Výroková a predikátová logika - I

Petr Gregor

KTIML MFF UK

ZS 2019/2020

K čemu je logika?

Pro matematiky: "matematika o matematice".

Pro informatiky:

- formální specifikace (viz spor EU vs. Microsoft),
- testování software i hardware (formální verifikace, model checking),
- deklarativní programování (např. Prolog),
- složitost (Booleovské funkce, obvody, rozhodovací stromy),
- vyčíslitelnost (nerozhodnutelnost, věty o neúplnosti),
- umělá inteligence (automatické odvozování, rezoluce),
- univerzální nástroje: SAT a SMT řešiče (SAT modulo theory),
- návrh databází (konečné relační struktury, Datalog), ...

Koncepce přednášky

klasická logika

- výroková logika (nejprve samostatně)
- + predikátová logika
- + teorie modelů, nerozhodnutelnost, neúplnost

logika pro informatiky

- + tablo metoda namísto Hilbertovského kalkulu
- dokazování jako forma výpočtu (systematické hledání protipříkladu)
- + rezoluce v predikátové logice, unifikace, "pozadí" Prologu
- důraz na algoritmické otázky
- + omezení na spočetné jazyky

Doporučená literatura

Knihy

- ▶ A. Nerode, R. A. Shore, Logic for Applications, Springer, 2nd edition, 1997.
- P. Pudlák, Logical Foundations of Mathematics and Computational Complexity - A Gentle Introduction, Springer, 2013.
- ▶ V. Švejdar, Logika, neúplnost, složitost a nutnost, Academia, Praha, 2002.
- A. Sochor, Klasická matematická logika, UK v Praze Karolinum, 2001.
- W. Hodges, Shorter Model Theory, Cambridge University Press, 1997.
- ▶ W. Rautenberg, A concise introduction to mathematical logic, Springer, 2009.

Elektronické zdroje

- J. Mlček, Výroková a predikátová logika, skripta k přednášce, 2012. [www]
- ▶ P. Štěpánek, *Meze formální metody*, skripta k přednášce, 2000. [pdf]
- M. Pilát, Propositional and Predicate Logic, lecture notes, 2017. [pdf]
- slidy k přednášce

Trocha historie

- Aristotelés (384-322 př.n.l.) sylogismy, např.
 z 'žádný Q není R' a 'každý P je Q' odvod' 'žádný P není R'.
- Eukleidés: Základy (asi 330 př.n.l.) axiomatický přístup ke geometrii
 "Pro každou přímku p a bod x, který neleží na p, existuje
 přímka skrze x neprotínající p." (5. postulát)
- Descartes: Geometrie (1637) algebraizace geometrie
- Leibniz sen o "lingua characteristica" a "calculus ratiocinator" (1679-90)
- De Morgan zavedení logických spojek (1847)

$$\neg (p \lor q) \leftrightarrow \neg p \land \neg q$$
$$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$$

- Boole výrok jako binární funkce, algebraizace logiky (1847)
- Schröder sémantika predikátové logiky, koncept modelu (1890-1905)

Trocha historie - teorie množin

- Cantor intuitivní teorie množin (1878), např. princip zahrnutí "Pro každou vlastnost $\varphi(x)$ existuje množina $\{x \mid \varphi(x)\}$."
- Frege logika s kvantifikátory a predikáty, pojem důkazu jako odvození, axiomatická teorie množin (1879, 1884)
- Russel Fregeho teorie množin je sporná (1903)

Pro
$$a = \{x \mid \neg(x \in x)\}$$
 je $a \in a$?

- Russel, Whitehead teorie typů (1910-13)
- Zermelo (1908), Fraenkel (1922) standardní teorie množin ZFC, např. "Pro každou vlastnost $\varphi(x)$ a množinu γ existuje množina $\{x \in \gamma \mid \varphi(x)\}$."
- Bernays (1937), Gödel (1940) teorie množin založená na třídách, např. "Pro každou množinovou vlastnost $\varphi(x)$ existuje třída $\{x \mid \varphi(x)\}$."

Trocha historie - algoritmizace

- Hilbert kompletní axiomatizace Euklidovské geometrie (1899),
 formalismus striktní odproštění se od významu, mechaničnost
 "... musí být možné místo o bodu, přímce a rovině mluvit
 o stolu, židli a půllitru." (Grundlagen der Geometrie)
- Brouwer intuicionismus, důraz na konstruktivní důkazy
 "Matematické tvrzení je myšlenková konstrukce ověřitelná intuicí."
- Post úplnost výrokové logiky (1921)
- Gödel úplnost predikátové logiky (1930), věty o neúplnosti (1931)
- Kleene, Post, Church, Turing formalizace pojmu algoritmus,
 existence algoritmicky nerozhodnutelných problémů (1936)
- Robinson rezoluční metoda (1965)
- Kowalski; Colmerauer, Roussel Prolog (1972)

Jazyk matematiky

Logika formalizuje pojem důkazu a pravdivosti matematických tvrzení. Lze ji postupně rozčlenit dle prostředků jazyka.

- logické spojky výroková logika Umožňují vytvářet složená tvrzení ze základních.
- proměnné pro individua, funkční a relační symboly, kvantifikátory 1. řádu Tvrzení o individuích, jejich vlastnostech a vztazích. Teorii množin, která je "světem" (téměř) celé matematiky, lze popsat jazykem 1. řádu.

V jazyce vyšších řádů máme navíc

- proměnné pro množiny individuí (i relace a funkce)
- proměnné pro množiny množin individuí, atd.

logika 2. řádu logika 3. řádu

. . . .

Příklady tvrzení v jazycích různých řádů

• "Nebude-li pršet, nezmoknem. A když bude pršet, zmokneme, na sluníčku zase uschneme."

$$(\neg p \to \neg z) \land (p \to (z \land u))$$

"Existuje nejmenší prvek."

$$\exists x \ \forall y \ (x \leq y)$$

Axiom indukce.

2. řádu

$$\forall X ((X(0) \land \forall x(X(x) \to X(x+1))) \to \forall x X(x))$$

"Libovolné sjednocení otevřených množin je otevřená množina."
 řádu

$$\forall \mathcal{X} \forall Y ((\forall X (\mathcal{X}(X) \to \mathcal{O}(X)) \land \forall x (Y(x) \leftrightarrow \exists X (\mathcal{X}(X) \land X(x)))) \to \mathcal{O}(Y))$$

Syntax a sémantika

Budeme studovat vztahy mezi syntaxí a sémantikou:

- syntax: symboly, pravidla vytváření termů a formulí, odvozovací pravidla, dokazovací systém, důkaz, dokazatelnost,
- sémantika: přiřazení významu, struktury, modely, splnitelnost, pravdivost.

V logice zavedeme pojem důkazu jako přesný syntaktický koncept.

Formální dokazovací systém je

- korektní, pokud každé dokazatelné tvrzení je pravdivé,
- úplný, pokud každé pravdivé tvrzení je dokazatelné.

Uvidíme, že predikátová logika (1. řádu) má dokazovací systémy, které jsou korektní a zároveň úplné. Pro logiky vyšších řádů to neplatí.

Paradoxy

"Paradoxy" jsou inspirací k přesnému zadefinování základů logiky.

- paradox kréťana
 Kréťan řekl: "Všichni kréťané jsou lháři."
- paradox holiče V městě žije holič, jenž holí všechny, kteří se neholí sami. Holí sám sebe?
- paradox lháře
 Tato věta je lživá.
- Berryho paradox
 Výraz "nejmenší přirozené číslo, které nelze definovat méně než jedenácti slovy" ho definuje pomocí deseti slov.

Jazyk

Výroková logika je "logikou spojek". Vycházíme z (neprázdné) množiny ₽ výrokových proměnných (prvovýroků). Např.

$$\mathbb{P} = \{p, p_1, p_2, \dots, q, q_1, q_2, \dots\}$$

Obvykle budeme předpokládat, že ℙ je spočetná.

Jazyk výrokové logiky (nad ℙ) obsahuje symboly

- výrokové proměnné z P
- logické spojky \neg , \wedge , \vee , \rightarrow , \leftrightarrow
- závorky (,)

Jazyk je tedy určen množinou ℙ. Říkáme, že logické spojky a závorky jsou logické symboly, zatímco výrokové proměnné jsou mimologické symboly.

Budeme používat i konstantní symboly \(\tau \) (pravda), \(\pm \) (spor), jež zavedeme jako *zkratky* za $p \vee \neg p$, resp. $p \wedge \neg p$, kde p je pevný prvovýrok z \mathbb{P} .

Formule

 $V\acute{y}rokov\acute{e}$ formule $(v\acute{y}roky)$ (nad \mathbb{P}) isou dány induktivním předpisem

- (i) každá výroková proměnná z ℙ je výrokovou formulí,
- (*ii*) jsou-li φ , ψ výrokové formule, pak rovněž

$$(\neg \varphi)$$
, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$

jsou výrokové formule,

- (iii) každá výroková formule vznikne konečným užitím pravidel (i), (ii).
- Výrokové formule jsou tedy (dobře vytvořené) konečné posloupnosti symbolů jazyka (řetězce).
- Výrokovou formuli, která je součástí jiné výrokové formule φ nazveme podformulí (podvýrokem) φ .
- Množinu všech výrokových formulí nad P značíme VFp.
- Množinu všech výrokových proměnných s výskytem ve φ značíme $var(\varphi)$.

Konvence zápisu

Zavedení (obvyklých) priorit logických spojek umožňuje v zkráceném zápisu vypouštět závorky okolo podvýroku vzniklého spojkou s vyšší prioritou.

- $(1) \rightarrow \longleftrightarrow$
- $(2) \wedge, \vee$
- $(3) \neg$

Rovněž vnější závorky můžeme vynechat. Např.

$$(((\neg p) \land q) \to (\neg (p \lor (\neg q)))) \quad \text{lze zkrátit na} \quad \neg p \land q \to \neg (p \lor \neg q)$$

Poznámka Nerespektováním priorit může vzniknout nejednoznačný zápis nebo dokonce jednoznačný zápis neekvivalentní formule.

Další možnosti zjednodušení zápisu vyplývají ze sémantických vlastností spojek (asociativita \vee , \wedge).

Vytvořující strom

Vytvořující strom je konečný uspořádaný strom, jehož vrcholy jsou označeny výroky dle následujících pravidel

- listy (a jen listy) jsou označeny prvovýroky,
- je-li vrchol označen $(\neg \varphi)$, má jediného syna označeného φ ,
- je-li vrchol označen $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$ nebo $(\varphi \leftrightarrow \psi)$, má dva syny, přičemž levý syn je označen φ a pravý je označen ψ .

Vytvořující strom výroku φ je vytvořující strom s kořenem označeným φ .

Tvrzení Každý výrok má jednoznačně určený vytvořující strom.

Důkaz Snadno indukcí dle počtu vnoření závorek (odpovídající hloubce vytvořujícího stromu).

Poznámka Takovéto důkazy nazýváme důkazy indukcí dle struktury formule.

Sémantika

- Uvažujeme pouze dvouhodnotovou logiku.
- Prvovýroky reprezentují atomická tvrzení, jejich význam je určen přiřazením pravdivostní hodnoty 0 (nepravda) nebo 1 (pravda).
- Sémantika logických spojek je dána jejich pravdivostními tabulkami.

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Ty jednoznačně určují hodnotu každého výroku z hodnot prvovýroků.

- K výrokům tedy můžeme také přiřadit "pravdivostní tabulky". Říkáme, že reprezentují Booleovské funkce (až na určení pořadí proměnných).
- Booleovská funkce je n-ární operace na $2 = \{0,1\}$, tj. $f \colon \{0,1\}^n \to \{0,1\}$.

Hodnota výroku

- *Ohodnocení* prvovýroků je funkce $v: \mathbb{P} \to \{0, 1\}$, tj. $v \in \mathbb{P}2$.
- Hodnota $\overline{v}(\varphi)$ výroku φ při ohodnocení v je dána induktivně

$$\begin{array}{ll} \overline{v}(p) = v(p) \ \ \text{jestliže} \ \ p \in \mathbb{P} & \overline{v}(\neg \varphi) = -_1(\overline{v}(\varphi)) \\ \overline{v}(\varphi \wedge \psi) = \wedge_1(\overline{v}(\varphi), \overline{v}(\psi)) & \overline{v}(\varphi \vee \psi) = \vee_1(\overline{v}(\varphi), \overline{v}(\psi)) \\ \overline{v}(\varphi \to \psi) = \to_1(\overline{v}(\varphi), \overline{v}(\psi)) & \overline{v}(\varphi \leftrightarrow \psi) = \leftrightarrow_1(\overline{v}(\varphi), \overline{v}(\psi)) \end{array}$$

 $kde -1, \land 1, \lor 1, \rightarrow 1, \leftrightarrow 1$ jsou Booleovské funkce dané tabulkami.

Tvrzení Hodnota výroku φ závisí pouze na ohodnocení $var(\varphi)$.

Důkaz Snadno indukcí dle struktury formule.

Poznámka Jelikož funkce $\overline{v}: VF_{\mathbb{P}} \to \{0,1\}$ je jednoznačnou extenzí funkce v, můžeme psát v místo \overline{v} aniž by došlo k nedorozumění.

Sémantické pojmy

Výrok φ nad $\mathbb P$ je

- splněn (platí) při ohodnocení $v \in \mathbb{P}2$, pokud $\overline{v}(\varphi) = 1$. Pak v je splňující ohodnocení výroku φ , značíme $v \models \varphi$.
- *pravdivý* ((logicky) *platí, tautologie*), pokud $\overline{v}(\varphi) = 1$ pro každé $v \in \mathbb{P}^2$, tj. φ je splněn při každém ohodnocení, značíme $\models \varphi$.
- $l ilde{z} i v \dot{y}$ ($sporn \dot{y}$), pokud $\overline{v}(\varphi) = 0$ pro každé $v \in {}^{\mathbb{P}}2$, tj. $\neg \varphi$ je pravdiv \dot{y} .
- nezávislý, pokud $\overline{v_1}(\varphi) = 0$ a $\overline{v_2}(\varphi) = 1$ pro nějaká $v_1, v_2 \in {}^{\mathbb{P}}2$, tj. φ není ani pravdivý ani lživý.
- *splnitelný*, pokud $\overline{v}(\varphi) = 1$ pro nějaké $v \in {\mathbb{P}}2$, tj. φ není lživý.

Výroky φ a ψ jsou (logicky) *ekvivalentní*, psáno $\varphi \sim \psi$, pokud $\overline{v}(\varphi) = \overline{v}(\psi)$ pro každé $v \in {\mathbb P}^2$, tj. výrok $\varphi \leftrightarrow \psi$ je pravdivý.

Modely

Předchozí definice ekvivalentně přeformulujeme v terminologii modelů.

Model jazyka nad \mathbb{P} je ohodnocení z \mathbb{P} 2. Třída všech modelů jazyka nad \mathbb{P} se značí $M(\mathbb{P})$, tedy $M(\mathbb{P}) = \mathbb{P}2$. Výrok φ nad \mathbb{P} (je)

- platí v modelu $v \in M(\mathbb{P})$, pokud $\overline{v}(\varphi) = 1$. Pak v je model výroku φ , značíme $v \models \varphi$ a $M^{\mathbb{P}}(\varphi) = \{v \in M(\mathbb{P}) \mid v \models \varphi\}$ je *třída modelů* φ .
- pravdivý ((logicky) platí, tautologie), pokud platí v každém modelu (jazyka), značíme $\models \varphi$.
- Iživý (sporný), pokud nemá model.
- nezávislý, pokud platí v nějakém modelu a neplatí v jiném.
- splnitelný, pokud má model.

Výroky φ a ψ jsou (logicky) *ekvivalentní*, psáno $\varphi \sim \psi$, pokud mají stejné modely.

Výroková a predikátová logika - II

Petr Gregor

KTIML MFF UK

ZS 2019/2020

Univerzálnost spojek

Jazyk výrokové logiky obsahuje *základní* spojky \neg , \wedge , \vee , \rightarrow , \leftrightarrow . Můžeme zavést obecně n-ární spojku pro libovolnou Booleovu funkci. Např.

$$p\downarrow q$$
 "ani p ani q " (NOR, Peirceova spojka) $p\uparrow q$ "ne $(p \ a \ q)$ " (NAND, Shefferova spojka)

Množina spojek je *univerzální*, pokud lze každou Booleovskou funkci reprezentovat nějakým z nich (dobře) vytvořeným výrokem.

Tvrzení $\{\neg, \wedge, \vee\}$ je univerzální.

Důkaz Funkci
$$f\colon\{0,1\}^n\to\{0,1\}$$
 reprezentuje výrok $\bigvee_{v\in f^{-1}[1]}\bigwedge_{i=1}^n p_i^{v_i}$, kde $p_i^{v_i}$ značí prvovýrok p_i pokud $v_i=1$, jinak výrok $\neg p_i$. Pro $f^{-1}[1]=\emptyset$ zvolíme výrok \bot .

Tvrzení $\{\neg, \rightarrow\}$ je univerzální.

Důkaz
$$(p \land q) \sim \neg (p \rightarrow \neg q), \ (p \lor q) \sim (\neg p \rightarrow q).$$

CNF a DNF

- Literál je prvovýrok nebo jeho negace. Je-li p prvovýrok, označme p^0 literál $\neg p$ a p^1 literál p. Je-li l literál, označme \bar{l} literál opačný k l.
- Klauzule je disjunkce literálů, prázdnou klauzulí rozumíme ⊥.
- Výrok je v konjunktivně normálním tvaru (CNF), je-li konjunkcí klauzulí. Prázdným výrokem v CNF rozumíme ⊤.
- Elementární konjunkce je konjunkce literálů, prázdnou konjunkcí je ⊤.
- Výrok je v disjunktivně normálním tvaru (DNF), je-li disjunkcí elementárních konjunkcí. Prázdným výrokem v DNF rozumíme 1.

Poznámka Klauzule nebo elementární konjunkce je zároveň v CNF i DNF.

Pozorování Výrok v CNF je pravdivý, právě když každá jeho klauzule obsahuje dvojici opačných literálů. Výrok v DNF je splnitelný, právě když aspoň jedna jeho elementární konjunkce neobsahuje dvojici opačných literálů.

Převod tabulkou

Tvrzení Nechť $K \subseteq \mathbb{P}2$ pro \mathbb{P} konečné. Označme $\overline{K} = \mathbb{P}2 \setminus K$. Pak

$$M^{\mathbb{P}}\Big(\bigvee_{v\in K}\bigwedge_{p\in\mathbb{P}}p^{v(p)}\Big)=K=M^{\mathbb{P}}\Big(\bigwedge_{v\in\overline{K}}\bigvee_{p\in\mathbb{P}}\overline{p^{v(p)}}\Big)$$

Důkaz První rovnost plyne z $\overline{w}(\bigwedge_{p\in\mathbb{P}}p^{v(p)})=1$ právě když w=v, kde

$$w\in {}^{\mathbb{P}}$$
2. Druhá obdobně z $\overline{w}(\bigvee_{p\in \mathbb{P}}\overline{p^{\nu(p)}})=1$ právě když $w\neq v$. $\ \ \, \Box$

Např.
$$K = \{(1,0,0), (1,1,0), (0,1,0), (1,1,1)\}$$
 namodelujeme

$$(p \land \neg q \land \neg r) \lor (p \land q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (p \land q \land r) \sim (p \lor q \lor r) \land (p \lor q \lor \neg r) \land (p \lor q \lor \neg r)$$

$$(p \lor q \lor r) \land (p \lor q \lor \neg r) \land (p \lor \neg q \lor \neg r) \land (\neg p \lor q \lor \neg r)$$

Důsledek Každý výrok je ekvivalentní nějakému výroku v CNF/DNF.

Důkaz Hodnota výroku φ závisí pouze na ohodnocení jeho proměnných, kterých je konečně. Lze tedy použít tvrzení pro $K = M^{\mathbb{P}}(\varphi)$ a $\mathbb{P} = \text{var}(\varphi)$.

Převod úpravami

Tvrzení Nechť φ' je výrok vzniklý z výroku φ nahrazením některých výskytů podvýroku ψ za výrok ψ' . Jestliže $\psi \sim \psi'$, pak $\varphi \sim \varphi'$.

Důkaz Snadno indukcí dle struktury formule.

(1)
$$(\varphi \to \psi) \sim (\neg \varphi \lor \psi)$$
, $(\varphi \leftrightarrow \psi) \sim ((\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi))$

(2)
$$\neg\neg\varphi\sim\varphi$$
, $\neg(\varphi\wedge\psi)\sim(\neg\varphi\vee\neg\psi)$, $\neg(\varphi\vee\psi)\sim(\neg\varphi\wedge\neg\psi)$

(3)
$$(\varphi \lor (\psi \land \chi)) \sim ((\psi \land \chi) \lor \varphi) \sim ((\varphi \lor \psi) \land (\varphi \lor \chi))$$

(3)'
$$(\varphi \land (\psi \lor \chi)) \sim ((\psi \lor \chi) \land \varphi) \sim ((\varphi \land \psi) \lor (\varphi \land \chi))$$

Tvrzení Každý výrok lze pomocí (1), (2), (3)/(3)' převést na CNF / DNF.

Důkaz Snadno indukcí dle struktury formule.

Tvrzení Nechť výrok φ obsahuje pouze spojky \neg , \land , \lor . Pak pro výrok φ^* vzniklý z φ záměnou \wedge a \vee a znegováním všech literálů platí $\neg \varphi \sim \varphi^*$.

Důkaz Snadno indukcí dle struktury formule.

Problém splnitelnosti a řešiče

- Problém SAT: Je daná výroková formule splnitelná?
- Příklad Lze šachovnici bez dvou protilehlých rohů perfektně pokrýt kostkami domina?
 - Snadno vytvoříme výrokovou formuli, která je splnitelná, právě když to lze. Pak ji můžeme zkusit ověřit pomocí nějakého SAT řešiče.
- Nejlepší řešiče pro SAT: www.satcompetition.org.
- Řešič v ukázce: Glucose, formát pro CNF soubory: DIMACS.
- Obecnější otázka: Lze celou matematiku převést do logických formulí?
 Al, strojové dokazování, Peano: Formulario (1895-1908), Mizar system
- Proč to lidé (většinou) nedělají?
 Jak vyřešíme uvedený příklad elegantněji? V čem náš postup spočívá?

2-SAT

- Výrok je v k-CNF, je-li v CNF a každá jeho klauzule má nejvýše k literálů.
- k-SAT je následující problém (pro pevné k > 0)

INSTANCE: $V \acute{y} rok \varphi v k$ -CNF.

OTÁZKA: Je φ splnitelný?

Zatímco už pro k=3 jde o NP-úplný problém, ukážeme, že 2-SAT lze řešit v *lineárním* čase (vzhledem k délce φ).

Vynecháme implementační detaily (výpočetní model, reprezentace v paměti) a využijeme následující znalosti, viz [ADS I].

Tvrzení Rozklad orientovaného grafu (V, E) na silně souvislé komponenty lze nalézt v čase $\mathcal{O}(|V| + |E|)$.

- Orientovaný graf G je silně souvislý, pokud pro každé dva vrcholy u a v existují v G orientované cesty jak z u do v, tak i z v do u.
- ullet Silně souvislá *komponenta* grafu G je maximální silně souvislý podgraf G.

Implikační graf

Implikační graf výroku φ v 2-CNF je orientovaný graf G_{ω} , v němž

- vrcholy jsou proměnné výroku φ nebo jejich negace,
- klauzuli $l_1 \lor l_2$ výroku φ reprezentujeme dvojicí hran $\overline{l_1} \to l_2$, $\overline{l_2} \to l_1$,
- klauzuli l_1 výroku φ reprezentujeme hranou $\overline{l_1} \to l_1$.

Tvrzení φ je splnitelný, právě když žádná silně souvislá komponenta v G_{ω} neobsahuje dvojici opačných literálů.

Důkaz Každé splňující ohodnocení ohodnotí všechny literály ze stejné komponenty stejně. Implikace zleva doprava tedy platí.

Nalezení ohodnocení

Naopak, označme G_{φ}^* graf vzniklý z G_{φ} kontrakcí silně souvislých komponent.

Pozorování G_{φ}^{*} je acyklický, má tedy topologické uspořádání <.

- Orientovaný graf je acyklický, neobsahuje-li orientovaný cyklus.
- Lineární uspořádání < vrcholů orientovaného grafu je topologické, pokud p < q pro každou hranu z p do q.

Nyní pro každou komponentu v rostoucím pořadí dle <, nejsou-li její literály dosud ohodnocené, nastav je na 0 a literály v opačné komponentě na 1.

Zbývá ukázat, že takto získané ohodnocení v splňuje φ . Kdyby ne, existovaly by v G_{φ}^* hrany $p \to q$ a $\overline{q} \to \overline{p}$ s v(p) = 1 a v(q) = 0. To je ve sporu s pořadím nastavení komponent na 0 resp. 1, neboť p < q a $\overline{q} < \overline{p}$.

Důsledek 2-SAT je řešitelný v lineárním čase.

Výroková a predikátová logika - III

Petr Gregor

KTIML MFF UK

ZS 2019/2020

Horn-SAT

- Jednotková klauzule je klauzule obsahující jediný literál,
- Hornova klauzule je klauzule obsahující nejvýše jeden pozitivní literál,

$$\neg p_1 \lor \cdots \lor \neg p_n \lor q \quad \sim \quad (p_1 \land \cdots \land p_n) \to q$$

- Hornův výrok je konjunkcí Hornových klauzulí,
- Horn-SAT je problém splnitelnosti daného Hornova výroku.

Algoritmus

- (1) obsahuje-li φ dvojici jednotkových klauzulí l a \bar{l} , není splnitelný,
- (2) obsahuje-li φ jednotkovou klauzuli l, nastav l na 1, odstraň všechny klauzule obsahující l, odstraň \bar{l} ze všech klauzulí a opakuj od začátku,
- (3) neobsahuje-li φ jednotkovou klauzuli, je splnitelný ohodnocením 0 všech zbývajících proměnných.

Krok (2) se nazývá jednotková propagace.

Jednotková propagace

$$\begin{array}{ll} (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land (\neg r \lor \neg s) \land (\neg t \lor s) \land s & \nu(s) = 1 \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land \neg r & \nu(\neg r) = 1 \\ (\neg p \lor q) \land (\neg p \lor \neg q) & \nu(p) = \nu(q) = \nu(t) = 0 \end{array}$$

Pozorování Nechť φ^l je výrok získaný z φ jednotkovou propagací. Pak φ^l je splnitelný, právě když φ je splnitelný.

Důsledek Algoritmus je korektní (řeší Horn-SAT).

Důkaz Korektnost 1. kroku je zřejmá, v 2. kroku plyne z pozorování, v 3.kroku díky Hornově tvaru, neboť každá zbývající klauzule obsahuje negativní literál.

Poznámka Přímočará implementace vyžaduje kvadratický čas, při vhodné reprezentaci v paměti lze dosáhnout lineárního času (vzhledem k délce φ).

Teorie

Neformálně, teorie je popis "světa", na který vymezujeme svůj diskurz.

- Výroková *teorie* nad jazykem \mathbb{P} je libovolná množina T výroků z $VF_{\mathbb{P}}$. Výrokům z T říkáme axiomy teorie T.
- Model teorie T nad \mathbb{P} je ohodnocení $v \in M(\mathbb{P})$ (tj. model jazyka), ve kterém platí všechny axiomy z T, značíme v = T.
- Třída modelů T je $M^{\mathbb{P}}(T) = \{ v \in M(\mathbb{P}) \mid v \models \varphi \text{ pro každé } \varphi \in T \}.$ Např. pro teorii $T = \{p, \neg p \lor \neg q, q \to r\}$ nad $\mathbb{P} = \{p, q, r\}$ je

$$M^{\mathbb{P}}(T) = \{(1,0,0), (1,0,1)\}$$

- Je-li teorie T konečná, lze ji nahradit konjunkcí jejích axiomů.
- Zápis $M(T,\varphi)$ značí $M(T \cup \{\varphi\})$.

Sémantika vzhledem k teorii

Sémantické pojmy zobecníme vzhledem k teorii, respektive k jejím modelům. Nechť T je teorie nad $\mathbb P$. Výrok φ nad $\mathbb P$ je

- pravdivý v T (platí v T), pokud platí v každém modelu T, značíme $T \models \varphi$, Říkáme také, že φ je (sémantickým) důsledkem teorie T.
- <u>lživý v T (sporný v T)</u>, pokud neplatí v žádném modelu teorie T,
- nezávislý v T, pokud platí v nějakém modelu teorie T a neplatí v jiném,
- splnitelný v T (konzistentní s T), pokud platí v nějakém modelu T.

Výroky φ a ψ jsou *ekvivalentní* v T (T-ekvivalentní), psáno $\varphi \sim_T \psi$, pokud každý model teorie T je modelem φ právě když je modelem ψ .

Poznámka Jsou-li všechny axiomy teorie T pravdivé (tautologie), např. pro $T=\emptyset$, všechny pojmy vzhledem k T se shodují s původními (logickými) pojmy.

