

1. ročník tímovej súťaže DuoGeo – kategória SŠ

16. 2. 2025

Úloha 1. Je daný trojuholník *ABC* s výškou *CD*, pričom *D* leží na úsečke *AB*. Súčet dĺžok strán *AC*, *BC* a priemerov kružníc vpísaných trojuholníkom *ADC* a *BDC* (teda súčet čiarkovaných úsečiek) je 26 a dĺžka úsečky *CD* je 6. Určte obsah trojuholníka *ABC*. (Mária Dományová, Patrik Bak)

Riešenie. Označme si polomery jednotlivých kružníc ako r_1 a r_2 , a tiež uvážme úsečky dĺžok b_1 , b_2 , c_1 , c_2 ako na obrázku – rovnosť úsečiek veľkostí r_1 a r_2 vyplýva zo zvýraznených štvorcov, zatiaľ čo pri rovnosti úsečiek dĺžok b_2 a tiež úsečiek dĺžok c_2 sme použili známy fakt, že vzdialenosť vrcholu trojuholníka od bodu dotyku s kružnicou vpísanou je rovnaká pre obe ramená obsahujúce tento bod (zdôvodniť to vieme vďaka zhodnosti trojuholníkov tvorených daným vrcholom, stredom kružnice vpísanej a bodom dotyku).

Podľa zadania |CD| = 6. Všimnime si, že dĺžku |CD| vieme vyjadriť dvoma ďalšími spôsobmi, jednak ako |CE| + |ED|, teda $b_1 + r_1$ (znova používame rovnosť dotyčníc a zvýraznený štvorec), ale aj ako $|CF| + |FD| = c_1 + r_2$. Tým pádom $b_1 + r_1 = 6$ a $c_1 + r_2 = 6$.

Druhá podmienka zo zadania hovorí, že $|CA| + |CB| + 2r_1 + 2r_2 = 26$. Túto rovnosť rozpíšeme ako

$$26 = (b_1 + b_2) + (c_1 + c_2) + 2r_1 + 2r_2 = (b_1 + r_1) + (b_2 + r_2) + (b_2 + c_2 + r_1 + r_2) = 12 + (b_2 + c_2 + r_1 + r_2).$$

Všimnime si, že na pravej strane máme v zátvorke dĺžku |AB| zapísanú ako súčet štyroch úsečiek, takže táto rovnosť vlastne znamená |AB| = 14. Tým pádom už vieme spočítať obsah ABC ako $14 \cdot 6/2 = 42$.

Iné riešenie. Podľa známe vzorca pre veľkosť polomeru kružnice vpísanej trojuholníku pravouhlému trojuholníku platí

$$r_1 = \frac{|AD| + |CD| - |AC|}{2}$$
 a $r_2 = \frac{|BD| + |CD| - |BC|}{2}$.

V krátkosti zdôvodníme, prečo platí prvý vzťah (druhý je analogický). Po vynásobení dvomi a pripočítaní |AC| máme ekvivalentný vzťah $2r_1 + |AC| = |AD| + |CD|$, a po prepise na naše úsečky máme, že ľavá strana je rovná $2r_1 + b_1 + b_2$, zatiaľ čo pravá strana $(b_2 + r_1) + (b_1 + r_1)$, čo je to isté.

S týmito vzťahmi možno výpočet |AB| skrátiť: Sčítaním rovností a použitím |AD| + |BD| = |AB| ľahko dostaneme vyjadrenie

$$|AB| = 2r_1 + 2r_2 + |AC| + |BC| - 2|CD| = 26 - 2 \cdot 6 = 14$$

ako v predošlom riešení.

