Matrix Multiplication

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python Week 9

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare $AB: m \times p$

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare $AB: m \times p$
- Computing each entry in AB is O(n)

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare $AB: m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare $AB: m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - \blacksquare ABC = (AB)C = A(BC)

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare $AB: m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - \blacksquare ABC = (AB)C = A(BC)
 - Bracketing does not change answer

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n$, $B: n \times p$
 - $\blacksquare AB: m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - $\blacksquare ABC = (AB)C = A(BC)$
 - Bracketing does not change answer
 - ... but can affect the complexity!

Multiply matrices A. B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n$, $B: n \times p$
 - $\blacksquare AB : m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - \blacksquare ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ... but can affect the complexity!

■ Let $A: 1 \times 100$, $B: 100 \times 1$, $C: 1 \times 100$

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare $AB: m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ... but can affect the complexity!

- Let $A: 1 \times 100$, $B: 100 \times 1$, $C: 1 \times 100$
- \blacksquare Computing A(BC)

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n$, $B: n \times p$
 - $\blacksquare AB : m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - \blacksquare ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ... but can affect the complexity!

- Let $A: 1 \times 100$, $B: 100 \times 1$, $C: 1 \times 100$
- \blacksquare Computing A(BC)
 - \blacksquare BC: 100 × 100, takes $100 \cdot 1 \cdot 100 = 10000$ steps to compute

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare AB: $m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - \blacksquare ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ... but can affect the complexity!

- Let $A: 1 \times 100$, $B: 100 \times 1$, $C: 1 \times 100$
- Computing A(BC)
 - $BC: 100 \times 100$, takes $100 \cdot 1 \cdot 100 = 10000$ steps to compute
 - A(BC): 1 × 100, takes 1 · 100 · 100 = 10000 steps to compute

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare AB: $m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ... but can affect the complexity!

- Let $A: 1 \times 100$, $B: 100 \times 1$, $C: 1 \times 100$
- Computing A(BC)
 - $BC: 100 \times 100$, takes $100 \cdot 1 \cdot 100 = 10000$ steps to compute
 - A(BC): 1 × 100, takes 1 · 100 · 100 = 10000 steps to compute
- Computing (*AB*)*C*

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare AB: $m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ...but can affect the complexity!

- Let $A: 1 \times 100$, $B: 100 \times 1$, $C: 1 \times 100$
- Computing A(BC)
 - $BC : 100 \times 100$, takes $100 \cdot 1 \cdot 100 = 10000$ steps to compute
 - A(BC): 1 × 100, takes 1 · 100 · 100 = 10000 steps to compute
- Computing (*AB*)*C*
 - $AB: 1 \times 1$, takes $1 \cdot 100 \cdot 1 = 100$ steps to compute

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare AB: $m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ... but can affect the complexity!

- Let $A: 1 \times 100$, $B: 100 \times 1$, $C: 1 \times 100$
- Computing A(BC)
 - $BC : 100 \times 100$, takes $100 \cdot 1 \cdot 100 = 10000$ steps to compute
 - A(BC): 1 × 100, takes 1 · 100 · 100 = 10000 steps to compute
- Computing (*AB*)*C*
 - $AB: 1 \times 1$, takes $1 \cdot 100 \cdot 1 = 100$ steps to compute
 - (AB)C): 1 × 100, takes 1 · 1 · 100 = 100 steps to compute

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare AB: $m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ...but can affect the complexity!

- Let $A: 1 \times 100$, $B: 100 \times 1$, $C: 1 \times 100$
- Computing A(BC)
 - $BC: 100 \times 100$, takes $100 \cdot 1 \cdot 100 = 10000$ steps to compute
 - A(BC): 1 × 100, takes 1 · 100 · 100 = 10000 steps to compute
- Computing (*AB*)*C*
 - $AB: 1 \times 1$, takes $1 \cdot 100 \cdot 1 = 100$ steps to compute
 - (AB)C): 1 × 100, takes 1 · 1 · 100 = 100 steps to compute
- 20000 steps vs 200 steps!

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n$, $B: n \times p$
 - $\blacksquare AB: m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - $\blacksquare ABC = (AB)C = A(BC)$
 - Bracketing does not change answer
 - ... but can affect the complexity!

