15.094J: Robust Modeling, Optimization, Computation

Lectures 11 & 12: Distributionally Robust Optimization (DRO)

Optimization

Optimization is about making good **decisions** in a **rigorous** way, often subject to constraints. Applications appear everywhere in science, mathematics and business:

- ► Managing a share portfolio
- ► Scheduling public transport
- ▶ Fitting a model to measured data
- ► Optimizing a supply chain
- ► Designing electronic circuits
- ► Choosing worker shift patterns
- ► Shaping aerodynamic components
- ► Recovering images from ray MRI data
- ▶ ...

Convex Optimization

$$\begin{array}{ll}
\min & c^{\top} x \\
\text{s.t.} & x \in \mathbf{R}^d \\
& x \in X
\end{array}$$

Any convex optimization problem can be written in the previous canonical form

The problem has several ingredients:

- ► The vector *x* collects the **decision variables**
- ightharpoonup The space \mathbf{R}^d is the **domain** of the decision variables
- ► The constraints set *X* describes **convex feasible region**
- ► The **objective function** endows a cost to each decision

Representing a Convex Optimization Problem

min
$$c^{\top}x$$

s.t. $x \in \mathbb{R}^d$
 $\ell(x, p) \le 0$

Described by the following problem data:

- ▶ Cost vector c in \mathbb{R}^d
- ▶ Constraint function $\ell : \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}$ (convex in the first argument)

$$X(p) = \left\{ x \in \mathbb{R}^d : \ell(x, p) \le 0 \right\}$$

▶ Parameter vector p in \mathbb{R}^n

The parameter vector p must be estimated from historical data and is therefore almost invariable uncertain.

Convex Uncertain Optimization

Uncertain convex problem:

min
$$c^{\top}x$$

s.t. $x \in \mathbb{R}^d$
 $\ell(x, \mathbf{p}) \le 0$

Notation: Uncertain quantities are denoted in bold

There are two settings:

- 1. Robust Setting : Take decision x^* before any **p** is observed
- 2. Adaptive Interpretation : Adapt decision x^* to uncertain value ${\bf p}$ after observing

Linear Uncertain Optimization

Uncertain linear problem:

min
$$c^{\top}x$$

s.t. $x \in \mathbb{R}^d$
 $A(\mathbf{p})x \le b(\mathbf{p})$

Assumption : Technology matrix A(p) and budget vector b(p) are affine functions.

Special Case of general convex optimization problem with **double affine** cost function $\ell(x,p)=\max_i \ell_i(x,p)$, with

$$\ell_i(x, \mathbf{p}) = a_i(\mathbf{p})x - b_i(\mathbf{p}),$$

= $\tilde{a}_i(x)\mathbf{p} + \tilde{b}_i(x).$

Table of Contents

- Hedging against Uncertainty
- 2 Ambiguity Sets
- Finitely Supported Ambiguity Sets
- Second Moment Ambiguity Sets
- Adapting to Uncertainty

Describing Uncertainty

There are two fundamentally different approaches of how to describe an ${\bf uncertain}$ ${\bf quantity}~{\bf p}.$

- 1 Set description
 - ► A set *P* describes all possible outcomes

$$\mathbf{p} \in P$$

▶ Directly related to robust optimization

- 2 Probabilistic description
 - lacktriangle A distribution $\mathbb P$ describes all possible outcomes

$$\mathbf{p} \sim \mathbb{P}$$

▶ Directly related to stochastic optimization

Set Uncertainty

Uncertain Problem:

$$\begin{aligned} & \min \quad c^{\top} x \\ & \text{s.t.} \quad x \in \mathbf{R}^d \\ & \quad \ell(x, \mathbf{p}) \leq 0, \end{aligned}$$

Robust optimization takes a **set description** perspective. A decision is only then feasible when feasible in the worst case

$$X = \cap_{p \in P} \left\{ x \in \mathbb{R}^d : \ell(x, p) \leq 0 \right\}.$$

Popular because

- ► Convexity of the feasible region is preserved
- ▶ Robust problem is as **tractable** as the problem $\max_{p \in P} \ell(x, p)$.

Robust Optimization

min
$$c^{\top}x$$

s.t. $x \in \mathbb{R}^d$
 $\ell(x, p) \le 0, \quad \forall p \in P$

Exceptionally successful in a wide variety of challenging problems

- ► Engineering design
- ► Finance
- ► Machine learning
- ► Business analytics
- ► Systems operation and control
- ▶ ...

Set descriptions of uncertainty do not capture distributional information.

Distributional vs Adversarial Nature

Uncertain quantities sometimes have a distributional

- ► Stock prizes
- ▶ Mechanical loads
- ▶ Prediction errors
- ▶ ...

rather than an adversarial nature.

Set descriptions may lead to conservative decisions.

Probabilistic Uncertainty

Uncertain Problem:

$$\begin{aligned} & \min \quad c^{\top} x \\ & \text{s.t.} \quad x \in \mathbf{R}^d \\ & \quad \ell(x, \mathbf{p}) \leq 0, \end{aligned}$$

Stochastic optimization takes a **probabilistic** perspective. A decision is only then feasible when feasible in expectation

$$X := \left\{ x \in \mathbb{R}^d : \mathbf{E}_{\mathbb{P}} \left[\ell(x, \mathbf{p}) \right] \leq 0 \right\}.$$

The function ℓ should here be interpreted as how severely the decision x violates the constraints for a certain parameter realization p.

