What is claimed is:

- 1 1. A method of determining a placement of services of a distributed application 2 onto nodes of a distributed resource infrastructure comprising the steps of:
- a. establishing a placement indicator for a specific service;
- b. forming communication constraints between node pairs which ensure that
- a sum of transport demands between a particular node pair does not exceed a
- 6 transport capacity between the particular node pair, each term of the sum
- 7 comprising a product of a first placement variable, a second placement
- 8 variable, and the transport demand between the services associated with the
- 9 first and second placement variables;
- 10 c. forming an objective; and
- d. employing a local search solution to solve an integer program comprising
- the placement indicator, the communication constraints, and the objective to
- determine the placement of the services onto the nodes.
- 1 2. The method of claim 1 wherein the placement indicator comprises a pre-
- 2 defined placement.
- 1 3. The method of claim 2 wherein the pre-defined placement comprises placing
- 2 the specific service onto a specific node.
- 1 4. The method of claim 2 wherein the pre-defined placement comprises not
- 2 placing the specific service onto a specific node.
- 1 5. The method of claim 1 wherein the placement indicator comprises a neutral
- 2 indication of whether the specific service is to be placed onto a specific node.
- 1 6. A method of determining a placement of services of a distributed application
- 2 onto nodes of a distributed resource infrastructure comprising the steps of:
- a. establishing an application model of the services comprising transport
- 4 demands between the services;
- 5 b. establishing an infrastructure model of the nodes comprising transport
- 6 capacities between the nodes;

- 7 c. establishing a placement model comprising placement indicators for the services;
- 9 d. forming an integer program that comprises:
- i. a set of placement variables for a combination of the services and the
 nodes, each of the placement variables indicating whether a particular
 service is located on a particular node;
 - ii. communication constraints between node pairs which ensure that a sum of the transport demands between a particular node pair does not exceed the transport capacity between the particular node pair, each term of the sum comprising a product of a first placement variable, a second placement variable, and the transport demand between the services associated with the first and second placement variables;
 - iii. placement constraints for the services which ensure that the services are placed onto the nodes in accord with the placement indicators; and
- 21 iv. an objective; and

13

14 15

16

17 18

19

20

- e. employing a local search solution to solve the integer program which determines the placement of the services onto the nodes.
- 7. The method of claim 6 wherein a particular placement indicator comprises an indication that a specific service is to be placed onto a specific node.
- 1 8. The method of claim 6 wherein a particular placement indicator comprises an indication that a specific service is not to be placed onto a specific node.
- 1 9. The method of claim 6 wherein a particular placement indicator comprises a 2 neutral indication of whether a specific service is to be placed onto a specific 3 node.
- 1 10. The method of claim 9 wherein a default for the placement indicators comprises the neutral indication.
- 1 11. A method of determining a placement of services of a distributed application 2 onto nodes of a distributed resource infrastructure comprising the steps of:
- a. establishing an application model of the services that comprises processing

4		demands for the services, storage demands for the services, and transport
5		demands between the services;
6	b.	establishing an infrastructure model of the nodes that comprises processing
7		capacities for the nodes, storage capacities for the nodes, and transport
8		capacities between the nodes;
9	c.	establishing a placement model comprising placement indicators for the
10		services;
11	d.	forming an integer program that comprises:
12		i. a set of placement variables for a combination of the services and the
13		nodes, each of the placement variables indicating whether a particular
14		service is located on a particular node;
15		ii. processing constraints which ensure that a sum of the processing
16		demands for each of the nodes does not exceed the processing capacity for
17		the node;
18		iii. storage constraints which ensure that a sum of the storage demands for
19		each of the nodes does not exceed the storage capacity for the node;
20		iv. first placement constraints which ensure that each of the services is
21		placed on one and only one node;
22		v. second placement constraints which ensure that the services are placed
23		onto the nodes in accord with the placement indicators;
24		vi. communication constraints between node pairs which ensure that a
25		sum of the transport demands between a particular node pair does not
26		exceed the transport capacity between the particular node pair, each term
27		of the sum comprising a product of a first placement variable, a second
28		placement variable, and the transport demand between the services
29		associated with the first and second placement variables; and
30		vii. an objective of minimizing communication traffic between the nodes
31		and balancing processing loads on the nodes; and
32	e.	employing a local search solution to solve the integer program which
33		determines the placement of the services onto the nodes.
1	12.	A computer readable memory comprising computer code for directing a
2	co	mputer to make a determination of a placement of services of a distributed
3	application onto nodes of a distributed resource infrastructure, the determination	

