HEART DISEASE DIAGNOSTIC ANALYSIS

```
#IMPORTING LIBRARIES
In [1]:
In [2]:
         import numpy as np
          import matplotlib.pyplot as plt
          import pandas as pd
          import seaborn as sns
          sns.set style('whitegrid')
In [3]:
         # EXTRACT DATASET
         data=pd.read csv("C:\\Users\\DELL\\Downloads\\heart.csv")
         data
                   sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
Out[3]:
               age
            0
                52
                                 125
                                       212
                                             0
                                                            168
                                                                            1.0
                                                                                    2
                                                                                        2
                                                                                             3
                                                                                                    0
                          0
                                 140
                                       203
                                                                                    0
                                                                                        0
                                                                                             3
                                                                                                    0
            1
                53
                      1
                                                      0
                                                            155
                                                                            3.1
            2
                70
                      1
                          0
                                 145
                                       174
                                             0
                                                      1
                                                            125
                                                                     1
                                                                            26
                                                                                    0
                                                                                        0
                                                                                             3
                                                                                                    0
            3
                61
                          0
                                 148
                                       203
                                             0
                                                            161
                                                                     0
                                                                            0.0
                                                                                    2
                                                                                             3
                                                                                                    0
                62
                      0
                          0
                                                            106
                                                                     0
                                                                                        3
                                                                                             2
                                                                                                    0
                                 138
                                       294
                                             1
                                                      1
                                                                            1.9
                                                                                    1
          1020
                                 140
                                       221
                                             0
                                                                            0.0
                                                                                    2
                                                                                        0
                                                                                             2
                                                                                                    1
                59
                      1
                                                      1
                                                            164
                                                                     1
                          0
                                                      0
                                                                                                    0
         1021
                60
                      1
                                 125
                                       258
                                             0
                                                            141
                                                                     1
                                                                            2.8
                                                                                    1
                                                                                        1
                                                                                             3
                                                      0
                                                                                             2
                                                                                                    0
          1022
                47
                      1
                          0
                                 110
                                       275
                                             0
                                                            118
                                                                     1
                                                                            1.0
                                                                                    1
                                                                                        1
                50
                      0
                          0
                                 110
                                       254
                                             0
                                                      0
                                                            159
                                                                     0
                                                                            0.0
                                                                                    2
                                                                                        0
                                                                                             2
                                                                                                    1
          1023
                54
                          0
                                 120
                                       188
                                             0
                                                            113
                                                                     0
                                                                            1.4
                                                                                             3
                                                                                                    0
         1024
                      1
                                                      1
                                                                                        1
                                                                                    1
         1025 rows × 14 columns
```

