Sections 7.1 and 7.2: Induction

CS1231S Discrete Structures

Wong Tin Lok

National University of Singapore

17 September 2020

- Indicate your interest in mass consultation next Mon/Tue on "LumiNUS > Poll" by tomorrow's lecture.
- ▶ I am being reviewed in this lecture.

The Sorites Paradox

- 1 grain of sand does not make a heap.
 - For every $n \in \mathbb{Z}^+$, if n grains of sand do not make a heap, then n+1 grains of sand do not
 - make a heap. Hence n grains of sand do not make a heap for any $n \in \mathbb{Z}^+$, by the Principle of Mathematical Induction.

Mathematical Induction

Why induction?

- ► It is a very powerful method of proof for the natural numbers 0, 1, 2, 3,
- In a sense, it characterizes the natural numbers (by a theorem of Dedekind and Peano).
- In the same sense, natural generalizations of induction characterize recursively defined objects.

Warning

- Induction can mean a kind of non-deductive reasoning in some areas of study.
- Our Mathematical Induction is a kind of deductive reasoning.

- Indicate your interest in mass consultation next Mon/Tue on "LumiNUS > Poll" by tomorrow's lecture.
- ▶ I am being reviewed in this lecture.

The Sorites Paradox

- ▶ 1 grain of sand does not make a heap.
- For every $n \in \mathbb{Z}^+$, if n grains of sand do not make a heap, then n+1 grains of sand do not make a heap.
- Hence n grains of sand do not make a heap for any $n \in \mathbb{Z}^+$, by the Principle of Mathematical Induction.

Example 7.1.3. $1+2+\cdots+n=\frac{1}{2}\,n(n+1)$ for all $n\in\mathbb{Z}_{\geqslant 1}$. 1×2

Principle 7.1.1: Mathematical Induction (MI) relies on a previous case, which relies on a previous case, which relies on a previous case.

To prove that $\forall n \in \mathbb{Z}_{\geqslant m}$ P(n) is true, where each P(n) is a proposition, it suffices to:

(base step) show that P(m) is true; (induction step) show that $\forall k \in \mathbb{Z}_{\geq m}$ $(P(k) \Rightarrow P(k+1))$ is true.

Justification

$$P(m)$$
 by the base step;
 $P(m) \Rightarrow P(m+1)$ by the induction step with $k=m$;
 $P(m+1) \Rightarrow P(m+2)$ by the induction step with $k=m+1$;
 $P(m+2) \Rightarrow P(m+3)$ by the induction step with $k=m+2$;
 \vdots

We deduce that P(m), P(m+1), P(m+2), ... are all true by a series of modus ponens.

Terminology 7.1.2

In the induction step, we assume we have $k \in \mathbb{Z}_{\geq m}$ such that P(k) is true, and then show P(k+1) using this assumption. In this process, the assumption that P(k) is true is called the *induction hypothesis*.

Example 7.1.3 (again). $1+2+\cdots+n=\frac{1}{2}\,n(n+1)$ for all $n\in\mathbb{Z}_{\geqslant 1}$. | To prove that $\forall n\in\mathbb{Z}_{\geqslant 1}\,P(n)$ is true, where each P(n) is a proposition, it suffices to:

(base step) show that $\forall n \in \mathbb{Z}_{\geqslant 1}$ P(n) is true, where each P(n) is a proposition, it suffices to (base step) show that P(1) is true; (induction step) show that $\forall k \in \mathbb{Z}_{\geqslant 1}$ $(P(k) \Rightarrow P(k+1))$ is true.

