ЛЕКЦИЯ № 9

2.2. Задача различения сигналов.

Задача обнаружения сигнала на фоне шума является частным случаем задачи различения двух сигналов. В общем случай задача различения — задача проверки m статистических гипотез.

Рассматриваются гипотезы: $H_k: y(t) = S_k(t) + \eta(t)$, $k = \overline{1:m}$, по каждой из которых на входе приемного устройства в смеси с шумом присутствует сигнал $S_k(t)$. Обрабатывая выборку наблюдаемого процесса y(t), надо принять решение о том, который из m возможных сигналов пришел на вход приемника.

Для задач различения чаще более обоснованным является применение критерия идеального наблюдателя, максимума апостериорной вероятности и максимума отношения правдоподобия.

2.2.1. Критерий идеального наблюдателя (критерий Зигерта-Котельникова)

Критерий идеального наблюдателя заключается в минимизации средней вероятности ошибки. Для случая m гипотез он выглядит следующим образом:

$$P_{OIII} = \sum_{k=1}^{m} \sum_{j=1}^{m} P(H_k) P(\gamma_j | H_k) = P_{OIII \ min} , \qquad (2.27)$$

где $P(H_k)$ - априорные вероятности появления сигналов $S_k(t)$, $P(\gamma_j/H_k)$ -вероятность принять решение о появлении j — го сигнала при условии, что на самом деле присутствует k — ый сигнал. По критерию идеального наблюдателя решающее правило имеет вид:

приемник регистрирует сигнал $S_k(t)$, если для всех $l\ (l \neq k)$ выполняющиеся m-1 неравенство:

$$A_{kl}\left(\vec{\mathbf{y}}_{n}\right) > \frac{p_{l}}{p_{k}} \tag{2.28}$$

$$k = \overline{1:m}, \quad \Lambda_{kl}(\overrightarrow{\mathbf{y}_n}) = \frac{w(\overrightarrow{\mathbf{y}_n}/H_k)}{w(\overrightarrow{\mathbf{y}_n}/H_l)}, \quad \overrightarrow{\mathbf{y}}_n = (y_1, ..., y_n), \quad p_l = P(H_l), p_k = P(H_k) - \frac{1}{2} \frac{w(\overrightarrow{\mathbf{y}_n}/H_l)}{w(\overrightarrow{\mathbf{y}_n}/H_l)}$$

априорные вероятности появления сигналов $S_l(t)$ и $S_k(t)$ соответственно.

Алгоритм (2.28) можно переписать в следующем виде:

$$p_k w(\overrightarrow{\mathbf{y_n}}/H_k) > p_l w(\overrightarrow{\mathbf{y_n}}/H_l), k \neq l,$$

или принимается решение γ_k о регистрации сигнала $S_k(t)$, если

$$p_k w(\overrightarrow{\mathbf{y}_n}/H_k) = \max_k \tag{2.29}$$

Рисунок 2.7. Структурная схема алгоритма различения сигналов по критерию идеального наблюдателя.

Приемник, работающий по правилу (2.29) назван Котельниковым В.А. идеальным (оптимальным).

2.2.2. Критерий максимальной апостериорной вероятности (МАВ).

Критерий MAB можно получить, переписав формулу (2.29) следующим образом:

$$\frac{p_k w\left(\overrightarrow{\mathbf{y_n}}/H_k\right)}{\sum_{i=1}^m p_i w\left(\overrightarrow{\mathbf{y_n}}/H_i\right)} = P\left(H_k/\overrightarrow{\mathbf{y_n}}\right) - \text{ апостериорная вероятность гипотезы } H_k \Rightarrow$$

совокупность неравенств, эквивалентная (2.29) принимает вид:

$$P(H_k/\overrightarrow{\mathbf{y_n}}) = \max_k \tag{2.30}$$

Рисунок 2.8. Структурная схема алгоритма различения сигналов по критерию МАВ.

Недостатком алгоритмов (2.29) и (2.30) является то, что надо знать априорные вероятности гипотез p_k , $k = \overline{1:m}$.

2.2.3. Критерий максимального отношения правдоподобия.

Приемник регистрирует сигнал $S_k(t)$, если

$$\Lambda_{ko}\left(\overrightarrow{\mathbf{y}}_{n}\right) = \max_{k} \tag{2.31}$$

Индекс «0» - нулевая гипотеза H₀ о действии только шума.

