1 Úkol 1

Vzorkovací frekvenci signálu: 16000Hz

Délku ve vzorcích: **16000** Délka v sekundách: **1s**

2 Úkol 2

Výpočet logaritmické spektrální hustoty výkonu PSD dle: $G[k] = 10 \log_{10} \frac{|X[k]|^2}{N}$ PSD se mi zdálo přehlednější než pouze modul FFT. Vypočet frekvenční osy dle: $f = (0: N/2 - 1)/N \times FS$ Korekce počtu vzorků dle: G = G(1: N/2);

3 Úkol 3

Maximum modulu spektra je na frekvenci $\mathbf{617}\ \mathbf{Hz}$

4 Úkol 4

Koeficienty filtru se vytisknout pomoc Zero-pole plot funkce. Všechny Nuly a póly jsou uvnitř jednotkové kružnice => IIR Filtr je stabilní. (Při a0=1)

xcaber00

5 Úkol 5

Jedná se o horní propust.

6 Úkol 6

Zde jsem zvolil obyčejný linerání modul FFT.

7 Úkol 7

Maximum modulu spektra je na frekvenci $\bf 5709~Hz$

8 Úkol 8

Cosi

9 Úkol 9

Nepovedlo se mi to pomocí funkce xcorr, tak jsem si funkci na odhad napsal sám dle: $R(k) = \frac{1}{N} \sum_{n=0}^{N-1} x[n]x[n+k]$.

10 Úkol 10

Hodnota R[10] je **-0.0207**.

11 Úkol 11

Cosi

12 Úkol 12

Jedná se o správnou sdruženou funkci hustoty rozdělení pravděpodobnosti.

13 Úkol 13

Cosi