Tips for training

Tips for Training

1. Batch size

Optimization with Batch

1 epoch = see all the batches once → Shuffle after each epoch

Consider 20 examples (N=20)

Batch size = N (Full batch)

Update after seeing all the 20 examples

Batch size = 1

Update for each example
Update 20 times in an epoch

Consider 20 examples (N=20)

Batch size = N (Full Batch)

Update after seeing all the 20 examples

Batch size = 1

Update for each example
Update 20 times in an epoch

 Smaller batch requires longer time for one epoch (longer time for seeing all data once)

• Small batch is better on testing data?

	Name	Network Type	Data set
CD OF	F_1	Fully Connected	MNIST (LeCun et al., 1998a)
SB = 256	F_2	Fully Connected	TIMIT (Garofolo et al., 1993)
1.0	C_1	(Shallow) Convolutional	CIFAR-10 (Krizhevsky & Hinton, 2009)
LB =	C_2	(Deep) Convolutional	CIFAR-10
0.1 x data set	C_3	(Shallow) Convolutional	CIFAR-100 (Krizhevsky & Hinton, 2009)
O.1 A data Set	C_3 C_4	(Deep) Convolutional	CIFAR-100

1	Training Accuracy		1	Testing Accuracy	
Name	SB	LB		SB	LB
$\overline{F_1}$	$99.66\% \pm 0.05\%$	[10 1일 : [2] 12 [12] 12 [2] 1		$98.03\% \pm 0.07\%$	$97.81\% \pm 0.07\%$
F_2	$99.99\% \pm 0.03\%$	$98.35\% \pm 2.08\%$		$64.02\% \pm 0.2\%$	$59.45\% \pm 1.05\%$
C_1	$99.89\% \pm 0.02\%$	$99.66\% \pm 0.2\%$		$80.04\% \pm 0.12\%$	$77.26\% \pm 0.42\%$
C_2	$99.99\% \pm 0.04\%$	$99.99\% \pm 0.01\%$		$89.24\% \pm 0.12\%$	$87.26\% \pm 0.07\%$
C_3	$99.56\% \pm 0.44\%$	$99.88\% \pm 0.30\%$		$49.58\% \pm 0.39\%$	$46.45\% \pm 0.43\%$
C_4	$99.10\% \pm 1.23\%$	$99.57\% \pm 1.84\%$		$63.08\% \pm 0.5\%$	$57.81\% \pm 0.17\%$

	Small	Large
Speed for one update (no parallel)	Faster	Slower
Speed for one update (with parallel)	Same	Same (not too large)
Time for one epoch	Slower	Faster
Gradient	Noisy	Stable
Optimization	Better ***	Worse
Generalization	Better ****	Worse

Batch size is a hyperparameter you have to decide.

Tips for Training

2. Activation Function

Vanishing Gradient Problem

Smaller gradients

Learn very slow

Almost random

Larger gradients

Learn very fast

Already converge

based on random!?

Vanishing Gradient Problem

Intuitive way to compute the derivatives ...

$$\frac{\partial l}{\partial w} = ? \frac{\Delta l}{\Delta w}$$

ReLU

Rectified Linear Unit (ReLU)

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Reason:

- 1. Fast to compute
- 2. Biological reason
- 3. Infinite sigmoid with different biases
- 4. Vanishing gradient problem

a = zReLU a = 0A Thinner linear network ► Z x_1 y_1 \mathcal{Y}_2 x_2 Do not have smaller gradients

