## CS2109<sub>s</sub> Cheatsheet, by randomwish

https://github.com/randomwish/schoolNotes

## "Traditional" AI

## **Definition of Intelligent Agents**

Consists of a **feedback loop** consisting of **sensors**, **functions**, **actuators** and the actual **environment** (also known as **PEAS**).

- **Performance measure** → used to consider metric to optimise for the right purpose
- Rational agent  $\rightarrow$  chooses actions which would maximise performance measure
- function  $\rightarrow$  maps from percept histories to actions:  $f: [\mathcal{P}^* \rightarrow \mathcal{A}]$



# Categories of task environments observability

- fully observable → sensors of agents give it access to complete state of the environment at each point in time
- partially observable  $\rightarrow$  sensors of agent do not have complete information

#### deterministic

- deterministic → next state of environment is completely determined by current state and action executed by agent
- stochastic → state of environment is also determined by chance or randomness
- strategic  $\rightarrow$  deterministic environment except for the actions of other agents

#### types of experience for an agent

- episodic environment → experience of agent is divided into atomic episodes, and choice of agent depends only on the episode
- sequential environment → experience of agent makes it such that the choice of agent happened in the past

#### whether environment changes

- static  $\rightarrow$  environment does not change over time
- semi-dynamic  $\rightarrow$  environment does not change with time, but agent's performance does
- dynamic  $\rightarrow$  environment changes over time

#### number of possibilities

- discrete  $\rightarrow$  a limited number of distinct, clearly defined percepts and actions
- continuous  $\rightarrow continuous$  number of positions for an agent to be in

#### number of agents

- single agent → an agent operating by itself
- multi-agent  $\rightarrow$  a group of agents operating

## Types of agents

#### Simple reflex agent

Only consists of a condition-action rule; akin to a if-else sequence

#### Model-based agent

agent is able to know its future effect of its actions; has a model of the environment

## Goal-based agent

agent is able to simulate its future actions to reach its intended goal

## Utility-based agent

define the utility/value in being at a given state of the environment

## Learning agent

agent interact with environment and from interactions, produce trajectories with a learning model (learnt intuition)

### Warning

All agents have PEAS, regardless of their types

## Exploration vs Exploitation

- exploration  $\rightarrow$  to learn more about the world
  - downside  $\rightarrow$  could lead to worse outcomes
- exploitation  $\rightarrow$  maximise gain based on current knowledge
  - downside  $\rightarrow$  might not lead to better outcomes