THE CLAIMS

What is claimed is:

5

10

15

1. A compound of a formula I:

$$W^1$$
 Z_m G Z_m W^2

I

- (a) each occurrence of Z is independently CH₂, CH=CH, or phenyl, wherein each occurrence of m is independently an integer ranging from 1 to 9, but when Z is phenyl then its associated m is 1;
- (b) G is $(CH_2)_x$, $CH_2CH=CHCH_2$, CH=CH, CH_2 -phenyl- CH_2 , or phenyl, wherein x is 2, 3, or 4;
- (c) W^1 and W^2 are independently L, V, $C(R^1)(R^2)$ — $(CH_2)_{c-}C(R^3)(R^4)$ — $(CH_2)_{n-}Y$, or $C(R^1)(R^2)$ — $(CH_2)_{c-}V$, wherein c is 1 or 2 and n is an independent integer ranging from 0 to 4;
- (d) R^1 and R^2 are independently CO_2H , $CO_2(C_1_C_6)$ alkyl, $(C_1_C_6)$ alkyl, $(C_2_C_6)$ alkenyl, $(C_2_C_6)$ alkynyl, phenyl, or benzyl or when W^1 or W^2 is $C(R^1)(R^2)$ – $(CH_2)_{c-}$ $C(R^3)(R^4)$ –Y, then R^1 and R^2 can both be H, or R^1 and R^2 and the carbon to which they are both attached are taken together to form a (C_3-C_7) cycloakyl group;
- 20 (e) R^3 and R^4 are independently H, OH, CO_2H , $CO_2(C_1_C_6)$ alkyl, $(C_1_C_6)$ alkyl, $(C_2_C_6)$ alkynyl, $(C_1_C_6)$ alkoxy, phenyl, benzyl, Cl, Br, CN, NO₂, or CF₃, with the proviso that when R^1 and R^2 are both H, then one of R^3 or R^4 is not H or R^3 and R^4 and the carbon to which they are both attached are taken together to form a (C_3-C_7) cycloakyl group;;
- 25 (f) L is $C(R^1)(R^2)$ – $(CH_2)_{n-}Y$;
 - (g) V is

(h) Y is (C₁-C₆)alkyl, OH, COOH, CHO, COOR⁵, SO₃H,

where

(I) R⁵ is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C₁-C₆)alkoxy, or phenyl groups,

			(11)	C ₆)alkenyl, or (C_2-C_6) alkynyl and is unsubstituted or
				substituted with one or two halo, OH, C ₁ _C ₆ alkoxy, or phenyl groups; and
5			(iii)	each occurrence of R ⁷ is independently H, (C ₁₋ C ₆)alkyl, (C ₂₋
				C ₆)alkenyl, or (C ₂ -C ₆)alkynyl; and
	provid	led that:		•
			(i)	if G is (CH ₂)x, x is 4, each occurrence of Z is CH ₂ , each
				occurrence of m is 4, and W ¹ is -CH(CH ₃)CO ₂ H, then W ² is
10				not the same as W ¹ ;
			(ii)	if G is CH ₂ -phenyl-CH ₂ , each occurrence of Z is CH ₂ , each
				occurrence of m is 2, and W ¹ is -C(CH ₃) ₂ CH(CO ₂ CH ₂ CH ₃) ₂ ,
				then W ² is not the same as W ¹ ;
			(iii)	if G is CH ₂ -phenyl-CH ₂ , each occurrence of Z is CH ₂ , each
15				occurrence of m is 2, and W ¹ is -C(CH ₃) ₂ CH ₂ (CO ₂ CH ₂ CH ₃),
				then W ² is not the same as W ¹ ;
			(iv)	if G is CH ₂ -phenyl-CH ₂ , each occurrence of Z is CH ₂ , each
				occurrence of m is 1, and W ¹ is -COCH ₂ C(CH ₃) ₂ CH ₂ CO ₂ H,
				then W ² is not the same as W ¹ ;
20			(v)	if G is $(CH_2)_x$, x is 4, each occurrence of Z is CH_2 , each
				occurrence of m is 2, and W ¹ is -C(phenyl) ₂ CH ₂ CO ₂ H, then
				W^2 is not the same as W^1 ;
			(vi)	if G is CH=CH, each occurrence of Z is CH ₂ , each occurrence
				of m is 1, and W ¹ is -C(CH ₃) ₂ CH ₂ (CO ₂ H), then W ² is not the
25				same as W ¹ ; and
			(vii)	if G is phenyl, each occurrence of Z is CH ₂ , each occurrence
				of m is 1, and W ¹ is -C(phenyl) ₂ CO ₂ H, then W ² is not the
				same as W ¹ .
	2	The second	. 1 . 6 . 1	
20	2.	The compound of claim 1, wherein: $W^{1} = W^{2} = 0 \text{ independently I. } W = 0 \text{ C(P}^{1}) \text{ (CII.)} W = 0 \text{ independently I. } W = 0 \text{ C(P}^{1}) \text{ (CII.)} W = 0 \text{ independently I. } W = 0 $		
30	(a)	W^1 and W^2 are independently L, V, or $C(R^1)(R^2)$ – $(CH_2)_{c-}V$ where c is 1 or 2; and		
	(b)	R ¹ or R ² are independently (C ₁ -C ₆)alkyl, (C ₂ -C ₆)alkenyl, (C ₂ -C ₆)alkynyl, phenyl, or		

