

Nome:	0	Ordinamento 270/04 – Laurea ing. Inf.
Cognome: Matricola:	0	Ordinamento 509/99 – Laurea ing. Inf.
Matricola.	0	Altro

Esercizio 1

È dato il problema di PL in figura.

- 1. Risolvere il problema con il metodo grafico.
- 2. Ridurre il problema in forma standard e ricavarne tutte le SBA e tutti gli insiemi di indici di base associati. Per ogni eventuale SBA degenere individuare tutti gli insiemi di indici di base corrispondenti.
- 3. Utilizzando l'algoritmo del simplesso rivisto (fase 1 e fase 2) trovare una soluzione ottima del problema in forma standard o dimostrare che il problema è impossibile o illimitato inferiormente.

$$\max 2x_1 + 3x_2$$

$$\begin{cases} 2x_1 + x_2 \ge 4 \\ x_1 - 3x_2 \ge -12 \end{cases}$$

$$\begin{cases} 3x_1 - 2x_2 \le 6 \\ x_1, x_2 \ge 0 \end{cases}$$

Esercizio 2

In tabella è riportata la matrice di incidenza vertici/lati di un grafo.

	а	b	С	d	е	f	g	h	i	I	m	n	0	р	q	r
1	1	1	1	1												
2		1			1	1	1	1		1						
3			1		1	1			1							
4				1			1	1	1	1	1	1		1		
5											1		1		1	
6												1	1			1
7	1													1	1	1
costo	3	2	4	2	3	3	6	5	2	3	8	6	3	2	1	4

- 1. Trovare un albero ricoprente di peso minimo partendo dal vertice 7 tramite la versione efficiente dell'algoritmo di Prim-Dijkstra. Indicare in quale ordine vengono aggiunti i lati all'albero.
- 2. Risolvere nuovamente il problema al punto 1 mettendo il costo del lato h uguale a 1.
- 3. Si discuta se (e che cosa) cambia nella soluzione ottima dei problemi ai punti 1 e 2 applicando le condizioni di ottimalità sui cammini e mettendo il costo del lato *n* uguale a 2.

Domanda 3

Illustrare le definizioni di poliedro, vertice e direzione di un poliedro. Partendo dal teorema di Weyl-Minkowski, dimostrare le condizioni geometriche di ottimalità e di illimitatezza per un problema di PL.

Nome:	0	Ordinamento 270/04 – Laurea ing. Inf.
Cognome: Matricola:	0	Ordinamento 509/99 – Laurea ing. Inf.
Matricola.	0	Altro

Esercizio 1

È dato il problema di PL in figura.

- 1. Risolvere il problema con il metodo grafico.
- 2. Ridurre il problema in forma standard e ricavarne tutte le SBA e tutti gli insiemi di indici di base associati. Per ogni eventuale SBA degenere individuare tutti gli insiemi di indici di base corrispondenti.
- 3. Utilizzando l'algoritmo del simplesso rivisto (fase 1 e fase 2) trovare una soluzione ottima del problema in forma standard o dimostrare che il problema è impossibile o illimitato inferiormente.

$$\min -3x_1 + x_2$$

$$\begin{cases} x_1 + x_2 \ge 1 \\ -x_1 + x_2 \le 2 \\ -x_1 + 2x_2 \ge -1 \\ x_1, x_2 \ge 0 \end{cases}$$

Esercizio 2

In tabella sono riportati gli archi di un digrafo pesato composto da 7 nodi 1...7. Per ogni arco sono date le distanze (a, b) tra il nodo testa a e il nodo coda b.

Archi	3,2	3,4	3,5	4,2	2,6	2,7	4,6	6,7	6,5	5,7	5 , 1	2,1	1,2	4,5
Distanze	3	2	4	4	1	6	5	2	1	5	2	1	1	3

- 1. Trovare l'albero dei cammini orientati di peso minimo dal nodo 3 verso tutti gli altri nodi utilizzando la versione efficiente dell'algoritmo di Dijkstra. Indicare in quale ordine vengono aggiunti i nodi in *S*.
- 2. Ripetere il punto 1 ponendo il peso dell'arco (2, 7) uguale a 2.
- 3. Per i punti 1 e 2, mostrare l'albero dei cammini orientati minimi. Calcolare il peso del percorso orientato minimo da 3 a 6, e il peso del percorso orientato minimo da 3 a 7.

Domanda 3

Illustrare la versione efficiente dell'algoritmo di Prim-Dijkstra per trovare l'albero ricoprente a costo minimo in un grafo. In particolare dimostrare le condizioni di ottimalità utilizzate dall'algoritmo e discuterne la sua complessità computazionale.

Nome:	0	Ordinamento 270/04 – Laurea ing. Inf.
Cognome: Matricola:	0	Ordinamento 509/99 – Laurea ing. Inf.
	0	Altro

Esercizio 1

È dato il problema di PL in figura.

