USN:

21ECE142

B.N.M. Institute of Technology

An Autonomous Institution under VTU

Fourth Semester B.E. Degree Examination Model Question Paper

Digital Signal Processing

Duration: 3 Hours **Max. Marks:** 100

Note: 1. Answer any one full question from Module 1,2,3,4,5 ($5Q \times 20M = 100 \text{ Marks}$)

	Module 1							
Q. No	Questions	Marks	СО	PO	Cognitive Level			
1 (a)	Determine whether the discrete time signal is periodic or not. If periodic, find the fundamental period. $x(t) = cos(2t) + sin(2\pi t)$.	4	1	1	Apply			
1 (b)	Sketch and label each of the following signals, given $x(t)$ as shown in Figure 1. Figure 1 i. $x(t)$ $u(1-t)$ ii. $x(t)[u(t)-u(t-1)]$ iii. $x(t)$ $\delta(t-3/2)$ iv. $x(t+1)$ $x(-t)$	8	1	1	Apply			
1 (c)	Find whether the following signals are energy or power signals. Find the energy/power in each case. i. $x(n) = u(n)$ ii. $x(n) = (j)n + (-j)n$ iii. $x(t) = A Cos(w_0 t)$, $T_0=2/w_0$	8	1	1	Apply			
OR								
2 (a)	Determine the even and odd part of the signal x(t) shown in Figure 2 Figure 2 -1 -2 t	4	1	1	Apply			

USN:

21ECE142

				ZIECE	172
2 (b)	Sketch the following, given $x(t)$ as shown in Figure 3. (i) $x(\frac{t}{2}-2)$ (ii) $x(2t+3)$ iii. $x(3-t)$ iv. $2x(t+1)\delta(t)$ Figure 3	8	1	1	Apply
2 (c)	Determine whether the following signals are energy signal or power signal and calculate its energy or power (i) $x[n] = 8(0.5)^n u(n)$ (ii) $x(t) = e^{(1+2t)} u(1-t)$	8	1	1	
	Module 2				
3 (a)	Determine whether the following system is stable, memory less, causal, linear and time invariant? $y(t) = x(2 - t)$	10	2	1,2	Apply
3 (b)	Perform Convolution operation on the following signals & sketch the resulting signal. $x[n] = 2^n u[-n]$, $h[n] = u[n]$.	10	2	1,2	Apply
	OR				
4 (a)	Determine whether the following system is stable, memory less, causal, linear and time invariant? $y(n) = sin[x(n)]$	10	2	1,2	Apply
4 (b)	Perform convolution operation on the following signals: Sketch the resulting signal. $x_1(t) = e^{-t} u(t)$ and $x_2(t) = u(t+3)$	10	2	1,2	Apply
	Module 3				
5 (a)	Find the z transform of $\mathbf{x}(\mathbf{n}) = 3^n \mathbf{u}(-\mathbf{n} - 1) - (0.2^n)\mathbf{u}(\mathbf{n})$	6	3	1,2	Apply
5 (b)	Find the DTFT of the signal $\mathbf{x}(\mathbf{n}) = (0.5)^{n+2}\mathbf{u}(\mathbf{n})$	6	3	1,2	Apply
5 (c)	Calculate circular convolution of two sequences using DFT and IDFT approach. $x(n)=\{2,1,2,1\}$ and $h(n)=\{1,2,3,4\}$,	8	3	1,2	Apply
	OR				
6 (a)	Find the z transform of $x(n) = 0.5^n u(n) + 2^n u(-n-1)$	6	3	1,2	Apply
6 (b)	Find the DTFT of the signal $x(n) = (0.5)^n u(n-4)$	6	3	1,2	Apply
6 (c)	Find the 8-point DFT of the sequence $\mathbf{x}(\mathbf{n}) = \{1,1,1,1,1\}$.	8	3	1,2	Apply
	Module 4		•		
7 (a)	Design a digital high pass Butterworth filter to meet the following specifications. i) Passband ripple: ≤ 15dB ii) Passband edge: 150Hz iii) Stopband attenuation: ≥ 1dB iv) Stopband edge: 100Hz v) Sampling frequency: 1kHz. Use Bilinear Transformation.	10	4	1,2,3	Apply

USN:

21ECE142

				ZIECE	71 12		
7 (b)	Derive an expression for order and cutoff frequency of analog Butterworth lowpass filter.	6	4	1,2,3	Understand		
7 (c)	Obtain the direct form I realization of a digital IIR filter described by the system function: $\mathbf{H}(\mathbf{z}) = \frac{8\mathbf{z}^3 - 4\mathbf{z}^2 + 11\mathbf{z} - 2}{\left(\mathbf{z} - \frac{1}{4}\right)\left(\mathbf{z}^2 - \mathbf{z} + \frac{1}{2}\right)}$	4	4	1,2,3	Apply		
	OR						
8 (a)	Design a digital Butterworth lowpass filter which is required to meet the following specifications: (i) -3.01 dB cutoff frequency of 0.5π rad. (ii) Stopband attenuation of at least 15dB at 0.75π rad. Use bilinear transformation. Find the system function H(z) and the difference equation realization.	10	4	1,2,3	Apply		
8 (b)	Find the 5 th order normalized Butterworth polynomial.	6	4	1,2,3	Understand		
8 (c)	Obtain the direct form-I realization for the following system: $y(n) - \frac{1}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) + \frac{1}{2}x(n-2).$	4	4	1,2,3	Apply		
	Module 5			1			
9 (a)	Write the equation and frequency response of Hanning and Hamming windows used in the FIR filter design.	4	5	1,2,3	Understand		
9 (b)	Design a low pass filter with the following desired frequency response: $H(\omega) = \begin{cases} e^{-j2\omega}, & \omega < \frac{\pi}{4} \\ 0, & \frac{\pi}{4} < \omega < \pi \end{cases}$ Determine the filter coefficients $h_d(n)$ and $h(n)$ if $w(n)$ is a rectangular window defined as $w_R(n) = \begin{cases} 1, & 0 \le n \le 4 \\ 0, & \text{otherwise} \end{cases}$	8	5	1,2,3	Apply		
9 (c)	Show that FIR filters provide Linear phase response when the impulse response of the filter is symmetric for order being even.	8	5	1,2,3	Understand		
OR							
10 (a)	Write the equation and frequency response of Bartlett and Blackmann windows used in the FIR filter design.	4	5	1,2,3	Understand		
10 (b)	Design the symmetric FIR, lowpass filter whose desired frequency response is given as $H(\omega) = \begin{cases} e^{-j\alpha\omega}, \ \omega < \omega_c \\ 0, \ otherwise \end{cases}$ The length of the filter should be 7 and $\omega_c = 1$ radian/sample use rectangular window.	8	5	1,2,3	Apply		

	USN:							
					21ECI	E142		
10 (c)	Show that FIR filters provide Linear phase response when the impulse response of the filter is symmetric for the order bein odd.	e g	8	5	1,2,3	Under	rstand	

Prepared by	Approved by HOD	Approved by Principal		
Signature:	Signature:	Signature:		
Dr. Keerti Kulkarni	Dr. P. A. Vijaya	Dr. Krishnamurthy G N		