Simulation and Scientific Computing – 2 (SS 2016)

Multigrid Solver

Team:-

BleedBlue

Paras Kumar Raju Ram Iniyan Kalaimani

Performance Challenge

Informatik 10 System Simulation

Startseite
Lehre
Forschung
Veröffentlichungen
Mitarbeiter
Media
Über uns

Sie sind hier: >> Startseite

SiWiR Performance Challenge

Group	wallclock Time	L2 Norm	Date	Host	Parallelism
VCG	0,090138	8,2214282155e-05	3. Juni 2016	i10hpc2	OpenMP
so47pefe	0,095803	8,53890912647e-05	3. Juni 2016	i10hpc2	OpenMP
JETi	0,263078	9,17553361908e-05	2. Juni 2016	i10hpc2	OpenMP
im50ibaq	0,392847	9,1766419284e-05	31. Mai 2016	i10hpc2	OpenMP
NeEmHaFl	0,404379	8,90789845053e-05	1. Juni 2016	i10hpc2	OpenMP
DeLuPhSuMaRi	0.418192	9.1750647404e-05	2. Juni 2016	i10hpc2	OpenMP
BleedBlue	0,459698	1,94895388093e-05	3. Juni 2016	i10hpc2	Serial
bu43jazu	0,486754	9,17688787287e-05	31. Mai 2016	i10hpc2	OpenMP
ADG	0,618446	9,17691397429e-05	31. Mai 2016	i10hpc2	OpenMP
teamAlias	0,697215	9,18017944771e-05	3. Juni 2016	i10hpc2	OpenMP
IndiaWale	0,879014	9,17928448577e-05	3. Juni 2016	i10hpc2	OpenMP
Simulators	0,894693	9,18200297507e-05	5. Juni 2016	i10hpc2	OpenMP
aladeen	1,66087	6,69737633681e-05	2. Juni 2016	i10hpc2	OpenMP
Cassini	1,95788	9,17239791148e-05	1. Juni 2016	i10hpc2	OpenMP
Bhai	2,02865	9,17239791148e-05	1. Juni 2016	i10hpc2	OpenMP

Optimizations

- Implemented
 - Multigrid Algorithm Full Multigrid
 - Smoother SOR solver
 - Parallelization OpenMP

We also tried SSE Vectorization!


```
levelFMG in FMGsetBCs() is :3
u after applying FMG BCs
Grid Entries:
1.09868
                                  0.899454
                                                   0.800243
                                                                    0.707107
                                                                                      0.624811
                                                                                                       0.555893
                                                                                                                        0.5
                                                                                                                                          0.45509
                                                   0.689702
1.06066
                 0.938728
                                  0.81357
                                                                    0.565835
                                                                                      0.497245
                                                                                                       0.428655
                                                                                                                        0.388834
                                                                                                                                         0.353553
1.02909
                 0.878386
                                  0.727687
                                                   0.576125
                                                                    0.424562
                                                                                      0.36299
                                                                                                       0.301418
                                                                                                                        0.272176
                                                                                                                                          0.242934
                                                                                                                                          0.124049
1.00766
                 0.839299
                                  0.664054
                                                   0.438168
                                                                    0.212281
                                                                                      0.181495
                                                                                                       0.150709
                                                                                                                        0.136088
                 0.800211
                                  0.600422
                                                   0.300211
1.00766
                 0.839299
                                  0.664054
                                                   0.438168
                                                                    0.212281
                                                                                      0.181495
                                                                                                       0.150709
                                                                                                                        0.136088
                                                                                                                                          0.124049
1.02909
                 0.878386
                                  0.727687
                                                   0.576125
                                                                    0.424562
                                                                                      0.36299
                                                                                                       0.301418
                                                                                                                        0.272176
                                                                                                                                          0.242934
1.06066
                                                                                                       0.428655
                 0.938728
                                  0.81357
                                                   0.689702
                                                                    0.565835
                                                                                      0.497245
                                                                                                                        0.388834
                                                                                                                                          0.353553
1.09868
                                  0.899454
                                                   0.800243
                                                                    0.707107
                                                                                      0.624811
                                                                                                       0.555893
                                                                                                                        0.5
                                                                                                                                          0.45509
```


boundary

If (!Full Multigrid cycle)

BleedBlue 0,459698 1,94895388093e-05 3. Juni 2016 i10hpc2 Serial

Error plot

BleedBlue 0,459698 1,94895388093e-05 3. Juni 2016 i10hpc2 Serial

Challenges in FMG

Reset array values of coarser levels to zero

Challenges in FMG

Reset array values of coarser levels to zero

Challenges in FMG

Changes in the Interpolation method

Parallelization

- OpenMP
- #pragma omp parallel for schedule(static)
 - MultiGridSolver::applyRBGS_Iter()
 - MultiGridSolver::applyRestriction()
 - MultiGridSolver::applyInterpolation()
 - MultiGridSolver::computeResidual()

Red Black Smoother
Restriction Operator
Interpolation Operator
Residual Computation

Parallelization

OpenMP - Only V - Cycles

• #CPUs (OpenMP option on Verifier) Runtime of MG Solver (seconds)

1	9.48118
2	4.53418
4	2.21559
8	1.10856
16	1.0314
32	0.68125

Serial option on cluster **0.65112**

Parallelization

OpenMP – V - Cycles with FMG

• #CPUs (OpenMP option on Verifier) Runtime of MG Solver (seconds)

