Autómatos e Linguagens Formais

	Mini-teste — 13 de abril de 2023 -		duração: 90 minutos
	10 40 45 40 2020		aa.ayaa. 30asa.
		NI /	
Nome:		Número:	

Cada uma das questões deve ser respondida no espaço disponibilizado a seguir à questão. Apenas deve ser justificada a resposta à última questão (Questão 6).

Resolução

- 1. Considere o alfabeto $A = \{0, 1\}$ e a linguagem $L = \{\epsilon, 01, 10\}$.
 - (a) Determine: i) L^1 ; ii) L^2 ; iii) $L^1 \cup L^2$.

Resposta:

- i) $L^1 = L$.
- ii) $L^2 = \{\epsilon, 01, 10, 0101, 0110, 1001, 1010\}.$
- iii) $L^1 \cup L^2 = L^2$.
- (b) Dê exemplo de uma linguagem L_0 sobre o alfabeto A tal que $L \subset L_0$ (inclusão estrita) e $L^* = L_0^*$. Resposta: Por exemplo, $L_0 = L^2$.
- 2. Considere o alfabeto $A = \{a, b\}$ e a linguagem L definida indutivamente por:

1.
$$a \in L$$
 2. $x \in L \Rightarrow bx \in L$ 3. $x \in L \Rightarrow xa \in L$

(a) Determine $L_0 = \{u \in A^* : |u| = 3 \land u \in L\}.$

Resposta: $L_0 = \{aaa, baa, bba\}.$

(b) Apresente uma caracterização não indutiva da linguagem L.

Resposta: Por exemplo, $L = \{b^m a^n : m \in \mathbb{N}_0 \land n \in \mathbb{N}\}.$

- 3. Considere o alfabeto $A = \{a, b\}$.
 - (a) Seja $L = \mathcal{L}(b^*(ab)^*a^*)$. Dê exemplo de uma palavra $u \in A^*$ tal que $u \notin L$ e todas as palavras sobre A de comprimento inferior a u pertençam a L.

Resposta: Por exemplo, u = abb.

(b) Indique uma expressão regular r sobre A tal que

$$\mathcal{L}(r) = \{(ab)^k a^m : k \in \mathbb{N}_0 \land m \in \mathbb{N}\} \cup \{ubb^n : u \in A^* \land n \in \mathbb{N}_0\}.$$

Resposta: Por exemplo, $(ab)^*aa^* + (a+b)^*bb^*$.

(c) Indique duas soluções distintas (sobre o alfabeto A) da equação linear à direita

$$X = (b + \epsilon)X + a + b + \epsilon$$

Resposta: Por exemplo, $(b + \epsilon)^*(a + b + \epsilon)$ e $(a + b)^*$.

4. Considere o autómato $\mathcal{A} = (\{1,2,3\},\{a,b\},\delta,1,\{1,3\}),$ cuja função transição δ é dada pela tabela:

$$\begin{array}{c|ccccc} \delta & 1 & 2 & 3 \\ \hline a & \{1,3\} & \{2\} & \{3\} \\ b & \{2\} & \{1\} & \emptyset \\ \end{array}$$

(a) Indique todos os caminhos com origem 1 e etiqueta bba.

Resposta: Há dois caminhos: i) $1 \xrightarrow{b} 2 \xrightarrow{b} 1 \xrightarrow{a} 1$; ii) $1 \xrightarrow{b} 2 \xrightarrow{b} 1 \xrightarrow{a} 3$.

(b) Indique se cada uma das duas seguintes afirmações é ou não verdadeira.

i)
$$\forall n \in \mathbb{N} . \delta(1, b^{2n}a) = \{1\}$$
. Resposta: Falsa.

ii)
$$\forall n \in \mathbb{N} . \delta(2, b^{2n}a) = \{2\}$$
. Resposta: Verdadeira.

(c) Indique qual é a linguagem reconhecida por A.

Resposta:
$$L(A) = \{u \in \{a, b\}^* : |u|_b \text{ \'e par}\}.$$

5. Considere o alfabeto $A = \{a, b, c\}$. Desenhe (graficamente) um autómato, com não mais de três estados, que reconheça a linguagem das palavras sobre A que não têm bc como fator.

6. Sejam L, L_1, L_2 linguagens sobre um alfabeto A tais que $\epsilon \not\in L_1$ e $L = (L_1L) \cup L_2$. Mostre que:

i)
$$\forall u \in L, \exists k \in \mathbb{N}_0 . u \in L_1^k L_2 .$$

Com base nesta observação, mostre ainda que:

ii)
$$\forall r, s, t \in ER(A) . \epsilon \notin \mathcal{L}(r) \land t = rt + s \Longrightarrow t < r^*s$$
.

Resposta:

i) Por indução em |u|, provaremos: $u \in L \Longrightarrow \exists k \in \mathbb{N}_0 . u \in L_1^k L_2$ (para todo $u \in A^*$).

Seja $u \in L$. Da hipótese $L = (L_1L) \cup L_2$, segue $u \in L_1L$ ou $u \in L_2$.

Caso $u \in L_2$. Como $u = \epsilon u$, tem-se $u \in \{\epsilon\}L_2 = L_1^0L_2$ e consequentemente: $\exists k \in \mathbb{N}_0 : u \in L_1^kL_2$.

Caso $u \in L_1L$. Então, $u = u_1v$, com $u_1 \in L_1$ e $v \in L$. Como $u_1 \in L_1$ e $\epsilon \not\in L_1$ (por hipótese), $u_1 \neq \epsilon$. Daqui, dado que $u = u_1v$, |v| < |u|. Assim, há hipótese de indução relativa a v e, desta hipótese de indução e de $v \in L$, segue que existe $j \in \mathbb{N}_0$ tal que $v \in L_1^j L_2$. Logo, como $u = u_1v$ e $u_1 \in L_1$, tem-se $u \in L_1^{j+1}L_2$ e consequentemente: $\exists k \in \mathbb{N}_0 : u \in L_1^k L_2$.

ii) Sejam $r, s, t \in ER(A)$ e suponhamos que $\epsilon \notin \mathcal{L}(r)$ e t = rt + s.

Pretende-se mostrar $t \leq r^*s$, ou seja, $\mathcal{L}(t) \subseteq \mathcal{L}(r^*s)$.

Da hipótese t=rt+s, segue $\mathcal{L}(t)=\mathcal{L}(r)\mathcal{L}(t)\cup\mathcal{L}(s)$. Assim, da hipótese $\epsilon\not\in\mathcal{L}(r)$ e de i), segue:

$$\forall u \in \mathcal{L}(t), \exists k \in \mathbb{N}_0 . u \in \mathcal{L}(r)^k \mathcal{L}(s).$$

Logo, para todo $u \in \mathcal{L}(t)$, tem-se $u \in \mathcal{L}(r)^*\mathcal{L}(s) = \mathcal{L}(r^*s)$, e consequentemente: $\mathcal{L}(t) \subseteq \mathcal{L}(r^*s)$.

Cotações	1	2	3	4	5	6
Cotações	3,25	3,25	5	5	1,5	2