Chapitre 13

Variables aléatoires discrètes

Dans tout le chapitre, (Ω, \mathcal{T}, P) désigne un espace probabilisé et E un ensemble quelconque.

I Variables aléatoires discrètes

I. A Loi d'une variable aléatoire discrète

Définition 1.1

Une variable aléatoire discrète X définie sur l'espace probabilisé (Ω, \mathcal{T}, P) et à valeurs dans E est une application $X : \Omega \longrightarrow E$ telle que :

- $X(\Omega)$ est au plus dénombrable;
- $\forall x \in E, X^{-1}(\{x\}) \in \mathcal{T}.$

Remarques 1.2 : • La seconde condition signifie que pour tout $x \in E$, l'ensemble $\{\omega \in \Omega \mid X(\omega) = x\}$ est un événement.

• Lorsque $E \subset \mathbb{R}$, on dit que X est une variable aléatoire discrète réelle.

Proposition 1.3

Soit X une variable aléatoire discrète sur (Ω, \mathcal{T}, P) à valeurs dans E. Si A est une partie quelconque de E, alors $X^{-1}(A)$ est un événement noté $(X \in A)$ ou $\{X \in A\}$.

Notation : Si $x \in E$, on note (X = x) l'événement $X^{-1}(\{x\})$. Si X est une variable aléatoire discrète réelle et $x \in \mathbb{R}$, on note :

• $(X \leqslant x) = (X \in]-\infty; x]),$

• $(X \geqslant x) = (X \in [x; +\infty[),$

- $(X < x) = (X \in]-\infty; x[),$
- $(X > x) = (X \in]x; +\infty[).$

Remarque 1.4 : Les variables aléatoires finies vues en sup : sur un univers Ω fini sont des variables aléatoires discrètes sur $(\Omega, \mathcal{P}(\Omega))$.

Définition 1.5

Soit X une variable aléatoire discrète, alors $(X = x)_{x \in X(\Omega)}$ est un système complet d'événements appelé système complet d'événements associé à X.

Définition 1.6

 $\overrightarrow{\mathrm{Soit}\ X:\Omega\longrightarrow E}$ une variable aléatoire discrète.

L'application :

$$P_X : \mathcal{P}(E) \longrightarrow [0;1]$$

 $A \longmapsto P(X \in A)$

est une probabilité sur $(E, \mathcal{P}(E))$ appelée loi de probabilité de X.

Remarque 1.7 : La loi de X peut être définie sur un ensemble E contenant $X(\Omega)$.

(Proposition 1.8)

Soit $X:\Omega\longrightarrow E$ une variable aléatoire discrète, la probabilité P_X est déterminée par la distribution de probabilité discrète $\big(P(X=x)\big)_{x\in X(\Omega)}$, c'est à dire par la donnée de :

- l'ensemble au plus dénombrable $X(\Omega)$;
- la probabilité de chaque événement élémentaire.

Exemples 1.9 : • On lance deux dés équilibrés et on appelle S la somme des résultats. Proposer une modélisation : un espace probabilisé (Ω, \mathcal{T}, P) , une expression pour S et la distribution de probabilité discrète associée.

• On suppose que X est une variable aléatoire discrète à valeurs dans \mathbb{N}^* telle que : $\forall n \in \mathbb{N}^*, P(X = n + 1) = \frac{4}{n}P(X = n)$. Donner une expression explicite de la loi de X.

Notation : Lorsque deux variables aléatoires discrètes X et Y à valeurs dans un même ensemble E ont la même loi, c'est à dire lorsque $P_X = P_Y$, on note $X \sim Y$.

Remarque 1.10 : La notation $X \sim Y$ ne suppose pas que X et Y sont égales ou même qu'elles sont définies sur le même espace probabilisé.

Exemple 1.11 : On lance un dé rouge et on appelle X le résultat du dé, on lance un dé vert et on appelle Y le résultat du dé.

Les deux expériences peuvent être considérées séparément, X et Y sont définies sur des univers différents, mais $X \sim Y$.

I. B Fonction d'une variable aléatoire discrète

Dans tout le reste du chapitre, toutes les variables aléatoires sont supposées discrètes.

(Proposition 1.12)

Soit X une variable aléatoire discrète définie sur (Ω, \mathcal{T}, P) à valeurs dans E et $f: E \longrightarrow F$.

Alors $f \circ X : \Omega \longrightarrow F$ est une variable aléatoire discrète notée f(X).

