1 Spoločné body algebraických rovinných kriviek. Rezultant.

Nech sú v projektívnej rovine P_2 dané algebraické rovinné krivky ${\bf X}$ a ${\bf Y}$ rovnicami :

$$\mathbf{X} : F(x_0, x_1, x_2) = 0, \ \deg \mathbf{X} = m,$$

 $\mathbf{Y} : G(x_0, x_1, x_2) = 0, \ \deg \mathbf{Y} = n.$

Hľadajme spoločné body týchto kriviek. Bez obmedzenia všeobecnosti môžeme predpokladať že bod $(o_2)=(0,0,1)$ nie je bodom žiadnej z uvedených kriviek. Pre definujúce formy F a G to znamená, že majú nasledovný tvar

$$F = u_0 x_2^m + u_1 x_2^{m-1} + \dots + u_{m-1} x_2 + u_m, \ u_i = u_i(x_0, x_1), \deg u_i = i, \ u_0 \neq 0,$$

$$G = v_0 x_2^n + v_1 x_2^{n-1} + \dots + v_{n-1} x_2 + v_n, \quad v_i = v_i(x_0, x_1), \quad \deg v_i = i, \quad v_0 \neq 0$$

Nech bod $(a) = (a_0, a_1, a_2) \in \mathbf{X} \cap \mathbf{Y}$, teda trojica (a_0, a_1, a_2) je riešením nasledovnej dvojice homogénnych rovníc

$$F(x_0, x_1, x_2) = 0$$
 a $G(x_0, x_1, x_2) = 0$.

Vynásobme prvú rovnicu postupne výrazom $x_2^{n-1},x_2^{n-2},...,x_2,1$ a druhú rovnicu výrazom $x_2^{m-1},x_2^{m-2},...,x_2,1$. Dostávame n+m homogénnych rovníc o n+m neurčitých $x_2^{m+n-1},x_2^{m+n-2},...,x_2,1$ tvaru

$$\begin{array}{rcl} u_0 x_2^{m+n-1} + u_1 x_2^{m+n-2} + \dots & + u_m x_2^{n-1} \dots & = & 0 \\ u_0 x_2^{m+n-2} + u_1 x_2^{m+n-3} + \dots & + u_m x_2^{n-2} \dots & = & 0 \end{array}$$

$$u_0 x_2^m + u_1 x_2^{m-1} + \dots + u_{m-1} x_2 + u_m = 0$$

$$v_0 x_2^{m+n-1} + v_1 x_2^{m+n-2} + \dots + v_n x_2^{m-1} \dots + v_n x_2^{m-1} \dots = 0$$

$$v_0 x_2^{m+n-2} + v_1 x_2^{m+n-3} + \dots + v_n x_2^{n-2} \dots = 0$$

$$v_0 x_2^n + v_1 x_2^{n-1} + \dots + v_{m-1} x_2 + v_n = 0$$

Keďže nenulová trojica (a_0, a_1, a_2) je prirodzene riešením aj tohoto systému, je posledný systém rovníc riešiteľný, teda determinant matice systému je rovný nule. Označme tento determinant $\mathbf{R}(\mathbf{X}, \mathbf{Y})$.

Definícia 1 Determinant $\mathbf{R}(\mathbf{X}, \mathbf{Y})$ nazývame **rezultantom** kriviek \mathbf{X} a \mathbf{Y} vyhľadom na premennú x_2 .

Platí teda

O rezultante kriviek ${\bf X}$ a ${\bf Y}$ platí nasledujúca veta.

Veta 2 Rezultant $\mathbf{R}(\mathbf{X}, \mathbf{Y})$ je alebo identicky rovný nule, alebom je to homogénny polynóm v x_0, x_1 stupňa m.n, teda $\mathbf{R}(\mathbf{X}, \mathbf{Y}) = \mathbf{R}(x_0, x_1)$.

 $\mathbf{D\hat{o}kaz}$. Ľubovoľný nenulový člen z $\mathbf{R}(\mathbf{X},\mathbf{Y})$ má tvar

$$L = u_{r_1 s_1}.u_{r_2 s_2}...u_{r_n s_n}.v_{r_{n+1} s_{n+1}}.v_{r_{n+2} s_{n+2}}...v_{r_{n+m} s_{n+m}},$$

pričom $(r_1,...,r_n,r_{n+1},...,r_{n+m})$ je permutácia množiny $(1,...,n,n+1,...,n+m),(s_1,....,r_{n+m})$ je permutácia množiny (1,...,n+m)

Pre stupeň v L vystupujúcich členov platí

$$\deg u_{r_i s_i} = s_i - r_i, \ \deg v_{r_{n+i} s_{n+i}} = (s_{n+i} - r_{n+i}) + m, \ \text{teda}$$

$$\deg L = \sum_{i=1}^{n} (s_i - r_i) + \sum_{i=1}^{m} ((s_{n+i} - r_{n+i}) + m = m.n$$

O význame rezultantu pre hľadanie spoločných bodov kriviek ${\bf X}$ a ${\bf Y}$ hovorí nasledujúca veta.

