ऐल्डिहाइड, कीटोन और कार्बोक्सिलक अम्ल Aldehyde, Ketone & Carboxylic Acid

-					
2000	RSTOL	F			12.2.2 बनाने की विधियाँ
	12.1	ऐल्डिहाइड एवं कीटॉन	-> -> -> -> -> -		12.2.3 भौतिक गुण
		12.1.1 नामकरण	12.1.2 बनाने की विधियाँ		12.2.4) रासायनिक गुण
	!	12.1.3 भौतिक गुण	12.1.4 रासायनिक गुण		12.2.5 अम्लों की अम्लता
		12.1.5 ऐल्डिहाइड एवं	कोटान में अंतर		12.2.6 अम्लों के उपयोग
		12.1.6 ऐल्डिहाइड एवं	कीटान के उपयोग	12.3	पाठ्यपुस्तक के प्रश्न-उत्तर
	12.2	कार्बोक्सिलक अम्ल		12.4	कुछ महत्त्वपूर्ण प्रश्न-उत्तर
		12.2.1 ्नामकरण			

• पिछली इकाई में हमने ऐसे कार्बनिक यौगिकों का अध्ययन किया था जिनमें कार्बन-ऑक्सीजन के मध्य एकल बन्ध IC-Ol उपस्थित था। इस इकाई में हम ऐसे कार्बनिक यौगिकों का अध्ययन करेंगे जिनमें कार्बन ऑक्सीजन के मध्य द्विबन्ध उपस्थित हो। [>C = O]

> C = O समूह को कार्बोनिल समूह कहते हैं।

- ऐल्डिहाइड में कार्बोनिल समूह कार्बन एवं हाइड्रोजन से जुड़ा होता है जबिक कीटोन में दों C परमाणुओं से जुड़ा होता है।
- जब > C = O कार्बोनिल समूह ऑक्सीजन से बन्धित होता है तो हम उसे कार्बोक्सिलिक अम्ल एवं अम्ल व्युत्पन्न कहते हैं जैसे ऐस्टर एवं अम्ल ऐनहाइड्राइड।

$$>$$
 $C = O$ $R > C = O$ $R > C = O$ कार्बोनिल एंग्लिडहाइड कीटोन $R = C > C = O$ कार्बोनिसलिक अस्त $R = C > C = O$ एंग्लिड ऐंग्लिड प्रेंग्लं $R = C$ $R = C$

 जब कार्बोनिल समूह का कार्बन परमाणु नाइट्रोजन से जुड़ा हो तो ऐमाइड कहते हैं और जब हेलोजन से जुड़ा हो तो उसे ऐसिल हैलाइड कहते हैं।

मुख्य बिन्दु (Important Point)

यहाँ लिखे इन सभी यौगिकों में इलेक्ट्रॉन युग्म व द्विआबन्ध संयुग्मित

(conjugated) होते हैं। $\begin{vmatrix} O \\ \parallel \\ -C - Z \end{vmatrix}$ अतः स्पष्ट है कि अनुनाद होता

है। इन यौगिकों में कार्बोनिल समृह होता है। तब भी यह कार्बोनिल यौगिक नहीं होते हैं। क्योंकि कार्बोनिल समृह एकल इलेक्ट्रॉन युग्म के साथ अनुनाद में भाग लेता है।

इसलिए यह यौगिक (NSR) नाभिक स्नेही प्रतिस्थापन अभिक्रिया प्रदर्शित करते हैं।

• Aldehydes. Ketones & Acids पेड़-पीधों में एवं जन्तु जगत में व्यापक रूप से विद्यमान है। ये जैव रसायन में महत्वपूर्ण भूमिका निभाते हैं।

एल्डिहाइड एवं कीटॉन 12.1

कार्बोनिल यौगिक-द्विसंयोजी समूह जिनमें कार्बन तथा आक्सीजन परमाणुओं के मध्य एक द्वि (=) आबन्ध उपस्थित हो, उसे कार्बोनिल समूह कहते है। जैसे-

 जिन कार्बोनिल समूह के कार्बन परमाणु की शेष दोनों संयोजकताएं हाइड्रोजन अथवा हाइड्रोकार्बन मूलक द्वारा संतृप्त हों, उन्हें कार्बोनिल यौगिक कहते है।

$$H = O \qquad H_3C - C - CH_3 \qquad H_3C - C - II$$

- इनका सामान्य सूत्र CूHू, O है ।
- कार्बोनिल यौगिकों को दी भागों में बाँटा गया है।
 - ऐल्डिहाइड

(ii) कीटोन

(i) जब कार्बोनिल समूह की एक संयोजकता हाइड्रोजन द्वारा तथा दूसरी संयोजकता ऐल्किल समूह द्वारा या हाइड्रोजन से सन्तुष्ट होती है, ऐसे यौगिकों को ऐल्डिहाइड कहते है।

> R---C--H H---C--H \circ

(ii)जब कार्बोनिल समूह की दोनों संयोजकतायें ऐल्किल समूह द्वारा संतुष्ट होती है। उन्हें कीटोन कहते है।

 $\frac{R}{R}$ C = 0

- कीटोनों को दो भागों में बाँटा गया है।
- (i) सरल अथवा समित कीटोन- इनमें कार्बोनिल समूह से जुड़े दोनों ऐल्किल समूह समान होते है उदाहरण-

$$CH_3-C-CH_3$$
 $C_2H_5-C-C_2H_5$ $\|$ $C_2H_5-C_3H_5$ C_2H_5 C_3H_5 C_3

मिश्रित अथवा असमित कीटोन- इनमें कार्बोनिल समूह से (ii) जुड़े दोनों ऐल्किल समूह भिन्न-भिन्न होते है। उदाहरण C_2H_5 —C— CH_3 CH_3 — CH_2 — CH_2 — CH_3

ऐथिल मेथिल कीटोन

मेथिल n- प्रोपिल कीटोन

कार्बोनिल समूह की इलेक्ट्रोनिक संरचना

- >C = O कार्बोनिल समूह में एक σ बन्ध व एक π बन्ध उपस्थित होता है।
- >C = O समूह में स्थित C परमाणु पर संकरण अवस्था sp² पायी जाती है।
- कार्बन व ऑक्सीजन कें मध्य σ बन्ध कार्बन के sp² संकरित कक्षक एवं ऑक्सीजन के p-कक्षक के अक्षीय अतिव्यापन से बनता है तथा π बन्ध कार्बन व ऑक्सीजन के असंकरित p कक्षकों के पार्श्व अतिव्यापन से बनता है।
- sp² संकरण के कारण ज्यामिती त्रिकोंणीय समतलीय होती है व बन्ध कोण 120° होता है।
- ●ऑक्सीजन परमाणु कार्बन की तुलना मे अधिक ऋण विद्युती होने के कारण π बन्धित इलेक्ट्रॉनों का खिचाव ऑक्सीजन की तरफ होता है। इसके कारण ऑक्सीजन पर आंशिक ऋण आवेश एवं कार्बन पर आंशिक धन आवेश उत्पन्न होने के कारण बन्ध ध्रुवीय हो जाता है।
- >C = O का द्विध्रुव आधूर्ण का मान 2.3 2.8 D होता है।

ध्रुवीय बन्ध कार्बोनिल समूह की सरचना

 $_{\times}^{\times}$: $C:_{\times}^{\times}\overset{\times}{O}\underset{\times}{\times}$

कार्बोनिल समूह की इलेक्ट्रॉनिक संरचना

12:1.1 नामकरण (Nomenclature)

 IUPAC पद्धति: IUPAC पद्धति में संतृप्त ऐल्डिहाइडों का वर्ग नाम ऐल्केनैल (Alkanal) तथा संतृप्त ऐलिफैटिक कीटोंनो का

ऐल्डिहाइड, कीटोन और कार्बोक्सिलक अन्त

वर्ग नाम ऐल्केनोन (Alkanone) है।

•अशाखित ऐल्केनैल का IUPAC नाम प्राप्त करने के लिए उतने ही कार्बन के ऐल्केन के IUPAC नाम से अन्त का e हटा कर al लिख देते है। जैसे-

[Aikane-e+al] = Aikanal

CH, (मेथेन) CH,CH, (ऐथेन) HCHO Methanal CH,CHO Ethanal

CH,CH,CH, (प्रोपेन)

CH,CH,CHO Propanal CH,CH,CH,CH, (ब्यूटेन) CH,CH,CH,CHO Butanal

• शाखित ऐल्केनैलों का IUPAC नाम प्राप्त करने के लिए CHO समूह के कार्बन का क्रमांक 1 मानते हुए सबसे लम्बी कार्बन श्रृंखला का चयन किया जाता है तथा पार्श्व-श्रृंखला के नाम को पहले स्थिति क्रंमाक का उल्लेख करते हुए नाम लिखा जाता है। जैसे–

3 2 1 СН₃СНСНО

CH,CHCH,CHO

2-मेथिलप्रोपेनैल

3-मेथिलब्यूटेनैल

ĊH,

2-Methylpropanal

3-Methylbutanal **रुढ़ पद्धति**– रुढ़ पद्धति में इन यौगिकों का नामकरण कार्बन परमाणु की संख्या पर निर्भर करता है। जैसे-

कार्बन संख्या पूर्वलग्न शब्द अनुलग्न शब्द 1C Form aldehyde 2CAcet aldehyde 3**C** Propion aldehvde 4C Butyr (n. iso) aldehvde 5C Valer (n, iso, active, tert) aldehvde 3C + (=)Acryl aldehyde 4C + (=)Croton aldehvde

• उपरोक्त पद्धति को निम्न चार्ट द्वारा समझा जा सकता है। पाँच कार्बन तक के ऐल्केनैलों का विवरण सारणी 1 में दिया गया है।

सारणी-1

संघनित सूत्र	सामान्य नाम	IUPAC नाम
НСНО	Formaldehyde	Methanal
СН3СНО	Acetaldehyde	Ethanal
CH ₃ -CH ₂ -CHO	Propionaldehyde	Propanal
CH ₃ -(CH ₂) ₂ CHO	n Butyraldehyde	Butanal
(CH ₃) ₂ CH-CHO	Isobutyraldehyde	2 - Methylpropanal
CH ₃ (CH ₂) ₃ CHO	n-Faleraldehyde	Pentanal
(CH ₃) ₂ CHCH ₂ CHO	Iso-valeraldehyde	3- Methylbutanal
CH3CH2CH (CH3)CHO	ativevaleraldehyde	2-Methylbutanal
(CH ₃) ₃ C-CHO	Pyvaldehyde	2,2-Dinethylpropanal

ऐल्डिहाइड, कीटोन और कार्बोक्सिलक अम्ल

.•अशाखित ऐल्केनोन का IUPAC नाम प्राप्त करने के लिए उतने ही कार्बन के ऐल्केन के IUPAC नाम से अन्त का e हटा कर one लिख देते है। जैसे-

Alkane – e + one= Alkanone CH,CH, (प्रोपेन) CH, COCH, (Porpanone) CH,CH2CH2CH3 (ब्यूटेन) CH3CH2COCH3 (Butanone)

 मुख्य श्रृंखला पर CO समूह की स्थिति दर्शाना आवश्यक हो तो क्रमांकन इस प्रकार किया जाता है कि CO समूह को न्युनतम स्थिति क्रमाक मिले।

1 2 4 5 (गलत)

2 1 (सही)

CH₃-CH₂-CH₂-CO-CH₃ Pentan-2-one

- कीटोन परिवार के प्रथम सदस्य को ऐसीटोन कहा जाता है।
- ऐल्केनोन परिवार के पाँच कार्बन तक के सदस्यों का विवरण सारणी 2 मे दिया गया है।

सारणी-2

संघनित सूत्र	सामान्य नाम	IUPAC नाम
CH ₃ -CO-CH ₃	ऐसीटोन, डाइमेथिल	Propanone
CH ₃ -CO-CH ₂ -CH ₃	कीटोन ऐथिल मेथिल कीटोन	Butanone
CH ₃ COCH ₂ CH ₂ CH ₃	मेथिल, n- प्रोपिल कीटोन	Pentan-2-one
CH ₃ CH ₂ COCH ₂ CH ₃	डाइऐथिल कीटोन	Pentan-3-one
CH ₃ CO-CH-(CH ₃) ₂	आइ सोप्रोपिल मेथिल कीटोन	3-Methylbutanone

12.1. 2 कार्बोनिल यौगकों के विरचन की बिधवी

ऐल्डिहाइड तथा कीटोन को निम्न तीन प्रकार से बनाया जाता

- (A) ऐल्डिहाइड तथा कीटोन दोनों के विरचन की समान विधियाँ (Methods of Preparation of Aldehydes & Ke-
- (B) केवल ऐल्डिहाइड के विरचन की विधियाँ (Methods of Preparation of only Aldehydes)
- (C) केवल कीटोन के विरचन की विधियाँ (Methods of Preparation of only Ketones)

A. ऐल्डिहाइड तथा कीटोन दोनों के बनाने की विधियाँ

- 1. ऐल्केनॉलों के ऑक्सीकरण द्वारा (By Oxidation of Alkanols)
 - प्राथमिक ऐल्केनॉलों के ऑक्सीकरण द्वारा ऐल्केनैल तथा द्वितीयक ऐल्केनॉल के ऑक्सीकरण द्वारा ऐल्केनोन का विरचन किया जाता है। ऑक्सीकारक के रूप में सामान्यतः अम्लीय पोटैशियम डाईक्रोमेट का प्रयोग किया जाता है।

$$\begin{array}{c} R - \underset{R}{C} HOH + [O] - \xrightarrow{\overline{\sigma_3} H_2SO_4} R - \underset{R}{C} = O + H_2O \\ \\ R - \underset{R}{CH_3OH} + (O) - \xrightarrow{\overline{\sigma_3} H_2SO_4} HCHO + H_2O \end{array}$$

$$\text{CH}_3\text{CH}_2\text{OH} + (\text{O}) - \xrightarrow{\sigma_3 \text{ H}_2\text{SO}_4} \text{CH}_3\text{CHO} + \text{H}_2\text{O}$$

$$C_6H_5CH_2OH + (O) \xrightarrow{\text{reg } H_2SO_4} C_6H_5CHO + H_2O$$

ਵੈਜਿੰਗਲ एल्कोहॉल बेन्जैल्डिहाइड

$$\text{CH}_3\text{CH}(\text{OH})\text{CH}_3 + (\text{O}) \xrightarrow{-\frac{\sigma_3}{4} \text{H}_2\text{SO}_4} \rightarrow \text{CH}_3\text{COCH}_3 + \text{H}_2\text{O}$$

- •एक अन्य महत्वपूर्ण ऑक्सीकारक अभिकर्मक PCC भी है।
- PCC का पूर्ण नाम Pyridinechloro chromate हैं इसका सूत्र C,H,NHCrO,Cl है। इसे सारैट कोलिन अभिकर्मक (Sarettcollin's reagent) भी कहते हैं।
- •यह अभिकर्मक ${
 m CrO_3}$, pyridene संकुल को ${
 m CH_2Cl_2}$ में घोलकर बनाया जाता है।
- •यह $-CH_2OH$ समूह को -CHO में परिवर्तित करता है।
- ऑक्सीरकारक के रूप में N-ब्रोमोसक्सिनिमाइड (N-Bromosucci-nimide, NBS) का प्रयोग करने पर अभिक्रिया निम्न प्रकार होती है।

2. ऐल्केनॉलों के विहाइड्रोजनीकरण द्वारा (By Dehydrogenation of Alkanols)

 जब प्राथमिक ऐंक्केनॉल (अथवा द्वितीयक ऐक्केनॉल) की वाष्प को 300° ताप पर तप्त ताम्र अथवा जिन्क ऑक्साइड के ऊपर प्रवाहित किया जाता है तो ऐल्केनैल अथवा ऐल्कनोन बनते है।

$$RCH_2OH \xrightarrow{\quad Cu \text{ signal} \quad Z_nO \quad} RCHO + H_2$$

$$R \xrightarrow{C} HOH + \xrightarrow{Cu} \xrightarrow{3909^{\circ}C} R \xrightarrow{R} R \xrightarrow{C} = O + H_{2}$$

$$CH_3OH + \frac{Cu}{300°C} \xrightarrow{SHO} HCHO + H_2$$

$$CH_3CH_2OH + \xrightarrow{Cu \text{ steal } Z_{nO}} CH_3CHO + H_2$$

$$C_6H_5CH_2OH \xrightarrow{Cu \text{ stepel } ZnO} C_6H_5CHO + H_2$$

$$CH_3CH(OH)CH_3 + \frac{Cu \text{ size of } ZnO}{300^{\circ}C} \rightarrow CH_3COCH_3 + H_2$$

- 3. कैल्सियम ऐल्केनोएटों के शुष्क आसवन द्वारा (By Dry Distillation of Calcium Alkanoates)
 - जब ऐल्केनोइक अम्लों के कैल्शियम लवणों का शुष्क आसवन किया जाता है। तो कार्बोनिल यौगिक बनते हैं।

$$\begin{array}{c|c}
R - CO & O \\
R + COO
\end{array}$$

$$\begin{array}{c}
C = O + CaCO_3$$

 कैल्शियम फॉर्मेट के शुष्क आसवन द्वारा फॉर्मिल्डिहाइड प्राप्त होता है।

H-COO $Ca \xrightarrow{\Delta} HCHO + CaCO_3$

• कैल्शियम फॉर्मेट तथा कैल्शियम ऐसीटेट के मिश्रण के शुष्क आसवन द्वारा ऐसीटैल्डिहाइड, फॉर्मल्डिहाइड व ऐसीटोन मिश्रण प्राप्त होता है।

$$\begin{array}{c|c} CH_3 & \hline COO \\ H_3C & CO & O \\ \hline \end{array} \begin{array}{c} Ca & - Ca & O \\ \hline O - C & O \\ \hline \end{array} \begin{array}{c} A \\ \hline \end{array} \begin{array}{c} 2CH_3 - C - O + 2CaCO_3 \\ \hline \hline \hline \\ \hline \hline \\ \hline \end{array}$$
 ऐसीटैल्डाइइड

कैल्सियम ऐसीटेट कैल्सियम फॉर्मेट

• कैल्शियम ऐसीटेट के शुष्क आसवन से ऐसीटोन प्राप्त होता

 $(CH_3COO)_2Ca \longrightarrow CH_3COCH_3 + CaCO_3$

• इसी प्रकार ऐरोमैटिक कार्बोनिल यौगिक भी बनाये जा सकते

कैल्सियम बेन्जोऐट

कैल्सियमफॉर्मेट

2C₀H₅CHO + 2CaCO₃ बेन्जेल्डिहाइड

 $(C_oH_sCOO)_sCa \xrightarrow{\Delta} C_oH_sCOC_oH_s + CaCO_3$

कैल्शियम बेन्जोऐट

बेन्जोफिनोन (डाईफेनिल कीटोन)

- 4. ऐल्केनोइक अम्लों पर MnO की क्रिया द्वारा (By Action of MnO on Alkanoic Acids)
 - ऐल्केनोइक अम्लों की वाष्प को 300°C पर तप्त मैंगनीज ऑक्साइड के ऊपर प्रवाहित करके ऐल्केनैल तथा ऐल्केनोन प्राप्त किये जा सकते है।

$$\begin{array}{|c|c|c|c|}
\hline
R & COO & H \\
R & + & \frac{MnO}{300^{\circ}} & R \\
\hline
R & CO + CO_2 + H_2O
\end{array}$$

 $HCOOH + HCOOH \xrightarrow{MnO} HCHO + CO_2 + H_2O$

 $HCOOH + CH_3COOH \xrightarrow{MnO} CH_3CHO + CO_2 + H_2O$

 C_6H_5 - COOH + HCOOH $\xrightarrow{\text{MnO}}$ C_6H_5 CHO + CO_2 + H_2 O

 $\text{CH}_{3}\text{COOH} + \text{CH}_{3}\text{COOH} \xrightarrow{\text{MnO}} \xrightarrow{300^{\circ}\text{C}}$

 $CH_3COCH_3 + H_2O + CO_2$

- 5. जैम-डाईहैलोइडों के क्षारीय जल-अपघटन द्वारा (By Alkaline Hydrolysis of gem-Dihalides)
 - •ऐिक्किलिडीन हैलाइडों को जलीय कॉस्टिक क्षार विलयन के साथ गर्म करने पर कार्बोनिल यौगिक बनते है।

$$\begin{array}{c|c} R \\ R - C - C1 & \xrightarrow{\overline{\text{MoH}}} \left[R - C - OH \right] \xrightarrow{\Delta} R - C = O + H_2O \\ C1 & OH & SYENTIN \end{array}$$

ऐल्डिहाइड, कीटोन और कार्बाक्सिलक अन्त

• मेथिलीनक्लोराइड (CH,Cl,) से मेथेनैल, ऐथिलिडीन क्लोराइड (CH,CHCl,) से ऐथेनैल तथा आइसोप्रोपिलिडीन क्लोराइड (CH,CCl,CH,) से प्रोपेनोन बनते है।

$$CH_2Cl_2 + 2KOH \longrightarrow CH_2(OH)_2 \longrightarrow CH_2 = O + H_2O$$

मेथिलीनक्लोराइड अस्थाई

$$CH_3 - CHCl_2 + 2KOH \xrightarrow{-2KCl} CH_2CH(OH)_2 \longrightarrow$$

ऐथिलीडिन क्लोराइड

आइसो प्रोपिलिडीन क्लोराइड

CH₃COCH₃+H₂O

 $C_6H_5CHCl_2 + 2KOH \rightarrow C_6H_5CHO + 2KCl + H_2O$ Benzal chloride

- नाइट्रोएल्केन के ऑक्सीकरण द्वारा (नेफ अभिक्रिया) (By Oxidation of Nitro alkanes)
- 1° और 2° नाइट्रोऐल्केन की क्रिया प्रबल क्षार जैसे–NaOH या KOH से कराने पर लवण बनते है जो कि प्रबल खनिज अम्ल जैसे–HCl से क्रिया करके क्रमशः ऐल्डिहाइड और कीटोन बनाते है। इसें नेफ अभिक्रिया कहते है।

$$R \xrightarrow{H} O + NaOH \xrightarrow{-H_2O} R \xrightarrow{H} O O$$

$$\xrightarrow{\text{H}_3\text{O}^{\oplus}} \begin{array}{c} \text{H} \\ | \\ | \\ \text{प्रवल खनिज अम्ल} \end{array}$$
 $\begin{array}{c} \text{R} - \text{C} = \text{O} \\ \text{प्रिडहाइड} \end{array}$

$$R \xrightarrow{R'} O + NaOH \xrightarrow{-H_2O} R \xrightarrow{R'} O O$$

2-नाइट्रोएल्केन

$$\frac{\text{H}_3\text{O}^{\oplus}}{\text{प्रवल खनिज अम्ल}} R - \frac{R'}{\text{C}} = \text{O}$$

$$\text{ONa}$$

$$\text{CH}_3\text{NO}_2 + \text{NaOH} \rightarrow \text{CH}_2 = \text{N} \underbrace{\text{ONa}}_{\text{O}} + \text{H}_2\text{O}$$

$$CH_3NO_2 + NaOH \rightarrow CH_2 = N < ONa O + H_2O$$

$$CH_{3} - CH - NO_{2} + NaOH \rightarrow CH_{3} - C \stackrel{ONa}{\downarrow} + H_{2}O$$

$$CH_{3} - CH_{3} \qquad CH_{3}$$

$$CH_{3} - CH_{3} \qquad CH_{3}$$

ऐल्डिहाइड, कीटोन और कार्बेक्सिलक अम्ल

7. ऐल्कीनों के ओजोनी-अपघटन द्वारा (By Ozonolysis of Alkenes)

 उपयुक्त ऐल्कीनों को ओजोनी-अपघटन कराने पर इच्छित ऐल्केंनैल तथा ऐल्केंनोन प्राप्त किये जा सकते है।

$$\begin{array}{c}
R \\
R
\end{array}
\xrightarrow{R}
C = C \xrightarrow{R}
\xrightarrow{\text{states}}
R \\
R = H \text{ seven from }
R$$

$$(R = H \text{ seven from }
R$$

• CH, = O को प्राप्त करने के लिये ऐथिलीन का ओजोनी अपघटन कराते है।

$$CH_2 = CH_2 + O_3 \longrightarrow H_2C \xrightarrow{CH_2 \xrightarrow{+H_2O}} CH_2 \xrightarrow{+H_2O} + ZnO + H_2O$$

$$CH_2 = CH_2 + O_3 \longrightarrow H_2C \xrightarrow{CH_2 \xrightarrow{+H_2O}} CH_2 = O + ZnO + H_2O$$

$$CH_2 = CH_2 + O_3 \longrightarrow H_2C \xrightarrow{CH_2 \xrightarrow{+H_2O}} CH_2 = O + ZnO + H_2O$$

$$CH_2 = CH_2 + O_3 \longrightarrow H_2C \xrightarrow{CH_2 \xrightarrow{+H_2O}} CH_2 = O + ZnO + H_2O$$

$$CH_2 = CH_2 + O_3 \longrightarrow H_2C \xrightarrow{CH_2 \xrightarrow{+H_2O}} CH_2 = O + ZnO + H_2O$$

$$CH_2 = O + ZnO + H_2O$$

$$CH_3 = O + ZnO + H_3O$$

$$CH_4 = O + ZnO + H_3O$$

$$CH_5 = O + ZnO + H_3O$$

• CH,CH = O को प्राप्त करने के लिये But-2-ene का ओजोंनी अपघटन कराते है।

$$CH_{3} - CH = CH - CH_{3} + O_{3} \longrightarrow H_{3}C \longrightarrow H_{3}C \longrightarrow CH - CH_{3}$$

$$O \longrightarrow O$$

$$\xrightarrow{+H_{2}O} 2CH_{3}CHO + ZnO + H_{2}O$$

● ऐसीटॉन को प्राप्त करने के लिये 2,3-डाइमेथिल-but-2-enc का ओजोनी अपघटन कराते हैं।

$$H_{3}C - C = C - CH_{3} \longrightarrow H_{3}C - C \qquad C - CH_{3}$$

$$CH_{3} \quad CH_{3} \qquad H_{3}C \longrightarrow CC$$

$$CH_{3} \longrightarrow 2CH_{3}COCH_{3} + ZnO + H_{2}O$$

• यहाँ Zn चूर्ण, क्रिया में बने H2O2 को दूर करता है।

• यहाँ एल्कीन से ओजोन की क्रियां को ओजोनीकरण कहते है तथा फिर इसका जल अपघटन होता है। अतः सम्पूर्ण अभिक्रिया को ओजोनीअपघटन कहते है।

• इस विधि द्वारा एल्कीनों मे द्विबन्ध की स्थिति का निर्धारण भी किया जा सकता है। जैसे-यदि क्रिया फलों में फार्मेल्डिहाइड बनता है तो 1-एल्कीन और फार्मेल्डिहाइड नहीं बल्कि ऐसीटैल्डिहाइड बनता है तो 2-एल्कीन है।

●अशाखित ऐल्कीन → ऐत्डिहाइड

• शाखित ऐल्कीन → कीटोन

8. ग्रीन्यार अभिकर्मक द्वारा (By Grignard Reagents)

ऐथिल फॉर्मेंट के साथः एक अणु फॉर्मिक एस्टर तथा एक अणु ग्रीन्यार अभिकर्मक के क्रिया से ऐल्केनैल बनते है।

$$\xrightarrow{+H_2O}$$
 $H = C + C_2H_5OH + Mg$ OH OH

• यहाँ R = CH, अर्थात् CH,Mgl लेने पर ऐसीटैल्डिहाइड बनता

•इस विधि से फार्मेल्डिहाइड नहीं बना सकते है।

• फार्मिक एस्टर के स्थान पर अन्य एस्टर लेने पर कीटोन बनता

$$\begin{array}{ccc}
R' - C - OC_2H_5 + RMgX \longrightarrow R' - C - OC_2H_5 \\
O & OMgX
\end{array}$$

12.5

यहाँ R = R' = CH3 लेने पर एसीटोन प्राप्त होता है। अम्ल क्लोराइड व अम्ल ऐमाइड भी ग्रीन्यार अभिकर्मक से क्रिया करके कीटोन बनाते है। इनके द्वारा ऐल्डिहाइड नहीं बना सकते है। क्योंकि HCOCl अस्थायी होते है।

$$\begin{array}{c} \text{CH}_3 & -\text{C} - \text{Cl} + \text{CH}_3 \text{Mgl} \longrightarrow \text{CH}_3 - \text{C} - \text{Cl} \\ \text{O} \\ \hline \text{ऐसीटिलक्लोराइड} \end{array}$$

$$\begin{array}{c} \overset{H_3O}{\longrightarrow} CH_3 & \overset{CH_3}{\longrightarrow} CH_3 \\ & \overset{U}{\vee} + Mg \overset{I}{\bigcirc} \\ & \overset{V}{\vee} + Mg \overset{I}{\bigcirc} \\ & \overset{V}{\vee} + Mg \overset{I}{\longrightarrow} CH_3 \\ & \overset{CH_3}{\longrightarrow} CH_3 & \overset{C}{\longrightarrow} - NH_2 \\ & \overset{U}{\vee} + Mg \overset{I}{\longrightarrow} CH_3 & \overset{CH_3}{\longrightarrow} CH_3 \\ & \overset{H_3O^{\perp}}{\longrightarrow} CH_3 & \overset{CH_3}{\longrightarrow} CH_3 & \overset{CH_3}{\longrightarrow} \\ & \overset{H_3O^{\perp}}{\longrightarrow} CH_3 & \overset{C}{\longrightarrow} - Mg \overset{I}{\longrightarrow} NH_2 \end{array}$$

उच्चतर ऐल्किल सायनाइडों के साथः ग्रीन्यार अभिकर्मक पर ऐल्किल सायनाइड अथवा उसके उच्चतर सजात की क्रिया के बाद जल-अपघटन कराने पर ऐल्केनोन बनते है।

$$R'-C \equiv N + RMgX - R'-C = N - MgX$$
 ऐंक्किल सायनाइड

(ii)

$$\begin{array}{c}
R \\
 \downarrow \\
 - C = O + Mg \\
 \hline
NH,
\end{array}$$

