### Local Search Heuristics

LocalSearch(ProblemInstance x) y := feasible solution to x; while  $\exists z \in N(y): v(z) < v(y)$  do y := z; od; return y;

### To do list

- How do we find the first feasible solution?
- Neighborhood design?
- Which neighbor to choose?
- Partial correctness? Never Mind!
- Termination? Stop when tired! (but
- Complexity? optimize the time of each iteration).

















# Boosting local search

- Taboo search
- · Simulated annealing
- Evolutionary algorithms

Theme: Avoiding local optima.

11

#### Taboo search

• When the local search reaches a local minimum, **keep searching.** 

#### Local Search

LocalSearch(ProblemInstance x) y := feasible solution to x; while  $\exists z \in N(y): v(z) < v(y)$  do y := z; od; return y;

13

### Taboo search, attempt 1

LocalSearch(ProblemInstance x)
y := feasible solution to x;
while not tired do
 y := best neighbor of y;
od;
return best solution seen;

14

#### Serious Problem

- The modified local search will typically enter a cycle of length 2.
- As soon as we leave a local optimum, the next move will typically bring us back there.

15

### Attempt at avoiding cycling

- Keep a list of already seen solutions.
- Make it illegal ("taboo") to enter any of them.
- Not very practical list becomes long.
   Also, search tend to circle around local optima.

16

#### Taboo search

- After a certain "move" has been made, it is declared taboo and may not be used for a while.
- "Move" should be defined so that it becomes taboo to go right back to the local optimum just seen.

17

#### **MAXSAT**

 Given a formula f in CNF, find an assignment a to the variables of f, satisfying as many clauses as possible.

### Solving MAXSAT using GSAT

- · Plain local search method: GSAT.
- GSAT Neighborhood structure: Flip the value of one of the variables.
- · Do steepest descent.

19

#### Taboo search for MAXSAT

- As in GSAT, flip the value of one of the variables and choose the steepest descent.
- When a certain variable has been flipped, it cannot be flipped for, say, n/4 iterations.We say the variable is taboo. When in a local optimum, make the "least bad" move.

20

TruthAssignment TabooGSAT(CNFformula f) t := 0;  $T := \emptyset$ ; a, best := some truth assignment; repeat

Remove all variables from T with time stamp < t-n/4;

For each variable x not in T, compute the number of clauses satisfied by the assignment obtained from a by flipping the value of x. Let x be the best choice and let a' be the corresponding assignment.

a = a'; Put x in T with time stamp t; if a is better than best then best = a; t := t+1

until tired return best;

21

#### **TSP**

- No variant of "pure" taboo search works very well for TSP.
- Johnson og McGeoch: Running time 12000 as slow as 3opt on instances of size 1000 with no significant improvements.
- General remark: Heuristics should be compared on a time-equalized basis.

22

## Lin-Kernighan

- · Very successful classical heuristic for TSP.
- Similar to Taboo search: Boost 3-opt by sometimes considering "uphill" (2-opt) moves.
- When and how these moves are considered is more "planned" and "structured" than in taboo search, but also involves a "taboo criterion".
- · Often misrepresented in the literature!

23

# Looking for 3opt moves

• WLOG look for  $t_1$ ,  $t_2$ ,  $t_3$ ,  $t_4$ ,  $t_5$ ,  $t_6$  so that  $d(t_1, t_2) > d(t_2, t_3)$  and  $d(t_1, t_2) + d(t_3, t_4) > d(t_2, t_3) + d(t_4, t_5)$ .



• The weight of the one-tree smaller than length of original tour.

### Lin-Kernighan move



### Lin-Kernighan moves

- A 2opt move can be viewed as LK-move.
- A 3opt move can be viewed as two LKmoves.
- · The inequalities that can be assumed WLOG for legal 3-opt (2-opt) moves state than the one-trees involved are shorter than the length of the original tour.

