République Tunisienne

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs Session 2020

Concours Mathématiques et Physique Corrigé de l'épreuve de Mathématiques II

Questions préliminaires

1. (a) • Soit $k \in \mathbb{N}$ et $X \in \ker(M - \alpha I_n)^k$. On a

$$(M - \alpha I_n)^{k+1} X = (M - \alpha I_n)(M - \alpha I_n)^k X = 0.$$

Donc $X \in \ker(M - \alpha I_n)^{k+1}$.

• La suite d'entiers naturels $(\dim \ker (M - \alpha I_n)^k)_{k \in \mathbb{N}}$ est croissante et majorée par n, par suite elle est stationnaire. Ainsi,

$$\exists p \in \mathbb{N} / \forall k \geq p, \dim \ker (M - \alpha I_n)^k = \dim \ker (M - \alpha I_n)^p.$$

Puisque pour tout $k \ge p$, $\ker(M - \alpha I_n)^p \subset \ker(M - \alpha I_n)^k$ alors

$$\forall k \geq p, \ker(M - \alpha I_n)^k = \ker(M - \alpha I_n)^p.$$

(b) Montrons le résultat par récurrence.

Soit $i \in \mathbb{N}^*$ et HR(i): $\ker(M - \alpha I_n)^{k_0} = \ker(M - \alpha I_n)^{k_0+i}$.

- Initialisation : Par hypothèse, $\ker(M \alpha I_n)^{k_0} = \ker(M \alpha I_n)^{k_0 + i}$. Donc HR(1) est vraie.
- Hérédité : Soit $i \in \mathbb{N}^*$. Supposons que HR(i) est vraie et montrons que HR(i+1) est vraie.

On sait déjà que $\ker(M - \alpha I_n)^{k_0} \subset \ker(M - \alpha I_n)^{k_0 + i + 1}$.

Réciproquement, si $X \in \ker(M - \alpha I_n)^{k_0 + i + 1}$ alors

$$(M - \alpha I_n)X \in \ker(M - \alpha I_n)^{k_0 + i} = \underset{HR(i)}{=} \ker(M - \alpha I_n)^{k_0}.$$

Ainsi, $X \in \ker(M - \alpha I_n)^{k_0 + 1} = \ker(M - \alpha I_n)^{k_0}$.

(c) Notons $\chi_M(X) = \prod_{\lambda \in Sp_{\mathbb{C}}(M)} (X - \lambda)^{m_{\lambda}}$, le polynôme caractéristique de la matrice M.

D'après le théorème de **Cayley-Hamilton**, $\mathbb{C}^n = \ker \chi_M(M)$. De plus, d'après le lemme de décomposition des noyaux, on a

$$\ker \chi_M(M) = \bigoplus_{\lambda \in Sp_{\mathbb{C}}(M)} \ker (M - \lambda I_n)^{m_{\lambda}}.$$

D'où le résultat.

- (d) Notons $\lambda_1,...,\lambda_p$ les valeurs propres complexes distinctes de M.
 - Supposons que M est diagonalisable dans $M_n(\mathbb{C})$. Dans ce cas, il existe une matrice $Q \in GL_n(\mathbb{C})$ telle que

$$M = Qdiag(\lambda_1 I_{m_{\lambda_1}}, ..., \lambda_p I_{m_{\lambda_n}})Q^{-1}.$$

Ainsi,

$$M - \lambda_1 I_n = Q diag(0_{M_{m_{\lambda_1}}(\mathbb{C})}, (\lambda_2 - \lambda_1) I_{m_{\lambda_2}}, ..., (\lambda_p - \lambda_1) I_{m_{\lambda_p}}) Q^{-1}.$$

et

$$(M - \lambda_1 I_n)^2 = Q diag(0_{M_{m_{\lambda_1}}(\mathbb{C})}, (\lambda_2 - \lambda_1)^2 I_{m_{\lambda_2}}, ..., (\lambda_p - \lambda_1)^2 I_{m_{\lambda_p}})Q^{-1}.$$

D'où, dim ker $(M - \lambda_1 I_n) = m_{\lambda_1} = \dim \ker (M - \lambda_1 I_n)^2$.

