

CHEM F111: General Chemistry Semester II: AY 2017-18

Lecture-21, 12-03-2018

Notice

Notice:

Assignment-02 will be conducted on 28-03-2018 at 17.30 hrs

You learned so far (10+2)

- Redox reactions
- Hydrogen and related compounds
- s-block elements
- p block elements
- d and f block elements
- Metals, non-metals,
 Alloy etc.

Topics to be discussed

21-23	Coordination Chemistry: Coordination compounds	Double salts and coordination compounds. Werner's work; effective atomic no. concept.; Chelates and isomerism; shapes of d orbitals, crystal field theory, octahedral complexes, spectrochemical series	R1: p194-200 (SS); p202-214; p222- 224, p232-235	•	The concept of chelates and coordination compounds Development of coordination complexes in light of various theories
24-26	Distortion of Complexes; Tetrahedral, Octahedral, and Square planar arrangement	Jahn-Teller distortion: Effect of geometrical distortions on stability, stability in other geometries	R1: p214-222	•	Nature of ligand, idea of different orbitals and their effect in inorganic complexes Idea of distortion in tetrahedral, octahedral, and square planar complexes
27-29	Octahedral complex, CFSE,	CFSE, effects of crystal field splitting, Electronic spectra of octahedral complexes, Applications of term symbols, Thermodynamic and kinetic aspects of Inorganic complexes, Latimar and Frost diagram	R1: p210-214, p219- 222 R1: p947-960 R3: p262-264, 380- 381, 385-389	•	Spectral nature of inorganic complexes Effect of strength and the symmetry of ligand field on various energy levels Identify the nature of stable and unstable complexes

Pioneer Scientist

Alfred Werner

- Alfred Werner was a Swiss chemist and a professor at the University of Zurich.
- ❖ He won the **Nobel Prize in Chemistry in 1913** for proposing the octahedral configuration of transition metal complexes.
- Werner developed the basis for modern coordination chemistry.
- ❖ He was the first inorganic chemist to win the Nobel prize, and the only one prior to 1973

Coordination Chemistry

- Transition metals act as Lewis acids
 - Form complexes/complex ions

Fe³⁺(aq) + 6CN⁻(aq)
$$\rightarrow$$
 [Fe(CN)₆]³⁻(aq)
Lewis acid Lewis base Complex ion

$$Ni^{2+}(aq) + 6NH_3(aq) \rightarrow [Ni(NH_3)_6]^{2+}(aq)$$

Lewis acid Lewis base Complex ion

- Complex with a net charge = complex ion
- > Complexes have distinct properties

Addition Compounds

When stoichiometric amounts of two or more stable compounds join together two types of addition compounds are formed.

(i) Double salts

$$K_2SO_4 + Al_2(SO_4)_3 + 24 H_2O \rightarrow K_2SO_4.Al_2(SO_4)_3.24 H_2O$$

Double salts lose their identity in solution

(ii) Co-ordination compounds

$$Fe(CN)_2 + 4KCN \rightarrow Fe(CN)_2$$
. 4KCN = $K_4[Fe(CN)_6]$

 $[Fe(CN)_6]^{4-}$ is stable in solution

Coordination Compounds

Compound that contains one or more complexes

Coordination sphere: Metal and ligands bound to it

Coordination number: number of donor atoms bonded to the central metal atom or ion in the complex

Complex charge = sum of charges on the metal and the ligands

Werner's work

Metal ions exhibit two kinds of valence: <u>primary and secondary</u>

```
[Co(NH<sub>3</sub>)<sub>6</sub>]Cl<sub>3</sub> or [Pt(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>]
```

- ❖ The primary valence is the number of charges on the complex ion, Non-directional
- ❖ The secondary valence is the number of atoms that are directly bonded (coordinated) to the metal, Directional
- ❖ The secondary valence is also termed the "coordination number" of the metal in a coordination complex

Classification of Ligands

Ligands: classified according to the number of donor atoms

monodentate

NH₃ ammonia or ammine

pyridine (py)

bidentate

NH₂CH₂CH₂NH₂ ethylenediamine (en)

2,2'-bipyridine (bipy)

tridentate

NH(CH₂NH₂)₂ diethylenetriamine (dien)

2,2':6',6"-terpyridin∈ (terpy)

An Illustration of Primary and Secondary valency

Conductivity and Cryoscopic Measurement

Formula	Cryoscopic Measurement	Molar Conductivity	Structure
CoCl ₃ .6NH ₃	4 particles	6 charges	$[Co(NH_3)_6]^{3+3}CI^{-1}$
CoCl ₃ .5NH ₃	3 particles	4 charges	[Co(NH3)5CI]2+2CI-
CoCl ₃ .4NH ₃	2 particles	2 charges	[Co(NH ₃) ₄ Cl ₂] ⁺ Cl ⁻
CoCl ₃ .3NH ₃	1 particle	0 charge	[Co(NH3)3Cl3]
$Co(NO_2)_3.3KNO_2$	4 particles	6 charges	$3K^{+}[Co(NO_{2})_{6}]^{3-}$