Úloha 2. Je daný päťuholník *ABCDE* s práve jedným nekonvexným uhlom, a to pri vrchole *C*. Predpokladajme, že polpriamka *AC* pretína stranu *DE*, čím rozdelí päťuholník na 3 zhodné trojuholníky. Dokážte, že pomer dĺžok niektorých dvoch strán päťuholníka *ABCDE* je 3 : 2. (*Josef Tkadlec*)

Riešenie. Bez ujmy na všeobecnosti predpokladajme, že priamka AC je vodorovná, pričom bod A je vľavo a bod E je pod ňou (ako na ľavom obrázku). Z toho vyplýva, že bod D leží nad touto priamkou – pretože priamka AC musí pretínať stranu DE – a takisto bod B musí byť nad ňou, inak by polpriamka AC rozdelila päťuholník len na dve časti.

Nech *X* je prienik polpriamky *AC* so stranou *DE*. Potom sú trojuholníky *ABC*, *CDX* a *XEA* zhodné (aj keď poradie vrcholov nemusí byť rovnaké).

Ukážeme, že priamka AC je kolmá na stranu DE. Predpokladajme, že AC nie je kolmá na DE. Vtedy by pri bode X vznikli dva uhly $\angle DXA$ a $\angle AXE$, pričom jeden by bol tupý a druhý ostrý, nemohli by to teda byť zhodné uhly. Keďže ale majú súčet 180° , tretí uhol v týchto zhodných trojuholníkov by musel mať veľkosť 0° , čo nie je možné. Naozaj teda $AC \perp DE$.

Z toho vyplýva, že zhodné trojuholníky sú pravouhlé. Nech dĺžky odvesien v týchto trojuholníkoch sú $a \le b$ a dĺžka prepony je c (ako je znázornené na druhom obrázku). Pretože z usporiadania vyplýva, že |XA| > |XC|, máme |XA| = b a |XC| = a, teda strana AC má dĺžku |AC| = b - a. Keďže v pravouhlom trojuholníku pre stranu AC platí, že jej dĺžka musí byť rovná jednej z odvesien (buď a, alebo b), a keďže b - a < b, môžeme usúdiť, že b - a = a, teda b = 2a.

Týmto jednoznačne určíme tvar štvoruholníka *ACDE*. Trojuholník *ABC* môžeme umiestniť pozdĺž strany *AC* (ktorá má dĺžku *a*) dvoma rôznymi spôsobmi (ako je znázornené na pravom obrázku). V oboch prípadoch je strana trojuholníka *ABC* s dĺžkou *b* zároveň stranou

päťuholníka ABCDE. Pretože strana DE päťuholníka má dĺžku |DE| = |DX| + |XE| = b + a, a keď že $a = \frac{b}{2}$, dostávame $|DE| = b + \frac{b}{2} = \frac{3}{2}b$. Tým pádom je pomer dĺžok príslušných strán päťuholníka ABCDE rovný 3: 2, čo bolo potrebné dokázať.

Úloha 3. Na kružnici s označeným stredom je označených $n \ge 3$ rôznych bodov rozdeľujúcich kružnicu na oblúky $o_1, ..., o_n$ rôznych dĺžok kratších ako polkružnica. *Kružnicové operácie* umožňujú:

- (i) označiť priesečníky dvoch kružníc,
- (ii) zostrojiť kružnice so stredom v niektorom z označených bodov, pričom kružidlo môžeme do každého z bodov zapichnúť maximálne raz (kým je v ňom zapichnuté, môže spraviť viacero kružníc),
- (iii) určiť polohu označeného bodu vzhľadom na niektorú z nakreslených kružníc (teda či leží na kružnici, vnútri nej alebo zvonka nej).

Dokážte, že pomocou týchto operácií vieme určiť, ktorý z oblúkov $o_1,...,o_n$ je najdlhší. ($Ema\ \check{C}udaiov\acute{a}$)

Riešenie. Body na kružnici označíme $A_1, A_2, ..., A_n$ a jej stred S.

Predpokladajme, že najdlhší oblúk, ktorého krajnými bodmi sú 2 susedné body na kružnici, prislúcha tetive $A_m A_{m+1}$ (v prípade m=n uvažujeme $A_m A_1$). Potom zrejme pre každé k platí $|\angle A_k S A_{k+1}| \le |\angle A_m S A_{m+1}| < 180^\circ$. Druhá nerovnosť plynie z toho, že na každej polkružnici ležia aspoň 3 z n-tice bodov. Podobne si uvedomíme, že $|A_m A_{m+1}| \ge |A_k A_{k+1}|$.

