COMP9020 Lecture 12 Session 1, 2018 Course Review

Course Review

Goal: for you to become a competent computer **scientist**.

Requires an understanding of fundamental concepts:

- number-, set-, relation- and graph theory
- logic and proofs, recursion and induction
- order of growth of functions
- combinatorics and probability

In CS/CE these are used to:

- formalise problem specifications and requirements
- develop abstract solutions (algorithms)
- analyse and prove properties of your programs

Examples:

- ullet The University Course Timetabling Problem (o PDF)
- COMP9801 (Extended Design and Analysis of Algorithms)

Course Review

• COMP9024 18s2 – Data Structures and Algorithms

Concept	Used for
logic and proofs	correctness of algorithms
properties of relations	reachability in graphs
graphs	shortest path problems
trees	search trees
\mathcal{O} (big-Oh)	efficiency of algorithms, data structures
alphabets and words	pattern matching algorithms
probability, expectation	randomised algorithms

NB "universitas" *(Lat.) = sum of all things, a whole* By acquiring knowledge and enhancing your problem you're preparing yourself for the future

1 L P 1 CP P 1 E P 1 E P 9 Q (

Course Review

COMP9024 18s2 – Data Structures and Algorithms

Concept	Used for
logic and proofs	correctness of algorithms
properties of relations	reachability in graphs
graphs	shortest path problems
trees	search trees
\mathcal{O} (big-Oh)	efficiency of algorithms, data structures
alphabets and words	pattern matching algorithms
probability, expectation	randomised algorithms

NB

"universitas" (Lat.) = $sum\ of\ all\ things$, a whole

By acquiring knowledge and enhancing your problem-solving skills, you're preparing yourself for the future

Assessment Summary

- your 5 best quizzes max. marks 20
- 2 mid-term test max. marks 20
- 3 final exam max. marks 60

NB

Your overall score for this course will be the maximum of

- quizzes + mid-term + final
- quizzes + 80*(final/60)
- mid-term + 80*(final/60)
- 100*(final/60)

NB

To pass the course, your overall score must be 50 or higher and your mark for the final exam must be 25 or higher.

Final Exam

Goal: to check whether you are a competent computer scientist.

Requires you to demonstrate:

- understanding of mathematical concepts
- ability to apply these concepts and explain how they work

Lectures and study of problem sets have built you up to this point.

Instructions & Prac Exams on course webpage (\rightarrow Exams)

• Fun Quiz in today's lecture

Final Exam

Thursday, 14 June, 1:45pm Randwick Racecourse, Royal Ballroom

- 10 multiple-choice questions plus 5 open questions
- Covers all of the contents of this course
- Each multiple-choice question is worth 2.5 marks $(10 \times 2.5 = 25)$ Each open question is worth 7 marks $(5 \times 7 = 35)$ Total exam marks = 60
- Answer the multiple-choice questions directly in the exam paper.
- Write your answers to the open question in an Examination Answer Booklet.
- Time allowed 120 minutes + 10 minutes reading time
- Closed book. One handwritten or typed A4-sized sheet (double-sided is ok) of your own notes

Revision Strategy

- Re-read lecture slides
- Read the corresponding chapters in the book (R & W)
- Review/solve problem sets
- Solve more problems from the book
- Attempt prac exam on course webpage

(Applying mathematical concepts to solve problems is a skill that improves with practice)

Friday Week 13 (1 June) 1–3pm in the lecture theatre: Course coordinator-facilitated discussion

- Problem sets
- Quiz questions

Requires your active participation!

Supplementary Exam

You can apply formally for special consideration

- a supplementary examination may or may not be granted
- a supplementary examination is typically more difficult than the original examination

If you attend an exam

- you are making a statement that you are "fit and healthy enough"
- it is your only chance to pass (i.e. no second chances)

Students who do not meet the requirements to pass the course but achieve an overall score \geq 47 can sit the supplementary exam, in which they have to achieve a mark \geq 50 to pass with a final mark of 50.

Assessment

Assessment is about determining how well you understand the syllabus of this course.

If you can't demonstrate your understanding, you don't pass.

In particular, I can't pass people just because ...

- please, please, ... my family/friends will be ashamed of me
- please, please, ... I tried really hard in this course
- please, please, ... I'll be excluded if I fail COMP9020
- please, please, ... this is my final course to graduate
- etc. etc. etc.

(Failure is a fact of life. For example, my scientific papers or project proposals get rejected sometimes too)

Assessment (cont'd)

Of course, assessment isn't a "one-way street" ...

- I get to assess you in the final exam
- you get to assess me in UNSW's MyExperience Evaluation
 - go to https://myexperience.unsw.edu.au/
 - login using zID@ad.unsw.edu.au and your zPass

Response rate (as of last Wednesday): 12.1%

Please fill it out ...

- give me some feedback on how you might like the course to run in the future
- even if that is "Exactly the same. It was perfect this time."

So What Was The Real Point?

The aim was for you to become a better computer scientist

- more confident in your own ability to use formal methods
- with a set of mathematical tools to draw on
- able to choose the right tool and analyse/justify your choices
- ultimately, enjoying solving problems in computer science

Finally

That's All Folks

Good Luck with the final quiz, the exam and with your future computing studies

