ggplot2 Graph Gallery

Categories and distributions: Amounts

by Martin Frigaard

Written: September 21 2021

Updated: April 07 2022

Resources:

The graphs

- The ggplot2 book by Hadley Wickham, Danielle Navarro, and Thomas Lin Pedersen
- Data Visualization: A Practical Introduction by Kieran Healy (2018)
- R Graphics Cookbook, 2nd edition by Winston Chang (2022)

Graph Categories

- Fundamentals of Data Visualization by Claus O. Wilke (2019)
- Data Visualisation: A Handbook for
 Data Driven Design by Andy Kirk (2019)
- Data Points by Nathan Yau (2013)

Graph Categories: The 'CHRTS' Families of Chart Types

From "Data Visualisation: A Handbook for Data Driven Design", Andy Kirk (2019)

Comparing categories and distributions

Hierarchies/part-to-whole relationships

Correlations and connections

Trends and intervals over time

Maps, overlays, and/or distortions

Graph Categories: Directory of Visualizations

From "Fundamentals of Data Visualization", Claus O. Wilke (2019)

Amounts

Distributions

Proportions

X-Y relationships

Geospatial Data

Uncertainty

Comprehensive Graph Gallery

Comparing categories and values

- Amounts
- Distributions

Hierarchies and proportions

• Part-to-whole relationships

Trends, correlations and connections

X–Y relationships

Maps, overlays, and distortions

Geospatial Data

Statistical measures

Uncertainty

Data

Data come from the following packages:

- -palmerpenguins
- fivethirtyeight
- -ggplot2movies

Or created using tribble()

variable 1	variable 2
<chr></chr>	<dbl></dbl>
a	1
b	2
С	3
3 rows	

Load data packages


```
library(palmerpenguins)
library(fivethirtyeight)
library(ggplot2movies)
```

palmerpenguins

palmerpenguins package website

palmerpenguins::penguins -> penguins

species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g sex	year
<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int> <fct></fct></int>	<int></int>
Adelie	Torgersen	39.1	18.7	181	3750 male	2007
Adelie	Torgersen	39.5	17.4	186	3800 female	2007
Adelie	Torgersen	40.3	18.0	195	3250 female	2007
Adelie	Torgersen	NA	NA	NA	NA NA	2007
Adelie	Torgersen	36.7	19.3	193	3450 female	2007
Adelie	Torgersen	39.3	20.6	190	3650 male	2007
Adelie	Torgersen	38.9	17.8	181	3625 female	2007
Adelie	Torgersen	39.2	19.6	195	4675 male	2007
Adelie	Torgersen	34.1	18.1	193	3475 <i>NA</i>	2007
Adelie	Torgersen	42.0	20.2	190	4250 NA	2007
1-10 of 34	4 rows			Previous	s 1 2 3 4 5 6 3	35 Next

fivethirtyeight

fivethirtyeight package website

All datasets are listed below with descriptions

datasets("fivethirtyeight")

ggplot2movies

ggplot2movies package website

We're using movies_data (derived version of the ggplot2movies::movies)

movies_data

title	year	length	budget	rating mpaa
<chr></chr>	<int></int>	<int></int>	<int></int>	<dbl> <fct></fct></dbl>
100 Mile Rule	2002	98	1100000	5.6 R
13 Going On 30	2004	98	37000000	6.4 PG-13
15 Minutes	2001	120	42000000	6.1 R
2 Fast 2 Furious	2003	107	76000000	5.1 PG-13
2046	2004	129	12000000	7.6 R
21 Grams	2003	124	20000000	8.0 R
25th Hour	2002	135	15000000	7.8 R
3000 Miles to Graceland	2001	125	62000000	5.4 R
40 Days and 40 Nights	2002	96	17000000	5.4 R
50 First Dates	2004	99	75000000	6.8 PG-13
1-10 of 751 rows 1-6 of 7 columns		Previ	ous 1 2 3	4 5 6 76 Next

Comparing Categories and Distributions

Amounts: Bars

The bar chart (or graph) is typically used to display counts. Bar charts can be arranged vertically or horizontally, stacked, diverging, or dodged. In ggplot2, bar charts can be built using geom_bar() or geom_col()

