Chapter 7 Statistical Intervals Based on a Single Sample

A point estimate by itself gives no information about the precision of the estimation. An alternative is to provide an interval estimate or confidence interval (CI).

7.1 Basic Properties of Confidence Intervals:

For this section, we assume that we are studying the population mean u, and

- 1. The population distribution is Normal
- 2. The population SD T is known. unrealistic

Let $X_1, ..., X_n$ be a random sample from a normal distribution with mean μ and SD σ . Then results from Ch. 5 tell us

$$\overline{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$$

We can standardize \overline{X} to get a standard normal RV Z.

Since
$$P(-1.96 < 7 < 1.96) = 0.95$$
,
 $P(-1.96 < \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{5}\pi}} < 1.96) = 0.95$

Let's solve the inequality
$$-1.96 < \frac{\overline{X} - \mu}{\frac{\sigma}{5\pi}} < 1.96$$
 for μ .

$$-1.96 \frac{\sigma}{5\pi} < \overline{X} - \mu < 1.96 \frac{\sigma}{5\pi}$$

$$+1.96 \frac{\sigma}{5\pi} > \mu - \overline{X} > -1.96 \frac{\sigma}{5\pi}$$

$$-1.96 \frac{\sigma}{5\pi} < \mu - \overline{X} < 1.96 \frac{\sigma}{5\pi}$$

$$\overline{X} - 1.96 \frac{\sigma}{5\pi} < \mu < \overline{X} + 1.96 \frac{\sigma}{5\pi}$$

$$P(\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}}) = 0.95.$$

95% CI for Population Mean for Normal Population with Known SD o:

If \overline{x} is the sample mean we obtained, then

 $\overline{\chi}$ - 1.96 $\frac{\sigma}{5\overline{n}}$ < μ < $\overline{\chi}$ + 1.96 $\frac{\sigma}{5\overline{n}}$ with 95% confidence.

 $\left(\overline{x}-1.96\,\frac{\sigma}{5\pi}\,,\,\,\overline{x}+1.96\,\frac{\sigma}{5\pi}\right)$ is a 95% Confidence Interval for μ

Concise expression: $\overline{\chi} \pm 1.96 \frac{\sigma}{\ln}$.

Example 1: We obtain a sample $x_1, x_2, ..., x_n$ of the preferred keyboard height of n randomly selected typists. Assume it is known the preferred height is normally distributed with Sd = 2.0 cm. Our sample of n=31 typists gave $\overline{x} = 80.0 \text{ cm}$. Find a 95% CI for μ , the true average preferred height.

$$\bar{x} - 1.96 \frac{\pi}{5m} < \mu < \bar{x} + 1.96 \frac{\pi}{5m}$$

$$80.0 - 1.96 \cdot \frac{2.0}{531} < \mu < 80.0 + 1.96 \cdot \frac{2.0}{531}$$

$$79.3 < \mu < 80.7$$

$$(79.3, 80.7) \text{ is an } 959.0 \text{ CI for } \mu$$

Interpreting a CI:

It is tempting to say there is a 95% probability that μ is captured by a 95% CI.

Issue: There is no randomness anymore.

The randomness was from \overline{X}

Instead we need to look at the long term behavior of many CIs. Say we repeat the process of obtaining a random sample and generating a 95% CI for M. In the long run, 95% of these CIs will contain M.

See Figure 7.3 in our textbook.

Other Levels of Confidence

We can find CI with other confidence levels, like 90% confidence or 99% confidence

The only change we have to make is changing 1.96 to the appropriate critical value Zaya

gnorm (.95)

Ex: To get a 90% CI, we use 2 = gnorm (.05, lower.tail = FALSE) ≈ 1.645 To get a 99% CI, we use $\frac{2}{20.005} = \frac{900}{1000} (.995) \approx 2.576$

A $100(1-\alpha)$ % CI for the mean μ of normal population when σ is known is

$$\left(\overline{x} - \overline{z}_{\frac{x}{2}} \cdot \frac{\overline{c}_{1}}{\sqrt{n}} \right) \cdot \overline{x} + \overline{z}_{\frac{x}{2}} \cdot \frac{\overline{c}_{1}}{\sqrt{n}} \right).$$

Shorthand: x + Zg. 5n

Example 2: Assume the brightness of a certain model of lightbulb is normally distributed with SD T=100 lumens. We obtained a random sample of 20 lightbulbs and got a sample mean of \bar{x} = 820 lumens. Find a 99% CI for u, the true average lumens of this model of lightbulb.

