- i) Encuentre la recta de ajuste de mínimos cuadrados y su gráfica. ¿Parece razonable la relación lineal; es decir, parece razonable que este pliegue pueda ser una deformación anticlinal?
- ii) Encuentre la aproximación al desplazamiento y a la profundidad del desprendimiento. Basado en este análisis, escriba un informe resumiendo el consejo que daría a la compañía petrolera.

b) Existen otros tipos de pliegues; uno muy común es el pliegue de falla inclinada. En este caso existen dos niveles de interés, los niveles de desprendimiento superior e inferior. Entre estos dos niveles, el exceso de rocas es empujado hacia arriba. Arriba del nivel superior, parte del exceso de rocas es empujado hacia arriba y parte es desplazado (horizontalmente). Esta estructura diferente tiene otras implicaciones para el potencial de petróleo atrapado. Un examen cuidadoso de los datos y un proceso de mínimos cuadrados diferente pueden indicar la presencia de este tipo de pliegue.

Para dicho pliegue de falla inclinada, la relación entre la profundidad del desprendimiento y el área de exceso consiste en dos rectas, en donde la recta de arriba tiene una pendiente menor. Esto se reflejaría en los datos del área de exceso contra la profundidad del nivel de referencia si se observa que los puntos se pueden clasificar en dos subconjuntos naturales. Cada subconjunto tendría un ajuste de recta de mínimos cuadrados. Esto se denomina ajuste por partes. Estas rectas serían traslaciones de la relación entre el área de exceso y la profundidad del desprendimiento.

El nivel de desprendimiento inferior sería el punto en el que la recta inferior interseca al eje h. La coordenada h del punto de intersección de las dos rectas sería la elevación del nivel de desprendimiento superior por encima del nivel de referencia. La diferencia entre las pendientes de las dos rectas representa el desplazamiento horizontal de la roca a lo largo del nivel de desprendimiento superior.

Para los datos anteriores del campo Tip-Top se quiere investigar si sería razonable interpretar el pliegue como un pliegue de falla inclinada.

- i) Primero, encuentre la recta de mínimos cuadrados para todo el conjunto de datos y encuentre $|\mathbf{y} A\mathbf{u}|^2$, donde A es la matriz utilizada en el ajuste de mínimos cuadrados y \mathbf{u} es la solución de mínimos cuadrados. Recuerde que $|\mathbf{y} A\mathbf{u}|^2$ mide la suma de los cuadrados de las distancias entre cada valor y de los datos y el valor y correspondiente a la recta de mínimos cuadrados.
- ii) Después, grafique los datos y determine cuál podría ser el agrupamiento natural en dos segmentos de recta. Determine qué valores de los datos pertenecen a cada grupo. Ajuste una recta de mínimos cuadrados a cada grupo y determine $|\mathbf{y} A\mathbf{u}|^2$ para cada uno. Sume estas longitudes para obtener el número que representa la suma de los cuadrados de las distancias de cada valor y de los datos al valor y del ajuste por partes. Compare esto con el número obtenido en el subinciso i). ¿Es mejor este ajuste por partes?