UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 2. stopnja

Uroš Kosmač

TURBULENCE IN SIMULACIJE VELIKIH TURBULENTNIH VRTINCEV

Magistrsko delo

Mentor: prof. dr. Emil Žagar Somentor: dr. Peter Smerkol

Kazalo

1	Uvo	\mathbf{d}	1
	1.1	Motivacija	1
	1.2	Ohranitveni zakoni	4
	1.3	Ohranitvena enačba	6
	1.4	Zakon o ohranitvi mase	8
	1.5		9
	1.6		10
	1.7		12
	1.8		13
		ů .	15
	1.9		<u>ا</u>
	-		۱9
			20
			22
	1.12		22
		v	23
			26
2	Larg	ge eddy simulacije	29
	2.1	Povprečja	29
		2.1.1 Ånsambelsko povprečje	30
			31
	2.2	· ·	36
			36
			37
		8	38
			38
		Ÿ	39
	2.3		10
			10
			16
		2.3.3 Gaussov filter	17
		2.3.4 Škatlast filter	18
3	Ene	rgija in spektralna analiza 4	١9
	3.1	Osnovni pojmi	19
	3.2	Hipoteze Kolomogorova	55
	3.3	Energijsko spektralna funkcija	56
	3.4	Spekter Kolmogorova	58
	3.5	Napake filtriranih polj	54
4			9
	4.1	J	39
	4.2		73
			76
		4.2.2 Dinamični model Smagorinskoga	76

Literatura 79

Program dela

Mentor naj napiše program dela skupaj z osnovno literaturo.

Osnovna literatura

- 1. J. C. Wyngaard, *Turbulence in the atmosphere*, Cambridge University Press, Cambridge, 2010.
- 2. S. B. Pope, *Turbulent flows*, Cambridge University Press, Cambridge, UK, 2000.
- 3. H. Hanche-Olsen, *The Buckingham Pi Theorem: Dimensional Analysis*, [ogled 19.7.2025], dostopno na %5Curl%7Bhttps://hanche.folk.ntnu.no/notes/buckingham/buckingham-a4.pdf%7D.
- 4. B. P. Roger Lewandowski, *The Kolmogorov Law of turbulence, What can rigorously be proved ? Part II*, Teh. poročilo, [ogled 16.7.2025], dostopno na https://hal.science/hal-01244651v1/document.
- 5. M. Oberlack, Invariant modeling in large-eddy simulation of turbulence, [ogled 19.7.2025], dostopno na https://web.stanford.edu/group/ctr/ResBriefs97/poberlack.pdf.
- 6. D. Barbi in G. Münster, Renormalization group analysis of turbulent hydro-dynamics, [ogled 19.7.2025], dostopno na https://arxiv.org/pdf/1012.0461.
- 7. J. Anderson John D., Computational fluid dynamics: the basics with applications, McGraw-Hill, New York, 1995.
- 8. M. Spieg, *Conservation Equations*, Teh. poročilo, [ogled 19.7.2025], dostopno na https://www.stat.uchicago.edu/~guillaumebal/COURSES/E3102/MSpieg-Conserveq.pdf.
- 9. E. Bouchbinder, Solution to Tensor Analysis (Q1), [ogled 19.7.2025], dostopno na https://www.weizmann.ac.il/chembiophys/bouchbinder/sites/chemphys.bouchbinder/files/uploads/Courses/2023/HW/Q1-TensorsAnalysis-sol.pdf.
- 10. M. Rösler, *The Smagorinsky turbulence model*, rosler, magistrsko delo, [ogled 19.7.2025], dostopno na https://wias-berlin.de/people/john/BETREUUNG/bachelor roesler.pdf.

- 11. D. Razafindralandy, A. Hamdouni in O. Martin, New turbulence models preserving symmetries, symmetries, [ogled 19.7.2025], dostopno na https://hal.science/hal-00312562v1/document.
- 12. C. Foias in dr. *Navier-stokes equations and turbulence*, Cambridge University Press, Cambridge, UK, 2001.

Podpis mentorja:

Podpis somentorja:

Turbulence in simulacije velikih turbulentnih vrtincev

Povzetek

Tukaj napišemo povzetek vsebine. Sem sodi razlaga vsebine in ne opis tega, kako je delo organizirano.

Atmospheric turbulence and Large eddy simulations

Abstract

An abstract of the work is written here. This includes a short description of the content and not the structure of your work.

Math. Subj. Class. (2020): 74B05, 65N99

Ključne besede: integracija, kompleks, C^* -algebre

Keywords: integration, complex, C^* -algebras

1 Uvod

1.1 Motivacija

Turbulenca oz. turbulentni tok je pojav, s katerim se srečujemo vsak dan, kljub temu pa na nekatera fundamentalna vprašanja, ki se nanašajo nanjo, še vedno ne znamo odgovoriti. Že vprašanje, kaj je turbulenca, nima univerzalnega odgovora. So pa opažanja in eksperimenti pokazali, da lahko turbulence karakteriziramo z določenimi lastnostmi. To so:

- Kaotičnost: Turbulentni tok je kaotičen oz. nepredvidljiv. To pomeni, če začetno stanje toka malo spremenimo (spremenimo hitrost, tlak ...), bo končno stanje popolnoma drugačno, kot pred spremembo. Zato je v praksi zelo težko deterministično napovedati dogajanje. Teoretično lahko izpeljemo Navier-Stokesove enačbe, ki opisujejo gibanje vseh tokov, tudi turbulentnih, vendar pa je njihovo reševanje zelo zahtevno tudi v posebnih primerih (že sam obstoj rešitev je odprto vprašanje).
- Vrtinci različnih velikosti: Turbulenten tok je sestavljen iz vrtincev (eddies). Lahko so zelo različnih velikosti, kar je razvidno iz slike 1

Slika 1: Leva slika prikazuje velike vrtince, ki se pojavijo v atmosferi planeta Jupitra in imajo lahko premer več 1000 kilometrov, medtem ko desna slika prikazuje turbulenco zraka v sobi, kjer se tok zraka prikaže s pomočjo laserja in lahko vidimo vrtince velikosti nekaj mikrometrov.

- **Difuzivnost**: Zanimiva lastnost turbuletnega toka je difuzivnost. To pomeni, da se energija in gibalna količina preneseta po celotnem toku. Osborne Reynolds (1842 1912) je postavil eksperiment, ki prikazuje to lastnost. Vidna je na sliki 2
- Reynoldsovo število: Podoben eksperiment, kot na sliki 2 nam da enostaven kriterij, ki mu turbulenca zadošča. Večja kot je dolžina cevi L, ali večja kot je hitrost toka u, prej bo prišlo do turbulence. Po drugi strani pa večja kot je viskoznost tekočine ν , manj verjetno bo, da pride do turbulence. To zapišemo preko brezdimenzijske konstante $Re = \frac{uL}{\nu}$. Do turbulence pride pri velikih Reynoldsovih številih, običajno pri $Re \geq 5000$.

• **Disipativnost**: To je proces prenosa energije iz večjih vrtincev v manjše vrtince, dokler ta ne začne izhajati iz tekočine kot toplota. To pomeni, če hočemo imeti turbulenten tok oz. ga ohranjati, moramo dosledno sistemu dodajati energijo.

Slika 2: V cev polno vode spustimo tok barve. Slika je sestavljena iz treh delov: a) del ni turbulenten zato se barva zelo malo razprši, b) del je v vmesnem stanju, kjer se že kažejo znaki difuzije in c) del, kjer je tok turbulenten in se barva razširi po celotni cevi.

Slika 3: Slika prikazuje hlape plamena, ki potujejo po zraku. Na začetku, imamo majhno Reynoldsovo število, je tok zelo predvidljiv, ko pa se Reynoldsovo število veča (parameter L se veča), tok postane turbulenten.

V delu se bom predvsem osredotočil na turbulenco v atmosferi, kjer je obravnava določenih enačb gibanja in fizikalnih količin nekoliko drugačna, kot pri drugih vrstah turbulence (kot so naprimer turbulence tekočin). Omejili se bomo na prostor \mathbb{R}^3 , čeprav bi lahko določene koncepte obravnavali v višjih dimenzijah, vendar nam za

naše potrebe to ne bo prineslo veliko praktične vrednosti. V splošnem se kakršenkoli tok obravanava na enega od sledečih načinov:

• Eulerjev pristop: Recimo, da opazujemo neko domeno $\Omega \subseteq \mathbb{R}^3$, skozi katero teče tok. Zanima nas hitrostno polje

$$\mathbf{u}: \Omega \times \mathbb{R}^+ \to \mathbb{R}^3$$

 $(\mathbf{x}, t) \mapsto \mathbf{u}(\mathbf{x}, t).$

V tem primeru smo fiksirali koordinatni sistem (glede na zemljo).

Lagrangeev pristop: Pri tem pristopu opazujemo, s kakšno hitrostjo se delec
 X premika skozi čas. Označimo

$$\mathbf{X}: \mathbb{R}^+ \to \mathbb{R}^3$$
$$t \mapsto \mathbf{X}(t; \mathbf{x}_0),$$

kjer je \mathbf{x}_0 začetna pozicija delca in velja $\mathbf{X}(t_0; \mathbf{x}_0) = \mathbf{x}_0$. Z drugimi besedami \mathbf{X} je trajektorija delca, ki se premika skozi čas, tok pa je nabor vseh trajektorij.

Kateri pristop uporabimo, je odvisno od lastnosti, ki jih želimo analizirati. Eulerjev pristop se osredotoči na fiksno domeno in opazujemo kako se lastnosti tekočine spreminjajo v njej skozi čas. Za analizo turbulence in globalnih procesov je ta način boljši, medtem ko je Lagrangeva analiza boljša za analizo mehanike delcev, disperzije in različnih procesov mešanja (difuzija).

V delu bomo primarno uporabljali Eulerjev-jev pristop, vendar pa nam lahko analiza enega pomaga pri analizi drugega. Naj bo **u** Eulerjevo polje hitrosti na poljubni domeni in $X = X(t; \mathbf{x}_0)$ trajektorija delca po Lagrangevem opisu ob času t in začetni poziciji \mathbf{x}_0 . Zveza med Lagrangevov trajektorijo in Eulerjevo hitrostjo je

$$X(t_0; \mathbf{x}_0) = \mathbf{x}_0, \tag{1.1}$$

$$\frac{\mathrm{d}X}{\mathrm{d}t}(t;\mathbf{x}_0) = \mathbf{u}(X(t;\mathbf{x}_0),t). \tag{1.2}$$

Definiramo Lagrangevo polje hitrosti

$$U(t; \mathbf{x}_0) := \mathbf{u}(X(t; \mathbf{x}_0), t). \tag{1.3}$$

Poglejmo kako se izraža pospešek delca

$$\frac{\mathrm{d}}{\mathrm{d}t}U(t;\mathbf{x}_{0}) = \frac{\partial}{\partial t}\mathbf{u}(X(t;\mathbf{x}_{0}),t) =
= \frac{\mathrm{d}}{\mathrm{d}t}X(t;\mathbf{x}_{0}) \cdot \left(\operatorname{grad}_{\mathbf{x}}\mathbf{u}(\mathbf{x},t)\right)_{\mathbf{x}=X(t,\mathbf{x}_{0})} + \left(\frac{\partial}{\partial t}\mathbf{u}(\mathbf{x},t)\right)_{\mathbf{x}=X(t,\mathbf{x}_{0})} =
= \left(\mathbf{u}(t;\mathbf{x}_{0}) \cdot \operatorname{grad}_{\mathbf{x}}\mathbf{u}(\mathbf{x},t) + \frac{\partial}{\partial t}\mathbf{u}(\mathbf{x},t)\right)_{\mathbf{x}=X(t,\mathbf{x}_{0})}.$$

Definicija 1.1. Naj bo $\Omega \subset \mathbb{R}^n$ in $\mathbf{v} : \Omega \times \mathbb{R}^+ \to \mathbb{R}^n$ vektorsko polje. Diferencialni operator $\frac{D}{Dt} : C^1(\Omega \times \mathbb{R}^+, \mathbb{R}^n) \to C^0(\Omega \times \mathbb{R}^+, \mathbb{R}^n)$ dan s predpisom

$$\frac{D\mathbf{u}}{Dt} = \left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}}\right)\mathbf{u} = \frac{\partial \mathbf{u}}{\partial t} + (v \cdot \nabla_{x})u \tag{1.4}$$

se imenuje materialni odvod.

Pospešek, zapisan preko materialnega odvoda je

$$\frac{\mathrm{d}}{\mathrm{d}t}U(t;\mathbf{x}_0) = \left(\frac{D\mathbf{u}}{Dt}(\mathbf{x},t)\right)_{\mathbf{x}=X(t;\mathbf{x}_0)}.$$
(1.5)

Podoben rezultat dobimo, če namesto hitrosti, odvajamo gostoto (ρ)

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho(t;\mathbf{x}_0) = \left(\frac{D\rho}{Dt}(x,t)\right)_{\mathbf{x}=X(t;\mathbf{x}_0)}.$$
(1.6)

Materialni odvod je fundamentalni operator Eulerjevega pristopa. Vedno, ko nas bo zanimalo kako se neka količina spreminja s časom, nas bo zanimal njen materialni odvod.

Opomba 1.2. Operator ∇ ni komutativen. Za vektorsko polje $\mathbf{v}: \mathbf{v} \cdot \nabla \neq \nabla \cdot \mathbf{v}$.

1.2 Ohranitveni zakoni

V tem razdelku začnemo matematični opis ohranitvenih zakonov, enega najpomembnejših konceptov dinamike fluidov (in fizike na splošno), ki je ključen za razumevanje turbulentnih tokov.

Opomba 1.3. V nadaljevanju ne bomo navajali vseh potrebnih predpostavk, ki bodo upravičile naše izpeljave. Na primer

- Domene, s katerimi bomo imeli opravka, bodo gladke orientabilne mnogoterosti.
- Vektorska polja bodo gladka, v naslednjem poglavju pa bomo predpostavili, da obstaja razvoj v Fourierovo vrsto.
- Menjave vrstnega reda limit bo potrebno upravičiti, zato bomo zahtevali, da je vektorsko polje ${\bf u}$ tudi v L^2 prostoru.

Ohranivene zakone lahko izpeljemo na dva načina. Prvi je pristop je bolj fizikalen z obravnavo z uporabo znanih zakonov kot so 2. Newtonov zakon, drugi pristop, ki je povsem matematičen, pa je preko uporabe Reynoldsovega transportnega izreka. Kot smo namignili, bomo uporabili drugi pristop.

Izrek 1.4. Naj bo $\Omega(t) \subset \mathbb{R}^n$ volumen, odvisen od časa, definiran kot

$$\Omega(t) := \{ \varphi(\boldsymbol{x}, t) \mid \boldsymbol{x} \in \Omega_0 \},$$

 $za \ \varphi \in C^1(\mathbb{R}^n \times [0,\infty])$ in $\Omega_0 \subset \mathbb{R}^n$. Naj bo $\mathbf{n}(\mathbf{x},t)$ enotska normala, ki kaže iz volumna V(t). Za preslikavo $\phi \in C^1(\mathbb{R}^n \times [0,\infty), \mathbb{R}^m)$ velja:

$$\frac{d}{dt} \int_{\Omega(t)} \phi(\mathbf{x}, t) \, dV = \int_{\Omega(t)} \frac{\partial \phi}{\partial t}(\mathbf{x}, t) \, dV + \int_{\partial \Omega(t)} \phi(\mathbf{x}, t) \left(\mathbf{u}(\varphi(\mathbf{x}, t)) \cdot \mathbf{n}(\mathbf{x}, t) \right) dA, \quad (1.7)$$

 $kjer\ je\ oldsymbol{u}:\mathbb{R}^n
ightarrow \mathbb{R}^n\ preslikava\ za\ katero\ velja$

$$\boldsymbol{u}(\varphi(\boldsymbol{x},t),t) = \frac{\partial \varphi}{\partial t}(\boldsymbol{x},t). \tag{1.8}$$

Opomba 1.5. Pogoj na preslikavo **u** je analogen pogoju (1.2).

Dokaz. Začnemo z integralom

$$\int_{\Omega(t)} \phi(\mathbf{x}, t) \, dV.$$

Z uvedbo nove neznanke $\mathbf{y} = \varphi(\mathbf{x}, t)$, dobimo

$$\int_{\Omega(t)} \phi(\mathbf{x}, t) \, dV = \int_{\Omega_0} \phi(\varphi(\mathbf{x}, t), t) |\det J_{\varphi}(\mathbf{x}, t)| \, dV.$$

Odvajamo po času

$$\frac{\partial}{\partial t} \left(\int_{\Omega(t)} \phi(\mathbf{x}, t) \, dV \right) = \frac{\partial}{\partial t} \left(\int_{\Omega_0} \phi(\varphi(\mathbf{x}, t), t) |\det J_{\varphi}(\mathbf{x}, t)| \, dV \right).$$

Ker je Ω_0 omejeno območje neodvisno od t, lahko odvod premaknemo znotraj integrala

$$\frac{\partial}{\partial t} \left(\int_{\Omega(t)} \phi(\mathbf{x}, t) \, dV \right) = \int_{\Omega_0} \frac{\partial}{\partial t} \left(\phi(\varphi(\mathbf{x}, t), t) | \det J_{\varphi}(\mathbf{x}, t) | \right) dV =
= \int_{\Omega_0} \frac{D\phi}{Dt} (\varphi(\mathbf{x}, t), t) | \det J_{\varphi}(\mathbf{x}, t) | + \phi(\varphi(\mathbf{x}, t), t) \frac{\partial}{\partial t} | \det J_{\varphi}(\mathbf{x}, t) | dV.$$

Za odvod determinate se skličemo na Jacobijevo indentiteto

$$\frac{\partial}{\partial t} |\det J_{\varphi}(\mathbf{x}, t)| = |\det J_{\varphi}(\mathbf{x}, t)| \operatorname{tr} \left(J_{\varphi}^{-1}(\mathbf{x}, t) \frac{\partial}{\partial t} J_{\varphi}(\mathbf{x}, t) \right).$$

Odvod Jacobijeve matrike je:

$$\frac{\partial}{\partial t} [J_{\varphi}(\mathbf{x}, t)]_{ij} = \frac{\partial}{\partial t} \left[\frac{\partial \varphi_i}{\partial x_j} (\mathbf{x}, t) \right]_{ij} = \frac{\partial}{\partial x_j} \left[\frac{\partial \varphi_i}{\partial t} (\mathbf{x}, t) \right]_{ij} =
= \frac{\partial}{\partial x_j} [u_i(\varphi(\mathbf{x}, t), t)]_i =
= \sum_{k=1}^n \frac{\partial u_i}{\partial \varphi_k} (\varphi(\mathbf{x}, t), t) \frac{\partial \varphi_k}{\partial x_j} (\mathbf{x}, t) =
= \sum_{k=1}^n A_{ik} J_{kj},$$

kjer je $A_{ik} = \frac{\partial u_i(\varphi(\mathbf{x},t),t)}{\partial \varphi_k}$. Torej je

$$\frac{\partial}{\partial t} J_{\varphi}(\mathbf{x}, t) = A J_{\varphi}(\mathbf{x}, t).$$

Sledi:

$$\frac{\partial}{\partial t} |\det J_{\varphi}(\mathbf{x}, t)| = |\det J_{\varphi}(\mathbf{x}, t)| \operatorname{tr} \left(J_{\varphi}^{-1}(\mathbf{x}, t) \frac{\partial}{\partial t} J_{\varphi}(\mathbf{x}, t) \right) =$$

$$= |\det J_{\varphi}(\mathbf{x}, t)| \operatorname{tr} \left(J_{\varphi}^{-1}(\mathbf{x}, t) A J_{\varphi}(\mathbf{x}, t) \right) =$$

$$= |\det J_{\varphi}(\mathbf{x}, t)| \operatorname{tr}(A) =$$

$$= |\det J_{\varphi}(\mathbf{x}, t)| \sum_{k=1}^{n} \frac{\partial u_{k}}{\partial \varphi_{k}} (\varphi(\mathbf{x}, t), t) =$$

$$= |\det J_{\varphi}(\mathbf{x}, t)| (\nabla_{\varphi} \cdot \mathbf{u}(\varphi(\mathbf{x}, t), t)).$$

Vstavimo v integral:

$$\begin{split} \frac{\partial}{\partial t} \Big(\int_{\Omega(t)} \phi(\mathbf{x}, t) \, dV \Big) &= \\ &= \int_{\Omega_0} \Big(\frac{D\phi}{Dt} (\varphi(\mathbf{x}, t), t) + \phi(\varphi(\mathbf{x}, t), t) (\nabla_{\varphi} \cdot \mathbf{u}(\varphi(\mathbf{x}, t), t)) \Big) |\det J_{\varphi}(\mathbf{x}, t)| \, dV = \\ &= \int_{\Omega(t)} \frac{D\phi}{Dt} (\mathbf{x}, t) + \phi(\mathbf{x}, t) (\nabla_{\varphi} \cdot \mathbf{u}(\mathbf{x}, t)) dV = \end{split}$$

Zaradi preglednosti izpustimo argumente preslikav

$$= \int_{\Omega(t)} \frac{D\phi}{Dt} + \phi(\nabla_{\varphi} \cdot \mathbf{u}) \, dV =$$

$$= \int_{\Omega(t)} \frac{\partial \phi}{\partial t} + (\mathbf{u} \cdot \nabla_{\varphi})\phi + \phi(\nabla_{\varphi} \cdot \mathbf{u}) \, dV =$$

$$= \int_{\Omega(t)} \frac{\partial \phi}{\partial t} + \nabla_{\varphi} \cdot (\phi \otimes \mathbf{u}) \, dV.$$

Tukaj operacija \otimes označuje diadični produkt $a \otimes b = [a_i b_j]_{ij}$ in divergenca tega produkta je definirana kot $\nabla \cdot (a \otimes b) = [\sum_{j=1}^n \frac{\partial}{\partial x_j} (a_i b_j)]_i$. Po izreku o divergenci je

$$= \int_{\Omega(t)} \frac{\partial \phi}{\partial t} \, dV + \int_{\partial \Omega(t)} (\phi \otimes \mathbf{u}) \cdot \mathbf{n} \, dA.$$

Iz lastnosti diadičnega produkta $(\phi \otimes \mathbf{u}) \cdot \mathbf{n} = \phi(\mathbf{u} \cdot \mathbf{n})$ sledi:

$$= \int_{\Omega(t)} \frac{\partial \phi}{\partial t} \, dV + \int_{\partial \Omega(t)} \phi(\mathbf{u} \cdot \mathbf{n}) \, dA.$$

Sedaj s pomočjo dokazanega izreka lahko izpeljemo ohranitvene zakone za teko-čine.

1.3 Ohranitvena enačba

Naj bo $\Omega(t)\subseteq\mathbb{R}^n$ in $\mathbf{f}:\Omega(t)\times[0,\infty)\to[0,\infty)$ količina, ki nas zanima kako se ohranja. Definiramo

$$F(t) = \int_{\Omega(t)} \mathbf{f}(\mathbf{x}, t) \, dV. \tag{1.9}$$

Definiramo dodatno količino $\gamma(\mathbf{x},t)$ kot

$$\gamma(\mathbf{x},t) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial t}(\mathbf{x},t), \tag{1.10}$$

kjer so $\frac{\partial f_i}{\partial t}$ spremembe količine **f** znotraj domene $\Omega(t)$. Pozitivnim spremembam pravimo pritoko, negativnimi pa odtoki.

Primer 1.6. Enostaven primer, ki pokaže pomen količine γ . Pri zgornji luknji imamo pritok mase (tekočine) in v tem primeru je $\gamma_p > 0$, med tem, ko imamo v spodnji luknji odtok mase (tekočine) in je $\gamma_0 > 0$. Celotni γ je razlika $\gamma = \gamma_p - \gamma_0$.

Spremembo količine F lahko izrazimo preko γ kot

$$\frac{\mathrm{d}F}{\mathrm{d}t} = \int_{\Omega(t)} \gamma(\mathbf{x}, t) \,\mathrm{d}V \tag{1.11}$$

 \Diamond

OZ.

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega(t)} \mathbf{f}(\mathbf{x}, t) \, \mathrm{d}V = \int_{\Omega(t)} \boldsymbol{\gamma}(\mathbf{x}, t) \, \mathrm{d}V.$$
 (1.12)

Po Reynoldsovem transportnem izreku je

$$\int_{\Omega(t)} \frac{\partial \mathbf{f}}{\partial t}(\mathbf{x}, t) \, dV + \int_{\partial \Omega(t)} \mathbf{f}(\mathbf{x}, t) (\mathbf{u}(\mathbf{x}, t) \cdot \mathbf{n}(\mathbf{x}, t)) \, dA = \int_{\Omega(t)} \boldsymbol{\gamma}(\mathbf{x}, t) \, dV.$$
 (1.13)

Enačbo lahko s pomočjo izreka o divergenci zapišemo preko diadičnega produkta kot pri dokazu izreka

$$\int_{\Omega(t)} \frac{\partial \mathbf{f}}{\partial t} + \nabla \cdot (\mathbf{f} \otimes \mathbf{u}) \, dV = \int_{\Omega(t)} \boldsymbol{\gamma} \, dV.$$
 (1.14)

Lema 1.7. Naj bo $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ zvezna. Če za vsako podmnožico $\Omega' \subset \Omega$ velja

$$\int_{\Omega'} f(\mathbf{x}) \, \mathrm{d}V = 0,$$

potem je

$$f(\mathbf{x}) = 0, \quad \forall \mathbf{x} \in \Omega.$$

Dokaz. Recimo, da je $f(\mathbf{x}_0) \neq 0$ za $\mathbf{x}_0 \in \Omega' \subset \Omega$. Brez škode splošnosti predpostavimo $f(\mathbf{x}_0) > 0$. Zaradi zveznosti funkcije f obstaja tak $\delta > 0$, da je

$$f(\mathbf{x}) > 0, \quad \forall \mathbf{x} \in B(\mathbf{x}_0, \delta) \subset \Omega'.$$

Integriramo nenegativno funkcijo

$$\int_{\Omega'} f(\mathbf{x}) \, dV = \int_{B(\mathbf{x}_0, \delta)} f(\mathbf{x}) \, dV > 0.$$

To vodi je protislovje, torej je $f(\mathbf{x}) = 0$.

Ker enakost velja za vsako domeno $\Omega(t)$, po lemi 1.12 sledi:

$$\frac{\partial \mathbf{f}}{\partial t} + \nabla \cdot (\mathbf{f} \otimes \mathbf{u}) = \gamma. \tag{1.15}$$

1.4 Zakon o ohranitvi mase

Sedaj zadnji rezultat uporabimo na konktretnih fizikalnih količinah. Začnemo z zakonom o ohranitvi mase. Naj bo $\rho:\Omega\times[0,\infty)\to[0,\infty)$ gostota domene Ω . Vzamemo $\phi=\rho$ in nastavimo $\gamma=0$, saj se masa

$$m(t)_{\Omega} = \int_{\Omega} \rho(\mathbf{x}, t) \, dV$$

ne ustvari in ne uniči. Dobimo

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0. \tag{1.16}$$

Tej enačbi pravimo kontinuitetna enačba. Če je gostota konstantna, tj. $\rho(\mathbf{x},t) \equiv c > 0$, potem se enačba poenostavi v

$$\nabla \cdot \mathbf{u} = 0. \tag{1.17}$$

Definicija 1.8. Tok je nestisljiv, če velja

$$\nabla \cdot \mathbf{u} = 0. \tag{1.18}$$

V delu se bomo predvsem ubadali z nestisljivimi tokovi.

1.5 Zakon o ohranitvi gibalne količine

Gibalna količina je definirana kot

$$\mathbf{p} = m\mathbf{u},\tag{1.19}$$

kjer je $m \geq 0$ masa in **u** hitrostni vektor. Pri obravnavi tokov, je bolj smiselno namesto mase obravnavati gostoto ρ , zato v ohranitveno enačbo vstavimo $\mathbf{f} = \rho \mathbf{u}$ in označimo $\gamma = \mathbf{F}$, kjer je **F** vsota zunanjih sil. Dobimo

$$\frac{\partial(\rho\mathbf{u})}{\partial t} + \nabla \cdot (\rho\mathbf{u} \otimes \mathbf{u}) = \mathbf{F}.$$
 (1.20)

Spomnimo se, da za divergenco diadičnega produkta velja

$$\nabla \cdot (\mathbf{a} \otimes \mathbf{b}) = (\nabla \cdot \mathbf{b})\mathbf{a} + (\mathbf{a} \cdot \nabla)\mathbf{b}. \tag{1.21}$$

Dobimo

$$\begin{split} &\frac{\partial(\rho\mathbf{u})}{\partial t} + (\nabla\cdot\mathbf{u})\rho\mathbf{u} + (\rho\mathbf{u}\cdot\nabla)\mathbf{u} = \mathbf{F} \\ &\frac{\partial\rho}{\partial t} + \frac{\partial\mathbf{u}}{\partial t} + (\nabla\cdot\mathbf{u})\rho\mathbf{u} + (\rho\mathbf{u}\cdot\nabla)\mathbf{u} = \mathbf{F} \\ &\rho\Big(\frac{\partial\mathbf{u}}{\partial t} + (\mathbf{u}\cdot\nabla)\mathbf{u}\Big) + \mathbf{u}\Big(\frac{\partial\rho}{\partial t} + \nabla\cdot(\rho\mathbf{u})\Big) = \mathbf{F}. \end{split}$$

Ko kontinuitetni enačbi, drugi člen enačbe enak nič. Zapišemo preko materilnega odvoda prvi člen, kar nam da

$$\rho \frac{D\mathbf{u}}{Dt} = \mathbf{F}.\tag{1.22}$$

Ta rezultat je analogen 2. Newtonovemu zakonu, kjer je masa zamenjana z gostoto in pospešek z materialnim odvodom hitrosti. Podajmo še klasfifikacijo sil, ki delujejo na tekočino. Sile delimo na zunanje ali telesne sile, ki delujejo na celotno telo. Primer teh so sila teže, elektromagnetna sila, Corioliosova sila ... Označevali jih bomo s $\rho \mathbf{f}_b$.