Remarque 1.13 : La loi de Y = f(X) est donnée par :

• $Y(\Omega) = f(X(\Omega));$

•
$$\forall y \in Y(\Omega), P(Y = y) = \sum_{x \in X(\Omega) | f(x) = y} P(X = x).$$

Proposition 1.14

Soit X et Y deux variables aléatoires discrètes définies sur $(\Omega_1, \mathcal{T}_1, P_1)$ et $(\Omega_2, \mathcal{T}_2, P_2)$ à valeurs dans un même ensemble E.

Si $X \sim Y$ et $f: E \longrightarrow F$, alors $f(X) \sim f(Y)$.

I. C Loi conditionnelle

Définition 1.15

Soit $X:\Omega\longrightarrow E$ une variable aléatoire discrète et $A\in\mathcal{T}$ un événement non négligeable. Alors :

$$\begin{array}{ccc} \mathcal{P}(E) & \longrightarrow & [0\,;1] \\ B & \longmapsto & \mathrm{P}_A(X \in B) = \frac{\mathrm{P}(A \cap (X \in B))}{\mathrm{P}(A)} \end{array}$$

est une probabilité sur $(E, \mathcal{P}(E))$ appelée loi conditionnelle de X sachant A.

II Couple et famille de variables aléatoires discrètes

II. A Couple de variables aléatoires discrètes

Définition 2.1

Soit X, Y des variables aléatoires discrètes définies sur le même espace probabilisé (Ω, \mathcal{T}, P) à valeurs dans E et F respectivement.

Alors:

$$W : \Omega \longrightarrow E \times F$$

$$\omega \longmapsto (X(\omega), Y(\omega))$$

est une variable aléatoire discrète à valeurs dans $E \times F$, appelée couple de variables aléatoires (X, Y).

Exemple 2.2 : On lance deux dés. Soit X la variable aléatoire égale au plus petit résultat des deux dés et Y au plus grand. Alors (X,Y) est un couple de variables aléatoires. Donner $(X,Y)(\Omega)$.

Remarque 2.3 : On n'a pas toujours : $(X,Y)(\Omega) = X(\Omega) \times Y(\Omega)$, et dans ce cas certains des événements $((X=x) \cap (Y=y))$ sont impossibles. On pourra tout de même donner la loi d'une telle variable aléatoire sur $X(\Omega) \times Y(\Omega)$ quitte à compléter par des 0.

(Définition 2.4)

Soit X,Y des variables aléatoires discrètes définies sur le même espace probabilisé $(\Omega,\mathcal{T},\mathbf{P})$ à valeurs dans E et F respectivement. On appelle

Loi conjointe du couple : la loi de la variable aléatoire (X, Y);

Lois marginales du couple : les lois des variables aléatoires X et Y.

Remarque 2.5 : La loi conjointe du couple est donc la donnée de :

- $(X,Y)(\Omega)$
- $\forall x \in X(\Omega), \forall y \in Y(\Omega), P(X = x, Y = y)$

Méthode 2.6

Si l'on connaît la loi de X et les lois conditionnelles de Y sachant les événements (X=x) pour chaque $x\in X(\Omega)$, on retrouve la loi conjointe du couple par

Exemples 2.7 : • Déterminer la loi du couple de variables aléatoires de l'exemple précédent.

• On effectue 2 tirages successifs et sans remise dans une urne qui contient 2 boules blanches et une boule noire. On note X (respectivement Y) la variable aléatoire égale à 1 lorsque la première (respectivement la seconde) boule tirée est blanche et à 0 sinon.

Déterminer la loi conjointe du couple (X, Y).

Théorème 2.8 (Lois marginales à partir de la loi conjointe)

Soit (X,Y) un couple de variables aléatoires discrètes. On a

$$\forall x \in X(\Omega), \quad P(X = x) = \sum_{y \in Y(\Omega)} P(X = x, Y = y)$$

$$\forall y \in Y(\Omega), \quad P(Y = y) = \sum_{x \in X(\Omega)} P(X = x, Y = y)$$

Exemple 2.9: Déterminer la loi de la variable aléatoire Y de l'exemple précédent.

Remarque 2.10 : On peut étendre les notions de loi conjointe et loi conditionnelles pour un *n*-uplet de variables aléatoires discrètes.

II. B Variables aléatoires indépendantes

(Définition 2.11)

Deux X et Y variables aléatoires discrètes définies sur (Ω, \mathcal{T}, P) à valeurs dans E et F sont dites indépendantes, et on note $X \perp Y$, lorsque :

 $\forall A \in \mathcal{P}(E), \forall B \in \mathcal{P}(F), P(X \in A, Y \in B) = P(X \in A) \times P(Y \in B).$

Proposition 2.12

Deux variables aléatoires discrètes X et Y à valeurs dans E et F sont indépendantes si et seulement si la distribution de probabilité du couple (X,Y) est le produit des distributions de probabilité de X et de Y:

 $\forall x \in E, \forall y \in F, P(X = x, Y = y) = P(X = x) \times P(Y = y).$

(Proposition 2.13)

Soit X et Y deux variables aléatoires discrètes sur (Ω, \mathcal{T}, P) .

