9.1 Word2Vec: Intuitive Understanding

Introduction

Word2Vec is a word embedding technique for Natural Language Processing published by Google in 2013. It uses a neural network model to learn word associations from large text corpora.

Key Capabilities

- Converts words into numerical vectors while preserving semantic meaning
- Detects synonym words
- Suggests additional words for partial sentences
- Identifies relationships between words (similar, opposite, related)

Word2Vec vs Traditional Methods

Traditional Methods (Bag of Words, TF-IDF)

- Generate sparse matrices with mostly zeros and ones
- · Based on vocabulary size
- TF-IDF may include decimal values (e.g., 0.25, 0.6)

Word2Vec Approach

- Generates **dense vectors** based on feature representations
- Each word is represented by meaningful numerical values
- Captures semantic relationships between words

Feature Representation: The Core Concept

What is Feature Representation?

Each word in the vocabulary is converted into a vector based on multiple **features**. These features capture different aspects or characteristics that help define relationships between words.

Example Features

· Gender (masculine/feminine)

- Royal (royalty-related)
- Age (time-sensitive)
- Food (food-related)
- · ... and many more

Dimensionality

Word2Vec typically uses **300-dimensional** feature representations, meaning each word is represented by a vector with 300 numerical values. However, this can vary (e.g., 100, 200, or 300 dimensions).

Feature Representation Example

Consider a vocabulary with words: boy, girl, king, queen, apple, mango

Negative values ≈ Masculine Positive values ≈ Feminine

Each word gets numerical values for each feature based on its relationship with that feature:

Word	Gender	Royal	Age	Food	•••	Feature 300
boy	-1.00	0.01	0.03	0.05		
girl	+1.00	0.02	0.02	0.23		
king	-0.92	0.95	0.75	0.01		
queen	+0.93	0.96	0.68	0.02		
apple	0.05	-0.20	0.85	0.91		
mango	0.23	0.02	0.87	0.92		

Understanding the Values

- Values close to 0: Little to no relationship (e.g., boy-royal = 0.01)
- Opposite values: Opposing characteristics (e.g., boy-gender = -1, girl-gender = +1)
- **Similar values**: Related words (e.g., king-royal = 0.95, queen-royal = 0.96)
- **High absolute values**: Strong relationship (e.g., apple-food = 0.91)

Vector Arithmetic: Word Relationships

One of the most powerful features of Word2Vec is the ability to perform **algebraic operations** on word vectors to discover relationships.

Famous Example

$$king - boy + queen = girl$$

This works because:

- The vector arithmetic captures the relationship "male-to-female"
- Subtracting "boy" removes the "young male" component
- · Adding "queen" adds the "royal female" component
- The result is closest to "girl" (young female)

Another Example (2-Dimensional Simplification)

Let's represent words with just 2 dimensions:

$$king = [0.95, 0.96]$$

$$man = [0.95, 0.98]$$

$$queen = [0.96, 0.94]$$

Then:

$$king - man + queen \approx woman$$

Measuring Similarity: Cosine Similarity

To determine how similar two words are, we measure the angle between their vectors.

Cosine Similarity Formula

Cosine Similarity =
$$\cos(\theta)$$

where:

- θ is the **angle** between two word vectors
- $\cos(\theta)$ gives a value between -1 and +1

Distance Formula

Distance =
$$1 - \cos(\theta)$$

where:

- θ is the **angle** between two word vectors
- Distance mathematically ranges from 0 to 2
 - When $\theta = 0^{\circ}$ (identical vectors): Distance = 0

- When $\theta = 90^{\circ}$ (perpendicular): Distance = 1
- When $\theta = 180^{\circ}$ (opposite directions): Distance = 2
- In practice, Word2Vec distances typically fall between 0 to 1 since word vectors rarely point in exactly opposite
 directions
- Lower distance = more similar words
- Higher distance = less similar words

Understanding Cosine Similarity with Examples

Case 1: Similar Words ($\theta = 45^{\circ}$)

If the angle between two word vectors is 45 degrees:

$$\cos(45°) = \frac{1}{\sqrt{2}} \approx 0.7071$$

Then the distance is:

Distance =
$$1 - 0.7071 = 0.2929 \approx 0.29$$

Interpretation: Distance ≈ 0.29 indicates the words are **somewhat similar**.

Case 2: Unrelated Words ($\theta = 90^{\circ}$)

If the angle between two word vectors is 90 degrees:

$$\cos(90^{\circ}) = 0$$

Then the distance is:

Distance
$$= 1 - 0 = 1$$

Interpretation: Distance = 1 indicates the words are **completely different** or unrelated.

Case 3: Identical Words ($\theta = 0^{\circ}$)

If the angle between two word vectors is **0 degrees** (same direction):

$$\cos(0^\circ) = 1$$

Then the distance is:

Distance
$$= 1 - 1 = 0$$

Summary of Distance Interpretation

Distance Value	Interpretation
Close to 0	Words are very similar or identical
Around 0.3	Words are somewhat similar
Around 0.5-0.7	Words have some relationship
Close to 1	Words are very different/unrelated

Real-World Applications

Recommendation Systems

Word2Vec principles apply beyond NLP. For example, in movie recommendations:

- Feature representation might include: genre (action, comedy), theme (comic, drama), rating
- Movie names are the vocabulary (e.g., "Avengers", "Iron Man")
- · Movies with similar features have vectors close together
- "Avengers" and "Iron Man" would have small distance (similar movies)

Google's Pre-trained Word2Vec Model

Google released a Word2Vec model trained on:

- 3 billion words from Google News
- 300-dimensional vectors for each word
- Captures rich semantic relationships

Note on Feature Visibility

In large-scale trained models, individual features are **not explicitly labeled**. The neural network learns these features automatically during training, making them implicit rather than interpretable (like "gender" or "food" in our examples).

Key Takeaways

- 1. Word2Vec converts words into dense numerical vectors (typically 300 dimensions)
- 2. Similar words have vectors close together in the vector space
- 3. Vector arithmetic reveals semantic relationships (king man + woman ≈ queen)
- 4. Cosine similarity measures word similarity by calculating the angle between vectors:

Distance =
$$1 - \cos(\theta)$$

- 5. Feature representations are learned automatically by neural networks during training
- 6. Applications extend beyond NLP to recommendation systems and other similarity-based tasks

Next Steps

To fully understand Word2Vec implementation:

- Learn about neural networks (Artificial Neural Networks ANN)
- · Understand loss functions and optimizers
- Study the architecture of Word2Vec models (CBOW and Skip-gram)
- · Practice with pre-trained models and custom training

9.2.Word2Vec CBOW: Complete Guide

1.Introduction to Word2Vec

Word2Vec converts words into numerical vector representations using two architectures:

- 1. CBOW (Continuous Bag of Words) Predicts target word from context
- 2. Skip-gram Predicts context from target word

This document focuses on CBOW.

2. Word Embeddings Fundamentals

What Are Word Embeddings?

Dense, low-dimensional vector representations capturing semantic meaning.

Key Properties:

- · Transform sparse one-hot vectors into dense meaningful vectors
- Each dimension = abstract learned feature (business-ness, formality, etc.)
- Features are automatically discovered during training
- Similar contexts → similar embeddings

Embedding Dimensions

Determined by window size (hidden layer size):

- Window size 5 → 5-dimensional vectors
- Window size 100 → 100-dimensional vectors
- Google's Word2Vec uses 300 dimensions

3.CBOW Architecture

Three-layer fully connected network:

```
Input Layer (Context words) → Hidden Layer → Output Layer (Target word)
```

Core Idea: Given context ["Ineuron", "company", "related", "to"], predict target "is"

Layer Dimensions

- Input Layer: Number of context words × Vocabulary size
- Hidden Layer: Window size (determines embedding dimension)
- Output Layer: Vocabulary size (probability distribution)

Weight Matrices

W₁ (Input→Hidden): Vocab size × Embedding dim

- Each row = one word's embedding vector
- · This is what we extract after training

W₂ (Hidden→Output): Embedding dim × Vocab size

- Used for predictions during training
- Discarded after training

4. Training Data Preparation

Window Size Selection

- Must be **odd number** for proper center element
- Center word = **output** (target)
- Surrounding words = input (context)

Creating Training Pairs

Sliding window creates multiple examples:

- Input = all words except center
- Output = center word

Why bidirectional context? Model needs words before AND after target to capture semantic relationships.

5.Forward Propagation Process

Step 1: Extract Word Embeddings

Operation: x·W₁ (one-hot vector multiplied by W₁)

Critical Understanding:

```
Dimension: (1\times V) \cdot (V\times D) = (1\times D)
Function: Extracts corresponding row from W_1
```

Why it works:

```
h = \Sigma(x[j] \times W_1[j]) for all j
```

Since x is one-hot (only one element = 1):

- Only one term survives in the sum
- Effectively selects one row from W₁

Example:

```
x = [1, 0, 0, 0, 0, 0, 0] \rightarrow Selects Row 1

x = [0, 1, 0, 0, 0, 0, 0] \rightarrow Selects Row 2
```

Step 2: Average Context Embeddings

Formula: $h = (1/C) \times \Sigma$ (embeddings of context words)

where C = number of context words

Why average? Creates single fixed-size representation of context (Bag of Words property - order doesn't matter).

Step 3: Project to Output Space

Hidden representation multiplied by W₂ produces raw scores (logits) for each vocabulary word.

