Introduction à la modélisation statistique bayésienne

Un cours en R, Stan, et brms

Ladislas Nalborczyk (LPC, LNC, CNRS, Aix-Marseille Univ)

Planning

Cours n°01: Introduction à l'inférence bayésienne

Cours n°02: Modèle Beta-Binomial

Cours n°03 : Introduction à brms, modèle de régression linéaire

Cours n°04 : Modèle de régression linéaire (suite)

Cours n°05: Markov Chain Monte Carlo

Cours n°06 : Modèle linéaire généralisé

Cours n°07 : Comparaison de modèles

Cours n°08: Modèles multi-niveaux

Cours n°09 : Modèles multi-niveaux généralisés

Cours n°10: Data Hackathon

On s'intéresse aux différences de taille entre hommes et femmes. On va mesurer 100 femmes et 100 hommes.

```
1 set.seed(19) # pour reproduire les résultats
2 men <- rnorm(100, 175, 10) # 100 tailles d'hommes
3 women <- rnorm(100, 170, 10) # 100 tailles de femmes

1 t.test(men, women) # test de student pour différence de moyenne

Welch Two Sample t-test

data: men and women
t = 2.4969, df = 197.98, p-value = 0.01335
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.7658541 6.5209105
sample estimates:
mean of x mean of y
175.1258 171.4825
```


On va simuler des t-valeurs issues de données générées sous l'hypothèse d'une absence de différence entre hommes et femmes.

```
1  nsims <- le4 # nombre de simulations
2  t <- rep(NA, nsims) # initialisation d'un vecteur vide
3
4  for (i in 1:nsims) {
5     men2 <- rnorm(100, 170, 10) # 100 tailles d'hommes
7     women2 <- rnorm(100, 170, 10) # 100 tailles de femmes (de même distribution)
8     t[i] <- t.test(men2, women2)$statistic # on conserve la t-valeur
9
10 }
1  # une autre manière de réaliser la même opération, sans boucle for
2  t <- replicate(nsims, t.test(rnorm(100, 170, 10), rnorm(100, 170, 10))$statistic)</pre>
```



```
1 data.frame(t = t) %>%
2     ggplot(aes(x = t) ) +
3     geom_histogram() +
4     labs(x = "Valeur de t", y = "Nombre d'échantillons")
```



```
1 data.frame(x = c(-5, 5) ) %>%
2     ggplot(aes(x = x) ) +
3     stat_function(fun = dt, args = list(df = t.test(men, women)$parameter), size = 1.5) +
4     labs(x = "Valeur de t", y = "Densité de probabilité")
```



```
1 alpha <- 0.05 # seuil de significativité
2 abs(qt(alpha / 2, df = t.test(men, women)$parameter) ) # valeur de t critique
[1] 1.972019</pre>
```

0.3 Densité de probabilité 0.1 0.0 -2.5 2.5 0.0 5.0 -5.0 Valeur de t


```
1 tobs <- t.test(men, women)$statistic # valeur de t observée
2 tobs %>% as.numeric
```

[1] 2.496871

P-valeur

Une p-valeur est une aire sous la courbe (une intégrale) sous la distribution de statistiques de test sous l'hypothèse nulle (i.e., étant admis que l'hypothèse nulle est vraie). La p-valeur indique la probabilité d'observer la valeur de la statistique de test (e.g., une valeur de t) observée, ou une valeur plus extrême, sous l'hypothèse nulle.

$$p[\mathbf{t}(\mathbf{x}^{\text{rep}}; \mathcal{H}_0) \ge t(x)]$$

```
1 t.test(men, women)$p.value

[1] 0.01334509

1 tvalue <- abs(t.test(men, women)$statistic)
2 df <- t.test(men, women)$parameter
3 2 * integrate(dt, tvalue, Inf, df = df)$value

[1] 0.01334509

1 2 * (1 - pt(abs(t.test(men, women)$statistic), t.test(men, women)$parameter))

t
0.01334509</pre>
```


Intervalles de confiance

Les intervalles de confiance peuvent être interprétés comme des régions de significativité (ou des régions de **compatibilité** avec l'hypothèse nulle). Par conséquent, un intervalle de confiance contient la même information qu'une p-valeur et s'interprète de manière similaire.

On ne peut pas dire qu'un intervalle de confiance a une probabilité de 95% de contenir la vraie valeur (i.e., la valeur dans la population) de θ (cf. the <u>inverse fallacy</u>), contrairement à l'intervalle de crédibilité bayésien.

Un intervalle de confiance à 95% représente une degré de "recouvrement" (coverage). Le "95%" fait référence à une propriété fréquentiste (i.e., sur le long-terme) de la procédure, mais ne fait pas référence au paramètre θ . Autrement dit, sur le long-terme, 95% des intervalles de confiance à 95% que l'on pourrait calculer (dans une réplication exacte de notre expérience) contiendraient la valeur du paramètre dans la population (i.e., la "vraie" valeur de θ). Cependant, nous ne pouvons pas dire qu'un intervalle de confiance en particulier a une probabilité de 95% de contenir la "vraie" valeur de θ … soit ce dernier contient la vraie valeur de θ , soit il ne la contient pas.

Facteur de Bayes

On compare deux modèles:

• $\mathcal{H}_0: \mu_1 = \mu_2 \to \delta = 0$

• $\mathcal{H}_1 : \mu_1 \neq \mu_2 \to \delta \neq 0$

$$\underbrace{\frac{p(\mathcal{H}_0 \mid D)}{p(\mathcal{H}_1 \mid D)}}_{\text{posterior odds}} = \underbrace{\frac{p(D \mid \mathcal{H}_0)}{p(D \mid \mathcal{H}_1)}}_{\text{Bayes factor}} \times \underbrace{\frac{p(\mathcal{H}_0)}{p(\mathcal{H}_1)}}_{\text{prior odds}}$$

evidence =
$$p(D \mid \mathcal{H}) = \int p(\theta \mid \mathcal{H})p(D \mid \theta, \mathcal{H})d\theta$$

L'évidence en faveur d'un modèle correspond à la **vraisemblance marginale** d'un modèle (le dénominateur du théorème de Bayes), c'est à dire à la vraisemblance moyennée sur le prior... Ce qui fait du facteur de Bayes un ratio de vraisemblances, pondéré par (ou moyenné sur) le prior.