Comme $\ker(M - \lambda_1 I_n) \subset \ker(M - \lambda_1 I_n)^2$ alors $\ker(M - \lambda_1 I_n) = \ker(M - \lambda_1 I_n)^2$.

De la même manière, on montre que $\ker(M - \lambda_i I_n) = \ker(M - \lambda_i I_n)^2$ pour tout $i \in [1, p]$.

• Supposons que pour tout $\lambda \in Sp_{\mathbb{C}}(M)$, $\ker(M - \lambda I_n) = \ker(M - \lambda I_n)^2$. D'après la question 1-b, on a :

$$\forall \lambda \in Sp_{\mathbb{C}}(M), \forall k \in \mathbb{N}^*, \ker(M - \lambda I_n) = \ker(M - \lambda I_n)^k.$$

En particulier,

$$\forall \lambda \in Sp_{\mathbb{C}}(M)$$
, $\ker(M - \lambda I_n) = \ker(M - \lambda I_n)^{m_{\lambda}}$.

Ainsi, d'après la question 1-c, on a

$$\mathbb{C}^n = \bigoplus_{\lambda \in Sp_{\mathbb{C}}(M)} \ker(M - \lambda I_n).$$

La matrice M est alors diagonalisable dans $M_n(\mathbb{C})$.

2. (a) Notons $u = \sum_{k=1}^{n} u_k e_k$ et $v = \sum_{k=1}^{n} v_k e_k$. On a

$$< u, v > = \sum_{k=1}^{n} \sum_{l=1}^{n} u_k v_l < e_k, e_l > =^t UMV,$$

avec $U = Mat_B(u)$ et $v = Mat_B(v)$.

- (b) La matrice M est clairement symétrique. Si $U \in \mathbb{R}^n \setminus \{0\}$ alors ${}^tUMU = \langle u, u \rangle > 0$ avec $u \in E \setminus \{0\}$ tel que $U = Mat_B(u)$.
- 3. (a) D'après le théorème spectral, la matrice S est diagonalisable dans $M_n(\mathbb{R})$. On considère alors λ une valeur propre de S et $\underline{U \in \mathbb{R}^n \setminus \{0\}}$ un vecteur propre associé. On a alors

$$\lambda^t UU = ^t USU = 0$$
 et $^t UU \neq 0$.

Donc, $\lambda = 0$.

(b) La matrice S est diagonalisable dans $M_n(\mathbb{R})$ et $Sp_{\mathbb{R}}(S) = \{0\}$, donc S = 0.

Partie I : Cas où A est diagonalisable dans $M_n(\mathbb{C})$ et à valeurs propres imaginaires

A-Exemple

1. On a $A^2 = -I_2$. Ainsi,

$$\forall k \in \mathbb{N}, \forall t \in \mathbb{R}, (tA)^{2k} = (-1)^k t^{2k} I_2 \text{ et } (tA)^{2k+1} = (-1)^k t^{2k+1} A.$$

2. Soit $t \in \mathbb{R}$. On a

$$e^{tA} = \sum_{k=0}^{+\infty} \frac{(tA)^{2k}}{(2k)!} + \sum_{k=0}^{+\infty} \frac{(tA)^{2k+1}}{(2k+1)!} = (\sum_{k=0}^{+\infty} \frac{(-1)^k t^{2k}}{(2k)!})I_2 + (\sum_{k=0}^{+\infty} \frac{(-1)^k t^{2k+1}}{(2k+1)!})A = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$$

3. Soit φ une solution de (E). Il existe alors $X_0 = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{C}^2$ tel que :

$$\forall t \in \mathbb{R}, \varphi(t) = e^{tA} X_0 = \begin{pmatrix} x \cos t - y \sin t \\ x \sin t + y \cos t \end{pmatrix}.$$

Par suite, pour tout $t \in \mathbb{R}$, $\|\varphi(t)\|_{\infty} \le |x| + |y|$. La fonction φ est alors bornée sur \mathbb{R} .

