Lead Scoring Case Study

Business Objective:

An education company named X Education sells online courses to industry professionals.

Currently company's conversion rate is low (30%). The Company needs your help to identify **Hot Leads** for a more **focused marketing and conversion strategy**. Thus, aiming for a **target lead conversion rate of 80%**

Objective:

To build a logistic regression model and assign lead score which can be used to predict lead conversion

Approach:

1. Understanding Past Data

- We first understood past data to identify data structure, main variables etc.

2. Initial Data Cleaning

 Identified columns with high percentage of null and select values. We dropped the columns which have more than 30% null values

3. Exploratory Data Analysis

- **Identified and handled outliers** in Numerical Columns. We removed top 1% outliers in TotalVisits and Page Views Per Visit
- Some columns had values with **negligible frequency. We grouped them together** in other category to avoid too many features
- Identified not-important columns which do not add value. Example Do Not Call has 100% No values.
- Checking Data imbalance, the data has 38% records as Converted. Thus data is imbalanced

4. Feature Engineering and Data Preparation

- **For Numerical Variables** we have done **Standardization** that they are on similar scale and not impact model coefficients
- For Categorical Variables we have created dummy variables using pd.get_dummies()
- We have created two sets of Data Training Data (70%) and Test Data (30%). This will help us evaluate the model performance on unseen data

5. Building Logistic Regression Model

- We have used **RFE to pick the top 20 significant variables**.
- We did **multiple iterations to refine** using model statistics Pvalue and VIF. We have removed variables suing below criteria
 - o **Pvalue more than 5%** means variable is not significant
 - VIF value more than 5 means variable shows multi-collinearity
- Finally, after 9 iterations we arrived at final model

6. Identifying the correct value of Probability threshold

- Basis **ROC curve** we got a rough idea on Probability cutoff
- Plotting Accuracy, Sensitivity and Specificity we arrived at **probability cutoff of 0.35** which give best balance among Accuracy, Sensitivity and Specificity

7. Making Predictions

- Use used final model (9th iteration) to make predictions on training and test data and used 0.35 cutoff to map Converted leads

8. Model Evaluation

- We created Confusion matrix on training and test predictions
- Training Accuracy: Accuracy = 80.6%,
 Training Accuracy: Accuracy = 80.6%,
 Sensitivity = 80.6%,
 Specificity = 80.5%
 Specificity = 81.2%
- All these were found to meet the 80% standard set on accuracy

9. Conclusion and Recommendations:

Top Features which determine higher conversion are

- Lead Source_Welingak Website (Coefficient = 6.48)
- Lead Source_Reference (Coefficient = 4.08)
- What is your current occupation_Working Professional (Coefficient = 2.22)
- Basis availability of resources we should focus on these variables to maximize conversion.