Step 4: Apply Softmax

Formula: softmax(z_i) = $e^z_i / \Sigma e^z_j$

Converts raw scores into probability distribution (all probabilities sum to 1).

6.Loss Function and Training

Cross-Entropy Loss

Formula: L = -log(P(target|context))

Measures difference between:

True target: One-hot encoded

Predicted: Probability distribution

Goal: Minimize negative log probability of correct word.

Backpropagation

- 1. Forward pass → compute predictions
- 2. Calculate loss
- 3. Compute gradients $(\partial L/\partial W_1, \partial L/\partial W_2)$
- 4. Update weights: W := W $\alpha \cdot \partial L/\partial W$
- 5. Repeat thousands of times

Weight Evolution

Initial: Random small numbers

Training: Gradual adjustment via backpropagation

Final: W₁ contains meaningful embeddings where similar words have similar vectors

7. Complete Numerical Example

Setup

Corpus: "Ineuron company is related to data science"

Vocabulary (7 words):

```
1: Ineuron 2: company 3: is 4: related 5: to 6: data 7: science
```

Training Example:

• Window size: 5

• Context: [Ineuron, company, related, to]

· Target: is

• Embedding dimension: 5

W₁ Matrix (7×5) - Word Embeddings

Row interpretation: Each row = complete 5-dimensional embedding for one word. **ROWS** provide weights for each dimension of a word's embedding:

Column interpretation: Each column = one feature across all words

Example - Row 1 (word "Ineuron"):

Each value represents a learned semantic feature:

- 0.92 → Feature 1 (e.g., business-related-ness)
- 0.45 → Feature 2 (e.g., technology-related-ness)
- 0.23 → Feature 3 (e.g., action/verb-ness)
- 0.67 → Feature 4 (e.g., formality level)
- 0.34 → Feature 5 (e.g., commonality)

Example - Column 1 (Feature 1):

```
[0.92] ← Ineuron
[0.85] ← company
[0.15] ← is
[0.67] ← related
[0.34] ← to
[0.71] ← data
[0.68] ← science
```

In plain words: "This shows how strongly each word exhibits Feature 1 (e.g., business-related-ness)."

Observations:

- "Ineuron" (0.92) and "company" (0.85) score high \rightarrow both are business-related
- "is" (0.15) and "to" (0.34) score low \rightarrow not business-related
- · Similar scores suggest similar meaning for this feature

W₂ Matrix (5×7) - Prediction Weights

```
Ineu. comp. is rela. to data sci. Row 1: [0.32, 0.45, 0.67, 0.23, 0.56, 0.12, 0.89] Row 2: [0.21, 0.78, 0.34, 0.91, 0.45, 0.67, 0.23] Row 3: [0.56, 0.23, 0.89, 0.12, 0.78, 0.34, 0.45] Row 4: [0.78, 0.34, 0.12, 0.56, 0.23, 0.91, 0.67] Row 5: [0.45, 0.91, 0.23, 0.67, 0.34, 0.78, 0.12]
```

Column interpretation: Recipe for predicting one word (contributions from all hidden dimensions)

Row interpretation: One hidden dimension's influence on all words

8.Step-by-Step Calculation

STEP 1: One-Hot Encoding

```
x_{nounce} = [1, 0, 0, 0, 0, 0, 0, 0]

x_{nounce} = [0, 1, 0, 0, 0, 0, 0]

x_{nounce} = [0, 0, 0, 1, 0, 0, 0]

x_{nounce} = [0, 0, 0, 0, 1, 0, 0]
```

STEP 2: Extract Embeddings (x·W₁)

Dimension check:

```
(1\times7) \cdot (7\times5) = (1\times5) \checkmark
```

Matrix multiplication formula:

For each element i in the result (i = 1 to 5):

```
h[i] = \Sigma(x_{Ineuron[j]} \times W_1[j][i]) for j = 1 to 7
```

For "Ineuron": x_Ineuron · W₁

Detailed calculation:

Element 1 (first column of W₁):

$$h[1] = (1 \times 0.92) + (0 \times 0.85) + (0 \times 0.15) + (0 \times 0.67) + (0 \times 0.34) + (0 \times 0.71) + (0 \times 0.68)$$

$$= 0.92 + 0 + 0 + 0 + 0 + 0 + 0$$

$$= 0.92 \checkmark$$

Element 2 (second column of W₁):

$$h[2] = (1 \times 0.45) + (0 \times 0.12) + (0 \times 0.89) + (0 \times 0.23) + (0 \times 0.56) + (0 \times 0.33) + (0 \times 0.31)$$

$$= 0.45 + 0 + 0 + 0 + 0 + 0 + 0$$

$$= 0.45 \checkmark$$

Element 3 (third column of W₁):

$$h[3] = (1 \times 0.23) + (0 \times 0.56) + (0 \times 0.34) + (0 \times 0.91) + (0 \times 0.78) + (0 \times 0.88) + (0 \times 0.85)$$

$$= 0.23 + 0 + 0 + 0 + 0 + 0 + 0$$

$$= 0.23 \checkmark$$

Element 4 (fourth column of W₁):

$$h[4] = (1 \times 0.67) + (0 \times 0.78) + (0 \times 0.21) + (0 \times 0.45) + (0 \times 0.23) + (0 \times 0.42) + (0 \times 0.47)$$

$$= 0.67 + 0 + 0 + 0 + 0 + 0 + 0$$

$$= 0.67 \checkmark$$

Element 5 (fifth column of W₁):

$$h[5] = (1 \times 0.34) + (0 \times 0.29) + (0 \times 0.67) + (0 \times 0.12) + (0 \times 0.45) + (0 \times 0.19) + (0 \times 0.16)$$

$$= 0.34 + 0 + 0 + 0 + 0 + 0 + 0$$

$$= 0.34 \checkmark$$

Result: h_Ineuron = [0.92, 0.45, 0.23, 0.67, 0.34] = Row 1 of W₁ \checkmark

Similarly:

```
h\_company = [0.85, 0.12, 0.56, 0.78, 0.29] (Row 2)

h\_related = [0.67, 0.23, 0.91, 0.45, 0.12] (Row 4)

h to = [0.34, 0.56, 0.78, 0.23, 0.45] (Row 5)
```

Step 2.1: Verification - What Did We Get?

Look at the original W₁:

```
Row 1 of W1: [0.92, 0.45, 0.23, 0.67, 0.34] ← THIS IS WHAT WE GOT!
```

Conclusion:

We multiplied $x \cdot W_1$ and extracted Row 1 from W_1 .

Key Takeaway:

The operation $x \cdot W_1$ (where x is a one-hot vector) extracts the corresponding row from W_1 . The one-hot vector acts as a row selector - it's equivalent to array indexing, but written as matrix multiplication for mathematical convenience and gradient computation.

STEP 3: Average Context Embeddings

```
h = (h_Ineuron + h_company + h_related + h_to) / 4

Dim 1: (0.92 + 0.85 + 0.67 + 0.34) / 4 = 2.78 / 4 = 0.695

Dim 2: (0.45 + 0.12 + 0.23 + 0.56) / 4 = 1.36 / 4 = 0.340

Dim 3: (0.23 + 0.56 + 0.91 + 0.78) / 4 = 2.48 / 4 = 0.620

Dim 4: (0.67 + 0.78 + 0.45 + 0.23) / 4 = 2.13 / 4 = 0.533

Dim 5: (0.34 + 0.29 + 0.12 + 0.45) / 4 = 1.20 / 4 = 0.300

h = [0.695, 0.340, 0.620, 0.533, 0.300]
```

Interpretation: Average semantic meaning of context [Ineuron, company, related, to]

STEP 4: Compute Output Scores (h·W₂)

```
Dimension: (1\times5)\cdot(5\times7)=(1\times7)
```

For each word j: $z[j] = \Sigma(h[i] \times W_2[i][j])$ for i=1 to 5

 W_2 = (Embedding Dimension × Vocabulary Size) = (5×7)

```
Col1
             Col2
                    Col3
                          Col4
                                 Col5
                                       Col6
                                              Col7
       Ineu.
             comp.
                           rela. to
                                       data
                                              sci. ← Words at COLUMN level
                    is
                                 1
                                              Ţ
                    1
Row 1: [0.32, 0.45,
                    0.67,
                          0.23, 0.56, 0.12,
                                              0.89] ← Hidden Dim 1
Row 2: [0.21, 0.78, 0.34,
                          0.91, 0.45,
                                       0.67,
                                              0.23] ← Hidden Dim 2
Row 3: [0.56, 0.23, 0.89,
                          0.12, 0.78, 0.34,
                                              0.45] ← Hidden Dim 3
Row 4: [0.78, 0.34, 0.12,
                          0.56, 0.23, 0.91,
                                              0.67] ← Hidden Dim 4
Row 5: [0.45, 0.91, 0.23, 0.67, 0.34, 0.78, 0.12] ← Hidden Dim 5
```

(because each column produces a score for ONE word)

W₂ Matrix: What Each Row and Column Represents

COLUMNS (Vertical)

Each column = All the weights needed to predict ONE specific word

Example - Column 1 (word "Ineuron"):

```
[0.32] ← How much Hidden Dim 1 contributes
[0.21] ← How much Hidden Dim 2 contributes
[0.56] ← How much Hidden Dim 3 contributes
[0.78] ← How much Hidden Dim 4 contributes (strongest)
[0.45] ← How much Hidden Dim 5 contributes
```

Calculation:

```
Score(Ineuron) = h_1 \times 0.32 + h_2 \times 0.21 + h_3 \times 0.56 + h_4 \times 0.78 + h_5 \times 0.45
```

In plain words: "To predict 'Ineuron', take these specific amounts from each hidden dimension and add them up."

