Chapter 1

Abstract Integration

Exercise 1.1. Does there exist an infinite σ -algebra which has only countably many members?

Solution. If \mathcal{F} is a σ -algebra and A a set, define $\mathcal{F} \cap A := \{A \cap F : F \in \mathcal{F}\}$. Hence if $A \in \mathcal{F}$, then $\mathcal{F} \cap A$ is a σ -subalgebra of \mathcal{F} . Further, if \mathcal{F} is infinte, either $A \cap \mathcal{F}$ or $A^c \cap \mathcal{F}$ is infinte.

In other words, if \mathcal{F}_n is infinte, then there is $A_{n+1} \in \mathcal{F}_n$ such that $\mathcal{F}_{n+1} = \mathcal{F}_n \cap A_n^c$ is infinte. Take $\mathcal{F}_0 = \mathcal{M}$, by induction we get a disjoint sequence of sets $A_n \in \mathcal{M}$. Since \mathcal{M} must also contain any union of sets of A_n , and each union is different, this is to say \mathcal{M} contains a embedding of all subsets of \mathbb{N} , therefore uncountable.

Exercise 1.2. Prove an analogue of Theorem 1.8 for n functions.

Solution. It suffices to prove

$$f = f_1 \times f_2 \times ... \times f_n$$

is measurable is each f_i is measurable. Similarly as in the theorem, take R be any rectangles in \mathbb{R}^n . Notice

$$f^{-1}(R) = \bigcap f_i(I_i)$$

is measurable, if $R = I_1 \times I_2 \times ... \times I_n$. The rest of the proof is a repeat of Theorem 1.8.

Exercise 1.3. Prove that if f is a real function on a measurable space X such that $\{x : f(x) < r\}$ is measurable for every rational r, then f is measurable.

Solution. Take Ω as all $E \subset \mathbb{R}$ such that $f^{-1}(E)$ is measurable. By Theorem 1.2, Ω is a σ -algebra. Notice

$$\{f>a\}=\bigcup_{q\in\mathbb{Q}\cap(-\infty,a)}\{f>q\}$$

for all $a \in \mathbb{R}$. Therefore, $\{f > a\}$ is measurable. By Theorem 1.2 again, f is measurable.