- 1. Risolvere il problema con il metodo grafico.
- 2. Ridurre il problema in forma standard e ricavarne tutte le SBA e tutti gli insiemi di indici di base associati. Per ogni eventuale SBA degenere individuare tutti gli insiemi di indici di base corrispondenti.
- 3. Utilizzando l'algoritmo del simplesso rivisto (fase 1 e fase 2) trovare una soluzione ottima del problema in forma standard o dimostrare che il problema è impossibile o illimitato inferiormente.

$$\max x_1 + x_2$$

$$\begin{cases} x_1 + 2x_2 \ge 4 \\ -x_1 + 3x_2 \le 5 \\ 3x_1 - x_2 \le 5 \end{cases}$$

$$\begin{cases} x_1, x_2 \ge 0 \end{cases}$$

Esercizio 2 In tabella è riportata la matrice di incidenza vertici/lati di un grafo.

	а	b	С	d	е	f	g	h	i	I	m	n	0	р	q	r
1	1					1	1									
2	1	1			1											
3		1	1	1												
4				1	1	1		1	1		1	1				
5			1				1	1	1	1			1	1		
6												1	1		1	
7										1	1					1
8														1	1	1
costo	3	4	1	3	2	5	3	2	3	8	6	4	2	1	2	3

- 1. Trovare un albero ricoprente a costo minimo partendo dal vertice 7 tramite la versione efficiente dell'algoritmo di Prim-Dijkstra. Indicare in quale ordine vengono aggiunti i lati all'albero.
- 2. Risolvere nuovamente il problema al punto 1 mettendo il costo del lato n uguale a 1.
- 3. Si discuta che cosa cambia nella soluzione ottima dei problemi ai punti 1 e 2 applicando le condizioni di ottimalità sui tagli e mettendo il costo del lato *d* uguale a 5.

Domanda 3

Illustrare le definizioni di cammino e di percorso in un digrafo. Illustrare la versione efficiente dell'algoritmo di Dijkstra per trovare un cammino orientato minimo in un digrafo pesato. In particolare dimostrare le condizioni di ottimalità utilizzate dall'algoritmo e discutere la sua complessità computazionale.

Nome:	0	Ordinamento 270/04 – Laurea ing. Inf.
Cognome: Matricola:	0	Ordinamento 509/99 – Laurea ing. Inf.
Matricola.	0	Altro

Esercizio 1

È dato il problema di PL in figura.

- 1. Risolvere il problema con il metodo grafico.
- 2. Ridurre il problema in forma standard e ricavarne tutte le SBA e tutti gli insiemi di indici di base associati. Per ogni eventuale SBA degenere individuare tutti gli insiemi di indici di base corrispondenti.
- 3. Utilizzando l'algoritmo del simplesso rivisto (fase 1 e fase 2) trovare una soluzione ottima del problema in forma standard o dimostrare che il problema è impossibile o illimitato inferiormente.

$$\min \quad 3x_1 - x_2 \\ \begin{cases} x_1 - x_2 \ge -2 \\ 3x_1 + 2x_2 \ge 9 \\ -x_1 + 2x_2 \ge -3 \\ x_1, x_2 \ge 0 \end{cases}$$

Esercizio 2

Applicate l'algoritmo di Floyd e Warshall ad un digrafo pesato con 5 nodi (A...E) descritto dalle seguenti matrici ottenute con la fase d'inizializzazione dell'algoritmo (quella di sinistra indica i costi dei percorsi, quella di destra i predecessori).

	A	В	C	D	E
A	0	3	-2	$+\infty$	4
В	-3	0	$+\infty$	$+\infty$	-8
C	$+\infty$	6	0	$+\infty$	3
D	$+\infty$	$+\infty$	1	0	$+\infty$
E	-2	$+\infty$	$+\infty$	1	0

	A	В	C	D	\mathbf{E}
A	A	A	A	D	A
B C	В	В	\mathbf{C}	D	В
C	A	\mathbf{C}	\mathbf{C}	D	\mathbf{C}
D	A	В	D	D	\mathbf{E}
\mathbf{E}	\mathbf{E}	В	\mathbf{C}	${f E}$	${f E}$

- 1. Effettuate tutte le iterazioni dell'algoritmo, aggiornando entrambe le matrici ad ogni passo dell'esecuzione. In presenza di cicli negativi arrestate l'algoritmo al termine dell'iterazione corrente e mostrate un ciclo di peso negativo.
- 2. Eseguite nuovamente l'algoritmo sostituendo il valore delle caselle (E, A) con i seguenti valori = +∞ nella matrice di sinistra e A nella matrice di destra.
- 3. Per entrambi i punti 1 e 2, quando l'algoritmo non trova cicli negativi mostrate i cammini orientati minimi $E \rightarrow C$ e $B \rightarrow C$.

Domanda 3

Illustrare la definizione di soluzione base ammissibile di un problema di PL in forma standard. Dimostrare le condizioni algebriche di ottimalità e illimitatezza utilizzate dall'algoritmo del simplesso e fornire una interpretazione geometrica del cambiamento di base.