演習ミクロ経済学 I 第2回 解答*

2017年4月18日

問題 1

(a) この効用関数は連続ではない.

証明. 距離概念として絶対値を用いる. $x=1, \varepsilon=1$ とする. 任意に $\delta>0$ を選ぶ. $x'=x+\frac{\delta}{2}$ とすると,

$$|x'-x| = \left|x + \frac{\delta}{2} - x\right| = \frac{\delta}{2} < \delta$$

となるので、 $x' \in B_{\delta}(x)$ である. 一方,

$$|u(x') - u(x)| = \left| \left(x + \frac{\delta}{2} + 1 \right) - x \right| = \frac{\delta}{2} + 1 > 1 = \varepsilon$$

となるので、 $u(x') \not\in B_{\varepsilon}(u(x))$ である. したがって u は連続ではない.

(b) この効用が表す選好は連続である.

証明. まず u が厳密な増加関数であることを示す. 任意に $x^1 < x^2$ を満たす x^1 , $x^2 \in \mathbb{R}_+$ を選ぶ. $x^1 < x^2 \leqslant 1$, $x^1 \leqslant 1 < x^2$, $1 < x^1 \leqslant x^2$ の 3 ケースを考える.

- (i) $x^1 < x^2 \leqslant 1$ のとき u の定義から、 $u(x^1) = x^1 < x^2 = u(x^2)$ となる.
- (ii) $x^1 \leqslant 1 < x^2$ のとき u の定義から, $u(x^1) = x^1 < x^2 + 1 = u(x^2)$ となる.
- (iii) $1 < x^1 \leqslant x^2$ のとき u の定義から, $u(x^1) = x^1 + 1 < x^2 + 1 = u(x^2)$ となる.

したがってuは厳密な増加関数である.

このことを使って選好が連続であることを示す。任意に $x^1 \in \mathbb{R}_+$ を選ぶ。u が選好を表すので, $x^1 \succsim x^2 \iff u(x^1) \geqslant u(x^2)$ である。u は厳密な増加関数なので, $u(x^1) \geqslant u(x^2)$ を満たす x^2 は $[x^1, +\infty)$ に含まれ, $u(x^1) \leqslant u(x^2)$ を満たす x^2 は $[0, x^1]$ に含まれる。すなわち,

^{*} 間違いを見つけたら orihsamuk@gmail.com まで連絡してください.

$$\{x^2 \in \mathbb{R}_+ \mid x^1 \succsim x^2\} = [x^1, +\infty)$$
$$\{x^2 \in \mathbb{R}_+ \mid x^1 \preceq x^2\} = [0, x^1]$$

である.これらがいずれも \mathbb{R}_+ において閉集合であることを示せばよい.以下では距離概念として絶対値を用いる.

 $[x^1,+\infty)$ が \mathbb{R}_+ において閉集合であることを示す。各 $k=1,2,\ldots$ について $x^k\in[x^1,+\infty)$ であり, $\bar{x}\in\mathbb{R}_+$ に収束する数列 $\{x^k\}_{k=1}^\infty$ を任意に選ぶ。背理法の仮定として $\bar{x}\not\in[x^1,+\infty)$ とする。これは $\bar{x}< x^1$ を意味する。 $\{x^k\}_{k=1}^\infty$ が \bar{x} に収束することから,任意の $\varepsilon>0$ に対してある自然数 \bar{k} が存在し,任意の $k\geqslant \bar{k}$ について $x^k\in B_\varepsilon(\bar{x})$ を満たす。 $\varepsilon>0$ は任意なので, $\varepsilon\equiv\frac{x^1-\bar{x}}{2}$ とすると $x^k\in B_\varepsilon(\bar{x})$ より,

$$|x^k - \bar{x}| < \varepsilon \iff \bar{x} - \varepsilon < x^k < \bar{x} + \varepsilon \Rightarrow x^k < \bar{x} + \varepsilon = \frac{x^1 + \bar{x}}{2} < x^1$$

となり, $x^k \not\in [x^1, +\infty)$ が成り立つが、これは $\{x^k\}_{k=1}^\infty$ の作り方に矛盾する.

 $[0,x^1]$ が \mathbb{R}_+ において閉集合であることを示す。各 $k=1,2,\ldots$ について $x^k\in[0,x^1]$ であり, $x\in\mathbb{R}_+$ に収束する数列 $\{x^k\}_{k=1}^\infty$ を任意に選ぶ。背理法の仮定として $x\not\in[0,x^1]$ とする。全体集合を \mathbb{R}_+ に限定していることから,これは $x>x^1$ を意味する。 $\{x^k\}_{k=1}^\infty$ が x に収束することから,任意の $\epsilon>0$ に対してある自然数 x が存在し,任意の x0 は任意なので,x1 を満たす。x2 とすると x3 とすると x4 を表。x5 について x5 を満たす。x7 とすると x8 について x9 に対して

$$|x^k - \bar{x}| < \varepsilon \iff \bar{x} - \varepsilon < x^k < \bar{x} + \varepsilon \Rightarrow x^k > \bar{x} - \varepsilon = \frac{x^1 + \bar{x}}{2} > x^1$$

となり、 $x^k \not\in [0,x^k]$ が成り立つが、これは $\{x^k\}_{k=1}^\infty$ の作り方に矛盾する.

