

Video game based kinematic assessment using a Leap Motion Controller

Dominik Buchmann¹, Amartya Ganguly^{1,2}, Katja Mombaur³

¹Optimization, Robotics and Biomechanics, Institute of Computer Engineering, Heidelberg University

²Munich School of Robotics and Machine Intelligence, Technical University of Munich

³Chair in Human-Centred Robotics & Machine Intelligence, University of Waterloo

Introduction

- The Leap Motion Controller (LMC) is a low cost portable device used to assess hand kinematics during object manipulation in an virtual environment
- A virtual take on the standard peg-test (NHPT)[1] running on Unity3D
- The focus of this study was the analysis of the LMC's closed source pinch strength and its comparison to force sensors
- Leap's pinch strength was compared against iBox based force analysis [2]

Materials and Methods

- Ten healthy, able bodied participants, age: 22,3 (± 2) participated in this study
- Portable Linux setup (estimated latency of less than 100ms)
- Trials were timed giving a Time Score which can be used as an secondary assessment

	Trial 1	Trial 2	Trial 3
Time(s)	74.16 ± 39.69	57.25 ± 36.17	38.66 ± 11.68

Table 1: Mean time scores ± standard deviation

Results and Discussion

- Pinch strength shows an inverse correlation with the distance of index finger and thumb tip (Figure 1).
- LMC pinch strength shows similar traits to the force sensor data [2] (Figure 2)
- Pinch strength shows an overshoot (up to 30%), similar to the force peak observed in [2]
- Adaption phases using the LMC are slower or sometimes missing most likely due to absent tactile feedback

Figure 1: Pinch strength compared against the distance of the index and thumb distal phalanx along the axes of LMC's coordinate system.

Figure 2: Pinch strength compared against normalised force measurement of the iBox faces

Conclusion

- Participants on average, decreased their overall task performance time
- Pinch strength is not an actual measurement of force but rather an indicator of the current pinch pose
- Visual feedback given by the game may replace the missing tactile feedback to some extent [1]

References

- . Dominik Buchmann (2020). *Interactive Visualisation to* assess hand Kinematics, Bachelor Thesis, University of Heidelberg
- https://github.com/dombmann/Bachelor_Game)
- . Martin-Brevet, S. et al. (2017). PloS one, 12: e0178185
- 3. Grice et al. (2003). Amr. Occp. Ther.Ass., 57: 570-3.