MOVIERATING PREDICTION

By: Manuel Iglesias

Overview

Problem Statement:

 Most movie producers, directors, licensers, and streaming platforms and theaters struggle to know the public rating of a movie prior to its release since it has not been watched yet

Research Goal:

 Develop a system to predict movie ratings that utilizes data storage/cataloging and ETL techniques to identify connections between movies to cater to different user preferences

Users:

- Movie Creators + Licensers who need to know the popularity of the movies to know whether they need to have licensing agreements in place
- Writers/Actors who need to know whether the movie will gain them money or recognition
- **Theaters/Streaming Services** who need to know which movies to stream/show and how much platform/theatre space to allocate to them

Benefits:

- Ability to predict movies before spending money on them
- Increases chances of niche movie ideas to be chosen
- Saves money for Movie creators, Theaters, Actors, etc

Data Statistics

Remaining Missing Values: None

Data Shape BEFORE Cleaning: 722,462 rows x 20 columns = 14,449,240

Data Shape AFTER Cleaning: 6,070 rows x 7 columns = 42,490

Data:

Numeric: Budget, Revenue, Runtime, etc **Text**: Genre, Title, Overview, Production Company

Dropped Columns: 'id', 'original_language', 'release_date', 'status', 'vote_count', 'credits', 'poster_path', 'backdrop_path', 'recommendations'

Key Data: 'Features' column consists of movie titles, genres, overviews, production companies, taglines, and keywords

Unclean Data	1	Clean Data					
id id	0	id	0				
🦰 title	4	title	0				
genres	210488	genres	0				
original_language	0	original_language	0				
overview	118341	overview	0				
nopularity	0	popularity	0				
production_companies	385187	production_companies	0				
release_date	51847	release_date	0				
🗻 budget	0	budget	0				
revenue	0	revenue	0				
runtime	34363	runtime	0				
status	0	status	0				
🧻 tagline	614121	tagline	0				
vote_average	0	vote_average	0				
vote_count	0	vote_count	0				
credits	224853	credits	0				
keywords	511997	keywords	0				
poster_path	184729	poster_path	0				
backdrop_path	499531	backdrop_path	0				
recommendations	687442	recommendations	0				

Data Title: Movies Daily Update Dataset

Data Source: Kaggle - https://www.kaggle.com/datasets/akshaypawar7/millions-of-movies

Dataset Description: 700,000 movies with information on cast, crew, plot keywords, budget, revenue, posters, release dates, languages, production companies, countries, TMDB vote counts, vote averages, reviews, recommendations

Data Size: 350.31 MB

Data Time Period: 4/30/1990 - 2/14/2024

Data Types:

- Strings - (Movie Titles, Genre, Movie Overview), Numeric (budget, revenue, runtime), etc

Data Size: 575,340 unique values

Data Storage - Google Cloud Computing

Used Google Cloud Computing Services:

- Created a new project
- Created VM instance
- Updated firewall settings
- Installed Anaconda
- Set up VM Server
- Created bucket
- Uploaded movies.csv file to bucket
- Opened and performed analysis in Jupyter Notebook

Big Data Engineering (Jupyter)

- Jupyter notebook
 - Access Python packages & load movies.csv file
- Perform ETL to clean/transform and reshape our raw data into a format suitable for analysis
- Handled missing values in the dataset
 - Dropped rows containing missing values
- Transformation:
 - Separating text with commas and turning them into strings when necessary
 - Standardized text, tokenize, removed stop words, apply stemming and lemmatization
 - Normalization of numerical values with sklearn MinMaxScaler

