Supplementary Tables

Table S1: Enrichment of CpG sites in different genomic regions for CpG sites with mQTL versus CpG sites without mQTL in the baboon data. Percentage of CpG sites in different genomic regions (open sea; shelf; shore; CpG island) for CpG sites with mQTL (3rd column) versus CpG sites without mQTL (4th column). A fold enrichment is computed as the odds ratio (5th column) and tested through a Fisher's exact test (6th column). mQTL are detected by different methods (IMAGE, IMAGE-I, IMAGE-A, MACAU, GEMMA, BB) based on a permutation-based empirical false discovery rate of 0.05. Bold font highlights significant enrichment (p-value < 0.05).

		CpG sites with mQTL	CpG sites without mQTL	Fold enrichment	p-value
IMAGE	Shelf	7.13%	7.44%	0.9848	0.7278
	Shore	11.97%	12.15%	0.9590	0.4411
	CpG island	11.16%	14.33%	0.7788	1.056×10^{-9}
	Open sea	69.74%	66.08%	1.0554	0.0106
IMAGE-I	Shelf	7.51%	7.44%	1.0089	0.8923
	Shore	11.58%	12.17%	0.9518	0.3848
	CpG island	11.43%	14.17%	0.8067	7.415×10^{-5}
	Open sea	69.48%	66.22%	1.049	0.08541
IMAGE-A	Shelf	7.43%	7.53%	0.9877	0.8588
	Shore	12.29%	12.47%	0.9862	0.7954
	CpG island	12.94%	14.40%	0.8986	0.0202
	Open sea	67.33%	65.60%	1.026	0.2981
MACAU	Shelf	7.37%	7.39%	0.9972	1.0000
	Shore	12.04%	12.21%	0.9866	0.8381
	CpG island	11.63%	14.20%	0.8190	6.542×10^{-4}
	Open sea	68.62%	66.21%	1.0364	0.2379
GEMMA	Shelf	7.52%	7.41%	1.0149	0.8455
	Shore	11.95%	12.21%	0.9784	0.7559
	CpG island	11.95%	14.15%	0.8445	0.0062
	Open sea	68.59%	66.23%	1.0356	0.2804
BB	Shelf	7.50%	7.40%	1.0142	0.8322
	Shore	11.58%	12.20%	0.9492	0.3810
	CpG island	10.77%	14.13%	0.7622	2.434×10^{-6}
	Open sea	70.14%	66.27%	1.0584	0.0514

Table S2: Proportion of CpG sites directly disrupted by the SNP. The proportion of CpG sites that are directly disrupted by the SNP is higher for mQTL pairs versus non-mQTL pairs in the baboon data. Data are sorted in rows based on different association methods (IMAGE, IMAGE-I, IMAGE-A, MACAU, GEMMA, BB). Note that IMAGE-A was applied to analyze 38,250 SNP-CpG pairs while the other methods were applied to analyze all 49,196 SNP-CpG pairs. P-values are calculated using Fisher's exact tests.

	CpG sites with mQTL	CpG sites without mQTL	P-values
IMAGE	3.72%	0.43%	<2.2×10 ⁻¹⁶
IMAGE-I	4.25%	0.63%	<2.2×10 ⁻¹⁶
IMAGE-A	1.49%	0.70%	3.107×10 ⁻⁷
MACAU	5.66%	0.62%	<2.2×10 ⁻¹⁶
GEMMA	4.35%	0.70%	<2.2×10 ⁻¹⁶
BB	4.55%	0.63%	<2.2×10 ⁻¹⁶

Table S3: Enrichment of CpG sites in different genomic regions for CpG sites with mQTL versus CpG sites without mQTL in the wolf data. Percentage of CpG sites in different genomic regions (open sea; shelf; shore; CpG island) for CpG sites with mQTL (3rd column) versus CpG sites without mQTL (4th column). A fold enrichment is computed as the odds ratio (5th column) and tested through a Fisher's exact test (6th column). mQTL are detected by different methods (IMAGE, IMAGE-I, IMAGE-A, MACAU, GEMMA, BB), based on a permutation-based empirical false discovery rate of 0.05. Bold font highlights significant enrichment (p-value < 0.05).