Если априорные вероятности гипотез H_k равны, т.е. $P(H_k) = \frac{1}{m}$, $k = \overline{1:m} \Rightarrow$ критерий максимального отношения правдоподобия совпадает с критериям идеального наблюдения.

2.2.4. Оптимальные алгоритмы приема при полностью известных сигналах (когерентный прием) на фоне аддитивного ГБШ.

Рассмотрим модель приходящего сигнала: $y_i = S_{ki} + \eta_i$, $i = \overline{I:n}$, - дискретное время, сигналы S_{ki} — известны η_i - шум. Неизвестны реализация помехи η_i и индекс k переданного сигнала, который должна определить решающая схема.

Запишем отношение правдоподобия:
$$\Lambda_{kl}\left(\overrightarrow{\mathbf{y}_{n}}\right) = \frac{w\left(\overrightarrow{\mathbf{y}_{n}}/H_{k}\right)}{w\left(\overrightarrow{\mathbf{y}_{n}}/H_{l}\right)}$$
, где $w\left(\overrightarrow{\mathbf{y}_{n}}/H_{k}\right)$ -

многомерная гауссовская $\Phi\Pi B$ выборки $\overrightarrow{\mathbf{y}}_n$ при условии действия гипотезы H_k

Т.к. шум η_i - белый \Rightarrow выборка $\overrightarrow{\mathbf{y}_{\scriptscriptstyle \mathrm{n}}}$ независимая, тогда $w\left(\overrightarrow{\mathbf{y}_{\scriptscriptstyle n}}/H_{\scriptscriptstyle k}\right)$

факторизуется:
$$w(\overrightarrow{\mathbf{y}}_n/H_k) = \prod_{i=1}^n w(y_i/H_k) = \frac{1}{\left(\sqrt{2\pi}\sigma_\eta\right)^n} exp\left(-\sum_{i=1}^n \frac{\left(y_i - S_{ki}\right)^2}{2\sigma_\eta^2}\right)$$
. В

этом случае отношение правдоподобия приводится к виду:

$$\Lambda_{kl}\left(\overrightarrow{\mathbf{y}}_{n}\right) = exp\left(-\sum_{i=1}^{n} \frac{\left(y_{i} - S_{ki}\right)^{2}}{2\sigma_{\eta}^{2}} + \sum_{i=1}^{n} \frac{\left(y_{i} - S_{li}\right)^{2}}{2\sigma_{\eta}^{2}}\right).$$

Далее возьмем от левой и правой части данного выражения функцию натурального логарифма:

$$\ln \Lambda_{kl}(\overrightarrow{\mathbf{y}_{n}}) = \lambda_{kl}(\overrightarrow{\mathbf{y}_{n}}) = \frac{1}{2\sigma_{\eta}^{2}} \sum_{i=1}^{n} (-y_{i}^{2} + 2y_{i}S_{ki} - S_{ki}^{2} + y_{i}^{2} - 2y_{l}S_{kl} + S_{li}^{2}) \Rightarrow$$

$$\lambda_{kl}(\overrightarrow{\mathbf{y}_{n}}) = \frac{2}{2\sigma_{\eta}^{2}} \sum_{i=1}^{n} y_{i}S_{ki} - \frac{1}{2\sigma_{\eta}^{2}} \sum_{i=1}^{n} S_{ki}^{2} - \left(\frac{2}{2\sigma_{\eta}^{2}} \sum_{i=1}^{n} y_{i}S_{li} - \frac{1}{2\sigma_{\eta}^{2}} \sum_{i=1}^{n} S_{li}^{2}\right).$$

По критерию идеального наблюдателя (см. 2.28) $\Lambda_{kl}\left(\overrightarrow{\mathbf{y}}_{n}\right)$ сравнивается с единицей при $p_{l}=\frac{1}{m},\ l=\overline{1:m}$, а $\lambda_{kl}\left(\overrightarrow{\mathbf{y}}_{n}\right)$ с «0» т.к. $\ln 1=0$ \Longrightarrow

$$\frac{1}{\sigma_{\eta}^{2}} \sum_{i=1}^{n} y_{i} S_{ki} - \frac{0.5}{\sigma_{\eta}^{2}} \sum_{i=1}^{n} S_{ki}^{2} - \left(\frac{1}{\sigma_{\eta}^{2}} \sum_{i=1}^{n} y_{i} S_{li} - \frac{0.5}{\sigma_{\eta}^{2}} \sum_{i=1}^{n} S_{li}^{2} \right) \ge 0.$$