## Lin-Kernighan search

- 3opt search with "intensification".
- Whenever a 3opt move is being made, we view it as two LK-moves and see if we **in addition** can perform a number of LK-moves (an LK-search) that gives an even better improvement.
- During the LK-search, we never delete an edge we have added by an LK-move, so we consider at most n-2 additional LK-moves ("taboo criterion"). We keep track of the  $\leq n$  solutions and take the best one.
- The next move we consider is the best LK-move we can make. It could be an uphill move.
- We only allow one-trees lighter than the current tour. Thus, we can use neighbor lists to speed up finding the next move.

| N =                     | 10 <sup>2</sup>                                 | 102.5                                    | 10 <sup>3</sup>                                                               | 103.5                                                                              | 104                                                                | 104.5                               | 10 <sup>5</sup> | 105.5             | 106             |
|-------------------------|-------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------|-----------------|-------------------|-----------------|
|                         |                                                 |                                          | Rando                                                                         | n Euclide                                                                          | an instan                                                          | ces                                 |                 |                   |                 |
| 3-Opt                   | 2.5                                             | 2.5                                      | 3.1                                                                           | 3.0                                                                                | 3.0                                                                | 2.9                                 | 3.0             | 2.9               | 3.0             |
| LK                      | 1.5                                             | 1.7                                      | 2.0                                                                           | 1.9                                                                                | 2.0                                                                | 1.9                                 | 2.0             | 1.9               | 2.0             |
|                         |                                                 |                                          | Rande                                                                         | om distan                                                                          | e matric                                                           | es                                  |                 |                   |                 |
| 3-Opt                   | 10.0                                            | 20.0                                     | 33.0                                                                          | 46.0                                                                               | 63.0                                                               | 80.0                                | -               |                   | -0              |
|                         |                                                 |                                          |                                                                               |                                                                                    |                                                                    |                                     |                 |                   |                 |
| LK.                     | 1.4                                             | 2.5                                      | 3.5                                                                           | 4.6<br>Kernigha                                                                    | 5.8                                                                | 6.9                                 | to 3-O          | pt: seco          | nds on          |
| LK                      | 1.4                                             | 2.5                                      | 3.5                                                                           |                                                                                    | n in con                                                           | nparison                            | -<br>to 3-O     | pt: seco          | nds on          |
| Table 8.                | 1.4                                             | 2.5                                      | 3.5                                                                           | Kernigha                                                                           | n in con                                                           | nparison                            | to 3-O          | pt: seco          | nds on          |
| LK Table 8.             | 1.4<br>8 Runni                                  | 2.5                                      | 3.5<br>for Lin-<br>a 150<br>10 <sup>3</sup>                                   | Kernigha<br>MHz SGI                                                                | n in con<br>Challens                                               | nparison<br>ge<br>10 <sup>4.5</sup> |                 | 22                |                 |
| Table 8.                | 1.4<br>8 Runni                                  | 2.5                                      | 3.5<br>for Lin-<br>a 150<br>10 <sup>3</sup>                                   | Kernigha<br>MHz SGI<br>10 <sup>3.5</sup>                                           | n in con<br>Challens                                               | nparison<br>ge<br>10 <sup>4.5</sup> |                 | 22                |                 |
| LK Table 8.             | 1.4<br>8 Runni<br>10 <sup>2</sup>               | 2.5<br>ng times                          | 3.5<br>for Lin-<br>a 150<br>$10^3$<br>Rando                                   | Kernigha<br>MHz SGI<br>10 <sup>3.5</sup><br>m Euclide                              | n in con<br>Challens<br>10 <sup>4</sup><br>an instan               | nparison<br>ge<br>10 <sup>4.5</sup> | 105             | 105.5             | 10 <sup>6</sup> |
| Table 8.  N =  3-Opt LK | 1.4<br>Runni<br>10 <sup>2</sup><br>0.04<br>0.06 | 2.5 ng times 10 <sup>2.5</sup> 0.11 0.20 | 3.5<br>for Lin-<br>a 150<br>10 <sup>3</sup><br>Rando<br>0.41<br>0.77<br>Rando | Kernigha<br>MHz SGI<br>10 <sup>3.5</sup><br>m Euclide<br>1.40<br>2.46<br>om distan | n in con<br>Challeng<br>10 <sup>4</sup><br>an instan<br>4.7<br>9.8 | 10 <sup>4.5</sup> ces 17.5 39.4     | 10 <sup>5</sup> | 10 <sup>5.5</sup> | 10 <sup>6</sup> |
| Table 8.  N =           | 1.4<br>8 Runni<br>10 <sup>2</sup>               | 2.5 ng times 10 <sup>2.5</sup> 0.11      | 3.5<br>for Lin-<br>a 150<br>10 <sup>3</sup><br>Rando<br>0.41<br>0.77          | Kernigha<br>MHz SGI<br>10 <sup>3.5</sup><br>m Euclide<br>1.40<br>2.46              | n in con<br>Challeng<br>10 <sup>4</sup><br>an instan<br>4.7<br>9.8 | 10 <sup>4.5</sup> ces 17.5 39.4     | 10 <sup>5</sup> | 10 <sup>5.5</sup> | 10 <sup>6</sup> |

