Universidade Federal de Santa Maria Departamento de Engenharia Química DEQ 1032 - Engenharia das Reações Químicas Avançadas

Projeto de reatores não-isotérmicos: PFR

Profa. Dra. Gabriela Carvalho Collazzo (gabrielacollazzo@gmail.com)

Reator PFR

Relembrando a equação geral do balanço de energia para reatores em regime estacionário:

$$\dot{Q} - \dot{WS} - F_{A0} \sum \theta_i \tilde{C} p_i (T - T_{i0}) - F_{A0} X \left[\Delta H^{\circ}_{rx} (T_R) + \Delta \hat{C} p (T - T_R) \right] = 0$$

Normalmente existe uma quantidade desprezível de trabalho realizado sobre a, ou pela, mistura de reagente, de forma que, em geral, o termo de trabalho pode ser desprezado no projeto de reator tubular.

Iremos analisar o PFR com troca térmica.

PFR com troca térmica

Reator tubular no qual calor é adicionado ou removido através das paredes cilíndricas do reator.

O balanço de energia ignorando qualquer trabalho realizado sobre o fluido refrigerante é:

$$\dot{Q} - F_{A0} \cdot \sum_{T_0} \int_{T_0}^T \theta_i \cdot Cp_i \cdot dT - F_{A0} \cdot X \cdot \left[\Delta H^{\circ}_{rx}(T_R) + \Delta \hat{C}p(T - T_R) \right] = 0$$

Diferenciando com relação ao volume:

$$\frac{d\dot{Q}}{dV} - \left[F_{A0} \left(\sum \theta_i C p_i + X \Delta C p \right) \right] \frac{dT}{dV} - \left[\Delta H^{\circ}_{RX}(T_R) + \int_{T_R}^T \Delta C p \ dT \right] F_{A0} \frac{dX}{dV} = 0$$

Balanço de energia para o PFR com transferência de calor:

$$\frac{dT}{dV} = \frac{UA(T_a - T) + (-\Delta H_{RX})(-r_A)}{[F_{A0}(\sum \theta_i Cp_i + X\Delta Cp)]}$$

Do balanço de energia tem-se:

$$\frac{dT}{dV} = g(X, T)$$

Do balanço molar tem-se:

$$\frac{dX}{dV} = f(X, T)$$

Resolver as equações e encontrar X e T que satisfaça os dois balanços.

Reator de leito recheado

Para um reator de leito de recheio, $dW = \rho_b dV$ onde ρ_b é a massa específica do leito.

$$\frac{dT}{dW} = \frac{\frac{Ua(T_a - T)}{\rho_b} + (-r'_A) * [-\Delta H_{RX}]}{[F_{A0}(\sum \theta_i C p_i + X \Delta C p)]}$$

Balanço para o fluido de troca térmica

O fluido de troca térmica será o fluido refrigerante para reações exotérmicas e fluido de aquecimento para reações endotérmicas. Se a vazão do fluido de troca térmica é suficientemente alta em relação ao calor liberado (ou absorvido) pela mistura reacional, então a temperatura do fluido de troca térmica será praticamente constante ao longo do reator.

Serão descritas as equações que se aplicam quando o um fluido refrigerante remove o calor das reações exotérmicas no entanto as mesmas equações se aplicam para as reações endotérmicas, nas quais um fluido de aquecimento é usado para fornecer calor.

Essa troca pode ocorrer com o fluido em escoamento cocorrente ou contracorrente.

Escoamento cocorrente

O reagente e o fluido refrigerante escoam na mesma direção

O balanço de energia no fluido refrigerante, no volume entre $Ve(V + \Delta V)$, é

$$\begin{bmatrix} \text{Taxa de entrada} \\ \text{de energia em } V \end{bmatrix} - \begin{bmatrix} \text{Taxa de saída de} \\ \text{energia em } V + \Delta V \end{bmatrix} + \begin{bmatrix} \text{Taxa de calor adicionado} \\ \text{por condução, através da} \\ \text{parede interna} \end{bmatrix} = 0$$

$$\dot{m}_c H_c|_V - \dot{m}_c H_c|_{V+\Delta V} + Ua(T-T_a)\Delta V = 0$$

$$\frac{dT_a}{dV} = \frac{Ua(T - T_a)}{\dot{m}_c C p_c}$$

Escoamento contracorrente

Na entradaV=0, $\therefore X=0$ e $T_{a}=T_{a2}$. Na saída $V=V_{f}$ $\therefore T_{a}=T_{a0}$.

$$\frac{dT_a}{dV} = \frac{Ua(T_a - T)}{\dot{m}_c C p_c}$$

Continuação do exemplo 8-6

O que dizia o exemplo 8-6?

