ML2870 Data Sheet

Version 1.0.1 Revised on 29 January 2003

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 1/92

CONTENTS

General Description	
FEATURES	5
Block diagram	7
Block Diagram [Logic Part]	7
Block Diagram [Analog Part]	
Pin Layout	
48-PIN QFN [PACKAGE CODE: P-VQFN48-0707-0.50]	
62-PINS W-CSP [P-VFLGA62-4.44X4.44-0.50-W]	
Pin Description	
•	
Description of Common Mode Description of Analog Pins	
Parallel Access Mode	
Serial Access Mode	
ABSOLUTE MAXIMUM RATINGS	
RECOMMENDED OPERATING RANGES	
ELECTRICAL CHARACTERISTICS	
DC CHARACTERISTICS	
AC CharacteristicsReset Timing	
Bus Interface at Write Cycle	
Bus Interface at Read Cycle	
Serial Interface	
ANALOG CHARACTERISTICS	20
Timing Chart	21
Operation of Power On	21
Sequencer for raising VDD	
Bus Interface	
Data Read Timing	
Serial Interface	
Data Write Timing1	
Data Write Timing to FIFO1	
Data Read Timing1	
Data Write Timing to FIFO2	
Data Read Timing2	
Timing chart of PWM output	
Supplying clock of small amplitude	
Supplying Clock of digital signal	
Start Playback	
End of Playback and playback again	31
Power down sequence during Playback	
Software reset timing	
Register Clear timing	
Power down sequence	
Power up sequence (Reset Power Down)	
Timing chart of analog power down	
Power supply	
Timing Chart For Raising Power Supply	
Equivalent Circuit	37

File Name: DS2870_010001_E.doc

Rev: 1.0.1

Absolute value of CLOCK PIN impedance	38
Application Circuit example (Bus Interface)	39
Application Circuit example (Serial Interface)	39
Application Circuit example (Serial Interface)	40
Functional Description of THE REGISTERS	41
Register Map 1	
Register Map 2	
Register Map 3	
Difference Between Hardware Reset and Software Reset	
Detailed Description of the Registers	
ADPCM FIFO and Accompaniment Register (Read : inhibit / Write : \$01h)	
Score FIFO (Read: inhibit / Write: \$03h)	
FIFO status (Read \$06h : / Write : inhibit)	
CLR Register (Read \$08h : / Write : \$09h)	
CLOCK (Read \$10h : / Write : \$11h)	
Pitch control (Read \$12h and :/ Write: \$13h)	
Tempo Control (Read \$14h : / Write : \$15h)	
Power Down (Read \$16h: / Write: \$17h)	
Master Clock Tuning (Read \$18h : / Write : \$19h)	
MODE (Read \$1Ah : / Write : \$1Bh)	
Soft Reset (Read \$1Eh: / Write: \$1Fh)	55
ADPCM Interrupt L (Read \$20h : / Write : \$21h)	
ADPCM Interrupt H (Read \$22h : / Write : \$23h)	
Score Interrupt (Read \$24h : / Write : \$25h)	
Event Interrupt (Read \$26h : / Write : \$27h)	
Interrupt Enable (Read \$28h : / Write : \$29h)	
Request (Read \$2Ah : / Write : \$2Bh)	
Status (Read \$2Ch : / Write : inhibit)	
MUSIC START (Read \$30h : / Write : \$31h)	
ADPCM START (Read \$32h : / Write : \$33h)	
Fsamp (Read \$34h : / Write : \$35h)	
Volume (ADPCM) (Read \$38h : / Write : \$39h)	
Port mode (Read \$40h : / Write : \$41h)	
Port IO (Read \$42h : / Write : \$43h)	
Port (Read \$44h : / Write : \$45h)	
PWM mode (Read \$46h : / Write : \$47h)	
PWMA (Read \$48h : / Write : \$49h)	
PWMB (Read \$4Ah : / Write : \$4Bh)	
PWMC (Read \$4Ch: / Write: \$4Dh)	
PWMD (Read \$4Eh: / Write: \$4Fh)	
Panel (Read \$50h : / Write : \$51h)	69
VIB (Read \$52h : / Write : \$053h)	
Pullup (Read \$54h : / Write : \$55h)	
PWM Output Select Register (Read \$56h : / Write : \$57h)	
Analog Power Down (Read \$66h : / Write : \$67h)	
MIDI Implementation Chart	
Exclusive Format	
Transpose (0xf0, 0x06, 0x5d, 0x0e, 0x08, 0x10, 0xkk, 0xf7)	
Main volume (0xf0, 0x06, 0x5d, 0x0e, 0x08, 0x11, 0xvv, 0xf7)	
Touch correct (0xf0, 0x06, 0x5d, 0x0e, 0x08, 0x13, 0xtt, 0xf7)	
Set tempo message (0xf0, 0x06, 0x5d, 0x0e, 0x08, 0x14, 0xtt1, 0xtt2, 0xf7)	
Parameters change (0xf0, 0x06, 0x5d, 0x0e, 0x08, 0x15, 0xsw, 0xf7)	
DULING ELIEUS (VAIV. VAUV. VAJU. UXUE. UXUO. UXTO. UXCII. UXIII. UXI//	

Wednesday, January 29, 2003

ML2870 SPECIFICATION ver 1.0.1

Oki Electric Industry Co.Ltd.

Relative tempo (0xf0, 0x06, 0x5d, 0x0e, 0x08, 0x19, 0xrr, 0xf7)	83
GM System on (0xf0 0x05 0x7e 0x7f 0x09 0x01 0xf7)	83
Master Expression (0xf0 0x06 0x5d 0x0e 0x08 0x1b ee 0xf7)	83
Master Pan (0xf0 0x06 0x5d 0x0e 0x08 0x1c pp 0xf7)	84
Pile Voice (0xf0 0x06 0x5d 0x0e 0x08 0x7c dco 0x00 0xf7)	84
Tone List	86
	0.4
Revision History	89

File Name: DS2870_010001_E.doc Rev: 1.0.1 Page: 4/92

ML2870 DATA SHEET

16-Tone, 32-Poly Hi-Grade PCM Sound Generator LSI

Version1.0.1, Revised on Wednesday, January 29, 2003

GENERAL DESCRIPTION

ML2870 is a PCM-based hi-grade sound generator LSI, developed specifically for music ringers used in cellular/PHS phones, and plays 16 tones and 32 polyphonies simultaneously. It also has hi-grade 175 polyphonies based on General MIDI system level 1, the standard spec for PCM sound generator.

ML2870 plays standard MIDI file which is standard spec of MIDI file. It is optimum sound generator to connect to the Internet and for BGM on browser.

The on-chip FIFOs and sequencer reduce the CPU power. ML2870 is also embedded 2bit/4bit ADPCM for sound effect and LED driver with brightness-control function. It is easy to build the high quality music ringer subsystem.

FEATURES

- 1) On-chip high-quality GM sound set
- 2) 16 timbre and 32 polyphonies simultaneously
- 3) Ports

Vibrator direct driver - one port

LED direct driver with PWM – four ports

LED direct driver for Front LCD panel - one port

External I/O port (depending on package type)

QFN: 5 ports (P4-0)

W-CSP: 8 ports (P7-0)

- 4) 3 or 4-pin serial interface or 8bit bus interface selectable
- 5) On-chip FIFO buffer memory

1024bit (128byte) FIFO for musical score data

128bit (16byte) FIFO for MIDI messages

4096bit (512byte) FIFO for ADPCM audio synthesis

6) Low power consumption at power-down: Idds = $1 \mu A$ (typ.)

Operating current: 60mA (max.)

- 7) Power Supply: $+2.5 \text{ V} \sim 3.6 \text{ V}$
- 8) Package options

62-pin W-CSP (P-VFLGA62-4.44X4.44 -0.50-W)

48-pin QFN (P-VQFN48-0707-0.50)

9) Operating Temperature: $-20 \sim +85^{\circ}$ C

File Name: DS2870 010001 E.doc

Rev: 1.0.1 Page: 5/92

Oki Electric Industry Co.Ltd.

10) Ordering part number:

62-pin WCSP: ML2870HB Z060 (PbSn, Tape & Reel)

ML2870HB Z03B (Lead Free, Tape & Reel)

48-pin QFN: ML2870GD Z060 (PbSn, Tape & Reel)

ML2870GD (PbSn, Tray)

ML2870GD Z03B (Lead Free, Tape & Reel)

ML2870GD Z03A (Lead Free, Tray)

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 6/92

BLOCK DIAGRAM

BLOCK DIAGRAM [LOGIC PART]

BLOCK DIAGRAM [ANALOG PART]

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 7/92

PIN LAYOUT 48-PIN QFN [PACKAGE CODE: P-VQFN48-0707-0.50]

Top View

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 8/92

62-PINS W-CSP [P-VFLGA62-4.44X4.44-0.50-W]

Bottom View

NC: No connection X: No solid ball

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 9/92

PIN DESCRIPTION

The pin description is separated into parallel, and serial interface mode and functions applying to both.

If you use the parallel interface, please refer to "Description of Common mode", "Description of Analog Pin" and "Parallel Access Mode".

If you use the serial interface, please refer to "Description of Common mode", "Description of Analog Pin "and "Serial Access Mode".

DESCRIPTION OF COMMON MODE

Table 1: Pin description [common to parallel and serial interfaces]

WCSP	QFN	PIN NAME	VDD	I/O	Description		
B2	48	RESET	DVDD	I	Hardware reset signal input pin. An "L" level input to this pin initializes the LSI. After every power-on, a reset must be applied.		
A2	1	IRQ	DVDD	О	Interrupt request pin. Outputs "H" level, when ADPCM FIFO or SCORE FIFO or EVENT FIFO requests next data. Threshold of request can be set for each FIFO individually. When set ISS bit of the INTERRUPT ENABLE register is set to "H", the polarity of the interrupt is inverted.		
C2	2	IFSEL	DVDD	I	IFSEL changes the CPU interface mode. CPU interface assumes bus mode, when "H".CPU interface assumes serial mode, when "L".		
Н5	30	CLOCK	DVDD	I	Master clock input. Accepts frequencies from 2.7MHz to 34MHz Refer to a detailed description in the chapter "Master Clock Frequency".		
В3	3	SYNC	DVDD	0	SYNC PIN outputs a synchronized signal controlled by Oki Original File Format called MCDF. When the SYNC pin is "L", CPU have to work for other function according to data in MCDF file. The function could be to send ADPCM data, display TEXT, and picture (e.g. Karaoke function). SYNC pin must be open, when MCDF format is not used. (SYNC bit in REQUEST register has similar function to SYNC pin)		
D2,E1, E2,F2	43,42, 41,40	PWMA-D	Open drain	0	These are four output channels of LED with open drains. The LED brightness can be controlled by these pins with built-in PWM. Pulse width of PWM can be changed in registers. "L" level turn an LED on.		
F1	39	PANEL	Open	О	Open drain output for an LCD front panel. The LED		

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 10/92

	ı		1		_
			drain		brightness can be controlled by this pin with built-in PWM. "L" level turns front light or backlight for the LCD on.
					Oil.
G2	37	VIB	Open drain	О	Open drain output for a ringing vibrator. The vibration power can be controlled by this pin with built-in PWM. "L" level turns the vibrator on.
H2,E3, F3,G3, H3,E4, F4,G4	*,*,* 35,34, 33,32, 31	P7-0	DVDD	I/O	Two functions are associated. One expands external ports for the CPU. Another is provision of synchronized signals from musical scores.
B1	46	TESTI	DVDD	I	TEST pin. Please connect to GND level.
H8 A1	29 47	PTESTIN1 PTESTIN2	DVDD	I	For testing the WCSP and QFN assembled on print circuit. Details are described in the Application note. Make sure to connect this pin to GND ,when if is not used
H1 A8	36 13	PTESTO1 PTESTO2	DVDD	O	For testing the WCSP and QFN assembled on print circuit. Make sure to keep this pin open, when if is not used.
A3	4	AVDD	-	-	The ANALOG power supply pin. Insert a 0.1 μF or larger by-pass capacitor between the AGND and this pin.
A7	12	AGND	-	-	The ANALOG ground pin.
H7,D1	28 44	DVDD	-	-	The DIGITAL power supply pin. Insert a 0.1 μF or larger by-pass capacitor between the DGND and this pin.
C1,G8	24 45	DGND	-	-	The DIGITAL ground pin.
G7	27	VDDIO	-	-	The IO power supply pin. Insert a 0.1 μF or larger by-pass capacitor between the DGND and this pin.
Н6	*	XTGND	-	-	The OSCILLATION ground pin.
H4	*	XTVDD	-	-	The OSCILLATION power supply pin ,as CLOCK. Insert a 0.1 μF or larger by-pass capacitor between the XTGND and this pin.
G1	38	DrvGND	-	-	Ground pin for the drivers PWM,VIB and PANEL.

