TALLER 2

Señales y sistemas II

Preparados por John Cortés

- 1. Decidir si cada una de las siguientes sentencias son falsas o verdaderas, justificar todas las respuestas, proponer un contraejemplo para las que considere conveniente.
 - **a.** La existencia de bloques con función de transferencia impropia crea problemas en el manejo del ruido en sistemas realimentados.
 - **b.** La existencia de bloques inestables en un sistema de control implica la inestabilidad total del sistema.
 - **c.** La cancelación de polos inestables es garantía de la estabilidad total del sistema.
 - **d.** Si todos los bloques de un sistema realimentado poseen función de transferencia propia la función de transferencia de entrada salida también es propia.
 - e. Sistemas en lazo abierto son inestables.
 - f. La selección de controladores propios garantiza una adecuada implementación electrónica.
 - g. La cancelación de polos cerca del eje imaginario generan oscilación del sistema.
- 2. Encontrar la respuesta en estado estacionario de

a. a.
$$G_o(s) = \frac{1}{s^2 - 1}$$
 debida a: $r_I(t) = a$; $r_2(t) = sent$; $r_3(t) = sen2t$

b. b.
$$G_o = \frac{3s+2}{s^2+3s+2}$$
 debida a $r(t) = 2+t$

c. c.
$$G_o = \frac{9s^2 + 9s + 81}{s^3 + 9s^2 + 9s + 81}$$
 debida a $r(t) = a$.

Realizar las correspondientes simulaciones en Matlab que confirmen sus respuestas.

3. Para el sistema de control mostrado

Para $n(t) = 0.01 sen(10^5 t)$ se obtiene una respuesta $y(t) = 5*10^{-3} sen(10^5 t) - 10^3 cos(10^5 t)$.

Determinar el controlador C(s) para la respuesta dada.

Considera que el sistema tiene problemas en el manejo del ruido?

4. Analizar la estabilidad total del siguiente sistema

Donde a = 0.1, b = 8.8, K1 = 7.23 y K2 = 17.2880.

5. Considere el sistema de control en realimentación unitaria mostrado en la figura

- **a.** Es posible garantizar la estabilidad total del sistema si C(s) = k (controlador de orden cero) En caso afirmativo determinar el rango de k.
- **b.** Es posible garantizar la estabilidad total del sistema si $C(s) = \frac{b}{s+a}$. Si es posible obtener una relación entre a y b para tal fin.
- **c.** Realizar un análisis similar para $C(s) = \frac{cs+b}{s+a}$.
- 6. Para el sistema de control mostrado en la figura

Con plantas de la forma $G(s) = \frac{k}{N(s)}$. Demostrar que si se consideran controladores con función de transferencia tipo i con i ≥ 1 , el sistema de control rechaza perturbaciones constantes.

Determinar si se puede generalizar el resultado para plantas propias de la forma $G(s) = \frac{N(s)}{D(s)}$ con $N(0) \neq 0$.

7. Considere el sistema de control.

Se presenta a continuación las graficas de respuesta debida el efecto de dos controladores, calcular los correspondientes controladores

Respuesta debida al controlador C₁(s)

Respuesta debida al controlador C₂(s)

(Se presenta una oscilación sostenida (con $\omega=2\pi$ rad/s) por tiempo indefinido alrededor de una la señal de referencia r(t)=0.1t.)

8. Considere el siguiente sistema de control

- **a.** Si $C(s) = \frac{1}{s^2}$ calcular e_p (e_p : error de posición)
- **b.** Si $C(s) = \frac{s+1}{s^2}$ calcular e_p
- **c.** Si $C(s) = \frac{as+b}{s^2}$, determinar una relación para a y b, tal que el sistema sea totalmente estable y calcular e_v (e_v : error de velocidad) para esos casos.
- **d.** Si la planta cambia a $G_1(s) = \frac{1}{s^2 + 3.2s + 1.8}$ calcular el nuevo e_v .
- **9.** Para el sistema de control mostrado en la figura:

Considere la siguiente señal de referencia:

Para cada una de las respuestas $y_1(t)$, $y_2(t)$ y $y_3(t)$ diseñar el correspondiente controlador tal que el sistema de control resultante posea una respuesta similar. (ver graficas anexas). En cada caso determinar el correspondiente error de estado estacionario $(e_p, e_v \text{ y } e_a)$ que es cero o finito.

Observaciones: Nótese que en la grafica de respuesta $y_3(t)$ ($e_a = 0$) el comportamiento transitorio para la señal de referencia cuadrática es relativamente bueno comparado con el de la señal de referencia constante el cual presenta gran sobre pico (aprox. 18%) y oscilaciones. Lo cual evidencia el error de sobre dimensionar el diseño con errores de estado estacionario (e_{ss}) superiores a los especificados.

Para $y_I(t)$ si la planta hubiese sido $G_1(s) = \frac{1}{s(s+1)}$ ¿Es posible implementar el controlador para la respuesta dada? Analizar el problema desde el punto de vista matemático y desde el punto de vista real de la implementación.

10. Considere un sistema con realimentación unitaria donde la función de transferencia de la planta esta dada por G(s)=2/(s+1) y el controlador es un compensador proporcional integral de la forma C(s)=K(1+0.46s)/s.

Determinar el valor de K que produzca la mejor respuesta bajo la restricción que la señal de control no debe superar el valor de 100 es decir $|u(t) \le 100|$.

11. Considere el sistema realimentado mostrado en la figura

Encontrar el valor de a tal que el sistema posea el menor tiempo de asentamiento y sobrepico posible.

12. Considere el siguiente sistema de control y la correspondiente señal de referencia r(t).

- a. Si C(s) = 99, es decir un amplificador de ganancia 99, considera que la respuesta del sistema (y(t)) es aceptable. Describa su respuesta en términos de errores estado estacionario. (Sugerencia: Calcular la respuesta del sistema para los tiempos 30 s, 60 s y 90 s)
- b. Si $C(s) = \frac{as + b}{s}$ con a = 99 y b = 1, realizar un análisis similar al solicitado para el controlador proporcional ¿Qué ventajas tiene este diseño con respecto al anterior?
- c. Analice el concepto de polos dominantes para el caso del último controlador. ¿Se puede aplicar en este caso?
- 13. Para un problema de diseño se utiliza el siguiente sistema de control:

Para efectos de reducir el orden del sistema de control se decide asignar a=1 ó a=10. Explique la implicación que tiene la selección de cada uno de éstos valores. Analice la respuesta en cuanto a rechazo a perturbaciones y estabilidad total del sistema.