Amazon Fine Food Reviews Analysis

Data Source: https://www.kaggle.com/snap/amazon-fine-food-reviews

EDA: https://nycdatascience.com/blog/student-works/amazon-fine-foods-visualization/

The Amazon Fine Food Reviews dataset consists of reviews of fine foods from Amazon.

Number of reviews: 568,454 Number of users: 256,059 Number of products: 74,258 Timespan: Oct 1999 - Oct 2012

Number of Attributes/Columns in data: 10

Attribute Information:

- 1 Id
- 2. ProductId unique identifier for the product
- 3. Userld unqiue identifier for the user
- 4. ProfileName
- 5. HelpfulnessNumerator number of users who found the review helpful
- 6. HelpfulnessDenominator number of users who indicated whether they found the review helpful or not
- 7. Score rating between 1 and 5
- 8. Time timestamp for the review
- 9. Summary brief summary of the review
- 10. Text text of the review

Objective:

Given a review, determine whether the review is positive (rating of 4 or 5) or negative (rating of 1 or 2).

[Q] How to determine if a review is positive or negative?

[Ans] We could use Score/Rating. A rating of 4 or 5 can be considered as a positive review. A rating of 1 or 2 can be considered as negative one. A review of rating 3 is considered nuetral and such reviews are ignored from our analysis. This is an approximate and proxy way of determining the polarity (positivity/negativity) of a review.

[1]. Reading Data

[1.1] Loading the data

The dataset is available in two forms

- 1. .csv file
- 2. SQLite Database

In order to load the data, We have used the SQLITE dataset as it is easier to query the data and visualise the data efficiently.

Here as we only want to get the global sentiment of the recommendations (positive or negative), we will purposefully ignore all Scores equal to 3. If the score is above 3, then the recommendation will be set to "positive". Otherwise, it will be set to "negative".

In [1]:

```
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")

import sqlite3
import pandas as pd
import numpy as np
import nltk
import string
import matplotlib.pyplot as plt
```

```
import seaborn as sns
from sklearn.feature extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature extraction.text import CountVectorizer
from sklearn.metrics import confusion matrix
from sklearn import metrics
from sklearn.metrics import roc curve, auc
from nltk.stem.porter import PorterStemmer
import re
# Tutorial about Python regular expressions: https://pymotw.com/2/re/
import string
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from nltk.stem.wordnet import WordNetLemmatizer
from gensim.models import Word2Vec
from gensim.models import KeyedVectors
import pickle
import warnings
warnings.filterwarnings("ignore")
from tqdm import tqdm
import os
```

In [2]:

```
# using SQLite Table to read data.
con = sqlite3.connect('database.sqlite')
# filtering only positive and negative reviews i.e.
# not taking into consideration those reviews with Score=3
# SELECT * FROM Reviews WHERE Score != 3 LIMIT 500000, will give top 500000 data points
# you can change the number to any other number based on your computing power
# filtered data = pd.read sql query(""" SELECT * FROM Reviews WHERE Score != 3 LIMIT 500000""", co
n)
# for tsne assignment you can take 5k data points
filtered data = pd.read sql query(""" SELECT * FROM Reviews WHERE Score != 3 LIMIT 100000""", con)
# Give reviews with Score>3 a positive rating(1), and reviews with a score<3 a negative rating(0).
def partition(x):
   if x < 3:
        return 0
    return 1
#changing reviews with score less than 3 to be positive and vice-versa
actualScore = filtered data['Score']
positiveNegative = actualScore.map(partition)
filtered data['Score'] = positiveNegative
print("Number of data points in our data", filtered data.shape)
filtered data.head(3)
```

Number of data points in our data (100000, 10)

Out[2]:

	ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	Time
C	1	B001E4KFG0	A3SGXH7AUHU8GW	delmartian	1	1	1	130386240(
1	2	B00813GRG4	A1D87F6ZCVE5NK	dll pa	0	0	0	1346976000

	ld	Productid	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	Time	
2	3	B000LQOCH0	ABXLMWJIXXAIN	Natalia Corres "Natalia Corres"	1	1	1	121901760(
4)								

In [3]:

```
display = pd.read_sql_query("""
SELECT UserId, ProductId, ProfileName, Time, Score, Text, COUNT(*)
FROM Reviews
GROUP BY UserId
HAVING COUNT(*)>1
""", con)
```

In [4]:

```
print(display.shape)
display.head()
```

(80668, 7)

Out[4]:

	UserId	ProductId	ProfileName	Time	Score	Text	COUNT(*)
0	#oc- R115TNMSPFT9I7	B007Y59HVM	Breyton	1331510400	2	Overall its just OK when considering the price	2
1	#oc- R11D9D7SHXIJB9	B005HG9ET0	Louis E. Emory "hoppy"	1342396800	5	My wife has recurring extreme muscle spasms, u	3
2	#oc- R11DNU2NBKQ23Z	B007Y59HVM	Kim Cieszykowski	1348531200	1	This coffee is horrible and unfortunately not	2
3	#oc- R11O5J5ZVQE25C	B005HG9ET0	Penguin Chick	1346889600	5	This will be the bottle that you grab from the	3
4	#oc- R12KPBODL2B5ZD	B007OSBE1U	Christopher P. Presta	1348617600	1	I didnt like this coffee. Instead of telling y	2

In [5]:

```
display[display['UserId'] == 'AZY10LLTJ71NX']
```

Out[5]:

	UserId	ProductId	ProfileName	Time	Score	Text	COUNT(*)
80638	AZY10LLTJ71NX	B006P7E5ZI	undertheshrine "undertheshrine"	1334707200	5	I was recommended to try green tea extract to	5

