

CS 3200 Introduction to Scientific Computing

Instructor: Martin Berzins

Topic: Adaptive Methods

Motivation

- Not only do we want to compute the correct solution but we would like do so efficiently
- When implementing methods we would like them to automatically control the error
- Examples are linear interpolation and quadrature
- In both cases the error estimate depends on?

Motivation

- When implementing methods we would like them to automatically control the error
- Examples are linear interpolation and quadrature
- In both cases the error estimate depends on?
- The step size and the second derivative of the function Δx^2 and $f''(\zeta)$

Estimating Linear Interpolation Error

$$f(x+h) = f(x) + h\frac{df}{dx} + \frac{h^2}{2}\frac{d^2f}{dx^2} + \frac{h^3}{6}\frac{d^3f}{dx^3} + O(h^4)$$
$$f(x-h) = f(x) - h\frac{df}{dx} + \frac{h^2}{2}\frac{d^2f}{dx^2} - \frac{h^3}{6}\frac{d^3f}{dx^3} + O(h^4)$$

Adding these equations and subtracting 2f(x) gives

$$f(x+h) + f(x-h) - 2f(x) = h^2 \frac{d^2 f}{dx^2} + O(h^4)$$

$$\frac{d^2 f}{dx^2} = \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} + O(h^2)$$

For Example Interpolation

- Error over an interval bounded by * $M_2 \frac{h_{\rm max}^2}{8}$ maximum second derivative x maximum stepsize
- If we require this error to be less than a user specified error
 tol then number of points n defined by

$$h_{\text{max}}^2 \le \frac{8tol}{M_2}, h_{\text{max}} = \frac{(b-a)}{(n-1)}$$

 $n \ge 1 + (b-a)\sqrt{M_2/8}$

Fixed linear Interpolation Applied to Matlab humps function

Adaptive Interpolation

Solution adapts to shape of curve. Use two approximations

Implementation MATLAB pwLAdapt

An interval if accepted if
$$\underbrace{Error} = (\frac{f(x+h) + f(x-h)}{2} - f(x)) < tol$$

Or if h< hmin where tol is a user-defined tolerance

Intervals are recursively defined until the test is passed or the minimum step hmin reached

This is implemented in the Matlab file pwLAdapt.m

Please see the Canvas webpage

pwLAdapt(xL,fL,xR,fR,delta,hmin)

```
if (xR-xL) \le hmin
   % Subinterval is acceptable form mesh
                                               Note there is no mesh
 else
                                               formation here just the
   mid = (xL+xR)/2;
                                             logic, see full code for the
   fmid = f(mid);
                                                           rest
   if (abs(((fL+fR)/2) - fmid) \le delta)
     % Subinterval accepted form mesh
   else
     % Produce left and right partitions, then synthesize.
                                                          Recursive
     [xLeft,yLeft] = pwLAdapt(xL,fL,mid,fmid,delta,hmin);
                                                               calls
     [xRight,yRight] = pwLAdapt(mid,fmid,xR,fR,delta,hmin);
%
      form mesh
     end
 end
```

```
% humps(x) = 1/((x-.3)^2 + .01) + 1/((x-.9)^2 + .04)
 close all
z = linspace(0,1,101);
 humpvals = humps(z);
 M2 = max(abs(diff(humpvals,2)/(.01)^2));
 delta = 0.01
   figure
   [x,y] = pwLStatic('humps',M2,0,1,delta);
   subplot(1,2,1)
   plot(x,y,'.');
   title(sprintf('delta = \%8.4f Static n= \%2.0f',delta,length(x)))
   [x,y] = pwLAdapt('humps',0,humps(0),1,humps(1),delta,.001);
   subplot(1,2,2)
   plot(x,y,'.');
   title(sprintf('delta = \%8.4f Adapt n= \%2.0f',delta,length(x)))
                                                                                                     10
```

% Script File: ShowPWL2 Compares pwLStatic and pwLAdapt on [0,1] using the function

Comparison of Adaptive vs Static

The adaptive approach uses only half the points

Richardson Extrapolation – an easy way to estimate the error

Let I(trap, h) be the approximate value of the integral with the Trapezoidal rule and step h. Let Iexact be the exact value.

