Data analysis and Manipulation import plotly.graph_objs as go import plotly.io as pio import plotly.express as px import pandas as pd

Data Visualization import matplotlib.pyplot as plt

Importing Plotly import plotly.offline as py py.init_notebook_mode(connected=True)

Initializing Plotly pio.renderers.default = 'colab'

Importing Dataset1 dataset1 = pd.read_csv("covid.csv") dataset1.head() # returns first 5 rows

	Country/Region	Continent	Population	TotalCases	NewCases	TotalDeaths	NewDeaths	TotalRecovered	NewRecovered	ActiveCases	Seri
0	USA	North America	3.311981e+08	5032179	NaN	162804.0	NaN	2576668.0	NaN	2292707.0	
1	Brazil	South America	2.127107e+08	2917562	NaN	98644.0	NaN	2047660.0	NaN	771258.0	
2	India	Asia	1.381345e+09	2025409	NaN	41638.0	NaN	1377384.0	NaN	606387.0	
3	Russia	Europe	1.459409e+08	871894	NaN	14606.0	NaN	676357.0	NaN	180931.0	
4	South Africa	Africa	5.938157e+07	538184	NaN	9604.0	NaN	387316.0	NaN	141264.0	

Returns tuple of shape (Rows, columns) print(dataset1.shape)

Returns size of dataframe print(dataset1.size)

→ (209, 17) 3553

Information about Dataset1

return concise summary of dataframe dataset1.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 209 entries, 0 to 208
Data columns (total 17 columns):

υατα	columns (total 1/	columns):	
#	Column	Non-Null Count	Dtype
0	Country/Region	209 non-null	object
1	Continent	208 non-null	object
2	Population	208 non-null	float64
3	TotalCases	209 non-null	int64
4	NewCases	4 non-null	float64
5	TotalDeaths	188 non-null	float64
6	NewDeaths	3 non-null	float64
7	TotalRecovered	205 non-null	float64
8	NewRecovered	3 non-null	float64
9	ActiveCases	205 non-null	float64
10	Serious,Critical	122 non-null	float64
11	Tot Cases/1M pop	208 non-null	float64
12	Deaths/1M pop	187 non-null	float64
13	TotalTests	191 non-null	float64
14	Tests/1M pop	191 non-null	float64
15	WHO Region	184 non-null	object
16	iso_alpha	209 non-null	object
dtype	es: float64(12), in	nt64(1), object(4	4)

memory usage: 27.9+ KB

₹		Date	Country/Region	Confirmed	Deaths	Recovered	Active	New cases	New deaths	New recovered	WHO Region	iso_alpha
	0	2020-01- 22	Afghanistan	0	0	0	0	0	0	0	Eastern Mediterranean	AFG
	1	2020-01- 22	Albania	0	0	0	0	0	0	0	Europe	ALB
	2	2020-01-	Algeria	0	0	0	0	0	0	0	Africa	DZA

```
# Returns tuple of shape (Rows, columns)
print(dataset2.shape)
```

Returns size of dataframe
print(dataset2.size)

→ (35156, 11) 386716

Information about Dataset2
dataset2.info() # return concise summary of dataframe

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 35156 entries, 0 to 35155
 Data columns (total 11 columns):

Data	COTAMITS (COCAT	II COIUMII).	
#	Column	Non-Null Count	Dtype
0	Date	35156 non-null	object
1	Country/Region	35156 non-null	object
2	Confirmed	35156 non-null	int64
3	Deaths	35156 non-null	int64
4	Recovered	35156 non-null	int64
5	Active	35156 non-null	int64
6	New cases	35156 non-null	int64
7	New deaths	35156 non-null	int64
8	New recovered	35156 non-null	int64
9	WHO Region	35156 non-null	object
10	iso_alpha	35156 non-null	object
4.4			

dtypes: int64(7), object(4)
memory usage: 3.0+ MB

Columns labels of a Dataset1
dataset1.columns

```
Index(['Country/Region', 'Continent', 'Population', 'TotalCases', 'NewCases', 'TotalDeaths', 'NewDeaths', 'TotalRecovered', 'NewRecovered', 'ActiveCases', 'Serious,Critical', 'Tot Cases/1M pop', 'Deaths/1M pop', 'TotalTests', 'Tests/1M pop', 'WHO Region', 'iso_alpha'], dtype='object')
```