benzyl.

- 3. The compound of claim 1, wherein W¹ is L.
- 4. The compound of claim 1, wherein W¹ is V.
- 5. The compound of claim 1, wherein W^1 is $C(R^1)(R^2)$ — $(CH_2)_{c-}C(R^3)(R^4)$ — $(CH_2)_{n-}Y$.
- 6. The compound of claim 1, wherein W^1 is $C(R^1)(R^2)$ - $(CH_2)_{c-}V$.
- 5 7. The compound of claim 1, wherein W¹ and W² are independent L groups.
 - 8. The compound of claim 7, wherein each occurrence of Y is independently $(CH_2)_nOH$, $(CH_2)_nCOOR^5$, or $(CH_2)_nCOOH$.
 - 9. A compound of the formula Ia:

$$W^1$$
 Z_m G Z_m W^2

10 Ia

- (a) each occurrence of Z is independently CH₂ or CH=CH, wherein each occurrence of m is independently an integer ranging from 1 to 9;
- (b) G is $(CH_2)_x$, $CH_2CH=CHCH_2$, or CH=CH, where x is 2, 3, or 4;
- 15 (c) W^1 and W^2 are independently L, V, or $C(R^1)(R^2)$ – $(CH_2)_{c-}V$, where c is 1 or 2;
 - (d) each occurrence of R¹ and R² is independently CO₂H, CO₂(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₂-C₆)alkynyl, phenyl, benzyl, or R¹ and R² and the carbon to which they are both attached are taken together to form a (C₃-C₇)cycloakyl group;
- 20 (e) L is $C(R^1)(R^2)$ — $(CH_2)_{n-}Y$, where n is an independent integer ranging from 0 to 4;
 - (f) V is

(g) each occurrence of Y is independently (C₁-C₆)alkyl, OH, COOH, CHO, (CH₂)_nCOOR³, SO₃H,

where

(I) R³ is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C₁-C₆)alkoxy, or phenyl groups,

- (ii) each occurrence of R^4 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl and is unsubstituted or substituted with one or two halo, OH, C_1-C_6 alkoxy, or phenyl groups; and
- (iii) each occurrence of R^5 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl; and

provided that:

5

- (i) if x is 4, each occurrence of Z is CH₂, each occurrence of m is 4, and W¹ is -CH(CH₃)CO₂H, then W² is not the same as W¹;
- if x is 4, each occurrence of Z is CH₂, each occurrence of m is 2, and W¹ is -C(phenyl)₂CH₂CO₂H, then W² is not the same as W¹.
 - 10. The compound of claim 9, wherein W^1 is L.
 - 11. The compound of claim 9, wherein W¹ is V.
- 15 12. The compound of claim 9, wherein W^1 is $C(R^1)(R^2)$ – $(CH_2)_{c-}V$.
 - 13. The compound of claim 9, wherein W^1 and W^2 are independent L groups.
 - 14. The compound of claim 13, wherein each occurrence of Y is independently OH, COOR³, or COOH.
 - 15. A compound of the formula **Ib**

