EEE598: Statistical Machine Learning: From Theory to Practice

Instructor: Dr. Lalitha Sankar Homework Assignment #2 Total points: 100

Due Date and Time: 10/11/2022 11:59 PM

Student Name:	ASU Id: _	

Instructions:

- (1) Every problem should begin on a new page (use the \newpage command).
- (2) Page numbers for each problem should be entered in Gradescope when uploading HW
- (3) Furthermore, page numbers for every sub-problem within a problem should also be entered in Gradescope.
- (4) Points are given for steps and work show all work and steps and clarifications/arguments for the steps
- (5) Some rules on Python code files:
 - (i) Filename convention: For every problem, the corresponding Python filename should follow the following nomenclature: (FirstInitialLastName-HWxx-Problem#Subproblem#). For example, for HW3, problem 7a, my Python file should have the name: LSankar-HW3-7a.xxx
 - (ii) All subproblems can be in one file but the FILENAME has to be clarifying as in (i) above.
 - (iii) All Python files generated for an HW can be zipped and uploaded but again, if filenames are misleading then points will be deducted.
 - (iv) All code will also be checked for obvious overlap with other student's code.
 - (v) Every file should be independently executable.
- (6) Enjoy!

Some instructions on how to submit solutions on Gradescope and Canvas:

- (1) All plots have to be included in the PDF file uploaded to Gradescope. It is not the TA's or grader's job to find it on the canvas submission. Plots not in the PDF submission on Gradescope will NOT graded.
- (2) Plots without legend on what you are plotting them for will lead to points being deducted. Keep in mind you have several plots and it is important for us to know what these plots correspond to.
- (3) Canvas submission should be restricted to only CODE.
- (4) Please include a copy of your code in your Gradescope submission this can make grading easier for us as a first run (before we run your code using the canvas upload). This is particularly helpful if we find that your basic code is correct and your results are correct.

Additional Notes:

- a. Please review all homework guidance above before submitting to Gradescope.
- b. Please provide succinct answers along with succinct reasoning for all your answers. Points may be deducted if long answers demonstrate a lack of clarity.
- c. Similarly, when discussing the experimental results, concisely create tables and/or figures when appropriate to organize the experimental results. In other words, all your explanations, tables, and figures for any particular part of a question must be grouped together.
- d. Late homework submissions will not be accepted after the deadline.

1 Convexity and norms [30 points]

1. A norm $\|\cdot\|$ over \mathbb{R}^n is defined by the properties: i) non-negative: $\|x\| \geq 0$ for all $x \in \mathbb{R}^n$ with equality if and only if x = 0, ii) absolute scalability: $\|ax\| = |a| \|x\|$ for all $a \in \mathbb{R}$ and $x \in \mathbb{R}^n$, iii) triangle inequality: $\|x + y\| \leq \|x\| + \|y\|$ for all $x, y \in \mathbb{R}^n$.

- (a) [3 points] Show that $f(x) = (\sum_{i=1}^{n} |x_i|)$ is a norm. (Hint: begin by showing that $|a+b| \le |a| + |b|$ for all $a, b \in \mathbb{R}$)
- (b) [2 points] Show that $g(x) = \left(\sum_{i=1}^{n} |x_i|^{1/2}\right)^2$ is not a norm. (Hint: it suffices to find two points in n=2 dimensions such that the triangle inequality does not hold)

Context: norms are often used in regularization to encourage specific behaviors of solutions. If we define $||x||_p := (\sum_{i=1}^n |x_i|^p)^{1/p}$ then one can show that $||x||_p$ is a norm for all $p \ge 1$. The important cases of p = 2 and p = 1 correspond to the penalty for ridge regression and the lasso, respectively.

2. [6 points] For any $x \in \mathbb{R}^n$, define the following norms: $||x||_1 = \sum_{i=1}^n |x_i|$, $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$, $||x||_{\infty} := \lim_{p \to \infty} ||x||_p = \max_{i=1,...,n} |x_i|$. Show that $||x||_{\infty} \le ||x||_1$.

3. [3 points] A set $A \subseteq \mathbb{R}^n$ is convex if $\lambda x + (1 - \lambda)y \in A$ for all $x, y \in A$ and $\lambda \in [0, 1]$.