Amounts: Bars

movies_data

title	year	length	budget	rating mpaa
<chr></chr>	<int></int>	<int></int>	<int></int>	<dbl> <fct></fct></dbl>
100 Mile Rule	2002	98	1100000	5.6 R
13 Going On 30	2004	98	37000000	6.4 PG-13
15 Minutes	2001	120	42000000	6.1 R
2 Fast 2 Furious	2003	107	76000000	5.1 PG-13
2046	2004	129	12000000	7.6 R
21 Grams	2003	124	20000000	8.0 R
25th Hour	2002	135	15000000	7.8 R
3000 Miles to Graceland	2001	125	62000000	5.4 R
40 Days and 40 Nights	2002	96	17000000	5.4 R
50 First Dates	2004	99	75000000	6.8 PG-13
1-10 of 751 rows 1-6 of 7 columns		Previ	ous 1 2 3	4 5 6 76 Next

Amounts: Bars

Map mpaa to the x axis and to the fill aesthetic inside the aes() of $geom_bar()$, and add the labels

```
labs_geom_bar <- labs(
   x = "MPAA rating",
   title = "IMDB movie information/user ratings")</pre>
```

```
ggplot(data = movies_data,
        aes(x = mpaa)) +
    geom_bar(aes(fill = mpaa)) +
    labs_geom_bar
```


Amounts: Grouped Bars

To create grouped bar charts (compare the values of a numerical variable across the levels of a categorical variable) we can use the geom_col() function.

Amounts: Grouped Bars

movies_data

title	year	length	budget	rating mpaa
<chr></chr>	<int></int>	<int></int>	<int></int>	<dbl> <fct></fct></dbl>
100 Mile Rule	2002	98	1100000	5.6 R
13 Going On 30	2004	98	37000000	6.4 PG-13
15 Minutes	2001	120	42000000	6.1 R
2 Fast 2 Furious	2003	107	76000000	5.1 PG-13
2046	2004	129	12000000	7.6 R
21 Grams	2003	124	20000000	8.0 R
25th Hour	2002	135	15000000	7.8 R
3000 Miles to Graceland	2001	125	62000000	5.4 R
40 Days and 40 Nights	2002	96	17000000	5.4 R
50 First Dates	2004	99	75000000	6.8 PG-13
1-10 of 751 rows 1-6 of 7 columns		Previ	ous 1 2 3	4 5 6 76 Next

Amounts: Grouped Bars

Map mpaa to the x axis, rating to the y axis, and mpaa to fill inside the aes() of geom_col(), and add the labels

```
labs_geom_col <- labs(
  x = "MPAA rating",
  y = "Average IMDB user rating",
  title = "IMDB movie information/user ratings")</pre>
```


We can also use bars to look at numeric and categorical variables using **geom_bar()** by setting **fill** argument.

penguins

species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g sex	year
<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int> <fct></fct></int>	<int></int>
Adelie	Torgersen	39.1	18.7	181	3750 male	2007
Adelie	Torgersen	39.5	17.4	186	3800 female	2007
Adelie	Torgersen	40.3	18.0	195	3250 female	2007
Adelie	Torgersen	NA	NA	NA	NA NA	2007
Adelie	Torgersen	36.7	19.3	193	3450 female	2007
Adelie	Torgersen	39.3	20.6	190	3650 male	2007
Adelie	Torgersen	38.9	17.8	181	3625 female	2007
Adelie	Torgersen	39.2	19.6	195	4675 male	2007
Adelie	Torgersen	34.1	18.1	193	3475 <i>NA</i>	2007
Adelie	Torgersen	42.0	20.2	190	4250 NA	2007
1-10 of 34	4 rows			Previous	s 1 2 3 4 5 6 3	35 Next

Map flipper_length_mm to the x axis, sex to fill, the geom_bar() layer, and add the labels

```
labs_geom_bar_stacked <- labs(
   x = "Flipper length (millimeters)",
   title = "Adult foraging penguins")</pre>
```


