# Handlers for Non-Monadic Computations

Ruben Pieters <sup>1</sup> Tom Schrijvers <sup>1</sup> Exequiel Rivas <sup>2</sup>





September 8, 2018

# Agenda

- Introduction to Effect Handlers
- Monadic Effect Handlers
- Motivation Non-Monadic Effect Handlers
- Wrap-up

Introduction

# What are (effect) handlers?

Represent occurrence of side-effects with calls to **operations**. The **meaning** of these operations are given by **handlers**.

Represent occurrence of side-effects with calls to **operations**. The **meaning** of these operations are given by **handlers**. Various implementations

- as language (Eff<sup>1</sup>, Frank, Koka, . . . )
- as library (e.g. in Haskell)

#### Throw

#### Operation

throw : String -> a

### Computation

```
let div x y =
  if y != 0
  then x / y
  else throw "division by zero!"
```

#### **Evaluation**

div 10 0

```
div 10 0
= if 0 != 0
    then 10 / 0
    else throw "division by zero!"
```

```
div 10 0
= if false
    then 10 / 0
    else throw "division by zero!"
```

```
div 10 0
= if false
    then 10 / 0
    else throw "division by zero!"
= throw "division by zero!"
```

```
div 10 0
= if false
   then 10 / 0
  else throw "division by zero!"
= throw "division by zero!"
> uncaught operation: throw
```

#### Handler

```
let h = handler
val x -> x
 throw s k \rightarrow 0
```

#### **Evaluation**

handle div 10 0 with h

#### Handler

let h = handler
val x -> x
throw s k -> 0

#### **Evaluation**

handle div 10 0 with h

#### Handler

```
let h = handler
 val x \rightarrow x
 throw s k -> 0
```

#### **Evaluation**

handle div 10 0 with h

#### Handler

```
let h = handler
val x -> x
throw s k -> 0
```

```
handle div 10 0 with h
= handle
  if 0 != 0
  then 10 / 0
  else throw "division by zero!"
  with h
```

#### Handler

```
let h = handler
 val x \rightarrow x
 throw s k \rightarrow 0
```

```
handle div 10 0 with h
= handle
   if false
  then 10 / 0
  else throw "division by zero!"
 with h
```

#### Handler

```
let h = handler
val x -> x
throw s k -> 0
```

```
handle div 10 0 with h
= handle
    throw "division by zero!"
    with h
```

#### Handler

```
let h = handler
 val x -> x
 throw s k \rightarrow 0
```

```
handle div 10 0 with h
= handle
   throw "division by zero!"
  with h
> 0 : int
```

#### Handler

```
let h = handler
val x -> x
throw s k -> 0
```

#### **Evaluation**

handle div 10 5 with h

#### Handler

```
let h = handler
val x -> x
throw s k -> 0
```

```
handle div 10 5 with h
= handle
   if 5 != 0
   then 10 / 5
   else throw "division by zero!"
   with h
```

#### Handler

```
let h = handler
val x -> x
throw s k -> 0
```

```
handle div 10 5 with h
= handle
   if true
   then 10 / 5
   else throw "division by zero!"
   with h
```

#### Handler

```
let h = handler
val x -> x
throw s k -> 0
```

```
handle div 10 5 with h
= handle
    10 / 5
    with h
```

#### Handler

```
let h = handler
 val x \rightarrow x
 throw s k \rightarrow 0
```

```
handle div 10 5 with h
= handle
  with h
```

#### Handler

```
let h = handler
val x -> x
throw s k -> 0
```

```
handle div 10 5 with h
= handle
    2
    with h
> 2 : int
```

#### Handler

```
let h = handler
val x     -> Some x
throw s k -> None
```

#### Handler

```
let h = handler
val x -> Some x
throw s k -> None
```

```
handle div 10 0 with h
> None : int option
```

#### Handler

```
let h = handler
val x -> Some x
throw s k -> None
```

```
handle div 10 0 with h
> None : int option
handle div 10 5 with h
> Some 2 : int option
```

# Special K

#### Handler

The k variable gives access to the continuation.

