

Machine learning

Non-parametric Methods II k-nearest-neighbor

Mohammad-Reza A. Dehaqani

dehaqani@ut.ac.ir

k_n -nearest-neighbor estimation

- The problem of the unknown "best" window function and sparse data set
- Fix k_n and allow V_n to vary:

$$p_n(\mathbf{x}) \cong \frac{k_n/n}{V_n}$$

- Consider a hypersphere around x.
- Allow the radius of the hypersphere to **grow** until it contains k_n data points.
- V_n is determined by the **volume** of the hypersphere.

size depends on density

Parameter k_n

• The parameter k_n acts as a **smoothing** parameter and **needs to be optimized**

One dimension and the *k*-nearest-neighbor density estimates

Discontinuities in the slopes in the estimates generally occur *away* from the positions of the points themselves

k-nearest-neighbor estimate of a two-dimensional density for k = 5.

A finite *n* estimate can be quite "**jagged**," and that discontinuities in the slopes

Parzen windows vs k_n -nearest-neighbor estimation

Parzen windows

 $h_1 = 0.1$

k_n -nearest-neighbor

 $k_{-}=4$

n = 256

 $k_{-}=16$

the finite *n* estimates can be quite "spiky.

n = 100

Parzen windows vs k_n -nearest-neighbor estimation

Parzen windows

Estimation of a posteriori probabilities

- Posterior probabilities can be estimated from a set of n labeled samples and can be used with the Bayesian decision rule for classification.
- Suppose that a **volume** V around x **includes** k **samples**, k_i of which **are labeled** as belonging to class ω_i .
- Then the obvious estimate for the joint probability $p(\mathbf{x}, \omega_i)$ is

$$P(\omega_i) = \frac{n_i}{n} P_n(\mathbf{x}|\omega_i) = \frac{k_i}{n_i V} p_n(\mathbf{x}, \omega_i) = \frac{k_i/n}{V},$$

• a reasonable estimate for $P(\omega_i|\mathbf{x})$ is

$$P_n(\omega_i|\mathbf{x}) = \frac{p_n(\mathbf{x}, \omega_i)}{\sum_{j=1}^c p_n(\mathbf{x}, \omega_j)} = \frac{k_i}{k}.$$

Nearest-neighbor rule

- Given a data point **x**, find a **hypersphere** around it that **contains k points** and assign **x** to the class having the largest number of representatives inside the hypersphere.
- When k=1, we get the **nearest-neighbor** rule.
 - Suppose we have $D^n = \{x_1, \dots, x_n\}$ labeled training samples (i.e., known classes).
 - Let x' in D^n be the **closest** point to x, which needs to be classified.
 - The nearest neighbor rule is to assign x the class associated with x'.

Partition the feature space; Voronoi tesselation

- This rule allows us to partition the feature space into cells consisting of all points closer to a given training point x than to any other training points.
- All points in such a cell are thus labelled by the category of the training point
 a so-called Voronoi tesselation of the space

Decision boundary for nearest-neighbor rule

- The decision boundary is piece-wise linear.
- Each line segment corresponds to the perpendicular bisector of two points belonging to different classes.

Error bounds (nearest-neighbor rule)

- The nearest-neighbor rule for classifying x is to assign it the label associated with x'
- The label θ associated with the nearest neighbor is **a random** variable, and the probability that $\theta = \omega_i$ is merely the a posteriori probability $P(\omega_i|\mathbf{x'})$.
- When the number of samples is very large, it is reasonable to assume that x is sufficiently close to x that $P(\omega_i|x) \approx P(\omega_i|x')$.
- We define $\omega_m(\mathbf{x})$ by

$$P(\omega_m|\mathbf{x}) = \max_i P(\omega_i|\mathbf{x}')$$

• The **Bayes decision** rule **always** selects ω_m .

