

大规模预训练模型概述

王浩帆

2021年6月9日

https://haofanwang.github.io/

- 1. 预训练概述
- 2. 语言预训练模型
- 3. 视觉预训练模型
- 4. 多模态预训练模型

什么是预训练?

通俗的例子是:武侠小说中,一个人若想成为武林高手,需要有扎实的内功基础,内功修炼好之后,再去学各种招式,就能够非常轻易的上手并发挥其最大效用。比如说金庸小说《倚天屠龙记》的主角张无忌,在偶然习得内功《九阳真经》之后,再学"乾坤大挪移"、"太极拳"、"太极剑"等招式就如鱼得水,进步神速。小说中的"修炼内功"就可以理解为"预训练"的过程。

预训练诞生的背景

标注资源稀缺而无标注资源丰富: 某种特殊的任务只存在非常少量的相 关训练数据, 以至于模型不能从中学习总结到有用的规律

为什么要做预训练?

- 基于大规模的无标注数据,模型可以隐式地学习到了通用的表征。
- 2. 从开放领域学到的知识迁移到下游任务,以改善低资源任务。
- 3. 预训练模型在几乎所有 NLP 任务中都取得了**目前最佳**的成果。
- 4. 预训练模型+微调机制具备很好的**可扩展性**,在支持一个新任务时,只需要利用 该任务的标注数据进行微调即可。

预训练的关键技术

先在**大规模通用数据**(文本/图像)上训练,学习到**通用的表征**,然后再针对性的 在**特定任务上进行迁移**训练。

预训练的关键技术

巧妙的训练方式:自监督 ↑

先在**大规模通用数据**(文本/图像)上训练, 学习到**通用的表征**, 然后再针对性的

在**特定任务上进行迁移**训练。

快速的知识迁移:微调

高效的模型结构:变形器

预训练的关键技术

- 1. 变形器(Transformer)
 - a. Self-attention (contextual information)
- 2. 自监督(Self-supervised Learning, Unsupervised)
 - a. Contrastive Learning (MoCo) -- CV
 - b. Prediction (MLM, NSP) -- NLP
- 3. 微调(Fine-tuning)

预训练的趋势

- 1. 更大的模型
 - a. BERT(3亿参数), GPT-3(1700亿参数), 悟道2.0(1.75万亿参数)
- 2. 更丰富的训练策略
 - a. 丰富的自监督任务
- 3. 单语言,多语言,多模态
 - a. BERT, ViT, CLIP

- 1. 预训练概述
- 2. 语言预训练模型
- 3. 视觉预训练模型
- 4. 多模态预训练模型

- 1. <u>BERT</u> (2018)
 - a. Bidirectional Encoder Representations from Transformers
 - b. 预训练任务:单词级的Mask语言模型MLM、句子级的下一句预测任务NSP

1. <u>BERT</u> (2018)

- a. Bidirectional Encoder Representations from Transformers
- b. 预训练任务:单词级的Mask语言模型MLM、句子级的下一句预测任务NSP
- c. Multi lingual BERT (让模型对于不同语言做预训练任务)
 - i. 也许不同语言的词汇的Embedding是很接近的

• English: SQuAD, Chinese: DRCD

Model Pre-train Fine		Fine-tune	Test	EM	F1
QANet	none	Chinese		66.1	78.1
BERT	Chinese	Chinese		82.0	89.1
	104 languages	Chinese	e Chinese		88.7
		English		63.3	78.8
		Chinese + English		82.6	90.1

F1 score of Human performance is 93.30%

- 1. <u>BERT</u> (2018)
 - a. Bidirectional Encoder Representations from Transformers
 - b. 预训练任务: MLM、NSP
 - C. Multi lingual BERT (让模型对于不同语言做预训练任务)
 - i. 也许不同语言的词汇的Embedding是很接近的

- 1. <u>BERT</u> (2018)
 - a. Bidirectional Encoder Representations from Transformers
 - b. 预训练任务:单词级的Mask语言模型MLM、句子级的下一句预测任务NSP
- 2. <u>RoBERTa</u> (2019)
 - a. 充分训练的BERT模型
 - b. 证明了NSP对于模型效果没什么影响

