线性代数期中试卷

姓名 学号 考试时间 2015.4.25

题号	 =	三	四	五.	六	七	八	总分
得分								

一.(10分) 设 A 是3阶非零方阵, A_{ij} 是 a_{ij} 的代数余子式,若 $a_{ij} + A_{ij} = 0$ (i, j = 1, 2, 3), 求 |A|.

解: $A_{ij} = -a_{ij}$ $A^* = -A^T$,

 $|A|E = AA^* = A(-A^T) = -AA^T$,

两边取行列式得 $|A|^3 = |-A| \cdot |A^T| = -|A|^2$.

又
$$A \neq O$$
,设 $a_{kl} \neq 0$,则 $|A| = \sum_{j=1}^{3} a_{kj} A_{kj} = -\sum_{j=1}^{3} a_{kj}^2 \le -a_{kl}^2 < 0$,

|A| = -1.

二.(10分) 设 A 是3阶方阵,|A|=3, A^* 为 A 的伴随矩阵,若交换 A 的第一行与第二行得 到矩阵 B,求 $|BA^*|$.

解: 由条件得 B = E(1,2)A,

故 $BA^* = E(1,2)AA^* = E(1,2)(|A|E) = |A|E(1,2) = 3E(1,2)$,

 $|BA^*| = |3E(1,2)| = 3^3 \times (-1) = -27.$

三.(10分) 设
$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$
, A_{ij} 为 a_{ij} 的代数余子式, $1 \leq i, j \leq n$ 。证明:如果

D 的某行的元素全为1,则 $D = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}$.

证: 设
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$
, 设 k 行全为 1 , 即 $a_{kj} = 1, j = 1, 2, \cdots, n$, 则 $D = \sum_{j=1}^{n} a_{kj} A_{kj} = \sum_{j=1}^{n} A_{kj}$, $i \neq k$ 时,又有 $0 = \sum_{j=1}^{n} a_{kj} A_{ij} = \sum_{j=1}^{n} A_{ij}$.

则
$$D = \sum_{j=1}^{n} a_{kj} A_{kj} = \sum_{j=1}^{n} A_{kj}$$
 , $i \neq k$ 时,又有 $0 = \sum_{j=1}^{n} a_{kj} A_{ij} = \sum_{j=1}^{n} A_{ij}$ 故 $\sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} = \sum_{i=1}^{n} A_{kj} + \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} = D + \sum_{i=1}^{n} 0 = D$.

四.(10分) 设矩阵
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{pmatrix}$$
, 求矩阵 A 的逆矩阵 A^{-1} .

$$(A,E) = \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 & 1 & 0 \\ 3 & 4 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -2 & -5 & -2 & 1 & 0 \\ 0 & 0 & -1 & -1 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 3 & -2 \\ 0 & 1 & 0 & -3/2 & -3 & 5/2 \\ 0 & 0 & 1 & 1 & 1 & -1 \end{pmatrix},$$

$$\therefore A^{-1} = \begin{pmatrix} 1 & 3 & -2 \\ -3/2 & -3 & 5/2 \\ 1 & 1 & -1 \end{pmatrix}.$$

五.(15分) 设
$$A = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & -3 \end{pmatrix}$$
, E_3 为3阶单位矩阵,

- (1) 求方程组 AX = 0 的一个基础解系;
- (2) 求满足 $AB = E_3$ 的所有矩阵 B.

解: (1) 设
$$B = (\beta_1, \beta_2, \beta_3) \in \mathbb{R}^{4 \times 3}$$
, 则有 $A\beta_i = e_i, i = 1, 2, 3$. 求解 $\beta_1, \beta_2, \beta_3$

$$(A, E_3) \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 2 & 6 & -1 \\ 0 & 1 & 0 & -2 & -1 & -3 & 1 \\ 0 & 0 & 1 & -3 & -1 & -4 & 1 \end{pmatrix}$$
,首先得 $AX = \theta$ 的一个基础解系: $\alpha = \begin{pmatrix} -1 \\ 2 \\ 3 \\ 1 \end{pmatrix}$.

(2) 由(1)的简化行梯形矩阵,得
$$\beta_1 = \begin{pmatrix} 2 \\ -1 \\ -1 \\ 0 \end{pmatrix} + k_1 \alpha, \beta_2 = \begin{pmatrix} 6 \\ -3 \\ -4 \\ 0 \end{pmatrix} + k_2 \alpha, \beta_3 = \begin{pmatrix} -1 \\ 1 \\ 1 \\ 0 \end{pmatrix} + k_3 \alpha.$$

故
$$B = \begin{pmatrix} 2 & 6 & -1 \\ -1 & -3 & 1 \\ -1 & -4 & 1 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} -1 \\ 2 \\ 3 \\ 1 \end{pmatrix} (k_1, k_2, k_3), \quad k_1, k_2, k_3 \in R.$$

六.
$$(15分)$$
 设 $A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ 0 & -4 & -2 \end{pmatrix}$, $\beta_1 = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$,