Constraint Violation Severity

$$X:=\left\{x\in\mathrm{R}^d\ :\ \mathbf{E}_{\mathbb{P}}\left[\ell(x,\mathbf{p})
ight]\leq 0
ight\}.$$

Loss function ℓ is now treated as a **design parameter** measuring constraint **violation** severity.

Interesting particular cases

▶ For loss functions $\ell(x, p) \ge 0$, we get the **robust** constraint

$$X = \left\{ x \in \operatorname{R}^d \ : \ \cap_{p \in supp \, \mathbb{P}} \, \left\{ x \in \operatorname{R}^d \ : \ \ell(x,p) \leq 0 \right\} \right\}.$$

▶ For loss functions $\ell(x,p) = 1 \{x \notin X(p)\} - \alpha$, we get the **chance** constraint

$$X = \left\{ x \in \mathbb{R}^d : \mathbb{P}(x \notin X(\mathbf{p})) \le \alpha \right\}$$

Stochastic Optimization

min
$$c^{\top}x$$

s.t. $x \in \mathbb{R}^d$
 $\mathbf{E}_{\mathbb{P}}[\ell(x, \mathbf{p})] \le 0$

Historically precedes robust optimization. Very **Limited success** in practical applications.

Two big hurdles to probabilistic approaches

- 1. Stochastic programming is often not tractable
- 2. Probability distributions are never observed

Stochastic Optimization - Tractability

Feasibility of a fixed decision x requires

$$\mathbf{E}_{\mathbb{P}}\left[\ell(\mathbf{x},\mathbf{p})\right]\leq 0$$

► High-dimensional integration is hard

The problem of optimizing over a set for which feasibility is hard to check is generally even harder.

Stochastic Optimization - Observability

Probability distributions \mathbb{P} are **never observed** directly. Rather in practice we have **data**.

To estimate a distribution \mathbb{P} from data exactly would require an infinite number of samples.

Knightian Uncertainty I

Knight distinguishes two types of uncertainty

- ▶ Risk : Exposure to uncertain outcomes whose distribution is known
- ▶ Ambiguity : Exposure to uncertain outcomes without distributional information

Distributionally robust optimization attempts to marry stochastic and robust optimization.

Uncertainty	No Risk	Risk
No Ambiguity	NO	SO
Ambiguity	RO	DRO

Knightian Uncertainty II

Knight distinguishes two types of uncertainty

- ▶ Risk : Exposure to uncertain outcomes whose distribution is known
- ► Ambiguity : Exposure to uncertain outcomes without distributional information

Distributionally robust optimization attempts to marry stochastic and robust optimization using an **ambiguity set** \mathcal{P} .

Knightian Uncertainty III

Uncertain problem :

min
$$c^{\top}x$$

s.t. $x \in \mathbb{R}^d$
 $\ell(x, \mathbf{p}) \le 0$

DRO takes a **Knightian** perspective. A decision is only then feasible when feasible for any distribution in ${\cal P}$

$$X = \left\{ x \in \mathbf{R}^d : \; \mathbf{E}_{\mathbb{P}} [\ell(x, \mathbf{p})] \leq 0, \quad \forall \mathbb{P} \in \mathcal{P}
ight\}.$$

The best of both worlds?

Distributionally Robust Optimization

$$\begin{aligned} & \min \quad c^\top x \\ & \text{s.t.} \quad x \in \mathbf{R}^d \\ & \quad \mathbf{E}_{\mathbb{P}} \left[\ell(x, \mathbf{p}) \right] \leq 0, \quad \forall \mathbb{P} \in \mathcal{P} \end{aligned}$$

The ambiguity set \mathcal{P} needs to be chosen well as to ensure **two objectives**

- 1. Uncertainty is well described
- 2. DRO is tractable

These two objectives can be conflicting.

Table of Contents

- Hedging against Uncertainty
- 2 Ambiguity Sets
- Finitely Supported Ambiguity Sets
- 4 Second Moment Ambiguity Sets
- Adapting to Uncertainty

Ideal Ambiguity Sets

$$\mathbf{E}_{\mathbb{P}}\left[\ell(x,\mathbf{p})\right] \leq 0, \quad \forall \mathbb{P} \in \mathcal{P}$$

How should one construct an ambiguity set \mathcal{P} for an uncertain parameter \mathbf{p} ?

- ▶ The **ideal ambiguity set** is the smallest set of distributions such that $\mathbb{P}_{true} \in \mathcal{P}$.
- **Feasibility considerations** will demand the set \mathcal{P} to have more structure.

Simplicial Ambiguity Sets – Arbitrary Distributions

Suppose \mathbf{p} is completely uncertain besides taking value in Ω . The distribution of \mathbf{p} can be any distribution in the **probability simplex** on Ω .

The probability simplex on Ω is in general

$$\mathcal{P}(\Omega) := \left\{ \mathbb{P} \in \mathcal{M}_+(\Omega) \ : \ \mathbb{P}(\Omega) = 1 \right\}.$$

Simplicial Ambiguity Sets - Arbitrary Distributions II

For **finite sets** Ω the probability simplex is the **unit simplex**

$$\textstyle \mathcal{P}(\Omega) := \left\{ \mathbb{P} \in \mathrm{R}^{|\Omega|} \ : \ \textstyle \sum_{e \in S} \mathbb{P}(\mathrm{d} e) = 1, \ \mathbb{P}(e) \geq 0, \quad \forall e \in \Omega \right\}$$

which is a convex subset of $R^{|\Omega|}$.