Druga vrsta sil so površinske sile, ki delujejo na rob območja. Taki sili sta primarno dve to sta viskozna sila in tlačna sila. Označujemo jih s \mathbf{f}_S . Te sile lahko karakteriziramo preko **trakcije oz. strižnega vektorja**. Naj bo $\Omega \subset \mathbb{R}^n$ omejen volumen. Naj bo $a \in \partial \Omega$ in D(a,r) okolica točke a in r>0. Označimo z $\mathbf{n}(a)$ enotsko normalo na $\partial \Omega$ v točki a, ki kaže iz volumna Ω . Trakcija je definirana kot sila, ki deluje na infitezimalno majhnem delu roba $\partial \Omega$:

$$\mathbf{t}(\mathbf{n}) = \lim_{\mathrm{d}A \to 0} \frac{\mathrm{d}F}{\mathrm{d}A} = \lim_{r \to 0} \frac{1}{4\pi r^2} \int_{D(a,r)} \mathbf{f}_S \cdot \mathbf{n}(\mathbf{x}) \,\mathrm{d}A. \tag{1.23}$$

Direkno obliko trakcije ne bomo uporabili, saj se skličemo na Cauchyjev izrek, ki pove, da obstaja tenzor drugega reda σ , da velja

$$\mathbf{t}(\mathbf{n}) = \sigma \mathbf{n}.$$

Tenzorju σ pravimo Cauchyjev napetostni tenzor. Ta tenzor povežemo s silo \mathbf{f} :

$$\mathbf{f}_{S} = \lim_{\text{Vol}(\Omega) \to 0} \frac{1}{\text{Vol}(\Omega)} \int_{\partial \Omega} \mathbf{t}(\mathbf{n}) \, dA = \lim_{\text{Vol}(\Omega) \to 0} \frac{1}{\text{Vol}(\Omega)} \int_{\partial \Omega} \sigma \mathbf{n} \, dA =$$
$$= \lim_{\text{Vol}(\Omega) \to 0} \frac{1}{\text{Vol}(\Omega)} \int_{\Omega} \nabla \cdot \sigma \, dV = \nabla \cdot \sigma.$$

Celoten zakon se glasi:

$$\frac{D\mathbf{u}}{Dt} = \frac{1}{\rho} \nabla \cdot \sigma + \mathbf{f}_b. \tag{1.24}$$

1.6 Zakon o ohranitvi vrtilne količine

Vrtilna količina je dana z

$$\mathbf{L} = \mathbf{x} \times \mathbf{p} = \mathbf{x} \times (m\mathbf{u}). \tag{1.25}$$

Postopamo kot pri ohranitvi gibalne količine, le da vstavimo $\mathbf{f} = \rho(\mathbf{x} \times \mathbf{u})$ in $\gamma = \mathbf{M} = \mathbf{r} \times \mathbf{f}_b$, kjer je \mathbf{M} vsota zunanjih momentov sil. Iz telesnih sil dobimo telesne momente oblike $\mathbf{M}_b = \mathbf{r} \times (\rho \mathbf{f}_b)$. Analogno za površinske sile dobimo površinske momente oblike $\mathbf{M}_S = \nabla \cdot (\mathbf{r} \times \sigma)$. Ponovno vstavimo v ohranitveno enačbo:

$$\frac{\partial (\mathbf{x} \times (\rho \mathbf{u}))}{\partial t} + \nabla \cdot (\mathbf{x} \times (\rho \mathbf{u})) \otimes \mathbf{u} = \mathbf{x} \times \mathbf{f}_b$$

oz. z novimo momemnti

$$\frac{\partial (\mathbf{x} \times (\rho \mathbf{u}))}{\partial t} + \nabla \cdot (\mathbf{x} \times (\rho \mathbf{u})) \otimes \mathbf{u} = \mathbf{x} \times (\rho \mathbf{f}_b) + \nabla \cdot (\mathbf{x} \times \sigma).$$

Za odvod vektorskega produkta velja enako pravilo, kot za odvod produkta funkcij zato:

$$\frac{\partial \mathbf{x}}{\partial t} \times (\rho \mathbf{u}) + \mathbf{x} \times \frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\mathbf{x} \times (\rho \mathbf{u})) \otimes \mathbf{u} = \mathbf{x} \times (\rho \mathbf{f}_b) + \nabla \cdot (\mathbf{x} \times \sigma).$$

Ker je $\mathbf{u} = \frac{\partial \mathbf{x}}{\partial t}$, bo prvi člen na levi strani enačbe enak 0. Za tretji člen uporabimo indetiteto:

$$\nabla(\mathbf{x} \times \rho(\mathbf{u} \otimes \mathbf{u})) = \mathbf{x} \times (\nabla \cdot (\rho(\mathbf{u} \otimes \mathbf{u}))) + (\nabla \mathbf{r})^T \cdot \rho(\mathbf{u} \otimes \mathbf{u}) - \rho(\mathbf{u} \otimes \mathbf{u})^T. \quad (1.26)$$

Naredimo nekaj ponastavitev. Prvo opazimo, da je $\nabla \mathbf{r} = I$, kjer je I identična matrika in gradient vektorskega polja Jacobijeva matrika. Drugo opazimo, da je diadični produkt enakih vektorjev simetričen t.j. $(\mathbf{u} \otimes \mathbf{u})^T = \mathbf{u} \otimes \mathbf{u}$. Zato bo drugi člen zgornje indetitete enak nič. Sledi:

$$\mathbf{x} \times \frac{\partial(\rho\mathbf{u})}{\partial t} + \mathbf{x} \times (\nabla \cdot (\rho(\mathbf{u} \otimes \mathbf{u}))) = \mathbf{x} \times (\rho\mathbf{f}_b) + \nabla \cdot (\mathbf{x} \times \sigma).$$

Ohranitevan enačba je enaka:

$$\mathbf{x} \times \left(\frac{\partial(\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u}) \otimes \mathbf{u}\right) = \mathbf{x} \times (\rho \mathbf{f}_b) + \nabla \cdot (\mathbf{x} \times \sigma). \tag{1.27}$$

Opazimo, da je na levi strani ravno enačba ohranitve gibalne količine. Vstavimo

$$\mathbf{x} \times (\rho \mathbf{f}_b + \nabla \cdot \sigma) = \mathbf{x} \times (\rho \mathbf{f}_b) + \nabla \cdot (\mathbf{x} \times \sigma)$$
$$\mathbf{x} \times (\nabla \cdot \sigma) = \nabla \cdot (\mathbf{x} \times \sigma).$$

Pred zaključkom izpeljave se poslužimo še zadnje identitete, ki pravi

$$\mathbf{x} \times (\nabla \cdot \sigma) = \nabla \cdot (\mathbf{x} \times \sigma) - \sigma^T + \sigma.$$

Končni rezultat nam pove, da je Cauchyjev napetostni tenzor simetričen:

$$\sigma = \sigma^T$$
.

Zakaj je ta indetiteta uporabna? Ker je σ simetričen, obstaja presenetljiv rezultat, ki nam pove, da lahko uvedemo tlačno silo. Za simetrične tenzorje obstaja razcep:

$$\sigma = -pI + \tau.$$

Tukaj je p tlak oz. pI normalna sila in τ tenzor strižne napetosti, ki predstavlja viskozne sile oz. sile trenja tekočine. Zakon o ohranitvi gibalne in vrtilne količine je glasi:

$$\frac{D\mathbf{u}}{Dt} = \frac{1}{\rho} \nabla \cdot (-pI + \tau) + \mathbf{f}_b = -\frac{1}{\rho} \nabla p + \frac{1}{\rho} \nabla \cdot \tau + \mathbf{f}_b. \tag{1.28}$$

Opomba 1.9. V zgornji izpeljavi smo zapisali izraz $\mathbf{x} \times \sigma$. To je vektorski produkt vektorja in matrike, katerega nismo definirali. Lahko bi ga, vendar kot smo videli v izpeljavi, se nakoncu vsi členi, take oblike krajšajo, zato nimamo nujne potrebe po definiciji, le da omenimo, da obstaja.

Ker se bomo omejili na Newtonske tekočine, je tenzor τ oblike

$$\tau = \mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^T) + \lambda(\nabla \cdot \mathbf{u})I, \tag{1.29}$$

za dinamično viskoznost $\mu > 0$ in $\lambda > 0$. Če upoštevamo nestisljivostni pogoj, je tretji člen enak nič. Vzamemo divergenco of τ :

$$\nabla \cdot \tau = \mu \nabla \cdot (\nabla \mathbf{u}) + \mu \nabla \cdot (\nabla \mathbf{u})^T.$$

Za prvi člen vemo, da je divergenca gradienta Laplaceov operator, za drugi člen preverimo, kako se transformira vrstica:

$$[(\nabla \mathbf{u})^T]_i = \left[\frac{\partial u_1}{\partial x_i} \dots \frac{\partial u_n}{\partial x_i}\right]_i$$

$$\Longrightarrow \nabla \cdot [(\nabla \mathbf{u})^T]_i = \nabla \cdot \left[\frac{\partial u_1}{\partial x_i} \dots \frac{\partial u_n}{\partial x_i}\right]_i =$$

$$= \sum_{j=1}^n \frac{\partial}{\partial x_j} \left(\frac{\partial u_j}{\partial x_i}\right) =$$

$$= \sum_{j=1}^n \frac{\partial}{\partial x_i} \left(\frac{\partial u_j}{\partial x_j}\right) =$$

$$= \frac{\partial}{\partial x_i} (\nabla \cdot \mathbf{u}) = 0,$$

kjer smo v zadnji enakosti privzeli nestisljivost toka u. Sledi

$$\nabla \cdot \tau = \mu \nabla^2 \mathbf{u}.$$

Dobljenemu ohranitvenem zakonu pravimo Navier-Stokesove enačbe:

$$\frac{D\mathbf{u}}{Dt} = -\frac{1}{\rho}\nabla p + \nu\nabla^2\mathbf{u} + \mathbf{f}_b. \tag{1.30}$$

1.7 Zakon o ohranitvi vrtinčnosti

Naslednja pomembna količina je vrtinčenja ω . Kot že ime pove, je to količina, ki opisuje vrtenje toka okoli neke točke.

Definicija 1.10. Naj bo $\mathbf{u} \in C^1(\Omega), \ \Omega \subset \mathbb{R}^3$. Vrtinčenje ω je rotor polja \mathbf{u}

$$\boldsymbol{\omega} \equiv \nabla \times \mathbf{u}.\tag{1.31}$$

Ohranitveno enačbo za ω dobimo preko Navier-Stokesove enačbe. Predpostavimo, da je vektorsko polje $\mathbf{u} \in C^2$ na poljubni domeni. Vzamemo rotor enačbe (1.44):

$$\nabla \times (\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}) = \nabla \times (-\frac{1}{\rho}\nabla p + \nu\nabla^2\mathbf{u} + \mathbf{f})$$
$$\frac{\partial \boldsymbol{\omega}}{\partial t} + \nabla \times ((\mathbf{u} \cdot \nabla)\mathbf{u}) = -\frac{1}{\rho}\nabla \times (\nabla p) + \nu\nabla^2\boldsymbol{\omega} + \nabla \times \mathbf{f}$$

Dobro znano dejstvo je, da je rotor gradienta skalarne funkcije 0, torej je $\nabla \times (\nabla p) =$ **0**. Poenostavimo člen s hitrostjo. Iz dvojnega vektorskega produkta dobimo

$$\begin{split} \mathbf{u} \times (\nabla \times \mathbf{u}) &= \nabla (\mathbf{u} \cdot \mathbf{u}) - (\mathbf{u} \cdot \nabla) \mathbf{u} \\ \Longrightarrow \quad (\mathbf{u} \cdot \nabla) \mathbf{u} &= \nabla (\mathbf{u} \cdot \mathbf{u}) - \mathbf{u} \times (\underbrace{\nabla \times \mathbf{u}}_{-\alpha}) \end{split}$$

Vzamemo rotor zadnje enakosti:

$$\nabla \times (\mathbf{u} \cdot \nabla)\mathbf{u} = \underbrace{\nabla \times (\nabla(\mathbf{u} \cdot \mathbf{u}))}_{=0} - \nabla \times (\mathbf{u} \times \boldsymbol{\omega})$$

$$= \nabla \times (\boldsymbol{\omega} \times \mathbf{u})$$

$$= (\mathbf{u} \cdot \nabla)\boldsymbol{\omega} - (\boldsymbol{\omega} \cdot \nabla)\mathbf{u} + \boldsymbol{\omega} \underbrace{(\nabla \cdot \mathbf{u})}_{=0 \text{ po (1.41)}} + \mathbf{u}\underbrace{(\nabla \cdot \boldsymbol{\omega})}_{=0}$$

Vstavimo v prvotno enačbo

$$\frac{\partial \boldsymbol{\omega}}{\partial t} + (\mathbf{u} \cdot \nabla)\boldsymbol{\omega} + (\boldsymbol{\omega} \cdot \nabla)\mathbf{u} - (\boldsymbol{\omega} \cdot \nabla)\mathbf{u} + \mathbf{u}(\nabla \cdot \boldsymbol{\omega}) = \nu \nabla^2 \boldsymbol{\omega} + \nabla \times \mathbf{f}.$$

Enačba, ki opiše zakon

$$\frac{D\boldsymbol{\omega}}{Dt} = \frac{\partial \boldsymbol{\omega}}{\partial t} + (\mathbf{u} \cdot \nabla)\boldsymbol{\omega} = (\boldsymbol{\omega} \cdot \nabla)\mathbf{u} + \nu \nabla^2 \boldsymbol{\omega} + \nabla \times \mathbf{f}.$$
 (1.32)

1.8 Zakon o ohranitvi skalarja

Sedaj bomo posplošili zakon o ohranitvi mase, za poljubno zvezno odvedljivo skalarno polje $c: \Omega \times \mathbb{R}^+ \to \mathbb{R}$ na $\Omega \subset \mathbb{R}^3$. Lahko bi postopali podobno, kot pri ostalih zakonih in uporabili ohranitveno enačbo, vendar bomo tukaj prikazali malo drugačen pristop.

Zakon o ohranitvi skalarja pravi, da je količina skalarja, ki se pretoči v Ω v določenem času, enaka količini skalarja, ki se iztoči skozi $\partial\Omega$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} c \,\mathrm{d}V = -\int_{S} c \mathbf{u} \,\mathrm{d}\mathbf{S},\tag{1.33}$$

kjer je $S=\partial\Omega$. Ta enačba ni popolna, saj ne upošteva dveh vplivov. To sta ${\bf F}$ -vektorsko polje, za pretok oz. prenos skalarja c in γ - izvor za skalar c. Če dodamo, še ta člena, se ohranitvea enačba v integralski obliki glasi:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} c \,\mathrm{d}V = -\int_{S} \mathbf{F} \cdot \mathrm{d}\mathbf{S} - \int_{S} c \mathbf{u} \,\mathrm{d}\mathbf{S} + \int_{\Omega} \gamma \,\mathrm{d}V, \tag{1.34}$$

Prva dva člena imata negativen predznak, ker skalar odteka. Če je $\gamma < 0$ potem imamo odtok skalarja, če pa je $\gamma > 0$ imamo pritok skalarja. Zapišemo diferencialno enačbo za zgornjo integralsko enačbo. Po Stokesovem izreku:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} c \, \mathrm{d}V = -\int_{S} \mathbf{F} \cdot \mathrm{d}\mathbf{S} - \int_{S} c\mathbf{u} \, \mathrm{d}\mathbf{S} + \int_{\Omega} \gamma \, \mathrm{d}V$$
$$\int_{\Omega} \frac{\partial c}{\partial t} \, \mathrm{d}V = -\int_{\Omega} \nabla \cdot (\mathbf{F} + c\mathbf{u}) - \gamma \, \mathrm{d}V.$$

Po lemi 1.12 dobimo:

$$\frac{\partial c}{\partial t} + \nabla \cdot (\mathbf{F} + c\mathbf{u}) - \gamma = 0. \tag{1.35}$$

Poglejmo si dva primera

Primer 1.11.

• Zakon o ohranitvi mase: vzamemo $c=\rho,~{\bf F}=0$ (masa je statična, se ne prevaja) in H=0 (masa se ne ustvari ali uniči). Dobimo

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

kar je ista enačba, kot smo dobili v prejšnjem razdelku.

• Zakon o ohranitvi energije (toplote): sedaj vzamemo skalarno polje $c = pc_pT$, kjer so c_p - specifična toplota(konstanta), p - konstanten tlak in T - skalarno polje temperature. Ker ima toplota prevodne lastnosti, je $F \neq 0$ in zanj velja $\mathbf{F} = -k\nabla T$, kjer je k - konstanta toplotne prevodnosti. Predpostavimo, da je H = 0, čeprav v splošnem to ni nujno res, saj lahko na primer trenje zraka pri visokih hitrostih ali sevanje dvigneta temperaturo. Ohranitve enačba je

$$\frac{\partial T}{\partial t} + \nabla \cdot (T\mathbf{u}) = \kappa \nabla^2 T, \tag{1.36}$$

kjer je $\kappa=\frac{k}{pc_p}$. Če je hitrost **u** konstantna za ∇ ("ohranitev mase"), lahko enačbo zapišemo preko materialnega odvoda

$$\frac{DT}{Dt} = \frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \kappa \nabla^2 T \tag{1.37}$$

 \Diamond

Za našo uporabo v nadaljevanju bo dovolj, če omejimo na naslednje predpostavke

- Vektorsko polje F je potencialno, tj. $F = -\chi \nabla c$.
- Nimamo izvorov oz. $\gamma = 0$.

Torej bo za nas enačba o hranitvi skalarja

$$\frac{Dc}{Dt} = \frac{\partial c}{\partial t} + \mathbf{u} \cdot \nabla c = \chi \nabla^2 c. \tag{1.38}$$

Ohranitveni zakoni prej, bom odstranil.

1.8.1 Zakon o ohranitvi mase

Naj bo $\Omega\subseteq\mathbb{R}^3$ omejena, $\partial\Omega$ njen rob in $\rho:\Omega\times[0,\infty)\to[0,\infty)$ gostota množice $\Omega,$ ki je gladka. Masa m od Ω je

$$m(\Omega) = \int_{\Omega} \rho(\mathbf{x}, t) \, dV. \tag{1.39}$$

Zakon o ohranitvi mase pravi, da je količina mase, ki se pretoči v Ω v določenem času, enaka količini mase, ki se iztoči skozi $\partial\Omega$ tj.

$$\frac{\partial m}{\partial t} = -\int_{\partial \Omega} \rho \mathbf{u} \, d\mathbf{S}.$$

Ker je domena Ω končna in ρ gladka lahko zamenjamo vrstni red odvajanja in integriranja

$$\int_{\Omega} \frac{\partial}{\partial t} \rho(x, t) \, dV = -\int_{\partial \Omega} \rho \mathbf{u} \, d\mathbf{S}.$$

Izrek o divergenci pravi, da je:

$$\int_{\partial\Omega} \rho \mathbf{u} \, d\mathbf{S} = \int_{\Omega} \nabla \cdot (\rho \mathbf{u}) \, dV$$

Dobimo

$$\int_{\Omega} \left(\frac{\partial}{\partial t} \rho(x, t) + \nabla \cdot (\rho \mathbf{u}) \right) dV = 0.$$

Naslednja lema nam bo povedala, da je integrand enak 0.

Lema 1.12. Naj bo $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ zvezna. Če za vsako podmnožico $\Omega' \subset \Omega$ velja

$$\int_{\Omega'} f(\mathbf{x}) \, \mathrm{d}V = 0,$$

potem je

$$f(\mathbf{x}) = 0, \quad \forall \mathbf{x} \in \Omega.$$

Dokaz. Recimo, da je $f(\mathbf{x}_0) \neq 0$ za $\mathbf{x}_0 \in \Omega' \subset \Omega$. Brez škode splošnosti predpostavimo $f(\mathbf{x}_0) > 0$. Zaradi zveznosti funkcije f obstaja tak $\delta > 0$, da je

$$f(\mathbf{x}) > 0, \quad \forall \mathbf{x} \in B(\mathbf{x}_0, \delta) \subset \Omega'.$$

Integriramo nenegativno funkcijo

$$\int_{\Omega'} f(\mathbf{x}) \, dV = \int_{B(\mathbf{x}_0, \delta)} f(\mathbf{x}) \, dV > 0.$$

To vodi je protislovje, torej je $f(\mathbf{x}) = 0$.

Ker enakost velja za vsako domeno Ω iz leme sledi enakost

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0. \tag{1.40}$$

To je diferencialna oblika zakona o ohranitvi mase, enačbi, ki zakon opiše, pravimo **kontinuitetna enačba**. Če je gostota konstantna, tj. $\rho(x,t) \equiv c > 0$, potem se kontinuitetna enačba poenostavi

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = \rho(\nabla \cdot \mathbf{u}) = 0 \Longrightarrow \nabla \cdot u = 0.$$

Definicija 1.13. Tok je nestisljiv, če velja

$$\nabla \cdot u = 0. \tag{1.41}$$

1.9 Zakon o ohranitvi gibalne količine

V tem razdelku bomo predpostavili, da je gostota ρ konstantna, tj.

$$m = \int_{\Omega} \rho \, dV = \rho \int_{\Omega} dV = \rho \cdot V, \qquad (1.42)$$

kjer je $V=\int_{\Omega}\mathrm{d}V$ volumen domene Ω . Zakon o ohranitvi gibalne količine, pravi, da je vsota gibalnih količin (\mathbf{p}) v zaprtem sistemu konstanten. Za n delcev je

$$\sum_{k=1}^{n} \mathbf{p}_k = \text{const.}$$

$$\sum_{k=1}^{n} \frac{\mathrm{d}\mathbf{p}_k}{\mathrm{d}t} = 0.$$

Gibalna količina je dana s $\mathbf{p} = m\mathbf{v}$, kar ekvivalentno zapišemo

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = \frac{\mathrm{d}(m\mathbf{v})}{\mathrm{d}t} = m\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = m\mathbf{a} = \mathbf{F} \Longrightarrow$$
$$\sum_{k=1}^{n} \mathbf{F}_{k} = 0.$$

To je ravno 1. Newtonov zakon. Ob upoštevanju 2. Newtonov zakona, dobimo obliko:

$$\sum_{k=1}^{n} \mathbf{F}_k = m\mathbf{a}. \tag{1.43}$$

Zapišimo ta zakon za tokove, preko materialnega odvoda.

$$m\mathbf{a} = \rho V \frac{D\mathbf{u}}{Dt} = \sum_{k=1}^{n} \mathbf{F}_{k}$$
$$\rho \frac{D\mathbf{u}}{Dt} = \sum_{k=1}^{n} \frac{\mathbf{F}_{k}}{V}.$$

Pri tokovih se pojavita dve vrsti sil

- Ploskovne sile, ki jih delimo na
 - 1) Tangencialne (viskoznost)
 - 2) Normalne (tlak)
- Telesne oz. zunanje sile (gravitacija, Coriolisova sila, magnetizem, ...)

Izraz $\frac{F_k}{V}$ bomo zapisali preko količin **u** in p. Izpeljave naredimo v enodimenzionalnem primeru, kar se enostavno posploši na višje dimenzije.

Normalna sila .oz tlak:

Recimo, da imamo majhno pravokotno domeno z volumnom $V = \triangle x \triangle y \triangle z$. Poglejmo, kako se sila izraža v x - smeri, ko pride do spremembe tlaka. Ta je definiran kot $p = \frac{\triangle F}{\triangle A}$, kjer sta $\triangle F$ - majhna sprememba sile in $\triangle A$ - majhna sprememba površine. Imamo:

$$F_x = p_1 A_1 - p_2 A_2 = (A_1 = A_2 = A)$$

$$F_x = (p_1 - p_2) A = \triangle p A \implies$$

$$\frac{F_x}{V} = \frac{\triangle p \triangle y \triangle z}{\triangle x \triangle y \triangle z} = \frac{\triangle p}{\triangle x}$$

Pošljemo $\triangle x$ proti 0:

$$\frac{F}{V} = \lim_{\Delta x \to 0} \frac{F_x}{V} = \lim_{\Delta x \to 0} \frac{\Delta p}{\Delta x} = \frac{\partial p}{\partial x}$$

Na enak način dobimo v y in z smeri. V vektorskem zapisu: $\frac{\mathbf{F}}{V} = \nabla p$. Tangencialna sila oz. viskoznost:

Viskoznost ima podobno vlogo kot koeficient trenje. To je merilo za koliko tekočina "ustavlja" samo sebe. Sila med tokovoma, ki je posledica premikanja oz. drsenja med njima imenujemo strižna napetost. Definirana je enako kot tlak, vendar kaže v drugo smer, tj. $\tau = \frac{F}{A}$.

Pogledamo spremembo hitrosti v x - smeri

$$\tau_x = \frac{F_x}{A} = \frac{m}{A} \cdot \frac{\triangle u}{\triangle t} \cdot \frac{\triangle y}{\triangle y} = \underbrace{\frac{m}{A} \cdot \frac{\triangle y}{\triangle t}}_{u} \cdot \frac{\triangle u}{\triangle y} = \mu \frac{\triangle u}{\triangle y}.$$

 μ je dinamična viskoznost, odvisna le od lastnosti tekočine. Ko pošljemo $\triangle y \rightarrow 0,$ dobimo

$$\tau = \lim_{\triangle y \to 0} \tau_x = \lim_{\triangle y \to 0} \mu \frac{\triangle u}{\triangle y} = \mu \frac{\partial u}{\partial y}$$

Naredimo podobno analizo, kot pri tlaku

Če sta strižni napetosti različni, imamo neničelno silo na majhnem območju $\Omega = \Delta x \Delta y \Delta z$:

$$F_{x} = \tau_{2}A_{2} - \tau_{1}A_{1} \quad (A_{1} = A_{2})$$

$$F_{x} = \triangle \tau \triangle x \triangle z \implies$$

$$\frac{F_{x}}{V} = \frac{\triangle \tau \triangle x \triangle z}{\triangle x \triangle y \triangle z} = \frac{\triangle \tau}{\triangle y}.$$

Ponovno pošljemo $\triangle y \to 0$

$$\frac{F}{V} = \lim_{\Delta y \to 0} \frac{F_x}{V} = \lim_{\Delta y \to 0} \frac{\Delta \tau}{\Delta y} = \frac{\partial \tau}{\partial y} = \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right) = \mu \frac{\partial^2 u}{\partial y^2}.$$

Delec volumna se premika le v x - smeri, vendar strižna napetost deluje na vse njegove površine, zato, je sila izraža preko Laplaceovega operatorja

$$\frac{F}{V} = \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} + \frac{\partial^2 u}{\partial z^2} \right) = \mu \nabla^2 u.$$

V vektorski notaciji: $\frac{\mathbf{F}}{V} = \mu \nabla^2 \mathbf{u}.$

Telesne sile:

V splošnem je veliko različnih sil, tu pa bomo upoštevali le gravitacijo (v modeliranju atmosfere, je ključno, da upoštevamo Corioliosovo silo). Gravitacijska sila v primeru tokov

$$\frac{\mathbf{F}}{V} = \frac{m\mathbf{g}}{V} = \frac{\rho V \mathbf{g}}{V} = \rho \mathbf{g}.$$

Ko združimo vse tri sile, dobimo enačbo

$$\rho \frac{Du}{Dt} = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + \rho g.$$

Ker je hitrost vektorska količina, imamo 3 enačbe

$$\rho \frac{Du}{Dt} = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + \rho g_x,$$

$$\rho \frac{Dv}{Dt} = -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) + \rho g_y,$$

$$\rho \frac{Dw}{Dt} = -\frac{\partial p}{\partial z} + \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) + \rho g_z.$$

Kompaktno zapišemo

$$\rho \frac{D\mathbf{u}}{Dt} = -\nabla p + \mu \nabla^2 \mathbf{u} + \rho \mathbf{g},$$

kjer sta $\mathbf{u}=(u,v,w)$ in $g=(g_x,g_y,g_z)$. Tem enačbam pravimo Navier-Stokesove enačbe. Običajno se zadnjo enačbo deli z gostoto ρ in uvede **kinematično visko- znost** $\nu=\frac{\mu}{\rho}$. Če razpišemo materialni odvod, se celotna enačba glasi

$$\frac{D\mathbf{u}}{Dt} = \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho}\nabla p + \nu \nabla^2 \mathbf{u} + \rho \mathbf{g}.$$
 (1.44)

Opomba 1.14.

- Če ne poznamo telesnih sil ali jih imamo več, v zadnji enačbi sumand $\rho \mathbf{g}$ zamenjamo s \mathbf{f} .
- Količine deljene z gostoto, imenujemo kinematične količine.

1.10 Zakon o ohranitvi vrtinčnosti

Naslednja pomembna količina je vrtinčenja ω . Kot že ime pove, je to količina, ki opisuje vrtenje toka okoli neke točke.

Definicija 1.15. Naj bo $\mathbf{u}\in C^1(\Omega),\,\Omega\subset\mathbb{R}^3$. Vrtinčenje ω je rotor polja \mathbf{u}

$$\boldsymbol{\omega} \equiv \nabla \times \mathbf{u}.\tag{1.45}$$

Ohranitveno enačbo za ω dobimo preko Navier-Stokesove enačbe. Predpostavimo, da je vektorsko polje $\mathbf{u} \in C^2$ na poljubni domeni. Vzamemo rotor enačbe (1.44):

$$\nabla \times (\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}) = \nabla \times (-\frac{1}{\rho}\nabla p + \nu\nabla^2\mathbf{u} + \mathbf{f})$$
$$\frac{\partial \boldsymbol{\omega}}{\partial t} + \nabla \times ((\mathbf{u} \cdot \nabla)\mathbf{u}) = -\frac{1}{\rho}\nabla \times (\nabla p) + \nu\nabla^2\boldsymbol{\omega} + \nabla \times \mathbf{f}$$

Dobro znano dejstvo je, da je rotor gradienta skalarne funkcije 0, torej je $\nabla \times (\nabla p) =$ **0**. Poenostavimo člen s hitrostjo. Iz dvojnega vektorskega produkta dobimo

$$\begin{aligned} \mathbf{u} \times (\nabla \times \mathbf{u}) &= \nabla (\mathbf{u} \cdot \mathbf{u}) - (\mathbf{u} \cdot \nabla) \mathbf{u} \\ \Longrightarrow & (\mathbf{u} \cdot \nabla) \mathbf{u} &= \nabla (\mathbf{u} \cdot \mathbf{u}) - \mathbf{u} \times (\underbrace{\nabla \times \mathbf{u}}_{=\omega}) \end{aligned}$$

Vzamemo rotor zadnje enakosti:

$$\nabla \times (\mathbf{u} \cdot \nabla)\mathbf{u} = \underbrace{\nabla \times (\nabla(\mathbf{u} \cdot \mathbf{u}))}_{=0} - \nabla \times (\mathbf{u} \times \boldsymbol{\omega})$$

$$= \nabla \times (\boldsymbol{\omega} \times \mathbf{u})$$

$$= (\mathbf{u} \cdot \nabla)\boldsymbol{\omega} - (\boldsymbol{\omega} \cdot \nabla)\mathbf{u} + \boldsymbol{\omega} \underbrace{(\nabla \cdot \mathbf{u})}_{=0 \text{ po (1.41)}} + \mathbf{u} \underbrace{(\nabla \cdot \boldsymbol{\omega})}_{=0}$$

Vstavimo v prvotno enačbo

$$\frac{\partial \boldsymbol{\omega}}{\partial t} + (\mathbf{u} \cdot \nabla)\boldsymbol{\omega} + (\boldsymbol{\omega} \cdot \nabla)\mathbf{u} - (\boldsymbol{\omega} \cdot \nabla)\mathbf{u} + \mathbf{u}(\nabla \cdot \boldsymbol{\omega}) = \nu \nabla^2 \boldsymbol{\omega} + \nabla \times \mathbf{f}.$$

Enačba, ki opiše zakon

$$\frac{D\omega}{Dt} = \frac{\partial \omega}{\partial t} + (\mathbf{u} \cdot \nabla)\omega = (\omega \cdot \nabla)\mathbf{u} + \nu\nabla^2\omega + \nabla \times \mathbf{f}.$$
 (1.46)

1.11 Zakon o ohranitvi skalarja

Sedaj bomo posplošili zakon o ohranitvi mase, za poljubno zvezno odvedljivo skalarno polje $c:\Omega\times\mathbb{R}^+\to\mathbb{R}$ na $\Omega\subset\mathbb{R}^3$. Začnemo z enako enačbo kot pri zakonu o ohranitvi mase, le, da dodamo še dva dodatna člena. Ta člena sta F - vektorsko polje, za pretok oz. prenos skalarja c in H - izvor za skalar c. V integralski obliki zapišemo:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} c \,\mathrm{d}V = -\int_{S} \mathbf{F} \cdot \mathrm{d}\mathbf{S} - \int_{S} c\mathbf{u} \,\mathrm{d}\mathbf{S} + \int_{\Omega} H \,\mathrm{d}V, \tag{1.47}$$

kjer je $S=\partial\Omega$. Prva dva člena imata negativen predznak, ker skalar odteka. Če je H<0 potem imamo odtok skalarja, če pa je H>0 imamo pritok skalarja.

Primer 1.16. Enostaven primer, ki pokaže pomen količine H. Pri zgornji luknji imamo pritok mase (tekočine) in v tem primeru je $H_p > 0$, med tem, ko imamo v spodnji luknji odtok mase (tekočine) in je $H_0 > 0$. Celotni H je razlika $H = H_p - H_0$.

 \Diamond

Zapišemo diferencialno enačbo za zgornjo integralsko enačbo. Po Stokesovem izreku:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} c \, \mathrm{d}V = -\int_{S} \mathbf{F} \cdot \mathrm{d}\mathbf{S} - \int_{S} c\mathbf{u} \, \mathrm{d}\mathbf{S} + \int_{\Omega} H \, \mathrm{d}V$$
$$\int_{\Omega} \frac{\partial c}{\partial t} \, \mathrm{d}V = -\int_{\Omega} \nabla \cdot (\mathbf{F} + c\mathbf{u}) - H \, \mathrm{d}V.$$

Po lemi 1.12 dobimo:

$$\frac{\partial c}{\partial t} + \nabla \cdot (\mathbf{F} + c\mathbf{u}) - H = 0. \tag{1.48}$$

Poglejmo si dva primera

Primer 1.17.

• Zakon o ohranitvi mase: vzamemo $c = \rho$, $\mathbf{F} = 0$ (masa je statična, se ne prevaja) in H = 0 (masa se ne ustvari ali uniči). Dobimo

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

kar je ista enačba, kot smo dobili v prejšnjem razdelku.

• Zakon o ohranitvi energije (toplote): sedaj vzamemo skalarno polje $c = pc_pT$, kjer so c_p - specifična toplota(konstanta), p - konstanten tlak in T - skalarno polje temperature. Ker ima toplota prevodne lastnosti, je $F \neq 0$ in zanj velja $\mathbf{F} = -k\nabla T$, kjer je k - konstanta toplotne prevodnosti. Predpostavimo, da je H = 0, čeprav v splošnem to ni nujno res, saj lahko na primer trenje zraka pri visokih hitrostih ali sevanje dvigneta temperaturo. Ohranitve enačba je

$$\frac{\partial T}{\partial t} + \nabla \cdot (T\vec{u}) = \kappa \nabla^2 T, \tag{1.49}$$

kjer je $\kappa=\frac{k}{pc_p}$. Če je hitrost u konstantna za ∇ ("ohranitev mase"), lahko enačbo zapišemo preko materialnega odvoda

$$\frac{DT}{Dt} = \frac{\partial T}{\partial t} + \vec{u} \cdot \nabla T = \kappa \nabla^2 T \tag{1.50}$$

 \Diamond

Za našo uporabo v nadaljevanju bo dovolj, če omejimo na naslednje predpostavke

- Vektorsko polje F je potencialno, tj. $F = -\gamma \nabla c$.
- Nimamo izvorov oz. H = 0.

