数学分析 II-习题课

龙子超

本习题答案集所给出的解答尽可能从教材出发. 课程教材为《数学分析》I-III, 伍胜健编著, 北京大学出版社.

2018-Mar-21

作业

III Chap13 18. 设函数 f(x,y) 在 \mathbb{R}^2 内除直线 x=a 与 y=b 外处处有定义, 并且满足:

- 1. $\lim_{y\to b} f(x,y) = g(x)$ 存在
- 2. $\lim_{x\to a} f(x,y) = h(y)$ 一致存在,即对于 $\forall \varepsilon > 0, \exists \delta > 0$,使得对于 $\forall (x,y) \in \{(x,y) : 0 < |x-a| < \delta\}$ 有 $|f(x,y) h(y)| < \varepsilon$

证明: 存在 $c \in R$ 使得

- 1. $\lim_{x\to a} \lim_{y\to b} f(x,y) = \lim_{x\to a} g(x) = c$
- 2. $\lim_{y\to b} \lim_{x\to a} f(x,y) = \lim_{y\to b} h(y) = c$
- 3. $\lim_{E\ni(x,y)\to(a,b)} f(x,y) = c$, 其中 $E = \mathbb{R}^2 \setminus \{(x,y) : x = a, ory = b\}$

提示. 我们这里对一致存在做简单的解释: 这实际上是一致逼近的意思, 有兴趣的同学可以参考数分 II 第 10 章函数项级数的一致收敛的概念.

将二元函数 f(x,y) 视作一系列一元函数 $g_x(y)$, 对每个给定的 $x \in \mathbb{R}$, 我们定义一个一元函数, 记作 $g_x : \mathbb{R} \to \mathbb{R}$,

$$g_x(y) = f(x, y), \forall y \in \mathbf{R}$$

于是随着 x 逼近 a, 这一系列函数 $g_x(h)$ 逼近 h(y). $\lim_{x\to a} f(x,y) = h(y)$ 一致存在的意思就是, 这一系列 g_x 是一致逼近 h 的: 也就是, 任给一个 ε , 都存在一个 δ_ε , 只要 $|x-a| < \delta_\varepsilon$, 都有 $|g_x(y) - h(y)| < \varepsilon$

举个例子:

- $a = 0, g_x(y) = x \ln y, x \in [0, 1], y \in (0, 1],$ 当 $x \to 0$ 时,函数 g_x 逼近 $h(y) \equiv 0$,但不是一致逼近的.如图1a
- $a = 0, g_x(y) = x + y, x \in [0, 1], y \in [0, 1],$ 当 $x \to 0$ 时,函数 g_x 逼近 h(y) = y,而且是一致逼近的. 如图1b

图 1

III Chap13 21. 设 $E \subset \mathbb{R}^n$, 证明: 向量函数 $\boldsymbol{f}(\boldsymbol{x}): E \to \mathbb{R}^m$ 在 $\boldsymbol{x}_0 \in E$ 处连续的充分必要条件是对任何在 $U(\boldsymbol{f}(\boldsymbol{x}_0), \delta)(\delta > 0)$ 内连续的函数 $h(\boldsymbol{y}), h(\boldsymbol{f}(\boldsymbol{x}))$ 在 \boldsymbol{x}_0 处连续.

证明.

- 必要性: 假设 h 在 $U(\mathbf{f}(\mathbf{x}_0), \delta)$ 内连续, 则容易验证 $h(\mathbf{f})$ 在 \mathbf{x}_0 处连续
- 充分性: 假设对任何在 $U(f(x_0), \delta)$ 内连续的函数 h, h(f) 在 x_0 处都是连续的, 那么 f 一定在 x_0 处连续. 否则, 存在一个大于 0 的常数 ε 及一系列趋近于 x_0 的点 $\{x_n\}$, 使得 $||f(x_n) f(x_0)|| > \varepsilon$, 取 $h(u) = ||u f(x_0)||^2$, 则 $h(f(x_0)) = 0 \in \mathbb{R}^m, h(f(x_n)) > \varepsilon^2$, 这与 h(f(x)) 在 x_0 处连续矛盾.

III Chap14 15. 设函数 $u = f(\mathbf{x})$ 在 $\mathbf{x}_0 \in \mathbb{R}^n (n \geq 2)$ 的邻域 $U(\mathbf{x}_0, \delta_0)$ 内存在 n 个偏导数, 且 有 n-1 个偏导数在该邻域内连续. 证明: $u = f(\mathbf{x})$ 在 \mathbf{x}_0 处可微.

