Diagramas de Decisão Binários (BDDs)

Luiz Carlos Vieira

28 de Setembro de 2015

Instituto de Matemática e Estatística da Universidade de São Paulo

conteúdo

- Representação de Funções Booleanas
 - fórmulas proposicionais e tabelas-verdade
 - diagramas de decisão binários (BDDs)
 - diagramas de decisão binários ordenados (OBDDs)
- Algoritmos para OBDDs Reduzidos
 - algoritmo reduzir
 - algoritmo aplicar
 - algoritmo restringir
 - algoritmo existe

funções booleanas

- Parte fundamental do formalismo descritivo de sistemas de hardware e software
- Que precisa ser computacionalmente representado de forma eficiente

definição: variáveis booleanas

Definição 6.1(a)

Uma variável booleana x é uma variável que só pode assumir os valores 0 e 1. Denotamos variáveis booleanas por x_1, x_2, \ldots , e x, y e z, \ldots .

definição: funções booleanas

Definição 6.1(b)

As seguintes funções são definidas no conjunto $\{0,1\}$:

- $\overline{0}\stackrel{\text{\tiny def}}{=} 1$ e $\overline{1}\stackrel{\text{\tiny def}}{=} 0$;
- $ullet x \cdot y \stackrel{ ext{\tiny def}}{=} 1$ se x e y têm valor 1; caso contrário, $x \cdot y \stackrel{ ext{\tiny def}}{=} 0$;
- $ullet x+y\stackrel{ ext{ iny def}}{=} 0$ se x e y têm valor 0; caso contrário, $x+y\stackrel{ ext{ iny def}}{=} 1$;
- $x \oplus y \stackrel{\scriptscriptstyle ext{def}}{=} 1$ se exatamente um entre x e y é igual a 1; caso contrário, $x \oplus y \stackrel{\scriptscriptstyle ext{def}}{=} 0$.

funções e variáveis booleanas

- Uma função booleana f com n variáveis é uma função de $\{0,1\}^n$ para $\{0,1\}$.
- Escreve-se $f(x_1, x_2, \ldots, x_n)$ ou $f(\mathcal{V})$ para indicar que uma representação sintática de f só depende das variáveis booleanas em \mathcal{V} .

alguns exemplos de funções booleanas

1.
$$f(x,y) \stackrel{\text{\tiny def}}{=} x \cdot (y + \overline{x})$$

2.
$$g(x,y) \stackrel{\text{\tiny def}}{=} x \cdot y + (1 \oplus \overline{x})$$

3.
$$h(x,y,z) \stackrel{\text{\tiny def}}{=} x + y \cdot (x \oplus \overline{y})$$

4.
$$k() \stackrel{\text{\tiny def}}{=} 1 \oplus (0 \cdot \overline{1})$$

wffs e tabelas-verdade

As fórmulas proposicionais bem-formadas (wffs) e as tabelas-verdade são duas representações de funções booleanas

- fórmulas proposicionais:
 - ∧ denota •
 - ∨ denota +
 - ¬ denota ¯
 - e \top e \bot denotam, respectivamente, 1 e 0
- tabelas-verdade: representam funções booleanas de maneira óbvia

tabelas-verdade de funções booleanas

Tabela-verdade da função booleana $f(x,y) \stackrel{ ext{def}}{=} \overline{x+y}$

Tabela-verdade da	tormula
proposicional $\phi \equiv$	$\neg (p \vee q)$

\boldsymbol{x}	\boldsymbol{y}	f(x,y)
1	1	0
0	1	0
1	0	0
0	0	1

$$egin{array}{c|ccc} p & q & \phi \ \hline V & V & F \ F & V & F \ \hline V & F & F \ F & F & V \ \end{array}$$

vantagens e desvantagens

Há vantagens e desvantagens no uso de tabelas-verdade e fórmulas proposicionais para representar funções booleanas

