

CS 540 Introduction to Artificial Intelligence **Logic**

University of Wisconsin-Madison

Spring, 2022

Logic & Al

Why are we studying logic?

- Traditional approach to AI ('50s-'80s)
 - "Symbolic Al"
 - The Logic Theorist 1956
 - Proved a bunch of theorems!
- Logic also the language of:
 - Knowledge rep., databases, etc.

Symbolic Techniques in Al

Lots of systems based on symbolic approach:

- Ex: expert systems, planning, more
- Playing great chess

Less popular recently!

J. Gardner

Symbolic vs Connectionist

Rival approach: connectionist

- Probabilistic models
- Neural networks
- Extremely popular last 20

years

Symbolic vs Connectionist

Analogy: Logic versus probability

- Which is better?
- Future: combination;
 best-of-both-worlds
 - Actually been worked on:
 - Example: Markov Logic Networks

Outline

- Introduction to logic
 - Arguments, validity, soundness
- Propositional logic
 - Sentences, semantics, inference
- First order logic (FOL)
 - Predicates, objects, formulas, quantifiers

Basic Logic

- Arguments, premises, conclusions
 - Argument: a set of sentences (premises) + a sentence (a conclusion)
 - Validity: argument is valid iff it's necessary that if all premises are true, the conclusion is true
 - Soundness: argument is sound iff valid & premises true
 - Entailment: when valid arg., premises entail conclusion

Propositional Logic Basics

Logic Vocabulary:

- Sentences, symbols, connectives, parentheses
 - Symbols: P, Q, R, ... (atomic sentences)
 - Connectives:

```
∧ and [conjunction]
V or [disjunction]
⇒ implies [implication]
⇔ is equivalent [biconditional]
¬ not [negation]
```

Literal: P or negation ¬P

Propositional Logic Basics

Examples:

- (P **V** Q) ⇒ S
 - "If it is cold or it is raining, then I need a jacket"
- $Q \Rightarrow P$
 - "If it is raining, then it is cold"
- ¬R
 - "It is not hot"

Propositional Logic Basics

Several rules in place

- Precedence: \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- Use parentheses when needed
- Sentences: **well-formed** or not well-formed:

```
P \Rightarrow Q \Rightarrow S not well-formed (not associative!)
```

```
Including Header Files

#include<stdio.h>
#include<conio.h>
void main() 	— main() Function Must Be There

{
    clrscr();
    printf("Welcome to DataFlair");

Single Line
Comment
getch(); 	— Semicolon After Each Statement

};

Program Enclosed Within Curly Braces
```

Sentences & Semantics

- Think of symbols as defined by user
- Sentences: built up from symbols with connectives
 - Interpretation: assigning True / False to symbols
 - **Semantics**: interpretations for which sentence evaluates to True
 - **Model**: (of a set of sentences) interpretation for which all sentences are True

Evaluating a Sentence

• Example:

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Note:

- If P is false, P ⇒ Q is true regardless of Q ("5 is even implies 6 is odd" is True!)
- Causality unneeded: ("5 is odd implies the Sun is a star" is True!)

Evaluating a Sentence: Truth Table

• Ex:

Р	Q	R	¬ P	Q∧R	¬P V Q∧R	¬P V Q∧R⇒Q
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	1	0	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	0	0	1
1	1	1	0	1	1	1

Satisfiable

There exists some interpretation where sentence true

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy

- (i) $\neg(\neg p \rightarrow \neg q) \land r$
- (ii) $(\neg p \lor \neg q) \rightarrow (p \lor \neg r)$
 - A. Both
 - B. Neither
 - C. Just (i)
 - D. Just (ii)

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy

- (i) $\neg(\neg p \rightarrow \neg q) \land r$
- (ii) $(\neg p \lor \neg q) \rightarrow (p \lor \neg r)$
 - A. Both
 - B. Neither
 - C. Just (i)
 - D. Just (ii)

