

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

TECHNICAL MATHEMATICS P1/TEGNIESE WISKUNDE V1

.........

NOVEMBER 2023

MARKING GUIDELINES/NASIENRIGLYNE

FINAL MARKING GUIDELINES/FINALE NASIENRIGLYNE

MARKS/PUNTE: 150

	MARKING CODES/NASIENKODES		
A	Accuracy/Akkuraatheid		
CA	Consistent accuracy/Volgehoue akkuraatheid		
M	Method/Metode		
R	Rounding/Afronding		
NPR	No penalty for rounding/Geen penalisering vir afronding nie		
NPU	No penalty for units omitted/Geen penalisering vir eenhede weggelaat nie		
S	Simplification/Vereenvoudiging		
SF	Substitution in correct formula/Vervanging in korrekte formule		

These marking guidelines consist of 23 pages. *Hierdie nasienriglyne bestaan uit 23 bladsye.*

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent accuracy (CA) applies in all aspects of the marking guidelines where indicated.
- No penalty for rounding (NPR) for ALL questions.
- # Shows questions where a Tolerance Range will be applied:

Q 1.3.1 ; Q 6.1 ; Q 9.2

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, sien slegs die EERSTE poging na.
- Volgehoue akkuraatheid (CA) is deurgaans op alle aspekte van die nasienriglyne van toepassing soos aangedui.
- Geen penalisering vir afronding (NPR) vir ALLE vrae nie.
- # Toon vrae waar Tolerance wydte (Verdraagsaamheids omvang) toegepas word: V 1.3.1.; V 6.1.; V 9.2

1.1.1	(7 - 3x)(-8 - x) = 0		
	$x = \frac{7}{3}$ OR/OF $\approx 2,33$ or/of $x = -8$	$\checkmark \frac{7}{3} \approx 2,33$ $\checkmark -8$	A A
1.1.2	1		(2)
1.1.2	$3x^2 - 4x = \frac{1}{3}$		
	$3x^2 - 4x - \frac{1}{3} = 0$ OR/OF $9x^2 - 12x - 1 = 0$	✓ std form/vorm	A
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
	$= \frac{-(-4) \pm \sqrt{(-4)^2 - 4(3)\left(-\frac{1}{3}\right)}}{2(3)} \mathbf{OR/OF} \frac{-(-12) \pm \sqrt{(-12)^2 - 4(9)(-1)}}{2(9)}$	✓ SF	CA
	$= \frac{4 \pm \sqrt{20}}{6} \mathbf{OR/OF} = \frac{12 \pm \sqrt{180}}{18}$	✓ S	
	$\therefore x \approx 1,41 \text{ or/} of \ x \approx -0,08$	$\checkmark x$ - value/waarde	CA
			(4)

 $-x^2 + 16 > 0$ 1.1.3 (x-4)(x+4) < 0 **OR/OF** (-x+4)(x+4) > 0 $\checkmark M$ A **OR**/OF -(x-4)(x+4) > 0 **OR**/OF (-x-4)(x-4) > 0**OR/OF** $x = \frac{-(0) \pm \sqrt{(0)^2 - 4(1)(-16)}}{2(1)}$ ✓ critical values/ CA kritiese waardes Critical values/ kritiese waardes: 4 and/en -4 ✓ correct notation/ $\therefore -4 < x < 4$ **OR/OF** $x \in (-4;4)$ **OR/OF** x > -4 and/en x < 4korrekte notasie / correct graphical OR/OF solution/ korrekte grafiese oplossing \mathbf{A} **AO:** Full \boldsymbol{x} marks/Volpunte (3)

x - y = 1 and/en $x + 2xy + y^2 = 9$ 1.2 x = y + 1✓ subject/ onderwerp A $(y+1)+2y(y+1)+y^2=9$ ✓ subst./ *vervang* CA $y+1+2y^2+2y+y^2=9$ $3v^2 + 3v - 8 = 0$ ✓std form/vorm CA $y = \frac{-(3) \pm \sqrt{(3)^2 - 4(3)(-8)}}{2(3)} = \frac{-3 \pm \sqrt{105}}{6}$ ✓ SF CA \therefore $y \approx 1,21$ or/of $y \approx -2,21$ ✓ both y-values/beide y-wrdes CA $\therefore x \approx 1,21+1 = 2,21$ or/of $x \approx -2,21+1 = -1,21$ ✓both x-values/beide x-wrdes CA OR/OF OR/OF y = x - 1✓ subject/ *onderwerp* $x+2x(x-1)+(x-1)^2=9$ A ✓ subst../ *vervang* CA $x + 2x^2 - 2x + x^2 - 2x + 1 = 9$ $3x^2 - 3x - 8 = 0$ ✓ std form/vorm CA $x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(3)(-8)}}{2(3)} = \frac{3 \pm \sqrt{105}}{6}$ ✓ SF CA $\therefore x \approx 2,21$ or/of $x \approx -1,21$ ✓ both *x*-values/beide *x*-wrdes **CA** $\therefore y \approx 2,21-1=1,21$ or/of $y \approx -1,21-1=-2,21$ ✓both y-values/beide y-wrdes CA

(6)

1.3.1 #

$$f_r = \frac{1}{2\pi \sqrt{LC}}$$

$$\sqrt{LC} = \frac{1}{2\pi f_r}$$
 OR/OF $f_r \times 2\pi \sqrt{LC} = 1$

$$f_r \times 2\pi \sqrt{LC} = 1$$

$$LC = \left(\frac{1}{f_r \times 2\pi}\right)^2$$

$$L = \left(\frac{1}{f_r \times 2\pi}\right)^2 \div C$$

OR/OF

$$f_r = \frac{1}{2\pi \sqrt{LC}}$$

$$(f_r)^2 = \frac{1}{4\pi^2 LC}$$

$$LC = \frac{1}{4\pi^2 \left(f_r\right)^2}$$

$$L = \frac{1}{4\pi^2 (f_r)^2 C}$$

OR/OF

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

$$\sqrt{L} = \frac{1}{2\pi f_r \sqrt{C}}$$

$$(\sqrt{L})^2 = \left(\frac{1}{2\pi f_r \sqrt{C}}\right)^2$$

$$L = \frac{1}{4\pi^2 (f_r)^2 C}$$

 $\checkmark \sqrt{LC}$ the subject/ die onderwerp /

Cross Multiplication/ *Kruisvermenigvuldiging*

✓ squaring both sides/ kwadr beide kante

A

✓ L subject/ onderwerp $\mathbf{C}\mathbf{A}$

OR/OF

✓ squaring both sides/ kwadr beide kante

✓ LC the subject/ *die onderwerp* CA

 \checkmark L the subject/ die *onderwerp*

OR/OF

 $\checkmark \sqrt{L}$ the subject/ die onderwerp **A**

✓ squaring both sides/ kwadr beide kante

✓ *L* the subject/ die *onderwerp*

CA

CA

(3)