Drop NewCases, NewDeaths, NewRecovered rows from dataset1

Select random set of values from dataset1
dataset1.sample(5)

	Country/Region	Continent	Population	TotalCases	TotalDeaths	TotalRecovered	ActiveCases	Serious,Critical	Tot Cases/1M pop	Deaths/1M pop
22	Indonesia	Asia	273808365.0	118753	5521.0	75645.0	37587.0	NaN	434.0	20.0
185	Monaco	Europe	39270.0	125	4.0	105.0	16.0	2.0	3183.0	102.0
11	UK	Europe	67922029.0	308134	46413.0	NaN	NaN	73.0	4537.0	683.0
3	Russia	Europe	145940924.0	871894	14606.0	676357.0	180931.0	2300.0	5974.0	100.0
174	Cambodia	Asia	16741375.0	243	NaN	210.0	33.0	1.0	15.0	NaN

Import create_table Figure Factory

 $from \ plotly.figure_factory \ import \ create_table$

colorscale = [[0, '#4d004c'], [.5, '#f2e5ff'], [1, '#ffffff']]
table = create_table(dataset1.head(15), colorscale=colorscale)
py.iplot(table)

Country/Regio	Continent	Population	TotalCases	TotalDeaths	TotalRecover	edActiveCases	Serious, Critic	alTot Cases/1M	pDepaths/1Mpo	p∏ota
USA I	North America	331198130.0	5032179	162804.0	2576668.0	2292707.0	18296.0	15194.0	492.0	6313
Brazil S	South America	212710692.0	2917562	98644.0	2047660.0	771258.0	8318.0	13716.0	464.0	1320
India ,	Asia	1381344997.0	2025409	41638.0	1377384.0	606387.0	8944.0	1466.0	30.0	2214
Russia I	Europe	145940924.0	871894	14606.0	676357.0	180931.0	2300.0	5974.0	100.0	2971
South Africa	Africa	59381566.0	538184	9604.0	387316.0	141264.0	539.0	9063.0	162.0	3149
Mexico I	North America	129066160.0	462690	50517.0	308848.0	103325.0	3987.0	3585.0	391.0	1056
Peru S	South America	33016319.0	455409	20424.0	310337.0	124648.0	1426.0	13793.0	619.0	2493
Chile S	South America	19132514.0	366671	9889.0	340168.0	16614.0	1358.0	19165.0	517.0	1760
Colombia	South America	50936262.0	357710	11939.0	192355.0	153416.0	1493.0	7023.0	234.0	1801
Spain E	Europe	46756648.0	354530	28500.0	nan	nan	617.0	7582.0	610.0	7064
Iran /	Asia	84097623.0	320117	17976.0	277463.0	24678.0	4156.0	3806.0	214.0	2612
UK E	Europe	67922029.0	308134	46413.0	nan	nan	73.0	4537.0	683.0	1751
Saudi Arabia	Asia	34865919.0	284226	3055.0	247089.0	34082.0	1915.0	8152.0	88.0	3635
Pakistan ,	Asia	221295851.0	281863	6035.0	256058.0	19770.0	809.0	1274.0	27.0	2058
Bangladesh /	Asia	164851401.0	249651	3306.0	143824.0	102521.0	nan	1514.0	20.0	1225

px.bar(dataset1.head(15), x = 'Country/Region',
 y = 'TotalCases',color = 'TotalCases',
 height = 500,hover_data = ['Country/Region', 'Continent'])


```
px.bar(dataset1.head(15), x = 'Country/Region', y = 'TotalCases',
    color = 'TotalDeaths', height = 500,
    hover_data = ['Country/Region', 'Continent'])
```



```
px.bar(dataset1.head(15), x = 'Country/Region', y = 'TotalCases',
    color = 'TotalDeaths', height = 500,
    hover_data = ['Country/Region', 'Continent'])
```



```
px.bar(dataset1.head(15), x = 'TotalTests', y = 'Country/Region',
    color = 'TotalTests',orientation = 'h', height = 500,
    hover_data = ['Country/Region', 'Continent'])
```



```
px.bar(dataset1.head(15), x = 'TotalTests', y = 'Continent',
    color = 'TotalTests',orientation ='h', height = 500,
    hover_data = ['Country/Region', 'Continent'])
```