ROWS (Horizontal)

Each row = How ONE hidden dimension influences ALL words

Example - Row 1 (Hidden Dimension 1):

```
[0.32, 0.45, 0.67, 0.23, 0.56, 0.12, 0.89] \downarrow \downarrow \downarrow \downarrow \downarrow Ineu. comp. is rela. to data sci.
```

In plain words: "When Hidden Dim 1 has a high value, it pushes strongly toward 'science' (0.89) and 'is' (0.67), but weakly toward 'data' (0.12)."

If $h_1 = 0.9$, then:

- Contributes 0.9 × 0.89 = 0.801 to "science" score
- Contributes 0.9 × 0.67 = 0.603 to "is" score
- Contributes 0.9 × 0.12 = 0.108 to "data" score

Summary

View	Represents			
Column	Recipe for predicting one word (contributions from all 5 hidden dims)			
Row	One hidden dimension's voting power across all 7 words			

Matrix multiplication h·W₂: Takes your hidden values and uses both perspectives simultaneously to compute scores for all words at once.

The Calculation: h · W₂

For each output neuron (each word in vocabulary), we compute:

```
z[j] = \Sigma(h[i] \times W_2[i][j]) for i = 1 to 5
```

Output for "Ineuron" (Column 1 of W₂)

```
z_1 = (0.695 \times 0.32) + (0.340 \times 0.21) + (0.620 \times 0.56) + (0.533 \times 0.78) + (0.300 \times 0.45)
= 0.2224 + 0.0714 + 0.3472 + 0.4157 + 0.1350
= 1.1917
```

Output for "company" (Column 2 of W₂)

```
z_2 = (0.695 \times 0.45) + (0.340 \times 0.78) + (0.620 \times 0.23) + (0.533 \times 0.34) + (0.300 \times 0.91)
= 0.3128 + 0.2652 + 0.1426 + 0.1812 + 0.2730
= 1.1748
```

Output for "is" (Column 3 of W₂)

```
z_3 = (0.695 \times 0.67) + (0.340 \times 0.34) + (0.620 \times 0.89) + (0.533 \times 0.12) + (0.300 \times 0.23)
= 0.4657 + 0.1156 + 0.5518 + 0.0640 + 0.0690
= 1.2661
```

Output for "related" (Column 4 of W₂)

```
z_4 = (0.695 \times 0.23) + (0.340 \times 0.91) + (0.620 \times 0.12) + (0.533 \times 0.56) + (0.300 \times 0.67)
= 0.1599 + 0.3094 + 0.0744 + 0.2985 + 0.2010
= 1.0432
```

Output for "to" (Column 5 of W₂)

```
z_5 = (0.695 \times 0.56) + (0.340 \times 0.45) + (0.620 \times 0.78) + (0.533 \times 0.23) + (0.300 \times 0.34)
= 0.3892 + 0.1530 + 0.4836 + 0.1226 + 0.1020
= 1.2504
```

Output for "data" (Column 6 of W2)

```
z_6 = (0.695 \times 0.12) + (0.340 \times 0.67) + (0.620 \times 0.34) + (0.533 \times 0.91) + (0.300 \times 0.78)
= 0.0834 + 0.2278 + 0.2108 + 0.4850 + 0.2340
= 1.2410
```

Output for "science" (Column 7 of W₂)

```
z_7 = (0.695 \times 0.89) + (0.340 \times 0.23) + (0.620 \times 0.45) + (0.533 \times 0.67) + (0.300 \times 0.12)
= 0.6186 + 0.0782 + 0.2790 + 0.3571 + 0.0360
= 1.3689
```

Raw Output Scores (Logits)

```
z = [1.1917, 1.1748, 1.2661, 1.0432, 1.2504, 1.2410, 1.3689]

† † † † † † † † † † Theuron company is related to data science
```

Interpretation: These are raw scores (logits) before being converted to probabilities. Higher values indicate the model thinks that word is more likely to be the target.

STEP 5: Apply Softmax

Formula:

$$\operatorname{softmax}(z_i) = rac{e^{z_i}}{\sum_{j=1}^7 e^{z_j}}$$

Step 5.1: Calculate e^z for each element

```
e^z<sub>1</sub> = e^1.1917 = 3.2927

e^z<sub>2</sub> = e^1.1748 = 3.2373

e^z<sub>3</sub> = e^1.2661 = 3.5467

e^z<sub>4</sub> = e^1.0432 = 2.8384

e^z<sub>5</sub> = e^1.2504 = 3.4918

e^z<sub>6</sub> = e^1.2410 = 3.4594

e^z<sub>7</sub> = e^1.3689 = 3.9304
```

Step 5.2: Sum all e^z values

```
Sum = 3.2927 + 3.2373 + 3.5467 + 2.8384 + 3.4918 + 3.4594 + 3.9304
= 23.7967
```

Step 5.3: Divide each e^z by the sum

```
P(Ineuron | context) = 3.2927 / 23.7967 = 0.1384 = 13.84%

P(company | context) = 3.2373 / 23.7967 = 0.1361 = 13.61%

P(is | context) = 3.5467 / 23.7967 = 0.1491 = 14.91%

P(related | context) = 2.8384 / 23.7967 = 0.1193 = 11.93%

P(to | context) = 3.4918 / 23.7967 = 0.1468 = 14.68%

P(data | context) = 3.4594 / 23.7967 = 0.1454 = 14.54%

P(science | context) = 3.9304 / 23.7967 = 0.1652 = 16.52% ← Highest!
```

Final Output Probabilities

Verification: Sum = $0.1384 + 0.1361 + 0.1491 + 0.1193 + 0.1468 + 0.1454 + 0.1652 = <math>1.0003 \approx 1.0 \checkmark$

Interpretation:

- The model predicts "science" with highest probability (16.52%)
- But the true target word is "is" (14.91%)
- The model is wrong! It needs more training.

STEP 6: Compare with True Target

```
True target: "is" (position 3)
```

```
y = [0, 0, 1, 0, 0, 0, 0]
```

Predicted Probabilities

```
\hat{y} = [0.1384, 0.1361, 0.1491, 0.1193, 0.1468, 0.1454, 0.1652] 

\uparrow \uparrow True target = "is" Model's prediction = "science" 

(14.91%) (16.52% - WRONG!)
```

Analysis:

- True word: "is" (position 3)
- Model assigned 14.91% probability to "is"
- Model predicted "science" with 16.52% (highest probability)
- Model is incorrect needs more training!

STEP 7: Calculate Loss

Cross-Entropy Loss Formula:

$$\mathcal{L} = -\sum_{j=1}^7 y_j \log(\hat{y}_j)$$

Since y is one-hot encoded (only position 3 = 1, rest = 0):

$$\mathcal{L} = -\log(\hat{y}_3) = -\log(0.1491)$$

Calculation

```
log(0.1491) = -1.9025

Loss = -(-1.9025) = 1.9025
```

Interpretation:

- Loss = 1.9025 (moderately high)
- Lower loss = better prediction
- If model predicted "is" with 100% confidence: Loss = -log(1) = 0 (perfect!)
- Current loss of 1.9025 indicates significant room for improvement

STEP 8: Backpropagation (Weight Updates)

After calculating the loss, we update the weights using gradient descent.

Gradient Descent Formula

```
W_1_{new} = W_1_{old} - (learning_rate \times \partial Loss/\partial W_1)

W_2_{new} = W_2_{old} - (learning_rate \times \partial Loss/\partial W_2)
```

How Gradients Are Calculated

For W₂:

```
\partial Loss/\partial W_{2ij} = (\hat{y}_j - y_j) \times h_i
```

Where:

- \hat{y}_j = predicted probability for word j
- y j = true label (1 if target, 0 otherwise)
- h_i = hidden layer value at position i

For W₁:

The gradient is computed via chain rule, backpropagating through W₂.

Example Weight Update

Let's update one weight in W₁:

```
Current weight: w_{11} = 0.92 (first element of Ineuron's embedding) Gradient: \partial Loss/\partial w_{11} = -0.05 (calculated via backpropagation) Learning rate: \alpha = 0.01

New weight = 0.92 - (0.01 \times -0.05)
= 0.92 + 0.0005
= 0.9205
```

Interpretation:

- Negative gradient (-0.05) means increasing this weight will reduce loss
- So we increase it slightly by 0.0005

The Training Loop

This process repeats for:

- All 35 weights in W₁ (7 words × 5 dimensions)
- All 35 weights in W₂ (5 dimensions × 7 words)
- · Thousands of training examples
- Multiple epochs

Eventually, weights converge to values that minimize the loss!

9. Key Theoretical Insights

1. Window Size = Embedding Dimension

Choice of window size directly determines final vector dimensionality.

2. Context-Based Learning

Fundamental assumption: words in similar contexts have similar meanings

3. Bag of Words Property

Order doesn't matter in CBOW - model averages context embeddings.

4. Automatic Feature Discovery

Network discovers meaningful features during training without manual specification.

