Package 'midasr'

October 13, 2022

Title Mixed Data Sampling Regression
Description Methods and tools for mixed frequency time series data analysis. Allows estimation, model selection and forecasting for MIDAS regressions.
<pre>URL http://mpiktas.github.io/midasr/</pre>
Version 0.8
Maintainer Vaidotas Zemlys-Balevičius <zemlys@gmail.com></zemlys@gmail.com>
$\textbf{Author} \ \ Virmantas \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
<zemlys@gmail.com></zemlys@gmail.com>
Depends R (>= 2.11.0), sandwich, optimx, quantreg
Imports MASS, numDeriv, Matrix, forecast, zoo, stats, graphics, utils, Formula, texreg, methods
License GPL-2 MIT + file LICENCE
BugReports https://github.com/mpiktas/midasr/issues
Suggests testthat, lubridate, xts
RoxygenNote 7.1.1
Encoding UTF-8
Collate 'deriv.R' 'imidasreg.R' 'lagspec.R' 'midas_nlpr.R' 'midas_r_methods.R' 'midas_nlpr_methods.R' 'midas_qr_methods.R' 'midas_sp.R' 'midas_sp_methods.R' 'midaslag.R' 'midasqr.R' 'midasr-package.R' 'midasreg.R' 'modsel.R' 'nonparametric.R' 'simulate.R' 'tests.R'
NeedsCompilation no
Repository CRAN
Date/Publication 2021-02-23 09:40:05 UTC
R topics documented:
midasr-package

igk.test	
ılmonp	6
llmonp_gradient	6
midas_table	
mweights	
verage_forecast	10
check_mixfreq	
coef.midas_nlpr	
coef.midas_r	
coef.midas_sp	
leriv_tests	
leviance.midas_nlpr	
leviance.midas_r	
leviance.midas_sp	
lmls	
expand_amidas	
expand_weights_lags	
extract.midas_r	
itted.midas_nlpr	
itted.midas_sp	
mls	
orecast.midas_r	
genexp	
genexp_gradient	
get_estimation_sample	
gompertzp	
gompertzp_gradient	
ıAhr_test	
nAh_test	
narstep	
narstep_gradient	
nf_lags_table	
midas_r	
cauchyp	
cauchyp_gradient	
f_lags_table	
str	
midas_auto_sim	
midas_lstr_plain	
midas_lstr_sim	
midas_mmm_plain	
midas_mmm_sim	
midas_nlpr	
nidas_nlpr.fit	
midas_pl_plain	
midas_pl_sim	
midas_qr	
midas r	54

R	topics	documented:
---	--------	-------------

documented:	3
midas_r.fit	7
midas_r_ic_table	3
midas_r_np)
midas_r_plain	1
midas_sim	2
midas_si_plain	3
midas_si_sim	4
midas_sp	5
midas_u	7
mls	9
mlsd)
mmm	1
modsel	1
nakagamip	2
nakagamip_gradient	3
nbeta	4
nbetaMT	4
nbetaMT_gradient	5
nbeta_gradient	5
nealmon	5
nealmon_gradient	7
oos_prec	3
plot_lstr	9
plot_midas_coef)
plot_midas_coef.midas_nlpr	1
plot_sp	2
polystep	3
polystep_gradient	4
predict.midas_nlpr	4
predict.midas_r	5
predict.midas_sp	5
prep_hAh	7
rvsp500	3
select_and_forecast	8
simulate.midas_r	C
split_data	2
update_weights	3
UScpiqs	4

+.lws_table

midasr-package

Mixed Data Sampling Regression

Description

Package for estimating, testing and forecasting MIDAS regression.

Details

Methods and tools for mixed frequency time series data analysis. Allows estimation, model selection and forecasting for MIDAS regressions.

Author(s)

Virmantas Kvedaras <virmantas.kvedaras@mif.vu.lt>, Vaidotas Zemlys (maintainer) <zemlys@gmail.com>

+.lws_table

Combine lws_table objects

Description

Combines lws_table objects

Usage

```
## S3 method for class 'lws_table'
... + check = TRUE
```

Arguments

... lws_table object

check logical, if TRUE checks that the each lws_table object is named a list with

names c("weights","lags","starts")

Details

The lws_table objects have similar structure to table, i.e. it is a list with 3 elements which are the lists with the same number of elements. The base function c would cbind such tables. This function rbinds them.

Value

lws_table object

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

agk.test 5

Examples

```
nlmn <- expand_weights_lags("nealmon",0,c(4,8),1,start=list(nealmon=rep(0,3)))
nbt <- expand_weights_lags("nbeta",0,c(4,8),1,start=list(nbeta=rep(0,4)))
nlmn+nbt</pre>
```

agk.test

Andreou, Ghysels, Kourtellos LM test

Description

Perform the test whether hyperparameters of normalized exponential Almon lag weights are zero

Usage

```
agk.test(x)
```

Arguments

Х

MIDAS regression object of class midas_r

Value

a htest object

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

References

Andreou E., Ghysels E., Kourtellos A. *Regression models with mixed sampling frequencies* Journal of Econometrics 158 (2010) 246-261

```
##' ##Load data
data("USunempr")
data("USrealgdp")

y <- diff(log(USrealgdp))
x <- window(diff(USunempr), start=1949)
t <- 1:length(y)

mr <- midas_r(y~t+fmls(x,11,12,nealmon), start=list(x=c(0,0,0)))
agk.test(mr)</pre>
```

6 almonp_gradient

almonp

Almon polynomial MIDAS weights specification

Description

Calculate Almon polynomial MIDAS weights

Usage

```
almonp(p, d, m)
```

Arguments

p parameters for Almon polynomial weights

d number of coefficients

m the frequency ratio, currently ignored

Value

vector of coefficients

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

almonp_gradient

Gradient function for Almon polynomial MIDAS weights

Description

Calculate gradient for Almon polynomial MIDAS weights specification

Usage

```
almonp_gradient(p, d, m)
```

Arguments

p vector of parameters for Almon polynomial specification

d number of coefficients

m the frequency ratio, currently ignored

Value

vector of coefficients

amidas_table 7

Author(s)

Vaidotas Zemlys

amidas_table Weight and lag selection table for aggregates based MIDAS regression model

Description

Create weight and lag selection table for the aggregates based MIDAS regression model

Usage

```
amidas_table(
  formula,
  data,
  weights,
  wstart,
  type,
  start = NULL,
  from,
  to,
  IC = c("AIC", "BIC"),
  test = c("hAh_test"),
  Ofunction = "optim",
  weight_gradients = NULL,
  ...
)
```

Arguments

formula	the formula for MIDAS regression, the lag selection is performed for the last MIDAS lag term in the formula
data	a list containing data with mixed frequencies
weights	the names of weights used in Ghysels schema
wstart	the starting values for the weights of the firs low frequency lag
type	the type of Ghysels schema see amweights, can be a vector of types
start	the starting values for optimisation excluding the starting values for the last term
from	a named list, or named vector with high frequency (NB!) lag numbers which are the beginnings of MIDAS lag structures. The names should correspond to the MIDAS lag terms in the formula for which to do the lag selection. Value NA indicates lag start at zero
to	to a named list where each element is a vector with two elements. The first element is the low frequency lag number from which the lag selection starts, the second is the low frequency lag number at which the lag selection ends. NA indicates lowest (highest) lag numbers possible.

8 amidas_table

IC the names of information criteria which should be calculated

test the names of statistical tests to perform on restricted model, p-values are re-

ported in the columns of model selection table

Ofunction see midasr weight_gradients see midas_r

... additional parameters to optimisation function, see midas_r

Details

This function estimates models sequentialy increasing the midas lag from kmin to kmax and varying the weights of the last term of the given formula

This function estimates models sequentially increasing the midas lag from kmin to kmax and varying the weights of the last term of the given formula

Value

a midas_r_ic_table object which is the list with the following elements:

table the table where each row contains calculated information criteria for both re-

stricted and unrestricted MIDAS regression model with given lag structure

candlist the list containing fitted models

IC the argument IC test the argument test

weights the names of weight functions

lags the lags used in models

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

amweights 9

amweights

Weights for aggregates based MIDAS regressions

Description

Produces weights for aggregates based MIDAS regression

Usage

```
amweights(p, d, m, weight = nealmon, type = c("A", "B", "C"))
```

Arguments

p parameters for weight functions, see details.

d number of high frequency lags

m the frequency weight the weight function

type type of structure, a string, one of A, B or C.

Details

Suppose a weight function $w(\beta, \theta)$ satisfies the following equation:

$$w(\beta, \theta) = \beta g(\theta)$$

The following combinations are defined, corresponding to structure types A, B and C respectively:

$$(w(\beta_1, \theta_1), ..., w(\beta_k, \theta_k))$$

 $(w(\beta_1, \theta), ..., w(\beta_k, \theta))$
 $\beta(w(1, \theta), ..., w(1, \theta)),$

where k is the number of low frequency lags, i.e. d/m. If the latter value is not whole number, the error is produced.

The starting values p should be supplied then as follows:

$$(\beta_1, \theta_1, ..., \beta_k, \theta_k)$$
$$(\beta_1, ..., \beta_k, \theta)$$
$$(\beta, \theta)$$

Value

a vector of weights

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

10 average_forecast

average_forecast

Average forecasts of MIDAS models

Description

Average MIDAS model forecasts using specified weighting scheme. Produce in-sample and out-of-sample accuracy measures.

Usage

```
average_forecast(
  modlist,
  data,
  insample,
  outsample,
  type = c("fixed", "recursive", "rolling"),
  fweights = c("EW", "BICW", "MSFE", "DMSFE"),
  measures = c("MSE", "MAPE", "MASE"),
  show_progress = TRUE
)
```

Arguments

modlist a list of midas_r objects data a list with mixed frequency data the low frequency indexes for in-sample data insample outsample the low frequency indexes for out-of-sample data a string indicating which type of forecast to use. type names of weighting schemes fweights names of accuracy measures measures logical, TRUE to show progress bar, FALSE for silent evaluation show_progress

Details

Given the data, split it to in-sample and out-of-sample data. Then given the list of models, reestimate each model with in-sample data and produce out-of-sample forecast. Given the forecasts average them with the specified weighting scheme. Then calculate the accuracy measures for individual and average forecasts.

The forecasts can be produced in 3 ways. The "fixed" forecast uses model estimated with insample data. The "rolling" forecast reestimates model each time by increasing the in-sample by one low frequency observation and dropping the first low frequency observation. These reestimated models then are used to produce out-of-sample forecasts. The "recursive" forecast differs from "rolling" that it does not drop observations from the beginning of data.

check_mixfreq 11

Value

a list containing forecasts and tables of accuracy measures

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

```
set.seed(1001)
## Number of low-frequency observations
## Linear trend and higher-frequency explanatory variables (e.g. quarterly and monthly)
trend < -c(1:n)
x<-rnorm(4*n)
z<-rnorm(12*n)
## Exponential Almon polynomial constraint-consistent coefficients
fn.x <- nealmon(p=c(1,-0.5),d=8)
fn.z \leftarrow nealmon(p=c(2,0.5,-0.1),d=17)
## Simulated low-frequency series (e.g. yearly)
y < -2 + 0.1 \times trend + mls(x, 0:7, 4) \times fn.x + mls(z, 0:16, 12) \times fn.z + rnorm(n)
mod1 < - midas_r(y \sim trend + mls(x, 4:14, 4, nealmon) + mls(z, 12:22, 12, nealmon),
                 start=list(x=c(10,1,-0.1),z=c(2,-0.1)))
mod2 \leftarrow midas_r(y \sim trend + mls(x, 4:20, 4, nealmon) + mls(z, 12:25, 12, nealmon),
                 start=list(x=c(10,1,-0.1),z=c(2,-0.1)))
##Calculate average forecasts
avgf <- average_forecast(list(mod1,mod2),</pre>
                          data=list(y=y,x=x,z=z,trend=trend),
                          insample=1:200,outsample=201:250,
                          type="fixed",
                          measures=c("MSE","MAPE","MASE"),
                          fweights=c("EW","BICW","MSFE","DMSFE"))
```

check_mixfreq

Check data for MIDAS regression

Description

Given mixed frequency data check whether higher frequency data can be converted to the lowest frequency.

Usage

```
check_mixfreq(data)
```

Arguments

data

a list containing mixed frequency data

12 coef.midas_nlpr

Details

The number of observations in higher frequency data elements should have a common divisor with the number of observations in response variable. It is always assumed that the response variable is of the lowest frequency.

Value

a boolean TRUE, if mixed frequency data is conformable, FALSE if it is not.

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

coef.midas_nlpr

Extract coefficients of MIDAS regression

Description

Extracts various coefficients of MIDAS regression

Usage

```
## S3 method for class 'midas_nlpr'
coef(object, type = c("plain", "midas", "nlpr"), term_names = NULL, ...)
```

Arguments

object midas_nlpr object

type one of plain, midas, or nlpr. Returns appropriate coefficients.

term_names a character vector with term names. Default is NULL, which means that coeffi-

cients of all the terms are returned

... not used currently

Details

MIDAS regression has two sets of cofficients. The first set is the coefficients associated with the parameters of weight functions associated with MIDAS regression terms. These are the coefficients of the NLS problem associated with MIDAS regression. The second is the coefficients of the linear model, i.e the values of weight functions of terms, or so called MIDAS coefficients. By default the function returns the first set of the coefficients.