Then
$$Error(h) = Iexact - I(trap, h) \approx \frac{-h^2}{12} f''(\zeta_1)$$

and $Error(\frac{h}{2}) = Iexact - I(trap, \frac{h}{2}) \approx \frac{-h^2/4}{12} f''(\zeta_1)$

We don't know these but we know these

Subtract the bottom equation from the top one

Iexact –
$$I(trap, h) \approx \frac{(-h^2)}{12} f''(\zeta_1)$$

-

Iexact – $I(trap, \frac{h}{2}) \approx \frac{1}{4} \frac{(-h^2)}{12} f''(\zeta_1)$

=

=

 $-I(trap, h) + I(trap, \frac{h}{2}) \approx \frac{3}{4} \frac{(-h^2)}{12} f''(\zeta_1)$

Hence

$$\frac{3}{4} \frac{(-h^2)}{12} f''(\zeta_1) \approx -I(trap, h) + I(trap, \frac{h}{2})$$

or

$$\frac{4}{3}(-I(trap,h) + I(trap,\frac{h}{2})) \approx \frac{(-h^2)}{12}f''(\zeta_1)$$

or

$$Error(h) \approx \frac{4}{3}(-I(trap, h) + I(trap, \frac{h}{2}))$$

As

$$Error(h) \approx \frac{4}{3}(-I(trap, h) + I(trap, \frac{h}{2}))$$

and

$$Error(\frac{h}{2}) \approx \frac{1}{4} Error(h)$$

then

$$Error(\frac{h}{2}) = \frac{1}{3}(-I(trap, h) + I(trap, \frac{h}{2}))$$

As

$$Error(h) \approx \frac{4}{3}(-I(trap,h) + I(trap,\frac{h}{2}))$$

and

$$Error(\frac{h}{2}) \approx \frac{1}{4} Error(h)$$

then

$$Error(\frac{h}{2}) = \frac{1}{3}(-I(trap, h) + I(trap, \frac{h}{2}))$$

In other words by repeating the calculation twice with steps h and h/2 and comparing the answers on the basis of the theory results Wen can estimate the error in either result

Extrapolation – Simpson's rule on one interval

Let I(Simp, h) be the approximate value of the integral on one interval with Simpsons rule and step h.

Let *lexact* be the exact value.

Then
$$Iexact - I(Simp, h) \approx \frac{-h^5}{2880} f^{(iv)}(\zeta_1)$$

and $Iexact - I(Simp, \frac{h}{2}) \approx \frac{-h^5/32}{2880} f^{(iv)}(\zeta_1)$

Extrapolation – Simpson's rule on one interval

Subtracting $Iexact - I(Simp, \frac{h}{2})$ from Iexact - I(Simp, h)

shows that the difference between the numerical solutions gives an estimate of the error

$$I(Simp, \frac{h}{2}) - I(Simp, h) \approx \frac{-h^5}{2880} f^{(iv)}(\zeta_1)(1 - \frac{1}{32})$$

multiplying rhs by $\frac{32}{31}$ estimates the error in I(Simp, h) and

multiplying by $\frac{1}{31}$ estimates the error in $I(Simp, \frac{h}{2})$

Matlab QUADTX

- Uses Simpson's Rule recursively until the error on each interval is less than tol which is user supplied
- A decision to subdivide each interval is made when the error estimated is > tol
- Please see the code for an example of this recursive approach

Example of Quadtx in use with the humps example

The first evaluation when a = 0 and b = 1 using Extrapolated Simpson's Rule.

Plot of the function

Last Step

Plot of the function

Driving code for Humps Example

```
fprintf(' tol
                                                 ratio \n')
                               fcount
                                          err
for k = 1.12
  tol = 10^{(-k)};
  Qexact=29.85832539549867;
  [Q,fcount] = quadtx(@humps,0,1,tol);
  err=Q-Qexact;
  ratio = err/tol;
  fprintf('%8.0e %21.14f %7d %13.3e %9.3f \n',tol,Q,fcount,err,ratio)
end
```

Results for Humps Example

tol	Q	fcour	nt err r	atio
1e-01	29.83328444174864	25	-2.504e-02	-0.250
1e-02	29.85791444629948	41	-4.109e-04	-0.041
1e-03	29.85834299237637	69	1.760e-05	0.018
1e-04	29.85832444437543	93	-9.511e-07	-0.010
1e-05	29.85832551548643	149	1.200e-07	0.012
1e-06	29.85832540194041	265	6.442e-09	0.006
1e-07	29.85832539499819	369	-5.005e-10	-0.005
1e-08	29.85832539552631	605	2.764e-11	0.003
1e-09	29.85832539549604	1061	-2.636e-12	-0.003
1e-10	29.85832539549890	1469	2.309e-13	0.002
1e-11	29.85832539549867	2429	-3.553e-15	-0.000
1e-12	29.85832539549867	4245	3.553e-15	0.004

Use of adaptive methods

- Many similar examples in interpolation, quadrature and solution of differential equations
- More challenging to implement and run especially in parallel as we do not know where the work will be in advance.
- Current state of the art is that these kind of methods run on the very largest computers e.g. the Uintah code developed here.