Cyclistics_divvy_trip

Olivia Akabogu

5/24/2021

		•	
ш	-	н.	പ
	()	111	a.:

Here is my first case study from the Google data analytics certificate.

Problem

The company wants to improve her earnings by making their casual riders convert to an annual member

Solution

Design marketing strategies targeted at the casual riders. But how and what strategies should be used?

Business Task

first we need to know how they differ, then we will decide on the right strategy to use.

ASK PHASE

"Why and what would convert casual riders to subscribe?"

PREPARE PHASE

Where was the data gotten? It is a public data from a bike sharing company.

Data Collection

For this analysis, i used the past year (apr2020-apr2021) cause that would be recent and relevant to the objective.

library(tidyverse)

Load the packages

-- Attaching packages ----- tidyverse 1.3.1 --

```
## v ggplot2 3.3.3 v purr 0.3.4

## v tibble 3.1.1 v dplyr 1.0.5

## v tidyr 1.1.3 v stringr 1.4.0

## v readr 1.4.0 v forcats 0.5.1
## -- Conflicts -----
                                              ------tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                       masks stats::lag()
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
        date, intersect, setdiff, union
##
library(here)
## here() starts at C:/Users/ENGR OBINNA/Documents/Divvy trip
library(skimr)
library(janitor)
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
##
##
        chisq.test, fisher.test
library(readr)
library(ggplot2)
```

apr2020 <- read_csv("C:/Users/ENGR OBINNA/Desktop/Data Analysis/Google Capstone project/Cyclistics_ride

