BOOTCAMP TRAINING IN PROGRAMMING, STATISTICS AND DATA SCIENCE June 2021

1 Introduction

This is a training designed for Accointing Guatemala that covers topics in computer programming, math and statistics, data science and machine learning. It includes the explanation of the basic theory necessary to implement simple machine learning models, as well as instruction in how to handle Python programming in most common environments, that covers various popular modules and libraries in data science.

Course:	Data Science Bootcamp						
Main topics:	Mathematics for data science						
	Descriptive and inference statistics						
	Python programming						
	Basic machine learning models						
Time:	Four weeks, 5 days per week, 2 hour each session						
	for a total of 40 hours of session work.						
Instructor:	Alan Reyes-Figueroa, Ph.D.						
	Professor of Mathematics and data science at Universidad del Valle,						
	Data scientist at Bam.						

2 Skills to Develop

- Learn what data science is, the various activities of a data scientist's job, and methodology to work as a data scientist.
- Develop hands-on skills using the theory and tools, languages, and Python libraries used by professional data scientists.
- Import and clean data sets, analyze and visualise data, and build and evaluate machine learning models and pipelines using Python.
- Apply various data science skills, techniques, and tools to complete a project and publish a report.

3 Syllabus

- 1. Installation and set up of Python working environments for data science: Anaconda Python, Jupyter notebooks and Jupyter-lab, VSCode and Jupyter built in.
- 2. Libraries and Python modules for data science: Numpy, Pandas, Matplotlib, Seaborn, Plotly, Statsmodels, Scikit-learn. SQL basic queries and modules for working with SQL in Python.
- 3. Math and statistical concepts: Vectors and matrix calculus and linear algebra, plotting functions, basic probability, distributions, descriptive statistics, inference statistics, hypothesis testing.
- 4. Python programming: Variables and functions, conditionals, cycles *for*, *while* and exceptions. Basic structures: lists, tuples, dictionaries, strings. Vectors and matrices.
- 5. Data science: Read and modify datasets with Pandas. Deal with missing information. Data exploration: histograms, covariance analysis, visualisation and plots. Principal components analysis.

6. Machine learning models: Scikit-learn, K-means and other clustering algorithms, K-nn nearest neighbours, logistic regression, Support vector machines. Evaluation metrics and cross-validation. Linear regression with Statsmodels. Other models such as trees and random forests.

4 References

- P. Bruce, H. Bruce (2020). Practical Statistics for Data Scientists. O'Reilly.
- A. Martelli, A. Ravenscroft, D. Ascher (2005). Python CookBook. O'Reilly.
- M. Harrison, T. Petrou (2020). Pandas CookBook. Packt.
- C. Bishop (2000). Pattern Recognition and Machine Learning. Springer
- T. Hastie, R. Tibshirani, J. Friedman (2013). The Elements of Statistical Learning. Springer.

5 Proposed Calendar

	Content		Content		Content		Content		Content
1	Installation and Setup	2	Python crash course I	3	Python crash course II	4	Numpy	5	Visualisation
	Anaconda		Variables, data types		List, comprehension		Vectors and matrices		Matplotlib
	Jupyter		Conditionals, for, range		Dictionaries, tuples		Tensors		Seaborn
	Manage environments		While, break, exception		Strings		Operations, reshape		Pandas built-in
	VSCode + Jupyter		Functions		Files I/O		Basic plots		Plotly
6	Pandas I	7	Pandas II	8	SQL	9	SQL in Python	10	Probability
	Dataframes		Filter commands		Basic queries		SQLite		Probability basics
	Access cells		Handle missing data		Aggregate functions		MySQL		Bayes' law
	Select subdataframes		Dummy variables		Group by, order by				Discrete distributions
	Combine and merge		Handle time and dates		Join and merge tables				Continuous distrib.
11	D 1 11 1 11 11	10		10	11 11 1 1 1	1.4	D : 1 ::	15	D :
11	Descriptive statistics	12	Inference statistics	13	Hypothesis testing	14	Data exploration	15	Principal components
	Histograms		Confidence intervals		Hypothesis tests:		Distributions		PCA
	Mean, median, modes		Bootstrap, sampling		to test normality		Covariance analysis		Dimension reduction
	Variance		Visualisation tools		compare distributions		Stats and summaries		Data exploration
	Covariance, correlation		QQ-plots, densities		to compare samples		Visualisation		Biplots
16	Clustering	17	Regression I	18	Regression II	19	Classification I	20	Classification II
10		11		10		19	K-nn	20	SVM
	K-means		Linear regression		Hypothesis testing				-
	t-SNE		Residual analysis		What if assumptions		Naive Bayes		Decision trees
	Other methods		Categorical variables		do not hold?		Logistic regression		Random forests
			Predictions		Ridge and LASSO		Train and test		Cross-validation