

C. IMO

题目名称	IMO		
时间限制	6秒		
空间限制	1 GB		

国际数学奥林匹克(IMO)是一项面向高中生的数学竞赛,每年举办一次。2025 年的 IMO 与 EGOI 同期举行。当你阅读这段文字时,IMO 的两个比赛日已经结束,评分工作也可能接近尾声了。与 EGOI 这类编程竞赛不同,IMO 的评分是人工完成的,这是一项漫长而艰巨的工作。

今年的 IMO 共设置了 M 道题目(编号为 0 到 M-1),每道题的满分为 K 分。第 i 位选手在第 j 题上获得了 $a_{i,j}$ 分,其中 $a_{i,j}$ 是一个在 0 到 K 之间的整数(包含两端)。本次比赛共有 N 位选手参赛。选手的排名由总分决定,如果总分相同,则按选手编号升序决定名次。更正式地说,如果选手 x 的排名高于选手 y,那么满足以下条件之一:

- 选手 x 的总分高于选手 y;
- ● 两人的总分相同,且 *x* < *y*。

为了公布最终排名,主办方需要公开部分 $a_{i,j}$ 的分数值。如果某个分数未被公开,仅知道它是一个在 0 到 K 之间的整数(包含两端)。

主办方希望尽可能少地公开分数 $a_{i,j}$ 的具体数值。

但与此同时,他们也必须确保所有人都能明确知道最终排名。 换句话说,他们需要公开一组分数值,使得 所有与这些已知分数一致的情况中,唯一可能的选手排名就是正确的最终排名。

请你求出最小的整数 S,使得可以选择性地公开 S 个 $a_{i,j}$ 的数值,从而唯一确定选手的完整排名。

输入

第一行包含三个整数 N、M 和 K。

接下来有 N 行,第 i 行包含 $a_{i,0},a_{i,1},\ldots,a_{i,M-1}$,表示第 i 位选手在每道题上的得分。 这些分数都是介于 0 到 K(包含 0 和 K)之间的整数。

输出

请输出一个整数S,表示为了唯一确定最终排名,至少需要公开的得分个数。

约束条件与评分

- $2 \le N \le 20000$.
- $1 \le M \le 100$.
- $1 \le K \le 100$.
- 对于每一对 i, j,满足 $0 \le i \le N-1$ 且 $0 \le j \le M-1$,均有 $0 \le a_{i,j} \le K$

你的解法将会在若干个数据组上进行评测,每个数据组对应一定的分值。 每个数据组包含若干个测试点, 只有在该组的所有测试点均通过时,才能获得该组对应的分数。

数据组	分数	额外的约束条件
1	10	N=M=2且 $K=1$
2	13	N=2
3	10	$N \cdot M \leq 16$
4	18	K = 1
5	21	$N \leq 10000$ 且 $M,K \leq 10$
6	28	无特殊约束

样例

在第一个样例中,20个分数可以由以下方式公开

7	7	0	•	7	•
7	3	0	7	2	1
•	0	0	•	0	0
7	7	7	7	7	1

已知第 3 位选手的得分在 0 到 14 之间,显然低于其他所有选手的得分。 可以证明,不可能公开少于 20 个分数。 例如,如果我们隐藏了第 3 位选手的某个 0 分成绩,那么该选手的得分最高可能达到 21 分。 这就会导致问题,因为第 2 位选手的得分是 20,我们需要确保第 2 位选手一定排在第 3 位选手之前。

第一个样例满足数据组5和6的约束条件。

在第二个样例中,我们可以只公开第一位选手的得分,或者只公开第二位(但不能同时隐藏两者)。 如果我们只公开第一位选手的得分,那么我们知道选手 1 的得分是 1。这意味着即使选手 2 的得分也是 1,选

手 1 仍会排名更高,因为他们的编号更小。 类似地,如果我们只公开选手 2 的得分,我们就知道他得了 0 分,这意味着无论选手 1 得多少分,选手 1 的排名都会更高。

第二个样例满足数据组2、3、4、5和6的约束条件。

第三个样例满足数据组2、3、5和6的约束条件。

第四个样例满足所有数据组的约束条件。

Input	Output
4 6 7 7 7 0 2 7 0 7 3 0 7 2 1 7 0 0 7 0 0 7 7 7 7 7 1	20
2 1 1 1 0	1
2 2 7 7 4 7 0	2
2 2 1 0 1 1 0	2