In [6]:

```
display['COUNT(*)'].sum()
```

Out[6]:

393063

[2] Exploratory Data Analysis

MATE (AL . B. I. III II

[2.1] Data Cleaning: Deduplication

It is observed (as shown in the table below) that the reviews data had many duplicate entries. Hence it was necessary to remove duplicates in order to get unbiased results for the analysis of the data. Following is an example:

```
In [7]:
```

```
display= pd.read_sql_query("""
SELECT *
FROM Reviews
WHERE Score != 3 AND UserId="AR5J8UI46CURR"
ORDER BY ProductID
""", con)
display.head()
```

Out[7]:

	ld	ProductId	UserId	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	Ti
0	78445	B000HDL1RQ	AR5J8UI46CURR	Geetha Krishnan	2	2	5	11995776
1	138317	B000HDOPYC	AR5J8UI46CURR	Geetha Krishnan	2	2	5	11995776
2	138277	B000HDOPYM	AR5J8UI46CURR	Geetha Krishnan	2	2	5	11995776
3	73791	B000HDOPZG	AR5J8UI46CURR	Geetha Krishnan	2	2	5	11995776
4	155049	B000PAQ75C	AR5J8UI46CURR	Geetha Krishnan	2	2	5	11995776

As it can be seen above that same user has multiple reviews with same values for HelpfulnessNumerator, HelpfulnessDenominator, Score, Time, Summary and Text and on doing analysis it was found that

ProductId=B000HDOPZG was Loacker Quadratini Vanilla Wafer Cookies, 8.82-Ounce Packages (Pack of 8)

ProductId=B000HDL1RQ was Loacker Quadratini Lemon Wafer Cookies, 8.82-Ounce Packages (Pack of 8) and so on

It was inferred after analysis that reviews with same parameters other than Productld belonged to the same product just having different flavour or quantity. Hence in order to reduce redundancy it was decided to eliminate the rows having same parameters.

The method used for the same was that we first sort the data according to ProductId and then just keep the first similar product review and delelte the others. for eg. in the above just the review for ProductId=B000HDL1RQ remains. This method ensures that there is only one representative for each product and deduplication without sorting would lead to possibility of different representatives still existing for the same product.

```
In [8]:
```

```
#Sorting data according to ProductId in ascending order sorted_data=filtered_data.sort_values('ProductId', axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
```

```
In [9]:
```

```
#Deduplication of entries
final=sorted_data.drop_duplicates(subset={"UserId","ProfileName","Time","Text"}, keep='first', inpl
ace=False)
final.shape
```

Out[9]:

(87775, 10)

In [10]:

```
#Checking to see how much % of data still remains
(final['Id'].size*1.0)/(filtered_data['Id'].size*1.0)*100
```

Out[10]:

87.775

Observation:- It was also seen that in two rows given below the value of HelpfulnessNumerator is greater than HelpfulnessDenominator which is not practically possible hence these two rows too are removed from calcualtions

In [11]:

```
display= pd.read_sql_query("""
SELECT *
FROM Reviews
WHERE Score != 3 AND Id=44737 OR Id=64422
ORDER BY ProductID
""", con)
display.head()
```

Out[11]:

	ld	ProductId	UserId	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	Tiı
0	64422	B000MIDROQ	A161DK06JJMCYF	J. E. Stephens "Jeanne"	3	1	5	12248928
1	44737	B001EQ55RW	A2V0I904FH7ABY	Ram	3	2	4	12128832

In [12]:

```
final=final[final.HelpfulnessNumerator<=final.HelpfulnessDenominator]
```

In [13]:

(87773, 10)

```
#Before starting the next phase of preprocessing lets see the number of entries left
print(final.shape)

#How many positive and negative reviews are present in our dataset?
final['Score'].value_counts()
```

```
Out[13]:

1 73592
0 14181
Name: Score, dtype: int64
```

In [14]:

```
final.sort_values("Time", inplace=True)
```

In [15]:

final

Out[15]:

	ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenomi
70688	76882	B00002N8SM	A32DW342WBJ6BX	Buttersugar	0	0
1146	1245	B00002Z754	A29Z5PI9BW2PU3	Robbie	7	7
1145	1244	B00002Z754	A3B8RCEI0FXFI6	B G Chase	10	10
28086	30629	B00008RCMI	A19E94CF5O1LY7	Andrew Arnold	0	0
28087	30630	B00008RCMI	A284C7M23F0APC	A. Mendoza	0	0
61299	66610	B0000SY9U4	A3EEDHNHI4WNSH	Joanna J. Young	23	23
38740	42069	B0000EIEQU	A1YMJX4YWCE6P4	Jim Carson "http://www.jimcarson.com"	12	12
38889	42227	B0000A0BS8	A1IU7S4HCK1XK0	Joanna Daneman	5	5
38888	42226	B0000A0BS8	A23GFTVIETX7DS	Debbie Lee Wesselmann	5	5
10992	11991	B0000T15M8	A2928LJN5IISB4	chatchi	5	5
28085	30628	B00008RCMI	A3AKWA5CWSKOOH	Ilaxi S. Patel "Editor, kidsfreesouls.com & A	0	0
97546	105988	B0000DG4EJ	AVCJ3K0HFRRUM	H. Johnson	0	0
96196	104537	B0000DG5B6	A1S3DOTCYJPE4O	hervin02 "hervin02"	0	0
62127	67/07	ודואמחחחחם		Datrick O'Brian	26	26