Facteur de Bayes, exemple d'application

On lance une pièce 100 fois et on essaye d'estimer la probabilité θ (le biais de la pièce) d'obtenir Face. On compare deux modèles qui diffèrent par leur prior sur θ .

 $\mathcal{M}_1: y_i \sim \text{Binomial}(n, \theta)$ $\theta \sim \text{Beta}(6, 10)$

 $\mathcal{M}_2: y_i \sim \text{Binomial}(n, \theta)$ $\theta \sim \text{Beta}(20, 12)$

Facteur de Bayes, exemple d'application

$$\mathcal{M}_1: y_i \sim \text{Binomial}(n, \theta)$$

 $\theta \sim \text{Beta}(6, 10)$
 $\mathcal{M}_2: y_i \sim \text{Binomial}(n, \theta)$
 $\theta \sim \text{Beta}(20, 12)$

$$BF_{12} = \frac{p(D|\mathcal{M}_1)}{p(D|\mathcal{M}_2)} = \frac{\int p(\theta|\mathcal{M}_1)p(D|\theta,\mathcal{M}_1)d\theta}{\int p(\theta|\mathcal{M}_2)p(D|\theta,\mathcal{M}_2)d\theta} = \frac{\int Binomial(n,\theta)Beta(6,10)d\theta}{\int Binomial(n,\theta)Beta(20,12)d\theta}$$

Facteur de Bayes, exemple d'application

Le facteur de Bayes est la nouvelle p-valeur

Attention à ne pas interpréter le BF comme un rapport des chances a posteriori (posterior odds)...

Le BF est un facteur qui nous indique de combien notre rapport des chances a priori (prior odds) doit changer, au vu des données. Il ne nous dit pas quelle est l'hypothèse la plus probable, sachant les données (sauf si les prior odds sont de 1/1). Par exemple :

- \mathcal{H}_0 : la précognition n'existe pas !
- \mathcal{H}_1 : la précognition existe.

On fait une expérience et on calcule un $BF_{10}=27$. Quelle est la probabilité a posteriori de \mathcal{H}_1 ?

$$\underbrace{\frac{p(\mathcal{H}_1 \mid D)}{p(\mathcal{H}_0 \mid D)}}_{\text{posterior odds}} = \underbrace{\frac{27}{1}}_{\text{Bayes factor}} \times \underbrace{\frac{1}{1000}}_{\text{prior odds}} = \frac{27}{1000} = 0.027$$

Double sens

Dans le cadre bayésien, le terme de **prior** peut faire référence soit :

- À la probabilité a priori ou a posteriori d'un modèle (par rapport à un autre modèle), c'est à dire $\Pr(\mathcal{M}_i)$. Voir ce <u>blogpost</u>.
- Aux priors qu'on définit sur les paramètres d'un modèle, par exemple $\beta \sim \text{Normal}(0,1)$. Voir ce blogpost.

Comparaison de modèles

Deux problèmes récurrents à éviter en modélisation : le sous-apprentissage (underfitting) et sur-apprentissage (overfitting). Comment s'en sortir ?

- Utiliser des priors pour **régulariser**, pour contraindre le posterior (i.e., accorder moins de poids à la vraisemblance).
- Utiliser des critères d'information (e.g., AIC, WAIC).

$$R^{2} = \frac{\text{var}(\text{outcome}) - \text{var}(\text{residuals})}{\text{var}(\text{outcome})} = 1 - \frac{\text{var}(\text{residuals})}{\text{var}(\text{outcome})}$$


```
1 modl.1 <- lm(brain ~ mass, data = d)
2 (var(d$brain) - var(residuals(modl.1) ) ) / var(d$brain)

[1] 0.490158

1 modl.2 <- lm(brain ~ mass + I(mass^2), data = d)
2 (var(d$brain) - var(residuals(modl.2) ) ) / var(d$brain)

[1] 0.5359967

1 modl.3 <- lm(brain ~ mass + I(mass^2) + I(mass^3), data = d)
2 (var(d$brain) - var(residuals(modl.3) ) ) / var(d$brain)

[1] 0.6797736</pre>
```


Underfitting

$$v_i \sim \text{Normal}(\mu_i, \sigma)$$

$$\mu_i = \alpha$$

1 mod1.7 <- lm(brain ~ 1, data = d)</pre>

Théorie de l'information

Il nous faut une autre mesure des capacités de prédiction pour évaluer nos modèles. Idéalement, on voudrait pouvoir mesurer la "distance" entre notre modèle et le "full model" (i.e., la "réalité", la nature)... mais on ne sait pas faire cela.

Par contre, on peut mesurer de combien notre incertitude est réduite en découvrant un outcome (une observation) supplémentaire. Cette réduction est la définition de l'**information**.

Mais il nous faut tout d'abord une mesure de l'incertitude (pour savoir si on l'a réduite, ou pas)... S'il existe n événements possibles, et que chaque évènement i a pour probabilité p_i , alors une mesure de l'incertitude est donnée par l'entropie (de Shannon) H:

$$H(p) = -\mathbb{E}[\log(p_i)] = \sum_{i=1}^{n} p_i \log(\frac{1}{p_i}) = -\sum_{i=1}^{n} p_i \log(p_i)$$

"

En d'autres termes : l'incertitude contenue dans une distribution de probabilités est la logprobabilité moyenne d'un évènement.