For **Borel measurable** subsets Ω of \mathbb{R}^n , the probability simplex is a **Bauer simplex**

$$\mathcal{P}(\Omega) := \left\{ \mathbb{P} \in \mathcal{M}_+(\Omega) \ : \ \int_{\Omega} \mathbb{P}(\mathrm{d} e) = 1, \ \mathbb{P}(E) \geq 0, \quad \forall E \in \mathcal{B}(\Omega) \right\}$$

which is convex but not finite dimensional.

Structural information (unimodality, monotonicity) can be represented using simplices as well.

Simplicial Ambiguity Sets – Structured Distributions

 α -Unimodality : If $\mathbb P$ on $\mathbb R^n$ has a continuous density function f(e), then $\mathbb P$ is α -unimodal if

$$f(te)/t^{\alpha-n}, \quad \forall t>0$$

is **non-increasing** in t for any $e \in \mathbb{R}^n$.

Unimodal simplex : $\mathcal{P}_{\alpha}(\mathbf{R}^n) = \{\mathbb{P} \in \mathcal{P}(\mathbf{R}^n) : \mathbb{P} \ \alpha - \mathrm{unimodal}\}$ Special Cases:

- $\blacktriangleright \lim_{\alpha \to \infty} \mathcal{P}_{\alpha}(\mathbf{R}^n) = \mathcal{P}(\mathbf{R}^n)$
- $P_0(\mathbf{R}^n) = \{\delta_0\}$

Moment Ambiguity Sets

Suppose **p** has **known moments**, that is,

$$\mathbf{E}_{\mathbb{P}}\left[g_{j}\right]=m_{j},\quad\forall j.$$

Moments are linear functions of a probability distribution. **Moment sets are polytopic** subsets of the probability simplex.

For probability distributions on Ω in \mathbb{R}^n we have

$$\mathbb{P} \in \left\{ \mathbb{P} \in \mathcal{P}(\Omega) \; : \; \int g_j(e) \mathbb{P}(\mathrm{d}e) = m_j, \; \; orall j
ight\}.$$

Moment Ambiguity Sets II

A common specific examples includes known mean μ and known variance Σ

$$\mathcal{P}(\mu, \Sigma) := \left\{ \mathbb{P} \in \mathcal{P}(R^n) \ : \ \int e \, \mathbb{P}(\mathrm{d} e) = \mu, \ \int e \cdot e^\top \, \mathbb{P}(\mathrm{d} e) = \mu \cdot \mu^\top + \Sigma \right\}$$

which is an infinite dimensional polytope.

Observations

- ▶ The set $\mathcal{P}(\mu, \Sigma)$ is defined by n moment constraints for the mean and n(n+1)/2 moment constraints for the variance.
- ▶ Knowing the mean and second moment $S := \mu \mu^{\top} + \Sigma$ is equivalent.

Divergence Ambiguity Sets

Suppose \mathbf{p} has a distribution which is not too different from a reference distribution $\hat{\mathbb{P}}$ as measured by some convex divergence metric d, i.e.

$$\mathcal{P}(\hat{\mathbb{P}},r) := \left\{ \mathbb{P} \in \mathcal{P}(\Omega) : d(\mathbb{P},\hat{\mathbb{P}}) \leq r \right\}$$

Divergence sets are convex pseudo balls in the probability simplex.

Very popular in the context of sample data $\{p_i\}_{i=1}^T$ in which case the **empirical** distribution is taken as a reference.

$$\hat{\mathbb{P}} = \frac{1}{T} \sum_{i=1}^{T} \delta_{\rho_i}$$

Divergence Ambiguity Sets II

Popular divergence metrics for finite dimensional *S* include

► KL-divergence :

$$\mathcal{P}_{\mathrm{KL}}(\hat{\mathbb{P}},r) := \left\{ \mathbb{P} \in \mathcal{P}(\Omega) \ : \ \sum_{e \in \mathcal{S}} \hat{\mathbb{P}}(e) \log \left(\frac{\hat{\mathbb{P}}(e)}{\mathbb{P}(e)} \right) \leq r \right\}$$

▶ Pearson :

$$\mathcal{P}_{\chi^2}(\hat{\mathbb{P}},r) := \left\{ \mathbb{P} \in \mathcal{P}(\Omega) \ : \ \sum_{e \in \mathcal{S}} \frac{(\mathbb{P}(e) - \hat{\mathbb{P}}(e))^2}{\hat{\mathbb{P}}(e)} \le r \right\}$$

► Kolmogorov-Smirnov :

$$\mathcal{P}_{\mathrm{KS}}(\hat{\mathbb{P}},r) := \left\{ \mathbb{P} \in \mathcal{P}(\Omega) \ : \ \max_{E \subseteq \Omega} \left| \mathbb{P}(E) - \hat{\mathbb{P}}(E) \right| \le r \right\}$$

