StuDocu.com

Sample/practice exam Fall 2016, questions

Intermediate Statistics (Carnegie Mellon University)

Practice Final Exam

- 1. Let $X_1, \ldots, X_n \sim \text{Uniform}(\theta, 2\theta)$ where $\theta > 0$.
 - (a) Find a minimal sufficient statistic.
 - (b) Find the maximum likelihood estimator $\widehat{\theta}_n$. Show that $\widehat{\theta}_n$ is a consistent estimator.
 - (c) Find the method of moments estimator $\widetilde{\theta}_n$ for θ . Find the limiting distribution of $\sqrt{n}(\widetilde{\theta}_n \theta)$.
- 2. Let $X_1, ..., X_n \sim N(\theta, 1)$.
 - (a) Find the Neyman-Pearson test for testing

$$H_0: \theta = 0$$
 versus $H_1: \theta = a$

where a > 0. Be precise about the critical value. Show that the power tends to 1 as $n \to \infty$ when H_1 is true.

(b) Find the likelihood ratio test for testing

$$H_0: \theta = 0$$
 versus $H_1: \theta \neq 0$.

3. Let X_1, \ldots, X_n be iid Multinomial(1,p) random variables where $p = (p_1, p_2, p_3)$. In other words, $X_i \in \{1, 2, 3\}$ and

$$\mathbb{P}(X_i = 1) = p_1, \quad \mathbb{P}(X_i = 2) = p_2, \quad \mathbb{P}(X_i = 3) = p_3$$

where $p_1 + p_2 + p_3 = 1$.

- (a) Find the maximum likelihood estimator of p.
- (b) Find the Fisher information matrix.

Hint: there are really only two parmeters since $p_3 = 1 - p_1 - p_2$. Write the log-likelihood in terms of p_1, p_2 . The Fisher information matrix will be a 2-by-2 matrix.

(c) Use the delta method to find an asymptotic $1-\alpha$ confidence interval for ψ where

$$\psi = \log p_1.$$

- (d) Explain how to use the bootstrap to get a confidence interval for ψ . List the steps clearly.
- 4. Suppose that (Y, X) are random variables where $Y \in \{0, 1\}$ and $X \in \mathbb{R}$. Suppose that

$$X|Y = 0 \sim \text{Uniform}(0,5)$$

and that

$$X|Y=1 \sim \text{Uniform}(4,9)$$

Further suppose that $\mathbb{P}(Y=0)=1/3$ and $\mathbb{P}(Y=1)=2/3$.

- (a) Find $m(x) = \mathbb{P}(Y = 1|X = x)$.
- (b) Find the Bayes classification rule $h_*(x)$.
- (c) Find the risk of h_* . (Recall that the risk is $P(Y \neq h_*(X))$.)
- 5. Recall that the exponential distribution has density

$$p(x;\theta) = \begin{cases} \theta e^{-\theta x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0. \end{cases}$$

Here, $\theta > 0$ is an unknown parameter. Let X_1, \ldots, X_n be iid from $p(x; \theta)$.

- (a) Show that $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ is a minimal sufficient statistic.
- (b) Find the maximum likelihood estimator $\widehat{\theta}_n$, the score function, the Fisher information, and the limiting distribution of $\sqrt{n}(\widehat{\theta}_n \theta)$.
- 6. Let $X \sim \text{Binomial}(n, p)$.
 - (a) Find the Wald test for testing

$$H_0: p = \frac{1}{3}$$
 versus $H_1: p \neq \frac{1}{3}$.

(b) Show how to use BIC to choose between these two models:

Model I: $X \sim \text{Binomial}(n, 1/3)$.

Model II: $X \sim \text{Binomial}(n, p)$ for some $p \in (0, 1)$.

- (c) Find the large sample, approximate, $1-\alpha$ likelihood ratio confidence interval for e^p .
- 7. Let $X_1, \ldots, X_n \sim \text{Normal}(\theta, 1)$. Let $\widehat{\theta}_n = a\overline{X}_n$ where $\overline{X}_n = \frac{1}{n}\sum_{i=1}^n X_i$ and $0 \le a \le 1$ is a fixed constant. Find the mean squared error for $\widehat{\theta}_n$. What value of a gives the smallest mean squared error?
- 8. Suppose that (Y, X) are random variables where $Y \in \{0, 1\}$ and $X \in \mathbb{R}$. Suppose that

$$X|Y = 0 \sim \text{Normal}(0, 1)$$

and that

$$X|Y=1 \sim \text{Normal}(2,1).$$

Further suppose that $\mathbb{P}(Y=0) = \mathbb{P}(Y=1) = 1/2$.

- (a) Find $m(x) = \mathbb{P}(Y = 1 | X = x)$.
- (b) Let $\mathcal{A} = \mathcal{A}_1 \bigcup \mathcal{A}_2$ where $\mathcal{A}_1 = \{(\infty, a) : a \in \mathbb{R}\}$ and

 $\mathcal{A}_2 = \{(a, \infty) : a \in \mathbb{R}\}.$ Find the VC dimension of \mathcal{A} .

(c) Let $\mathcal{H} = \{h_A : A \in \mathcal{A}\}$ where $h_A(x) = 1$ if $x \in A$ and $h_A(x) = 0$ if $x \notin A$. Show that the Bayes rule h_* is in \mathcal{H} .

9. Recall that the Beta(a, b) density has the form

$$p(y; a, b) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{a-1} (1 - y)^{b-1} \quad 0 \le y \le 1$$

where

$$\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} dt$$

is the Gamma function. The mean of the Beta distribution is a/(a+b). Let $Y \sim \text{Binomial}(n,p)$. Let p have a Beta(a,b) prior.

- (a) Find the posterior distibution.
- (b) Find the posterior mean \overline{p}_n .