Applied Linear Algebra in Data Analysis Orthogonality

Sivakumar Balasubramanian

Department of Bioengineering Christian Medical College, Bagayam Vellore 632002

Orthogonality

Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are orthogonal if $\mathbf{x}^\top \mathbf{y} = 0$.

▶ The set of non-zero vectors, $V = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_r\}$ is a set of mutually orthogonal vectors, if and only if,

$$\mathbf{v}_i^{\top} \mathbf{v}_j = 0, \ 1 \le i, j \le r \text{ and } i \ne j$$

ightharpoonup V is also a linearly independent set of vectors. Why?

Orthogonality

▶ If $\|\mathbf{v}_i\| = 1$, then V is an **orthonormal** set of vectors.

ightharpoonup A set of orthonormal vectors V also form an **orthonormal basis** of the subsapce span(V).

Orthogonal Subspaces

Two subspaces $\mathcal{V}, \mathcal{W} \subset \mathbb{R}^n$ are orthogonal if every vector in one subspace is orthogonal to every vector in the other subspace.

$$\mathbf{v}^{\top}\mathbf{w} = 0, \ \forall \mathbf{v} \in \mathcal{V} \text{ and } \forall \mathbf{w} \in \mathcal{W} \implies \mathcal{V} \perp \mathcal{W}$$

▶ If $V + W = \mathbb{R}^n$, and $V \perp W$, then V and W are **orthogonal complements** of each other.

$$\mathcal{V}^{\perp} = \mathcal{W} \text{ or } \mathcal{W}^{\perp} = \mathcal{V}; \quad \left(\mathcal{V}^{\perp}\right)^{\perp} = \mathcal{V}$$

 $\|\mathbf{e}\|$ is the distance of the point **b** from the line along **a**. This distance is shortest when, $\mathbf{e} \perp \mathbf{a}$.

$$\mathbf{a}^{\top} (\mathbf{b} - \mathbf{p}) = \mathbf{a}^{\top} (\mathbf{b} - \alpha \mathbf{a}) = \mathbf{a}^{\top} \mathbf{b} - \alpha \mathbf{a}^{\top} \mathbf{a} = 0$$

$$\alpha = \frac{\mathbf{a}^{\top} \mathbf{b}}{\mathbf{a}^{\top} \mathbf{a}} \implies \mathbf{p} = \frac{\mathbf{a}^{\top} \mathbf{b}}{\mathbf{a}^{\top} \mathbf{a}} \mathbf{a}$$

$$\mathbf{p} = \frac{\mathbf{a}^{\top} \mathbf{b}}{\mathbf{a}^{\top} \mathbf{a}} \mathbf{a} = \mathbf{a} \frac{\mathbf{a}^{\top} \mathbf{b}}{\mathbf{a}^{\top} \mathbf{a}} = \frac{\mathbf{a} \mathbf{a}^{\top}}{\mathbf{a}^{\top} \mathbf{a}} \mathbf{b} = \mathbf{P} \mathbf{b}$$

- ▶ We can project vectors onto high dimensional subspaces.
- ▶ Consider the subspace $S \subseteq \mathbb{R}^n$ spanned by the orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots \mathbf{u}_r\}$.
- ▶ We want to project a vector $\mathbf{b} \in \mathbb{R}^n$ onto \mathcal{S} $\mathbf{b}_{\mathcal{S}}$ the orthogonal projection of \mathbf{b} onto \mathcal{S} is given by the following,

$$\mathbf{b}_{\mathcal{S}} = \mathbf{U}\mathbf{U}^{\top}\mathbf{b}; \ \mathbf{U} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_r \end{bmatrix}$$

Projection matrix $\mathbf{P}_{\mathcal{S}} = \mathbf{U}\mathbf{U}^{\top}$

▶ A projection matrix is **idempotent**, i.e. $\mathbf{P}^2 = \mathbf{P}$. What does this mean in terms of projecting a vector on to a subspace?

▶ Consider two matrices $\mathbf{U}_1, \mathbf{U}_2$ whose columns form an orthonormal basis of the subspace $\mathcal{S} \subseteq \mathbb{R}^m$, $\mathcal{C}(\mathbf{U}_1) = \mathcal{C}(\mathbf{U}_2)$.

▶ The projection matrix onto the subspace S, $\mathbf{U}_1\mathbf{U}_1^{\top} = \mathbf{U}_2\mathbf{U}_2^{\top}$. We get the same projection matrix irrespective of which orthonormal basis one uses.