Load the data

```
##
## -- Column specification -----
## cols(
## ride_id = col_character(),
## rideable_type = col_character(),
## started_at = col_datetime(format = ""),
## ended_at = col_datetime(format = ""),
## start_station_name = col_character(),
```

```
##
    start_station_id = col_double(),
##
    end_station_name = col_character(),
##
    end_station_id = col_double(),
    start_lat = col_double(),
##
##
    start_lng = col_double(),
##
    end_lat = col_double(),
    end lng = col double(),
    member_casual = col_character()
##
## )
may2020 <- read_csv("C:/Users/ENGR OBINNA/Desktop/Data Analysis/Google Capstone project/Cyclistics_ride
##
## -- Column specification ------
## cols(
    ride_id = col_character(),
##
    rideable_type = col_character(),
##
    started_at = col_datetime(format = ""),
##
    ended_at = col_datetime(format = ""),
    start_station_name = col_character(),
##
##
    start_station_id = col_double(),
##
    end_station_name = col_character(),
##
    end_station_id = col_double(),
##
    start_lat = col_double(),
##
    start_lng = col_double(),
##
    end_lat = col_double(),
    end_lng = col_double(),
##
    member_casual = col_character()
## )
jun2020 <- read_csv("C:/Users/ENGR OBINNA/Desktop/Data Analysis/Google Capstone project/Cyclistics_ride</pre>
##
## -- Column specification --------
## cols(
    ride_id = col_character(),
##
## rideable_type = col_character(),
    started_at = col_datetime(format = ""),
    ended_at = col_datetime(format = ""),
##
##
    start_station_name = col_character(),
##
    start_station_id = col_double(),
##
    end_station_name = col_character(),
##
    end_station_id = col_double(),
##
    start_lat = col_double(),
##
    start_lng = col_double(),
##
    end_lat = col_double(),
##
    end_lng = col_double(),
##
    member_casual = col_character()
## )
```

```
##
## -- Column specification --------
    ride_id = col_character(),
##
##
    rideable_type = col_character(),
##
    started at = col datetime(format = ""),
    ended at = col datetime(format = ""),
    start_station_name = col_character(),
##
##
    start_station_id = col_double(),
##
    end_station_name = col_character(),
    end_station_id = col_double(),
    start_lat = col_double(),
##
    start_lng = col_double(),
##
##
    end_lat = col_double(),
##
    end_lng = col_double(),
##
    member_casual = col_character()
## )
aug2020 <- read_csv("C:/Users/ENGR OBINNA/Desktop/Data Analysis/Google Capstone project/Cyclistics_ride
##
## cols(
##
    ride_id = col_character(),
##
    rideable_type = col_character(),
##
    started_at = col_datetime(format = ""),
    ended_at = col_datetime(format = ""),
##
##
    start_station_name = col_character(),
##
    start_station_id = col_double(),
##
    end_station_name = col_character(),
##
    end_station_id = col_double(),
    start_lat = col_double(),
##
##
    start_lng = col_double(),
##
    end_lat = col_double(),
##
    end_lng = col_double(),
    member_casual = col_character()
##
## )
sept2020 <- read_csv("C:/Users/ENGR OBINNA/Desktop/Data Analysis/Google Capstone project/Cyclistics_rid
## cols(
##
    ride_id = col_character(),
##
    rideable_type = col_character(),
##
    started_at = col_datetime(format = ""),
    ended_at = col_datetime(format = ""),
##
##
    start_station_name = col_character(),
    start_station_id = col_double(),
##
##
    end_station_name = col_character(),
##
    end_station_id = col_double(),
##
    start_lat = col_double(),
    start_lng = col_double(),
##
```

```
##
    end_lat = col_double(),
##
    end_lng = col_double(),
##
    member_casual = col_character()
## )
oct2020 <- read_csv("C:/Users/ENGR OBINNA/Desktop/Data Analysis/Google Capstone project/Cyclistics_ride
## -- Column specification -------
## cols(
##
    ride_id = col_character(),
##
    rideable_type = col_character(),
    started_at = col_datetime(format = ""),
##
##
    ended_at = col_datetime(format = ""),
##
    start_station_name = col_character(),
    start_station_id = col_double(),
##
##
    end_station_name = col_character(),
##
    end_station_id = col_double(),
##
    start_lat = col_double(),
##
    start_lng = col_double(),
##
    end_lat = col_double(),
##
    end_lng = col_double(),
    member_casual = col_character()
## )
nov2020 <- read_csv("C:/Users/ENGR OBINNA/Desktop/Data Analysis/Google Capstone project/Cyclistics_ride
##
## -- Column specification -------
## cols(
##
    ride_id = col_character(),
##
    rideable_type = col_character(),
##
    started_at = col_datetime(format = ""),
##
    ended_at = col_datetime(format = ""),
##
    start_station_name = col_character(),
##
    start_station_id = col_double(),
##
    end_station_name = col_character(),
##
    end_station_id = col_double(),
    start_lat = col_double(),
##
    start_lng = col_double(),
##
    end_lat = col_double(),
##
    end_lng = col_double(),
##
    member_casual = col_character()
## )
dec2020 <- read_csv("C:/Users/ENGR OBINNA/Desktop/Data Analysis/Google Capstone project/Cyclistics_ride
## cols(
   ride_id = col_character(),
## rideable_type = col_character(),
```

```
started at = col datetime(format = ""),
##
##
    ended_at = col_datetime(format = ""),
##
    start_station_name = col_character(),
    start_station_id = col_character(),
##
##
    end_station_name = col_character(),
##
    end station id = col character(),
    start lat = col double(),
    start_lng = col_double(),
##
    end_lat = col_double(),
##
##
    end_lng = col_double(),
    member_casual = col_character()
## )
jan2021 <- read_csv("C:/Users/ENGR OBINNA/Desktop/Data Analysis/Google Capstone project/Cyclistics_ride
##
##
    ride_id = col_character(),
    rideable_type = col_character(),
##
    started_at = col_datetime(format = ""),
##
##
    ended_at = col_datetime(format = ""),
    start station name = col character(),
##
##
    start_station_id = col_character(),
##
    end_station_name = col_character(),
##
    end_station_id = col_character(),
##
    start_lat = col_double(),
##
    start_lng = col_double(),
##
    end_lat = col_double(),
    end_lng = col_double(),
##
##
    member_casual = col_character()
## )
feb2021 <- read_csv("C:/Users/ENGR OBINNA/Desktop/Data Analysis/Google Capstone project/Cyclistics_ride</pre>
##
## cols(
##
    ride_id = col_character(),
##
    rideable_type = col_character(),
    started_at = col_datetime(format = ""),
##
##
    ended_at = col_datetime(format = ""),
##
    start_station_name = col_character(),
##
    start_station_id = col_character(),
##
    end_station_name = col_character(),
    end_station_id = col_character(),
##
##
    start_lat = col_double(),
    start_lng = col_double(),
##
    end_lat = col_double(),
##
    end_lng = col_double(),
##
    member_casual = col_character()
```

