Разберем пример поверхностного интеграла: $Ex. S_1: x^2+y^2=1, S_2: z=0, S_3: z=1$ $S=\bigcup_{i=1}^3 S_i$ - цилиндр $\overrightarrow{F}=(P,Q,R)=(x,y,z)$ $\iint_{S_{\mathrm{BHeimh.}}} x dy dz + y dx dz + z dx dy = \iint_{S_1} + \iint_{S_2} + \iint_{S_3} x dy dz = 0$ Так как проекции S_2 на Oxz и Oyz - отрезки, то dx dz=0, dy dz=0

Так как проекции
$$S_2$$
 на Oxz и Oyz - отрезки, то $dxdz = 0$, $dydz = 0$

$$\iint_{S_2} x dydz + y dxdz + z dxdy = \iint_{S_2} z dxdy = 0$$

$$\iint_{S_3} z dxdy \stackrel{z|_{S_3}=1}{=} \iint_{S_3} dxdy \stackrel{c}{=} \stackrel{\text{+ так } \text{как } n_3 \uparrow \uparrow Oz}{=} \iint_{D_{xy}} dxdy = \pi$$

$$\iint_{S_1} x dydz + y dxdz = \iint_{D_{yz}^+: x = \sqrt{1-y^2}} x dydz + (-\iint_{D_{yz}^-: x = -\sqrt{1-y^2}} x dydz) + \iint_{D_{xz}^+} y dxdz + (-\iint_{D_{xz}^-} y dxdz) = 0$$

5.7. Связь поверхностных интегралов с другими

Th. Гаусса-Остроградского

$$S_1: z=z_1(x,y), \ S_3: z=z_3(x,y), \ S_2: f(x,y)=0$$
 (проекция на Oxy - кривая) $S=\bigcup_{i=1}^3 S_i$ - замкнута! и ограничивает тело T $P=P(x,y,z), Q=Q(x,y,z), R=R(x,y,z)$ - непр. дифф., действуют в области $\Omega\supset T$ Тогда $\oint_S Pdydz+Qdxdz+Rdxdy=\iint_T (\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})dxdydz$

$$Mem.$$
 Формула Грина
$$\oint_K Pdx + Qdy = \iint_{D_{xy}} (\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial y}) dxdy$$

Вычислим почленно
$$\iiint_T (\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}) dv$$

$$\iint_{T} (\frac{\partial R(x,y,z)}{\partial z} dz) dx dy = \iint_{D_{xy}} R(x,y,z) \Big|_{z=z_{1}(x,y)}^{z=z_{3}(x,y)} dx dy = \iint_{D_{xy}} (R(x,y,z_{3}(x,y)) - R(x,y,z_{1}(x,y))) dx dy = \iint_{D_{xy}} R(x,y,z_{3}) dx dy - \iint_{D_{xy}} R(x,y,z_{1}(x,y)) dx dy = \iint_{S_{3}} R(x,y,z) dx dy + \iint_{S_{1}} R(x,y,z) dx dy + \iint_{S_{2}} R(x,y,z) dx dy + \iint_{S_{2}} R(x,y,z) dx dy = \iint_{S_{\text{BHeimh}}} Rdx dy$$

Аналогично остальные члены:
$$\iiint_T \frac{\partial Q}{\partial y} dx dy dz = \iint_{S_{\text{внешн.}}} Q dx dz, \iiint_T \frac{\partial P}{\partial y} dx dy dz = \iint_{S_{\text{внешн.}}} P dx dz$$

$$Nota.$$
 Если $\iint_{S_{\text{внутр}}}$, то $\iint_{S} = - \iiint_{T}$

Nota. С учетом связи поверхностных интегралов $\iiint_T (\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}) dv = \iint_S (P\cos\alpha + Q\cos\beta + R\cos\gamma) dv$

Th. Стокса

Пусть S: z = z(x,y) - незамкнутая поверхность, L - контур, на которую она опирается

 $\mathrm{пр}_{Oxy}L=K_{xy},\quad \mathrm{пр}_{Oxy}S=D_{xy}$ В области $\Omega\supset S$ действуют функции P,Q,R - непр. дифф.