Důsledek teorie

Důsledek teorie T nad \mathbb{P} je množina $\theta^{\mathbb{P}}(T)$ všech výroků pravdivých v T, tj.

$$\theta^{\mathbb{P}}(T) = \{ \varphi \in VF_{\mathbb{P}} \mid T \models \varphi \}.$$

Tvrzení Pro každé dvě teorie T, T' a výroky φ , φ ₁, . . . , φ _n nad \mathbb{P}

- (1) $T \subseteq \theta^{\mathbb{P}}(T) = \theta^{\mathbb{P}}(\theta^{\mathbb{P}}(T)),$
- (2) $T \subseteq T' \Rightarrow \theta^{\mathbb{P}}(T) \subseteq \theta^{\mathbb{P}}(T')$,
- (3) $\varphi \in \theta^{\mathbb{P}}(\{\varphi_1, \dots, \varphi_n\}) \Leftrightarrow \models (\varphi_1 \wedge \dots \wedge \varphi_n) \to \varphi.$

Důkaz Snadno z definic, neboť $T \models \varphi \Leftrightarrow M(T) \subseteq M(\varphi)$ a navíc

- $(1) \quad M(\theta(T)) = M(T),$
- (2) $T \subseteq T' \Rightarrow M(T') \subseteq M(T)$,
- (3) $\models \psi \rightarrow \varphi \Leftrightarrow M(\psi) \subseteq M(\varphi), M(\varphi_1 \wedge \ldots \wedge \varphi_n) = M(\varphi_1, \ldots, \varphi_n).$

Vlastnosti teorií

Výroková teorie T nad \mathbb{P} je (sémanticky)

- sporná, jestliže v ní platí ⊥ (spor), jinak je bezesporná (splnitelná),
- kompletní, jestliže není sporná a každý výrok je v ní pravdivý či lživý, tj. žádný výrok v ní není nezávislý,
- extenze teorie T' nad \mathbb{P}' , jestliže $\mathbb{P}'\subseteq \mathbb{P}$ a $\theta^{\mathbb{P}'}(T')\subseteq \theta^{\mathbb{P}}(T)$, o extenzi T teorie T' řekneme, že je jednoduchá, pokud $\mathbb{P}=\mathbb{P}'$, a konzervativní, pokud $\theta^{\mathbb{P}'}(T')=\theta^{\mathbb{P}}(T)\cap \mathrm{VF}_{\mathbb{P}'}$,
- *ekvivalentní* s teorií T', jestliže T je extenzí T' a T' je extenzí T,

Pozorování Nechť T a T' jsou teorie nad \mathbb{P} . Teorie T je (sémanticky)

- (1) bezesporná, právě když má model,
- (2) kompletní, právě když má jediný model,
- (3) extenze T', právě když $M^{\mathbb{P}}(T) \subseteq M^{\mathbb{P}}(T')$,
- (4) ekvivalentní s T', právě když $M^{\mathbb{P}}(T) = M^{\mathbb{P}}(T')$.

Algebra výroků

Nechť T je bezesporná teorie nad \mathbb{P} . Na množině $VF_{\mathbb{P}}/\sim_T$ lze zadefinovat operace \neg , \land , \lor , \bot , \top (korektně) pomocí reprezentantů, např.

$$[\varphi]_{\sim_T} \wedge [\psi]_{\sim_T} = [\varphi \wedge \psi]_{\sim_T}$$

Pak $AV^{\mathbb{P}}(T) = \langle VF_{\mathbb{P}}/\sim_T, \neg, \wedge, \vee, \bot, \top \rangle$ je algebra výroků vzhledem k T.

Jelikož $\varphi \sim_T \psi \Leftrightarrow M(T,\varphi) = M(T,\psi)$, je $h([\varphi]_{\sim_T}) = M(T,\varphi)$ korektně definovaná prostá funkce $h: VF_{\mathbb{P}}/\sim_T \to \mathcal{P}(M(T))$ a platí

$$h(\neg[\varphi]_{\sim_T}) = M(T) \setminus M(T, \varphi)$$

$$h([\varphi]_{\sim_T} \wedge [\psi]_{\sim_T}) = M(T, \varphi) \cap M(T, \psi)$$

$$h([\varphi]_{\sim_T} \vee [\psi]_{\sim_T}) = M(T, \varphi) \cup M(T, \psi)$$

$$h([\bot]_{\sim_T}) = \emptyset, \quad h([\top]_{\sim_T}) = M(T)$$

Navíc h je na, pokud M(T) je konečná.

Důsledek Je-li T bezesporná nad konečnou \mathbb{P} , je $AV^{\mathbb{P}}(T)$ Booleova algebra *izomorfní* s (konečnou) potenční algebrou $\mathcal{P}(M(T))$ via h.

Analýza teorií nad konečně prvovýroky

Nechť T je bezesporná teorie nad \mathbb{P} , kde $|\mathbb{P}|=n\in\mathbb{N}^+$ a $m=|M^{\mathbb{P}}(T)|$. Pak

- neekvivalentních výroků (popř. teorií) nad ℙ je 2²ⁿ
- neekvivalentních výroků nad \mathbb{P} pravdivých (lživých) v T je 2^{2^n-m} ,
- neekvivalentních výroků nad \mathbb{P} nezávislých v T je $2^{2^n} 2 \cdot 2^{2^n m}$,
- neekvivalentních jednoduchých extenzí teorie T je 2^m , z toho sporná 1,
- neekvivalentních kompletních jednoduchých extenzí teorie T je m,
- T-neekvivalentních výroků nad ℙ je 2^m,
- T-neekvivalentních výroků nad \mathbb{P} pravdivých (lživých) (v T) je 1,
- T-neekvivalentních výroků nad \mathbb{P} nezávislých (v T) je $2^m 2$.

Důkaz Díky bijekci $VF_{\mathbb{P}}/\sim$ resp. $VF_{\mathbb{P}}/\sim_T$ s $\mathcal{P}(M(\mathbb{P}))$ resp. $\mathcal{P}(M^{\mathbb{P}}(T))$ stačí zjistit počet podmnožin s vhodnou vlastností.

Formální dokazovací systémy

Naším cílem je přesně formalizovat pojem důkazu jako syntaktické procedury.

Ve (standardních) formálních dokazovacích systémech,

- důkaz je konečný objekt, může vycházet z axiomů dané teorie,
- $T \vdash \varphi$ značí, že φ je dokazatelná z T,
- pokud důkaz dané formule existuje, lze ho nalézt "algoritmicky",
 (Je-li T "rozumně zadaná".)

Od formálního dokazovacího systému obvykle očekáváme, že bude

- korektni, tj. každá formule φ dokazatelná z teorie T je v T pravdivá,
- nejlépe i *úplný*, tj. každá formule φ pravdivá v T je z T dokazatelná.

Příklady formálních dokazovacích systémů (kalkulů): tablo metody, Hilbertovské systémy, Gentzenovy systémy, systémy přirozené dedukce.

Tablo metoda - úvod

Budeme předpokládat, že jazyk je pevný a spočetný, tj. množina prvovýroků $\mathbb P$ je spočetná. Pak každá teorie nad $\mathbb P$ je spočetná.

Hlavní rysy tablo metody (neformálně)

- tablo pro danou formuli φ je binární značkovaný strom reprezentující vyhledávání protipříkladu k φ , tj. modelu teorie, ve kterém φ neplatí,
- formule má důkaz, pokud každá větev příslušného tabla selže, tj. nebyl nalezen protipříklad, v tom případě bude (systematické) tablo konečné,
- pokud protipříklad existuje, v (dokončeném) tablu bude větev, která ho poskytuje, tato větev může být i nekonečná.

Úvodní příklady

Komentář k příkladům

Vrcholy tabla jsou značeny *položkami*. Položka je formule s *příznakem T / F*, který reprezentuje předpoklad, že formule v nějakém modelu platí / neplatí. Je-li tento předpoklad u položky správný, je správný i v nějaké větvi pod ní.

V obou příkladech jde o dokončená (systematická) tabla z prázdné teorie.

• Vlevo je $tablo \ d\mathring{u}kaz$ pro ((p o q) o p) o p. Všechny větve tabla "selhaly", značeno \otimes , neboť je na nich dvojice $T\varphi$, $F\varphi$ pro nějaké φ (protipříklad tedy nelze nalézt). Formule má důkaz, píšeme

$$\vdash ((p \to q) \to p) \to p$$

• Vpravo je (dokončené) tablo pro $(\neg q \lor p) \to p$. Levá větev "neselhala" a je dokončená (není třeba v ní pokračovat) (ta poskytuje protipříklad v(p) = v(q) = 0).

Atomická tabla

Atomické tablo je jeden z následujících (položkami značkovaných) stromů, kde p je libovolná výroková proměnná a φ, ψ jsou libovolné výrokové formule.

Tp	Fp	$T(\varphi \wedge \psi)$ $ $ $T\varphi$ $ $ $T\psi$	$F(\varphi \wedge \psi)$ $/ \qquad \qquad \\ F\varphi \qquad F\psi$	$T(\varphi \lor \psi)$ $\nearrow \qquad \qquad$	$F(\varphi \lor \psi)$ $ $ $F\varphi$ $ $ $F\psi$
$T(\neg \varphi)$ $ $ $F\varphi$	$F(\neg \varphi) \\ \\ T\varphi$	$T(\varphi \to \psi)$ $F\varphi \qquad T\psi$	$F(\varphi \to \psi)$ $ $ $T\varphi$ $ $ $F\psi$	$T(\varphi \leftrightarrow \psi)$ $T\varphi \qquad F\varphi$ $ \qquad \qquad $ $T\psi \qquad F\psi$	$F(\varphi \leftrightarrow \psi)$ $\nearrow \qquad \qquad$

Pomocí atomických tabel a pravidel, jak tabla rozvinout (prodloužit), formálně zadefinujeme všechna tabla (popíšeme jejich konstrukci).

Tablo

Tablo

Konečné tablo je binární, položkami značkovaný strom daný předpisem

- (i) každé atomické tablo je konečné tablo,
- (ii) je-li P položka na větvi V konečného tabla τ a τ' vznikne z τ připojením atomického tabla pro P na konec větve V, je τ' rovněž konečné tablo,
- (*iii*) každé konečné tablo vznikne konečným užitím pravidel (*i*), (*ii*).

Tablo je posloupnost $\tau_0, \tau_1, \ldots, \tau_n, \ldots$ (konečná i nekonečná) konečných tabel takových, že τ_{n+1} vznikne z τ_n pomocí pravidla (ii), formálně $\tau = \cup \tau_n$.

Poznámka Není předepsané, jak položku P a větev V pro krok (ii) vybírat. To specifikujeme až v systematických tablech.

Konstrukce tabla

Konvence

Položku, dle které tablo prodlužujeme, nebudeme na větvi znovu zobrazovat.

Poznámka Její zopakování bude potřeba později v predikátové logice.

Tablo důkaz

Nechť P je položka na větvi V tabla τ . Řekneme, že

- položka P je redukovaná na V, pokud se na V vyskytuje jako kořen atomického tabla, tj. při konstrukci τ již došlo k jejímu rozvoji na V,
- větev V je *sporná*, obsahuje-li položky $T\varphi$ a $F\varphi$ pro nějakou formuli φ , jinak je *bezesporná*. Větev V je *dokončená*, je-li sporná nebo je každá její položka redukovaná na V,
- tablo τ je dokončené, pokud je každá jeho větev dokončená, a je sporné, pokud je každá jeho větev sporná.

Tablo důkaz (důkaz tablem) výrokové formule φ je sporné tablo s položkou $F\varphi$ v kořeni. φ je *(tablo) dokazatelná*, píšeme $\vdash \varphi$, má-li tablo důkaz.

Obdobně, *zamítnutí* formule φ *tablem* je sporné tablo s položkou $T\varphi$ v kořeni. Formule φ je *(tablo) zamítnutelná*, má-li zamítnutí tablem, tj. $\vdash \neg \varphi$.

Příklady

- a) $F(\neg p \land \neg q)$ neredukovaná na V_1 , V_1 sporná, V_2 je dokončená, V_3 není,
- b) zamítnutí tablem výrokové formule $\varphi \colon (p \to q) \leftrightarrow (p \land \neg q)$, tedy $\vdash \neg \varphi$.

Výroková a predikátová logika - IV

Petr Gregor

KTIML MFF UK

ZS 2019/2020

Tablo - příklady

Atomická tabla

Atomické tablo je jeden z následujících (položkami značkovaných) stromů, kde p je libovolná výroková proměnná a φ , ψ jsou libovolné výrokové formule.

Tp	Fp	$T(\varphi \wedge \psi)$ $ $ $T\varphi$ $ $ $T\psi$	$F(\varphi \wedge \psi)$ $/ \qquad \qquad \\ F\varphi \qquad F\psi$	$T(\varphi \lor \psi)$ $\nearrow \qquad \qquad$	$F(\varphi \lor \psi)$ $ $ $F\varphi$ $ $ $F\psi$
$T(\neg\varphi) \\ \\ F\varphi$	$F(\neg\varphi)$ $ $ $T\varphi$	$T(\varphi \to \psi)$ $F\varphi \qquad T\psi$	$F(\varphi \to \psi)$ $ $ $T\varphi$ $ $ $F\psi$	$T(\varphi \leftrightarrow \psi)$ $T\varphi \qquad F\varphi$ $ \qquad \qquad $ $T\psi \qquad F\psi$	$F(\varphi \leftrightarrow \psi)$ $/$ $T\varphi \qquad F\varphi$ $ $ $ $ $F\psi \qquad T\psi$

Tablo z teorie

Jak do důkazu přidat axiomy dané teorie?

Konečné tablo z teorie T je binární, položkami značkovaný strom daný předpisem

- (i) každé atomické tablo je konečné tablo,
- (ii) je-li P položka na větvi V konečného tabla τ a τ' vznikne z τ připojením atomického tabla pro P na konec větve V, je τ' rovněž konečné tablo,
- (ii) je-li V větev konečného tabla (z T) a $\varphi \in T$, pak připojením $T\varphi$ na konec V vznikne rovněž konečné tablo z T.
- (iii) každé konečné tablo vznikne konečným užitím pravidel (i), (ii), (ii)'.

Tablo z teorie T je posloupnost $\tau_0, \tau_1, \ldots, \tau_n, \ldots$ konečných tabel z T takových, že τ_{n+1} vznikne z τ_n pomocí pravidla (ii) či (ii)', formálně $\tau = \cup \tau_n$.

Tablo důkaz z teorie

Nechť P je položka na větvi V tabla τ z teorie T. Řekneme, že

- položka P je redukovaná na V, pokud se na V vyskytuje jako kořen atomického tabla, tj. při konstrukci τ již došlo k jejímu rozvoji na V,
- větev V je sporná, obsahuje-li položky $T\varphi$ a $F\varphi$ pro nějakou formuli φ ,
- větev V je *dokončená*, je-li sporná, nebo je každá její položka redukovaná na V a navíc obsahuje $T\varphi$ pro každé $\varphi \in T$,
- tablo \(\tau \) je dokončené, pokud je každá jeho větev dokončená, a je sporné, pokud je každá jeho větev sporná.

Tablo důkaz formule φ *z teorie* T je sporné tablo z T s $F\varphi$ v kořeni, Má-li φ tablo důkaz z T, je *(tablo) dokazatelná z T*, píšeme $T \vdash \varphi$.

Zamítnutí formule φ tablem z teorie T je sporné tablo z T s $T\varphi$ v kořeni. Formule φ je (tablo) zamítnutelná z T, má-li zamítnutí tablem z T, tj. $T \vdash \neg \varphi$.

Příklady tabla z teorie

- a) Tablo důkaz formule ψ z teorie $T = \{\varphi, \varphi \to \psi\}$, tedy $T \vdash \psi$.
- b) Dokončené tablo pro formuli p_0 z teorie $T=\{p_{n+1}\to p_n\mid n\in\mathbb{N}\}.$ Všechny větve jsou dokončené, nejlevější větev je bezesporná a nekonečná. Poskytuje (jediný) model teorie T, ve kterém p_0 neplatí.

Systematické tablo

Popíšeme systematickou konstrukci, jež povede vždy k dokončenému tablu.

Nechť R je položka a $T = \{\varphi_0, \varphi_1, \dots\}$ je (konečná či nekonečná) teorie.

- (1) Za τ_0 vezmi atomické tablo pro R. Dokud to lze, aplikuj následující kroky.
- (2) Nechť P je nejlevější položka v co nejmenší úrovni již daného tabla τ_n , která není redukovaná na nějaké bezesporné větvi procházející skrze P.
- (3) Za τ_n' vezmi tablo vzniklé z τ_n přidáním atomického tabla pro P na každou bezespornou větev skrze P. (Neexistuje-li P, vezmi $\tau_n' = \tau_n$.)
- (4) Za τ_{n+1} vezmi tablo vzniklé z τ'_n přidáním $T\varphi_n$ na každou bezespornou větev neobsahující $T\varphi_n$. (Neexistuje-li φ_n , vezmi $\tau_{n+1} = \tau'_n$.)

Systematické tablo z teorie T pro položku R je výsledkem uvedené konstrukce, tj. $\tau = \cup \tau_n$.

Systematické tablo - dokončenost

Tvrzení Pro každou teorii T a položku R je systematické tablo au dokončené.

Důkaz Nechť $\tau = \cup \tau_n$ je systematické tablo z $T = \{\varphi_0, \varphi_1, \dots\}$ s R v kořeni.

- Je-li větev v τ bezesporná, je i každý její prefix v τ_n bezesporný.
- Je-li položka P neredukovaná na větvi v τ , je neredukovaná na každém jejím prefixu v τ_n (na němž leží).
- Do úrovně každé položky P (včetně její) je v τ jen konečně položek.
- Kdyby P byla neredukovaná na nějaké bezesporné větvi τ , přišla by na ní řada v nějakém kroku (2) a byla by zredukována krokem (3).
- Každá $\varphi_n \in T$ bude dle (4) nejpozději v τ_{n+1} na každé bezesporné větvi.
- ullet Tedy systematické tablo au obsahuje pouze dokončené větve. \qed

Konečnost důkazů

Lemma (König) Každý nekonečný, konečně větvící se strom obsahuje nekonečnou větev.

Tvrzení Je-li $\tau = \cup \tau_n$ sporné tablo, je τ_n sporné konečné tablo pro nějaké n. Důkaz

- Nechť S je množina vrcholů stromu τ , jenž nad sebou neobsahují spor, tj. mezi předky nemají dvojici $T\varphi$, $F\varphi$ pro žádné φ .
- Kdyby S byla nekonečná, dle Königova lemmatu by podstrom τ na vrcholech S obsahoval nekonečnou větev, tedy by τ nebylo sporné tablo.
- Jelikož je S konečné, všechny vrcholy z S leží do úrovně m pro nějaké m.
- Tedy každý vrchol v úrovni m+1 má nad sebou spor. Zvolme n tak, že τ_n se shoduje s τ do úrovně m+1. Pak každá větev v τ_n je sporná.

Důsledek Je-li systematické tablo τ důkazem (z teorie T), je τ konečné.

Důkaz Při jeho konstrukci se prodlužují jen bezesporné větve.

Korektnost

Řekneme, že položka P se shoduje s ohodnocením v, pokud P je $T\varphi$ a $\overline{v}(\varphi)=1$ nebo pokud P je $F\varphi$ a $\overline{v}(\varphi)=0$. Větev V tabla se shoduje s v, shoduje-li se s v každá položka na V.

Lemma Nechť v je model teorie T, který se shoduje s položkou v kořeni tabla $\tau = \cup \tau_n$ z T. Pak v tablu τ existuje větev shodující se s v.

Důkaz Indukcí nalezneme posloupnost V_0, V_1, \ldots takovou, že pro každé n je V_n větev v τ_n shodující se s v a V_n je obsažena ve V_{n+1} .

- Ověřením atomických tabel snadno zjistíme, že základ indukce platí.
- Pokud τ_{n+1} vznikne z τ_n bez prodloužení V_n , položme $V_{n+1} = V_n$.
- Vznikne-li τ_{n+1} z τ_n připojením $T\varphi$ k V_n pro nějaké $\varphi \in T$, nechť V_{n+1} je tato větev. Jelikož ν je model φ , shoduje se V_{n+1} s ν .
- Jinak τ_{n+1} vznikne z τ_n prodloužením V_n o atomické tablo nějaké položky P na V_n . Jelikož se P shoduje s v a tvrzení platí pro atomická tabla, lze požadovanou větev V_{n+1} v τ_{n+1} nalézt. \square

Věta o korektnosti

Ukážeme, že tablo metoda ve výrokové logice je korektní.

Věta Pro každou teorii T a formuli φ , je-li φ tablo dokazatelná z T, je φ pravdivá v T, tj. $T \vdash \varphi \Rightarrow T \models \varphi$.

Důkaz

- Nechť φ je tablo dokazatelná z teorie T, tj. existuje sporné tablo τ s položkou $F\varphi$ v kořeni.
- Pro spor předpokládejme, že φ není pravdivá v T, tj. existuje model v teorie T, ve kterém φ neplatí (protipříklad).
- Jelikož se položka $F\varphi$ shoduje s v, dle předchozího lemmatu v tablu τ existuje větev shodující se s v.
- To ale není možné, neboť každá větev tabla τ je sporná, tj. obsahuje dvojici $T\psi$, $F\psi$ pro nějaké ψ . \square

Úplnost

Ukážeme, že bezesporná větev v dokončeném tablu poskytuje protipříklad. **Lemma** Nechť V je bezesporná větev dokončeného tabla τ . Pro následující ohodnocení v výrokových proměnných platí, že V se shoduje s v.

$$v(p) = \left\{ egin{array}{ll} 1 & ext{pokud se } Tp ext{ vyskytuje na } V \ 0 & ext{jinak} \end{array}
ight.$$

 $D\mathring{u}kaz$ Indukcí dle struktury formule v položce vyskytující se na V.

- ullet Je-li položka Tp na V, kde p je prvovýrok, je $\overline{v}(p)=1$ dle definice v.
- Je-li položka Fp na V, není Tp na V, jinak by V byla sporná, tedy $\overline{v}(p)=0$ dle definice v.
- Je-li $T(\varphi \wedge \psi)$ na V, je $T\varphi$ a $T\psi$ na V, neboť τ je dokončené. Dle indukčního předpokladu je $\overline{v}(\varphi) = \overline{v}(\psi) = 1$, tedy $\overline{v}(\varphi \wedge \psi) = 1$.
- Je-li $F(\varphi \wedge \psi)$ na V, je $F\varphi$ nebo $F\psi$ na V, neboť τ je dokončené. Dle indukčního předpokladu je $\overline{v}(\varphi) = 0$ nebo $\overline{v}(\psi) = 0$, tedy $\overline{v}(\varphi \wedge \psi) = 0$.
- Pro ostatní spojky obdobně jako v předchozích dvou případech.

Věta o úplnosti

Ukážeme, že tablo metoda ve výrokové logice je i úplná.

Věta Pro každou teorii T a formuli φ , je-li φ pravdivá v T, je φ tablo dokazatelná z T, tj. $T \models \varphi \Rightarrow T \vdash \varphi$.

Důkaz Nechť φ je pravdivá v T. Ukážeme, že libovolné dokončené tablo (např. *systematické*) τ z teorie T s položkou $F\varphi$ v kořeni je sporné.

- Kdyby ne, nechť V je nějaká bezesporná větev tabla τ .
- Dle předchozího lemmatu existuje ohodnocení v prvovýroků takové, že V se shoduje s v, speciálně s $F\varphi$, tj. $\overline{v}(\varphi)=0$.
- Jelikož větev V je dokončená, obsahuje $T\psi$ pro každé $\psi \in T$.
- Tedy v je modelem teorie T (neboť větev V se shoduje s v).
- To je ale ve sporu s tím, že φ platí v každém modelu teorie T.

Tedy tablo τ je důkazem φ z T.

Vlastnosti teorií

Zavedeme syntaktické varianty již definovaných sémantických pojmů.

Nechť T je teorie nad \mathbb{P} . Je-li φ dokazatelná z T, řekneme, že φ je věta (teorém) teorie T. Množinu vět teorie T označme

$$\operatorname{Thm}^{\mathbb{P}}(T) = \{ \varphi \in \operatorname{VF}_{\mathbb{P}} \mid T \vdash \varphi \}.$$

Řekneme, že teorie T je

- $sporn\acute{a}$, jestliže je v T dokazatelný \bot (spor), jinak je $bezesporn\acute{a}$,
- *kompletní*, jestliže není sporná a každá formule je v ní dokazatelná či zamítnutelná, tj. $T \vdash \varphi$ či $T \vdash \neg \varphi$ pro každé $\varphi \in VF_{\mathbb{P}}$,
- extenze teorie T' nad \mathbb{P}' , jestliže $\mathbb{P}' \subseteq \mathbb{P}$ a $\mathrm{Thm}^{\mathbb{P}'}(T') \subseteq \mathrm{Thm}^{\mathbb{P}}(T)$, o extenzi T teorie T' řekneme, že je jednoduchá, pokud $\mathbb{P} = \mathbb{P}'$, a konzervativní, pokud $\mathrm{Thm}^{\mathbb{P}'}(T') = \mathrm{Thm}^{\mathbb{P}}(T) \cap \mathrm{VF}_{\mathbb{P}'}$,
- *ekvivalentní* s teorií T', jestliže T je extenzí T' a T' je extenzí T.

Důsledky

Z korektnosti a úplnosti tablo metody vyplývá, že předchozí pojmy se shodují se svými sémantickými variantami.

Důsledek Pro každou teorii T a formule φ , ψ nad \mathbb{P} ,

- $T \vdash \varphi$ právě když $T \models \varphi$,
- Thm $^{\mathbb{P}}(T) = \theta^{\mathbb{P}}(T)$,
- T je sporná, právě když není splnitelná, tj. nemá model,
- T je kompletní, právě když je sémanticky kompletní, tj. má právě jeden model,
- $T, \varphi \vdash \psi$ právě když $T \vdash \varphi \rightarrow \psi$ (Věta o dedukci).

Poznámka Větu o dedukci lze dokázat přímo, transformací příslušných tabel.

Věta o kompaktnosti

Věta Teorie má model, právě když každá její konečná část má model.

Důkaz 1 Implikace zleva doprava je zřejmá. Pokud teorie T nemá model, je sporná, tj. je z ní dokazatelný \bot systematickým tablem τ . Jelikož je τ konečné, je \bot dokazatelný z nějaké konečné $T' \subseteq T$, tj. T' nemá model.

Poznámka Tento důkaz je založen na konečnosti důkazu, korektnosti a úplnosti. Uveď me ještě druhý, přímý důkaz (pomocí Königova lemmatu).

Důkaz 2 Nechť $T=\{\varphi_i\mid i\in\mathbb{N}\}$. Uvažme strom S na konečných binárních posloupnostech σ uspořádaných prodloužením. Přičemž $\sigma\in S$, právě když existuje ohodnocení v prodlužující σ takové, že $v\models\varphi_i$ pro každé $i\leq \mathrm{lth}(\sigma)$.

Pozorování S má nekonečnou větev, právě když T má model.

Jelikož $\{\varphi_i \mid i \in n\} \subseteq T$ má model pro každé $n \in \mathbb{N}$, bude každá úroveň v S neprázdná. Tedy S je nekonečný, navíc binární, a dle Königova lemmatu obsahuje nekonečnou větev. \square

Aplikace kompaktnosti

Graf (V, E) je k-obarvitelný, pokud existuje $c \colon V \to k$ takové, že $c(u) \neq c(v)$ pro každou hranu $\{u, v\} \in E$.

Věta Spočetně nekonečný graf G = (V, E) je k-obarvitelný, právě když každý jeho konečný podgraf je k-obarvitelný.

Důkaz Implikace zleva doprava je zřejmá. Nechť každý konečný podgraf v G je k-obarvitelný. Vezměme $\mathbb{P}=\{p_{u,i}\mid u\in V, i\in k\}$ a teorii T s axiomy

$$\begin{array}{ll} p_{u,0} \vee \cdots \vee p_{u,k-1} & \text{pro všechna } u \in V, \\ \neg (p_{u,i} \wedge p_{u,j}) & \text{pro všechna } u \in V, i < j < k, \\ \neg (p_{u,i} \wedge p_{v,i}) & \text{pro všechna } \{u,v\} \in E, i < k. \end{array}$$

Platí, že G je k-obarvitelný, právě když T má model. Dle věty o kompaktnosti stačí dokázat, že každá konečná $T' \subseteq T$ má model. Nechť G' je podgraf na vrcholech u takových, že $p_{u,i}$ se vyskytuje v T' pro nějaké i. Jelikož G' je k-obarvitelný dle předpokladu, má T' model. \square

Výroková a predikátová logika - V

Petr Gregor

KTIML MFF UK

ZS 2019/2020

Rezoluční metoda - úvod

Hlavní rysy rezoluční metody (neformálně)

- je základem mnoha různých systémů, např. interpret Prologu, SAT řešiče, systémy pro automatické dokazování / verifikování, . . .
- předpokládá formule v CNF (převod obecně "drahý"),
- pracuje s množinovou reprezentací formulí,
- má jediné odvozovací pravidlo, tzv. rezoluční pravidlo,
- nemá žádné explicitní axiomy (či atomická tabla), ale jisté axiomy jsou skryty "uvnitř",
- obdobně jako u tablo metody, jde o zamítací proceduru, tj. snaží se ukázat, že daná formule (či teorie) je nesplnitelná,
- má různé varianty lišící se např. podmínkami pro použití rezolučního pravidla.

