Examen DEPI 2018-2019

Nr.1

Exerciții (18p)

- 1. Fie o variabilă aleatoare continuă A având distribuția uniformă $\mathcal{U}[-1,5]$.
 - a. (1p) Reprezentați grafic distribuția (inclusiv înălțimea funcției)
 - b. (1p) Calculați probabilitatea ca A să fie mai mic decât 4
 - c. (2p) Reprezentați grafic funcția de repartiție a lui A
 - d. (1p) Calculati valoarea medie pătratică $\overline{A^2}$
- 2. Fie detecția unui semnal constant care poate avea două valori posibile, $s_0 = -5$ (ipoteza H_0) sau $s_1 = 3$ (ipoteza H_1). Semnalul este afectat de zgomot Gaussian cu distribuția $\mathcal{N}(0, \sigma^2 = 3)$. Probabilitățile celor două ipoteze sunt $P(H_0) = 2/3$ și $P(H_1) = 1/3$. La recepție se ia un singur eșantion, cu valoarea r = -0.5.
 - a. (2p) Reprezentați grafic funcțiile de plauzibilitate $w(r|H_0)$ and $w(r|H_1)$ și scrieți-le expresia matematică;
 - b. (1p) Care sunt regiunile de decizie în cazul criteriului Plauzibilitătii Maxime?
 - c. (3p) Calculați probabilitatea detecției corecte, dacă se folosește criteriului Plauzibilitătii Maxime;
 - d. (2p) Care este decizia luată folosind criteriul riscului minim, dacă valorile costurilor sunt $C_{00} = 0$, $C_{01} = 4$, $C_{10} = 4$, $C_{11} = 0$?
- 3. Fie detecția unui semnal $s(t) = 2\cos(\pi t)$ care poate fi prezent (ipoteza H_1) sau absent (s(t) = 0, ipoteza H_0). Semnalul este afectat de zgomot Gaussian cu distribuția $\mathcal{N}(0, \sigma^2 = 3)$. La recepție se iau 3 eșantioane la momentele de timp $t_0 = 0$, $t_1 = 1$ și $t_2 = 2$, cu valorile $r_0 = 0$, $r_1 = -1$ și $r_2 = -0.5$.
 - a. (2p) Care este decizia luată, conform criteriului Plauzibilității Maxime?
- 4. (3p) Fie un semnal recepționat de forma $r(t) = \underbrace{1 + A \cdot t}_{s(t)} + zgomot$. Zgomotul este de tip Gaussian cu distribuția $\mathcal{N}(0, \sigma^2 = 4)$. La recepție se iau trei eșantioane, la momentele $t_1 = 1, t_2 = 2, t_3 = 3$, valorile obținute fiind $r_1 = 3.8, r_2 = 6.9, r_3 = 9.9$. Estimați parametrul A folosind estimarea de plauzibilitate maximă.

Se cunoaște:

•
$$F(x) = \frac{1}{2} \left(1 + \operatorname{erf} \left(\frac{x - \mu}{\sigma \sqrt{2}} \right) \right)$$

Teorie (14p)

- 1. (2p) Ce înseamnă că un proces aleator este staționar în sens strict / în sens larg?
- 2. (2p) Ce este un zgomot alb?
- 3. (2p) Dacă zgomotul care afectează un semnal se dublează, cum se modifică raportul Semnal-Zgomot (SNR) (justificați în cuvinte):
 - a. SNR creste
 - b. SNR scade
 - c. SNR rămâne constant
- 4. (4p) Criteriul probabilității minime de eroare: demonstrați că minimizarea probabilității de eroare conduce la expresia

$$\frac{w(r|H_1)}{w(r|H_0)} \bigotimes_{H_0}^{H_1} \frac{p(H_0)}{p(H_1)}$$

- 5. (2p) Care este legătura între estimarea de plauzibilitate maximă și estimarea Maximum A Posteriori? Arătați că una dintre ele este un caz particular al celeilalte.
- 6. (2p) Care sunt funcțiile de cost utilizate în estimarea Maximum A Posteriori și în estimarea de eroare pătratică medie minimă (EPMM)? Scrieți-le expresiile matematice și reprezentați-le grafic.

Notă: 30p pentru nota 10. 3p din oficiu. Timp disponibil: 2h