Topic: Graphing complex numbers

Question: Which three complex numbers are represented in the graph?

Answer choices:

A
$$3-4i$$
, $2+4i$, and $-5+6i$

B
$$-2-4i$$
, $3+4i$, and $-6+5i$

C
$$5 + 6i$$
, $2 + 4i$, and $-3 - 4i$

D
$$3 + 4i$$
, $-6 - 5i$, and $-4 - 2i$

Solution: B

The point z_1 is 6 units to the left of the vertical axis and 5 units above the horizontal axis, so it's the complex number -6 + 5i.

The point z_2 is 3 units to the right of the vertical axis and 4 units above the horizontal axis, so it's the complex number 3 + 4i.

The point z_3 is 2 units to the left of the vertical axis and 4 units below the horizontal axis, so it's the complex number -2-4i.

Topic: Graphing complex numbers

Question: Which graph shows the difference of -8 + 5i and -6 + 9i ((-8 + 5i) - (-6 + 9i))?

Answer choices:

В

D

Sixe Air Six

Α

Solution: A

First, we'll compute the difference of the complex numbers.

$$(-8+5i)-(-6+9i)$$

$$(-8 - (-6)) + (5 - 9)i$$

$$(-8+6)+(5-9)i$$

$$-2 - 4i$$

The real part of their difference is -2, and the imaginary part is -4. This means that the difference should be graphed 2 units to the left of the vertical axis and 4 units below the horizontal axis.

Topic: Graphing complex numbers

Question: The points on the graph are the sum $z_1 + z_2$ and difference $z_1 - z_2$ of two z_1 and z_2 . Use a system of equations to find z_1 and z_2 .

Answer choices:

A
$$z_1 = (5/2) - (1/2)i$$
 and $z_2 = (1/2) + (1/2)i$

B
$$z_1 = (3/2) + (7/2)i$$
 and $z_2 = -(5/2) - (3/2)i$

C
$$z_1 = (1/2) + (1/2)i$$
 and $z_2 = -(9/2) + (5/2)i$

D
$$z_1 = (7/2) - (3/2)i$$
 and $z_2 = (5/2) + (1/2)i$

Solution: C

The points on the graph are $z_1 + z_2 = -4 + 3i$ and $z_1 - z_2 = 5 - 2i$. We'll set up this system of equations:

$$z_1 + z_2 = -4 + 3i$$

$$z_1 - z_2 = 5 - 2i$$

Add the two equations together to eliminate z_2 .

$$z_1 + z_2 = -4 + 3i$$

$$z_1 + z_2 + (z_1 - z_2) = -4 + 3i + (5 - 2i)$$

$$z_1 + z_2 + z_1 - z_2 = -4 + 3i + 5 - 2i$$

$$2z_1 = 1 + i$$

$$z_1 = \frac{1}{2} + \frac{1}{2}i$$

Substitute z_1 back into one of the other equations to find z_2 .

$$z_1 + z_2 = -4 + 3i$$

$$\frac{1}{2} + \frac{1}{2}i + z_2 = -4 + 3i$$

$$z_2 = -4 + 3i - \frac{1}{2} - \frac{1}{2}i$$

$$z_2 = -\frac{9}{2} + \frac{5}{2}i$$

