A Biologically Inspired Neurodynamical Model of Color & Form in the Primary Visual Cortex

1

Sean Thomas Connolly

Abstract

We present a computational model of the primary visual cortex (V1) inspired by current neurobiological understanding. This understanding treats color and shape as intrinsically connected and, as a consequence, predicts perceptual phenomena such as color induction and assimilation to arise very early in visual processing. We incorporate this understanding into a dynamical model of neuronal activity responding to static or dynamic visual stimuli. Our model confirms the psychophysical predictions on a range of experiments, offering credence to the biological theories.

Index Terms

primary visual cortex, striate cortex, V1, receptive field, single opponent, double opponent, color assimilation, color induction

I. Introduction

COLOR induction and contrast are two related, opposing, perceptual phenomena. The former is a change in perceived color "toward" a nearby color, while the latter is a change of one color "away" from the nearby color. Neurophysiological research suggests that these phenomena may arise as early in primate vision as the primary visual cortex (V1). It is proposed that the boundaries between two colored regions drive these effects. Specifically, research in the field describes neurons which fire selectively to boundaries between specific colors, so called double opponent cells, and identifies them as being critically related to the color perceived.

Within, we propose a computational model inspired by the current understanding of this biology. We present two implementations, one more biologically accurate, and another more computationally elegant. We explore the behavior of these models with respect to what they can teach us about the assumed biological theories, as well as their application to the field of computer vision.

II. STATE OF THE ART

Neurobiology

Historically, it was widely believed that color and shape are two distinct aspects of visual perception. Truly, this line of though is intuitive: one can perceive the color of a flat surface which occupies our full field of vision, despite its lack of 'shape', likewise we can see the shape of achromatic objects, as in black and white film. This theory of perception innervated neurophysiological understanding, and was supported by findings that the lateral geniculate nucleus (LGN), the pathway which carries information from the retina to the primary visual cortex (V1), consists of three entirely distinct layers; two (the parvicellular and konicellular pathways) dealing purely in color information, and one (the magnocellular pathway) being of achromatic contrast (edge) information. Based on early anatomical observations, it was proposed that these three LGN pathways for color and contrast are then processed into two separate streams in V1, one for color and the other for form. This separate handling of color and form indicated to researchers that, as suspected, these two perceptual concepts are, indeed, processed separately in the brain.

Research in the past decade or so has seen a shift from this thinking, however. Psychophysical observations, such as those in Figure 1 influenced researchers to consider that color and form are more intrinsically related than previously thought. In these examples, we see that the *perceived* color of the inner square is highly dependent on the surrounding square. The color perceived is not just determined by the physical properties of the surface, but also by the context in which the surface is viewed. Furthermore, we can observe that this context comes largely from the boundary edges of the surface: in example (c), the dulling color assimilation effect is almost entirely negated by simply adding a thin border. That is, by removing the border between the inner square and the background, the effect of the context is significantly modified. In fact, "the color appearance of a region may be more dependent on color contrast at the boundary of the region than it is on the spectral reflectance of the region's interior" [1, p.572].

 $Author: Sean\ Thomas\ Connolly, connolly.st@gmail.com$

Advisor: Xavier Otazu, Computer Vision Center, Computer Science Department, Universitat Autnoma de Barcelona, Barcelona, Spain

Submitted: September 2014

Fig. 1. Psychophysical example emphasizing the effect of edge contrast in color perception. In all cases, the center square is physically the same. (a) On the green background, however, it appears much brighter than it does on (b) the red background. (c) Adding a thin black border negates the assimilation effect, increasing the perceived brightness of the center square. (d) Blurring the background, on the other hand, seems to enhance assimilation, lowering the perceived brightness at the center.

Much research has been focused on the specific neural mechanisms behind the perception of color, with these psychophysical observations in mind. The current view holds that the LGN does indeed carry color and contrast information through distinct pathways to the striate cortex (V1). However, unlike previous views, it is now thought that color and form become deeply intertwined as they are processed in V1.

