Selected Solutions for Chapter 25: All-Pairs Shortest Paths

Solution to Exercise 25.1-3

The matrix $L^{(0)}$ corresponds to the identity matrix

$$I = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

of regular matrix multiplication. Substitute 0 (the identity for +) for ∞ (the identity for min), and 1 (the identity for \cdot) for 0 (the identity for +).

Solution to Exercise 25.1-5

The all-pairs shortest-paths algorithm in Section 25.1 computes

$$L^{(n-1)} = W^{n-1} = L^{(0)} \cdot W^{n-1}$$
.

where $l_{ij}^{(n-1)} = \delta(i,j)$ and $L^{(0)}$ is the identity matrix. That is, the entry in the ith row and jth column of the matrix "product" is the shortest-path distance from vertex i to vertex j, and row i of the product is the solution to the single-source shortest-paths problem for vertex i.

Notice that in a matrix "product" $C = A \cdot B$, the *i*th row of C is the *i*th row of A "multiplied" by B. Since all we want is the *i*th row of C, we never need more than the *i*th row of A.

Thus the solution to the single-source shortest-paths from vertex i is $L_i^{(0)} \cdot W^{n-1}$, where $L_i^{(0)}$ is the ith row of $L^{(0)}$ —a vector whose ith entry is 0 and whose other entries are ∞ .

Doing the above "multiplications" starting from the left is essentially the same as the Bellman-Ford algorithm. The vector corresponds to the d values in Bellman-Ford—the shortest-path estimates from the source to each vertex.

• The vector is initially 0 for the source and ∞ for all other vertices, the same as the values set up for d by INITIALIZE-SINGLE-SOURCE.

- Each "multiplication" of the current vector by W relaxes all edges just as BELLMAN-FORD does. That is, a distance estimate in the row, say the distance to ν , is updated to a smaller estimate, if any, formed by adding some $w(u, \nu)$ to the current estimate of the distance to u.
- The relaxation/multiplication is done n-1 times.

Solution to Exercise 25.2-4

With the superscripts, the computation is $d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$. If, having dropped the superscripts, we were to compute and store d_{ik} or d_{kj} before using these values to compute d_{ij} , we might be computing one of the following:

$$\begin{array}{lll} d_{ij}^{(k)} & = & \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k)} + d_{kj}^{(k-1)} \right) \;, \\ d_{ij}^{(k)} & = & \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k)} \right) \;, \\ d_{ij}^{(k)} & = & \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k)} + d_{kj}^{(k)} \right) \;. \end{array}$$

In any of these scenarios, we're computing the weight of a shortest path from i to j with all intermediate vertices in $\{1,2,\ldots,k\}$. If we use $d_{ik}^{(k)}$, rather than $d_{ik}^{(k-1)}$, in the computation, then we're using a subpath from i to k with all intermediate vertices in $\{1,2,\ldots,k\}$. But k cannot be an *intermediate* vertex on a shortest path from i to k, since otherwise there would be a cycle on this shortest path. Thus, $d_{ik}^{(k)} = d_{ik}^{(k-1)}$. A similar argument applies to show that $d_{kj}^{(k)} = d_{kj}^{(k-1)}$. Hence, we can drop the superscripts in the computation.

Solution to Exercise 25.3-4

It changes shortest paths. Consider the following graph. $V = \{s, x, y, z\}$, and there are 4 edges: w(s, x) = 2, w(x, y) = 2, w(s, y) = 5, and w(s, z) = -10. So we'd add 10 to every weight to make \hat{w} . With w, the shortest path from s to y is $s \to x \to y$, with weight 4. With \hat{w} , the shortest path from s to y is $s \to y$, with weight 15. (The path $s \to x \to y$ has weight 24.) The problem is that by just adding the same amount to every edge, you penalize paths with more edges, even if their weights are low.