EPFL - Autumn 2021	Dr. Pablo Antolin
Analysis III SV MT	Correction
Serie 13	December, 23

Note: the following correction (in french) has been prepared by Dr. David Strütt.

Exercise 2.

On utilise la formule d'inversion du théorème de réciprocité de la transformée de Fourier pour la fonction f définie par $f(x)=xe^{-\omega|x|}$:

$$xe^{-\omega|x|} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \mathfrak{F}(f)(\alpha) e^{i\alpha x} d\alpha = \frac{4\omega}{2\pi i} \int_{-\infty}^{+\infty} \frac{\alpha}{(\alpha^2 + \omega^2)^2} e^{i\alpha x} d\alpha$$
$$= \frac{2\omega}{\pi i} \left[\int_{-\infty}^{+\infty} \frac{\alpha}{(\alpha^2 + \omega^2)^2} \cos(\alpha x) d\alpha + i \int_{-\infty}^{+\infty} \frac{\alpha}{(\alpha^2 + \omega^2)^2} \sin(\alpha x) d\alpha \right].$$

Puisque $f(x) = xe^{-\omega|x|} \in \mathbb{R}$ il suit que:

$$\int_{-\infty}^{+\infty} \frac{\alpha}{(\alpha^2 + \omega^2)^2} \cos(\alpha x) d\alpha = 0,$$

$$\int_{-\infty}^{+\infty} \frac{\alpha}{(\alpha^2 + \omega^2)^2} \sin(\alpha x) d\alpha = \frac{\pi}{2\omega} x e^{-\omega|x|}.$$

La fonction g définie par $g(\alpha) = \frac{\alpha}{(\alpha^2 + \omega^2)^2} \sin(\alpha x)$ est paire et on obtient donc que:

$$\int_0^{+\infty} \frac{\alpha}{(\alpha^2 + \omega^2)^2} \sin(\alpha x) d\alpha = \frac{\pi}{4\omega} x e^{-\omega|x|}.$$

En posant $\alpha=t$ et en choisissant $\omega=2$ et $x=\frac{1}{2}$ on trouve:

$$\int_0^{+\infty} \frac{t}{(t^2+4)^2} \sin\left(\frac{t}{2}\right) \mathrm{d}t = \frac{\pi}{16e}.$$