Prediction System

*

- To create the predict_vote column:
 - vote_average ratings from the original data set are categorized into three classes:
 - Bad (≤3)
 - Neutral (>3 and ≤7)
 - Good (>7).
- The categorization is done using the categorize_score function applied to the vote_average column of the dataset.
 - Each movie's rating is evaluated against these thresholds to determine its category.
- For example: a movie with a vote_average of 2.5 is categorized as 0 (Bad), a vote_average of 5.5 is categorized as 1 (Neutral), and a vote_average of 8.0 is categorized as 2 (Good).
- Predict vote totals: 6,070

	title	genres	overview	popularity	production_companies	budget	revenue	runtime	tagline	vote_average	keywords	features	predict_vote
0	Meg 2: The Trench	Action, Science Fiction, Horror	An exploratory dive into the deepest depths of	8763.998	Apelles Entertainment- Warner Bros. Pictures-di	129000000.0	352056482.0	116.0	Back for seconds.	7.079	based on novel or book- sequel-kaiju	meg 2 trench action scienc fiction horror expl	2
1	The Pope's Exorcist	Horror, Mystery, Thriller	Father Gabriele Amorth Chief Exorcist of the V	5953.227	Screen Gems-2.0 Entertainment-Jesus & Mary-Wor	18000000.0	65675816.0	103.0	Inspired by the actual files of Father Gabriel	7.433	spain-rome italy-vatican- pope-pig- possession- c	pope exorcist horror mysteri thriller father g	2
2	Transformers: Rise of the Beasts	Action, Adventure, Science Fiction	When a new threat capable of destroying the en	5409.104	Skydance-Paramount-di Bonaventura Pictures-Bay	200000000.0	407045464.0	127.0	Unite or fall.	7.340	peru-alien- end of the world-based on cartoon- b	transform rise beast action adventur scienc fi	2
3	Dune: Part Two	Science Fiction, Adventure	Follow the mythic journey of Paul Atreides as 	4742.163	Legendary Pictures	190000000.0	683813734.0	167.0	Long live the fighters.	8.300	epic-based on novel or book- fight- sandstorm- sa	dune part two scienc fiction adventur follow m	2
4	Ant-Man and the Wasp: Quantumania	Action, Adventure, Science Fiction	Super-Hero partners Scott Lang and Hope van Dy	4425.387	Marvel Studios-Kevin Feige Productions	200000000.0	475766228.0	125.0	Witness the beginning of a new dynasty.	6.507	hero-ant- sequel- superhero- based on comic-famil	ant man wasp quantumania action adventur scien	1
122516	A Rainy Day in New York	Comedy, Romance	Two young people arrive in New York to spend a	1.577	Gravier Productions- FilmNation Entertainment- P	25000000.0	23800000.0	92.0	Love In Spring.	6.500	new york city	raini day new york comedi romanc two young peo	1
134928	X-Men	Adventure, Action, Science Fiction	Two mutants Rogue and Wolverine come to a priv	1.423	The Donners' Company- Bad Hat Harry Productions	75000000.0	296339527.0	104.0	Trust a few. Fear the rest.	6.992	mutant- superhero- based on comic- superhuman	x men adventur action scienc fiction two mutan	,
	V												

Data Analysis & Insights

Prediction Classes Occurrences:

> **Bad:** 3

• **Neutral: 4299**

o **Good:** 1768

Class Imbalance:

- Too many ratings fall into the "neutral" category and too few are "bad"
- Either the threshold for "bad" is too low or the model is biased towards "neutral"
- The absence of "bad" ratings prevents the model from learning how to accurately predict ratings

Random Forest Analysis & Insights

- The R-squared value of 0.35 indicates that the model explains approximately 35% of the variance in the predict_vote.
- Popularity is the most important feature for predicting predict_vote, with an importance score of 0.9525.
- Budget and revenue have relatively low importance scores, suggesting that they have less impact on the predicted predict_vote values compared to popularity.

Next Steps

Refine Categorization Thresholds

 Instead of manually setting thresholds, use statistical methods like k-means to determine natural breaks in our data distribution to set the cutoffs

Experiment with other Modeling strategies

- Try using neural network algorithms
- Use K-fold cross-validation to ensure that each fold of our training and validation sets respects class distribution

Feature Engineering

 Use NLP techniques to extract features from movie reviews or descriptions (Sentiment analysis, topic modeling, or TF-IDF techniques)

