The state of the s

In accordance with our invention, for two mixture-type probability distribution functions (PDF's), G, H,

10
$$G(x) = \sum_{i=1}^{N} \mu_i g_i(x), \qquad H(x) = \sum_{k=1}^{K} \gamma_k h_k(x),$$

where G is a mixture of N component PDF's $g_i(x)$, H is a mixture of K component PDF's $h_k(x)$, μ_i and γ_k are corresponding weights that satisfy

15
$$\sum_{i=1}^{N} \mu_i = 1$$
 and $\sum_{k=1}^{K} \gamma_k = 1$;

we define their distance, D_M(G, H), as

$$20 D_M(G, H) = \min_{w = [\omega_{ik}]} \sum_{i=1}^{N} \sum_{k=1}^{K} \omega_{ik} d(g_i, h_k)$$

where d(g_i, h_k) is the element distance between component PDF's g_i and h_k and w satisfie

$$\omega_{ik} \geq 0, \ 1 \leq i \leq N, \ 1 \leq k \leq K;$$

and

$$\sum_{k=1}^K \omega_{ik} = \mu_i, \ 1 \leq i \leq N, \ \sum_{i=1}^N \omega_{ik} = \gamma_k, \ 1 \leq k \leq K.$$
 30

The application of this definition of distance to various sets of real world data is demonstrated.

35