

Minimally Invasive Annuloplasty Using Shape-Memory Materials

NUS HIGH SCHOOL of Math & Science

Jordan Low Jun Yi¹, Chen Yanlin¹, Kuo Hsin Wei¹, Chiam Sher-Yi¹, Faizus Sazzad²

¹NUS High School of Mathematics and Science, ²NUS Yong Loo Lin School of Medicine (MD6)

1. Introduction

Mitral Valve Regurgitation

Issue at hand

- Backflow of blood results in severe complications that necessitate an annuloplasty
- Conventional procedure includes a median sternotomy which requires a 25-30cm skin incision and splitting of the sternum
- Surgical trauma can lead to complications and long recovery periods

Proposed solution

Thermosensitive shape memory materials

- ✓ Unique property: returns to its original trained shape upon heating, even after being deformed
- ✓ Ring can be inserted as a thin rod, which reverts to its original ring shape in the heart
 - > Shape memory alloys Nitinol: biocompatible
 - ➤ Shape memory polymers (MMA-PEGDMA) copolymer: biocompatible <u>and</u> biodegradable

After Ring

2.1 Making the Annuloplasty Rings

2.2 Testing the Annuloplasty Rings

3. Results and Discussion

3.1 Shape Memory Effect of Nitinol Alloy

Wire Thickness	Initial Shape	Final Shape	Observations
0.20 mm			Wire reverts instantly when heated: insufficient time to insert into heart
0.50 mm			Optimal thickness; able to revert in 35°C water
1.00 mm			Does not visibly revert in 35°C water; only reverts in 70°C water

3.2 Shape Memory Effect of MMA-PEGDMA Copolymer

3.3 Reducing Mitral Valve Regurgitation

4. Conclusion

We successfully created **thermosensitive** annulus rings using MMA-PEGDMA copolymer, a biocompatible and biodegradable shape memory polymer

Shape memory effect allows for minimally invasive surgical procedures; Biodegradability allows the procedure to be carried out in growing children

5. References

- 1. Yakacki CM, Shandas R, Safranski D, Ortega AM, Sassaman K, Gall K. Strong, Tailored, Biocompatible Shape-Memory Polymer Networks. Adv Funct Mater. 2008; 18(16):2428-2435.
- Peterson, G. I., Dobrynin, A.V., & Becker, M. L. (2017). Biodegradable shape memory polymers in medicine. Advanced healthcare materials, 6(21), 1700694.
 Myers, P. O., & Kalangos, A. (2013). Valve repair using biodegradable ring annuloplasty: from bench to long-term clinical results. Heart, lung and vessels, 5(4), 213.
- 4. Rausch MK, Bothe W, Kvitting JP, Swanson JC, Miller DC, Kuhl E. Mitral valve annuloplasty: a quantitative clinical and mechanical comparison of different annuloplasty devices. Ann Biomed Eng. 2012;40(3):750-761.
- 5. Ramelow, U. S., & Pingili, S. (2010). Synthesis of Ethylene Glycol Dimethacrylate-Methyl Methacrylate Copolymers, Determination of their Reactivity Ratios, and a Study of Dopant and Temperature Effects on their Conductivities. Polymers, 2(3), 265–285.