Games on graphs Séminaire Thésards

Nathanaël Fijalkow

LIAFA, CNRS Université Denis Diderot - Paris 7, France

November 10th, 2010

- 1 Games
 - Playing
 - Winning
- 2 Motivations
 - Deciding tree automata membership
 - Deciding logics
- 3 Problems and tools
 - Deciding a winner
 - Strategy complexity
 - Stochastic games
 - Concurrent games

- 1 Games
 - Playing
 - Winning
- 2 Motivations
 - Deciding tree automata membership
 - Deciding logics
- 3 Problems and tools
 - Deciding a winner
 - Strategy complexity
 - Stochastic games
 - Concurrent games

Players

Two players: Eve and Adam.

Plays Plays

Playing

Plays

00000 Winning

- Games

 - Winning
- Motivations

Reachability and Büchi objectives

Reachability and Büchi objectives

Reachability and Büchi objectives

- 1 Game
 - Playing
 - Winning
- 2 Motivations
 - Deciding tree automata membership
 - Deciding logics
- 3 Problems and tools
 - Deciding a winner
 - Strategy complexity
 - Stochastic games
 - Concurrent games

Deciding tree automata membership

- Motivations
 - Deciding tree automata membership

Deciding tree automata membership

Theory

• A tree automaton A accepts a tree t if all branches of t satisfy a condition;

Theory

Deciding tree automata membership

- A tree automaton A accepts a tree t if all branches of t satisfy a condition;
- Let us play on A: Eve chooses transitions, Adam chooses nodes.
- Eve and Adam take turn to build a labeled branch: Eve wins if the ensued branch is accepting.
- A accepts t if and only if Eve wins the game.

Deciding tree automata membership

Theory

- A tree automaton A accepts a tree t if all branches of t satisfy a condition;
- Let us play on A: Eve chooses transitions, Adam chooses nodes.
- Eve and Adam take turn to build a labeled branch: Eve wins if the ensued branch is accepting.
- A accepts t if and only if Eve wins the game.

Assume we can construct finitely representable winning strategies for Adam. Then we can use them as witnesses to complement automata.

- 1 Game
 - Playing
 - Winning
- 2 Motivations
 - Deciding tree automata membership
 - Deciding logics
- 3 Problems and tools
 - Deciding a winner
 - Strategy complexity
 - Stochastic games
 - Concurrent games

Deciding QBF

$$\phi = \forall x \,\exists y \,\forall z \, (x \vee \neg y) \wedge (\neg y \vee z)$$

Deciding QBF

$$\phi = \forall x \,\exists y \,\forall z \, (x \vee \neg y) \wedge (\neg y \vee z)$$

$$F_1 = \{x, \neg y\} \qquad F_2 = \{\neg y, z\}$$

- 1 Game
 - Playing
 - Winning
- 2 Motivations
 - Deciding tree automata membership
 - Deciding logics
- 3 Problems and tools
 - Deciding a winner
 - Strategy complexity
 - Stochastic games
 - Concurrent games

- 1 Games
 - Playing
 - Winning
- 2 Motivations
 - Deciding tree automata membership
 - Deciding logics
- 3 Problems and tools
 - Deciding a winner
 - Strategy complexity
 - Stochastic games
 - Concurrent games

The winner problem

Given a game and an initial vertex, who has a winning strategy?

The winner problem

Given a game and an initial vertex, who has a winning strategy? Using crazy winning conditions we can even have non-determined games: neither Eve nor Adam has a winning strategy.

The winner problem

Given a game and an initial vertex, who has a winning strategy? Using crazy winning conditions we can even have non-determined games: neither Eve nor Adam has a winning strategy. Hence we focus on ω -regular winning conditions, that is given by a

Hence we focus on ω -regular winning conditions, that is given by a Büchi automaton.

For these games, the winner problem is decidable.

A sketchy sketch of a proof

Let \mathbb{G} an arena and \mathcal{A} a deterministic Büchi automaton.

- First compute the synchronous product $\mathbb{G} \times \mathcal{A}$. A play is winning if its second component is accepted by \mathcal{A} ;
- The resulting game is a Büchi game.
- We are now left to solve Büchi games. This can be done efficiently (quadratic time in the size of the arena), using the following ideas:

Solving Büchi games

If Eve can ensure to visit F a great number of times, then she can ensure to visit F infinitely often. Then we design a recursive algorithm to solve k-repeated reachability games.

Solving Büchi games

If Eve can ensure to visit F a great number of times, then she can ensure to visit F infinitely often. Then we design a recursive algorithm to solve k-repeated reachability games.

Informally, to ensure to reach F at least k + 1 times, you have to ensure to reach it k times and then to ensure at least one visit.

ensure to reach it k times and then to ensure at least one visit.

Solving Büchi games

If Eve can ensure to visit F a great number of times, then she can ensure to visit F infinitely often. Then we design a recursive algorithm to solve k-repeated reachability games. Informally, to ensure to reach F at least k + 1 times, you have to ensure to reach it k times and then to ensure at least one visit. We can show that for $k \ge n + 1$, the k-repeated reachability games and Büchi games are equivalent.

Deciding a winner Questions

- What about non-deterministic automata?
- Do these proofs allow to construct winning strategies?

- 1 Games
 - Playing
 - Winning
- 2 Motivations
 - Deciding tree automata membership
 - Deciding logics
- 3 Problems and tools
 - Deciding a winner
 - Strategy complexity
 - Stochastic games
 - Concurrent games

Different models of strategy

A strategy for a player in the most general form is a function that maps any finite history of a play to a chosen transition.

Different models of strategy

A strategy for a player in the most general form is a function that maps any finite history of a play to a chosen transition. We are interested in finitely representable strategies that are sufficient to win the games we consider.

Different models of strategy

A strategy for a player in the most general form is a function that maps any finite history of a play to a chosen transition.

We are interested in finitely representable strategies that are sufficient to win the games we consider.

Strategies can use memory or randomization.

Why memory?

Strategy complexity

Why randomization?

- 1 Games
 - Playing
 - Winning
- 2 Motivations
 - Deciding tree automata membership
 - Deciding logics
- 3 Problems and tools
 - Deciding a winner
 - Strategy complexity
 - Stochastic games
 - Concurrent games

- 1 Games
 - Playing
 - Winning
- 2 Motivations
 - Deciding tree automata membership
 - Deciding logics
- 3 Problems and tools
 - Deciding a winner
 - Strategy complexity
 - Stochastic games
 - Concurrent games

Thank for your attention!