数据密集型计算课程实践和报告

师清 22210240262

2022年12月15日

1 cuda 编程模型

1.1 异构并行计算

CPU+GPU

CPU:heavy-weight,for complex control logic

GPU:light-weight, for data-parallel tasks with simple control logic

Peak computational performance:TFLOPS(每秒万亿次的浮点运算) Memory bandwidth:GB/s

1.2 cuda 编程架构

CUDA: A Platform for Heterogeneous Computing

两种 api:CUDA Driver API 和 CUDA Runtime API

1.2.1 物理上

nvidia gpu 架构的演变:

架构代号	Fermi	Kepler	Maxwell	Pascal	Volta	Turing	Ampere	Hopper
中文代号	费米	开普勒	麦克斯韦	帕斯卡	伏特	图灵	安培	赫柏
时间	2010	2012	2014	2016	2017	2018	2020	2022
核心参数	16 个 SM,每个SM 包括32 Cuda Cores, 共计 512 Cuda Cores	15个SMx,每个 SMX包括 192个单精度+64 个双精度的Cuda cores;	16个SMM,每个 SM包括4个处理 块,每个处理块 包括32个CUDA 内核+8个LD/ST Unit+8个SFU	Pascal梁构有 GP100、GP102 GP100有60个 SM 每个SM包括 64个cuda cores 32个DP cores	80个SM, 每个SM里 32个FP64 64个INT32 64个FP32 8个Tensor core	TU102核心72个 SM,SM全新设 计,每个SM里 64个INT32 64个FP32 8个Tensor core	A100有108 SMs 每个SM 64 个FP32 64 个INT32 32 个FP64 4个Tensor core	H100 132 SM 每个SM 128个FP32 64 个INT32 64个FP64 4个Tensor core
特点\优势	首个完整GPU计算 架构,支持与共享存储结合纯Cache层次的GPU架构,支持 ECC的GPU架构	游戏性能大幅提 升 首次支持GPU Direct 技术	相比Kpler的每组 SM单元192个减 少到了每组128个, 但是每个SMM单 元拥有更多的逻 辑控制电路	NVLink一代,双 向互联带宽 160GB/s P100有56个SM HBM	Nvlink 2.0 Tensor Core 1.0 满足深度学习和 Al运算	Tensor Core 2.0 RT Core 1.0	Tensor Core 3.0 RT Core 2.0 Nvlink 3.0 结构稀疏性 MIG 1.0	Tensor Core 4.0 Nylink 4.0 结构稀疏性矩阵 MIG 2.0
纳米制程	40/28nm 30亿晶体管	28nm 71亿晶体管	28nm 80亿晶体管	16nm 153亿晶体管	12nm 211亿品体管	12nm 186亿晶体管	7nm 283亿品体管	4nm 800 亿个晶体管
代表型号	Quadro 7000	K80 K40M	M5000 M4000	P100 GTX 1080 P6000	V100 TiTan V	T4 2080TI RTX 5000	A100、A30 3090	H100

Fermi 架构: 第一个完整的 GPU 计算架构¹: NVIDIA Fermi Architecture

 $^{^1}$ Fermi 架构

单个 SM(Stream Multiprocessor) 包括如下组成部分:

- Core, 也叫流处理器 Stream Processor
- LD/ST (load/store) 模块来加载和存储数据
- SFU (Special function units) 执行特殊数学运算 (sin、cos、log 等
- 寄存器 (Register File)
- L1 缓存
- 全局内存缓存 (Uniform Cache)
- 纹理缓存 (Texture Cache)

1.2.2 逻辑上

thread hierarchy 2 :

grid, block, thread, warp

gridDim(blockIdx.x blockIdx.y, blockIdx.z),blockDim(threadIdx.x,threadIdx.y,threadIdx.z)

 $^{^2}$ cuda 核函数的并行机制

CUDA Hierarchy of threads, blocks, and grids, with corresponding per-thread private, per-block shared, and per-application global memory spaces.

memory hierarchy 3 :

 ${\it register,} local\ memory, shared\ memory, constant\ memory, texture\ memory, global\ memory, host\ memory$

