group project 2

Group 05

2022/3/15

Contents

Introduction of dataset	1
question of dataset	1
explain each variables	2
data processing	2
Exploratory data analysis	2
the distribution of rating.large7 by genre	2
the distribution of rating.large 7 by other numerical variables $\dots \dots \dots \dots \dots \dots \dots$	3
formal analysis	7
stepwise: choosing which variables need to be removed	7
compare different link functions	8
odds ratios of model1	13
prediction	14
film <- read.csv("dataset5.csv")	

Introduction of dataset

question of dataset

Imagine you have been asked by a film producer to investigate the following question of interest:

• Which properties of films influence whether they are rated by IMDB as greater than 7 or not?

You should conduct an analysis to answer your question using a Generalised Linear Model (GLM). Following your analyses, you should then summarise your results in the form of a presentation.

explain each variables

- film.id The unique identifier for the film
- year Year of release of the film in cinemas
- length Duration (in minutes)
- budget Budget for the films production (in \$1000000s)
- votes Number of positive votes received by viewers
- genre Genre of the film
- rating IMDB rating from 0-10

data processing

create a col seperate the rate: >7(1), <=7(0)

```
film <- film %>%
  mutate(rating.large7 = cut(rating, breaks = c(0,7,Inf), labels=c(0,1))) %>%
  dplyr::select(-film_id, -rating)%>%
  na.omit()
```

Exploratory data analysis

the distribution of rating.large7 by genre

```
film %>%
  group_by(genre, rating.large7)%>%
  summarise(n = n())
```

'summarise()' has grouped output by 'genre'. You can override using the '.groups' argument.

```
## # A tibble: 13 x 3
## # Groups: genre [7]
                 rating.large7
##
     genre
##
      <chr>
                 <fct>
                                <int>
  1 Action
                                  563
## 2 Action
                 1
                                 117
## 3 Animation
                 0
                                  49
## 4 Animation
                 1
                                  111
## 5 Comedy
                 0
                                  224
                                 325
## 6 Comedy
## 7 Documentary 0
                                  11
## 8 Documentary 1
                                  121
## 9 Drama
                                  620
## 10 Drama
                  1
                                   34
## 11 Romance
                 0
                                   15
## 12 Short
                  0
                                   1
## 13 Short
                                  104
                  1
```

```
plot_xtab(film$rating.large7,film$genre,show.values =FALSE,show.total =FALSE,
axis.labels =c("0","1"),
axis.titles=c("rating larger than 7?"))
```


the distribution of rating.large7 by other numerical variables

```
## budget
film.plot1<-ggplot(film, aes(y=budget,x=rating.large7))

film.plot1+geom_boxplot()+xlab("rating larger than 7?")+
theme(panel.background =element_rect(fill ="transparent",colour =NA),
plot.background =element_rect(fill ="transparent",colour =NA),
panel.border =element_rect(fill =NA,colour ="black",size =1))</pre>
```



```
## year
film.plot2<-ggplot(film, aes(y=year,x=rating.large7))

film.plot2+geom_boxplot()+xlab("rating larger than 7?")+
theme(panel.background =element_rect(fill ="transparent",colour =NA),
plot.background =element_rect(fill ="transparent",colour =NA),
panel.border =element_rect(fill =NA,colour ="black",size =1))</pre>
```



```
## votes
film.plot3<-ggplot(film, aes(y=votes,x=rating.large7))

film.plot3+geom_boxplot()+xlab("rating larger than 7?")+
theme(panel.background =element_rect(fill ="transparent",colour =NA),
plot.background =element_rect(fill ="transparent",colour =NA),
panel.border =element_rect(fill =NA,colour ="black",size =1))</pre>
```



```
## length
film.plot4<-ggplot(film, aes(y=length,x=rating.large7))

film.plot4+geom_boxplot()+xlab("rating larger than 7?")+
theme(panel.background =element_rect(fill ="transparent",colour =NA),
plot.background =element_rect(fill ="transparent",colour =NA),
panel.border =element_rect(fill =NA,colour ="black",size =1))</pre>
```


formal analysis

stepwise: choosing which variables need to be removed.

