Lecture 11: Hierarchical Reinforcement Learning

B. Ravindran

Hierarchical Problem Solving

The Taxi-domain

Hierarchies

- Natural problem abstraction for humans
 - Divide and conquer
- Scaling-up
- Ease of re-use
 - Skill/Knowledge Transfer
 - Continual Learning
- Aggressive abstraction possible
 - Each sub-task requires only a small subset of the features
- ☐ More explainable

Hierarchical Reinforcement Learning

- Many frameworks
 - Options
 - □ MaxQ
 - ☐ HAM
 - Airports

Essentially let the agent learn skills and reuse them

Semi-Markov Decision Process

Semi-Markov Decision Process

- SMDP is a generalization of MDP
- ☐ The time between decisions is a random variable
- □ Consider the system remaining in each state for a random waiting time before transitioning to next state - Holding time (T)
- Traditionally modelled as product of marginals

Semi-Markov Decision Process

- □ SMDP is a generalization of MDP
- ☐ The time between decisions is a random variable
- □ Consider the system remaining in each state for a random waiting time before transitioning to next state - Holding time (T)
- ☐ Traditionally modelled as product of marginals
- Bellman equations:

$$egin{aligned} V^*(s) &= \max_{a \in A_s} \left[R(s,a) + \sum_{s', au} oldsymbol{\gamma^ au} P(s',oldsymbol{ au} \mid s,a) V^*(s')
ight] \ Q^*(s,a) &= R(s,a) + \sum_{s', au} oldsymbol{\gamma^ au} P(s',oldsymbol{ au} \mid s,a) \max_{a' \in A_{s'}} Q^*(s',a') \end{aligned}$$

SMDP Q-Learning

One-step Q-Learning

$$Qig(s_t, a_tig) \leftarrow Qig(s_t, a_tig) + lphaigg[r_{t+1} + \gamma \max_{a' \in A_{s_{t+1}}} Qig(s_{t+1}, a'ig) - Qig(s_t, a_tig)igg]$$

SMDP Q-Learning

$$Q\big(s_t, a_t\big) \leftarrow Q\big(s_t, a_t\big) + \alpha \bigg[\begin{matrix} r_{t+\tau} + \pmb{\gamma}^{\tau} \max_{a' \in A_{s_{t+\tau}}} Q\big(\pmb{s}_{t+\tau}, a'\big) - Q\big(s_t, a_t\big) \bigg]$$

Options Framework

Options (Sutton, Precup, & Singh, 1999): A generalization of actions to include temporally-extended courses of action

An option is a triple $o = \langle I, \pi_o, \beta \rangle$

- $I \subseteq S$ is the set of states in which o may be started
- π_o : $\Psi \rightarrow [0,1]$ is the (stochastic) policy followed during o
- $\beta: S \to [0,1]$ is the probability of terminating in each state

Generalising over Tasks

- Each task has a different reward structure in the state space
- Options provide a model for subtasks

- Semi-Markov Processes
- Can use generalization of TD, Q-learning, SARSA, etc. with options

Speedup using Options

Primitive Actions

Underlying policy of one hallway option

Hallway Options

Initial Values

Iteration # 1

Iteration # 2

Notions of Optimality

Notions of Optimality

Hierarchy: Room A -> Room B -> Room C

Recursive Optimality

Hierarchy: Room A -> Room B -> Room C

Hierarchical Optimality

Hierarchy: Room A -> Room B -> Room C

Flat Optimality