File Name: DS2870_010001_E.doc Rev: 1.0.1

DESCRIPTION OF ANALOG PINS

Table 2

WCSP	QFN	PIN NAME	VDD	I/O	Description
В6	10	AOUTL	AVDD	0	This pin is for audio output pin of left side
A6	11	AOUTR	AVDD	O	This pin is for audio output pin of right side
					This pin outputs reference voltage of AOUTL pin.
B5	8	VREFL	AVDD	O	It is necessary to connect 1µF of capacitor between
					this pin and AGND pin.
					This pin outputs reference voltage of AOUTR pin.
A5	9	VREFR	AVDD	O	It is necessary to connect 1µF of capacitor between
					this pin and AGND pin.
A4,B4,	5,6,7	TESTA	AVDD	Ţ	For testing the LSI. Connect this pins to AGND.
C4	3,0,7	120171	TIVDD	-	

PARALLEL ACCESS MODE

Table 3: Description of [parallel] interface related pins

WCSP	QFN	PIN NAME	VDD	I/O	Description
E7,E8, E6,F6, F7,F8, G5,G6	18,19, 20,21, 22,23, 25,26	D7-D0	VDDIO	I/O	Bi-directional data bus. When ILE pin is "H", D7-0 allow input to INDEX for register addresses. When ILE pin is "L", D7-0 allow input and output of register values of internally set indexes.
C7	14	ILE	VDDIO	I	Sets the mode of D7-0 pins to index data when ILE is "H". Data input/output from D7-0 is enabled, when ILE is "L".
D8	17	WR	VDDIO	I	Write pulse input pin. This pin must be set to "L", when index and data is input to D7-0.
D7	16	RD	VDDIO	I	Read pulse input pin. This pin must be set to "L", when data is output from D7-0.
C8	15	CS	VDDIO	I	Write and read pulses are accepted when this pin is "L". "H" prohibits the inputs.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 12/92

SERIAL ACCESS MODE

Table 4: Description of [serial] interface related pins

WCSP	QFN	PIN NAME	VDD	I/O	Description
G6	26	SDIN	VDDIO	I	Serial input for index and data
G5	25	SDOUT	VDDIO	О	8-bit serial data output.
F8	23	SCLK	VDDIO	I	Input of the data transfer clock for the SDIN and SDOUT pins.
C8	15	CS	VDDIO	I	Chip select input. When "L" the SCLK data clock is accepted. The SCLK data clock is prohibited when CS="H".
F7	22	ARQ	VDDIO	О	Outputs "H" when ADPCM FIFO requests next data.
F6	21	SRQ	VDDIO	О	Outputs "H" when SCORE FIFO requests next data.
E6	20	ERQ	VDDIO	О	Outputs "H" when EVENT FIFO requests next data.
E8,E7	19,18	(D6),(D7)	VDDIO	О	Unused pins on GND level.
D7,D8 C7	16,17, 14	$(\overline{RD}),(\overline{WR}),$ (ILE)	VDDIO	I	Unused pins . Please connect to GND level

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 13/92

Oki Electric Industry Co.Ltd.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Supply Voltage	V _{DD}	Ta=25°C	-0.3 - +5.0	V
Input Voltage 1	Vin		-0.3 - V _{DD} +0.3	V
Power Dissipation	Pd	-	140	°C/W
Storage Temperature	Tstg	-	-55 - +125	°C

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Condition	Rating	Unit
Supply Voltage	DV _{DD}	DGND=AGND=0V	2.5 - 3.6	V
Supply Voltage	AV _{DD}	DGND=AGND=0V	DVDD	V
Supply Voltage	Vddio	DGND=AGND=0V	1.65-DVDD	V
		Bus Interface		
Supply Voltage	V _{DDIO}	DGND=AGND=0V	DVDD	V
		Serial Interface		
Supply Voltage	XTV _{DD}	DGND=XTGND=0V	DVDD	V
Operating Temperature	Тор	-	-20 -+85	°C
Master clock frequency	fclk	-	2.7- 34	MHz

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 14/92

Oki Electric Industry Co.Ltd.

ELECTRICAL CHARACTERISTICS DC CHARACTERISTICS

VDDIO=1.65-DVDD, DVDD=AVDD=XTVDD=+2.5V-3.6V, DGND=AGND=XTGND=DrvGND=0V, Ta=-20-+85°C

Parameter	Symbol	Condition	Min.	Typ	Max.	Unit
"H" Input Voltage	VIH	DGND=AGND=0V	VDD x 0.8	-	-	V
"L" Input Voltage	VIL	=	-	-	VDD x 0.2	V
"H" Output Voltage	VOH	IOH=-135μA	VDDx0.8	-	-	V
"L" Output Voltage	VOL	IOL=135μA	-	-	VDDx0.2	V
"H" Input Current	IIH	VIH=VDD	-	-	10	μΑ
"L" Input Current	IIL	VIL=0V	-10	-	-	μΑ
"L" Output Voltage of PWMA-D	VOL2	IOL2=20mA	-	-	0.45	V
"L" Output Voltage of VIB	VOL3	IOL3=150mA	-	-	0.45	V
"L" Output Voltage of PANEL	VOL4	IOL2=100mA	-	-	0.45	V
Input Voltage Range of PWMA-D, PANEL, VIB	-	-	0	-	3.6	V
Master clock voltage in front of an AC coupling capacity to the CLOCK pin	VCLK	AC coupling capacity depends on frequency.	400	-	-	mVp-p
TEST1 pin Pull-Down resistor value	RT1	<u>-</u>	20	-	500	kΩ
P7-0 pin Pull-Up resistor value	RT2	-	20	100	500	kΩ

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 15/92

Parameter	Symbol	Condi	tion	Min.	Тур	Max.	Unit
Operating Current	IDDD	Sound generator		-	22	36	MA
		(Ports no					
		AOUTL/R pi	ins : enable				
		AOUTL/R pi	ns : no load				
Standby Current	IDDS	DUDD AUDD	Ta=-20-+40°C	-	2	15	μΑ
		DVDD=AVDD 3.3V	Ta=+40-+50°C	-	-	30	μΑ
		3.3 1	Ta=+50-+75°C	-	-	130	μΑ
			Ta=+75-+85°C	-	1	230	μΑ
		Ta=-20-+40°C				18	μΑ
		DVDD=AVDD 3.6V	Ta=+40-+50°C			35	μΑ
		3.0 1	Ta=+50-+75°C			190	μΑ
			Ta=+75-+85°C			380	μΑ
Bias Current	IBIAS	-		-	2.5	-	μΑ

NOTE

- *1 Applies to all output pins except for P7-P0 pins
- *2 Applies to P7-P0 pins
- *3 The following figure shows the measurement circuit.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 16/92

AC CHARACTERISTICSRESET TIMING

VDDIO=1.65-DVDD, DVDD=AVDD=XTVD=+2.5V-3.6V, DGND=AGND=XTGND=DrvGND=0V, Ta=-20-+85°C

Parameter	Symbol	Min	Max.	Unit
RESET pulse width	tRST	1	-	us
RESET valid to CSB High	tRSC	1	-	us
CSB valid to RESET High	tINIT	1	-	us

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 17/92

BUS INTERFACE AT WRITE CYCLE

VDDIO=1.65-DVDD, DVDD=AVDD=XTVD=+2.5V-3.6V, DGND=AGND=XTGND=DrvGND=0V, Ta=-20-+85°C

Capacitor load=30pF

Parameter	Symbol	Min	Max.	Unit
ILE valid to Write Enable Low	tIWL	10		ns
ILE valid to Write Enable High	tIWH	10		ns
Write Enable Pulse Width	tWW	25		ns
ILE valid to Chip Select Low	tICL	5		ns
Chip Select Pulse Width	tCC	50		ns
Data Valid to Write Enable Low	tDWL	50		ns
Data Valid to Write Enable High	tDWH	0		ns
Write Enable Low to Chip Select High	tWCH	25		ns
Chip Select to End of Write	tCEW	50		ns

Note: tDWL, tDWH are defined with respect to the moment CSB or WRB become High level.

BUS INTERFACE AT READ CYCLE

VDDIO=1.65-DVDD, DVDD=AVDD=XTVD=+2.5V-3.6V, DGND=AGND=XTGND=DrvGND=0V, Ta=-20-+85°C

Capacitor load=30pF

Parameter	Symbol	Min	Max.	Unit
Read Enable Low to Data Valid	tRLDV	-	85	ns
Chip Enable Low to Data Valid	tCLDV	1	85	ns
Read Enable High to Data Transition	tRHDT	1	85	ns
Chip Enable High to Data Transition	tCHDT	-	85	ns

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 18/92

SERIAL INTERFACE

VDDIO=1.65-DVDD, DVDD=AVDD=XTVD=+2.5V-3.6V, DGND=AGND=XTGND=DrvGND=0V, Ta=-20-+85°C

Parameter	Symbol	Min	Max.	Unit
Chip Select Low to SCLK Low 1	tCLSL1	100	-	ns
Chip Select Low to SCLK Low 2	tCLSL2	50	-	ns
Chip Select Low to SCLK High 1	tCLSH1	100	-	ns
Chip Select Low to SCLK High 2	tCLSH2	50	-	ns
SCLK High Pulse Width	tSH	50	-	ns
SCLK Low Pulse Width	tSL	50	-	ns
SCLK Cycle Time	tSC	100	-	ns
Input Data Valid to SCLK Low1	tIDSL1	30	-	ns
Input Data Valid to SCLK Low2	tIDSL2	30	-	ns
Input Data Valid to SCLK High1	tIDSH1	30	-	ns
Input Data Valid to SCLK High2	tIDSH2	30	-	ns
Chip Select High to SCLK Low 1	tCHSL1	0	-	ns
Chip Select High to SCLK High 2	tCHSH2	0	-	ns
Chip Select High Pulse Width	tCH	50	-	ns
Output Data Valid to SCLK Low 1	tODSL1	-	40	ns
Output Data Valid to SCLK High 2	tODSH2	ı	40	ns
Chip Enable High to Data Transition	tCHDT	-	40	ns
RESET High to Chip Select Low	tRSC	180	-	ns
RESET Pulse Width	tRST	1	-	μs
Initialize Time	tINIT		40	ms

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 19/92

ANALOG CHARACTERISTICS

VDDIO=1.65-DVDD, DVDD=AVDD=XTVD=+2.5V-3.6V, DGND=AGND=XTGND=DrvGND=0V, Ta=-20-+85°C

Parameter	Symbol	Condition	Min.	Тур	Max.	Unit
Output Range of AOUT	VAOUT	VDD=2.5V	-	1.05	-	Vp-p
		VDD=3.0V	1.05	1.17	1.29	
		VDD=3.6V	ı	1.29	-	
Load Impedance of AOUT	RAOUT	-	7	-	-	kΩ
THD of Analog output buffer	THD	VDD=3.0V	-	0.05	-	%
		Freq=1kHz				
		No Load				
Output Voltage of	Vrefo	-	-	0.4xV _{DD}	-	V
VREF						
L and VREFR						
- D	X 7	TIDD 4 OH	40		40	* 7
Potential deference between bias	Vdba	VDD=3.0V	-40	-	40	mV
level and output signal of amplifier.		Ta=+25°C				

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 20/92

TIMING CHART

OPERATION OF POWER ON

Every time the LSI's powered on, at first input "L" level to the \overline{RESET} pin to initialize the ML2870, at the timing shown below. Bringing the \overline{RESET} pin to "H" level causes the LSI to initialize its internal circuit, all registers are set to their default values and the FIFO assumes EMPTY state after this initialization process.

Note that you can start accessing the serial I/F after tINIT have elapsed since bringing the \overline{RESET} pin to "H" level.

Sequencer for raising VDD

Data-Bus status at Power On

Data-Bus become high impedance under such conditions.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 21/92

BUS INTERFACE

DATA Write TimingNote: tDWL, tDWH are defined with respect to the moment CSB or WRB become

High level.

Data Read Timing

(Measurement condition) VOH=0.8*VDDIO,VOL=0.2*VDDIO

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 22/92

SERIAL INTERFACE

Data Write Timing 1

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 23/92

Data Write Timing to FIFO1

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 24/92

Data Read Timing1

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 25/92

Data Write Timing2

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 26/92

Data Write Timing to FIFO2

OKI

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 27/92

Data Read Timing2

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 28/92

Timing chart of PWM output

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 29/92

Oki Electric Industry Co.Ltd.