▶ Wasserstein :

$$\begin{split} \mathcal{P}_{\mathrm{WS}}(\hat{\mathbb{P}},r) &:= \{\mathbb{P} \in \mathcal{P}(\Omega) \,:\, \exists \mathbb{T} \in \mathcal{P}(\Omega \times \Omega), \;\; \sum_{e_1,e_2 \in S} \|e_1 - e_2\| \, \mathbb{T}(e_1,e_2) \leq r, \\ &\qquad \qquad \sum_{e_1 \in S} \mathbb{T}(e_1,e_2) = \mathbb{P}(e_2), \;\; \forall e_2 \in \Omega, \\ &\qquad \qquad \sum_{e_2 \in S} \mathbb{T}(e_1,e_2) = \hat{\mathbb{P}}(e_1), \;\; \forall e_1 \in \Omega \} \end{split}$$

The Feasibility Problem

$$\begin{aligned} & \min \quad c^\top x \\ & \text{s.t.} \quad x \in \mathbf{R}^d \\ & \quad \mathbf{E}_{\mathbb{P}} \left[\ell(x, \mathbf{p}) \right] \leq 0, \quad \forall \mathbb{P} \in \mathcal{P} \end{aligned}$$

Feasibility of a fixed decision \bar{x} requires

$$\sup_{\mathbb{P}\in\mathcal{P}}\;\mathbf{E}_{\mathbb{P}}\left[\ell(x,\mathbf{p})\right]\leq0$$

- ► Worst-case expectation problem
- ▶ Infinite dimensional (convex) optimization problem (when $\ell(\cdot, p)$ is convex)

Optimality requires robust counterpart of the convex set

$$X = \cap_{\mathbb{P} \in \mathcal{P}} \left\{ x \in \mathbb{R}^d : \mathbf{E}_{\mathbb{P}} \left[\ell(x, \mathbf{p}) \right] \leq 0 \right\}$$

Table of Contents

- Hedging against Uncertainty
- 2 Ambiguity Sets
- 3 Finitely Supported Ambiguity Sets
- Second Moment Ambiguity Sets
- Adapting to Uncertainty

Worst-case Expectation Problem

Problem : What is the worst-case expectation $\mathbf{E}_{\mathbb{P}}\left[\ell(x,\mathbf{p})\right]$ assuming only

- **p** takes values in a **finite set** Ω
- $\blacktriangleright \ \ p \sim \mathbb{P}$ in convex ambiguity set \mathcal{P}

The problem results in an standard convex optimization problem

$$\begin{split} \inf / \sup & \quad \sum_{e \in \Omega} \ell(x, e) \, \mathbb{P}(e) \\ \mathrm{s.t.} & \quad \mathbb{P} \in R_+^{|\Omega|}, \\ & \quad \sum_{e \in \Omega} \mathbb{P}(e) = 1, \\ & \quad \mathbb{P} \in \mathcal{P} \end{split}$$

of dimension the cardinality of the set S.

Duality

Support function : the support function of a conve set ${\mathcal P}$ is given by

$$h_{\mathcal{P}}(g) := \sup \left\{ \sum_{e \in \Omega} g(e) \mathbb{P}(e) \; : \; \mathbb{P} \in \mathcal{P}
ight\}$$

and is always a convex function.

Our convex reformulation has the strong convex dual

$$\begin{array}{lll} \min & h_{\mathcal{P}}(f-r\mathbb{1})+r & = & \max & \sum_{i\in\Omega}\ell(x,e)\,\mathbb{P}(e) \\ & \mathrm{s.t.} & r\in\mathrm{R},\ f\in\mathrm{R}^{|\Omega|} & & \mathrm{s.t.} & \mathbb{P}\in\mathrm{R}^{|\Omega|}_+,\ \sum_{e\in\Omega}\mathbb{P}(e)=1, \\ & & f(e)\geq\ell(x,e),\ \forall e\in\Omega & & \mathbb{P}\in\mathcal{P} \end{array}$$

whenever the *Slater condition* int $\mathcal{P} \cap \mathcal{P}(\Omega) \neq \emptyset$ holds.

Robust Counterpart

Distributionally robust optimization problem :

$$\begin{array}{lll} \min & c^\top x & = & \min & c^\top x \\ \text{s.t.} & x \in \mathbf{R}^d & \text{s.t.} & x \in \mathbf{R}^d, \ r \in \mathbf{R}, \ f \in \mathbf{R}^{|\Omega|} \\ & & \mathbf{E}_{\mathbb{P}} \left[\ell(x, \mathbf{p}) \right] \leq 0, \quad \forall \mathbb{P} \in \mathcal{P} & h_{\mathcal{P}}(f - r\mathbb{1}) + r \leq 0 \\ & & f(e) \geq \ell(x, e), \ \forall e \in \Omega \end{array}$$

Exact convex reformulation if

- ▶ Constraint function $\ell(x, p)$ is convex in x for any p
- ▶ Sufficient condition : int $\mathcal{P} \cap \mathcal{P}(S) \neq \emptyset$

Example: Worst-Case Probability Problem

Example: We consider **p** has a probability distribution on 1000 equidistant points on the interval $\Omega = [-1, 1]$. We assume the following prior information

