CONTENTS OF THE PRESENTATION

01INTRODUCTION

We'll discuss the types of tumors/cancer and the need to discriminate them.

O3 OPTIMIZATION

We'll discuss the optimization model that we're going to use.

O2CANCER DATASET

We'll discuss the tumor features cancer data set.

04RESULTS & ACCURACY

Results of our prediction model and its accuracy.

INTRODUCTION

In this presentation, we will look at the two different types of tumors, and how we can use various features to distinguish one type from another. We will delve into how we applied Discriminant Analysis on the characteristic data of tumors such as size, shape, texture, location, and **histopathological** features to accurately classify tumors. Earlier identification of the type of tumor can ultimately lead to better diagnosis and treatment options for patients.

Histopathological - study of diseased cells and tissues using a microscope.

MALIGNANT AND BENIGN TUMORS

Malignant Tumors:
Cancerous
May invade surrounding tissue
Most grow rapidly*
Irregular shape
Needs treatment

Benign Tumors:
Not cancerous
Doesn't invade surrounding tissue
Most grow slowly*
Smooth shape
May not need treatment

The dataset contains 570 rows of different tumor data containing 30 different features of the tumor and their actual classification (as Benign or Malignant). The following are the attributes in this dataset.

1	id		9	conca
2	radius_mean		10	symm
3	texture_mean		11	fractal_
4	perimeter_mean		12	radius
5	area_mean		13	texture
6	smoothness_mean		14	perime
7	compactness_mean		15	area_s
8	concavity_mean		16	smoot
		-		

9	concave points_mean	17	compactness_se
10	symmetry_mean	18	concavity_se
11	fractal_dimension_mean	19	concave points_se
12	radius_se	20	symmetry_se
13	texture_se	21	fractal_dimension_s
14	perimeter_se	22	radius_worst
15	area_se	23	texture_worst
16	smoothness_se	24	perimeter_worst

17	compactness_se	25	area_worst
18	concavity_se	26	smoothness_worst
19	concave points_se	27	compactness_worst
20	symmetry_se	28	concavity_worst
21	fractal_dimension_se	29	concave points_worst
22	radius_worst	30	symmetry_worst
23	texture_worst	31	fractal_dimension_worst
24	perimeter_worst	32	Diagnosis

OPTIMIZATION

Objective:

The main goal is to maximize the **Accuracy** of Cancer Prediction using **Discriminant Analysis**.

- Predicting the cancer with a very high accuracy improves the business of a diagnostic centre.

Best Feature Selection:

- We have 30 columns (features of tumor) in our dataset but most of them are redundant and doesn't contribute to the determination of the type of tumor. So, we used Genetic Algorithm to find the best 5 high quality features that are relevant to the problem.
- We found this using 'GeneticSelectionCV' module from sklearn-genetic package in Python.
 The best features are shown in the adjacent image.

	Features	Score
23	area_worst	112598.431564
3	area_mean	53991.655924
13	area_se	8758.504705
22	perimeter_worst	3665.035416
2	perimeter_mean	2011.102864
20	radius_worst	491.689157
0	radius_mean	266.104917
12	perimeter_se	250.571896
21	texture_worst	174.449400
1	texture_mean	93.897508
26	concavity_worst	39.516915
10	radius_se	34.675247
6	concavity_mean	19.712354
25	compactness_worst	19.314922
27	concave points_worst	13.485419
7	concavo pointe moon	10 5//025

OPTIMIZATION

Discriminant Analysis (optimization model that we adopted):

- It is a statistic tool used in business and marketing by analysts to classify/categorize certain data. If a high % of data is correctly classified, then the Analysis is said to be successful.

Objective Function: Accuracy (of prediction) - must be Maximized.

<u>Features deciding the prediction of tumor</u>: area_worst, area_mean, area_se, perimeter_worst, perimeter_mean

Constraints for Cutoff value of score: -7735.3 < Cutoff < 7735.3 Score = SUMPRODUCT(Features, Weights). Since the Maximum value of the sum of the 5 features is 7735.3, the cut-off value cannot be greater than 7735.3 (if weights = 1) and cannot be smaller than -7735.3 (if weights = -1)

Constraints for Weights of features: -1 < Weights < 1

OPTIMIZATION RESULTS & ACCURACY

									-					
eights for	discriminant								-					
	area_worst	_	area_se	perimeter_mean	_									
	0.9603204	0.03475749	0.2413133	0.047735802	0.642361846				M - Maligna	int				
									B - Benign					
utoff value	for classificat								-					
	954.40045								-				Max	
										Cl!6'+!			7735.3	
								n II		Classificatio		4 -4		
842302	_	_	area_se	_	perimeter_worst		Score 2135.138	Prediction		(Actual aloi	ng side, predicte		Sum of featu 3480.8	res
842302 842517	2019 1956				184.6 158.8		2050.702			N4	176	36	3480.8	
842517	1709				158.8		1809.857		1	В	8	349	3288.53	
84348301	567.7				98.87					В	8	349	_	
84358402	1575				152.2		632.3784 B 1684.5914 M						1157.48 3253.74	
843786					103.4		805.679						1431.86	
844359	1606				153.2		1695.550						2972.71	
84458202	897				110.6		969.142		i	Accuracy			1726.66	
844981	739.3				106.2		806.2962			92.27	0/		1477.12	
84501001	711.4				97.65		772.225			32.21	70		1392.86	
845636					123.8		1226.300						2214.81	
84610002	1299				136.5		1380.299		-				2374.26	
846226					151.7		1449.986						2855.3	
846381	876.5				112		954.6475						1911.48	
84667401	697.7				108.8		769.1084						1497.61	
84799002	943.2				124.1		1020.863						1855.38	
848406					123.4		1211.38						2086.04	
84862001	1315				136.8		1396.695						2412.88	
849014	2398				186.8		2499.965		1				4087.2	
8510426					99.7		776.5668						1488.22	
8510653	630.5				96.09	В	692.9083	.6 B					1346.89	
8510824	314.9	273.9	15.7	60.34	65.13	В	360.4310)1 B					729.97	

OPTIMIZATION RESULTS & ACCURACY

Total number of tumor samples	569
Number of samples correctly predicted as Malignant	176
Number of samples correctly predicted as Benign	349
Number of Benign tumors wrongly predicted as Malignant	8
Number of Malignant tumors wrongly predicted as Benign	36
Accuracy (Percentage of tumor samples that are correctly predicted)	= (349+176)/569 = 0.9227 = 92.27 %

CONCLUSION:

- We managed to achieve a very good Maximum Accuracy of 92.27% by choosing the best features for Discriminative analysis using Genetic Algorithm. (We previously got a maximum accuracy of only 70% when we used all the features for Discriminative Analysis)
- This prediction can also be achieved by Multiple Linear Regression by training and testing a model. We wish to perform this and compare the results and accuracy of both models.

THANKS FOR YOUR ATTENTION!!

ANY QUESTIONS!?