TD 12 : Aspects énergétiques de la mécanique du point

1 Distance de freinage

Une voiture de masse $m=1.5\cdot 10^3$ kg roule à la vitesse de $50\,\mathrm{km}\cdot\mathrm{h}^{-1}$ sur une route horizontale. Devant un imprévu, le conducteur écrase la pédale de frein et s'arrête sur une distance $d=15\,\mathrm{m}$. On modélise la force de freinage par une force constante opposée à la vitesse.

- 1. Calculer le travail de la force de freinage.
- 2. En déduire la norme de cette force.
- 3. Quelle distance faut-il pour s'arrêter si la vitesse initiale est de $70 \,\mathrm{km} \cdot \mathrm{h}^{-1}$?
- **4.** Commenter cette phrase relevée dans un livret d'apprentissage de la conduite : « La distance de freinage est proportionnelle au carré de la vitesse du mobile ».

2 Toboggan

Un adulte (m = 70 kg) descend un toboggan d'une hauteur h = 5 m faisant un angle $\alpha = 45^{\circ}$ avec le sol. La norme de la force de frottement \vec{T} est donnée par $\|\vec{T}\| = f\|\vec{R}\|$, où f = 0.4 est le coefficient de frottement et \vec{R} la réaction normale. On prendra $q = 9.81 \text{ m} \cdot \text{s}^{-2}$.

- 1. Calculer la variation d'énergie mécanique due au frottement entre le haut et le bas du toboggan.
- 2. Déterminer la vitesse de la personne en bas du toboggan. La comparer à celle qu'il aurait s'il n'y avait pas de frottement.

3 Interaction entre particules chargées

On considère deux particules A (fixe) et B (mobile), de même masse m et de charge respective q_A et q_B . On considère la force de Coulomb entre ces deux particules comme étant la seule force en jeu dans ce problème.

- 1. Rappeler l'expression de la force de Coulomb notée \overrightarrow{f} .
- 2. Déterminer l'énergie potentielle dont dérive la force \vec{f} .
- **3.** On suppose $q_A = q_B = q$. On lance B vers A avec la vitesse \vec{v}_0 . À quelle distance minimale B s'approche-t-elle de A? On pourra s'aider d'un graphe d'énergie potentielle.
- **4.** On suppose $q_A = -q_B = q$. Quelle vitesse minimale faut-il donner à B pour qu'elle puisse s'échapper à l'infini? On pourra s'aider d'un graphe d'énergie potentielle.

4 Bille dans une gouttière

Une bille, assimilée à un point matériel M de masse m, est lâchée sans vitesse initiale depuis le point A d'une gouttière située à une hauteur h du point le plus bas O de la gouttière. Cette dernière est terminée en O par un guide circulaire de rayon a, disposé verticalement. La bille, dont on suppose que le mouvement a lieu sans frottement, peut éventuellement quitter la gouttière à l'intérieur du cercle. On note $\vec{g} = -g \vec{u}_y$ l'accélération de la pesanteur.

- 1. Calculer la norme v_0 de la vitesse en O puis en un point M quelconque du cercle repéré par l'angle θ .
- 2. Déterminer la réaction de la gouttière en un point du guide circulaire.
- **3.** Déterminer la hauteur minimale de A pour que la bille ait un mouvement révolutif dans le guide.

5 Étude d'un oscillateur à l'aide de son portrait de phase

On fait l'étude d'un oscillateur M de masse $m=0,2\,\mathrm{kg}$ astreint à se déplacer suivant l'axe Ox de vecteur unitaire \overrightarrow{u}_x . Il est soumis uniquement aux forces suivantes :

- la force de rappel d'un ressort de caractéristiques (k, l_0) ;
- une force de frottement visqueux : $\vec{f}_v = -\lambda \dot{x} \vec{u}_x$;
- une force constante $\vec{F}_C = F_C \vec{u}_x$.
- 1. Équation du mouvement.
- ${f 1.a.}$ Établir l'équation différentielle du mouvement de M et la mettre sous la forme :

$$\ddot{x} + \frac{\omega_0}{Q}\dot{x} + \omega_0^2 x = \omega_0^2 X_0 ,$$

où x est l'allongement du ressort (par rapport à l_0). Les grandeurs ω_0 , Q et X_0 sont à exprimer en fonction des données.

- **1.b.** Dans le cas d'une solution pseudo-périodique, exprimer x(t): on définira le temps caractéristique de décroissance des oscillations τ et la pseudo-pulsation Ω que l'on exprimera en fonction de ω_0 et Q.
- 2. Le portrait de phase $(v(t) = \dot{x}(t), x(t))$ de l'oscillateur étudié est donné sur la figure. On souhaite pouvoir en tirer les valeurs des différents paramètres de l'oscillateur.

- **2.a.** Quel est le type de mouvement?
- 2.b. Déterminer la vitesse et l'élongation au début et à la fin du mouvement.
- 2.c. Déterminer la vitesse maximale atteinte ainsi que l'élongation maximale.
- **2.d.** On donne les différentes dates correspondant aux croisements de la trajectoire de phase avec l'axe des abscisses :

En déduire le pseudo-période T et la pseudo-pulsation Ω .

2.e. On définit le décrément logarithmique par

$$\delta = \frac{1}{n} \ln \left(\frac{x(t) - x_B}{x(t + nT) - x_B} \right) ,$$

où x(t) et x(t+nT) sont les élongations aux instants t et t+nT (n entier naturel) et x_B l'élongation finale de M. Exprimer δ en fonction de T et τ . En choisissant une valeur de n la plus grande possible pour les données dont on dispose, déterminer δ puis τ .

- **2.f.** Déduire des résultats précédents le facteur de qualité Q et la pulsation propre ω_0 .
- **2.g.** Déterminer la raideur du ressort k, le coefficient de frottement λ et la force F_c sachant que $l_0 = 1$ cm.

6 Mouvement d'une bille reliée à un ressort sur un cercle

On considère le mouvement d'une bille M de masse m pouvant coulisser sans frottement sur un cerceau de centre O et de rayon R disposé dans un plan vertical. On note AB le diamètre horizontal du cerceau, Ox l'axe horizontal, Oy l'axe vertical descendant et θ l'angle entre Ox et OM. La bille est attachée à un ressort de longueur à vide nulle et de raideur k dont la seconde extrémité est fixée en B. Elle ne peut se déplacer que sur le demi-cercle inférieur.

- 1. Déterminer l'angle α entre MO et MB en fonction de θ .
- 2. Établir l'expression de la longueur de ressort en fonction de R et θ .
- 3. En déduire l'énergie potentielle totale du système. Représenter la courbe d'énergie potentielle et en déduire les positions d'équilibres éventuelles et leur stabilité.

- 5. Établir l'équation différentielle du mouvement.
- **6.** On note ε l'écart $\theta \theta_e$. Initialement, on écarte la bille d'un angle $\varepsilon \ll \pi/2$ à partir de sa position d'équilibre et on la lâche sans vitesse initiale. Linéariser l'équation du mouvement et conclure.