Všimnime si, že posledná nerovnosť platí práve vtedy, keď má tetiva A_mA_{m+1} najmenšiu vzdialenosť od stredu kružnice. Toto pozorovanie teraz dokážeme. Každý z trojuholníkov A_kSA_{k+1} je rovnoramenný, pretože $|SA_k|=|SA_{k+1}|=r$, kde r je polomer kružnice. Vzdialenosť tetivy A_kA_{k+1} od stredu kružnice, teda výšku tohoto trojuholníka z vrcholu S, vyjadríme v závislosti od uhla $\angle A_kSA_{k+1}=\alpha$ a polomeru kružnice: Platí

$$v = r \cdot \cos\left(\frac{\alpha}{2}\right).$$

Keďže $\cos x$ na intervale $\left\langle 0, \frac{\pi}{2} \right\rangle$ klesá, je výška z vrcholu S v každom trojuholníku väčšia alebo rovná tej v trojuholníku $A_m S A_{m+1}$.

Pomocou kružníc tieto výšky porovnáme tak, že každý z trojuholníkov A_kSA_{k+1} doplníme na kosoštvorec: kružidlo zapichneme do každého z n bodov a narysujeme kružnicu so stredom v bode A_k a polomerom r. Ďalej už do tohoto bodu kružidlo zapichovať nebudeme. Priesečník kružníc so stredmi v bodoch A_k a A_{k+1} označme P_k .

Podľa predpokladu potom platí, že $|SP_k| \ge |SP_m|$. Dĺžky týchto úsečiek už jednoducho porovnáme zostrojením kružníc so stredom v bode S a polomermi $|SP_k|$. Body A_m, A_{m+1} vymedzujú najdlhší oblúk, preto bod P_m neleží vonku žiadnej z n-tice týchto kružníc. Z toho už vyplýva, že tento oblúk naozaj vieme určiť, ako sme chceli dokázať.

Úloha 4. Dve kružnice k a l so stredmi postupne v bodoch K a L sa pretínajú v bodoch A a B, pričom platí $KA \perp AL$. Kružnice k a l pretínajú úsečku KL postupne v bodoch P a Q. Priamky BQ a BP druhýkrát pretínajú kružnice k a l postupne v bodoch M a N. Dokážte, že priamky PM a QN sa pretínajú v strede kružnice vpísanej trojuholníka AKL. ($Patrik\ Bak$)

Riešenie. Označme priesečník priamok PM a QN ako I. Vysvetlíme, že stačí dokázať, že I je stred kružnice opísanej trojuholníku APQ: Ak platí |IA| = |IP|, potom spolu s |KA| = |KP| máme, že KI je os uhla $\angle LKA$. Analogicky by potom priamka LI bola osou uhla $\angle ALK$, čo už by stačilo.

Najprv si všimnime, že uhol $\angle QAP$ má veľkosť 45°: Ak je $|\angle LKA| = \alpha$, potom $|\angle KAP| = 90^{\circ} - \alpha/2$, a teda $|\angle PAL| = \alpha/2$. Podobne, $|\angle KAQ| = \beta/2$, kde $|\angle ALK| = \beta$. Spolu tak $|\angle QAP| = 90^{\circ} - \alpha/2 - \beta/2 = 45^{\circ}$.

Vďaka symetrii platí, že $|\angle PBQ| = |\angle QAP| = 45^\circ$. Z toho vyplýva, že $|\angle PKM| = 2 \cdot |\angle PBM| = 2 \cdot 45^\circ = 90^\circ$, a preto $|\angle KMP| = |\angle MPK| = 45^\circ$. Analogicky, $|\angle PQI| = 45^\circ$, a tak $|\angle QIP| = 90^\circ = 2|\angle QAP|$. To znamená, že I je nevyhnutne stredom kružnice opísanej trojuholníku QAP: veľkosť uhla $|\angle QIP|$ sedí, IQ = IP, a leží v polrovine určenej priamkou QP, ktorá obsahuje bod A. Úlohu sme tak vyriešili.