Value

a vector with coefficients

Author(s)

Vaidotas Zemlys

coef.midas_r

coef.midas_r	Extract coefficients of MIDAS regression	
--------------	--	--

Description

Extracts various coefficients of MIDAS regression

Usage

```
## S3 method for class 'midas_r'
coef(object, midas = FALSE, term_names = NULL, ...)
```

Arguments

object midas_r object

midas logical, if TRUE, MIDAS coefficients are returned, if FALSE (default), coefficients

of NLS problem are returned

term_names a character vector with term names. Default is NULL, which means that coeffi-

cients of all the terms are returned

... not used currently

Details

MIDAS regression has two sets of cofficients. The first set is the coefficients associated with the parameters of weight functions associated with MIDAS regression terms. These are the coefficients of the NLS problem associated with MIDAS regression. The second is the coefficients of the linear model, i.e the values of weight functions of terms, or so called MIDAS coefficients. By default the function returns the first set of the coefficients.

Value

a vector with coefficients

Author(s)

Vaidotas Zemlys

```
#Simulate MIDAS regression
n<-250
trend<-c(1:n)
x<-rnorm(4*n)
z<-rnorm(12*n)
fn.x <- nealmon(p=c(1,-0.5),d=8)
fn.z <- nealmon(p=c(2,0.5,-0.1),d=17)
y<-2+0.1*trend+mls(x,0:7,4)%*%fn.x+mls(z,0:16,12)%*%fn.z+rnorm(n)
```

14 coef.midas_sp

coef.midas_sp

Extract coefficients of MIDAS regression

Description

Extracts various coefficients of MIDAS regression

Usage

```
## S3 method for class 'midas_sp'
coef(object, type = c("plain", "midas", "bw"), term_names = NULL, ...)
```

Arguments

object midas_nlpr object

type one of plain, midas, or nlpr. Returns appropriate coefficients.

term_names a character vector with term names. Default is NULL, which means that coeffi-

cients of all the terms are returned

... not used currently

Details

MIDAS regression has two sets of cofficients. The first set is the coefficients associated with the parameters of weight functions associated with MIDAS regression terms. These are the coefficients of the NLS problem associated with MIDAS regression. The second is the coefficients of the linear model, i.e the values of weight functions of terms, or so called MIDAS coefficients. By default the function returns the first set of the coefficients.

Value

a vector with coefficients

Author(s)

Vaidotas Zemlys

deriv_tests 15

deriv_tests	deriv_tests	Check whether non-linear least squares restricted MIDAS regression problem has converged
-------------	-------------	--

Description

Computes the gradient and hessian of the optimisation function of restricted MIDAS regression and checks whether the conditions of local optimum are met. Numerical estimates are used.

Usage

```
deriv_tests(x, tol = 1e-06)
## S3 method for class 'midas_r'
deriv_tests(x, tol = 1e-06)
```

Arguments

```
x midas_r objecttol a tolerance, values below the tolerance are considered zero
```

Value

a list with gradient, hessian of optimisation function and convergence message

Author(s)

Vaidotas Zemlys

See Also

midas_r

deviance.midas_nlpr

Non-linear parametric MIDAS regression model deviance

Description

Returns the deviance of a fitted MIDAS regression object

Usage

```
## S3 method for class 'midas_nlpr'
deviance(object, ...)
```

16 deviance.midas_r

Arguments

```
object a midas_r object
... currently nothing
```

Value

The sum of squared residuals

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

deviance.midas_r

MIDAS regression model deviance

Description

Returns the deviance of a fitted MIDAS regression object

Usage

```
## S3 method for class 'midas_r'
deviance(object, ...)
```

Arguments

```
object a midas_r object
... currently nothing
```

Value

The sum of squared residuals

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

deviance.midas_sp 17

deviance.midas_sp

Semi-parametric MIDAS regression model deviance

Description

Returns the deviance of a fitted MIDAS regression object

Usage

```
## S3 method for class 'midas_sp'
deviance(object, ...)
```

Arguments

```
object a midas_r object
... currently nothing
```

Value

The sum of squared residuals

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

dmls

MIDAS lag structure for unit root processes

Description

Prepares MIDAS lag structure for unit root processes

Usage

```
dmls(x, k, m, ...)
```

Arguments

x a vector

k maximal lag orderm frequency ratio

... further arguments used in fitting MIDAS regression

Value

a matrix containing the first differences and the lag k+1.

18 expand_amidas

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

schema	expand_amidas	Create table of weights, lags and starting values for Ghysels weight schema
--------	---------------	---

Description

Create table of weights, lags and starting values for Ghysels weight schema, see amweights

Usage

```
expand_amidas(weight, type = c("A", "B", "C"), from = 0, to, m, start)
```

Arguments

weight	the names of weight functions
type	the type of Ghysels schema, "A", "B" or "C"
from	the high frequency lags from which to start the fitting
to	to a vector of length two, containing minimum and maximum lags, high frequency if $m=1$, low frequency otherwise.
m	the frequency ratio
start	the starting values for the weights of the one low frequency lag

Details

Given weight function creates lags starting from kmin to kmax and replicates starting values for each low frequency lag.

Value

```
a lws_table object, a list with elements weights, lags and starts
```

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

```
expand_amidas("nealmon","A",0,c(1,2),12,c(0,0,0))
```

expand_weights_lags 19

expand_weights_lags	Create table of	of weights.	lags and	starting values

Description

Creates table of weights, lags and starting values

Usage

```
expand_weights_lags(weights, from = 0, to, m = 1, start)
```

Arguments

weights	either a vector with names of the weight functions or a named list of weight functions
from	the high frequency lags from which to start the fitting
to	a vector of length two, containing minimum and maximum lags, high frequency if $m=1$, low frequency otherwise.
m	the frequency ratio
start	a named list with the starting values for weight functions

Details

For each weight function creates lags starting from kmin to kmax. This is a convenience function for easier work with the function midas_r_ic_table.

Value

```
a lws_table object, a list with elements weights, lags and starts.
```

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

```
 \begin{array}{l} {\rm expand\_weights\_lags(c("nealmon","nbeta"),0,c(4,8),1,start=list(nealmon=rep(0,3),nbeta=rep(0,4)))} \\ {\rm nlmn} <- {\rm expand\_weights\_lags("nealmon",0,c(4,8),1,start=list(nealmon=rep(0,3)))} \\ {\rm nbt} <- {\rm expand\_weights\_lags("nbeta",0,c(4,8),1,start=list(nbeta=rep(0,4)))} \\ {\rm nlmn+nbt} \end{array}
```

20 fitted.midas_nlpr

extract.midas_r

Extract coefficients and GOF measures from MIDAS regression object

Description

Extract coefficients and GOF measures from MIDAS regression object

Usage

```
extract.midas_r(
  model,
  include.rsquared = TRUE,
  include.nobs = TRUE,
  include.rmse = TRUE,
  ...
)
```

Arguments

Value

texreg object

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

fitted.midas_nlpr

Fitted values for non-linear parametric MIDAS regression model

Description

Returns the fitted values of a fitted non-linear parametric MIDAS regression object

Usage

```
## S3 method for class 'midas_nlpr'
fitted(object, ...)
```

fitted.midas_sp 21

Arguments

```
object a midas_r object
... currently nothing
```

Value

the vector of fitted values

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

fitted.midas_sp

Fitted values for semi-parametric MIDAS regression model

Description

Returns the fitted values of a fitted semi-parametric MIDAS regression object

Usage

```
## S3 method for class 'midas_sp'
fitted(object, ...)
```

Arguments

```
object a midas_r object
... currently nothing
```

Value

the vector of fitted values

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

22 forecast.midas_r

fmls

Full MIDAS lag structure

Description

Create a matrix of MIDAS lags, including contemporaneous lag up to selected order.

Usage

```
fmls(x, k, m, ...)
```

Arguments

x a vector

k maximum lag orderm frequency ratiofurther arguments

Details

This is a convenience function, it calls link{msl} to perform actual calculations.

Value

a matrix containing the lags

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

See Also

mls

forecast.midas_r

Forecast MIDAS regression

Description

Forecasts MIDAS regression given the future values of regressors. For dynamic models (with lagged response variable) there is an option to calculate dynamic forecast, when forecasted values of response variable are substituted into the lags of response variable.

forecast.midas_r 23

Usage

```
## S3 method for class 'midas_r'
forecast(
   object,
   newdata = NULL,
   se = FALSE,
   level = c(80, 95),
   fan = FALSE,
   npaths = 999,
   method = c("static", "dynamic"),
   insample = get_estimation_sample(object),
   show_progress = TRUE,
   add_ts_info = FALSE,
   ...
)
```

Arguments

object midas_r object

newdata a named list containing future values of mixed frequency regressors. The default

is NULL, meaning that only in-sample data is used.

se logical, if TRUE, the prediction intervals are calculated

level confidence level for prediction intervals

fan if TRUE, level is set to seq(50,99,by=1). This is suitable for fan plots

npaths the number of samples for simulating prediction intervals
method the forecasting method, either "static" or "dynamic"
insample a list containing the historic mixed frequency data

show_progress logical, if TRUE, the progress bar is shown if se = TRUE

add_ts_info logical, if TRUE, the forecast is cast as ts object. Some attempts are made to

guess the correct start, by assuming that the response variable is a ts object of

frequency 1. If FALSE, then the result is simply a numeric vector.

... additional arguments to simulate.midas_r

Details

Given future values of regressors this function combines the historical values used in the fitting the MIDAS regression model and calculates the forecasts.

Value

an object of class "forecast", a list containing following elements:

method the name of forecasting method: MIDAS regression, static or dynamic

model original object of class midas_r

mean point forecasts

24 forecast.midas_r

lower lower limits for prediction intervals upper upper limits for prediction intervals fitted fitted values, one-step forecasts residuals residuals from the fitted model x the original response variable

The methods print, summary and plot from package forecast can be used on the object.

Author(s)

Vaidotas Zemlys

```
data("USrealgdp")
data("USunempr")
y <- diff(log(USrealgdp))</pre>
x <- window(diff(USunempr), start = 1949)</pre>
trend <- 1:length(y)</pre>
##24 high frequency lags of x included
mr \leftarrow midas_r(y \sim trend + fmls(x, 23, 12, nealmon), start = list(x = rep(0, 3)))
##Forecast horizon
h <- 3
##Declining unemployment
xn < -rep(-0.1, 12*h)
##New trend values
trendn <- length(y) + 1:h
##Static forecasts combining historic and new high frequency data
forecast(mr, list(trend = trendn, x = xn), method = "static")
##Dynamic AR* model
mr.dyn \leftarrow midas_r(y \sim trend + mls(y, 1:2, 1, "*")
                    + fmls(x, 11, 12, nealmon),
                   start = list(x = rep(0, 3)))
forecast(mr.dyn, list(trend = trendn, x = xn), method = "dynamic")
##Use print, summary and plot methods from package forecast
fmr \leftarrow forecast(mr, list(trend = trendn, x = xn), method = "static")
summary(fmr)
plot(fmr)
```

genexp 25

genexp

Generalized exponential MIDAS coefficients

Description

Calculates the MIDAS coefficients for generalized exponential MIDAS lag specification

Usage

```
genexp(p, d, m)
```

Arguments

p a vector of parameters

d number of coefficients

m the frequency, currently ignored

Details

Generalized exponential MIDAS lag specification is a generalization of exponential Almon lag. It is defined as a product of first order polynomial with exponent of the second order polynomial. This spefication was used by V. Kvedaras and V. Zemlys (2012).

Value

a vector of coefficients

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

References

Kvedaras V., Zemlys, V. Testing the functional constraints on parameters in regressions with variables of different frequency Economics Letters 116 (2012) 250-254

26 genexp_gradient

genexp_gradient	Gradient of generalized exponential MIDAS coefficient generating function	
-----------------	---	--

Description

Calculates the gradient of generalized exponential MIDAS lag specification

Usage

```
genexp_gradient(p, d, m)
```

Arguments

p	a vector of parameters
d	number of coefficients

m the frequency, currently ignored

Details

Generalized exponential MIDAS lag specification is a generalization of exponential Almon lag. It is defined as a product of first order polynomial with exponent of the second order polynomial. This spefication was used by V. Kvedaras and V. Zemlys (2012).

Value

a vector of coefficients

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

References

Kvedaras V., Zemlys, V. Testing the functional constraints on parameters in regressions with variables of different frequency Economics Letters 116 (2012) 250-254

get_estimation_sample 27

get_estimation_sample Get the data which was used to etimate MIDAS regression

Description

Gets the data which was used to estimate MIDAS regression

Usage

```
get_estimation_sample(object)
```

Arguments

object

midas_r object

Details

A helper function.