▶ Two subspaces $\mathcal{X}, \mathcal{Y} \subset \mathbb{R}^n$ are said to be **complementary subspaces** of \mathbb{R}^n , when

$$\mathcal{X} + \mathcal{Y} = \mathbb{R}^n$$
 and $\mathcal{X} \cap \mathcal{Y} = \{\mathbf{0}\}$

▶ For complementary subspaces $\mathcal{X}, \mathcal{Y} \subset \mathbb{R}^n$, then any vector $\mathbf{v} \in \mathbb{R}^n$ can be uniquely represented as,

$$\mathbf{v} = \mathbf{v}_{\mathcal{X}} + \mathbf{v}_{\mathcal{Y}}, \ \mathbf{v}_{\mathcal{X}} \in \mathcal{X}, \ \mathbf{v}_{\mathcal{Y}} \in \mathcal{Y}$$

 $\mathbf{v}_{\mathcal{X}}, \mathbf{v}_{\mathcal{Y}}$ are the components of \mathbf{v} in \mathcal{X} and \mathcal{Y} , respectively.

▶ When $\mathcal{X} \perp \mathcal{Y}$, then $\mathbf{v}_{\mathcal{X}}^{\top} \mathbf{v}_{\mathcal{Y}} = 0$; $\mathbf{v}_{\mathcal{X}}, \mathbf{v}_{\mathcal{Y}}$ are orthogonal components.

Relationship between the Four Fundamental Subspaces of A

 $ightharpoonup \mathcal{C}(\mathbf{A}), \mathcal{N}(\mathbf{A}^{\top}) \subseteq \mathbb{R}^n$ are orthogonal complements.

$$\mathcal{C}\left(\mathbf{A}\right) \perp \mathcal{N}\left(\mathbf{A}^{\top}\right) \implies \mathcal{C}\left(\mathbf{A}\right) + \mathcal{N}\left(\mathbf{A}^{\top}\right) = \mathbb{R}^{n}$$

 $ightharpoonup \mathcal{C}\left(\mathbf{A}^{\top}\right), \mathcal{N}\left(\mathbf{A}\right) \subseteq \mathbb{R}^{m}$ are orthogonal complements.

$$\mathcal{C}\left(\mathbf{A}^{\top}\right) \perp \mathcal{N}\left(\mathbf{A}\right) \implies \mathcal{C}\left(\mathbf{A}^{\top}\right) + \mathcal{N}\left(\mathbf{A}\right) = \mathbb{R}^{m}$$

▶ An orthogonal projection matrix $\mathbf{P}_{\mathcal{S}}$ onto a subspace \mathcal{S} represents a linear mapping, $\mathbf{P}_{\mathcal{S}}: \mathbb{R}^n \to \mathbb{R}^n$. What are the four fundamental subspaces of $\mathbf{P}_{\mathcal{S}}$?

$$\mathcal{C}\left(\mathbf{P}_{\mathcal{S}}\right) = \mathcal{S}; \quad \mathcal{N}\left(\mathbf{P}_{\mathcal{S}}\right) = \mathcal{S}^{\perp}$$
 $\mathcal{N}\left(\mathbf{P}_{\mathcal{S}}^{\top}\right) = \mathcal{S}^{\perp}; \quad \mathcal{C}\left(\mathbf{P}_{\mathcal{S}}^{\top}\right) = \mathcal{S}$

Relationship between the Four Fundamental Spaces

- \mathbf{x}_r and \mathbf{x}_n are the components of $\mathbf{x} \in \mathbb{R}^m$ in the row space and nullspace of \mathbf{A} .
- ▶ Nullspace $\mathcal{N}(\mathbf{A})$ is mapped to **0**.

$$\mathbf{A}\mathbf{x}_n = \mathbf{0}$$

▶ Row space $C(A^{\top})$ is mapped to the column space C(A).

$$\mathbf{A}\mathbf{x}_r = \mathbf{A}\left(\mathbf{x}_r + \mathbf{x}_n\right) = \mathbf{A}\mathbf{x} = \mathbf{b}$$

- The mapping from the **row space** to the **column space** is invertible, i.e. every \mathbf{x}_r is mapped to a unique element in $\mathcal{C}(\mathbf{A})$
- ▶ What sort of mapping does \mathbf{A}^{\top} do?

Gram-Schmidt Orthogonalization

- ▶ Given a linearly independent set of vectors $\mathcal{B} = \{\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n\}$, where $\mathbf{x}_i \in \mathbb{R}^m$, $\forall i \in \{1, 2, \dots n\}$, how can we find a orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots \mathbf{u}_n\}$ for $span(\mathcal{B})$? \longrightarrow Gram-Schmidt Algorithm
- \triangleright Its an iterative procedure that can also detect if a given set $\mathcal B$ is linearly dependent.

```
Data: \{\mathbf{x}_i\}_{i=1}^n

Result: Return an orthonormal basis \{\mathbf{u}_i\}_{i=1}^n if the set \mathcal{B} is linearly independent, else return nothing.

for i=1,2,\ldots n do
 \begin{vmatrix} 1. \ \tilde{\mathbf{q}}_i = \mathbf{x}_i - \sum_{j=1}^{i-1} \left(\mathbf{u}_j^{\top} \mathbf{x}_i\right) \mathbf{u}_i \longrightarrow (\mathbf{Orthogonalization\ step}); \\ 2. \ \mathbf{If}\ \tilde{\mathbf{q}}_i = 0\ \mathbf{then\ return}; \\ 3. \ \mathbf{u}_i = \tilde{\mathbf{q}}_i / \|\tilde{\mathbf{q}}_i\| \longrightarrow (\mathbf{Normalization\ step}); \\ \mathbf{end} \\ \mathbf{return\ } \{\mathbf{u}_i\}_{i=1}^n;
```