Тогда
$$\oint_{L^+} P dx + Q dy + R dz = \iint_{S^+} ((\frac{\partial R}{\partial y} - \frac{\partial \widetilde{Q}}{\partial z}) \cos \alpha + (\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}) \cos \alpha + (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) \cos \gamma) d\sigma$$

Найдем слагаемое
$$\oint_L P(x,y,z)dx \stackrel{\text{на }L \;:\; z=z(x,y)}{=\!=\!=\!=} \oint_{K_{xy}} \tilde{P}(x,y,z(x,y))dx = \oint_{K_{xy}} \tilde{P}dx + \tilde{Q}dy =$$

$$\iint_{D_{xy}} (\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}) dx dy = -\iint_{D_{xy}} \frac{\partial \tilde{P}(x, y)}{\partial y} dx dy = -\iint_{S^{+}} \frac{\partial P(x, y, z)}{\partial y} dx dy = -\iint_{S^{+}} (\frac{\partial P}{\partial y} \cos y + \frac{\partial P}{\partial z} (-\cos \beta)) d\sigma$$

$$\overrightarrow{n} = \left(\frac{-\frac{\partial z}{\partial x}}{\sqrt{1 + z_x'^2 + z_y'^2}}\right)$$

$$\cos \gamma = \frac{1}{\sqrt{1 + z_x'^2 + z_y'^2}}$$

Аналогично
$$\oint_L Q dy = \iint_{S^+} (\frac{\partial Q}{\partial x} \cos \beta - \frac{\partial Q}{\partial z} \cos \alpha) d\sigma, \oint_L R dz = \iint_{S^+} (\frac{\partial R}{\partial y} \cos \alpha - \frac{\partial R}{\partial x} \cos \beta) d\sigma$$
 Остается сложить интегралы

Ex. 1.
$$(P, Q, R) = (x, y, z)$$

В Ex. пункте 5.6. (вычисление поверхностного):

$$\iint_{S_{\text{Внешн - Замкнута!}}} x dy dz + y dx dz + z dx dy = \iiint_{T} (\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z}) dv = 3V_{\text{цил.}}$$

 $Ex.\ 2.\ {\rm Te}\ {\rm жe}\ P,Q,R$

$$\oint_L Pdx + Qdy + Rdz = \iint_S (\underbrace{(\frac{\partial z}{\partial y} - \frac{\partial y}{\partial z})}_{==0} \cos \alpha + 0 + 0) d\sigma$$

6. Теория поля

6.1. Определения

Def. 1. $\Omega \supset \mathbb{R}^n$ Функция $u:\Omega \to \mathbb{R}$ называется скалярным полем в Ω

Def. 2. Функция $\overrightarrow{F} = (F_1(\overrightarrow{x}), \dots, F_n(\overrightarrow{x})) : \Omega \to \mathbb{R}^n$ называется векторным полем

Nota. Далее будем рассматривать функции в \mathbb{R}^3 , то есть u=u(x,y,z) и $\overrightarrow{F}=(P(x,y,z),Q(x,y,z),R(x,y,z))$

Nota. Функции u и \overrightarrow{F} могут зависеть от вренмени t. Тогда эти поля называются нестационарными. В противном случае стационарными

6.2. Геометрические характеристики полей

u = u(x, y, z): l - линии уровня u = const

 $\overrightarrow{F} = (P, Q, R)$: w - векторная линия, в каждой точке w вектор \overrightarrow{F} - касательная к w Векторная трубка - совокупность непересекающихся векторных линий

Nota. Отыскание векторных линий

Возьмем $\overrightarrow{\tau}$ - элементарный касательный вектор, $\overrightarrow{\tau}=(dx,dy,dz)$

Определение векторной линии: $\overrightarrow{\tau} || \overrightarrow{F} \frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$ - система ДУ

Ex. $\overrightarrow{F}=\overrightarrow{yi}-\overrightarrow{xj}, M_0(1,0)$ - ищем векторную линию $w\ni M_0$

$$\begin{cases} \frac{dx}{y} = -\frac{dy}{x} \\ y(1) = 0 \end{cases} \iff \begin{cases} xdx = -ydy \\ y(1) = 0 \end{cases} \iff \begin{cases} x^2 = -y^2 + C \\ y(1) = 0 \implies C = +1 \end{cases} \iff x^2 + y^2 = 1$$

