## (A) Transportation Problem with degenerey

Problem - find the minimum optimum transportation cost for the problem below.

|                | W, | W2 | W3 | W4 | WS. | Availabl |
|----------------|----|----|----|----|-----|----------|
| Fi             | 7  | 6  | 4  | 5  | 9   | 40       |
| f <sub>2</sub> | 8  | 5  | 6  | 7  | 8   | 30       |
| F3             | 6  | 8  | 9  | 6  | 5   | 20       |
| F4             | 5  | 7  | 7  | 8  | 6   | 10       |
| Demand         | 30 | 30 | 15 | 20 | 5   | 100      |

As \( \text{Demand} = \text{E Avoilable} \)

Given TP is a balanced T.P.

Initial Basic feasible Solution (VAM)

| 7     | 6   | 4 |      | 5 |      | 9 |          | 40 [1] [1] [2]4-[2]    |
|-------|-----|---|------|---|------|---|----------|------------------------|
| 8 (5) | 5   | 6 | (15) | 7 | (20) | 8 |          | 30 [i] [2]+            |
| 6     | 8   | 9 |      | 6 |      | 5 | (5)      | 36 [1] [1] [1] [1] [1] |
| 5     | 7   | 7 |      | 8 |      | 6 |          | to[1][1][1][1][        |
| 30,   |     |   | 15   |   | 20   |   | 5<br>[1] | mos canas maca fins    |
| [1]   | [0] |   | 4    |   | [1]  |   | [1]      |                        |
| [1]   |     |   |      |   |      |   | [1]      |                        |

Total Transportation Cost (TTC) = Rs [(7x5)+(4x15)+(5x20)+(5x30)+(6x15)+(5x5)+(5x10)] = Rs (35+60+100+150+90+25+50) = Rs 510

If m+n-1 = No of allocations Basic cells - TP without degenery m+n-1 & No of allocations Basic cells-TP with degenery.

## Check for optimality

|      | WI    | W   | 2   | W3   | W   | 4    | M | 15  |   |
|------|-------|-----|-----|------|-----|------|---|-----|---|
| f. 7 | 20    | 6 [ | 3 4 | ++0  | 5   |      | 9 | 3   | , |
| "    | (5)   |     |     | (15) | 702 | (20) |   | 1   |   |
| F2 8 | 1-1   | 5   | 6   | 5 -0 | 7   | 0    | 8 | 0   |   |
| 1    | 10    | -   | 30) | +(e) | 6   | 19   | 5 | -   |   |
| 3    | 6     | 8   | 6   | 3 6  |     | 1    |   | (5) | - |
| -    | (15)  | 7 1 | 6   | 7 5  | 8   | 15   | 6 |     |   |
| F4 1 | (1.0) |     |     |      |     | -    |   |     | - |
| r    | (10)  |     |     |      |     | _    |   | -   |   |
|      | 7     | 3   |     | 4    |     | >    |   | 6   |   |

i) man-1 = 4+5-1=8 \$\neq\$ No of Basic cells(7)

T.P. With degenery.

In case of degenery, select the minimum cost cell, such Phalit would will not possible to have a close loop passing through the
basic cells. Allocate & (E to but & to) to the cell so Phallit will be a basic cell.

Allocating & to (f2, W3), degenerar can be semoved.

(ii) All allocations are independent of each other i.e. it is not possible to have a closed loop passing through basic cells.

Ass all net evaluations are not positive (7,0), the Obtained solution is not optimum.

## Omproving the solution

$$Min = \{ (\epsilon - 0), (s - 0) \} = 0$$

| 7          | 6        | 4       | 5       | 8 |
|------------|----------|---------|---------|---|
| (5)        | 5        | (15)    | 7       | 8 |
| <u>(e)</u> | 8 (30)   | 9       | 6       | 5 |
| (15)       | 7        | 7       | 8       | 6 |
| (10)       | solii se | See all | F 100 - |   |

SBFJ

$$TTC = \frac{1}{2} \left[ (T+5) + (Y+15) + (5+20) + (8+6) + (5+30) + (6+15) + (5+5) + (5+10) \right]$$

$$= \frac{1}{2} \left[ (35+60+100+150+90+25+50) - \frac{1}{2} \left[ (35+60+100+150+90+25+50) - \frac{1}{2} \left[ (35+60+100+150+90+25+50) \right] \right]$$
Check for contimulity

