

2 – Probabilistic robotics

Advanced Methods for Mapping and Self-localization in Robotics MPC-MAP

Petr Gabrlik
Brno University of Technology
2025

Probabilistic robotics

Key ideas of the probabilistic approach

1D localization example

Probabilistic robotics – the concept

 Probabilistic approach – nothing is deterministic, all phenomena are stochastic

- Uncertainty is in both:
 - Perception sensor/measured data are not 100 % reliable; data from all real sensors are more or less noisy
 - Action robot actions/movements are not 100 % reliable; all actions taken differ to some extent from the action desired
- All uncertain phenomena are represented statistically

1. https://www.skyhook.com/blog/best-practices-measure-location-accuracy-geo-positioning-performance-metrics

 Robot navigation in the probabilistic concept considers the uncertainties to provide optimal solution.

This is especially crucial for the localization task – what is the **most probable robot** position according noisy sensor data? And considering known uncertain actions?

Probability

Basic terms and distribution types

- Probability expresses how likely a random event occurs
 - A number between 0 and 1; higher value → higher probability

Probability distribution

- "Mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment." [1]
- "Mathematical description of a random phenomenon in terms of its sample space and the probabilities of events." [1]
- **Discrete** space → **probability mass function** (PMF)
- **Continuous** space → **probability density function** (PDF) or cumulative distribution function (CDF)

PMF (left) and PDF (right) examples [1]

Probability mass function (PMF)

 Probability mass function (PMF) – probability that a discrete random variable is exactly equal to some value

$$p_X(x) = P(X = x)$$

- The probabilities sum up to 1
- Values are non-zero, positive
 - $p_X(x) \ge 0$

Various probability mass functions (PMF) [1]

Probability density function (PDF)

- **Probability density function** (PDF) a function f_X describing the infinitesimal probability of any given value of a continuous random variable X
- The probability P of a particular value equals 0
 - $P(X) = f_{Y}(x) = 0$
- The probability of a particular range of value equals to the integral of the PDF over the range
 - The area between the PDF and horizontal axis over the range
 - $P(a \le X \le b) = \int_a^b f_X(x) dx$
- PDF is nonnegative everywhere, integrates to 1

•
$$P(-\infty \le X \le \infty) = \int_{-\infty}^{\infty} f_X(x) dx = 1$$

PDF examples [1]

Probability equals to the area under the PDF [2]

- 1. https://www.researchgate.net/publication/269949106 A Study on the Economic Evaluation for a Feasibility Study in Molybdenum Mineral Processing
- 2. https://math24.net/probability-density-function.html

- Cumulative distribution function (CDF) $-F_X(x)$ represent a cumulative representation of the PDF
- Describes the probability that the random variable is no larger than a given value
 - The area under the PDF from $-\infty$ to x
 - $F_X(x) = \int_{-\infty}^x f_X(u) du$

- Uniform distribution all hypotheses will occur with equal probability
- **Discrete space** a finite number of values has equal probability

•
$$p(x) = \frac{1}{n}$$
 $n = b - a + 1$ $k \in \{a, a + 1, \dots, b - 1, b\}$

$$k \in \{a, a+1, \cdots, b-1, b\}$$

$$b \ge a$$

- Continuous space all intervals of the same length within the bounds are equally probable
 - $f(x) = \begin{cases} \frac{1}{b-a} & \text{for } x \in [a, b] \\ 0 & \text{otherwise} \end{cases}$ $-\infty < a < b < \infty$
- Examples
 - Rolling the dice
 - Initial guess in the global localization task

PMF of the discrete uniform distribution example [1]

PDF of the continuous uniform distribution example [2]

Initial guess with the uniform distribution [3]

- 1. https://en.wikipedia.org/wiki/Discrete_uniform_distribution
- 2. https://en.wikipedia.org/wiki/Continuous_uniform_distribution
- 3. http://www.probabilistic-robotics.org/

- Normal distribution = Gaussian distribution type of continuous probability distribution
- Important in natural sciences measurement errors caused by many independent processes posses nearly normal distribution
- Notation: $p(x) \sim \mathcal{N}(x; \mu, \sigma^2)$

• PDF:
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

- Parametric distribution defined by:
 - **Mean** (expectation) μ
 - Standard deviation σ or variance σ^2
- Examples
 - Natural random processes
 - Approximate distribution of many sensors in robotics

- In the measurement field the uncertainty is often expresses by an interval of possible values occurring with certain probability defined via standard deviation σ
- variable = value + inverval typically meaning 1σ interval
- Well known probabilities for the normal distribution

•
$$P(\mu - \sigma \le X \le \mu + \sigma) = 68.3 \%$$

•
$$P(\mu - 2\sigma \le X \le \mu + 2\sigma) = 95.4 \%$$

•
$$P(\mu - 3\sigma \le X \le \mu + 3\sigma) = 99,7 \%$$

PDF of normal distribution with probabilities for various intervals defined with σ [1]