Si X et Y sont indépendantes, alors, pour toute fonction f définie sur $X(\Omega)$ et toute fonction g définie sur $Y(\Omega)$, les variables aléatoires f(X) et g(Y) sont indépendantes.

Définition 2.14 (famille finie de variables aléatoires indépendantes)

Les variables aléatoires discrètes X_1, \ldots, X_n à valeurs dans E_1, \ldots, E_n sont dites **indépendantes** lorsque, pour tout $(A_1, \ldots, A_n) \in \mathcal{P}(E_1) \times \cdots \times \mathcal{P}(E_n)$, les événements $(X_1 \in A_1), \ldots, (X_n \in A_n)$ sont indépendants.

- Remarques 2.15 : Toute sous famille d'une famille de variables aléatoires indépendante est indépendante.
 - Si X_1, \ldots, X_n sont des variables indépendantes et f_1, \ldots, f_n sont des fonctions définies sur $X_1(\Omega), \ldots, X_n(\Omega)$, alors $f(X_1), \ldots, f(X_n)$ sont indépendantes.

Attention : L'indépendance implique l'indépendance deux à deux, mais la réciproque est fausse.

Théorème 2.16 (Lemme des coalitions)

Si les variables aléatoires X_1, \ldots, X_n sont indépendantes, les variables aléatoires $f(X_1, \ldots, X_p)$ et $g(X_{p+1}, \ldots, X_n)$ sont indépendantes.

Remarque 2.17 : On peut créer plus de deux coalitions.

II. C Suites de variables aléatoires indépendantes

Définition 2.18 (famille quelconque de VA indépendantes)

Une famille quelconque $(X_i)_{i\in I}$ de variables aléatoires discrètes définies sur (Ω, \mathcal{T}, P) est dite indépendantes lorsque pour toute partie finie J de I, la sous famille $(X_i)_{i\in J}$ est indépendante.

Remarque 2.19 : Si $(X_i)_{i\in I}$ sont des variables indépendantes et $(f_i)_{i\in I}$ sont des fonctions définies sur $X_1(\Omega), \ldots$, alors $(f(X_i))_{i\in I}$ sont indépendantes.

Théorème 2.20

Pour toute suite $(P_n)_{n\in\mathbb{N}}$ de lois de probabilités discrètes, il existe un espace probabilisé (Ω, \mathcal{T}, P) et une suite de variables aléatoires discrètes, indépendantes sur (Ω, \mathcal{T}, P) telles que pour tout $n \in \mathbb{N}$, la loi de la variable aléatoire X_n est P_n .

- Remarque 2.21 : En particulier, si P est une loi de probabilité discrète, il existe un espace de probabilité (Ω, \mathcal{T}, P) et une suite $(X_n)_{n \in \mathbb{N}}$ de variables aléatoires discrètes indépendantes telle que pour tout $n \in \mathbb{N}$, la loi de X_n est P. On dit alors que les variables aléatoires sont indépendantes identiquement distribuées (abrégé en i.i.d.).
- **Exemple 2.22 :** Si P est la loi de Bernoulli de paramètre p, on obtient une modélisation du jeu de pile ou face ou toute autre suite d'épreuve de type succès-échec indépendantes.

Pour tout $n \in \mathbb{N}^*$, X_n est la variable aléatoire égale à 1 en cas de succès à la $n^{\text{ième}}$ épreuve et à 0 en cas d'échec et les $(X_n)_{n \in \mathbb{N}^*}$ sont indépendantes.

III Lois usuelles

III. A Loi uniforme

\bigcirc Définition 3.1

Soit X une variable aléatoire finie. Soit $n \in \mathbb{N}^*$.

On dit que X suit la loi uniforme sur $[\![1;n]\!]$ et on note $X \sim \mathcal{U}([\![1;n]\!])$ lorsque :

- $X(\Omega) = \underline{\hspace{1cm}};$
- $\forall k \in [1; n], P(X = k) =$

Schéma type

X est une variable aléatoire à valeurs dans [1; n] avec équiprobabilité.

Exemple 3.2 : Résultat d'un lancer de dé équilibré.

III. B Loi de Bernoulli

Définition 3.3

Soit X une variable aléatoire finie et $p \in [0; 1]$.