Incertitude (exemple)

Exemple de prédiction météorologique. Si on imagine que la probabilité qu'il pleuve ou qu'il fasse beau (à Grenoble) est de $p_1 = 0.3$ et $p_2 = 0.7$.

Alors, $H(p) = -(p_1 \times \log(p_1) + p_2 \times \log(p_2)) \approx 0.61$.

```
1 p <- c(0.3, 0.7)
2 - sum(p * log(p))
[1] 0.6108643
```

Imaginons que nous habitions à Abu Dhabi et que la probabilité qu'il y pleuve ou qu'il y fasse beau est de $p_1 = 0.01$ et $p_2 = 0.99$.

```
1 p <- c(0.01, 0.99)
2 - sum(p * log(p))

[1] 0.05600153
```


Divergence

On a donc un moyen de quantifier l'incertitude. Comment utiliser cette mesure pour quantifier la distance entre notre modèle et la réalité ?

Divergence : incertitude ajoutée par l'utilisation d'une distribution de probabilités pour décrire... une autre distribution de probabilités (<u>Kullback-Leibler divergence</u>, ou "entropie relative").

$$D_{\mathrm{KL}}(p,q) = \sum_{i} p_{i} \left(\log(p_{i}) - \log(q_{i}) \right) = \sum_{i} p_{i} \log \left(\frac{p_{i}}{q_{i}} \right)$$

La divergence est la différence moyenne en log-probabilités entre la distribution cible (p) et le modèle (q).

Divergence

$$D_{KL}(p,q) = \sum_{i} p_i \left(\log(p_i) - \log(q_i) \right) = \sum_{i} p_i \log \left(\frac{p_i}{q_i} \right)$$

Par exemple, supposons que la "véritable" distribution de nos évènements (soleil vs pluie) soit $p_1=0.3$ et $p_2=0.7$. Si nous pensons plutôt que ces évènements arrivent avec une probabilité $q_1=0.25$ et $q_2=0.75$, quelle quantité d'incertitude avons-nous ajoutée ?

```
1 p <- c(0.3, 0.7)
2 q <- c(0.25, 0.75)
3
4 sum(p * log(p / q) )

[1] 0.006401457

1 # NB : La divergence n'est pas symétrique...
2 sum(q * log(q / p) )</pre>
[1] 0.006164264
```


Divergence

<u>La divergence n'est pas symétrique</u> (ce n'est pas une distance)...

Entropie croisée et divergence

Entropie croisée : $H(p,q) = \sum_i p_i \log(q_i)$

```
1 sum(p * (log(q) ) )
```

La **Divergence** est définie comme l'entropie additionnelle ajoutée en utilisant q pour décrire p.

$$D_{KL}(p,q) = H(p,q) - H(p)$$

$$= -\sum_{i} p_{i} \log(q_{i}) - \left(-\sum_{i} p_{i} \log(p_{i})\right)$$

$$= -\sum_{i} p_{i} (\log(q_{i}) - \log(p_{i}))$$

```
1 - sum (p * (log(q) - log(p) ) )

[1] 0.006401457
```


Vers la déviance...

OK, mais nous ne connaissons pas la distribution "cible" (la réalité), à quoi cela peut donc nous servir ?

Astuce : si nous comparons deux modèles, q et r, pour approximer p, nous allons comparer leurs divergences... Et donc $\mathbb{E}[\log(p_i)]$ sera la même quantité pour les deux modèles!

Ladislas Nalborczyk - IMSB2022

Vers la déviance...

On peut donc utiliser $\mathbb{E}[\log(q_i)]$ et $\mathbb{E}[\log(r_i)]$ comme estimateurs de la distance **relative** entre chaque modèle et notre distribution cible. On a seulement besoin de la **log-probabilité moyenne des modèles**. Comme on ne connaît pas la distribution cible, cela veut dire qu'on ne peut pas interpréter cette quantité en termes absolus mais seulement en termes relatifs. Ce qui nous intéresse c'est $\mathbb{E}[\log(q_i)] - \mathbb{E}[\log(r_i)]$.

Déviance

Pour approximer la valeur de $\mathbb{E}[\log(q_i)]$, on peut utiliser la <u>déviance</u> d'un modèle, qui est une mesure du fit **relatif** du modèle.

$$D(q) = -2\sum_{i} \log(q_i)$$

où i indice chaque observation et q_i est la **vraisemblance** de chaque observation.

```
1 d$mass.s <- scale(d$mass)
2 mod1.8 <- lm(brain ~ mass.s, data = d)
3
4 -2 * logLik(mod1.8) # calcul de la déviance

'log Lik.' 94.92499 (df=3)</pre>
```


Déviance

[1] 95.2803

Log-pointwise-predictive density

Les fréquentistes multiplient le log-score par -2 car la différence de deux déviances suit une loi de χ^2 , ce qui est utile pour tester l'hypothèse nulle. Mais sans besoin de tester l'hypothèse nulle (avec une forme prédéfinie), on peut très bien travailler directement avec le log-score $S(q) = \sum_i \log(q_i)$, qu'on traite comme une estimation de $\mathbb{E}[\log(q_i)]$.

On peut calculer S(q) sur toute la distribution postérieure, ce qui donne la version bayésienne du log-score, la **log-pointwise-predictive density** :

$$lppd(y, \Theta) = \sum_{i} log \frac{1}{S} \sum_{s} p(y_i \mid \Theta_s)$$

Où S est le nombre d'échantillons et Θ_s est le s-ième ensemble de valeurs de paramètres échantillonnés de la distribution postérieure.

In-sample and out-of-sample

La déviance a le même problème que le \mathbb{R}^2 , lorsqu'elle est calculée sur l'échantillon observé. Dans ce cas, on l'appelle déviance **in-sample**.

Si on est intéressé par les capacités de prédiction de notre modèle, nous pouvons calculer la déviance du modèle sur de nouvelles données... qu'on appellera dans ce cas déviance **out-of-sample**. Cela revient à se demander si notre modèle est performant pour prédire de nouvelles données (non observées).