ReLU - variant

Parametric ReLU

α also learned by gradient descent

Name +	Plot +	Equation +
Identity		f(x) = x
Binary step		$f(x) = \left\{egin{array}{ll} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{array} ight.$
Logistic (a.k.a. Sigmoid or Soft step)		$f(x)=\sigma(x)=rac{1}{1+e^{-x}}$ [1]
TanH -		$f(x)= anh(x)=rac{(e^x-e^{-x})}{(e^x+e^{-x})}$
ArcTan		$f(x) = an^{-1}(x)$
Softsign ^{[9][10]} -		$f(x) = \frac{x}{1+ x }$
Inverse square root unit (ISRU)[11]		$f(x) = rac{x}{\sqrt{1+lpha x^2}}$
Rectified linear unit (ReLU) ^[12]		$f(x) = \left\{egin{array}{ll} 0 & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$
Leaky rectified linear unit (Leaky ReLU)[13]		$f(x) = \left\{egin{array}{ll} 0.01x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$
Parameteric rectified linear unit (PReLU) ^[14]		$f(lpha,x) = \left\{egin{array}{ll} lpha x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$
Randomized leaky rectified linear unit (RReLU) ^[15]		$f(lpha,x) = \left\{egin{array}{ll} lpha x & ext{for } x < 0_{ [3]} \ x & ext{for } x \geq 0 \end{array} ight.$

Exponential linear unit (ELU) ^[16]	$f(lpha,x) = \left\{ egin{array}{ll} lpha(e^x-1) & ext{for } x \leq 0 \ x & ext{for } x > 0 \end{array} ight.$
Scaled exponential linear unit (SELU) ^[17]	$f(lpha,x)=\lambdaigg\{ egin{array}{ll} lpha(e^x-1) & ext{for } x<0 \ x & ext{for } x\geq0 \ \end{array} \ $ with $\lambda=1.0507$ and $lpha=1.67326$
S-shaped rectified linear activation unit (SReLU) ^[18]	$f_{t_l,a_l,t_r,a_r}(x) = egin{cases} t_l + a_l(x-t_l) & ext{for } x \leq t_l \ x & ext{for } t_l < x < t_r \ t_r + a_r(x-t_r) & ext{for } x \geq t_r \end{cases}$ t_l,a_l,t_r,a_r are parameters.
Inverse square root linear unit (ISRLU) ^[11]	$f(x) = \left\{ egin{array}{ll} rac{x}{\sqrt{1+lpha x^2}} & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$
Adaptive piecewise linear (APL) ^[19]	$f(x) = \max(0,x) + \sum_{s=1}^S a_i^s \max(0,-x+b_i^s)$
SoftPlus ^[20]	$f(x) = \ln(1+e^x)$
Bent identity	$f(x)=\frac{\sqrt{x^2+1}-1}{2}+x$
Sigmoid-weighted linear unit (SiLU) ^[21] (a.k.a. Swish ^[22])	$f(x) = x \cdot \sigma(x)^{[5]}$
SoftExponential ^[23]	$f(lpha,x) = egin{cases} -rac{\ln(1-lpha(x+lpha))}{lpha} & ext{for } lpha < 0 \ x & ext{for } lpha = 0 \ rac{e^{lpha x} - 1}{lpha} + lpha & ext{for } lpha > 0 \end{cases}$
Sinusoid ^[24]	$f(x) = \sin(x)$
Sinc	$f(x) = \left\{ egin{array}{ll} 1 & ext{for } x = 0 \ rac{\sin(x)}{x} & ext{for } x eq 0 \end{array} ight.$

Tips for Training

3. Optimizer

Different parameters needs different learning rate

Formulation for **one** parameter:

Root Mean Square

$$\boldsymbol{\theta}_i^{t+1} \leftarrow \boldsymbol{\theta}_i^t - \overline{\boldsymbol{\sigma}_i^t} \boldsymbol{g}_i^t$$

$$\theta_{i}^{1} \leftarrow \theta_{i}^{0} - \frac{\eta}{\sigma_{i}^{0}} g_{i}^{0} \qquad \sigma_{i}^{0} = \sqrt{(g_{i}^{0})^{2}} = |g_{i}^{0}|$$

$$\theta_{i}^{2} \leftarrow \theta_{i}^{1} - \frac{\eta}{\sigma_{i}^{1}} g_{i}^{1} \qquad \sigma_{i}^{1} = \sqrt{\frac{1}{2} \left[(g_{i}^{0})^{2} + (g_{i}^{1})^{2} \right]}$$

$$\theta_{i}^{3} \leftarrow \theta_{i}^{2} - \frac{\eta}{\sigma_{i}^{2}} g_{i}^{2} \qquad \sigma_{i}^{2} = \sqrt{\frac{1}{3} \left[(g_{i}^{0})^{2} + (g_{i}^{1})^{2} + (g_{i}^{2})^{2} \right]}$$

$$\vdots$$

$$\theta_{i}^{t+1} \leftarrow \theta_{i}^{t} - \frac{\eta}{\sigma_{i}^{t}} g_{i}^{t} \qquad \sigma_{i}^{t} = \sqrt{\frac{1}{t+1} \sum_{j=0}^{t} (g_{i}^{j})^{2}}$$

