Chapter 1 Dets & Thrus

AXIOM () Well-ordening axiom.

V S ⊆ Z> contains a smallest elem

Def D divisor (factor)

Let $a, b \in Z$.

if $\exists g \in Z$ st. b = aq.

Say: $a \mid b$, a is a divisor (factor) of b

Thm(D1.1 Division Algo Thm.

Let $n, d \in \mathbb{Z}, d > 0$ $\Rightarrow \exists unique q, r \in \mathbb{Z}, D \leq r < d$ S.t. n = qd + r

Defer GCD

Let $a, b \in \mathbb{Z}$. f = d = 1if f = d = 2 sit. f = d = 1Cay f = (a, b), the GCD of a, b

Thm $\bigcirc 1.2$ Let a, b $\in \mathbb{Z}$, not both o. $\Rightarrow \exists r, s \in \mathbb{Z} \text{ s.t. } ra + sb = (a,b)$

Thm @ 1.4 a | bc If $(a,b)=1 \rightarrow a | c$

Thm G Euclidean Algorithm. $(a,b) = (b, a \mod b)$

Def(3) prime, composite

p \(\mathbb{Z} \) (p \(\pi \), \(\pi \), \(\pi \)

is \(\rho \text{prime} \) if only divisors is \(\pi \), \(\pi \)

\(\text{composite} \) if not prime (\(\pi \) \(\pi \))

s.t. \(\pi \) \(\pi \)

Thm 51.5 $\alpha \in \mathbb{Z}$ ($\neq 0, \pm 1$) is prime iff whenever $p|bc \Rightarrow p|b$ or p|c

Collary O1b

if pez is prime AUD

pl(a1,-an) (∀a;ez)

⇒ 對十a;使得 pla;

Thm 6 FTA

Vn \(\int \mathbb{Z} \) (\(\psi_0 \) / 1 \)

con be factorized into primes.

And by reordering, replecting \(\pm \),

it is unique

(i-e. if \(n = p_1 \cdots p_5 = q_1 \cdots q_5 \)

\(\text{j} \) \(\text{j} \) \(p_1 = \pm q_1 \)

\(\text{j} \) \(\text{j} \) \(\text{j} \) \(\text{j} \) \(\text{j} \)