## **SE498 Introduction to Autonomous Vehicle System**

## **Laboratory Assignment 2: Turtlesim Robot Simulation**

## **Goals for this Lab Assignment:**

- 1. Learn turtlesim structure.
- 2. Learn how to drive turtlesim robot around.
- 3. Learn how to get states of turtlesim robot and drive it to a desired orientation and location (P controller).

#### Exercise 1 - Learn turtlesim

Open terminal 1

\$ roscore

Open terminal 2

\$ rosrun turtlesim turtlesim\_node

Open terminal 3

\$ rostopic list

/turtle1/pose – get turtle state's info /turtle1/cmd vel – drive turtle to move around

Open terminal 4

\$ rostopic type /turtle1/pose

\$ rostopic type /turtle1/pose | rosmsg show

\$ rostopic type /turtle1/cmd\_vel

\$ rostopic type /turtle1/cmd\_vel | rosmsg show

Reference: http://wiki.ros.org/turtlesim

## Exercise 2 - Learn how to create ROS package to control turtlesim

Download se498\_lab2 package from website extract it and put it under ~/catkin\_NETID/src/website: http://coecsl.ece.illinois.edu/se498/

Open terminal 1

\$ cd ~/catkin\_NETID

\$ catkin make

\$ source devel/setup.bash

\$ roscore

Open terminal 2

\$ cd ~/catkin\_NETID

\$ source devel/setup.bash

\$ rosrun turtlesim turtlesim\_node

3\$ cd ~/catkin\_NETID

\$ cd ~/catkin\_NETID

\$ source devel/setup.bash

\$ rosrun se498\_lab2\_lab2\_node

Enter speed: 1 Enter distance: 4

Move forward? (1 or 0): 1

Ctrl+c to exit



In Exercise 2, you need to finish the void rotate() function, so that the robot can rotate around its z-axis at a given speed by a given angle and direction. The only file you need to modify is lab2.cpp

Enter angular\_speed (degree/s): 30

Enter angle (degrees): 180 Clockwise? (1 or 0): 1

Ctrl+c to exit

Reference: <a href="http://wiki.ros.org/turtlesim">http://wiki.ros.org/turtlesim</a>

## Exercise 3 - Learn how to get states of turtlesim robot and drive it to a desired orientation and location

- (1) Finish poseCallback function which subscribes topic /turtle1/pose.
- (2) Finish moveGoal function so that turtlesim robot can be drive to a desired orientation and location.

Open terminal 1

\$ cd ~/catkin\_NETID

\$ catkin\_make

\$ source devel/setup.bash

\$ roscore

Open terminal 2\$ cd ~/catkin\_NETID

\$ cd ~/catkin\_NETID

\$ source devel/setup.bash

\$ rosrun turtlesim turtlesim\_node

Open terminal 3

\$ cd ~/catkin\_NETID

\$ source devel/setup.bash

\$ rosrun se498\_lab2 lab2\_node

Desired location: (1, 1)



# Moving to a Point (x\*, y\*) in the 2D plane

- **Linear velocity**  $v^* = K_v \sqrt{(x^* x)^2 + (y^* y)^2}$
- Steering Angle  $\theta^* = \tan^{-1} \frac{y^* y}{x^* x}$
- Proportional Controller  $\gamma = K_h(\theta^* \ominus \theta), K_h > 0$ 
  - turns the steering wheel toward the target