

Estruturas de Dados

Análise de Complexidade

Professores: Anisio Lacerda

Lucas Ferreira

Wagner Meira Jr.

Washington Cunha

Projeto de Algoritmos

- Projeto de algoritmos
 - Análise do problema
 - Decisões de projeto
 - Tipos Abstratos de Dados
 - Algoritmo a ser utilizado

- Principais Perguntas:
 - O Algoritmo funciona?
 - O Algoritmo é eficiente?

Projeto de Algoritmos

- A eficiência de um algoritmo pode ser medida com várias métricas. Por exemplo:
 - tempo de execução
 - espaço ocupado
 - **...**

Esse tipo de estudo é chamado:
 Análise de Algoritmos

Medida do Custo por meio de um Modelo Matemático

- Deve ser especificado o conjunto de operações e seus custos de execuções.
 - É mais usual ignorar o custo de algumas das operações e considerar apenas as operações mais significativas.
- Ex.: algoritmos de ordenação: Consideramos o número de comparações entre os elementos do conjunto a ser ordenado e ignoramos as operações aritméticas, de atribuição e manipulação de índices, caso existam.

Custo de um Algoritmo

- Determinando o menor custo possível para resolver problemas de uma dada classe, temos a medida da dificuldade inerente para resolver o problema.
- Algoritmo Ótimo: Quando o custo de um algoritmo é igual ao menor custo possível, o algoritmo é ótimo para a medida de custo considerada.

Função de Complexidade

 O custo de execução de um algoritmo é dado por uma função de custo ou função de complexidade f.

 f(n) é a medida do custo necessário para executar um algoritmo para um problema de tamanho n.

Função de Complexidade

- Função de complexidade de tempo:
 - f(n) mede o custo em número de operações para executar um algoritmo em um problema de tamanho n

- Função de complexidade de espaço:
 - f(n) mede a memória necessária para executar um algoritmo em um problema de tamanho n

Comparação entre os Algoritmos

 Comparação entre os algoritmos dos programas MaxMin1, MaxMin2 e MaxMin3, considerando o número de comparações como medida de complexidade.

Os três	f(n)		
algoritmos	Melhor caso	Pior caso	Caso médio
MaxMin1	2(n-1)	2(n-1)	2(n-1)
MaxMin2	n-1	2(n-1)	3n/2 - 3/2
MaxMin3	3n/2 - 2	3n/2 - 2	3n/2 - 2

Notação O

Dada uma função f(n) definimos formalmente o conjunto O(f(n)) como:

$$O(f(n)) := \{g(n) : \exists c, m > 0 \text{ t.q. } g(n) \le cf(n), \forall n \ge m\}$$

Notação O

$$O(f(n)) := \{g(n) : \exists c, m > 0 \text{ t.q. } g(n) \le cf(n), \forall n \ge m\}$$

Exemplo 2:

Mostre que f(n) = n pertence ao conjunto $O(n^2)$.

- Tome c = 1 e m = 1.
- $n \le n^2$ para todo $n \ge 1$.

Notação Ω

Dada uma função f(n) definimos formalmente o conjunto $\Omega(f(n))$ como:

$$\Omega(f(n)) := \{g(n) : \exists c, m > 0 \text{ t.q. } g(n) \ge cf(n), \forall n \ge m\}$$

Notação Ω

$$\Omega(f(n)) := \{g(n) : \exists c, m > 0 \text{ t.q. } g(n) \ge cf(n), \forall n \ge m\}$$

Exemplo:

Mostre que $f(n) = 3n^3 + n^2$ pertence ao conjunto $\Omega(n^3)$:

- Tome c = 1 e m = 1.
- Logo $3n^3 + n^2 \ge n^3$, para todo $n \ge 1$.
- Subtraindo n^3 dos dois lados.
- Temos $2n^3 + n^2 \ge 0$, para todo $n \ge 1$.

Dada uma função *f(n)* definimos formalmente

$$\Theta(f(n)) := \{g(n) : \exists c_1, c_2, m > 0 \text{ t.q.} \}$$

$$c_1 f(n) \le g(n) \le c_2 f(n), \forall n \ge m$$

$$\Theta(f(n)) := \{g(n) : \exists c_1, c_2, m > 0 \text{ t.q.}
c_1 f(n) \le g(n) \le c_2 f(n), \forall n \ge m\}$$

Exemplo:

Mostre que $f(n) = n^2 + 400n$, pertence a $\theta(n^2)$

- Tome $c_1 = 1$ e $m_1 = 1$.
- Temos $n^2 \le n^2 + 400n$, para todo $n \ge 1$.
- Subtraia n² dos dois lados.
- Temos então $0 \le 400n$, para todo $n \ge 1$.

