Études des systèmes GNSS des smartphones

Noë Charlier

Professeurs: C. Delacour, M. Petitcuenot

Classe préparatoire aux grandes écoles PT Lycée Paul Constans

TIPE - 2022, 2023

Sommaire

Introduction

- 1 Introduction
- 2 Problématique
- 3 L'ionosphère
- 4 Expérimentations Ionosphérique

Introduction

Introduction

•00000

Besoin grandissant de solution GNSS :

Figure 1 – Appareils GNSS par plate-forme. [3]

Définition GNSS

Introduction

000000

GNSS: Global Navigation Satellite System (Système de navigation par satellite global)

Constellation de satellites permettant de localiser un point sur la Terre.

Figure 2 — Système de navigation par satellite global. [5]

L'ionosphère

Fonctionnement du GPS

Figure 3 - Fonctionnement du GPS.

Une sphère de rayon $\rho_1 = (\Delta t_1 \cdot c)$ 3 satellites, intersection des 3 sphères.

Et donc
$$\rho_s^s = \sqrt{(X^s - X_r)^2 + (Y^s - Y_r)^2 + (Z^s - Z_r)^2}$$

Avec :

- X^s, Y^s, Z^s : coordonnées du satellite s:
- X_r, Y_r, Z_r : coordonnées du récepteur.

Sources d'incertitude

• Les horloges des satellites et des récepteurs ne sont pas synchronisés. (δt)

L'ionosphère

- Réfraction lors de la propagation dans l'atmosphère :
- Troposphérique (dépend de la température et de la pression atmosphérique) (T_s)
 - 2 lonosphérique (dépend de la densité ionique) (I_r^s)

Modèle plus complet :

$$R_r^s = \rho_r^s + c\delta t + T_r^s + I_r^s + \dots$$
 (1)

Précision des orbites

Les systèmes GNSS sont basés sur des orbites prédites émises par les satellites.

Ces éphémérides doivent donc être très précises. (Perturbation gravitationnelle (cf. Annexe),

radiation solaire ...)

Figure 4 – Précision des orbites. [1]

Il existe aussi des services qui recalculent les éphémérides apostériori. (eg. IGN)

Multipath et dilution

Introduction

000000

Le **multipath** (multi-trajet) : le signal émis par le satellite est réfléchi par un objet avant d'atteindre le récepteur. (cf. Figure 5)

Figure 5 - Multipath [2]

La **dilution** (GDOP) : la géométrie des satellites par rapport au récepteur influe sur la précision de la mesure. (cf. Figure 6)

Figure 6 - Coef. de dilution élevée [2]

Comment peut-on réduire l'impact de l'urbanisation sur les systèmes GNSS pour améliorer la précision de la géolocalisation par satellite?

L'ionosphère

Définition

L'ionosphère: L'ionosphère est la couche de l'atmosphère située entre 60 et 1000 km d'altitude. Elle est constituée de particules chargées électriquement, les ions, qui sont en mouvement.

Figure 7 – Régions de l'ionosphère [7]

Impact sur la propagation

Impact sur la propagation :

Introduction

- Propagation directe La propagation directe est la propagation d'une onde radio entre deux points sans interaction avec l'ionosphère.
- Propagation diffusée La propagation diffusée est la propagation d'une onde radio entre deux points avec interaction avec l'ionosphère.

Figure 8 – Propagation directe et diffusée [6]

Quelle erreur?

Introduction

Figure 9 – Profil Ionosphérique [4]

Retard Ionosphérique : $\tau = \frac{1}{c} \int_0^{H_0} (\frac{c}{v_c} - 1)$

Erreur de distance : $L = \frac{a}{f_1^{-1}}C_{ET}$ avec $C_{ET} = \int_0^{H_0} n_e dz$ (Contenu Électronique Total)

A un TEC de $1.5 \cdot 10^{17} m^{-2}$, L = 220 m

(Voir Annexe 2)

Préambule

Méthode d'évaluation : Le CET Total electron content s'évalue grâce à un même signal sur deux fréquences.

Le signal GPS:

- **Speudorange** La speudorange (distance) s'évalue à l'aide d'une fonction de corrélation.
- Phase La phase s'évalue sur le nombre de phases depuis le début d'acquisition.

(Voir Annexe 3)

Protocole expérimentale

Des Questions?

L'ionosphère

Bibliographie

- [1] Eric Calais. Géopositionnement GNSS, principe et applications.

 URL: https://www.geologie.ens.fr/~ecalais/teaching/
 geopositionnement-gnss.
- [2] ESA. ESA GNSS Navipedia. URL: https://gssc.esa.int.
- [3] ESA. GNSS Market Report. URL: https://gssc.esa.int/navipedia/index.php/GNSS_Market_Report#Report_Overview.
- [4] Robert GILLIES. « Modelling of transionospheric HF radio wave propagation for the ISIS II and ePOP satellites ». In : (jan. 2006).
- [5] GPS.GOV. GPS Constellation. URL: https://www.gps.gov/multimedia/images/constellation.jpg.
- [6] E3A POLYTECH. Épreuve de Physique. 2020.
- [7] Randy Russell University Corporation for Atmospheric Research. Regions of the ionosphere, showing the D, E, and F layers. URL: https://scied.ucar.edu/learning=

Références

Annexe 1

Annexe 2

Annexe 2

O

Modélisation, perturbation gravitationnelle

Démonstration TEC