Dr. Mattox Beckman

Illinois Institute of Technology Department of Computer Science

Objectives

You should be able to...

- ► Know two of the most common tree search patterns:
 - Depth First Search
 - Breadth First Search
- Know five tree traversal algorithms:
 - Preorder
 - Postorder
 - Inorder
 - Next
 - Previous

Looking for the Answer to the Ultimate Question

Suppose we have the following binary tree, and we want to search it for something.

Depth First Search

DFS Algorithm

- Check the Current Node
- Recursively Search the Left
- Recursively Search the Right

Things to know.

Pros

- Very easy to write this.
- ▶ Uses very little memory. (How much?)

Cons

- ► Does not handle back-edges well.
- Does not handle infinite trees at all.

A Back Edge

Breadth First Search

BFS Algorithm

- ► Enqueue the Root
- ► Then...
 - ▶ Dequeue a Node
 - Check Node
 - ► Enqueue Children

Queue: 37 73 84

Queue: 73 84 53 29

Queue: 84 53 29 95 67

Queue: 53 29 95 67 24 45

Queue: 29 95 67 24 45 36 95

Queue: 67 24 45 36 95 42 35

Introduction

Queue: 24 45 36 95 42 35

Queue: 45 36 95 42 35

Queue: 36 95 42 35

Queue: 95 42 35

Queue: 42 35

Queue: 35

Things to know.

Pros

- Finds node closest to root.
- Handles infinite trees and back edges.

Cons

- ► Can use a lot of memory. (How much?)
- Usually takes a bit longer to write.
- ▶ BFS is also called "level order traversal".

Three Kinds

► There are three kinds of traversals you should know.

- ► Preorder: * + c d f g used by Scheme and Lisp
- ► Inorder: c + d * f g used by scientific calculators
- ▶ Postorder: c d + f g * used by Reverse Polish Notation

Preorder

- ► Preorder: * + c d f g used by Scheme and Lisp
- ► How can you code this traversal scheme?
- ► Note: if you can distinguish leaves from nodes, you can reconstruct the tree from the traversal!

Postorder

- ► Postorder: c d + f q * used by Reverse Polish Notation
- ► How can you code this traversal scheme?
- ► Note: if you can distinguish leaves from nodes, you can reconstruct the tree from the traversal!

Inorder

► Inorder: c + d * f - g — used by scientific calculators

This one is tricky! Consider: can you reconstruct the tree given the string?