RoBERTa

			大B	分训练: atchSize 训练步数			
	Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
增加增加	RoBERTa						
训练数据	with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
	+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
	+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
	+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
	BERT _{LARGE}						
	with BOOKS + WIKI	13 GB	256	1 M	90.9/81.8	86.6	93.7
	XLNet _{LARGE}						
V	with BOOKS + WIKI	13 GB	256	1 M	94.0/87.8	88.4	94.4
Baseline	+ additional data	126GB	2K	500K	94.5/88.8	89.8	95.6

器快手

大规模语言预训练模型

- 1. <u>BERT</u> (2018)
 - a. Bidirectional Encoder Representations from Transformers
 - b. 预训练任务:单词级的Mask语言模型MLM、句子级的下一句预测任务NSP
- 2. <u>RoBERTa</u> (2019)
 - a. 充分训练的BERT模型
 - b. 证明了NSP对于模型效果没什么影响
- 3. <u>T5</u> (2020)

- 1. 更高质量、更大规模的数据
 - a. 说明目前Transformer的capacity是足够的。(大数据+大模型的暴力美学)

数据量及数据质量的影响

Dataset	Size	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
C4	745GB	83.28	19.24	80.88	71.36	26.98	39.82	27.65
C4, unfiltered	6.1TB	81.46	19.14	78.78	68.04	26.55	39.34	27.21
RealNews-like	35GB	83.83	19.23	80.39	72.38	26.75	39.90	27.48
WebText-like	17GB	84.03	19.31	81.42	71.40	26.80	39.74	27.59
Wikipedia	16GB	81.85	19.31	81.29	68.01	26.94	39.69	27.67
Wikipedia + TBC	20GB	83.65	19.28	82.08	73.24	26.77	39.63	27.57

数据量最大, 噪音多,有负面影响

数据质量高前提下,数据规模没那么大效果也很好

- 1. 更高质量、更大规模的数据
- 2. 增加模型的容量和复杂度

模型复杂度的影响

Scaling strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
Baseline	83.28	19.24	80.88	71.36	26.98	39.82	27.65
$1 \times$ size, $4 \times$ training steps	85.33	19.33	82.45	74.72	27.08	40.66	27.93
$1 \times$ size, $4 \times$ batch size	84.60	19.42	82.52	74.64	27.07	40.60	27.84
2× size, 2× training steps	86.18	19.66	84.18	77.18	27.52	41.03	28.19
$4 \times$ size, $1 \times$ training steps	85.91	19.73	83.86	78.04	27.47	40.71	28.10
$4 \times$ ensembled	84.77	20.10	83.09	71.74	28.05	40.53	28.57
$4\times$ ensembled, fine-tune only	84.05	19.57	82.36	71.55	27.55	40.22	28.09

模型参数放大四倍,相对Baseline效果大幅提高

- 1. 更高质量、更大规模的数据
- 2. 增加模型的容量和复杂度
- 3. 更充分的训练模型(RoBERTa)
- 4. 有难度的预训练(自监督)任务

各种语言模型预训练任务

Objective	Inputs	Targets
Prefix language modeling BERT-style Deshuffling Li.d. noise, mask tokens Li.d. noise, replace spans Li.d. noise, drop tokens Random spans	Thank you for inviting Thank you <m> <m> me to your party apple week . party me for your to . last fun you inviting week Thank Thank you <m> <m> me to your party <m> week . Thank you <x> me to your party <y> week . Thank you me to your party week . Thank you me to your party week . Thank you <x> to <y> week .</y></x></y></x></m></m></m></m></m>	me to your party last week . (original text) (original text) (original text) <x> for inviting <y> last <z> for inviting last <x> for inviting me <y> your party last <z></z></y></x></z></y></x>

概要

- 1. 预训练概述
- 2. 语言预训练模型
- 3. 视觉预训练模型
- 4. 多模态预训练模型

- 1. <u>BiT</u> (Big Transfer)
 - a. 调整了预训练+微调中的部分操作
 - b. 上游预训练阶段:
 - i. 模型尺寸与数据规模的关系。单纯增加数据量或者模型容量可能会损害性能,需要同时增加二者

Fig. 5: Effect of upstream data (shown on the x-axis) and model size on down-stream performance. Note that exclusively using more data or larger models may hurt performance; instead, both need to be increased in tandem.

