Solution in R: Exercises Day 3

PSY8003

Matthias Mittner spring 2022

Exercise 1: Interactions

1.

There is a significant positive effect of self-perceived knowledge on overclaiming (β =0.1) and a negative effect of accuracy on overclaiming (β =-0.75).

 ${\tt scatter\ overclaiming_proportion\ self_perceived_knowledge}$

use "../data/atir2015.dta"
regress overclaiming_proportion accuracy self_perceived_knowledge

	Source	ı	SS	df	MS	Number of obs	=	202
	Dource		bb	u1	110			
		+				F(2, 199)	=	237.72
	Model		7.64142253	2	3.82071127	Prob > F	=	0.0000
R	Residual		3.19838922	199	.016072308	R-squared	=	0.7049
		+				Adj R-squared	=	0.7020
	Total	I	10.8398118	201	.053929412	Root MSE	=	.12678

overclaiming_proportion			t	P> t	[95% conf.	interval]
accuracy self_perceived_knowledge _cons	753986	.042195	-17.87	0.000	8371927	6707792
	.0997649	.0076322	13.07	0.000	.0847145	.1148153
	.0889104	.0367371	2.42	0.016	.0164664	.1613543

2.

• Comparing mean overclaiming between the two possible orderings results in a significant difference in the (M1=0.34, M2=0.27).

```
use "../data/atir2015.dta"
mean overclaiming_proportion, over(order_of_tasks )
regress overclaiming_proportion order_of_tasks
```

Mean estimation						Number of	obs = 202	
							 [95% conf.	
c.overclaiming_r Self-Perceived R	proportion@ord	er_of_tasks ured First	 .343	7844	.0244073		.2956571	.3919116
Model Residual	SS .258220266 10.5815915 10.8398118	1 .29 200 .09	58220266 52907957	F(1, Prob R-squ Adj F	er of obs 200) > F nared R-squared	= = = =	4.88 0.0283 0.0238	
order_of_tasks	+ 0715072	.0323679		0.028	1353	333		

3.

- the effect is present when modulation by $order_of_{task}$ is allowed, beta = 0.11
- the interaction is not significant (p = .06) but almost so. The interpretation is that the association between self-perceived knowledge and overclaiming is reduced by 0.03 when the order of presentation of the tests is switched

```
use "../data/atir2015.dta"
regress overclaiming_proportion accuracy c.self_perceived_knowledge##order_of_tasks
```

Dour Go	. 22	41		E(4 10	7)	_ 10	202	
	+	4 4 00	0770010	F(4, 197			20.51	
Model	7.69507396	4 1.92	2376849	Prob > I	t.	= 0	.0000	
Residual	3.1447378	197 .015	963136	R-square	ed	= 0	.7099	
	+			Adj R-so	quared	= 0	.7040	
Total	10.8398118	201 .053	3929412	Root MSI	Ε	= .:	12635	
	overclaiming	g_proportion	Coeffi					[95% (
			-+	0550				0400
		accuracy	1/5/	0552 .0	0422176	-17.93	0.000	84031
	self_perceive	ed_knowledge	1 .114	9759 .0	0113812	10.10	0.000	. 0925
	ore	der_of_tasks						
(Overclaiming Meas	sured First	1 .127	0156	.071707	1.7	7 0.078	01439
			1					
order_of_tasks	s#c.self_perceiv	ed_knowledge	1					
(Overclaiming Meas	sured First	028	5865 .0	0155931	-1.83	0.068	0593
	<u> </u>		1					
		_cons	.018	7424 .0	0552139	0.34	1 0.735	09014
		_						

MS

Number of obs

202

4.

Source |

SS

df

- FINRA has a mean of 3.7 and an SD of 1.9. Pretty high scores given that 5 is max.
- When controling for actual knowledge, the effect of self-perceived knowledge on overclaiming is still present but slightly reduced, $\beta=0.09$
- there is also a weak effect of actual knowledge on overclaiming, $\beta = 0.018$

use "../data/atir2015.dta"
mean FINRA_score
regress overclaiming_proportion accuracy c.self_perceived_knowledge FINRA_score

Mean estimation	Number of obs = 202			
			[95% conf. interval]	
			3.532938 3.863101	
Source	SS	df	MS Number of obs	= 202

Model Residual	3.12595808	3 2 198 .	.57128456 015787667	F(3, 198) Prob > F R-squared	= = =	162.87 0.0000 0.7116
Total	10.8398118		053929412	Adj R-squared Root MSE	=	0.7070
overclaiming_	proportion Cc	efficient	Std. err.	t P> t		[95% conf. interval]

FINRA_score | .0183697 .0085762 2.14 0.033 .0014571 .0352822 _cons | .0577868 .0392027 1.47 0.142 -.0195216 .1350953

.0080181

.0456551 -17.37

11.73

0.000

0.000

-.8832516

.0782573

-.7031862

.1098811

5.

