# AutoAugment Is What You Need: Enhancing Rule-based Augmentation Methods in Low-resource Regimes

Juhwan Choi, Kyohoon Jin, Junho Lee, Sangmin Song and Youngbin Kim

**Chung-Ang University** 

### **Data Augmentation**

In the field of deep learning, data augmentation is widely used for regularization

- Data augmentation aims to transform given data to enlarge the training dataset
- For instance, we can augment an image by rotating or flipping it
- Data augmentation enhances the performance and generalizability of the model



### Rule-based Text Data Augmentation

#### **Text data augmentation** is achieved through various strategies:

- Rule-based methods: introduce modifications by pre-defined rules (e.g., EDA, AEDA...)
  - EDA¹: relies on random word-level changes
  - Our work focuses on enhancing rule-based augmentation methods
- Model-based methods: utilize other deep learning models to augment given text (e.g., Back-Translation, GPT3Mix...)
- Mixup-based methods: adopt mixup techniques into the text domain

| <b>Operation</b> | Sentence                                        |  |  |  |  |  |
|------------------|-------------------------------------------------|--|--|--|--|--|
| None             | A sad, superior human comedy played out         |  |  |  |  |  |
|                  | on the back roads of life.                      |  |  |  |  |  |
| SR               | A lamentable, superior human comedy             |  |  |  |  |  |
|                  | played out on the <i>backward</i> road of life. |  |  |  |  |  |
| RI               | A sad, superior human comedy played out         |  |  |  |  |  |
|                  | on <i>funniness</i> the back roads of life.     |  |  |  |  |  |
| RS               | A sad, superior human comedy played out         |  |  |  |  |  |
|                  | on <i>roads</i> back <i>the</i> of life.        |  |  |  |  |  |
| RD               | A sad, superior human out on the roads of       |  |  |  |  |  |
|                  | life.                                           |  |  |  |  |  |

## **Preliminary: SoftEDA**

Despite of its simplicity, EDA methods often lose the original semantics

- Recently, SoftEDA<sup>1</sup> has been proposed to mitigate this problem
- SoftEDA introduces label smoothing<sup>2</sup> to augmented data
- The usage of label smoothing <u>compensates for the semantic damage</u> and uncertainty of augmented data



- 1. Choi et al., SoftEDA: Rethinking Rule-Based Data Augmentation with Soft Labels, ICLR 2023 Tiny Papers.
- 2. Szegedy et al., Rethinking the Inception Architecture for Computer Vision, CVPR 2016

### **Our Motivation**

However, finding an optimal label smoothing value for every dataset is difficult

- In previous SoftEDA work, they manually assigned a factor for label smoothing and conducted a grid search
- This diminishes the real-world applicability of SoftEDA
- To this end, we adapted AutoAugment<sup>1</sup> to find optimal values for SoftEDA
- Additionally, we aim to enhance the performance of cutting-edge PLMs with the proposed method, not just BERT

### **Proposed Method**

Following previous work<sup>1</sup>, we designed an augmentation policy including:

- $p_{aug}$  and  $N_{aug}$ : Probabilities of augmentation and the amount of augmentation
- $p_{SR}$ ,  $p_{RI}$ ,  $p_{RS}$ ,  $p_{RD}$ : Probabilities of each sub-operation
- $\alpha_{SR}$ ,  $\alpha_{RI}$ ,  $\alpha_{RS}$ ,  $\alpha_{RD}$ : Strengths of each sub-operation
- $\epsilon_{ori}$ ,  $\epsilon_{aug}$ : Factor of label smoothing for original and augmented data, respectively

We optimize this policy based on SMBO<sup>2</sup> as a hyperparameter search

<sup>1.</sup> Ren et al., <u>Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification</u>, EMNLP 2021

<sup>2.</sup> Bergstra et al., Algorithms for Hyper-Parameter Optimization, NeurIPS 2011

### **Experimental Design**

We conducted our experiment with eight different datasets in a low-resource scenario

