Some basic concepts underlying computer architecture

Hoda Roodaki hroodaki@kntu.ac.ir

Some basic concepts underlying computer architecture

NUMBERING AND CODING SYSTEMS

- Decimal and binary number systems
- Converting from decimal to binary
- Converting from binary to decimal
- Hexadecimal system
- Converting between binary and Hex
- Converting from decimal to hex
- Converting from hex to decimal
- Addition of binary and hex numbers
- 2's complement
- Addition and subtraction of hex numbers
- ASCII code

Decimal and binary number systems

- The binary system is used in computers because 1 and 0 represent the two voltage levels of on and off.
 - Whereas in base 10 there are 10 distinct symbols,
 0, 1, 2, ..., 9, in base 2 there are only two, 0 and 1,
 with which to generate numbers.
 - Base 10 contains digits 0 through 9; binary contains digits 0 and 1 only.
 - These two binary digits, 0 and 1, are commonly referred to as bits.

Converting from decimal to binary

- One method of converting from decimal to binary is to divide the decimal number by 2 repeatedly, keeping track of the remainders.
- This process continues until the quotient becomes zero.
- The remainders are then written in reverse order to obtain the binary number.

Convert 25₁₀ to binary.

Solution:

		Quotient	Rer	nainder	•		
25/2	=	12	1	LSB	(least	significant	bit)
12/2	=	6	0				
6/2	=	3	0				
3/2	=	1	1				
1/2	=	0	1	MSB	(most	significant	bit)

Therefore, $25_{10} = 11001_2$.

Converting from binary to decimal

 To convert from binary to decimal, it is important to understand the concept of weight associated with each digit position.

1101012	=			Decimal	Binary
1×2^{0}	=	1 × 1	=	1	1
0×2^{1}	=	0 × 2	=	0	00
1×2^{2}	=	1×4	=	4	100
0×2^{3}	=	0 × 8	=	0	0000
1×2^{4}	=	1×16	=	16	10000
1×2^{5}	=	1×32		<u>32</u>	<u>100000</u>
				53	110101

Convert 110012 to decimal.

Weight:	16	8	4	2	1
Digits:	1	1	0	0	1
Sum:	16+	8 +	0 +	0 +	$1 = 25_{10}$

Hexadecimal system

- Base 16, or the hexadecimal system as it is called in computer literature, is used as a convenient representation of binary numbers.
- The binary system has 2 digits, 0 and 1.
- The base 10 system has 10 digits, 0 through 9.
- The hexadecimal (base 16) system has 16 digits.
 - In base 16, the first 10 digits, 0 to 9, are the same as in decimal, and for the remaining six digits, the letters A, B, C, D, E, and F are used.

Hexadecimal system

Decimal	Binary	Hex
0 1 2 3 4 5 6 7 8 9	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Converting between binary and hex

 To represent a binary number as its equivalent hexadecimal number, start from the right and group 4 bits at a time, replacing each 4-bit binary number with its hex equivalent.

Represent binary 100111110101 in hex.

Solution:

First the number is grouped into sets of 4 bits: 1001 1111 0101. Then each group of 4 bits is replaced with its hex equivalent:

Therefore, $100111110101_2 = 9F5$ hexadecimal.

Convert hex 29B to binary.

Converting from decimal to hex

- Converting from decimal to hex could be approached in two ways:
 - Convert to binary first and then convert to hex.
 - Convert directly from decimal to hex by repeated division, keeping track of the remainders.

(a) Convert 45₁₀ to hex.

$$45_{10} = 0010 \ 1101_2 = 2D \ \text{hex}$$

Converting from hex to decimal

- Conversion from hex to decimal can also be approached in two ways:
 - Convert from hex to binary and then to decimal.
 Example 0-7 demonstrates this method of converting from hex to decimal.
 - Convert directly from hex to decimal by summing the weight of all digits

Converting from hex to decimal

Convert the following hexadecimal numbers to decimal.

Addition of binary and hex numbers

Add the following binary numbers. Check against their decimal equivalents.

Solution:

	Binary	Decima
	1101	13
+	<u>1001</u>	<u>9</u>
	10110	22

Perform hex addition: 23D9 + 94BE.

23D9 LSD:
$$9 + 14 = 23$$
 $23 - 16 = 7$ with a carry $1 + 13 + 11 = 25$ $25 - 16 = 9$ with a carry $1 + 3 + 4 = 8$ MSD: $2 + 9 = B$

2's complement

- To get the 2 's complement of a binary number, invert all the bits and then add 1 to the result.
- Inverting the bits is simply a matter of changing all 0s to 1s and 1s to 0s. This is called the 1s complement.

Subtraction of hex numbers

Perform hex subtraction: 59F - 2B8.

ASCII code

- Because all information in the computer must be represented by 0s and 1s, binary patterns must be assigned to letters and other characters.
- In the 1960s a standard representation called *ASCII* (American Standard Code for Information Interchange) was established.
- The ASCII code assigns binary patterns for numbers 0 to 9, all the letters of the English alphabet, both uppercase (capital) and lower-case, and many control codes and punctuation marks.
- The great advantage of this system is that it is used by most computers, so that information can be shared among computers.
- The ASCII system uses a total of 7 bits to represent each code.