LISTA 13 – Parametrização de Superfícies

M. B. Gonçalves e D. M. Flemming – Cálculo B

Nos exercícios 8 a 14, obter uma equação cartesiana para a superfície dada. Representá-la graficamente.

8.
$$\vec{r}(u,v) = (u^2 + v^2 - 1)\vec{i} + u\vec{j} + v\vec{k}$$
.

9.
$$\vec{r}(u, v) = u\vec{i} + v\vec{j} + 2\sqrt{u^2 + v^2}\vec{k}$$
.

10.
$$\vec{r}(u, v) = u\vec{i} + u^2\vec{j} + v\vec{k}, -2 \le u \le 2,$$

 $0 \le v \le 4.$

11.
$$\vec{r}(u, v) = (u, v, \sqrt{4 - u^2 - v^2}).$$

12.
$$\vec{r}(u, v) = (u, \sqrt{4 - u^2 - v^2}, v)$$
.

13.
$$\vec{r}(u, v) = (\sqrt{4 - u^2 - v^2}, u, v)$$
.

14.
$$\vec{r}(u, v) = (2\cos u, 3\sin u, v), 0 \le u \le \frac{\pi}{2},$$

 $0 \le v \le 4.$

Nos exercícios 15 a 20, parametrizar as seguintes superfícies, dadas implicitamente:

15.
$$x^2 + y^2 + z^2 - 2x - 4y = 4$$
.

16.
$$x^2 + y^2 - z = 1$$
.

17.
$$x + y + z = 8$$
.

18.
$$x^2 + z^2 = 4, -\infty < y < \infty$$
.

19.
$$x^2 - 4x + y^2 + 2y + z^2 + 1 = 0$$
.

20.
$$x^2 + y^2 + z^2 - 2y = 0$$
.

Nos exercícios 21 a 45, escrever uma representação paramétrica para a superfície dada.

- 21. Esfera centrada na origem e raio $\sqrt{2}$.
- 22. Esfera centrada em (2, -1, 3) e raio 4.
- 23. Parte da esfera $x^2 + y^2 + z^2 = 8$ que está no 2° octante.
- 24. Parte da esfera $x^2 + y^2 + z^2 = 1$ acima do plano $z = \frac{1}{2}$.
- 25. $x^2 + y^2 = 3$.
- **26.** Parte do cilindro $x^2 + y^2 = 16$, $-2 \le z \le 2$ delimitado por x = y, $y \ge 0$ e $x = \frac{y}{2}$.
- 27. $x^2 + z^2 = 10$.
- 28. Cone gerado pela semi-reta z = 2y, $y \ge 0$ quando esta gira em torno do eixo positivo dos z
- 29. $z = 2\sqrt{x^2 + y^2}$.
- 30. $z = -2\sqrt{x^2 + y^2}$.
- $31. \ 2x^2 + 2y^2 3z = 0.$
- $32. 4z 3x^2 3y^2 = 0.$
- 33. $2x^2 + 2z^2 y = 0, y \le 8.$
- 34. $x^2 + y^2 + z^2 16 = 0, z \ge 0.$
- 35. Parte da esfera $x^2 + y^2 + z^2 4z = 0$, que está acima do plano z = 2.
- 36. Parte da esfera $x^2 + y^2 + z^2 = 36$, tal que $x \ge 0$ e $y \le 0$.
- 37. Parte da esfera $x^2 + y^2 + z^2 = 1$ que está entre os semiplanos y = x e y = 2x, $x \ge 0$.
- 38. Cilindro $y^2 + z^2 = 9$, $0 \le x \le 4$.
- 39. Cilindro $x^2 2x + y^2 6y = 3$.
- 40. Cone gerado pela semi-reta $y = \sqrt{3}x$, $x \ge 0$, quando esta gira em torno do eixo positivo dos y.
- 41. Parte do cone $y = 1 \sqrt{x^2 + z^2}$ tal que $y \ge -3$.
- **42.** Parte do parabolóide $z = x^2 + y^2 1$, que está entre os planos z = 0 e z = 3.
- 43. Parte do plano x + y + z = 4 que está no 1º octante
- **44.** Parte do plano 2x + 3y = 9, delimitada pelos planos coordenados x = 0 e y = 0.
- **45.** Parte do plano y + z = 8, delimitada pelo cilindro $x^2 + y^2 = 4$.