• the histogram of the residuals does not show a strong departure from the normal distribution

accuracy | -.7932189

self_perceived_knowledge | .0940692

- nor does the QQ-plot
- the predicted vs. residuals plot shows some heterogeneity in variance (increasing with predicted value)
- the "stripe"-structure comes from the discrete nature of the overclaiming_proportion variable

use "../data/atir2015.dta" quietly regress overclaiming_proportion accuracy c.self_perceived_knowledge FINRA_score quietly histogram resid quietly graph export pics/ex3_histresid.png, replace

use "../data/atir2015.dta"
quietly regress overclaiming_proportion accuracy c.self_perceived_knowledge FINRA_score
qnorm resid
quietly graph export pics/ex3_qqresid.png, replace


```
use "../data/atir2015.dta"
quietly regress overclaiming_proportion accuracy c.self_perceived_knowledge FINRA_score
* statistical regression checks in Stata
regcheck
predict resid, rstudent
swilk resid
* heteroscedasticity
estat imtest
estat hettest
```

Test: Regression assumptions: 1) no heterokedasticity problem | Breusch-Pagan hettest

Chi2(1): 2.790 p-value: 0.095
Variance inflation factor FINRA_score : 1.33 accuracy : 1.19 self_perceived_knowledge : 1.12
Shapiro-Wilk W normality test z: 0.792 p-value: 0.214
Linktest t: 3.774 p-value: 0.000
Test for appropriate functional form F(3,195):6.627 p-value: 0.000
Cook's distance no distance is above the cutoff

Shapiro-Wilk W test for normal data

Variable	Obs	W 	V	z	Prob>z
resid	202	0.99061	1.413	0.795	0.21322

Cameron & Trivedi's decomposition of ${\tt IM-test}$

Source		chi2	df	p
Heteroskedasticity Skewness Kurtosis	 	10.88 7.36 0.42	9 3 1	0.2841 0.0613 0.5174
Total	 	18.66	13	0.1342

 ${\tt Breusch-Pagan/Cook-Weisberg\ test\ for\ heterosked asticity}$

Assumption: Normal error terms

Variable: Fitted values of overclaiming_proportion

HO: Constant variance

chi2(1) = 2.79Prob > chi2 = 0.0949

Exercise 2: Nonlinear regression

```
use "../data/explorepenguin.dta"
gen ageyears=2022-age
scatter nwsize agedec
quietly graph export pics/ex3_nwsize.png, replace
```

(22 missing values generated)

(22 missing values generated)


```
use "../data/explorepenguin.dta"
gen ageyears=2022-age
regress nwsize agedec
fp <agedec>, scale center: regress nwsize <agedec>
predict fpfit
scatter nwsize fpfit agedec
quietly graph export pics/ex3_nwsize_fp.png, replace
```

(22 missing values generated)

(22 missing values generated)

Source	SS	df	MS	Number of obs	=	713
+				F(1, 711)	=	27.79
Model	2808.57593	1	2808.57593	Prob > F	=	0.0000
Residual	71868.6274	711	101.081051	R-squared	=	0.0376
+				Adj R-squared	=	0.0363

Total	74677.2034	712	104.88371	l3 Root	MSE =	10.054
	Coefficient					interval]
agedec		.4587613	5.27 10.08	0.000	1.517527 11.91652	3.318904 17.68439
(fitting 44 mo		0%50%.	60%	.70%8	0%90%	100%)

Fractional polynomial comparisons:

agedec	Test df	Deviance	Residual std. dev.	Deviance diff.	P	Powers
omitted linear m = 1 m = 2	4 3 2 0	5339.889 5312.556 5308.016 5299.494	10.241 10.054 10.022 9.969	40.395 13.062 8.522 0.000	0.000 0.005 0.015	1 -1 3 3

Note: Test df is degrees of freedom, and P=P>F is sig. level for tests comparing models vs. model with m=2 based on deviance difference, F(df, 708).

Source	SS	df	MS		ber of obs	=	713
Model	4113.20623	2	2056.6031	.2 Pro	, 710) b > F	=	20.69
Residual	70563.9971 	710 	99.385911		quared R-squared	=	0.0551 0.0524
Total	74677.2034	712	104.88371	.3 Roo	t MSE	=	9.9692
nwsize	Coefficient			P> t		nf.	interval]
agedec_1	.5223527	.0984594	5.31	0.000	.329046	3	.715659
agedec_2	2576945	.0515395	-5.00	0.000	358882	5	1565066
_cons	22.61097	.3949427	57.25	0.000	21.8355	7	23.38636

(option xb assumed; fitted values)
(48 missing values generated)

Exercise 2: Splines

- there is no "correct" solution for the parameter settings at this point
- going up with knots shows an earlier peak in the data (early twenties) which might reflect university/educational setting which then goes down before the "final" social network is established
- it's hard/impossible to interpret the regression coefficients properly