Embedded System Lecture Note 3. Introductory Example /DSC (Digital Still Camera)

tags: Embedded

- 📤 Chenging 🗿 Fri, Apr 30, 2021
- Embedded System Lecture Note 3. Introductory Example /DSC (Digital Still Camera).
 - Introduction to Digital Camera
 - o A. Background Information
 - <u>a. Digital Still Camera (DSC)</u>
 - b. Main operations (simplified)
 - c. Auxiliary operations (simplified)
 - <u>d. Structure of digital camera</u>
 - B. Introduction of Main operations
 - <u>1. Capture of Image CCD (Charged Coupled Device)</u>
 - <u>2. Image Processing Compression</u>
 - <u>3. Image Processing DCT</u>
 - 4. Image Processing more on DCT
 - <u>5. Image Processing DCT Formula</u>
 - 6. Image Processing Implementation of DCT
 - 7. Image Processing Quantization
 - 8. Image Processing Hoffman Encoding
 - o C. The List of Requirements
 - D. The List of Specifications
 - o E. The Design
- <u>Different Implementation</u>
 - o Implementation 1 Microcontroller (micro C) alone:
 - Implementation 2 micro C + H/W Function Unit:
 - Implementation 3 micro C + H/W Function Unit:
 - ∘ Implementation 4 □C + H/W Function Units:
 - Comparison and Discussion

Introduction to Digital Camera

A. Background Information

a. Digital Still Camera (DSC)

- 1. typical consumer embedded system product
- 2. Captures and stores pictures in digital format

b. Main operations (simplified)

- 1. Converts image obtained from CCD device to digital form
 - (1) Autofocus (A/F)
 - (2) Auto-Exposure (A/E)
 - (3) Zero-bias adjustment

2. Image processing

- (1) White balancing
- (2) Color reproduction
- 3. Compression (store the image in JPG format)
 - (1) FDCT (Forward Discrete Cosine Transformation)
 - (2) Quantization
 - (3) Huffman encoding
- 4. Image archiving (storing)
- c. Auxiliary operations (simplified)
 - 1. Pre-viewing images
 - 2. Storing images
 - 3. Transferring images
- d. Structure of digital camera

B. Introduction of Main operations

- 1. Capture of Image CCD (Charged Coupled Device)
 - Special sensor that captures an image
 - Light-sensitive silicon solid-state device composed of many cells (usually arranged in a two-dimension array)

- Primary stages in image generation:
 - Step 1. charge generation
 - Step 2. collection and storage of the liberated charge
 - Step 3. charge transfer
 - Step 4. charge measurement
- Zero-Bias Adjustment

- Image Processing Compression
- JPEG (Joint Photographic Experts Group)
- A standard format for digital images in a compressed form
- Image data divided into blocks of 8 x 8 pixels
- 3 steps performed on each block
 - Step 1. DCT (Discrete Cosine Transform: FDCT/IDCT)
 - Step 2. Quantization
 - Step 3. Huffman encoding (Variable length encoding)

2. Image Processing - Compression

- Save space for storage and time for transmission
- Lossless or lossy (non-lossless)
- JPEG (Joint Photographic Experts Group)
 - A standard format for digital images in a compressed form
 - Image data divided into blocks of 8 x 8 pixels
 - 3 steps performed on each block
 - DCT (Discrete Cosine Transform: FDCT/IDCT)
 - Quantization
 - Huffman encoding (Variable length encoding)

3. Image Processing - DCT

- Discrete Cosine Transform
- Transforms original 8 x 8 block into the domain of cosine-frequency
 - Upper-left corner values represent more of the essence
 - Lower-right corner values represent finer details

- Can reduce precision and retain reasonable image quality
- DCT (Discrete Cosine Transformation)
 - FDCT (Forward DCT): Encoding
 - IDCT (Inverse DCT): Decoding [not needed here]
- Computation intensive

4. Image Processing – more on DCT

- Popular applications:
 - Solving P. D. E.
 - Signal and image processing for lossy data compression
 - ☑ image compression: JPEG
 - ☑ video compression: MJPEG, MPEG, DV
- 8 standard DCT variants and 4 are commonly used
- Most common: DCT-II (FDCT) and DCT-III (IDCT)
- JPEG: Computation, quantization, entropy encoding
 - * Two dimensional DCT-II of N × N blocks (N: typically 8)
 - DCT-II: $X_k = \sum_{n=0}^{N-1} x_n \cos \left[\frac{\pi}{N} \left(n + \frac{1}{2} \right) k \right]$ k = 0, ..., N-1.
 - Multidimensional DCT (similar as in this example)

