Universidade do Minho

30 de janeiro de 2017

Exame de recurso de

Computabilidade e Complexidade

Lic. Ciências da Computação

Duração: 2h15min

Este teste é constituído por 5 questões. Todas as respostas devem ser devidamente justificadas.

1. Seja $A = \{a, b\}$. Considere a máquina de Turing

$$\mathcal{T} = (\{0, 1, 2, 3, 4\}, A, A \cup \{\Delta\}, \delta, 0, 4, \Delta)$$

onde a função transição δ é definida pela tabela seguinte:

δ	a	b	Δ
0			$(1, \Delta, D)$
1	(1, a, D)	(1,b,D)	$(2, \Delta, E)$
2		(3,b,E)	
3	(3,b,E)	(3, a, E)	$(4, \Delta, C)$

A máquina \mathcal{T} calcula uma função parcial $g: A^* \to A^*$.

- a) Represente \mathcal{T} graficamente.
- b) Identifique o domínio D da função g.
- c) Para cada elemento $u \in D$, determine a palavra g(u).
- **2**. Considere o alfabeto $A = \{a, b, c\}$ e a linguagem $L = \{a^n b c^n b a^n : n \in \mathbb{N}_0\}$.
 - a) Construa uma máquina de Turing que reconheça L e descreva informalmente a estratégia dessa máquina.
 - b) Diga, justificando, se a linguagem L é recursiva.
 - c) Explique se o problema de decisão P(w): " $w \in L$?" é ou não decidível.
- **3**. Seja $h: \mathbb{N}_0^3 \to \mathbb{N}_0$ a função definida, para cada $(x,y,z) \in \mathbb{N}_0^3$, por h(x,y,z) = x + yz.
 - a) Defina recursivamente a função h. Ou seja, determine funções $f: \mathbb{N}_0^2 \to \mathbb{N}_0$ e $g: \mathbb{N}_0^4 \to \mathbb{N}_0$ tais que h = Rec(f, g).
 - **b)** Mostre que h é uma função recursiva primitiva.
 - c) Determine a função M_h de minimização de h.

(v.s.f.f.)

4. Seja $A = \{a, b\}$ e seja \mathcal{T} a seguinte máquina de Turing sobre A com duas fitas,

$$(a,\Delta)/(a,a),(D,D) \qquad (a,-)/(a,-),(E,C)$$

$$(b,\Delta)/(b,\Delta),(D,C) \qquad (b,\Delta)/(b,\Delta),(D,C) \qquad (b,a)/(b,\Delta),(E,E)$$

$$(\Delta,\Delta)/(\Delta,\Delta),(D,D) \qquad (\Delta,\Delta)/(\Delta,\Delta),(E,E)$$

- a) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta}babbab, \underline{\Delta})$ e diga se a palavra babbab é aceite por \mathcal{T} .
- **b)** Identifique a linguagem L reconhecida por \mathcal{T} .
- c) Determine a função de complexidade temporal da máquina \mathcal{T} .
- **d)** Mostre que $L \in DTIME(n)$.
- e) Sendo K a linguagem $K = \{1^{3n} : n \in \mathbb{N}\}$ sobre o alfabeto $\{1\}$, mostre que $L \leq_p K$.
- 5. Diga, justificando, quais das afirmações seguintes são verdadeiras e quais são falsas.
 - a) Se L é uma linguagem recursiva e $w \in L$, então toda a máquina de Turing pára com a entrada w.
 - **b)** O problema "Dada uma máquina de Turing \mathcal{T} , será que a linguagem $L(\mathcal{T})$ é regular?" é decidível.
 - c) A função $f(n) = 3^n + n^2$ é de ordem $\mathcal{O}(3^n)$.

(FIM)

$$\text{Cotação:} \left\{ \begin{array}{l} \textbf{1.} \ \, 3 \ \text{valores} \ (1+1+1) \\ \textbf{2.} \ \, 4 \ \text{valores} \ (2,5+0,75+0,75) \\ \textbf{3.} \ \, 3,5 \ \text{valores} \ (1,5+1+1) \\ \textbf{4.} \ \, 6,5 \ \text{valores} \ (1,25+1,25+1,5+1+1,5) \\ \textbf{5.} \ \, 3 \ \text{valores} \ (1+1+1) \end{array} \right.$$