- 1. Road map of the module
- 2. Heine-Borel hip hip hooray
 - (a) What is an open cover of a set S? What is a finite subcover?
 - (b) Rather than hire a normal company to do your cake decoration, you decide to hire Heine-Borel Cake Decorators to frost your one-dimensional birthday cake, which extends across the interval [0,1]. HBCD offers you a few different cake-decorating plans, but you're worried that they might not finish frosting the cake in time.
 - i. Plan 1: During hour -1, your cake will be frosted on the interval $(\frac{1}{3}, 1]$. During hour 0, your cake will be frosted on [0, 0.00001). During hour i after that, your cake will be frosted on the open interval $(\frac{1}{2^{i+1}}, \frac{1}{2^i})$. Does this cake-frosting scheme form an open cover of your birthday cake? (Will everything get frosted?)
 - ii. Plan 2: During hour -1, your cake will be frosted on the interval $(\frac{1}{3}, 1]$. During hour 0, your cake will be frosted on [0, 0.00001). During hour *i* after that, your cake will be frosted on the open interval $(\frac{1}{2^{i+2}}, \frac{1}{2^i})$. The way that this plan is set up, you'd have to wait infinitely long for the frosting to finish. Why don't you have to wait that long?
 - iii. HBCD convinces you that your cake would look better if they only frosted on (0,1). How could they change plan 2 in this case to make you wait an infinite length of time before your cake is ready?
- 3. Affine approximation: Consider the function $f\begin{pmatrix} x \\ y \end{pmatrix} = x^4y^2$. Calculate the derivative of this function, evaluate it at and $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, and then use this to approximate $f\begin{pmatrix} 0.95 \\ 2.05 \end{pmatrix}$.
- 4. True/false
 - (a) For any collection of sets S_n where $S_{n+1} \subseteq S_n$, $\bigcap_{i=1}^{\infty} S_n$ is nonempty
 - (b) In \mathbb{R}^n , any convergent sequence is Cauchy.
 - (c) In \mathbb{R}^n , any Cauchy sequence is convergent.
 - (d) If a set $S \subseteq \mathbb{R}^n$ is not compact, then no open cover has a finite subcover.
 - (e) In \mathbb{R}^2 , if both $\lim_{x\to 0} f\begin{pmatrix} x \\ 0 \end{pmatrix}$ and $\lim_{y\to 0} f\begin{pmatrix} 0 \\ y \end{pmatrix}$ exist, then $\lim_{\vec{x}\to 0} f(\vec{x})$ exists.
 - (f) If $\nabla_{\vec{e_1}} f(\vec{a}) = 1$ and $\nabla_{\vec{e_2}} f(\vec{a}) = 2$, then $\nabla_{\vec{e_1} + \vec{e_2}} f(\vec{a}) = 3$.
- 5. If time: Using the pigeonhole principle, prove that given any five points on a sphere, there is a closed hemisphere containing at least four of them.