Find (and think about how to minimize your calculations)

- 1. The value of $v_a=v_{a1}$ when R_L = 12 Ω
- 2. The value of $R_L=R_{L2}$ that results in v_{et} = 4 V
- 3. The value of $R_L=R_{L3}$ that results in $t_a=1$ A

Is = 2 A

R1 = 6 ohm

R2 = 8 ohm

R3 = 12 ohm

8

(1)
$$V_{q} = \frac{16 \cdot 12}{12 + 12} = \frac{16}{2} = 8$$
 $V_{q} = 3V$

(i)
$$V_a = 16. \frac{R_L}{R_{L+12}} = 4 \Rightarrow 12R_L = 4.12$$

$$\Rightarrow R_L = 4.0$$

(3)
$$\hat{c}_a = \frac{16}{R_L + 12} = 1 \implies \boxed{R_L = 4.02}$$