On dit que X suit la loi de Bernoulli de paramètre p et on note $X \sim \mathcal{B}(p)$ lorsque :

•
$$X(\Omega) = \underline{\hspace{1cm}};$$

•
$$P(X = 1) = \underline{\hspace{1cm}} \text{ et } P(X = 0) = \underline{\hspace{1cm}}$$

Schéma type

On considère une épreuve Bernoulli c'est à dire une expérience aléatoire dont l'exécution amène soit un succès (événement S) soit un échec (événement \overline{S}); on note p = P(S).

X est la v.a. finie définie par $\begin{cases} X=1 & \text{si } S \text{ est réalisé} \\ X=0 & \text{sinon} \end{cases}$

Remarque 3.4 : La variable aléatoire X est alors la fonction indicatrice de l'ensemble $S: X = \mathbbm{1}_S$.

III. C Loi binomiale

Définition 3.5

Soit X une variable aléatoire finie. Soit $n \in \mathbb{N}^*$ et $p \in [0;1]$.

On dit que X suit la loi binomiale de paramètres n et p et on note $X \sim \mathcal{B}(n,p)$ lorsque :

•
$$X(\Omega) = \underline{\hspace{1cm}}$$

•
$$\forall k \in [0; n], \ P(X = k) =$$

Schéma type

Soit $n \in \mathbb{N}^*$ fixé.

- On répète n fois (n fixé) une épreuve de Bernoulli;
- la probabilité de S (succès) reste identique à chaque réalisation de l'épreuve ;
- les réalisations successives de l'épreuve sont indépendantes ;
- X est la variable aléatoire égale au nombre de succès obtenus lors de ces n épreuves.

Exemple 3.6 : On lance 3 fois un dé équilibré et on note X le nombre de 6 obtenus. Déterminer la loi de X.

Remarques 3.7 : • On connaît le nombre de réalisations de l'épreuve à l'avance.

- Si n=1, on retrouve la loi de Bernoulli de paramètre p.
- On peut en déduire la formule du binôme de Newton dans le cas où a > 0 et b > 0 en posant $p = \frac{a}{a+b}$.

Proposition 3.8

Soit $n \in \mathbb{N}^*, p \in [0; 1]$ et X_1, \ldots, X_n des variables aléatoires discrètes indépendantes et identiquement distribuées de loi binomiale de paramètre p. Alors $X = X_1 + \cdots + X_n \sim \mathcal{B}(n, p)$.

III. D Loi géométrique

Définition 3.9

Soit $p \in]0;1[$, on pose q=1-p. On dit qu'une variable aléatoire X suit la loi géométrique de paramètre p et on note $X \sim \mathcal{G}(p)$ lorsque :

- $X(\Omega) = \mathbb{N}^*$ ou $X(\Omega) = \mathbb{N}^* \cup \{+\infty\}$;
- $\forall k \in \mathbb{N}^*, P(X = k) = pq^{k-1}.$

Schéma type

On considère une suite infinie d'épreuves de Bernoulli indépendantes de même probabilité de succès $p \in \]0\,;1[$ et X est le rang du premier succès $(+\infty$ s'il n'y a aucun succès).

Exemples 3.10 : • Dans un jeu de pile ou face infini avec un pièce qui donne pile avec probabilité p =]0; 1[, le rang X du premier pile est une variable géométrique de paramètre p.

• Pour la même expérience aléatoire, on note Y le rang du deuxième pile. Déterminer la loi conjointe de X et Y et en déduire la loi de Y.

III. E Loi de Poisson

Définition 3.11

Soit $\lambda > 0$. On dit qu'une variable aléatoire discrète X suit la loi de Poisson de paramètre λ et on note $X \sim \mathcal{P}(\lambda)$ lorsque :

- $X(\Omega) = \mathbb{N}$;
- $\forall k \in \mathbb{N}, P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}.$

Proposition 3.12

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires discrètes telles que pour tout $n\in\mathbb{N}, X_n$ suit la loi binomiale de paramètres (n, p_n) . Si : $n\times p_n \xrightarrow[n\to+\infty]{} \lambda\in\mathbb{R}_+^*$, alors, pour tout $k\in\mathbb{N}$:

$$\lim_{n \to +\infty} P(X_n = k) = \frac{\lambda^k}{k!} e^{-\lambda}.$$

- Remarques 3.13 : Si la variable aléatoire X suit une loi binomiale de paramètres (n,p) avec n grand et $\lambda = n \times p$ « pas trop grand », on peut approcher la loi de X par la loi de Poisson de paramètre λ (événements rares).
 - La loi de Poisson de paramètre λ est souvent utilisée pour décrire le nombre d'événements dans un intervalle de temps lorsque ces événements sont indépendants et qu'il y en a λ en moyenne.
- **Exemple 3.14 :** Nombre d'appels reçus entre 15h et 16h par un standard téléphonique : il y a un grand nombre de personnes qui peuvent appeler, mais chacune avec une probabilité faible. On sait qu'en moyenne le standard reçoit 20 appels par heures.
- Remarque 3.15: Une loi conditionnelle peut être une loi usuelle.
- **Exemple 3.16 :** On suppose que le nombre de voitures arrivant à un payage autoroutier en une heure suit une loi de Poisson de paramètre $\lambda \in]0\,;+\infty[$, il y a k caisses et on suppose que chaque voiture choisit aléatoirement et indépendament des autres une des caisse. Déterminer la loi de la variable aléatoire donnant le nombre de voitures qui passent à la caisse numéro 1 en une heure.

IV Espérance d'une variable aléatoire réelle ou complexe

IV. A Définitions et propriétés

Définition 4.1 (Espérance d'une VA positive)

Soit X une variable aléatoire discrète à valeurs dans $\mathbb{R}^+ \cup \{+\infty\}$. L'espérance de X, notée $\mathrm{E}(X)$ est la somme dans $[0\,;+\infty]$ de la famille $\big(x\,\mathrm{P}(X=x)\big)_{x\in X(\Omega)}$:

$$E(X) = \sum_{x \in X(\Omega)} x P(X = x).$$

Remarque 4.2: Par convention, si $P(X = +\infty) = 0$, alors $+\infty \times P(X = +\infty) = 0$.

Proposition 4.3

Soit X une variable aléatoire discrète à valeurs dans $\mathbb{N} \cup \{+\infty\}$, alors :

$$E(X) = \sum_{n=1}^{+\infty} P(X \ge n).$$

Définition 4.4

Soit X une variable aléatoire discrète à valeurs dans $\mathbb R$ ou $\mathbb C$. On dit que X est **d'espérance finie** lorsque la famille $\big(x\operatorname{P}(X=x)\big)_{x\in X(\Omega)}$ est sommable.

Dans ce cas, on appelle **espérance de** X la somme de cette famille :

$$E(X) = \sum_{x \in X(\Omega)} x P(X = x).$$

Notation : On note $X \in L^1$ lorsque X est une variable aléatoire discrète réelle ou complexe d'espérance finie.

Remarques 4.5 : • Soit X une variable aléatoire discrète. Si X est positive, alors elle possède une espérance finie ou infinie. Si X est à valeurs dans \mathbb{R} ou \mathbb{C} alors soit elle a une espérance finie, soit elle n'a pas d'espérance.

• Si X est une variable aléatoire fini (en particulier si Ω est fini), alors X a une espérance finie.

Définition 4.6

Une variable aléatoire discrète est dite **centrée** lorsqu'elle est d'espérance finie et que son espérance est nulle.

Exemples 4.7 : • Espérance des loi usuelles finies.

• On pose pour tout $n \in \mathbb{N}^*$, $p_n = \frac{1}{n(n+1)}$. Alors $(p_n)_{n \in \mathbb{N}}$ est une distribution de probabilité discrète. Une variable aléatoire discrète X de loi associée à cette distribution de probabilité a-t-elle une espérance?

IV. B Espérance des lois usuelles

(Proposition 4.8)

Si une variable aléatoire discrète X suit la loi géométrique de paramètre $p \in]0;1[$, alors X a une espérance finie et $\mathrm{E}(X)=\frac{1}{p}.$

Proposition 4.9

Si une variable aléatoire discrète X suit la loi de Poisson de paramètre $\lambda \in \mathbb{R}_+^*$, alors X a une espérance finie et $\mathrm{E}(X) = \lambda$.

IV. C Propriétés de l'espérance

Théorème 4.10 (Formule de transfert)

Soit X une variable aléatoire discrète et $f: X(\Omega) \longrightarrow \mathbb{C}$.

La variable aléatoire f(X) est d'espérance finie si et seulement si la famille $(f(x) P(X = x))_{x \in X(\Omega)}$ est sommable et dans ce cas :

$$E(f(X)) = \sum_{x \in X(\Omega)} f(x) P(X = x).$$

Remarques 4.11 : • La formule de transfert permet le calcul de l'espérance de f(X) sans avoir à déterminer sa loi, il suffit de connaître la loi de X.

- Si f est définie sur un ensemble E qui contient $X(\Omega)$, on peut remplacer la famille $\big(f(x)\operatorname{P}(X=x)\big)_{x\in X(\Omega)}$ par la famille $\big(f(x)\operatorname{P}(X=x)\big)_{x\in E}$ (on ajoute des éléments nuls).
- Dans ce théorème f est à valeurs dans \mathbb{C} , mais X est une variable aléatoire discrète quelconque, elle peut en particulier être un couple de variables aléatoires discrètes (cf espérance du produit).