I

- (a) each occurrence of m is independently an integer ranging from 1 to 9;
- (b) x is 2, 3, or 4;
- 25 (c) n is an independent integer ranging from 0 to 4;

- (d) each occurrence of R¹ and R² is independently CO₂H, CO₂(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, benzyl, or R¹ and R² and the carbon to which they are both attached are taken together to form a (C₃-C₇)cycloakyl group;
- each occurrence of R¹¹ and R¹² is independently H, CO₂H, CO₂(C₁_C₆)alkyl, (C₁_C₆)alkyl, (C₂_C₆)alkynyl, phenyl, benzyl, or R¹¹ and R¹² and the carbon to which they are both attached are taken together to form a (C₃-C₇)cycloakyl group;
- (f) each occurrence of Y is independently (C₁₋C₆)alkyl, OH, COOH, CHO, COOR³, SO₃H,

- (I) R³ is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C₁-C₆)alkoxy, or phenyl groups,
- 20 (ii) each occurrence of R^4 is independently H, $(C_1_C_6)$ alkyl, $(C_2_C_6)$ alkenyl, or $(C_2_C_6)$ alkynyl and is unsubstituted or -309 -

substituted with one or two halo, OH, C_{1} – C_{6} alkoxy, or phenyl groups; and

- (iii) each occurrence of R⁵ is independently H, (C₁_C₆)alkyl, (C₂_C₆)alkenyl, or (C₂_C₆)alkynyl;
- 5 provided that:
- (i) if x is 4 each occurrence of m is 4, and W¹ is
 -CH(CH₃)CO₂H, then W² is not the same as W¹;
- (ii) if x is 4 occurrence of m is 2, and W¹ is
 -C(phenyl)₂CH₂CO₂H, then W² is not the same as W¹.
- 16. The compound of claim 15, wherein each occurrence of Y is independently OH, COOR³, or COOH.
 - 17. The compound of claim 16, wherein each R^1 or R^2 is the same or different (C_{1-} C_6)alkyl group.
 - 18. A compound of the formula Ic

V (CH₂)_m (CH₂)_x (CH₂)_m

15

Ic

- (a) each occurrence of m is an independent integer ranging from 1 to 9;
- (b) $x ext{ is } 2, 3, ext{ or } 4;$
- 20 (c) V is

provided that:

5

15

- (i) if x is 4 each occurrence of m is 4, and W^1 is -CH(CH₃)CO₂H, then W^2 is not the same as W^1 ; and
- (ii) if x is 4 each occurrence of m is 2, and W¹ is -C(phenyl)₂CH₂CO₂H, then W² is not the same as W¹.
- 19. A compound according to claim 1, having the formula 5-[2-(5-hydroxy-4,4-dimethyl-pentyloxy)-ethoxy]-2,2-dimethyl-pentan-1-ol or 4-[3-(3,3-Dimethyl-4-oxo-butoxy)-propoxy]-2,2-dimethyl-butyric acid.
- 10 20. A compound of the formula II:

$$W_{(CH_2)_m}^{1}$$
 $(CH_2)_{\overline{n}}^{\overline{C}}$ $(CH_2)_{\overline{n}}^{\overline{R^{11}}}$ $(CH_2)_m$ $(CH_2)_m$

II

- (a) R^1 and R^2 are independently CO_2H , $CO_2(C_1_C_6)$ alkyl, $(C_1_C_6)$ alkyl, $(C_2_C_6)$ alkenyl, $(C_2_C_6)$ alkynyl, phenyl, or benzyl; or R^1 , R^2 , and the carbon to which they are both attached are taken together to form a $(C_3_C_7)$ cycloalkyl group;
 - (b) R¹¹ and R¹² are independently CO₂H, CO₂(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₂-C₆)alkynyl, phenyl, or benzyl; or R¹¹, R¹², and the carbon to which they are both attached are taken together to form a (C₃-C₇)cycloalkyl group;
- 20 (c) n is an integer ranging from 1 to 6;
 - (d) each occurrence of m is independently an integer ranging from 0 to 4;

(e) W¹ and W² are independently (C₁-C₆)alkyl, CH₂OH, C(O)OH, CHO, OC(O)R³, C(O)OR³, SO₃H,

where

- (I) R³ is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C₁-C₆)alkoxy, or phenyl groups,
- (ii) each occurrence of R^4 is independently H, $(C_1_C_6)$ alkyl, $(C_2_C_6)$ alkenyl, or $(C_2_C_6)$ alkynyl and is unsubstituted or

substituted with one or two halo, OH, C₁-C₆ alkoxy, or phenyl groups;

(iii) each occurrence of R⁵ is independently H, (C₁₋C₆)alkyl, (C₂₋C₆)alkenyl, or (C₂₋C₆)alkynyl.

