La tarea que pidió Imanol

Pues yo, quién más

Hoy

añ

Abstract

En este documento vamos a aprender a usar $\LaTeX(T_{FX})$.

A en unicode (U+0041). **Así ponemos** las letras negritas. *Así las itálicas* o *así*. Así subrayamos cosas. <u>IIII</u>.

1 Lista del súper

- \square Zanahorias,
- c) Aguacate,
- Manzanas,
- Naranjas,
- $\frac{1}{2}$ kg de fresas,
- $\frac{1}{4}$ kg queso parmesano.

2 Pasos para superar el alcoholismo

- 1. Aceptar que tienes un problema.
- 2. Ir a tomar café con @ImanolBuscaTag.

2.1 Lista del súper

- \square Zanahorias,
- ☐ Aguacate,
- □ Manzanas,
- □ Naranjas,
- $\Box \frac{1}{2}$ kg de fresas,
- $\Box \frac{1}{4}$ kg queso parmesano.

$$A + ' = \grave{A}$$

i

Sea $f:[a,b] \to \mathbb{R}$ una función continua y $F:[a,b] \to \mathbb{R}$ una función tal que F'(x) = f(x), para toda $x \in [a,b]$, entonces

$$\frac{\mathrm{d}^n f}{\mathrm{d} x^n}$$

$$3.14^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$$

efeaxwqx

Algoritmo 1: Fibonacci

Datos: n un número natural.

Resultado: El *n*-ésimo término de la sucesión de Fibonacci.

aux = n si aux = 0.1 entonces

regresa 1

Fibonacci(aux - 1) + Fibonacci(aux - 2)

5tef erger

Algoritmo 2: Preprocesamiento

Datos: Una matriz C de costos. Resultado: \overline{U} conjunto inicial de asignaciones,

 φ un inicial vector de asignación de personas,

f un vector inicial de asignación de tareas,

- 10pt, 11pt, 12pt,... : Cambiar el tamaño de la fuente.
- a4paper, letterpaper, legalpaper: Tamaño del papel.
- fleqn: Pasar las fórmulas del centro a la izquierda.
- legno: números de izquerda a derecha.
- titlepage, notitlepage: para poner o no poner una sola página con título.
- twocolumn, onecolumn: para poner el documento con dos columnas o una columna.
- twoside, oneside: Documento de dos caras o una cara(article o report).
- landscape: Para que el documento esté en forma horizontal.
- openright, openany: Para que el nuevo capítulo (de un documento tipo Book) empiece del lado derecho o empiece en cualquier lado.

$$\begin{vmatrix} \det \begin{pmatrix} 3 & 2 & 0 \\ 4 & 10 & 10 \\ 4 & 9 & 10 \end{pmatrix} \begin{vmatrix} 1 & 2 \\ 1 & 1/2 & 1/2 \\ 2 & 1/2 & 1/2 \end{pmatrix}$$

$$\begin{bmatrix} 3 & 2 & 0 \\ 4 & 10 & 10 \\ 4 & 9 & 10 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 2 & 0 \\ 4 & 10 & 10 \\ 4 & 9 & 10 \end{bmatrix}$$

$$\begin{vmatrix} 3 & 2 & 0 \\ 4 & 10 & 10 \\ 4 & 9 & 10 \end{vmatrix}$$

$$\begin{pmatrix} 3 & 2 & 0 \\ 4 & 10 & 10 \\ 4 & 9 & 10 \end{pmatrix}$$

$$\mathbb{E}\left[Y_{t+1} \middle| \sum_{i=1}^{N_t} Y_i\right]$$

$$\int_a^b x dx = \frac{x^2}{2} \middle|_{x=a}^{x=b}$$

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x > 0, \\ 0 & \text{e.o.c.} \end{cases}$$
frfrf
$$\int_a^b f$$

Quiero meter matrices al texto $\mathcal{E}leospapie\begin{pmatrix}3&2&0\\4&10&10\\4&9&10\end{pmatrix}, \text{ esto se va a ver}$ feo :'(. $\begin{pmatrix}3&2&0\\4&10&10\end{pmatrix}$)

Definimos a la función $f:[0,1]\to\mathbb{R}$ dada por $f(x)=x^2/(x+5)$. La gráfica de f es la siguiente

Teorema: Dado un polinomio $f(x) \in \mathbb{C}[x]$ de grado n > 0, existen $a, \alpha_1, \dots, \alpha_n \in \mathbb{C}$ (no necesariamente distintos) tales que

$$f(x) = a \prod_{k=1}^{n} (x - \alpha_k).$$

Eso es, f(x) tiene tantas raíces en $\mathbb C$ como su grado.