	Tabelas-Verdade	Fórmulas Proposicionais
Vantagens	verificações ¹ simples	representação compacta
Desvantagens	ineficientes em espaço	verificações ¹ não tão simples

Ambas são computacionalmente caras para muitas variáveis

¹satisfação, validade e equivalência

também nas operações booleanas

As operações booleanas $(\cdot, +, \oplus e^-)$ entre duas funções f e g também são simples:

- Com tabelas-verdade
 - operação diretamente aplicada a cada linha
 - acrescentando variáveis inexistentes, se necessário
- Com fórmulas proposicionais
 - manipulação sintática da Lógica Proposicional

Computacionalmente caro com tabelas-verdade (2^n linhas) e imediata com fórmulas proposicionais (por exemplo, $f\cdot g$ e $f\oplus g$ são respectivamente $\phi\wedge\psi$ e $(\phi\wedge\neg\psi)\vee(\neg\phi\wedge\psi)$)

utilizando formas normais

- A representação de fórmulas proposicionais em formas normais é facilitada em alguns aspectos
 - mas é dificultada em outros
- De forma geral, elas podem ser muito longas no pior caso

forma normal conjuntiva (CNF)

- Facilità o teste de validade
 - cláusula disjuntiva sem preposições complementares
 - teste de satisfação não é semelhante
- Facilita a operação de conjunção (∧)
 - se ϕ e ψ são CNFs, o resultado de $\phi \wedge \psi$ é CNF
- Dificulta as demais operações (∨ e ¬)
 - aplicação de distributividade para manter CNF

A forma normal disjuntiva (DNF) – disjunção de conjunções – é dual com a CNF em relação a essas propriedades

resumo da eficiência das representações

D		teste de		operações booleanas		
Representação de funções booleanas	compacta?	satisfação	validade	•	+	-
fórmulas proposicionais	muitas vezes	difícil	difícil	fácil	fácil	fácil
fórmulas CNF	algumas vezes	difícil	fácil	fácil	difícil	difícil
fórmulas NDF	algumas vezes	fácil	difícil	difícil	fácil	difícil
tabelas-verdade ordenadas	nunca	difícil	difícil	difícil	difícil	difícil
OBDDs ² reduzidos	muitas vezes	fácil	fácil	mais ou menos	mais ou menos	fácil

²Diagramas de Decisão Binários Ordenados – que serão explorados a seguir

definição: árvore de decisão binária finita

Definição 6.3

Seja T uma árvore de decisão binária finita. Então T determina uma única função booleana das variáveis nos nós não-terminais da seguinte maneira:

Dada uma atribuição de 0's e 1's às variáveis booleanas que ocorrem em T, começamos pela raiz de T e pegamos a linha tracejada sempre que o valor da variável no nó atual é 0; caso contrário, percorremos a linha sólida. O valor da função é o valor do nó terminal atingido.

ullet Árvore da função: $f(x,y) \stackrel{ ext{ iny def}}{=} \overline{x+y}$

- ullet Árvore da função: $f(x,y) \stackrel{ ext{ iny def}}{=} \overline{x+y}$
- Para encontrar f(0,1):

- ullet Árvore da função: $f(x,y) \stackrel{ ext{ iny def}}{=} \overline{x+y}$
- Para encontrar f(0,1):
 - 1. inicia-se pela raiz

- Árvore da função: $f(x,y) \stackrel{\text{\tiny def}}{=} \overline{x+y}$
- Para encontrar f(0,1):
 - 1. inicia-se pela raiz
 - 2. como $x \in 0$, segue-se pela linha pontilhada

- Árvore da função: $f(x,y) \stackrel{\text{\tiny def}}{=} \overline{x+y}$
- Para encontrar f(0,1):
 - 1. inicia-se pela raiz
 - 2. como $x \in 0$, segue-se pela linha pontilhada
 - 3. como y é 1, segue-se pela linha sólida

• Árvore da função: $f(x,y) \stackrel{\scriptscriptstyle ext{def}}{=} \overline{x+y}$