5 21. A compound of formula IIa:

10

$$R^{1}$$
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{2}

IIa

or a pharmaceutically acceptable salt, hydrate, solvate, or a mixture thereof, wherein

(a) R¹ and R² are OH, COOH, CHO, COOR⁷, SO₃H,

5

- (I) R⁷ is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C₁-C₆)alkoxy, or phenyl groups,
- (ii) each occurrence of R⁸ is independently H, (C₁₋C₆)alkyl, (C₂₋C₆)alkenyl, or (C₂₋C₆)alkynyl and is unsubstituted or substituted with one or two halo, OH, C₁₋C₆ alkoxy, or phenyl groups,
- (iii) each occurrence of R⁹ is independently H, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, or (C₂-C₆)alkynyl;
- (b) R^3 and R^4 are CO_2H , $CO_2(C_{1-}C_6)$ alkyl, $(C_{1-}C_6)$ alkyl, $(C_{2-}C_6)$ alkenyl, $(C_{2-}C_6)$ alkynyl, phenyl, or benzyl;
- 15 (c) R⁵ and R⁶ are hydrogen, halogen, (C₁_C₄)alkyl, (C₁_C₄)alkoxy, (C6)aryloxy, CN, or NO₂, N(R⁵)₂ where R⁵ is H, (C₁_C₄) alkyl, phenyl, or benzyl;
 - (d) each occurrence of m is independently an integer ranging from 1 to 5;
 - (e) each occurrence of n is independently an integer ranging from 0 to 4; and
- (f) *1 and *2 represent independent chiral-carbon centers, wherein each center may independently be R or S.
 - 22. A compound as in claim 21 wherein *1 is a chiral-carbon center of the stereochemical configuration R or substantially R.
 - 23. A compound as in claim 21 wherein *1 is a chiral-center of the stereochemical configuration S or substantially S.

- 24. A compound as in claim 21 wherein *2 is a chiral-carbon center of the stereochemical configuration R or substantially R.
- 25. A compound as in claim 21 wherein *2 is a chiral-center of the stereochemical configuration S or substantially S.
- 5 26. A compound of the formula III:

$$W^{1} = Z_{m}$$

$$Q = Q$$

$$Q$$

III

- (a) each occurrence of Z is independently CH₂, CH=CH, or phenyl, where each occurrence of m is independently an integer ranging from 1 to 5, but when Z is phenyl then its associated m is 1;
 - (b) G is (CH₂)_x, CH₂CH=CHCH₂, CH=CH, CH₂-phenyl-CH₂, or phenyl, where x is an integer ranging from 1 to 4;
 - (c) W^1 and W^2 are independently $C(R^1)(R^2)$ — $(CH_2)_{n-}Y$ where n is an integer ranging from 0 to 4;
 - (d) R¹ and R² are independently CO₂H, CO₂(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl or R¹ and R² are both H, or R¹, R¹, and the carbon to which they are both attached are taken together to form a (C₃-C₇)cycloalkyl group;
- 20 (e) Y is (C_1-C_6) alkyl, $(CH_2)_nOH$, $(CH_2)_nCOOH$, $(CH_2)_nCHO$, $(CH_2)_nCOOR^3$, SO_3H ,

5

- (I) R³ is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C₁-C₆)alkoxy, or phenyl groups,
- (ii) each occurrence of R^4 is independently H, $(C_{1-}C_6)$ alkyl, $(C_{2-}C_6)$ alkenyl, or $(C_{2-}C_6)$ alkynyl and is unsubstituted or substituted with one or two halo, OH, $C_{1-}C_6$ alkoxy, or phenyl groups,

