Cn — Зонные пластинки

На рисунке (а) показана непрозрачная перегородка, в которой проделано небольшое круглое отверстие радиусом OM=1.00мм. В качестве источника света используется водородно-неоновый лазер с длиной волны $\lambda=632.8$ нм, параллельный пучок света которого падает на отверстие слева. Справа на оси симметрии отверстия находится точка P. Волну в этой точке можно рассматривать как комбинацию волн от полуволновых зон. Обозначим $r_0=PO$, тогда сферы с центром в точке P радиусами $r_0+\frac{\lambda}{2},$ $r_0+2\frac{\lambda}{2},$ $r_0+3\frac{\lambda}{2},$... разбивают отверстие на $N\in\mathbb{N}$ колец. Расстояние от точки P до края отверстия M равно $r_0+N\frac{\lambda}{2},$ а кольцо с наименьшим радиусом представляет собой круг. Каждое такое кольцо называется полуволновой зоной, поскольку разность оптический путей от его краёв до точки P равна $\frac{\lambda}{2}$. Ясно, что количество зон N определяется положением точки P.

Рис. 1: рис. (а)

Если N=2n+1, найдите расстояние r_0 до точки P_0 (P_0 - крайняя справа яркая точка, называемая главным фокусом) и расстояние r_1 до точки P_1 (P_1 - тоже яркая точка, располагающаяся левее P_0 , называемая вторичным фокусом).

Пусть теперь N=4, и в первой и третьей волновых зонах помещён прозрачный материал, при прохождении через который оптический путь света увеличивается на $\frac{\lambda}{2}$ (см. рисунок (b)).

Рис. 2: рис. (b)

- $oldsymbol{2.1}$ Найдите расстояние r_0' до главного фокуса P_0' такой пластинки.
- **2.2** Найдите расстояние r'_{-1} до вторичного фокуса P'_{-1} , находящегося непосредственно слева от главного.
- **2.3** Найдите расстояние r'_{+1} до вторичного фокуса P'_{+1} , находящегося непосредственно справа от главного.

Страница 1 из 2 < ∞</p>

Зонную пластинку можно использовать не только для фокусировки света, но и для формирования изображения. Рассмотренный выше процесс фокусировки параллельного пучка эквивалентен ситуации, когда предмет находится на бесконечности, а расстояние до изображения равно фокусному. Пусть теперь точечный источник света расположен слева от O на расстоянии s=3м в точке S на оси симметрии. Как показано на рисунке (c), его изображение обозначим S'.

Рис. 3: рис. (с)

3.1 Найдите OS', соответствующее главному фокусу зонной пластинки. Справедлива ли формула тонкой линзы?

3.2 Если пластинка формирует несколько изображений, на каком расстоянии s' от O формируется изображение, ближайшее к рассмотренному в предыдущем пункте? Чему равно фокусное расстояние f' соответствующего вторичного фокуса (формула тонкой линзы неприменима)?

3.3 Если предмет расположен слева от зонной пластинки на расстоянии $\frac{OP'_0}{2}$ от точки O, найдите расстояния s'' и s''' до главного и вторичного изображений, соответствующих фокусам, рассмотренным в предыдущем пункте (формула тонкой линзы также неприменима). Действительные они или мнимые?