

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

EXECUTIVE SUMMARY

- Summary of methodologies
 - Data Collection via API, Web Scraping
 - Exploratory Data Analysis (EDA) with Data Visualization
 - EDA with SQL
 - Interactive Map with Folium
 - Dashboards with Plotly Dash
 - Predictive Analysis
- Summary of all results
 - Exploratory Data Analysis results
 - Interactive maps and dashboard
 - Predictive results

INTRODUCTION

- Project background and context
 - The aim of this project is to predict if the Falcon 9 first stage will successfully land. SpaceX says on its website that the Falcon 9 rocket launch cost 62 million dollars. Other providers cost upward of 165 million dollars each. The price difference is explained by the fact that SpaceX can reuse the first stage. By determining if the stage will land, we can determine the cost of a launch. This information is interesting for another company if it wants to compete with SpaceX for a rocket launch.
- Problems you want to find answers
 - What are the main characteristics of a successful or failed landing?
 - What are the effects of each relationship of the rocket variables on the success or failure of a landing?
 - What are the conditions which will allow SpaceX to achieve the best landing success rate?

METHODOLOGY

Executive Summary

- Data collection methodology:
 - SpaceX REST API
 - Web Scrapping from Wikipedia
- Perform data wrangling
 - Dropping unnecessary columns
 - One Hot Encoding for classification models
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

DATA COLLECTION

- Datasets are collected from Rest SpaceX API and webscrapping Wikipedia
 - The information obtained by the API are rocket, launches, payload information.
 - The Space X REST API URL is api.spacexdata.com/v4/

• The information obtained by the webscrapping of Wikipedia are launches, landing, payload information.

URL is https://en.wikipedia.org/w/index.php?title=List_of_Falcon_9_and_Falcon_Heavy_launches&oldid=1027686922

DATA COLLECTION - SPACEX API

1. Getting Response from API

spacex_url="https://api.spacexdata.com/v4/launches/past"
response = requests.get(spacex_url)

2. Convert Response to JSON File

data = response.json()
data = pd.json_normalize(data)

3. Transform data

getLaunchSite(data)
getPayloadData(data)
getCoreData(data)
getBoosterVersion(data)

4. Create dictionary with data

launch_dict = {'FlightNumber': list(data['flight_number']), 'Date': list(data['date']), 'BoosterVersion':BoosterVersion, 'PayloadMass':PayloadMass, 'Orbit':Orbit, 'LaunchSite':LaunchSite, 'Outcome':Outcome, 'Flights':Flights, 'GridFins':GridFins, Reused':Reused, 'Legs':Legs, 'LandingPad':LandingPad, 'Block':Block, 'ReusedCount':ReusedCount, 'Serial':Serial, 'Longitude': Longitude, 'Latitude': Latitude}

5. Create dataframe

data = pd.DataFrame.from_dict(launch_dict)

6. Filter dataframe

data_falcon9 = data[data['BoosterVersion']!='Falcon 1']

7. Export to file

data_falcon9.to_csv('dataset_part_1.csv', index=False)

DATA COLLECTION - WEB SCRAPING

1. Getting Response from HTML

response = requests.get(static_url)

2. Create BeautifulSoup Object

soup = BeautifulSoup(response.text, "html5lib")

3. Find all tables

html_tables = soup.findAll('table')

4. Get column names

for th in first_launch_table.find_all('th'):
 name = extract_column_from_header(th)
 if name is not None and len(name) > 0 :
 column_names.append(name)

5. Create dictionary

```
launch dict= dict.fromkeys(column names)
 # Remove an irrelvant column
 del launch dict['Date and time ( )']
 # Let's initial the launch dict with each value to be an empty list
 launch dict['Flight No.'] = []
 launch dict['Launch site'] = []
 launch dict['Payload'] = []
▶launch dict['Payload mass'] = []
 launch dict['Orbit'] = []
launch dict['Customer'] = []
launch dict['Launch outcome'] = []
 # Added some new columns
launch dict['Version Booster']=[]
launch dict['Booster landing']=[]
launch_dict['Date']=[]
launch_dict['Time']=[]
```

6. Add data to keys

See notebook for the rest of code

7. Create dataframe from dictionary

df=pd.DataFrame(launch_dict)

8. Export to file

df.to_csv('spacex_web_scraped.csv', index=False)

DATA WRANGLING

Name: Orbit, dtype: int64

- In the dataset, there are several cases where the booster did not land successfully.
 - True Ocean, True RTLS, True ASDS means the mission has been successful.
 - False Ocean, False RTLS, False ASDS means the mission was a failure.
- We need to transform string variables into categorical variables where 1 means the mission has been successful and 0 means the mission was a failure.

EDA WITH DATA VISUALIZATION

FLIGHT NUMBER vs LAUNCH

We observe that, for each site, the success rate is increasing.

PAYLOAD vs LAUNCH SITE

Depending on the launch site, a heavier payload may be a consideration for a successful landing. On the other hand, a too heavy payload can make a landing fail.

SUCCESS RATE vs ORBIT TYPE

FLIGHT NUMBER vs ORBIT TYPE

PAYLOAD vs ORBIT TYPE

LAUNCH SUCCESS YEARLY TREND

Since 2013, we can see an increase in the Space X Rocket success rate.