B-Généralisation

1. (a) On a

$$e^{tA}V = (\lim_{N \mapsto +\infty} \sum_{k=0}^{N} \frac{t^k A^k}{k!})V.$$

Comme l'application $M_n(\mathbb{C}) \to \mathbb{C}^n$; $M \mapsto MV$ est continue car elle est linéaire sur un espace de dimension finie, alors

$$(\lim_{N\mapsto +\infty}\sum_{k=0}^{N}\frac{t^{k}A^{k}}{k!})V=\lim_{N\mapsto +\infty}((\sum_{k=0}^{N}\frac{t^{k}A^{k}}{k!})V).$$

Par suite,

$$e^{tA}V = \lim_{N \to +\infty} \left(\sum_{k=0}^{N} \frac{t^k A^k}{k!} V\right) = \lim_{N \to +\infty} \left(\sum_{k=0}^{N} \frac{t^k \lambda^k}{k!} V\right) = \left(\lim_{N \to +\infty} \sum_{k=0}^{N} \frac{t^k \lambda^k}{k!}\right) V = e^{t\lambda}V.$$

(b) Comme dim $S_E = n$, il suffit de montrer que la famille $(\varphi_1, ..., \varphi_n)$ engendre S_E . Pour tout $k \in [\![1, n]\!], \varphi_k \in S_E$.

Soit φ une solution quelconque de (E). Il existe alors $X \in \mathbb{C}^n$ tel que $\varphi(t) = e^{tA}X$. Comme $(V_1,...,V_n)$ engendre \mathbb{C}^n , alors

$$X = \alpha_1 V_1 + \dots + \alpha_n V_n,$$

où $\alpha_1,...,\alpha_n$ sont des scalaires.

Par suite, pour tout $t \in \mathbb{R}$, on a :

$$\varphi(t) = \alpha_1 e^{tA} V_1 + ... + \alpha_n e^{tA} V_n = \alpha_1 e^{t\lambda_1} V_1 + ... + \alpha_n e^{t\lambda_n} V_n.$$

On déduit que

$$\varphi = \alpha_1 \varphi_1 + ... + \alpha_n \varphi_n.$$

D'où le résultat.

(c) Soit φ une solution de (E) et $\|.\|$ une norme quelconque sur \mathbb{C}^n . Il existe des scalaires $\alpha_1,...,\alpha_n$ tels que

$$\forall t \in \mathbb{R}, \varphi(t) = \sum_{k=1}^{n} \alpha_k e^{t\lambda_k} V_k.$$

Ainsi,

$$\forall t \in \mathbb{R}, \|\varphi(t)\| \leq \sum_{k=1}^{n} |\alpha_k| \|V_k\|.$$

La solution φ est alors bornée sur \mathbb{R} .

2. (a) Soit φ la solution de (E) définie par

$$\forall t \in \mathbb{R}, \varphi(t) = e^{tA}V_0 = e^{t\lambda}V_0.$$

Par hypothèse, la fonction φ est bornée sur \mathbb{R} . Comme $\|\varphi(t)\| = e^{tRe(\lambda)}\|V_0\|$, alors $Re(\lambda) = 0$.

(b) i. Pour tout $t \in \mathbb{R}$, on a

$$e^{tA}w = e^{t\lambda}e^{t(A-\lambda I_n)}w = e^{t\lambda}(w + t(A-\lambda I_n)w + \sum_{k=2}^{+\infty}\frac{t^k}{k!}(A-\lambda I_n)^kw) = e^{t\lambda}(w + tv).$$

ii. Par hypothèse, la solution de (E), $\varphi(t)=e^{tA}w$ est bornée sur \mathbb{R} . Si $v\neq 0$ alors

$$\|\varphi(t)\| = e^{tRe(\lambda)}\|w + tv\| = \|w + tv\| \mapsto +\infty, t \to +\infty.$$

Ce qui est absurde. Par suite, $(A - \lambda I_n)w = 0$. On a montré alors que $\ker(A - \lambda I_n)^2 \subset \ker(A - \lambda I_n)$. iii. D'après la question précédente, on a

$$\ker(A - \lambda I_n) \subset \ker(A - \lambda I_n)^2 \subset \ker(A - \lambda I_n).$$

Ainsi,

$$\forall \lambda \in Sp_{\mathbb{C}}(A), \ker(A - \lambda I_n) = \ker(A - \lambda I_n)^2.$$

D'après la question 1-d de la partie préliminaire, la matrice A est alors diagonalisable dans $M_n(\mathbb{C})$.