Torej bo za nas enačba o hranitvi skalarja

$$\frac{Dc}{Dt} = \frac{\partial c}{\partial t} + u \cdot \nabla c = \gamma \nabla^2 c. \tag{1.51}$$

1.12 Lastnosti turbulence

V tem razdelku si bomo pogledali nekaj lastnosti turbulence oz. nekaj posledic ohranitvenih zakonov iz prejšnjega razdelka. Ker je turbulenca še vedno aktivno področje raziskovanja so nekateri zakoni, ki jih bomo omenili, empirično izpeljani.

1.12.1 Reynoldsovo število

Pri analizi fizikalnih enačb pogosto pride prav, da obravnavano enačbo pretvorimo v brezdimenzijsko obliko. To razkrije parametre, ki so ključni pri analizi karakteristik sistema, ki ga enačbe opisujejo. Začnemo z Navier-Stokesovo enačbo (1.44), kjer namesto sile teže, zapišemo poljubno zunanjo silo **f**:

$$\rho \frac{D\mathbf{u}}{Dt} = -\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{f}.$$

Enačba, ki jo želimo analizirati ima enoto $kg \cdot m^{-2} \cdot s^{-2}$. Formalno ima sistem, ki ga enačba opisuje neke karakteristične lastnosti. Dve, ki se takoj ponudita sta U - karakteristična hitrost in L - karakteristična dolžina in gostota ρ . Uvedemo nove brezdimenzijske spremenljivke tako, da stare normiramo z ustrezno kombinacijo U, L in ρ :

$$\tilde{\mathbf{u}} = \frac{\mathbf{u}}{U}, \quad \tilde{p} = \frac{p}{\rho U^2}, \quad \tilde{\mathbf{f}} = \mathbf{f} \frac{\rho L}{U^2}, \quad \frac{\partial}{\partial \tilde{t}} = \frac{L}{U} \frac{\partial}{\partial t}, \quad \tilde{\nabla} = L \nabla.$$

Vstavimo v enačbo:

$$\begin{split} \rho \frac{D\tilde{\mathbf{u}}}{D\tilde{t}} &= \rho \frac{U^2}{L} \frac{\partial}{\partial \tilde{t}} \tilde{\mathbf{u}} + \rho \frac{U^2}{L} (\tilde{\mathbf{u}} \cdot \tilde{\nabla}) \tilde{\mathbf{u}} = -\frac{\rho U^2}{L} \tilde{\nabla} \tilde{p} + \frac{\mu U}{L^2} \tilde{\nabla}^2 \tilde{\mathbf{u}} + \frac{U^2 \rho}{L} \tilde{\mathbf{f}} \\ \frac{D\tilde{u}}{D\tilde{t}} &= \frac{\partial \tilde{\mathbf{u}}}{\partial \tilde{t}} + (\tilde{\mathbf{u}} \cdot \tilde{\nabla}) \tilde{\mathbf{u}} = -\tilde{\nabla} \tilde{p} + \frac{\mu}{\rho U L} \tilde{\nabla}^2 \tilde{\mathbf{u}} + \tilde{\mathbf{f}} \\ \frac{D\tilde{u}}{D\tilde{t}} &= \frac{\partial \tilde{\mathbf{u}}}{\partial \tilde{t}} + (\tilde{\mathbf{u}} \cdot \tilde{\nabla}) \tilde{\mathbf{u}} = -\tilde{\nabla} \tilde{p} + \frac{1}{Re} \tilde{\nabla}^2 \tilde{\mathbf{u}} + \tilde{\mathbf{f}} \end{split}$$

V enačbi nam ostane le ena kostanta, ki jo imenujemo Reynoldsovo število Re, enačbi pa pravimo brezdimenzijska Navier-Stokesova enačba.

$$Re = \frac{\rho UL}{\mu} = \frac{UL}{\nu}.$$
 (1.52)

Izbera konstant U in L je odvisna od konteksta. Kot smo prikazali v uvodu, se turbulenca pojavlja pri zelo različnih velikostnih skalah, zato je smiselno, da lahko L (in prav tako U) izberemo na zelo različne smiselne načine. Vendar pa se izkaže, da se turbulenca pojavi pri velikih Reynoldsovih številih, ne glede na izbiro U in L. Ko pošljemo $Re \to \infty$ se brezdimenzijska enačba zreducira v (izpustimo tilde)

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p = \mathbf{f}. \tag{1.53}$$

Tej enačbi pravimo Eulerjeva enačba. Vidimo, da dinamična viskoznost več ne nastopa v enačbi, kar pomeni, da za visoka Reynoldsovo število, viskoznost nima več vpliva na turbulenco.

Izbera transformacij, ki smo jih naredili na Navier-Stokesovi ni enolična, in je, kot izbira konstant U in L, odvisna od konteksta. Poglejmo, kaj se zgodi za majhna Reynoldsova števila. Z drugačno transformacijo lahko izluščimo novo informacijo. Ni težko pokazati, da je nova izbira enačbe

$$Re\frac{D\tilde{\mathbf{u}}}{D\tilde{t}} = -\tilde{\nabla}\tilde{p} + \tilde{\nabla}^2\tilde{\mathbf{u}} + \tilde{f}$$
(1.54)

V limiti $Re \rightarrow 0$:

$$-\tilde{\nabla}\tilde{p} + \tilde{\nabla}^2\tilde{\mathbf{u}} + \tilde{\mathbf{f}} = 0.$$

Če poznamo tlak \tilde{p} in je $\tilde{\mathbf{f}}$ neodvisen od \mathbf{u} (recimo v primeru sile teže), dobimo Poissonovo enačbo za \mathbf{u} , ki jo je lažje rešiti kot Eulerjevo enačbo. Malo bolj zanimiva opazka je, če je zunanja sila neodvisna od časa (v primeru sile teže) in tlak neodvisen od časa (v primeru raznih vodnih tokov) to implicira, da je \mathbf{u} neodvisen od časa in lahko določen proces, na primer mešanje snovi v tekočini, preobrnemo, to je snovi lahko "odmešamo".

1.12.2 Kinetična energija in viskozna disipativnost

Sedaj si bomo pogledali še eno pomebno lastnost turbulence, ki ji pravimo disipativnost. Privzeli bomo predpostavko, da je hitrost na robu območja enaka 0 oz. $\mathbf{u}_{|\partial\Omega}=0$. Empirično se izkaže, da je ta predpostavka smiselna. Če si predstavljamo posodo z vodnim tokom, spodnja skica prikaže, da ko se bližamo robu posode, postaja trenje med tekočino in robom posode vedno večje, in posledično, hitrost tekočine vedno manjša. Ustvari se tanka plast, ki jo imenujemo **robna plast** (eng. boundary layer).

Ponovno začnemo z Navier-Stokesovo enačbo, vendar predpostavimo, da nimamo vpliva zunanjih sil tj. f=0.

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u}.$$

Slika 4: Posoda, kjer imamo robno plast širine δ in tokovnice \mathbf{u} , katerih hitrost se veča, bolk kot smo stran od roba.

Enačbo skalarno pomnožimo s hitrostjo u

$$\mathbf{u} \cdot \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) |\mathbf{u}|^2 = -\frac{1}{\rho} (\mathbf{u} \cdot \nabla p) + \nu (\mathbf{u} \cdot \nabla^2 \mathbf{u})$$

Zapišimo vsak člen preko diferencialnega operatorja. Prvega in tretjega člena ni težko zapisati preko gradienta:

$$\frac{\partial}{\partial t} \left(\frac{1}{2} |\mathbf{u}|^2 \right) = \mathbf{u} \cdot \frac{\partial \mathbf{u}}{\partial t}.$$

in

$$\nabla \cdot (\mathbf{u}p) = p \underbrace{\nabla \cdot \mathbf{u}}_{=0} + \mathbf{u} \cdot (\nabla p) = \mathbf{u} \cdot (\nabla p)$$

Za drugi člen, uporabimo pravilo produkta za gradient

$$\nabla \cdot (|\mathbf{u}|^2 \mathbf{u}) = \nabla (|\mathbf{u}|^2) \cdot \mathbf{u} + |\mathbf{u}|^2 \underbrace{(\nabla \cdot \mathbf{u})}_{=0} = (2(\mathbf{u} \cdot \nabla)\mathbf{u})\mathbf{u}$$

$$\Longrightarrow (\mathbf{u} \cdot \nabla) |\mathbf{u}|^2 = \nabla \cdot \left(\frac{1}{2} |\mathbf{u}|^2 \mathbf{u}\right).$$

Za zadnji člen se poslužimo naslednje identitete

Lema 1.18. Naj bo $\boldsymbol{u} \in C^2$ vektorsko polje. Velja

$$\boldsymbol{u} \cdot \nabla^2 \boldsymbol{u} = \nabla \cdot \left((\boldsymbol{u} \cdot \nabla) \boldsymbol{u} - \nabla \left(\frac{1}{2} |\boldsymbol{u}|^2 \right) \right) - |\nabla \boldsymbol{u}|^2, \tag{1.55}$$

kjer je

$$|\nabla \boldsymbol{u}|^2 = \sum_{i,j=1}^3 \left(\frac{\partial u_i}{\partial x_j}\right)^2. \tag{1.56}$$

Dobljeno enakost

$$\frac{\partial}{\partial t} \Big(\frac{1}{2} |\mathbf{u}|^2 \Big) + \nabla \cdot \Big(\frac{1}{2} |\mathbf{u}|^2 \mathbf{u} \Big) = -\frac{1}{\rho} \nabla (p \mathbf{u}) + \nu \nabla \cdot \Big((\mathbf{u} \cdot \nabla) \mathbf{u} - \nabla \Big(\frac{1}{2} |\mathbf{u}|^2 \Big) \Big) - \nu |\nabla \mathbf{u}|^2$$

integriramo po omejenem območju Ω z robomo $\partial\Omega$:

$$\int_{\Omega} \frac{\partial}{\partial t} \left(\frac{1}{2} |\mathbf{u}|^2 \right) dV + \int_{\Omega} \nabla \cdot \left(\frac{1}{2} |\mathbf{u}|^2 \mathbf{u} + \frac{1}{\rho} p \mathbf{u} - \nu (\mathbf{u} \cdot \nabla) \mathbf{u} + \nu \nabla \left(\frac{1}{2} |\mathbf{u}|^2 \right) \right) dV = \int_{V} -\nu |\nabla \mathbf{u}|^2 d\Omega.$$

Po izreku o divergenci:

$$\int_{\Omega} \frac{\partial}{\partial t} \left(\frac{1}{2} |\mathbf{u}|^2 \right) dV + \int_{\partial \Omega} \frac{1}{2} |\mathbf{u}|^2 \mathbf{u} + \frac{1}{\rho} p \mathbf{u} - \nu (\mathbf{u} \cdot \nabla) \mathbf{u} + \nu \nabla \left(\frac{1}{2} |\mathbf{u}|^2 \right) d\vec{S} = \int_{\Omega} -\nu |\nabla \mathbf{u}|^2 dV.$$

Ker smo privzeli robni pogoj $\mathbf{u}_{|\partial\Omega}=0$, srednji člen odpade in nam ostane

$$\int_{\Omega} \frac{\partial}{\partial t} \left(\frac{1}{2} |\mathbf{u}|^2 \right) dV = -\int_{\Omega} \nu |\nabla \mathbf{u}|^2 dV$$

$$\frac{\partial}{\partial t} \int_{\Omega} \frac{1}{2} |\mathbf{u}|^2 \, dV = -\nu \int_{\Omega} |\nabla \mathbf{u}|^2 \, dV$$

Kako interpretiramo dani rezultat? Integral

$$\int_{\Omega} \frac{1}{2} |\mathbf{u}|^2 \, \mathrm{d}V$$

predtsavlja kinetično energijo sistema na enoto mase. Leva stran enakosti nam pove, kako se kinetična energija v območju Ω spreminja s časom. Desni člen je negativen, saj je integrand pozitiven. Torej kinetična energija toka s časom pada in prehaja v toploto.

Lahko pa povemo še malo več. Zgornji postopek ponovimo za $\mathbf{f} \neq \mathbf{0}$. Dobimo identično enačbo, le da vsebuje še delo zunanje sile

$$\frac{\partial}{\partial t} \int_{\Omega} \frac{1}{2} |\mathbf{u}|^2 \, dV = -\nu \int_{\Omega} |\nabla \mathbf{u}|^2 \, dV + \int_{\Omega} \mathbf{u} \cdot \mathbf{f} \, dV. \tag{1.57}$$

Če se kinetična energija s časom ne spreminja (miruje) tj. $\frac{\partial}{\partial t}|\mathbf{u}|^2=0$:

$$\nu \int_{\Omega} |\nabla \mathbf{u}|^2 \, dV = \int_{\Omega} \mathbf{u} \cdot \mathbf{f} \, dV.$$

Ta enakost nam pove, da v primeru, ko se kinetična energija ohranja, je energija, ki odhaja iz sistema enaka energiji, ki jo dovajamo z delom telesne sile **f**. Ta rezultat nam da namig, da smo na pravi poti, kar se tiče analize turbulence in tokov nasplošno, saj je rezultat ekvivalenten 1. zakonu termodinamike:

Definicija 1.19 (1. zakon termodinamike). Naj bo Ω sistem oz. omejeno območje. Potem je sprememba energije (E) sistema, enaka energiji vhodne $(E_{\rm in})$ in izhodne energije $(E_{\rm out})$

$$\Delta E = E_{\rm in} + E_{\rm out}. \tag{1.58}$$

Definicija 1.20. Naj bo **u** rešitev Navier-Stokesove enačbe in zadošča zakonu o ohranitvi mase. **Viskozna disipativnost** je

$$\epsilon = \nu |\nabla \mathbf{u}|^2. \tag{1.59}$$

1.12.3 Velikostne skale

Ključna ugotovitev v prvi polovici 20. stoletja, ki je spremenila, kako so ljudje gledali na turbulenco je, da se kljub njenemu kaotičnemu obnašanju, pojavijo urejene strukture. To so turbulentni vrtinci (eng. eddies). V zadnjem razdelku smo videli, da na poljubni domeni Ω , s časom energija pada. Jasno je, da bo odtok/prenos energije večji na večji domeni. Če je turbulenten tok sestavljen iz turbulentnih vrtincev, se pojavi vprašanje, kako veliki oz. majhni so taki vrtinci? Ključni so vrtinci "najmanjših"velikosti zaradi naslednjega mehanizma: največji vrtinci, ki nosijo največ energije, jo izgubljajo preko prenosa na manjše vrtince. Ta postopek se ponavlja, dokler ne pridemo do velikosti vrtincev, kjer se energija ne prenese več na manjše vrtince, ampak se zaradi viskoznosti energija začne pretvarjati v toploto. Tem vrtincem pravimo **disipativni vrtinci**.

Še ena opazka: ko govorimo o velikih vrtincih, govorimo tudi o velikih Reynoldsovih številih oz. Re >> 1. Spomnimo se, da smo iz brezdimenzijske Navier-Stokesove enačbe dobili Eulerjevo enačbo 1.53, ki ne vsebuje viskoznega člena. To pomeni, da je $\nu \nabla^2 \mathbf{u} \approx 0 \Longrightarrow \epsilon \approx$ konst. Zato bomo v nadaljevanju predpostavili, da je viskozna disipativnost konstantna. Ta predpostavka je smiselna, do dolžin velikosti η . Izraz za η bomo izpeljali v nadaljevanju, sedaj pa le povemo, da je v atmosferi $\eta \approx 1$ mm.

Označimo z ℓ premer poljubnega vrtinca in z u povprečno hitrost vrtinca. Definiramo turbulentno Reynoldsovo število $R_t = \frac{u\ell}{\nu}$. V splošnem velja $Re > R_t$, vendar sta primerljiva, zato $R_t >> 1$.

Videli smo, kako pomembna je količina ϵ , zato jo bomo povezali s količinama ℓ in u preko dimenzijske analize. Enota za $\frac{\partial \mathbf{u}}{\partial x_i}$, kjer je i=1,2,3, je $\frac{m}{s \cdot m} = \frac{1}{s}$, zato je enota za $[|\nabla \mathbf{u}|^2] = \frac{1}{s^2}$. Enota za ϵ je

$$[\epsilon] = \nu |\nabla \mathbf{u}|^2 = \frac{m^2}{s} \frac{1}{s^2} = \frac{m^2}{s^3}.$$

Za primerno izbran čas τ dobimo oceno

$$\epsilon \sim \frac{\ell^2}{\tau^3} = \frac{u^2}{\tau} = \frac{u^3}{\ell},\tag{1.60}$$

kjer je $u = \frac{\ell}{\tau}$.

(Paradoks: zakaj je ta izraz neodvisen od ν medtem ko je definicija odvisna od ν). Izkaže se, da je to zelo dober način za ocenjevanje velikosti vrtincev. Velik preskok je naredil Andrej Nikolajevič Kolmogorov, ki je postavil hipotezo, da sta hitrost v in dolžina η disipativnih vrtincev odvisna le od viskozne disipativnosti ϵ in kinematične viskoznosti ν . Poiščimo izraz zanju. Razdalja η se začne, ko začne prevladovati viskozni del Navier-Stokesove enačbe

$$\nu \nabla^2 \mathbf{u} > (\mathbf{u} \cdot \nabla) \mathbf{u}.$$

Aproksimiramo vsakega posebej preko brezdimenzijske analize

$$\nu \nabla^2 \mathbf{u} \sim \nu \frac{\partial^2 \mathbf{u}}{\partial x^2} \sim \frac{\nu u}{\ell} = \frac{\nu}{\ell \tau}.$$
$$(\mathbf{u} \cdot \nabla) \mathbf{u} \sim \frac{u^2}{\ell} \sim \frac{\ell}{\tau}$$

$$\implies \nu \nabla^2 \mathbf{u} > (\mathbf{u} \cdot \nabla) \mathbf{u} \iff \frac{\nu}{\ell \tau} > \frac{\ell}{\tau} \iff \ell^2 < \nu \tau.$$

Iz izraza 1.60 izpostavimo τ , kar nam da:

$$l^2 < \nu \tau = \nu \Big(\frac{\ell^2}{\epsilon}\Big)^{\frac{1}{3}} \iff l < \Big(\frac{\nu^3}{\epsilon}\Big)^{\frac{1}{4}}.$$

Neenakost nam da območje, kjer se začne proces disipativnosti. Zgornja meja hitrosti teh vrtincev:

$$v^{3} = \ell \epsilon = \left(\frac{\nu^{3}}{\epsilon}\right)^{\frac{1}{4}} \epsilon = (\epsilon \nu)^{\frac{3}{4}}$$
$$\implies v = (\epsilon \nu)^{\frac{1}{4}}.$$

Definicija 1.21. Naj bosta ν viskoznost in ϵ viskozna disipativnost. Definiramo hitrostno skalo Kolmogorova

$$v = (\epsilon \nu)^{\frac{1}{4}}.\tag{1.61}$$

in dolžinsko skalo Kolmogorova

$$\eta = \left(\frac{\nu^3}{\epsilon}\right)^{\frac{1}{4}}.\tag{1.62}$$

To sta velikost in hitrost najmanjšega možnega vrtinca.

Poglejmo si nekaj posledic. Reynoldsovo število disipativnih vrtincev je

$$R_t = \frac{\upsilon \eta}{\nu} = (\epsilon \nu)^{\frac{1}{4}} \left(\frac{\nu^3}{\epsilon}\right)^{\frac{1}{3}} \frac{1}{\nu} = 1,$$

kar se sklada z domnevo, da ima viskoznost velik vpliv. Poglejmo še, koliko večji in hitrejši so veliki vrtinci:

$$\frac{\ell}{\eta} = \frac{l\epsilon^{\frac{1}{4}}}{\nu^{\frac{3}{4}}} \stackrel{1.60}{\sim} \frac{\ell u^{\frac{3}{4}}}{\ell^{\frac{1}{4}}\nu^{\frac{3}{4}}} = \left(\frac{u\ell}{\nu}\right)^{\frac{3}{4}} = R_t^{\frac{3}{4}},$$

$$\frac{u}{v} = \frac{u}{(\epsilon\nu)^{\frac{1}{4}}} \stackrel{1.60}{\sim} \frac{u}{\left(\frac{(\ell^3\eta)}{\ell}\right)^{\frac{1}{4}}} = \left(\frac{u\ell}{\nu}\right)^{\frac{1}{4}} = R_t^{\frac{1}{4}}.$$

Ker je $R_t >> 1$, nam izračun nam pove, da so disipativni vrtinci občutno manjši in počasnejši od energijsko bogatih vrtincev.

Primer 1.22. Tipična hitrost in velikost vrtinca v robni plasti atmosfere sta $u \sim 1 \frac{m}{s}$ in $l \sim 10^3$ m viskoznost zraka pa je $\nu \sim 10^{-5} \frac{kg}{ms}$. Torej je $R_t \sim 10^8$, kar nam da oceni za hitrost in velikost disipativnih vrtincev $u \sim 10^{-2} \frac{m}{s}$ in $\eta \sim 10^{-3} m$.

Z znanjem, ki smo ga pridobili do sedaj lahko hitro pokažemo problem modeliranja turbulence neposredno preko Navier-Stokesovih enačb. Najmanjše smiselne dolžine so velikosti η , velikost območja, ki ga želimo modelirati, naj bo L. Po zgornjem razmisleku, je število potrebnih točk

$$N = \left(\frac{L}{\eta}\right) \sim R_t^{\frac{3}{4}}$$

oz. v treh dimenzijah

$$N = \left(\frac{L}{\eta}\right)^3 \sim R_t^{\frac{9}{4}}.$$

Iz zadnjega primera hitro postane jasno, da je modeliranje neposredno preko danih enačb povsem nepraktično, saj je število potrebnih točk približno $N \sim (10^8)^{\frac{9}{4}} = 10^{18}$. Zato so direktne numerične simulacije uporabljajo le za manjša območja, na primer $R_t \sim 1000$, torej $N \sim 10^{\frac{27}{4}} \sim 10^7$, kar še vedno ni majhno število.

2 Large eddy simulacije

V zaključku zadnjega poglavja smo videli, da je neposredno reševanje Navier-Stokesovih enačb za velike turbulentne vrtince oz. tri dimenzionalno turbulentno gibanje tokov, neučinkovito. V tem poglavju bomo spoznali orodja, s katerimi bomo enačbe, ki opisujejo dane tokove, priredili na tak način, da bomo lahko bolj učinkovito rešili enačbe. Simulacije velikih turbulentnih vrtincev (eng. Large eddy simulations oz. LES) razdelimo na štiri korake

- i) Spoznali bomo koncept povprečenja in kako tok razcepimo na dva dela: povprečni del in spremenljivi/turbulentni del. Povprečni del bo predstavljal hitrostno polje velikih vrtincev. Osredotočili se bomo na posebno vrsto povprečja, to je filtracija.
- ii) Preko filtracije Navier-Stokesovih enačb dobimo nove enačbe, ki jih bomo uporabili za numerično reševanje.
- iii) Zaprtje novih enačb. Pri prejšnji točki dobimo nove člene v enačbi, kar povzroči, da imamo več spremenljivk kot enačb. Problem bomo rešili z modeliranjem novih členov.
- iv) Numerično rešimo zaprt sistem enačb, ki opisuje tok.

To je najbolj splošen pristop, je pa pomembno navesti, da obstaja več podvrst teh vrst simulacij, ki so odvisne od kompleksnosti in velikosti območja, ki ga obravnavamo.

2.1 Povprečja

Vse odvisne spremenljivke, hitrost, vrtinčnost, tlak, temperatura . . . , so turbulentne. Intuitivno to pomeni, da so v prostoru neenakomerno porazdeljene in v vsaki točki v opazovanem območju kaotično oscilirajo. Zaradi naključnega obnašanja je pogosto smiselno turbulenco analizirati z vidika statistike. Več o tem pogledu na turbulenco bomo povedali v 3. poglavju

Ideja za povprečji je, da hitrostno polje $\mathbf{U}(\mathbf{x},t)$ razcepimo na povprečni del $\overline{\mathbf{U}}(\mathbf{x},t)$ in oscilirajoči/turbulentni del $\mathbf{u}'(\mathbf{x},t)$.

$$\mathbf{U}(\mathbf{x},t) = \overline{\mathbf{U}}(\mathbf{x},t) + \mathbf{u}'(\mathbf{x},t). \tag{2.1}$$

Temu razcepu pravimo Reynoldsov razcep.

Zapišimo nekaj lastnosti, ki jih želimo od povprečij. Naj bosta \mathbf{U} in \mathbf{V} dva tokova in $\alpha, \beta \in \mathbb{R}$:

i) Linearnost:

$$\overline{\alpha \mathbf{U} + \beta \mathbf{V}} = \alpha \overline{\mathbf{U}} + \beta \overline{\mathbf{V}}.$$

ii) Povprečje konstante C je C:

$$\overline{\mathbf{C}} = \mathbf{C}$$
.

iii) Indempotentnost:

$$\overline{\overline{\mathbf{U}}} = \overline{\mathbf{U}}.$$

iv) Povprečje oscilirajočega dela je 0:

$$\overline{u}=\overline{U-\overline{U}}=0.$$

v) Pravilo produkta:

$$\overline{\mathbf{U}\cdot\mathbf{V}}=\overline{\mathbf{U}}\cdot\overline{\mathbf{V}}.$$

vi) Komutiranje z odvajanjem:

$$\frac{\overline{\partial \mathbf{U}}}{\partial x_i} = \frac{\partial \overline{\mathbf{U}}}{\partial x_i}.$$

Lema 2.1. Če velja lastnost i) potem je iii) \iff iv)

Dokaz.

$$\overline{\overline{\mathbf{U}}} = \overline{\mathbf{U}} \iff 0 = \overline{\mathbf{U}} - \overline{\overline{\mathbf{U}}} \stackrel{i)}{=} \overline{\mathbf{U}} - \overline{\overline{\mathbf{U}}}.$$

2.1.1 Ansambelsko povprečje

Recimo, da opravljamo eksperiment in dobimo nek rezultat. Pogostokrat zaradi napak ali zunanjih vplivov ali majhne verjetnosti pojava željenega rezultata, poskus večkrat ponovimo in za naš končni rezultat vzamemo povprečje vseh rezultatov. To je ideja za ansambelskim povprečenjem.

Turbulenca predstavlja naša odstopanja ali šum oz. kaotičen del. Ker se pri zelo majhnih spremembah začetnih pogojev, tok lahko zelo spremeni, nam vsaka ponovitev poskusa da novo rešitev. Vsaka taka rešitev je lahko zelo drugačna od prejšnje in naslednje. Tem ponovitvam pravimo realizacije in označimo $\mathbf{U}(x,t;\alpha)$, za $\alpha \in \mathbb{N}$ realizacijsko število.

Definicija 2.2. Ansambelsko povprečje toka U je

$$\mathbf{U}^{\text{avg}}(\mathbf{x}, t) = \lim_{N \to \infty} \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{U}(\mathbf{x}, t; \alpha).$$
 (2.2)

Bolj formalno na $\mathbf{U}(\mathbf{x},t;\alpha)$ gledamo kot na slučajni vektor ter na zaporedje $\mathbf{U}(\mathbf{x},t;1), \mathbf{U}(\mathbf{x},t;2), \dots, \mathbf{U}(\mathbf{x},t;n)$ kot na zaporedje neodvisno, enako porazdeljenih slučajnih vektorjev. Pričakovana vrednost $E(\mathbf{U}_i(\mathbf{x},t;\alpha)) = \mu(\mathbf{x},t)$ za vsak $i \in \mathbb{N}$, zato je po zakonu velikih števil ansambelsko povprečje konvergentno.

Ansambelsko povprečje zadošča vsem lastnostim i)-vi) zato je temelj za Reynoldsovo-povprečene Navier-Stokesove simulacije (RANS). Omenimo še dve povprečji:

Definicija 2.3. Časovno povprečje je

$$\mathbf{U}^{T}(\mathbf{x}, t; T) = \frac{1}{T} \int_{0}^{T} \mathbf{U}(\mathbf{x}, t + \tau) d\tau.$$
 (2.3)

Definicija 2.4. Prostorsko povprečje je

$$\mathbf{U}^{T}(\mathbf{x}, t; L) = \frac{1}{L} \int_{0}^{L} \mathbf{U}(\mathbf{x} + \mathbf{s}, t) \, d\mathbf{s}.$$
 (2.4)

Čeprav so ta povprečja na prvi pogled nepovazana, pa se v praksi izkaže, da imajo poseben pomen. Naj bo polje **U** stacionarno tj. $\mathbf{U}(\mathbf{x},t) = \mathbf{U}(\mathbf{x})$ ali homogeno oz. $\mathbf{U}(\mathbf{x},t) = \mathbf{U}(t)$. Intuitivno bi pričakovali, da je

$$\lim_{T \to \infty} \mathbf{U}^T(\mathbf{x}, t; T) = \lim_{T \to \infty} \mathbf{U}^T(\mathbf{x}; T) = \mathbf{U}^{\text{avg}}(\mathbf{x})$$

OZ.

$$\lim_{T \to \infty} \mathbf{U}^{S}(x, t; S) = \lim_{T \to \infty} \mathbf{U}^{S}(t; T) = \mathbf{U}^{\text{avg}}(t)$$

Če slučajna spremenljivka U oz. hitrostno polje v našem primeru, zadošča obema lastnostima, pravimo, da je U ergodično. V računski dinamiki fluidov se pogosto predpostavi, da je turbulenca ergodična. Temu pravimo ergodična hipoteza. Zanjo ne obstaja dokaz, vendar mnoge numerične simulacije in eksperimenti hipotezo potrjujejo.

Ergodičnost se predpostavi, saj je računanje ansambelskega povprečja težavno, ker potrebujemo veliko poskusov za njegov izračun, medtem ko je prostorsko ali časovno povprečje dokaj enostavno.

2.1.2 Filtracija

Sedaj se bomo resno posvetili filtraciji, ki je posebna vrsta povprečja.

Definicija 2.5. Naj bo $\mathbf{U}: \mathbb{R}^d \times \mathbb{R}^+ \to \mathbb{R}^3$ vektorsko polje in $G: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$. Potem je filter polja \mathbf{U} , filtrirano polje $\overline{\mathbf{U}}$

$$\overline{\mathbf{U}}(x,t) = \int_{\mathbb{R}^d} G(r,x) \mathbf{U}(x-r,t) \, \mathrm{d}r.$$
 (2.5)

Funkciji G pravimo filtracijska funkcija in zadošča normalizacijskem pogoju

$$\int_{\mathbb{R}^d} G(r, x) \, \mathrm{d}r = 1. \tag{2.6}$$

Definicija 2.6. Naj bo G filtracijska funkcija in U tok. Potem je residualno polje

$$\mathbf{u}'(x,t) = \mathbf{U}(x,t) - \overline{\mathbf{U}(x,t)}. \tag{2.7}$$

Opomba 2.7.

- Polji $\overline{\mathbf{U}}$ in u bomo tudi imenovali razrešen del in podfilterska skala.
- Opazimo, da je definicija filtra skoraj identična definiciji konvolucije, le da je U vektorsko polje in ne skalar, kot običajno.
- Zgornji razcep je analogen Reynoldsovem razcepu, glavna razlika je, da rezidualni del ni nujno enak 0

$$\overline{\mathbf{u}'} \neq 0.$$

Trditev 2.8. Filtracija zadošča lastnostim i), ii) in komutiranju z časovnim odvodom. Če je filtracijska funkcija G homogena, velja lastnost vi).

