One Three

September 4, 2024

Contents

1	Objectives Consistent Factors													
2														
3	Matrix Arithmetic													
	3.1 Defintion	2												
	3.2 Addition/Subtraction	2												
	3.3 Definition	3												
	3.4 Definition	4												
	3.4.1 How-to Matrix Multiply	4												
4	Coefficient Matrix													
5	Linear Combination 5.1 Theorem													
6	Transpose a Matrix													
7	Trace of a Matrix													
8	Matrix Polynomials													
9 The Inverse of a Square Matrix														
	9.1 Given $A = [5,1;4,1]$ and $B = [1,-1;-4,5]$, check if A and B are													
	inverses	7												
	9.2 Given $A = [1,3;1,6]$ and $B = [2,-1;-1/3,1/3]$ check if A and B													
	are inverse	7												
	9.3 Theorem	7												
	9.4 Practice	7												

9.5	Why I	nverse Mati	rix? .											8
	9.5.1	Examples												8
9.6	Proper	rties of Inve	rses .							_				8

1 Objectives

- Add and subtract matricies
- Multiply matricies
- Writing a system of linear equations as a matrix product
- Write a matrxi product as the linear combination of the columns
- Compute the tract and transpost of a matrix

2 Consistent Factors

A matrix with m rows and n columns is called an m by n matrix Every location in a matrix A is double subscripted The $a_{i,j}$ th number is found in the /i/th row and /j/th column 3 by 4 matrix 5, 9, 3 Row matricies have one row for example, column matricies have one column, also called vector

3 Matrix Arithmetic

3.1 Defintion

Two matricies A and B are equal, if they have the same dimension (m x n), and their corresponding entries are identical. (A)_{ij} = $a_{ij} = b_{ij} = (B)_{ij}$ for 1 <= i <= m, and 1 <= j <= n

3.2 Addition/Subtraction

Two matricies have a sumer or different if and only if they have the same dimensions (m x n), and their sum is defined to be $(A+B)_{ij}=a_{ij}+b_{ij}$

 $\begin{array}{cccc} 1 & 2 & 4 \\ 1 & 3 & 9 \end{array}$

•

3.3 Definition

If A is an m x n matrix and c is a scalar, then the **scalar multiple** of A by c is the m x n matric given by $cA = (ca_{ij})$

2 -7

1. 7 63 56 -14

> ka kb kc kd ke kf

3.4 Definition

Two matricies A and B can be multiplied if and only if the number of columns of A matches the number of rows of B

 $A_{m~x~n}B_{n~x~p}=C_{m~x~p}$ and $(AB)_{ij}=k=1na_{ik}b_{kj}=a_{i1}b_{1j}+a_{i2}b_{2j}+a_{i3}b_{3j}+\ldots \\ +a_{in}b_{nj}$

If A is 3x4 and B is 4x5 => 3x5 If A is 3x4 and B is 3x4 => invalid multiplication

3.4.1 How-to Matrix Multiply

Row i times column j

1. 1

$$a = [1,3]$$

$$b = [a,b;c,d]$$

a * b

$$row1 = [1,3] & column1 = [a;c] turns into 1(a) + 3(c) = a+3c$$

$$row1 = [1,3] \& column2 = [b;d] turns into 1(b) + 3(d) = b+3d$$

2. 2

$$a = [0,-1;1,0]$$

$$b = [5;1]$$

a * b

$$0(5)+(-1)1$$

 $1(5)+0(1)$

$$(-1)$$

5

3. 3

$$a = [1,2;3,4;5,6]$$

 $b = [4,3;5,1]$

a * b

$$1(4)+2(5)$$
 $1(3)+2(1)$
 $3(4)+4(5)$ $3(3)+4(1)$
 $5(4)+6(5)$ $5(3)+6(1)$

14 5 32 13 50 21

4. 4

$$\begin{array}{ccc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}$$

and

$$b_{11}$$
 b_{12} b_{21} b_{22}

$$\begin{array}{ll} a_{11}(b_{11}) + a_{22}(b_{21}) & a_{11}(b_{12}) + a_{12}(b_{22}) \\ a_{21}(b_{11}) + a_{22}(b_{21}) & a_{21}(b_{12}) + a_{22}(b_{22}) \end{array}$$