Množinová reprezentace (formulí v CNF)

- ullet Literál l je výroková proměnná nebo její negace. $ar{l}$ značí opačný literál k l.
- Klauzule C je konečná množina literálů ("tvořících disjukci"). Prázdná klauzule se značí □, není nikdy splněna (neobsahuje splněný literál).
- Formule S je množina (i nekonečná) klauzulí ("tvořících konjunkci").
 Prázdná formule Ø je vždy splněna (neobsahuje nesplněnou klauzuli).
 Nekonečné formule reprezentují nekonečné teorie (konjunkcí axiomů).
- (Částečné) ohodnocení V je libovolná konzistentní množina literálů,
 tj. neobsahující dvojici opačných literálů. Ohodnocení V je totální,
 obsahuje-li pozitivní či negativní literál od každé výrokové proměnné.
- V splňuje S, značíme $V \models S$, pokud $C \cap V \neq \emptyset$ pro každé $C \in S$.

Např.
$$((\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land (\neg r \lor \neg s) \land (\neg t \lor s) \land s)$$
 reprezentujeme $S = \{\{\neg p, q\}, \{\neg p, \neg q, r\}, \{\neg r, \neg s\}, \{\neg t, s\}, \{s\}\}$ a $\mathcal{V} \models S$ pro $\mathcal{V} = \{s, \neg r, \neg p\}$

Rezoluční pravidlo

Nechť C_1 , C_2 jsou klauzule a $l \in C_1$, $\bar{l} \in C_2$ pro nějaký literál l. Pak z C_1 a C_2 odvoď přes literál l klauzuli C, zvanou *rezolventa*, kde

$$C = (C_1 \setminus \{l\}) \cup (C_2 \setminus \{\overline{l}\}).$$

Ekvivalentně zapsáno, označíme-li u disjunktní sjednocení,

$$\frac{C_1' \sqcup \{l\}, C_2' \sqcup \{\bar{l}\}}{C_1' \cup C_2'}$$

Např. z $\{p, q, r\}$ a $\{\neg p, \neg q\}$ lze odvodit $\{q, \neg q, r\}$ nebo $\{p, \neg p, r\}$.

Pozorování Rezoluční pravidlo je korektní, tj. pro libovolné ohodnocení V,

$$\mathcal{V} \models C_1 \text{ a } \mathcal{V} \models C_2 \quad \Rightarrow \quad \mathcal{V} \models C.$$

Poznámka Rezoluční pravidlo je speciální případ pravidla řezu

$$\frac{\varphi \vee \psi, \ \neg \varphi \vee \chi}{\psi \vee \chi}$$

kde φ , ψ , χ isou libovolné formule.

Rezoluční důkaz

- rezoluční důkaz (odvození) klauzule C z formule S je konečná
 posloupnost C₀,..., C_n = C taková, že pro každé i ≤ n je C_i ∈ S
 nebo je C_i rezolventou nějakých dvou předchozích klauzulí (i stejných),
- klauzule C je (rezolucí) dokazatelná z S, psáno S ⊢_R C, pokud má rezoluční důkaz z S,
- zamítnutí formule S je rezoluční důkaz □ z S,
- S je (rezolucí) zamítnutelná, pokud $S \vdash_R \square$.

Věta (korektnost) Je-li S rezolucí zamítnutelná, je S nesplnitelná.

Důkaz Nechť $S \vdash_R \square$. Kdyby $\mathcal{V} \models S$ pro nějaké ohodnocení \mathcal{V} , z korektnosti rezolučního pravidla by platilo i $\mathcal{V} \models \square$, což není možné. ■

Rezoluční strom a uzávěr

Rezoluční strom klauzule C z formule S je konečný binární strom s vrcholy označenými klauzulemi takový, že

- (i) kořen je označen C,
- (ii) listy jsou označeny klauzulemi z S,
- (iii) každý vnitřní vrchol je označen rezolventou z klauzulí v jeho synech.

Pozorování C má rezoluční strom z S právě když $S \vdash_R C$.

 $\emph{Rezoluční uzávěr}\,\mathcal{R}(S)$ formule S je nejmenší induktivní množina definovaná

- (i) $C \in \mathcal{R}(S)$ pro každé $C \in S$,
- (ii) jsou-li $C_1, C_2 \in \mathcal{R}(S)$ a C je rezolventa C_1, C_2 , je zároveň $C \in \mathcal{R}(S)$.

Pozorování $C \in \mathcal{R}(S)$ právě když $S \vdash_R C$.

Poznámka Všechny pojmy o rezolučních důkazech lze tedy ekvivalentně zavést pomocí rezolučních stromů či uzávěrů.

Příklad

Formule $((p \lor r) \land (q \lor \neg r) \land (\neg q) \land (\neg p \lor t) \land (\neg s) \land (s \lor \neg t))$ je nesplnitelná, neboť pro $S = \{\{p,r\}, \{q,\neg r\}, \{\neg q\}, \{\neg p,t\}, \{\neg s\}, \{s,\neg t\}\}$ je $S \vdash_R \square$.

Rezoluční uzávěr S je

$$\mathcal{R}(S) = \{ \{p,r\}, \{q,\neg r\}, \{\neg q\}, \{\neg p,t\}, \{\neg s\}, \{s,\neg t\}, \{p,q\}, \{\neg r\}, \{r,t\}, \{q,t\}, \{\neg t\}, \{\neg p,s\}, \{r,s\}, \{t\}, \{q\}, \{q,s\}, \Box, \{\neg p\}, \{p\}, \{r\}, \{s\}\}.$$

Redukce dosazením

Nechť S je formule a l je literál. Označme

$$S^l = \{C \setminus \{\bar{l}\} \mid l \notin C \in S\}.$$

Pozorování

- S^l je ekvivalentní formuli, jež vznikne dosazením konstanty \top (true, 1) za literály l a konstanty \bot (false, 0) za literály \bar{l} ve formuli S,
- S^l neobsahuje v žádné klauzuli literál l ani \bar{l} ,
- jestliže $\{\bar{l}\} \in S$, pak $\square \in S^l$.

Lemma S je splnitelná, právě když S^l nebo $S^{\bar{l}}$ je splnitelná.

extstyle ext

- Pak $\mathcal{V} \models S^l$, neboť pro $l \notin C \in S$ je $\mathcal{V} \setminus \{l, \overline{l}\} \models C$ a tudíž $\mathcal{V} \models C \setminus \{\overline{l}\}$.
- Naopak (\Leftarrow) předpokládejme (búno), že $\mathcal{V} \models S^l$ pro nějaké \mathcal{V} .
- Jelikož se l ani \bar{l} nevyskytuje v S^l , je i $\mathcal{V}' \models S^l$ pro $\mathcal{V}' = (\mathcal{V} \setminus \{\bar{l}\}) \cup \{l\}$.
- Pak $\mathcal{V}' \models S$, neboť pro $C \in S$ obsahující l máme $l \in \mathcal{V}'$ a pro $C \in S$ neobsahující l je $\mathcal{V}' \models (C \setminus \{\overline{l}\}) \in S^l$.

Strom dosazení

Postupnou redukci literálů dosazením lze reprezentovat binárním stromem.

$$S = \{\{p\}, \{\neg q\}, \{\neg p, \neg q\}\}$$

$$S^{p} = \{\{\neg q\}\}$$

$$S^{p\bar{q}} = \{\Box\}$$

$$S^{p\bar{q}} = \emptyset$$

Důsledek S není splnitelná, právě když každá větev obsahuje □.

Poznámka Jelikož S může být nekonečná nad spočetným jazykem, strom může být nekonečný. Je-li ale S nesplnitelná, dle věty o kompaktnosti existuje konečná část $S' \subseteq S$, která je nesplnitelná. Pak po redukci všech literálů vyskytujících se v S' bude \square v každé větvi po konečně mnoha krocích.

Úplnost rezoluce

Věta Je-li konečná S nesplnitelná, je rezolucí zamítnutelná, tj. $S \vdash_R \Box$.

Důkaz Indukcí dle počtu proměnných v S ukážeme, že $S \vdash_R \Box$.

- Nemá-li nesplnitelná S žádnou proměnnou, je $S = \{\Box\}$ a tedy $S \vdash_R \Box$,
- Nechť l je literál vyskytující se v S. Dle lemmatu, S^l a $S^{\bar{l}}$ jsou nesplnitelné.
- Jelikož S^l a $S^{\bar{l}}$ mají méně proměnných než S, dle indukčního předpokladu existují rezoluční stromy T^l a $T^{\bar{l}}$ pro odvození \square z S^l resp. $S^{\bar{l}}$.
- Je-li každý list T^l z S, je T^l rezolučním stromem \square z S, tj. $S \vdash_R \square$.
- Pokud ne, doplněním literálu \bar{l} do každého listu, jenž není z S, (a do všech vrcholů nad ním) získáme rezoluční strom $\{\bar{l}\}$ z S.
- Obdobně získáme rezoluční strom $\{l\}$ z S doplněním l ve stromu $T^{\bar{l}}$,
- Rezolucí jejich kořenů $\{\bar{l}\}$ a $\{l\}$ získáme rezoluční strom \square z S.

Důsledek Je-li S nesplnitelná, je rezolucí zamítnutelná, tj. $S \vdash_R \Box$.

Důkaz Plyne z předchozího užitím věty o kompaktnosti.

Lineární rezoluce - úvod

Rezoluční metodu můžeme značně omezit (bez ztráty úplnosti).

- Lineární důkaz (rezolucí) klauzule C z formule S je konečná posloupnost dvojic $(C_0, B_0), \ldots, (C_n, B_n)$ taková, že $C_0 \in S$ a pro každé $i \leq n$
 - i) $B_i \in S$ nebo $B_i = C_j$ pro nějaké j < i, a
 - *ii*) C_{i+1} je rezolventa C_i a B_i , kde $C_{n+1} = C$.
- C_0 zveme počáteční klauzule, C_i centrální klauzule, B_i boční klauzule.
- C je lineárně dokazatelná z S, psáno $S \vdash_L C$, má-li lineární důkaz z S.
- Lineární zamítnutí S je lineární důkaz \square z S.
- S je lineárně zamítnutelná, pokud $S \vdash_L \Box$.

Pozorování Je-li S lineárně zamítnutelná, je S nesplnitelná.

Důkaz Každý lineární důkaz lze transformovat na (korektní) rezoluční důkaz.

Poznámka Platí i úplnost, tj. je-li S nesplnitelná, je S lineárně zamítnutelná.

Příklad lineární rezoluce

- a) obecný tvar lineární rezoluce,
- b) pro $S = \{ \{p, q\}, \{p, \neg q\}, \{\neg p, q\}, \{\neg p, \neg q\} \}$ je $S \vdash_L \Box$,
- c) transformace lineárního důkazu na rezoluční důkaz.

LI-rezoluce

Pro Hornovy formule můžeme lineární rezoluci dál omezit.

- Hornova formule je množina (i nekonečná) Hornových klauzulí.
- Hornova klauzule je klauzule obsahující nejvýše jeden pozitivní literál.
- Fakt je (Hornova) klauzule $\{p\}$, kde p je pozitivní literál.
- Pravidlo je (Hornova) klauzule s právě jedním pozitivním a aspoň jedním negativním literálem. Pravidla a fakta jsou programové klauzule.
- Cíl je neprázdná (Hornova) klauzule bez pozitivního literálu.

Pozorování Je-li Hornova formule S nesplnitelná a $\square \notin S$, obsahuje fakt i cíl. Důkaz Neobsahuje-li fakt (cíl), je splnitelná nastavením všech proměnných na 0 (resp. na 1).

LI-rezoluce (linear input) z formule S je lineární rezoluce z S, ve které je každá boční klauzule B_i ze (vstupní) formule S.

Je-li klauzule C dokazatelná LI-rezolucí z S, píšeme $S \vdash_{II} C$.

Úplnost LI-rezoluce pro Hornovy formule

Věta Je-li Hornova T splnitelná a $T \cup \{G\}$ nesplnitelná pro cíl G, lze \square odvodit Ll-rezolucí z $T \cup \{G\}$ začínající G.

Důkaz Dle věty o kompaktnosti můžeme předpokládat, že *T* je konečná.

- Postupujeme indukcí dle počtu proměnných v T.
- Dle pozorování, T obsahuje fakt $\{p\}$ pro nějakou proměnnou p.
- Dle lemmatu je $T'=(T\cup\{G\})^p=T^p\cup\{G^p\}$ nesplnitelná, přičemž $G^p=G\setminus\{\overline{p}\}.$
- Je-li $G^p = \square$, je $G = \{\overline{p}\}$ a tedy \square je rezolventa G a $\{p\} \in T$.
- Jinak, jelikož T^p je splnitelná (stejným ohodnocením, které splňuje T) a má méně proměnných, dle indukčního předpokladu lze \square odvodit LI-rezolucí z T' začínající G^p .
- Doplněním literálu \overline{p} do všech listů, jež nejsou v $T \cup \{G\}$, a všech vrcholů pod ním získáme LI-odvození $\{\overline{p}\}$ z $T \cup \{G\}$ začínající v G.
- Závěrečnou rezolucí pomocí faktu $\{p\} \in T$ získáme \square .

Příklad LI-rezoluce

$$T = \{\{p, \neg r, \neg s\}, \{r, \neg q\}, \{q, \neg s\}, \{s\}\}, \qquad G = \{\neg p, \neg q\}$$

$$T^s = \{\{p, \neg r\}, \{r, \neg q\}, \{q\}\}\$$

$$C^{sqrp} - \square$$

 $T^{sq} = \{\{p, \neg r\}, \{r\}\}\$

$$T^{sqr}, G^{sqr} \vdash_{LI} \square$$

$$T^{sq}, G^{sq} \vdash_{LI} \square$$
 $T^s, G^s \vdash_{LI} \square$

$$T^s, G^s \vdash_{LI} \square$$

$$G = \{\neg p, \neg q\} \qquad \{p, \neg r, \neg s\}$$

$$T^{sq} = \{\{p, \neg r\}, \{r\}\} \qquad G^s = \{\neg p, \neg q\} \quad \{p, \neg r\} \qquad \{\neg q, \neg r, \neg s\} \quad \{r, \neg q\} \qquad \{r, \neg q\} \qquad$$

$$T, G \vdash_{LI} \square$$

Program v Prologu

(Výrokový) *program* (v Prologu) je Hornova formule obsahující pouze programové klauzule, tj. fakta nebo pravidla.

Zajímá nás, zda daný dotaz vyplývá z daného programu.

Důsledek Pro každý program P a dotaz $(p_1 \wedge ... \wedge p_n)$ je ekvivalentní, zda

- (1) $P \models p_1 \wedge \ldots \wedge p_n$
- (2) $P \cup \{\neg p_1, \dots, \neg p_n\}$ je nesplnitelná,
- (3) \square lze odvodit LI-rezolucí z $P \cup \{G\}$ začínající cílem $G = \{\neg p_1, \dots, \neg p_n\}$.

<ロ > ← □

Hilbertovský kalkul

- základní logické spojky: ¬, → (ostatní z nich odvozené)
- logické axiomy (schémata logických axiomů):

(i)
$$\varphi \to (\psi \to \varphi)$$

$$(ii) \hspace{0.5cm} (\varphi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi))$$

(iii)
$$(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$$

kde φ , ψ , χ jsou libovolné formule (daného jazyka).

odvozovací pravidlo:

$$\frac{\varphi, \ \varphi \to \psi}{\psi} \qquad \text{(modus ponens)}$$

Důkaz (Hilbertova stylu) formule φ v teorii T je konečná posloupnost $\varphi_0, \ldots, \varphi_n = \varphi$ formulí taková, že pro každé $i \leq n$

- φ_i je logický axiom nebo $\varphi_i \in T$ (axiom teorie), nebo
- φ_i lze odvodit z předchozích formulí pomocí odvozovacího pravidla.

Poznámka Volba axiomů a odvozovacích pravidel se v může v různých dokazovacích systémech Hilbertova stylu lišit.

Příklad a korektnost

Formule φ je *dokazatelná* v T, má-li důkaz z T, značíme $T \vdash_H \varphi$. Je-li $T = \emptyset$, značíme $\vdash_H \varphi$. Např. pro $T = \{ \neg \varphi \}$ je $T \vdash_H \varphi \rightarrow \psi$ pro každé ψ .

1)
$$\neg \varphi \qquad \text{axiom z } T$$
2)
$$\neg \varphi \rightarrow (\neg \psi \rightarrow \neg \varphi) \qquad \text{logick\'y axiom } (i)$$

3)
$$\neg \psi \rightarrow \neg \varphi \qquad \qquad \text{modus ponens z 1), 2)}$$

4)
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$
 logický axiom (iii)

5)
$$\varphi \to \psi$$
 modus ponens z 3), 4)

Věta *Pro* každou teorii T a formuli φ , $T \vdash_H \varphi \Rightarrow T \models \varphi$.

Důkaz

- Je-li $\varphi \in T$ nebo logický axiom, je $T \models \varphi$ (logické axiomy jsou tautologie),
- jestliže $T \models \varphi$ a $T \models \varphi \rightarrow \psi$, pak $T \models \psi$, tj. modus ponens je korektní,
- tedy každá formule vyskytující se v důkazu z T platí v T.

Poznámka Platí i úplnost, tj. $T \models \varphi \Rightarrow T \vdash_H \varphi$ pro každou teorii T a formuli φ .

Výroková a predikátová logika - VI

Petr Gregor

KTIML MFF UK

ZS 2019/2020

1/24

Predikátová logika

Zabývá se tvrzeními o individuích, jejich vlastnostech a vztazích.

"Je inteligentní a její otec zná pana rektora."

$$I(x) \wedge Z(o(x), r)$$

- x je proměnná, reprezentuje individuum,
- r je konstantní symbol, reprezentuje konkrétní individuum,
- o je funkční symbol, reprezentuje funkci,
- I, Z jsou relační (predikátové) symboly, reprezentují relace (vlastnost "být inteligentní" a vztah "znát").

"Funkce f je na (surjektivní)."

$$(\forall x)(\exists y)(f(y) = x)$$

- $(\forall x)$ je všeobecný (univerzální) kvantifikátor proměnné x,
- (∃y) je existenční kvantifikátor proměnné y,
- = je (binární) relační symbol, reprezentuje identickou relaci.

Jazyk 1. řádu obsahuje

- proměnné x, y, z, ..., x₀, x₁, ... (spočetně mnoho), množinu všech proměnných značíme Var,
- funkční symboly f, g, h, \ldots , včetně konstantních symbolů c, d, \ldots , což jsou nulární funkční symboly,
- relační (predikátové) symboly P, Q, R, ..., případně symbol = (rovnost)
 jako speciální relační symbol,
- kvantifikátory $(\forall x)$, $(\exists x)$ pro každou proměnnou $x \in \text{Var}$,
- logické spojky ¬, ∧, ∨, →, ↔
- závorky (,)

Každý funkční i relační symbol S má danou aritu (četnost) $\operatorname{ar}(S) \in \mathbb{N}$.

Poznámka Oproti výrokové logice nemáme (explicitně) výrokové proměnné, lze je zavést jako nulární relační symboly.

Signatura jazyka

- Proměnné, kvantifikátory, logické spojky a závorky jsou logické symboly, zatímco funkční a relační symboly (kromě případné rovnosti) jsou mimologické symboly. Rovnost (obvykle) uvažujeme zvlášť.
- Signatura je dvojice (R, F) disjunktních množin relačních a funkčních symbolů s danými aritami, přičemž žádný z nich není rovnost. Signatura tedy určuje všechny mimologické symboly.
- Jazyk je dán signaturou $L = \langle \mathcal{R}, \mathcal{F} \rangle$ a uvedením, zda jde o jazyk s rovností či bez rovnosti. Jazyk musí obsahovat alespoň jeden relační symbol (mimologický nebo rovnost).

Poznámka Význam symbolů není v jazyce určen, např. symbol + nemusí reprezentovat standardní sčítání.

Příklady jazyků

Jazyk obvykle uvádíme výčtem mimologických symbolů s případným upřesněním, zda jde o funkční či relační symboly a jakou mají aritu.

Následující příklady jazyků jsou všechny s rovností.

- $L = \langle \rangle$ je jazyk čisté rovnosti,
- $L = \langle c_i \rangle_{i \in \mathbb{N}}$ je jazyk spočetně mnoha konstant,
- $L = \langle \leq \rangle$ je jazyk uspořádání,
- $L = \langle E \rangle$ je jazyk teorie grafů,
- $L = \langle +, -, 0 \rangle$ je jazyk teorie grup,
- $L = \langle +, -, \cdot, 0, 1 \rangle$ je jazyk teorie těles,
- $L = \langle -, \wedge, \vee, 0, 1 \rangle$ je jazyk Booleových algeber,
- $L = \langle S, +, \cdot, 0, \leq \rangle$ je jazyk aritmetiky,

kde c_i , 0, 1 jsou konstantní symboly, S, - jsou unární funkční symboly, +, \cdot , \wedge , \vee jsou binární funkční symboly, E, \leq jsou binární relační symboly.

Termy

Jsou výrazy reprezentující hodnoty (složených) funkcí.

Termy jazyka L jsou dány induktivním předpisem

- (i) každá proměnná nebo konstantní symbol je term,
- (ii) je-li f funkční symbol jazyka L s aritou n > 0 a t_0, \ldots, t_{n-1} jsou termy, pak je i výraz $f(t_0, \ldots, t_{n-1})$ term.
- (iii) každý term vznikne konečným užitím pravidel (i), (ii).
- Konstantní (ground) term je term bez proměnných, např. f(0) + 1.
- Množinu všech termů jazyka L značíme Term_L.
- Termu, jenž je součástí jiného termu t, říkáme podterm termu t.
- Strukturu termu můžeme reprezentovat jeho vytvořujícím stromem.
- U binárních funkčních symbolů často používáme infixního zápisu, např. píšeme (x + y) namísto +(x, y).

Příklady termů

- a) Vytvořující strom termu $(S(0) + x) \cdot y$ jazyka aritmetiky.
- *b*) Výrokové formule se spojkami \neg , \land , \lor , případně s konstantami \top , \bot lze chápat jako termy jazyka Booleových algeber.

7/24

Atomické formule

Jsou nejjednodušší formule.

- Atomická formule jazyka L je výraz $R(t_0, \ldots, t_{n-1})$, kde R je n-ární relační symbol jazyka L a t_0, \ldots, t_{n-1} jsou termy jazyka L.
- Množinu všech atomických formulí jazyka L značíme AFm_L.
- Strukturu atomické formule můžeme reprezentovat vytvořujícím stromem z vytvořujících podstromů jejích termů.
- U binárních relačních symbolů často používáme infixního zápisu, např. $t_1=t_2$ namísto $=(t_1,t_2)$ či $t_1\leq t_2$ namísto $\leq (t_1,t_2)$.
- Příklady atomických formulí

$$Z(o(x), r), \quad x \cdot y \leq (S(0) + x) \cdot y, \quad \neg(x \wedge y) \vee \bot = \bot.$$

8/24

Formule

Formule jazyka L jsou výrazy dané induktivním předpisem

- (i) každá atomická formule jazyka L je formule,
- $(\emph{ii})\,$ jsou-li $\varphi,\,\psi$ formule, pak i následující výrazy jsou formule

$$(\neg \varphi)$$
, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$,

- (*iii*) je-li φ formule a x proměnná, jsou výrazy $((\forall x)\varphi)$ a $((\exists x)\varphi)$ formule.
- (iv) každá formule vznikne konečným užitím pravidel (i), (ii), (iii).
- Množinu všech formulí jazyka L značíme Fm_L.
- Formuli, jež je součástí jiné formule φ , nazveme *podformule* formule φ .
- Strukturu formule můžeme reprezentovat jejím vytvořujícím stromem.

Konvence zápisu

- Zavedení priorit binárních funkčních symbolů např. + , · umožňuje při infixním zápisu vypouštět závorky okolo podtermu vzniklého symbolem vyšší priority, např. x · y + z reprezentuje term (x · y) + z.
- Zavedení priorit logických spojek a kvantifikátorů umožňuje vypouštět závorky okolo podformule vzniklé spojkou s vyšší prioritou.

$$(1) \rightarrow, \leftrightarrow \qquad (2) \wedge, \vee \qquad (3) \neg, (\forall x), (\exists x)$$

- Okolo podformulí vzniklých \neg , $(\forall x)$, $(\exists x)$ lze závorky vypustit vždy.
- Můžeme vypustit závorky i okolo $(\forall x)$ a $(\exists x)$ pro každé $x \in \text{Var}$.
- Rovněž vnější závorky můžeme vynechat.

$$(((\neg((\forall x)R(x))) \land ((\exists y)P(y))) \rightarrow (\neg(((\forall x)R(x)) \lor (\neg((\exists y)P(y))))))$$
$$\neg(\forall x)R(x) \land (\exists y)P(y) \rightarrow \neg((\forall x)R(x) \lor \neg(\exists y)P(y))$$

Příklad formule

Vytvořující strom formule $(\forall x)(x \cdot y \leq (S(0) + x) \cdot y)$.

Výskyt proměnné

Nechť φ je formule a x je proměnná.

- *Výskyt* proměnné x ve φ je list vytvořujícího stromu φ označený x.
- Výskyt x ve φ je vázany, je-li součástí nějaké podformule ψ začínající kvantifikátorem $(\forall x)$ nebo $(\exists x)$. Není-li výskyt vázany, je volny.
- Proměnná x je volná ve φ, pokud má volný výskyt ve φ.
 Je vázaná ve φ, pokud má vázaný výskyt ve φ.
- Proměnná x může být zároveň volná i vázaná ve φ . Např. ve formuli $(\forall x)(\exists y)(x < y) \lor x < z.$
- Zápis $\varphi(x_1,\ldots,x_n)$ značí, že x_1,\ldots,x_n jsou všechny volné proměnné ve formuli φ .

Poznámka Uvidíme, že pravdivostní hodnota formule (při dané interpretaci symbolů) závisí pouze na ohodnocení volných proměnných.

Otevřené a uzavřené formule

- Formule je *otevřená*, neobsahuje-li žádný kvantifikátor. Pro množinu OFm_L všech otevřených formulí jazyka L platí $AFm_L \subsetneq OFm_L \subsetneq Fm_L$.
- Formule je uzavřená (sentence), pokud nemá žádnou volnou proměnnou, tj. všechny výskyty proměnných jsou vázané.
- Formule může být otevřená i uzavřená zároveň, pak všechny její termy jsou konstantní.

$$\begin{array}{ll} x+y\leq 0 & \text{otevřen\'a}, \varphi(x,y) \\ (\forall x)(\forall y)(x+y\leq 0) & \text{uzavřen\'a (sentence)}, \\ (\forall x)(x+y\leq 0) & \text{ani otevřen\'a, ani uzavřen\'a}, \varphi(y) \\ 1+0<0 & \text{otevřen\'a i uzavřen\'a} \end{array}$$

Poznámka Uvidíme, že sentence má při dané interpretaci symbolů pevný význam, tj. její pravdivostní hodnota nezávisí na ohodnocení proměnných.

Instance

Když do formule za volnou proměnnou x dosadíme term t, požadujeme, aby vzniklá formule říkala (nově) o termu t "totéž", co předtím říkala o proměnné x.

$$\varphi(x) \qquad \qquad (\exists y)(x+y=1) \qquad \text{``existuje prvek } 1-x\text{''} \\ \text{pro } t=1 \text{ | lze } \varphi(x/t) \qquad (\exists y)(1+y=1) \qquad \text{``existuje prvek } 1-1\text{''} \\ \text{pro } t=y \text{ nelze} \qquad (\exists y)(y+y=1) \qquad \text{``1 je dělitelné 2''}$$

- Term t je substituovatelný za proměnnou x ve formuli φ, pokud po současném nahrazení všech volných výskytů x za t nevznikne ve φ žádný vázaný výskyt proměnné z t.
- Pak vzniklou formuli značíme $\varphi(x/t)$ a zveme ji *instance* formule φ vzniklá *substitucí* termu t za proměnnou x do φ .
- t není substituovatelný za x do φ , právě když x má volný výskyt v nějaké podformuli φ začínající $(\forall y)$ nebo $(\exists y)$ pro nějakou proměnnou y z t.
- Konstantní termy jsou substituovatelné vždy.

Varianty

Kvantifikované proměnné lze (za určitých podmínek) přejmenovat tak, že vznikne ekvivalentní formule.

Nechť $(Qx)\psi$ je podformule ve φ , kde Q značí \forall či \exists , a y je proměnná, tž.

- 1) y je substituovatelná za x do ψ , a
- 2) y nemá volný výskyt v ψ .

