Probability and Statistics: Lecture-31

Monsoon-2020

by Dr. Pawan Kumar (IIIT, Hyderabad) on October 23, 2020

Definition of Conditional Variance

Let X, Y be two RVs.

Definition of Conditional Variance

Let X, Y be two RVs. By $Var(X \mid Y = y)$ the conditional variance of X given Y = y.

Definition of Conditional Variance

Let X, Y be two RVs. By $Var(X \mid Y = y)$ the conditional variance of X given Y = y. Let $\mu_{X \mid Y}(y) = E[X \mid Y = y]$. Then

Definition of Conditional Variance

Let X, Y be two RVs. By $Var(X \mid Y = y)$ the conditional variance of X given Y = y. Let $\mu_{X|Y}(y) = E[X \mid Y = y]$. Then

$$Var(X | Y = y) = E[X^2 | Y = y] - \mu_{X|Y}(y)^2$$

Proof

» Solved Example ...

Solved Example

Let X, Y be RV with joint PMF given as follows

		Y=0	Y=1	
	X = 0	$\frac{1}{5}$	$\frac{2}{5}$	
	X = 1	$\frac{2}{5}$	0	
(1). condetinal your are				

Let $Z = E[X \mid Y]$ and $V = Var(X \mid Y)$.

- 1 Find the PMF of V
- 2. Find *E*[*V*]
- S Verify that Var(X) = E[V] + Var(Z)

To find the PMF of V, we note $| \times \text{ where second}(b) |$ that V is a fin of Y. $| \text{ var}(x) = \frac{b(1-b)}{a} |$ peanally, $V = Vav(x|y) = \begin{cases} Var(x|y=0) & \text{if } y=0 \\ Var(x|y=1) & \text{if } y=1 \end{cases}$

» Answer to previous problem...

$$V = Vov(X|Y)$$

$$Vov(X|Y=1) if Y=1$$

$$Vov(X|Y=0) \text{ with prob. } 3/5 \text{ because}$$

$$V=Vov(X|Y) = \begin{cases} Vov(X|Y=0) & \text{with prob. } 3/5 \end{cases} \text{ because}$$

$$V=Vov(X|Y) = \begin{cases} Vov(X|Y=0) & \text{with prob. } 3/5 \end{cases} \text{ because}$$

$$V=Vov(X|Y) = \begin{cases} Vov(X|Y=0) & \text{with prob. } 3/5 \end{cases} \text{ because}$$

$$V=Vov(X|Y) = \begin{cases} Vov(X|Y=0) & \text{with prob. } 3/5 \end{cases} \text{ because}$$

$$V=Vov(X|Y) = \begin{cases} Vov(X|Y=0) & \text{with prob. } 3/5 \end{cases} \text{ because}$$

» Answer to previous problem...

$$P_{V}(\theta) = \begin{cases} \frac{3}{5} \\ \frac{3}{5} \end{cases}, & \text{if } \theta = 0 \\ \frac{3}{5} \\ \frac{3}{5} \end{cases}, & \text{otherwise} \end{cases} \quad \forall ar(\Re) = E[V] + Var(2)$$

» Law of Total Variance...

Law of Total Variance

Let X, Y be two RVs.

» Law of Total Variance...

Law of Total Variance

Let X, Y be two RVs. The law of total variance says that

» Law of Total Variance...

Law of Total Variance

Let X, Y be two RVs. The law of total variance says that

$$Var(X) = E[Var(X \mid Y)] + Var(E[X \mid Y])$$

Proof: Let
$$V = V_{BN}(X|Y)$$
 and Let $Z = E[X|Y]$

$$V = E[X|Y] - (E[X|Y])^{2} = E[X^{2}] - E[2^{2}]$$

$$= [V] = E[E[X^{2}|Y]] - E[2^{2}] = E[X^{2}] - E[2^{2}]$$

 $Var(2) = E[2^{1}] - (E[2])^{2} - E[2^{1}] - (E[X|Y])$ $= E[2^{2}] - (E[X])^{2}$ $= E[2^{2}] - (E[X])^{2}$ $= E[X^{2}] - (E[X])^{2}$ = Var(X) = UH'S

» Solved Problem 1

Solved Problem 1

Let X, Y be two independent RVs with the same CDFs F_X and F_Y . Let

$$Z = \max(X, Y)$$

 $W = \min(X, Y)$

Find the CDFs of Z and W.