●यहाँ R' = R = CH, लेने पर एसीटोन बनता है। नोट-इस अभिक्रिया द्वारा ऐल्डिहाइड्स प्राप्त नहीं होते क्योंकि HCN के दुर्बल अम्ल होने के कारण ग्रीन्यार अभिकर्मक से क्रिया कर ऐल्केन बनाते है।

9. ऐल्काइनों का हाइड्रोबोरोनीकरण द्वारा जलयोजन (Hydration of Alkynes through Hydroboronation)

• जब ऐल्काइनों की क्रिया डाईऐल्किलबोरेन से कराई जाती है तो डाईऐल्किलवाइनिलबोरेन योगोत्पाद बनते है, जिनको क्षारीय हाइड्रोजन परॉक्साइड विलयन से अभिकृत कराने पर कार्बोनिल

ऐत्डिहाइड, कीटोन और कार्बोक्सिलक अम्ल

योगिक बनते हैं। अन्तस्थ ऐल्काइन (Alk-1-yne) से ऐल्केनैल तथा मध्यस्थ ऐल्काइन (Alk-2-yne) से ऐल्केनोन प्राप्त होते है।

$$R--C\equiv C-H+R_2B-H-\longrightarrow R-C=C-H-\frac{H_2O_2}{NaOH}$$
 डाइएंक्किल BR_2 बोरेन $-R_1BOH$

$$R - R_2$$
 $R - R_3$ $R - R_4$ $R - R_4$ $R - R_5$ $R -$

| wq |keto form]

उपर्युक्त अभिक्रिया में ऐसीटिलीन से ऐथेनैल, प्रोपाइन से प्रोपेनैल, But-1-ync से ब्यूटेनैल तथा But-2-ync से ब्यूटेनोन बनते है।

- एल्काइन–1 → ऐल्डिहाइड
- अन्य एल्काइन–2 → कीटोन

10. ऐत्काइनों का जलयोजन (Hydration of Alkynes)— 60° गरम तनु H,SO, में Hg² आयनों (HgSO, HgCl, या HgO) की उपस्थिति में एक्काइन प्रवाहित करने पर, इनके जल—योजन से कार्बोनिल यौगिक बनते हैं।

यहाँ केवल एसीटिलीन के जलयोजन से ऐसीटैल्डिहाइड तथा अन्य सभी एल्काइनों के जलयोजन से किटोन बनते है।

$$CH = CH + H_2O \xrightarrow{\text{e.g. } H_2SO_4} CH_2 = C - H$$

$$\xrightarrow{\text{d. } H_2 + 2 \cdot 60^{\circ}C} OH$$

$$\xrightarrow{\text{d. } GH \text{ o. } GH_2 + GH_2} CH_3 - C - H$$

$$O$$

$$\text{v. } CH_3 - C - H$$

$$O$$

$$CH_3 -- C \equiv CH + H_2O \xrightarrow{\text{erg } H_2SO_4} CH_3 -C = CH_2$$
 प्रोपाइन OH अरथायी

11. ग्लाइकॉलों के ऑक्सीकरण द्वारा (By oxidation of Glycols) विसिनल ऐल्केनडाइऑलों का ऑक्सीकरण परआयोडिक अम्ल (HIO₁) अथवा लैंड टेट्राऐसीटेट (CH₁COO)₁ Pb द्वारा कराने पर कार्बोनल यौगिक प्राप्त होते हैं।

$$\begin{array}{c} \mathrm{R-CH-OH} \\ \mathrm{R-CH-OH} \end{array} + |O| - \xrightarrow{\mathrm{HIO}_{1}\oplus\mathrm{sq}} 2\mathrm{R} - \mathrm{CHO} + \mathrm{H}_{2}\mathrm{O} \\ \mathrm{CH}_{3}\mathrm{COO)_{4}}\mathrm{Pb} \end{array}$$
 ऐल्डिहाइड

• CH₂O को प्राप्त करने के लिये हम Ethane 1,2 diol लेंगे

 CH_2OH $+ HIO_4 \longrightarrow 2CH_2 = O + H_2O + HIO_3$ CH_2OH \bullet CH_3CHO प्राप्त करने के लिये हम Butan-2.3-diol लेंगे। $CH_3-CH(OH)-CH(OH)-CH_3+HIO_4 \longrightarrow 2CH_3CHO+H_2O+HIO_3$

$$\begin{array}{ccc} \text{CH}_3 - \text{CH} - \text{CH}_2 \\ & \downarrow & \downarrow \\ & \text{OH} & \text{OH} & \xrightarrow{\text{IHO}_4} & \text{CH}_3 \text{CHO} + \text{HCHO} + \text{H}_2 \text{O} + \text{HIO}_3 \end{array}$$

• प्रोपेनॉन प्राप्त करने के लिये हम *पिनेकॉल* लेंगे

$$\begin{array}{c|c} H_3C & C - C & CH_3 \\ H_3C & C - C & CH_3 \\ \hline OH OH \end{array} + HIO_4 \longrightarrow$$

Pinacol 2CH₃COCH₃ + H₂O + HiO₃

अस्थायी

12. जैम डाइहैलाइडों के जलीय अपघटन से-

$$CH_{3} - CHCl_{2} + 2KOH(aq) \rightarrow CH_{3} - CH \stackrel{OH}{\longleftrightarrow} + 2KCl$$
Ethyllidene Chloride

 $CH_3 CHO + H_2O$ $CH_3 CHO + 2KOH(aq) \rightarrow CH_3 CHO + 2HC1$ $CH_3 CHO + 2KOH(aq) \rightarrow CH_3 CHO + 2HC1$ $CH_3 COCH_3 + H_2O$ $CH_3 COCH_3 + H_2O$

(B) केवल ऐल्डिहाइड के बनाने की विधियाँ

1. ऑक्सो अभिक्रिया द्वारा (By Oxo Reaction)

जापता जानाजना द्वारा (2) उठक प्रतिकाल जानाजना द्वारा (2)
 जब ऐल्कीन, कार्बन मोनॉक्साइड तथा हाइड्रोजन के मिश्रण को कोबाल्ट उत्प्रेरक के ऊपर से उच्च ताप तथा दाब पर प्रवाहित किया जाता है तो ऐल्केनैल बनते है।

• उत्प्रेरक के रूप में कोबाल्ट के स्थान पर डाइकोबाल्ट ऑक्टाकार्बोनिल [Co2(CO)8] भी प्रयुक्त किया जा सकता है।

 प्रक्रिया में ऐल्कीन के असंतृप्त कार्बन परमाणुओं पर हाइड्रोजन तथा फॉर्मिल समूह का संकलन होने के कारण इस अभिक्रिया को हाइड्रोफॉर्मिलीकरण (Hydroformylation) कहते हैं।

 ऐथीन के हाइड्रोफॉर्मिलीकरण से प्रोपिऑनैल्डिहाइड, तथा प्रोपीन से ब्यूटेनैल तथा 2-मेथिलप्रोपेनैल का मिश्रण प्राप्त होता है।

$$CH_2 = CH_2 + CO + H_2 \xrightarrow{Co_2(CO)_8} CO_2(CO)_8 \rightarrow H_2C \xrightarrow{CH_2} CO_2(CO)_8 \rightarrow H_2C \xrightarrow{CH_2} CO_2(CO)_8 \rightarrow H_2C \xrightarrow{CO_3(CO)_8} CO_2(CO)_8 \rightarrow H_2C \rightarrow H_$$

$$CH_3 - CH = CH_2 + CO + H_2 - \frac{\frac{C_0 \text{ 3P2 d}}{Co_2(CO)_8}}{\frac{G}{G}}$$

ऐल्डिहाइड, कीटोन और कार्बेक्सिलक अम्ल

CHO
$$\begin{array}{c} \operatorname{CHO} \\ \operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CHO} \\ \operatorname{n-alpha-ch-CH} - \operatorname{CH} - \operatorname{CH}_3 \end{array}$$

आइसोब्यूटिरैल्डिहाइड

2. रोजेनमृण्ड अपचयन अभिक्रिया द्वारा (By Rosenmund reduction Reaction)

 उबलते हुए जाइलीन माध्यम में ऐसिड क्लोराइड का अपचयन हाइड्रोजन तथा पैलेडीनीकृत बेरियम सत्केट की उपस्थिति में कराने पर ऐल्डिहाइड बनते है। इसे **रोजेनमुण्ड अपचयन** अभिक्रिया कहते हैं।

$$R \overset{O}{-} \overset{O}{C} \overset{Pd}{\longrightarrow} R \overset{O}{-} \overset{O}{C} \overset{H}{-} H + HC1$$

$$CH_3COC1 + H_2 \xrightarrow{Pd} CH_3CHO + HC1$$

$$C_6H_5COCI + H_2 \xrightarrow{Pd} C_6H_5CHO + IICI$$
Benzoylchloride
BaSO₄
Benzaldehyde

इसमें HCHO प्राप्त नहीं किया जा सकता क्योंकि HCOCI एक अरथाई यौगिक है।

- यहाँ Pd उत्प्रेरक का कार्य करता है जबकि BaSO, विषउत्प्रेरक का कार्य करता है। यह (BaSO,) इस क्रिया में बनें ऐल्डिहाइड को एल्कोहॉल में बदलने से रोकता है।
- ऐल्डिहाइड को एल्कोहॉल में बदलने से रोकने के लिए सल्फर व क्यूनोलीन भी प्रयुक्त किया जा सकता है।
- यदि अम्ल क्लोराइड की क्रिया, डाईऐिक्कल कैडिमियम से कराते है तो कीटोन बनते है।

$$2RCOC1 + R'_2Cd \longrightarrow 2RCOR' + CdCl_2$$

कीटोन नोट-इस विधि द्वारा कीटोन की प्राप्ति, अम्ल क्लोराइड व ग्रीन्यार अभिकर्मक की क्रिया की तुलना में अधिक होती है क्योंकि ग्रीन्यार अभिकर्मक अधिक क्रियाशील होने के कारण, क्रिया से बने कीटोन से पुनः क्रिया करके तृतीयक एल्कोहल बना देता है जबकि डाईऐल्किल कैडमियम ऐसा नहीं करता है।

स्टीफेन अभिक्रिया द्वारा (By Stephen's Reaction)

• ऐक्किल सायनाइडों को ईथर में घोल कर स्टैनस क्लोराइड तथा सान्द्र हाइड्रोक्लोरिक अम्ल से अभिकृत कराने पर ऐल्डिमीन क्लोरोस्टैनेट लवण प्राप्त होता है। इस लवण का जल-अपघटन करने से ऐल्केनैल बनता है।

$$R - C = N \xrightarrow{HCl} R - CH = NH.HCl \xrightarrow{H_2O}$$

$$RCHO + NH.Cl$$

 ऐसीटोनाइट्राइल (मेथिल सायनाइड) का उदाहरण लेते हुए स्टीफेन अभिक्रिया को सुगमता के लिए निम्न प्रकार दर्शाया जा सकता है।

$$CH_3 - C \equiv N + 2H - \frac{SnCl_2}{HCl} \rightarrow CH_3 - CH = NH - \frac{HOH}{\psi HOll + General Field (All Policy of the Company)}$$

 $CH_3 - CH = O$ ऐसीटैल्डिहाइड

- इस विधि द्वारा फार्मेल्डिहाइड और कीटोन नहीं बना सकते प्र.10. प्रोपेनॉन प्राप्त करने के लिये, लिये गये डाइऑल का नाम है।
- ऐिकल सायनाइड का LiAlH, द्वारा अपचयन कराने से प्राप्त

इमीनलवण का अम्लीय जल अपघटन कराने से भी ऐल्डिहाइड बनते हैं।

$$4R - C = N + LiAIH_4 \longrightarrow 4R - CH = N - Li \xrightarrow{11_3O^3}$$

4R --- CHO+4NH5Li एदिहहाइड

ं 🕻 केवल कीटोन के बनाने की विधियाँ-

ऐसीटोऐसीटिक एस्टर (अथवा उसके ऐल्किल व्युत्पन्न) के जल-अपघटन द्वारा (By Hydrolysis of Acetoacetic Ester or Its Alkyl Derivatives): ऐसीटोऐसीटिक एस्टर का जल-अपघटन तन् अम्ल अथवा क्षार से कराने पर ऐसीटोन बनता है।

$$CH_3COCH_2COOC_2H_5 + H_2O \xrightarrow{\text{origination}} \text{assumption}$$

 $CH_3COCH_3 + CO_2 + C_2H_5OH$

2. ओपेनॉअर ऑक्सीकरण द्वारा (By Oppenauer Oxidation) ऐल्केनोन का विरचन सुगमता से करने के लिए द्वितीयक ऐल्केनॉल का ओपेनॉअर ऑक्सीकरण (Oppenauer Oxidation) किया जाता है। इस प्रक्रिया में द्वितीयक ऐल्केनॉल को ऐसीटोन में लेकर ऐलुमिनियम *1ert-*ब्यूटॉक्साइड के साथ पश्चवाहन किया जाता है। ऐसीटोन का अपचयन आइसोप्रोपिल ऐल्कोहॉल में हो जाता है।

$$R_2CHOH + (CH_3)_2CO \xrightarrow{[(CH_3)_3CO]_3AI}$$

R₂CO+(CH₃)₂CHOH

EXERCISE 12.1

- N-ब्रोमोसिक्सिनिमाइड से प्रोपेनॉल-2 की अभिक्रिया का समीकरण
- ਸ਼.2. कौनसे वसीय अम्लों की वाष्प को MnO पर 300°C पर गुजारने पर ऐसीटैल्डिहाइड प्राप्त होगा?

$$\mathbf{y.3.} \quad \mathbf{A} \xrightarrow{2(O)} \mathbf{B} \xrightarrow{\text{$\widehat{\mathfrak{slight}}$ expression}} |(\mathrm{CH}_3)_2 \mathrm{CH}|_2 \mathrm{CO}$$

A एवं B क्या है?

- HCOOH & CH,COOH की वाष्प को MnO पर 300°C ताप Я.4. पर प्रवाहित करने पर क्या प्राप्त होगा?
- $A \xrightarrow{CH_3MgBr} CH_3 CH_2COCH_3$: A क्या है? Я.5.
- ग्रीन्यार अभिकर्मक से कौनसा कार्बोनिल यौगिक प्राप्त नहीं प्र.6. किया जा सकता?
- नेफ अभिक्रिया में ऐसीटोन बनाने के लिये कौनसा नाइट्रो ਸ਼.7. ऐल्केन लेना होगा?
- HCHO प्राप्त करने के लिये R-Mg-X को किससे क्रिया प्र.8. करानी होगी?
- हाइड्रोबोरोनीकरण में Butan-2-one कौनसे ऐल्कॉइन से प्राप्त प्र.9. किया जायेगा?
- क्या होगा?

- प्र.11. किस डाईऑल के ऑक्सीकरण से ऐथेनैल प्राप्त होगा?
- प्र.12. रोजेनमुण्ड अभिक्रिया द्वारा कौनसे कार्बोनिल यौगिक प्राप्त नहीं किये जा सकते?
- प्र.13. रोजेनमुण्ड अभिक्रिया के लिये गये क्रियाकारक पदार्थ व उत्प्रेरक बताइये।
- प्र.14. ओपेनॉअर ऑक्सीकरण अभिक्रिया में किसका ऑक्सीकरण किसके द्वारा किया जाता है?
- प्र.15. एक ऐल्कीन ओजोनी अपघटन से केवल फार्मल्डिहाइड बनाता है, ऐल्कीन क्या है?
 - नोट- ऐल्कीन ओजोनी अपघटन से दो अणु कार्बोनिल यौगिक के बनाते है जो समान या असमान हो सकते है।
- प्र.16. एक ऐल्कीन ओजोनी अपघटन से केवल ऐसीटल्डिहाइड बनाता है, ऐल्कीन क्या है?
- प्र.17. एक ऐल्कीन ओजोनी अपघटन से केवल ऐसीटॉन बनाता है, ऐल्कीन क्या है?
- प्र.18. एक ऐल्कीन ओजोनी अपघटन से केवल CH₂ = O एवं CH₄COCH₄ बनाता है, ऐल्कीन क्या है?
- प्र.19. एक एेल्कीन ओजोनी अपघटन से केवल CH₂ = O & CH₃CHO बनाता है, ऐल्कीन क्या है?
- $\mathbf{y.20.}$ A $\xrightarrow{O_3}$ CH₂ = O + CHO CHO' A क्या है?
- प्र.21. ऐसिंड हैलाइंड से R-CHO प्राप्त करने की अभिक्रिया का नाम लिखिये।
- प्र.22. C,H,O के सभी संभावित क्रियात्मक समावयवों के IUPAC के नाम दीजिये।
- प्र.23. P.C.C. (Pyridinium Chlorochromate) की संरचना दीजिये।
- प्र.24. नेफ अभिक्रिया किसे कहते है?
- प्र.25. 1-नाइट्रोऐल्केन से कौनसा कार्बोनिल यौगिक प्राप्त होगा?
- प्र.26. 2-नाइट्रोऐल्केन से कौनसा कार्बोनिल यौगिक प्राप्त होगा?
- प्र.27. नेफ अभिक्रिया में नाइट्रोऐल्केन से कौनसे यौगिकों से क्रिया कराने पर कार्बोनिल यौगिक प्राप्त होंगे?

उत्तर की स्वयं जांच करें

$$\begin{array}{ccc}
\mathbf{3.1.} & \mathbf{H}_{3}\mathbf{C} - \mathbf{CH} - \mathbf{CH}_{3} + \begin{vmatrix} \mathbf{CH}_{2}\mathbf{CO} \\ \mathbf{CH}_{2}\mathbf{CO} \end{vmatrix} \mathbf{N} - \mathbf{Br} \longrightarrow \\
\mathbf{OH} & \mathbf{CH}_{3}\mathbf{CH}_{2}\mathbf{CO} \\
\mathbf{OH} & \mathbf{CH}_{3}\mathbf{CO} - \mathbf{CH}_{3}\mathbf{CH}_{2}\mathbf{CO} \\
\mathbf{N} - \mathbf{Br} \longrightarrow \\
\mathbf{OH} & \mathbf{CH}_{3}\mathbf{CO} - \mathbf{CH}_{3}\mathbf{CH}_{2}\mathbf{CO} \\
\mathbf{N} - \mathbf{CH}_{3}\mathbf{CO} - \mathbf{CH}_{3}\mathbf{CH}_{3}\mathbf{CO} \\
\mathbf{N} - \mathbf{CH}_{3}\mathbf{CO} - \mathbf{CH}_{3}\mathbf{CH}_{3}\mathbf{CO} \\
\mathbf{N} - \mathbf{CH}_{3}\mathbf{CO} - \mathbf{CH}_{3}\mathbf{CO} - \mathbf{CH}_{3}\mathbf{CO} \\
\mathbf{N} - \mathbf{CH}_{3}\mathbf{CO} - \mathbf{CH}_{3}\mathbf{CO} \\
\mathbf{N} - \mathbf{CH}_{3}\mathbf{CO} - \mathbf{CH}_{3}\mathbf{CO} - \mathbf{CH}_{3}\mathbf{CO} \\
\mathbf{N} - \mathbf{CH}_{3}\mathbf{CO} - \mathbf{CH}_{3}\mathbf{CO} \\$$

$$CH_3COCH_3 + CH_2CO > NH + HBr$$

- उ.2. HCOOH एवं CH,COOH
- **3.3.** (A)(CH₂)₂CHCH₂OH (B)(CH₄),CH–COOH
- **उ.4.** CH₃CHO प्राप्त होगा। HCOOH + CH₃COOH — MnO →

 $CH_3CHO + CO_2 + H_2O$

ऐल्डिहाइड, कीटोन और कार्बोक्सिलक अम्ल

च.5. (A) $CH_3 - CH_2 - C - OC_2H_5$ ऐथिल प्रोपिओनेट

उ.6. HCHO

च.७. (CH,),CHNO, 2-नाइट्रोप्रोपेन

उ.8. HCHO प्राप्त नहीं होता क्योंकि इसमें ऐल्किल समूह अनुपस्थित है।

- **उ.9.** But-2-yne से
- उ.10. पिनेकॉल
- **उ.11.** ब्यूटेंन-2,3-डाइऑल
- **उ.12.** HCHO एवं सभी कीटोन
- **उ.13.** क्रियाकारक पदार्थ- RCOCl व H₂ उत्प्रेरक- Pd एवं BaSO₄
- उ.14. द्वितीयक ऐल्कोहॉल का ऑक्सीकरण कीटोन से ऐल्युमिनियम तृतीयक ब्यूटोऑक्साइड की उपस्थिति में करते है।
- **3.15.** CH₂ = O + O = CH₂ CH₂ = CH₂ ਚੰਜ਼ਦ ਦੇਈਜ
- **3.16.** $CH_3 CH = O + O = CH CH_3$ $CH_3 - CH = CH - CH_3$ ਤਜ਼ਨ But - 2 - ene
- $3.17. \frac{H_3C}{H_3C}C = C \frac{CH_3}{CH_3}$ $\frac{H_3C}{H_3C}C = C \frac{CH_3}{CH_3} \frac{3\pi d}{3\pi d}$
 - 2,3 Dimethylbut 2 ene

3.18.
$$H_2C \neq O + O \neq C \stackrel{CH_3}{\leftarrow} CH_3$$

$$CH_3 = C \stackrel{CH_3}{\leftarrow} CH_3 \qquad 2-Methylpropene \quad 3 \overrightarrow{\forall d} \overrightarrow{\forall}$$

- ਚ.19. $H_2C \neq O + O \neq CHCH_3$ $CH_3 = CH - CH_3$ *Propene* ਚਜ਼ਾਵ
- उ.20. उपरोक्त प्रश्न में बनने वाले यौगिकों में कुल ऑक्सीजन की संख्या तीन है अतः ऑक्सीजन की संख्या सम होनी चाहिये अतः हम यहाँ CH, = O के दो अणु मानेंगे।

$$H_2C = O + O = CH - CH = O + O = CH_2$$

 $A \longrightarrow CH_2 = CH = CH = CH_2$ Buta-1.3 diene

उ.21. रोजनमुण्ड अभिक्रिया

ऐल्डिहाइड, कीटोन और कार्बोक्सिलक अन्त

ਚ.22. (i) $CH_3 - CH_2 - CHO$ Propanal

(ii) CH₃- CO - CH₃ Propanone

(iii) $CH_2 = CH - CH_2OH Prop-2-en-1-ol$

(iv) $H_3C - CH - CH_2$ 1,2-Epoxypropane

(v) CH₂= CH - O - CH₃ Methoxyethene

उ.24. पृष्ट संख्या 12.4 अभिकिया 6 देंखे।

ਚ.25. Aldehyde

ਚ.26. Ketone

उ.27. प्रबल क्षार NaOH व खनिज अम्ल HCl से क्रिया कराते हैं।

1. भौतिक अवस्था Physical State

- मैथेनल (HCHO) एक गैस है, ऐथेनल (CH₃CHO) वाष्पशील दव है।
- अन्य ऐल्डिहाइड व कीटोन द्रव या ठोस है।

2. क्वथनांक (Boiling Pointo)

- Aldehydes | Ketones का क्वथनांक समान अणुभार वाले हाइड्रोकार्बन व ईथर की तुलना में अधिक होता है।
 Aldehyde > Ethers > Hydrocarbons.
 Ketones > Ethers > Hydrocarbons.
- Aldehydes | Ketooes का क्वथनांक समान अणुभार वाले alcohol से कम होता है। (alcohol में अतिरिक्त H-आबन्ध उपस्थिति होने के कारक)

Alcohol > Aldehydes

Alcohol > Ketones

- एक ही सजातीय श्रेणी के सदस्यों में क्वथनांक क्वथनांक ∞ अणुभार
 HCHO < CH₃ CHO < CH₄ CH₂ CHO < C₃H₇ CHO CH₃COCH₃ < CH₃ CO CH₂ CH₃ < CH₃ CH₂ CO CH₂ CH₃
- क्वथंनाक (समान अणुभार वाले) ∝ <u>।</u> sidechainकी संख्या

$$CH_3 - CH_2 - CH_2CHO > CH_3 - CH - CHO$$
 CH_2

$$CH_3 - CH_2 - CH_2 - CH_2 CHO > CH_3 - CH - CH_2 - CHO$$

$$CH_3 - CH_2 - CHO$$

$$CH_3$$

$$> CH_3 - CH_2 - CH - CHO > CH_3 - CH_3 - CHO$$

$$CH_3 - CH_3 - CH_3 - CHO$$

$$CH_3 - CH_3 - CHO$$

• क्वथनाक ∞ द्विध्रुव आघूर्ण के
 Aldehydes में द्विध्रुव आघूर्ण का मान Ketones से कम होता

है। अतः aldehyde का क्वथंनाक समान अणु भार वाले कीटोन से कम होता है।

CH₃ - CH₂ - CHO < CH₃ CO CH₃

Aldehydes < Ketones. 2.7D < 2.8 D

कुछ यौगिकों के क्वथनांक

क्र. सं.	यौगिक	क्वथनांक [K]	आण्विक द्रव्यमान
1.	n-Butane	273	58
2.	Methoxyethane	281	60
3.	Propanal	322	58
4.	Acetone	329	58
5.	Propan-1-ol	370	60

lic- विभिन्न प्रकार के यौगिकों के क्वथनांक [समान अणुभार] उपरोक्त सारणी से स्पष्ट है कि-

- अध्रवीय यौगिकों के क्वथनांक कम होते हैं। जैसे n-Butane अध्रवीय है अत: इसका क्वथनांक कम है।
- ध्रुवीय यौगिकों का क्वथनांक अधिक होता है जिससे ध्रुवता अधिक है उसका क्वथनांक अधिक है अत: ईथर propanal व acctone ध्रुवीय यौगिक है। लेकिन ईथर में ध्रुवीय गुण निम्नतम व Acctone में ध्रुवीय गुण अधिकतम है।

Methoxy ethane < Propanal < Acetone

- Alcohol में अतिरिक्त H- बन्धन के कारण इनका क्वथनांक अधिक होता है।
- 3. कार्बोनिल यौगिकों की जल में विलेयता
- निम्न सदस्य (छोटे सदस्य) CH₂ = O. CH, CHO & acetone जल में विलेय है क्योंकि ये जल के साथ H-आबन्धन बना लेने के कारण

छोटे सदस्यों का जल के साथ H बन्धन

 जैसे-जैसे Carbonyl यौगिको का अणुभार बढता जाता है। उनमें Alkyl समूह का आकार बढ़ता है। अतः विलेयता घटती जाती है।

विलेयता $\infty \frac{1}{3$ णुभार

4. गंध (Smell)

- निम्नतर ऐल्डिहाइड की गंध अरुचिकर होती है जबिक उच्चतर ऐल्डिहाइड की गंध फलों जैसी गंध होती है। कीटॉन में रुचिकर गंध होती है।
- 5. कार्बोनिल यौगिकों का घनत्व जल की अपेक्षा कम होता है।

उदा.1. निम्न यौगिकों को उनके क्वथनांक के बढ़ते क्रम में व्यवस्थित कीजिये।

$$CH_3 - CH_2 - CH_2 - CHO$$
; $CH_3 - CH_2 - CH_2 - CH_2 - CH_2$ OH; $C_2H_5 - O - C_2H_5$; $CH_3 - CH_2 - CH_2 - CH_2 - CH_3$

हलः
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_3 < C_2H_5 - O - C_2H_5$$

 $< CH_3 - CH_2 - CH_2 - CH_2 - CH_3 CH_2 CH_2 CH_2 OH_3 - CH_3 -$

ध्यान दे:-

- एल्कोहॉल का क्वथनांक अतिरिक्त H-आबन्ध उपस्थित होने के कारण अधिकतम होता है।
- ध्रुवीय सहसंयोजक योगिकों का क्वथनांक [-CHO एवं ईथर] अध्रुवीय सहसंयोजक यौगिकों से [Alkane, Alkene, Alkyne] से अधिक होता है।

 CII - O, ईथर से अधिक ध्रुवीय होने के कारण, ऐल्डिहाइड का क्वथनांक ईथर से अधिक होता है।

उदा.2. निम्न यौगिकों को क्वथनांक के बढ़ते क्रम में व्यवस्थित कीजिये-

CH₃ CHO, CH₃ CH₂ CH₃, CH₃ O CH₃, CH₃-CH₂-OH
Alcohol > Aldehyde > Ether > Alkane हम जानते हैं,
CH₃ - CH₂ - CH₃ < CH₃ O CH₃
< CH₃ CHO < CH₃ CH₂ OH

12.1.4 ऐल्डिहाईडस व कीटोन के रासायनिक गुण

- कार्बोनिल यौगिकों में जो विशेष रासायनिक गुण पाया जाता है उसे नाभिक स्नेही योगात्मक अभिक्रिया कहते हैं।
 - कार्बोनिल यौगिक निम्न सामान्य अभिक्रियायें भी देते है।
 - (A) नाभिकस्नेही योगात्मक अभिक्रियायें
 - (B) ऑक्सीकरण अभिक्रियायें
 - (C) अपचयन अभिक्रियायें
 - (D) ताप अपघटन अभिक्रियायें
 - (E) बहुलीकरण अभिक्रियायें
 - (F) हैलोजीनिकरण