$$\Theta(f(n)) := \{g(n) : \exists c_1, c_2, m > 0 \text{ t.q.}
c_1 f(n) \le g(n) \le c_2 f(n), \forall n \ge m\}$$

Exemplo:

Mostre que $f(n) = n^2 + 400n$, pertence a $\theta(n^2)$

- Tome $c_2 = 2 e m_2 = 400$.
- Temos $n^2 + 400n \le 2n^2$, para todo $n \ge 400$.
- Subtraia n² dos dois lados.
- Temos então $400n \le n^2$, para todo $n \ge 400$.

$$\Theta(f(n)) := \{g(n) : \exists c_1, c_2, m > 0 \text{ t.q.}
c_1 f(n) \le g(n) \le c_2 f(n), \forall n \ge m\}$$

Exemplo:

Mostre que $f(n) = n^2 + 400n$, pertence a $\theta(n^2)$

- Queremos que as duas afirmações valham.
- Então tome $m = max(m_1, m_2)$.
- Concluindo: tome $c_1 = 1$, $c_2 = 2$ e m = 400.
- Temos $n^2 \le n^2 + 400n \le 2n^2$, para todo $n \ge 400$.

 Note que a definição da notação θ soa como se estivéssemos utilizando simultaneamente as notações O e Ω.

Teorema: Sejam f(n) e g(n) funções. Temos que f(n) = $\theta(g(n))$ se e somente se f(n) = O(g(n)) e f(n) = $\Omega(g(n))$.

A ideia por trás deste teorema é intuitiva e é um bom exercício de fixação demonstrá-lo!

- Agora vamos pensar no custo do caso recursivo.
- Existe um custo constante d do produto.
- Se T(n) é o tempo gasto para calcular fatorial de n, então o tempo necessário para calcular fatorial de n-1 é T(n-1).
- Concluindo então o nosso caso recursivo.

Como calcular a ordem de complexidade de uma relação de recorrência?

- Como calcular a ordem de complexidade de uma relação de recorrência?
- A ideia gira em torno de expandir os termos do caso recursivo e concluir algo a respeito disso.

$$T(n) := \begin{cases} c, & \text{se } n \le 0 \\ d + T(n-1), & \text{se } n > 0 \end{cases}$$

- Como calcular a ordem de complexidade de uma relação de recorrência?
- A ideia gira em torno de expandir os termos do caso recursivo e concluir algo a respeito disso.

$$T(n) := \begin{cases} c, & \text{se } n \le 0 \\ d + T(n-1), & \text{se } n > 0 \end{cases}$$

$$T(n) = d + T(n - 1)$$

 $T(n - 1) = d + T(n - 2)$
 $T(n - 2) = d + T(n - 3)$
...
 $T(1) = d + T(0)$

$$T(n) := \begin{cases} c, & \text{se } n <= 0 \\ d + T(n-1), & \text{se } n > 0 \end{cases}$$

$$T(n) = d + T(n - 1)$$

 $T(n - 1) = d + T(n - 2)$
 $T(n - 2) = d + T(n - 3)$
...
 $T(1) = d + T(0)$

$$T(n) = d + d + d + \cdots + d + c$$

$$T(n) = d + T(n - 1)$$

 $T(n - 1) = d + T(n - 2)$
 $T(n - 2) = d + T(n - 3)$
...
 $T(1) = d + T(0)$

$$T(n) = d + d + d + \cdots + d + c$$
 $n \text{ Vezes}$

$$T(n) = d + T(n - 1)$$

 $T(n - 1) = d + T(n - 2)$
 $T(n - 2) = d + T(n - 3)$
...
 $T(1) = d + T(0)$

$$T(n) = d + d + d + \cdots + d + c$$

$$n \text{ Vezes}$$

$$T(n) = dn + c$$

$$T(n) = d + T(n - 1)$$

 $T(n - 1) = d + T(n - 2)$
 $T(n - 2) = d + T(n - 3)$
...
 $T(1) = d + T(0)$

$$T(n) = d + d + d + \cdots + d + c$$

$$n \quad \text{Vezes}$$

$$T(n) = dn + c$$

$$T(n) = O(n)$$

$$T(n) = d + T(n - 1)$$

 $T(n - 1) = d + T(n - 2)$
 $T(n - 2) = d + T(n - 3)$
...
 $T(1) = d + T(0)$

- Note que agora é um pouco mais complicado utilizar o mesmo procedimento que fizemos com fatorial.
- Iremos utilizar uma outra abstração para fazer este cálculo, chamada árvore de recursão.

$$T(n) := \begin{cases} c, & \text{se } n <= 1\\ d + T(\frac{n}{2}), & \text{se } n > 0 \end{cases}$$

 Agora conseguimos finalizar a expansão dos termos da relação de recorrência.

$$T(n) := \begin{cases} c, & \text{se } n <= 1 \\ d + T(\frac{n}{2}), & \text{se } n > 0 \end{cases}$$

$$T(n) = d + d + d + \cdots + d + c$$

$$log n \text{ vezes}$$

$$T(n) = d(logn) + c$$

$$T(n) = O(logn)$$

Estruturas de Dados

Teorema Mestre

Professores: Anisio Lacerda

Lucas Ferreira

Wagner Meira Jr.

