Chapter 1: The Basics

Definition (1.1 Divisibility). If $a, b \in \mathbb{Z}$ with $a \neq 0$ and there exists a $c \in \mathbb{Z}$ such that b = ac, then **a divides b** and we write $\mathbf{a}|\mathbf{b}$.

Definition (1.2 Prime/Composite). Let $p \in \mathbb{Z}$. If $p \ge 2$ whose only positive divisors are 1 and itself, then p is a **prime**. If p > 1 and p is not prime, then p is **composite**.

Definition (1.10 Positional Notation). For any $a \in \mathbb{N}$ and any integer b > 1, we can write a as $\mathbf{a} = \mathbf{c_n} \mathbf{b^n} + \mathbf{c_{n-1}} \mathbf{b^{n-1}} + \cdots + \mathbf{c_1} \mathbf{b} + \mathbf{c_0}$, where $n \ge 0$ and $0 \le c_i < b$ for all $0 \le i \le n$. This is denoted $\mathbf{a_{10}} = (\mathbf{c_n} \mathbf{c_{n-1}} \cdots \mathbf{c_1} \mathbf{c_0})_{\mathbf{b}}$ and is the **positional notation** of \mathbf{a} in base \mathbf{b} .

Theorem (1.9 Division Algorithm). For any $b \in \mathbb{N}$ and any $a \in \mathbb{Z}$, $\exists !q,r \in \mathbb{Z}$ such that $\mathbf{a} = \mathbf{bq} + \mathbf{r}$, where $0 \le r < b$. (e.g. $2021 = 21 \cdot 96 + 5$)

Chapter 2: Divisibility

Definition (2.1 GCD). If d is the largest common divisor of a and b, where a, b are not both equal to 0, then d is the **greatest common divisor** of a and b, denoted $\mathbf{d} = (\mathbf{a}, \mathbf{b})$.

Definition (2.1 LCM). If m is the smallest common multiple of a and b, where a, b are not equal to 0, then m is the **least common multiple** of a and b, denoted $\mathbf{m} = [\mathbf{a}, \mathbf{b}]$.

Definition (Pythagorean Triples). If the lengths of a Pythagorean triangle are all integers, we say (a, b, c) is a **Pythagorean Triple**. If gcd(a, b, c) = 1, then (a, b, c) is a **Primitive Pythagorean Triple**.

Definition (Greatest Integer Function). If $\alpha \in \mathbb{R}$, then $[\alpha]$ (or $|\alpha|$) is the **greatest integer** that is $\leq \alpha$.

Definition (2.5 Exact Order of Division). Let $m, n \in \mathbb{N}$ where $m \ge 2$ and $n \ge 1$. $\mathbf{m^f}$ exactly divides \mathbf{n} if $m^f | n$ and $m^{f+1} \nmid n$. f is the exact order of division of n by m, denoted $\mathbf{m^f} | \mathbf{n}$.

Theorem (2.1). If $a \ne 0$, then a|0 and a|a.

 $1|b \forall b$.

If a|b, then a|bc.

If a|b and b|c, then a|c.

Theorem (2.2). If a|b and $b \neq 0$, then $|a| \leq |b|$.

Corollary (2.3). If a|b and $b|a \forall a, b \in \mathbb{Z}$, then a = b.

Theorem (2.4). If $a, b \ne 0$ and d = (a, b), then d is the least element in the set of all positive integers of the form ax + by.

Theorem (2.5). d = (a, b) if and only if d > 0, d|a, d|b, and for any f such that f|a and f|b, we have f|d.

Theorem (2.8). If a|bc and (a,b) = 1, then a|c.

Theorem (2.9). If p is prime and p|bc, then p|b or p|c.

Theorem (2.12). If $(a, b_i) = 1$ for $1 \le i \le n$, then $(a, b_1 b_2 \cdots b_n) = 1$.

Theorem (2.13). If a|c, b|c and (a,b) = 1, then ab|c.

Theorem (2.18). For $a, b \in \mathbb{N}$, [a, b] = m if and only if m > 0, a|m, b|m, and m|n for any n such that a|n and b|n.

Theorem (2.19). For $a, b \in \mathbb{N}$, (a, b)[a, b] = ab.

