived in class:

$$heta^* = (\Phi^{ op}\Phi)^{-1}\Phi^{ op}\mathbf{y}.$$

- Compute training error and test error.
- Plot (a) the dataset points with all model fits on one figure, and (b) a **bar chart** of training vs test errors.

2. 10-Fold Cross-Validation (Unregularized)

- Implement 10-fold CV yourself (shuffle indices once, split into folds).
- For each degree {1, 2, 5, 10, 15}, compute the average test error across folds.
- Plot a bar chart comparing the average test error across all models. Conclude the best hypothesis class.

3. Repeat (1) and (2) with Ridge Regularization.

• Use ridge regression with:

$$\theta_{\lambda}^* = (\Phi^{\top}\Phi + \lambda I)^{-1}\Phi^{\top}\mathbf{y}.$$

- Take $\lambda = 1$ (fixed).
- Show the same plots: fitted curves, bar chart of train/test errors, and bar chart of 10-fold average test errors.

Notes

- If any bar chart scale makes some bars invisible, **use a logarithmic y-axis**: plt.yscale("log").
- Keep your code structured and use the provided skeleton below.

Functions to Implement

For this assignment, you will write the following functions yourself.

Each function connects the mathematical definition we studied in class to working NumPy code.

1. design_matrix_poly_1d(x_column, degree, include_bias=True)

• Build the design matrix Φ for **polynomial regression**:

[
$$\Phi(x)=[1,x,x^2,\ldots,x^k]$$
]

- **Input:** vector of x-values, degree (k).
- **Output:** design matrix of shape $(n \times (k+1))$.

2. normal_equation(Phi, y)

• Compute the closed-form OLS solution:

[
$$\theta^* = (\Phi^{ op}\Phi)^{-1}\Phi^{ op}\mathbf{y}$$
] (or use the pseudoinverse if singular).

- **Input:** design matrix Φ , targets \mathbf{y} .
- **Output:** regression coefficient vector θ .

3. ridge_closed_form(Phi, y, lam)

• Compute the ridge regression solution:

[
$$\theta_{\lambda}^* = (\Phi^{\top}\Phi + \lambda I)^{-1}\Phi^{\top}\mathbf{y}$$
]

- **Input:** design matrix Φ , targets \mathbf{y} , regularization parameter λ .
- **Output:** coefficient vector θ .

4. predict(Phi, theta)

• Generate predictions:

$$[\hat{\mathbf{y}} = \Phi \theta]$$

- **Input:** design matrix Φ , coefficients θ .
- Output: predicted values.

5. err(y_true, y_pred)

• Compute the average squared error:

[Error
$$=\frac{1}{n}\sum_{i}(y_{i}-\hat{y}_{i})^{2}$$
]

- **Input:** true values y, predicted values \hat{y} .
- Output: scalar error.

Functions to use:

You can use the following functions for reading the data, doing the test-train split and also for the k-fold CV.

6. kfold indices(n, K, seed=0)

- Generate index splits for K-fold cross-validation.
- Input: dataset size (n), number of folds (K), optional random seed.
- Output: list of train_idx and val_idx pairs.

7. train_test_split_indices(n, test_ratio=0.3, seed=42)

- Randomly split dataset into training and test sets.
- Input: dataset size (n), test ratio, optional random seed.
- Output: two arrays: train_idx , test_idx .

8. load_csv_xy(path)

- Load a CSV file with columns **x** and **y**.
- Output:
 - (X): array of shape (n \times 1),
 - (y): vector of shape (n).

Starter Skeleton (fill the TODOs)

Update the CSV path to where you saved synthetic_regression.csv.

```
In [26]: import numpy as np
         import csv
         import matplotlib.pyplot as plt
         def design_matrix_poly_1d(x_column: np.ndarray, degree: int, include_bias: bool=True)
             """Return Vandermonde-style design matrix [1, x, x^2, ..., x^degree]."""
             return x_column ** np.arange(degree + 1)[np.newaxis, :]
         def normal_equation(Phi: np.ndarray, y: np.ndarray) -> np.ndarray:
             """Closed-form least squares: theta = (Phi^T Phi)^{-1} Phi^T y."""
             # Note: np.linalq.pinv is used to compute Moore-Penrose pseudoinverse. If Phi^T F
             return np.linalg.pinv(Phi.T @ Phi) @ Phi.T @ y
         def ridge_closed_form(Phi: np.ndarray, y: np.ndarray, lam: float) -> np.ndarray:
             """Closed-form ridge: theta = (Phi^T Phi + λI)^{-1} Phi^T y."""
             I_d = np.eye(Phi.shape[1]) # Identity matrix of features
             return np.linalg.pinv(Phi.T @ Phi + lam * I_d) @ Phi.T @ y
         def predict(Phi: np.ndarray, theta: np.ndarray) -> np.ndarray:
             return Phi @ theta
         def err(y_true: np.ndarray, y_pred: np.ndarray) -> float:
             return np.mean(np.sum((y_pred - y_true)**2))
         def kfold_indices(n: int, K: int, seed: int = 0):
             rng = np.random.default rng(seed)
             idx = np.arange(n)
             rng.shuffle(idx)
             folds = np.array_split(idx, K)
             splits = []
             for k in range(K):
                 val idx = folds[k]
                 train_idx = np.concatenate([folds[i] for i in range(K) if i != k])
                 splits.append((train_idx, val_idx))
             return splits
         def train_test_split_indices(n: int, test_ratio: float = 0.3, seed: int = 42):
             rng = np.random.default_rng(seed)
             idx = np.arange(n)
             rng.shuffle(idx)
             n_test = int(round(test_ratio * n))
             test_idx = idx[:n_test]
             train_idx = idx[n_test:]
             return train_idx, test_idx
         def load_csv_xy(path: str):
```

