

# pyfda

# **Python Filter Design and Analysis**

Dr. Christian Münker



#### About me



**Since 2008:** Professor for analog circuit design and digital signal processing at the Munich University of Applied Sciences

1993 – 2008: Mixed-signal chip designer a.o. with Infineon and Plessey



- RF-SOCs and -PLLs
- Built-In Self Test and Calibration
- Mixed-signal and behavioural simulation: SPICE, VHDL, Verilog(-A)

Interests: Python, DSP, FPGAs, circuit design, FOSS design flow, electronic music & music electronics, modular synths

## pyfda: Python Filter Design and Analysis





github.com/chipmuenk/pyfda: Self-expanding archives for Windows and OSX, flatpak for Linux or simply pip install pyfda

- Learn Python and QT (me)
- Interactive application for DSP lectures (me)
- Plots for lecture slides and scripts (me)
- Easy-to-use permissive license tool (DSP students, R & D)
- Fixpoint arithmetics in time and frequency domain (R & D)

#### **Next step**

 Generate synthesizable Verilog code for fixpoint filters using e.g. amaranth

## Demo (1): Filter Design





Design filter to meet frequency domain specs with minimum order

#### Demo (2): Coefficients and Poles / Zeros





Check filter coefficients and pole / zero positions

## Demo (3): Error due to Fixpoint Coefficients





Quantize coefficients to 16 bit resolution, resulting in degraded magnitude response

#### Demo (4): Fixpoint Transient Response





View coefficients in hex format. Transient response of fixpoint filter to noisy, clipped input signal.

## Demo (5): Simulate Fixpoint Arithmetics





Spectral representation of signals from last slide together with ideal filter response

#### Help wanted



- Feedback from more R & D users, not only DSP course attendants
- Implementation of fixpoint filter topologies in a DSL (e.g. amaranth) for generation of synthesizable Verilog
- Verify generated Verilog against Python testbench using cocotb

#### **Contact and social media**

chipmuenk (at) gmail.com github.com/chipmuenk = www.pyfda.org www.linkedin.com/in/christian-muenker www.youtube.com/c/christian\_munker (tutorials coming soon)