Multiply matrices A, B

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare AB: $m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ...but can affect the complexity!

■ Given *n* matrices $M_0: r_0 \times c_0$, $M_1: r_1 \times c_1, \ldots, M_{n-1}: r_{n-1} \times c_{n-1}$

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare AB: $m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - \blacksquare ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ...but can affect the complexity!

- Given *n* matrices $M_0 : r_0 \times c_0$, $M_1 : r_1 \times c_1$, ..., $M_{n-1} : r_{n-1} \times c_{n-1}$
 - Dimensions match: $r_j = c_{j-1}$, 0 < j < n

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare A: m × n. B: n × p
 - $\blacksquare AB : m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - \blacksquare ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ... but can affect the complexity!

- Given *n* matrices $M_0: r_0 \times c_0$. $M_1: r_1 \times c_1, \ldots, M_{n-1}: r_{n-1} \times c_{n-1}$
 - Dimensions match: $r_i = c_{i-1}$, 0 < j < n
 - Product $M_0 \cdot M_1 \cdot \cdot \cdot M_{n-1}$ can be computed

■
$$AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - \blacksquare $A: m \times n, B: n \times p$
 - \blacksquare $AB: m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- Matrix multiplication is associative
 - ABC = (AB)C = A(BC)
 - Bracketing does not change answer
 - ...but can affect the complexity!

- Given *n* matrices $M_0 : r_0 \times c_0$, $M_1 : r_1 \times c_1$, ..., $M_{n-1} : r_{n-1} \times c_{n-1}$
 - Dimensions match: $r_j = c_{j-1}$, 0 < j < n
 - Product $M_0 \cdot M_1 \cdots M_{n-1}$ can be computed
- Find an optimal order to compute the product
 - Multiply two matrices at a time
 - Bracket the expression optimally

■ Final step combines two subproducts

$$(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$$
 for some $0 < k < n$

- Final step combines two subproducts $(M_0 \cdot M_1 \cdot \cdot \cdot M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdot \cdot \cdot M_{p-1})$ for some 0 < k < n
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$

- Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some 0 < k < n
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let C(0, n-1) denote the overall cost

- Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some 0 < k < n
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let C(0, n-1) denote the overall cost
- Final multiplication is $O(r_0r_kc_{n-1})$

- Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some 0 < k < n
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let C(0, n-1) denote the overall cost
- Final multiplication is $O(r_0r_kc_{n-1})$
- Inductively, costs of factors are C(0, k-1) and C(k, n-1)

- Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some 0 < k < n
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let C(0, n-1) denote the overall cost
- Final multiplication is $O(r_0r_kc_{n-1})$
- Inductively, costs of factors are C(0, k-1) and C(k, n-1)
- $C(0, n-1) = C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$

- Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some 0 < k < n
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let C(0, n-1) denote the overall cost
- Final multiplication is $O(r_0r_kc_{n-1})$
- Inductively, costs of factors are C(0, k-1) and C(k, n-1)
- $C(0, n-1) = C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$

■ Which *k* should we choose?

- Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some 0 < k < n
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let C(0, n-1) denote the overall cost
- Final multiplication is $O(r_0r_kc_{n-1})$
- Inductively, costs of factors are C(0, k-1) and C(k, n-1)
- $C(0, n-1) = C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$

- Which *k* should we choose?
 - Try all and choose the minimum!

- Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some 0 < k < n
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let C(0, n-1) denote the overall cost
- Final multiplication is $O(r_0r_kc_{n-1})$
- Inductively, costs of factors are C(0, k-1) and C(k, n-1)
- $C(0, n-1) = C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$

- Which *k* should we choose?
 - Try all and choose the minimum!
- Subproblems?

- Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some 0 < k < n
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let C(0, n-1) denote the overall cost
- Final multiplication is $O(r_0r_kc_{n-1})$
- Inductively, costs of factors are C(0, k-1) and C(k, n-1)
- $C(0, n-1) = C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$

- Which *k* should we choose?
 - Try all and choose the minimum!
- Subproblems?
 - $M_0 \cdot M_1 \cdots M_{k-1}$ would decompose as $(M_0 \cdots M_{j-1}) \cdot (M_j \cdots M_{k-1})$
 - Generic subproblem is $M_i \cdot M_{i+1} \cdots M_k$

- Final step combines two subproducts $(M_0 \cdot M_1 \cdot \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdot \cdots M_{n-1})$ for some 0 < k < n
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let C(0, n-1) denote the overall cost
- Final multiplication is $O(r_0r_kc_{n-1})$
- Inductively, costs of factors are C(0, k-1) and C(k, n-1)
- $C(0, n-1) = C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$

- Which *k* should we choose?
 - Try all and choose the minimum!
- Subproblems?
 - $M_0 \cdot M_1 \cdots M_{k-1}$ would decompose as $(M_0 \cdots M_{i-1}) \cdot (M_i \cdots M_{k-1})$
 - Generic subproblem is $M_i \cdot M_{i+1} \cdots M_k$
- $C(j,k) = \min_{j < \ell \le k} \left[C(j,\ell-1) + C(\ell,k) + r_j r_\ell c_k \right]$

- Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some 0 < k < n
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let C(0, n-1) denote the overall cost
- Final multiplication is $O(r_0r_kc_{n-1})$
- Inductively, costs of factors are C(0, k-1) and C(k, n-1)
- $C(0, n-1) = C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$

- Which *k* should we choose?
 - Try all and choose the minimum!
- Subproblems?
 - $M_0 \cdot M_1 \cdots M_{k-1}$ would decompose as $(M_0 \cdots M_{j-1}) \cdot (M_j \cdots M_{k-1})$
 - Generic subproblem is $M_i \cdot M_{i+1} \cdots M_k$
- $C(j,k) = \min_{j < \ell \le k} \left[C(j,\ell-1) + C(\ell,k) + r_j r_\ell c_k \right]$
- Base case: C(j,j) = 0 for $0 \le j < n$

Subproblem dependency

■ Compute C(i,j), $0 \le i,j < n$

	0	 i	 	j	 n-1
0					
i					
• • •					
j					
•••					
n-1			40		

Subproblem dependency

- Compute C(i,j), $0 \le i,j < n$
 - Only for $i \le j$
 - Entries above main diagonal

Subproblem dependency

- Compute C(i,j), $0 \le i,j < n$
 - Only for $i \le j$
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j) for every $i < k \le j$

- Compute C(i,j), $0 \le i,j < n$
 - Only for $i \le j$
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j) for every $i < k \le j$

- Compute C(i,j), $0 \le i,j < n$
 - Only for $i \le j$
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j) for every $i < k \le j$

- Compute C(i,j), $0 \le i,j < n$
 - Only for $i \le j$
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j) for every $i < k \le j$

- Compute C(i,j), $0 \le i,j < n$
 - Only for $i \le j$
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j) for every $i < k \le j$
 - O(n) dependencies per entry, unlike LCW, LCS and ED

- Compute C(i,j), $0 \le i,j < n$
 - Only for $i \le j$
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j) for every $i < k \le j$
 - O(n) dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case

- Compute C(i,j), $0 \le i,j < n$
 - Only for $i \le j$
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j) for every $i < k \le j$
 - O(n) dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- Fill matrix by diagonal, from main diagonal

- Compute C(i,j), $0 \le i,j < n$
 - Only for $i \le j$
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j) for every $i < k \le j$
 - O(n) dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- Fill matrix by diagonal, from main diagonal

- Compute C(i,j), $0 \le i,j < n$
 - Only for $i \le j$
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j) for every $i < k \le j$
 - O(n) dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- Fill matrix by diagonal, from main diagonal

- Compute C(i,j), $0 \le i,j < n$
 - Only for $i \le j$
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j) for every $i < k \le j$
 - O(n) dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- Fill matrix by diagonal, from main diagonal

- Compute C(i,j), $0 \le i,j < n$
 - Only for $i \le j$
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j) for every $i < k \le j$
 - O(n) dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- Fill matrix by diagonal, from main diagonal

