

WinCE系统开发综述

主讲:秦家豪

本专题安排

- 一、Windows CE操作系统特性综述
- 二、Windows CE的行业应用
- 三、Windows CE系统开发综述
- 四、应用开发和系统开发间协作
- 五、Windows CE内核组成和启动流程
- 六、Windows CE的驱动架构介绍

一、Windows CE操作系统特性综) 嵌入式学院

述

良好的可裁剪性和可移植性

实时性

与Win32 API的良好兼容性,包括多语言、DirectX等的支持

丰富的应用软件支持,包括对通信,网络和多媒体等的支持

良好的可裁剪性和可移植性

组件可以灵活的增减,开发环境会自动处理它们之间的 依赖性

可工作在12种不同的体系结构、180多种CPU(如X86, MIPS, ARM, Power PC等)上

最小可执行内核大小约为200K,典型的内核大小为8M-20M左右

提供了产品级BSP支持,最大限度的减少移植时间

实时性

嵌入式学院 华清远见旗下品牌

支持嵌套的中断

更好的线程响应

更多的优先级别

更好的控制

族入式学院 华清远见旗下品牌

与桌面Windows的良好兼容性

实现了Win32 API的子集

提供了MFC, ATL等模板支持

提供了.NET Framework的支持

COM/COM+, Win Socket等大量与桌面Windows相兼容的技术

提供了多语言支持

通过Acti veSync等方式方便地与PC连接

丰富的应用软件支持

族入式学院 华清远见旗下品牌

提供了IE,MSN,MS Office,Windows Media Player等大量的应用软件支持

提供了大量的应用支持库如VolP支持,各类多媒体编、解码器

强大的IDE和调试工具,多种模拟器,帮助缩短产品的上市 时间

二、Windows CE的行业应用

嵌入式学院

族人式学院 华清远见旗下品牌

移动电话/智能电话数字成像设备工业自动化设备Internet/媒体设备PDA/移动手持设备住宅门禁/POS设备项置盒Web板设备

述

Windows CE的发展历程

Windows CE的系统分层结构

系统开发流程

Windows CE的发展历程

Pegasus/Alder Windows CE 1.0 11/1996

Cedar Windows CE 3.0

4/2000

Macallan Windows CE 5.0

SP1 SP2 2.11 2.12

Birch Windows CE 2.0 11/1997

McKendric Jameson 4.1

Talisker Windows CE .NET 4.0

1/2002

Windows CE的系统分层结构

应用层

(如网络应用, 文本编辑器等)

应用开发层

(MFC, ATL, COM/DCOM, . NET···)

应用支持库

(COMM, GWES, STORAGEMANAGE..)

操作系统层

(CoreDII, Schedule, Memory, Device)

0EM适配层

(BSP, CSP, Drivers)