For each of the grey-shaded sets above (I-III), state whether each one is convex, or state why it is not convex using any of the points a, b, c, d in your answer.

4. [4 points] We say a function $f: \mathbb{R}^d \to \mathbb{R}$ is convex on a set A if $f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$ for all $x, y \in A$ and $\lambda \in [0, 1]$.

For each of the grey-colored functions below (I-III), state whether each one is convex on the given interval or state why not with a counterexample using any of the points a, b, c, d in your answer.

- (a) Function in panel I on [a, c]
- (b) Function in panel II on [a, c]
- (c) Function in panel III on [a, d]
- (d) Function in panel III on [c, d]

5. Use just the definitions above and let $\|\cdot\|$ be a norm.

- (a) [3 points] Show that f(x) = ||x|| is a convex function.
- (b) [3 points] Show that $\{x \in \mathbb{R}^n : ||x|| \le 1\}$ is a convex set.

(c) [2 points] Draw a picture of the set $\{(x_1, x_2) : g(x_1, x_2) \le 4\}$ where $g(x_1, x_2) = (|x_1|^{1/2} + |x_2|^{1/2})^2$. (This is the function considered in 1b above specialized to n = 2.) We know g is not a norm. Is the defined set convex? Why not?

Context: It is a fact that a function f defined over a set $A \subseteq \mathbb{R}^n$ is convex if and only if the set $\{(x, z) \in \mathbb{R}^{n+1} : z \ge f(x), x \in A\}$ is convex. Draw a picture of this for yourself to be sure you understand it.

- 6. For i = 1, ..., n let $\ell_i(w)$ be convex functions over $w \in \mathbb{R}^d$ (e.g., $\ell_i(w) = (y_i w^\top x_i)^2$), $\|\cdot\|$ is any norm, and $\lambda > 0$.
- (a) [3 points] Show that

$$\sum_{i=1}^{n} \ell_i(w) + \lambda ||w||$$

is convex over $w \in \mathbb{R}^d$ (Hint: Show that if f, g are convex functions, then f(x) + g(x) is also convex.)

(b) [1 points] Explain in one sentence why we prefer to use loss functions and regularized loss functions that are convex.

Programming: Lasso [40 points]

Given $\lambda > 0$ and data $(x_1, y_1), \dots, (x_n, y_n)$, the Lasso is the problem of solving

$$\arg\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \sum_{i=1}^n (x_i^T w + b - y_i)^2 + \lambda \sum_{j=1}^d |w_j|$$
 (1)

 λ is a regularization tuning parameter. For the programming part of this homework, you are required to implement the coordinate descent method of Algorithm 1 that can solve the Lasso problem.

You may use common computing packages (such as NumPy or SciPy), but do not use an existing Lasso solver (e.g., of Sci-Kit Learn).

Before you get started, here are some hints that you may find helpful:

- For loops can be slow whereas vector/matrix computation in Numpy is very optimized, exploit this as much as possible.
- The psuedocode provided has many opportunities to speed up computation by precomputing quantities like a_k before the for loop. These small changes can speed things up considerably.
- As a sanity check, ensure the objective value is nonincreasing with each step.

Algorithm 1: Coordinate Descent Algorithm for Lasso

```
 \begin{aligned} & \textbf{while } \textit{not converged } \textbf{do} \\ & b \leftarrow \frac{1}{n} \sum_{i=1}^{n} \left( y_i - \sum_{j=1}^{d} w_j x_{i,j} \right) \\ & \textbf{for } k \in \{1, 2, \cdots d\} \textbf{ do} \\ & a_k \leftarrow 2 \sum_{i=1}^{n} x_{i,k}^2 \\ & c_k \leftarrow 2 \sum_{i=1}^{n} x_{i,k} \left( y_i - (b + \sum_{j \neq k} w_j x_{i,j}) \right) \\ & k \leftarrow \left\{ \begin{array}{ll} (c_k + \lambda)/a_k & c_k < -\lambda \\ 0 & c_k \in [-\lambda, \lambda] \\ (c_k - \lambda)/a_k & c_k > \lambda \end{array} \right. \\ & \textbf{end} \end{aligned}
```