O butano normal, n- C_4H_{10} , deve ser isomerizado a isobutano, i- C_4H_{10} , em um PFR. Esta reação elementar reversível deve ser conduzida adiabaticamente em fase líquida sob alta pressão, usando essencialmente traços de um catalisador líquido que promove uma velocidade específica de reação de 31.1 h- 1 a 360 K. A alimentação entra a 330 K.

a) Calcule o volume de PFR necessário para processar 100 000 gal/dia (163 kmol/h), a 70 % de conversão, de uma mistura de 90 mol% de n-butano e 10 mol% de i-pentano, que é considerado inerte.

 $V \sim 2.5 \text{ m}^3$ já tende ao equilíbrio, X=0.7 o $Volume = 2.53 \text{ m}^3$ A temperatura aumenta de 330 K para 360 K e atinge um equilíbrio

Continuação do exemplo 8-6

Quando verificamos a pressão de vapor na saída do reator adiabático do exemplo 8-6, no qual a temperatura é 360 K, descobrimos que a pressão de vapor do isobuteno era aproximadamente 1.5 MPa, que é maior que a pressão de ruptura do reator de vidro utilizado.

Felizmente, há um banco de **10 reatores tubulares**, sendo cada reator de 5 m³.

O banco de reatores é formado de trocadores de calor de tubos concêntricos, com os reagentes escoando no tubo interior e Ua=5000kJ/(m³ h K).

A temperatura de entrada dos reagentes é 305 K e a temperatura de entrada do fluido refrigerante é 310 K.

A vazão mássica do fluido refrigerante, \dot{m}_C , é 500 kg/h e sua capacidade térmica, $\mathrm{Cp_c}$, é de 28 kJ/(kg K). A temperatura em qualquer um dos reatores não pode ultrapassar 325K.

Desenvolva as seguintes análises:

- a) Trocador de calor cocorrente. Plote X, X_e , T, T_a e $-r_A$, ao longo do reator.
- b) Trocador de calor contracorrente. Plote X, X_e , T, T_a e $-r_A$, ao longo do reator.
- c) Temperatura do fluido de refrigeração constante, T_a . Plote X, X_e , T e $-r_A$, ao longo do reator.
- d) Compare as partes a, b, e c acima com o caso adiabático.

Informação adicional:

$$Cp_{a} = 141 \frac{kJ}{kmol \ K}$$

$$Cp_{0} = \sum \theta_{i} Cp_{i} = 159 \frac{kJ}{kmol \ K}$$

$$\Delta H_{RX} = -6900 \frac{kJ}{kmol}$$

$$\Delta Cp = 0$$

Solução parte (a) COCORRENTE

```
# Reação n-Butano -> i-Butano (reversível)
# A= n-Butano, B=i-Butano, I=i-pentano
# Balanço Molar PFR
d(X)/d(V) = -ra / Fa0
Fa0 = yao * F0 * 0.1 # agora são 10 tubos
vao = 0.9
F0 = 163 \# \text{kmol/h}
# condição inicial
|X(0)| = 0
# Lei de velocidade
ra = -(k * (Ca - (Cb / Kc))) # kmol/m3*h
rate = -ra
# Esteguiometria - Reação em fase líquida
Ca = Ca0 * (1 - X) # kmol/m3
Cb = Ca0 * (theta b + ((b / a) * X)) # kmol/m3
Ca0 = 9.3 # kmol/m3 mesma coisa 9.3 mol/dm3
theta b = 0
a = 1
|b| = 1
# Constantes
# Constante de velocidade
k = k1 * exp((E / R) * ((1 / T1) - (1 / T))) # h-1
k1 = 31.1 # h-1
T1 = 360 # K
E = 65.7 * 10 ^ 3 # J/mol
R = 8.31 # J/mol*K
# Constante de equilíbrio
Kc = Kc2 * exp((deltaHRX / R) * ((1 / T2) - (1 / T)))
Kc2 = 3.03
T2 = 333 \# K
```

```
# Balanço Energia PFR TROCA
d(T)/d(V) = ((ra * deltaHRX) - Ua * (T - Ta)) / (Cp0 * Fa0)
T(0) = 305 \# K
deltaHRX = -6900 \# kJ/kmol
Ua = 5000 \# kJ/(m3 h K)
Cp0 = 159 \# kJ/kmol*K
soma thetai cpi = Cpa + thetai * Cpi
Cpa = 141 # J/mol*K
thetai = (0.1/0.9)
Cpi = 161 # J/mol*K
deltaCp = (b/a) * Cpb - Cpa # J/mol*K
Cpb = 141 \# J/mol*K
# Balanço Energia FLUIDO TROCA
d(Ta)/d(V) = Ua * (T - Ta) / (m * Cpc)
Ta(0) = 310 \# K
m = 500 \# kg/h
Cpc = 28 \# kJ/(kg K)
                                                             -H_c\dot{m}_c
                               ma Ha
                                FA, T-
                                                               F<sub>Δ</sub>, T
                               ma Ha.
                                                             ► H<sub>O</sub>,m<sub>C</sub>
# equações auxiliares
Xe = Kc / (1 + Kc)
                                                     V + \Delta V
# intervalo de integração
V(0) = 0
V(f) = 5 \# m3
```

Solução parte (a)

Calculated values of DEQ variable

	Variable	Initial value	Minimal value	Maximal value	Final value
1	V	0	0	5.	5.
2	X	0	0	0.7755906	0.7755906
3	Т	305.	305.	318.9816	314.1728
4	Та	310.	309.8308	314.0794	314.0794

Fluido refrigerante cocorrente entra no V=0 com $T_{a0}=310$, quando V=5 , $T_a=314$ mesma T do reator

Análise:

Observamos que a temperatura do reator passa por um máximo. Próximo à entrada do reator, as concentrações dos reagentes são elevadas e, portanto, a velocidade de reação é alta e calor gerado é maior que o calor removido.

Consequentemente, a temperatura aumenta com o aumento do volume da região de entrada.

Entretanto, mais longe da entrada, os reagentes foram consumidos na sua maior parte, a velocidade de reação é pequena, calor removido é maior que o calor gerado, e a temperatura decresce.

Também observamos que, na medida em que as temperaturas do fluido de troca térmica e do reator se aproximam, deixa de existir uma força motriz para esfriar o reator. Consequentemente, a temperatura se estabiliza ao longo do reator, bem como a conversão de equilíbrio, que é função somente da temperatura.

