# **FUSION**

# (<u>Family-level Unique Small RNA Integration</u>) Version 1.0.0

# **User Manual**

# <u>By:</u>

Hukam C. Rawal, Qi Chen, Tong Zhou

**April**, 2025

# **Table of Contents**

|                                  | Page no. |
|----------------------------------|----------|
| 1. Introduction                  | <br>2    |
| 2. Installation and usage        | <br>2    |
| 2.1. Pre-requisites              | <br>2    |
| 2.2. Installation                | <br>2    |
| 2.3. Running FUSION              | <br>3    |
| 2.3.1. FUSION_ps                 | <br>4    |
| 2.3.2. FUSION_ms                 | <br>9    |
| 2.3.3. FUSION_msmc               | <br>14   |
| 3. Understanding output          | 17       |
| 4. Possible errors and solutions | <br>18   |
| 5. Contact Information           | <br>21   |

1. Introduction

FUSION (Family-level Unique Small RNA Integration) is a computational tool for

detecting sncRNA family-level expression across samples from expression matrix of

unique sncRNA species using R packages. First, it quantifies unique sncRNA species

and then aggregates them into their respective parental RNA families. This family-level

integration captures the contributions of individual sncRNA species while enhancing

statistical power and robustness for differential expression analysis. Two modules,

FUSION\_ms and FUSION\_ps, are proposed in the FUSION framework. By effectively

reducing noise and amplifying collective signals from unique sncRNA species.

FUSION\_ms enables reliable detection of sncRNA family-level expression changes even

when sample size is limited. In comparison, FUSION\_ps is powered by paired-sample

analysis, which enables "1-on-1" sncRNA differential expression analysis and is

optimized for single-case research setting as well.

2. Installation and usage

FUSION is a package written for the R computing environment; therefore, first install R

and Rstudio (https://rstudio.com).

2.1. Pre-requisites:

Rtools, R packages (read.delim (from utilis), use package from usethis), lm, p.adjust

and wilcox.test (from stats))

2.2. Installation:

To install it directly from GitHub:

remotes::install\_github("cozyrna/FUSION")

Or, using the downloaded R package:

2

#### Download FUSION\_\*.tar.gz file

Open Rstudio or R and type as below:

```
install.packages("~/FUSION_*.tar.gz", repos = NULL, type = "source")
```

# 2.3. Running FUSION:

After installing the package FUSION, call the library as:

```
library(FUSION)
```

There are three functions in this package:

FUSION\_ps - Differential expression analysis of sncRNA families in paired data samples using expression matrix

FUSION\_ms - Differential expression analysis of sncRNA families in multiple samples data using expression matrix

FUSION\_msmc - Differential expression analysis of sncRNA families in multiple samples data with multiple conditions using expression matrix

Ask help for the description and help menus of each of these functions:

```
?FUSION_ps
?FUSION_ms
?FUSION_msmc
```

#### 2.3.1. FUSION\_ps:

Differential expression analysis of sncRNA families in paired data samples using expression matrix. It will return, for each pair in the input matrix, an output data-frame with w\_positive, w\_negative, P-value, and adjusted P-value for each sncRNA family chosen for the analysis.

#### Inputs:

a: A matrix file where the first column is "Sequence" (or ID) and the second column is "Annotation". The Sequence (or ID) must be unique. The rest of the columns contain RPM or expression values from different samples under study, such as first half of the columns corresponds to the samples from Condition1 (e.g., control or healthy tissue) and the second half of the columns correspond to the samples from Condition2 (e.g., treated or infected tissue)

There are multiple example files available in the folder "/home/..../FUSION/extdata/" that can be referenced for proper formatting and structure of the input matrix (a):

example\_matrix\_p1.txt: This matrix file comprises 5 pairs of samples. The first 5 columns (Healthy\_1, Healthy\_2, Healthy\_3, Healthy\_4, Healthy\_5) represent the expression values for samples from Condition1 (e.g., Healthy), and the last 5 columns (Infected\_1, Infected\_2, Infected\_3, Infected\_4, Infected\_5) represent the expression values for samples from Condition2 (e.g., Infected).