[A] नाभिकरनेही योगात्पक आमिक्रियासूर

- ऐल्डिहाइड एवं कीटोन दोनों में होने वाली अभिलाक्षणिक अभिक्रियायें इनमें उपस्थित कार्बोनिल समूह की उपस्थिति के कारण होती है।
- कार्बोनिल समूह ध्रुवीय होता है एवं ऑक्सीजन परमाणु की अधिक विद्युत ऋणता के कारण π इलेक्ट्रॉनों का स्थानान्तरण ऑक्सीजन की तरफ हो जाता है, जिससे कार्बोनिल समूह में दो सक्रिय केन्द्र क्रिया करने के लिये उपलब्ध हो जाते है।
- क्रिया करने वाले पदार्थ का नाभिक स्नेही अभिकर्मक धनावेशित कार्बन पर एवं इलेक्ट्रोस्नेही अभिकर्मक ऋणावेशित ऑक्सीजन पर क्रिया करते है।
- नाभिक स्नेही का आक्रमण पहले होता है क्योंकि यहाँ ऋणायन धनायन से अधिक स्थायी होता है। अतः ऐल्डिहाइड एवं कीटोन अभिलाक्षणिक अभिक्रियायें नाभिकस्नेही योगात्मक अभिक्रियायें देते है।

ऐल्डिहाइड, कीटोन और कार्बोक्सिलक अम्ल

कार्बोनिल यौगिकों की अभिक्रियाशीलता-

- किसी कार्बोनिल यौगिक की क्रियाशीलता को दो कारक द्वारा समझाया जा सकता है।
- (1) इलेक्ट्रॉनीय कारक (Electronic factor)
 - कार्बोनिल समूह के कार्बन पर धनावेश की मात्रा बढ़ने पर, नाभिक स्नेही का आक्रमण उतना ही तीव्र होगाः अतः वह कार्बोनिल यौगिक अधिक क्रियाशील होगा।

H +
$$\delta$$
 - δ H C = δ

नोट--

- निम्न ऐल्डिहाइड, उच्च ऐल्डिहाइड से अधिक क्रियाशील है। HCHO > CH,CHO > CH,CH, - CHO
- अशाखित ऐल्डिहाइड, शाखित ऐल्डिहाइड से अधिक क्रियाशील

n-Valeraldehyde > Iso-Valeraldehyde

ऐल्डिहाइड, कॉटॉन आर काबॉक्सलक अंग्ल

active Valeraldehyde - tert Valeraldehyde

ऐल्डिहाइड, कीटोन से अधिक क्रियाशील है।
 CH, - CH,-CHO > CH,COCH,

• निम्न कीटोन, उच्च कीटोन से अधिक क्रियाशील है। CH,COCH, > CH,COCH,CH, > CH,CH,COCH,CH,

- ऊपर से नीचे चलने पर CI
 के -1 प्रभाव की संख्या क्रमशः बढ़ रही है।
- अतः कार्बोनिल समूह के कार्बन पर धनावेश की मात्रा क्रमशः बढ़ती है।
- अतः नाभिकरनेही समूह का
 आक्रमण बढता है।
- अतः क्रियाशीलता बढ़ती है।
 CC¹,CHO > CHC¹,CHO
 > CH₂CICHO > CH,CHO

2. त्रिविम कारक (Steric effect)

- कार्बोनिल समूह पर नाभिक स्नेही योग के फलस्वरूप बन्ध कोण 120° से घटकर 109°28' हो जाता है अर्थात् बन्ध कोण में कमी आती है। अतः समूह निकट आते है।
- यदि समूह का आकार बढ़ता है तो समीप आने पर बाधा उत्पन्त होगी, अतः क्रियाशीलता घटेगी।
- मेथिल का आकार, हाइड्रोजन से काफी बड़ा होता है, यही कारण है कि ऐसीटेल्डिहाइड की क्रियाशीलता फार्मेल्डिहाइड से कम होती है।

क्रियाशीलता
$$\infty \frac{1}{ ... }$$

ऐरोमैटिक कार्बोनिल यौगिकों में ऐल्किल समूह के स्थान पर ऐरिल समूह आता है जो आकार में काफी बड़ा होता है जिसके कारण वह नामिकरनेही के प्रहार में बाधा उत्पत्र करता है। तथा साथ ही ऐरिल प्रतिस्थापी से -CHO समूह इलेक्ट्रॉनों को अपनी ओर खींचता है। जिससे कार्बोनिल समूह के कार्बन पर धनावेश में कमी आती है यही कारण है कि ऐरोमैटिक ऐल्डिहाइड, की क्रियाशीलता नाभिकरनेही योगात्मक अभिक्रियाओं के प्रति बहुत ही कम क्रियाशील है।

1. हाइड्रोजन सायनाइड से (With Hydrogen Cyanide)

 कार्बोनिल समूह पर HCN के योग से सायनोहाइड्रिन बनते है।

ऑक्साइड आयन सायनोहाइड्रिन

• सायनोहाइड्रिन के अपचयन से β-ऐमीनो ऐल्कोहॉल, आंशिक जल-अपघटन से α−हाइड्रॉक्सी ऐमाइड, तथा सम्पूर्ण जल-अपघटन से α-हाइड्रॉक्सी ऐसिड बनते है।

• ऐथेनैल से क्रमशः निम्नलिखित उत्पाद बनाये जा सकते हैं--

$$H_3C$$
 $C = O \xrightarrow{HCN} CH_3 \longrightarrow C \xrightarrow{OH} CN$
Acctaldehyde ('yanohydrin

• प्रोपेनोन की क्रिया HCN कराने पर ऐसीटोन सायनोहाड्रिन बनता है।

CH₃—CO—CH₃ + H—CN
$$\longrightarrow$$
 H₃C—C—CH₃
HO CN
ऐसीटोन सायनोहाइड्रिन

ऐल्डिहाइड, कीटोन और कार्बोक्सिलक अम्ल

12.12

 ऐसीटोन सायनोहाङ्गिन के अपचयन, आंशिक जल-अपघटन तथा संपूर्ण जल-अपघटन से निम्नलिखित उत्पाद प्राप्त किये जा सकते है--

2. सोडियम बाइसल्फाइट से (With Sodium Bisulphite)

$$>C = O$$
: $+Na - OSO_2H \rightarrow > C \bigcirc OSO_2H$

$$\downarrow > C \bigcirc OSO_2Na$$
बाइसल्फाइट योगउत्पा

$$>C \stackrel{OH}{\longleftrightarrow} > C = O + NaCl + SO_2 + H_2O$$

$$>C \stackrel{OH}{\longleftrightarrow} > C = O + Na_2SO_3 + H_2O$$

$$>SO_2Na \stackrel{NaOH}{\longleftrightarrow} > C = O + Na_2SO_3 + H_2O$$

 कार्बोनिल यौगिकों के बाइसल्फाइट योगोत्पाद श्वेत क्रिस्टलीय तोस होते है। जिनकों गंलनाक तीक्ष्ण होते है। इनका अम्लीय या क्षारीय जल अपघटन कराने पर पुनः कार्बोनिल यौगिक प्राप्त हो जाता है। यह विधि कार्बोनिल यौगिकों को किसी मिश्रण में से पृथक करने में काम आती है।

नोट- कार्बोनिल कार्बन > C = O पर बड़े आकार के समृह जुड़ जाने के कारण त्रिविन्यासी बाधा उत्पन्न हो जाती है। इसके कारण Diethyl ketone. Benzophenone, Acctophenone, आदि यह अभिक्रिया प्रदर्शित नहीं करते हैं।

3. ग्रीन्यार अभिकर्मकों से (With Grignard Reagent)

$$>_{C = O} = |_{R}^{MgX} \longrightarrow C <_{R}^{OMgX} \xrightarrow{HOH} C <_{R}^{OH}$$

 उपर्युक्त अभिक्रिया द्वारा HCHO से प्राथमिक ऐल्कोहॉल, अन्य ऐल्डिहाइडों से द्वितीयक ऐल्कोहॉल तथा कीटोनों से तृतीयक ऐल्कोहॉल प्राप्त किये जा सकते है।

$$CH_2 = O + CH_3MgBr \longrightarrow CH_3 - CH_2 - O - MgBr$$

$$\xrightarrow{H_2O} CH_3CH_2OH$$

$$CH_3CH = O + CH_3MgBr \longrightarrow CH_3 - CH(CH_3) - O - MgBr$$

$$\xrightarrow{H_3O} CH_3CH(OH) - CH_3$$
द्वितीयक एल्कोहॉल

$$H_3C \longrightarrow C = O + CH_3MgBr \longrightarrow (CH_3)_3C - O - MgBr$$

 $\xrightarrow{\text{H}_2\Omega}$ → $(\text{CH}_3)_3\text{C}$ – OH qਰੀयक एल्कोहॉल

4, ऐल्कोहॉलों से (With Alcohols)

शुष्क HCl गैस की उपस्थिति में ऐल्केनैल तथा ऐत्केनॉल की क्रिया से ऐसीटैल (Acctal) प्राप्त होते है। मध्यवर्ती के रूप में हेमीऐसीटैल (Hemiacctal) बनते है। जो हाइड्रॉक्सी ईथर होते है ऐसीटैल डाईऐल्कॉक्सीऐल्केन होते है। शुष्क HCl गैस के स्थान पर निर्जल ZnCl, भी लिया जा सकता है।

 ऐसीटैल्डिहाइड तथा मेथेनॉल से बनने वाले ऐसीटैल का सामान्य नाम मेथिलैल (Methylal) है।

CH₃CHO + 2HOCH₃
$$\xrightarrow{\text{शुष्क}}$$
 CH₃CH $\xrightarrow{\text{OCH}_3}$ + H₂O $\xrightarrow{\text{Planched}}$ + H₂O

 ऐसीटैल्डिहाइड तथा एथेनॉल से बनने वाले ऐसीटैल का सामान्य नाम ऐसीटैल (Acetal) ही है, जिसे IUPAC पद्धित में 1.1 डाइऐथॉक्सीऐथेन कहते है।

$$CH_3 - CH = O + 2HOC_2H_5 \xrightarrow{\frac{3}{11C1}\frac{1}{118}} H_3C - CH \xrightarrow{OC_2H_5} + H_2O$$

ऐसीटैल

• ऐसीटोन, ऐथिल ऐल्कोहॉल से क्रिया कर कीटैल या 2.2-डाईऐथोक्सी प्रोपेन बनाता है परन्तु इनकी प्राप्ति बहुत ही कम होती है।

$$H_3C = O + \frac{HOC_2H_5}{HOC_2H_5} \xrightarrow{\overline{q_{\overline{q}}}} H_3C \xrightarrow{OC_2H_5} OC_3H_5 + H_2O$$

• एसीटोन Ethylene glycol से क्रिया कर चक्रीय कीटैल बनाता है।

$$H_{3}C \longrightarrow C = O + HO - CH_{2} \xrightarrow{dryHC1} \xrightarrow{dryHC1}$$

$$Acetone \qquad Ethylene glycal$$

$$H_{3}C \longrightarrow C \xrightarrow{O - CH_{2}}$$

$$H_{3}C \longrightarrow C \xrightarrow{O - CH_{2}}$$

$$Cvclic ketal$$

5. मर्केप्टनों से (With Mercaptans)

• ऐल्कोहॉलों की तुलना में थायॉल (मर्केप्टन) अधिक प्रबल नाभिकरनेही होते है अतः ये ऐल्डिहाइड तथा कीटोन दोनों से ही क्रिया कर क्रमशः थायोऐसीटैल (Thioacetal) अथवा मर्केप्टल (Mercaptal). तथा थायोकीटैल (Thioketal) अथवा मर्केप्टोल (Mercaptol) बनाते है।

2.2-Dimethyl-1,3-dioxolane

$$R--CH = O + 2H--S--R'$$
 $\xrightarrow{\text{शुष्क}}$ $R--CH < S--R'$ $\xrightarrow{S--R'}$ $\xrightarrow{\text{Veab-de}}$ $\xrightarrow{S--R'}$ $\xrightarrow{S--R'}$

ऐत्डिहाइड, कीटोन आर काबोक्सिलक अस्त

थायोकीटैल (मर्केप्टोल)

 थायोऐसीटैल तथा थायोकीटैल का ऑक्सीकरण अम्लीय परमैगनेट द्वारा कराने पर सल्फोनैल (Sulphonal) प्राप्त होते है जो निदाकारी औषधियों (Hypnotics) के रूप में प्रयुक्त होते है।

6. अमोनिया व्युत्पन्नों से (With Ammonia Derivatives) अमोनिया व्युत्पन्नों के साथ अभिक्रिया-यह संघनन (condensation) या योगात्मक विलोपन (Addition Elimination) अभिक्रियाएँ हैं। यह दुर्बल अम्लीय माध्यम में सुगमता से होती है।

$$\begin{array}{c|c}
\delta \cdot \bigwedge \delta_{-} \\
> C = O + H + NH - G
\end{array}$$

$$\xrightarrow{II^+} > C = N - G$$

(i) हाइड्रॉक्सिलऐमीन (H,N - OH) से (With Hydroxylamine)

$$C = O + H_2NOH \longrightarrow C = NOH$$

- फॉर्मल्डिहाइड से *फॉर्मल्डोऑक्सिम* बनेगा।
- ऐसीटिल्डहाइड से ऐसीटिल्डोऑक्सिम बनेगा।
- ऐसीटोन् सं *ऐसीटोनऑक्सिम* बनेगा।

(ii) हाइड्रेजीन से (H_2N-NH_2) (With Hydrazine)

$$C = O + H_2 N N H_2 \xrightarrow{-H_2 O} C = N N H_2$$

$$E = S \otimes O + H_2 N N H_2 \otimes O + H_2 O + H_$$

- फॉर्मिल्डिहाइड से *फॉर्मिल्डिहाइड-हाइड्रेजोन* बनेगा।
- ऐसीटल्डिहाइड से ऐसीटल्डिहाइड-हाइड्रेजोन बनेगा।
- ऐसीटोन से ऐसीटोन-हाइड्रेजोन बनेगा।

(iii) फेनिलहाइड्रैजीन (H,N-NH-Ph) से (With Phenylhydrazine)

$$C = O + H_2NNHC_6H_5 - \frac{1}{-H_2O}$$
 $C = NNHC_6H_5$
फैनिलहाइडेंजोन

- फॉर्मिल्डिहाइड से फॉर्मिल्डिहाइडफैनिलहाइड्रेजोन बनेगा।
- ऐसीटल्डिहाइड से ऐसीटल्डिहाइडफैनिलहाइड्रेजोन बनेगा।
- ऐसीटोन से ऐसीटोनफैनिलहाइड्रेजोन बनेगा।

(iv) 2,4—डाइनाइट्रोफेनिलहाइड्रैजीन $\left(\begin{array}{c} H_2N-NH-\bigcirc\\NO_2 \end{array}\right)$ से

(With 2,4 Dinitrophenylhydrazine)

$$C = O + H_2N - NH \longrightarrow C = N - NH$$

$$O_2N \longrightarrow O_2N$$

$$NO_2$$

2,4 - डाईनाइट्रोफेनिलहाइड्रेजोन (क्रिस्टलीय पीला नारंगी)

- फॉर्मिल्डिहाइड से फॉर्मिल्डिहाइड 2,4 डाइनाइट्रोफेनिलहाइड्रैजोन बनेगा।
- ऐसीटैल्डिहाइड से ऐसीटैल्डिहाइड 2,4 अइनाइट्रोफेनिलहाइड्रैजोन बनेगा।
- ऐसीटोन से ऐसीटोन 2.4-डाइनाइट्रोफेनिलहाइड्रेजोन बनेगा।

(v) सेमीकार्बेजाइड से (With Semicarbazide)

$$C = O + H_2 NNHCONH_2 \longrightarrow C = NNHCONH_2$$

- फॉर्मल्डिहाइड से फॉर्मल्डिहाइड सेमीकार्वजीन बनेगा।
- ऐसीटैल्डिहाइड से ऐसीटैल्डिहाइड सेमीकार्वेजोन बनेगा।
- ऐसीटोन से ऐसीटोन सेमोकार्बेजोन बनेगा।

(B) ऑक्सीकरण अभिक्रियाएँ (Oxidation-Reaction)

(a) ऐल्डिहाइड का ऑक्सीकरण : एंल्डिहाइड आसानी से समान कार्बन संख्या वाले कार्बोविरालिक अम्ल में परिवर्तित हो जाते है। कुछ प्रमुख ऑक्सीकारक जिनका उपयोग ऑक्सीकरण के लिए किया जाता है वे हैं KMnO, K,Cr,O, (अम्लीय), ब्रोमीन जल, Ag', Cu' आयन आदि। ऐल्डिहाइड में कार्बोनित रागूह से हाइड्रोजन जुड़ा होता है जो आसानी से ऑक्सीकृत होकर -OH में बदल जाता है।

$$\begin{array}{ccc}
O & & O \\
\parallel & & \parallel \\
R - C - H + [O] \longrightarrow R - C - O - H
\end{array}$$

इस प्रकार ऐल्डिहाइड प्रबल अपवायक के रूप में कार्य करते है। ये टॉलेन अभिकर्मक तथा फंलिंग विलयन को अपिवत कर देती है। इन अभिक्रियाओं का उपयोग ऐल्डिहाइड के परीक्षण के लिए किया जाता है।

(i) शिफ अभिकर्मक से (With Schiff's Reagent)

• मैजन्टा रंजक (Magenta Dye). फुक्सीन (Fuchsine) अथवा रोजैनिलीन हाइड्रोक्लोराइड (Rosaniline Hydrochoride) के गहरे लाल रंग के जलीय विलयन में, SO-गेस प्रवाहित करने से प्राप्त रंगहीन विलयन को शिफ अभिकर्मक कहते है। समस्त ऐल्डिहाइड ठण्डें में ही तनु शिफ अभिकर्मक के गुलाबी रंग को पुनःस्थापित कर देते हैं। अतः यह ऐल्डिहाइडों को विशिष्ट परीक्षण है जिसे शिफ परीक्षण (Schiff's Test) कहते हैं।

(ii) टॉलेन अभिकर्मक से (With Tollen Reagent)

अमोनिकल सिल्वर नाइट्रेट विलयन (AgNO₃ + NH₂OH) को टॉलेन अभिकर्मक कहते हैं। ऐल्डिहाइड तथा टॉलेन अभिकर्मक को परख नली में जल-ऊष्मक पर सावधानीपूर्वक गरम करने से रजत दर्पण (Silver Mirror) बन जाता है। तीग्र गाँते से सीधा गरम करने पर सिल्वर का काला-रलेटी अवक्षेप बन जाता है।

$$Ag^{-} + 2NH_{4}OH \longrightarrow [Ag(NH_{3})_{2}]^{-} + 2H_{2}O$$

$$2[Ag(NH_{3})_{2}]^{-} + H_{2}O \longrightarrow Ag_{2}O + 2NH_{4} - 2NH_{3}$$

$$RCHO + Ag_{2}O \longrightarrow RCOOH + 2Ag$$

$$RCHO + 2[Ag(NH_3)_2]^{-} + 3OH^{-} \longrightarrow$$

RCOOH ± 4 NH₃ ± 2 H₂O ± 2 Ag \downarrow

(iii) फेहलिंग विलयन से (With Fehling Solution)

 प्रयोगशाला में फेहलिंग विलयन दों बोतलों में, फेहलिंग विलयन 'A' तथा फेहलिंग विलयन 'B' नाम से रखते हैं

• फेहलिंग विलयन 'A' – CuSO4 का जलीय विलयन (नीला)

फेहलिंग विलयन 'B' सोडियम पोटैशियम टार्टरेट (रोशेल लवण)
 का क्षारीय (NaOH अथवा Na₂CO₃) विलयन (रंगहीन)

 फेहलिंग विलयन 'A' तथा 'B' को मिलाने पर विलयन का रंग अधिक गहरा नीला हो जाता है।

$$CuSO_4 + 2NaOH \longrightarrow Cu(OH)_2 + Na_2SO_4$$

$$\begin{array}{ccc} HO - CH - CO\overset{\ominus}{O} & & \\ & \downarrow & & \ominus \\ HO - CH - CO\overset{\ominus}{O} & & & \end{array}$$

टार्टरेट आयन

क्युप्रिटार्टरेट संकुल (गहरा नीला)

गहरे नीले विलयन में ऐल्डिहाइड मिला कर गरम करने पर संकुल से क्यूप्रिक आयन पृथक हो जाता है। जो हाइड्रॉक्साइड आयन की उपस्थिति में ऐल्डिहाइड को अम्ल में ऑक्सीकृत कर देता है। और स्वयं क्यूप्रस ऑक्साइड (लाल अवक्षेप) में अपचियत हो जाता है।

$$R(IIO + 4OII + 2Cu \longrightarrow RCOOII + 2II_2O + Cu_2O)$$
 लाल आयोग

(iv) बेनेडिक्ट विलयन से (With Benedict Solution) बेनेडिक्ट विलयन भी फेहलिंग विलयन के समान ऐल्डिहाइडों के साथ गरम करने पर Cu₂O का लाल अवक्षेप देता है। इन (ii) दोनों में केवल यह अन्तर है कि फेहलिंग में टार्टरेट आयन होता है। जबकि बेनेडिक्ट विलयन में सिट्रेट आयन होता है।

$$\stackrel{\Theta}{\mathrm{OOC}} - \mathrm{CH}_2 - \stackrel{\mathrm{OH}}{\overset{!}{\overset{!}{\mathrm{C}}}} - \mathrm{CH}_2 - \mathrm{COO}$$
 सिट्रंट आयन

सुगमता के लिए बेनेडिक्ट तथा फेंहलिंग परीक्षणों को निम्न प्रकार दर्शाया जा सकता है।

$$CuSO_4 + 2NaOH \longrightarrow Cu(OH)_2 + Na_2SO_4$$

$$Cu(OH)_2 \longrightarrow CuO + H_2O$$

$$R - CHO + 2CuO \longrightarrow R - COOH + Cu_2O \downarrow$$

(v) सोडियम हाइपो हेलाइट द्वारा ऑक्सीकरण (NaOX या X,+NaOH), हैलोफॉर्म अभिक्रिया : ऐसीटैल्डिहाइड की अभिक्रिया क्षार की उपस्थिति में हैलोजन के आधिक्य से कराने पर हैलोफार्म (क्लोरोफॉर्म, ब्रोमोफार्म, आयोडोफार्म) बनते है। इस अभिक्रिया में सबसे पहले मेथिल समूह के तीनो हाइड्रोजन परमाणु हैलोजन परमाणु से प्रतिस्थापित होकर ट्राई हैलो ऐल्डिहाइड बनता है जो आगे क्षार से अभिक्रिया करके हैलोफार्म तथा कार्बोक्सिलिक अम्ल का लवण बनाता है।

$$CCl_3 - CHO + NaOH \longrightarrow CHCl_3 + HCOONa$$
 वलोरोफॉर्म सोडियम फॉर्मेट

ऐल्डिहाइड, कीटान और काबोक्सिलक अम्ल

(vi) बेयर विलिगर ऑक्सीकरण : ऐल्डिहाइड, परबेंजोइक अम्ल, परऐसीटिक अम्ल से ऑक्सीकृत होकर अम्ल बनाते हैं।

(b) कीटोन का ऑक्सीकरण :

कीटोन का ऑक्सीकरण किनाई से होता है। प्रबल ऑक्सीकारक पदार्थों जैसे अम्लीय KMnO4, अम्लीय K2Cr,O4, सान्द्र HNO4 आदि के साथ दीर्घ काल तक अभिक्रिया कराने पर कार्बेक्सिलक अम्ल का मिश्रण प्राप्त होता है। जिसमें कार्बन परमाणुओं की संख्या कीटोन की तुलना में कम होती है।

$$CH_3 - C - CH_3 \xrightarrow{[O]} CH_3COOH + CO_2 + H_2O$$

असमित कीटोन में कीटो समूह छोटे ऐल्किल समूह के साथ रहता है। यह **पोपॉफ नियम** कहलाता है। **पोपॉक नियम** —

$$CH_3 - CH_2 - CH_2 + C - CH_3$$

$$\downarrow O$$

$$\downarrow O$$

(ii) बेयर विलिगर ऑक्सीकरण : कीटोन परऐसिड द्वारा ऑक्सीकृत होकर ऐस्टर बनाते हैं।

(iii) सोडियम हाइपोहेलाइट (NaO X या X,+NaOH) द्वारा कीटोन का ऑक्सीकरण हैलोफॉर्म अभिक्रिया : किटोन जिनमें CH,-CO-समूह होता है। क्षार की उपस्थिति में हैलोजन के आधिक्य से क्रिया कराने पर हैलोफॉर्म (क्लोरोफार्म, ब्रोमोफॉर्म, आयोडोफॉर्म) बनाते है।

$$CH_3 - CO - CH_3 + 3Br_2 \xrightarrow{NaOII} CBr_3 COCH_3$$

ऐसीटोन ट्राईब्रोमोऐसीटोन

+ 3HBr

+ CH₃COONa __ सोडियम ऐसीटेट

(C) अपचयन अभिक्रयाएँ (Reduction)

1. हाइड्रोजनीकरण (Hydrogenation)

• कार्बोनिल समूह (-CO-) के अपचयन से ऐल्कोहॉलिक समूह (-CHOH-) बनता है। ऐल्डिहाइड तथा कीटोन अम्बियत

ऐल्डिहाइड, कीटोन और कार्बोक्सिलक अम्ल

होकर क्रमशः प्राथमिक ऐल्कोहॉल तथा द्वितीयक ऐल्कोहॉल देते है।

$$\begin{array}{c} O \\ & \downarrow \\ \\ & \downarrow$$

Cyclohexanone

Cyclohexanol

$$\mathsf{CH}_2 = \mathsf{CH} - \mathsf{CHO} + 2\mathsf{H} - \xrightarrow{\mathsf{NaBH}_4} \mathsf{CH}_2 = \mathsf{CH} - \mathsf{CH}_2\mathsf{OH}$$

$${
m CH_3-CHO+2H-\longrightarrow CH_3-CH_2OH}$$
 ऐसी ${
m CM_3-CH_2OH}$ ऐसी एंडिल ऐस्कोहॉल

$$CH_3 - CO - CH_3 + 2H \longrightarrow CH_3 - CHOH - CH_3$$
 પ્રતાહાન પ્રતાહના અક્ષ્માંપ્રાપ્ય પ્રતાહાન

- अपचायक के रूप में निम्नलिखित अभिकर्मकों का प्रयोग किया जा सकता है--
- (i) LiAlH₄
- (ii) NaBH₄
- (iii) Zn + NaOH
- (iv) Na + C_2H_5OH
- (v) NaHg + H_2O
- (vi) $Zn + CH_3COOH$
- (vii) रैने निकल $+ H_2$
- (viii) कोलॉयडी प्लैटिनम + H2 आदि।

2. लाल फॉस्फोरस तथा HI से (With Red Phosphorus and HI)

 लाल फॉस्फोरस तथा HI द्वोरा अपचयन करोने पर ऐल्केनैल तथा ऐल्केनोन उतने ही कार्बन परमाणु युक्त ऐल्केन में परिवर्तित हो जाते है।

$$R - CHO + 4HI - \xrightarrow{\text{eticl } p} R - CH_3 + H_2O + 2I_2$$

$$R - CO - R' + 4HI - \frac{\text{Glod } p}{150^{\circ}C} + R - CH_2 - R' + H_2O + 2I_2$$

• उपर्युक्त अपचयन द्वारा मेथेनैल से मेथेन, एथेनैल से एथेन, प्रोपेनैल से प्रोपेन तथा प्रोपेनोन से प्रोपेन बनते है।

3. क्लीमेन्सन अपचयन (Clemensen's Reduction)

• ऐल्केनोनों का अपचयन जिन्क अमलगम तथा सान्द्र HCl से करने पर >C=O समूह CH2 में परिवर्तित हो जाता है।

$$CH_{3}COCH_{3} + 4H \xrightarrow{Z\pi/Hg} CH_{3}CH_{2}CH_{3} + H_{2}O$$

$$\text{with distance} HCI$$

 ऐल्केनैल उपर्युक्त अमिक्रिया नहीं देते क्योंकि वे सान्द्र अम्ल की उपस्थिति में शीघ्रता से बहुलकीकृत हो जाते है। परन्तु बेन्जैल्डिहाइड सान्द्र IICT के प्रति अक्रिय होने के कारण क्लीमेन्सन अमिक्रिया देता है।

$$C_6H_5CHO+4H \xrightarrow{Zn/Hg} C_6H_5CH_3+H_2O$$

बेन्जेरिक्शवृह्य सन्द्र $HCH \xrightarrow{\text{diag} s}$

4. वोल्फ-किश्नर अपचयन (Wolff-Kishner Reduction)

 इस अभिक्रिया में ऐल्केनैल अथवा ऐल्केनोन की क्रिया हाइड्रैजीन से करा कर पहले उसका हाइड्रैजोन व्युत्पन प्राप्त किया जाता है। हाइड्रोजोन को सोडियम एथॉक्साइड के साथ 180°C पर गरम करने से उतने ही कार्बन युक्त एल्केन बनती है।

$$C = O \xrightarrow{+NH_2NH_2} C = N - NH_2 \xrightarrow{C_2H_3ONa} CH_2 + N_2$$

• वुल्फ-किश्नर अभिक्रिया में सोडियम एथॉक्साइंड के स्थान पर डाईऐथिलीन ग्लाइकॉल (HO-CH₂-CH₂-O-CH₂-CH₂-OH) लेने पर इस अभिक्रिया को **हुऐन्ग-मिनलॉन अपचयन** (Huang Minlon Reduction) कहा जाता है। यह अभिक्रिया एक पद में ही पूर्ण हो जाती है।

डाइएथिलीन
$$C=O+NH_2-NH_2$$
 जाइकॉल $CH_2+N_2+H_2O$

(5) मीरवाइन-पॉन्ड्राफ-वर्ली अपचयन कीटोन को आइसो मेथिल ऐल्कोहॉल में ऐल्युमिनियम आइसोप्रो- पॉक्साइड के साथ अभिकृत करवाने पर द्वितीयक ऐल्कोहल प्राप्त होते हैं। इसे मीरवाइन-पॉन्ड्राफ-वर्ली अपचयन कहते हैं।

$$\frac{R}{R^i} \nearrow C = O \xrightarrow{[(CH_3)_2CHO]_3AI} \frac{R}{R^i} \nearrow C \nearrow H \text{ at } RCHOHR^i$$