Theorem (2.22 FTA). Every integer $a \ge 2$ is either prime or a product of primes, and the product is unique up to different orders of prime divisors of a. $\mathbf{a} = \mathbf{p_1^{e_1} p_2^{e_2} \cdots p_n^{e_n}}$, where $p_1 < p_2 < \cdots < p_n$ are prime divisors of n and $e_1 \ge 1, e_2 \ge 1, \cdots, e_n \ge 1$ is the **canonical representation of a**

Theorem (2.24). If $a = p_1^{e_1} p_2^{e_2} \cdots p_n^{e_n}$ is the canonical representation of a, then $\tau(\mathbf{a}) = (\mathbf{e_1} + \mathbf{1})(\mathbf{e_2} + \mathbf{1}) \cdots (\mathbf{e_n} + \mathbf{1})$ and $\sigma(\mathbf{a}) = \frac{\mathbf{p_1^{e_1+1}} - \mathbf{1}}{\mathbf{p_1} - \mathbf{1}} \frac{\mathbf{p_2^{e_2+1}} - \mathbf{1}}{\mathbf{p_2} - \mathbf{1}} \cdots \frac{\mathbf{p_n^{e_n+1}} - \mathbf{1}}{\mathbf{p_n} - \mathbf{1}}$.

Theorem (2.26). $x, y, z \in \mathbb{N}$ where x is even form a primitive Pythagorean triple if and only if $\exists s, t$ such that s < t, (s, t) = 1, one of s and t is odd and the other is even, x = 2st, $y = t^2 - s^2$, $z = t^2 + s^2$.

Theorem (2.29). If a > 0 and p is prime, then $p^e || a!$, where $e = \lfloor \frac{a}{p} \rfloor + \lfloor \frac{a}{p^2} \rfloor + \dots + \lfloor \frac{a}{p^r} \rfloor$, and r satisfies $p^r \le a < p^{r+1}$

Chapter 3: Primes

Definition (Mersenne). Primes of the form $2^n - 1$ are called **Mersenne primes**.

Definition (Fermat). Primes of the form $2^{2^n} + 1$ are called **Fermat primes** $\mathcal{F}(n)$

Definition (3.1 Perfect). If $\sigma(\mathbf{a}) = 2\mathbf{a}$, then a is a perfect number.

Theorem (3.2). If (a, d) = 1 where a > 0, d > 0, then there are infinitely many primes of the form ax + d.

Theorem (3.8). Let $\pi(x)$ be the number of primes $\leq x$. Then $\pi(x) \approx \frac{x}{\ln(x)}$.

Theorem (3.11). If $2^n - 1$ is a Mersenne prime, then $a = 2^{n-1}(2^n - 1)$ is perfect. Also, every even perfect number is of the form $2^{n-1}(2^n - 1)$, where $2^n - 1$ is a Mersenne prime.

Chapter 4: Congruence

Definition (4.1 Congruence). If m > 0 and m | (a - b), then **a** is **congruent to b**(mod**m**) and $\mathbf{a} \equiv \mathbf{b} \pmod{\mathbf{m}}$.

Definition (4.2 Least Residue). If a = mq + r, where $0 \le r \le m - 1$, then $a \equiv r \pmod{m}$ and r is the **least residue of** $a \pmod{m}$.

Definition (4.4 LR Systems). The set of integers $\{0,1,\ldots,m-1\}$ is a **least residue system** (modm). Any set of m integers, no two of which are congruent mod m, is called a **complete modulo system modulo m**

Definition (Pseudoprime). If a composite number passes Fermat's test to base 2, then it's a **pseudoprime** to base 2.

Definition (Strong Pseudoprime). If n passes the base a Miller's test and n is composite, then n is a **strong pseudoprime** to base a.

Theorem (4.3). If $a_i \equiv b_i \pmod{m}$, where i = 1, 2, ..., n, then $\sum_{i=1}^n a_i \equiv \sum_{i=1}^n b_i \pmod{m}$ and $\prod_{i=1}^n a_i \equiv \prod_{i=1}^n b_i \pmod{m}$

Theorem (4.6). If $ac \equiv bc \pmod{m}$, then $a \equiv b \pmod{\frac{m}{d}}$, where d = (c, m).

Corollary (4.7). If (c, m) = 1 and $ac \equiv bc \pmod{m}$, then $a \equiv b \pmod{m}$.

Theorem (4.8). If $c \neq 0$ and $ac \equiv bc \pmod{mc}$, then $a \equiv b \pmod{m}$.

Theorem (4.9). If $a \equiv b \pmod{m}$, $a \equiv b \pmod{m}$, and (m, n) = 1, then $a \equiv b \pmod{mn}$.

Corollary (4.10). If $a \equiv b \pmod{m_i}$, $1 \le i \le n$, and m_1, m_2, \cdots, m_n are pairwise relatively prime, then $a \equiv b \pmod{m_1 m_2 \cdots m_n}$.

Theorem (4.14). If $n \in \mathbb{Z}_+$, then $\phi(1) = 1$, and for $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r} \ge 2$ the canonical representation of n, we have $\phi(n) = n \prod_{i=1}^r (1 - \frac{1}{p_i})$.

Theorem (Fermat's Lil Thm). If p is prime and (a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$. This implies that if p is prime, then $a^p \equiv a \pmod{p}$.

