

Informe Excel

Parcial III

Nombre: Ortiz Huilcapi Juan Andres

NRC:13899

Fecha de Entrega:

25/08/2024

Introducción

En este informe se documentarán los procedimientos y resultados obtenidos en dos análisis estadísticos realizados utilizando Microsoft Excel: la prueba de Wilcoxon para dos muestras relacionadas y el cálculo del coeficiente de correlación de Spearman. Estos métodos se aplicaron para evaluar la significancia de las diferencias entre dos grupos y la relación entre dos variables ordinales, respectivamente. A continuación, se detallan los pasos seguidos en Excel para cada análisis, así como las conclusiones obtenidas.

1. Prueba de Wilcoxon para Dos Muestras Relacionadas

1.1. Introducción a la Prueba de Wilcoxon

La prueba de Wilcoxon para dos muestras relacionadas es una prueba no paramétrica utilizada para comparar dos muestras dependientes. Es una alternativa a la prueba t de muestras relacionadas cuando no se puede asumir la normalidad de los datos. Este método es especialmente útil cuando los datos son ordinales o no cumplen con los supuestos de normalidad.

1.2. Pasos Realizados en Excel

Paso 1: Creación de la Tabla de Datos

Primero, se introdujeron los datos correspondientes a las dos muestras relacionadas en una tabla de Excel. Cada columna representaba una muestra y cada fila un par de observaciones emparejadas.

29		$: \times \checkmark f$	x ∨ H0 se re	chaza, si hay d	iferencia entre	el conocimien	to de los benef	icios de helado	s polito
	Α	В	С	D	Е	F	G	Н	1
		Wilcoxon							
		Columna1 🕶	Antes	Despues 🔽	d 🔻	d <u> </u>	Rango 🔽	R+	R-
		1	12	20	-8	8	1,5		1,5
		2	50	20	30	30	4	4	
		3	80	1	79	79	11	11	
		4	20	70	-50	50	8		8
		5	1	30	-29	29	3		3
		6	0	40	-40	40	6		6
		7	70	0	70	70	9	9	
		8	5	80	-75	75	10		10
		9	10	50	-40	40	6		6
		10	40	32	8	8	1,5	1,5	
		11	25	65	-40	40	6		6
		Σ					66	25,5	40,5

=JERARQUIA.MEDIA(F12;\$F\$4:\$F\$14;1)

Paso 2: Formulación de Hipótesis

Se formularon las siguientes hipótesis:

- **Hipótesis Nula (H₀):** No hay diferencias significativas entre las dos muestras relacionadas.
- **Hipótesis Alternativa (H₁):** Existen diferencias significativas entre las dos muestras relacionadas.

Paso 3: Cálculo de las Diferencias

A continuación, se calcularon las diferencias entre los pares de datos en una columna adicional. Para cada par, se restó el valor de la segunda muestra del valor correspondiente en la primera muestra.

Paso 4: Obtención del Valor Crítico T

Con las diferencias calculadas, se utilizó Excel para obtener el valor absoluto de estas diferencias y luego se las ordenó. Se asignaron rangos a estas diferencias absolutas y se sumaron los rangos correspondientes a las diferencias positivas y negativas por separado. Finalmente, se calculó el estadístico T como el menor de las dos sumas de rangos.

Paso 5: Comparación con el Valor Crítico

El valor T obtenido se comparó con el valor crítico de Wilcoxon, correspondiente al tamaño de la muestra y al nivel de significancia seleccionado (normalmente 0.05). Este valor crítico se obtuvo de tablas estándar de Wilcoxon o a través de funciones de Excel.

Paso 6: Decisión sobre la Hipótesis

• Si el valor T calculado es menor que el valor crítico, se rechaza la hipótesis nula, concluyendo que existen diferencias significativas entre las muestras.

 Si el valor T es mayor o igual al valor crítico, no se rechaza la hipótesis nula, indicando que no hay suficiente evidencia para afirmar que existen diferencias significativas.

