group Theory

$$g, h \in G \Rightarrow g.h \in G$$
 (closure)

way to (2) Assosiatudy; $(g.h) \cdot w = g.(h.w)$ $\frac{1}{2} \cdot h.w$

when two elements

then two elements

3> 3 identity element = (1a)

$$g \cdot 1 = g + g$$
, $1 \cdot g = g + g$

4)] inverse ;

$$g - g^{-1} = g^{-1} g$$

· Dan z { Set of symmetries of a polygon }

g, h
ghzhg commtalinty Abelean group # Framples: a+0 2 a = 0+a identity = 0 imeuse: (a) mierse is (-a) a + (-a) = 0 = (-a) + a 2> (7/m7, +) [Verify that there are groups] 3> Malori groups; Gil (n, R) 2 & nxn inmentable materies with entries from IR binary operation: materia multi $(a b) = (a b) \cdot (a' b') = (aa' + be' ab' + bd')$ (aa' + be' ab' + bd') = (aa' + be' ab' + bd')identity: (10) AIZA=IA

Enounale 5: - \\ \(\) \

Pf: H is a subgroup. $G \in H = h^{-1} \in H$

 \Rightarrow $gh^{-1} \in H$

<u>Converse</u>; g,h∈H → gh⁻¹ ∈ H

geH >> gg-1€H ⇒ 1 € H

g < H , 1 < H => 1. g - | < H => g | < H -> elosed men

similar: hteH

H Everine = (9-1) = 9

 $g \in H, h^{-1} \in H \implies g(h^{-1})^{-1} \in H$ $\Rightarrow g h \in H \implies closed$ under bin

⇒ His a sulegeoup.

- o Oroder of greaves; |G| = no. of elements in G.
- or des of element = g ∈ G

· Isomorphinus and homomorphinus:

$$Z = \{ -1, -2, -1, 0, 1, 2, 3, -2 \}$$

$$5Z = \{ -1, -10, -5, 0, 5, 10, 15... \}$$

· Det": (homemoroplin) (G,)(H,*) are groups.

function f: G -> H is called a hanomomphism if -

$$\forall g_1, g_2 \in G$$
, $f(g_1 \cdot g_2) = f(g_1) * f(g_2)$

· Def : (Isomorphin) bijutue homomenplinis

$$\mathbb{Z} \cong 5\mathbb{Z}$$

$$\begin{array}{ccc} x, y & \phi(x+y) = & 5(x+y) = 5x + 5y \\ & = \phi(x) + \phi(y) \end{array}$$

Proolelem: Find all subgroups of 12.
Anney: Notice + Any n'Z is a sulgroup.
<u>Cleain</u> : Any sulegeoup is of this form nZ
Say H is a subgroup of Z.
let n be the smallest (ne) number in H.
Clain: H=nZ.
A
re +f: ne H
n+n ∈ H
n Z <u>C</u> H

remains to prove # H ⊆ n Z take h ∈ H

hznd+ro where ro< n

p = h-nd EH·EH

→ ro CH n<n -> controdulien to minimality ofn.

>> 7 = O

Coset = left coset

· Consets :

· Defn: Gis a group, His a sulgeoup. Take some geb.

Then $gH = \{g, h : h \in H\}$ is called a left conet

this is called coset representatives

in I ove sulegroups

5% is a sulgry of Z.

5Z+0° is another coset. 5Z+1 2 3, 4, 1, 6, 1, 1, 2.

Cerats have some candinality

Cosets are disjoint : Say not

Say not
$$x \in g_1H$$
, $x \in g_2H$

$$\Rightarrow x = g_1h_1, \quad x = g_2h_2$$

$$g_1h_1 = g_2h_2$$

$$\Rightarrow g_1 = g_2h_2h_1^{-1}$$

$$g_1H = g_2H$$

$$\Rightarrow g_1H = g_2H$$

U all thre coxels = G.

(Example)

Pf:

g H is a subset of G.

UgH is a subset
$$g \in G$$

$$g \in G$$

To show ? G C U gH

pf: g∈G If g∈I+ done

If not, close some h ∈ H

Then,
$$g = gh - h$$

EH

$$g \in (gh^{+}) \mid f \mid$$
 general

Define equivalence relation ~ this may: g ~ h if gh-1 E N

$$gh^{-1} \in N$$

$$f(gh^{-1}) = 1$$

$$f(g)f(h)^{-1} = 1$$

$$f(g)f(h)^{-1} = 1$$

$$f(g)f(h)^{-1} = 1$$

G/ = equi aleme clerrses under the equir relation

Cleanin: - G/N is a group with the binary aperation

$$(g_1 N) \cdot (g_2 N) = (g_1 g_2) N$$

Lefured:

 EG coref

▶ #: well defined:

$$g_1N = g_1^2N$$
, $g_2N = g_2^2N$

$$g_{1}^{-1}g_{1}^{\prime}\in N\Rightarrow \phi\left(g_{1}^{-1}g_{1}^{\prime}\right)=1$$

Now,
$$\phi(\theta_1, \theta_2)^2 \phi(g_1)\phi(g_2)$$

$$= \phi(g_1')\phi(g_2')$$

Enverie: this is a group.

9,42 82 H

39,A,2 9,h2

> h, = 9, 9, h2

⇒ g-19=h,h2-1 €H

> (g-1g_ € H)

	Closure; obv
	Associating: follan.
	Zoenlety: N is the identity
	Inverse ; $(gN)^{-1} = g^{-1}N$
	Eneuse: Check this is a gup. Eneuse: Jis also homomorphim
Also	Freusie: Check this is a gup. Figure: Fis also homomorphim Obrois
	G - f -> H Nz horf
	systime group homomorphins
	G f H Ovotrenting
	THE STATE OF THE S
	,
•	Defn: (Normal subgroups) Subgroups of Gr which are keauel of some homomorphisms.
•	If N is a romal subgroup of or, then G/N is a group
	If N is a normal subgroup of G, then G/N is a group alt bin op $(g,N) \cdot (g_2N)^2 (g_1 \cdot g_2)N$
	Gr(N'is called the quotient group.

Alleinale	Delo	÷	 	Is	Δ	Suleman	Un a	l	67
		•	, ,		-		7	١	

H is called a non-mal suleguoup if g Hg = H + y g ∈ G.

y hen ghgien

Equivalence: (her ϕ) \Leftrightarrow $\left(gNg^{-1}zN\right)$

Pf = (3) N is hernel of some homomorphing \$: 50 -> H

Take any $n \in \mathbb{N}$, $\varphi(n) = 1$

 $\phi(g n g') = \phi(g) \phi(n) \phi(g')$

 $= \phi(9) (\phi(8))^{-1}$

= 1

so gng-1 EN

N is a suleguoup and gNg-2N

We need to show N is bearel of some hemomorphim

Consider $\phi: G \longrightarrow G/N$ [prove G/N is a gyp] $\xrightarrow{\text{Exercise}}$ $g \longmapsto g N$

Then claim; N=kun \$

Pf: n=N, then \$(n) = N So, N \(\sherp \).

