Chapter 00 Introducing Foundations

Contents

Primality testing. [9-11, 15-18]

Carmichael numbers. [19-20, 24-26]

Elementary Number-Theoretic Notions

An application of number-theoretic algorithms is in *cryptography*

• the discipline concerned with encrypting a message sent from one party to another, such that someone who intercepts the message will not be able to decode it.

Let the set $Z = \{, -2, -1, 0, 1, 2, 3, \}$ of integers. Let the set $N = \{0, 1, 2, 3, \}$ of natural numbers (nonnegative integers.

The notation d | a (read "d *divides* a") means

• that a = k*d for some integer k, (i.e., a is k multiple of d).

Congruence Modulo n: m and k are congruent modulo n

Definition of Congruency Modulo n:

Let m and k be integers and n be a positive integer (n > 0).

m is congruent to k modulo n, denoted as

$$m \equiv k \mod n$$

if, and only if $n \mid (m - k)$.

Or, we said that m and k are equivalent $(\equiv) \mod n$.

Symbolically, $n \mid (m - k) \leftrightarrow m \equiv k \mod n$.

$$r = x \mod y$$
.
 $x = q*y + r \longrightarrow [r]_y = \{r + q*y \mid q \in Z\}$

Let Z be the set of integers $\{..., -2, -1, 0, 1, 2, ...\}$.

All integers can be partitioned into n equivalence classes, according to their remainders modulo n.

Define the equivalence class modulo n containing an integer a to be

$$[a]_n = \{a + k n \mid k \in \mathbb{Z}\},\$$

For example, $[3]_7 = \{ ..., -25, -18, -11, -4, 3, 10, 17, 24, 31, 38, ... \}$.

i.e.,
$$b \in [a]_n$$
 iff $b \equiv a \pmod{n}$.
iff $n \mid (b-a)$. i.e., b must be equal to $a + kn$.

Example 0.47:

Since
$$5 \mid (33 - 33)$$
, $33 \equiv 33 \mod 5$.

Since
$$5 \mid (33 - 28)$$
, $33 \equiv 28 \mod 5$.

Since
$$5 \mid (33 - 23)$$
, $33 \equiv 23 \mod 5$.

Since
$$5 \mid (33 - 18)$$
, $33 \equiv 18 \mod 5$.

Since
$$5 \mid (33 - 13)$$
, $33 \equiv 13 \mod 5$.

Since
$$5 \mid (33 - 8)$$
, $33 \equiv 8 \mod 5$.

Since
$$5 \mid (33 - 3)$$
, $33 \equiv 3 \mod 5$.

Since
$$5 \mid (33 - (-2)), \quad 33 \equiv -2 \mod 5$$
.

Since
$$5 \mid (33 - (-7)), \quad 33 \equiv -7 \mod 5.$$

$$[3]_5 = \{ ..., -7, -2, 3, 8, 13, 18, 23, 28, 33, ... \}$$
 is the

equivalence class modulo 5 containing 3.

Theorem 0.1.4.1 Modular Equivalences

Let a and b and n be any integers and suppose n > 1.

The following statements are all equivalent:

- 1. n | (a b)
- 2. $a \equiv b \pmod{n}$
- 3. a = b + kn for some integer k
- 4. a and b have the same (nonnegative) remainder when divided by n
- 5. $a \mod n = b \mod n$.

Proof: Obvious. Example: 5 | (33 - 18).

Primality testing

Primality testing

Do we have any way to know a number is prime without actually trying to factor the number?

- Fermat's little theorem states that if p is a prime number, then
 for any integer a, the number a^p a is an integer multiple of p.
- In the notation of modular arithmetic, $a^p \equiv a \pmod{p}$.

i.e., $(a^p - a) \mod p = 0$.

• That is, $p \mid (a^p - a)$

For example,

- if a = 2 and p = 11, $2^{11} = 2048$, and $2048 2 = 186 \times 11$, an integer 186 multiple of 11.
- That is, $11 \mid 2^{11} 2$, where 11 is a prime. i.e., $2^{11} \equiv 2 \pmod{p}$.
- If a = 2, and p = 12, $2^{12} = 4096$, then $12 + 2^{12} 2$

Primality testing

Do we have any way to know a number is prime without actually trying to factor the number?

