The "Deep Blue" aerosol project at NASA GSFC

Andrew Sayer GESTAR-USRA at NASA GSFC andrew.sayer@nasa.gov

N. C. Hsu (Project PI), J. Lee, C. Bettenhausen, N. Carletta, S. Chen, R. Esmaili

https://deepblue.gsfc.nasa.gov/

! Aerosols:

- " What, why, and how?
- " The Deep Blue aerosol data sets
- ! Current challenges and new directions
 - " Calibration
 - " Aerosols above clouds

Aerosols

Satellites give us the big picture

Fig. 1. Time series of TOMS AI composite in April 2001 showing the long-range transport of Asian dust across the Pacific reaching as far as the east coast of the U.S.

Hsu et al., IEEE TGARS (2006)

Using multiple similar satellite sensors helps to create a consistent long data record

Using multiple similar satellite sensors helps to create a consistent long data record

Using multiple similar satellite sensors helps to create a consistent long data record

MODIS Terra 10:30 am/pm local solar Equatorial crossing time MODIS Aqua 1:30 am/pm local solar Equatorial crossing time

- ! Level 1 pixel sizes ~ 1 km or finer
- ! Level 2 pixel sizes ~ 5-15 km
- ! Daytime revisit ~ daily

Satellite aerosol remote sensing is a complex, underconstrained problem

- ! Atmosphere
 - " Aerosols
 - Trace gases
 - " Molecular (Rayleigh) scattering
- ! All have spectral and directional dependence
- ! Need additional constraints as input beyond the satellite observations

! Surface reflectance

The aerosol signal is often small, and we cannot see through clouds

Surface cover changes through time, often rapidly

NASA Earth Observatory, http://earthobservatory.nasa.gov/Features/Aerosols/

Blue spectral bands offer high contrast between surface and atmospheric features

MOD126560 nation of the long o

The main quantity we determine from space is aerosol optical depth (AOD, τ)

$$= \frac{d \log()}{d \log()}$$

$$= \frac{\log()}{\log()}$$

$$\log()$$

$$\log()$$

$$\log()$$

$$\log()$$

$$\log()$$

$$\log()$$
Single scattering albedo (SSA, "0)

Ångström exponent (AE, !)

Aerosol scattering and absorption can be modeled using size distribution, shape, and refractive index

The Deep Blue family consists of three separate AOD retrieval algorithms

Bright land

Surface reflectance database, BRDF correction

AOD retrieved separately at each of 412, 470/490, (650) nm

SSA retrieved for heavy dust events

Dark land

Spectral/directional surface reflectance relationship

AOD retrieved separately at 470/490 and 650 nm

Water

Surface BRDF including glint, foam, underlight

Multispectral inversion

(Not present in MODIS dataset)

All report the AOD at 550 nm, and Ångström exponent (AE)

Deep Blue's initial contribution was to expand AOD coverage to bright surfaces

Coverage is near-global; clouds, snow, and polar night are unavoidable

Sun photometers provide our main validation data source

Hand-held Microtops Sun photometer (credit B. Howl)

CIMEL CE-318 Sun photometer (credit T. Yasunari, Hokkaido University, Japan)

Sun photometers provide our main validation data source

AERONET, aeronet.gsfc.nasa.gov

Validation helps us to quantify uncertainties and their contextual dependence

! Colours indicate aerosol optical model: marine background, dust, or fine-mode dominated

We can also examine more strongly-derived (as opposed to retrieved) quantities

! Colours indicate aerosol optical model: marine background, dust, or fine-mode dominated

Current challenges and new directions

Calibration monitoring is necessary to ensure a stable, high-quality data set

MODIS Collection 5 Lyapustin *et al.*, AMT (2014)

A lot of effort goes in to maintaining a high-quality sensor calibration

A lot of effort goes in to maintaining a high-quality sensor calibration

The resulting level of consistency is sufficient for most applications

Sayer et al., AMTD (in revision, 2016)

Sayer et al., AMTD (in revision, 2016)

Can we say something about aerosols above clouds?

- ! In most cases, aerosols above a land or water surface brighten the scene
- ! Light-absorbing aerosols above clouds instead darken it
- ! This means that retrievals of cloud properties exhibit systematic biases in these cases

Airborne observations are limited, but essential to validate this new approach

Airborne observations are limited, but essential to validate this new approach

- ! Airborne estimate of AOD from cloud-top upwards 0.49±0.04
- ! MODIS-based estimate 0.51±0.10
- ! Difference between retrieved cloud optical depth and standard (no-aerosol) MODIS cloud product consistent with expectations

There are a lot of opportunities in aerosol science for new researchers

- ! Instrument development
 - " Satellite, ground-based, airborne
 - " Field campaigns
- ! Retrieval algorithm development
 - " Physics, statistics, programming, meteorology are all useful
- ! Laboratory measurements of aerosols
- ! Interdisciplinary research requires a broad range of expertise
 - " Quantitatively linking aerosol loading to air quality and health
 - " Ecosystem response to aerosols
 - " Radiative effects of aerosols
 - " Long-term changes
 - " Diurnal variability
 - " Hazard detection and avoidance