- *1)During the "tSGINIT", an external CPU can access all the REGISTER in ML2870 except for ST bit and RCLR bit.
- *2) ML2870 needs "tCLOCK1" for stabilizing signal before starting PLL operation.
- *3) When ML2870 is supplied the clock of small amplitude, the value of capacitor for AC coupling determines "tCLOCK1" period.

Capacitor	tCLOCK1 (MAX)
100pF	0.5ms
1000pF	5ms
0.01µF	50ms
0.1µF	500ms

Supplying Clock of digital signal

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 30/92

Start Playback

OKI

End of Playback and playback again

*1) When LSI is in tSTL state, external CPU can access all resister except for ST bit and RCCR bit.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 31/92

Power down sequence during Playback

- *1) Depending on the number of polyphony, tCLKEL1 is different in order to erase all sound naturally.
- *2) Power down current consumption doesn't depend on the level of CLOCK PIN.

Software reset timing

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 32/92

^{*1)} When LSI is in "tSGINITR", external CPU can access to register except for ST bit and RCLR bit.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 33/92

Power down sequence

Power up sequence (Reset Power Down)

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 34/92

*1) $tBIAS(typ) = 2\pi \times Cc \times 300 \times 10^3$

*2) $tVREF1(typ) = 2\pi \times CVREF \times 13.5 \times 10^3$

*3) $tVREF2(typ) = 2\pi \times CVREF \times 31.6 \times 10^3$

File Name: DS2870_010001_E.doc

Rev: 1.0.1

Page: 35/92

POWER SUPPLY

TIMING CHART FOR RAISING POWER SUPPLY

There are four kind of power supply in ML2870: VDDIO,DVDD,XTVDD and AVDD.

VDDIO is to supply only for bus interface. Voltage range is from 1.8V to DVDD.

DVDD is for digital logic part. and XTVDD is only for oscillation part. DVDD and XTVDD are needed to supply by common source. When VDDIO is connected to same voltage as DVDD, or when CPU I/F is used as serial mode, DVDD and VDDIO have to be supplied by same source.

AVDD is for analog part. AVDD is able to separate from DVDD source. Also, the range of voltage is from 2.5V to 3.6V. Take care of timing to power on as showed at the following figure. It will cause Latch-up when the difference of time is longer than 100ms.

[GOOD Example]

A current is supplied to the four VDD pins within 100ms. It is not important an order to power on.

[NG Example]

Do not spend longer than 100ms to power on.

File Name: DS2870 010001 E.doc

Rev: 1.0.1 Page: 36/92

EQUIVALENT CIRCUIT

Following figure shows the equivalent circuit in part of power supply.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 37/92

ABSOLUTE VALUE OF CLOCK PIN IMPEDANCE

Parameter	Symbol	Condition	Min.	Тур	Max.	Unit
D7-0PIN floating capacitance	Cbus	-	-	12	18	pF
CLOCK pin impedance Z	Zclk1	3MHz	6.5	8.8	-	kΩ
(FEED OFF: FEEDbit=0 or		5MHz	4.0	5.3	-	kΩ
during power down)		10MHz	2.0	2.7	-	kΩ
		13MHz	-	2.1	-	kΩ
		20MHz	1.0	1.3	-	kΩ
		30MHz	0.65	0.88	-	kΩ
CLOCK pin impedance Z	Zclk2	3MHz	4.5	5.8	-	kΩ
and during power on		5MHz	2.5	3.5	-	kΩ
		10MHz	1.3	1.7	-	kΩ
		13MHz	-	1.30		kΩ
		20MHz	0.65	0.86	_	kΩ
		30MHz	0.45	0.58	-	kΩ

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 38/92

APPLICATION CIRCUIT EXAMPLE (BUS INTERFACE)

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 39/92

APPLICATION CIRCUIT EXAMPLE (SERIAL INTERFACE)

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 40/92

Oki Electric Industry Co.Ltd.

FUNCTIONAL DESCRIPTION OF THE REGISTERS REGISTER MAP 1

					FIFC) Control	Register	r		
IND	EX	b07	b06	b05	b04	b03	b02	b01	b00	NOTE
R	W	(Initial)								
	\$01h	d07	d06	d05	d04	d03	d02	d01	d00	ADPCM FIFO
		0	0	0	0	0	0	0	0	ACOMP RAM
	\$03h	d07	d06	d05	d04	d03	d02	d01	d00	Score FIFO
		0	0	0	0	0	0	0	0	
	\$05h	d07	d06	d05	d04	d03	d02	d01	d00	Event FIFO
		0	0	0	0	0	0	0	0	
\$06h		1	1	EFULL	SFULL	AFULL	EEMP	SEMP	AEMP	FIFO Status
		-	-	0	0	0	1	1	1	
\$08h	\$09h	-	-	-	-	RCLR		SCLR		CLR
		-	-	-	-	0	0	0	0	
					LSI	Control	Register			
IND	EX	b07	b06	b05	b04	b03	b02	b01	b00	NOTE
R	W	(Initial)								
\$10h	\$11h	PLL2	PLL1	PLL0	CK4	CK3	CK2	CK1	CK0	CLOCK
		0	0	0	0	0	0	0	0	-
\$12h	\$13h	Cent7	Cent6	Cent5	Cent4	Cent3	Cent2	Cent1	Cent0	Pitch Control
		0	0	0	0	0	0	0	0	
\$14h	\$15h	FEED	1	TMP4	TMP3	TMP2	TMP1	TMP0	Cent8	Pitch & Tempo Control
		0	-	0	0	0	0	0	0	1
\$16h	\$17h	1	-	-	CLPD	CLKE			DPD	Power Down
		-	-	-	0	0	-	-	0	
\$18h	\$19h	-	S06	S05	S04	S03	S02	S01	S00	Master Clock Tuning
_		ı	0	0	0	0	0	0	0	-
\$1Ah	\$1Bh	_	-	-	-	-	M2	M1	M0	MODE
		-	1	-	1	-	0	0	0	_
\$1Eh	\$1Fh	-	-	-	-	-	-	-	SRST	Soft Reset
		-	-	-	-	-	-	-	0	

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 41/92

Oki Electric Industry Co.Ltd.

REGISTER MAP 2

					Interrup	t Control	Register	r		
IND	EX	b07	b06	b05	b04	b03	b02	b01	b00	NOTE
R	W	(Initial)								
\$20h	\$21h	AIRQ7	AIRQ6	AIRQ5	AIRQ4	AIRQ3	AIRQ2	AIRQ1	AIRQ0	ADPCM Interrupt L
		0	0	0	0	0	0	0	0	-
\$22h	\$23h	-	-	-	-	-	-	-	AIRQ8	ADPCM Interrupt H
		-	-	-	-	-	-	-	0	-
\$24h	\$25h	-	SIRQ6	SIRQ5	SIRQ4	SIRQ3	SIRQ2	SIRQ1	SIRQ0	Score Interrupt
		-	0	0	0	0	0	0	0	_
\$26h	\$27h	-	-	-	-	EIRQ3	EIRQ2	EIRQ1	EIRQ0	Event Interrupt
		-	-	-	-	0	0	0	0	-
\$28h	\$29h	-	-	-	SYNCE	ISS	EIE	SIE	AIE	Interrupt Enable
		-	-	-	0	0	0	0	0	-
\$2Ah	\$2Bh	-	-	-	SYNC	ERR	ERQ	SRQ	ARQ	REQUEST
		-	-	-	0	0	0	0	0	-
\$2Ch		-	-	-		AMON	-	-	-	STATUS
		-	-	-	0	0	-	-	-	-
					usic & Vo		trol Regi			
IND		b07	b06	b05	b04	b03	b02	b01	b00	NOTE
R	W									
\$30h	\$31h	-	-	-	-	-	-	PAUSE	ST	MUSIC START
		-	-	-	-	-	-	0	0	
\$32h	\$33h	-	-	-	-	-	-	MsyE	AST	ADPCM START
		-	-	-	-	-	-	0	0	
\$34h	\$35h	-	-	-	-	F3	F2	F1	F0	Fsamp
		-	-	-	-	0	0	0	0	
\$36h	\$37h	PL3	PL2	PL1	PL0	PR3	PR2	PR1		ADPCM PAN
		0	0	0	0	0	0	0	0	
\$38h	\$39h	-	-	-						Volume (ADPCM)
		-	-	-	0	0	0	0	0	

File Name: DS2870_010001_E.doc Rev: 1.0.1

Rev: 1.0.1 Page: 42/92

REGISTER MAP 3

	Port Control Register										
IND	РEX	b07	b06	b05	b04	b03	b02	b01	b00	NOTE	
R	W	(Initial)									
\$40h	\$41h	P7M	P6M	P5M	P4M	P3M	P2M	P1M	P0M	PORT MODE	
		0	0	0	0	0	0	0	0	-	
\$42h	\$43h	P I O7	P I O6	P I O5	PĪO4	P I O3	PĪO2	P I O1	PĪO0	PORTĪO	
		0	0	0	0	0	0	0	0	-	
\$44h	\$45h	P7	P6	P5	P4	P3	P2	P1	P0	PORT	
		1	1	1	1	1	1	1	1	-	
\$46h	\$47h	-	-	WVM	WPM	WDM	WCM	WBM	WAM	PWM MODE	
		-	-	0	0	0	0	0	0	-	
\$48h	\$49h	WAE	WA6	WA5	WA4	WA3	WA2	WA1	WA0	PWMA	
		0	0	0	0	0	0	0	0	-	
\$4Ah	\$4Bh	WBE	WB6	WB5	WB4	WB3	WB2	WB1	WB0	PWMB	
		0	0	0	0	0	0	0	0	-	
\$4Ch	\$4Dh	WCE	WC6	WC5	WC4	WC3	WC2	WC1	WC0	PWMC	
		0	0	0	0	0	0	0	0	-	
\$4Eh	\$4Fh	WDE	WD6	WD5	WD4	WD3	WD2	WD1	WD0	PWMD	
A = 04	A = 44	0	0	0	0	0	0	0	0	-	
\$50h	\$51h	WPE	WP6	WP5	WP4	WP3	WP2	WP1	WP0	Panel	
Φ 5 21	Φ.5.01	0	0	0	0	0	0	0	0	- x 7'1	
\$52h	\$53h	WVE	WV6	WV5	WV4	WV3	WV2	WV1	WV0	Vib	
		0	0	0	0	0	0	0	0	-	
\$54h	\$55h		PUP6	PUP5	PUP4	PUP3	PUP2	PUP1	PUP0	Pull-up (Port)	
		0	0	0	0	0	0	0	0	-	
\$56h	\$57h	P7/PZ	P6/PY	P5/PV	P4/PP	P3 /P3	<u>P2</u> /P2	<u>P1</u> /P1	P0 /P0	PWM output select	
		0	0	0	0	0	0	0	0	-	
		1.0=	1.0 -	1.67			ol Registe		100	110	
IND		b07	b06	b05	b04	b03	b02	b01	b00	NOTE	
R	W										
\$62h	\$63h	VR3	VR2	VR1	VR0	VL3	VL2	VL1	VL0	Audio Volume	
\$ ((1)	0.71	0 DIACD	0	0 ENL 2D	0 END2D	0	0	0	0	- A 1 D D	
\$66h	\$67h	BIASR	PDR	ENL2R	ENR2R	BIASL 0	PDL	ENR2L 0	ENL2L	Analog Power Down	
		0	1	0	1	U	1	U	1	F	

File Name: DS2870_010001_E.doc Rev: 1.0.1

DIFFERENCE BETWEEN HARDWARE RESET AND SOFTWARE RESET

There are four way for reset.

- 1. \overline{RESET} pin is "L".
- 2. SRST, "software reset", register is "H".
- 3. DPD, which selects power down state of all functions, is "H".
- 4. RCLR, "register clear", register is "H".

The following table shows the difference between each function.

