重庆理工大学考试试券

2015~2016 学年第1学期

班级 姓名 _____ 考试科目<u>数据结构 ____ A 卷</u> 闭卷

一、选择题(每题2分,共20分)

1. 下面给出的有向图中,有 个强连通分量。

- A. 1 $(\{0,1,2,3,4\})$ C. $2(\{1,2,3,4\},\{0\})$
- B. 1 $(\{1,2,3,4\})$ D. 5 ($\{0\}$, $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$)
- 2. 对于给定的有权无向图 G, 下列哪个说法是正确的?
- A. G 的最小生成树中, 任意一对顶点间的路径必是它们在 G 中的最短路径
 - B. 设顶点 V 到 W 的最短路径为 P。若我们将 G 中每条边的权重都加 1,则 P 一定仍然是 V 到 W 的最短路径
 - C. 单源最短路问题可以用 O(|E|+|V|) 的时间解决
 - D. 以上都不对
- 3. 已知一个图的邻接矩阵如下,则从顶点 V1 出发按广度优先搜索法进行遍历,可能得到的一种 顶点序列为:

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

- A. V1, V2, V3, V5, V4, V6
- B. V1, V2, V4, V5, V6, V3
- C. V1, V3, V5, V2, V4, V6
- D. V1, V3, V5, V6, V4, V2
- 4. 在一个有权无向图中,如果顶点 b 到顶点 a 的最短路径长度是 10,顶点 c 与顶点 b 之间存在一 条长度为3的边。那么下列说法中有几句是正确的?
 - 1. c与 a的最短路径长度就是 13
 - 2.c与a的最短路径长度就是7
 - 3. c与 a 的最短路径长度不超过 13
 - 4. c与 a 的最短路径不小于 7
 - A. 1句 B. 2句
- C.3 句 D. 4 句
- 5. 下图为一个 AOV 网, 其可能的拓扑有序序列为:

第1页,共6页,

2015~2016 学年第1学期

	班级	姓名	考试科目_	数据结构	<u>A 卷</u>	<u>闭卷</u>
	A. ACBDEF B. ABCEFD C. ABCDFE D. ABCEDF					
6.	下列排序算法中上? (设待排元A. 冒泡排序B. 插入排序C. 堆排序D. 快速排序		出现:在最后一	趟开始之前,所有	的元素都不在其	最终的位置
7.	h(X)=X%10. 5	如果用大小为 10 (-1 表示相应的 9, 4, 9, 9 9, 7, 5, -1 9, 5, 0, 8		9, 4344, 9679 用线性探测解决冲 2分)	•	
А. В. С.	将{5, 2, 7, 1, 2, 3, 4, 1, 4, 2, 6, 1, 4, 3, 2, 5, 4, 3, 7,	6, 7, 5 3, 7, 5 6, 7, 5	衣次插入初始为空	的二叉搜索树。贝	則该树的后序遍历	5结果是:
9. A. B. C. D.	调整成最小堆(1,3,2,12,6,4 1,2,3,4,5,6 1,2,3,6,7,5]算法将序列{10 (小顶堆)的结果 4,8,15,14,9, ,7,8,9,10,11 ,4,15,14,12,9	是: 7,5,11,13,10 ,12,13,14,15 9,10,11,13,8	6, 5, 8, 15, 3	3, 9, 7, 4, 11	1, 13, 2}
1	. 在下述结论 有一个结点的二点 完全二叉树的结点 A. ② B. ② C. ② D. ②	叉树的度为 0;(②工叉树的度为 2:	。③工叉树的左右 ⁻ 叉树。	子树可任意交换;	④ 深度为 κ
<u>_</u> ,	选择题(每题1	分, 共30分)				
	在数据结构中, A. 动态结构和静 C. 线性结构和非	态结构	B. 紧凑约	。 吉构和非紧凑结构 吉构和外部结构		
2.	设某算法完成对 间复杂度是		里所需的时间是:	T(n)=100nlog ₂ r	n+200n+500,则	该算法的时
	A. O(1)	B. O(n)	C. O(nlog ₂	n) D. O	(nlog ₂ n+n)	

2015~2016 学年第1学期

班级 ______姓名_______考试科目__数据结构______ A 卷 闭卷 3. 线性链表(动态)是通过_____方式表示元素之间的关系的。 A. 保存后继元素地址 B. 元素的存储顺序 C. 保存左、右孩子地址 D. 保存后继元素的数组下标 4. 在一个单链表中, 若删除 p 所指结点的后继结点, 则执行 A. p->next = p->next->next;

B. p->next = p->next;

C. p = p->next->next;

D. p = p->next = p->next->next; 5. 若线性表最常用的操作是存取第 i 个元素及其前趋和后继元素的值,则为节省时间,应采用的 存储方式是____。 A. 单链表 B. 双向链表 C. 单循环链表 D. 顺序表 6. 若一个栈的输入序列是 1,2,3,...,n,其输出序列是 p1,p2,...,pn,若 p1=3,则 p2 的值 в. 1 8. 栈和队列的共同点是____。