कीयक ऐत्कीस्त (6) पिनेकॉल में अपचयन : कीटोन का मैग्नीशियम अमलगम (Mg-Hg) तथा पानी के साथ अपचयन कराने पर पिनेकॉल प्राप्त होते है। ऐल्डिहाईड यह अभिक्रिया नहीं दर्शाते है।

$$CH_3$$
 CH_3 $H_3C - C$ $+$ $C - CH_3 + 2|H|$ $H_3C - C$ $+$ $C - CH_3 + 2|H|$ $H_3C - C$ H_3 $H_4C - C$ H_5 $H_5C - C$ H_5 H_5C H_5 H_5

(D) ताप-अपघटन (Pyrolysis)

• कार्बोनिल यौगिकों को 600°C अथवा अधिक तापमान पर गरम करने पर निम्न प्रकार विखण्डन हो जाता है।

HCHO
$$\xrightarrow{\Delta}$$
 H₂+CO
CH₃CHO $\xrightarrow{\Delta}$ CH₄+CO

$$CH_3COCH_3 \xrightarrow{\Delta} CH_4 + CH_2 = C = O$$

(E) बहुलकीकरण (Polymerisation)

• कार्बोनिल यौगिक विभिन्न बहुलकीकरण उत्पाद बनाते है। ऐल्केनैल सामान्यतः योगात्मक बहुलकीकरण (Addition Polymerisation) करते है जबिक ऐल्केनोन संघनन बहुलीकरण (Condensation Polymerisation) अभिक्रियाएँ देते है।

योगात्मक बहुलकीकरण फॉमैल्डिहाइड

1. उदासीन माध्यम में (In Neutral Medium)

(i) फॉर्मलीन (फॉर्मिल्डिहाइड का 40% जलीय विलयन) का वाष्पन सावधनीपूर्वक करने पर श्वेत क्रिस्टलीय ठोस, *पैराफॉर्मिल्डिहाइड* (Paraformaldehyde) प्राप्त होता है। यह एक रैखिय योगात्मक बहुलक (Linear Addition Polymer) है, जिसे *पॉलिऑक्सीमेथिलीन* (Polyoxymethylene) भी कह सकते हैं। क्योंकि इसमें ऑक्सीमेथिलीन (-CH₂-O-) इकाइयों की पुनरावृति होती है।

$$nCH_2 = O \xrightarrow{\text{dign}} [-CH_2 - O - |_n]$$

$$\text{dign} \text{distance}$$

ı ६ से लगभग 50 तक)

(ii) फॉर्मेटीन की कक्ष ताप घर रख देने पर या अल्प मात्रा में सान्द्र H-SO₂ मिलाकर आसचित करने से, तृतयीकरण से मेटाकॉमेंटिडहाइड (Metaformaldehyde) बनता है।

$$CH_2 = O \longrightarrow (CH_2 - C)_3 Or O CH_2 O 1.3.5 - Trioxane$$

Trioxane

2. दुर्बल क्षारीय माध्यम में (In Weak Alkaline Medium)

फॉर्मेलीन को दुर्बल क्षार (चूने का पानी अथवा बेराइटा जल)
में कुछ दिनों के लिए रख देने पर पुनरावृत्त ऐल्डॉल संघनन
तरिकृहताब्दी Addol Condensation) द्वारा मुख्यतः हैक्सोस (छः
कार्बन युक्त) शर्कराओं का मिश्रण बन जाता है। जिसे सामान्यतः
फॉर्मोस (Formose) अथवा α-ऐक्रोस (α-Acrose) कहते है।
फॉर्मेस में थोड़ी मात्रा में पेन्टोस (पाँच कार्बन युक्त) शर्कराऐं
भी विद्यमान रहतों है।

$$6CH_2O \xrightarrow{Ca(GH)_2} C_6H_{12}O_6$$
Ba(CH)₂

• फॉमैलिडहाइड से हैक्सोस शर्कराओं का बनना षट्लीकरण (Ilexamerisation) का उदाहरण है।

ऐसीटैलिडहाइड

 सान्द्र सल्पयूरिक अम्ल की कुछ बूदें ऐसीटैल्डिहाइड में डाल कर कक्ष लाव पर रख देने से योगात्मक तृतयीकरण (Addition Trimerisation) द्वारा पैरालिडहाइड (Paraldehyde) बनता है।

$$3CH_3CHO - \frac{\sin \theta H_2SO_3}{\sin \theta} \longrightarrow (CH_3CHO)_3$$
Paraldehyde

• पैराल्डिहाइड की संरचन अनऐरोमैटिक विषमचक्रीय होती है। तथा इसे 2,4,6-ट्राईमेथिल,-1,3,5-ट्राइऑक्सेन (2,4,6-Trimethyl-1,3,5-trioxan) कहते है।

- पैरात्डिहाइड का उपयोग **मृदु निदाकारी** (Mild Hypnotic) के रूप में किया जाता है।
- 2. ऐसीटऐटिंडहाइड के बार अणु 0°C ताप पर शुष्क HCl की उपस्थिति में मेटां-ऐटिंडहाइड बनाते है।

$$4CH_{3}CHO \xrightarrow{\text{sys.}} (CH_{3}CHO)_{4} \quad \text{H}_{3}C - CH \quad CH - CH \\ O \quad CH_{3}$$

• इसका उपयोग टोस ईधन के रूप में किया जाता है। संघनन बहलीकरण (Condensation reation)

ा सान्द्र H SO, के साथ आसवन करने वर ऐसीटोन **के 3 अण्**

ऐल्डिहाइड, कीटोन और कार्बोक्सिलक अम्ल

संघनित होकर 3 अणु जल के निष्कासित करके मेसिटिलीन बनाते है।

$$3CH_{3}COCH_{3} \xrightarrow{\text{etirical } H_{2}SO_{4}} \xrightarrow{H_{3}C} \xrightarrow{\text{ptr} CH_{3}} -3H_{2}O$$

$$\xrightarrow{\text{ptr} CH_{3}} \xrightarrow{\text{ptr} CH_{3}} -3H_{2}O$$

$$\xrightarrow{\text{ptr} CH_{3}} -3H_{2}O$$

$$\xrightarrow{\text{ptr} CH_{3}} -3H_{2}O$$

• जब ऐसीटोन को शुष्क HCl की उपस्थिति में गर्म किया जाता है। तो मेसीटिल ऑक्साइड और फोरोन [Phorone] बनाते है।

$$CH_3 \longrightarrow C = O + H_2HC \longrightarrow C \longrightarrow CH_3 \xrightarrow{\mathbb{Q}_3 \times \mathbb{Q}_3 \to HC1} \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \to CH_3 + H_2O$$

$$CH_3 \longrightarrow C = CH \longrightarrow C \longrightarrow CH_3 + H_2O$$

$$CH_3 \longrightarrow C = CH \longrightarrow C \longrightarrow CH_3 + H_2O$$

$$CH_3 \longrightarrow C = CH \longrightarrow C \longrightarrow CH_3 + H_2O$$

[Mesityloxide] मेसीटिलऑक्साइड 4 – Methylpent – 3 – en – 2 – one

$$CH_3$$
 $H_3C-C = CH$ $C = CH$ $C = O + 2H_2C$ $C = O + 2H_2C$ $C = O + 2H_3C$ $C = O + 2H_3C$ CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

2.6 - Dimethylhepta - 2.5 - dien - 4 - one

(F) Reaction with NH₃

अमोनिया सेः कार्बोनिल यौगिकों पर अमोनिया की क्रिया से विभिन्न प्रकार के उत्पाद प्राप्त होते है।

(i) फॉर्मिल्डिहाइड से (With Formaldehyde)

 जब फॉर्मेलिन (फॉर्मेलिडहाइड के 40% जलीय विलयन) में अमोनिया मिलाते है तो निम्न तापमान पर ही यूरोट्रोपीन (Urotropin) के चमकदार सुन्दर श्वेत क्रिस्टल प्राप्त होते है।

$$6CH2O + 4NH3 \longrightarrow (CH2)6N4 + 6H2O$$

 यूरोट्रोपीन को अन्य सामान्य नामों से भी जाना जाता है, जैसे-ऐमीनोफॉर्म (Aminoform), हैक्सामेथिलीनटेट्राएमीन (Hexamethylenetetramine) तथा हैक्सामीन (Hexamine)। इसका संरचनात्मक सूत्र पूर्ण रूप से समित होता है। जिसे अनऐरोमैटिक विषमचक्रीय वर्ग में रखा जाता है। यह Urine infection में औषधि के रुप में काम आता है।

(ii) ऐसीटैल्डिहाइड से (With Acetaldehyde)

• ऐसीटैल्डिहाइड तथा अमोनिया की क्रिया कक्ष ताप पर हो

ऐल्डिहाइड, कीटोन और कार्बेक्सिलक अम्ल

जाती है। और योगोत्पाद ऐसीटैल्डिहाइड-अमोनिया • (Acetaldehydeammonia) प्राप्त होता है।

$$H_3C$$
 = $O + NH_3$ H_3C OH NH_3

Acetaldehyde

ऐसीटैल्डिहाइड-अमोनिया

• ऐसीटैल्डिहाइड—अमोनिया को गरम करने पर जल अणु के विलोपन से ऐसीटैल्डिमीन बनता है, जिसके बहुलीकरण से मुख्यतः एक अनऐरोमैटिक विषमचक्रीय योगात्मक तृतीयाणु (Nonaromatic Heterocyclic Addition Trimer), 2.4,6— ट्राईमेथिलहैक्साहाइड्रो—1.3,5—ट्राईऐजीन ट्राईहाइड्रेट प्राप्त होता है।

$$H_3C$$
— CH
 CH_3
 CH_3 $-CH = NH + H_2O$

$$3 \text{ CH}_{3}$$
 — $\text{CH} = \text{NH} + 3\text{H}_{2}\text{O} \xrightarrow{\frac{\Delta}{\text{QCH} \text{ adopt}^{\text{U}}}} + \text{HN} \xrightarrow{\frac{4}{\text{CH}_{3}}} + \text{CH}_{3}$

2,4,6-ट्राईमेथिलहैक्साहाइड्रो 1,3,5- ट्राईऐजीन ट्राईहाइड्रेट

(iii) ऐसीटोन से (With Acetone)

 ऐसीटोन को अमोनिया के साथ सावधानीपूर्वक धीरे-धीरे गरम करने पर डाईऐसीटोनऐमीन (Diacetoneamine) बनता है।

• ऐसीटोन तथा अमोनिया को कुछ देर गर्म करने पर चक्रीय संघनन उत्पाद ट्राइऐसीटोनऐमीन (Triacetoneamine) प्राप्त होता है।

(G) ऐल्डिहाइड के α- हाइड्रोजन की क्रियाशीलता

- α-हाइड्रोजन का अम्लीय व्यवहार—
- कार्बोनिल यौगिकों में कार्बोनिल समूह के समीप स्थित कार्बन परमाणु से जुड़े हाइड्रोजन परमाणु α- हाइड्रोजन कहलाते है।

- कार्बोनिल समूह का (-1) प्रेरणिक प्रभाव होता है। यह समीप के कार्बन कार्बन बंध से इलेक्ट्रॉन को अपनी ओर आकर्षित करता है इससे व्र-कार्बन इलेक्ट्रॉन न्यून हो जाता है।
- α कार्बन परमाणु इलेक्ट्रॉन न्यूनता की पूर्ति के लिए C₃-H बन्ध से इलेक्ट्रॉन को अपनी ओर खींचता है अर्थात् α - हाइड्रोजन दुर्बलता से बंधे होते हैं।
- जब कार्बोनिल यौगिक की अभिक्रिया प्रबल क्षार सं करवायीं जाती है,
 क्षार α-कार्बन से संलग्न हाइड्रोजन परमाणु को आसानी से निष्कर्षित
 (Abstract) कर लेता है और कार्बऋणायन बनाता है।
- कार्बऋणायन अनुनाद के द्वारा स्थायी हो जाता है।

$$\begin{array}{c|c} & :O: \\ & H - O - H = C - C - \frac{1}{2^{15}} \stackrel{\text{\tiny (Q)}}{\stackrel{\text{\tiny $(Q)}}{\stackrel{\text{\tiny $(Q)}}}{\stackrel{\text{\tiny $(Q)}}}{\stackrel{\tiny $(Q)}}}{\stackrel{\text{\tiny $(Q)}}}{\stackrel{\text{\tiny $(Q)}}}{\stackrel{\text{\tiny $(Q)}}}{\stackrel{\text{\tiny $(Q)}}}{\stackrel{\text{\tiny $(Q)}}}}{\stackrel{\stackrel{\text{\tiny $(Q)}}}{\stackrel{\text{\tiny $(Q)}}}{\stackrel{\text{\tiny $(Q)}}}{\stackrel{\text{$$

- इस प्रकार α-हाइड्रोजन परमाणु की क्रियाशीलता (अम्लीयता) के दो प्रमुख कारण है :
- (i) कार्बोनिल समूह का (-I) प्रभाव जो C_{α} -H बन्ध को दुर्बल करता है और
- (ii) H⁺ के निष्कासन से बना कार्बऋणायन अनुनाद प्रदर्शित करता है व स्थायी हो जाता है।
- प्रेरणिक प्रभाव (Inductive effect or l effect) कार्बन श्रृंखला के अनुदिश दूरी बढ़ने के साथ-साथ शिथिल होता जाता है
- अतः कार्बोनिल समूह का (-1) प्रेरणिक प्रभाव केवल α-H परमाणु को ही प्रभावित करता है। β-, γ-, δ- आदि H अम्लीय गुण प्रदिशत नहीं करते है।
- ऐल्डिहाइड की α-H की अम्लीय गुण निम्न है-

1. तनु क्षार से (With Dilute Alkali)

हाइड्रॉक्साइड आयनों की अल्प मात्रा की उपस्थिति में αहाइड्रोजन परमाणु युक्त कार्बोनिल यौगिकों के दो अणु मिल
कर β-हाइड्रॉक्सी कार्बोनिल यौगिक देते है। इस अभिक्रिया
को सामान्यतः ऐल्डॉल संघनन (Aldol Condensation) कहा
जाता है। दो समरूप कार्बोनिल यौगिकों के ऐल्डॉल संघनन
को सरल ऐल्डॉल संघनन (Simple Aldol Condensation)
कहते है।

ऐसीटैल्डॉल (Aldol)

 ऐसीटैल्डॉल (3–हाइड्रॉक्सीब्यूटेनैल) को गर्म करने पर जल विलोपन द्वारा α,β–असंतृप्त ऐल्डिहाइड, क्रोटॉनैल्डिहाइड बनता है।

ऐल्डिहाइड, कीटोन और कार्बोक्सिलक अम्ल

• दो असमरूप कार्बोनिल यौगिकों के ऐल्डॉल संघनन को **मिश्र** अथवा क्रॉस ऐल्डॉल संघनन (Mixed or Crossed Aldol

4-Hydroxy-4-methylpentan-2-one

Condensation) कहते है ।

• इस संघनन में चार पदार्थों का निर्माण होता है। जैसे— CH,CHO व CH,CH,CHO की क्षार के साथ क्रिया कराने पर, निम्न चार प्रकार के ऐल्डोल प्राप्त होगा

$$CH_3CH = O + HCH_2CHO \longrightarrow CH_3 - CH(OH) - CH_2CHO$$

$$CH_3 - CH_2 - CH = O + HCH(CH_3) - CHO \longrightarrow CH_3 - CH - CH - CHO$$

$$CH_3 - CH_2 - CH - CH - CHO$$

$$OH - CH_3$$
3-Hydroxy-2-methylpentanal

$$CH_3 - CH = O + H - CH(CH_3)CHO \longrightarrow$$

$$CH_3 - CH(OH) - CH(CH_3) - CHO$$

3 ः हाइश्लोक्सी -2 —मेथिलब्यूटेनेल

$$CH_3 - CH_2 - CH = O + H - CH_2CHO \longrightarrow$$

$$CH_3 - CH_2 - CH(OH) - CH_2CHO$$
3 કાક્યુલેસ્સીપેન્ટનેલ

 दो भिन्न-भिन्न कार्बोनिल यौगिकों में, किसी एक कार्बोनिल यौगिक में α-H परमाणु का होना आवश्यक होता है जैसे (i) एसीटोन और फार्मेल्डिहाइड के संघनन से एल्डोल बनता है।

$$CH_3 - C - CH_3 + CH_2 = O \xrightarrow{OH} \rightarrow$$

$$CH_3 - C - CH_2 - CH_2 - OH$$

$$O$$

$$O$$

$$O$$

4-Hydroxybutan-2-one

(ii) बेन्जैल्डिहाइड और ऐसीटैल्डिहाइड के संघनन से सिनैमल्डिहाइड बनाते हैं। इसे **क्लेसन संघनन** कहते है।

$$C_6H_5 - C_6H_5 -$$

नोट— ऐल्डोल संघनन अभिक्रिया दुर्बलक्षार जैसे— Na₂CO₃.

Ca(OH)₂, Ba(OH)₂ या अतितनु NaOH विलयन की उपस्थिति

में सम्पन्न होती है।

ऐल्डोल संघनन अभिक्रिया की क्रियाविधि-

 हम जानते है कि α-हाइड्रोजन अन्तीय होते है अतः ये क्षार से अभिक्रिया कर कार्बऐनायन (Carbanion) बनाते है!

 उपरोक्त प्राप्त कार्बेऐनायन आयन नाभिक स्नेही का कार्य करता है। अतः दूसरे अणु पर आक्रमण कर ऐल्डोल बनाता है।

$$CH_3 = C + :CH_2 = CH = O \longrightarrow CH_3 = C \longrightarrow CH_2 = CH = O$$

$$CH_{3} - CH_{2} - CH_{2} - CH_{2} - CH_{3} - CH_{3} - CH_{2} - CH_{2} - CH_{3} - C$$

(2) हैलोजेनीकरण (Halogenation)

1. हैलोजन से (With Halogen)

 कार्बोनिल यौगिकों को हैलोजनों के साथ अभिकृत करने पर α हाइड्रोजन परमाणुओं का प्रतिस्थापन सुगमता से हो जाता है। ऐल्डिहाइडों की तुलना में कीटोनों का हैलोजनीकरण अधिक सन्तोषजनक रूप से होता है। क्योंकि ऐल्डिहाइड सहज ही ऑक्सीकृत तथा बहुलकीकृत हो जाते है।

 कार्बोनिल यौगिको का हैलोजेनीकरण तनु अम्लीय अथवा क्षारीय माध्यम मे अधिक वेग से होता है। सीधे धूप में ऐसीटोन का सम्पूर्ण क्लोरीनीकरण हो जाता है।

$$CH_3COCH_3 + 6Cl_2 \xrightarrow{\text{hv}} CCl_3COCCl_3 + 6HCl$$
Hexachloroxicetione

 ऐसीटोन का ब्रोमीनीकरण ग्लेशीयल ऐसीटिक अम्ल की उपस्थिति में कराने पर मोनो-ब्रोमोएसीटोन बनता है। जिसका उपयोग अश्र गैस में किया जाता है।

$$CH_3COCH_3 + Br_2 \longrightarrow CH_3COCH_2Br + IIBr$$
 $Mono-bromoweetone$

 ऐन्टिमनी ट्राइक्लोराइड की उपस्थिति में ऐसीटैल्डिहाइड का ट्राइक्लोरीकरण होकर क्लोरल (Chloral) बनता है जो D.D.T. तथा क्लोरोफॉर्म के निर्माण में प्रयुक्त होने वाला प्रमुख मध्यवर्ती है।

$$CH_3CHO + 3Cl_2 \xrightarrow{SbCl_3} CCl_3CHO + 3HCl$$
 क्लोरल

ऐत्डिहाइड, कीटोन और कार्बोक्सिलक अम्ल

कैनिजारों अभिक्रिया (Cannizzaro Reaction)

- •अल्फा हाइड्रोजन विहीन ऐल्डिहाइडों में कॉस्टिक क्षार के सान्द्र विलयन की पर्याप्त मात्रा मिलाने पर कक्ष ताप पर ही संगत प्राथमिक ऐल्कोहॉल तथा संगत कार्बोक्सिलेट आयन का मिश्रण प्राप्त होता है।
- •यह अभिक्रिया निम्न ऐल्डिहाइड देते है, HCHO. C₆H₅CHO. CCI₃ CHO & (CH₃)₃C-CHO
- •इस अभिक्रिया में उपरोक्त ऐल्डिहाइड के दो अणु अभिक्रिया में भाग
- •इस अभिक्रिया में ऐल्डिहाइड के एक अणु का अम्ल में ऑक्सीकरण व दूसरा अणु अपचियत होकर ऐल्कोहॉल में बदलता है।

क्रियाविधि

$$2C_6H_5CHO + NaOH \rightarrow C_6H_5CH_2OH + C_6H_5COONa \\ Benzylalcohol Sod.benzoate$$

$$\frac{2CCl_3CHO + NaOH}{Trichlorosod.acetate} \rightarrow \frac{CCl_3COONa}{frichlorosod.acetate} + \frac{CCl_3CH}{frichlorosothanol}$$

$$2(CH_3)_3C - CHO + NaOH \rightarrow (CH_3)_3C - COONa$$

2.2-dim ethyl sod, proponodic

 $+(CH_3)_3C-CH_2OH$ Neo-pentyl alcohol

Cross-Cannizaro's Reaction क्रॉस कैनिजारो अभिक्रिया

• जब दो भिन्न-भिन्न ऐल्डिहाइड, जिनमें lpha H परमाणु अनुपस्थित हो, सान्द्र NaOH/KOH के साथ क्रिया करते हैं तो ऐसी अभिक्रिया को क्रॉस कैनिजारो अभिक्रिया कहते हैं।

$$C_6H_5-CHO+CH_2O\xrightarrow{\overline{\mathsf{Hrg}}} C_6H_5CH_2OH+HCOONa$$

Benzylalcohol sod. formate

नोट- α-H परमाणु युक्त ऐल्डिहाइड, सान्द्र NaOH के साथ गरम करने पर एक प्लॉस्टिक जैसा बहुलक बनाते है, जिसे **रेजिन** कहते हैं। nCH₃CHO <u>कन्द्र NaOH</u> ऐजिन CH₃[CH(OH)CH₂]_n CHO

टिशेन्कों अभिक्रिया (Tischenko Reaction)

 जब किसी ऐल्डिहाइड को निर्जल AICI3 की उपस्थिति मे निर्जल ऐलुमिनियम ऐल्कॉक्साइड के साथ गरम किया जाता है तो दो गुने कार्बन परमाणु युक्त एस्टर बनती है। यह अभिक्रिया समस्त ऐल्डिहाइड देते है।

$$R \xrightarrow{H} R \xrightarrow{C} O = C - R \xrightarrow{AH(OR)_3} R - C - O - C - R$$

$$0 \qquad H$$

$$0 \qquad H$$

$$0 \qquad H$$

2.1.5 ऐव्डिहाइड व कीटोन में मिन्तता

क्र. स.	टेस्ट्र ⁄परीक्षण	ऐल्डिहाइड	कीरोब
1:	टॉलेन अभिकर्मक	रजत दर्पण बनाते हैं।	कीटोन
2.	फेलिंग विलयन	लाल अवक्षेप प्राप्त होता है।	कोई क्रिया नहीं।
3.	LiAlH₄ द्वारा अपचयन	पाल अवदाप प्राप्त होता ह	कोई क्रिया नहीं
4.	शुष्क HCl गैस की उपस्थिति में	प्राथमिक ऐल्कोहॉल बनते हैं। ऐसीटैल बनाते है।	द्वितीयक ऐल्कोहॉल बनते है।
	ऐल्कोहॉल से क्रिया	एसाटल बनात है।	आसानी से कीटैल नहीं बनाते है।
5.	शिफ अभिकर्मक	T T T T T T T T T T T T T T T T T T T	
6.	सोडियम हाइड्राक्साइड की उपरिथति में	गुलाबी रंग प्राप्त होता है।	कोई क्रिया नहीं
	सोडियम नाइट्रोक्साइड से अभिक्रिया	कोई क्रिया नहीं	लाल रंग प्राप्त होता है।
7.	सोडियम हाइड्राक्साइड की उपस्थिति में	->+ 	
1	m-डाई नाइट्रो बैन्जीन से क्रिया	कोई क्रिया नहीं	लाल-बैंगनी रंग प्राप्त होता है।
8.	सोडियम हाइड्रॉक्साइड के साथ		
	ा रास्ट्रामायुक्त का साल	ब्राउन रेजिनस उत्पाद प्राप्त	कोई क्रिया नहीं।
		होता है।	• •

ऐल्डिहाइड व कीटोन में समानता : दोनों में ही कार्बोनिल समूह पाया जाता है अतः दोनों समान प्रकार की नाभिक रनेही योगात्मक तथा नाभिक स्नेही विलोपन अभिक्रियाएं प्रदर्शित करते है। जिनकी विस्तृत चर्चा पूर्व में की गई है।

12.1.6 ऐल्डिहाईड व कीटोन के खपयोग

फॉर्मेल्डिहाइड (HCHO)

- फॉर्मेल्डिहाइड का 40% विलयन (फार्मलिन) मृत जीव-जन्तुओं के परिरक्षण में काम आता है।
- फॉमेल्डिहाइड का उपयोग कीटाणुनाशक के रूप में किया जाता
- फॉर्मेल्डिहाइड कृत्रिम रेजिन तथा बैकेलाइट नामक प्लास्टिक को 3. बनाने में काम आता है।

- फॉमेल्डिहाइड से यूरोट्रोपीन बनता है जो मूत्र रोग औषधि बनाने में काम आता है। इससे इंडिगों, रोजेनिलीन आदि रंजक बनते है।
- ऐसीटेल्डिहाइड (CH,CHO) (ii)
- ऐसीटेल्डिहाइड का उपयोग रंजक व रेजिन बनाने में होता है। 1. इससे ऐसीटिक अम्ल का औद्योगिक निर्माण किया जाता है।
- दर्पण के रजतीकरण तथा बंद नाक खोलने में भी यह काम आता है ।
- औषधी (पैराल्डिहाइड) के रूप में काम आता है।
- फीनोलिक रेजिन के निर्माण तथा रबरत्वरक (Rubbr accelators) के रूप में भी इसका उपयोग होता है।
- कीटोन : (iii)
- प्रोपेनोन का उपयोग ऐसीटिलीन के भण्डारण में किया जाता है।
- यह सेल्यूलॉज ऐसीटेट, सेल्यूलॉज नाइट्रेट, सेल्यूलॉइड, रेजिन आदि के लिए विलायक के रूप में काम आता है।
- कीटीन के संश्लेषण में, औषधिक के रूप में प्रयोग किये जाने वाले 3. सल्फोनल, क्लोरिटोन, क्लोरोफॉर्म, आयोडोफॉर्म बनाने में तथा प्र.15. C₅H₃CHO नाभिक स्नेही योगात्मक अभिक्रिया के प्रति CH₃CHO नेलपॉलिश रिमुवर के रूप में ऐसीटोन काम आता है।

EXERCISE 12.2

- क्लोरल को किससे प्राप्त किया जाता है? प्र.1.
- सल्फोनैल कैसे प्राप्त करेंगे-प्र.2.
- निम्न के बारे में क्या निष्कर्ष निकालेंगे-
 - लेकिन टॉलन अभिकर्मक को अपचयित नहीं करता।
 - (ii) एक यौगिक HCN के साथ क्रिया करने के बाद जलअपघटन से एक प्रकाशिक सक्रिय अम्ल बनाता है। यौगिक व अम्ल क्या होंगे?
 - (iii) एक यौगिक H2NOH से क्रिया कर ऑक्सिम बनाते है और आयोडोफॉर्म परीक्षण भी देता है।
 - (iv) एक यौगिक CH3MgBr से क्रिया कर व जल अपघटन से प्राथमिक ऐल्कोहॉल देता है।
 - (v) एक यौगिक NaHSO3 के साथ योगात्मक यौगिक बनाता है। और टॉलन अभिकर्मक को अपचयित नहीं करता और ना ही आयोडोफॉर्म परीक्षण देता है।
 - (vi) एक जैम डाइ हैलाइड, क्षारीय जल अपघटन पर एक यौगिक बनाता है, जो केनिजारों अभिक्रिया देता है।
 - (vii) एक कार्बोनिल समूह NH3 से क्रिया कर विषमचक्रीय यौगिक बनता है जो मूत्र औषधि के रूप में काम आता है।
 - (viii)एक यौगिक 'A' जिसका अणुभार 58 है, ट्राइहैलोऐल्केन से क्रियाकर निद्राकारी यौगिक बनाता है। यौगिक A व निद्राकारी यौगिक होगा-
 - (ix) एक यौगिक 'A' अण्भार 44 है, PCI, से क्रिया कर जो यौगिक बनाता है वो डाई क्लोराइड है यौगिक 'A' होगा?
 - (x) एक यौगिक जो ऐरोमेटिक है, यह कार्बोनिल यौगिक को सान्द्र H-SO₁ से क्रिया कराने पर बनता है, कार्बोनिल यौगिक है।
- ऐसे चार यौगिकों के उदाहरण दीजिये जो केनिजारों अभिक्रिया प्र.4. देते है?
- एक समीकरण दीजिये जिसमें ग्लाइकॉलिक अम्ल बनता है। Я.5.
- ऐसे दो यौगिक बताइये जो टॉलेन्स अभिकर्मक के साथ रजत उ.3.

