RECOMMENDATION ITU-R P.838-2

Specific attenuation model for rain for use in prediction methods

(Question ITU-R 201/3)

(1992-1999-2003)

The ITU Radiocommunication Assembly,

considering

- a) that there is a need to calculate the attenuation due to rain from a knowledge of rain rates, recommends
- 1 that the following procedure be used.

Specific attenuation γ_R (dB/km) is obtained from the rain rate R (mm/h) using the power-law relationship:

$$\gamma_R = kR^{\alpha} \tag{1}$$

The frequency-dependent coefficients k and α are given in Table 1 for linear polarizations (horizontal: H, vertical: V) and horizontal paths.

The values in Table 1 have been tested and found to be sufficiently accurate for attenuation prediction up to frequencies of 55 GHz.

The coefficients k and α may alternatively be determined, as a function of frequency, from the following equations, which have been derived from curve-fitting to power-law coefficients derived from scattering calculations:

$$\log k = \sum_{j=1}^{3} \left(a_j \exp \left[-\left(\frac{\log f - b_j}{c_j} \right)^2 \right] \right) + m_k \log f + c_k$$
 (2)

$$\alpha = \sum_{i=1}^{4} \left(a_i \exp \left[-\left(\frac{\log f - b_i}{c_i} \right)^2 \right] \right) + m_{\alpha} \log f + c_{\alpha}$$
 (3)

where:

f: frequency (GHz)

k: either k_H or k_V

 α : either α_H or α_V .

TABLE 1

Frequency dependent coefficients for estimating specific attenuation using equations (4), (5) and (1)

Frequency (GHz)	k_H	k_V	$lpha_{\!\scriptscriptstyle H}$	$\alpha_{\scriptscriptstyle V}$	
1	0.0000387	0.0000352	0.9122	0.8801	
1.5	0.0000868	0.0000784	0.9341	0.8905	
2	0.0001543	0.0001388	0.9629	0.9230	
2.5	0.0002416	0.0002169	0.9873	0.9594	
3	0.0003504	0.0003145	1.0185	0.9927	
4	0.0006479	0.0005807	1.1212	1.0749	
5	0.001103	0.0009829	1.2338	1.1805	
6	0.001813	0.001603	1.3068	1.2662	
7	0.002915	0.002560	1.3334	1.3086	
8	0.004567	0.003996	1.3275	1.3129	
9	0.006916	0.006056	1.3044	1.2937	
10	0.01006	0.008853	1.2747	1.2636	
12	0.01882	0.01680	1.2168	1.1994	
15	0.03689	0.03362	1.1549	1.1275	
20	0.07504	0.06898	1.0995	1.0663	
25	0.1237	0.1125	1.0604	1.0308	
30	0.1864	0.1673	1.0202	0.9974	
35	0.2632	0.2341	0.9789	0.9630	
40	0.3504	0.3104	0.9394	0.9293	
45	0.4426	0.3922	0.9040	0.8981	
50	0.5346	0.4755	0.8735	0.8705	
60	0.7039	0.6347	0.8266	0.8263	
70	0.8440	0.7735	0.7943	0.7948	
80	0.9552	0.8888	0.7719	0.7723	
90	1.0432	0.9832	0.7557	0.7558	
100	1.1142	1.0603	0.7434	0.7434	
120	1.2218	1.1766	0.7255	0.7257	
150	1.3293	1.2886	0.7080	0.7091	
200	1.4126	1.3764	0.6930	0.6948	
300	1.3737	1.3665	0.6862	0.6869	
400	1.3163	1.3059	0.6840	0.6849	

The remaining coefficients are given in Tables 2 and 3.

TABLE 2

Coefficients in equations (2) and (3) for horizontal polarization

	а	b	с	m_k	c_k	m_{α}	c_{α}
j = 1	0.3364	1.1274	0.2916				
2	0.7520	1.6644	0.5175	1.9925	-4.4123	_	_
3	-0.9466	2.8496	0.4315				
i = 1	0.5564	0.7741	0.4011	-	_	-0.08016	0.8993
2	0.2237	1.4023	0.3475				
3	-0.1961	0.5769	0.2372				
4	-0.02219	2.2959	0.2801				

TABLE 3

Coefficients in equations (2) and (3) for vertical polarization

	а	b	с	m_k	c_k	m_{α}	c_{α}
j = 1	0.3023	1.1402	0.2826				
2	0.7790	1.6723	0.5694	1.9710	-4.4535	_	_
3	-1.0022	2.9400	0.4823				
i = 1	0.5463	0.8017	0.3657	_	_	-0.07059	0.8756
2	0.2158	1.4080	0.3636				
3	-0.1693	0.6353	0.2155				
4	-0.01895	2.3105	0.2938				

For linear and circular polarization, and for all path geometries, the coefficients in equation (1) can be calculated from the values in Table 1 using the following equations:

$$k = [k_H + k_V + (k_H - k_V)\cos^2\theta\cos 2\tau]/2$$
 (4)

$$a = [k_H a_H + k_V a_V + (k_H a_H - k_V a_V) \cos^2 \theta \cos 2\tau] / 2k$$
 (5)

where θ is the path elevation angle and τ is the polarization tilt angle relative to the horizontal ($\tau = 45^{\circ}$ for circular polarization).

For convenience, a quick estimate of values of k and α at frequencies other than those in Table 1, can be obtained from Figs. 1 to 4.

 $\label{eq:figure1} \mbox{FIGURE 1}$ $\mbox{$k$ coefficient for horizontal polarization as a function of frequency}$

 $\label{eq:FIGURE 2} \mbox{α coefficient for horizontal polarization as a function of frequency}$

 $\label{eq:figure 3} \textit{k coefficient for vertical polarization as a function of frequency } \\$

 $\label{eq:FIGURE 4} \mbox{FIGURE 4}$ $\mbox{$\alpha$ coefficient for vertical polarization as a function of frequency}$
