제9회 deep daiv. 오픈 세미나

## 야구선수의 응원가 쟁탈기 📎

#### **Audio**

용서규합니다 김규리 김동규서은서 이재용

# Motivation

야구선수가 응원가를 "직접" 부른다면?

## 야구, 좋아하시나요?



'최강야구'·'찐팬구역'·'야구대표자'...야구 예능 전성시대 -한국경제-



2024 KBO 응원가 신곡들 차트 진입?! 당신의 원픽은? -엠빅뉴스-

제9회 deep daiv. 오픈 세미나

야구, 좋아하시나요?

야구, 좋아하시나요?



#### 제9회 deep daiv. 오픈 세미나

#### **Voice Conversion**



진실은 언제나 하나!



Voice



진실은 언제나 하나!





AutoVC



#### **Pipeline**



야구 응원가 wav (content data)

#### **Train Data**





#### 명령어 음성(일반 남여) 🔊

분야 한국어

유형 오디오, 텍스트

화자 번호

script1\_i\_0257

\_ script1\_i\_0257-8001-01-01-KSH-F-07-A

□ script1\_i\_0257-8002-01-01-KSH-F-07-A

대화번호

script1\_i\_0259

□ script1\_i\_0259-8001-01-KSH-F-07-A

∟ script1\_i\_0259<mark>-80</mark>02-01-01-KSH-F-07-A

:

#### **Conversion Data - Source**



source separation



응원가 wav

보컬 추출 wav

#### **Conversion Data - Target**







선수 인터뷰 wav

보컬 추출 wav

#### **Motivation**



#### **Architecture Overview**

- ① Content Encoder 음성 Feature로부터 Content Embedding 생성 모듈
- ② Speaker Encoder 음성 Feature로부터 Speaker Embedding 생성 모듈
- ③ Decoder Content Embedding과 Speaker Embedding을 입력받아 Speaker 특징이 포함된 Speech 생성하는 모듈



1. Speaker Encoder



1. Speaker Encoder



① **일관성** 

② 유사성

동일한 화자 음성 wav



1. Speaker Encoder



① 일관성

② 유사성

비슷한 음성의 화자 wav

Speaker feature Speaker feature

1. Speaker Encoder – 학습법



1. Speaker Encoder



#### 2. Content Encoder



BottleNeck 구조!

2. Content Encoder - BottleNeck



(a) Bottleneck too gid Decoder를 (통한 좋은 품질의 음성을 생성 Bottleneck just right

Content Embedding에 Speaker 정보 포함 Content Embedding에 Content 정보 누락

Content Embedding에 Content 정보만 포함

#### 3. Decoder



$$L_{recon0} = \mathbb{E}[\|\tilde{X}_{1\rightarrow 1} - X_1\|_2^2]$$

# **Experiments**



## **Experiments**

#### 개선점 1 - Upsampling & Downsampling

#### 기존 AutoVC의 Sampling method



선택된 일정 간격의 샘플들에 의존적



나머지 샘플들의 특징 반영 불가

#### 개선된 Sampling method

**Downsample Operator** 

**Average Pooling & 1D-Convolution (big stri** 

des)

**Upsample Operator** 

**Transposed Convolution, Interpolat** 



최적의 조합 찾기!

## **Experiments**

#### 개선점 2 - Hifi-GAN으로 Vocoder 대체

- 기존 Vocoder로 사용되었던 WaveNet (2016)을 Hifi-GAN (2021)으로 변경
- ▶ 고품질의 audio와 빠른 합성 속도를 기대



## Results



#### Result

- VC의 결과가 잘 되지 않은 것을 토대로 다양한 관점에서 실패 요인 탐색 진행
  - 1. AutoVC에서 한국어 학습의 어려움
    - Vocoder와 AutoVC에서의 분포를 일치시키는 것에 어려움이 존재
  - 2. 오디오 도메인에서의 학습의 어려움
    - 화자 1명 당 최소 1시간의 데이터가 필요
    - 모델의 구조가 달라지는 경우, 사전 학습된 데이터를 사용하지 못하는 경우가 존재
    - 즉각적인 피드백, 확인이 힘듦

# 감사합니다

제9회 deep daiv. 오픈 세미나

Q&A