- of the placement of the services onto the nodes comprising the steps of:
- 5 a. establishing a placement indicator for a specific service;
- 6 b. forming communication constraints between node pairs which ensure that
- a sum of transport demands between a particular node pair does not exceed a
- 8 transport capacity between the particular node pair, each term of the sum
- 9 comprising a product of a first placement variable, a second placement
- variable, and the transport demand between the services associated with the
- first and second placement variables;
- 12 c. forming an objective; and
- d. employing a local search solution to solve an integer program comprising
- the placement indicator, the communication constraints, and the objective to
- determine the placement of the services onto the nodes.
- 1 13. The computer readable memory of claim 12 wherein the placement indicator
- 2 comprises a pre-defined placement.
- 1 14. The computer readable memory of claim 13 wherein the pre-defined
- 2 placement comprises placing the specific service onto a specific node.
- 1 15. The computer readable memory of claim 13 wherein the pre-defined
- 2 placement comprises not placing the specific service onto a specific node.
- 1 16. The computer readable memory of claim 12 wherein the placement indicator
- 2 comprises a neutral indication of whether the specific service is to be placed onto
- 3 a specific node.
- 1 17. A computer readable memory comprising computer code for directing a
- 2 computer to make a determination of a placement of services of a distributed
- 3 application onto nodes of a distributed resource infrastructure, the determination
- of the placement of the services onto the nodes comprising the steps of:
- 5 a. establishing an application model of the services comprising transport
- 6 demands between the services;
- 7 b. establishing an infrastructure model of the nodes comprising transport
- 8 capacities between the nodes;

9	c.	establishing a placement model comprising placement indicators for the
10	se	ervices;

- d. forming an integer program that comprises:
- i. a set of placement variables for a combination of the services and the
 nodes, each of the placement variables indicating whether a particular
 service is located on a particular node;
- ii. communication constraints between node pairs which ensure that a

 sum of the transport demands between a particular node pair does not

 exceed the transport capacity between the particular node pair, each term

 of the sum comprising a product of a first placement variable, a second

 placement variable, and the transport demand between the services

 associated with the first and second placement variables;
 - iii. placement constraints for the services which ensure that the services are placed onto the nodes in accord with the placement indicators; and
- 23 iv. an objective; and

21

22

- e. employing a local search solution to solve the integer program which determines the placement of the services onto the nodes.
- 1 18. The computer readable memory of claim 17 wherein a particular placement 2 indicator comprises an indication that a specific service is to be placed onto a 3 specific node.
- 1 19. The computer readable memory of claim 17 wherein a particular placement 2 indicator comprises an indication that a specific service is not to be placed onto a 3 specific node.
- 1 20. The computer readable memory of claim 17 wherein a particular placement 2 indicator comprises a neutral indication of whether a specific service is to be 3 placed onto a specific node.
- 1 21. The computer readable memory of claim 20 wherein a default for the placement indicators comprises the neutral indication.
- •
- 1 22. The computer readable memory of claim 20 wherein a matrix is specified

- 2 which expresses constraints or preferences for identifying a placement of services
- 3 onto nodes.

8

9

10

14

15

16

17

18 19

20

21

22

23

26

27

28

29

30 31

- 1 23. A computer readable memory comprising computer code for directing a
- 2 computer to make a determination of a placement of services of a distributed
- 3 application onto nodes of a distributed resource infrastructure, the determination of
- 4 the placement of the services onto the nodes comprising the steps of:
- a. establishing an application model of the services that comprises processing demands for the services, storage demands for the services, and transport
- 7 demands between the services;
 - establishing an infrastructure model of the nodes that comprises processing capacities for the nodes, storage capacities for the nodes, and transport capacities between the nodes;
- 11 c. establishing a placement model comprising placement indicators for the services;
- d. forming an integer program that comprises:
 - a set of placement variables for a combination of the services and the nodes, each of the placement variables indicating whether a particular service is located on a particular node;
 - processing constraints which ensure that a sum of the processing demands for each of the nodes does not exceed the processing capacity for the node;
 - iii. storage constraints which ensure that a sum of the storage demands for each of the nodes does not exceed the storage capacity for the node;
 - iv. first placement constraints which ensure that each of the services is placed on one and only one node;
- v. second placement constraints which ensure that the services are placed onto the nodes in accord with the placement indicators;
 - vi. communication constraints between node pairs which ensure that a sum of the transport demands between a particular node pair does not exceed the transport capacity between the particular node pair, each term of the sum comprising a product of a first placement variable, a second placement variable, and the transport demand between the services associated with the first and second placement variables; and

32	,	vii. an objective of minimizing communication traffic between the nodes
33	•	and balancing processing loads on the nodes; and
34	e.	employing a local search solution to solve the integer program which
35	•	determines the placement of the services onto the nodes.