- It is up to you to decide on a suitable stopping condition. A common criteria is to stop when no element of w changes by more than some small δ during an iteration. If you need your algorithm to run faster, an easy place to start is to loosen this condition.
- You will need to solve the Lasso on the same dataset for many values of λ . This is called a regularization path. One way to do this efficiently is to start at a large λ , and then for each consecutive solution, initialize the algorithm with the previous solution, decreasing λ by a constant ratio (e.g., by a factor of 2) until finished.
- The smallest value of λ for which the solution \widehat{w} is entirely zero is given by

$$\lambda_{max} = \max_{k=1,\dots,d} 2 \left| \sum_{i=1}^{n} x_{i,k} \left(y_i - \left(\frac{1}{n} \sum_{j=1}^{n} y_j \right) \right) \right|$$

This is helpful for choosing the first λ in a regularization path.

7. We will first try out your solver with some synthetic data. A benefit of the Lasso is that if we believe many features are irrelevant for predicting y, the Lasso can be used to enforce a sparse solution, effectively differentiating between the relevant and irrelevant features. Suppose that $x \in \mathbb{R}^d$, $y \in \mathbb{R}$, k < d, and pairs of data (x_i, y_i) for $i = 1, \ldots, n$ are generated independently according to the model $y_i = w^T x_i + \epsilon_i$ where

$$w_j = \begin{cases} j/k & \text{if } j \in \{1, \dots, k\} \\ 0 & \text{otherwise} \end{cases}$$

where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ is some Gaussian noise (in the model above b = 0). Note that since k < d, the features k + 1 through d are unnecessary (and potentially even harmful) for predicting y.

With this model in mind, let n = 500, d = 1000, k = 100, and $\sigma = 1$. Generate some data by choosing $x_i \in \mathbb{R}^d$, where each component is drawn from a $\mathcal{N}(0,1)$ distribution and y_i generated as specified above.

- [10 points] With your synthetic data, solve multiple Lasso problems on a regularization path, starting at λ_{max} where 0 features are selected and decreasing λ by a constant ratio (e.g., 1.5) until nearly all the features are chosen. In plot 1, plot the number of non-zeros as a function of λ on the x-axis (Tip: use plt.xscale('log')).
- [10 points] For each value of λ tried, record values for false discovery rate (FDR) (number of incorrect nonzeros in \widehat{w} /total number of nonzeros in \widehat{w}) and true positive rate (TPR) (number of correct nonzeros in \widehat{w}/k). In plot 2, plot these values with the x-axis as FDR, and the y-axis as TPR and note that in an ideal situation we would have an (FDR,TPR) pair in the upper left corner, but that can always trivially achieve (0,0) and $(\frac{d-k}{d},1)$

Comment on the effect of λ in these two plots.

8. We'll now put the Lasso to work on some real data. Attached to this homework are the Crime and Communities training data set "crime-train.txt" and the test data set "crime-test.txt". Store your data in your working directory and read in the files with:

```
import pandas as pd
df_train = pd.read_table("crime-train.txt")
df_test = pd.read_table("crime-test.txt")
```

This stores the data as Pandas DataFrame objects. DataFrames are similar to Numpy arrays but more flexible; unlike Numpy arrays, they store row and column indices along with the values of the data. Each column of a DataFrame can also, in principle, store data of a different type. For this assignment, however, all data are floats. Here are a few commands that will get you working with Pandas for this assignment:

```
df.head()  # Print the first few lines of DataFrame df.
df.index  # Get the row indices for df.
```

```
df.columns  # Get the column indices.
df[''foo''']  # Return the column named ''foo'''.
df.drop(''foo'', axis = 1)  # Return all columns except ''foo''.
df.values  # Return the values as a Numpy array.
df[''foo'''].values  # Grab column foo and convert to Numpy array.
df.iloc[:3,:3]  # Use numerical indices (like Numpy) to get 3 rows and cols.
```

The data consist of local crime statistics for 1,994 US communities. The response y is the crime rate. The name of the response variable is ViolentCrimesPerPop, and it is held in the first column of df_train and df_test. There are 95 features. These features include possibly relevant variables such as the size of the police force or the percentage of children that graduate high school. The data have been split for you into a training and test set with 1,595 and 399 entries, respectively¹.

