EC3204: Programming Languages and Compilers

Lecture 3 — Lexical Analysis (2)

Recognition of Tokens

Sunbeom So Fall 2024

This Lecture: String Recognition using Finite Automata

 Finite automata are string recognizers that return either "yes" (accept) or "no" (reject).

- There are two types of finite automata.
 - Non-deterministic Finite Automata (NFA)
 - Deterministic Finite Automata (DFA)
- We will learn about:
 - Definitions of NFA and DFA.
 - How to recognize strings using NFA and DFA.

Appetizer: Possibility of Correct String Recognition

Given a string s and a lexical pattern R, to check whether $s \in L(R)$, we actually check whether $s \in L(FA)$ for some FA. Here, the recognition result is correct iff L(R) = L(FA)!

ullet If L(R)
eq L(FA), we may accept (reject) invalid (valid) lexemes.

Appetizer: Possibility of Correct String Recognition

Given a string s and a lexical pattern R, to check whether $s \in L(R)$, we actually check whether $s \in L(FA)$ for some FA. Here, the recognition result is correct iff L(R) = L(FA)!

• If $L(R) \neq L(FA)$, we may accept (reject) invalid (valid) lexemes. Before blindly using DFA or NFA, we would like to answer the question:

Q. Given R, does there exist FA such that L(R) = L(FA)?

In other words, is it possible to have a lexer that always outputs correct results? The answer is yes, as formalized by the theorem below.

Theorem (Kleene's Theorem)

Every language defined by a regex can be defined by NFA and DFA.^a

^acf) The converse is true as well.

On top of this theoretical result, we can be confident that there is no gap between our goal and what we actually do!

Non-deterministic Finite Automata (NFA)

Definition (NFA)

A non-deterministic finite automaton (NFA) is defined as

$$M = (Q, \Sigma, \delta, q_0, F)$$

where

- Q: a finite set of states
- Σ : an alphabet, i.e., a finite set of input symbols. We assume that $\epsilon \not\in \Sigma$.
- $ullet q_0 \in Q$: the initial state (start state)
- ullet $F\subseteq Q$: a set of final states (accepting states)
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to 2^Q$: transition function that outputs a set of next states, for each state and for each symbol in $\Sigma \cup \{\epsilon\}$.

Example: NFA

ullet An example of NFA $M:(Q,\Sigma,\delta,q_0,F)$ according to the definition

$$(\{0,1,2,3\},\{a,b\},\delta,0,\{3\})$$

$$\delta(0,a) = \{0,1\} \quad \delta(1,a) = \emptyset \quad \delta(2,a) = \emptyset \quad \delta(3,a) = \emptyset$$

$$\delta(0,b) = \{0\} \quad \delta(1,b) = \{2\} \quad \delta(2,b) = \{3\} \quad \delta(3,b) = \emptyset$$

Example: NFA

ullet An example of NFA $M:(Q,\Sigma,\delta,q_0,F)$ according to the definition

$$\begin{split} & (\{0,1,2,3\},\{a,b\},\delta,0,\{3\}) \\ \delta(0,a) &= \{0,1\} & \delta(1,a) = \emptyset & \delta(2,a) = \emptyset & \delta(3,a) = \emptyset \\ \delta(0,b) &= \{0\} & \delta(1,b) = \{2\} & \delta(2,b) = \{3\} & \delta(3,b) = \emptyset \end{split}$$

A common representation method of NFA is transition graph.

Example: NFA

ullet An example of NFA $M:(Q,\Sigma,\delta,q_0,F)$ according to the definition

$$\begin{split} & (\{0,1,2,3\},\{a,b\},\delta,0,\{3\}) \\ \delta(0,a) &= \{0,1\} \quad \delta(1,a) = \emptyset \quad \delta(2,a) = \emptyset \quad \delta(3,a) = \emptyset \\ \delta(0,b) &= \{0\} \quad \delta(1,b) = \{2\} \quad \delta(2,b) = \{3\} \quad \delta(3,b) = \emptyset \end{split}$$

A common representation method of NFA is transition graph.