Proof

- 1. For each $n \in \mathbb{Z}_{\geqslant 1}$, let P(n) be the proposition " $1+2+\cdots+n=\frac{1}{2}\,n(n+1)$ ".
 - 2. (Base step) P(1) is true because $1 = \frac{1}{2} \times 1 \times (1+1)$.
- 3. (Induction step)
 - 3.1. Let $k \in \mathbb{Z}_{\geqslant 1}$ such that P(k) is true, i.e., such that $1+2+\cdots+k=\frac{1}{2}$ k(k+1).
 - 3.2. Then $1+2+\cdots+k+(k+1)$
 - 3.3. $= \frac{1}{2}k(k+1) + (k+1)$ $(\frac{k}{2} + 1)(k+1) \frac{k+2}{2}(k+1)$
 - 3.4. $= \left(\frac{k}{2} + 1\right)(k+1) = \frac{k+2}{2}(k+1)$ 3.5. $= \frac{1}{2}(k+1)((k+1)+1).$
 - 2.6 Ca D(Ia + 1) in time
 - 3.6. So P(k+1) is true.
- 4. Hence $\forall n \in \mathbb{Z}_{\geq 1}$ P(n) is true by MI.

Terminology 7.1.4. We call this an induction *on n* as *n* is the active variable in it.

by the induction hypothesis P(k);

 $n! = n \times (n-1) \times \cdots \times 1.$

To prove that $\forall n \in \mathbb{Z}_{\geqslant m} \ P(n)$ is true, where each P(n) is a proposition, it suffices to: (base step) show that P(m) is true; (induction step) show that $\forall k \in \mathbb{Z}_{\geqslant m} \ (P(k) \Rightarrow P(k+1))$ is true.

Proof

- 1. For each $n \in \mathbb{Z}_{>4}$, let P(n) be the proposition " $n! > 2^n$ ".
 - 2. (Base step) P(4) is true because $4! = 24 > 16 = 2^4$.
- 3. (Induction step)
 - 3.1. Let $k \in \mathbb{Z}_{\geqslant 4}$ such that P(k) is true, i.e., such that $k! > 2^k$.
 - 3.2. Then $(k+1)! = (k+1) \times k!$ by the definition of !;
 - 3.3. $> (k+1) \times 2^k$ by the induction hypothesis P(k);
 - 3.4. $> 2 \times 2^k$ as $k+1 \ge 4+1 > 2$; Terminology 7.1.4. We call this an induction *on n* as *n*
- 3.6. So P(k+1) is true.
- 4. Hence $\forall n \in \mathbb{Z}_{\geq 4}$ P(n) is true by MI.
- is the active variable in it.

Example 7.1.6

For all $n \in \mathbb{Z}_{\geqslant 1}$, if one \square is removed from a $2^n \times 2^n$ checkerboard, then the remaining \square 's can be covered by L-trominos.

Proof

- 2. (Base step) P(1) is true because such a board itself is an L-tromino.
- 3. (Induction step)
- 3.1. Let $k \in \mathbb{Z}_{\geqslant 1}$ such that P(k) is true. 3.2. 3.2.1. Let B be a $2^{k+1} \times 2^{k+1}$ checkerboard with one \square removed.
- 3.2.2. Divide B into four $2^k \times 2^k$ quadrants.
 - 3.2.3. Let Q be the quadrant containing the removed \square .
 - 3.2.4. Remove one L-tromino from the centre of B in a way such that each quadrant other than Q has one \square removed.

P(n)

- 3.2.5. We are left with four $2^k \times 2^k$ checkerboards, each with one \square removed.
- 3.2.6. By the induction hypothesis, each quadrant can be covered by L-trominos.
- 3.2.7. Hence *B* can be covered by L-trominos.
- 3.3. This shows P(k+1) is true.
- 4. Hence $\forall n \in \mathbb{Z}_{\geq 1} \ P(n)$ is true by MI.

Example 7.1.7. All participants of this Zoom meeting have the same birthday.

- 1. For each $n \in \mathbb{Z}_{\geqslant 1}$, let P(n) be the proposition "if a Zoom meeting has exactly n participants, then all its participants have the same birthday".
- 2. (Base step) P(1) is true because if a Zoom meeting has exactly 1 participant, then clearly all its participants have the same birthday.
- 3. (Induction step) 3.1. Let $k \in \mathbb{Z}_{\geq 1}$ such that P(k) is true.
- 3.2. 3.2.1. Suppose a Zoom meeting has exactly k+1 participants.
 - 3.2.2. Pick two different participants a, b in the meeting.
 - 3.2.3. Ask a to leave the meeting.
 - 3.2.4. Since there are k people left in the meeting, by the induction hypothesis, all the remaining participants have the same birthday, including b.
 - 3.2.5. Tell a to join the meeting again, and then ask b to leave the meeting.
 - 3.2.6. Since there are k people left in the meeting, by the induction hypothesis, all the
 - remaining participants have the same birthday, including a. 3.2.7. The participants who stayed in the meeting throughout have the same birthday as both a and b
 - 3.2.8. So a and b have the same birthday.
- 3.3. This shows P(k+1) is true.

pollev.com/wtl

No one stayed in the meeting

throughout when k = 1.