- 1. <u>BiT</u> (Big Transfer)
 - a. 调整了预训练+微调中的部分操作
 - b. 上游预训练阶段:
 - i. 模型尺寸与数据规模的关系。单纯增加数据量或者模型容量可能会损害性能,需要同时增加二者
 - ii. Batch Norm不适合迁移学习,数据域变化导致统计量发生变化。而且模型尺寸比较大的时候,在每个 device上batch size无法太大。因而需要设备间通信,这样性能很差。GN会更好。
 - c. 下游微调阶段:
 - i. Mix-up正则化(预训练阶段由于数据充足,Mix-up效果不明显)
 - ii. 分辨率影响(训练阶段使用更高分辨率)。

- 1. <u>BiT</u> (Big Transfer)
 - a. 调整了预训练+微调中的部分操作
 - b. 上游预训练阶段:
 - c. 下游微调阶段
 - d. 数据泄漏
 - i. 大规模预训练模型性能好会不会是因为训练阶段见到过相同图片?

Detailed analysis: Deduplication

- 1. <u>BiT</u> (Big Transfer, ResNet)
- 2. <u>ViT</u> (Vision Transformer)

Vision Transformer (ViT)

notation e.g. ViT-L/16

- 1. <u>BiT</u> (Big Transfer, ResNet)
- 2. <u>ViT</u> (Vision Transformer)
 - a. Transformer结构在大规模数据训练下,可以实现比ResNet更好的效果。

Scaling with Data

Conclusion: despite heavy regularization efforts ViT overfits on ImageNet, but is much better on larger datasets.

概要

- 1. 预训练概述
- 2. 语言预训练模型
- 3. 视觉预训练模型
- 4. 多模态预训练模型

1. 多模态预训练

a. 本质上,多模态预训练要学习的知识是两种模态之间,或者多种模态之间的知识单元映射关系。比如对于文字-图片这两种多模态信息来说,我们可以把图片想像成一种特殊类型的语言,多模态预训练希望让模型学会这两 种不同模态之间的语义映射关系,比如能够将单词"苹果"和图片中出现的苹果区域建立起联系。或者说,希 望通过将不同模态的信息映射到相同的语义空间,来学会两者之间的语义映射关系。

1. 单塔模型

- a. 在图文跨模态预训练模型中,早期的架构基本都采用基于BERT的单塔结构。
- b. 视觉信息与语言**信息进行融合拼接**后,作为整体进行特征提取,如VisualBERT、UniCoder等。

1. 单塔模型

- a. 在图文跨模态预训练模型中,早期的架构基本都采用基于BERT的单塔结构。
- b. 视觉信息与语言信息进行融合拼接后,作为整体进行特征提取,如VisualBERT、UniCoder等。
- c. 单塔模型结构相似, 预训练任务也大同小异。