Teorema (de Box-Muller): Sean X_1, X_2 v.a.i.i.d.'s Unif(0,1). Entonces las v.a.'s definidas por

$$Y_1 = \cos(2\pi X_2) \sqrt{-2\ln(X_1)},$$

$$Y_2 = \sin(2\pi X_2) \sqrt{-2\ln(X_1)},$$

se distribuyen normal estándar y además son independientes.

Segundo Teorema Fundamental del Cálculo: Sea $f:[a,b] \to \mathbb{R}$ una función integrable y $F:[a,b] \to \mathbb{R}$ una función tal que F'=f, entonces

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Teorema: $\vdash \mathcal{B} \Rightarrow \mathcal{B}$ para cualquier fórmula bien formada \mathcal{B} .

Teorema: Sea $(x_n)_{n\in A}$ una sucesión de números reales, es convergente si y sólo si es de Cauchy.

Teorema (de Heine-Borel): Sea K un subconjunto de \mathbb{R}^n . Entonces K es compacto si y sólo si K es cerrado y acotado.

Teorema: La SDE dada por

$$dX_t = \theta(\mu - X_t)dt + \sigma dB_t,$$

donde $\sigma > 0$, $\theta \neq 0$ y $\mu \in \mathbb{R}$, tiene como solución

$$X_t = e^{-\theta t} X_0 + \left(1 - e^{-\theta t}\right) \mu + \sigma e^{-\theta t} \int_0^t e^{s\theta} dB_t.$$

Teorema: La ecuación diferencial M(x,y)dx + N(x,y)dy = 0 es exacta si y sólo si

$$\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}.$$

Teorema: Sean V, W espacios de Banach y Ω un subconjunto abierto de V. Entonces $\varphi: \Omega \to W$ es Fréchet-difereciable en Ω si y sólo si φ es Gâteaux-diferenciable en Ω y su derivada de Gâteaux $\mathcal{G}\varphi: \Omega \to \mathcal{L}(V, W)$ es continua. En tal caso, $\mathcal{G}\varphi = \varphi'$.

Teorema: Sea $f:[a,b] \to \mathbb{R}$ una función Riemann-integrable en [a,b]. Si $\forall \epsilon > 0$, $\exists P_{\epsilon}$ tal que si P es refinamiento de P_{ϵ} y S(f;P) una suma de Riemann de la función f, entonces

$$\left| S(f;P) - \int_{a}^{b} f \right| < \epsilon.$$

Esto significa que

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x_i.$$

Teorema (Fórmula Integral de Cauchy): Sea D un disco cerrado en \mathbb{C} y U un subconjunto abierto de \mathbb{C} tal que $D \subset U$. Sea $f: U \to \mathbb{C}$ una función holomorfa y $\gamma: [0,1] \to \mathbb{C}$ una parametrización definida positiva de ∂D . Entonces para toda $a \in \text{int}(D)$, se tiene que

$$f(a) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z - a} dz.$$

Teorema: Sea F una función no decreciente y continua por la derecha. Si $g:[a,b] \to \mathbb{R}$ es una función acotada y cuya integral de Riemann-Stieltjes existe, entonces g es $(\mathcal{M}_F, \mathcal{B}(\mathbb{R}))$ -medible y

$$\int_{(a,b]} g \mathrm{d}\mu_F = \int_a^b g \mathrm{d}F.$$

Teorema: Sea $f:[0,\infty)\to\mathbb{R}$ una función seccionalmente continua en [0,b], para todo b positivo. Si existen constantes a,K,M>0 tal que $|f(x)|\leq Ke^{ax}$ para toda $x\geq M$, entonces la transformada de Laplace de f,

$$\mathcal{L}[f(x)] = \int_0^\infty e^{-sx} f(x) dx,$$

existe para toda s > a.

Teorema (de Liouville): Si $f : \mathbb{C} \to \mathbb{C}$ es una función entera y acotada, entonces f es una función constante.

Teorema: A admite una factorización de Cholesky, es decir, $A = LL^t$ donde $L \in M_{n \times n}(\mathbb{R})$ es una matriz triangular superior, si y sólo si A es simétrica y definida positiva.

Teorema (Hahn-Banach): Sea V un espacio de Banach, S un subespacio vectorial de V y \mathbb{K} el campo \mathbb{R} o \mathbb{C} . Si $p:V\to\mathbb{K}$ es un funcional sublineal y $f:S\to\mathbb{K}$ un funcional lineal acotado por p en S, entonces existe un funcional lineal $\widehat{f}:V\to\mathbb{K}$ tal que $\widehat{f}(x)=f(x)$ para todo $x\in S$ y $|\widehat{f}(x)|\leq p(x)$ para todo $x\in V$.