Value

a named list with mixed frequency data

Author(s)

Vaidotas Zemlys

gompertzp

Normalized Gompertz probability density function MIDAS weights specification

Description

Calculate MIDAS weights according to normalized Gompertz probability density function specification

Usage

```
gompertzp(p, d, m)
```

Arguments

p parameters for normalized Gompertz probability density function

d number of coefficients

m the frequency ratio, currently ignored

28 gompertzp_gradient

Value

vector of coefficients

Author(s)

Julius Vainora

gompertzp_gradient Gradient function for normalized Gompertz probability density function MIDAS weights specification

Description

Calculate gradient function for normalized Gompertz probability density function specification of MIDAS weights.

Usage

```
gompertzp_gradient(p, d, m)
```

Arguments

p parameters for normalized Gompertz probability density function

d number of coefficients

m the frequency ratio, currently ignored

Value

vector of coefficients

Author(s)

Julius Vainora

hAhr_test 29

hAhr_test

Test restrictions on coefficients of MIDAS regression using robust version of the test

Description

Perform a test whether the restriction on MIDAS regression coefficients holds.

Usage

```
hAhr_test(x, PHI = vcovHAC(x$unrestricted, sandwich = FALSE))
```

Arguments

x MIDAS regression model with restricted coefficients, estimated with midas_r

PHI the "meat" covariance matrix, defaults to vcovHAC(x\$unrestricted, sandwich=FALSE)

Details

Given MIDAS regression:

$$y_t = \sum_{j=0}^{k} \sum_{i=0}^{m-1} \theta_{jm+i} x_{(t-j)m-i} + u_t$$

test the null hypothesis that the following restriction holds:

$$\theta_h = g(h, \lambda),$$

where h = 0, ..., (k + 1)m.

Value

a htest object

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

References

Kvedaras V., Zemlys, V. The statistical content and empirical testing of the MIDAS restrictions

See Also

hAh_test

hAh_test

```
##The parameter function
theta_h0 <- function(p, dk, ...) {</pre>
   i <- (1:dk-1)
   (p[1] + p[2]*i)*exp(p[3]*i + p[4]*i^2)
}
##Generate coefficients
theta0 <- theta_h0(c(-0.1,0.1,-0.1,-0.001),4*12)
##Plot the coefficients
plot(theta0)
##Generate the predictor variable
set.seed(13)
xx \leftarrow ts(arima.sim(model = list(ar = 0.6), 600 * 12), frequency = 12)
##Simulate the response variable
y <- midas_sim(500, xx, theta0)
x <- window(xx, start=start(y))</pre>
##Fit restricted model
mr <- midas_r(y^fmls(x, 4*12-1, 12, theta_h0)-1,
              list(y=y,x=x),
              start=list(x=c(-0.1,0.1,-0.1,-0.001)))
##The gradient function
theta_h0_gradient <-function(p, dk,...) {</pre>
   i <- (1:dk-1)
   a \leftarrow \exp(p[3]*i + p[4]*i^2)
   cbind(a, a*i, a*i*(p[1]+p[2]*i), a*i^2*(p[1]+p[2]*i))
}
##Perform test (the expected result should be the acceptance of null)
hAhr_test(mr)
mr <- midas_r(y^fmls(x, 4*12-1, 12, theta_h0)-1,
              list(y=y,x=x),
              start=list(x=c(-0.1,0.1,-0.1,-0.001)),
              weight_gradients=list())
##Use exact gradient. Note the
hAhr_test(mr)
```

hAh_test 31

Description

Perform a test whether the restriction on MIDAS regression coefficients holds.

Usage

```
hAh_test(x)
```

Arguments

Χ

MIDAS regression model with restricted coefficients, estimated with midas_r

Details

Given MIDAS regression:

$$y_t = \sum_{j=0}^{k} \sum_{i=0}^{m-1} \theta_{jm+i} x_{(t-j)m-i} + u_t$$

test the null hypothesis that the following restriction holds:

$$\theta_h = g(h, \lambda),$$

where h = 0, ..., (k + 1)m.

Value

a htest object

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

References

Kvedaras V., Zemlys, V. Testing the functional constraints on parameters in regressions with variables of different frequency Economics Letters 116 (2012) 250-254

See Also

hAhr_test

```
##The parameter function
theta_h0 <- function(p, dk, ...) {
    i <- (1:dk-1)
        (p[1] + p[2]*i)*exp(p[3]*i + p[4]*i^2)
}</pre>
```

32 harstep

```
##Generate coefficients
theta0 <- theta_h0(c(-0.1,0.1,-0.1,-0.001),4*12)
##Plot the coefficients
plot(theta0)
##Generate the predictor variable
set.seed(13)
xx \leftarrow ts(arima.sim(model = list(ar = 0.6), 600 * 12), frequency = 12)
##Simulate the response variable
y <- midas_sim(500, xx, theta0)
x <- window(xx, start=start(y))</pre>
##Fit restricted model
mr \leftarrow midas_r(y^fmls(x,4*12-1,12,theta_h0)-1,list(y=y,x=x),
              start=list(x=c(-0.1,0.1,-0.1,-0.001)))
##Perform test (the expected result should be the acceptance of null)
hAh_test(mr)
##Fit using gradient function
##The gradient function
theta_h0_gradient<-function(p, dk,...) {
   i <- (1:dk-1)
   a \leftarrow \exp(p[3]*i + p[4]*i^2)
   cbind(a, a*i, a*i*(p[1]+p[2]*i), a*i^2*(p[1]+p[2]*i))
}
mr <- midas_r(y^fmls(x, 4*12-1, 12, theta_h0)-1, list(y=y, x=x),
              start=list(x=c(-0.1,0.1,-0.1,-0.001)),
              weight_gradients=list())
##The test will use an user supplied gradient of weight function. See the
##help of midas_r on how to supply the gradient.
hAh_test(mr)
```

harstep

HAR(3)-RV model MIDAS weights specification

Description

HAR(3)-RV model MIDAS weights specification

harstep_gradient 33

Usage

```
harstep(p, d, m)
```

Arguments

p parameters for Almon lagd number of the coefficientsm the frequency, currently ignored.

Details

MIDAS weights for Heterogeneous Autoregressive model of Realized Volatilty (HAR-RV). It is assumed that month has 20 days.

Value

vector of coefficients

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

References

Corsi, F., A Simple Approximate Long-Memory Model of Realized Volatility, Journal of Financial Econometrics Vol. 7 No. 2 (2009) 174-196

harstep_gradient

Gradient function for HAR(3)-RV model MIDAS weights specification

Description

Gradient function for HAR(3)-RV model MIDAS weights specification

Usage

```
harstep_gradient(p, d, m)
```

Arguments

p	parameters for Almon lag
d	number of the coefficients

m the frequency, currently ignored.

Details

MIDAS weights for Heterogeneous Autoregressive model of Realized Volatilty (HAR-RV). It is assumed that month has 20 days.

34 hf_lags_table

Value

vector of coefficients

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

References

Corsi, F., A Simple Approximate Long-Memory Model of Realized Volatility, Journal of Financial Econometrics Vol. 7 No. 2 (2009) 174-196

Description

Creates a high frequency lag selection table for MIDAS regression model with given information criteria and minimum and maximum lags.

Usage

```
hf_lags_table(
  formula,
  data,
  start,
  from,
  to,
  IC = c("AIC", "BIC"),
  test = c("hAh_test"),
  Ofunction = "optim",
  weight_gradients = NULL,
  ...
)
```

Arguments

formula the formula for MIDAS regression, the lag selection is performed for the last

MIDAS lag term in the formula

data a list containing data with mixed frequencies

start the starting values for optimisation

from a named list, or named vector with lag numbers which are the beginings of

MIDAS lag structures. The names should correspond to the MIDAS lag terms in the formula for which to do the lag selection. Value NA indicates lag start at

zero

hf_lags_table 35

to a named list where each element is a vector with two elements. The first element

is the lag number from which the lag selection starts, the second is the lag number at which the lag selection ends. NA indicates lowest (highest) lag numbers

possible.

IC the information criteria which to compute

test the names of statistical tests to perform on restricted model, p-values are re-

ported in the columns of model selection table

Ofunction see midasr

weight_gradients

see midas_r

... additional parameters to optimisation function, see midas_r

Details

This function estimates models sequentially increasing the midas lag from kmin to kmax of the last term of the given formula

Value

a midas_r_iclagtab object which is the list with the following elements:

table the table where each row contains calculated information criteria for both re-

stricted and unrestricted MIDAS regression model with given lag structure

candlist the list containing fitted models

IC the argument IC

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

36 imidas_r

imidas_r

Restricted MIDAS regression with I(1) regressors

Description

Estimate restricted MIDAS regression using non-linear least squares, when the regressor is I(1)

Usage

```
imidas_r(
  formula,
  data,
  start,
  Ofunction = "optim",
 weight_gradients = NULL,
)
```

Arguments

formula formula for restricted MIDAS regression. Formula must include fmls function

data a named list containing data with mixed frequencies

start the starting values for optimisation. Must be a list with named elements.

Ofunction

the list with information which R function to use for optimisation. The list must have element named Ofunction which contains character string of chosen R function. Other elements of the list are the arguments passed to this function. The default optimisation function is optim with argument method="BFGS".

Other supported functions are nls

weight_gradients

a named list containing gradient functions of weights. The weight gradient function must return the matrix with dimensions $d_k \times q$, where d_k and q are the number of coefficients in unrestricted and restricted regressions correspondingly. The names of the list should coincide with the names of weights used in formula. The default value is NULL, which means that the numeric approximation of weight function gradient is calculated. If the argument is not NULL, but the name of the weight used in formula is not present, it is assumed that there exists an R function which has the name of the weight function appended with .gradient.

additional arguments supplied to optimisation function

Details

Given MIDAS regression:

$$y_t = \sum_{j=0}^{k} \sum_{i=0}^{m-1} \theta_{jm+i} x_{(t-j)m-i} + \mathbf{z_t} \beta + u_t$$

imidas r 37

estimate the parameters of the restriction

$$\theta_h = g(h, \lambda),$$

where h = 0, ..., (k+1)m, together with coefficients β corresponding to additional low frequency regressors.

It is assumed that x is a I(1) process, hence the special transformation is made. After the transformation midas_r is used for estimation.

MIDAS regression involves times series with different frequencies.

The restriction function must return the restricted coefficients of the MIDAS regression.

Value

a midas_r object which is the list with the following elements:

coefficients the estimates of parameters of restrictions

midas_coefficients

the estimates of MIDAS coefficients of MIDAS regression

model model data

unrestricted unrestricted regression estimated using midas_u

term_info the named list. Each element is a list with the information about the term, such

as its frequency, function for weights, gradient function of weights, etc.

fn0 optimisation function for non-linear least squares problem solved in restricted

MIDAS regression

rhs the function which evaluates the right-hand side of the MIDAS regression gen_midas_coef the function which generates the MIDAS coefficients of MIDAS regression

opt the output of optimisation procedure

argmap_opt the list containing the name of optimisation function together with arguments

for optimisation function

start_opt the starting values used in optimisation

start_list the starting values as a list call the call to the function

terms terms object

gradient gradient of NLS objective function hessian hessian of NLS objective function

gradD gradient function of MIDAS weight functions
Zenv the environment in which data is placed

use_gradient TRUE if user supplied gradient is used, FALSE otherwise

nobs the number of effective observations

convergence the convergence message

fitted.values the fitted values of MIDAS regression residuals the residuals of MIDAS regression

38 leauchyp

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

See Also

```
midas_r.midas_r
```

Examples

```
theta.h0 <- function(p, dk) {
    i <- (1:dk-1)/100
    pol <- p[3]*i + p[4]*i^2
    (p[1] + p[2]*i)*exp(pol)
}

theta0 <- theta.h0(c(-0.1,10,-10,-10),4*12)

xx <- ts(cumsum(rnorm(600*12)), frequency = 12)

##Simulate the response variable
y <- midas_sim(500, xx, theta0)

x <- window(xx, start=start(y))

imr <- imidas_r(y~fmls(x,4*12-1,12,theta.h0)-1,start=list(x=c(-0.1,10,-10,-10)))</pre>
```

lcauchyp

Normalized log-Cauchy probability density function MIDAS weights specification

Description

Calculate MIDAS weights according to normalized log-Cauchy probability density function specification

Usage

```
lcauchyp(p, d, m)
```

Arguments

p parameters for normalized log-Cauchy probability density function
 d number of coefficients

m the frequency ratio, currently ignored

Value

vector of coefficients

lcauchyp_gradient 39

Author(s)

Julius Vainora

lcauchyp_gradient

Gradient function for normalized log-Cauchy probability density function MIDAS weights specification

Description

Calculate gradient function for normalized log-Cauchy probability density function specification of MIDAS weights.

