Short Course in Artificial Intelligence

19th June 2024

Lecture 2: Al Applications

PNC 2024

46

Traditional Programming and Machine Learning

- Traditional Programming
- Machine Learning

Find the square of a number

Write Python code:

Provide examples:

>>> x = int(input())

[[2,4],[3,9],[4,16],[5,25]...]

2

>>> print('the square is', x*x)

Train a ML model

the square is 4

Apply the model to new data

PNC 2024

48

48

Traditional Programming and Machine Learning

Why is Machine Learning so useful?

Because we often have problems for which we do not know a formula

Example: Is an image a cat or dog?

cat or dog?

PNC 2024

Data as Vectors

Every type of data can be represented as a vector

• Image: $(w \times h \times 3)$ for RGB encoding

PNC 2024

50

50

Data as Vectors

- Every type of data can be represented as a vector
- Words and text:

PNC 2024

Data as Vectors

- Every type of data can be represented as a vector
- Data:
 - Yes No (1) (0)
 - User profile (Age, Income, family...)
 - ...

PNC 2024

52

52

Artificial Intelligence – Machine Learning

- Learning from data
 - Data = set of objects $\{x\}$ {images}
- 1. Unsupervised learning
 - Groups the objects by similarity
- 2. Supervised learning $\{(image_1, cat), (image_2, dog)\}$
 - Objects have labels y: {(x, y)}
 - From training data, build a model to predict the label y = f(x)
- 3. Learning by reinforcement
 - Learn based on reward (like Tic-Tac-Toe)

PNC 2024

Reinforcement Learning

◆ Data is action, action get reward

- Learning by adjusting rewards
- Typical example: games, moves are rewarded based on winning or losing game

PNC 2024 54

54

Unsupervised Machine Learning

- ♠ Data = set of objects {x}
- Cluster similar objects together into groups

 Typical application: marketing, group customers who are likely to buy the same products

- ◆ Data = set of objects with label {(x,y)}
- ◆ Find a model to guess the label y from the value x

◆ Typical application: prediction of a value

PNC 2024 56

- Which data?
 - Image → Computer Vision

CV NLP

- Text → Natural Language Processing
- Data → Example: shopping user data
- Which applications?
 - Retail: predict what customers will buy
 - Finance: predict future stock value
 - · Health: automatic diagnostic
 - Spam detection: fraudulent emails or sms
 - Weather forecast: predict future rain, storm, typhoon
 - Vision: face recognition
 - Natural Language: chatbots
 - ...

PNC 2024

58

____ 58

Supervised Machine Learning

- Data:
 - Object: $x = (x_1, x_2, ..., x_n)$
 - Training data: set $\{x_i\} = \{(x_{i1}, x_{i2}, \dots, x_{in})\}$
 - Each object x_i has a label y_i : $\{(x_i, y_i)\} = \{(x_{i1}, x_{i2}, \dots, x_{in}, y_i)\}$
- ◆ Example: student s has grade x at course C
 - We predict grade at C_3 from grades at (C_1, C_2)

Student	C3	C1	C2
s1	16	17	14
s2	9	12	7
s3	7	5	13

PNC 2024

Geometrical representation

Student	x1=C1	x2=C2
s1	17	14
s2	12	7
s3	5	13

60

60

Supervised Machine Learning

- ♦ To make it simpler, we only predict if the student succeeds or fails in C_3
- Data:

Student	C3	C3	C1	C2
s1	S	16	17	14
s2	F	9	12	7
s3	F	7	5	13

- For easier mathematics, we note:
 - Success: S $y_1 = +1$
 - Failure : F $y_2 = -1$ $y_3 = -1$

PNC 2024

• Linear Classifier: $\underline{w_1}x_1 + \underline{w_2}x_2 + \underline{w_0} = 0$

w_1	0	
w_2	1	
w_0	-10	
$x_2 - 10 = 0$		
w_1	3	
W_2	4	
w_0	-80	
$3x_1 + 4x_2 - 80 = 0$		

PNC 2024

64

64

Supervised Machine Learning

• The boundary of the linear classifier is the line:

$$w_1 x_1 + w_2 x_2 + w_0 = 0$$

◆ The line splits the space into two half-spaces

$$w_1 x_1 + w_2 x_2 + w_0 < 0$$

 $w_1 x_1 + w_2 x_2 + w_0 > 0$ $w_1 x_1 + w_2 x_2 + w_0 = 0$ $w_1 x_1 + w_2 x_2 + w_0 < 0$

PNC 2024

- ♦ How to use a linear classifier ?
- ◆ Given a set of points, we define an error function and we find the values of (w₁, w₂, w₀) that minimize this function
 - The common minimization technique is called "Gradient Descent"
- With the values of (w_1, w_2, w_0) we can classify any point (x_1, x_2) :
 - we compute $w_1x_1 + w_2x_2 + w_0$
 - if $w_1x_1 + w_2x_2 + w_0 > 0$, the classifier predicts y = +1
 - if $w_1x_1 + w_2x_2 + w_0 < 0$, the classifier predicts y = -1

PNC 2024

66

66

Supervised Machine Learning

• Linear Classifier: $w_1x_1 + w_2x_2 + w_0 = 0$

$sign(x_2-10)$		
(17,14)	+4	
(12,7)	-3	
(5,13)	+3	
1 error		

$sign(3x_1 + 4x_2 - 80)$		
(17,14)	27	
(12,7)	-16	
(5,13)	-13	
0 error		

PNC 2024

Intuition for Gradient Descent

• We want to minimize an Error function E(w)Should we increase or decrease w to reduce the value of E(w)?