Since Model2(removed year) has lowest AIC=1310.1 and deviance D=1290.1 we will go ahead and compared the three link function in our model

```
model <- glm(rating.large7 ~ year + length + budget + votes + genre, family = binomial(link = "logit")
logit.step <- step(model,direction='both')

## Start: AIC=1311.03
## rating.large7 ~ year + length + budget + votes + genre
##

## Df Deviance AIC
## - year 1 1290.1 1310.1
## <none> 1289.0 1311.0
```

Step: AIC=1310.07

1

1

- votes

- budget

- genre

- length 1

1293.0 1313.0

1599.9 1619.9

1663.1 1683.1

2110.1 2120.1

```
## rating.large7 ~ length + budget + votes + genre
##
##
            Df Deviance
                            AIC
## <none>
                 1290.1 1310.1
## + year
             1
                 1289.0 1311.0
## - votes
                 1294.3 1312.3
             1
## - length
                 1609.3 1627.3
             1
## - budget
             1
                 1664.8 1682.8
## - genre
             6
                 2130.3 2138.3
```

summary(logit.step)

```
##
## Call:
## glm(formula = rating.large7 ~ length + budget + votes + genre,
##
      family = binomial(link = "logit"), data = film)
##
## Deviance Residuals:
      Min
##
                1Q
                     Median
                                  3Q
                                          Max
## -3.7603 -0.4107 -0.1148
                              0.2614
                                       4.1785
##
## Coefficients:
##
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                   -3.618e+00 4.428e-01 -8.170 3.09e-16 ***
                   -5.129e-02 3.566e-03 -14.382 < 2e-16 ***
## length
## budget
                    4.962e-01 3.147e-02
                                         15.770
                                                  < 2e-16 ***
## votes
                    3.609e-05 1.672e-05
                                           2.159
                                                   0.0309 *
                                          -0.584
## genreAnimation
                  -1.974e-01 3.378e-01
                                                   0.5590
## genreComedy
                    2.749e+00 1.835e-01
                                          14.983
                                                 < 2e-16 ***
## genreDocumentary 4.840e+00 4.098e-01
                                          11.809 < 2e-16 ***
## genreDrama
                   -2.040e+00 2.580e-01
                                          -7.907 2.64e-15 ***
## genreRomance
                   -1.361e+01 3.138e+02
                                         -0.043
                                                   0.9654
## genreShort
                    4.209e+00 1.050e+00
                                           4.008 6.12e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 2982.5 on 2294 degrees of freedom
## Residual deviance: 1290.1 on 2285
                                      degrees of freedom
## AIC: 1310.1
##
## Number of Fisher Scoring iterations: 14
```

compare different link functions

the AIC and BIC in model1 is the smallest, and the Pseudo-R² is the largest. Hence we choose 'logit' link function to fit our model

Model 1: logit link

```
model1 <- glm(rating.large7 ~ length + budget + votes + genre, family = binomial(link = "logit"), data</pre>
summary(model1)
##
## Call:
## glm(formula = rating.large7 ~ length + budget + votes + genre,
##
       family = binomial(link = "logit"), data = film)
##
## Deviance Residuals:
##
                 1Q
                      Median
                                   3Q
                                           Max
           -0.4107 -0.1148
## -3.7603
                               0.2614
                                        4.1785
##
## Coefficients:
##
                      Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                   -3.618e+00 4.428e-01 -8.170 3.09e-16 ***
## length
                    -5.129e-02 3.566e-03 -14.382 < 2e-16 ***
## budget
                     4.962e-01 3.147e-02 15.770
                                                  < 2e-16 ***
## votes
                     3.609e-05 1.672e-05
                                            2.159
                                                    0.0309 *
## genreAnimation
                   -1.974e-01 3.378e-01
                                          -0.584
                                                    0.5590
## genreComedy
                     2.749e+00 1.835e-01
                                          14.983
                                                  < 2e-16 ***
## genreDocumentary 4.840e+00 4.098e-01
                                                  < 2e-16 ***
                                           11.809
## genreDrama
                    -2.040e+00 2.580e-01
                                          -7.907 2.64e-15 ***
## genreRomance
                    -1.361e+01 3.138e+02 -0.043
                                                    0.9654
## genreShort
                     4.209e+00 1.050e+00
                                           4.008 6.12e-05 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 2982.5 on 2294
                                       degrees of freedom
## Residual deviance: 1290.1 on 2285
                                       degrees of freedom
## AIC: 1310.1
## Number of Fisher Scoring iterations: 14
summ(model1)
```

```
Observations 2295
Dependent variable rating.large7
Type Generalized linear model
Family binomial
Link logit
```

