

1. A fuzzy system contains the following two fuzzy rules

if
$$X$$
 is P_1 then Y is Q_1 if X is P_2 then Y is Q_2

where the fuzzy sets P_1 , P_2 , Q_1 and Q_2 are defined by

$$P_1 = 1/1 + 0.5/2 + 0/3$$

 $Q_1 = 0.4/4 + 0.5/5 + 0.6/6$
 $P_2 = 0.1/1 + 0.4/2 + 1/3$
 $Q_2 = 0.1/4 + 0.2/5 + 0.3/6$

For a crisp input of $x^* = 2$, apply the fuzzy inference to obtain the output fuzzy set F of the system.

Ans:

The strength of rule 1 is min[0.5, Q_1] = 0.4/4 + 0.5/5 +0.5/6 The strength of rule 2 is min[0.4, Q_2] = 0.1/4 + 0.2/5 +0.3/6 So, output fuzzy set F is 0.4/4 + 0.5/5 + 0.5/6

Defuzzify *F* using the center-of-area method.

Ans:

$$COA = \frac{0.4(4) + 0.5(5) + 0.5(6)}{0.4 + 0.5 + 0.5} = \frac{7.1}{1.4} = 5.07$$

2. Cycle 1:

$$v_0 = 52.5 \rightarrow High \& OK$$

 $\theta_0 = -5 \rightarrow Down$

IF
$$(v = High \land \theta = Down)$$
 THEN $(T = Low) \Rightarrow min(0.5, 1) = 0.5$ Low
IF $(v = OK \land \theta = Down)$ THEN $(T = LM) \Rightarrow min(0.5, 1) = 0.5$ LM

So,
$$T^* \cong 3$$
, Therefore, $v_1 = 0.9(52.5) + 3 - 0.1(-5) = 50.75$

Down

Low

LM

HM

Cycle 2:

$$v_1 = 50.75 \rightarrow High \& OK$$

 $\theta_1 = -5 \rightarrow Down$

Inclination of the road (θ)

Level

LM

Med

HM

IF
$$(v = High \land \theta = Down)$$
 THEN $(T = Low) \Rightarrow min(0.2, 1) = 0.2$ Low IF $(v = OK \land \theta = Down)$ THEN $(T = LM) \Rightarrow min(0.8, 1) = 0.8$ LM

So, $T^* \cong 3.8$, Therefore, $v_2 = 0.9(50.75) + 3.8 - 0.1(-5) = 49.975$

Cycle 3:

$$v_2 = 49.975 \rightarrow Low \& OK$$

 $\theta_2 = -2.5 \rightarrow Down \& Level$

IF
$$(v = Low \land \theta = Down)$$
 THEN $(T = HM) \Rightarrow min(0.005, 0.5) = 0.005$ HM

IF $(v = Low \land \theta = Level)$ THEN $(T = HM) \Rightarrow min(0.005, 0.5) = 0.005$ HM

IF $(v = OK \land \theta = Down)$ THEN $(T = LM) \Rightarrow min(0.995, 0.5) = 0.5$ LM

IF $(v = OK \land \theta = Level)$ THEN $(T = Med) \Rightarrow min(0.995, 0.5) = 0.5$ Med

Throttle position (T)	Inclination of the road (θ)		
Speed (v)	Up	Level	Down
High	LM	LM	Low
OK	HM	Med	LM
Low	High	HM	HM

So, $T^* \cong 5$, Therefore, $v_3 = 0.9(49.975) + 5 - 0.1(-2.5) = 50.228$

Cycle 4:

$$v_3 = 50.228 \rightarrow High \& OK$$

 $\theta_3 = -2.5 \rightarrow Down \& Level$

IF
$$(v = High \land \theta = Down)$$
 THEN $(T = Low) \Rightarrow min(0.046, 0.5) = 0.046$ Low IF $(v = High \land \theta = Level)$ THEN $(T = LM) \Rightarrow min(0.046, 0.5) = 0.046$ LM IF $(v = OK \land \theta = Down)$ THEN $(T = LM) \Rightarrow min(0.954, 0.5) = 0.5$ LM IF $(v = OK \land \theta = Level)$ THEN $(T = Med) \Rightarrow min(0.954, 0.5) = 0.5$ Med

Throttle position (T)	Inclination of the road (θ)		
Speed (v)	Up	Level	Down
High	LM	LM	Low
OK	HM	Med	LM
Low	High	НМ	НМ

So, $T^* \cong 5$, Therefore, $v_4 = 0.9(50.228) + 5 - 0.1(-2.5) = 50.455$