Q 1.2: Let A = "Aldo is Italian" and B = "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. A \vee ($\neg A \rightarrow B$)
- b. A \(\begin{array}{c} B \end{array} \)
- c. A \vee (A \rightarrow B)
- d. $A \rightarrow B$

Q 1.2: Let A = "Aldo is Italian" and B = "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. A \vee ($\neg A \rightarrow B$)
- b. A V B (equivalent!)
- c. A \vee (A \rightarrow B)
- d. $A \rightarrow B$

Q 1.3: How many different assignments can there be to $(x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee ... \vee (x_n \wedge y_n)$

- A. 2
- B. 2ⁿ
- C. 2^{2n}
- D. 2n

Q 1.3: How many different assignments can there be to $(x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee ... \vee (x_n \wedge y_n)$

- A. 2
- B. 2ⁿ
- C. 2^{2n}
- D. 2n

Knowledge Bases

- Knowledge Base (KB): A set of sentences
 - Like a long sentence, connect with conjunction

Model of a KB: interpretations where all sentences are True

Goal: inference to discover new sentences

Entailment

Entailment: a sentence logically follows from others

• Like from a KB. Write A ⊨ B

A ⊨ B iff in every interpretation where A is true, B is

also true

Inference

- Given a set of sentences (a KB), logical inference creates new sentences
 - Compare to prob. inference!

Challenges:

- Soundness
- Completeness
- Efficiency

Methods of Inference: 1. Enumeration

- Enumerate all interpretations; look at the truth table
 - "Model checking"
- Downside: 2ⁿ interpretations for n symbols

S. Leadley

Methods of Inference: 2. Using Rules

- Modus Ponens: (A ⇒ B, A) ⊨ B
- And-elimination
- Logical equivalences

Logical equivalences

$$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{de Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{de Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{de Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}$$

You can use these equivalences to modify sentences.

Methods of Inference: 3. Resolution

- Convert to special form and use a single rule
- Conjunctive Normal Form (CNF)

$$(\neg A \lor B \lor C) \land (\neg B \lor A) \land (\neg C \lor A)$$
a clause

Conjunction of clauses; each clause disjunction of literals

Simple rules for converting to CNF

Conjunctive Normal Form (CNF)

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

- Replace all ⊕ using biconditional elimination
- Replace all → using implication elimination
- Move all negations inward using -double-negation elimination -de Morgan's rule
- Apply distributivity of v over A

Convert example sentence into CNF

 $B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$ starting se $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$ biconditional elimination starting sentence

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$ implication elimination

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$ move negations inward

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$ distribute \lor over \land

Resolution steps

- Given KB and β (query)
- Add $\neg \beta$ to KB, show this leads to empty (False. Proof by contradiction)
- Everything needs to be in CNF
- Example KB:

```
\begin{array}{ll}
- & B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1}) \\
- & \neg B_{1,1}
\end{array}
```

• Example query: ¬P_{1,2}

Resolution preprocessing

• Add $\neg \beta$ to KB, convert to CNF:

```
a1: (\neg B_{1.1} \lor P_{1.2} \lor P_{2.1})
a2: (\neg P_{1,2} \vee B_{1,1})
a3: (\neg P_{2,1} \lor B_{1,1})
b: ¬B<sub>1 1</sub>
```

Want to reach goal: empty

c: P_{1,2}

Resolution

 Take any two clauses where one contains some symbol, and the other contains its complement (negative)

 Merge (resolve) them, throw away the symbol and its complement

- If two clauses resolve and there's no symbol left, you have reached *empty* (False). KB $|=\beta$
- If no new clauses can be added, KB does not entail $\boldsymbol{\beta}$

