

Álgebra de Boole

- Algebra proposta pelo matemático George Boole em 1854
- Usada para simplificar circuitos lógicos
 - Todas as variáveis têm valor 0 ou 1
 - Tem 3 operadores:

Nome	Símbolo
OR	+
AND	•
NOT	Ā

Regras da Álgebra de Boole

Identidade

- a) A+0=A
- b) A+A=A
- c) A.1=A
- d) A.A=A

Zero e Um

- a) A+1=1
- b) A.0=0

Inverso

- a) $A + \overline{A} = 1$
- b) $A.\overline{A}=0$

Regras da Álgebra de Boole

Comutativa

- a) A+B=B+A
- b) A.B=B.A

Associativa

- a) A+(B+C) = (A+B)+C = A+B+C
- b) A.(B.C) = (A.B).C = A.B.C

Distributiva

- a) A.(B+C) = A.B+A.C
- b) (A+B).(A+C) = A+(B.C)

Exercício

Mostre que (A+B).(A+C) = A+(B.C)

Mostre que
$$(A+B).(A+C) = A+(B.C)$$

Mostre que
$$(A+B).(A+C) = A+(B.C)$$
Distributiva
$$(A+B).(A+C)=A.A + A.C + A.B + B.C$$

Mostre que
$$(A+B).(A+C) = A+(B.C)$$

 $(A+B).(A+C)=A.A + A.C + A.B + B.C$
 $A + A.C + A.B + B.C$

Mostre que
$$(A+B).(A+C) = A+(B.C)$$

 $(A+B).(A+C)=A.A + A.C + A.B + B.C$
 $A + A.C + A.B + B.C$
A em evidência $A.(1 + C + B) + B.C$

Mostre que
$$(A+B).(A+C) = A+(B.C)$$

 $(A+B).(A+C)=A.A + A.C + A.B + B.C$
 $A + A.C + A.B + B.C$
 $A.(1 + C + B) + B.C$
 $A.1+B.C = A+B.C$

Teoremas de DeMorgan

Usados para simplificar expressões booleanas

1° Teorema: $\overline{A.B} = \overline{A+B} \Rightarrow Complemento do Produto é igual à Soma dos Complementos$

Teoremas de DeMorgan

Usados para simplificar expressões booleanas

1º Teorema: $\overline{A.B} = \overline{A+B} \Rightarrow$ Complemento do Produto é igual à Soma dos Complementos

Teoremas de DeMorgan

Usados para simplificar expressões booleanas

1º Teorema: $\overline{A.B} = \overline{A+B} \Rightarrow Complemento do Produto é igual à Soma dos Complementos$

Prova Saídas Iguais									
A	В	A.B	A	В	A+B				
0	0	1	1	1	1				
0	1	1	1	0	1				
1	0	1	0	1	1				
1	1	0	0	0	0				

Teoremas de DeMorgan

Usados para simplificar expressões booleanas

2° Teorema: A+B = A.B ⇒

Complemento da Soma é igual ao Produto dos Complementos

Exercício

Prove o 2° Teorema de DeMorgan

Prova do 2º Teorema:

Provo	1					<u>_</u>		
	Saídas Iguais —							
A	В	A+B	A+B	A	В	A.B		
0	0	0	1	1	1	1		
0	1	1	0	1	0	0		
1	0	1	0	0	1	0		
1	1	1	0	0	0	0		

Bibliografia Base

STALLINGS, William. **Arquitetura e Organização de Computadores.** São Paulo: Pearson Education do Brasil, 2002.

MONTEIRO, Mário A. **Introdução a Organização de Computadores.** Rio de Janeiro: LTC, 2002.

David A. Patterson & John L. Hennessy. **Organização e projeto de computadores a interface Hardware/Software.** Tradução: Nery Machado Filho. Morgan Kaufmmann Editora Brasil: LTC, 2000.