Total No.	of Questions	:	8]	
-----------	--------------	---	----	--

SEAT No. :	
------------	--

[Total No. of Pages :3

P2862

[4958]-1050 T.E.(E&TC)

ANTENNA & WAVE PROPAGATION (2012 Pattern) (Semester-II) (End Sem.)

Time :2½ Hours] [Max. Marks : 70

Instructions to the candidates:

- 1) Answer any one Question out of Q1 & Q2, Q3 & Q4, Q5 & Q6, Q7& Q8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data if necessary.
- Q1) a) What is poynting vector? What is its significance? Derive an expression for poynting vector?[8]
 - b) Derive vector potential A for an magnetic current source J. [6]
 - c) Calculate the skip distance for flat earth with MUF of 10MHz.If wave is reflected from a height of 300 Km where maximum value of refractive index(n) is 0.9.

OR

Q2) a) Explain antenna radiation mechanism in detail.

[6]

- b) What is polarization of wave? Explain the polarization of three types of wave with the help of relevant diagram? [6]
- c) A lossless resonant $\lambda/2$ dipole antenna with input impedance of 73Ω is to be connected to a transmission line whose characteristics impedance is 50Ω . Assuming that the pattern of the antenna is given approximately by U=Bosin³ θ . Fnd the overall maximum gain of this antenna.
- Q3) a) Find the following terms for small Dipole antenna: [18]
 - i) Specify the current
 - ii) Vector magnetic potential
 - iii) Far field components of Electric & Magnetic fields
 - iv) Radiation density, radiation intensity
 - v) Radiated power, radiation resistance
 - vi) Directivity
 - vii) Draws the radiation pattern.

OR

Q4)	a)	Calculate the radiation resistance of a double turn and an eight turn small circular loop when radius of loop is $\lambda/10$ and the medium is free space. Calculate its efficiency if loss resistance is 25Ω .		
	b)	Derive mathematical expression for power density and radiation intensity of half wave dipole antenna and draw radiation pattern of half wave dipole antenna in E an H plane. [10]		
Q5)	a)	Write a short notes on [8]		
		i) Pattern Multiplication		
		ii) Binomial Array		
	b)	For an array of four isotropic sources along Z-axis separated by a distant $\lambda/2$ and progressive phase shift $\alpha=0$ find		
		i) Nulls direction		
		ii) Direction of maxima		
		iii) Direction side lobes		
		iv) Half power Beam width		
		v) Draw neat radiation pattern.		
		OR		
Q6)	a)	Explain planar array. State its advantages and applications. [6]		
	b)	Design a broad side Dolph-Tschebhysheff array of five elements with half wavelength spacing between elements and with major to minor lobe ratio to be 19dB. Find the excitation coefficients & array factor. [5]		
	c)	Give the comparison of broadside and End fire antenna array. [5]		
Q7)	a)	What is Microstrip patch antenna? Give structure details, radiation pattern, specification and application of such antenna. [5]		
	b)	What is meant by Rhombic Antenna? How it is constructed? Explain how unidirectional pattern is obtained in properly terminated Rhombic Antenna. [5]		
	c)	Write a short notes on following antennas with respect to structural details,		

Whip antenna

radiation pattern, features and applications.

2

[6]

Hertz antenna

i)

ii)

Q8) a) Write a short notes on the following antennas.

[12]

- i) Lens Antenna
- ii) Resonant Antenna
- iii) Super-turnstile Antenna
- b) A paraboloidal reflector antenna with diameter 20m is designed to operate at frequency of 6 GHz and illumination efficiency of 0.54. Calculate the antenna gain in decibels. [4]