To explain the simultaneous processing of color and form in V1, the literature proposes three classifications of neurons based on their opponent inputs: non-opponent cells, single opponent cells, & double opponent cells (Johnson et al. Color and Orientation in V1). Opponency, in neurobiology, refers to antagonistic inputs to a neuron; one source of input exciting the neuron while another source inhibits it. With respect to cells in the early visual system, we are referring to chromatic and spatial opponency from the neuron and LGN, as will be detailed below. Briefly, non-opponent neurons are color blind, they only respond to changes in luminosity. Single opponent cells are sensitive to particular colors and respond best to large areas of color. Double opponent cells are also color preferring but respond best, not to areas of color, but to the boundaries between particular colors.

1) Non-opponent Neurons: These cells are the simplest to conceive of: they have no chromatic nor spatial opponency. Instead, they amalgamate all color input in a balanced manner so as to only respond to changes in luminosity.

// **TODO** add image depicting example receptive field(s)

// TODO add image of simple behavior: gradient response to ((mono)chromatic) intensity changes

// TODO add image of simple behavior: no response to isoluminant chromatic boundaries

2) Single Opponent Neurons: Single opponent neurons are built using the classical center/surround receptive fields. The ON receptive field exciting the cell when presented with a particular color in the center, the OFF receptive field exciting the cell when another color is *removed* from the surround.

// **TODO** add image depicting example receptive field(s)

// TODO add image of simple behavior: gradient response to isoluminant chromatic boundary

// TODO add image of simple behavior: no response to intensity changes

3) Double Opponent Neurons: Double opponent neurons are a point of confusion in the field. The term double opponent is to indicate that the inputs to the neuron are such that it is sensitive to color (chromatically opponent) and contrast (spatially opponent). Generally, all agree that the role of such neurons, however their receptive fields are constructed, be to respond best to the boundaries between particular colors.

// TODO describe Orientation Selectivity

// **TODO** add image depicting example receptive field(s)

// TODO add image of simple behavior: peak activity AT sharp edge

// TODO describe Spatial Frequency Selectivity

// TODO add image of Shapley response curves for NO, SO, & DO

// TODO mention relative abundance of NO, SO, & DO

To recapitulate: non-opponent neurons have no color preferences and fire equally to chromatic or achromatic luminosity changes, single opponent neurons are color preferring and fire best to full field stimulation, and double opponent neurons are color preferring but fire only at the boundaries between particular colors.

Biology State of the Art Notes:

- 1) What is color?
 - Subjective
 - Correlates to reflectance patterns
- 2) Historical view \rightarrow separation of color & shape

3

- Parallel/modular/segregated processing [1]
- Intuitive
 - Black & white movies work fine (Shapley 2011)
 - Full field color can be seen fine
 - LGN research suggested parvicellular & konicellular has color, magnocellular has contrast (edges)
 - Similarly, V5 was 'motion'
- 3) Current view \rightarrow integration of color & shape
 - All information is processed as one information stream (too strong??)
 - Color opponency
 - Discuss LMS & opponent color theory
 - Retinal receptive fields & horizontal cells
 - LGN information reflects opponent colors (no spatial opponency)
 - SINGLE OPPONENT CELLS RESPOND BEST TO FULL FIELD COLOR
 - · Spatial opponency
 - LGN information upgraded to include spatial opponency
 - Double opponent cells: color & spatially opponent
 - Spatial frequency sensitivity
 - Orientation sensitivity
 - Shapley shows most V1 cells are double opponent
 - DOUBLE OPPONENT CELLS RESPOND BEST TO COLOR BOUNDARIES
 - DO & SO roles
 - If there are SO cells in V1, they aren't just a stepping stone, but encode valuable information. Thus, they likely work in concert with DO cells (more numerous (Shapley))
 - DO cells detect edges \rightarrow saliency? (Z. Li)
 - Interactions (hypercolumns, CO blobs, etc.)
 - Not well understood =(
 - Retinoisotopic
 - Hypercolumns (Z. Li?)
 - What does Shapley think of CO blobs (youtube Q & A)?

Computational Modeling:

This model is an extension of that presented by Penacchio et al. [2], itself based on work by Z. Li [3], [4].

Li's Neurodynamical Model for Segmentation: In Li's original work, a neurodynamical model was presented which focused the issue of region segmentation arising from local interactions between neurons. In the interest of simplicity, Li's implementation focused on the nature of these interactions and the signal processing which emerges. Conceptually, Li defined neurons by the physical position in the image and the 'feature' to which they are sensitive. She then defined the connections between these neurons such that those physically close to each other, and sensitive to similar features interacted most strongly.

