第4章 串和数组

提纲 CONTENTS

4.1 串

4.2 数组

4.1 串

4.1.1 串的基本概念

- 串是由零个或多个字符组成的有限序列。记作 $str="a_0a_1...a_{n-1}"(n \ge 0)$ 。
- 串中所包含的字符个数n称为串长度, 当n=0时, 称为空串。
- 一个串中任意连续的字符组成的子序列称为该串的子串。
- 包含子串的串相应地称为主串。
- ◆ 若两个串的长度相等且对应字符都相等,则称两个串相等。

【例4.1】设s是一个长度为n的串,其中的字符各不相同,则s中的所有子串个数是多少?

- 空串是其子串, 计1个。
- 每个字符构成的串是其子串, 计n个。
- 每2个连续的字符构成的串是其子串, 计n-1个。
- 每3个连续的字符构成的串是其子串, 计n-2个。
- **a** ...
- 每n-1个连续的字符构成的串是其子串, 计2个。
- *s*是其自身的子串,计1个。

子串个数 =1+n+(n-1)+···+2+1 =n(n+1)/2+1

例如, s="software"的子串个数=(8×9)/2+1=37。

4.1.2 串的抽象数据类型

```
ADT String
数据对象:
  D=\{a_i \mid 0 \leq i \leq n-1, n \geq 0, a_i \} 字符类型}
数据关系:
  R=\{r\}
  r=\{\langle a_i, a_{i+1}\rangle \mid a_i, a_{i+1}\in D, i=0, \dots, n-2\}
基本运算:
  StrAssign(cstr):由字符串常量cstr创建一个串,即生成其值等于cstr的串。
  StrCopy(): 串复制,返回由当前串复制产生一个串。
  getsize(): 求串长,返回当前串中字符个数。
  geti(i): 返回序号i的字符。
  seti(i, x): 设置序号i的字符为x。
  Concat(t): 串连接,返回一个当前串和串t连接后的结果。
  SubStr(i, j): 求子串,返回当前串中从第i个字符开始的j个连续字符组成的子串。
  InsStr(i, t): 串插入,返回串t插入到当前串的第i个位置后的子串。
  DelStr(i, j): 串删除,返回当前串中删去从第i个字符开始的j个字符后的结果。
  RepStr(i, j, t): 串替换,返回用串t替换当前串中第i个字符开始的j个字符后的结果。
  DispStr():输出字符串。
```

4.1.2 串的存储结构

串的实现方式

1. 串的顺序存储结构-顺序串

- 和顺序表一样,用一个data数组和一个整型变量size来表示一个顺序串,size表示data数组中实际字符的个数。
- 为了简单,data数组采用固定容量为MaxSize(可以模仿顺序表改 为动态容量方式)。

顺序串类SqString

```
      MaxSize=100
      #假设容量为100

      class SqString:
      #顺序串类

      def __init__(self):
      #构造方法

      self.data=[None]*MaxSize
      #存放串中字符

      self.size=0
      #串中字符个数

      #串的基本运算算法
```

顺序串上的基本运算算法设计与顺序表类似,仅以求子串为例说明。

求子串:对于一个顺序串求序号i开始长度为j的子串。

实现:先创建一个空串s,当参数正确时,s子串的字符序列为data[i..i+j-1],共j个字符,当i和i+j-1不在有效序序号0~size-1范围内时,则参数错误,此时返回空串。

```
def SubStr(self,i,j): #求子串的运算算法
s=SqString() #新建一个空串
assert i>=0 and i<self.size and j>0 and i+j<=self.size #检测参数
for k in range(i,i+j): #将data[i..i+j-1]->s
s.data[k-i]=self.data[k]
s.size=j
return s #返回新建的顺序串
```

【例4.2】设计一个算法Strcmp(s, t),以字典顺序比较两个英文字母串s和t的大小,假设两个串均以顺序串存储。

```
#比较串s和t的算法
def Strcmp(s,t):
                                       #求s和t中最小长度
 minl=min(s.getsize(),t.getsize())
                                       #在共同长度内逐个字符比较
 for i in range(minl):
   if s[i]>t[i]: return 1
   elif s[i]<t[i]: return -1
 if s.getsize()==t.getsize():
                                       #s==t
   return 0
 elif s.getsize()>t.getsize():
                                       #s>t
   return 1
 else: return -1
                                       #s<t
```

