Hello	Every one :
	We will start at 7:10
bout	Me:
	-> Harshal Gras.
	→ Harshal Grang. → SDE at Amajon, Ex-Oracle → B. Tech (CSE) from NIT Jalendhan, 2018
	-> B. Tech (CSE) from
	-> Remote Instructor at Scale
	since lout 1 you Experience
	Stree lout I you Experience of close to 100 lecture
	-> Born in Agra U.P. Covertly residing in Hyderaba
	7 Boon in Agra, Or

1. PSP (Problem Solving Percentage) - Solved Assignment Problems / Total Open Assignment Problems

- There are two types of section Assignment and Additional. Assignment section consists of implementation of the problems done in class. PSP is calculated based on only Assignment Problems.
- Additional Problems are slight modifications of assignment problem, they are not part of PSP but once you're done with assignment, we highly recommend to complete additional problems as well.
- Try to keep PSP least 85% no matter what. It shall really help you to stay focused and we have seen in the past that people with >= 85%, do well in Interviews.

2. Attendance

- Try to maintain at-least 75% attendance either through live classes or by watching recording.
- Though I will recommend you to come to classes regularly because otherwise it may create backlogs.
- So, I expect all of you to attend live classes and if for any reason you are unable to, then please send me a message stating the reason.

ontent	Jos	Sn	terned	iate	Me	dule
	0	- To	terned be next	Cover	ed	ove
			next	5	wee	ks.
to to out out Your	D	0.1.				
Introduction t		Solving				
 Time Complex 	xity					
Introduction t	o Arrays					
Prefix Sum						
Carry Forward	b					
Subarrays						
2D Matrices						
Sorting Basic	S					
 Hashing Basic 	cs					
Strings Basics	S					
Bit Manipulati	ion Basics					
Interview Prol	blems					
Contest [cove	ers Full Inte	rmediate	DSA1			

Note:

- 1. In Intermediate, we shall be learning the concepts around different topics and how to work with certain data structures.
 - o This module is dedicated to make you comfortable with Programming.
- 2. Contest will be organised after Intermediate Module.
 - It'll will be for 1.5 hours and will be conducted within class duration followed by Contest Discussion (Instructor shall be discussing contest problems).
 - It'll consist of 3 questions and we expect you to solve >=2 problems. If for any reason you
 are unable to solve, then we shall also be having re-attempts as well.(We'll provide more
 info on re-attempts moving forward)
 - Contests are critical to retaining what you have learnt and measuring where you need improvement. Please take contests seriously.
- 3. Be consistent in solving problems. If stuck, please post the issue in your WA/Slack group and let's make it a habit of helping each other as it will eventually help you to be better.

FAQs:

- · Notes will be uploaded after the class.
- · Assignments will be unlocked after the class ends.
- · There is no deadline for assignments.
- If asking a question, ask in public chat.
- If answering a question, answer in private chat.

	Doubts
	Simplementation
	onceptual Implementation Pearic
	Hartal Say.
	TA.
- 10d	ay's Agenda:
	Court the Factors
(2)	Optimisation for asciting the factors.
	factors.
(3)	
G	Sum of N natural numbers.
(5)	Définition of A.P & Cr.P.
6	Finding no. of Sterations.
(7)	Mow To Compare algorithms.

N	iterations	Execution Time
	8.	108 -> 1 sec.
108	10°	sec:
109	109	10 sec.
18	10'8	10°
1018	10	10 Sec.
		10 -7 1 7 109
		317 years.
		$1 \times 10^{18} = 10^{10}$
		$\frac{10^8}{10^8}$
		N ·.
Opt	misation:-	
		a is a factor of N.
		Na es also a factor of
	214	
	24.	
0	N/a	0xb = N.
	•	
	24	
2	12 8	Obs!:- Factor are repeating.
<u>3</u> u	<u> </u>	Japan J
6		
4	<u> </u>	
12	<u> </u>	$\alpha < N/\alpha$.
24	<u> </u>	
	<u> </u>	H Factor exist in
		# Factor exist in
		/

```
[ < N | i ', E < N |
# Code.
    106 ( 1-1', i < Sqrt(N); i++) {
             W(N-1·i ===0){
               3 cout + = 2;
             Telur cont;
N -24.
                i - XXX 45
Cout = 97488
 N= 25
                  J- 24.
                  x 12
1,5,25.
                 2 8
 Cont = 0;

106 (1-1; i = Sqrt(N); i++) {
          W (N-1·i ==0) {
             J ( 1 == N/i) { cout ++; }
```

cont =	9	23

)	*	25
	5	

N	iterations	Execution Time	
108	104	10-4 sec.	1-7-1
18	109	10 Sec;	py -> 104
			108

317 years — > 10 sec.

Given N, you need to check of it is a prome number or not. 2. !- Ouiz 3. 10 11 , 23 , 2 , 25 , 27 , 3 4 2 2 2 3 4 2 On = 4. booleon cleckPoine (nt N) (of (coutfactors(N) == 2)

yehrn Torre;

celre
yetrn False; Bocak fill 6:40.

```
Sum of first IV numbers:
S = 1 + 2 + 3 + 4 + \dots 100 = 2
S= 100 + 99 + 98 +
2S = 101 + 101 + 101 + --- . 101
            100 tem
25 - 101 × 100
       101 × 100 = 5050.
       1 +2 + 3 + -_- N-2 + N-1 + N
S =
       N + N + 1 + N - 2 + 3 + 2 + 1
5 =
        (N+1) + (N+1) + (N+1)
25
```

# 5	sum of	first	Nnatural
7 ' 	U	nu	M natural m bers.
Some	more	basic	Maths:-
	ra h7		a tob incluire
			a tob incluive of a b.
(2)	(a, b)	7-	a to b exclusive
	())	-> Er	cludry.
	' (') ' ') '	-> 9n	cludisj'
Oury 1	5		
	[3, 10]	- 8	· · · · · · · · · · · · · · · · · · ·
		1)	7, 8, 9, 10
		10-3+1	<u> </u>
<u> </u>			
Shiz	<u>б</u> Га b7	•	-1 - + -
			- b
		(b-a)	+1)
a = b=	5	2+1=4.	
		ı	
(a, b) ->	b —	a - 1

)teration	2 :-	
	No. of times a	loop
eriz 7		
	100 (i=1', i<=N', i++)	<u> </u>
	for (i=1', i <= N) breea	b ·
	3	
<u>C1</u> ,	N). N-1+1	- N.
)		

Geometric Progression (G.P.) 5 10 20 40 80 $\frac{10}{5} = \frac{20}{10} = \frac{40}{20} = \frac{80}{40} = \frac{2}{10}$ a = 5; 8 = 2. Notation: Generic a a * 8 a * 8 a * 63 a 7 frost dem
common votro. Som of frost N terms $= (a(8^{N}-1))$

Two Algorithms ? Comparing dearnth. Scrit 10 Sec. 15 sec (Machook). (Wordow XP) 1. Python. machook. 1 7 sec. C++(++ 5 sec. looking at the execution # 139 I Cannot estimate tine, algo a better. certich puolved m E.T. Factor 0.5. machine. Conjuoise. better Herations W criteria alsoviHms.

Next	Class:
	Steps to calculate Bij O, reasoning behind and also obrow backs.
	Explose a Maths concept - Logarithm.
	Space Complexity
	TLE and Simpostonce of Constraints.