Teorema (de existencia y unicidad): Sea $R \subseteq \mathbb{R}^2$ dado por

$$R = \{(x, y) \in \mathbb{R}^2 : |x - x_0| < a, |y - y_0| < b\}.$$

Si f y $\partial_y f$ son funciones continuas sobre R, entonces el problema de Cauchy y'(x) = f(x, y), $y(0) = y_0$ tiene una única solución sobre

$$R' = \{(x, y) \in \mathbb{R}^2 : |x - x_0| < h, |y - y_0| < b\},\$$

donde $h = \min\{a, b/M\}$ y $M = \max_{(x,y)\in R}\{|f(x,y)|\}.$

Teorema (Hall): Sea G = (U, V; A) una gráfica bipartita tal que #U = #V. Existe un acoplamiento perfecto en G si y sólo si para todo $U' \in \mathcal{P}(U)$, se satisface que

$$\#U' \le \#\bigcup_{i \in U'} \Gamma(i).$$

Teorema (de Green): Si $\overline{F}: D \subseteq \mathbb{R}^2 \to \mathbb{R}^2$ es un campo vectorial continuo de clase $C^1(D)$ con D una región compacta en \mathbb{R}^2 , entonces

$$\int_{\partial D^+} \overline{F} \cdot d\overline{\lambda} = \int_D \left(\frac{\partial}{\partial x} [F_2] - \frac{\partial}{\partial y} [F_1] \right) dx dy$$

donde $\overline{\lambda}: [a,b] \to \mathbb{R}^2$ es de clase $C^1([a,b])$ a pedazos es una parametrización de ∂D^+ .

Teorema: Sea X una variable aleatoria continua con soporte Sop_X y función de densidad $f_X: \mathbb{R} \to \mathbb{R}$. Sea $\varphi: \mathbb{R} \to \mathbb{R}$ una función inyectiva tal que φ, φ^{-1} son diferenciables y con $\varphi(x) \neq 0$. Entonces la v.a.c. definida como $Y = \varphi(X)$ tiene función de densidad $f_Y: \mathbb{R} \to \mathbb{R}$ dada por

$$f_Y(y) = f_X(\varphi^{-1}(y)) \left| \frac{\mathrm{d}}{\mathrm{d}y} \varphi^{-1}(y) \right| \mathbb{I}_{\varphi(Sop_X)}(y).$$

Teorema: El problema de decisión asociado al problema de empaquetamiento de conjuntos, se puede reducir en orden polinomial al problema SAT.

Teorema (Lebesgue-Radon-Nikodym):

Sean ν una medida con signo y μ una medida positiva en (X, Σ) , ambas σ -finitas. Entonces existe una única medida σ -finita η en (X, Σ) y una función medible $f: X \to \mathbb{R}$ tales que $\eta \perp \mu$, $f d\mu$ es σ -finita y $d\nu = d\eta + f d\mu$. Si g es otra función que satisface lo anterior, entonces $f = g \mu$ -c.d.s.

Teorema (de holguras complementarias):

Sean x^* y w^* soluciones a los problemas primal y dual en su forma canónica. Entonces son soluciones óptimas si y sólo si

$$(c_j - w^* a_j) x_j^* = 0,$$

 $w_i^* (a^i x^* - b_i) = 0,$

para toda $i \in \{1, ..., n\}$ y $j \in \{1, ..., m\}$.

Teorema (de dualidad débil): Sean x_0 y w_0 soluciones factibles del problema primal y dual respectivamente, entonces $cx_0 \ge w_0b$.

Teorema (Bolzano): Si $f : [a, b] \to \mathbb{R}$ una función continua tal que f(a) < 0 < f(b), entonces existe $x \in [a, b]$ tal que f(x) = 0.

Teorema (de acoplamiento de König): En una gráfica bipartita, el número de arcos

mínimos necesarios para cubrir todos los nodos es igual al acoplamiento máximo de la gráfica.

Teorema: Sea K un espacio métrico compacto no vacío, entonces toda función continua $f:K\to\mathbb{R}$ alcanza su máximo y su mínimo en K.

Teorema (Arzelà-Ascoli): Sean K un espacio métrico compacto y X un espacio métrico completo. Un subconjunto \mathcal{H} de $C^0(K,X)$ es relativamente compacto en $C^0(K,X)$ si y sólo si \mathcal{H} es equicontinuo y los conjuntos $H(z) = \{f(z) : f \in \mathcal{H}\}$ son relativamente compactos en X para toda $z \in K$.

