UE 6
INITIATION À LA CONNAISSANCE DU
MÉDICAMENT

Pharmacocinétique

Cours N° 1

Dr. F. DESPAS

- 1. Définitions
- 2. Passage des barrières physiologiques
 - 2.a. Transfert paracellulaire
 - 2.a.1. À travers les espaces inter-cellulaires
 - 2.a.2. Au travers de l'endothélium vasculaire
 - 2.a.3. Filtre poreux
 - 2.b. Transfert transcellulaire
 - 2.b.1. Diffusion passive
 - 2.b.2. Canal aqueux
 - 2.b.3. Transport actif
- 3. Etudes de Pharmacocinétique

- 2. Passage des barrières physiologiques
 - 2.a. Transfert paracellulaire
 - 2.a.1. À travers les espaces inter-cellulaires
 - 2.a.2. Au travers de l'endothélium vasculaire
 - 2.a.3. Filtre poreux
 - 2.b. Transfert transcellulaire
 - 2.b.1. Diffusion passive
 - 2.b.2. Canal aqueux
 - 2.b.3. Transport actif
- 3. Etudes de Pharmacocinétique

- Etymologie de Pharmacocinétique
 - Pharmaco-:
 - Grec [φάρμακον] *pharmakon* : poison et remède
 - -cinétique :
 - Grec [κινητικός] kinetikos : mouvement, force vive
- In English: Pharmacokinetics (PK)
- Etude du devenir du Principe Actif (PA) dans l'organisme, depuis son administration jusqu'à son élimination
 - Absorption
 - Distribution
 - Métabolisation
 - Excrétion

Elimination

Phases A, D, M et E coexistent dans le temps

- Relation PK/PD = un médicament agit, si
 - Présent au site d'action (cible pharmacologique)
 - Durée suffisante de contact avec sa cible pharmacologique
 - Concentration optimale au site d'action
- Relation concentration plasmatique/effets pharmacologiques

- Etudes concentrations du médicament dans l'organisme
 - En pratique, principalement dosage plasmatique
 - Courbes concentration/fonction du temps obtenues sont \pm complexes suivant médicaments
 - Modèles mathématiques : [M]_{Plasm.} = f_(t)
 - Modèles mono-, bi-, tricompartimentaux...
 - Aux doses utilisées : en dehors zones saturations
 - Evolution différentes suivant modalités d'administration

Paracétamol

EXCRETION BILIAIRE

Transfert des médicaments au niveau des barrières physiologiques

- transfert paracellulaire
- transfert transcellulaire

- 1. Définitions
- 2. Passage des barrières physiologiques
 - 2.a. Transfert paracellulaire
 - 2.a.1. À travers les espaces inter-cellulaires
 - 2.a.2. Au travers de l'endothélium vasculaire
 - 2.a.3. Filtre poreux
 - 2.b. Transfert transcellulaire
 - 2.b.1. Diffusion passive
 - 2.b.2. Canal aqueux
 - 2.b.3. Transport actif
- 3. Etudes de Pharmacocinétique

2.a. Transfert paracellulaire

- Etymologie
 - Para- : à coté de
 - -cellulaire : petite chambre
- Phénomènes passifs
- Dépendant d'un gradient de concentration

1) À travers les espaces inter-cellulaires

- 0,01 à 0,1% de la surface épithéliale totale
- Diamètre des espaces ≈ 4 Å ≈ diamètre des molécules médicamenteuses de PM < 200 Daltons
- Seules filtrent :
 - Petites molécules hydrosolubles
 - Peu ionisées
 - Peu hydratées
 - Ex: urée, glycérol, éthanol...

Donc très peu de médicaments!

2.a. Transfert paracellulaire

2) Au travers de l'endothélium vasculaire

- Composé d'un endothélium capillaires fenestrés (micropore)
- Molécules de PM < 30 000 D ⇒ la plupart des médicaments, sauf polymères ou protéines thérapeutiques
- Seuls diffusent hors du secteur vasculaire les PA non liés aux protéines plasmatiques (fraction libre)

3) Filtre poreux, dans glomérule rénal

- Libre passage à travers les pores de la membrane
- Seuls diffusent hors du secteur vasculaire les PA non liés aux protéines plasmatiques (fraction libre)
- Dépendant de la taille des molécules
 - PM < 65 000 Da

Principe Actif

- 1. Définitions
- 2. Passage des barrières physiologiques
 - 2.a. Transfert paracellulaire
 - 2.a.1. À travers les espaces inter-cellulaires
 - 2.a.2. Au travers de l'endothélium vasculaire
 - 2.a.3. Filtre poreux
 - 2.b. Transfert transcellulaire
 - 2.b.1. Diffusion passive
 - 2.b.2. Canal aqueux
 - 2.b.3. Transport actif
- 3. Etudes de Pharmacocinétique

2.b. Transfert transcellulaire

- Etymologie
 - Trans-: passer à travers
 - -cellulaire : petite chambre

1) Diffusion passive

- Phénomène le plus courant pour les médicaments
- Vitesse de transfert est modélisée par la loi de FICK :

$$V = D \times S \times Kp (C2-C1)$$

- D = constante diffusion molécule
- S et E = Surface et Epaisseur membrane
- Kp = coeff. partage Médicament entre membrane et eau
- C2-C1 = delta concentration de part et d'autre membrane
- Caractéristique du transfert
 - Dépendant propriétés physico-chimiques
 - Dans le sens du gradient de concentration
 - Non spécifique
 - Non saturable
 - Sans dépense d'énergie (pas besoin d'ATP)
 - Sans compétition entre molécules

