The Cyclical Behavior of Equilibrium Unemployment and Vacancies Shimer (2005)

Presented by: XING Mingjie

December 5, 2023

Bellman Equation

Worker

Unempolyment value

$$U_{p} = z + \delta \{ f(\theta_{p}) \mathbb{E}_{p} W_{p'} + (1 - f(\theta_{p})) \mathbb{E}_{p} U_{p'} \}$$
 (1)

Employment value

$$W_{p} = w_{p} + \delta\{(1-s)\mathbb{E}_{p}W_{p'} + s\mathbb{E}_{p}U_{p'}\}$$
 (2)

Bellman Equation

► Hiring value

$$J_p = p - w_p + \delta(1 - s) \mathbb{E}_p J_{p'} \tag{3}$$

Vacancy value

$$V_p = -c + \delta q(\theta_p) \mathbb{E}_p J_{p'} \equiv 0 \tag{4}$$

Productivity

The log of productivity follows AR(1) process

$$\log(p) = \rho \log(p) + \varepsilon \tag{5}$$

where

$$\log(p) \sim N(\mu_{\lambda}, \sigma_{\lambda}^2), \ \varepsilon \sim N(\mu_{\varepsilon}, \sigma_{\varepsilon}^2)$$

Optimal Control

Market tightness

- ► Control in this problem consists of w_p , θ_p , u_p and the state is p
- Market tightness θ_p is given by solving the following equation of hire rate from free entry condition

$$q(\theta_p) = \frac{c}{\delta \mathbb{E}_p J_{p'}} \tag{6}$$

And market tightness

$$\theta_p = \left(\frac{q(\theta_p)}{\mu}\right)^{-\frac{1}{\eta}} \tag{7}$$

Employ Rate is given by

$$f(\theta_p) = \mu^{\frac{1}{\eta}} q^{\frac{\eta - 1}{\eta}} \tag{8}$$

Optimal Control

Continued

Optimal wage at each productivity level is given by the Nash Bargaining:

$$W_{p}-U_{p}=\beta(W_{p}-U_{p}+J_{p}) \qquad (9)$$

- Note Bellman Equation of W_p given by 2, U_p given by 1, J_p given by 3
- ► Following the algebra given in slide 17, optimal wage for each *p* is

$$w_{p} = \beta p + (1 - \beta)z + \beta c\theta_{p} \tag{10}$$

And unemployment rate

$$u_p = \frac{\delta}{\delta + f(\theta_p)} \tag{11}$$

Calibration

Parameter	Symbol	Value
Productivity std.	σ_{logp}	0.05
Productivity mean	μ_{logp}	1
Stochastic std.	$\sigma_arepsilon$	0.03
Stochastic mean	$\mu_{arepsilon}$	0
Separation rate	S	0.1
Discount rate	r	0.012
Value of leisure	Z	0.4
Matching function	μ	1.355
Matching function	α	0.72
Bargaining Power	β	0.72
Cost of vacancy	С	0.213

Table 1: Parameter Calibration

Question a I

Discretization Algorithm

Inspired by Karen A. Kopecky 2006 Lecture Note

- Choose a relateive error tolerance level tol;
- Discretize the state space by constructing a grid for productivity

$$p = \exp\{logp\}$$
 where $logp = \{logp_1, logp_2, \dots, logp_n\}$

given by the Tauchen method. The n is chosen at

3. Start with an initial guess of the value function $V^{(0)}(p)$ is a vector of length n, i.e., $V^{(0)}(p) = \{V_i^{(0)}\}_{i=1}^n$, where $V_i^{(0)} = V^{(0)}(p_i)$. V here represents U, W, J. The initial guess is ones.

Question a II

Discretization Algorithm

- 4. Update the value function using eqautions 1 to 10, specifically
 - 4.1 Fix the current productivity level at one of the grid points, p_i from i=1
 - 4.2 For each possible choice of productivity next period, calculate optimal control in the following order:

$$q(\theta_{p_i}) = \frac{c}{\delta \sum_{j=1}^{n} p_{i,j} J^{(0)}(p_j)}$$
$$f(\theta_{p_i}) = \mu^{\frac{1}{\eta}} q^{\frac{\eta-1}{\eta}}$$
$$\theta_{p_i} = (\frac{q(\theta_{p_i})}{\mu})^{-\frac{1}{\eta}}$$
$$w_{p_i} = \beta p_i + (1 - \beta)z + \beta c \theta_{p_i}$$

4.3 and update the value function system with

Question a III

Discretization Algorithm

$$U_{\rho_{i}}^{(1)} = z + \delta \{ f(\theta_{p_{i}}) \sum_{j=1}^{n} p_{i,j} W^{(0)}(p_{j}) + (1 - f(\theta_{p_{i}})) \sum_{j=1}^{n} p_{i,j} U^{(0)}(p_{j}) \}$$

$$W_{\rho_{i}}^{(1)} = w_{\rho_{i}} + \delta \{ (1 - s) \sum_{j=1}^{n} p_{i,j} W^{(0)}(p_{j}) + s \sum_{j=1}^{n} p_{i,j} U^{(0)}(p_{j}) \}$$

$$J_{\rho_{i}}^{(1)} = p_{i} - w_{\rho_{i}} + \delta (1 - s) \sum_{j=1}^{n} p_{i,j} J^{(0)}(p_{j})$$

