Math 591 Lecture 20

Professor Alejandro Uribe-Ahumada

Transcribed by Thomas Cohn

10/16/20

Smooth Sections of Vector Bundles

Start with a rank ρ vector bundle, with section s, i.e., $\pi \circ s = I_M$.

Let χ be a local trivialization

with χ a diffeomorphism, and linear on each fiber. Then $s|_U:U\to\pi^{-1}(U)$ satisfies

$$\chi \circ (s|_{U}): U \to U \times \mathbb{R}^{\rho}$$
$$p \mapsto (p, F(p))$$

where $F: U \to \mathbb{R}^{\rho}$. We write $F = (F^1, \dots, F^{\rho})$ with each $F^i: U \to \mathbb{R}$.

Lemma: (From last time) $s|_U$ is smooth iff $\forall i, F^i$ is smooth.

Proof: \Rightarrow is trivial.

 \Leftarrow : It's a fact from analysis that F is C^{∞} iff $\forall i, F^i$ is C^{∞} . So $s|_U(p)=\chi^{-1}(p,F(p))$, which is smooth.

Observe: The trivialization ove corresponds to a "moving frame" on U.

Defn: A moving frame on U i a collection of ρ smooth sections on U, $\{e_1, \ldots, e_{\rho}\}$, s.t. $\forall p \in U$, $\{e_1(p), \ldots, e_{\rho}(p)\}$ is a basis of the fiber $\pi^{-1}(p)$.

Ex: If $(U, \phi = (x^1, \dots, x^n))$ is a coordinate chart, let $e_i(p) = \frac{\partial}{\partial x^i} \Big|_p \in T_pM$. This defines a moving frame of TM on U.

Given a trivialization χ over U as above, how do we get a moving frame? Well, $\forall i \in \{1, \dots, \rho\}, p \in U$, let $e_i(p) \stackrel{\text{def}}{=} \chi^{-1}(p, (0, \dots, 1, \dots 0))$ (with the 1 in the *i*th entry).

Observe: If $s|_U$ corresponds to $F = (F^1, \dots, F^\rho) : U \to \mathbb{R}^\rho$, then $s|_U = \sum_{i=1}^\rho F^i e_i$, where the F^i are scalar-valued functions and the e_i are sections. So $\forall p \in U$, $s(p) \in \pi^{-1}(p)$, and $s(p) = \sum_{i=1}^\rho F^i(p) e_i(p)$ (using the vector space structure of $\pi^{-1}(p)$).

Conversely, we can also define a trivialization from a moving frame. (This is left as an exercise.)

Observe: If $C^{\infty}(M,\mathcal{E})$ is the space of C^{∞} sections of $\mathcal{E} \to M$ vector bundles, then $C^{\infty}(M,\mathcal{E})$ is a module over $C^{\infty}(M)$. We can multiply a section s by a function $f \in C^{\infty}(M)$ fiber-wise, with (fs)(p) = f(p)s(p).

Vector Fields

Let $\mathcal{E} = TM$.

Defn: \mathfrak{X} is the set of all smooth vector fields on M.

 $\forall X \in \mathfrak{X}$, with a coordinate system on U, $\exists a_i \in C^{\infty}(U)$ s.t. $X = \sum_{i=1}^n a_i \frac{\partial}{\partial x^i}$. X is C^{∞} iff $\forall i, a_i \in C^{\infty}$.

Prop: Any $X \in \mathfrak{X}(M)$ defines an operator

$$C^{\infty}(M) \to C^{\infty}(M)$$
$$f \mapsto X(f)$$

which

a) is \mathbb{R} -linear.

b) satisfies Leibniz' rule: $\forall f, g \in C^{\infty}(M), X(fg) = fX(g) + gX(f).$

(An aside: As a section, the value of X at $p \in M$ is denoted $X_p \in T_pM$.)

Proof: $X(f)(p) = X_p([f])$, where [f] is the germ of f at p. Thus, X is a derivation on $C_p^{\infty}(M)$, because X_p is a derivation on $C_p^{\infty}(M)$ germs. \square

Defn: Such an operator is called a <u>derivation</u> of $C^{\infty}(M)$.

Prop: (1) The operator defined by $X \in \mathfrak{X}(M)$ is local, i.e., $\forall f \in C^{\infty}(M), U \subseteq M$ open such that $f|_{U} \equiv 0$, then $X(f)|_{U} \equiv 0$.

Observe: This "locality" characterizes differential operators.

Observe: In local coordinates, if $X = \sum_i a_i \frac{\partial}{\partial x^i}$, then $X(f)(p) = \sum_i a_i \frac{\partial f}{\partial x^i}(p)$.

Thm: (2) Any operator $D: C^{\infty}(M) \to C^{\infty}(M)$ that is a derivation is given by a vector field.

Thm: (3) The commutator of two derivations is a derivation.

Together, we have: If $X, Y \in \mathfrak{X}(M)$, then there is a vector field denoted $[X, Y] \in \mathfrak{X}(M)$ (said "X bracket Y" or "X commutator Y") such that $\forall f \in C^{\infty}(M)$, [X, Y](f) = X(Y(f)) - Y(X(f)).

Proof of (3): Define [X,Y] as the operator commutator above. Clearly this is linear. Verify Leibniz' rule:

$$[X,Y](fq) = X(fY(q) + qY(f)) - Y(fX(q) + qX(f)) = \cdots = f[X,Y](q) + q[X,Y](f)$$

In local coordinates, say $X = \sum_i a_i \frac{\partial}{\partial x^i}$ and $Y = \sum_j b_j \frac{\partial}{\partial x^j}$. Then

$$[X,Y] = \sum_{ij} \left[a_i \frac{\partial}{\partial x^i}, b_j \frac{\partial}{\partial x^j} \right]$$

And

$$\begin{split} \left[a_{i}\frac{\partial}{\partial x^{i}},b_{j}\frac{\partial}{\partial x^{j}}\right] &= a_{i}\frac{\partial}{\partial x^{i}}(b_{j}\frac{\partial f}{\partial x^{j}}) - b_{j}\frac{\partial}{\partial x^{j}}(a_{i}\frac{\partial f}{\partial x^{i}}) \\ &= a_{i}b_{j}\frac{\partial^{2}f}{\partial x^{i}\partial x^{j}} + a_{i}\frac{\partial b_{j}}{\partial x^{j}}\frac{\partial f}{\partial x^{j}} - \left(b_{j}a_{i}\frac{\partial^{2}f}{\partial x^{j}\partial x^{i}} + b_{j}\frac{\partial a_{i}}{\partial x^{j}}\frac{\partial f}{\partial x^{i}}\right) \\ &= a_{i}\frac{\partial b_{j}}{\partial x^{i}}\frac{\partial f}{\partial x^{j}} - b_{j}\frac{\partial a_{i}}{\partial x^{j}}\frac{\partial f}{\partial x^{i}} \end{split}$$

This gives the commutator.