Data Analyst NanoDegree Project 1

Exploring Weather Trends

SQL code used to collect data

```
SELECT cd.*, gd.avg_temp global_avg_temp
```

From city_data cd

JOIN global_data gd

ON cd.year = gd.year

WHERE city = 'Cairo'

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import sys
```

```
In [2]:
```

sys.version

Out[2]:

'3.7.3 (default, Apr 24 2019, 15:29:51) [MSC v.1915 64 bit (AMD64)]'

In [7]: ▶

joined_data = pd.read_csv('D:\Python\Data Analyst\Weather trends\joined results.csv')
joined_data.head()

Out[7]:

	year	city	country	local_avg_temp	global_avg_temp
0	1808	Cairo	Egypt	17.11	7.63
1	1809	Cairo	Egypt	19.87	7.08
2	1810	Cairo	Egypt	19.93	6.92
3	1811	Cairo	Egypt	20.00	6.86
4	1812	Cairo	Egypt	19.93	7.05

```
In [8]:
joined_data.drop(columns = ['city','country'], inplace=True)
```

In [9]:

joined_data.head()

Out[9]:

	year	local_avg_temp	global_avg_temp
0	1808	17.11	7.63
1	1809	19.87	7.08
2	1810	19.93	6.92
3	1811	20.00	6.86
4	1812	19.93	7.05

In [10]: ▶

```
joined_data.set_index(joined_data['year'],inplace = True)
joined_data.drop(columns = 'year', inplace = True)
joined_data.head()
```

Out[10]:

local_avg_temp global_avg_temp

year		
1808	17.11	7.63
1809	19.87	7.08
1810	19.93	6.92
1811	20.00	6.86
1812	19.93	7.05

In [19]: ▶

Out[19]:

```
[Text(0, 0.5, 'Temperature °C'),
Text(0.5, 0, 'Year'),
Text(0.5, 1.0, 'local and global average Temperature comparison')]
```


In [20]: ▶

```
#creating 5 year moving average
joined_data['local_MA_5'] = joined_data['local_avg_temp'].rolling(window=5).mean()
joined_data['global_MA_5'] = joined_data['global_avg_temp'].rolling(window=5).mean()
joined_data.head(10)
```

Out[20]:

	local_avg_temp	global_avg_temp	local_MA_5	global_MA_5
year				
1808	17.11	7.63	NaN	NaN
1809	19.87	7.08	NaN	NaN
1810	19.93	6.92	NaN	NaN
1811	20.00	6.86	NaN	NaN
1812	19.93	7.05	19.368	7.108
1813	20.51	7.74	20.048	7.130
1814	20.43	7.59	20.160	7.232
1815	20.30	7.24	20.234	7.296
1816	20.51	6.94	20.336	7.312
1817	21.88	6.98	20.726	7.298

In [21]: ▶

Out[21]:

```
[Text(0, 0.5, 'Temperature °C'),
  Text(0.5, 0, 'Year'),
  Text(0.5, 1.0, 'local and global 5 year moving average Temperature comparis
on')]
```



```
In [139]:
```

```
print('The mean local temperature is', np.round(joined_data['local_avg_temp'].mean(), 2),'
print('The mean global temperature is',np.round(joined_data['global_avg_temp'].mean(), 2),'
```

The mean local temperature is 21.17 C The mean global temperature is 8.4 C

In [22]: ▶

```
#creating 10 year moving average
joined_data['local_MA_10'] = joined_data['local_avg_temp'].rolling(window=10).mean()
joined_data['global_MA_10'] = joined_data['global_avg_temp'].rolling(window=10).mean()
joined_data.head(15)
```

Out[22]:

	local_avg_temp	global_avg_temp	local_MA_5	global_MA_5	local_MA_10	global_MA_10
year						
1808	17.11	7.63	NaN	NaN	NaN	NaN
1809	19.87	7.08	NaN	NaN	NaN	NaN
1810	19.93	6.92	NaN	NaN	NaN	NaN
1811	20.00	6.86	NaN	NaN	NaN	NaN
1812	19.93	7.05	19.368	7.108	NaN	NaN
1813	20.51	7.74	20.048	7.130	NaN	NaN
1814	20.43	7.59	20.160	7.232	NaN	NaN
1815	20.30	7.24	20.234	7.296	NaN	NaN
1816	20.51	6.94	20.336	7.312	NaN	NaN
1817	21.88	6.98	20.726	7.298	20.047	7.203
1818	11.60	7.83	18.944	7.316	19.496	7.223
1819	20.31	7.37	18.920	7.272	19.540	7.252
1820	20.58	7.62	18.976	7.348	19.605	7.322
1821	20.63	8.09	19.000	7.578	19.668	7.445
1822	20.72	8.19	18.768	7.820	19.747	7.559

In [23]: ▶

Out[23]:

```
[Text(0, 0.5, 'Temperature °C'),
  Text(0.5, 0, 'Year'),
  Text(0.5, 1.0, 'local and global 10 year moving average Temperature compari
son')]
```


In [24]: ▶

```
#creating correlation heatmap between the local temperature 5 year moving average
#and the global temperature 5 year moving average
plt.figure(1,(10,8))
corr = joined_data.corr()
heat_map = sns.heatmap(data=corr,annot = True)
```


1.Is your city hotter or cooler on average compared to the global average? Has the difference been consistent over time?

A: Temperature in my city is hotter on average than the global average by quite a large margin and the difference has always been consistent.

How do the changes in your city's temperatures over time compare to the changes in the global average?

A: The changes in my city's temperature and the global average are almost the same (see above or below for the correlation coefficient).

What does the overall trend look like? Is the world getting hotter or cooler? Has the trend been consistent over the last few hundred years?

A: The world is defiantly getting hotter (despite the climate change skeptics' efforts) and has been for the last few hundred years.

Is there any differences in temperature's variation between your city and the global average?

A: My city's temperature on average has more variance than the global average.

What's the correlation coefficient?

A: the correlation coefficient between the local and global average temperature stands at 0.58. However, the correlation coefficient between the rolling average of 5 years is higher standing at 0.89. Subsequently, the correlation coefficient between the rolling 10 years average stands at a maximum of 0.93.

One can only draw the conclusion that with more moving average theresholds, the correlation coefficient grows larger and the correlation becomes more apparent.