** Answer to previous problem...

$$F_{2}(x) = P(2 \le x)$$

$$= P(\max(x,y) \le x)$$

$$= P(X \le x) \text{ and } (Y \le x)$$

$$= P(X \le x) P(Y \le x)$$

$$= P(X \le x) P(Y \le x)$$

$$= P(X \ge x) P(Y \ge x)$$

$$= P(X \ge x) P(X \ge x)$$

$$= P(X \ge$$

Solved Problem 2

Let X, Y be two RVs with: $R_{XY} = \{(i,j) \in \mathbb{Z}^2 \mid i,j \geq 0, |i-j| \leq 1\}.$

Solved Problem 2

Solved Problem 2

$$P_{XY}(i,j) = rac{1}{6\cdot 2^{\min(i,j)}}, \quad \mathsf{for}\ (i,j) \in \mathcal{R}_X.$$

Solved Problem 2

Let X,Y be two RVs with: $R_{XY}=\{(i,j)\in\mathbb{Z}^2\mid i,j\geq 0, |i-j|\leq 1\}$. The joint PMF is given by

$$extstyle{P_{XY}(i,j) = rac{1}{6\cdot 2^{\min(i,j)}}}, \quad \mathsf{for}\ (i,j) \in extstyle{R_{XY}}$$

* Plot R_{XY} in the XY plane

Solved Problem 2

$$P_{XY}(i,j) = rac{1}{6 \cdot 2^{\mathsf{min}(i,j)}}, \quad \mathsf{for}\ (i,j) \in R_{XY},$$

- * Plot R_{XY} in the XY plane
- * Find the marginal PMFs $P_X(i), P_Y(j)$

Solved Problem 2

$$P_{XY}(i,j) = rac{1}{6 \cdot 2^{\mathsf{min}(i,j)}}, \quad \mathsf{for}\ (i,j) \in R_{XY}$$

- * Plot R_{XY} in the XY plane
- * Find the marginal PMFs $P_X(i), P_Y(j)$
- * Find P(X = Y | X < 2)

Solved Problem 2

- * Plot R_{XY} in the XY plane
- * Find the marginal PMFs $P_X(i), P_Y(j)$
- * Find P(X = Y | X < 2)
- * Find $P(1 \le X^2 + Y^2 \le 5)$

Solved Problem 2

- * Plot R_{XY} in the XY plane
- * Find the marginal PMFs $P_X(i), P_Y(j)$
- * Find P(X = Y | X < 2)
- * Find $P(1 \le X^2 + Y^2 \le 5)$
- * Find P(X = Y)

Solved Problem 2

- * Plot R_{XY} in the XY plane
- * Find the marginal PMFs $P_X(i), P_Y(j)$
- * Find P(X = Y | X < 2)
- * Find $P(1 \le X^2 + Y^2 \le 5)$
- * Find P(X = Y)
- * Find $E[X \mid Y = 2]$

Solved Problem 2

$$P_{XY}(i,j) = rac{1}{6 \cdot 2^{\min(i,j)}}, \quad ext{for } (i,j) \in R_{XY}.$$

- Plot R_{XY} in the XY plane
- Find the marginal PMFs $P_X(i), P_Y(j)$
- Find $P(X = Y \mid X < 2)$
- */Find $P(1 \le X^2 + Y^2 \le 5)$
- \times Find P(X = Y)
- Find $E[X \mid Y = 2]$
- * Find Var($X \mid Y = 2$)

general,
$$\frac{k}{2}$$
 $\frac{k}{2}$ $\frac{k}{2}$ $\frac{k}{2}$ $\frac{k}{2}$

$$\begin{cases} \frac{1}{3 \cdot 2^{k-1}} & k=1,1\\ \frac{1}{3 \cdot 2^{k-1}}$$

$$P(x=y|x<2) = \frac{P(x=y,x<2)}{P(x<2)}$$

$$P(x=Y|\times <2) = \frac{P(x=Y,\times <2)}{P(\times <2)}$$

$$P(0,0) + P(1,1) = \frac{1}{1}$$

* Answer to previous problem...

**Exty=2 Frist we need to **

Find PMF &
$$x|y=2$$
:

 $x|y=2$:

$$87\% = 2, k = 1/2/3 = 1/2$$
 $R_{17}(k|2) = \begin{cases} \frac{1}{2} & k = 2/3 \\ \frac{1}{2} & \text{otherwise} \end{cases}$
 $= \sum_{k=1/2} [x/2] = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{4}$