Washington Cunha

Divisão e Conquista

- Vimos na última aula que nem sempre é trivial resolver uma relação de recorrência
- Alguns algoritmos exibem comportamentos semelhantes, como por exemplo:
 - Fazer a chamadas recursivas para instâncias de tamanho n/b.
 - faz um processamento de custo f(n) com as respostas obtidas e retorna uma solução.
- . Nesses casos a relação de recorrência será:

$$T(n) = aT\left(\frac{n}{h}\right) + f(n)$$

Teorema Mestre - Intuição

Teorema Mestre - Enunciado

Sejam a≥1 e b>1 constantes, f(n) uma função assintoticamente positiva e T(n) uma relação de recorrência definida da forma:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

Caso 1: Se
$$f(n) = O(n^{\log_b(a-\epsilon)}), \epsilon > 0 \implies T(n) = \Theta(n^{\log_b(a)}).$$

Caso 2: Se
$$f(n) = \Theta(n^{\log_b(a)}) \implies T(n) = \Theta(n^{\log_b(a)}\log(n)).$$

Caso 3: Se
$$\begin{cases} f(n) = \Omega(n^{log_b(a+\epsilon)}), \epsilon > 0 \\ af(n/b) \le cf(n), \forall n \ge m, c < 1 \end{cases} \implies T(n) = \Theta(f(n)).$$

Estruturas de Dados

Ordenação: Introdução

Professores: Anisio Lacerda

Lucas Ferreira

Wagner Meira Jr.

Washington Cunha

Ordenação

- Objetivo:
 - Rearranjar os itens de um vetor ou lista de modo que suas chaves estejam ordenadas de acordo com alguma regra.
- Estrutura:
 - um vetor v vai ser um Item *v ou Item v[max]

```
typedef int TipoChave;
typedef struct {
  ChaveTipo chave;
  /* outros componentes */
} Item;
```


Critérios de Classificação

- Localização dos dados
- Estabilidade
- Adaptabilidade
- Uso da memória
- Movimentação dos dados
- Estratégia de ordenação: Comparação de Chaves x Outros

Métodos de Ordenação

- Métodos simples:
 - Bolha
 - Seleção
 - Inserção
- Métodos eficientes:
 - Quicksort
 - Mergesort
 - Heapsort
- Métodos lineares:
 - Bucketsort
 - Radixsort

Estruturas de Dados

TADs: Listas, Filas, Pilhas

Professores: Anisio Lacerda

Lucas Ferreira

Wagner Meira Jr.

Machinatan Cunha

Módulo 3 - Sumário

- Introdução
 - Tipos Abstratos de Dados
- Listas Lineares
 - Implementação por arranjos (sequencial)
 - Implementação por apontadores (encadeada)
- Filas, Pilhas
 - Implementação por arranjos (sequencial)
 - Implementação por apontadores (encadeada)

Tipos Abstratos de Dados (TADs)

 Construções que agrupam a estrutura de dados juntamente com as operações que podem ser feitas sobre esses dados

- O TAD encapsula a estrutura de dados, fornecendo acesso apenas através de uma "interface" (conjunto de funções públicas)
 - Usuário do TAD só "enxerga" a interface, não a implementação específica

TAD: Pilha

Duas Implementações:

- Sequencial (uso de arranjos, alocação estática)
- Encadeada (uso de apontadores, alocação dinâmica)

Operações:

- Criar uma nova pilha (construtor)
- Testar se a pilha está vazia
- Empilhar um item
- Desempilhar um item
- Limpar a pilha

Disclaimer: os códigos que serão apresentados devem ser considerados como exemplos. Eles não são, necessariamente, os mais modulares ou

eficientes...

TAD: Fila

Duas Implementações:

- Sequencial (uso de arranjos, alocação estática)
- Encadeada (uso de apontadores, alocação dinâmica)

Operações:

- Criar uma nova fila (construtor)
- Testar se a fila está vazia
- Enfileirar um item: colocar um item no final da fila
- Desenfileirar um item: retirar um item do início da fila Disclaimer: os códigos que serão apresentados
- Limpar a fila

Disclaimer: os códigos que serão apresentados devem ser considerados como exemplos. Eles não são, necessariamente, os mais modulares ou

eficientes...

