目次

第4章 ニューラルネットワークの<u>基</u>礎	1
4.1 ニューロン	1
4.1.1 ニューロンとは	1
4.1.2 ニューロンを python のプログラムで表す	5
4.1.3 簡単なパーセプトロン	14
4.2 簡単なデータの準備	15
4.2.1 アヤメのデータ	15
4.2.2 アヤメのデータを使ってみる	17
4.2.3 アヤメの分類	20
4.3 損失と勾配	22
4.3.1 損失と損失関数	22
4.3.2 損失を評価する	24
4.3.3 勾配とは	26
4.3.4 勾配を求める	27
4.4 逆伝播と学習	36
4.4.1 逆伝播を組み込む	36
4.4.2 勾配降下法	39

4.4.3 便利な機能の追加	40
4.4.4 パーセプトロンの学習	42
4.4.5 線形性の確認	47
4.4.6 線形回帰とのつながり	48
4.5 パーセプトロンで画像認識	56
4.5.1 データの準備	57
4.5.2 結果確認のための準備	62
4.5.3 手書き数字の認識	63
4.5.4 顔認識	65
4.6 多層化と活性化関数	67
4.6.1 多層化とニューラルネットワーク	67
4.6.2 ニューラルネットワークの実装	71
4.6.3 シグモイド関数	77
4.6.4 ニューラルネットワークの新たな派生クラス	81
4.7 データと学習	87
4.7.1 学習と評価	87
4.7.2 評価のための準備	89
4.7.3 ソフトマックス関数	90

4.7.4 交差エントロピー誤差	96
4.7.5 データの正規化	97
4.7.6 学習の進め方	98
4.7.7 学習用と評価用を分けた画像認識	99
4.8 物体認識への挑戦と課題	102
4.8.1 物体認識のデータ	102
4.8.2 物体認識の実行	106
4.9 敵対的生成ネットワーク	110
4.9.1 ランプ関数	110
4.9.2 ハイパボリックタンジェント関数	113
4.9.3 二値の交差エントロピー誤差	115
4.9.4 GAN の実装	116