

AP2213

General Description

The AP2213 is a 500mA output current fixed voltage regulator which provides low noise, very low dropout voltage (typically 350mV at 500mA), very low standby current (1 μ A maximum) and excellent power supply ripple rejection (PSRR 75dB at 100Hz) in battery powered applications, such as handsets and PDAs and in noise sensitive applications, such as RF electronics.

The AP2213 features individual logic compatible enable/shutdown control inputs, a low power shutdown mode for extended battery life, over current protection, over temperature protection, as well as reversed-battery protection.

The AP2213 has 2.5V, 3.0V and 3.3V versions.

The AP2213 is available in TO-252-2 (1), TO-252-2 (3), SOIC-8 and SOT-223 packages.

Features

- Up to 500mA Output Current
- Low Standby Current
- Low Dropout Voltage: V_{DROP}=350mV at 500mA
- High Output Accuracy: ±1%
- Good Ripple Rejection Ability: 75dB at 100Hz and I_{OUT} =100 μA
- Tight Load and Line Regulation
- Low Temperature Coefficient
- Over Current Protection
- Thermal Protection
- · Reversed-battery Protection
- Logic-controlled Enable

Applications

- Laptop, Notebook, and Palmtop Computer
- CD-ROM, CD-R/RW, DVD Driver
- Portable Electronic
- PC Peripheral

Figure 1. Package Types of AP2213

Pin Configuration

Figure 2. Pin Configuration of AP2213 (Top View)

Pin Description

	Pin Number		Din Nama	Emplies
TO-252-2 (1)/ TO-252-2 (3)	SOIC-8	SOT-223	- Pin Name	Function
3	3	2	VOUT	Regulated output voltage
2	5, 6, 7, 8	1	GND	Ground
1	2	3	VIN	Input Voltage
	1		EN	Enable input: CMOS or TTL compatible input. Logic high=enable, logic low=shutdown
	4		BYP	Bypass capacitor for low noise operation

Functional Block Diagram

Figure 3. Functional Block Diagram of AP2213

AP2213

Ordering Information

Package	Temperature	Part Number		Mark	Doolsing Type	
rackage	Range	Lead Free	Green	Lead Free	Green	Packing Type
		AP2213D-2.5E1	AP2213D-2.5G1	AP2213D-2.5E1	AP2213D-2.5G1	Tube
		AP2213D-2.5TRE1	AP2213D-2.5TRG1	AP2213D-2.5E1	AP2213D-2.5G1	Tape & Reel
TO-252-2 (1)/ TO-252-2 (3)	40 4 1250C	AP2213D-3.0E1	AP2213D-3.0G1	AP2213D-3.0E1	AP2213D-3.0G1	Tube
	-40 to 125°C	AP2213D-3.0TRE1	AP2213D-3.0TRG1	AP2213D-3.0E1	AP2213D-3.0G1	Tape & Reel
		AP2213D-3.3E1	AP2213D-3.3G1	AP2213D-3.3E1	AP2213D-3.3G1	Tube
		AP2213D-3.3TRE1	AP2213D-3.3TRG1	AP2213D-3.3E1	AP2213D-3.3G1	Tape & Reel
		AP2213M-2.5E1	AP2213M-2.5G1	2213M-2.5E1	2213M-2.5G1	Tube
		AP2213M-2.5TRE1	AP2213M-2.5TRG1	2213M-2.5E1	2213M-2.5G1	Tape & Reel
SOIC-8	-40 to 125°C	AP2213M-3.0E1	AP2213M-3.0G1	2213M-3.0E1	2213M-3.0G1	Tube
3010-8	-40 to 125°C	AP2213M-3.0TRE1	AP2213M-3.0TRG1	2213M-3.0E1	2213M-3.0G1	Tape & Reel
		AP2213M-3.3E1	AP2213M-3.3G1	2213M-3.3E1	2213M-3.3G1	Tube
		AP2213M-3.3TRE1	AP2213M-3.3TRG1	2213M-3.3E1	2213M-3.3G1	Tape & Reel
		AP2213H-2.5TRE1	AP2213H-2.5TRG1	EH13C	GH13C	Tape & Reel
SOT-223	-40 to 125°C	AP2213H-3.0TRE1	AP2213H-3.0TRG1	EH13E	GH13E	Tape & Reel
		AP2213H-3.3TRE1	AP2213H-3.3TRG1	EH13F	GH13F	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green packages.