5. Semantic Space Properties

After training:

- Similar words cluster together
- Relationships expressible as vector arithmetic
- Example: king man + woman ≈ queen

6. From Random to Meaningful

Meaningful representations emerge from:

- Random initialization
- Simple objective (predict center word)
- Large unlabeled text
- Gradient descent optimization

10. What Gets Kept vs Discarded

After Training:

W₁ (KEPT):

- · Contains word embeddings we want
- Each row = complete embedding for one word
- · Used for all downstream NLP tasks

W₂ (DISCARDED):

- · Only needed during training for predictions
- No longer useful once embeddings learned

Hidden Layer (TEMPORARY):

- Different for every training example
- Just computational workspace

Output Layer (TEMPORARY):

- Used during training to calculate loss
- Not needed after training

11.Complete Flow Summary

```
STEP 1: One-Hot Encoding
Context: [Ineuron, company, related, to]
\rightarrow [[1,0,0,0,0,0,0], [0,1,0,0,0,0,0], [0,0,0,1,0,0,0], [0,0,0,0,1,0,0]]
STEP 2: Extract Embeddings (x \cdot W_1)
→ [[0.92,0.45,0.23,0.67,0.34], [0.85,0.12,0.56,0.78,0.29],
   [0.67, 0.23, 0.91, 0.45, 0.12], [0.34, 0.56, 0.78, 0.23, 0.45]]
STEP 3: Average Embeddings
→ [0.695, 0.340, 0.620, 0.533, 0.300]
STEP 4: Multiply by W<sub>2</sub>
→ [1.1917, 1.1748, 1.2661, 1.0432, 1.2504, 1.2410, 1.3689]
STEP 5: Apply Softmax
→ [0.1384, 0.1361, 0.1491, 0.1193, 0.1468, 0.1454, 0.1652]
STEP 6: Compare with Target
True: [0, 0, 1, 0, 0, 0, 0] (is)
Pred: Model predicted "science" (16.52%) - WRONG!
STEP 7: Calculate Loss = 1.9025
STEP 8: Update W<sub>1</sub> and W<sub>2</sub> via gradient descent
REPEAT thousands of times...
```

12.Mathematical Formulation

Forward Pass

```
1. h_-i = x_-i \cdot W_1 Extract embedding (1 \times V) \cdot (V \times D) = (1 \times D)

2. h = (1/C) \Sigma h_-i Average context

3. z = h \cdot W_2 Compute scores (1 \times D) \cdot (D \times V) = (1 \times V)

4. \hat{y} = \text{softmax}(z) Probabilities

5. L = -\log(\hat{y}_- \text{target}) Loss
```

Backpropagation

```
\begin{array}{lll} \partial L/\partial z &=& \hat{y} - y \\ \partial L/\partial W_2 &=& h^T \cdot (\hat{y} - y) \\ \partial L/\partial h &=& (\hat{y} - y) \cdot W_2^T \\ \partial L/\partial W_1 &=& (1/C) \sum x_i^T \cdot \partial L/\partial h \\ \\ W_2 &:=& W_2 - \alpha \cdot \partial L/\partial W_2 \\ W_1 &:=& W_1 - \alpha \cdot \partial L/\partial W_1 \end{array}
```

13.Common Questions

Q: Why $x \cdot W_1$ and not $x \cdot W_1^T$?

Answer: The correct operation is x·W₁ (no transpose)

- x: (1×7) row vector
- W₁: (7×5) embedding matrix
- Result: (1×5) embedding vector
- Dimension check: (1×7)·(7×5) = (1×5) ✓

Q: What's the difference between W₁ and W₂?

W₁:

- Shape: (vocab_size × embedding_dim)
- Each row = word embedding
- KEPT after training

W_2 :

- Shape: (embedding_dim × vocab_size)
- Maps embeddings to vocabulary

DISCARDED after training

Q: Why average context embeddings?

- · Creates single fixed-size representation
- · Treats all context words equally
- Simple and efficient approach
- · Alternative: weighted averaging (attention)

Q: How is CBOW different from Skip-gram?

CBOW:

- Input: Context words → Output: Center word
- Faster training
- · Better for frequent words

Skip-gram:

- Input: Center word → Output: Context words
- Slower training
- Better for rare words and larger datasets

14. Practical Implementation Notes

Memory Efficiency

In practice, one-hot vectors aren't created:

```
# Conceptual (what we showed):
embedding = x @ W1

# Actual implementation:
embedding = W1[word_index] # Direct indexing
```

Batch Processing

Process multiple examples simultaneously using matrix operations for GPU efficiency.

Negative Sampling

For large vocabularies, approximate full softmax by sampling only a few negative examples.

15. Dimension Reference

```
V = Vocabulary size = 7
D = Embedding dimension = 5
C = Context size = 4

W1: (V×D) = (7×5)
W2: (D×V) = (5×7)

x: (1×V) = (1×7) one-hot
h: (1×D) = (1×5) embedding
z: (1×V) = (1×7) logits
ŷ: (1×V) = (1×7) probabilities

x·W1: (1×7)·(7×5) = (1×5)
h·W2: (1×5)·(5×7) = (1×7)
```

16.Applications

Word embeddings enable:

- · Similarity calculations (cosine similarity)
- NLP tasks (classification, sentiment analysis, NER)
- Semantic operations (king man + woman ≈ queen)
- · Transfer learning for downstream tasks

Pre-trained vs Training:

- Pre-trained: Google's Word2Vec trained on billions of words
- Custom: Train on domain-specific data for specialized vocabulary

Real-world applications use large corpora (millions of words) for high-quality embeddings.

9.3 Word2Vec Skip-gram: Complete Guide

1.Introduction to Skip-gram

Skip-gram is the second architecture in Word2Vec that learns word embeddings by predicting **context words from a target word** - the inverse of CBOW.

Key Difference from CBOW

Aspect	CBOW	Skip-gram
Input	Multiple context words	Single target word
Output	Single target word	Multiple context words
Prediction	Context → Center	Center → Context
Training Speed	Faster	Slower
Best For	Frequent words	Rare words, larger datasets

2.Skip-gram Architecture

Three-layer fully connected network:

Input Layer (Target word) → Hidden Layer → Output Layer (Context words)

Core Idea: Given input word "is", predict context ["Ineuron", "company", "related", "to"]

Layer Dimensions

Input Layer: Vocabulary size (one-hot encoded target word)

• Hidden Layer: Window size (embedding dimension)

• Output Layer: Vocabulary size × Number of context words

Weight Matrices

W₁ (Input→Hidden): Vocab size × Embedding dim

- Each row = one word's embedding vector
- · This is what we extract after training

W₂ (Hidden→Output): Embedding dim × Vocab size

- · Used for predictions during training
- Discarded after training

Critical Difference: Skip-gram produces **multiple outputs** (one for each context position), while CBOW produces a single output.

3. Training Data Preparation

Window Size Selection

- Must be **odd number** for proper center element
- Center word = input (target)
- Surrounding words = **output** (context)

Creating Training Pairs

Corpus: "Ineuron company is related to data science"

Window size 5 example:

```
Window 1: [Ineuron, company, is, related, to]
   Input: is (center)
   Output: Ineuron, company, related, to

Window 2: [company, is, related, to, data]
   Input: related (center)
   Output: company, is, to, data

Window 3: [is, related, to, data, science]
   Input: to (center)
   Output: is, related, data, science
```

Key Point: Each training example generates multiple output predictions (one for each context word).

4. Forward Propagation Process

Step 1: One-Hot Encode Target Word

```
Input: Single target word (e.g., "is")
```

$$\mathbf{x}_{\mathrm{is}} = [0, 0, 1, 0, 0, 0, 0]$$

where:

- x = one-hot vector
- Length = vocabulary size
- Only position 3 = 1 (for "is")

Note: In Skip-gram terminology, "is" is the **input word**, and we're trying to predict the **output context words** [Ineuron, company, related, to].

Step 2: Extract Word Embedding

Operation:

$$\mathbf{h} = \mathbf{x} \cdot \mathbf{W}_1$$

where:

- $\mathbf{x} = (1 \times V)$ one-hot vector
- $\mathbf{W}_1 = (V \times D)$ embedding matrix
- $\mathbf{h} = (1 \times D)$ embedding vector

Dimension check: $(1 \times 7) \cdot (7 \times 5) = (1 \times 5) \checkmark$

What happens: The one-hot multiplication extracts the corresponding row from \mathbf{W}_1

Example:

$$\mathbf{h} = [0, 0, 1, 0, 0, 0, 0] \cdot \mathbf{W}_1 = \text{Row 3 of } \mathbf{W}_1$$

No averaging needed - we use the embedding directly (unlike CBOW).

Step 3: Generate Multiple Outputs

Critical Difference: Skip-gram predicts each context word independently.

For each context position c (where $c = 1, 2, \dots, C$):

$$\mathbf{z}^{(c)} = \mathbf{h} \cdot \mathbf{W}_2$$

where:

- $\mathbf{h} = (1 \times D)$ hidden layer
- $\mathbf{W}_2 = (D \times V)$ output weight matrix
- $\mathbf{z}^{(c)} = (1 \times V)$ raw scores for context position c

We perform this calculation C times (once for each context word).

Step 4: Apply Softmax

For each context position *c*:

$$\hat{\mathbf{y}}^{(c)} = \operatorname{softmax}(\mathbf{z}^{(c)})$$

where:

$$\operatorname{softmax}(z_i) = rac{e^{z_i}}{\sum_{j=1}^V e^{z_j}}$$

Components:

• z_i = raw score for word i

• e^{z_i} = exponential of raw score

• $\sum_{i=1}^{V} e^{z_i}$ = sum of all exponentials (normalization)

Result: Probability distribution over vocabulary for each context position.