ऐल्डिहाइड, कीटोन और कार्बोक्सिलक अम्ल

- दर्पण परीक्षण देते हो ओर I2 के क्षारीय विलयन के साथ गर्म करने पर पीला अवक्षेप देते है।
- वह कौनसा ऐल्डिहाइड है जिसके फेनिल हाइड्रेजोन व्युत्पत्र ਸ਼.7. में 20.9% नाइट्रोजन है।
- विषम ऐल्डॉल संघनन का एक उदाहरण दीजिये। ਸ਼.8.
- क्लेमेन्सन अपचयन में कार्बोनिल यौगिक किसमें बदलते है? у.9. इनमें अपचायक पदार्थ क्या लेते है।
- प्र.10. 2,4,6-ट्राइमेथिल हेक्साहाइड्रो-1,3,5-ट्राइऐजीन ट्राईहाइड्रेट का सूत्र दीजिये-
- प्र.11. ट्राईऐसीटोन ऐमीन की संरचना दीजिये।
- प्र.12. युरोट्रोपीन की संरचना दीजिये।
- प्र.13. ऐसीटैल्डिहाइड से लैक्टिक अम्ल बनाने की रासायनिक समीकरण
- प्र.14. ठोस ईधन के रूप में ऐसीटैल्डिहाइड के कौनसे बहुलक का उपयोग करते है?
- से बहुत कम क्रियाशील है क्यों?
- संश्लेषित रबर बनाने में प्रारम्भिक पदार्थ के रूप में काम आता है। प्र.16. निम्न को नाभिक स्नेही योगात्मक अभिक्रियाओं के प्रति अभिक्रियाशीलता के प्रति बढते क्रम में व्यवस्थित कीजिये-C6H3CHO, CCI3CHO, CH3CHO
 - प्र.17. निम्न कार्बोनिल यौगिकों को क्रियाशीलता के बढ़ते क्रम में व्यवस्थिति कीजिये-

 $CH_2 = O$, CH_3CHO , CH_3COCH_3 , $CH_3CH_2 - CHO$

- (i) एक यौगिक NaHSO3 के साथ योगात्मक यौगिक बनाता है। प्र.18. निम्न में कौनसा कार्बोनिल यौगिक को नाभिक स्नेही योगात्मक अभिक्रिया के प्रति अधिक क्रियाशील है? CCI₃CHO, CH₃CHO एवं CH₂O
 - प्र.19. निम्न कार्बोनिल यौगिकों को नाभिक स्नेही योगात्मक अभिक्रियाओं के प्रति क्रियाशीलता के बढते क्रम में व्यवस्थित कीजिये- $CH_2 = O$, CH_3CHO , $(CH_3)_2CO$, $(C_2H_5)_2CO$ $CH_3COC_2H_5$
 - प्र.20. निम्न में कौनसे कार्बोनिल यौगिक α–H परमाणु नहीं रखते— $CH_2 = O$, C_6H_5CHO , $CCl_3CH_2 - CHO$, CH_3CHO , CCI₃CHO
 - प्र.21. निम्न में कौनसे कार्बोनिल यौगिक ऐल्डॉल संघनन अभिक्रिया नहीं देगें?

 $CH_2 = O$, C_6H_5CHO , CCl_3CH_2CHO , CH_3CHO , CCl_3CHO

प्र.22. ऐल्डोल संघनन की क्रियाविधि समझाइये।

उत्तर की स्वयं जांच करें

 σ .1. ऐसीटैल्डिहाइड की Cl_2 के साथ क्रिया कराने पर $CH_3CHO + 3Cl_2 \longrightarrow CCl_3CHO + 3HCl$

यौगिक कीटोन होगा।

(i)

ऐल्डिहाइड, कीटोन और कार्बोक्सिलक अम्ल

(ii) CH_3CHO एवं $H_3C-C-COOH$ (लैक्टिक अम्ल)

OH

(iii) CH3CHO अथवा कोई एल्केनॉन-2

- (iv) $CH_2 = O$ फार्मल्डिहाइड
- (v) ऐल्केनॉन-3
- केनिजारों अभिक्रिया CH; = O देता है अतः जैम डाई (vi) हैलाइड CH₂CI2 होगा।
- CH2 = O एवं UROTROPIN
- (viii) CH3COCH3 एवं क्लोरीटोन
- (ix)CH₂CHO
- CH₃COCH₃ (x)

उ.∔. **HCHO** फार्मल्डिहाइड C₀H₅CHO बेन्जल्डिहाइड CCI₂CHO क्लोरल

ट्राईमेथिल ऐसीटैल्डिहाइड (CH₃)₃CCHO

- CH₃CHO. CH₃CH(OH)CHO ਚ.6.
- माना ऐल्डिहाइड R CH = O है हमें यहाँ R को मालूम करना है यह फेनिल हाइड्रेजीन से क्रिया कर फेनिल हाइड्रेजोन बनाता

$$R - CH = O + H_2 NNHC_6 H_5 \longrightarrow$$

 $R - CH = NNHC_6H_5 + H_2O$

 $R - CH = N.NHC_0H_0$ फोनिल हाइड्रेजोन में माना R का भार

- \therefore फेनिल हाइड्रेजोन का अणुभार = x + 84 + 7 + 28 = x **छ.12.**
- ∴ x + 119 ग्राम फेनिल हाइड्रेजोन में 28 ग्राम N है प्रश्नानुसार 100 ग्राम फेनिल हाइड्रेजोन में 20.9 ग्राम N है 👉 20.9 ग्राम N उपस्थित है 100 ग्राम फेनिस हाइड्रेजोन में

$$\therefore$$
 28 ग्राम N उपस्थित होगी $\frac{100}{20.9} \times 28 = 134$

अतः x + 119 = 134x = 15 $R = 15 = CH_3$

∴ ऐल्डिहाइड CH₃CHO होगा।

विषम ऐल्डॉल संघनन में दो भित्र कार्बोनिल यौगिक जिनमें ਚ.8. α–Η परमाण, उपस्थित हो, क्षार की उपस्थिति में क्रिया कर चार प्रकार के यौगिकों का मिश्रण बनाते है।

CH3CHO + CH3CH3CHO क्रिया करें

 $CH_3CHO+H-CH_2CHO\longrightarrow CH_3-CH(OH)-CH_2CHO$

$$CH_3 - CH_2 - CHO + CH_2(CH_3) - CHO \longrightarrow$$

 $CH_3 - CH_2 - CH(OH) - CH(CH_3) - CHO$

$$CH_3CHO + CH_2(CH_3) - CHO \longrightarrow$$

 $CH_3 - CH(OH) - CH(CH_3) - CHO$

$$CH_3 - CH_2 - CHO + HCH_2CHO \longrightarrow$$

 $CH_3 - CH_2 - CH(OH) - CH_2CHO$

कार्बोनिल यौगिक ऐल्केन में बदलते है। इसमें अपचायक ਚ.9. पदार्थ Zn–Hg व सान्द्र HCl प्रयुक्त करते है।

2,4,6-Trimethylhexahydro 1,3,5–Triazinetrihvdrate

Triacetoneamine

- उ.14. मेटाऐल्डिहाइड
- उ.15. C_6H_5 —CH = O में -M प्रभाव के कारण कार्बीनिल समृह पर e^- का घनत्व बढ़ जाने के कारण, कम क्रियाशील है।
- σ .16. $C_6H_5CHO < CH_3CHO < CCl_3CHO$
- σ .17. $CH_3COCH_3 < CH_3CH_2CHO < CH_3CHO < CH_2 = O$
- ਰ.18. CCl₃CHO
- ਚ.19. $(C_2H_5)_2CO \le CH_3COC_2H_5 \le (CH_3)_2CO$ $< CH_3CHO < CH_2 = O$
- 3.20, $CH_2 = O$, C_0H_5CHO , CCl_3CHO
- $\mathbf{g.21.}$ CH₂ = O. C₆H₅CHO. CCI₃CHO
- **उ.22.** पृष्ठ संख्या 12.18 पर देखें।

12.2 a

12.22

कार्बोक्सिलिक समूह की संरचना, नाम पद्धति एवं समावयवता

कार्बोक्सिलिक अम्ल (Carboxylic Acid)

 ऐसे कार्बनिक यौगिक (organic Compound) जिनमें एक अथवा अधिक—COOH समूह उपस्थित हों उन्हें कार्बोक्सिलिक अम्ल कहते है। कार्बोक्सिलिक अम्ल |-COOH| निम्न दो समूहों को मिलाने से बना है।

- अतः इन दोनों समूह की उपस्थिति के कारण -COOH समूह को carboxyl or carboxylic समूह कहते हैं।
- कार्बोक्सिलिक समूह के कार्बन परमाणु पर संकरण अवस्था sp² होती है। अतः बन्ध कोण 120° होता है।
- कार्बोक्सिलिक अम्ल समूह निम्न अनुनादी संरचनायें प्रदर्शित करता है।

इलेक्ट्रॉन विवर्तन से पता चलता है कि कार्बोक्सिलिक समृह समतल प्रकृति के होते हैं। कार्बोक्सिलिक अम्ल में उपस्थित C पर संकरण अवस्था sp² है अत: C परमाणु के दो sp² संकरित कक्षक अक्षीय अतिव्यापन करके दोनों ऑक्सीजन परमाणुओं को त बन्ध से जोड़ते हैं।

अनुनादी संरचना का कक्षीय अतिव्यापन

- कार्बोक्सिलिक अम्ल में उपस्थित C परमाणु का असंकरित p कक्षक निकटतम दोनों Oxygen परमाणुओं के p कक्षकों के साथ पार्श्व अतिव्यापन द्वारा π बन्ध बनाने की कोशिश करता है। अत: अम्ल की उपरोक्त अनुनादी संरचनाओं को समझ सकते हैं।
- उच्च अम्लों को वसा अम्ल (Fatty Acid) भी कहते है। क्योंकि इनके उच्च सदस्य स्टियरिक अम्ल (C₁₇H₃₅COOH) पामिटिक अम्ल (C₁₅H₃₁COOH), औलिइक अम्ल (C₁₇H₃₃COOH) आदि विभिन्न वसा एवं तेलों में पाये जाते है।
- —COOH समूह की संख्या के आधार पर कार्बोक्सिलक अम्लों को निम्न भागों में विभक्त करते है--
 - (A) मोनोकार्वोक्सिलिक अम्ल
- (B) द्विकाबीं विसलिक अन्ल
- (C) त्रिकार्बोक्सिलिक अम्ल

12.2.1 नामकरण [Nomenclature]

नामकरण एवं समावयवता (Nomenclature & Isomerism)

- मोनोकार्बोक्सिलिक अम्लों को सामान्य सूत्र C_nH_{2n-1} –COOH अथवा $C_nH_{2n}O$, से जाना जाता है।
- कार्बोक्सिलिक अम्ल सामान्यतया उनके रूढ नामों से ही जाने जाते है। ये रूढ नाम, अम्ल जिस प्राकृतिक स्त्रोत से प्राप्त होते है उनके लेटिन या ग्रीक नामों के आधार पर दिये गये है। अंग्रेजी में लिखे इनके नाम अंत में "इक अम्ल" लिखते है। उदाहरण-
- (i) फॉिंमिक अम्ल (HCOOH): इसे सर्वप्रथम लाल चींटियों के आसवन से प्राप्त किया गया था। लेटिन भाषा में चींटियों को फॉर्मिका कहते है।
- (ii) ऐसीटिक अम्ल (CH3OOH): इसे सिरके से प्राप्त किया गया था। लेटिन भाषा में सिरके को ऐसीटम कहते हैं।
- (iii) ब्यूटेरिक अम्ल (CH3-CH2-CH2-COOH) इसे विकृतगंधी मक्खन से प्राप्त किया गया था। लेटिन भाषा में मक्खन को ब्यूटिरम कहते है।
- (iv) प्रोपियोनिक अम्ल (C2H5COOH): यह प्रोटोन- पिऑन शब्द से बना है। ग्रीक भाषा में प्रोटॉन = पहला, पिऑन = वसा होता है।
- (v) वेलरिक अम्ल (C₁H,COOH) इसे वेलरियन पौघे की जड़ से प्राप्त किया गया था, अतः वेलरिक एसिड कहते हैं।
 - श्रृंखला में उपस्थित अन्य प्रतिस्थापियों की स्थिति को ग्रीक अक्षर
 α, β, γ, δ आदि से दर्शाते है। -COOH समूह से जुड़े कार्बन को
 α-कार्बन कहते है। इसके आगे β, γ.... आदि। उदाहरण--

$\begin{array}{c} ^{\beta} \\ \text{C1C H}_{2} \overset{\alpha}{\text{C}} \\ \text{H}_{2} \\ \text{COOH} \end{array}$ β -क्लोरो प्रोपिऑनिक अम्ल

(b) आई.यू.पी.ए.सी. नाम-[IUPAC] पद्धति

 IUPAC में कार्बोक्सिलिक अम्लों को ऐल्केनोइक अम्ल कहते है। जैसे– HCOOH मेथेनोइक अम्ल (फार्मिक अम्ल) CH,COOH ऐथेनोइक अम्ल (ऐसीटिक अम्ल) C, तक के ऐल्केनोइक अम्लों का विवरण निम्न सारणी में दर्शाया गया है।

ज्याजाती १

सारणी 1				
संघनित सरंचनात्मक	सामान्य नाम	IUPAC नाम		
ПСООП	फॉर्मिक अम्ल	मेथेनोइक अम्ल		
CH ₃ COOH	ऐसीटिक अम्ल	ऐथेनोइक अम्ल		
сп _з сп <u>-</u> соон	प्रोपिऑनिक अम्ल	प्रोपेनोइक अम्ल		
CH ₃ CH ₂ CH ₂ COOH	n— ब्यूटिरिक अम्ल	ब्यूटेनोइक अम्ल		
(CH ₃) ₂ CHCOOH	आइसोब्यूटिरिक अम्ल	2- मेथिलप्रोपेनोङ्क अम्ल		
CH ₅ -(CH ₅₎₅ -COOH	n- वैलेरिक अम्ल	पेन्टेनोइक अम्ल		
CH ₃	आइसोवैलेरिक	3- मेथिलब्यूटेनोइक		
CH3 CHCH2 COOH	अम्ल	अम्ल		
(CH ₃) ₃ CCOOH	पिवैलिक अम्ल	2,2—डाइमेथिल प्रोपेनॉइक अम्ल		
CH3	सक्रिय वैलेरिक	2-मेथिलब्यूटेनोइक		
СИ ₃ СИ ₂ СИСООИ	अम्ल	अम्ल		

ऐल्डिहाइड, कीटोन और कांबाविसलक अम्ल

 उपर्युक्त दोनों पद्धितयों में कार्बन शृंखला में उपस्थित अन्य क्रियात्मक समूहों (या प्रतिरथापियों) की स्थिति को ग्रीक अक्षरों
 α.β.γ और 8 आदि से दर्शाते है। –COOH (कार्बोक्सिल समूह)
 के निकटवर्ती कार्बन को α तथा उसके बाद वालों को β,γ
 आदि से प्रदर्शित करते है जैसे–

$$\mathrm{CH_3} - \mathrm{CH} - \mathrm{CH_2COOH}$$
 β -हाइड्रोक्सीब्यूटाइरिकअम्ल $\mathrm{CH_2} - \mathrm{CH_2COOH}$ β -क्लोरोप्रोपिओनिकअम्ल $\mathrm{CH_2} - \mathrm{CH_2COOH}$

द्विकार्बोक्सिलिक अम्ल (Dicarboxylic acids)_

- वे कार्बोक्सिलिक अम्ल जिनमें दो कार्बोक्सिलिक समूह उपिश्थत हों, उन्हें दिकार्बोक्सिलिक अम्ल कहतें है।
- इनका सामान्य सूत्र C_nH_{2n 2}O₄ होता है।
- उदाहरण--

СООН	СООН	CH ₂ COOH
COOH	CH ₂	CH ₂ —COOH
Oxálic acid Ethanedioic acid	COOH Malonic acid Propanedioic acid	Succinic acid Butanedioic acid
CH COOH		

CH₂—COOH

Glutaric acid Addipic acid
Pentanedioic acid Ilexanedioic acid
CH(OH)COOH - CH(OH)COOH

CH²COOH

СН(ОН)СООН

Malicacid 2-Hydroxy

Tartaric acid

2-Hydroxy butanedioicacid 2,3-Dihydroxybutanedioic

acid

त्रिकार्बोक्सिलिक अम्ल (Tricarboxylic acids)

- वे कार्बोक्सिलिक अम्ल जिनमें तीन कार्बोक्सिलिक समूह उपस्थित हों, उन्हें त्रिकार्बोक्सिलिक अम्ल कहते है।
- इनका सामान्य सूत्र $C_n H_{2n-4} O_n$ होता है \downarrow
- उदाहरण-

CH₂—COOH

CH₂—COOH

CH—COOH

HO—C—COOH

CH₂—COOH

CH₂—COOH

CH₂—COOH

CH₂—COOH

Citric acid or 2-Hydroxypropane

1,2,3-tricarboxylic acid

1,2,3-tricarboxylic acid

42.2.2 कार्बो क्सिलिक अम्लों के बनाने की विधियाँ

[METHOD OF PREPARATION OF CARBOXYLIC ACID]

1. ऐल्केनॉल, ऐल्केनेल तथा ऐल्केनोन का ऑक्सीकरण (Oxidation of Alkanols, Alkanals and Alkanones) ऐल्केनॉल, ऐल्केनैल तथा ऐल्केनोन का ऑक्सीकरण अम्लीय K₂Cr₂O₇या अम्लीय KMnO₄ से कराने पर ऐल्केनोइक अम्ल बनते है।

$$R \xrightarrow{\text{quadrate descript}} OH \xrightarrow{\text{e [O]}} H_2O$$

$$CH_3 - CH_2OH \xrightarrow{HOI} H_2O$$

$$CH_3 - CHO \xrightarrow{+|O|} CH_3 - COOH$$

$$\xrightarrow{\text{[O]}} C_6 H_5 - \text{COOH}$$

$$\begin{array}{c} (CH_3)_2CH - OH \xrightarrow{-HOJ} (CH_3)_2C = O \\ & \xrightarrow{HOJ} CH_3 - COOH + CO_2 + H_2O \end{array}$$

$$(CH_3)_3C$$
 OH $\xrightarrow{+4OI}$ $(CH_3)_2C = O$

$$-\frac{|O|}{}$$
 \rightarrow CH₃ \rightarrow COOH + CO₂ + H₂O

जब उपर्युक्त ऑक्सीकारक अभिक्रियाओं में फॉर्मिक अम्ल बनता
 है तो उसका और आगे ऑक्सीकरण होकर CO₂ + H₂O बनतें
 है।

$$H \leftarrow COOH + [O] \longrightarrow CO_2 + H_2O$$

- जब उपर्युक्त ऑक्सीकरण में क्रोमिक अम्ल, क्षारीय परमैगमेट अथवा वायु उत्प्रेरक का प्रयोग सामान्यतः किया जाता है। औद्योगिक निर्माण के लिए उच्च तापमान पर घात्विक ऑक्साइड अथवा कोबाल्ट लवण की उपस्थिति में ऑक्सीकरण किया जाता है।
- 2. 1,1,1-ट्राई हैलोजन व्युत्पन्नों के जल अपघटन से
 - ऐसे कार्बनिक यौगिक जिनमें एक ही कार्बन पर तीन हैलोजन परमाणु उपस्थित हो, उन्हें ट्राई हैलोजन व्युत्पन्न कहते है। ऐसे ट्राई हैलोजन व्युत्पन्नों का क्षार की उपस्थिति में जल अपघटन करते है तो ऐल्केनोइक अम्ल बनते है।

—→RCOOH - H₂O

CHCl₃ +3KOH
$$\longrightarrow$$
 HCOOH \longrightarrow HCOOH \longrightarrow H2O \longrightarrow HCOOH \longrightarrow 3KCl

$$\begin{array}{c} \text{CH}_3\text{CCI}_3 + 3\text{KOH} \xrightarrow{3\text{KCI}} & \text{H}_3\text{C} + \text{C} \xrightarrow{\text{OH}} \\ & \text{OH} \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

$$C_6H_5CCI_3 + 3KOH \longrightarrow C_0H_5 - COH$$
 OH OH OH C_6H_5COOH अस्थायी C_6H_5COOH बेन्जोइड क्लोउड अस्ल

3. ऐल्किल सायनाइड का पूर्ण जल अपघटन कराने पर

 जब ऐल्किल सायनाइड का पूर्ण जल अपघटन (दो अणु जल से) कराते है तो ऐल्केनोइक अम्ल बनता है।

$$RCN \xrightarrow{-H_2O} RCONH_2 \xrightarrow{+H_2O} RCOOH + NH_3$$

$$\begin{aligned} & \text{HCN} + 2\text{H}_2\text{O} & \xrightarrow{\text{HCl}} & \text{HCOOH} + \text{NH}_3 \\ & \text{CH}_3\text{CN} + 2\text{H}_2\text{O} & \xrightarrow{\text{HCl}} & \text{CH}_3\text{COOH} + \text{NH}_3 \end{aligned}$$

$$C_6H_5CN + 2H_2O \xrightarrow{HCl} C_6H_5COOH + NH_3$$
 फंन्लि रायनाइड

4. ऐल्कीनों का कार्बोनिलीकरण (Carbonylation of Alkenes)

 जब निकल कार्बोनिल उत्प्रेरक पर 250–300°C ताप तथा 100–200 वायुमण्डलीय दाब पर कार्बन मोनोक्साइड और ऐल्कीन को ऊपर से प्रवाहित किया जाता है, तो एक चक्रीय कीटोन बनता है जिसके जल अपघटन से कार्बोक्सिलिक अन्ल बनते हैं। सममित ऐल्कीन से एक उत्पाद तथा असमित ऐल्कीन से दो समावयवी उत्पाद बनते हैं।

$$R - CH = CH - R' + CO \longrightarrow R - CH - CH - R'$$

$$R - CH - CH - CH - R'$$

$$R - CH - CH - CH - R' + R - CH - CH - R'$$

$$COOH$$

$$COOH$$

 $CH_2 = CH_2 + CO + H_2O \longrightarrow CH_3CH_2COOH$

• इस विधि से HCOOH व CH,COOH प्राप्त नहीं कर सकते।

5. सोडियम ऐल्कॉक्साइडों का कार्बोनिलीकरण (Carbonylation of sodium Alkoxides)

 सोडियम ऐल्कॉक्साइड को कार्बन मोनॉक्साइड के साथ उच्च ताप तथा दाब पर गर्म करने पर कार्बोक्सिलिक अम्ल का सोडियम लवण बनता है। जिसका जल-अपघटन तनु अम्ल से कराने पर कार्बोक्सिलिक अम्ल प्राप्त होता है।

$$RONa + CO \xrightarrow{\Delta} RCOONa \xrightarrow{+ \stackrel{\leftarrow}{\vdash}_{3}HCl} RCOOH + NaCl$$

$$CH_{3}ONa + CO \xrightarrow{-\frac{2}{3}ed} \stackrel{\rightleftharpoons}{\rightleftharpoons} CH_{3}COONa$$

$$IICl > CH \cdot COOH + Na$$

$$\xrightarrow{\text{HOH}} \text{CH}_3\text{COOH} + \text{NaCl}$$

 $NaOH + CO \xrightarrow{\text{dec} \text{ dec} \text{ q}} HCOONa \xrightarrow{HCI} HCOOH + NaCI$

 सोडियम ऐल्कॉक्साइड के स्थान पर ऐल्केनॉल को भी लिया जा सकता है। परन्तु फिर जलयोजित बोरॉन ट्राइफ्लुओराइड को उत्प्रेरक के रूप में प्रयुक्त करते है।

ROH+CO
$$\xrightarrow{BF_3H_2O}$$
 R $\xrightarrow{}$ COOH
 $C_2H_5OH+CO \xrightarrow{BF_3H_2O}$ $\xrightarrow{}$ C_2H_5COOH

6. ग्रीन्यार अभिकर्मक का कार्बोनिलीकरण (Carbonylation of Grignard's Reagent)

 ग्रीन्यार अभिकर्मक के ईथरीय विलयन में कार्बन डाइऑक्साइड प्रवाहित करने से प्राप्त उत्पाद का जल—अपघटन करने पर संगत कार्बोक्सिलक अम्ल बनते है।

यहाँ R = ऐिल्कल या ऐरिल समूह हो सकता है।

• इस विधि से HCOOH प्राप्त नहीं किया जा सकता।

7. जैमिनल डाइकार्बेक्सिलिक अन्लों का ऊष्मीय अपघटन (Thermal decomposition of Geminal Dicarboxylic Acids)

 एक ही कार्बन परमाणु पर दो COOH समूह युक्त अम्लों को गर्म करने पर आंशिक विकार्वो क्सिलीकरण द्वारा मोनोकार्वोक्सिलक अम्ल प्राप्त होते हैं।

8. कार्बोक्सिलिक अम्ल व्युत्पन्नों का जल-अपघटन (Hydrolysis of Carboxylic Acid Derivatives)

 कार्बोक्सिलिक अम्ल व्युत्पन्नों (ऐस्टर, ऐसिड ऐनहाइड्राइड, ऐसिल क्लोराइड तथा ऐमाइड) का जल-अपघटन करने पर संगत जनक अम्ल प्राप्त होते है।

$$R = COZ + H = OH \xrightarrow{\prime} R = COOH + Z = H$$

$$Z = -OC_2H_2, -CI, -NH_3$$

 ऐसीटिक अंग्ले ब्युत्पन्नों का जल-अपघटन करने पर ऐसीटिक अम्ल प्राप्त होता है।

$$CH_3COOC_2H_5 + HOH \xleftarrow{\overset{\odot}{H}} CH_3COOH + C_2H_5OH$$
 एंथल ऐसंटिट एथे गेंस

$$(H_3COOCOCH_3 + HOH \longrightarrow 2CH_3COOH)$$

एसिटोक रेनहाइड्राइड

$$CH_3COC1+HOH \longrightarrow CH_3COOH+HC1$$

ऐसोटित वर्ष-१५४४

$$CH_3CONH_2 + HOH + HCl \longrightarrow CH_3COOH + NH_4Cl$$

EXERCISE 12.3

- प्र.1. आर्न्ट ईस्टर्ट संश्लेषण से कौनसे अम्ल नहीं बनते है।
- प्र.2. ग्रीन्यार अभिकर्मक से कौनसा काबोंक्सिलिक अम्ल प्राप्त नहीं किया जा सकता?
- प्र.3. ऐसीटिक अम्ल प्राप्त करने के लिए किस अम्ल का विकार्बोक्सिलिकरण कराना होगा?
- प्र.4. ऐसीटिक अम्ल प्राप्त करने के लिए कौनसे ट्राइहैलाइड का क्षारीय जल अपघटन कराना होगा?
- प्र.5. क्या होता है, जब (रासायनिक समीकरण दीजिये)
 - (i) क्लोरोफार्म की जलीय KOH के साथ क्रिया कराने पर
 - (ii) तृतीयक ब्यूटिल ऐल्केहॉल का प्रबल ऑक्सीकारक पदार्थों के साथ क्रिया कराने पर
 - (iii) CH3CN की तनु HCI के साथ क्रिया कराने पर
 - (iv) ईथौंलिन की CO व H₂O के साथ Ni(CO)₄ की उपस्थिति में 250°C पर गर्म कराने पर।
 - (v) मैलोनिक अम्ल को गर्म करने पर
 - (vi) ऑक्सिलिक अम्ल को ग्लिसरील के साथ गर्म करने पर
- प्र.6. मोनो कार्बोक्सिलिक अम्ल बनाने की कोई सामान्य दो विधियाँ दीजिये।

उत्तर की स्वयं जांच करें

- ਚ.1. HCOOH तथा CH₃COOH इस विधि से नहीं बनते है।
- ਚ.2. HCOOH
- **उ.3.** मैलोनिक अम्ल का $CH_2 \xrightarrow{COOH} \xrightarrow{\Lambda} CH_3 COOH + CO_2$
- **3.4.** CH₃CCl₃ +3KOH → CH_3COOH +3KCl + H_2O
- $= 3.5. (i) CHCl₃ + 3KOH \longrightarrow HCOOH + 3KCl + H₂O$
 - (ii) $(CH_3)_3C OH \xrightarrow{9[O]} CH_3COOH + 2CO_2 + 3H_2O$
 - (iii) $CH_3 CN + 2H_2O \xrightarrow{\overline{qq}} CH_3 COOH + NH_3$
 - (iv) $CH_2 = CH_2 + CO + H_2O \xrightarrow{Ni(CO)_4} \xrightarrow{250^{\circ}C}$

$$CH_3 - CH_2 - COOH$$

- (v) $CH_2 < \frac{COOH}{COOH} \longrightarrow CH_3 COOH + CO_2$
- (vi) COOH $\xrightarrow{\text{Glycerol}}$ HCOOH + CO₂ COOH
- उ.6. पृष्ठ संख्या 12.23 पर देखें।

12.23 पाविक गणधर (Physical Property)

- (i) भौतिक अवस्था : C₁₀ तक के ऐल्केनोइक अम्ल रंगहीन द्रव है। इससे उच्च सदस्य मोम के समान रंगहीन ठोस पदार्थ है।
- (ii) गंध : प्रथम तीन सदस्य ($C_1 C_3$) तीक्ष्ण गंध वाले, C_4 से C_9 तक के सड़े मक्खन जैसी गंध वाले और इससे उच्च ऐल्केनोइक अम्ल गंधहीन होते हैं।
- (iii) विलेयता : ऐलिफैटिक कार्बोक्सिलिक अम्लों के प्रथम चार सदस्य पानी में विलेय होते है। पेन्टेनॉइक अम्ल व हैक्सेनोइक अम्ल पानी

में आंशिक विलेय होते है। इससे आगे के सदस्य जल में अघुलनशील है, क्योंकि अणुभार बढ़ने के साथ—साथ हाइड्रोकार्बन भाग बढ़ता जाता है जो —COOH समूह की ध्रुवीय प्रभाव की तीव्रता को कम कर देता है। सभी ऐल्केनोइक अम्ल कार्बनिक विलायक जैसे— ऐथेनॉल, ईथर, बेन्जीन, कार्बनटेट्रा क्लोराइड में विलेय है। जल में कार्बोक्सिलिक अम्लों की विलेयता हाइड्रोजन आबन्ध बनाने के कारण है।

