MML minor #7

Рекуррентные нейронные сети (продолжение)

Recurrent Neural Networks (RNN)

- Работают с последовательностями
 - Слов в предложении
 - Букв в предложении
 - Отсчетов в аудио сигнале (амплитуда, частота)
 - Пикселей изображения

• ...

Как устроена простая RNN

- Работает **одинаково** для каждого элемента последовательности x_t , но вычисления зависят от предыдущих элементов x_t
- Можно сказать, что у RNN есть память (**скрытое состояние** s_t), в которой хранится информация о предыдущих элементах последовательности

Backpropagation through time (BPTT)

- Если развернуть сеть по времени t, то получим обычную feed-forward сеть c shared параметрами
- Применяем backpropagation, считаем градиенты для каждого параметра
- Далее (так же, как в случае сверток CNN) суммируем градиенты по shared параметрам и делаем шаг SGD

Посчитаем производную для 2 шагов

$$s_{1} = f(Ux_{1} + Ws_{0})$$

$$s_{2} = f(Ux_{2} + Ws_{1}) = f(Ux_{2} + Wf(Ux_{1} + Ws_{0}))$$

$$\frac{\partial s_2}{\partial W} = \frac{\partial f}{\partial a_2} \left(W \frac{\partial s_1}{\partial W} + s_1 \right) = \frac{\partial f}{\partial a_2} W \frac{\partial s_1}{\partial W} + \frac{\partial f}{\partial a_2} s_1$$

$$\frac{\partial s_1}{\partial W} = \frac{\partial s_1}{\partial W_*}$$

$$\frac{\partial s_2}{\partial s_1}$$

$$\frac{\partial S_2}{\partial W_*}$$

$$\frac{\partial s_2}{\partial W} = \frac{\partial s_2}{\partial s_1} \frac{\partial s_1}{\partial W_*} + \frac{\partial s_2}{\partial W_*}$$

Обозначение в предположении, что s_1 не зависит от w

Посчитаем производную для 3 шагов

$$s_3 = f(Ux_3 + Ws_2)$$

$$\frac{\partial s_2}{\partial W} = \frac{\partial s_2}{\partial s_1} \frac{\partial s_1}{\partial W_*} + \frac{\partial s_2}{\partial W_*}$$

$$\frac{\partial s_3}{\partial s_2}$$

$$\frac{\partial s_3}{\partial W_*}$$

$$\frac{\partial s_3}{\partial W} = \frac{\partial f}{\partial a_3} \left(W \frac{\partial s_2}{\partial W} + s_2 \right) = \frac{\partial f}{\partial a_3} W \left(\frac{\partial s_2}{\partial s_1} \frac{\partial s_1}{\partial W_*} + \frac{\partial s_2}{\partial W_*} \right) + \frac{\partial f}{\partial a_3} s_2$$

$$\frac{\partial s_3}{\partial W} = \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial s_1} \frac{\partial s_1}{\partial W_*} + \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial W_*} + \frac{\partial s_3}{\partial W_*}$$

Обозначение в предположении, что s_2 не зависит от w

Индукцией легко показать, что...

$$\frac{\partial s_2}{\partial W} = \frac{\partial s_2}{\partial s_1} \frac{\partial s_1}{\partial W_*} + \frac{\partial s_2}{\partial W_*}$$

$$\frac{\partial s_2}{\partial W} = \frac{\partial s_2}{\partial s_1} \frac{\partial s_1}{\partial W_*} + \frac{\partial s_2}{\partial W_*} + \frac{\partial s_3}{\partial W_*} = \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial s_1} \frac{\partial s_1}{\partial W_*} + \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial W_*} + \frac{\partial s_3}{\partial W_*} \frac{\partial s_3}{\partial W_*} + \frac{\partial$$

$$\frac{\partial s_k}{\partial W} = \sum_{i=1}^k \left(\prod_{j=i+1}^k \frac{\partial s_j}{\partial s_{j-1}} \right) \frac{\partial s_i}{\partial W_*}$$

ВРТТ на примере

$$s_{t} = \tanh(Ux_{t} + Ws_{t-1}) \qquad E_{0} \qquad E_{1} \qquad E_{2} \qquad E_{3} \qquad E_{4}$$

$$\hat{y}_{t} = \operatorname{softmax}(Vs_{t}) \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\longrightarrow (s_{0}) \longrightarrow (s_{1}) \longrightarrow (s_{2}) \longrightarrow (s_{3}) \longrightarrow (s_{4})$$

$$E_{t}(y_{t}, \hat{y}_{t}) = -y_{t} \log \hat{y}_{t} \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$E(y, \hat{y}) = \sum_{t} E_{t}(y_{t}, \hat{y}_{t}) \qquad x_{0} \qquad x_{1} \qquad x_{2} \qquad x_{3} \qquad x_{4}$$

$$= -\sum_{t} y_{t} \log \hat{y}_{t}$$

ВРТТ на примере

Проблема с затухающими градиентами

$$\frac{\partial E_3}{\partial W} = \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \sum_{i=1}^{3} \left(\prod_{j=i+1}^{3} \frac{\partial s_j}{\partial s_{j-1}} \right) \frac{\partial s_i}{\partial W_*} \Big|_{0.8}$$

$$s_t = \tanh(Ux_t + Ws_{t-1})$$

$$\frac{\partial s_j}{\partial s_{j-1}} = \frac{\partial f}{\partial a_j} W \qquad f(x) = \tanh(x)$$

$$\prod_{j=i+1}^{3} \frac{\partial s_j}{\partial s_{j-1}}$$

Быстро убывает или взрывается

Gradient clipping

• Градиенты могут взорваться – ограничим их норму

$$egin{aligned} \hat{\mathbf{g}} \leftarrow rac{\partial \mathcal{E}}{\partial heta} \ \mathbf{if} \ \|\hat{\mathbf{g}}\| \geq threshold \ \mathbf{then} \ \hat{\mathbf{g}} \leftarrow rac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}} \ \mathbf{end} \ \mathbf{if} \end{aligned}$$

Простая RNN плохо работает

$$h_t = \tanh(Ux_t + Wh_{t-1})$$

Спасет LSTM

LSTM решает проблему затухания градиентов

Распространение ошибки на 128 шаге

LSTM cell state (все про LSTM опционально)

- \mathcal{C}_t проходит через все ячейки, LSTM может забывать или добавлять информацию в \mathcal{C}_t
- Gates учат маски для забывания (forget), добавления (input) и вывода (output) вектора состояний \mathcal{C}_t

LSTM forget gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

LSTM input gate и вклад ячейки в состояние

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Обновление состояния

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Выдача скрытого состояния наружу

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Encoder-decoder (seq2seq)

Слабое место – связь между encoder и decoder только через последний скрытый слой encoder

Поможет attention (опционально)

Машинный перевод (seq2seq + attention)

Multi-language перевод от Google

• Обучение encoder и decoder для каждого языка на разных парах языков одновременно

Pаспознавание голоса (seq2seq + attention)

Image captioning (CNN encoder – RNN decoder)

Пример: распознавание рукописного текста

Ссылки

- http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
- http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS_ 100722.pdf
- http://distill.pub/2016/augmented-rnns/
- Multilingual Neural Machine Translation https://arxiv.org/abs/1611.04558
- https://deepmind.com/blog/wavenet-generative-model-raw-audio/
- https://www.tensorflow.org/tutorials/recurrent
- https://www.tensorflow.org/tutorials/seq2seq