68

PNC 2024

Intuition for Gradient Descent

- We use the derivative to reduce the value E(w)
 - if the derivative is negative, we increase $w \rightarrow w + \lambda$
 - if the derivative is positive, we decrease $w \to w \lambda$

PNC 2024

69

Intuition for Gradient Descent

- Problems:
 - if λ is too small, it takes very long to reach \overline{w}
 - if λ is too big, we miss \overline{w} and we need to come back

PNC 2024

70

70

Intuition for Gradient Descent

- Gradient Descent procedure:
 - start with an initial value of w
 - compute the derivative
 - use it to modify the value of w by an amount that depends on the learning rate λ
 - check the error to make sure that λ is not too big
 - iterate until convergence
 - the iterations are called "epoch"

Intuition for Gradient Descent

- Gradient Descent procedure:
 - to find a good learning rate, watch how the value of the error changes with the number of epochs

72

PNC 2024

72

Intuition for Gradient Descent

- A good value for the learning rate may be different for each function
- There are many algorithms to change the value of the learning rate during the epochs:
 - Start with a high learning rate → move fast
 - Later reduce the learning rate \rightarrow be accurate

Al Applications

- How to build a Al application?
- Steps:
- Collect data
- 2. Prepare the data (into suitable format)
 - cleaning, labelling, ...
- 3. Choose a model
- Train the model
 - find the best values of the parameters
- Evaluate the model
 - on data that was not used to train
- 6. Make predictions
 - on new data

PNC 2024

74

Al Applications

- ◆ Speech Data → Text
- ◆ Speech Recognition
- Language Learning
- ◆ Text → Speech
- ◆ Speech Synthesis

PNC 2024

80

Al Applications

- Marketing: targeted advertising
- ◆ Is the customer X willing to buy product Y
- Data:
 - customer age
 - salary
 - family
 - address
 - products already bought
 - web pages visited
 - ...
- Prediction: the customer will buy Y? (yes/no)

Al Applications

- Common question to AI engineers from users:
 - how much data do you need?
- Common answer:
 - as much as possible
- But quality of data is important

DATA = \$\$
Personal Data = \$\$\$

PNC 2024

82

82

Quick Introduction to Deep Learning and Demo

if you are afraid of formulas, don't look at them, just look at the figures

A Quick Course On Deep Networks

- Deep Learning is a particular type of models based on the combination of linear classifiers
- Those models are the basis for most of the recent progress in AI/ML
- They can be applied to (almost) any type of data (text, image, speech, data...), and can be extremely efficient for very diverse tasks.
- The models can be huge (billions of parameters) and be trained on huge training sets.

PNC 2024

84

84

A Quick Course On Deep Networks

◆ The real plane

 \mathbb{R}^2

Points (vectors)

 (x_1, x_2)

Lines

 $w_1 x_1 + w_2 x_2 + w_0 = 0$

PNC 2024

A Quick Course On Deep Networks

Lines

$$w_1x_1 + w_2x_2 + w_0 = 0$$

Half-spaces

$$\bullet w_1 x_1 + w_2 x_2 + w_0 > 0$$

$$w_1 x_1 + w_2 x_2 + w_0 < 0$$

PNC 2024

86

86

A Quick Course On Deep Networks

• The ReLU Function (Rectified Linear Unit) ReLU(t) = max(t, 0)

• ReLU on the real plane \mathbb{R}^2

$$ReLU(x_1, x_2) = ReLU(w_1x_1 + w_2x_2 + w_0)$$
$$= max(w_1x_1 + w_2x_2 + w_0, 0)$$

PNC 2024

92

Demo: Learning Deep Networks

- You are given a Javascript code that trains a Deep Network to represent a color image
- You can see how the network evolves during training
- You can modify the number of hidden layers (just cut and paste one line) to see how deeper networks can better represent the image

Practice 2: Learning Linear Classifier

- You are provided with a Python notebook that already contains the code to train and visualize
- There are 3 datasets, from easy to more complex
- You should experiment with several learning rates and the number of epochs to achieve a good classifier
- Note: not all values for the learning_rate will lead to a successful training

PNC 2024 98

98

Practice 2: Learning Linear Classifier

- Log on https://colab.research.google.com/
- ◆ File -> upload notebook
- upload practice2.ipynb
- ◆ Files -> upload
- upload practice2.data1.data
- Runtime -> Run All
- you can try different values of the learning_rate
- repeat with practice2.data2.data and practice2.data3.data

Practice 2: Learning Linear Classifier

Data : student and grades

Student	Grade1	Grade2	Success
S1	17	14	1
S2	12	7	-1
S3	5	13	-1

Goal: build linear classifier to predict success

PNC 2024