Mining Data Streams (Part 2)

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu

Today's Lecture

- More algorithms for streams:
 - (1) Filtering a data stream: Bloom filters
 - Select elements with property x from stream
 - (2) Counting distinct elements: Flajolet-Martin
 - Number of distinct elements in the last k elements of the stream
 - (3) Estimating moments: AMS method
 - Estimate std. dev. of last k elements
 - (4) Counting frequent items

(1) Filtering Data Streams

Filtering Data Streams

- Each element of data stream is a tuple
- Given a list of keys S
- Determine which tuples of stream are in S
- Obvious solution: Hash table
 - But suppose we do not have enough memory to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream

Applications

Example: Email spam filtering

- We know 1 billion "good" email addresses
- If an email comes from one of these, it is NOT spam

Publish-subscribe systems

- You are collecting lots of messages (news articles)
- People express interest in certain sets of keywords
- Determine whether each message matches user's interest

First Cut Solution (1)

- Given a set of keys S that we want to filter
- Create a bit array B of n bits, initially all Os
- Choose a hash function h with range [0,n)
- Hash each member of s∈ S to one of n buckets, and set that bit to 1, i.e., B[h(s)]=1
- Hash each element a of the stream and output only those that hash to bit that was set to 1
 - Output a if B[h(a)] == 1

First Cut Solution (2)

- Creates false positives but no false negatives
 - If the item is in S we surely output it, if not we may still output it

First Cut Solution (3)

- |S| = 1 billion email addresses|B| = 1GB = 8 billion bits
- If the email address is in S, then it surely hashes to a bucket that has the big set to 1, so it always gets through (no false negatives)
- Approximately 1/8 of the bits are set to 1, so about 1/8th of the addresses not in S get through to the output (false positives)
 - Actually, less than 1/8th, because more than one address might hash to the same bit

<u>Analysis:</u> Throwing Darts (1)

- More accurate analysis for the number of false positives
- Consider: If we throw m darts into n equally likely targets, what is the probability that a target gets at least one dart?
- In our case:
 - Targets = bits/buckets
 - Darts = hash values of items

Analysis: Throwing Darts (2)

- We have m darts, n targets
- What is the probability that a target gets at least one dart?

Analysis: Throwing Darts (3)

- Fraction of 1s in the array B == probability of false positive == 1 e^{-m/n}
- Example: 10⁹ darts, 8·10⁹ targets
 - Fraction of 1s in $B = 1 e^{-1/8} = 0.1175$
 - Compare with our earlier estimate: 1/8 = 0.125

Bloom Filter

- Consider: |S| = m, |B| = n
- Use k independent hash functions $h_1,...,h_k$
- Initialization:
 - Set B to all 0s
 - Hash each element $s \in S$ using each hash function h_i , set $B[h_i(s)] = 1$ (for each i = 1,..., k) (note: we have a single array B!)
- Run-time:
 - When a stream element with key x arrives
 - If $B[h_i(x)] = 1$ for all i = 1,..., k then declare that x is in S
 - That is, x hashes to a bucket set to 1 for every hash function $h_i(x)$
 - Otherwise discard the element x

Bloom Filter -- Analysis

- What fraction of the bit vector B are 1s?
 - Throwing k·m darts at n targets
 - So fraction of 1s is $(1 e^{-km/n})$
- But we have k independent hash functions and we only let the element x through if all k hash element x to a bucket of value 1
- So, false positive probability = $(1 e^{-km/n})^k$

Bloom Filter – Analysis (2)

- = m = 1 billion, n = 8 billion
 - k = 1: $(1 e^{-1/8}) = 0.1175$
 - k = 2: $(1 e^{-1/4})^2 = 0.0493$

What happens as we keep increasing k?

- "Optimal" value of k: n/m In(2)
 - In our case: Optimal k = 8 In(2) = 5.54 ≈ 6

Bloom Filter: Wrap-up

- Bloom filters guarantee no false negatives, and use limited memory
 - Great for pre-processing before more expensive checks
- Suitable for hardware implementation
 - Hash function computations can be parallelized
- Is it better to have 1 big B or k small Bs?
 - It is the same: $(1 e^{-km/n})^k$ vs. $(1 e^{-m/(n/k)})^k$
 - But keeping 1 big B is simpler

(2) Counting Distinct Elements

Counting Distinct Elements

Problem:

- Data stream consists of a universe of elements chosen from a set of size N
- Maintain a count of the number of distinct elements seen so far
- Obvious approach:
 - Maintain the set of elements seen so far
 - That is, keep a hash table of all the distinct elements seen so far

Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)
- How many different Web pages does each customer request in a week?
- How many distinct products have we sold in the last week?

