MATH2011 Intro to Multivariable Calculus

Tutorial 1: Vectors

Definitions and Results

Defintion 1. Vectors in the plane and in space are arrows between two points that are defined by its magnitude and direction, expressed as $\langle u_1, u_2 \rangle$ in the plane or $\langle u_1, u_2, u_3 \rangle$ in space. (I will generally use a vector in space)

Definition 2. Two vectors \mathbf{u} and \mathbf{v} are parallel if there is a constant k such that $\mathbf{u} = k\mathbf{v}$. We say that \mathbf{u} and \mathbf{v} are in the **same** direction if k > 0 and the **opposite** direction if k < 0.

Formula 3. The magnitude of **u** is defined by $\sqrt{u_1^2 + u_2^2 + u_3^2}$.

Formula 4. The unit vector in the direction of **u** is calculated by $\frac{\mathbf{u}}{\parallel \mathbf{u} \parallel}$.

Definition 5. A plane Γ in space is defined by a point $P=(p_1,p_2,p_3)$ on Γ and the normal vector $\mathbf{n}=(n_1,n_2,n_3)$. Γ : $n_1(x-p_1)+n_2(y-p_2)+n_3(z-p_3)=0$.

Definition 6. A line ℓ in space is defined by a vector $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ that shows its direction and a point $P = (p_1, p_2, p_3)$ that lies on ℓ . Equation of ℓ : $\mathbf{r} = (x, y, z) = (p_1 + v_1 t, p_2 + v_2 t, p_3 + v_3 t)$.

Definition 7. Dot product of **u** and **v**, denoted by $\mathbf{u} \cdot \mathbf{v}$, is $u_1v_1 + u_2v_2 + u_3v_3$.

Theorem 8. $\mathbf{u} \cdot \mathbf{v} = ||u|| ||v|| \cos \theta$. \mathbf{u} and \mathbf{v} are orthogonal iff $\mathbf{u} \cdot \mathbf{v} = 0$.

Formula 9. The orthogonal projection of \mathbf{u} onto a vector \mathbf{v} is evaluated by $proj_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2}\mathbf{v}$.

Formula 10. The orthogonal projection of **u** onto a plane spanned by **v** and **w** is defined by $\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \mathbf{v} + \frac{\mathbf{u} \cdot \mathbf{w}}{\|\mathbf{w}\|^2} \mathbf{w}.$

Defintion 11. Cross product of \mathbf{u} and \mathbf{v} , denoted by $\mathbf{u} \times \mathbf{v}$, is a vector calculated by the determinant of the matrix

$$\begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$$

which reduces to $(u_2v_3 - u_3v_2)\mathbf{i} + (u_3v_1 - u_1v_3)\mathbf{j} + (u_1v_3 - u_3v_1)\mathbf{k}$.

Theorem 12. The vector $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v} Also, $\parallel \mathbf{u} \times \mathbf{v} \parallel = \parallel \mathbf{u} \parallel \parallel \mathbf{v} \parallel \sin \theta$.

Example 1

Let $\mathbf{v}=\langle 1,2,3\rangle$ and $\mathbf{w}=\langle 2,-1,-2\rangle$. Find the orthogonal projection of \mathbf{v} on \mathbf{w} and $\mathbf{v}\times\mathbf{w}$.

Solution

Example 2

Show that if $\mathbf{u} \cdot \mathbf{v} = 0$ and $\mathbf{u} \times \mathbf{v} = 0$ then \mathbf{u} or \mathbf{v} is 0.

Solution

Example 3

Let Γ be the plane that goes through point P=(3,1,-1) with normal vector $\mathbf{n}=\langle 1,2,1\rangle$ and let ℓ be the line that goes through Q=(0,0,1) in the direction of $\mathbf{v}=\langle 0,1,0\rangle$.

(A) Find minimum distance between Γ and the origin. Also find the minimum distance from ℓ to the origin.

(B) Find the minimum distance from Γ to ℓ .