

BAUTISTA BUYATTI TOMÁS DI NAPOLI

JUAN SANTIAGO GRASSANO













# **EL PROBLEMA**

### **2 MILLONES**

de niñxs al año mueren al año por neumonía en el mundo



### **VIRUS Y BACTERIAS**

son los dos causantes principales de neumonía, pero requieren tratamientos distintos



# **RADIOGRAFÍAS**

pueden ayudar a diferenciar entre diferentes tipos de neumonia

## **EL OBJETIVO**

investigar la efectividad de distintos

# MODELOS DE APRENDIZAJE AUTOMÁTICO

para la

## CLASIFICACIÓN

de radiografías de tórax pediátricas con el fin de

#### **DETECTAR Y DISTINGUIR**

neumonía viral y bacteriana

### **EL DATA SET**



PACIENTES PEDIÁTRICOS

de uno a cinco años

### **3 CATEGORÍAS**

Sin neumonía (1583), neumonía bacteriana (2780) y neumonía viral (1493)

Data set de Kaggle: Chest X-Ray Images (PNEUMONÍA)

















#### **AUMENTO DE DATOS**

#### **DATA AUGMENTATION**

















#### **EXACTITUD**

#### **ACCURACY**



# **CONCLUSIONES Y APRENDIZAJE**

- El preprocesamiento de los datos es tan importante como el modelo elegido
- Al trabajar con imágenes, hay que tener en cuenta el tiempo de cómputo
- Organizar la estructura del modelo antes de empezar a predecir
- Comprobar que las transformaciones a los datos sean efectivas
- Garantizar que los datos generados sean "parecidos" a los datos reales

## PERSPECTIVAS Y MEJORAS

- Buscar una técnica de augmentation específica para estas imágenes
- Probar modelos de redes neuronales convolucionales
- Aumentar el rango etario de los datos para generalizar el modelo



