23MAT102 Class Notes

Adithya Nair

Contents

	0.1	A Basic Order Of Importance		
1	A F	Revision Of Sets And Functions 3		
	1.1	Notations		
	1.2	Roster Notation		
	1.3	Basic Concepts Of Sets		
	1.4	Logical Notation		
	1.5	Functions		
	1.6	Cartesian Product		
	1.7	Composition Of Functions		
	1.8	Types Of Functions		
2	Linear Algebra 6			
	2.1	Examples Of Vector Spaces		
	2.2	Some Theorems And Proofs Regarding Vector Spaces		
	2.3	Fields		
	2.4	Examples Of Vector Spaces And Fields		
	2.5	Subspaces		
	2.6	Span		
	2.7	Linear dependence and independence		
	2.8	Basis 12		

0.1 A Basic Order Of Importance

- \bullet \mathbf{Axiom} Statements taken as fact
- Theorem Statements that are proven using axioms
- Lemma Statements proven using theorems
- **Proposition** Statements, regardless of whether it is true or false, is assumed to be true
- Corollary A theorem that is proven using another theorem.*

Chapter 1

A Revision Of Sets And Functions

Sets are assumed to be sets on the basis of a theory known as **Naive Set Theory**. according to this theory, A set is defined as,

Definition 1.0.1: Sets

A set is a collection of objects

e.g. -

$$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$$

1.1 Notations

A,B...Z will denote sets a,b...z will denote elements $a \in A$, a is an element of A $a \notin A$, a is not an element of A

1.2 Roster Notation

$$\mathbb{N} = \{1, 2...\}$$

$$A = \{2, 4, 6, 8$$

$$B = \{x \in Z + | x < 10\}$$

B is written in set builder form

1.3 Basic Concepts Of Sets

Definition 1.3.1: Subsets

A and B are two sets. A is a subset of B, and we write $A \subset B$, if every element of A is also an element of B

Theorem 1.3.1. Two sets A and B are equal and we write A=B if and only if A \subset B and B \subset A

Definition 1.3.2: Unions

The union of two sets A and B, denoted by $A \cup B$, is

$$A \cup B = \{x | x \in A \text{ and } x \in B\}$$

Definition 1.3.3: Intersections

The intersection of two sets denoted by $A \cap B$, is

$$A \cap B = \{x | x \in A \text{ or } x \in B\}$$

Definition 1.3.4: Set Difference

The difference of two sets denoted by A\ B is

$$A \setminus B = x | x \in A \text{ and } x \notin B$$

Definition 1.3.5: Set Complement

The complement of a set A, denoted by A C is,

$$A^C = \{ x \in X | \ x \notin A \}$$

- $(B \cup C)^C = B^C \cap C^C$
- $\bullet \ (B \cap C)^C = B^C \cap C^C$
- $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

1.4 Logical Notation

 \forall - for all \exists - there exists $\exists !$ - there exists a unique

1.5 Functions

f: A \rightarrow B f(a) = b, a \in A, b \in B A is the **domain** of the function, B is the **codomain** of the function and, {b \in B | f(a) = b } - Range

1.6 Cartesian Product

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

1.7 Composition Of Functions

 $(g \circ f)(x) = (g(f(x))$

A function is the same as a mapping, which is the same as a transformation

1.8 Types Of Functions

1. f is injective(one-one) if,

$$f(a) = f(a') then a = a'$$

2. f is surjective(onto) if,

$$\forall b \in B, \exists \ a \in A, \ f(a) = b$$

3. f is bijective if f is injective and surjective

Reference

Knowles - Linear Vector Spaces and Cartesian Tensors

Halmos - Finite Dimensional Linear Spaces

Gelfand - Linear Algebra

Chapter 2

Linear Algebra

A vector space over a field $F = \mathbb{R}$ or \mathbb{C} is a set V with two operations:

- 1. $+:V \times V \to V$ i.e. "+" is closed under addition.
- 2. ::F \times V \rightarrow V, i.e. " · " is closed under multiplication

having the following properties

1. Associativity

$$\forall v_1, v_2, v_3 \in V, (v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$$

2. Existence of identity element

$$\exists !\ 0 \in V, \forall v\ inV, such that 0 + v = v$$

3. Existence of additive inverse

$$\forall \ v \in V \exists (-v) \in V, v + (-v) = 0$$

4. Commutativity

$$\forall u, v \in V, u + v = v + u$$

Properties 1 to 4 constitute a group known as the "abelian group" or "commutative group"

5. Existence of multiplactive identity

$$\exists ! \ 1 \in V, \ such \ that \ \forall \ v \in V, 1 \cdot v = v$$

6. Associativity

$$\mu, \lambda \in F, v \in V, \lambda(\mu \cdot v) = (\lambda \mu) \cdot v$$

7. Distribution of + over \cdot

$$(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v, \forall \mu, \lambda \in F$$

