2025 edition

Deep Learning for Music Analysis and Generation

Source Separation: Quick Notes

(audio → audio)

Yi-Hsuan Yang Ph.D. yhyangtw@ntu.edu.tw

Objectives

- To be familiar with how people work on spectrograms
- It's a type of conditional audio generation task (with strong condition)
 - "audio (mixture) → audio (stem)"
 - Will talk about other types of audio generation tasks in the forthcoming lectures

Reference 1: FMP Notebook

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8.html

Part	Title	Notions, Techniques & Algorithms	HTML	IPYNB
B impyler	Basics	Basic information on Python, Jupyter notebooks, Anaconda package management system, Python environments, visualizations, and other topics	[html]	[ipynb]
0	<u>Overview</u>	Overview of the notebooks (https://www.audiolabs-erlangen.de/FMP)	[html]	[ipynb]
1	Music Representations	Music notation, MIDI, audio signal, waveform, pitch, loudness, timbre	[html]	[ipynb]
2	Fourier Analysis of Signals	Discrete/analog signal, sinusoid, exponential, Fourier transform, Fourier representation, DFT, FFT, STFT	[html]	[ipynb]
3	Music Synchronization	Chroma feature, dynamic programming, dynamic time warping (DTW), alignment, user interface	[html]	[ipynb]

Part	Title	Notions, Techniques & Algorithms	HTML	IPYNB
4	Music Structure Analysis	Similarity matrix, repetition, thumbnail, homogeneity, novelty, evaluation, precision, recall, F- measure, visualization, scape plot	[html]	[ipynb]
5	Chord Recognition	Harmony, music theory, chords, scales, templates, hidden Markov model (HMM), evaluation	[html]	[ipynb]
6 A+++	Tempo and Beat Tracking	Onset, novelty, tempo, tempogram, beat, periodicity, Fourier analysis, autocorrelation	[html]	[ipynb]
7	Content-Based Audio Retrieval	Identification, fingerprint, indexing, inverted list, matching, version, cover song	[html]	[ipynb]
		Harmon to transmit and a second		
8	Musically Informed Audio Decomposition	signal reconstruction, instantaneous frequency, fundamental frequency (F0), trajectory, nonnegative matrix factorization (NME)	[html]	[ipynb]

Reference 2: ISMIR 2020 Tutorial

https://source-separation.github.io/tutorial/landing.html

Open Source Tools & Data for Music Source Separation

By Ethan Manilow, Prem Seetharaman, and Justin Salamon

Outline

- Basics
- Tools

What is Source Separation?

https://source-separation.github.io/tutorial/intro/src_sep_101.html

- The process of isolating individual sounds (sources) in an auditory mixture of multiple sounds
- Underdetermined problem
 - Fewer observations y(t) (1 or 2; mono or stereo) than the required outcomes $x_i(t)$ (e.g., 4)

$$y(t) = \sum_{i=1}^N x_i(t).$$

In speech: cocktail party effect

Demo: Source Separation

https://www.gaudiolab.com/technology/source-separation

№ Eagles 'Hotel California'

GAUDIO

Why Source Separation?

https://source-separation.github.io/tutorial/intro/src_sep_101.html

- Benefit downstream MIR problems (e.g., singer classification)
 - automatic music transcription [PAB+02,MSP20],
 - lyric and music alignment [FGO+06],
 - musical instrument detection [HKV09],
 - lyric recognition [MV10],
 - automatic singer identification [WWollmerS11,HL15,SDL19],
 - vocal activity detection [SED18a],
 - fundamental frequency estimation [JBEW19], and
 - understanding the predictions of black-box audio models.
 [HMW20a,HMW20b]

Why Source Separation?

https://source-separation.github.io/tutorial/intro/src_sep_101.html

- Benefit music generation
 - Re-mix of the sources
 - Up-mix: stereo to 5.1-channel
 - Replacement of some of the sources
 - Audio editing
- Active music listening

Why Source Separation is Difficult?

https://source-separation.github.io/tutorial/intro/src_sep_101.html

- Sources in music are highly correlated (harmonically and rhythmically)
- The mixing of music signals is complex and non-linear
 - Reverb, EQ, ...
 - Don't know how the mixing was done
- It's actually an audio-domain music generation problem
 - Instrument recognition (discriminative)
 vs. instrument separation (generative)
 - The bar for quality can be high

Why Source Separation is Difficult?

