Architetture Dati

UniShare

Davide Cozzi @dlcgold

Indice

1	Intr	oduzione	2
2	Sistemi centralizzati		3
	2.1	Ottimizzazione delle query	6
	2.2	Transazioni	7
	2.3	Gestore della concorrenza	g

Capitolo 1

Introduzione

Questi appunti sono presi a lezione. Per quanto sia stata fatta una revisione è altamente probabile (praticamente certo) che possano contenere errori, sia di stampa che di vero e proprio contenuto. Per eventuali proposte di correzione effettuare una pull request. Link: https://github.com/dlcgold/Appunti.

Capitolo 2

Sistemi centralizzati

Definizione 1. Un DBMS (DataBase Management System) è un sistema, ovvero un software, in grado di gestire collezioni di dati che siano:

- grandi, ovvero di dimensioni maggiori della memoria centrale dei sistemi di calcolo usati (se ho a che fare con una quantità di dati non così grande e con un uso personale posso affidarmi ad una hashmap piuttosto che ad un db)
- persistenti, ovvero con un periodo di vita indipendente dalle singole esecuzioni dei programmi che le utilizzano e per molto tempo
- condivise, ovvero usate da diversi applicativi e diversi utenti (fattore che porta anche allo studio del carico di lavoro, workload). L'accesso può essere sia in scrittura che in lettura (ovviamente anche entrambi) a seconda del caso. SI pongono quindi problemi di concorrenza e sicurezza
- affidabili, sia resistente dal punto di vista hardware (un guasto non deve farmi perdere i dati) che dal punto di vista della sicurezza informatica. Le transazioni devono essere quindi **atomiche** (o tutto o niente) e **definitive** (che non verranno più dimenticate). Il software può cambiare mentre i dati no

A livello di architettura per un sistema centralizzati si hanno:

- uno o più *storage* per memorizzare i dati, a loro volta su uno o più file del *file system*
- il *DBMS*, il componente software che funge da componente logico

- diverse applicazioni che elaborano i dati provenienti dal db (*let-tura*) ed eventualmente scrivono dati sullo stesso (*scrittura*)
- il **DBA** (*DataBase Administrator*) che tramite riga di comando o GUI si occupa di manutenzione, sicurezza, ottimizzazione etc... del DBMS

L'architettura dati di un DBMS è definita dall'ente ANSI/SPARC e è a tre livelli:

- 1. diversi **schemi esterni**
- 2. uno schema logico (o concettuale), che fa riferimento al modello relazionale dei dati ed è indipendente dalla tecnologia usata. Avendo un unico schema logico si ha un'unica semantica (perlomeno a livello astratto). Si ha unica base di dati, quindi un unico insieme di record interrogati e aggiornati da tutti gli utenti. Non si ha nessuna forma di eterogeneità concettuale
- 3. uno **schema fisico**, che fa riferimento alla tecnologia usata per implementare le tabelle per salvare i dati. Si ha un'unica rappresentazione fisica dei dati e quindi nessuna distribuzione e nessuna eterogeneità fisica

Un unico schema fisico è collegato ad un unico schema logico. Inoltre si hanno:

- un unico linguaggio di interrogazione e quindi un'unica modalità di accesso ai dati
- un unico sistema di gestione per accesso, aggiornamento e gestione per la transazioni e le interrogazioni
- un'unica modalità di ripristino in caso d'emergenza
- un unico amministratore dei dati
- nessuna autonomia gestionale

Per il discorso della persistenza dei dati si ha necessità di una memoria secondaria dove il DBMS salva le strutture dati, studiando un modo efficiente di trasferimento dei dati nel *buffer* in memoria centrale. Il *buffer* è un'area di memoria (o meglio un componente software) nella memoria centrale che cerca, tramite una logica di "vicinanza", di mettere i dati della memoria secondaria in quella centrale. Si usa il **principio di località**. A causa degli accessi condivisi al db si hanno problemi di **concorrenza**, avendo accesso multi-utente alla stessa dei dati condivisa, accesso che necessità anche di meccanismi di **autorizzazione**. In merito alla concorrenza si ha che le transazioni sono corrette se **seriali** (ordinate temporalmente) ma questo non è sempre applicabile e quindi si deve stabilire un *controllo della concorrenza*.