Обозначив $E_k = \sum_{i=1}^n S_{ki}^2$ - энергию сигнала S_{ki} , получим алгоритм различения:

Передается сигнал S_{ki} , если

$$\sum_{i=l}^{n} y_{i} S_{ki} - 0.5 E_{k} \ge \sum_{i=l}^{n} y_{i} S_{li} - 0.5 E_{l}, \text{при } l = \overline{1:m}, l \ne k$$
 (2.32)

На рисунке 2.9. изображена структурная схема алгоритма (2.32) различения детерминированных сигналов в дискретном и непрерывном времени.

б)

Рисунок 2.9. Оптимальный демодулятор детерминированного сигнала, реализованный на корреляторах в дискретном времени — а, в непрерывном времени - б $E_k = \int\limits_0^{T_H} S_k^2(t), \ k = \overline{1,m}$.

Достоинством корреляционной схемы приема сигналов является ее простота, недостатком – чувствительность к задержке сигнала.

Когерентную обработку сигналов также можно реализовать на согласованных фильтрах. Достоинство такой реализации — алгоритм приема инвариантен к задержке сигнала, недостаток — высокая стоимость схемы, т.к. С.Ф. —дорогое устройство. Физический смысл приема сигнала на основе С.Ф состоит в следующем: если на вход фильтра подан сигнал, с которым он согласован, то сигнальная составляющая на выходе определяется выражением

$$U_{C.\Phi.}(t) = const \int_{0}^{\infty} S(\tau)S(t_0 - t + \tau)d\tau = const \cdot B_{ss}(t_0 - t)$$
 $(B_{ss}(\cdot))$ - функция

автокорреляции сигнала), и ее значение в момент времени, равный длительности сигнала, будет максимальным.

На рисунке 2.10. показана структура алгоритма различения сигналов, реализованная на согласованных фильтрах.

Рисунок 2.11. Оптимальный демодулятор детерминированного сигнала, реализованный на С.Ф. в непрерывном времени.

2.2.5. Потенциальная помехоустойчивость когерентного приема.

Качество передачи зависит от свойств и технического состояния системы, от интенсивности и характера помех.

Помехоустойчивость - способность системы противостоять влиянию помех, определяется вероятностью ошибки $P_{OIII}.P_{OIII}$ – вероятность неправильно принять информационный символ. При заданной интенсивности помехи P_{OUI} различаются чем сильнее между собой тем меньше, сигналы, соответствующие разным сообщениям. Следовательно, необходимо выбирать сигналы с большим различием. Вероятность ошибочного приема символа $P_{O\!I\!I}$ зависит от способа приема, следовательно нужно выбрать такой способ приема, который наилучшим образом реализует различие между сигналами при заданном отношении сигнал/шум $q = 10 lg(\frac{P_c}{P})$.

В теории помехоустойчивости В.А. Котельникова показала, что существует предельная (потенциальная) помехоустойчивость при заданном методе модуляции, которая ни при каком способе приема не может быть превзойдена.

Приемник, реализующий потенциальную помехоустойчивость, называется *оптимальным* приемником.

Определим потенциальную помехоустойчивость для двоичной системы с аддитивным БГШ.

Пусть m=2 \Rightarrow известны два сигнала $S_1(t)$ и $S_2(t)$. Пусть априорные вероятности появления этих сигналов равны, т.е. $P(H_1) = P(H_2) = 0.5$. Тогда

$$P_{OUU} = 0.5 \left[P(\gamma_1 | H_2) + P(\gamma_2 | H_1) \right] = \min.$$

Из формулы(2.32) имеем: если $\sum_{i=1}^n y_i (S_{1i} - S_{2i}) - 0.5(E_1 - E_2) > 0 \Rightarrow$ принимаем решение γ_I (на входе приемника присутствует сигнал S_{1i}); или в непрерывном времени: если $\int_0^T y(t) [S_I(t) - S_2(t)] dt - 0.5(E_1 - E_2) > 0 \Rightarrow$ принимаем решение γ_I о присутствии сигнала $S_1(t)$.