Usage

```
lcauchyp_gradient(p, d, m)
```

Arguments

p parameters for normalized log-Cauchy probability density function

d number of coefficients

m the frequency ratio, currently ignored

Value

vector of coefficients

Author(s)

Julius Vainora

lf_lags_table

Create a low frequency lag selection table for MIDAS regression model

Description

Creates a low frequency lag selection table for MIDAS regression model with given information criteria and minimum and maximum lags.

40 lf_lags_table

Usage

```
lf_lags_table(
  formula,
  data,
  start,
  from,
  to,
  IC = c("AIC", "BIC"),
  test = c("hAh_test"),
 Ofunction = "optim",
 weight_gradients = NULL,
)
```

Arguments

formula the formula for MIDAS regression, the lag selection is performed for the last

MIDAS lag term in the formula

data a list containing data with mixed frequencies

start the starting values for optimisation

from a named list, or named vector with high frequency (NB!) lag numbers which are

> the beginnings of MIDAS lag structures. The names should correspond to the MIDAS lag terms in the formula for which to do the lag selection. Value NA

indicates lag start at zero

a named list where each element is a vector with two elements. The first element to

> is the low frequency lag number from which the lag selection starts, the second is the low frequency lag number at which the lag selection ends. NA indicates

lowest (highest) lag numbers possible.

IC the information criteria which to compute

see midas_r

test the names of statistical tests to perform on restricted model, p-values are re-

ported in the columns of model selection table

Ofunction see midasr weight_gradients

additional parameters to optimisation function, see midas_r

Details

This function estimates models sequentially increasing the midas lag from kmin to kmax of the last term of the given formula

Value

a midas_r_ic_table object which is the list with the following elements:

table

the table where each row contains calculated information criteria for both restricted and unrestricted MIDAS regression model with given lag structure

Istr 41

candlist the list containing fitted models

IC the argument IC

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

lstr

Compute LSTR term for high frequency variable

Description

Compute LSTR term for high frequency variable

Usage

```
lstr(X, theta, beta, sd_X = sd(c(X), na.rm = TRUE))
```

Arguments

Χ	matrix, high frequency variable embedded in low frequency, output of mls
theta	vector, restriction coefficients for high frequency variable
beta	vector of length 4, parameters for LSTR term, slope and 3 LSTR parameters
sd_x	vector of length 1, defaults to standard deviation of X.

Value

a vector

42 midas_auto_sim

midas_auto_sim

Simulate simple autoregressive MIDAS model

Description

Given the predictor variable, the weights and autoregressive coefficients, simulate MIDAS regression response variable.

Usage

```
midas_auto_sim(
    n,
    alpha,
    x,
    theta,
    rand_gen = rnorm,
    innov = rand_gen(n, ...),
    n_start = NA,
    ...
)
```

Arguments

n	sample size.
alpha	autoregressive coefficients.
x	a high frequency predictor variable.
theta	a vector with MIDAS weights for predictor variable.
rand_gen	a function to generate the innovations, default is the normal distribution.
innov	an optional time series of innovations.
n_start	number of observations to omit for the burn.in.
	additional arguments to function rand_gen.

Value

```
a ts object
```

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

midas_lstr_plain 43

Examples

```
theta_h0 <- function(p, dk) {
    i <- (1:dk-1)/100
    pol <- p[3]*i + p[4]*i^2
        (p[1] + p[2]*i)*exp(pol)
}

##Generate coefficients
theta0 <- theta_h0(c(-0.1,10,-10,-10),4*12)

##Generate the predictor variable
xx <- ts(arima.sim(model = list(ar = 0.6), 1000 * 12), frequency = 12)

y <- midas_auto_sim(500, 0.5, xx, theta0, n_start = 200)
x <- window(xx, start=start(y))
midas_r(y ~ mls(y, 1, 1) + fmls(x, 4*12-1, 12, theta_h0), start = list(x = c(-0.1, 10, -10, -10)))</pre>
```

midas_lstr_plain

LSTR (Logistic Smooth TRansition) MIDAS regression

Description

Function for fitting LSTR MIDAS regression without the formula interface

Usage

```
midas_lstr_plain(
   y,
   X,
   z = NULL,
   weight,
   start_lstr,
   start_x,
   start_z = NULL,
   method = c("Nelder-Mead"),
   ...
)
```

Arguments

У	model response
X	prepared matrix of high frequency variable lags for LSTR term
z	additional low frequency variables
weight	the weight function
start_lstr	the starting values for lstr term
start_x	the starting values for weight function

44 midas_lstr_sim

```
start_z the starting values for additional low frequency variables
method a method passed to optimx
... additional parameters to optimx
```

Value

an object similar to midas_r object

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

midas_lstr_sim

Simulate LSTR MIDAS regression model

Description

Simulate LSTR MIDAS regression model

Usage

```
midas_lstr_sim(
    n,
    m,
    theta,
    intercept,
    plstr,
    ar.x,
    ar.y,
    rand.gen = rnorm,
    n.start = NA,
    ...
)
```

Arguments

number of observations to simulate. n integer, frequency ratio m vector, restriction coefficients for high frequency variable theta vector of length 1, intercept for the model. intercept vector of length 4, slope for the LSTR term and LSTR parameters plstr vector, AR parameters for simulating high frequency variable ar.x vector, AR parameters for AR part of the model ar.y rand.gen function, a function for generating the regression innovations, default is rnorm integer, length of a 'burn-in' period. If NA, the default, a reasonable value is n.start computed. additional parameters to rand.gen

midas_mmm_plain 45

Value

a list

Examples

midas_mmm_plain

MMM (Mean-Min-Max) MIDAS regression

Description

Function for fitting MMM MIDAS regression without the formula interface

Usage

```
midas_mmm_plain(
   y,
   X,
   z = NULL,
   weight,
   start_mmm,
   start_x,
   start_z = NULL,
   method = c("Nelder-Mead"),
   ...
)
```

Arguments

```
y model response
```

X prepared matrix of high frequency variable lags for MMM term

z additional low frequency variables

46 midas_mmm_sim

```
weight the weight function
start_mmm the starting values for MMM term
start_x the starting values for weight function
start_z the starting values for additional low frequency variables
method a method passed to optimx
... additional parameters to optimx
```

Value

an object similar to midas_r object

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

midas_mmm_sim

Simulate MMM MIDAS regression model

Description

Simulate MMM MIDAS regression model

Usage

```
midas_mmm_sim(
    n,
    m,
    theta,
    intercept,
    pmmm,
    ar.x,
    ar.y,
    rand.gen = rnorm,
    n.start = NA,
    ...
)
```

Arguments

n number of observations to simulate.

m integer, frequency ratio

theta vector, restriction coefficients for high frequency variable

intercept vector of length 1, intercept for the model.

pmmm vector of length 2, slope for the MMM term and MMM parameter

midas_nlpr 47

ar.x	vector, AR parameters for simulating high frequency variable
ar.y	vector, AR parameters for AR part of the model
rand.gen	function, a function for generating the regression innovations, default is rnorm
n.start	integer, length of a 'burn-in' period. If NA, the default, a reasonable value is computed.
	additional parameters to rand.gen

Value

a list

Examples

midas_nlpr

Non-linear parametric MIDAS regression

Description

Estimate restricted MIDAS regression using non-linear least squares.

Usage

```
midas_nlpr(formula, data, start, Ofunction = "optim", ...)
```

Arguments

formula	formula for restricted MIDAS regression or midas_r object. Formula must include fmls function
data	a named list containing data with mixed frequencies
start	the starting values for optimisation. Must be a list with named elements.

48 midas_nlpr

Of unction the list with information which R function to use for optimisation. The list must

have element named Ofunction which contains character string of chosen R function. Other elements of the list are the arguments passed to this function. The default optimisation function is optim with arguments method="Nelder-Mead" and control=list(maxit=5000). Other supported functions are nls, optimx.

. . . additional arguments supplied to optimisation function

Details

Given MIDAS regression:

$$y_t = \sum_{j=1}^{p} \alpha_j y_{t-j} + \sum_{i=0}^{k} \sum_{j=0}^{l_i} \beta_j^{(i)} x_{tm_i-j}^{(i)} + u_t,$$

estimate the parameters of the restriction

$$\beta_j^{(i)} = g^{(i)}(j, \lambda).$$

Such model is a generalisation of so called ADL-MIDAS regression. It is not required that all the coefficients should be restricted, i.e the function $g^{(i)}$ might be an identity function. Model with no restrictions is called U-MIDAS model. The regressors $x_{\tau}^{(i)}$ must be of higher (or of the same) frequency as the dependent variable y_t .

Value

a midas_r object which is the list with the following elements:

coefficients the estimates of parameters of restrictions

midas_coefficients

the estimates of MIDAS coefficients of MIDAS regression

model model data

unrestricted unrestricted regression estimated using midas_u

term_info the named list. Each element is a list with the information about the term, such

as its frequency, function for weights, gradient function of weights, etc.

fn0 optimisation function for non-linear least squares problem solved in restricted

MIDAS regression

rhs the function which evaluates the right-hand side of the MIDAS regression gen_midas_coef the function which generates the MIDAS coefficients of MIDAS regression

opt the output of optimisation procedure

argmap_opt the list containing the name of optimisation function together with arguments

for optimisation function

start_opt the starting values used in optimisation

start_list the starting values as a list call the call to the function

midas_nlpr.fit 49

terms object

gradient gradient of NLS objective function hessian hessian of NLS objective function

gradD gradient function of MIDAS weight functions
Zenv the environment in which data is placed

nobs the number of effective observations

convergence the convergence message

fitted.values the fitted values of MIDAS regression residuals the residuals of MIDAS regression

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

midas_nlpr.fit Fit restricted MIDAS regression

Description

Workhorse function for fitting restricted MIDAS regression

Usage

```
midas_nlpr.fit(x)
```

Arguments

x midas_r object

Value

```
midas_r object
```

Author(s)

Vaidotas Zemlys

50 midas_pl_plain

midas_pl_plain

MIDAS Partialy linear non-parametric regression

Description

Function for fitting PL MIDAS regression without the formula interface

Usage

```
midas_pl_plain(
   y,
   X,
   z,
   p.ar = NULL,
   weight,
   degree = 1,
   start_bws,
   start_x,
   start_ar = NULL,
   method = c("Nelder-Mead"),
   ...
)
```

Arguments

У	model response
Χ	prepared matrix of high frequency variable lags for MMM term
z	a vector, data for the non-parametric part
p.ar	length of AR part
weight	the weight function
degree	the degree of local polynomial
start_bws	the starting values bandwith
start_x	the starting values for weight function
start_ar	the starting values for AR part. Should be the same length as p
method	a method passed to optim
	additional parameters to optim

Value

an object similar to midas_r object

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

midas_pl_sim 51

midas_pl_sim

Simulate PL MIDAS regression model

Description

Simulate PL MIDAS regression model

Usage

```
midas_pl_sim(
    n,
    m,
    theta,
    gfun,
    ar.x,
    ar.y,
    rand.gen = rnorm,
    n.start = NA,
    ...
)
```

Arguments

n	number of observations to simulate.
m	integer, frequency ratio
theta	vector, restriction coefficients for high frequency variable
gfun	function, a function which takes a single index
ar.x	vector, AR parameters for simulating high frequency variable
ar.y	vector, AR parameters for AR part of the model
rand.gen	function, a function for generating the regression innovations, default is rnorm
n.start	integer, length of a 'burn-in' period. If NA, the default, a reasonable value is computed.
	additional parameters to rand.gen

Value

a list

```
nnbeta <- function(p, k) nbeta(c(1,p),k) 
 dgp <- midas_pl_sim(250, m = 12, theta = nnbeta(c(2, 4), 24), \\ gfun = function(x) 0.25*x^3, \\ ar.x = 0.9, ar.y = 0.5, n.start = 100)
```

52 midas_qr

midas_qr

Restricted MIDAS quantile regression

Description

Estimate restricted MIDAS quantile regression using nonlinear quantile regression

Usage

```
midas_qr(
  formula,
  data,
  tau = 0.5,
  start,
  Ofunction = "nlrq",
  weight_gradients = NULL,
  guess_start = TRUE,
  ...
)
```

Arguments

formula for restricted MIDAS regression or midas_qr object. Formula must

include mls function

data a named list containing data with mixed frequencies

tau quantile

start the starting values for optimisation. Must be a list with named elements.

Ofunction

the list with information which R function to use for optimisation. The list must have element named Ofunction which contains character string of chosen R function. Other elements of the list are the arguments passed to this function. The default optimisation function is optim with argument method="BFGS".

