GRZEGORZ KARCH

Zadanie 1. (Twierdzenie Arzeli-Ascolego)

Rozważamy p. Banacha C([a,b]), gdzie $-\infty < a < b < \infty$, ze zwykłą normą supremum. Załóżmy, że $M \subset X$ spełnia następujące warunki:

- 1. zbiór M jest ograniczony, tzn. $\exists r > 0 \ \forall u \in M \ \|u\| \leqslant r$,
- 2. zbiór M jest jednakowo ciągły, tzn.

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in [a, b] \ \forall u \in M \quad |x - y| < \delta \Rightarrow |u(x) - u(y)| < \varepsilon$$
.

Udowodnij, że M jest warunkowo zwartym podzbiorem X.

Zadanie 2. Rozważamy p. Banacha:

- C([a,b]) z normą $\|u\|_0 = \sup_{x \in [a,b]} |u(x)|$,
- $C^1([a,b])$ z normą $||u||_1 = \sup_{x \in [a,b]} |u(x)| + \sup_{x \in [a,b]} |u'(x)|$.

Udowodnij, że operator włożenia Id : $C^1([a,b]) \mapsto C([a,b])$ jest operatorem zwartym.

Zadanie 3. Dla ustalonego $\alpha \in [0,1)$ definiujemy przestrzeń Höldera

$$C^{\alpha}([0,1]) = \left\{ u \in C([0,1]) : [u]_{\alpha} := \sup_{x,y \in [0,1]} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} < \infty \right\}$$

z normą

$$||u||_{\alpha} = ||u||_{\infty} + [u]_{\alpha}$$
.

Udowodnij, że $C^{\alpha}([0,1])$ jest p. Banacha, oraz że dla dowolnych $0 \le \alpha < \beta < 1$ zachodzi włożenie Id : $C^{\beta}([0,1]) \mapsto C^{\alpha}([0,1])$, będące operatorem zwartym.

Zadanie 4. Niech K będzie zwartym podzbiorem \mathbb{R}^d . Dla $u \in C(K)$ półnormę $[u]_{\alpha}$ definujemy jak w poprzednim zadaniu.

Udowodnij, że dla $\alpha > 1$ jeżeli $[u]_{\alpha} < \infty$ to u jest stała na składowych spójności K.

Zadanie 5. (Twierdzenie Peano)

Niech f=f(t,y) będzie funkcją ciągłą, $\delta>0$ oraz $y_0\in\mathbb{R}$. Załóżmy, że $y_0(t)$ jest funkcją ciągłą taką, że $y_0(0)=y_0$ oraz $y_0'(0)=f(0,y_0)$. Dla każdego $\varepsilon\in(0,\delta)$ definiujemy funkcję:

$$y_{\varepsilon}(t) = \begin{cases} y_0(t) & -\delta \leqslant t \leqslant 0\\ y_0 + \int_0^t f(s, y_{\varepsilon}(s - \varepsilon)) \, \mathrm{d}s & 0 \leqslant t \leqslant \alpha \end{cases}$$

dla pewnego $\alpha > 0$.

Istnieje wtedy $\alpha>0$ takie, że zbiór $\{y_{\varepsilon}\}_{{\varepsilon}\in(0,\delta)}$ jest warunkowo zwarty w $C([0,\alpha])$ oraz każdy podciąg zbiega do rozwiązania zagadnienia

$$y' = f(t, y), \quad y(0) = y_0.$$

Zadanie 6. Niech $f: \mathbb{R}^n \to \mathbb{R}^n$ będzie ciągłym polem wektorowym. Załóżmy, że istnieje R > 0 takie, że dla |x| = R zachodzi $\langle f(x), x \rangle \geqslant 0$.

Udowodnij, że istnieje x_0 spełniający $||x_0|| \le R$ taki, że $f(x_0) = 0$.

WSKAZÓWKA: Założyć, że $f(x) \neq 0$ w kuli B(0,R). Pokazać, że $g(x) = -\frac{Rf(x)}{\|f(x)\|}$ ma punkt stały x_0 spełniający $\|x_0\| = R$.

Zadanie 7. Niech A będzie operatorem liniowym na p. Banacha X, przekształacającym zbiory ograniczone na zbiory warunkowo zwarte. Udowodnij, że A jest ciągły.

Zadanie 8. Niech A będzie operatorem liniowym zwartym na p. Banacha X. Udowodnij, że zbiór wektorów własnych, odpowiadających wartości własnej $\lambda \in \mathbb{R}$, tworzy przestrzeń linową skończenie wymiarową.

Zadanie 9. Niech A, B będą ciągłymi operatorami liniowymi na p. Banacha X. Udowodnij, że jeżeli co najmniej jeden z operatorów A, B jest operatorem zwartym, to operatory AB i BA są operatorami zwartymi.

Zadanie 10. (Twierdzenie Sheffera)

Niech A_{λ} będzie rodziną zwartych operatorów nieliniowych na p. Banacha X, zależnych w sposób ciągły od parametru $0 \le \lambda \le 1$ (w silnej topologii operatorowej). Załóżmy, że:

- 1. istnieje $0< a<\infty$ takie, że dla każdego rozwiązania x_λ równania $x=A_\lambda(x)$ zachodzi oszacowanie $\|x_\lambda\|\leqslant a$,
- 2. istnieje b > a takie, że $||A_0(x)|| \le b$ dla ||x|| = b.

Wtedy operator A_1 ma punkt stały w kuli aB_X .

WSKAZÓWKA: Rozważyć operator

$$B(x) = \begin{cases} A_1(x) & ||x|| \le a \\ A_{\frac{b-||x||}{b-a}}(x) & a \le ||x|| \le b \\ A_0(x) & ||x|| \ge b \end{cases}$$

i skorzystać z twierdzenia Schaudera.