Resolution example

a2: $(\neg P_{1,2} \lor B_{1,1})$

a3: $(\neg P_{2,1} \lor B_{1,1})$

c: P_{1.2}

a1:
$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})$$

Resolution example

a1:
$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})$$

a2: $(\neg P_{1,2} \lor B_{1,1})$
a3: $(\neg P_{2,1} \lor B_{1,1})$

a3:
$$(\neg P_{2,1} \lor B_{1,1})$$

Step 1: resolve a2, c:
$$B_{1,1}$$

Step 2: resolve above and b: *empty*

Efficiency of the resolution algorithm

- Run time can be exponential in the worst case
 - Often much faster
- Factoring: if a new clause contains duplicates of the same symbol, delete the duplicates

```
PVRVPVT | PVRVT
```

 If a clause contains a symbol and its complement, the clause is a tautology and useless, it can be thrown away

```
a1: (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})
a2: (\neg P_{1,2} \lor B_{1,1})
\Box P_{1,2} \lor P_{2,1} \lor \neg P_{1,2} (tautology, throw away)
```

Q 2.1: What is the CNF for $(\neg p \land \neg (p \Rightarrow q))$

- A. $(\neg p \land \neg (p \Rightarrow q))$
- B. (¬p) ∧ (¬p ∨ ¬q)
- C. (¬p ∨ q) ∧ (p ∨ ¬q) ∧ (p ∨ q)
- D. (¬p) ∧ (p) ∧ (¬q)

Q 2.1: What is the CNF for $(\neg p \land \neg (p \Rightarrow q))$

- A. $(\neg p \land \neg (p \Rightarrow q))$
- B. (¬p) ∧ (¬p ∨ ¬q)
- C. (¬p ∨ q) ∧ (p ∨ ¬q) ∧ (p ∨ q)
- D. (¬p) ∧ (p) ∧ (¬q)

Q 2.2: Which has more rows: a truth table on *n* symbols, or a joint distribution table on *n* binary random variables?

- A. Truth table
- B. Distribution
- C. Same size
- D. It depends

Q 2.2: Which has more rows: a truth table on *n* symbols, or a joint distribution table on *n* binary random variables?

- A. Truth table
- B. Distribution
- C. Same size
- D. It depends

First Order Logic (FOL)

Propositional logic has some limitations

- Ex: how to say "all squares have four sides"
- No context, hard to generalize; express facts

FOL is a more expressive logic; works over

• Facts, Objects, Relations, Functions

First Order Logic syntax

- Term: an object in the world
 - Constant: Alice, 2, Madison, Green, ...
 - Variables: x, y, a, b, c, ...
 - Function(term₁, ..., term_n)
 - Sqrt(9), Distance(Madison, Chicago)
 - Maps one or more objects to another object
 - Can refer to an unnamed object: LeftLeg(John)
 - Represents a user defined functional relation
- A ground term is a term without variables.

FOL syntax

- Atom: smallest T/F expression
 - Predicate(term₁, ..., term_n)
 - Teacher(Jerry, you), Bigger(sqrt(2), x)
 - Convention: read "Jerry (is)Teacher(of) you"
 - Maps one or more objects to a truth value
 - Represents a user defined relation
 - term₁ = term₂
 - Radius(Earth)=6400km, 1=2
 - Represents the equality relation when two terms refer to the same object

FOL syntax

- **Sentence**: T/F expression
 - Atom
 - Complex sentence using connectives: ∧ ∨ ¬ → ⊕
 - Less(x,22) ^ Less(y,33)
 - Complex sentence using quantifiers ♥, ∃
- Sentences are evaluated under an interpretation
 - Which objects are referred to by constant symbols
 - Which objects are referred to by function symbols
 - What subsets defines the predicates

FOL quantifiers

- Universal quantifier: ∀
- Sentence is true for all values of x in the domain of variable x.
- Main connective typically is ⇒
 - Forms if-then rules
 - "all humans are mammals"

```
\forall x \text{ human}(x) \Rightarrow \text{mammal}(x)
```

Means if x is a human, then x is a mammal

FOL quantifiers

- Existential quantifier: **3**
- Sentence is true for some value of x in the domain of variable x.

- Main connective typically is
 - "some humans are male"

```
\exists x \text{ human}(x) \land \text{male}(x)
```

- Means there is an x who is a human and is a male