Trabalho P3 – ELE1466 2025/1 → Entrega/apresentação 10/06/2025

- 1) Considere um modelo ANOVA com um fator, dado por $y_{ij} = \mu + \tau_i + \varepsilon_{ij}$, $i = 1,...a, j = 1,...,n_i$, com $\varepsilon_{ij} \sim N(0,\sigma^2)$ independentes e $\sum_{i=1}^{a} n_i \tau_i = 0$.
- a) Mostre os cálculos para estimar os parâmetros do modelo (μ , os τ 's e σ) pelo critério da Máxima Verossimilhança.
- b) Vc recebeu a base de dados A1 contendo amostras de tamanhos diferentes para <u>4</u> <u>populações</u> com médias possivelmente diferentes entre si, mas com mesma variância. Calcule os estimadores do item (a) para esses dados.
- c) Sabendo que $SS_T = \sum_{i=1}^a \sum_{j=1}^{n_i} \left(y_{ij} \overline{y}_{..} \right)^2 = \sum_{i=1}^a \sum_{j=1}^{n_i} \left(y_{ii} \overline{y}_{i..} \right)^2 + \sum_{i=1}^a \sum_{j=1}^{n_i} \left(\overline{y}_{i.} \overline{y}_{..} \right)^2 = SS_{tratamentos} + SS_E$, estabeleça a distribuição de probabilidades de $\frac{SS_{Tratamentos}}{\sigma^2}$ e $\frac{SS_E}{\sigma^2}$ sob a hipótese que $H_0: \tau_1 = \tau_2 = ... = \tau_a = 0$.
- d) Use os resultados acima para construir uma estatística para testar $H_0: \tau_1 = \tau_2 = ... = \tau_a = 0$. Qual a hipótese alternativa? Defina a regra de rejeição para um nível de significância α . Explique a lógica dessa regra. Teste H_0 na base de dados A1 (escolha α) explicando o resultado.
- e) Desenvolva os cálculos para testar a igualdade das médias das populações 2 a 2 e aplique-os à base de dados A1. Note que serão 6 testes. Comente os resultados relacionando-os com o item d.

- 2) Considere um modelo de regressão linear simples expresso por $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, i = 1,...n$, com os $\varepsilon_i \sim N(0, \sigma^2)$ independentes entre si e dos valores de x_i .
 - a) Estabeleça valores para os parâmetros populacionais do modelo: β_0 , β_1 e σ^2 .
 - b) Apresente os estimadores não viesados de β_0 e β_1 e σ^2 . Explique como são obtidos. Use um mínimo de equações.
 - c) Crie uma amostra aleatória de uma Normal de tamanho $n \le 30$. Esses serão os valores x_i , i = 1,...,n.
 - d) Crie uma amostra de tamanho n para os ε_i , $i=1,\ldots,n$ e calcule os y_i , $i=1,\ldots,n$.
 - e) Aplique os estimadores do item b e calcule o R2. Anote o resultado.
 - f) Repita as etapas $1.d \in 1.e$ K vezes, K > 100.
 - g) Faça um gráfico superpondo os pares $\{x_i, y_i\}$ de todas das 10 primeiras replicações. No mesmo gráfico apresente as primeiras 10 retas estimadas.
 - h) Determine a distribuição amostral de $\frac{\hat{\beta}_1 \beta_1}{\sqrt{\frac{\sigma^2}{S_{XX}}}}$ e compare com a distribuição empírica dessa quantidade (obtida das K repetições *1.d* e *1.e*) através do PP-Plot.
 - i) Faça um histograma do R2 obtido com as K realizações. Compare com a estatística F e comente.