02121	ld	Productid	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenomi
87386	95119	B0000DIYIJ	A3S4XR84R8S0TV	Brook Lindquist	0	1
39671	43130	B0000W2SZS	A2BETN6Y2DEFZ1	Catnip	11	11
48952	53177	B002UUJ590	A2IF5C0I5BH11F	Kala	17	18
24061	26313	B000121BY6	A281NPSIMI1C2R	Rebecca of Amazon "The Rebecca Review"	9	9
86598	94281	B0000CNU2Q	A1NOWEOLKMRRXM	T. Reinhardt "olivia lee"	27	27
86599	94282	B0000CNU2Q	A1IU7S4HCK1XK0	Joanna Daneman	14	14
81698	88850	B00015UELO	A1ZF35RV6WGYFG	Gloriya O. Grinsteiner	4	6
94002	102194	B0000UD67Y	A18O1KPT80HUDQ	K. Moore "collegian"	0	0
94024	102216	B0000GH6UG	A1J2NULS2YDNAQ	Matt Cromwell	8	12
94001	102193	B0000UD67Y	A2QG8VTCMUQDO2	A. J. Lamb	0	0
24220	26484	B0000TLEEW	A3M174IC0VXOS2	Gail Cooke	5	6
94494	102712	B0000D9N63	A2P8AVWJO0CVGL	Dipper Lips "DIP"	3	9
7427	8111	B0000EIE2Z	A3M174IC0VXOS2	Gail Cooke	3	3
25005	27304	B000J36EQC	A28SJYEFR84MU1	L Flores	0	0
97771	106224	B0000DJT3C	A1ETIK7N9ZWZY9	Call Me Jonah	5	7
94382	102594	B0000D9N6V	A28ECE800BV42W	"bungfritz"	5	5

	ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenomi
42269	45991	B007VQQT1K	A34P4V70RNC2YV	S. Guss	0	0
76059	82772	B0049K99RW	A1Y73Y4VX3AJMZ	Rispir Chrone	0	0
25112	27424	B003WEFSAI	A3700JPLJ8BOXP	Texaschick59	0	0
29158	31794	B0049D7HRS	A3LR9HCV3D96I3	Gypsy Healer	0	0
87843	95629	B000LKXDXU	A2J3PR6J36UTVH	Joyce	0	0
97624	106071	B007JTKEQK	A1DOMJI7GXGPNY	Jyouk	0	0
14526	15842	B007TJGZ5E	A3UOYYQS5Z47MS	David A. Levin "DaveL"	0	0
14300	15605	B000255OIG	AUINI96NMGXUI	Kkrys23	0	0
14299	15604	B000255OIG	A3SSEJ8IEM4YGW	Seagaul	0	0
82884	90215	B00866AM2G	ADTOX2JFWWA0B	Arnos Vale	0	0
82885	90216	B00866AM2G	AY839W9JQDZM2	Daniella	0	0
15069	16426	B007TJGZ54	A29BJSTYH9W3JI	Harry	0	0
43703	47562	B004M0Y8T8	A2QJS6MHTIFSRI	Georgie	0	0
13539	14784	B000S859NC	A2H7STZ2URUCOE	Christopher Whedon "the odd bead"	0	0
52220	56723	B0012XBD7I	A32NC2UF34RJQY	D. Pagliassotti	0	0
55100	59787	B002K9BG16	A30A7W9CZ77GFY	Cecelia Thomas "Lady Kinrowan"	0	0
89213	97089	B004O8KBK8	A1JPKFGGF128X1	MTNick	0	0
65 4 8	7178	R004001 IHK	∇ΚΗ∪W I∪B<∇01</th <th>Pan Nama</th> <th>n</th> <th>n</th>	Pan Nama	n	n

00-10	ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenomi
60967	66252	B007OSBGOK	A10QOESY9VJ9K	Gina	0	0
43268	47077	B001C4PKIK	A3IMXYITIO8WHN	Thomas R. Jackson	0	0
16026	17512	B0045Z6K50	A3HM6TNYB7FNDL	C. Furman	0	0
90340	98294	B0002LY6W0	A1BX08Y0GIT5RU	L. Nguyen "Always on the lookout for a good d	0	0
76594	83330	B005ZBZLT4	AAMUNRK134Y5P	Tony Schy	0	0
78715	85601	B003ZURM80	A1O6MADFNBRX7H	Denise Lake	0	0
50708	55049	B000IHJEDE	A2DFSA2JXQKVY3	C-Rush	0	0
76593	83329	B005ZBZLT4	A308RR8J9NJOOZ	Josh	0	0
22401	24518	B0016JJEFG	AO9WE22147CRH	Arvind Rajan	0	0
56673	61474	B005YVU4A6	A2LU545SISQOJ8	Kelly	0	0
37074	40274	B005VOOT52	A2FKFQQPU498JT	сс	0	0
5259	5703	B009WSNWC4	AMP7K1O84DH1T	ESTY	0	0

87773 rows × 10 columns

[3] Preprocessing

[3.1]. Preprocessing Review Text

Now that we have finished deduplication our data requires some preprocessing before we go on further with analysis and making the prediction model.