По гипотезе Н₁:

$$y(t) = S_{I}(t) + \eta(t) \Rightarrow \int_{0}^{T} (S_{I}(t) + \eta(t)) [S_{I}(t) - S_{2}(t)] dt - 0.5 (E_{I} - E_{2}) =$$

$$= \int_{0}^{T} S_{I}(t) [S_{I}(t) - S_{2}(t)] dt + \int_{0}^{T} \eta(t) [S_{I}(t) - S_{2}(t)] dt - 0.5 (E_{I} - E_{2}) = \zeta + 0.5 E_{3} \Rightarrow$$

$$P(\gamma_{2} | H_{I}) = P\{\zeta < -0.5 E_{3} | H_{I}\}, \ \zeta \sim N(0; \sigma_{\zeta}^{2}),$$

$$\sigma_{\zeta}^{2} = M \left(\int_{0}^{T} \eta(t) [S_{I}(t) - S_{2}(t)] dt\right)^{2} = \int_{0}^{T} M(\eta(t))^{2} [S_{I}(t) - S_{2}(t)]^{2} dt = \sigma_{\eta}^{2} E_{3},$$

$$T$$

где $E_9=\int\limits_0^t \left[S_I(t)-S_2(t)\right]^2 dt$ -энергия разностного сигнала, М — оператор мат. ожидания, $\sigma_\eta^2=\frac{N_0}{2}$. ФПВ случайной величины ζ - гауссовская:

$$w_{\zeta}(x) = \frac{1}{\sqrt{2\pi\sigma_{\zeta}}} e^{-\frac{x^2}{2\sigma_{\zeta}^2}} \Rightarrow$$

$$P(\gamma_{2}|H_{1}) = \int_{-\infty}^{-0.5E_{3}} \frac{1}{\sqrt{2\pi\sigma_{\zeta}}} e^{-\frac{x^{2}}{2\sigma_{\zeta}^{2}}} dx = -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0.5E_{3}} e^{-\frac{V^{2}}{2}} dV = \frac{1}{\sqrt{2\pi}} \int_{0.5E_{3}}^{\infty} e^{-\frac{V^{2}}{2}} dV,$$

была проведена замена переменной: $V = \frac{-x}{\sigma_{\xi}} \Rightarrow dV = \frac{-dx}{\sigma_{\xi}}$,

$$\Phi(x) = \frac{2}{\sqrt{2\pi}} \int\limits_0^x e^{-\frac{V^2}{2}} dV$$
 - функция Крампа, табулирована. Т.к. $\Phi(\infty) = I \Longrightarrow$

$$P(\gamma_{2}|H_{1}) = 0.5 \left[\frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} e^{\frac{V^{2}}{2}} dV - \frac{2}{\sqrt{2\pi}} \int_{0}^{0.5E_{3}} e^{\frac{V^{2}}{2}} dV \right] = 0.5 \left[\Phi(\infty) - \Phi(\frac{0.5E_{3}}{\sigma_{\zeta}}) \right] = 0.5 \left[1 - \Phi(\frac{0.5E_{3}}{\sigma_{\zeta}}) \right].$$

T.K.
$$\sigma_{\zeta}^{2} = \sigma_{\eta}^{2} E_{9} = \frac{N_{0}}{2} E_{9} \Rightarrow \sigma_{\zeta} = \sqrt{\frac{N_{0} E_{9}}{2}} \Rightarrow P(\gamma_{2} | H_{1}) = 0.5 \left[1 - \Phi\left(\sqrt{\frac{E_{9}}{2N_{0}}}\right) \right].$$

По гипотезе Н2:

$$y(t) = S_{2}(t) + \eta(t) \Rightarrow \int_{0}^{T} (S_{2}(t) + \eta(t)) [S_{1}(t) - S_{2}(t)] dt - 0.5 (E_{1} - E_{2}) =$$

$$= \int_{0}^{T} S_{2}(t) [S_{1}(t) - S_{2}(t)] dt + \int_{0}^{T} \eta(t) [S_{1}(t) - S_{2}(t)] dt - 0.5 (E_{1} - E_{2}) =$$

