COL703 - Assignment 1

Ramneet Singh

2019 CS 50445

September 2022

Contents

Question 1 Part (b)				2 2 2
Question 3				3
Question 4 Part (c)				5 5
Question 7				6
Question 8 Part (b)				8 8 8
Note: The Modus Ponens prod	of rule we will	use in this assi	ignment is	
ϕ	$\frac{\phi \to \psi}{\psi} \ (\to e$	or MP)		

Part (b)

The sequent is valid. To Show: $\neg p, p \lor q \vdash q$.

- 1. premise $\neg p$ 2. premise $p \vee q$ 3. assumption $\neg q$ 4. assumption p5. $\neg e 4,1$ 6. assumption q7. $\neg e 6,3$ \perp 8. $\vee e 2,4-5,6-7$
- $\neg \neg q$ 9. ¬i 3-8
- 10. $\neg \neg e 9$ q

Part (d)

The sequent is valid. **To Show:** $p \land \neg p \vdash \neg(r \to q) \land (r \to q)$.

- 1. $p \wedge \neg p$ premise
- 2. $\wedge e_1 1$
- 3. $\neg p$ $\wedge e_2 1$
- 4. ¬e 2,3 $\neg(r \to q) \land (r \to q)$

⊥e 4

We design the following introduction and elimination rules for \leftrightarrow :

$$\frac{\phi \to \psi \quad \psi \to \phi}{\phi \leftrightarrow \psi} \ (\leftrightarrow i)$$

$$\frac{\phi \leftrightarrow \psi \quad \phi}{\psi} \ (\leftrightarrow e_1) \qquad \frac{\phi \leftrightarrow \psi \quad \psi}{\phi} \ (\leftrightarrow e_2)$$

We also have the following two rules similar to Modus Tollens in Natural Deduction:

$$\frac{\phi \leftrightarrow \psi \quad \neg \phi}{\neg \psi} \ (\leftrightarrow MT_1) \qquad \frac{\phi \leftrightarrow \psi \quad \neg \psi}{\neg \phi} \ (\leftrightarrow MT_2)$$

We will show that each of these can be derived using the existing natural deduction rules if we replace $\phi \leftrightarrow \psi$ with $(\phi \to \psi) \land (\psi \to \phi)$.

 \leftrightarrow **i**: We will show that $\phi \to \psi, \psi \to \phi \vdash (\phi \to \psi) \land (\psi \to \phi)$.

1.
$$\phi \to \psi$$
 premise

2.
$$\psi \to \phi$$
 premise

3.
$$(\phi \to \psi) \land (\psi \to \phi)$$
 $\land i 1,2$

 \leftrightarrow **e**₁: We will show that $(\phi \to \psi) \land (\psi \to \phi), \phi \vdash \psi$.

1.
$$(\phi \to \psi) \land (\psi \to \phi)$$
 premise

2.
$$\phi$$
 premise 3. $\phi \to \psi$ $\wedge e_1 1$

3.
$$\phi \to \psi$$
 $\wedge e_1$

4.
$$\psi \rightarrow e 2.3$$

 $\label{eq:e2} \boldsymbol{\leftrightarrow} \mathbf{e_2} \text{: We will show that } (\phi \to \psi) \land (\psi \to \phi), \psi \vdash \phi.$

1.
$$(\phi \to \psi) \land (\psi \to \phi)$$
 premise
2. ψ premise
3. $\psi \to \phi$ $\land e_2 1$

2.
$$\psi$$
 premise

3.
$$\psi \to \phi$$
 $\wedge e_2$ 1

4.
$$\phi \longrightarrow e 2,3$$

 \leftrightarrow **MT**₁: We will show that $(\phi \to \psi) \land (\psi \to \phi), \neg \phi \vdash \neg \psi$.

1.	$(\phi \to \psi) \land (\psi \to \phi)$	premise
2.	$\neg \phi$	premise
3.	ψ	assumption
4.	$\psi o \phi$	$\wedge e_2 1$
5.	ϕ	→e 3,4
6.	上	¬e 5,2
7.	$\neg \psi$	¬i 3-6

 \leftrightarrow MT₂: We will show that $(\phi \to \psi) \land (\psi \to \phi), \neg \psi \vdash \neg \phi$. 1. $(\phi \to \psi) \land (\psi \to \phi)$ provide

1.	$(\phi \to \psi) \land (\psi \to \phi)$	premise
2.	$ eg\psi$	premise
3.	ϕ	assumption
4.	$\phi \to \psi$	$\wedge e_1 1$
5.	ψ	\rightarrow e 3,4
6.	上	¬e 5,2
7.	$\neg \phi$	¬i 3-6

Part (c)

To Show: $(p \to r) \land (q \to r) \vdash p \land q \to r$.

Part (d)

To Show: $p \to q \land r \vdash (p \to q) \land (p \to r)$.