Theorem (4.17 Euler-Fermat). If (a, m) = 1, then $a^{\phi(m)} \equiv 1 \pmod{m}$, where $\phi(m)$ is the number of integers from 0 to m-1 that are relatively prime to m.

Chapter 5: Congruence Equations

Definition (5.1). For an odd prime p and $c \in \mathbb{Z}$ such that (c, p) = 1, if $\mathbf{x}^2 \equiv \mathbf{c} \pmod{\mathbf{p}}$ is solvable, then c is a **quadratic residue modp**.

Definition (5.2). The **Legendre symbol** is defined as $(\frac{a}{p})$. Its value is 1 if a is a quadratic residue mod p, 0 if p|a, or -1 if a is a quadratic non-residue mod p, where p is an odd prime.

Theorem (5.1). $ax \equiv b \pmod{m}$ is solvable if and only if d|b, where d = (a, m). In the case that d|b, the congruence equation has precisely d incongruent solutions mod m (e.g. $x_0, x_0 + \frac{m}{d}, x_0 + \frac{2m}{d}, \cdots, x_0 + (d-1)\frac{m}{d}$), where x_0 can be found via Euclid's algorithm.

Theorem (5.5 Chinese Remainder Theorem). Suppose m_1, m_2, m_s are pairwise relatively prime and $(a_i, m_i) = 1$ for $1 \le i \le s$. Then the system $a_1x \equiv b_1 \pmod{m_1}$, $a_2x \equiv b_2 \pmod{m_2}$, \cdots , $a_sx \equiv b_s \pmod{m_s}$ has a unique solution mod M, where $M = \prod_{i=1}^s m_i$.

Theorem (5.15 Gauss Quadratic Reciprocity). If p and q are distinct odd primes, then $(\frac{p}{q}) = (\frac{q}{p})$ if $p \equiv 1 \pmod{4}$ or $q \equiv 1 \pmod{4}$, or $-(\frac{q}{p})$ if $p \equiv q \equiv 3 \pmod{4}$.

Theorem (5.16). For an odd prime p, we have $(\frac{2}{p}) = 1$ if $p \equiv 1$ or $7 \pmod{8}$, and -1 if $p \equiv 3$ or $5 \pmod{8}$.

Chapter 6: Cryptography

Definition (Caesar Cipher). Take m = 26 and let A, B, C, ..., Z be represented by the 26 least residues.

Key: (r,s) where r is a multiplier and s is a shift such that $1 \le r \le 25$ and (r,26) = 1, $0 \le s \le 25$, and $(r,s) \ne (1,0)$.

Encryption: $C \equiv rP + s \pmod{26}$, where $0 \le C \le 25$.

Decryption: First find r^{-1} such that $rr^{-1} \equiv (\text{mod } 26)$ via Euclid. Then $P \equiv r^{-1}(C - s)(\text{mod } 26)$.

Definition (Exponentiation Cipher). First change the plaintext to groups of letters and use numbers to represent them (e.g. A = 00, B = 01,...,Z = 25). Choose p such that each group of numbers with 2m digits.

Key: (k, p - 1) = 1.

Encryption: Compute the least residue of $T^k(\text{mod}p)$, which is the ciphertext C.

Decryption: Compute deciphering key q which satisfies $kq \equiv 1 \pmod{p-1}$ via Euclid. Then compute the least residue of $C^q \pmod{p}$, which is the plaintext T.

Definition (Diffie-Hellman Key Exchange). A method which makes it possible to share a common secret without meeting in person.

First Alice and Bob pick a prime p and $r \in \mathbb{Z}$ such that (r, p) = 1 and (r, p - 1) = 1.

Then Alice picks a k_1 , computes $x_1 \equiv r^{k-1} \pmod{p}$, and send it to Bob. Bob also picks a k_2 and computes $x - 2 \equiv r^{k_2} \pmod{p}$ and sends it to Alice.

Now Alice computes $k \equiv x_2^{k_1} \pmod{p}$ and Bob computes $k \equiv x_1^{k-2} \pmod{p}$.

Definition (RSA Cryptosystem). An asymmetric cryptosystem where Alice and Bob have different keys.

Key: Pick 2 large primes p and q, compute n = pq and $\alpha(n) = pq(1 - \frac{1}{p})(1 - \frac{1}{q})$. Pick a number e that is relatively prime to n and $\alpha(n)$. Publish (\mathbf{n}, \mathbf{e}) , keep $\alpha(n)$ secret.

Encryption: Compute $C \equiv m^e \pmod{n}$. Send C.

Decryption: Compute d such that $ed \equiv 1 \pmod{(p-1)(q-1)}$. The pair (n,d) is the private key. Compute $m \equiv C^d \pmod{n}$.