Multivariate normal distribution

- Normal distribution over vectors is called *multivariate* (x is a vector)
- Often used in localization algorithms when the space vector is multidimensional
- Notation: $p(x) \sim \mathcal{N}(x; \mu, \Sigma)$
- PDF: $p(x) = \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\{-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\}$
- Parameters:
 - **Mean vector** (expectation vector) μ
 - Covariance matrix Σ

Normal distribution of two variables is often illustrated with ellipse in 2D space [2]

- http://www.probabilistic-robotics.org/
- 2. https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Covariance and covariance matrix

- Covariance is a measure of the joint variability of two random variables
 - The mean of the product of X and Y random variable deviations from their means
 - cov(X,Y) = E[(X E[X])(Y E[Y])] expectation $E[X] \approx mean(X)$
 - Alternative notations: σ_{XY} or $\sigma(X,Y)$
 - Covariance with itself is variance: $cov(X, X) = var(X) \equiv \sigma^2(X)$
 - Zero covariance means independent variables
 - Normalized covariance → correlation
- Covariance matrix contains covariance between each pair of elements
 - Matrix dimension: dimensionality of the state x squared
 - Key matrix properties: square, symmetric, quadratic

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \cdots & \sigma_{1n} \\ \vdots & \ddots & \vdots \\ \sigma_{n1} & \cdots & \sigma_n^2 \end{pmatrix}$$

Main diagonal contains variances

The covariance sign and the "shape" of data/ellipses [1]

- 1. https://geostatisticslessons.com/lessons/errorellipses
- ${\bf 2.} \quad \underline{https://answers.ros.org/question/353624/what-is-the-default-noise-parameters-in-sensor-inputs-in-robot_localization/2006.}$

Combining probabilities

2 – Probabilistic robotics 16

The probabilities can be combined in different ways according to the phenomenon we are describing

Event	Probability
А	$P(A) \in [0,1]$
not A	$P(A^\complement) = 1 - P(A)$
A or B	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(A \cup B) = P(A) + P(B)$ if A and B are mutually exclusive
A and	$P(A \cap B) = P(A B)P(B) = P(B A)P(A)$
В	$P(A \cap B) = P(A)P(B)$ if A and B are independent
A given B	$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B A)P(A)}{P(B)}$

The most important event in the probabilistic robotics is A given B

Bayes' theorem

The theorem and its application in robotics

- Statistical theory based on the Bayesian interpretation of probability
- Probability is based on prior knowledge of an event and related evidence
- The probability expresses a degree of **belief** in an event

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)} = \frac{P(E|H)P(H)}{P(E|H)P(H) + P(E|\neg H)P(\neg H)} = \eta P(E|H)P(H)$$

- H hypothesis whose probability may be affected by evidence
- E evidence (observation) new data that were not used in computing the prior probability
- P(H) **prior** probability the estimate of the probability of the hypothesis H before the data E
- P(H|E) posterior probability is the probability of H after E is observed
- P(E|H) **likelihood** probability of observing E given H
- P(E) model evidence, probability of seeing evidence independently on H

Bayes filter

- Bayes filter standard approach for the state estimation in robotics
- General algorithm for calculating belief from measurement z and control data u
- **Recursive**, includes the previous **state** x_{t-1}
- Each period includes prediction and correction step
- Bayes filter forms the basis for widely used algorithms:
 - Kalman filter Gaussian filter, belief is represented via normal distribution
 - Particle filter Monte Carlo filter, belief is represented by a set of particles

Correction (measurement update)

The evolution of controls, states and measurements [1]

Bayes filter

Sensors

Range and pose sensors

Range sensors

- Provide information about the **distance** and the (eventually) azimuth of the object with respect to robot's coordinate system
- The most common types:
 - LiDAR narrow laser beam, time-of-flight
 - Mapping, localization, obstacle detection
 - 1D, 2D and 3D
 - **Ultrasonic** wide "beam", time-of-flight
 - Obstacle detection
 - 1D only
 - Radar wide "beam", time-of-flight, Doppler
 - Obstacle detection, velocity measurement
 - 1D (2D, 3D)

Ultrasonic sensor characteristics

External pose sensors

- Determines position or orientation or both position and orientation – **pose** within an external coordinate system
- The most common types:
 - GNSS Global Navigation Satellite System
 - Global, world-wide localization
 - Position only, orientation dual-antenna RTK systems
 - Motion capture and beacon localization
 - Local localization
 - Based on cameras and reflective markers or on radio beacons and receivers
 - Fiducial markers
 - Local localization
 - Relative pose of graphical marker and camera

Beacon loclalization (UWB, BT, ...) [3]

Fiducial markers/tags [4]

GNSS [1]

Motion Capture [2]

- 1. http://what-when-how.com/
- 2. https://deva90sapmc8w.cloudfront.net/roboticsPrime17w_8-450h.png
- 3. https://www.researchgate.net/publication/336832935
- 4. https://haowensh.com/assets/img/2020/kdc/frame_confirmation.png

Petr Gabrlik

gabrlik@vut.cz

Brno University of Technology
Faculty of Electrical Engineering and Communication
Department of Control and Instrumentation

Robotics and Al Research Group