- Compute C(i,j), $0 \le i,j < n$
 - Only for $i \le j$
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j) for every $i < k \le j$
 - O(n) dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- Fill matrix by diagonal, from main diagonal

- Compute C(i,j), $0 \le i,j < n$
 - Only for $i \le j$
 - Entries above main diagonal
- C(i,j) depends on C(i,k-1), C(k,j) for every $i < k \le j$
 - O(n) dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- Fill matrix by diagonal, from main diagonal


```
def C(dim):
 # dim: dimension matrix,
        entries are pairs (r_i,c_i)
 import numpy as np
 n = dim.shape[0]
 C = np.zeros((n,n))
 for i in range(n):
   C[i,i] = 0
for diff in range(1,n):
   for i in range(0,n-diff):
     i = i + diff
     C[i,i] = C[i,i] +
              C[i+1, j] +
              dim[i][0]*dim[i+1][0]*dim[j][1]
     for k in range(i+1,j+1):
       C[i,j] = min(C[i,j],
                    C[i,k-1] + C[k,j] +
                    dim[i][0]*dim[k][0]*dim[j][1])
return(C[0,n-1])
```

```
def C(dim):
 # dim: dimension matrix,
        entries are pairs (r_i,c_i)
 import numpy as np
 n = dim.shape[0]
 C = np.zeros((n,n))
 for i in range(n):
   C[i,i] = 0
for diff in range(1,n):
   for i in range(0,n-diff):
     i = i + diff
     C[i,i] = C[i,i] +
              C[i+1, j] +
              dim[i][0]*dim[i+1][0]*dim[j][1]
     for k in range(i+1,j+1):
       C[i,j] = min(C[i,j],
                    C[i,k-1] + C[k,j] +
                    dim[i][0]*dim[k][0]*dim[j][1])
return(C[0,n-1])
```

Complexity

```
def C(dim):
 # dim: dimension matrix,
        entries are pairs (r_i,c_i)
 import numpy as np
 n = dim.shape[0]
 C = np.zeros((n,n))
 for i in range(n):
   C[i,i] = 0
 for diff in range(1,n):
   for i in range(0,n-diff):
     i = i + diff
     C[i,i] = C[i,i] +
              C[i+1, j] +
              dim[i][0]*dim[i+1][0]*dim[j][1]
     for k in range(i+1,j+1):
       C[i,j] = min(C[i,j],
                    C[i,k-1] + C[k,j] +
                    dim[i][0]*dim[k][0]*dim[j][1])
return(C[0,n-1])
```

Complexity

We have to fill a table of size $O(n^2)$

```
def C(dim):
 # dim: dimension matrix,
        entries are pairs (r_i,c_i)
 import numpy as np
 n = dim.shape[0]
 C = np.zeros((n,n))
 for i in range(n):
   C[i,i] = 0
 for diff in range(1,n):
   for i in range(0,n-diff):
     i = i + diff
     C[i,i] = C[i,i] +
              C[i+1, j] +
              dim[i][0]*dim[i+1][0]*dim[j][1]
     for k in range(i+1,i+1):
       C[i,j] = min(C[i,j],
                    C[i,k-1] + C[k,j] +
                    dim[i][0]*dim[k][0]*dim[j][1])
return(C[0,n-1])
```

Complexity

- We have to fill a table of size $O(n^2)$
- Filling each entry takes O(n)

```
def C(dim):
 # dim: dimension matrix,
        entries are pairs (r_i,c_i)
 import numpy as np
 n = dim.shape[0]
 C = np.zeros((n,n))
 for i in range(n):
   C[i,i] = 0
 for diff in range(1,n):
   for i in range(0,n-diff):
     i = i + diff
     C[i,j] = C[i,i] +
              C[i+1,j] +
              dim[i][0]*dim[i+1][0]*dim[j][1]
     for k in range(i+1,i+1):
       C[i,j] = min(C[i,j],
                    C[i,k-1] + C[k,j] +
                    dim[i][0]*dim[k][0]*dim[j][1])
return(C[0,n-1])
```

Complexity

- We have to fill a table of size $O(n^2)$
- Filling each entry takes O(n)
- Overall, $O(n^3)$