Homework #7 due December 20, 2016, Tuesday

Question 1

Consider the *PDA* $P = (Q, \Sigma, \Gamma, \delta, Z_0, q_0, F)$ and the *DFA* $A = (Q_A, \Sigma, \delta_A, q_{0A}, F_A)$. We define the product *PDA* $P \times A := (Q \times Q_A, \Sigma, \Gamma, \delta \times \delta_A, Z_0, (q_0, q_{0A}), F \times F_A)$ where the product transition function $\delta \times \delta_A$ is defined as: $((q', r'), \gamma) \in (\delta \times \delta_A)((q, r), a, X)$ *iff*: $(i) (q', \gamma) \in \delta(q, a, X) \land r' = \delta_A(r, a)$, *if* $a \in \Sigma, X \in \Gamma$; $(ii) (q', \gamma) \in \delta(q, a, X) \land r' = r$, *if* a = e, $X \in \Gamma$

(1) Show by using the definition above and an appropriate induction argument that the computation function for the product $PDA P \times A$ is characterized by

((q, r), s,
$$\alpha$$
) |--*_(PxA) ((q', r'), e, γ) for $s \in \Sigma^*$; $\alpha, \gamma \in \Gamma^*$ iff:
(i) (q, s, α) |--*_P (q', e, γ)
(ii) $r' = \delta_A E$ (r, s)
where $\delta_A E$ is the extended transition function of A .
(2) Show using (1) that the language accepted by $P \times A$ is $L_P \cap L_A$

Question 2

A *CFG* is called *right linear* if *all* productions are of the form $A \rightarrow a B$ or $A \rightarrow e$ and called *left linear* if *all* productions are of the form $A \rightarrow B a$ or $A \rightarrow e$ where $A, B \in V$ and $a \in T$ and e is the empty string.

Show that both *right linear* and *left linear* grammars generate *regular languages*. Specify finite state machines corresponding respectively to right and left linear grammars.

Main Text: Exercise 7.1.3, 7.1.4, 7.2.1 (b),(c), 7.4.3(b),(c)