5. Image Processing - DCT Formula

- FDCT (Forward DCT)
 - Auxiliary function:

C(h) = if (h == 0) then
$$(1/\sqrt{2})$$
 else 1.0

Main function:

pixel value at
$$(x, y)$$

Main function:
$$\mathbf{F}(\mathbf{u}, \mathbf{v}) = \frac{1}{4} \times \mathbf{C}(\mathbf{u}) \times \mathbf{C}(\mathbf{v}) \times \mathbf{v}$$

$$\Sigma_{x=0..7} \Sigma_{y=0..7} D_{xy} \times \mathbf{cos}(\pi(2x+1)\mathbf{u}/16) \times \mathbf{cos}(\pi(2y+1)\mathbf{v}/16)$$

6. Image Processing – Implementation of DCT

```
1
     static double IMG_A[8][8], IMG_B[8][8];
 2
     void FDCT(void){
 3
          int u, v, x, y;
 4
          double r, sum;
 5
          for (u = 0; u < 8; u++){}
 6
              for (v = 0; v < 8; v++){}
 7
                  cu = u ? 1.0 : (1.0/sqrt(2.0));
                  cv = v ? 1.0 : (1.0/sqrt(2.0));
 8
                  for (x = 0; x < 8; x++){
 9
10
                       for (y = 0; y < 8; y++){}
11
                           r = r + IMG_A[x][y] * cos(3.1416*(2*y+1)*v/16.0);
12
                       }
                       sum = sum + r*cos(3.1416*(2*x+1)*u/16.0);
13
14
                  }
15
              }
16
              IMG_B[u][v] = 0.25*cu*cv*sum;
17
          }
18
     }
```

★ Implementing FDCT:

- Using table look-up
- Using fixed-point arithmetic
 - Floating-point values are multiplied by 32,768 and rounded to nearest integer
 - 32,768 chosen in order to store each value in 2 bytes of memory
- Loop unrolling

```
static short ONE_OVER_SQRT_TWO = 23170;
static double COS(int xy, int uv) {
  return COS_TABLE[xy][uv] / 32768.0;
}
static double C(int h) {
  return h ? 1.0 : ONE_OVER_SQRT_TWO / 32768.0;
}
```

- Translating a real value to a fixed-point representation
 - Multiply real value by 2 ^ (# of bits used for fractional part)
 - Round to nearest integer
- Example: 3.14 as 8-bit integer with 4 bits for fraction

```
\circ 2^4 = 16
```

- o 3.14 * 16 = 50.24 = 50 = 00110010
- 16(2^4) possibrel values for fraction, each represents 1/16
- \circ The last 4 bits (0010) = 2 => 2*0.0625(1/16) = 0.125

o 3 (0011) + 0.125 = 3.125 與3.14算相近 more bits for fraction would increase accuracy

注意乘法會較加法不精準

Addition

* Adding integer representations

Example:

```
3.14 + 2.71 = 5.85

3.14 \rightarrow 50 = 00110010

2.71 \rightarrow 43 = 00101011

50 + 43 = 93 = 01011101

5(0101) + 13(1101) \times 0.0625

= 5.8125 \approx 5.85
```

Multiplication

- 1. Multiply integer representations
- Shift result right by # of bits in fractional part

Example:

```
3.14 \times 2.71 = 8.5094

50 \times 43 = 2150 = 100001100110

>> 4 = 10000110

8(1000) + 6(0110) \times 0.0625

= 8.375 \approx 8.5094
```

☐ Image Processing – FDCT

- COS_TABLE gives 8-bit fixed-point representation of cosine values
- 6 bits used for fractional portion
- Result of multiplications shifted right 6 bits

```
static unsigned char C(int h) {
    return h ? 64 : ONE_OVER_SQRT_TWO;}
static int F(int u, int v, short img[8][8]) {
    long s[8], r = 0;
    unsigned char x, j;
    for(x=0; x<8; x++) {
        s[x] = 0;
        for(j=0; j<8; j++)
            s[x] += (img[x][j] * COS_TABLE[j][v] ) >> 6;
    }
    for(x=0; x<8; x++) r += (s[x] * COS_TABLE[x][u]) >> 6;
    return (short)((((r*(((16*C(u))>>6)*C(v))>>6))>>6);
}
```

```
inBuffer[idx / 8][idx % 8] = p << 6; idx++;
}

void CodecDoFdct(void) {
  unsigned short x, y;
  for(x=0; x<8; x++)
    for(y=0; y<8; y++)
        outBuffer[x][y] = F(x, y, inBuffer);
  idx = 0;</pre>
```

if(idx == 64) idx = 0;