$$\int_{0}^{T} \eta(t) [S_{1}(t) - S_{2}(t)] dt - 0.5 \int_{0}^{T} [S_{1}(t) - S_{2}(t)]^{2} dt = \xi - 0.5 E_{2} \Rightarrow$$

$$P(\gamma_{1}|H_{2}) = P\{\zeta > 0.5 E_{2}|H_{2}\} = \int_{0.5 E_{2}}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_{\zeta}} e^{-\frac{\chi^{2}}{2\sigma_{\zeta}^{2}}} dx = \frac{1}{\sqrt{2\pi}} \int_{0.5 E_{2}}^{\infty} e^{-\frac{V^{2}}{2}} dV =$$

$$=0.5 \left[\frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{V^{2}}{2}} dV - \frac{2}{\sqrt{2\pi}} \int_{0}^{\frac{0.5E_{3}}{\sigma_{\zeta}}} e^{-\frac{V^{2}}{2}} dV \right] = 0.5 \left[\Phi(\infty) - \Phi(\frac{0.5E_{3}}{\sigma_{\zeta}}) \right] = 0.5 \left[1 - \Phi\left(\sqrt{\frac{E_{3}}{2N_{0}}}\right) \right],$$

(была произведена замена переменной $V = \frac{x}{\sigma_{\varepsilon}} \Rightarrow dV = \frac{dx}{\sigma_{\varepsilon}}$).

T.e.
$$P(\gamma_1|H_2) = P(\gamma_2|H_1) \Rightarrow P_{out} = 0.5 \cdot 2P(\gamma_2|H_1) = 0.5 \left[1 - \Phi\left(\sqrt{\frac{E_3}{2N_0}}\right)\right].$$

$$P_{out} = 0.5 \left[1 - \Phi \left(\sqrt{\frac{E_{_9}}{2N_0}} \right) \right]$$
 (2.33)

Таким образом, вероятность ошибки $P_{O\!I\!I\!I}$ тем меньше, чем больше энергия $E_{_2}$ разностного сигнала.

$$E_{3} = \int_{0}^{T} [S_{1}(t) - S_{2}(t)]^{2} dt = \int_{0}^{T} S_{1}^{2}(t) dt + \int_{0}^{T} S_{2}^{2}(t) dt - 2 \int_{0}^{T} S_{1}(t) S_{2}(t) dt =$$

$$= E_{1} + E_{2} - 2 \int_{0}^{T} S_{1}(t) S_{2}(t) dt.$$

Энергия $E_{_9}$ тем больше, чем больше суммарная энергия двух сигналов $S_1(t)$ и $S_2(t)$ $E_1 + E_2$ и чем меньше корреляция между ними $\int\limits_0^T S_1(t) S_2(t) dt$.

Если $E_1 = E_2 = E$, $r_s = \frac{1}{E} \int_0^T S_1(t) S_2(t) dt$ - коэффициент взаимной корреляции между $S_1(t)$ и $S_2(t)$, то $E_2 = 2E - 2r_s E = 2E(1-r_s)$ и

$$P_{out} = 0.5 \left[1 - \Phi \left(\sqrt{\frac{E(1 - r_s)}{N_o}} \right) \right]$$
 (2.34)

Если $r_s=-1$, тогда $S_1(t)=-S_2(t)$ - противоположные сигналы, $P_{O\!I\!I\!I}$ минимальна; если $r_s=1$, тогда $S_1(t)=S_2(t)$, $P_{O\!I\!I\!I}=0.5$ - сигналы не различимы; если $r_s=0$, тогда сигналы ортогональны.

Формулы (2.33), (2.34) дают выражения для потенциальной помехоустойчивости. При заданной интенсивности помехи и энергии сигналов она зависит от типа модуляции.

2.2.6. <u>Потенциальная помехоустойчивость ДАМ, ДФМ, ДЧМ, ДОФМ</u> сигналов.

1. Двоичная амплитудная модуляция (ДАМ):

«1» передается сигналом $S_{I}(t) = A\cos(\omega t)$, «0» передается сигналом $S_{2}(t) = 0$, $0 \le t \le T$.

