Principal Component Analysis: dalla teoria alla pratica

Marco Buracchi

Università degli studi di Firenze

18 febbraio 2018

Sommario

Principal Component Analysis

Cosa fa?

Come funziona?

Implementazione Python

Strumenti

Implementazione

Caso di studio

Attacchi

Analisi

Risultati

PCA

- ullet Trasformazione lineare della matrice dei dati ${\mathcal X}$
- Misurazione della variazione delle variabili utilizzando un numero minore di "fattori"
- Trasportare il problema in uno spazio k-variato (generalmente bi-trivariato)
- Semplificazione di visualizzazione e lettura dei dati

Esempio

- 40 campioni
- 2 variabili

Esempio - 2

 Nessuna delle due variabili descrive completamente la variabilità dei dati

Componenti

- Prendiamo come componenti principali le linee blu
- La prima componente spiega la massima percentuale di variabilità rappresentabile in una dimensione

Varianza

- Questa percentuale di variabilità può essere calcolata tramite la varianza
- La varianza è un indice della dispersione dei dati lungo una particolare direzione
- La varianza è indipendente dal sistema di riferimento
- Ruotare gli assi mantiene inalterata la varianza totale

Principal Component Analysis

00000

Componenti - 2

- La prima componente cattura quasi tutta la variabilità presente nei dati (99.83%)
- La seconda descrive la rimanente (0.17%)
- Generalizzando, le componenti principali successive spiegano una sempre minore percentuale della variabilità originale
- Le ultime componenti principali descrivono principalmente rumore

Funzionamento

1. Standardizzazione

- Standardizzare i dati (media = 0, varianza = 1)
- Possiamo lavorare con variabili su scale e unità di misure differenti
- 2. Calcolo covarianza/correlazione
 - Calcoliamo la matrice S di covarianza

$$S = \frac{1}{n-1} \sum_{1}^{n} (x - \mu)(x - \mu)^{T}$$

- Possiamo usare anche la matrice di correlazione
- 3. Calcolo autovalori/autovettori
 - $S \times v = \lambda \times v$

Funzionamento

4. Scelta delle componenti

- · Ordiniamo in maniera decrescente gli autovalori ottenuti
- Selezioniamo i primi k
- Costruiamo \mathcal{V} , la matrice dei rispettivi autovettori

Rotazione dei dati

- Moltiplichiamo i dati originali per gli autovettori che indicano le direzioni dei nuovi assi (componenti principali)
- I dati ruotati vengono chiamati score

$$Sc = \mathcal{X} \times \mathcal{V}$$

Strumenti utilizzati

• Linguaggio: Python

Libreria per l'analisi dei dati: PANDAS

Dataset: IRIS

PANDAS

- Libreria Python, open source, ad alte prestazioni e con licenza BSD
- Strutture dati e strumenti per l'analisi facili da usare (R-like)
 - Serie (unidimensionali)
 - Dataframe (bidimensionali)
- Dati organizzati in maniera relazionale o etichettata
- Sponsorizzato da NumFocus

 sviluppo continuo, a livello mondiale e sistema di donazioni a supporto

Dataset

- Dataset IRIS
- 150 misurazioni di fiori iris
- 3 diverse specie

Caricamento Dataset

```
# download dataset
df = pd.read_csv(
    filepath_or_buffer='https://archive.ics.uci.edu/ml/machine-learning-
        databases/iris/iris.data',
        header=None,
        sep=',')

# scelgo solamente le colonne con i valori di interesse
df.columns=['sepal_len', 'sepal_wid', 'petal_len', 'petal_wid', 'class']
df.dropna(how="all", inplace=True) # Elimina i valori NA
    print(df.tail()) #visualizza ultime 5 righe
```

1	sepal_len	sepal_wid	petal_len	petal_wid	class
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

Divisione valori

- Matrice valori numerici $X \in \mathcal{M}^{150 \times 4}$
- Vettore specie $y \in \mathcal{M}^{150 \times 1}$

```
\# X = tabella con valori, y = etichette
X = df.ix[:,0:4].values
y = df.ix[:,4].values
```


Caso di studio

Caso di studio

Attacco SMURF

Attacco Neptune

Attacchi Network Probe

NP

Analisi

Preprocessing

Rilevazione

Rilevazione

Bibliografia

An Introduction to Multivariate Statistical Analysis.

Wiley Series in Probability and Statistics. Wiley, 2003.

Multivariate analysis.

Probability and mathematical statistics. Academic Press, 1979.

Pandas documentation.

http://pandas.pydata.org/pandas-docs/stable/index.html.

Python data analysis library.

 $\verb|http://pandas.pydata.org/|.$

Khaled Labib and V. Rao Vemuri.

Annales Des Télécommunications, 61(1):218-234, Feb 2006.