1) Utilizando la siguiente tabla de valores, construir la curva de solubilidad del clorato de potasio en agua:

Temperatura °C	0	10	20	30	40	50	60	70	80	90	100
Solubilidad g st/100 g H ₂ O	3,3	5,0	7,4	10,5	14,0	19,3	24,5	31,5	38,5	48,5	57,0

Se dispone de una solución que contiene 1,5 g de clorato de potasio por 5 g de agua y que se halla a 85°C.

- a) Indicar sobre el gráfico qué ocurre cuando dicha solución se enfría hasta 20ºC.
- b) Calcular las masas de los componentes en cada fase del sistema a 20°C

Equivale a: $X = 30 \text{ g KClO}_4 \text{ en } 100 \text{ g H2O}$

Utilizando la tabla de solubilidad obtenemos lo siguiente:

$$S(20^{\circ}C) = 7.4 \text{ g sr} / 100 \text{ g sv}$$

- 7,4 g KClO₄ ----- 100 g H2O
- Y ----- 5 g H2O
- Habrá: Y= 0,37 g KClO₄ disuelto en 5 g H₂O a 20°C
- m (s)= 1,5 g st a 85° C 0,37 g st a 20° C= 1,13 g KClO₄ (s)
- Sistema constituido por:
- Solución: 0,37 g st disuelto en 5 g de agua
- Fase sólida: 1,13 g KClO₄ (s)