問題 2

(1) $\mathbf{x}^1 \succeq \mathbf{x}^0 \iff x_1^1 x_2^1 \geqslant x_1^0 x_2^0$

強単調性:満たす

証明. $\mathbf{x}^1 > \mathbf{x}^0$,すなわち $x_1^1 \geqslant x_1^0$ かつ $x_2^1 \geqslant x_2^0$, $\mathbf{x}^1 \neq \mathbf{x}^0$ を満たす \mathbf{x}^1 , $\mathbf{x}^0 \in \mathbb{R}^2_+$ を任意に選ぶ. $x_1^1 = 0$ または $x_2^1 = 0$ のとき, $x_1^1 x_2^1 = x_1^0 x_2^0$ となり, $\mathbf{x}^1 \succsim \mathbf{x}^0$ が成り立つ. $x_1^1 > 0$ かつ $x_2^1 > 0$ のとき, $x_1^1 x_2^1 > x_1^0 x_2^0$ となり, $\mathbf{x}^1 \mathbf{x}^0$ が成り立つ.

次に $\mathbf{x}^1 \gg \mathbf{x}^0$, すなわち $x_1^1 > x_1^0$ かつ $x_2^1 > x_2^0$ を満たす \mathbf{x}^1 , \mathbf{x}^0 を任意に選ぶ. このとき $x_1^1 x_2^1 > x_1^0 x_2^0$ が成り立つので $\mathbf{x}^1 \succsim \mathbf{x}^0$ かつ $\mathbf{x}^0 \succsim \mathbf{x}^1$ となり, $\mathbf{x}^1 \succ \mathbf{x}^2$ が従う.

強凸性:満たす

証明. $\mathbf{x}^1 \succsim \mathbf{x}^0$ と $\mathbf{x}^1 \neq \mathbf{x}^0$ を満たす \mathbf{x}^1 , $\mathbf{x}^0 \in \mathbb{R}^2_+$ と $t \in (0,1)$ を任意に選ぶ. \mathbf{x}^0 と \mathbf{x}^1 を t に より凸結合した消費プランを \mathbf{x}^t と書くと,

$$\mathbf{x}^{t} = t\mathbf{x}^{0} + (1-t)\mathbf{x}^{1} = (tx_{1}^{0}, tx_{2}^{0}) + ((1-t)x_{1}^{1}, (1-t)x_{2}^{1})$$
$$= (tx_{1}^{0} + (1-t)x_{1}^{1}, tx_{2}^{0} + (1-t)x_{2}^{1})$$

となる. $t \in (0,1)$ より、 $x_1^t > x_1^0$ かつ $x_2^t > x_2^0$ である. よって、 $x_1^t x_2^t > x_1^0 x_2^0$ が成り立つので $\mathbf{x}^t \succeq \mathbf{x}^0$ かつ $\mathbf{x}^0 \not\succeq \mathbf{x}^t$ 、すなわち $\mathbf{x}^t \succ \mathbf{x}^0$ が従う.

(2) $\mathbf{x}^1 \gtrsim \mathbf{x}^0 \iff x_1^1 - x_2^1 \geqslant x_1^0 - x_2^0$

強単調性:満たさない

証明. $\mathbf{x}^1 = (3,3), \mathbf{x}^0 = (2,1)$ とすると、 $\mathbf{x}^1 \gg \mathbf{x}^0$ である. しかし、

$$x_1^1 - x_2^1 = 0 < 1 = x_1^0 - x_2^0$$

より $\mathbf{x}^0 \succeq \mathbf{x}^1$ となるので、 $\mathbf{x}^1 \succ \mathbf{x}^0$ を満たさない.

強凸性:満たさない

証明. $\mathbf{x}^1=(3,3), \, \mathbf{x}^0=(1,1), \,\, t=0.5$ とすると、 $x_1^1-x_2^1>x_1^0-x_2^0$ を満たすので $\mathbf{x}^1\succsim\mathbf{x}^0$ であり、当然 $\mathbf{x}^1\neq\mathbf{x}^0$ である。ところが、 $tx_1^1+(1-t)x_1^0=2, \,\, tx_2^1+(1-t)x_2^0=2$ なので

$$x_1^t - x_2^t = 2 - 2 = 0 = x_1^0 - x_2^0$$

となり、 $\mathbf{x}^t \not\subset \mathbf{x}^0$ が従う. よって $\mathbf{x}^t \succ \mathbf{x}^0$ は成り立たない.

(3) $\mathbf{x}^1 \succsim \mathbf{x}^0 \iff \min\{x_1^1, x_2^1\} \geqslant \min\{x_1^0, x_2^0\}$

問題 3

この選好は局所非飽和を満たさない.

