Santander Customer Satisfaction

Presented by:

Ekansh Trivedi

Keerthana Adavelli

Nitin Gupta

Saloni Khandelwal

Snigda Gedela

Agenda

- 1. Problem Statement
- 2. Literature Review
- 3. Data Description
- 4. Data Preprocessing Feature Engineering
- 5. Data Preprocessing Exploratory Data Analysis (EDA)
- 6. Methodology
- 7. Result
- 8. Recommendations

Problem Statement

The financial impact of losing a customer would be significant, particularly for a large bank like Santander

Acquiring a new customer can cost 5 to 25 times more than retaining an existing one (Estimated)

Overall Goal

Target resources and efforts towards the customers who are most at risk of leaving

Increase the revenue by retaining the loyal customers.

Customer satisfaction is important -

- Helps in reducing negative word of mouth
- Increases intention of repurchasing
- Cost of acquisition of new customer is very high compared to retaining the loyal customers.

Literature Review

Predicting Customer's
Satisfaction (Dissatisfaction)
Using Logistic Regression
Evaluating and predicting

whether the existing/new customer is satisfied/ dissatisfied from their current offering.

This project also looks into the features and compare the similarities.

Machine-Learning Techniques for Customer Retention: A Comparative Study

Identify customers who may have negative experiences or are at risk of leaving, allowing the business to take proactive steps to improve their experience and retain their business.

Use of machine learning techniques to build predictive models.

Predicting Employee Attrition Using Machine Learning Techniques

Use of machine learning techniques to predict which employees are most likely to leave the company.

Require feature engineering and careful selection of input features to achieve the best performance.

Data Description

The data we have collected is the Company data, so the data was in its raw form

01 | Number of records - ~76K records, ~370 features

02 | Target Variable - 0 (Satisfied), 1 (Dissatisfied)

03 | The data is highly Sparse.

04 | 56 Categorical Features

Satisfied Dissatisfied

Data Preprocessing - Feature Engineering

The data was not in good shape and required good amount of feature engineering before proceeding with modeling

- O2 | Constant value features(34) and Duplicate features(29) dropped
- 03 | Class Imbalance 97% vs 3% highly imbalanced (SMOTE)
- 04 | Correlated features > 95% correlated dropped (pearson method)
- 05 | Standardization Scaled data
- 06 | Sparsity 23 columns dropped having > 99% as 0 observations
- 07 | Feature Importance-Random Forest -Top 5
- **08** | Feature Importance WoE, Information Value (to conform previous results) RF performed better

Strong relationship between IV and effect size. Features with high IV have high effect size as well. Correlation coefficient: 0.98 (Pearson) and 1.0 (Spearman) Values closer to 0 imply very weak (or lack of) relationship, while higher values suggest stronger relation

IV interpretation

IV on all variables

IV Interpretation	Number of features		
useless	204		
weak	9		
medium	6		
strong	1		
suspicious	1		

IV on top 5 variables

IV Interpretation	Number of features
weak	1
medium	2
strong	1
suspicious	1

Variables	iv	p-val ue	effect_si ze	iv_interpr etation	es_interpr etation
var15	0.59744 3	0	0.37253 7	suspicious	medium
saldo_medio_var5_ul t3	0.31962	0	0.27888 7	strong	medium
var36	0.29860 4	0	0.26980 2	medium	medium
num_meses_var5_ult 3	0.28876 5	0	0.26531 1	medium	medium
saldo_medio_var5_h ace3	0.26155 9	0	0.25290 6	medium	medium
num_op_var40_ult1	0	1	0	useless	useless
num_op_var41_hace	0	1	0	useless	useless
num_op_var41_ult1	0	1	0	useless	useless

0: Satisfied
1: Dissatisfied

Observation: The most of the younger people(<23) are satisfied

Observation: The distribution is almost similar for the two target classes

0: Satisfied
1: Dissatisfied

Observation: There is an outlandish peak between 100,000 and 150,000

Observation: The outliers are much dense in case of satisfied customers than unsatisfied customers.

0: Satisfied

1: Dissatisfied

saldo_medio_var5_ult3

Observation: In case of both "var38" and "saldo_medio_var5_ult3" the distribution lies mostly in the outlier region

Percentage value counts(top 5 only) in the data for 'saldo_medio_var5_ult3':

value	Count%	
0.00	30.835662	
2.88	1.391600	
2.34	1.273644	
2.85	1.213262	
2.07	1.202028	

Percentage value counts(bottom 5 only) in the data for 'saldo_medio_var5_ult3':

Value Count% 516.36 0.001404 1229.40 0.001404 82.35 0.001404 1750.17 0.001404 1025.37 0.001404

Observation: ~30% of the "saldo_medio_var5_ult3" feature has a value of 0.

Percentage value counts(top 5 only) in the data for 'saldo_var30':

Value	Count%
0.0	24.725823
3.0	23.318776
90.0	6.868128
30.0	2.222909
15.0	2.023507

Percentage value counts(bottom 5 only) in the data for 'saldo_var30':

Value Count% 1107.75 0.001404 31681.80 0.001404 581.61 0.001404 30276.54 0.001404 48191.22 0.001404

Observation: ~25% of the "saldo_var30" feature has a value of 0.

 23% of the "saldo_var30" feature has a value of 3.

Methodology

Why Logistic Regression?

- Logistic regression is a statistical technique used for binary classification problems, where the
 outcome of interest is binary, such as yes/no, true/false, or 0/1.
 In our project, most of the target variable is binary (satisfied or not satisfied), making it a binary
 classification problem.
- Especially important in the banking industry, where interpretability and transparency are highly valued.
- Computationally efficient and can handle both categorical and continuous predictor variables.
- Logistic Regression allows us to model the probability of the outcome of interest (in our case, customer satisfaction) as a function of the independent variables, and provides insights into which variables are important predictors of the outcome

Methodology

Methodology

1 2 3

Our approach to modeling customer satisfaction is two-pronged: one using imbalanced data and the other using balanced data

For the imbalanced and balanced data approach, we are analyzing both the entire dataset and the top 20 features

We analyzed all 4 models to ensure we don't miss out on any important features and to cross-check our findings

Results

Strategy	Accuracy	F1 Score	Recall	Precision	AUC score
Logistic Regression - with class imbalance dataset	96%	1%	0.5%	1%	79%
Logistic Regression - with class balanced dataset (SMOTE)	72%	17%	73%	2%	78%
Logistic Regression - with top 20 features (imbalanced)	69%	15%	71%	8.9%	79%
Logistic Regression - with top 20 features (balanced)	70%	71%	72%	71%	78%

- It can be concluded that accuracy is not the most reliable parameter to assess the model's performance. This is because accuracy does not consider the presence of class imbalances.
- More appropriate metrics to evaluate the model's performance are the f1-score, AUC score and Precision. By looking at these metrics, it is evident that the Logistic Regression performs well when class is balanced and important features are considered in the modeling

ROC Curve

Recommendations

- Improve model evaluation metric using Random Forest and XGboost classifier
- Prioritize focus on strengths & work on weakness identified using IV and feature importance results
- Identify causal factors behind the high impact predictors using RCA and use to improve customer satisfaction
- Use methods like PCA, SHAP or LIME on anonymized features for Feature Selection

Thank you