Domain Name System

Mridul Sankar Barik

Jadavpur University

2024

DNS: Domain Name System I

- People: many identifiers (SSN, name, passport no. etc.)
- Internet hosts, routers:
 - IP address (IPv4/IPv6)
 - "name", e.g., www.yahoo.com used by humans
- Domain Name System
 - Distributed database implemented in hierarchy of many name servers
 - Application-layer protocol
 - Runs over UDP and uses port 53

DNS: Domain Name System II

- DNS services
 - Hostname to IP address translation
 - Host aliasing
 - Canonical, alias names
 - Mail server aliasing
 - Load distribution
 - Replicated Web servers: set of IP addresses for one canonical name
- Why not centralize DNS?
 - Single point of failure
 - Traffic volume
 - Distant centralized database
 - Maintenance
 - Does not scale

Distributed, Hierarchical Database

- Client wants IP for www.amazon.com
 - Client queries a root server to find .com DNS server
 - Client queries com DNS server to get amazon.com DNS server
 - Client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: Root Name Servers

- Contacted by local name server that can not resolve name
- Root name server:
 - Contacts authoritative name server if name mapping not known
 - Gets mapping
 - Returns mapping to local name server

TLD and Authoritative Servers

- Top-level domain (TLD) Servers:
 - Responsible for com, org, net, edu etc., and all top-level country domains uk, fr, ca, jp
 - Network Solutions maintains servers for com TLD
 - Educause for edu TLD
- Authoritative DNS Servers:
 - Organization's DNS servers, providing authoritative hostname to IP mappings for organization's servers (e.g., Web, mail)
 - Can be maintained by organization or service provider

Local Name Server

- Does not strictly belong to hierarchy
- Each ISP (residential ISP, company, university) has one
 - Also called "default name server"
- When host makes DNS query, query is sent to its local DNS server
 - Acts as proxy, forwards query into hierarchy

DNS Name Resolution Example I

- Host at cis.poly.edu wants IP address for gaia.cs.umass.edu
- Iterated Query
 - Contacted server replies with name of server to contact
 - "I don't know this name, but ask this server"

DNS Name Resolution Example II

- Host at cis.poly.edu wants IP address for gaia.cs.umass.edu
- Recursive Query
 - Puts burden of name resolution on contacted name server
 - Heavy load?

DNS: Caching and Updating Records

- Once (any) name server learns mapping, it caches mapping
 - Cache entries timeout (disappear) after some time
 - TLD servers typically cached in local name servers
 - Thus root name servers not often visited

DNS Records I

- DNS: distributed database storing resource records (RR)
 - RR Format: (Name, Value, Type, TTL)
- TTL: Time to Live of the RR
 - Determines when a resource should be removed from a cache

DNS Records II

- Type=A
 - Name is a hostname
 - Value is the IP address for the hostname
 - Provides standard hostname to IP address mappings
 - Example
 - (relay1.bar.foo.com, 145.37.93.126, A)

DNS Records III

- Type=NS
 - Name is a domain
 - Value is the hostname of an authoritative DNS server
 - Used to route DNS queries further along in the query chain
 - Example
 - (foo.com, dns.foo.com, NS)

DNS Records IV

- Type=CNAME
 - Name is an alias hostname
 - Value is a canonical hostname
 - Used to answer DNS queries for canonical name for a hostname
 - Example
 - (foo.com, relay1.bar.foo.com, CNAME)
 - (www.foo.com, relay1.bar.foo.com, CNAME)
 - (mail.foo.com, relay1.bar.foo.com, CNAME)

DNS Records V

- Type=MX
 - Name is the alias hostname of the mailserver
 - Value is the canonical name of a mail server
 - Allows hostnames of mail servers to have simple aliases
 - Example
 - (foo.com, mail.bar.foo.com, MX)

DNS Protocol, Messages I

- DNS protocol: query and reply messages, both with same message format
- Message header (12 bytes)
 - Identification: 16 bit number for query, reply to query uses same number
 - Flags:
 - Query or reply
 - Recursion desired
 - Recursion available
 - Reply is authoritative

identification	flags	1
number of questions	number of answer RRs	12 bytes
number of authority RRs	number of additional RRs	
questions (variable number of questions)		
answers (variable number of resource records)		
authority (variable number of resource records)		
additional information (variable number of resource records)		

DNS Protocol, Messages II

- Name, type fields for a query
- RRs in response to query
- Records for authoritative servers
- Additional "helpful" info that may be used

identification	flags	1
number of questions	number of answer RRs	12 byte
number of authority RRs	number of additional RRs	
questions (variable number of questions)		
answers (variable number of resource records)		
authority (variable number of resource records)		
additional information (variable number of resource records)		

Inserting Records into DNS

- Example: new startup "Network Utopia"
- Register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - Registrar is a commercial entity that verifies the uniqueness of the domain name
 - Internet Corporation for Assigned Names and Numbers (ICANN) accredits the various registrars
 - Complete list of accredited registrars is available at http://www.intenic.net
 - Provide names, IP addresses of authoritative name server (primary and secondary)
 - Registrar inserts two RRs into com TLD server:
 - (networkutopia.com, dns1.networkutopia.com, NS)
 - (dns1.networkutopia.com, 212.212.212.1, A)
- Create authoritative server
 - Type A record for www.networkutopia.com
 - Type MX record for networkutopia.com