TDT4205 Compiler Construction (2019)

Assignment 2

Jørgen Bele Reinfjell

February 17, 2019

1 LL(1) Parsing table construction

1.1 Starting grammar

```
/* Specified in bison notation */
S: c L E;
L: L E | 1 E;
E: E s | U;
U: b | c | n | %empty;
```

1.2 Modified grammar, without left recursion

```
/* Specified in bison notation */
S: c L E;
L: l E L1; /* alpha=E, beta=lE */
L1: E L1 | %empty;
E: U E1; /* alpha=s, beta=U */
E1: S E1 | %empty;
U: b | c | n | %empty;
```

1.3 Table of First(α), Follow(α) and Nullable(α)

	First	Follow	Nullable
S	c	\$	No
L	1	$\{b, c, n, s\}$	No
L1	$\{b, c, n, s\}$	\$	Yes
\mathbf{E}	$\{b, c, n, s\}$	$\{b, c, n, s\}$	Yes
E1	S	\$	Yes
U	$\{b,c,n\}$	\$	Yes

The grammar is ambiguous, as is seen in the table above, because First(E) = Follow(E).

1.4 Parsing table of the ambiguous LL(1) grammar

	c	1	b	n	S
\overline{S}	$S \to cLE$				
L		$L \to lEL'$			
L'	$L' \to EL'$		$L' \to EL'$	$L' \to EL'$	$L \to EL'$
\mathbf{E}	$E \to UE' / E \to \epsilon$		$E \to UE' / E \to \epsilon$	$E \to UE' / E \to \epsilon$	$E \to UE'$
E'					$E' \to sE'$
U	$U \to c$		$U \to b$	$U \to n$	