Sources in music are highly correlated (harmonically and rhythmically)

Why Source Separation is Difficult?

Figure 1: Representation of a music mixture in the time-frequency domain. The dominant musical source in each time-frequency bin is displayed with a different color.

Types of Separation Problems

- #sources vs. #output channels
 - Overdetermined vs underdetermined
- Amount of side information
 - Blind source separation vs.
 informed source separation
 - Score informed
 - Lyrics informed
 - Melody informed
 - We mainly talk about blind & underdetermined source separation
- Online or offline

Types of Separation Problems

- What the #output channels are
 - **Two** stems: vocal vs. non-vocal
 - or: lead vs. *accompaniments*
 - Four stems: vocal, drums, bass, and others
 - Beyond four stems
 - Uncertain number and class of output channels
- Do different output channels correspond to different instruments?
 - Not always
 - Choral music separation (soprano, alto, tenor, and bass)
 - Speaker separation

Clues for Stereo Source Separation

- Utilizing spatial position for separation
 - Vocal are usually in the middle

Clues for Monaural Source Separation

• Different sound sources may have different *time-frequency* characteristics (timbre, pitch range, etc)

Ref: Cano et al, "Musical source separation: An introduction," IEEE Signal Processing Magazine 2019

Spectrogram-based and Waveform-based

https://paperswithcode.com/sota/music-source-separation-on-musdb18

- STFT = magnitude + phase
- People tend to use the magnitude STFT
 - provides rich info as a time-frequency representation
- Phase is hard to model, but phase is needed here
- Also hard model waveforms (in early days)

Fig. 17 The structure of phase within an STFT makes it hard to model. One of these two images shows the phase component of an STFT and another shows random noise. Can you guess which is which?

Approach

Traditional methods

- *Unsupervised*: rule-based, model-based
- Faster, light-weight, but limited performance
- Usually work on spectrograms

Deep learning based methods

- Supervised: learn from "clean sources"
- Mixture in, clean sources out
- Better result
- Work on spectrograms, waveforms, or both

ML/DL Viewpoint: Time-frequency Classification

- Per song: genre classification
- Per short-time chunk: instrument activity detection
- Per time-frequency point:

 f0 estimation, multi-pitch estimation,
 source separation
- Input and output are of the same shape
- But, how about phase?

Deal with Phase: Approaches

https://source-separation.github.io/tutorial/basics/phase.html

- Copy the phase from the mixture
- Given the magnitude, estimate the phase (this is called a "vocoder")
- Work on complex-valued spectrograms
- Work on audio waveforms, not magnitude spectrograms

Supervised Approach

Learn from paired data of {mixture, stems}

Benchmark

https://paperswithcode.com/sota/music-source-separation-on-musdb18

Evaluation Metrics

https://source-separation.github.io/tutorial/basics/evaluation.html

- Computed in the time-domain
- Source-to-Distortion Ratio (SDR)
- Source-to-Interference Ratio (SIR)
- Source-to-Artifact Ratio (SAR)
 - true sources: a, b
 - estimated sources: ae, be
 - SDR(a): how ae is similar to a
 - SIR(a): how ae is similar to b
 - SAR(a): how ae is not similar to either a or b

Evaluation Metrics

https://docs.google.com/presentation/d/1XLC7SyGMRfOj3WwJaiyaYFOwCl69w4aXWLYl7UEsvXQ/

Source Separation Metrics: What are they really measuring?

Keynote presentation at the 2021 Music Demixing Workshop

$$\hat{s} = s_{target} + e_{interf} + e_{artif}$$

$$s_{target} = P_s \hat{s} = \frac{<\hat{s}, s>}{< s, s>} s$$
 A rescaled s, which is as close as possible to s-hat

$$e_{interf} = P_n \hat{s} = \frac{<\hat{s}, n>}{< n, n>} n$$
 A rescaled n, which is as close as possible to s-hat

$$e_{artif} = \hat{s} - s_{target} - e_{interf} = \hat{s} - \frac{<\hat{s}, s>}{< s, s>} s - \frac{<\hat{s}, n>}{< n, n>} n \quad \blacktriangleleft \quad \text{What remains of s-hat}$$

