Lógica Fuzzy

Profa. Leticia T. M. Zoby leticia.zoby@iesb.edu.br

Lógica Fuzzy

Revisão: Conceitos Básicos

Um conjunto fuzzy é totalmente caracterizado por sua função de pertinência (MF)

• A Fuzzificação, Inferência e Defuzzificação são etapas do raciocínio *Fuzzy*

Módulos de um Sistema Fuzzy

 A Fuzzificação, Inferência e Defuzzificação são etapas do raciocínio Fuzzy

Módulos de um Sistema Fuzzy.

- Fuzzificação transformar variáveis qualitativas, com base nas funções de pertinência, em alguns significado para o computador.
 - · Incluiu:
 - · análise do Problema
 - Definições de variáveis
 - Definições das Funções de pertinência
- Ex: Temperatura

 Inferência - nesse estágio são definidas as regras e depois analisadas. A etapa abrange definição das proposições, análise das regras e criação de uma ou mais regiões.

20ºC pode ser considerada "fria" ou "quente"

- 70% fria e 30% quente

Inferência

- · Aspecto importante: mapeamento entrada/saída
- Regras

• A inferência Fuzzy interpret os valores do vetor de entrada, em base a um conjunto de regras, assinando um valor ao vetor de saída.

Regras estabelecidas por especialistas ou base de dados numéricas

- Defuzzificação etapa nas quais as regiões resultantes são convertidas em valores para a variável de saída do sistema.
 Corresponde à ligação funcional entre as regiões fuzzy e o valor esperado.
 - Há várias técnicas de defuzzificação. Ex: centróide, first-of-maxima, middle-of-maxima, critério máximo.

- É utilizada para fornecer um valor numérico de saída dos sistemas fuzzy, obtido a partir dos valores de pertinência ao conjunto *fuzzy* de saída.
- Para aplicar um método de *desfuzzificação* é necessário que a função de pertinência do conjunto de saída esteja matematicamente definida.
- Existem vários métodos de *desfuzzificação* e a seleção de um deles é dependente do domínio da aplicação em desenvolvimento. Mais comuns:
 - · centróide,
 - método da média dos máximos
 - método da média ponderada dos máximos
 - critério máximo.

Centróide

- · Também chamado de Método do Centro de Massa
- o valor numérico obtido representa o centro de gravidade da distribuição de possibilidade de saída do sistema *fuzzy*:
 - a) determinar a abscissa do ponto centróide para cada saída ativada na inferência.
 - b) calcular a área entre o grau de pertinência e o eixo x para cada saída ativada.
 - c) calcular a média ponderada dos pontos centróides pelas respectivas áreas.
 - Exemplo:

- Método da Média dos Máximos
 - produz um valor numérico que representa o valor médio de todos os valores centrais ativados.

- Método da Média ponderada dos Máximos
 - produz um valor numérico considerando a média ponderada dos valores centrais ativados, sendo os pesos os graus de pertinência.

- Critério Máximo.
 - produz um valor numérico igual ao máximo (mínimo) valor ativado (adequado quando a forma da distribuição de possibilidade tem um pico).
 - · este método não seria aplicável no exemplo estudado.

Etapas de Projeto de um Sistema Nebuloso

- Principais pontos na construção de projeto e de implementação para um Sistema Nebuloso
 - a) Seleção das variáveis de entrada e saída.
 - b) Quantização do universo de discurso das variáveis de entrada e saída.
 - c) Composição das regras de inferência.
 - d) Definição das funções de pertinência.
 - e) Discretização do universo de entrada e saída.
 - f) Seleção do tipo de implicação (A->B)
 - g) Implementação do motor de inferência nebulosa

Exemplo de Sistema Fuzzy Baseado em Regras

Sistema que avalia consumo de carros em função dos atributos:

Exemplo de Sistema Fuzzy Baseado em Regras

Base de Regras - Conhecimento do domínio

- R1: SE Potência é potente E peso é pesado E aceleração é lento, ENTÃO consumo é não econômico.
- R2: SE Potência é pouco potente E peso é leve E aceleração é rapido, ENTÃO consumo é econômico.
- R3: SE Potência é pouco potente E peso é pesado E aceleração é medio, ENTÃO consumo é médio.
- R4: SE Potência é potente E peso é medio E aceleração é lento, ENTÃO consumo é médio.
- R5: SE Potência é potente E peso é medio E aceleração é médio, ENTÃO consumo é médio.

Exemplo de Sistema Fuzzy Baseado em Regras

Conjunto de Exemplos

Exemplo	Potência	Peso	Aceleração	Consumo	Classe
1	180	3852	13,5	33	Não econômico
2	175	3010	14,4	32	Médio
3	82	2720	19,4	31	Médio

Saída desejada Classe não-econômico

```
E1 = (180; 3852; 13,5; 33)
potência = 180 e peso = 3852 e aceleração = 13,5
```

- Cálculo do grau de compatibilidade:
- R1: SE Potência é potente E peso é pesado E aceleração é lento, ENTÃO consumo é não econômico.
 - $R_1(E) = min [potente(180), pesado(3852), lento(13,5)] = min [1; 0,7; 0,5] = 0,5$
- R4: SE Potência é potente E peso é medio E aceleração é lento, ENTÃO consumo é médio.
 - Arr R4(E) = min [potente(180), medio(3852), lento(13,5)] = min [1; 0,3; 0,5] = 0,3
- Regra com maior grau de associação: R₁
 - ▶ Saída de R₁ = não-econômico
 - Sáida obtida = não-econômico

Saída obtida = saída desejada Classificação correta

Saída desejada Classe médio

Cálculo do grau de compatibilidade:

```
R_4(E) = min [potente(175), medio(3010), lento(14,4)]
= min [0,75; 1; 0,2] = 0,2
R_5(E) = min [potente(175), pesado(3010), medio(14,4)]
= min [0,75; 1; 0,8] = 0,75
```

- Regra com maior grau de associação: R₅
- Saída de R₅ = médio
- Sáida obtida = médio

Saída obtida = saída desejada Classificação correta

Saída desejada Classe médio

- Cálculo do grau de compatibilidade:
- R2: SE Potência é pouco potente E peso é leve E aceleração é rapido, ENTÃO consumo é econômico.
 - R2(E) = min [pouco_potente(46), leve(1835), rapido(20,5)] = min [1; 1; 0,5] = 0,5
- Regra com maior grau de associação: R₂
- ► Saída de R₂ = econômico
- Saída obtida = econômico

Saída obtida ≠ saída desejada Classificação incorreta

Implementação - Exemplo

- Aplicação de Lógica *Fuzzy* a um sistema de simulação de elevadores
- Definição das regras e utilização do motor de inferência

• Simulador - Funções de Pertinência: (a) número de passageiros; (b) tempo de viagem; (c) distância da viagem; e

Implementação

- Python:
 - Control skfuzzy
 - scikit-fuzzy
 - · Problema da Gorjeta
 - https://scikitfuzzy.readthedocs.io/en/latest/auto_examples/plot_tipping_problem_new api.html

Referências

- LUGER, George F. Inteligência Artificial. Pearson (Edição Digital). 2015.
- PIMENTEL, Carlos. Lógica Nebulosa: Uma Introdução. 3 ed. Fortaleza: UFCE: 2014.
- RUSSEL, Stuart.; NORVIG, Peter. Inteligência Artificial. 3a. ed. Rio de Janeiro: Elsevier Editora, 2013.

