Homework Assignment N°2

BML36 Thibault Douzon Rajavarman Mathivanan

September 12th, 2018

Contents

1	Exe	rcise 2	: Logi	istic	clas	sific	ation	ı &	dis	crin	nina	tio	n				3
	1.1	Part a														:	3

1 Exercise 2: Logistic classification & discrimination

1.1 Part a

Initialize w_0 ?

- 1. Some fixed w_0 like $\begin{bmatrix} 0 & 0 & \cdots & 1 \end{bmatrix}$
- 2. Some computation around the dataset like the mean: $w_0 = \frac{1}{N} \sum_{i=1}^{N} x_i$
- 3. Some random vector

How to learn: for batch learning use this equation at each step

$$w_{n+1} = w_n - \eta \nabla E(w_n) = w_n - \eta \sum_{n=1}^{N} (y(n) - t_n) x_n$$

How to stop the iterative process ?

- 1. Stop when the norm of the difference vector is low: $\Delta_n = \frac{\|w_{n+1} w_n\|}{\|w_n\|} < \epsilon$
- 2. Stop after fixed number of iteration
- 3. Stop when a threshold error is reached: $E(w_n) < \epsilon$
- 4. More complicated criterion?

Some python code