1 Lista IX - Exercícios

Data de Entrega: 27/07/1997

1. Quais das expressões abaixo representam um polinômio na variável x?

(a)
$$x^5 + x^3 + 2$$

(b)
$$0x^4 + 0x^2$$

(c) 3

(d)
$$x^{\frac{5}{2}} + 3x^2$$

(e) $(\sqrt{x})^4 + x + 2$

(f)
$$x\sqrt{x} + x^2$$

(g) x^{15}

(h)
$$x^{27} + x^7 + x^{1997}$$

(i)
$$\frac{1}{x^4} + x$$

(i)
$$x + x^3 + x^6 + x^4$$

(k)
$$(3x^2 - 5x + 3)(7x^3 + 2)$$

2. Dada a função polinomial $p(x) = x^3 + x^2 + x + 1$ calcule: p(-3), p(0), p(1), p(x+1), p(2x) e p(p(-1))

3. Seja a função polinomial $p(x)=x^{15}+x^{14}+x^{13}+\cdots+x^2+x+1$. Calcular p(0), p(1) e p(-1)

4. Determinar os números reais a,b e c de modo que $p=(a-2)x^3+(b+2)x+(3-c)$ seja o polinômio nulo.

5. Determinar os números reais a, b e c de modo que a função $p(x) = (a+b-5)x^2 + (b+c-7)x + (a+c)$ seja identicamente nula.

6. Dadas as funções polinomiasi $p(x) = (a-1)x^2 + bx + c$ e $g(x) = 2ax^2 + 2bx - c$ qual é a condição para que se tenha a identidade $f(x) \equiv g(x)$?

7. Determinar a condição necessária e suficiente para que a expressão:

$$\frac{a_1x^2 + b_1x + c_1}{a_2x^2 + b_2x + c_2}$$

onde a_1, a_2, b_1, b_2, c_1 e c_2 são reais não nulos, assuma um valor que não dependa de x.

8. Dados os polinômios:

$$p(x) = 7 - 2x + 4x^{2}$$

$$q(x) = 5 + x + x^{2} + 5x^{3}$$

$$r(x) = 2 - 3x + x^{4}$$

calcular (f+g)(x), (g-h)(x) e (h-f)(x)

9. Dados os polinômios:

$$f(x) = 2 + 3x - 4x^{2}$$
$$g(x) = 7 + x^{4}$$
$$h(x) = 2x - 3x^{2} + x^{3}$$

calcular (fg)(x), (gh)(x) e (hf)(x)

- 10. Calcular h(x) tal que h(x) = (x+1)(x-2) + (x-2)(x-1) + 4(x+1)
- 11. Calcular h(x) tal que $h(x) = (x+2)^2 + (2x-1)^3$
- 12. Sendo os polinômios $f=x, g=x+x^3$ e $h=2x^3+5x$ obter os números reais a e b tais que h=af+bg
- 13. Sendo dados os polinômios: $f = x^2$, $g = x^2 + x^4$, $h = x^2 + x^4 + x^6$ e $k = 3x^6 6x^4 + 2x^2$
- 14. Demonstrar que $f = (x-1)^2 + (x-3)^2 2(x-2)^2 2$ é o polinômio nulo.
- 15. Determinar $a, b \in c$ de modo que se tenha:
 - (a) $a(x^2-1) + bx + c = 0$
 - (b) $a(x^2 + x) + (b + c)x + c = x^2 + 4x + 2$
 - (c) $x^3 ax(x+1) + b(x^2-1) + cx + 4 = x^3 2$
- 16. Determinar $\alpha, \beta \in \mathbb{R}$ para que os polinômios $f = x^3 + \alpha x + \beta$ e $g = (x^2 + x + 1)^2 x^4$ sejam iguais.
- 17. Determinar a condição para que $ax^2 + bx + c$ seja um polinômio quadrado perfeito.
- 18. Obter $\alpha \in \mathbb{R}$ de modo que os polinômios $f = x^4 + 2\alpha x^3 4\alpha x + 4$ e $g = x^2 + 2x + 2$ verifiquem e condição $f = g^2$.
- 19. Determinar a condição para que o polinômio $f = (ax + b)^2 + (cx + d)^2$, onde a,b,c e d são reais e não nulos, seja um quadrado perfeito.