AP2213

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value		Unit		
Supply Input Voltage	V _{IN}	20		V		
Enable Input Voltage	V _{EN}	20		V		
Power Dissipation	P_{D}	Internally Limited (Thermal Protection)		Internally Limited (Thermal Protection)		W
Lead Temperature (Soldering, 10sec)	T_{LEAD}	260		°C		
Junction Temperature	T_{J}	150		°C		
Storage Temperature	T _{STG}	-65 to 150		°C		
ESD (Machine Model)	ESD	300		V		
		TO-252-2 (1)/TO-252-2 (3)	90	0.000		
Thermal Resistance (No Heatsink)	θ_{JA}	SOIC-8	160	°C/W		
		SOT-223	108			

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Input Voltage	V_{IN}	2.5	18	V
Enable Input Voltage	V _{EN}	0	18	V
Operating Junction Temperature	T_{J}	-40	125	°C

AP2213

Electrical Characteristics AP2213-2.5 Electrical Characteristics

 $V_{IN}\!\!=\!\!3.5\text{V}, I_{OUT}\!\!=\!\!100\mu\text{A}, C_{IN}\!\!=\!\!1.0\mu\text{F}, C_{OUT}\!\!=\!\!2.2\mu\text{F}, V_{EN}\!\!\geq\!\!2.0\text{V}, T_{J}\!\!=\!\!25^{o}\text{C}, \textbf{Bold} \text{ typeface applies over -40}^{o}\text{C}\!\!\leq\!\!T_{J}\!\!\leq\!\!125^{o}\text{C} \text{ (Note 2), unless otherwise specified.}$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage Accuracy	$\Delta V_{ m OUT}/V_{ m OUT}$	Variation from specified	-1		1	%
Sulput Voluage Fleedracy	- 1001 1001	V _{OUT}	-2		2	, , ,
Output Voltage	$\Delta V_{OUT}/\Delta T$			120		μV/°C
Temperature Coefficient (Note 3)	$(\Delta V_{OUT}/V_{OUT})/\Delta T$			48		ppm/°C
Line Regulation	V _{RLINE}	V _{IN} =3.5V to 13.2V		1.5	4.5	
	KEINE	IIV			12	mV
Load Regulation	V_{RLOAD}	I _{OUT} =0.1mA to 500mA		1	7	
(Note 4)	160.15	001			17	mV
		I _{OUT} =100μA		15	50	
					70	
		I _{OUT} =50mA		110	150	
					230	
	$ m V_{DROP}$	I _{OUT} =100mA		140	250	mV
Dropout Voltage (Note 5)		I _{OUT} =150mA		1.65	300	
				165	275 350	
		I _{OUT} =300mA		250	400	
				230	500	
		I _{OUT} =500mA		350	600	
					700	
Standby Current	I	V _{EN} ≤0.4V (shutdown)		0.01	1	۸
Standby Current	I_{STD}	V _{EN} ≤0.18V (shutdown)			5	μΑ
		V _{EN} ≥2.0V, I _{OUT} =100μA		100	150	μΑ
		EN=2:01, 1001 100pm			180	
		V _{EN} ≥2.0V, I _{OUT} =50mA		350	600	μιτ
		EN 7 OUT			800	
Ground Pin Current	I_{GND}	V _{EN} ≥2.0V, I _{OUT} =150mA		1.3	1.9	mA
(Note 6)	0.1.2				2.5	
		V _{EN} ≥2.0V, I _{OUT} =300mA		4	10	
		2			15	
		V _{EN} ≥2.0V, I _{OUT} =500mA		11	20	
					28	