Nahrazením podformule $(Qx)\psi$ za $(Qy)\psi(x/y)$ vznikne *varianta* formule φ *v podformuli* $(Qx)\psi$. Postupnou variací jedné či více podformulí ve φ vznikne *varianta* formule φ . *Např*.

```
 \begin{array}{ll} (\exists x)(\forall y)(x\leq y) & \text{ je formule }\varphi,\\ (\exists u)(\forall v)(u\leq v) & \text{ je varianta }\varphi,\\ (\exists y)(\forall y)(y\leq y) & \text{ není varianta }\varphi, \text{ neplatí }1),\\ (\exists x)(\forall x)(x\leq x) & \text{ není varianta }\varphi, \text{ neplatí }2). \end{array}
```

Struktury - příklady

- S = ⟨S, ≤⟩ uspořádaná množina, kde ≤ je reflexivní, antisymetrická, tranzitivní binární relace na S,
- $G = \langle V, E \rangle$ neorientovaný graf bez smyček, kde V je množina vrcholů, E je ireflexivní, symetrická binární relace na V (sousednost),
- $\underline{\mathbb{Z}}_p = \langle \mathbb{Z}_p, +, -, 0 \rangle$ grupa sčítání celých čísel modulo p,
- $\mathbb{Q} = \langle \mathbb{Q}, +, -, \cdot, 0, 1 \rangle$ těleso racionálních čísel.
- $\mathcal{P}(X) = \langle \mathcal{P}(X), -, \cap, \cup, \emptyset, X \rangle$ potenční algebra nad množinou X,
- $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ standardní model aritmetiky (přirozených čísel),
- konečné automaty a další modely výpočtu,
- relační databáze, . . .

Struktura pro jazyk

Nechť $L=\langle \mathcal{R},\mathcal{F} \rangle$ je jazyk a A je neprázdná množina.

- Realizace (interpretace) relačního symbolu $R \in \mathcal{R}$ na A je libovolná relace $R^A \subseteq A^{\operatorname{ar}(R)}$. Realizace rovnosti na A je relace Id_A (identita).
- Realizace (interpretace) funkčního symbolu $f \in \mathcal{F}$ na A je libovolná funkce $f^A \colon A^{\operatorname{ar}(f)} \to A$. Realizace konstantního symbolu je tedy prvek z A.

Struktura pro jazyk L (*L-struktura*) je trojice $A = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$, kde

- ullet A je neprázdná množina, zvaná doména (univerzum) struktury ${\mathcal A}$,
- $\mathcal{R}^A = \langle R^A \mid R \in \mathcal{R} \rangle$ je soubor realizací relačních symbolů (relací),
- $\mathcal{F}^A = \langle f^A \, | \, f \in \mathcal{F} \rangle$ je soubor realizací funkčních symbolů (funkcí).

Strukturu pro jazyk L nazýváme také model jazyka L. Třída všech modelů jazyka L se značí M(L). Např. struktury pro jazyk $L = \langle \leq \rangle$ jsou $\langle \mathbb{N}, \leq \rangle, \ \langle \mathbb{Q}, > \rangle, \ \langle X, E \rangle$ pokud $X \neq \emptyset, \ \langle \mathcal{P}(X), \subseteq \rangle$.

Hodnota termu

Nechť t je term jazyka $L = \langle \mathcal{R}, \mathcal{F} \rangle$ a $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ je struktura pro L.

- Ohodnocení proměnných v množině A je funkce e: Var $\rightarrow A$.
- Hodnota t^A[e] termu t ve struktuře A při ohodnocení e je dána induktivním předpisem

$$\begin{split} x^{\mathcal{A}}[e] &= e(x) \quad \text{pro každ\'e } x \in \text{Var}, \\ (f(t_0, \dots, t_{n-1}))^{\mathcal{A}}[e] &= f^{\mathcal{A}}(t_0^{\mathcal{A}}[e], \dots, t_{n-1}^{\mathcal{A}}[e]) \quad \text{pro každ\'e } f \in \mathcal{F}. \end{split}$$

- Speciálně, pro konstantní symbol c je $c^{\mathcal{A}}[e] = c^{\mathcal{A}}$.
- Je-li t konstantní term, jeho hodnota v A nezávisí na ohodnocení e.
- ullet Hodnota termu v ${\mathcal A}$ závisí pouze na ohodnocení jeho proměnných.

Např. hodnota termu x+1 ve struktuře $\mathcal{N}=\langle\mathbb{N},\cdot,3\rangle$ při ohodnocení e, pro které e(x)=2, je $(x+1)^{\mathcal{N}}[e]=6$.

Hodnota atomické formule

Nechť φ je atomická formule tvaru $R(t_0,\ldots,t_{n-1})$ jazyka $L=\langle \mathcal{R},\mathcal{F}\rangle$ a $\mathcal{A}=\langle A,\mathcal{R}^A,\mathcal{F}^A\rangle$ je struktura pro L.

• Hodnota $H_{at}^{\mathcal{A}}(\varphi)[e]$ formule φ ve struktuře \mathcal{A} při ohodnocení e je

$$H_{at}^{\mathcal{A}}(R(t_0,\ldots,t_{n-1}))[e] = \left\{ \begin{array}{ll} 1 & \quad \mathsf{pokud}\; (t_0^{\mathcal{A}}[e],\ldots,t_{n-1}^{\mathcal{A}}[e]) \in R^{\mathcal{A}}, \\ 0 & \quad \mathsf{jinak}. \end{array} \right.$$

přičemž = $^{\mathcal{A}}$ je Id_A , tj. $H_{at}^{\mathcal{A}}(t_0=t_1)[e]=1$ pokud $t_0^{\mathcal{A}}[e]=t_1^{\mathcal{A}}[e]$, jinak 0.

- Je-li φ sentence, tj. všechny její termy jsou konstantní, její hodnota v A nezávisí na ohodnocení e.
- Hodnota φ v $\mathcal A$ závisí pouze na ohodnocení jejích (volných) proměnných.

Např. hodnota formule φ tvaru $x+1 \leq 1$ ve struktuře $\mathcal{N} = \langle \mathbb{N}, +, 1, \leq \rangle$ při ohodnocení e je $H^{\mathcal{N}}_{at}(\varphi)[e] = 1$ právě když e(x) = 0.

Hodnota formule

 $\operatorname{Hodnota} H^{\mathcal{A}}(\varphi)[e]$ formule φ ve struktuře \mathcal{A} při ohodnocení e je

$$\begin{split} H^{\mathcal{A}}(\varphi)[e] &= H^{\mathcal{A}}_{at}(\varphi)[e] \;\; \mathsf{pokud} \; \varphi \; \mathsf{je} \; \mathsf{atomick\'a}, \\ H^{\mathcal{A}}(\neg \varphi)[e] &= -_1(H^{\mathcal{A}}(\varphi)[e]) \\ H^{\mathcal{A}}(\varphi \wedge \psi)[e] &= \wedge_1(H^{\mathcal{A}}(\varphi)[e], H^{\mathcal{A}}(\psi)[e]) \\ H^{\mathcal{A}}(\varphi \vee \psi)[e] &= \vee_1(H^{\mathcal{A}}(\varphi)[e], H^{\mathcal{A}}(\psi)[e]) \\ H^{\mathcal{A}}(\varphi \to \psi)[e] &= \to_1(H^{\mathcal{A}}(\varphi)[e], H^{\mathcal{A}}(\psi)[e]) \\ H^{\mathcal{A}}(\varphi \leftrightarrow \psi)[e] &= \leftrightarrow_1(H^{\mathcal{A}}(\varphi)[e], H^{\mathcal{A}}(\psi)[e]) \\ H^{\mathcal{A}}((\forall x)\varphi)[e] &= \min_{a \in A}(H^{\mathcal{A}}(\varphi)[e(x/a)]) \\ H^{\mathcal{A}}((\exists x)\varphi)[e] &= \max_{a \in A}(H^{\mathcal{A}}(\varphi)[e(x/a)]) \end{split}$$

kde -1, $\wedge 1$, $\vee 1$, $\rightarrow 1$, $\leftrightarrow 1$ jsou Booleovské funkce dané tabulkami a e(x/a) pro $a \in A$ značí ohodnocení získané z e nastavením e(x) = a.

Pozorování $H^{\mathcal{A}}(\varphi)[e]$ závisí pouze na ohodnocení volných proměnných ve φ .

20 / 24

Platnost při ohodnocení

Formule φ je pravdivá (platí) ve struktuře \mathcal{A} při ohodnocení e, pokud $H^{\mathcal{A}}(\varphi)[e] = 1$. Pak píšeme $\mathcal{A} \models \varphi[e]$, v opačném případě $\mathcal{A} \not\models \varphi[e]$. Platí

$$\begin{array}{llll} \mathcal{A} \models \neg \varphi[e] & \Leftrightarrow & \mathcal{A} \not\models \varphi[e] \\ \mathcal{A} \models (\varphi \wedge \psi)[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e] \text{ a } \mathcal{A} \models \psi[e] \\ \mathcal{A} \models (\varphi \vee \psi)[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e] \text{ nebo } \mathcal{A} \models \psi[e] \\ \mathcal{A} \models (\varphi \rightarrow \psi)[e] & \Leftrightarrow & \text{jestliže } \mathcal{A} \models \varphi[e], \text{ pak } \mathcal{A} \models \psi[e] \\ \mathcal{A} \models (\varphi \leftrightarrow \psi)[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e] \text{ právě když } \mathcal{A} \models \psi[e] \\ \mathcal{A} \models (\forall x) \varphi[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e(x/a)] \text{ pro každé } a \in A \\ \mathcal{A} \models (\exists x) \varphi[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e(x/a)] \text{ pro nějaké } a \in A \end{array}$$

Pozorování Nechť term t je substituovatelný za proměnnou x do formule φ a formule ψ je varianta φ . Pak pro každou strukturu $\mathcal A$ a ohodnocení e platí

- 1) $A \models \varphi(x/t)[e]$ právě když $A \models \varphi[e(x/a)]$ pro $a = t^A[e]$,
- 2) $A \models \varphi[e]$ právě když $A \models \psi[e]$.

Platnost ve struktuře

Nechť φ je formule jazyka L a \mathcal{A} je struktura pro L.

- φ je *pravdivá* (*platí*) *ve struktuře* \mathcal{A} , značeno $\mathcal{A} \models \varphi$, pokud $\mathcal{A} \models \varphi[e]$ pro každé ohodnocení $e: \operatorname{Var} \to A$. V opačném případě píšeme $\mathcal{A} \not\models \varphi$.
- φ je *lživá v A*, pokud $\mathcal{A}\models \neg \varphi$, tj. $\mathcal{A}\not\models \varphi[e]$ pro každé $e\colon \mathrm{Var}\to A$.
- ullet Pro každé formule $arphi,\,\psi,$ proměnnou x a strukturu ${\mathcal A}$ platí
 - $(1) \qquad \mathcal{A} \models \varphi \qquad \Rightarrow \quad \mathcal{A} \not\models \neg \varphi$
 - (2) $\mathcal{A} \models \varphi \wedge \psi \Leftrightarrow \mathcal{A} \models \varphi \text{ a } \mathcal{A} \models \psi$
 - $(3) \qquad \mathcal{A} \models \varphi \lor \psi \quad \Leftarrow \quad \mathcal{A} \models \varphi \text{ nebo } \mathcal{A} \models \psi$
 - $(4) \qquad \mathcal{A} \models \varphi \qquad \Leftrightarrow \quad \mathcal{A} \models (\forall x)\varphi$
- Je-li φ sentence, je φ pravdivá v $\mathcal A$ či lživá v $\mathcal A$ a tedy implikace (1) platí i obráceně. Je-li φ nebo ψ sentence, implikace (3) platí i obráceně.
- Z (4) plyne, že $\mathcal{A} \models \varphi$ právě když $\mathcal{A} \models \psi$, kde ψ je *generální uzávěr* φ , tj. formule $(\forall x_1) \cdots (\forall x_n) \varphi$, v níž x_1, \ldots, x_n jsou všechny volné proměnné φ .

Platnost v teorii a logická platnost

- Teorie jazyka L je libovolná množina T formulí jazyka L (tzv. axiomů).
- Model teorie T je L-struktura A taková, že $A \models \varphi$ pro každé $\varphi \in T$, značíme $A \models T$.
- *Třída modelů* teorie T je $M(T) = \{A \in M(L) \mid A \models T\}$.
- Formule φ je *pravdivá v T* (*platí v T*), značíme $T \models \varphi$, pokud $\mathcal{A} \models \varphi$ pro každý model \mathcal{A} teorie T. V opačném případě píšeme $T \not\models \varphi$.
- Formule φ je *lživá* v T, pokud $T \models \neg \varphi$, tj. je lživá v každém modelu T.
- Formule φ je *nezávislá v T*, pokud není pravdivá v T ani lživá v T.
- Je-li $T=\emptyset$, je M(T)=M(L) a teorii T vynecháváme, případně říkáme "v logice". Pak $\models \varphi$ značí, že φ je pravdivá ((logicky) platí, tautologie).
- Důsledek T je množina $\theta^L(T)$ všech sentencí jazyka L pravdivých v T, tj. $\theta^L(T) = \{ \varphi \in \operatorname{Fm}_L \mid T \models \varphi \text{ a } \varphi \text{ je sentence} \}.$

Příklad teorie

Teorie uspořádání T jazyka $L = \langle \leq \rangle$ s rovností má axiomy

$$x \le x$$
 (reflexivita)
 $x \le y \land y \le x \rightarrow x = y$ (antisymetrie)
 $x \le y \land y \le z \rightarrow x \le z$ (tranzitivita)

Modely T jsou L-struktury $\langle S, \leq_S \rangle$, tzv. uspořádané množiny, ve kterých platí axiomy T, např. $\mathcal{A} = \langle \mathbb{N}, \leq \rangle$ nebo $\mathcal{B} = \langle \mathcal{P}(X), \subseteq \rangle$ pro $X = \{0, 1, 2\}$.

- Formule φ ve tvaru $x \leq y \vee y \leq x$ platí v \mathcal{A} , ale neplatí v \mathcal{B} , neboť např. $\mathcal{B} \not\models \varphi[e]$ při ohodnocení $e(x) = \{0\}, e(y) = \{1\}$, je tedy nezávislá v T.
- Sentence ψ ve tvaru $(\exists x)(\forall y)(y \leq x)$ je pravdivá v \mathcal{B} a lživá v \mathcal{A} , je tedy rovněž nezávislá v T. Píšeme $\mathcal{B} \models \psi$, $\mathcal{A} \models \neg \psi$.
- Formule χ ve tvaru $(x \leq y \land y \leq z \land z \leq x) \rightarrow (x = y \land y = z)$ je pravdivá v T, píšeme $T \models \chi$, totéž platí pro její generální uzávěr.

Výroková a predikátová logika - VII

Petr Gregor

KTIML MFF UK

ZS 2019/2020

Platnost v teorii a logická platnost

- Teorie jazyka L je libovolná množina T formulí jazyka L (tzv. axiomů).
- Model teorie T je L-struktura A taková, že $A \models \varphi$ pro každé $\varphi \in T$, značíme $A \models T$.
- *Třída modelů* teorie T je $M(T) = \{A \in M(L) \mid A \models T\}$.
- Formule φ je *pravdivá v T* (*platí v T*), značíme $T \models \varphi$, pokud $\mathcal{A} \models \varphi$ pro každý model \mathcal{A} teorie T. V opačném případě píšeme $T \not\models \varphi$.
- Formule φ je *lživá v T*, pokud $T \models \neg \varphi$, tj. je lživá v každém modelu T.
- Formule φ je *nezávislá v T*, pokud není pravdivá v T ani lživá v T.
- Je-li $T=\emptyset$, je M(T)=M(L) a teorii T vynecháváme, případně říkáme "v logice". Pak $\models \varphi$ značí, že φ je pravdivá ((logicky) platí, tautologie).
- *Důsledek T* je množina $\theta^L(T)$ všech sentencí jazyka L pravdivých v T, tj. $\theta^L(T) = \{ \varphi \in \operatorname{Fm}_L \mid T \models \varphi \text{ a } \varphi \text{ je sentence} \}.$

Nesplnitelnost a pravdivost

Problém pravdivosti v teorii lze převést na problém existence modelu.

Tvrzení Pro každou teorii T a sentenci φ (stejného jazyka)

$$T, \neg \varphi$$
 nemá model \Leftrightarrow $T \models \varphi$.

Důkaz Z definic plynou ekvivalence následujících tvrzení.

- (1) $T, \neg \varphi$ nemá model,
- (2) $\neg \varphi$ neplatí v žádném modelu teorie T,
- (3) φ platí v každém modelu teorie T,
- (4) $T \models \varphi$. \square

Poznámka Předpoklad, že φ *je sentence, je nutný pro* $(2) \Rightarrow (3)$.

Např. teorie $\{P(c), \neg P(x)\}$ nemá model, ale $P(c) \not\models P(x)$, kde P je unární relační symbol a c je konstantní symbol.

Základní algebraické teorie - příklady

• *Teorie grup* nad jazykem $L = \langle +, -, 0 \rangle$ s rovností má axiomy

$$x+(y+z)=(x+y)+z$$
 (asociativita +)
 $0+x=x=x+0$ (neutralita 0 k +)
 $x+(-x)=0=(-x)+x$ (-x je inverzní prvek k x)

- Teorie komutativních grup má navíc ax. x + y = y + x (komutativita +)
- Teorie okruhů je jazyka $L=\langle +,-,\cdot,0,1\rangle$ s rovností, má navíc axiomy

$$1 \cdot x = x = x \cdot 1$$
 (neutralita 1 k ·)
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
 (asociativita ·)
$$x \cdot (y + z) = x \cdot y + x \cdot z, (x + y) \cdot z = x \cdot z + y \cdot z$$
 (distributivita · k +)

- Teorie komutativních okruhů má navíc ax. $x \cdot y = y \cdot x$ (komutativita ·)
- Teorie těles stejného jazyka má navíc axiomy

$$x \neq 0 \to (\exists y)(x \cdot y = 1)$$
 (existence inverzního prvku k ·) $0 \neq 1$ (netrivialita)

Vlastnosti teorií

Teorie T jazyka L je (sémanticky)

- $sporn\acute{a}$, jestliže v ní platí \perp (spor), jinak je $bezesporn\acute{a}$ ($splniteln\acute{a}$),
- kompletní, jestliže není sporná a každá sentence je v ní pravdivá či lživá,
- extenze teorie T' jazyka L', jestliže $L' \subseteq L$ a $\theta^{L'}(T') \subseteq \theta^L(T)$, o extenzi T teorie T' řekneme, že je jednoduchá, pokud L = L', a konzervativní, pokud $\theta^{L'}(T') = \theta^L(T) \cap \operatorname{Fm}_{L'}$,
- ekvivalentni s teorii T', jestliže T je extenzi T' a T' je extenzi T,

Struktury A, B pro jazyk L jsou *elementárně ekvivalentní*, značeno $A \equiv B$, platí-li v nich stejné formule.

Pozorování Nechť T a T' jsou teorie jazyka L. Teorie T je (sémanticky)

- (1) bezesporná, právě když má model,
- (2) kompletní, právě když má až na elementární ekvivalenci jediný model,
- (3) extenze T', právě když $M(T) \subseteq M(T')$,
- (4) ekvivalentní s T', právě když M(T) = M(T').

Podstruktura

Nechť $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ a $\mathcal{B} = \langle B, \mathcal{R}^B, \mathcal{F}^B \rangle$ isou struktury pro jazyk $L = \langle \mathcal{R}, \mathcal{F} \rangle$.

Rekneme, že \mathcal{B} je (indukovaná) podstruktura \mathcal{A} , značeno $\mathcal{B} \subseteq \mathcal{A}$, pokud

- (i) $B \subseteq A$,
- (ii) $R^B = R^A \cap B^{\operatorname{ar}(R)}$ pro každé $R \in \mathcal{R}$.
- (iii) $f^B = f^A \cap (B^{\operatorname{ar}(f)} \times B)$, tj. $f^B = f^A \upharpoonright B^{\operatorname{ar}(f)}$, pro každé $f \in \mathcal{F}$.

Pozorování Množina $C \subseteq A$ je doménou nějaké podstruktury struktury A, právě když C je uzavřená na všechny funkce struktury A (včetně konstant).

- Pak příslušnou podstrukturu značíme A | C a říkáme, že je to restrikce (parcializace) struktury A na C.
- Množina $C \subseteq A$ je *uzavřená* na funkci $f: A^n \to A$, pokud $f(x_0,\ldots,x_{n-1})\in C$ pro každé $x_0,\ldots,x_{n-1}\in C$.

Např. $\mathbb{Z} = \langle \mathbb{Z}, +, \cdot, 0 \rangle$ je podstrukturou $\mathbb{Q} = \langle \mathbb{Q}, +, \cdot, 0 \rangle$ a lze psát $\mathbb{Z} = \mathbb{Q} \upharpoonright \mathbb{Z}$. Dále $\mathbb{N} = \langle \mathbb{N}, +, \cdot, 0 \rangle$ je jejich podstrukturou a $\mathbb{N} = \mathbb{Q} \upharpoonright \mathbb{N} = \mathbb{Z} \upharpoonright \mathbb{N}$.

Platnost v podstruktuře

Nechť \mathcal{B} je podstruktura struktury \mathcal{A} pro (pevný) jazyk L.

Tvrzení Pro každou otevřenou formuli φ a ohodnocení $e: \mathrm{Var} \to B$ platí $\mathcal{B} \models \varphi[e]$ právě když $\mathcal{A} \models \varphi[e]$.

 $D\mathring{u}kaz$ Je-li φ atomická, plyne tvrzení z definice platnosti při ohodnocení. Dále snadno indukcí dle struktury formule.

Důsledek Otevřená formule platí ve struktuře A, právě když platí v každé podstruktuře $B \subseteq A$.

Teorie T je otevřená, jsou-li všechny její axiomy otevřené formule.

Důsledek Každá podstruktura modelu otevřené teorie *T* je modelem *T*.

Např. každá podstruktura grafu, tj. modelu teorie grafů, je rovněž grafem, zveme ho podgraf. Obdobně např. podgrupa nebo Booleova podalgebra.

Generovaná podstruktura, expanze, redukt

Nechť $\mathcal{A}=\langle A,\mathcal{R}^A,\mathcal{F}^A \rangle$ je struktura a $X\subseteq A$. Označme B nejmenší podmnožinu množiny A obsahující X, která je uzavřená na všechny funkce struktury \mathcal{A} (včetně konstant). Pak strukturu $\mathcal{A}\upharpoonright B$ značíme rovněž $\mathcal{A}\langle X\rangle$ a podstruktura říkáme, že je to \mathcal{A} generovaná množinou X.

Např. pro $\underline{\mathbb{Q}} = \langle \mathbb{Q}, +, \cdot, 0 \rangle$, $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, \cdot, 0 \rangle$ a $\underline{\mathbb{N}} = \langle \mathbb{N}, +, \cdot, 0 \rangle$ je $\underline{\mathbb{Q}} \langle \{1\} \rangle = \underline{\mathbb{N}}$, $\underline{\mathbb{Q}} \langle \{-1\} \rangle = \underline{\mathbb{Z}}$ a $\underline{\mathbb{Q}} \langle \{2\} \rangle$ je podstruktura na všech sudých přirozených číslech.

Nechť \mathcal{A}' je struktura pro jazyk L' a $L\subseteq L'$ je jazyk. Odebráním realizací symbolů, jež nejsou v L, získáme z \mathcal{A}' strukturu \mathcal{A} , kterou nazýváme redukt struktury \mathcal{A}' na jazyk L. Obráceně, \mathcal{A}' je $\operatorname{expanze}$ struktury \mathcal{A} do jazyka L'.

Např. $\langle \mathbb{N}, + \rangle$ je redukt $\langle \mathbb{N}, +, \cdot, 0 \rangle$. Naopak, struktura $\langle \mathbb{N}, +, c_i \rangle_{i \in \mathbb{N}}$ taková, že $c_i = i$ pro všechna $i \in \mathbb{N}$, je expanze $\langle \mathbb{N}, + \rangle$ o jména prvků z \mathbb{N} .

◆□▶◆□▶◆■▶◆■▶ ● かへで

Věta o konstantách

Věta Nechť φ je formule jazyka L s volnými proměnnými x_1, \ldots, x_n a T je teorie jazyka L. Označme L' rozšíření L o nové konstantní symboly c_1, \ldots, c_n a T' teorii T nad jazykem L'. Pak

$$T \models \varphi$$
 právě když $T' \models \varphi(x_1/c_1, \dots, x_n/c_n)$.

extstyle ext

$$\mathcal{A} \models \varphi[e(x_1/c_1^{A'},\ldots,x_n/c_n^{A'})], \quad \text{tj. } \mathcal{A}' \models \varphi(x_1/c_1,\ldots,x_n/c_n).$$

 (\Leftarrow) Je-li $\mathcal A$ model teorie T a e ohodnocení, nechť $\mathcal A'$ je expanze $\mathcal A$ na L' o konstanty $c_i^{A'}=e(x_i)$ pro všechna i. Jelikož $\mathcal A'\models \varphi(x_1/c_1,\dots,x_n/c_n)[e']$ pro libovolné ohodnocení e', platí i

$$\mathcal{A}' \models \varphi[e(x_1/c_1^{A'},\ldots,x_n/c_n^{A'})], \quad \text{tj. } \mathcal{A} \models \varphi[e]. \quad \Box$$

Definovatelné množiny

Zajímá nás, které množiny lze v dané struktuře zadefinovat.

• Množina definovaná formulí $\varphi(x_1, ..., x_n)$ ve struktuře \mathcal{A} je množina

$$\varphi^{\mathcal{A}}(x_1,\ldots,x_n)=\{(a_1,\ldots,a_n)\in A^n\mid \mathcal{A}\models \varphi[e(x_1/a_1,\ldots,x_n/a_n)]\}.$$

 $\mathsf{Zkr\'{a}cen\'{y}m}\ \mathsf{z\'{a}pisem},\ \varphi^{\mathcal{A}}(\overline{x}) = \{\overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a})]\},\ \mathsf{kde}\ |\overline{x}| = n.$

• Množina definovaná formulí $\varphi(\overline{x},\overline{y})$ s parametry $\overline{b}\in A^{|\overline{y}|}$ ve struktuře $\mathcal A$ je

$$\varphi^{\mathcal{A},\overline{b}}(\overline{x},\overline{y}) = \{ \overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a},\overline{y}/\overline{b})] \}.$$

Např. pro $\varphi=E(x,y)$ je $\varphi^{\mathcal{G},b}(x,y)$ množina sousedů vrcholu b v grafu \mathcal{G} .

• Pro strukturu \mathcal{A} , množinu $B \subseteq A$ a $n \in \mathbb{N}$ označme $\mathbf{Df}^n(\mathcal{A}, B)$ třídu všech množin $D \subseteq A^n$ definovatelných ve struktuře \mathcal{A} s parametry z B.

Pozorování $\operatorname{Df}^n(A,B)$ je uzavřená na doplněk, sjednocení, průnik a obsahuje \emptyset , A^n . Tedy tvoří podalgebru potenční algebry $\underline{\mathcal{P}}(A^n)$.

Příklad - databázové dotazy

Filmy	název	$re \check{z} is \acute{e} r$	herec	Program	kino	$n\'{a}zev$	čas
	Lidé z Maringotek	M. Frič	J. Tříska		Světozor	Po strništi bos	13:15
	Po strništi bos	J. Svěrák	Z. Svěrák		Mat	Po strništi bos	16:15
	Po strništi bos	J. Svěrák	J. Tříska		Mat	Lidé z Maringotek	18:30

Kde a kdy mohu dnes vidět film s Janem Třískou?

select *Program.kino*, *Program.čas* **from** *Filmy*, *Program* **where** *Filmy.název* = *Program.název* **and** *herec* = 'J. Tříska';

Totéž dostaneme jako množinu $\varphi^{\mathcal{D}}(x,y)$ definovanou formulí $\varphi(x,y)$

$$(\exists n)(\exists r)(P(x, n, y) \land F(n, r, 'J. Tříska'))$$

ve struktuře $\mathcal{D}=\langle D, Filmy, Program, c^D \rangle_{c \in D}$ jazyka $L=\langle F, P, c \rangle_{c \in D}$, kde $D=\{\text{'Po strništi bos', 'J. Tříska', 'Mat', '13:15', ...}\}$ a $c^D=c$ pro každé $c \in D$.

Booleovy algebry

Teorie Booleových algeber jazyka $L = \langle -, \wedge, \vee, 0, 1 \rangle$ s rovností má axiomy

$$\begin{array}{lll} x \wedge (y \wedge z) = (x \wedge y) \wedge z & \text{(asociativita } \wedge) \\ x \vee (y \vee z) = (x \vee y) \vee z & \text{(asociativita } \vee) \\ x \wedge y = y \wedge x & \text{(komutativita } \wedge) \\ x \vee y = y \vee x & \text{(komutativita } \wedge) \\ x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z) & \text{(distributivita } \wedge k \vee) \\ x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z) & \text{(distributivita } \wedge k \wedge) \\ x \wedge (x \vee y) = x, & x \vee (x \wedge y) = x & \text{(absorbce)} \\ x \vee (-x) = 1, & x \wedge (-x) = 0 & \text{(komplementace)} \\ 0 \neq 1 & \text{(netrivialita)} \end{array}$$

Nejmenší model je $\underline{2}=\langle 2,-_1,\wedge_1,\vee_1,0,1\rangle$. Konečné Booleovy algebry jsou (až na izomorfismus) právě $\underline{n2}=\langle n2,-_n,\wedge_n,\vee_n,0_n,1_n\rangle$ pro $n\in\mathbb{N}^+$, kde jednotlivé operace *(na binárních n-ticích)* jsou operace z $\underline{2}$ *"po složkách"*.

