Научное програмирование

Отчет по лабораторной работе № 8

Меньшов Иван Сергеевич НПМмд-02-21

Содержание

1	Цель	ь работы	4
2	Вып	олнение лабораторной работы	5
	2.1	Собственные значения и собственные векторы	5
	2.2	Случайное блуждание	6
3	Выв	од	8

List of Figures

2.1	Собственные значения и собственные векторы 01	5
2.2	Собственные значения и собственные векторы 02	6
2.3	Случайное блуждание 01	6
	Случайное блуждание 02	
	Случайное блужлание 03	

1 Цель работы

Научиться находить собственные значения и собственные векторы матрицы, а также научиться предсказывать вероятность состояния системы.

2 Выполнение лабораторной работы

2.1 Собственные значения и собственные векторы

Включим журналирование работы. После чего зададим матрицу А. Для нахождения собственных значений и собственных векторов матрицы используем команду eig с двумя выходными аргументами.

Figure 2.1: Собственные значения и собственные векторы 01

Для того, чтобы получить матрицу с действительными собственными значениями, создадим симмитричную матрицу путём умножения исходной матрицы на транспонированную. И повторим шаги, проделанные ранее.

Figure 2.2: Собственные значения и собственные векторы 02

2.2 Случайное блуждание

На курсе "Теория случайных процессов" мы дополнительно ознакомились с цепями Маркова. Наша задача - предсказать вероятности состояния системы. Для примера случайного блуждания найдем вектор вероятности после 5 шагов для каждого начального вектора. Задаем матрицу, начальные векторы, а затем находим соответствующие вероятности.

Figure 2.3: Случайное блуждание 01

Теперь найдём вектор равновесного состояния для цепи Маркова с переходной матрицей.

Figure 2.4: Случайное блуждание 02

Таким образом, $x = (0.37631\ 0.29287\ 0.33082)$, является вектором равновесного состояния.

```
>> T^10 *x

ans =

0.37631

0.29287

0.33082

>> T^50 *x

ans =

0.37631

0.29287

0.33082

>> T^50 * x - T^10 * x

ans =

2.2204e-16

2.2204e-16

1.6653e-16

>> diary off
```

Figure 2.5: Случайное блуждание 03

3 Вывод

В ходе выполнения данной работы я научился находить собственные значения и собственные векторы матрицы. Также научился работать с цепями Маркова и находить вектор равтовесия.