Load Dataset

```
In [21]: X, y = load_csv_xy("synthetic_regression.csv")
```

70/30 Train-Test Split

```
In [29]:
    train_idx, test_idx = train_test_split_indices(X.shape[0])
    X_train, y_train = X[train_idx], y[train_idx]
    X_test, y_test = X[test_idx], y[test_idx]

    degrees = [2, 5, 10, 15]

mse = []
    for k in degrees:

        # Preprocessing
        Phi_train = design_matrix_poly_1d(X_train, k)
        Phi_test = design_matrix_poly_1d(X_test, k)

# Train-test
        theta = normal_equation(Phi_train, y_train)
        y_pred = predict(Phi_test, theta)
        mse.append(err(y_test, y_pred))

plt.yscale('log')
    plt.plot(degrees, mse, marker='o')
```

Out[29]: [<matplotlib.lines.Line2D at 0x171d7374980>]

10-Fold Cross-Validation

```
In [30]: idxs = kfold_indices(X.shape[0], K=10)
         degrees = [1,2,5,10,15]
         mse_cv = []
         for k in degrees:
             fold_mse = []
             # Cross-validation for kth degree polynomial
             for tidx, vidx in idxs:
                 X_train, y_train = X[tidx], y[tidx]
                 X_{val}, y_{val} = X[vidx], y[vidx]
                 # Preprocessing
                 Phi_train = design_matrix_poly_1d(X_train, k)
                 Phi_val = design_matrix_poly_1d(X_val, k)
                 # Train-test
                 theta = normal_equation(Phi_train, y_train)
                 y_pred = predict(Phi_val, theta)
                 fold_mse.append(err(y_val, y_pred))
             # Store mean (average) of cv results
             mse_cv.append(np.mean(fold_mse))
         plt.yscale('log')
         plt.plot(degrees, mse_cv, marker='o')
```

Out[30]: [<matplotlib.lines.Line2D at 0x171d759e810>]

70/30 Train-Test Split w/ Ridge

```
In []: train_idx, test_idx = train_test_split_indices(X.shape[0])
    X_train, y_train = X[train_idx], y[train_idx]
    X_test, y_test = X[test_idx], y[test_idx]

degrees = [2, 5, 10, 15]

mse = []
    for k in degrees:

    # Preprocessing
    Phi_train = design_matrix_poly_1d(X_train, k)
    Phi_test = design_matrix_poly_1d(X_test, k)

# Train-test (ridge)
    theta = ridge_closed_form(Phi_train, y_train, lam=1.0)
    y_pred = predict(Phi_test, theta)
    mse.append(err(y_test, y_pred))

plt.yscale('log')
    plt.plot(degrees, mse, marker='o')
```

Out[]: [<matplotlib.lines.Line2D at 0x171d73ba2a0>]

10-Fold Cross-Validation w/ Ridge

```
In [32]: idxs = kfold_indices(X.shape[0], K=10)
         degrees = [1,2,5,10,15]
         mse_cv = []
         for k in degrees:
             fold_mse = []
             # Cross-validation for kth degree polynomial
             for tidx, vidx in idxs:
                 X_train, y_train = X[tidx], y[tidx]
                 X_{val}, y_{val} = X[vidx], y[vidx]
                 # Preprocessing
                 Phi_train = design_matrix_poly_1d(X_train, k)
                 Phi_val = design_matrix_poly_1d(X_val, k)
                 # Train-test
                 theta = ridge_closed_form(Phi_train, y_train, lam=1.0)
                 y_pred = predict(Phi_val, theta)
                 fold_mse.append(err(y_val, y_pred))
             # Store mean (average) of cv results
             mse_cv.append(np.mean(fold_mse))
         plt.yscale('log')
         plt.plot(degrees, mse_cv, marker='o')
```

Out[32]: [<matplotlib.lines.Line2D at 0x171d876c800>]