THERE ARE THIRTEEN FEATURES IN DATASET

- AGE: THE PERSONS AGE IN YEARS
- SEX: TEH PERSONS SEX (1 = MALE, 0 = FEMALE)
- CP: THE CHEST PAIN EXPERIENCED (VALUE 1: TYPICAL ANGINA, VALUE 2: ATYPICAL ANGINA, VALUE3: NON-ANGINAL PAIN, VALUE4: ASYMPTOMMATIC)
- TRESTBPS: THE PERSONS RESTING BLOOD PRESSURE (MM HG ON ADMISSION TO THE HOSPITAL)
- CHOL: THE PERSONS CHOLESTEROL MEASUREMENT IN MG/DI
- FBS: THE PERSONS FASTING BLOOD SUGAR(>120 MG/DI, 1=TRUE, 0 = FALSE)
- RESTECG: RESTING ELECTROCARDIOGRAPHIC MEASUREMENT (0 = NORMAL, 1 = HAVING ST-T WAVE ABNORMALLY, 2
 SHOWING PROBABLE OR DEFINITE LEFT VENTRICULAR HYPERNTROPHY BY ESTES'CRITERIA)
- THALACH: THE PERSONS MAXIMUM HEART RATE ACHIEVED
- EXANG: EXERCISE INDUCED ANGINA(1= YES, 0= NO)
- OLDPEAK: ST DEPRESSION INDUCED BY EXCERCISE RELATIVE TO REST
- SLOPE: THE SLOPE OF THE PEAK EXERCISE ST SEGMENT (VALUE 1: UPSTOPING, VALUE 2: FLAT, VALUE3: DOWNSLOPING)
- CA: THE NUMBER OF MAJOR VESSELS (0.3)
- THAL: A BLOOD DISORDER CALLED THALSSEMIA (3 =NORMAL, 6 = FIXED DEFECT, 7 = REVERSABLE DEFECT)
- TARGET: HEART DISEASE(0=NO, 1=YES)

```
In [6]: #CHECK THE NULL VALUES
 In [7]: data.isnull().sum()
          age
 Out[7]:
          sex
                      0
                      0
          ср
          trestbps
                      0
                      0
          chol
          fbs
                      0
          restecg
                      0
          thalach
                      0
          exang
                      0
          oldpeak
                      0
                      0
          slope
          ca
                      0
          thal
                      0
          target
                      0
          dtype: int64
          NO MISSING VALUES IN DATASET
          num=data.groupby('target').size()
 In [8]:
          num
          target
 Out[8]:
               499
               526
          1
          dtype: int64
 In [9]: # CONVERT NUMERICAL DATA INTO CATEGORICAL DATA
         def heart_disease(row):
In [10]:
              if row==0:
                  return 'Absence'
              elif row==1:
                  return 'presence'
         data['Heart_Disease']=data['target'].apply(heart_disease)
In [11]:
          data.head()
            age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target Heart_Disease
Out[11]:
             52
                  1
                      0
                            125
                                 212
                                       0
                                                    168
                                                            0
                                                                  1.0
                                                                          2
                                                                             2
                                                                                 3
                                                                                        0
                                                                                               Absence
             53
                  1
                      0
                            140
                                 203
                                       1
                                              0
                                                    155
                                                                  3.1
                                                                         0
                                                                             0
                                                                                 3
                                                                                       0
                                                                                               Absence
          2
             70
                  1
                      0
                            145
                                 174
                                       0
                                              1
                                                    125
                                                            1
                                                                  2.6
                                                                         0
                                                                             0
                                                                                 3
                                                                                        0
                                                                                               Absence
          3
             61
                      0
                            148
                                 203
                                       0
                                                    161
                                                            0
                                                                  0.0
                                                                          2
                                                                                 3
                                                                                        0
                                                                                               Absence
             62
                  0
                      0
                                                    106
                                                            0
                                                                  1.9
                                                                          1 3
                                                                                 2
                                                                                        0
                            138
                                294
                                       1
                                              1
                                                                                               Absence
         hd=data.groupby('Heart_Disease')['target'].count()
In [12]:
         Heart Disease
Out[12]:
                      499
         Absence
          presence
                      526
          Name: target, dtype: int64
          PIE CHART CREATING OF HEART DISEASE POPULATION % USING MATPLOTLIB
In [13]:
          plt.figure(figsize=(10,7))
          plt.pie(hd, labels=['Absence','Presence'], autopct='%0.0f%')
          plt.title('Heart Disease Population %', fontsize=20)
          plt.show()
```

Heart Disease Population %

FROM THE OVERALL POPULATION PEOPLE HAVING HEART DISEASE (51%) ARE GREATER THAN THOSE WHO HAVE HEART DISEASE(49%)

```
In [14]: # count plot creating of population Age using Matplotlib and Seaborn
          plt.figure(figsize=(15,7))
          sns.countplot(x='age', data=data)
          plt.title('Population Age', fontsize=17)
          plt.xlable('Age', fontsize=15)
plt.ylable('count', fontsize=15)
          plt.show()
          AttributeError
                                                      Traceback (most recent call last)
          Input In [14], in <cell line: 6>()
                4 sns.countplot(x='age', data=data)
                5 plt.title('Population Age', fontsize=17)
          ----> 6 plt.xlable('Age', fontsize=15)
                  plt.ylable('count', fontsize=15)
                8 plt.show()
          AttributeError: module 'matplotlib.pyplot' has no attribute 'xlable'
                                                               Population Age
            70
```