Fermat's little theorem states that:

- if p is a prime number, then for any integer a, the number a^p – a is an integer multiple of p.
- In the notation of modular arithmetic, $a^p \equiv a \pmod{p}$.

i.e.,
$$(a^p - a) \mod p = 0$$
.
 $a(a^{p-1} - 1) \mod p = 0$
 $(a^{p-1} - 1) \mod p = 0$
 $a^{p-1} \equiv 1 \pmod p$

•

If a is not divisible by p, Fermat's little theorem is equivalent to the statement that $a^{p-1} - 1$ is an integer multiple of p, or in symbols.

$$a^{p-1} \equiv 1 \pmod{p}$$
. $gcd(a^{p-1}, p) = 1$

For
$$p | (a^p - a) = p | a (a^{p-1} - 1)$$
, if $p \nmid a$, then $p | (a^{p-1} - 1)$.

Let formally state:

Fermat's little theorem (1640):

• If p is prime, then for every integer $1 \le a < p$, $a^{p-1} \equiv 1 \pmod{p}$.

- Since $m \equiv k \mod n$ if, and only if $n \mid (m k)$, $a^{p-1} \equiv 1 \pmod p$ if, and only if $p \mid (a^{p-1} 1)$.
- a^{p-1} is congruent to 1 modulo n
- $1 \le a < p$ condition is to define the equivalence classes modulo p. such as $[1]_7$, $[2]_7$, $[3]_7$, $[4]_7$, $[5]_7$, and $[6]_7$.
- If a = 0, a^{p-1} is undefined.
- If $a \ge p$ then it will repeat the equivalence classes.

Definition: $m \equiv k \mod n$ if, and only if $n \mid (m - k)$.

According to Theorem 0.1.4.1 Modular Equivalences, we have

 $a^{p-1} \equiv 1 \pmod{p}$ if, and only if $p \mid (a^{p-1} - 1)$.

 $a^{p-1} = 1 + kp$ for some integer k. Example: $2^{7-1} = 1 + 9*7$

 a^{p-1} and 1 have the same (nonnegative) remainder when divided by p $a^{p-1} \mod p = 1 \mod p$.

Let a = 3, p = 7, 3%7 = 3:

If s is 1, 2, 3, 4, 5, 6, then 1*3% 7 = 3; 2*3% 7 = 6; 3*3% 7 = 2; 4*3% 7 = 5; 5*3% 7 = 1; 6*3% 7 = 4; If s is 8, 9, 10, 11, 12, 13, i.e., 1+1*7=8; 2+1*7=9;...; 6+1*7=13; then 8*3%7=3; 9*3%7=3;...; 13*3%7=4 ... general term of s: s = s+i*p, 0 < i < p

 $6! \mod 7 = 720 \mod 7 = 6.$ Let p be 7 and $1 \le a < p$. $a^{p-1} \equiv 1 \pmod{p}$, $3^6 * 6! \pmod{7}$ $= 729 * 720 \pmod{7}$ $= 524880 \pmod{7} = 6.$ Or 720 =120* 2*3 %7=6 729 * 720 (mod 7) $= 729 \pmod{7} * 720 \pmod{7} \pmod{7}$ $= 1 * 6 \pmod{7} = 6.$ 729/7 = 1

