# Zbiory benchmarkowe do analizy skupień

PDU 2018/19 - praca domowa nr 2  $Konrad\ Komisarczyk$ 

## 1. Mieszkańcy miast w Polsce

Zbiór reprezentuje uproszczone przybliżone rozmieszczenie ludności miejskiej w Polsce.

Miasta przybliżane są kołami o polu równym obszarowi miasta.

Mieszkańców miasta reprezentują punkty rozmieszczone według rozkładu normalnego o środku w środku koła przybliżającego miasto i odchyleniu standardowym równym promieniowi miasta. Jeden punkt odpowiada 4000 mieszkańcom.

Punkty znajdują się na przybliżonym zrzutowaniu powierzchni ziemi na płaszczyznę euklidesową - 1 stopień szerokości geograficznej odpowiada 110.574 km, a 1 stopień długości 111.32 \* cos(0.01745329 \* [szerokość geograficzna w stopniach]).

Zbiór składa się z 5796 punktów.

Przygotowałem podział zbioru na 3 typy etykiet referencyjnych:

- podział na 16 województw,
- podział na 367 powiatów (nie uwzględniam go w badaniach),
- podział na 940 miast (nie uwzględniam go w badaniach).



Rysunek 1: Ilustracja zbioru z podziałem na województwa. Po lewej przeskalowane tak, żeby wyglądało, jak na mapie, a po prawej współrzędne punktów przechowywane w zbiorze.

#### Sposób przygotowania zbioru

Dane zebrałem z artykułów na wikipedii

- Listy miast w polsce https://pl.wikipedia.org/wiki/Miasta\_w\_Polsce
- Tabeli danych statystycznych o miastach w Polsce https://pl.wikipedia.org/wiki/Dane\_statystyczne\_o\_miastach\_w\_Polsce
- Współrzędnych geograficznych miast z artykułu o każdym z miast

Za pomocą skryptu cities.py w języku python:

```
from bs4 import BeautifulSoup
import requests
html = requests.get("https://pl.wikipedia.org/wiki/Miasta_w_Polsce").content
soup = BeautifulSoup(html)
coords_file = open('coords', 'w+')
for div in soup.find_all('div'):
    if div.get("style") == '-moz-column-count:3; -webkit-column-count:3; column-count:3;':
        for li in div.find_all('li'):
            for a in li.find_all('a'):
                nazwa = a.get("title")
                link = a.get("href")
                link_html = requests.get("https://pl.wikipedia.org" + link).content
                link_soup = BeautifulSoup(link_html)
                lat = []
                lon = []
                for span in link_soup.find_all('span'):
                    if span.get("class") == ["latitude"]:
                        lat.append(span.get_text())
                    if span.get("class") == ["longitude"]:
                        lon.append(span.get_text())
                print(nazwa, lat[1], lon[1], sep=";", file=coords_file)
link2 = "https://pl.wikipedia.org/wiki/Dane_statystyczne_o_miastach_w_Polsce"
html2 = requests.get(link).content
soup2 = BeautifulSoup(html2)
population_file = open('population', 'w+')
for tr in soup2.find_all('tr'):
   for td in tr.find_all('td'):
        print(td.get_text()[0:-1], file=population_file, end=';')
   print('', file=population_file)
```

i podmieniając ',' na ''. narzędziem sed (cities.sh):

```
sed -i 's/,/./g' population coords
```

Przygotowałem ramki z danymi

- population kolejne kolumny:
  - nazwa miasta
  - nazwa powiatu
  - nazwa województwa
  - powierzchnia (km2)
  - liczba ludności
  - gęstość zaludnienia
- coords kolejne kolumny:
  - nazwa miasta
  - szerokość geograficzna
  - długość geograficzna

Następnie z nich z użyciem skryptu cities. R przygotowałem 3 zbiory danych w odpowiednim formacie:

- by\_voivodeship.dataiby\_voivodeship.labels0
- by\_powiat.data i by\_powiat.labels0
- by\_city.dataiby\_city.labels0

