Classifiers and the VC-dimension

- VC-dimension (Vapnik & Chervonenkis) measures the discriminating capacity of a classification algorithm (family of classifiers)
- Somehow, the cardinality of the largest set of points that the algorithm can shatter (separate positive/negative points w/o error)
- Ex:

Typical classifiers

- Linear $f(x,w) = \operatorname{sg} \langle x|w \rangle = \operatorname{sg} (x.w)$
- Affine $f(x,w,b) = sg (\langle x|w\rangle + b) = sg (x.w + b)$
- Circular
 f(x,b) = sg (x.x b)
 could be any type of ellipsoid
- Others?

Basic Notions

- Def: Classifier f with parameters t shatters a set of n points $\{x_1, x_2, \dots, x_n\}$ iff for all +/- assignment, exists a t for which f(x,t) makes NO error
- In the example, an affine classifier (with t=(a,b))
 is able to shatter only 3 points in general
 position
- $f(x,t) = y^{est} = +/-1$ is the estimation for x given the parameter value t (cf. SVM notations)

Statistical model (Vapnik's theory)

- Assumptions:
 - 1. Training points (x,y) are drawn i.i.d.
 - 2. Future test points also from same distribution
- Probability of misclassification: R(t) = E(1/2 | y - f(x,t) |)
- Empirical training error (on set with *L* elements):

$$R^{emp}(t) = 1/L \sum_{i=1...L} 1/2 |y_i - f(x_i, t)|$$

(Apply to SVMs)

2

3

Theorem (V+C)

Let 0≤q≤1. Assume losses take 0-1 values.
 Then, with probability 1-q, the probability of misclassification is bounded by:

$$R(t) \le R^{emp}(t) + \operatorname{sqrt}(1/L(H(\log(2L/H) + 1) - \log q/4)))$$

- Note that R(t) depends on the probability distribution P(x,y) but not the upper bound
- *H* is the VC-dimension of machine *f*.
- The sqrt term is the VC-confidence

Infinite VC-dimension

- f(x,t) = h (sin tx), for x, t real; h step function
- Consider *L* points on the real axis: $x_i = 10^{-i}$, for i = 1..L
- Freely assign +/-1 values to y_i's
- Choose $t = \pi (1+1/2 \Sigma_{i=1..L} (1-y_i)10^i)$
- Prove that the L points are shattered
- But would not work with regularly spaced ++-+
- VC-dim is infinite

Comments

- The VC-dimension *H* is the maximum number of points in general position that can be shattered by the class (some *H* sets will not be)
- *H* can be infinite

5

- When H is finite, VC theorem allows comparison of machines for given q.
- VC-dimension in \mathbb{R}^d is d+1, with oriented hyperplane classifiers. Proof by considering the convex hulls of ± 1 subsets

VC-confidence

- VC-confidence is monotonic in H/L
- For H/L>.37, exceeds 1 with q=.05 and L=10000
- Bound is NOT tight

•

8

Examples (1)

k-NN classifier (nearest neighbour): k=1
 Check that VC-dimension is infinite and that empirical risk is 0
 Comments?

Bound is useless but classifier can be quite good, unless???

Non linear kernels

- Polynomial kernels $K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}.\mathbf{y})^p$ for \mathbf{x}, \mathbf{y} in \mathbf{R}^d Note that for d=2, $K(\mathbf{x}, \mathbf{y}) = \varphi(\mathbf{x}) \varphi(\mathbf{y})$ with $\varphi(\mathbf{x}) = (\mathbf{x}_1^2; \sqrt{2} \mathbf{x}_1 \mathbf{x}_2; \mathbf{x}_2^2)$
- Generalizes to higher d $[x_1^{r1} ... x_d^{rd}] \varphi(\mathbf{x}) = \operatorname{sqrt} (p! / r1!... rd!), p = \sum ri$
- Embedding vector space has dimension Bin(d+p+1, p), hence VC-dim = 1+...

Examples (2)

- Notebook classifier: L training size
 - 1. Store the exact results of $m \le L$ training observations
 - 2. All other patterns in the same class, whatever their *y* value
 - 3. Prob of +/- is 1/2

9

- 4. Empirical risk for first m is 0; 1/2 for others
- 5. Actual error 1/2; VC-dim *H*=*m*
- $R(.)=m/4L \le \log (2L/m)+1 1/m \log h/4$ true for all h (prove it)

Gaussian kernels

- $K(x,y) = \exp(-||x^2 + y^2|| / 2\sigma^2)$
- Decision functions on support vectors

$$f(s_i) = \sum_i \alpha_i y_i \exp(-||s_i - s_i||^2 / 2\sigma^2) + b$$

independent if training points are distant enough

- Then ||Support set|| = ||Training set||
- VC-dimension is infinite

10

12

11