example\_matrix\_p2.txt: This matrix file comprises 10 pairs of samples. The first 10 columns (Control\_1, Control\_2, ..., Control\_10) represent the expression values for samples from Condition1 (e.g., Control), and the last 10 columns (Treated\_1, Treated\_2, ..., Treated\_10) represent the expression values for samples from Condition2 (e.g., Treated).

example\_matrix\_p3.txt: This matrix file comprises 4 pairs of samples. The first 4 columns (Sample\_1, Sample\_2, Sample\_3, Sample\_4) represent the expression values for samples from Condition1, and the last 4 columns (Sample\_5, Sample\_6, Sample\_7, Sample\_8) represent the expression values for samples from Condition2.

example\_matrix\_p4.txt: This matrix file comprises 5 pairs of samples, with the samples are arranged in pairs of columns. The first pair consists of Healthy\_1 and Infected\_1, followed by the second pair Healthy\_2 and Infected\_2, and so on, with each subsequent pair representing a sample from Condition1 (e.g., Healthy) and its corresponding sample from Condition2 (e.g., Infected).

**order**: Use either G or P to specify the order of paired samples in the input matrix.

**G**: Samples are in Group order (i.e., all samples from Condition1 followed by all samples from Condition2). Refer to the file 'example matrix p1.txt' for this format.

**P**: Samples are in Pairs order (where each pair consists of one sample from Condition1 and one from Condition2). Refer to the file 'example\_matrix\_p4.txt' for this format.

By default, the order is considered as Group (G).

**row\_mean**: This parameter specifies the mean RPM (default value is **0.1**) threshold used to retain the sncRNA species (rows) in the matrix. Rows with a mean RPM value below the specified threshold will be excluded from the analysis.

**sncrna\_family**: This parameter specifies the list of sncRNA families to be analyzed in the expression analysis study. Use the following options:

• "tsrna" for tsRNAs (transfer RNA-derived small RNAs),

- "rsrna" for rsRNAs (ribosomal RNA-derived small RNAs),
- "ysrna" for ysRNAs (Y RNA-derived small RNAs),
- "mirna" for miRNAs (microRNAs),
- "other" for a combination of pRNA, snRNA, and snoRNA.

For all families, you can use any letter or number, e.g., "a", "b", "c", 1, 2, 3. By default (i.e., if no option is specified), it will search and analyze for tryRNAs (tsRNAs, rsRNAs, and ysRNAs).

**padj\_method**: This parameter specifies the adjustment method for correcting *P*-values. You can choose from the following options:

- "bonferroni" for the Bonferroni correction method,
- "BH" for the Benjamini & Hochberg method.

By default (i.e., if no option isspecified), the Bonferroni correction will applied.

Note: If you want to save the terminal/console output to a file, use sink() command.

```
e.g., options(max.print = 1e6);
sink("~/output.txt");
FUSION_ps(a = "./extdata/example_matrix_p1.txt"); sink()
```

#### **Example runs:**

Note: If want to run examples straight in the Help documentation, it is necessary to first set working directory to the base folder of the installed package FUSION. Such as: setwd("/home/..../R/.../FUSION/").

Or, simply provide the exact path of the appropriate example matrix files.

#### Example 1:

```
FUSION_ps(a = "./extdata/example_matrix_p1.txt")
```

## Run differential expression analysis for example\_matrix\_p1.txt (5 pairs of samples) at default row\_mean threshold (i.e., 0.1) for sncRNA families (tsRNAs, rsRNAs and ysRNAs) (default).

#### Example 2:

FUSION\_ps(a = "./extdata/example\_matrix\_p1.txt", padj\_method = "BH")

## Run differential expression analysis for example\_matrix\_p1.txt (5 pairs of samples) at default row\_mean threshold (i.e., 0.1) for sncRNA families (tsRNAs, rsRNAs and ysRNAs) (default) using BH (Benjamini & Hochberg) method for correcting or adjusting p-values.

#### Example 3:

FUSION\_ps(a = "./extdata/example\_matrix\_p1.txt", row\_mean = 0.5)

## Run differential expression analysis for example\_matrix\_p1.txt (5 pairs of samples) at row\_mean threshold of 0.5 for sncRNA families (tsRNAs, rsRNAs and ysRNAs) (default).