By examining the age distribution and segmenting it into different age groups such as the elderly, middle-aged, and young individuals, we can perform a more comprehensive analysis.

```
In []: # STATISTICAL ANALYSIS

Min_Age=data['age'].min()
Max_Age=data['age'].max()
Mean_Age=data['age'].mean()
print(("Minimum Age =",Min_Age),("Maximum Age =",Max_Age), ("Mean Age =",Mean_Age))
```

```
In [15]: # CATEGORICAL ANALYSIS

Young_Ages=data[(data['age']>=29) & (data['age']<40)]
Middle_Ages=data[(data['age']>=40) & (data['age']<55)]
Elderly_Ages=data[(data['age']>55)]
print(('Young Ages =',len(Young_Ages)), ('Middle Ages =',len(Middle_Ages)), ('Elderly Ages =',len(Elderly_Ages))
('Young Ages =', 57) ('Middle Ages =', 419) ('Elderly Ages =', 519)

In [16]: # BAR PLOT CREATION OF AGE CATEGORY USING MATPLOTLIB & SEABORN

sns.barplot(x=['Young_Ages','Middle_Ages','Elderly_Ages'], y=[len(Young_Ages), len(Middle_Ages), len(Elderly_Ages)]
plt.title('Age Category', fontsize=17)
plt.xlabel('Age Range', fontsize=15)
plt.ylabel('count', fontsize=15)
plt.show()
```



```
In [17]: # CONVERTING NUMERICAL DATA INTO CATEGORICAL DATA

def gender(row):
    if row==1:
        return 'Male'
    elif row==0:
        return 'Female'
```

```
In [18]: # APPLYING CONVERTED DATA INTO OUR DATASET WITH NEW COLUMN - SEX1

data['sex1']=data['sex'].apply(gender)
data.head()
```

Out[18]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target	Heart_Disease	sex1
	0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	0	Absence	Male
	1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	0	Absence	Male
	2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	0	Absence	Male
	3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	0	Absence	Male
	4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	0	Absence	Female

```
In [19]: # SWARM PLOT CREATION OF GENDER BASED AGE CATEGORY USING MATPLOTLIB AND SEABORN

data['Age_Range'] = pd.cut(data['age'], bins=[0, 30, 50, 100], labels=['Young Age', 'Middle Age', 'Elder Age'])

# create swarm plot
plt.figure(figsize=(10,7))
sns.swarmplot(x='Age_Range', y='age', hue='sex1', data=data, order=['Young Age', 'Middle Age', 'Elder Age'], pa
plt.title('Gender Based Age Category', fontsize=17)
plt.xlabel('Age Category', fontsize=15)
plt.ylabel('Age', fontsize=15)
plt.show()
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\categorical.py:1296: UserWarning: 24.1% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot. warnings.warn(msg, UserWarning)


```
# COUNT PLOT CREATION OF HEART DISEASE BASED ON AGE CATEGORY USING MATPLOTLIB AND SEABORN
plt.figure(figsize=(7,5))
hue_order=['Young Age', 'Middle Age', 'Elder Age']
sns.countplot(x='Heart_Disease', hue='Age_Range', data=data, order=['Presence', 'Absence'], hue_order=hue_order
plt.title('Heart_Disease Based On Age Category', fontsize=17)
plt.xlabel('Heart_Disease', fontsize=15)
plt.ylabel('Counts', fontsize=15)
plt.show()
```


ELDER AGE PEOPLE ARE MOST AFFECTED BY HEART DISEASE AND MIDDLE AGE OF PEOPLE ARE MOSTLY FREE FROM ANY KIND OF HEART DISEASE

