4. Скапарно произведение. Евкийдово пространство Проекция на вектор върху ос Нека де права, а 2- равнина, пресиганца д, т.е. д не е успоредна нах Нека Ме произволна тоска. Тогава през М минава тосно една равнина дм, усторедна на х. Следователно ди пресита д в тогка М', колто наригаме проекция на м върху д при проектиране успоредно на и означаване M:= npgM(112). Нека АВ е насосена отсетка и А'=пру А (пл), В'=пру В'(пл).
Тогава насосената отсетка А'В' наритаме геометритна проекция на АВ върху д при проектиране успоредно на ги ознатаваме A'B' = npg AB (11x). Изпълнено е твърдението

Твърдение Равните насосени отсетки имат равни проекции върху ос успоредно на равнина преситаща оста. Втказателство. Нека де ос свърху де лабрана положителна посока) λ - равнина, преситаща д AB = CD и нека AB' = npgAB ($II\lambda$) C'D' = npgCD ($II\lambda$) AFO AB е нулева насогена отсетка или правата AB е эспоредна на λ , то тогава A'B' и C'D' са нулеви насогени отсетки и твърдението е тривиално изпълнено. Разгленда ие близия слугай. Нека λ_A , λ_B , λ_C и λ_D са проектураците равнини стответно на A, B, C и D. Нека B0 и D0 са съяветно през C', успоредна на CD. Той като успоредни равнини отситат от успоредни равнини отситат от успоредни прави равни отсетки, ило вътсекните (A'B0) и

Тепоредното троектиране има следните ивойства:

1. Ако $\vec{c} = \vec{a} + \vec{b}$, то про \vec{c} (\mathbb{I}) = про \vec{a} + про \vec{b} (\mathbb{I}), т.е. при усторедното троектиране се запазва операцията събиране на вектори. Също така се запазва и операцията умнанение на вектор с тисло

2. про \vec{a} (\mathbb{I} \mathbf{a}) = \mathbf{a} про \vec{a} (\mathbb{I} \mathbf{a}).

Ако \mathbf{g} е ориентирана права, то алгебритната мярка на проекцията на вектор \vec{a} се нарита алгебритна проекция \vec{a} = \mathbf{n} \mathbf{p} \mathbf{g} \vec{a} на вектора \vec{a} .

Ако равнината \mathbf{a} е терпендикулярна на травата \mathbf{g} , то проектирането се нарита ортогонално.

При ортогонално проектиране на вектор й върху ос за аптебрит ката проектия à имане прода = 1 à 1 сов 4, където че ътълъм менду а м вектор в', който е еднопастно успореден с оста д 1. е. е еднопосотен с положнителната посока * 4= + (a, b) CAYTALIO 4-0016b 252V (T.e. no-Marth ot npa6 61EA) CAYTQUE 44- TEN 6251 в първия слугай аптебритната проекция на а е полонително тисло, а във втория- отрицателно.

1. В равнината Ортонормирани координатни системи. Афинна координатна система K=0ejez, в казто еди ез са жа взасінно пертендик члярни единитни вектора се нарита ортонормирана координатна система в равнината. AKO X U Y CA OCU (XNY=0) ориентирани съответно с еги ег, TO KOOPOUHATUTE (x, y) HA TOCKA M са алгебригните мерки на ортогоналните проекции вектора ОМ. На сертена Ме с полонителни с и у кооромнати, а Л. с отрицателна с и полоїнителна у координата. 2. В пространствого. Анапопично K=0 है है है : दे, है и है са Три взаимно перпендикулярни единитни вектори - ортонормирана кооромнатна система с оси х, у и Е, ориентирани съответно cé, é u és. Koopdunature (x, y, z) na T. M ca алгебритните мерки на ортогоналните проекции на радиче вектора ОМ.

Скаларно произведение

Вергиниция. Нека \vec{a} и \vec{b} са геометритни вектора. Скаларно произведение \vec{a} \vec{b} наритаме тислото $\vec{a}\vec{b}$:= $|\vec{a}||\vec{b}|\cos *(\vec{a},\vec{b})$ при при $\vec{a} \neq \vec{0}$, $\vec{b} \neq 0$ и $\vec{a}\vec{b} = 0$, ако $\vec{a} = \vec{0}$ или $\vec{b} = 0$ Следвателно, ако \vec{g} е \vec{o} , орментирана \vec{o} \vec{b} то за атебритната проекция на \vec{a} верху \vec{g} имаме \vec{b} на \vec{b} \vec{c} \vec{d} \vec{d}

Воказахенся во. О $\vec{a}(\vec{b}+\vec{c})=|\vec{a}|$ пр $\vec{a}(\vec{b}+\vec{c})=|\vec{a}|$ (пр $\vec{a}\vec{b}$ + пр $\vec{a}\vec{c}$) \vec{b} = $|\vec{a}|$ пр $\vec{a}\vec{b}$ + $|\vec{a}|$ пр $\vec{a}\vec{c}$ = $|\vec{a}\vec{b}|$ несто се дения и се пресмятальними на отсетки , теми месно прави.