- ▶ $\mathbf{E}_{\mathbb{P}}[\mathbf{p}] \in [-0.1, 0.1]$
- ▶ $\mathbf{E}_{\mathbb{P}} [\mathbf{p}^2] \in [0.5, 0.6]$
- ► $\mathbf{E}_{\mathbb{P}} \left[3\mathbf{p}^3 2\mathbf{p} \right] = -0.2$
- ▶ $\mathbb{P}(\mathbf{p} < 0) = 0.4$

What is the best information we have regarding

$$\mathbb{P}(\mathbf{p} \le k) = \mathbf{E}_{\mathbb{P}} \left[\ell(\mathbf{x}, \mathbf{p}) = \mathbb{1} \left\{ \mathbf{p} \le k \right\} \right]?$$

Example: Worst-Case Probability Problem II

Table of Contents

- Hedging against Uncertainty
- 2 Ambiguity Sets
- Finitely Supported Ambiguity Sets
- 4 Second Moment Ambiguity Sets
- Adapting to Uncertainty

Worst-case Expectation Problem

Problem: What is the worst-case expectation $\mathbf{E}_{\mathbb{P}}\left[\ell(x,\mathbf{p})\right]$ assuming only

- ightharpoonup takes values in R^n
- ▶ Mean : $\mathbf{E}_{\mathbb{P}}[\mathbf{p}] = \mu$
- ► Variance : $\mathbf{E}_{\mathbb{P}}\left[\mathbf{p}\mathbf{p}^{\top}\right] = \mu\mu^{\top} + \Sigma$

The problem results in an infinite dimensional convex optimization problem

$$\begin{split} \inf / \sup & \quad \int \ell(x,e) \, \mathbb{P}(\mathrm{d} e) \\ \mathrm{s.t.} & \quad \mathbb{P} \in \mathcal{P}(\mathrm{R}^n) \\ & \quad \int e \, \mathbb{P}(\mathrm{d} e) = \mu, \\ & \quad \int e \cdot e^\top \, \mathbb{P}(\mathrm{d} e) = \mu \cdot \mu^\top + \Sigma \end{split}$$

From infinite to finite dimensional optimization

Krein-Milman : For any compact convex set \mathcal{P} ,

$$\sup_{\mathbb{P}\in\mathcal{P}}\int f(e)\,\mathbb{P}(\mathrm{d} e)=\sup_{\mathbb{P}\in\mathsf{ex}\,\mathcal{P}}\int f(e)\,\mathbb{P}(\mathrm{d} e).$$

Optimize over only over the **extreme points** of \mathcal{P} .

Two questions need to be answered such that we can optimize over $\mathcal{P}(\mu,\Sigma)$

- 1. Can we identify its extreme points?
- 2. Can we optimize efficiently over them?

Step 1: Extreme Points

A point \mathbb{P} is called an **extreme point** in a convex set \mathcal{P} if it can not be written as the strict convex combination of two distinct points in the set \mathcal{P} .

$$\mathbb{P} \in \operatorname{ex} \mathcal{P} \iff !\exists \mathbb{P}_1, \mathbb{P}_2 \in \mathcal{P} : \mathbb{P} = \lambda \mathbb{P}_1 + (1 - \lambda) \mathbb{P}_2$$

with $\mathbb{P}_1 \neq \mathbb{P}_2$ and $\lambda \in (0,1)$.

Examples:

Step 1: Extreme Distributions

The **Dirac distribution** δ_e is defined as the unique distribution satisfying

$$\forall E \in \mathcal{B}(\Omega): \quad \delta_e(E) = egin{cases} 1 & ext{if } e \in E, \ 0 & ext{Otherwise.} \end{cases}$$

Theorem : The extreme distributions in the probability simplex on Ω are the Dirac distributions

$$\operatorname{ex} \mathcal{P}(\Omega) = \{ \delta_e : e \in \Omega \}$$

Step 1: Extreme Distributions II

We are interested in the extreme points of moment ambiguity sets

$$\mathcal{P}(\mu, \Sigma) := \mathcal{P}(\mathrm{R}^n) \cap \left\{ \mathbb{P} \in \mathit{M}_+ \ : \ \int e \, \mathbb{P}(\mathrm{d} e) = \mu, \ \int e \cdot e^\top \, \mathbb{P}(\mathrm{d} e) = \mu \cdot \mu^\top + \Sigma \right\}$$

Theorem : the extreme points of a moment set are a finite convex combination of at most c extreme points δ_{e_k} of the probability simplex, i.e.

$$\operatorname{ex} \mathcal{P}(\mu, \Sigma) = \left\{ \sum_{k=1}^{c} \lambda_k \delta_{e_k} \ : \ \sum_{k=1}^{c} \lambda_k = 1, \ \lambda \in \operatorname{R}^c_+, \ e_k \in \operatorname{R}^n \right\} \cap \mathcal{P}(\mu, \Sigma)$$

Step 2: Optimizing over extreme distributions

From infinite to finite dimensional optimization

$$\begin{split} \sup \left\{ \int \ell(x,e) \, \mathbb{P}(\mathrm{d}e) \; : \; \mathbb{P} \in \mathcal{P}(\mu,\Sigma) \right\} &= \sup \; \sum_k \lambda_k \ell(x,e_k) \\ \mathrm{s.t.} \; \; \lambda &\geq 0, \; e_k \in \mathbf{R}^n \\ \sum_k \lambda_k &= 1, \; \sum_k \lambda_k e_k = \mu \\ \sum_k \lambda_k e_k \cdot e_k^\top &= \mu \cdot \mu^\top + \Sigma \end{split}$$

The problem of optimizing over the locations e_k and weights λ_k simultaneously remains hard in general.

