Cours N°P M 7: Les Aspects énergétiques

Introduction Le mouvement d'un oscillateur quelconque se justifie via les échanges énergétiques entre les constituants du système oscillant.

Comment un ressort intervient-il dans les échanges énergétiques ?

I- Travail d'une force

1-Travail d'une force constante

Le travail d'une force constante $F \rightarrow$, d'un point A vers un point B est le produit scalaire du vecteur force $F \rightarrow$ par le vecteur déplacement \overline{AB} .

L'unité du travail dans le S I des unités est le **Joule** (*J*).

2 - Travail d'une force non constante

2- 1 Le travail de la force appliquée par un ressort

Méthode 1 : Méthode analytique

Considérons un ressort de longueur initiale P_0 et de constante de raideur K placé sur un plan horizontal comme l'indique la figure suivante ; La tension du ressort $T \rightarrow = -K.x.7 \rightarrow$ n'est pas une force constante . Pour calculer le travail de la force $F \rightarrow$, on doit considérer le travail élémentaire de cette force dW sur un déplacement infiniment petit $dl \rightarrow$ sur lequel nous considérons que la force est constante :

 $dW = \dots \dots$ avec $\vec{F} = \dots$ et $\vec{d} = \dots$

 x_B est la somme des travaux élémentaires, on l'obtient en utilisant le calcul intégral,

Le travail total de la force $F \rightarrow$, lorsque son point d'application se déplace d'un point d'abscisse x_A à un point d'abscisse

Le travail de la force $T \rightarrow du$ ressort est :

Méthode 2 : Méthode géométrique	F = k. x
L'intégrale de la fonction F = K.x est l' aire de la partie du plan limitée par courbe	k. x _B
de la fonction \mathbf{F} et l'axe des abscisses , avec $XA < X < XB$:	k.x _A
$W_{A\to B}(\overline{F}) = Aire de grand triangle - Aire de petit triangle$	$0 \qquad x_A \qquad x_B \qquad x(m)$
II- Etude énergétique du pendule élastique horizontal	
1- Energie cinétique	
L'énergie cinétique est l'énergie que possède un corps du fait de son mouvement. élastique est donnée par la relation suivante :	L'énergie cinétique pendule
<i>m</i> :	
x :	
A. E	
2- Energie potentielle élastique :	>1
Energie potentielle élastique E_{Pe} d'un pendule élastique est l'énergie qu'il poss ressort, elle est donnée par la relation suivante :	ede grace a la deformation du
Avec :	
X:	
C:	
En considérant comme état de référence $E_{Pe} = 0$ lorsque $x = 0$	
•	
Remarque: Variation de l'énergie potentielle élastique ne dépend pas de l'éta	t de référence :
Remarque. Variation de l'energie potentiene élastique ne dépend pas de l'éta	t de l'élélélice.
3- Energie mécanique d'un système {masse +ressort} :	
L'énergie mécanique d'un pendule élastique horizontal est la somme de l'énerg	ie potentielle élastique et l'énergie
cinétique :	

↑F(N)

4- L'expression de l'énergie mécanique

a- Cas des oscillations non amorties (: sans frottements)

Les variations d'énergies Ec, Epe et Em en fonction de temps

Les variations d'énergies Ec, Epe et Em en fonction de l'élongation x

➤ D'après les résultats des deux figures: Dans le cas des **oscillations sans frottements**, l'énergie mécanique de l'oscillateur est :

à la position $x = 0$	à la position $x = X_M$						
•••							

Remarque:

- La relation entre la période de l''énergie **T** et période propre T_0 du mouvement est : $T = \frac{T_0}{2}$
- L'amplitude des oscillations reste constante au cours du temps, alors : $\frac{dE_m}{dt} = 0$
- ✓ En dérivant l'expression de l'énergie mécanique, on obtient l'équation différentielle du mouvement..

b- Cas des oscillations amorties (: avec frottements)

L'amplitude des oscillations décroît au cours du temps, le régime est pseudopériodique de pseudo-période T . L'énergie mécanique du système diminue au cours du temps, elle est dissipée par transfert thermique

III- Etude énergétique d'un pendule de torsion

1 – Travail de couple de torsion

Le travail de couple de torsion appliquée par le fil de torsion de constante C lors d'un déplacement de θ_1 à θ_2 est : $dW = M_c. d\theta$ avec $M_c = -C.\theta$

Avec C: constante de torsion (N. m. rad)

2 – Energie potentielle de torsion

L'énergie potentielle de torsion $E_{P;t}$: c'est l'énergie liée à la déformation du fil. Elle est donnée par la relation

suivante :

avec	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••

On choisit naturellement une énergie potentielle de torsion nulle pour la position où la déformation du fil est nulle $\theta = 0$, soit $E_{P;t} = 0$ J donc k' = 0 J.