#### Example 4:

FUSION\_ps(a = "./extdata/example\_matrix\_p2.txt", sncrna\_family = "a")

## Run differential expression analysis for example\_matrix\_p2.txt (10 pairs of samples) at default row\_mean threshold (i.e., 0.1) for all sncRNA families.

#### Example 5:

FUSION\_ps(a = "./extdata/example\_matrix\_p2.txt", sncrna\_family = 0)

## Run differential expression analysis for example\_matrix\_p2.txt (10 pairs of samples) at default row mean threshold (i.e., 0.1) for all sncRNA families;

#### Example 6:

FUSION\_ps(a = "./extdata/example\_matrix\_p2.txt", sncrna\_family = "mirna")

## Run differential expression analysis for example\_matrix\_p2.txt (10 pairs of samples) at default row\_mean threshold (i.e., 0.1) for miRNA families.

#### Example 7:

FUSION\_ps(a = "./extdata/example\_matrix\_p2.txt", sncrna\_family = "rsrna")

## Run differential expression analysis for example\_matrix\_p2.txt (10 pairs of samples) at default row\_mean threshold (i.e., 0.1) for rsRNA families.

#### Example 8:

```
FUSION_ps(a = "./extdata/example_matrix_p3.txt", row_mean = 0.5, sncrna_family = "tsrna")
```

## Run differential expression analysis for example\_matrix\_p2.txt (4 pairs of samples) at row\_mean threshold of 0.5 for tsRNA families.

### Example 9:

```
FUSION_ps(a = "./extdata/example_matrix_p3.txt", row_mean = 0.1, sncrna_family = "ysrna")
```

## Run differential expression analysis for example\_matrix\_p2.txt (4 pairs of samples) at row\_mean threshold of 0.1 for for ysRNA families.

#### Example 10:

FUSION\_ps(a = "./extdata/example\_matrix\_p3.txt", sncrna\_family = "other") ## Run differential expression analysis for example\_matrix\_p2.txt (4 pairs of samples) at default row\_mean threshold (i.e., 0.1) for other (pRNA,snRNA and snoRNA) sncRNA families.

#### Example 11:

```
FUSION_ps(a = "./extdata/example_matrix_p4.txt", order = "P")
```

## Run differential expression analysis for example\_matrix\_p4.txt (5 pairs of samples) at default row\_mean threshold (i.e., 0.1) for sncRNA families (tsRNAs, rsRNAs and ysRNAs) (default) and samples are arranged in as pairs of columns.

#### **2.3.2. FUSION\_ms**:

Differential expression analysis of sncRNA families in multiple samples data using expression matrix. It will return a final output in a data-frame with t-statistics, *P*-value, and adjusted *P*-value for each sncRNA family chosen for analysis.

#### Inputs:

**a**: A matrix file where the first column is "Sequence" (or ID) and the second column is "Annotation". The Sequence (or ID) must be unique. The rest of the columns contain RPM or expression values from different samples under study, such as first set of the columns (S1) corresponds to the samples from Condition1 (e.g., control or healthy tissue) and the second set of the columns (S2) correspond to the samples from Condition2 (e.g., treated or infected tissue)

**S1**: Number of samples from Condition1 (e.g., control or healthy tissue)

**S2**: Number of samples from Condition2 (e.g., treated or infected tissue)

There are multiple example files available in the folder "/home/..../R/.../FUSION/extdata/" that can be referenced for proper formatting and structure of the input matrix (a):

example\_matrix1.txt: This matrix file contains a total of 26 samples, comprising 10 (S1) samples (Sample\_1, Sample\_2, Sample\_3, ..., Sample\_10) from Condition1, and 16 (S2) samples (Sample\_17, Sample\_18, Sample\_19, ..., Sample\_26) from Condition2

example\_matrix2.txt : a matrix file with total 10 samples comprising 5 (S1) samples (Healthy\_1, Healthy\_2, Healthy\_3, Healthy\_4, Healthy\_5) from Condition1 and 5 (S2) samples (Infected\_1, Infected\_2, Infected\_3, Infected\_4, Infected\_5) from Condition2

example\_matrix3.txt: a matrix file with total 18 samples comprising 10 (S1) samples (Control\_1, Control\_2, Control\_3, ..., Control\_10) from Condition1 and 8 (S2) samples (Treated\_1, Treated\_2, Treated\_3, ..., Treated\_8) from Condition2

**row\_mean**: This parameter specifies the mean RPM (default value is **0.1**) threshold used to retain the sncRNA species (rows) in the matrix. Rows with a mean RPM value below the specified threshold will be excluded from the analysis.

