Zadanie 1. W pierwszej urnie znajdują się kule ponumerowane liczbami 1, 2, ..., 10, zaś w drugiej urnie – kule ponumerowane liczbami 6, 7, ..., 25. Wyciągamy losowo po jednej kuli z każdej urny. Prawdopodobieństwo, że obie kule mają ten sam numer jest równe:

- $(A) \qquad \frac{1}{2}$
- (B) $\frac{1}{5}$
- (C) $\frac{1}{10}$
- (D) $\frac{1}{40}$
- (E) $\frac{1}{50}$

Zadanie 2. W pierwszej skrzynce jest 15 jabłek zdrowych i 5 zepsutych. W drugiej skrzynce jest 14 jabłek zdrowych i 6 zepsutych. Wybieramy losowo (z prawdopodobieństwem jedna druga) jedną ze skrzynek i wyciągamy z niej 3 różne jabłka. Jakie jest prawdopodobieństwo, że wybraliśmy drugą skrzynkę, jeśli wiemy, że wszystkie 3 jabłka okazały się zdrowe?

- $(A) \qquad \frac{1}{2}$
- (B) $\frac{4}{9}$
- (C) $\binom{29}{3} / \binom{40}{3}$
- (D) $\frac{14}{29}$
- (E) $\frac{28}{29}$

Zadanie 3. Niech X i Y będą zmiennymi losowymi takimi, że:

X ma gęstość:
$$f(x) = \begin{cases} e^{-x} & dla & 0 \le x \\ 0 & w \text{ przeciwnym przypadku} \end{cases}$$

$$\Pr(Y = k | X = x) = \frac{x^k}{k!} \cdot e^{-x}$$
 dla $k = 0, 1, 2, ...$

- (A) X i Y są zmiennymi niezależnymi
- (B) X i Y są zmiennymi nieskorelowanymi

(C)
$$[COV(X, Y)]^2 = VAR(X) \cdot VAR(Y)$$

- (D) X oraz Y X są zmiennymi nieskorelowanymi
- (E) COV(X, Y X) = 1

Zadanie 4. Macierz przejścia łańcucha Markowa o stanach E_1, E_2, E_3, E_4 jest równa:

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Niech $P^n(2,1)$ będzie prawdopodobieństwem, że łańcuch po wykonaniu n kroków znajdzie się w stanie E_1 , jeśli w chwili początkowej znajdował się w stanie E_2 .

- (A) $\lim_{n\to\infty} P^n(2,1) = \frac{2}{3}$
- (B) $\lim_{n\to\infty} P^n(2,1) = \frac{1}{2}$
- (C) $\lim_{n\to\infty} P^n(2,1) = 1$
- (D) $\lim_{n\to\infty} P^n(2,1)$ nie istnieje
- (E) $\lim_{n\to\infty} P^n(2,1) = \frac{5}{6}$

Zadanie 5. Zmienne losowe *X* i *Y* mają łączny rozkład prawdopodobieństwa o gęstości:

$$f(x,y) = \begin{cases} x \cdot e^{-x \cdot (y-x)} & dla \quad y > x, \quad 0 \le x \le 1 \\ 0 & w \text{ przeciwnym przypadku} \end{cases}$$

Jeżeli $\mu(X) = E(Y|X)$ to $\Pr(Y > \mu(X))$ wynosi:

- (A) $\frac{1}{2}$
- (B) e^{-1}
- (C) 1
- (D) $\frac{1}{1+e}$
- (E) $\frac{2}{1+e}$

Zadanie 6. x_1, x_2, \ldots, x_n jest próbą losową z rozkładu o gęstości:

$$f_{\theta}(x) = \begin{cases} e^{-(x-\theta)} & dla \quad x \ge \theta \\ 0 & w \text{ przeciwnym przypadku} \end{cases}$$

Estymator największej wiarogodności nieznanego parametru θ ma postać:

(A)
$$\hat{\theta} = \max\{x_1, x_2, ..., x_n\} - n$$

(B)
$$\hat{\theta} = \min\{x_1, x_2, \dots, x_n\}$$

(C)
$$\hat{\theta} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i - 1$$

(D)
$$\hat{\theta} = \frac{1}{n} \cdot \ln \left(\sum_{i=1}^{n} \exp(-x_i) \right)$$

(E)
$$\hat{\theta} = med\{x_1, x_2, \dots, x_n\} + \ln 2$$

Zadanie 7. Wykonano 10 pomiarów pewnej nieznanej wielkości μ jednym przyrządem pomiarowym, a następnie 5 pomiarów innym przyrządem. Zakładamy, że wyniki pomiarów $X_1, X_2, \ldots, X_{10}, X_{11}, \ldots, X_{15}$ są niezależnymi zmiennymi losowymi, przy czym każda ze zmiennych X_1, X_2, \ldots, X_{10} ma rozkład normalny o parametrach $(\mu, 0.1^2)$, podczas gdy każda ze zmiennych X_{11}, \ldots, X_{15} ma rozkład normalny o parametrach $(\mu, 0.2^2)$. Należy tak dobrać współczynniki c_1, c_2, \ldots, c_{15} , żeby estymator:

$$\hat{\mu} = \sum_{i=1}^{n} c_i X_i$$

był nieobciążonym estymatorem o minimalnej wariancji.