Using Small Storage

- Real problem: What if we do not have space to maintain the set of elements seen so far?
- Estimate the count in an unbiased way
- Accept that the count may have a little error,
 but limit the probability that the error is large

Flajolet-Martin Approach

- Pick a hash function h that maps each of the
 N elements to at least log, N bits
- For each stream element a, let r(a) be the number of trailing 0s in h(a)
 - r(a) = position of first 1 counting from the right
 - E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2
- Record R = the maximum r(a) seen
 - $\mathbf{R} = \mathbf{max}_{\mathbf{a}} \mathbf{r(a)}$, over all the items \mathbf{a} seen so far
- Estimated number of distinct elements = 2^R

Why It Works: Intuition

- Very very rough and heuristic intuition why Flajolet-Martin works:
 - h(a) hashes a with equal prob. to any of N values
 - Then h(a) is a sequence of log₂ N bits, where 2^{-r} fraction of all as have a tail of r zeros
 - About 50% of as hash to ***0
 - About 25% of as hash to **00
 - So, if we saw the longest tail of r=2 (i.e., item hash ending *100) then we have probably seen about 4 distinct items so far
 - So, it takes to hash about 2^r items before we see one with zero-suffix of length r

Why It Works: More formally

- Now we show why Flajolet-Martin works
- Formally, we will show that probability of finding a tail of r zeros:
 - Goes to 1 if $m \gg 2^r$
 - Goes to 0 if $m \ll 2^r$

where m is the number of distinct elements seen so far in the stream

Thus, 2^R will almost always be around m!

Why It Works: More formally

- What is the probability that a given h(a) ends in at least r zeros is 2^{-r}
 - h(a) hashes elements uniformly at random
 - Probability that a random number ends in at least r zeros is 2-r
- Then, the probability of NOT seeing a tail of length r among m elements:

Why It Works: More formally

- Note: $(1-2^{-r})^m = (1-2^{-r})^{2^r(m2^{-r})} \approx e^{-m2^{-r}}$
- Prob. of NOT finding a tail of length r is:
 - If *m* << 2^r, then prob. tends to 1
 - $(1-2^{-r})^m \approx e^{-m2^{-r}} = 1$ as $m/2^r \rightarrow 0$
 - So, the probability of finding a tail of length r tends to 0
 - If *m* >> 2^r, then prob. tends to 0
 - $(1-2^{-r})^m \approx e^{-m2^{-r}} = 0$ as $m/2^r \to \infty$
 - So, the probability of finding a tail of length r tends to 1
- Thus, 2^R will almost always be around m!

Why It Doesn't Work

- E[2^R] is actually infinite
 - Probability halves when $R \rightarrow R+1$, but value doubles
- Workaround involves using many hash functions h_i and getting many samples of R_i
- How are samples R_i combined?
 - Average? What if one very large value 2^{R_i} ?
 - Median? All estimates are a power of 2
 - Solution:
 - Partition your samples into small groups
 - Take the median of groups
 - Then take the average of the medians

(3) Computing Moments

Generalization: Moments

- Suppose a stream has elements chosen from a set A of N values
- Let m_i be the number of times value i occurs in the stream
- The kth moment is

$$\sum_{i \in A} (m_i)^k$$

Special Cases

$$\sum_{i\in A} (m_i)^k$$

- Othmoment = number of distinct elements
 - The problem just considered
- 1st moment = count of the numbers of elements = length of the stream
 - Easy to compute
- 2nd moment = surprise number S = a measure of how uneven the distribution is

Example: Surprise Number

- Stream of length 100
- 11 distinct values
- Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
 Surprise S = 910
- Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
 Surprise S = 8,110

AMS Method

- AMS method works for all moments
- Gives an unbiased estimate
- We will just concentrate on the 2nd moment S
- We keep track of many variables X:
 - For each variable X we store X.el and X.val
 - X.el corresponds to the item i
 - X.val corresponds to the count of item i
 - Note this requires a count in main memory, so number of Xs is limited
- Our goal is to compute $S = \sum_i m_i^2$

One Random Variable (X)

- How to set X.val and X.el?
 - Assume stream has length n (we relax this later)
 - Pick some random time t (t<n) to start, so that any time is equally likely
 - Let at time t the stream have item i. We set X.el = i
 - Then we maintain count c (X.val = c) of the number of is in the stream starting from the chosen time t
- Then the estimate of the $2^{\rm nd}$ moment $(\sum_i m_i^2)$ is:

$$S = f(X) = n (2 \cdot c - 1)$$

Note, we will keep track of multiple Xs, $(X_1, X_2, ..., X_k)$ and our final estimate will be $S = 1/k \sum_{i}^{k} f(X_i)$

Expectation Analysis

- 2nd moment is $S = \sum_i m_i^2$
- c_t ... number of times item at time t appears from time t onwards ($c_1 = m_a$, $c_2 = m_a 1$, $c_3 = m_b$)
- $E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t 1)$ $= \frac{1}{n} \sum_{i} n (1 + 3 + 5 + \dots + 2m_i 1)$

m_i ... total count of item *i* in the stream (we are assuming stream has length *n*)

Group times by the value seen

Time t when the last i is seen $(c_t=1)$

Time t when the penultimate i is seen ($c_t=2$)

Time t when the first i is seen ($c_t = m_i$)

Expectation Analysis

- $E[f(X)] = \frac{1}{n} \sum_{i} n (1 + 3 + 5 + \dots + 2m_i 1)$
 - Little side calculation: $(1+3+5+\cdots+2m_i-1)=\sum_{i=1}^{m_i}(2i-1)=2\frac{m_i(m_i+1)}{2}-m_i=(m_i)^2$
- Then $E[f(X)] = \frac{1}{n}\sum_i n (m_i)^2$
- So, $E[f(X)] = \sum_{i} (m_i)^2 = S$
- We have the second moment (in expectation)!