Using clever reformulations, for double affine cost functions

$$\ell(x,p) = \max_{i} \tilde{a}_{i}(x)^{\top} p + \tilde{b}_{i}(x)$$

an exact convex reformulation is possible.

Main Theorem

Theorem : Semidefinite optimization formulation for $\ell(x,p) = \max_i \, \tilde{a}_i(x)^\top p + \tilde{b}_i(x)$

$$\begin{aligned} \sup_{\mathbb{P} \in \mathcal{P}(\mu, \Sigma)} \int \ell(x, e) \, \mathbb{P}(\mathrm{d}e) &= \max \quad \tilde{a}_i(x)^\top z_i + \tilde{b}_i(x) \lambda_i \\ \mathrm{s.t.} \quad \lambda &\geq 0, \ z_i \in \mathbb{R}^n, \\ \sum_i \lambda_i &= 1, \ \sum_i z_i = \mu, \\ \sum_i z_i \frac{1}{\lambda_i} z_i^\top &\leq \mu \mu^\top + \Sigma \end{aligned}$$

Observations:

▶ The constraints are equivalent to

$$\exists Z_i \in \mathbf{R}^{n \times n}: \ \sum_i \begin{pmatrix} Z_i & z_i \\ z_i^\top & \lambda_i \end{pmatrix} = \begin{pmatrix} S & \mu \\ \mu^\top & 1 \end{pmatrix}, \ \begin{pmatrix} Z_i & z_i \\ z_i^\top & \lambda_i \end{pmatrix} \succeq \mathbf{0}, \ \forall i$$

with second moment matrix $S = \mu \mu^{\top} + \Sigma$

Duality

The previous semidefinite program has the strong convex dual

$$\begin{array}{lll} \min & \operatorname{Tr}(SP) + 2q^{\top}\mu + r & = & \max & \sum_{i} \tilde{a}_{i}(x)z_{i} + \tilde{b}_{i}(x)\lambda_{i} \\ \mathrm{s.t.} & P \in \mathbf{R}^{n \times n}, \ q \in \mathbf{R}^{n}, \ r \in \mathbf{R} & \mathrm{s.t.} & \lambda \geq 0, \ z_{i} \in \mathbf{R}^{n}, \\ & \begin{pmatrix} P & q \\ q^{\top} & r \end{pmatrix} \succeq \frac{1}{2} \begin{pmatrix} 0 & \tilde{a}_{i}(x) \\ \tilde{a}_{i}(x)^{\top} & 2\tilde{b}_{i}(x) \end{pmatrix}, \ \forall i & \sum_{i} \lambda_{i} = 1, \ \sum_{i} z_{i} = \mu, \\ & \sum_{i} z_{i} \frac{1}{\lambda_{i}} z_{i}^{\top} \preceq \mu \mu^{\top} + \Sigma \end{array}$$

whenever we have the Slater condition

$$\mathsf{int}\,\mathcal{P}(\mu,\Sigma)\neq\emptyset\iff\Sigma\in\mathrm{S}^{\mathit{n}}_{++}$$

Robust Counterpart

Distributionally robust optimization problem :

$$\begin{array}{lll} \min & c^{\top}x & = & \min & c^{\top}x \\ \text{s.t.} & x \in \mathbf{R}^{d} & \text{s.t.} & x \in \mathbf{R}^{d}, \ P \in \mathbf{R}^{d \times d}, \ q \in \mathbf{R}^{d}, \ r \in \mathbf{R} \\ & & \mathbf{E}_{\mathbb{P}}\left[\ell(x,\mathbf{p})\right] \leq 0, & \forall \mathbb{P} \in \mathcal{P}(\mu,\Sigma) & & \mathrm{Tr}(\mathit{SP}) + 2q^{\top}\mu + r \leq 0 \\ & & \left(\frac{P}{q^{\top}}\frac{q}{r}\right) \succeq \frac{1}{2}\left(\frac{0}{\tilde{a}_{i}(x)} - \frac{\tilde{a}_{i}(x)}{2\tilde{b}_{i}(x)}\right), \ \forall i \end{array}$$

Exact convex reformulation if

- ▶ Constraint function $\ell(x, p)$ is double affine.
- ▶ Sufficient condition : $\Sigma \in S_{++}^n$

Table of Contents

- Hedging against Uncertainty
- 2 Ambiguity Sets
- Finitely Supported Ambiguity Sets
- Second Moment Ambiguity Sets
- Solution Adapting to Uncertainty

Two-Stage Optimization

Two-stage optimization problem:

$$\min_{x \in \mathbf{R}^d} \mathbf{c}^\top x + \sup_{\mathbb{P} \in \mathcal{P}} \ \mathbf{E}_{\mathbb{P}} \left[\min_{\mathbf{y}} \left\{ \mathbf{d}^\top \mathbf{y} \ : \ A(\mathbf{p}) \mathbf{x} + B \mathbf{y} \leq b(\mathbf{p}) \right\} \right]$$

The problem contains three stages:

- 1. The vector x collects the **first-stage** decision variables
- 2. An uncertain variable $\boldsymbol{p} \sim \mathbb{P} \in \mathcal{P}$ is observed
- 3. The vector y collects the **second-stage** decision variables

Model problem for dynamic decision making.