Imaginons que nous disposions d'un échantillon de taille N, que nous appellerons échantillon d'apprentissage (training). Nous pouvons calculer la déviance du modèle sur cet échantillon ($D_{\rm train}$ ou $D_{\rm in}$). Si nous acquérons ensuite un nouvel échantillon de taille N issu du même processus de génération de données (que nous appellerons échantillon de test), nous pouvons calculer une déviance sur ce nouvel échantillon, en utilisant les paramètres estimés avec l'échantillon d'entraînement (que nous appellerons $D_{\rm test}$ ou $D_{\rm out}$).

In sample and out of sample deviance

$$y_i \sim \text{Normal}(\mu_i, 1)$$

 $\mu_i = (0.15)x_{1,i} - (0.4)x_{2,i}$

On a réalisé ce processus 10.000 fois pour cinq modèles de régression linéaire de complexité croissante. Les points bleus représentent la déviance calculée sur l'échantillon d'apprentissage et les points noirs la déviance calculée sur l'échantillon de testislas Nalborczyk - IMSB2022

Régularisation

Une autre manière de lutter contre le sur-apprentissage (overfitting) est d'utiliser des priors "sceptiques" qui vont venir ralentir l'apprentissage réalisé sur les données (i.e., accorder plus de poids au prior).

Régularisation

Comment décider de la précision du prior ? Est-ce que le prior est "assez" régularisateur ou pas ? On peut diviser le jeu de données en deux parties (training et testing) afin de choisir le prior qui produit la déviance **out-of-sample** la plus faible. On appelle cette stratégie la **validation croisée** (cross-validation).

Critères d'information

On mesure ici la différence entre la déviance **in-sample** (en bleu) et la déviance **out-of-sample** (en noir). On remarque que la déviance **out-of-sample** est presque exactement égale à la déviance **in-sample**, plus deux fois le nombre de paramètres du modèle...

Akaike information criterion

L'AIC fournit une approximation de la déviance out-of-sample :

$$AIC = D_{\text{train}} + 2p = -2lppd + 2p \approx D_{\text{test}}$$

où p est le nombre de paramètres libres (i.e., à estimer) dans le modèle. L'AIC donne donc une approximation des capacités de prédiction (out-of-sample) du modèle.

1. NB : l'AIC fonctionne bien uniquement quand le nombre d'observations N est largement supérieur au Ladislas Nalborczyk - IMSB2022 nombre de paramètres p. Dans le cas contraire, on utilise plutôt l'AICc (Burnham & Anderson, 2004,

Deviance information criterion

Une condition d'applicaiton de l'AIC est que les priors soient plats ou dépassés par la vraisemblance (e.g., lorsqu'on a beaucoup de données). Le DIC est un indice qui ne requiert pas cette condition, en s'accommodant de priors informatifs.

Le DIC est calculé à partir de la distribution a posteriori de la déviance D calculée sur l'échantillon d'apprentissage (i.e., $D_{\rm train}$).

$$DIC = \bar{D} + (\bar{D} - \hat{D}) = \bar{D} + p_D$$

où \bar{D} est la moyenne de la distribution a posteriori D calculée pour chaque valeur de paramètre échantillonnée, et \hat{D} la déviance calculée à la moyenne de la distribution a posteriori. La différence $\bar{D} - \hat{D} = p_D$ est analogue au nombre de paramètres utilisé dans le calcul de l'AIC (en cas de prior plat, cette différence revient à compter le nombre de paramètres).

Une condition d'application de l'AIC et du DIC est que la distribution a posteriori soit une distribution gaussienne multivariée. Le WAIC relâche cette condition et il est souvent plus précis que le DIC.

Un aspect important du WAIC est qu'il est dit "pointwise", c'est à dire qu'il considère l'imprécision de prédiction point par point (donnée par donnée), indépendamment pour chaque observation.

On va commencer par calculer la **log-pointwise-predictive-density** (lppd), définie de la manière suivante :

$$lppd(y, \Theta) = \sum_{i} log \frac{1}{S} \sum_{s} p(y_i \mid \Theta_s)$$

En Français : la log-densité prédictive point par point est **la somme du log de la vraisemblance moyenne de chaque observation**. Il s'agit de l'analogue point par point de la déviance, moyennée sur toute la distribution postérieure.


```
1 library(brms)
2 data(cars)
4 priors <- c(
     prior(normal(0, 100), class = Intercept),
     prior(normal(0, 10), class = b),
     prior(exponential(0.1), class = sigma)
8
9
10 mod1 <- brm(
11
     dist ~ 1 + speed,
12
     prior = priors,
13
     data = cars
14
```


$$lppd(y, \Theta) = \sum_{i} log \frac{1}{S} \sum_{s} p(y_i \mid \Theta_s)$$

```
1 n obs <- nrow(cars) # number of observations</pre>
 2
 3 11 <-
      log lik(mod1) %>% # pointwise log-likelihood (S rows * N observations)
      data.frame() %>% # converts to dataframe
      set names(c(str c(0, 1:9), 10:n obs) ) # renaming columns
    (lppd <-
 8
      11 %>%
 9
10
      pivot longer(
        everything(), # for all columns
11
        names to = "i",
12
13
        values to = "loglikelihood"
14
        ) %>%
15
      # log-likelihood to likelihood
16
      mutate(likelihood = exp(loglikelihood) ) %>%
      group by(i) %>%
17
18
      # taking the log of the average likelihood
19
      summarise(log mean likelihood = mean(likelihood) %>% log() ) %>%
      # computing the sum of these values
20
21
      summarise(lppd = sum(log mean likelihood) ) %>%
22
      pull(lppd) )
[1] -206.5503
```


La deuxième partie du calcul du WAIC est le nombre de paramètres effectif, p_{WAIC} . On définit $\mathrm{var}_{\theta} \log[p(y_i|\theta)]$ comme la variance de la log-vraisemblance pour chaque observation i de l'échantillon d'entraînement.