Théorème 4.12 (Inégalité triangulaire)

Soit X est une variable aléatoire discrète complexe.

Alors X est d'espérance finie si et seulement si |X| est d'espérance finie et dans ce cas :

$$\left| E(X) \right| \leqslant E(|X|).$$

(Proposition 4.13)

Soit X et Y deux variables aléatoires discrètes, respectivement complexes et positives telles que $|X| \leq Y$.

Si Y est d'espérance finie, alors X est d'espérance finie.

Théorème 4.14 (Linéarité de l'espérance)

Soit X et Y des variables aléatoires discrètes complexes d'espérance finie et $\lambda, \mu \in \mathbb{C}$, alors la variable aléatoire $\lambda X + \mu Y$ est d'espérance finie et :

$$E(\lambda X + \mu Y) = \lambda E(X) + \mu E(Y).$$

Proposition 4.15 (Positivité de l'espérance)

Soit X une variable aléatoire discrète positive, alors : $E(X) \ge 0$. De plus, si X est positive et E(X) = 0, alors X = 0 presque sûrement.

Proposition 4.16 (Croissance de l'intégrale)

Soit X,Y deux variables aléatoires discrètes d'espérance finie telles que $X\leqslant Y.$ Alors :

$$E(X) \leq E(Y)$$
.

De plus si E(X) = E(Y), alors X = Y presque sûrement.

Théorème 4.17 (Espérance du produit de variables indépendantes)

Soit X et Y des variables aléatoires discrètes complexes **indépendantes** et d'espérance finie.

Alors XY est d'espérance finie et :

$$E(XY) = E(X) \times E(Y).$$

Généralisation à n variables aléatoires indépendantes.

Proposition 4.18

Soit X_1, \ldots, X_n des variables aléatoires discrètes complexes d'espérance finie et indépendantes.

Alors $\prod_{k=1}^{n} X_k$ est d'espérance finie et :

$$E\left(\prod_{k=1}^{n} X_k\right) = \prod_{k=1}^{n} E(X_k)$$

V Variance d'une variable aléatoire réelle

Dans cette section, les variables aléatoires sont réelles.

V. A Définition et propriétés

$ig(ext{Proposition } 5.1 ig)$

Soit X une variable aléatoire discrète réelle.

Si X^2 est d'espérance finie, alors X est d'espérance finie.

Notation : On note $X \in L^2$ lorsque X est une variable aléatoire discrète réelle telle que X^2 est d'espérance finie.

Théorème 5.2 (Inégalité de Cauchy-Schwarz)

Soit X et Y des variables aléatoires discrètes réelles, si X et Y sont dans L^2 , alors XY est dans L^1 et :

$$E(XY)^2 \leqslant E(X^2) \times E(Y^2)$$

avec égalité si et seulement si il existe $\lambda \in \mathbb{R}$ tel que $X = \lambda Y$ ou $Y = \lambda X$ presque sûrement.

Définition 5.3

Soit $X \in L^2$, on appelle **variance** de X le réel positif :

$$V(X) = E((X - E(X))^2).$$

Remarque 5.4 : La variance mesure la dispersion de X par rapport à sa moyenne.

Proposition 5.5

Soit $X \in L^2$; V(X) = 0 si et seulement si X est constante presque sûrement, i.e. si et seulement si il existe $a \in \mathbb{R}$ tel que P(X = a) = 1.

Théorème 5.6 (Formule de Koenig-Huygens)

Soit $X \in L^2$:

$$V(X) = E(X^2) - E(X)^2.$$

Proposition 5.7

Soit $X \in L^2$ et $a, b \in \mathbb{R}$, alors $aX + b \in L^2$ et :

$$V(aX + b) = a^2 V(X).$$

Définition 5.8

Soit $X \in L^2$, on appelle **écart type** de X le réel positif $\sigma(X) = \sqrt{V(X)}$.

Définition 5.9

Soit $X \in L^2$, on dit que X est réduite lorsque V(X) = 1.

Proposition 5.10

Soit $X \in L^2$, si $\sigma(X) > 0$, alors la variable aléatoire $\frac{X - E(X)}{\sigma(X)}$ est centrée réduite.

V. B Variance des lois usuelles

Proposition 5.11

Si une variable aléatoire discrète X suit la loi géométrique de paramètre $p \in]0;1[$, alors $X \in L^2$ et $V(X) = \frac{1-p}{p^2}$.