Solução parte (b) contracorrente

```
# Balanço Energia PFR TROCA
# Reação n-Butano -> i-Butano (reversível)
# A= n-Butano, B=i-Butano, I=i-pentano
                                                         d(T)/d(V) = ((ra * deltaHRX) - Ua * (T - Ta)) / (Cp0 * Fa0)
                                                         T(0) = 305 \# K
# Balanço Molar PFR
                                                         deltaHRX = -6900 \# kJ/kmol
d(X)/d(V) = -ra / Fa0
                                                         Ua = 5000 \# kJ/(m3 h K)
Fa0 = yao * F0 * 0.1 # agora são 10 tubos
                                                         Cp0 = 159 \# kJ/kmol*K
vao = 0.9
F0 = 163 \# \text{kmol/h}
                                                          soma thetai cpi = Cpa + thetai * Cpi
# condição inicial
                                                         Cpa = 141 \# J/mol*K
X(0) = 0
                                                         thetai = (0.1/0.9)
                                                         Cpi = 161 \# J/mol*K
# Lei de velocidade
                                                         deltaCp = (b/a) * Cpb - Cpa # J/mol*K
ra = -(k * (Ca - (Cb / Kc))) # kmol/m3*h
                                                         Cpb = 141 \# J/mol*K
rate = -ra
# Esteguiometria - Reação em fase líguida
Ca = Ca0 * (1 - X) # kmol/m3
                                                         # Balanço Energia FLUIDO TROCA
Cb = Ca0 * (theta b + ((b / a) * X)) # kmol/m3
                                                         d(Ta)/d(V) = Ua * (Ta - T) / (m * Cpc)
Ca0 = 9.3 \# \text{ kmol/m3 mesma coisa } 9.3 \text{ mol/dm3}
                                                         Ta(0) = 315 # K aqui é a tentativa e erro, como já sei da letra (a) que sai próximo 315, chuto 315 K
theta b = 0
a = 1
                                                         m = 500 \# kg/h
b = 1
                                                         Cpc = 28 \# kJ/(kg K)
# Constantes
# Constante de velocidade
k = k1 * exp((E / R) * ((1 / T1) - (1 / T))) # h-1
                                                         # equações auxiliares
k1 = 31.1 # h-1
                                                                                                                                                    \dot{m}_c T_{a0}
                                                         Xe = Kc / (1 + Kc)
T1 = 360 # K
                                                                                             F<sub>A0</sub>, T<sub>0</sub>
E = 65.7 * 10 ^ 3 # J/mol
                                                         # intervalo de integração
R = 8.31 \# J/mol*K
                                                         V(0) = 0
                                                         V(f) = 5 \# m3
# Constante de equilíbrio
                                                                                                            V = 0
                                                                                                                            V V + \Delta V V = V_f
Kc = Kc2 * exp((deltaHRX / R) * ((1 / T2) - (1 / T)))
Kc2 = 3.03
T2 = 333 # K
```

Fluido refrigerante contracorrente entra no V=5 com Ta0=310, quando V=0 ,Ta=?..então temos que ter cuidado como Ta, por no V=0 o Ta vai estar em equilíbrio e será igual ao encontrado na letra a aprox 315

Calculated values of DEQ variables

	Variable	Initial value	Minimal value	Maximal value	Final value
1	V	0	0	5.	5.
2	x	0	0	0.7796866	0.7796866
3	Т	305.	305.	324.6531	310.4146
4	Ta	315.	310.2648	315.5426	310.2648

Análise:

Observamos que, próximo à entrada do reator, a temperatura do fluido refrigerante é maior que a temperatura dos reagentes na entrada.

No entanto, à medida que deslocamos ao longo do reator, a reação gera "calor" e a temperatura do reator aumenta acima da temperatura do fluido refrigerante.

Observamos que Xe atinge um mínimo (que corresponde à temperatura máxima do reator), próximo à entrada do reator, e então aumenta, conforme a temperatura do reator decresce.

Solução parte (c) Temperatura do fluido de refrigeração constante

```
# Reação n-Butano -> i-Butano (reversível)
# A= n-Butano, B=i-Butano, I=i-pentano
# Balanço Molar PFR
d(X)/d(V) = -ra / Fa0
Fa0 = yao * F0 * 0.1 # agora são 10 tubos
vao = 0.9
F0 = 163 # kmol/h
# condição inicial
|X(0)| = 0
# Lei de velocidade
ra = -(k * (Ca - (Cb / Kc))) # kmol/m3*h
rate = -ra
# Esteguiometria - Reação em fase líguida
Ca = Ca0 * (1 - X) # kmol/m3
Cb = Ca0 * (theta b + ((b / a) * X)) # kmol/m3
Ca0 = 9.3 # kmol/m3 mesma coisa 9.3 mol/dm3
theta b = 0
a = 1
b = 1
# Constantes
# Constante de velocidade
k = k1 * exp((E / R) * ((1 / T1) - (1 / T))) # h-1
k1 = 31.1 # h-1
T1 = 360 # K
E = 65.7 * 10 ^ 3 # J/mol
R = 8.31 # J/mol*K
# Constante de equilíbrio
Kc = Kc2 * exp((deltaHRX / R) * ((1 / T2) - (1 / T)))
Kc2 = 3.03
T2 = 333 # K
```

```
# Informações do sistema reacional
F0 = 163 \# \text{kmol/h}
Fa0 = ya0 * F0 / 10
va0 = 0.9
vi0 = 0.1
Ca0 = 9.3 \# \text{kmol/m}^3
# BE COM TROCA
d(T)/d(V) = (((-deltaHRX) * (-ra)) - (UA * (T - Ta))) / (Fa0 * (-ra)) + (-ra) / (-ra
 (soma_theta_cp + (X * deltaCp)))
T(0) = 305 \# K
soma theta cp = Cpa + theta i * Cpi
deltaCp = (b/a) * Cpb - Cpa
Tr = 330 # K porque o deltaCp=0
Cpa = 141 # J/mol*K
Cpb = 141
Cpi = 161 # J/mol*K
theta_i = yi0 / ya0
# Balanço do fluido
d(Ta)/d(V) = 0
Ta(0) = 310 \# K temperatura inicial
UA = 5000 \# kJ/(m^3*h*K)
m = 500 \# kg/h
CPc = 28 \# kJ/(kg*K)
# Conversão de equilíbrio
Xe = Kc / (1 + Kc)
# Integração
V(0) = 0
V(f) = 5 \# m^3
```

