南京理工大学

2011年硕士学位研究生入学考试试题

科目代码:812 科目

科目名称: 机械原理

满分 150 分

考试科目: 机械原理(满分150分)

写在本 试题纸或草稿纸上均无效;③本试题纸须随答题纸一起装入试题袋中交回。 ①认真阅读答题纸上的注意事项;②所有答案必须写在答题纸上,

局部自出度、虚约束, 计算下列机构自由度, 指出机构中何处有复合铰链、 并分别列出两机构具有确定运动的条件。(20分)

二、图示导杆机构运动简图,比例尺 $\mu_l=1mm/mm$ 。已知构件 1 的角速度 ω_1 , 用瞬心法求该位置构件 2 的角速度 ω_2 。(10 分)

三、图示机构,构件 1 以 $\omega_1 = 20 \frac{1}{s}$ 等角速转动, $L_{AB} = 100mm$,其它位置尺寸 如图所示,用相对运动图解法求解构件 3 的角速度 ω ,和角加速度 ε ,。(20 分)

且摇杆 C_2D 处于垂直位置,试用图解法设计该机构(保留作图线)。(15分) 欲设计一夹紧机构(铰链四杆机构),已知连杆 BC的的两个位置如图所示 (尺寸和相对位置从图中量取), 现要求达到夹紧位置 B_2C_2 时, 机构处于死点位

R=50mm, 圆心 O 与转动中心 A 的偏心距 e=OA=30mm, 滚子半径 r_T=10mm, 凸轮为一偏心圆盘, 如图所示对心滚子从动件盘形凸轮机构中, 以決 枪以等角速度∞逆时针方向转动。

- (1) 从动件的位移与凸轮转角的关系式(凸轮转角起始位置为从动件最低位置)。
- (2) 当凸轮转速 n=240r/min 时,求凸轮从起始位置转过 90°时从动件的位移、 (15分) 度和此时凸轮机构压力角α。

齿根圆直径 六、测得一正常齿制标准直齿圆柱齿轮的齿顶圆直径 $d_{al}=84mm$, $d_{f1} = 75mm$,压力角 $\alpha = 20^{\circ}$

- (1) 试求出该齿轮的齿数 Z₁、模数 m
- (2) 上述齿轮与标准齿轮 2 啮合传动,两齿轮正确安装的中心距为 a=120mm, 试求齿轮 2 的齿数 Z2, 分度圆直径 d2, 齿顶圆直径 d2, 齿根圆直径 d2, 齿距 基节 p_b , 节圆直径 d'_2 , 啮合角 α' , 传动比 i_{12} 。
- (3) 计算两齿轮正确安装传动时的重合度 ε 。
- (4) 若将这对齿轮安装在中心 a'=121.7mm 的两轴上,要求无侧隙传动,试计算 (共20分 变位系数 (要求 $x_1 = x_2$)。

z₅=15, z₆=15, 输入转速 n₁=100rpm, n₆=100rpm, n₆转向如图。求 n₇的大小及 七、如图所示轮系,已知蜗杆为单头、右旋、顺时向转, z₂=100, z₃=45, z₄=30, 方向。(10分)

为f,不计楔块重量。试推导:(1)机构工作行程的效率;(2)反行程的自锁条 八、图示楔块机构,已知驱动力P,工作阻力Q,倾角 γ ,各接触面摩擦系数均

题(八)图

(七)

题

的大小、方向均不变。以曲柄1为等效构件,求工作载荷R的等效力矩M,随机 R 九、图示正弦机构,曲柄1长为r,角速度为0;滑块3上的工作载荷为R, (15分) 构位置 θ 的变化关系式 ($\theta = \omega t$)。

812 机械原理 第3页 共4页

十、如图所示转子,为了平衡图示轴平面中的不平衡重量,Q,2,2,及,及,已知 距离 $L_{12}=L_{23}=L_{34}=100$ mm。试求: 应在校正平面 I 和 II 中所需安装的平衡配 $Q_1 = 2g, Q_2 = 3g, Q_3 = 2g, Q_4 = 4g, r_1 = 10mm, r_2 = 15mm, r_3 = 12mm, r_4 = 20mm, r_5 = 12mm, r_5 = 12mm, r_6 = 20mm$ (10分) 重 Q_I 和 Q_{II} 。并设平衡配重的向径 $r_I=50mm, r_{II}=40mm$ 。

