Aprendizado Automático

João Paulo Pordeus Gomes

- Não existe uma saída esperada (y)
- Existem somente dados de entrada e deseja-se descobrir alguma estrutura neste dados
- Agrupamento (clustering)

- Quantos grupos existem ?
- Quais os componentes destes grupos ?

- Quantos grupos existem ?
- Quais os componentes destes grupos ?
- Métodos de Agrupamento
 - Hierárquico
 - Não Hierárquico

- Os dados iniciam se grupos definidos
- Dados similares são agrupados formando pequenos grupos
- Pequenos grupos são agrupados formado grupos maiores
- Procedimento é repetido até que todos pertençam a um grupo

Dados são ditos semelhantes de acordo com alguma medida de distância.

- Dados são ditos semelhantes de acordo com alguma medida de distância.
 - Euclidiana

$$D_E(\mathbf{r},\mathbf{s}) = \sqrt{\sum_{j=1}^p (r_j - s_j)^2}$$

Manhattan

$$D_M(\mathbf{r},\mathbf{s}) = \sum_{j=1}^p |r_j - s_j|$$

- Dados são ditos semelhantes de acordo com alguma medida de distância.
 - Euclidiana

$$D_E(\mathbf{r},\mathbf{s}) = \sqrt{\sum_{j=1}^p (r_j - s_j)^2}$$

Manhattan

$$D_M(\mathbf{r},\mathbf{s}) = \sum_{j=1}^p |r_j - s_j|$$

- Similaridade entre grupos pode ser medida pela distância entre centróides
- Gráfico semelhante a uma árvore

- Exemplo
 - Dados
 - ▶ [1 2],[1 1],[3 3] e [4 3]
 - Calcula-se uma matriz de distâncias (d²)

	1	2	3	4
1	0	1	5	10
2	1	0	8	13
3	5	8	0	1
4	10	13	1	0

▶ [1 2],[1 1],[3 3] e [4 3]

	1	2	3	4
1	0	1	5	10
2	1	0	8	13
3	5	8	0	1
4	10	13	1	0

▶ [1 2],[1 1],[3 3] e [4 3]

	1,2	3	4
1,2	0		
3		0	1
4		1	0

$$C_{1,2} = [1 \ 1,5]$$

4

▶ [1 1.5],[3 3] e [4 3]

	1,2	3	4
1,2	0	6.25	11.25
3	6.25	0	1
4	11.25	1	0

$$c_{1,2} = [1 \ 1,5]$$

▶ [1 1.5],[3 3] e [4 3]

	1,2	3	4
1,2	0	6.25	11.25
3	6.25	0	1
4	11.25	1	0

$$C_{1,2} = [1 \ 1,5]$$

▶ [1 1.5],[3 3] e [4 3]

	1,2	3,4
1,2	0	
3,4		0

$$C_{3,4} = [3 \ 3,5]$$

• [1 1.5] e [3 3.5]

	1,2	3,4
1,2	0	8
3,4	8	0

$$C_{3,4} = [3 \ 3,5]$$

• [1 1.5] e [3 3.5]

	1,2	3,4
1,2	0	8
3,4	8	0

$$C_{3,4} = [3 \ 3,5]$$

• [1 1.5] e [3 3.5]

	1,2	3,4
1,2	0	8
3,4	8	0

$$C_{3,4} = [3 \ 3,5]$$

Dendrograma

- Pontos pertencem a algum grupo
- Pontos mudam de grupo de forma a satisfazer um determinado critério

- ▶ É necessário conhecer o número de clusters
- k centroides são escolhidos aleatoriamente (podem ser escolhidos k membros da população)
- Calcula-se a distância deste pontos para todos os outros
- Os pontos passarão a pertencer ao grupo cuja distância é a menor
- Centróides são recalculados como a média dos pontos do grupo

- 1 Calcular distâncias
- 2 Atribuir Grupos

- 1 Calcular distâncias
- 2 Atribuir Grupos
- 3 Recalcular centróides

1 — Calcular distâncias 2 — Atribuir Grupos 3 — Recalcular centróides

1 – Calcular distâncias

2 – Atribuir Grupos

3 – Recalcular centróides

Pseudo-código

```
Algoritmo 1 Algoritmo convencional das K-médias

Entrada: Conjunto de dados D, Número de clusters k, Dimensão d

Saída: Distribuição dos n pontos de D entre os k clusters

Seja C_i é o i-ésimo cluster

C_1, C_2, \ldots, C_k = \text{partição inicial de } D

repita

d_{i,j} = \text{distância entre o caso } i \text{ e o cluster } j

para todo 1 \leq j \leq k faça

n_i = \arg\min\{d_{i,j} : \forall i,j\}

Atribua o caso i ao cluster n_i

Recalcule o centróide de qualquer cluster modificado acima fim

até Nenhum centróide mude de lugar

retorne saída
```

- Número de grupos
 - J é a distância entre todos os pontos e seus centróides

Dúvidas?