Video Contrast and Sharpness Enhancement

T. Petersen, T. C. Mol, E. Cozza

16/02/2024

Fields of Application

- Satellite Imaging
- Medical Imaging
- Al and Computer Vision applications
- Multimedia applications

Design Modules

- 1. Contrast-Enhancement module
- 2. Convolution with sharpener filter

Software Implementation

Hardware Implementation

01

Software Implementation

Contrast Enhancement

- 1. Image decomposition into 3 channels
- 2. Histogram Computation
- 3. $th = \max(histogram) \cdot p$

$$4. k = \frac{255}{last - first}$$

5. Adjust the brightness level of all the pixels:

$$g(x,y) = \begin{cases} 0 & \text{if } f(x,y) < \text{first} \\ \mathbf{k} \cdot f(x,y) - \text{first} & \text{if } f(x,y) \in [\text{first}; \text{last}] \\ 255 & \text{if } f(x,y) > \text{last} \end{cases}$$

6. Repeat steps 2-5 for each channel

(**p** is a user-defined input parameter)

Original Picture

Contrast Enhancement

Contrast Enhancement + Sharpening

Original Picture

Contrast Enhancement

Contrast Enhancement + Sharpening

- Time measurements were recorded for each call to both the contrast and edge enhancement functions during the transmission of 60 frames.
- The performances of the final design have been evaluated in terms of (average) processing time per frame and (average) frame rate.

Module	Processing time [s/frame]	Frame Rate [frame/s]
Contrast Enhancement	0.977	1.024
Edge Enhancement	0.218	4.588
Total Pipeline	1.233	0.811

02

Hardware Implementation

Constraint:

Acquisition, processing, and output of 1 pixel per clock cycle

Limitations

- Working on entire frames would require:
 - Too much memory
 - Too much latency

Solution:

- Stream-Processing approach
- Exploit similarities among contiguous frames

Frame structure depicting the different processing phases

Top-level diagram of the contrast enhancement module

Contrast Enhancement

- Synchronization of computation steps by mean of a pixel counter
- Two phases exist:

Pixel Pipeline

Each received pixel increments the histogram count

Apply contrast enhancement according to the parameters evaluated for the previous frame

Parameters Update:

Reset: reset all the parameter concerning the previous frame

Max: find the maximum value of the histogram for each channel

Th: caclulate the threshold

F&L: find first and last

PU: update all the parameters to be used for the next frame.

Original Picture

Contrast Enhancement

Contrast Enhancement + Sharpening

Original Picture

Contrast Enhancement

Contrast Enhancement + Sharpening

Lorem ipsum dolor sit amet, Consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Eget nunc scelerisque viverra mauris in aliquam. Morbi non arcu risus quis varius quam quisque. Tellus molestie nunc non blandit massa enim.

- Sagittis eu volutpat odio facilisis mauris sit amet massa.
- Massa placerat duis ultricies lacus.
 - Odio facilisis mauris sit amet massa.

Potenti nullam ac tortor vitae purus faucibus.

Lorem ipsum dolor sit amet, Consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Eget nunc scelerisque viverra mauris in aliquam. Morbi non arcu risus quis varius quam quisque. Tellus molestie nunc non blandit.

- Sagittis eu volutpat odio facilisis mauris sit amet.
- Massa placerat duis ultricies lacus.
 - Odio facilisis mauris sit amet massa.

Potenti nullam ac tortor vitae purus faucibus.

Lorem ipsum dolor sit amet, Consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Eget nunc scelerisque viverra mauris in aliquam. Morbi non arcu risus quis varius quam quisque.

- Sagittis eu volutpat odio.
- Massa placerat duis.
 - Odio facilisis mauris sit.

Potenti nullam ac tortor vitae.

- Lorem ipsum dolor sit amet, consectetur adipiscing elit
- Sagittis eu volutpat odio facilisis mauris sit amet.
- Massa placerat duis ultricies lacus.

Title

- Lorem ipsum dolor sit amet, consectetur adipiscing elit
- Sagittis eu volutpat odio facilisis mauris sit amet.
- Massa placerat duis ultricies lacus.

Title

- Lorem ipsum dolor sit amet, consectetur adipiscing elit
- Sagittis eu volutpat odio facilisis mauris sit amet.
- Massa placerat duis ultricies lacus.

Module	Processing time [s/frame]	Frame Rate [frame/s]
Contrast Enhancement	0.977	1.024
Edge Enhancement	0.218	4.588
Total Pipeline	1.233	0.811

Year	Subject 1	Subject 2	Subject 3	Subject 4
2014	40%	55%	40%	55%
2015	7%	80%	7%	80%
2016	20%	26%	20%	26%
2017	69%	31%	69%	31%
2018	82%	85%	82%	85%
2019	89%	92%	89%	92%

Thank you for your attention

Name