Vztah výrokové a predikátové logiky

- Výrokové formule s (*univerzálními*) spojkami ¬, ∧, ∨ (případně s ⊤, ⊥) lze považovat za Booleovské termy. Hodnota výroku φ při daném ohodnocení je pak hodnotou termu v Booleově algebře 2.
- Algebra výroků nad ℙ je Booleova algebra (i pro ℙ nekonečné).
- Reprezentujeme-li atomické formule v otevřené formuli φ (bez rovnosti) pomocí prvovýroků, získame výrokovou formuli, která je pravdivá, právě když φ je pravdivá.
- Výrokovou logiku lze zavést jako fragment predikátové logiky pomocí nulárních relačních symbolů (*syntax*) a nulárních relací (*sémantika*), přičemž A⁰ = {∅} = 1 a tedy R^A ⊆ A⁰ je R^A = ∅ = 0 anebo R^A = {∅} = 1.

Tablo metoda v PL - rozdíly

- Formule v položkách budou sentence (uzavřené formule), tj. formule bez volných proměnných.
- Přidáme nová atomická tabla pro kvantifikátory.
- Za kvantifikované proměnné se budou substituovat konstantní termy dle jistých pravidel.
- Jazyk rozšíříme o nové (pomocné) konstantní symboly (spočetně mnoho) pro reprezentaci "svědků" položek T(∃x)φ(x) a F(∀x)φ(x).
- V dokončené bezesporné větvi s položkou $T(\forall x)\varphi(x)$ či $F(\exists x)\varphi(x)$ budou instance $T\varphi(x/t)$ resp. $F\varphi(x/t)$ pro každý konstantní term t (rozšířeného jazyka).

Tablo v PL - příklady

Výroková a predikátová logika - VIII

Petr Gregor

KTIML MFF UK

ZS 2019/2020

Tablo metoda ve VL - opakování

- Tablo je binární strom reprezentující vyhledávání protipříkladu.
- Vrcholy jsou označeny položkami, tj. formulemi s příznakem T / F, který reprezentuje předpoklad, že formule v nějakém modelu platí / neplatí.
- Je-li tento předpoklad správný, je správný i v nějaké větvi pod ní.
- Větev je sporná (selže), pokud obsahuje $T\psi$, $F\psi$ pro nějaké ψ .
- Důkaz formule φ je sporné tablo s kořenem $F\varphi$, tj. tablo v němž každá větev je sporná (nebyl nalezen protipříklad), pak φ je pravdivá.
- Pokud protipříklad existuje, v dokončeném tablu bude větev, která ho poskytuje, tato větev může být nekonečná.
- Lze zkonstruovat systematické tablo, jež je vždy dokončené.
- Pokud je φ pravdivá, systematické tablo pro φ je sporné, tj. důkazem φ , v tom případě je i konečné.

Tablo metoda ve VL - příklady

- *a*) Tablo důkaz formule $((p \rightarrow q) \rightarrow p) \rightarrow p$.
- *b*) Dokončené tablo pro $(\neg q \lor p) \to p$. Levá větev poskytuje protipříklad v(p) = v(q) = 0.

Tablo metoda v PL - rozdíly

- Formule v položkách budou sentence (uzavřené formule), tj. formule bez volných proměnných.
- Přidáme nová atomická tabla pro kvantifikátory.
- Za kvantifikované proměnné se budou substituovat konstantní termy dle jistých pravidel.
- Jazyk rozšíříme o nové (pomocné) konstantní symboly (spočetně mnoho) pro reprezentaci "svědků" položek T(∃x)φ(x) a F(∀x)φ(x).
- V dokončené bezesporné větvi s položkou $T(\forall x)\varphi(x)$ či $F(\exists x)\varphi(x)$ budou instance $T\varphi(x/t)$ resp. $F\varphi(x/t)$ pro každý konstantní term t (rozšířeného jazyka).

Předpoklady

1) Dokazovaná formule φ je sentence. Není-li φ sentence, můžeme ji nahradit za její generální uzávěr φ' , neboť pro každou teorii T,

$$T \models \varphi$$
 právě když $T \models \varphi'$.

2) Dokazujeme z teorie v uzavřeném tvaru, tj. každý axiom je sentence. Nahrazením každého axiomu ψ za jeho generální uzávěr ψ' získáme ekvivalentní teorii, neboť pro každou strukturu $\mathcal A$ (daného jazyka $\mathcal L$),

$$\mathcal{A} \models \psi$$
 právě když $\mathcal{A} \models \psi'$.

- 3) $Jazyk\ L\ je\ spočetný$. Pak každá teorie nad L je spočetná. Označme L_C rozšíření jazyka L o nové konstantní symboly c_0,c_1,\ldots (spočetně nekonečně mnoho). Platí, že konstantních termů jazyka L_C je spočetně. Nechť t_i označuje i-tý konstantní term (v pevně zvoleném očíslování).
- 4) Zatím budeme předpokládat, že jazyk je bez rovnosti.

Tablo v PL - příklady

Atomická tabla - původní

Atomická tabla jsou všechny následující (položkami značkované) stromy, kde α je libovolná atomická sentence a φ , ψ jsou libovolné sentence, vše v L_C .

$T\alpha$	Tlpha $Flpha$		$T(\varphi \wedge \psi)$ $ $ $T\varphi$ $ $ $T\psi$	$F(\varphi \wedge \psi)$ $/ \qquad \qquad$	$T(\varphi \lor \psi)$ $T\varphi \qquad T\psi$	$F(\varphi \lor \psi)$ $ $ $F\varphi$ $ $ $F\psi$	
$T(\neg \varphi \\ \\ F\varphi$		$F(\neg \varphi)$ $ $ $T\varphi$	$T(\varphi \to \psi)$ $F\varphi \qquad T\psi$	$F(\varphi \to \psi)$ $ $ $T\varphi$ $ $ $F\psi$	$T(\varphi \leftrightarrow \psi)$ $T\varphi \qquad F\varphi$ $ \qquad \qquad $ $T\psi \qquad F\psi$	$ \begin{array}{c cccc} F(\varphi \leftrightarrow \psi) \\ \hline \nearrow & \\ T\varphi & F\varphi \\ & \\ F\psi & T\psi \\ \end{array} $	

Tablo

Atomická tabla - nová

Atomická tabla jsou i následující (položkami značkované) stromy, kde φ je libovolná formule jazyka L_C ve volné proměnné x, t je libovolný konstantní term jazyka L_C a c je nový konstantní symbol z $L_C \setminus L$.

Poznámka Konstantní symbol c reprezentuje "svědka" položky $T(\exists x)\varphi(x)$ či $F(\forall x)\varphi(x)$. Jelikož nechceme, aby na c byly kladeny další požadavky, je v definici tabla omezeno, jaký konstantní symbol c lze použít.

Tablo

Konečné tablo z teorie T je binární, položkami značkovaný strom s předpisem

- (i) každé atomické tablo je konečné tablo z T, přičemž v případě (*) lze použít libovolný konstantní symbol $c \in L_C \setminus L$,
- (ii) je-li P položka na větvi V konečného tabla z T, pak připojením atomického tabla pro P na konec větve V vznikne konečné tablo z T, přičemž v případě (*) lze použít pouze konstantní symbol $c \in L_C \setminus L$, který se dosud nevyskytuje na V,
- (iii) je-li V větev konečného tabla z T a $\varphi \in T$, pak připojením $T\varphi$ na konec větve V vznikne rovněž konečné tablo z T.
- (iv) každé konečné tablo z T vznikne konečným užitím pravidel (i), (ii), (iii).

Tablo z teorie T je posloupnost $\tau_0, \tau_1, \ldots, \tau_n, \ldots$ konečných tabel z T takových, že τ_{n+1} vznikne z τ_n pomocí (ii) či (iii), formálně $\tau = \cup \tau_n$.

Konstrukce tabla

Konvence

Položku, dle které tablo prodlužujeme, nebudeme na větev znovu zapisovat kromě případů, kdy položka je tvaru $T(\forall x)\varphi(x)$ či $F(\exists x)\varphi(x)$.

Tablo důkaz

- Větev V tabla τ je *sporná*, obsahuje-li položky $T\varphi$ a $F\varphi$ pro nějakou sentenci φ , jinak je *bezesporná*.
- Tablo τ je sporné, pokud je každá jeho větev sporná.
- Tablo důkaz (důkaz tablem) sentence φ z teorie T je sporné tablo z T s položkou $F\varphi$ v kořeni.
- φ je (tablo) dokazatelná z teorie T, píšeme $T \vdash \varphi$, má-li tablo důkaz z T.
- Zamítnutí sentence φ tablem z teorie T je sporné tablo z T s položkou $T\varphi$ v kořeni.
- Sentence φ je (tablo) zamítnutelná z teorie T, má-li zamítnutí tablem z T, tj. T ⊢ ¬φ.

Příklady

$$F((\forall x)(P(x) \rightarrow Q(x)) \rightarrow ((\forall x)P(x) \rightarrow (\forall x)Q(x)) \qquad F((\forall x)(\varphi(x) \land \psi(x)) \leftrightarrow ((\forall x)\varphi(x) \land (\forall x)\psi(x)))$$

$$T((\forall x)(P(x) \rightarrow Q(x)) \qquad T((\forall x)(\varphi(x) \land \psi(x))) \qquad F((\forall x)(\varphi(x) \land \psi(x)))$$

$$F((\forall x)P(x) \rightarrow (\forall x)Q(x)) \qquad F((\forall x)\varphi(x) \land (\forall x)\psi(x)) \qquad T((\forall x)\varphi(x) \land (\forall x)\psi(x))$$

$$T(\forall x)P(x) \qquad F(\forall x)\varphi(x) \qquad F(\forall x)\psi(x) \qquad T(\forall x)\varphi(x) \land (\forall x)\psi(x)$$

$$T(\forall x)P(x) \qquad F(\forall x)\varphi(x) \qquad F(\forall x)\psi(x) \qquad T(\forall x)\varphi(x) \land (\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad T(\forall x)\psi(x)$$

$$F(\forall x)Q(x) \qquad F\varphi(x) \qquad F(\forall x)\psi(x) \qquad F(\forall x)\psi(x)$$

$$F(\forall x)P(x) \qquad F((\forall x)(\varphi(x) \land \psi(x))) \qquad F(\varphi(x) \land \psi(x))) \qquad F(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T((\forall x)(\varphi(x) \land \psi(x))) \qquad F(\varphi(x) \land \psi(x))) \qquad F(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T((\forall x)(\varphi(x) \land \psi(x))) \qquad F(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T((\forall x)(\varphi(x) \land \psi(x))) \qquad F(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T((\forall x)(\varphi(x) \land \psi(x))) \qquad F(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T((\forall x)(\varphi(x) \land \psi(x))) \qquad F(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T((\forall x)(\varphi(x) \land \psi(x))) \qquad F(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T((\forall x)(\varphi(x) \land \psi(x))) \qquad F(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T((\forall x)(\varphi(x) \land \psi(x))) \qquad F(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T((\forall x)(\varphi(x) \land \psi(x))) \qquad F(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T((\forall x)(\varphi(x) \land \psi(x))) \qquad F(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T((\forall x)(\varphi(x) \land \psi(x))) \qquad F(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T((\forall x)(\varphi(x) \land \psi(x))) \qquad F(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T((\forall x)(\varphi(x) \land \psi(x))) \qquad F(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T((\forall x)(\varphi(x) \land \psi(x))) \qquad F(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T(\varphi(x) \land \psi(x)) \qquad T(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T(\varphi(x) \land \psi(x)) \qquad T(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T(\varphi(x) \land \psi(x)) \qquad T(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T(\varphi(x) \land \psi(x)) \qquad T(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T(\varphi(x) \land \psi(x)) \qquad T(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T(\varphi(x) \land \psi(x)) \qquad T(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T(\varphi(x) \land \psi(x)) \qquad T(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T(\varphi(x) \land \psi(x)) \qquad T(\varphi(x) \land \psi(x))$$

$$T(\forall x)P(x) \qquad T(\varphi(x) \land \psi(x) \land \psi(x)$$

$$T(\forall x)P(x) \qquad T(\varphi(x) \land \psi(x)) \qquad T(\varphi(x) \land \psi(x)$$

$$T(\forall x)P(x) \qquad T(\varphi(x) \land \psi(x) \land \psi(x)$$

$$T(\forall x)P(x) \qquad T($$

Dokončené tablo

Chceme, aby dokončená bezesporná větev poskytovala protipříklad.

Výskyt položky P ve vrcholu v tabla τ je i-t \acute{y} , pokud v má v τ právě i-1 předků označených P a je redukovan \acute{y} na větvi V skrze v, pokud

- *a*) P není tvaru $T(\forall x)\varphi(x)$ ani $F(\exists x)\varphi(x)$ a P se vyskytuje na V jako kořen atomického tabla, tj. při konstrukci τ již došlo k rozvoji P na V, nebo
- b) P je tvaru $T(\forall x)\varphi(x)$ či $F(\exists x)\varphi(x)$, má (i+1)-ní výskyt na V a zároveň se na V vyskytuje $T\varphi(x/t_i)$ resp. $F\varphi(x/t_i)$, kde t_i je i-tý konstantní term (jazyka L_C).

Nechť V je větev tabla τ z teorie T. Řekneme, že

- větev V je *dokončená*, je-li sporná, nebo každý výskyt položky na V je redukovaný na V a navíc V obsahuje $T\varphi$ pro každé $\varphi \in T$,
- tablo τ je *dokončené*, pokud je každá jeho větev dokončená.

Systematické tablo - konstrukce

Nechť R je položka a $T = \{\varphi_0, \varphi_1, \dots\}$ je (konečná či nekonečná) teorie.

- (1) Za τ_0 vezmi atomické tablo pro R. V případě (*) vezmi lib. $c \in L_C \setminus L$, v případě (\sharp) za t vezmi term t_1 . Dokud to lze, aplikuj následující kroky.
- (2) Nechť v je nejlevější vrchol v co nejmenší úrovni již daného tabla τ_n obsahující výskyt položky P, který není redukovaný na nějaké bezesporné větvi skrze ν . (Neexistuje-li ν , vezmi $\tau'_n = \tau_n$ a jdi na (4).)
- (3a) Není-li P tvaru $T(\forall x)\varphi(x)$ ani $F(\exists x)\varphi(x)$, za τ'_n vezmi tablo vzniklé z τ_n přidáním atomického tabla pro P na každou bezespornou větev skrze v. V případě (*) za c vezmi c_i pro nejmenší možné i.
- (3b) Je-li P tvaru $T(\forall x)\varphi(x)$ či $F(\exists x)\varphi(x)$ a ve v má i-tý výskyt, za τ'_n vezmi tablo vzniklé z τ_n připojením atomického tabla pro P na každou bezespornou větev skrze v, přičemž za t vezmi term t_i .
 - (4) Za τ_{n+1} vezmi tablo vzniklé z τ'_n přidáním $T\varphi_n$ na každou bezespornou větev neobsahující $T\varphi_n$. (Neexistuje-li φ_n , vezmi $\tau_{n+1} = \tau'_n$.)

Systematické tablo z T pro R je výsledkem uvedené konstrukce, tj. $\tau = \cup \tau_n$.

Systematické tablo - příklad

$$T((\exists y)(\neg R(y,y) \lor P(y,y)) \land (\forall x)R(x,x))$$

$$| T(\exists y)(\neg R(y,y) \lor P(y,y))$$

$$| T(\forall x)R(x,x)$$

$$| T(\neg R(c_0,c_0) \lor P(c_0,c_0)) \quad c_0 \text{ nov\'a}$$

$$| T(\forall x)R(x,x)$$

$$| T(\nabla x)R(x,x)$$

Systematické tablo - dokončenost

Tvrzení Pro každou teorii T a položku R je systematické tablo τ dokončené.

Důkaz Nechť $\tau = \cup \tau_n$ je systematické tablo z $T = \{\varphi_0, \varphi_1, \dots\}$ s R v kořeni a nechť P je položka ve vrcholu v tabla τ .

- ullet Do úrovně v (včetně) je v au jen konečně mnoho výskytů všech položek.
- Kdyby výskyt P ve v byl neredukovaný na nějaké bezesporné větvi v τ , byl by vybrán v nějakém kroku (2) a zredukován v (3a) či (3b).
- Každá $\varphi_n \in T$ bude dle (4) nejpozději v τ_{n+1} na každé bezesporné větvi.

Tvrzení Je-li systematické tablo τ důkazem (z teorie T), je τ konečné.

extstyle ext

Tablo metoda v jazyce s rovností

Axiomy rovnosti pro jazyk L s rovností jsou

- (i) x = x
- (ii) $x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$ pro každý n-ární funkční symbol f jazyka L.
- (iii) $x_1 = y_1 \land \cdots \land x_n = y_n \rightarrow (R(x_1, \dots, x_n) \rightarrow R(y_1, \dots, y_n))$ pro každý n-ární relační symbol R jazyka L včetně =.

Tablo důkaz z teorie T jazyka L *s rovností* je tablo důkaz z teorie T^* , kde T^* je rozšíření teorie T o axiomy rovnosti pro L (resp. jejich generální uzávěry).

Poznámka V kontextu logického programování má rovnost často jiný význam než v matematice (identita). Např. v Prologu $t_1 = t_2$ znamená, že t_1 a t_2 jsou unifikovatelné.

Kongruence a faktorstruktura

Nechť \sim je ekvivalence na $A, f: A^n \to A$ a $R \subseteq A^n$, kde $n \in \mathbb{N}$. Pak \sim je

- kongruence pro funkci f, pokud pro každé $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$ platí $x_1 \sim y_1 \wedge \cdots \wedge x_n \sim y_n \quad \Rightarrow \quad f(x_1, \ldots, x_n) \sim f(y_1, \ldots, y_n),$
- *kongruence pro relaci* R, pokud pro každé $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$ platí $x_1 \sim y_1 \wedge \cdots \wedge x_n \sim y_n \Rightarrow (R(x_1, \ldots, x_n) \Leftrightarrow R(y_1, \ldots, y_n)).$

Nechť ekvivalence \sim na A je kongruence pro každou funkci i relaci struktury $\mathcal{A}=\langle A,\mathcal{F}^A,\mathcal{R}^A \rangle$ pro jazyk $L=\langle \mathcal{F},\mathcal{R} \rangle$. Faktorstruktura (podílová struktura) struktury \mathcal{A} dle \sim je struktura $\mathcal{A}/\sim=\langle A/\sim,\mathcal{F}^{A/\sim},\mathcal{R}^{A/\sim} \rangle$, kde

$$f^{A/\sim}([x_1]_{\sim},\ldots,[x_n]_{\sim}) = [f^A(x_1,\ldots,x_n)]_{\sim}$$

 $R^{A/\sim}([x_1]_{\sim},\ldots,[x_n]_{\sim}) \Leftrightarrow R^A(x_1,\ldots,x_n)$

pro každé $f \in \mathcal{F}$, $R \in \mathcal{R}$ a $x_1, \dots, x_n \in A$, tj. funkce a relace jsou definované z \mathcal{A} pomocí reprezentantů.

Např. $\underline{\mathbb{Z}}_p$ je faktorstruktura $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, -, 0 \rangle$ dle kongruence modulo p.

Význam axiomů rovnosti

Nechť \mathcal{A} je struktura pro jazyk L, ve které je rovnost interpretovaná jako relace $=^A$ splňující axiomy rovnosti, tj. ne nutně identita.

- 1) Z axiomů (*i*) a (*iii*) plyne, že relace $=^A$ je ekvivalence na A.
- 2) Axiomy (*ii*) a (*iii*) vyjadřují, že relace $=^A$ je kongruence pro každou funkci a relaci v \mathcal{A} .
- 3) Je-li $\mathcal{A}\models T^*$, je i $(\mathcal{A}/=^A)\models T^*$, kde $\mathcal{A}/=^A$ je faktorstruktura struktury \mathcal{A} dle $=^A$, přičemž rovnost je v $\mathcal{A}/=^A$ interpretovaná jako identita.

Na druhou stranu, v každém modelu, v kterém je rovnost interpretovaná jako identita, všechny axiomy rovnosti evidentně platí.

Korektnost

Rekneme, že struktura A se shoduje s položkou P, pokud P je $T\varphi$ a $A \models \varphi$, nebo pokud P je $F\varphi$ a $\mathcal{A} \models \neg \varphi$, tj. $\mathcal{A} \not\models \varphi$. Navíc, \mathcal{A} se shoduje s větví V, shoduje-li se s každou položkou na V.

Lemma Nechť A je model teorie T jazyka L, který se shoduje s položkou R v koření tabla $\tau = \bigcup \tau_n$ z T. Pak A lze expandovat do jazyka L_C tak, že se shoduje s nějakou větví V v tablu τ .

Poznámka Postačí nám expanze modelu A o konstanty c^A pro $c \in L_C \setminus L$ vyskytující se na větvi V, ostatní konstanty lze dodefinovat libovolně.

Důkaz Indukcí dle n nalezneme větev V_n v tablu τ_n a expanzi A_n modelu A o konstanty c^A pro $c \in L_C \setminus L$ na V_n tak, že A_n se shoduje s V_n a $V_{n-1} \subseteq V_n$.

Předpokládejme, že máme větev V_n v τ_n a expanzi A_n shodující se s V_n .

- Vznikne-li τ_{n+1} z τ_n bez prodloužení V_n , položme $V_{n+1} = V_n$, $A_{n+1} = A_n$.
- Vznikne-li τ_{n+1} z τ_n připojením $T\varphi$ k V_n pro nějaké $\varphi \in T$, nechť V_{n+1} je tato větev a $A_{n+1} = A_n$. Jelikož $A \models \varphi$, shoduje se A_{n+1} s V_{n+1} .

Korektnost - důkaz (pokr.)

- Jinak τ_{n+1} vznikne z τ_n prodloužením V_n o atomické tablo nějaké položky P na V_n . Z indukčního předpokladu víme, že \mathcal{A}_n se shoduje s P.
- (*i*) V případě atomického tabla pro spojku položme $A_{n+1} = A_n$ a snadno ověříme, že V_n lze prodloužit na větev V_{n+1} shodující se s A_{n+1} .
- (ii) Je-li P tvaru $T(\forall x)\varphi(x)$, nechť V_{n+1} je (jednoznačné) prodloužení V_n na větev v τ_{n+1} , tj. o položku $T\varphi(x/t)$. Nechť \mathcal{A}_{n+1} je libovolná expanze \mathcal{A}_n o nové konstanty z termu t. Jelikož $\mathcal{A}_n \models (\forall x)\varphi(x)$, platí $\mathcal{A}_{n+1} \models \varphi(x/t)$. Obdobně pro P tvaru $F(\exists x)\varphi(x)$.
- (iii) Je-li P tvaru $T(\exists x)\varphi(x)$, nechť V_{n+1} je (jednoznačné) prodloužení V_n na větev v τ_{n+1} , tj. o položku $T\varphi(x/c)$. Jelikož $\mathcal{A}_n\models(\exists x)\varphi(x)$, pro nějaké $a\in A$ platí $\mathcal{A}_n\models\varphi(x)[e(x/a)]$ pro každé ohodnocení e. Nechť \mathcal{A}_{n+1} je expanze \mathcal{A}_n o novou konstantu $c^A=a$. Pak $\mathcal{A}_{n+1}\models\varphi(x/c)$. Obdobně pro P tvaru $F(\forall x)\varphi(x)$.

Základní krok pro n=0 plyne z obdobné analýzy atomických tabel pro položku R v kořeni s využitím předpokladu, že model A se shoduje s R.

Věta o korektnosti

Ukážeme, že tablo metoda v predikátové logice je korektní.

Věta Pro každou teorii T a sentenci φ , je-li φ tablo dokazatelná z T, je φ pravdivá v T, tj. $T \vdash \varphi \Rightarrow T \models \varphi$.

Důkaz

- Nechť φ je tablo dokazatelná z teorie T, tj. existuje sporné tablo τ z T s položkou $F\varphi$ v kořeni.
- Pro spor předpokládejme, že φ není pravdivá v T, tj. existuje model A teorie T, ve kterém φ neplatí (protipříklad).
- Jelikož se $\mathcal A$ shoduje s položkou $F\varphi$, dle předchozího lemmatu lze $\mathcal A$ expandovat do jazyka L_C tak, že se shoduje s nějakou větví v tablu τ .
- To ale není možné, neboť každá větev tabla τ je sporná, tj. obsahuje dvojici $T\psi$, $F\psi$ pro nějakou sentenci ψ . \square

Výroková a predikátová logika - IX

Petr Gregor

KTIML MFF UK

ZS 2019/2029

1/16

Kanonický model

Z bezesporné větve V dokončeného tabla vyrobíme model, který se shoduje s V. Vyjdeme z dostupných syntaktických objektů - konstantních termů.

Nechť V je bezesporná větev dokončeného tabla z teorie T jazyka $L = \langle \mathcal{F}, \mathcal{R} \rangle$. Kanonický model z větve V je L_C -struktura $\mathcal{A} = \langle A, \mathcal{F}^A, \mathcal{R}^A \rangle$, kde

- (1) A je množina všech konstantních termů jazyka L_C ,
- (2) $f^A(s_1,\ldots,s_n)=f(s_1,\ldots,s_n)$ pro každý n-ární funkční symbol $f\in\mathcal{F}\cup(L_C\setminus L)$ a $s_1,\ldots,s_n\in A$.
- (3) $R^A(s_1,\ldots,s_n) \Leftrightarrow TR(s_1,\ldots,s_n)$ je položka na V pro každý n-ární relační symbol $R \in \mathcal{R}$ či rovnost a $s_1,\ldots,s_n \in A$.

Poznámka Výraz $f(s_1, ..., s_n)$ na pravé straně v (2) je konstantní term jazyka L_C , tedy prvek z A. Neformálně, pro zdůraznění, že jde o syntaktický objekt

$$f^{A}(s_{1},...,s_{n}) = "f(s_{1},...,s_{n})"$$

Kanonický model - příklad

Nechť teorie $T=\{(\forall x)R(f(x))\}$ je jazyka $L=\langle R,f,d\rangle$. Systematické tablo pro $F\neg R(d)$ z T obsahuje jedinou větev V a ta je bezesporná.

Kanonický model $\mathcal{A}=\langle A,R^A,f^A,d^A,c_i^A\rangle_{i\in\mathbb{N}}$ z V je pro jazyk L_C a platí $A=\{d,f(d),f(f(d)),\ldots,c_0,f(c_0),f(f(c_0)),\ldots,c_1,f(c_1),f(f(c_1)),\ldots\},$

$$d^A=d, \quad c^A_i=c_i \; \mathsf{pro} \; \; i \in \mathbb{N},$$

$$f^{A}(d) = \text{``}f(d)\text{''}, \ f^{A}(f(d)) = \text{``}f(f(d))\text{''}, \ f^{A}(f(f(d))) = \text{``}f(f(f(d)))\text{''}, \dots$$
$$R^{A} = \{d, f(d), f(f(d)), \dots, f(c_{0}), f(f(c_{0})), \dots, f(c_{1}), f(f(c_{1})), \dots\}.$$

Redukt A na jazyk L je $A' = \langle A, R^A, f^A, d^A \rangle$.

3/16

Kanonický model s rovností

Je-li jazyk L s rovností, T^* označuje rozšíření T o axiomy rovnosti pro L.

Požadujeme-li, aby rovnost byla interpretovaná jako identita, kanonický model \mathcal{A} z bezesporné větve V dokončeného tabla z T^* musíme faktorizovat dle $=^A$.

Dle definice (3), v modelu A z V pro relaci $=^A$ platí, že pro každé $s_1, s_2 \in A$, $s_1 =^A s_2 \Leftrightarrow T(s_1 = s_2)$ je položka na V.

Jelikož V je dokončená a obsahuje axiomy rovnosti, relace $=^A$ je ekvivalence na A a navíc kongruence pro všechny funkce a relace v \mathcal{A} .

Kanonický model s rovností z větve V je faktorstruktura A/=A.

Pozorování *Pro každou formuli* φ ,

$$\mathcal{A} \models \varphi \iff (\mathcal{A}/=^A) \models \varphi,$$

přičemž v \mathcal{A} je = interpretovaná relací = A , zatímco v $\mathcal{A}/=^{A}$ jako identita.

Poznámka A je (spočetně) nekonečný model, ale A/=A může být konečný.

Kanonický model s rovností - příklad

Nechť $T = \{(\forall x)R(f(x)), \ (\forall x)(x = f(f(x)))\}$ je nad $L = \langle R, f, d \rangle$ s rovností. Systematické tablo pro $F \neg R(d)$ z T^* obsahuje bezespornou větev V.

V kanonickém modelu $\mathcal{A}=\langle A,R^A,=^A,f^A,d^A,c_i^A\rangle_{i\in\mathbb{N}}$ z V pro relaci $=^A$ platí $s_1=^As_2 \quad \Leftrightarrow \quad s_1=f(\cdots(f(s_2)\cdots) \text{ nebo } s_2=f(\cdots(f(s_1)\cdots),$ kde f je aplikováno 2i-krát pro nějaké $i\in\mathbb{N}$.