Effective Atomic Number (EAN)

Effective atomic number (EAN) rule: based on the octet theory of Lewis this is the first attempt to account for the bonding in complexes

<u>Sum of the electrons</u> on the <u>central atom</u> (*Lewis acid*) including those donated from the <u>ligands</u> (*Lewis base*) should be equal to the <u>number</u> of electrons on a noble gas

 $[Cu(CN)_4]^{3-}$

At. No of Cu = 29, Cu = +1, 4L = 8 electrons gained

EAN = 29-1+8 = 36 (Atomic No. of Kr)

- Gives stable compound
- Violated in many places

EAN: few more examples

Atom	At. No.	Complex I	Elec. Lost	Elec. Gained	EAN
Cr	24	$[Cr(CO)_6]$	0	12	36 (Kr)
Fe	26	$[Fe(CN)_{6}^{\circ}]^{4-}$	2	12	36 (Kr)
Fe	26	$[Fe(CO)_5]$	0	10	36 (Kr)
Co	27	$[Co(NH_3)_6]$	3+ 3	12	36 (Kr)
Ni	28	$[Ni(CO)_4]$	0	8	36 (Kr)
Cu	29	$[Cu(CN)_4]^3$		8	36 (Kr)
Pd	46	$[Pd(NH_3)_6]^4$	⁴⁺ 4	12	54 (Xe)
Pt	78	$[PtCl_6]^{2-}$	4	12	86(Rn)
Fe	26	$[Fe(CN)_6]$] ³⁻ 3	12	35
Ni	28	$[Ni(NH_3)]$	₆] ²⁺ 2	12	38
Pd	46	[PdCl ₄] ²⁻	2	8	52
Pt	78	$[Pt(NH_3)$	₄] ²⁺ 2	8	84

EAN violations

- $[Ni(NH_3)_6]^{2+}$
- EAN = 28-2+12 = 38 # 36 (Kr)
- If we want 36 to be EAN we have to have penta coordination which leads to an irregular structure

- Which in turn gives less stability
- Whenever higher coordination with a regular structure is possible that is preferred

Definition of Chelate

When more than one atom of the ligand is bonded to the central metal atom, ring structures are formed. Such ring structured complexes are called chelates.

 $[Co(NH_3)_6]Cl_3 \text{ or } [Pt(NH_3)_2Cl_2]$

Example of Chelation

Chlorophyll, hemoglobin, vitamin B₁₂ have porphyrin related structures

chlorophyll

hemoglobin

vitamin B₁₂

Stability of Chelates

The chelates are more stable than the normal compounds. Consider the following square planar complexes

$$Cu^{2+} + 2 \text{ (en)} \rightarrow [Cu(en)_2]^{2+} \text{ (A)}$$

 $Cu^{2+} + 4 \text{ NH}_3 \rightarrow [Cu(NH_3)_4]^{2+} \text{ (B)}$

- A and B have same 4 Cu-N bonds
 The higher stability of A is due to
- i) Two bonds have to be simultaneously broken to detach the ring. More the rings are formed more will be the stability.
- ii) Entropy factors (consider the backward reactions of the reactions given above).

Chelate formation: Major factor

$$[Ni(NH_3)_6]^{2+} + 3 NH_2CH_2CH_2NH_2 (en) \longrightarrow [Ni(en)_3]^{2+} + 6NH_3$$

 $[Ni(H_2O)_6] + 6NH_3 \rightarrow [Ni(NH_3)_6]^{2+} + 6H_2O$

- > en and NH₃ have similar N-donor environment
- > en is bidentate and chelating ligand
- \triangleright reaction proceeds towards right, $\triangle G$ negative
- $\triangleright \Delta G = \Delta H T\Delta S$ ($\Delta H ve, \Delta S + + ve$)
- > reaction proceeds due to entropy gain
- $\triangleright \Delta S$ ++ve is the major factor behind chelate effect

No. of Chelate Ring

Stability increases because <u>enthalpy becomes increasingly</u> <u>negative</u> (increased number of M–N bonds) & <u>entropy increases</u>

Chelating ligands

• Chelating ligands give much <u>larger values of formation constants</u>

$$[Ni(H_2O)_6]^{2+} + 6NH_3 \longrightarrow [Ni(NH_3)_6]^{2+} + 6H_2O (K_f = 4 \times 10^8)$$

 $[Ni(H_2O)_6]^{2+} + 3en \longrightarrow [Ni(en)_3]^{2+} + 6H_2O (K_f = 2 \times 10^{18})$

- <u>Sequestering agent</u> are chelating agents that are used to remove unwanted metal ions
- In medicine, <u>sequestering agent are used</u> to selectively remove toxic metal ions (e.g., Hg²⁺ or Pb²⁺), while leaving biologically important metal ions