Therefore, 6! and $3^6 * 6!$ are of the

same class, denoted as

 $6! \equiv 3^6 * 6! \pmod{7}$.


```
s is 1, 2, 3, 4, 5, 6: 1*720\%7 = 6; 2*720\%7 = 5; 3*720\%7 = 4; 4*720\%7 = 3; 5*720\%7 = 2; 6*720\%7 = 1; 8, 9, 10, 11, 12, 13: 1+1*7=8; 2+1*7=9; ...; 6+1*7=13; 15, 16, 17, 18, 19, 20: 1+2*7=15; 2+2*7=16;..., 6+2*7=20 ... 729, ... : 1+104*7=729; Then 729*720\%7 \equiv 1*6\%7 general term of s: s = s+i*p, 0 < s < p; 0 < i.
```

```
6! \mod 7 = 720 \mod 7 = 6.
Let p be 7 and 1 \le a < p.
a^{p-1} \equiv 1 \pmod{p},
3^6 * 6! \pmod{7} [note that 3^6 \equiv 1 \mod{7}]
= 729 * 720 \pmod{7} [1 * 720 \mod{7} = 6]
= 524880 \pmod{7} = 6. [otherwise, do *]
Or
729 * 720 (mod 7)
= 729 \pmod{7} * 720 \pmod{7} \pmod{7}
= 1 * 6 \pmod{7} = 6.
Therefore, 6! and 3^6 * 6! are of the
same class, denoted as
6! \equiv 3^6 * 6! \pmod{7}.
```

Recall:

Fermat's little theorem (1640):

If p is prime, then for every integer $1 \le a < p$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

i.e., $gcd(a^{p-1}, p) = 1$; $p|(a^{p-1}-1)$; $a^{p-1} \mod p = 1 \mod p$.

Determine whether 13 is a prime. Assume that p = 13 is a prime.

Pick a = 2, such that $1 \le 2 < 13$.

Check whether $2^{13-1} \equiv 1 \pmod{13}$.

- 1. $gcd(2^{13-1}, 13) = 1$; or
- 2. 13| 2¹³⁻¹ 1; i.e., 13|4096-1.
- $3. 2^{13-1} \mod 13 = 1 \mod 13$

This theorem suggests a "factorless" test for determining whether a number N is prime:

The problem is that Fermat's theorem:

- is not an if-and-only-if condition; p is prime $\rightarrow a^{p-1} \equiv 1 \pmod{p}$.
- it does not say what happens when N is not prime.
- If N is not prime, Fermat's test diagram is questionable. i.e.,
 - for any N, can we say that N is prime if $a^{N-1} \equiv 1 \pmod{N}$?
- In fact, a composite number N can possibly pass Fermat's test (that is, $a^{N-1} \equiv 1 \pmod{N}$, for certain choices of a.
 - e.g., for a non-prime N = 341 = 11 * 31, $2^{340} \equiv 1 \pmod{341}$.
- But it is true that for composite N, *most* values of a will fail the test.
- Show $2^{340} \mod 341 = 2^{256+64+16+4} \mod 341$
 - $= (2^{256} \mod 341 * 2^{64} \mod 341 * 2^{16} \mod 341 * 2^{4} \mod 341) \mod 341$
 - $= (64 * 16 * 64 * 16) \mod 341$
 - $= (1024 \mod 341 * 1024 \mod 341) \mod 341$
 - $= (1 * 1) \mod 341 = 1$

Figure 1.7 An algorithm for testing primality.

For this algorithm, choose a randomly from $\{1, 2, ..., N-1\}$, rather than fixing an arbitrary value of a in advance.

function primality(N)

Input: Positive integer N

Output: yes/no

Pick a positive integer a < N at random

```
if a^{N-1} \equiv 1 \pmod{N}
```

then return yes;

else return no;

Test whether N | $a^{N-1} - 1$? or gcd(a^{N-1} , N) = 1? or $a^{N-1} \mod N = 1 \mod N$?

In analyzing the behavior of this algorithm for testing primality:

- It turns out that
 - certain extremely rare composite numbers N, called Carmichael numbers, pass Fermat's test for all a relatively prime to N. [i.e., $a^{N-1} \equiv 1 \pmod{N}$]
 - On such numbers, this algorithm will fail.

What is Carmichael number?

- The smallest Carmichael number is 561 = 3 * 11 * 17.
- It is not a prime.
- It passes the Fermat test, because $a^{560} \equiv 1 \pmod{561}$ for all values of a relatively prime to 561, if a *is not one of* $\{3, 11, 17\}$. [i.e., gcd(a, 561) = 1.]
- The numbers of this type are infinite but exceedingly rare.