Country/Region

px.scatter(dataset1.head(30), x='TotalCases', y= 'TotalDeaths',
hover_data=['Country/Region', 'Continent'],
color='TotalDeaths', size= 'TotalDeaths', size_max=80)

px.scatter(dataset1.head(30), x='TotalCases', y= 'TotalDeaths',
 hover_data=['Country/Region', 'Continent'],
 color='TotalDeaths', size= 'TotalDeaths', size_max=80,
 log_x=True, log_y=True)

px.bar(dataset2, x="Date", y="Confirmed", color="Confirmed",
 hover_data=["Confirmed", "Date", "Country/Region"], height=400)

px.bar(dataset2, x="Date", y="Confirmed", color="Confirmed",
hover_data=["Confirmed", "Date", "Country/Region"],log_y=True, height=400)


```
px.bar(dataset2, x="Date", y="Deaths", color="Deaths",
    hover_data=["Confirmed", "Date", "Country/Region"],
    log_y=False, height=400)
```


df_US= dataset2.loc[dataset2["Country/Region"]=="US"]

px.bar(df_US, x="Date", y="Confirmed", color="Confirmed", height=400)

 $\label{eq:px.bar} \verb|px.bar| (df_US, x="Date", y="Recovered", color="Recovered", height=400)|$

px.line(df_US,x="Date", y="Recovered", height=400)

px.line(df_US,x="Date", y="Confirmed", height=400)

px.line(df_US,x="Date", y="New cases", height=400)

px.scatter(df_US, x="Confirmed", y="Deaths", height=400)

•

Date=2020-01-22

2020-01-22 2020-02-06 2020-02-21 2020-03-07 2020-03-22 2020-04-06 2020-04-21 2020-05-06 2020-05-21 2020-06-05 202

•

Date=2020-01-22

2020-01-22 2020-02-05 2020-02-19 2020-03-04 2020-03-18 2020-04-01 2020-04-15 2020-04-29 2020-05-13 2020-05-27 2020-06-1

Date=2020-01-22

2020-01-22 2020-02-06 2020-02-21 2020-03-07 2020-03-22 2020-04-06 2020-04-21 2020-05-06 2020-05-21 2020-06-05 202

dataset3= pd.read_csv("coviddeath.csv")
dataset3.head()

₹		Data as of	Start Week	End Week	State	Condition Group	Condition	ICD10_codes	Age Group	=	
	0	08/30/2020	02/01/2020	08/29/2020	US	Respiratory diseases	Influenza and pneumonia	J09-J18	0-24	122.0	NaN
	1	08/30/2020	02/01/2020	08/29/2020	US	Respiratory diseases	Influenza and pneumonia	J09-J18	25-34	596.0	NaN
	2	08/30/2020	02/01/2020	08/29/2020	US	Respiratory diseases	Influenza and pneumonia	J09-J18	35-44	1521.0	NaN

dataset3.tail()

_		Data as of	Start Week	End Week	State	Condition Group	Condition	ICD10_codes	Age Group	Number of COVID-19 Deaths	Flag
	12255	08/30/2020	02/01/2020	08/29/2020	YC	Coronavirus Disease 2019	COVID-19	U071	65-74	5024.0	NaN
	12256	08/30/2020	02/01/2020	08/29/2020	YC	Coronavirus Disease 2019	COVID-19	U071	75-84	5381.0	NaN
	12257	08/30/2020	02/01/2020	08/29/2020	YC	Coronavirus Disease 2019	COVID-19	U071	85+	4841.0	NaN
datas	<pre>dataset3.groupby(["Condition"]).count()</pre>										
_				ı	Data as	Start End	State	Condition	ICD10_code	Age Number of COV	Elaa