(iv) क्वथनांक : ऐल्केनोइक अम्लो के क्वथनांक उच्च होते है। जैसे-जैसे अणुभार में वृद्धि होती है इनके क्वथनांक भी बढ़ते है। कार्बोक्सिलिक अम्लों के क्वथनांक समान अणुभार वाले ऐल्केन, ईथर व ऐल्कोहॉल से अधिक होते है।

र्इथर ≅ ऐल्केन < ऐल्कोहॉल < कार्बीक्सलिक अम्ल

यौगिक ्	CH₃COOH	CH ₃ CH ₂ CH ₂ OH	CH ₃ -CH ₂ -CH ₂ -CH ₃
	ऐसीटिक अम्ल	प्रोपेनॉल	न्युटेन
अणुभार	60	60	60
क्वथनाक (K)	391 K	370 K	309 K

अर्थात् कार्बोक्सिलिक अम्ल के अणुओं के बीच अन्तर आण्विक हाइड्रोजन बन्ध, ऐल्कोहॉल के अणुओं के बीच H— आबन्धों से अधिक प्रबल होते है क्योंिक अम्ल में O—H आबन्ध के समीप कार्बोनिल समूह उपस्थित होता है इसलिए अम्ल का O—H बन्ध, ऐल्कोहॉल के O—H आबन्ध से अधिक धुवित होता है। कार्बोक्सिलिक अम्ल के अणु में धुवणता के कारण कार्बोनिल समूह के ऑक्सीजन पर ऋणावेश आ जाता है यह ऋणावेशित ऑक्सीजन अन्य अम्ल अणु के धनावेशित हाइड्रोजन के साथ हाइड्रोजन आबन्ध बनाने की क्षमता रखता है। यही कारण है कि न सिर्फ ठोस या द्रव अवस्था में वरन् वाष्प अवस्था में भी कार्बोक्सिलिक अम्लों के अणु संगुणित रहते है। उदाहरण के लिए ऐसीटिक ऐसिड में इसके दो अणु हाइड्रोजन आबन्ध द्वारा संगुणित होकर द्विलक बनाते है।

द्विलक की उपस्थिति इस तथ्य से प्रमाणित होती है कि जब ऐसीटिक अम्ल का अणुभार अणुसंख्य गुणधर्म की सहायता से ज्ञात किया जाता है तो यह 120 प्राप्त होता है जबिक वास्तविक अणुभार 60 है।

(v) गलनांक : ऐलिफैटिक कार्बोक्सिलिक अम्ल (C₁₀ तक) के गलनांक के मान एक नियमित परिवर्तन दर्शाते है। वह कार्बोक्सिलिक अम्ल जिसमें सम संख्या में कार्बन परमाणु उपस्थित होते है का गलनांक कार्बोक्सिलिक अम्ल अणु जिसमें विषम संख्या में कार्बन परमाणु उपस्थित होत है कि तुलना में अधिक होता है।

X-किरण विवर्तन अध्ययन से यह ज्ञात होता है कि विषम संख्या में कार्बन परमाणु वाले कार्बोक्सिलक अम्ल अणु में कार्बोक्सिल समूह व सिरे का मेथिल समूह एक ही दिशा में होते है।

$$CH_2$$
 CH_2 CH_3 CH_2 $COOH$

विषम कार्बन संख्या वाला कार्बोक्सिलक अम्ल अण्

अतः क्रिस्टल जालक में ये अणु भली-भांति समायोजित नहीं हो पाते व इनके अणुओं के बीच अन्तर आण्विक आकर्षण बल दुर्बल होते है।

इनके विपरित वे कार्बोविसलिक अम्ल अणु जिनमें सम संख्या में कार्बन परमाणु होते है, का कार्बोविसल समूह व सिरे का मेथिल समूह कार्बन शृंखला में विपरित दिशा में स्थित होते हैं अतः क्रिस्टल जालक में ये अणु भली—भांति समायोजित हो जाते हैं, इनके अणुओं के बीच अन्तर आण्विक आकर्षण बल प्रबल होते हैं।

CH₂ COOH

राग कार्बन संख्या वाला कार्वोक्सिलिक अम्ल अणु

दस से अधिक कार्बन परमाणु वाले कार्बोक्सिलिक अम्लों में इस प्रकार का परिवर्तन देखने को नहीं मिलता है।

12.2.4 कार्बोक्सिलिक अम्लों के रासायनिक गुण (Chemical Properties of Carboxylic Acid)

- कार्बेक्सिलिक अस्तों द्वारा निम्न प्रकार से रासानिक अभिक्रियायें दर्शायी जाती है।
 - (a) ऐल्किल मूलक के कारण
 - (b) अम्लीय हाइड्रोजन के कारण
 - (c) CO समूह के कारण (d) OH समूह के कारण
 - (e) COOH समूह के कारण

12.2.4.1 (a) ऐत्किल मूलक की अभिक्रिया [Reaction of Alkyl Radical]

हेल-बोलार्ड-जेलिस्की अभिक्रिया

(Hell-Volhard-Zelinsky Reaction) [H.V.Z. Reaction]

य. हाइड्रोजन युक्त कार्बोक्सिलक अम्लों का क्लोरीनीकरण
अथवा ब्रोमीनीकरण लाल P की उपस्थिति हेल-बोलार्ड-जेलिंस्की
अभिक्रिया कहलाती है। ऐसीटिक अम्ल का क्लोरीनीकरण
करने पर मोनो, डाइ तथा ट्राइक्लोरो व्युत्पन्न बनते है।

$$CH_3COOH \xrightarrow{+Cl_2} CICH_2COOH \xrightarrow{+Cl_2} HCl$$

Chloroacetic acid

$$Cl_2CHCOOH \xrightarrow{+Cl_2} CCl_3COOH$$

Dichloro acetic acid

Trichloroacetic acid

• अल्प मात्रा में लाल फॉस्फोरस लेने पर मोनोहैलो उत्पाद अधिक मात्रा में बनता है।

$$CH_{3}COOH + Br_{2} \xrightarrow{\text{ खास P}} Br \xrightarrow{\qquad} CH_{2}COOH + HBr$$
 मानोबोगोएस्टीहरू अगल

$$C_6H_5 \longrightarrow CH_2 \longrightarrow COOH + Br_2 \longrightarrow \stackrel{\text{ellet }P}{\Lambda} \longrightarrow$$

 C_6H_5 — CH — COOH + HBr

ISI*
 α = ब्रोगोफंनिल १सीटिक अग्ल

 HCOOH (फॉर्मिक अम्ल) α—हाइड्रोजन विहीन अम्ल हेल–बोलार्ड–जेलिस्की अभिक्रिया नहीं देते है।

12.2.4.2 अम्लीय हाइड्रोजन की अभिक्रिया (Reaction of Acidic Hydrogen)

• कार्बोक्सिलिक अम्लों में क्रियाशील हाइड्रोंजन परमाणु उपस्थित

होने के कारण, ये क्षार धातु और क्षारों से क्रिया करके लवण बनाते है। कुछ रासायनिक अभिक्रिया को निम्न प्रकार दर्शाया गया है।

$$2RCOOH + 2Na \longrightarrow 2RCOONa + H_2$$
Sod salt

 $RCOOH + NaOH \longrightarrow RCOONa + H_2O$

 $2RCOOH + Na_2O \longrightarrow 2RCOONa + H_2O$

 $2RCOOH + Na_2CO_3 \longrightarrow 2RCOONa + 2H_2O + CO_2$

 $2RCOOH + Ag_2O \longrightarrow 2RCOOAg + 2H_2O$

 $2RCOOH + PbCO_3 \longrightarrow (RCOO)_2 Pb + H_2O + CO_2$

 $RCOOH + NH_3 \longrightarrow RCOONH_4$

1111111.1.76111

 $RCOOH + NH_4OH \longrightarrow RCOONH_4 + H_2O$

$$2RCOOH + Ca(OH)_2 \longrightarrow (RCOO)_2 Ca + 2H_2O$$
Cal. salt

 $R - COOH + NaHCO_3 \rightarrow RCOONa + H_2O + CO_2 \uparrow$

- अतः फॉर्मिक ऐसिड से फॉर्मेट, ऐसीटिक ऐसिड से ऐसीटेट बनते है।
- ऐल्कीन पर संकलन से ऐस्टर बनते है। $RCOO - H + CH_2 = CH_2 - \frac{BF_3}{}$

$$RCOO - CH_2 - CH_2 - H$$

• कीटीन पर संकलन से ऐनहाइड्राइड बनते है।

$$RCOO - H + CH_2 = C = O \longrightarrow$$

$$H - CH_2 - C = O$$

O-CO-R

• डाईऐजोमेथेन से मेथिलऐस्टर बनते है।

$$RCOO-H+CH_2N_2 \longrightarrow RCOOCH_3+N_2$$
 कार्यिक्सिकिक अन्त । अन्य फ्रियंप ऐस्टेप

12.2.4.3 कार्बोनिल समूह की अभिक्रिया [Reaction of Carbonyl Group]

 $LiAIH_4$ अथवा $NaBH_4$ से (With $LiAIH_4$ or $NaBH_4$)

लीथियम ऐलुमिनियमहाइड्राइड अथवा सोडियम बोरोहाइड्राइड द्वारा अपचयन पर कार्बोक्सिल समूह के स्थान पर मैथिलीन समूह आ जाता है। और संगत प्राथमिक ऐल्कोहॉल बनती है।

 $RCOOH + 4H \longrightarrow RCH_2OH + H_2O$

12.2.4.4 हाइब्रॉक्सिल समूह की अभिक्रिया [Reaction of Hydroxyl Group]

- (i) ऐनहाइड्राइड निर्माण (Anhydride Formation)
 - (I) कार्बोक्सिलिक अम्लों को निर्जल P₂O₅ के साथ गर्म करने पर द्विअणुक निर्जलीकरण से ऐसिड ऐनहाइड्राइड बनता है।

ऐत्सिक्षक्षक, कीटोन और प्रावीविसलक अन्त

$$\begin{array}{c}
2RCOOH \xrightarrow{P_2O_5.\Delta} & RCO \\
RCO & RCO
\end{array}$$

(II) 600—20°C गरम सोडियम अमोनियम हाइड्रोजन फॉस्फेट और बोरॉन फॉस्फेट के मिश्रण पर कार्बोक्सिलिक अम्ल के वाष्प प्रवाहित करने पर अम्ल एनहाइड्राइड बनता है।

$$2CH_3COOH \xrightarrow{NaNH_4HPO_4} (CH_3CO)_2O + H_2O$$

$$\xrightarrow{BPO_4} Acetic anhydride$$

(ii) ऐस्टरीकरण (Esterification) कार्बोक्सिलिक अम्लों तथा ऐल्कोहॉल के मिश्रण में कुछ बूँदे खनिज अम्ल (सान्द्र H_2SO_4 अथवा HCl) की डाल कर गर्म करने से ऐस्टर बनता है।

$$\begin{array}{c} R-CO-OH+H-OR' \xrightarrow{H^{\oplus}} R-CO-OR' + H_2O \\ \hline HCOOH+HOC_2H_5 \longrightarrow HCOOC_2H_5 + H_2O \\ \hline Ethylformate \end{array}$$

$$CH_{3}COOH + HOC_{2}H_{5} \longrightarrow CH_{3}COOC_{2}H_{5} + H_{2}O$$

$$Ethylacetate$$

क्रियाविधि-

(I) $H_2SO_4 \longrightarrow H^+ + HSO_4^-$

(II)
$$R-C$$
 $\ddot{\ddot{\Box}}$: $+H^+$ $R-\ddot{\ddot{\Box}}$ $\ddot{\ddot{\Box}}$ H

$$(III)R - \overset{\circ}{C} \overset{\circ}{\overset{\circ}{\bigcirc}} - H + R' - \overset{\circ}{\overset{\circ}{\bigcirc}} - H \Longrightarrow R - \overset{\circ}{\overset{\circ}{\overset{\circ}{\bigcirc}}} - H$$

$$R' - \overset{\circ}{\overset{\circ}{\overset{\circ}{\bigcirc}}} + H$$

$$R - \overset{\circ}{\overset{\circ}{\overset{\circ}{\bigcirc}}} + H^* + H_2O$$

$$R' - O$$

(IV) $HSO_4^- + H^+ \longrightarrow H_2SO_4$

iii) ऐसिल क्लोराइड निर्माण (Acyl Chloride Formation)

(I) कार्बोक्सिलिक अम्लों पर PCl₅, PCl₃ अथवा SOCl₂ की क्रिया से ऐसिल क्लोराइड बनते हैं।

$$RCOOH + PCl_5 \longrightarrow RCOCl + POCl_3 + HCl$$
Acylchloride

$$3RCOOH + PCl_3 \longrightarrow 3RCOCl + H_3PO_3$$

 $RCOOH + SOCl_2 \longrightarrow RCOCl + SO_2 + HCl$

CH3COOH, क्रिया कर CH3COCI बनाती है। लेकिन HCOOH, HCOCI बनाकर, यह CO व HCI में बदल जाता है।

(II) यदि कार्बोक्सिलिक अन्ल के अमोनियम लवण को निर्जल P_2O_5 के साथ गरम करते है तो ऐक्किल सायनाइंड बनता है। $RCOONH_4 \xrightarrow{\Delta, fholio P_2O_5} RCONH_2 \xrightarrow{fholio P_2O_5} RCN + H_2O$

(iv) ऐसिड ऐमाइड निर्माण (Acid Amide Formation) कार्बोक्सिलिक अम्लों को अमोनिया के साथ गर्म करने पर संगत ऐमाइड बनते हैं।

$$RCOOH + NH_3 \longrightarrow RCONH_2 + H_2O$$

$$HCOOH + NH_3 \xrightarrow{\Delta} HCONH_2 + H_2O$$
Formamide

$$CH_3COOH + NH_3 \xrightarrow{\Delta} CH_3CONH_2 + H_2O$$

Acetomic

(i) लाल फॉस्फोरस तथा HI से (With Red Phosphorus and HI) ऐल्केनोइक अम्लों को लाल फॉस्फोरस तथा HI के साथ गर्म करने पर उतने ही कार्बन परमाणु युक्त ऐल्केन बन जातें है।

RCOOH + 6HI $\xrightarrow{\text{eng P}}$ RCH $_3$ + 2H $_2$ O + 3I $_2$ स्पष्ट है कि इस प्रक्रिया में COOH समूह CH $_3$ में परिवर्तित हो जाता है।

$$HCOOH + 6HI \xrightarrow{\text{ever } P} CH_4 + 2H_2O + 3I_2$$
 $150^{\circ}C$
 $Methane$

$$CH_3COOH + 6HI \xrightarrow{\text{clicit}P} CH_3 - CH_3 + 3I_2 + 2H_2O$$

कोल्बे विद्युत-अपघटनी संश्लेषण (Kalba Floates) संश्लेषण

(ii) कोल्बे विद्युत-अपघटनी संश्लेषण (Kolbe Electrolytic Synthesis)
ऐल्केनोइक अम्लों के सोडियम अथवा पोटैशियम लवणों के जलीय विलयन में विद्युत धारा प्रवाहित करने से ऐनोड पर ऐल्केन निष्कासित होते है।

$$2R - COOK \longrightarrow R - R + 2CO_2 + 2K$$
 पोटेशियम

$$2CH_3COONa \longrightarrow CH_3 \longrightarrow CH_3 + 2CO_2 + 2Na$$
क्रियाविध $-$

 $\begin{array}{c} \text{RCOONa} \rightarrow 2\text{RCOO}^- + \text{Na}^+ \\ \hline \psi \hat{\pi} \hat{s} \end{array}$

$$R - R + 2CO_2 + 2e^-$$

$$2\text{Na}^+ + 2\text{e}^- \rightarrow 2\text{Na}$$

 $2\text{Na} + \text{H}_2\text{O} \rightarrow 2\text{Na}\text{OH} + \text{H}_2$

(iii) सोडा लाइम से (With Soda Lime)

• जब किसी ऐल्केनोइक अम्ल का शुष्क आसवन सोडा लाइम के साथ किया जाता है। तो विकाबोक्सिलिकरण (Decarboxylation) द्वारा निम्न ऐल्केन बनती है।

RCOONa + NaOH
$$\xrightarrow{\text{CaO}}$$
 RH + Na₂CO₃

$$HCOONa + NaOH \xrightarrow{CaO} H_2 + Na_2CO_3$$

$$CH_3COONa + NaOH \xrightarrow{CaO} CH_4 + Na_2CO_3$$

इस विधि में कार्बोक्सिलिक अम्ल में से एक अणु CO₂ का विलोपन होता है, अतः इसे विकार्बोक्सिलिकरण कहते है। क्योंकि यहाँ प्राप्त एल्केन में, अम्ल की तुलना में एक सजातीय श्रेणी में अवरोहण करने के लिए किया जाता है।

(iv) हुंस्डीकर अभिक्रिया (Hunsdiecker Reaction)

ऐल्केनोइक अम्ल के सिल्वर लवण को ब्रोमीन के साथ किसी अक्रिय माध्यम (जैसे CCl₄ बेन्जीन) में गर्म किया जाता है। तो —COOH समूह के स्थान पर Br आ जाता है। अर्थात अम्ल का विकार्बोक्सिलीकारक ब्रोमीनीकरण (Decarboxylative Debromination) हो कर ऐल्किल ब्रोमाइड बनता है। इसे बोरोडीन-हुस्डीकर अभिक्रिया (Borodine-Hunsdiecker Reaction) भी कहा जाता है।

$$R - COOAg + Br_2 \xrightarrow{CCl_4, \Delta} R - Br + CO_2 + AgBr$$

$$CH_3COOAg + Br_2 \xrightarrow{CCl_4, \Delta} CH_3 \longrightarrow Br + AgBr + CO_2$$

$$C_6H_5COOAg + Br_2 \xrightarrow{CCI_4} C_6H_5Br + CO_2 + AgBr$$
सिल्वर बेन्जोरेट

(v) कैल्सियम लवण का शुष्क आसवन (Dry distillation of Calcium Salt)

 ऐल्केनोइक अम्लों के कैल्सियम लवणों का शुष्क आसवन करने पर ऐल्केनेल तथा ऐन्केनॉन प्राप्त होते है।
 (R — COO)₂Ca — [△]→ R — CO — R + CaCO₃

(R — COO)₂Ca — → R — CO — R + CaCO₃ कैल्सियम फॉर्मेट के शुष्क आसवन से फॉर्मेल्डिहाइड, कैल्सियम ऐसीटेट से ऐसीटोन, और कैल्सियम ऐसीटेट तथा कैल्सियम फॉर्मेट के मिश्रण से ऐसीटैल्डिहाइड बनते है।

$$(H - COO)_2 Ca \xrightarrow{\Delta} HCHO + CaCO_3$$

$$(CH_3 - COO)_2Ca \xrightarrow{\Delta} CH_3 - CO - CII_3 + CaCO_3$$

$$(H - COO)_2 Ca \xrightarrow{\Delta} 2CH_3 - CHO + 2CaCO_3$$

$$(CH_3 - COO)_2 Ca$$

(vi) मैंगनस ऑक्साइड से (With Manganous Oxide)

• ऐल्केनोइक अम्ल की वाष्प को 300°C पर तप्त MnO के ऊपर प्रवाहित किया जाता है। तो ऐल्केनैल तथा ऐल्केनोन बनते है।

R—CO
$$\rightarrow$$
 OH \rightarrow R—C \rightarrow OH \rightarrow R—C \rightarrow O+H₂O+CO₂ \rightarrow R' \rightarrow R'

 इस प्रक्रिया में केवल फॉर्मिक अम्ल (R = R' = H) लेने पर फॉर्मेल्डिइड केवल ऐसीटिक अम्ल (R = R' = CH₃) लेने पर ऐसीटोन, और ऐसीटिक अम्ल तथा फॉर्मिक अम्ल का मिश्रण लेने पर ऐसीटैल्डिहाइड (R = CH₃, R' = H) बनते है।

$$2 \text{HCOOH} \xrightarrow{\quad \text{MnO},300^{\circ} \quad} \text{HCHO} + \text{CO}_2 + \text{H}_2\text{O}$$

$$2\text{CH}_3\text{COOH} \xrightarrow{\quad \text{MnO},300^\circ} \text{CH}_3\text{COCH}_3 + \text{CO}_2 + \text{H}_2\text{O}$$

$CH_3COOH + HCOOH \xrightarrow{MnO,300^{\circ}} CH_3CHO + CO_2 + H_2O$

(vii) श्मिट अभिक्रिया (Schmidt Reaction)

• सान्द्र H_2SO_4 की उपस्थिति में कार्बोक्सिलिक अम्ल और हाइड्रैजोइक अम्ल की क्रिया से एक कार्बन परमाणु कम युक्त प्राथमिक ऐमीन बनती है।

ऐत्डिहाइड, कीटोन और कार्बोक्सिलक अम्ल

$$R - C - OH + HN_3 \xrightarrow{\text{conc. H,SO}} R - C - N_3 + H_2 O$$

$$O - N_2 O$$

$$R - N = C = O$$

$$OH^-$$

$$R - NH_2 + CO_2$$

पूर्ण क्रियाविधि-

$$H_2O - C - OH - H - R - N - H - H_2O - R - N = C = O$$

$$H - O - C - OH - H_2O - H_2O$$

नोट—उपरोक्त श्मिट अभिक्रिया के आधार पर ऐमीन में भी यही अभिक्रिया प्रयोग में लाई जाती है जो कर्टियस के नाम से होती है और इसी प्रकार होती है।

R—C+ C1 + Na/N, Sodiumazide R—CN N≡N
$$\Delta$$
 Rearrangement $\frac{1}{\sqrt{\sqrt{\frac{CN}{N}}}}$ R—N = C = O

(viii) NH, से क्रिया

$$CH_3 - COOH + NH_3 \rightarrow CH_3COONH_4$$

$$H_2O + CH_3 - CN \leftarrow \frac{P_2O_5}{\Lambda}$$

ऐल्डिहाइड, कीटोन और कार्बोक्सिलक अप्ल

मोनो कार्बोक्सिलिक अम्लों के उपयोग

- घरेलू उपयोग सिरका के निर्माण में।
- सुगन्धित तेल, रंजक के निर्माण में।
- अनेक कार्बनिक यौगिकों के संश्लेषण में।
- औषधि निर्माण में।
- कपड़ा उद्योग रंगाई में। 6. विलायक के रूप में।

EXERCISE 12.4

- हेल व्होलार्ड जिलैनस्की अभिक्रिया कौन से अम्ल देते है? ਸ਼.1.
- ऐसीटिक अम्ल से CH, COCH, किस प्रकार से बनायी जाती Я.2.
- फॉर्मिक अन्ल, अन्य वसीय अन्लों से भिन्न क्यों होता है? Я.З.
- वाष्प घनत्व विधि से CH,COOH का अणुभार दुगुना क्यों आता हे?
- ਸ਼.5. अम्ल जल में विलेय क्यों है?
- हुन्सडीकर अभिक्रिया किसे कहते है? Я.6.
- ऐथेनोइक अम्ल का एक परीक्षण दीजिए। **प्र**.7.
- प्र.8. CH,COOH से CH,CHO बनाने की क्रिया की समीकरण दीजिए।
- प्र.9. आप C2H4OH से CH4COOH किस प्रकार से बनायेंगे?
- प्र.10. आप CH, CN से CH, COOH किस प्रकार बनायेंगें?
- и.11. आप СН,СООН से मैलोनिक अन्ल किस प्रकार से प्राप्त करेंगें?
- **प्र.12.** क्या होता है। जब–
 - सिल्वर ऐसीटेट ब्रोमीन के साथ अभिक्रिया करता है।
 - (ii) ऐसीटिक अम्ल, लाल फॉस्फोरस की उपस्थिति में क्लोरीन से क्रिया करती है।
 - (iii) फॉर्मिक अन्ल फॉस्फोरस की उपस्थिति में ब्रोमीन के साथ अभिक्रिया करता है।
 - (iv) CO को दाब पर NaOH प्रवाहित करते है।

उत्तर की स्वयं जांच करें

- उ.1. α—हाइड्रोजन परमाणु रखने वाले अम्ल देते है।
- MnO या थोरिया अर्थात् ThO, के साथ गर्म करके बनाते है।
- क्योंकि वह कोई भी ऐल्किल समूह नहीं रखता है एवं इसमें
 - —C—H समूह उपस्थित है।
- अंतरा अणुक हाइड्रोजन बंधन के कारण यह चक्रीय द्विलक रूप में रहता है, अतः इसका अणुभार दुगुना आता है।
- अम्ल तथा जल अंतराअणुक हाइड्रोजन बंधन बनाकर जल में विलेय होते है।
- अम्लों के $\mathbf{A}\mathbf{g}$ लवण \mathbf{Br}_2 के साथ क्रिया करके ऐल्किल ब्रोमाइड बनाते है। यह क्रिया हुन्सडीकर अभिक्रिया कहलाती है।

 $RCOOAg + Br_2 \longrightarrow R \longrightarrow Br + CO_2 + AgBr$

- ऐथेनोइक अम्ल के जलीय विलयन में उदासीन FeCl, का **ভ.**7. विलयन मिलाने पर लाल रंग आता है।
- $CH_3COOH + HCOOH \xrightarrow{MnO} CH_3CHO + CO_2 + H_2O$ ਚ.8.
- $C_2H_5OH \xrightarrow{(O)} CH_3CHO \xrightarrow{(O)} CH_3COOH$ ਚ.9.
- ज.10. CH,CN के जल अपघटन से CH;COOH प्राप्त होता है।

रासायनिक क्रिया निम्न है-

 $CH_3 - C \equiv N \xrightarrow{2H_2O} CH_3COOH + NH_3 \uparrow$ (মৃথিল নাছনাছঙ) (ইথনাছক ঞ্জন্দ) (रेथेनोड्क अम्ल)

उ.11. निम्नलिखित अभिक्रिया द्वारा मैलोनिक अम्ल प्राप्त करते है— $CH_3COOH \xrightarrow{Cl_2} CICH_2COOH \xrightarrow{KCN}$

$$\begin{array}{c}
CNCH_2COOH \\
Cyanoacetic acid
\end{array}
\xrightarrow{2H_2O} H_2C \xrightarrow{COOH} + NH_3$$

$$\begin{array}{c}
COOH \\
COOH
\end{array}$$

(मैलोनिक अम्ल)

उ.12. (i) CH₂Br उत्पाद बनता है। यह क्रिया हुन्सडीकर अभिक्रिया कहलाती है।

 $CH_3COOAg + Br_2 \xrightarrow{\Delta} CH_3Br + AgBr + CO_2 \uparrow$

इस क्रिया में 80 से 85% तक लिब्ध प्राप्त होती है।

मोनो क्लोरो ऐसीटिक अम्ल उत्पाद के रूप में प्राप्त होता है। इस अभिक्रिया को हेल व्होलार्ड जिलेन्स्की अभिक्रिया कहते है।

 $CH_3COOH \xrightarrow{P} CICH_2COOH + HCI$ Cl_2 मोनो क्लोरो ऐसीटिक अम्ल ऐसोटिक अम्ल

- (iii) जब HCOOH. (P) की उपस्थिति में Br, के साथ क्रिया करता है तब यह CO2 तथा HBr में टूट जाता है। $HCOOH \xrightarrow{P} CO_2 \uparrow +2HBr$
- (iv) जब CO को दाब पर NaOH पर प्रवाहित करते है तब उत्पाद सोडियम मेथेनोएट बनता है।

NaOH + CO
$$\xrightarrow{483K}$$
 HCOONa $\xrightarrow{6-10}$ वपुमण्डल दब $\xrightarrow{k - 3}$ यम मधन एट

12.25 कार्बोक्सिलक अम्लॉ की अम्लता (Acidity of Caroboxylic acid)

- एक अम्ल की अम्लता जल में उसकी प्रोटॉन देने की क्षमता पर निर्भर करती है।
- कार्बोक्सिलिक अम्ल को जल में घोलने पर यह वियोजित होकर कार्बोक्सिलेट ऋणायन तथा हाइड्रोनियम आयन देते है।

 $R - COOH + H_2O \rightleftharpoons RCOO^- + H_3O^+$

• द्रव्य अनुपाती क्रिया नियम के अनुसार साम्यावस्था स्थिरांक \mathbf{K}_{eq} होगा—

$$K_{eq} = \frac{[H_3O^+][RCOO^+]}{[RCOOH][H_2O]}$$

$$K_{eq}[H_2O] = K_a \frac{[RCOO^-][H_3O^+]}{[RCOOH]}$$

 $\mathbf{K}_{\mathrm{eq}} =$ साम्यावस्था स्थिरांक $\mathbf{K}_{\mathrm{a}} =$ अम्ल वियोजन स्थिरांक

- K_a का मान तापमान से प्रमावित होता है।
- समीकरण से ज्ञात होता है कि Ka का मान H+ की सांद्रता के समानुपाती है अतः K, का मान अम्ल की सामर्थ्य का माप है।
- H⁺ की सांद्रता अधिक होने पर K_a का मान अधिक होगा अर्थात् अम्ल की वियोजित होने की प्रवृत्ति अधिक होगी और अम्ल उतना ही प्रवल
- इस प्रकार K_a के मान द्वारा हम विभिन्न अम्लों की सामर्थ्य की तुलना
- सुविधा की दृष्टि से K_a के स्थान पर pKa मानों का उपयोग किया जाता है।

ऐत्खिहाइख, कीटोन और कार्बोविसलक अम्ल

- साम्यावस्था स्थिरांक K के ऋणात्मक लघुगुणक को pKa कहते है। $pKa = -log_{10}Ka$
- pKa का मान जितना कम होगा अम्ल उतना ही प्रबल होगा।
- वसीय अम्ल दुर्बल अम्ल होते है। जैसे-जैसे अणुभार बढ़ता है अम्लीय प्रकृति घटती है।

 $HCOOH > CH_3COOH > C_2H_5COOH$ 17.7×10^{-5} 1.75×10^{-5} 1.4×10^{-5} Ka(25°C)