#### What if we have more CPU time?

- We could repeat the search, with different starting point.
- · Seems better not to throw away result of previous search.

29

### Iterated Lin-Kernighan

- After having completed a Lin-Kernighan run (i.e., 3opt, boosted with LK-searches), make a random 4-opt move and do a new Lin-Kernighan run.
- Repeat for as long as you have time. Keep track of the best solution seen.
- The 4-opt moves are restricted to double bridge moves (turning  $A_1 A_2 A_3 A_4$  into  $A_2 A_1 A_4 A_3$ .)

|                     | $10^{2}$ | $10^{2.5}$ | 103       | 103.5         | 104         | 104.5      | 105    |
|---------------------|----------|------------|-----------|---------------|-------------|------------|--------|
|                     | A        | verage p   | ercent ex | cess over the | Held-Karp   | lower boun | d      |
| Independent         |          |            |           |               |             |            |        |
| iterations          |          |            |           |               |             |            | 1.95   |
| 1                   | 1.52     | 1.68       | 2.01      | 1.89          | 1.96        | 1.91       | 1.95   |
| N/10                | 0.99     | 1.10       | 1.41      | 1.62          | 1.71        | -          | -      |
| N/100.5             | 0.92     | 1.00       | 1.35      | 1.59          | 1.68        | -          | -      |
| N                   | 0.91     | 0.93       | 1.29      | 1.57          | 1.65        | -          | _      |
| ILK iterations      |          |            |           |               |             | 1.25       | 1.31   |
| N/10                | 1.06     | 1.08       | 1.25      | 1.21          | 1.26        |            |        |
| N/10 <sup>0.5</sup> | 0.96     | 0.90       | 0.99      | 1.01          | 1.04        | 1.04       | 1.08   |
| N                   | 0.92     | 0.79       | 0.91      | 0.88          | 0.89        | 0.91       | -      |
|                     |          | Runr       | ing time  | in seconds o  | n a 150 MHa | SGI Challe | enge   |
| Independent         |          |            |           |               |             |            |        |
| iterations          |          |            |           | 2             | 10          | 40         | 150    |
| 1                   | 0.06     | 0.2        | 0.8       | 3             |             | 40         | 150    |
| N/10                | 0.42     | 4.7        | 48.1      | 554           | 7 2 5 0     | -          |        |
| N/100.5             | 1.31     | 14.5       | 151.3     | 1750          | 22900       | -          | _      |
| N                   | 4.07     | 45.6       | 478.1     | 5 540         | 72 400      | -          | -      |
| ILK iterations      |          | 1070       | -         | 27            | 189         | 1 330      | 10 200 |
| N/10                | 0.14     | 0.9        | 5.1       |               | 524         | 3810       | 30 700 |
| N/100.5             | 0.34     | 2.4        | 13.6      | 76            |             | 11 500     | 30 700 |
| N                   | 0.96     | 6.5        | 39.7      | 219           | 1 570       | 11 500     | _      |