6.3. Дифференциальные характеристики

Mem. $\overrightarrow{\forall} u = \overrightarrow{grad}u = (\frac{\partial u}{\partial x}; \frac{u}{\partial y}; \frac{\partial u}{\partial z})$ - градиент скалярного поля $\overrightarrow{\nabla} = (\frac{\partial}{\partial x}; \frac{\partial}{\partial u}; \frac{\partial}{\partial z})$ - набла-оператор

$$Nota$$
. Для $\overrightarrow{\nabla}$ определены действия: $\overrightarrow{\nabla} \cdot \overrightarrow{a} = \frac{\partial a_1}{\partial x} + \frac{\partial a_2}{\partial y} + \frac{\partial a_3}{\partial z}$ $\overrightarrow{\nabla} \times \overrightarrow{a} = \begin{vmatrix} \overrightarrow{\partial} & \overrightarrow{\partial} & \overrightarrow{\partial} \\ \overrightarrow{\partial} x & \overrightarrow{\partial} y & \overrightarrow{\partial} z \\ a_1 & a_2 & a_3 \end{vmatrix}$

Причем
$$\overrightarrow{\nabla} \cdot \overrightarrow{\nabla} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} = \Delta$$
 - лапласиан $\overrightarrow{\nabla} \times \overrightarrow{\nabla} = 0$

$$Nota.\ \Delta u=rac{\partial^2 u}{\partial x^2}+rac{\partial^2 u}{\partial y^2}+rac{\partial^2 u}{\partial z^2}$$
 = 0 - уравнение, определяющее гармоническую

часть волнового уравнения матфизики

функцию u(x, y, z), уравнение Лапласа

 $egin{aligned} \mathbf{Def.} & \mathbf{1.} \ \Box$ Дивергенция поля (divergence - расхождение $) \ div \overrightarrow{F} \overset{def}{=} \overrightarrow{\nabla} \cdot \overrightarrow{F} \end{aligned}$

Def. 2. Вихрь (ротор) поля $\overrightarrow{rotF}_{def} \overrightarrow{\nabla} \times \overrightarrow{F}$

Def. 3. Если $rot\overrightarrow{F} = 0$, то \overrightarrow{F} называется безвихревым полем

Def. 4. Если $\overrightarrow{div}\overrightarrow{F} = 0$, то \overrightarrow{F} называется соленоидальным

Nota. Безвихревое поле имеет незамкнутые векторные линии, а вихревое - замкнутые

Th. 1. Свойство безвихревого поля $rot \overrightarrow{F} = 0 \Longleftrightarrow \exists u(x, y, z) \mid \overrightarrow{\nabla} u = \overrightarrow{F}$

$$rot \overrightarrow{F} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{j} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \overrightarrow{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \overrightarrow{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \overrightarrow{k} = 0$$

$$\iff \begin{cases} \frac{\partial R}{\partial y} = \frac{\partial Q}{\partial z} \\ \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x} \\ \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \end{cases}$$

Рассмотрим $u=u(x,y,z)\mid \frac{\partial u}{\partial x}=P, \frac{\partial u}{\partial y}=Q, \frac{\partial u}{\partial z}=R$ - удовлетворяет системе равенств

$$\overrightarrow{F} = (P, Q, R) = (\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}) = \overrightarrow{\nabla} u$$

$$\overrightarrow{F} = \overrightarrow{\nabla} u$$
 - дана
$$rot \overrightarrow{F} = \overrightarrow{\nabla} \times \overrightarrow{F} = \overrightarrow{\nabla} \times (\overrightarrow{\nabla} u) = (\overrightarrow{\nabla} \times \overrightarrow{\nabla}) u = 0$$

Nota. Доказали, что если векторное поле является градиентом какого-то скалярного, то его вихрь равен нулю: $rot \overrightarrow{gradu} = 0$

Def. $\overrightarrow{F} = \overrightarrow{\nabla} u$ Поле u(x, y, z) называется потенциалом поля \overrightarrow{F} Таким образом, доказано, что безвихревое поле потенциально

Th. 2. Свойство соленоидального поля
$$div(rot\overrightarrow{F}) = 0$$

$$\Box div(rot\overrightarrow{F}) = div\overrightarrow{a} = \overrightarrow{\nabla} \overrightarrow{a} = \overrightarrow{\nabla} (\overrightarrow{\nabla} \times \overrightarrow{F}) = (\overrightarrow{\nabla} \times \overrightarrow{\nabla}) \cdot \overrightarrow{F} = 0$$

6.4. Интегральные характеристики. Теоремы теории поля

$$Mem.\ 1)\ \Pi$$
оток поля $\overrightarrow{F}:\Pi=\iint_S \overrightarrow{F}d\overrightarrow{sigma}$

$$\mathbf{Def.}$$
 2) Циркуляция поля $\overrightarrow{F}:\Gamma=\oint_{I}Pdx+Qdy+Rdz$

