1. Calculate the voltage gain $A_v = {}^{V_O}/{}_{V_i}$, at 1 kHz for the circuit shown below. The FET parameters are $g_m = 2 \ mA/V$ and $r_d = 10 \ K$. Neglect capacitances.

2. If an input signal V_i is impressed between gate and ground, find the amplification $A_v = V_o/V_i$. Apply Miller's theorem to the 50 K resistor. The FET parameters are $\mu = 30$ and $r_d = 5K$. Neglect capacitances.

3. (a) Prove that the magnitude of the signal current is the same in both FETs provided that

$$r = \frac{1}{g_m} + \frac{2R_L}{\mu}$$

Neglect the reactance of the capacitors.

(b) If r is chosen as part a, prove that the voltage gain is given by

$$A = \frac{-\mu^2}{\mu + 1} \frac{R_L}{R_L + r_d/2}$$

4. The amplifier stage shown uses an n-channel FET having $I_{DSS} = 1 \, mA$, $V_p = -1V$. If the quiescent drain to ground voltage is 10 V, find R_1 .

- 5. The FET shown has the following parameters, $I_{DSS} = 5.6 \text{ mA}$, $V_p = -4V$.
 - (a) If $v_i = 0$, find v_o ;
 - (b) If $v_i = 10 \ V$, find v_0 ;
 - (c) If $v_0 = 0 V$, find v_i ;

Note: v_0 and v_i are constant voltages (and not small signal voltages).