Calculated values of DEQ variables

	Variable	Initial value	Minimal value	Maximal value	Final value
1	V	0	0	5.	5.
2	x	0	0	0.7758703	0.7758703
3	Т	305.	305.	318.3939	310.2004
4	Ta	310.	310.	310.	310.

2.50 V

3.00

3.50

4.00

4.50

0.080

0.000

0.50

1.00

1.50

2.00

Análise:

Quando a vazão do fluido refrigerante for suficientemente alta, a temperatura Ta do fluido refrigerante será praticamente constante.

Se o volume do reator for suficientemente grande, a temperatura do reator converge para temperatura do fluido refrigerante, como é o caso aqui.

Nesta maior temperatura de saída, que é a menor alcançada neste exemplo a conversão de equilíbrio é a maior dos quatro casos estudados.

cocorrente

Calculated values of DEQ variables

	Variable	Initial value	Minimal value	Maximal value	Final value		
1	V	0	0	5.	5.		
2	x	0	0	0.7755906	0.7755906		
3	Т	305.	305.	318.9816	314.1728		
4	Ta	310.	309.8308	314.0794	314.0794		
34	Срс	28.	28.	28.	28.		
35	Xe	0.7920738	0.7717369	0.7920738	0.7786793		

Ta constante

Calculated values of DEQ variables

	Variable	Initial value	Minimal value	Maximal value	Final value
1	V	0	0	5.	5.
2	X	0	0	0.7758703	0.7758703
3	Т	305.	305.	318.3939	310.2004
4	Ta	310.	310.	310.	310.
37	CPc	28.	28.	28.	28.
38	Xe	0.7920556	0.7725659	0.7920556	0.7844421

contracorrente

Calculated values of DEQ variables

	Variable	Initial value	Minimal value	Maximal value	Final value
1	V	0	0	5.	5.
2	X	0	0	0.7796866	0.7796866
3	Т	305.	305.	324.6531	310.4146
4	Ta	315.	310.2648	315.5426	310.2648
34	Срс	28.	28.	28.	28.
35	Xe	0.7920738	0.7635823	0.7920738	0.7841446

adiabático

Calculated values of DEO variables

	Variable	Initial value	Minimal value	Maximal value	Final value
1	V	0	0	5.	5.
2	x	0	0	0.7140384	0.7140384
27	Т	330.	330.	361.0082	361.0082
32	Xe	0.7560659	0.7140449	0.7560659	0.7140449

Análise:

Uma temperatura máxima maior no reator, juntamente com uma maior conversão na saída, X, e conversão de equilíbrio, Xe, são alcançadas no sistema com transferência de calor contracorrente

Parte (d)

Análise:

Quando comparamos a conversão alcançada no caso adiabático (X=0.7) com a conversão obtida nos reatores com troca de calor (cerca de X=0.78), devemos nos perguntar: "O custo de um trocador de calor se justifica?", se ocorrerem reações paralelas a resposta é sim.