C-Application

1. On a

$$^{t}e^{A}=^{t}(\lim_{N\mapsto+\infty}\sum_{k=0}^{N}\frac{A^{k}}{k!}).$$

Par continuité de l'application linéaire $M_n(\mathbb{R}) \to M_n(\mathbb{R})$; $M \mapsto^t M$, on a

$${}^{t}e^{A} = \lim_{N \mapsto +\infty} {}^{t}(\sum_{k=0}^{N} \frac{A^{k}}{k!}) = \lim_{N \mapsto +\infty} \sum_{k=0}^{N} \frac{({}^{t}A)^{k}}{k!} = \lim_{N \mapsto +\infty} \sum_{k=0}^{N} \frac{(-A)^{k}}{k!} = e^{-A} = (e^{A})^{-1}.$$

Par conséquent, la matrice e^A est orthogonale.

2. Soit $s \in \mathbb{R}$. On a :

$$||e^{sA}U||^2 = t \overline{U}^t \overline{e^{sA}} e^{sA}U.$$

Comme $sA \in AS_n(\mathbb{R})$ alors $e^{sA} \in O_n(\mathbb{R})$. Ainsi,

$$||e^{sA}U||^2 = t \overline{U}U = ||U||^2.$$

3. D'après la question précédente, si $A \in AS_n(\mathbb{R})$ alors les solutions de (E) sont bornées sur \mathbb{R} . Par suite, d'après la partie précédente, A est diagonalisable dans $M_n(\mathbb{C})$ et $Sp_{\mathbb{C}}(A) \subset \{ia, a \in \mathbb{R}\}.$

Partie II : Cas où les valeurs propres de A sont de parties réelles strictement négatives

1. Soit λ une valeur propre de A et V un vecteur propre associé. On considère φ la solution de (E) définie par

$$\forall t \in \mathbb{R}, \varphi(t) = e^{tA}V = e^{\lambda t}V.$$

Par hypothèse, $e^{tRe(\lambda)}\|V\|=\|\varphi(t)\|\mapsto 0, t\to +\infty$. Ainsi, $Re(\lambda)<0$.

2. (a) On a

$$\forall i \in \llbracket 1, r \rrbracket, \forall k \geq m_i, (A - \lambda_i I_n)^k U_i = 0.$$

Ainsi,

$$e^{t(A-\lambda_i I_n)}U_i = \sum_{k=0}^{m_i-1} \frac{t^k}{k!} (A-\lambda_i I_n)^k U_i + \sum_{k=m_i}^{+\infty} \frac{t^k}{k!} (A-\lambda_i I_n)^k U_i = \sum_{k=0}^{m_i-1} \frac{t^k}{k!} (A-\lambda_i I_n)^k U_i.$$

(b) Pour $t \in \mathbb{R}$, on a :

$$e^{tA}U_i = e^{t(A-\lambda_i I_n) + t\lambda_i I_n}U_i = e^{t\lambda_i} \sum_{k=0}^{m_i-1} \frac{t^k}{k!} (A-\lambda_i I_n)^k U_i.$$

(c) Soit $i \in [1,r]$ et $k \in [0,m_i-1]$.

Comme l'application linéaire $\mathbb{C}^n \to \mathbb{C}^n$; $X \mapsto (A - \lambda_i I_n)^k X$ est continue, alors il existe une constante $C_{i,k} > 0$ telle que :

$$\forall X \in \mathbb{C}^n, \|(A - \lambda_i I_n)^k X\| \le C_{i,k} \|X\|.$$

On pose alors $C = max\{C_{k,i}, i \in [[1,r]], k \in [[0,m_i-1]]\}$.

