CS & IT

Error Control
DPP 01 (Discussion Notes)

By- Ankit Doyla Sir

TOPICS TO BE COVERED

01 Question

02 Discussion

The Hamming distance between 100 and 001 is _____.

A

2

B.

1

D.

None of the above

Hamming distance = 2

 S_1 : If the change occurs in single-bit position with respect to whole data, then such error is called single bit error. (T)

S₂: If the change occurs in two or more-bit positions with respect to whole data, then such error is called burst error.

- A. Only S₁ is true
- B. Only S₂ is true
- Both S₁ and S₂ are true
- D. Neither S₁ nor S2 is true

Which is/are the error detection techniques?

- A. Check sum
- B. VRC
- c. CRC
- All of the above

We add r redundant bits to each block to make the length n = k + r. The resulting n bit blocks are called ____.

[MCQ]

Block words

Code words

Data words

None of these

In block coding, if k=2 and n=3, we have ____invalid codewords

2= K+8

[MCQ]

8

4

2

None of the above

Invalid code word =
$$3^{110}$$
 X
= 3^{3} - 3^{2} = 8 - 4 = 4

A parity check can detect ____.

[MCQ]

1-bit error

- B.
- 2-bit error
- C.
- 8-bit error
- D.

None of these

Assume that data has been transmitted on link using the 2D parity scheme for error detection. Each sequence of 32-bits is arranged in a 4×8 matrix (rows r0 through r3 and column d8 through d₁) and is padded with a column do and row r₄ of parity bits computed using the even parity scheme, each bit of column d0 (respectively, row r₄) gives the parity of the corresponding row (respectively column) these 45 bits are transmitted using data link, assuming the following bits (data) are received on receiver's side.

 (r_3, d_6)

 $(r_2 d_6)$

 (r_1, d_2)

None of the bit is corrupted

8 dr d6 d6 d4 d5 d2 d1 d6

80 10110011

81 1010111

82 01011000

83 110000011

84: 100000111

(oa, d6)

evenbrity

Assume a binary code that contains only 5 valid code words as given 0000000, 1010110, 0101111, 0101010, 1101001 and assume minimum hamming distance of a code be \underline{x} and maximum number of erroneous bits that can be deleted by the code is \underline{y} and corrected by code be \underline{z} , then the value of $\underline{x} + \underline{y} + \underline{z}$ is $\underline{2+4}+0=3$

Minimum Hamming distance
Sequised to detect d'bit
e8686 = d+1

d+1=2

d=1

(2=0)

Q.9

Considers the following error deletion scheme. every binary codeword (or) message is 2 bit long and for each binary message $[d_1, d_0]$ three parity bits are appended. corresponding code words are $[d_1, d_0, P_2, P_1, P_0]$. The appended bits are calculated as $P_2 = d_1 + d_0$, $P_1 = d_1$, $P_0 = d_0$ ('+' is a modulo 2 sum) then the minimum hamming distance d_{min} for this error deletion scheme is

3 dido P2 Pi Po (a) 0000001 (b) 01101 (c) 10110 (d) 11011

$$d(a_1b) = 3$$

$$d(a_1c) = 3$$

$$d(a_1d) = 4$$

$$d(a_1d) = 4$$

$$d(b_1d) = 3$$

$$d(b_1d) = 3$$

$$d(b_1d) = 3$$

$$d(b_1d) = 3$$

Q.10

In block coding, if n=5, the maximum hamming distance between

A.

2

3

5

None of the above

two codewords is _____.

(32) 1111 1

maximum Hamming distance = 5

