B4B01DMA

Jakub Adamec Domácí úkol č. 7A

18. 11. 2024

Tento úkol vypracujte a pak přineste na cvičení č. 8.

1. Uvažujme následující relaci na \mathbb{Z} :

 $a\mathcal{R}b$ právě tehdy, když b-a je dělitelné dvěma nebo třemi.

Vyšetřete, zda splnňuje základní čtyři vlastnosti (reflexivita, symetrie, antisymetrie, tranzitivita). Je to částečné uspořádání?

Poznámka: Při přemýšlení může pomoci alternativní definice:

```
a\mathcal{R}b právě tehdy, když a \equiv b \pmod{2} nebo a \equiv b \pmod{3}.
```

Poznámka: Pro správnou práci s relací je třeba korekktně interpretovat definici. Pro konkrétní dvojici a, b se otázka "jsou spolu v relaci?" překládá do podoby:

```
"je pravda, že a \equiv b \pmod{2} nebo a \equiv b \pmod{3}?"
```

Výběr mezi dvojkou a trojkou tedy není nějaký centrální jednou pro vždy, ale dělá se pro každou dvojici a, b znovu, volba je tedy individuální a ptáme se, zda to "nebo" lze zařídit, ne že si jedno z čísel 2,3 vybereme a chceme jej.

2. Na množině konečných řetězců písmen malé latinské abecedy (tedy "slovo") zavedeme následující relaci: $a\mathcal{R}b$ právě tehdy, když řetězec β vznikl tak, že se přidala písmena před řetězec nebo za řetězec α (přičemž připouštíme i možnost přidání žádných písmen).

Například "tema" je v relaci s "matematika", nebo "abc" je v relaci s "abcde".

- a) Nakresleste Hasseův diagram pro množinu $\{au, auto, automobil, to, mobil\}$ uspořádánou relací \mathcal{R} .
- b) určete největší prvek, maxima, nejmenší prvek a minima, pokud existují.
- c) Najděte nějakou linearizaci.
- 3. Krátký bonusový příklad pro pilné:

Uvažujme množinu A uspořádáných trojic (r, t, s), kde

- r je přirozené číslo 1, 2, ..., 9 (ročník);
- t je přirozené číslo A, B, C, \dots (třída);
- s je řetězec písmen (přijmení studenta);

V první souřadnici řadíme dle velikosti čísla, v druhé a třetí souřadnici řadíme dle abecedy. Podle teorie je lexikografické uspořádání lineární, a množinu A je tedy možné seřadit do jednoho řetízku. Ukažte toto seřazení (tedy vlastně Hasseův diagram), pokud se množina A skládá z těchto trojic: (5,A,Alda), (7,B,Cody), (6,C,Ego), (5,B,Fink), (7,A,Job), (5,A,Klen), (7,B,Mold), (5,A,Nub).

1.

Reflexivita: $\forall a \in \mathbb{Z} : a\mathcal{R}a$. Platí.

Důkaz.

 $a\in\mathbb{Z}$ libovolné. $a-a=0. \\ 0\equiv 0 (\operatorname{mod} 2). \\ a \text{ tedy: } a\equiv a (\operatorname{mod} 2)\Longrightarrow a\mathcal{R}a.$

Symetrie: $\forall a,b \in \mathbb{Z}: (a\mathcal{R}b \Longrightarrow b\mathcal{R}a)$. Platí.

Důkaz.

 $a,b\in\mathbb{Z}$ libovolné. předpoklad: $a\equiv b \pmod 2 \ \lor \ a\equiv b \pmod 3$. $a-b=2k \ \lor \ a-b=3l, \ k,l\in\mathbb{Z} \ /\cdot (-1)$. $b-a=2(-k) \ \lor \ b-a=3(-l), \ (-k),(-l)\in\mathbb{Z}$. tedy: $(b\equiv a \pmod 2) \ \lor \ b\equiv a \pmod 3) \Longrightarrow b\mathcal{R}a$.

Antisymetrie: $\forall a,b \in \mathbb{Z}: (a\mathcal{R}b \wedge b\mathcal{R}a) \Longrightarrow a=b.$ Neplatí.

Důkaz.

p-p: a=1, b=3. $1\mathcal{R}3\wedge 3\mathcal{R}1,$ ale neplatí 1=3.

Tranzitivita: $\forall a,b,c\in\mathbb{Z}:(a\mathcal{R}b\wedge b\mathcal{R}c)\Longrightarrow a\mathcal{R}c.$ Neplatí. Důkaz.

p-p: a = 1, b = 5, c = 14.■ $1\mathcal{R}5 \land 5\mathcal{R}14$, ale neplatí $1\mathcal{R}14$, protože $1 \not\equiv 14 \pmod{2}$ ani $1 \not\equiv 14 \pmod{3}$.

Aby relace byla částečně uspořádánou, musí být tranzitivní, reflexivní a antisymetrická. Tuto vlastnost $\mathcal R$ nesplňuje.

2.

a)

 $M = \{au, auto, automobil, to, mobil\}$

Obrázek 1: Hassův diagram pro množinu ${\cal M}$

b)

Největší prvek: automobil

Maximum: automobil

Nejmenší prvek: au, to, mobil

Minimum: au, to, mobil

c)

au \leq_L to \leq_L mobil \leq_L auto \leq_L automobil.

3.

Obrázek 2: Hassův diagram pro množinu A