(d) • Soit $t \in \mathbb{R}$. On a

$$||e^{tA}U_i|| = ||e^{t\lambda_i} \sum_{k=0}^{m_i-1} \frac{t^k}{k!} (A - \lambda_i I_n)^k U_i|| \le e^{tRe(\lambda_i)} \sum_{k=0}^{m_i-1} \frac{|t|^k}{k!} ||(A - \lambda_i I_n)^k U_i||.$$

En utilisant la question précédente, on obtient

$$||e^{tA}U_i|| \le e^{tRe(\lambda_i)}C\sum_{k=0}^{m_i-1} \frac{|t|^k}{k!}||U_i|| \le e^{tRe(\lambda_i)}C\sum_{k=0}^{m_i-1} {m_i-1 \choose k}||t|^k||U_i|| = Ce^{tRe(\lambda_i)}(1+|t|)^{m_i-1}||U_i||$$

• Comme $U = U_1 + ... + U_r$ alors

$$||e^{tA}U|| \le \sum_{i=1}^r ||e^{tA}U_i|| \le \sum_{i=1}^r Ce^{tRe(\lambda_i)} (1+|t|)^{m_i-1} ||U_i||.$$

Comme $m_i \leq n$ pour tout $i \in [1,r]$, alors

$$||e^{tA}U|| \le C(1+|t|)^{n-1}(\sum_{i=1}^r e^{tRe(\lambda_i)})\max_{1\le i\le r}||U_i||.$$

(e) Comme $Re(\lambda_i) < 0$ pour tout $i \in \llbracket 1,r \rrbracket$, alors $\lim_{t \mapsto +\infty} (1+|t|)^{n-1} e^{tRe(\lambda_i)} = 0$.

On déduit alors que

$$\forall U \in \mathbb{C}^n$$
, $\lim_{t \to +\infty} ||e^{tA}U|| = 0$.

3. (a) La fonction $t \mapsto (1+|t|)^{n-1}e^{tRe(\lambda)}e^{ta}$ est continue sur \mathbb{R}_+ et tend vers 0 lorsque t tend vers $+\infty$. Donc elle est bornée sur \mathbb{R}_+ .

(b) D'après la question précédente, il existe une constante $C_1 > 0$ telle que

$$\forall t \geq 0, (1+|t|)^{n-1} (\sum_{i=1}^r e^{tRe(\lambda_i)}) = (1+|t|)^{n-1} (\sum_{i=1}^r e^{tRe(\lambda_i)}) e^{ta} e^{-ta} \leq C_1 e^{-at}.$$

Par suite,

$$\forall U \in \mathbb{C}^n, \forall t \in \mathbb{R}_+, ||e^{tA}U|| \leq C'e^{-at},$$

avec $C' = CC_1$.

Partie III : Application à l'équation de Lyapunov

1. Soit $(U, V) \in \mathbb{R}^n \times \mathbb{R}^n$. Soit a > 0 vérifiant $Re(\lambda) < -a$ pour tout $\lambda \in Sp_C(A)$. D'après la partie précédente, on a

$$||e^{tA}U|| \le C_1 e^{-at}$$
 et $||e^{tA}V|| \le C_2 e^{-at}$

où C_1 et C_2 sont des constantes.

Ainsi, d'après l'inégalité de Cauchy-Schwarz, on a

$$|\langle e^{tA}U, e^{tA}V \rangle| \le ||e^{tA}U|| \cdot ||e^{tA}V|| \le C_1 C_2 e^{-2at}$$

Comme la fonction $t\mapsto e^{-2at}$ est continue sur $[0,+\infty[$ et $e^{-2at}\underset{t\mapsto +\infty}{=} o\left(\frac{1}{t^2}\right)$ alors elle est intégrable sur $[0,+\infty[$.

On conclut alors que $t \mapsto \langle e^{tA}U, e^{tA}V \rangle$ est intégrable sur $[0, +\infty[$ et que Φ est bien définie.

- 2. Il est clair que Φ est une forme bilinéaire symétrique positive.
 - Soit $U \in \mathbb{R}^n$ tel que $\Phi(U,U) = 0$. Dans ce cas, la fonction $t \mapsto ||e^{tA}U||^2$ est continue, positive et d'intégrale nulle, donc pour tout $t \ge 0$, $e^{tA}U = 0$. En choisissant t = 0, on trouve que U = 0. Ainsi, Φ est définie.