2. 串的链式存储结构-链串

串的实现方式

用带头结点的单链表表示链串

例如, s= "ABCDEFGHIJKLMN", 共14个字符。

链串的结点类型LinkNode(结点大小为1)

```
class LinkNode: #链串结点类型

def __init__(self,d=None): #构造方法

self.data=d #存放一个字符

self.next=None #指向下一个结点的指针
```

一个链串用一个头结点head来唯一标识,链串类LinkString

```
class LinkString: #链串类

def __init__(self): #构造方法

self.head=LinkNode() #建立头结点

self.size=0

#串的基本运算算法
```

链串上的基本运算算法设计与单链表类似, 仅以串插入算法为例说明。

串插入:链串在序号i位置插入串t

实现: 先创建一个空串s, 当参数正确时, 采用尾插法建立结果串s:

- (1) 将当前链串的前i个结点复制到s中。
- (2) 将t中所有结点复制到s中。
- (3) 再将当前串的余下结点复制到5中。


```
def InsStr(self,i,t): #串插入运算的算法
s=LinkString() #新建一个空串
assert i>=0 and i<self.size #检测参数
p,p1=self.head.next, t.head.next
r=s.head #r指向新建链表的尾结点
for k in range(i): #将当前链串的前i个结点复制到s
    q=LinkNode(p.data)
    r.next=q; r=q #将q结点插入到尾部
    p=p.next
```

```
while p1!=None:
                                  #将t中所有结点复制到s
  q=LinkNode(p1.data)
                                  #将q结点插入到尾部
  r.next=q;
  p1=p1.next
                                  #将p及其后的结点复制到s
while p!=None:
  q=LinkNode(p.data)
                                  #将q结点插入到尾部
  r.next=q; r=q
  p=p.next
s.size=self.size+t.size
                                  #尾结点的next置为空
r.next=None
                                  #返回新建的链串
return s
```

4.1.3 串的模式匹配

- 设有两个串S和t,串t定位操作就是在串S中查找与子串t相等的子串。
- 通常把串5称为目标串,把串t称为模式串,因此定位也称作模式匹配。
- 模式匹配成功是指在目标串s中找到一个模式串t。
- 不成功则指目标串s中不存在模式串t。

1. BF算法

思路

目标串 $s="s_0s_1\cdots s_{n-1}"$,模式串 $t="t_0t_1\cdots t_{m-1}"$

- 第1趟:从s₀/t₀开始比较,若相等,则继续逐个比较后续字符。如果对应的字符全部相同且t的字符比较完,说明t是s的子串,返回t在s中的起始位置,表示匹配成功;如果对应的字符不相同,说明第一趟匹配失败。
- 第2趟:从s₁/t_e开始比较,若相等,则继续逐个比较后续字符。如果对应的字符全部相同且t的字符比较完,说明t是s的子串,返回t在s中的起始位置,表示匹配成功;如果对应的字符不相同,说明第一趟匹配失败。
- 依次类推。只要有一趟匹配成功,则说明t是s的子串,返回t在s中的起始位置。如果i超界都没有匹配成功,说明t不是s的子串,返回-1。

例如,设目标串s="aaaaab",模式串t="aaab"

第1趟匹配

比较4次

第2趟匹配

比较4次

第3趟匹配

比较4次

```
def BF(s,t):
                                             #BF算法
 i, j=0, 0
                                            #两串未遍历完时循环
 while i<s.getsize() and j<t.getsize():</pre>
                                            #两个字符相同
   if s[i]==t[j]:
                                             #继续比较下一对字符
     i, j=i+1, j+1
   else:
                                            #i从下个位置,j从头开始匹配
     i,j=i-j+1,0
 if j>=t.getsize():
                                            #返回匹配的首位置
   return (i-t.getsize())
 else:
                                            #模式匹配不成功
   return (-1)
```


BF算法性能

- 该算法在最好情况下的时间复杂度为O(m),即主串的前m个字符正好等于模式串的m个字符。
- 最坏情况下的时间复杂度为O(n×m)。
- 平均情况下的时间复杂度为**O**(*n*×*m*)。