5.Loss Function

Multi-Output Cross-Entropy

Skip-gram has multiple targets (all context words), so we sum their losses:

$$\mathcal{L} = -\sum_{c=1}^{C} \log P(ext{context}_c | ext{target})$$

where:

• C = number of context words

• $\operatorname{context}_c$ = the c-th context word

• target = center (input) word

Expanded form:

$$\mathcal{L} = -\sum_{c=1}^{C} \sum_{j=1}^{V} y_{j}^{(c)} \log(\hat{y}_{j}^{(c)})$$

where:

• $y_j^{(c)}$ = 1 if word j is the c-th context word, 0 otherwise • $\hat{y}_j^{(c)}$ = predicted probability for word j at position c

Simplified (since $y^{(c)}$ is one-hot):

$$\mathcal{L} = -\sum_{c=1}^{C} \log(\hat{y}_{ ext{true}_c}^{(c)})$$

6.Complete Numerical Example

Setup

Corpus: "Ineuron company is related to data science"

Vocabulary (7 words):

```
1: Ineuron 2: company 3: is 4: related 5: to 6: data 7: science
```

Training Example:

• Window size: 5

• Input: is (center word)

• Target Context: [Ineuron, company, related, to]

• Embedding dimension: 5

W₁ Matrix (7×5) - Word Embeddings

```
Dim1
               Dim2
                                     Dim5
                      Dim3
                              Dim4
Row 1: [0.92, 0.45, 0.23,
                              0.67, 0.34] ← Ineuron
Row 2: [0.85, 0.12, 0.56,
                              0.78, 0.29] \leftarrow company
Row 3: [0.15, 0.89, 0.34,
                              0.21, 0.67 \leftarrow is (TARGET)
Row 4: [0.67, 0.23, 0.91,
                              0.45, 0.12] ← related
Row 5: [0.34, 0.56, 0.78,
                              0.23, 0.45] \leftarrow to
Row 6: [0.71, 0.33, 0.88,
                              0.42, 0.19] \leftarrow data
Row 7: [0.68, 0.31, 0.85, 0.47, 0.16] \leftarrow science
```

W₂ Matrix (5×7) - Prediction Weights

```
Ineu. comp. is
                                       data
                          rela. to
                                              sci.
Row 1: [0.32, 0.45, 0.67,
                          0.23, 0.56, 0.12,
                                              0.89]
Row 2: [0.21, 0.78, 0.34,
                          0.91, 0.45, 0.67,
                                             0.23]
Row 3: [0.56, 0.23, 0.89,
                          0.12, 0.78, 0.34,
                                             0.45]
Row 4: [0.78, 0.34, 0.12,
                          0.56, 0.23, 0.91,
                                             0.67]
Row 5: [0.45, 0.91, 0.23, 0.67, 0.34, 0.78, 0.12]
```

7.Step-by-Step Calculation

STEP 1: One-Hot Encoding

Input word: "is" (position 3)

 $\mathbf{x}_{is} = [0, 0, 1, 0, 0, 0, 0]$

STEP 2: Extract Embedding

Operation: $\mathbf{h} = \mathbf{x}_{is} \cdot \mathbf{W}_1$

Dimension: $(1 \times 7) \cdot (7 \times 5) = (1 \times 5)$ \checkmark

Calculation:

For each element i in the result (i = 1 to 5):

$$h[i] = \sum_{j=1}^7 x_{
m is}[j] imes W_1[j][i]$$

Since x_{is} has only position 3 = 1:

Element 1:

$$h[1] = (0 \times 0.92) + (0 \times 0.85) + (1 \times 0.15) + (0 \times 0.67) + (0 \times 0.34) + (0 \times 0.71) + (0 \times 0.68)$$

 $h[1] = 0.15$

Element 2:

$$h[2] = (0 \times 0.45) + (0 \times 0.12) + (1 \times 0.89) + (0 \times 0.23) + (0 \times 0.56) + (0 \times 0.33) + (0 \times 0.31)$$

 $h[2] = 0.89$

Element 3:

$$h[3] = (0 \times 0.23) + (0 \times 0.56) + (1 \times 0.34) + (0 \times 0.91) + (0 \times 0.78) + (0 \times 0.88) + (0 \times 0.85)$$

 $h[3] = 0.34$

Element 4:

$$h[4] = (0 \times 0.67) + (0 \times 0.78) + (1 \times 0.21) + (0 \times 0.45) + (0 \times 0.23) + (0 \times 0.42) + (0 \times 0.47)$$

 $h[4] = 0.21$

Element 5:

$$h[5] = (0 \times 0.34) + (0 \times 0.29) + (1 \times 0.67) + (0 \times 0.12) + (0 \times 0.45) + (0 \times 0.19) + (0 \times 0.16)$$

 $h[5] = 0.67$

Result:

$$\mathbf{h} = [0.15, 0.89, 0.34, 0.21, 0.67] = \text{Row 3 of } \mathbf{W}_1$$

√

Interpretation: This is the embedding representation of the word "is".

STEP 3: Compute Output Scores

Key Point: We compute scores for all 4 context words independently.

Operation: $\mathbf{z}^{(c)} = \mathbf{h} \cdot \mathbf{W}_2$

Dimension: $(1 \times 5) \cdot (5 \times 7) = (1 \times 7)$ \checkmark

For each word j in vocabulary:

$$z[j] = \sum_{i=1}^5 h[i] imes W_2[i][j]$$

Output Scores for ALL Context Positions

Important: In Skip-gram, we use the **same W_2** matrix to predict all context words.

The calculation is:

$$z[j] = (0.15 \times W_2[1][j]) + (0.89 \times W_2[2][j]) + (0.34 \times W_2[3][j]) + (0.21 \times W_2[4][j]) + (0.67 \times W_2[5][j])$$

Score for "Ineuron" (Column 1)

$$z_1 = (0.15 \times 0.32) + (0.89 \times 0.21) + (0.34 \times 0.56) + (0.21 \times 0.78) + (0.67 \times 0.45)$$
 $z_1 = 0.0480 + 0.1869 + 0.1904 + 0.1638 + 0.3015$ $z_1 = 0.8906$

Score for "company" (Column 2)

$$z_2 = (0.15 \times 0.45) + (0.89 \times 0.78) + (0.34 \times 0.23) + (0.21 \times 0.34) + (0.67 \times 0.91)$$
 $z_2 = 0.0675 + 0.6942 + 0.0782 + 0.0714 + 0.6097$

$$z_2 = 1.5210$$

Score for "is" (Column 3)

$$z_3 = (0.15 \times 0.67) + (0.89 \times 0.34) + (0.34 \times 0.89) + (0.21 \times 0.12) + (0.67 \times 0.23)$$
 $z_3 = 0.1005 + 0.3026 + 0.3026 + 0.0252 + 0.1541$ $z_3 = 0.8850$

Score for "related" (Column 4)

$$z_4 = (0.15 \times 0.23) + (0.89 \times 0.91) + (0.34 \times 0.12) + (0.21 \times 0.56) + (0.67 \times 0.67)$$
 $z_4 = 0.0345 + 0.8099 + 0.0408 + 0.1176 + 0.4489$ $z_4 = 1.4517$

Score for "to" (Column 5)

$$z_5 = (0.15 \times 0.56) + (0.89 \times 0.45) + (0.34 \times 0.78) + (0.21 \times 0.23) + (0.67 \times 0.34)$$
 $z_5 = 0.0840 + 0.4005 + 0.2652 + 0.0483 + 0.2278$ $z_5 = 1.0258$

Score for "data" (Column 6)

$$z_6 = (0.15 \times 0.12) + (0.89 \times 0.67) + (0.34 \times 0.34) + (0.21 \times 0.91) + (0.67 \times 0.78)$$
 $z_6 = 0.0180 + 0.5963 + 0.1156 + 0.1911 + 0.5226$ $z_6 = 1.4436$

Score for "science" (Column 7)

$$z_7 = (0.15 \times 0.89) + (0.89 \times 0.23) + (0.34 \times 0.45) + (0.21 \times 0.67) + (0.67 \times 0.12)$$
 $z_7 = 0.1335 + 0.2047 + 0.1530 + 0.1407 + 0.0804$ $z_7 = 0.7123$

Raw Output Scores (Logits)

$$\mathbf{z} = [0.8906, 1.5210, 0.8850, 1.4517, 1.0258, 1.4436, 0.7123]$$

Position: 1 2 3 4 5 6 7 Word: Ineuron company is related to data science

Interpretation: These raw scores will be converted to probabilities via softmax. We use the **same scores** for predicting all 4 context positions.