**sncrna\_family**: This parameter specifies the list of sncRNA families to be analyzed in the expression analysis study. Use the following options:

- "tsrna" for tsRNAs (transfer RNA-derived small RNAs),
- "rsrna" for rsRNAs (ribosomal RNA-derived small RNAs),
- "ysrna" for ysRNAs (Y RNA-derived small RNAs),
- "mirna" for miRNAs (microRNAs),
- "other" for a combination of pRNA, snRNA, and snoRNA.

For all families, you can use any letter or number, e.g., "a", "b", "c", 1, 2, 3. By default (i.e., if no option is specified), it will search and analyze for tryRNAs (tsRNAs, rsRNAs, and ysRNAs).

**padj\_method**: This parameter specifies the adjustment method for correcting *P*-values. You can choose from the following options:

- "bonferroni" for the Bonferroni correction method.
- "BH" for the Benjamini & Hochberg method.

By default (i.e., if no option isspecified), the Bonferroni correction will applied.

**top\_species**: This parameter specifies the number (default is 1000) of top species for each sncRNA family to be considered for analysis. It is useful for reducing the runtime of the analysis, especially for families (like rsma

families) with a large number of species. If time is not a concern, higher values such as 5000, 10000, etc., can be used.

#### **Example runs:**

Note: If want to run examples straight in the Help documentation, it is necessary to first set working directory to the base folder of the installed package FUSION. Such as: setwd("/home/..../R/.../FUSION/").

## Example 1:

```
FUSION_ms(a = "./extdata/example_matrix1.txt", S1 = 10, S2 = 16, row_mean = 1, top_species = 5000)
```

## For running differential expression analysis on user-provided expression matrix (example\_matrix1.txt) with 10 healthy samples (S1) and 16 patients (S2) at row\_mean threshold of 1 for 5000 top\_species for sncRNA families (tsRNAs, rsRNAs and ysRNAs) (default).

#### Example 2:

```
FUSION_ms(a = "./extdata/example_matrix1.txt", S1 = 10, S2 = 16)
```

## For running differential expression analysis on user-provided expression matrix (example\_matrix1.txt) with 10 samples from Condition1 (S1) and 16 samples from Condition2 (S2) at default row\_mean (i.e., 0.1) and top\_species threshold for sncRNA families (tsRNAs, rsRNAs and ysRNAs) (default).

#### Example 3:

```
FUSION_ms(a = "./extdata/example_matrix1.txt", S1 = 10, S2 = 16, padj_method = "BH")
```

## For running differential expression analysis on user-provided expression matrix (example\_matrix1.txt) with 10 samples from Condition1 (S1) and 16 samples from Condition2 (S2) at default row\_mean (i.e., 0.1) and

top\_species threshold for sncRNA families (tsRNAs, rsRNAs and ysRNAs) (default) using BH (Benjamini & Hochberg) method for correcting or adjusting p-values.

#### Example 4:

```
FUSION_ms(a = "./extdata/example_matrix1.txt", S1 = 10, S2 = 16, sncrna_family = "a")
```

## For running differential expression analysis on user-provided expression matrix (example\_matrix1.txt) with 10 samples from Condition1 (S1) and 16 samples from Condition2 (S2) at default row\_mean threshold (i.e., 0.1) and top species for all sncRNA families.

#### Example 5:

```
FUSION_ms(a = "./extdata/example_matrix2.txt", S1 = 5, S2 = 5, sncrna_family = 0)
```

## For running differential expression analysis on user-provided expression matrix (example\_matrix2.txt) with 5 healthy samples (S1) and 5 patients (S2) at default row\_mean threshold (i.e., 0.1) and top\_species for all sncRNA families;

#### Example 6:

```
FUSION_ms(a = "./extdata/example_matrix2.txt", S1 = 5, S2 = 5, sncrna_family = "mirna", top_species = 1000)
```

## For running Differential expression analysis on user-provided expression matrix (example\_matrix2.txt) with 5 samples from Condition1 (S1) and 5 samples from Condition2 (S2) at default row\_mean threshold (i.e., 0.1) for 1000 top\_species for miRNA families.