Dokaz. i) Naj bosta U, V vektorski polji, $\alpha, \beta \in \mathbb{R}$ in G filtracijska funkcija

$$\overline{\alpha \mathbf{U} + \beta \mathbf{V}} = \int_{\mathbb{R}^d} G(r, x) (\alpha \mathbf{U}(x - r, t) + \beta \mathbf{V}(x - r, t)) \, dr =$$

$$= \int_{\mathbb{R}^d} \alpha G(r, x) \mathbf{U}(x - r, t) + \beta G(r, x) \mathbf{V}(x - r, t) \, dr =$$

$$= \alpha \int_{\mathbb{R}^d} G(r, x) \mathbf{U}(x - r, t) \, dr + \beta \int_{\mathbb{R}^d} G(r, x) \mathbf{V}(x - r, t) \, dr =$$

$$= \alpha \overline{\mathbf{U}} + \beta \overline{\mathbf{V}}$$

ii) Naj bo $\mathbf{C} \in \mathbb{R}^3$ in G filtracijska funkcija

$$\overline{\mathbf{C}} = \int_{\mathbb{R}^d} G(r, x) \mathbf{C} \, \mathrm{d}r = \left(\underbrace{\int_{\mathbb{R}^d} G(r, x) \, \mathrm{d}r}_{\text{normalizacijski}} \right) \mathbf{C} = \mathbf{C}.$$

vi) Naj bo ${\bf U}$ odvedljivo vektorsko polje po časovni spremenljivki in G filtracijska funkcija

$$\frac{\mathrm{d}}{\mathrm{d}t}\overline{\mathbf{U}}(x,t) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^d} G(r,x)\mathbf{U}(x-r,t)\,\mathrm{d}r =
= \mathcal{F}^{-1}\mathcal{F}\left(\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^d} G(r,x)\mathbf{U}(x-r,t)\,\mathrm{d}r\right) =
= \mathcal{F}^{-1}\left(i\omega\mathcal{F}\left(\int_{\mathbb{R}^d} G(r,x)\mathbf{U}(x-r,t)\,\mathrm{d}r\right)\right) =
= \mathcal{F}^{-1}(i\omega\hat{G}(\omega,x)\hat{\mathbf{U}}(x,\omega)) =
= \mathcal{F}^{-1}(\hat{G}(\omega,x)\cdot(i\omega\hat{\mathbf{U}}(x,\omega))) =
= \int_{\mathbb{R}^d} G(r,x)\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{U}(x-r,t)\,\mathrm{d}r =
= \frac{\overline{\mathrm{d}\mathbf{U}}}{\mathrm{d}t}.$$

Odvajamo še po prostorski spremenljivki in predpostavimo, da lahko zamenjamo vrstni red odvajanja in integracije (kateri pogoji so smiselni, da je to izpolnjejo ali si isti kot pri zgornjem izračunu? G in \mathbf{U} odvedljivi)

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}x_i} \overline{\mathbf{U}}(x,t) &= \frac{\mathrm{d}}{\mathrm{d}x_i} \int_{\mathbb{R}^d} G(r,x) \mathbf{U}(x-r,t) \, \mathrm{d}r = \\ &= \int_{\mathbb{R}^d} \frac{\mathrm{d}}{\mathrm{d}x_i} (G(r,x) \mathbf{U}(x-r,t)) \, \mathrm{d}r = \\ &= \int_{\mathbb{R}^d} \frac{\mathrm{d}G}{\mathrm{d}x_i} (r,x) \mathbf{U}(x-r,t) \, \mathrm{d}r + \int_{\mathbb{R}^d} G(r,x) \frac{\mathrm{d}\mathbf{U}}{\mathrm{d}x_i} (x-r,t) \, \mathrm{d}r = \\ &= \int_{\mathbb{R}^d} \frac{\mathrm{d}G}{\mathrm{d}x_i} (r,x) \mathbf{U}(x-r,t) \, \mathrm{d}r + \frac{\overline{\mathrm{d}\mathbf{U}}}{\mathrm{d}x_i}. \end{split}$$

G je homogena torej je G(r,x) = G(r), posledično

$$\frac{\mathrm{d}G}{\mathrm{d}x_i}(r,x) = \frac{\mathrm{d}G}{\mathrm{d}x_i}(r) = 0$$

in enakost sledi.

Opomba 2.9.

- ullet Ker je ${f U}$ vektor, integral deluje po komponentah, zato tudi Fourierova transformacija deluje po komponentah.
- V dokazu smo uporabili dejstvo

$$\mathcal{F}(f')(\omega) = i\omega \mathcal{F}(f)(\omega).$$

Poglejmo si dva filtra, ki se pogosto uporabljata. Primera si bomo pogledali v eni dimenziji, kar se enostavno posploši v višje dimenzije. Od sedaj naprej bomo predpostavili, da je G homogena tj. G(r,x)=G(r). Matematično je filter sedaj konvolucija, kar običajno zapišemo

$$\overline{\mathbf{U}}(x,t) = (\mathbf{U} * G)(x,t). \tag{2.8}$$

Iz konvolucijskega izreka dobimo

$$\hat{\overline{\mathbf{U}}} = \mathcal{F}(\overline{\mathbf{U}})(\xi, t) = \mathcal{F}(\mathbf{U})(\xi, t) \cdot \mathcal{F}(G)(\xi) = \hat{\mathbf{U}}(\xi, t) \cdot \hat{G}(\xi). \tag{2.9}$$

Valovni preklopni filter:

Pokazali smo, da filter zadošča lastnostim i),ii) in vi). Ali lahko za pravo izbiro G dodatno zadostimo še kateri od ostalih lastnosti? Zaradi linearnosti filtra, nam ostaneta le dve lastnosti: Indempotentnost in pravilo produkta. Pravilu produkta bo zadoščeno, če bo za pravo funkcijo G, integral multiplikativen. Take funkcije sicer obstajajo, vedar so zelo raznolike in običajno nimajo fizikalnega pomena. Torej nam ostane le idempotentnost. Poglejmo, kako se izraža $\overline{\overline{U}}$ preko konvolucije:

$$\overline{\overline{U}}(x,t) = \int_{\mathbb{R}} G(r)\overline{U}(x-r,t) dr =$$

$$= \int_{\mathbb{R}} G(r) \int_{\mathbb{R}} G(s)U(x-r-s,t) ds dr =$$

$$= \int_{\mathbb{R}} (G*U)(x-r,t) dr = G*(G*U)(x,t)$$

$$\Longrightarrow \mathcal{F}(\overline{\overline{U}})(\xi,t) = \mathcal{F}(G)^{2}(\xi) \cdot \mathcal{F}(U)(\xi,t) = \hat{G}^{2}(\xi) \cdot \hat{U}(\xi,t)$$

Če želimo, da je G indempotent

$$\overline{U} = \overline{\overline{U}}$$

$$\hat{U}\hat{G} = \hat{U}\hat{G}^2$$

$$\hat{U}(\hat{G}^2 - \hat{G}) = 0.$$

Ker je $U \neq 0$, G zavzame vrednosti 0 in 1. Preden si poglemo bolj specifičen primer, si poglejmo problem preko Fourierove vrste, kar bo pomembno pri analizi v nadaljevanju. U razvijemo v kompleksno Fourierovo vrsto na intervalu [0,L] za L>0

$$U(\mathbf{x},t) = \sum_{n=-\infty}^{\infty} a_n(t)e^{i\kappa_n x},$$
(2.10)

kjer je $\kappa_n = 2\pi \frac{n}{L}$. Filtriramo ta razvoj

$$\overline{U}(x,t) = \int_{\mathbb{R}^d} G(r)U(x-r,t) dr =$$

$$= \int_{\mathbb{R}^d} G(r) \sum_{n=-\infty}^{\infty} a_n(t)e^{i\kappa_n(x-r)} dr =$$

$$= \sum_{n=-\infty}^{\infty} a_n(t) \left(\int_{\mathbb{R}^d} G(r)e^{-i\kappa_n r} \right) e^{i\kappa_n x} dr =$$

$$= \sum_{n=-\infty}^{\infty} a_n(t) \hat{G}(\kappa_n) e^{i\kappa_n x},$$

Kot prej je \hat{G} Fourierova transformiranka funkcije G

$$\hat{G}(\kappa) = \int_{\mathbb{R}^d} G(r)e^{-i\kappa r} \, \mathrm{d}r$$

in preko inverzne Fourierove transformacije dobimo

$$G(x) = \frac{1}{2\pi} \int_{\mathbb{R}^d} \hat{G}(\kappa) e^{i\kappa x} \, d\kappa.$$

Opomba 2.10. V literaturi se \hat{G} pogosto imenuje prenosna funkcija in se označi sT.

Uporabimo filter na \overline{U}

$$\overline{\overline{U}}(x,t) = \int_{\mathbb{R}} G(r)\overline{U}(x-r,t) dr =$$

$$= \int_{\mathbb{R}} G(r) \sum_{n=-\infty}^{\infty} a_n(t)T(\kappa_n)e^{i\kappa_n(x-r)} dr =$$

$$= \sum_{n=-\infty}^{\infty} a_n(t)T(\kappa_n)e^{i\kappa_n x} \int_{\mathbb{R}} G(r)e^{-i\kappa_n r} dr =$$

$$= \sum_{n=-\infty}^{\infty} a_n(t)T^2(\kappa_n)e^{i\kappa_n x} dr$$

Primerjamo koeficiente vrst

$$T^2(\kappa_n) = T(\kappa_n), \quad n \in \mathbb{Z}$$

kar se ujema z dosedaj ugotovljenim. Ta izpeljava je pomembna, ker uvede količino κ_n , ki jo imenujemo n-to valovno število. To bo ključno za razreševanje polja \overline{U} na

diskretni množici (kar je potrebno za numerično modeliranje). Definiramo nizkoprehodno prenosno funkcijo

$$T_c(\kappa) = \begin{cases} 1; & |\kappa| \le \kappa_c \\ 0; & |\kappa| > \kappa_c \end{cases}$$

 $\kappa_c \in \mathbb{R}$ se imenuje **preklopno valovno število**. Sedaj lahko izračunamo filtracijsko funkcijo G

$$G(x) = \frac{1}{2\pi} \int_{\mathbb{R}} T_c(\kappa) e^{-i\kappa x} d\kappa =$$

$$= \frac{1}{2\pi} \int_{-\kappa_c}^{\kappa_c} e^{-i\kappa x} d\kappa =$$

$$= \frac{i}{2\pi x} e^{-i\kappa x} \Big|_{-\kappa_c}^{\kappa_c} =$$

$$= \frac{i}{2\pi x} (e^{-i\kappa_c x} - e^{i\kappa_c x}) = \frac{\sin(\kappa_c x)}{\pi x}.$$

Definicija 2.11. Enodimenzionalni valovno preklopni filter je filter s
 filtracijsko funkcijo ${\cal G}$

$$G(x) = \frac{\sin(\kappa_c x)}{\pi x}.$$
 (2.11)

Rezultat lahko enostavno posplošimo na poljubno dimenzijo:

Definicija 2.12. Za $n \in \mathbb{N}$ definiramo n-dimenzionalni valovno preklopno filtracijsko funkcijo G_n

$$G_n(x) = \prod_{i=1}^n G(x_i) = \prod_{i=1}^n \frac{\sin(\kappa_c x_i)}{\pi x_i}.$$
 (2.12)

Opomba 2.13. Definiramo lahko tudi visoko-prehodno prenosno funkcijo:

$$T_c(\kappa) = \begin{cases} 1; & |\kappa| \ge \kappa_c \\ 0; & |\kappa| < \kappa_c, \end{cases}$$

vendar v tem filtracijska funkcija ne obstaja.

Škatlast filter:

Nekoliko bolj naravna filtracijska funkcija, ki spomne na prostorsko povprečje, je škatlasta funkcija:

Definicija 2.14. Naj bodo $\Delta > 0$. Škatlasta funkcija je

$$G(x) = \begin{cases} \frac{1}{\Delta} & ; x \in \left[-\frac{\Delta}{2}, \frac{\Delta}{2} \right] \\ 0 & ; \text{ sicer.} \end{cases}$$
 (2.13)

Prenosno funkcijo lahko izračunamo po zgoraj izpeljani formuli, kar nam da

$$T(\kappa) = \frac{\sin(\kappa \frac{\Delta}{2})}{\kappa \frac{\Delta}{2}}.$$

Navedimo še večdimenzionalno škatlasto funkcijo

Definicija 2.15. Naj bo $\Delta_1, \ldots, \Delta_n > 0$. *n*-dimenzionalna škatlasta funkcija je

$$G(x_1, \dots, x_n) = \begin{cases} \frac{1}{\prod_{i=1}^n \Delta_i} & ; x_i \in \left[-\frac{\Delta_i}{2}, \frac{\Delta_i}{2} \right] \\ 0 & ; \text{ sicer.} \end{cases}$$
 (2.14)

Opomba 2.16.

- Drugo ime za ta filter je lokalno povprečje.
- V literaturi se občasno pojavi tudi nekoliko drugačna definicija, kjer se integrira po krogli namesto po kvadratu.

Gaussov filter: Poglejmo filtracijsko funkcijo, ki se razlikuje od prejšnjih dveh primerov v dveh pogledih. Za filtracijsko funkcijo vzamemo Gaussovo funkcijo, ki je za razliko od prejšnji dveh primeov zvezna in še pomembneje pozitivna.

Definicija 2.17. Naj bo $\sigma > 0$. Gaussov filter je filter dan z Gaussovo funkcijo

$$G(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}. (2.15)$$

oz. n-dimenzionalni Gaussov filter je dan z

$$G(x_1, \dots, x_n) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2}(x_1^2 + \dots + x_n^2)}$$
(2.16)

2.2 Filtrirani ohranitveni zakoni

Sedaj je čas, da uporabimo filter na enačbah, ki jih želimo numerično rešiti. V razdelku bomo predpostavili, da je filtracijska funkcija homogena, saj bomo potrebovali lastnost komutiranja filtra z odvajanjem. Do nadaljnega bomo dodatno predpostavili, da je G poljubna, kasneje, ko se bomo posvetili natančnejši analizi, jo bomo specificirali.

2.2.1 Filtriran zakon o ohranitvi mase

Zakon:

$$\nabla \cdot \mathbf{U} = \sum_{i=1}^{3} \frac{\partial \mathbf{U}}{\partial x_i} = \mathbf{0}.$$

Filtrirana enačba:

$$\overline{\nabla \cdot \mathbf{U}} = \sum_{i=1}^{3} \frac{\partial \mathbf{U}}{\partial x_i} = \sum_{i=1}^{3} \frac{\partial \overline{\mathbf{U}}}{\partial x_i} = \nabla \cdot \overline{\mathbf{U}} = 0.$$

Filtriran zakon:

$$\nabla \cdot \overline{\mathbf{U}} = \mathbf{0}. \tag{2.17}$$

2.2.2 Filtriran zakon o ohranitvi gibalne količine

Zakon:

$$\frac{\partial \mathbf{U}}{\partial t} + (\mathbf{U} \cdot \nabla)\mathbf{U} = -\frac{1}{\rho}\nabla \mathbf{U} + \nu \nabla^2 \mathbf{U} + f.$$

Preden enačbo filtriramo, jo bomo preoblikovali, da se znebimo nelinearnega člena $(\mathbf{U} \cdot \nabla)\mathbf{U}$. Najprej ga razpišemo po komponentah

$$(\mathbf{U} \cdot \nabla)\mathbf{U} = \begin{pmatrix} U_1 \frac{\partial U_1}{\partial x_1} + U_2 \frac{\partial U_1}{\partial x_2} + U_3 \frac{\partial U_1}{\partial x_3} \\ U_1 \frac{\partial U_2}{\partial x_1} + U_2 \frac{\partial U_2}{\partial x_2} + U_3 \frac{\partial U_2}{\partial x_3} \\ U_1 \frac{\partial U_3}{\partial x_1} + U_2 \frac{\partial U_3}{\partial x_2} + U_3 \frac{\partial U_3}{\partial x_3} \end{pmatrix} = \left[\sum_{k=1}^3 U_k \frac{\partial U_j}{\partial x_k} \right]_j$$

in pogledamo kako se izraža odvod produkta

$$\sum_{k=1}^{3} \frac{\partial}{\partial x_k} (U_k U_j) = \sum_{k=1}^{3} \left(U_k \frac{\partial U_j}{\partial x_k} + U_j \frac{\partial U_k}{\partial x_k} \right) = (\mathbf{U} \cdot \nabla) \mathbf{U} + (\underbrace{\nabla \cdot \mathbf{U}}_{\text{obranitev}}) \mathbf{U} = (\mathbf{U} \cdot \nabla) \mathbf{U}.$$

Levo stran enakosti lahko bolj kompaktno zapišemo

$$\sum_{k=1}^{3} \frac{\partial}{\partial x_k} (U_k U_j) = \nabla \cdot (U_j \mathbf{U}) = \nabla \cdot [\mathbf{U} \mathbf{U}^T]_j = \nabla \odot [\mathbf{U} \mathbf{U}^T],$$

kjer je

Hadamardov produkt oz. produkt po komponentah

$$A \odot B = \left[a_j \cdot b_j \right]_i$$
.

Ta zapis ni najbolj praktičen, zato bomo Navier-Stokesovo enačbo filtrirali po komponentah. Za $j \in \{1,2,3\}$ imamo

$$\frac{\partial U_j}{\partial t} + \nabla \cdot (U_j \mathbf{U}) = -\frac{1}{\rho} \frac{\partial p}{\partial x_j} + \nu \nabla^2 U_j + f_j.$$

Filtriramo enačbo, kjer upoštevamo, da filtracija komutira z odvajanjem:

$$\frac{\partial \overline{U}_j}{\partial t} + \nabla \cdot (\overline{U_j} \overline{\mathbf{U}}) = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_j} + \nu \nabla^2 \overline{U}_j + \overline{f}_j.$$

Enačbo lahko zapišemo še bolj kompaktno, če uporabimo Einsteinovo konvencijo

$$\sum_{i=1}^{n} a_i b_i = a_i b_i.$$

Filtriran zakon:

$$\frac{\partial \overline{U}_{j}}{\partial t} + \frac{\partial \overline{U_{i}U_{j}}}{\partial x_{i}} = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_{j}} + \nu \frac{\partial^{2} \overline{U}_{j}}{\partial x_{i} \partial x_{i}} + \overline{f}_{j}. \tag{2.18}$$

2.2.3 Filtriran zakon o ohranitvi vrtinčnosti

Zakon:

$$\frac{\partial \boldsymbol{\omega}}{\partial t} + (\mathbf{U} \cdot \nabla) \boldsymbol{\omega} = (\boldsymbol{\omega} \cdot \nabla) \mathbf{U} + \nu \nabla^2 \boldsymbol{\omega} + \nabla \times \mathbf{f}.$$

Podobno kot pri Navier-Stokesovih enačbah, bomo prepisali nelinearna člena v bolj primerno obliko

$$(\mathbf{U} \cdot \nabla)\boldsymbol{\omega} = \left[\sum_{k=1}^{3} U_{k} \frac{\partial \omega_{j}}{\partial x_{k}}\right]_{j}$$
$$(\boldsymbol{\omega} \cdot \nabla)\mathbf{U} = \left[\sum_{k=1}^{3} \omega_{k} \frac{\partial U_{j}}{\partial x_{k}}\right]_{j}.$$

Fiksiramo komponento $j \in \{1, 2, 3\}$ in pogledamo odvod produkta komponent vrtinčnosti in hitrostnega polja:

$$\frac{\partial}{\partial x_i}(U_i \cdot \omega_j) = \sum_{i=1}^3 \frac{\partial}{\partial x_i}(U_i \cdot \omega_j) = \sum_{i=1}^3 \omega_j \frac{\partial U_i}{\partial x_i} + U_i \frac{\partial \omega_j}{\partial x_i} = \omega_j (\underbrace{\nabla \cdot \mathbf{U}}_{\substack{\text{ohranitev} \\ \text{mase} \\ -0}}) + (\mathbf{U} \cdot \nabla) \boldsymbol{\omega}$$

$$\frac{\partial}{\partial x_i}(\omega_i \cdot U_j) = \sum_{i=1}^3 \frac{\partial}{\partial x_i}(\omega_i \cdot U_j) = \sum_{i=1}^3 U_j \frac{\partial \omega_i}{\partial x_i} + \omega_i \frac{\partial U_j}{\partial x_i} = U_j(\underbrace{\nabla \cdot \boldsymbol{\omega}}_{\text{divergenca rotorja}}) + (\boldsymbol{\omega} \cdot \nabla)\mathbf{U}.$$

Zakon zapisan v komponetnem zapisu je, pri $j \in \{1, 2, 3\}$:

$$\frac{\partial \omega_j}{\partial t} + \frac{\partial}{\partial x_i} (U_i \cdot \omega_j) = \frac{\partial}{\partial x_i} (\omega_i \cdot U_j) + \nu \nabla^2 \omega_j + \tilde{f}_j$$
 (2.19)

za $\tilde{f}_j = [\nabla \cdot \mathbf{f}]_j$. Filtriran zakon:

$$\frac{\partial \overline{\omega_j}}{\partial t} + \frac{\partial}{\partial x_i} \overline{U_i \cdot \omega_j} = \frac{\partial}{\partial x_i} \overline{\omega_i \cdot U_j} + \nu \nabla^2 \overline{\omega_j} + \overline{\tilde{f}_j}. \tag{2.20}$$

2.2.4 Filtriran zakon o ohranitvi skalarja

Zakon:

$$\frac{\partial c}{\partial t} + \mathbf{U} \cdot \nabla c = \gamma \nabla^2 c.$$

V tem primeru bo filtracija enostavna, saj lahko zaradi ohranitve mase, polje U potegnemo znotraj gradienta in upoštevamo linearnost filtracije. Filtriran zakon:

$$\frac{\partial \overline{c}}{\partial t} + \nabla \cdot (\overline{c}\overline{\mathbf{U}}) = \gamma \nabla^2 \overline{c}. \tag{2.21}$$

2.2.5 Filtriran materialni odvod

Izpeljane enačbe smo sicer prevedli na enačbe primernejše za modeliranje (pomen filtra bomo pokazali v naslednjem razdelku), vendar če, na primer, primerjamo filtrirano in ne filtrirano Navier-Stokesovo enačbo, sta enačbi fundamentalno drugačni, saj imamo v drugem členu v enem primeru odvod skalarja $\overline{U_iU_j}$ v drugem pa odvod produkta skalarjev U_iU_j . Radi bi torej v filtrirani enačbi uvedli člen $\overline{U_i} \cdot \overline{U_j}$. Vendar pa se pojavi problem, saj $\overline{U_iU_j} - \overline{U_iU_j} \neq 0$.

Definicija 2.18. Naj bo $\overline{\mathbf{U}}$ vektorsko polje in $\overline{\mathbf{U}}$ njena filtracija. Količini

$$\tau_{ij}^R = \overline{U_i U_j} - \overline{U_i} \overline{U_j} \tag{2.22}$$

pravimo rezidualni napetostni tenzor.

Iz definicije tenzorja τ^R se naravno pojavita dodatni definiciji

Definicija 2.19. Rezidualna oz. turbulentna kinetična energija je

$$k_r = \frac{1}{2}\tau_{ii}^R = \frac{1}{2}\text{tr}(\tau^R).$$
 (2.23)

Definicija 2.20. Izotropni rezidualni napetostni tenzor je dan z

$$\tau_{ij}^{\text{izo}} = \frac{2}{3} k_r \delta_{ij} \tag{2.24}$$

anizotropni rezidualni napetostni tenzor pa z

$$\tau_{ij}^{\text{anizo}} = \tau_{ij}^R - \tau_{ij}^{\text{izo}}.$$
 (2.25)

Zapišemo filtrirano Navier-Stokesovo enačbo preko teh definicij

$$\frac{\partial \overline{U}_{j}}{\partial t} + \frac{\partial \overline{U}_{i}\overline{U}_{j}}{\partial x_{i}} = \frac{\partial \overline{U}_{j}}{\partial t} + \frac{\partial}{\partial x_{i}}(\overline{U}_{i}\overline{U}_{j} + \tau_{ij}^{R}) = \frac{\partial \overline{U}_{j}}{\partial t} + \frac{\partial}{\partial x_{i}}\overline{U}_{i}\overline{U}_{j} + \frac{\partial}{\partial x_{i}}\tau_{ij}^{R}$$

$$\implies \frac{\partial \overline{U}_{j}}{\partial t} + \frac{\partial \overline{U}_{i}\overline{U}_{j}}{\partial x_{i}} = -\frac{1}{\rho}\frac{\partial \overline{p}}{\partial x_{i}} - \frac{\partial \tau_{ij}^{R}}{\partial x_{i}} + \nu\frac{\partial^{2}\overline{U}_{j}}{\partial x_{i}\partial x_{i}} + \overline{f}_{j}.$$

Zapišemo še preko $\tau^{\rm anizo}$ tenzorja:

$$\begin{split} &-\frac{1}{\rho}\frac{\partial\overline{p}}{\partial x_{j}}-\frac{\partial\tau_{ij}^{R}}{\partial x_{i}}+\nu\frac{\partial^{2}\overline{U}_{j}}{\partial x_{i}\partial x_{i}}+\overline{f}_{j}=\\ &-\frac{1}{\rho}\frac{\partial\overline{p}}{\partial x_{j}}-\frac{\partial(\tau_{ij}^{\mathrm{izo}}+\tau_{ij}^{\mathrm{anizo}})}{\partial x_{i}}+\nu\frac{\partial^{2}\overline{U}_{j}}{\partial x_{i}\partial x_{i}}+\overline{f}_{j}=\\ &-\frac{1}{\rho}\frac{\partial(\overline{p}+\rho\tau_{ij}^{\mathrm{izo}})}{\partial x_{j}}-\frac{\partial\tau_{ij}^{\mathrm{anizo}}}{\partial x_{i}}+\nu\frac{\partial^{2}\overline{U}_{j}}{\partial x_{i}\partial x_{i}}+\overline{f}_{j}\\ \Longrightarrow &\frac{\partial\overline{U}_{j}}{\partial t}+\frac{\partial\overline{U}_{i}}{\partial x_{i}}\frac{\overline{U}_{j}}{\partial x_{i}}=-\frac{1}{\rho}\frac{\partial\overline{P}}{\partial x_{j}}-\frac{\partial\tau_{ij}^{\mathrm{anizo}}}{\partial x_{i}}+\nu\frac{\partial^{2}\overline{U}_{j}}{\partial x_{i}\partial x_{i}}+\overline{f}_{j}, \end{split}$$

kjer je $\overline{P} = \overline{p} + \rho \tau^{\text{izo}}$ modificiran filtriran tlak (zakaj se ga uvede?). Iz te enačbe je jasno kako definirati filtrirani materialni odvod

Definicija 2.21. Filtriran materialni odvod za vektorsko polje **U** in $\Omega \subseteq \mathbb{R}^n$ je preslikava $\frac{\overline{D}}{\overline{D}t}: C^1(\Omega) \to C^0(\Omega)$ dana s predpisom

$$\frac{\overline{D}\mathbf{V}}{\overline{D}t} = \frac{\partial \mathbf{V}}{\partial t} + (\overline{\mathbf{U}} \cdot \nabla)\mathbf{V}.$$
 (2.26)

2.3 Razreševanje filtriranih polj

Sedaj bomo videli, zakaj je smiselno uvesti filtrirane enačbe, saj direktna primerjava z nefiltriranimi enačbami ne pokaže bistvene razlike.

Omejimo, se na enodomenzionalni primer polja u in interval [0, L), L > 0. Če polje u evalviramo na $N \in \mathbb{N}$ točkah, nas zanima kolikšen mora biti velik korak $h = \frac{L}{N}$, da lahko primerno aproksimiramo polje u in določimo željene informacije (ekvivalentno lahko fiksiramo korak in določamo število točk N).

Na to vprašanje bomo odgovorili z uporabo diskretne Fourierove analize.

2.3.1 Diskretna Fourierova analiza

Definicija 2.22. Naj bo $u:[a,b)\to\mathbb{C}$ periodična funkcija, a< b in $N\in\mathbb{N}$. Diskretna Fourierova transformacija funkcije u je zaporedje

$$U(x(n)) = \sum_{k=0}^{N-1} u(x(k))e^{\frac{-2\pi kni}{N}}, \quad n = 0, 1, \dots, N-1,$$
 (2.27)

Inverzna diskretna Fourierova transformacija pa je definirana kot

$$U^{-1}(x(n)) = \frac{1}{N} \sum_{k=0}^{N-1} u(x(k)) e^{\frac{2\pi k n i}{N}}, \quad n = 0, 1, \dots, N-1.$$
 (2.28)

V obeh primerih je $x(k) = a + \frac{k}{N}(b-a)$, kar bomo označili kot $x_k = x(k)$.

Opomba 2.23. Če funkcijo u iz definicije transliramo, je dovolj če se omejimo na interval [0, L]. V tem primeru je $x(k) = \frac{kL}{N}$.

Pričakovali bi, da imata diskretni Fourierovi transformaciji podobne lastnosti kot klasična Fourierova transformacija, kar povemo z naslednjim izrekom

Izrek 2.24. Naj bo $u:[a,b)\to\mathbb{C}$ periodična funkcija in $N\in\mathbb{N}$. Potem velja

$$U^{-1}(U(x_n)) = u(x_n) = U(U^{-1}(x_n)).$$
(2.29)

Dokaz.

$$U^{-1}(U(x_n)) = \frac{1}{N} \sum_{k=0}^{N-1} U(x_k) e^{\frac{2\pi kni}{N}} =$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} \sum_{j=0}^{N-1} u(x_j) e^{\frac{-2\pi ijk}{N}} e^{\frac{2\pi ikn}{N}} =$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} \sum_{j=0}^{N-1} u(x_j) e^{\frac{-2\pi ik(n-j)}{N}} =$$

Označimo $x=e^{\frac{-2\pi i(n-j)}{N}}$ in zamenjamo vrstni red seštevanja v zadnji enakosti

$$= \frac{1}{N} \sum_{j=0}^{N-1} u(x_j) \sum_{k=0}^{N-1} x^k.$$

Notranja vsota je geometrijska vsota in je enaka

$$\sum_{k=0}^{N-1} x^k = \begin{cases} \frac{x^N - 1}{x - 1} & ; x \neq 1 \\ N & ; x = 1 \end{cases}$$

Ker je $n-j \in \mathbb{Z}$, je $x^N = e^{2\pi i(n-j)} = 1$, zato lahko dodatno poenostavimo

$$\sum_{k=0}^{N-1} x^k = \begin{cases} 0 & ; x \neq 1 \\ N & ; x = 1 \end{cases} = \begin{cases} 0 & ; j \neq n \\ N & ; j = n \end{cases} = N\delta_{jn}$$

$$= \frac{1}{N} \sum_{j=0}^{N-1} u(x_j) \sum_{k=0}^{N-1} x^k = \sum_{j=0}^{N-1} u(x_j) \delta_{jn} = u(x_n).$$

Na enak način dokažemo tudi drugo enakost.

Poglejmo si še nekaj pomembnih lastnotsti diskretne Fourierove transformacije **Trditev 2.25.** Naj bo $u:[a,b)\to\mathbb{C}$ periodična funkcija, $N\in\mathbb{N}$ in $t,n\in\{0,1,\ldots,N-1\}$. Potem veljajo naslednje lastnosti:

i) Periodičnost:

$$U(x_n) = U(x_{n+N}). (2.30)$$

ii) Invarianca za translacijo indeksa:

$$\sum_{k=t}^{N-1+t} u(x_k) e^{\frac{-2\pi i k n}{N}} = \sum_{k=0}^{N-1} u(x_k) e^{\frac{-2\pi i k n}{N}}.$$
 (2.31)

iii) Prostorski premik: transformiranka funkcije u(x-t) je

$$U^{s}(x_n) = U(x_n)e^{\frac{-2\pi kmt}{N}}. (2.32)$$

iv) Konjugacijska simetrija:

$$\overline{U(x_n)} = U(x_{N-n}). \tag{2.33}$$

v) Plancherel-ov izrek:

$$\sum_{k=0}^{N-1} |u(x_k)|^2 = \frac{1}{N} \sum_{n=0}^{N-1} |U(x_k)|^2.$$
 (2.34)

Dokaz.

i)

$$U(x_{n+N}) = \sum_{k=0}^{N-1} u(x_{k+N}) e^{\frac{-2\pi k i (n+N)}{N}} =$$

$$= \sum_{k=0}^{N-1} u(x_k) e^{\frac{-2\pi k n i}{N}} e^{-2\pi k i} =$$

$$= \sum_{k=0}^{N-1} u(x_k) e^{\frac{-2\pi k n i}{N}} = U(x_n).$$

$$\sum_{k=t}^{N-1+t} u(x_k) e^{\frac{-2\pi i k n}{N}} = \sum_{k=0}^{N-1} u(x_{k+t}) e^{\frac{-2\pi i (k+t)n}{N}} =$$

$$= \sum_{k=0}^{N-t-1} u(x_{k+t}) e^{\frac{-2\pi i (k+t)n}{N}} + \sum_{k=N-t}^{N-1} u(x_{k+t}) e^{\frac{-2\pi i (k+t)n}{N}} =$$

Obravnavamo vsako vsoto posebaj:

$$\sum_{k=0}^{N-t-1} u(x_{k+t}) e^{\frac{-2\pi i(k+t)n}{N}} = \sum_{k=t}^{N-1} u(x_k) e^{\frac{-2\pi ikn}{N}}$$

$$\sum_{k=N-t}^{N-1} u(x_{k+t}) e^{\frac{-2\pi i(k+t)n}{N}} = \sum_{k=-t}^{-1} u(x_{N+k+t}) e^{\frac{-2\pi i(k+t+N)n}{N}} =$$

$$= \sum_{k=-t}^{-1} u(x_{k+t}) e^{\frac{-2\pi i(k+t)n}{N}}$$

$$= \sum_{k=-t}^{t-1} u(x_k) e^{\frac{-2\pi ikn}{N}}$$

končna vsota je

$$= \sum_{k=t}^{N-1} u(x_k) e^{\frac{-2\pi i k n}{N}} + \sum_{k=0}^{t-1} u(x_k) e^{\frac{-2\pi i k n}{N}} = \sum_{k=0}^{N-1} u(x_k) e^{\frac{-2\pi i k n}{N}}$$

iii) Označimo transformiranko od u(x-t) s U^s . Potem je

$$U^{s}(x_{n}) = \sum_{k=0}^{N-1} u(x_{k-t})e^{\frac{-2k\pi in}{N}} =$$

$$= \sum_{k=-t}^{N-1-t} u(x_{k})e^{\frac{-2(k+t)\pi in}{N}} =$$

$$= e^{\frac{-2\pi itn}{N}} \sum_{k=-t}^{N-1-t} u(x_{k})e^{\frac{-2k\pi in}{N}} \stackrel{ii)}{=}$$

$$= e^{\frac{-2\pi itn}{N}} \sum_{k=0}^{N-1} u(x_{k})e^{\frac{-2k\pi in}{N}} \stackrel{ii)}{=}$$

$$= e^{\frac{-2\pi itn}{N}} U(x_{n}).$$

iv)

$$\overline{U(x_n)} = \sum_{k=0}^{N-1} u(x_k) e^{\frac{-2\pi i k n}{N}} = \sum_{k=0}^{N-1} u(x_k) e^{\frac{-2\pi i k n}{N}} =$$

$$= \sum_{k=0}^{N-1} u(x_k) e^{\frac{2\pi i k n}{N}} =$$

$$= \sum_{k=0}^{N-1} u(x_k) e^{-\frac{2\pi i (N-k)n}{N}} =$$

$$= U(x_{N-n}).$$

$$\mathbf{v})$$

$$|U(x_n)|^2 = U(x_n)\overline{U(x_n)} =$$

$$= \sum_{k=0}^{N-1} u(x_k) e^{\frac{-2\pi i k n}{N}} \sum_{j=0}^{N-1} \overline{u(x_j)} e^{\frac{2\pi i j n}{N}} =$$

$$= \sum_{k=0}^{N-1} \sum_{j=0}^{N-1} u(x_k) \overline{u(x_j)} e^{\frac{-2\pi i (k-j)n}{N}} =$$

$$\implies \sum_{n=0}^{N-1} |U(x_n)|^2 = \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} \sum_{j=0}^{N-1} u(x_k) \overline{u(x_j)} e^{\frac{-2\pi i(k-j)n}{N}} =$$

$$= \sum_{k=0}^{N-1} u(x_k) \sum_{j=0}^{N-1} \overline{u(x_j)} \sum_{n=0}^{N-1} e^{\frac{-2\pi i(k-j)n}{N}} =$$

Kot pri dokazu izreka 2.24 zapišemo

$$\sum_{n=0}^{N-1} e^{\frac{-2\pi i(k-j)n}{N}} = N\delta_{kj}.$$

Dokaz sedaj hitro sledi

$$= \sum_{k=0}^{N-1} u(x_k) \sum_{j=0}^{N-1} \overline{u(x_j)} \sum_{n=0}^{N-1} e^{\frac{-2\pi i(k-j)n}{N}} =$$

$$= N \sum_{k=0}^{N-1} \sum_{j=0}^{N-1} u(x_k) \overline{u(x_j)} \delta_{kj} =$$

$$= N \sum_{k=0}^{N-1} |u(x_k)|^2.$$

Poglejmo si nekaj posledic dokazanih lastnosti in malo širšo sliko našega cilja.