```
In [21]: # COUNT PLOT CREATION OF HEART DISEASE BASED ON GENDER USING MATPLOTLIB AND SEABORN

plt.figure(figsize=(7,5))
sns.countplot(x=data['Heart_Disease'], hue='sex1', data=data, palette='RdBu_r')
plt.xlabel('Heart_Disease', fontsize=15)
plt.ylabel('Count', fontsize=15)
plt.legend(labels=['Male', 'Female'])
plt.title('Heart_Disease_Based_on_Gender', fontsize=17)
plt.show()
```


It can be observed that the incidence of heart disease is higher among males compared to females.

```
In [22]: # COUNT PLOT CREATION OF CHEST PAIN EXPRIENCED USING MATPLOTLIB AND SEABORN
         sns.countplot(x=data['Heart_Disease'], hue='cp', data=data, order=['Presence', 'Absence'])
         plt.title('Chest Pain Experienced', fontsize=17)
         plt.xlabel('Heart Disease', fontsize=15)
         plt.ylabel('Counts', fontsize=15)
         plt.legend(labels=['Typical Angina','Atypical Angina','Non-Anginal pain','Asymtomatic'])
         plt.show()
```


- IT SEEMS PEOPLE HAVING TYPICAL ANGINA CHEAST PAIN HAVE A HIGHER CHANCE OF HEART DISEASE
- TYPICAL ANGINA CHEAST PAIN MEANS OFTEN TRIGGERED BY PHYSICAL OR EMOTIONAL STRESS.

```
In [23]: # COUNT PLOT CREATION OF CHEST PAIN BASED ON GENDER USING MATPLOTLIB AND SEABORN
         \verb|sns.countplot(x=data['sex1'], hue='cp', data=data)|\\
         plt.title('Chest Pain Based On Gender', fontsize=17)
         plt.xlabel('sex', fontsize=15)
         plt.ylabel('Counts', fontsize=15)
         plt.legend(labels=['Typical Angina','Atypical Angina','Non-Anginal pain','Asymtomatic'])
         plt.show()
```


WE CAN SEE THAT A HIGHER NUMBER OF MEN ARE SUFFERING FROM TYPICAL ANGINA TYPE OF CHEST PAIN

```
sns.countplot(x=data['Age_Range'], hue='cp', data=data, order=['Young Age','Middle Age','Elder Age'], palette='
plt.title('Chest Pain Based On Age Category', fontsize=17)
plt.xlabel('Age Category', fontsize=15)
plt.ylabel('Counts', fontsize=15)
plt.legend(labels=['Typical Angina','Atypical Angina','Non-Anginal pain','Asymtomatic'])
plt.show()
```


• The incidence of typical angina pain is considerably higher among individuals in the elderly age group.

```
# BAR PLOT CREATION OF PERSONS RESTING BLOOD PRESURE USING MATPLOTLIB AND SEABORN
sns.barplot(x='sex1', y='trestbps', data=data, palette='plasma')
plt.title("Blood Pressure", fontsize=17)
plt.xlabel('sex', fontsize=15)
plt.ylabel("Person's Resting Blood Pressure (mm Hg)", fontsize=12)
plt.show()
```


• The incidence of blood pressure is nearly identical between males and females

```
In [26]: # BAR PLOT CREATION OF CHOLESTROL LEVEL BASED ON GENDER USING MATPLOTLIB AND SEABORN
    sns.barplot(x='sex1', y='chol', data=data, palette='turbo')
    plt.title("Cholesterol Level Based On Gender", fontsize=17)
    plt.xlabel('sex', fontsize=15)
    plt.ylabel("Cholesterol", fontsize=15)
    plt.show()
```


• FEMALES HAVE LITTLE BIT OF HIGHER CHOLESTEROL THAN MALES

