Artificial Neural Networks and Deep Learning Homework 1

Nicola Dean	Marco Fasanella	Raffaello Fornasiere	Christian Spano
10617541	10617541	10617541	10617541
nicola.dean	marco.fasanella	raffaello.fornasiere	christian.spano
@mail.polimi.it	@mail.polimi.it	@mail.polimi.it	@mail.polimi.it

1 Introduction

TUTTE LE TECNICHE USATE come abbiamo pensato di approcciare. Idee e risultati Timeline di quello fatto. Riassiunto delle metodologie e delle CNN

1.1 Classic Net

2 Dataset Helper and Model Helper

Spiegazione delle due classi: lista delle funzioni e automatizzazione

3 First try: vanilla network

-IMG della rete (dal lab) (magari orizzontale) risultati considerazioni

3.1 Batch Normalization

A first attempt was adding a Batch Normalization + Relu Activation Layer before our Pooling layers. This lead to poor result due to the fact that the network was too small.

3.2 Our homemade CNN

— RAFFAELLO—

3.3 Considerations

Best result consideration and observations

4 Transfer Learning and Fine Tuning

transfer leraning e modelli usati

4.1 Approach: Freezing Layers

Idea sulla freezing

4.2 VGG19

-MARCO- Spiegazione modell + prove fatte

4.2.1 Results

Both LATEX and MS Word templates may be downloaded by visiting the conference website:

github.com/SDSS2020/SDSS-templates

Margins should not be altered from those used in the template files.

4.3 VGG16

-CHRISTIAN- Spiegazione modell + prove fatte

Freezed Layers	Accuracy	Precision	Recall	F1
8	0.8169	0.7989	0.7651	0.763
9	0.8225	0.8181	0.7682	0.7776
10	0.8338	0.8161	0.7929	0.8001
11	0.7577	0.7109	0.715	0.7048
12	0.7944	0.766	0.7504	0.7489
13	0.8028	0.7806	0.754	0.7596

Table 1: Results with Transfer Learning and Number of freezed layers for VGG19.

Figure 1: Confusion Matrix of best configuration with VGG19.

- 4.3.1 Results
- 4.4 Xception
- 4.5 Other Models
- **4.5.1** Resnet
- 4.5.2 GoogleNet
- 4.6 EfficientNet

5 Ensemble

Approccio provato a mischiare modelli c'era bias perchè avevano seed diversi

5.0.1 Results

6 If we had more time..

con più tempo cosa avremmo provato

7 Our Submissions

Description	Result	
a	0.8169	
b	0.8225	

Table 2: Results with Transfer Learning and Number of freezed layers for VGG19.

8 Conclusions

Considerazioni finali e best model fattoo