STA 237 — Time Series Analysis Homework Series 1 Rex Cheung & Eliot Paisley April 10, 2014 Prof. A.Aue UC Davis

- **Problem 1:** [Stationarity] Let $(Z_t: t \in \mathbb{Z})$ be a sequence of independent zero mean and normal random variables with variance σ^2 and let a, b, and c be constants. Which of the following processess are weakly and/or strictly stationary? For wach weakly stationary process specify the mean and ACVF.
 - (a) $X_t = a + bZ_t + cZ_{t-1}$.

<u>Answer:</u> Let $i, j \in \mathbb{Z}$ be any two integers. Then,

$$E[X_i] = E[a + bZ_i + cZ_{i-1}] = a = E[a + bZ_j + cZ_{j-1}] = E[X_j],$$

and

$$Var[X_i] = Var[a + bZ_i + cZ_{i-1}] = 0 + b^2\sigma^2 + c^2\sigma^2 = Var[a + bZ_j + cZ_{j-1}] = Var[X_j],$$

where we have implicitly used the fact that every pair of Z_t have zero covariance.

Thus, with knowledge that linear combinations of normally distributed random variables are normal, we have

$$X_i, X_j \sim \mathcal{N}(a, (b^2 + c^2)\sigma^2).$$

Since i, j were arbitrary, we have that every element X_t has the same distribution, which implies that X_t is *strictly stationary*.

Since we have explicitly shown that we have finite variance, then we may also conclude that X_t is weakly stationary. $E[X_t] = a \ \forall t$, and note that

$$Cov(X_{t+1}, X_t) = Cov(a + bZ_{t+1} + cZ_t, a + bZ_t + cZ_{t-1}) = Cov(cZ_t, bZ_t) = bc\sigma^2.$$

Thus,

$$\gamma(h) = \begin{cases} (b^2 + c^2)\sigma^2 & h = 0\\ bc\sigma^2 & h = \pm 1\\ 0 & |h| > 1 \end{cases}.$$

(b) $X_t = Z_t \cos(ct) + Z_{t-1} \sin(ct)$

<u>Answer:</u> We will show that this is not stationary. First note that $E[X_t] = 0 \,\forall t$, and

$$Var[X_t] = Var[Z_t \cos(ct) + Z_{t-1} \sin(ct)]$$
$$= \sigma^2 \cos^2(ct) + \sigma^2 \sin^2(ct) = \sigma^2$$

and also

$$Cov(X_{t+1}, X_t) = Cov(Z_{t+1}\cos(ct + c) + Z_t\sin(ct + c), Z_t\cos(ct) + Z_{t-1}\sin(ct))$$

= $Cov(cZ_t, bZ_t) = \sin(ct + c)\cos(ct)\sigma^2$

Thus,

$$\gamma(h) = \begin{cases} \sigma^2 & h = 0\\ \sin(ct + c)\cos(ct)\sigma^2 & h = +1\\ \cos(ct + c)\sin(ct)\sigma^2 & h = -1\\ 0 & |h| > 1 \end{cases}$$

The ACF depends on t, which violates the requirement that the ACF of a weakly stationary function is independent of t. Therefore, X_t is not weakly stationary.

It is not strictly stationary either. Strictly stationary means the joint distribution is invariant under time shifts. If we take the random variables (X_1, X_2) and (X_3, X_4) , we can see (from the calculation above) that they will have covariance that depends on t, which means the distribution is not the same. Thus X_t is not strictly stationary.

(c)
$$X_t = a + bZ_0$$

<u>Answer:</u> Let $i, j \in \mathbb{Z}$ be any two integers. Then,

$$E[X_i] = E[a + bZ_0] = a = E[a + bZ_0] = E[X_i],$$

and

$$Var[X_i] = Var[a + bZ_0] = 0 + b^2\sigma^2 = Var[a + bZ_0] = Var[X_j].$$

Thus, with knowledge that linear combinations of normally distributed random variables are normal, we have

$$X_i, X_j \sim \mathcal{N}(0, b^2 \sigma^2).$$

Since i, j were arbitrary, we have that every element X_t has the same distribution, which implies that X_t is *strictly stationary*.