1.	$p \to q \wedge r$	premise
2.	p	assumption
3.	$q \wedge r$	\rightarrow e 2,1
4.	q	$\wedge e_1 3$
5.	$p \to q$	\rightarrow i 2-4
6.	p	assumption
7.	$q \wedge r$	\rightarrow e 6,1
8.	r	$\wedge e_2 7$
9.	$p \rightarrow r$	→i 6-8
10.	$(p \to q) \land (p \to r)$	$\wedge i 5,9$

No, $\{\leftrightarrow, \neg\}$ is not an adequate set of connectives. A counter-example is the formula $p \lor q$ (where p, q are propositional atoms), for which there is no equivalent formula formed only from the connectives $\{\leftrightarrow, \neg\}$. Formally, we prove this using the following theorem:

Theorem 1. Let ϕ be any formula formed using the connectives $\{\leftrightarrow, \neg\}$ and containing at least 2 propositional atoms. Then, any sub-formula of ϕ evaluates to T in an even number of lines in the truth table of ϕ .

Proof. Let ψ be a sub-formula of ϕ . The proof is by structural induction on ψ . Before beginning, note that since ϕ has at least 2 propositional atoms, the number of lines in its truth table is a multiple of 4.

Base Case: $\psi = p$ (A propositional atom). By definition of a truth table, p is T in half the lines in the truth table and F in the rest. Since the number of lines is a multiple of 4, ψ is T in an even number of lines.

Induction Step: We consider the following two cases:

- $\psi = \neg \psi_1$. Now, ψ_1 is also a sub-formula of ϕ , and by the Induction Hypothesis evaluates to T in an even number of lines (call it n_1). If the total number of lines in the truth table is n, this means it evaluates to F in $n n_1$ lines. Since $\psi = \neg \psi_1$, by definition of \neg , it evaluates to T in exactly those lines in which ψ_1 evaluates to F, implying that it is T in $n n_1$ lines. Now, $n \mod 4 = 0$ and $n_1 \mod 2 = 0$, therefore $(n n_1) \mod 2 = 0$, meaning ψ is T in an even number of lines.
- $\psi = \psi_1 \leftrightarrow \psi_2$. Now, ψ_1 and ψ_2 are also sub-formulae of ϕ , and by the Induction Hypothesis evaluate to T in an even number of lines in the truth table. Let n be the total number of lines in the truth table. Suppose ψ_1 is T in n_1 lines, of which ψ_2 is true in m_1 of them. Among the $n-n_1$ lines in which ψ_1 is F, suppose ψ_2 is T in m_2 of them. By definition of \leftrightarrow , ψ is T whenever ψ_1 and ψ_2 have the same truth value. So the number of lines in which ψ is T is $m_1 + (n n_1 m_2)$, call this k. Note that the number of lines in which ψ_2 is T is $m_1 + m_2$, which we know to be even (from I.H.). It follows that $m_1 \mod 2 = m_2 \mod 2$, which implies that $(m_1 m_2) \mod 2 = 0$. This implies that $k \mod 2 = (n n_1) \mod 2$ since $k = m_1 m_2 + n n_1$. Finally, note that $n \mod 4 = 0$ and $n_1 \mod 2 = 0$, therefore $(n n_1) \mod 2 = 0$, meaning k is even, i.e., ψ is T in an even number of lines.

We can use the theorem above to show that $p \vee q$ cannot have an equivalent formula formed using the connectives $\{\leftrightarrow,\neg\}$. The proof is by contradiction. Suppose there is such an equivalent formula ϕ . Since equivalent formulae must have the same truth table, we know that ϕ evaluates to T for exactly the same valuations of p,q under which $p \vee q$ evaluates to T. From the truth table of $p \vee q$ (see the figure below), we know it evaluates to T in an odd number of lines. But, since every formula is a sub-formula of itself (and also because ϕ is formed from $\{\leftrightarrow,\neg\}$ and has at least two atoms p,q), we can apply the above theorem to ϕ to conclude that it evaluates to T in an even number of lines. This is a contradiction, and therefore, no such equivalent formula exists. This proves that $\{\leftrightarrow,\neg\}$ is not an adequate set of connectives for propositional logic.

p	q	$p \lor q$
T	T	T
T	F	T
F	T	T
F	F	F

Part (b)

Choose the valuation v such that v(p) = T, v(q) = F, v(r) = T. Then, $v(\neg r) = F$, which implies that $v(\neg r \to (p \lor q)) = T$. Further, since v(r) = T and $v(\neg q) = T$, we have $v(r \land \neg q) = T$. So both the formulae to the left of the \vdash evaluate to T. The formula to the right is $r \to q$. Since v(r) = T and v(q) = F, we get $v(r \to q) = F$. So the formula to the right of the \vdash evaluates to F. The existence of such a valuation implies that the sequent $\neg r \to (p \lor q), r \land \neg q \vdash r \to q$ is not valid.

Part (d)

Choose the valuation v such that v(p) = T, v(q) = F, v(r) = T. Then, since v(q) = F, we get $v(q \to r) = T$. Since v(p) = T and $v(q \to r) = T$, we get $v(p \to (q \to r)) = T$. So the formula to the left of the \vdash evaluates T. The formula to the right is $p \to (r \to q)$. Since v(r) = T and v(q) = F, we get $v(r \to q) = F$. Since v(p) = T and $v(r \to q) = F$, we can conclude $v(p \to (r \to q)) = F$. So the formula to the right of the \vdash evaluates to F. The existence of such a valuation implies that the sequent v(q) = v(q) = v(q) is not valid.