TABLE 2.2 Basic asymptotic efficiency classes

Class	Name	Comments
1	constant	Short of best-case efficiencies, very few reasonable examples can be given since an algorithm's running time typically goes to infinity when its input size grows infinitely large.
log n	logarithmic	Typically, a result of cutting a problem's size by a constant factor on each iteration of the algorithm (see Section 4.4). Note that a logarithmic algorithm cannot take into account all its input or even a fixed fraction of it: any algorithm that does so will have at least linear running time.
n	linear	Algorithms that scan a list of size n (e.g., sequential search) belong to this class.
n log n	linearithmic	Many divide-and-conquer algorithms (see Chapter 5), including mergesort and quicksort in the average case, fall into this category.
n^2	quadratic	Typically, characterizes efficiency of algorithms with two embedded loops (see the next section). Elementary sorting algorithms and certain operations on $n \times n$ matrices are standard examples.
n^3	cubic	Typically, characterizes efficiency of algorithms with three embedded loops (see the next section). Several nontrivial algorithms from linear algebra fall into this class.
2 ⁿ	exponential	Typical for algorithms that generate all subsets of an <i>n</i> -element set. Often, the term "exponential" is used in a broader sense to include this and larger orders of growth as well.
n!	factorial	Typical for algorithms that generate all permutations of an <i>n</i> -element set.

a.
$$2n(n-1)/2 \in O(n^3)$$
 b. $2n(n-1)/2 \in O(n^2)$

h.
$$2n(n-1)/2 \in O(n^2)$$

c.
$$2n(n-1)/2 \in \Theta(n^3)$$
 d. $2n(n-1)/2 \in \Omega(n)$

d.
$$2n(n-1)/2 \in \Omega(n)$$

3. For each of the following functions, indicate the class $\Theta(g(n))$ the function belongs to. (Use the simplest g(n) possible in your answers.) Prove your assertions.

a.
$$(n^3+1)^6$$

$$\sqrt{10n^4+7n^2+3n}$$

a.
$$(n^3 + 1)^6$$
 b. $\sqrt{10n^4 + 7n^2 + 3n}$ **c.** $2n \lg(2n + 2)^3 + (n^2 + 2)^2 \lg n$ **d.** $3^{n+1} + 3^{n-1}$

d.
$$3^{n+1} + 3^{n-1}$$

e. $2 \log_2 n$