- Para encontrar f(0,1):
 - 1. inicia-se pela raiz
 - 2. como $x \in 0$, segue-se pela linha pontilhada
 - 3. como y é 1, segue-se pela linha sólida
 - 4. chega-se à folha 0; logo f(0,1)=0

comparando com a tabela-verdade

Para a função booleana $f(x,y)\stackrel{ ext{ iny def}}{=} \overline{x+y}$:

equivalente à fórmula proposicional $\phi \equiv \neg (p \lor q)$

\boldsymbol{x}	\boldsymbol{y}	f(x,y)
0	0	1
0	1	0
1	0	0
1	1	0

outro exemplo comparativo

Para a função booleana $f(x,y,z) \stackrel{\scriptscriptstyle \mathsf{def}}{=} \overline{x} + (y \cdot z)$:

equivalente à fórmula proposicional $\phi \equiv p
ightarrow (q \wedge r)$

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\int f(x,y,z)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1
			1

18/57

semelhanças com tabelas-verdade

- Árvores de Decisão Binárias são semelhantes às tabelas-verdade em relação ao tamanho
 - se f depender de n variáveis booleanas, a árvore correspondente terá pelo menos $2^{n+1}-1$ nós (contra as 2^n linhas da tabela verdade)
- Mas muitas vezes elas contêm redundâncias que podem ser exploradas

primeira simplificação

C1. Remoção de terminais duplicados

Se há mais de um nó terminal 0, todas as arestas que apontam para tais nós são redirecionadas para apenas um deles. O processo é então repetido para os nós terminais 1

primeira simplificação

C1. Remoção de terminais duplicados

Se há mais de um nó terminal 0, todas as arestas que apontam para tais nós são redirecionadas para apenas um deles. O processo é então repetido para os nós terminais 1

primeira simplificação

C1. Remoção de terminais duplicados

Se há mais de um nó terminal 0, todas as arestas que apontam para tais nós são redirecionadas para apenas um deles. O processo é então repetido para os nós terminais 1

segunda simplificação

C2. Remoção de testes redundantes

Se ambas as arestas de um nó n apontam para o mesmo nó m, o nó n é eliminado e todas as arestas que nele chegavam são redirecionadas diretamente para o nó m.

segunda simplificação

C2. Remoção de testes redundantes

Se ambas as arestas de um nó n apontam para o mesmo nó m, o nó n é eliminado e todas as arestas que nele chegavam são redirecionadas diretamente para o nó m.

segunda simplificação

C2. Remoção de testes redundantes

Se ambas as arestas de um nó n apontam para o mesmo nó m, o nó n é eliminado e todas as arestas que nele chegavam são redirecionadas diretamente para o nó m.

terceira simplificação

C3. Remoção de nós não-terminais duplicados

Se dois nós distintos n e m são raízes de subárvores idênticas, um dos nós é eliminado e todas as arestas que nele chegavam são redirecionadas para o outro

terceira simplificação

C3. Remoção de nós não-terminais duplicados

Se dois nós distintos n e m são raízes de subárvores idênticas, um dos nós é eliminado e todas as arestas que nele chegavam são redirecionadas para o outro

terceira simplificação

C3. Remoção de nós não-terminais duplicados

Se dois nós distintos n e m são raízes de subárvores idênticas, um dos nós é eliminado e todas as arestas que nele chegavam são redirecionadas para o outro

processo de redução

As simplificações são encadeadas até não mais ser possível. O exemplo anterior é completamente reduzido após a eliminação de um dos nós y duplicados (C3) seguida da eliminação de um ponto de decisão x redundante (C2)

processo de redução

As simplificações são encadeadas até não mais ser possível. O exemplo anterior é completamente reduzido após a eliminação de um dos nós y duplicados (C3) seguida da eliminação de um ponto de decisão x redundante (C2)

processo de redução

As simplificações são encadeadas até não mais ser possível. O exemplo anterior é completamente reduzido após a eliminação de um dos nós y duplicados (C3) seguida da eliminação de um ponto de decisão x redundante (C2)

processo de redução

As simplificações são encadeadas até não mais ser possível. O exemplo anterior é completamente reduzido após a eliminação de um dos nós y duplicados (C3) seguida da eliminação de um ponto de decisão x redundante (C2)

exercício 1

Reduza a árvore de decisão binária da função

$$f(x,y,z)\stackrel{ ext{ iny def}}{=} \overline{x} + (y\cdot z)$$
 apresentada anteriormente:

Resumo das simplificações:

- C1. Remoção de nós terminais duplicados
- C2. Remoção de testes redundantes
- C3. Remoção de nós não-terminais duplicados

solução – 1º passo

solução – 2º passo

solução – 3º passo

comparando com a tabela-verdade

Função booleana: $f(x,y,z)\stackrel{ ext{ iny def}}{=} \overline{x} + (y\cdot z)$:

\boldsymbol{x}	$oldsymbol{y}$	\boldsymbol{z}	$\mid f(x,y,z)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

BDDs

A redução faz com que as árvores se tornem grafos. Por isso, passam a ser chamados de Diagramas de Decisão Binários (BDDs).

definição: gda

Definição 6.4

Um grafo direcionado é um conjunto G e uma relação binária \rightarrow em $G: \rightarrow \subset G \times G$. Um ciclo em um grafo direcionado é um caminho finito no grafo que começa e termina no mesmo nó, isto é, um caminho da forma $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_n \rightarrow v_1$. Um grafo direcionado acíclico (gda) é um grafo direcionado que não contém nenhum ciclo. Um nó em um gda é dito inicial se não há arestas apontando para ele. Um nó é dito terminal se não há arestas saindo dele.

definição: BDDs

Definição 6.5

Um diagrama de decisão binário (BDD) é um gda finito com um único nó inicial, onde todos os nós terminais são marcados com 0 ou 1 e todos os nós não-terminais são marcados com uma variável booleana. Cada nó não-terminal tem exatamente duas arestas saindo dele, uma marcada com 0 e outra com 1 (representadas como uma linha pontilhada e uma linha sólida, respectivamente).

BDD como gda

- Por convenção, as linhas sólidas ou pontilhadas de um BDD são sempre consideradas como indo para baixo
 - por isso eles são grafos direcionados
- Os BDDs são acíclicos (gda) e têm um único nó inicial
- As simplificações C1–C3 preservam essas propriedades
 - BDDs totalmente reduzidos têm 1 ou 2 nós terminais

BDDs elementares

O BDD B_0 representa a função booleana constante 0; analogamente, o BDD B_1 representa a função booleana constante 1; e, finalmente, o BDD B_x representa a variável booleana x

verificações sobre BDDs

- Satisfação. Um BDD representa uma função que pode ser satisfeita se um nó terminal 1 pode ser acessado da raiz por meio de um caminho consistente
- Validade. Um BDD representa uma função válida se nenhum ponto terminal 0 é acessível por um caminho consistente

exemplos óbvios

$$f(x,y)\stackrel{ ext{ iny def}}{=} x\cdot y \qquad g(x)\stackrel{ ext{ iny def}}{=} x+\overline{x}$$

$$g(x)\stackrel{ ext{ iny def}}{=} x+\overline{x}$$

$$h(y) \stackrel{ ext{ iny def}}{=} y \cdot \overline{y}$$

operações sobre BDDs

- Operação de negação ($\bar{}$). Obtem-se um BDD que representa \bar{f} substituindo todos os terminais 0 em B_f por terminais 1 e vice-versa
- Operação de conjunção (·). Obtem-se um BDD que representa $f\cdot g$ substituindo todos os nós terminais 1 em B_f diretamente por uma cópia de B_g
- Operação de disjunção (+). Obtem-se um BDD que representa f+g substituindo todos os nós terminais 0 em B_f diretamente por uma cópia de B_g