There is a way around Carmichael numbers [Rabin and Miller].

- Write N-1 in the form 2^t u.
- Choose a random base a and check the value $a^{N-1} \mod N$.
- Perform this computation of $a^{N-1} \mod N$ by
 - first determining $a^u \mod N$ and then
 - repeatedly squaring, to get this sequence:
 - $a^u \mod N$, $a^{2u} \mod N$, $a^{2^2u} \mod N$, ..., $a^{2^iu} = a^{N-1} \mod N$.
- If $a^{N-1} \not\equiv 1 \mod N$ [i.e., the value of $(a^{N-1} \mod N)$ is not the value of $1 \mod N$], then N is composite by Fermat's theorem and we are done.

There is a way around Carmichael numbers [Rabin and Miller] - continued

- If $a^{N-1} \equiv 1 \pmod{N}$, we conduct a follow-up test:
 - somewhere in the preceding sequence, we ran into a 1 for the first time.
 - If this happened after the first position (that is, if $a^u \mod N \neq 1$), and if the preceding value in the list is not -1 mod N, then we declare N composite.
 - In the latter case, a nontrivial square root of 1 modulo N is found:
 - a number that is not ±1 mod N but that when squared is equal to 1 mod N. Such a number can only exist if N is composite.
 - If we combine this square-root check with earlier Fermat test, then at least three-fourths of the possible values of *a* between 1 and N 1 will reveal a composite N, even if it is a Carmichael number.

The Miller-Rabin algorithm for primality testing of integers is

- an impressive randomized algorithm (e.g., Cormen: p 968-975).
 - This randomized algorithm solves the problem
 - in an acceptable amount of time for thousand-digit numbers
 - with the probability of yielding an erroneous answer smaller than the probability of hardware malfunction.
 - It is faster than the best known deterministic algorithms for solving this problem, which is crucial for modern cryptology.

In a Carmichael-free universe, the algorithm works well.

- Any prime number N will pass Fermat's test and produce the right answer.
- Any non-Carmichael composite number N must fail Fermat's test for some value of a; and
- this implies immediately that N fails Fermat's test for *at least* half the possible values of a!

Theorem 0.3:

There are infinitely many primes.

Reason: Assume that there are only n primes, p_1 , p_2 , ..., p_n . Let $Q = p_1 p_2 ... p_n + 1$. If p_k divides Q, then p_k divides $Q - p_1 p_2 ... p_n = 1$. This implies that Q is either a prime or a prime factor of Q.

Lemma 0.5:

If $a^{N-1} \not\equiv 1 \pmod{N}$ for some a relatively prime to N, then it must hold for at least half the choices of a < N.

Reason: Every b < N that passes Fermat's test with respect to N (i.e., $b^{N-1} \equiv 1 \pmod{N}$) has a twin a.b, that fails the test:

$$(a.b)^{N-1} \equiv a^{N-1} . b^{N-1} \equiv a^{N-1} \not\equiv 1 \pmod{N}$$
.

Disregarding the Carmichael numbers, let assert

- if N is prime, then $a^{N-1} \equiv 1 \pmod{N}$, for all a < N.
- if N is not prime then $a^{N-1} \equiv 1 \pmod{N}$, for at most half the values of a < N.

The algorithm of Figure 1.7, therefore, has the following probabilistic behavior.

- Pr(Algorithm 1.7 returns yes when N is prime) = 1
- Pr(Algorithm 1.7 returns yes when N is not prime) $\leq \frac{1}{2}$.

Reduce this one-sided error by repeating the procedure many times, by randomly picking several values of *a* and testing them all (Figure 1.8).

 $\Pr(\text{Algorithm 1.8 returns yes when N is not prime}) \leq \frac{1}{2^k}$.