Since we have explicitly shown that we have finite variance, then we may also conclude that X_t is weakly stationary. $E[X_t] = 0 \ \forall t$, and

$$\gamma(h) = b^2 \sigma^2, \forall h.$$

(d) $X_t = Z_t Z_{t-1}$

<u>Answer:</u> We will first show that this is weakly stationary, and then strictly stationary. First note that $\forall t$,

$$E[X_t] = E[Z_t Z_{t-1}] = E[Z_t] E[Z_{t-1}] = 0$$

$$E[X_t^2] = E[Z_t^2 Z_{t-1}^2] = \sigma_{tt} \sigma_{(t-1),(t-1)} + \sigma_{t,t-1} \sigma_{t,t-1} + \sigma_{t,t-1} \sigma_{t,t-1} = \sigma^4$$

where σ_{ij} is the covariance between the i^{th} and j^{th} random variable. To compute the ACF, we apply the same idea: $\forall h$ such that $t + h \in T$,

$$cov(X_{t+h}, X_t) = cov(Z_{t+1}Z_{t-1+h}, Z_tZ_{t-1})$$

$$= E[Z_{t+1}Z_{t-1+h}Z_tZ_{t-1}] - E[Z_{t+1}Z_{t-1+h}]E[Z_tZ_{t-1}]$$

$$= 0 \quad \text{if } h \neq 0$$

Thus,

$$\gamma(h) = \left\{ \begin{array}{ll} \sigma^4 & h = 0 \\ 0 & |h| > 1 \end{array} \right..$$

To show this is strictly stationary, first note that

$$(Z_t, Z_{t+1}, ..., Z_{t+k}) \approx^{\mathcal{D}} (Z_{t+h}, Z_{t+1+h}, ..., Z_{t+k+h})$$

In fact, we can use any index set T and will get the same result. Now just treat $(X_t, X_{t+1}, ..., X_{t+k})$ as a functional transformation of $(Z_t, Z_{t+1}, ..., Z_{t+k})$, i.e. $(X_t, X_{t+1}, ..., X_{t+k}) = g(Z_t, Z_{t+1}, ..., Z_{t+k})$, which still have identical distribution as $g(Z_{t+h}, Z_{t+1+h}, ..., Z_{t+k+h})$.

Population 0.06+00 5.06+07 1.06+08 1.56+08 2.56+08

1900

Year

Figure 1: Plot of the population data for Problem 2 Figure 2: Plot of the Residuals against Time for the fitted values in Table 1.

2000

- Problem 2: [U.S. Population] Download the file population.xls from the course website. It contains the size of the population in the U.S.A. at ten-year intervals from 1790 to 2000.
 - (a) Plot the data.

1800

See Figure 1.

1850

(b) Assuming the model $X_t = m_t + Z_t$, $E[Z_t] = 0$, fit a polynomial trend \widehat{m}_t to the data.

See Table 1 for the fitted values for a 2nd degree polynomial

1950

\widehat{m}_t
6110720.45
5637937.68
6501266.64
8700707.34
12236259.78
17107923.95
23315699.86
30859587.50
39739586.88
49955698.00
61507920.85
74396255.44
88620701.76
104181259.82
121077929.62
139310711.15
158879604.42
179784609.42
202025726.16
225602954.63
250516294.84
276765746.79

Table 1: Fitted values for a 2^{nd} degree polynomial fit

- (c) Plot the residuals $\hat{Z}_t = X_t \hat{m}_t$. Comment on the quality of the fitted model.
 - See Figure 2. This residual plot shows a bit of structure, but not too much where we would have considerable worry regarding the model fit.
- (d) Use the fitted model to predict the population size in 2010 and 2020 (using predicted noise values of zero).

See Table 2.

	2010	2020
\widehat{m}	304351310.47	333272985.89

Table 2: Predicted population values for the years 2010 and 2020.

```
########
# R Code
########
rm(list=ls(all=TRUE))
library(xtable)
library(matrixcalc)
setwd("C:/Users/EliotP/Documents/GitHub/STA_237_sp14/Homework/") #laptop
pop = as.matrix(read.table("population.csv"))
n = nrow(pop)
### plot the data
time = as.vector(seq(1790, 2000, 10))
pdf("hw1_dataplot.pdf")
plot(time,t(pop),type="o",xlab="Year",
ylab="Population", main="U.S. Population in 10-Year Increments")
dev.off()
### fit a 2nd degree polynomial
F = vandermonde.matrix(1:n,3)
mhat_ls = F%*%solve(t(F)%*%F)%*%t(F)%*%pop
print(xtable(mhat_ls),include.rownames=FALSE)
### residuals
resid = pop-mhat_ls
pdf("hw1_resid.pdf")
plot(x=time, resid,type="o",xlab="Time",
ylab="Residual", main="Plot of Residuals against Time")
abline(h=0)
dev.off()
### predict using direct method
A=solve(t(F)%*%F)%*%t(F)%*%pop
predict_val = as.matrix(c(A[1]*1+A[2]*23+A[3]*23^2,A[1]*1+A[2]*24+A[3]*24^2))
print(xtable(t(predict_val)),include.rownames=FALSE)
```

• **Problem 3:** [**Projection Theorem**] If \mathcal{M} is a closed subspace of a Hilbert Space \mathcal{H} and $x \in \mathcal{H}$, prove that

$$\min_{y \in \mathcal{M}} ||x - y|| = \max \left\{ |\langle x, z \rangle| : z \in \mathcal{M}^{\perp}, ||z|| = 1 \right\},\,$$

where \mathcal{M}^{\perp} is the orthogonal complement of \mathcal{M} .