Table 5: RESET Functions

Registers/	Detail	RESET pin	SRST	DPD bit = 1	RCLR
Functions					
Registers	ADPCM FIFO	EMPTY	EMPTY	EMPTY	EMPTY
	SCORE FIFO	EMPTY	EMPTY	EMPTY	EMPTY
	EVENT FIFO	EMPTY	EMPTY	EMPTY	EMPTY
	CLR	Reset	Reset	No change	No change
	CLOCK	Reset	No change	No change	No change
	Pitch control	Reset	No change	No change	No change
	Pitch & tempo	Reset	No change	No change	No change
	Power down	Reset	Reset	Reset	No change
	(CLKE bit)				
	Power down	Reset	Reset	No change	No change
	(Except for CLKE bit)				
	Master clock tuning	Reset	No change	No change	No change
	MODE	Reset	Reset	No change	Reset
	Soft reset	Reset	No change	No change	No change
	ADPCM interrupt	Reset	Reset	No change	Reset
	Score interrupt	Reset	Reset	No change	Reset
	Event interrupt	Reset	Reset	No change	Reset
	Interrupt Enable	Reset	Reset	No change	Reset
	MUSIC START	Reset	Reset	No change	Reset
	ADPCM START	Reset	Reset	No change	Reset
	Fsamp	Reset	Reset	No change	Reset
	APAN	Reset	Reset	No change	No change
	Volume (ADPCM)	Reset	Reset	No change	No change
	Port mode	Reset	Reset	No change	No change
	Port I/O	Reset	Reset	No change	No change
	Port	Reset	Reset	No change	No change
	PWM mode	Reset	Reset	No change	No change
	PWM of LEDA	Reset	Reset	No change	No change
	PWM of LEDB	Reset	Reset	No change	No change
	PWM of LEDC	Reset	Reset	No change	No change
	PWM of Panel	Reset	Reset	No change	No change
	PWM of VIB	Reset	Reset	No change	No change
	PULLUP	Reset	Reset	No change	No change
	PWM output select	Reset	Reset	No change	No change
	Analog Volume	Reset	Reset	No change	No change
	Analog Volume Analog Power Down	Reset	Reset	No change	No change
Functions	Sound generator				Reset
Tunctions	ADPCM	Reset	Reset Reset Reset Reset Reset Reset		Reset
-	PWM	Reset	Reset	Reset	No change

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 44/92

DETAILED DESCRIPTION OF THE REGISTERS

ADPCM FIFO and Accompaniment Register (Read: inhibit / Write: \$01h)

This register accommodates ADPCM data or accompaniments. When you replay ADPCM, MODE register is set to "00h".

<ADPCM FIFO mode>

As ADPCM is replayed, the data stored in the FIFO is ADPCM processed. The LSI outputs a data request signal from the ARQ register when the data in the ADPCM FIFO lowers to the threshold pre-defined by the AIRQ8-0 bits. Write the next ADPCM data when the data request signal is output from the ARQ register.

<Accompaniments Register>

The function of this mode is not disclosed.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 45/92

Score FIFO (Read: inhibit/Write: \$03h)

This SCORE register accommodates music data. Data entered to this register is being loaded and stored into the ML2870 internal Score FIFO.

ML2870 can play music by means of three score formats. ML2870 recognizes musical score formats by the first 4 bytes in the score data after ST bit is set to "H".

Table 6: Relation between Format and Header Data

Format	Header
Real time MIDI events	'real'
MCDF	'CThd'
SMF format 0 under some condition	'MThd'

< Real Time MIDI Events Mode>

Real time MIDI events are shown by the MIDI implementation chart.

The score FIFO which is for real time MIDI events, is suitable to the following configuration.

It is easy to control by two kinds of controllers, such as external sequencer and event controller.

Event to pronounce effective sound

< MCDF >

After the customer agrees to an NDA, the MCDF document will be disclosed by OKI

< SMF format 0 with some condition >

SMF is standard MIDI File format. SMF specification are available at MMA. Oki supports a software for playback SMF 0 and SMF1.

File Name: DS2870 010001 E.doc

Rev: 1.0.1 Page: 46/92

Wednesday, January 29, 2003

ML2870 SPECIFICATION ver 1.0.1

Oki Electric Industry Co.Ltd.

EVENT FIFO (Read: inhibit / Write: \$05h)

This Event register accommodates MIDI data. Data entered to this register is being loaded and stored into the ML2870 internal Event FIFO for MIDI.

The available data for the event FIFO is shown by the MIDI implementation chart.

Because the EVENT FIFO does not require timer data, it is possible to pronounce the musical note soon after data input.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 47/92

FIFO status (Read \$06h : / Write : inhibit)

	FIFO Control Register										
INDEX b07 b06 b05 b04 b03 b02 b01 b00 NOTE										NOTE	
R W (Initial)											
\$06h EFULL SFULL AFULL EEMP SEMP AEMP FIFO sta								FIFO status			

The FIFO status register outputs the empty flag and the full flag of each FIFO.

AEMP is the empty flag of the ADPCM FIFO. When the ADPCM FIFO is empty, AEMP is "1". When data is input to the ADPCM FIFO, AEMP is "0".

SEMP is the empty flag of the SCORE FIFO. When the SCORE FIFO is empty, SEMP is "1". When data is input to the SCORE FIFO, SEMP is "0".

EEMP is the empty flag of the EVENT FIFO. When the EVENT FIFO is empty, EEMP is "1". When data is input to the EVENT FIFO, EEMP is "0".

AFULL is the full flag of the ADPCM FIFO. When the ADPCM FIFO is full, AFULL is "1". When data can be written to the ADPCM FIFO, AFULL is "0".

SFULL is the full flag of the SCORE FIFO. When the SCORE FIFO is full, SFULL is "1". When data can be written to the SCORE FIFO, SFULL is "0".

EFULL is the full flag of the EVENT FIFO. When the EVENT FIFO is full, EFULL is "1". When data can be written to the EVENT FIFO, EFULL is "0".

File Name: DS2870 010001 E.doc

Rev: 1.0.1 Page: 48/92

ML2870 SPECIFICATION ver 1.0.1 Oki Electric Industry Co.Ltd.

CLR Register (Read \$08h: / Write: \$09h)

	FIFO Control Register										
IND	INDEX b07 b06 b05 b04 b03 b02 b01 b00 NOTE										
R W (Initial)											
\$08h \$09h RCLR ECLR SCLR ACLR CLR								CLR			

The CLR Register clears each FIFO.

ADPCM FIFO is cleared upon setting ACLR to "1".

SCORE FIFO is cleared upon setting SCLR to "1".

EVENT FIFO is cleared upon setting ECLR to "1".

When set RCLR bit to "1", prescribed register which is shown by the chapter of "Difference Between Hardware Reset and Software Reset" is cleared.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 49/92

CLOCK (*Read* \$10h : / Write : \$11h)

	LSI Control Register										
IND	INDEX b07 b06 b05 b04 b03 b02 b01 b00 NOTE										
R	R W (Initial)										
\$10h	\$11h	PLL2	PLL1	PLL0	CK4	CK3	CK2	CK1	CK0	CLOCK	

The clock register determines the sound generator clock as submultiples of the master clock. CK4-0 bits set the division ratio of the master clock to the PLL. The PLL then multiplies that clock by the times which is corresponded to PLL bits, thus generating the sound generator clock that should range between 27 and 34 MHz..

PLL2-0 bits indicate the multiplication of clock by PLL operation.

The values for this register are shown in the chapter "Master clock frequency and clock register" in the application note.

Table 7

Value	Divided Ratio	Value	Divided Ratio
(CK4-0)		(CK4-0)	
00H	1	0AH	11
01H	2	0BH	12
02H	3	0CH	13
03H	4	0DH	14
04H	5	0EH	15
05H	6	0FH	16
06H	7	10H	17
07H	8	11H	18
08H	9	12H	19
09H	10	13H	20
	•	14H-1FH	N/A

Table 8

Value (PLL2-0)	Times by PLL	Value (PLL2-0)	Times by PLL
(PLL2-0)	Inhibit	4h	16
	(Not use PLL)		
1h	10	5h	18
2h	12	6h	20
3h	14	7h	20

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 50/92

Oki Electric Industry Co.Ltd.

Pitch control (Read \$12h and :/Write:\$13h)

	LSI Control Register									
INI	INDEX b07 b06 b05 b04 B03 b02 b01 b00 NOTE									
R	W	(Initial)								
\$12h	\$13h	Cent7	Cent6	Cent5	Cent4	Cent3	Cent2	Cent1	Cent0	Pitch Control
		0	0	0	0	0	0	0	0	

Pitch control register corrects the musical pitch according to the sound generator clock frequency. The values for this register is shown by the "Master clock frequency and clock register" in the application note.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 51/92

Tempo Control (Read \$14h: / Write: \$15h)

	LSI Control Register											
INI	INDEX b07 b06 b05 b04 b03 b02 b01 b00 NOTE											
R	W	(Initial)										
\$14h	\$15h	FEED	-	TMP4	TMP3	TMP2	TMP1	TMP0	Cent8	Pitch & Tempo Control		
		0	-	0	0	0	0	0	0	_		

The tempo register corrects the musical tempo according to the sound generator clock frequency. The values for this register are shown in the "Master clock frequency and clock register" in the application note.

TMP4 bit and Cent 8 bit are sign bit for correct tempo. When TMP4 bit and Cent8 bit is "1", value is minus. When TMP4 bit and Cent8 bit is "0", value is plus.

TMP3-0 bit is abstract value of tempo correct.

Table 9

Value (TMP4-0)		Corrected value	Value (TMP4-0)		Corrected value
1.5	01.01111	1.50/		01.10001	10/
15	0b01111	15%	-1	0b10001	-1%
14	0b01110	14%	-2	0b10010	-2%
13	0b01101	13%	-3	0b10011	-3%
12	0b01100	12%	-4	0b10100	-4%
11	0b01011	11%	-5	0b10101	-5%
10	0b01010	10%	-6	0b10110	-6%
9	0b01001	9%	-7	0b10111	-7%
8	0b01000	8%	-8	0b11000	-8%
7	0b00111	7%	-9	0b11001	-9%
6	0b00110	6%	-10	0b11010	-10%
5	0b00101	5%	-11	0b11011	-11%
4	0b00100	4%	-12	0b11100	-12%
3	0b00011	3%	-13	0b11101	-13%
2	0b00010	2%	-14	0b11110	-14%
1	0b00001	1%	-15	0b11111	-15%
0	0b00000	No correct			
	0b10000				

The FEED bit switches feedback resistor on clock pin ON or OFF.

Feedback resistance is effective at "1." Feedback resistance "1" inputs small amplitude clock.

Table 10

	Data	Description
FEED bit	0	The feedback resistor is not used
	1	The feedback register is used.

Power Down (Read \$16h: / Write: \$17h)

	LSI Control Register											
INI	INDEX b07 b06 b05 b04 b03 b02 b01 b00 NOTE											
R	W	(Initial)										
\$16h	\$17h	-	-	-	CLPD	CLKE			DPD	Power Down		
		-	-	-	0	0	-	-	0			

The power down register selects the power down states of each block. Each bit is assigned to the power down signal of each respective block.

LSI will be in a power down state completely on the condition: CLPD bit is "1", CLKE bit is "0" and DPD bit is "1".

The DPD bit sets the power down state of the ADPCM and sound generator blocks.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 52/92

The CLKE bit enables input of the sound generator clock.

The CLPD bit sets the power down state of the oscillation block.

Just for a reference, the figure below shows the internal operation.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 53/92

Table 11

	Data	Description
DPD bit	0	Ready.
	1	Power down state.
CLKE bit	0	No clock supply to the LSI's internal circuit.
		(i.e. waiting for the clock to stabilize.)
	1	Clock supply to the LSI's internal circuit.
		(i.e. the clock is stabilized.)
CLPD bit	0	Ready.
	1	Power down state.

Master Clock Tuning (Read \$18h: / Write: \$19h)

The master clock tuning register splits an audio clock into submultiples of the sound generator clock. The values for this register are shown in "Master clock frequency and clock register" in the application note..

MODE (Read \$1Ah : / Write : \$1Bh)

The mode register is fixed to "0". Any other value inhibited.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 54/92

Oki Electric Industry Co.Ltd.

Soft Reset (Read \$1Eh : / Write : \$1Fh)

	LSI Control Register										
INDEX b07 b06 b05 b04 b03 b02 b01 b00 NOTE									NOTE		
R W		(Initial)									
\$1Eh	\$1Fh	-	-	-	-	-	-	-	SRST	Soft Reset	
		1	-	-	-	-	-	-	0	-	

The soft reset register resets all blocks in the ML2870. The LSI initializes, when the SRST bit is "H". The SRST bit is "L" while the ML2870 is active.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 55/92

ADPCM Interrupt L (Read \$20h: / Write: \$21h)
ADPCM Interrupt H (Read \$22h: / Write: \$23h)

	Interrupt Control Register												
INDEX b07 b06 b05 b04 b03 b02 b01 b00 NOTE									NOTE				
R	W	(Initial)											
\$20h	\$21h	AIRQ7	AIRQ6	AIRQ5	AIRQ4	AIRQ3	AIRQ2	AIRQ1	AIRQ0	ADPCM Interrupt L			
		0	0	0	0	0	0	0	0	-			
\$22h	\$23h	-	-	-	-	-	-	-	AIRQ8	ADPCM Interrupt H			
		-	ı	-	-	-	-	-	0	-			

The ADPCM Interrupt L/H defines the FIFO address of the interrupt request flag.

