

HOIEHHIOI A

제3정규형, BCNF 그리고 기타 정규형들

학습목표

- 제3정규형의 개념을 이해하고 이를 이용하여 정규화를 할 수 있다.
- BCNF의 개념을 이해하고 이를 이용하여 정규화를 할 수 있다.
- 제1, 2, 3정규형과 BCNF를 제외한 다른 정규형들의 특징을 설명할 수 있다.

📥 학습내용

- ♦ 제3정규형
- BCNF
- 기타 정규형들

🔍 제3정규형

🚾 제2정규형의 이상 상태

01 이상 상태의 발생

- ▮ 관계형 릴레이션이 제2정규형을 만족해도 이상 상태를 유발 할 수 있음
 - 사원정보(사번, 이름, 부서번호, 부서명)
 - 기본키: 사번
 - 함수 종속

사번→이름, 사번→부서번호, 사번→부서명, 부서번호→부서명

- 키에 속하지 않은 속성들은 기본키에 완전 함수 종속임으로 제2정규형을 만족

사번	이름	부서번호	부서명
100	김	D1	인사
200	0	D2	영업
300	박	D3	재고
400	한	D1	인사

삽입 이상

직원 배정 없이 신규 부서를 만들 수 없음

🔍 제3정규형

🚾 제2정규형의 이상 상태

01 이상 상태의 발생

사번	이름	부서번호	부서명
100	김	D1	인사
200	O	D2	영업
300	박	D3	재고
400	한	D1	인사

삭제 이상

● 사원 200이 퇴사하면 영업부서가 사라짐

사번	이름	부서번호	부서명
100	김	D1	인사
200	0	D2	영업
300	박	D3	재고
400	한	D1	인사

갱신 이상

400번 사원의 부서명을 홍보팀으로 변경할 경우, 100번 사원도 부서명을 홍보팀으로 변경해야 함

🔍 제3정규형

- 🚾 제2정규형의 이상 상태
 - 02 이상 상태의 원인
 - ▮ 기본키 이외의 다른 속성에 의하여 그 값이 결정되는 속성들이 있음
 - 이러한 속성들은 기본키와는 연관이 적다는 의미

★ 좋은 릴레이션의 가이드 라인

릴레이션의 각 튜플은 하나의 개체 인스턴스나 관계 인스턴스를 표현해야만 함

🔍 제3정규형

- 🚾 이행적 함수 종속과 제3정규형
 - 011 이행적 함수 종속(Transitive Functional Dependency)
 - I A→B 이고 B→C이면, A→C인 함수 종속이 존재
 - 속성 C는 속성 A에 대한 이행적 함수 종속

- 02 이행적 함수 종속과 제3정규형
 - ▮ 제2정규형의 이상 상태 해결
 - 무손실 분해를 통해 이행적 함수 종속을 제거
 - 제3정규형의 정의
 - 제2정규형이면서 키가 아닌 속성들은 기본키에 이행적 함수 종속이 되지 않음

🔍 제3정규형

···· 이행적 함수 종속과 제3정규형

02 이행적 함수 종속과 제3정규형

Ⅰ 제2정규형→제3정규형

🚾 제3정규형의 문제점

- 01 정규형의 특징
 - 각 정규형은 선행 정규형 보다 더 엄격한 조건을 가짐 01
 - 제2정규형 릴레이션은 제1정규형 조건을 만족
 - 제3정규형은 제1정규형 조건을 만족
 - 02 제3정규형을 만족해도 이상 상태를 유발할 수 있음
- 02 제3정규형의 특징
 - 01 모든 이진 릴레이션(속성이 2개로 이루어진 테이블)은 제3정규형에 속함
 - 이행적 함수 종속(If $A \rightarrow B$ and $B \rightarrow C$, then $A \rightarrow C$)이 존재하려면 최소 3개의 속성 필요
 - ▷ 속성이 2개만 존재하면 이행적 함수 종속이 존재할 수 없음
 - ◉ 제3정규형에 속한 릴레이션에서 키가 아닌 속성값의 변경 시 이상 상태가 발생하지 않음
 - 이진 릴레이션은 BCNF에도 속함
 - 제3정규형을 만족해도 이상 상태를 유발할 수 있음 02
 - 03 제3정규형의 문제
 - 복수의 후보키를 가지고 있음
 - 후보키들이 여러 개의 속성들로 구성되어 있음
 - 후보키들의 속성이 서로 중첩되어 있음

BCNF의 정의

01 정의

- 릴레이션 R에 속한 결정자가 후보키이면. 릴레이션 R은 BCNF(Boyce-Codd Normal Form)임
 - 모든 속성은 후보키에 의하여 결정
 - 하나의 튜플은 하나의 개체를 표현
- ▋릴레이션 R이 BCNF에 속하면 R은 제1, 제2 , 제3정규형에 속함
 - BCNF를 강력한 제3정규형(Strong 3NF)라고도 함
- ▮ 관계 데이터베이스 설계 목표
 - 각 릴레이션이 BCNF(또는 제3정규형) 조건을 만족하게 하는 것

🚾 BCNF의 예시

01 예시

- ▍수강과목(학번, 과목, 교수)
 - 후보키: {학번, 과목}, {학번, 교수}
 - 기본키: {학번, 과목}
 - 함수 종속: {학번, 과목} → 교수, 교수 → 과목 - 한 교수는 한 과목만을 가르친다는 의미

기본키를 제외한 속성(교수)이 기본키에 이행적 함수 종속이 아님 → 제3정규형을 만족

🚾 BCNF의 예시

▮ 제3정규형에서의 이상 상태

학번	과목	교수
100	플밍	P1
100	컴구	P2
200	플밍	P1
200	컴구	Р3

삽입 이상

새로운 교수 P4가 컴구를 가르친다는 내용은 삽입 불가 (수강 학생이 없으면 삽입 불가)

학번	과목	교수
100	플밍	P1
100	컴구	P2
200	플밍	P1
200	컴구	Р3

삭제 이상

100번 학생이 컴구을 수강 취소할 경우 P2 교수가 컴구를 강의한다는 내용도 같이 삭제 됨

학번	과목	교수
100	플밍	P1
100	컴구	P2
200	플밍	P1
200	컴구	P3

갱신 이상

교수 P1이 플밍 대신 OS를 강의한다고 변경되면 P1이 나타난 모들 튜플을 변경해야 함

삽입, 삭제, 갱신 이상의 원인은 교수가 결정자이지만 후보키가 아니기 때문!