Kanonický model s rovností z V je $\mathcal{B}=(\mathcal{A}/=^A)=\langle A/=^A,R^B,f^B,d^B,c_i^B
angle_{i\in\mathbb{N}}$

$$(A/=^A) = \{[d]_{=^A}, [f(d)]_{=^A}, [c_0]_{=^A}, [f(c_0)]_{=^A}, [c_1]_{=^A}, [f(c_1)]_{=^A}, \dots \}, \ d^B = [d]_{=^A}, \quad c^B_i = [c_i]_{=^A} \quad \text{pro} \quad i \in \mathbb{N}, \ f^B([d]_{=^A}) = [f(d)]_{=^A}, \quad f^B([f(d)]_{=^A}) = [f(f(d))]_{=^A} = [d]_{=^A}, \quad \dots \ R^B = (A/=^A).$$

Redukt \mathcal{B} na jazyk L je $\mathcal{B}' = \langle A/=^A, R^B, f^B, d^B \rangle$.

Úplnost

Lemma Kanonický model A z bezesporné dok. větve V se shoduje s V. Důkaz Indukcí dle struktury sentence vyskytující se v položce na V.

- Pro φ atomickou, je-li $T\varphi$ na V, je $\mathcal{A} \models \varphi$ dle (3). Je-li $F\varphi$ na V, není $T\varphi$ na V, neboť V je bezesporná, a tedy $\mathcal{A} \models \neg \varphi$ dle (3).
- Je-li $T(\varphi \wedge \psi)$ na V, je $T\varphi$ a $T\psi$ na V, neboť V je dokončená. Dle indukčního předpokladu je $\mathcal{A} \models \varphi$ a $\mathcal{A} \models \psi$, tedy $\mathcal{A} \models \varphi \wedge \psi$.
- Je-li $F(\varphi \wedge \psi)$ na V, je $F\varphi$ nebo $F\psi$ na V, neboť V je dokončená. Dle indukčního předpokladu je $\mathcal{A} \models \neg \varphi$ nebo $\mathcal{A} \models \neg \psi$, tedy $\mathcal{A} \models \neg (\varphi \wedge \psi)$.
- Pro ostatní spojky obdobně jako v předchozích dvou případech.
- Je-li $T(\forall x)\varphi(x)$ na V, je $T\varphi(x/t)$ na V pro každé $t\in A$, neboť V je dokončená. Dle indukčního předpokladu je $\mathcal{A}\models\varphi(x/t)$ pro každé $t\in A$, tedy $\mathcal{A}\models(\forall x)\varphi(x)$. Obdobně pro $F(\exists x)\varphi(x)$ na V.
- Je-li $T(\exists x)\varphi(x)$ na V, je $T\varphi(x/c)$ na V pro nějaké $c\in A$, neboť V je dokončená. Dle indukčního předpokladu je $\mathcal{A}\models\varphi(x/c)$, tedy $\mathcal{A}\models(\exists x)\varphi(x)$. Obdobně pro $F(\forall x)\varphi(x)$ na V. \square

Věta o úplnosti

Ukážeme, že tablo metoda ve predikátové logice je úplná.

Věta Pro každou teorii T a sentenci φ , je-li φ pravdivá v T, je φ tablo dokazatelná z T, tj. $T \models \varphi \Rightarrow T \vdash \varphi$.

extstyle ext

- Kdyby ne, v tablu τ je nějaká bezesporná větev V.
- Dle předchozího lemmatu existuje struktura \mathcal{A} pro jazyk L_C shodující se s větví V, speciálně s položkou $F\varphi$ v kořeni, tj. $\mathcal{A} \models \neg \varphi$.
- Nechť A' je redukt struktury A na původní jazyk L. Platí $A' \models \neg \varphi$.
- Jelikož větev V je dokončená, obsahuje $T\psi$ pro každé $\psi \in T$.
- Tedy \mathcal{A}' je modelem T (neboť \mathcal{A}' se shoduje s $T\psi$ pro každé $\psi \in T$).
- To je ale ve sporu s tím, že φ platí v každém modelu teorie T.

Tedy tablo τ je důkazem φ z T. \square

Vlastnosti teorií

Zavedeme syntaktické varianty již definovaných sémantických pojmů.

Nechť T je teorie jazyka L. Je-li sentence φ dokazatelná z T, řekneme, že φ je <u>věta</u> (teorém) teorie T. Množinu vět teorie T označme

$$Thm^{L}(T) = \{ \varphi \in Fm_{L} \mid T \vdash \varphi \}.$$

Řekneme, že teorie T je

- $sporn\acute{a}$, jestliže je v T dokazatelný \bot (spor), jinak je $bezesporn\acute{a}$,
- kompletní, jestliže není sporná a každá sentence je v ní dokazatelná či zamítnutelná, tj. T ⊢ φ či T ⊢ ¬φ.
- extenze teorie T' jazyka L', jestliže $L' \subseteq L$ a $\mathrm{Thm}^{L'}(T') \subseteq \mathrm{Thm}^{L}(T)$, o extenzi T teorie T' řekneme, že je jednoduchá, pokud L = L', a konzervativní, pokud $\mathrm{Thm}^{L'}(T') = \mathrm{Thm}^{L}(T) \cap \mathrm{Fm}_{L'}$,
- ekvivalentní s teorií T', jestliže T je extenzí T' a T' je extenzí T.

8/16

Důsledky

Z korektnosti a úplnosti tablo metody vyplývá, že předchozí pojmy se shodují se svými sémantickými variantami.

Důsledek Pro každou teorii T a sentence φ , ψ jazyka L,

- $T \vdash \varphi$ právě když $T \models \varphi$,
- Thm $^{L}(T) = \theta^{L}(T)$,
- T je sporná, právě když je sémanticky sporná, tj. nemá model,
- T je kompletní, právě když je sémanticky kompletní, tj. má až na elementární ekvivalenci jediný model,
- $T, \varphi \vdash \psi$ právě když $T \vdash \varphi \rightarrow \psi$ (Věta o dedukci).

Poznámka Větu o dedukci lze dokázat přímo, transformací příslušných tabel.

Löwenheim-Skolemova věta a kompaktnost

Věta Každá bezesporná teorie T spočetného jazyka L bez rovnosti má spočetně nekonečný model.

extstyle ext

Poznámka Jde o slabou verzi tzv. Löwenheim-Skolemovy věty. Ve spočetném jazyce s rovností je kanonický model s rovností spočetný.

Věta Teorie má model, právě když každá její konečná část má model.

Důkaz Implikace zleva doprava je zřejmá. Pokud teorie T nemá model, je sporná, tj. je z ní dokazatelný \bot systematickým tablem τ . Jelikož je τ konečné, je \bot dokazatelný z nějaké konečné $T' \subseteq T$, tj. T' nemá model.

Nestandardní model přirozených čísel

Nechť $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ je standardní model přirozených čísel.

Označme $\overline{\operatorname{Th}}(\underline{\mathbb{N}})$ množinu všech pravdivých sentencí v $\underline{\mathbb{N}}$. Pro $n \in \mathbb{N}$ označme \underline{n} term $S(S(\cdots(S(0)\cdots),$ tzv. \underline{n} -tý numerál, kde S je aplikováno \underline{n} -krát.

Uvažme následující teorii T, kde c je nový konstantní symbol.

$$T = \operatorname{Th}(\underline{\mathbb{N}}) \cup \{\underline{n} < c \mid n \in \mathbb{N}\}\$$

Pozorování Každá konečná část teorie T má model.

Tedy dle věty o kompaktnosti má T model \mathcal{A} , jde o nestandardní model přirozených čísel. Každá sentence z $\operatorname{Th}(\underline{\mathbb{N}})$ v něm platí, ale zároveň obsahuje prvek c^A větší než každé $n \in \mathbb{N}$ (tj. hodnota termu \underline{n} v \mathcal{A}).

11/16

Rozšiřování teorií

Ukážeme, že zavádění nových pojmů má "pomocný charakter".

Tvrzení Nechť T je teorie jazyka L, T' je teorie jazyka L' a $L \subseteq L'$.

- (i) T' je extenze T, právě když redukt A každého modelu A' teorie T'na jazyk L je modelem teorie T,
- (ii) T' je konzervativní extenze T, je-li T' extenze T a každý model Ateorie T lze expandovat do jazyka L' na model A' teorie T'.

Důkaz

- (i)a) Je-li T' extenze T a φ libovolný axiom T, pak $T' \models \varphi$. Tedy $\mathcal{A}' \models \varphi$ a rovněž $\mathcal{A} \models \varphi$, z čehož plyne, že \mathcal{A} je modelem T.
- (i)b) Je-li \mathcal{A} modelem T a $T \models \varphi$, kde φ je jazyka L, pak $\mathcal{A} \models \varphi$ a rovněž $\mathcal{A}' \models \varphi$. Z toho plyne, že $T' \models \varphi$ a tedy T' je extenze T.
 - (ii) Je-li $T' \models \varphi$, kde φ je nad L, a A je model T, pak v nějaké jeho expanzi $\mathcal{A}' \models \varphi$ a tedy $\mathcal{A} \models \varphi$. Z čehož $T \models \varphi$, tj. T' je konzervativní.

Extenze o definovaný relační symbol

Nechť T je teorie jazyka $L, \psi(x_1, \ldots, x_n)$ je formule jazyka L ve volných proměnných x_1, \ldots, x_n a L' je rozšíření L o nový n-ární relační symbol R.

Extenze teorie T o definici R formulí ψ je teorie T' vzniklá přidáním axiomu

$$R(x_1,\ldots,x_n) \leftrightarrow \psi(x_1,\ldots,x_n)$$

Pozorování Každý model teorie T lze jednoznačně expandovat na model T'.

Důsledek T' je konzervativní extenze T.

Tvrzení Pro každou formuli φ' nad L' existuje φ nad L, $t.\check{z}$. $T' \models \varphi' \leftrightarrow \varphi$.

Důkaz Každou podformuli $R(t_1, \ldots, t_n)$ nahradíme za $\psi'(x_1/t_1, \ldots, x_n/t_n)$,

kde ψ' je vhodná varianta ψ zaručující substituovatelnost všech termů.

Např. symbol \leq lze zavést v jazyce aritmetiky pomocí axiomu

$$x_1 \leq x_2 \leftrightarrow (\exists y)(x_1 + y = x_2)$$

Extenze o definovaný funkční symbol

Nechť T je teorie jazyka L a pro formuli $\psi(x_1,\ldots,x_n,y)$ jazyka L ve volných proměnných x_1,\ldots,x_n,y platí

$$T \models (\exists y)\psi(x_1,\ldots,x_n,y)$$
 (existence)

$$T \models \psi(x_1, \dots, x_n, y) \land \psi(x_1, \dots, x_n, z) \rightarrow y = z$$
 (jednoznačnost)

Označme L' rozšíření L o nový n-ární funkční symbol f.

Extenze teorie T o definici f formulí ψ je teorie T' vzniklá přidáním axiomu

$$f(x_1,\ldots,x_n)=y \leftrightarrow \psi(x_1,\ldots,x_n,y)$$

Poznámka Je-li ψ tvaru $t(x_1, \dots, x_n) = y$, kde x_1, \dots, x_n jsou proměnné termu t, podmínky existence a jednoznačnosti platí.

Např. binární funkční symbol - Ize zavést pomocí + a unárního - axiomem

$$x_1 - x_2 = y \quad \leftrightarrow \quad x_1 + (-x_2) = y$$

Extenze o definovaný funkční symbol (pokr.)

Pozorování Každý model teorie T lze jednoznačně expandovat na model T'.

Důsledek T' je konzervativní extenze T.

Tvrzení Pro každou formuli φ' nad L' existuje φ nad L, t.ž. $T' \models \varphi' \leftrightarrow \varphi$.

Důkaz Stačí uvážit φ' s jediným výskytem f. Má-li φ' více výskytů f, lze postup aplikovat induktivně (v případě vnořených výskytů jdeme od vnitřních k vnějším). Označme φ^* formuli vzniklou z φ' nahrazením termu $f(t_1,\ldots,t_n)$ za novou proměnnou z. Za φ vezmeme formuli

$$(\exists z)(\varphi^* \wedge \psi'(x_1/t_1,\ldots,x_n/t_n,y/z)),$$

kde ψ' je vhodná varianta ψ zaručující substituovatelnost všech termů.

Nechť \mathcal{A} je model T', e je ohodnocení, $a = f^A(t_1, \dots, t_n)[e]$. Díky oběma podmínkám platí $A \models \psi'(x_1/t_1,\ldots,x_n/t_n,y/z)[e]$ právě když e(z) = a. Tedy

$$\mathcal{A} \models \varphi[e] \Leftrightarrow \mathcal{A} \models \varphi^*[e(z/a)] \Leftrightarrow \mathcal{A} \models \varphi'[e]$$

pro každé ohodnocení e, tj. $\mathcal{A} \models \varphi' \leftrightarrow \varphi$ a tedy $T' \models \varphi' \leftrightarrow \varphi$. \square

Extenze o definice

Teorie T' jazyka L' je *extenze* teorie T jazyka L *o definice*, pokud vznikla z T postupnou extenzí o definici relačního či funkčního symbolu.

Důsledek Nechť T' je extenze teorie T o definice. Pak

- každý model teorie T lze jednoznačně expandovat na model T',
- T' je konzervativní extenze T,
- pro každou formuli φ' nad L' existuje φ nad L taková, že $T' \models \varphi' \leftrightarrow \varphi$.

Např. v teorii $T=\{(\exists y)(x+y=0),(x+y=0)\land(x+z=0)\to y=z\}$ nad $L=\langle+,0,\leq\rangle$ s rovností lze zavést < a unární funkční symbol - axiomy

$$-x = y \leftrightarrow x + y = 0$$

$$x < y \leftrightarrow x \le y \land \neg(x = y)$$

Pak formule -x < y je v této extenzi o definice ekvivalentní formuli

$$(\exists z)((z \le y \land \neg(z = y)) \land x + z = 0).$$

Výroková a predikátová logika - X

Petr Gregor

KTIML MFF UK

ZS 2019/2020

1/19

Extenze o definice

Teorie T' jazyka L' je *extenze* teorie T jazyka L *o definice*, pokud vznikla z T postupnou extenzí o definici relačního či funkčního symbolu.

Důsledek Nechť T' je extenze teorie T o definice. Pak

- každý model teorie T lze jednoznačně expandovat na model T',
- T' je konzervativní extenze T,
- pro každou formuli φ' nad L' existuje φ nad L taková, že $T' \models \varphi' \leftrightarrow \varphi$.

Např. v teorii $T=\{(\exists y)(x+y=0),(x+y=0)\land(x+z=0)\to y=z\}$ nad $L=\langle+,0,\leq\rangle$ s rovností lze zavést < a unární funkční symbol - axiomy

$$-x = y \leftrightarrow x + y = 0$$

$$x < y \leftrightarrow x \le y \land \neg(x = y)$$

Pak formule -x < y je v této extenzi o definice ekvivalentní formuli

$$(\exists z)((z \le y \land \neg(z = y)) \land x + z = 0).$$

Ekvisplnitelnost

Ukážeme, že problém splnitelnosti lze redukovat na otevřené teorie.

- Teorie T, T' jsou *ekvisplnitelné*, jestliže T má model $\Leftrightarrow T'$ má model.
- Formule φ je v *prenexním (normálním) tvaru (PNF)*, má-li tvar $(O_1x_1)\dots(O_nx_n)\varphi'$,

kde Q_i značí \forall nebo \exists , proměnné x_1, \ldots, x_n jsou navzájem různé a φ' je otevřená formule, zvaná *otevřené jádro*. $(Q_1x_1)\ldots(Q_nx_n)$ je tzv. *prefix*.

• Speciálně, jsou-li všechny kvantifikátory \forall , je φ *univerzální* formule.

K teorii T nalezneme ekvisplnitelnou otevřenou teorii následujícím postupem.

- (1) Axiomy teorie T nahradíme za ekvivalentní formule v prenexním tvaru.
- (2) Pomocí nových funkčních symbolů je převedeme na univerzální formule, tzv. Skolemovy varianty, čímž dostaneme ekvisplnitelnou teorii.
- (3) Jejich otevřená jádra budou tvořit hledanou teorii.

Vytýkání kvantifikátorů

Nechť Q značí kvantifikátor \forall nebo \exists a \overline{Q} značí opačný kvantifikátor. Pro každé formule φ , ψ takové, že x není volná ve formuli ψ ,

Uvedené ekvivalence lze ověřit sémanticky nebo dokázat tablo metodou (*přes generální uzávěr, není-li to sentence*).

Poznámka Předpoklad, že x není volná ve formuli ψ je v každé ekvivalenci (kromě té první) nutný pro nějaký kvantifikátor Q. Např.

$$\not\models ((\exists x)P(x) \land P(x)) \leftrightarrow (\exists x)(P(x) \land P(x))$$

Převod na prenexní tvar

Tvrzení Nechť φ' je formule vzniklá z formule φ nahrazením některých výskytů podformule ψ za formuli ψ' . Jestliže $T \models \psi \leftrightarrow \psi'$, pak $T \models \varphi \leftrightarrow \varphi'$.

 $D\mathring{u}kaz$ Snadno indukcí dle struktury formule φ .

Tvrzení Ke každé formuli φ existuje ekvivalentní formule φ' v prenexním normálním tvaru, tj. $\models \varphi \leftrightarrow \varphi'$.

 $D\mathring{u}kaz$ Indukcí dle struktury φ pomocí vytýkání kvantifikátorů, náhradou podformulí za jejich varianty a využitím předchozího tvrzení o ekvivalenci.

$$((\forall z)P(x,z) \land P(y,z)) \rightarrow \neg(\exists x)P(x,y)$$

$$((\forall u)P(x,u) \land P(y,z)) \rightarrow (\forall x)\neg P(x,y)$$

$$(\forall u)(P(x,u) \land P(y,z)) \rightarrow (\forall v)\neg P(v,y)$$

$$(\exists u)((P(x,u) \land P(y,z)) \rightarrow (\forall v)\neg P(v,y))$$

$$(\exists u)(\forall v)((P(x,u) \land P(y,z)) \rightarrow \neg P(v,y))$$

Skolemova varianta

Nechť φ je sentence jazyka L v prenexním normálním tvaru, y_1, \ldots, y_n jsou existenčně kvantifikované proměnné ve φ (v tomto pořadí) a pro každé $i \leq n$ nechť x_1, \ldots, x_{n_i} jsou univerzálně kvantifikované proměnné před y_i . Označme L' rozšíření L o nové n_i -ární funkční symboly f_i pro každé $i \leq n$.

Nechť φ_S je formule jazyka L', jež vznikne z formule φ odstraněním $(\exists y_i)$ z jejího prefixu a nahrazením každého výskytu proměnné y_i za term $f_i(x_1,\ldots,x_{n_i})$. Pak formule φ_S se nazývá *Skolemova varianta* formule φ .

Např. pro formuli φ

$$(\exists y_1)(\forall x_1)(\forall x_2)(\exists y_2)(\forall x_3)R(y_1, x_1, x_2, y_2, x_3)$$

je následují formule φ_S její Skolemovou variantou

$$(\forall x_1)(\forall x_2)(\forall x_3)R(f_1, x_1, x_2, f_2(x_1, x_2), x_3),$$

kde f_1 je nový konstantní symbol a f_2 je nový binární funkční symbol.

4 D > 4 A > 4 B > 4 B > B 900

Vlastnosti Skolemovy varianty

Lemma Nechť φ je sentence $(\forall x_1) \dots (\forall x_n) (\exists y) \psi$ jazyka L a φ' je sentence $(\forall x_1) \dots (\forall x_n) \psi (y/f(x_1, \dots, x_n))$, kde f je nový funkční symbol. Pak

- (1) $\operatorname{redukt} A$ každého modelu A' formule φ' na jazyk L je modelem φ ,
- (2) každý model \mathcal{A} formule φ lze expandovat na model \mathcal{A}' formule φ' .

Poznámka Na rozdíl od extenze o definici funkčního symbolu, expanze v tvrzení (2) tentokrát nemusí být jednoznačná.

extstyle ext

- (2) Nechť $\mathcal{A}\models\varphi$. Pak existuje funkce $f^A\colon A^n\to A$ taková, že pro každé ohodnocení e platí $\mathcal{A}\models\psi[e(y/a)]$, kde $a=f^A(e(x_1),\ldots,e(x_n))$, a tedy expanze \mathcal{A}' struktury \mathcal{A} o funkci f^A je modelem φ' . \square
- **Důsledek** Je-li φ' Skolemova varianta formule φ , obě tvrzení (1) a (2) pro φ , φ' rovněž platí. Tedy φ , φ' isou ekvisplnitelné.

7/19

Skolemova věta

Věta Každá teorie T má otevřenou konzervativní extenzi T*.

Důkaz Lze předpokládat, že T je v uzavřeném tvaru. Nechť L je její jazyk.

- Nahrazením každého axiomu teorie T za ekvivalentní formuli v prenexním tvaru získáme ekvivalentní teorii T°.
- Nahrazením každého axiomu teorie T° za jeho Skolemovu variantu získáme teorii T' rozšířeného jazyka L'.
- Jelikož je redukt každého modelu teorie T' na jazyk L modelem teorie T, je T' extenze T.
- Jelikož i každý model teorie T lze expandovat na model teorie T', je to extenze konzervativní.
- Jelikož každý axiom teorie T' je univerzální sentence, jejich nahrazením za otevřená jádra získáme otevřenou teorii T* ekvivalentní s T'.

Důsledek Ke každé teorii existuje ekvisplnitelná otevřená teorie.

Redukce nesplnitelnosti na úroveň VL

Je-li otevřená teorie nesplnitelná, lze to "doložit na konkrétních prvcích". Např. teorie

$$T = \{ P(x, y) \lor R(x, y), \neg P(c, y), \neg R(x, f(x)) \}$$

jazyka $L=\langle P,R,f,c\rangle$ nemá model, což lze doložit nesplnitelnou konjunkcí konečně mnoha instancí (některých) axiomů teorie T v konstantních termech

$$(P(c,f(c)) \lor R(c,f(c))) \land \neg P(c,f(c)) \land \neg R(c,f(c)),$$

což je lživá formule ve tvaru výroku

$$(p \lor r) \land \neg p \land \neg r.$$

Instance $\varphi(x_1/t_1,\ldots,x_n/t_n)$ otevřené formule φ ve volných proměnných x_1,\ldots,x_n je *základní (ground) instance*, jsou-li všechny termy t_1,\ldots,t_n konstantní. Konstantní termy nazýváme také *základní (ground) termy*.

Herbrandův model

Nechť $L=\langle \mathcal{R},\mathcal{F} \rangle$ je jazyk s alespoň jedním konstantním symbolem. (*Je-li třeba, do L přidáme nový konstantní symbol.*)

- Herbrandovo univerzum pro L je množina všech konstantních termů z L.

 Např. pro $L = \langle P, f, c \rangle$, kde P je relační, f je binární funkční, c konstantní $A = \{c, f(c, c), f(f(c, c), c), f(c, f(c, c)), f(f(c, c), f(c, c)), \ldots\}$
- Struktura $\mathcal A$ pro L je *Herbrandova struktura*, je-li doména A Herbrandovo univerzum pro L a pro každý n-ární funkční symbol $f \in \mathcal F$ a $t_1, \ldots, t_n \in A$,

$$f^A(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$$

(včetně n=0, tj. $c^A=c$ pro každý konstantní symbol c). Poznámka Na rozdíl od kanonické struktury nejsou předepsané relace.

Např.
$$\mathcal{A}=\langle A,P^A,f^A,c^A\rangle$$
, kde $P^A=\emptyset$, $c^A=c$ a $f^A(c,c)=f(c,c)$, \ldots

• *Herbrandův model* teorie T je Herbrandova struktura, jež je modelem T.

40) 40) 45) 45) 5

Herbrandova věta

Věta Nechť T je otevřená teorie jazyka L bez rovnosti a s alespoň jedním konstantním symbolem. Pak

- (a) T má Herbrandův model, anebo
- (b) existuje konečně mnoho základních instancí axiomů z T, jejichž konjunkce je nesplnitelná, a tedy T nemá model.

Důkaz Nechť T' je množina všech základních instancí axiomů z T. Uvažme dokončené (např. systematické) tablo τ z T' v jazyce L (bez přidávání nových konstant) s položkou $F \perp v$ kořeni.

- Obsahuje-li tablo τ bezespornou větev V, kanonický model z větve V je Herbrandovým modelem teorie T.
- Jinak je τ sporné, tj. $T' \vdash \bot$. Navíc je konečné, tedy \bot je dokazatelný jen z konečně mnoha formulí T', tj. jejich konjunkce je nesplnitelná.

Poznámka V případě jazyka L s rovností teorii T rozšíříme na T* o axiomy rovnosti pro L a pokud T^* má Herbrandův model A, zfaktorizujeme ho dle $=^A$.

Důsledky Herbrandovy věty

Nechť *L* je jazyk obsahující alespoň jeden konstantní symbol.

Důsledek Pro každou otevřenou $\varphi(x_1,\ldots,x_n)$ jazyka L je $(\exists x_1)\ldots(\exists x_n)\varphi$ pravdivá, právě když existují konstantní termy t_{ij} jazyka L takové, že

$$\varphi(x_1/t_{11},\ldots,x_n/t_{1n})\vee\cdots\vee\varphi(x_1/t_{m1},\ldots,x_n/t_{mn})$$

je (výroková) tautologie.

 $D\mathring{u}kaz$ $(\exists x_1) \dots (\exists x_n) \varphi$ je pravdivá $\Leftrightarrow (\forall x_1) \dots (\forall x_n) \neg \varphi$ je nesplnitelná $\Leftrightarrow \neg \varphi$ je nesplnitelná. Ostatní vyplývá z Herbrandovy věty pro $\neg \varphi$.

Důsledek Otevřená teorie T jazyka L má model, právě když teorie T' všech základních instancí axiomů z T má model.

Důkaz Má-li T model \mathcal{A} , platí v něm každá instance každého axiomu z T, tedy \mathcal{A} je modelem T'. Nemá-li T model, dle H. věty existuje (konečně) formulí z T', jejichž konjunkce je nesplnitelná, tedy T' nemá model. \square

Rezoluční metoda v PL - úvod

- Zamítací procedura cílem je ukázat, že daná formule (či teorie) je nesplnitelná.
- Rezoluční pravidlo je obecnější umožňuje rezolvovat přes literály, které jsou unifikovatelné.
- Rezoluce v PL je založená na rezoluci ve VL a unifikaci.

Lokální význam proměnných

Proměnné v rámci klauzule můžeme přejmenovat.

Nechť φ je (vstupní) otevřená formule v CNF.

- Formule φ je splnitelná, právě když její generální uzávěr φ' je splnitelný.
- Pro každé formule ψ , χ a proměnnou x

$$\models (\forall x)(\psi \wedge \chi) \leftrightarrow (\forall x)\psi \wedge (\forall x)\chi$$

(i když x je volná v ψ a χ zároveň).

- Každou klauzuli ve φ lze tedy nahradit jejím generálním uzávěrem.
- Uzávěry klauzulí lze variovat (přejmenovat proměnné).

Např. variovaním druhé klauzule v (1) získáme ekvisplnitelnou formuli (2).

- (1) $\{\{P(x), Q(x, y)\}, \{\neg P(x), \neg Q(y, x)\}\}$
- (2) $\{\{P(x), Q(x, y)\}, \{\neg P(v), \neg Q(u, v)\}\}$

Přímá redukce do VL

Herbrandova věta umožňuje následující postup. Je ale značně neefektivní.

- Nechť S je (vstupní) formule v množinové reprezentaci.
- Lze předpokládat, že jazyk obsahuje alespoň jeden konstantní symbol.
- Nechť S' je množina všech základních instancí klauzulí z S.
- Zavedením prvovýroků pro každou atomickou sentenci lze S' převést na (případně nekonečnou) výrokovou formuli v množinové reprezentaci.
- Rezolucí na úrovni VL ověříme její nesplnitelnost.

Např. pro
$$S = \{\{P(x,y), R(x,y)\}, \{\neg P(c,y)\}, \{\neg R(x,f(x))\}\}$$
 je
$$S' = \{\{P(c,c), R(c,c)\}, \{P(c,f(c)), R(c,f(c))\}, \{P(f(c),f(c)), R(f(c),f(c))\} \dots, \{\neg P(c,c)\}, \{\neg P(c,f(c))\}, \dots, \{\neg R(c,f(c))\}, \{\neg R(f(c),f(f(c)))\}, \dots\}$$

nesplnitelná, neboť na úrovni VL je

$$S' \supseteq \{\{P(c, f(c)), R(c, f(c))\}, \{\neg P(c, f(c))\}, \{\neg R(c, f(c))\}\} \vdash_R \Box.$$

4□ > 4Ē > 4Ē > 4□ >

Substituce - příklady

Efektivnější je využívat vhodných substitucí. Např. pro

- a) $\{P(x), Q(x, a)\}$, $\{\neg P(y), \neg Q(b, y)\}$ substitucí x/b, y/a dostaneme $\{P(b), Q(b, a)\}$, $\{\neg P(a), \neg Q(b, a)\}$ a z nich rezolucí $\{P(b), \neg P(a)\}$. Nebo substitucí x/y a rezolucí dle P(y) dostaneme $\{Q(y, a), \neg Q(b, y)\}$.
- b) $\{P(x), Q(x, a), Q(b, y)\}, \{\neg P(v), \neg Q(u, v)\}$ substituce x/b, y/a, u/b, v/a
- dává $\{P(b), Q(b, a)\}, \{\neg P(a), \neg Q(b, a)\}$ a z nich rezolucí $\{P(b), \neg P(a)\}$.
- c) $\{P(x), Q(x, z)\}$, $\{\neg P(y), \neg Q(f(y), y)\}$ substitucí x/f(z), y/z dostaneme $\{P(f(z)), Q(f(z), z)\}$, $\{\neg P(z), \neg Q(f(z), z)\}$ a z nich $\{P(f(z)), \neg P(z)\}$. Při substituci x/f(a), y/a, z/a dostaneme $\{P(f(a)), Q(f(a), a)\}$,
 - Fir substituci x/f(a), y/a, z/a dostaneme $\{P(f(a)), Q(f(a), a)\}$, $\{\neg P(a), \neg Q(f(a), a)\}$ a z nich rezolucí $\{P(f(a)), \neg P(a)\}$. Předchozí substituce je ale obecnější.