$$p_{\text{WAIC}} = \sum_{i} \text{var}_{\theta} \log[p(y_i \mid \theta)]$$

```
(pwaic <-
      11 %>%
      pivot longer(
        everything(),
       names to = "i",
       values to = "loglikelihood"
 6
       group by(i) %>%
 8
      summarise(var loglikelihood = var(loglikelihood) ) %>%
 9
10
      summarise(pwaic = sum(var loglikelihood) ) %>%
11
      pull() )
[1] 3.469262
```

Ensuite, le WAIC est défini par :

WAIC
$$(y, \Theta) = -2 \left(\text{lppd} - \sum_{i} \text{var}_{\theta} \log[p(y_i \mid \theta)] \right)$$
penalty term

```
1 (WAIC <- -2 * (lppd - pwaic))
[1] 420.0392
```


Le WAIC est également un estimateur de la déviance **out-of-sample**. La fonction **brms::waic()** permet de le calculer directement.

```
1 waic(mod1)

Computed from 4000 by 50 log-likelihood matrix

Estimate SE
elpd_waic -210.0 6.6
p_waic 3.5 1.3
waic 420.0 13.2

2 (4.0%) p_waic estimates greater than 0.4. We recommend trying loo instead.
```


Critères d'information et régularisation

Le DIC et le WAIC peuvent être conceptualisés (au même titre que l'AIC) comme des approximations de la déviance **out-of-sample**. On remarque que le WAIC produit des approximations plus précises que le DIC, et que l'utilisation de priors régularisateurs permet de réduire la déviance **out-of-sample**.

Et ensuite?

Sélection de modèle : On choisit le meilleur modèle un utilisant un des outils présentés et on base nos conclusions sur les paramètres estimés par ce meilleur modèle.

Comparaison de modèles: On utilise la validation croisée ou des critères d'informations mais aussi les outils de **posterior predictive checking** discutés précédemment, pour chaque modèle, afin d'étudier leurs forces et faiblesses.

Moyennage de modèles : On va construire des posterior predictive checks qui exploitent ce qu'on sait des capacités de prédiction de chaque modèle (e.g., via le WAIC).

On essaye de prédire les kg par gramme de lait (kcal.per.g) avec les prédicteurs neocortex et le logarithme de mass. Nous allons ensuite fitter 4 modèles qui correspondent aux 4 combinaisons possibles de prédicteurs et les comparer en utilisant le WAIC.

```
1 library(imsb)
  2 d <- open data(milk)</pre>
   d <- milk(complete.cases(milk), ) # removing NAs</pre>
   d$neocortex <- d$neocortex.perc / 100 # rescaling explanatory variable
  5 head(d)
                               species kcal.per.g perc.fat perc.protein
              clade
      Strepsirrhine
                        Eulemur fulvus
                                              0.49
                                                      16.60
                                                                    15.42
  New World Monkey Alouatta seniculus
                                                      21.22
                                                                   23.58
                                              0.47
   New World Monkey
                            A palliata
                                                      29.66
                                                                   23.46
                                              0.56
  New World Monkey
                          Cebus apella
                                              0.89
                                                      53.41
                                                                   15.80
                            S sciureus
10 New World Monkey
                                              0.92
                                                      50.58
                                                                   22.33
11 New World Monkey
                      Cebuella pygmaea
                                                                   20.85
                                              0.80
                                                      41.35
   perc.lactose mass neocortex.perc neocortex
          67.98 1.95
                               55.16
                                        0.5516
                               64.54
          55.20 5.25
                                        0.6454
          46.88 5.37
                               64.54
                                       0.6454
          30.79 2.51
                               67.64
                                       0.6764
10
          27.09 0.68
                                       0.6885
                               68.85
          37.80 0.12
                               58.85
                                        0.5885
```



```
1 mod2.1 <- brm(
     kcal.per.g ~ 1,
     family = gaussian,
 3
     data = d
     prior = c(
       prior(normal(0, 100), class = Intercept),
       prior(exponential(0.01), class = sigma)
 8
     iter = 2000, warmup = 1000,
9
     backend = "cmdstanr" # on peut changer le backend de brms
10
11
12
13 mod2.2 <- brm(
14
     kcal.per.g ~ 1 + neocortex,
     family = gaussian,
15
16
     data = d,
17
     prior = c(
18
       prior(normal(0, 100), class = Intercept),
       prior(normal(0, 10), class = b),
19
20
       prior(exponential(0.01), class = sigma)
21
       ),
22
     iter = 2000, warmup = 1000,
23
     backend = "cmdstanr"
24
```



```
1 mod2.3 <- brm(
     kcal.per.g ~ 1 + log(mass),
     family = gaussian,
 3
     data = d
 4
     prior = c(
       prior(normal(0, 100), class = Intercept),
       prior(exponential(0.01), class = sigma)
 8
     iter = 2000, warmup = 1000,
9
     backend = "cmdstanr"
10
11
12
13 mod2.4 <- brm(
14
     kcal.per.g ~ 1 + neocortex + log(mass),
     family = gaussian,
15
16
     data = d,
17
     prior = c(
18
       prior(normal(0, 100), class = Intercept),
       prior(normal(0, 10), class = b),
19
20
       prior(exponential(0.01), class = sigma)
21
       ),
22
     iter = 2000, warmup = 1000,
     backend = "cmdstanr"
23
24
```