AP2213

Electrical Characteristics (Continued) AP2213-2.5 Electrical Characteristics

 V_{IN} =3.5V, I_{OUT} =100 μ A, C_{IN} =1.0 μ F, C_{OUT} =2.2 μ F, V_{EN} >2.0V, T_J =25°C, **Bold** typeface applies over -40°C \leq T $_J$ \leq 125°C (Note 2), unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Ripple Rejection	PSRR	f=100Hz, I _{OUT} =100μA		75		dB
Current Limit	I _{LIMIT}	V _{OUT} =0V		700	1000	mA
Output Noise	e _{no}	I _{OUT} =50mA, C _{OUT} =2.2μF, 100pF from BYP to GND		260		nV/\sqrt{Hz}
Enable Input Logic-low	V_{IL}	Regulator shutdown		0.4	0.4	V
Voltage	' IL	Regulator shatdown			0.18	1
Enable Input Logic-high Voltage	V _{IH}	Regulator enabled	2.0			V
Enable Input Logic-low Current	I_{IL}	V _{IL} ≤0.4V		0.01	1	μΑ
Enable input Logic low Current	IL.	V _{IL} ≤0.18V			2	μι
Enable Input Logic-high Current	I _{IH}	V _{IL} ≥2.0V		5	20	μA
Enable input Logic-ingii Current	*IH	V _{IL} ≥2.0V			25	μι
		TO-252-2 (1)/TO-252-2 (3)		20		
Thermal Resistance	$\theta_{ m JC}$	SOIC-8		45		°C/W
		SOT-223		31		

Note 2: Specifications in bold type are limited to $-40^{\circ}\text{C} \le T_J \le 125^{\circ}\text{C}$. Limits over temperature are guaranteed by design, but not tested in production.

Note 3: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 4: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 500mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

Note 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 1% ($T_J=25^{\circ}$ C) or 2% ($40^{\circ}\text{C} \le T_J \le 125^{\circ}\text{C}$) below its nominal value measured at 1V differential.

Note 6: Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the

AP2213

Electrical Characteristics (Continued) AP2213-3.0 Electrical Characteristics

 $V_{IN}\!\!=\!\!4V,\ I_{OUT}\!\!=\!\!100\mu A,\ C_{IN}\!\!=\!\!1.0\mu F,\ C_{OUT}\!\!=\!\!2.2\mu F,\ V_{EN}\!\!\geq\!\!2.0V,\ T_{J}\!\!=\!\!25^{o}C,\ \textbf{Bold}\ \text{typeface applies over -}40^{o}C\!\!\leq\!\!T_{J}\!\!\leq\!\!125^{o}C\ (\text{Note 2}),\ \text{unless otherwise specified}.$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage Accuracy	$\Delta V_{ m OUT}/V_{ m OUT}$	Variation from specified	-1		1	%
Output Voltage Meetitacy	4,001,,001	V_{OUT}	-2		2	/0
Output Voltage	$\Delta V_{OUT}/\Delta T$			120		μV/°C
Temperature Coefficient (Note 3)	$(\Delta V_{OUT}/V_{OUT})/\Delta T$			40		ppm/°C
Line Regulation	V _{RLINE}	V _{IN} =4V to 13.2V		1.5	4.5	
Eme regulation	KEINE	IN TO SEE THE			12	mV
Load Regulation	V_{RLOAD}	I _{OUT} =0.1mA to 500mA		1	8	* 7
(Note 4)	KEOAD	001			17	mV
		I _{OUT} =100μA		15	50	
					70	
		I _{OUT} =50mA		110	150	
					230	
		I _{OUT} =100mA		140	250	
Dropout Voltage (Note 5)	$ m V_{DROP}$				300	mV
		I _{OUT} =150mA		165	275	
					350	
		I _{OUT} =300mA		250	400	
		I _{OUT} =500mA		250	500	
				350	600	
		V _{EN} ≤0.4V (shutdown)		0.01	700	
Standby Current	I_{STD}	V _{EN} ≤0.18V (shutdown)			5	μA
				100	150	
		$V_{EN} \ge 2.0 \text{V}, I_{OUT} = 100 \mu\text{A}$			180	4
		V _{EN} ≥2.0V, I _{OUT} =50mA		350	600	μΑ
		V _{EN} 22.0 V, I _{OUT} -30IIIA			800	
Ground Pin Current	I_{GND}	V _{EN} ≥2.0V, I _{OUT} =150mA		1.3	1.9	
(Note 6)	*GND	EN-2.0 1, IOUT 130IIII			2.5	mA
		V _{EN} ≥2.0V, I _{OUT} =300mA		4	10	
		VENCZ.OV, IOUT-JOUINA			15	
		V _{EN} ≥2.0V, I _{OUT} =500mA		11	20	
		EN , OUI			28	