STEP 4: Apply Softmax

Formula:

$$\operatorname{softmax}(z_i) = rac{e^{z_i}}{\sum_{j=1}^7 e^{z_j}}$$

where:

- e^{z_i} = exponential of score i
- $\sum_{j=1}^{7} e^{z_j}$ = sum of all exponentials (normalization factor)

Calculate e^{z_i} for each element

$$e^{z_1} = e^{0.8906} = 2.4364$$
 $e^{z_2} = e^{1.5210} = 4.5770$
 $e^{z_3} = e^{0.8850} = 2.4226$
 $e^{z_4} = e^{1.4517} = 4.2702$
 $e^{z_5} = e^{1.0258} = 2.7895$
 $e^{z_6} = e^{1.4436} = 4.2355$

 $e^{z_7} = e^{0.7123} = 2.0386$

Sum all exponentials

$$Sum = 2.4364 + 4.5770 + 2.4226 + 4.2702 + 2.7895 + 4.2355 + 2.0386$$

$$Sum = 22.7698$$

Divide each exponential by sum

$$P(\text{Ineuron}|\text{is}) = rac{2.4364}{22.7698} = 0.1070 = 10.70\%$$
 $P(\text{company}|\text{is}) = rac{4.5770}{22.7698} = 0.2010 = 20.10\%$
 $P(\text{is}|\text{is}) = rac{2.4226}{22.7698} = 0.1064 = 10.64\%$
 $P(\text{related}|\text{is}) = rac{4.2702}{22.7698} = 0.1875 = 18.75\%$
 $P(\text{to}|\text{is}) = rac{2.7895}{22.7698} = 0.1225 = 12.25\%$
 $P(\text{data}|\text{is}) = rac{4.2355}{22.7698} = 0.1860 = 18.60\%$
 $P(\text{science}|\text{is}) = rac{2.0386}{22.7698} = 0.0895 = 8.95\%$

Final Output Probabilities

$$\hat{\mathbf{y}} = [0.1070, 0.2010, 0.1064, 0.1875, 0.1225, 0.1860, 0.0895]$$

Word: Ineuron company is related to data science Prob: 10.70% 20.10% 10.64% 18.75% 12.25% 18.60% 8.95%

Verification:

$$0.1070 + 0.2010 + 0.1064 + 0.1875 + 0.1225 + 0.1860 + 0.0895 = 0.9999 \approx 1.0$$

√

Interpretation: This probability distribution is used to predict each of the 4 context words.

STEP 5: Compare with True Context Words

True context words:

- 1. Ineuron (position 1)
- 2. company (position 2)
- 3. related (position 4)
- 4. to (position 5)

One-hot encodings:

$$egin{aligned} \mathbf{y}^{(1)} &= [1,0,0,0,0,0,0] \quad ext{(Ineuron)} \ & \mathbf{y}^{(2)} &= [0,1,0,0,0,0,0] \quad ext{(company)} \ & \mathbf{y}^{(3)} &= [0,0,0,1,0,0,0] \quad ext{(related)} \ & \mathbf{y}^{(4)} &= [0,0,0,0,1,0,0] \quad ext{(to)} \end{aligned}$$

STEP 6: Calculate Loss

Loss formula:

$$\mathcal{L} = -\sum_{c=1}^4 \log P(ext{context}_c| ext{is})$$

Since we have 4 context words:

$$\mathcal{L} = -\left[\log(0.1070) + \log(0.2010) + \log(0.1875) + \log(0.1225)\right]$$

Individual Loss Terms

Loss for "Ineuron":

$$\mathcal{L}_1 = -\log(0.1070) = -(-2.2349) = 2.2349$$

Loss for "company":

$$\mathcal{L}_2 = -\log(0.2010) = -(-1.6038) = 1.6038$$

Loss for "related":

$$\mathcal{L}_3 = -\log(0.1875) = -(-1.6736) = 1.6736$$

Loss for "to":

$$\mathcal{L}_4 = -\log(0.1225) = -(-2.0994) = 2.0994$$

Total Loss

$$\mathcal{L} = 2.2349 + 1.6038 + 1.6736 + 2.0994 = 7.6117$$

Interpretation:

- Total loss = 7.6117 (quite high)
- Average loss per context word = 7.6117 / 4 = 1.9029
- Compare to CBOW loss (1.9025) very similar!

· Model needs significant training to improve

Why is loss high?

- Model predicted "company" with highest probability (20.10%)
- · But all 4 context words should have been predicted with high confidence
- · Current predictions are spread across vocabulary

STEP 7: Backpropagation

Gradient Descent Formula:

$$\mathbf{W}_1^{ ext{new}} = \mathbf{W}_1^{ ext{old}} - lpha \cdot rac{\partial \mathcal{L}}{\partial \mathbf{W}_1}$$

$$\mathbf{W}_2^{ ext{new}} = \mathbf{W}_2^{ ext{old}} - lpha \cdot rac{\partial \mathcal{L}}{\partial \mathbf{W}_2}$$

where:

- α = learning rate (e.g., 0.01)
- $\frac{\partial \mathcal{L}}{\partial \mathbf{W}}$ = gradient of loss with respect to weights

Gradient Calculation for W₂

For Skip-gram with multiple context words:

$$rac{\partial \mathcal{L}}{\partial \mathbf{W}_2} = \sum_{c=1}^4 \mathbf{h}^T \cdot (\hat{\mathbf{y}} - \mathbf{y}^{(c)})$$

where:

- $\mathbf{h}^T = (5 \times 1)$ transposed hidden layer
- $(\hat{\mathbf{y}} \mathbf{y}^{(c)}) = (1 \times 7)$ error for context word c
- Result = (5×7) gradient matrix

The gradients accumulate across all 4 context predictions.

Gradient Calculation for W₁

$$rac{\partial \mathcal{L}}{\partial \mathbf{W}_1} = \sum_{c=1}^4 \mathbf{x}_{ ext{is}}^T \cdot \left[(\hat{\mathbf{y}} - \mathbf{y}^{(c)}) \cdot \mathbf{W}_2^T
ight]$$

where:

• $\mathbf{x}_{\mathrm{is}}^{T}$ = (7×1) transposed one-hot input

• $[(\hat{\mathbf{y}} - \mathbf{y}^{(c)}) \cdot \mathbf{W}_2^T]$ = backpropagated error

• Result = (7×5) gradient matrix

Example Weight Update

Current weight: $w_{3,1}=0.15$ (first element of "is" embedding)

Computed gradient: $rac{\partial \mathcal{L}}{\partial w_{3,1}} = 0.08$

Learning rate: $\alpha = 0.01$

Update:

$$w_{3.1}^{
m new} = 0.15 - (0.01 \times 0.08) = 0.15 - 0.0008 = 0.1492$$

Interpretation:

• Positive gradient (0.08) means increasing this weight increases loss

• So we decrease it by a small amount (0.0008)

· After thousands of updates, weights converge to optimal values

8.Key Differences: CBOW vs Skip-gram

Architecture Comparison

Feature	свом	Skip-gram
Input	Multiple context words	Single target word
Hidden Layer	Average of context embeddings	Direct target embedding
Output	Single prediction	Multiple predictions
Loss	Single cross-entropy	Sum of multiple cross-entropies
Gradients	From one output	Accumulated from multiple outputs

Mathematical Comparison

CBOW Forward Pass:

$$\mathbf{h} = rac{1}{C} \sum_{c=1}^{C} (\mathbf{x}^{(c)} \cdot \mathbf{W}_1)$$

$$\mathbf{z} = \mathbf{h} \cdot \mathbf{W}_2$$

$$\mathcal{L} = -\log P(\text{target}|\text{context})$$

Skip-gram Forward Pass:

$$\mathbf{h} = \mathbf{x}_{\mathrm{target}} \cdot \mathbf{W}_1$$

$$\mathbf{z}^{(c)} = \mathbf{h} \cdot \mathbf{W}_2 \quad (\text{same for all } c)$$

$$\mathcal{L} = -\sum_{c=1}^{C} \log P(ext{context}_c | ext{target})$$

Training Efficiency

CBOW:

- Fewer training examples (one per window)
- Faster training
- Example count = Number of windows

Skip-gram:

- More training examples (C per window)
- Slower training
- Example count = Number of windows × C

For our corpus: With 3 windows and C=4 context words:

- CBOW: 3 training examples
- Skip-gram: $3 \times 4 = 12$ training examples

9. When to Use CBOW vs Skip-gram

Use CBOW When:

✓ You have frequent words

CBOW smooths over context by averaging

- · Works well when words appear many times
- Distributional information is reliable

You need faster training

- · One prediction per window
- · Less computational cost
- · Good for smaller datasets

Word order doesn't matter much

- · Averaging loses positional information
- Fine for many NLP tasks

▼ You have limited computational resources

Example Use Cases:

- · Sentiment analysis with common vocabulary
- Document classification
- Quick prototyping and experimentation

Use Skip-gram When:

You have rare words

- · Each context position gets its own prediction
- · Rare words get multiple training signals
- · Better representation for infrequent words

You have larger datasets

- · More training examples from same corpus
- · Can handle the computational overhead
- · Better results worth the extra time

You need higher quality embeddings

- · Generally produces better embeddings
- · Especially for rare words
- Industry standard for pre-trained models

Semantic relationships are critical

- · Better at capturing subtle relationships
- · More training signals per word

Example Use Cases:

- Large-scale pre-trained embeddings (like Google's Word2Vec)
- Domain-specific terminology (medical, legal)
- Tasks requiring fine-grained semantic distinctions
- Rare word understanding

Performance Comparison

Metric	CBOW	Skip-gram
Training Speed	Fast	Slow
Memory Usage	Lower	Higher
Rare Word Quality	Lower	Higher
Frequent Word Quality	Good	Excellent
Semantic Relationships	Good	Excellent
Scalability	Limited	Better

Practical Recommendation

Start with:

- CBOW for initial experiments and small datasets
- Skip-gram for production systems and large corpora