Očitna ampak močna posledica izreka 2.24 je, da lahko vrednost funkcije zapišemo kot končno vsoto eksponentnih funkcij

$$u(x_n) = \sum_{k=0}^{N-1} a_k e^{\frac{2\pi i k n}{N}},$$
(2.35)

kjer so koeficienti a_k diskretne Fourierove transformiranke

$$a_k = \frac{1}{N}U(x_k) = \frac{1}{N} \sum_{j=0}^{N-1} u(x_j) e^{\frac{-2\pi i j k}{N}}.$$
 (2.36)

Iz definicije DFT (diskretne Fourierove transformacije) se spomnimo, da je argument $x_k = \frac{kL}{N}$, kjer je L dolžina intervala. Zapišimo razvoj 2.35 preko tega argumenta

$$e^{\frac{-2\pi ikn}{N}} = e^{\frac{-2\pi k}{L}} \frac{nL}{N} i = e^{i\kappa_k x_n}$$

torej je

$$u(x_n) = \sum_{k=0}^{N-1} a_k e^{i\kappa_k x_n},$$
(2.37)

kjer je $\kappa_k = \frac{2\pi k}{L}$ valovno število ali frekvenca. To število smo že srečali, ko smo govorili o valovnem preklopnem filtru. Pokazalo se bo, da je ključno pri obravnavi velikosti koraka h za numerično reševanje filtriranih enačb. Zadnja sprememba ki jo opravimo je, da premaknemo indeks seštevanja vrste na tak način, da bo vrst (čim bolj) simetrična okoli ničle. Po lastnosti iii) lahko zamaknemo indeks seštevanja k za N/2-1, pri predpostavki, da je N sodo število

$$u(x_n) = \sum_{k=1-\frac{N}{2}}^{\frac{N}{2}} a_k e^{i\kappa_k x_n}.$$
 (2.38)

V praksi se DFT uporablja, ker Fourierovo transformacijo in Fourierovo vrsto le redko kdaj lahko izračunamo analitično. Izkaže se, da v pravem kontekstu enačimo Fourierovo vrsto in diskretno Fourierovo vrsto

Izrek 2.26. Naj bo $u:[0,L]\to\mathbb{R}$ periodična funkcija s periodo $N\in\mathbb{N}$, katere Fourierov razvoj obstaja. Potem je

$$u(x_n) = \sum_{k=1-\frac{N}{2}}^{\frac{N}{2}} a_k e^{i\kappa_k x_n} = \sum_{k=-\infty}^{\infty} b_k e^{i\kappa_k x_n},$$
 (2.39)

zveza med koeficienti a_k in b_k je

$$a_k = \sum_{m=-\infty}^{\infty} b_{k+mN}.$$
 (2.40)

Dokaz. Razvijemo vrednost $u(x_n)$ v Fourierovo vrsto

$$u(x_n) = \sum_{k=-\infty}^{\infty} b_k e^{i\kappa_k x_n}$$

in ločimo na dva primera:

i) Naj bo $b_k=0$ za $|\kappa_k|\geq \kappa_{\max},$ kjer je $\kappa_{\max}=\kappa_{N/2}.$ Potem je vsota indeksirana od $-(\frac12N-1)$ do $\frac12N-1$

$$u(x_n) = \sum_{k=1-\frac{N}{2}}^{\frac{N}{2}-1} b_k e^{i\kappa_k x_n}$$

in je očitno, da so $b_k = c_k$.

ii) Poglejmo si sedaj splošen primer, brez omejitve na koeficiente b_k . Naj bo $k \in \{-(\frac{1}{2}N-1), \dots (\frac{1}{2}N-1)\}$. Po osnovnem izreku o deljenju, poljuben indeks zapišemo kot k+mN za $m \in \mathbb{Z}$. Valovno število za ta indeks je

$$\kappa_{k+mN} = \frac{2\pi(k+mN)}{L} = \frac{2\pi k}{L} + 2m\frac{2\pi\frac{N}{2}}{L} = \kappa_k + 2m\kappa_{\text{max}}$$

Eksponenti se poenostavijo

$$e^{i\kappa_{k+mN}x_n} = e^{i\kappa_k x_n} e^{2mi\kappa_{\max}x_n} = e^{i\kappa_k x_m} e^{2\pi ikm} = e^{i\kappa_k x_m}$$

Potem se Fourierova vrsta reducira na

$$u(x_n) = \sum_{k=-\infty}^{\infty} b_k e^{i\kappa_k x_n} =$$

$$= \sum_{m=-\infty}^{\infty} \left(\sum_{k=1-\frac{N}{2}}^{\frac{N}{2}-1} b_{k+mN} e^{i\kappa_{k+mN} x_n} \right) =$$

$$= \sum_{m=-\infty}^{\infty} \left(\sum_{k=1-\frac{N}{2}}^{\frac{N}{2}-1} b_{k+mN} e^{i\kappa_k x_n} \right) =$$

$$= \sum_{k=1-\frac{N}{2}}^{\frac{N}{2}-1} e^{i\kappa_k x_n} \left(\sum_{m=-\infty}^{\infty} b_{k+mN} \right) =$$

$$= \sum_{k=1-\frac{N}{2}}^{\frac{N}{2}-1} a_k e^{i\kappa_k x_n},$$

kjer so koeficienti a_k enaki

$$a_k = \sum_{m=-\infty}^{\infty} b_{k+mN}.$$

Ta rezultat pomeni, da lahko Fourierovo vrsto, ki je v splošnem ne moremo točno izračunati, v tem primeru točno prevedemo na končno vsoto preko diskretne Fourierove transformacije.

Naj bo hitrostno polje $u: \mathbb{R} \to \mathbb{R}$ periodično z periodo L. Potem lahko u razvijemo kot v 2.38:

$$u(x) = \sum_{k=1-\frac{N_{\max}}{2}}^{\frac{N_{\max}}{2}} a_k e^{i\kappa_k x}.$$

za nek $N_{\max} \in 2\mathbb{N}$, $a_k \in \mathbb{C}$ in $\kappa_k = \frac{2\pi k}{L}$. Za funkcijo u torej potrebujemo vsaj N_{\max} vrednosti, ločene s korakom h_{\max} , $u(nh_{\max})$, $n=0,1,2,\ldots,N-1$, da jo točno predstavimo. Na začetku razdelka smo videli, da je korak h_{\max} dan z

$$h_{\max} = \frac{L}{N_{\max}}.$$

To prevedemo na maksimalno valovno število, ki se pojavi v DFT razvoju

$$h_{\text{max}} = \frac{L}{N_{\text{max}}} = \frac{\pi L}{L \kappa_{N_{\text{max}}/2}} = \frac{\pi}{\kappa_{N_{\text{max}}/2}}.$$

Ker delamo s filtriranimi polji, poglejmo še Fourierovo vrsto filtriranega polja:

$$\overline{u}(x) = \sum_{k=1-\frac{N_{\max}}{2}}^{\frac{N_{\max}}{2}} \overline{a}_k e^{i\kappa_k x}.$$
(2.41)

Da poiščemo zvezo med koeficienti a_n in \overline{a}_n , filtriramo polje u

$$\overline{u}(x) = \sum_{k=1-\frac{N_{\max}}{2}}^{\frac{N_{\max}}{2}} a_k e^{i\kappa_k x} =$$

$$= \sum_{k=1-\frac{N_{\max}}{2}}^{\frac{N_{\max}}{2}} a_k \overline{e^{i\kappa_k x}} =$$

$$= \sum_{k=1-\frac{N_{\max}}{2}}^{\frac{N_{\max}}{2}} a_k \int_{\mathbb{R}^n} G(r) \cdot e^{i\kappa_k (x-r)} dr =$$

$$= \sum_{k=1-\frac{N_{\max}}{2}}^{\frac{N_{\max}}{2}} a_k e^{i\kappa_n x} \int_{\mathbb{R}^n} G(r) \cdot e^{-i\kappa_k r} dr =$$

$$= \sum_{k=1-\frac{N_{\max}}{2}}^{\frac{N_{\max}}{2}} a_k \hat{G}(\kappa_n) e^{i\kappa_k x}$$

kjer je \hat{G} Fourierova transformiranka filtracijske funkcije G. Zveza med koeficienti je torej

$$\overline{a}_k = \hat{G}(\kappa_k) a_k = T(\kappa_k) a_k. \tag{2.42}$$

Sedaj lahko uporabimo izpeljano teorijo, da določimo velikost koraka h za konkretne filtre v eni dimenziji.

Opomba 2.27. Nauk razdelka je, da lahko polje u točno predstavimo s končnim naborom vrednosti oz. od neke točke naprej, ne dobimo boljšega rezultata, če uporabimo več funkcijskih vrednosti.

2.3.2 Valovno preklopni filter

Spomnimo se, da je valovno preklopni filter je dan z prenosno funkcijo

$$T_c(\kappa) = \begin{cases} 1; & |\kappa| \le \kappa_c \\ 0; & |\kappa| > \kappa_c \end{cases}$$

za $\kappa_c < \kappa_{\text{max}} = \kappa_{N_{\text{max}}/2}$. κ_c izberemo tako, da je

$$N = \frac{\kappa_c L}{\pi} \in 2\mathbb{N}.$$

Koeficienti $\overline{a_k}$ so enaki

$$\overline{a}_k = \begin{cases} a_k; & |\kappa_k| \le \kappa_c \\ 0; & |\kappa_k| > \kappa_c. \end{cases}$$

Zapišemo pogoje preko vrednosti N

$$|\kappa_k| = \left| \frac{2\pi k}{L} \right| \le \kappa_c = \frac{N\pi}{L} \Longrightarrow$$

$$|k| \le \frac{N}{2}$$

Torej je

$$\overline{a}_k = \begin{cases} a_k; & |k| \le \frac{N}{2} \\ 0; & |k| > \frac{N}{2} \end{cases}$$

in Fourierova vrsta filtriranega polja

$$\overline{u}(x) = \sum_{k=1-\frac{1}{2}N}^{\frac{1}{2}N} a_n e^{i\kappa x}.$$
 (2.43)

Brez izgube informacij lahko vrednosti $\overline{u}(nh)$ predstavimo na mreži z razmikom

$$h = \frac{L}{N} = \frac{\pi}{\kappa_c}. (2.44)$$

Tej dolžini pravimo karakteristična filterska dolžina in jo označimo z Δ . Sedaj se prvič vidi bistvo filtracije. Vemo, da lahko za neko število $N \in \mathbb{N}$ u točno predstavimo, vendar je to pogosto neučinkovito, saj prostorska in časovna zahtevnost zelo hitro rasteta. Če pa izberemo κ_c primerno majhen, se število členov v vsoti zmanjša. Sicer rešitev zgubi natančnost, vendar pa pridobimo na učinkovitosti reševanja. Kako izbrati mejo (v tem primeru κ_c) t.j. kako natačno rešitev želimo in koliko pridobimo na učinkovitosti, bo tema naslednjega poglavja.

2.3.3 Gaussov filter

Sedaj bomo obravnavali Gaussov filter. Uporabimo razvoj 2.41

$$\overline{u}(x) = \sum_{k=1-\frac{N_{\max}}{2}}^{\frac{N_{\max}}{2}} \overline{a}_k e^{i\kappa_k x}$$

in poiščimo koeficiente \overline{a}_k , v odvisnosti od a_k .

$$T(\kappa_k) = \int_{\mathbb{R}} G(r) \cdot e^{-i\kappa_k r} \, dr =$$

$$= \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{r^2}{2\sigma^2}} \cdot e^{-i\kappa_k r} \, dr =$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}} e^{-\frac{r^2}{2\sigma^2} - i\kappa_k r} \, dr =$$

Dopolnimo izraz $-\frac{r^2}{2\sigma^2} - i\kappa_k r$ do popolnega kvadrata

$$-\frac{r^2}{2\sigma^2} - i\kappa_k r = -\frac{1}{2\sigma^2} (r^2 + 2\sigma^2 i\kappa_k) =$$

$$= -\frac{1}{2\sigma^2} ((r + i\sigma^2 \kappa_k)^2 + \sigma^4 \kappa_k^2) =$$

$$= -\left(\frac{r + i\sigma^2 \kappa_k}{\sigma\sqrt{2}}\right)^2 - \frac{1}{2}\sigma^2 \kappa_k^2.$$

Integral postane

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}} e^{-\left(\frac{r+i\sigma^2\kappa_k}{\sigma\sqrt{2}}\right)^2 - \frac{1}{2}\sigma^2\kappa_k^2} dr =$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\sigma^2\kappa_k^2} \int_{\mathbb{R}} e^{-\left(\frac{r+i\sigma\kappa_k}{\sqrt{2}}\right)^2} dr =$$

$$\text{uvedemo} \quad x = \frac{r+i\sigma^2\kappa_k}{\sigma\sqrt{2}} \Longrightarrow dx = \frac{1}{\sigma\sqrt{2}} dr$$

$$= \frac{1}{\sqrt{\pi}} e^{-\frac{1}{2}\sigma^2\kappa_k^2} \int_{\mathbb{R}} e^{-x^2} dr = e^{-\frac{1}{2}\sigma^2\kappa_k^2}$$

Če upoštevamo definicijo $\kappa_k = \frac{2\pi k}{L}$, so koeficienti \overline{a}_k enaki

$$\overline{a}_k = e^{-\frac{2\pi^2 \sigma^2 k^2}{L^2}} a_k. \tag{2.45}$$

Naj bo $N < N_{\text{max}}$ in poglejmo aproksimacijo

$$\overline{u}(x) \approx \tilde{u}(x) = \sum_{k=1-\frac{N}{2}}^{\frac{N}{2}} \tilde{a}_k e^{i\kappa_k x}, \qquad (2.46)$$

kjer je največje valovno število $\kappa_r = \kappa_{N/2} = \frac{\pi}{h}$. Razmerje valovnih števil, nam da

$$\frac{\kappa_c}{\kappa_r} = \frac{\frac{\pi}{\Delta}}{\frac{\pi}{h}} = \frac{h}{\Delta}.$$

Koliko moramo skrajšati vrsto \tilde{u} , oz. kakšno razmerje $\frac{h}{\Delta}$ izbrati, da dobimo dobro aproksimacijo in kaj sploh pomeni, dobra aproksimacija odgovorimo v naslednjem poglavju.

2.3.4 Škatlast filter

Poglejmo si še zadnji filter, ki smo ga omenili, to je škatlast filter, za katerega prenosno funkcijo že poznamo. t.j.

$$T(\kappa) = \frac{\sin(\kappa \frac{\Delta}{2})}{\kappa \frac{\Delta}{2}}$$

koeficienti filtriranega polja izraženi preko teh pa so

$$\overline{a}_k = \frac{\sin(\kappa_k \frac{\Delta}{2})}{\kappa_k \frac{\Delta}{2}} a_k = \frac{\sin(k\pi \frac{\Delta}{L})}{\pi k \frac{\Delta}{L}} a_k.$$

3 Energija in spektralna analiza

V tem poglavju bomo turbulenten tok obravnavali z vidika statistike, vendar se bomo hitro začeli nanašati na Fourierovo analizo, ki se je v prejšnjem poglavju pokazala za zelo uporabno. Ta način modeliranja turbulence je prvi razvil Kolmogorov, ideja za tak opis pa predvsem pride iz kaotičnosti turbulence. Iz tega razloga se privzame, da je hitrostno polje **u** slučajno.

3.1 Osnovni pojmi

Spomnimo se nekaj osnovnih pojmov

Definicija 3.1. Trojici (Ω, \mathcal{F}, P) pravimo **verjetnostni prostor**, kjer je Ω vzorčni prostor, \mathcal{F} sigma algebra in P verjetnostna mera. Preslikava $x:\Omega \to [0,1]$ je **slučajna spremenljivka**, če je merljiva glede na \mathcal{F} . **Slučajni vektor** je preslikava $\mathbf{X}:\Omega \to [0,1]^n$, za $n\in\mathbb{N}$, kjer so komponente X_i slučajne spremenljivke.

Mi se bomo omejili na primer, ko je $\Omega = \mathbb{R}^4$, \mathcal{F} Lebesguevova sigma algebra, verjetnostna mera P pa ni znana. Dodatno bomo predpostavili, da imamo slučajnost le v prostorskih spremenljivkah, čas pa naj bo za tok determinističen.

Definicija 3.2. Naj bo **U** slučajni vektor na verjetnostnem prostoru (Ω, \mathcal{F}, P) , kjer je $\Omega \subseteq \mathbb{R}^n$, $\mathcal{F} \in \mathcal{P}(\mathbb{R})$ in P probabilistična mera. Kumulativna porazdelitvena funkcija je

$$F_{\mathbf{U}}(V; x, t) = P(U_1(x, t) < V_1, \dots, U_n(x, t) < V_n)$$
(3.1)

za $i=1,\ldots,n$ in $V\in\Omega$. Porazdelitvena gostota pa je

$$f_{\mathbf{U}}(V; x, t) = \frac{\partial^n F}{\partial x_1 \dots \partial x_n}(x, t)$$
 (3.2)

Opomba 3.3. Predpostavimo, da je probabilistična mera P dovolj gladka, da je definicija dobra.

Definicija 3.4. Naj bo U slučajni vektor. Srednja (pričakovana) vrednost je

$$\langle \mathbf{U}(x,t) \rangle = \int_{\mathbb{R}^n} V \cdot f(V;x,t) \, dV.$$
 (3.3)

Definicija 3.5. Naj bosta U in V slučajna vektorja. Kovarianca je

$$cov(\mathbf{U}, \mathbf{V}) = \langle (\mathbf{U} - \langle \mathbf{U} \rangle) \cdot (\mathbf{V} - \langle \mathbf{V} \rangle)^T \rangle$$
(3.4)

Opomba 3.6. Enakost iz prejšnje definicije z malo računanja lahko prepišemo v

$$cov(\mathbf{U}, \mathbf{V}) = \langle \mathbf{U} \cdot \mathbf{V}^T \rangle - \langle \mathbf{U} \rangle \langle \mathbf{V} \rangle^T$$
(3.5)

F oz. f ne poznamo. V praksi ali teoriji se pogosto definira različne vrste povprečji, ki jih je ali lažje obravnavati (prostorsko povprečje) ali lažje izračunatin(ansambelsko povprečje). V določenih scenarijih približna povprečja konvergirajo k pravemu ali celo konvergirajo ena k drugem (ergodična hipoteza).

Definicija 3.7. Naj bo $\mathbf{U}: \mathbb{R}^n \times \mathbb{R}^+ \to \mathbb{C}^m$ periodična v prvi spremenljivki za L > 0 t.j.

$$\forall N \in \mathbb{Z}^n : \mathbf{U}(\mathbf{x} + L\mathbf{N}, t) = \mathbf{U}(\mathbf{x}, t).$$

Kompleksna Fourierova vrsta preslikave ${\bf U}$ je

$$\mathbf{U}(\mathbf{x},t) = \sum_{\mathbf{k} \in \mathbb{Z}^n} \hat{\mathbf{u}}(\boldsymbol{\kappa}_{\mathbf{k}}, t) e^{i\boldsymbol{\kappa}_{\mathbf{k}} \cdot \mathbf{x}}, \tag{3.6}$$

 $\kappa_{\mathbf{k}} = \frac{2\pi}{L}\mathbf{k}$ in koeficienti $\hat{\mathbf{u}}_{\mathbf{k}}$ dani z

$$\hat{\mathbf{u}}(\boldsymbol{\kappa}_{\mathbf{k}}, t) = \frac{1}{L^n} \int_{[0, L]^n} \mathbf{U}(\mathbf{x}, t) e^{-i\boldsymbol{\kappa}_{\mathbf{k}} \cdot \mathbf{x}} \, d\mathbf{x}. \tag{3.7}$$

Definicija 3.8. Za slučajen U, definiramo turbulenten del toka U

$$\mathbf{u}(\mathbf{x},t) := \mathbf{U}(\mathbf{x},t) - \langle \mathbf{U}(\mathbf{x},t) \rangle \tag{3.8}$$

oz. razcep U na povprečen in turbulenten del

$$\mathbf{U}(\mathbf{x},t) = \langle \mathbf{U}(\mathbf{x},t) \rangle + \mathbf{u}(\mathbf{x},t). \tag{3.9}$$

Če \mathbf{U} zapišemo v Fourierovo vrsto, so koeficienti \mathbf{a}_k slučajni.

Poglejmo si nekaj **statističnih lastnosti**, ki jih slučajni vektor **U** lahko prikaže

- Homogenost: $f(V; x + x_0, t) = f(V; x, t)$ za $x_0 \in \mathbb{R}^3$ t.j. U je translacijsko invariantna.
- Stacionarnost: $f(V; x, t + t_0) = f(V; x, t)$ za t > 0 t.j. U je časovno invariantna.
- Izotropičnost: f(V; Rx, t) = f(V; x, t) za $R \in O(n)$ in **U** je homogeno t.j. **U** je invariantna za rotacije, zrcaljenja in translacije.

Lema 3.9. Naj bo slučajni vektor U homogen. Potem je pričakovana vrednost $\langle U \rangle$ neodvisna od x.

Dokaz. Naj za slučajni vektor U velja:

$$\forall \mathbf{x}_0, \mathbf{x} \in \mathbb{R}^n : f(V; \mathbf{x} + \mathbf{x}_0, t) = f(\mathbf{V}; \mathbf{x}, t).$$

Po definiciji pričakovane vrednosti

$$\langle \mathbf{U}(\mathbf{x},t) \rangle = \int_{\mathbb{R}^n} \mathbf{V} \cdot f(\mathbf{V};\mathbf{x},t) \, d\mathbf{V} = \int_{\mathbb{R}^n} \mathbf{V} \cdot f(\mathbf{V};\mathbf{x}+\mathbf{x}_0,t) \, d\mathbf{V} = \langle \mathbf{U}(\mathbf{x}+\mathbf{x}_0,t) \rangle$$

Ker enakost velja za vsak \mathbf{x}_0 in \mathbf{x} :

$$\langle \mathbf{U}(\mathbf{x},t) \rangle = \langle \mathbf{U}(\mathbf{x} + \mathbf{x}_0,t) \rangle = \langle \mathbf{U}(\mathbf{x}_0 + \mathbf{x},t) \rangle = \langle \mathbf{U}(\mathbf{x}_0,t) \rangle$$

Fiksiramo \mathbf{x}_0 in trditev sledi.

Enostavna posledica trditve je, da za primerno izbran koordinatni sistem, lahko za homogen slučajni vektor nastavimo $\langle \mathbf{U}(\mathbf{x},t)\rangle = 0$.

Sedaj definiramo količino, ki bo ključna za nadaljno obravnavo energije.

Definicija 3.10. Naj bo U slučajni vektor. Količini

$$R(\mathbf{r}, \mathbf{x}, t) = \langle \mathbf{U}(\mathbf{x}, t) \cdot \mathbf{U}^{T}(\mathbf{x} + \mathbf{r}, t) \rangle$$
(3.10)

pravimo dvo-točkovna korelacija.

Intuitivno ta količina pove, kako podobno se hitrosti u_i in u_j obnašata t.j. večja, kot bo količina R_{ij} bolj sta si hitrosti podobni (npr. dve žogici v vodnem toku, ki sta zelo blizu imata podobno pot) oz. manjša kot je korelacija bolj sta si hitrosti različni (npr. dva lista, ki padeta iz drevesa ki sta zelo narazen, bosta skoraj gotovo imela zelo različno pot).

Lema 3.11. Če je **U** homogen slučajni vektor, je dvo-točkovna korelacija $R(\mathbf{r}, \mathbf{x}, t)$ neodvisna od druge komponente. Označimo $R(\mathbf{r}, \mathbf{x}, t) = R(\mathbf{r}, 0, t) = R(\mathbf{r}, t)$

Dokaz. Z enakim argumentom, kot v dokazu 3.9 dobimo, da je porazdelitvena gostota neodvisna od \mathbf{x} . Zato je tudi produkt slučajnih vektorjev $\mathbf{U}(\mathbf{x},t) \cdot \mathbf{U}^T(\mathbf{x},t)$ neodvisen od \mathbf{x} .

Lema 3.12. Naj bo U slučajni vektor. Za dvo-točkovno korelacijo velja

$$(R(\mathbf{r}, \mathbf{x}, t))^T = R(-\mathbf{r}, \mathbf{x} + \mathbf{r}, t). \tag{3.11}$$

Če je **U** homogen, velja

$$(R(\mathbf{r},t))^T = R(-\mathbf{r},t). \tag{3.12}$$

Dokaz.

$$R(-\mathbf{r}, \mathbf{x} + \mathbf{r}, t) = \langle \mathbf{U}(\mathbf{x} + \mathbf{r}, t) \cdot \mathbf{U}^{T}((\mathbf{x} + \mathbf{r}) - \mathbf{r}, t) \rangle =$$

$$= \langle \mathbf{U}(\mathbf{x} + \mathbf{r}, t) \cdot \mathbf{U}^{T}(\mathbf{x}, t) \rangle =$$

$$= \langle (\mathbf{U}(\mathbf{x}, t) \cdot \mathbf{U}(\mathbf{x} + \mathbf{r}, t))^{T} \rangle =$$

$$= \langle \mathbf{U}(\mathbf{x}, t) \cdot \mathbf{U}^{T}(\mathbf{x} + \mathbf{r}, t) \rangle^{T} =$$

$$= (R(\mathbf{r}, \mathbf{x}, t))^{T}.$$

Po prejnji lemi 3.11, druga enakost sledi.

Sedaj si poglejmo, kako nam dani koncepti pomagajo pri analizi energije. Naj bo ${\bf U}$ homogen slučajni vektor, periodičen vL>0, ki predstavlja naš tok. Lahko predpostavimo, da je $\langle {\bf U}({\bf x},t)\rangle=0$. Naslednja smiselna statistika za analizo je kovarianca oz. če obravnavamo en slučajen vektor, varianca

$$var(\mathbf{U}) = cov(\mathbf{U}, \mathbf{U}) = \langle \mathbf{U}\mathbf{U}^T \rangle - \langle \mathbf{U} \rangle \cdot \langle \mathbf{U} \rangle^T = \langle \mathbf{U}\mathbf{U}^T \rangle$$

Ker je direktna analiza polja **U** težavna, razvijemo **U** v Fourierovo vrsto. Ta pristop je uporaben, saj določena valovna števila $\kappa_{\mathbf{k}}$ močneje vplivajo na obnašanje toka kot druga, in lahko analizo omejimo le na ta.

$$\mathbf{U}(\mathbf{x},t) = \sum_{\mathbf{k} \in \mathbb{Z}^n} \hat{\mathbf{u}}(\boldsymbol{\kappa}_{\mathbf{k}},t) e^{i\boldsymbol{\kappa}_{\mathbf{k}} \cdot \mathbf{x}}$$

$$\Longrightarrow \langle \mathbf{U}\mathbf{U}^T \rangle = \left\langle \left(\sum_{\mathbf{k} \in \mathbb{Z}^n} \hat{\mathbf{u}}(\boldsymbol{\kappa}_{\mathbf{k}},t) e^{i\boldsymbol{\kappa}_{\mathbf{k}} \cdot \mathbf{x}} \right) \cdot \left(\sum_{\mathbf{l} \in \mathbb{Z}^n} \hat{\mathbf{u}}(\boldsymbol{\kappa}_{\mathbf{l}},t) e^{i\boldsymbol{\kappa}_{\mathbf{l}} \cdot \mathbf{x}} \right)^T \right\rangle =$$

$$= \left\langle \sum_{\mathbf{k},\mathbf{l} \in \mathbb{Z}^n} \hat{\mathbf{u}}(\boldsymbol{\kappa}_{\mathbf{k}},t) \hat{\mathbf{u}}^T(\boldsymbol{\kappa}_{\mathbf{l}},t) e^{i(\boldsymbol{\kappa}_{\mathbf{k}} + \boldsymbol{\kappa}_{\mathbf{l}}) \cdot \mathbf{x}} \right\rangle =$$

$$= \sum_{\mathbf{k},\mathbf{l} \in \mathbb{Z}^n} \langle \hat{\mathbf{u}}(\boldsymbol{\kappa}_{\mathbf{k}},t) \hat{\mathbf{u}}^T(\boldsymbol{\kappa}_{\mathbf{l}},t) \rangle e^{i(\boldsymbol{\kappa}_{\mathbf{k}} + \boldsymbol{\kappa}_{\mathbf{l}}) \cdot \mathbf{x}}$$

Poenostavimo povprečen člen v vsoti:

$$\langle \hat{\mathbf{u}}(\boldsymbol{\kappa}_{\mathbf{k}},t)\hat{\mathbf{u}}^T(\boldsymbol{\kappa}_{\mathbf{l}},t)\rangle = \left\langle \left(\frac{1}{L^n}\int_{[0,L]^n}\mathbf{u}(\mathbf{x},t)e^{-i\boldsymbol{\kappa}_{\mathbf{k}}\cdot\mathbf{x}}\right)\cdot \left(\frac{1}{L^n}\int_{[0,L]^n}\mathbf{u}(\mathbf{x},t)e^{-i\boldsymbol{\kappa}_{\mathbf{l}}\cdot\mathbf{x}}\right)^T\right\rangle =$$

Ker je u zvezna, po Fubinijevem izreku lahko zapišemo

$$= \left\langle \frac{1}{L^{2n}} \int_{[0,L]^n} \int_{[0,L]^n} \mathbf{u}(\mathbf{x},t) \cdot \mathbf{u}^T(\mathbf{x}',t) e^{-i(\kappa_{\mathbf{k}} \cdot \mathbf{x} + \kappa_{\mathbf{l}} \cdot \mathbf{x}')} \, d\mathbf{x} \, d\mathbf{x}' \right\rangle$$

Uvedemo novo neznanko v notranji integral $\mathbf{x} = \mathbf{r} + \mathbf{x}' \Longrightarrow d\mathbf{x} = d\mathbf{r}$, ter operacijo povprečenja premaknemo v integrand, ker je \mathbf{u} gladka:

$$= \frac{1}{L^{2n}} \int_{[0,L]^n} \int_{[0,L]^n - \mathbf{x}'} \left\langle \mathbf{u}(\mathbf{x}' + \mathbf{r}, t) \cdot \mathbf{u}^T(\mathbf{x}', t) \right\rangle e^{-i((\kappa_{\mathbf{k}} + \kappa_{\mathbf{l}})\mathbf{x}' + \kappa_{\mathbf{k}} \cdot \mathbf{r})} d\mathbf{r} d\mathbf{x}'$$

Količina v integrandu je dvo-točkovna korelacija, ki je neodvisna od \mathbf{x}' zato lahko preuredimo integral

$$= \frac{1}{L^{2n}} \int_{[0,L]^n} \int_{[0,L]^n - \mathbf{x}'} R(\mathbf{r},t) e^{-i((\kappa_{\mathbf{k}} + \kappa_{\mathbf{l}})\mathbf{x}' + \kappa_{\mathbf{k}} \cdot \mathbf{r})} d\mathbf{r} d\mathbf{x}'$$

$$= \frac{1}{L^n} \int_{[0,L]^n} e^{-i(\kappa_{\mathbf{k}} + \kappa_{\mathbf{l}})\mathbf{x}'} \left(\frac{1}{L^n} \int_{[0,L]^n - \mathbf{x}'} R(\mathbf{r},t) e^{-i\kappa_{\mathbf{k}} \cdot \mathbf{r}} d\mathbf{r} \right) d\mathbf{x}'$$

Potrebujemo še eno lemo, ki nam pove, da je notranji integral neodvisen od \mathbf{x}'

Lema 3.13. Naj bo $\mathbf{f} \in C([0,L]^n)$ vektorsko polje, ki je periodično za L > 0 in $\mathbf{a} \in \mathbb{R}^n$. Potem je

$$\int_{[0,L]^n+a} \boldsymbol{f}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \int_{[0,L]^n} \boldsymbol{f}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}$$

Dokaz. Definiramo funkcijo

$$g(\mathbf{a}) \coloneqq \int_{[0,L]^n + \mathbf{a}} \mathbf{f}(\mathbf{x}) \, \mathrm{d}\mathbf{x}.$$

Razpišemo integrale po intervalih in izračunamo parcialni odvod

$$\frac{\partial g}{\partial a_i}(\mathbf{a}) = \frac{\partial}{\partial a_i} \int_{a_1}^{L+a_1} \cdots \int_{a_i}^{L+a_i} \cdots \int_{a_n}^{L+a_n} \mathbf{f}(x_1, \dots, x_n) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_i \dots \, \mathrm{d}x_n.$$

Parcialni odvod lahko zamenjamo z integrali zaradi odvedljivosti **f** in končnosti intervalov, vrstne rede integriranja pa zaradi Fubinijevega izreka

$$\frac{\partial g}{\partial a_i}(\mathbf{a}) = \int_{a_1}^{L+a_1} \cdots \int_{a_n}^{L+a_n} \left(\frac{\partial}{\partial a_i} \int_{a_i}^{L+a_i} \mathbf{f}(x_1, \dots, x_n) \, \mathrm{d}x_i \right) \mathrm{d}x_1 \dots \mathrm{d}x_n.$$

Notranji integral zapišemo preko primitivne funckije

$$\frac{\partial}{\partial a_{i}} \int_{a_{i}}^{L+a_{i}} \mathbf{f}(x_{1}, \dots, x_{n}) dx_{i} =
= \frac{\partial}{\partial a_{i}} (\mathbf{F}(x_{1}, \dots, x_{i-1}, L+a_{i}, x_{i+1}, \dots, x_{n}) - \mathbf{F}(x_{1}, \dots, x_{i-1}, a_{i}, x_{i+1}, \dots, x_{n})) =
= \mathbf{f}(x_{1}, \dots, x_{i-1}, L+a_{i}, x_{i+1}, \dots, x_{n}) - \mathbf{f}(x_{1}, \dots, x_{i-1}, a_{i}, x_{i+1}, \dots, x_{n}) =
= \mathbf{f}(x_{1}, \dots, x_{i-1}, a_{i}, x_{i+1}, \dots, x_{n}) - \mathbf{f}(x_{1}, \dots, x_{i-1}, a_{i}, x_{i+1}, \dots, x_{n}) =
= 0,$$

kjer zadnja enakost sledi iz periodičnosti **f**. Ker je odvod funkcije **g** po vseh parcialnih odvodih enak 0 je $\mathbf{g}(\mathbf{a}) = \mathbf{g}_0 \in \mathbb{R}^n$ za vsak $\mathbf{a} \in \mathbb{R}^n$. Če vstavimo $\mathbf{a} = \mathbf{0}$ trditev sledi.

