# Initial Project Screening Method: Payback Period



Lecture No. 12
Chapter 5
Contemporary Engineering Economics
Third Canadian Edition
Copyright © 2012

### Chapter Opening Story



#### Ultimate Questions

- Municipalities' Point of View:
  - Would there be enough new revenues from installing the expensive parking monitoring devices?

Returns

- How many devices could be installed to maximize the revenue streams?
- Manufacturer's Point of View:
  - Would there be enough demand for their product to justify the investment required in new facilities and marketing?
  - What would be the potential financial risk if the actual demand is far less than its forecast or adoption of technology is too slow?

### Chapter 5 Objectives

- How do firms screen potential investment opportunities?
- How do firms evaluate the profitability of an investment project by considering the time value of money?
- How do you determine the net present worth (cost), net annual worth (cost), net future worth (cost), and the internal rate of return of a project?
  I RR (leave It to half of the term)

#### Chapter 5 Objectives (continued)

- How do you determine the capital recovery cost when you purchase an asset?
- How do you determine unit cost or unit profit?
- What is the meaning of the rate of return? Rock
- What are some of the various methods to compute the rate of return?
- How do you resolve the multiple rates of return problem?
- How do make an accept or reject decision with each of the PW, FW, AE, and IRR criteria?,

Not now

### Lecture 12 Objectives

- How do firms screen potential investment opportunities?
- How do firms evaluate the profitability of an investment project by considering the time value of money?
  Discounting

### Bank Loan vs. Investment Project



#### Example 5.1: Identifying Project Cash Flows

- XL Chemicals: 40% of its time is used to produce demulsification products,
   i.e. operating 3500 hrs per year, 30,000 kg/yr @\$15/kg
- The other 60% of the time produce other specialty chemicals
- It plans to install computer control system, which costs \$650,000 upfront and additional maintenance \$53,000/yr with the following benefits:
  - Higher purity, then \$2/kg price increase
  - Production increase of 4,000 kg/yr due to better yield at no additional costs
  - Reduced operators, leading to saving of \$25/hr

#### New beneficial cash flows generated:

Revenue increase due to price increase: 30,000 kg/yr x \$2/kg = \$60,000/yr

Added production volume: 4,000 kg/yr x \$175yr = \$68,000/yr

Manpower saving: \$25/hr x 3500 hrs/yr = \$8 λ 500/yr

Total benefits in cash incomes: \$215,500/yr

'new price = 15+2

# Example 5.1: Describing Project Cash Flows

| Year<br>( <i>n</i> ) | Cash Inflows (Benefits) | Cash Outflows (Costs) | Net<br>Cash Flows |
|----------------------|-------------------------|-----------------------|-------------------|
| 0                    | 0                       | \$650,000             | -\$650,000        |
| 1                    | 215,500 🗸               | (53,000)              | 162,500           |
| 2                    | 215,500 🗸               | 53,000                | 162,500           |
| •••                  |                         | • • •                 |                   |
| 8                    | 215,500 🗸               | 53,000                | 162,500           |

# Example 5.1: Identifying Project Cash Flows



# Independent versus Mutually Exclusive Investment Projects

- Independent: Trj
  - Costs and benefits of one project do not depend on whether another is chosen.
  - Example: Computer process control project, Waste heat recovery boiler, etc.
- Mutually Exclusive: optional
  - A project is excluded if another is chosen.
  - Example: a mortgage, from Bank A, Bank B, or Bank C?

# Payback Period

Principle:

How fast can I recover my initial investment?

Method:

based on the cumulative cash flow (also called project balance or accounting profit)

Screening Guideline

If the payback period is shorter than a maximum acceptable specified payback period, the project would be considered for further analysis.

Weakness:

does not consider the time value of money

# Example 5.2: Conventional Payback Period

How long does it take to recover the initial investment for the computer process control system project in Example 5.1?

