Exercises 5.10

Exercise 5.10.1

Recall that $\neg x$ is the negative of the Boolean variable x.

- a. Show that a single perceptron can learn the Boolean function $y=x_1 \wedge \neg x_2$, with some x_1 , $x_2 \in \{0,1\}$.
- b. The same question as in part a for the Boolean function $y = x_1 \vee \neg x_2$, with some x_1 , $x_2 \in \{0, 1\}$.
- c. Show that a perceptron with one Boolean input, x, can learn the negation function $y = \neg x$. What about the linear neuron?
- d. Show that a perceptron with three Boolean inputs, x_1 , x_2 , x_3 , can learn the negation function $y = \neg x$. What about $x_1 \lor x_2 \lor x_3$?

Exercise 5.10.2

Show that two finite linearly separable sets A and B can be separated by a perceptron with rational weights.

SOLUTIONS