Per accedere ai dati di un db si hanno le **query** (*interrogazioni*) che fanno parte del modello logico a cui si interfaccia l'utente. Essendo i dati nelle memorie secondarie bisogna cercare un modo di rendere gli accessi performanti, in primis tramite opportune strutture fisiche in quanto e strutture logiche non sarebbero efficienti in memoria secondaria. Bisogna fare in modo che gli accessi alla memoria secondaria siano il più limitati possibili e quindi bisogna ottimizzare l'esecuzione delle query. Ovviamente una scansione lineare delle tabelle sarebbe troppo dispendiosa con tabelle grosse, ricordando che i file sono ad accesso sequenziale. Inoltre un ipotetico *join* tra tabelle renderebbe ancora più complesso l'accesso, soprattutto se *full-join*.

Per poter garantire tutto ciò che è stato detto l'architettura del DBMS deve essere organizzata in termini di funzionalità cooperanti:

- un query compiler che prende una query in SQL e la traduce con un compilatore
- un **gestore di interrogazioni e aggiornamenti** che trasforma le query in SQL in algebra relazionale facendo operazioni di ottimizzazione
- un **gestore dei metodi di accesso** per permettere il passaggio tra file e tabelle passando dal **gestore del buffer** e il **gestore della memoria secondaria** dove i dati non sono in forma tabellare ma di file e pagine
- un **DDL compiler**, dove DDL sta per Data Description Language, che si occupa dei comandi del DBA
- un **gestore della concorrenza**, che garantisce il controllo della concorrenza
- un **gestore dell'affidabilità**, che garantisce che un dato non vada perso
- un gestore delle transazioni

Gli ultimi quattro entrano in uso specialmente in fase di scrittura. **Tutto deve essere veloce!**

In un sistema distribuito la parte di query compiler, gestore delle interrogazioni, gestore delle transazioni e gestore della concorrenza resta invariato mentre il resto cambia drasticamente (in quanto i dati sono distribuiti) dovendo gestire diversamente l'accesso ai dati e la sua sicurezza. Bisogna gestire anche come i vari nodi devono interagire coi dati.

2.1 Ottimizzazione delle query

Ottimizzare le query è tutt'altro che banale.

Il primo step è il **parsing**, che stabilisce se la query è sensata dal punto di vista sintattico e se i vari nomi di tabelle e attributi sono coerenti con lo schema. Per questo ultimo aspetta ci si appoggia al Data Catalog, un particolare db che contiene informazioni sui vari database, in primis sui vari nomi delle tabelle e per ciascuna sui nomi di ogni attributo. SI ha quindi una soluzione per gestire i *metadati*. Il parser effettua un'analisi lessicale, per la sintattica e la semantica, usando il dizionario e la traduzione in algebra relazionale, producendo un query tree. Si calcola anche un query plan logico, utilizzando regole sintattiche di buon senso, per capire cosa fare prima (per esempio se fare prima una select o un join) per ottenere il risultato corretto nel minor tempo possibile (prima di fare una join magari seleziono prima una sottotabella con i dati potenzialmente utili, togliendo quelli sicuramente inutili... magari quel join può anche essere evitato). La query viene quindi rappresentata come un albero dove e foglie corrispondono alle strutture dati logiche, ovvero le tabelle. I nodi interni sono invece le varie operazioni algebriche (select, join, proiezione, prodotto cartesiano e operazioni insiemistiche).

Esempio 1. Vediamo una query:

```
SELECT Pnumber, Dnum, Lname, Address, Bdate FROM Project P, Dept D, Emp E
Where P. dnum=D. dnumber and E.ssn = D.mgrssn and P.location = 'Stafford'
```

che produce:

ma l'ottimizzatore va oltre (magari invertendo i where etc...) con un query plan più efficiente che permette di cambiare automaticamente le query in altre più efficienti.

Si ha un db chiamato **Statistics** che contiene statistiche sulla storia delle query nonché altre informazioni sui dati. L'uso di tale db permette di ottimizzare le query.

Solo dopo questo processo si ha la trasformazione delle tabelle logiche in strutture fisiche e metodi di accesso alla memoria e la trasformazione delle operazioni algebriche nelle loro implementazioni sulle strutture fisiche. Per la trasformazione si usano proprietà algebriche e una stima dei costi delle operazioni fondamentali per diversi metodi di accesso (in poche parole le regole della ricerca operativa). L'ottimizzazione ha complessità esponenziale e quindi si introducono approssimazioni basate su euristiche, usando un'alberatura di costi usando la tecnica del Branch&Bound.