Higher-Order Moments

- For estimating kth moment we essentially use the same algorithm but change the estimate:
 - For k=2 we used $n(2\cdot c-1)$
 - For k=3 we use: $n(3\cdot c^2 3c + 1)$ (where c=X.val)
- Why?
 - For k=2: Remember we had $(1+3+5+\cdots+2m_i-1)$ and we showed terms **2c-1** (for **c=1,...,m**) sum to m^2
 - $\sum_{c=1}^{m} 2c 1 = \sum_{c=1}^{m} c^2 \sum_{c=1}^{m} (c-1)^2 = m^2$
 - So: $2c 1 = c^2 (c 1)^2$
 - For k=3: $c^3 (c-1)^3 = 3c^2 3c + 1$
- Generally: Estimate = $n(c^k (c-1)^k)$

Combining Samples

In practice:

- Compute f(X) = n(2c-1) for as many variables X as you can fit in memory
- Average them in groups
- Take median of averages

Problem: Streams never end

- We assumed there was a number n, the number of positions in the stream
- But real streams go on forever, so n is a variable – the number of inputs seen so far

Streams Never End: Fixups

- (1) The variables X have n as a factor keep n separately; just hold the count in X
- (2) Suppose we can only store k counts.
 We must throw some Xs out as time goes on:
 - Objective: Each starting time t is selected with probability k/n
 - Solution: (fixed-size sampling!)
 - Choose the first k times for k variables
 - When the n^{th} element arrives (n > k), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables X out, with equal probability

Counting Itemsets

Counting Itemsets

- New Problem: Given a stream, which items appear more than s times in the window?
- Possible solution: Think of the stream of baskets as one binary stream per item
 - 1 = item present; 0 = not present
 - Use DGIM to estimate counts of 1s for all items

Extensions

- In principle, you could count frequent pairs or even larger sets the same way
 - One stream per itemset
- Drawbacks:
 - Only approximate
 - Number of itemsets is way too big

Exponentially Decaying Windows

- Exponentially decaying windows: A heuristic for selecting likely frequent item(sets)
 - What are "currently" most popular movies?
 - Instead of computing the raw count in last N elements
 - Compute a smooth aggregation over the whole stream
- If stream is a_1 , a_2 ,... and we are taking the sum of the stream, take the answer at time t to be:

$$=\sum_{i=1}^{t}a_{i}(1-c)^{t-i}$$

- c is a constant, presumably tiny, like 10⁻⁶ or 10⁻⁹
- When new a_{t+1} arrives: Multiply current sum by (1-c) and add a_{t+1}

Example: Counting Items

- If each a_i is an "item" we can compute the characteristic function of each possible item x as an Exponentially Decaying Window
 - That is: $\sum_{i=1}^{t} \delta_i \cdot (1-c)^{t-i}$ where δ_i =1 if a_i =x, and 0 otherwise
 - Imagine that for each item x we have a binary stream (1 if x appears, 0 if x does not appear)
 - New item x arrives:
 - Multiply all counts by (1-c)
 - Add +1 to count for element x
- Call this sum the "weight" of item x

Sliding Versus Decaying Windows

Important property: Sum over all weights $\sum_{t} (1-c)^{t}$ is 1/[1-(1-c)] = 1/c

Example: Counting Items

- What are "currently" most popular movies?
- Suppose we want to find movies of weight > ½
 - Important property: Sum over all weights $\sum_t (1-c)^t$ is 1/[1-(1-c)] = 1/c
- Thus:
 - There cannot be more than 2/c movies with weight of ½ or more
- So, 2/c is a limit on the number of movies being counted at any time

Extension to Itemsets

- Count (some) itemsets in an E.D.W.
 - What are currently "hot" itemsets?
 - Problem: Too many itemsets to keep counts of all of them in memory
- When a basket B comes in:
 - Multiply all counts by (1-c)
 - For uncounted items in B, create new count
 - Add 1 to count of any item in B and to any itemset contained in B that is already being counted
 - Drop counts < ½</p>
 - Initiate new counts (next slide)

Initiation of New Counts

- Start a count for an itemset S ⊆ B if every proper subset of S had a count prior to arrival of basket B
 - Intuitively: If all subsets of S are being counted this means they are "frequent/hot" and thus S has a potential to be "hot"

Example:

- Start counting S={i, j} iff both i and j were counted prior to seeing B
- Start counting S={i, j, k} iff {i, j}, {i, k}, and {j, k} were all counted prior to seeing B

How many counts do we need?

- Counts for single items < (2/c)·(avg. number of items in a basket)
- Counts for larger itemsets = ??
- But we are conservative about starting counts of large sets
 - If we counted every set we saw, one basket of 20 items would initiate 1M counts