UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA LINEAL 520131 Listado 7 (Transformaciones lineales.)

- 1. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$, la transformación lineal tal que T(x,y,z) = (-x+4y-2z,3y-2z,4y-3z).
 - a) Encuentre, si es posible, una base B de \mathbb{R}^3 tal que $[T]_B$ sea diagonal. (En Práctica 1.)
 - b) Si T es diagonalizable, escriba la matriz diagonal.
- 2. Sea $A = \begin{pmatrix} -2 & 1 & 1 \\ 2 & 0 & 0 \\ 4 & -1 & -1 \end{pmatrix}$ la matriz asociada a la transformación lineal $T : \mathbb{R}^3 \to \mathbb{R}^3$ respecto de la

base canónica. Encuentre si existe, una base B de \mathbb{R}^3 tal que $[T]_B$ sea diagonal.

- 3. ¿Es la matriz $A = \begin{pmatrix} 1 & 1 \\ -4 & 1 \end{pmatrix}$ diagonalizable?.
- 4. Considere la transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x,y,z) = (x-3y+3z,3x-5y+3z,6x-6y+4z).
 - a) Decida si T es o no diagonalizable.

(En Práctica 4.)

- b) Si lo es, escriba la base B' respecto de la cual la matriz asociada a T es diagonal y escriba $[T]_{B'}$,
- c) Construya la matriz de paso de la base canónica B a la base B' y encuentre $[(1,1,1)]_{B'}$.
- 5. Sean $\lambda_1=-1,\ \lambda_2=-1,\ \lambda_3=-2$ los valores propios de una transformación lineal T y $v_1=(1,0,1),\ v_2=(0,0,1),\ v_3=(-1,1,0),$ vectores propios asociados a $\lambda_1,\lambda_2,\lambda_3,$ respectivamente.
 - a) Encuentre la transformación lineal T.
 - b) Resuelva la ecuación T(x, y, z) = (5x, 5y, 5z).
 - c) Resuelva la ecuación T(x, y, z) = (x, y, z).
- 6. Sea $T:\mathbb{R}^3\to\mathbb{R}^3$ una transformación lineal cuya matriz asociada respecto de la base canónica es

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -4 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
 (En Práctica 6.)

- a) Determine los valores propios de T.
- b) Determine los espacios propios asociados.
- c) Encontrar, si es posible, una base para \mathbb{R}^3 tal que la matriz asociada a T respecto de ella sea diagonal.
- d) Resolver en \mathbb{R}^3 la ecuación T(u) = 2u.
- 7. Dada la matriz A, determine valores y vectores propios, espacios propios asociados y decida si A es diagonalizable. En caso afirmativo, escriba la matriz P que diagonaliza a A.

a)
$$A = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$$

b) $A = \begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix}$
c) $A = \begin{pmatrix} -5 & -5 & -9 \\ 8 & 9 & 18 \\ -2 & -3 & -7 \end{pmatrix}$
d) $A = \begin{pmatrix} -1 & -3 & -9 \\ 0 & 5 & 18 \\ 0 & -2 & -7 \end{pmatrix}$ (En Práctica 7d.)

8. Si $T: \mathbb{R}^3 \to \mathbb{R}^3$ es una T.L. definida por T(x,y,z) = (3x+2y+4z,2x+2z,4x-2y+3z)

1

a) Determine los valores propios de T.

- b) Encuentre una base y la dimensión de los espacios propios asociados.
- c) Decida si T es diagonalizable. En caso afirmativo, escriba la base B' de \mathbb{R}^3 , formada por los vectores propios y encuentre la matriz asociada a T respecto de B'.
- d) Halle una base de \mathbb{R}^3 de modo que la matriz asociada a la aplicación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$, definida en la base canónica por T(1,0,0) = (-3,-6,2/3), T(0,1,0) = (2,5,-2/3), T(0,0,1) = (6,9,0) sea una matriz diagonal respecto de dicha base.
- 9. Sea a un número real y considere la matriz

(En Práctica 9.)

$$A_a = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$$

- a) Determine los valores propios de A_a .
- b) Determine los subespacios propios asociados a cada valor propio.
- c) Muestre que A es diagonalizable verificando a que existe una matriz P invertible tal que $P^{-1}A_aP$ es diagonal.