考試日期: 2025/09/17

學號:

Quiz 1

1. 請框出答案. 2. 不可使用手機、計算器,禁止作弊!

1. For the following, mark True or False. Justify your answer with a graph if true, or with a counterexample if false. (若為真,提供圖例顯示;若為否,提供反例)

True False If \vec{a} and \vec{b} are two vectors in standard position in \mathbb{R}^n , then the arrow from the tip of \vec{b} to the tip of \vec{a} is a translated repersentation of the vector $\vec{b} - \vec{a}$.

Solution:

Similar with 1-1 problem 39, (d), (e). Should be " $\overrightarrow{a} - \overrightarrow{b}$ ".

Let
$$\vec{a} = [3, 2], \vec{b} = [1, 3]$$

 $\vec{b} - \vec{a} = [-2, 1]$
 $\vec{a} - \vec{b} = [2, -1]$

- 2. Given $\vec{u} = [1, 2], \ \vec{v} = [5, 1], \ \vec{w} = [13, 8].$
 - (a) Is $\vec{w} \in sp(\vec{u}, \vec{v})$? True False.
 - (b) If so, find $r = \underline{3}$, $s = \underline{2}$ $\in \mathbb{R}$ such that $\overrightarrow{w} = r\overrightarrow{u} + s\overrightarrow{u}$.

Solution:

Assume there exist $r, s \in \mathbb{R}$, such that $\overrightarrow{w} = r\overrightarrow{u} + s\overrightarrow{u}$.

$$[13,8] = r[1,2] + s[5,1] = [r+5s,\ 2r+s]$$

$$\begin{cases} 13 = r + 5s \\ 8 = 2r + s \end{cases} \Rightarrow r = 3, \quad s = 2$$

3. Let \vec{v} and \vec{w} are any two vectors in \mathbb{R}^n , and let r be any scalar in \mathbb{R} . Please prove the following property.

$$r(\overrightarrow{v} + \overrightarrow{w}) = r\overrightarrow{w} + r\overrightarrow{v}.$$

Solution:

Similar with example 4 from 1-1. Notice that the order of \vec{v} and \vec{u} is not the same on both sides of the equation.

Let $\vec{v} = [v_1, v_2, ..., v_n]$ and $\vec{w} = [w_1, w_2, ..., w_n]$.

$$\begin{split} LHS &= r(\overrightarrow{v} + \overrightarrow{w}) \\ &= r([v_1, \ v_2, ..., \ v_n] + [w_1, \ w_2, ..., \ w_n]) \\ &= r[v_1 + w_1, \ v_2 + w_2, ..., \ v_n + w_n] \\ &= [r(v_1 + w_1), \ r(v_2 + w_2), ..., \ r(v_n + w_n)] \\ &= [rv_1 + rw_1, \ rv_2 + rw_2, ..., \ rv_n + rw_n] \\ &= [rv_1, \ rv_2, ..., \ rv_n] + [rw_1, \ rw_2, ..., \ rw_n] \\ &= [rv_1, \ v_2, ..., \ v_n] + r[w_1, \ w_2, ..., \ w_n] \\ &= r\overrightarrow{v} + r\overrightarrow{w} \\ &= r\overrightarrow{w} + r\overrightarrow{v} = RHS \end{split}$$
 by A2

Definition 1.1: Vector Algebra in \mathbb{R}^n

Let $\mathbf{v} = [v_1, v_2, \dots, v_n]$ and $\mathbf{w} = [w_1, w_2, \dots, w_n]$ be vectors in \mathbb{R}^n . Let r is any scalar. We define the following:

Vector addition/subtraction: $\mathbf{v} \pm \mathbf{w} = [v_1 \pm w_1, v_2 \pm w_2, \dots, v_n \pm w_n]$

Scalar multiplication: $r\mathbf{v} = [rv_1, rv_2, \dots, rv_n]$

Theorem 1.1: Properties of Vector Algebra in \mathbb{R}^n

Let \mathbf{u}, \mathbf{v} , and \mathbf{w} be any vectors in \mathbb{R}^n , and let r and s be any scalars in \mathbb{R} .

Properties of Vector Addition

A1:
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 A3: $\mathbf{0} + \mathbf{v} = \mathbf{v}$ A2: $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$ A4: $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$

Properties Involving Scalar Multiplication

S1:
$$r(\mathbf{v} + \mathbf{w}) = r\mathbf{v} + r\mathbf{w}$$
 S3: $r(s\mathbf{v}) = (rs)\mathbf{v}$ S2: $(r+s)\mathbf{v} = r\mathbf{v} + s\mathbf{v}$ S4: $1\mathbf{v} = \mathbf{v}$