Hence in the Preprocessing phase we do the following in the order below:-

- 1. Begin by removing the html tags
- 2. Remove any punctuations or limited set of special characters like , or . or # etc.
- 3. Check if the word is made up of english letters and is not alpha-numeric
- 4. Check to see if the length of the word is greater than 2 (as it was researched that there is no adjective in 2-letters)
- 5. Convert the word to lowercase
- 6. Remove Stopwords
- 7 Finally Snowball Stamming the word (it was observed to be botter than Porter Stamming)

After which we collect the words used to describe positive and negative reviews

In [16]:

```
# printing some random reviews
sent_0 = final['Text'].values[0]
print(sent_0)
print("="*50)

sent_1000 = final['Text'].values[1000]
print(sent_1000)
print("="*50)

sent_1500 = final['Text'].values[1500]
print(sent_1500)
print(sent_1500)
print("="*50)

sent_4900 = final['Text'].values[4900]
print(sent_4900)
print(sent_4900)
print("="*50)
```

I bought a few of these after my apartment was infested with fruit flies. After only a few hours, the trap had "attracted" many flies and within a few days they were practically gone. Th is may not be a long term solution, but if flies are driving you crazy, consider buying this. One caution— the surface is very sticky, so try to avoid touching it.

I have made these brownies for family and for a den of cub scouts and no one would have known they were gluten free and everyone asked for seconds! These brownies have a fudgy texture and have bit s of chocolate chips in them which are delicious. I would say the mix is very thick and a little difficult to work with. The cooked brownies are slightly difficult to cut into very neat edges as the edges tend to crumble a little and I would also say that they make a slightly thinner layer of brownies than most of the store brand gluten containing but they taste just as good, if not better. Highly recommended!

'>

(For those wondering, this mix requires 2 eggs OR 4 egg wh ites and 7 tbs melted butter to prepare. They do have suggestions for lactose free and low fat preparations)

This gum is my absolute favorite. By purchasing on amazon I can get the savings of large quanities at a very good price. I highly recommend to all gum chewers. Plus as you enjoy the peppermint flav or and freshing of breath you are whitening your teeth all at the same time.

This is an excellent product, both tastey and priced right. It's difficult to find this product in regular local grocery stores, so I was thrilled to find it.

In [17]:

```
# remove urls from text python: https://stackoverflow.com/a/40823105/4084039
sent_0 = re.sub(r"http\S+", "", sent_0)
sent_1000 = re.sub(r"http\S+", "", sent_1000)
sent_150 = re.sub(r"http\S+", "", sent_1500)
sent_4900 = re.sub(r"http\S+", "", sent_4900)
print(sent_0)
```

I bought a few of these after my apartment was infested with fruit flies. After only a few hours, the trap had " attracted" many flies and within a few days they were practically gone. Th is may not be a long term solution, but if flies are driving you crazy, consider buying this. One caution— the surface is very sticky, so try to avoid touching it.

In [18]:

```
# https://stackoverflow.com/questions/16206380/python-beautifulsoup-how-to-remove-all-tags-from-an
-element
from bs4 import BeautifulSoup

soup = BeautifulSoup(sent_0, 'lxml')
text = soup.get_text()
print(text)
print("="*50)

soup = BeautifulSoup(sent_1000, 'lxml')
text = soup.get_text()
```

```
print(text)
print("="*50)

soup = BeautifulSoup(sent_1500, 'lxml')
text = soup.get_text()
print(text)
print("="*50)

soup = BeautifulSoup(sent_4900, 'lxml')
text = soup.get_text()
print(text)
```

I bought a few of these after my apartment was infested with fruit flies. After only a few hours, the trap had "attracted" many flies and within a few days they were practically gone. This may not be a long term solution, but if flies are driving you crazy, consider buying this. One caution-the surface is very sticky, so try to avoid touching it.

I have made these brownies for family and for a den of cub scouts and no one would have known they were gluten free and everyone asked for seconds! These brownies have a fudgy texture and have bit s of chocolate chips in them which are delicious. I would say the mix is very thick and a little difficult to work with. The cooked brownies are slightly difficult to cut into very neat edges as the edges tend to crumble a little and I would also say that they make a slightly thinner layer of brownies than most of the store brand gluten containing but they taste just as good, if not better. Highly recommended! (For those wondering, this mix requires 2 eggs OR 4 egg whites and 7 t bs melted butter to prepare. They do have suggestions for lactose free and low fat preparations)

This gum is my absolute favorite. By purchasing on amazon I can get the savings of large quanities at a very good price. I highly recommend to all gum chewers. Plus as you enjoy the peppermint flav or and freshing of breath you are whitening your teeth all at the same time.

This is an excellent product, both tastey and priced right. It's difficult to find this product in regular local grocery stores, so I was thrilled to find it.

In [19]:

```
# https://stackoverflow.com/a/47091490/4084039
import re

def decontracted(phrase):
    # specific
    phrase = re.sub(r"won't", "will not", phrase)
    phrase = re.sub(r"can\'t", "can not", phrase)

# general
    phrase = re.sub(r"\'re", " are", phrase)
    phrase = re.sub(r"\'s", " is", phrase)
    phrase = re.sub(r"\'s", " is", phrase)
    phrase = re.sub(r"\'d", " would", phrase)
    phrase = re.sub(r"\'t", " not", phrase)
    phrase = re.sub(r"\'t", " will", phrase)
    phrase = re.sub(r"\'t", " not", phrase)
    phrase = re.sub(r"\'t", " not", phrase)
    phrase = re.sub(r"\'t", " am", phrase)
    return phrase
```

In [20]:

```
sent_1500 = decontracted(sent_1500)
print(sent_1500)
print("="*50)
```

This gum is my absolute favorite. By purchasing on amazon I can get the savings of large quanities at a very good price. I highly recommend to all gum chewers. Plus as you enjoy the peppermint flav or and freshing of breath you are whitening your teeth all at the same time.