ADPCM data is stored into the ADPCM FIFO register. When you start replaying with the AST bit, the data in the FIFO is being processed and erased. When remaining data lowers to or less than the amount set with the ADPCM interrupt during the ADPCM FIFO request is enabled, the ARQ bit is "1". Then, the IRQ pin output turns to "L" and the ML2870 requests the external CPU to write the next data into the ADPCM FIFO.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 56/92

Score Interrupt (Read \$24h : / Write : \$25h)

	Interrupt Control Register										
IND	INDEX b07 b06 b05 b04 b03 b02 b01 b00 NOTE										
\$24h	\$24h \$25h -		SIRQ6	SIRQ5	SIRQ4	SIRQ3	SIRQ2	SIRQ1	SIRQ0	Score Interrupt	

Score data is stored into the SCORE FIFO register. When you start replaying with the AST bit, the data in the FIFO is being processed and erased. When remaining data lowers to or less than the amount set with the SCORE Interrupt during SCORE FIFO request is enabled, the SRQ bit is "1". Then, the IRQ pin output turns to "L" and the ML2870 requests the external CPU to write the next data into the SCORE FIFO.

Event Interrupt (Read \$26h : / Write : \$27h)

	Interrupt Control Register										
IND	INDEX b07 b06 b05 b04 b03 b02 b01 b00 NOTE										
R	W	(Initial)									
\$26h	\$27h	-	-	-	-	EIRQ3	EIRQ2	EIRQ1	EIRQ0	Event Interrupt	
		-	-	-	-	0	0	0	0	-	

Event data is stored into the EVENT FIFO register. When you start replaying with the AST bit, the data on the FIFO is being processed and erased. When remaining data lowers to or less than the amount set with the EVENT Interrupt during EVENT FIFO request is enabled, the SRQ bit is "1". Then, the IRQ pin output turns to "L" and the ML2870 requests the external CPU to write the next data into the EVENT FIFO.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 57/92

Interrupt Enable (Read \$28h: / Write: \$29h)

	Interrupt Control Register											
IND	INDEX b07 b06 b05 b04 b03 b02 b01 b00 NOTE											
R	W	(Initial)										
\$28h	\$29h	-	-	-	SYNCE	ISS	EIE	SIE	AIE	Interrupt Enable		
										-		

The interrupt enable register enables or disenables request for all FIFOs.

When each interrupt enable bit is "1", the request signal of each FIFO is enabled. If residual data in each FIFO is lower than the amount set in the interrupt register, the next data is requested to the external CPU. When each interrupt enable bit is "0", the request bit of each FIFO is fixed to "0" (no request).

Each interrupt enable bit is assigned as follows.

The AIE bit enables or disenables interrupt request of the ADPCM FIFO.

The SIE bit enables or disenables interrupt request of the SCORE FIFO.

The EIE bit enables or disenables interrupt request of the EVENT FIFO.

ISS bit is for inverting the interrupt signal from IRQ pin and for inverting values in request register.

The SYNCE bit enables or disables interrupt request for synchronous from sound generator.

Table 12

I/F	I	Bus Interface / Se		Serial Interface Only			
	SYNC / ERQ /	SRQ / ARQ bit	IRQ	pin SYNC / ERQ / SRQ / ARC			
ISS bit	0	1	0	1	0	1	
0	NO	REQUEST	NO	REQUEST	NO	REQUEST	
1	REQUEST	NO	REQUEST	NO	REQUEST	NO	

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 58/92

Request (Read \$2Ah : / Write : \$2Bh)

	Interrupt Control Register										
INDE	X	b07	b06	b05	b04	b03	b02	b01	b00	NOTE	
R	W	(Initial)									
\$2Ah	\$2Bh	-	-	-	SYNC	ERR	ERQ	SRQ	ARQ	REQUEST	
		-	-	-	0	0	0	0	0	-	

The Request register queries the external CPU. The ARQ bit, SRQ bit, and ERQ bits request subsequent data for musical scores or ADPCM data to the external CPU.

After these bits are set to "1", set the interrupt enable register of each FIFO to "0", and then write the subsequent data into the FIFO. After writing the data, return the Interrupt Enable Register to "1" to ready it for a next interrupt.

The request register is assigned to each request bit as follows.

The ARQ bit requests subsequent data for playing ADPCM audio.

The SRQ bit requests a subsequent musical score.

The ERQ bit requests subsequent event data.

The ERR bit outputs "1" when an error occurs with the musical score. If ERR turns to "1", stop playing the musical score. After setting the ST bit to "0", the LSI will stop playing the music and reset the ERR bit to "0".

Each request bit is for inverting the value according to ISS bit.

When set ISS bit to "0", "1" means the request of next data

When set ISS bit to "1", "0" means the request of next data.

SYNC bit is as same function as SYNC pin except for clearing the bit by write pulse of REQUEST register.

File Name: DS2870 010001 E.doc

Rev: 1.0.1 Page: 59/92

Oki Electric Industry Co.Ltd.

Status (Read \$2Ch: / Write: inhibit)

	Interrupt Control Register																			
INDE	INDEX b07 b06 b05 b04 b03 b02 b01 b00 NOTE																			
R	W	(Initial)																		
\$2Ch	-	-	-	-	MMON	AMON	-	-	-	STATUS										
		-	-	-	0	0	-	-	-											

The Status register has the status of the sequencer and the ADPCM synthesizer.

MMON is the sequencer flag. When MMON is "1", the sequencer is active and the LSI plays music. When MMON is "0", the sequencer is stopped and so is the music.

AMON is the flag of the ADPCM synthesizer. When AMON is "1", the ADPCM synthesizer is active and the LSI plays ADPCM audio. When AMON is "0", the ADPCM synthesizer is stopped and so is ADPCM audio.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 60/92

Oki Electric Industry Co.Ltd.

MUSIC START (Read \$30h : / Write : \$31h)

	Music & Voice Control Register									
INI	INDEX b07 b06 b05 b04 b03 b02 b01 b00 NOTE									
R	RW									
\$30h	\$31h	-	-	-	-	-	-	PAUSE	ST	MUSIC START
		-	-	-	-	-	-	0	0	

The MUSIC START register controls start and stop of playback. When the ST bit assumes "1", the LSI processes and erases data in the SCORE and EVENT FIFOs, and then the LSI plays notes though the sound generator. When ST assumes "0", the LSI stops playing music though the sound generator. If ST is forced to "0" during playback, clear the FIFOs with the SCLR and ECLR bits of the CLR register before playing the next music.

The PAUSE bit pauses playback of music. When PAUSE bit becomes "1" during the ST bit is "1", the LSI pauses playback. After set PAUSE bit to "1", write ALL SOUND OFF message to EVENT FIFO. Because it is possible not to erase all notes.

When reset PAUSE bit to "0", restart playback again.

ALL SOUND OFF message is 3 byte commands as following. As change value of "n" from "0" to "F", transfer total 48byte of commands to EVENT FIFO 0xBn,0x78,0x00

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 61/92

Oki Electric Industry Co.Ltd.

ADPCM START (Read \$32h : / Write : \$33h)

	Music & Voice Control Register										
INDEX b07 b06 b05 b04 b03 B02 b01 b00 NOTE											
RW											
\$32h	\$32h										

The ADPCM START register starts and stops playback. When ST assumes "1", the LSI processes and erases data in the ADPCM FIFO (playback). When ST assumes "0", the LSI stops the playback.

<u>Please set the AST bit = "1", AFTER the FIFO is put in ADPCM data. If playback is started when the FIFO is empty, noise can be played.</u>

If AST is forced to "0" during playback, clear the FIFO with the ACLR bit of the CLR register before another playback.

MsyE bit is the register to select whether to play ADPCM sounds is synchronized with score data or not. When MsyE bit is "H", ADPCM playback waits until a start trigger from the score FIFO. When MsyE bit is "L", ADPCM playback commences.

Please write ADPCM data to the FIFO, before the start trigger from the score FIFO.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 62/92

Oki Electric Industry Co.Ltd.

Fsamp (Read \$34h : / Write : \$35h)

	Music & Voice Control Register									
INDEX b07 b06 b05 b04 b03 b02 b01 b00 NOTE							NOTE			
R	W									
\$34h	\$35h	-	-	-	-	F3	F2	F1	F0	Fsamp
		-	-	-	-	0	0	0	0	

The Fsamp register sets the sampling frequency and synthesis method of ADPCM audio.

It must be set before a playback.

Table 13: Synthesis methods and sampling frequencies of the Fsamp register

Value (F3-0)	Fsamp	Value (F3-0)	Fsamp
0	4.0kHz(4bit ADPCM2)	8	4.0kHz(2bit ADPCM2)
1	5.3kHz(4bit ADPCM2)	9	5.3kHz(2bit ADPCM2)
2	6.4kHz(4bit ADPCM2)	10	6.4kHz(2bit ADPCM2)
3	8.0kHz(4bit ADPCM2)	11	8.0kHz(2bit ADPCM2)
4	10.6kHz(4bit ADPCM2)	12	10.6kHz(2bit ADPCM2)
5	12.8kHz(4bit ADPCM2)	13	12.8kHz(2bit ADPCM2)
6	16.0kHz(4bit ADPCM2)	14	16.0kHz(2bit ADPCM2)
7	32.0kHz(4bit ADPCM2)	15	32.0kHz(2bit ADPCM2)

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 63/92

ADPCM PAN (Read \$36h: / Write: \$37h)

	Music & Voice Control Register									
INI	INDEX b07 b06 b05 b04 b03 b02 b01 b00 NOTE									
R	R W									
\$36h	\$36h \$37h PL3 PL2 PL1 PL0 PR3 PR2 PR1 PR0 ADPCM PAN									
		0	0	0	0	0	0	0	0	

The ADPCM PAN register sets the ADPCM volume of the left and right audio channels individually.

Table 14

PR3-0	Volume	PR3-0	Volume
PL3-0		PL3-0	
0x00	0dB	0x08	-16dB
0x01	-2dB	0x09	-18dB
0x02	-4dB	0x0A	-20dB
0x03	-6dB	0x0B	-22dB
0x04	-8dB	0x0C	-24dB
0x05	-10dB	0x0D	-26dB
0x06	-12dB	0x0E	-28dB
0x07	-14dB	0x0F	MUTE

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 64/92

Oki Electric Industry Co.Ltd.

Volume (ADPCM) (Read \$38h : / Write : \$39h)

	Music & Voice Control Register									
INDEX b07 b06 B05 b04 b03 b02 b01 b00 NOTE										NOTE
R	W									
\$38h	\$39h	-	-	-	ADVL4	ADVL3	ADVL2	ADVL1	ADVL0	Volume(ADPCM)
		-	-	-	0	0	0	0	0	

Volume of ADPCM reproduction is set up in 26 intervals. It is set to mute by 1Fh, and is set to the maximum volume by 0h

Table 15

Value (ADVL4-0)	Volume	Value (ADVL4-0)	Volume
0	0dB	13	-26dB
1	-2dB	14	-28dB
2	-4dB	15	-30dB
3	-6dB	16	-32dB
4	-8dB	17	-34dB
5	-10dB	18	-36dB
6	-12dB	19	-38dB
7	-14dB	20	-40dB
8	-16dB	21	-42dB
9	-18dB	22	-44dB
10	-20dB	23	-48dB
11	-22dB	24	-48dB
12	-24dB	25	Mute

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 65/92

Oki Electric Industry Co.Ltd.

Port mode (Read \$40h : / Write : \$41h)

	Port Control Register									
INI	DEX	b07	b06	b05	b04	b03	b02	b01	b00	NOTE
R	W	(Initial)								
\$40h	\$41h	P7M	P6M	P5M	P4M	P3M	P2M	P1M	P0M	PORT MODE
		0	0	0	0	0	0	0	0	_

The port mode register selects the external CPU or ML2870 port assignment. When a bit in the port mode register is "0", the external CPU controls the port assigned to that bit. When a bit in the port mode register is "1", the ML2870 controls the port assigned to that bit. A musical score decides whether the port output is "1" or "0".

NOTICE

On the QFN package only ports 4-0 are available. While the WCSP hosts all ports 7-0.

Table 16

bit	Assigned pins	Bit	Assigned pins
0 bit	PORT 0	4 bit	PORT 4
1 bit	PORT 1	5 bit	PORT 5
2 bit	PORT 2	6 bit	PORT 6
3 bit	PORT 3	7 bit	PORT 7

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 66/92

Port IO (Read \$42h : / Write : \$43h)

	Port Control Register										
IND	ÞΕΧ	b07	b06	b05	b04	b03	b02	b01	b00	NOTE	
R	W	(Initial)									
\$42h	\$43h	PĪO7	PĪO6	PĪO5	PĪO4	PĪO3	PĪO2	PĪO1	PĪO0	PORTĪO	
		0	0	0	0	0	0	0	0	-	

The PIO7-0 register decides whether a port is an output or an input port.

