Detecting Idiographic Personality Change

Emorie D Beck
Joshua J Jackson
Washington University in St. Louis

Roberts, Walton, & Viechtbauer, 2006

Beck, Specht, Bleidorn, & Jackson (2019)

Problems with Mean-Level Change

Timing

Independence of Traits

Timing of Change

Schwaba & Bleidorn, 2017; Doss et al., 2009; Bleidorn et al., 2016

Allport, 1937, p. 330

"Personality is the <u>dynamic organization</u> within the individual of those psychophysical <u>systems</u> that determine his unique adjustments to his environment"

OPEN Testing for the Presence of **Correlation Changes in a Multivariate Time Series: A** Permutation Based Approach

Received: 23 August 2017 Accepted: 11 December 2017

Published online: 15 January 2018

Jedelyn Cabrieto¹, Francis Tuerlinckx¹, Peter Kuppens¹, Borbála Hunyadi^{2,3} & Eva Ceulemans¹

Fraley Longitudinal Project

Extraverted, enthusiastic

Reserved, quiet (-)

Critical, quarrelsome (-)

Sympathetic, warm

Dependable, self-disciplined

Disorganized, careless (-)

Anxious, easily upset

Calm, emotionally stable (-)

Open to new experiences, complex

Conventional, uncreative (-)

N = 388 participants (total N = 21,79060 possible assessments

60 weeks

Personality

Baseline

Life Events

$$Gk(\mathbf{R}_{i}, \mathbf{R}_{j}) = \exp\left[\frac{-\left|\left|\mathbf{R}_{i} - \mathbf{R}_{j}\right|\right|^{2}}{2h_{R}^{2}}\right] \qquad \mathbf{R}_{i} = \begin{bmatrix} w_{i,1} \\ w_{i,2} \\ \vdots \\ w_{i,\frac{V(V-1)}{2}} \end{bmatrix}$$

$$\hat{R}(\tau_{1}, \tau_{2}, ..., \tau_{K}) = \frac{1}{n} \sum_{p=1}^{K+1} \hat{V}_{p}, \tau_{1}, \tau_{2}, ..., \tau_{K}$$

$$\hat{V}_{p,\tau_{1},\tau_{2},...,\tau_{K}} = (\tau_{p} - \tau_{p-1}) - \frac{1}{\tau_{p} - \tau_{p-1}} \sum_{i=\tau_{p-1}+1}^{\tau_{p}} \sum_{j=\tau_{p-1}+1}^{\tau_{p}} Gk(\mathbf{R}_{i}, \mathbf{R}_{j})$$

Perform the variance test
$$p_{variancetest} = \frac{\#(\hat{R}_{min,K=0,perm} > \hat{R}_{min,K=0})}{B}$$

$$p_{variancedroptest} = rac{\#(\max \ variance \ drop_{perm} > \ \max \ variance \ drop)}{B}$$

$$pen_K = C \frac{V_{max} (K+1)}{n} [1 + \log(\frac{n}{K+1})]$$

$$\hat{K} = \arg \min \hat{R}_{min,K} + pen_K,$$

Preregistration: https://osf.io/mfn8w/

$$Gk(\mathbf{R}_{i}, \mathbf{R}_{j}) = \exp\left[\frac{-\left|\left|\mathbf{R}_{i} - \mathbf{R}_{j}\right|\right|^{2}}{2h_{R}^{2}}\right] \qquad \mathbf{R}_{i} = \begin{bmatrix} w_{i,1} \\ w_{i,2} \\ \vdots \\ w_{i,\frac{V(V-1)}{2}} \end{bmatrix}$$

$$\hat{R}(\tau_{1}, \tau_{2}, \dots, \tau_{K}) = \frac{1}{n} \sum_{n=1}^{K+1} \hat{V}_{p}, \tau_{1}, \tau_{2}, \dots, \tau_{K}$$

$$\hat{V}_{p,\tau_{1},\tau_{2},\dots,\tau_{K}} = (\tau_{p} - \tau_{p-1}) - \frac{1}{\tau_{p} - \tau_{p-1}} \sum_{i=\tau_{p-1}+1}^{\tau_{p}} \sum_{j=\tau_{p-1}+1}^{\tau_{p}} Gk(\mathbf{R}_{i}, \mathbf{R}_{j})$$

Perform the variance test
$$p_{variancetest} = \frac{\#(\hat{R}_{min,K=0,perm} > \hat{R}_{min,K=0})}{B}$$

Perform the variance drop test

$$p_{variancedroptest} = \frac{\#(\max \ variance \ drop_{perm} > \max \ variance \ drop)}{B}$$

Declare significance if either the variance or variance drop tests passes

Keep k of minimum penalized average within-phase variance

$$pen_K = C \frac{V_{max} (K+1)}{n} [1 + \log(\frac{n}{K+1})]$$

$$\hat{K} = \arg \min \hat{R}_{min,K} + pen_K,$$

Preregistration: https://osf.io/mfn8w/

1	Moving Window Correlations
2	Gaussian Similarity between all possible phases for different k
3	Calculate average within-phase Variance of Gaussian Similarity
4	Repeat steps 1 and 2 for 1000 permuted data sets
5	Perform the variance test
6	Perform the variance drop test
7	Declare significance if either the variance or variance drop tests passes
8	Keep k of minimum penalized average within-phase variance

Idiographic Time Series

Idiographic Time Series

Idiographic Time Series

Moving Window Correlation Time Series

Moving Window Correlation Time Series

Correlations within a phase should be homogeneous

1	Moving Window Correlations
2	Gaussian Similarity between all possible phases for different k
3	Calculate average within-phase Variance of Gaussian Similarity
4	Repeat steps 1 and 2 for 1000 permuted data sets
5	Perform the variance test
6	Perform the variance drop test
7	Declare significance if either the variance or variance drop tests passes
8	Keep k of minimum penalized average within-phase variance

1	Moving Window Correlations
2	Gaussian Similarity between all possible phases for different k
3	Calculate average within-phase Variance of Gaussian Similarity
4	Repeat steps 1 and 2 for 1000 permuted data sets
5	Perform the variance test
6	Perform the variance drop test
7	Declare significance if either the variance or variance drop tests passes
8	Keep k of minimum penalized average within-phase variance

Correlations within a phase should be homogeneous

*Compared to permuted time series

Results

Did changes map onto events?

Did changes map onto events?

We can detect idiographic change?

We should be thinking about personality at the level of person and as a system

Happen at different time scale
Seem to be lasting at least in terms
of months

Do life events do anything??????????