- 4.4 Choose a new grid point for productivity, go through 4.1 to 4.3. Once we have done the update for all productivity grid, we have new system of value function $V_p^{(1)}$
- 4.5 Compute distance between the two systems of value functions following the sup norm

$$d = \max_{i \in \{1, \dots, n\}} |V_i^{(0)} - V_i^{(1)}|$$

Question a IV

Discretization Algorithm

- 4.6 If distance is within the error tolerance level, $d \le tol * ||V_1^{(1)}||$, the functions have converged and go to step 5, or else go back to step 4.
- 5. Calculate the optimal control for each productivity level:

$$q(\theta_{p_i}^*) = \frac{c}{\delta \sum_{j=1}^n p_{i,j} J^*(p_j)}$$

$$f(\theta_{p_i}^*) = \mu^{\frac{1}{\eta}} q^{\frac{\eta - 1}{\eta}}$$

$$\theta_{p_i}^* = (\frac{q(\theta_{p_i}^*)}{\mu})^{-\frac{1}{\eta}}$$

$$w_{p_i}^* = \beta p_i + (1 - \beta)z + \beta c \theta_{p_i}^*$$

$$u_p^* = \frac{\delta}{\delta + f(\theta_p^*)}$$

where J^* is the converged value function.

Tauchen Method

Use discretizeAR1_Tauchen function from the Matlab Toolbox of Kirkby (2023).

Question a

Parametric Approximation

- 0. Choose Hermite interpolation polynomials to approximate $\hat{V}(p; \mathbf{coefs})$ in the form of $f(x) = a(x-x_1)^3 + b(x-x_1)^2 + c(x-x_1) + d$ with Matlab code pchip. Report initial paramters with pp.coefs for each value function, save as old
- 1. Maximize control and calculate value function at each productivity level as done in Discretization method
- Fit for new value function system and report parameters and save as new
- 3. If $||\hat{V}(p; \mathbf{coef_sold}) \hat{V}(p; \mathbf{coefs_new})|| < tol$, stop; else go to step 1.

Optimal Controls from two methods

Figure 1: Discretization

Figure 2: Approximation

Two Results

Question b

To use the polynomial interpolation function from course material directly

log(p)	W	u	f
0.4	1.4446	0.3865	1.5683
0.7	1.9336	0.3627	1.7362
1	2.5922	0.3409	1.9104
1.3	3.4792	0.3206	2.0936
1.6	4.6740	0.3016	2.2879

Table 2: Wage, Unemployment rate and Job Finding Rate

Two Results

Question c

	u	f	р
Data Std.	0.190	0.118	0.020
Approximation Model Std.	0.175	0.697	1.491
Discretization Model Std.	0.175	0.697	1.491

Table 3: Model fit on Unemployment, Job finding rate and productivity

Appendix A Optimal wage

$$W_{p} - U_{p} = \beta(W_{p} - U_{p} + J_{p})$$

$$\Leftrightarrow w_{p} - z + \delta(1 - s - f(\theta_{p}))(\mathbb{E}_{p}W_{p'} - \mathbb{E}_{p}U_{p'}) =$$

$$\beta(p - z + \delta(1 - s - f(\theta_{p}))(\mathbb{E}_{p}W_{p'} - \mathbb{E}_{p}U_{p'}) + \delta(1 - s)\mathbb{E}_{p}J_{p'})$$

$$\Leftrightarrow w_{p} = \beta p + (1 - \beta)z + (\beta - 1)\delta(1 - s - f(\theta_{p}))(\mathbb{E}_{p}W_{p'} - \mathbb{E}_{p}U_{p'})$$

$$+ \frac{\beta c(1 - s)}{q(\theta_{p})}$$

$$\Leftrightarrow w_{p} = \beta p + (1 - \beta)z - \frac{\beta c\delta(1 - s - f(\theta_{p}))}{q(\theta_{p})} + \frac{\beta c(1 - s)}{q(\theta_{p})}$$

$$\Leftrightarrow w_{p} = \beta p + (1 - \beta)z + \beta c\theta_{p}$$

where we use the fact that $\mathbb{E}_p W_{p'} - \mathbb{E}_p U_{p'} = \frac{\beta}{1-\beta} \mathbb{E}_p J_{p'}$ and $f(\theta_p)/q(\theta_p) = \theta_p$

Reference I

Kirkby, R. (2023), 'Value function iteration (vfi) toolkit for matlab', https://github.com/vfitoolkit/VFIToolkit-matlab. Github.

Shimer, R. (2005), 'The cyclical behavior of equilibrium unemployment and vacancies', *American Economic Review* **95**(1), 25–49.

URL: https://www.aeaweb.org/articles?id=10.1257/0002828053828572