Example ACSE-2 Autumn 2019

Imperial College London 2019

Please answer all questions

Total time for the exam: 90 minutes

Calculators will be provided

Total marks= 80

- (1) Give a mathematical definition of the Taylor series. Using an expansion about the point x=0 use Taylor series to estimate the value of exp(x) when x=0.1 accurate to 6 significant figures. [6 marks]
- (2) (a) Consider the ordinary differential equation system

$$\frac{dx}{dt} = Ax$$
, where $A = \begin{pmatrix} -1 & 3 \\ 3 & -1 \end{pmatrix}$

The solution takes the form: x(t) = Cexp(tA), where C is a constant (vector) of integration. Using matrix diagonalization to compute this matrix exponential, show that the solution can be written as

$$x(t) = \frac{1}{2}(C_1 + C_2) {1 \choose 1} exp(2t) + \frac{1}{2}(C_2 - C_1) {-1 \choose 1} exp(-4t)$$
[10 marks]

- (b) What choice of initial condition for this problem yields a solution that tends to zero as t tends to infinity? [4 marks]
- (3) Define the vector one, two and max norms mathematically. Consider a vector with two components, plot the shapes mapped out in 2D by all vectors with unit norm, i.e. the "unit circle", using each of these three norms. [6 marks]
- (4) Consider a plane of reflection that passes through the origin. Let $\hat{\mathbf{n}}$ be the unit normal vector to the plane and let \mathbf{r} be the position vector for a point in space.
 - (a) Show that the reflected vector for \mathbf{r} is given by $\mathbf{T} \cdot \mathbf{r} = \mathbf{r} 2(\mathbf{r} \cdot \hat{\mathbf{n}})\hat{\mathbf{n}}$, where \mathbf{T} is the transformation that corresponds to the reflection. [6 marks]

(b) Let
$$\hat{\mathbf{n}} = \frac{1}{\sqrt{3}} (\hat{\mathbf{e}}_1 + \hat{\mathbf{e}}_2 + \hat{\mathbf{e}}_3)$$
. Find the matrix of T. [5 marks]

(5) Given a vector field $\mathbf{v} = x_1^2 \hat{\mathbf{e}}_1 + x_3^2 \hat{\mathbf{e}}_2 + x_2^2 \hat{\mathbf{e}}_3$. For the point $\mathbf{x} = (1,1,0)$, find the following: [7 marks]

1

i. $\nabla \mathbf{v}$

ii. $\nabla \cdot \mathbf{v}$

iii. $\nabla \times \mathbf{v}$

The differential dv for $d\mathbf{x} = ds(\hat{\mathbf{e}}_1 + \hat{\mathbf{e}}_2 + \hat{\mathbf{e}}_3)/\sqrt{3}$ iv.

(6)

(a) Given the following strain tensor $\mathbf{\varepsilon} = \begin{bmatrix} 5 & 4 & 0 \\ 4 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \times 10^{-5}$ in a point

Sketch and describe how two lines originally in $\hat{\mathbf{e}}_1$ and $\hat{\mathbf{e}}_2$ direction, respectively, would be deformed by this strain field. [*5 marks*]

Find the principal strains [6 marks]

Find the principal strain directions and use these to sketch how a sphere would deform in this strain field [*9 marks*]

(7)

Consider a case with material flowing in a channel of a width 2b, driven by a pressure drop along the channel of ΔP over every distance L. Take x_1 to be the direction of flow and x_2 the direction across the width of the channel, i.e. ranging from -b on the bottom to b on the top. The channel can be considered infinite in x_3 direction.

For this case, the Navier-Stokes equation simplifies to:

$$\nabla \cdot \boldsymbol{\tau} = \nabla p$$

where τ is the deviatoric stress tensor and p is pressure. Assume that there is linear relation between deviatoric stress τ tensor and strain rate **D**: $\tau = 2\eta \mathbf{D}$, where η is viscosity.

(a) Write out the relevant components of the force balance for this case, i.e. for the non-zero components of the stress divergence and pressure gradient.

[4 marks]

(b) Show that the following is the velocity profile:
$$v_1(y)=\frac{1}{2\eta}\frac{\Delta P}{L}(b^2-x_2^2)$$

[5 marks]

(c) Derive equations to describe the pathlines of the flow, i.e. relating position of a fluid particle $\mathbf{x}(t)$ to its initial position $\boldsymbol{\xi}$ and time t. Sketch the pathlines of 3 particles with positions chosen to illustrate the character of the flow.

[7 marks]