1.3.2	$L = \left(\frac{1}{f_r \times 2\pi}\right)^2 \div C \qquad \qquad \mathbf{OR/OF} \ L = \left(\frac{1}{f_r \times 2\pi\sqrt{C}}\right)^2$		
	$= \left(\frac{1}{1,59 \times 2\pi}\right)^2 \div \left(0,65 \times 10^{-6}\right) \mathbf{OR/OF} = \left(\frac{1}{1,59 \times 2\pi\sqrt{0,65 \times 10^{-6}}}\right)^2$	✓ SF	CA
	≈ 15414,61 H	✓S	CA
	OR/OF	OR/OF	
	$f_r = \frac{1}{2\pi \sqrt{LC}}$		
	$1,59 = \frac{1}{2\pi\sqrt{L \times 0,65 \times 10^{-6}}}$	✓ SF	A
	$L \approx 15414,61 \mathrm{H}$	✓S	CA
			(2)
1.4	$24 = 11000_{2}$	✓ binary/ binêre	A (1)
1.5	144 ÷110 ₂	√6	A
	$=144 \div 6 = 24$		
	OR/OF	✓ 24 OR/OF	CA
	144 = 10010000 ₂	✓ 10010000	
	$10010000_2 \div 110_2 = 11000_2 = 24$	✓ 10010000 ₂ ✓ 24	A CA
		AO: Full marks/Vol	
		110. Full marks/ Vol	(2)
			[23]

2.1.1	$\Delta = b^2 - 4ac$ = $(-4)^2 - 4(1)(q)$	✓ SF A
	$= (-4)^{2} - 4(1)(4)$ $= (-4)^{2} - 4(1)(4)$	
	= 0	✓ value of discriminant/ waarde van diskriminant CA (2)
2.1.2	Equal, real and rational / Gelyk, reëel en rasionaal	✓ Equal , real and rational/ Gelyk, reëel en rasionaal CA (1)
2.2	$x^2 - 4x + p = 0$	
	$\Delta = b^2 - 4ac$	
	$=(-4)^2-4(1)(p)$	✓SF A
	=16 -4 p	
	$\Delta < 0$	$\checkmark \Delta < 0$ A
	16 - 4p < 0	
	p > 4	✓ value(s) of/ waardes van p CA
		AO: Full marks/Volpunte (3)
		[6]

3.1.1	$\log_a a^{\frac{1}{2}} = \frac{1}{2}(1) = \frac{1}{2}$	$\checkmark \frac{1}{2}$	A
	$2^{(1)}$ $=$ 2	2	(1)
3.1.2	$\sqrt{5x}\left(\sqrt{45x} + 2\sqrt{80x}\right)$		
	$= \sqrt{5x} \left(\sqrt{5 \times 9x} + 2\sqrt{5 \times 16x} \right) \text{ OR/OF} \sqrt{5x} \left(3\sqrt{5x} + 8\sqrt{5x} \right)$	✓ simplified surd/expanded su vorm/ vereenv wrtlvorm/ uitgebreide wrtlvorm	ard A
	$= \sqrt{5x} \left(11\sqrt{5x} \right) \qquad \mathbf{OR/OF} \qquad 3 \times 5x + 2 \times 4 \times 5x$	✓S	CA
	=55 x	✓ S	CA
	OR/OF	OR/OF	
	$\sqrt{5x}\left(\sqrt{45x}+2\sqrt{80x}\right)$		
	$\sqrt{5x} \left(\sqrt{45x} + 2\sqrt{80x} \right)$ $= \sqrt{225x^2} + 2\sqrt{400x^2}$	✓Expansion/ <i>Uitbreiding</i>	A
	=15x+2(20)x	✓S	CA
	=55 x	✓ S	CA
		AO 1 mark /punt	(3)
3.1.3	$\left(\frac{4^{3n-2}}{2^{3n+2}\cdot 8^{n-3}}\right)\times 8$		
	$= \left(\frac{(2^2)^{3n-2}}{2^{3n+2} \cdot (2^3)^{n-3}}\right) \times 2^3$	✓ prime bases/ priemgrontal	A
	$= \left(\frac{2^{6n-4}}{2^{3n+2} \cdot 2^{3n-9}}\right) \times 2^3$		
	$=2^{6n-4-3n-2-3n+9+3}$	✓ exponential property/ eksp eienskp	CA
	$=2^{6}$ OR/OF 64	✓ S	CA

	OR/OF		OR/OF	
	$\left(\frac{4^{3n-2}}{2^{3n+2}\cdot 8^{n-3}}\right)\times 8$			
	$= 4^{3n-2} \cdot 2^{-3n-2} \cdot 8^{-n+3} \times 8$			
			✓ prime bases/ priemgrontal	A
	$= (2^{2})^{3n-2} \cdot 2^{-3n-2} \cdot (2^{3})^{-n+3} \times (2^{3})$		printe cases, priemgrenia	
	$=2^{6n-4-3n-2-3n+9+3}$		✓ exponential property/ eksp eienskp	CA
	$=2^6 \mathbf{OR}/\mathbf{OF} 64$		✓ S	CA
				(3)
3.2	$\log(2x - 5) + \log 2 = 1$		<u> </u>	
	$\log 2(2x-5) = 1$ OR/OF $\log 2(2x-5) = \log 10$	√log	prop/ eienskap	A
	$2(2x-5) = 10^1$		onential form/ eksp. vorm	CA
	4x - 10 = 10 $x = 5$	✓ S ✓ val	ue of/ <i>waarde van x</i>	CA CA
	OR/OF	, 444	OR/OF	012
	$\log(2x-5) + \log 2 = 1$			
	$\log(2x - 5) = \log 10 - \log 2$	✓ log	g10	A
	$\log\left(2x-5\right) = \log\frac{10}{2}$	✓ log	g prop/ eienskap	CA
	2x - 5 = 5	✓ S		CA
	$\therefore x = 5$	✓ val	ue of/ waarde van x	CA
	OR/OF		OR/OF	
		✓ log	-10	A
				A
		✓ log	g prop/ eienskap	CA
		✓ ex	ponential form/ eksp. vorm	CA

	$\log(2x - 5) + \log 2 = 1$		
	$\log(2x - 5) + \log 2 - 1$ $\log(2x - 5) + \log 2 - \log 10 = 0$	✓ value of/ waarde van x	CA
	$\log\left(\frac{2(2x-5)}{10}\right) = 0$		
	$\frac{4x - 10}{10} = 10^0$	OR/OF	
	$\frac{4x-10}{10}=1$	✓ log10	A
	4x - 10 = 10	✓ log prop/ eienskap	CA
	4x = 20	✓ S	CA
	x = 5		
		✓ value of/ waarde van x	CA
	OR/OF	OR/OF	
	$\log(2x - 5) + \log 2 = 1$		
	$\log 2 = \log 10 - \log (2x - 5)$	✓ S	A
	$\log 2 = \log \frac{10}{(2x-5)}$	✓ exponential form/ eksp. vorm	CA
	2(2x-5) = 10	✓ S	CA
	$\therefore x = 5$	✓ value of/ waarde van x	CA
	OR/OF	AO: Full marks Volpunte	(4)
	$\log(2x-5) + \log 2 = 1$		(4)
	$\log(2x-5) = 1 - \log 2$		
	$\log(2x - 5) = 0,6989$		
	$(2x-5) = 10^{0.6989}$		
	2x - 5 = 5		
	$\therefore x = 5$		
3.3.1	1st quadrant/ kwadrant	✓1st quadrant/ kwadrant	A (1)
3.3.2	$r = z = \sqrt{(2)^2 + (2)^2}$	✓ Pythagoras	A
	$=\sqrt{8}$ OR/OF $2\sqrt{2} \approx 2,83$	✓ modulus	CA
		AO: Full marks/Volpunte	(2)

