Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Cancelled)
- 2. (Currently Amended) The method of claim [[1]] $\underline{5}$, wherein $\underline{s_i}$ indicates whether \underline{x} is a positive or negative number, and wherein \underline{x} being a the occurrence of positive numbers and negative numbers in a plurality of the datum, \underline{x} , is substantially equiprobable to \underline{x} being a negative number.

3. (Cancelled)

- 4. (Currently Amended) The computer program product of claim [[3]] $\underline{11}$, wherein $\underline{s_i}$ indicates whether \underline{x} is a positive or a negative number, and wherein \underline{x} being a the occurrence of positive numbers and negative numbers in a plurality of the datum, \underline{x} , is substantially equiprobable to \underline{x} being a negative number.
- 5. (New) A method for rounding a first two's complement fixed point datum \mathbf{X} represented by a sign bit $\mathbf{s_i}$, \mathbf{n} first integer bits, and \mathbf{a} first fractional bits, where \mathbf{X} includes a precision portion including at least the \mathbf{n} first integer bits and \mathbf{b} first fractional bits, and a loss portion including $(\mathbf{a}-\mathbf{b})$ first fractional bits, the method comprising:

comparing at least a portion of the **a** first fractional bits with a preselected threshold value;

if the comparison returns a first result, adding the sign bit s_i to the least significant bit of the precision portion of x;

if the comparison returns a second result, adding the most significant bit of the loss portion of \boldsymbol{x} to the least significant bit of the precision portion of \boldsymbol{x} ; and

returning \hat{x} based on the addition calculation, wherein \hat{x} includes at least n second integer bits and b second fractional bits.

- 6. (New) The method of claim 5, wherein \hat{x} further includes a sign bit s_o .
- 7. (New) The method of claim 5, wherein the comparing includes comparing the loss portion of \boldsymbol{x} with the preselected threshold value.
- 8. (New) The method of claim 7, wherein the comparison returns the first result if the most significant bit of the loss portion has a value of "1" and any subsequent bits of the loss portion has a value of "0."
- 9. (New) The method of claim 5, wherein the first result indicates that the compared first fractional bits equal the threshold value.

- 10. (New) The method of claim 5, wherein the second result indicates that the compared first fractional bits do not equal the threshold value.
- 11. (New) A computer program product recorded on a computer readable medium for rounding a first two's complement fixed point datum X represented by a sign bit s_i , n first integer bits, and n first fractional bits, where n includes a precision portion including at least the n first integer bits and n first fractional bits, and a loss portion including n first fractional bits, the computer program product comprising:
- a computer readable program code comparing at least a portion of the \boldsymbol{a} first fractional bits with a preselected threshold value;
- if the comparison returns a first result, a computer readable program code adding the sign bit s_i to the least significant bit of the precision portion of x;
- if the comparison returns a second result, a computer readable program code adding a most significant bit of the loss portion of \boldsymbol{x} to the least significant bit of the precision portion of \boldsymbol{x} ; and
- a computer readable program code returning \hat{x} based on the addition calculation, wherein \hat{x} includes at least n second integer bits and b second fractional bits.
- 12. (New) The computer program product of claim 11, wherein $\hat{\boldsymbol{x}}$ further includes a sign bit $\boldsymbol{s_o}$.

- 13. (New) The computer program product of claim 11, wherein the computer readable program code for the comparing includes computer readable program code comparing the loss portion of \boldsymbol{x} with the preselected threshold value.
- 14. (New) The computer program product of claim 13, wherein the comparison returns the first result if the most significant bit of the loss portion has a value of "1" and any subsequent bits in the loss portion has a value of "0."
- 15. (New) The computer program product of claim 11, wherein the first result indicates that the compared first fractional bits equal the threshold value.
- 16. (New) The computer program product of claim 11, wherein the second result indicates that the compared first fractional bits do not equal the threshold value.
- 17. (New) The computer program product of claim 11, wherein a>b.
- 18. (New) A rounding device for rounding a first two's complement fixed point datum X represented by a sign bit s_i , n first integer bits, and a first fractional bits, where X includes a precision portion including at least the n first integer bits and b first fractional bits, and a loss portion including (a-b) first fractional bits, the rounding device comprising:

means for comparing at least a portion of the **a** first fractional bits with a preselected threshold value;

if the comparison returns a first result, means for adding the sign bit s_i to the least significant bit of the precision portion of X;

if the comparison returns a second result, means for adding a most significant bit of the loss portion of \boldsymbol{x} to the least significant bit of the precision portion of \boldsymbol{x} ; and

means for returning $\hat{\boldsymbol{x}}$ based on the addition calculation, wherein $\hat{\boldsymbol{x}}$ includes at least \boldsymbol{n} second integer bits and \boldsymbol{b} second fractional bits.

- 19. (New) The rounding device of claim 18, wherein \ddot{x} further includes a sign bit s_o .
- 20. (New) The rounding device of claim 18, wherein the means for comparing includes means for comparing the loss portion of \boldsymbol{x} with the preselected threshold value.
- 21. (New) The rounding device of claim 20, wherein the comparison returns the first result if the most significant bit of the loss portion has a value of "1" and any subsequent bits in the loss portion has a value of "0."
- 22. (New) The rounding device of claim 18, wherein the first result indicates that the compared first fractional bits equal the threshold value.

- 23. (New) The rounding device of claim 18, wherein the second result indicates that the compared first fractional bits do not equal the threshold value.
- 24. (New) The rounding device of claim 18, wherein s_i indicates whether \boldsymbol{x} is a positive or a negative number, and wherein \boldsymbol{x} being a positive number is substantially equiprobable to \boldsymbol{x} being a negative number.

Amendments to the Drawings:

The attached sheet of drawings includes changes to FIG 15. This sheet, which includes Fig. 15, replaces the original sheet including Fig. 15.

Attachment: Replacement Sheet