Other supported functions are nls

weight_gradients

a named list containing gradient functions of weights. The weight gradient function must return the matrix with dimensions $d_k \times q$, where d_k and q are the number of coefficients in unrestricted and restricted regressions correspondingly. The names of the list should coincide with the names of weights used in formula. The default value is NULL, which means that the numeric approximation of weight function gradient is calculated. If the argument is not NULL, but the name of the weight used in formula is not present, it is assumed that there exists an R function which has the name of the weight function appended with

_gradient.

guess_start, logical, if TRUE tries certain strategy to improve starting values

... additional arguments supplied to optimisation function

midas_qr 53

Value

a midas_r object which is the list with the following elements:

coefficients the estimates of parameters of restrictions

midas_coefficients

the estimates of MIDAS coefficients of MIDAS regression

model model data

unrestricted unrestricted regression estimated using midas_u

term_info the named list. Each element is a list with the information about the term, such

as its frequency, function for weights, gradient function of weights, etc.

fn0 optimisation function for non-linear least squares problem solved in restricted

MIDAS regression

rhs the function which evaluates the right-hand side of the MIDAS regression gen_midas_coef the function which generates the MIDAS coefficients of MIDAS regression

opt the output of optimisation procedure

argmap_opt the list containing the name of optimisation function together with arguments

for optimisation function

start_opt the starting values used in optimisation

start_list the starting values as a list call the call to the function

terms object

gradient gradient of NLS objective function hessian hessian of NLS objective function

gradD gradient function of MIDAS weight functions

Zenv the environment in which data is placed

use_gradient TRUE if user supplied gradient is used, FALSE otherwise

nobs the number of effective observations

convergence the convergence message

fitted.values the fitted values of MIDAS regression residuals the residuals of MIDAS regression

Author(s)

Vaidotas Zemlys-Balevicius

```
##Take the same example as in midas_r
theta_h0 <- function(p, dk, ...) {
    i <- (1:dk-1)/100
    pol <- p[3]*i + p[4]*i^2</pre>
```

54 midas_r

```
(p[1] + p[2]*i)*exp(pol)
}
##Generate coefficients
theta0 <- theta_h0(c(-0.1,10,-10,-10),4*12)
##Plot the coefficients
plot(theta0)
##Generate the predictor variable
xx \leftarrow ts(arima.sim(model = list(ar = 0.6), 600 * 12), frequency = 12)
##Simulate the response variable
y \leftarrow midas_sim(500, xx, theta0)
x <- window(xx, start=start(y))</pre>
##Fit quantile regression. All the coefficients except intercept should be constant.
##Intercept coefficient should correspond to quantile function of regression errors.
mr \leftarrow midas_qr(y^fmls(x,4*12-1,12,theta_h0), tau = c(0.1, 0.5, 0.9),
              list(y=y,x=x),
              start=list(x=c(-0.1,10,-10,-10)))
mr
```

midas_r

Restricted MIDAS regression

Description

Estimate restricted MIDAS regression using non-linear least squares.

Usage

```
midas_r(
  formula,
  data,
  start,
  Ofunction = "optim",
  weight_gradients = NULL,
  ...
)
```

Arguments

formula for restricted MIDAS regression or midas_r object. Formula must include fmls function

data a named list containing data with mixed frequencies

start the starting values for optimisation. Must be a list with named elements.

midas_r 55

Ofunction

the list with information which R function to use for optimisation. The list must have element named Ofunction which contains character string of chosen R function. Other elements of the list are the arguments passed to this function. The default optimisation function is optim with argument method="BFGS". Other supported functions are nls

weight_gradients

a named list containing gradient functions of weights. The weight gradient function must return the matrix with dimensions $d_k \times q$, where d_k and q are the number of coefficients in unrestricted and restricted regressions correspondingly. The names of the list should coincide with the names of weights used in formula. The default value is NULL, which means that the numeric approximation of weight function gradient is calculated. If the argument is not NULL, but the name of the weight used in formula is not present, it is assumed that there exists an R function which has the name of the weight function appended with gradient.

additional arguments supplied to optimisation function

Details

Given MIDAS regression:

$$y_t = \sum_{i=1}^{p} \alpha_j y_{t-j} + \sum_{i=0}^{k} \sum_{j=0}^{l_i} \beta_j^{(i)} x_{tm_i-j}^{(i)} + u_t,$$

estimate the parameters of the restriction

$$\beta_j^{(i)} = g^{(i)}(j, \lambda).$$

Such model is a generalisation of so called ADL-MIDAS regression. It is not required that all the coefficients should be restricted, i.e the function $g^{(i)}$ might be an identity function. Model with no restrictions is called U-MIDAS model. The regressors $x_{\tau}^{(i)}$ must be of higher (or of the same) frequency as the dependent variable y_t .

MIDAS-AR* (a model with a common factor, see (Clements and Galvao, 2008)) can be estimated by specifying additional argument, see an example.

The restriction function must return the restricted coefficients of the MIDAS regression.

Value

a midas_r object which is the list with the following elements:

coefficients the estimates of parameters of restrictions midas_coefficients

the estimates of MIDAS coefficients of MIDAS regression

model model data

unrestricted unrestricted regression estimated using midas_u

56 midas r

term_info the named list. Each element is a list with the information about the term, such

as its frequency, function for weights, gradient function of weights, etc.

fn0 optimisation function for non-linear least squares problem solved in restricted

MIDAS regression

rhs the function which evaluates the right-hand side of the MIDAS regression

gen_midas_coef the function which generates the MIDAS coefficients of MIDAS regression

opt the output of optimisation procedure

argmap_opt the list containing the name of optimisation function together with arguments

for optimisation function

start_opt the starting values used in optimisation

start_list the starting values as a list call the call to the function

terms object

gradient gradient of NLS objective function hessian hessian of NLS objective function

gradD gradient function of MIDAS weight functions

Zenv the environment in which data is placed

use_gradient TRUE if user supplied gradient is used, FALSE otherwise

nobs the number of effective observations

convergence the convergence message

fitted.values the fitted values of MIDAS regression residuals the residuals of MIDAS regression

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

References

Clements, M. and Galvao, A., *Macroeconomic Forecasting With Mixed-Frequency Data: Forecasting Output Growth in the United States*, Journal of Business and Economic Statistics, Vol.26 (No.4), (2008) 546-554

```
##The parameter function
theta_h0 <- function(p, dk, ...) {
    i <- (1:dk-1)/100
    pol <- p[3]*i + p[4]*i^2
        (p[1] + p[2]*i)*exp(pol)
}
##Generate coefficients
theta0 <- theta_h0(c(-0.1,10,-10,-10),4*12)</pre>
```

midas_r.fit 57

```
##Plot the coefficients
plot(theta0)
##Generate the predictor variable
xx \leftarrow ts(arima.sim(model = list(ar = 0.6), 600 * 12), frequency = 12)
##Simulate the response variable
y \leftarrow midas_sim(500, xx, theta0)
x <- window(xx, start=start(y))</pre>
##Fit restricted model
mr <- midas_r(y^fmls(x,4*12-1,12,theta_h0)-1,
               list(y=y,x=x),
               start=list(x=c(-0.1,10,-10,-10)))
##Include intercept and trend in regression
mr_it \leftarrow midas_r(y\sim fmls(x,4*12-1,12,theta_h0)+trend,
                  list(data.frame(y=y,trend=1:500),x=x),
                  start=list(x=c(-0.1,10,-10,-10)))
data("USrealgdp")
data("USunempr")
y.ar <- diff(log(USrealgdp))</pre>
xx <- window(diff(USunempr), start = 1949)</pre>
trend <- 1:length(y.ar)</pre>
##Fit AR(1) model
mr_ar \leftarrow midas_r(y.ar \sim trend + mls(y.ar, 1, 1) +
                  fmls(xx, 11, 12, nealmon),
                  start = list(xx = rep(0, 3)))
##First order MIDAS-AR* restricted model
mr_arstar \leftarrow midas_r(y.ar \sim trend + mls(y.ar, 1, 1, "*")
                      + fmls(xx, 11, 12, nealmon),
                       start = list(xx = rep(0, 3)))
```

midas_r.fit

Fit restricted MIDAS regression

Description

Workhorse function for fitting restricted MIDAS regression

Usage

```
midas_r.fit(x)
```

58 midas_r_ic_table

Arguments

x midas_r object

Value

```
midas_r object
```

Author(s)

Vaidotas Zemlys

midas_r_ic_table

Create a weight and lag selection table for MIDAS regression model

Description

Creates a weight and lag selection table for MIDAS regression model with given information criteria and minimum and maximum lags.

Usage

```
midas_r_ic_table(
  formula,
  data = NULL,
  start = NULL,
  table,
  IC = c("AIC", "BIC"),
  test = c("hAh_test"),
  Ofunction = "optim",
  weight_gradients = NULL,
  show_progress = TRUE,
  ...
)
```

Arguments

formula	the formula for MIDAS regression, the lag selection is performed for the last MIDAS lag term in the formula
data	a list containing data with mixed frequencies
start	the starting values for optimisation excluding the starting values for the last term
table	an wls_table object, see expand_weights_lags
IC	the names of information criteria which to compute
test	the names of statistical tests to perform on restricted model, p-values are reported in the columns of model selection table
Ofunction	see midasr

midas_r_ic_table 59

```
weight_gradients
see midas_r

show_progress logical, TRUE to show progress bar, FALSE for silent evaluation
... additional parameters to optimisation function, see midas_r
```

Details

This function estimates models sequentially increasing the midas lag from kmin to kmax and varying the weights of the last term of the given formula

Value

a midas_r_ic_table object which is the list with the following elements:

table the table where each row contains calculated information criteria for both re-

stricted and unrestricted MIDAS regression model with given lag structure

candlist the list containing fitted models

IC the argument IC

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

60 midas_r_np

midas_r_np

Estimate non-parametric MIDAS regression

Description

Estimates non-parametric MIDAS regression

Usage

```
midas_r_np(formula, data, lambda = NULL)
```

Arguments

formula specifying MIDAS regression

data a named list containing data with mixed frequencies

lambda smoothing parameter, defaults to NULL, which means that it is chosen by min-

imising AIC.

Details

Estimates non-parametric MIDAS regression according Breitung et al.

Value

```
a midas_r_np object
```

Author(s)

Vaidotas Zemlys

References

Breitung J, Roling C, Elengikal S (2013). Forecasting inflation rates using daily data: A non-parametric MIDAS approach Working paper, URL http://www.ect.uni-bonn.de/mitarbeiter/joerg-breitung/npmidas.

```
data("USunempr")
data("USrealgdp")
y <- diff(log(USrealgdp))
x <- window(diff(USunempr),start=1949)
trend <- 1:length(y)
midas_r_np(y~trend+fmls(x,12,12))</pre>
```

midas_r_plain 61

midas_r_plain

Restricted MIDAS regression

Description

Function for fitting MIDAS regression without the formula interface

Usage

```
midas_r_plain(
   y,
   X,
   z = NULL,
   weight,
   grw = NULL,
   startx,
   startz = NULL,
   method = c("Nelder-Mead", "BFGS"),
   ...
)
```

Arguments

У	model response
Χ	prepared matrix of high frequency variable lags
z	additional low frequency variables
weight	the weight function
grw	the gradient of weight function
startx	the starting values for weight function
startz	the starting values for additional low frequency variables
method	a method passed to optimx
	additional parameters to optimx

Value

an object similar to midas_r object

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

62 midas_sim

Examples

```
data("USunempr")
data("USrealgdp")
y <- diff(log(USrealgdp))
x <- window(diff(USunempr), start=1949)
trend <- 1:length(y)

X<-fmls(x,11,12)
midas_r_plain(y,X,trend,weight=nealmon,startx=c(0,0,0))</pre>
```

midas_sim

Simulate simple MIDAS regression response variable

Description

Given the predictor variable and the coefficients simulate MIDAS regression response variable.

Usage

```
midas_sim(n, x, theta, rand_gen = rnorm, innov = rand_gen(n, ...), ...)
```

Arguments

n	The sample size
x	a ts object with MIDAS regression predictor variable
theta	a vector with MIDAS regression coefficients
rand_gen	the function which generates the sample of innovations, the default is rnorm
innov	the vector with innovations, the default is NULL, i.e. innovations are generated using argument $\mbox{rand_gen}$
	additional arguments to rand_gen.

Details

MIDAS regression with one predictor variable has the following form:

$$y_t = \sum_{j=0}^h \theta_j x_{tm-j} + u_t,$$

where m is the frequency ratio and h is the number of high frequency lags included in the regression.

