06 – Spatial Interpolation with Grids

J.S. Onésimo Sandoval Sociology Saint Louis University

Outline

- What is Spatial Interpolation?
- Modifiable Areal Unit Problem (MAUP)

- How to make a grid
- Assigning discrete or count variables to the grid cell
- Assigning ratio scales variables to the grid cell

What is Spatial Interpolation?

Spatial Interpolation

- Interpolation=Estimate
 - Estimate the unknown data values for specific locations using the known data values
- In a perfect world we would work with point data, however, most of our data is in the form of a shapefile
- Most ecological, environmental, economic, and social data represents continuous and dynamic values
- Time (data is fluid)
 - Spatial-temporal interaction effects
- Standardize variables

• The polygons we use are artificial spatial representation of continuous geographical phenomena

• Results may depend on the specific geographic

• Scale Issue: involves the aggregation of smaller units into larger ones. Generally speaking, the larger the spatial units, the stronger the relationship among variables.

Aggregation (smoothed)

• Modifiable Area or Group: Units are arbitrary defined and different organization of the units may create different analytical results.

- Ecological Fallacy: Results from <u>aggregated data</u> (e.g. census tracts) <u>cannot</u> be applied to <u>individual people</u>
- <u>Cannot</u> assume the <u>people in blue areas</u> commit crimes

Solutions

- Standardized space over time we need to compare apples to apples
 - One way to do is to normalize the 2000 boundaries to 2010.
 - A second way to do to this normalize the boundaries to standard space
- Advantages of the grid
 - We can synthesis social and economic data with raster images
 - We can avoid some potential pitfalls in bias with our statistics tests related to sample size and neighbors

How to make a grid

- 1. Define your study area
- 2. ArcToolbox->Cartography Tools->Data Driven Pages -> Grid Index Features

- 1. Once you select your study you need to name the new feature file
- 2. I typically use the "Generate Polygon Grid" option
- 3. Now you have the flexibility to experience with different sizes for the grids. Remember we are working in meters
- 4. Everything also should populate as a default

- 1. You will have something like this image to the right
- 2. At this point you should inspect the partial grids and determine if you want to keep them or delete them

- 1. Clip the grids to the STL City boundaries
- 2. N=215 You will get partial grids. Note I will delete two very small partial grids at the top of the city

Assigning discrete or count variables to the grid cell

Step 1 – use the intersect function to intersect the grids with the census tracts

You have 634 unique polygons

$$A_{w} = \frac{A_{i}}{A_{t}}$$

 A_{w} = Partial census tract area weight

 A_i = Individual area of each census tract

 A_r = Total area of the census tract parts

$$T_{v} = \sum_{i=1}^{n} C_{t} * A_{w}$$

 T_{v} = Census tract population

 C_t = Census tract total population

 A_{w} = Partial census tract area weight

GEOID	Pop (C)	area	Sum_area	area_wgt (A)	pop_new
29510101100	2591	0.001	1.252	0.001	2
29510101100	2591	0.043	1.252	0.034	89
29510101100	2591	0.002	1.252	0.001	3
29510101100	2591	0.507	1.252	0.405	1049
29510101100	2591	0.617	1.252	0.493	1276
29510101100	2591	0.031	1.252	0.025	64
29510101100	2591	0.001	1.252	0.001	3
29510101100	2591	0.051	1.252	0.040	105
Total		1.252		1.000	2591

$$G_{_{\scriptscriptstyle V}} = \sum_{_{i=1}}^{n} C_{_{t}} st A_{_{\scriptscriptstyle W}}$$

 G_v = Grid population

 C_t = Census tract total population

 A_{w} = Partial census tract area weight

Step 2 – Create a new variable called "area". Note you can use the shape area as well. Divide by 1 million

Step 3 – Summarize GEOID by area

Step 4 - Join Summarized Table to "sio1"

Step 5 – Make it a permanent join (e.g., new file)

Step 6 – Add a field called "area_wgt"

Step 7 – Add a field called "pop_new"

Step 8 – compute the formula for area_wgt

area_wgt=area/Sum_area

Step 9 – compute the formula for pop_new

pop_new=tot_pop*area_wgt (in our case tot_pop=SE_Too1_oo12)

Step 10 – check your work - the new population must equal the tract population (n=2591)

Everything looks right. The 2591 residents have been distributed over the 8 grids

SE_T001_0012	area	OBJECTID_1	GEOID	Count_GEOID	Sum_area	Shape_Length	Shape_Area	area_wgt	pop_new
2591	0.001113	1	29510101100	8	1.251657	171.761061	1112.672362	0.000889	2.303294
2591	0.043112	1	29510101100	8	1.251657	967.052956	43111.50779	0.034444	89.243239
2591	0.00159	1	29510101100	8	1.251657	199.675425	1589.862493	0.00127	3.291105
2591	0.50658	1	29510101100	8	1.251657	3090.13167	506580.41584	0.404728	1048.649872
2591	0.61657	1	29510101100	8	1.251657	3804.781168	616569.78395	0.492603	1276.334033
2591	0.030697	1	29510101100	8	1.251657	798.027909	30696.927695	0.024525	63.544362
2591	0.001478	1	29510101100	8	1.251657	217.533358	1478.062647	0.001181	3.059673
2591	0.050518	1	29510101100	8	1.251657	1097.927209	50517.676122	0.040361	104.574423

Step 11 – Summarize the GRIDCODE by the "pop_new" variable

Step 12 – Join the summarized table to the unpopulated grid shapefile.

Legend