)

```
##
## -- Column specification ------
    ride_id = col_character(),
##
    rideable_type = col_character(),
##
##
    started_at = col_datetime(format = ""),
    ended_at = col_datetime(format = ""),
##
##
    start_station_name = col_character(),
    start_station_id = col_character(),
##
    end_station_name = col_character(),
##
    end_station_id = col_character(),
##
    start_lat = col_double(),
##
##
    start_lng = col_double(),
##
    end lat = col double(),
    end_lng = col_double(),
##
##
    member_casual = col_character()
## )
apr2021<- read_csv("C:/Users/ENGR OBINNA/Desktop/Data Analysis/Google Capstone project/Cyclistics_rides
##
## -- Column specification -------
## cols(
##
    ride_id = col_character(),
##
    rideable type = col character(),
    started_at = col_datetime(format = ""),
##
    ended_at = col_datetime(format = ""),
##
##
    start_station_name = col_character(),
##
    start_station_id = col_character(),
    end_station_name = col_character(),
##
##
    end_station_id = col_character(),
##
    start_lat = col_double(),
##
    start_lng = col_double(),
##
    end_lat = col_double(),
    end_lng = col_double(),
##
    member_casual = col_character()
##
## )
```

PROCESS STAGE

Cleaning the data for analysis

I noticed that some columns have different data types when i tried to combine them. so i did this:

```
data_with_double <- bind_rows(apr2020,may2020,jun2020,jul2020,aug2020,sept2020,oct2020,nov2020)
data_with_char <- bind_rows(dec2020,jan2021,feb2021,mar2021,apr2021)</pre>
```

Change 'data_with_double' to character

Finally, To bind them all together:

```
all_trips <- bind_rows(data_with_double, data_with_char)</pre>
```

```
all_trips_v2 <- all_trips %>%
    # new column for the length of each ride and day,month and year
    mutate(ride_length = (ended_at - started_at),day_of_week =format(as.Date(started_at), "%A"), month = :
    # removing all empty values in the 'start-station_name'
    drop_na(start_station_name)%>%
    # remove unwanted columns
    select(-c(start_station_id, end_station_id))
```

Change month column to numeric in order to abbreviate

```
all_trips_v2$month <- as.numeric(all_trips_v2$month)
all_trips_v2$month <- month.abb[all_trips_v2$month]</pre>
```

Unite month and year column

```
new_date <- unite(all_trips_v2, 'new_date', month, year, sep = ' ')
all_trips_v2 <- mutate(all_trips_v2, new_date)
View(all_trips_v2)</pre>
```

I want only the ride lenths that are not negative.

```
all_trips_v2 <- all_trips_v2[!(all_trips_v2$ride_length < 0),]
```

ANALYZE PHASE

Identify the behaviour of the user types

```
## # A tibble: 2 x 5
    member_casual mean
##
                                 median
                                           max_ride
                                                        min_ride
                                 <drtn>
##
     <chr>
                  <drtn>
                                           <drtn>
                                                        <drtn>
                 2717.6094 secs 1278 secs 3341033 secs 0 secs
## 1 casual
## 2 member
                  966.1052 secs 689 secs 3523202 secs 0 secs
```