Teorema del límite central: Sea $(X_n)_{n\in\mathbb{N}}$ una sucesión de v.a.i.i.d.'s con segundo momento finito tales que $\mathbb{E}[X_i] = \mu$ y $\operatorname{Var}(X_i) = \sigma^2 > 0$. Si definimos a S_n como

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i,$$

entonces $\lim_{n\to\infty} S_n \sim N(\mu, \sigma^2)$.

Teorema: Sea R = (X, A, f) una red y sean N^+, N^- subconjuntos ajenos de X. Entonces para cualquier coloración de la red R con los colores rojo, verde, blanco y negro, sólo una de las siguientes afirmaciones es válida:

- 1) El problema de la cadena coloreada tiene una solución P.
- 2) El problema del corte coloreado tiene una solución Q.

Teorema del límite central: Sean $(X_n)_{n\in\mathbb{N}}\subset L^2$ independientes, con $\mathbb{E}[X_n]=m_n$ y $\mathrm{Var}(X_n)=\sigma_n^2>0$ para toda $n\in\mathbb{N}$. Definamos a $S_n=\sum_{k=1}^n X_k,$ $s_n^2=\sum_{k=1}^n \sigma_k^2$ y

$$L_{\epsilon}(n) = \frac{1}{s_n^2} \sum_{k=1}^n \mathbb{E}[(X_k - m_k)^2 \mathbb{I}_{|X_k - m_k| > \epsilon s_n}].$$

Si $L_{\epsilon}(n) \to 0$ cuando $n \to \infty$, entonces

$$\frac{1}{s_n} \sum_{k=1}^{n} (X_k - m_k)^2$$

tiende en distribución a una normal estándar.

Teorema: Si $f:[a,b]\to\mathbb{R}$ es continua, entonces f es acotada.

Teorema: Sean $f,g:[a,b]\to\mathbb{R}$ de clase $C^n([a,b])$, entonces para cualquier $x\in[a,b]$ se tiene que

$$(f \cdot g)^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)}(x) g^{(k)}(x).$$

$$\mathcal{L}\left[f^{(n)}\right](p) = p^n \mathcal{L}[p]$$

Teorema (del Umbral en Epidemiología): Si los números iniciales de infectados y susceptibles son pequeños, entonces el número de individuos que finalmente contraen la enfermedad se reduce a un nivel que dista (por abajo), del valor umbral en la misma proporción que éste distaba del número inicial de susceptibles.

Teorema: Cualesquiera dos normas en un espacio vectorial de dimensión finita son equivalentes.

Teorema: Sean X, Y espacios métricos y sea $\varphi : X \to Y$ una función. Entonces φ es continua si y sólo si $\varphi^{-1}(U)$ es abierto en X para todo abierto U de Y.

Teorema: Para la elipse $b^2x^2 + a^2y^2 = a^2b^2$ y la hipérbola $b^2x^2 - a^2y^2 = a^2b^2$, cada una con excentricidad e, los focos en (ae, 0) y (-ae, 0) tienen como directrices correspondientes las rectas cuyas ecuaciones son x = a/e y x = -a/e respectivamente.

Teorema (de la función implícita): Sean V, W, Z espacios de Banach, Ω un abierto de $V \times W$, $(v_0, w_0) \in \Omega$ y $\varphi : \Omega \to Z$ una función de clase $C^1(\Omega)$. Si $\varphi(v_0, w_0) = c$ y $\partial_2 \varphi(v_0, w_0) \in \mathcal{L}(W, Z)$ es un isomorfismo de Banach, entonces existen $\delta, \eta > 0$ tales que $B_V(v_0, \delta) \times B_W(w_0, \eta) \subseteq \Omega$ y una función $f : B_V(v_0, \delta) \to W$ de clase $C^1(B_V(v_0, \delta))$ con las siguientes propiedades:

- 1) El conjunto de soluciones $(v, w) \in B_V(v_0, \delta) \times B_W(w_0, \eta)$ de la ecuación $\varphi(v, w) = c$ coincide con la gráfica de f. En particular, $f(v_0) = w_0$ y $f(v) \in B_W(w_0, \eta)$ para todo $v \in B_V(v_0, \delta)$.
- 2) Para todo $v \in B_V(v_0, \delta)$ se cumple que $\partial_2 \varphi(v, f(v))$ es un isomorfismo de Banach y

$$f'(v) = -[\partial_2 \varphi(v, f(v))]^{-1} \circ \partial_1 \varphi(v, f(v))$$