G-ADLEM

AI빅데이터프로젝트: 캡스톤디자인 I

아무래도 그렇조 20172848 이지평 20172853 장성현 20192761 김정하

Introduction

- " Adaptive Deep Modeling of Users and Items Using Side Information for Recommendation "
- → 기존의 Side Information을 활용하는 방법론은 한 유저와 모든 아이템에 대해서 고정된 Representation 값을 학습하게 되어 'Individual Diversity'를 고려하지 못함
- → 유연성 부족, 부정확한 추천을 야기
- → 따라서 User Input과 Item Input의 Attention Score를 활용한 'Individual Diversity'를 반영할 수 있는 방법론 제시

Introduction

Item Description을 포함한 데이터셋이 굉장히 드물기 때문에 Item Description이 아닌 Item Id를 Input으로 넣으면 일반화의 효과, 즉 적용가능한 데이터셋의 범위를 상당히 넓힐 수 있지 않을까 기대.

→ Input으로 Item Description을 넣은 모델과 Item Id를 넣은 모델의 비교 및 성능 향상을 위한 다양한 모델구조의 실험 진행

Dataset

Anime Recommendation Database 2020

	user_id	anime_id	rating	sypnopsis
0	0	430	9	In desperation, Edward Elric sacrificed his bo
1	0	1004	5	It was on a rainy spring day that Chobi became
2	0	3010	7	Diego Vega returns from his study trip to disc
3	0	570	7	In an alternate history, following World War I
4	0	2762	9	fter the death of Saizou, Kabamaru's horribly

Baseline 성능: MSE 2.2380

Dataset

- 1. 평점 남긴 횟수 최소 Description Num 이상인 유저 추출
- 2. Description Num parameter만큼 랜덤 추출

```
array([[ 5],
                                                                                                     [6],
                                                                                                     . . . ,
[[[ 4723,
         4399, 2818, ...,
                                        0],
                                                                                                     [5],
  [25303,
               894, ...,
         1439,
                                                                                                     [8],
               894, ...,
  [25303,
         1439,
                                                                                                     [10]])
                                              array([4723, 4399, 2818, ..., 0, 0, 0], dtype=int32)
  [ 4399,
         1651, 10108, ...,
  X_des(유저가 기존에 평가했던 항목의 특징)
                                                  X_train(유저가 평가할 아이템의 특징)
                                                                                                   평점
```

1. Side Information → Item Id

(Item Description → Item Id)

- 2. Self-Attention-
- 3. Residual Connection
- 4. Transformer Encoder
- 5. Multi-Head Conv1D
- 6. Multi Conv1D

Description (Id) Num 3, 4, 5

" Side Information → Item Id "

기존 ADLFM: MSE 2.2380

Item Id ADLFM: MSE 2.5767

"Self-Attention"

Bidirectional한 연산을 통한 representation 성능 향상 도모

Self-Attention

"Residual Connection"

Gradient Vanishing 문제를 해결하기 위한 모델

"Transformer Encoder"

Transformer Encoder

Multi-head attention 구조를 활용한 representation 성능 향상 도모

" Multi-Head Conv1D "

" Multi Conv1D "

Conv1d

Kernel Size 조절을 통한 Global 정보와 Local 정보 결합

Experiment (Description Num 5)

(MSE)

	Item Description	Item Name	Item Id
기존 ADLFM	2.2380	2.2444 (7s)	2.5767 (2.7s)
Self-Attention		2.2509 (48s)	2.6150 (3s)
Residual Connection		2.3436 (17s)	4.1272 (3.1s)
Transformer Encoder		2.2390 (3s)	2.9123 (3.1s)
Multi-Head Conv1D		2.1936 (9s)	2.6511 (2.7s)
Multi Conv1D		2.28	2.2814 (2.9s)

Experiment (Description Num 4)

(MSE)

	Item Description	ltem-ld
기존 ADLFM	2.2610 (92s)	2.5605 (3s)
Self-Attention		2.5743 (3s)
Residual Connection	3.0919 (150s)	4.2360 (3s)
Transformer Encoder		2.9773 (3s)
Multi-Head Conv1D	2.2778 (92s)	2.6431 (2.9s)
Multi Conv1D	2.2765 (153s)	2.2761 (3.12s)

Experiment (Description Num 3)

(MSE)

	Item Description	Item-Id
기존 ADLFM	2.2327 (49s)	2.6855 (2s)
Self-Attention		2.6776 (2s)
Residual Connection	2.3866 (60s)	3.8914(3s)
Transformer Encoder		3.1238 (4s)
Multi-Head Conv1D	2.2262 (49s)	2.7648 (6s)
Multi Conv1D	2.2275 (108s)	2.3098 (3s)

- 1. Description Num을 줄여도 성능 Same~
- 2. Multi-Conv1D 적용 성능 Good!

앞으로의 방향성

- 1. 여러 종류의 데이터셋에 적용 및 비교
- 2. 종강까지 화이땡!

Appendix

" IMDB Data Experiment "

	Item Description
기존 ADLFM	6.7655 (27s)
Self-Attention	
Residual Connection	8.0920 (33s)
Transformer Encoder	
Multi-Head Conv1D	6.7192 (27s)
Multi Conv1D	6.7016 (62s)

Thank You.

AI빅데이터프로젝트: 캡스톤디자인 I

아무래도 그렇조 20172848 이지평 20172853 장성현 20192761 김정하