8. Distribution of \cdot over +

$$\lambda \cdot (u+v) \ = \lambda \cdot u + \lambda \cdot v, \forall \lambda \in \ F, u,v \in V$$

2.1 Examples Of Vector Spaces

- 1. V = 0
- $2. \mathbb{R}$
- 3. All polynomials of order at most n

Reference

- Donald Knuth
- Marvin Mirsky, MIT
- Web Of Stories, Youtube Channel
- Axler, Chapter 1
- Olver, Shakiban, Chapter 2
- Terrence Tao Notes AMS Open Math

2.2 Some Theorems And Proofs Regarding Vector Spaces

Theorem 2.2.1. Additive identity is unique

Proof. Suppose \exists additive identities 0_1 , 0_2 such that

$$\forall u \in V, 0_1 + u \& 0_2 + u = u$$
$$0_1 + 0_2 = 0_2$$
$$0_2 + 0_1 = 0_1$$
$$\therefore 0_1 = 0_2$$

Theorem 2.2.2. Additive inverse is unique

Proof. Suppose additive inverses of u are v_1, v_2

$$u + v_1 = 0, u + v_2 = 0$$

$$v_2 + (u + v_1) = v_2 + 0$$

$$(v_2 + u) + v_1 = v_2$$

$$0 + v_1 = v_2$$
$$v_1 = v_2$$

(2)

Theorem 2.2.3. $0 \cdot u = 0$

Proof. Let 0 . u = 0 Consider,

$$v + v = 0.u + 0.u = (0 + 0).u$$
$$= 0.u = v$$
$$\Rightarrow v + v = v$$
$$v + (v + (-v)) = v + -v$$
$$\Rightarrow v = 0$$

⊜

Theorem 2.2.4 (Scalars And Inverses).

$$(-\lambda)u = -(\lambda u) = \lambda \cdot (-u)$$

Proof. Let

$$v = (-\lambda).u$$

Consider,

$$v + \lambda . u = (-\lambda) . u + \lambda . u$$

$$= (\lambda + \lambda) . u$$

$$= 0 . u = 0$$

$$\therefore (\lambda . u) + -(\lambda . u) = 0$$

$$= (-\lambda . u) + (\lambda . u) + -(\lambda . u) = (-\lambda . u)$$

$$= (-\lambda) . u + 0 = (-\lambda . u)$$

$$(-\lambda) . u = -(\lambda . u)$$

☺

2.3 Fields

- A) To every pair α and β of scalars, there corresponds a scalar $\alpha + \beta$ called the sum of α and β , in such a way that
 - 1. addition is commutative, $\alpha + \beta = \beta + \alpha$

- 2. addition is associative, $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$
- 3. There exists a unique scalar 0, called zero, such that $\alpha+0=\alpha$ for every scalar α , and
- 4. to every scalar α , there corresponds a unique scalar $(-\alpha)$ such that $\alpha + (-\alpha) = 0$
- B) To every pair α and β of scalars there corresponds a scalar $\alpha\beta$, called the product of α and β in such a way that
 - 1. multiplication is commutative, $\alpha\beta = \beta\alpha$
 - 2. multiplication is associative, $(\alpha\beta)\gamma = \alpha(\beta\gamma)$
 - 3. there exists a unique non-zero scalar 1 (called one) such that $\alpha 1 = \alpha$ for every scalar α and
 - 4. to every non-zero scalar α , there corresponds a unique scalar $\alpha^{-1}=\frac{1}{\alpha}$ such that $\alpha\alpha^{-1}=1$
- C) Multiplication is distributive with respect to addition,

$$\alpha(\beta + \gamma) = (\alpha\beta + \alpha\gamma)$$

If addition and multiplication are defined within same set of objects(scalars) so that the conditions A,B and C are satisfied, then that set is called a field.

Note:-

The main difference between vector spaces and fields:

All fields are vector spaces over themselves. The main difference arises in the operation. Vector spaces have operations:

$$+: V \times V \to V$$

$$\cdot: F \times V \to V$$

While fields have both operations:

$$+, \cdot : F \times F \to F$$

Another key difference is that fields have an axiom regarding a unique scalar known as the multiplicative inverse (α^{-1}) which is not an axiom for vector spaces.

2.4 Examples Of Vector Spaces And Fields

Examples of fields include: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$

• For complex numbers

$$\mathbb{C}(\text{Complex Numbers}) = \{(a, b) : a, b \in R\}$$
$$(a, b) + (c, d) = (a + c, b + d)$$
$$(a, b)(c, d) = (ac - bd, ad + bc)$$

This is a field.