硬件层

四、应用开发和系统开发间协力作

什么是BSP BSP和硬件之间的关系 安装开发工具 创建系统工程 定制系统特性 生成镜像并下载 安装SDK开发应用程序

BSP概念

主板支持包(Board Support Packet),由启动程序 (Bootloader), OEM适配层程序及驱动程序和配置 文件组成。

形式为源文件,库文件和一些二进制文件。

应用Platform Builder,根据特定的BSP,可以生成针对不同开发板(SDB)的特定的操作系统镜像。

一般从硬件设备提供商(如三星)处获得。

BSP和硬件之间的关

安装开发工 具

使用微软官方提供的Windows CE平台开发工具Platform Builder。

Platform Builder是进行 Windows CE操作系统开发和定制的集成开发环境。

提供了所有设计,创建,修改,调试的工具。

建立系统工程

首先导入供应商提供的BSP

在Platform Builder中建立新工程

选择对应的硬件CPU类型

选择系统基本的特性组件

生成系统工程

定制系统特性

增加或者删除系统中的特性组件

定制系统启动后的文件系统目录结构

定制系统启动时应用程序加载的顺序

生成系统镜像并下载

Platform Builder根据用户对系统工程的参数修改进行编译的设置。

编译完成后生成操作系统的镜像,以二进制文件形式存在。 编译完成后,可以导出该工程的SDK,提供给应用开发工具 使用。

最后通过下载工具下载到硬件设备的存储介质中去。

安装SDK开发应用程序

族人式学院 华清远见旗下品牌

安装系统定制得到的SDK

在应用程序开发环境EVC、VS2005、VS2008中建立应用程序工程,选择SDK支持的CPU类型

开发基于SDK的应用程序

五、Windows CE肉核的组织和启动流程介绍

Windows CE核心进程

Windows CE启动流程
Bootloader 启动流程
硬件初始化流程

Windows CE核心进程

NK. exe 提供内核服务,是操作系统的核心。

GWES. exe 提供用户界面服务和消息管理。

DEVICE. exe 加载和维护系统设备驱动程序。

FileSys. exe 文件系统管理进程, 负责文件系统的管理。

Bootloader的基本流程

族人式学院 华清远见旗下品牌

初始化硬件,包括CPU状态,时钟,RAM

初始化堆栈,初始化外设,主要是调试和人机接口如串口,下载接口如网口和USB口等等

根据用户指令,执行不同的动作,如跳转到0S镜像、下载0S镜像、擦写Flash、修改默认参数等

可能会有一些特殊功能,如初始化LCD等

硬件初始化流程

关闭WatchDog,禁止中断 关闭MMU,清除Cache 配置时钟和PLL 配置DRAM控制器,并将RAM清零 将自身搬移到RAM中 设置栈指针SP 跳转到C语言代码 初始化各外设

六、Windows CE的驱动架构介 嵌入式学院 绍

驱动的分类 流接口驱动 内建设备驱动 流接口驱动介绍 流接口的驱动架构 驱动的分层处理

驱动的分类

从接口形式上对驱动进行分类,可以分为内建设备驱动程序和流接口驱动程序。

内建设备驱动程序用于低级、内置设备,提供一组定制的接口可通过移植、定制微软提供的驱动样例来实现。

内建驱动部分典型样例:

触摸屏驱动 显示驱动 鼠标及键盘驱动 打印机驱动

流接口的驱动是基本的设备驱动类型,它实现一组固定的流接口函数,大部分CE设备都可使用此模型实现。

音频驱动、串口驱动 并口驱动 某些USB设备驱动

流接口驱动部分典型样例:

流接口驱动介绍

流接口驱动程序的主要任务是把外设的使用传递给应用程序,这是通过把设备表示为文件系统的一个特殊文件实现。

流接口驱动可以由设备管理程序(Device.exe)自动加载、 管理和卸载,也可以通过API函数手动加载、管理和卸 载。

所有流接口驱动程序使用同一组接口函数集——流接口 函数。

流接口驱动接口函数:

XXX_I ni t

XXX_Deinit

XXX_0pen

XXX_CI ose

XXX_Read

XXX_Write

XXX_Seek

XXX_IoControl

XXX_PowerDown

XXX_PowerUp

流接口驱动架构

前缀名XXX的意义

在流驱动的DEF文件中输出流驱动接口时定义。

由用户写入注册表中,用于标识设备名。

作为参数组成传递给CreateFile函数。

流接口驱动架构

应用程序API和流接口函数的对应

ActivateDeviceEx <-> XXX_Init

DeActivateDeviceEX <-> XX_Deinit

CreateFile <-> XXX_Open

CloseHandle <-> XXX_Close

ReadFile <-> XXX_Read

WriteFile <-> XXX_Write

SetFilePointer <-> XXX_Seek

DeviceIoControl <-> XXX_IoControl

XXX_PowerDown , XXX_PowerUp为电源管理接口, 当系统电源状态 发生改变时自动调用。

Q&A

谢谢!