³cuda 内存层次

Memory

1.2.3 CUDA C

 $\frac{\text{nvcc}}{\text{nvprof}}$ 完,编译工具 4 nvprof 已被弃用,使用下面两个作为 profile 工具

NVIDIA Nsight Compute, ncu

⁴nvcc 编译过程

NVIDIA Nsight Systems, nsys CUDA C syntax

1.3 本机实验环境

GPU: NVIDIA GeForce RTX 3050 Laptop GPU

Driver Version: 470.141.03 CUDA Version: 11.4

nvcc:release 11.0, V11.0.194

2 cuda 编程练习

(APOD 开发模型,即: Assess, Parallelize, Optimize, Deploy) 代码地址

2.1 矩阵加法

2.1.1 代码

```
#include <cuda_runtime.h>
#include <stdio.h>
#include "../include/myhelp.h"
void sumArrays(float* a,float* b,float* res,const int size){
    for(int i=0; i< size; i++){}
         {\rm res}\,[\,i\,]{=}a\,[\,i\,]{+}b\,[\,i\,]\,;
    }
}
___global___ void sumArraysGPU(float* a,float* b,float* res){
    int i=threadIdx.x;
    {\rm res}\,[\,i\,]{=}a\,[\,i\,]{+}b\,[\,i\,]\,;
}
int main(int argc,char** argv){
    int dev=0;
    cudaSetDevice(dev);
    int n=32;
    printf("Vector size:%d\n",n);
    int nByte=sizeof(float)*n;
```

```
float* a_h=(float*) malloc(nByte);
float* b_h=(float*) malloc(nByte);
float* res h=(float*) malloc(nByte);
float* res_from_gpu_h=(float*) malloc(nByte);
memset(res_h,0,nByte);
memset(res\_from\_gpu\_h, 0, nByte);
float * a_d, * b_d, * res_d;
C\!H\!E\!C\!K\!(\,cudaMalloc\,(\,(\,\mathbf{float}\,\!**)\&a\_d\,,nByte\,)\,)\,;
CHECK(cudaMalloc((float**)&b_d, nByte));
C\!H\!E\!C\!K\!(\,cudaMalloc\,((\,\mathbf{float}\,\!**)\&\!res\_d\,,nByte\,)\,)\,;
initialData(a_h,n);
initialData(b_h,n);
\label{eq:check} C\!H\!E\!C\!K\!(cuda Memcpy(a\_d,a\_h,nByte,cuda MemcpyHostToDevice));
C\!H\!E\!C\!K\!(cudaMemcpy(b\_d,b\_h,nByte\,,cudaMemcpyHostToDevice))\,;
dim3 block(n);
dim3 grid(n/block.x);
sumArraysGPU<\!\!<\!\!grid\ ,block>>\!\!>(a\_d,b\_d,res\_d)\ ;
printf("Execution configuration<<<%d,%d>>>", block.x, grid.x);
\label{lem:check} \mbox{CHECK}(\mbox{cudaMemcpy}(\mbox{res\_from\_gpu\_h}\,,\mbox{res\_d}\,,\mbox{nByte}\,,\mbox{cudaMemcpy}\mbox{DeviceToHost})\,)\,;
sumArrays(a\_h,b\_h,res\_h\,,n)\,;
checkResult(res_h, res_from_gpu_h, n);
cudaFree(a_d);
cudaFree(b_d);
cudaFree(res\_d);
free(a_h);
free(b_h);
free (res_h);
free(res_from_gpu_h);
\mathbf{return} = 0;
```

}

2.1.2 实验结果

```
starting...
Using device 0: NVIDIA GeForce RTX 3050 Laptop GPU
CPU execution time:0.218834 sec
CPU execution configuration<<<(512,512),(32,32)>>> Time elapsed 0.074313 sec
Check result success!
GPU Execution configuration<<<(8388608,1),(32,1)>>> Time elapsed 0.068178 sec
Check result success!
GPU Execution configuration<<<(512,16384),(32,1)>>> Time elapsed 0.248608 sec
Check result success!
```

2.1.3 分析总结

不同的 execution configuration 会影响执行性能, 因此尝试不同的 grid 和 block dimensions 可能产生更好的性能。

2.2 warp divergence

2.2.1 实验结果

```
./divergence using device 0:NVIDIA GeForce RTX 3050 Laptop GPU
Data size:64
warmup <<<1,64>>> elapsed 0.000021 sec
mathKernel1<<<1, 64>>>elapsed 0.000008 sec
mathKernel2<<<1, 64>>>elapsed 0.000008 sec
mathKernel2<<<1, 64>>>elapsed 0.000007 sec
```

2.2.2 分析总结

同一个 warp 内的线程必须执行同一条指令,当线程内存在控制流时,不同 线程可能有不同的执行路径,这会降低核函数效率,所以要尽量避免同一个 warp 内的线程分化。

2.3 数组求和

2.3.1 实验结果

```
Using device 0: NVIDIA GeForce RTX 3050 Laptop GPU
with array size 16777216 grid 16384 block 1024

cpu sum:2139334732

cpu reduce elapsed 0.005951 ms cpu_sum: 2139334732

gpu reduceNetghbored elapsed 0.015273 ms gpu_sum: 2139334732
gpu reduceNetghboredLess elapsed 0.012469 ms gpu_sum: 2139334732
elapsed 0.012469 ms gpu_sum: 2139334732
Test success!
```