On peut utiliser la méthode **update()** qui permet de fitter plus rapidement un nouveau modèle qui ressemble à un modèle déjà existant.

```
1 mod2.3 <- update(
2   object = mod2.2,
3   newdata = d,
4   formula = kcal.per.g ~ 1 + log(mass)
5   )
6
7 mod2.4 <- update(
8   object = mod2.3,
9   newdata = d,
10   formula = kcal.per.g ~ 1 + neocortex + log(mass)
11  )</pre>
```



```
1 # calcul du WAIC et ajout du WAIC à chaque modèle
  2
  3 mod2.1 <- add criterion(mod2.1, "waic")</pre>
  4 mod2.2 <- add criterion(mod2.2, "waic")</pre>
  5 mod2.3 <- add criterion(mod2.3, "waic")</pre>
  6 mod2.4 <- add criterion(mod2.4, "waic")</pre>
    # comparaison des WAIC de chaque modèle
 10 w <- loo compare(mod2.1, mod2.2, mod2.3, mod2.4, criterion = "waic")
 11 print(w, simplify = FALSE)
       elpd diff se diff elpd waic se elpd waic p waic se p waic waic se waic
mod2.4
         0.0
                   0.0
                           8.4
                                      2.6
                                                   3.1
                                                          0.8
                                                                   -16.8
                                                                         5.1
mod2.3 - 3.9
                   1.7
                           4.5
                                      2.1
                                                          0.4
                                                                    -9.0
                                                                         4.2
                                                   2.0
mod2.1 -4.0
                   2.4
                           4.4
                                     1.9
                                                          0.3
                                                                   -8.8 3.7
                                                   1.3
mod2.2 -4.8
                   2.5
                           3.6
                                      1.6
                                                   1.9
                                                          0.3
                                                                   -7.2 3.3
```


Akaike's weights

Le poids d'un modèle est une estimation de la probabilité que ce modèle fera les meilleures prédictions possibles sur un nouveau jeu de données, conditionnellement au set de modèles considéré.

$$w_i = \frac{\exp(-\frac{1}{2}dWAIC_i)}{\sum_{j=1}^{m} \exp(-\frac{1}{2}dWAIC_j)}$$

Cette fonction permet simplement de passer du WAIC à une probabilité (équivalent à une fonction softmax). Le modèle mod2.4 a un poids de 0.96, qui le place en tête du jeu de modèles. N'oublions cependant pas que nous disposons seulement de 17 observations...

```
1 model_weights(mod2.1, mod2.2, mod2.3, mod2.4, weights = "waic") %>% round(digits = 3)

mod2.1 mod2.2 mod2.3 mod2.4
0.017 0.008 0.019 0.955
```


Moyennage de modèles (model averaging)

Pourquoi ne conserver uniquement le premier modèle et oublier les autres ? Une autre stratégie consisterait à pondérer les prédictions des modèles par leurs poids respectifs. C'est ce qu'on appelle le moyennage de modèles (model averaging).

- Calculer le WAIC de chaque modèle.
- Calculer le poids de chaque modèle.
- Simuler des données à partir de chaque modèle.
- Combiner ces valeurs simulées dans un **ensemble** de prédictions pondérées par le poids du modèle.

Moyennage de modèles (model averaging)

On peut utiliser la fonction **brms::pp_average()** qui pondère les prédictions de chaque modèle par leur poids.

```
1 # grille de valeurs pour lesquelles on va générer des prédictions
2 new data <- data.frame(</pre>
     neocortex = seq(from = 0.5, to = 0.8, length.out = 30),
 3
 4
     mass = 4.5
 5
 6
   # prédictions du modèle mod2.4
8 f <- fitted(mod2.4, newdata = new data) %>%
     as.data.frame() %>%
 9
10
     bind cols(new data)
11
   # prédictions moyennées sur les 4 modèles
   averaged predictions <- pp average(
     mod2.1, mod2.2, mod2.3, mod2.4,
14
     weights = "waic",
15
16
     method = "fitted",
     newdata = new data
17
18
     ) %>%
19
     as.data.frame() %>%
     bind cols(new data)
20
```


Moyennage de modèles (model averaging)

Voici les prédictions de tous les modèles considérés, pondérés par leur poids respectif. Comme le modèle mod2.4 concentrait quasiment tout le poids, il fait sens que cette prédiction moyennée soit similaire aux prédictions du modèle mod2.4.

R-squared

```
1 bayes_R2(mod2.4) %>% round(digits = 3)

Estimate Est.Error Q2.5 Q97.5
R2     0.496     0.13 0.167 0.667

1 posterior_plot(samples = bayes_R2(mod2.4, summary = FALSE)[, 1])
```


R-squared

```
posterior_plot(
samples = bayes_R2(mod2.4, summary = FALSE)[, 1] -
bayes_R2(mod2.3, summary = FALSE)[, 1],
compval = 0
) + labs(x = "Différence de R2")
```


Conclusions

Se méfier des interprétations intuitives (et souvent erronées) de la p-valeur, des intervalles de confiance, ou du facteur de Bayes.

Retenir que la difficulté en modélisation est de trouver un juste équilibre entre sous-apprentissage (underfitting) et sur-apprentissage (overfitting).

Pour contraindre l'apprentissage réalisé par le modèle sur les données observées (et ainsi éviter que le modèle accorde trop de poids à ces données), on peut utiliser des priors dits **régularisateurs** et/ou des outils comme la validation croisée ou les critères d'informations permettant d'estimer les capacités de prédiction du modèle sur de nouvelles données.

Travaux pratiques

```
1  # import des données "howell"
2  d <- open_data(howell) %>% mutate(age = scale(age))
3
4  # on définit une graine (afin de pouvoir reproduire les résultats)
5  set.seed(666)
6
7  # on échantillonne des lignes du jeu de données
8  i <- sample(1:nrow(d), size = nrow(d) / 2)
9
10  # on définit l'échantillon d'entraînement
11  d1 <- d[i, ]
12
13  # on définit l'échantillon de test
14  d2 <- d[-i, ]</pre>
```

Nous avons maintenant deux dataframes, de 272 lignes chacune. On va utiliser **d1** pour fitter nos modèles et **d2** pour les évaluer.