In [21]:

```
#remove words with numbers python: https://stackoverflow.com/a/18082370/4084039
sent_0 = re.sub("\S*\d\S*", "", sent_0).strip()
print(sent_0)
```

I bought a few of these after my apartment was infested with fruit flies. After only a few hours, the tran had squotestracted squote many flies and within a few days they were practically gone. The

is may not be a long term solution, but if flies are driving you crazy, consider buying this. One caution- the surface is very sticky, so try to avoid touching it.

In [22]:

```
#remove spacial character: https://stackoverflow.com/a/5843547/4084039
sent_1500 = re.sub('[^A-Za-z0-9]+', ' ', sent_1500)
print(sent_1500)
```

This gum is my absolute favorite By purchasing on amazon I can get the savings of large quanities at a very good price I highly recommend to all gum chewers Plus as you enjoy the peppermint flavor and freshing of breath you are whitening your teeth all at the same time

In [23]:

```
# https://gist.github.com/sebleier/554280
# we are removing the words from the stop words list: 'no', 'nor', 'not'
# <br /><br /> ==> after the above steps, we are getting "br br"
# we are including them into stop words list
# instead of <br /> if we have <br/> these tags would have revmoved in the 1st step
stopwords= set(['br', 'the', 'i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "y
ou're", "you've", \
                         "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his',
'himself', \
                         'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them',
'their',\
                         'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll",
'these', 'those', '
                         'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having',
'do', 'does', \
                         'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', '
while', 'of', \
                         'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during',
'before', 'after',\
                         'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under'
, 'again', 'further',\
                         'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', '&
ach', 'few', 'more', \
                         'most', 'other', 'some', 'such', 'only', 'own', 'same', 'so', 'than', 'too', 'very', \
                         's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll'
, 'm', 'o', 're', \
                         've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn', "doesn',
esn't", 'hadn',\
                         "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn',
"mightn't", 'mustn',\
                         "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn',
"wasn't", 'weren', "weren't", \
                         'won', "won't", 'wouldn', "wouldn't"])
```

In [24]:

```
# Combining all the above stundents
from tqdm import tqdm
preprocessed_reviews = []
# tqdm is for printing the status bar
for sentance in tqdm(final['Text'].values):
    sentance = re.sub(r"http\S+", "", sentance)
    sentance = BeautifulSoup(sentance, 'lxml').get_text()
    sentance = decontracted(sentance)
    sentance = re.sub("\S*\d\S*", "", sentance).strip()
    sentance = re.sub('[^A-Za-z]+', ' ', sentance)
    # https://gist.github.com/sebleier/554280
    sentance = ' '.join(e.lower() for e in sentance.split() if e.lower() not in stopwords)
    preprocessed_reviews.append(sentance.strip())
```

In [25]:

```
Out[25]:
```

'gum absolute favorite purchasing amazon get savings large quanities good price highly recommend g um chewers plus enjoy peppermint flavor freshing breath whitening teeth time'

[3.2] Preprocessing Review Summary

```
In [26]:
```

```
## Similartly you can do preprocessing for review summary also.
from tqdm import tqdm
preprocessed_summary = []
# tqdm is for printing the status bar
for sentance in tqdm(final['Summary'].values):
    sentance = re.sub(r"http\S+", "", sentance)
    sentance = BeautifulSoup(sentance, 'lxml').get_text()
    sentance = decontracted(sentance)
    sentance = re.sub("\S*\d\S*", "", sentance).strip()
    sentance = re.sub('[^A-Za-z]+', ' ', sentance)
    # https://gist.github.com/sebleier/554280
    sentance = ' '.join(e.lower() for e in sentance.split() if e.lower() not in stopwords)
    preprocessed_summary.append(sentance.strip())
```

In [27]:

```
len (preprocessed_summary)
Out [27]:
```

87773

[4] Featurization

[4.1] BAG OF WORDS

```
In [26]:
```

[4.2] Bi-Grams and n-Grams.

```
In [27]:
```

```
#bi-gram, tri-gram and n-gram

#removing stop words like "not" should be avoided before building n-grams

# count yest = Count Vesterizer (ngram range=(1 2))
```

```
# count_vect - countvectorizer (ngram_range-(1,2))
# please do read the CountVectorizer documentation http://scikit-
learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html

# you can choose these numebrs min_df=10, max_features=5000, of your choice
count_vect = CountVectorizer(ngram_range=(1,2), min_df=10, max_features=5000)
final_bigram_counts = count_vect.fit_transform(preprocessed_reviews)
print("the type of count vectorizer ",type(final_bigram_counts))
print("the shape of out text BOW vectorizer ",final_bigram_counts.get_shape())
print("the number of unique words including both unigrams and bigrams ", final_bigram_counts.get_s
hape()[1])

the type of count vectorizer <class 'scipy.sparse.csr.csr_matrix'>
the shape of out text BOW vectorizer (87773, 5000)
the number of unique words including both unigrams and bigrams 5000
```

[4.3] TF-IDF

```
In [28]:
```

```
tf_idf_vect = TfidfVectorizer(ngram_range=(1,2), min_df=10)
tf_idf_vect.fit(preprocessed_reviews)
print("some sample features(unique words in the corpus)",tf_idf_vect.get_feature_names()[0:10])
print('='*50)

final_tf_idf = tf_idf_vect.transform(preprocessed_reviews)
print("the type of count vectorizer ",type(final_tf_idf))
print("the shape of out text TFIDF vectorizer ",final_tf_idf.get_shape())
print("the number of unique words including both unigrams and bigrams ", final_tf_idf.get_shape()[
1])

some sample features(unique words in the corpus) ['aa', 'aafco', 'aback', 'abandon', 'abandoned', 'abdominal', 'ability', 'able', 'able add', 'able brew']

the type of count vectorizer <class 'scipy.sparse.csr.csr_matrix'>
the shape of out text TFIDF vectorizer (87773, 51709)
the number of unique words including both unigrams and bigrams 51709
```

