Discrete Mathematics

combination of set, combination of multiset, inverse binomial transform, combinatorial proof

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Combinations of Sets

DEFINITION: Let $A = \{a_1, ..., a_n\}$ and let $r \in \{0, 1, ..., n\}$.

- *r*-combination of *A*: an *r*-subset of *A*.
 - Notation: $\{a_{i_1}, \dots, a_{i_r}\}$ with $1 \le i_1 < \dots < i_r \le n$
 - $\binom{n}{r}$: the number of r-combinations of an n-element set

THEOREM: $\binom{n}{r} = \frac{n!}{r!(n-r)!}$ for all $n \in \mathbb{Z}^+$ and $r \in \{0,1,\ldots,n\}$.

DEFINITION: Let $A = \{a_1, ..., a_n\}$ and let $r \ge 0$.

- *r*-combination of *A* with repetition: a multiset $\{x_1 \cdot a_1, ..., x_n \cdot a_n\}$ of r elements, where $x_1, ..., x_n \ge 0$ are integers and $x_1 + \cdots + x_n = r$.
 - Notation: $\{a_{i_1}, \dots, a_{i_r}\}$ with $1 \le i_1 \le i_2 \le \dots \le i_r \le n$

THEOREM: The number of r-combinations of an n element set with repetition is $\binom{n+r-1}{r}$

Combinations of Sets

- \mathcal{U} : the set of all r-combinations of A = [n] with repetition
- \mathcal{V} : the set of all r-combinations of [n+r-1] without repetition
 - Let $U = \{u_1, u_2, ..., u_r\} \in \mathcal{U}$ and $1 \le u_1 \le u_2 \le ... \le u_r \le n$.
 - $1 \le u_1 < u_2 + 1 < u_3 + 2 < \dots < u_r + r 1 \le n + r 1$
 - $\{u_1, u_2 + 1, \dots, u_r + r 1\} \in \mathcal{V}$
 - $f: \mathcal{U} \to \mathcal{V} \{u_1, u_2, ..., u_r\} \mapsto \{u_1, u_2 + 1, ..., u_r + r 1\}$
 - f is bijective. Hence, $|\mathcal{U}| = |\mathcal{V}| = \binom{n+r-1}{r}$

THEOREM: The number of natural number solutions of the

equation
$$x_1 + x_2 + \dots + x_n = r$$
 is $\binom{n+r-1}{r}$.

- $\mathcal{X} = \{(x_1, ..., x_n) : x_1, ..., x_n \in \mathbb{N} \text{ and } x_1 + \dots + x_n = r\}$
- y: the set of all r-combinations of [n] with repetition
- $f: \mathcal{X} \to \mathcal{Y} \quad (x_1, \dots, x_n) \mapsto \{x_1 \cdot 1, x_2 \cdot 2, \dots, x_n \cdot n\}$
 - f is bijective. Hence, $|\mathcal{X}| = |\mathcal{Y}| = \binom{n+r-1}{r}$.

Application

EXAMPLE: What is the value of k after the program execution?

- k := 0;
- for i_1 : = 1 to n do
 - for i_2 : = 1 to i_1 do
 - •
- for i_r : = 1 to i_{r-1} do
 - k = k + 1;

Analysis:

- Loop variables: $1 \le i_r \le i_{r-1} \le \dots \le i_1 \le n$
- The number of iterations is equal to the number of r-combinations of the set [n] with repetition
- In every iteration, *k* increases by 1.
 - After the program execution, $k = \binom{n+r-1}{r}$

Combinations of Multiset

- **DEFINITION:** Let $A = \{n_1 \cdot a_1, n_2 \cdot a_2, ..., n_k \cdot a_k\}$ be an nmultiset. Let $r \in \{0, 1, ..., n\}$.
 - r-combination of A: an r-subset (multiset) of A
 - Notation: $\{x_1 \cdot a_1, x_2 \cdot a_2, ..., x_k \cdot a_k\}$, where $0 \le x_i \le n_i$ for every $i \in [k]$ and $x_1 + x_2 + \cdots + x_k = r$.

EXAMPLE: $A = \{1 \cdot a, 2 \cdot b, 3 \cdot c\}$

• $\{1 \cdot b, 2 \cdot c\}$ is a 3-combination of *A*; a 3-subset of *A*

REMARK:

- For every $r \in \{0,1,...,n\}$, an r-combination of $A = \{a_1, a_2, ..., a_n\}$ without repetition is an r-combination of $\{1 \cdot a_1, 1 \cdot a_2, ..., 1 \cdot a_n\}$.
- For every $r \ge 0$, an r-combination of $A = \{a_1, a_2, ..., a_n\}$ with repetition is an r-combination of $\{\infty \cdot a_1, \infty \cdot a_2, ..., \infty \cdot a_n\}$.