証明. $x^0 = 5$, $\varepsilon = 1$ とする. 距離概念を絶対値とし、任意に $x^1 \in B_{\varepsilon}(x^0)$ を選ぶと、

$$|x^1 - x^0| < \varepsilon \iff x^0 - \varepsilon < x^1 < x^0 + \varepsilon \iff 4 < x^1 < 6$$

が成り立つ、すると、 $u(x^1)\leqslant 0=u(x^0)$ となる、u が選好を表現しているので、 $u(x^1)\leqslant u(x^0)\Longleftrightarrow x^1\precsim x^0$ となり、局所非飽和を満たさない.

問題 4

証明. 任意に \mathbf{x}^1 , $\mathbf{x}^2 \in \mathbb{R}^2_+$ と $t \in [0,1]$ を選び, $\mathbf{x}^t \equiv tx_1 + (1-t)x_2$ と書くと,

$$f(\mathbf{x}^t) = \min\{x_1^t, x_2^t\} = \min\{tx_1^1 + (1-t)x_1^2, tx_2^1 + (1-t)x_2^2\}$$

である.一方,任意の i=1,2 について $f(\mathbf{x}^i) = \min\{x_1^i, x_2^i\}$ が成り立つことから,

$$\begin{cases} f(\mathbf{x}^i) \leqslant x_1^i \\ f(\mathbf{x}^i) \leqslant x_2^i \end{cases} \Rightarrow tf(\mathbf{x}^i) + (1-t)f(\mathbf{x}^i) = f(\mathbf{x}^i) \leqslant tx_1^i + (1-t)x_2^i$$

となる. よって

$$\min\{f(\mathbf{x}^1), f(\mathbf{x}^2)\} \leqslant \min\{tx_1^1 + (1-t)x_2^1, tx_1^2 + (1-t)x_2^2\}$$

が成り立つ*1. したがって,

$$f(\mathbf{x}^t) = \min\{tx_1^1 + (1-t)x_2^1, tx_1^2 + (1-t)x_2^2\} \geqslant \min\{f(\mathbf{x}^1), f(\mathbf{x}^2)\}\$$

を得る. □

問題 5

 \Rightarrow の証明. f が準凹関数であると仮定し、集合 S(y) を

$$S(y) \equiv \{ x' \in \mathbb{R}^2_+ \mid f(\mathbf{x}') \geqslant y \}$$

と定義する. 任意に $\mathbf{x} \in \mathbb{R}^2_+$ を選び、 \mathbf{x}^1 、 $\mathbf{x}^2 \in S(f(\mathbf{x}))$ と $t \in [0,1]$ を任意にとる. $\mathbf{x}^t \equiv t\mathbf{x}^1 + (1-t)\mathbf{x}^2$ とする. $\mathbf{x}^t \in S(f(\mathbf{x}))$ 、つまり $f(\mathbf{x}^t) \geqslant f(\mathbf{x})$ が示せればよい. f が準凹関数であることから、

$$f(\mathbf{x}^t) \geqslant \min\{f(\mathbf{x}^1), f(\mathbf{x}^2)\}\$$

が成り立つが、 \mathbf{x}^1 、 $\mathbf{x}^2 \in S(f(\mathbf{x}))$ なので $f(\mathbf{x}^1) \geqslant f(\mathbf{x})$ かつ $f(\mathbf{x}^2) \geqslant f(\mathbf{x})$ である。すなわち $\min\{f(\mathbf{x}^1), f(\mathbf{x}^2)\} \geqslant f(\mathbf{x})$ となるので $f(\mathbf{x}^t) \geqslant f(\mathbf{x})$ が従う。 \Box \Leftarrow の証明。任意の $y \in \mathbb{R}$ に対し, $S(y) = \{\mathbf{x}' \in \mathbb{R}^n_+ \mid f(\mathbf{x}') \geqslant y\}$ が凸集合だと仮定する。任意に \mathbf{x}^1 、 $\mathbf{x}^2 \in \mathbb{R}^n_+$ を選ぶ。一般性を失わず,

$$f(\mathbf{x}^1) \geqslant f(\mathbf{x}^2) \tag{1}$$

だとする. $\mathbf{x}^2 \in S(f(\mathbf{x}^2))$ が成り立つことに注意すると、(1) より $\mathbf{x}^1 \in S(f(\mathbf{x}^2))$ も成り立つ. S(y) は任意の $y \in \mathbb{R}$ に対し凸集合なので、 $S(f(\mathbf{x}^2))$ も凸集合である. よって任意の $t \in [0,1]$ について、 $\mathbf{x}^t = t\mathbf{x}^1 + (1-t)\mathbf{x}^2$ とすると $\mathbf{x}^t \in S(f(\mathbf{x}^2))$ となる. これは $f(\mathbf{x}^t) \geqslant f(\mathbf{x}^2)$ を意味するので $f(\mathbf{x}^t) \geqslant \min\{f(\mathbf{x}^1), f(\mathbf{x}^2)\}$ を得る.

 $^{^{*1}}$ 一般に, $a\leqslant A$ かつ $b\leqslant B$ が成り立つとき, $\min\{a,b\}\leqslant \min\{A,B\}$ となります. チェックしてみてください.