Stat 400. Problem Set 3. Due 09/17/24

Random Variables

Problem 1. Suppose we toss a biased coin with P(H) = 0.8 four times.

- (a) Write out the sample space S for this experiment.
- (b) Suppose $X(\omega)$ = the number of heads in ω .
 - (a) Calculate χ .
 - (b) For each $x \in \chi$, write out the set $\{X = x\}$.
 - (c) Calculate the cumulative distribution function of X.
 - (d) Calculate the probability mass function of X.
- (c) Suppose $X(\omega)$ = the number of tails in ω .
 - (a) Calculate χ .
 - (b) For each $x \in \chi$, write out the set $\{X = x\}$.
 - (c) Calculate the cumulative distribution function of X.
 - (d) Calculate the probability mass function of X.
- (d) Suppose $X(\omega)$ = are there more heads than tails in ω ?
 - (a) Calculate χ .
 - (b) For each $x \in \chi$, write out the set $\{X = x\}$.
 - (c) Calculate the cumulative distribution function of X.
 - (d) Calculate the probability mass function of X.

Problem 2. Suppose we roll a fair die twice.

- (a) Write out the sample space S for this experiment.
- (b) Suppose $X(\omega)$ = the sum of the numbers in ω .
 - (a) Calculate χ .
 - (b) For each $x \in \chi$, write out the set $\{X = x\}$.
 - (c) Calculate the cumulative distribution function of X.
 - (d) Calculate the probability mass function of X.
- (c) Suppose $X(\omega)$ = the maximum of the numbers in ω .
 - (a) Calculate χ .
 - (b) For each $x \in \chi$, write out the set $\{X = x\}$.
 - (c) Calculate the cumulative distribution function of X.
 - (d) Calculate the probability mass function of X.
- (d) Suppose $X(\omega)$ = the first number minus the second number in ω .
 - (a) Calculate χ .
 - (b) For each $x \in \chi$, write out the set $\{X = x\}$.
 - (c) Calculate the cumulative distribution function of X.
 - (d) Calculate the probability mass function of X.

Problem 3. An appliance store receives a shipment of 30 ovens, 5 of which are defective. The store manager selects 4 ovens at random, without replacement, and tests to see if they are defective. Let X be the number of defectives found. Calculate the probability mass function of X.

Problem 4. Suppose we toss a biased coin with P(H) = 0.8 indefinitely (infinitely many times).

- (1) Let X be the random variable that counts the number of tosses until the first H.
 - (a) Calculate the probability mass function of X.
 - (b) Verify that the function you calculated is indeed a pmf (check each condition).
 - (c) Calculate the expected value and variance of X.
- (2) Let's say you win 3^n dollars if the first H shows up on the n^{th} toss. Let $X(\omega)$ be your winnings for the run of the game ω .
 - (a) Calculate the probability mass function of X.
 - (b) Calculate E(X) (your expected earnings).