3.3.3	$\tan \theta = \frac{2}{2} = 1$	✓tan ratio/verhouding	A
	$\theta = 45^{\circ} \text{ ref / verw } \angle$	✓ angle/ hoek	CA
	$z = 2\sqrt{2} \text{ cis } 45^{\circ}$	✓ any vorm/ enige vorm	CA
	$\mathbf{OR}/\mathbf{OF} \ \ 2\sqrt{2} \ \boxed{45^{\circ}}$	AO: Full marks/Volpunte	(3)
	OR/OF $2\sqrt{2}\cos 45^{\circ} + 2\sqrt{2}i\sin 45^{\circ}$		(5)
3.4	x - 3yi = 6 + 9i		
	$\therefore x = 6$	✓ value of/ waarde van x	A
	-3y = 9		
	$-3y = 9$ $\therefore y = -3$	✓ value of / waarde van y	A
			(2)
			[19]

4.1.1	g(x) = -x - 2		
	0 = -x - 2	$\checkmark y = 0$	A
	x = -2	$\checkmark x = -2$	A
	A(-2;0)	AO: Full marks/Volpunte	
		•	(2)
4.1.2	g(x) = -x - 2		
	Subst./verv. $(k; -3)$		
	-3 = -k - 2	✓ Subst./verv	A
	k = 1		(1)
4.1.3	x = 4	$\checkmark x = 4$	(1) A
4.1.3	x = 4	$\mathbf{v} x = 4$	
4.1.4	f(x) = a(x+2)(x-4)	$\checkmark f(x) = a(x+2)(x-4)$	(1) CA
	Subst./verv (5; -7)		
	-7 = a(5+2)(5-4)	✓ Subst./verv	CA
	-7 = a(7)(1)		
	a = -1	$\checkmark a = -1$	CA
	$\therefore f(x) = -1(x+2)(x-4)$		
	$=-1(x^2-2x-8)$	✓ S	CA
	$=-x^2+2x+8$		(4)
4.1.5	$f(x) = -x^2 + 2x + 8$		
	Subst./verv $x = 1$ OR/OF $y = \frac{4ac - b^2}{4a}$		
	$f(1) = -(1)^2 + 2(1) + 8$ $4(-1)(8) - (2)^2$	✓ Subst./verv	A
	$f(1) = -(1)^{2} + 2(1) + 8$ $= \frac{4(-1)(8) - (2)^{2}}{4(-1)}$		
	= 9	✓ y = 9	CA
	Range/ wrde.versam.: $y \in \mathbb{R}$; $y \le 9$	✓ y ≤ 9	CA
	OR/OF	<i>y</i> = <i>y</i>	U 11
	$y \in (-\infty; 9]$	AO: Full marks/Volpunte	
4.1.5			(3)
4.1.6	$-2 \le x \le 5$ OR/OF $x \in [-2; 5]$	✓ critical values / kritiese waardes	CA
	OR/OF $x \ge -2$ and/en $x \le 5$	✓ correct notation/	CA
		korr notasie	A
			(2)

	NSC/NSS – Marking Guider	
4.2.1(a)	OD = 4 units/ eenhede	✓ 4 A
4.2.1(b)	$r^2 = 16 = 4^2$	(1 \sqrt{16} \sqrt{CA}
	$h(x) = \sqrt{16 - x^2}$ OR/OF $h(x) = \sqrt{4^2 - x^2}$	$\sqrt{16-x^2}$ OR/OF $\sqrt{4^2-x^2}$ CA
		AO: Full marks/Volpunte
		(2
4.2.2	$p(x) = a^x - 4$	
	Subst./verv (-4; 12)	
	$12 = a^{-4} - 4$	✓ Subst./verv
	$16 = a^{-4}$	✓ S CA
	$a=\frac{1}{2}$	$\sqrt{\frac{1}{2}}$ CA
	2	$\frac{2}{}$
4.2.3	$(1)^x$	
	$p(x) = \left(\frac{1}{2}\right)^x - 4$	
	$(1)^0$	
	$= \left(\frac{1}{2}\right)^0 - 4 \mathbf{OR}/\mathbf{OF} = a^0 - 4$	✓ Subst./verv $x = 0$ A
	= 1 - 4 = -3	✓ S CA
		AO Full marks Volpunte
4.2.4	$\therefore f(x) = p(x) + 3$	$\checkmark t = 3 $ (2)
	$f(x) = a^x - 4 + 3$ OR/OF $y = -4 + 3$	
	$=a^{x}-1$	
	$\therefore y = -1$	$\checkmark y = -1$
		AO Full marks Volpunte
4.3		(2
	, *** y	g:
	g 4	✓ horizontal asymptote / horisontale asimptoot A
	/	-
		✓ shape / vorm A
		\sqrt{x} - intercept / afsnit A
	q	<i>y</i> = <i>q</i>
	0 (6;0)	X
	(6,0)	(3
	↓	
		[26

5.1	. (, ;) ^m	✓F	,	A
	$i_{eff} = \left(1 + \frac{i}{m}\right)^m - 1$			
	$= \left(1 + \frac{0.08}{12}\right)^{12} - 1$	✓S	F	A
	≈ 0,08299 ≈ 8,30%	✓ ;	$i_{eff} \approx 8,30\%$	CA
		AC	Full marks/ Volpunte	(2)
5.2	$A = P (1 + i)^n$	√]	F	(3) A
		✓n	$= 4 \times 7 \mathbf{OR} / \mathbf{OF} 28$	A
	$= R 25000 \left(1 + \frac{0,096}{4}\right)^{4 \times 7}$	✓ (SF	A
	≈ R 48566,72	√ 9	S	CA
	OR/OF		OR/OF	
	$i_{eff} = \left(1 + \frac{0,096}{4}\right)^4 - 1 \approx 0,09951$	✓	$i_{eff} \approx 0.09951$	A
	$A = P (1 + i)^n$	√]	F	A
	$= R 25000 (1 + 0.09951)^{7}$	✓ (SF	A
	≈ R 48566,72	✓ 5		CA
		AC	Full marks /Volpunte	(4)
5.3.1	$A = P(1 - i)^n$	√F	,	A
	$50 = 80 \left(1 - i\right)^2$	✓S	F	A
	$\frac{5}{8} = \left(1 - i\right)^2$			
	$\sqrt{\frac{5}{8}} = 1 - i$	√ 1	make <i>i</i> the subject/ maak <i>i</i> die	
	$\sqrt{8}$ $i = 0.209$		derwrp	CA
	$r \approx 20.94\%$			
	$r \approx 21$	✓ (decimal value of i/desimale wa	
		var	i	CA (4)
5.3.2	$A = P(1 - i)^n$		✓F	A
	$80 = P\left(1 - \frac{21}{100}\right)^6 \text{ OR/OF } 50 = P\left(1 - \frac{21}{100}\right)^6$	8	✓SF	A
	$P \approx 329,10 ^{\circ}\text{C}$ $P \approx 329,57 ^{\circ}\text{C}$	/	✓ S	CA
				(3) [14]
				[TT]