2. KMP算法

基本KMP算法

主要是消除了目标串指针的回溯,从而使算法效率有了某种程度的提高。

第2趟匹配

跳过第2趟匹配前面2个字符的比较

这种信息可以匹配之前获取

- t_j的前面有多少个连续字符(不含t_o)和t开头的连续字符相同!
- 用next数组存放,这里next[3]=2。
- 下一次做 s_i/t_j 比较。

归纳起来,求模式t的next[j]($0 \le j \le m-1$)数组的公式如下:

后缀不含 t_i ,同时 $j-k \ge 1$,即后缀至多从 t_1 开始而不能从 t_0 开始

模式串t="abcac"

j	t[j]	t[j]前面的子串	前缀	后缀	相同串	next[j]
0	a					-1
1	b	a				0
2	С	ab	a	b		0
3	а	abc	a,ab	c,bc		0
4	С	abca	a,ab,abc	a,ca,bca	a	1

j	0	1	2	3	4
t[j]	а	b	С	a	С
next[j]	-1	0	0	0	1

```
#由模式串t求出next值
def GetNext(t,next):
  j,k=0,-1
  next[0]=-1
 while j<t.getsize()-1:</pre>
                                         #j遍历后缀,k遍历前缀
    if k==-1 or t[j]==t[k]:
      j,k=j+1,k+1
     next[j]=k
    else:
                                          #k置为next[k]
      k=next[k]
           next[k] \Rightarrow next[k+1]
```

```
#KMP算法
def KMP(s,t):
 next=[None]*MaxSize
 GetNext(t,next)
                                         #求next数组
 i,j=0,0
 while i<s.getsize() and j<t.getsize():</pre>
    if j==-1 or s[i]==t[j]:
                                         #i,j各增1
      i,j=i+1,j+1
   else:
      j=next[j]
                                         #i不变,j回退
  if j>=t.getsize():
                                         #返回起始序号
   return(i-t.getsize())
 else:
                                         #返回-1
   return(-1)
```

KMP算法性能

- 设目标串s的长度为n,模式串t长度为m。
- 在KMP算法中求next数组的时间复杂度为O(m)。
- 在后面的匹配中因主串s的下标i不减即不回溯,比较次数可记为n。
- KMP算法总的时间复杂度为O(n+m)。

【例4.6】设目标串s="ababcabcacbab",模式串t="abcac"。给出KMP进行模式匹配的过程。

j	0	1	2	3	4
t[j]	a	b	С	a	С
next[j]	-1	0	0	0	1

- KMP算法的性能提高了吗?
- KMP算法跳过了中间一些趟,正确吗?

问题1

以目标串s="aaaaab", 模式串t="aaab"为例。

j	0	1	2	3
t[j]	a	a	a	b
next[j]	-1	0	1	2

j	0	1	2	3
t[j]	a	a	a	b
next[j]	-1	0	1	2

第1趟匹配

比较4次

第2趟匹配

$$s=$$
"a a a a a b" $i=4$ 失败,修改为 i 不变 $j=3$ $j=next[3]=2$

比较2次

第3趟匹配

比较2次

以目标串s="ababcabcacbab",模式串t="abcac"为例。

j	0	1	2	3	4
t[j]	a	b	С	a	С
next[j]	-1	0	0	0	1

- 失配处为s₂/t₂。有"s₁"="t₁"
- BF下一趟"s₁s₂s₃···"/"t₀t₁t₂···"
- next[2]=0 \Rightarrow " t_1 " \neq " t_0 "
- 即" s_1 " \neq " t_0 ",所有 s_1 开始的匹配是没有必要的!

改进KMP算法

基本KMP算法存在的问题

设目标串s="aaabaaaab", 模式串t="aaaab"。

j	0	1	2	3	4
t[j]	a	a	a	a	b
next[j]	-1	0	1	2	3

j	0	1	2	3	4
t[j]	a	a	a	а	b
next[j]	-1	0	1	2	3

j	0	1	2	3	4
t[j]	a	a	a	a	b
next[j]	-1	0	1	2	3

第4趟匹配
$$j=0$$
 $j=0$ $j=0$

设主串s="aaabaaaab",模式串t="aaaab"。

j	0	1	2	3	4
t[j]	a	a	a	a	b
next[j]	-1	0	1	2	3

j	0	1	2	3	4
t[j]	a	a	a	a	b
next[j]	-1	0	1	2	3
nextval[j]	-1	-1	-1	-1	3

- 首先, nextval[0]=-1
- j=1: 失配处为 s_i/t_1 ,则 $s_i \neq t_1$ 。KMP算法的下一次比较 $s_i/t_{next[1]}$,而next[1]=0,并且 $t_0 = t_1$,说明一定有 $s_i \neq t_{next[1]}$ 中 nextval[j]=nextval[next[j]]=-1