7. Image Processing – Quantization

- · Achieve high compression ratio by reducing image quality
- Reduce bit precision of encoded data:
 - Fewer bits needed for encoding
 - o One way is to divide all values by a factor of 2 (right shift)

• Reverse the process for dequantization

1150	39	-43	-10	26	-83	11	41
-81	-3	115	-73	-6	-2	22	-5
14	-11	1	-42	26	-3	17	-38
2	-61	-13	-12	36	-23	-18	5
44	13	37	-4	10	-21	7	-8
36	-11	-9	-4	20	-28	-21	14
-19	-7	21	-6	3	3	12	-21
-5	-13	-11	-17	4	-1	7	4

After being decoded using DCT

144	5	-5	-1	3	-10	1	5
-10	0	14	-9	-1	0	3	-1
2	-1	0	-5	3	0	2	-5
0	-8	-2	-2	5	-3	-2	1
6	2	5	-1	1	-3	1	-1
5	-1	-1	-1	3	4	-3	2
-2	-1	3	-1	0	0	2	-3
-1	-2	-1	-2	-1	0	1	-1

After quantization

8. Image Processing - Hoffman Encoding

- Variable length encoding
 - More frequently occurring pixels assigned short binary code
 - Longer binary codes left for less frequently occurring pixels
- Serialize 8 x 8 block of pixels and values are converted into single list using zigzag pattern
- Each pixel in the serial list is converted to Huffman encoded value
- Huffman encoding is reversible (No code is a prefix of another code)

- Build Huffman tree from bottom up
 - leaf for pixel
 - internal node of min sum
- Traverse tree from root to obtain leaf's pixel value
- Append
 - ❖ 0 : for left
 - ❖ 1: for right traversal.

15x 8x -2 6x 5x 2 5x 3 5x 5 5x -3 4x -5 3x -10 2x 144 1x -9 1x -8 1x -4 1x 6 1x 14

Pixel

Huffman codes 00 100 110 010 1110 1010 0110 11110 10110 -10 01110 111110 101111 101110 011111

C. The List of Requirements

	Product Requirement List									
Do	c ID		Product	Low-end Digital Still Camera Date			/	/		
Functional Requirements				ents	Non-Functional Requirements					s
F01	Takir	ng photo &	processing		N01	Processing fast enough			~ 1 se	c. ?
E02	F02 Processing and storing photos in digital format		JPEG?	N02	Cost: IC ≤ \$	25, Tot ≤	\$100	USD		
FUZ			JPEG!	N03	IC gate count <= 200K+					
F03	F03 Storing at least 50 photos			N04	Reasonable size with IC					
F04	F04 Image resolution: Low			N05	Reasonable weight suitable for hand-held					
F05	Load	ing the pho	to images	1.00		suitable for hand-held		ld		
FUS	to a l	PC compute	er		N06	N06 Operating w/o cooling fan		< 50°	C ?	
			N07	Low power consumption for long battery life						
AN S	·-				N08 Time-to-Market < 6 Mon.					
Rev	Reviewer			/ /	App	roved by			/	/

D. The List of Specifications

	Product Specifications								
Doc	: ID		Product Low-end Digital Still Camera Date				/	/	
Item Function			Specification/Description						te
S01	Tak	ing photos	_	_	at: jpg of resolution ge processing time				
S02	Storage 1. Capacity: at least 50 photo images 2. Writing photo image for storing 3. Reading stored photo image for transferring								
S03	S03 Connection 1. Connect to PC computers via RS-232C interface 2. Data Rate: auto-set and at least 9600 bits/sec.				UART				
S04	S04 User Interface No (Auto transferring or operating at computer side) Sv				Switch	nes			
S05	S05 Miscellaneous 1. Can work at 0 ~ 50°C and no cooling fan is allowed 2. Low power consumption for long battery life 3. Weight (w/o battery) <= 500g and reasonable size								
Revi	Reviewer / / Approved by / /					/			

E. The Design

- Description of system architecture
 - o Hardware components
 - Software structure
- Mapping functionality to the architecture
 - One function on one processor
 - One function on many processors

- Many functions on one processor
- One person's specification may be the implementation of another person!