Google's Word2Vec uses: Skip-gram with negative sampling on 100 billion words

10.Complete Flow Summary

```
STEP 1: One-Hot Encoding
Target: is
→ [0, 0, 1, 0, 0, 0, 0]
STEP 2: Extract Embedding (x·W<sub>1</sub>)
→ [0.15, 0.89, 0.34, 0.21, 0.67] (Row 3 of W<sub>1</sub>)
STEP 3: Multiply by W<sub>2</sub>
→ [0.8906, 1.5210, 0.8850, 1.4517, 1.0258, 1.4436, 0.7123]
STEP 4: Apply Softmax
→ [0.1070, 0.2010, 0.1064, 0.1875, 0.1225, 0.1860, 0.0895]
STEP 5: Compare with 4 Context Words
True: [Ineuron, company, related, to]
Pred: Same probability distribution used for all 4
STEP 6: Calculate Loss for ALL 4 Context Words
Loss = -(\log(0.1070) + \log(0.2010) + \log(0.1875) + \log(0.1225))
     = 2.2349 + 1.6038 + 1.6736 + 2.0994
     = 7.6117
STEP 7: Backpropagate through ALL 4 outputs
Gradients accumulate from all context predictions
STEP 8: Update W<sub>1</sub> and W<sub>2</sub> via gradient descent
REPEAT for ALL windows × ALL context words...
```

11. Mathematical Formulation Summary

Forward Pass

Step 1: Extract target embedding

$$\mathbf{h} = \mathbf{x}_{\mathrm{target}} \cdot \mathbf{W}_1$$

Dimension: $(1 imes V) \cdot (V imes D) = (1 imes D)$

Step 2: Compute scores for each context position

$$\mathbf{z}^{(c)} = \mathbf{h} \cdot \mathbf{W}_2$$
 for $c = 1, 2, \dots, C$

Dimension:
$$(1 \times D) \cdot (D \times V) = (1 \times V)$$

Step 3: Apply softmax

$$\hat{\mathbf{y}}^{(c)} = \operatorname{softmax}(\mathbf{z}^{(c)})$$

where:

$$ext{softmax}(z_i)^{(c)} = rac{e^{z_i^{(c)}}}{\sum_{j=1}^{V} e^{z_j^{(c)}}}$$

Step 4: Calculate loss

$$\mathcal{L} = -\sum_{c=1}^{C} \log P(ext{context}_c | ext{target})$$

Expanded:

$$\mathcal{L} = -\sum_{c=1}^{C} \sum_{j=1}^{V} y_{j}^{(c)} \log(\hat{y}_{j}^{(c)})$$

Simplified (one-hot encoding):

$$\mathcal{L} = -\sum_{c=1}^{C} \log(\hat{y}_{ ext{true}_c}^{(c)})$$

Backpropagation

Output gradient:

$$rac{\partial \mathcal{L}}{\partial \mathbf{z}^{(c)}} = \hat{\mathbf{y}}^{(c)} - \mathbf{y}^{(c)}$$

Gradient for W₂:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}_2} = \sum_{c=1}^{C} \mathbf{h}^T \cdot (\hat{\mathbf{y}}^{(c)} - \mathbf{y}^{(c)})$$

Dimension:
$$(D imes 1) \cdot (1 imes V) = (D imes V)$$

Gradient for hidden layer:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{h}} = \sum_{c=1}^{C} (\hat{\mathbf{y}}^{(c)} - \mathbf{y}^{(c)}) \cdot \mathbf{W}_2^T$$

Dimension:
$$(1 \times V) \cdot (V \times D) = (1 \times D)$$

Gradient for W₁:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}_1} = \mathbf{x}_{\mathrm{target}}^T \cdot \frac{\partial \mathcal{L}}{\partial \mathbf{h}}$$

Dimension: $(V \times 1) \cdot (1 \times D) = (V \times D)$

Weight updates:

$$\mathbf{W}_1 := \mathbf{W}_1 - \alpha \cdot \frac{\partial \mathcal{L}}{\partial \mathbf{W}_1}$$

$$\mathbf{W}_2 := \mathbf{W}_2 - \alpha \cdot \frac{\partial \mathcal{L}}{\partial \mathbf{W}_2}$$

where α = learning rate

12. Skip-gram Variants

Standard Skip-gram (What We Covered)

- Predicts all context words independently
- · Uses full softmax over vocabulary
- Computationally expensive for large vocabularies

Hierarchical Softmax

 $\mbox{\bf Problem:} \ \mbox{Full softmax requires computing probabilities for all } \ V \ \mbox{words.}$

Solution: Use binary tree structure to reduce complexity.

Complexity:

- Full softmax: O(V)
- Hierarchical softmax: $O(\log V)$

How it works:

- · Words are leaves of binary tree
- Each prediction = path from root to leaf
- Probability = product of binary decisions

Negative Sampling (Most Popular)

Problem: Computing gradients for all vocabulary words is slow.

Solution: Sample only a few "negative" examples.

Modified objective:

$$\mathcal{L} = -\log \sigma(\mathbf{v}_{ ext{context}}^T \mathbf{v}_{ ext{target}}) - \sum_{i=1}^k \mathbb{E}_{w_i \sim P_n(w)} \left[\log \sigma(-\mathbf{v}_{w_i}^T \mathbf{v}_{ ext{target}})
ight]$$

where:

- σ = sigmoid function
- k = number of negative samples (typically 5-20)
- $P_n(w)$ = noise distribution for sampling

Benefits:

- · Much faster training
- Only updates *k* negative words + 1 positive
- · Similar quality to full softmax

Google's Word2Vec implementation uses negative sampling.

13. Dimension Reference

```
V = Vocabulary size = 7

D = Embedding dimension = 5

C = Context size = 4 (number of context words)

W1: (V \times D) = (7 \times 5)

W2: (D \times V) = (5 \times 7)

X: (1 \times V) = (1 \times 7) one-hot target

h: (1 \times D) = (1 \times 5) embedding

z: (1 \times V) = (1 \times 7) logits (same for all c)

ŷ: (1 \times V) = (1 \times 7) probabilities (same for all c)

x·W1: (1 \times 7) \cdot (7 \times 5) = (1 \times 5)

h·W2: (1 \times 5) \cdot (5 \times 7) = (1 \times 7)
```

14.Common Questions

Q1: Why do all context positions use the same W₂?

Answer:

- Skip-gram assumes positional independence
- · The relationship between target and context is symmetric
- · Same embedding should predict all nearby words
- . This is the "bag of words" assumption position doesn't matter

Alternative: Some models use position-specific weights, but this increases parameters significantly.

Q2: How is loss accumulated across context words?

Answer: We simply **sum** the individual losses:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4$$

Each \mathcal{L}_c is the cross-entropy loss for predicting context word c.

Q3: Why is Skip-gram better for rare words?

Answer:

- More training signals: Rare word appears once but generates C training examples
- CBOW averaging: Dilutes the signal from rare context words
- · Skip-gram: Each context word gets full attention

Example:

- Word appears 10 times in corpus
- CBOW: 10 training examples
- Skip-gram: $10 \times 4 = 40$ training examples

Q4: What if window includes the target word itself?

Answer:

- We skip the center position when creating context
- Context = all words in window except center
- Otherwise model would just learn identity mapping

Q5: How does gradient accumulation work?

Answer:

For each training example with C context words:

- 1. Compute prediction (same for all *c*)
- 2. Calculate error for each context: $\hat{\mathbf{y}} \mathbf{y}^{(c)}$
- 3. Sum errors: $\sum_{c=1}^{C} (\hat{\mathbf{y}} \mathbf{y}^{(c)})$
- 4. Use summed error for backpropagation

This means frequent context words have **stronger gradients**.

15.Practical Implementation Notes

Memory Efficiency

Don't create one-hot vectors explicitly:

```
# Conceptual (what we showed):
h = x @ W1
# Actual implementation:
h = W1[target_word_index] # Direct indexing
```

Batch Processing

Process multiple target words simultaneously:

```
# Shape: (batch_size, embedding_dim)
h_batch = W1[target_indices]

# Shape: (batch_size, vocab_size)
z_batch = h_batch @ W2
```

Subsampling Frequent Words

Very frequent words (like "the", "is") provide less information. Skip-gram often **subsamples** them:

$$P(\text{discard word } w) = 1 - \sqrt{\frac{t}{f(w)}}$$

where:

- ullet f(w) = frequency of word w
- $t = \text{threshold (e.g., } 10^{-5})$

Effect: More training focus on meaningful words.

Dynamic Window Size

Instead of fixed window size, randomly sample window size for each example:

- Helps model learn different context ranges
- Words closer to target get more weight
- Improves generalization

16. Visualization of Skip-gram Training

Training Example Flow

```
Corpus: "Ineuron company is related to data science"
Window 1: [Ineuron, company, is, related, to]
⊢ Target: is
└─ Generates 4 training pairs:
   \vdash (is \rightarrow company)
   — (is → related)
   \vdash (is \rightarrow to)
Window 2: [company, is, related, to, data]

    ⊢ Target: related

└─ Generates 4 training pairs:
   ├ (related → company)
   — (related → is)
   — (related → to)
   └ (related → data)
Window 3: [is, related, to, data, science]
⊢ Target: to
└─ Generates 4 training pairs:
   \vdash (to \rightarrow is)
   — (to → related)
   \vdash (to \rightarrow data)
   \vdash (to \rightarrow science)
```

Total: 12 training pairs from 3 windows

Weight Update Flow

For each training pair (target → context):

1. Extract target embedding from W₁

↓

2. Multiply by W₂ to get scores

↓

3. Apply softmax to get probabilities

↓

4. Calculate loss for this context word

↓

5. Compute gradients

↓

6. Accumulate gradients (if multiple contexts)

↓

7. Update W₁ and W₂

After processing ALL pairs:

└─ W₁ contains learned word embeddings

17. Embedding Quality Analysis

What Makes Good Embeddings?

