

Role of Organic Matter

Decay detrivores —> soil —> plants —> herbivores —> primary predators —> secondary predators

- * **Earthworms**: provide porosity to aerate soil, allow water to infiltrate soil
 - High porosity = air and water goes deeper = plant growth
 - · Produce humus

https://www.gardeningknowhow.com/composting/vermicomposting/benefits-of-garden-worms.htm

Sources of organic matter

- + Crop residue
- Green manure
- * Livestock manure
- + Organic waste

Green manure

https:// www.thegrassseedstore.co.uk/ product/cut-compost-greenmanure/

Categories of OM

- 1. Living soil organisms
- 2. Fresh organic residue
- 3. Active fraction
- 4. Stabilized OM(humus)

Living soil organisms

http://i.bp.blogspot.com/-TNJWrSyU5mc/ VhxRUqQX73I/AAAAAAAAAj4s/UIVBsIaLzGo/ s1600/SOIL.i.jpg

https://www.colorado.edu/eeb/courses/2040bowman/

Decomposition

- Breaking down of carbon and nutrients in dead organic matter
- Complex organic molecules to simple organic and inorganic molecules
- Releases nutrients available to microbes and plants
- Carbon, oxygen, hydrogen, nitrogen, etc.
- Release by-products and waste
 - * Food for other soil organisms
 - * Complex polysaccharides hold soil together
- **Humus:** chemically stabilized products of decompositions
 - * Lignin -> DECOMPOSITION -> humus
 - + C:N ratio = 10:1

Factors of decomposition:

- 1. Living organisms
- 2. Environmental conditions
 - 1. Moisture
 - 2. Temperature : low = good
 - 3. Oxygen: more = good
- 3. Quality of decomposing materials [C:N ratio]

Results of decomposition:

- 1. Breakdown of organic residues
- 2. Nutrient mineralization-produce available nutrients
 - 1. Water soluble compounds
 - 2. Inorganic and organic nutrients
- 3. Transfer of organic carbon, nutrients and energy into soil organisms, humus, and carbondioxide

Plant Nutrition

Nutrients Reservoirs

Soil: water and minerals

- Air: carbon dioxide

- Branching root system and shoot system of vascular plant ensure networking with both reservoir.

Macronutrients and Micronutrients

- Most organic mass comes from CO2 in the air, but also depends on soil nutrients

 Chemical elements essential for plant to complete life cycle

- Macronutrients
 - Plants require them in large amounts
 - o COHNK Ca Mg P S
- Micronutrients
 - Need in small amount
 - o Cl Fe Zn Mn B Cu Ni Mo
- Fertilizer
 - o Greatest effect on plant growth
 - Macronutrient
 - Provides proteins, nucleic acids, chlorophyll, host of other important organic molecules
 - Dead organic material
 - Bacteria and fungi break down organic N into nitrate ions so plants can use
- Nutrients mobility
 - Mobile while in solution of water
 - Move from roots to shoots

- Mineral deficiency
 - o Symptoms depend on nutrient's function and mobility of nutrient
 - Deficiency of mobile nutrient
 - Affects older organs (young tissues can more efficiently draw minerals)
 - Deficiency of less mobile nutrients
 - Affects young organs (old tissue has store of minerals to fall back on)
 - Most common deficiencies:
 - Nitrogen, potassium, phosphorus

Requirement for optimum growth

- -Growth media
- -Light
- -Water
- -Temperature
- -Fertilizer

Soilless mix - organic + inorganic substances that provide sufficient support for plant growth

- No topsoil
- Common components:
 - Peat moss: nutrient and moisture holding capacity
 - Perlite: aerate soil
 - Vermiculite: moisture holding capacity
 - o Coir: hold water and air
 - Sand: reduce overall water holding cap
 - o Rice husk: drainage of growth media
- Advantages:
 - Uniform: doesn't vary in components, texture, nutrients
 - Sterile:
 - o Can be manipulated
 - Personalized
 - Lightweight—easy to ship or move

- Disadvantages:
 - Added more frequently
 - Lack minor plant food elements that soil usually has
 - o Lightweight wind can blow dry pots over
 - Difficult to transplant plant from soil to soilless
 - High cost

Field grown vs container

- Container disadvantages
 - Need more water
 - Above ground, dry quicker
 - Become pot-bound
 - Higher start up cost

Watering

- Need more water in active growth and flowering stage
- Hydrogen in water key nutrient for photosynthesis
- Water is carrier of dissolved nutrients from soil into roots
- Water sustain plant cells
- No water = dead plants
- Factors affecting watering:
 - Weather, soil type, plant type
 - o Media- more porous mix=more water
 - o Size of container- small ones dry out faster
 - o Type of container
 - o Surface mulch-mulch reduce need of water
- When to water:
 - Observation: wilt/ loss of color/dullness

Lighting

- Light intensity requirements vary from plants
 - o Direct sun
 - o Partial sun/weak sun
 - Indirect/filtered light

Temperature

- Claytime temp 20-30C
- Night temp drop 5-10C below daytime temp

Air conditioning

- Can trouble plants
- Should be located away from direct air flow

Humidity

- Need additional moisture if atmosphere dry

Pruning

- Shapes the plants
- More compact
- Train growth/form of plants
- Remove dead/diseased parts