See the average ride time by each day for members vs casual users

```
aggregate(all_trips_v2$ride_length ~ all_trips_v2$member_casual + all_trips_v2$day_of_week, FUN = mean)
```

```
##
      all_trips_v2$member_casual all_trips_v2$day_of_week all_trips_v2$ride_length
## 1
                           casual
                                                     Friday
                                                                       2615.8820 secs
## 2
                           member
                                                     Friday
                                                                        945.1852 secs
## 3
                                                                       2715.2761 secs
                           casual
                                                     Monday
## 4
                           member
                                                                        921.1990 secs
                                                     Monday
## 5
                           casual
                                                   Saturday
                                                                       2817.0078 secs
## 6
                                                                       1070.2137 secs
                           member
                                                   Saturday
## 7
                                                                       3053.4045 secs
                           casual
                                                     Sunday
## 8
                                                                       1095.5406 secs
                           member
                                                     Sunday
## 9
                           casual
                                                   Thursday
                                                                       2562.8716 secs
## 10
                           member
                                                   Thursday
                                                                        908.3416 secs
## 11
                                                    Tuesday
                                                                       2477.4782 secs
                           casual
## 12
                           member
                                                    Tuesday
                                                                       909.7689 secs
                                                                       2466.9220 secs
## 13
                           casual
                                                  Wednesday
## 14
                           member
                                                  Wednesday
                                                                        915.2750 secs
```

The we check the number of rides differences by weekday:

```
rides_by_type <- all_trips_v2 %>%
  mutate(weekday = wday(started_at, label = TRUE))%>%
  group_by(member_casual, weekday) %>% #groups by usertype and weekday
  summarise(number_of_rides = n() #calculates the number of rides and average
  ,average_duration = mean(ride_length),.groups = 'drop') %>% # calculates the average duration
  arrange(member_casual, weekday) # sorts
```

Lets see it

```
ggplot(data = rides_by_type) + geom_col(mapping = aes(x = weekday, y = number_of_rides, fill = member_c
labs(title = "Number of rides by User type during the week",x="Days of the week",y="Number of rides",
theme(legend.position="top", axis.text.x = element_text(angle=25, hjust = 1))
```

Number of rides by User type during the week

Insights

• It is seen that casual riders rides the most during the weekends especially saturday. IT is assumed that this is more of a leisure activity while the member riders uses it as public transport during the week.

```
#Create a new data frame with only the rows with info in the "bike type" column:
with_bike_type <- all_trips_v2%>% filter(rideable_type=="classic_bike" | rideable_type=="electric_bike"
```

Lets see

```
#Then lets check the bike type usage by user type:
with_bike_type %>%
    group_by(member_casual,rideable_type) %>%
    summarise(no_of_rides = n(), .groups = "drop")%>%
ggplot()+
    geom_col(aes(x=member_casual,y=no_of_rides,fill=rideable_type), position = "dodge") +
    labs(title = "Bike type usage by user type",x="User type",y=NULL, fill="Bike type") +
    theme_minimal() +
    theme(legend.position="top")
```

Bike type usage by user type


```
with_bike_type <- with_bike_type %>%
  mutate(weekday = wday(started_at, label = TRUE)) %>%
  group_by(member_casual,rideable_type,weekday) %>%
  summarise(totals=n(), .groups="drop")
```

Lets see

```
ggplot(data = with_bike_type) + geom_col(aes(x=weekday,y=totals, fill=rideable_type), position = "dodge
labs(title = "Bike type usage by user type during a week",x="User type",y=NULL)
```


Bike type usage by user type during a week

Insights * It is shown that annual members prefer classic bikes to electric bikes which casual is the reverse * Annual members use of electric bikes towards the end of working days increases * Just as seen earlier, casual riders are more of weekend riders

User type

SHARE PHASE

I would share my findings with these conclusions:

- Casual riders are rides more during the weekends using electric bikes
- Annual riders use this service as a commute or public transport during the week prefering classic bikes

ACT PHASE

Recommendations

• Now that it has been known how these users differ, it would be recommended to target their marketing strategies to the weekends or electric bikes.

Thank You