Travaux pratiques

Soit h_i les valeurs de taille et x_i les valeurs centrées d'âge, sur la ligne i. Construisez les modèles suivants avec d1, en utilisant brms::brm() et des priors faiblement régularisateurs.

$$\mathcal{M}_{1}: h_{i} \sim \operatorname{Normal}(\mu_{i}, \sigma)$$

$$\mu_{i} = \alpha + \beta_{1}x_{i}$$

$$\mathcal{M}_{2}: h_{i} \sim \operatorname{Normal}(\mu_{i}, \sigma)$$

$$\mu_{i} = \alpha + \beta_{1}x_{i} + \beta_{2}x_{i}^{2}$$

$$\mathcal{M}_{3}: h_{i} \sim \operatorname{Normal}(\mu_{i}, \sigma)$$

$$\mu_{i} = \alpha + \beta_{1}x_{i} + \beta_{2}x_{i}^{2} + \beta_{3}x_{i}^{3}$$

$$\mathcal{M}_{4}: h_{i} \sim \operatorname{Normal}(\mu_{i}, \sigma)$$

$$\mu_{i} = \alpha + \beta_{1}x_{i} + \beta_{2}x_{i}^{2} + \beta_{3}x_{i}^{3} + \beta_{4}x_{i}^{4}$$

$$\mathcal{M}_{5}: h_{i} \sim \operatorname{Normal}(\mu_{i}, \sigma)$$

$$\mu_{i} = \alpha + \beta_{1}x_{i} + \beta_{2}x_{i}^{2} + \beta_{3}x_{i}^{3} + \beta_{4}x_{i}^{4} + \beta_{5}x_{i}^{5}$$

$$\mathcal{M}_{6}: h_{i} \sim \operatorname{Normal}(\mu_{i}, \sigma)$$

$$\mu_{i} = \alpha + \beta_{1}x_{i} + \beta_{2}x_{i}^{2} + \beta_{3}x_{i}^{3} + \beta_{4}x_{i}^{4} + \beta_{5}x_{i}^{5} + \beta_{6}x_{i}^{6}$$

$$\mathcal{M}_{6}: h_{i} \sim \operatorname{Normal}(\mu_{i}, \sigma)$$

$$\mu_{i} = \alpha + \beta_{1}x_{i} + \beta_{2}x_{i}^{2} + \beta_{3}x_{i}^{3} + \beta_{4}x_{i}^{4} + \beta_{5}x_{i}^{5} + \beta_{6}x_{i}^{6}$$