Substituce

- Substituce je (konečná) množina $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$, kde x_i jsou navzájem různé proměnné a t_i jsou termy, přičemž t_i není x_i .
- Jsou-li všechny termy t_i konstantní, je σ základní substituce.
- Jsou-li t_i navzájem různé proměnné, je σ přejmenování proměnných.
- Výraz je literál nebo term. (Substituci Ize aplikovat na výrazy.)
- Instance výrazu E při substituci $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$ je výraz $E\sigma$ vzniklý z E současným nahrazením všech výskytů proměnných x_i za t_i .
- Pro množinu výrazů S označmě $S\sigma$ množinu instancí $E\sigma$ výrazů E z S.

Poznámka Jelikož substituce je současná pro všechny proměnné zároveň, případný výskyt proměnné x_i v termu t_j nevede k zřetězení substitucí.

Např. pro
$$S=\{P(x),R(y,z)\}$$
 a substituci $\sigma=\{x/f(y,z),y/x,z/c\}$ je
$$S\sigma=\{P(f(y,z)),R(x,c)\}.$$

Skládání substitucí

Zadefinujeme $\sigma \tau$ tak, aby $E(\sigma \tau) = (E\sigma)\tau$ pro každý výraz E.

Např. pro
$$E = P(x, w, u)$$
, $\sigma = \{x/f(y), w/v\}$, $\tau = \{x/a, y/g(x), v/w, u/c\}$ je $E\sigma = P(f(y), v, u)$, $(E\sigma)\tau = P(f(g(x)), w, c)$.

Pak by mělo být $\sigma \tau = \{x/f(g(x)), y/g(x), v/w, u/c\}.$

Pro substituce $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$ a $\tau = \{y_1/s_1, \dots, y_n/s_n\}$ definujeme

$$\sigma\tau = \{x_i/t_i\tau \mid x_i \in X, \ x_i \ \mathsf{neni} \ t_i\tau\} \cup \{y_j/s_j \mid y_j \in Y \setminus X\}$$

složenou substituci σ a τ , kde $X = \{x_1, \ldots, x_n\}$ a $Y = \{y_1, \ldots, y_m\}$.

Poznámka Skládání substitucí není komutativní, např. pro uvedené σ a τ je $\tau \sigma = \{x/a, y/g(f(y)), u/c, w/v\} \neq \sigma \tau.$

Skládání substitucí - vlastnosti

Ukážeme, že definice vyhovuje našemu požadavku a skládání je asociativní.

Tvrzení Pro každý výraz E a substituce σ , τ , ρ platí

- (i) $(E\sigma)\tau = E(\sigma\tau)$,
- (ii) $(\sigma \tau) \rho = \sigma(\tau \rho)$.

Důkaz Nechť $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$ a $\tau = \{y_1/s_1, \dots, y_m/s_m\}$. Stačí uvážit případ, kdy E je proměnná, řekněme v.

- (i) Je-li ν proměnná x_i pro nějaké i, je $\nu\sigma=t_i$ a $(\nu\sigma)\tau=t_i\tau$, což je $\nu(\sigma\tau)$ dle definice $\sigma \tau$. Jinak $v\sigma = v$ a $(v\sigma)\tau = v\tau$. Je-li ν proměnná y_i pro nějaké j, je dále $(\nu\sigma)\tau = \nu\tau = s_i$, což je $\nu(\sigma\tau)$
- dle definice $\sigma\tau$. Jinak $(v\sigma)\tau = v\tau = v$ a zároveň $v(\sigma\tau) = v$.
- (ii) Opakovaným užitím (i) dostaneme pro každý výraz E, $E((\sigma\tau)\rho) = (E(\sigma\tau))\rho = ((E\sigma)\tau)\rho = (E\sigma)(\tau\rho) = E(\sigma(\tau\rho)).$

Výroková a predikátová logika - XI

Petr Gregor

KTIML MFF UK

ZS 2019/2020

1/24

Unifikace

Nechť $S = \{E_1, \dots, E_n\}$ je (konečná) množina výrazů.

- *Unifikace* pro S je substituce σ taková, že $E_1\sigma=E_2\sigma=\cdots=E_n\sigma$, tj. $S\sigma$ je singleton.
- S je unifikovatelná, pokud má unifikaci.
- Unifikace σ pro S je *nejobecnější unifikace (mgu)*, pokud pro každou unifikaci τ pro S existuje substituce λ taková, že $\tau = \sigma \lambda$.

Např. $S=\{P(f(x),y),P(f(a),w)\}$ je unifikovatelná pomocí nejobecnější unifikace $\sigma=\{x/a,y/w\}$. Unifikaci $\tau=\{x/a,y/b,w/b\}$ dostaneme jako $\sigma\lambda$ pro $\lambda=\{w/b\}$. τ není mgu, nelze z ní získat unifikaci $\varrho=\{x/a,y/c,w/c\}$.

Pozorování Jsou-li σ , τ různé nejobecnější unifikace pro S, liší se pouze přejmenováním proměnných.

2/24

Unifikační algoritmus

Nechť S je (konečná) neprázdná množina výrazů a p je nejlevější pozice, na které se nějaké dva výrazy z S liší. Pak neshoda v S je množina D(S) podvýrazů začínajících na pozici p ze všech výrazů v S.

Např. pro
$$S = \{P(x, y), P(f(x), z), P(z, f(x))\}$$
 je $D(S) = \{x, f(x), z\}.$

Vstup Neprázdná (konečná) množina výrazů S. Výstup Nejobecnější unifikace σ pro S nebo "S není unifikovatelná".

(0) Nechť $S_0 := S$, $\sigma_0 := \emptyset$, k := 0.

(inicializace)

(1) Je-li S_k singleton, vydej substituci $\sigma = \sigma_0 \sigma_1 \cdots \sigma_k$.

- (mgu pro S)
- (2) Zjisti, zda v $D(S_k)$ existuje proměnná x a term t neobsahující x.
- (3) Pokud ne, vydej "S není unifikovatelná".
- (4) Jinak $\sigma_{k+1} := \{x/t\}$, $S_{k+1} := S_k \sigma_{k+1}$, k := k+1 a jdi na (1).

Poznámka Test výskytu proměnné x v termu t v kroku (2) může být "drahý".

Unifikační algoritmus - příklad

$$S = \{ P(f(y, g(z)), h(b)), \ P(f(h(w), g(a)), t), \ P(f(h(b), g(z)), y) \}$$

- 1) $S_0 = S$ není singleton a $D(S_0) = \{y, h(w), h(b)\}$ obsahuje term h(w) a proměnnou y nevyskytující se v h(w). Pak $\sigma_1 = \{\gamma/h(w)\}, S_1 = S_0\sigma_1$, tj. $S_1 = \{P(f(h(w), g(z)), h(b)), P(f(h(w), g(a)), t), P(f(h(b), g(z)), h(w))\}.$
- 2) $D(S_1) = \{w, b\}, \sigma_2 = \{w/b\}, S_2 = S_1\sigma_2$, tj. $S_2 = \{ P(f(h(b), g(z)), h(b)), P(f(h(b), g(a)), t) \}.$
- 3) $D(S_2) = \{z, a\}, \sigma_3 = \{z/a\}, S_3 = S_2\sigma_3$, tj. $S_3 = \{P(f(h(b), g(a)), h(b)), P(f(h(b), g(a)), t)\}.$
- 4) $D(S_3) = \{h(b), t\}, \sigma_4 = \{t/h(b)\}, S_4 = S_3\sigma_4, tj.$ $S_4 = \{P(f(h(b), g(a)), h(b))\}.$
- 5) S₄ je singleton a nejobecnější unifikace pro S je $\sigma = \{y/h(w)\}\{w/b\}\{z/a\}\{t/h(b)\} = \{y/h(b), w/b, z/a, t/h(b)\}.$

Unifikační algoritmus - korektnost

Tvrzení Pro každé S unifikační algoritmus vydá po konečně mnoha krocích korektní výsledek, tj. nejobecnější unifikaci σ pro S nebo pozná, že S není unifikovatelná. (*) Navíc, pro každou unifikaci τ pro S platí, že $\tau = \sigma \tau$.

Důkaz V každém kroku eliminuje jednu proměnnou, někdy tedy skončí.

- Skončí-li neúspěchem po k krocích, nelze unifikovat $D(S_k)$, tedy ani S.
- Vydá-li $\sigma = \sigma_0 \sigma_1 \cdots \sigma_k$, je σ evidentně unifikace pro S.
- Dokážeme-li, že σ má vlastnost (*), je σ nejobecnější unifikace pro S.
- (1) Nechť τ je unifikace pro S. Ukážeme, že $\tau = \sigma_0 \sigma_1 \cdots \sigma_i \tau$ pro každé $i \leq k$.
- (2) Pro i = 0 platí (1). Nechť $\sigma_{i+1} = \{x/t\}$, předpokládejme $\tau = \sigma_0 \sigma_1 \cdots \sigma_i \tau$.
- (3) Stačí dokázat, že $v\sigma_{i+1}\tau = v\tau$ pro každou proměnnou v.
- (4) Pro $v \neq x$ je $v\sigma_{i+1} = v$, tedy platí (3). Jinak v = x a $v\sigma_{i+1} = x\sigma_{i+1} = t$.
- (5) Jelikož τ unifikuje $S_i = S\sigma_0\sigma_1\cdots\sigma_i$ a proměnná x i term t jsou v $D(S_i)$, musí τ unifikovat x a t, tj. $t\tau = x\tau$, jak bylo požadováno pro (3).

Obecné rezoluční pravidlo

Nechť klauzule C_1 , C_2 neobsahují stejnou proměnnou a jsou ve tvaru

$$C_1 = C'_1 \sqcup \{A_1, \ldots, A_n\}, \quad C_2 = C'_2 \sqcup \{\neg B_1, \ldots, \neg B_m\},$$

kde $S = \{A_1, \dots, A_n, B_1, \dots, B_m\}$ Ize unifikovat a $n, m \ge 1$. Pak klauzule

$$C=C_1'\sigma\cup C_2'\sigma,$$

kde σ je nejobecnější unifikace pro S, je *rezolventa* klauzulí C_1 a C_2 .

Např. v klauzulích $\{P(x), Q(x,z)\}$ a $\{\neg P(y), \neg Q(f(y),y)\}$ lze unifikovat $S = \{Q(x,z), Q(f(y),y)\}$ pomocí nejobecnější unifikace $\sigma = \{x/f(y), z/y\}$ a získat z nich rezolventu $\{P(f(y)), \neg P(y)\}$.

Poznámka Podmínce o různých proměnných lze vyhovět přejmenováním proměnných v rámci klauzule. Je to nutné, např. z $\{\{P(x)\}, \{\neg P(f(x))\}\}$ lze po přejmenování získat \Box , ale $\{P(x), P(f(x))\}$ nelze unifikovat.

Rezoluční důkaz

Pojmy zavedeme jako ve VL, jen navíc dovolíme přejmenování proměnných.

- Rezoluční důkaz (odvození) klauzule C z formule S je konečná posloupnost $C_0, \ldots, C_n = C$ taková, že pro každé $i \leq n$ je $C_i = C_i'\sigma$, kde $C_i' \in S$ a σ je přejmenování proměnných, nebo je C_i rezolventou nějakých dvou předchozích klauzulí (i stejných).
- Klauzule C je (rezolucí) dokazatelná z S, psáno S ⊢_R C, pokud má rezoluční důkaz z S.
- Zamítnutí formule S je rezoluční důkaz □ z S.
- S je (rezolucí) *zamítnutelná*, pokud $S \vdash_R \square$.

Poznámka Eliminace více literálů najednou je někdy nezbytná, např. $S = \{\{P(x), P(y)\}, \{\neg P(x), \neg P(y)\}\}$ je rezolucí zamítnutelná, ale nemá zamítnutí, při kterém by se v každém kroku eliminoval pouze jeden literál.

Příklad rezoluce

Mějme teorii $T = \{ \neg P(x,x), \ P(x,y) \rightarrow P(y,x), \ P(x,y) \land P(y,z) \rightarrow P(x,z) \}.$ Je $T \models (\exists x) \neg P(x,f(x))$? Tedy, je následující formule T' nesplnitelná?

 $T' = \{\{\neg P(x, x)\}, \{\neg P(x, y), P(y, x)\}, \{\neg P(x, y), \neg P(y, z), P(x, z)\}, \{P(x, f(x))\}\}$

Korektnost rezoluce

Nejprve ukážeme, že obecné rezoluční pravidlo je korektní.

Tvrzení Nechť C je rezolventa klauzulí C_1 , C_2 . Pro každou L-strukturu A,

$$\mathcal{A} \models C_1 \text{ a } \mathcal{A} \models C_2 \quad \Rightarrow \quad \mathcal{A} \models C.$$

Důkaz Nechť $C_1=C_1'\sqcup\{A_1,\ldots,A_n\},\ C_2=C_2'\sqcup\{\neg B_1,\ldots,\neg B_m\},\ \sigma$ je nejobecnější unifikace pro $S=\{A_1,\ldots,A_n,B_1,\ldots,B_m\}$ a $C=C_1'\sigma\cup C_2'\sigma$.

- Jelikož C_1 , C_2 jsou otevřené, platí i $A \models C_1 \sigma$ a $A \models C_2 \sigma$.
- Máme $C_1\sigma = C_1'\sigma \cup \{S\sigma\}$ a $C_2\sigma = C_2'\sigma \cup \{\neg(S\sigma)\}$.
- Ukážeme, že $\mathcal{A} \models C[e]$ pro každé e. Je-li $\mathcal{A} \models S\sigma[e]$, pak $\mathcal{A} \models C'_2\sigma[e]$ a tedy $\mathcal{A} \models C[e]$. Jinak $\mathcal{A} \not\models S\sigma[e]$, pak $\mathcal{A} \models C'_1\sigma[e]$ a tedy $\mathcal{A} \models C[e]$. \square

Věta (korektnost) Je-li formule S rezolucí zamítnutelná, je S nesplnitelná.

Důkaz Nechť $S \vdash_R \square$. Kdyby $\mathcal{A} \models S$ pro nějakou strukturu \mathcal{A} , z korektnosti rezolučního pravidla by platilo i $\mathcal{A} \models \square$, což není možné.

Lifting lemma

Rezoluční důkaz na úrovni VL lze "zdvihnout" na úroveň PL.

Lemma Nechť $C_1^* = C_1\tau_1$, $C_2^* = C_2\tau_2$ jsou základní instance klauzulí C_1 , C_2 neobsahující stejnou proměnnou a C^* je rezolventa C_1^* a C_2^* . Pak existuje rezolventa C klauzulí C_1 a C_2 taková, že $C^* = C\tau_1\tau_2$ je základní instance C.

Důkaz Předpokládejme, že C^* je rezolventa C_1^* , C_2^* přes literál $P(t_1, \ldots, t_k)$.

- Pak Ize psát $C_1 = C_1' \sqcup \{A_1, \ldots, A_n\}$ a $C_2 = C_2' \sqcup \{\neg B_1, \ldots, \neg B_m\}$, kde $\{A_1, \ldots, A_n\} \tau_1 = \{P(t_1, \ldots, t_k)\}$ a $\{\neg B_1, \ldots, \neg B_m\} \tau_2 = \{\neg P(t_1, \ldots, t_k)\}$.
- Tedy $(\tau_1\tau_2)$ unifikuje $S = \{A_1, \dots, A_n, B_1, \dots, B_m\}$ a je-li σ mgu pro S z unifikačního algoritmu, pak $C = C'_1\sigma \cup C'_2\sigma$ je rezolventa C_1 a C_2 .
- Navíc $(\tau_1\tau_2) = \sigma(\tau_1\tau_2)$ z vlastnosti (*) pro σ a tedy

$$C\tau_{1}\tau_{2} = (C'_{1}\sigma \cup C'_{2}\sigma)\tau_{1}\tau_{2} = C'_{1}\sigma\tau_{1}\tau_{2} \cup C'_{2}\sigma\tau_{1}\tau_{2} = C'_{1}\tau_{1} \cup C'_{2}\tau_{2}$$

$$= (C_{1} \setminus \{A_{1}, \dots, A_{n}\})\tau_{1} \cup (C_{2} \setminus \{\neg B_{1}, \dots, \neg B_{m}\})\tau_{2}$$

$$= (C_{1}^{*} \setminus \{P(t_{1}, \dots, t_{k})\}) \cup (C_{2}^{*} \setminus \{\neg P(t_{1}, \dots, t_{k})\}) = C^{*}. \quad \Box$$

Úplnost

Důsledek Nechť S' je množina všech základních instancí klauzulí formule S. Je-li $S' \vdash_R C'$ (na úrovni VL), kde C' je základní klauzule, pak existuje klauzule C a základní substituce σ t. \check{z} . $C' = C\sigma$ a $S \vdash_R C$ (na úrovni PL).

Důkaz Indukcí dle délky rezolučního odvození pomocí lifting lemmatu.

Věta (úplnost) *Je-li formule* S *nesplnitelná, je* $S \vdash_R \Box$.

Důkaz Je-li *S* nesplnitelná, dle (důsledku) Herbrandovy věty je nesplnitelná i množina *S'* všech základních instancí klauzulí z *S*.

- Dle úplnosti rezoluční metody ve VL je $S' \vdash_R \Box$ (na úrovni VL).
- Dle předchozího důsledku existuje klauzule C a substituce σ taková, že $\Box = C\sigma$ a $S \vdash_R C$ (na úrovni PL).
- Jediná klauzule, jejíž instance je \square , je klauzule $C = \square$.

Lineární rezoluce

Stejně jako ve VL, rezoluční metodu lze značně omezit (bez ztráty úplnosti).

- Lineární důkaz klauzule C z formule S je konečná posloupnost dvojic $(C_0, B_0), \ldots, (C_n, B_n)$ t.ž. C_0 je varianta klauzule v S a pro každé $i \le n$
 - $i) \;\; B_i$ je varianta klauzule v S nebo $B_i = C_j$ pro nějaké j < i, a
 - *ii*) C_{i+1} je rezolventa C_i a B_i , kde $C_{n+1} = C$.
- C je lineárně dokazatelná z S, psáno $S \vdash_L C$, má-li lineární důkaz z S.
- Lineární zamítnutí S je lineární důkaz □ z S.
- S je lineárně zamítnutelná, pokud $S \vdash_L \Box$.

Věta *S je lineárně zamítnutelná, právě když S je nesplnitelná.*

 $D\mathring{u}kaz$ (\Rightarrow) Každý lineární důkaz lze transformovat na rezoluční důkaz.

(⇐) Plyne z úplnosti lineární rezoluce ve VL (nedokazováno), neboť lifting lemma zachovává linearitu odvození.

LI-rezoluce

Stejně jako ve VL, pro Hornovy formule můžeme lineární rezoluci dál omezit.

- LI-rezoluce ("linear input") z formule S je lineární rezoluce z S, ve které je každá boční klauzule B_i variantou klauzule ze (vstupní) formule S.
- Je-li klauzule C dokazatelná Ll-rezolucí z S, píšeme S ⊢_{LI} C.
- Hornova formule je množina (i nekonečná) Hornových klauzulí.
- Hornova klauzule je klauzule obsahující nejvýše jeden pozitivní literál.
- Fakt je (Hornova) klauzule $\{p\}$, kde p je pozitivní literál.
- Pravidlo je (Hornova) klauzule s právě jedním pozitivním a aspoň jedním negativním literálem. Pravidla a fakta jsou programové klauzule.
- Cíl je neprázdná (Hornova) klauzule bez pozitivního literálu.

Věta	Je-li Hornova T splnitelná a $T \cup \{G\}$ nesp	lnitelná pro cíl G, lze 🏻	
odvod	dit LI-rezolucí z $T \cup \{G\}$ začínající G .		

Důkaz Plyne z Herbrandovy věty, stejné věty ve VL a lifting lemmatu.

Program v Prologu

Program (v Prologu) je Hornova formule obsahující pouze programové klauzule, tj. fakta nebo pravidla.

```
syn(X,Y) := otec(Y,X), muz(X). \qquad \{syn(X,Y), \neg otec(Y,X), \neg muz(X)\} syn(X,Y) := matka(Y,X), muz(X). \qquad \{syn(X,Y), \neg matka(Y,X), \neg muz(X)\} muz(jan). \qquad \{muz(jan)\} otec(jiri, jan). \qquad \{otec(jiri, jan)\} matka(julie, jan). \qquad \{matka(julie, jan)\} --syn(jan,X) \qquad P \models (\exists X) syn(jan,X)? \qquad \{\neg syn(jan,X)\}
```

Zajímá nás, zda daný existenční dotaz vyplývá z daného programu.

Důsledek Pro program P a cíl $G = \{\neg A_1, \dots, \neg A_n\}$ v proměnných X_1, \dots, X_m

- (1) $P \models (\exists X_1) \dots (\exists X_m)(A_1 \wedge \dots \wedge A_n)$, právě když
- (2) \square lze odvodit LI-rezolucí z $P \cup \{G\}$ začínající (variantou) cíle G.

LI-rezoluce nad programem

Je-li odpoveď na dotaz kladná, chceme navíc znát výstupní substituci.

Výstupní substituce σ LI-rezoluce \square z $P \cup \{G\}$ začínající $G = \{\neg A_1, \dots, \neg A_n\}$ je složení mgu v jednotlivých krocích (jen na proměnné v G). Platí,

$$P \models (A_1 \wedge \ldots \wedge A_n)\sigma.$$

Výstupní substituce a) X = jiri, b) X = julie.

Hilbertovský kalkul

- základní logické spojky a kvantifikátory: \neg , \rightarrow , $(\forall x)$ (ostatní odvozené)
- dokazují se libovolné formule (nejen sentence)
- logické axiomy (schémata logických axiomů)

(i)
$$\varphi \to (\psi \to \varphi)$$

$$(ii) \quad (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

$$(iii) \qquad (\neg \varphi \to \neg \psi) \to (\psi \to \varphi)$$

$$(iv)$$
 $(\forall x) arphi o arphi(x/t)$ je-li t substituovatelný za x do $arphi$

$$(v) \qquad (\forall x)(\varphi \to \psi) \to (\varphi \to (\forall x)\psi) \quad \text{není-li } x \text{ volná proměnná ve } \varphi$$

kde φ , ψ , χ jsou libovolné formule (daného jazyka), t je libovolný term a x je libovolná proměnná.

- je-li jazyk s rovností, mezi logické axiomy patří navíc axiomy rovnosti
- odvozovací (deduktivní) pravidla

$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$
 (modus ponens), $\frac{\varphi}{(\forall x)\varphi}$ (generalizace)

Pojem důkazu

Důkaz (*Hilbertova stylu*) formule φ z teorie T je konečná posloupnost $\varphi_0,\ldots,\varphi_n=\varphi$ formulí taková, že pro každé $i\leq n$

- φ_i je logický axiom nebo $\varphi_i \in T$ (axiom teorie), nebo
- φ_i lze odvodit z předchozích formulí pomocí odvozovacích pravidel.

Formule φ je *dokazatelná* v T, má-li důkaz z T, značíme $T \vdash_H \varphi$.

Věta *Pro každou teorii* T *a formuli* φ , $T \vdash_H \varphi \Rightarrow T \models \varphi$.

Důkaz

- Je-li $\varphi \in T$ nebo logický axiom, je $T \models \varphi$ (logické axiomy jsou tautologie),
- jestliže $T \models \varphi$ a $T \models \varphi \rightarrow \psi$, pak $T \models \psi$, tj. modus ponens je korektní,
- jestliže $T \models \varphi$, pak $T \models (\forall x)\varphi$, tj. pravidlo generalizace je korektní,
- tedy každá formule vyskytující se v důkazu z T platí v T.

Poznámka Platí i úplnost, tj. $T \models \varphi \Rightarrow T \vdash_H \varphi$ pro každou teorii T a formuli φ .

Teorie struktury

Mnohdy nás zajímá, co platí v jedné konkrétní struktuře.

Teorie struktury \mathcal{A} je množina $\operatorname{Th}(\mathcal{A})$ sentencí (stejného jazyka) platných v \mathcal{A} . *Pozorování Pro každou strukturu* \mathcal{A} *a teorii* T *jazyka* L,

- (i) Th(A) je kompletní teorie,
- (ii) je-li $A \models T$, je Th(A) jednoduchá (kompletní) extenze teorie T,
- (iii) je-li $\mathcal{A} \models T$ a T je kompletní, je $\operatorname{Th}(\mathcal{A})$ ekvivalentní s T, tj. $\theta^L(T) = \operatorname{Th}(\mathcal{A})$.

Např. pro $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ je $\mathrm{Th}(\underline{\mathbb{N}})$ je aritmetika přirozených čísel.

Poznámka Později uvidíme, že ačkoliv je $\operatorname{Th}(\underline{\mathbb{N}})$ kompletní teorie, je (algoritmicky) nerozhodnutelná.

prvek bezprostředního následníka, zatímco v $\langle \mathbb{Q}, < \rangle$ ne.

Elementární ekvivalence

- Struktury \mathcal{A} a \mathcal{B} jazyka L jsou *elementárně ekvivalentní*, psáno $\mathcal{A} \equiv \mathcal{B}$, pokud v nich platí stejné formule (jazyka L), tj. $\mathrm{Th}(\mathcal{A}) = \mathrm{Th}(\mathcal{B})$. $\mathit{Např}. \ \langle \mathbb{R}, \leq \rangle \equiv \langle \mathbb{Q}, \leq \rangle$, $\mathit{ale} \ \langle \mathbb{Q}, \leq \rangle \not\equiv \langle \mathbb{Z}, \leq \rangle$, $\mathit{neboť} \ v \ \langle \mathbb{Z}, \leq \rangle$ $\mathit{má} \ \mathit{každý}$
- T je kompletní, právě když má až na el. ekvivalenci právě jeden model.
 Např. teorie DeLO hustých lineárních uspořádání bez konců je kompletní.

Zajímá nás, jak vypadají modely dané teorie (až na elementární ekvivalenci). Pozorování Pro modely \mathcal{A},\mathcal{B} teorie T platí $\mathcal{A}\equiv\mathcal{B}$, právě když $\mathrm{Th}(\mathcal{A})$, $\mathrm{Th}(\mathcal{B})$ jsou ekvivalentní (jednoduché kompletní extenze teorie T).

Poznámka Lze-li efektivně (rekurzivně) popsat pro efektivně danou teorii T, jak vypadají všechny její kompletní extenze, je T (algoritmicky) rozhodnutelná.

Jednoduché kompletní extenze - příklad

Teorie $\underline{\textit{DeLO}}^*$ hustého lineárního uspořádání jazyka $L = \langle \leq \rangle$ s rovností je

$$\begin{array}{llll} x \leq x & \text{(reflexivita)} \\ x \leq y & \wedge & y \leq x & \rightarrow & x = y \\ x \leq y & \wedge & y \leq z & \rightarrow & x \leq z \\ x \leq y & \vee & y \leq x & \text{(dichotomie)} \\ x < y & \rightarrow & (\exists z) \; (x < z \; \wedge \; z < y) & \text{(hustota)} \\ (\exists x)(\exists y)(x \neq y) & \text{(netrivialita)} \end{array}$$

kde 'x < y' je zkratka za ' $x \le y \land x \ne y$ '.

Označme φ , ψ sentence $(\exists x)(\forall y)(x \leq y)$, resp. $(\exists x)(\forall y)(y \leq x)$. Uvidíme, že

$$DeLO = DeLO^* \cup \{\neg \varphi, \neg \psi\}, \qquad DeLO^{\pm} = DeLO^* \cup \{\varphi, \psi\},$$

$$DeLO^+ = DeLO^* \cup \{\neg \varphi, \psi\}, \qquad DeLO^- = DeLO^* \cup \{\varphi, \neg \psi\}$$

jsou všechny (neekvivalentní) jednoduché kompletní extenze teorie $DeLO^*$.

Důsledek věty o spočetném modelu

Pomocí kanonického modelu (s rovností) jsme dříve dokázali následující větu.

Věta Nechť T je bezesporná teorie spočetného jazyka L. Je-li L bez rovnosti, má T model, který je spočetně nekonečný. Je-li L s rovností, má T model, který je spočetný.

