Number Systems and Floating-Point Accuracy

Number Systems Lesson 1 Floating-Point Accuracy Lesson 2

Fun Fact: There's more than one way to represent a number.

Fun Fact: There's more than one way to represent a number.

Decimal: 15 Binary: 1111

Number Systems are specified by their base number.

Decimal is base 10

Binary is base 2

Next Sections

Common Number Systems

Back to Main

Number Systems and Floating-Point Accuracy

Number Systems

What are Number Systems? Common Number Systems

Floating-Point Accuracy

Representing Other Number Systems in Python

Converting from One System to Another System

Common Number Systems

Decimal Binary Octal Base 10 Base 2 Base 8 0 - 9 0 - 1 0 - 7

Hexadecimal Base 16 0 - F (0 – 9 + A – F)

Representing Number Systems in Python

Binary Octal Hexadecimal Prefix 0b Prefix 0o Prefix 0x 0b1001 0o7242 0xFF012

Converting the Decimal number 15 to Binary

Binary Number: 1111

Converting from Decimal to Another System

Number Systems and Floating-Point Accuracy

Number Systems

Floating-Point Accuracy
Lesson 2

Next Sections

Back to Main

What are Number Systems?

Common Number Systems

Representing Other Number Systems in Python

Converting from One System to Another System

Converting back from binary to decimal

Binary Number: 1111

$$(1 \cdot 2^3) + (1 \cdot 2^2) + (1 \cdot 2^1) + (1 \cdot 2^0)$$

Most Significant

Least Significant

$$8 + 4 + 2 + 1$$

15

Next Sections

Floating-point numbers are stored as binary fractions in memory.

Not all decimals can be represented as binary fractions.

Example: 0.1 can't be represented cleanly

It approximates to something like: 0.100000000000000055511151231257827021181583404541015625

Back to Main