Sedaj lahko zaključimo izpeljavo kovariance. Ker je notranji integral po zadnji lemi neodvisen od \mathbf{x}' dobimo

$$= \frac{1}{L^n} \int_{[0,L]^n} e^{-i(\kappa_{\mathbf{k}} + \kappa_{\mathbf{l}})\mathbf{x}'} \left(\frac{1}{L^n} \int_{[0,L]^n} R(\mathbf{r}, t) e^{-i\kappa_{\mathbf{k}} \cdot \mathbf{r}} \, d\mathbf{r} \right) d\mathbf{x}'$$

Ponovno uporabimo Fubinijev izrek

$$= \left(\frac{1}{L^n} \int_{[0,L]^n} e^{-i(\kappa_{\mathbf{k}} + \kappa_{\mathbf{l}})\mathbf{x}'} d\mathbf{x}'\right) \cdot \left(\frac{1}{L^n} \int_{[0,L]^n} R(\mathbf{r},t) e^{-i\kappa_{\mathbf{k}} \cdot \mathbf{r}} d\mathbf{r}\right)$$
$$= \hat{R}(\kappa_{\mathbf{k}}, t) \cdot \delta_{(\kappa_{\mathbf{k}} + \kappa_{\mathbf{l}}),0}$$

Kovarianca se poenostavi

$$\langle \mathbf{U}\mathbf{U}^{T}\rangle = \sum_{\mathbf{k},\mathbf{l}\in\mathbb{Z}^{n}} \langle \hat{\mathbf{u}}(\boldsymbol{\kappa}_{\mathbf{k}},t) \hat{\mathbf{u}}^{T}(\boldsymbol{\kappa}_{\mathbf{l}},t) \rangle e^{i(\boldsymbol{\kappa}_{\mathbf{k}}+\boldsymbol{\kappa}_{\mathbf{l}})\cdot\mathbf{x}} =$$

$$= \sum_{\mathbf{k},\mathbf{l}\in\mathbb{Z}^{n}} \hat{R}(\boldsymbol{\kappa}_{\mathbf{k}},t) \cdot \delta_{(\boldsymbol{\kappa}_{\mathbf{k}}+\boldsymbol{\kappa}_{\mathbf{l}}),0} e^{i(\boldsymbol{\kappa}_{\mathbf{k}}+\boldsymbol{\kappa}_{\mathbf{k}})\cdot\mathbf{x}} =$$

$$= \sum_{\mathbf{k}\in\mathbb{Z}^{n}} \hat{R}(\boldsymbol{\kappa}_{\mathbf{k}},t)$$

Iz klasčne mehanike vemo, da je kinetična energija enaka $E=\frac{1}{2}mu^2$. Ker je faktor $\frac{1}{2}m$ konstanten, za analizo ni pomemben. Člen u^2 analogen členu $\mathbf{U}\mathbf{U}^T$. Zato kovarianca oz. kovariančna matrika vsebuje vse informacije o kinetični energiji toka, v danem valovnem številu. Zgornja izpeljava pa je pokazala, da je za analizo te energije dovolj obravnavati \hat{R} . To je motivacija za naslednjo definicijo. Preden jo zapišemo, lahko dobljeni rezultat malo posplošimo. Preko transformacije $\mathbf{x}=\mathbf{s}-\frac{L}{2}(1,\ldots,1)$, se integral premakne na simetrične intervale $\left[-\frac{L}{2},\frac{L}{2}\right]^n$. Limita $L\to\infty$ izraza je Fourierova transformacija :

$$\lim_{L \to \infty} \hat{R}(\boldsymbol{\kappa}_{\mathbf{k}}, t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \mathbf{R}(\mathbf{x}, t) e^{-i\boldsymbol{\kappa} \cdot \mathbf{x}} \, d\mathbf{x} = \hat{R}(\boldsymbol{\kappa}, t).$$

Prednost uporabe tega zapisa je, da periodičnost ni več potrebna. Čeprav v določenih primerih, kjer so domene majhne, ta približek ne bo nujno dober, je za primere atmosfere dovolj natančen. Druga prednost tega zapisa je, da je spremenljivka $\kappa_k \to \kappa$ zvezna in ne diskretna.

Definicija 3.14. Naj bo **U** slučajni vektor in $\kappa \in \mathbb{R}^n$. **Hitrostno-spektralni** tenzor je

$$\Phi(\boldsymbol{\kappa}, t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} R(\mathbf{x}, t) e^{-i\boldsymbol{\kappa} \cdot \mathbf{x}} \, d\mathbf{x} = \hat{R}(\boldsymbol{\kappa}, t)$$
(3.13)

Poglejmo si nekaj lastnosti hitrostno-spektralnega tenzorja:

Trditev 3.15. Naj bo $\kappa \in \mathbb{R}^n$ in $\Phi(\kappa, t)$ hitrostno spektralni tenzor, prirejen slučajnemu vektorju U. Potem velja:

i)
$$\Phi(\boldsymbol{\kappa}, t) = (\Phi(-\boldsymbol{\kappa}, t))^T = (\Phi(\boldsymbol{\kappa}, t))^*$$

ii) $\Phi(\boldsymbol{\kappa}, t)$ je pozitivno semidefiniten, $\forall \boldsymbol{v} \in \mathbb{R}^n : \boldsymbol{v}^T \Phi(\boldsymbol{\kappa}, t) \boldsymbol{v} > 0$.

iii) Če velja
$$\nabla \cdot \mathbf{U} = 0$$
, potem je $\mathbf{\kappa}^T \Phi(\mathbf{\kappa}, t) = \Phi(\mathbf{\kappa}, t) \mathbf{\kappa} = 0$.

Dokaz.

i)

$$\Phi^*(\boldsymbol{\kappa}, t) = \frac{1}{(2\pi)^n} \left(\int_{\mathbb{R}^n} R(\mathbf{x}, t) e^{-i\boldsymbol{\kappa} \cdot \mathbf{x}} \, d\mathbf{x} \right)^* =$$

$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} R(\mathbf{x}, t)^* e^{i\boldsymbol{\kappa} \cdot \mathbf{x}} \, d\mathbf{x} =$$

$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} (R(\mathbf{x}, t))^T e^{i\boldsymbol{\kappa} \cdot \mathbf{x}} \, d\mathbf{x} =$$

$$= \frac{1}{(2\pi)^n} \left(\int_{\mathbb{R}^n} R(\mathbf{x}, t) e^{i\boldsymbol{\kappa} \cdot \mathbf{x}} \, d\mathbf{x} \right)^T =$$

$$= (\Phi(-\boldsymbol{\kappa}, t))^T.$$

Nadaljujemo iz zadnjih enakosti:

$$\Phi^*(\boldsymbol{\kappa}, t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} (R(\mathbf{x}, t))^T e^{i\boldsymbol{\kappa} \cdot \mathbf{x}} \, d\mathbf{x} =$$

$$\stackrel{3.12}{=} \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} R(-\mathbf{x}, t) e^{i\boldsymbol{\kappa} \cdot \mathbf{x}} \, d\mathbf{x} =$$

$$\stackrel{x \to -x}{=} \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} R(\mathbf{x}, t) e^{-i\boldsymbol{\kappa} \cdot \mathbf{x}} \, d\mathbf{x} =$$

$$= \Phi(\boldsymbol{\kappa}, t).$$

ii) Naj bo $\mathbf{v} \in \mathbb{R}^n$. Definiramo $g(\boldsymbol{\kappa}) \coloneqq \mathbf{v} \cdot \hat{\mathbf{u}}(\boldsymbol{\kappa},t)$. Imamo

$$0 \leq \langle g^*(\boldsymbol{\kappa}) \cdot g(\boldsymbol{\kappa}) \rangle = \langle (\mathbf{v} \cdot \hat{\mathbf{u}}(\boldsymbol{\kappa}, t))^* \cdot (\mathbf{v} \cdot \hat{\mathbf{u}}(\boldsymbol{\kappa}, t)) \rangle =$$

$$= \langle (\hat{\mathbf{u}}^*(\boldsymbol{\kappa}, t)) \cdot (\mathbf{v}^* \cdot \mathbf{v}) \cdot \hat{\mathbf{u}}(\boldsymbol{\kappa}, t)) \rangle =$$

$$= \langle (\mathbf{v}^* \mathbf{v}) \cdot (\hat{\mathbf{u}}^*(\boldsymbol{\kappa}, t) \cdot \hat{\mathbf{u}}(\boldsymbol{\kappa}, t)) \rangle =$$

$$= (\mathbf{v}^T \mathbf{v}) \langle \hat{\mathbf{u}}^*(\boldsymbol{\kappa}, t) \cdot \hat{\mathbf{u}}(\boldsymbol{\kappa}, t) \rangle =$$

Kot pri izpeljavi kovariančne matrike, je izraz enak

$$= (\mathbf{v}^T \mathbf{v}) \cdot \hat{R}(\boldsymbol{\kappa}, t) = \mathbf{v}^T \hat{R}(\boldsymbol{\kappa}, t) \mathbf{v} = \mathbf{v}^T \Phi(\boldsymbol{\kappa}, t) \mathbf{v} \ge 0.$$

iii) Enakost zapišemo v spektralnem protstoru

$$0 = \mathcal{F}(\nabla \cdot \mathbf{U})(\boldsymbol{\kappa}) = \mathcal{F}\left(\sum_{i=1}^{n} \frac{\partial u_i}{\partial x_i}\right) = \sum_{i=1}^{n} \mathcal{F}\left(\frac{\partial u_i}{\partial x_i}\right)(\boldsymbol{\kappa}) = i \sum_{i=1}^{n} \boldsymbol{\kappa}_i \hat{u}_i(\boldsymbol{\kappa}, t) = i \boldsymbol{\kappa} \cdot \hat{\mathbf{u}}(\boldsymbol{\kappa}, t)$$

$$\boldsymbol{\kappa}^T \Phi(\boldsymbol{\kappa}, t) = \boldsymbol{\kappa}^T \langle \hat{\mathbf{u}}(\boldsymbol{\kappa}, t) \cdot \hat{\mathbf{u}}^*(\boldsymbol{\kappa}, t) \rangle = \langle (\boldsymbol{\kappa}^T \mathbf{u}(\boldsymbol{\kappa}, t)) \cdot \hat{\mathbf{u}}^*(\boldsymbol{\kappa}, t) \rangle = 0.$$

Za drugo enakost, izpeljano transponirano

$$0 = (\boldsymbol{\kappa}^T \Phi(\boldsymbol{\kappa}, t))^T = \Phi^T(\boldsymbol{\kappa}, t) \cdot \boldsymbol{\kappa} \stackrel{i)}{=} \Phi(-\boldsymbol{\kappa}, t) \cdot \boldsymbol{\kappa} \stackrel{\boldsymbol{\kappa} \to -\boldsymbol{\kappa}}{=} -\Phi(\boldsymbol{\kappa}, t) \cdot \boldsymbol{\kappa}.$$

3.2 Hipoteze Kolomogorova

Pionir teorije turbulence je sovjetski matematik Andrej Nikolajevič Kolmogorov. Na podlagi opažanj in rezultatov, ki pridejo iz Navier-Stokesovih enačb, je leta 1941 formuliral tri hipoteze, ki so še do danes osnova za razumevanje in analiziranje turbulentnih tokov.

Naj bo **U** slučajni vektor, ki predstavlja hitrostno polje, na domeni $\Omega \subseteq \mathbb{R}^3$ in $\mathbf{x}^{(0)}$, $\mathbf{x}^{(1)}$, ... $\mathbf{x}^{(N)} \in \Omega$. Definiramo nove koordinate in novo hitrostno polje:

$$\mathbf{y} = \mathbf{x} - \mathbf{x}^{(0)}$$
$$\mathbf{V}(\mathbf{y}, t) = \mathbf{U}(\mathbf{x}, t) - \mathbf{U}(\mathbf{x}^{(0)}, t)$$

Porazdelitveno gostoto za \mathbf{V} v N točkah $\mathbf{y}^{(1)}, \ldots, \mathbf{y}^{(N)}$ označimo $f_{\mathbf{V}}^{(N)}$.

Definicija 3.16 (Lokalna homogenost). Slučajna spremenljivka \mathbf{V} je lokalno homogena na domeni $\Omega \subseteq \mathbb{R}^n$, če za vsak $N \in \mathbb{N}$ in $\mathbf{y}^{(n)}$, kjer je $n = 1, \ldots, N$, velja, da je porazdelitvena gostota $f_{\mathbf{V}}^{(N)}$ neodvisna od $\mathbf{x}^{(0)}$ in $\mathbf{U}(\mathbf{x}^{(0)}, t)$.

Definicija 3.17 (Lokalna izotropičnost). Slučajna spremenljivka V je lokalno izotropična na domeni $\Omega \subseteq \mathbb{R}^n$, če je lokalno homogena in je porazdelitvena gostota $f_{\mathbf{V}}^{(N)}$ invariantna na rotacije in zrcaljenja.

Sedaj preko danih definicij lahko navedemo hipoteze Kolmogorova.

i) **Hipoteza o lokalni izotropiji**: Naj bo **U** slučajni vektor, ki opisuje turbulenten tok na domeni $\Omega \subseteq \mathbb{R}^3$ in $Re \gg 1$, za $L, U, \nu > 0$. Če za vsak $x \in \Omega$, obstaja okolica $G \subset \Omega$ za \mathbf{x} , da za vsak $\mathbf{y} \in G$ velja

$$|\mathbf{y} - \mathbf{x}| \ll L$$

potem je $f_{\mathbf{V}}^{(N)}$ lokalno izotropična na G.

- ii) Prva podobnostna hipoteza: Naj bo U slučajni vektor, ki opisuje turbulenten tok na domeni $\Omega \subseteq \mathbb{R}^3$ in $Re \gg 1$, za $L, U, \nu > 0$. Potem je porazdelitvena funkcija $f_{\mathbf{V}}^{(N)}$ enolično določena z viskozno disipativnostjo ϵ in viskoznostjo ν .
- iii) **Druga podobnostna hipoteza**: Naj bo **U** slučajni vektor, ki opisuje turbulenten tok na domeni $\Omega \subseteq \mathbb{R}^3$ in $Re \gg 1$, za $L, U, \nu > 0$, ter $N \in \mathbb{N}$. Če za vsak $n, m \in \{1, \ldots, N\}$ in $n \neq m$ velja

$$|\mathbf{y}^{(n)} - \mathbf{y}^{(m)}| \gg \eta,$$

 $|\mathbf{y}^{(n)}| \gg \eta,$

kjer je η dolžina Kolmogorova, potem je $f_{\mathbf{V}}^{(N)}$ enolično določena z ϵ .

3.3 Energijsko spektralna funkcija

Do sedaj smo videli pomembnost dvo-točkovne korelacije in kovariance. Zaradi hipoteze o lokalni izotropiji, se lahko pri obravnavi energije turbulentnih tokov, omejimo na hitrostno-spektralni tenzor $\Phi(\kappa,t)$. Na žalost je tenzor vse prej kot enostaven, tudi če se omejimo na tri dimenzionalen primer. V tem razdelku bomo pokazali, da nam predpostavka o izotropiji omogoča, da tenzor Φ zapišemo preko enostavneše funkcije, ki ji pravimo energijsko spektralna funkcija. Obliko funckije bam bodo dale Kolomogorove hipotez podobnostni.

Definicija 3.18. Naj bo **U** slučajni vektor in $\Phi(\kappa, t)$ hitrostno-spektralni tenzor, prirejen **U**. Potem je **energijsko spektralna funkcija** $E:[0,\infty)\to\mathbb{R}$, dana s predpisom

$$E(\kappa, t) = \oint_{|\kappa| = \kappa} \frac{1}{2} \operatorname{tr}(\Phi(\kappa, t)) \, d\kappa$$
 (3.14)

in enodimenzionalna spektralna funkcija enaka

$$E_{ij}^{k}(\boldsymbol{\kappa} \cdot \mathbf{e}_{k}) = \frac{1}{\pi} \int_{\mathbb{R}} R_{ij}(r\mathbf{e}_{k}) e^{-i(\boldsymbol{\kappa} \cdot \mathbf{e}_{k})r} \, \mathrm{d}r.$$
 (3.15)

Opomba 3.19.

• Ker je Φ pozitivno semidefiniten, je E pozitivna funkcija. To hitro sledi, če vzamemo enostki vektor e_i za $i \in \mathbb{N}$:

$$0 \le e_i^T \Phi(\boldsymbol{\kappa}, t) e_i = \Phi_{ii}(\boldsymbol{\kappa}, t) \Longrightarrow \operatorname{tr}(\Phi(\boldsymbol{\kappa}, t)) \ge 0.$$

• E_{ij}^k je povezana s Φ preko

$$E_{ij}^{k}(\boldsymbol{\kappa} \cdot \mathbf{e}_{k}) = 2 \int_{\mathbb{R}^{n-1}} \Phi_{ij}(\boldsymbol{\kappa}) \, \mathrm{d}\hat{\boldsymbol{\kappa}_{k}},$$

kjer je $d\hat{\boldsymbol{\kappa}}_k = d\kappa_1 \dots d\kappa_{k-1} d\kappa_{k+1} \dots d\kappa_n$

Navedimo še dve definiciji, ki sta pomembni pri obravnavi energije turbulentnih tokov in utemeljita zakaj je obravnava tenzorja Φ smiselna.

Definicija 3.20. Turbulentna kinetična energija je funkcija $k: \mathbb{R}^+ \to \mathbb{R}^+$ dana s predpisom

$$k(t) = \frac{1}{2} \operatorname{tr}(R(0,t)) = \frac{1}{2} \sum_{i=1}^{n} \langle u^2(0,t) \rangle = \int_0^\infty E(\kappa,t) \, d\kappa.$$
 (3.16)

Definicija 3.21. Viskozna disipativnost je funkcija $\epsilon: \mathbb{R}^+ \to \mathbb{R}^+$ dana s predpisom

 $\epsilon(t) = \int_{\mathbb{R}^n} \nu |\kappa|^2 \operatorname{tr}(\Phi(\kappa, t)) \, \mathrm{d}\kappa. \tag{3.17}$

Opomba 3.22. Da se preveriti, da ta definicija viskozne disipativnosti sovpada s tisto iz prvega poglavja.

Funkcija E vsebuje manj informacij, kot Φ , primarno opazimo, da smo izgubili informacijo energije v različnih smereh. Vendar nam intuicija pravi, ker delamo pod predpostavko izotropičnosti, bi morala obstajati relacija med E in Φ . Začnemo z naslednjim izrekom

Izrek 3.23. Naj bo $T: \mathbb{R}^n \to M_n(\mathbb{R})$ izotropična tenzorska funkcija. Potem obstaja skalarni funkcija $A, B: [0, \infty) \to \mathbb{R}$ in razcep funkcije T:

$$T(\kappa) = A(|\kappa|)I + B(|\kappa|)\kappa\kappa^{T}, \tag{3.18}$$

Dokaz. Ne najdem...

Uporabimo izrek, da dobimo razcep za Φ

$$\Phi(\kappa, t) = A(|\kappa|, t)I + B(|\kappa|, t)\kappa\kappa^{T}, \tag{3.19}$$

za $A,B:[0,\infty)\to\mathbb{R}$ in $t\in\mathbb{R}$. Enakost množimo z κ^T , ter upoštevamo nestisljivostni pogoj 3.15

$$0 = \kappa^T \Phi(\kappa, t) = A(|\kappa|, t) \kappa^T + B(|\kappa|, t) (\kappa^T \kappa) \kappa^T = (A(|\kappa|, t) + B(|\kappa|, t) (\kappa^T \kappa)) \kappa^T$$

$$\implies A(|\kappa|, t) + B(|\kappa|, t) (\kappa^T \kappa) = 0$$

$$\implies A(|\kappa|, t) = -B(|\kappa|, t) |\kappa|^2.$$

Dobili smo zvezo med funkcijama A in B. Poiščimo še zvezo med A, B in E.

$$tr(\Phi(\boldsymbol{\kappa},t)) = tr(A(|\boldsymbol{\kappa}|,t)I + B(|\boldsymbol{\kappa}|,t)\boldsymbol{\kappa}\boldsymbol{\kappa}^{T}) =$$

$$= A(|\boldsymbol{\kappa}|,t)tr(I) + B(|\boldsymbol{\kappa}|,t)tr(\boldsymbol{\kappa}\boldsymbol{\kappa}^{T}) =$$

$$= A(|\boldsymbol{\kappa}|,t)n + B(|\boldsymbol{\kappa}|,t)|\boldsymbol{\kappa}|^{2}$$

$$\implies E(\kappa, t) = \oint_{|\kappa| = \kappa} \frac{1}{2} \operatorname{tr}(\Phi(\kappa, t)) \, d\kappa = \oint_{|\kappa| = \kappa} \frac{1}{2} (A(|\kappa|, t)n + B(|\kappa|, t)|\kappa|^2) \, d\kappa =$$

$$= \frac{nA(\kappa, t)}{2} \oint_{|\kappa| = \kappa} d\kappa + \frac{B(\kappa, t)\kappa^2}{2} \oint_{|\kappa| = \kappa} d\kappa =$$

$$= (nA(\kappa, t) + B(\kappa, t)\kappa^2) \frac{S_{n-1}(\kappa)}{2} =$$

$$= (-nB(\kappa, t)\kappa^2 + B(\kappa, t)\kappa^2) \frac{S_{n-1}(\kappa)}{2},$$

kjer je $S_{n-1}(\kappa)$ površina (n-1)-dimenzionalne krogle z radijem κ

$$S_{n-1}(\kappa) = \frac{2\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})} \kappa^{n-1}.$$

Iz zadnje izpeljave izrazimo B in vstavimo v Φ

$$\Phi(\boldsymbol{\kappa},t) = A(|\boldsymbol{\kappa}|,t)I + B(|\boldsymbol{\kappa}|,t)\boldsymbol{\kappa}\boldsymbol{\kappa}^{T} =
= B(|\boldsymbol{\kappa}|,t)(-|\boldsymbol{\kappa}|^{2}I + \boldsymbol{\kappa}\boldsymbol{\kappa}^{T}) =
= \frac{2E((|\boldsymbol{\kappa}|,t))}{|\boldsymbol{\kappa}|^{2}S_{n-1}(|\boldsymbol{\kappa}|)(1-n)}(-|\boldsymbol{\kappa}|^{2}I + \boldsymbol{\kappa}\boldsymbol{\kappa}^{T}) =
= \frac{2E((|\boldsymbol{\kappa}|,t))}{S_{n-1}(|\boldsymbol{\kappa}|)(n-1)}\left(I - \frac{1}{|\boldsymbol{\kappa}|^{2}}\boldsymbol{\kappa}\boldsymbol{\kappa}^{T}\right) =
= \frac{2E((|\boldsymbol{\kappa}|,t))}{S_{n-1}(|\boldsymbol{\kappa}|)(n-1)}P(\boldsymbol{\kappa}),$$
(3.20)

kjer smo s P označili ortogonalni projektor

$$P(\kappa) = I - \frac{1}{|\kappa|^2} \kappa \kappa^T.$$

V 3-dimenzionalnem primeru, dobimo

$$\Phi(\kappa, t) = \frac{E(|\kappa|)}{4\pi |\kappa|^2} P(\kappa)$$
(3.21)

3.4 Spekter Kolmogorova

Ker se tenzor Φ izraža preko količine E, se pojavi vprašanje ali lahko določimo E? V splošne je odgovor ne, vendar nam v posebnem primeru podobnostni hipotezi Kolmogorova omogočata, da določimo E na pravem območju.

Obstajajo empirične izpeljave te porazdelitve, mi pa se bomo lotili problema bolj formalno. Naslonili se bomo na izrek Buckhingham π . Preden ga navedemo in dokažemo, navedimo nekaj pojmov.

Definicija 3.24. Naj bodo $1, F_1, \ldots, F_n$ formalne spremenljivke, ki predstavljajo osnovne fizikalne enote. Definiramo množico osnovnih enot \mathcal{B} , kot množico urejenih parov:

$$\mathcal{B} = \{(\alpha_i, F_i) \mid i = 1, \dots, n, \ \alpha_i \ge 0\} \cup \{(\alpha_0, 1) \mid \alpha_0 \ge 0\}.$$

Bolj intuitivno bomo par označevali kot: $\alpha_i(F_i) \cdot [F_i] = \alpha_i \cdot [F_i]$. Za dane pare definiramo

• Množenje dveh osnovnih enot definiramo kot

$$(\alpha_i(F_i) \cdot [F_i]) \cdot (\beta_j(F_j) \cdot [F_j]) = (\alpha_i \beta_j)[F_i F_j].$$

Enoto za ta produkt označimo z

$$(1,1)=1.$$

• Obrljiv element kot

$$(\alpha_i(F_i) \cdot [F_i])^{-1} = \frac{1}{\alpha_i(F_i)} \cdot [F_i^{-1}].$$

Potem je fizikalen prostor \mathcal{F} enak

$$\mathcal{F} = \{ \alpha \cdot \prod_{i=1}^{n} [F_i^{k_i}] \mid \alpha \ge 0, \ k_i \in \mathbb{R} \}$$

Opomba 3.25.

- Definicija nažalost ni popolna. V definiciji fizikalnega prostora F vidimo, da so potence enot realna števila, kar v fiziki nima pomena. Če se omejimo na množico Z namesto R, govorimo o modulih in ne vektorski prostorih. Ključna razlika je, da pri modulih delamo nad komutativnimi kolobarji in ne obsegi, zato nam obstoj baze ni zagotovljen, kar pa je ključno za našo temo.
- Če množimo enake osnovne enote bomo označevali

$$\underbrace{[F_i \cdot \dots \cdot F_i]}_{n} = [F_i^n]$$

$$\underbrace{[F_i^{-1} \cdot \dots \cdot F_i^{-1}]}_{n} = [F_i^{-n}]$$

• Splošno enoto iz \mathcal{F} bomo označevali

$$[F] = \prod_{i=1}^{n} [F_i^k]$$

Definicija 3.26. Enota $\alpha \cdot [F] \in \mathcal{F}$ je brezdimenzijska, če je [F] = 1.

Naslednja trditev, katere dokaz je enostaven in ga izpustimo, vendar je pomemben:

Trditev 3.27. Prostor \mathcal{F} opremeljen z operacijo

$$\mathbb{R} \times \mathcal{F} \to \mathcal{F}$$
$$(\lambda, \alpha[F]) \mapsto (\lambda \cdot \alpha)[F]$$

je vektorski prostor nad \mathbb{R} , ki je izomorfen Z^n (ni čisto prav, ideja je tam samo treba je pravilno formulirati.)

Primer 3.28. Poglejmo si glavni primer, ki predstavlja fiziko. Naj bodo T (sekunda), L (meter), M (kilogram), K (kelvin), N (mol), I (amper) in C (kandela). Potem je \mathcal{F} prostor vseh fizikalnih količin

$$\mathcal{F} = \{ \alpha \cdot [T^{k_1} L^{k_2} M^{k_3} K^{k_4} N^{k_5} I^{k_6} C^{k_7}] \mid i = 1, \dots, 7 \text{ in } k_i \in \mathbb{Z} \}.$$

Na primer enota $T^{-2}L^1M^1$ predstavlja silo. Zaradi trditve lahko vsako enoto predstavimo, kot vektor v \mathbb{Z}^7 , torej lahko silo zapišemo kot (-2, 1, 1, 0, 0, 0, 0) oz. 1N kot $1 \cdot (-2, 1, 1, 0, 0, 0, 0)$.

Ključni koncept, ki se bo pojavil pri dokazu izreka je pretvorba enote npr. iz metra v centimetre ali iz sekunde v uro. Intuicija nam pravi, da bi naslednja formalna izpeljava morala veljati: naj bodo $x_1, \ldots, x_n > 0$ in $\alpha \cdot [F] \in \mathcal{F}$ ter zapišemo $[F_i] = [x_i \hat{F}_i]$

$$\alpha \cdot [F] = \alpha \cdot \prod_{i=1}^{n} [F_i^{k_i}] = \alpha \cdot \prod_{i=1}^{n} [(x_i \hat{F}_i)^{k_i}] = \alpha \cdot \prod_{i=1}^{n} (x_i)^{k_i} [\hat{F}_i^{k_i}] =$$

$$= \underbrace{\left(\alpha \prod_{i=1}^{n} x_i^{k_i}\right)}_{\hat{\alpha}} \cdot \prod_{i=1}^{n} [\hat{F}_i^{k_i}] = \hat{\alpha} \cdot [\hat{F}]$$

Definicija 3.29. Naj bo $\alpha \cdot [F] \in \mathcal{F}$ in $x_1, \ldots, x_n > 0$. Potem pretvorbo enot F_i za faktor x_i definiramo kot

$$\alpha \cdot [F] \to \left(\alpha \prod_{i=1}^{n} x_i^{k_i}\right) \cdot [F]$$
 (3.22)

Definicija 3.30. Naj bo $f: \mathbb{R}^+ \to \mathbb{R}^+$ funkcija in $k_1, \dots, k_n \in \mathbb{Z}$. Fizikalna preslikava je preslikava dana z

$$\Phi: \mathcal{F}^n \to \mathcal{F}$$
$$(\alpha_1 R_1, \dots, \alpha_n R_n) \mapsto f(\alpha, \dots, \alpha_n) \cdot \prod_{i=1}^n [F_i^{b_i}],$$

kjer so vrednosti b_1, \ldots, b_n izbrane tako, da velja

$$\prod_{i=1}^{n} [R_i] = \prod_{i=1}^{n} [F_i^{b_i}]$$

in velja pretvorbena lastnost

$$\prod_{i=1}^{n} [\hat{R}_i] = \prod_{i=1}^{n} [\hat{F}_i^{b_i}] \tag{3.23}$$

Opomba 3.31. Vrednosti b_i iz definicije so enolično določene, ker so F_i bazni vektorji za \mathcal{F} .

