

[1]

MATSim User Meeting 2023

Researching the impact of extreme weather events on an On-Demand Transport service

Simon Meinhardt, Sydney Paltra, Tilmann Schlenther, Kai Nagel Chair of Transport System Planning and Transport Telematics | Technical University Berlin

Agenda

- General information
- Statistical study: Multiple Linear Regression Analysis
- Simulation study: MATSim transport model
- Discussion

General information

- **KEXI DRT service**
 - Kelheim, Germany
 - 2 € / ride, 3 € from / to train station Saal (Donau)
 - Operation time: Mo Sa 06:00-23:00
- KelRide
 - Implementation of autonomous DRT segment
 - Weather-proof autonomous shuttles

Seite 3

How do weather parameters influence DRT demand?

- **Input Data**
 - Weather data from Meteostat [3] and Weatherstack [4]
 - Mobility data provided by KelRide-project partners -> demand data on KEXI service
 - Oxford COVID-19 Government Response Tracker [5]
- Analyzed time period: June 2020 December 2022
- Methodology: Linear regression analysis to discover potential dependencies

Multiple linear regression analysis

- First step
 - Find possible (general) correlations (Pearson coefficients)

Multiple linear regression analysis

- First step
 - Find possible (general) correlations (Pearson coefficients)
 - Variables with correlation
 >= |0.05| are integrated into the regression model

- Final regression model
 - Reduced to significant independent variables only: tavg, snow and trend
 - Continuous increase of daily DRT rides over time -> trend variable
 - Integration of trend variable makes COVID-19 related variable "stringency" obsolete

Variable	Coefficient	Std. Error	p > t	[95% CI]		
Intercept	58.895346	1.812681	< 2e - 16	(55.3346636, 62.456028269)		
snow	-0.182138	0.090311	0.0442	(-0.3595371, -0.004739843)		
tavg	-0.426429	0.102495	3.69e-05	(-0.6277617, -0.225096695)		
trend	0.110944	0.002901	< 2e - 16	(0.1052444, 0.116643042)		
R^2	0.731					

Multiple linear regression analysis

How do weather parameters influence DRT demand?

- An increase of tavg by 1°C decreases the daily number of DRT rides by 0.426429
- An increase of max. snow depth by 1 mm decreases the daily number of DRT rides by 0.182138

Almost no weather impact on DRT demand..

Simulation study

- Simulation study conducted with the MATSim Open Kelheim Model [6]
 - We saw: Marginal influence of weather parameters on DRT demand
 - But: Weather could still have influence on AV (autonomous vehicle) operation ->
 Parametrization of weather impact: Reduced maximum speed of AV
 - Based on information from EasyMile:
 - Base case (AV speed of 18 km/h) (based on [2])
 - Max. AV speed 12 km/h
 - Max. AV speed 9 km/h
 - Max. AV speed 6 km/h

Simulation study

Case	Number of rides per day	mean waiting time [s]		mean in vehicle travel time [s]			
Autonomous DRT							
Base Case	50	178	633	281			
AV 12 km/h	28	219	660	392			
AV 9 km/h	18	349	685	531			
AV 6 km/h	3	471	694	610			

- Simulation results
 - Marginal impact on conventional DRT service
 - With decreasing max. AV speed:
 - Decreasing demand, increasing waiting time, increasing in veh. travel time

Simulation study

- Former AV users are switching to modes bike and walk mainly
 - This is where they came from in the first place (see [2])
 - This is explainable through..
 - AV service is free of charge
 - Loss of advantage (increased travel speed) -> bike and walk more attractive

Conclusion

- Multiple linear regression analysis
 - Only marginal impact of avg. temperature and maximum snow depth on daily DRT demand
 - Study ought to be repeated for a time period without COVID-19 related policies
 - Marginal weather impact could also just be statistical effects
 - Demand solely consists of DRT trips
- Simulation study
 - Decreased max. AV speed causes modal shift to modes walk and bike (mainly)
 - Simulation results are limited by dimension of AV service area

Discussion

Thanks for listening!

Any questions / suggestions?

References

- [1] https://kelride.com/
- [2] https://svn.vsp.tu-berlin.de/repos/public-svn/publications/vspwp/2022/22-17/
- [3] https://bulk.meteostat.net/v2/
- [4] https://weatherstack.com/
- [5] https://covidtracker.bsg.ox.ac.uk/
- [6] https://github.com/matsim-scenarios/matsim-kelheim