AP2213

Electrical Characteristics (Continued) AP2213-3.0 Electrical Characteristics

 V_{IN} =4V, I_{OUT} =100 μ A, C_{IN} =1.0 μ F, C_{OUT} =2.2 μ F, V_{EN} ≥2.0V, T_J =25 o C, **Bold** typeface applies over -40 o C≤ T_J ≤125 o C (Note 2), unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Ripple Rejection	PSRR	f=100Hz, I _{OUT} =100μA		75		dB
Current Limit	I _{LIMIT}	V _{OUT} =0V		700	1000	mA
Output Noise	e _{no}	I _{OUT} =50mA, C _{OUT} =2.2μF, 100pF from BYP to GND		260		nV/\sqrt{Hz}
Enable Input Logic-low	V_{IL}	Regulator shutdown			0.4	V
Voltage	'IL	Regulator Shutdown			0.18] '
Enable Input Logic-high Voltage	V _{IH}	Regulator enabled	2.0			V
Enable Input Logic-low Current	I_{IL}	V _{IL} ≤0.4V		0.01	1	μA
Endote input Eogle low Current	-IL	V _{IL} ≤0.18V			2	μει
Enable Input Logic-high Current	I _{IH}	V _{IL} ≥2.0V		5	20	μA
Enable input Logic-ingil Current	*IH	V _{IL} ≥2.0V			25	μΑ
		TO-252-2 (1)/TO-252-2 (3)		20		
Thermal Resistance	θ_{JC}	SOIC-8		45		°C/W
		SOT-223		31		

Note 2: Specifications in bold type are limited to $-40^{\circ}\text{C} \le T_J \le 125^{\circ}\text{C}$. Limits over temperature are guaranteed by design, but not tested in production.

Note 3: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 4: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 500mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

Note 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 1% ($T_J=25^{\circ}C$) or 2% ($-40^{\circ}C \le T_I \le 125^{\circ}C$) below its nominal value measured at 1V differential.

Note 6: Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of the load current plus the ground pin current.

AP2213

Electrical Characteristics (Continued) AP2213-3.3 Electrical Characteristics

 $V_{IN}\!\!=\!\!4.3V,\,I_{OUT}\!\!=\!\!100\mu\text{A},\,C_{IN}\!\!=\!\!1.0\mu\text{F},\,C_{OUT}\!\!=\!\!2.2\mu\text{F},\,V_{EN}\!\!\geq\!\!2.0V,\,T_{J}\!\!=\!\!25^{o}\text{C},\,\textbf{Bold}\,\,\text{typeface applies over}\,\textbf{-}40^{o}\text{C}\!\!\leq\!\!T_{J}\!\!\leq\!\!125^{o}\text{C}\,\,(\text{Note 2}),\,$ unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage Accuracy	$\Delta V_{ m OUT}/V_{ m OUT}$	Variation from specified	-1		1	%
Output Voltage Accuracy	2.001,.001	V _{OUT}	-2		2	70
Output Voltage Temperature Coefficient	$\Delta V_{ m OUT}/\Delta T$			120		μV/°C
(Note 3)	$(\Delta V_{OUT}/V_{OUT})/\Delta T$			36.3		ppm/°C
Line Regulation	V _{RLINE}	V _{IN} =4.3V to 13.2V		1.5	4.5	
	REINE				12	mV
Load Regulation	V_{RLOAD}	I _{OUT} =0.1mA to 500mA		1	9	
(Note 4)	100.15	001			18	mV
		I _{OUT} =100μA		15	50	
					70	
		I _{OUT} =50mA		110	150	
					230	
		I _{OUT} =100mA		140	250	mV
Dropout Voltage (Note 5)	$ m V_{DROP}$				300	
		I _{OUT} =150mA		165	275	
		I _{OUT} =300mA I _{OUT} =500mA			350	
				250	400	
					500	
				350	600	
					700	
Standby Current	I_{STD}	V _{EN} ≤0.4V (shutdown)		0.01	1	μΑ
		V _{EN} ≤0.18V (shutdown)			5	
		V _{EN} ≥2.0V, I _{OUT} =100μA		100	150	
					180	μΑ
		V _{EN} ≥2.0V, I _{OUT} =50mA		350	600	
					800	
Ground Pin Current	I_{GND}	V _{EN} ≥2.0V, I _{OUT} =150mA		1.3	1.9	mA
(Note 6)					2.5	
		V _{EN} ≥2.0V, I _{OUT} =300mA		4	10	
		-			15	
		V _{EN} ≥2.0V, I _{OUT} =500mA		11	20	
					28	