We'd like to use this training set to fit a model which can predict the crime rate in new communities and evaluate model performance on the test set. As there are a considerable number of input variables, overfitting is a serious issue. In order to avoid this, use the coordinate descent LASSO algorithm you just implemented in the previous problem.

Begin by running the LASSO solver with $\lambda = \lambda_{\text{max}}$ defined above. For the initial weights, just use 0. Then, cut λ down by a factor of 2 and run again, but this time pass in the values of \hat{w} from your $\lambda = \lambda_{\text{max}}$ solution as your initial weights. This is faster than initializing with 0 weights each time. Continue the process of cutting λ by a factor of 2 until the smallest value of λ is less than 0.01. For all plots use a log-scale for the λ dimension (Tip: use plt.xscale('log')).

- (a) [4 points] Plot the number of nonzeros of each solution versus λ .
- (b) [4 points] Plot the regularization paths (in one plot) for the coefficients for input variables agePct12t29, pctWSocSec, pctUrban, agePct65up, and householdsize.
- (c) [4 points] On one plot, plot the squared error on the training and test data versus λ .
- (d) [4 points] Sometimes a larger value of λ performs nearly as well as a smaller value, but a larger value will select fewer variables and perhaps be more interpretable. Inspect the weights (on features) for $\lambda=30$. Which feature variable had the largest (most positive) Lasso coefficient? What about the most negative? Discuss briefly. A description of the variables in the data set can be found here: http://archive.ics.uci.edu/ml/machine-learning-databases/communities/communities.names.
- (e) [4 points] Suppose there was a large negative weight on agePct65up and upon seeing this result, a politician suggests policies that encourage people over the age of 65 to move to high crime areas in an effort to reduce crime. What is the (statistical) flaw in this line of reasoning? (Hint: fire trucks are often seen around burning buildings, do fire trucks cause fire?)

Programming: Binary Logistic Regression [30 points]

9. Let us again consider the MNIST dataset, but now just binary classification, specifically, recognizing if a digit is a 2 or 7. Here, let Y=1 for all the 7's digits in the dataset, and use Y=-1 for 2. We will use regularized logistic regression. Given a binary classification dataset $\{(x_i,y_i)\}_{i=1}^n$ for $x_i \in \mathbb{R}^d$ and $y_i \in \{-1,1\}$ we showed in class that the regularized negative log likelihood objective function can be written as

$$J(w,b) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i(b + x_i^T w))) + \lambda ||w||_2^2$$

Note that the offset term b is not regularized. For all experiments, use $\lambda = 10^{-1}$. Let $\mu_i(w, b) = \frac{1}{1 + \exp(-u_i(b + x^T w))}$

¹The features have been standardized to have mean 0 and variance 1.

- (a) [8 points] Derive the gradients $\nabla_w J(w,b)$, $\nabla_b J(w,b)$ and give your answers in terms of $\mu_i(w,b)$ (your answers should not contain exponentials).
- (b) [8 points] Implement gradient descent with an initial iterate of all zeros. Try several values of step sizes to find one that appears to make convergence on the training set as fast as possible. Run until you feel you are near to convergence.
 - (i) For both the training set and the test, plot J(w, b) as a function of the iteration number (and show both curves on the same plot).
 - (ii) For both the training set and the test, classify the points according to the rule $sign(b + x_i^T w)$ and plot the misclassification error as a function of the iteration number (and show both curves on the same plot).

Note that you are only optimizing on the training set. The J(w,b) and misclassification error plots should be on separate plots.

- (c) [7 points] Repeat (b) using stochastic gradient descent with a batch size of 1. Note, the expected gradient with respect to the random selection should be equal to the gradient found in part (a). Take careful note of how to scale the regularizer.
- (d) [7 points] Repeat (b) using stochastic gradient descent with batch size of 100. That is, instead of approximating the gradient with a single example, use 100 samples (i.e., a mini-batch). Note, the expected gradient with respect to the random selection should be equal to the gradient found in part (a).