j	0	1	2	3	4
t[j]	a	a	a	a	b
next[j]	-1	0	1	2	3
nextval[j]	-1	-1	-1	-1	3

将next数组改为nextval数组,与next[0]一样,先置nextval[0]=-1。 假设求出next[j]=k,现在失配处为 s_i/t_j ,即 $s_i \neq t_j$,

- (1) 如果有 t_j = t_k 成立,可以直接推出 s_i * t_k 成立,没有必要再做 s_i / t_k 的比较,直接置nextval[j]=nextval[k](nextval[next[j]]),即下一步做 s_i / $t_{nextval[j]}$ 的比较。
 - (2) 如果有 $t_i \neq t_k$, 没有改进的,置nextval[j] = next[j]。

求出next:

```
• t_j = t_k: nextval[j]=nextval[k]
```

● 否则: nextval[j]=next[j]=k


```
#由模式串t求出nextval值
def GetNextval(t,nextval):
  j,k=0,-1
  nextval[0]=-1
  while j<t.getsize()-1:</pre>
    if k==-1 or t[j]==t[k]:
      j, k=j+1, k+1
      if t[j]!=t[k]:
        nextval[j]=k
      else:
                                  #t[j]=t[k]
        nextval[j]=nextval[k]
    else: k=nextval[k]
```

将next改为nextval即可

```
#改进后的KMP算法
def KMPval(s,t):
  nextval=[None]*MaxSize
                                         #求nextval数组
  GetNextval(t,nextval)
  i, j=0,0
  while i<s.getsize() and j<t.getsize():</pre>
    if j = -1 or s[i] = t[j]:
                                         #i,j各增1
      i,j=i+1,j+1
   else: j=nextval[j]
                                         #i不变,j回退
  if j>=t.getsize():
                                         #返回起始序号
     return(i-t.getsize())
  else:
                                         #返回-1
     return(-1)
```

本算法的时间复杂度也为O(n+m)。

【例4.7】设s="aaabaaaab",t="aaaab"。计算模式串t的nextval函数值。并画出利用改进KMP算法进行模式匹配时每一趟的匹配过程。

j	0	1	2	3	4
t[j]	а	а	а	a	b
next[j]	-1	0	1	2	3
nextval[j]	-1	-1	-1	-1	3

j	0	1	2	3	4
t[j]	a	a	a	a	b
next[j]	-1	0	1	2	3
nextval[j]	-1	-1	-1	-1	3

第1趟匹配

$$j=3$$
s: $j=3$
 $j=3$
 $j=3$
 $j=3$
 $j=1$
 $j=3$
 $j=3$
 $j=3$
 $j=1$
 $j=3$
 $j=3$

第2趟匹配

$$j=9$$
 $s: a a a b a a a a a b$
 $j=5$
 $i=9$
 $j=5$

【例】设目标串为*s*="abcaabbabcabaacbacba",模式串 t="abcabaa"。计算模式串t的nextval函数值。并画出利用KMP算法进 行模式匹配时每一趟的匹配过程。

j	0	1	2	3	4	5	6
t[j]	a	b	С	a	b	a	а
next[j]	-1	0	0	0	1	2	1
nextval[j]	-1	0	0	-1	0	2	1

j	0	1	2	3	4	5	6
nextval[j]	-1	0	0	-1	0	2	1

第2趙匹配
$$s=$$
"a b c a a b b a b c a b a a c b a c b a" $t=$ "a b c a b a a" $i=6$ 失败 $j=2$ 修改为 $j=nextval[2]=0$

j	0	1	2	3	4	5	6
nextval[j]	-1	0	0	-1	0	2	1

第3趙匹配
$$s=$$
"a b c a a b b a b c a b a a c b a c b a" $t=$ "a b c a b a a" $i=6$ 失败 $i=6$ $j=0$ 修改为 $j=nextval[0]=-1$ 修改为 $j=j+1=0$