2.b. Transfert transcellulaire

- Les molécules diffusant rapidement sont :
 - De petit Poids Moléculaire
 - Liposolubles (fort coefficient de partage huile/eau=Kp)
 - Non ionisées (ionisation fonction du pKa de la molécule et du pH du milieu)
 - Non liées aux protéines plasmatiques (fraction libre)

2) Canal aqueux : Aquaporine

- Protéines membranaires formant des pores perméables aux molécules d'eau
- Diffusion pour molécules de très petites tailles
- Rôle limité pour médicaments

2.b. Transfert transcellulaire

3) Transport actif

- Transfert indépendant du gradient de concentration
- Fait appel à des transporteurs membranaires
 - Spécifiques (±)
 - Saturables
 - Énergie fournie par l'hydrolyse d'ATP
 - Compétition possible entre molécules
- Présents au niveau de très nombreux tissus
 - Certains transporteurs sont spécifiques de certains tissus
- Favorise l'entrée des PA dans la cellule, ou au contraire leur expulsion
 - Transporteurs d'influx
 - Transporteurs d'efflux

Principe Actif

2.b. Transfert transcellulaire

- Les transports actifs les plus importants pour la pharmacocinétique des médicaments sont au niveau de
 - Intestin grêle
 - Foie
 - Tube contourné du néphron
 - Barrière hémato-encéphalique
 - Placenta

- Ex: Transporteurs d'influx ou d'efflux
 - ABC (ATP binding cassette)
 - P GlycoProtéine (PGP), gène ABCB1
 - OCT (Organic <u>Cation</u> Transporter)
 - OAT (Organic <u>Anion</u> Transporter)
 - Transporteur OATP1B1, gènes Solute Carriers ; ex.: SLCO1B1

- 1. Définitions
- 2. Passage des barrières physiologiques
 - 2.a. Transfert paracellulaire
 - 2.a.1. À travers les espaces inter-cellulaires
 - 2.a.2. Au travers de l'endothélium vasculaire
 - 2.a.3. Filtre poreux
 - 2.b. Transfert transcellulaire
 - 2.b.1. Diffusion passive
 - 2.b.2. Canal aqueux
 - 2.b.3. Transport actif
- 3. Etudes de Pharmacocinétique

3. Etudes de Pharmacocinétique

- Développement préclinique
 - Pharmacocinétique chez l'animal (A.D.M.E.)
- Développement clinique
 - Essais cliniques Phase I (volontaires sains), Phase II (malades)
 - Paramètres pharmacocinétiques (Biodisponibilité, Vd, t½...) et établir la posologie usuelle appropriée
 - Dose : D (μg, mg, g) pour voie d'administration donnée
 - τ: Intervalle d'administration (temps entre 2 administrations d'une dose D)
 - Essais cliniques de phase III et données post-AMM
 - Estimation variabilité des paramètres pharmacocinétiques
 - Sujets âgés
 - Insuffisance rénale et/ou hépatique
 - Interactions médicamenteuses
 - **–** ...

3. Etudes de Pharmacocinétique

- Pratique clinique
 - Suivi Thérapeutique Pharmacologique (STP)
 - Certains médicaments présentent variabilité pharmacocinétique interindividuelle
 - A posologie identique, risques de [M]_{plasm.}différentes
 - Intérêt STP pour médicaments à index thérapeutique étroit (Conc. Tox./Conc. min. efficace)
 - Personnalisation posologie fonction [M]_{plasm}
 - Antibiotiques : Ex. aminosides
 - Anticancéreux : Ex. méthotrexate
 - Antiépileptiques : Ex. phénytoïne
 - Immunodépresseurs : Ex. tacrolimus

3. Etudes de Pharmacocinétique

- Pratique clinique
 - Suivi Thérapeutique Pharmacologique (STP)
 - Ex Posologie par STP: Tacrolimus (immunodépresseur)
 - Posologie initiale : 2 x 0,05mg/kg/j per os
 - Concentration résiduelle cible (8 h post-dose)
 - − 0 à 6 mois : 8 − 12 ng/ml
 - 6 à 12 mois : 8 10 ng/ml
 - après 12 mois : 6 8 ng/ml

Tacrolimus daily dose (mg/kg/d) at 1month

Anglicheau D et al., J Am Soc Nephrol 2003

Mlle. Y. 19 ans, 46 kg atteint de mucoviscidose

- Est admise en pneumologie en raison d'une fièvre élevée et d'une dégradation des capacités respiratoires
- Une infection à *Pseudomonas aeruginosa* est mise en évidence. Une antibiothérapie est initiée :
 - Bêtalactamine (ceftazidime : 2g x 2f/jour Intraveineuse)
 - Aminoside (amikacine : 7,5 mg/kg/jour en 1 administration
 I.V. en initiation posologie à adapter suivant STP)
 - 1. Pourquoi posologie amikacine suivant STP?

3. Quels sont les risques en cas de surdosage?

Merci de votre attention