DS 503: Advanced Data Analytics

Lecture 6: Compressed Sensing

Dr. Gagan Raj Gupta

A contemporary paradox

Raw: 15MB

JPEG: 150KB

- Massive data acquisition
- Most of the data is redundant and can be thrown away
- Seems enormously wasteful
- "One can regard the possibility of digital compression as a failure of sensor design. If it is possible to compress measured data, one might argue that too many measurements were taken." David Brady (Duke, ECE)

Changing the way design sensors (Image, Voice etc.)

- Acquire/Sample (A-to-D converter, digital camera)
- O Compress (signal dependent, nonlinear)
- Fundamental Question: Can we directly acquire just the useful part of the signal?
 - O Huge Practical Implications: MRI (reduce radiation), Remote Sensing, Networks

Summary

- O Can obtain super-resolved signals from just a few sensors
 - Apparently breaking the Shannon-Nyquist Theorem
 - O Requires sampling at twice the highest frequency (f)
 - O If f is high, then it is difficult to build circuits to sample at the desired rate
- Sensing is nonadaptive: no effort to understand the signal
 - O Sample is a linear functional applied to the signal
- Simple acquisition process followed by numerical optimization
- When will it work? Two conditions:
 - OSparsity: In some domain (choice of basis functions)
 - OIncoherence (applied through Isometric property)

Analog to Digital RF Receivers Cameras Medical Imaging

Sparsity

- x: signal coefficients in our convenient representation
- Collect information by measuring largest components of x
- O Question: How to choose the basis and measure when the positions are not known in advance?
 - O How to reconstruct the signal?

Incoherent (random sensing)

- $y = \langle a_k, x \rangle$, k = 1,2,3,...,m: These are m measurements using inner products with x
- Want sensing waveforms as spread out/"incoherent" as possible
- O Span of $\{a_k\}$ should be as random as possible (general orientation)
 - \bigcirc $a_k \sim F(i.i.d.)$
 - $\bigcirc E[a_k^*a_k] = I$ and a_k spread out

Incoherence

incoherent measurements

many manufacture and the company of the company of

- Signal is local, measurements are global
- Each measurement picks up a little information about each component
- Triangulate significant components from measurements
- Formalization: Relies on uncertainty principles between sparsity basis and incoherent measurements

Example of Foundational Result

Classical viewpoint

- Measure everything (all the pixels, all the coefficients)
- \bigcirc Keep d largest coefficients: distortion is $||x x_d||$
- Compressed sensing viewpoint
 - O Take m random measurements: $y_k = \langle x, a_k \rangle$
 - O Reconstruct by linear programming: $(||x||_{l_1} = \sum_i |x_i|)$

$$\left|x^* = \operatorname{arg\,min} \left| |\check{x}| \right|_{l_1} \text{ subject to } y_k = <\check{x}, a_k > \text{ , k = 1,2,...,m} \right|$$

igcup Among all the objects consistent with data, pick min l_1

Same performance with about
$$m = d \log \left(\frac{n}{d}\right) : \left|\left|x^* - x\right|\right|_{l_2} \le \left|\left|x - x_d\right|\right|_{l_2}$$

What is compressive sensing?

- Possibility of compressed data acquisition protocols which directly acquire just the important information
- Incoherent/random measurements → compressed description
- Simultaneous signal acquisition and compression!
- All we need is to decompress...

Three surprises:

- Sensing is ultra efficient and nonadaptive
- Recovery is possible by tractable optimization
- Sensing/recovery is robust to noise (and other imperfections)

Analog to Digital Conversion

If 'information bandwidth' less than total bandwidth, then should be able to

- sample below Nyquist without information loss
- recover missing samples by convex optimization

Optical Systems

- O Direct sampling: analog/digital photography, mid 19th century
- OIndirect sampling: acquisition in a transformed domain, second half of 20th century; e.g. CT, MRI
- Compressive sampling: acquisition in an incoherent domain
 - ODesign incoherent analog sensors rather than usual pixels
 - O Pay-off: need far fewer sensors

The first photograph?

CT scanner

Single Pixel Camera (compressed sensing)

Fast Magnetic Resonance Imaging (MRI)

Fully sampled

6 × undersampled classical

6 × undersampled CS

OGoal: Sample less to speed up MR imaging process

Sparsest solutions of Linear equations

O Find a sparsest solution of linear system:

$$(P_0) \quad \min\{||x||_0 : Ax = b, x \in R^n\}$$

Where $||x||_0 =$ number of non zeros of x and $A \in R^{mxn}$ with m<n The solution of P_0 is in general not unique and this problem is NP Hard.

Basis Pursuit

 \bigcirc Let's try to solve this in L_1 norm

$$(P_1) \quad \min\{||x||_1 : Ax = b, x \in R^n\}$$

Where $||x||_1 = \sum_i |x_i|$ and $A \in \mathbb{R}^{mxn}$ with m<n

The solution of P_1 is possible in polynomial time by linear programming

$$\min 1^T y$$

s.t. Ax=b and $-y \le x \le y$

Sparse Recovery and Mutual Incoherence

Mutual incoherence (column vectors of A):

$$\mathsf{M}(\mathsf{A}) = \max_{i \neq j} |a_i^T a_j|$$
 Where $\mathsf{A} = [a_1 \dots a_n] \in R^{m \times n}$ and $\big| |a_i| \big|_2 = 1$

Suppose that for the sparsest solution x^* we have

$$\left|\left|x^*\right|\right|_0 < \frac{\sqrt{2} - \frac{1}{2}}{M(A)}$$

Then the solution of P_1 is equal to the solution of P_0

Sparse Recovery and RIP

Restricted Isometry Property of Order k

Let δ_k be the smallest number such that

$$(1 - \delta_k) ||x||_2^2 \le |Ax|_2^2 \le (1 + \delta_k) ||x||_2^2$$

for all k-sparse vectors $x \in \mathbb{R}^n$ where $A = [a_1 \dots a_n] \in \mathbb{R}^{m \times n}$

Theorem

If $\delta_{2k} < \sqrt{2} - 1$, then for all k-sparse vectors x such that Ax=b, the solution of P_1 is equal to the solution of P_0 .