Имане $|\vec{a}|$ со $|\vec{a}|$ ($|\vec{a}|$) = $|\vec{a}\vec{b}|$ (п), където $|\vec{a}|$ + $|\vec{a}|$ $|\vec{b}|$ (в практиката се работи с косинчен от $|\vec{a}|$ пиаме $|\vec{a}|$ = $|\vec{a}|$ $|\vec{a}|$ Практиката на вектор $|\vec{a}|$ пиаме $|\vec{a}|$ = $|\vec{a}|$ $|\vec{a}|$ Разстояние менов две тотки $|\vec{a}|$ и в намираме като $|\vec{a}\vec{b}|$ = $|\vec{a}\vec{b}|$ От (1) имаме, $|\vec{a}|$ се два ненулеви вектора $|\vec{a}|$ и $|\vec{b}|$ са перпендиктиврии мотно могава, когато скаларното им праизведение $|\vec{a}|$ = 0.

Нека Ve троизволно векторно троитранство над поле F.

Ако на всеки два вектора \overline{a} , \overline{b} от \overline{V} може да се съпостави тисло \overline{a} \overline{b} от F със свойствата $O(\mathfrak{D}, \mathfrak{F})$ и \mathfrak{D} , то V се нарита евклюдью векторно пространство.

Всъщност, евхлидово тространство е векторно тространотво, снабдено със скаларно троизведение f $f: V \times V \to F$, което удовлетворява $O(\mathfrak{D}, \mathfrak{F})$ и \mathfrak{P} .

При така финсирано скаларно произведение могат да се дефинират делинина" на вектор , ъгъл менду два вектора, ортогоналност на вектора.

Примерно, два вектора \overline{a} и \overline{b} наритане ортогонални, ако скаларното им произведение \overline{a} \overline{b} е нула.

Удобно е да приенен, те нулевият вектор е перпендикулярен на всеки векторо.

Координатно изразяване на скаларното произведение.

Неко $K = 0\vec{e}_1\vec{e}_2\vec{e}_3$ е афинна координатна система в пространството и $\vec{a}(a_1,a_2,a_3), \vec{b}(b_1,b_2,b_3) \Rightarrow \vec{a}\vec{b} = (a_1\vec{e}_1+a_2\vec{e}_2+a_3\vec{e}_3)(b_1\vec{e}_1+b_2\vec{e}_2+b_3\vec{e}_3)$.

От свойстваща на скаларното произведение польтаване $\vec{a}\vec{b} = a_1b_1\vec{e}_1^2 + a_2b_2\vec{e}_2^2 + a_3b_3\vec{e}_3^2 + (a_1b_2+a_2b_1)\vec{e}_1\vec{e}_2 + (a_2b_3+a_3b_2)\vec{e}_2\vec{e}_3 + (a_3b_1+a_2b_1)\vec{e}_1\vec{e}_1 + (a_3b_3+a_3b_2)\vec{e}_2\vec{e}_3 + (a_3b_3+a_3b_2)\vec{e}_2\vec{e}_3 + (a_3b_3+a_3b_2)\vec{e}_2\vec{e}_3 + (a_3b_3+a_3b_2)\vec{e}_2\vec{e}_3 + (a_3b_3+a_3b_2)\vec{e}_2\vec{e}_3\vec{e}_3 + (a_3b_3+a_3b_2)\vec{e}_2\vec{e}_3\vec{e}_3 + (a_3b_3+a_3b_2)\vec{e}_2\vec{e}_3\vec{e}$

Да отбеленим, че спрямо ортонормирана кардинатна система (Окс) координатите на вектор \vec{a} се пресмятат лесно: \vec{a} (Окс) координатите на вектор \vec{a} се пресмятат лесно: \vec{a} ко \vec{a} (a_i, a_2, a_3), то координатата a_i е скаларното произвъдение на \vec{a} и \vec{e}_i — a_i = \vec{a} \vec{e}_i .

Нека векторът \vec{a} е с дълнина едно (единисен вектор) - $|\vec{a}|$ = 1 и ъплите, които \vec{a} склюсва с координатите векторът \vec{e}_i са Съответно q_i , i = 1,2,3, \vec{r} . е. q_i = \star (a, \vec{e}_i), q_2 = \star (a, \vec{e}_i) и q_3 = \star (a, \vec{e}_i).

Тогава спрямо к векторът \vec{a} има координати \vec{e}_i \vec{a} (соѕ q_i , соѕ q_i , соѕ q_i). Тислата соѕ q_i се наритат директорни косинуси на пасоката, от \vec{e}_i от

Спрямо ортонормирана координатна система в ровнината

- K = 0 $= \frac{1}{2}$ $= \frac{1}{2}$ скагарното праизведение на векторите $= \frac{1}{2}$ $= \frac{1}{2}$ ($= \frac{1}{2}$) $= \frac{1}{2}$ $= \frac{1}{2$