BMI/CS 576 - Day 24

- Today
 - Bayesian network structure learning
 - Scoring networks
 - The space of possible networks
- Thursday
 - Sparse candidate algorithm

Course evaluation survey

- Please respond!
- Deadline: Dec 11th (Wed)
- Your feedback is critical to the future development of this course
- aefis.wisc.edu

Quiz

Suppose that you believe that a coin is likely to be weighted towards heads and that your prior belief in the probability of the coin coming up heads is Beta(10,2). You flip the coin k times, and, to your surprise, all flips come up tails. With a Bayesian perspective, what is the smallest value of k such that you would change your mind and believe that the coin is more likely weighted towards tails?

 θ is the probability of a heads

$$P(\theta) = Beta(10,2)$$

$$k = 7$$

$$k = 8$$

$$React(0,2)$$

$$\theta$$

$$React(0,2)$$

$$React(0,2)$$

$$\theta$$

$$React(0,2)$$

$$\theta$$

$$React(0,2)$$

$$\theta$$

$$React(0,3)$$

$$\theta$$

$$React(0,3)$$

$$\theta$$

$$\theta$$

$$\theta$$

$$\theta$$

$$\theta$$

Questions – Model evidence

- P(D) or P(D|G)?
- When there is only one model, we will often just use P(D)
- When there are multiple possible models (represented by a Bayesian network graph structure G), we will often be explicit and say P(D|G)
 - Explicit about model evidence being a function of the model (G)
 - In this module we are optimizing over G

Conjugate priors

- What is a conjugate prior?
 - It is a form of the prior distribution such that the posterior distribution (after observing some data) has the same form
- Why is a conjugate prior useful?
 - Mostly for computational reasons
 - But also for ease in mathematical reasoning
 - Closed-form equations for many useful calculations
 - Posterior distribution
 - Model evidence