$\epsilon\text{-NFA} :$ NFA com transições ϵ

$$\epsilon\text{-NFA E} = (Q, \sum, \delta, q_0, F)$$

- \bullet Maior diferença é que a função de transição δ lida com $\epsilon.$
 - $\delta(q,a)$: estado qinQe $ain \sum \bigcup \{\epsilon\}$
- \bullet ϵ representa transições espontâneas.
- Para saber quais os estados que conseguimos alcançar a partir de um estado q com ϵ , calculamos o ϵ -close(q). Exemplos:

$$-\epsilon\text{-close}(q_0) = \{q_0, q_1\}$$

$$- \epsilon\text{-close}(q_3) = \{q_3, q_5\}$$

Para um dado ϵ -NFA existe sempre um DFA equivalente.