Mapa de ruta para el desarrollo de redes inteligentes en Colombia Smart Grid Colombia – Visión 2030

Unidad de Planeación Minero Energética — UPME Adaptado de la presentación de Fundación CIRCE – Andres Llombart

Día UPME

Bogotá, 3 de marzo de 2016

Agenda

- Marco de desarrollo del proyecto
- Metodología del estudio, resultados y acciones
- Conclusiones

E DI OA

Marco de desarrollo del proyecto

Cooperación técnica:

Estudio de factibilidad técnica y económica de soluciones de redes inteligentes para el sector eléctrico colombiano CO-T1337-SN₂

Caracterización del sistema eléctrico colombiano

SAIDI:

- El indicador SAIDI marca el tiempo de interrupción de suministro eléctrico por cliente y año
- El SAIDI promedio en Colombia es 29,47 h/año
- Gran margen de mejora comparado con EE.UU y Europa
- Se debe considerar la densidad de población y la climatología
- Valor objetivo SAIDI es <u>10 h/año</u>

País o estado	Densidad de población (hab/km²)	SAIDI (h/año)			
Alemania	255	0,3			
Reino Unido	266	0,35			
Holanda	501	1,4			
España	92	2			
Francia	118	2,2 2,2 5,7			
Italia	199				
EEUU	35				

Caracterización del sistema eléctrico colombiano

Pérdidas:

- Importante descenso entre 1998 y 2005: pasando del 30% al 15%.
- Las pérdidas eléctricas anuales en el sistema de distribución están en torno al 15,7%.
- Estas pérdidas eléctricas se dividen en partes iguales en:
 - Pérdidas técnicas: debidas a la generación y transporte. Valores próximos a EE.UU. y países europeos
 - Pérdidas no técnicas: conexiones no autorizadas, errores de medición, etc.
- Se define un valor objetivo de pérdidas eléctricas del 10%.

País	Pérdidas eléctricas (%)					
Alemania	4					
Holanda	4					
EEUU	6 7					
Francia						
Italia	7					
Reino Unido	8					
España	9					

Tecnologías y funcionalidades RI

Automatización avanzada de red

ADA

Telemando (control remoto)
Localización de fallas
Self-healing
Reconfiguración auto.
Gestión de activos

Infraestructura medición avanzada

AMI

Lectura y operación remota Limitación de potencia Medida de generación distribuida Detección de manipulación Información al usuario

Tarificación horaria Gestión activa de cargas

Vehículo eléctrico

Movilidad eléctrica Vehicle to Grid

Recursos energéticos distribuidos DER

Generación distribuida FV baja tensión Almacenamiento

Infraestructura de Tecnologías de Información y Comunicación *TICs*

Objetivos estratégicos Colombia

GARANTIZAR EL SUMINISTRO

Se espera un incremento de demanda de energía eléctrica del 2,5% anual:

66.308 GWh ²⁰¹⁵ 2030 95.868 GWh

MEJORA CONTINUIDAD SUMINISTRO

Reducción del SAIDI Garantizar acceso continuo a la energía

Acceso Universal

Sostenibilidad

Competitividad

Seguridad y Calidad

MEJORA EFICIENCIA ENERGÉTICA

Acercar generación a demanda con la instalación de generación distribuida Incorporación de movilidad sostenible

INDEPENDENCIA ENERGÉTICA

Diversificación de la canasta energética Instalación proyectos FNCER Minimizar el riesgo en periodos de escasez

Beneficios de las funcionalidades de RI

	AMI	ADA	DER	VE
Reducción de pérdidas técnicas		~	'	
Reducción de pérdidas no técnicas	~			
Aplanamiento de la curva de demanda	~		~	~
Accesibilidad datos consumo (operación remota)	~			
Mejora de la continuidad de suministro		'		
Reducción de emisiones de CO ₂			V	~
Aumento de la independencia energética ante fenómenos naturales			'	
Aumento de inversiones	V		'	
Mejora del factor de potencia			'	

Beneficios de las RI vs. Grado de implementación

F-DI-04

Beneficios de las RI vs. Grado de implementación

- Reducción de pérdidas no técnicas
 - Existen numerosas técnicas de detección de fraude basadas en el tratamiento de datos que se realiza gracias a la monitorización avanzada en MT y BT.
 - La identificación de pérdidas no técnicas depende de las técnicas de detección y no solo del índice de penetración de contadores.