		CpG sites with mQTL	CpG sites with no mQTL	Fold enrichment	p-values
IMAGE	Shelf	12.49%	11.62%	1.075	9.001×10^{-5}
	Shore	25.57%	24.64%	1.038	5.890×10^{-3}
	CpG island	30.17%	37.43%	0.8060	$< 2.2 \times 10^{-16}$
	Open sea	31.77%	26.31%	1.2075	$< 2.2 \times 10^{-16}$
IMAGE-I	Shelf	13.42%	12.03%	1.1120	1.506×10^{-3}
	Shore	25.11%	24.69%	1.0173	0.5003
	CpG island	32.42%	36.80%	0.8810	2.412×10^{-8}
	Open sea	29.05%	26.85%	1.0819	$\boldsymbol{1.07\times10^{-3}}$
IMAGE-A	Shelf	11.62%	11.82%	0.9827	0.4198
	Shore	24.08%	25.18%	0.9563	4.156×10^{-3}
	CpG island	35.34%	35.88%	0.9849	0.2589
	Opea sea	28.96%	24.21%	1.1962	$< 2.2 \times 10^{-16}$
MACAU	Shelf	13.49%	11.64%	1.1586	5.805×10^{-6}
	Shore	25.62%	24.67%	1.0383	0.124
	CpG island	32.34%	36.66%	0.8822	1.295×10^{-8}
	Open sea	28.54%	27.03%	1.0559	0.0197
GEMMA	Shelf	13.48%	11.67%	1.1551	3.662×10^{-4}
	Shore	25.35%	24.69%	1.0267	0.391
	CpG island	31.82%	36.61%	0.8962	3.437×10^{-7}
	Open sea	29.35%	27.03%	1.0858	$\textbf{4.393} \times \textbf{10}^{-3}$
BB	Shelf	12.98%	11.65%	1.1140	$\textbf{7.845} \times \textbf{10}^{-4}$
	Shore	25.40%	24.65%	1.0302	0.214
	CpG island	32.93%	36.65%	0.8985	6.143×10^{-7}
	Open sea	28.70%	27.05%	1.0610	0.0101

Table S4: Proportion of CpG sites directly disrupted by the SNP. The proportion of CpG sites that are directly disrupted by the SNP is higher in the associated SNP-CpG pairs versus the non-associated SNP-CpG pairs in the wolf data. Data are sorted in rows based on different association methods (IMAGE, IMAGE-I, IMAGE-A, MACAU, GEMMA, BB). Note that IMAGE-A was applied to analyze 236,092 SNP-CpG pairs while the other methods were applied to analyze all 279,223 SNP-CpG pairs. P-values are calculated through Fisher exact test.

	CpG sites with mQTL	CpG sites with no mQTL	P-values
IMAGE	3.66%	0.18%	<2.2×10 ⁻¹⁶
IMAGE-I	8.06%	0.34%	<2.2×10 ⁻¹⁶
IMAGE-A	0.83%	0.57%	2.14×10 ⁻⁶
MACAU	8.91%	0.33%	<2.2×10 ⁻¹⁶
GEMMA	7.62%	0.38%	<2.2×10 ⁻¹⁶
BB	8.25%	0.33%	<2.2×10 ⁻¹⁶

Table S5: Type I error control of different methods in the null simulations across three different background heritability values. The type I error of different methods (IMAGE, IMAGE-I, IMAGE-A, MACAU, GEMMA, and BB) are shown at significance thresholds ranging from 0.05 to 1×10^{-5} .