When a bit in the PIO7-0 register is "0", the assigned port is an input port.

When a bit in the PIO7-0 register is "1", the assigned port is an output port.

When a bit in the port mode register is "1", the assigned port is a fixed output port.

Port (Read \$44h : / Write : \$45h)

	Port Control Register									
INI	EX	b07	b06	b05	b04	b03	b02	b01	b00	NOTE
R	W	(Initial)								
\$44h	\$45h	P7	P6	P5	P4	P3	P2	P1	P0	PORT
		1	1	1	1	1	1	1	1	-

The Port register describes 8 bit Bus data.

When the port IO register is "0", an external device can write the value to the Port register.

When the port IO register is "1", an external device can read the value from the Port register.

NOTICE

On the QFN package only ports 4-0 are available. While the WCSP hosts all ports 7-0.

When the Port mode register is "1", the external CPU cannot read the value of Port register.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 67/92

Oki Electric Industry Co.Ltd.

PWM mode (Read \$46h : / Write : \$47h)

	Port Control Register									
INDEX		b07	b06	b05	b04	b03	b02	b01	b00	NOTE
R	W	(Initial)								
\$46h	\$47h	-	-	WVM	WPM	WDM	WCM	WBM	WAM	PWM MODE
		-	-	0	0	0	0	0	0	-

The PWM mode register selects the use of the PWM either for the external CPU or the ML2870 itself. When the PWM mode bit is "0", the CPU uses the PWM assigned bits.

When the PWM mode bit is "1", the ML2870 uses the PWM pin assigned bits.

Table 17

bit	Assigned pins
0 bit	PWMA pin
1 bit	PWMB pin
2 bit	PWMC pin
3 bit	PWMD pin
4 bit	PWM for panel
5 bit	PWM for vibrator

When PWM mode register is "1", density of PWM depends on velocity of following note in MIDI channel 10 (standard channel for drums and percussion)

Table 18: Percussion note number related to PWM pin

note number	Assigned PWM
96	PWMA
97	PWMB
98	PWMC
99	PWMD
100	PANEL
101	VIB

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 68/92

PWMA (Read \$48h: / Write: \$49h)
PWMB (Read \$4Ah: / Write: \$4Bh)
PWMC (Read \$4Ch: / Write: \$4Dh)
PWMD (Read \$4Eh: / Write: \$4Fh)

Panel (Read \$50h : / Write : \$51h) VIB (Read \$52h : / Write : \$053h)

Table 19

	PORT Control Register									
IND	INDEX		b06	b05	b04	b03	b02	b01	b00	NOTE
R	W									
\$48h	\$49h	WAE	WA6	WA5	WA4	WA3	WA2	WA1	WA0	PWMA
		0	0	0	0	0	0	0	0	
\$4Ah	\$4Bh	WBE	WB6	WB5	WB4	WB3	WB2	WB1	WB0	PWMB
		0	0	0	0	0	0	0	0	
\$4Ch	\$4Dh	WCE	WC6	WC5	WC4	WC3	WC2	WC1	WC0	PWMC
		0	0	0	0	0	0	0	0	
\$4Eh	\$4Fh	WDE	WD6	WD5	WD4	WD3	WD2	WD1	WD0	PWMD
		0	0	0	0	0	0	0	0	
\$50h	\$51h	WPE	WP6	WP5	WP4	WP3	WP2	WP1	WP0	Panel
		0	0	0	0	0	0	0	0	
\$52h	\$53h	WVE	WV6	WV5	WV4	WV3	WV2	WV1	WV0	Vib
		0	0	0	0	0	0	0	0	

The PWMA-D registers adjust the brightness of the LED driver in 128 steps. And directly drives 20mA current. The brightness of each PWM can be changed by the lower seven bits of each register. The MSB selects PWM enabled or disenabled. If set MSB to "1", PWM is active and if set MSB to "0", PWM is disabled.

The Panel register adjusts the brightness of an LCD front light in 128 steps and directly drives 100mA current.

The VIB register adjusts the intensity of the vibrator in 128 steps and directly drives 150mA current.

Pullup (Read \$54h : / Write : \$55h)

	Port Control Register									
IND	ЭEX	b07	b06	b05	b04	b03	b02	b01	b00	NOTE
R	W	(Initial)								
\$54h	\$55h	PUP7	PUP6	PUP5	PUP4	PUP3	PUP2	PUP1	PLPU0	Pullup
		Ü	U	U	U	U	U	U	U	-

PUP7-0 register is to select pull-up resistor for each port. Whether used or not.

When PUP7-0 set to "1", the pull-up resistor is disconnection.

When PUP7-0 set to "0", the pull-up resistor is connected.

File Name: DS2870 010001 E.doc

Rev: 1.0.1 Page: 69/92

Oki Electric Industry Co.Ltd.

PWM Output Select Register (Read \$56h: / Write: \$57h)

	PORT Control Register									
INI	DEX	b07	b06	b05	b04	b03	b02	b01	b00	NOTE
R	W	(Initial)								
\$56h	\$57h	77/PZ	P6/PY	₹5/PV	P4/PP	P3 /P3	<u>P2</u> /P2	<u>P1</u> /P1	<u>P0</u> /P0	PWM Output
		0	0	0	0	0	0	0	0	Select

This register is to drive LED which need to be driven by more than 3.6V with a few components. When a value in the register is "0", a port which is assigned to the bit is used for GPIO. When bit in the register is "1", a port which is assigned to the bit is used for PWM output. The difference between what PWM outputs PORT and what PWM signal outputs PWM pin is shown the figure below. Each pin status can be selected individually. The following figures are shown how to drive a LED.

If it is necessary to connect LED to more than 3.6.V, PWM,VIB, and PANEL pins can't be connected to high voltage directly. LED should be driven such the figure" Circuit for LED with more than 3.6v".

On the other hand, if less than 3.6V for LED is enough, PWM pin can drive LED directly. The figure "Circuit for LED with 3.6v or under" is referred to external circuit.

 $\overline{P7}/PZ$ bit and $\overline{P6}/PY$ bit is for reserve. When the bits is "1", P6 and P7 is fixed as "0" outputs. (NOTE)

If PWM, VIB, or PANEL pin is connected to more than 3.6V directly, LSI would be broken possibly.

File Name: DS2870 010001 E.doc

Rev: 1.0.1 Page: 70/92

Pin name	Port Output Select register	description					
P0	$\overline{P0}/PA = 0$	P0 outputs PORT 0 signal.					
	$\overline{P0}/PA = 1$	P0 outputs PWMA signal.					
P1	$\overline{P1}/PB = 0$	P1 outputs PORT 1 signal.					
	$\overline{P1}/PB = 1$	P1 outputs PWMB signal.					
P2	$\overline{P2}/PC = 0$	P2 outputs PORT 2 signal.					
	$\overline{P2}/PC = 1$	P2 outputs PWMC signal.					
P3	$\overline{P3}/PD = 0$	P3 outputs PORT 3 signal.					
	$\overline{P3}/PD = 1$	P3 outputs PWMD signal.					
P4	$\overline{P4}/PP = 0$	P4 outputs PORT 4 signal.					
	$\overline{P4}/PP = 1$	P4 outputs Panel signal.					
P5	$\overline{P5}/PV = 0$	P5 outputs PORT 5 signal.					
	$\overline{P5}/PV = 1$	P5 outputs VIB signal.					

<Fig: Circuit for LED with more than 3.6v >

<Fig: Circuit for LED with 3.6v or under >

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 71/92

Oki Electric Industry Co.Ltd.

Note: When PWM is controlled by PORT pin

(In case that used as "Fig: Circuit for LED with 3.6v or under", on the previous page)

Pull-up register is enabled at the default. There is a current flow through the pull-up register (min $20k\Omega$). Please set the registers for PORT pin as follows, right after the reset.

[Register setting]

Pull up register: off

PWM Output Select register: PWM

PORT IO register: Output

Figure: Equivalent circuit of default Port pins

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 72/92

Oki Electric Industry Co.Ltd.

Audio Volume (Read \$62h: / Write: \$63h)

	Analog Control Register									
IND	DEX	b07	b06	b05	b04	b03	b02	b01	b00	NOTE
R	W	(Initial)								
\$62h	\$63h	VR3	VR2	VR1	VR0	VL3	VL2	VL1	VL0	Audio Volume
		0	0	0	0	0	0	0	0	_

Audio Volume register is for changing audio volume to mix between sound generator and ADPCM. Please use the function for volume control of the terminal.

Table 20

PR3-0	Volume	PR3-0	Volume
PL3-0		PL3-0	
0x00	0.0dB	0x08	-24.0dB
0x01	-2.5dB	0x09	-26.0dB
0x02	-6.0dB	0x0A	-30.1dB
0x03	-8.5dB	0x0B	-32.6dB
0x04	-12.0dB	0x0C	-36.1dB
0x05	-14.5dB	0x0D	-38.6dB
0x06	-18.0dB	0x0E	-42.1dB
0x07	-20.5dB	0x0F	MUTE

VR3-0 bit: Change the volume for AOUTR pin. VL3-0 bit: Change the volume for AOUTL pin.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 73/92

Oki Electric Industry Co.Ltd.

Analog Power Down (Read \$66h: / Write: \$67h)

	Analog Control Register									
IND	DEX	b07	b06	b05	b04	b03	b02	b01	b00	NOTE
R	W	(Initial)								
\$66h	\$67h	BIASR	PDR	ENL2R	ENR2R	BIASL	PDL	ENR2L	ENL2L	Analog Power Down
		0	1	0	1	0	1	0	1	-

Analog Power Down register specifies enabling or disenabling power down of analog part.

The detail is shown below.

BIASR: Select enabling or disenabling voltage bias to reduce pop noise when reset and set power down of AOUTR pin.

PDR: Select enabling or disenabling audio output from AOUTR pin.

ENR2R: Enable output of right audio output from AOUTR pin.

ENL2R: Enable output of left audio output from AOUTR pin.

Set up of ENL2R/ENR2R When the ENL2R=0 are selected, it is enable to output Right channel audio data from AOUTR pin, regardless of ENR2R's register.

BIASL: Select enabling or disenabling voltage bias to reduce pop noise when reset and set power down of AOUTL pin.

PDL: Select enabling or disenabling audio output from AOUTL pin.

ENL2L: Enable output of left audio output from AOUTL pin.

ENR2L: Enable output of right audio output from AOUTL pin.

Set up of ENR2L/ENL2L When the ENR2L=0 are selected, it is enable to output Left channel audio data from AOUTL pin, regardless of ENL2L's register.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 74/92

The LSI includes following circuit for reducing pop noise.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 75/92

Please refer to the figures below for the difference analog level of BIASL/R bit.

<BIASL/R bit = 1>

The voltage of AOUTL/R pin in Hi-Z is set approximate value in Operating. It reduces pop noise at switching Hi-Z – Operating.

NOTE: BIAS circuit can NOT delete pop noise completely. Please make sure that it's in tolerance level.

<BIASL/R bit = 0>

For the voltage of AOUTL/R pin is indeterminate in Hi-Z, switch between Hi-Z and Operating makes major pop noise.

Speaker amplifier should be connected to the LSI as follows.

Recommended circuit = connecting SP amplifier with AC coupling.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 76/92

BIAS Level is set about 0.5 x Vpp

NOTE: In the case of following circuit, the BIAS circuit for reducing pop noise doesn't work properly. Therefore set the BIASL/R bit = 0, and reduce pop noise by adding outside circuit.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 77/92

Wednesday, January 29, 2003

ML2870 SPECIFICATION ver 1.0.1

Oki Electric Industry Co.Ltd.

EVENT DATA FORMAT

The EVENT FIFO and the event mode of the score FIFO can enter the commands of the "MIDI IMPLEMENTATION CHART" below and the "Exclusive Format".

Please follow the formats when entering the data into the ML2870.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 78/92

MIDI IMPLEMENTATION CHART

Table 21

Function name		Recognized	Remark
Basic Channel	POWER ON	1-16	
Mode	Message	Mode 3 Omni OFF, Poly	
	Altered	This is not included into the function.	
Note Number		0-127	
	True Voice	0-127	
Velocity	Note ON	This is included into the function. $9nH v = 1-127$	
	Note Off	9nH v = 0, 8nH v = *1	
After Touch	Key's	X	
	Ch's	0	
Pitch Bender		0	Bend range: Depend on pitch bend sensitivity max 1 octave default 2 semi-tone
Control Change	1	0	Modulation
	6,38	0	Data entry
	7	0	Volume
	10	0	Pan
	11	0	Expression
	64	0	Hold 1
	98,99	0	NRPN LSB, MSB
	100,101	0	NRPN LSB, MSB
	121	O (next : 0)	Reset all control
	120	O (next: 0)	All sounds off
	123	O (next: 0)	All notes off
Program Change		0-127	
System Exclusive			
System Common	Song Position	X	
	Song Select	X	
	Tune	X	
System Real Time	Clock	X	
	Commands	X	
Aux Message	Local ON/OFF	X	
	All Note Off	X	
	Active Sense	X	
	Reset	X	

Mode 1:Omni On, Poly

Mode 2:Omni On, Mono

Mode 4:Omni Off, Poly

Mode 4:Omni Off, Mono

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 79/92

Wednesday, January 29, 2003

Oki Electric Industry Co.Ltd.