6.1	f(x) = x - 5		
#	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	✓ definition/definisie	A
	$= \lim_{h \to 0} \frac{(x+h) - 5 - (x-5)}{h}$	✓ SF	A
	$=\lim_{h\to 0}\frac{x+h-5-x+5}{h}$	✓ S	CA
	$=\lim_{h\to 0}\frac{h}{h}$	✓S	CA
	$= \lim_{h \to 0} (1)$ $\therefore f'(x) = 1$	✓ 1	CA
		Penalty: 1 mark for incorrect notation/ Penaliseer: 1 punt vir foutiwe notasie	
		AO: 1 mark/ punt	(5)
6.2.1	$D_x \left[-3x^9 - 7x \right] = -27x^8 - 7$	$\begin{array}{c c} \checkmark & -27x^8 \\ \checkmark & -7 \end{array}$	A A
			(2)
6.2.2	$f(x) = \frac{3}{2x} + \sqrt[5]{x^{-2}}$ $= \frac{3}{2}x^{-1} + x^{-\frac{2}{5}}$	$\sqrt{\frac{3}{2}x^{-1}}$	A
	$=\frac{1}{2}x^{2}+x^{3}$	$\checkmark \frac{3}{2}x^{-1}$	
	$f'(x) = -\frac{3}{2}x^{-2} - \frac{2}{5}x^{-\frac{7}{5}}$	$\sqrt[4]{x^{-\frac{5}{5}}} \\ \sqrt{-\frac{3}{2}x^{-2}} \\ \sqrt{-\frac{2}{5}x^{-\frac{7}{5}}}$	A CA
		$\sqrt{-\frac{2}{5}}x^{-\frac{7}{5}}$	CA
622	3.2 4.11	3	(4)
6.2.3	$y^{3} t^{2} = 64t^{11}$ $y^{3} = 64t^{9}$ $y = \sqrt[3]{64t^{9}}$	$\checkmark y^3 = 64t^9$ $\checkmark 4t^3$ $\checkmark 12t^2$	A
	$=4t^3$	$\checkmark 4t^3$	CA
	$\frac{dy}{dt} = 12t^2$	✓ 12 <i>t</i> ²	CA (3)

6.3.1	$h(1) = -2(1)^{2} + (1) - 5 = -6$	√ −6	A (1)
6.3.2	Av/Ge. gradient = $\frac{h(x_2) - h(x_1)}{x_2 - x_1}$ OR/OF $\frac{y_2 - y_1}{x_2 - x_1}$	✓ F	A
	$=\frac{-26-(-6)}{-3-1}$	✓ SF	CA
	= 5	√ 5	CA
			(3)
6.4	$f(x) = x^3 + 2$		
	$\int f'(x) = 3x^2$	✓ derivative/ afgeleide	A
	$m_t = f'(4) = 3(4)^2 = 48$	✓ gradient	CA
	and $p(4) = (4)^3 + 2 = 66$ $\therefore y = mx + c \mathbf{OR/OF} y - y_1 = m(x - x_1)$	✓ y-coordinate/ koordinaat	A
	66 = (48)(4) + c y - (66) = 48(x - 4) $c = -126 y - 66 = 48x - 192$	✓ SF	CA
	$\therefore y = 48x - 126$	✓ Equation of tangent/vergel	yking
		van die raaklyn	CA (5)
			[23]

	12 07107 (0 12)		` .
7.1	y = -12 OR/OF $(0; -12)$	$\checkmark y = -12 \text{ OR/OF } (0; -12)$	1
7.2	$g(-2) = -(-2)^{3} + 5(-2)^{2} + 8(-2) - 12$		(1)
1.2	= 0	✓ 0	A
7.2	2 2		(1)
7.3	$0 = -x^3 + 5x^2 + 8x - 12$	/ 3/	
	$(x+2)(-x^2+7x-6)=0$	✓ M	A
	(x+2)(-x+1)(x-6) = 0 $\therefore x = -2 \text{ or/of } x = 1 \text{ or/of } x = 6$		C A
	OR/OF	$\checkmark \checkmark \checkmark x$ - intercepts/ afsnitte OR/OF	CA
	$0 = x^3 - 5x^2 - 8x + 12$		
	$(x+2)(x^2-7x+6)=0$	✓ M	${f A}$
	(x+2)(x-1)(x-6) = 0		
	$\therefore x = -2 \text{ or } / \text{ of } x = 1 \text{ or } / \text{ of } x = 6$	✓✓✓ x- intercepts/ afsnitte	CA
	OR/OF	OR/OF	
	$(x-1)(-x^2+4x+12)=0$	✓ M	A
	(x-1)(-x+6)(x+2) = 0		
	$\therefore x = -2 \text{ or/} of x = 1 \text{ or/} of x = 6$	$\checkmark\checkmark\checkmark$ x- intercepts/ afsnitte	CA
	OR/OF	OR/OF	
	$(x-1)(x^2-4x-12)=0$	✓ M	A
	(x-1)(x-6)(x+2) = 0		
	$\therefore x = -2 \text{ or/} of x = 1 \text{ or/} of x = 6$	$\checkmark\checkmark\checkmark$ x- intercepts/ afsnitte	CA
	ORIOE	OR/OF	
	OR/OF $(x-6)(-x^2-x+2)=0$	✓ M	A
	(x-6)(-x+1)(x+2) = 0		
	$\therefore x = -2 \text{ or/} of x = 1 \text{ or/} of x = 6$	✓✓✓ x- intercepts/ afsnitte	CA
	OR/OF	OR/OF	
	$(x-6)(x^2+x-2)=0$	✓ M	\mathbf{A}
	(x-6)(x-1)(x+2) = 0	174	11
	$\therefore x = -2 \text{ or/} of x = 1 \text{ or/} of x = 6$	✓✓✓ x- intercepts/ afsnitte	CA
		AO Full marks /Volpunte	(4)

 $g'(x) = -3x^2 + 10x + 8 = 0$ 7.4 ✓ derivative/afgeleide A ✓ equating derivative to 0/ stel afgeleide gelyk aan 0 A (3x + 2)(-x + 4) = 0 **OR/OF** $x = \frac{-(10) \pm \sqrt{(10)^2 - 4(-3)(8)}}{2(-3)}$ ✓ factors/formula/faktore $\therefore x = -\frac{2}{3} \text{ or/} of x = 4$ ✓both values of /beide CA waardes van x $g\left(-\frac{2}{3}\right) = -\left(-\frac{2}{3}\right)^3 + 5\left(-\frac{2}{3}\right)^2 + 8\left(-\frac{2}{3}\right) - 12$ $= -\frac{400}{27} \approx -14,81$ $g(4) = -(4)^3 + 5(4)^2 + 8(4) - 12 = 36$ $\left(-\frac{2}{3}; -\frac{400}{27}\right) \text{ or } / \text{of } (4; 36)$ ✓ both values of /beide CA waardes van y OR/OF $\therefore (-0.67; -14.81) \text{ or } / \text{ of } (4;36)$ (5) 7.5 (4;36)✓ y-intercept/ afsnit CA ✓ all *x*-intercepts/ alle *x*-afsnitte CA ✓ both turning points/ beide g draaipunte CA ✓ shape /vorm A (4)- 12

7.6	-2 < x < 1 or/ of x > 6	✓ endpoints/ eindpunte	CA
		✓ notation/ notasie	\mathbf{A}
		$\checkmark x > 6$	CA
	OR/OF	OR/OF	
		✓ endpoints/ eindpunte	CA
	$x \in (-2;1) \text{ or/of } (6;\infty)$	✓ notation/ notasie	\mathbf{A}
		$\checkmark (6; \infty)$	CA
	OR/OF	OR/OF	
	x>-2 and/en $x<1$ or/of $x>6$	✓ endpoints/eindpunte	CA
	x > -2 and/en $x < 1$ or/of $x > 6$	✓ endpoints/ eindpunte ✓ notation/ notasie	CA A
	x > -2 and/en $x < 1$ or/of $x > 6$		
	x > -2 and/en $x < 1$ or/of $x > 6$	✓ notation/notasie	A CA
	x > -2 and/en $x < 1$ or/of $x > 6$	✓ notation/notasie	\mathbf{A}

