Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 5. 31 marca i 4 kwietnia 2016

- Z. 1-3 Wyznaczyć postać funkcji tworzącej momenty dla zmiennych:
 - 1. $X \sim B(n, p)$,
 - 2. $X \sim \text{Poisson}(\lambda)$,
 - 3. $X \sim \text{Gamma}(b, p)$.
- Z. 4–6 Znaleźć rozkład, któremu podlega zmienna $Z = \sum_{k=1}^{n} X_k$. O występujących w tych zadaniach zmiennych zakładamy, że są niezależne. Rozwiązujemy zadania używając "MGFy" (funkcje generujące momenty).
 - 4. $X_k \sim N(\mu_k, \sigma_k^2), k = 1, ..., n.$
 - 5. $X_k \sim \text{Gamma}(b, p_k), k = 1, \dots, n.$
 - 6. $X_k \sim B(m_k, p), k = 1, ..., n.$
- Z. 7–9 Zmienna losowa (X,Y) ma gęstość $f(x,y)=\frac{5}{4}x^2y$, dla $0< y<\frac{x}{2}<1$ (trójkąt o wierzchołkach $(0,0),\,(2,0),\,(0,1)$). Wyznaczyć gęstość:
 - 7. Zmiennej losowej Y.
 - 8. Zmiennej losowej U = X + Y.
 - 9. Zmiennej losowej T = X/Y.
 - 10. Zakładamy, że zysk firmy jest zmienną losową U. MGF tego zysku przedstawia się wzorem $M_U(t)=\frac{2}{2-3t}$. Wyznaczyć:
 - (a) wartość oczekiwaną zysku,
 - (b) wariancję zysku,
 - (c) MGF podatku od zysku, przy założeniu stopy podatkowej liniowej, 90%.
 - 11. Zmienna losowa X ma MGF o postaci $M_X(t)$. Zmienna losowa Y jest pewną funkcją zmiennej X. Co można powiedzieć o Z (założenia i od jakich zmiennych zależy Y) jeżeli:
 - (a) $M_Y(t) = M(2t) \cdot M(4t)$,
 - (b) $M_Y(t) = e^{2t}M(t)$,
 - (c) $M_Y(t) = 4M(t)$.

Witold Karczewski