Department of Civil Engineering, IIT Delhi

Minor 2 Exam-March 22nd 2014 (Total Points = 50; Duration = 60 minutes) CEL 212: Environmental Engineering (Second Semester 2013-14)

Note: Assume missing data (if any) and mention the same. Be precise in all open-ended questions.

Define following terms (<100 words): (i) role of depth in type 1 and Type 2 settling and (ii) ionic 15+5=10 points/ layer compression for negative charged particles and neutral charge particles. 01.

For a flocculant suspension (negatively charged), determine the removal efficiency of a 6 ft deep [10 points] basin an overflow rate equals to 10 ft/h?

	Per remove	Percent suspended solids emoved at indicated depth (in ft)	spende	d solids depth (i	n ft)
Time, min	1.5	3.0	4.5	0.9	7.5
20	61				
30	71	63	55		
40	81	72	63	61	57
90	06	81	73	67	63
09	-	06	80	74	68
70	1	1	98	80	75
80	1	1	1	86	81

ash required for treating 100 liters of water everyday? Write balanced equations for removing hardness of 03. Following water is softened using the Lime-soda ash process (pH =9). Calculate amount of lime-soda water using the Lime-soda process. [10 points]

Concentrations (milli-equivalents/L)	1.0	4:0	3.0	2.5	5.0
Species	Carbon dioxide	Ca ²⁺	Na	HCO3.	SO ₄ ²⁻

How does 100 mg/L alum perform in Vasant Kunj raw wastewater (pH5, 300 mg/L suspended solids, 150 mg/L alkalinity as CaCO3) and in Yamuna river water (pH7, 100 mg/L suspended solids, 50 mg/L alkalinity as CaCO3)? Explain using different coagulant mechanisms. It is given that 50mg/L alum [10+10=20 points] is required to remove 90% of 300 mg/L suspended solids in Yamuna river water.

(100mg/L as CaCO₃), and 250 mg/L solids (50% particles are suspended solids) (at t=0). Further, the "AA" industry discharges an electronic industry wastewater (pH3) in this lake (50m³ volume). How does this discharge change the interaction of different species and solids present in lake for 4 hours of A lake water (total volume=1000 m³) is polluted with 100 mg/L Al³+, 100mg/L Ca²+, alkalinity interaction? [5 points]