SELFTEST

I. Given:

```
public abstract interface Frobnicate { public void twiddle(String s); }
   Which is a correct class? (Choose all that apply.)
   A. public abstract class Frob implements Frobnicate {
              public abstract void twiddle(String s) { }
   B. public abstract class Frob implements Frobnicate { }
   C. public class Frob extends Frobnicate {
              public void twiddle(Integer i) { }
   D. public class Frob implements Frobnicate {
              public void twiddle(Integer i) { }
   E. public class Frob implements Frobnicate {
              public void twiddle(String i) { }
              public void twiddle(Integer s) { }
2. Given:
        class Top {
          public Top(String s) { System.out.print("B"); }
        public class Bottom2 extends Top {
          public Bottom2(String s) { System.out.print("D"); }
          public static void main(String [] args) {
            new Bottom2("C");
            System.out.println(" ");
   What is the result?
   A. BD
   B. DB
   C. BDC
   D. DBC
   E. Compilation fails
```

3. Given:

```
class Clidder {
 private final void flipper() { System.out.println("Clidder"); }
public class Clidlet extends Clidder {
  public final void flipper() { System.out.println("Clidlet"); }
  public static void main(String [] args) {
    new Clidlet().flipper();
```

What is the result?

- A. Clidlet
- B. Clidder
- C. Clidder Clidlet
- D. Clidlet Clidder
- **E.** Compilation fails
- **4.** Using the **fragments** below, complete the following **code** so it compiles. Note, you may not have to fill all of the slots.

Code:

```
class AgedP {
  public AgedP(int x) {
public class Kinder extends AgedP {
 public Kinder(int x) {
```

Fragments: Use the following fragments zero or more times:

AgedP	super	this	
()	{	}
;			

- **5**. Which statement(s) are true? (Choose all that apply.)
 - A. Cohesion is the OO principle most closely associated with hiding implementation details
 - **B.** Cohesion is the OO principle most closely associated with making sure that classes know about other classes only through their APIs
 - **C.** Cohesion is the OO principle most closely associated with making sure that a class is designed with a single, well-focused purpose
 - **D.** Cohesion is the OO principle most closely associated with allowing a single object to be seen as having many types
- **6**. Given the following,

```
1. class X { void do1() { } }
2. class Y extends X { void do2() { } }
3.
4. class Chrome {
5.  public static void main(String [] args) {
6.     X x1 = new X();
7.     X x2 = new Y();
8.     Y y1 = new Y();
9.     // insert code here
10. } }
```

Which, inserted at line 9, will compile? (Choose all that apply.)

```
A. x2.do2();B. (Y) x2.do2();
```

C. ((Y)x2).do2();

D. None of the above statements will compile

7. Given:

- I. ClassA has a ClassD
- 2. Methods in ClassA use public methods in ClassB
- 3. Methods in ClassC use public methods in ClassA
- 4. Methods in ClassA use public variables in ClassB

Which is most likely true? (Choose the most likely.)

- A. ClassD has low cohesion
- B. ClassA has weak encapsulation
- C. ClassB has weak encapsulation
- D. ClassB has strong encapsulation
- E. ClassC is tightly coupled to ClassA

8. Given:

```
3. class Dog {
      public void bark() { System.out.print("woof "); }
 6. class Hound extends Dog {
      public void sniff() { System.out.print("sniff "); }
 8.
      public void bark() { System.out.print("howl "); }
 9. }
10. public class DogShow {
      public static void main(String[] args) { new DogShow().go(); }
11.
      void qo() {
12.
13.
        new Hound().bark();
        ((Dog) new Hound()).bark();
        ((Dog) new Hound()).sniff();
15.
      }
16.
17. }
```

What is the result? (Choose all that apply.)

- A. howl howl sniff
- B. howl woof sniff
- C. howl howl followed by an exception
- D. howl woof followed by an exception
- **E.** Compilation fails with an error at line 14
- F. Compilation fails with an error at line 15

9. Given:

```
3. public class Redwood extends Tree {
      public static void main(String[] args) {
 5.
        new Redwood().go();
 6.
     void go() {
        go2(new Tree(), new Redwood());
 8.
 9.
        go2((Redwood) new Tree(), new Redwood());
10.
11.
     void go2(Tree t1, Redwood r1) {
         Redwood r2 = (Redwood) t1;
12.
         Tree t2 = (Tree) r1;
13.
14.
15.
16. class Tree { }
```

What is the result? (Choose all that apply.)

