RECOVERY TEAM PRESENTATION (B2)

TASKS ACCOMPLISHED

- Acquiring components to make the Flight Computer.
- Implementing Over The Air(OTA) updates.
- Finished fabricating the steel piston chamber and attaching the PVC end cap.
- Rectifying the code for the piston test.
- Creating a simple project board .

ACQUIRING COMPONENTS TO MAKE THE FLIGHT COMPUTER

This the final PCB that we are using.

FINAL SCHEMATICS

INITIAL PCB

These are the initial schematics.

OTA UPDATES IMPLEMENTATION

The code was added to both the ground station and Telemetry repository.

```
#include <WiFi.h>
       #include <ESPmDNS.h>
 2
       #include <WiFiUdp.h>
       #include <ArduinoOTA.h>
       //const char* ssid = "";
       //const char* password = "";
       void setupOTA() {
         // Port defaults to 3232
11
         // ArduinoOTA.setPort(3232);
13
         // Hostname defaults to esp3232-[MAC]
14
         ArduinoOTA.setHostname("Nakuja");
17
         // No authentication by default
         ArduinoOTA.setPassword("ProjectN3");
         // Password can be set with it's md5 value as well
         // MD5(admin) = 21232f297a57a5a743894a0e4a801fc3
         //ArduinoOTA.setPasswordHash("21232f297a57a5a743894a0e4a801fc3");
```

```
ArduinoOTA
  .onStart([]() {
    String type:
    if (ArduinoOTA.getCommand() == U FLASH)
      type = "sketch":
    else // U SPIFFS
      type = "filesystem";
    // NOTE: if updating SPIFFS this would be the place to unmount SPIFFS using SPIFFS.end()
    Serial.println("Start updating " + type):
  3)
  .onEnd([]() {
    Serial.println("\nEnd");
  1)
  .onProgress([](unsigned int progress, unsigned int total) {
    Serial.printf("Progress: %u%%\r", (progress / (total / 100)));
  1)
  .onError([](ota error t error) {
    Serial.printf("Error[%u]: ", error);
    if (error == OTA AUTH ERROR) Serial.println("Auth Failed");
    else if (error == OTA_BEGIN_ERROR) Serial.println("Begin Failed");
    else if (error == OTA CONNECT ERROR) Serial.println("Connect Failed");
    else if (error == OTA_RECEIVE_ERROR) Serial.println("Receive Failed");
    else if (error == OTA END ERROR) Serial.println("End Failed");
  });
```

This will be tested once the Flight computer is fabricated.

```
ArduinoOTA.begin();

Serial.println("Ready");
Serial.print("IP address: ");
Serial.println(WiFi.localIP());
}

void handleOTA() {
   ArduinoOTA.handle();
}
```

PISTON PROGRESS

- Piston test software finalized
- Piston chambers finalized

• Weight comparison

• Additional crimson powder prepared

RECTIFYING THE CODE FOR THE PISTON TEST

Previously the user specified a delay time which caused a pause in the entire running of the code

The nichrome wire is turned off once the load cell reads a value greater than 0

This also enabled us to determine the time between ignition command and firing of the crimson powder.

```
int real average reading, raw average reading;
bool led state = 0;
const int led pin = 14;
int nichrome high time = 0;
String dummy force = "700";
void connect to wifi(){
 // Connect to Wi-Fi
 WiFi.begin(SSID, PASSWORD);
 while (WiFi.status() != WL CONNECTED) {
    delay(1000);
    debugln("[+]Connecting to WiFi..");
  // Print ESP Local IP Address
 debugln(WiFi.localIP());
/* Load cell functions */
HX711 load cell:
void setup_load_cell(){
 load cell.begin(load_cell_dt, load_cell_sck);
```

CALIBRATION OF THE LOAD CELL

We carried out tests that gave us these results.

kleight	toad cell	division,	- 5
0	153600	0	- 5
1.86	21000	11290	- 5
1.68	18800	11190 1 0567	_ 1
2.29	24200	10567	_]
2.36	24400	10551	
Avg = 10900 -) constant.			
Hand Force = Creading - 153600)/gloat (10900)			
- I I I I I I I I I I I I I I I I I I I	0 200	1	

CHALLENGES FACED THIS WEEK

- Two ESP32 microcontrollers fried.
- We were unable to acquire all the components so as to make the flight computer hence the etching has been pushed to next week.
- EasyEDA doesn't have the footprints, hence they are to be made from scratch.

NEXT WEEK'S TASKS

- Finishing the piston test
- Determining the ejection algorithm
- Fabricating of the Flight Computer PCB