

EXAMENUL DE BACALAUREAT - 2007 Proba scrisă la MATEMATICĂ PROBA D

Varianta025

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p)a) Să se determine $a \in \mathbb{R}$ știind că punctul A(1,-2) este situat pe cercul de ecuație $x^2 + y^2 - a = 0$.
- **b**) Să se scrie ecuația unei drepte paralele cu dreapta de ecuație x = 4. (4p)
- c) Să se calculeze $\cos \frac{\pi}{4} + \sin \frac{\pi}{4}$. (4p)
- **d**) Să se calculeze modulul numărului complex $z = \sqrt{2} \sqrt{2} \cdot i$ (4p)
- e) Să se calculeze sin A dacă în triunghiul ABC avem BC = 2, AB = 4 și $m(\hat{C}) = 30^{\circ}$. (2p)
- **f**) Să se calculeze aria triunghiului *ABC* în care *BC* = 2, *AB* = 4 şi $m(\hat{B}) = 30^{\circ}$. (2p)

SUBIECTUL II (30p)

- (3p)a) Să se determine simetricul elementului $\hat{3}$ în grupul $(\mathbf{Z}_8,+)$.
- (3p)**b)** Să se determine $a \in (0, \infty)$ pentru care $\log_3 2 + \log_3 a = 1$.
- c) Să se determine $b \in \mathbf{R}$ pentru care $9^b = 27$. (3p)
- (3p)d) Să se calculeze câte numere de 2 cifre scrise în baza 10 au numai cifre impare.
- (3p)e) Să se calculeze probabilitatea să alegem un nasture alb dacă avem 3 nasturi albi și 5 nasturi negri.
 - 2. Se consideră funcția $f:(0,\infty)\to \mathbb{R}$, $f(x)=\ln x$.
- a) Să se calculeze f'(1). (3p)
- **b**) Să se scrie ecuația tangentei la graficul funcției f în punctul $x_0 = 1$. (3p)
- c) Să se calculeze $\lim_{n\to\infty} (f(n+1) f(n))$. (3p)
- **d**) Să se calculeze $\lim_{x\to\infty} \frac{f(x)}{x}$ (3p)
- (3p) e) Să se calculeze $\int_{1}^{e} \frac{f(x)}{x} dx$

SUBIECTUL III (20p)

Se consideră mulțimea $G = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b \in \mathbf{R} \right\}$ și matricele $A_n = \begin{pmatrix} n^2 & 1 \\ -1 & n^2 \end{pmatrix}$, $\forall n \in \mathbf{N}^*$.

- (4p) a) Să se verifice că $A_n \in G$, $\forall n \in \mathbb{N}^*$.
- (4p) b) Să se arate că $A \cdot B \in G$, $\forall A, B \in G$.
- (4p) c) Să se calculeze determinantul și rangul matricei A_{2007} .
- (2p) d) Utilizând metoda inducției matematice, să se arate că $A_1 \cdot A_2 \cdot ... \cdot A_n \in G$, $\forall n \in \mathbb{N}^*$.

 Notăm $\begin{pmatrix} x_n & y_n \\ -y_n & x_n \end{pmatrix} = A_1 \cdot A_2 \cdot ... \cdot A_n$, $\forall n \in \mathbb{N}^*$.
- (2p) e) Să se arate că $x_1 = 1$ și $y_1 = 1$.
- (2p) f) Să se verifice relațiile $x_{n+1} = (n+1)^2 x_n y_n$ și $y_{n+1} = (n+1)^2 y_n + x_n$, $\forall n \in \mathbb{N}^*$.
- (2p) g) Să se arate că $x_n > 0$ și $y_n > 0$, $\forall n \in \mathbb{N}^*$.

SUBIECTUL IV (20p)

Se consideră $p \in (0, \infty)$ fixat și șirul $(a_n)_{n \ge 1}$, $a_n = 1 + \frac{(-1)^1}{p+1} + \frac{(-1)^2}{2p+1} + \dots + \frac{(-1)^n}{np+1}$, $\forall n \in \mathbb{N}^*$.

- **(4p)** a) Să se verifice că $\frac{1}{1-a} = 1 + a + ... + a^n + \frac{a^{n+1}}{1-a}, \forall n \in \mathbb{N}$ și $\forall a \in \mathbb{R} \setminus \{1\}$.
- (4p) **b**) Să se deducă relația $\frac{1}{1+x^p} = 1 x^p + x^{2p} ... + (-1)^n x^{np} + (-1)^{n+1} \frac{x^{(n+1)p}}{1+x^p}$, $\forall x \in [0,1], \forall n \in \mathbb{N}$.
- (4p) c) Să se arate că $0 \le \frac{x^{(n+1)p}}{1+x^p} \le x^{(n+1)p}, \quad \forall x \in [0,1], \forall n \in \mathbb{N}^*.$
- (2p) d) Să se arate că $\lim_{n \to \infty} \int_{0}^{1} \frac{x^{(n+1)p}}{1+x^{p}} dx = 0$.
- (2p) e) Să se arate că $\lim_{n \to \infty} a_n = \int_0^1 \frac{1}{1+x^p} dx.$
- (2p) f) Să se arate că $\lim_{n\to\infty} \left(1-\frac{1}{3}+\frac{1}{5}-...+(-1)^n\frac{1}{2n+1}\right) = \frac{\pi}{4}$.
- (2p) g) Să se arate că $\lim_{n \to \infty} \left(\frac{1}{1 \cdot 2} \frac{1}{3 \cdot 4} + \frac{1}{5 \cdot 6} \dots + (-1)^n \frac{1}{(2n+1)(2n+2)} \right) = \frac{\pi}{4} \frac{\ln 2}{2}$