- A. An exception is thrown at runtime
- B. The code compiles and runs with no output
- C. Compilation fails with an error at line 8
- D. Compilation fails with an error at line 9
- **E.** Compilation fails with an error at line 12
- F. Compilation fails with an error at line 13

10. Given:

```
3. public class Tenor extends Singer {
4.  public static String sing() { return "fa"; }
5.  public static void main(String[] args) {
6.   Tenor t = new Tenor();
7.   Singer s = new Tenor();
8.   System.out.println(t.sing() + " " + s.sing());
9.  }
10. }
11. class Singer { public static String sing() { return "la"; } }
```

What is the result?

- A. fa fa
- B. fa la
- **C**. la la
- **D.** Compilation fails
- **E.** An exception is thrown at runtime

II. Given:

```
3. class Alpha {
     static String s = " ";
     protected Alpha() { s += "alpha "; }
6. }
 7. class SubAlpha extends Alpha {
     private SubAlpha() { s += "sub "; }
9. }
10. public class SubSubAlpha extends Alpha {
11. private SubSubAlpha() { s += "subsub "; }
     public static void main(String[] args) {
12.
       new SubSubAlpha();
13.
14.
       System.out.println(s);
15.
16. }
```

What is the result?

- A. subsub
- B. sub subsub
- C. alpha subsub
- D. alpha sub subsub
- E. Compilation fails
- F. An exception is thrown at runtime

12. Given:

```
3. class Building {
     Building() { System.out.print("b "); }
      Building(String name) {
 6.
       this(); System.out.print("bn " + name);
7.
8. }
 9. public class House extends Building {
     House() { System.out.print("h ");
11.
     House(String name) {
                 System.out.print("hn " + name);
12.
       this();
13.
     public static void main(String[] args) { new House("x "); }
15. }
```

What is the result?

- A. h hn x
- B. hn x h
- C. b h hn x
- D. b hn x h
- E. bn x h hn x
- F. b bn x h hn x
- G. bn x b h hn x
- H. Compilation fails

13. Given:

```
3. class Mammal {
4. String name = "furry";
      String makeNoise() { return "generic noise"; }
5.
7. class Zebra extends Mammal {
     String name = "stripes ";
      String makeNoise() { return "bray"; }
10. }
11. public class ZooKeeper {
12. public static void main(String[] args) { new ZooKeeper().go(); }
13.
     void go() {
       Mammal m = new Zebra();
14.
15.
       System.out.println(m.name + m.makeNoise());
16.
     }
17. }
```

What is the result?

- A. furry bray
- B. stripes bray
- C. furry generic noise
- D. stripes generic noise
- **E.** Compilation fails
- F. An exception is thrown at runtime

14. You're designing a new online board game in which Floozels are a type of Jammers, Jammers can have Quizels, Quizels are a type of Klakker, and Floozels can have several Floozets. Which of the following fragments represent this design? (Choose all that apply.)

```
A. import java.util.*;
       interface Klakker { }
       class Jammer { Set<Quizel> q; }
       class Quizel implements Klakker { }
       public class Floozel extends Jammer { List<Floozet> f; }
       interface Floozet { }
    B. import java.util.*;
       class Klakker { Set<Quizel> q; }
       class Quizel extends Klakker { }
       class Jammer { List<Floozel> f; }
       class Floozet extends Floozel { }
       public class Floozel { Set<Klakker> k; }
    C. import java.util.*;
       class Floozet { }
       class Quizel implements Klakker { }
       class Jammer { List<Quizel> q; }
       interface Klakker { }
       class Floozel extends Jammer { List<Floozet> f; }
    D. import java.util.*;
       interface Jammer extends Quizel { }
       interface Klakker { }
       interface Quizel extends Klakker { }
       interface Floozel extends Jammer, Floozet { }
       interface Floozet { }
15. Given:
         3. class A { }
         4. class B extends A { }
         5. public class ComingThru {
              static String s = "-";
         7.
              public static void main(String[] args) {
         8.
                A[] aa = new A[2];
         9.
                B[] ba = new B[2];
        10.
                sifter(aa);
               sifter(ba);
        11.
        12.
               sifter(7);
                System.out.println(s);
        13.
        14.
```

70 Chapter 2: Object Orientation

What is the result?

A. -124

B. -134

C. -424

D. -434

E. -444

F. Compilation fails