Divisibility

Definition: Divides

Let R be an integral domain and $a, b \in R$. To say that a divides b, denoted $a \mid b$, means there exists $c \in R$ such that b = ca.

Definition: Associate

To say that a and b are associates means $a \mid b$ and $b \mid a$.

Theorem

Let R be a ring and $a, b \in R$ be associates. $\exists u \in R^{\times}$ such that b = ua and $a = u^{-1}b$.

Proof

```
\exists \, c \in R, b = ca \exists \, d \in R, a = db b = ca = (cd)b So cd = 1, and thus c and d are units in R Let c = u and d = u^{-1} \therefore b = ua \text{ and } a = u^{-1}b, \text{ where } u \in R^{\times}.
```

Definition: Irreducible

Let R be an integral domain and $r \in R$. To say that r is *irreducible* in R mean r is non-zero, is not a unit in R, and if r = ab for $a, b \in R$ then either a or b is a unit in R. Such a factorization of p is called trivial.

Definition: Prime

Let R be an integral domain and $p \in R$. To say that p is *prime* in R means that p is non-zero, p is not a unit in R, and if $p \mid ab$ for $a, b \in R$ then $p \mid a$ or $p \mid b$.

Note that in Z, prime and irreducible are the same thing; however, this is not true in general.

Theorem

Let R be an integral domain and $p \in R$:

```
p \text{ prime} \implies p \text{ irreducible}
```

Proof

```
Assume p is prime in R
Assume p=ab for some a,b\in R
p\mid p, so p\mid ab, and thus p\mid a or p\mid b
AWLOG: p\mid a
```

$$\begin{array}{l} \exists\,c\in R, a=cp=pc\\ p=ab=pc(b)=p(bc)\\ \text{So }bc=1\text{ and }b\text{ is a unit, and thus the factorization of }p\text{ is trivial} \end{array}$$

Therefore p is irreducible.

Definition: GCD

Let R be an integral domain and $a,b \in R$. To say that $d \in R$ is a *common divisor* of a and b means $d \mid a$ and $d \mid b$.

To say that d is a greatest common divisor (GCD) of a and b, denoted (a,b) or gcd(a,b), means that d is a divisor of a and b, and every other divisor of a and b also divides d.

Note that GCD is unique up to associates.

Example

 $(12,30) = \pm 6$, but 6 and -6 are associates.