Error bounds (nearest-neighbor rule)

- When $P(\omega_m|\mathbf{x})$ is **close to unity**, the nearest-neighbor selection is almost always the **same as the Bayes selection**.
- When $P(\omega_m/\mathbf{x})$ is **close to 1/c**, so that all classes are essentially equally likely, the probability of error is approximately 1 1/c for both NN and Bayse.
- The average probability of error

$$P(e) = \int P(e|\mathbf{x})p(\mathbf{x}) \ d\mathbf{x}.$$

• If we let $P^*(e|\mathbf{x})$ be the **minimum possible value** of $P(e|\mathbf{x})$, and P^* be the minimum possible value of P(e)

$$P^*(e|\mathbf{x}) = 1 - P(\omega_m|\mathbf{x})$$

$$P^* = \int P^*(e|\mathbf{x})p(\mathbf{x}) \ d\mathbf{x}.$$

Error bounds (nearest-neighbor rule)

14

The decision rule depends on the nearest-neighbor

$$P(e|\mathbf{x}) = \int \underbrace{P(e|\mathbf{x}, \mathbf{x}')} p(\mathbf{x}'|\mathbf{x}) d\mathbf{x}'.$$

• Suppose that selected pair is (\mathbf{x}, θ) , and that $\mathbf{x'}_j$, labelled θ'_j , is the training sample nearest \mathbf{x} . We commit an error whenever $\theta \neq \theta'_j$.

$$P_n(e|\mathbf{x}, \mathbf{x}'_j) = 1 - \sum_{i=1}^{c} P(\theta = \omega_i, \theta' = \omega_i | \mathbf{x}, \mathbf{x}'_j)$$

 \mathbf{x} and $\mathbf{x'}_j$ are independent $= 1 - \sum_{i=1}^{n} P(\omega_i | \mathbf{x}) P(\omega_i | \mathbf{x'}_j)$.

• n goes to **infinity** and p(x'|x) approaches a **delta function**.

$$\begin{split} \lim_{n \to \infty} & P_n(e|\mathbf{x}) &= \int \left[1 - \sum_{i=1}^c P(\omega_i|\mathbf{x}) P(\omega_i|\mathbf{x}')\right] \delta(\mathbf{x}' - \mathbf{x}) \ d\mathbf{x}' \\ &= 1 - \sum_{i=1}^c P^2(\omega_i|\mathbf{x}). \end{split}$$
 A. Dehaqani, UT

$$P = \lim_{n \to \infty} P_n(e)$$

$$= \lim_{n \to \infty} \int P_n(e|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

$$= \int \left[1 - \sum_{i=1}^{c} P^2(\omega_i|\mathbf{x})\right] p(\mathbf{x}) d\mathbf{x}.$$

- Let P* be the minimum possible error, which is given by the minimum error rate classifier.
- An obvious lower bound on P is P* itself
- If the Bayes errore rate is low, $P(\omega_i|x)$ is near 1.0 for some i, say i=m.

$$1 - P^{2}(\omega_{m}|\mathbf{x}) \simeq 2(1 - P(\omega_{m}|\mathbf{x}))$$

$$P^{*}(e|\mathbf{x}) = 1 - P(\omega_{m}|\mathbf{x}),$$

$$f(x) \approx f(a) + f'(a)(x - a), \quad \text{for } x \approx a.$$

• Upper bound: integration over ${\bf x}$ might yield about twice the Bayes rate $P(e) = \int P(e|{\bf x}) p({\bf x}) \ d{\bf x}.$

Exact upper bound

- Let P* be the minimum possible error, which is given by the minimum error rate classifier.
- Let P be the error given by the nearest neighbor rule.
- Given unlimited number of training data and c-category problem, it can be shown that:

$$P^* \le P \le P^* \left(2 - \frac{c}{c - 1}P^*\right) \le 2P^*$$

Maximum error:

$$1 - 1/c = (c-1)/c$$

The k-Nearest-Neighbor Rule

machinelearningknowledge.ai

Error rate bound

Hail y

- The error-rate for the knearest-neighbor rule for a
 two-category problem is
 bounded above by $C_k(P*)$
- Where $C_k(P*)$ is defined to be the smallest **concave** function of P* greater than

Each curve is **labelled** by *k*;