5.46958
3.84408
1.9959
0.90064
1.10745
0.542416

Serial option on cluster **0.459698**

Vectorization

- Non- Vectorized code
 - ./mgsolve 12 1 for non Vectorized Code

Your Alias: BleedBlue Wall clock time of applyRBGS_Iter() is 62.596 ms Wall clock time of compute Residual()) is 76.07 ms Wall clock time of Restriction() is 31.649 ms Wall clock time of applyRBGS_Iter() is 60.905 ms Wall clock time of MG execution: 369.419 ms

Vectorization

Vectorized code

• ./mgsolve 12 1 for non Vectorized Code

Your Alias: BleedBlue
Wall clock time of applyRBGS_Iter() is 157.469 seconds
Wall clock time of compute Residual() is 246.207 seconds
Wall clock time of Restriction() in 91.559 seconds
Wall clock time of applyRBGS_Iter() in 157.43 seconds
Wall clock time of MGMSolve() in 1002.68 seconds
Wall clock time of MG execution: 1002.72 ms

Vectorization

Suggestions?

Comparison of Smoothening Parameters

- Variation of serial runtimes on the LSS cluster with the number of presmoothing(nu 1) and post smoothing steps (nu 2) has been studied.
- This study was done using the RBGS Solver for intermediate steps.
- The combinations (1,3) and (2,2) show the least runtimes and took 11 v-cycles each for convergence.

Comparison of Smoothening Parameters (contd.)

nu1	nu2	V-cycles for Convergence	Error	Cluster Serial Runtime (in seconds)
1	1	16	9.17732E-05	6.5414
1	2	13	9.17619E-05	6.48613
1	3	11	9.17927E-05	6.45551
1	4	11	9.17443E-05	7.40991
1	5	10	9.17568E-05	7.66071
2	1	13	9.17693E-05	6.49229
2	2	11	9.17789E-05	6.45584
2	3	10	9.17806E-05	6.79593
2	4	10	9.17454E-05	7.67483
2	5	9	9.17715E-05	7.71864
3	1	12	9.17514E-05	7.0785
3	2	10	9.17885E-05	6.75157
3	3	10	9.17448E-05	7.66405
3	4	9	9.17670E-05	7.65531
3	5	9	9.17462E-05	8.49673
4	1	11	9.17549E-05	7.44863
4	2	10	9.17507E-05	7.66858
4	3	9	9.17707E-05	7.68896
4	4	9	9.17463E-05	8.50611

• A comparative study of convergence rates for different iterative solvers has been done for these two combinations.

Comparison of Different Solvers

V-cycles to convergence, Normalized Runtimes for nu1 =1, nu2 =3					
Solver	V-cycles for Convergence	Error	Serial Runtime (in ms)	Serial Runtime (Normalized)	
Jacobi	16	9.17733E-05	14201.1	1.0000	
Damped Jacobi, w = 1/3	37	9.17984E-05	35672.3	2.5119	
Damped Jacobi, w = 1/2	26	9.17884E-05	25245.8	1.7777	
Damped Jacobi, w = 2/3	21	9.17702E-05	20299.2	1.4294	
Natural Gauss Seidel (NGS)	12	9.17586E-05	10829	0.7625	
SOR on NGS, $w = 4/3$	9	9.17465E-05	9058.38	0.6379	
SOR on NGS, $w = 5/3$	7	9.17399E-05	7003.42	0.4932	
RBGS	11	9.17904E-05	9862.52	0.6945	
SOR on RBGS, $w = 4/3$	8	9.17398E-05	8022.64	0.5649	
SOR on RBGS, w = 5/3	7	9.13771E-05	7017.09	0.4941	
SOR on RBGS, w = 11/6	12	9.1712E-05	12015.7	0.8461	

• SOR on NGS works even better than SOR on RBGS with w = 5/3, but since it can't be parallelized, the SOR on RBGS option is better.

Comparison of Different Solvers (contd.)

V-cycles to convergence, Normalized Runtimes for nu1 =2, nu2 =2					
Solver	V-cycles for	Error	Serial Runtime	Serial Runtime	
Solver	Convergence	EITOI	(in ms)	(Normalized)	
Jacobi	16	9.17713E-05	14243.5	1.0000	
Damped Jacobi, w = 1/3	37	9.17936E-05	35729.2	2.5085	
Damped Jacobi, w = 1/2	26	9.17799E-05	25358	1.7803	
Damped Jacobi, w = 2/3	21	9.17621E-05	20315.2	1.4263	
Nautral Gauss Seidel	12	9.17474E-05	10854.5	0.7621	
SOR on NGS, $w = 4/3$	9	9.17455E-05	9076.22	0.6372	
SOR on NGS, $w = 5/3$	7	9.17352E-05	7018.52	0.4928	
RBGS	11	9.17767E-05	9885.48	0.6940	
SOR on RBGS with $w = 4/3$	7	9.17847E-05	7026.47	0.4933	
SOR on RBGS with $w = 5/3$	9	9.09422E-05	9024.19	0.6336	

- For this case, faster convergence is achieved for SOR on RBGS with w=4/3.
- Damped Jacobi Solver shows worse performance than Jacobi Iteration .
- Thus, nu 1=2,nu 2=2 for SOR on RBGS with w=4/3 seems to be the optimum choice for implementation.

THANK YOU