MBCNF의 예시

▮ 제3정규형에서의 이상 상태

학번 과목

학번	과목
100	플밍
100	컴구
200	플밍
200	컴구

교수	과목
P1	플밍
P2	컴구
P3	컴구

🥑 기타 정규형

- 🚾 다치 종속과 제4정규형
 - 01 다치 종속과 제4정규형의 개념
 - ▮ 함수 종속에 의하며 명시할 수 없는 다른 형태의 제약 조건이 존재
 - ▍추가적인 종속성

다치 종속 (Multivalued Dependency)

제4정규형

- 02 다치 종속(MVD)
 - ▲ 속성 X의 값이 속성 Y의 값들의 집합을 결정
 - ▮ 한 릴레이션의 두 속성 집합 X, Y가 있을 때, 속성 X의 값이 하나 결정될 때, Y의 속성값 여러 개가 결정되는 경우

"X는 Y를 다중 결정한다" 라고 표현

▮ 함수 종속은 다치 종속의 특별한 예

함수 종속

다치 종속

학번 → 이름처럼 학번이 하나 결정되면 하나의 이름이 결정되는 것

과목 → 교재처럼 하나의 과목이 정해지면 여러개의 교재들이 다중 결정되는 것

🥦 기타 정규형

🚾 다치 종속과 제4정규형

03 단순 다치 종속(Trivial MVD)

MVD X→Y가 Y⊆X 혹은 (XUY)=R인 경우

04 제4정규형의 정의

- 릴레이션 R의 모든 비단순 다치 종속 X→Y를 만족하는 속성 X, Y가 존재할 때, X가 R의 수퍼키이면 릴레이션 R은 제4정규형에 속함
 - 제4정규형의 특징
 - BCNF와 제3정규형은 다치 종속성을 다루지 않음
 - 2 제4정규형에 속한 모든 릴레이션은 BCNF에 속함

05 예시

기본키

- MVD: 이름→교수, 이름→보호자
- BCNF에 속함: 키에 속하지 않은 결정자 속성이 없음

이름	교수	보호자	
김	김	0	
김	김	박	
민	홍	조	
민	서	권	

이름	교수
김	김
민	홍
민	서

이름	보호자
김	0
김	박
민	조
민	권

모든 MVD는 단순 다치 종속에 대한 → <mark>제4정규형</mark>

🥥 기타 정규형

- 🚾 조인 종속과 제5정규형
 - 01 조인 종속과 제5정규형의 정의

조인 종속 (Join dependency)

릴레이션 R이 그 프로젝션 릴레이션들 R₁,...,R_N의 조인과 동일하면, R은 조인 종속성 JD(R₁,..., R_N)를 만족

제5정규형

릴레이션 R에 존재하는 모든 조인 종속 JD(R₁,..., R_N)에 대하여 모든 R_i가 R의 후보키라면 R은 제5정규형에 속함

- 🚾 정규형의 의미
 - 01 이상 상태와 정규형의 발생
 - 01 이상 상태의 발생의 데이터의 삽입, 삭제, 변경 시에 발생
 - 02 이상 상태를 해결하기 위하여 정규화 시행
 - 03 데이터 검색 시에는 이상 상태가 발생되지 않음

🖳 기타 정규형

🚾 정규형의 의미

02 정규화를 해야 하는 이유

반드시 정규화를 해야 할까요?

- 검색 시 원하는 정보를 얻기 위해서는 조인 연산이 필요함
- O 검색 시 성능이 저하됨

예 | 학번이 100번인 학생의 학과는?

단순 검색 질의문

조인 질의문 필요

학번	지도교수	학과
100	P1	컴공
200	P2	메카
300	P3	컴공
400	P1	컴공

학번	지도교수	지도교수	학과
100	P1	P1	컴공
200	P2	P2	메카
300	P3	P3	컴공
400	P1		

데이터 변경 시 문제가 없다면 필히 정규화를 할 필요가 없음

1 제3정규형

✓ 이행적 함수 종속: 함수 종속 X → Y이고 Y → Z이면 X → Z인 관계 - 2NF이고 키가 아닌 속성들은 기본키에 이행적 함수 종속이 되지 않음

2 BCNF

- ✓ 릴레이션 R에 속한 결정자가 후보키이면 릴레이션 R은 BCNF에 속함
- ✓ 릴레이션 R이 BCNF에 속하면 R은 제1, 제2, 제3정규형에 속함

③ 기타 정규형들

- ✓ 다치 종속: 속성 X의 값이 속성 Y의 값들의 집합을 결정
- ✓ 제4정규형
 - 릴레이션 R의 모든 비단순 다치 종속 X→Y를 만족하는 속성 X, Y가 존재할 때, X가 R의 수퍼키이면 릴레이션 R은 제4정규형에 속함
- ✓ 제5정규형: 조인 종속 기반의 정규형
- ✓ 조인 종속성을 발견하는 것은 매우 어려우며, 실제로 제5정규형을 쓰는 경우는 거의 없음