Root Mean Square

$$\boldsymbol{\theta}_i^{t+1} \leftarrow \boldsymbol{\theta}_i^t - \boxed{\frac{\eta}{\sigma_i^t}} \boldsymbol{g}_i^t$$

$$\sigma_i^t = \sqrt{\frac{1}{t+1} \sum_{j=0}^t \left(\boldsymbol{g}_i^{j}\right)^2}$$

Used in **Adagrad**

Learning rate adapts dynamically

RMSProp

$$\boldsymbol{\theta}_i^{t+1} \leftarrow \boldsymbol{\theta}_i^t - \boxed{\frac{\eta}{\sigma_i^t}} \boldsymbol{g}_i^t$$

$$\boldsymbol{\theta}_{i}^{1} \leftarrow \boldsymbol{\theta}_{i}^{0} - \frac{\eta}{\sigma_{i}^{0}} \boldsymbol{g}_{i}^{0} \qquad \sigma_{i}^{0} = \sqrt{\left(\boldsymbol{g}_{i}^{0}\right)^{2}} \qquad 0 < \alpha < 1$$

$$\boldsymbol{\theta}_{i}^{2} \leftarrow \boldsymbol{\theta}_{i}^{1} - \frac{\eta}{\sigma_{i}^{1}} \boldsymbol{g}_{i}^{1} \qquad \sigma_{i}^{1} = \sqrt{\alpha \left(\sigma_{i}^{0}\right)^{2} + (1 - \alpha) \left(\boldsymbol{g}_{i}^{1}\right)^{2}}$$

$$\boldsymbol{\theta}_{i}^{3} \leftarrow \boldsymbol{\theta}_{i}^{2} - \frac{\eta}{\sigma_{i}^{2}} \boldsymbol{g}_{i}^{2} \qquad \sigma_{i}^{2} = \sqrt{\alpha \left(\sigma_{i}^{1}\right)^{2} + (1 - \alpha) \left(\boldsymbol{g}_{i}^{2}\right)^{2}}$$

$$\vdots$$

$$\boldsymbol{\theta}_i^{t+1} \leftarrow \boldsymbol{\theta}_i^t - \frac{\eta}{\sigma_i^t} \boldsymbol{g}_i^t \quad \sigma_i^t = \sqrt{\alpha (\sigma_i^{t-1})^2 + (1-\alpha)(\boldsymbol{g}_i^t)^2}$$

RMSProp

Hard to find optimal network parameters

In physical world

Momentum

Review: Vanilla Gradient Descent

Momentum

Movement: movement of last step minus gradient at present

- •Start at point θ^0 Movement $v^0=0$
- •Compute gradient at θ^0

Movement $v^1 = \lambda v^0 - \eta \nabla L(\theta^0)$

Move to $\theta^1 = \theta^0 + v^1$

• Compute gradient at θ^1

Movement $v^2 = \lambda v^1 - \eta \nabla L(\theta^1)$

• Move to $\theta^2 = \theta^1 + v^2$

Movement not just based on gradient, but previous movement.