Model 2: probit link

```
model2 <- glm(rating.large7 ~ length + budget + votes + genre, family = binomial(link = "probit"), data</pre>
```

$\chi^{2}(9)$	1692.40
Pseudo-R ² (Cragg-Uhler)	0.72
Pseudo-R ² (McFadden)	0.57
AIC	1310.07
BIC	1367.45

	Est.	S.E.	z val.	р
(Intercept)	-3.62	0.44	-8.17	0.00
length	-0.05	0.00	-14.38	0.00
budget	0.50	0.03	15.77	0.00
votes	0.00	0.00	2.16	0.03
genreAnimation	-0.20	0.34	-0.58	0.56
genreComedy	2.75	0.18	14.98	0.00
genreDocumentary	4.84	0.41	11.81	0.00
genreDrama	-2.04	0.26	-7.91	0.00
genreRomance	-13.61	313.77	-0.04	0.97
genre Short	4.21	1.05	4.01	0.00

Standard errors: MLE

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

summary(model2)

```
##
## Call:
## glm(formula = rating.large7 ~ length + budget + votes + genre,
      family = binomial(link = "probit"), data = film)
##
## Deviance Residuals:
##
      Min
                1Q Median
                                  3Q
                                          Max
## -4.1883 -0.4440 -0.0870
                                       4.8941
##
## Coefficients:
##
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                   -2.083e+00 2.342e-01 -8.895 < 2e-16 ***
## length
                   -2.565e-02 1.792e-03 -14.312 < 2e-16 ***
                    2.637e-01 1.604e-02 16.442 < 2e-16 ***
## budget
## votes
                    1.937e-05 8.570e-06
                                          2.261
                                                   0.0238 *
## genreAnimation
                    6.224e-02 1.818e-01
                                          0.342
                                                   0.7321
                    1.468e+00 9.656e-02 15.202 < 2e-16 ***
## genreComedy
## genreDocumentary 2.639e+00 2.074e-01 12.720 < 2e-16 ***
## genreDrama
                   -1.117e+00 1.319e-01
                                         -8.468
                                                 < 2e-16 ***
                   -4.742e+00 7.702e+01
                                         -0.062
                                                   0.9509
## genreRomance
## genreShort
                    2.307e+00 4.497e-01
                                          5.131 2.88e-07 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 2982.5 on 2294 degrees of freedom
## Residual deviance: 1314.7 on 2285 degrees of freedom
```

```
## AIC: 1334.7
```

Number of Fisher Scoring iterations: 14

summ(model2)

Observations	2295
Dependent variable	rating.large7
Type	Generalized linear model
Family	binomial
Link	probit

$\chi^{2}(9)$	1667.81
Pseudo-R ² (Cragg-Uhler)	0.71
Pseudo-R ² (McFadden)	0.56
AIC	1334.66
BIC	1392.04

	Est.	S.E.	z val.	p
(Intercept)	-2.08	0.23	-8.89	0.00
length	-0.03	0.00	-14.31	0.00
budget	0.26	0.02	16.44	0.00
votes	0.00	0.00	2.26	0.02
genreAnimation	0.06	0.18	0.34	0.73
genreComedy	1.47	0.10	15.20	0.00
genreDocumentary	2.64	0.21	12.72	0.00
genreDrama	-1.12	0.13	-8.47	0.00
genreRomance	-4.74	77.02	-0.06	0.95
genreShort	2.31	0.45	5.13	0.00