 A. 都是先进后出
 B. 都是先进先出

 C. 允许在端点处插入和删除元素
 D. 没有共同点

 A. 都是先进后出 9. 设环形队列中数组的下标范围是 1~n,头尾指针分别是 f 和 r,则其元素个数为 A. r-f B. r-f+1 C. (r-f+1) mod n D. (r-f+n) mod n 10. 对一棵具有 n 个结点的树,树中所有度数之和为____ B. n-2 C. n-1 11. 为 5 个使用频率不等的字符设计哈夫曼编码,不可能的方案是 A. 000,001,010,011,1 B. 0000,0001,001,01,1 C. 000,001,01,11 D. 00,100,101,111 C. 000,001,01,10,11 D. 00,100,101,110,111 12. 以下说法错误的是 A. 二叉树可以是空集 B. 二叉树的任一结点最多有两棵子树 C. 二叉树不是一种树 D. 二叉树中任一结点的两棵子树有次序之分 13. 如图 6-4 所示的 4 棵二叉树, 是平衡二叉树。 14. 已知某二叉树的后序遍历序列是 dabec,中序遍历序列是 debac,它的前序遍历序列是

2015~2016 学年第1学期

班级_____

A. acbed	в. decab	C. deabc	D. cedba	
	叉树至多有 B. 32 C		. 10	
	所有顶点的度数之和等 B. 1		倍。 D. 4	
	妾表存储结构中,顶点 匿 B. 顶点 v 的出原		次数是。 约入度 D. 依附于顶点	v 的边数
A. 关键活动不 B. 任何一个关 C. 所有的关键	十划的 AOE 网的叙述中 按期完成就会影响整个 键活动提前完成,那么 建活动都提前完成,那么 大动若提前完成,那么惠	、工程的完成时间 、整个工程将会提前 、整个工程将会提前	「完成 「完成	
	n 个顶点的无向图, B. (n-1) ²		示,则该矩阵的大小是_ D. n ²	
为;		a c c d f	法进行遍历,则可能得到I	的一种顶点序列
	e, c, d, f b, c, f, d		a, c, f, e, b, d a, e, d, f, c, b	
21. 采用邻接表存 A. 先序遍历 C. 后序遍历	储的图的深度优先遍历 B D		对的。	
	进行折半查找,在查找 B.50 C		较次数最多是 7	o
A. 二叉排序树; B. 对二叉排序树; C. 在构造二叉	对,下面说法正确的是 是动态树表,在插入新 对进行层序遍历可得到 排序树时,若插入的关 树中进行查找,关键码	结点时会引起树的』 有序序列 键码有序,则二叉	非序树的深度最大	
			A[3]的比较序列的下标;	

2015~2016 学年第1学期

班级	姓名	考试科目_	数据结构	A 卷	<u>闭卷</u>

	设哈希表长 m=14, 哈希函数 H(key)=key%11。表中已有 4 个结点: addr(14)=3, addr(38)=5, addr(61)=6, addr(85)=8, 其余地址为空, 如用线性探测再散列处理冲突, 关键字为 49 的结点的地址是。 7
A	. / B. 3 C. 5 D. 4
26.	具有 5 层结点的 AVL 树至少有个结点。
A	. 10 B. 12 C. 15 D. 17
27.	下列排序算法中,可能会出现下面情况:在最后一趟开始之前,所有元素都不在最终位置上。
	A. 冒泡排序 B. 插入排序 C. 快速排序 D. 堆排序
28.	设有 5000 个元素,希望用最快的速度挑选出前 10 个最大的,采用方法最好。 A. 快速排序 B. 堆排序 C. 希尔排序 D. 归并排序
29.	以下序列不是堆的是。
	A. (100,85,98,77,80,60,82,40,20,10,66)
	B. (100,98,85,82,80,77,66,60,40,20,10,)
	C. (10,20,40,60,66,77,80,82,85,98,100)
	D. (100,85,40,77,80,60,66,98,82,10,20,)
	对于顺序存储的长度为 N 的线性表, 访问结点和增加结点的时间复杂度为: A. O(1), O(1) B. O(1), O(N) C. O(N), O(1)

D. O(N), O(N)

三、问答或填空(共35分)

1. (10分)有一份电文中,共使用 5个字符: a、b、c、d、e,其出现频率如表所示:

表:字符及其出现频率

		• 11/2/	• на одол т			
字符	а	b	С	d	е	
出现频率	4	7	5	2	9	

试画出对应的哈夫曼树(请按左子树根结点的权小于等于右子树根结点的权的次序构造),并求出每个字符的哈夫曼编码。

2. (10分)按照 Dijkstra 算法,求从顶点 1 出发到其余各个顶点的最短路径,将相应数据填入表格。

结点编号	1	2	3	4	5	6	7
距离	0						
前趋	0						

2015~2016 学年第1学期

3. (15 分, 每小问 5 分)一个工程项目由下列 A~L 共 12 个活动构成,各活动的持续时间和前驱活动如表 6.5 所示。

活动	持续时间	前驱活动	活动	持续时间	前驱活动
A	15	无	G	10	E
В	17	无	Н	40	G
С	10	A	I	20	E
D	8	В	J	25	I
E	15	C, D	K	30	F
F	33	В	L	20	Н, Ј, К

- (1) 画出表示该工程项目的 AOE 图
- (2) 列出图中各顶点(状态)的最早发生时间和最迟发生时间
- (3) 计算完成该项目的所需时间,指出哪些是关键活动

四、程序题(共15分)

1. 下列代码的功能是返回带头结点的单链表 L 的逆转链表。

```
List Reverse( List L )
  Position Old_head, New_head, Temp;
  New_head = NULL;
  Old_head = L->Next;
  while ( Old_head ) {
     Temp = Old head->Next;
        _____(3分);
    New head = Old head;
    Old head = Temp;
          _____(3分);
  return L;
2. 二叉树的先序遍历
struct node{
  int data;
  struct node *left;
  struct node *right;
void preorder(struct node *treep){
  if (treep==NULL)
     return;
  //访问根结点
  printf("%d",____);
  // 先序遍历左子树
```