Inverse Binomial Transform

DEFINITION: The **binomial transform** of $\{a_n\}_{n\geq s}$ is a sequence $\{b_n\}_{n\geq s}$ such that

$$b_n = \sum_{k=s}^n \binom{n}{k} a_k \tag{1}$$

DEFINITION: The **inverse binomial transform** of $\{b_n\}_{n\geq s}$ is a sequence $\{a_n\}_{n\geq s}$ such that

$$a_n = \sum_{k=s}^n (-1)^{n-k} \binom{n}{k} b_k \quad (2)$$

QUESTION: Given (1), how to find the sequence $\{a_n\}$?

- Answer: $\{a_n\}$ is the inverse binomial transform of $\{b_n\}$
- Application: determine $\{a_n\}$ via $\{b_n\}$
- Proof?

Combinatorial Proofs

DEFINITION: A **combinatorial proof** of an identity L = R is

- **a double counting proof,** which shows that *L*, *R* count the same set of objects but in different ways:
 - L = |X| = R and L, R count |X| in different ways.
- **a bijective proof,** which shows a bijection between the sets of objects counted by *L* and *R*:
 - L = |X|, R = |Y| and there is a bijection $f: X \to Y$.

EXAMPLE: $\binom{n}{r} = \binom{n}{n-r}$

- $X = \{s \in \{0,1\}^n : s \text{ contains } r \text{ 0s}\} = \{s \in \{0,1\}^n : s \text{ contains } n r \text{ 1s}\}$
 - $\binom{n}{r} = |X|$
 - $\bullet \quad \binom{n}{n-r} = |X|$

Inverse Binomial Transform

LEMMA: $\binom{n}{k}\binom{k}{r} = \binom{n}{r}\binom{n-r}{k-r}$ for any $n, k, r \in \mathbb{N}$ such that $n \ge k \ge r$.

- Let $U = \{u_1, u_2, ..., u_n\}$ be a finite set of n elements
- $S = \{(A, B): A \subseteq U, |A| = k, B \subseteq A, |B| = r\}$
 - choose A then choose B: $|S| = \binom{n}{k} \binom{k}{r}$, the left-hand side
 - choose B then choose A: $|S| = \binom{n}{r} \binom{n-r}{k-r}$, the right-hand side

LEMMA:
$$\sum_{k=r}^{n} (-1)^{n-k} \binom{n}{k} \binom{k}{r} = \begin{cases} 1 & n=r \\ 0 & n>r \end{cases}$$
.

- $\binom{n}{k}\binom{k}{r} = \binom{n}{r}\binom{n-r}{k-r}$ as $n \ge k \ge r \ge 0$
- left = $\sum_{k=r}^{n} (-1)^{n-k} \binom{n}{r} \binom{n-r}{k-r} = \binom{n}{r} \sum_{k=r}^{n} (-1)^{(n-r)-(k-r)} \binom{n-r}{k-r}$ = $\binom{n}{r} \sum_{i=0}^{n-r} (-1)^{(n-r)-i} \binom{n-r}{i}$ = right

Inverse Binomial Transform

LEMMA: Let $n, s \in \mathbb{N}$, $s \leq n$. Then $\sum_{k=s}^{n} \underbrace{\sum_{i=s}^{k} a_{k,i}}_{\alpha_k} = \sum_{i=s}^{n} \underbrace{\sum_{k=i}^{n} a_{k,i}}_{\beta_i}$

					- · · · ·	
k i	S	s+1	s+2	•••	n	row sum
S	$a_{s,s}$			•••		$\alpha_{\scriptscriptstyle S}$
s + 1	$a_{s+1,s}$	$a_{s+1,s+1}$		•••		α_{s+1}
s + 2	$a_{s+2,s}$	$a_{s+2,s+1}$	$a_{s+2,s+2}$	•••		α_{s+2}
:	•	:	:	•••	••	:
n	$a_{n,s}$	$a_{n,s+1}$	$a_{n,s+2}$	•••	$a_{n,n}$	α_n
col sum	$eta_{\scriptscriptstyle S}$	β_{s+1}	β_{s+2}	• • •	β_n	ΣΣ

THEOREM: Let $\{a_n\}$, $\{b_n\}$ be two sequences s.t. for all $n \ge s$,

$$a_n = \sum_{k=s}^n \binom{n}{k} b_k$$
. Then $b_n = \sum_{k=s}^n (-1)^{n-k} \binom{n}{k} a_k$ $(n \ge s)$.

•
$$\sum_{k=s}^{n} (-1)^{n-k} \binom{n}{k} a_k = \sum_{k=s}^{n} (-1)^{n-k} \binom{n}{k} \sum_{i=s}^{k} \binom{k}{i} b_i$$

$$= \sum_{i=s}^{n} \sum_{k=i}^{n} (-1)^{n-k} \binom{n}{k} \binom{k}{i} b_i = b_n$$