8.1	$V = \pi r^2 h$	
	$350 = \pi r^2 h$	✓ SF A
	$\therefore h = \frac{350}{\pi r^2}$	(1)
9.2		
8.2	$TSA = 2\pi r^2 + 2\pi rh$	✓ F A
	$A(r) = 2\pi r^{2} + 2\pi r \left(\frac{350}{\pi r^{2}}\right)$	✓ SF . A
	$=2\pi r^2+\frac{700}{r}$	(2)
8.3	$A(r) = 2\pi r^2 + 700 r^{-1}$	
	$A'(r) = 4\pi r - 700 r^{-2}$	✓ derivative/ afgeleide A
	$=4\pi r-\frac{700}{r^2}$	
	For/ vir minimum: $A'(r) = 0$	✓ equating derivative to/ stel afgeleide gelyk aan 0 A
	$4\pi r - \frac{700}{r^2} = 0$	
	$4\pi r^3 - 700 = 0$	✓S CA
	$r^3 = \frac{700}{4\pi}$	
	$r = \sqrt[3]{\frac{700}{4\pi}} \approx 3,82 \text{ cm}$	✓ value of/ waarde van r CA
	$h \approx \frac{350}{\pi (3.82)^2} \approx 7.63 \text{ cm}$	✓ value of/waarde van h CA
		NPU (5)
		[8]

9.1.1	$\int -4dt$	
	=-4t+C	$\checkmark -4t$ A
		$\begin{array}{c} \bullet C \\ & (2) \end{array}$
9.1.2	$\int x^5 (x^3 - 9x^{-6}) dx$	(-)
7.1.2		
	$= \int (x^8 - 9x^{-1}) dx \mathbf{OR}/\mathbf{OF} \int \left(x^8 - 9\left(\frac{1}{x}\right)\right) dx$	✓ S A
	$=\frac{x^9}{9} - 9 \ln x + C$	$\checkmark \frac{x^9}{9}$ CA
	9	9 ✓ –9 ln <i>x</i> CA
		$CA \qquad \qquad CA \qquad \qquad (3)$
9.2	Area bounded by curve and x- axis/	(3)
	oppervlakte begrens deur kromme en x-as:	
#	$A = \int_{-1}^{3} \left(-x^2 + 2x + 3 \right) dx$	✓ Area notation using integrals/ Area-notasie met gebruik van
	$\begin{bmatrix} r^3 \end{bmatrix}^3$	integrale M A
	$= \left[-\frac{x^3}{3} + x^2 + 3x \right]_{-1}^{3}$	$\checkmark -\frac{x^3}{3} + x^2 + 3x $ A
	$= \left[-\frac{(3)^3}{3} + (3)^2 + 3(3) \right] - \left[-\frac{(-1)^3}{3} + (-1)^2 + 3(-1) \right]$	✓✓ SF CA
	$= \frac{32}{3} \mathbf{OR/OF} \approx 10,67 units^2 / eenh^2$	$\checkmark \frac{32}{3}$ or/of 10,67 units ² /eenh ²
	Area/Oppervlak ΔOEC:	CA
	$= \frac{1}{2} \times 2 \times 3 \qquad \mathbf{OR/OF} \qquad \qquad = \int_0^2 \left(-\frac{3}{2} x + 3 \right) dx$	✓M A
	$=\left[-\frac{3}{4}x^2+3x\right]_0^2$	
	$= 3 units^2 / eenh^2$	✓ Area of/ oppervlakte van ∆ A
	Total shaded Area/ Totale gearseerde oppervlakte	
	$=\frac{32}{3}-3 \text{ units}^2/\text{eenh}^2$	
	$=\frac{23}{3} \mathbf{OR/OF} \approx 7,67 \text{ units}^2 / eenh^2$	$\checkmark \frac{23}{3} \approx 7,67 \text{ units}^2 / \text{eenh}^2$
		CA
	OR/OF	OR/OF
		ONOF

 $A = \int_{-1}^{0} (-x^2 + 2x + 3) dx$ $= \left[-\frac{x^3}{3} + x^2 + 3x \right]^0$ $= \left[-\frac{(0)^3}{3} + (0)^2 + 3(0) \right] - \left[-\frac{(-1)^3}{3} + (-1)^2 + 3(-1) \right] \checkmark \checkmark \mathbf{SF}$ $=\frac{5}{2}$ **OR/OF** $\approx 1,67$ units / eenh² $A = \int_{0}^{2} (-x^{2} + 2x + 3) dx$ $= \left[-\frac{x^3}{3} + x^2 + 3x \right]^2$ $= \left[-\frac{(2)^3}{3} + (2)^2 + 3(2) \right] - \left[-\frac{(0)^3}{3} + (0)^2 + 3(0) \right]$ $=\frac{22}{2}$ **OR/OF** $\approx 7,33$ units / eenh² $A = \int_{3}^{3} (-x^2 + 2x + 3) dx$ $= \left[-\frac{x^3}{3} + x^2 + 3x \right]^3$ $= \left[-\frac{(3)^3}{3} + (3)^2 + 3(3) \right] - \left[-\frac{(2)^3}{3} + (2)^2 + 3(2) \right]$ $=\frac{5}{2}$ **OR/OF** $\approx 1,67$ units / eenh²

Area bounded by curve and x- axis/ oppervlakte begrens deur kromme en x-as

$$= \frac{5}{3} + \frac{22}{3} + \frac{5}{3} = \frac{32}{3} \approx 10,67 \text{ units}^2 / eenh^2 \qquad \checkmark \frac{32}{3} \text{ or / of } 10,67 \text{ units}^2 / eenh^2$$

Area of $/opp.vlak. van \Delta OEC$

Area of /opp. viak. van
$$\triangle$$
 OEC
$$= \frac{1}{2} \times 2 \times 3 \qquad \text{OR/OF} \qquad = \int_0^2 \left(-\frac{3}{2}x + 3 \right) dx$$

$$= \left[-\frac{3}{4}x^2 + 3x \right]_0^2$$

$$= 3 \quad units^2 / eenh^2$$

:. Total shaded Area/ Totale gearseerde oppervlakte

$$=\frac{32}{3}-3 = \frac{23}{3}$$
 OR/OF $\approx 7,67$ units²/eenh²

✓ Area notation using integrals/ Area-notasie met gebruik van integrale M

$$\checkmark -\frac{x^3}{3} + x^2 + 3x$$
 A

$$\checkmark \frac{32}{3}$$
 or / of 10,67 units² / eenh²

✓ Area of/ opp. vlak. van ∆ A

$$\checkmark \frac{23}{3} \approx 7,67 \text{ units}^2 / \text{eenh}^2 \text{ CA}$$

