Работа 2.1.6

Эффект Джоуля-Томсона

Малиновский Владимир galqiwi@galqiwi.ru

Цель работы: 1) Определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры 2) Вычисление по результатам опытов коэффициентов Ван-дер-Ваальса a и b.

В работе используются: трубка с пористой перегородкой, труба Дьюара, термостат, термометры, дифференциальная термопара, микровольтметр, балластный баллон, манометр.

Описание работы

В этой работе наблюдается эффект джоуля-томсона при прохождении углекислого газа через пористую перегородку. Эффект представляет из себя изменение температуры газа на выходе из перегородки в связи с его неидеальностью. При малых перепадах давления можно считать, что энтальпия одного моля проходящего газа сохраняется, поскольку скорости на входе и выходе отличаются не сильно:

$$\Delta M = \frac{\mu}{2}v^2,$$

при том, что ΔM – вклад скорости частиц в энтальпию. При диаметре трубки в 3мм и скорости потока порядка 10мл/с, скорость получается порядка ≈ 1.4 м/с. Это меняет разность температур не сильнее, чем на:

$$\Delta T = \Delta M \, C_p = \frac{\mu}{2C_p} v^2 \approx 0.5 \mathrm{mK},$$

что много меньше разности температур в эксперименте ($\approx 1 \mathrm{K}$). Если записать равенство энтальпий на границах перегораодки и применить уравнение газа Ван-дер-Ваальса, можно получить связь между разницей давлений и температур:

Схема установки представлена на рис. 1:

Рис. 1. Схема установки для изучения эффекта Джоуля-Томсона

- 1. трубка с пористой перегородкой (2)
- 2. пористая перегородка
- 3. труба Дьюара
- 4. кольцо
- 5. змеевик
- 6. балластный баллон
- 7. вольтметр
- 8. верхний спай термопары
- 9. нижний спай термопары
- 10. пробка из пенопласта

Результаты и обработка

В этом эксперименте проведены серии по 5 точек зависимости V – напряжения на термопаре от P – давления на выходе из баллона при 5 различных температурах. Для каждой серии по методу наименьших квадратов была рассчитана величина $\mu_{\text{д-т}} = \frac{\Delta V}{\Delta P} = \frac{\Delta T}{\Delta V} \frac{\Delta V}{\Delta P}$

p, бар	$V, \mu B$	T, K
4.00	137.0	20.640
3.50	119.0	20.640
3.00	98.0	20.830
2.50	75.0	20.790
2.00	57.0	20.850

р, бар	$V, \mu B$	<i>T</i> , K
4.00	131.0	29.340
3.50	112.0	29.570
3.00	92.0	29.710
2.50	73.0	29.680
2.00	52.0	29.680

р, бар	$V, \mu B$	T, K
4.00	130.0	40.060
3.50	105.0	40.070
3.00	86.0	40.050
2.50	69.0	40.040
2.00	50.0	40.020

р, бар	$V, \mu B$	<i>T</i> , K
4.00	115.0	50.000
3.50	101.0	50.010
3.00	81.0	50.030
2.50	66.0	50.040
2.00	53.0	50.030

p, бар	$V, \mu B$	T, K
4.00	105.0	60.000
3.50	91.0	60.000
3.00	78.0	60.000
2.50	58.0	60.020
2.00	48.0	60.010

$$\delta p = 0.05 \, \text{fap}, \Delta V = 0.5 \, \mu V, \Delta T = 0.005 \, \text{K}.$$

Из МНК можно найти dV/dT для каждой из температур. Приборная погрешность (для получения полной, суммируются квадраты со статистической погрешностью и берется корень) для dV/dT считается, как

$$\sigma(dV/dT) = (dV/dT)(\frac{\sigma_V}{< V >} + \frac{\sigma_T}{< T >}).$$

Величины dV/dT брались как среднее арифметичесеок этой величины на участках, разделенных температурой, кратной десяти. Погрешность считалась половина соответствующего модуля разности.

Величина μ рассчитывалась как отношение dV/dT и dV/dT с соответствующий погрешностью.

T, K	$dV/dP, \mu B/бар$	$dV/dT, \mu \mathrm{B/K}$	μ = dT/dP, K/бар	$1000\mathrm{K}/T$
293.90 ± 0.05	40.80 ± 0.89	40.25 ± 0.45	1.01 ± 0.03	3.4025 ± 0.0005
302.75 ± 0.07	39.40 ± 0.53	41.15 ± 0.45	0.96 ± 0.02	3.3031 ± 0.0007
313.20 ± 0.01	39.20 ± 1.35	42.05 ± 0.45	0.93 ± 0.04	3.1929 ± 0.0001
323.17 ± 0.01	31.80 ± 1.06	42.90 ± 0.40	0.74 ± 0.03	3.0943 ± 0.0001
333.16 ± 0.01	29.40 ± 1.21	43.70 ± 0.40	0.67 ± 0.03	3.0016 ± 0.0001

Из МНК следует, что

$$\mu = -(1.96 \pm 0.02) \frac{K}{6ap} + (0.88 \pm 0.12) \frac{K}{6ap} \cdot \frac{1000K}{T}.$$

Если учитывать погрешность линейного члена аналогично рассмотренной на странице раньше, а приборную погрешность постоянной добавки, как среднее арифметическое σ_{μ} , то получатся коэффициенты:

$$\mu = -(1.96 \pm 0.07) \frac{K}{6ap} + (0.88 \pm 0.15) \frac{K}{6ap} \cdot \frac{1000K}{T}.$$

Найдем a, b:

$$a = \frac{C_p R}{2} (880 \pm 120) \frac{\mathrm{K}^2}{\mathrm{бар}} = 2 R^2 (880 \pm 120) \frac{\mathrm{K}^2}{\mathrm{бар}} = (1.2 \pm 0.2) \mathrm{Hm}^4 / \mathrm{моль}^2,$$

$$a_{\mathrm{Teop}} = 0.36 \mathrm{Hm}^4 / \mathrm{моль}^2.$$

$$b = C_p (1.96 \pm 0.07) \frac{\mathrm{K}}{\mathrm{бар}} = (650 \pm 20) \mathrm{cm}^3 / \mathrm{моль}, \ b_{\mathrm{Taбл}} = 43 \mathrm{cm}^3 / \mathrm{моль}.$$

$$T_{\mathrm{HHB}} = \frac{2a}{Rb} = (4.4 \pm 0.9) \cdot 10^2 \, \mathrm{K}, \ T_{\mathrm{HHB} | \mathrm{Taбл}} = 2.0 \mathrm{KK}$$

Вывод

Наша модель плохо описывает поведение системы, поскольку финальные коэффициенты не сошлись с табличными. Не смотря на это, они отличались от них меньше, чем в 20 раз, что не так плохо. Мы измерили изменение температуры углекислого газа при протекании через перегородку при различных давлениях и температурах и вычеслили значения коэффициентов Ван-дер-Ваальса и температуры инверсии, хоть и не точно.