Stability of complexes

$$[Fe(H_2O)_6]^{3+} + NCS^- \rightarrow [Fe(H_2O)_5(NCS)]^{2+} + H_2O$$

$$K_f = [Fe(H_2O)_5(NCS)]^{2+} / [Fe(H_2O)_6]^{3+}[NCS^{-}]$$

Equilibrium constant $K_f \Rightarrow$ formation constant

$$M + L \rightarrow ML$$
 $K_1 = [ML]/[M][L]$

$$ML + L \rightarrow ML_2$$
 $K_2 = [ML_2]/[ML][L]$

$$ML_2 + L \rightarrow ML_3$$
 $K_3 = [ML_3]/[ML_2][L]$

$$ML_{n-1} + L \rightarrow ML_n$$
 $K_n = [ML_n]/[ML_{n-1}][L]$

Stability of complexes

- $K_1, K_2.... \Rightarrow$ Stepwise formation constant.
- To calculate concentration of the final product, use overall formation constant β_n :

$$\beta_n = K_f = [ML_n]/[M][L]^n = K_1 \times K_2 \times K_3 \times \times K_n$$

$$[Ni(NH_3)_6]^{2+} + 3 NH_2CH_2CH_2NH_2 (en) \longrightarrow [Ni(en)_3]^{2+} + 6NH_3$$

Isomerism

Structural isomer

 $[CoBr(NH_3)_5]SO_4$

 $[Co(SO_4)(NH_3)_5]Br$

Ionization Isomers

Hydrate Isomers

 $[Co(NH_3)_6][Cr(CN)_6]$ $[Cr(NH_3)_6][Co(CN)_6]$ $[Cu(NH_3)_4][PtCl_4]$ $[Pt(NH_3)_4][CuCl_4]$

Coordination Isomers

Structural isomer

Linkage Isomers

Ambidenate ligands

CN⁻ through C or N; SCN⁻ through S or N; $S_2O_3^{2-}$ through S or O.

Stereoisomers of square planer com.

[Ma₂b₂]
M=Metal centre;
a and b are monodentate ligands

[Ma₂bc]
M=Metal centre;
a, b and c are monodentate ligands

[Mabcd]

M=Metal centre; a, b, c and d are monodentate ligands

Stereoisomers of Octahedral com.

Facial isomer (*fac*) in which each set of three identical ligands occupies one face of the octahedron surrounding the metal atom, so that any two of these three ligands are mutually cis

Stereoisomers of Octahedral com.

Meridional isomer (mer) in which each set of three identical ligands occupies a plane passing through the metal atom (the positions are around the meridian of the octahedron)

Stereoisomers of Octahedral com.

$[M(AA)_3]$

M=Metal centre; AA is a symmetrical bidentate ligand in which the two letters A and A are indicating the two similar coordinating atoms

Two Optical Isomers

$[M(AB)_3]$

M=Metal centre; AB is an unsymmetrical bidentate ligand in which the two letters A and B are indicating the two different coordinating atoms

And their mirror images Total = 4 isomers

Discussed topics.....

- Double salt and coordination compound
- Werner's work
- Identification of structure by isomer counting
- > Effective atomic number
- > Chelates and isomerism

Next class.....

- ✓ Crystal field theory
- ✓ Shapes of d orbitals
- ✓ Nature of ligand
- ✓ Spectrochemical series

Classification of Ligands (Supporting Slide)


```
(A) Charge (formal charge)
```

- Neutral (e.g. :CO, :PR₃, :NH₃)
- Anionic (e.g. Cl⁻, O²⁻, CH₃⁻)
- Cationic (rare!) (e.g. NO⁺, C₇H₇⁺)

```
(B) Hard/Soft properties
```

```
Hard: period 1 donor (NH_3, OH_2)
```

Soft: carbon (CO, CH_3^- , $CH_2=CH_2$) & period 2 donors (PR_3 , SR_2)

Stability of Chelates (supporting slide)

- Among the ring structures five and six membered rings are more stable
- ❖ For smaller and larger ring sizes the steric factors dominate; i.e. the rings are strained
- ❖ Alternate single and double bonds gives further stability; i.e. conjugation brings delocalization of electrons

Coordination position isomer

In <u>polynuclear complexes</u> an interchange of ligands between the different metal nuclei gives rise to positional isomerism.

Stereoisomer (supporting slide)

Four-coordinate complexes:

Tetrahedral Complexes

Geometrical complexes cannot arise in tetrahedral complexes. Why?

A tetrahedral complex of the form [Mabcd], where M=Metal centre; a, b, c and d are monodentate ligands occurs in **two optical isomers**.

- Square-planar complexes may have cis and trans isomers (DIASTEROMERS). No chiral isomers (enantiomers) are possible when the molecule has a mirror plane.
- cis- and trans-isomers of square planar complex of platinum

Optical isomer (supporting slide)

