# Ukryta alokacja Dirichleta w ujęciu praktycznym

Przetwarzanie języka naturalnego Ćwiczenia 3.

Rok akademicki: 2016/2017

# Programy do samodzielnego wykonania

- Przekształcenie wyrazów do formy podstawowej
- Identyfikacja słów i fraz kluczowych (z prezentacją w postaci wykresu słupkowego i chmury słów):
  - tf (częstości)
  - tf-idf (ważone częstości logarytmiczne)
  - LSA
  - LDA
  - RAKE
- Analiza dokumentów z wykorzystaniem ontologii (np. analiza ogłoszeń dotyczących sprzedaży nieruchomości lub samochodów).

Paweł Lula, Katedra Systemów Obliczeniowych, Uniwersytet Ekonomiczny w Krakowie





## Latent Dirichlet Allocation (LDA)

#### **Dokumenty** Temat 1 Temat 2 emat 3 word, word: word; word ..... $word_k$ $word_k$ word; word, $word_k$ $word_m$ word. $word_m$ word, $word_n$ word<sub>n</sub>

Labeled Latent Dirichlet Allocation – metoda identyfikacji tematów realizowana w trybie uczenia z nauczycielem.

Tematy reprezentowane są przez etykiety przypisane do dokumentów (liczba tematów = liczba różnych etykiet).

Tematy są opisane poprzez prawdopodobieństwa wystąpienia w nich różnych słów.

Paweł Lula, Katedra Systemów Obliczeniowych, UEK

5

# **Model LDA**

Dostępny jest słownik V złożony z LV terminów:

$$\mathbf{V} = \begin{bmatrix} v_1 \\ \dots \\ v_{LV} \end{bmatrix}$$

Przetwarzany korpus  $\boldsymbol{D}$  składa się z LD dokumentów:

$$\boldsymbol{D} = \begin{bmatrix} D_1 \\ \dots \\ D_{LD} \end{bmatrix}$$

Treść dokumentów jest mieszanką różnych tematów. Niech  ${\it T}$  będzie zbiorem  ${\it LT}$  tematów:

$$\boldsymbol{T} = \begin{bmatrix} t_1 \\ \dots \\ t_{LT} \end{bmatrix}$$

Paweł Lula, Katedra Systemów Obliczeniowych, UEK

#### **Model LDA**

Udział poszczególnych tematów w rozpatrywanych dokumentach opisany jest za pomocą macierzy  $\Theta$ :

$$\mathbf{\Theta} = \begin{bmatrix} \theta_{1,1} & \cdots & \theta_{1,LT} \\ \cdots & \cdots & \cdots \\ \theta_{LD,1} & \cdots & \theta_{LD,LT} \end{bmatrix}$$

której element  $\theta_{i,j}$  może być interpretowany jako prawdopodobieństwo wystąpienia j-tego tematu w i-tym dokumencie.

Paweł Lula, Katedra Systemów Obliczeniowych, UEK

7

# **Model LDA**

Każdy z tematów definiowany są poprzez informację o rozkładzie występujących w nim słów. Definicje tematów ujęte są w postaci macierzy  $\Phi$ :

$$\mathbf{\Phi} = \begin{bmatrix} \phi_{1,1} & \cdots & \phi_{1,LV} \\ \cdots & \cdots & \cdots \\ \phi_{LT,1} & \cdots & \phi_{LT,LV} \end{bmatrix}$$

Element  $\phi_{i,j}$  może być interpretowany jako prawdopodobieństwo wystąpienia j-tego słowa w i-tym temacie.

Paweł Lula, Katedra Systemów Obliczeniowych, UEK





## Tworzenie modelu LDA

#### library(tm)

#### library(topicmodels)

 $katalog < -"C:/Users/pawel\_000/Documents/Ksiazka/Ksiazka~2015-obliczenia/Literatura~polska-stem/"$ 

korpus <- VCorpus(DirSource(katalog,encoding="UTF-8"), readerControl = list(reader=readPlain))

korpus < -tm\_map(korpus,removeNumbers)

stoplista <-readLines("C:/Users/pawel\_000/Documents/Ksiazka/Ksiazka 2015 -

obliczenia/R/AnalizaSkupien/stoplista\_PL.txt",encoding="UTF-8")

korpus < -tm\_map(korpus,removeWords,stoplista)

dtm<-DocumentTermMatrix(korpus)

Paweł Lula, Katedra Systemów Obliczeniowych, Uniwersytet Ekonomiczny w Krakowie

11

# Tworzenie modelu LDA

```
n.words <- ncol(dtm)
```

n\_group <- 6

 $lda.model6 < -LDA(dtm,k=n\_group, method = "Gibbs",control = list(burnin = 2000,thin = 100, iter = 3000))$ 

perp6 <- perplexity(lda.model6,dtm)</pre>

res6<-posterior(lda.model6)

Paweł Lula, Katedra Systemów Obliczeniowych, Uniwersytet Ekonomiczny w Krakowie

#### Udział tematów w dokumentach

Paweł Lula, Katedra Systemów Obliczeniowych, Uniwersytet Ekonomiczny w Krakowie

# Udział tematów w słowach

Paweł Lula, Katedra Systemów Obliczeniowych, Uniwersytet Ekonomiczny w Krakowie

14

# Prezentacja tematu

#Prezentacja tematu 1

par(mai=c(1,2,1,1)) #wielkość marginesów

t1=head(sort(res6\$terms[1,],decreasing=TRUE),20)

barplot(rev(t1),horiz=TRUE,las=1,main="Temat 1",xlab="Prawdopodob.")

Paweł Lula, Katedra Systemów Obliczeniowych, Uniwersytet Ekonomiczny w Krakowie













# Funkcja wiarygodności

- Wiarygodność modelu prawdopodobieństwo odtworzenia przez model posiadanego zbioru danych
- Funkcja wiarygodności prawdopodobieństwo wygenerowania przez model posiadanego zbioru danych
- $doc = \{w_1, w_2, w_3, ..., w_N\}$
- $L(doc) = p(w_1|model)*p(w_2|model)*...*p(w_N|model)$
- $log-L(doc) = log(p(w_1|model)) + ... + log(p(w_N|model))$

Paweł Lula, Katedra Systemów Obliczeniowych, Uniwersytet Ekonomiczny w Krakowie

# Nieokreśloność modelu (perplexity)

- $log-L(doc) = log(p(w_1|model)) + ... + log(p(w_N|model))$
- Perplexity (nieokreśloność, niezdecydowanie)
- perplexity(doc) = exp(-log-L(doc)) = exp(1/log-L(doc))

Paweł Lula, Katedra Systemów Obliczeniowych, Uniwersytet Ekonomiczny w Krakowie

23

# Określenie optymalnej struktury modelu

- Struktura modelu jest zdeterminowana przez liczbę klas ukrytych
- · Dobór liczby klas:
  - na podstawie wartości funkcji wiarygodności (maksymalizacja funkcji) lub wartości funkcji perplexity (minimalizacja funkcji) – wybierany jest model, który najlepiej potrafi odtworzyć posiadany korpus
  - inne kryteria (wiedza merytoryczna dotycząca badanego zjawiska).

Paweł Lula, Katedra Systemów Obliczeniowych, Uniwersytet Ekonomiczny w Krakowie



