Class-Weighted Convolutional Features for Image Retrieval

Xavier Giró-i-Nieto

Jose Alvarez

Outline

- ▶ Introduction
- Related Work
- Our Proposal
- Experiments
- Conclusions

1. Introduction

Visual Instance Retrieval

Given an image query, generate a ranked list of similar images

Visual Instance Retrieval

Visual Instance Retrieval

Query image

Image Representations

$$v = (v_1, ..., v_n)$$

$$v_1 = (v_{11}, ..., v_{1n})$$

$$\vdots$$

$$v_k = (v_{k1}, ..., v_{kn})$$

Image Matching

Ranking List

Similarity

Metric (e.g. cosine similarity) Similarity score **Image**

0.98

0.97

0.10

0.01

2. Related Work

Convolutional Neural Networks

Example of a CNN: AlexNet

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).

Convolutional Neural Networks

Fully-Connected features as global representation

Babenko, A., Slesarev, A., Chigorin, A., & Lempitsky, V. (2014). Neural codes for image retrieval. In *ECCV* 2014
Razavian, A., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off-the-shelf: an astounding baseline for recognition. In DeepVision *CVPRW* 2014

Convolutional Neural Networks

Convolutional features (Sum/Max Pooled) as global representations

Babenko, A., & Lempitsky, V. (2015). Aggregating local deep features for image retrieval. *ICCV* 2015 Tolias, G., Sicre, R., & Jégou, H. (2015). Particular object retrieval with integral max-pooling of CNN activations. *ICLR* 2016 Kalantidis, Y., Mellina, C., & Osindero, S. (2015). Cross-dimensional Weighting for Aggregated Deep Convolutional Features. *arXiv* preprint arXiv:1512.04065.

R-MAC

K feature maps

- Regions selected using a rigid grid
- Compute a feature vector per region
- Combine all region feature vectors
 - \circ Dimension \rightarrow 256 / 512
 - AlexNet / VGG-16

maximum activation

$$\mathbf{f}_{\mathcal{R}} = [\mathbf{f}_{\mathcal{R},1} \dots \mathbf{f}_{\mathcal{R},i} \dots \mathbf{f}_{\mathcal{R},K}]^{\top}$$

$$\ell_2 \longrightarrow \begin{bmatrix} \mathbf{Shift} \\ + \\ + \end{bmatrix} \longrightarrow \ell_2 \longrightarrow \begin{bmatrix} \mathbf{Shift} \\ + \\ + \end{bmatrix} \longrightarrow \ell_2$$

Tolias, G., Sicre, R., & Jégou, H. (2015). Particular object retrieval with integral max-pooling of CNN activations. *ICLR* 2015

Convolutional Neural Networks

Convolutional features - Encoded with VLAD or BoW

Ng, J., Yang, F., & Davis, L. (2015). Exploiting local features from deep networks for image retrieval. In *DeepVision CVPRW 2015* E. Mohedano, A. Salvador, K. McGuinness, F. Marques, N. E. O'Connor and X. Giro, Bags of Local Convolutional Features for Scalable Instance Search. In ICMR 2016

Class Activation Maps

B. Zhou, A. Khosla, Lapedriza. A., A. Oliva, and A. Torralba. 2016. Learning Deep Features for Discriminative Localization. CVPR (2016).

Tennis Ball

Chesapeake Bay Retriever

Simple Classes

Sand Bar Seashore

Complex Classes

3. Proposal

Proposal

Class-Weighted Convolutional Features

Encode images combining image semantics knowledge with convolutional features

- 1. Convolutional Features & CAMs Extraction
- 2. Channel & Class-Weighting
- 3. Feature Pooling
- 4. Descriptor Aggregation

1. Convolutional Features & CAMs Extraction

In a **single forward pass** we extract convolutional features and image CAMs

2. Channel & Class-Spatial Weighting

Spatial Weighting based on Class Activation Maps

Channel Weighting based on feature maps sparsity (as in CroW)

3. Feature Pooling

One vector per class: $F_c = [f_{c,1}, f_{c,2}, ..., f_{c,K}] \forall c \in [1, N]$

4. Descriptor Aggregation

Descriptor Aggregation Strategies

Online Aggregation (OnA)

Descriptor Aggregation Strategies

Offline Aggregation (OfA)

4. Experiments

Experimental Setup

- Keras over Theano
- Images resized to 1024x720 (keeping aspect ratio)
- VGG-16 CAM model as feature extractor (ImageNet)
- Features from Conv5_1 Layer

Experimental Setup

- Datasets
 - Oxford 5k
 - Paris 6k
 - 100k Distractors (Flickr)
- Scores computed with cosine similarity
- Evaluation metric: mean Average Precision (mAP)

Philbin, J., Chum, O., Isard, M., Sivic, J. and Zisserman, A. Object retrieval with large vocabularies and fast spatial matching, CVPR 2007 Philbin, J., Chum, O., Isard, M., Sivic, J. and Zisserman, A. Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases. CVPR 2008

How many objects are relevant?

Comparison with State-of-the-Art

Method	Dim	Oxf5k	Par6k	Oxf105k	Par106k	
SPoC[2]	256	0.531	-	0.501	-	
CroW[10]	512	0.682	0.796	0.632	0.710	
uCroW[10]	256	0.666	0.767	0.629	0,695	
Razavian [19]	zavian [19] 32k		0.853	-	-	
R-MAC[27] 512 BoW[12] 25k Ours(OnA) 512		0.669	0.830	0.616	0.757	
		0.738	0.820	0.593	0.648	
		0.729	0.858	-		
Ours(OfA)	512	0.712	0.799	0.672	0.727	

Re-Ranking

Comparison with State-of-the-Art

Method	Dim	R	QE	Oxf5k	Par6k	Oxf105k	Par106k
CroW	512	i w	10	0.722	0.855	0.678	0.797
Ours(OnA)	512	_	10	0.766	0.879	1. -	-
Ours(OfA)	512	_	10	0.737	0.835	0.714	0.777
BoW	25k	100	10	0.788	0.848	0.651	0.641
Ours(OnA)	512	100	10	0.786	0.876	1 -	(- 0
Ours(OfA)	512	100	10	0.772	0.836	0.744	0.777
RMAC	512	1000	5	0.770	0.877	0.726	0.817
Ours(OnA)	512	1000	5	0.812	0.874	\ -	(=)
Ours(OfA)	512	1000	5	0.803	0.854	0.765	0.778

5. Conclusions

Conclusions

- We have proposed to use the semantic information of images to encode them.
- We introduced the use of CAMs to spatially weight convolutional features inside a retrieval pipeline.
- We demonstrated that our retrieval system outperforms the previous state-of-the-art in off-the-shelf image retrieval.

Thank 4040