5. 5

$$1(5)+2(6)$$
 $1(-1)+2(7)$
 $3(5)+4(6)$ $3(-1)+4(7)$

17 13 39 25

6. 6

$$5(1)+-1(3)$$
 $5(2)+-1(4)$
 $6(1)+7(3)$ $6(2)+7(4)$

 $\begin{array}{cc} 2 & 6 \\ 27 & 40 \end{array}$

7. 7

$$1(1)+3(4)+5(6)$$
 $1(6)+3(1)+5-1$

4 Coefficient Matrix

[A|b] where A are the left hand side, b is the right hand side of the equals sign

5 Linear Combination

Matrix product as linear combination

5.1 Theorem

If $A_{m \times n}$ and $x_{n \times 1}$, then Ax can be expressed as a linear combination of the column vectors of A in which coefficients are the entires of X(vector)

In general: $A_x = [\text{column } 1]x_1 + [\text{column } 2]x_2 + \dots + [\text{column } n]x_n$

6 Transpose a Matrix

If any m x n matrix is transposed then it's dimensions will become n x m, row of A becomes column of $A_{\rm T}$

$$(A^T)_{ij} = (A)_{ji}$$

7 Trace of a Matrix

If A is a square matrix, then the tract of A, denoted by $\mathbf{tr}(\mathbf{A})$ is defined to be the sum of the entries on the main diagonal of \mathbf{A} . The trace of A is undefined if A is not a square matrix.

8 Matrix Polynomials

Given $2x^2-3x+4$ find f(a) We need to add an 'I' that is the same dimensions as the matrix, in this case $4I_2$

$$A = [4,1;3,5]$$

$$2 * (A * A) - (3*A) + 4*eye(2)$$

9 The Inverse of a Square Matrix

Any nxn matrix A is said to be invertible, or nonsingular, if there exists a matrix B such that AB = I = Ba. The inverse is written as A^{-1} If A has no inverse it is said to be singular

Need to check if AB = I && BA = I

If you multiply a matrix and its inverse you should get the identity matrix of the same size

9.1 Given A = [5,1;4,1] and B = [1,-1;-4,5], check if A and B are inverses

We take $[a,b;c,d] \rightarrow [d,-b;-c,a]$

$$a = [5,1;4,1]$$

 $b = [1,-1;-4,5]$

b*a

9.2 Given A = [1,3;1,6] and B = [2,-1;-1/3,1/3] check if A and B are inverse

$$A = [1,3;1,6]$$

$$B = [2,-1,-1/3,1/3]$$

A*B

9.3 Theorem

A matrix A is only invertible if $ad - bc \neq 0$, in which case the inverse is given by the formula

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

ad - bc is called the determinant of the matrix A (cross multiply)

9.4 Practice

a = [1,2;3,4]

b = [-1,2;3,-2]

c = [2,-1,-4,2]

inv(a)

9.5 Why Inverse Matrix?

Helps us to solve a linear system

Given a matrix equation $A\to_x=b^\to,$ we could solve the equation by applying $A\hat{\ }_{-1}$ to both sides to get

$$A^{-1}Ax^{\rightarrow} = A^{-1}b^{\rightarrow}$$

$$x^{\to} = A^{-1}b^{\to}$$

Note, if A⁻¹ does not exist, the the equation has no solutions

9.5.1 Examples

Solve the system by matrix inversion

$$x_1 + 2x_2 = 43x_1 + 4x_2 = 10$$

$$\backslash \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \end{bmatrix} \backslash \right]$$

$$A^{-1} = \begin{bmatrix} -2 & 1\\ \frac{3}{2} & \frac{-1}{2} \end{bmatrix}$$

9.6 Properties of Inverses