$A = \int_{-1}^{0} \left(-x^2 + 2x + 3 \right) dx$ $= \left[-\frac{x^3}{3} + x^2 + 3x \right]_{-1}^{0}$ $= \left[-\frac{(0)^3}{3} + (0)^2 + 3(0) \right] - \left[-\frac{(-1)^3}{3} + (-1)^2 + 3(-1) \right]$ $= \frac{5}{3} \mathbf{OR} / \mathbf{OF} \approx 1,67 \text{ units / eenh}^2$ $A = \int_{0}^{3} \left(-x^2 + 2x + 3 \right) dx$ $= \left[-\frac{3}{3} + x^2 + 3x \right]_{0}^{2}$ $= \left[-\frac{(3)^3}{3} + (3)^2 + 3(3) \right] - \left[-\frac{(0)^3}{3} + (0)^2 + 3(0) \right]$ $= 9 \mathbf{units / eenh}^2$ $Area obounded by curve and x- axis/oppervlakte begrens deur kromme en x-as$ $= \frac{5}{3} + 9 = \frac{32}{3} \approx 10,67 \mathbf{units}^2 / \mathbf{eenh}^2$ $Area of / opp. vlak. van \land OEC$ $= \frac{1}{2} \times 2 \times 3 \mathbf{OR} / \mathbf{OF}$ $= \frac{3}{3} \cdot \mathbf{OR} / \mathbf{OF} \approx 7,67 \mathbf{units}^2 / \mathbf{eenh}^2$ $\therefore \text{ Total shaded Area/ Totale gearseerde oppervlakte}$ $= \frac{32}{3} - 3 = \frac{23}{3} \mathbf{OR} / \mathbf{OF} \approx 7,67 \mathbf{units}^2 / \mathbf{eenh}^2$ $\checkmark \text{ Area of/ opp. vlak. van } \land \mathbf{A}$ $\checkmark \text{ Area of/ opp. vlak. van } \land \mathbf{A}$ $\checkmark \text{ Area of/ opp. vlak. van } \land \mathbf{A}$ $\checkmark \text{ Area of/ opp. vlak. van } \land \mathbf{A}$ $\checkmark \text{ Area of/ opp. vlak. van } \land \mathbf{A}$ $\checkmark \text{ Area of/ opp. vlak. van } \land \mathbf{A}$ $\checkmark \text{ Area of/ opp. vlak. van } \land \mathbf{A}$ $\checkmark \text{ Area of/ opp. vlak. van } \land \mathbf{A}$ $\checkmark \text{ Area of/ opp. vlak. van } \land \mathbf{A}$ $\checkmark \text{ Area of/ opp. vlak. van } \land \mathbf{A}$ $\checkmark \text{ Area of/ opp. vlak. van } \land \mathbf{A}$ $\checkmark \text{ Area of/ opp. vlak. van } \land \mathbf{A}$ $\checkmark \text{ Area of/ opp. vlak. van } \land \mathbf{A}$ (8)	OR/OF	OR/OF
$= \left[-\frac{x^3}{3} + x^2 + 3x \right]_{-1}^{0}$ $= \left[-\frac{(0)^3}{3} + (0)^2 + 3(0) \right] - \left[-\frac{(-1)^3}{3} + (-1)^2 + 3(-1) \right]$ $= \frac{5}{3} \mathbf{OR}/\mathbf{OF} \approx 1,67 \text{ units / eenh}^2$ $A = \int_{0}^{3} \left(-x^2 + 2x + 3 \right) dx$ $= \left[-\frac{x^3}{3} + x^2 + 3x \right]_{0}^{2}$ $= \left[-\frac{(3)^3}{3} + (3)^2 + 3(3) \right] - \left[-\frac{(0)^3}{3} + (0)^2 + 3(0) \right]$ $= 9 \text{units / eenh}^2$ Area bounded by curve and x- axis/ oppervlakte begrens deur kromme en x-as $= \frac{5}{3} + 9 = \frac{32}{3} \approx 10,67 \text{ units}^2 / \text{ eenh}^2$ Area of /opp. vlak. van Δ OEC $= \frac{1}{2} \times 2 \times 3 \mathbf{OR}/\mathbf{OF} \qquad = \int_{0}^{2} \left(-\frac{3}{2}x + 3 \right) dx$ $= \left[-\frac{3}{4}x^2 + 3x \right]_{0}^{2}$ $= 3 \text{units}^2 / \text{ eenh}^2$ $\therefore \text{ Total shaded Area/ Totale gearseerde oppervlakte}$ $= \frac{32}{3} - 3 = \frac{23}{3} \mathbf{OR}/\mathbf{OF} \approx 7,67 \text{ units}^2 / \text{ eenh}^2$ $\checkmark \text{ Area of/ opp. vlak. van } \Delta \text{ A}$ $\checkmark \text{ Area of/ opp. vlak. van } \Delta \text{ A}$ (8)	$A = \int_0^0 \left(-x^2 + 2x + 3 \right) dx$	
$= \left[-\frac{x^{2}}{3} + x^{2} + 3x \right]_{-1}$ $= \left[-\frac{(0)^{3}}{3} + (0)^{2} + 3(0) \right] - \left[-\frac{(-1)^{3}}{3} + (-1)^{2} + 3(-1) \right]$ $= \frac{5}{3} \mathbf{OR}/\mathbf{OF} \approx 1,67 \text{ units / eenh}^{2}$ $A = \int_{0}^{3} \left(-x^{2} + 2x + 3 \right) dx$ $= \left[-\frac{x^{3}}{3} + x^{2} + 3x \right]_{0}^{2}$ $= \left[-\frac{(3)^{3}}{3} + (3)^{2} + 3(3) \right] - \left[-\frac{(0)^{3}}{3} + (0)^{2} + 3(0) \right]$ $= 9 \mathbf{units / eenh}^{2}$ Area bounded by curve and x- axis/ oppervlakte begrens deur kromme en x-as $= \frac{5}{3} + 9 = \frac{32}{3} \approx 10,67 \mathbf{units}^{2} / \mathbf{eenh}^{2}$ Area of /opp. vlak. van Δ OEC $= \frac{1}{2} \times 2 \times 3 \mathbf{OR}/\mathbf{OF} \qquad = \int_{0}^{2} \left(-\frac{3}{2}x + 3 \right) dx$ $= \left[-\frac{3}{4}x^{2} + 3x \right]_{0}^{2}$ $= 3 \mathbf{units}^{2} / \mathbf{eenh}^{2}$ $\therefore \text{ Total shaded Area/ Totale gearseerde oppervlakte}$ $= \frac{32}{3} - 3 = \frac{23}{3} \mathbf{OR}/\mathbf{OF} \approx 7,67 \mathbf{units}^{2} / \mathbf{eenh}^{2}$ $\checkmark \times \mathbf{SF} \qquad \mathbf{CA}$ $\checkmark \times \mathbf{SF}$ $\bullet \times \mathbf{SF}$	$A = \int_{-1} (-x^{2} + 2x + 3) dx$	_