Two-Stage Optimization II

The cost Q of the optimal second stage decision y^* depends on the initial decision x and an uncertain parameter p as

$$Q(x,p) := \min \left\{ d^{\top}y : A(p)x + By \le b(p) \right\}$$
$$= \max \left\{ \lambda^{\top} (A(p)x - b(p)) : \lambda \ge 0, \ d = -\lambda^{\top}B \right\}$$

Two important remarks:

- ▶ The dual representation makes clear the **cost** Q(x, p) **is convex** in x for any p.
- ▶ Using the vertices v_i of the polytope $\Lambda := \{\lambda \geq 0 : d = -\lambda^\top B\}$ we have

$$Q(x,p) = \max_{i} \ v_{i}^{\top}(A(p)x - b(p))$$

Two-Stage Optimization III

$$\begin{aligned} & \min_{x \in \mathbf{R}^d} c^\top x + \sup_{\mathbb{P} \in \mathcal{P}} \ \mathbf{E}_{\mathbb{P}} \left[\min_{y} \left\{ d^\top y : A(\mathbf{p}) x + B y \le b(\mathbf{p}) \right\} \right] \\ & = \min_{x \in \mathbf{R}^d} c^\top x + \sup_{\mathbb{P} \in \mathcal{P}} \ \mathbf{E}_{\mathbb{P}} \left[Q(x, \mathbf{p}) \right] \\ & = \min_{x \in \mathbf{R}^d} c^\top x + \beta(x) \end{aligned}$$

The problem is a **convex optimization** problem for any $\mathcal P$ as

$$\beta(x) = \sup_{\mathbb{P} \in \mathcal{P}} \mathbf{E}_{\mathbb{P}} \left[Q(x, \mathbf{p}) \right]$$

is convex.

The **tractability** does depends on the ambiguity set \mathcal{P} .

Finite Support Ambiguity Sets

Theorem: The problem is always tractable if $\mathcal{P} \subset \mathcal{P}(\Omega)$ with $|\Omega|$ finite.

$$\begin{split} \beta(x) &= \sup \left\{ \sum_{i \in \Omega} \mathbb{P}(i) Q(x,i) \ : \ \sum_{i \in \Omega} \mathbb{P}(i) = 1, \ \mathbb{P} \in \mathcal{P} \right\} \\ &= \inf \left\{ r + h_{\mathcal{P}}(q - r\mathbb{1}) \ : \ q_i \geq Q(x,i), \quad \forall i \in \Omega \right\} \end{split}$$

Using the definition of the convex cost Q we can write

$$=\inf\left\{r+h_{\mathcal{P}}(q-r\mathbb{1})\ :\ q_i\geq d^\top y_i,\ A(i)x+By_i\leq b(i)\quad\forall i\in\Omega\right\}$$

Observations:

- ▶ The number of constraints depends linearly on the cardinality of Ω .
- ▶ The type of optimization problem depends on the functional form of h_P .

Second-Order Moment Ambiguity Sets

Tractability for second-order moment ambiguity sets

$$\mathcal{P}(\mu, \Sigma) = \left\{ \mathbb{P} \in \mathcal{P}(\mathbb{R}^n) \ : \ \int x \, \mathbb{P}(\mathrm{d}x) = \mu, \ \int x x^\top \, \mathbb{P}(\mathrm{d}x) = \mu \mu^\top + \Sigma \right\}$$

requires assumptions on the technology matrix and budget vector

- ▶ **Affine** technology matrix : $A(p) = A_0 + \sum_{j=1}^{n} p_j A_j$
- ▶ Affine budget vector : $b(p) = b_0 + \sum_{i=1}^n p_i b_i$

Using the extreme point representation of the cost function Q we have

$$\begin{split} \beta(x) &= \sup_{\mathbb{P} \in \mathcal{P}(\mu, \Sigma)} \mathbf{E}_{\mathbb{P}} \left[Q(x, \mathbf{p}) \right] \\ &= \sup_{\mathbb{P} \in \mathcal{P}(\mu, \Sigma)} \mathbf{E}_{\mathbb{P}} \left[\max_{i} v_{i}^{\top} (A(\mathbf{p})x - b(\mathbf{p})) \right] \end{split}$$

which has the form for which we have a semidefinite representation.

Second-Order Moment Ambiguity Sets II

The function β can be written as

$$\begin{split} \beta(x) &= \sup_{\mathbb{P} \in \mathcal{P}(\mu, \Sigma)} \mathbf{E}_{\mathbb{P}} \left[\max_{i} v_{i}^{\top} (A(\mathbf{p})x - b(\mathbf{p})) \right] \\ &= \inf_{P, q, r} \left\{ \mathrm{Tr}(\Sigma P) + 2q^{\top} \mu + r \ : \ \begin{pmatrix} P & q \\ q^{\top} & r \end{pmatrix} \succeq \frac{1}{2} \begin{pmatrix} 0 & \tilde{a}_{i}(x) \\ \tilde{a}_{i}(x)^{\top} & 2\tilde{b}_{i}(x) \end{pmatrix}, \ \forall i \right\} \end{split}$$

where $\tilde{a}_{ij}(x) = v_i^\top (A_j x - b_j)$ and $\tilde{b}_i = v_i^\top (A_0 x - b_0)$.