Travaux pratiques

- Comparer ces modèles en utilisant le WAIC. Comparer les rangs des modèles et leurs poids.
- Pour chaque modèle, produire un plot de la moyenne estimée et l'intervalle de confiance à 97% de la moyenne, surimposée aux données brutes. Comment ces prédictions diffèrent-elles selon les modèles ?
- Faire un plot des prédictions moyennées sur tous les modèles (sur les trois meilleurs). En quoi ces prédictions diffèrent-elles des prédictions du modèle avec le plus petit WAIC ?
- Calculer la déviance **out-of-sample** pour chaque modèle. Comparer les déviances obtenues à la question précédente aux valeurs de WAIC. Basé sur les déviances obtenues, quel modèle fait les meilleures prédictions ? Est-ce que le WAIC est un bon estimateur de la déviance **out-of-sample** ?


```
1 mod3.1 <- brm(
     height ~ 1 + age,
 2
     family = gaussian(),
 3
     data = d1,
 4
     prior = c(
       prior(normal(0, 100), class = Intercept),
       prior(exponential(0.01), class = sigma)
 8
     backend = "cmdstanr"
10
11
12 mod3.2 <- update(</pre>
13
     mod3.1,
     newdata = d1,
14
     formula = height ~ 1 + age + I(age^2)
15
16
17
   mod3.3 <- update(</pre>
     mod3.1,
19
20
     newdata = d1,
21
     formula = height ~ 1 + age + I(age^2) + I(age^3)
22
```



```
1 mod3.4 <- update(</pre>
     mod3.1,
 2
     newdata = d1,
 3
     formula = height \sim 1 + age + I(age^2) + I(age^3) + I(age^4)
 4
 7 mod3.5 <- update(</pre>
     mod3.1,
     newdata = d1,
 9
     formula = height \sim 1 + age + I(age^2) + I(age^3) + I(age^4) + I(age^5)
10
11
12
13 mod3.6 <- update(</pre>
14
     mod3.1,
15
     newdata = d1,
16
     formula = height \sim 1 + age + I(age^2) + I(age^3) + I(age^4) + I(age^5) + I(age^6)
17
```



```
1 # calcul du WAIC et ajout du WAIC à chaque modèle
  2
  3 mod3.1 <- add criterion(mod3.1, "waic")</pre>
  4 mod3.2 <- add criterion(mod3.2, "waic")</pre>
  5 mod3.3 <- add criterion(mod3.3, "waic")</pre>
  6 mod3.4 <- add criterion(mod3.4, "waic")</pre>
  7 mod3.5 <- add criterion(mod3.5, "waic")</pre>
  8 mod3.6 <- add criterion(mod3.6, "waic")</pre>
  9
    # comparaison des WAIC de chaque modèle
 11
 12 mod comp <- loo compare(mod3.1, mod3.2, mod3.3, mod3.4, mod3.5, mod3.6, criterion = "waic")
 13 print(mod comp, digits = 2, simplify = FALSE)
       elpd diff se diff elpd waic se elpd waic p waic
                                                           se p waic waic
                     0.00 -954.40
                                       12.41
                                                               0.79
mod3.4
           0.00
                                                      5.74
                                                                      1908.79
mod3.5
         -0.70
                                       12.48
                                                      6.46
                   0.47 -955.10
                                                               0.87
                                                                      1910.20
                   1.03 -955.69
mod3.6
        -1.29
                                       12.27
                                                      7.44
                                                               0.93
                                                                      1911.37
                  6.37 -976.30
mod3.3
        -21.90
                                       11.83
                                                      6.11
                                                                      1952.60
                                                               1.31
mod3.2 -132.62
                                       11.29
                                                               1.28
                                                                      2174.03
                    13.63 -1087.02
                                                      5.51
                                       10.91
mod3.1 -259.20
                    15.32 -1213.60
                                                                      2427.20
                                                      3.43
                                                               0.42
       se waic
          24.83
mod3.4
          24.95
mod3.5
mod3.6
         24.53
         23.66
mod3.3
mod3.2
         22.58
mod3.1
          21.82
```



```
1 # on crée un vecteur de valeurs possibles pour "age"
  2 age seg <- data.frame(age = seg(from = -2, to = 3, length.out = 1e2) )
  3
  4 # on récupère les prédictions du modèle pour ces valeurs
  5 mu <- data.frame(fitted(mod3.1, newdata = age seq) ) %>% bind cols(age seq)
  7 # on récupère les prédictions du modèle pour ces valeurs
  8 pred age <- data.frame(predict(mod3.1, newdata = age seq) ) %>% bind cols(age seq)
 10 # on affiche les dix premières prédictions
 11 head(pred age, 10)
                         02.5
                                 097.5
   Estimate Est.Error
                                             age
1 100.4499 21.13775 58.51867 142.4313 -2.000000
  101.0368 20.87114 60.20049 141.1053 -1.949495
  101.8842 20.93198 60.09004 141.7364 -1.898990
  103.0255 21.18667 60.41278 144.7774 -1.848485
  104.5247 21.22701 63.20084 145.5188 -1.797980
  104.9453 20.88182 65.70421 146.6455 -1.747475
  105.6927 20.74311 64.78789 145.7145 -1.696970
 106.8630 20.86651 65.64000 148.4519 -1.646465
 107.6850 20.79897 66.01354 148.0521 -1.595960
10 108.9927 20.77924 67.99611 149.7180 -1.545455
```



```
1 d1 %>%
     ggplot(aes(x = age, y = height)) +
 3
     geom ribbon(
       data = mu, aes(x = age, ymin = Q2.5, ymax = Q97.5),
       alpha = 0.8, inherit.aes = FALSE
 6
     geom smooth(
       data = pred age, aes(y = Estimate, ymin = Q2.5, ymax = Q97.5),
 8
       stat = "identity", color = "black", alpha = 0.5, size = 1
 9
10
     geom point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
11
     labs(x = "Age", y = "Height")
12
```



```
1 # prédictions moyennées sur les 4 modèles
2 averaged predictions mu <- pp average(</pre>
     mod3.1, mod3.2, mod3.3, mod3.4, mod3.5, mod3.6,
     weights = "waic",
 4
     method = "fitted",
 5
     newdata = age seg
     ) 용>용
     as.data.frame() %>%
8
     bind cols(age seg)
9
10
11 # prédictions moyennées sur les 4 modèles
12 averaged predictions age <- pp average(</pre>
     mod3.1, mod3.2, mod3.3, mod3.4, mod3.5, mod3.6,
13
14
     weights = "waic",
     method = "predict",
15
16
     newdata = age seg
17
     ) %>%
     as.data.frame() %>%
18
     bind cols(age seq)
19
```



```
1 d1 %>%
     qqplot(aes(x = age, y = height)) +
 3
     geom ribbon(
       data = averaged predictions mu, aes(x = age, ymin = Q2.5, ymax = Q97.5),
 4
       alpha = 0.8, inherit.aes = FALSE
 6
     geom smooth(
       data = averaged predictions age, aes(y = Estimate, ymin = Q2.5, ymax = Q97.5),
 8
       stat = "identity", color = "black", alpha = 0.5, size = 1
9
10
     geom point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
11
12
     labs(x = "Age", y = "Height", title = "Model-averaged predictions")
```

Model-averaged predictions


```
1 # calcul de la log-vraisemblance (log-likelihood) du modèle mod3.1
 2 # chaque ligne est une itération et chaque colonne une observation
 3 log lik mod3.1 <- log lik(mod3.1)</pre>
 4
 5 # NB : la déviance possède également une distribution dans le monde bayésien...
 6 dev.mod3.1 <- mean(-2 * rowSums(log lik mod3.1) )</pre>
 8 # calcul de la log-vraisemblance (log-likelihood) du modèle mod3.2
   dev.mod3.2 \le mean(-2 * rowSums(log lik(mod3.2)))
10
11 # calcul de la log-vraisemblance (log-likelihood) du modèle mod3.3
12 \text{dev.mod3.3} \leftarrow \text{mean}(-2 * \text{rowSums}(\log \text{lik}(\text{mod3.3})))
13
14 # calcul de la log-vraisemblance (log-likelihood) du modèle mod3.4
15 \text{dev.mod3.4} \leftarrow \text{mean}(-2 * \text{rowSums}(\log \text{lik}(\text{mod3.4})))
16
17 # calcul de la log-vraisemblance (log-likelihood) du modèle mod3.5
   dev.mod3.5 \leftarrow mean(-2 * rowSums(log lik(mod3.5)))
19
20 # calcul de la log-vraisemblance (log-likelihood) du modèle mod3.6
21 dev.mod3.6 \leftarrow mean(-2 * rowSums(log lik(mod3.6)))
```



```
1 deviances <- c(dev.mod3.1, dev.mod3.2, dev.mod3.3, dev.mod3.4, dev.mod3.5, dev.mod3.6)
2 comparison <- mod_comp %>% data.frame %>% select(waic) %>% rownames_to_column()
3 waics <- comparison %>% arrange(rowname) %>% pull(waic)
```


Références

Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: Understanding AIC and BIC in model selection. *Sociological Methods & Research*, *33*(2), 261–304. https://doi.org/10.1177/0049124104268644 Burnham, K. P., & Anderson, D. R. (2002). *Model selection and multimodel inference: A practical information-theoretic approach* (2nd ed). Springer.