Momentum

Movement: movement of last step minus gradient at present

vⁱ is actually the weighted sum of all the previous gradient:

$$\nabla L(\theta^{0}), \nabla L(\theta^{1}), ... \nabla L(\theta^{i-1})$$

$$v^{0} = 0$$

$$v^{1} = -\eta \nabla L(\theta^{0})$$

$$v^{2} = -\lambda \eta \nabla L(\theta^{0}) - \eta \nabla L(\theta^{1})$$

$$\vdots$$

- •Start at point θ^0 Movement $v^0=0$
- •Compute gradient at θ^0

Movement
$$v^1 = \lambda v^0 - \eta \nabla L(\theta^0)$$

Move to
$$\theta^1 = \theta^0 + v^1$$

• Compute gradient at θ^1

Movement
$$v^2 = \lambda v^1 - \eta \nabla L(\theta^1)$$

• Move to $\theta^2 = \theta^1 + v^2$

Movement not just based on gradient, but previous movement

Adam: RMSProp + Momentum

```
and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise
square g_t \odot g_t. Good default settings for the tested machine learning problems are \alpha = 0.001,
\beta_1 = 0.9, \, \beta_2 = 0.999 and \epsilon = 10^{-8}. All operations on vectors are element-wise. With \beta_1^t and \beta_2^t
we denote \beta_1 and \beta_2 to the power t.
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
  m_0 \leftarrow 0 (Initialize 1st moment vector) \rightarrow for momentum
  v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector) for RMSprop
  while \theta_t not converged do
      t \leftarrow t + 1
      g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
      m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate) v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
      \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
      \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
      \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
  end while
   return \theta_t (Resulting parameters)
```

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,

Tips for Training

4. Normalization

Changing Landscape

Changing Landscape

Feature Normalization

In general, feature normalization makes gradient descent converge faster.

Considering Deep Learning

Considering Deep Learning

Considering Deep Learning

 $\tilde{z}^i = \frac{z^i - \mu}{\sigma}$

This is a large network!

Batch normalization

Batch normalization — Testing

We do not always have **batch** at testing stage.

Computing the <u>moving average</u> of μ and σ of the batches during training.

$$\mu^1 \qquad \mu^2 \qquad \mu^3 \qquad \cdots \qquad \mu^t$$

$$\overline{\mu} \leftarrow p\overline{\mu} + (1-p)\mu^t$$

Tips for Training

5. Regularization

Dropout

Training:

- **Each time before updating the parameters**
 - Each neuron has p% to dropout

Dropout

Training:

- **Each time before updating the parameters**
 - Each neuron has p% to dropout
 - The structure of the network is changed.
 - Using the new network for training

For each batch, we resample the dropout neurons

Dropout

Testing:

No dropout

- If the dropout rate at training is p%,
 all the weights times 1-p%
- Assume that the dropout rate is 50%. If a weight w = 1 by training, set w = 0.5 for testing.

Dropout - Intuitive Reason

- ➤ When teams up, if everyone expect the partner will do the work, nothing will be done finally.
- However, if you know your partner will dropout, you will do better.
- When testing, no one dropout actually, so obtaining good results eventually.

Dropout - Intuitive Reason

• Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

No dropout

Train a bunch of networks with different structures

Ensemble

- ➤ Using one mini-batch to train one network
- ➤ Some parameters in the network are shared

Testing of

Dropout

z=0

 $z=w_1x_1$

Early Stopping

Keras: http://keras.io/getting-started/faq/#how-can-i-interrupt-training-when-the-validation-loss-isnt-decreasing-anymore

Why Deep?

Universality Theorem

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given **enough** hidden neurons)

Reference for the reason: http://neuralnetworksandde eplearning.com/chap4.html

Why "Deep" neural network not "Fat" neural network?

Deeper is Better?

Layer X Size	Word Error Rate (%)	
1 X 2k	24.2	
2 X 2k	20.4	
3 X 2k	18.4	
4 X 2k	17.8	
5 X 2k	17.2	
7 X 2k	17.1	

Not surprised, more parameters, better performance

1 X 3772	22.5
1 X 4634	22.6
1 X 16k	22.1

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Fat + Short v.s. Thin + Tall

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)
1 X 2k	24.2		
2 X 2k	20.4		
3 X 2k	18.4		
4 X 2k	17.8		
5 X 2k	17.2	→1 X 3772	22.5
7 X 2k	17.1	→1 X 4634	22.6
		1 X 16k	22.1

Seide Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.