EXCLUSIVE FORMAT

Table 22

Command	1	2	3	4	5	6	7	8	9	10	Remark
Transpose	0xf0	0x06	0x5d	0x0e	0x08	0x10	0xkk	0xf7	-	-	$kk = transpose value : -6 \sim +5$
Main volume	0xf0	0x06	0x5d	0x0e	0x08	0x11	0xvv	0xf7	-	-	$vv = main volume : 0 \sim 127$
Touch correct	0xf0	0x06	0x5d	0x0e	0x08	0x13	0xtt	0xf7	-	-	$tt = touch correct : 0 \sim 127$
Set tempo message	0xf0	0x07	0x5d	0x0e	0x08	0x14	0xtt1	0xtt2	0xf7	-	tt1 and tt2 = tempo value
Parameters change	0xf0	0x06	0x5d	0x0e	0x08	0x15	0xsw	0xf7	-	-	Sw: synchronous mode
Effective sounds	0xf0	0x08	0x5d	0x0e	0x08	0x18	0xch	0xtl	0xth	0xf7	ch = channel / tl,th = tone number
Relative tempo	0xf0	0x06	0x5d	0x0e	0x08	0x19	0xrr	0xf7	-	-	$0xrr = relative tempo x \pm 5\%$
GM System on	0xf0	0x05	0x7e	0x7f	0x09	0x01	0xf7	-	-	-	Reset Sound generator
Master Expression	0xf0	0x06	0x5d	0x0e	0x08	0x1b	ee	0xf7	-	-	$me = 0 \sim 127$
Master Pan	0xf0	0x06	0x5d	0x0e	0x08	0x1c	pp	0xf7	-	-	$mp = 0(left) \sim 64(center) \sim 127(right)$
Pile Voice	0xf0	0x07	0x5d	0x0e	0x08	0x7c	dco	0x00	0xf7	-	$dco = 0 \sim 32$

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 80/92

Oki Electric Industry Co.Ltd.

Transpose (0xf0, 0x06, 0x5d, 0x0e, 0x08, 0x10, 0xkk, 0xf7)

Table 23

Command	1	2	3	4	5	6	7	8	9	10
Transpose	0xf0	0x06	0x5d	0x0e	0x08	0x10	0xkk	0xf7	-	-

Transpose, an 8-byte command, transposes musical notes. The transpose function is available for the note after the LSI recognizes this command. If the LSI receives this command during processing of notes, it is ineffective.

If the transposition result is less than 0 or more than 127, the LSI changes to the note numbers that can be played an octave higher or lower.

Table 24

0xkk	Transpose	0xkk	Transpose
0x46	-6	0x00	0
0x45	-5	0x01	1
0x44	-4	0x02	2
0x43	-3	0x03	3
0x42	-2	0x04	4
0x41	-1	0x05	5

Main volume (0xf0, 0x06, 0x5d, 0x0e, 0x08, 0x11, 0xvv, 0xf7)

Table 25

Command	1	2	3	4	5	6	7	8
Main volume	0xf0	0x06	0x5d	0x0e	0x08	0x11	0xvv	0xf7

Main volume is 8 bytes command change main volume of sound generator.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 81/92

Oki Electric Industry Co.Ltd.

Touch correct (0xf0, 0x06, 0x5d, 0x0e, 0x08, 0x13, 0xtt, 0xf7)

Table 26

Command	1	2	3	4	5	6	7	8
Touch correct	0xf0	0x06	0x5d	0x0e	0x08	0x13	0xtt	0xf7

Touch correct is an 8-byte command to adjust the velocity of music data. When playing back as ringing tone and the volume is low, it sets the data to be added to the velocity.

Set tempo message (0xf0, 0x06, 0x5d, 0x0e, 0x08, 0x14, 0xtt1, 0xtt2, 0xf7)

Table 27

Command	1	2	3	4	5	6	7	8	9
Set tempo message	0xf0	0x06	0x5d	0x0e	0x08	0x14	0xtt1	0xtt2	0xf7

Set tempo message is a 9 bytes command to change tempo of song by force.

Parameters change (0xf0, 0x06, 0x5d, 0x0e, 0x08, 0x15, 0xsw, 0xf7)

Table 28

Command	1	2	3	4	5	6	7	8
Parameters change	0xf0	0x06	0x5d	0x0e	0x08	0x15	0xsw	0xf7

Parameter change, an 8-byte command, which decides over the priority concerning the exclusive parameter of the FIFO.

Table 29

Sw bit	Remarks
0	Parameter into SCORE FIFO is available.
1	Parameter into EVENT FIFO is available.

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 82/92

Sound effects (0xf0, 0x06, 0x5d, 0x0e, 0x08, 0x18, 0xch, 0xtn, 0xf7)

Table 30

Command	1	2	3	4	5	6	7	8	9	10	Remark
Effective	0xf	0x08	0x5d	0x0e	0x08	0x18	0xch	0xtl	0xth	0xf7	ch = channel / tl,th
sounds											= tone number

Effective sounds is a 10 bytes command to output effective sound. The ch byte is to indicate the MIDI channel to output the sound effect. The table of effective sound by tl and th is shown below.

Table 31

th<<7 +tl	Remark
0-127	GM sound set
136	Square wave 1 (long)
137	Square wave 1 (short)
138	Square wave 1 (continuous)
139	Sin wave 1 (long)
140	Sin wave 1 (short)
141	Sin wave 1 (continuous)

Relative tempo (0xf0, 0x06, 0x5d, 0x0e, 0x08, 0x19, 0xrr, 0xf7)

Table 32

Command	1	2	3	4	5	6	7	8
Relative tempo	0xf0	0x06	0x5d	0x0e	0x08	0x19	0xrr	0xf7

Relative tempo is an 8 bytes command to change tempo relatively to compare with original tempo.

The range of tempo is 20 to 500.

If tempo is more than 500, tempo is fixed to 500. If tempo is less than 20, tempo is fixed to 20.

GM System on (0xf0 0x05 0x7e 0x7f 0x09 0x01 0xf7)

Table 33

Command	1	2	3	4	5	6	7	8
GM System on	0xf0	0x05	0x7e	0x7f	0x09	0x01	0xf7	-

[&]quot;GM system on" resets the parameter of sound generator, ex. Control change, program number, pitch bend and so on.

Master Expression (0xf0 0x06 0x5d 0x0e 0x08 0x1b ee 0xf7)

Table 34

Command	1	2	3	4	5	6	7	8
Master Expression	0xf0	0x06	0x5d	0x0e	0x08	0x1b	ee	0xf7

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 83/92

Oki Electric Industry Co.Ltd.

Master expression sets substitute volume, by 0~127. It works as Main Volume. Master Expression is usually used to add intonation on certain timber.

Master Pan (0xf0 0x06 0x5d 0x0e 0x08 0x1c pp 0xf7)

Table 35

Command	1	2	3	4	5	6	7	8
Master Pan	0xf0	0x06	0x5d	0x0e	0x08	0x1c	pp	0xf7

Master Pan sets panpot, by 0(left)~64(center)~127(right).

Pile Voice (0xf0 0x06 0x5d 0x0e 0x08 0x7c dco 0x00 0xf7)

Table 36

Command	1	2	3	4	5	6	7	8	9
Pile Voice	0xf0	0x07	0x5d	0x0e	0x08	0x7c	dco	0x00	0xf7

Pile voice is to enlarge dynamic range of each voice, if contents don't have enough polyphony for loudness. Pile voice entry is specified that polyphony for each voice is changed. For example, If contents have only 8 polyphony, "dco" can be set to 0x04. And each voice consume 4 polyphony and maximum number of polyphony is changed to only 8. But volume of Music is loud. Since it is impossible to increase volume at a few polyphony, this command is available to make volume loud

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 84/92

Processing Music Data Error

If music data contains any erroneous data, the LSI cannot recognize data other than the error data. In such an event, the LSI enters its error processing mode and outputs "H" on the ERR bit.

Set the ST bit to "0" to stop playing once the ERR bit is turned "H".

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 85/92

TONE LIST

The note range of each tone is from C0 to C8. The range of note number is from 12 to 108.

When input the note number beyond the range, ML2870 changes to the nearest note number to be played by octave unit.

Table 37

GM	Poly	GM Tone Map	GM	Poly	GM Tone Map
0	1	Acoustic Grand Piano	32	1	Acoustic Bass
1	1	Bright Acoustic Piano	33	1	Electric Bass (finger)
2	2	Electric Grand Piano	34	1	Electric Bass (pick)
3	2	Honkey-tonk Piano	35	1	Fretless Bass
4	1	Electric Piano 1	36	1	Slap Bass 1
5	1	Electric Piano 2	37	1	Slap Bass 2
6	1	Harpsichord	38	1	Synth Bass 1
7	1	Clavi	39	1	Synth Bass 2
8	1	Celesta	40	1	Violin
9	1	Glockenspiel	41	1	Viola
10	2	Music Box	42	1	Cello
11	1	Vibraphone	43	1	Contrabass
12	1	Marinmba	44	1	Tremolo Strings
13	1	Xylophone	45	1	Pizzicato Strings
14	1	Tubular Bells	46	1	Orchestral Harp
15	2	Dulcimer	47	1	Timpani
16	2	Drawbar Organ	48	1	String Emsemble 1
17	2	Percussive Organ	49	1	String Emsemble 2
18	2	Rock Organ	50	1	Synth String 1
19	2	Church Organ	51	2	Synth String 2
20	1	Reed Organ	52	1	Choir Aahs
21	2	Accordion	53	1	Voice Oohs
22	1	Harmonica	54	2	Synth Vox
23	2	Tango Accordion	55	2	Orchestra Hit
24	1	Acoustic Guitar (nylon)	56	1	Trumpet
25	1	Acoustic Guitar (steel)	57	1	Trombone
26	1	Electric Guitar (jazz)	58	1	Tuba
27	1	Electric Guitar (clean)	59	1	Muted Trumpet
28	1	Electric Guitar (muted)	60	2	French Horn
29	1	Overdriven Guitar	61	1	Brass Section
30	1	Distortion Guitar	62	2	Synth Brass 1
31	1	Guitar harmonics	63	2	Synth Brass 2

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 86/92

Oki Electric Industry Co.Ltd.

Page: 87/92

Table 38

GM	Poly	GM Tone Map	GM	Poly	GM Tone Map
64	1	Soprano Sax	96	2	Fx1 (rain)
65	1	Alto Sax	97	2	Fx2 (soundtrack)
66	1	Tenor Sax	98	2	Fx3 (crystal)
67	1	Baritone Sax	99	2	Fx4 (atmosphere)
68	1	Oboe	100	2	Fx5 (brightness)
69	1	English Horn	101	2	Fx6 (goblins)
70	1	Bossoon	102	2	Fx7 (echoes)
71	1	Clarinet	103	2	Fx8 (sci-fi)
72	1	Piccolo	104	1	Sitar
73	1	Flute	105	1	Banjo
74	1	Recorder	106	1	Shamisen
75	1	Pan Flute	107	1	Koto
76	2	Blown Bottle	108	1	Kalimba
77	2	Shakuhachi	109	2	Bag pipe
78	1	Whistle	110	2	Fiddle
79	1	Ocarina	111	1	Shanai
80	2	Lead 1 (square)	112	1	Tinkle Bell
81	2	Lead 2 (sawtooth	113	1	Agogo
82	2	Lead 3 (calliope)	114	2	Steel Drums
83	2	Lead 4 (chiff)	115	1	Woodblock
84	2	Lead 5 (charang)	116	1	Taiko
85	2	Lead 6 (voice)	117	1	Melodic Tom
86	2	Lead 7 (fifths)	118	2	Synth Drum
87	2	Lead 8 (bass + lead)	119	1	Reverse Cymbal
88	2	Pad 1 (new age)	120	1	Guitar Fret Noise
89	2	Pad 2 (warm)	121	1	Breath Noise
90	2	Pad 3 (polysynth)	122	2	Seashore
91	2	Pad 4 (choir)	123	1	Bird Tweet
92	2	Pad 5 (bowed)	124	1	Telephone Ring
93	2	Pad 6 (metallic)	125	1	Helicopter
94	2	Pad 7 (halo)	126	2	Applause
95	2	Pad 8 (sweep)	127	1	Gunshot

File Name: DS2870_010001_E.doc

Rev: 1.0.1

Oki Electric Industry Co.Ltd.