	Method	Architecture	Visual Token	Pre-train Datasets	Pre-train Tasks	Downstream Tasks
Published Works	VideoBERT (Sun et al., 2019b)	single cross-modal Transformer	video frame	Cooking312K (Sun et al., 2019b)	sentence-image alignment masked language modeling masked visual-words prediction	zero-shot action classification video captioning
Works Under Review / Just Got Accepted	CBT (Sun et al., 2019a)	two single-modal Transformer (vision & language respectively) + one cross-modal Transformer	video frame	Cooking312K (Sun et al., 2019b)	sentence-image alignment masked language modeling masked visual-feature regression	action anticipation video captioning
	ViLBERT (Lu et al., 2019)	one single-modal Transformer (language) + one cross-modal Transformer (with restricted attention pattern)	image RoI	Conceptual Captions (Sharma et al., 2018)	sentence-image alignment masked language modeling masked visual-feature classification	visual question answering visual commonsense reasoning grounding referring expressions image retrieval zero-shot image retrieval
	B2T2 (Alberti et al., 2019)	single cross-modal Transformer	image RoI	Conceptual Captions (Sharma et al., 2018)	sentence-image alignment masked language modeling	1) visual commonsense reasoning
	LXMERT (Tan & Bansal, 2019)	two single-modal Transformer (vision & language respectively) + one cross-modal Transformer	image RoI	† COCO Caption + VG Caption + VG QA + VQA + GQA	sentence-image alignment masked language modeling masked visual-feature classification masked visual-feature regression visual question answering	visual question answering antural language visual reasoning
	VisualBERT (Li et al., 2019b)	single cross-modal Transformer	image RoI	COCO Caption (Chen et al., 2015)	sentence-image alignment masked language modeling	visual question answering visual commonsense reasoning natural language visual reasoning grounding phrases
	Unicoder-VL (Li et al., 2019a)	single cross-modal Transformer	image RoI	Conceptual Captions (Sharma et al., 2018)	sentence-image alignment masked language modeling masked visual-feature classification	image-text retrieval zero-shot image-text retrieval
	Our VL-BERT	single cross-modal Transformer	image RoI	Conceptual Captions (Sharma et al., 2018) + BooksCorpus (Zhu et al., 2015) + English Wikipedia	masked language modeling masked visual-feature classification	visual question answering visual commonsense reasoning grounding referring expressions

Credit to Dr. Zhiwu Lu

1. 单塔模型

- UNITER的预训练任务:
 - 掩码语言建模(即完形填空,Masked Language Modeling)
 - 掩码区域建模(针对图片,Masked Region Modeling)
 - 图文匹配(Image-Text Matching)Triplet Loss
 - 单词和图片区域对齐(Word-Region Alignment)
- OSCAR的预训练任务:
 - Masked Language Modeling
 - Masked Region Modeling
 - Image-Text Matching Triplet Loss
 - 加入图像中检测出来区域的类别信息

- 1. 单塔模型
- 2. 双塔模型
 - a. 单塔结构在模态交互上有天然优势,但是在跨模态任务上**效率过低**,不适合大规模任务,在实际 落地场景中有较大局限性。
 - b. 2021年来典型工作: CLIP, Align, 文澜。
 - i. 视觉、语言信息通过**独立分支进行编码**。
 - ii. 对图文对的对齐要求降低, 极大降低了数据采集的要求, 可使用互 联网数据训练。
 - iii. 使用对比学习的方式,缓解双塔结构不做细粒度对齐的影响。

- 1. 单塔模型
- 2. 双塔模型

悟道-文澜:

- 预训练数据:无清洗(仅敏感信息过滤)的中文图文对
- 网络结构: image/text encoder + image feature map with grid pooling + image/text self-attention
- 对比学习: MoCo + DeepSpeed加速

OpenAl CLIP:

- 预训练数据: 经过清洗的英文图文对
- 网络结构: image/text encoder
- 对比学习: SimCLR

Google ALIGN:

- 预训练数据:无清洗的英文图文对
- 网络结构: image/text encoder
- 对比学习: SimCLR

- 1. 单塔模型
- 2. 双塔模型

多模态预训练: 单塔vs双塔

- 单塔模型优点:
 - 能够学到图文数据细粒度上的特征关联,对某些任务更有优势
- 单塔模型缺点:
 - 准备数据的代价大,需要每个图文对之间有很强的关联
 - 应用开销大,以图文检索为例,对每张图片/每条文本,都要与所有候选文本/图片 构建图文对输入模型以获得该图文对的匹配程度
- 双塔模型优点:
 - 数据无需清洗,不需要图文对有很强的关联
 - 应用时效率高,可以提前获得候选数据的特征表示,每当有query时只需提取query 特征与候选集的所有特征计算相似性
- 双塔模型缺点:
 - 只关注图文整体的匹配,在图片区域/单词等细粒度上表现可能不如单塔模型

资源

- 1. 乘风破浪的PTM:两年来预训练模型的技术进展
- 2. <u>Self-Supervised Learning</u>
- 3. ADL116期大规模预训练模型报告Slide合集
- 4. <u>前沿热点的论文集锦</u>