```
In [27]: # BAR PLOT CREATION OF CHOLESTROL VS HEART DISEASE USING MATPLOTLIB AND SEABORN

sns.barplot(x='Heart_Disease',y='chol', data=data, palette='ocean_r')
plt.title('Cholestrol VS Heart Disease', fontsize=17)
plt.xlabel('Heart Disease', fontsize=15)
plt.ylabel('Cholestrol', fontsize=15)
plt.show()
```


• HIGHER CHOLESTROL LEVEL RESULTS CHANCES OF HEART DISEASE

```
In [28]: # BAR PLOT CREATION OF BLOOD PRESSURE VS HEART DISEASE USING MATPLOTLIB AND SEABORN

sns.barplot(x='Heart_Disease',y='trestbps', data=data, palette='tab20b_r')
plt.title('Blood Pressure VS Heart Disease', fontsize=17)
plt.xlabel('Heart Disease', fontsize=15)
plt.ylabel('Blood Pressure', fontsize=15)
plt.show
```

Out[28]: <function matplotlib.pyplot.show(close=None, block=None)>

• HIGHER BLOOD PRESSURE LEVEL RESULTS CHANCES OF HEART DISEASE

```
In [29]: # LINE PLOT CREATION OF BLOOD PRESSURE VS AGE USING MATPLOTLIB AND SEABORN

sns.lineplot(x='age',y='trestbps', data=data, color='r')
plt.title('Blood Pressure VS Age', fontsize=17)
plt.xlabel('Age',fontsize=15)
plt.ylabel('Blood Pressure',fontsize=15)
plt.show()
```


.....

 HERE WE CAN SEE THAT BLOOD PRESSURE INCREASES BETWEEN AGE OF 50 TO 60 AND SOME CONTINUE THE PATTERN TILL 70

```
In [30]: # LINE PLOT CREATION OF CHOLESTROL VS AGE USING MATPLOTLIB AND SEABORN

sns.lineplot(x='age',y='chol', data=data, color='b')
plt.title('Cholestrol VS Age', fontsize=17)
plt.xlabel('Age',fontsize=15)
plt.ylabel('Cholestrol',fontsize=15)
plt.show()
```


• CHOLESTROL INCREASING IN THE AGE GROUP OF 50 TO 60.

```
In [31]: #LINE PLOT CREATION OF STRESS DEPRESSION VS AGE USING MATPLOTLIB AND SEABORN

sns.lineplot(x='age',y='oldpeak', data=data, color='g')
plt.title('ST Depression VS Age', fontsize=17)
plt.xlabel('Age',fontsize=15)
plt.ylabel('ST Depression',fontsize=15)
plt.show()
```


- STRESS DEPRESSION MOSTLY INCREASES THE AGE GROUP OF 30 TO 40.
- STRESS DEPRESSION REFERS TO A FINDING ON AN ELECTROCARDIOGRAM, WHERIN THE TRACE IN THE ST SEGMENT IS ABNOMALLY LOW BELOW THE BASELINE

```
In [32]: # BAR PLOT CREATION OF ST DEPRESSION VS HEART DISEASE USING MATPLOTLIB AND SEABORN

sns.barplot(x='sex1',y='oldpeak', data=data, palette='twilight_r')
plt.title('ST Depression VS Heart Disease', fontsize=17)
plt.xlabel('sex', fontsize=15)
plt.ylabel('ST Depression', fontsize=15)
plt.show
```

Out[32]: <function matplotlib.pyplot.show(close=None, block=None)>

• Males have a higher susceptibility to stress-related depression compared to females

```
In [33]: # BAR PLOT CREATION OF EXERCISE WITH ANGINA VS HEART DISEASE USING MATPLOTLIB AND SEABORN

sns.barplot(x='Heart_Disease',y='exang', data=data, palette='viridis')
plt.title('Exercise With Angina VS Heart Disease', fontsize=17)
plt.xlabel('Heart Disease', fontsize=15)
plt.ylabel('Exercise With Angina', fontsize=15)
plt.show
```

Out[33]: <function matplotlib.pyplot.show(close=None, block=None)>

• If you have angina, you might be worried that engaging in physical activity could exacerbate your symptoms.