## Check for optimality

| 7 |      | 6 | 2    | 4 | 0    | 5 | 70 On | 8 | [2] | 1 |
|---|------|---|------|---|------|---|-------|---|-----|---|
|   | (5)  |   |      | - | (15) |   | (20)  |   | -   |   |
| 8 |      | 5 |      | 6 | 1    | T | 1     | 8 | 1   | 9 |
|   | (E)  |   | (30) |   |      |   |       | - |     |   |
| 6 |      | 8 | 5    | 9 | 6    | 6 | 2     | 5 |     | ( |
|   | (15) |   |      |   |      |   |       |   | (5) |   |
| 5 |      | 7 | 5    | 7 | 5    | 8 | 5     | 6 | -   | - |
|   | 60)  | ) |      |   |      |   |       |   | , 6 |   |
|   | -    | - | _2   |   | -2   |   | -2    | - | -1  |   |

As all net evaluations are positive (70), the obtained solution is optimum.



Solution
Total Supply = 50+70+1030+50 = 200 unils

Total Demand = 25+35+105+20 = 185 unils

Fiven T.P. is belonded by introducing dunry Colorumn with demand 15 units.

Obtaining IBFS\_by VAM we gel-

|   | 1       | 2         | 3         | 4    | Dommy |
|---|---------|-----------|-----------|------|-------|
| • | 4       | 6         | 8         | 13   | 0     |
| A | (25)    | (5)       | (20)      |      |       |
|   | 13      | 11        | 10        | 8    | 0     |
| 8 | i mum a | I settere | (7        |      | 0     |
|   | 14      | 4         | 10        | 13   |       |
| С | -       | (30)      | 13        | 8    | 0     |
| • | 9       | 11        | leftle je |      | (15)  |
| D |         |           | (15)      | (50) | (13/1 |

T.P. without degeneray, and the solution is found to be optimum





Soluten

Unbalanced & Noveimization.

If IBF.S. is to obtained by VAM, then instead of obtaining the difference in between two least, Obtain. I the difference in between two highest- and assign to the highest could instead by lowest.

| 30   | 90    | 100         | 110            | 200 |                       |
|------|-------|-------------|----------------|-----|-----------------------|
| (76) | (100) | i jsalim li | (30)           |     |                       |
| 50   | 70    | 130         | 85             | 100 | ani dell'ino grittana |
|      |       | (100)       |                |     | 1 B FS                |
| 0    | 0     | 0           | 0              | 05  |                       |
| (5)  |       |             | l <sub>l</sub> |     |                       |

Above solution is obtained by VAM and bound to be optimum.

Zmays = Rs 31, 600

| Probil    | - W | apin | nizati | on | probl | em  |                        |
|-----------|-----|------|--------|----|-------|-----|------------------------|
|           |     |      |        | -  |       |     | marinizati n           |
|           |     | 1    | 2      | 3  | agen  | 5   | maximizati m<br>Supply |
|           | )   | 15   | 17     | 12 | 11    | 11  | 140                    |
| factiones | 2   | 5    | 9      | 7  | 15    | 7   | 196                    |
|           | 3   | 14   | 15     | 16 | 20    | 10  | 115                    |
| Derwand   |     | 74   | 94     | 69 | 39    | 119 | +                      |

Let us convert movemization to minimization just by multiplying the matrix by (-1), we get -

| -15 | -17 | -12 | <i>→</i> 1\ | -11 |
|-----|-----|-----|-------------|-----|
| -5  | - 9 | ->  | -15         | ->  |
| 14  | -15 | -16 | -20         | 40  |

- Minimization

for more simplicity let us substract - whole matrix from 20 so that all values would be positive

| 1 | 5  | 3  | 8  | 9  | 9   | 140 |
|---|----|----|----|----|-----|-----|
| 1 | 15 | 11 | 13 | 5  | 13  | 190 |
|   | 6  | 5  | 4  | 0  | 10  | 115 |
| 4 | 74 | 94 | 69 | 39 | 119 |     |

Balance it and solve

while calculating final answer refer to original water.

Restricted Fromsportation Roblem

Assign huge cour as or M to the restricted sale cell and solve.