MÈTODES NUMÈRICS I

Grau de Matemàtiques. Curs 2016/17. Semestre de tardor

PRÀCTICA 4

L'objectiu és resoldre sistemes lineals mitjançant eliminació gaussiana i substitució endarrera.

Exercici 1 Cal fer la funció main i dues funcions més.

(i) Resolució de sistemes triangulars superiors

Feu una funció de capçalera

```
int resoltrisup (int n, double **A, double *b, double tol)
```

per a resoldre un sistema lineal Ax=b, de dimensió $(n \times n)$, amb A triangular superior (no cal comprovar que ho és).

Feu-ho per mètode de substitució endarrera, observant:

- Si algun element de la diagonal de A té valor absolut inferior que la tolerància tol, llavors el procés no continuarà i la funció retornarà un valor diferent de 0.
- Si el procés es pot portar a terme completament, llavors la solució es posarà en el mateix vector b i, a més, la funció retornarà el valor 0.

(ii) Eliminació gaussiana

Feu una funció de capçalera

```
int gauss (int n, double **A, double *b, double tol)
```

que implementi el *mètode d'eliminació gaussina (sense pivotatge)* per a un sistema lineal Ax=b, de dimensió (n x n). Cal que:

- Si no es pot portar a terme el procés perquè algun dels pivots té valor absolut menor que la tolerància tol, llavors la funció retornarà un valor diferent de 0.
- Si es pot completar tot el procés, llavors es retornarà el valor 0 i, a més, A contindrà els elements de la matriu triangular final en la part superior i els multiplicadors en la part inferior, mentre que b contindrà el terme independent transformat.

(iii) Programa principal

Feu una funció main on hi hagi la declaració de les variables (useu memòria dinàmica), la lectura de les dades, les invocacions de les funcions gauss i resoltrisup i l'escriptura, o bé del vector solució, o bé dels missatges que expliquin les dificultats trobades. També s'hi ha de fixar el valor de tol (per exemple, 10^{-10}).

Proveu el programa per a diversos sistemes lineals dels quals conegueu la solució per tal de comprovar que tot va correctament.

Afegiu-hi el càlcul del determinant de A i el del vector residu de la solució trobada r = b-Ax (per a poder fer això, us caldrà fer còpies de les dades inicials A i b).

Exercici 2 Feu una variació del programa anterior canviant la funció main de la manera següent:

- Només s'ha de llegir la dimensió n.
- A ha de ser la matriu de Hilbert:

$$a_{ij} = \frac{1}{i+j-1} \quad \forall i, j = 1, 2, \dots, n .$$

- b ha de ser el vector adequat per tal que la solució sigui $\mathbf{x} = (1, 1, \dots, 1)^T \in \mathbb{R}^n$.
- Escriviu tant el vector residu de la solució trobada, r = b-Ax, com l'error en cada component de la solució: x_i-1.

Executeu-lo per valors creixents de n. Veieu alguna cosa estranya? Ho sabeu explicar?