Proposition 5.12

Si une variable aléatoire discrète X suit la loi de Poisson de paramètre $\lambda \in \mathbb{R}_+^*$, alors $X \in L^2$ et $V(X) = \lambda$.

V. C Covariance

(Définition 5.13)

Soit X et Y dans L^2 . Alors $(X - E(X))(Y - E(Y)) \in L^1$ et on appelle **covariance** de X et Y le réel :

$$Cov(X, Y) = E((X - E(X))(Y - E(Y))).$$

Remarque 5.14 : Pour $X \in L^2$, Cov(X, X) = V(X).

Théorème 5.15 (Formule de Koenig-Huygens)

Soit X et Y dans L^2 , alors:

$$Cov(X, Y) = E(XY) - E(X) E(Y).$$

Proposition 5.16

Si \overline{X} et Y sont dans L^2 et sont indépendantes, alors Cov(X,Y)=0.

(Définition 5.17)

Deux variable aléatoire X et Y sont dites **décorrélées** lorsqu'elles sont dans L^2 et que leur covariance est nulle.

V. D Variance d'une somme

Théorème 5.18

Soit X_1, X_2, \ldots, X_n dans L^2 , alors la variable aléatoire $X_1 + \cdots + X_n$ est dans L^2 et :

$$V(X_1 + \dots + X_n) = \sum_{k=1}^n V(X_k) + 2 \sum_{1 \leqslant i < j \leqslant n} Cov(X_i, X_j).$$

Proposition 5.19

Soit X_1, X_2, \ldots, X_n dans L^2 deux à deux décorrélées, alors la variable aléatoire $X_1 + \cdots + X_n$ est dans L^2 et :

$$V(X_1 + \dots + X_n) = \sum_{k=1}^{n} V(X_k).$$

Remarque 5.20 : La formule est vraie en particulier si les variables aléatoires sont deux à deux indépendantes, et a fortiori si elles sont indépendantes.

VI Inégalités probabilistes et loi faible des grands nombres

VI. A Inégalités probabilistes

Théorème 6.1 (Inégalité de Markov)

Soit X une variable aléatoire discrète <u>réelle positive</u> d'espérance finie et a>0, alors :

$$P(X \geqslant a) \leqslant \frac{E(X)}{a}.$$

Théorème 6.2 (Inégalité de Bienaymé-Tchebychev)

Soit X une variable aléatoire discrète réelle dans L^2 et $\varepsilon > 0$, alors :

$$P(|X - E(X)| \ge \varepsilon) \le \frac{V(X)}{\varepsilon^2}$$

Remarque 6.3 : On retrouve le fait que la variance mesure la dispersion de la variable aléatoire.

VI. B Loi faible des grands nombres

Théorème 6.4 (Loi faible des grands nombres)

Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires discrètes réelles i.i.d. (indépendantes de même loi) sur le même espace probabilisé et de variance finie.

On pose
$$m = E(X_1)$$
 et pour tout $n \in \mathbb{N}^*, S_n = \sum_{k=1}^n X_k$. Alors :

$$\forall \varepsilon > 0, P\left(\left|\frac{S_n}{n} - m\right| \geqslant \varepsilon\right) \xrightarrow[n \to +\infty]{} 0.$$

Remarque 6.5 : La loi faible des grands nombres fait le lien entre la moyenne théorique $\mathrm{E}(X_1)$ et les moyennes observables pour n répétitions.

VII Fonctions génératrices

VII. A Définition et propriétés

Définition 7.1

Soit X une variable aléatoire à valeurs dans \mathbb{N} , on appelle fonction génératrice de X la fonction G_X de la variable réelle définie par :

$$G_X(t) = E(t^X) = \sum_{n=0}^{+\infty} P(X=n)t^n.$$

Remarque 7.2 : D'après la formule de transfert, pour $t \in \mathbb{R}$ la variable aléatoire t^X a une espérance finie si et seulement si la famille $(t^n P(X = n))_{n \in X(\Omega)}$ est sommable et dans ce cas,

$$E(t^X) = \sum_{n=0}^{+\infty} P(X=n)t^n.$$

Proposition 7.3

Soit X une variable aléatoire à valeurs dans \mathbb{N} .

La série entière $\sum P(X=n)t^n$

- est de rayon de convergence supérieur (ou égal) à 1;
- elle converge normalement sur [-1;1];
- G_X est continue sur [-1;1].
- G_X est de classe \mathcal{C}^{∞} sur son disque ouvert de convergence.

Remarque 7.4 : Si X est une variable aléatoire fini à valeurs entières, alors G_X est une fonction polynomiale.