Gram-Schmidt Orthogonalization

▶ The algorithm can also be conveniently represented in a matrix form.

$$\mathcal{B} = \{\mathbf{a}_1, \mathbf{a}_2, \dots \mathbf{a}_n\}$$
Let $\mathbf{U}_1 = \mathbf{0}_{m \times 1}$ and $\mathbf{U}_i = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_{i-1} \end{bmatrix} \in \mathbb{R}^{m \times (i-1)}$

$$\mathbf{U}_i^{\top} \mathbf{x}_i = \begin{bmatrix} \mathbf{u}_1^{\top} \mathbf{x}_i \\ \mathbf{u}_2^{\top} \mathbf{x}_i \\ \vdots \\ \mathbf{u}_{i-1}^{\top} \mathbf{x}_i \end{bmatrix} \quad \text{and} \quad \mathbf{U}_i \mathbf{U}_i^{\top} \mathbf{x}_i = \sum_{j=1}^{i-1} \left(\mathbf{u}_j^{\top} \mathbf{x}_i \right) \mathbf{u}_j$$

$$\mathbf{u}_i = \frac{\left(\mathbf{I} - \mathbf{U}_i \mathbf{U}_i^{\top} \right) \mathbf{x}_i}{\| \left(\mathbf{I} - \mathbf{U}_i \mathbf{U}_i^{\top} \right) \mathbf{x}_i \|}$$

QR Decomposition

- $\blacktriangleright \ \ {\rm Gram\mbox{-}Schmidt\ procedure\ leads\ us\ to\ another\ form\ of\ matrix\ decomposition\mbox{-}\ {\bf QR\ decomposition}.}$
- ▶ Given a matrix $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \in \mathbb{R}^{n \times n}$, whose columns form a linearly independent set. Gramm-Schmidt algorithm produces a orthonormal basis $\{\mathbf{q}_1, \mathbf{q}_2, \dots \mathbf{q}_n\}$ for $\mathcal{C}(\mathbf{A})$.

$$\mathbf{q}_1 = \frac{\mathbf{a}_1}{r_1}$$
 and $\mathbf{q}_i = \frac{\mathbf{a}_i - \sum_{j=1}^{i-1} (\mathbf{q}_j^{\top} \mathbf{a}_i) \mathbf{q}_j}{r_k}$

where, $r_1 = \|\mathbf{a}_1\|$ and $r_k = \|\mathbf{a}_i - \sum_{j=1}^{i-1} (\mathbf{q}_j^\top \mathbf{a}_i) \mathbf{q}_j\|$.

$$\mathbf{a}_1 = r_1 \mathbf{q}_1 \quad \text{and} \quad \mathbf{a}_i = r_i \mathbf{q}_i + \sum_{j=1}^{i-1} \left(\mathbf{q}_j^{\top} \mathbf{a}_i \right) \mathbf{q}_j$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \dots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 \dots & \mathbf{q}_n \end{bmatrix} \begin{bmatrix} r_1 & \mathbf{q}_1^{\top} \mathbf{a}_2 & \mathbf{q}_1^{\top} \mathbf{a}_3 & \dots & \mathbf{q}_1^{\top} \mathbf{a}_n \\ 0 & r_2 & \mathbf{q}_2^{\top} \mathbf{a}_3 & \dots & \mathbf{q}_2^{\top} \mathbf{a}_n \\ 0 & 0 & r_2 & \dots & \mathbf{q}_3^{\top} \mathbf{a}_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & r_n \end{bmatrix} = \mathbf{Q} \mathbf{R}$$

QR Decomposition

$$\mathbf{A} = \mathbf{Q}\mathbf{R}; \ \mathbf{A}, \mathbf{Q} \in \mathbb{R}^{m \times n}, \ \mathbf{R} \in \mathbb{R}^{n \times n}$$

ightharpoonup The columns of **Q** form an orthonormal basis for $C(\mathbf{A})$, and **R** is upper-triangular.

 $ightharpoonup A = \mathbf{Q}\mathbf{R}$ can be used for used to solve $\mathbf{A}\mathbf{x} = \mathbf{b}$.

$$\mathbf{A}\mathbf{x} = \mathbf{Q}\mathbf{R}\mathbf{x} = \mathbf{b} \implies \mathbf{R}\mathbf{x} = \mathbf{Q}^{-1}\mathbf{b} = \mathbf{Q}^{\top}\mathbf{b}$$