- (iii) each occurrence of R^5 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl; and
- (f) each occurrence of p is independently 2 or 3 where the broken line represents an optional presence of one or more additional carbon-carbon bonds that when present complete one or more carbon-carbon double bonds.
- 27. The compound of claim 26, wherein W^1 and W^2 are independent $C(R^1)(R^2)$ — $(CH_2)_n$ –Y groups, where n is an independent integer ranging from 0 to 4, and each occurrence of Y is independently OH, COOR⁴, or COOH.
- 28. The compound of claim 26, wherein p is 0.
- 10 29. The compound of claim 26, wherein p is 1.
 - 30. A compound of the formula IIIa:

IIIa

- 15 (a) each occurrence of m is independently an integer ranging from 1 to 5;
 - (b) x is an integer ranging from 1 to 4;
 - (c) W^1 and W^2 are independently $C(R^1)(R^2)$ - $(CH_2)_{n-}Y$;

- (d) each occurrence of R¹ or R² is independently (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, benzyl, or R¹, R¹, and the carbon to which they are both attached are taken together to form a (C₃-C₇)cycloalkyl group;
- (e) Y is (C₁-C₆)alkyl, OH, COOH, CHO, COOR³, SO₃H,

- (I) R³ is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C₁-C₆)alkoxy, or phenyl groups,
- (ii) each occurrence of R⁴ is independently H, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, or (C₂-C₆)alkynyl and is unsubstituted or substituted with one or two halo, OH, C₁-C₆ alkoxy, or phenyl groups,
- (iii) each occurrence of R^5 is independently H, $(C_1_C_6)$ alkyl, $(C_2_C_6)$ alkenyl, or $(C_2_C_6)$ alkynyl; and

15

10

- (f) each occurrence of p is independently 0 or 1.
- 31. The compound of claim 30, wherein W^1 and W^2 are independent $C(R^1)(R^2)$ – $(CH2)_{n-}$ Y groups, where n is an integer from 0 to 4, and each occurrence of Y is independently OH, $COOR^3$, or COOH.
- 5 32. The compound of claim 30, wherein p is 0.
 - 33. The compound of claim 30, wherein p is 1.
 - 34. A pharmaceutical composition comprising a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30 and a pharmaceutically acceptable vehicle, excipient, or diluent.
 - 35. A pharmaceutical composition comprising the following compound:
- 6-(5,5-Dimethyl-6-hydroxy-hexane-1-sulfinyl)-2,2-dimethyl-hexan-1-ol or pharmaceutically acceptable salts, hydrates, solvates, clathrates, enantiomers, diasteriomers, racemates, or mixures of steroisomers thereof and a pharmaceutically acceptable vehicle, excipient, or diluent.
- 36. A method for treating or preventing a cardiovascular disease in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 37. A method for treating or preventing a dyslipidemia in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 38. A method for treating or preventing a dyslipoproteinemia in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 39. A method for treating or preventing a disorder of glucose metabolism in a patient, comprising administering to a patient in need of such treatment or prevention a
- 25 therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.

- 40. A method for treating or preventing Alzheimer's Disease in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 41. A method for treating or preventing Syndrome X or Metabolic Syndrome in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 42. A method for treating or preventing septicemia in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 43. A method for treating or preventing a thrombotic disorder in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 44. A method for treating or preventing a peroxisome proliferator activated receptor associated disorder in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.

- 45. A method for treating or preventing obesity in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 46. A method for treating or preventing pancreatitis in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 47. A method for treating or preventing hypertension in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.

- 48. A method for treating or preventing renal disease in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 49. A method for treating or preventing cancer in a patient, comprising administering to a patient in claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 50. A method for treating or preventing inflammation in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 51. A method for treating or preventing impotence in a patient, comprising

 10 administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 52. A method for treating or preventing a neurodegenerative disease or disorder in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.

- 53. A method of inhibiting hepatic fatty acid synthesis in a patient, comprising administering to a patient in need thereof a therapeutically or prophylactically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 54. A method of inhibiting sterol synthesis in a patient, comprising administering to a patient in need thereof a therapeutically or prophylactically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 55. A method of treating or preventing metabolic syndrome disorders in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.

56. A method of treating or preventing a disease or disorder that is capable of being treated or prevented by increasing HDL levels, which comprises administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.

5

57. A method of treating or preventing a disease or disorder that is capable of being treated or prevented by lowering LDL levels, which comprises administering to such patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.