Proposition 7.5

Soit X une variable aléatoire à valeurs dans \mathbb{N} , alors la loi de X est déterminée de manière unique par G_X . Plus précisément :

$$\forall n \in \mathbb{N}, P(X = n) = \frac{G_X^{(n)}(0)}{n!}.$$

Deux variable aléatoire à valeurs dans \mathbb{N} ont la même loi si et seulement si elles sont la même fonction génératrice.

(Théorème 7.6)

Une variable aléatoire X à valeurs dans $\mathbb N$ est d'espérance fini si et seulement si G_X est dérivable en 1 et dans ce cas :

$$E(X) = G_X'(1).$$

Proposition 7.7

Une X une variable aléatoire à valeurs dans \mathbb{N} est dans L^2 si et seulement si G_X est deux fois dérivable en 1 et dans ce cas, $G''(1) = \mathrm{E}(X(X-1))$.

Corollaire 7.8

Si la fonction génératrice d'une variable aléatoire X à valeurs dans $\mathbb N$ est deux fois dérivable en 1, alors $X\in L^2$ et :

$$V(X) = G_X''(1) + G_X'(1) - G_X'(1)^2.$$

VII. B Fonctions génératrices des lois usuelles

Les formules ne sont pas nécessairement à connaître, mais à savoir calculer rapidement.

- Si $X \sim \mathcal{B}(p)$, alors $G_X(t) = q + pt$. Donc, pour tout $t \in \mathbb{R}$, $G'_X(t) = p$ et $G''_X(t) = 0$ et on retrouve, E(X) = p, V(X) = p(1-p).
- Si $X \sim \mathcal{B}(n,p)$, variable aléatoire finie, donc G_X définie sur \mathbb{R} et $\forall t \in \mathbb{R}, G_X(t) = (q+pt)^n$. D'où, $\forall t \in \mathbb{R}, G_X'(t) = np(q+pt)^{n-1}, G_X''(t) = n(n-1)p^2(q+pt)^{n-2}$. Et : E(X) = np, V(X) = np(1-p).
- Si $X \sim \mathcal{B}(p)$, la série $\sum P(X=n)t^n = \sum_{n\geqslant 1} pt(qt)^{n-1}$ a pour rayon de convergence $R=\frac{1}{a}>1$ et

$$\forall t \in]-R; R[, G_X(t) = \frac{pt}{1 - qt}$$

et $\forall t \in]-R; R[,$ $C'(t) = p \quad \text{of } C''(t) = p$

$$G'_X(t) = \frac{p}{(1-qt)^2}$$
 et $G''_X(t) = \frac{2pq}{(1-qt)^3}$

Donc:

$$E(X) = G'_X(1) = \frac{1}{p}, \quad E(X(X-1)) = G''_X(1) = \frac{2q}{p^2} \text{ et } V(X) = \frac{1-p}{p^2}.$$

• Si $X \sim \mathcal{P}(\lambda)$, la série $\sum P(X = n)t^n = \sum e^{-\lambda} \frac{(\lambda t)^n}{n!}$ a pour rayon de convergence $+\infty$ et $\forall t \in \mathbb{R}$,

$$G_X(t) = e^{-\lambda} e^{\lambda t} = e^{\lambda(t-1)}, G_X'(t) = \lambda e^{\lambda(t-1)} \text{ et } G_X''(t) = \lambda^2 e^{\lambda(t-1)}.$$

D'où :
$$E(X) = G'_X(1) = \lambda, E(X(X - 1)) = G''_X(1) = \lambda^2 \text{ et } V(X) = \lambda.$$

VII. C Somme de variables aléatoires indépendantes

Théorème 7.9

Soit X_1, \ldots, X_n des variables aléatoires indépendantes à valeurs dans \mathbb{N} . On pose $S_n = \sum_{k=1}^n X_k$. Alors, pour tout t tel que $G_{X_k}(t)$ est défini pour tout $k \in [1; n]$,

$$G_{S_n}(t) = \prod_{k=1}^n G_{X_k}(t).$$

Exemples 7.10 : • Soit X_1, \ldots, X_k des variables aléatoires indépendantes telles que : $\forall i \in [\![1\,;k]\!], X_i \sim \mathcal{B}(n_i,p)$ et $X = \sum_{i=1}^k X_i$. Montrer que $X \sim \mathcal{B}(n,p)$ avec $n = \sum_{i=1}^k n_i$.

• Soit X_1, \ldots, X_k des variables aléatoires indépendantes telles que : $\forall i \in [\![1\,;k]\!], X_i \sim \mathcal{P}(\lambda_i)$ et $X = \sum_{i=1}^k X_i$. Montrer que $X \sim \mathcal{P}(\lambda)$ avec $\lambda = \sum_{i=1}^k \lambda_i$.

VIII Bilan lois usuelles