

OPTIMISING ARTIFICAL SEI FORMATION IN Li-S BATTERIES

Melissa Chung Supervised by Svetlana Menkin

MOTIVATION

Next generation batteries with higher gravimetric energy density than Li-ion

Sulfur cathode and metallic Li anode; neglect of anode in literature

Addressing safety issues in anode (Li dendrite formation) requires looking at SEI

Li-S batteries Li-metal anode SEI layer

Li-S VS. Li-ion BATTERIES

- STRUCTURE: Sulfur cathode & Li metal anode vs. LMO cathode & graphite anode
- **GRAVIMETRIC ENERGY DENSITY**: ~2,600 Wh/kg (theoretically) vs. ~200 Wh/kg
- APPLICATIONS: Niche markets (aerospace, AUVs) vs. Widespread commercialisation
- **O4** Li METAL ANODE (Li-S):

Advantages	Higher specific capacity (3860 mAh g ⁻¹)	Lower anode potential (-3.04 V)	Lower density (0.59 gcm ⁻³)
Drawbacks	Li dendrite growth	Extreme volume fluctuations	Higher reactivity with electrolyte

Li-S VS. Li-ion BATTERIES

Discharge: surface reactions form **lithium** polysulfide intermediates via reduction at cathode, which shuttle between electrodes

MECHANISM:

Li-ion Intercalation vs. Polysulfide Shuttle Effect

A. Manthiram, S.H. Chung, C. Zu. Lithium-sulfur batteries: progress and prospects. *Adv Mater.* 2015;27(12):1980-2006. DOI:10.1002/adma.201405115

ISSUES WITH Li-S COMMERCIALISATION

Insoluble polysulfides deposit on electrode surfaces, reducing CE/cycle life & wasting active material

LOW CONDUCTIVITY

S₈ active material and Li₂S final discharge product have poor electrical and ionic conductivity

VOLUMETRIC CHANGES

Virtually infinite
fluctuations during
cycling with structural
changes at
electrodes

SAFETY ISSUES AT THE ANODE

High Li reactivity

consumes electrolyte &

promotes disordered

deposits/dendritic

growth

ARTIFICIAL SEI FORMATION

Electrolyte decomposition & reduction products, deposit on anode

Li-metal anodes: SEI forms upon contact with electrolyte

Artificial SEI: selectively forming specific SEI compounds

- Improves homogeneity of Li deposition
- Greater control of Li plating/stripping
- Methods involve electrolyte additives or electrode coatings
 - Constant voltage hold method

THE APPROACH

A CC until desired voltage reached

B CV over a long time to form artificial SEI

C High current during rapid plating

THE APPROACH (CONT.)

- Find nucleation potential
- 2 Calculate DC resistance
- **3** Compare DC resistances

Artificial SEI should give a higher DC resistance

DC RESISTANCE COMPARISON

OVERPOTENTIAL VS. CURRENT/TIME AT CV

ARTIFICIAL SEI FORMATION USING GAS ATMOPSHERES

- Higher nucleation overpotentials in an O₂ atmosphere
- Improved SEI morphology -> better Li cycling CE in O₂

 Hence higher overpotential leads to a better SEI morphology

E. Wang, S. Dey, T. Liu, S. Mekin, C.P. Grey, Effects of Atmospheric Gases on Li Metal Cyclability and Solid-Electrolyte Interphase Formation, *ACS Energy Letters* (2020) 5(4), 1088-1094, DOI: 10.1021/acsenergylett.0c00257

CONCLUSION & IMPACT

- Plating current affects DC resistance more than presence of an artificial SEI
- Inverse relationship between leakage current and overpotential
- Increased time at constant voltage reduces the current at the end of the period
- A Python program was written to automate this analysis on a range of data
- Code will be uploaded to Github (github.com/msychung)
- **General method** for artificial SEI analysis, applicable over a wide range of systems and experimental conditions