 E_2 =0; E_1 =E, тогда по формуле (2.33) получим выражение для потенциальной помехоустойчивости:

$$P_{out} = 0.5 \left[1 - \Phi\left(\sqrt{\frac{E}{2N_0}}\right) \right]$$
 (2.35a)

или через интеграл Лапласа $F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{V^2}{2}} dV$:

$$P_{out} = 1 - F\left(\sqrt{\frac{E}{2N_0}}\right) \tag{2.356}$$

2. Двоичная частотная модуляция (ДЧМ):

«1» передается сигналом $S_{I}(t) = A\cos(\omega_{I}t)$, «0» передается сигналом $S_{2}(t) = A\cos(\omega_{2}t)$, $0 \le t \le T$.

 $r_s \approx 0 \implies$ по формуле (2.34) имеем:

$$P_{out} = 0.5 \left(1 - \Phi\left(\sqrt{\frac{E}{N_0}}\right) \right) \tag{2.36a}$$

или

$$P_{out} = 1 - F\left(\sqrt{\frac{E}{N_0}}\right)$$
 (2.366)

3. Двоичная фазовая манипуляция (ДФМ):

«1» передается сигналом $S_{I}(t) = A\cos(\omega t)$, «0» передается сигналом $S_{2}(t) = -A\cos(\omega t)$, $0 \le t \le T$.

 $r_s = -1 \Longrightarrow$ по формуле (2.34) получим:

$$P_{out} = 0.5 \left(1 - \Phi \left(\sqrt{\frac{2E}{N_o}} \right) \right) \tag{2.37a}$$

или

$$P_{out} = I - F\left(\sqrt{\frac{2E}{N_0}}\right). \tag{2.376}$$

4. Двоичная относительная фазовая манипуляция. (ДОФМ).

Сигнал ДОФМ, в отличие от сигналов ДАМ, ДЧМ и ДФМ, записывается на интервале двух посылок [0;2T]:

$$S_{I}(t) = \begin{cases} A\cos(\omega t), 0 < t \le T, \\ A\cos(\omega(t-T)), T < t \le 2T. \end{cases}$$

$$S_{2}(t) = \begin{cases} A\cos(\omega t), 0 < t \le T, \\ -A\cos(\omega(t-T)), T < t \le 2T. \end{cases}$$

Сигнал $S_1(t)$ соответствует передаче разности фаз $\Delta \varphi = 0$, сигнал $S_2(t)$ – разности $\Delta \varphi = \pi$.

Исходное сообщение b_k (k=1,2,...), состоящее из 0 и 1, преобразуется в $J_k=2b_k-1$, т.е. в последовательность, состоящую из -1 и 1 ($0\to$ -1;1 \to 1). При формировании ДОФМ сигнала символы J_k перекодируются следующим образом:

$$J_{k}' = J_{k} \cdot J_{k-1}', \tag{2.38}$$

где $J_o'=1$.

Тогда для получения ДОФМ сигнала достаточно умножить несущее колебание $A\cos(\omega t)$ на $J_{\iota}{}'$:

$$S(t) = J_k' \cdot A\cos(\omega t) = \pm A\cos(\omega t).$$

На рисунке 2.12. показана структурная схема алгоритма когерентного приема сигнала ДОФМ (метод сравнения полярностей (СП)).

Рисунок 2.12. Структурная схема когерентного приема сигнала ДОФМ.

Ошибочный прием двоичного символа при ДОФМ (СП) имеет место, когда происходит одно из 2-ух несовместимых событий:

1) к-ый символ прият верно, к-1-ый неверно или 2) к-ый символ прият неверно, а к-1-ый верно. Тогда потенциальная помехоустойчивость когерентного приема ДОФМ сигнала определяется выражением:

$$P_{DO\Phi M} = 2P_{D\Phi M}(1 - P_{D\Phi M}), \qquad (2.39)$$

где $P_{{\it Д}\Phi{\it M}}$ - вероятность принять неверно один символ, определяемая по формуле (2.37). Таким образом, вероятность ошибки определяется, как

$$P_{AO\Phi M} = \left(1 - \Phi\left(\sqrt{\frac{2E}{N_o}}\right)\right) \cdot \left(1 - 0.5\left(1 - \Phi\left(\sqrt{\frac{2E}{N_o}}\right)\right)\right)$$
(2.40a)

или
$$P_{QO\Phi M} = 2 \left(1 - F \left(\sqrt{\frac{2E}{N_o}} \right) \right) \cdot F \left(\sqrt{\frac{2E}{N_o}} \right). \tag{2.406}$$