Лабораторная работа №1.1.4 Измерение интенсивности радиационного фона

Мыздриков Иван Витаольевич 3.10.2024

1 Введение

Цель работы:

• Применить методы обработки экспериментальных данных для изучения статистических закономерностей при измерении интенсивности радиационного фона

В работе используются:

- счетчик Гейгера-Мюллера
- блок питания
- компьютер с интерфейсом связи со счетчиком

2 Ход работы

Проведем измерение используя интерфейс компьютера. Приведем данные в таблицу и начнем обработку. Разбивая данные для 20с по парам и просуммировав пары получим данные для 40с.

Проверим связь $\sigma_{\text{отд}} \approx \sqrt{\bar{n}}$. Индекс 1 для 10с, 2 для 40с

$$n_{\text{общ}} = \sum n_i = 5403$$

$$\bar{n}_1 = \frac{n_{\text{общ}}}{N_1} = 13.50$$

$$\bar{n}_2 = \frac{n_{\text{общ}}}{N_2} = 54.03$$

$$\sigma_1 = \sqrt{\frac{1}{N_1} \sum_{i=1}^{N_1} (n_i - \bar{n}_i)^2} \approx 3.67$$

$$\sigma_2 = \sqrt{\frac{1}{N_2} \sum_{i=1}^{N_2} (n_i - \bar{n}_i)^2} \approx 6.83$$

$$\sqrt{\bar{n}_1} = 3.67 \approx 3.67 = \sigma_1$$

 $\sqrt{\bar{n}_2} = 7.34 \approx 6.83 = \sigma_2$

Как видим связь между среднеквадратическим отклонением и среднем значении есть ($\sigma \approx \sqrt{\bar{n}}$). Теперь определим долю случаев в пределах $\pm \sigma$ и $\pm 2\sigma$.

t = 10c										
Предел	Число случаев	Доля случаев	Теоретическая оценка							
$\pm \sigma_1 = \pm 3.7$	291	70%	68%							
$\pm 2\sigma_1 = \pm 7.6$	385	96%	95%							

t = 10c										
Предел	Число случаев	Доля случаев	Теоретическая оценка							
$\pm \sigma_2 = \pm 6.8$	66	66%	68%							
$\pm 2\sigma_2 = \pm 13.6$	97	97%	95%							

Таблица 1: Количество измерении за пределами $\pm \sigma$ и $\pm 2\sigma$

Как видим наши данные с довольно хорошей точностью соответствуют теории. Как видно из графика относительный разброс данных за 40с меньше чем за 10с. Подсчитаем какая разница между этими 2мя случаями.

$$\frac{\sigma_1}{\bar{n}_1} \approx 28\%, \frac{\sigma_2}{\bar{n}_2} \approx 12\%$$

Как видим разница почти в 2 раза, что и следует от того факта что $\sigma \approx \sqrt{\bar{n}}$.

Для финалбного ответа подсчитаем ошибки средних величин. По теории

$$\begin{split} \sigma_{\bar{n}_1} &= \frac{\sigma_1}{\sqrt{N_1}} \approx 0.18, \sigma_{\bar{n}_2} \approx 0.68 \\ \varepsilon_{\bar{n}_1} &= \frac{\sigma_{\bar{n}_1}}{\bar{n}_1} \approx 1.3\%, \varepsilon_{\bar{n}_2} \approx 1.3\% \end{split}$$

Получаем финальный результат

$$n_{t=10c} = 13.5 \pm 0.18$$

$$n_{t=40c} = 54.05 \pm 0.68$$

№ опыта	1	2	3	4	5	6	7	8	9	10
0	28	24	26	30	31	27	29	23	22	29
1	23	31	36	28	22	21	20	18	17	28
2	27	45	31	22	18	27	26	30	31	28
3	24	20	21	26	24	26	27	29	27	19
4	28	22	38	25	30	25	26	26	35	37
5	31	32	22	24	23	32	27	33	25	25
6	25	22	26	28	34	18	30	24	33	24
7	30	28	24	26	29	25	31	27	33	21
8	31	26	24	23	34	26	30	33	17	31
9	23	21	25	29	31	28	26	21	27	35
10	23	30	30	20	40	15	19	34	24	22
11	38	29	35	26	27	24	40	27	27	39
12	30	25	23	33	27	21	24	30	35	33
13	25	28	22	26	32	23	34	32	22	27
14	35	31	36	33	29	22	30	31	19	19
15	26	25	20	26	30	19	26	23	31	25
16	21	30	23	25	28	17	29	26	26	36
17	20	28	36	24	36	21	23	23	26	19
18	21	27	26	26	30	37	33	26	25	25
19	30	25	23	22	26	30	26	35	23	27

Таблица 2: Число срабатывании счетчика за 20с

Число импульсов	5	6	7	8	9	10	11
Число случаев	3	3	9	16	26	27	45
Доля случаев	0.0075	0.0075	0.0225	0.04	0.065	0.0675	0.1125
Число импульсов	12	13	14	15	16	17	18
Число случаев	41	35	36	41	37	29	15
Доля случаев	0.1025	0.0875	0.09	0.1025	0.0925	0.0725	0.0375
Число импульсов	19	20	21	22	23	24	26
Число случаев	10	14	6	3	1	2	1
Доля случаев	0.025	0.035	0.015	0.0075	0.0025	0.005	0.0025

Таблица 3: Данные для построения гистограммы для 10с

№ опыта	1	2	3	4	5	6	7	8	9	10
0	51	51	59	55	54	61	55	61	41	51
10	55	65	54	50	47	59	53	56	58	52
20	62	52	60	50	49	65	45	56	59	49
30	58	48	49	54	52	46	59	59	49	48
40	53	42	53	63	65	67	59	59	64	56
50	48	53	57	43	54	39	44	41	38	67
60	49	53	53	61	56	59	58	56	52	59
70	41	59	59	51	54	61	62	54	49	61
80	39	58	60	66	44	51	57	50	52	48
90	57	47	62	45	66	61	60	44	55	52

Таблица 4: Число срабатывании счетчика за 40с

Число импульсов	38.0	39.0	41.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0
Число случаев	1.0	2.0	3.0	1.0	1.0	3.0	2.0	1.0	2.0	4.0
Доля случаев	0.01	0.02	0.03	0.01	0.01	0.03	0.02	0.01	0.02	0.04
Число импульсов	49.0	50.0	51.0	52.0	53.0	54.0	55.0	56.0	57.0	58
Число случаев	6.0	3.0	5.0	6.0	6.0	6.0	4.0	5.0	3.0	4.0
Доля случаев	0.06	0.03	0.05	0.06	0.06	0.06	0.04	0.05	0.03	0.04
Число импульсов	59.0	60.0	61.0	62.0	63.0	64.0	65.0	66.0	67.0	
Число случаев	11.0	3.0	6.0	3.0	1.0	1.0	3.0	2.0	2.0	
Доля случаев	0.11	0.03	0.06	0.03	0.01	0.01	0.03	0.02	0.02	

Таблица 5: Данные для построения гистограммы для 40с

Рис. 1: Гистограммы для $t=10\mathrm{c}$ и $t=40\mathrm{c}$