Gabarito

Questão 1. ______/ 4 pts Considere os vetores $\vec{v}_1 = (1, 1, -1)$ e $\vec{v}_2 = (3, x, 1)$.

- (a) [0,5 pts] Determine x para que \vec{v}_1 e \vec{v}_2 sejam ortogonais.
- (b) [0,5 pts] Determine um vetor \vec{v}_3 que seja ortogonal a \vec{v}_1 e \vec{v}_2 simultaneamente.
- (c) [1 pt] Calcule $\|\vec{v}_1 \times \vec{v}_2\|$. O que este valor representa geometricamente?
- (d) [1 pt] Calcule o volume do tetraedro formado pelos vetores $\vec{v}_1, \vec{v}_2 \in \vec{v}_3$.
- (e) [1 pt] Determine a equação do plano que é ortogonal a \vec{v}_3 e passe pelo ponto $P=(1,\ 1,\ 0)$

Solução:

(a)

$$\vec{v}_1 \cdot \vec{v}_2 = 0 \Rightarrow x + 2 = 0 \Rightarrow x = -2.$$

(b)

$$\vec{v}_3 = \vec{v}_1 \times \vec{v}_2 = (-1, -4, -5)$$
.

(c)

$$\|\vec{v}_1 \times \vec{v}_2\| = \|\vec{v}_3\| = \sqrt{(-1)^2 + (-4)^2 + (-4)^2} = \sqrt{42}.$$

Geometricamente, $\sqrt{42}$ é o valor da área do paralelogramo cujas arestas são formados por representantes do vetores \vec{v}_1 e \vec{v}_2 .

(d)

$$V = \frac{1}{6} |[\vec{v}_1, \vec{v}_2, \vec{v}_3]| = \frac{1}{6} \left| \det \begin{bmatrix} 1 & 1 & -1 \\ 3 & -2 & 1 \\ -1 & -4 & -5 \end{bmatrix} \right| = 7$$

(e) Do item anterior, temos que a equação do plano é:

$$d - x - 4y - 5z = 0.$$

Substituindo-se P = (1, 1, 0) na equação do plano, temos:

$$d - 5 = 0 \Rightarrow d = 5.$$

Logo, a equação do plano é:

$$-x - 4y - 5z + 5 = 0.$$

Universidade Federal Fluminense Departamento de Ciências da Natureza Campus de Rio das Ostras

Prova de GAAL 12/11/2024 - 2024-2 Turma K1

Professor Reginaldo Demarque

Determine a solução geral do sistema linear

$$\begin{cases} x_1 + 2x_2 + x_3 + x_5 = 1\\ 2x_1 + 2x_2 + 2x_3 + x_4 + 6x_5 = 0\\ x_1 + 3x_2 + x_3 + x_4 + 2x_5 = 1 \end{cases}$$

Solução: Vamos escalonar o sistema usando o método de Gauss-Jordan:

$$\begin{bmatrix} 1 & 2 & 1 & 0 & 1 & | & 1 \\ 2 & 2 & 2 & 1 & 6 & | & 0 \\ 1 & 3 & 1 & 1 & 2 & | & 1 \end{bmatrix} \quad L_2 \to L_2 - 2L_1 \quad \begin{bmatrix} 1 & 2 & 1 & 0 & 1 & | & 1 \\ 0 & -2 & 0 & 1 & 4 & | & -2 \\ 0 & 1 & 0 & 1 & 1 & | & 0 \end{bmatrix} L_2 \leftrightarrow L_3$$

$$\begin{bmatrix} 1 & 2 & 1 & 0 & 1 & | & 1 \\ 0 & 1 & 0 & 1 & 1 & | & 0 \\ 0 & -2 & 0 & 1 & 4 & | & -2 \end{bmatrix} \quad L_3 \to L_3 + 2L_1 \quad \begin{bmatrix} 1 & 2 & 1 & 0 & 1 & | & 1 \\ 0 & 1 & 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & 3 & 6 & | & -2 \end{bmatrix} \quad L_3 \to -\frac{1}{3}L_3$$

$$\begin{bmatrix} 1 & 2 & 1 & 0 & 1 & | & 1 \\ 0 & 1 & 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & 1 & 2 & | & -\frac{2}{3} \end{bmatrix} \quad L_2 \to L_2 - L_3 \quad \begin{bmatrix} 1 & 2 & 1 & 0 & 1 & | & 1 \\ 0 & 1 & 0 & 0 & -1 & | & \frac{2}{3} \\ 0 & 0 & 0 & 1 & 2 & | & -\frac{2}{3} \end{bmatrix} \quad L_1 \to L_1 - 2L_2$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 3 & | & -\frac{1}{3} \\
0 & 1 & 0 & 0 & -1 & | & \frac{2}{3} \\
0 & 0 & 0 & 1 & 2 & | & -\frac{2}{3}
\end{bmatrix}$$

Com isso, o sistema inicial é equivalente ao sistema:

$$\begin{cases} x_1 + x_3 + 3x_5 = 1 \\ x_2 - x_5 = 0 \\ x_4 + 2x_5 = -\frac{2}{3} \end{cases}$$

donde, fazendo $x_3 = \alpha$ e $x_5 = \beta$, concluimos que a **solução geral** do sistema é:

$$S = \left\{ (-\alpha - 3\beta + 1, \beta, \alpha, -2\beta - \frac{2}{3}, \beta); \ \alpha, \beta \in \mathbb{R} \right\}.$$

Universidade Federal Fluminense Departamento de Ciências da Natureza Campus de Rio das Ostras

Prova de GAAL 12/11/2024 - 2024-2 Turma K1

Professor Reginaldo Demarque

Solução: Um ponto da reta é da forma $(2t+1,\ t+1,\ -t)$. Substituindo-o na equação do plano, temos

$$1 - 2t = 0 \Rightarrow t = \frac{1}{2}.$$

Substituindo este valor na equação paramétrica da reta, temos que o ponto de interseção é:

$$P = \left(2, \ \frac{3}{2}, \ -\frac{1}{2}\right).$$

