03	 Thu	Apr	16
\circ	1114	, (P)	T O

AA ECE ME 548: Lineas Multivariable Cartrol

Prof Burden TA Tinu Spring 2020

if/when possible: keep video an; unmute to ask Qis

add headshot photo to Zoan profile; set preferred name

at identify. un.edu

to discuss J

WHW 1 solution & self-assessment are Sun Apr 19

WHW 2 Gis -> due Fri Apr 17

Who a Gis an optimization, dynamic programing, LQ regulation

Prof OH

Hw2 p2 (d,e)

why is -1 EC such a scory point?

o suppose now we are given DT DE $x^t = f(x,u)$, $x \in \mathbb{R}^d$, $u \in \mathbb{R}^m$ and we wish to choose inputs over time $u : [c,t] \to \mathbb{R}^m$ to minimize $c(x,u) = l(t,x(t)) + \sum_{t=0}^{t-1} Z(\tau,x(t),u(t))$ "final" cost "running" cost $x : [c,t] \to \mathbb{R}^m$

idea: the optimal control re(z) to apply of time z depends only on x(z) — not an previous states/inputs

- letting $v_{\overline{c}}^*(x(\overline{c}))$ denote lawest (i.e. optimal) cost achievable from state $x(\overline{c}) \in \mathbb{R}^d$ at time \overline{c} ,

 $v_{\tau}^{*}(x(\tau)) = \min_{u(\tau) \in \mathbb{R}^{m}} \left[\mathcal{I}(\tau, x(\tau), u(\tau)) + v_{\tau+1}^{*}(x(\tau+1)) \right]$ $= f(x(\tau), u(\tau))$