Poznámka. Existuje mnoho spôsobov, ako tu pristúpiť k počítaniu uhlov. Môžeme tiež ukázať, že body *M*, *K*, *Q*, *I*, *A* ležia na jednej kružnici rôznymi spôsobmi.

Úloha 5. Daný je tetivový štvoruholník ABCD s priesečníkom uhlopriečok T vpísaný do kružnice ω. Nech M je stredom oblúka AD kružnice ω obsahujúceho B a C. Predpokladajme, že na úsečkách BT a CT ležia postupne body $P \neq B$ a $Q \neq C$ také, že platí |MP| = |MB| a |MQ| = |MC|. Nech O je stredom kružnice opísanej trojuholníka PQT. Dokážte, že platí $|\angle MOA| = |\angle MOD|$. (Michal Pecho)

Riešenie. Všimnite si, že |MA| = |MD|, takže na dokázanie $|\angle MOA| = |\angle MOD|$ stačí dokázať |OA| = |OD|. Platí

$$|\angle PBM| = |\angle DBM| = |\angle DAM| = |\angle ADM| = |\angle ACM| = |\angle QCM|$$
.

Keď že trojuholníky BMP, AMD a QMC sú rovnoramenné, sú navzájom podobné, a preto platí

$$|\angle BMP| = |\angle AMD| = |\angle QMC|.$$

Otočenie $R(M, |\angle AMD|)$ zobrazuje trojuholník DPC na trojuholník ABQ, čo implikuje |AB| = |DP| a |CD| = |AQ|. Všimnite si, že trojuholníky TCD a TBA sú podobné z vety uu, a preto

$$\frac{|DT|}{|CD|} = \frac{|AT|}{|AB|} \implies \frac{|DT|}{|AQ|} = \frac{|AT|}{|DP|} \implies |DT| \cdot |DP| = |AT| \cdot |AQ|.$$

Súčiny $|DT| \cdot |DP|$ a $|AT| \cdot |AQ|$ predstavujú postupne mocnosti bodov D a A ku kružnici opísanej TPQ. Keď že tieto mocnosti sú rovnaké, máme |OA| = |OD|, čo stačilo dokázať.

Alternativní řešení. Označme *S* střed kružnice opsané *ABC*. Jako v předchozím řešení ukážeme jen, že *O* leží na ose strany *AD*, tedy v našem podání, že *S*, *O*, *M* leží na přímce.

Označme

- $\alpha = |\angle BMP|$. Obdobně jako v předchozím řešení platí $\alpha = |\angle QMC|$.
- $\beta = |\angle POC|$ (na obrázku ve směru hodinových ručiček).
- $\gamma = |\angle BSC|$.

Z obvodového a středového úhlu máme $2\alpha = |\angle AOD|$.

Také z obvodových a středových úhlů platí

$$\beta = 2|\angle CTD| = 2(|\angle TAD| + |\angle ADT|) = |\angle CSD| + |\angle ASB|.$$

Zkombinováním těchto pozorování máme, že $2\alpha + \beta + \gamma = 360^{\circ}$.

Označme:

- φ_M : Rotaci se středem M a úhlem α ,
- φ_S : Rotaci se středem S a úhlem γ ,
- φ_O : Rotaci se středem O a úhlem β .

Protože součet $2\alpha + \beta + \gamma = 360^{\circ}$ dostáváme, že zobrazení φ , které vznikne jako složení

$$\varphi = \varphi_S \circ \varphi_M \circ \varphi_O \circ \varphi_M$$

musí být nějaké posunutí. A protože

$$B \stackrel{\varphi_M}{\mapsto} P \stackrel{\varphi_O}{\mapsto} O \stackrel{\varphi_M}{\mapsto} C \stackrel{\varphi_S}{\mapsto} B.$$

je toto zobrazení identita.

