Industry Ready Engineer

Structural Analysis Framework

Role of Stress Engineer

- Stress Engineers ensure that things Do not Break!
- They also predict the instances of loads where things can break!
- For this they do Structural Analysis
- Stress analysis by hand calculations and/or finite element analysis (FEA)
- Give solution to failures of structures
- Understanding of structure using reverse engineering

Tacoma Bridge 1940

- **Understanding The Structure and Its Design Requirements**
- **Structural Reduction**
- **Understanding Material**
- Structural Parameters, Load Calculations and Load Path
- **Analysis Requirements**
- **Initial Sizing**
- 7. Performing Detailed Analysis Process
- 8. Structural Changes Using Analysis Outputs
- Structural Analysis Reports/ Strength Check Notes
- 10. Structural Tests / Analysis Validation

Hand Calculations: Fx, Fy, Fz, Mx, Mz

Force Balance:

$$\sum F_x = 0$$

$$|R_{x1}| = |R_{x2}| = Rx$$

$$\sum_{y} F_{y} = 0$$

$$R_{y} = \frac{P_{y} \times z}{y}$$

$$R_{z} = \frac{P_{y} \times z}{y}$$

$$\sum F_y = 0$$

$$R_y = \frac{Py}{2}$$

$$\sum F_z = 0$$

$$|R_{z1}| = |R_{z2}| = Rz$$

Moment Balance:

$$\sum F_x = 0 \qquad \qquad \sum M_x = 0$$

$$P_y * z = R_z * y$$

$$R_z = \frac{P_y * z}{y}$$

$$\sum M_Z = 0$$

1. Understanding the structure:

1. Understanding the structure:

- Understanding the function of structural components individually on top level, For example: Identifying rods, beams, columns, plates etc.
- Understanding the structural requirements (From the owner and from certifying agencies MIL, ASTM, SAE, FAA, EASA etc.)

§ 25.303 - FACTOR OF SAFETY.

Unless otherwise specified, a factor of safety of 1.5 must be applied to the prescribed limit loads which are considered external loads on the structure. When a loading condition is prescribed in terms of ultimate loads, a factor of safety need not be applied unless otherwise specified.

[Amdt. 25-23, 35 FR 5672, Apr. 8, 1970]

CFR Subpart C Section 25 561

(3) The occupant experiences the following ultimate inertia forces acting separately relative to the surrounding structure:

(i) Upward, 3.0g
(ii) Forward, 9.0g
(iii) Sideward, 3.0g on the airframe; and 4.0g on the seats and their attachments.
(iv) Downward, 6.0g
(v) Rearward, 1.5g

2. Structural Reduction:

- Identifying and listing each structural component.
- Identifying similar components.
- Identifying the structural symmetries
- Summarizing the unique components.

3. Understanding Material:

- Understanding the material inputs for structural analysis.
- Material Standards
- Material allowable and knockdowns factors (fitting/environmental) etc.

Specification	AMS- QQ-A-250/5- Flat sheet and plate									
Form										
Temper	T	T81		T851b			T86 1 ^b			
Thickness, in.	0.010- 0.062 S	0.063- 0.249 S	0.250- 0.499		0.500- 1.000=	0.020- 0.062	0.063- 0.249	0.250- 0.499	≥0.500	
			А	В	s	s	s	s	s	
Mechanical Properties:										
L	64	67	65	66	63	65	70	68	67	
LT	62	65	65	66	63	64	69	68	67	
F, ksi:										
L	57	59	56	58	56	59	6.5	62	61	
LT F _{in} kei:	54	56	56	58	56	58	64	62	61	
L	55	57	56	58	56	59	65	62	61	
LT	55	57	57	59	56	61	67	65	64	
F., kei	38	39	37	37	36	36	39	39	38	
Fig. ks i:				"		20	"	""	"	
(e/D = 1.5)	96	100	99	100	96	99	107	105	104	
(e/D = 2.0)	122	127	127	129	123	128	138	136	134	
For ksi:				l						
(e/D = 1.5)	78	83	83	86	83	84	93	90	88	
(e/D = 2.0)	90	94	98	101	98	99	109	105	104	
e,percent (S-Basis):				l					l	
LT	5	5	5		5	3	4	4	4	
Z , 10 1 ksi:										
Primary	10.5	10.5	10.7			10.5	10.5	10.5		
Secondary	9.5	10.0	10.2			9.5	10.0	0 10.2		
$B_{\rm p}$, 10^{-1} ksi:							١	Ι.		
Primary Secondary	10.7 9.7	10.7 10.2		10.9 10.4		9.7	10.7		0.9 0.4	
G,10 ksi		20.2		20.7			10.2			
#		0.33								
Physical Properties: g, h/in	0.100									