MIDAS regression involves times series with different frequencies. In R the frequency property is set when creating time series objects ts. Hence the frequency ratio m which figures in MIDAS regression is calculated from frequency property of time series objects supplied.

midas_si_plain 63

Value

a ts object

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

```
##The parameter function
theta_h0 <- function(p, dk) {
    i <- (1:dk-1)/100
    pol <- p[3]*i + p[4]*i^2
        (p[1] + p[2]*i)*exp(pol)
}

##Generate coefficients
theta0 <- theta_h0(c(-0.1,10,-10,-10),4*12)

##Plot the coefficients
plot(theta0)

##Generate the predictor variable, leave 4 low frequency lags of data for burn-in.
xx <- ts(arima.sim(model = list(ar = 0.6), 600 * 12), frequency = 12)

##Simulate the response variable
y <- midas_sim(500, xx, theta0)

x <- window(xx, start=start(y))
midas_r(y ~ mls(y, 1, 1) + fmls(x, 4*12-1, 12, theta_h0), start = list(x = c(-0.1, 10, -10, -10)))</pre>
```

midas_si_plain

MIDAS Single index regression

Description

Function for fitting SI MIDAS regression without the formula interface

Usage

```
midas_si_plain(
   y,
   X,
   p.ar = NULL,
   weight,
   degree = 1,
   start_bws,
   start_x,
```

midas_si_sim

```
start_ar = NULL,
method = "Nelder-Mead",
...
)
```

Arguments

У model response Χ prepared matrix of high frequency variable lags for MMM term length of AR part p.ar the weight function weight degree the degree of local polynomial start_bws the starting values bandwith start_x the starting values for weight function start_ar the starting values for AR part. Should be the same length as p method a method passed to optim, defaults to Nelder-Mead

additional parameters to optim

Value

. . .

an object similar to midas_r object

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

midas_si_sim

Simulate SI MIDAS regression model

Description

Simulate SI MIDAS regression model

Usage

```
midas_si_sim(
    n,
    m,
    theta,
    gfun,
    ar.x,
    ar.y,
    rand.gen = rnorm,
    n.start = NA,
    ...
)
```

midas_sp 65

Arguments

n	number of observations to simulate.
m	integer, frequency ratio
theta	vector, restriction coefficients for high frequency variable
gfun	function, a function which takes a single index
ar.x	vector, AR parameters for simulating high frequency variable
ar.y	vector, AR parameters for AR part of the model
rand.gen	function, a function for generating the regression innovations, default is rnorm
n.start	integer, length of a 'burn-in' period. If NA, the default, a reasonable value is computed.
	additional parameters to rand.gen

Value

a list

Examples

```
nnbeta <- function(p, k) nbeta(c(1,p),k) 
 dgp <- midas\_si\_sim(250, m = 12, theta = nnbeta(c(2, 4), 24), \\ gfun = function(x) 0.03*x^3, \\ ar.x = 0.9, ar.y = 0.5, n.start = 100)
```

midas_sp

Semi-parametric MIDAS regression

Description

Estimate semi-parametric MIDAS regression using non-linear least squares.

Usage

```
midas_sp(formula, data, bws, start, degree = 1, Ofunction = "optim", ...)
```

Arguments

formula	formula for restricted MIDAS regression or midas_r object. Formula must include fmls function
data	a named list containing data with mixed frequencies
bws	a bandwith specification. Note you need to supply logarithm value of the bandwith

66 midas_sp

start the starting values for optimisation. Must be a list with named elements.

degree the degree of local polynomial. 0 corresponds to local-constant, 1 local-linear.

For univariate models higher values can be provided.

Ofunction the list with information which R function to use for optimisation. The list must

have element named Ofunction which contains character string of chosen R function. Other elements of the list are the arguments passed to this function. The default optimisation function is optim with arguments method="Nelder-Mead" and control=list(maxit=5000). Other supported functions are nls, optimx.

... additional arguments supplied to optimisation function

Details

Given MIDAS regression:

$$y_t = \sum_{j=1}^{p} \alpha_j y_{t-j} + \sum_{i=0}^{k} \sum_{j=0}^{l_i} \beta_j^{(i)} x_{tm_i-j}^{(i)} + u_t,$$

estimate the parameters of the restriction

$$\beta_j^{(i)} = g^{(i)}(j, \lambda).$$

Such model is a generalisation of so called ADL-MIDAS regression. It is not required that all the coefficients should be restricted, i.e the function $g^{(i)}$ might be an identity function. The regressors $x_{\tau}^{(i)}$ must be of higher (or of the same) frequency as the dependent variable y_t .

Value

a midas_sp object which is the list with the following elements:

coefficients the estimates of parameters of restrictions

midas_coefficients

the estimates of MIDAS coefficients of MIDAS regression

model model data

unrestricted unrestricted regression estimated using midas_u

term_info the named list. Each element is a list with the information about the term, such

as its frequency, function for weights, gradient function of weights, etc.

fn0 optimisation function for non-linear least squares problem solved in restricted

MIDAS regression

rhs the function which evaluates the right-hand side of the MIDAS regression gen_midas_coef the function which generates the MIDAS coefficients of MIDAS regression

opt the output of optimisation procedure

argmap_opt the list containing the name of optimisation function together with arguments

for optimisation function

start_opt the starting values used in optimisation

midas_u 67

start_list the starting values as a list call the call to the function

terms object

gradient gradient of NLS objective function hessian hessian of NLS objective function

gradD gradient function of MIDAS weight functions

Zenv the environment in which data is placed

nobs the number of effective observations

convergence the convergence message

fitted.values the fitted values of MIDAS regression residuals the residuals of MIDAS regression

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys-Balevičius

midas_u

Estimate unrestricted MIDAS regression

Description

Estimate unrestricted MIDAS regression using OLS. This function is a wrapper for 1m.

Usage

```
midas_u(formula, data, ...)
```

Arguments

formula MIDAS regression model formula

data a named list containing data with mixed frequencies
... further arguments, which could be passed to 1m function.

Details

MIDAS regression has the following form:

$$y_t = \sum_{j=1}^{p} \alpha_j y_{t-j} + \sum_{i=0}^{k} \sum_{j=0}^{l_i} \beta_j^{(i)} x_{tm_i-j}^{(i)} + u_t,$$

where $x_{\tau}^{(i)}$, i = 0,...k are regressors of higher (or similar) frequency than y_t . Given certain assumptions the coefficients can be estimated using usual OLS and they have the familiar properties associated with simple linear regression.

68 midas_u

Value

1m object.

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

References

Kvedaras V., Zemlys, V. Testing the functional constraints on parameters in regressions with variables of different frequency Economics Letters 116 (2012) 250-254

```
##The parameter function
theta_h0 <- function(p, dk, ...) {
   i \leftarrow (1:dk-1)/100
   pol <- p[3]*i + p[4]*i^2
   (p[1] + p[2]*i)*exp(pol)
}
##Generate coefficients
theta0 <- theta_h0(c(-0.1,10,-10,-10),4*12)
##Plot the coefficients
##Do not run
#plot(theta0)
##' ##Generate the predictor variable
xx \leftarrow ts(arima.sim(model = list(ar = 0.6), 600 * 12), frequency = 12)
##Simulate the response variable
y <- midas_sim(500, xx, theta0)
x <- window(xx, start=start(y))</pre>
##Create low frequency data.frame
ldt <- data.frame(y=y,trend=1:length(y))</pre>
##Create high frequency data.frame
hdt <- data.frame(x=window(x, start=start(y)))</pre>
##Fit unrestricted model
mu \leftarrow midas_u(y\sim fmls(x,2,12)-1, list(ldt, hdt))
##Include intercept and trend in regression
mu_it \leftarrow midas_u(y\sim fmls(x,2,12)+trend, list(ldt, hdt))
##Pass data as partialy named list
```

mls 69

```
mu_it \leftarrow midas_u(y^fmls(x,2,12)+trend, list(ldt, x=hdt$x))
```

 ${\tt mls}$

MIDAS lag structure

Description

Create a matrix of selected MIDAS lags

Usage

```
mls(x, k, m, ...)
```

Arguments

x a vector
 k a vector of lag orders, zero denotes contemporaneous lag.
 m frequency ratio

... further arguments used in fitting MIDAS regression

Details

The function checks whether high frequency data is complete, i.e. m must divide length(x).

Value

a matrix containing the lags

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

```
## Quarterly frequency data
x <- 1:16
## Create MIDAS lag for use with yearly data
mls(x,0:3,4)
## Do not use contemporaneous lag
mls(x,1:3,4)
## Compares with embed when m=1
embed(x,2)
mls(x,0:1,1)</pre>
```

70 mlsd

mlsd

MIDAS lag structure with dates

Description

MIDAS lag structure with dates

Usage

```
mlsd(x, k, datey, ...)
```

Arguments

```
    x a vector
    k lags, a vector
    datey low frequency dates
    ... further arguments used in fitting MIDAS regression
```

Value

a matrix containing the first differences and the lag k+1.

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys-Balevičius

```
x <- c(1:144)
y <- c(1:12)
datey <- (y-1)*12+1

#msld and mls should give the same results
m1 <- mlsd(x, 0:5, datey)
m2 <- mls(x, 0:5, 12)
sum(abs(m1 - m2))</pre>
```

mmm 71

 mmm

Compute MMM term for high frequency variable

Description

Compute MMM term for high frequency variable

Usage

```
mmm(X, theta, beta, ...)
```

Arguments

X matrix, high frequency variable embedded in low frequency, output of mls theta vector, restriction coefficients for high frequency variable beta vector of length 2, parameters for MMM term, slope and MMM parameter. ..., currently not used

Value

a vector

modsel

Select the model based on given information criteria

Description

Selects the model with minimum of given information criteria and model type

Usage

```
modsel(
    x,
    IC = x$IC[1],
    test = x$test[1],
    type = c("restricted", "unrestricted"),
    print = TRUE
)
```

Arguments

Х	a midas_r_ic_table object
IC	the name of information criteria to base the choosing of the model
test	the name of the test for which to print out the p-value
type	the type of MIDAS model, either restricted or unrestricted
print	logical, if TRUE, prints the summary of the best model.

72 nakagamip

Details

This function selects the model from the model selection table for which the chosen information criteria achieves the smallest value. The function works with model tables produced by functions lf_lags_table, hf_lags_table, amidas_table and midas_r_ic_table.

Value

(invisibly) the best model based on information criteria, midas_r object

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

nakagamip

Normalized Nakagami probability density function MIDAS weights specification

Description

Calculate MIDAS weights according to normalized Nakagami probability density function specification

Usage

```
nakagamip(p, d, m)
```

nakagamip_gradient 73

Arguments

D 1	oarameters fo	or normaliz	ed Nakagami	probability	v density	v function

d number of coefficients

m the frequency ratio, currently ignored

Value

vector of coefficients

Author(s)

Julius Vainora

nakagamip_gradient

Gradient function for normalized Nakagami probability density function MIDAS weights specification

Description

Calculate gradient function for normalized Nakagami probability density function specification of MIDAS weights.

Usage

```
nakagamip_gradient(p, d, m)
```

Arguments

p parameters for normalized Nakagami probability density function

d number of coefficients

m the frequency ratio, currently ignored

Value

vector of coefficients

Author(s)

Julius Vainora

74 nbetaMT

nbeta	Normalized beta probability density function MIDAS weights specification

Description

Calculate MIDAS weights according to normalized beta probability density function specification

Usage

```
nbeta(p, d, m)
```

Arguments

p parameters for normalized beta probability density function

d number of coefficients

m the frequency ratio, currently ignored

Value

vector of coefficients

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

nbetaMT	Normalized beta probability density function MIDAS weights specifi-
	cation (MATLAB toolbox compatible)

Description

Calculate MIDAS weights according to normalized beta probability density function specification. Compatible with the specification in MATLAB toolbox.

Usage

```
nbetaMT(p, d, m)
```

Arguments

p parameters for normalized b	oeta probability o	density function
-------------------------------	--------------------	------------------

d number of coefficients

m the frequency ratio, currently ignored

nbetaMT_gradient 75

Value

vector of coefficients

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

nbetaMT_gradient Gradient function for normalized beta probability density function MI-DAS weights specification (MATLAB toolbox compatible)

Description

Calculate gradient function for normalized beta probability density function specification of MIDAS weights.

Usage

```
nbetaMT_gradient(p, d, m)
```

Arguments

p parameters for normalized beta probability density function

d number of coefficients

m the frequency ratio, currently ignored

Value

vector of coefficients

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

76 nealmon

nbeta_gradient	Gradient function for normalized beta probability density function MI-DAS weights specification

Description

Calculate gradient function for normalized beta probability density function specification of MIDAS weights.

Usage

```
nbeta_gradient(p, d, m)
```

Arguments

p parameters for normalized beta probability density function

d number of coefficients

m the frequency ratio, currently ignored

Value

vector of coefficients

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

nealmon	Normalized Exponential Almon lag MIDAS coefficients

Description

Calculate normalized exponential Almon lag coefficients given the parameters and required number of coefficients.

Usage

```
nealmon(p, d, m)
```

Arguments

р	parameters for Almon lag
d	number of the coefficients
m	the frequency, currently ignored.

nealmon_gradient 77

Details

Given unrestricted MIDAS regression

$$y_t = \sum_{h=0}^{d} \theta_h x_{tm-h} + \mathbf{z_t} \beta + u_t$$

normalized exponential Almon lag restricts the coefficients $theta_h$ in the following way:

$$\theta_h = \delta \frac{\exp(\lambda_1(h+1) + \dots + \lambda_r(h+1)^r)}{\sum_{s=0}^d \exp(\lambda_1(s+1) + \dots + \lambda_r(h+1)^r)}$$

The parameter δ should be the first element in vector p. The degree of the polynomial is then decided by the number of the remaining parameters.