#### Example 7:

```
FUSION_ms(a = "./extdata/example_matrix2.txt", S1 = 5, S2 = 5, row_mean = 10, top_species = 2000, sncrna_family = "rsrna")
```

## For running differential expression analysis on user-provided expression matrix (example\_matrix2.txt) with 5 samples from Condition1 (S1) and 5 samples from Condition2 (S2) at row\_mean threshold of 10 for 2000 top\_species for rsRNA families.

#### Example 8:

```
FUSION_ms(a = "./extdata/example_matrix3.txt", S1 = 10, S2 = 8, row_mean = 10, sncrna_family = "tsrna")
```

## For running differential expression analysis on user-provided expression matrix (example\_matrix3.txt) with 10 control samples (S1) and 8 treated samples (S2) at row\_mean threshold of 10 for default (1000) top\_species for tsRNA families.

#### Example 9:

```
FUSION_ms(a = "./extdata/example_matrix3.txt", S1 = 10, S2 = 8, row_mean = 0.1, sncrna_family = "ysrna")
```

## For running differential expression analysis on user-provided expression matrix (example\_matrix3.txt) with 10 samples from Condition1 (S1) and 8 samples from Condition2 (S2) at row\_mean threshold of 0.1 for default (1000) top\_species for ysRNA families.

#### Example 10:

```
FUSION_ms(a = "./extdata/example_matrix3.txt", S1 = 10, S2 = 8, top_species = 100, sncrna_family = "other")
```

## For running differential expression analysis on user-provided expression matrix (example\_matrix3.txt) with 10 samples from Condition1 (S1) and 8 samples from Condition2 (S2) at default row\_mean threshold (i.e., 0.1) for 100 top species for other (pRNA,snRNA and snoRNA) sncRNA families.

#### 2.3.3. FUSION\_msmc:

Differential expression analysis of sncRNA families in multiple samples data with multiple conditions using expression matrix. It will return a final output in a data-frame with t-statistics, *P*-value, and adjusted *P*-value for each sncRNA family chosen for the analysis.

#### Inputs:

**a**: A matrix file where the first column is "Sequence" (or ID) and the second column is "Annotation". The Sequence (or ID) must be unique. The rest of the columns contain RPM or expression values from different samples under study.

cl: a file that contains multiple sample conditions in a comma-separated format. For example, if there are 3 different conditions with 6 samples each, the file would contains the input: 1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3.

Each number represents a sample's corresponding condition.

There are multiple example files available in the folder "/home/..../R/.../FUSION/extdata/" that can be referenced for proper formatting and structure of the input matrix (a):

Example files for running FUSION\_msmc: There are examples files in the folder: "/home/..../FUSION/extdata/" that can be referenced for proper formatting and structure of the input matrix (a) and condition specifying file (cl):

example\_matrix\_cl.txt: a matrix file with total 18 samples

example\_condition1.txt: a file specifying three conditions as 1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3 i.e., a comma separated format showing 3 different conditions with 6 samples each

example\_condition2.txt: a file specifying four conditions as 1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4 i.e., a comma separated format showing 4 different conditions with condition 1, 2, and 3 having five samples each, while last three samples are representing the condition 4.

Note: one can specify the condition in any order depending on the order of the samples in the matrix, such as : "2,2,2,1,1,1,3,3,3" or "1,2,1,2,1,2,1,2" or "1,1,1,2,2,2,1,1,1,3,3,3"

**row\_mean**: This parameter specifies the mean RPM (default value is **0.1**) threshold used to retain the sncRNA species (rows) in the matrix. Rows with a mean RPM value below the specified threshold will be excluded from the analysis.

**sncrna\_family**: This parameter specifies the list of sncRNA families to be analyzed in the expression analysis study. Use the following options:

- "tsrna" for tsRNAs (transfer RNA-derived small RNAs),
- "rsrna" for rsRNAs (ribosomal RNA-derived small RNAs),
- "ysrna" for ysRNAs (Y RNA-derived small RNAs),
- "mirna" for miRNAs (microRNAs),
- "other" for a combination of pRNA, snRNA, and snoRNA.