When $k = \infty$, the **estimated probabilities match** the true probabilities and thus the error rate is equal to the Bayes rate i.e. P = P*

$$\sum_{i=0}^{(k-1)/2} {k \choose i} \left[(P^*)^{i+1} (1 - P^*)^{k-i} + (P^*)^{k-i} (1 - P^*)^{i+1} \right].$$

Decision boundary (bias variance trade off)

15₅Nearest Neighbor

Computational Complexity of the *k*–Nearest-Neighbor Rule

- Assuming n training examples in d dimensions, a straightforward implementation would take O(dn²)
 - distance calculation is O(d),
- A parallel implementation would take O(1)
- Three generic approaches for reducing computational complexity:
 - Computing partial distances
 - Pre-structuring (e.g., search tree)
 - Editing the stored prototypes

Partial distances

• Compute distance using first r dimensions only:

$$D_r(\mathbf{x}, \mathbf{x}') = (\sum_{k=1}^r (x_k - x_k')^2)^{1/2}$$

where r < d.

• If the partial distance is **too great** (i.e., **greater than the distance of x to current closest prototype**), there is **no reason** to compute additional terms.

Pre-structuring: Bucketing

- In the Bucketing algorithm, the space is divided into identical cells.
 - For each cell the data points inside it are stored in a list.
 - Given a test point x, find the cell that contains it.
 - Search only the points inside that cell!
 - Does not guarantee to find the true nearest neighbor(s)
 - Speed vs accuracy tradeoff

Pre-structuring: Search Trees (k-d tree: short for k-dimensional tree)

- A k-d tree is a data structure for storing a finite set of points from a k-dimensional space.
- Generalization of binary search ...
- Goal: hierarchically
 decompose space into a
 relatively small number of
 cells such that no cell
 contains too many
 points.

How to build it

- Each internal node in a k-d tree is associated with a hyperrectangle and a hyper-plane orthogonal to one of the coordinate axis.
 - The hyper-plane splits the hyper-rectangle into two parts, which are associated with the child nodes.
 - The partitioning process goes
 on until the number of data points
 in the hyper-rectangle falls_below
 some given threshold

k-d tree

k-d tree;O(n) storage and O(n log n) construction time;

Good for massive low dimensional data: KNN with k-d tree is o(d logn)

k-d tree; Finding the set of points within a window

Nearest neighbor search in Kd tree

Usually a few leaf node

Bad distribution, force to search almost all nodes

Editing

- Goal: reduce the number of training samples.
- Two main approaches:
 - Condensing: preserve decision boundaries.
 - Pruning: eliminate noisy examples to produce smoother boundaries and improve accuracy.

Editing using condensing

- Retain only the samples that are needed to define the decision boundary.
- Decision Boundary Consistent –

 a subset whose nearest neighbour
 decision boundary is close to the
 boundary of the entire training
 set.
- Minimum Consistent Set the smallest subset of the training data that correctly classifies all of the original training data.

Original data

Condensed data

Minimum Consistent Set

Editing; Keep points contributing to the boundary

an be eliminated!

30

- ı.e.,
 - At least one neighbor belongs to a different category.

 - Eliminate prototypes that are surrounded by samples of the same category.

```
begin initialize j = 0, \mathcal{D} = \text{data set}, n = \# \text{prototypes}
               construct the full Voronoi diagram of \mathcal{D}
2
              \underline{\mathbf{do}}\ j \leftarrow j+1; for each prototype \mathbf{x}_i'
3
                   Find the Voronoi neighbors of \mathbf{x}_{i}^{\prime}
                   <u>if</u> any neighbor is not from the same class as \mathbf{x}'_i <u>then</u> mark \mathbf{x}'_i
5
              until j = n
6
     Discard all points that are not marked
7
     Construct the Voronoi diagram of the remaining (marked) prototypes
8
9 end
```

Editing using pruning

- Pruning seeks to remove
 "noisy" points and produces
 smooth decision
 boundaries.
- Often, it retains points far from the decision boundaries.
- Wilson pruning: remove points that do not agree with the majority of their k-nearest-neighbours.

