Examen la analiză matematică¹ an I, sem. I, grupele 111, 112, 113 7.02.2019

Numele şi prenumele
Grupa
Punctai seminar

Subiectul 1. a) Definiți noțiunea de șir Cauchy de numere reale. Definiți noțiunea de punct interior al unei submulțimi nevide A într-un spațiu topologic.

- b) Fie $A,B\subset\mathbb{R}$ două mulțimi închise nevide. Demonstrați că $A\cup B$ și $A\cap B$ sunt mulțimi închise.
- c) Dați exemplu de mulțimi nevide $A \subset \mathbb{R}$ și $B \subset \mathbb{R}^2$ cu proprietatea că $A^{\circ} = \phi$, iar $B' = \{(0,0)\}$. Justificați alegerea făcută.

$$(0,5+0,5+1 = 2 \text{ pct.})$$

Subiectul 2. Studiați convergența seriei

$$\sum_{n=1}^{\infty} \frac{(2n)!}{[(n+1)!]^2} a^{2n}$$

în funcție de valorile parametrului $a \in [0, \infty)$.

(2 pct.)

Subiectul 3. a) Considerăm funcția $f: \mathbb{R} \longrightarrow \mathbb{R}$

$$f(x) = \begin{cases} e^{-\frac{1}{x}}, & \text{dacă} \ x > 0, \\ 0, & \text{dacă} \ x \le 0. \end{cases}$$

Studiați continuitatea și uniform continuitatea funcției f.

b) Fie $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ două funcții mărginite și uniform continue. Demonstrați că funcția fg este uniform continuă. Rămâne adevărată afirmația dacă f și g sunt uniform continue, dar nu neapărat mărginite?

$$(1+1 = 2 \text{ pct.})$$

Subiectul 4. Considerăm șirul de funcții $f_n:[0,\infty)\longrightarrow \mathbb{R}, f_n(x)=\frac{nx^2+1}{nx+1}$ pentru orice $x\in[0,\infty)$ și $n\in\mathbb{N}$.

Studiaţi convergenţa simplă şi uniformă a şirului $(f_n)_{n\geq 1}$ pe [0,2] şi $[2,\infty)$.

(2 pct.)

¹Toate subiectele sunt obligatorii. Toate răspunsurile trebuie justificate. Timp de lucru 2h. Fiecare subiect trebuie scris pe foi separate. Se acordă 1 punct din oficiu. Succes!