Value

vector of coefficients

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

```
##Load data
data("USunempr")
data("USrealgdp")

y <- diff(log(USrealgdp))
x <- window(diff(USunempr), start=1949)
t <- 1:length(y)

midas_r(y~t+fmls(x,11,12,nealmon), start=list(x=c(0,0,0)))</pre>
```

nealmon_gradient

Gradient function for normalized exponential Almon lag weights

Description

Gradient function for normalized exponential Almon lag weights

Usage

```
nealmon_gradient(p, d, m)
```

78 oos_prec

Arguments

p	hyperparameters for Almon lag
d	number of coefficients

m the frequency ratio, currently ignored

Value

the gradient matrix

Author(s)

Vaidotas Zemlys

oos_prec

Out-of-sample prediction precision data on simulation example

Description

The code in the example generates the out-of-sample prediction precision data for correctly and incorrectly constrained MIDAS regression model compared to unconstrained MIDAS regression model.

Format

A data.frame object with four columns. The first column indicates the sample size, the second the type of constraint, the third the value of the precision measure and the fourth the type of precision measure.

Examples

```
## Do not run:
## set.seed(1001)
## gendata<-function(n) {</pre>
       trend<-c(1:n)
##
##
       z < -rnorm(12*n)
##
       fn.z <- nealmon(p=c(2,0.5,-0.1),d=17)
       y<-2+0.1*trend+mls(z,0:16,12)%*%fn.z+rnorm(n)
##
##
       list(y=as.numeric(y),z=z,trend=trend)
## }
## nn <- c(50,100,200,300,500,750,1000)
## data_sets <- lapply(n,gendata)</pre>
## mse <- function(x) {</pre>
##
       mean(residuals(x)^2)
## }
```

plot_lstr 79

```
## bnorm <- function(x) {
##
       sqrt(sum((coef(x, midas = TRUE)-c(2,0.1,nealmon(p=c(2,0.5,-0.1),d=17)))^2))
## }
## rep1 <- function(n) {</pre>
##
       dt <- gendata(round(1.25*n))</pre>
       ni <- n
##
##
       ind <- 1:ni
       mind <- 1:(ni*12)
##
       indt<-list(y=dt$y[ind],z=dt$z[mind],trend=dt$trend[ind])</pre>
##
       outdt <- list(y=dt$y[-ind],z=dt$z[-mind],trend=dt$trend[-ind])</pre>
##
##
       um <- midas_r(y~trend+mls(z,0:16,12),data=indt,start=NULL)</pre>
       nm <- midas_r(y~trend+mls(z,0:16,12,nealmon),data=indt,start=list(z=c(1,-1,0)))</pre>
##
       am <- midas_r(y~trend+mls(z,0:16,12,almonp),data=indt,start=list(z=c(1,0,0,0)))
##
       modl <- list(um,nm,am)</pre>
##
       names(modl) <- c("um","nm","am")</pre>
##
       list(norms=sapply(mod1,bnorm),
##
            mse=sapply(modl,function(mod)mean((forecast(mod,newdata=outdt)-outdt$y)^2)))
## }
## repr <- function(n,R) {</pre>
       cc <- lapply(1:R,function(i)rep1(n))</pre>
##
       list(norms=t(sapply(cc,"[[","norms")),mse=t(sapply(cc,"[[","mse")))
##
## }
## res <- lapply(nn,repr,R=1000)
## norms <- data.frame(nn,t(sapply(lapply(res,"[[","norms"),function(l)apply(1,2,mean))))</pre>
## mses <- data.frame(nn,t(sapply(lapply(res,"[[","mse"),function(l)apply(l,2,mean))))</pre>
## msd <- melt(mses[-1,],id=1)
## colnames(msd)[2] <- "Constraint"</pre>
## nmd <- melt(norms[-1,],id=1)
## colnames(nmd)[2] <- "Constraint"</pre>
## msd$Type <- "Mean squared error"</pre>
## nmd$Type <- "Distance from true values"
## oos_prec <- rbind(msd,nmd)</pre>
## oos_prec$Type <- factor(oos_prec$Type,levels=c("Mean squared error","Distance from true values"))
```

plot_lstr

Plot MIDAS coefficients

Description

Plots logistic function for LSTR MIDAS regression

80 plot_midas_coef

Usage

```
plot_lstr(x, term_name, title = NULL, compare = NULL, ...)
```

Arguments

x midas_r object

term_name the term name for which the coefficients are plotted. Default is NULL, which

selects the first MIDAS term

title the title string of the graph. The default is NULL for the default title.

compare the parameters for weight function to compare with the model, default is NULL

... not used

Details

Plots logistic function for LSTR MIDSAS regression of unrestricted MIDAS regression

Value

a data frame with restricted MIDAS coefficients, unrestricted MIDAS coefficients and lower and upper confidence interval limits. The data frame is returned invisibly.

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

plot_midas_coef

Plot MIDAS coefficients

Description

Plots MIDAS coefficients of a MIDAS regression for a selected term.

Usage

```
plot_midas_coef(x, term_name, title, ...)
## S3 method for class 'midas_r'
plot_midas_coef(
    x,
    term_name = NULL,
    title = NULL,
    vcov. = sandwich,
    unrestricted = x$unrestricted,
    ...
)
```

Arguments

X	midas_r object
term_name	the term name for which the coefficients are plotted. Default is NULL, which selects the first MIDAS term $$
title	the title string of the graph. The default is NULL for the default title.
	additional arguments passed to vcov.
vcov.	the covariance matrix to calculate the standard deviation of the cofficients
unrestricted	the unrestricted model, the default is unrestricted model from the x object. Set NULL to plot only the weights.

Details

Plots MIDAS coefficients of a selected MIDAS regression term together with corresponding MI-DAS coefficients and their confidence intervals of unrestricted MIDAS regression

Value

a data frame with restricted MIDAS coefficients, unrestricted MIDAS coefficients and lower and upper confidence interval limits. The data frame is returned invisibly.

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

Description

Plots MIDAS coefficients of a MIDAS regression for a selected term.

plot_sp

Usage

```
## S3 method for class 'midas_nlpr'
plot_midas_coef(
    x,
    term_name = NULL,
    title = NULL,
    compare = NULL,
    normalize = FALSE,
    ...
)
```

Arguments

X	midas_r object
term_name	the term name for which the coefficients are plotted. Default is NULL, which selects the first MIDAS term
title	the title string of the graph. The default is NULL for the default title.
compare	the parameters for weight function to compare with the model, default is NULL
normalize	logical, if FALSE use the weight from the model, if TRUE, set the normalization coefficient of the weight function to 1.
	not used

Details

Plots MIDAS coefficients of a selected MIDAS regression term together with corresponding MI-DAS coefficients and their confidence intervals of unrestricted MIDAS regression

Value

a data frame with restricted MIDAS coefficients, unrestricted MIDAS coefficients and lower and upper confidence interval limits. The data frame is returned invisibly.

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

plot_sp

Plot non-parametric part of the single index MIDAS regression

Description

Plot non-parametric part of the single index MIDAS regression of unrestricted MIDAS regression

Usage

```
plot_sp(x, term_name, title = NULL, compare = NULL, ...)
```

polystep 83

Arguments

X	midas_r object
term_name	the term name for which the coefficients are plotted. Default is NULL, which selects the first MIDAS term $$
title	the title string of the graph. The default is NULL for the default title.
compare	the parameters for weight function to compare with the model, default is NULL

... not used

Value

a data frame with restricted MIDAS coefficients, unrestricted MIDAS coefficients and lower and upper confidence interval limits. The data frame is returned invisibly.

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

polystep Step function specification for MIDAS weights

Description

Step function specification for MIDAS weights

Usage

```
polystep(p, d, m, a)
```

Arguments

р	vector of parameters
d	number of coefficients

m the frequency ratio, currently ignored

a vector of increasing positive integers indicating the steps

Value

vector of coefficients

Author(s)

Vaidotas Zemlys

84 predict.midas_nlpr

polystep_gradient

Gradient of step function specification for MIDAS weights

Description

Gradient of step function specification for MIDAS weights

Usage

```
polystep_gradient(p, d, m, a)
```

Arguments

p vector of parametersd number of coefficients

m the frequency ratio, currently ignored

a vector of increasing positive integers indicating the steps

Value

vector of coefficients

Author(s)

Vaidotas Zemlys

predict.midas_nlpr

Predict method for non-linear parametric MIDAS regression fit

Description

Predicted values based on midas_nlpr object.

Usage

```
## S3 method for class 'midas_nlpr'
predict(object, newdata, na.action = na.omit, ...)
```

Arguments

object midas_nlpr object

newdata a named list containing data for mixed frequencies. If omitted, the in-sample

values are used.

na.action function determining what should be done with missing values in newdata. The

most likely cause of missing values is the insufficient data for the lagged vari-

ables. The default is to omit such missing values.

... additional arguments, not used

predict.midas_r 85

Details

predict.midas_nlpr produces predicted values, obtained by evaluating regression function in the frame newdata. This means that the appropriate model matrix is constructed using only the data in newdata. This makes this function not very convenient for forecasting purposes. If you want to supply the new data for forecasting horizon only use the function forecast.midas_r. Also this function produces only static predictions, if you want dynamic forecasts use the forecast.midas_r.

Value

a vector of predicted values

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

predict.midas_r

Predict method for MIDAS regression fit

Description

Predicted values based on midas_r object.

Usage

```
## S3 method for class 'midas_r'
predict(object, newdata, na.action = na.omit, ...)
```

Arguments

object midas_r object

newdata a named list containing data for mixed frequencies. If omitted, the in-sample

values are used.

na.action function determining what should be done with missing values in newdata. The

most likely cause of missing values is the insufficient data for the lagged vari-

ables. The default is to omit such missing values.

... additional arguments, not used

Details

predict.midas_r produces predicted values, obtained by evaluating regression function in the frame newdata. This means that the appropriate model matrix is constructed using only the data in newdata. This makes this function not very convenient for forecasting purposes. If you want to supply the new data for forecasting horizon only use the function forecast.midas_r. Also this function produces only static predictions, if you want dynamic forecasts use the forecast.midas_r.

86 predict.midas_sp

Value

a vector of predicted values

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

```
data("USrealgdp")
data("USunempr")

y <- diff(log(USrealgdp))
x <- window(diff(USunempr), start = 1949)

##24 high frequency lags of x included
mr <- midas_r(y ~ fmls(x, 23, 12, nealmon), start = list(x = rep(0, 3)))

##Declining unemployment
xn <- rnorm(2 * 12, -0.1, 0.1)

##Only one predicted value, historical values discarded
predict(mr, list(x = xn))

##Historical values taken into account
forecast(mr, list(x = xn))</pre>
```

predict.midas_sp

Predict method for semi-parametric MIDAS regression fit

Description

Predicted values based on midas_sp object.

Usage

```
## S3 method for class 'midas_sp'
predict(object, newdata, na.action = na.omit, ...)
```

Arguments

object	midas_nlpr object
newdata	a named list containing data for mixed frequencies. If omitted, the in-sample values are used.
na.action	function determining what should be done with missing values in newdata. The most likely cause of missing values is the insufficient data for the lagged variables. The default is to omit such missing values.
	additional arguments, not used

prep_hAh 87

Details

predict.midas_sp produces predicted values, obtained by evaluating regression function in the frame newdata. This means that the appropriate model matrix is constructed using only the data in newdata. This makes this function not very convenient for forecasting purposes. If you want to supply the new data for forecasting horizon only use the function forecast.midas_r. Also this function produces only static predictions, if you want dynamic forecasts use the forecast.midas_r.

Value

a vector of predicted values

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys-Balevičius

prep_hAh

Calculate data for hAh_test and hAhr_test

Description

Workhorse function for calculating necessary matrices for hAh_test and hAhr_test. Takes the same parameters as hAh_test

Usage

prep_hAh(x)

Arguments

Х

midas_r object

Value

a list with necessary matrices

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

See Also

hAh_test, hAhr_test

88 select_and_forecast

rvsp500

Realized volatility of S&P500 index

Description

Realized volatility of S&P500(Live) index of the period 2000 01 03 - 2013 11 22

Format

A data. frame object with two columns. First column contains date id, and the second the realized volatility for S&P500 index.