```
In [34]: # BAR PLOT CREATION OF EXERCISE WITH ANGINA VS GENDER USING MATPLOTLIB AND SEABORN
sns.barplot(x='sex1',y='exang', data=data, palette='binary_r')
plt.title('Exercise With Angina VS Gender', fontsize=17)
plt.xlabel('sex', fontsize=15)
plt.ylabel('Exercise With Angina', fontsize=15)
plt.show
```

Out[34]: <function matplotlib.pyplot.show(close=None, block=None)>

• Men are more likely to experience angina symptoms during exercise.

```
In [35]: # BAR PLOT CREATION OF FASTING BLOOD SUGAR VS GENDER USING MATPLOTLIB AND SEABORN

sns.barplot(y='fbs',x='sex1', data=data, palette='hsv')
plt.title('Fasting Blood Sugar VS Gender', fontsize=17)
plt.xlabel('sex', fontsize=15)
plt.ylabel('Fastiing Blood Sugar', fontsize=15)
plt.show
```

Out[35]: <function matplotlib.pyplot.show(close=None, block=None)>

• males exhibit a higher prevalence of elevated fasting blood sugar levels exceeding 120.

```
In [36]: # HEATMAP CREATION USING SEABORN

plt.figure(figsize=(16,9))
sns.heatmap(data.corr(), annot=True, linewidth=3)
```

Out[36]: <AxesSubplot:>

age	1	-0.1	-0.072	0.27	0.22	0.12	-0.13	-0.39	0.088	0.21	-0.17	0.27	0.072	-0.23
X8	-0.1	1	-0.041	-0.079	-0.2	0.027	-0.055	-0.049	0.14	0.085	-0.027	0.11	0.2	-0.28
8-	-0.072	-0.041	1	0.038	-0.082	0.079	0.044	0.31	-0.4	-0.17	0.13	-0.18	-0.16	0.43
frestbps	0.27	-0.079	0.038	1	0.13	0.18	-0.12	-0.039	0.061	0.19	-0.12	0.1	0.059	-0.14
dhol	0.22	-0.2	-0.082	0.13	1	0.027	-0.15	-0.022	0.067	0.065	-0.014	0.074	0.1	-0.1
E	0.12	0.027	0.079	0.18	0.027	1	-0.1	-0.0089	0.049	0.011	-0.062	0.14	-0.042	-0.041
restecg	-0.13	-0.055	0.044	-0.12	-0.15	-0.1	1	0.048	-0.066	-0.05	0.086	-0.078	-0.021	0.13
fhalach	-0.39	-0.049	0.31	-0.039	-0.022	-0.0089	0.048	1	-0.38	-0.35	0.4	-0.21	-0.098	0.42
exang	0.088	0.14	-0.4	0.061	0.067	0.049	-0.066	-0.38	1	0.31	-0.27	0.11	0.2	-0.44
oldpeak	0.21	0.085	-0.17	0.19	0.065	0.011	-0.05	-0.35	0.31	1	-0.58	0.22	0.2	-0.44
slope	-0.17	-0.027	0.13	-0.12	-0.014	-0.062	0.086	0.4	-0.27	-0.58	1	-0.073	-0.094	0.35
8	0.27	0.11	-0.18	0.1	0.074	0.14	-0.078	-0.21	0.11	0.22	-0.073	1	0.15	-0.38
fhal	0.072	0.2	-0.16	0.059	0.1	-0.042	-0.021	-0.098	0.2	0.2	-0.094	0.15	1	-0.34
target	-0.23	-0.28	0.43	-0.14	-0.1	-0.041	0.13	0.42	-0.44	-0.44	0.35	-0.38	-0.34	1
	age	sex	ф	trestbps	chol	fbs	restecg	fhalach	exang	oldpeak	slope	са	fhal	target

In []:

Loading [MathJax]/extensions/Safe.js