Veta 3 Ak bod $(a) = (a_0, a_1, a_2)$ je spoločným bodom kriviek \mathbf{X} a \mathbf{Y} , potom $\mathbf{R}(a_0, a_1) = 0$. Ak $\mathbf{R}(b_0, b_1) = 0$ pre určité $b_0, b_1 \in k$, potom existuje $b_2 \in k$ také, že pre bod $(b) = (b_0, b_1, b_2)$ platí $(b) \in \mathbf{X} \cap \mathbf{Y}$.

Dôkaz. Prvá časť vety je dokázaná vyššie. Nech tera
z $\mathbf{R}(b_0,b_1)=0$ pre určité $b_0,b_1\in k$. Existuje preto nenulová n+m tica $(k_1,k_2,...,k_n,k_{n+1},...,k_n+m)$ prvkov poľa k, že platí :

$$k_1 u_0 + \dots + k_{n+1} v_0 = 0$$

 $k_1 u_1 + k_2 u_0 + \dots + k_{n+1} v_1 + k_{n+2} v_0 = 0$

 $k_n u_n + \dots + k_{n+m} v_m = 0$

Vynásobme postupne prvú rovnicu členom x_2^{m+n-1} , druhú členom x_2^{m+n-2} , poslednú jednotkou a takto vynásobené ich spočítajme. Po jednoduchých úpravách dostávame

$$F(b_0, b_1, x_2)(k_1 x_2^{n-1} + \dots + k_n) = -G(b_0, b_1, x_2)(k_{n+1} x_2^{m-1} + \dots + k_{n+m})$$

Polynóm $F(b_0,b_1,x_2)$ (jednej neurčitej x_2 stupňa m nad algebraicky uzavretým polom) sa dá vyjadriť ako súčin m (nie nutne rôznych) lineárnych činiteľov. Každý z nich musí vystupovať aj v rozklade polynómu na pravej strane rovnosti, teda minimálne jeden v rozklade polynómu $G(b_0,b_1,x_2)$. Existuje teda prvok $b_2 \in k$ taký, že $F(b_0,b_1,b_2) = G(b_0,b_1,b_2) = 0$.

Príklad 4 Hľadajme spoločné body strofoidy a paraboly, teda algebraikých rovinných kriviek daných rovnicami (nehomogénnymi, resp. homogénnymi)

$$X$$
: $x^3 + x^2 - y^2 = 0$, $x_1^3 + x_0 x_1^2 - x_0 x_2^2 = 0$
 Y : $x^2 - y = 0$, $x_1^2 - x_0 x_2 = 0$

Vidíme, že bod $(0,1,0) \notin \mathbf{X} \ (\notin \mathbf{Y})$. Môžeme teda vyjadriť rezulnant $\mathbf{R}(\mathbf{X},\mathbf{Y})$ vzhľadom na premennú x_1 .

$$\mathbf{R}(\mathbf{X}, \mathbf{Y}) = \begin{vmatrix} 1 & x_0 & 0 & -x_0 x_2^2 & 0 \\ 0 & 1 & x_0 & 0 & -x_0 x_2^2 \\ 1 & 0 & -x_0 x_2 & 0 & 0 \\ 0 & 1 & 0 & -x_0 x_2 & 0 \\ 0 & 0 & 1 & 0 & -x_0 x_2 \end{vmatrix} = (x_0 x_2)^2 (x_0^2 - 3x_0 x_2 + x_2^2).$$

Koreňmi rezultantu sú teda nasledovné dvojice (x_0, x_2) .

$$egin{aligned} &(1,0)-dvojnásobný\ &(0,1)-dvojnásobný\ &(1,rac{3+\sqrt{5}}{2})-\ jednoduchý\ &(1,rac{3-\sqrt{5}}{2})-\ jednoduchý \end{aligned}$$

Koreňom rezultantu odpovedajú spoločné body kriviek \mathbf{X} a \mathbf{Y} s príslušnými násobnosťami. Spoločnými bodmi kriviek \mathbf{X} a \mathbf{Y} sú teda body :

$$\begin{split} &(1,0,0)-\textit{dvojn\'{a}sobn\'{y}}\\ &(0,0,1)-\textit{dvojn\'{a}sobn\'{y}}\\ &(1,\frac{1+\sqrt{5}}{2},\frac{3+\sqrt{5}}{2})-\textit{jednoduch\'{y}}\\ &(1,\frac{1-\sqrt{5}}{2},\frac{3-\sqrt{5}}{2})-\textit{jednoduch\'{y}} \end{split}$$

Vidíme, že krivky **X** a **Y** (tretieho a druhého stupňa) majú spoločných práve 6 bodov. Tento výsledok platí všeobecne. Dôkaz nasledovnej vety (Bezoutovej) urobíme neskoršie metódami lokálnej algebry.

Veta 5 (Bezoutova veta). Dve rovinné algebraické krivky stupňov m a n, ktoré nemajú spoločnú súčasť, majú spoločných práve m.n bodov, ak sa každý bod počíta s príslušnou násobnosťou. Priesečník, ktorý je na jednej krivke r-násobný, na druhej s-násobný a v ktorom majú krivky spoločných v dotyčníc, je priečníkom v-násobným.