For all families, you can use any letter or number, e.g., "a", "b", "c", 1, 2, 3. By default (i.e., if no option is specified), it will search and analyze for tryRNAs (tsRNAs, rsRNAs, and ysRNAs).

**padj\_method**: This parameter specifies the adjustment method for correcting *P*-values. You can choose from the following options:

- "bonferroni" for the Bonferroni correction method,
- "BH" for the Benjamini & Hochberg method.

By default (i.e., if no option isspecified), the Bonferroni correction will applied.

**top\_species**: This parameter specifies the number (default is 1000) of top species for each sncRNA family to be considered for analysis. It is useful for reducing the runtime of the analysis, especially for families (like rsrna families) with a large number of species. If time is not a concern, higher values such as 5000, 10000, etc., can be used.

#### **Example runs:**

Note: If want to run examples straight in the Help documentation, it is necessary to first set working directory to the base folder of the installed package FUSION. Such as: setwd("/home/..../R/.../FUSION/").

#### Example 1:

FUSION\_msmc(a = "./extdata/example\_matrix\_cl.txt", cl = "./extdata/example\_condition1.txt", row\_mean = 1, top\_species = 5000)
## For running differential expression analysis on user-provided expression matrix (example\_matrix\_cl.txt) with 18 samples as per the conditions specified (i.e., 3 different conditions with 6 samples each) in example\_condition1.txt at row\_mean threshold of 1 for 5000 top\_species for sncRNA families (tsRNAs, rsRNAs and ysRNAs) (default).

#### Example 2:

FUSION\_msmc(a = "./extdata/example\_matrix\_cl.txt", cl = "./extdata/example\_condition2.txt", row\_mean = 1, top\_species = 5000)
## For running differential expression analysis on user-provided expression matrix (example\_matrix\_cl.txt) with 18 samples as per the conditions specified (i.e., 4 different conditions with condition 1, 2, and 3 having five samples each, while last three samples are representing the condition 4) in example\_condition2.txt at row\_mean threshold of 1 for 5000 top\_species for sncRNA families (tsRNAs, rsRNAs and ysRNAs) (default).

Example 3 (This example is same as the Example 8 for FUSION\_ms):

FUSION\_msmc(a = "./extdata/example\_matrix\_cl.txt", cl = "./extdata/example\_condition3.txt", row\_mean = 10, sncrna\_family = "tsrna")

## For running differential expression analysis on user-provided expression matrix (example\_matrix\_cl.txt) with 18 samples as per the conditions specified (i.e., 2 different conditions with condition 1, and 2 having 10 and 8 samples, respectively in the example\_condition3.txt at row\_mean threshold of 10 for default (1000) top\_species for tsRNA families.

#### 3. Understanding output

# **Sample output files** in the "extdata" folder:

- FUSION\_ms\_sample\_output.txt
- FUSION\_ps\_sample\_output.txt

#### FUSION\_ms and FUSION\_msmc:

The generated output file (**FUSION\_ms\_sample\_output.txt**) contains four columns:

- 1. sncrna family
- 2. t (t-statistic)
- 3. p (*P*-value)
- 4. adjusted\_p (Adjusted *P*-value)

#### In this output:

- The magnitude of the differential expression of the given sncRNA family (sncrna\_family) is represented by the *t*-statistic (t).
- The significance of this differential expression can be evaluated using the *P*-value (p) and the adjusted *P*-value (adjusted\_p).

# FUSION\_ps:

The generated output file (FUSION\_ps\_sample\_output.txt) contains six columns:

- 1. Pair (Paired sample identifiers, e.g., Pair\_1 (for sample s<sub>1</sub> and s<sub>2</sub>))
- 2. sncrna family
- 3. w\_pos (Positive-rank sum)
- 4. w\_neg (Negative-rank sum
- 5. p (*P*-value)
- 6. adjusted p (Adjusted *P*-value)

## In this output:

- The significance of the differential expression of the given sncRNA family (sncrna\_family) between the paired samples (*i.e.*,  $s_1$  and  $s_2$ ) (Pair\_1) can be evaluated using the *P*-value (P) and the adjusted *P*-value (adjusted\_p).
- The positive-rank sum (w\_pos) and negative-rank sum (w\_neg) help determine the direction of dysregulation between the two samples:
  - If w\_pos > w\_neg, the given sncRNA family is upregulated in  $s_1$  compared to  $s_2$
  - If w\_pos < w\_neg, the given sncRNA family is downregulated in s<sub>1</sub> compared to s<sub>2</sub>.