• कार्बोक्सिलिक अम्लों के Ka मान $10^{-4}-10^{-5}\,(pKa=4-5)$ परास में होते है ये खनिज अम्ल (नाइट्रिक, सल्फ्यूरिक, हाइड्रोक्लोरिक अम्ल) तथा सल्फोनिक अम्ल से दुर्बल होते है किन्तु फिनॉल व ऐल्कोहॉल से अधिक अम्लीय होते है।

कार्बोक्सिलिक अम्लों की अम्लता का कारण :

• कार्बोक्सिलिक अम्ल का अणु निम्न दो अनुनादी संरचनाओं का अनुनादी संकर है।

$$\begin{array}{cccc}
C & O & O \\
R - C - O & - H & \longrightarrow & R - C = O - H
\end{array}$$

- संरचना (II) में O-H आबन्ध के ऑक्सीजन पर इलेक्ट्रॉन न्यूनता के कारण ऑक्सीजन O-H आबन्ध के इलेक्ट्रॉनों को अपनी ओर आकर्षित करता है।
- O-H आबन्ध दुर्बल होकर टूट जाता है और प्रोटॉन मुक्त होता है। प्रोटॉन के मुक्त होने पर कार्बोक्सिलेट ऋणायन बनता है। यह ऋणायन भी अनुनाद प्रदर्शित करता है।

कार्बुक्सिलेट ऋूणायन् में अनुनाद

- कार्बोक्सिलिक अम्ल और कार्बोक्सिलेट ऋणायन दोनों ही अनुनाद द्वारा स्थायी होते है।
- कार्बोक्सिलेट ऋणायन की अनुनादी ऊर्जा अधिक होती है क्योंकि इसकी दोनों अनुनादी संरचनाएं III व IV तुल्य है तथा इन संरचनाओं में आवेश का पृथक्करण नहीं है। जबकि कार्बोक्सिलिक अम्ल की अनुनादी संरचनाएं । व ।। समतुल्य नहीं है तथा इन पर आवेश का पृथक्करण है धनावेश व ऋणावेश में।
- अतः कार्बोक्सिलिक ऋणायन, कार्बोक्सिलिक अम्ल अणु की तुलना में ज्यादा स्थायी है।
- कार्बोक्सिलिक अम्ल के अणु आयनित होकर अधिक स्थायी कार्बोक्सिलेट ऋणायन बनाते है और अम्लीय प्रकृति प्रदर्शित करते है।
- कार्बोक्सिलेट ऋणायन में ऑक्सीजन परमाणु का ऋणावेश ऑक्सीजन पर स्थानीकत न होकर दोनों ऑक्सीजन व कार्बन परमाणु पर विस्थानीकृत होता है।
- अनुनाद के कारण दोनों कार्बन–ऑक्सीजन लम्बाईयाँ समान हो जाती है। इसका मान C-O तथा C=O आबन्ध लम्बाईयों का मध्यवर्ती मान होता है।

कार्बोक्सिलेट ऋणायन का अनुनादी संकर

• उपर्युक्त विवेचना से यह भी ज्ञात होता है कार्बोक्सिलिक अम्ल तथा कार्बेक्सिलेट ऋणायन दोनों में अनुनाद के कारण कार्बन व ऑक्सीजन के बीच द्विआबन्ध लक्षण कम हो जाता है।

- अतः ये कार्बोनिल समूह की अभिलाक्षिक अभिक्रियाएं जैसे–नाभिक स्नेही योगात्मक-विलोपन अभिक्रियाएं नहीं देते हैं।
- कार्बोक्सिलिक अम्ल, ऐल्कोहॉल व फीनॉल की अम्लीय प्रकृति की तुलनाः
- कार्बोक्सिलिक अम्ल व ऐल्कोहॉल दोनों में O-H समूह होता है, किन्तु कार्बोक्सिलिक अम्ल, कार्बोक्सिलेट ऋणायन के अनुनाद द्वारा स्थायीकरण के कारण प्रबल अम्लीय प्रकृति प्रदर्शित करते हैं।
- इसके विपरित ऐल्कोहॉल तथा ऐल्कोक्साइड आयन दोनों में ही अनुनाद नहीं पाया जाता है।

$$R - O - H + H_2O \longrightarrow R - O^- + H_3O^+$$
 ऐल्कॉक्साइड

- ऐल्कोहॉल अणु में O-H बन्ध ऐल्किल समूह से जुड़ा है इसका धनात्मक प्रेरणिक प्रभाव (+I effect) होता है यह R-O बन्ध के इलैक्ट्रॉनों को ऑक्सीजन परमाणु की ओर धकेलता है इससे O-H आबन्ध की धुवणता कम हो जाती है जो प्रोटोन को आसानी से मुक्त नहीं होने देती है।
- ऐल्कोहॉल द्वारा प्रोटॉन देने के बाद बना ऐल्कॉक्साइड आयन ऐल्कोहॉल की तुलना में भी कम स्थायी होता है। R का +I प्रभाव ऑक्सीजन पर ऋणावेश की तीव्रता में वृद्धि कर उसे अस्थायी बनाता है। इस प्रकार ऐल्कोहॉल अणु तथा ऐल्कोक्साइड आयन दोनों के कार्बोक्सिलिक अम्ल व कार्बोक्सिलेट ऋणायन की तुलना में कम स्थायी होने के कारण ऐल्कोहॉल कार्बोक्सिलिक अम्ल की तुलना में बहुत दुर्बल अम्लीय प्रवृत्ति प्रदर्शित करता है।
- फिनॉल तथा कार्बोक्सिलिक अम्ल दोनों की अम्लीय प्रकृति होती है। फिनॉल ऐल्कोहॉल की अपेक्षा अधिक अम्लीय होते है। कार्बोक्सिलिक अम्ल का संयुग्मी या कार्बोक्सिलेट आयन दो समान अनुनादी संरचनाओं द्वारा स्थायित्व प्राप्त करता है एवं इसमें ऋणावेश अधिक विद्युत ऋणी ऑक्सीजन परमाणु पर स्थित होते है।

$$\begin{array}{c} \text{RCOOH} + \text{H}_2\text{O} & \longrightarrow & \text{RCOO}^- + \text{H}_3\text{O}^+ \\ \hline \text{R} - \text{C} & \longrightarrow & \text{R} - \text{C} & \longrightarrow \\ \hline \text{I} & & \text{II} & & \end{array}$$

फिनॉल का संयुग्मी क्षार फिनॉक्साइड आयन होता है, जिसकी अनुनादी संरचनाएं असमान होती है। इनमें ऋणावेश कम विद्युत ऋणीतत्व कार्बन परमाणु पर स्थित होता है।

- III IV V VI VII अतः फिनॉक्साइड आयन में अनुनाद की तुलना में कार्बोक्सिलेट आयन में अनुनाद महत्वपूर्ण है। कार्बोक्सिलेट आयन में ऋणावेश दो विद्युतऋणी ऑक्सीजन परमाणुओं पर विस्थानीकृत होता है।
- फिनॉक्साइड आयन में ऋणावेश एक ऑक्सीजन परमाणु तथा कम विद्युतऋणी कार्बन परमाणु पर कम प्रभावशाली ढंग से विस्थानीकृत होता है। फलस्वरूप कार्बोक्सिलेट आयन, फिनॉक्साइड आयन की तुलना में अधिक स्थायी होता और कार्बोक्सिलक अम्ल, फिनॉल की अपेक्षा अधिक अम्लीय होते है।

ऐल्डिहाइड, कीटोन और कार्बोक्सिलक अम्ल

- 4. कार्बोक्सिलिक अम्लों की प्रबलता अम्लों की सामर्थ्य
- किसी कार्बोक्सिलिक अम्लों की सामर्थ्य α—C परमाणु से जुडे प्रतिस्थापियों की प्रकृति व कार्बोक्सिलिक अम्ल में उपस्थित— O—H बन्ध के बन्धित इलेक्ट्रॉन की स्थिति पर निर्भर करती है।
- O—H के बन्धित इलेक्ट्रॉन जितने Oxygen की ओर निकटतम होगे O—H के H पर धन आवेश की मात्रा उतनी ही अधि कि होगी, अतः अम्ल प्रबल होगा।
- O—H के बन्धित इलेक्ट्रोन जितने Oxygen से दूर होते जायेगे, अम्ल की प्रबलता घटती जायेगी।

(a) + I समूह / इलेक्ट्रॉन दाता समूह पर

 + I समूह ऐल्किल समूह होते है, इनकी विद्युत ऋणात्मकता, हाइड्रोजन से कम होने के कारण ये समूह जिससे भी जुड़े होते है, उन्हें बंधित इलेक्ट्रॉन युग्म को देते है।

$$\begin{array}{c} \text{CH}_3 < \text{C}_2\text{H}_5 < \text{C}_3\text{H}_7 < \text{C}_4\text{H}_9 < \text{C}_5\text{H}_{11} \\ \text{(CH}_3)_3\text{C} -> \text{CH}_3 -- \text{CH}_2 -- \text{CH}_-> \\ \text{CH}_3 \end{array}$$

$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$$

(a) इलेक्ट्रॉन देने वाले समूहों पर (R ऐल्किल समूह)

- O H \rightarrow C \rightarrow O \rightarrow H O CH₃ \rightarrow CH₂ \rightarrow C \rightarrow O \rightarrow H O CH₃ \rightarrow CH₂ \rightarrow CH₂ \rightarrow C \rightarrow O \rightarrow H O CH₃ \rightarrow CH₂ \rightarrow CH₂ \rightarrow C \rightarrow O \rightarrow H
- ऊपर से नीचे चलने पर
- + 1 प्रभाव क्रमशः बढ़ता जाता है।
- अतः O—H बन्ध के बन्धित इलेक्ट्रॉन ऑक्सीजन से क्रमशः दूर होते जाते है।
- ∴ H पर आशिक धन आवेश की मात्रा घटती जाती है।
- .: H[®] बनने की प्रवृत्ति घटती है
- ∴ प्रबलता घटती है।
 अम्ल की प्रबलता
 ∞ 1/1

नोट-

 निम्न कार्बोक्सिलिक अम्ल, उच्च कार्बोक्सिलिक अम्लों से प्रबल होते है।

$$\label{eq:hcooh} \begin{split} \text{HCOOH} > \text{CH}_3\text{COOH} > \text{CH}_3\text{CH}_2\text{COOH} > \end{split}$$

CH₃CH₂CH₂COOH

अशाखित कार्बोक्सिलक अम्ल, शाखित कार्बोक्सिलक अम्लों

से प्रबल होते है। ${\rm CH_3CH_2COOH} > {\rm H_3C} - {\rm CH} - {\rm COOH} \\ {\rm CH_3}$

- $\text{CH}_3\text{CH}_2\text{CH}_2\text{COOH} > \text{H}_3\text{C} \text{CH} \text{CH}_2\text{COOH}$ CH_3 $> \text{CH}_3\text{CH}_2 \text{ CH} - \text{COOH}$
- विभिन्न ऐल्किल समूहों में e देने की प्रकृति निम्न क्रम में पाई जाती है।

 $CH_3 < CH_3CH_2 - < (CH_3)_2CH - < (CH_3)_3C -$ (b) —I समूह / इलेक्ट्रॉन आकर्षि समूहों
अम्ल की प्रबलता ∞ —I प्रभाव
अम्ल की प्रबलता ∞ —I समूहों की संख्या
विभिन्न समूहों का —I प्रभाव निम्न क्रम में है— $Ph < I < Br < CI < F < CN < NO_2 < -CF_3$

$$O$$

$$I \leftarrow CH_{2} \leftarrow C \leftarrow O \leftarrow H$$

$$O$$

$$Br \leftarrow CH_{2} \leftarrow C \leftarrow O \leftarrow H$$

$$Cl \leftarrow CH_{2} \leftarrow C \leftarrow O \leftarrow H$$

$$O$$

$$F \leftarrow CH_{2} \leftarrow C \leftarrow O \leftarrow H$$

$$O$$

ऊपर से नीचे चलने पर —I
प्रभाव की प्रबलता बढ़ती है।

O—H के बन्धित इलेक्ट्रॉन
क्रमशः ऑक्सीजन के निकट
आते है।

∴ H पर धन आवेश की मात्रा बढती है।

∴ H[⊕] बनाने की प्रवृत्ति क्रमशः बढती है।

∴ अम्लों की प्रबलता बढ़ती है।

$$O_2N \leftarrow CH_2 \leftarrow \ddot{C} \leftarrow O \leftarrow H$$
 $I - CH_2COOH < BrCH_COOH < CI_2COOH < CI_2COOH$

$$\begin{split} \textbf{I---CH}_2\textbf{COOH} < \textbf{BrCH}_2\textbf{COOH} < \textbf{CI----CH}_2\textbf{COOH} \\ < \textbf{F-----CH}_2\textbf{COOH} < \textbf{NO}_2\textbf{CH}_2\textbf{COOH} \end{split}$$

(c) —I समूहों की संख्या पर

- CCl₃COOH > CHCl₂COOH > CH₂ClCOOH
- CF₃COOH > CHF₂COOH > CH₂FCOOH

CBr₃COOH > CHBr₂COOH > CH₂BrCOOH

(d) इलेक्ट्रॉन आकर्षी समूह की स्थिति पर । ऊपर से नीचे चलने पर —CI की —COOH से दूरी CH₃ — CH₂ — CH — C — O — H | क्रमशः बढ़ती जाती है। ∴ — I प्रभाव घटता जाता O—H के बन्धित e⁻ क्रमशः ऑक्सीजन के कम -O—H निकट होते जाते है। ∴ H पर धन आवेश की मात्रा घटती है। $\cdot \cdot \mathrm{H}^{\oplus}$ बनाने की प्रवृति घटती -O—H ∴ प्रबलता घटती है।

अतः α -chlorobutyric acid > β -chlorobutyric acid > y-chlorobutyric acid

नोट-

- अम्ल की प्रबलता $\propto \frac{1}{pK_a}$ $Ka \propto \frac{1}{pK_a}$
- जिस कार्बोक्सिलिक अम्ल का pK मान जितना कम होगा। वंह अम्ल उतना ही प्रबल होगा
- प्रबलों अम्लों के pK का मान 1 से कम होता है।
- मध्य वाले अम्लों के pK का मान 1 से 5 के मध्य होते है।
- दुर्बल अम्लों के pK के मान 5 से 15 के मध्य होते है।

(e) अनुनाद का कारणः

- काबौक्सिलिक खनिज अम्लों से दुर्बल होते है। लेकिन ऐल्कोहॉल एवं अनेक सरल फीनॉलों से प्रबल होते है।
- कार्बनिक यौगिको में कार्बोक्सिलिक अम्ल सर्वाधिक अम्लीय है।
- हम पहले से अवगत हो चुके है कि फीनॉल, एल्कोहॉल की तुलना में अधिक अम्लीय है।

[Phenol मे अतिरिक्त अनुनाद के कारण]

- कार्बोक्सिलिक अम्ल, फीनॉल की तुलना में अधिक अम्लीय है।
- (f) ऐरोमेटिक कार्बोक्सिलिक अम्लो में प्रबलता

$$C$$
—O—H C —

ऐल्डिहाइड, कीटोन और कार्बोक्सिलंक अम्ल

प्रतिस्थापित बेन्जोइक अम्ल का अम्लीय सामर्थ्य-

(1) इलेक्ट्रॉन आकर्षी समूह जैसे -Cl, -NO₂, आदि अम्लीय सामर्थ्य को बढ़ाते हैं। जबिक e दाता समूह जैसे –CH3,–NH2, –OCH3 आदि अम्लीय सामर्थ्य को घटाते हैं।

अम्लीय सामर्थ्य बढता है अम्लीय सामर्थ्य घटता है। e आकर्षी समूह का प्रभाव

$$\begin{array}{c|cccc}
COOH & COOH & COOH & COOH \\
\hline
O & < O & NO_2 & O & NO_2
\end{array}$$

नोट- ऑर्थो प्रभाव-आर्थो प्रतिस्थापित बेन्जोईक अम्ल सामान्यता मेटा व पैरा प्रतिस्थापित बेन्जोइक अम्ल से अधिक अम्लीय होता है। चाहे आर्थो (ortho) स्थिति पर इलेक्ट्रॉन दाता समूह (-CH3, -NH3) हो या इलेक्ट्रॉन खींचने वाला समूह लगा हो। यह प्रभाव आर्थी प्रभाव —(ortho effect) कहलाता है।

(1)
$$COOH$$
 $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ CH_3 $>$ $COOH$ $COOH$

(2)
$$OH > OH > OH > OH (+ M)$$

$$(3) \begin{array}{c|c} COOH & COOH & COOH \\ \hline \\ NO_2 & Cl & OOH \\ \hline \\ OOH & OOH \\ \hline \\ OOH & OOH \\ \hline \\ OOH$$

(4)
$$COOH$$
 $COOH$ COO

(5)
$$HC \equiv C - COOH > \bigcirc Sp^2 > CH_2 = CHCOOH$$

Propynoic acid benzoic acid Acrylic acid

EXERCISE 12.5

- प्र.1. ऐंक्केनॉइक अम्लों का क्वथनांक, ऐक्कोहॉल तथा एस्टर से उ.2. अधिक होता है, क्यों?
- प्र.2. फॉर्मिक अम्ल का चक्रीय द्विलक की संरचना बनाइये।
- प्र.3. ऐसीटिक अम्ल का चक्रीय द्विलक की संरचना बनाइये।
- **प्र.4.** निम्न अम्लों को क्वथनांक के बढ़ते क्रम में व्यवस्थित कीजिये | $HCOOH, CH_3CH_2COOH$.

$$\mathrm{CH_3} - \mathrm{CH} - \mathrm{COOH}, \mathrm{CH_3}\mathrm{COOH}$$

$$\mathrm{CH_3}$$

प्र.5. निम्न अम्लों को क्वथनांक के बढ़ते क्रम में व्यवस्थित कीजिये— $CH_3 - CH_2 - CH_2 - COOH$,

$$\mathbf{CH_3} - \mathbf{CH} - \mathbf{CH_2} - \mathbf{COOH}$$

$$\mathbf{CH_3}$$

$$CH_3 - CH_2 - CH - COOH$$
, $CH_3 - CH_3 - COOH$

- प्र.6. निम्न अम्लों को प्रबलता के बढ़ते क्रम में व्यवस्थित कीजिये— HCOOH, C₂H₅COOH, C₃H₇COOH, CH₃COOH
- प्र.7. निम्न अम्लों को प्रबलता के बढ़ते क्रम में व्यवस्थित कीजिये— $NO_2 CH_2COOH, I CH_2COOH,$

F—CH₂—COOH, CI—CH₂COOH **प्र.8.** निम्न अम्लो को प्रबलता के बढ़ते क्रम में व्यवस्थित कीजिये—
Cl—CH₂COOH, Cl₂CCOOH, Cl₂CHCOOH

प्र.9. निम्न अम्लों को प्रबलता के बढ़ते क्रम में व्यवस्थित कीजिये— $\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{COOH},$ $(\mathrm{CH_3})_2\mathrm{CH} - \mathrm{CH_2} - \mathrm{COOH},$

$$(CH_3)_3C$$
 — COOH & CH_3 — CH_2 — CH — COOH CH_3

प्र.10. निम्न अम्लों को प्रबलता के बढ़ते क्रम में व्यवस्थित कीजिये— ${\rm CH}_3-{\rm CH}-{\rm CH}_2-{\rm COOH},$ Cl

$$CH_3 - CH_2 - CH - COOH$$
,

$$CI-CH_2-CH_2-CH_2-COOH$$

उत्तर की स्वयं जांच करें

उ.1. कार्बोक्सिलिक अम्ल में O—H बन्ध, ऐल्कोहॉल से अधिक ध पुवीय होता है तथा इनमें द्विलक बनाने की प्रवृति पाये जाने के कारण, इनका क्वथनांक, एल्कोहॉल से अधिक होता है।

2.
$$H - C$$
 $O - H - O$
 $O - H - O$

ਚ.3.
$$CH_3 - C$$
 $O - H - O$ CH_3

ਚ.4. HCOOH < CH₃COOH < C₂H₅COOH <

3.5. $(CH_3)_3C - COOH < CH_3 - CH_2 - CH - COOH$

< (CH₃)₂CH — CH₂COOH < CH₃CH₂CH₂CH₂COOH

3.6. $C_3H_7COOH < C_2H_5COOH < CH_3COOH < HCOOH$

 $\label{eq:cooh} \textbf{3.7.} \quad \textbf{I}-\textbf{CH}_2\textbf{COOH} < \textbf{CI}-\textbf{CH}_2\textbf{COOH} < \\ \textbf{F}-\textbf{CH}_2-\textbf{COOH} < \textbf{NO}_2-\textbf{CH}_2\textbf{COOH}$

 $\mathbf{\overline{s.8.}} \quad \text{Cl} - \text{CH}_2 \text{COOH} < \text{Cl}_2 \text{CHCOOH} < \text{Cl}_3 \text{CCOOH}$

3.9. $(CH_3)_3C - COOH < CH_3 - CH_2 - CH - COOH < CH_3$

< (CH₃)₂CH — CH₂ - COOH < CH₃(CH₂)₃ — COOH

ਰ.10. Cl—CH₂CH₂CH₂COOH

$$< \text{CH}_3 - \text{CH} - \text{CH}_2 - \text{COOH}$$

$$< \text{CH}_3 - \text{CH}_2 - \text{CH} - \text{COOH}$$

12.26 कार्नोक्सिलक अम्लों का उपयोग (Applications of Carboxyllic acid)

- [I] फॉर्मिक अम्ल (HCOOH) :
- (i) प्रयोगशाला ने कार्बन मोनो ऑक्साइड बनाने में।
- (ii) फलों को संरक्षित रखने के लिए।
- (iii) कपड़ा रंगाई उद्योग में।
- (iv) चमडे की टेनिंग में
- (v) लेटेक्स को स्कन्दित करने में।
- (vi) जीवाणु नाशक औषधियाँ बनाने जैसे गठिया के इंलाज में व पूर्तिरोधी के रूप में।
- (vii) ऑक्सेलिक अम्ल बनाने में।
- (viii) अपचायक के रूप में।
- [II] ऐसीटिक अम्ल (CH3COOH):
- (i) प्रयोगशाला अभिकर्मक व विलायक के रूप में।
- (ii) सिरके के रूप में घरेलू उपयोग, आधार के निर्माण में।
- (iii) सेल्युलॉज एस्टर एवं एस्टरों के निर्माण में।
- (iv) विभिन्न कार्बनिक यौगिकों के निर्माण में जैसे-ऐसीटोन, ऐसीटिक एनहाइड्राइड, ऐसीटिल क्लोराइड, ऐसीटेमाइड, एस्टर।

12.3 पाठ्यपुस्तक के प्रश्न-उत्तर

- कार्बोनिल यौगिकों के कार्बोनिल समृह के कार्बन परमाण में निम्न संकरण होता है-
 - sp^2d
- (ব) sp^3
- (स) sp^2
- (द) sp
- (स)
- स्टीफेन अभिक्रिया निम्न में से किसका संश्लेषण नहीं किया जा 2.
 - (31) CH₃-CHO
- CH,-CH,-CHO
- C₂H₂CHO
- (द) CH,COCH,
- (द)
- पेन्टेनॉन किस प्रकार की समावयवता प्रदर्शित करता है--3.
 - श्रृंखला समावयवता
 - (ब) स्थान समावयवता
 - (स) क्रियात्मक समावयवता
 - उपर्युक्त सभी

- (द)
- क्लीमेन्सन अपचयन में ऐल्डिहाइड तथा कीटोन का अपचयन निम्न में से किसके द्वारा किया जाता है-
 - जिंक अमलगम तथा सान्द्र HCI
 - (ब) लाल फॉस्फोरस तथा HI
 - (स) LiAlH,
 - सोडियम ऐथाक्साइड (द)

- (अ)
- ऐसीटोन का अपचयन Mg-Hg करने पर बनता है— 5.
 - (अ) ऐल्डॉल
- (ঘ) प्रोपेन
- पिनेकॉल (स)
- (द) प्रोपेनॉल
- (स)
- ऐल्डिहाइड व कीटोन क्रिया नहीं करते है 6
 - सोडियम बाइसल्फाइट के साथ
 - (ৰ) फेनिल हाइड्रेजीन के साथ
 - हाइडोजन सोडियम फॉस्फेट के साथ
 - सोमीकार्बेजाइड के साथ
 - जब ऐथैनल को फेहलिंग विलयन के साथ गर्म किया जाता है तो यह अवक्षेप देता है--
 - Cu का

7.

- (ब) CuO का
- (स) Cu₂O का (द) Cu +CuO + Cu₂O का
- रोजेनमुण्ड अपचयन द्वारा संश्लेषण नहीं किया जा सकता–
 - फॉमेल्डिहाइड
 - (ৰ) ऐसीटेल्डिहाइड
 - (स) ब्युटेरैल्डिहाइड
 - फॉमेल्डिहाइड तथा ऐसीटेल्डिहाइड (द)
- (अ)
- निम्न में से किसमें ऐल्डॉल संघनन होता है-
 - CH, CH, CHO (अ)
 - (ब) C₆H₅CHO
 - (स) $CH \equiv C.CHO$
 - $CH_2 = C. CHO$ (द) (अ)
- निम्न में से कौनसी विधि का प्रयोग कीटोन से हाइड्रोकार्बन में परिवर्तन में किया जाता है-
 - (अ) ऐल्डॉल संघनन
 - (ঝ) वूल्फ किशनर अपचयन
 - (स) कैनिजारो अभिक्रिया
 - (द) क्लीमेन्सन अपचयन

(ब)

अतिलघुरात्मक प्रश्न

प्र.11. IUPAC नाम बताइए।

- (अ) ऐसीटेल्डिहाइड
- आइसोब्यूटेरैल्डिहाइड

उत्तर- (अ) Acetaldehyde

 $CH_3 - CH = O$

Ethanal

 ${
m CH_3 - CH - CHO}$ (ब) CH,

2-Methylpropanal

प्र.12. IUPAC नाम बताइए।

- मेथिल प्रोप्रिल कीटोन
- ऐथिल मेथिल कीटोन (ৰ)
- उत्तर- (अ) Methyl propyl ketone

Pentan-2-one

(ৰ) Ethyl methyl ketone

$$CH_3 - CH_2 - C - CH_3$$

Butanone

प्र.13. ओपेनॉर आक्सीकरण की क्या विशेषता है?

- उत्तर- बिन्दु 12.1.2 के (C) भाग की (2) अभिक्रिया।
- प्र.14. रोजेनमुण्ड अपचयन द्वारा फॉमेल्डिहाइड क्यों नहीं बना सकते?
- उत्तर- अभिक्रिया में वे ही ऐल्डिहाइड बनते हैं जिसमें α-Η परमाणु उपस्थित हो। HCHO को प्राप्त करने के लिये हमें HOCI लेना होगा. HOCI एक अस्थायी है।
- प्र.15. कार्बोनिल यौगिकों द्वारा दी जाने वाली प्रमुख रासायनिक अभिक्रियां कौनसी है?
- उत्तर- कार्बोनिल यौगिकों द्वारा प्रमुख रासायनिक अभिक्रिया नाभिस्नेही योगात्मक अभिक्रियाएँ होती है।
- प्र.16. निम्न को नाभिक स्नेही योग के घटते क्रम में लिखिए। CH3CHO, CH3COCH3, HCHO, C2H5COCH3
- उत्तर- HCHO > CH3CHO > CH3COCH3 > C2H5COCH3
- प्र.17. टॉलेन अभिकर्मक क्या है?
- उत्तर- पेज 12.13 देखें।
- प्र.18. एक ऐल्डिहाइड का नाम बताइए जो फेंहलिय परीक्षण नहीं देता 충?