Semantic Similarity:

Similar words should have small cosine distance:

$$\mathrm{similarity}(\mathbf{v}_{king}, \mathbf{v}_{queen}) = \frac{\mathbf{v}_{king} \cdot \mathbf{v}_{queen}}{||\mathbf{v}_{king}|| \cdot ||\mathbf{v}_{queen}||}$$

Relationship Preservation:

Vector arithmetic should capture relationships:

$$\mathbf{v}_{\mathrm{king}} - \mathbf{v}_{\mathrm{man}} + \mathbf{v}_{\mathrm{woman}} pprox \mathbf{v}_{\mathrm{queen}}$$

Skip-gram Embedding Properties

After training on large corpus:

Clusters form naturally:

Countries group together

- · Verbs cluster by tense
- · Adjectives by sentiment
- · Technical terms by domain

Analogies work:

```
    Paris : France :: London : ? → England
    Walking : Walked :: Swimming : ? → Swam
    Good : Better :: Bad : ? → Worse
```

Distance reflects semantics:

- distance(cat, dog) < distance(cat, theory)
- distance(company, business) < distance(company, science)

18. Applications and Extensions

Direct Applications

1. Word Similarity:

```
similar_words = find_similar("king", embeddings, top_k=5)
# Returns: [queen, prince, monarch, royal, throne]
```

2. Analogy Completion:

```
analogy("man", "woman", "king", embeddings)
# Returns: queen
```

3. Semantic Clustering:

```
clusters = kmeans(embeddings, n_clusters=10)
# Groups semantically similar words
```

Downstream Tasks

1. Text Classification:

- · Represent document as average of word embeddings
- Feed to classifier (SVM, neural network)

2. Named Entity Recognition:

- · Use embeddings as features
- · Capture semantic context

3. Machine Translation:

- Initialize encoder/decoder with pre-trained embeddings
- Transfer semantic knowledge

4. Sentiment Analysis:

- Embeddings capture positive/negative sentiment
- "good", "excellent" cluster together

Modern Extensions

1. FastText (Facebook):

- Represents words as bags of character n-grams
- · Handles out-of-vocabulary words
- · Better for morphologically rich languages

2. GloVe (Stanford):

- Combines Skip-gram with matrix factorization
- · Uses global word co-occurrence statistics
- Often competitive with Word2Vec

3. Contextualized Embeddings:

- BERT, GPT, ELMo
- · Different embeddings based on context
- "bank" (river) vs "bank" (money)

19. Training Tips and Best Practices

Hyperparameter Selection

Embedding Dimension:

• Small datasets: 50-100 dimensions

Medium datasets: 100-300 dimensions

• Large datasets: 300-500 dimensions

Google's Word2Vec: 300 dimensions

Window Size:

- Small windows (2-3): Capture syntactic relationships
- Large windows (5-10): Capture semantic/topical relationships
- Common choice: 5

Learning Rate:

- Start: 0.025
- Linearly decay to: 0.0001
- · Adjust based on loss convergence

Negative Samples:

- Small datasets: 5-20 negative samplesLarge datasets: 2-5 negative samples
- Google's Word2Vec: 5-10

Training Epochs:

- Typical: 5-15 epochs
- · Monitor validation loss
- · Early stopping to prevent overfitting

Data Preprocessing

Essential steps:

- 1. Lowercase: Convert all text to lowercase (optional)
- 2. Remove punctuation: Unless semantically important
- 3. Remove stopwords: Optional sometimes helpful to keep
- 4. Tokenization: Split into words
- 5. **Minimum frequency:** Remove rare words (e.g., frequency < 5)

Advanced:

- Subword tokenization (BPE, WordPiece)
- Phrase detection ("New York" → "New_York")
- Special token handling (numbers, URLs)

Corpus Requirements

Minimum:

- · At least 10,000 sentences
- At least 100,000 words

Recommended:

- 1 million+ sentences
- 10 million+ words

Optimal:

- Google's Word2Vec: 100 billion words
- · Results improve with more data

Domain-specific:

- · Medical corpus for medical NLP
- · Legal corpus for legal NLP
- Quality > quantity for specialized domains

20. Evaluation Metrics

Intrinsic Evaluation

1. Word Similarity Tasks:

- Human-annotated word pairs with similarity scores
- Compare cosine similarity with human judgments
- · Spearman correlation coefficient

Example datasets:

- WordSim-353
- SimLex-999
- MEN dataset

2. Analogy Tasks:

- Test relationships: a:b :: c:?
- Accuracy = correct predictions / total analogies

Categories:

- Semantic: king:queen :: man:woman
- Syntactic: walking:walked :: swimming:swam

Example dataset:

Google Analogy Test Set (19,544 questions)

Extrinsic Evaluation

Test on downstream tasks:

- Text classification accuracy
- Named entity recognition F1-score
- · Sentiment analysis accuracy
- Machine translation BLEU score

 $\textbf{Better embeddings} \rightarrow \textbf{Better downstream performance}$

21. Comparison Summary: CBOW vs Skip-gram

Visual Comparison

Loss Comparison

CBOW:

 $\mathcal{L}_{ ext{CBOW}} = -\log P(ext{target}| ext{context}_1,\dots, ext{context}_C)$

- Single loss value per window
- · Predicts one word from many

Skip-gram:

$$\mathcal{L}_{ ext{Skip-gram}} = -\sum_{c=1}^{C} \log P(ext{context}_c | ext{target})$$

- Sum of C loss values per window
- · Predicts many words from one

Training Example Count

For corpus with N windows and context size C:

Model	Training Examples	Gradient Updates
CBOW	N	N
Skip-gram	N imes C	N imes C

Our example: 3 windows, C=4

• CBOW: 3 examples

• Skip-gram: 12 examples

Computational Complexity

Per Window:

Operation	CBOW	Skip-gram
Forward pass	1 softmax	C softmax operations
Backward pass	1 gradient	C accumulated gradients
Time complexity	O(V)	O(C imes V)

With negative sampling: Both become O(k) where k = negative samples

22.Key Takeaways

Core Concepts

- 1. Skip-gram predicts context from target the inverse of CBOW
- 2. Multiple outputs per training example one prediction for each context word
- 3. Same probability distribution for all context positions positional independence assumption
- 4. Loss accumulates across all context predictions:

$$\mathcal{L} = -\sum_{c=1}^{C} \log P(ext{context}_c | ext{target})$$

5. No averaging - uses target embedding directly (unlike CBOW)

Practical Insights

- 6. Better for rare words generates C training examples per occurrence
- 7. Slower but higher quality more training examples, better embeddings
- 8. Industry standard Google's Word2Vec uses Skip-gram with negative sampling
- 9. Scales well performance improves with more data
- 10. Flexible architecture can use hierarchical softmax or negative sampling

Mathematical Properties

- 11. Gradients accumulate from all context predictions during backpropagation
- 12. Same W_2 matrix used for all context positions
- 13. Vector arithmetic works after training on sufficient data:

$$\mathbf{v}_{\mathrm{king}} - \mathbf{v}_{\mathrm{man}} + \mathbf{v}_{\mathrm{woman}} pprox \mathbf{v}_{\mathrm{queen}}$$

- 14. Cosine similarity measures semantic relatedness between word vectors
- 15. Embeddings are dense every dimension contributes to meaning

23.Next Steps

To Implement Skip-gram:

- 1. Understand neural networks forward/backward propagation
- 2. Learn optimization gradient descent, Adam optimizer
- 3. Study efficiency techniques negative sampling, hierarchical softmax
- 4. Practice with frameworks Gensim, TensorFlow, PyTorch

Advanced Topics:

- Subword embeddings (FastText)
- Global matrix factorization (GloVe)
- Contextualized embeddings (BERT, ELMo)
- Multilingual embeddings (MUSE, LASER)
- Domain adaptation techniques

Resources:

Original Papers:

- Mikolov et al. (2013): "Efficient Estimation of Word Representations in Vector Space"
- Mikolov et al. (2013): "Distributed Representations of Words and Phrases"

Implementations:

- Gensim library (Python)
- Word2Vec by Google (C++)
- TensorFlow/PyTorch tutorials

Pre-trained Models:

- Google News Word2Vec (3 billion words, 300 dimensions)
- FastText pre-trained vectors (157 languages)

24. Final Comparison Table

Aspect	СВОЖ	Skip-gram
Input	Multiple context words	Single target word
Output	Single target word	Multiple context words
Hidden Layer	Average of context embeddings	Direct target embedding
Training Examples	N (per corpus)	N × C (per corpus)
Training Speed	Fast 4	Slower 🐂
Rare Word Quality	Lower \(\square\)	Higher -

Aspect	CBOW	Skip-gram
Frequent Word Quality	Good √	Excellent √√
Memory Usage	Lower	Higher
Semantic Quality	Good	Excellent
Best Dataset Size	Small to Medium	Medium to Large
Computational Cost	O(V) per window	O(C imes V) per window
Gradient Updates	One per window	C per window
Pre-trained Models	Less common	More common 😭
Industry Adoption	Moderate	High 😭 😭

Remember: Both CBOW and Skip-gram learn the same \mathbf{W}_1 matrix containing word embeddings - they just use different training objectives to get there!