证明. 不妨设 $\frac{\partial u}{\partial x_i}, i=2,3,\cdots,n$ 在邻域内是连续的. 并假设 $m{x}_0=(x_1^0,\cdots,x_n^0)$ 我们要证明

$$f(\boldsymbol{x}_0 + \Delta \boldsymbol{x}) = f(\boldsymbol{x}_0) + \sum_{i=1}^n \frac{\partial f}{\partial x_i} \Delta x_i + o(|\Delta \boldsymbol{x}|)$$

我们记 $\mathbf{x}'_0 = (x_2^0, \dots, x_n^0), \Delta \mathbf{x}' = (\Delta x_2, \dots, \Delta x_n), g_{x_1}(\mathbf{x}') = f(x_1, \mathbf{x}').$

于是根据书中的定理 14.1.2, 对邻域内的每个 x_1, g_{x_1} 在邻域内都是可微的.

$$f(\boldsymbol{x}_0 + \Delta \boldsymbol{x}) = f(x_1^0 + \Delta x_1, \boldsymbol{x}_0') + \boldsymbol{D}g_{x_1^0 + \Delta x_1}(\boldsymbol{x}_0')\Delta \boldsymbol{x}' + o(|\Delta \boldsymbol{x}'|)$$

$$= f(x_1^0 + \Delta x_1, \boldsymbol{x}_0') + \boldsymbol{D}g_{x_1^0}(\boldsymbol{x}_0')\Delta \boldsymbol{x}' + o(1) \cdot \Delta \boldsymbol{x}' + o(|\Delta \boldsymbol{x}'|)$$

$$= f(\boldsymbol{x}_0) + \frac{\partial f}{\partial x_1}\Delta x_1 + \boldsymbol{D}g_{x_1^0}(\boldsymbol{x}_0')\Delta \boldsymbol{x}' + o(\Delta x_1) + o(|\Delta \boldsymbol{x}'|)$$

$$= f(\boldsymbol{x}_0) + \boldsymbol{D}f(\boldsymbol{x}_0) + o(|\Delta \boldsymbol{x}|)$$

从而 f 在 x_0 处是可微的.

补充

- 1. 请举出一个函数 $u = f(\mathbf{x})(\mathbf{x} \in \mathbf{R}^n)$, 使得它同时满足下述条件:
 - 1. f(x) 在 x = 0 处各个方向导数都存在.
 - 2. f(x) 在 x = 0 处各个偏导数都存在
 - 3. f(x) 在 x = 0 处连续但不可微.

证明. 取
$$fx,y) = \sqrt{|xy|}$$

- 2. 请举出一个函数 $u = f(\mathbf{x})(\mathbf{x} \in \mathbf{R}^n)$, 使得它同时满足下述条件:
 - 1. f(x) 在 x = 0 处可微
 - 2. f(x) 在 x = 0 邻域内各方向导数存在
 - 3. $f(\mathbf{x})$ 在 $\mathbf{x} = 0$ 处偏导不连续

证明. 即作业题 Chap14 10. 取 $f(x,y) = (x^2 + y^2) \sin \frac{1}{x^2 + y^2}$

3. 复合函数求导: $g: \mathbf{R}^l \to \mathbf{R}^m, f: \mathbf{R}^m \to \mathbf{R}^n$ 在合适的邻域内连续可微. 记 u(x) = f(g(x)), 则

$$\mathrm{d} oldsymbol{u} \ = \ oldsymbol{D} oldsymbol{f} \mathrm{d} oldsymbol{g}$$

$$= \ oldsymbol{D} oldsymbol{f} \mathrm{D} oldsymbol{g} \mathrm{d} oldsymbol{x}$$

因此 $m{D}m{u}(m{x}) = m{D}m{f}(m{g})m{D}m{g}(m{x}),$ 即 $rac{\partial m{u}}{\partial m{x}} = rac{\partial m{f}}{\partial m{g}} \cdot rac{\partial m{g}}{\partial m{x}}$

- 1. $\boldsymbol{u} = \boldsymbol{f}(\cdots \boldsymbol{f}(\boldsymbol{f}(\boldsymbol{x})) \cdots)$, 其中 $f: \mathbb{R}^n \to \mathbb{R}^n$. 求 $\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}$
- 2. $\boldsymbol{u} = \boldsymbol{x} + \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{\theta}),$ 其中 $\boldsymbol{\theta} \in \mathbb{R}^N, f(\cdot, \boldsymbol{\theta}) : \mathbb{R}^n \to \mathbb{R}^n.$ 求 $\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}, \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\theta}}$
- 3. $\boldsymbol{u} = \boldsymbol{x} + \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{\theta}) + \boldsymbol{f}(\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{\theta}), \boldsymbol{\theta}),$ 其中 $\boldsymbol{\theta} \in \mathbb{R}^N, f(\cdot, \boldsymbol{\theta}) : \mathbb{R}^n \to \mathbb{R}^n$ 求 $\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}, \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\theta}}$

证明. 略