CHINMAY TALEGAONKAR

Graduate student | Department of Electrical and Computer Engineering, UCLA

@ chinmay0301@g.ucla.edu

+1424-440-9607

% chinmay0301.github.io

in linkedin.com/in/chinmay0301/

EDUCATION

University of California Los Angeles

2019-21

Los Angeles

- Masters in Electrical and Computer Engineering specializing in Signals and Systems
- Research Advisor: Prof. Achuta Kadambi

Indian Institute of Technology Bombay

2015-19

Mumbai

• B.Tech. in Electrical Engineering with a Minor in Computer Science, **GPA**: 9.07/10

PUBLICATIONS

- C. Talegaonkar, P. Khirwadkar, A. Rajwade, Compressive Phase Retrieval under Poisson Noise, IEEE ICIP 2019 [Paper]
- C. Talegaonkar, A. Rajwade,
 Performance Bounds For Tractable Poisson Denoisers With Principled Parameter Tuning, IEEE GlobalSIP 2018 [Paper]

TECHNICAL SKILLS

- C, C++, MATLAB, Python, Bash, VHDL
- PyTorch,Tensorflow, CUDA, OpenCV, numpy
- Git, HTML, SQL, Javascript

KEY COURSES

- Advanced Machine Learning, Probability and Random Processes, Linear Algebra, Optimization, Reinforcement Learning
- Signal and Image Processing, Matrix Analysis*, Communications, Advanced Image Processing, Medical Imaging, Estimation and Identification, Computational Imaging*
- Data Structures, Operating System
- * To be completed by Fall 2019

SCHOLASTIC ACHIEVE-MENTS

- 10th International Junior Science Olympiad, 2013 | Silver Medal | 250 participants from over 40 nations
- South East Asia Machine Learning summer school 2019 (SEAMLS) | Jakarta, Indonesia| 100/1100 applicants selected
- All India Rank 9 | KVPY 2014 | Over 50000 candidates | Research aptitude test

EXPERIENCE

ROTATION GRADUATE STUDENT

Prof. Achuta Kadambi

May 2019 - Present

♦ Visual Machines Group, UCLA

- Investigating **deep learning** methods to discover **physics phenomena** governing a data generation process
- Obtained accurate semantic expressions for a damped pendulum with time-series data by combining an encoder-decoder (SciNet) with Genetic programming
- Exploring representation learning approaches to generate data and structure abiding representations spaces for physics expressions

AI/ML COMPUTE DEVTECH INTERN

NVIDIA

May 2018 - July 2018

♀ Bangalore, India

- Developed CUDA kernels for optimizing the routing layer back-propagation in capsule networks
- Achieved a cumulative speed-up of 2x by adding support for mixed-precision training
- Parallelized end-to-end implementation of DBscan (clustering algorithm) for NVIDIA Rapids library

KEY PROJECTS

Fully Convolutional networks for Phtometric Stereo

- Implemented a deep learning based approach for Photometric Stereo. Evaluated its performance on the DiLi-GenT dataset. Code here
- Introduced stochasticity to the cosine loss function and added **dilated convolutions** to the existing architecture.
- Observed 8 % improvement in performance using dilated convolutions.

Single Image Super Resolution for Medical Imaging

- Used a sparse linear representation based approach for joint denoising and super resolution of medical images.
- Obtained improvements over bi-cubic interpolation for noisy input images. Code here

Reinforcement Learning for Multi-Agent Game Play

- The project involved training an agent for playing against other agents in the **Pommerman** gaming environment.
- Trained the agent using Deep Q learning from demonstrations (DQfD) to model an efficient rule based agent and improve upon it. Report here and video here

Gridless Estimation of Saturated Signals

 Compared the performance of atomic norm minimization and a compressed sensing formulation for recovering a signal composed of decaying sinusoidals from noiseless clipped measurements. Report here.