- (1) 求满足 $A\beta_2 = \beta_1$, $A^2\beta_3 = \beta_1$ 的所有向量 β_2, β_3 ;
- (2) 对(1)中任意向量 β_1,β_2,β_3 , 证明 β_1,β_2,β_3 线性无关。

$$\Re \colon (1) \quad (A, \beta_1) = \begin{pmatrix} 1 & -1 & -1 & | & & -1 & | & -1$$

$$(A^{2}, \beta_{1}) = \begin{pmatrix} 2 & 2 & 0 & | & -1 \\ -2 & -2 & 0 & | & 1 \\ 4 & 4 & 0 & | & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & | & -\frac{1}{2} \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}, \ \ \therefore \ \beta_{2} = \begin{pmatrix} -\frac{1}{2} \\ 0 \\ 0 \end{pmatrix} + k_{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + k_{3} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

(2) 易知 $A\beta_1 = \theta$, 设 $t_1\beta_1 + t_2\beta_2 + t_3\beta_3 = \theta$, 则

$$\begin{cases} t_1\beta_1 + t_2\beta_2 + t_3\beta_3 = \theta, \\ A(t_1\beta_1 + t_2\beta_2 + t_3\beta_3) = \theta, \\ A^2(t_1\beta_1 + t_2\beta_2 + t_3\beta_3) = \theta, \end{cases} \quad \stackrel{\text{def}}{=} \begin{cases} A\beta_1 = \theta, \\ A\beta_2 = \beta_1, \\ A^2\beta_3 = \beta_1, \end{cases} \quad \stackrel{\text{Tiff}}{=} \begin{cases} t_1\beta_1 + t_2\beta_2 + t_3\beta_3 = \theta, \\ t_2\beta_1 + t_3A\beta_3 = \theta, \\ t_3\beta_1 = \theta. \end{cases}$$

解得 $t_1 = t_2 = t_3 = 0$, 故 $\beta_1, \beta_2, \beta_3$ 线性无关.

七.(10分) 设
$$B = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 1 & 2 \\ 6 & 2 & 4 \end{pmatrix}$$
。 试求矩阵 A ,使得 $AB = B$ 。

解: 由 AB = B 得 (A - E)B = O,故 $B^{T}(A - E)^{T} = O$.

 $\diamondsuit (A-E)^T = (\alpha_1, \alpha_2, \alpha_3), \quad \boxtimes B^T \alpha_i = \theta, \quad i = 1, 2, 3.$

$$(A-E)^{-1} = (\alpha_1, \alpha_2, \alpha_3), \text{ yd } B^{-1}\alpha_i = \emptyset, \ i = 1, 2, 3.$$

$$(B^T) = \begin{pmatrix} 1 & 3 & 6 \\ 1 & 1 & 2 \\ 1 & 2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}, \text{ id } \alpha_i = k_i \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}, k_i \in R, i = 1, 2, 3.$$

$$\exists E A - E = (\alpha_1, \alpha_2, \alpha_3)^T = \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} (0, -2, 1). \quad \therefore A = \begin{pmatrix} 1 & -2k_1 & k_1 \\ 0 & 1 - 2k_2 & k_2 \\ 0 & -2k_3 & 1 + k_3 \end{pmatrix}.$$

八.(20分) 设 A, D 是n阶方阵且 AD = D。 如果 r(D) = s,证明: (1) $r(A) \ge s$ 。

 $(2) r(A-E) \le n-s$,其中 E 为n阶单位矩阵。

- (3) 存在n阶可逆矩阵 P 使得 $PAP^{-1} = \begin{pmatrix} E_s & B \\ 0 & C \end{pmatrix}$,其中 E_s 为s阶单位矩阵,B 为 $s \times (n-s)$ 阶矩阵,C 为n-s阶矩阵。
- $i\mathbb{E}: (1) \quad r(D) = r(AD) \le r(A), \qquad \therefore \ r(A) \ge r(D) = s.$
- (2) AD = D, $\therefore (A E)D = O$, 则 D 的列是 $(A E)x = \theta$ 的解,故 $r(D) \le n r(A E)$, 即 $r(A E) \le n r(D) = n s$.
- (3) :: r(D) = s,设 D 的 s 个无关列向量为 $\beta_1, \beta_2, \dots, \beta_s$,则有 $A\beta_i = \beta_i, i = 1, 2, \dots, s$. 将 β_1, \dots, β_s 扩展为 n 个无关列向量 $\beta_1, \dots, \beta_s, \gamma_{s+1}, \dots, \gamma_n$. 令 $Q = (\beta_1, \dots, \beta_s, \gamma_{s+1}, \dots, \gamma_n)$,则 Q 可逆。由 $Qe_i = \beta_i, i = 1, 2, \dots, s$,可得 $e_i = Q^{-1}\beta_i, i = 1, 2, \dots, s$.

由 $Qe_i=eta_i, i=1,2,\cdots,s$,可得 $e_i=Q^{-1}eta_i, i=1,2,\cdots,s$ 故

$$Q^{-1}AQ = Q^{-1}A(\beta_1, \dots, \beta_s, \gamma_{s+1}, \dots, \gamma_n)$$

$$= Q^{-1}(\beta_1, \dots, \beta_s, A\gamma_{s+1}, \dots, A\gamma_n)$$

$$= (e_1, \dots, e_s, Q^{-1}A\gamma_{s+1}, \dots, Q^{-1}A\gamma_n) = \begin{pmatrix} E_s & B \\ O & C \end{pmatrix},$$

令 $P=Q^{-1}$,即有 $PAP^{-1}=\begin{pmatrix}E_s&B\\O&C\end{pmatrix}$.