$= \left[-\frac{(0)^3}{3} + (0)^2 + 3(0) \right] - \left[-\frac{(-1)^3}{3} + (-1)^2 + 3(-1) \right]$ $= \frac{5}{3} \mathbf{OR}/\mathbf{OF} \approx 1.67 \text{ units / eenh}^2$ $A = \int_0^3 \left(-x^2 + 2x + 3 \right) dx$ $= \left[-\frac{x^3}{3} + x^2 + 3x \right]_0^2$ $= \left[-\frac{(3)^3}{3} + (3)^2 + 3(3) \right] - \left[-\frac{(0)^3}{3} + (0)^2 + 3(0) \right]$ $= 9 \mathbf{units / eenh}^2$ Area bounded by curve and x - axis/ oppervlakte begrens deur kromme en x -as $= \frac{5}{3} + 9 = \frac{32}{3} \approx 10,67 \text{ units}^2 / \text{eenh}^2$ Area of /opp.vlak. van Δ OEC $= \frac{1}{2} \times 2 \times 3 \mathbf{OR}/\mathbf{OF}$ $= \frac{1}{2} \times 2 \times 3 \mathbf{OR}/\mathbf{OF}$ $= \frac{1}{2} \times 2 \times 3 \mathbf{OR}/\mathbf{OF}$ $= \frac{3}{3} \mathbf{OR}/\mathbf{OF} \approx 7.67 \text{ units}^2 / \text{eenh}^2$ $\Rightarrow \mathbf{A}$ $\Rightarrow \mathbf$	$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	
$= \frac{5}{3} \mathbf{OR}/\mathbf{OF} \approx 1,67 \text{ units / eenh}^2$ $A = \int_0^3 \left(-x^2 + 2x + 3 \right) dx$ $= \left[-\frac{x^3}{3} + x^2 + 3x \right]_0^2$ $= \left[-\frac{(3)^3}{3} + (3)^2 + 3(3) \right] - \left[-\frac{(0)^3}{3} + (0)^2 + 3(0) \right]$ $= 9 \text{units / eenh}^2$ Area bounded by curve and x- axis/ oppervlakte begrens deur kromme en x-as $= \frac{5}{3} + 9 = \frac{32}{3} \approx 10,67 \text{ units}^2 / \text{ eenh}^2$ Area of /opp.vlak. van \triangle OEC $= \frac{1}{2} \times 2 \times 3 \mathbf{OR}/\mathbf{OF} \qquad = \int_0^2 \left(-\frac{3}{2}x + 3 \right) dx$ $= \left[-\frac{3}{4}x^2 + 3x \right]_0^2$ $= 3 \text{units}^2 / \text{ eenh}^2$ $\therefore \text{ Total shaded Area/ Totale gearseerde oppervlakte}$ $= \frac{32}{3} - 3 = \frac{23}{3} \mathbf{OR}/\mathbf{OF} \approx 7,67 \text{ units}^2 / \text{ eenh}^2$ $\checkmark \text{ Area of/ opp. vlak. van } \triangle \text{ A}$ $\checkmark \text{ Area of/ opp. vlak. van } \triangle \text{ A}$ (8)	J-1	3
$A = \int_0^3 \left(-x^2 + 2x + 3\right) dx$ $= \left[-\frac{x^3}{3} + x^2 + 3x\right]_0^2$ $= \left[-\frac{(3)^3}{3} + (3)^2 + 3(3)\right] - \left[-\frac{(0)^3}{3} + (0)^2 + 3(0)\right]$ $= 9 \text{ units / eenh}^2$ Area bounded by curve and x- axis/ oppervlakte begrens deur kromme en x-as $= \frac{5}{3} + 9 = \frac{32}{3} \approx 10,67 \text{ units}^2 / \text{eenh}^2$ Area of /opp.vlak. van \triangle OEC $= \frac{1}{2} \times 2 \times 3 \text{OR/OF} \qquad = \int_0^2 \left(-\frac{3}{2}x + 3\right) dx$ $= \left[-\frac{3}{4}x^2 + 3x\right]_0^2$ $= 3 \text{units}^2 / \text{eenh}^2$ $\therefore \text{ Total shaded Area/ Totale gearseerde oppervlakte}$ $= \frac{32}{3} - 3 = \frac{23}{3} \text{OR/OF} \approx 7,67 \text{ units}^2 / \text{eenh}^2$ $\checkmark \text{ Area of/ opp. vlak. van } \triangle \text{ A}$ $\checkmark \text{ Area of/ opp. vlak. van } \triangle \text{ A}$ (8)	$= \left[-\frac{(0)^3}{3} + (0)^2 + 3(0) \right] - \left[-\frac{(-1)^3}{3} + (-1)^2 + 3(-1) \right]$	✓✓ SF CA
$= \left[-\frac{x^3}{3} + x^2 + 3x \right]_0^2$ $= \left[-\frac{(3)^3}{3} + (3)^2 + 3(3) \right] - \left[-\frac{(0)^3}{3} + (0)^2 + 3(0) \right]$ $= 9 units / eenh^2$ Area bounded by curve and x- axis/ oppervlakte begrens deur kromme en x-as $= \frac{5}{3} + 9 = \frac{32}{3} \approx 10,67 units^2 / eenh^2$ Area of /opp.vlak. van \triangle OEC $= \frac{1}{2} \times 2 \times 3 \text{OR/OF} \qquad = \int_0^2 \left(-\frac{3}{2}x + 3 \right) dx$ $= \left[-\frac{3}{4}x^2 + 3x \right]_0^2$ $= 3 units^2 / eenh^2$ $\therefore \text{ Total shaded Area/ Totale gearseerde oppervlakte}$ $= \frac{32}{3} - 3 = \frac{23}{3} \text{OR/OF} \approx 7,67 units^2 / eenh^2$ $\checkmark \text{ Area of/ opp. vlak. van } \triangle \text{ A}$ (8)	$= \frac{5}{3} \mathbf{OR/OF} \approx 1,67 \text{ units / eenh}^2$	
$= \left[-\frac{(3)^3}{3} + (3)^2 + 3(3) \right] - \left[-\frac{(0)^3}{3} + (0)^2 + 3(0) \right]$ $= 9 \text{ units / eenh}^2$ Area bounded by curve and x- axis/ oppervlakte begrens deur kromme en x-as $= \frac{5}{3} + 9 = \frac{32}{3} \approx 10,67 \text{ units}^2 / \text{eenh}^2$ Area of /opp. vlak. van \(\Delta \text{ OEC} \) $= \frac{1}{2} \times 2 \times 3 \text{OR/OF} \qquad = \int_0^2 \left(-\frac{3}{2}x + 3 \right) dx$ $= \left[-\frac{3}{4}x^2 + 3x \right]_0^2$ $= 3 \text{units}^2 / \text{eenh}^2$ $\therefore \text{ Total shaded Area/ Totale gearseerde oppervlakte}$ $= \frac{32}{3} - 3 = \frac{23}{3} \text{OR/OF} \approx 7,67 \text{ units}^2 / \text{eenh}^2$ $\checkmark \text{ Area of/ opp. vlak. van } \Delta \text{ A}$ $\checkmark \text{ Area of/ opp. vlak. van } \Delta \text{ A}$ (8)	$A = \int_0^3 \left(-x^2 + 2x + 3 \right) dx$	
$= 9 \text{ units / eenh}^{2}$ Area bounded by curve and x- axis/ oppervlakte begrens deur kromme en x-as $= \frac{5}{3} + 9 = \frac{32}{3} \approx 10,67 \text{ units}^{2} / \text{eenh}^{2}$ Area of /opp.vlak. van \triangle OEC $= \frac{1}{2} \times 2 \times 3 \text{OR/OF} \qquad = \int_{0}^{2} \left(-\frac{3}{2}x + 3 \right) dx$ $= \left[-\frac{3}{4}x^{2} + 3x \right]_{0}^{2}$ $= 3 \text{units}^{2} / \text{eenh}^{2}$ $\therefore \text{ Total shaded Area/ Totale gearseerde oppervlakte}$ $= \frac{32}{3} - 3 = \frac{23}{3} \text{OR/OF} \approx 7,67 \text{ units}^{2} / \text{eenh}^{2}$ $\checkmark \text{ Area of/ opp. vlak. van } \triangle \text{ A}$ $\checkmark \text{ Area of/ opp. vlak. van } \triangle \text{ A}$ (8)	$= \left[-\frac{x^3}{3} + x^2 + 3x \right]_0^2$	