AP2213

Electrical Characteristics (Continued) AP2213-3.3 Electrical Characteristics

 V_{IN} =4.3V, I_{OUT} =100 μ A, C_{IN} =1.0 μ F, C_{OUT} =2.2 μ F, V_{EN} >2.0V, T_J =25 o C, **Bold** typeface applies over -40 o C \leq T $_J$ \leq 125 o C (Note 2), unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Ripple Rejection	PSRR	f=100Hz, I _{OUT} =100μA		75		dB
Current Limit	I _{LIMIT}	V _{OUT} =0V		700	1000	mA
Output Noise	e _{no}	I _{OUT} =50mA, C _{OUT} =2.2μF, 100pF from BYP to GND		260		nV/\sqrt{Hz}
Enable Input Logic-low	V_{IL}	Regulator shutdown			0.4	V
Voltage	' IL	Regulator shutdown			0.18	
Enable Input Logic-high Voltage	V _{IH}	Regulator enabled	2.0			V
Enable Input Logic-low Current	$I_{ m IL}$	V _{IL} ≤0.4V		0.01	1	μА
Endote input Logic fow Current	-IL	V _{IL} ≤0.18V			2	μ2
Enable Input Logic-high Current	I _{IH}	V _{IL} ≥2.0V		5	20	μА
Enable input Logic-ingii Current	*IH	V _{IL} ≥2.0V			25	μ2
		TO-252-2 (1)/TO-252-2 (3)		20		
Thermal Resistance	$\theta_{ m JC}$	SOIC-8		45		°C/W
		SOT-223		31		

Note 2: Specifications in bold type are limited to $-40^{\circ}\text{C} \le T_J \le 125^{\circ}\text{C}$. Limits over temperature are guaranteed by design, but not tested in production.

Note 3: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 4: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 500mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

Note 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 1% ($T_J=25^{\circ}C$) or 2% ($-40^{\circ}C \le T_I \le 125^{\circ}C$) below its nominal value measured at 1V differential.

Note 6: Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of the load current plus the ground pin current.

Typical Performance Characteristics

800 _=50mA 750 I_{OUT}=100mA 700 I_{OUT}=150mA 650 Dropout Voltage (mV) 600 I_{out}=300mA 550 _{out}=500mA 500 450 400 350 300 250 200 150 100 -40 -20 100 120 140 Junction Temperature (°C)

Figure 4. Output Voltage vs. Junction Temperature

Figure 5. Dropout Voltage vs. Junction Temperature

Figure 6. Ground Pin Current vs. Output Current

Figure 7. Ground Pin Current vs. Junction Temperature

Typical Performance Characteristics (Continued)

1.7 AP2213-2.5 $\boldsymbol{C}_{IN}\text{=}1\mu\boldsymbol{F},\,\boldsymbol{C}_{OUT}\text{=}2.2\mu\boldsymbol{F}$ 1.5 $I_{OUT} = 100 \mu A, V_{IN} = 3.5 V$ Enable Voltage (V) 1.4 1.3 1.2 1.1 V_{FN}=logic high 1.0 V_{EN}=logic low 0.9 8.0 0.7 0.6 -40 -20 40 80 120 Junction Temperature (°C)

Figure 8. Enable Current vs. Junction Temperature

Figure 9. Enable Voltage vs. Junction Temperature

 $\label{eq:conditions} Figure 11. Line Transient \\ (Conditions: V_{IN}=3.4 to 4.4V, V_{EN}=2V, I_{OUT}=100 \mu A, \\ C_{BYP}=100 pF, C_{OUT}=2.2 \mu F) \\$

Typical Performance Characteristics (Continued)

$$\label{eq:conditions} \begin{split} & \text{Figure 12. Load Transient} \\ & \text{(Conditions: V}_{\text{IN}}\text{=3.5V, C}_{\text{BYP}}\text{=100pF, V}_{\text{EN}}\text{=2V,} \\ & \text{I}_{\text{OUT}}\text{=10 to 500mA, C}_{\text{IN}}\text{=1}\mu\text{F, C}_{\text{OUT}}\text{=2.2}\mu\text{F)} \end{split}$$