Lema 3.32. Če enote $R_1, \ldots R_n \in \mathcal{F}$ pretvorimo $z x_1, \ldots, x_n > 0$, za fizikalno preslikavo $\Phi : \mathcal{F}^n \to \mathcal{F}$ velja

$$\Phi\left(\alpha_1 \prod_{j=1}^n x_j^{k_{1j}} R_1, \dots, \alpha_n \prod_{j=1}^n x_j^{k_{nj}} R_n\right) = \left(\prod_{i=1}^n x_i^{b_i}\right) \cdot \Phi(\alpha_1 R_1, \dots, \alpha_n R_n)$$
(3.24)

Dokaz. Za pretvorbo \hat{R}_i velja

$$[\hat{R}_i] = \prod_{j=1}^n [(x_j F_j)^{k_{ij}}] = \left(\prod_{j=1}^n x_j^{k_{ij}}\right) \cdot \prod_{j=1}^n [F_j^{k_{ij}}] = \left(\prod_{j=1}^n x_j^{k_{ij}}\right) \cdot [R_i]$$

Poglejmo, kako se transformira Φ :

$$\Phi(\alpha_1 \hat{R}_1, \dots, \alpha_n \hat{R}_n) = f(\alpha_1, \dots, \alpha_n) \cdot \prod_{i=1}^n [\hat{R}_i] =$$

Ker velja lastnost 3.23, sledi

$$= f(\alpha_{1}, \dots, \alpha_{n}) \cdot \prod_{i=1}^{n} [\hat{R}_{i}] = f(\alpha_{1}, \dots, \alpha_{n}) \cdot \prod_{i=1}^{n} [\hat{F}_{i}^{b_{i}}] =$$

$$= f(\alpha_{1}, \dots, \alpha_{n}) \cdot \prod_{i=1}^{n} [(x_{i}F_{i})_{i}^{b_{i}}] = f(\alpha_{1}, \dots, \alpha_{n}) \left(\prod_{i=1}^{n} x_{i}^{b_{i}}\right) \cdot \prod_{i=1}^{n} [F_{i}^{b_{i}}] =$$

$$= \prod_{i=1}^{n} x_{i}^{b_{i}} \cdot \left(f(\alpha_{1}, \dots, \alpha_{n}) \cdot \prod_{i=1}^{n} [F_{i}^{b_{i}}]\right) = \prod_{i=1}^{n} x_{i}^{b_{i}} \cdot \Phi(\alpha_{1}R_{1}, \dots, \alpha_{n}R_{n}).$$

Sedaj lahko navedemo in dokažemo Buckhingham π izrek.

Izrek 3.33 (Buckhingham π). Naj bo $\Phi : \mathcal{F}^n \to \mathcal{F}$ fizikalna preslikava in $R_1, \ldots, R_n \in \mathcal{F}$ fizikalne spremenljivke. Naj bo fizikalni zakon dan z

$$\Phi(R_1, \dots, R_n) = 0. \tag{3.25}$$

Potem obstaja funkcija $F: \mathcal{F}^n \to \mathcal{F}$ in brezdimenzijske fizikalne spremenljivke π_1 , ..., $\pi_{n-k} \in \mathcal{F}$ za $k \in \{0, ..., n-1\}$, da velja

$$F(\pi_1, \dots, \pi_{n-k}) = 0. (3.26)$$

Dokaz. Brez škode splošnosti lahko za fiksne enote R_1, \ldots, R_n , namesto funkcije Φ vzamemo funkcijo

$$R_1^{c_1}\cdot\ldots R_n^{c_n}\Phi(R_1,\ldots,R_n),$$

kjer so koeficienti $c_1, \ldots, c_n \in \mathbb{Z}$ izbrani tako, da je nova funkcija brezdimenzijska tj. enote te funkcije so

$$[F_1^{b_1} \cdot \ldots \cdot F_n^{b_m}] = [F_1^0 \cdot \ldots \cdot F_n^0] = [1],$$

oz. $b_1 = \cdots = b_m = 0$ za bazne enote F_i funkcije Φ in $m \in \mathbb{N}$. Ker imamo n elementov vektorskega prostora \mathcal{F} , obstaja linearno neodvisna podmnožica $\{R_1, \ldots, R_r\}$ za $r \leq n$ ali ekvivalentno

$$R_1^{\lambda_1} \cdot \ldots \cdot R_n^{\lambda_n} = 1 \Longrightarrow \lambda_1 = \cdots = \lambda_n = 0.$$

Sedaj lahko za k>r enoto R_k izrazimo kot

$$R_k = R_1^{d_1} \cdot \ldots \cdot R_r^{d_r}$$

za $d_1,\ldots,d_r\in\mathbb{Z}$. Potem je spremenljivka $R_k\cdot R_1^{-d_1}\cdot\ldots\cdot R_r^{-d_r}$ brezdimenzijska in jo lahko zapišemo preko brezdimenzijskih količin $\pi_1^{h_1},\ldots,\pi_{n-r}^{h_{n-r}}$

$$R_k = R_1^{d_1} \cdot \ldots \cdot R_r^{d_r} \cdot \pi_1^{h_1} \cdot \ldots \cdot \pi_{n-r}^{h_{n-r}}$$

za primerno izbrane $h_1, \ldots, h_{n-r} \in \mathbb{Z}$. Za neko funkcijo $\psi : \mathcal{L} \to \mathcal{L}$ sedaj velja korespondenca med danimi spremenljivkami

$$\Phi(R_1,\ldots,R_n)=\psi(R_1,\ldots,R_r,\pi_1,\ldots,\pi_{n-r}).$$

Pokažimo, da je ψ neodvisna od R_1, \ldots, R_r . Naj bodo $x_1, \ldots, x_m > 0$. Potem po lemi 3.32 velja

$$\psi\left(\alpha_{1} \prod_{j=1}^{m} x_{j}^{k_{1j}} R_{1}, \dots, \alpha_{r} \prod_{j=1}^{m} x_{j}^{k_{rj}} R_{r}, \pi_{1}, \dots, \pi_{n-r}\right) =$$

$$= \left(\prod_{i=1}^{m} x_{i}^{b_{i}}\right) \psi(\alpha_{1} R_{1}, \dots, \alpha_{r} R_{r}, \pi_{1}, \dots, \pi_{n-r}) =$$

$$= \psi(\alpha_{1} R_{1}, \dots, \alpha_{r} R_{r}, \pi_{1}, \dots, \pi_{n-r}),$$

kjer zadnja enakost velja, ker smo predpostavili, da je Φ brezdimenzijska. Za zaključek dokaza, moramo pokazati, da lahko vrednosti x_1, \ldots, x_n izberemo tako, da velja

$$\prod_{j=1}^{m} x_j^{k_{ij}} = \frac{1}{\alpha_i}, \quad i = 1, \dots, r.$$

Ker so vse vrednosti v izrazu pozitivne, enačbo logaritmiramo

$$\sum_{i=1}^{m} k_{ij} \ln x_j = -\ln \alpha_i, \quad i = 1, \dots, r.$$

oz. v matričnem zapisu

$$\begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1m} \\ k_{21} & k_{22} & \cdots & k_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ k_{r1} & k_{r2} & \cdots & k_{rm} \end{bmatrix} \begin{bmatrix} \ln x_1 \\ \ln x_2 \\ \vdots \\ \ln x_m \end{bmatrix} = - \begin{bmatrix} \ln \alpha_1 \\ \ln \alpha_2 \\ \vdots \\ \ln \alpha_r \end{bmatrix}.$$

Vrstice matrike, predstavljajo enote (oz. njihovo potenco), za katere pa smo predpostavili, da je prvih r neodvisnih, zato je ta matrika polnega ranga in enačba ima rešitev.

Opomba 3.34. Iz izreka lahko izluščimo še malo več. Brezdimenzijske parametre π_1, \ldots, π_{n-r} lahko določimo na sledeč način. Če zapišemo spremenljivke R_1, \ldots, R_n preko baznih spremenljivk F_1, \ldots, F_m . Iz dokaza smo videli, da je R_k (za k > r) odvisen od $R_1^{d_1}, \ldots, R_r^{d_r}$, zato je dovolj zahtevati, da je $R_1^{d_1} \cdot \ldots \cdot R_r^{d_r}$ neodvisna količina. Vendar to pomeni:

$$[R_1^{d_1} \cdot \dots R_r^{d_r}] = \prod_{i=1}^m [F^{k_{i1}d_1} \cdot \dots \cdot F_r^{k_{ir}d_r}] = \prod_{i=1}^m F_i^{k_{i1}d_1 + \dots + k_{ir}d_r},$$

kjer želimo, da je eksponent enak 0. Z drugimi besedami, brezdimenzijske grupe π , so vektorja v, ki ležijo v jedru matrike iz dokaza. Ker pa ima ta matrika, enak rang,

kot če vzamemo matriko vseh spremenljivk, je dovolj poiskati jedro le te

$$M = \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1n} \\ k_{21} & k_{22} & \cdots & k_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ k_{m1} & k_{m2} & \cdots & k_{mn} \end{bmatrix}$$

Matriki M pravimo dimenzijska matrika.

Poglejmo sedaj uporabo izreka. Naj bo Re $\gg 1$ in U slučajni vektor. Potem je po prvi podobnostni hipotezi U odvisen le od ϵ in ν . Ker predpostavimo, da je U izotropen, je tudi energijska spektralna funkcija E odvisna le od ϵ in ν . Torej obstaja zakon

$$f(E, \epsilon, \nu, \kappa) = 0$$

za $f: \mathcal{F} \to \mathbb{R}$. Za ϵ in ν že vemo, da imata enote $[\epsilon] = [L^2 T^{-3}]$ in $[\nu] = [M^1 L^{-1} T^{-1}]$. Ker je $\kappa = \frac{2\pi}{L}$ pomeni, da je $[\kappa] = [L^{-1}]$. Hitrostno-spektralni tenzor Φ je

$$\Phi(\boldsymbol{\kappa}, t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} R(\mathbf{x}, t) e^{-i\boldsymbol{\kappa} \cdot \mathbf{x}} \, d\mathbf{x}.$$

Po definiciji R prestavlja kinetično energijo, torej ima enoto $[L^2T^{-2}]$. Eksponetni del integranda je brezdimenzijski, diferencial pa ima enoto $[L^n]$. zato je enota tenzorja Φ enaka $[L^2T^{-2}L^n]=[L^{n+2}T^{-2}]$. Iz enačbe 3.20 izrazimo enoto za E, kar nam da $[L^{n+2}T^{-2}L^{-2}]=[L^nT^{-2}]$. Sedaj lahko zapišemo dimenzijsko matriko M v bazi $\{L,T,M\}$

Z malo računanja, dobimo jedro matrike M:

$$\ker M = \operatorname{Lin} \left\{ \begin{bmatrix} 3 \\ -2 \\ 0 \\ 3n-4 \end{bmatrix} \right\}$$

Število π -grup je enako 4-3=1 in, če vzamemo iz jedra, kar vektor (3,-2,0,3n-4), dobimo

$$\pi = E^3 \epsilon^{-2} \kappa^{3n-4},$$

ki zadošča $F(\pi) = 0$, za neko neznano funkcijo F. Ker je π brezdimenzijska količina, oz. konstanta količina, lahko zapišemo

$$E^3 \epsilon^{-2} \kappa^{3n-4} = C \in \mathbb{R},\tag{3.27}$$

ali ekvivalentno

$$E(\kappa) = C\epsilon^{\frac{2}{3}}\kappa^{\frac{4-3n}{3}}. (3.28)$$

V posebnem za n=3 dobimo

$$E(\kappa) = C\epsilon^{\frac{2}{3}}\kappa^{-\frac{5}{3}},\tag{3.29}$$

kar je znameniti **spekter Kolmogorova**. Konstanto C imenujemo **Kolmogorovova konstanta**. Njena vrednost je določena eksperimentalno, njena vrednost pa je približno $C \approx 1.5$.

Primer 3.35. Poglejmo si primer kako lahko z uporabo izreka določimo Kolmogorovovo hitrostno in dolžinsko skalo.

3.5 Napake filtriranih polj

Koncepte, ki smo jih spoznali v tem in prejšnjem poglavju bomo uporabili, da ocenimo kako "dobra"je rešitev filtriranih enačb.

Definicija 3.36. Naj bo U slučajni vektor. Filtrirana dvo-točkovno korelacija je

$$\overline{R}(\mathbf{x}, \mathbf{r}, t) = \langle \overline{\mathbf{U}}(\mathbf{x}, t) \cdot \overline{\mathbf{U}}^{T}(\mathbf{x} + \mathbf{r}, t) \rangle$$
(3.30)

in filtrirana energijsko spektralna funkcija \overline{E}

$$\overline{E}(\kappa, t) = \oint_{|\kappa| = \kappa} \frac{1}{2} \operatorname{tr}(\hat{\overline{R}}(\kappa, \mathbf{t})) \, d\kappa, \tag{3.31}$$

kjer · označuje Fourierovo transformacijo.

Opomba 3.37.

- Definicija je filtrirane spektralne funkcije je identična kot nefiltrirane le da je slučajni vektor filtriran.
- Kot R je tudi \overline{R} neodvisna od x, zato ga bomo izpuščali.

Lema 3.38. Naj bo U homogen slučajni vektor in G filtracijska funkcija. Velja:

$$\overline{E}(\kappa, t) = |\hat{G}(\kappa)|^2 E(\kappa, t). \tag{3.32}$$

Dokaz. Ker je sled tr aditivna je dovolj preveriti le za primer, ko je ${\bf U}$ enodimenzionalen. Označimo ga zu in sledimo definiciji in uporabimo lastnost invariance R v prvi komponenti

$$\begin{split} \overline{R}(\mathbf{x},\mathbf{r},t) &= \langle \overline{u}(x+r)\overline{u}(x)\rangle = \\ &= \left\langle \int_{\mathbb{R}} \int_{\mathbb{R}} G(y)G(z)u(x+r-y,t)u(x-z,t)\,\mathrm{d}y\,\mathrm{d}z \right\rangle = \\ &= \int_{\mathbb{R}} \int_{\mathbb{R}} G(y)G(z)\langle u(x+r-y,t)u(x-z,t)\rangle\,\mathrm{d}y\,\mathrm{d}z = \\ &\stackrel{x\to x+z}{=} \int_{\mathbb{R}} \int_{\mathbb{R}} G(y)G(z)\langle u(x+r+z-y,t)u(x,t)\rangle\,\mathrm{d}y\,\mathrm{d}z = \\ &= \int_{\mathbb{R}} \int_{\mathbb{R}} G(y)G(z)R(r+z-y,t)\,\mathrm{d}y\,\mathrm{d}z \end{split}$$

$$\overline{E}(\kappa,t) = \frac{1}{\pi} \int_{\mathbb{R}} \overline{R}(r,t)e^{-i\kappa r} dr =
= \frac{1}{\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} G(y)G(z)R(r+z-y,t)e^{-i\kappa r} dy dz dr =
= \frac{1}{\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} (G(y)e^{-i\kappa y})(G(z)e^{i\kappa z})R(r+z-y,t)e^{-i\kappa(r+z-y)} dy dz dr =$$

po Fubinijevem izreku lahko zamenjamo vrstne rede integracije:

$$\frac{1}{\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} (G(y)e^{-i\kappa y})(G(z)e^{i\kappa z}) \left(\int_{\mathbb{R}} R(r+z-y,t)e^{-i\kappa(r+z-y)} dr \right) dy dz =$$

z uvedbo neznanke $r+z-y=s\Longrightarrow \mathrm{d} r=\mathrm{d} s$ dobimo invarianco notranjega integrala od spremenljivk z in y

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} (G(y)e^{-i\kappa y})(G(z)e^{i\kappa z}) \left(\frac{1}{\pi} \int_{\mathbb{R}} R(s,t)e^{-i\kappa s} \, \mathrm{d}s\right) \, \mathrm{d}y \, \mathrm{d}z =$$

$$= E(\kappa,t) \int_{\mathbb{R}} (G(y)e^{-i\kappa y} \, \mathrm{d}y) \overline{\int_{\mathbb{R}} (G(z)e^{-i\kappa z} \, \mathrm{d}z)} =$$

$$= E(\kappa,t)G(\kappa)\overline{G}(\kappa) =$$

$$= |G(\kappa)|^2 E(\kappa,t).$$

Najprej si bomo pogledali enodimenzionalen primer, za katerega bomo potrebovali poseben primer enodimenzion
lne spektralne funkcije. Le-to pa moramo povezati z $E(\kappa)$, katere por
azdelitev poznamo (označevali bomo $\kappa^2=\kappa^2$). Iz prejšnjih razdel
kov vemo naslednje:

$$E_{ij}^{k}(\kappa_{k}) = 2 \int_{\mathbb{R}^{n-1}} \Phi_{ij}(\boldsymbol{\kappa}) \, d\hat{\boldsymbol{\kappa}} =$$

$$\stackrel{3 \stackrel{20}{=} 0}{=} \frac{2\Gamma\left(\frac{n}{2}\right)}{(n-1)\pi^{\frac{n}{2}}} \int_{\mathbb{R}^{n-1}} \frac{E(\kappa)}{\kappa^{n-1}} \left(1 - \frac{\kappa_{i}\kappa_{j}}{\kappa^{2}}\right) d\hat{\boldsymbol{\kappa}}_{k} =$$

$$\stackrel{i=j=k}{=} \frac{2\Gamma\left(\frac{n}{2}\right)}{(n-1)\pi^{\frac{n}{2}}} \int_{\mathbb{R}^{n-1}} \frac{E(\kappa,t)}{\kappa^{n-1}} \left(1 - \frac{\kappa_{k}^{2}}{\kappa^{2}}\right) d\hat{\boldsymbol{\kappa}}_{k} =$$

Zapišemo

$$\kappa_r^2 = \kappa^2 - \kappa_k^2 = \kappa_1^2 + \dots + \kappa_{k-1}^2 + \kappa_{k+1}^2 + \dots + \kappa_n^2$$

in uvedemo sferične koordinate

$$\kappa_{1} = r \cos(\phi_{1})$$

$$\vdots$$

$$\kappa_{k-1} = r \sin(\phi_{1}) \cdots \sin(\phi_{k-3}) \cos(\phi_{k-2})$$

$$\kappa_{k+1} = r \sin(\phi_{1}) \cdots \sin(\phi_{k-2}) \cos(\phi_{k-1})$$

$$\vdots$$

$$\kappa_{n-1} = r \sin(\phi_{1}) \cdots \sin(\phi_{n-3}) \cos(\phi_{n-2})$$

$$\kappa_{n} = r \sin(\phi_{1}) \cdots \sin(\phi_{n-3}) \sin(\phi_{n-2})$$

Diferencial je enak

$$d\hat{\boldsymbol{\kappa}_k} = \left(r^{n-2} \prod_{i=1}^{n-3} \sin^{n-2-i} \phi_i\right) dr d\phi_1 \dots \phi_{n-2} =$$
$$= r^{n-2} dr d\Omega_{n-2}.$$

Integral se transformira kot

$$= \frac{2\Gamma\left(\frac{n}{2}\right)}{(n-1)\pi^{\frac{n}{2}}} \int_0^\infty \int_0^{2\pi} \int_{[0,\pi]^{n-3}} \frac{E(\sqrt{\kappa_k^2 + r^2})}{(\kappa_k^2 + r^2)^{(n-1)/2}} \left(1 - \frac{\kappa_k^2}{(\kappa_k^2 + r^2)}\right) r^{n-2} dr d\Omega_{n-2}.$$

Integral po kotih ϕ_i za $i=1,\ldots,n-2$ nam da volumen n-1 sfere, kar označimo z S_{n-1} :

$$= \frac{2\Gamma\left(\frac{n}{2}\right)S_{n-1}}{(n-1)\pi^{\frac{n}{2}}} \int_0^\infty \frac{E(\sqrt{\kappa_k^2 + r^2})}{(\kappa_k^2 + r^2)^{(n-1)/2}} \left(1 - \frac{\kappa_k^2}{(\kappa_k^2 + r^2)}\right) r^{n-2} dr =$$

$$= \frac{2}{n-1} \int_0^\infty \frac{E(\sqrt{\kappa_k^2 + r^2})}{(\kappa_k^2 + r^2)^{(n-1)/2}} \cdot \left(\frac{r^n}{\kappa_k^2 + r^2}\right) dr =$$

uvedemo novo neznanko $\kappa = \sqrt{\kappa_k^2 + r^2} \Longrightarrow d\kappa = \frac{r}{\sqrt{\kappa}} dr$:

$$= \frac{2}{n-1} \int_{|\kappa_k|}^{\infty} \frac{E(\kappa)}{\kappa^n} \cdot (\kappa^2 - \kappa_k^2)^{(n-1)/2} d\kappa =$$

Privzamemo predpostavke hipotez Kolmogorova in vstavimo spekter Kolmogorov:

$$= \frac{2}{n-1} C \epsilon^{2/3} \int_{|\kappa_k|}^{\infty} \frac{\kappa^{-5/3}}{\kappa^n} \cdot (\kappa^2 - \kappa_k^2)^{(n-1)/2} \, \mathrm{d}\kappa.$$

Integral lahko eksplicitno izračunamo preko Gamma funkcije, vendar bo za naše potrebe dovolj za primer n=3

$$= \frac{18}{55} C \epsilon^{2/3} \kappa_k^{-5/3}$$

Sedaj si poglejmo prvi pravi primer

Primer 3.39. Naj bo dana $G(x) = \sqrt{\frac{6}{\pi\kappa_c^2}} \cdot e^{\frac{-6x^2}{\kappa_c^2}}$ filtracijska funkcija za $\kappa_c > 0$ valovno število, da velja 2.43 in u homogeno enodimenzionalno hitrostno polje. Poglejmo koliko polja $\frac{d\overline{u}}{dx}$ lahko razrešimo. Ker za Fourierovo transformacijo velja

$$\frac{\widehat{\mathrm{d}\overline{u}(x,t)}}{\mathrm{d}x} = i\kappa \widehat{\overline{u}(\kappa,t)}$$

je spekter od $\frac{\mathrm{d}\overline{u}}{\mathrm{d}x}$ enak

$$\kappa^2 \overline{E}(\kappa, t).$$

Po zadnji lemi imamo

$$\kappa^2 \overline{E}(\kappa, t) = \kappa^2 |\hat{G}(\kappa)|^2 E(\kappa, t).$$

Znana formula za Fourierovo transformacijo Gaussove funkcije nam da

$$|\hat{G}(\kappa)|^2 = e^{-\frac{\pi^2 \kappa^2}{12\kappa_c^2}}$$

in celoten spekter enak

$$\kappa^2 \overline{E}(\kappa, t) = \frac{18}{55} C \epsilon^{2/3} \kappa^{1/3} e^{-\frac{\pi^2 \kappa^2}{12\kappa_c^2}}$$

Sedaj izberemo κ_r , da je u predstavljen s Fourierovo vrsto do željene natančnosti. Potem je količina turbulentna energija, ki jo lahko predstavimo enako

$$\frac{\int_0^{\kappa_r} \kappa^2 \overline{E}(\kappa, t) \, \mathrm{d}\kappa}{\int_0^{\infty} \kappa^2 \overline{E}(\kappa, t) \, \mathrm{d}\kappa} = \frac{\int_0^{\kappa_r} \kappa^{1/3} e^{-\frac{\pi^2 \kappa^2}{12\kappa_c^2}} \, \mathrm{d}\kappa}{\int_0^{\infty} \kappa^{1/3} e^{-\frac{\pi^2 \kappa^2}{12\kappa_c^2}} \, \mathrm{d}\kappa} = \frac{\int_0^{(\pi^2/12)(\kappa_r/\kappa_c)^2} t^{-1/3} e^{-t} \, \mathrm{d}\kappa}{\int_0^{\infty} \kappa^{1/3} e^{-t} \, \mathrm{d}\kappa} = P\left(\frac{\kappa_r}{\kappa_c}\right).$$

Dve standardni izbiri za kvocient $\frac{\kappa_r}{\kappa_c}$ sta $\frac{1}{2}$ in 1. Dobimo vrednosti $P\left(\frac{1}{2}\right) \approx 0.98$ in $P(1) \approx 0.72$. To pomeni, da je prva izbira za 26% boljša, vedar potrebujemo približno 16x več točk.

Primer 3.40. Kinetična energija rezidulnega polja je

$$k_r = \int_0^\infty (1 - \hat{G}^2(\kappa)) E(\kappa) \, \mathrm{d}\kappa.$$

Recimo, da uporabimo valovno preklopni T_c filter za $\kappa_c = \frac{\pi}{\delta}$ in naj veljajo predpostavke hipotez Kolmogorova, ter označimo dolžino domene, ki opazujemo z L. Poglejmo kolikšen del hitrostnega polja razrešimo sedaj.

Ocena za celotno kinetično energijo $k=L^{\frac{2}{3}}\epsilon^{\frac{2}{3}}$. Za filter T_c se k_r izrazi kot

$$k_r = \int_{\kappa_c}^{\infty} E(\kappa) \, \mathrm{d}\kappa.$$

Uporabimo Kolmogorov spekter:

$$k_r = \int_{\kappa_c}^{\infty} E(\kappa) \, d\kappa = \int_{\kappa_c}^{\infty} C\epsilon^{\frac{2}{3}} \kappa^{-\frac{5}{3}} \, d\kappa =$$
$$= C\epsilon^{\frac{2}{3}} \left(-\frac{3}{2} \kappa^{-\frac{2}{3}} \right) \Big|_{\kappa}^{\infty} = \frac{3}{2} C\epsilon^{\frac{2}{3}} \kappa_c^{-\frac{2}{3}}.$$

Kvocient količin je

$$\frac{k_r}{k} = \frac{\frac{3}{2}C\epsilon^{\frac{2}{3}}\kappa_c^{-\frac{2}{3}}}{L^{\frac{2}{3}}\epsilon^{\frac{2}{3}}} = \frac{3}{2}C(\kappa_c L)^{-\frac{2}{3}}.$$

Standardna izbira za κ_c je, da velja $\kappa_c L = \left(\frac{15}{2}C\right)^{\frac{3}{2}} \approx 38,$ kar nam da

$$\frac{k_r}{k} \approx 0.2.$$

Z drugimi besedami, približno 80% celotne energije lahko razrešimo za dan filter v tridimenzionalnem primeru. \diamondsuit

4 Modeliranje majhnih skal in problem zaprtja

V tem poglaju se vrnemo nazaj na filtrirane Navier-Stokevove enačbe:

$$\nabla \cdot \overline{\mathbf{U}} = \frac{\partial \overline{U}_j}{\partial x_j} = 0$$

$$\frac{\partial \overline{U}_j}{\partial t} + \frac{\partial \overline{U}_i \overline{U}_j}{\partial x_i} = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_j} - \frac{\partial \tau_{ij}^R}{\partial x_i} + \nu \frac{\partial^2 \overline{U}_j}{\partial x_i \partial x_i} + \overline{f}_j,$$

za j=1,2,3 in $\tau^R_{ij}=\overline{U_iU_j}-\overline{U_i}\,\overline{U_j}$. Pri reševanju te enačbe pa hitro naletimo na problem. Člen $\overline{U_iU_j}$ je nepoznan, saj sistem rešujemo za \overline{U} , ki pa ni direktno vezana na $\overline{U_iU_j}$. To pomeni, da imamo več neznanih količin, kot imamo enačb. Iz linearne algebre vemo, da za linearne sisteme redko kdaj pričakujemo enolično rešitev, običajno pa jih je neskončno. Takemu problemu pravimo **problem zaprtja**. Zato moramo poskati model oz. aproksimacijo za τij^R , ki nam bo problem zaprl. Rešitev bomo iskali v obliki

$$\tau_{ij}^R = F(\overline{U}),\tag{4.1}$$

za funkcional $F: C(\mathbb{R}^3) \to \mathbb{R}$. Ne moremo pričakovti, da bo F enolično določen, vendar pa lahko na podlagi Navier-Stokesovih enačb zahtevamo/želimo, da zadošča določenim lastnostim. Te lastnosti bodo invariante Navier-Stokesovih enačb.

4.1 Modeliranje z invariantami in posledice

V tem razdelku bomo pogledali, kaj so invariante Navier-Stokesovih enačb, ki nam bodo dale neke vrste kriterij oz. potreben pogoj, ki mu bo moral model zadoščati. Več kot imamo pogojev, ki jim model ne zadosti, slabši je model.

Definicija 4.1. Naj bo $\mathbf{u}: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ vektorsko polje in $\mathcal{T}: C(\mathbb{R}^n) \to C(\mathbb{R}^n)$. Pravimo, da je **u invariantna za** \mathcal{T} , če velja

$$\mathcal{T}(\mathbf{u})(\mathbf{x}) = \mathbf{u}(\mathbf{x}) \tag{4.2}$$

Definicija 4.2. Naj bo $\mathbf{u}: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ in $F: \mathbb{R}^{n^k} \times \mathbb{R}^{n^{k-1}} \cdots \mathbb{R}^n \times \mathbb{R} \times \Omega \to \mathbb{R}$. Pravimo, da je parcialna diferencialna enačba

$$F(D^k u, D^{k-1} u, \dots, Du, u, x) = 0,$$

za parcialni diferencialni operator D invariantna za \mathcal{T} , če za vsako rešitev enačbe velja, da je tudi $T(u(\mathbf{x}))$ rešitev.