• NFA can also be represented by a transition table.

State	a	\boldsymbol{b}	ϵ
0 (start)	$\{0, 1\}$	{0}	Ø
1	Ø	$\{2\}$	Ø
2	Ø	$\{3\}$	Ø
$oldsymbol{3}$ (final)	Ø	Ø	Ø

Strings Recognizable by NFA

The language of an NFA, denoted L(NFA), is the set of strings recognizable by the NFA.

In our example,

$$L(\textit{NFA}) = \{wabb \mid w \in \{a,b\}^*\} = L((a|b)^*abb).$$

In words, the above NFA recognizes any strings that end with abb.

Example: Strings Recognizable by NFA

Find the languages (regular expressions) of the NFAs.

• $(a | b)^*$

• $(a|b)^* \cdot (a|b)$, or $(a|b)^+$

Exercise: Strings Recognizable by NFA

Exercise: Strings Recognizable by NFA

• $(a^+|b^+)$

• $(aa)^*(bb)^*b$

String Recognition using NFA

An NFA recognizes a string w iff there is a path from the start state to one of the final states in the transition graph covered by w.

For example, a string aabb is accepted ("yes") because we have a path ending at the final state $\bf 3$:

$$0\overset{a}{\rightarrow}0\overset{a}{\rightarrow}1\overset{b}{\rightarrow}2\overset{b}{\rightarrow}3$$

By contrast, a string aa is rejected ("no") because any path labeled aa does not end at the final state 3:

$$0 \stackrel{a}{\rightarrow} 0 \stackrel{a}{\rightarrow} 0$$
, $0 \stackrel{a}{\rightarrow} 0 \stackrel{a}{\rightarrow} 1$

Deterministic Finite Automata (DFA)

A DFA is a special case of an NFA, where

- lacktriangledown there are no moves on ϵ , and
- for each state and input symbol, the next state is unique.

Definition (DFA)

A deterministic finite automaton (or DFA) is defined as

$$M = (Q, \Sigma, \delta, q_0, F)$$

where

- Q: a finite set of states
- \bullet Σ : a finite set of input symbols (or input alphabet)
- $\delta: Q \times \Sigma \to Q$: a transition function that is a total function (defined for every possible input)
- $q_0 \in Q$: the initial state
- $F \subseteq Q$: a set of final states

Example: DFA in Transition Graph

A DFA that accepts strings described by $(a \mid b)^*abb$.

Exercises

Find the languages (regular expressions) of the DFA.

•

Exercises

Find the languages (regular expressions) of the DFA.

(0 | 1)*01

String Recognition using DFA

As in NFA, a DFA recognizes a string w iff there is a path from the start state to one of the final states in the transition graph covered by w.

For example, a string aabb is accepted ("yes") because we have a path ending at the final state 3:

$$0 \stackrel{a}{\rightarrow} 1 \stackrel{a}{\rightarrow} 1 \stackrel{b}{\rightarrow} 2 \stackrel{b}{\rightarrow} 3$$

By contrast, a string aa is rejected ("no") because the path labeled aa does not end at the final state 3:

$$0\stackrel{a}{\rightarrow}1\stackrel{a}{\rightarrow}1$$

Why DFA?

Both NFA and DFA are string recognizers, but lexers often rely on DFA. Why?

Automaton	Initial (Construction)	Per String	
NFA	O(r)	O(r imes x)	
DFA typical case	$O(r ^3)$	O(x)	
DFA worst case	$O(r ^22^{ r })$	O(x)	

|r|: the size of a regex r (#operators in r + #operands in r) |x|: the size of an input string x

- One main reason: efficiency
- If a string recognizer to be built will be used many times repeatedly (e.g., lexical analysis), converting to a DFA is worthwhile.
- If a string recognizer to be built will be used only a few times (e.g., regex matching using grep), directly simulating an NFA would be more efficient.

Summary

We learned how to accept (resp., reject) the valid (resp., invalid) lexical patterns.

- Definitions of NFA and DFA.
- How to recognize strings using NFA and DFA.

Next class: how to construct string recognizers (NFA, DFA).