$CPSC\ 532L-Assignment\ 1$

Hung Yu Ling (95562161)

January 13, 2018

Question 1

1a. Computation Graph

1b. Backpropagation Graph, where $\bar{v}_i = \sum_{k \in pa(i)} \frac{\partial v_k}{\partial v_i} \bar{v}_k$

1c. Calculating $\mathbf{f}(\mathbf{x})$ at $x_1 = 2$, $x_2 = 1$.

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} y_1 & y_2 \end{bmatrix}^T = \begin{bmatrix} e^2 + 2sin(3) & 2 + \frac{1}{1 + e^{-1}} \end{bmatrix}^T$$
$$= \begin{bmatrix} 7.67 & 2.73 \end{bmatrix}^T$$

1d. Jacobian using forward mode at $x_1 = 2$, $x_2 = 1$.

Forward Evaluation

	f(2,1)
$v_0 = x_1$	2
$v_1 = x_2$	1
$v_2 = v_0 v_1$	2 · 1 = 2
$v_3 = \sin(3v_1^2)$	$\sin{(3)} = 0.141$
$v_4 = e^{2v_1}$	$e^2 = 7.389$
$v_5 = \frac{1}{1 + e^{-v_1}}$	$\frac{1}{1+e^{-1}} = 0.731$
$v_6 = v_0 v_3$	$2 \cdot 0.141 = 0.282$
$v_7 = v_2 + v_5$	2 + 0.731 = 2.731
$v_8 = v_4 + v_6$	7.389 + 0.282 = 7.671
$y_1 = v_8$	7.671
$y_2 = v_7$	2.731

Forward Derivative Trace – Only showing non-zero terms

	$\frac{\partial y}{\partial x}\Big _{x_1=2, x_2=1}$
$\frac{\partial v_0}{\partial x_1}$	1
$\frac{\partial v_2}{\partial x_1} = \frac{\partial v_2}{\partial v_0} \frac{\partial v_0}{\partial x_1} + \frac{\partial v_2}{\partial v_1} \frac{\partial v_1}{\partial x_1}$	$1 \cdot 1 + 2 \cdot 0 = 1$
$\frac{\partial v_2}{\partial x_2} = v_0$	2
$\frac{\partial v_3}{\partial x_2} = \cos(3v_1^2) \cdot 6v_1$	$6\cos(3) = -5.940$
$\frac{2v_4}{2} = 2e^{2v_1}$	$2e^2 = 14.778$
$\frac{\partial v_5}{\partial v_2} = \frac{e^{-v_1}}{(1 + e^{-v_1})^2} = v_5(1 - v_5)$	0.731(1 - 0.731) = 0.197
$\frac{\partial v_6}{\partial x_1} = v_3 \frac{\partial v_0}{\partial x_1}$ $\frac{\partial v_6}{\partial x_2} = v_0 \frac{\partial v_3}{\partial x_2}$	0.141
$\frac{\partial v_6}{\partial x_2} = v_0 \frac{\partial v_3}{\partial x_2}$	$2 \cdot -5.940 = -11.88$
$\frac{\partial v_7}{\partial x_1} = \frac{\partial v_2}{\partial x_1}$	1
$\frac{\partial v_7}{\partial x} = \frac{\partial v_2}{\partial x} + \frac{\partial v_5}{\partial x}$	2 + 0.197 = 2.197
$\frac{\partial v_8}{\partial x_1} = \frac{\partial v_6}{\partial x_1}$ $\frac{\partial v_8}{\partial x_2} = \frac{\partial v_4}{\partial x_2} + \frac{\partial v_6}{\partial x_2}$ $\frac{\partial y_1}{\partial x_1} = \frac{\partial v_8}{\partial x_1}$	0.141
$\frac{\partial v_8}{\partial x_2} = \frac{\partial v_4}{\partial x_2} + \frac{\partial v_6}{\partial x_2}$	14.778 - 11.88 = 2.898
$\frac{\partial y_1}{\partial x_1} = \frac{\partial v_8}{\partial x_1}$	0.141
$\frac{\partial y_1}{\partial x_2} = \frac{\partial v_8}{\partial x_2}$	2.898
$\frac{\partial y_2}{\partial x_1} = \frac{\partial v_7}{\partial x_1}$	1
$\frac{\partial y_2}{\partial x_2} = \frac{\partial v_7}{\partial x_2}$	2.197

Jacobian

$$\mathbf{J} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 0.141 & 2.898 \\ 1 & 2.197 \end{bmatrix}$$

1e. Jacobian using backward mode at $x_1 = 2, x_2 = 1.$

 $\textbf{Forward Evaluation} - \mathrm{Same} \ \mathrm{as} \ \mathtt{1d}.$

Backward Derivative Trace – Only showing non-zero terms $\overline{\mathbf{p}}$

For y_1 ,

$$\overline{v}_8 = \frac{\partial y_1}{\partial v_8}$$

$$\overline{v}_6 = \overline{v}_8 \frac{\partial v_8}{\partial v_6} = \overline{v}_8$$

$$\overline{v}_4 = \overline{v}_8 \frac{\partial v_8}{\partial v_4} = \overline{v}_8$$

$$\overline{v}_3 = \overline{v}_6 \frac{\partial v_6}{\partial x_3} = \overline{v}_6 \cdot v_0$$

$$\overline{v}_1 = \overline{v}_4 \frac{\partial v_4}{\partial v_1} + \overline{v}_3 \frac{\partial v_3}{\partial v_1}$$

$$= \overline{v}_4 \cdot 2e^{v_1} + \overline{v}_3 \cdot 6v_1 \cos(3v_1^2)$$

$$\overline{v}_0 = \overline{v}_6 \frac{\partial v_6}{\partial v_0} = v_3$$

$$1$$

$$1 \cdot 2 = 2$$

$$2 \cdot 7.389 + 2 \cdot 6 \cos(3) = 2.898$$

For y_2 ,

$$\overline{v}_7 = \frac{\partial y_2}{\partial v_7}$$

$$\overline{v}_5 = \overline{v}_7 \frac{\partial v_7}{\partial v_5} = \overline{v}_7$$

$$\overline{v}_2 = \overline{v}_7 \frac{\partial v_7}{\partial v_2} = \overline{v}_7$$

$$1$$

$$\overline{v}_1 = \overline{v}_5 \frac{\partial v_5}{\partial v_1} + \overline{v}_2 \frac{\partial v_2}{\partial v_1}$$

$$= \overline{v}_5 v_5 (1 - v_5) + \overline{v}_2 v_0$$

$$\overline{v}_0 = \overline{v}_2 \frac{\partial v_2}{\partial v_0} = v_1$$

$$0.731 \cdot (1 - 0.731) + 1 \cdot 2 = 2.197$$

Jacobian – As expected, result is the same as forward mode.

$$\mathbf{J} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 0.141 & 2.898 \\ 1 & 2.197 \end{bmatrix}$$