- 1. Find the accumulation points of the following sets in \mathbb{R} . NO justification is needed.
 - i. S = (0, 1);
 - ii. $S = \{(-1)^n + \frac{1}{n} \mid n \in \mathbb{N}\};$
 - iii. $S=\mathbb{Q}$;
 - iv. $S = \mathbb{R}$;

2.

- i. Show, by example, that an infinite intersection of open sets in \mathbb{R} is not necessarily open.
- ii. Show, by example, that an infinite union of closed sets in \mathbb{R} is not necessarily closed.
- iii. Show that \emptyset and $\mathbb R$ are the only two subsets of $\mathbb R$ that are both open and closed in $\mathbb R$.
- iv. Show that a subset of \mathbb{R} is closed if and only if it contains all its accumulation points.
- v. Suppose S is a bounded and closed nonempty subset of \mathbb{R} . Prove that $\sup S \in S$.