On conclut alors que Φ est un produit scalaire sur \mathbb{R}^n .

3. • Première méthode

Comme Φ est bilinéaire et $Id_{\mathbb{R}^n}: U \mapsto U$ est différentiable alors q est différentiable et on a : $\forall U \in \mathbb{R}^n, \forall H \in \mathbb{R}^n$,

$$dq(U).H = \Phi(dI_{\mathbb{R}^n}(U).H, U) + \Phi(U, dI_{\mathbb{R}^n}(U).H) = \Phi(H, U) + \Phi(U, H) = 2\Phi(U, H).$$

• Deuxième méthode

Soit $\psi : \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^n$, $U \mapsto (U, U)$. Comme $q = \Phi \circ \psi$, Φ et ψ sont différentiables alors q est aussi différentiable et on a : $\forall U \in \mathbb{R}^n$, $\forall H \in \mathbb{R}^n$,

$$dq(U).H = d\Phi(\psi(U)).(d\psi(U).H) = d\Phi(U,U)(H,H) = \Phi(U,H) + \Phi(H,U) = 2\Phi(U,H).$$

• Troisième méthode

Soit $(U, H) \in \mathbb{R}^n \times \mathbb{R}^n$. On a :

$$q(U + H) - q(U) = \Phi(U, H) + \Phi(H, U) + \Phi(H, H).$$

Par équivalence des normes en dimension finie, $\Phi(H, H) \leq \beta \|H\|^2$. Par suite,

$$\Phi(H,H) \underset{H \mapsto 0}{=} o(\|H\|).$$

On conclut que q est différentiable et que $dq(U).H = \Phi(U,H) + \Phi(H,U) = 2\Phi(U,H)$.

4. Pour tout $t \in \mathbb{R}$, $f(t) = \langle e^{tA}U, e^{tA}U \rangle$. Comme la fonction $t \mapsto e^{tA}U$ est dérivable sur \mathbb{R} et sa dérivée est la fonction $t \mapsto Ae^{tA}U$ alors f est dérivable sur \mathbb{R} et on a :

$$\forall t \in \mathbb{R}, f'(t) = < Ae^{tA}U, e^{tA}U > + < e^{tA}U, Ae^{tA}U > = 2 < Ae^{tA}U, e^{tA}U > .$$

5. On sait que $0 \le f(t) \le Ce^{-2ta}$ avec C > 0 et a > 0. Par suite, $\lim_{t \to +\infty} f(t) = 0$. On déduit alors que :

$$2\Phi(U,AU) = \int_0^{+\infty} f'(t)dt = -f(0) = -\|U\|^2.$$

6. (a) On munit \mathbb{R}^n du produit scalaire Φ . En appliquant la deuxième question de la partie préliminaire, on a :

$$\forall (U,V) \in \mathbb{R}^n \times \mathbb{R}^n, \Phi(U,V) = ^t UBV.$$

En particulier, pour tout $U \in \mathbb{R}^n$, on a

$$\Phi(U,AU) = ^t UBAU.$$

Par suite, pour tout $U \in \mathbb{R}^n$, on a

$$2\Phi(U,AU) = \Phi(U,AU) + \Phi(AU,U) = {}^{t}UBAU + {}^{t}(AU)BU = {}^{t}UBAU + {}^{t}U^{t}ABU.$$

On conclut que,
$$-^tUU = -\|U\|^2 = 2\Phi(U,AU) = ^tUBAU + ^tU^tABU$$
.

(b) Toujours d'après la question 2-a de la partie préliminaire, la matrice $B \in S_n^{++}$. D'après la question précédente, on a :

$$\forall U \in \mathbb{R}^{n,t} U(BA + AB + I_n)U = 0.$$

Comme la matrice $BA +^t AB + I_n \in S_n(\mathbb{R})$ alors d'après la question 2-b de la partie préliminaire, $BA +^t AB + I_n = 0$. D'où le résultat.