Definition 7.2.2

The *Fibonacci sequence* F_0, F_1, F_2, \ldots is defined by setting, for each $n \in \mathbb{Z}_{\geqslant 0}$,

$$F_0=0\quad\text{and}\quad F_1=1\quad\text{and}\quad F_{n+2}=F_{n+1}+F_n.$$

Example 7.2.4

- ▶ Initially, there is one pair of newly born matched rabbits.
- ▶ Each newly born rabbit takes one month to mature.
- Each mature pair of matched rabbits produces one pair of matched rabbits per month.

for every $n \in \mathbb{Z}_{\geq 0}$.

Let r_n denote the number of pairs of rabbits after n months. Then for every $n \in \mathbb{Z}_{\geq 0}$,

$$r_0 = 1$$
 and $r_1 = 1$ and $r_{n+2} = r_{n+1} + r_n$

where the r_{n+1} comes from the rabbits already present after (n+1) months, and the r_n comes from the rabbits born after (n+1) months.

Observation 7.2.5

$$r_n = F_{n+1}$$
 for every $n \in \mathbb{Z}_{\geq 0}$.

An upper bound for the Fibonacci sequence

To prove that $\forall n \in \mathbb{Z}_{\geq 1}$ P(n) is true, where each P(n) is a proposition, it suffices to: (base step) show that P(1) is true; (induction step) show that $\forall k \in \mathbb{Z}_{\geq 1} \ (P(k) \Rightarrow P(k+1))$ is true.

 $F_0 = 0$ and $F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$

Proposition 7.2.6
$$F_{n+1} \leq (7/4)^n$$
 for every $n \in \mathbb{Z}_{\geq 0}$.

$$F_{n+1} \leqslant (7/4)^n$$
 for every $n \in \mathbb{Z}_{\geqslant 0}$.

Froof

- 1. For each $n \in \mathbb{Z}_{>0}$, let P(n) be the proposition " $F_{n+1} \leq (7/4)^n$ ".
- 2. (Base step) P(0) is true because $F_{0+1} = 1 \le 1 = (7/4)^0$.
- 3. (Induction step)
 - 3.1. Let $k \in \mathbb{Z}_{\geq 0}$ such that P(k) is true, i.e., such that $F_{k+1} \leq (7/4)^k$.
 - 3.2. Then $F_{(k+1)+1} = F_{k+2}$
 - $= F_{k+1} + F_k$ by the definition of F_{k+2} ; 3.3. $\leq (7/4)^k + F_k$ as P(k) is true... 3.4.
- We have no information on how large F_k is here... unless, say, we know P(k-1).

Principle 7.2.1 (m = 1): Strong Mathematical Induction (Strong MI)

To prove that $\forall n \in \mathbb{Z}_{\geqslant 0}$ P(n) is true, where each P(n) is a proposition, it suffices to: (base step) show that P(0), P(1) are true; (induction step) show that $\forall k \in \mathbb{Z}_{\geqslant 0}$ $P(0) \land \cdots \land P(k+1) \Rightarrow P(k+2)$ is true.

Justification

$$P(0) \wedge P(1)$$
 by the base step;
 $P(0) \wedge P(1) \Rightarrow P(2)$ by the induction step with $k = 0$;
 $P(0) \wedge P(1) \wedge P(2) \Rightarrow P(3)$ by the induction step with $k = 1$;
 $P(0) \wedge P(1) \wedge P(2) \wedge P(3) \Rightarrow P(4)$ by the induction step with $k = 2$;
 $P(0) \wedge P(1) \wedge P(2) \wedge P(3) \wedge P(4) \Rightarrow P(5)$ by the induction step with $k = 3$;
 \vdots

We deduce that $P(0), P(1), P(2), \ldots$ are all true by a series of modus ponens.

