Practical 11: Trapezoidal Rule

1

1.1

Basic Trapezoidal Rule

Figure 1:

Therefore, the closed Newton-Cotes quadrature formula corresponding to n=1 is

$$I(f) \approx I_{1,\text{closed}}(f) = \frac{\Delta x}{2} [f(a) + f(b)] = \frac{b-a}{2} [f(a) + f(b)].$$

Geometrically, this quadrature rule approximates the value of the definite integral as the area of a trapezoid (see Figure 6.8); hence, this rule is known as the trapezoidal

1.2

Figure 2:

- 1. Approximate the value of each of the following integrals using the trapezoidal rule. Verify that the theoretical error bound holds in each case.

 - (a) $\int_{1}^{2} \frac{1}{x} dx$ (b) $\int_{0}^{1} e^{-x} dx$ (c) $\int_{0}^{1} \frac{1}{1+x^{2}} dx$ (d) $\int_{0}^{1} \tan^{-1} x dx$

```
kill(all);
(%i1)
(%00) done
(\%i1) T(q, a, b):=block
          define(f(x), g),
          return(((b-a)/2)\cdot(f(a)+f(b)))
       );
(\%01) T(q,a,b):=
       block define (f(x),g), return \left(\frac{b-a}{2} (f(a)+f(b)))
```

pll_trapezoid.wxmx 2 / 7

```
(%i2) ratprint:false;
(%o2) false
(%i8) f1(x):=1/x;
      a:1.0;
      b:2.0;
      t:T(f1(x), a, b);
      v:integrate(f1(x), x, a, b);
      e:abs(v-t);
(%03) f1(x):=\frac{1}{x}
(\%04) 1.0
(%05) 2.0
(%06) 0.75
(%07) 0.6931471805599453
(%08) 0.05685281944005471
 1.5
(\%i14) f1(x) := exp(-x);
      a:0.0;
      b:1.0;
      t:T(f1(x), a, b);
      v:integrate(f1(x), x, a, b);
      e:abs(v-t);
(\%09) f1(x):=exp(-x)
(%010) 0.0
(%o11) 1.0
(%012) 0.6839397205857212
       17854706
      28245729
(%014) 0.05181916175716339
```

pll_trapezoid.wxmx 3 / 7

```
(\%i20) f1(x) := 1/(1+x^2);
      a:0.0;
      b:1.0;
      t:T(f1(x), a, b);
      v:integrate(f1(x), x, a, b);
      e:abs(v-t);
(%o15) f1 (x):=
               1 + x
(%o16) 0.0
(%o17) 1.0
(%o18) 0.75
(%019) 0.7853981633974483
(%020) 0.03539816339744828
 1.7
(\%i26) f1(x) := atan(x);
      a:0.0;
      b:1.0;
      t:T(f1(x), a, b);
      v:integrate(f1(x), x, a, b);
      e:abs(v-t);
(%021) f1(x):=atan(x)
(%022) 0.0
(%023) 1.0
(%024) 0.3926990816987241
(%025) 0.4388245731174756
(%026) 0.04612549141875149
```

1.8

Exercise

Do the above for the following

Figure 3:

6.
$$\int_{1}^{2} \frac{1}{x} dx$$
7. $\int_{0}^{1} e^{-x} dx$
8. $\int_{0}^{1} \tan^{-1} x dx$
9. $\int_{1}^{2} \frac{\sin x}{x} dx$
10. $\int_{0}^{1} \frac{1}{\sqrt{1+x^{4}}} dx$

2

2.1

Composite Trapezoidal Rule

Figure 4:

If the integration interval [a, b] is split into n subintervals by defining h = (b-a)/n and $x_j = a + jh$, $0 \le j \le n$, and then the trapezoidal rule formula is applied on each subinterval $[x_{j-1}, x_j]$, we obtain

$$I(f) = \sum_{j=1}^{n} \int_{x_{j-1}}^{x_{j}} f(x) dx$$

$$= \sum_{j=1}^{n} \frac{x_{j} - x_{j-1}}{2} \left[f(x_{j-1}) + f(x_{j}) \right] - \sum_{j=1}^{n} \frac{(x_{j} - x_{j-1})^{3}}{12} f''(\xi_{j})$$

$$= \underbrace{\frac{h}{2} \left[f(x_{0}) + 2 \sum_{j=1}^{n-1} f(x_{j}) + f(x_{n}) \right]}_{\text{composite trapezoidal rule}} - \underbrace{\frac{h^{3}}{12} \sum_{j=1}^{n} f''(\xi_{j})}_{\text{error}}$$

where, for each j, $x_{j-1} < \xi_j < x_j$.

