Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный технический университет им. Н. Э. Баумана

23 0102

АСОИ поиска алгоритмов распознавания изоморфизма графов с помощью генетического программирования Руководство пользователя

Студент группы ИУ5-82 \_\_\_\_\_ Гуща А. В "\_\_\_" \_\_\_\_

# Содержание

# 1 Назначение программы

Назначением разработки является предоставлению пользователю инструментов по автоматическому поиску алгоритмов проверки изоморфизма ориентированных графов и выдача графической информации для осуществления ручного анализа.

# 2 Условия выполнения программы

# 2.1 Требования к программным средствам

Для работы данного приложения необходимо, чтобы на компьютере были установлены следующие программные продукты:

- Операционная система семейства GNU/Linux с версией ядра не ниже 3.0
- Оконная система X Window System не ниже версии X11R7.3
- Библиотеа элементов интерфейса GTK+ не ниже версии 3.10

# 2.2 Требования к составу технических средств

Данная программа должна работать на компьютере следующей конфигурации:

- Процессор, поддерживающий архитектуру х<br/>86\_64 с тактовой частотой не менее 1.5 Г Гц
- Оперативная память объемом не менее 1 Гб
- Графический ускоритель и монитор, способные отображать графический интерфейс операционной системы
- Устройства ввода: мышь и клавиатура

# 2.3 Требования к подготовке оператора

Для продуктивного использования данного программного продукта пользователь должен обладать следующими навыками и знаниями:

- Базовые знания английского языка, если операционная система имеет английский язык как основной
- Знания из теории графов: понятия графа, изоморфизма графов, деревья и др.
- Базовые знания информатики: алгоритм, программа, процесс интерпретации, проблемно-ориентированный язык программирования и др.
- Базовые знания эволюционных методов: функция приспособленности, популяция, индивиды, геном и др.

# 3 Выполнение программы

# 3.1 Инсталляция программного продукта

Для инсталляции программного продукта необходимо скопировать следующие файлы в инсталляционную папку:

- graph-isomorph
- gui.glade
- icon.png
- icon-small.png

# 3.2 Запуск программного продукат

Для запуска программы необходимо произвести двойное нажатие левой клавиши мышки на иконке файла «graph-isomorph» в графическом режиме или через терминал: перейти в инсталляционную папку и ввести:

./graph-isomorph

Возможен запуск с заранее определенным файлом проекта:

./graph-isomorph --proj=имя\_файла\_проекта

Для получения справки о входных параметрах приложения:

./graph-isomorph --help

Что отобразит в терминале следующее сообщение:

\$ ./graph-isomorph --help
graph-isomorph [options]

# 4 Сообщения оператору

# 4.1 Выход из приложения

Чтобы осуществить выход из приложения, необходимо:

- Вызвать контекстное меню «Файл» нажатием левой клавиши мыши
- Нажать на пункт «Выход» левой клавишей мыши



Рисунок 1 – Выход из приложения

# 4.2 Вызов справочной информации

Чтобы просмотреть справочную ифнормацию, необходимо:

- Вызвать контекстное меню «Помощь» нажатием левой клавиши мыши
- Нажать на пункт «О программе» левой клавишей мыши

#### 4.3 Операции с проектом

Вся информация, которая должна передаваться между запусками приложения, хранится в **проекте**, который сохраняется на жесткий диск в формате YAML. По умолчанию открывается проект с именем «project.yml».



Рисунок 2 – Вызов справочной информации



Рисунок 3 – Просмотр справочной информации

#### 4.3.1 Создание нового проекта

Для создания нового проекта необходимо:

- Вызвать контекстное меню «Файл» нажатием левой клавиши мыши
- Нажать на пункт «Новый проект»
- В появившемся диалоге «Выберите файл нового проекта» осуществить выбор файла
- Нажать на кнопку «ОК» диалога



Рисунок 4 – Диалог создания нового проекта

#### 4.3.2 Открытие проекта

Для открытия проекта необходимо:

- Вызвать контекстное меню «Файл» нажатием левой клавиши мыши
- Нажать на пункт «Открыть проект»
- В появившемся диалоге «Выберите файл проекта» осуществить выбор файла
- Нажать на кнопку «ОК» диалога



Рисунок 5 – Диалог открытия проекта

#### 4.3.3 Сохранение проекта

Есть два способа сохранения проекта:

- Сохранение по текущему названию проекта:
  - Вызвать контекстное меню «Файл» нажатием левой клавиши мыши
  - Нажать на пункт «Сохранить проект»
- Сохранение с уточнением названия проекта:
  - Вызвать контекстное меню «Файл» нажатием левой клавиши мыши
  - Нажать на пункт «Сохранить проект как»
  - В появившемся диалоге «Выберите файл проекта» осуществить выбор файла
  - Нажать на кнопку «ОК» диалога



Рисунок 6 – Диалог сохранения проекта

# 4.4 Окно настроек

Окно настроек предназначено для:



Рисунок 7 – Окно настроек

- Просмотра операторов проблемно-ориентированного языка, их названий и описания
- Просмотр и установка параметров эволюции, которые сохраняются в проекте

Данное окно видно при запуске приложения, но его возможно закрыть, тогда его можно снова активировать через другие окна путем нажатия на пункт «Показать окно настроек» меню «Вид».

# 4.4.1 Просмотр операторов проблемно-ориентированного языка

С левой стороны окна присутствует список операторов, зарегистрированных в проблемно-ориентированном языке представления алгоритмов проверки изоморфизма графов. При нажатии на имени оператора в центральной части появляется подробная информация о назначении оператора.

#### 4.4.2 Просмотр и установка параметров эволюции

В правой части окна содержится список полей ввода для параметров процесса эволюции. Над каждым полем ввода имеется описание назначения параметра, в поле отображается текствовое представление параметра, которое использу-

ется АСОИ на данный момент. При некорректном вводе параметра появляется диалоговое окно с описанием проблемы и введенное значение отвергается.



Рисунок 8 – Сообщение об ошибке распознавания входных данных

#### 4.5 Окно эволюции

Окно эволюции предназначено для:

- Отображения процесса эволюции
- Управлением процессом эволюции
- Просмотр входных данных для алгоритмов определения изоморфизма

При запуске приложения окно эволюции не видно, для того, чтобы активировать его, необходимо нажать на пункт «Показать окно эволюции» меню «Вид».

# 4.5.1 Управление процессом эволюции

В нижней части окна находится три кнопки управления процессом эволюции:

- Первая кнопка с черным треугольником запуск процесса эволюции или его возобновление
- Вторая кнопка с двумя вертикальными прямоугольниками пауза процесса эволюции



Рисунок 9 – Окно эволюции

 Третья кнопка с черным прямоугольником - остановка процесса эволюции, при нажатии на эту кнопку будет создана новая популяция и процесс эволюции начнется с самого начала.

Также предусмотрен горизонтальный индикатор процесса обработки одного поколения. Его заполненность характеризует завершенность процессов определения значений приспособленности алгоритмов и генерации следующего поколения.

#### 4.5.2 Просмотр входных данных

В левой части окна находится область отображения входных графов, которые подаются на вход проверяемых алгоритмов. Первый граф находится выше второго. Имеются полосы прокрутки для просмотра больших изображений графов.

# 4.5.3 Просмотр промежуточных значений

В правой части окна находятся поля ввода без возможности редактирования, в которых отображаются:

- Номер текущего поколения
- Максимальное значение функции приспособленности
- Среднее значение функции приспособленности

# 4.6 Окно результатов

Окно результатов предназначено для:

- Просмотра состава популяции
- Просмотра исходного кода алгоритмов
- Просмотра графической формы алгоритма

При запуске приложения окно результатов не видно, для того, чтобы активировать его, необходимо нажать на пункт «Показать окно результатов» меню «Вид».



Рисунок 10 – Окно результатов

# 4.7 Просмотр состава популяции

В левой части окна присутствует список индивидов, которые составляют текущую популяцию. В элемнтах списка отображается имя индивида (случайно сгенерированная строка) и значение функции приспособленности.

#### 4.7.1 Просмотр исходного кода алгоритмов

При нажатии на элемент списка индивидов в центральной области окна отображается текстовое представление генома выбранного индивида. Данный исходный код является псевдокодом с Си-подобным синтаксисом. Для длинных исходных кодов присуствуют полосы прокрутки.

# 4.7.2 Просмотр графической формы алгоритма

При нажатии на элемент списка индивидов в правой области окна отображается графическое представление генома выбранного индивида в виде дерева с переменной арностью. Для крупных изображений деревьев присуствуют полосы прокрутки.



Рисунок 11 – Просмотр графического представления генома индивида