

המחלקה למדעי היסוד- מתמטיקה Department of Basic Sciences

מדו"א 2

תרגיל 9 – אינטגרל כפול- יישומים על ידי החלפת משתנים

<u>חישוב נפח של גוף :</u>

$$V = \iint_D f(x, y) dA; \quad V = \iint_D f(y, z) dA; V = \iint_D f(x, z) dA$$

$$f \ge 0 \text{ in } D.$$

$$V = \iint_D \left(f_1(x, y) - f_2(x, y) \right) dA$$

$$f_1 \ge f_2 \text{ in } D.$$

שאלה 1

מצאו את נפח הגוף החסום על ידי המשטח $z = (x+y)^4$ והמישורים $z = (x+y)^4$ והמישורים z = 0, x+y=1, x+y=2, y=3x, y=5x

<u>שאלה 2</u>

 $z = x^2 + y^2$, $z = 4 - x^2 - y^2$ חשבו את נפח הגוף החסום על ידי שני המשטחים

שאלה 3

z=y-x , z=0 והגליל החסום על ידי המישורים והגליל בz=y-x , והגליל

<u>שאלה 4</u>

 $x = 0, \; x + y + z = 8$ והמישורים ב" והמישורים על ידי המשטח על ידי המשטח

$$A = \iint_D 1 dx dy$$
: D השטח של תחום השטח:

שאלה 5

חשבו את השטח של התחום המישורי החסום על ידי ההיפרבולות את השטח של התחום המישורי החסום על ידי היפרבולות . $y^2 = 6x$ ו $y^2 = 3x$

<u>שאלה 6</u>

 $(x^2 + y^2)^2 = 2y^3$ העקומה על ידי החסום המישורי התחום המישורי של התחום של התחום של התחום המישורי

שאלה 7

 $\rho = a \sin 3\varphi$: חשבו את השטח המוגבל עייי

חישוב מסה ושיעורי מרכז הכובד של לוח דק:

ho(x,y) במישור אפיפות צפיפות של במישור ענק. במישור במישור המכסה המכסה קד ללוח בק: אם ללוח בק

$$M = \iint\limits_{D} \rho(x, y) \, dx \, dy$$

אז המסה הכוללת שלו היא:

: דק הלוח שי הכובד של הלוח דק

$$x_0 = \frac{\iint\limits_D x \,\rho(x,y) \,dx \,dy}{\iint\limits_D \rho(x,y) \,dx \,dy}, \quad y_0 = \frac{\iint\limits_D y \,\rho(x,y) \,dx \,dy}{\iint\limits_D \rho(x,y) \,dx \,dy}$$

צאלה 8

______ חשבו את המסה של לוח דק בצורה של עיגול עם רדיוס 1, שהצפיפות בנקודה ממסויימת שווה ל מרחק של הנקודה למרכז העיגול, בחזקת חמש.

9 שאלה

_________ חשבו את שיעורי מרכז הכובד של חצי הלוח הדק שבתרגיל הקודם (כלומר: חצי עיגול, עם אותה צפיפות).

שאלה 10

Calculate the mass of a thin plate or lamina with density $\rho(x, y) = xy^4$, which covers a domain D which is the part in the first quadrant of the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ (that is $x \ge 0$, $y \ge 0$).