Důsledek Ke každé struktuře A spočetného jazyka bez rovnosti existuje spočetně nekonečná elementárně ekvivalentní struktura B.

Důkaz Teorie Th(A) je bezesporná, neboť má model A. Dle předchozí věty má spočetně nek. model \mathcal{B} . Jelikož je teorie $\mathrm{Th}(\mathcal{A})$ kompletní, je $\mathcal{A} \equiv \mathcal{B}$.

Důsledek Ke každé nekonečné struktuře A spočetného jazyka s rovností existuje spočetně nekonečná elementárně ekvivalentní struktura \mathcal{B} .

Důkaz Obdobně jako výše. Jelikož v A neplatí sentence "existuje právě n *prvků*" pro žádné $n \in \mathbb{N}$ a $A \equiv \mathcal{B}$, není B konečná, tedy je nekonečná.

Spočetné algebraicky uzavřené těleso

Rekneme, že těleso A je algebraicky uzavřené, pokud v něm každý polynom (nenulového stupně) má kořen, tj. pro každé $n \ge 1$ platí

$$\mathcal{A} \models (\forall x_{n-1}) \dots (\forall x_0)(\exists y)(y^n + x_{n-1} \cdot y^{n-1} + \dots + x_1 \cdot y + x_0 = 0)$$

kde y^k je zkratka za term $y \cdot y \cdot \cdots \cdot y$ (· aplikováno (k-1)-krát).

Např. těleso $\mathbb{C} = \langle \mathbb{C}, +, -, \cdot, 0, 1 \rangle$ je algebraicky uzavřené, zatímco tělesa \mathbb{R} a \mathbb{Q} nejsou (neboť polynom $x^2 + 1$ v nich nemá kořen).

Důsledek Existuje spočetné algebraicky uzavřené těleso.

Důkaz Dle předchozího důsledku existuje spočetná struktura (nekonečná), která je elementárně ekvivalentní s tělesem \mathbb{C} , tedy je to rovněž algebraicky uzavřené těleso.

Kategoričnost

 Teorie T je ω-kategorická, pokud má až na izomorfismus právě jeden model kardinality ω, tj. spočetně nekonečný.

Tvrzení Teorie DeLO (tj. "bez konců") je ω -kategorická.

Důkaz Nechť $\mathcal{A}, \mathcal{B} \models DeLO$ s $A = \{a_i\}_{i \in \mathbb{N}}, B = \{b_i\}_{i \in \mathbb{N}}$. Indukcí dle n lze nalézt prosté parciální funkce $h_n \subseteq h_{n+1} \subset A \times B$ zachovávající uspořádání tak, že $\{a_i\}_{i < n} \subseteq \text{dom}(h_n)$ a $\{b_i\}_{i < n} \subseteq \text{rng}(h_n)$. Pak $\mathcal{A} \simeq \mathcal{B}$ via $h = \cup h_n$.

Obdobně dostaneme, že např. $\mathcal{A} = \langle \mathbb{Q}, \leq \rangle$, $\mathcal{A} \upharpoonright (0,1]$, $\mathcal{A} \upharpoonright [0,1)$, $\mathcal{A} \upharpoonright [0,1]$ jsou až na izomorfismus všechny spočetné modely teorie $DeLO^*$.

23 / 24

ω -kategorické kritérium kompletnosti

Věta Nechť jazyk L je spočetný.

- (i) Je-li teorie T jazyka L bez rovnosti ω -kategorická, je kompletní.
- (ii) Je-li teorie T jazyka L s rovností ω -kategorická a bez konečného modelu, je kompletní.

extstyle ext

Např. teorie $DeLO^+$, $DeLO^-$, $DeLO^+$ jsou kompletní a jsou to všechny (navzájem neekvivalentní) jednoduché kompletní extenze teorie $DeLO^*$.

Poznámka Obdobné kritérium platí i pro vyšší kardinality než ω .

Výroková a predikátová logika - XII

Petr Gregor

KTIML MFF UK

ZS 2019/2020

Axiomatizovatelnost

Zajímá nás, zda se daná část světa dá "dobře" popsat.

Nechť $K \subseteq M(L)$ je třída struktur jazyka L. Řekneme, že K je

- axiomatizovatelná, pokud existuje teorie T jazyka L s M(T) = K,
- konečně axiomatizovatelná, pokud je axiomatizovatelná konečnou teorií,
- otevřeně axiomatizovatelná, pokud je axiomatizovatelná otevřenou teorií,
- ullet teorie T je konečně (otevřeně) axiomatizovatelná, pokud M(T) je konečně (respektive otevřeně) axiomatizovatelná.

Pozorování Je-li K axiomatizovatelná, je uzavřená na elem. ekvivalenci.

Například

- a) lineární uspořádání jsou konečně i otevřeně axiomatizovatelná,
- b) tělesa jsou konečně axiomatizovatelná, ale ne otevřeně,
- c) nekonečné grupy jsou axiomatizovatelné, ale ne konečně.

Důsledek kompaktnosti

Věta *Má-li teorie* T *pro každé* $n \in \mathbb{N}$ *alespoň* n-prvkový model, má i nekonečný model.

Důkaz V jazyce bez rovnosti je to zřejmé, uvažme jazyk s rovností.

- Označme $T' = T \cup \{c_i \neq c_j \mid \text{pro } i \neq j\}$ extenzi teorie T v rozšířeném jazyce o spočetně nekonečně mnoho nových konstantních symbolů c_i .
- Dle předpokladu má každá konečná část teorie T' model.
- Tedy dle věty o kompaktnosti má T' model, ten je nutně nekonečný.
- Jeho redukt na původní jazyk je hledaný nekonečný model teorie T.

Důsledek Má-li teorie T pro každé $n \in \mathbb{N}$ alespoň n-prvkový model, není třída všech jejích konečných modelů axiomatizovatelná.

Např. nelze axiomatizovat konečné grupy, konečná tělesa, atd. Avšak třída nekonečných modelů teorie T jazyka s rovností je axiomatizovatelná.

Konečná axiomatizovatelnost

Věta Nechť $K \subseteq M(L)$ a $\overline{K} = M(L) \setminus K$, kde L je jazyk. Pak K je konečně axiomatizovatelná, právě když K i \overline{K} jsou axiomatizovatelné.

extstyle ext

- Nechť T, S jsou teorie jazyka L takové, že M(T) = K, $M(S) = \overline{K}$.
- Pak $M(T \cup S) = M(T) \cap M(S) = \emptyset$ a dle věty o kompaktnosti existují konečné $T' \subseteq T$ a $S' \subseteq S$ takové, že $\emptyset = M(T' \cup S') = M(T') \cap M(S')$.
- Jelikož

$$M(T) \subseteq M(T') \subseteq \overline{M(S')} \subseteq \overline{M(S)} = M(T),$$

je M(T) = M(T'), tj. konečná T' axiomatizuje K.

Konečná axiomatizovatelnost - příklad

Nechť T je teorie těles. Řekneme, že těleso $\mathcal{A} = \langle A, +, -, \cdot, 0, 1 \rangle$ je

- *charakteristiky* 0, neexistuje-li žádné $p \in \mathbb{N}^+$ takové, že $\mathcal{A} \models p1 = 0$, kde p1 značí term $1+1+\cdots+1$ (+ aplikováno (p-1)-krát).
- *charakteristiky p*, kde p je prvočíslo, je-li p je nejmenší t.ž. $A \models p1 = 0$.
- Třída těles charakteristiky p pro p prvočíslo je konečně axiomatizována teorií $T \cup \{p1 = 0\}$.
- Třída těles charakteristiky 0 je axiomatizována (nekonečnou) teorií $T' = T \cup \{ p1 \neq 0 \mid p \in \mathbb{N}^+ \}.$

Tvrzení Třída K těles charakteristiky 0 není konečně axiomatizovatelná.

Důkaz Stačí dokázat, že \overline{K} není axiomatizovatelná. Kdyby $M(S) = \overline{K}$, tak $S' = S \cup T'$ má model \mathcal{B} , neboť každá konečná $S^* \subseteq S'$ má model (těleso prvočíselné charakteristiky větší než jakékoliv p vyskytující se v axiomech S^*). Pak ale $\mathcal{B} \in M(S) = \overline{K}$ a zároveň $\mathcal{B} \in M(T') = K$, což není možné.

Otevřená axiomatizovatelnost

Věta Je-li teorie T otevřeně axiomatizovatelná, pak každá podstruktura modelu T je rovněž modelem T.

Důkaz Nechť T' je otevřená axiomatika M(T), $\mathcal{A} \models T'$ a $\mathcal{B} \subseteq \mathcal{A}$. Víme, že pro každé $\varphi \in T'$ je $\mathcal{B} \models \varphi$, neboť φ je otevřená. Tedy \mathcal{B} je modelem T'. \square

Poznámka Platí i obrácená implikace, tj. je-li každá podstruktura modelu teorie T rovněž modelem T, pak T je otevřeně axiomatizovatelná.

Např. teorie DeLO není otevřeně axiomatizovatelná, neboť např. konečná podstruktura modelu DeLO není modelem DeLO.

Např. nejvýše n-prvkové grupy pro pevné n>1 jsou otevřeně axiomatizovány

$$T \cup \{ \bigvee_{\substack{i,j \leq n \\ i \neq j}} x_i = x_j \},\,$$

kde T je (otevřená) teorie grup.

Rekurzivní axiomatizace a rozhodnutelnost

- Intuitivní pojem "algoritmus" lze přesně formalizovat (např. pomocí TS).
- Teorie T je rekurzivně axiomatizovaná, pokud existuje algoritmus, který pro každou vstupní formuli φ skončí a oznámí, zda φ ∈ T.
- Teorie T je *rozhodnutelná*, pokud existuje algoritmus, který pro každou vstupní formuli φ skončí a oznámí, zda $\varphi \in Thm(T)$.
- Teorie T je částečně rozhodnutelná, pokud existuje algoritmus, který pro každou vstupní formuli φ skončí, právě když φ ∈ Thm(T).

Tvrzení Pro každou rekurzivně axiomatizovanou teorii T,

- (i) T je částečně rozhodnutelná,
- (ii) je-li navíc T kompletní, je T rozhodnutelná.

Důkaz Konstrukce systematického tabla z T s $F\varphi$ v kořeni poskytuje algoritmus, který rozpoznává $T \vdash \varphi$. Je-li navíc T kompletní, paralelní konstrukce pro $F\varphi$ resp. $T\varphi$ v kořeni rozhoduje, zda $T \vdash \varphi$ či $T \vdash \neg \varphi$.

Rekurzivně spočetná kompletace

Co když efektivně popíšeme všechny jednoduché kompletní extenze?

Řekneme, že množina všech (až na ekvivalenci) jednoduchých kompletních extenzí teorie T je rekurzivně spočetná, existuje-li algoritmus $\alpha(i,j)$, který generuje i-tý axiom j-té extenze (při nějakém očíslování), případně oznámí, že (takový axiom či extenze) neexistuje.

Tvrzení Je-li teorie T rekurzivně axiomatizovaná a množina všech (až na ekvivalenci) jejích jednoduchých kompletních extenzí je rekurzivně spočetná, je T rozhodnutelná.

extstyle ext

Příklady rozhodnutelných teorií

Následující teorie jsou rozhodnutelné, ačkoliv jsou nekompletní.

- teorie čisté rovnosti; bez axiomů v jazyce $L = \langle \rangle$ s rovností,
- ullet teorie unárního predikátu; bez axiomů v jazyce $L=\langle U \rangle$ s rovností, kde U je unární relační symbol,
- teorie hustých lineárních uspořádání DeLO*,
- teorie algebraicky uzavřených těles v jazyce $L=\langle +,-,\cdot,0,1\rangle$ s rovností, s axiomy teorie těles a navíc axiomy pro každé $n\geq 1$,

$$(\forall x_{n-1}) \dots (\forall x_0)(\exists y)(y^n + x_{n-1} \cdot y^{n-1} + \dots + x_1 \cdot y + x_0 = 0),$$

kde y^k je zkratka za term $y \cdot y \cdot \cdots \cdot y$ (· aplikováno (k-1)-krát).

- teorie komutativních grup,
- teorie Booleových algeber.

9/24

Rekurzivní axiomatizovatelnost

Dají se matematické struktury "efektivně" popsat?

- Třída $K \subseteq M(L)$ je *rekurzivně axiomatizovatelná*, pokud existuje rekurzivně axiomatizovaná teorie T jazyka L s M(T) = K.
- Teorie T je rekurzivně axiomatizovatelná, pokud M(T) je rekurzivně axiomatizovatelná.

Tvrzení Pro každou konečnou strukturu A v konečném jazyce s rovností je Th(A) rekurzivně axiomatizovatelná. Tedy, Th(A) je rozhodnutelná.

Důkaz Nechť $A = \{a_1, \ldots, a_n\}$. Teorii $\operatorname{Th}(\mathcal{A})$ axiomatizujeme jednou sentencí (tedy rekurzivně) kompletně popisující \mathcal{A} . Bude tvaru "existuje právě n prvků a_1, \ldots, a_n splňujících právě ty základní vztahy o funkčních hodnotách a relacích, které platí ve struktuře \mathcal{A} ."

Příklady rekurzivní axiomatizovatelnosti

Následující struktury A mají rekurzivně axiomatizovatelnou teorii Th(A).

- $\langle \mathbb{Z}, \leq \rangle$, teorií diskrétních lineárních uspořádání,
- ⟨Q,≤⟩, teorií hustých lineárních uspořádání bez konců (DeLO),
- $\langle \mathbb{N}, S, 0 \rangle$, teorií následníka s nulou,
- $\langle \mathbb{N}, S, +, 0 \rangle$, tzv. Presburgerovou aritmetikou,
- \bullet $\langle \mathbb{R}, +, -, \cdot, 0, 1 \rangle$, teorií reálně uzavřených těles,
- $\langle \mathbb{C}, +, -, \cdot, 0, 1 \rangle$, teorií algebraicky uzavřených těles charakteristiky 0.

Důsledek Pro uvedené struktury je Th(A) rozhodnutelná.

Poznámka Uvidíme, že ale $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ rekurzivně axiomatizovat nelze. (Vyplývá to z první Gödelovy věty o neúplnosti).

Robinsonova aritmetika

Jak efektivně a přitom co nejúplněji axiomatizovat $\underline{\mathbb{N}}=\langle\mathbb{N},S,+,\cdot,0,\leq\rangle$? Jazyk aritmetiky je $L=\langle S,+,\cdot,0,\leq\rangle$ s rovností.

Robinsonova aritmetika Q má axiomy (konečně mnoho)

$$S(x) \neq 0$$
 $x \cdot 0 = 0$
 $S(x) = S(y) \rightarrow x = y$ $x \cdot S(y) = x \cdot y + x$
 $x + 0 = x$ $x \neq 0 \rightarrow (\exists y)(x = S(y))$
 $x + S(y) = S(x + y)$ $x \leq y \leftrightarrow (\exists z)(z + x = y)$

Poznámka Q je velmi slabá, např. nedokazuje komutativitu či asociativitu operací +, · ani tranzitivitu \leq . Nicméně postačuje například k důkazu existenčních tvrzení o numerálech, která jsou pravdivá v $\underline{\mathbb{N}}$.

Např. pro
$$\varphi(x,y)$$
 tvaru $(\exists z)(x+z=y)$ je
$$Q \vdash \varphi(\underline{1},\underline{2}), \quad \textit{kde } \underline{1} = S(0) \textit{ a } \underline{2} = S(S(0)).$$

Peanova aritmetika

Peanova aritmetika PA má axiomy

- (a) Robinsonovy aritmetiky Q,
- (b) schéma indukce, tj. pro každou formuli $\varphi(x, \overline{y})$ jazyka L axiom

$$(\varphi(0,\overline{y}) \land (\forall x)(\varphi(x,\overline{y}) \to \varphi(S(x),\overline{y}))) \to (\forall x)\varphi(x,\overline{y}).$$

Poznámka PA je poměrně dobrou aproximací $\operatorname{Th}(\underline{\mathbb{N}})$, dokazuje všechny základní vlastnosti platné v $\underline{\mathbb{N}}$ (např. komutativitu +). Na druhou stranu existují sentence pravdivé v $\underline{\mathbb{N}}$ ale nezávislé v PA.

Poznámka V jazyce 2. řádu lze axiomatizovat $\underline{\mathbb{N}}$ (až na izomorfismus), vezmeme-li místo schéma indukce přímo axiom indukce (2. řádu)

$$(\forall X) \ ((X(0) \land (\forall x)(X(x) \to X(S(x)))) \to (\forall x) \ X(x)).$$

Hilbertův 10. problém

- Nechť p(x₁,...,x_n) je polynom s celočíselnými koeficienty.
 Má Diofantická rovnice p(x₁,...,x_n) = 0 celočíselné řešení?
- Hilbert (1900) "Nalezněte algoritmus, který po konečně mnoha krocích určí, zda daná Diofantická rovnice s libovolným počtem proměnných a celočíselnými koeficienty má celočíselné řešení."

Poznámka Ekvivalentně lze požadovat algoritmus rozhodující, zda existuje řešení v přirozených číslech.

Věta (DPRM, 1970) Problém existence celočíselného řešení dané Diofantické rovnice s celočíselnými koeficienty je alg. nerozhodnutelný.

Důsledek Neexistuje algoritmus rozhodující pro dané polynomy $p(x_1, ..., x_n)$, $q(x_1, ..., x_n)$ s přirozenými koeficienty, zda $\mathbb{N} \models (\exists x_1) ... (\exists x_n) (p(x_1, ..., x_n) = q(x_1, ..., x_n)).$

Nerozhodutelnost predikátové logiky

Existuje algoritmus, rozhodující o dané sentenci, zda je logicky pravdivá?

- Víme, že Robinsonova aritmetika Q má konečně axiomů, má za model $\underline{\mathbb{N}}$ a stačí k důkazu existenčních tvrzení o numerálech, která platí v $\underline{\mathbb{N}}$.
- Přesněji, pro každou existenční formuli $\varphi(x_1,\ldots,x_n)$ jazyka aritmetiky $Q \vdash \varphi(x_1/\underline{a_1},\ldots,x_n/\underline{a_n}) \;\;\Leftrightarrow\;\; \underline{\mathbb{N}} \models \varphi[e(x_1/a_1,\ldots,x_n/a_n)]$ pro každé $a_1,\ldots,a_n \in \mathbb{N}$, kde a_i značí a_i -tý numerál.
- Speciálně, pro φ tvaru $(\exists x_1) \dots (\exists x_n) (p(x_1, \dots, x_n) = q(x_1, \dots, x_n))$, kde p, q jsou polynomy s přirozenými koeficienty (numerály), platí $\underline{\mathbb{N}} \models \varphi \quad \Leftrightarrow \quad Q \vdash \varphi \quad \Leftrightarrow \quad \vdash \psi \rightarrow \varphi \quad \Leftrightarrow \quad \models \psi \rightarrow \varphi,$ kde ψ je konjunkce (uzávěrů) všech axiomů Q.
- Tedy, pokud by existoval algoritmus rozhodující logickou pravdivost, existoval by i algoritmus rozhodující, zda $\mathbb{N} \models \varphi$, což není možné.

Úvod

Gödelova 1. věta o neúplnosti

Věta (Gödel) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Robinsonovy aritmetiky existuje sentence pravdivá v $\underline{\mathbb{N}}$ a nedokazatelná v T.

Poznámky

- "Rekurzivně axiomatizovaná" znamená, že je "efektivně zadaná".
- "Extenze R. aritmetiky" znamená, že je "základní aritmetické síly".
- Je-li navíc $\mathbb{N} \models T$, je teorie T nekompletní.
- V důkazu sestrojená sentence vyjadřuje "nejsem dokazatelná v T".
- Důkaz je založen na dvou principech:
 - (a) aritmetizaci syntaxe,
 - (b) self-referenci.

Aritmetizace - predikát dokazatelnosti

- Konečné objekty syntaxe (symboly jazyka, termy, formule, konečná tabla, tablo důkazy) lze vhodně zakódovat přirozenými čísly.
- Nechť $\lceil \varphi \rceil$ značí kód formule φ a nechť $\underline{\varphi}$ značí numerál (term jazyka aritmetiky) reprezentující $\lceil \varphi \rceil$.
- Je-li T rekurzivně axiomatizovaná, je relace $\mathrm{Prf}_T \subseteq \mathbb{N}^2$ rekurzivní.

$$Prf_T(x,y) \Leftrightarrow (tablo) \ y \ je \ důkazem (sentence) \ x \ v \ T.$$

• Je-li T navíc extenze Robinsonovy aritmetiky Q, dá se dokázat, že Prf_T je reprezentovatelná nějakou formulí $\operatorname{Prf}_T(x,y)$ tak, že pro každé $x,y\in\mathbb{N}$

$$Q \vdash Prf_T(\underline{x}, \underline{y}), \quad \textit{je-li} \quad \Prf_T(x, y),$$

 $Q \vdash \neg Prf_T(\underline{x}, \underline{y}), \quad \textit{jinak}.$

- $Prf_T(x, y)$ vyjadřuje "y je důkaz $x \vee T$ ".
- $(\exists y) Prf_T(x, y)$ vyjadřuje "x je dokazatelná v T".
- Je-li $T \vdash \varphi$, pak $\underline{\mathbb{N}} \models (\exists y) Prf_T(\underline{\varphi}, y)$ a navíc $T \vdash (\exists y) Prf_T(\underline{\varphi}, y)$.

Princip self-reference

- Tato věta má 16 písmen.
 Self-reference ve formálních systémech většinou není přímo k dispozici.
- Následující věta má 24 písmen "Následující věta má 24 písmen".
 Přímá reference obvykle je k dispozici, stačí, když umíme "mluvit" o posloupnostech symbolů. Uvedená věta ale není self-referenční.
- Následující věta zapsaná jednou a ještě jednou v uvozovkách má 116 písmen "Následující věta zapsaná jednou a ještě jednou v uvozovkách má 116 písmen".
 - Pomocí přímé reference lze dosáhnout self-reference. Namísto "má x písmen" může být jiná vlastnost.

Věta o pevném bodě

Věta Nechť T je bezesporné rozšíření Robinsonovy aritmetiky. Pro každou formuli $\varphi(x)$ jazyka teorie T existuje sentence ψ taková, že $T \vdash \psi \leftrightarrow \varphi(\psi)$.

Poznámka Sentence ψ je self-referenční, říká "splňuji podmínku φ ".

 ${\it Důkaz}$ (idea) Uvažme ${\it zdvojujíci}$ funkci d takovou, že pro každou formuli $\chi(x)$

$$d(\lceil \chi(x) \rceil) = \lceil \chi(\underline{\chi(x)}) \rceil$$

- Platí, že d je reprezentovatelná v T. Předpokládejme (pro jednoduchost),
 že nějakým termem, který si označme d, stejně jako funkci d.
- Pak pro každou formuli $\chi(x)$ jazyka teorie T platí

$$T \vdash d(\underline{\chi(x)}) = \underline{\chi(\underline{\chi(x)})} \tag{1}$$

- Za ψ vezměme sentenci $\varphi(d(\varphi(d(x))))$. Stačí ověřit $T \vdash d(\varphi(d(x))) = \underline{\psi}$.
- To plyne z (1) pro $\chi(x)$ tvaru $\varphi(d(x))$, neboť v tom případě

$$T \vdash d(\varphi(d(x))) = \varphi(d(\varphi(d(x)))) \quad \Box$$

Nedefinovatelnost pravdy

Řekneme, že formule $\tau(x)$ *definuje pravdu* v aritmetické teorii T, pokud pro každou sentenci φ platí $T \vdash \varphi \leftrightarrow \tau(\varphi)$.

Věta V žádném bezesporném rozšíření Robinsonovy aritmetiky neexistuje definice pravdy.

Důkaz Dle věty o pevném bodě pro $\neg \tau(x)$ existuje sentence φ taková, že

$$T \vdash \varphi \leftrightarrow \neg \tau(\underline{\varphi}).$$

Kdyby formule $\tau(x)$ definovala pravdu v T, bylo by

$$T \vdash \varphi \leftrightarrow \neg \varphi$$
,

což v bezesporné teorii není možné.

Poznámka Důkaz je založen na paradoxu lháře, sentence φ by vyjadřovala "nejsem pravdivá v T".

Důkaz 1. věty o neúplnosti

Věta (Gödel) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Robinsonovy aritmetiky existuje sentence pravdivá v $\underline{\mathbb{N}}$ a nedokazatelná v T.

Důkaz Nechť $\varphi(x)$ je $\neg(\exists y)Prf_T(x,y)$, vyjadřuje "x není dokazatelná v T".

• Dle věty o pevném bodě pro $\varphi(x)$ existuje sentence ψ_T taková, že

$$T \vdash \psi_T \leftrightarrow \neg(\exists y) Prf_T(\underline{\psi_T}, y). \tag{2}$$

 ψ_T říká "nejsem dokazatelná v T". Přesněji, ψ_T je ekvivalentní sentenci vyjadřující, že ψ_T není dokazatelná v T. (Ekvivalence platí v $\underline{\mathbb{N}}$ i v T).

- Nejprve ukážeme, že ψ_T není dokazatelná v T. Kdyby $T \vdash \psi_T$, tj. ψ_T je lživá v $\underline{\mathbb{N}}$, pak $\underline{\mathbb{N}} \models (\exists y) Prf_T(\underline{\psi_T}, y)$ a navíc $T \vdash (\exists y) Prf_T(\underline{\psi_T}, y)$. Tedy z (2) plyne $T \vdash \neg \psi_T$, což ale není možné, neboť T je bezesporná.
- Zbývá dokázat, že ψ_T je pravdivá v $\underline{\mathbb{N}}$. Kdyby ne, tj. $\underline{\mathbb{N}} \models \neg \psi_T$, pak $\underline{\mathbb{N}} \models (\exists y) Prf_T(\psi_T, y)$. Tedy $T \vdash \psi_T$, což jsme již dokázali, že neplatí.

Důsledky a zesílení 1. věty

Důsledek Je-li navíc $\underline{\mathbb{N}} \models T$, je teorie T nekompletní.

Důkaz Kdyby byla T kompletní, pak $T \vdash \neg \psi_T$ a tedy $\underline{\mathbb{N}} \models \neg \psi_T$, což je ve sporu s $\underline{\mathbb{N}} \models \psi_T$. \Box

Důsledek $Th(\underline{\mathbb{N}})$ není rekurzivně axiomatizovatelná.

 $D\mathring{u}kaz$ $\operatorname{Th}(\underline{\mathbb{N}})$ je bezesporná extenze Robinsonovy aritmetiky a má model $\underline{\mathbb{N}}$. Kdyby byla rekurzivně axiomatizovatelná, dle předchozího důsledku by byla nekompletní, ale $\operatorname{Th}(\mathbb{N})$ je kompletní. \square

Gödelovu 1. větu o neúplnosti lze následovně zesílit.

Věta (Rosser) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Robinsonovy aritmetiky existuje nezávislá sentence. Tedy T je nekompletní.

Poznámka Tedy předpoklad, že $\underline{\mathbb{N}} \models T$, je v prvním důsledku nadbytečný.

Gödelova 2. věta o neúplnosti

Označme Con_T sentenci $\neg(\exists y)Prf_T(\underline{0=1},y)$. Platí $\underline{\mathbb{N}} \models Con_T \Leftrightarrow T \not\vdash 0 = \underline{1}$. Tedy Con_T vyjadřuje, že "T je bezesporná".

Věta (Gödel) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Peanovy aritmetiky platí, že Con_T není dokazatelná v T.

Důkaz (náznak) Nechť ψ_T je Gödelova sentence "nejsem dokazatelná v T".

- V první části důkazu 1. věty o neúplnosti jsme ukázali, že "Je-li T bezesporná, pak ψ_T není dokazatelná v T." (3) Jinak vyjádřeno, platí $Con_T \to \psi_T$.
- Je-li T extenze Peanovy aritmetiky, důkaz tvrzení (3) lze formalizovat v rámci T. Tedy $T \vdash Con_T \rightarrow \psi_T$.
- Jelikož T je bezesporná dle předpokladu věty, podle (3) je $T \not\vdash \psi_T$.
- Z předchozích dvou bodů vyplývá, že $T \nvdash Con_T$.

Poznámka Taková teorie T tedy neumí dokázat vlastní bezespornost.

Důsledky 2. věty

Důsledek Existuje model \mathcal{A} Peanovy aritmetiky t.ž. $\mathcal{A} \models (\exists y) Prf_{PA}(\underline{0=1},y)$.

Poznámka A musí být nestandardní model PA, svědkem musí být nestandardní prvek (jiný než hodnoty numerálů).

Důsledek Existuje bezesporná rekurzivně axiomatizovaná extenze T Peanovy aritmetiky taková, že $T \vdash \neg Con_T$.

Důkaz Nechť $T = PA \cup \{\neg Con_{PA}\}$. Pak T je bezesporná, neboť $PA \not\vdash Con_{PA}$.

Navíc $T \vdash \neg Con_{PA}$, tj. T dokazuje spornost $PA \subseteq T$, tedy i $T \vdash \neg Con_T$.

Poznámka $\underline{\mathbb{N}}$ nemůže být modelem teorie T.

Důsledek Je-li teorie množin ZFC bezesporná, není Con_{ZFC} dokazatelná v ZFC.

24 / 24