

Contraintes

Travail préparatoire

- Avoir travaillé, appris le cours de 3A004 chapitre contraintes, réalisé la fiche de cours avec les éléments essentiels.
- Revoir la définition d'un torseur équivalent à une densité volumique d'efforts et à une densité surfacique d'efforts.
- Exercice d'auto-évaluation : En un point \underline{x} d'un milieu continu, les forces de contact $\underline{T}(\underline{x},\underline{n})$ exercées sur une surface élémentaire de normale \underline{n} sont telles que :

$$\underline{T}(\underline{x},\underline{e}_1) = \sigma_0 \left(-\underline{e}_1 + \gamma \underline{e}_3 \right), \quad \underline{T}(\underline{x},\underline{e}_2) \cdot \underline{e}_2 = -\sigma_0, \quad \underline{T}(\underline{x},\underline{e}_3) \wedge \underline{e}_1 = -\sigma_0 \underline{e}_2,$$

où σ_0 est une constante donnée et $(\underline{e}_1,\underline{e}_2,\underline{e}_3)$ un repère orthonormé.

- Quelles sont les dimensions de $\underline{T}(\underline{x},\underline{n})$ et de σ_0 ?
- Donner les composantes du tenseur des contraintes $\underline{\sigma}$ au point \underline{x} .
- Déterminer la force de contact exercée sur une surface élémentaire de normale $\underline{n} = 1/\sqrt{2} \left(\underline{e}_1 + \underline{e}_2\right)$.
- Décomposer la force de contact déterminée à la question précédente en composante normale et effort tangentiel.
- Calculer les contraintes principales (valeurs propres) du tenseur des contraintes $\underline{\sigma}$.
- Calculer les directions principales associées (vecteurs propres).

Etat de contraintes dans une éprouvette en torsion

Un arbre cylindrique, de génératrices parallèles à l'axe \underline{e}_3 , de hauteur h, de section circulaire de rayon R, est limité par la base Σ_0 située dans le plan $x_3 = 0$ et la base Σ_h située dans le plan $x_3 = h$. On désigne par Σ_l la surface latérale de la pièce. L'arbre, supposé en équilibre, est soumis en tout point (x_1, x_2, x_3) au champ de contraintes suivant exprimé dans le repère cartésien $(O, \underline{e}_1, \underline{e}_1, \underline{e}_3)$, l'origine O du repère étant prise au centre de la base Σ_0 :

$$\underline{\underline{\sigma}}(x_1, x_2, x_3) = \begin{pmatrix} 0 & 0 & A x_2 \\ 0 & 0 & -A x_1 \\ A x_2 & -A x_1 & 0 \end{pmatrix},$$

où A est un scalaire constant positif.

- ${\it 1.}$ Que peut-on dire des forces volumiques extérieures appliquées à la pièce ?
- 2. Calculer la densité surfacique d'efforts exercée sur la surface latérale Σ_l .
- 3. Quelles sont les densités surfaciques d'efforts s'exerçant sur les bases Σ_0 et Σ_h ?
- 4. Calculer les éléments de réduction en O (résultante et moment) du torseur des efforts surfaciques s'exerçant sur la base Σ_0 . Interpréter la nature des efforts extérieurs agissant sur cet arbre.
- 5. Déterminer les contraintes principales en tout point de la pièce et les directions principales associées .
- 6. Sachant que les matériaux fragiles rompent généralement lorsque la plus grande des contraintes principales atteint une valeur critique σ_c , en quel(s) point(s) de l'arbre constitué d'un matériau métallique, cette valeur critique est-elle atteinte? Quelle est la valeur maximale du couple de torsion à ne pas dépasser?
- 7. Sachant qu'en rupture fragile, la surface de rupture est souvent perpendiculaire à la direction principale associée à la contrainte principale maximale, expliquer le faciès de rupture présenté à la figure ci-dessous.

Rupture hélicoïdale d'une éprouvette en fonte sollicitée en torsion (Centre des Matériaux, Ecole des Mines, Evry)