4.2 数 组

高级语言中的数组是顺序结构;

而本章的数组既可以是顺序的,也可以是链式结构,用户可根据需要选择。

数组具有以下特点

- 数组中各元素都具有统一的数据类型。
- 数组维数确定后,数据元素个数和元素之间的关系不再发生改变, 特别适合于顺序存储。

d维数组抽象数据类型

```
ADT Array
数据对象:
    D={数组中所有元素 }
数据关系:
    R = \{r_1, r_2, \dots, r_d\}
    r_i={ 元素之间第i维的线性关系 | i=1, \cdots, d}
基本运算:
   Value(A, i_1, i_2, \dots, i_d): A是已存在的d维数组,其运算结果是返回
                              A[i_1, i_2, ..., i_d]值。
   Assign(A, e, i_1, i_2, …, i_d): A是已存在的d维数组, 其运算结果是
                              \mathbb{E}A[i_1, i_2, \dots, i_d]=e。
```

数组的主要操作是存取元素值,显示数组,没有插入和删除操作,所 以数组通常采用顺序存储方式来实现。

1. 一维数组

- 一维数组的所有元素依逻辑次序存放在一片连续的内存存储单元中。
- 其起始地址为第一个元素a_o的地址即LOC(a_o)。
- 假设每个数据元素占用R个存储单元。
- 则任一数据元素 a_i 的存储地址LOC(a_i)就可由以下公式求出

$$LOC(a_i) = LOC(a_0) + i \times k \qquad (1 \le i < n)$$

一维数组具有随机存储特性

- 在Python中长度为n的一维数组{ a_0 , a_1 , …, a_{n-1} }通常采用形如 [a_0 , a_1 , …, a_{n-1}]的列表表示。
- 例如,以下语句创建一个长度为MAXN的一维数组*a*,初始元素值均为None:

MAXN=10 a=[None]*MAXN

2. 二维数组

以m行n列的二维数组 $A_{m \times n} = (a_{i, j})$ 为例讨论(二维数组也称为矩阵)。

$$A = (\alpha_1, \alpha_2, \dots, \alpha_p) \quad (p = m \otimes n)$$

$$\alpha_i = (a_{i1}, a_{i2}, \dots, a_{in}) \quad 1 \le i \le m$$

$$A_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

以m行n列的二维数组 $A_{m \times n} = (a_{i,j})$ 为例讨论(二维数组也称为矩阵)。

$$\alpha_j = (a_{1j}, a_{2j}, \dots, a_{mj}) \quad 1 \le j \le n$$

$$\alpha_{j} = (a_{1j}, a_{2j}, \dots, a_{mj}) \quad 1 \le j \le n$$

$$A_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mu} \end{bmatrix}$$

$$\begin{bmatrix} a_{0,0} & a_{0,1} & \cdots & a_{0,n-1} \\ a_{1,0} & a_{1,1} & \cdots & a_{1,n-1} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m-1,0} & a_{m-1,1} & \cdots & a_{m-1,n-1} \end{bmatrix}$$

按行优先存储

假设每个元素占R个存储单元, $LOC(a_{0,0})$ 表示 $a_{0,0}$ 元素的存储地址。对于元素 $a_{i,i}$:

- a_i, 前面有0~i-1共i行,每行n个元素,共有i×n个元素。
- ◆ 在第i行中前面有a[i,0..j-1],共j个元素。
- ◆ 合起来, a_i,j前面有i×n+j个元素。

$$LOC(a_i, j) = LOC(a_0, 0) + (i \times n + j) \times k$$

$$\begin{bmatrix} a_{0,0} & a_{0,1} & \cdots & a_{0,n-1} \\ a_{1,0} & a_{1,1} & \cdots & a_{1,n-1} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m-1,0} & a_{m-1,1} & \cdots & a_{m-1,n-1} \end{bmatrix}$$

按列优先存储

假设每个元素占R个存储单元, $LOC(a_{0,0})$ 表示 $a_{0,0}$ 元素的存储地址。对于元素 $a_{i,i}$:

- \bullet a_i , j前面有 $0\sim j$ -1共j列,每列m个元素,共有 $j\times m$ 个元素。
- 在第**j**列中前面有a[0..i-1,j], 共i个元素。
- 合起来, a_i ,前面有 $j \times m+i$ 个元素。则:

$$LOC(a_i,j) = LOC(a_0,0) + (j \times m + i) \times k$$

二维数组也具有随机存储特性,以此类推。

更一般地,数组 $A[c_1...d_1, c_2...d_2]$,则该数组按行优先存储时有:

LOC($a_{i, j}$)=LOC($a_{c1, c2}$)+[($i-c_1$)×(d_2-c_2+1)+($j-c_2$)]×k

按按列优先存储时有:

LOC
$$(a_{i,j})$$
=LOC $(a_{c1,c2})$ + $[(j-c_2)\times(d_1-c_1+1)+(i-c_1)]\times k$

- 在Python中m行n列的二维数组{{ $a_{0,0}, a_{0,1}, \dots, a_{0,n-1}$ }, …, { $a_{m-1,0}, a_{m-1,1}, \dots, a_{m-1,n-1}$ }通常采用形如[[$a_{0,0}, a_{0,1}, \dots, a_{0,n-1}$], …, [$a_{m-1,0}, a_{m-1,1}, \dots, a_{m-1,n-1}$]]的嵌套列表表示。
- 例如,以下语句创建一个MAXM行MAXN列的二维数组a,初始元素值均为 None:

MAXM,MAXN=3,4
a=[[None]*MAXN for i in range(MAXM)]

【练习1】设有二维数组a[1..50, 1..80], 其a[1][1]元素的地址为2000, 每个元素占2个存储单元, 若按行优先存储, 则元素a[45][68]的存储地址为多少?若按列优先存储, 则元素a[45][68]的存储地址为多少?

按行优先存储

- 元素a[45][68]前面有1~44行,每行80个元素,计44×80个元素。
- 在第45行中,元素a[45][68]前面有a[45][1..67]计67个元素,这样元素a[45][68]前面存储的元素个数=44×80+67。
- LOC(a[45][68])=2000+($44 \times 80+67$) \times 2=9174.

接列优先存储

- 元素a[45][68]前面有1~67列,每列50个元素,计67×50个元素。
- 在第68列中,元素a[45][68]前面有a[1..44][68]计44个元素,这样元素a[45][68]前面存储的元素个数=67×50+44。
- LOC(a[45][68])=2000+(67×50+44)×2=8788.

4.2.2 特殊矩阵的压缩存储

1. 对称矩阵的压缩存储

若一个n阶方阵A的元素满足 $a_{i,j}$ = $a_{j,i}$ ($0 \le i, j \le n-1$),则称其为n阶对称矩阵。

$$b_k$$

$$b_k$$

$$\downarrow$$

$$a_{i,j},...,a_{i-1,0},...,a_{i-1,i-1},a_{i,0},...,a_{i,j-1},a_{i,j},...,a_{n-1,n-1})$$

$$1 \land 2 \land i \land 元素 j \land 元素$$

$$元素 元素$$

$$共讨i(i+1)/2+j \land 元素$$

$$k = \left\{ egin{array}{cccc} \dfrac{i(i+1)}{2} & \exists i \geqslant j & \text{时 } (下 = \mathbb{A} + \pm \text{对 } \mathbb{A} \otimes \mathbb{A} \otimes \mathbb{A} \end{array}
ight. \ \dfrac{j(j+1)}{2} & + i & \exists i \leqslant j & \text{H} \otimes \mathbb{A} \otimes \mathbb{A} \otimes \mathbb{A} \otimes \mathbb{A} \otimes \mathbb{A} \otimes \mathbb{A} \end{array}
ight.$$

对于对称矩阵A,采用一维数组B存储,并提供A的所有运算。

2. 三角矩阵的压缩存储

上三角矩阵

对于上三角部分的元素a_{i,i}

第i行有a[i,i..j-1]: j-i个元素

下三角矩阵

若将n阶上三角矩阵A按列优先顺序压缩存放在一维数组

B[1..n(n+1)/2]中,A中第一个非零元素 $a_{1,1}$ 存于B数组的 b_1 中,则应存放到 b_k 中的非零元素 $a_{i,j}$ ($i \le j$)的下标i、 $j \le k$ 的对应关系是()。