[4.4] Word2Vec

```
In [28]:
```

```
# Train your own Word2Vec model using your own text corpus
i=0
list_of_sentance=[]
for sentance in preprocessed_reviews:
    list_of_sentance.append(sentance.split())
```

In [29]:

```
# Using Google News Word2Vectors

# in this project we are using a pretrained model by google
# its 3.3G file, once you load this into your memory
# it occupies ~96b, so please do this step only if you have >12G of ram
# we will provide a pickle file wich contains a dict ,
# and it contains all our courpus words as keys and model[word] as values
# To use this code-snippet, download "GoogleNews-vectors-negative300.bin"
# from https://drive.google.com/file/d/0B7XkCwpI5KDYN1NUTT1SS21pQmM/edit
# it's 1.9GB in size.

# http://kavita-ganesan.com/gensim-word2vec-tutorial-starter-code/#.W17SRFAzZPY
# you can comment this whole cell
# or change these varible according to your need

is_your_ram_gt_16g=False
want_to_use_google_w2v = False
want_to_train_w2v = True
```

```
if want to train w2v:
    # min count = 5 considers only words that occured atleast 5 times
    w2v_model=Word2Vec(list_of_sentance,min_count=5,size=50, workers=4)
    print(w2v model.wv.most similar('great'))
    print('='*50)
    print(w2v_model.wv.most_similar('worst'))
elif want to use google w2v and is your ram gt 16g:
    if os.path.isfile('GoogleNews-vectors-negative300.bin'):
        w2v model=KeyedVectors.load word2vec format('GoogleNews-vectors-negative300.bin', binary=Tr
ue)
        print(w2v model.wv.most similar('great'))
        print(w2v model.wv.most similar('worst'))
    else:
        print("you don't have gogole's word2vec file, keep want to train w2v = True, to train your
own w2v")
4
[('fantastic', 0.8465518355369568), ('terrific', 0.8245105147361755), ('awesome',
0.8190785646438599), ('good', 0.8167353868484497), ('excellent', 0.8091518878936768), ('perfect',
0.7542491555213928), ('wonderful', 0.7512638568878174), ('amazing', 0.7020801901817322), ('nice',
0.6902601718902588), ('fabulous', 0.6900163888931274)]
_____
[('greatest', 0.7815344333648682), ('coolest', 0.7344396710395813), ('best', 0.7160952091217041),
('nastiest', 0.6755936741828918), ('tastiest', 0.6603464484214783), ('disgusting',
0.6454557776451111), ('terrible', 0.636536180973053), ('horrible', 0.6360681056976318), ('awful',
0.6344166398048401), ('nicest', 0.621245265007019)]
In [30]:
w2v words = list(w2v model.wv.vocab)
print("number of words that occured minimum 5 times ",len(w2v words))
print("sample words ", w2v_words[0:50])
number of words that occured minimum 5 times 17386
sample words ['bought', 'apartment', 'infested', 'fruit', 'flies', 'hours', 'trap', 'attracted',
'many', 'within', 'days', 'practically', 'gone', 'may', 'not', 'long', 'term', 'solution', 'driving', 'crazy', 'consider', 'buying', 'one', 'caution', 'surface', 'sticky', 'try', 'avoid', 'touching', 'really', 'good', 'idea', 'final', 'product', 'outstanding', 'use', 'car', 'window', 'e
verybody', 'asks', 'made', 'two', 'thumbs', 'received', 'shipment', 'could', 'hardly', 'wait', 'lo
ve', 'call']
```

[4.4.1] Converting text into vectors using Avg W2V, TFIDF-W2V

[4.4.1.1] Avg W2v

In [31]:

```
# average Word2Vec
# compute average word2vec for each review.
sent_vectors = []; # the avg-w2v for each sentence/review is stored in this list
for sent in tqdm(list_of sentance): # for each review/sentence
    sent vec = np.zeros(50) # as word vectors are of zero length 50, you might need to change this
to 300 if you use google's w2v
   cnt words =0; # num of words with a valid vector in the sentence/review
    for word in sent: # for each word in a review/sentence
       if word in w2v_words:
           vec = w2v model.wv[word]
           sent_vec += vec
           cnt words += 1
    if cnt words != 0:
       sent_vec /= cnt_words
    sent vectors.append(sent vec)
print(len(sent vectors))
print(len(sent_vectors[0]))
100%| 87773/87773 [03:53<00:00, 376.51it/s]
```

[4.4.1.2] TFIDF weighted W2v

```
In [0]:
```

```
# S = ["abc def pqr", "def def def abc", "pqr pqr def"]
model = TfidfVectorizer()
tf_idf_matrix = model.fit_transform(preprocessed_reviews)
# we are converting a dictionary with word as a key, and the idf as a value
dictionary = dict(zip(model.get_feature_names(), list(model.idf_)))
```