	Method	5×10^{-2}	1×10^{-2}	5×10^{-3}	1×10^{-3}	5×10^{-4}	1×10^{-4}	5×10^{-5}	1×10^{-5}
$h^2 = 0$	IMAGE	5.16×10^{-2}	1.14× 10 ⁻²	5.92× 10 ⁻³	1.35× 10 ⁻³	6.2× 10 ⁻⁴	1.8× 10 ⁻⁴	1.2×10 ⁻⁴	6× 10 ⁻⁵
	IMAGE-I	5.29×10^{-2}	1.11×10^{-2}	5.53×10^{-3}	1.11×10^{-3}	5.5×10^{-4}	1.1×10^{-4}	8×10^{-5}	0
	IMAGE-A	6.28×10^{-2}	1.61×10^{-2}	9.15×10^{-3}	2.56×10^{-3}	1.59×10^{-3}	4.7×10^{-4}	3×10^{-4}	1.5×10^{-4}
	MACAU	4.74×10^{-2}	9.28×10^{-3}	4.49×10^{-3}	8.7×10^{-4}	4.3×10^{-4}	1.1×10^{-4}	5× 10 ⁻⁵	0
	GEMMA	4.88×10^{-2}	9.41×10^{-3}	4.55×10^{-3}	7.4×10^{-4}	3.4×10^{-4}	7×10^{-5}	5× 10 ⁻⁵	0
	ВВ	5.38×10^{-2}	1.07×10^{-2}	5.37×10^{-3}	9.9×10^{-4}	4.4×10^{-4}	1×10^{-4}	5× 10 ⁻⁵	0
$h^2 = 0.3$	IMAGE	5.38×10^{-2}	1.16× 10 ⁻²	6.44×10^{-3}	1.62×10^{-3}	9×10^{-4}	1.9×10^{-4}	8×10^{-5}	0
	IMAGE-I	5.45×10^{-2}	1.21×10^{-2}	6.86×10^{-3}	1.67×10^{-3}	1.05×10^{-3}	3.5×10^{-4}	1.6×10^{-4}	4×10^{-5}
	IMAGE-A	6.23×10^{-2}	1.54×10^{-2}	8.64×10^{-3}	2.55×10^{-3}	1.5×10^{-3}	6.6×10^{-4}	4.1×10^{-4}	1.2×10^{-4}
	MACAU	4.87×10^{-2}	1.02×10^{-2}	5.57×10^{-3}	1.37×10^{-3}	8.1×10^{-4}	2.8×10^{-4}	1.4×10^{-4}	4×10^{-5}
	GEMMA	5.12×10^{-2}	1.02×10^{-2}	5.15×10^{-3}	1.1×10^{-3}	5.2×10^{-4}	6×10^{-5}	2×10^{-5}	1×10^{-5}
	ВВ	5.72×10^{-2}	1.27×10^{-2}	6.77×10^{-3}	1.52×10^{-3}	9.1×10^{-4}	2.5×10^{-4}	1.6×10^{-4}	3×10^{-5}
$h^2 = 0.6$	IMAGE	5.25×10^{-2}	1.15×10^{-2}	6.02×10^{-3}	1.3×10^{-3}	8.1×10^{-4}	1.8×10^{-4}	1.1×10^{-4}	5× 10 ⁻⁵
	IMAGE-I	5.44×10^{-2}	1.21×10^{-2}	6.36×10^{-3}	1.34×10^{-3}	7.5×10^{-4}	1.9×10^{-4}	1×10^{-4}	5× 10 ⁻⁵
	IMAGE-A	5.94×10^{-2}	1.54×10^{-2}	8.65×10^{-3}	2.36×10^{-3}	1.41×10^{-3}	4.2×10^{-4}	2.7×10^{-4}	7×10^{-5}
	MACAU	4.83×10^{-2}	1.02×10^{-2}	5.04×10^{-3}	1.03×10^{-3}	5.9×10^{-4}	1.1×10^{-4}	8×10^{-5}	4×10^{-5}
	GEMMA	5.17×10^{-2}	9.9×10^{-3}	4.97×10^{-3}	9.7×10^{-4}	5.1×10^{-4}	9×10^{-5}	4×10^{-5}	1×10^{-5}
	ВВ	5.99×10^{-2}	1.31×10^{-2}	6.95×10^{-3}	1.57×10^{-3}	8.5×10^{-4}	1.7×10^{-4}	9×10^{-5}	4×10^{-5}

Table S6: Type I error control of different methods in the null simulations across three different sample sizes. The type I error of different methods (IMAGE, IMAGE-I, IMAGE-A, MACAU, GEMMA, and BB) are shown at significance thresholds ranging from 0.05 to 1×10^{-5} .