A.
$$i(i+1)/2+j$$

C.
$$j(j+1)/2+i$$

B.
$$i(i-1)/2+j$$

D.
$$j(j-1)/2+i$$

若将n阶上三角矩阵A按列优先顺序压缩存放在一维数组

B[1..n(n+1)/2]中,A中第一个非零元素 $a_{1,1}$ 存于B数组的 b_1 中,则应存放到 b_k 中的非零元素 $a_{i,j}$ ($i \le j$)的下标i、 $j \le k$ 的对应关系是()。

A.
$$i(i+1)/2+j$$

C.
$$j(j+1)/2+i$$

B.
$$i(i-1)/2+j$$

D.
$$j(j-1)/2+i$$

 $1 \sim j-1$ 列的元素个数: j(j-1)/2

第j列 a_{ij} 之前的元素个数: i-1

$$k=j(j-1)/2+i-1+1=j(j-1)/2+i$$

- 按行还是按列
- 初始下标从0还是从1开始

3. 对角矩阵的压缩存储

在n×n的方阵中,非零元素集中在主对角线及其两侧

半带宽为b的对角矩阵

只存储带状区内的元素

除首行和末行,按每行 L=(2b+1)个元素,共(n-2)L+(L+1)个元素。sa[1..(n-1)L+1]

$$k=(i-1)L+1+(j-i)$$
 $|i-j| \le (L-1)/2$

21 22 23 24 25 26

当**b=1**时称为三对角矩阵 其压缩地址计算公式如下:

$$k = 2i + j$$

4.2.3 稀疏矩阵

一个阶数较大的矩阵中的非零元素个数s相对于矩阵元素的总个数t十分小时,即s<<t时,称该矩阵为稀疏矩阵。↑
例如一个100×100的矩阵,若其中只有100个非零元素,就可称其为稀疏矩阵。

定性的描述

稀疏矩阵和特殊矩阵的不同点:

- 特殊矩阵的特殊元素(值相同元素、常量元素)分布有规律。
- 稀疏矩阵的特殊元素(非0元素)分布没有规律。

1. 稀疏矩阵的三元组表示

$$A_{6\times7} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 7 & 4 \end{bmatrix}$$

i	j	$a_{i,j}$
0	2	1
1	1	2
2	0	3
3	3	5
4	4	6
5	5	7
5	6	4
•		

通常按行优先顺序排列

三元组表示中每个元素的类定义如下:

```
class TupElem: #三元组元素类

def __init__(self,r1,c1,d1): #构造方法
    self.r=r1 #行号
    self.c=c1 #列号
    self.d=d1 #元素值
```

设计稀疏矩阵三元组存储结构类TupClass如下:

```
class TupClass:#三元组表示类def __init__(self,rs,cs,ns):#构造方法self.rows=rs#行数self.cols=cs#列数self.nums=ns#非零元素个数self.data=[]#稀疏矩阵对应的三元组顺序表
```

TupClass类中包含如下基本运算方法:

- CreateTup(A,m,n): 由m行n列的稀疏矩阵A创建其三元组表示。
- Setvalue(i,j,x): 利用三元组给稀疏矩阵的元素赋值即执行A[i][j]=x。
- GetValue(i, j): 利用三元组取稀疏矩阵的元素值即执行x=A[i][j]。
- DispTup(): 输出稀疏矩阵的三元组表示。

其中,data列表用于存放稀疏矩阵中所有非零元素,通常按行优先顺序排列。这种有序结构可简化大多数稀疏矩阵运算算法。

2. 稀疏矩阵的十字链表表示

每个非零元素对应一个结点。

每行的所有结点链起来构成一个带行头结点的循环单链表。以h[i](0≤i≤m-1)作为第i行的头结点。

3个行头结点

每列的所有结点链起来构成一个带列头结点的循环单链表。以h[i] (0≤i≤m-1)作为第i列的头结点。

行、列头结点可以共享

增加一个总头结点,并把所有行、列头结点链起来构成一个循环单链表

总的头结点个数=MAX(m,n)+1

为了统一,设计结点类型如下:

十字链表的启示:设计存储某年级所有学生的存储结构。

通过h来唯一标识学生存储结构。

