COMP3203 Final Exam Summary

William Findlay
December 14, 2018

Contents

1	\mathbf{Uni}	its		
2	Formulas			
	2.1	Frequency		
	2.2	Period		
	2.3	Wavelength		
	2.4	Bandwidth		
	2.5	Delay		
		2.5.1 Propagation		
		2.5.2 Transmit		
		2.5.3 Queue		
		2.5.4 Round Trip Time		
	2.6	Overhead		
3	Err	or Checking		
4	ARQ			
	4.1	Sliding Window		
		4.1.1 Go Back N		
		4.1.2 Selective Reject		
	4.2	Stop and Wait		
5	Multiaccess			
	5.1	LANs		
		5.1.1 Switched LANs		
		5.1.2 Broadcast LANs		
	5.2	MAC Protocol		
	٠.2	5.2.1 Centralized		
		5.2.2 Distributed		
	5.3	How Does MAC Work?		

1 Units

 \bullet unit chart

prefix	base 10	base 2
pico	10^{-12}	2^{-40}
nano	10^{-9}	2^{-30}
micro	10^{-6}	2^{-20}
milli	10^{-3}	2^{-10}
	10^{0}	2^{0}
kilo	10^{3}	2^{10}
mega	10^{6}	2^{20}
giga	10^{9}	2^{30}
tera	10^{12}	2^{40}
peta	10^{15}	2^{50}

- $Hz \implies$ cycles per second $GHz \implies 10^9$ cycles per second
 - etc.

2 Formulas

2.1 Frequency

$$f=\frac{1}{T}$$

2.2 Period

$$T = \frac{1}{f}$$

2.3 Wavelength

$$\lambda = vT$$
$$\lambda = \frac{v}{f}$$

2.4 Bandwidth

$$B = vT$$

2.5 Delay

$$D = D_P + D_T + D_Q$$

2.5.1 Propagation

$$D_P = \frac{\text{distance}}{\text{speed of light}}$$

2.5.2 Transmit

$$D_T = \frac{\text{packet size}}{\text{bandwidth}}$$

2.5.3 Queue

$$D_Q = \sum_{\text{nodes}} (\text{buffering} + \text{switching})$$

2.5.4 Round Trip Time

$$RTT = 2D$$

• how long does it take a packet to go there and back

2.6 Overhead

$$T_O = \frac{h}{p}$$
 where $h =$ overhead bits, $p =$ message bits

• extra over what we want

3 Error Checking

- VRC
- LRC
- CRC
 - this guy is usually used
 - use in tandem with ARQ
- \bullet checksum

4 ARQ

- automatic repeat request
- handle errors by requesting they be resent
- use in tandem with error detection
 - CRC
 - checksum
- main parts
 - ACKS
 - NAKS
 - timers

4.1 Sliding Window

- number frames sequentially
- window of either fixed or variable size
 - see TCP section

4.1.1 Go Back N

- go back to the beginning of the window and resend everything
- w i = N

4.1.2 Selective Reject

- only resend the damaged frame
- \bullet need sorting logic
 - frames may be out of order

4.2 Stop and Wait

• like sliding window with a window size = 1

5 Multiaccess

- problem of shared channels
 - who gets a turn?
 - how do we make sure things get to the right place?
- point-to-point is easy (by contrast)

5.1 LANs

- local area network
- shared channel

5.1.1 Switched LANs

- \bullet interconnection by transmission
- complex
 - routing tables
 - hierarchical addressing

5.1.2 Broadcast LANs

- information received by all
- simple
 - no routing
 - flat addressing scheme
- MAC (medium access control)
- used more often

5.2 MAC Protocol

- Medium Access Control
- dynamic
- on demand
- must **minimize** collisions

MAC vs Static

 $MAC \implies dynamic, on demand$

Static \implies separate dedicated channels

5.2.1 Centralized

- one master node
 - makes decisions for slaves nodes
- dependent on master
 - what if it fails?
 - less efficient

5.2.2 Distributed

- ullet all nodes **equivalent**
- make a decision together
 - distributed fashion

5.3 How Does MAC Work?

- i) measure prop time
- ii) coordinate access
- iii) select a winner

```
def coordinateTwoHosts(A,B):
 1
 2
     A. listen (channel)
 3
      if channel not busy:
 4
 5
        A. transmit (m)
 6
        while no message from B:
 7
          A. listen (channel)
        if time > T_{PROP}:
 8
9
          break
10
        else:
11
          A. retransmit (m)
12
      repeat for B
13
```