#### What is a Continuation?

#### Small Example

 $\diamond + 1$ 

#### What is a Continuation?

#### Small Example

 $\diamond + 1$ 

: int -> int

#### What is a Continuation?

#### Small Example

 $\diamond + 1$ 

int -> int

Operations introduce  $\diamond$  and we access the continuation with k

#### Without k

handle throw "" + 1 with throw s k -> 42

#### With k

handle throw "" + 1 with throw s k -> k 42

# Without k handle throw "" + 1 with throw s k → 42 = 42 where k ← ⋄ + 1 s ← ""

```
With k
handle throw "" + 1 with
throw s k -> k 42
```

# Without k handle throw "" + 1 with throw s k → 42 = 42 where k ← ⋄ + 1 s ← ""

```
With k
handle throw "" + 1 with
throw s k -> k 42
```

#### Without k

```
handle throw "" + 1 with
 throw s k \rightarrow 42
= 42 where
    k \leftarrow \diamond + 1
    s <- ""
```

#### With k

```
handle throw "" + 1 with
 throw s k \rightarrow k 42
= k 42 where
    k \leftarrow \diamond + 1
```

# Without k handle throw "" + 1 with

```
throw s k → 42

= 42 where

k ← ⋄ + 1

s ← ""
```

### With k

```
handle throw "" + 1 with
throw s k -> k 42

= k 42 where
k ← ⋄ + 1
s ← ""
```

# Handling Rules

#### Value Rule

```
handle v with val x \rightarrow c<sub>v</sub>
  = c_v where
      x \leftarrow v
```

# Handling Rules

#### Value Rule

```
handle v with val x -> c_v
= c_v where
x \leftarrow v
```

#### Operation Rule

```
handle K(op_i p') with op_i p k \rightarrow c_i
= c_i where
p \leftarrow p'
k \leftarrow n \rightarrow handle (K n)
```

### Operation

get : () -> s

put : s -> ()

### Computation

```
let comp =
  let s = get () in
  set s;
s
```

#### Different Interpretations

State Passing Functions (State Monad):

handle comp with h

Monadic Handlers 000000

#### Different Interpretations

State Passing Functions (State Monad):

handle comp with h

 $s \rightarrow (a, s)$ 

Connect to DB with IO:

handle comp with h

IO a

Monadic Handlers 000000

#### Different Interpretations

State Passing Functions (State Monad):

handle comp with h

 $s \rightarrow (a, s)$ 

Connect to DB with IO:

handle comp with h

IO a

. . .

```
Computation

let comp =
  let s = get () in
  set s;
  s
```

Monadic Handlers ○○○○●○

### Handler

let h = handler

```
let h = handler
val x
        -> 0
```

```
let h = handler
val x -> 0
put p k -> (k ()) + 1
```

```
let h = handler
val x -> 0
put p k -> (k ()) + 1
get p k -> (k ?) + 1
```

```
let h = handler
val x -> 0
put p k -> (k ()) + 1
get p k -> (k X) + 1
```

### Monadic Handlers

### Computation

```
let comp' =
 let s = get () in
 for i in s: set i ;
 S
```

#### Monadic Handlers

#### Computation

```
let comp' =
  let s = get () in
  for i in s: set i;
s
```

**Monadic** handlers must be able to handle **all** monadic computations.

This condition **restricts** the possibilities of these handlers.

# Inspiration

#### Algebraic Effects and Effect Handlers for Idioms and Arrows

Sam Lindley

Introduces calculus  $\lambda_{flow}$  which defines handler constructs for applicative, arrow and monad effects

By restricting the computations, we increase the possibilities for the corresponding handlers.

# Category Theoretical Approach

#### Based on:

#### Notions of Computations as Monoids

Exequiel Rivas and Mauro Jaskelliof Monads, Applicatives and Arrows are monoids in monoidal categories

### Category Theoretical Approach

#### Based on:

#### Notions of Computations as Monoids

Exequiel Rivas and Mauro Jaskelliof Monads, Applicatives and Arrows are monoids in monoidal categories

All these notions are **monoids** in a monoidal category, can we derive a notion of handler from this?

Free Algebra  $f:A\to B$ 

Free Monoid

Free Monoid (-)

Handler

Handling Handling Rules

 $val x \rightarrow c_v$ 

Free Algebra

Free Monoid

Free Monoid (-)

Handler

 $f:A\to B$  $b: \Sigma B \to B$ 

Handling Handling Rules

 $op_i p k \rightarrow c_i^2$ 

Free Algebra

Free Monoid

Free Monoid (|-|)

Handler

 $f:A\to B$ 

 $b: \Sigma B \to B$ 

Handling

 $h: \Sigma^* A \to B$ 

Handling Rules

handle comp with handler

Free Algebra

Free Monoid

Free Monoid (-)