Payback Period = 
$$\frac{\text{Initial Cost}}{\text{Uniform annual benefit}}$$

$$= \frac{\$650,000}{\$162,500} \times 3.9$$

$$= 4 \text{ years} \times 3.5$$

### Example 5.3: Conventional Payback Period With Salvage Value

Autonumerics Company has just bought a new spindle machine at a cost of \$105,000 to replace one that had a salvage value of \$20,000. The projected annual after-tax savings via improved efficiency, which will exceed the investment cost, are provided in the next slide.

Example 5.3: Conventional Payback Period With Salvage Value

| N | Cash Flow                  | Cum. Cash Flow (PB)  |
|---|----------------------------|----------------------|
| 0 | <b>-\$105,000+\$20,000</b> | -\$85,000            |
| 1 | \$15,000                   | -\$70,000            |
| 2 | \$25,000                   | -\$45,000            |
| 3 | \$35,000                   | -\$10,000   Mileston |
| 4 | \$45,000                   | \$35,000             |
| 5 | \$45,000                   | \$80,000 4 yrs       |
| 6 | \$35,000_                  | \$115,000            |

Payback period occurs somewhere between N = 3 and N = 4. We say it is 4 years if the end-of-period convention is followed.

#### Example 5.3: Conventional Payback Period Calculation



# Advantages and Disadvantages of the Payback Period Method

#### Advantages

- easy to understand
- adjusts for uncertainty of later cash flows
- reduces time spent analyzing some alternatives

#### Disadvantages

- fails to measure profitability
- ignores the time value of money
- biased against long-term projects

#### Discounted Payback Period

Principle:

How fast can I recover my initial investment plus interest?

Method:

Based on the cumulative discounted cash flow

Screening Guideline:

If the discounted payback period (DPP) is less than or equal to some specified payback period, the project would be considered for further analysis.

Weakness:

Cash flows occurring after DPP are ignored

# Example 5.3: Discounted Payback Period Calculation

|   |        |           | X) % // //                         |              | <b>7</b> 3 · |
|---|--------|-----------|------------------------------------|--------------|--------------|
|   | Period | Cash Flow | Cost of Funds                      | Cumulative 7 | Janes        |
|   |        |           | (15%)*                             | Cash Flow    |              |
|   | 0      | -\$85,000 | 0                                  | -\$85,000    | -2750        |
|   | 1      | 15,000    | -\$85,000(0.15) <b>=</b> -\$12,750 | 2250 -82,750 | Sé           |
|   | 2      | 25,000    | -\$82,750(0.15) = -12,413          | -70,163      |              |
|   | 3      | 35,000    | -\$70,163(0.15) = -10,524          | -45,687      | :            |
|   | 4      | 45,000    | -\$45,687(0.15) =-6,853            | -7,540       |              |
| ľ | 5      | 45,000    | -\$7,540(0.15) = -1,131            | 36,329       | 45           |
|   | 6      | 35,000    | \$36,329(0.15) = 5,449             | 76,778       |              |

\* Cost of funds = (Unrecovered beginning balance) X (interest rate)

© 2012 Pearson Canada Inc., Toronto, Ontario

12-19

# Example 5.3: Discounted Payback Period Calculation



, cost of fund

# Extra Example: Problem 5.11

| / 2    |           |      |             |  |
|--------|-----------|------|-------------|--|
| Period | Cash Flow | Froj | ect Balance |  |
| 0      | -\$1,000  |      | -\$1,000    |  |
| 1      | 100?      | 2001 | -1,100      |  |
| 2      | 520?      | 220, | -800        |  |
| 3      | 460       | 166  | -500        |  |
| 4      | 600?      | 100  | 0           |  |

\* Find the interest rate used and the missing cash flows.

$$73 = 460 - 300$$

$$= 160$$

$$i = \frac{160}{800} = 20\%$$

## Summary



Independent projects are considered one at a time and are either accepted or rejected. Payback periods can be used as a screening tool for liquidity, but we need a measure of investment worth for profitability.