```
#include <stdlib.h>
#include <string.h>
#define MAXPAROLA 30
#define MAXRIGA 80
int main(int arge, char "argv[])
   int freq[MAXPAROLA]; /* vettore di contatti delle frequenze delle lunghezze delle pitrole char riga[MAXXIGA]; int i, intalo, lunghezza;
```

Trees

Definitions

Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Rooted trees

- A rooted tree is a tree where there is a node r called root
 - Parent/child relationship
 - y is an ancestor of x if y belongs to the path from r to x. In this case x is a descendant of y
 - y is a proper ancestor of x iff $x \neq y$

y ancestor of di x x descendant of y a parent of b b child of a

Properties of a rooted tree

- Given a rooted tree T the following are common definitions
 - Degree (T) = maximum number of children
 - \triangleright Depth (x) = length of the path from the root to x
 - > Height (T) = maximum depth of a node

Representation of a tree

- There are at least two representations for nodes of a tree of degree k
 - ➤ Each node may store a pointer to the parent, the key, and k pointers to k children

- Unefficient if only few nodes have indeed degree k
 - Space is allocated for all k pointers, but many are NULL)

Representation of a tree

➤ Each node may also store a pointer to parent, the key, 1 pointer to left child, 1 pointer to right sibling

 Efficient, as each node specifies always 2 pointers, no matter the degree of the tree

Representation of a tree

Binary trees

- Definition
 - > Tree of degree 2
 - Recursively T is
 - Empty set of nodes

Root, left subtree, right subtree

Complete Binary Trees

- A complete binary tree must satisfy two conditions
 - > All leaves have the same depth
 - > Every node is either a leaf or it has 2 children
- In a complete binary tree of height h
 - > The number of leaves is 2h
 - > The number of nodes is

$$\sum_{0 \le i \le h} 2^{i} = 2^{0} + 2^{1} + 2^{2} \dots + 2^{h}$$

$$= 2^{h+1} - 1$$

Finite geometric progression with ratio = 2

Balanced binary trees

In a balanced binary tree all paths root-leaves have the same length

- > If T is complete, then T is also balanced
- > The opposite is not necessarily true

Balanced binary trees

❖ A binary tree is said to be almost balanced if the length of all paths from root to leaves differs at most by 1

