

Für Interessierte: Grobzüge der Kodierung nach IEEE 754-2008

1 bit	MSB w bit	s LSB	MSB $t = p-1$ bits	LSB		
S	E		T			
(sign)	(biased exponent)		(trailing significand field)			
E_0 E_{w-1} d_1 d_{p-1}						

■ k Bit Gesamtbreite

LSB: least significant bit MSB: most significant bit

- 1 Bit Vorzeichen S
- w Bit für den Biased Exponenten E, d.h. 0 bis 2^w-1
- tatsächlicher Exponent e = E Bias
 - maximaler Exponent e_{max} = 2^(w-1)-1
 - Bias = e_{max}
 - minimaler Exponent e_{min} = 1 e_{max}
 - Beispiel 8bit Exponent: e_{max} = 127, Bias = 127, e_{min} = -126
- p Bit für die Mantisse T
 - es werden nur t = p-1 Bits gespeichert (trailing bits)
 - das "fehlende" erste Bit t' ergibt sich implizit aus dem Exponenten
 - höchstes Bit t' entspricht Stellenwert 1, alle niedrigeren Bits sind folglich Nachkommastellen (Betrachtung vor Anwendung des Exponenten)

IEEE 754-2008	binary32	binary64	
Breite k	32	64	
Vorzeichenbits	1		
Exponentenbits	8	11	
Genauigkeit p	24	53	
Mantissenbits	23	52	
e _{max}	127	1023	
Bias	127	1023	
e _{min}	-126	-1022	