Quantitative comparisons: bar-charts

INTRODUCTION TO MATPLOTLIB

Ariel Rokem
Data Scientist

Olympic medals

```
,Gold, Silver, Bronze
United States, 137, 52, 67
Germany, 47, 43, 67
Great Britain, 64, 55, 26
Russia, 50, 28, 35
China, 44, 30, 35
France, 20, 55, 21
Australia, 23, 34, 25
Italy, 8, 38, 24
Canada, 4, 4, 61
Japan, 17, 13, 34
```


Olympic medals: visualizing the data

```
medals = pd.read_csv('medals_by_country_2016.csv', index_col=0)
fig, ax = plt.subplots()
ax.bar(medals.index, medals["Gold"])
plt.show()
```


Interlude: rotate the tick labels

```
fig, ax = plt.subplots()
ax.bar(medals.index, medals["Gold"])
ax.set_xticklabels(medals.index, rotation=90)
ax.set_ylabel("Number of medals")
plt.show()
```


Olympic medals: visualizing the other medals

```
fig, ax = plt.subplots
ax.bar(medals.index, medals["Gold"])
ax.bar(medals.index, medals["Silver"], bottom=medals["Gold"])
ax.set_xticklabels(medals.index, rotation=90)
ax.set_ylabel("Number of medals")
plt.show()
```


Olympic medals: visualizing all three

Stacked bar chart

Adding a legend

Adding a legend

```
fig, ax = plt.subplots
ax.bar(medals.index, medals["Gold"], label="Gold")
ax.bar(medals.index, medals["Silver"], bottom=medals["Gold"],
       label="Silver")
ax.bar(medals.index, medals["Bronze"],
       bottom=medals["Gold"] + medals["Silver"],
       label="Bronze")
ax.set_xticklabels(medals.index, rotation=90)
ax.set_ylabel("Number of medals")
ax.legend()
plt.show()
```

Stacked bar chart with legend

Create a bar chart!

INTRODUCTION TO MATPLOTLIB

Quantitative comparisons: histograms

INTRODUCTION TO MATPLOTLIB

Ariel Rokem
Data Scientist

Histograms

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City	Sport	Event	Medal
1	58 62	Giovanni Abagnale	М	21.0	198.0	90.0	Italy	ITA	2016 Summer	2016	Summer	Rio de Janeiro	Rowing	Rowing Men's Coxless Pairs	Bronze
116	48 6346	Jrmie Azou	М	27.0	178.0	71.0	France	FRA	2016 Summer	2016	Summer	Rio de Janeiro	Rowing	Rowing Men's Lightweight Double Sculls	Gold
148	71 8025	Thomas Gabriel Jrmie Baroukh	М	28.0	183.0	70.0	France	FRA	2016 Summer	2016	Summer	Rio de Janeiro	Rowing	Rowing Men's Lightweight Coxless Fours	Bronze
152	15 8214	Jacob Jepsen Barse	М	27.0	188.0	73.0	Denmark	DEN	2016 Summer	2016	Summer	Rio de Janeiro	Rowing	Rowing Men's Lightweight Coxless Fours	Silver
184	41 9764	Alexander Belonogoff	М	26.0	187.0	90.0	Australia	AUS	2016 Summer	2016	Summer	Rio de Janeiro	Rowing	Rowing Men's Quadruple Sculls	Silver

A bar chart again

```
fig, ax = plt.subplots()
ax.bar("Rowing", mens_rowing["Height"].mean())
ax.bar("Gymnastics", mens_gymnastics["Height"].mean())
ax.set_ylabel("Height (cm)")
plt.show()
```


Introducing histograms

```
fig, ax = plt.subplots()
ax.hist(mens_rowing["Height"])
ax.hist(mens_gymnastic["Height"])
ax.set_xlabel("Height (cm)")
ax.set_ylabel("# of observations")
plt.show()
```


Labels are needed

```
ax.hist(mens_rowing["Height"], label="Rowing")
ax.hist(mens_gymnastic["Height"], label="Gymnastics")
ax.set_xlabel("Height (cm)")
ax.set_ylabel("# of observations")
ax.legend()
plt.show()
```


Customizing histograms: setting the number of bins

```
ax.hist(mens_rowing["Height"], label="Rowing", bins=5)
ax.hist(mens_gymnastic["Height"], label="Gymnastics", bins=5)
ax.set_xlabel("Height (cm)")
ax.set_ylabel("# of observations")
ax.legend()
plt.show()
```


Customizing histograms: setting bin boundaries

Customizing histograms: transparency

```
ax.hist(mens_rowing["Height"], label="Rowing",
        bins=[150, 160, 170, 180, 190, 200, 210],
        histtype="step")
ax.hist(mens_gymnastic["Height"], label="Gymnastics",
        bins=[150, 160, 170, 180, 190, 200, 210],
        histtype="step")
ax.set_xlabel("Height (cm)")
ax.set_ylabel("# of observations")
ax.legend()
plt.show()
```

Histogram with a histtype of step

Create your own histogram!

INTRODUCTION TO MATPLOTLIB

Statistical plotting

INTRODUCTION TO MATPLOTLIB

Ariel Rokem
Data Scientist

Adding error bars to bar charts

```
fig, ax = plt.subplots()
ax.bar("Rowing",
       mens_rowing["Height"].mean(),
       yerr=mens_rowing["Height"].std())
ax.bar("Gymnastics",
       mens_gymnastics["Height"].mean(),
       yerr=mens_gymnastics["Height"].std())
ax.set_ylabel("Height (cm)")
plt.show()
```

Error bars in a bar chart

Adding error bars to plots

```
fig, ax = plt.subplots()
ax.errorbar(seattle_weather["MONTH"],
            seattle_weather["MLY-TAVG-NORMAL"],
            yerr=seattle_weather["MLY-TAVG-STDDEV"])
ax.errorbar(austin_weather["MONTH"],
            austin_weather["MLY-TAVG-NORMAL"],
            yerr=austin_weather["MLY-TAVG-STDDEV"])
ax.set_ylabel("Temperature (Fahrenheit)")
plt.show()
```

Error bars in plots

Adding boxplots

Interpreting boxplots

Try it yourself!

INTRODUCTION TO MATPLOTLIB

Quantitative comparisons: scatter plots

INTRODUCTION TO MATPLOTLIB

Ariel Rokem
Data Scientist

Introducing scatter plots

```
fig, ax = plt.subplots()
ax.scatter(climate_change["co2"], climate_change["relative_temp"])
ax.set_xlabel("C02 (ppm)")
ax.set_ylabel("Relative temperature (Celsius)")
plt.show()
```


Customizing scatter plots

```
eighties = climate_change["1980-01-01":"1989-12-31"]
nineties = climate_change["1990-01-01":"1999-12-31"]
fig, ax = plt.subplots()
ax.scatter(eighties["co2"], eighties["relative_temp"],
           color="red", label="eighties")
ax.scatter(nineties["co2"], nineties["relative_temp"],
           color="blue", label="nineties")
ax.legend()
ax.set_xlabel("CO2 (ppm)")
ax.set_ylabel("Relative temperature (Celsius)")
plt.show()
```


Encoding a comparison by color

Encoding a third variable by color

Encoding time in color

Practice making your own scatter plots!

INTRODUCTION TO MATPLOTLIB

