Exercise sheet 4

Set theory and Logic, MTH303

- 1. Prove (from the axioms) the symmetry, reflexivity, and transitivity of = in first order logic.
- 2. Let α be a well formed formula, and assume that $\alpha \vdash \alpha'$, then prove that $\forall x \alpha \vdash \forall x \alpha'$.
- 3. Let α and α' be well formed formulae, t a term, and x a variable. Choose a variable z that does not occur in α' , t, or x. Prove that $\forall y\alpha \vdash \forall z(\alpha')_z^y$
- 4. Let Γ denote a consistent set of well formed formulae. Prove that $\Gamma \cup \{\neg \forall x\alpha \to \neg \alpha_c^x\}$ is consistent. Extent the proof to the union of Γ with countably many well formed formulae of the form $\neg \forall x\alpha \to \neg \alpha_c^x$.
- 5. Prove that to show that $\Gamma \vDash \alpha$ implies $\Gamma \vdash \alpha$ is equivalent to showing that any consistent set of well formed formulae is satisfiable.
- 6. Let x_1, x_2, \ldots denote variables in a first order language, then will the set $\{\forall x_1 Px_1, Px_2, Px_3, \ldots\}$ be satisfiable and / or consistent?