计算机组成与嵌入式系统

--运算器实验

老师: 徐文辉

QQ: 4127164

电话: 18202799815

Email: xuwenhui@hust.edu.cn

实验环境

·Logisim仿真软件

实验内容

- ・快速加法器
- ・乘法器
- ・算术逻辑运算单元

实验一: 快速加法器实验

快速加法器实验

・实验目的

- 掌握串行加法器逻辑实现
 - 能设计8位可控加减法电路
- 掌握快速加法器逻辑实现
 - 能设计4位先行进位电路
 - 能设计4位快速加法器
- 掌握组内先行、组间先行的基本原理
 - 利用4位快速加法器构建16位、32位快速加法器
 - 能分析相关电路延迟

快速加法器实验----8位可控加减法器设计

快速加法器实验----8位可控加减法器设计

减法的避免减少了逻辑器件,控制信号Sub如何产生?

• 并行加法器进位链

$$S_i = X_i \oplus Y_i \oplus C_{i-1}$$
 $C_i = X_i Y_i + (X_i \oplus Y_i) C_{i-1}$
 $G_i = X_i Y_i$ 进位生成函数 Generate
 $P_i = X_i \oplus Y_i$ 进位传递函数 Propagate

$$C_i = G_i + P_i C_{i-1}$$

• 并行加法器进位链

$$C_{1} = \underline{G_{1} + P_{1}C_{0}}$$

$$C_{2} = G_{2} + P_{2}\underline{C_{1}}$$

$$= G_{2} + P_{2} (G_{1} + P_{1}C_{0}) = G_{2} + P_{2}G_{1} + P_{2}P_{1}C_{0}$$

$$C_{3} = G_{3} + P_{3}C_{2}$$

$$= G_{3} + P_{3} (G_{2} + P_{2}G_{1} + P_{2}P_{1}C_{0})$$

$$= G_{3} + P_{3}G_{2} + P_{3}P_{2}G_{1} + P_{3}P_{2}P_{1}C_{0}$$

• 并行加法器进位链

$$C_n = G_n + P_n G_{n-1} + P_n P_{n-1} G_{n-2} + P_n P_{n-1} P_{n-2} G_{n-3} ... + P_n P_{n-1} ... P_1 C_0$$

- 进位输出仅与最低位进位输入Co有关
- 位数越长, 进位链电路复杂度越高
- 通常按照4位一组进行分组运算

$$C_4 = G_4 + P_4G_3 + P_4P_3G_2 + P_4P_3P_2G_1 + P_4P_3P_2P_1C_0$$

2级门电路延迟

快速加法器实验----4位快速加法器设计

快速加法器实验----4位快速加法器设计

快速加法器实验----16位快速加法器设计

快速加法器实验----16位快速加法器设计

①生成P*, G*需3T → ②生成C₃/C₁₂需2T → ③求和需3T

快速加法器实验----32位快速加法器设计

快速加法器实验----32位快速加法器设计

实验二: 乘法器实验

乘法器实验

・实验目的

- 理解阵列乘法器的实现原理
 - 能设计无符号阵列乘法器电路
 - 能设计有符号补码阵列乘法器电路
- 掌握原码、补码一位乘法基本原理
 - 能设计原码、补码一位乘法器
 - 重点掌握寄存器、多路选择器的使用
 - 能设计简单的状态机进行数据通路控制

先计算相加数,然后逐列相加

乘法器实验----6位补码阵列乘法器

乘法器实验----6位补码阵列乘法器

乘法器实验----原码一位乘法器

乘法器实验----原码一位乘法器

乘法器实验----补码一位乘法器

 $\{\Sigma,Y\}=\{\Sigma+(Y_{n+1}-Y_n)[X]_{i},Y\}/2$ 算术右移

乘法器实验----补码一位乘法器

实验三: 算术逻辑运算单元ALU实验

・实验目的

- 掌握定点数加减法溢出检测方法
 - 熟悉Logisim中各种运算组件的使用方法
 - 逻辑运算部件、乘法器、除法器、移位器
 - 熟悉多路选择器的使用
 - 设计32位ALU
 - 禁止使用Logisim中的加法器、减法器
 - 利用已完成的32位加法器、Logisim其他运算组件构建

引脚	输入/输出	位宽	功能描述
Х	输入	32	操作数X
Υ	输入	32	操作数Y
S	输入	4	运算操作码 ALU_OP
R	输出	32	ALU运算结果
R2	输出	32	ALU结果第二部分,用于乘法指令结果高位或除法指令的余数位,其它运算时值为零
OF	输出	1	有符号加减运算溢出标记,其他运算为0
UOF	输出	1	无符号加减运算溢出标记,其它运算时值为零
Equal	输出	1	Equal=(x==y)?1:0, 对所有运算均有效

ALU_OP	十进制	运算功能
0000	0	Result = X << Y 逻辑左移 (Y取低五位) Result2=0
0001	1	Result = X >> Y 算术右移 (Y取低五位) Result2=0
0010	2	Result = X >> Y 逻辑右移(Y取低五位) Result2=0
0011	3	Result = (X * Y) _[31:0] Result2 = (X * Y) _[63:32] 无符号乘法
0100	4	Result = X/Y Result2 = X%Y 无符号除法
0101	5	Result = $X + Y$ (Set OF/UOF)
0110	6	Result = X - Y (Set OF/UOF)
0111	7	Result = X & Y 按位与
1000	8	Result = X Y 按位或
1001	9	Result = X⊕Y 按位异或
1010	10	Result = ~(X Y) 按位或非
1011	11	Result = (X < Y) ? 1:0 有符号比较
1100	12	Result = (X < Y) ? 1:0 无符号比较

请同学们开始实验!