#### 4. Possible errors and solutions

There is a possibility that users may encounter errors if the input matrix does not adhere to the specified format. Additionally, errors may arise even when there are no sncRNA species for the mentioned sncrna\_family with the specified threshold (row\_mean). Below, we discuss some common errors users may face, along with their potential reasons and solutions for correction.

Solution: Ensure that the correct file path is provided for the input matrix file. Check that the file exists at the specified location and that you have provided the correct path for the parameter "a".

(ii) "Error: column numbers are not in pair in the matrix. Please check"

Solution: This error may occur when running FUSION\_ps and indicates that a column is missing in the input matrix. Ensure that the matrix has the correct number of columns. The total number of columns must be even, and the first two columns should be reserved for Sequence (or ID) and Annotation. Double-check the matrix structure to make sure all required columns are present.

(iii) Warning: non-unique values when setting 'row.names': ..... [... truncated]
 Error in `.rowNamesDF<-`(x, value = value) :
 duplicate 'row.names' are not allowed
 Called from: `.rowNamesDF<-`(x, value = value)</pre>

Solution: This error occurs when the first column (Sequence or ID) contains duplicate values. The Sequence (or ID) must be unique for each entry. Check the first column of your input matrix and remove any duplicate values to resolve this issue.

(iv) Error in rowMeans(e): 'x' must be numericCalled from: rowMeans(e)

Solution: This error occurs when there are non-numeric values in the columns containing expression values for the samples. To resolve this, you can either:

- Remove the rows that contain non-numeric values, or
- Replace the non-numeric values with suitable numbers, such as 0, depending on the context of your analysis.
- (v) "Error: annotation cannot match the input data"

Solution: This error occurs when there are "NA" values in the columns for the expression values of the samples. To resolve this issue, you can either:

- Remove the rows containing "NA" values, or
- Replace the "NA" values with suitable numbers, such as 0, depending on your analysis needs.
- (vi) Error in wilcox.test.default(e1, e2, paired = T, exact = FALSE) :
   not enough (non-missing) 'x' observations
   Called from: wilcox.test.default(e1, e2, paired = T, exact = FALSE)

Solution: This error occurs when there are no sncRNA species for the specified sncrna\_family that meet the given threshold (row\_mean). To resolve this issue, you can:

- Try using more lenient thresholds, or
- Choose a different sncrna\_family that has sufficient data.

(vii) "Error: column number doesn't match. Please correct the sample numbers."

Solution: This error may occur when running FUSION\_ms or FUSION\_msmc if the values for S1 and S2 are not correctly specified in FUSION\_ms, or if the conditions in the provided condition file (with the -cl option) do not correctly match the sample columns in the input matrix file. To resolve this issue:

- Verify that the input matrix has the correct number of columns. The total number of columns must be S1 + S2 + 2, where:
  - The first two columns must be for Sequence (or ID) and Annotation.
- Double-check that the conditions in the condition file match the columns for S1 and S2 in the matrix.
- (viii) Error in `contrasts<-`(`\*tmp\*`, value = contr.funs[1 + isOF[nn]]) :
   contrasts can be applied only to factors with 2 or more levels
   Called from: `contrasts<-`(`\*tmp\*`, value = contr.funs[1 + isOF[nn]])</pre>

Solution: This error may occur when running FUSION\_ms or FUSION\_msmc if there are no sncRNA species for the specified sncrna\_family that meet the given threshold (row\_mean). To resolve this issue, you can:

- Try using more lenient thresholds, or
- Choose a different sncrna\_family that has available data.

#### 4. Contact Information

Tong Zhou: <a href="mailto:tongz@med.unr.edu">tongz@med.unr.edu</a>