उत्तर- CaHaCHO

Benzaldehyde

लघत्तरात्मक प्रश्न :

प्र.19. ऐथीन पर ओजोन की अभिक्रिया से बनने वाले उत्पाद का नाम तथा अभिक्रिया लिखए।

उत्तर-

$$CH_2 = CH_2 + O_3 \rightarrow \begin{matrix} CH_2 & CH_2 & \\ & & \\ O & O \end{matrix} \qquad \begin{matrix} CH_2 & CH_2 \\ & & \\ Zn \end{matrix} \rightarrow 2HCHO + ZnO + H_2O \end{matrix}$$
ऐथिस्तीन ओजोनाइड

ऐल्डिसइंड कीटोन और कार्बोक्सलक अम्ल

HCHO (Formal dehyde) बनता है। इस अभिक्रिया को ओजोनी अपघटन कहते हैं।

प्र.20. स्टीफैन अभिक्रिया तथा रोजेनमुण्ड अपचयन समझाइए।

उत्तर- पेज 12.6 व 12.7 देखें।

प्र.21. "ऐल्डिहाइड अच्छे अपचायक है।" तीन अभिक्रियाओं द्वारा यह सिद्ध कीजिए।

उत्तर- Aldehydes आसानी से अम्लों में ऑक्सीकृत हो जाते हैं। अत: Aldehydes अच्छे अपचायक पदार्थ है।

ये निम्न विलयनों को आसानी से अपचियत करते हैं।

- (a) टॉलन अभिकर्मक
- (b) फेहलिंग विलयन
- (c) बेन्दिक्ट विलयन

प्र.22. निम्न समीकरणों को पूरा करके उत्पाद लिखिए--

(i)
$$CH_3 - CH_2 - OH - \frac{Cu/573K}{}$$

(ii)
$$R - C - Cl + H_2 \xrightarrow{Pd/BaSO_4}$$

 $\overline{3\pi (t-1)}$ CH₃ − CH₂ − OH $\xrightarrow{\text{Cu/573K}}$ CH₃CHO + H₂

(ii)
$$R - C - Cl + H_2 \xrightarrow{Pd/BaSO_4} RCHO + HC1$$

प्र.23. मीरवाइन पोंडोर्फ वर्ले अपचयन क्या है? समझाइए।

उत्तर- पेज 12.15 देखें।

प्र.24. ऐल्डिहाइड के α-हाइड्रोजन परमाणु की अम्लीयता का कारण समझाइए।

उत्तर- पेज नं. 12.17 पर (G) देखें।

प्र.25. फॉर्मेल्डिहाइड तथा ऐसीटेल्डिहाइड के व्यवसायिक महत्व को समझाइए।

उत्तर- पेज12.19 देखें।

प्र.26. कीटोन से पिनेकॉल कैसे प्राप्त करने की विधि लिखिए।

उत्तर- जब कीटॉन का Mg-Hg अमलतम तथा पानी के साथ अपचयन कराने पर फिनेकॉल प्राप्त होता है।

$$CH_3$$
 $C = O + O = C$ CH_3 CH_3

पिनेकॉल

प्र.27. फॉर्मिक अम्ल की अम्लता ऐसीटिक अम्ल से अधिक होती है। कारण दीजिए

फॉर्मिक अम्ल में O-H बन्ध के बन्धित es, oxygen के अधिक

निकट है। CH, -COOH की तुलना में, अत: फॉर्मिक अम्ल में H पर धन आवेश की मात्रा अधिक होने के कारण, H*बनाने की प्रवृत्ति अधिक हो जाने के कारण, HCOOH, CH, COOH से प्रबल अम्लीय है।

निबन्धात्मक प्रश्न :

प्र.28. ऐल्डिहाइड व कीटोन में क्या असमानताएं है? समझाइए।

उत्तर- पेज 12.19 देखें।

प्र.29. ऐल्डिहाइड तथा कीटोन बनाने की समान विधियां कौनसी है? प्रत्येक का रासायनिक समीकरण दीजिए।

उत्तर- पेज नं. 12.3 देखें।

प्र.30. ऐल्डिहाइड, कीटोन की तुलना में नामिक स्नेही योगात्मक अभिक्रियाओं के प्रति अधिक क्रियाशील कारण समझाइए।

उत्तर- पेज नं. 12.17 देखें।

प्र.31. निम्न अभिक्रियाएँ समझाइए व रासायनिक समीकरण दीजिए--

(i) कार्बोनिल यौगिकों से ऐल्कोहॉल का निर्माण

(ii) कार्बोनिल यौगिकों तथा ऐल्कोहॉल के योग से बनने वाले योगात्पाद

(iii) टॉलेन अभिकर्मक का अपचयन

(iv) बेयर विलिगर ऑक्सीकरण

(v) कैनिजारों अभिक्रिया

(vi) कोल्बे वैद्युत अपघटन

(vii) हुन्सडीकरण अमिक्रिया

उत्तर- (i) पेज 12.3 देखें।

(ii) पेज 12.12 देखें।

(iii) पेज 12.13 देखें।

(iv) पेज 12.14 देखें।

(v) पेज 12.19 देखें। (vi) पेज 12.27 देखें।

(vii) पेज 12.28 देखें।

12.4 प्रमुख प्रश्न एवं उत्तर

1. CH_3 -CHO में उपस्थित C_1 व C_2 कार्बन परमाणुओं पर संकरण अवस्था क्या होगी?

Ans. sp^2 एवं sp^3 होगी |

2. यूरोट्रोपिन के निर्माण में कौनसे यौगिक आपस में क्रिया करेंगे?

Ans. HCHO ব NH₃

3. Hemiacetal यौगिक के निर्माण में कौनसे यौगिक आपस में क्रिया करेंगे?

Ans. CH₃-CHO a C₂H₅OH

4. Trioxan यौगिक के निर्माण में कौनसे यौगिक आपस में क्रिया करेंगे?

Ans. HCHO को सान्द्र H_2SO_4 में गुजारने पर।

5. Aldol यौगिक के निर्माण में कौनसे यौगिक आपस में क्रिया करेंगे?

Ans. ऐसिटल्डिहाइड को तनु NaOH के साथ मिलाने पर।

6. Mesityl oxide यौगिक के निर्माण में कौनसे यौग़िक आपस

में क्रिया करेंगे?

Ans. ऐसीटॉन को शुष्क HCl गैस में गुजारने पर।

Phorone यौगिक के निर्माण में कौनसे यौगिक आपस में क्रिया 7.

Ans. ऐसीटोन को शुष्क HCl गैस में गुजारने पर

Mesitylene यौगिक के निर्माण में कौनसे यौगिक आपस में 8. क्रिया करेंगे?

Ans. ऐसीटॉन को सान्द्र $\mathrm{H_2SO_4}$ विलयन में से गुजारने पर।

Pinacol यौगिक के निर्माण में कौनसे यौगिक आपस में क्रिया 9.

Ans. Acetone को Mg-Hg बेन्जीन विलयन में अपचयन कराने

10. Chloretone यौगिक के निर्माण में कौनसे यौगिक आपस में क्रिया करेंगे?

Ans. ऐसीटॉन की क्लोरोफॉर्म से क्रिया कराने पर।

Paraldehyde यौगिक के निर्माण में कौनसे यौगिक आपस में 11. क्रिया करेंगे?

Ans. ऐसीटल्डिहाइड को सान्द्र H,SO, से गुजारने पर।

Metaldehyde यौगिक के निर्माण में कौनसे यौगिक आपस में 12. क्रिया करेंगे?

Ans. ऐसीटिल्डिहाइड को शुष्क HCl गैस में गुजारने पर।

Glucose यौगिक बनाने के कौनसे यौगिक आपस में क्रिया 13. करेंगे?

Ans. फॉर्मल्डिहाइड को चूने के पानी में से गुजारने पर

Sulphonal यौगिक बनाने में कौनसे यौगिक आपस में क्रिया 14. करेंगे?

> Ans. ऐसीटॉन को C.H.SH से क्रिया के पश्चात उत्पाद का ऑक्सीकरण करने से।

HCN के प्रति निम्नलिखित यौगिकों की क्रियाशीलता का 15. बढता क्रम लिखिये।

HCHO, CH₂CHO, CH₂COCH₃, CH₃CH,CHO

Ans. CH₃COCH₃ < CH₃-CH₂-CHO < CH₃CHO < HCHO

NH,OH के प्रति निम्नलिखित यौगिकों की क्रियाशीलता का 16. बढ़ता क्रम लिखिये। (CH₃)₃-C.CHO, (CH₃)₂CH-CH₂CHO, CH₃CH₂CH (CH₃)-CHO & CH,-(CH,),CHO

> Ans. $(CH_3)_3C.CHO < CH_3-CH_3 CH(CH_3)CHO <$ (CH_3) , CH $-CH_3CHO < CH_3(CH_3)$, CHO

NaHSO, के प्रति निम्नलिखित यौगिकों की क्रियाशीलता का बढ़ता क्रम लिखिये।

CH₃-CH₂-CHO, Cl-CH, CHO, HCHO CH₃COCH₃ CCI,CHO

Ans. CH₃COCH₃ < CH₃CH₂CHO < HCHO < CICH₂CHO < CCl₃CHO

एक ऐल्डिहाइड का नाम बताइये जो फेहलिंग विलयन को 18. अपचयित नहीं करता।

Ans. बेन्जैल्डिहाइड

CH,

19.

25.

26.

27.

एक 5C युक्त ऐल्डिहाइड की संरचना व IUPAC में नाम दीजिये जो कैनिजारो अभिक्रिया देता है।

CH₃---C---CHO 2,2-dimethylpropanal CH₃

20. Diacetone alcohol की संरचना एवं IUPAC में नाम दीजिये।

Ans. $CH_3 > C-CH_2COCH_3$.

4-Hydroxy-4-methylpentan-2-one.

21. क्रोटोनैल्डिहाइड की संरचना एवं IUPAC में नाम दीजियै। Ans. CH₃-CH=CH-CHO But-2-enal.

22. Pinacol की संरचना एवं IUPAC में नाम दीजिये।

Ans.
$$CH_3$$
 $>$ $C-C$ $<$ CH_3 CH_3 CH_3

2,3-Dimethylbutane-2,3-diol.

23. Mesityloxide की संरचना एवं IUPAC में नाम दीजिये।

Ans.
$$\frac{CH_3}{CH_3} > C = CH COCH_3$$

4-Methylpent-3-en-2-one.

24. Phorone की संरचना एवं IUPAC में नाम दीजिये।

Ans.
$$CH_3$$
 $> C = CH CO CH = C < \frac{CH_3}{CH_3}$

2,6-Dimethylhepta-2,5-dien-4-one

किस प्रकार के ऐल्डिहाइड एवं कीटोन ऐल्डोल संघनन अभिक्रिया प्रदर्शित करते हैं।

Ans. वे ऐल्डिहाइड व कीटोन ऐल्डोल संघनन प्रदर्शित करते हैं जिन्हमें α-H परमाण् उपस्थित हों।

जब ऐसीटल्डिहाइड की क्रिया तम् NaOH के साथ कराते हैं तो प्राप्त उत्पाद की संरचना तथा IUPAC में नाम दीजिये।

Ans. CH₃ - CH - CH₂ - CHO [Aldol] 3-Hydroxybutanal. ÓН

जब प्रोपेनल की क्रिया तनु NaOH के साथ कराते हैं तो प्राप्त उत्पाद की संरचना तथा IUPAC में नाम दीजिये।

3-Hydroxy-2-methylpentanal

28. जब प्रोपेनॉन की क्रिया तन् NaOH के साथ कराते हैं तो प्राप्त

ऐल्डिहाइड, कीटोन और कार्बोक्सिलक अन्त

उत्पाद की संरचना तथा IUPAC में नाम दीजिये।

$$\begin{array}{c} \textbf{Ans. CH}_3 \\ \text{CH}_3 \end{array} \begin{array}{c} \text{C--CH}_2 \text{COCH}_3 \ \ \textit{(Diacetone alcohol)} \end{array}$$

4-Hydroxy-4-methylpentan-2-one.

- 29. किस प्रकार के ऐल्डिहाइड कैनिजारो अभिक्रिया देते हैं। Ans. जिनमें α -H परमाणु अनुपस्थित होता है। HCHO, CCl_3CHO , $(CH_3)_3C.CHO.C_6H_5CHO$
- 30. ऐलिफैटिक ऐल्डिाइइड स्थान समावयवता प्रदर्शित करते है, क्यों

Ans. ऐलिफैटिक ऐल्डिाहइड में -CHO समूह हमेशा प्रथम C पर होता है लेकिन इनमें उपस्थित पार्श्व श्रृंखला की स्थिति में परिवर्तन के कारण ये स्थिति समावयवता प्रदर्शित करते हैं।

$$CH_3$$
 $-CH_2$ $-CH$ $-CHO$ CH_3 $-CH$ $-CH_2$ $-CHO$ CH_3

- 31. ऐल्डिहइड में कौनसे ऐल्डिहाइड आयोडोफॉर्म परीक्षण देते हैं।
 Ans. सिर्फ CH3CHO
- 32. कौनसे कीटोन आयोडोफॉर्म परीक्षण देते हैं?
 Ans. सभी Alkan-2-one देते हैं।

Propanone

Butanone

प्र.33. कौनसी ऐल्कीन ओजोनी अपघटन से HCHO देता है?

$$\mathbf{G}. \qquad \mathbf{CH}_2 = \mathbf{O} + \mathbf{O} = \mathbf{CH}_2 \longrightarrow \mathbf{CH}_2 = \mathbf{CH}_2 \; Ethene$$

प्र.34. कौनसी ऐल्कीन ओजोनी अपघटन से CH₃-CHO देता है? **उ**.

$$CH_3 - CH = OH - CH_3 \longrightarrow CH_3 - CH = CH - CH_3$$
But-2-ene

प्र.35. कौनसी ऐल्कीन ओजोनी अपघटन से Acetone देता है? उ.

$$CH_3$$
 $C = O + O = C$
 CH_3
 CH_3
 CH_3
 $C = C$
 CH_3
 CH_3
 CH_3
 $C = C$
 CH_3
 $CH_$

प्र.36. क्या होता है जब कैल्शियम ऐसीटेट को शुष्क आसवित करते हैं।

च.
$$CH_3COO$$
 Ca आसवन $CH_3COCH_3 + CaCO_3$ ऐसीटॉन

प्र.37. क्या होता है जब कैल्शियम फॉर्मेट को शुष्क आसवित करते हैं।

प्र.38. क्या होता है जब ऐसीटैल्डिहाइड को तनु NaOH से अभिकृत करते हैं।

उ. Aldol प्राप्त होता है।

$$CH_3$$
- $CH = O + H - CH_2 - CHO \xrightarrow{\overline{\sigma_3}}$

प्र.39. क्या होता है जब फॉर्मल्डिहाइड को सान्द्र NaOH से अभिकृत करते हैं।

च. CH₃OH एवं HCOONa प्राप्त होते हैं।

2H CHO + NaOH (सान्द्र) —→ CH₃OH + HCOONa

- प्र.40. क्या होता है जब ऐसीटोन को तनु Ba(OH)2 से अभिकृत करते हैं।
 - उ. Diacetone alcohol बनता है।?

$$CH_3$$
 $C = O + H CH_2 CO CH_3 \xrightarrow{\overline{\sigma_3}} Ba(OH)_2$

प्र.41. रोजेनमुण्ड अभिक्रिया की रासायनिक अभिक्रिया दीजिये।

$$\mathbf{G}. \quad \mathbf{CH_3COCl} + \mathbf{H_2} \xrightarrow{\mathbf{Pd}} \mathbf{CH_3CHO} + \mathbf{HCl}$$

प्र.42. टॉलन अभिकर्मक क्या होता है?

सिल्वर नाइट्रेट का अमोनिकल विलयन

प्र.43. फेहलिंग विलयन क्या होता है?

 उ. CuSO₄ का क्षारीय विलयन + सोडियम पोटेशियम टारटरेट विलयन का मिश्रण।

प्र.44. 3-Oxopentanal की संरचना बनाइये।

$$egin{array}{ll} {\bf g.} & {
m CH_3-CH_2-C-CH_2-CHO} \end{array}$$

0

प्र.45. फॉर्मेलीन विलयन कैसे प्राप्त करेंगे? उ. मेथेनल का 40% जलीय विलयन-फॉर्मेलीन वि

उ. मेथेनल का 40% जलीय विलयन-फॉर्मेलीन विलयन कहलाता है।

प्र.46. एक रासायनिक अभिक्रिया लिखिये जिसमें फॉर्मिक अम्ल, ऐसीटिक अम्ल से भिन्न हो।

 फॉर्मिक अम्ल टॉलन अभिकर्मक व फैहलिंग विलयन को अपचियत करता है, ऐसीटिक अम्ल नहीं करता। $HCOOH + 2CuO \longrightarrow CO_2 + H_2O + Cu_2O \downarrow (Red)$

- प्र.47. फिशर ऐस्टरीकरण अभिक्रिया के लिये रासायनिक समीकरण दीजिये।
- $\textbf{3.} \qquad \text{CH}_3\text{COOH} + \text{C}_2\text{H}_5\text{OH} \xrightarrow{\quad \text{H}_2\text{SO}_4 \quad} \text{CH}_3\text{COOC}_2\text{H}_5 + \text{H}_2\text{O}$
- **प्र.48.** CH₃ CH CH CH₃ का IUPAC में नाम दीजिये। | | | CI COOH
- ਚ. 3-Chloro-2-methylbutanoic acid
- प्र.49. कोलवे की विद्युत अपघटनी अभिक्रिया की रासायनिक समीकरण दीजिए।
- ਚ. $2\text{CH}_3\text{COOK} \xrightarrow{\text{विद्युत}} 2\text{CH}_3\text{COO}^- + 2\text{K}^+$ $\xrightarrow{\text{अपघटन}} \xrightarrow{\text{ऐनोड}} \xrightarrow{\text{कैशोड}} 2\text{KOH} + \text{H}_2$
- प्र.50. हैल-व्होलार्ड-जेलिस्की अभिक्रिया की रासायनिक अभिक्रिया दीजिये।
- \mathbf{G} . $\mathbf{CH_3COOH} + \mathbf{Cl_2} \xrightarrow{red P} \mathbf{Cl-CH_2COOH} + \mathbf{HCl}$ क्लोरोए शीटिक अन्ल
- प्र.51. हुन्सडीकर अभिक्रिया की रासायनिक अभिक्रिया दीजिये।
- ਚ. CH_3 -- $COOAg + Br_2$

$$\xrightarrow{\text{CCl}_4} \text{CH}_3 - \text{CH}_2 \text{Br} + \text{AgBr} + \text{CO}_2$$

- प्र.52. α-Methoxy propionaldehyde की संरचना बनाइये।
- प्र.53. 4-Oxopentanal की संरचना बनाइये।
- प्र.54. ऐल्डिहाइड/कीटोन के क्वथनांक ऐल्कोहॉल से कम होते हैं। क्यों?
- उ. ऐल्कोहॉल में अतिरिक्त अन्तर—आण्विक हाइड्रोजन आबन्धन के कारण, ऐल्कोहॉल का क्वथनांक ऐल्डिहाइड/कीटोन से अधिक होते हैं।

प्र.55. ऐल्डिहाइड/कीटोन के क्वथनांक कार्बोक्सिलिक अम्लों से कम होते हैं। क्यों?

ऐल्डिहाइड, कीटोन और कार्बोविसलक अन्ल

उ. कोर्बोक्सिलिक अम्लों में अतिरिक्त अन्तर—आण्विक हाइड्रोजन आबन्धन व द्विलक बनने के कारण, अम्लों का क्वथनांक ऐल्डिहाइड/कीटोन से अधिक होते हैं।

प्र.56. कीटोन समावयवी ऐल्डिहाइड से अधिक ध्रुवीय होते हैं। क्यों?

$$\mathbf{G}. \qquad \frac{\mathrm{CH_3}}{\mathrm{CII_3}} \mathbf{C} = \mathbf{O} \qquad \frac{\mathrm{CH_3} - \mathrm{CH_2}}{\mathrm{H}} \mathbf{C} = \mathbf{O}$$

कीटोन में उपस्थित दो ऐल्किल समूह के +1 प्रभाव के कारण कार्बोनिल समूह के C पर e का घनत्व उच्च हो जाता है जिससे C की वैद्युतऋणता ऐल्डिहाइड के C से कम हो जाती है अतः C व Oxy की विद्युतऋणता में अन्तर, Aldehyde से अधिक हो जाने के कारण कीटोन में ध्रुवीय गुण अपने समावयवी ऐल्डिहाइड से अधिक होता है।

- प्र.57. कीटोन के क्वथनांक समावयवी ऐल्डिहाइड से अधिक होते हैं। क्यों?
- **उ.** कीटोन में ध्रुवीय गुण ऐल्डिहाइड से अधिक होने के कारण कीटोन के क्वथनांक समावयवी ऐल्डिहाइड से अधिक होते हैं।
- प्र.58. ऐल्डिहाइड के क्वथनाक ऐल्केन्स/ऐल्कीन्स से अधिक होते हैं। क्यों?
- उ. ऐल्डिहाइडस ध्रुवीय यौगिक होने के कारण [Alkanes/Alkene अध्रुवीय हैं] ऐल्डिहाइड के क्वथनांक Alkane/Alkenes से अधिक होते हैं।
- प्र.59. कार्बोनिल यौगिक, ऐल्कोहॉल से अधिक ध्रुवीय होते हैं। क्यों?
- उ. C = O कार्बोनिल समूह में उपस्थित पाई बन्ध दुर्बल होता है अतः π electron युग्म आसानी से ऑक्सीजन परमाणु की ओर आसानी से स्थानान्तरित होकर अधिक ध्रुवीय हो जाते हैं।

$$>_{C} \stackrel{\frown}{=}_{O} \rightarrow >_{C} \stackrel{\ominus}{=}_{O} \stackrel{\ominus}{\circ}$$

- प्र.60. ऐल्डिहाइड एवं कीटोन जल में विलेय होते हैं। क्यों?
- **उ.** ऐल्डिहाइड्स एवं कटॉन की जल में विलेयता इनकी जल के साथ हाइंड्रोजन आबन्धन बनने के कारण होती है।

$$C = O - H - O$$

- प्र.61. कार्बोनिल यौगिकों की जल में विलेयता अणुभार बढ़ने पर घटती है। क्यों?
- अणुभार बढ़ने पर ऐल्किल श्रृंखला की जल विरागी प्रवृत्ति बढ़ती
 है । अतः विलेयता घटती हैं ।
- प्र.62. कीटोन, ऐल्डिहाइड की तुलना में कम सक्रिय होते हैं। क्यों?

ऐत्डिहाइड, कीटोन और कार्बोक्सिलक अम्ल

ਚ.
$$\begin{array}{c} R > +\delta - \delta \\ R > C = O \end{array} \quad \begin{array}{c} R > +\delta - \delta \\ C = O \end{array} \quad \begin{array}{c} R > +\delta - \delta \\ C = O \end{array}$$
 एल्डिहाइड

कीटोन में दो ऐल्किल समूहों के +1 प्रभाव के कारण कार्बोनिल समूह के कार्बन पर धन आवेश कम हो जाने के कारण ये नाभिकस्नेही के आक्रमण को कम कर देते हैं। अतः कीटोन, ऐल्डिहाइड की तुलना में कम सक्रिय होते हैं।

प्र.63. ऐल्डिहाइड तथा कीटोन नाभिस्नेही योगात्मक अभिक्रियाएँ प्रदर्शित करते हैं। क्यों?

$$\mathbf{a} \cdot \sum_{\mathbf{c}} = 0 \longrightarrow \sum_{\mathbf{c}} - 0$$

ऐल्डिहाइड एवं कीटोन में कार्बोनिल समूह ध्रुवीय प्रकृति का होने के कारण, Cधन आवेशित व ऑक्सीजन ऋणआवेशित हो जाता है। Cधन आवेशित होने के कारण यह नाभिरनेही योगात्मक अभिक्रियाएं देते हैं।

प्र.64. कीटोन नाभिकरनेही के प्रति ऐल्डिहाइडस से कम क्रियाशील होते हैं। क्यों?

उ. उ. 9 देखें।

प्र.65. नाभिकरागी योग के सापेक्ष निम्नलिखित को क्रियाशीलता के बढ़ते क्रम में लिखिये—

(i) HCHO, CH₃COCH₃ CH₃CHO

(ii) HCHO.CH₃COCH₃, CH₃CH₂CHO, CH₃CHO

(iii) CH_3 – CH_2 – CH_2 – CH_2 CHO ;

$$\begin{array}{c} \operatorname{CH_3} - \operatorname{CH} - \operatorname{CH_2} - \operatorname{CHO} \\ \mid \\ \operatorname{CH_3} \end{array}; \begin{array}{c} \operatorname{CH_3} - \operatorname{CH_2} - \operatorname{CH} - \operatorname{CHO} \\ \mid \\ \operatorname{CH_3} \end{array}$$

- ਚ. (i) CH₃COCH₃ < CH₃CHO < HCHO
 - (ii) CH₃COCH₃ < CH₃CH₂CHO < CH₃CHO < HCHO
 - (iii) (CH₃)₃C.CHO < CH₃-CH₂-CH(CH₃)CHO < (CH₃)₂CH.CH₂CHO < CH₃-CH₂-CH₂-CH₂-CHO
- प्र.66. फॉर्मेल्डिहाइड केनिजारों अभिक्रिया देता है लेकिन ऐसीटेल्डिहाइड नहीं।
- च. फॉर्मेल्डिहाइड में α-Η परमाणु अनुपस्थित होने के कारण कैनिजारो अभिक्रिया देता है। ऐसीटैल्डिहाइड में α-Η परमाण उपस्थित होने के कारण कैनिजारो

ऐसीटैल्डिहाइड में α-H परमाणु उपस्थित होने के कारण कैनिजारो अभिक्रिया नहीं देते।

प्र.67. बेन्जैल्डिहाइड, ऐसीटैल्डिहाइड की तुलना में नाभिकरागी योगात्मक अभिक्रियाओं के सापेक्ष कम क्रियाशील हैं। क्यों?

उ. बैन्जैल्डिहाइड में बेन्जीन वलय इलेक्ट्रॉन दाता अनुनादी प्रभाव के

कारण, कार्बोनिल समूह के कार्बन पर इलेक्ट्रॉन घनत्व बढ़ जाता है अतः धनआवेश की मात्रा कम हो जाती है अतः बैन्जैल्डिहाइड, ऐसीटैल्डिहाइड की अपेक्षा कम क्रियाशील है।

प्र.68. ऐसीटैल्डिहाइड ऐल्डोल संघनन अभिक्रिया देता है जबकि फार्मेल्डिहाइड नहीं देता।

 एंसीटैल्डिहाइड में α-H परमाणु उपस्थित होने के कारण ऐल्डोल संघनन अभिक्रिया प्रदर्शित करता है।
 फॉर्मेल्डिहाइड में α-H परमाणु अनुपस्थित होने के कारण यह ऐल्डॉल संघनन अभिक्रिया प्रदर्शित नहीं करते।

प्र.69. ऐरोमैटिक अम्लों के गलनांक व क्वथनांक तुलनात्मक अणुभार वाले ऐलिफैटिक अम्लों से सामान्यतः उच्च होते हैं।

उ. ऐरोमेटिक यौगिकों में समतलीय वलय संरचना उपस्थित होती है। अतः ये क्रिस्टल जालक में निविड संकुलित हो जाते हैं जबिक ऐलिफैटिक अम्लों की संरचना टेढ़ी—मेढ़ी (Zig-zag) होने के कारण ये क्रिस्टल जालक में निविड संकुलित नहीं हो पाते, अतः ऐरोमैटिक अम्लों के क्वथनांक एवं गलनांक ऐलिफैटिक अम्लों से उच्च होते हैं।

प्र.70. कार्बोक्सिलिक अम्लों के क्वथनांक समान अणुभार वाले ऐल्कोहॉल से अधिक होते हैं क्यों-Propan-1-ol का क्वथनांक CH₃COOH से कम होता है।

उ. कार्बोक्सिलिक अम्लों में ध्रुवता ऐल्कोहॉल से अधिक होती है एवं कार्बोक्सिलिक अम्लों में चक्रीय डायमर बनाने के कारण, अम्लों के क्वथनांक ऐल्कोहॉल से अधिक होते हैं।

$$R-C = 0 - H-O C-R$$

$$C-R$$

प्र.71. कार्बोक्सिलिक अम्ल कार्बोनिल यौगिकों के गुण प्रदर्शित नहीं करते हैं। क्यों?

कार्बोक्सिलिक अन्लों में अनुनाद के कारण C व Oxygen के मध्य शुद्ध द्विबन्ध अनुपस्थित हो जाता है अतः C व Oxygen के मध्य शुद्ध द्विबन्ध अनुपस्थित होने के कारण ये कार्बोनिल यौगिकों के गुण प्रदर्शित नहीं करते।

प्र.72. ऐसीटिक अम्ल, फॉर्मिक अम्ल से दुर्बल होता है, क्यों,

ਚ.
$$CH_3 \longrightarrow C \longrightarrow O \longrightarrow H$$
 $H-C-O-I$ ਏਲੀਟਿਕ अम्ल फॉर्मिक अम्ल

ऐसीटिक अम्ल में CH3 समूह के +I प्रभाव के कारण O-H बन्ध के बन्धित इलेक्ट्रॉन ऑक्सीजन से दूर हो जाते हैं अतः H पर धन आवेश की मात्रा कम हो जाती है। अतः H⁺ बनने की प्रवृति ऐसीटिक अम्ल में फॉर्मिक अम्ल से कम होती है अतः ऐसीटिक अम्ल, फॉर्मिक अम्ल से दुर्बल होता है।

- प्र.73. क्लोरोऐसीटिक अम्ल, ऐसीटिक अम्ल से प्रबल होता है। क्यों?
- उ. क्लोरोऐसीटिक अम्ल में Cl के –I प्रभाव के कारण, O–H बन्ध के बन्धित इलेक्ट्रॉन ऑक्सीजन के अधिक निकट आ जाते हैं अतः H पर धन आवेश की मात्रा बढ़ जाती है अतः H⁺ बनाने की प्रवृत्ति बढ़ जाने के कारण क्लोरोऐसीटिक अम्ल प्रबल अम्लीय होता है। जबिक ऐसीटिक अम्ल में CH₃ समूह के +I प्रभाव के कारण H पर धनआवेश की मात्रा कम हो जाती है अतः H⁺ बनने की प्रवृति कम हो जाती है।
- प्र. 74. डाइक्लोरोऐथेनाइक अम्ल की तुलना में मोनोक्लोरो ऐथेनाइक अम्ल का pKa मान उच्च क्यों है?
- मोनोक्लोरो ऐथेनॉइक अम्ल में एक Cl परमाणु है जिसका

-I प्रभाव है, (CICH,COOH)

जबिक डाइक्लोरो ऐथेनाइक अम्ल में दो Cl परमाणु है। परिणामस्वरूप मोनोक्लोरो ऐथेनॉइक अम्ल से प्रोटोन का मुक्त होना किंचन है। अतः डाइक्लोरो ऐथेनॉइक अम्ल (1.26) की तुलना में मोनोक्लोरोऐथेनॉइक अम्ल (2.87) का pKa मान उच्च है। और यह दुर्बल अम्ल है।

- प्र. 75. कार्बोक्सिलिक अम्ल पाँच या कम कार्बन परमाणुओं के साथ जल में विलेय है। जबकि उच्च अम्ल जल में अविलेय है। समझाइये।
- उ. जल में कार्बोक्सिलिक अम्ल की विलेयता ध्रुवक COOH समृह के कारण होती है जिसमें हाइड्रोजन बन्ध सिम्मिलित होता है जबिक अध्रुवक ऐिल्किल समृह द्रविषरोधी प्रवृत्ति का होता है। इसकी प्रवृत्ति विपरीत होती है। जैसे ही समृह का आकार बढ़ता है, हाइड्रोजन बन्ध का अस्तित्व जल के साथ घटता है तथा ऐसे जल में विलेयता घटती है।