	Method	5 × 10 ⁻²	1×10^{-2}	5×10^{-3}	1×10^{-3}	5×10^{-4}	1×10^{-4}	5×10^{-5}	1×10^{-5}
n = 50	IMAGE	5.58× 10 ⁻²	1.28× 10 ⁻²	7.10×10^{-3}	1.78×10^{-3}	9.7×10^{-4}	3.0×10^{-4}	1.3×10^{-4}	6× 10 ⁻⁵
	IMAGE-I	5.89×10^{-2}	1.46×10^{-2}	8.50×10^{-3}	2.83×10^{-3}	1.99×10^{-3}	1.15×10^{-3}	9.7×10^{-4}	8.2×10^{-4}
	IMAGE-A	7.05×10^{-2}	2.07×10^{-2}	1.27×10^{-2}	4.32×10^{-3}	2.62×10^{-3}	9.4×10^{-4}	6.0×10^{-4}	1.8×10^{-4}
	MACAU	4.65×10^{-2}	1.01×10^{-2}	5.38×10^{-3}	1.37×10^{-3}	7.2×10^{-4}	2.0×10^{-4}	9×10^{-5}	2×10^{-5}
	GEMMA	5.05×10^{-2}	9.60×10^{-3}	4.70×10^{-3}	9.3×10^{-4}	4.6×10^{-4}	8×10^{-5}	1×10^{-5}	0
	ВВ	5.95×10^{-2}	1.35×10^{-2}	7.05×10^{-3}	1.58×10^{-3}	8.8×10^{-4}	2.1×10^{-4}	9×10^{-5}	1×10^{-5}
n = 100	IMAGE	5.38×10^{-2}	1.16× 10 ⁻²	6.44×10^{-3}	1.62×10^{-3}	9×10^{-4}	1.9×10^{-4}	8×10^{-5}	0
	IMAGE-I	5.45×10^{-2}	1.21×10^{-2}	6.86×10^{-3}	1.67×10^{-3}	1.05×10^{-3}	3.5×10^{-4}	1.6×10^{-4}	4×10^{-5}
	IMAGE-A	6.23×10^{-2}	1.54×10^{-2}	8.64×10^{-3}	2.55×10^{-3}	1.5×10^{-3}	6.6×10^{-4}	4.1×10^{-4}	1.2×10^{-4}
	MACAU	4.87×10^{-2}	1.02×10^{-2}	5.57×10^{-3}	1.37×10^{-3}	8.1×10^{-4}	2.8×10^{-4}	1.4×10^{-4}	4×10^{-5}
	GEMMA	5.12×10^{-2}	1.02×10^{-2}	5.15×10^{-3}	1.1×10^{-3}	5.2×10^{-4}	6×10^{-5}	2×10^{-5}	1×10^{-5}
	ВВ	5.72×10^{-2}	1.27×10^{-2}	6.77×10^{-3}	1.52×10^{-3}	9.1×10^{-4}	2.5×10^{-4}	1.6×10^{-4}	3×10^{-5}
n = 150	IMAGE	5.06×10^{-2}	1.07×10^{-2}	5.06×10^{-3}	1.14×10^{-3}	6.1×10^{-4}	1.9×10^{-4}	8×10^{-5}	4×10^{-5}
	IMAGE-I	5.20×10^{-2}	1.32×10^{-2}	6.03×10^{-3}	1.39×10^{-3}	7.5×10^{-4}	2.1×10^{-4}	1.4×10^{-4}	4×10^{-5}
	IMAGE-A	5.66×10^{-2}	1.61×10^{-2}	7.25×10^{-3}	1.75×10^{-3}	9.4×10^{-4}	3.0×10^{-4}	2×10^{-4}	5×10^{-5}
	MACAU	4.77×10^{-2}	9.47×10^{-3}	5.29×10^{-3}	1.17×10^{-3}	5.8×10^{-4}	1.8×10^{-4}	1×10^{-4}	2×10^{-5}
	GEMMA	5.03×10^{-2}	9.66×10^{-3}	4.58×10^{-3}	9.2×10^{-4}	4.6×10^{-4}	9×10^{-5}	3×10^{-5}	0
	ВВ	5.54×10^{-2}	1.21×10^{-2}	6.59×10^{-3}	1.55×10^{-3}	7.6×10^{-4}	1.9×10^{-4}	1.2×10^{-4}	3×10^{-5}

Table S7: Type I error control of different methods in the null simulations across three different minor allele frequency. The type I error of different methods (IMAGE, IMAGE-I, IMAGE-A, MACAU, GEMMA, and BB) are shown at significance thresholds ranging from 0.05 to 1×10^{-5} .

