Image Processing, Retrieval and Analysis

Project 3

Alina Arunova Alexey Karpov Maxim Maltsev Pylyp Matyash Maksym Radomskyi

Andrei Zhukov

Task 3.1: Interpolation

Implementation of radial basis function interpolation.

$$y(x_i) = y_i = \sum_{j=1}^n w_j \varphi(||x_i - x_j||) = \sum_{j=1}^n w_j \Phi_{ij}$$

$$oldsymbol{w} = oldsymbol{\Phi}^{-1} oldsymbol{y}.$$
 - the main idea

The Code

```
# Pseudocode
# phi(pairwise distances)
fill_Phi()

# initialize data set
x = np.arange(n) + np.random.randn(n) * 0.2
y = np.random.rand(n) * 2

# calculating weights
w = np.linalg.inv(Phi).dot(y)

# drawing the results
xs = np.linspace(0, n, 200)
plt.plot(xs, calc_y(xs))
```

The Results

The Results: bonus

$$\sigma = 0.1$$

$$\sigma = 6$$

$$T(x) = x + \alpha \cdot \sin(\nu x - \phi)$$

 $\alpha-amplitude$

 $\nu-frequency$

 $\phi - phase$

Task 3.2: Wave Warps

$\nu-frequency$

$$\phi-phase$$

$$\alpha=10, \nu=120, \phi=2.5 \cdot \pi$$

$$\alpha=10, \nu=120, \phi=\pi$$

$$\alpha = 10, \nu = 60, \phi = \pi$$

$$\alpha = 10, \nu = 45, \phi = 0.5 \cdot \pi$$

$$\alpha=10, \nu=33, \phi=1.5 \cdot \pi$$

$$\cdot \pi \qquad \alpha=10, \nu=240, \phi=\pi$$

Task 3.3: Cylinder Anamorphosis

Task 3.3: Cylinder Anamorphosis

Task 3.3: Cylinder Anamorphosis

Direct mapping:

$$egin{cases} x' = rac{W'}{2} + R\cos\phi \ y' = rac{H'}{2} - R\sin\phi \end{cases} \qquad egin{cases} x = rac{W}{2}(1 - rac{\phi}{\pi}) \ y = H - (R - r_0) \end{cases}$$

Inverse mapping:

$$\begin{cases} x = rac{W}{2}(1 - rac{\phi}{\pi}) \ y = H - (R - r_0) \end{cases}$$

Task 3.4: Smoothing in Polar Coordinates

Given 4 vertices, allocate the projection.

First step - define the affected area

Next steps:

Solve a system of linear equations, do transform, do PULL warp using scipy image interpolation.

Task 3.5: Perspective Mappings

And again, and again..

Another application example Take the clock..

..and a cup

Apply Canny filter for edges detection, use Hough Vouting to fit an ellipse, get the biggest and the smallest horde (for 4 points)

Put the clock into a cup