- We used only 100 and 500 randomly selected data for each dataset
- We employed BERT and DeBERTaV3 models
- We assessed our method with EDA, AEDA, and softEDA
- We repeated each experiment five times with different random seeds

## **Experimental Result**

#### Our method showcased best performance improvement across baselines

- Baselines had performance degradation in several cases
- Furthermore, our method shows a low standard deviation, suggesting its stability

|                   | SST2                   | SST5                         | CoLA           | SUBJ                         | TREC                        | MR                     | CR             | PC                    |
|-------------------|------------------------|------------------------------|----------------|------------------------------|-----------------------------|------------------------|----------------|-----------------------|
| BERT w/o Aug      | 80.46 <sub>1.84</sub>  | $35.13_{0.74}$               | $71.49_{1.40}$ | $92.85_{0.44}$               | $78.42_{1.30}$              | $72.11_{1.39}$         | $79.88_{0.82}$ | 88.12 <sub>0.58</sub> |
|                   | $86.08_{1.03}$         | $43.64_{0.50}$               | $75.50_{0.58}$ | $95.07_{0.22}$               | $93.27_{0.42}$              | $81.29_{0.52}$         | $87.53_{0.60}$ | $91.15_{0.21}$        |
| w/ EDA            | $80.76_{1.39}$         | $36.63_{1.33}$               | $70.70_{0.98}$ | $93.39_{0.25}$               | $81.56_{1.71}$              | $73.18_{1.36}$         | $79.54_{1.15}$ | $89.64_{0.80}$        |
|                   | $86.71_{0.63}$         | $45.08_{1.16}$               | $73.18_{0.52}$ | $94.69_{0.33}$               | $93.99_{1.05}$              | $80.41_{0.29}$         | $87.71_{0.57}$ | $90.81_{0.40}$        |
| w/ AEDA           | $80.96_{1.63}$         | $36.54_{0.97}$               | $72.24_{1.85}$ | $93.29_{0.23}$               | $81.27_{2.19}$              | $74.37_{2.84}$         | $80.67_{1.64}$ | $88.75_{0.90}$        |
|                   | $86.66_{0.63}$         | $44.53_{1.02}$               | $74.44_{0.41}$ | $94.60_{0.48}$               | $93.87_{0.75}$              | $81.57_{	extbf{0.15}}$ | $87.66_{0.55}$ | $91.03_{0.31}$        |
| w/ softEDA        | $80.80_{3.22}$         | $37.13_{1.60}$               | $72.41_{0.95}$ | $93.24_{0.40}$               | $82.92_{1.70}$              | $74.40_{1.27}$         | $78.95_{2.65}$ | $88.82_{1.63}$        |
|                   | $87.84_{0.65}$         | $45.04_{1.28}$               | $74.16_{0.99}$ | $94.85_{0.39}$               | $94.68_{0.51}$              | $81.16_{0.88}$         | $87.94_{0.85}$ | $91.12_{0.63}$        |
| w/ Ours           | $85.48_{0.57}$         | $39.88_{0.41}$               | $74.63_{0.33}$ | $94.10_{0.35}$               | $85.88_{\boldsymbol{1.06}}$ | $79.32_{0.37}$         | $86.49_{0.22}$ | $91.54_{0.11}$        |
|                   | $88.53_{0.27}$         | $46.16_{0.63}$               | $76.66_{0.81}$ | $95.54_{0.33}$               | $95.17_{0.54}$              | $83.10_{0.34}$         | $89.98_{0.25}$ | $92.16_{0.19}$        |
| w/ Ours w/o LS    | $84.71_{0.44}$         | $39.22_{ \boldsymbol{0.38}}$ | $73.80_{0.79}$ | $93.71_{0.35}$               | $84.85_{1.40}$              | $77.86_{0.53}$         | $85.70_{0.88}$ | $91.13_{0.19}$        |