Remarque: Relation entre $\Delta E_{p;t}$ et le travail du couple de torsion est : $\Delta E_{p;t} = -W_{\theta_{1\to\theta_2}}$

3- Energie cinétique :

L'énergie cinétique d'un pendule de torsion effectuant un mouvement oscillatoire est :

 J_{Δ} en (**Kg.m**²) : Moment d'inertie par rapport l'axe (Δ)

.....

 $\dot{\theta}$ en (rad.s⁻¹): Vitesse angulaire; $\dot{\theta}$ =

4- L'énergie mécanique :

L'énergie mécanique d'un pendule de torsion est la somme de l'énergie potentielle de torsion et l'énergie cinétique :

•••••	••••	••••	••••	••••	••••	••••	•••	• • •	•••	•••	• • •	•••	• • •	•••	•••	••••	••	•••	•••	•••	••	•••	•••	

5- L'expression de l'énergie mécanique

a- Cas des oscillations non amorties (: sans frottements)

à la position $\theta = 0$	à la position $\theta = \theta_m$

Remarque :

- La relation entre la période d'énergie **T** et période propre T_0 du mouvement est : $T = \frac{T0}{2}$
- L'amplitude des oscillations reste constante au cours du temps, alors : $\frac{dEm}{dt} = 0$
- ✓ En dérivant l'expression de l'énergie mécanique, on obtient l'équation différentielle du mouvement...

$$E_{m} = cst \qquad \Longrightarrow \qquad \frac{dE_{m}}{dt} = \mathbf{0} \qquad \Longrightarrow \qquad \frac{d}{dt} \left(\frac{1}{2} J_{\Delta} \cdot \dot{\theta}^{2} + \frac{1}{2} C \cdot \theta^{2} \right) = 0$$

$$\Longrightarrow \qquad J_{\Delta} \cdot \dot{\theta} \cdot \ddot{\theta} + C \cdot \theta \cdot \dot{\theta} = 0 \qquad \Longrightarrow \qquad \ddot{\theta} + \frac{C}{I_{\Delta}} \Theta = \mathbf{0}$$

L'équation différentielle du mouvement

b- Cas des oscillations amorties (: avec frottements)

L'amplitude des oscillations décroît au cours du temps, le régime est pseudopériodique de pseudo-période T . L'énergie mécanique du système diminue au cours du temps, elle est dissipée par transfert thermique.

III- Étude énergétique d'un pendule pesant.

1-Énergie cinétique d'un pendule pesant

L'énergie cinétique d'un pendule pesant effectuant un mouvement oscillatoire est :

Avec J_{Δ} : est le moment d'inertie du pendule par rapport à l'axe (Δ) exprimé en **kg.m²**;

 $\dot{\theta}$: est la vitesse angulaire du pendule en rad/s.

2- Énergie potentielle de pesanteur

L'énergie potentielle de pesanteur d'un pendule pesant est donnée par la relation suivante :

m: la masse du pendule en (kg),

C: une constante qui dépend de l'état de référence choisi où l'énergie potentielle est nulle $(\mathbf{E}_{\mathbf{p}}, = \mathbf{0})$ On prend $\mathbf{E}_{\mathbf{p}} = \mathbf{0}$ à $\mathbf{z} = \mathbf{0}$ et $\mathbf{1} - \cos(\theta) \approx \frac{\theta^2}{3}$

Déterminer l'expression de E_{PP} **en fonction de** m,g,d et θ

••••			
••••			
 	 	 · · · · · · · · · · · · · · · · · · ·	

Remarque: Relation entre $\Delta E_{p;p}$ et le travail du poids est : $\Delta E_{p;p} = -W(P^{\rightarrow})$

3- Expression de l'énergie mécanique

Expression de l'énergie mécanique du pendule pesant :

4- Diagramme des énergies

Les énergies E en fonction de <mark>t</mark>

Cas des oscillations sans frottements

Cas des oscillations avec frottements

Remarque:

Dans le cas de pendule simple OG = l et $J_{\Delta} = ml^2$

 $\mathbf{E_c} = \dots$

 $\mathbf{E}_{\mathbf{pp}} = \dots$

 $\mathbf{E_m} = \dots$