Original data

Wilson editing with k=7

Original data

Wilson editing with k=7

Nearest Neighbor Embedding

- Map the training examples to a low dimensional space such that distances between training examples are preserved as much as possible.
 - i.e., reduce d and at the same time keep all the nearest neighbors in the original space.

General comments (nearest-neighbor classifier)

- The nearest neighbor classifier provides a powerful tool.
- Its error is bounded to be at most two times of the Bayes error (in the limiting case).
- It is **easy** to implement and understand. No optimization or training required.
- It can be implemented efficiently.
- Its performance, however, relies on the **metric** used to compute distances!

Properties of distance metrics

non-negativity:
$$D(\mathbf{a}, \mathbf{b}) \geq 0$$

reflexivity:
$$D(\mathbf{a}, \mathbf{b}) = 0$$
 if and only if $\mathbf{a} = \mathbf{b}$

symmetry:
$$D(\mathbf{a}, \mathbf{b}) = D(\mathbf{b}, \mathbf{a})$$

triangle inequality:
$$D(\mathbf{a}, \mathbf{b}) + D(\mathbf{b}, \mathbf{c}) \ge D(\mathbf{a}, \mathbf{c})$$
.

Euclidean formula for distance in d dimensions,

$$D(\mathbf{a}, \mathbf{b}) = \left(\sum_{k=1}^{d} (a_k - b_k)^2\right)^{1/2},$$

Results depending upon rescaling (the importance of invariant metrics)

Minkowski metric

Minkowski metric

$(L_k \text{ norm})$

$$L_k(\mathbf{a}, \mathbf{b}) = \left(\sum_{i=1}^d |a_i - b_i|^k\right)^{1/k},$$

- L_2 Euclidean distance is the
- L₁ (Manhattan or city block)
- L_{∞} (max distance among dimensions)

$$L_{\infty}(\mathbf{x}, \mathbf{y}) = \max_{i=1}^{d} |\mathbf{x}_i - \mathbf{y}_i|.$$

Each colored surface consists of **points a distance 1.0 from the origin**, measured using different values for k in the Minkowski metric (k is printed in red).

Feature Normalization

- When there is great difference in the range of the data along different axes in a multidimensional space, these metrics implicitly assign more weighting to features with large ranges than those with small ranges
- Feature normalization can be used to approximately equalize ranges of the features and make them have approximately the same effect in the distance computation.

Feature Normalization

- Linear scaling to unit range:
 - Given a lower bound I and an upper bound u for a feature x∈R,

$$\tilde{x} = \frac{x - l}{u - l}$$

- Linear scaling to **unit variance**:
 - A feature x∈R can be transformed to a random variable with zero mean and unit variance as

$$\tilde{x} = \frac{x - \mu}{\sigma}$$

where μ and σ are the sample mean and the sample standard deviation of that feature, respectively

Feature Normalization

- Normalization using the cumulative distribution function:
 - Given a random variable $\mathbf{x} \in \mathbb{R}$ with cumulative distribution function $F_{\mathbf{x}}(\mathbf{x})$, the random variable \tilde{x} resulting from the transformation $\tilde{x} = F_{\mathbf{x}}(\mathbf{x})$ will be uniformly distributed in [0, 1].

Rank normalization:

• Given the sample for a feature as $x_1, \ldots, x_n \in \mathbb{R}$, first we find the **order statistics** $x^{(1)}, \ldots, x^{(n)}$ and then replace each pattern's feature value by its corresponding normalized rank as

$$ilde{x}_i = rac{ ext{rank}_1(x_i) - 1}{n - 1}$$

• where x_i is the feature value for the i'th pattern. This procedure uniformly maps all feature values to the [0, 1] range

General comments on parametric and nonparametric

- Parametric: moments, ML, MAP, HMM, BN, EM
 - Reducing the dimension to a few number of parameter
 - Global view

- Non-parametric (histogram, Parzen, KNN)
 - Local view
 - Need great memory (convey all data)
- EM is among the best