Outline

- Basics
- Tools

Library: Demucs

https://github.com/facebookresearch/demucs

Model	Domain	Extra data?	Overall SDR		
Wave-U-Net	waveform	no	3.2		
Open-Unmix	spectrogram	no	5.3		
Demucs (v2)	waveform	no	6.3		
Band-Spit RNN	spectrogram	no	8.2		
Hybrid Demucs (v3)	hybrid	no	7.7		
MMDenseLSTM	spectrogram	804 songs	6.0		
Spleeter	spectrogram	25k songs	5.9		
HT Demucs f.t. (v4)	hybrid	800 songs	9.0		

Audiostrip is providing free online separation with Demucs on their website https://audiostrip.co.uk/.

Neutone provides a realtime Demucs model in their free VST/AU plugin that can be used in your favorite DAW.

Other pre-trained models can be selected with the -n flag. The list of pre-trained models is:

htdemucs_6s: 6 sources version of htdemucs,
 with piano and guitar being added as sources. Note that the piano source is not working great at the moment.

Model Size vs Separation Quality

Extra (Private) Datasets

Rank	Model	SDR 1	SDR (vocals)	SDR (drums)	SDR (bass)	SDR (other)	Extra Training Data	Paper	Code	Result	Year
1	Sparse HT Demucs (fine tuned)	9.20	9.37	10.83	10.47	6.41	✓	Hybrid Transformers for Music Source Separation	0	Ð	2022
2	Hybrid Transformer Demucs (f.t.)	9.00	9.20	10.08	9.78	6.42	1	Hybrid Transformers for Music Source Separation	0	Ð	2022
3	Band-Split RNN (semi-sup.)	8.97	10.47	10.15	8.16	7.08	✓	Music Source Separation with Band- split RNN	0	Ð	2022
4	TFC-TDF-UNet (v3)	8.34	9.59	8.44	8.45	6.86	×	Sound Demixing Challenge 2023 Music Demixing Track Technical Report: TFC-TDF-UNet v3	0	Ð	2023
5	Band-Split RNN	8.23	10.21	8.58	7.51	6.62	×	Music Source Separation with Band- split RNN	0	Ð	2022
6	Hybrid Demucs	7.72	8.04	8.58	8.67	5.59	×	Hybrid Spectrogram and Waveform Source Separation	0	Ð	2021
7	KUIELab-MDX-Net	7.54	9.00	7.33	7.86	5.95	×	KUIELab-MDX-Net: A Two-Stream Neural Network for Music Demixing	0	Ð	2021

Libraries Collected by ZFTurbo

https://github.com/ZFTurbo/Music-Source-Separation-Training

Available models for training:

- MDX23C based on KUIELab TFC TDF v3 architecture. Key: mdx23c.
- Demucs4HT [Paper]. Key: htdemucs.
- VitLarge23 based on Segmentation Models Pytorch. Key: segm_models .
- TorchSeg based on TorchSeg module. Key: torchseg.
- Band Split RoFormer [Paper, Repository] . Key: bs_roformer .
- Mel-Band RoFormer [Paper, Repository]. Key: mel band roformer.
- Swin Upernet [Paper] Key: swin_upernet .
- BandIt Plus [Paper, Repository] Key: bandit .
- SCNet [Paper, Official Repository, Unofficial Repository] Key: scnet .
- BandIt v2 [Paper, Repository] Key: bandit_v2.
- Apollo [Paper, Repository] Key: apollo .
- TS BSMamba2 [Paper, Repository] Key: bs_mamba2.
- Conformer [Paper, Repository] Key: conformer .
- SCNet Tran Key: scnet tran.
- SCNet Masked Key: scnet_masked.

Inference example

```
python inference.py \
    --model_type mdx23c \
    --config_path configs/config_mdx23c_musdb18.yaml \
    --start_check_point results/last_mdx23c.ckpt \
    --input_folder input/wavs/ \
    --store_dir separation_results/
```

Library: Ultimate Vocal Remover

https://github.com/Anjok07/ultimatevocalremovergui

- GUI & batch processing
- Can separate lead vocal from backing vocal harmonies

