

Shrunken Schnorr Shortcuts

x-only pubkeys, security reductions, MuSig shortcuts and Wagner's attack

2019-10-20

Jonas Nick

@n1ckler

GPG: 36C7 1A37 C9D9 88BD E825 08D9 B1A7 0E4F 8DCD 0366

This talk is about Bitcoin Improvement **Proposals**

- BIP-schnorr: Schnorr Signatures
- BIP-taproot: SegWit version 1 output spending rules, uses BIP-Schnorr

This talk is about Bitcoin Improvement **Proposals**

- BIP-schnorr: Schnorr Signatures
- BIP-taproot: SegWit version 1 output spending rules,

uses BIP-Schnorr

There's no guarantee that a BIP-taproot softfork activates in its current form or at all. This depends on community consensus.

Compressed public keys

```
02 + <32 byte array>
or
03 + <32 byte array>
```

Compressed public keys

Purpose of tie breaker

Purpose of tie breaker

Purpose of tie breaker

Given X-coordinate

Determines whether encoded point is P or -P

x-only pubkeys in BIP-Schnorr

Implicitly assume 0-th byte is 02 (*)

X-coordinate

(*) In the BIP it's a different tie breaker actually

P and -P are still different points!

- P and -P are still different points!
- But public key P = x·G
 and -P = -x·G

- P and -P are still different points!
- But public key $P = x \cdot G$ and $-P = -x \cdot G$
- Therefore, just negate secret key before signing if necessary

- P and -P are still different points!
- But public key $P = x \cdot G$ and $-P = -x \cdot G$
- Therefore, just negate secret key before signing if necessary
- No action required from wallet devs, handled by crypto library. BIP32 derivation unaffected

1. saves about 0.7% weight units (WU) in average block

- 1. saves about 0.7% weight units (WU) in average block
- same cost for sender as P2WSH

	P2WPKH	P2WSH	taproot (x-only)
scriptPubKey	88 WU	136 WU	136 WU

- 1. saves about 0.7% weight units (WU) in average block
- same cost for sender as P2WSH

	P2WPKH	P2WSH	taproot (x-only)
scriptPubKey	88 WU	136 WU	136 WU
with witness	196 WU	-	201 WU

- 1. saves about 0.7% weight units (WU) in average block
- same cost for sender as P2WSH

	P2WPKH	P2WSH	taproot (x-only)
scriptPubKey	88 WU	136 WU	136 WU
with witness	196 WU	-	201 WU

3. same security level

x-only security

We know (in Random Oracle Model):

Discrete Logarithm Problem is hard ⇒ Schnorr sig is secure

x-only security

To prove:

Schnorr sig secure \Rightarrow x-only Schnorr sig secure

or equivalently

x-only Schnorr sig insecure ⇒ Schnorr sig insecure

Proof sketch

Schnorr signature on message m with public key P = xG:

$$(R = k \cdot G, s = k + hash(R, P, m) \cdot x)$$

hash function

x-only Schnorr sig forger

Proof sketch

Schnorr signature forger

Schnorr signature forger

Schnorr signature forger

Proof sketch

Challenger

Schnorr signature on message m with public key P = xG:

 $(R = k \cdot G, s = k + -hash(R, P, m) \cdot -x)$

x-only security

To prove:

Schnorr sig secure \Rightarrow x-only Schnorr sig secure

or equivalently

x-only Schnorr sig insecure ⇒ Schnorr sig insecure

MuSig shortcuts

MuSig

Allows key aggregation on BIP-schnorr

MuSig

Allows key aggregation on BIP-schnorr

Lightning funding script with cooperative close:

```
<sig1> <sig2> 2 <pubkey1> <pubkey2> 2 OP_CHECKMULTISIG
```

MuSig

Allows key aggregation on BIP-schnorr

Lightning funding script with cooperative close:

MuSig rounds

public key P, message m

1. Exchange nonce commitments

MuSig rounds

public key P, message m

1. Exchange nonce commitments

2. Exchange nonces R_i $R = \sum R_i$

MuSig rounds

public key P, message m

1. Exchange nonce commitments

- 2. Exchange nonces R_i $R = \sum R_i$
- 3. Exchange partial signatures.
 s_i = k_i + hash(R, P, m) x_i

MuSig rounds (pre-shared nonces)

public key P, message m

message m
$$\longrightarrow$$
 3. Exchange partial signatures.
 $s_i = k_i + hash(R, P, m) \cdot x_i$

MuSig rounds (pre-shared nonces)

What's the difference?

What's the difference?

Signature forgery on message m'

Signature forgery on message m'

Generalized Birthday Problem

Find m_0 , m_1 , m_2 such that

$$hash(R',P,m') = hash(..m_0) + hash(..m_1) + hash(..m_2)$$

Generalized Birthday Problem

Find
$$m_0$$
, m_1 , m_2 such that

$$hash(R',P,m') = hash(..m_0) + hash(..m_1) + hash(..m_2)$$

- can be solved efficiently with Wagner's algorithm
- More parallel sessions: solvable with on the order of 2³² operations

Signature forgery on message m'

Signature forgery on message m'

MuSig rounds (pre-shared nonce commitments)

public key P, message m

1. Exchange nonce commitments

message m -----

2. Exchange nonces R_i $R = \sum R_i$

3. Exchange partial signatures.

$$s_i = k_i + hash(R, P, m) \cdot x_i$$

Conclusion

- BIP-taproot uses x-only pubkeys now
 - wallet devs don't need to do anything in particular
- Security can be reduced to Schnorr signatures with compressed keys
- Some shortcuts in MuSig are insecure due to Wagner's algorithm
 - <u>ElementsProject MuSig implementation</u> can not be misused in that way
- BIP-schnorr and BIP-taproot slowly mature from draft status. Looking for feedback.
- Slides at https://nickler.ninja/slides/2019-tlc.pdf

2019-10-20

Jonas Nick

jonasd.nick@gmail.com

https://nickler.ninja

@n1ckler