Remark

Given the same P(n), Strong MI is more likely to succeed than usual MI.

 $F_0 = 0$ and

 $F_1 = 1$ and

 $F_{n+2} = F_{n+1} + F_n$

for all $n \in \mathbb{Z}_{>0}$.

show that P(0), P(1) are true; (induction step) show that $\forall k \in \mathbb{Z}_{\geq 0} \ (P(0) \wedge \cdots \wedge P(k+1) \Rightarrow P(k+2))$ is true.

To prove that $\forall n \in \mathbb{Z}_{\geq 0}$ P(n) is true, where each P(n) is a proposition, it suffices to:

1. For each
$$n \in \mathbb{Z}_{\geq 0}$$
, let $P(n)$ be the proposition " $F_{n+1} \leq (7/4)^n$ ".
2. (Base step) $P(0)$ and $P(1)$ are true because

F₀₊₁ = 1
$$\leq$$
 1 = (7/4)⁰ and F₁₊₁ = 1 + 0 = 1 \leq 7/4 = (7/4)¹.

- 3. (Induction step)
 - 3.1. Let $k \in \mathbb{Z}_{\geq 0}$ such that $P(0), P(1), \ldots, P(k+1)$ are true.

Example 7.2.6 (again). $F_{n+1} \leq (7/4)^n$ for every $n \in \mathbb{Z}_{\geq 0}$.

3.8. So
$$P(k + 2)$$
 is true.

- 4. Hence $\forall n \in \mathbb{Z}_{\geq 0}$ P(n) is true by Strong MI.

Example 7.2.6 (again). $F_{n+1} \leq (7/4)^n$ for every $n \in \mathbb{Z}_{\geq 0}$.

To prove that $\forall n \in \mathbb{Z}_{\geq 0}$ P(n) is true, where each P(n) is a proposition, it suffices to: show that P(0), P(1) are true; (induction step) show that $\forall k \in \mathbb{Z}_{\geq 0} \ (P(0) \wedge \cdots \wedge P(k+1) \Rightarrow P(k+2))$ is true.

 $<(7/4)^k(7/4)^2$ as $7/4+1<(7/4)^2$:

- 1. For each $n \in \mathbb{Z}_{\geq 0}$, let P(n) be the proposition " $F_{n+1} \leq (7/4)^n$ ".
- 2. (Base step) P(0) and P(1) are true because ...

3.2. Then $F_{(k+2)+1} = F_{k+3}$

3. (Induction step)

3.1. Let
$$k \in \mathbb{Z}_{\geqslant 0}$$
 such that $P(0), P(1), \ldots, P(k+1)$ are true.

3.3.
$$= F_{k+2} + F_{k+1}$$
$$< (7/4)^{k+1} + (7/4)$$

3.4.
$$\leq (7/4)^{k+1} + (7/4)^k$$

3.5. $= (7/4)^k (7/4 + 1)$

 $= (7/4)^{k+2}$. 3.7.

3.6.

- 3.8. So P(k + 2) is true.
- 4. Hence $\forall n \in \mathbb{Z}_{\geq 0}$ P(n) is true by Strong MI.

- $F_0 = 0$ and $F_1 = 1$ and
- $F_{n+2} = F_{n+1} + F_n$ for all $n \in \mathbb{Z}_{>0}$.
- by the definition of F_{k+3} ; as P(k) and P(k+1) are true:

Combining the base step and the induction step

To prove that $\forall n \in \mathbb{Z}_{\geqslant 0}$ P(n) is true, where each P(n) is a proposition, it suffices to: (base step) show that P(0) are true; (induction step) show that $\forall k \in \mathbb{Z}_{\geqslant 0}$ $\left(P(0) \wedge \cdots \wedge P(k) \Rightarrow P(k+1)\right)$ is true.