Using a data flow diagram to describe the functional specifications

A high-level executable model of specifications

Executable model of digital camera

An example of the unified H/W and S/W approach

Function	Operations	Design	Mapping
Capture an image	 CCD operation Zero-bias adjustment 	1. CCD module 2. CCD driver	H/W+S/W
Convert an image into JPG	FDCT Quantization Huffman encoding	Encoder	H/W or S/W
Store an image	Copy JPG image Manage directory	SaveImage	S/W
Transfer an image	UART connection Transmission Manage directory	1. UART module 2. UART driver 3. ReadImage 4. SendImage	H/W+S/W

• System architecture

- CCD module
- o Processor: General-purpose or special-purpose or both
- o Memory: RAM and Flash Memory
- o Bus
- I/O Devices
- Application-specific hardware components (ASIC)
- Software

Basic architecture of a digital camera

Different Implementation

Implementation 1 – Microcontroller (micro C) alone:

- Hardware min. required hardware with 12MHz 8051 □C
- Software all function modules running on the 8051

The architecture:

- SoC of minimum required hardware components
 - ❖ 8051 µC
 - * RAM/FLASH
 - CCD Module
 - UART
- The software

The software:

- Based on the high-level executable model of specification
- Main control flow CNTRL.C
- Function modules:
 - CaptureImage
 - CompressImage
 - SendImage
- Supporting modules:
 - * CCDPP.C
 - CODEC.C
 - UART.C

Executable model of digital camera

- Analysis
 - IC cost (including NRE) approx. USD\$5 (NT\$160)
 - Performance:
 - * Approx. 1 MIPS (12Mhz 8051 μC of 12 cycles/instruction)
 - ❖ Reading image at 409,600 instructions/image (4096 x ~100)
 - ❖ Only ~0.5 sec for computation intensive FDCT & encoding
 - Over-budget (1 image per sec. not possible)
 - Power Consumption well below 200mW
 - Energy not analyzed (not necessary)
 - Time-to-Market about 3 months
- Decision: Not feasible!

Implementation 2 – micro C + H/W Function Unit:

• Hardware – SOC of 12MHz 8051 micro C and CCDPP

Software – function modules and control module of CCDPP

The architecture:

- SoC of required H/W components
- Processors:
 - ❖ 8051 µC
 - CCDPP
- Bus-structured

Analysis

- IC cost (size) 98000 gates (chip area)
- Performance 9.1 sec for processing 1 image
- Power Consumption 33 mW (0.033 W)
- Energy 0.30 joule ($0.033 \text{ W} \times 9.1 \text{ sec}$)
- Time-to-Market less than 6 months is possible
- □ Decision: Not feasible!

Implementation 3 – micro C + H/W Function Unit:

- Hardware SOC of 12MHz 8051 micro C and CCDPP
- Software function modules with fixed-point FDCT and

The architecture:

- SoC of required H/W components
- Processors:
 - ❖ 8051 µC
 - CCDPP
- Bus-structured

Analysis

- IC cost (size) 90000 gates (chip area)
- Performance 1.5 sec for processing 1 image
- Power Consumption 33 mW (0.033 W)
- Energy 0.050 joule ($0.033 \text{ W} \times 1.5 \text{ sec}$)
- Time-to-Market less than 6 months is possible
- □ Decision: A possible solution

Implementation 4 – □C + H/W Function Units:

- Hardware SOC of 12MHz 8051 micro C, CCDPP and CODEC
- Software function modules with fixed-point FDCT and control modules of CCDPP and CODEC

The architecture:

- SoC of required H/W components
- Processors:
 - ♦ 8051 µC
 - CCDPP
 - CODEC
- Bus-structured

Analysis

- IC cost (size) 128000 gates (chip area)
- Performance 0.099 sec for processing 1 image
- Power Consumption 40 mW (0.040 W)
- Energy -0.0040 joule $(0.040 \text{ W} \times 0.099 \text{ sec})$
- Time-to-Market 6 months might not be possible (i.e. > 6 Mon. or 6⁺ Mon.)
- Decision: A possible solution

Comparison and Discussion

Comparison and Discussion:

Implementation	1	2	3	4	
Performance	>> 1 sec.	9.1 sec.	1.5 sec.	0.099 sec.	
Size (no. gates)	N/A	98000	90000	128000	
Power (mW)	<< 200	33	33	40	
Energy (joule)	N/A	0.30	0.050	0.0040	
Time-to-Market	~ 3 Mon.	< 6 Mon.	< 6 Mon.	? (6+ Mon.)	

- □ Which is better?
- ☐ Main lesson: Trade-off between H/W and S/W

業界通常選3,性能不要太好