We can extend $geom_bar()$ by setting the y to a numeric variable and using both the x and fill aesthetics (two categorical variables).

penguins

species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g sex	year
<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int> <fct></fct></int>	<int></int>
Adelie	Torgersen	39.1	18.7	181	3750 male	2007
Adelie	Torgersen	39.5	17.4	186	3800 female	2007
Adelie	Torgersen	40.3	18.0	195	3250 female	2007
Adelie	Torgersen	NA	NA	NA	NA NA	2007
Adelie	Torgersen	36.7	19.3	193	3450 female	2007
Adelie	Torgersen	39.3	20.6	190	3650 male	2007
Adelie	Torgersen	38.9	17.8	181	3625 female	2007
Adelie	Torgersen	39.2	19.6	195	4675 male	2007
Adelie	Torgersen	34.1	18.1	193	3475 <i>NA</i>	2007
Adelie	Torgersen	42.0	20.2	190	4250 NA	2007
1-10 of 34	4 rows			Previous	s 1 2 3 4 5 6 3	35 Next

Map island to the x axis, $flipper_length_mm$ to the y axis, sex to fill, the $geom_bar()$ layer (with position and stat), and add the labels

```
geom_bar_stacked_2 <- labs(
   x = "Island in Palmer Archipelago",
   y = "Flipper length (millimeters)",
   title = "Adult foraging penguins")</pre>
```


Amounts: Diverging Bars

If you have a numeric variable with positive and negative values, consider using diverging bars with geom_bar()

Amounts: Diverging Bars


```
unisex_names <- fivethirtyeight::unisex_names</pre>
unisex_names_diff <- mutate(unisex_names,</pre>
     male_female_diff = male_share - female_share,
     diff cat = if else(
                   male female diff > 0,
                   true = "More common male name",
                   false = "More common female name"))
sample names \leftarrow slice sample(unisex names diff, n = 10)
```

name	total	male_share	female_share \		
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>		
Shawndell	390.6902	0.6394320	0.3605680		
Ocie	2299.2450	0.5302916	0.4697084		
Aziah	758.4976	0.3414952	0.6585048		
Chapel	120.1532	0.3470163	0.6529837		
Rhyan	2900.1884	0.3987040	0.6012960		
Kellis	170.7419	0.4588224	0.5411776		
Maven	312.7507	0.6122828	0.3877172		
Trenell	412.8648	0.6621265	0.3378735		
Shamell	188.8719	0.6627349	0.3372651		
Kendall	79210.8740	0.3723667	0.6276333		
1-10 of 10 rows 1-4 of 7 columns					

Amounts: Diverging Bars

Here we use the reorder() function to arrange the values of male_female_diff by name, and map the diff_cat to label.

```
labs_geom_bar_diverg <- labs(
   x = "Name",
   y = "Male share - female share",
   title = "Most Common Unisex Names In America",
   fill = "Difference category")</pre>
```


Amounts: Diverging Bars (vertical)

name	total	male_share	female_share \
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Aly	1298.6990	0.3704647	0.6295353
Larkin	2267.5889	0.5077381	0.4922619
Sher	229.0863	0.5200640	0.4799360
Giani	375.9885	0.5748510	0.4251490
Tru	1259.0547	0.4531066	0.5468934
Lorrin	371.1539	0.3515221	0.6484779
Justice	27350.5646	0.5281950	0.4718050
Erian	155.8202	0.4330290	0.5669710
Reese	36360.5206	0.3619103	0.6380897
Cristan	352.1832	0.4346502	0.5653498
1-10 of 20 rows	1-4 of 7 columns	Pre	evious 1 2 Next

Amounts: Diverging Bars (vertical)

Diverging bar-charts can be arranged vertically, too

Amounts: Diverging Bars (vertical)

For vertically arranged bars, we switch the x and y axis variables (and the reorder () function).

```
labs_geom_bar_diverg_vert <- labs(
    x = "Name",
    y = "Male share - female share",
    title = "Most Common Unisex Names In America",
    fill = "Difference category")</pre>
```

