Intercepts of the Quadratic

Case1: △>0 $z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the z-intercepts of multiplicity 1.

Given a quadratic $s(z) = a z^2 + b z + c$ compute its discriminant \triangle :

$$z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$$
 computes the z-intercepts of multiplicity 1. $s(0) = c$ computes the single s-intercept.
Example 1.

 $s(z) = 2z^2 + 2z - 40$ compute its discriminant \triangle :

 $\triangle = \sqrt{b^2 - 4ac}$

Case2: △=0

no z-intercepts.

s(0) = 245 s-intercept.

However there is a s-intercept.

$$\triangle=324>0$$
 $z_{1,2}=4,-5$ $s(0)=-40$ s-intercept.

400

 $z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a} \text{ single } z - \text{intercept of multiplicity } 2.$

Example 2. $s(z) = 3z^2 + 12z + 12$ compute its discriminant \triangle :

$$z_{1,2}=-2,-2$$

 $s(0)=12$ s-intercept.

Example 3. $s(z) = 4z^2 + 56z + 245$ compute its discriminant \triangle : △=-784<0

