Milestone 1: Project Proposal and Data Selection/Preparation

Step 1: Preparing for Your Proposal

Client selection and dataset

The client is Tanzania Ministry of Water. They need us to analyse the water data and predict which water pumps are faulty.

The dataset is taken from Taarifa which aggregates data from the Tanzania Ministry of Water.

Steps taken to get data

The dataset is imported from Taarifa databases. Due to messy data, the data has to be properly arranged in Excel table format.

Proper identification of features and label are done and arranged before analysis.

14/3/2011

6/3/2013

These are the data we are looking at:

id amount_tsh date_recorded

6000.0

0.0

0.0

0 69572

8776

Out[3]:

In [1]: import pandas as pd df = pd.read csv("train.csv", low memory=False) df In [3]:

1390

1399

installer

Roman

GRUMETI 34.698766

World 38.104048

funder gps_height

Roman

Grumeti

World

longitude

34.938093

latitude

-9.856322

-2.147466

wpt_name

none

Zahanati

Kwa Mzee

Lugawa

-6.747464

num_private

0

0

water_qua

Lottery World Kwa 25.0 25/2/2013 37.460664 0 ... **2** 34310 686 -3.821329 Club vision Mahundi Zahanati **3** 67743 0.0 28/1/2013 Unicef 263 UNICEF 38.486161 -11.155298 0 Nanyumbu Action In **4** 19728 0.0 13/7/2011 0 Artisan 31.130847 -1.825359 Shuleni Area Germany **59395** 60739 10.0 3/5/2013 1210 CES 37.169807 -3.253847 Three Republi Namba 27 Cefa-4700.0 1212 Yahona 0 ... **59396** 27263 7/5/2011 35.249991 -9.070629 Cefa njombe Kuvala **59397** 37057 0.0 11/4/2011 0 Mashine NaN NaN 34.017087 -8.750434 fluo 31282 0.0 8/3/2011 0 35.861315 59398 Malec Musa -6.378573 Mshoro 0

191

We are interested in finding status_group which is the water pump condition:

59400 rows × 41 columns

59399 26348

23/3/2011

Entity Relationship Diagram

Description of Project

very seriously and wants action to solve them.

Step 2: Develop Project Proposal

The Tanzania Water Ministry (The Client) would like us to analyse and report findings on all water pumps conditions throughout the country. They also would like a prediction model to be developed based on data recorded. A smart understanding of which waterpoints will fail can

improve maintenance operations and ensure that clean, potable water is available to communities across Tanzania. Water is a precious resource and a daily need for all people living in Tanzania. A water pump disruption that occurs has immediate impact in using water for cooking, washing, bathing, business usage like in Food and Beverage industry. The Water Ministry views these disruptions

But to solve them, they need to know the insights from the data they have been collected.

Description

The date the row was entered

Organization that installed the well

Who funded the well

Altitude of the well

Total static head (amount water available to waterpoint)

1. Are there any locations which has more breakdowns?

- Hypothesis assumptions 1. Locations like Basin, Subvillage and Region will provide pump statuses

2. Populations density throughout Tanzania are equally distributed

Questions that you want to answer with the data:

2. Does water management issues affect the pump operations?

3. How about water extraction, source and water points affect the pumps?

These are the attributes of the dataset:

Approach to take in order to prove (or disprove) hypotheses

Field

funder

gps_height

installer

amount_tsh

date_recorded

3. Water source, types, quantities, quality are consistent in all water pumps

Organization that installed the well	installer
GPS coordinate	longitude
GPS coordinate	latitude
Name of the waterpoint if there is one	wpt_name
	num_private
Geographic water basin	basin
Geographic location	subvillage
Geographic location	region
Geographic location (coded)	region_code
Geographic location (coded)	district_code
Geographic location	lga
Geographic location	ward
Population around the well	population
True/False	public_meeting
Group entering this row of data	recorded_by
Who operates the waterpoint	scheme_management
Who operates the waterpoint	scheme_name
If the waterpoint is permitted	permit
Year the waterpoint was constructed	construction_year
The kind of extraction the waterpoint uses	extraction_type
The kind of extraction the waterpoint uses	extraction_type_group
The kind of extraction the waterpoint uses	extraction_type_class
How the waterpoint is managed	management
How the waterpoint is managed	management_group
What the water costs	payment
What the water costs	payment_type
The quality of the water	water_quality
The quality of the water	quality_group
The quantity of water	quantity
The quantity of water	quantity_group
The source of the water	source
The source of the water	source_type
The source of the water	source_class
The kind of waterpoint	waterpoint_type
The kind of waterpoint	waterpoint_type_group
the waterpoint is operational and there are no repairs needed	functional

- 1. Population will use population and public_meeting columns.

longitude and latitude.

1. source, source_type, source_class, waterpoint_type, waterpoint_type_group columns will be explored to see any connection to pumps

1. Location analysis will use basin, subvillage, region, region code and district code features. Extra info can be gleaned from gps height,

We would also keen to explore any relationships for management impacts and water payments relates to water pump operations.

Metrics evaluation will be used are accuracy, precision, recall and F1 scores since this is binary problem.