|                   | $88.13_{0.48}$         | $45.45_{0.39}$               | $76.30_{0.34}$ | $95.15_{0.22}$               | $94.70_{0.46}$              | $82.19_{0.60}$         | $89.66_{0.35}$ | 91.98 <sub>0.18</sub> |
| DeBERTaV3 w/o Aug | 88.36 <sub>0.36</sub>  | $35.95_{1.69}$               | $72.62_{4.24}$ | $92.23_{0.24}$               | $80.19_{3.23}$              | 82.84 <sub>0.39</sub>  | $85.61_{1.20}$ | $91.22_{0.43}$        |
|                   | $92.59_{0.73}$         | $48.77_{1.52}$               | $82.21_{0.82}$ | $94.66_{0.22}$               | $94.06_{0.43}$              | $86.22_{0.37}$         | $91.40_{0.36}$ | $91.85_{0.26}$        |
| w/ EDA            | 86.61 <sub>0.70</sub>  | $37.64_{1.23}$               | $74.83_{1.10}$ | $92.85_{0.48}$               | $83.65_{1.84}$              | $83.18_{0.32}$         | $84.86_{0.73}$ | $90.51_{0.47}$        |
| W/ EDA            | $93.25_{0.55}$         | $49.04_{0.78}$               | $79.24_{0.66}$ | $94.81_{0.53}$               | $94.33_{0.99}$              | $86.71_{0.65}$         | $91.24_{0.39}$ | $92.3_{0.15}$         |
| w/ AEDA           | $88.44_{0.80}$         | $36.87_{2.88}$               | $79.29_{0.65}$ | $92.81_{0.47}$               | $84.17_{0.79}$              | $82.87_{0.75}$         | $85.76_{1.37}$ | $90.61_{0.49}$        |
|                   | $92.54_{0.78}$         | $49.16_{0.83}$               | $82.78_{0.40}$ | $94.92_{0.58}$               | $94.45_{0.80}$              | $85.77_{1.63}$         | $91.09_{0.49}$ | $92.29_{0.11}$        |
| w/ softEDA        | $88.94_{1.03}$         | $38.37_{1.65}$               | $79.40_{1.51}$ | $92.90_{1.08}$               | $84.58_{1.29}$              | $83.50_{0.65}$         | $86.33_{1.65}$ | $91.28_{0.82}$        |
|                   | $93.12_{1.05}$         | $50.34_{1.44}$               | $78.97_{1.16}$ | $94.77_{0.21}$               | $94.71_{0.69}$              | $87.02_{0.50}$         | $91.81_{0.76}$ | $92.16_{0.20}$        |
| w/ Ours           | $91.38_{0.32}$         | $42.92_{0.52}$               | $82.56_{0.51}$ | $94.47_{0.26}$               | $87.70_{0.90}$              | $85.31_{0.79}$         | $89.95_{0.51}$ | $92.32_{0.19}$        |
|                   | $93.94_{0.30}$         | $52.77_{0.62}$               | $84.32_{0.49}$ | $95.29_{0.31}$               | $94.92_{0.62}$              | $87.96_{0.17}$         | $92.46_{0.18}$ | $92.72_{0.40}$        |
| w/ Ours w/o LS    | $90.47_{	extbf{0.26}}$ | $42.44_{0.49}$               | $82.10_{0.43}$ | $94.22_{ \boldsymbol{0.15}}$ | $86.57_{0.61}$              | $85.07_{0.58}$         | $89.47_{0.67}$ | $92.22_{0.21}$        |
|                   | $93.40_{0.58}$         | $52.54_{0.66}$               | $83.67_{0.86}$ | $95.15_{0.12}$               | $94.92_{0.18}$              | $87.41_{0.37}$         | $92.28_{0.27}$ | $92.49_{0.33}$        |

### Conclusion

#### We proposed:

 A method to automatically optimize SoftEDA and improve the performance of the model in a low-resource scenario

#### We found that:

- The proposed method is effective and stable for boosting performance
- Rule-based augmentation methods are applicable for cutting-edge PLMs

#### We plan to:

Expand the proposed method to other tasks such as NLI

# Thank You!