Przygotowałem ramkę cities2, z wierszami reprezentującymi punkty w tych zbiorach danych:

```
library(dplyr)
#setwd(file.path("data", "my", "cities"))
# wczytujemy dane zescrapowane pythonem
coords <- read.table("coords", sep = ";", stringsAsFactors = FALSE)</pre>
colnames(coords) <- c("C1", "C2", "C3")</pre>
population <- read.table("population", sep = ";", stringsAsFactors = FALSE)
# tabele zgadzają się wierszami, złączamy je kolumnami
cities <- cbind(population, coords)</pre>
voivodeships <- unique(cities$V3)</pre>
powiats <- unique(cities$V2)</pre>
n <- nrow(cities)</pre>
cities <- cities %>% mutate(
  # skalujemy współrzędne na powierzchnię euklidesową
  y = C3 * 110.574, x = C2 * 111.32 * cos(0.01745329 * C3),
  # obliczamy promień koła przybliżającego miasto
  area = V4, r = sqrt(area / pi),
  # obliczamy liczbę punktów reprezentujących miasto
  popul = V4 * V6, points = round(popul / 4000),
  # kategoryzujemy miasta po województwie, powiecie i mieście
  voiv = match(V3, voivodeships),
  powi = match(V2, powiats),
  city = 1:n)
# tabela zawierająca wiersze odpowiadające naszym punktom - tyle kopii
# wierszy odpowiadających miastu z tabeli cities, ile punktów je reprezentuje
cities2 <- cities %>%
 tidyr::uncount(points)
```

```
# rozrzucamy punkty rozkładami normalnymi względem środków miast, które
# reprezentują i promieni tych miast
n <- nrow(cities2)
t <- runif(n, 0, 2*pi)
a <- rnorm(n, 0, cities2$r)
cities2$x <- sin(t) * a + cities2$x
cities2$y <- cos(t) * a + cities2$y</pre>
```

i zapisałem dane do plików w odpowiednich formatach:

```
cities_coords <- t(cbind(cities2$x, cities2$y))

## podział na grupy po województwie

write(cities_coords, "by_voivodeship.data", ncolumns = 2)

write(cities2$voiv, "by_voivodeship.labels0", ncolumns = 1)

## podział na grupy po powiecie

write(cities_coords, "by_powiat.data", ncolumns = 2)

write(cities2$powi, "by_powiat.labels0", ncolumns = 1)

## podział na grupy po mieście

write(cities_coords, "by_city.data", ncolumns = 2)

write(cities2$city, "by_city.labels0", ncolumns = 1)</pre>
```



Rysunek 2: Podział algorytmem spektralnym zbioru na 16 części dla parametru  $\mathrm{M}{=}8$ 

#### 1.1. Podział na województwa (by\_voivodeship)



Rysunek 3: Wartości indeksów Fowlkesa-Mallowsa i Randa dla algorytmu spektralnego na zbiorze dzielonym na województwa w zależności od parametru M.

Algorytm zwraca dość dobre wyniki. Są nieco niższe niż średnie dla zbiorów benchmarkowych, ale lepsze niż najgorsze z pozostałych zbiorów benchmarkowych. Nie oczekiwałem od tego zbioru bardzo dobrej jakości wyników, oczekiwałem właśnie gdzieś mniej więcej takiej. Województwa w Polsce często mają w centrum duże miasto wojewódzkie i często miasta skupiają się wokół nich, czasami tworząc nawet duże aglomeracje miejskie, jak aglomeracja Warszawy, czy Trójmiasto.

#### 1.2. Podział na powiaty (by\_powiat)



Rysunek 4: Wartości indeksu Randa dla algorytmu spektralnego na zbiorze dzielonym na powiaty w zależności od parametru M.

Algorytm zwraca bardzo słabe wyniki, czego oczekiwałem po tym podziale. W związku z tym, że nie jest on dobrym referencyjnym podziałem na etykiety, nie będę dołączał go do zbiorów benchmarkowych.

### 2. Proste aglomeracje

Zbiory zawierają kilka skupisk (aglomeracjii) punktów rozkładających się rozkładem normalnym względem pewnych środków.

Zbiory generuję za pomocą funkcji simple\_agglomerations przyjmującej jako parametry: \* liczbę punktów należących do aglomeracji \* promienie aglomeracji \* kwadrat wewnątrz którego będziemy losowali punkty zbioru

Etykiety referencyjne zawierają dla każdego punktu informację o tym, do której aglomeracji należy.

Funkcja losuje najpierw środki aglomeracji, a następnie losuje należące do nich punkty według rozkładu normalnego o odchyleniu równym promieniowi aglomeracji.

```
## n_points - wektor z liczbą punktów w kolejnych aglomeracjach
## radius - promienie kolejnych aglomeracji
## lim - bok kwadratu, na którym umieszczone są środki aglomeracji
simple_agglomerations <- function(n_points, radius, lim) {</pre>
  n_aggls <- length(n_points)</pre>
  agglomeration <- function(center, n, radius) {
    rnorm(n, mean = center, sd = radius)
  }
  centers x <- runif(n aggls, min = 0, max = lim)
  centers_y <- runif(n_aggls, min = 0, max = lim)</pre>
  X <- matrix(numeric(0), ncol = 2)</pre>
  labels <- numeric(0)</pre>
  for (i in 1:n aggls) {
    X <- rbind(X, (cbind(agglomeration(centers x[i], n points[i],</pre>
                                          radius[i]),
                          agglomeration(centers_y[i], n_points[i],
                                          radius[i]))))
    labels <- c(labels, rep(i, n_points[i]))</pre>
  }
  return(list(coords = X, labels = labels))
}
```

Przygotowałem trzy warianty zbioru:

### $2.1. \ {\tt simple\_agglomerations1}$

Zbiór składa się z 1347 punktów rozmieszczonych w 5 aglomeracjach.