	Method	5×10^{-2}	1×10^{-2}	5×10^{-3}	1×10^{-3}	5×10^{-4}	1×10^{-4}	5×10^{-5}	1×10^{-5}
MAF = 0.1	IMAGE	5.44× 10 ⁻²	1.28× 10 ⁻²	7.16× 10 ⁻³	1.95× 10 ⁻³	1.16× 10 ⁻³	3.3× 10 ⁻⁴	2.4× 10 ⁻⁴	5× 10 ⁻⁵
	IMAGE-I	5.31×10^{-2}	1.15×10^{-2}	6.04×10^{-3}	1.44×10^{-3}	7.9×10^{-4}	2.6×10^{-4}	1.6×10^{-4}	4×10^{-5}
	IMAGE-A	7.47×10^{-2}	2.24×10^{-2}	1.43×10^{-2}	5.19×10^{-3}	3.29×10^{-3}	1.2×10^{-3}	8.5×10^{-4}	4×10^{-4}
	MACAU	4.84×10^{-2}	1.03×10^{-2}	5.36×10^{-3}	1.23×10^{-3}	6.6×10^{-4}	2×10^{-4}	1.3×10^{-4}	3×10^{-5}
	GEMMA	5.44×10^{-2}	1.34×10^{-2}	7.85×10^{-3}	2.4×10^{-3}	1.46×10^{-3}	4×10^{-4}	3×10^{-4}	8×10^{-5}
	BB	5.45×10^{-2}	1.14×10^{-2}	5.86×10^{-3}	1.29×10^{-3}	6.8×10^{-4}	2.2×10^{-4}	9×10^{-5}	3×10^{-5}
MAF = 0.3	IMAGE	5.38×10^{-2}	1.16× 10 ⁻²	6.44×10^{-3}	1.62×10^{-3}	9×10^{-4}	1.9×10^{-4}	8×10^{-5}	0
	IMAGE-I	5.45×10^{-2}	1.21×10^{-2}	6.86×10^{-3}	1.67×10^{-3}	1.05×10^{-3}	3.5×10^{-4}	1.6×10^{-4}	4×10^{-5}
	IMAGE-A	6.23×10^{-2}	1.54×10^{-2}	8.64×10^{-3}	2.55×10^{-3}	1.5×10^{-3}	6.6×10^{-4}	4.1×10^{-4}	1.2×10^{-4}
	MACAU	4.87×10^{-2}	1.02×10^{-2}	5.57×10^{-3}	1.37×10^{-3}	8.1×10^{-4}	2.8×10^{-4}	1.4×10^{-4}	4×10^{-5}
	GEMMA	5.12×10^{-2}	1.02×10^{-2}	5.15×10^{-3}	1.1×10^{-3}	5.2×10^{-4}	6×10^{-5}	2×10^{-5}	1×10^{-5}
	BB	5.72×10^{-2}	1.27×10^{-2}	6.77×10^{-3}	1.52×10^{-3}	9.1×10^{-4}	2.5×10^{-4}	1.6×10^{-4}	3×10^{-5}
MAF = 0.5	IMAGE	5.05×10^{-2}	1.08×10^{-2}	5.7×10^{-3}	1.1×10^{-3}	6.4×10^{-4}	1.8×10^{-4}	1×10^{-4}	3×10^{-5}
	IMAGE-I	5.65×10^{-2}	1.25×10^{-2}	6.45×10^{-3}	1.46×10^{-3}	8.5×10^{-4}	1.9×10^{-4}	1.2×10^{-4}	5×10^{-5}
	IMAGE-A	5.82×10^{-2}	1.34×10^{-2}	7.6×10^{-3}	1.91×10^{-3}	9.4×10^{-4}	2.8×10^{-4}	1.9×10^{-4}	5×10^{-5}
	MACAU	4.8×10^{-2}	9.87×10^{-3}	4.7×10^{-3}	1.08×10^{-3}	5.9×10^{-4}	1.1×10^{-4}	5× 10 ⁻⁵	1×10^{-5}
	GEMMA	4.95×10^{-2}	8.82×10^{-3}	4.08×10^{-3}	6.6×10^{-4}	3.9×10^{-4}	8×10^{-5}	4×10^{-5}	0
	BB	6.23× 10 ⁻²	1.42×10^{-2}	7.33×10^{-3}	1.74×10^{-3}	9.3× 10 ⁻⁴	1.8×10^{-4}	1×10^{-4}	4×10^{-5}