2.2 Transazioni

Una **transazione** è l'insieme di istruzioni di accesso in lettura e scrittura ai dati, istruzioni eventualmente inserite in un linguaggio di programmazione. Una transazione gode di proprietà che garantiscono la corretta esecuzione anche in ambito di concorrenza e sicurezza, tanto che sono paradigmatiche

del modello relazionale. Le transazioni iniziano con un **begin-transaction** (a volte finiscono con *end-transaction*, opzionale) e all'interno deve essere eseguito tra:

- commit work, per terminare correttamente la lettura e/o scrittura
- rollback work, per abortire la transazione

Un sistema transazionale OLTP (*OnLine Transaction Processing*) è in grado di definire ed eseguire transazioni per conto di un certo numero di applicazioni concorrenti anche alto.

Esempio 2. Vediamo un esempio di transazione (esempio di addebito su un conto corrente e accredito su un altro):

```
start transaction;
update ContoCorrente
  set Saldo = Saldo + 10 where
  NumConto = 12202;
update ContoCorrente
  set Saldo = Saldo - 10 where
  NumConto = 42177;
commit work;
```

oppure, con anche la verifica che ci siano ancora soldi dopo il prelievo (con eventuale aborto):

```
start transaction;
update ContoCorrente
  set Saldo = Saldo + 10 where
  NumConto = 12202;
update ContoCorrente
  set Saldo = Saldo - 10 where
  NumConto = 42177;
select Saldo into A
  from ContoCorrente
  where NumConto = 42177;
if (A >= 0) then commit work
else rollback work;
```

Il controllo può essere fatto a posteriori grazie al rollback che permette di "dimenticare" tutte le operazioni precedenti

Le istruzioni commit work e rollback work possono comparire più volte all'interno del programma ma esattamente una delle due deve essere eseguita. Si ha un **approccio binario**.

Bisogna approfondire quindi le **unità di elaborazione** che hanno le proprietà cosiddette *ACID*:

- Atomicità, ovvero una transazione è un'unità atomica di elaborazione. Non si può lasciare il db in uno "stato intermedio". Un problema prima del commit cancella tutto le operazioni svolte (*UN-DO*) e un problema dopo il commit non deve avere conseguenze, se necessario vanno ripetute le operazioni (*REDO*)
- Consistenza, ovvero la transazione rispetta i vincoli di integrità (se lo stato iniziale è corretto lo è anche quello finale). Quindi se ci sono violazioni non devono restare alla fine (nel caso *rollback*)
- Isolamento, ovvero la transazione non risente delle altre transazioni concorrenti. Una transazione non espone i suoi stati intermedi evitando l'effetto domino (si evita che il rollback di una transazione vada in cascata con le altre). L'esecuzione concorrente di una collezione di transazioni deve produrre un risultato che si potrebbe ottenere con una esecuzione sequenziale
- Durata (ovvero persistenza), ovvero gli effetti di una transazione andata in commit non vanno persi anche in presenza di guasti (a tal fine si sfrutta il **recovery manager**, che garantisce l'affidabilità, del DBMS)

2.3 Gestore della concorrenza

Il **gestore della concorrenza** permette di eseguire in parallelo più opera-

Definiamo **schedule** come una sequenza di esecuzione di un insieme di transazioni. Uno schedule è **seriale** se se una transazione termina prima che la successiva iniziale, altrimenti è **non seriale**. Qualora non sia seriale si potrebbero avere problemi.

Si sfrutta quindi la **proprietà di isolamento** facendo in modo che ogni transazione esegua come se non ci fosse concorrenza: un insieme di transazioni eseguite concorrentemente produce lo stesso risultato che produrrebbe una (qualsiasi) delle possibili esecuzioni sequenziali delle stesse transazioni allora si ha la proprietà di isolamento.

Si ha quindi che uno schedule è serializzabile se l'esito della sua esecuzione è lo stesso che si avrebbe con una qualsiasi sequenza seriale delle transazioni contenute.

Si hanno quindi diversi algoritmi per il controllo della concorrenza secondo varie tipologie:

- controllo basato su conflict equivalence
- controllo di concorrenza basato su locks (protocollo 2PL o two phase locking, shared locks e gestione dei deadlock). Il protocollo 2PL è usato nei DBMS dove per costruzione si hanno schedule serializzabili usando i lock per bloccare l'accesso alla risorse da parte di una transazione fino a che una risorsa non sia rilasciata. Si hanno quindi i concetti di lock e unlock che garantiscono l'uso esclusivo di una risorsa e l'autorizzazione esclusiva dell'uso di una risorsa viene dato dal gestore delle transazioni. Si hanno delle tabelle di lock. Si ha che, in ogni transazione, tutte le richieste di lock precedono tutti gli unlock (che comunque devono essere fatti dopo l'operazione di commit)
- controllo di concorrenza basato su timestamps

Capitolo 3

Architetture dati distribuite