Percussion MapNote 96-101 is assigned as PWM1-4, PANEL, and VIB pins. The value of velocity is specified as the brightness

Table 39

No.	Percussion name	No	Percussion Name	No	Percussion Name
35	Acoustic Bass Drum	59	Ride Cymbal2	96	PWM1
36	Bass Drum 1	60	Hi Bongo	97	PWM2
37	Side Stick	61	Low Bongo	98	PWM3
38	Acoustic Snare	62	Mute Hi Conga	99	PWM4
39	Hand Clap	63	Open Hi Conga	100	PANEL
40	Electric Snare	64	Low Conga	101	VIB
41	Low Floor Tom	65	High Timbale		
42	Closed Hi-Hat	66	Low Timbale		
43	High Floor Tom	67	High Agogo		
44	Pedal Hi-Hat	68	Low Agogo		
45	Low Tom	69	Cabasa		
46	Open Hi-Hat	70	Maracas		
47	Low-Mid Tom	71	Short Whistle		
48	Hi-Mid Tom	72	Long Whistle		
49	Crash Cymbal1	73	Short Guiro		
50	High Tom	74	Long Guiro		
51	Ride Cymbal1	75	Clavas		
52	Chinese Cymbal	76	Hi Wood Block		
53	Ride Bell	77	Low Wood Block		
54	Tambourine	78	Mute Cuica		
55	Splash Cymba l	79	Open Cuica		
56	Cowbell	80	Mute Triangle		
57	Crash Cymba 2	81	Open Triangle		
58	Vibraslap		_		

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 88/92

REVISION HISTORY

Table 40

Date	Page	Notes	Revision
Apr. 6, 02	6,7	Add pin description of WCSP and TQFP	00.00.04
Apr. 6, 02	13	Correct description of P7-0 pins in part of DC characteristics. Wrong: Pull-Down	00.00.04
1 600	20	Correct : Pull-Up	00.00.04
Apr. 6 02	39	Add block diagram which shows relationship between register bit and internal function.	00.00.04
Apr. 24 02	17	Change the timing characteristics of serial interface.	00.00.05
Apr. 25 02	17	Change the timing characteristics of serial interface.	00.00.05
Apr, 25, 02	11	Add the disposal of RD,WR and ILE pin in serial access mode.	00.00.06
Apr, 25, 02	56-57	Add the function of PWM output select register.	00.00.06
Apr, 25, 02	6	Delete TQFP pin layout, and add QFN pin layout.	00.00.06
May, 7, 02	6	Correct 31 pin, 32 pin and 37-48 pin of pin layout.	00.00.07
May, 7, 02	6	Correct pin name of PTESTO1,PTESTIN1,PTESTO2 , PTESTIN2 ,D1/SDOUT and D0/SDIN pins.	00.00.07
May,22, 02	41	Correct pin name of PTESTO1,PTESTIN1,PTESTO2 , PTESTIN2 ,D1/SDOUT and D0/SDIN pins.	00.00.08
May,22, 02	8	Fix pin layout for WCSP.	00.00.08
May,29,02	8	Corrects pin name: TESTO to TESTA.	00.00.09
May,29,02	9,	Add explanation of TESTA pin to PIN DISCRIPTION.	00.00.09
• •	10	Delete explanation of TESTO pin .	
June,07,02	56,57	Correct follows	00.00.09
		name of P2/PC, and P3/PD P5 Outputs PORT 5 Signal, and P5 Outputs VIB Signal	
June,18,02	11	Correct the table of ABSOLUTE MAXIMUM RATING and delete its note.	00.01.00
June,18,02	12	Correct the table of ELECTRICAL CHARACTERISTICS / DC CHARACTERISTICS	00.01.00
June,18,02	38	Add explanation for Table 9	00.01.00
June,18,02	57	Add the Table of Audio Volume Set up	00.01.00
June,18,02	58-60	Add explanations and figures of bias resistor	00.01.00
June,18,02	22,25	Correct the figure of Data Read Timing 1, 2	00.01.00
June,18,02	17	Add the table of Analog Characteristics	00.01.00
June,20,02	38	Correct explanation of feedback resistor in Table 9	00.01.01
July,03,02	11	Correct explanation of SDOUT pin in Table 4	00.01.02
July,03,02	12	Correct the condition of Power Dissipation in the table of ABSOLUTE MAXIMUM RATINGS	00.01.02
July,03,02	56	Correct explanation of PWM Output Select Register	00.01.02
July,03,02	7	Correct the Title, from 48-PINS to 62-PINS	00.01.02
July,03,02	14	Correct the Maximum of Bias Current parameter	00.01.02
July,03,02	30, 56	Correct the Port Control Register of PWM output select, the last 4bits.	00.01.02
July,03,02	13	Correct Maximum input voltage of PWM, VIB, and PANEL in DC CHARACTERISTICS chart	00.01.02
July,03,02	18	Correct explanation of ANALOG CHARACTERISTICS chart and add VREFL/R parameter	00.01.03
July,08,02	64,68,	Add Master Expression and Master Pan parameter on Exclusive Format.	00.01.03

File Name: DS2870_010001_E.doc

Rev: 1.0.1 Page: 89/92

Oki Electric Industry Co.Ltd.

	•		
July,11,02	61	Correct figures and explanations of analog power down	00.01.03
July,11,02	4	JAPANESE Ver ONLY	00.01.03
		Correct Features 8) from 64pin QFN to 48pin QFN	
July,11,02	11	Correct Table 4, serial interface,	00.01.03
		I/O of /RD,/WR,ILE pin from O to I	
July,11,02	51	Correct Volume(ADPCM) on Table13 value 24, from -46dB to	00.01.03
		-48dB	
July,11,02	55	Correct explanation for Table16, PWMA-PWMD pin's driving	00.01.03
<u> </u>	_	current, from 10mA to 20mA.	00.04.00
July,12,02	5	Correct the Block Diagram [Logic Part]	00.01.03
		Delete TESTO and add TESTA	00.04.04
July,12,02	all	Unify the pin name from PWM3-0 to PWMA-D	00.01.03
July,16,02	29	Add figures of Application Circuit Example	00.01.03
July,18,02	14	Correct DC Characteristics chart:	00.01.03
		Input voltage of PWMA-D,PANEL, and VIB pin	
July,18,02	21-28	Correct timing chart, modified from "INDEX" to "ILE"	00.01.03
July,18,02	37	Correct the value on Table 6, from "13H-1FH" to "13H"	00.01.03
July,18,02	13	Correct rating and unit of Power Dissipation on Absolute	00.01.0
, , ,		Maximum Rating Chart	
July,18,02	15	Correct Operating Current: include analog active current in	00.01.0
•		"IDDD" and modify the condition	
July,18,02	19	Correct Output Range of AOUT on Analog Characteristics Chart.	00.01.0
July,18,02	19	Delete Analog Active Current on Analog Characteristics Chart,	00.01.0
•		and include it in the Operating Current on Page 18.	
Aug,5,02	29,30	Add explanation of Power Supply	00.01.0
Aug,5,02	4	Modified General Description	00.01.04
Aug,5,02	22-27	Modified timing chart of serial interface	00.01.0
Aug,5,02	22-27	Woulded tilling chart of scriat interface	00.01.0
Aug,9,02	52	Correct the explanation for ADPCM START register	00.01.04
Aug,19,02	57	Correct the explanations for Port register and add notice.	00.01.0
Aug,19,02	33	Correct the value of the Request register on Register Map 2	00.01.0
Aug,19,02	40	Correct the explanation of PLL in CLOCK register	00.01.0
Sep,09,02	65	Add the explanations for Analog Power Down register,	00.01.0
5cp,07,02	03	ENR2R/ENL2L	00.01.0
Sep,09,02	19	Add the potential deference on Analog Characteristics chart	00.01.0
Sep,10,02	28	Correct the value of tUNIT and tBASE on PWM timing chart.	00.01.0
Sep,11,02	36	Add "Difference between Hardware Reset and Software Reset"	00.01.0
Sep,13,02	9	Correct the Pin description of IRQ pin. (the ISS bit was reversed)	00.01.0
Sep,13,02	50	Correct the description of ISS bit on the figure.(the bit was reversed)	00.01.0
Sep,13,02	69	Correct the Bend Range of Pitch Bender on MIDI Implementation	00.01.0
~°F,10,0=		Chart	0010110
Sep,26,02	13	Add recommended operating range of XTVDD.	00.01.0
Sep,26,02	52	Correct Status: Write:\$2Dh to Write:inhibit	00.01.0
Oct,1,02	6	Add DGND, AGND, SYNC pin on the Block Diagram Logic Part.	00.01.0
Oct,1,02	24	Correct the description on Data Read Timing 1: TCHSH1♦ tCHSL1	00.01.0
Oct,1,02	25	Correct the description on Data Write Timing 2: tCH2\(\rightarrow\) tCH	00.01.0
Oct,1,02	34, 48, 49	IRQ was sorted as AIRQ,SIRQ, and EIRQ depends on for ADPCM,	00.01.0
0 . 1 05	11	SCORE and EVENT data.	00.01.5
Oct,1,02	all	Unified IRQ, /IRQ, and IRQ to IRQ (High drive)	00.01.0
Oct,1,02	50	Add the table about ISS bit	00.01.0
Oct,17,02	17, 21	Add tCC and tWCH on Bus Interface Write Cycle and the Timing	00.01.0
		chart.	

File Name: DS2870_010001_E.doc Rev: 1.0.1

Oki Electric Industry Co.Ltd.

Oct,17,02	15, 19	Add the values of THDand IDDS	00.01.06
Oct,17,02	19	Add the Min and Max values of VAOUT.	00.01.06
	17	Correct the Min RAOUT value, from 10 into 7 (k Ω)	00.01.00
Oct,25,02	30	Add DrvGND and XTGND on the Equivalent Circuit	00.01.06
Nov,12,02	59	Add explanation for PWM Mode register.	00.01.07
Nov,22,02	27	Correct the Timing Chart of PWM output:	00.01.07
		tINIT freq:1.9kHz to 1.9MHz tBASE freq: 15Hz to 15kHz	
Nov,27,02	37	Add the explanation of Absolute Value of Clock Pin Impedance	01.00.00
Nov,28,02	15	Add the measurement circuit of operating current.	01.00.00
Nov,28,02	38, 39	Correct the figures of Application Circuit Example.	01.00.00
Nov,29,02	9	Correct the explanations for SYNC register	01.00.00
Nov,29,02	29-34	Add Timing Charts of :	01.00.00
		Supplying clock of small amplitude	
		Supplying clock of digital signal	
		Start playback	
		End of playback and playback again	
		Power down sequence during Playback	
		Software reset timing	
		Register Clear Timing	
		Power down sequence	
		Power up sequence	
		Timing chart of analog power down	
Dec,05,02	67	Correct the explanations of PWM mode register.	01.00.00
Dec,05,02	87	Add PWMs PANEL and VIB on the Percussion Map.	01.00.00
Dec,11,02	57	Correct the table of Interrupt Enable.	01.00.00
Dec,11,02	58	Correct the figure of Request register.	01.00.00
Dec,11,02	70, 71	Correct the figures and add the Notes for PWM Output Select Register.	01.00.00
Jan,08,03	61	Add explanation for ADPCM START.	01.00.01
Jan,08,03	15	Add the value of standby current at the condition of DVDD=AVDD 3.6V	01.00.01
Jan,08,03	all	Correct the value of power supply to $+2.5 \text{ V} \sim 3.6 \text{ V}$	01.00.01
Jan,20,03	36	Correct the explanation for raising power supply.	01.00.01
Jan,23,03	6	Add the Ordering Part Numbers.	01.00.01
Jan,23,03	15	Modified the condition of VOL/VOH from 100µA into 135µA on	01.00.01
		DC characteristic.	0 - 1 0 0 1 0 -
Jan,23,03	18, 22	Add tICL specification.	01.00.01
	10, 22	Delete tIRL, tIRL and tCWL specifications.	01.00.01
Jan,23,03	21	Add the Chart of Data-Bus at power on	01.00.01
1811 7.5 0.5			

File Name: DS2870_010001_E.doc Rev: 1.0.1

Page: 91/92

NOTICE

1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.

2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.

3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.

4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.

5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.

6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans.

Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.

7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.

8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2002 Oki Electric Industry Co., Ltd.

File Name: DS2870 010001 E.doc

Rev: 1.0.1 Page: 92/92