ALL LAUNCHES SITES NAMES

SQL Query

SELECT DISTINCT "LAUNCH_SITE" FROM SPACEXTBL

Results

Launch_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

LAUNCH SITE NAME BEGINS WITH 'CCA'

SQL Query

SELECT * FROM SPACEXTBL WHERE "LAUNCH_SITE" LIKE '%CCA%' LIMIT 5

Results

	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer
	04- 06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX
	08- 12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO
	22- 05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)
	08- 10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)
	01- 03- 2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)

TOTAL PAYLOAD MASS

SQL Query

SELECT SUM("PAYLOAD_MASS__KG_") FROM SPACEXTBL WHERE "CUSTOMER" = 'NASA (CRS)'

Results

SUM("PAYLOAD_MASS__KG_")

45596

AVERAGE PAYLOAD BY MASS FOR FALCON 9

SQL Query

SELECT AVG("PAYLOAD_MASS__KG_") FROM SPACEXTBL WHERE "BOOSTER_VERSION" LIKE '%F9 v1.1%'

Results

AVG("PAYLOAD_MASS__KG_")

2534.6666666666665

FIRST SUCCESSFUL GROUND LANDING

SQL Query

SELECT MIN("DATE") FROM SPACEXTBL WHERE "Landing _Outcome" LIKE '%Success%'

Results

MIN("DATE")

01-05-2017

SUCCESSFUL DRONE SHIP LANDING PAYLOAD BETWEEN 4000 - 6000

SQL Query

%sql SELECT "BOOSTER_VERSION" FROM SPACEXTBL WHERE "LANDING _OUTCOME" = 'Success (drone ship)' \
AND "PAYLOAD_MASS__KG_" > 4000 AND "PAYLOAD_MASS__KG_" < 6000;</pre>

Results

Booster_Version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

TOTAL SUCCESS AND FAILURES

SQL Query

%sql SELECT (SELECT COUNT("MISSION_OUTCOME") FROM SPACEXTBL WHERE "MISSION_OUTCOME" LIKE '%Success%') AS SUCCESS, \
(SELECT COUNT("MISSION_OUTCOME") FROM SPACEXTBL WHERE "MISSION_OUTCOME" LIKE '%Failure%') AS FAILURE

Results

SUCCESS FAILURE

100 1

BOOSTER WITH MAXIMUM PAYLOAD

SQL Query

```
%sql SELECT DISTINCT "BOOSTER_VERSION" FROM SPACEXTBL \
WHERE "PAYLOAD_MASS__KG_" = (SELECT max("PAYLOAD_MASS__KG_") FROM SPACEXTBL)
```

Results

Booster_Version F9 B5 B1048.4 F9 B5 B1049.4 F9 B5 B1051.3 F9 B5 B1056.4 F9 B5 B1048.5 F9 B5 B1051.4 F9 B5 B1049.5 F9 B5 B1060.2 F9 B5 B1058.3 F9 B5 B1051.6 F9 B5 B1060.3

F9 B5 B1049.7

LAUNCH RECORDS IN 2015

SQL Query

%sql SELECT substr("DATE", 4, 2) AS MONTH, "BOOSTER_VERSION", "LAUNCH_SITE" FROM SPACEXTBL\
WHERE "LANDING _OUTCOME" = 'Failure (drone ship)' and substr("DATE",7,4) = '2015'

Results

MONTH	Booster_Version	Launch_Site
01	F9 v1.1 B1012	CCAFS LC-40
04	F9 v1.1 B1015	CCAFS LC-40

LANDING OUTCOMES 2010-06-04 - 2017-03-20

SQL Query

```
%sql SELECT "LANDING _OUTCOME", COUNT("LANDING _OUTCOME") FROM SPACEXTBL\
WHERE "DATE" >= '04-06-2010' and "DATE" <= '20-03-2017' and "LANDING _OUTCOME" LIKE '%Success%'\
GROUP BY "LANDING _OUTCOME" \
ORDER BY COUNT("LANDING _OUTCOME") DESC;</pre>
```

Results

Landing _Outcome	COUNT("LANDING _OUTCOME")
Success	20
Success (drone ship)	8
Success (ground pad)	6

LAUNCH SITES PROXIMITIES ANALYSIS

LAUNCH SITES - FOLIUM MAP

COLORED MARKERS - FOLIUM MAP

RED - UNSUCCESSFUL LAUNCHES **GREEN** - SUCCESSFUL LAUNCHES

CCAFS SLC-40 DISTANCES AND PROXIMITIES

DASH BOARD PLOTLY DASH

TOTAL SUCCESS RATIO BY SITE - DASHBOARD

KSC LC-39A SUCCESS LAUNCHES - DASHBOARD

PAYLOAD MASS OUTCOMES FOR DIFFERENT INPUTS - DASHBOARD

PREDICTIVE ANALYSIS CLASSIFICATION

CLASSIFICATION ACCURACY RESULTS

Decision tree best parameters

tuned hyperparameters :(best parameters) {'criterion': 'entropy', 'max_depth': 12, 'max_features': 'sqrt', 'min_samples_leaf': 4, 'min_samples_split': 2, 'splitter': 'random'}

CONFUSION MATRIX

Predicted labels

CONCLUSION

- With many failed missions, lessons are learned and performance is better. Indeed the success depends on several factors such orbit and payload.
- · Low weight payload missions are more successful than heavy weight payloads
- With the current data we can see that some launches sites are successful than the other but we don't know the why. Perhaps more data is required to for better assumption.
- For Model testing the Decision Tree Algorithm showed same results and proved the best.