exemplo da negação

exemplo da conjunção

$$f(x,y) \stackrel{\scriptscriptstyle\mathsf{def}}{=} x \cdot y$$

$$g(x,y)\stackrel{ ext{ iny def}}{=} \overline{x}+y$$

exemplo da disjunção

$$f(x,y)\stackrel{ ext{ iny def}}{=} x\cdot y$$

$$g(x,y)\stackrel{\scriptscriptstyle\mathsf{def}}{=} \overline{x}+y$$

$$h(x,y) \stackrel{\text{\tiny def}}{=} (x \cdot y) + (\overline{x} + y)$$

forma "inocente" de construir BDDs

- 1. Para cada variável booleana em uma função, um BDD de variável (B_{x_i}) é criado
- 2. Tais BDDs são então unidos conforme as operações booleanas constantes na função
- Por fim, o BDD resultante é reduzido com as simplificações C1-C3

Passo 1: criação de $oldsymbol{B}_{x_i}$

Passo 2a: união dos BDDs conforme as operações

Passo 2b: união dos BDDs conforme as operações

Passo 3a: redução do BDD gerado

Passo 3b: redução do BDD gerado

Passo 3c: redução do BDD gerado

comparação com a tabela-verdade

$$f(x,y) \stackrel{ ext{ iny def}}{=} (x \cdot \overline{y}) + (\overline{x} \cdot y)$$

\boldsymbol{x}	\boldsymbol{y}	$\int f(x,y)$
0	0	0
0	1	1
1	0	1
1	1	0
		•

múltiplas ocorrências de mesma variável

- A definição não impede uma variável de ocorrer mais de uma vez em um caminho
- Mas tal representação pode incorrer em desperdícios
 - linha sólida do $oldsymbol{x}$ à esquerda (colorida) jamais será percorrida

Comum após as operações de conjunção e disjunção discutidas anteriormente (algoritmos melhores serão discutidos à frente)

comparação de BDDs

Além de tornar um BDD ineficiente, ocorrências múltiplas de uma variável também dificultam a comparação de BDDs

BDDs ordenados

- Quando a ordem das variáveis de teste nos caminhos que levam da raiz até uma folha é sempre a mesma, o BDD é dito ordenado
 - e passa a ser chamado Diagrama de Busca Binária Ordenado (OBDD)
- Esse compromisso com a ordem dá uma representação única de funções booleanas com OBDDs

teorema: obdds reduzidos são únicos

Teorema 6.7

A representação em OBDD reduzido de uma função dada f é unica. Isto é, sejam B e B' dois OBDDs reduzidos com ordens compatíveis. Se B e B' representam a mesma função booleana, então eles têm estruturas idênticas.

características de OBDDs

- As simplificações C1-C3 em um OBDD produzem sempre o mesmo OBDD reduzido
 - chamado então de forma canônica
- ODDBs permitem representações compactas de certas classes de funções booleanas
 - que seriam exponenciais em outros formatos/representações
- Por outro lado, as operações · e + apresentadas anteriormente não funcionam
 - pois podem introduzir ocorrÊncias múltiplas de uma mesma variável

importância da representação canônica

- Ausência de variáveis redundantes. Se o valor de uma função booleana não depende de uma variável, então nenhum ODDB reduzido que a represente contém tal variável:
- Teste de equivalência semântica. Se duas funções são representadas por ODDBs com ordem compatível, é possível decidir eficientemente se são equivalentes reduzindo seus ODDBs e comparando sua estrutura;
- Teste de validade. Se uma função booleana é válida, seu ODDB reduzido é igual a B₁;
- Teste de implicação. Pode-se testar se uma função f implica em outra g calculando o ODDB para $f \cdot g$ e verificando que ele é igual a B_0 ;
- Teste de satisfação. Se uma função booleana é satisfeita, então seu ODDB reduzido não é igual a ${m B}_0.$

algoritmo reduzir

algoritmo aplicar

algoritmo restringir

algoritmo existe