Figure 1.8 An algorithm for testing primality, with low error probability. function primality2(N) Input: Positive integer N Output: yes/no Pick positive integers a_1 , a_2 , ..., a_k < N at random if $a_i^{N-1} \equiv 1 \pmod{N}$, for all i = 1, 2, ..., k:

then

else

return yes;

return no;

Generating random primes

Can we have a fast algorithm for choosing random primes that are a few hundred bits long? Since primes are abundant, a random n-bit number has roughly a one-in-n chance of being prime (actually about $1/(\ln 2^n) \approx 1.44/n$). For instance, 1 in 20 social security numbers is prime! [i.e., $1/(\ln 2^{20}) = 1/20$.]

Lagrange's prime number theorem

Let $\pi(x)$ be the number of primes $\leq x$. Then $\pi(x) \approx x / (\ln x)$, or more precisely $\lim_{x \to \alpha} \frac{\pi(x)}{(x/\ln x)} = 1$. [Note that $\ln x$ is the natural algorithm of x.]

Such abundance makes it simple to generate a random n-bit prime:

- Pick a random n-bit number N.
- Run a primality test on N.
- If it passes the test, output N; else repeat the process.

How fast is this algorithm?

If the randomly chosen N is truly prime, with a probability of at least 1/n, then it will certainly pass the test.

On each iteration, this procedure has at least a 1/n chance of halting. Therefore, on average it will halt within O(n) rounds.

Which primality test should be used?

It is sufficient to perform the Fermat test with base a = 2 (or to be really safe, a = 2, 3, 5) because for random numbers the Fermat test has a much smaller failure probability than the worst-case ½ bound.

What is the probability that the output of the algorithm is really prime?

- Suppose the test is performed with base a = 2 for all numbers $N \le 25 * 10^9$.
- In this range, there are about 10⁹ primes, and about 20,000 composites that pass the test.
- Thus, the chance of erroneously outputting a composite is approximately $20,000/10^9 = 2 * 10^{-5}$.
- This chance of error decreases rapidly as the length of the numbers involved is increased to a few hundred digits we expect in applications.

Before primality test:

All numbers $N \le 25 * 10^9$

after primality test

Finding Large Prime Numbers

- find large prime numbers, which is necessary to the success of the RSA public-key cryptosystem.
- then show an algorithm for testing whether a number is prime.

Search of a Large Prime

To find a large prime number,

- select randomly integers of the appropriate size and test whether each selected integer is prime until one is found to be prime.
- An important consideration of this method is
 - the likelihood of finding a prime when an integer is chosen at random.

Give the prime distribution theorem, which enables us to approximate this likelihood.

The prime distribution function $\pi(n)$ is

- the number of primes that are less than or equal to n.
- For example, $\pi(12) = 5$ since there are five primes, 2, 3, 5, 7 and 11, that are less than or equal to 12.
- The prime number theorem show in Theorem 0.15 gives an approximation of $\pi(n)$.

Search of a Large Prime

Theorem 0.15 The prime distribution theorem - *Lagrange's prime* number theorem

We have that

$$\lim_{n\to\infty}\frac{\pi(n)}{\frac{n}{\ln n}}=1.$$

If we randomly choose an integer between 1 and $n = 10^{16}$ according to the uniform distribution, the probability of it being prime is about

$$\frac{1}{\ln 10^{16}} = 0.027143.$$

Suppose we choose 200 such numbers at random. The probability of them all not being prime is then about

$$(1 - 0.027143)^{200} = 0.004.$$

If we randomly choose an integer between 1 and $n = 10^{100}$ according to the uniform distribution, the probability of it being prime is about

$$\frac{1}{\ln 10^{100}} = 0.0043429.$$

Suppose we choose 200 such numbers at random. The probability of them all not being prime is then about

$$(1 - 0.0043429)^{200} = 0.04.$$

Cryptography – The RSA Public Key Cryptosystem

The Rivest-Shamir-Adleman (RSA) cryptosystem uses all the ideas we have introduced in this lecture note. It derives very strong guarantees of security by ingeniously exploiting the wide gulf between the polynomial-time computability of certain number-theoretic tasks: (

- modular exponentiation,
- greatest common divisor,
- primality testing) and
- the intractability of others (factoring).

113