Handler

 $\overline{f:A \to B}$ 

 $b: \Sigma B \to B$ 

Handling

 $h: \Sigma^* A \to B$ 

Handling Rules  $h \circ v = f$ 

handle v with (val x  $\rightarrow$  c<sub>v</sub>) = c<sub>v</sub> where

 $x \leftarrow v$ 

handle  $K(op_i p')$  with  $(op_i p k \rightarrow c_i) = c_i$  where

$$p \leftarrow p'$$
 $k \leftarrow n \rightarrow \text{handle (K n)}$ 

Free Algebra Free Monoid Free Monoid (-) Handler  $f:A\to B$ 

 $b: \Sigma B \to B$ 

 $h: \Sigma^* A \to B$ 

Handling Handling Rules  $h \circ v = f$ 

 $h \circ op = b \circ \Sigma h$ 

Free Monoid (-)

### The Table

Free Monoid Free Algebra  $f:A\to B$ Handler  $f: \Sigma \to M$  $b: \Sigma B \to B$  $(M, e_M, m_M)$ Handling  $h: \Sigma^* A \to B$ Handling Rules  $h \circ v = f$  $h \circ op = b \circ \Sigma h$ 

Free Monoid (-)

### The Table

Free Monoid Free Algebra  $f:A\to B$ Handler  $f: \Sigma \to M$  $b: \Sigma B \to B$  $(M, e_M, m_M)$  $h: \Sigma^* \to M$ Handling  $h: \Sigma^*A \to B$ Handling Rules  $h \circ v = f$  $h \circ op = b \circ \Sigma h$ 

|                | Free Algebra                    | Free Monoid       | Free Monoid $(-)$ |
|----------------|---------------------------------|-------------------|-------------------|
| Handler        | $f:A\to B$                      | $f:\Sigma \to M$  |                   |
|                | $b:\Sigma B	o B$                | $(M, e_M, m_M)$   |                   |
| Handling       | $h: \Sigma^* A 	o B$            | $h:\Sigma^*	o M$  |                   |
| Handling Rules | $h \circ v = f$                 | $h \circ ins = f$ |                   |
|                | $h \circ op = b \circ \Sigma h$ |                   |                   |
|                |                                 |                   |                   |

|                | Fran Almahua                    | Eraa Manaid               | Fran Manaid (  |
|----------------|---------------------------------|---------------------------|----------------|
|                | Free Algebra                    | Free Monoid               | Free Monoid (- |
| Handler        | f:A	o B                         | $f:\Sigma 	o M$           |                |
|                | $b:\Sigma B	o B$                | $(M, e_M, m_M)$           |                |
| Handling       | $h: \Sigma^*A \to B$            | $h:\Sigma^*	o M$          |                |
| Handling Rules | $h \circ v = f$                 | $h \circ ins = f$         |                |
|                | $h \circ op = b \circ \Sigma h$ | $h\circ e_{\Sigma^*}=e_M$ |                |
|                |                                 | $h \circ m_{\Sigma^*} =$  |                |
|                |                                 | $m_{M}\circ (h\otimes h)$ |                |

|                | Free Algebra                    | Free Monoid               | Free Monoid ( -               |
|----------------|---------------------------------|---------------------------|-------------------------------|
| Handler        | $f:A\to B$                      | $f:\Sigma\to M$           | $\phi_1:I\to F$               |
|                | $b:\Sigma B	o B$                | $(M, e_M, m_M)$           | $\phi_2:\Sigma\otimes F\to F$ |
| Handling       | $h: \Sigma^* A \to B$           | $h:\Sigma^*	o M$          |                               |
| Handling Rules | $h \circ v = f$                 | $h \circ ins = f$         |                               |
|                | $h \circ op = b \circ \Sigma h$ | $h\circ e_{\Sigma^*}=e_M$ |                               |
|                |                                 | $h \circ m_{\Sigma^*} =$  |                               |
|                |                                 | $m_{M}\circ (h\otimes h)$ |                               |

|                | Free Algebra                    | Free Monoid               | Free Monoid ( -)              |
|----------------|---------------------------------|---------------------------|-------------------------------|
| Handler        | $f: A \to B$                    | $f:\Sigma 	o M$           | $\overline{\phi_1:I\to F}$    |
|                | $b:\Sigma B	o B$                | $(M, e_M, m_M)$           | $\phi_2:\Sigma\otimes F\to F$ |
| Handling       | $h: \Sigma^* A \to B$           | $h:\Sigma^*	o M$          | $h:\Sigma^*	o F$              |
| Handling Rules | $h \circ v = f$                 | $h \circ ins = f$         |                               |
|                | $h \circ op = b \circ \Sigma h$ | $h\circ e_{\Sigma^*}=e_M$ |                               |
|                |                                 | $h \circ m_{\Sigma^*} =$  |                               |
|                |                                 | $m_M \circ (h \otimes h)$ |                               |