Rysunek 5: Referencyjny podział zbioru i podział zbioru algorytmem spektralnym dla parametru  $\mathcal{M}{=}3$ 



Rysunek 6: Wartości indeksów Fowlkesa-Mallowsa i Randa dla algorytmu spektralnego na zbiorze simple-agglomerations1 w zależności od parametru M.

### 2.2. simple\_agglomerations2

Zbiór składa się z 1184 punktów rozmieszczonych w 3 aglomeracjach.



Rysunek 7: Referencyjny podział zbioru i podział zbioru algorytmem spektralnym dla parametru M=9



Rysunek 8: Wartości indeksów Fowlkesa-Mallowsa i Randa dla algorytmu spektralnego na zbiorze simple-agglomerations2 w zależności od parametru M.

#### 2.3. simple\_agglomerations3

Zbiór składa się z 982 punktów rozmieszczonych w 8 aglomeracjach.



Rysunek 9: Referencyjny podział zbioru i podział zbioru algorytmem spektralnym dla parametru M=6



Rysunek 10: Wartości indeksów Fowlkesa-Mallowsa i Randa dla algorytmu spektralnego na zbiorze simple-agglomerations3 w zależności od parametru M.

#### 3. Oliwki na pokrojonej pizzy

Zbiory reprezentują oliwki na pokrojonej pizzy z odsuniętymi od siebie kawałkami.

Punkty są równomiernie rozłożone na każdym kawałku. Kawałki są rozsunięte, czyli są pomiędzy nimi pasy, w których nie ma żadnych punktów.

Zbiór generuje następująca funkcja sparametryzowana szerokością przerwy pomiędzy kawałkami i liczbą punktów w poszczególnych kawałkach:

```
## sets - wektor z liczbą punktów należących do kolejnych kawałków pizzy
## space - promień, o jaki odsunięte są kawałki od środka
pizza <- function(sets, space) {</pre>
  n <- sum(sets)</pre>
  parts <- length(sets)</pre>
  # punkty należące do nr-tego kawałka
  points_in_part <- function(n, nr, parts, space) {</pre>
    # qenerujemy n punktów rozłożonych równomiernie na nr-tym kawałku pizzy
    t <- runif(n, (nr-1)*2*pi/parts, nr*2*pi/parts)
    a <- runif(n, 0, 1)
    a \leftarrow a\cos(a)
    x \leftarrow sin(t) * a
    y \leftarrow cos(t) * a
    # odsuwamy kawałek od środka
    v \leftarrow (nr - 0.5)*2*pi/parts
    x \leftarrow x + \sin(v) * \text{space}
    y \leftarrow y + \cos(v) * space
    return(cbind(x, y))
  }
  X <- matrix(numeric(0), ncol = 2)</pre>
  labels <- numeric(0)</pre>
  for (i in 1:parts) {
    p <- points_in_part(sets[i], i, parts, space)</pre>
    X \leftarrow rbind(X, p)
    labels <- c(labels, rep(i, sets[i]))</pre>
  return(list(coords = X, labels = labels))
```

Przygotowałem dwa warianty zbioru:

## 3.1. Mała pizza (4 kawałki)

```
set.seed(1234)
n <- 4
sets <- runif(n, 100, 200)
pitca1 <- pizza(sets, 0.15)</pre>
```

Zbiór składa się z 595 punktów.



Rysunek 11: Referencyjny podział zbioru i podział zbioru algoryt<br/>mem spektralnym dla parametru  $\mathcal{M}=4$ 



Rysunek 12: Wartości indeksów Fowlkesa-Mallowsa i Randa dla algorytmu spektralnego na zbiorze pizza1 w zależności od parametru M.

## 3.2. Średnia pizza (6 kawałków)

```
set.seed(7312)
n <- 6
sets <- runif(n, 50, 150)
pitca2 <- pizza(sets, 0.3)</pre>
```

Zbiór zkłada się z 454 punktów.



Rysunek 13: Referencyjny podział zbioru i podział zbioru algorytmem spektralnym dla parametru  $\mathcal{M}=6$ 



Rysunek 14: Wartości indeksów Fowlkesa-Mallowsa i Randa dla algorytmu spektralnego na zbiorze pizza2 w zależności od parametru M.

# 4. Dodatek



Rysunek 15: Rysunek przedstawiający graf 3 najbliższych sąsiadów na zbiorze pizza2



Rysunek 16: Rysunek przedstawiający graf 7 najbliższych sąsiadów na zbiorze pizza2