(A)
$$c_1 = \dots = c_{15} = \frac{1}{15}$$

(B)
$$c_1 = \dots = c_{10} = \frac{1}{20}$$
 i $c_{11} = \dots = c_{15} = \frac{1}{10}$

(C)
$$c_1 = \dots = c_{10} = \frac{1}{10}$$
 i $c_{11} = \dots = c_{15} = 0$

(D)
$$c_1 = \dots = c_{10} = \frac{8}{90}$$
 i $c_{11} = \dots = c_{15} = \frac{1}{45}$

(E)
$$c_1 = \dots = c_{10} = \frac{8}{90}$$
 i $c_{11} = \dots = c_{15} = \frac{1}{90}$

Zadanie 8. Zakładamy, że liczba roszczeń w ciągu roku dla pewnego portfela ryzyk jest zmienną losową X o rozkładzie Poissona. Zaobserwowano wartość X=2600. Czy test hipotezy:

 $H_0: E(X) = 2500$

przeciwko alternatywie:

$$H_1: E(X) > 2500$$

prowadzi do odrzucenia H_0 na poziomie istotności α ?

Test zbudowano w oparciu o przybliżenie rozkładu Poissona rozkładem normalnym i ma obszar krytyczny postaci X > c.

- (A) TAK, dla $\alpha = 0.005$
- (B) NIE, dla $\alpha = 0.005$; TAK, dla $\alpha = 0.01$
- (C) NIE, dla $\alpha = 0.01$; TAK, dla $\alpha = 0.05$
- (D) NIE, dla $\alpha = 0.05$; TAK, dla $\alpha = 0.1$
- (E) NIE, dla $\alpha = 0.1$

Zadanie 9. X_1, X_2, \ldots, X_{20} jest próbą losową z rozkładu normalnego o parametrach $(0, \sigma^2)$. Rozważmy najmocniejszy test hipotezy:

$$H_0: \sigma^2 = 1$$

przeciwko alternatywie:

$$H_1: \sigma^2 = 3$$

Na poziomie istotności 0.01. Moc testu wynosi:

- (A) około 0.50
- (B) około 0.05
- (C) około 0.20
- (D) około 0.90
- (E) około 0.99

Zadanie 10. Niech X będzie zmienną losową o rozkładzie wykładniczym o gęstości:

$$f(x) = \begin{cases} e^{-x} & dla \quad x \ge \theta \\ 0 & w \text{ przeciwnym przypadku} \end{cases}$$

Funkcja tworząca momenty zmiennej losowej $Y = \min\{X, m\}$, gdzie m > 0 jest daną liczbą, wyraża się wzorem:

(A)
$$M_Y(t) = \frac{1}{1-t} \cdot [1-t \cdot e^{-m(1-t)}] \quad dla \quad t \neq 1; \qquad M_Y(1) = m+1$$

(B)
$$M_Y(t) = \min \left\{ \frac{1}{1-t}, e^{mt} \right\} dla \quad t < 1; \qquad M_Y(t) = e^{mt} dla \quad t \ge 1$$

(C)
$$M_Y(t) = \frac{1}{1-t} \cdot e^{mt}$$

(D)
$$M_Y(t) = \frac{m}{m-t} \cdot e^{mt}$$
 dla $t < m$; $M_Y(t) = \infty$ dla $t \ge m$

(E)
$$M_Y(t) = \frac{1}{1-t} \cdot \left[1 - t \cdot e^{-m(1-t)}\right] \quad dla \quad t < 1; \qquad M_Y(t) = \infty \quad dla \quad t \ge 1$$

Egzamin dla Aktuariuszy z 5 kwietnia 1997 r.

Prawdopodobieństwo i statystyka

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	KLUCZ ODPOWIEDZI
Pesel	

Zadanie nr	Odpowiedź	Punktacja⁴
1	D	
2	В	
3	D	
4	A	
5	В	
6	В	
7	D	
8	С	
9	D	
10	A	

11

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.