In [0]:

```
# TF-IDF weighted Word2Vec
tfidf feat = model.get feature names() # tfidf words/col-names
# final tf idf is the sparse matrix with row= sentence, col=word and cell val = tfidf
tfidf sent vectors = []; # the tfidf-w2v for each sentence/review is stored in this list
row=0;
for sent in tqdm(list of sentance): # for each review/sentence
   sent_vec = np.zeros(50) # as word vectors are of zero length
    weight sum =0; # num of words with a valid vector in the sentence/review
    for word in sent: # for each word in a review/sentence
       if word in w2v_words and word in tfidf_feat:
           vec = w2v model.wv[word]
             tf idf = tf idf_matrix[row, tfidf_feat.index(word)]
#
            # to reduce the computation we are
            # dictionary[word] = idf value of word in whole courpus
            # sent.count(word) = tf valeus of word in this review
            tf idf = dictionary[word] * (sent.count (word) /len(sent))
            sent vec += (vec * tf idf)
           weight sum += tf idf
    if weight sum != 0:
       sent vec /= weight sum
    tfidf sent vectors.append(sent vec)
    row += 1
100%|
                                                                          4986/4986
[00:20<00:00, 245.63it/s]
```

[5] Assignment 4: Apply Naive Bayes

1. Apply Multinomial NaiveBayes on these feature sets

- SET 1:Review text, preprocessed one converted into vectors using (BOW)
- SET 2:Review text, preprocessed one converted into vectors using (TFIDF)

2. The hyper paramter tuning(find best Alpha)

- Find the best hyper parameter which will give the maximum AUC value
- Consider a wide range of alpha values for hyperparameter tuning, start as low as 0.00001
- Find the best hyper paramter using k-fold cross validation or simple cross validation data
- Use gridsearch cv or randomsearch cv or you can also write your own for loops to do this task of hyperparameter tuning

3. Feature importance

• Find the top 10 features of positive class and top 10 features of negative class for both feature sets Set 1 and Set 2 using values of `feature_log_prob_` parameter of MultinomialNB and print their corresponding feature names

4. Feature engineering

- To increase the performance of your model, you can also experiment with with feature engineering like:
 - Taking length of reviews as another feature.
 - Considering some features from review summary as well.

5. Representation of results

- You need to plot the performance of model both on train data and cross validation data for each hyper parameter, like shown in the figure. Here on X-axis you will have alpha values, since they have a wide range, just to represent those alpha values on the graph, apply log function on those alpha values.
- Once after you found the best hyper parameter, you need to train your model with it, and find the AUC on test data and plot the ROC curve on both train and test.
- Along with plotting ROC curve, you need to print the <u>confusion matrix</u> with predicted and original labels of test data points. Please visualize your confusion matrices using <u>seaborn heatmaps</u>.

6. Conclusion

You need to summarize the results at the end of the notebook, summarize it in the table format. To print out a table
please refer to this prettytable library link

Note: Data Leakage

- 1. There will be an issue of data-leakage if you vectorize the entire data and then split it into train/cv/test.
- 2. To avoid the issue of data-leakag, make sure to split your data first and then vectorize it.
- 3. While vectorizing your data, apply the method fit_transform() on you train data, and apply the method transform() on cv/test data
- 4. For more details please go through this link.

Applying Multinomial Naive Bayes

[5.1] Applying Naive Bayes on BOW, SET 1

```
In [28]:
```

```
# Please write all the code with proper documentation
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import roc_auc_score

X_train, X_test, y_train, y_test = train_test_split(preprocessed_reviews,final['Score'], test_size=
0.33,shuffle=False) # this is random splitting
```

```
In [29]:
```

In [88]:

```
cv_auc_std= cir.cv_resuits_['std_test_score']
plt.plot(alp, train_auc, label='Train AUC')
# this code is copied from here: https://stackoverflow.com/a/48803361/4084039
plt.gca().fill_between(alp,train_auc - train_auc_std,train_auc + train_auc_std,alpha=0.2,color='dar kblue')

plt.plot(alp, cv_auc, label='CV AUC')
# this code is copied from here: https://stackoverflow.com/a/48803361/4084039
plt.gca().fill_between(alp,cv_auc - cv_auc_std,cv_auc + cv_auc_std,alpha=0.2,color='darkorange')
plt.legend()
plt.xlabel("alpha: hyperparameter")
plt.ylabel("AUC")
plt.title("ERROR PLOTS")
plt.show()
```

```
ERROR PLOTS

Train AUC
CV AUC

0.9

0.8

0.7

0.6

0.5

0 2000 4000 6000 8000 10000
alpha: hyperparameter
```

In [59]:

```
clf.best_params_
```

Out[59]:

{ 'alpha': 1}

In [89]:

```
# https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.roc curve.html#sklearn.metrics.roc curve
from sklearn.metrics import roc curve, auc
MNB = MultinomialNB(alpha=1)
MNB.fit(X train bow, y train)
# roc_auc_score(y_true, y_score) the 2nd parameter should be probability estimates of the positive
class
# not the predicted outputs
train fpr, train tpr, thresholds = roc curve (y train, MNB.predict proba(X train bow)[:,1])
test fpr, test tpr, thresholds = roc curve(y test, MNB.predict proba(X test bow)[:,1])
plt.plot(train fpr, train tpr, label="train AUC ="+str(auc(train fpr, train tpr)))
plt.plot(test fpr, test tpr, label="test AUC ="+str(auc(test fpr, test tpr)))
plt.legend()
plt.xlabel("alpha: hyperparameter")
plt.ylabel("AUC")
plt.title("ERROR PLOTS")
plt.show()
print("="*100)
from sklearn.metrics import confusion matrix
print("Train confusion matrix")
print(confusion matrix(y train, clf.predict(X train bow)))
print("Test confusion matrix")
print(confusion matrix(y test, clf.predict(X test bow)))
```

```
Train confusion matrix
[[ 5611 768]
  [ 1793 31228]]
Test confusion matrix
[[ 3775 943]
  [ 1472 22776]]
```

