LABORATOR#10

INTEGRARE NUMERICĂ

- EX#1 (a) Să se construiască în Python funcțiile Dreptunghi, Trapez, Simpson și Newton care au ca date de intrare:
 - f funcția a cărei integrală este aproximată;
 - a, b capetele intervalului de integrare [a, b];

și care returnează valoarea aproximării integralei $I=\int_a^b f(x)\,\mathrm{d}x$ folosind formulele de cuadratură ale dreptunghiului, trapezului, (Cavalieri-)Simpson și respectiv Newton.

- (b) Fie $f(x) = e^{-x^2}$, a = 0 şi b = 1. Apelaţi funcţiile create la (a) pentru calculul cuadraturilor dreptunghiului, trapezului, (Cavalieri-)Simpson şi respectiv Newton, pentru $I = \int_a^b f(x) \, \mathrm{d}x$.
- EX#2 (a) Să se construiască în Python funcțiile DreptunghiSumat, TrapezSumat, SimpsonSumat și NewtonSumat care au ca date de intrare:
 - \bullet f funcția a cărei integrală este aproximată;
 - a, b capetele intervalului de integrare [a, b];
 - m numărul de subdiviziuni egale ale intervalului [a,b];

și care returnează aproximarea integralei $I(f) = \int_a^b f(x) dx$, folosind formulele de cuadratură sumată ale dreptunghiului, trapezului, (Cavalieri-)Simpson și respectiv Newton, cu $m \geq 1$ subdiviziuni egale ale intervalului de integrare [a, b].

(b) Fie $f(x) = e^{-x^2}$, a = 0, b = 1 şi m = 5. Apelaţi funcţiile create la (a) pentru calculul cuadraturilor sumate ale dreptunghiului, trapezului, (Cavalieri-)Simpson şi respectiv Newton, cu $k = \overline{1,m}$ subdiviziuni egale ale intervalului de integrare [a,b], pentru $I = \int_a^b f(x) \, \mathrm{d}x$.