 $\label{eq:conditions} \begin{aligned} & \text{Figure 13. V}_{\text{EN}} \text{ vs. V}_{\text{OUT}} \\ & \text{(Conditions: V}_{\text{EN}}\text{=0 to 2V, V}_{\text{IN}}\text{=3.5V, I}_{\text{OUT}}\text{=30mA,} \\ & C_{\text{BYP}}\text{=open, C}_{\text{IN}}\text{=1}\mu\text{F, C}_{\text{OUT}}\text{=2.2}\mu\text{F)} \end{aligned}$

Figure 14. PSRR vs. Frequency

Figure 15. Power Dissipation vs. Ambient Temperature

Typical Performance Characteristics (Continued)

Figure 16. Power Dissipation vs. Ambient Temperature

Figure 17. ESR vs. Output Current

Figure 18. ESR vs. Output Current

Figure 19. ESR vs. Output Current

AP2213

Typical Application

Figure 20. Typical Application of AP2213 (Note 7)

Note 7: Dropout voltage is 350mV when T_A =25°C. In order to obtain a normal output voltage, V_{OUT} +0.35V is the minimum input voltage which will results a low PSRR, imposing a bad influence on system. Therefore, the recommended input voltage is V_{OUT} +1V to 18V. For AP2213-2.5 version, its input voltage can be set from 3.5V(V_{OUT} +1V) to 18V.

AP2213

Application Information

Input Capacitor

A $1\mu F$ minimum capacitor is recommended to be placed between V_{IN} and GND.

Output Capacitor

It is required to prevent oscillation. $1\mu F$ minimum is recommended when C_{BYP} is unused. $2.2\mu F$ minimum is recommended when C_{BYP} is 100pF. The output capacitor may be increased to improve transient response.

Noise Bypass Capacitor

Bypass capacitor is connected to the internal voltage reference. A small capacitor connected from BYP to GND make this reference quiet, resulting in a significant reduction in output noise, but the ESR stable area will be narrowed. In order to keep the output stability, it is recommended to use the bypass capacitor no more than 100pF.

The start-up speed of the AP2213 is inversely proportional to the value of reference bypass capacitor. In some cases, if output noise is not a major concern and rapid turn-on is necessary, omit C_{BYP} and leave BYP open.

Power Dissipation

Thermal shutdown may take place if exceeding the maximum power dissipation in application. Under all possible operating conditions, the junction temperature must be within the range specified under absolute maximum ratings to avoid thermal shutdown. To determine if the power dissipated in the regulator reaches the maximum power dissipation (see figure 16, 17), using:

$$T_{J} = P_{D} * \theta_{JA} + T_{A}$$

 $P_{D} = (V_{IN} - V_{OUT}) * I_{OUT} + V_{IN} * I_{GND}$

Where: $T_J \le T_{J(max)}$, $T_{J(max)}$ is absolute maximum ratings for the junction temperature; $V_{IN}*I_{GND}$ can be ignored due to its small value.

 $T_{J(max)}$ is 150°C, θ_{JA} is 90°C/W for TO-252-2 (1)/ TO-252-2 (3) package and 160°C/W for SOIC-8 package.

Example: For 2.5V version packaged in SOIC-8, I_{OUT} =500mA, T_{A} =50°C, $V_{IN(Max)}$ is: $(150^{\circ}\text{C}-50^{\circ}\text{C})/(0.5\text{A}*160^{\circ}\text{C/W})+2.5\text{V}=3.75\text{V}$

Therefore, for good performance, please make sure that input voltage is less than 3.75V without heatsink when $T_A=50^{\rm o}C$.

AP2213

Mechanical Dimensions

TO-252-2 (1) Unit: mm(inch)

AP2213

Mechanical Dimensions (Continued)

TO-252-2 (3) Unit: mm(inch)

Mechanical Dimensions (Continued)

Note: Eject hole, oriented hole and mold mark is optional.

AP2213

Mechanical Dimensions (Continued)

SOT-223 Unit: mm(inch)

1.800(0.071)

1.700(0.067)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788