EMOTION CLASSIFICATION

TABLE OF CONTENTS

01	DATASET OVERVIEW
02	SPLITTED DATA
03	TEXT NORMALIZATION
04	TF-IDF MODELS
05	BoW MODELS
06	BoW HYPERPARAMETER TUNING
07	Word2Vec MODELS
80	Word2Vec HYPERPARAMETER TUNING
09	GloVe LSTM
10	CONCLUSION

11

THABK YOU

DATASET OVERVIEW

Top words for Happiness

Top words for Angriness

Top words for Sadness

The dataset contains more categories of Happiness followed by Angriness and Sadness. This implies that when humans are happy, they tend to send longer and more messages compared to when they are angry or sad.

SPLITTED DATA

Comparison of Sizes of Training Set, Validation Set, and Test Set

TEXT NORMALIZATION

mormalized words for Training

mormalized words for Validation

mormalized words for Validation

TF-IDF MODELS

	Classifier	Training accuracy	Validation accuracy
8	XGBoost	0.933229	0.716981
0	MultinomialNB	0.783975	0.704403
5	Random Forest	0.970935	0.698113
1	Logistic Regression	0.817753	0.691824
6	SGD Classifier	0.865672	0.691824
4	Linear SVM	0.819324	0.685535
7	Ridge Classifier	0.828751	0.679245
3	Decision Tree	0.970935	0.666667
9	AdaBoost	0.695994	0.660377
2	KNN Classifier	0.545954	0.559748

XGBoost performed well on Training data but not on validation data, it is clearly Overfitting!!

BoW MODELS

	Classifier	Training accuracy	Validation accuracy
8	XGBoost	0.882954	0.729560
3	Decision Tree	0.975648	0.723270
5	Random Forest	0.975648	0.723270
0	MultinomialNB	0.786332	0.704403
6	SGD Classifier	0.901021	0.704403
1	Logistic Regression	0.857031	0.691824
7	Ridge Classifier	0.853888	0.679245
9	AdaBoost	0.686567	0.672956
4	Linear SVM	0.868028	0.641509
2	KNN Classifier	0.449332	0.452830

Comparing the results of TF-IDF vs. BoW, models fitted using CountVectorization performed better. Therefore, we will only perform hyperparameter tuning on the bestperforming model, which is XGBoost using CountVectorizer.

BOW HYPERPARAMETER TUNING

Classification report for training set

	precision	recall	f1-score	support	
happiness	0.76	0.87	0.81	561	
angriness	0.79	0.72	0.75	401	
sadness	0.79	0.66	0.72	311	
accuracy			0.77	1273	
macro avg	0.78	0.75	0.76	1273	
weighted avg	0.78	0.77	0.77	1273	

Classification report for test set

	precision	recall	f1-score	support
happiness	0.72	0.81	0.76	69
angriness	0.71	0.59	0.64	46
sadness	0.67	0.66	0.67	44
accuracy			0.70	159
macro avg	0.70	0.69	0.69	159
weighted avg	0.70	0.70	0.70	159

The model performs well on the training set and reasonably on the test set, indicating good generalization.

"Happiness" is easier to identify, while "angriness" and "sadness" are more challenging. The slight drop in test accuracy suggests some overfitting, but overall, the results are promising.

Word2Vec MODELS

	Classifier	Training accuracy	Validation accuracy
3	Linear SVM	0.752553	0.729560
7	XGBoost	0.993716	0.723270
0	Logistic Regression	0.750196	0.716981
5	SGD Classifier	0.805185	0.716981
6	Ridge Classifier	0.787117	0.704403
8	AdaBoost	0.742341	0.679245
4	Random Forest	0.993716	0.660377
1	KNN Classifier	0.593873	0.654088
2	Decision Tree	0.993716	0.446541

Linear SVM performed better compared to others

Word2Vec HYPERPARAMETER TUNING

Classification report for training set

	precision	recall	f1-score	support
happiness	0.76	0.87	0.81	561
angriness	0.74	0.78	0.76	401
sadness	0.77	0.51	0.61	311
accuracy			0.75	1273
macro avg	0.75	0.72	0.73	1273
weighted avg	0.75	0.75	0.75	1273

Classification	report	for	test	set
----------------	--------	-----	------	-----

	precision	recall	f1-score	support
happiness	0.76	0.87	0.81	69
angriness	0.67	0.72	0.69	46
_	0.07	0.72	0.03	
sadness	0.74	0.52	0.61	44
accuracy			0.73	159
macro avg	0.72	0.70	0.71	159
weighted avg	0.73	0.73	0.72	159
0				

After doing hypertunning, the Linear SVM model is performing well, got accuracy: 73%, minimal overfitting.

GloVe LSTM

Model: "sequential_6"

Layer (type)	Output Shape	Param #
embedding_6 (Embedding)	(None, 39, 100)	147700
bidirectional_6 (Bidirectional)	(None, 39, 256)	234496
<pre>global_max_pooling1d_6 (Gl obalMaxPooling1D)</pre>	(None, 256)	0
<pre>batch_normalization_6 (Bat chNormalization)</pre>	(None, 256)	1024
dropout_18 (Dropout)	(None, 256)	0
dense_18 (Dense)	(None, 128)	32896
dropout_19 (Dropout)	(None, 128)	0
dense_19 (Dense)	(None, 80)	10320
dropout_20 (Dropout)	(None, 80)	0
dense_20 (Dense)	(None, 3)	243

Total params: 426679 (1.63 MB) Trainable params: 426167 (1.63 MB)

Non-trainable params: 512 (2.00 KB)

The performance is not that good, given our small dataset and the need for more data for optimal deep learning performance, we plan to collect more data to improve emotion prediction and pattern identification.

CONCLUSION

	model_name	training_accuracy	validation_accuracy	is_overfitting
0	XGBoost_tfidf	0.93	0.72	Yes
1	XGBoost_hyper_bow	0.77	0.70	No
2	Linear_svm_hyper_w2v	0.75	0.73	No
3	Lstm_glove	0.87	0.67	Yes

The Linear SVM with Word2Vec is the best model, showing minimal overfitting and a high validation accuracy of 73%, effectively predicting emotions on new data. Despite the challenge of Indian users typing native language slang in English, such as "Khatarnaak" meaning "angry," we achieved 73% accuracy.

THANK YOU

Thank you for reading! I hope your emotion is "happy" after going through this report! $\stackrel{\smile}{\circ}$