Resultado:

En el análisis realizado, si hay diferencia entre el conocimiento de los beneficios de helados polito.

2. Coeficiente de Correlación de Spearman

2.1. Introducción al Coeficiente de Correlación de Spearman

El coeficiente de correlación de Spearman es una medida no paramétrica de la asociación entre dos variables ordinales. A diferencia del coeficiente de correlación de Pearson, no requiere que los datos sean normalmente distribuidos y es adecuado para datos ordinales o cuando las relaciones entre variables no son lineales.

	S					
		-				
Columna1 💌	Edad x	Conocimie -	rango x 💌	rango y 🔻	d 🔻	d^2 ▼
1	2:	3 12	11	3	8	64
2	2	L 50	6,5	9	-2,5	6,25
3	2	08	4,5	11	-6,5	42,25
4	. 2	20	4,5	6	-1,5	2,25
5	1	18	1,5	5	-3,5	12,25
6	2:	2 10	9	1,5	7,5	56,25
7	2	L 70	6,5	10	-3,5	12,25
8	2:	2 15	9	4	5	25
9	1	10	3	1,5	1,5	2,25
10	1	3 40	1,5	8	-6,5	42,25
11	2:	2 25	9	7	2	4
Σ					0	269

2.2. Pasos Realizados en Excel

Paso 1: Creación de la Tabla de Datos

Se introdujeron los datos de las dos variables en columnas separadas en Excel. Cada fila representaba un par de observaciones.

Paso 2: Formulación de Hipótesis

Se formularon las siguientes hipótesis:

- Hipótesis Nula (H₀): No existe correlación entre las dos variables.
- **Hipótesis Alternativa (H1):** Existe una correlación significativa entre las dos variables.

Paso 3: Asignación de Rangos

Para calcular el coeficiente de correlación de Spearman, se ordenaron los datos de cada variable y se les asignaron rangos. En caso de empates, se asignó el promedio de los rangos correspondientes.

```
=JERARQUIA.MEDIA(C4;$C$4:$C$14;1)
```

Paso 4: Cálculo del Coeficiente de Correlación

Se utilizó la siguiente fórmula para calcular el coeficiente de correlación de Spearman

Paso 5: Interpretación del Resultado

El valor del coeficiente rsr_srs oscila entre -1 y 1:

- Valores cercanos a 1 indican una correlación positiva fuerte.
- Valores cercanos a -1 indican una correlación negativa fuerte.
- Valores cercanos a 0 indican poca o ninguna correlación.

	rs=	-0,24539404				
Un coe	ficiente de correlación de S	pearman de -0.22 indic	una relación dé	bil y negativa ent	re las dos variables	
1)						
	H0:	p = 0				
	H1:	p ≠ 0				
2)						
	α =	0,05				
	gl=n-2=11-2	9				
	t=	±2,262				
3)						
	t=	-0,75940204				
4)						
	H0 se acepta si -2,262≤t≤2,262					
5)						
	H0 se acepta el coe	eficiente de correlacion (e Spearman es ig	uala 0		

Resultado:

Un coeficiente de correlación de Spearman de -0.22 indica una relación débil y negativa entre las dos variables

Conclusión

En resumen, a través de los análisis realizados con Excel, se llevaron a cabo una prueba de Wilcoxon y el cálculo del coeficiente de correlación de Spearman. Ambos métodos no paramétricos permitieron evaluar la significancia de las diferencias entre dos

muestras relacionadas y la relación entre dos variables ordinales, respectivamente. Los resultados obtenidos brindan una base sólida para inferir sobre las características de los datos y sus relaciones, proporcionando valiosos datos para la toma de decisiones.

Este informe documenta de manera exhaustiva los pasos seguidos y las conclusiones derivadas, asegurando que el análisis sea replicable y comprensible para futuros estudios.