Nota. Запишем **Th.** -мы на векторном языке

$$\begin{split} & \int_{S} P dy dz + Q dx dz + R dx dy = \iint_{T} (\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}) dx dy dz \\ & \iint_{S} (P, Q, R) (dy dx, dx dz, dx dy) = \iint_{S} (P, Q, R) (\cos \alpha d\sigma, \cos \beta d\sigma, \cos \gamma d\sigma) = \iint_{S} \overrightarrow{F} \overrightarrow{n} d\sigma = \iint_{S} \overrightarrow{F} \overrightarrow{n} d\sigma = \iint_{S} \overrightarrow{F} \overrightarrow{n} d\sigma = \iint_{S} \overrightarrow{F} d\overrightarrow{\sigma} \\ & \iint_{T} (\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}) dx dy dz = \iiint_{T} (\overrightarrow{\nabla} \overrightarrow{F}) = \iiint_{T} div \overrightarrow{F} \end{split}$$

$$2^*$$
 Стокса
 $Pdx + Qdy + Rdz = \overrightarrow{F} d\overrightarrow{l}$

$$\oint_{L} \overrightarrow{F} d\overrightarrow{l} = \iint_{S} rot \overrightarrow{F} \overrightarrow{n} d\sigma = \iint_{S} rot \overrightarrow{F} d\overrightarrow{\sigma}$$

3* Th. о потенциале

$$\forall L \oint_{L} \overrightarrow{F} d\overrightarrow{l} = 0 \Longleftrightarrow rot\overrightarrow{F} = 0 \Longleftrightarrow \exists u(x,y,z) \mid \overrightarrow{\nabla} = \overrightarrow{F}$$
 (см. **Th.** интеграла НЗП)

$$Ex. \overrightarrow{F} = x\overrightarrow{i} + xy\overrightarrow{j}, L: x = y, x = -y, x = 1$$
 По формуле Грина (Стокса)
$$\oint_{L} \overrightarrow{F} d\overrightarrow{l} = \iint_{D} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy = \iint_{D} y dx dy \quad rot \overrightarrow{F} \neq 0$$

$$\oint_{L} x dx + xy dy = \int_{L_{1}} + \int_{L_{2}} + \int_{L_{3}} = \int_{0}^{1} (x + x^{2}) dx + \int_{-1}^{1} y dy - \int_{0}^{1} (x + x^{2}) dx = \int_{-1}^{1} y dy = 0$$

6.5. Механический смысл

1* Дивергенция

Гаусс-Остроградский:
$$\iiint_T div \overrightarrow{F} dv = \Pi$$

$$\mathbf{Th.}$$
 о среднем: $\exists M_1 \in T \mid \iiint_T div \overrightarrow{F} dv = div \overrightarrow{F} \Big|_{M_1} \cdot V_T = \Pi$

$$div\overrightarrow{F}\Big|_{M_1}=rac{\Pi}{V_T},$$
 точка M_0,S и T выбраны произвольно

 $\exists V_T \to 0$, тогда $div \overrightarrow{F}\Big|_{M_1 \to M_0} = \lim_{V_T \to 0} \frac{\Pi}{V_T}$ - поток через границу бесконечно малого объема с центром M_0 , отнесенный к V_T - мощность источника в M_0

Таким образом, дивергенция поля - мощность источников

Nota. Смысл утверждения $div(rot\overrightarrow{F})=0$ - поле вихря свободно от источников

Nota. Утверждение $rot(\overrightarrow{gradu}) = 0$ - поле потенциалов свободно от вихрей

2* Ротор
Стокс
$$\iint_{S} rot \overrightarrow{F} d\overrightarrow{\sigma} = \Gamma$$

Th. о среднем:
$$\exists M_1 : \iint_S rot \overrightarrow{F} d\overrightarrow{\sigma} = rot \overrightarrow{F} \Big|_{M_1} \cdot S = \Gamma$$

 $rot\overrightarrow{F}\Big|_{M_1}=rac{\Gamma}{S},$ будем стягивать S к точке $M_0\Longrightarrow rot\overrightarrow{F}\Big|_{M_0}=\lim_{S\to 0}rac{\Gamma}{S}$ - циркуляция по б.м. контуру с центром M_0