In the model presented, Li used oriented bars as features, though expressed that any logical feature could be reasonably considered in its place. This choice was biologically inspired by neurons sensitive to specifically oriented bars. When considering such features, inter-neuronal connections can be logically deduced: two neurons positively interact most when both are sensitive to similarly oriented bars and are co-located along that same orientation. Two neurons negatively interact most when either of these two conditions is not met.

By defining the neuronal connectivity in this manner, neurons sensitive to co-located and co-aligned bars positively interact with each other to enhance their collective response to the stimuli. From these local interactions, global features are enhanced if they satisfy the neuronal connectivity rules. Li showed that this method can be used to identify boundaries between regions for which normal segmentation methods struggle.

Penacchio, Otazu, and Dempere-Marco's Neurodynamical Model for Brightness Induction: Li's work laid the foundation for Penacchio et al., who extended the model to..

Computational Modeling State of the Art Notes:

- Z. Li 199
 - No color, just black & white lines
 - No sense of scales
 - Dynamical processing
- X. Otazu 2013

- No color, just black & white edges
- Generalized to real images (edges vs lines)
- Added scales
- Dynamical processing
- Avoid detail, save that for Method..?
- Extension of Z. Li's edge detection work
- Uses DWT to extract oriented edges in grayscale
 - * ..in our context, it's essentially a luminence sensitive double opponent cell.
- L. Itti 1999
 - Opponent color transformations
 - No double opponent cells
 - Center & surround using scales
 - Has scales, but collapses them into one (right?)
 - No dynamical processing
- Serre Lab 2013 (2014?)
 - Single & double opponent color using weights
 - Has center/surround (Gabbor filters for DO, gaussians for SO?)
 - No scales
 - No dynamical processing
- Computational adaptation model and its predictions for color induction of first and second orders
 - Single & double opponent color transformations using receptive fields
 - Center & surround receptive fields
 - No dynamical processing

The purpose of this project is to **feed opponent color information into a neurodynamical model** sensitive to edges & surfaces in a biologically inspired manner.

III. METHOD

To investigate the nature of visual information representation and processing in the primate visual cortex (V1) we consider a biologically inspired computational model.

A. Implementation

The Method section will be broken down into 2 distinct problems/sections:

- 1) How is the data represented in V1?
 - a) RGB \rightarrow receptive fields \rightarrow LDRGBY
 - b) RGB \rightarrow L*a*b* \rightarrow DWT
 - In either case, it's then transformed into neuronal excitation (scale 1-4) and used as the INITIAL STIMULUS for each time step.
- 2) How does V1 process the data?
 - An extension of X. Otazu's PLoS One model
 - (itself an extension of Z. Li's 1999 model)

B. Image Data Transformation

TODO Introduce the 2 data transformations and their respective meanings

- 1) Opponent Receptive Fields: RGB → receptive fields → LDRGBY
- · describe motivation
- 2) Discrete Wavelet Transform: RGB \rightarrow L*a*b* \rightarrow DWT
- · describe motivation

C. Neuro-Dynamical Model

- describe what exactly 'neuro-dynamical' means
- describe how the X. Otazu & Z. Li models work and are extended
- describe how this is agnostic to the initial transformation (data is cell firing rates (1-4))

IV. EXPERIMENTS

TODO

V. RESULTS

TODO

VI. CONCLUSIONS

TODO

APPENDIX A
APPENDIX TITLE

TODO

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

- [1] Shapley, Robert, Michael Hawken, and Elizabeth Johnson. *Color in the Primary Visual Cortex*. The Visual Neurosciences. Vol. 2. Cambridge, Mass.: MIT, 2004. 568-86. Print.
- [2] Olivier Penacchio, Xavier Otazu, and Laura Dempere-Marco. A Neurodynamical Model of Brightness Induction in V1. PLoS ONE 8.5 (2013): E64086. Web.
- [3] Zhaoping Li. A Neural Model of Contour Integration in the Primary Visual Cortex. Neural Computation 10.4 (1998): 903-40.
- [4] Zhaoping Li. Visual Segmentation by Contextual Influences via Intra-cortical Interactions in the Primary Visual Cortex. Network: Computation in Neural Systems 10.2 (1999): 187-212.