Politecnico di Milano – Facoltà di Ingegneria Industriale e dell'Informazione – A.A. 2015/2016 Corso di Laurea in Ingegneria Fisica – Corso di Metodi Analitici e Statistici per l'Ingegneria Fisica Primo appello di Metodi Analitici (29-2-16) – Prof. I. FRAGALÀ

I. ANALISI COMPLESSA.

Siano u = u(x, y) e v = v(x, y) la parte reale e la parte immaginaria di una funzione f = f(x + iy) olomorfa su tutto il piano complesso.

- (i) Dimostrare che, per ogni valore di α e β , le curve di livello $u(x,y)=\alpha$ e $v(x,y)=\beta$ sono ortogonali tra di loro nei punti in cui si intersecano.
- (ii) Disegnare le curve di livello nel caso $f(z) = z^2$.

Soluzione.

(i) Affinché le curve di livello siano ortogonali tra di loro, è condizione necessaria e sufficiente che siano ortogonali tra di loro i vettori normali, i quali sono diretti rispettivamente come ∇u e ∇v . Calcoliamo quindi il prodotto scalare $\nabla u \cdot \nabla v$. Utilizzando le condizioni di Cauchy Riemann, si ottiene

$$\nabla u \cdot \nabla v = (u_x, u_y) \cdot (v_x, v_y) = (v_y, v_x) \cdot (-v_x, v_y) = 0,$$

come volevasi dimostrare.

(ii) Si ha $u(x,y)=x^2-y^2$ e v(x,y)=2xy. Pertanto un grafico qualitativo delle curve di livello è il seguente:

II. ANALISI FUNZIONALE.

- (i) Mostrare che $C_0^{\infty}(\mathbb{R}) \subset L^2(\mathbb{R})$ e spiegare cosa significa che $C_0^{\infty}(\mathbb{R})$ è denso in $L^2(\mathbb{R})$.
- (ii) Mostrare che, per ogni funzione $f\in C_0^\infty(\mathbb{R})$, posto $f_\lambda(x):=f(\lambda x)$, si ha

(*)
$$\lim_{\lambda \to 1} f_{\lambda} = f \quad \text{in } L^{2}(\mathbb{R}).$$

(iii) Mostrare che la proprietà di convergenza (*) è valida per ogni $f \in L^2(\mathbb{R})$.

Soluzione.

(i) Per ogni funzione $f \in C_0^{\infty}(\mathbb{R})$, posto K il supporto di $f \in M = \max_K |f(x)|$ si ha

$$\int_{\mathbb{R}} |f|^2 \, dx = \int_{K} |f|^2 \, dx \le M^2 |K| < +\infty.$$

Per la densità si veda uno dei testi consigliati o le slides del corso.

(ii) Sia λ_n una successione tendente a 1 per $n \to +\infty$. Chiaramente la successione $f_{\lambda_n}(x) = f(\lambda_n x)$ converge puntualmente a f(x) per $n \to +\infty$. Per applicare il teorema di convergenza dominata, basta trovare una funzione integrabile, indipendente da n, che maggiora $|f_{\lambda_n}(x) - f(x)|^2$. Usando la disuguaglianza elementare $|a-b|^2 \le 2(a^2+b^2)$ otteniamo, per n abbastanza grande:

$$|f_{\lambda_n}(x) - f(x)|^2 \le 2\Big(|f_{\lambda_n}(x)|^2 + |f(x)|^2\Big) \le M^2\Big(\chi_{\frac{K}{\lambda_n}} + \chi_K\Big) \le M^2\Big(\chi_{2K} + \chi_K\Big),$$

dove nell'ultima disuguaglianza si è usato il fatto che $\lambda_n \to 1$ e quindi $\frac{K}{\lambda_n} \subset 2K$ per n abbastanza grande. Poiché la funzione $M^2(\chi_{2K} + \chi_K)$ è integrabile, per il teorema di convergenza dominata si ottiene che $f_{\lambda_n}(x)$ converge a f(x) in $L^2(\mathbb{R})$, e quindi per l'arbitrarietà della successione $\lambda_n \to 1$, concludiamo che vale (*).