820 ± 2.576.
$$\frac{100}{\sqrt{20}}$$

(762.4, 877.6) is our 99% CI for μ .

Confidence Level, Precision, and Sample Size: Higher confidence levels lead to a wider (less precise) CI.

The width of a CI is $W = 2 \cdot Z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$. Solving for n,

 $n = \left(2 + \frac{\sigma}{2} \cdot \frac{\sigma}{w}\right)^2$. This is the smallest sample size that allows us to have the desired confidence level and have width no more than w.

Example 3: What sample size n is required so in Example 2 we can have a 999. CI with width 20 lumens?

$$N = \left(2.2.576 \cdot \frac{100}{20}\right)^2 \approx \left(\frac{664}{664}\right)$$

$$663.57$$

$$1 = \sqrt{2} \cdot 2.576 \cdot \frac{100}{20} = \sqrt{2} \cdot \frac{100}{20}$$

Now we look at a more practical case.

Let X1, ..., Xn be a random sample from a population with mean u and SD or

Here we only assume that n is large, n > 40.

Since n is large, the CLT says \overline{X} is approximately normal.

$$\left. \left(-2_{\frac{\alpha}{2}} < \frac{\overline{X} - \mu}{\int_{\overline{h}}} < 2_{\frac{\alpha}{2}} \right) \approx \right. \left| -\alpha \right|$$

So, like before, $\bar{x} \pm t_{\frac{\alpha}{2}} \frac{\sigma}{4\pi}$ is a $100(1-\alpha)$ % CI for μ .

But, generally we won't know what σ is. So we have to use the sample SDs instead. Since n is large, this does not add much extra randomness.

Prop. If n is sufficiently large (n > 40), then $\frac{\overline{X} - \mu}{\frac{S}{5n}}$ is approximately Standard normal. So

$$\overline{\chi} \pm \frac{2}{4} \frac{5}{\sqrt{N}}$$
 is a $100(1-4)\%$ CI for μ .

This is true regardless of the shape of the population distribution.

Example 1: We obtain a random sample from a certain lightbull model and measure the brightness in lumens of 50 lightbulbs. The sample mean is 960 lumens with sample SD 80 lumens. Find a 95% CI for the true mean brightness u for this model.

Like before, the width of the CI is $w = 2 \cdot Z_{\frac{\alpha}{2}} \cdot \frac{S}{Jn}$, so $N = \left(2 \cdot Z_{\frac{\alpha}{2}} \cdot \frac{S}{w}\right)^2$. The problem is we won't know s in advance.

Instead, we guess the value of s (try to overestimate it to be safe)

CI for a Population Proportion

Say we are interested in the proportion p of a population that has some property

We sample n individuals and count the number of successes X.

As long as n is small compared to the whole population, $X \approx \text{Bin}(n,p)$

If also np > 10 and n(1-p) > 10, then the CLT says $X \approx N(np, np(1-p))$

In b.l, we estimated p with
$$\hat{p} = \frac{\chi}{n}$$

So
$$\hat{p} \approx N\left(\frac{np}{n}, \frac{np(1-p)}{n^2}\right) = N\left(p, \frac{p(1-p)}{n}\right)$$

$$E\left[\frac{X}{N}\right] = \frac{E\left[X\right]}{N}$$

$$Var\left(\frac{X}{N}\right) = \frac{1}{N^2} Var(X)$$

Then we normalize to get

$$P\left(-2_{\frac{\alpha_{1}}{2}} \leq \frac{\hat{p}-p}{\sqrt{p(1-p)/n}} \leq 2_{\frac{\alpha_{1}}{2}}\right) \approx 1-\alpha$$

Like in 7.1, we want to solve for the parameter p. This time it is a quadratic equation in p.