Observations:

 The number of constraints depends linearly on the number of extreme points of the polytope

$$\Lambda := \left\{ \lambda \geq 0 \ : \ d = -\lambda^\top B \right\}.$$

▶ The number of extreme points may be exponential in the number of constraints.

Adaptive Optimization

Equivalent adaptive optimization formulation

$$\min_{\mathbf{x} \in \mathbf{R}^{d}} c^{\top} \mathbf{x} + \sup_{\mathbf{P} \in \mathcal{P}} \mathbf{E}_{\mathbf{P}} \left[\min_{\mathbf{y}} \left\{ d^{\top} \mathbf{y} : A(\mathbf{p}) \mathbf{x} + B \mathbf{y} \leq b(\mathbf{p}) \right\} \right]
= \min_{\mathbf{x} \in \mathbf{R}^{d}} c^{\top} \mathbf{x} + \min_{\mathbf{y}(\cdot)} \left\{ \sup_{\mathbf{P} \in \mathcal{P}} \mathbf{E}_{\mathbf{P}} \left[d^{\top} \mathbf{y}(\mathbf{p}) \right] : A(\mathbf{p}) \mathbf{x} + B \mathbf{y}(\mathbf{p}) \leq b(\mathbf{p}), \quad \forall \mathbf{p} \in S \right\}$$

where S the smallest set such that $\mathcal{P} \subseteq \mathcal{P}(S)$.

Adaptive optimization over

- ► A **static** decision *x*
- ▶ A decision rule $y(\cdot)$ adaptive to the uncertain parameter **p**

Affine Decision Rules

For tractability, we restrict attention to second-stage decisions which are affine:

$$y(p) = y_r + Fp$$

- ▶ Vector y_r encodes the **nominal plan** for p = 0
- ▶ Matrix F describes how to **adapt** to $p \neq 0$

Affine Robust Counterpart:

$$\min_{x} \min_{y_r, F} \left\{ c^\top x + d^\top y_r + \sup_{\mathbb{P} \in \mathcal{P}} d^\top F \; \mathbf{E}_{\mathbb{P}} \left[\mathbf{p} \right] \; : \; A(p)x + By_r + BFp \leq b(p), \quad \forall p \in S \right\}$$

Observations

Always tractable, but not exact.

Example - Multi-period Inventory Control

Consider a finite horizon, T period single product inventory control problem

- ▶ \mathbf{d}_t for $t \in [T]$: Uncertain demands
- ▶ x_t for $t \in [T]$: Order quantities
- y_t for $t \in [T]$: Nett inventories

Inventory dynamics:

$$y_{t+1} = y_t + x_t - \mathbf{d}_t$$

Cost model:

- ▶ Marginal purchase cost in period t : c_t
- ► Marginal holding cost in period t : ht
- ▶ Marginal backlogged cost in period t : b_t

Initial condition : No inventory $y_1 = 0$ and no purchase history $\mathbf{d}_0 = 0$

Example - Multi-period Inventory Control II

Minimize the worst-case expected total cost over the entire horizon :

$$\begin{array}{ll} \min & \sup_{\mathbb{P}\in\mathcal{P}} \mathbf{E}_{\mathbb{P}} \left[\sum_{t \in [T]} c_t x_t(\mathbf{d}) + v_t(\mathbf{d}) \right] \\ \mathrm{s.t.} & y_{t+1}(\mathbf{d}) = y_t(\mathbf{p}) + x_t(\mathbf{d}) - \mathbf{d}_t, \ \, \forall t \in [T] \\ v_t(\mathbf{d}) \geq h_t y_{t+1}(\mathbf{p}), \ \, \forall t \in [T] \\ v_t(\mathbf{d}) \geq -b_t y_{t+1}(\mathbf{p}), \ \, \forall t \in [T] \\ 0 \leq x_t(\mathbf{d}) \leq \bar{x}_t, \ \, \forall t \in [T] \\ x_t(\cdot), \ \, y_t(\cdot), \ \, v_t(\cdot) \colon \ \, t - \mathrm{adaptable} \end{array}$$

The set of distributions we hedge against consists of

$$\mathcal{P} := \left\{ \mathbb{P} \in \mathcal{P}(\mathbf{R}_{+}^{T}) : \qquad \begin{array}{l} \mathbf{E}_{\mathbb{P}}[\mathbf{d}] = \mu \\ \mathbf{E}_{\mathbb{P}}\left[\sum_{t=s}^{T} (\mathbf{d}_{t} - \mu_{t})^{2}\right] \leq \theta_{st}^{2}, \quad \forall s \leq t \end{array} \right\}$$

with $heta_{st}^2 := (t-1+1)\sigma^2$

Example - Multi-period Inventory Control III

Numerical Values

- ▶ Purchase cost $c_t = 0.1$
- ▶ Holding cost $h_t = 0.02$
- ▶ Backlog cost $b_t = 0.2$
- Maximum order quantity $\bar{x}_t = 260$

Т	μ	σ^2	Lower Bound	Approx MM	Approx PCM
5	200	533.3	108.0	191.6	131.4
10	200	133.3	206.0	302.1	229.9
20	240	48.0	486.0	635.1	518.2
30	240	21.33	725.0	905.8	761.2