(iii) Data $f \in L^2(\mathbb{R})$, per ogni $\varepsilon > 0$ esiste $g \in C_0^\infty(\mathbb{R})$ tale che $\|g - f\|_2 < \varepsilon$. Si ha quindi

$$||f - f_{\lambda}||_{2} \le ||f - g||_{2} + ||g - g_{\lambda}||_{2} + ||g_{\lambda} - f_{\lambda}||_{2} \le ||f - g||_{2} + ||g - g_{\lambda}||_{2} + 2||g - f||_{2},$$

dove l'ultima disuguaglianza si verifica valere, tramite cambio di variabile, per λ sufficientemente vicino a 1. Quindi, se $\lambda_n \to 1$, prendendo $\varepsilon = 1/n$, usando il punto (ii) e considerando una successione diagonale, si ha la tesi.

III. SERIE/TRASFORMATA DI FOURIER.

Per $x \in \mathbb{R}$, sia $u(x) := \max\{1 - |x|, 0\}$, e sia $\hat{u}(\xi)$ la sua trasformata di Fourier.

- (i) Per ciascuna delle seguenti proprietà, dire giustificando al risposta se è possibile stabilire a priori che è vera, se è possibile stabilire a priori che è falsa, oppure se non è possibile stabilire a priori se è vera o falsa:
 - (a) \hat{u} pari
 - (b) \hat{u} dispari
 - (c) $\hat{u} \in L^1(\mathbb{R})$
 - (d) $\hat{u} \in L^2(\mathbb{R})$
- (ii) Calcolare \hat{u} .
- (iii) Per quelle tra le proprietà sopra per cui non era possibile stabilire a priori se erano vere o false, stabilire a posteriori (ovvero usando l'espressione esplicita di \hat{u}) se lo sono.

Soluzione.

(i)

- (a) vera a priori (perché u è pari e reale e quindi \hat{u} è pari e reale)
- (b) falsa a priori (perché u è pari e reale e quindi \hat{u} è pari e reale)
- (c) impossibile da stabilire a priori se vera o falsa (perché in generale la trasformata di una funzione $L^1(\mathbb{R})$ può essere o no in $L^1(\mathbb{R})$)
- (d) vera a priori (perché $u \in L^2(\mathbb{R})$ e in generale la trasformata di una funzione $L^2(\mathbb{R})$ appartiene sempre a $L^2(\mathbb{R})$)
- (ii) Poiché si ha $u'(x) = -\chi_{(0,1)} + \chi_{(-1,0)}$, ricordando che $i\xi \mathcal{F}(u) = \mathcal{F}(u')$, ricaviamo

$$\mathcal{F}(u) = \frac{\mathcal{F}(u')}{i\xi} \,.$$

La trasformata di una funzione caratteristica è data da:

$$\mathcal{F}(\chi_{(a,b)}) = \frac{\sin(\xi b) - \sin(\xi a)}{\xi} + i \frac{\cos(\xi b) - \cos(\xi a)}{\xi}$$

da cui ricaviamo

$$\mathcal{F}(u') = 2i \frac{1 - \cos \xi}{\xi} \,.$$

e di conseguenza

$$\mathcal{F}(u) = 2\frac{1 - \cos \xi}{\xi^2} \,.$$

(iii) Si ha che la funzione \hat{u} è limitata vicino a $\xi=0$ (poiché $\cos\xi=1-\xi^2/2+o(\xi^2)$), ed è integrabile in un intorno di $\pm\infty$ (poiché \hat{u} è controllata in modulo da una costante per $\frac{1}{\xi^2}$). Quindi \hat{u} appartiene a $L^1(\mathbb{R})$.