2.3.2 分析总结

FIGURE 3-19

FIGURE 3-20

- The Parallel Reduction Problem(并行规约问题),避免分支分化 (branch divergence)
- 使用 interleaved pair approach 替代 neighbored approach, 性能提升
- Synchronization: system-level 和 block-level, 分别使用 cudaDeviceSynchronize() 和 _syncthreads()

2.4 循环展开

```
正常循环

int x;
for (x = 0; x < 100; x++)
{
    delete(x);
}

循环展开后

int x;
for (x = 0; x < 100; x += 5)
{
    delete(x);
    delete(x + 1);
    delete(x + 2);
    delete(x + 3);
    delete(x + 4);
}
```

2.4.1 实验结果

```
Using device 0: NVIDIA GeForce RTX 3050 Laptop GPU

with array size 16777216 grid 16384 block 1024

cpu sum:2138989603

cpu reduce elapsed 0.003168 ms cpu_sum: 2138989603

gpu warnup elapsed 0.005506 ms

reduceUnrolling2 elapsed 0.005445 ms gpu_sum: 2138989603
reduceUnrolling4 elapsed 0.005456 ms gpu_sum: 2138989603
reduceUnrolling8 elapsed 0.002108 ms gpu_sum: 2138989603
reduceUnrolling8 elapsed 0.002108 ms gpu_sum: 2138989603
reduceUnrolling8 elapsed 0.001901 ms gpu_sum: 2138989603
reduceCompleteUnrollWarp8 elapsed 0.001901 ms gpu_sum: 2138989603
reduceCompleteUnrollWarp8 elapsed 0.001744 ms gpu_sum: 2138989603
reduceCompleteUnroll
Eapsed 0.001765 ms gpu_sum: 2138989603
reduceCompleteUnroll
Eapsed 0.001765 ms gpu_sum: 2138989603
```

2.4.2 分析总结

- 循环展开是一种通过减少分支和循环指令来优化程序性能的方法,利用手动重复执行某个操作来代替一个循环体
- 循环展开为什么能提升性能? 编译器可以进行 low-level 的指令优化 (指令流水的充分调度)

2.5 结构体数组 vs 数组结构体

2.5.1 实验结果

```
(py38) buytzhtyou@buytzhtyou-Lenovo-Y70002021:-/workspace/cuda/19_aos/butld$ ./aos
Vector stze:16777216
Execution configuration<<16384,1024>>> Time elapsed 0.002810 sec
result check success!
(py38) buytzhtyou@buytzhtyou-Lenovo-Y70002021:-/workspace/cuda/19_aos/butld$ cd ../../20_soa/butld/
(py38) buytzhtyou@buytzhtyou-Lenovo-Y70002021:-/workspace/cuda/20_soa/butld$ ./soa
Vector stze:16777216
Execution configuration<<16384,1024>>> Time elapsed 0.002578 sec
result check success!
(py38) buytzhtyou@buytzhtyou-Lenovo-Y70002021:-/workspace/cuda/20_soa/butld$ |
```

2.5.2 分析总结

- 内存访问模式: 理想的是对齐联合访问 (aligned and coalesced access pattern)
- 并行编程范式,尤其是 SIMD (单指令多数据) 对 SoA 更友好。CUDA 中普遍倾向于 SoA 因为这种内存访问可以有效地合并。