Standard errors: MLE

Model 3: complementary log-log link

```
model3 <- glm(rating.large7 ~ length + budget + votes + genre, family = binomial(link = "cloglog"), dat

## Warning: glm.fit: algorithm did not converge

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

summary(model3)

## ## Call:
## glm(formula = rating.large7 ~ length + budget + votes + genre,
## family = binomial(link = "cloglog"), data = film)
##</pre>
```

```
## Deviance Residuals:
##
      Min
                10
                    Median
                                  30
                                          Max
## -6.6733 -0.4994 -0.2382
                              0.2738
                                       3.1342
##
## Coefficients:
##
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                   -2.927e+00 2.712e-01 -10.791 < 2e-16 ***
                   -2.510e-02 1.919e-03 -13.080 < 2e-16 ***
## length
## budget
                    2.725e-01 1.771e-02 15.386 < 2e-16 ***
## votes
                    1.852e-05 9.592e-06
                                          1.931
                                                  0.0535 .
                                                  0.0883 .
## genreAnimation
                    3.375e-01 1.981e-01
                                          1.704
## genreComedy
                    1.664e+00 1.177e-01 14.134 < 2e-16 ***
## genreDocumentary 2.805e+00 1.886e-01 14.873 < 2e-16 ***
## genreDrama
                   -1.403e+00 1.921e-01
                                         -7.300 2.87e-13 ***
## genreRomance
                   -2.442e+01 8.045e+04
                                          0.000
                                                   0.9998
## genreShort
                    2.367e+00 3.432e-01
                                           6.898 5.27e-12 ***
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 2982.5 on 2294 degrees of freedom
## Residual deviance: 1384.6 on 2285 degrees of freedom
## AIC: 1404.6
##
## Number of Fisher Scoring iterations: 25
```

summ(model3)

Observations	2295
Dependent variable	rating.large7
Type	Generalized linear model
Family	binomial
Link	cloglog

$\chi^{2}(9)$	1597.91
Pseudo-R ² (Cragg-Uhler)	0.69
Pseudo-R ² (McFadden)	0.54
AIC	1404.55
BIC	1461.94

$$D_0 - D_1 = 2982.5 - 2357.5 = 1692.401 > \chi^2(0.95, 9) = 16.91898$$

So we reject H0, and we can say that the model1 fits the data better than saturated model.

model1\$null.deviance - model1\$deviance

[1] 1692.401

	Est.	S.E.	z val.	p
(Intercept)	-2.93	0.27	-10.79	0.00
length	-0.03	0.00	-13.08	0.00
budget	0.27	0.02	15.39	0.00
votes	0.00	0.00	1.93	0.05
genreAnimation	0.34	0.20	1.70	0.09
genreComedy	1.66	0.12	14.13	0.00
genreDocumentary	2.80	0.19	14.87	0.00
genreDrama	-1.40	0.19	-7.30	0.00
genreRomance	-24.42	80451.51	-0.00	1.00
genreShort	2.37	0.34	6.90	0.00

Standard errors: MLE

```
df = model1$df.null - model1$df.residual
qchisq(p=0.95, df = df)
```

[1] 16.91898

odds ratios of model1

```
plot_model(model1,show.values=TRUE)+
    scale_y_log10(limits = c(0.001, 1000))

## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.

## Warning: Removed 1 rows containing missing values (geom_point).

## Warning: Removed 1 rows containing missing values (geom_text).
```


prediction

```
plot_model(model1,type="pred",terms=c("length"),axis.title=c("length","Prob(rating above 7)"))
## Data were 'prettified'. Consider using 'terms="length [all]"' to get smooth plots.
```


plot_model(model1,type="pred",terms=c("votes"),axis.title=c("votes","Prob(rating above 7)"))

Data were 'prettified'. Consider using 'terms="votes [all]"' to get smooth plots.

plot_model(model1,type="pred",terms=c("budget"),axis.title=c("budget","Prob(rating above 7)"))

Data were 'prettified'. Consider using 'terms="budget [all]"' to get smooth plots.

plot_model(model1,type="pred",terms=c("genre"),axis.title=c("genre","Prob(rating above 7)"))

Model Comparison

ROC

```
film$Prid <- predict(model1, film, type="response")
score <- prediction(film$Prid,film$rating.large7)
perf <- performance(score, "tpr", "fpr")
auc <- performance(score, "auc")
perfd <- data.frame(x= perf@x.values[1][[1]], y=perf@y.values[1][[1]])
p4<- ggplot(perfd, aes(x= x, y=y)) + geom_line() +
xlab("False positive rate") + ylab("True positive rate") +
ggtitle(paste("Area under the curve:", round(auc@y.values[[1]], 3)))
p4</pre>
```

Area under the curve: 0.947 1.00 0.75 0.00 0.00 0.25 0.50 False positive rate

 $\mathrm{AUC} = 0.947$ indicated that model 1 is very good at predicting the films rating greater than 7 given all predictor variables.