We get
$$P = \frac{\hat{p} + \left(\frac{1}{2}\frac{1}{4/2}\right)n}{1 + \left(\frac{1}{2}\frac{1}{4/2}\right)n} + \frac{1}{2} \frac{1}$$

$$\frac{\text{Prop}: \text{ Let } \ \widetilde{p} = \frac{\widehat{p} + \left(\frac{2}{n/2}/2n\right)}{1 + \left(\frac{2}{n/2}/n\right)}. \ A \ 100(1-\alpha)\% \ CI \ \text{for a population proportion } p$$
is
$$\widetilde{p} \pm 2_{\frac{\alpha}{2}} \frac{\sqrt{\widehat{p}(1-\widehat{p})/n + 2_{\alpha/2}^2/4n^2}}{1 + \left(2_{\alpha/2}^2/n\right)}. \ \text{This is the "score } \ CI''. \ \Theta$$

Example 2: Say we are studying the proportion p of electrical components which are defective. We get a random sample of n=70 components and find 14 of them have a defect. Find a 90% CI for p.

Note: There is an approximation when n is very large.
$$\hat{p} \pm \frac{1}{2} \frac{\hat{p}(1-\hat{p})}{2}$$
. But this is not very accurate for small or large values of p, even if n is quite large. (See Figure 7.6 in book.)

Given all these restrictions, we instead will always use the score CI.

$$\hat{p} = \frac{14}{70} = 0.2 \qquad 2_{0.0} = 1.645 \qquad n = 70 \qquad \hat{p} = \frac{0.2 + (1.645^2/140)}{1 + (1.645^2/70)} \approx 0.2112$$

$$0.2112 \pm 1.645. \qquad \frac{\sqrt{(2)(.8)/70 + 1.645^2/(4.70^2)}}{1 + (1.645^2/70)}$$

$$(0.133, 0.289) \text{ is our } 90\%, \text{ CI for } p.$$

For a CI for a population proportion, we can solve for the size of n required to get a certain width w and confidence level.

We get a formula that involves \hat{p} , (7.12) in the book. Since we don't know \hat{p} , the safest approach is to use $\hat{p} = 0.5$ which is the worst-case scenario for the width w. Since we are using $\hat{p} = 0.5$, the simpler version of the CI is pretty accurate.

$$n \approx \left(\frac{42 \cdot \hat{\beta}}{\omega}\right)^{2} = \left(\frac{2 \cdot \hat{\beta}}{\omega}\right)^{2}$$

Example 3: What value of n is needed so the width of a 99% CI for p is no more than 0.06 no matter what the value of \hat{p} is?

$$2_{0.01} = 2_{0.005} = 2_{norm}(0.995) \approx 2.576$$

$$n \approx \left(\frac{2.576}{0.06}\right)^2 \approx 1843.3 / (n = 1844)$$

One-Sided CIs/Confidence Bounds:

So far we have looked at 2-sided CIs, which bound the parameter above and below. Sometimes, we may only be interested in one of these bounds.

Ex: Proportion of cars that pass inspection is at least 98% Quality Control (e.g. lifetime is at least 100)

Prop: A large-sample (n > 40) upper confidence bound for μ is $\mu < \overline{\chi} + 2_{q} \cdot \frac{5}{\sqrt{n}}$

and a large-sample lower confidence bound for μ is $\mu > \overline{x} - z_{\pi} \cdot \frac{s}{s}$

In general, we use the one side of the CI and replace $Z_{\frac{\alpha}{2}}$ with $Z_{\frac{\alpha}{2}}$.

Example 4: A random sample of n=45 participants reaction times to a certain event yields $\bar{x}=1.65$ and S=0.25. Find a 95% upper confidence bound for μ .

$$\mu < \bar{\chi} + 2_{\alpha} \cdot \frac{s}{5n}$$

$$2_{\alpha} = q norm (0.95) \approx 1.645$$

$$\mu < 1.6 + 1.645 \cdot \frac{0.2}{545}$$

$$\mu < 1.649 \text{ with 95\% confidence.}$$