B. Cosmic Tables

time limit per test: 3 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

The Free Meteor Association (FMA) has got a problem: as meteors are moving, the Universal Cosmic Descriptive Humorous Program (UCDHP) needs to add a special module that would analyze this movement.

UCDHP stores some secret information about meteors as an $n \times m$ table with integers in its cells. The order of meteors in the Universe is changing. That's why the main UCDHP module receives the following queries:

- The guery to swap two table rows;
- · The query to swap two table columns;
- The query to obtain a secret number in a particular table cell.

As the main UCDHP module is critical, writing the functional of working with the table has been commissioned to you.

Input

The first line contains three space-separated integers n, m and k ($1 \le n$, $m \le 1000$, $1 \le k \le 500000$) — the number of table columns and rows and the number of queries, correspondingly.

Next n lines contain m space-separated numbers each — the initial state of the table. Each number p in the table is an integer and satisfies the inequality $0 \le p \le 10^6$.

Next k lines contain queries in the format " $s_i x_i y_i$ ", where s_i is one of the characters "c", "r" or "g", and x_i, y_i are two integers.

- If s_i = "c", then the current query is the query to swap columns with indexes x_i and y_i ($1 \le x, y \le m, x \ne y$);
- If s_i = "r", then the current query is the query to swap rows with indexes x_i and y_i ($1 \le x, y \le n, x \ne y$);
- If s_i = "g", then the current query is the query to obtain the number that located in the x_i -th row and in the y_i -th column ($1 \le x \le n$, $1 \le y \le m$).

The table rows are considered to be indexed from top to bottom from 1 to n, and the table columns — from left to right from 1 to m.

Output

For each query to obtain a number (s_i = "g") print the required number. Print the answers to the queries in the order of the queries in the input.

Examples

8 9 6

input			
3 3 5			
1 2 3			
4 5 6			
7 8 9			
g 3 2			
r 3 2			
c 2 3			
g 2 2			
g 3 2			
output			

input	
2 3 3	
1 2 4	
3 1 5	
3 1 5 c 2 1	
r 1 2	
g 1 3	
output	
5	

Note

Let's see how the table changes in the second test case.

After the first operation is fulfilled, the table looks like that:

214

135

After the second operation is fulfilled, the table looks like that:

135

214

So the answer to the third query (the number located in the first row and in the third column) will be 5.