pll_trapezoid.wxmx 5 / 7

Figure 5:/home/jvr/Downloads/na_29_june_22/myTest/p11_trap_qn.png

```
Consider the integral I(f) = \int_0^\pi \sin x \ dx,
```

```
(\%i28) Tc(sin(x), 0, %pi, 2);
(%028) 1.570796326794896
(\%i29) num:makelist(2^i, j, 0, 0)
                                 7);
(%o29) [1,2,4,8,16,32,64,128]
(%i30) for k in num do block(
        temp:Tc(sin(x), 0, %pi, k),
        print(k, " ", temp)
        );
      1
             0.0
      2
             1.570796326794896
      4
             1.896118897937039
      8
            1.97423160194555
      16
              1.993570343772338
      32
              1.998393360970144
              1.999598388640037
      64
      128
               1.999899600184203
(%o30) done
      check
```

pll_trapezoid.wxmx 6 / 7

Figure 6:

n	h	$T_h(f)$	$e_h = I(f) - T_h(f) $	e_{2h}/e_h
1	π	0.0000000	2.0000000	2.07
2	$\frac{\pi}{2}$	1.5707963	0.4292036	4.659792
4	$\frac{\tilde{\pi}}{4}$	1.8961188	0.1038811	4.131681
8	$\frac{\dot{\pi}}{8}$	1.9742316	0.0257683	4.031337
16	$\frac{\pi}{16}$	1.9935703	0.0064296	4.007741
32	$\frac{\pi}{32}$	1.9983933	0.0016066	4.001929
64	$\frac{\pi}{64}$	1.9995983	0.0004016	4.000482
128	$\frac{\pi}{2}$ $\frac{\pi}{4}$ $\frac{\pi}{8}$ $\frac{\pi}{16}$ $\frac{\pi}{3}$ $\frac{\pi}{64}$ $\frac{\pi}{128}$	1.9998996	0.0001004	4.000120

2.4

Figure 7:

check

Consider the definite integral

$$I(f) = \int_0^1 \sqrt{1 + x^3} \ dx.$$

```
(%i31);
      for k in num do block(
        temp:Tc(sqrt(1+x^3), 0.0, 1.0, k),
        print(k, " ", temp)
        );
            1.207106781186547
      1
      2
            1.133883476483184
      4
            1.116993293318717
      8
            1.112830349496382
      16
              1.111793319381881
      32
              1.111534292393827
      64
              1.111469550038714
      128
               1.111453365349166
(%o31) done
```

Figure 8:

n	h	$T_h(f)$	$\frac{T_h(f) - T_{h/2}(f)}{T_{h/2}(f) - T_{h/4}(f)}$
1	1	1.207106781186	4.335258
2	$\frac{1}{2}$	1.133883476483	4.057269
4	$\frac{1}{4}$	1.116993293318	4.014294
8	$\frac{1}{8}$	1.112830349496	4.003560
16	$\frac{1}{16}$	1.111793319381	4.000889
32	$\frac{\overline{16}}{\overline{32}}$ $\frac{1}{64}$	1.111534292393	4.000222
64	$\frac{1}{64}$	1.111469550038	
128	$\frac{1}{128}$	1.111453365349	

3

Exercise

Do the above for the following

Figure 9:

6.
$$\int_{1}^{2} \frac{1}{x} dx$$
7. $\int_{0}^{1} e^{-x} dx$
8. $\int_{0}^{1} \tan^{-1} x dx$
9. $\int_{1}^{2} \frac{\sin x}{x} dx$
10. $\int_{0}^{1} \frac{1}{\sqrt{1+x^{4}}} dx$