Answer:

Begin by writing $x = x_1 + x_2$, with $x_1 \in \mathcal{M}, x_2 \in \mathcal{M}^{\perp}$, which is allowed by the orthogonal decomposition theorem ¹.

Now, consider

$$||x - y||^2 = ||x_1 + x_2 - y||^2 = \langle x_1 + x_2 - y, x_1 + x_2 - y \rangle = \langle x_1 - y + x_2, x_1 - y + x_2 \rangle = ||x_1 - y||^2 + ||x_2||^2.$$

Hence,

$$\min_{y \in \mathcal{M}} ||x - y|| = \min_{y \in \mathcal{M}} ||x_1 - y||^2 + ||x_2||^2 = ||x_2||^2,$$

where the minimum is achieved at $y = x_1 \in \mathcal{M}$.

On the other hand, for any $z \in \mathcal{M}^{\perp}, ||z|| = 1$,

$$|\langle x, z \rangle| = |\langle x_1 + x_2, z \rangle| = |\langle x_1, z \rangle + \langle x_2, z \rangle| = |\langle x_2, z \rangle|,$$

and

$$|\langle x_2, z \rangle| \le ||x_2|| ||z|| = ||x_2||$$

by the Cauchy-Schwartz inequality. This implies that

$$|\langle x, z \rangle| \le ||x_2||.$$

It follows that

$$\max\left\{|\langle x,z\rangle|:z\in\mathcal{M}^{\perp},||z||=1\right\}=||x_2||,$$

where the maximum is achieved at $z = \frac{x_2}{||x_2||}$. Thus,

$$\min_{y \in \mathcal{M}} ||x - y|| = ||x_2|| = \max \left\{ |\langle x, z \rangle| : z \in \mathcal{M}^{\perp}, ||z|| = 1 \right\},$$

• Problem 4: [Prediction Equations] If $X_t = Z_t - \theta Z_{t-1}$, where $|\theta| < 1$ and $(Z_t : t \in \mathbb{Z})$ is a sequence of uncorrelated random variables, each with mean 0 and variance σ^2 , show by checking the prediction equations that the best mean square predictor of X_{n+1} in $\overline{\operatorname{sp}}(X_i : j \leq n)$ is

$$\hat{X}_{n+1} = -\sum_{j=1}^{\infty} \theta^{j} X_{n+1-j}.$$

What is the mean squared error of \hat{X}_{n+1} ?

<u>Answer:</u> To show that $\hat{X}_{n+1} = -\sum_{j=1}^{\infty} \theta^j X_{n+1-j}$ is the best mean square predictor of X_{n+1} , we need to show this predictor satisfies the prediction equations, i.e.

$$\langle X_{n+1} - \hat{X}_{n+1}, X_j \rangle = 0 \qquad \forall j \le n$$

First rewrite X_{n+1} as the following:

$$X_{n+1} = Z_{n+1} - \theta Z_n = Z_{n+1} - \theta (X_n + \theta Z_{n-1})$$

$$= Z_{n+1} - \theta X_n - \theta^2 Z_{n-1}$$

$$= Z_{n+1} - \theta X_n - \theta^2 (X_{n-1} + \theta Z_{n-2})$$

$$= Z_{n+1} - \theta X_n - \theta^2 X_{n-1} - \theta^3 Z_{n-2}$$

$$= \vdots$$

$$= Z_{n+1} - \sum_{j=1}^{\infty} \theta^j X_{n+1-j}$$

¹http://en.wikibooks.org/wiki/Functional_Analysis/Hilbert_spaces, section 3.6

Then the prediction equation simplifies to

$$< X_{n+1} - \hat{X}_{n+1}, X_j > = < Z_{n+1}, X_j > = E[Z_{n+1}X_j]$$
 $\forall j \le n$

Rewriting $E[Z_{n+1}X_j]$ as $E[Z_{n+1}(Z_j - \theta Z_{j-1})]$, we can see this expectation is $0 \, \forall j \leq n$ because of independence. Thus \hat{X}_{n+1} satisfies the condition to be the best mean square predictor of X_{n+1} . The mean squared error of \hat{X}_{n+1} is then

$$E[|X_{n+1} - \hat{X}_{n+1}|^2] = E[|Z_{n+1}|^2] = \sigma^2$$