2.6 矩阵转置

2.6.1 实验结果

```
(py38) buytzhiyou@buytzhiyou-Lenovo-Y70002021:-/workspace/cuda/22_transform_matrix/build$ ./transform_matrix 2 strating...
Using device 0: NVIDIA GeForce RTX 3850 Laptop GPU
CPU Execution Time elapsed 0.886112 sec
Time elapsed 0.806185 sec
Check result success!
(py38) buytzhiyou@buytzhiyou-Lenovo-Y70002021:-/workspace/cuda/22_transform_matrix/build$ ./transform_matrix 3 strating...
Using device 0: NVIDIA GeForce RTX 3850 Laptop GPU
CPU Execution Time elapsed 0.895592 sec
Time elapsed 0.802936 sec
Check result success!
(py38) buytzhiyou@buytzhiyou-Lenovo-Y70002021:-/workspace/cuda/22_transform_matrix/build$ ./transform_matrix 4 strating...
Using device 0: NVIDIA GeForce RTX 3850 Laptop GPU
CPU Execution Time elapsed 0.104322 sec
Time elapsed 0.801631 sec
Check result success!
(py38) buytzhiyou@buytzhiyou-Lenovo-Y70002021:-/workspace/cuda/22_transform_matrix/build$ ./transform_matrix 5 strating...
Using device 0: NVIDIA GeForce RTX 3850 Laptop GPU
CPU Execution Time elapsed 0.109104 sec
Time elapsed 0.801630 sec
Check result success!
(py38) buytzhiyou@buytzhiyou-Lenovo-Y70002021:-/workspace/cuda/22_transform_matrix/build$ ./transform_matrix 6 strating...
Using device 0: NVIDIA GeForce RTX 3850 Laptop GPU
CPU Execution Time elapsed 0.884095 sec
Time elapsed 0.801635 sec
Check result success!
(py38) buytzhiyou@buytzhiyou-Lenovo-Y70002021:-/workspace/cuda/22_transform_matrix/build$ ./transform_matrix 7 strating...
Using device 0: NVIDIA GeForce RTX 3850 Laptop GPU
CPU Execution Time elapsed 0.884095 sec
Time elapsed 0.801631 sec
Check result success!
(py38) buytzhiyou@buytzhiyou-Lenovo-Y70002021:-/workspace/cuda/22_transform_matrix/build$ ./transform_matrix 7 strating...
Using device 0: NVIDIA GeForce RTX 3850 Laptop GPU
CPU Execution Time elapsed 0.884095 sec
Time elapsed 0.884095 sec
Time elapsed 0.884095 sec
Check result success!
(py38) buytzhiyou@buytzhiyou-Lenovo-Y70002021:-/workspace/cuda/22_transform_matrix/build$ ./transform_matrix 7 strating...
```

2.6.2 分析总结

• 当分析一个核函数性能时,注意分析 memory latency(memory bandwidth),一个良好的内存访问模式能提高存储带宽

- 2,3 分别是按行读取和按列读取,按列读取的吞吐量大于按行读取的原因是缓存命中
- 4,5 分别是利用循环展开提升性能
- 6,7 是使用对角化的方式,提高对存储块的均匀访问

2.7 共享内存的读写

memory bank:

padding:

Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 padding

0	1	2	3	4	
0	1	2	3	4	
0	1	2	3	4	
0	1	2	3	4	
0	1	2	3	4	

Bank 0 Bank 1 Bank 2 Bank 3 Bank 4

0	1	2	3	4
	0	1	2	3
4		0	1	2
3	4		0	1
2	3	4		0
1	2	3	4	

2.7.1 实验结果

17.1	4,865	4,865.0	4,865.0	4,865	4,865	0.0				setColReadCol(int *)
										setRowReadRow(int *)
	4,224	4,224.0	4,224.0	4,224	4,224					setRowReadCol(int *)
14.6	3,968	3,968.0	3,968.0	3,968	3,968	0.0				setRowReadColIpad(int *)
	3,936	3,936.0	3,936.0	3,936	3,936					setColReadRow(int *)
	3.712	3.712.0	3.712.0	3.712	3.712	0.0				setRowReadColDvn(int *)
11.4	3,232	3.232.0	3,232.0	3.232	3,232	0.0				setRowReadColDynIpad(int *)

2.7.2 分析总结

- shared memory 的行主序读写和列主序读写, 按照行主序读和写, 减少 共享内存冲突 (bank conflict)
- shared memory 的动态分配,在 kernel_name <<< ... >>> 里面可以指定分配的 shared memory
- shared memory 的 padding, 减少 back conflicts

2.8 利用共享内存做 reduce 求和任务

2.8.1 实验结果

2.8.2 分析总结

• 可以看到使用 shared memory 相比使用 global memory 带来的性能提升。因为 shared memory 是片上 (on-chip),可以减少访问全局内存的时间。

2.9 cuda stream

2.9.1 实验结果

2.9.2 分析总结

- 利用流 (stream) 创建多个 kernel 的并发执行,实现 grid level concurrency
- 在非默认流中 launch kernel, 需要在 *kernel_name* <<< ... >>> 第 四个参数里面出入 stream 标号

2.10 kernel 执行和数据传输重叠

2.10.1 实验结果

2.10.2 分析总结

FIGURE 6-1

- 不同流中内核相互重叠,内核执行和数据传输重叠,不同流中不同方向 (HtoD or DtoH) 的数据传输重叠
- 数据传输使用异步方式,注意异步处理的数据要声明称为固定内存

3 总结

• 最开始性能测试命令 ncu 报错,未做更精细的性能分析

- 因为使用不同的 GPU 架构和 CUDA 版本,有些程序没有产生像书中分析那样的结果
- 还有更深入的优化并行算法的方法有待研究

4 参考资料

1. 《Professional CUDA C Programming》