Source

https://realized.oxford-man.ox.ac.uk/images/oxfordmanrealizedvolatilityindices-0.2-final.zip

References

Heber, Gerd and Lunde, Asger, and Shephard, Neil and Sheppard, Kevin Oxford-Man Institute's realized library, Oxford-Man Institute, University of Oxford (2009)

Examples

```
## Do not run:
## Download the data from
## https://realized.oxford-man.ox.ac.uk/images/oxfordmanrealizedvolatilityindices-0.2-final.zip
## It contains the file OxfordManRealizedVolatilityIndices.csv.

## rvi <- read.csv("OxfordManRealizedVolatilityIndices.csv",check.names=FALSE,skip=2)
## ii <- which(rvi$DateID=="20131112")
## rvsp500 <- na.omit(rvi[1:ii,c("DataID","SPX2.rv")]</pre>
```

select_and_forecast

Create table for different forecast horizons

Description

Creates tables for different forecast horizons and table for combined forecasts

select_and_forecast 89

Usage

```
select_and_forecast(
  formula,
  data,
  from,
  to,
  insample,
 outsample,
 weights,
 wstart,
  start = NULL,
  IC = "AIC",
  seltype = c("restricted", "unrestricted"),
  test = "hAh_test",
 ftype = c("fixed", "recursive", "rolling"),
 measures = c("MSE", "MAPE", "MASE"),
 fweights = c("EW", "BICW", "MSFE", "DMSFE"),
)
```

Arguments

formula	initial formula for the
data	list of data
from	a named list of starts of lags from where to fit. Denotes the horizon
to	a named list for lag selections
insample	the low frequency indexes for in-sample data
outsample	the low frequency indexes for out-of-sample data
weights	names of weight function candidates
wstart	starting values for weight functions
start	other starting values
IC	name of information criteria to choose model from
seltype	argument to modsel, "restricted" for model selection based on information criteria of restricted MIDAS model, "unrestricted" for model selection based on unrestricted (U-MIDAS) model.
test	argument to modsel
ftype	which type of forecast to use.
measures	the names of goodness of fit measures
fweights	names of weighting schemes
	additional arguments for optimisation method, see midas r

Details

Divide data into in-sample and out-of-sample. Fit different forecasting horizons for in-sample data. Calculate accuracy measures for individual and average forecasts.

90 simulate.midas_r

Value

a list containing forecasts, tables of accuracy measures and the list with selected models

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

```
### Sets a seed for RNG ###
set.seed(1001)
## Number of low-frequency observations
## Linear trend and higher-frequency explanatory variables (e.g. quarterly and monthly)
trend < -c(1:n)
x<-rnorm(4*n)
z < -rnorm(12*n)
## Exponential Almon polynomial constraint-consistent coefficients
fn.x <- nealmon(p=c(1,-0.5),d=8)
fn.z \leftarrow nealmon(p=c(2,0.5,-0.1),d=17)
## Simulated low-frequency series (e.g. yearly)
y < -2 + 0.1 * trend + mls(x, 0:7, 4) % * % fn.x + mls(z, 0:16, 12) % * % fn.z + rnorm(n)
##Do not run
## cbfc<-select_and_forecast(y^trend+mls(x,0,4)+mls(z,0,12),
## from=list(x=c(4,8,12), z=c(12,24,36)),
## to=list(x=rbind(c(14,19),c(18,23),c(22,27)),z=rbind(c(22,27),c(34,39),c(46,51))),
## insample=1:200,outsample=201:250,
## weights=list(x=c("nealmon","almonp"),z=c("nealmon","almonp")),
## wstart=list(nealmon=rep(1,3),almonp=rep(1,3)),
## IC="AIC",
## seltype="restricted",
## ftype="fixed",
## measures=c("MSE","MAPE","MASE"),
## fweights=c("EW","BICW","MSFE","DMSFE")
## )
```

simulate.midas_r

Simulate MIDAS regression response

Description

Simulates one or more responses from the distribution corresponding to a fitted MIDAS regression object.

simulate.midas_r 91

Usage

```
## S3 method for class 'midas_r'
simulate(
  object,
  nsim = 999,
  seed = NULL,
  future = TRUE,
  newdata = NULL,
  insample = NULL,
  method = c("static", "dynamic"),
  innov = NULL,
  show_progress = TRUE,
  ...
)
```

Arguments

object	midas_r object
nsim	number of simulations
seed	either NULL or an integer that will be used in a call to set.seed before simulating the time series. The default, NULL will not change the random generator state.
future	logical, if TRUE forecasts are simulated, if FALSE in-sample simulation is performed.
newdata	a named list containing future values of mixed frequency regressors. The default is NULL, meaning that only in-sample data is used.
insample	a list containing the historic mixed frequency data
method	the simulation method, if "static" in-sample values for dependent variable are used in autoregressive MIDAS model, if "dynamic" the dependent variable values are calculated step-by-step from the initial in-sample values.
innov	a matrix containing the simulated innovations. The default is NULL, meaning, that innovations are simulated from model residuals.
show_progress	logical, TRUE to show progress bar, FALSE for silent evaluation
	not used currently

Details

Only the regression innovations are simulated, it is assumed that the predictor variables and coefficients are fixed. The innovation distribution is simulated via bootstrap.

Value

a matrix of simulated responses. Each row contains a simulated response.

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

92 split_data

Examples

```
data("USrealgdp")
data("USunempr")

y <- diff(log(USrealgdp))
x <- window(diff(USunempr), start = 1949)
trend <- 1:length(y)

##24 high frequency lags of x included
mr <- midas_r(y ~ trend + fmls(x, 23, 12, nealmon), start = list(x = rep(0, 3)))
simulate(mr, nsim=10, future=FALSE)

##Forecast horizon
h <- 3
##Declining unemployment
xn <- rep(-0.1, 12*3)
##New trend values
trendn <- length(y) + 1:h

simulate(mr, nsim = 10, future = TRUE, newdata = list(trend = trendn, x = xn))</pre>
```

split_data

Split mixed frequency data into in-sample and out-of-sample

Description

Splits mixed frequency data into in-sample and out-of-sample datasets given the indexes of the low frequency data

Usage

```
split_data(data, insample, outsample)
```

Arguments

data a list containing mixed frequency data
insample the low frequency indexes for in-sample data
outsample the low frequency indexes for out-of-sample data

Details

It is assumed that data is a list containing mixed frequency data. Then given the indexes of the low frequency data the function splits the data into two subsets.

Value

a list with elements indata and outdata containing respectively in-sample and out-of-sample data sets

update_weights 93

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

```
#Monthly data
x <- 1:24
#Quartely data
z <- 1:8
#Yearly data
y <- 1:2
split_data(list(y=y,x=x,z=z),insample=1,outsample=2)</pre>
```

update_weights

Updates weights in MIDAS regression formula

Description

Updates weights in a expression with MIDAS term

Usage

```
update_weights(expr, tb)
```

Arguments

expr expression with MIDAS term
tb a named list with redefined weights

Details

For a MIDAS term fmls(x, 6, 1, nealmon) change weight nealmon to another weight.

Value

an expression with changed weights

Author(s)

Vaidotas Zemlys

Examples

```
update_weights(y \sim trend + mls(x, 0:7, 4, nealmon) + mls(z, 0:16, 12, nealmon), list(x = "nbeta", z = ""))
```

94 USpayems

UScpiqs

US quartely seasonaly adjusted consumer price index

Description

US quarterly CPI from 1960Q1 to 2017Q3s. Seasonaly adjusted, Index 2015=1

Format

A data.frame object.

Source

FRED

USeffrw

US weekly effective federal funds rate.

Description

US weekly effective federal funds rate from 1954-07-07 to 2017-12-13

Format

A data.frame object.

Source

FRED

USpayems

United States total employment non-farms payroll, monthly, seasonally adjusted.

Description

United States total employment non-farms payroll, monthly, seasonally adjusted. Retrieved from FRED, symbol "PAYEMS" at 2014-04-25.

Format

A ts object.

USqgdp 95

Source

FRED, Federal Reserve Economic Data, from the Federal Reserve Bank of St. Louis

Examples

```
## Do not run:
## library(quantmod)
## USpayems <- ts(getSymbols("PAYEMS", src="FRED", auto.assign=FALSE), start=c(1939,1), frequency=12)

USqgdp

United States gross domestic product, quarterly, seasonaly adjusted
annual rate.</pre>
```

Description

United States gross domestic product, quarterly, seasonaly adjusted annual rate. Retrieved from FRED, symbol "GDP" at 2014-04-25.

Format

A ts object.

Source

FRED, Federal Reserve Economic Data, from the Federal Reserve Bank of St. Louis

Examples

```
## Do not run:
## library(quantmod)
## USqgdp <- ts(getSymbols("GDP",src="FRED",auto.assign=FALSE),start=c(1947,1),frequency=4)

USrealgdp

US annual gross domestic product in billions of chained 2005 dollars</pre>
```

Description

The annual gross domestic product in billions of chained 2005 dollars for US from 1948 to 2011. This data is kept for historical purposes, newer data is in 2012 chained dollars.

Format

A ts object.

Source

U.S. Department of Commerce, Bureau of Economic Analysis

96 weights_table

USunempr

US monthly unemployment rate

Description

The monthly unemployment rate for United States from 1948 to 2011.

Format

A ts object.

Source

FRED

weights_table

Create a weight function selection table for MIDAS regression model

Description

Creates a weight function selection table for MIDAS regression model with given information criteria and weight functions.

Usage

```
weights_table(
  formula,
  data,
  start = NULL,
  IC = c("AIC", "BIC"),
  test = c("hAh_test"),
  Ofunction = "optim",
  weight_gradients = NULL,
  ...
)
```

Arguments

formula	the formula for MIDAS regression, the lag selection is performed for the last MIDAS lag term in the formula
data	a list containing data with mixed frequencies
start	the starting values for optimisation
IC	the information criteria which to compute
test	the names of statistical tests to perform on restricted model, p-values are reported in the columns of model selection table

weights_table 97

```
Ofunction see midasr
weight_gradients
see midas_r
... additional parameters to optimisation function, see midas_r
```

Details

This function estimates models sequentially increasing the midas lag from kmin to kmax of the last term of the given formula

Value

a midas_r_ic_table object which is the list with the following elements:

table the table where each row contains calculated information criteria for both re-

stricted and unrestricted MIDAS regression model with given lag structure

candlist the list containing fitted models

IC the argument IC

Author(s)

Virmantas Kvedaras, Vaidotas Zemlys

Examples

Index

* datasets oos_prec, 78 rvsp500, 88 UScpiqs, 94 USeffrw, 94 USpayems, 94 USqgdp, 95 USrealgdp, 95 USunempr, 96 * package midasr-package, 4	genexp, 25 genexp_gradient, 26 get_estimation_sample, 27 gompertzp, 27 gompertzp_gradient, 28 hAh_test, 30, 87 hAhr_test, 29, 87 harstep, 32 harstep_gradient, 33 hf_lags_table, 34, 72
+.lws_table, 4	imidas_r, 36
agk.test, 5 almonp, 6 almonp_gradient, 6 amidas_table, 7, 72 amweights, 7, 9, 18 average_forecast, 10	<pre>lcauchyp, 38 lcauchyp_gradient, 39 lf_lags_table, 39, 72 lm, 67, 68 lstr, 41</pre>
<pre>check_mixfreq, 11 coef.midas_nlpr, 12 coef.midas_r, 13 coef.midas_sp, 14</pre>	midas_auto_sim, 42 midas_lstr_plain, 43 midas_lstr_sim, 44 midas_mmm_plain, 45
data.frame, 94 deriv_tests, 15 deviance.midas_nlpr, 15 deviance.midas_r, 16 deviance.midas_sp, 17 dmls, 17	midas_mmm_sim, 46 midas_nlpr, 47, 84, 86 midas_nlpr.fit, 49 midas_pl_plain, 50 midas_pl_sim, 51 midas_qr, 52 midas_r, 5, 8, 15-17, 21, 29, 31, 35, 37, 40,
expand_amidas, 18 expand_weights_lags, 19, 58 extract.midas_r, 20	49, 54, 58, 59, 72, 85, 89, 91, 97 midas_r.fit, 57 midas_r_ic_table, 19, 58, 71, 72 midas_r_np, 60
fitted.midas_nlpr, 20 fitted.midas_sp, 21 fmls, 22, 36, 47, 54, 65 forecast (forecast.midas_r), 22 forecast.midas_r, 22, 85, 87	midas_r_np, 60 midas_r_plain, 61 midas_si_plain, 63 midas_si_sim, 64 midas_sim, 62 midas_sp, 65

INDEX 99

```
midas_u, 37, 48, 53, 55, 66, 67
                                                   USunempr, 96
midasr, 8, 35, 40, 58, 97
                                                   weights_table, 96
midasr (midasr-package), 4
midasr-package, 4
mls, 52, 69
mlsd, 70
mmm, 71
modsel, 71
nakagamip, 72
{\tt nakagamip\_gradient}, \textcolor{red}{73}
nbeta, 74
nbeta\_gradient, 76
nbetaMT, 74
nbetaMT_gradient, 75
nealmon, 76
nealmon_gradient, 77
nls, 36, 48, 52, 55, 66
oos_prec, 78
optim, 36, 48, 50, 52, 55, 64, 66
optimx, 44, 46, 48, 61, 66
plot_lstr, 79
plot_midas_coef, 80
plot_midas_coef.midas_nlpr, 81
plot_sp, 82
polystep, 83
polystep_gradient, 84
predict.midas_nlpr, 84
predict.midas_r, 85
predict.midas_sp, 86
prep_hAh, 87
rnorm, 62
rvsp500,88
select_and_forecast, 88
simulate(simulate.midas_r), 90
simulate.midas_r, 90
split_data, 92
ts, 62, 94-96
update_weights, 93
UScpiqs, 94
USeffrw, 94
USpayems, 94
USqgdp, 95
USrealgdp, 95
```