Zvolme bod X takový, že $\varphi_M(X) = O$ a označme $\varphi_M(O) = X'$. Ze symetrie pak platí, že O i M leží na ose XX'.

Pak protože φ je identita a

$$X \stackrel{\varphi_M}{\mapsto} O \stackrel{\varphi_O}{\mapsto} O \stackrel{\varphi_M}{\mapsto} X'$$

Musí platit, že $\varphi_S(X') = X$ a tedy S musí ležet na ose XX' a tedy S, O, M leží na přímce.

Úloha 6. Je daný konvexný šesťuholník ABCDEF, v ktorom platí |AB| = |EF|, |BC| = |FA|, $|\angle BCD| = |\angle DEF|$ a $|\angle ABC| = |\angle CDE| = |\angle EFA|$. Dokážte, že kolmica na BF vedená bodom D prechádza ortocentrom trojuholníka ACE. ($Zdeněk\ Pezlar$)

Riešenie. Zo zadaných podmienkach vyplýva, že trojuholníky *BAC* a *FEA* sú zhodné, takže |AC| = |AE|, čo dáva $|\angle ECA| = |\angle AEC|$. To spolu s rovnosťou $|\angle DCB| = |\angle FED|$ dáva

$$|\angle DCE| + |\angle ACB| = |\angle CED| + |\angle FEA|.$$

Trojuholníky ABC a CDE majú pri vrcholoch B a D rovnako veľké uhly, a preto

$$|\angle DCE| + |\angle CED| = |\angle ACB| + |\angle BAC|$$
.

Sčítaním posledných dvoch rovností a použitím $|\angle FEA| = |\angle BAC|$ máme $|\angle DCE| = |\angle BAC|$. Tým pádom $\triangle BAC \sim \triangle DCE \sim \triangle FEA$.

V ďalšej fáze preformulujeme dokazované tvrdenie. Bod D a ortocentrum ACE označené ako H zobrazme v stredovej súmernosti podľa stredu CE. Dostaneme postupne body D' a H'. Stačí dokázať, že $H'D' \perp BF$. Pre bod H' je známe, že leží na kružnici ω opísanej ACE, to použijeme neskôr. Pre bod D' zatiaľ dokážeme |FD'| = |FE| resp. |BC| = |BD'|. K tomu použijeme špirálnu podobnosť: zo stredovej súmernosti máme, že trojuholníky DCE a D'CE sú podobné; spol s tým, že DCE a FDE sú podobné, máme, že trojuholníky ED'C a EFA sú podobné a to dokonca priamo, takže zo špirálnej podobnosti aj trojuholníky ED'F a ECA musia byť priamo podobné. Keďže |AC| = |AE|, tak nutne |FE| = |FD'|. Vzťah |BC| = |BD'| dokážeme analogicky. Taktiež analogicky dokážeme podobnosť trojuholníkov BCD' a ACE. Spojených týchto podobností dostávame $|\angle D'FE| = |\angle CAE| = |\angle CBD'|$.

V poslednom kroku uvážme obraz D'' bodu D' v osovej súmernosti podľa BF. Dokážeme, že body H', D', D'' ležia na priamke, čím bude úloha hotová, keďže $DD'' \perp BF$. Bod H' je stred oblúka EH'C kružnice ω , stačí teda dokázať, že D'' leží na ω a D'D'' je os uhla CD''E. Toto dokážeme nasledovne: Z osovej súmernosti a z predošlého odseku máme |FD''| = |FD'| a |FD|' = |FE|, takže F je stred kružnice opísanej trojuholníku D''D'E, takže z vety o obvodovom a stredovom uhle máme $|\angle D'D''E| = \frac{1}{2}|\angle D'FE|$. Podobne $|\angle CD''D'| = \frac{1}{2}|\angle CBD'|$. No a keďže ako z konca predošlého odseku máme, uhly $\angle D'FE$ a $\angle CBD'$ majú veľkosť rovnú veľkosti $\angle CAE$, tak sme hotoví.