Verification: TD4

Marius

October 2021

Exercice 1

Let $\mathcal{A} = (Q, \Sigma, I, T, (F_i)_{i \in \mathbb{N}})$. We build $(\mathcal{A}_i)_{i \in \mathbb{N}}$ such that $\mathcal{A}_i = (Q, \Sigma, I, T, F_i)$. Then we merge them by $T'(f_i, \alpha) = T(f_i, \alpha)_{i+1}$

Exercice 2

- $Rat(\Sigma^{\omega}) \subseteq Rec(\Sigma^{\omega})$
- Let $(X_i)_{i \leq m} \in Rat(\Sigma^*)$ and $(Y_i)_{i \leq m} \in Rat(\Sigma^+)$ and (A_{X_i}, A_{Y_i}) their automata. Then $\sum_{i \leq m} (A_{X_i}.A_{Y_i}^{\omega})$ recognize $\bigcup_{i \leq m} (X_i.Y_i^{\omega})$.
- $Rec(\Sigma^{\omega}) \subseteq Rat(\Sigma^{\omega})$

 $X_f = L(A_f)$ vu comme un automate fini. $Y = \bigcup L(A_{ff})$, où les A_{ff} sont des copies de A dont l'état initial est f.

 \mathcal{A}_{ff} admet un état f' copie de f pour éviter d'accepter le mot vide.

Exercice 3

a)

b)

Let \mathcal{A} be such an automata and $f_0 \in F$ reachable from q_0 by a word u_0 . Then, because \mathcal{A} is deterministic and $u_0ba^{\omega} \in L$, there exists $u_1 = bv_1$ such that $T^*(q_0, u_0u_1) \in F$.

By induction, we may then build an infinite word u_i containing an infinite number of b and recognized by A. In particular, $L(A) \neq L$

b)

L may be rewritten $\bigcup X.Y^*$ with the same construction as above. In that case $L'=\bigcup X.Y^\omega$

Then w has infinitely many prefixes if and only if $w \in L'$, that is $L' = \overrightarrow{L}$