4. Structural Parameters, Load Calculations and load path:

- Estimating the structural dimensions, Mass/C.G. Details, Area centroids, 2nd moment of area etc.
- Summarizing the initial/preliminary loads from structural requirements.
- Developing free body diagrams (FBDs) for structure and individual components using various initial loads.

Summarize the worst (Limit/Ultimate) loads for structure and

its components.

 $M = 50 \times 6 = 300 \text{ in lbs}$

4. Structural Parameters, Load Calculations and load path: Types of Loads

Based on application of Loads:

- Tensile
- Compression
- Shear Loads
- Bending
- Torsional

Based on Nature of loads

- Static
- Dynamic (Shock, Vibration, Fatigue, Creep etc..)

Environmental Loads

- Wind/Snow Loads (Gust, Drag etc..)
- Earth quake
- Loads because of temperature and humidity
- Dead Loads
- Live Loads

5. Analysis requirements:

- Based on summarized loads, what are the different kinds of stress/structural analysis required.
- Summarizing various analysis required: For example: Strength, Stiffness and Stability analysis.

(a) Total deformation

Mode 1 Mode 2 Frequency

6. Initial Sizing::

- Using best approaches for sizing.
- Sizing the structure and its components based on preliminary loads, preliminary materials and analytical calculations
- Sizing the joints (Bolts, rivets, welds etc..)
- · Initial material selections.

7. Performing Detailed Analysis Process:

- Using Hand/Analytical calculations approach.
- Using Finite element analysis approach with the help of software packages.
- Applying best practices for the Hand/FEA calculations.
- Developing the calculation templates for Hand/FEA calculation
- Performing analysis for worst load cases and get Margin of Safety (MOS) / Factor of safety (FOS) in terms of stresses/displacements etc..

7. Performing Detailed Analysis Process:

• Developing the calculation templates for Hand/FEA calculation

Content of Calculation Template:

- 1. Version
- 2. Summary of Analysis Results
- 3. Component Details
- 4. Geometry
- 5. Material
- 6. Loads and Assumptions
- 7. Analysis

8. Structural Changes using analysis Outputs:

- Using material parameters to improve (Increase/Decrease) MOS.
- Changing the dimensional parameters for optimal MOS.

9. Structural analysis reports/ Strength Check Notes:

- Preparing the load assumption reports.
- Preparing the stress analysis reports or strength check notes.
- Best practices for report preparations.

Content of Stress Reports:

- 1. Introduction/Background/Objective
- 2. Structural Details: 3-D Image, Drawings, BOM etc.
- 3. Materials Used
- 4. Loads derivation and assumptions
- 5. Analysis: Hand Calculations and FEA
- 6. Test details and results
- 7. Results Summary Tables
- 8. Observations and Discussions
- 9. Future work
- 10. References
- 11. Appendix

10. Structural Test / Analysis Validation:

- Understanding/preparation of the test requirements.
- · What kind of structural test required
- Preparing the test plans
- Understanding and processing the test data for generating useful information.
- Test, Hand calculations and FEA validations.

Prerequisites:

- Understanding of geometry (via Drawings/3D models) and engineering math (vectors, algebra and calculus).
- Understanding materials, usage and appropriate applications.
- Understanding of Theories of Failure and applications to problems for various loaded elements.
- Finite Element Methods (Discretization, meshing, solving, post-processing)

Thank You