1 Optimal Coupling

1.1 Basic Ideas

To reach the lower bound $D_{TV}(\mu, \nu)$, the intuition is that we maximize the terms where X = Y. Denote our optimal coupling by ω^* , then $\forall (x, y) \in \Omega^2$ such that x = y, the maximum of $\omega^*(x, y)$ can only be $\min\{\mu(x), \nu(y)\}$. As we want to maximize these cases, we can directly set it as $\min\{\mu(x), \nu(y)\}$.

Then we need a formula to define $\omega^*(x,y)$ where $x \neq y$. Here the intuition is that $\omega^*(x,y)$ should be some constant times $\max\{\mu(x) - \nu(x), 0\} \cdot \max\{\nu(y) - \mu(y), 0\}$. So up to here, I construct a coupling as follows:

$$\omega^*(x,y) = \begin{cases} \min\{\mu(x), \nu(y)\}, & x = y \\ C \cdot \max\{\mu(x) - \nu(x), 0\} \cdot \max\{\nu(y) - \mu(y), 0\}, & o.w. \end{cases}$$

Now I will determine C so that ω^* is indeed a valid coupling, and then show $Pr_{(X,Y)\sim\omega^*}(X\neq Y)$ is actually $D_{TV}(\mu,\nu)$.

1.2 Determine C and proof of valid coupling

Define $A = \{x \in \Omega | \mu(x) \geq \nu(x)\}$. It follows that $\bar{A} = \{x \in \Omega | \mu(x) < \nu(x)\}$. We now calculate the marginal distribution of X under ω^* .

$$\forall x \in A, \quad \sum_{y \in \Omega} \omega^*(x, y) = \sum_{y \in \Omega \land y = x} \omega^*(x, y) + \sum_{y \in \Omega \land y \neq x} \omega^*(x, y) \tag{1}$$

$$= \min\{\mu(x), \nu(x)\} + \sum_{y \in \Omega \land y \neq x} \omega^*(x, y)$$
 (2)

$$= \nu(x) + C \max\{\mu(x) - \nu(y), 0\} \sum_{y \in \Omega \land y \neq x} \max\{\nu(y) - \mu(y), 0\}$$
 (3)

$$= \nu(x) + C(\mu(x) - \nu(x)) \sum_{y \in \bar{A}} (\nu(y) - \mu(y))$$
 (4)

Note that $\sum_{y\in \bar{A}}(\nu(y)-\mu(y))=D_{TV}(\mu,\nu)$ by our definition of \bar{A} , so by setting $C=1/D_{TV}(\mu,\nu)$ we can get

$$\forall x \in A, \quad \sum_{y \in \Omega} \omega^*(x, y) = \nu(x) + \mu(x) - \nu(x) \tag{5}$$

$$=\mu(x) \tag{6}$$

(8)

We use the same C and consider the cases where $x \in \bar{A}$. Similarly

$$\forall x \in \bar{A}, \quad \sum_{y \in \Omega} \omega^*(x, y) = \min\{\mu(x), \nu(x)\} + \sum_{y \in \Omega \land y \neq x} \omega^*(x, y)$$
 (7)

$$= \mu(x) + D_{TV}(\mu, \nu) \max\{\mu(x) - \nu(x), 0\} \sum_{y} \max\{\nu(y) - \mu(y), 0\}$$

 $= \mu(x) + D_{TV}(\mu, \nu) \cdot 0 \cdot \sum_{y} \max\{\nu(y) - \mu(y), 0\}$ (9)

$$=\mu(x)\tag{10}$$

Now we have proved such a coupling satisfies that the marginal distribution of X is indeed $\mu(x)$. The same argument works for Y as well. So by setting $C = 1/D_{TV}(\mu, \nu)$ we actually constructed

$$\omega^*(x,y) = \begin{cases} \min\{\mu(x), \nu(y)\}, & x = y\\ \frac{1}{D_{TV}(\mu,\nu)} \cdot \max\{\mu(x) - \nu(x), 0\} \cdot \max\{\nu(y) - \mu(y), 0\}, & o.w. \end{cases}$$

Now we only need to show $Pr_{(X,Y)\sim\omega^*}(X\neq Y)$ is actually $D_{TV}(\mu,\nu)$.

1.3 Proof of optimal coupling

We show by calculating $Pr_{(X,Y)\sim\omega^*}(X=Y)$.

$$Pr_{(X,Y)\sim\omega^*}(X=Y) = \sum_{x\in\Omega} \min\{\mu(x), \nu(x)\}$$
(11)

$$= \sum_{x \in A} \nu(x) + \sum_{x \in \bar{A}} \mu(x) \tag{12}$$

$$= \nu(A) + \mu(\bar{A}) \tag{13}$$

$$= \nu(A) + (1 - \mu(A)) \tag{14}$$

$$= 1 - (\mu(A) - \nu(A)) \tag{15}$$

$$=1-D_{TV}(\mu,\nu) \tag{16}$$

So $Pr_{(X,Y)\sim\omega^*}(X\neq Y)=D_{TV}(\mu,\nu)$

Homework 2

- 2 Stochastic Dominance
- 3 Total Variation Distance is Non-Increasing
- 4 Acknowledgements

The inspiration of constructing the optimal coupling is from the lecture notes of a MIT course 6.896 Probability and Computation. Actually my construction is not entirely like its demonstration, but the core ideas are the same.