| Handler        | $\frac{Free\ Algebra}{f: A \to B}$ | Free Monoid $f: \Sigma \to M$         | Free Monoid $(-)$ $\phi_1: I \to F$                             |
|----------------|------------------------------------|---------------------------------------|-----------------------------------------------------------------|
| Tranulei       | $b: \Sigma B \to B$                | $(M, e_M, m_M)$                       | $\phi_1: \Gamma \to \Gamma$<br>$\phi_2: \Sigma \otimes F \to F$ |
| Handling       | $h: \Sigma^* A \to B$              | $h: \Sigma^* \to M$                   | $h: \Sigma^* \to F$                                             |
| Handling Rules | $h \circ v = f$                    | $h \circ \mathit{ins} = f$            | $h \circ \mathit{in}_1 = \phi_1$                                |
|                | $h \circ op = b \circ \Sigma h$    | $h\circ e_{\Sigma^*}=e_M$             | $h \circ in_2 =$                                                |
|                |                                    | $h \circ m_{\Sigma^*} =$              | $\phi_2\circ (\Sigma\otimes h)$                                 |
|                |                                    | $m_{\mathcal{M}} \circ (h \otimes h)$ |                                                                 |

|                | г AI I                          | - M                          |                                              |
|----------------|---------------------------------|------------------------------|----------------------------------------------|
|                | Free Algebra                    | <u>Free Monoid</u>           | Free Monad $(-)$                             |
| Handler        | f:A	o B                         | $f:\Sigma \to M$             | $\phi_1: A 	o FA$                            |
|                | $b:\Sigma B	o B$                | $(M, e_M, m_M)$              | $\phi_2: \Sigma(\mathit{FA}) 	o \mathit{FA}$ |
| Handling       | $h: \Sigma^* A \to B$           | $h:\Sigma^*\to M$            | $h: \Sigma^* A 	o FA$                        |
| Handling Rules | $h \circ v = f$                 | $h \circ ins = f$            | $	extit{h} \circ 	extit{in}_1 = \phi_1$      |
|                | $h \circ op = b \circ \Sigma h$ | $h \circ e_{\Sigma^*} = e_M$ | $h \circ in_2 =$                             |
|                |                                 | $h \circ m_{\Sigma^*} =$     | $\phi_2\circ \Sigma h$                       |
|                |                                 | $m_M \circ (h \otimes h)$    |                                              |

```
let h = handler val x -> \Delta_N 0 put p y k f -> k + 1 get p y k f -> k + 1
```

$$I \to F$$
  $(\phi_1)$ 

```
let h = handler val x -> \Delta_N 0 put p y k f -> k + 1 get p y k f -> k + 1
```

$$Id(A) \rightarrow FA$$

#### Handler

```
let h = handler
 val x -> \Delta_{\mathbb{N}} 0
put p y k f -> k + 1
 get p y k f -> k + 1
```

 $A \rightarrow FA$ 

```
let h = handler
 val x -> \Delta_{\mathbb{N}} 0
 put p y k f -> k + 1
 get p y k f -> k + 1
```

$$\Sigma \otimes F \to F$$
  $(\phi_2)$ 

```
let h = handler
 val x -> \Delta_{\mathbb{N}} 0
 put p y k f -> k + 1
 get p y k f -> k + 1
```

$$\Sigma \star F \rightarrow F$$

```
let h = handler val x -> \Delta_{\mathbb{N}} 0 put p y k f -> k + 1 get p y k f -> k + 1
```

$$(P_i \times -^{N_i}) \star F \rightarrow FA$$

```
let h = handler val x -> \Delta_{\mathbb{N}} 0 put p y k f -> k + 1 get p y k f -> k + 1
```

$$\int_{-\infty}^{Y,Z} (P_i \times Y^{N_i} \times FZ \times (Y \times Z \rightarrow -)) \rightarrow F$$

```
let h = handler
 val x -> \Delta_{\mathbb{N}} 0
 put p y k f -> k + 1
 get p y k f -> k + 1
```

$$\int_{0}^{Y,Z} (P_i \times Y^{N_i} \times FZ \times (Y \times Z \to A)) \to FA$$

# Key Point

The standard handlers can be derived from Free Algebras, while our non-monadic handlers are derived from Free Monoids.

### **Paper**

- Much more in-depth theory
- Using less expressive handlers on more expressive computations (e.g. monadic handler on applicative computation, by utilizing lax monoidal functors)

# **Ongoing Work**

- Simplify signatures
- Investigate use of Continuation Monad to obtain interface in the base category  $\mathscr C$

Thanks for your attention! ruben.pieters@cs.kuleuven.be