Area bounded by curve and x- axis/ oppervlakte begrens deur kromme en x-as $= \frac{5}{3} + 9 = \frac{32}{3} \approx 10,67 \text{ units}^2 / \text{eenh}^2$ Area of /opp.vlak. van \triangle OEC $= \frac{1}{2} \times 2 \times 3 \text{OR/OF} \qquad = \int_0^2 \left(-\frac{3}{2}x + 3 \right) dx$ $= \left[-\frac{3}{4}x^2 + 3x \right]_0^2$ $= 3 \text{units}^2 / \text{eenh}^2$ $\therefore \text{ Total shaded Area/ Totale gearseerde oppervlakte}$ $= \frac{32}{3} - 3 = \frac{23}{3} \text{OR/OF} \approx 7,67 \text{ units}^2 / \text{eenh}^2$ $\checkmark \text{ Area of/ opp. vlak. van } \triangle \text{ A}$ (8)	$= \left[-\frac{(3)^3}{3} + (3)^2 + 3(3) \right] - \left[-\frac{(0)^3}{3} + (0)^2 + 3(0) \right]$	
oppervlakte begrens deur kromme en x-as $= \frac{5}{3} + 9 = \frac{32}{3} \approx 10,67 \text{ units}^2/\text{ eenh}^2$ Area of /opp.vlak. $van \triangle OEC$ $= \frac{1}{2} \times 2 \times 3 OR/OF \qquad = \int_0^2 \left(-\frac{3}{2}x + 3\right) dx$ $= \left[-\frac{3}{4}x^2 + 3x\right]_0^2$ $= 3 units^2/\text{ eenh}^2$ $\therefore \text{ Total shaded Area/ Totale gearseerde oppervlakte}$ $= \frac{32}{3} - 3 = \frac{23}{3} OR/OF \approx 7,67 \text{ units}^2/\text{ eenh}^2$ $\checkmark \text{ Area of/ opp. vlak. } van \triangle \text{ A}$ $\checkmark \text{ Area of/ opp. vlak. } van \triangle \text{ A}$ (8)	$= 9 units / eenh^2$	
$= \frac{5}{3} + 9 = \frac{32}{3} \approx 10,67 \text{ units}^2 / \text{eenh}^2$ $= \frac{5}{3} + 9 = \frac{32}{3} \approx 10,67 \text{ units}^2 / \text{eenh}^2$ $= \frac{1}{2} \times 2 \times 3 \text{OR/OF}$ $= \begin{bmatrix} -\frac{3}{4}x^2 + 3x \end{bmatrix}_0^2$ $= 3 \text{units}^2 / \text{eenh}^2$ $\therefore \text{ Total shaded Area/ Totale gearseerde oppervlakte}$ $= \frac{32}{3} - 3 = \frac{23}{3} \text{OR/OF} \approx 7,67 \text{ units}^2 / \text{eenh}^2$ $\checkmark \text{ Area of/ opp. vlak. van } \triangle \text{ A}$ $\checkmark \text{ Area of/ opp. vlak. van } \triangle \text{ A}$ (8)	Area bounded by curve and x- axis/	
Area of /opp.vlak. van \triangle OEC $= \frac{1}{2} \times 2 \times 3 \mathbf{OR/OF} \qquad = \int_0^2 \left(-\frac{3}{2}x + 3 \right) dx$ $= \left[-\frac{3}{4}x^2 + 3x \right]_0^2$ $= 3 units^2 / eenh^2$ $\therefore \text{ Total shaded Area/ Totale gearseerde oppervlakte}$ $= \frac{32}{3} - 3 = \frac{23}{3} \mathbf{OR/OF} \approx 7,67 units^2 / eenh^2$ $\checkmark \text{ Area of/ opp. vlak. van } \triangle \text{ A}$ (8)	oppervlakte begrens deur kromme en x-as	
$= \frac{1}{2} \times 2 \times 3 \mathbf{OR/OF} \qquad = \int_0^2 \left(-\frac{3}{2} x + 3 \right) dx$ $= \left[-\frac{3}{4} x^2 + 3x \right]_0^2$ $= 3 units^2 / eenh^2$ $\therefore \text{Total shaded Area/ Totale gearseerde oppervlakte}$ $= \frac{32}{3} - 3 = \frac{23}{3} \mathbf{OR/OF} \approx 7,67 units^2 / eenh^2$ $\checkmark \text{Area of/ opp. vlak. van } \triangle \mathbf{A}$ $\checkmark \frac{23}{3} \approx 7,67 units^2 / eenh^2 \mathbf{CA}$ (8)	$= \frac{5}{3} + 9 = \frac{32}{3} \approx 10,67 \text{ units}^2 / eenh^2$	$\checkmark \frac{32}{3}$ or $/ of 10,67 \ units^2 / eenh^2$
$= \begin{bmatrix} -\frac{3}{4}x^2 + 3x \end{bmatrix}_0^2$ $= 3 units^2 / eenh^2$ $\therefore \text{ Total shaded Area/ Totale gearseerde oppervlakte}$ $= \frac{32}{3} - 3 = \frac{23}{3} \mathbf{OR/OF} \approx 7,67 units^2 / eenh^2$ $\checkmark \text{ Area of/ opp. vlak. van } \Delta \mathbf{A}$ (8)		
= 3 units²/eenh² ∴ Total shaded Area/ Totale gearseerde oppervlakte $= \frac{32}{3} - 3 = \frac{23}{3} \text{ OR/OF} \approx 7,67 \text{ units}²/eenh²$ ✓ Area of/opp. vlak. van \triangle A (8)	$= \frac{1}{2} \times 2 \times 3 \qquad \mathbf{OR/OF} \qquad \qquad = \int_0^2 \left(-\frac{3}{2} x + 3 \right) dx$	✓M A
= 3 units²/eenh² ∴ Total shaded Area/ Totale gearseerde oppervlakte $= \frac{32}{3} - 3 = \frac{23}{3} \text{ OR/OF} \approx 7,67 \text{ units}²/eenh²$ ✓ Area of/opp. vlak. van \triangle A (8)	$= \left[-\frac{3}{4}x^2 + 3x \right]^2$	
∴ Total shaded Area/ Totale gearseerde oppervlakte $= \frac{32}{3} - 3 = \frac{23}{3} \text{ OR/OF} \approx 7,67 \text{ units}^2 / \text{eenh}^2 \qquad \checkmark \frac{23}{3} \approx 7,67 \text{ units}^2 / \text{eenh}^2 \text{CA}$ (8)		✓ Area of/one ylak yan A A
(8) [13]	∴ Total shaded Area/ Totale gearseerde oppervlakte	- Mea on opp. viak. van A
[13]	$=\frac{32}{3}-3 = \frac{23}{3}$ OR/OF $\approx 7,67$ units ² /eenh ²	$\checkmark \frac{23}{3} \approx 7,67 \text{ units}^2 / \text{eenh}^2 \text{ CA}$
		(8)
[150]		[13]
		[150]