SESA3029 Aerothermodynamics

Lecture 2.3
Shock interactions:
regular reflections,
Mach reflections and
viscous effects

M=2 Separation of axisymmetric model from its support. Album of Fluid Motion.

Regular reflection

Analysis of regular reflection

Example θ =10°, M₁=3.6, p₁=40 kPa

- 1. From M_1 and θ , find β_1 from shock calculator
- 2. Set $M_{n1}=M_1\sin\beta_1$ and use NST to get M_{n2} , p_2/p_1 , etc.
- 3. Find $M_2=M_{n2}/\sin(\beta_1-\theta)$

$$\beta_1 = 23.9^{\circ}$$

$$M_{n1}=1.459$$
, $M_{n2}=0.716$ $p_2/p_1=2.317$

$$M_2 = 2.98$$

4. Flow turning angle on upper boundary is also θ (to bring streams parallel again). Hence, from M₂ and θ , find β_2 from OSC

$$\beta_2 = 27.5^{\circ}$$

5.
$$M_{n2} = M_2 \sin \beta_2$$

$$M_{n2}$$
=1.376

6. M_{n3} , and p_3/p_2 from NST

$$M_{n3} = 0.750 p_3/p_2 = 2.042$$

7.
$$M_3 = M_{n3} / \sin(\beta_2 - \theta)$$

$$M_3$$
=2.49, p_3 =189kPa

Note that $\phi = \beta_2 - \theta = 17.5^\circ$ is not equal to β_1 (24°), hence the reflection is not specular

Shock/boundary-layer interaction

Returning to inviscid flow, if $\theta > \theta_{max}$ for M_1 we know we get a detached shock system (last lecture)

Another possibility is if $\theta < \theta_{max}$ for M_1 but $\theta > \theta_{max}$ for M_2 i.e. if the reflected shock can't exist as an oblique shock solution

In this case we get what is known as a Mach reflection

Curved shocks near the triple point T

Normal shock near wall, called Mach stem

Across a slip line (contact discontinuity) the pressure and flow direction must match, but the velocity, Mach number, temperature and density can be different

Solution is dependent on downstream conditions

Find flow conditions in 2A and 2B by usual oblique shock method

Conditions in 3A are not equal to 3B - in general we will need a slip line

Turning angle from 2A to 3A is θ_A - Δ

Turning angle from 2B to 3B is $\theta_B + \Delta$

Adjust Δ until $p_{3A}=p_{3B}$

Solution $\Delta=5.85^{\circ}$

Aside: How does entropy vary across a shock wave?

Gibbs relationship:

$$dh = c_p dT$$
 $pv = RT$

Rearrange. Divide by T, perform substitutions

Integrate across shock

$$Tds = dh - vdp$$

$$ds = c_p \frac{dT}{T} - R \frac{dp}{p}$$

$$s_2 - s_1 = c_p \ln \left(\frac{T_2}{T_1}\right) - R \ln \left(\frac{p_2}{p_1}\right)$$

Plot entropy change vs. normal Mach number

Deductions from the 2nd Law of Thermodynamics for shock waves

- 1) M_1 cannot be less than 1
- -Entropy cannot decrease in adiabatic flow
- -Shocks cannot exist in subsonic flow

2) For
$$M_1 > 1$$
, $p_2/p_1 > 1$

- -Shock waves are compressive
- -No such thing as an expansion shock
- 3) Isentropic flow only valid for M_1 very close to 1
- -i.e. weak expansions and compressions (sound waves)
- 4) Entropy increase across shock waves is due to internal dissipation, which is <u>irreversible</u>