Trditev 4.3. Naj bo $\mathbf{u}: \mathbb{R}^n \times \mathbb{R}^+ \to \mathbb{R}^n$ rešitev Navier-Stokesove enačbe. Potem ima naslednje invariante:

i) Časovna invarianca: za $a \in \mathbb{R}$:

$$\mathcal{T}: (t, \boldsymbol{x}, \boldsymbol{u}, p, \nu) \mapsto (t + a, \boldsymbol{x}, \boldsymbol{u}, p, \nu)$$

ii) Rotacijska invarianca: za $R \in SO(n)$:

$$\mathcal{T}: (t, \boldsymbol{x}, \boldsymbol{u}, p, \nu) \mapsto (t, R\boldsymbol{x}, R\boldsymbol{u}, p, \nu)$$

iii) Invarianca zrcaljenja:

$$\mathcal{T}: (t, \boldsymbol{x}, \boldsymbol{u}, p, \nu) \mapsto (t, \Lambda \boldsymbol{x}, \Lambda \boldsymbol{u}, p, \nu)$$

za

$$\begin{bmatrix} \iota_1 & 0 & \cdots & 0 \\ 0 & \iota_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \iota_n \end{bmatrix}$$

 $kjer\ so\ \iota_i=\pm 1\ za\ i=1,\ldots n.$

iv) Posplošena Galileova invarianca: naj bo $\hat{\boldsymbol{x}}: \mathbb{R}^+ \to \mathbb{R}^n$ dvakrat zvezno odvedljiva. Potem je

$$\mathcal{T}: (t, \boldsymbol{x}, \boldsymbol{u}, p, \nu) \mapsto \left(t, \boldsymbol{x} + \hat{\boldsymbol{x}}, \boldsymbol{u} + \frac{\mathrm{d}\hat{\boldsymbol{x}}}{\mathrm{d}t}, p - \boldsymbol{x} \cdot \frac{\mathrm{d}^2 \hat{\boldsymbol{x}}}{\mathrm{d}t^2}, \nu\right)$$

v) Invarianca raztezanja: naj bo $\gamma \in \mathbb{R}$:

$$\mathcal{T}: (t, \boldsymbol{x}, \boldsymbol{u}, p, \nu) \mapsto \left(\gamma^2 t, \gamma \boldsymbol{x}, \frac{1}{\gamma} \boldsymbol{u}, \frac{1}{\gamma^2} p, \nu\right)$$

vi) Tlačna invarianca: za $\varphi(t) \in C(\mathbb{R}^+)$:

$$\mathcal{T}: (t, \boldsymbol{x}, \boldsymbol{u}, p, \nu) \mapsto (t, \boldsymbol{x}, \boldsymbol{u}, p + \varphi(t), \nu)$$

Skica dokaza: Poglejmo si prvi dve točki, ostale sledijo na podoben način:

i) Ker velja

$$\frac{\partial}{\partial t}(\mathbf{u}(\mathbf{x}, t+a)) = \frac{\partial \mathbf{u}(\mathbf{x}, t+a)}{\partial t},$$

časovna invarianca sledi.

ii) Naj bo $R \in SO(n)$. Definiramo $\mathbf{v}(\mathbf{x},t) = R^T \mathbf{u}(R\mathbf{x},t)$ in vstavimo v Navier-Stokesovo enačbo

$$\begin{split} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} &= -\frac{1}{\rho} \nabla p + \nu \Delta \mathbf{v} \\ R^T \frac{\partial \mathbf{u}}{\partial t} (R\mathbf{x}, t) + R^T (\mathbf{u}(\mathbf{x}, t) \cdot \nabla) \mathbf{u}(R\mathbf{x}, t) &= -\frac{1}{\rho} R^T \nabla p(Q\mathbf{x}, t) + R^T \Delta \mathbf{u}(R\mathbf{x}, t) \\ \frac{\partial \mathbf{u}}{\partial t} (R\mathbf{x}, t) + (\mathbf{u}(\mathbf{x}, t) \cdot \nabla) \mathbf{u}(R\mathbf{x}, t) &= -\frac{1}{\rho} \nabla p(Q\mathbf{x}, t) + \Delta \mathbf{u}(R\mathbf{x}, t). \end{split}$$

Preden se lotimo modeliranja tenzorja τ_{ij}^R , si poglejmo še invariante filtriranih enačb, saj apriori ni razloga, da se zgoraj naštete invariante prenesejo na filtrirane enačbe. Razdelimo rezultate na tri dele:

Lema 4.4. Naj bo **u** rešitev Navier-Stokesove enačbe. Potem je filtrirana Navier-Stokesova enačba invariantna za splošno Galileovo transformacijo, če za filtacijsko funkcijo G velja

$$G(\mathbf{r}, \mathbf{x}) = G(\mathbf{r} - \mathbf{x})$$

Dokaz. Naj bo $\overline{\mathbf{u}}$ filtrirano polje, ki zadošča filtrirani Navier-Stokesovi enačbi. Če želimo, da zadošča splošni Galileovi transformaciji, mora veljati

$$\overline{\mathbf{u}}(\mathbf{x} + \hat{\mathbf{x}}, t) = \overline{\mathbf{u}}(\mathbf{x}, t) + \frac{\mathrm{d}\hat{\mathbf{x}}}{\mathrm{d}t}.$$

Po definiciji filtracije zapišemo

$$\int_{\mathbb{R}^n} G(\mathbf{r} + \hat{\mathbf{x}}, \mathbf{x} + \hat{\mathbf{x}}) \mathbf{u}(\mathbf{x} + \hat{\mathbf{x}} - \mathbf{r}, t) d\mathbf{r} = \int_{\mathbb{R}^n} G(\mathbf{r}, \mathbf{x}) \mathbf{u}(\mathbf{x} - \mathbf{r}, t) d\mathbf{r} + \frac{d\hat{\mathbf{x}}}{dt}.$$

Ker je \mathbf{u} rešitev Navier-Stokesove enačbe, je invariantna za Galileovo transformacijo in lahko poenostavimo

$$\int_{\mathbb{R}^{n}} G(\mathbf{r} + \hat{\mathbf{x}}, \mathbf{x} + \hat{\mathbf{x}}) \mathbf{u}(\mathbf{x} + \hat{\mathbf{x}} - \mathbf{r}, t) d\mathbf{r} =$$

$$= \int_{\mathbb{R}^{n}} G(\mathbf{r} + \hat{\mathbf{x}}, \mathbf{x} + \hat{\mathbf{x}}) \left(\mathbf{u}(\mathbf{x} - \mathbf{r}, t) + \frac{d\hat{\mathbf{x}}}{dt} \right) d\mathbf{r}$$

$$= \int_{\mathbb{R}^{n}} G(\mathbf{r} + \hat{\mathbf{x}}, \mathbf{x} + \hat{\mathbf{x}}) \mathbf{u}(\mathbf{x} - \mathbf{r}, t) d\mathbf{r} + \int_{\mathbb{R}^{n}} G(\mathbf{r} + \hat{\mathbf{x}}, \mathbf{x} + \hat{\mathbf{x}}) \frac{d\hat{\mathbf{x}}}{dt} d\mathbf{r}$$

$$\stackrel{2.6}{=} \int_{\mathbb{R}^{n}} G(\mathbf{r} + \hat{\mathbf{x}}, \mathbf{x} + \hat{\mathbf{x}}) \mathbf{u}(\mathbf{x} - \mathbf{r}, t) d\mathbf{r} + \frac{d\hat{\mathbf{x}}}{dt}$$

$$\implies \int_{\mathbb{R}^{n}} G(\mathbf{r} + \hat{\mathbf{x}}, \mathbf{x} + \hat{\mathbf{x}}) \mathbf{u}(\mathbf{x} - \mathbf{r}, t) d\mathbf{r} = \int_{\mathbb{R}^{n}} G(\mathbf{r}, \mathbf{x}) \mathbf{u}(\mathbf{x} - \mathbf{r}, t) d\mathbf{r}$$

$$\implies \int_{\mathbb{R}^{n}} (G(\mathbf{r} + \hat{\mathbf{x}}, \mathbf{x} + \hat{\mathbf{x}}) - G(\mathbf{r}, \mathbf{x})) \mathbf{u}(\mathbf{x} - \mathbf{r}, t) d\mathbf{r} = 0$$

$$\implies \forall \mathbf{x}, \hat{\mathbf{x}}, \mathbf{r} \in \mathbb{R}^{n} : G(\mathbf{r} + \hat{\mathbf{x}}, \mathbf{x} + \hat{\mathbf{x}}) = G(\mathbf{r}, \mathbf{x})$$

Sledi rezultat:

$$\forall \mathbf{x}, \mathbf{r} \in \mathbb{R}^n : G(\mathbf{r}, \mathbf{x}) = G(\mathbf{r} - \mathbf{x}, \mathbf{x} - \mathbf{x}) = G(\mathbf{r} - \mathbf{x}, 0)$$

Lema 4.5. Naj bo u rešitev Navier-Stokesove enačbe. Potem je filtrirana Navier-Stokesova enačba invariantna za splošno Galileovo transformacijo in rotacije, če za filtracijsko funkcijo G velja

$$G(\mathbf{r}, \mathbf{x}) = G(|\mathbf{r} - \mathbf{x}|)$$

Dokaz. Iz prejšnje leme vemo, da velja $G(\mathbf{r}, \mathbf{x}) = G(\mathbf{r} - \mathbf{x})$. Dodatno zahtevamo

$$\overline{\mathbf{u}}(R\mathbf{x},t) = R\overline{\mathbf{u}}(\mathbf{x},t)$$

za $R \in SO(n)$. Postopamo kot pri dokazu zadnje leme

$$\int_{\mathbb{R}^n} G(\mathbf{r} - R\mathbf{x}) \mathbf{u}(R\mathbf{x} - \mathbf{r}, t) d\mathbf{r} = R \int_{\mathbb{R}^n} G(\mathbf{r}, \mathbf{x}) \mathbf{u}(\mathbf{x} - \mathbf{r}, t) d\mathbf{r}$$

V levo stran enakosti uvedemo spremenljivko $\mathbf{r}=R\mathbf{s}\Longrightarrow d\mathbf{r}=|\det R|\,d\mathbf{s}=d\mathbf{s}$

$$\int_{\mathbb{R}^n} G(\mathbf{r} - R\mathbf{x}) \mathbf{u}(R\mathbf{x} - \mathbf{r}, t) \, d\mathbf{r} = \int_{\mathbb{R}^n} G(R\mathbf{s} - R\mathbf{x}) \mathbf{u}(R\mathbf{x} - R\mathbf{s}, t) \, d\mathbf{s} =$$

$$\stackrel{ii)}{=} \int_{\mathbb{R}^n} G(R\mathbf{s} - R\mathbf{x}) R\mathbf{u}(\mathbf{x} - \mathbf{s}, t) \, d\mathbf{s} = R \int_{\mathbb{R}^n} G(R\mathbf{s} - R\mathbf{x}) \mathbf{u}(\mathbf{x} - \mathbf{s}, r) \, d\mathbf{s}$$

$$\Longrightarrow \int_{\mathbb{R}^n} G(\mathbf{r} - \mathbf{x}) \mathbf{u}(\mathbf{x} - \mathbf{r}, t) \, d\mathbf{r} = \int_{\mathbb{R}^n} G(R(\mathbf{r} - \mathbf{x})) \mathbf{u}(\mathbf{x} - \mathbf{r}, t) \, d\mathbf{r}$$

$$\Longrightarrow \forall \mathbf{r}, \mathbf{x} \in \mathbb{R}^n : G(\mathbf{r} - \mathbf{x}) = G(R(\mathbf{r} - \mathbf{x})).$$

Ker zahtevamo rotacijsko invarianco funkcije G, mora biti radialna, torej: $G(\mathbf{r}, \mathbf{x}) = G(|\mathbf{r} - \mathbf{x}|)$.

Lema 4.6. Naj bo u rešitev Navier-Stokesove enačbe. Potem je filtrirana Navier-Stokesova enačba invariantna za splošno Galileovo transformacijo, rotacije in raztezanja, če je filtracijska funkcija G oblike

$$G(\mathbf{r}, \mathbf{x}) = A||\mathbf{r} - \mathbf{x}||^a$$

 $za A, a \in \mathbb{R}$.

Dokaz.Sledimo istemu postopku kot pri dokazu prejšnjih dveh lem, da dobimo funkcijsko relacijo za ${\cal G}$

$$\lambda \in \mathbb{R}. \, \forall \mathbf{r}, \mathbf{x} \in \mathbb{R}^n : G(\gamma ||\mathbf{r} - \mathbf{x}||) = \lambda G(||\mathbf{r} - \mathbf{x}||)$$

Bolj splošno, bomo rešili

$$\forall \gamma \in \mathbb{R}. \ \exists \lambda(\gamma) \in \mathbb{R}. \ \forall \mathbf{x} \in \mathbb{R}^n : G(\gamma \mathbf{x}) = \lambda(\gamma)G(\mathbf{x}).$$

Predpostavimo, da je G odvedljiva in odvajamo po parametru γ :

$$(\nabla G)(\gamma \mathbf{x}) \cdot \mathbf{x} = \frac{\mathrm{d}\lambda}{\mathrm{d}\gamma} G(\mathbf{x}).$$

Ker enakost velja za vsak $\lambda \in \mathbb{R},$ vzamemo $\lambda = 1$ in označimo $a = \frac{\mathrm{d}\lambda}{\mathrm{d}\gamma}(1)$:

$$\nabla G(\mathbf{x}) \cdot \mathbf{x} = aG(\mathbf{x})$$

oz. zapisano po komponentah, linearno parcialno diferencialno enačbo 1. reda

$$x_1 \frac{\partial G}{\partial x_1} + \dots + x_n \frac{\partial G}{\partial x_n} = aG.$$

Enačbo rešimo z metodo karakteristik: nastavimo karakteristični sistem

$$\dot{x}_1 = x_1$$

$$\vdots$$

$$\dot{x}_n = x_n$$

$$\dot{G} = aG,$$

katerega rešitev je

$$x_i(t,s) = A_i(s)e^t \Longrightarrow e^t = \frac{x_i(t,s)}{A_i(s)}$$
$$G(t,s) = B(s)e^{at} \Longrightarrow G(x_i) = \left(\frac{B}{A_i^a}\right)x_i^a.$$

Ker zadnja enakost velja za vsak $i=1,\ldots,n,$ lahko splošno rešitev zapišemo, kot

$$G(\mathbf{x}) = C||\mathbf{x}||^a, \quad C \in \mathbb{R}.$$

S tem smo pokazali, da je filtracijska funkcija oblike

$$G(\mathbf{r}, \mathbf{x}) = C||\mathbf{r} - \mathbf{x}||^a.$$

(za razmisliti dve stvari, domena integriranja postane sfera, nisem ziher zakaj in določitev konstate C preko normalizacijskega pogoja, vendar ne razumem zakaj je $\frac{a+3}{4\pi l^{a+3}}$ za l velikost sfere)

Posledica, ki je ne bomo dokzali, vendar je ni težko preveriti

Posledica 4.7. Filtracijska funkcija

$$G(\mathbf{r}, \mathbf{x}) = C||\mathbf{r} - \mathbf{x}||^a.$$

zadošča vsem invariantam i) - vi).

Čeprav je rezultat teoretično zanimiv, v praksi ni nujno tako. Izkaže se, da veliko metod ne temelji na eksplicitni uporabi filtracijske funkcije ampak se v celoti osredotočijo na modeliranje tenzorja τ_{ij}^R , kar si bomo pogledali v naslednjem razdelku.

4.2 Boussinesqova aproksimacija in modeliranje tenzorja au^R

Poglejmo si sledečo skico

Opazujemo gibanje hitrosti u v x-smeri na majhnem delcu volumna. Recimo, da je $u_{x1} < u_{x2}$, za hitrosti u_{x1} in u_{x2} na spodnji in zgornji stranici volumna, ki ju označimo $\triangle A_y$ in razdaljo med stranicama $\triangle y$. Intuitivno lahko privzamemo, da velja

$$\triangle F_x = F_{x_2} - F_{x_1} \propto \frac{(u_{x_2} - u_{x_1}) \triangle A_y}{\triangle y} = \frac{\triangle u_x \triangle A_y}{\triangle y}.$$

Koeficient sorazmernosti imenujemo dinamična viskoznost μ . Potem je strižna napetost v smeri x zaradi razlike sil v y smeri enaka

$$\tau_{yx} = \lim_{\triangle y \to 0} \frac{\triangle F_x}{\triangle A_y} = \lim_{\triangle y \to 0} \mu \frac{\triangle u_x \triangle A_y}{\triangle y \triangle A_y} = \lim_{\triangle y \to 0} \mu \frac{\triangle u_x}{\triangle y} = \mu \frac{\partial u_x}{\partial y}.$$

Intuitivno nam ta količina pove, da je sprememba hitrosti v x smeri, prinese majhno spremembo hitrosto v y smeri. Postopek, lahko ponovimo v vse tri smeri, kar nam da 9 komponent, tako imenovanega strižnega tenzorja τ . To količino bomo povezali s tenzorjem τ^R_{ij} preko Boussinesqove hipoteze. Za začetek bomo namesto filtracije $\overline{}$ uporabili statistično povprečje $\langle \ \cdot \ \rangle$ iz 3. poglavja. Tenzor τ^R_{ij} je enak

$$\tau_{ij}^{R} = \langle U_i U_j \rangle - \langle U_i \rangle \langle U_j \rangle.$$

Vstavimo z zgornjo enakost Reynoldsov razcep $U_i = \langle U_i \rangle + u_i'$:

$$\tau_{ij}^{R} = \langle (\langle U_i \rangle + u_i')(\langle U_j \rangle + u_j') \rangle - \langle \langle U_i \rangle + u_i' \rangle \langle \langle U_j \rangle + u_j' \rangle =$$

$$= \langle \langle U_i \rangle \langle U_j \rangle + u_i' u_j' + \langle U_i \rangle u_j' + \langle U_j \rangle u_i' \rangle - (\langle \langle U_i \rangle \rangle + \langle u_i, ' \rangle) \cdot (\langle \langle U_j \rangle \rangle + \langle u_j, ' \rangle) =$$

$$= \langle U_i \rangle \langle U_j \rangle + \langle u_i' u_j' \rangle - \langle U_i \rangle \langle U_j \rangle - \langle u_i' \rangle \langle u_j' \rangle =$$

$$= \langle u_i' u_i' \rangle$$

Naredimo podobno povezavo, kot pri strižni napetosti. V enodimenzionalnem primeru se se tok **U** premika v smeri(x-smeri) povprečja toka $\langle U_x \rangle$. Ker pa se na nivoju majhnih delcev pojavijo razlike v hitrostih na zgornji in spodnji strani majhne domene, bo to povzročilo gibanje v y-smeri.

Slika 5: Gibanje hitrejših delcev(rdeče območje) inducira gibanje počasnejših delcev(modro območje), kar označuje prenos gibalne količine oz. gibanje hitrosti vysmeri.

Ker za gibanje, ki odstopa od povprečja, pričakujemo, da je povezano z turbulentnim gibanjem toka, **Boussinesqova hipoteza oz. aproksimacija** pravi, da je

$$-\tau_{ij} = -\langle u_i' u_j' \rangle = \nu_t \frac{\partial \langle U_i \rangle}{\partial x_j} = \tau_{ij}^R, \tag{4.3}$$

kjer običajno $i=x,\,j=y,\,k=z$ in $\frac{\partial}{\partial x}=\frac{\partial}{\partial x_i},\,\frac{\partial}{\partial y}=\frac{\partial}{\partial x_j}$ in $\frac{\partial}{\partial z}=\frac{\partial}{\partial x_k}$. Konstanta $\nu_t>0$ se imenuje **turbulentna viskoznost**, ki jo prav tako treba modelirati. Poglejmo, kako ta model razširiti v višje dimenzije. Začeli smo s primerom, ko gibanje toka poteka v x-smeri, če pa pogledamo strižno napetost v y-smeri:

$$-\langle u_j' u_i' \rangle = \nu_t \frac{\partial \langle U_j \rangle}{\partial x}.$$

Ker očitno velja $\langle u_i'u_j'\rangle=\langle u_j'u_i'\rangle,$ enačbi seštejemo in dobimo 2-dimenzionalen primer:

$$-\langle u_i' u_j' \rangle = \nu_t \left(\frac{\partial \langle U_i \rangle}{\partial y} + \frac{\partial \langle U_j \rangle}{\partial x} \right). \tag{4.4}$$

Opomba 4.8. Ta postopek ne deluje če predpostavimo nestisljivostni pogoj. Če v prejšnjem primeru vzamemo i=j:

$$-\langle u_i' u_i' \rangle = 2\nu_t \frac{\partial \langle U_i \rangle}{\partial x_i}$$

in člene seštejemo

$$-\sum_{i=1}^{n} \langle u_i' u_i' \rangle = 2\nu_t \sum_{i=1}^{n} \frac{\partial \langle U_i \rangle}{\partial x_i} = 2\nu_t \nabla \cdot \langle U \rangle = 0.$$

Ker je leva stran neničelna (saj tok ne miruje), dobimo protisloven rezultat.

Za splošno dimenzijo vzamemo za model tenzorja $\langle u_i' u_i' \rangle$

$$-\langle u_i'u_j'\rangle = \nu_t \left(\frac{\partial \langle U_i\rangle}{\partial x_j} + \frac{\partial \langle U_j\rangle}{\partial x_i} - \frac{1}{3} \sum_{k=1}^n \frac{\partial \langle U_k\rangle}{\partial x_k} \delta_{ij}\right) - \frac{2}{3} k \delta_{ij}, \tag{4.5}$$

kjer je

$$k = \sum_{i=1}^{n} \langle u_i' u_i' \rangle$$

turbulentna kinetična energija. V vektorski obliki je model enak:

$$-\langle \mathbf{u}'\mathbf{u}'^T \rangle = \nu_t \Big(\nabla \langle \mathbf{U} \rangle + (\nabla \langle \mathbf{U} \rangle)^T - \frac{1}{3} (\nabla \cdot \langle \mathbf{U} \rangle) I \Big) - \frac{2}{3} k I, \tag{4.6}$$

Ni težko preveriti, da ta model ni v protislovju z stisljivostnim pogojem iz opombe.

Ta model smo uvedli na podlagi Reynoldsovvega razcepa, ki pa ima sicer lastnosti, ki so bolj prikladne za obravnavo tenzorja τ_{ij}^R , vendar pa nam da podlago, da nastavimo model v primeru filtracije.

Definicija 4.9. Model turbuletne viskoznosti za $\nu_t > 0$ je

$$\tau_{ij}^{R} = -\nu_t \left(\frac{\partial \overline{U}_i}{\partial x_j} + \frac{\partial \overline{U}_j}{\partial x_i} - \frac{1}{3} \sum_{k=1}^n \frac{\partial \overline{U}_k}{\partial x_k} \delta_{ij} \right) - \frac{2}{3} k \delta_{ij}, \tag{4.7}$$

oz. zapis preko anizotropnega rezidualnega napetostnega tenzorja

$$\tau_{ij}^{\text{anizo}} = -\nu_t \left(\frac{\partial \overline{U}_i}{\partial x_j} + \frac{\partial \overline{U}_j}{\partial x_i} - \frac{1}{3} \sum_{k=1}^n \frac{\partial \overline{U}_k}{\partial x_k} \delta_{ij} \right). \tag{4.8}$$

Opomba 4.10.

- Sedaj vidimo, zakaj smo v drugem poglavju uvedli definicijo anizotropnega tenzorja τ_{ij}^{anizo} . Predstavlja popravek za model turbulentne viskoznosti.
- V primeru nestisljivostnega toka, se model glasi

$$\tau_{ij}^{\rm anizo} = -\nu_t \left(\frac{\partial \overline{U}_i}{\partial x_j} + \frac{\partial \overline{U}_j}{\partial x_i} \right) = -\nu_t \overline{S}_{ij}.$$

Poglejmo si nekaj standardnih modelov oz. izbir ν_t

4.2.1 Model Smagorinskega

To je prvi model simulacije velikih turbulentnih vrtincev, ki ga je leta 1963 predlagal ameriški meterolog Joseph Smagorinsky. Podlaga za izpeljavo ν_t je dimenzijska analiza. Enota za ν_t je

$$[\nu_t] = \frac{[m^2]}{[s]} = \frac{[m]}{[s]} \times [m] = [U_0] \times [l_0].$$

Imamo oceno $\nu_t \sim U_0 l_0$, za neznano hitrost U_0 in l_0 . Smagorinsky je domneval, ker je model odvisen od tenzorja \overline{S}_{ij} , da je proporcionalen z velikostjo tega tenzorja, tj. $U_0 \sim \sqrt{S_{ij}S_{ij}}$. Ker se enote ne ujemajo dodamo izrazu dolžino l_0 in normalizacijsko konstanto $\sqrt{2}$. Torej je $U_0 = l_0 \sqrt{2S_{ij}S_{ij}}$. Kakšna pa bi bila smiselna izbira za l_0 ? Ker nam filtracija odstrani vse vrtince manjše od filterske dolžine Δ , lahko pričakujemo $l_0 = C_s \Delta$ za $C_s \in (0,1)$. Shockney Lilly je leta 1967 izračunal zelo dobro oceno za C_s , ki je enaka

$$C_s = \frac{1}{\pi} \left(\frac{2}{3C} \right)^{\frac{3}{4}} \approx 0.17.$$

za konstanto Kolmogorova C. Za model Smagorinskega velja, da zadošča vsem invariancam iz prejšnjega razdelka z izjemo invariance raztezanja, kar nam namiguje, da je model dober.

4.2.2 Dinamični model Smagorinskega

Naslednji model je variacija modela Smagorinskega. Ideja je da filtrirane Navier-Stokesove enačbe filtriramo ponovno z novo homogeno filtracijsko funkcijo, ter da novo konstanto parametriziramo, da je odvisna od \mathbf{x} in t tj. $C = C(\mathbf{x}, t)$. Označimo drugo filtracijo z $\widehat{\cdot}$. Filtriramo filtrirano Navier-Stokesovo enačbo

$$\frac{\partial \widehat{\overline{U}_j}}{\partial t} + \frac{\partial \widehat{\overline{U_i}} \widehat{U_j}}{\partial x_i} = -\frac{1}{\rho} \frac{\partial \widehat{\overline{P}}}{\partial x_j} - \frac{\partial \mathbb{K}_{ij}^R}{\partial x_i} + \nu \frac{\partial^2 \widehat{\overline{U}}_j}{\partial x_i \partial x_i} + \hat{\overline{f}}_j,$$

kjer je nov rezidualni tenzor enak $\mathbb{K}_{ij}^R = \widehat{\tau_{ij}^{anizo}} = \widehat{\overline{U_i U_j}} - \widehat{\overline{U_i U_j}}$. Pomembna količina, ki jo definiramo, je Germanova identiteta

$$\mathbb{L}_{ij} = \mathbb{K}_{ij} - \widehat{\tau_{ij}^{\text{anizo}}} = \widehat{\overline{U_i}} \, \widehat{\overline{U_j}} - \widehat{\overline{U_i}} \, \widehat{\overline{U_j}}.$$

Pomembnost tenzorja \mathbb{L} se bo pokazala kmalu, saj je odvisna od iskanih količin $\overline{U_i}$. Model Smagorinskega za dvojno filtrirano Navier-Stokesovo enačbo je

$$\mathbb{K}_{ij}^{\text{anizo}} = \mathbb{K}_{ij}^R - \frac{1}{3} \text{tr}(\mathbb{K}_{ij}^R) \delta_{ij} = C_s(\mathbf{x}, t) \widehat{\Delta}^2 (2\widehat{S}_{ij} \widehat{S}_{ij})^{\frac{1}{2}} \widehat{S}_{ij}^{-1},$$

za filtersko dolžino $\widehat{\Delta}$ druge filtracije, med tem ko je model Smagorinskega za prvotni problem

 $\tau_{ij}^{\text{anizo}} = C_s(\mathbf{x}, t) \Delta^2 (2\overline{S_{ij}} \, \overline{S_{ij}})^{\frac{1}{2}} \, \overline{S_{ij}}.$

Da dobimo enačbo za $\widehat{C}_s,$ uporabimo aproksimacijo

$$\widehat{\tau_{ij}^{\text{anizo}}} \approx C_s(\mathbf{x}, t) \Delta^2 (\widehat{2\overline{S_{ij}}} \, \overline{S_{ij}})^{\frac{1}{2}} \, \overline{S_{ij}}.$$

Enakost velja, če je $C_s(\mathbf{x},t)$ neodvisna od \mathbf{x} . Iščemo funckijo $C(\mathbf{x},t)$ da bo

$$\mathbb{L}_{ij}^{\text{anizo}} = \mathbb{K}_{ij}^{\text{anizo}} - \widehat{\tau_{ij}^{\text{anizo}}}.$$

Ekvivalentno zapišemo

$$\mathbb{L}_{ij} - \frac{1}{3} \operatorname{tr}(\mathbb{L}) \delta_{ij} = \mathbb{K}_{ij} - \frac{1}{3} \operatorname{tr}(\mathbb{K}) \delta_{ij} - \widehat{\tau_{ij}^{\text{anizo}}} \approx$$

$$= C_s(\mathbf{x}, t) (\widehat{\Delta}^2 (2\widehat{S_{ij}} \widehat{S_{ij}})^{\frac{1}{2}} \widehat{S_{ij}} - \Delta^2 (2\widehat{S_{ij}} \widehat{S_{ij}})^{\frac{1}{2}} \widehat{S_{ij}}) =$$

$$= C_s(\mathbf{x}, t) \mathbb{M}_{ij},$$

za

$$\mathbb{M}_{ij} := \widehat{\Delta}^2 (2\widehat{\overline{S_{ij}}} \, \widehat{\overline{S_{ij}}})^{\frac{1}{2}} \, \widehat{\overline{S_{ij}}} - \Delta^2 (\widehat{2\overline{S_{ij}} \, \overline{S_{ij}}})^{\frac{1}{2}} \, \overline{S_{ij}}.$$

Ta sistem je preddoločen za C_s , zato ga lahko le redko kdaj rešimo točno. Rešitev iščemo po metodi najmanjših kvadratov, da minimiziramo napako

$$Q = \sum_{i,j=1}^{n} \left(\mathbb{L}_{ij} - \frac{1}{3} \operatorname{tr}(\mathbb{L}) \delta_{ij} + C_s(\mathbf{x}, t) \mathbb{M}_{ij} \right)^2.$$

Odvajamo izraz po C_s :

$$\frac{\partial Q}{\partial C_s} = \sum_{i,j=1}^n 2\mathbb{M}_{ij} \left(\mathbb{L}_{ij} - \frac{1}{3} \operatorname{tr}(\mathbb{L}) \delta_{ij} + C_s(\mathbf{x}, t) \mathbb{M}_{ij} \right) =$$

$$= \sum_{i,j=1}^n \left(2\mathbb{M}_{ij} \mathbb{L}_{ij} - \frac{2}{3} \operatorname{tr}(\mathbb{L}) \mathbb{M}_{ii} + 2C_s \mathbb{M}_{ij} \mathbb{M}_{ij} \right) =$$

$$= 2 \sum_{i,j=1}^n \mathbb{M}_{ij} \mathbb{L}_{ij} + 2C_s \sum_{i,j=1}^n \mathbb{M}_{ij} \mathbb{M}_{ij} - \frac{2}{3} \operatorname{tr}(\mathbb{L}) \operatorname{tr}(\mathbb{M}) = 0.$$

Če upoštevamo nestisljivostni pogoj:

$$\operatorname{tr}(\overline{S}) = 2 \sum_{i=1}^{n} \frac{\partial \overline{U}_{i}}{\partial x_{i}} = \nabla \cdot \overline{U} = 0$$

$$\Longrightarrow \operatorname{tr}(\widehat{\overline{S}}) = 0$$

$$\Longrightarrow \operatorname{tr}(\mathbb{M}) = 0$$

Funkcija $C_s(\mathbf{x},t)$, ki minimizira Q je

$$C_s(\mathbf{x},t) = -\frac{\sum_{i,j=1}^n \mathbb{M}_{ij} \mathbb{L}_{ij}}{\sum_{i,j=1}^n \mathbb{M}_{ij} \mathbb{M}_{ij}}(\mathbf{x},t). \tag{4.9}$$

Da je to res minimum, preverimo, da je drugi odvod pozitiven:

$$\frac{\partial^2 Q}{\partial C_s^2} = 2 \sum_{i,j=1}^n \mathbb{M}_{ij} \mathbb{M}_{ij} > 0.$$

Modelu, ki smo ga izpeljali, pravimo **dinamični model Smagorinskega** in zadošča vsem invariantam Navier-Stokesove enačbe. Sedaj naštejemo še nekaj več modelov brez natačnejše analize

• Gradientni model:

$$\tau_{ij}^{\rm anizo} = -\frac{\Delta^2}{12} J_{\overline{\mathbf{U}}} J_{\overline{\mathbf{U}}}^T,$$

kjer je J Jacobijeva matrika.

• Taylorjev model:

$$\tau_{ij}^r = -\frac{\Delta^2}{12} J_{\overline{\mathbf{U}}} J_{\overline{\mathbf{U}}}^T + \Delta^2 \sqrt{2 \overline{S_{ij}} \, \overline{S_{ij}}} \, \overline{S_{ij}}$$

• Racionalni model:

$$\tau_{ij}^{r} = -\frac{\Delta^{2}}{12}G * (J_{\overline{\mathbf{U}}}J_{\overline{\mathbf{U}}}^{T}) + \Delta^{2}\sqrt{2\overline{S_{ij}}}\,\overline{S_{ij}}\,\,\overline{S_{ij}}$$

za Gaussovo filtracijsko funkcijo G.

Literatura

- [1] J. Anderson John D., Computational fluid dynamics: the basics with applications, McGraw-Hill, New York, 1995.
- [2] D. Barbi in G. Münster, Renormalization group analysis of turbulent hydrodynamics, [ogled 19.7.2025], dostopno na https://arxiv.org/pdf/1012.0461.
- [3] E. Bouchbinder, Solution to Tensor Analysis (Q1), [ogled 19.7.2025], dosto-pno na https://www.weizmann.ac.il/chembiophys/bouchbinder/sites/chemphys.bouchbinder/files/uploads/Courses/2023/HW/Q1-TensorsAnalysis-sol.pdf.
- [4] C. Foias in dr. *Navier-stokes equations and turbulence*, Cambridge University Press, Cambridge, UK, 2001.
- [5] H. Hanche-Olsen, *The Buckingham Pi Theorem: Dimensional Analysis*, [ogled 19.7.2025], dostopno na %5Curl%7Bhttps://hanche.folk.ntnu.no/notes/buckingham/buckingham-a4.pdf%7D.
- [6] M. Oberlack, Invariant modeling in large-eddy simulation of turbulence, [ogled 19.7.2025], dostopno na https://web.stanford.edu/group/ctr/ResBriefs97/oberlack.pdf.
- [7] S. B. Pope, Turbulent flows, Cambridge University Press, Cambridge, UK, 2000.
- [8] D. Razafindralandy, A. Hamdouni in O. Martin, New turbulence models preserving symmetries, symmetries, [ogled 19.7.2025], dostopno na https://hal.science/hal-00312562v1/document.
- [9] B. P. Roger Lewandowski, *The Kolmogorov Law of turbulence, What can rigorously be proved? Part II*, Teh. poročilo, [ogled 16.7.2025], dostopno na https://hal.science/hal-01244651v1/document.
- [10] M. Rösler, *The Smagorinsky turbulence model*, rosler, magistrsko delo, [ogled 19.7.2025], dostopno na https://wias-berlin.de/people/john/BETREUUNG/bachelor_roesler.pdf.
- [11] M. Spieg, Conservation Equations, Teh. poročilo, [ogled 19.7.2025], dostopno na https://www.stat.uchicago.edu/~guillaumebal/COURSES/E3102/MSpieg-Conserveq.pdf.
- [12] J. C. Wyngaard, *Turbulence in the atmosphere*, Cambridge University Press, Cambridge, 2010.