£5; solving LP problems with Simplex Earice 5: maximize 2 = 20, +222 -x1+x2 < 2 subject to $\infty, \xi 6$ & The Simplex Tableau: 1 x, x S 1 t 1 U 1 5 2 1 -1 -2 0 0 0 -1 1 100 t 0 1 2 0 9 0 8 1 0 0 0 1 2 after putting it in this form:
-bi, -2xx+z=0
-xx+x+S=2 x, + 2x2 + 2 = 8 20, + U= 6 We choose the most negative coefficient in the objective row, here it is $x_2 = -2$. · We divide by the positive coefficients in the entering variable's(x2) collimm to find the pivot row. · livot : turn the pivot column into a unit column e Repeat the pivot until there are no more negative solficers in the first row for the most optimal Doluhon

	_ Z_ 1	,	9CZ	9	t		b 40-	R, 12R
Z X 2	7 0	-3	1	1	6	0	2	R3-2R
t	0 0	3	0	0	0	1 6		3 CKS
	, Z	20,	Tz O	Δ	t	V	6	R, +3R,
2 2 2	1	0	1	-3	7	0	10/3	Rz+Rs
», V	0	0 4	0	2 3	- <u>1</u> - <u>1</u> 3	1	14	R ₅ -R ₅
· Th				n boun				
Ecen			; ec,	= 4 3) (=			
			ize	Z = 3x	C1+Z2	ar 1		
dubje		0	x, - -x, +	1x27,4 1x27,4	4			8.
				11×2	70			

the standard form: 3x1-x2+2=0/max 3x1+xc, x, +x2 - 0=4 - x, +x2 +t=4 +x, -2x2+U=4 Ausailiany problem: max z =-R, (=> z+R, =0 2c, +2c, -5+R,=4 -x, +x, +6=4 x, -2x2 + U=4 Z x, x s t U R, b 21000001 R, 0 11 1-1001 60-110100 U 0 1-20010 2 2, x s & v R, b 210000010 2,011-10019 t 0 0 2 -1 1 0 1 8 v 0 0 -3 1 6 1 1 0