Theorem 7.2.7 (Strong MI, alternative formulation)

To prove that $\forall n \in \mathbb{Z}_{\geqslant 0}$ P(n) is true, where each P(n) is a proposition, it suffices to show that

$$\forall \ell \in \mathbb{Z}_{\geqslant 0} \ \left(\forall i \in \mathbb{Z}_{\geqslant 0} \ \left(i < \ell \Rightarrow P(i) \right) \Rightarrow P(\ell) \right). \tag{*}$$

Idea of proof

Applying (*) to
$$\ell=0$$
 gives
$$\underbrace{\forall i \in \mathbb{Z}_{\geqslant 0} \ \underbrace{\left(i < 0 \Rightarrow P(i)\right)}_{\text{true}} \Rightarrow P(0)}_{\text{true}}.$$

Thus P(0) is true by modus ponens.

Well-Ordering Principle

To prove that $\forall n \in \mathbb{Z}_{\geqslant 0}$ P(n) is true, where each P(n) is a proposition, it suffices to: (base step) show that P(0) are true; (induction step) show that $\forall k \in \mathbb{Z}_{\geqslant 0}$ $P(0) \land \cdots \land P(k) \Rightarrow P(k+1)$ is true.

 $k+1 \bullet \not \in S$

1 • ∉ S

0 • ∉ S

Proof of "Every nonempty subset of $\mathbb{Z}_{\geq 0}$ has a smallest element."

To prove that $\forall n \in \mathbb{Z}_{\geq 0}$ P(n) is true, where each P(n) is a proposition, it suffices to: (base step) show that P(0) are true; (induction step) show that $\forall k \in \mathbb{Z}_{\geq 0}$ $(P(0) \land \cdots \land P(k) \Rightarrow P(k+1))$ is true.

- 1. Let $S \subseteq \mathbb{Z}_{\geq 0}$ with no smallest element.
- 2. For each $n \in \mathbb{Z}_{\geq 0}$, let P(n) be the proposition " $n \notin S$ ".
- 3. (Base step)
 - k ∉ S
 - 3.1. If $0 \in S$, then 0 is the smallest element of S as $S \subseteq \mathbb{Z}_{\geq 0}$, which contradicts our assumption that S has no smallest element.
 - 3.2. So $0 \notin S$ and thus P(0) is true.
- 4. (Induction step)
- 4.1. Let $k \in \mathbb{Z}_{\geq 0}$ such that $P(0), P(1), \ldots, P(k)$ are true, i.e., that $0, 1, \ldots, k \notin S$.
- 4.2. If $k+1 \in S$, then k+1 is the smallest element of S by the induction hypothesis as $S \subseteq \mathbb{Z}_{\geq 0}$, which contradicts our assumption that S has no smallest element.
- 4.3. So $k+1 \notin S$ and thus P(k+1) is true.
- 5. Hence $\forall n \in \mathbb{Z}_{\geq 0}$ P(n) is true by Strong MI.
- 6. This implies $S = \emptyset$ as $S \subseteq \mathbb{Z}_{>0}$.

Principle 7.1.1 (Mathematical Induction (MI))

To prove that $\forall n \in \mathbb{Z}_{\geqslant m} \ P(n)$ is true, where each P(n) is a proposition, it suffices to: (base step) show that P(m) is true;

(induction step) show that $\forall k \in \mathbb{Z}_{\geq m}$ $(P(k) \Rightarrow P(k+1))$ is true.

Principle 7.2.1 (Strong Mathematical Induction (Strong MI), where m = 1)

To prove that $\forall n \in \mathbb{Z}_{\geqslant 0}$ P(n) is true, where each P(n) is a proposition, it suffices to: (base step) show that P(0), P(1) are true; (induction step) show that $\forall k \in \mathbb{Z}_{\geqslant 0}$ $(P(0) \land \cdots \land P(k+1) \Rightarrow P(k+2))$ is true.

Theorem 7.2.9 (Well-Ordering Principle)

Every nonempty subset of $\mathbb{Z}_{\geqslant 0}$ has a smallest element.

Next: recursion

Every element of $\mathbb{Z}_{\geq 0}$ is interesting.

Suppose not. By the Well-Ordering Principle, there is a smallest uninteresting non-negative integer. The smallest uninteresting integer is *highly* interesting. This is the required contradiction.