Referencia	Técnica	Índice de detección (%)	
(J. Nagi K. Y., 2008)	Genetic SVM	62	
(S. Depuru L. W., Support vector machine based data classification for detection of electricity theft, 2011)	SVM	98,4	
(J. Nagi K. S., 2011)	SVM and fuzzy inference system	72	
(S. Depuru L. W., 2012)	Data encoding and SVM	76	
(S. Depuru L. W., 2013)	SVM and high performance computing	92	
(E. W. S. dos Angelos, 2011)	Fuzzy clustering and classification	74,5	
(C. Muniz, 2009)	Neural networks ensembles	62	
(Cárdenas, 2012)	ARMA models	62	
(S. Salinas, Privacy-preserving energy theft detection in smart grids, 2012), (S. Salinas, 2013)	P2P computing	100	
(J. E. Cabral, 2008)	Data mining	85	
(J. Nagi K. S., 2010)	Support Vector Machines	65	
(B. C. Costa, 2013)	Neural networks and data mining	65	

Impacto de las RI en los objetivos de Colombia

Priorización de funcionalidades RI – Visión 2030

E-DI-04

Análisis beneficio/costo - Visión 2030

Análisis beneficio/costo - Visión 2030

Fases de implantación de las tecnologías de RI

	ADA	VE	DE	DER	AMI		
	71.571		(Generación D		(Almacenamiento)		
	(nº interruptores telecontrolados por circuito)	(% respecto al nº total de vehículos)	(% del total de potencia instalada)	(MW instalados)	(% del total de potencia instalada)	(% respecto a la energía total consumida)	
FASE I	2,7 – 3,3	1,0 - 1,2	0,1 - 0,2	20 – 60	0	58,0 – 70,9	
FASE II	4,2 - 5,7	2,9 – 3,9	0,4 - 0,5	90 - 120	0	65,2 - 88,3	
FASE III	Self-Healing	9,3 – 14,0	1,0 - 2,5	240 – 600	0,1-0,3	73,0 – 100,0	

Estudio económico (caso medio)

Tecnología	VAN (USD)	Ratio B/C
ADA	91.048,50	1,35
VE	748.977,50	1,35
GD	86.826,50	1,25
AMI	420.892,00	1,4

F-DI-04

ADA	Actual	Fase I								
Penetración		2,7 – 3,3 interruptores por circuito								
Funcionalidades		Equipos control campo Telemando desde CC								
	2015	2016 2017 2018 2019 2020								
Tecnología, infraestructura e I+D		[OR; PS] Instalación de elementos de maniobra que permitan aislar tramos de red (seccionadores, interruptores) [OR; PS] Comunicaciones para permitir el telemando de los elementos de maniobra [OR; ID; UN] Estudios técnicos para identificar puntos óptimos de automatización [OR] Coordinar despliegue con los SCADA de los OR [OR; PS] Formación capital humano en el uso y control de los equipos telecontrolados [ID; GB; OR; UN] Programa de I+D para generación de nuevo conocimiento (métodos de localización de falta, algoritmos óptimos de								
		reposición de suministro, gestión activos) [ID; GB; OR; UN] Proyectos Piloto Sistemas avanzados								
		[GB; R] Creación infraestructura de certificación								

	Actual	Fase I					Fase II					Fase III				
	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
		Instala	ción de	eleme	ntos de	manic	bra qu	e perm	itan ais	lar trar	nos de	red (se	ecciona	dores, i	interru	otores)
ADA		telema maniol	ndo de ora os técni óptim	los ele cos par os de	a permi mento: ra ident	s de										
		Coordi SCADA			e con lo	S					i					
								Incorp	oración	de VE	-					
		Garan	itizar la		dad de			.,			- 1					
					tudios t idad de				•							
VE	i						Inst	alación	de pur	ntos de	recarg	a públi	cos			
	j	Ayudas financieras a la compra de						ara la a	adaptad	ción de	la red					
		inf	ormaci	ón del	edad de consun	no										
		Kegl	ılar la t	аттсас	ión hor	aria										

Conclusiones

- Los resultados muestran que la implantación de las diferentes tecnologías de RIs estudiadas aportan suficientes beneficios para el país, como para justificar el impulso global y coordinado de estas soluciones.
- El despliegue de las RIs aporta en la consecución de los objetivos estratégicos de Colombia en materia de energía.
- El despliegue de las tecnologías de RIs ayudaría a reducir la inversión necesaria en infraestructura eléctrica de generación, transmisión y distribución para dar cobertura al aumento previsto de la demanda energética en el mediano y largo plazo.

Conclusiones

- El escenario propuesto en la Visión RI Colombia 2030 fomenta la participación activa del usuario en el sistema energético, ayudando a generar conciencia de ahorro de energía al aportar información más detallada de sus consumos y las tarifas.
- El despliegue de RIs da igualmente solución a la integración coordinada de las nuevas tecnologías en desarrollo.
- Las acciones propuestas fomentan la generación de conocimiento local y de capital humano especializado, posicionando a Colombia como referente regional en el desarrollo e implementación de tecnologías de RIs.

