Research article

Alphavirus replicon particles containing the gene for HER2/neu inhibit breast cancer growth and tumorigenesis

Xiaoyan Wang^{1,2}, Jian-Ping Wang¹, Maureen F Maughan³ and Lawrence B Lachman^{1,2}

¹Department of Bioimmunotherapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA

Corresponding author: Lawrence B Lachman, Lachman@odin.mdacc.tmc.edu

Received: 1 Jul 2004 Revisions requested: 8 Sep 2004 Revisions received: 9 Sep 2004 Accepted: 13 Oct 2004 Published: 29 Nov 2004

Breast Cancer Res 2005, 7:R145-R155 (DOI 10.1186/bcr962)

© 2004 Wang et al., licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is cited.

Abstract

Introduction Overexpression of the HER2/neu gene in breast cancer is associated with an increased incidence of metastatic disease and with a poor prognosis. Although passive immunotherapy with the humanized monoclonal antibody trastuzumab (Herceptin) has shown some effect, a vaccine capable of inducing T-cell and humoral immunity could be more effective.

Methods Virus-like replicon particles (VRP) of Venezuelan equine encephalitis virus containing the gene for HER2/neu (VRP-neu) were tested by an active immunotherapeutic approach in tumor prevention models and in a metastasis prevention model.

Results VRP-*neu* prevented or significantly inhibited the growth of HER2/*neu*-expressing murine breast cancer cells injected either into mammary tissue or intravenously. Vaccination with VRP-*neu* completely prevented tumor formation in and death of MMTV-c-*neu* transgenic mice, and resulted in high levels of *neu*-specific CD8+T lymphocytes and serum IgG.

Conclusion On the basis of these findings, clinical testing of this vaccine in patients with HER2/neu⁺ breast cancer is warranted

Keywords: adjuvant treatment, breast cancer, gene vaccines, immunotherapy, virus-like replicon particles

Introduction

The management of breast cancer currently relies on surgery, chemotherapy and radiotherapy. Despite recent advances in clinical management of breast cancer once metastasis has occurred, the probability of a complete cure is greatly reduced. Of the women who have no detectable lymph node metastases at the time of diagnosis, up to one-third later develop metastases [1]. In patients with metastatic disease that does not respond to radiotherapy or chemotherapy, immunotherapy may offer an additional form of cancer control [2-4]. Clinical trials of trastuzumab, a monoclonal antibody specific for HER2/neu, have demonstrated the utility of an immunologic approach for breast cancers that overexpress this gene [5-7]. A drawback to 'passive' immunotherapy using monoclonal antibodies is that the effect is short-lived. An alternative approach is

active vaccination that could induce *neu*-specific cytotoxic T cells with the ability to control the growth of the primary tumor and metastases. However, unlike passive immunotherapy whose effectiveness quickly wanes, effector and memory T cells induced by vaccination may remain present and be able to respond to any metastatic cells expressing HER2/*neu* that arise after treatment.

HER2/neu is an excellent target for gene vaccines, and several preclinical studies have shown the effectiveness of plasmid vaccines encoding neu in murine models [8-16]. Using a plasmid markedly different from those previously described [8-16], we created an effective gene vaccine against HER2/neu [17]. The previously described ELVIS plasmid vaccine construct for HER2/neu contained the cDNA of a replicon RNA from the Alphavirus Sindbis

²The Graduate School of Biomedical Sciences, The University of Texas Health Sciences Center, Houston, Texas, USA

³AlphaVax, Inc., Research Triangle Park, North Carolina, USA