TAD: Lista

Duas Implementações:

- Sequencial (uso de arranjos, alocação estática)
- Encadeada (uso de apontadores, alocação dinâmica)

Operações:

- Criar uma nova lista (construtor)
- Métodos de Acesso (Get, Set)
- Testar se é uma lista vazia
- Inserção: no início, no final, em uma posição p
- Remoção: do início, do final, de uma posição p
- Pesquisar por uma chave
- Imprimir a Lista
- Limpar a Lista

Disclaimer:

os códigos que serão apresentados devem ser considerados como exemplos. Eles não são, necessariamente, os mais modulares ou eficientes.

Estruturas de Dados Árvores

Professores: Anisio Lacerda

Lucas Ferreira

Wagner Meira Jr.

Machinatan Cunha

Conceitos básicos

- Arvores organizam os dados em uma estrutura hierárquica
 - Pais e Filhos
 - Antecessores e Sucessores
- Cada elemento é chamado de **nó**, e nós são ligados por arestas
- O primeiro nó da árvore é a raiz
- Os nós **folha** são aqueles que não possuem "filhos"
- Os outros nós são chamados de nós internos
- **Recursividade**: o filho de um nó é a raiz de uma outra subárvore

Mais Conceitos

Níveis

- A raiz da árvore está no nível 0
- Se um nó está no nível i, os seus filhos estão no nível i+1

Caminho

- É a sequência de nós percorrida entre quaisquer 2 nós
- Em uma árvore, só existe um único caminho entre quaisquer 2 nós
- Tamanho ou Comprimento do caminho é igual ao número de arestas percorridas (que é igual ao número de nós -1)

Altura / Profundidade

- A profundidade de um nó é o comprimento do caminho entre a raiz e aquele nó
- A altura de um nó é o comprimento do caminho mais longo desse nó até uma folha
- Altura da árvore é igual a altura da raiz que é igual à sua maior profundidade

Profundidade do nó 7: 1

Altura do nó 7: 2

Altura da Árvore: 3

Árvores Binárias

Em uma árvore binária, cada nó pode ter no máximo
 2 filhos (subárvores da esquerda e da direita)

Algumas aplicações impõem restrições na organização

desses nós

- Heap
- Árvore Binária de Pesquisa

TAD Árvore Binária

- Implementação usando apontadores
 - Cada nó vai armazenar um item e apontadores para os filhos da esquerda e direita
- Operações Comuns
 - Criar uma árvore
 - Inserir Itens
 - Remover Itens
 - Pesquisar por um item
 - "Percorrer" ou "Caminhar" na árvore
 - Para imprimir todos os itens, por exemplo

Essas operações dependem da organização desejada e serão estudadas com detalhes no contexto dos algoritmos de ordenação e pesquisa

Caminhamento em Árvores

- Pré-ordem (Pré-fixada)
 - Visita o nó e depois os filhos da esquerda e da direita
- In-ordem (Central ou Infixada)
 - Visita o filho da esquerda, o nó, e depois o filho da direita
- Pós-ordem (Pós-fixada)
 - Visita os filhos da esquerda e da direita e depois o nó
- Caminhamento por nível
 - Visita os nodos de cada nível em sequência

Pré-Ordem

 Imprime o item, e depois visita recursivamente as árvores da esquerda e da direita

```
void ArvoreBinaria::PreOrdem(TipoNo *p) {
    if (p!=NULL) {
        p->item.Imprime();
        PreOrdem(p->esq);
        PreOrdem(p->dir);
    }
}
```

5 3 2 1 4 7 6

In-Ordem (ou central)

 Visita recursivamente a árvore da esquerda, imprime o item, e depois visita a subárvore da direita

```
void ArvoreBinaria::InOrdem(TipoNo *p) {
    if (p!=NULL) {
        InOrdem(p->esq);
        p->item.Imprime();
        InOrdem(p->dir);
} 1 2 3 4 5 6 7
```

Pós-Ordem

 visita recursivamente as árvores da esquerda e da direita e depois imprime o item

```
void ArvoreBinaria::PosOrdem(TipoNo *p) {
    if(p!=NULL) {
        PosOrdem(p->esq);
        PosOrdem(p->dir);
        p->item.Imprime();
    }
}
1 2 4 3 6 7 5
```


Exemplo de Caminhamento

- Pré-Ordem: 5, 3, 2, 1, 4, 7, 6
- Central: 1, 2, 3, 4, 5, 6, 7
- Pós-Ordem: 1, 2, 4, 3, 6, 7, 5
- Por nível: 5, 3, 7, 2, 4, 6, 1