- \mathbb{R}^n , n-tuple where $x = (x_1, x_2, x_2 \dots x_n)$ This is a vector space over \mathbb{R}
- $P_n(\mathbb{R})$, the set of all polynomials with degree n is a vector space over \mathbb{R} .

Note:- $P_n(\mathbb{R}) \text{ has a direct correlation to } (\mathbb{R}^{n+1}) \text{ which means they are isomorphic spaces}$

- $C(\mathbb{R})$ the space of all continuous functions is a vector space over field \mathbb{R}
- $M_{m \times n}$: set of all $m \times n$ matrices is a vector space
- Linear maps/operations/transformations/functions Suppose U,V are two vector spaces over a field F, then $T: u \to v$ is linear for some scalars $\alpha, \beta \in F$, we have $T(\alpha u_1 + \beta u_2 = \alpha T(u_1)) + \beta T(u_2)$

2.5 Subspaces

 $(V,+,\,\cdot)$ - is a vector space $(W\subset V,\,+,\,\cdot)$ - is a subspace of V

A subspace is a vector space, where the set is a subset of another vector space.

Note:-

All lines that pass through the origin in a 2-dimensional plane are subspaces of \mathbb{R}^2

Lemma 2.5.1. Let V be a vector space and let W be a subset of V. Then W is a subspace of V if and only if the following properties hold:

1. W is closed under addition,

If
$$w_1, w_2 \in W$$
, then $w_1 + w_2 \in W$

2. W is closed under scalar multiplication.

If
$$\alpha \in F, w \in W$$
, then $\alpha w \in W$

Proof. 1. W is a subspace \Rightarrow 1. and 2.

W is closed under addition and scalar multiplication, because this is implicit in the definition of subspaces.

2. 1. and 2. \Rightarrow W is a subspace $-u \in W$, because -1.u = -u $0 \in W$ because 0.u = 0

2.6 Span

Definition 2.6.1: Spans

Let S be a finite collection of vectors in a vector space V. A linear combination of S is defined to be any vector in V of the form

$$\alpha_1 v_1 + \alpha_2 v_2 \cdots + \alpha_n v_n$$

Theorem 2.6.1. Let S be a subset of a vector space V. Then span(S) is a subspace of V which contains S is a subspace of V which contains S. Moreoever, ny subspace of V which contains S as a subset must in fact contain all of span(S)

Proof. To prove, i) span(S) is a subspace of V ii) span(S) $\subseteq V$ Proving span(S) $\subseteq V$, Let $\alpha_1 v_1 + \alpha_2 v_2 \cdots + \alpha_n v_n$ be any element in span(S), where $\alpha_i \in F, v_i \in S$ and $i = \{1, \ldots n\}$ Then

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n \in span(S)$$

Since, \cdot and + are closed under V, $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n \in V$ $\therefore span(S) \in V$

2.7 Linear dependence and independence

Definition 2.7.1: Linear dependence

Any collection S of vectors in a vector space V are linearly dependent, if we can find scalars

$$\alpha_1, \alpha_2 \dots, \alpha_n \in F$$
 not all zero, such that

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0$$

2.8 Basis

Definition 2.8.1: Basis

A basis in a vector space V is a set S of linearly independent vectors such that every vector in V is a linear combination of elements in S, i.e. S is the set of linearly independent vectors and is the spanning set of V.

Definition 2.8.2: Dimension

The dimension of a finite dimensional vector space V is the number of elements in a basis of V.

Lemma 2.8.1. Let $\{v_1, v_2, \dots v_n\}$ be a basis for a vector space V. Then every vector v can be written in the form,

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n \tag{2.1}$$

Proof. Let,

$$v = \beta_1 v_1 + \beta_2 v_2 + \dots \beta_n v_n \tag{2.2}$$

be another representation of v in $v_1, v_2 \dots v_n$

$$2.2 - 2.1$$

$$0 = (\beta_1 - \alpha_1)v_1 + (\beta_2 - \alpha_2)v_2 \dots + (\beta_n - \alpha_n)v_n$$

$$\therefore \alpha_1 = \beta_1, \alpha_2 = \beta_2 \dots \alpha_n = \beta_n$$

ii) W is any subspace of V, which contains S. Take any term v, which is a linear combination of $\alpha_i v_i$

$$v = \alpha_1 v_1 + \alpha_2 v_2 \cdots + \alpha_n v_n,$$

$\therefore v \in span(S) \in W$

Theorem 2.8.1. Let V be a vector space, and let S be a linearly independent subset of V. Let v be a vector which does not lie in S. a) If v lies in span(S) then the set $S \cup \{v\}$ is linearly dependent and span($S \cup \{v\} = \operatorname{span}(S)$)