Lab10: Learn to build frequency table and Huffman encoding tree

Consider the message "the clouds are dark and its about to rain" and construct frequency table and Huffman encoding tree.

Frequency Table:

Character	Frequency	Character	Frequency
a	5	n	2
b	1	0	3
С	1	r	3
d	3	S	2
e	2	t	4
h	1	u	2
i	2	SP	8
k	1	NL	1
1	1		

Huffman Encoding Tree:

Huffman Character Codes:

Character	Huffman Code	Character	Huffman Code
a	000	n	01100
b	011110	0	0011
С	011111	r	0100
d	0010	S	01011
e	01110	t	101
h	10000	u	01010
i	01101	SP	11
k	10001	NL	10011
1	10010		

There are 42 characters in the message. If we represent them using **ASCII encoding**, where each character is represented by 8 bits, the total number of bits required would be: $42 \times 8 = 336$ bits.

However, using **Huffman encoding**, each character is represented by a **variable number of bits**, as shown in the table above. To calculate the total number of bits used in the Huffman-encoded message, we multiply the **frequency** of each character by the **length of its Huffman code**, and then sum the results.

Character	Frequency	Huffman Code	Code Length	Total Bits
a	5	000	3	15
b	1	011110	6	6
С	1	011111	6	6
d	3	0010	4	12
e	2	01110	5	10
h	1	10000	5	5
i	2	01101	5	10
k	1	10001	5	5
1	1	10010	5	5
n	2	01100	5	10
NL	1	10011	5	5
О	3	0011	4	12
r	3	0100	4	12
S	2	01011	5	10
t	4	101	3	12
u	2	01010	5	10
SP	8	11	2	16
			Total:	181

