2023 IEEE International Conference on Mechatronics and Automation:

DEVELOPMENT OF A LIGHTWEIGHT REAL-TIME APPLICATION FOR DYNAMIC HAND GESTURE RECOGNITION

Oluwaleke Yusuf, Maki Habib

Robotics, Control and Smart Systems (RCSS) Program,

Department of Mechanical Engineering,

The American University in Cairo (AUC), Cairo, Egypt.

- Background
- Literature Review & SOTA
- Proposed Framework & Application
- Evaluation Results & Comparison with SOTA
- Lightweight Application & Performance
- Conclusion & Future Work

PRESENTATION OUTLINE

DYNAMIC HAND GESTURE RECOGNITION

- > Computer Vision
 - > Perceptual Computing
 - > Dynamic Hand Gesture Recognition (HGR)

***** HGR Applications:

- Human-Machine Interactions
- Human Behavior Analysis
- Active & Assisted Living
- Virtual & Augmented Reality

***** HGR Complexity:

- Human Hand
- User Environment
- Sensor Types

EXISTING HGR FRAMEWORKS

STATE-OF-THE-ART HGR FRAMEWORKS

Gesture Input Modalities:

- RGB [Narayana et al. (2017), Köpüklü et al. (2019)]
- Depth [Narayana et al. (2017), Köpüklü et al. (2019)]
- Skeleton [Li et al. (2021), Shi et al. (2020), Sabater et al. (2021)]
- Optical Flow (RGB & Depth) [Narayana et al. (2017)]

Neural Network Architectures:

- Multi-Stream Fusion [Li et al. (2021), Narayana et al. (2017)]
- Recurrent Neural Network [Li et al. (2021)]
- (2D & 3D) Convolutional Neural Network [Narayana et al. (2017),
 Köpüklü et al. (2019)]
- Graph Convolutional Network [Li et al. (2021)]
- Attention Network [Li et al. (2021), Shi et al. (2020)]
- Temporal Convolutional Network [Sabater et al. (2021)]

CONSTRAINTS::

- * Hardware Requirements:
 - Inbuilt PC Webcam
- * Computational Complexity:
 - Minimize CPU & RAM Utilization

REQUIREMENTS::

- * Classification Accuracy:
 - Maintain SOTA Evaluation Performance
- * Real-Time Performance:
 - Maximize FPS
 - Minimize Latency

APPLICATION
CONSTRAINTS
&
REQUIREMENTS

PROPOSED DYNAMIC HGR FRAMEWORK

Temporal Information Condensation::

 $\sum \{G_i^{\tau}\}_{\tau=1}^{T-1}$

Five Fingertips

- Dynamic Gesture, i
- Temporal Window, *T*

TEMPORAL
TRAILS
DATA-LEVEL
FUSION

3D Spatiotemporal Representation

Temporal : $\sum \{\mathcal{G}_i^{\tau}\}_{\tau=1}^{T-1}$

+

Spatial : \mathcal{G}_i^T

TEMPORAL
TRAILS
DATA-LEVEL
FUSION

END-TO-END **E**NSEMBLE TUNER [E2EET] MULTI-STREAM CNN ARCHITECTURE

HGR FRAMEWORK ACCURACY COMPARISON W/SOTA

Datasets / SOTA Frameworks	Classification Accuracy	
	SOTA	Ours
1. Dynamic Hand Gesture 14/28 Dataset (DHG1428) — n=2800 ; c=14/28		
Li et al. (2021)	95.18%	94.11% [-1.07%]
2. 3D Hand Gesture RecognitionDataset (SHREC2017) — n=2800 ; c=14/28		
Shi et al. (2020)	95.45%	96.61% [+1.16%]
3. Consiglio Nazionale delle RicercheDataset (CNR) — n=1925 c=16		
Lupinetti et al. (2020)	98.78%	97.05% [-1.73%]
4. Leap Motion Dynamic Hand Gesture Benchmark (LMDHG) — n=608 ; c=13		
SOTA: Lupinetti et al. (2020)	92.11%	98.97% [+6.86%]
5. First-Person Hand Action Benchmark (FPHA) — n=1175 ; c=45		
SOTA: Sabater et al. (2021)	92.93%	91.83% [-4.10%]

LIGHTWEIGHT REAL-TIME APPLICATION

Code available at:: https://github.com/Outsiders17711/e2eET-Skeleton-Based-HGR-Using-Data-Level-Fusion

e2eET HGR Framework: Live Demo

HGR APPLICATION PERFORMANCE ANALYSIS

* Test Platform::

- Lenovo PC @ Windows 10
- Intel Core i7-9750H CPU
- 16GB RAM

***** HGR Application Stats::

- 4 Python Modules
- 3 UI Windows
- ~2s Latency @ 15FPS
- 93.46% Classification Accuracy

PC Software	RAM Utilized
HGR Application Modules	648.9 MB
RGB Video Capture + Mediapipe Skeleton Estimation	90.0 MB
Vispy Data-Level Fusion	86.6 MB
e2eET Model Inference	358.8 MB
Vispy Output GUI	82.6 MB
Terminal	30.8 MB
Google Chrome [9 Tabs]	821.7 MB
Adobe Acrobat DC [3 Documents]	228.7 MB
Microsoft Word [3 Documents]	199.8 MB
Windows Explorer [3 Windows]	166.7 MB

CONCLUSION

- + Demonstrated the viability of Data-Level Fusion in HGR domain.
- + Leveraged advances in deep, data-driven ML algorithms and architectures.
- + Using a custom end-to-end Ensemble Tuner Multi-stream CNN Architecture.

→ HGR Framework & Application::

- $\overline{\mathsf{V}}$ Obtained classification accuracies between -4.10% and +6.86% of SOTA.
- ✓ Minimized hardware requirements and computational complexity.

Data-level Fusion::

- Gesture Visualization
- Image Generation

e2eET Architecture::

- Loss Function
- Ensemble Tuning Method

HGR Framework & Application::

- Unsegmented Data Streams
- Skeleton-based Human Action Recognition

Future Work

REFERENCES

- [1] Bazil, 'Web Love GIF', GIFER, 2021. Available: https://gifer.com/en/2iv1.
- [2] Q. De Smedt, H. Wannous, J.-P. Vandeborre, J. Guerry, B. Le Saux, and D. Filliat, 'SHREC'17 Track: 3D Hand Gesture Recognition Using a Depth and Skeletal Dataset', 2017.
- [3] C. Li, S. Li, Y. Gao, X. Zhang, and W. Li, 'A Two-stream Neural Network for Pose-based Hand Gesture Recognition', 2021.
- [4] P. Narayana, R. Beveridge, and B. A. Draper, 'Gesture Recognition: Focus on the Hands', 2018.
- [5] L. Shi, Y. Zhang, J. Cheng, and H. Lu, 'Decoupled Spatial-Temporal Attention Network for Skeleton-Based Action Recognition', 2020.
- [6] A. Sabater, I. Alonso, L. Montesano, and A. C. Murillo, 'Domain and View-point Agnostic Hand Action Recognition', 2021.
- [7] O. Köpüklü, A. Gunduz, N. Kose, and G. Rigoll, 'Real-time Hand Gesture Detection and Classification Using Convolutional Neural Networks', 2019.
- [8] K. Lupinetti, A. Ranieri, F. Giannini, and M. Monti, '3D Dynamic Hand Gestures Recognition Using the Leap Motion Sensor and Convolutional Neural Networks', 2020.

THANK YOU! QUESTIONS?