[5.1.1] Top 10 important features of positive class from SET 1

```
In [90]:
```

```
# (below code is taken from taken from given website)
https://stackoverflow.com/questions/29867367/sklearn-multinomial-nb-most-informative-features

feature_names = vectorizer.get_feature_names()
coefs_with_fns = sorted(zip(MNB.coef_[0], feature_names))
top = coefs_with_fns[:-(10 + 1):-1]
for (coef_1, fn_1) in top:
    print("\t%.4f\t%-15s" % (coef_1, fn_1))
-3.9576 not
-4.7584 like
-4.9046 good
-4.9807 great
-5.1239 one
```

-5.1239 one -5.2118 taste -5.2538 coffee

-5.2861 flavor -5.2959 love

-5.3031 would

[5.1.2] Top 10 important features of negative class from SET 1

In [91]:

```
# Please write all the code with proper documentation

# (below code is taken from taken from given website)
https://stackoverflow.com/questions/29867367/sklearn-multinomial-nb-most-informative-features
feature_names = vectorizer.get_feature_names()
coefs_with_fns = sorted(zip(MNB.coef_[0], feature_names))
top = coefs_with_fns[:10]
for (coef_1, fn_1) in top:
    print("\t%.4f\t%-15s" % (coef_1, fn_1))
-14.2927 absolutely horrible
-14.2927 complete waste
-14.2927 highly disappointed
-14.2927 horrible not
```

-14.2927 money go

-14.2927 product unless

-14.2927 recommend unless

```
-14.2927 threw rest
-14.2927 wanted love
-14.2927 worst ever
```

[5.2] Applying Naive Bayes on TFIDF, SET 2

```
In [92]:
```

```
# Please write all the code with proper documentation
tf idf vect = TfidfVectorizer(ngram range=(1,2), min df=10)
tf idf vect.fit(X train) # fit has to happen only on train data
# we use the fitted CountVectorizer to convert the text to vector
X_train_tfidf = tf_idf_vect.transform(X_train)
X_test_tfidf = tf_idf_vect.transform(X_test)
MNB = MultinomialNB()
clf = GridSearchCV (MNB, parameters, cv=3, scoring='roc auc')
clf.fit(X_train_bow, y_train)#####
                                                        ##################wrong X bow to
X tfidf convert it
train auc= clf.cv results ['mean train score']
train auc std= clf.cv results ['std train score']
cv auc = clf.cv results ['mean test score']
cv auc std= clf.cv results ['std test score']
plt.plot(alp, train_auc, label='Train AUC')
# this code is copied from here: https://stackoverflow.com/a/48803361/4084039
plt.gca().fill_between(alp,train_auc - train_auc_std,train_auc + train_auc_std,alpha=0.2,color='dar
kblue')
plt.plot(alp, cv_auc, label='CV AUC')
# this code is copied from here: https://stackoverflow.com/a/48803361/4084039
plt.gca().fill_between(alp,cv_auc - cv_auc_std,cv_auc + cv_auc_std,alpha=0.2,color='darkorange')
plt.legend()
plt.xlabel("alpha: hyperparameter")
plt.ylabel("AUC")
plt.title("ERROR PLOTS")
plt.show()
```



```
In [93]:
```

```
clf.best_params_

Out[93]:
{'alpha': 1}

In [94]:

# https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html#sklearn.metrics.roc_curve
from sklearn.metrics import roc_curve, auc
```

```
MNR = MUTTINOMISTNR(SIPUS=T)
MNB.fit(X_train_tfidf, y_train)
# roc auc score(y true, y score) the 2nd parameter should be probability estimates of the positive
class
# not the predicted outputs
train_fpr, train_tpr, thresholds = roc_curve(y_train, MNB.predict_proba(X_train_tfidf)[:,1])
test_fpr, test_tpr, thresholds = roc_curve(y_test, MNB.predict_proba(X_test_tfidf)[:,1])
plt.plot(train_fpr, train_tpr, label="train AUC ="+str(auc(train_fpr, train_tpr)))
plt.plot(test fpr, test tpr, label="test AUC ="+str(auc(test fpr, test tpr)))
plt.legend()
plt.xlabel("K: hyperparameter")
plt.ylabel("AUC")
plt.title("ERROR PLOTS")
plt.show()
print("="*100)
from sklearn.metrics import confusion_matrix
print("Train confusion matrix")
print(confusion matrix(y train, MNB.predict(X train tfidf)))
print("Test confusion matrix")
print(confusion_matrix(y_test, MNB.predict(X_test_tfidf)))
```

```
Train confusion matrix
[[ 2196 4183]
   66 32955]]
Test confusion matrix
[[ 1143 3575]
     55 24193]]
```

[5.2.1] Top 10 important features of positive class from SET 2

```
In [95]:
# Please write all the code with proper documentation
feature_names = tf_idf_vect .get_feature_names()
coefs_with_fns = sorted(zip(MNB.coef_[0], feature_names))
top = coefs with fns[:-(10 + 1):-1]
for (coef_1, fn_1) in top:
   print("\t%.4f\t%-15s" % (coef_1, fn_1))
 -5.3292 not
 -5.6725 great
 -5.7348 good
 -5.7823 like
 -5.8374 coffee
 -5.8990 love
 -5.9152 tea
 -6.0199 one
 -6.0301 product
 -6.0344 taste
```

[5.2.2] Top 10 important features of negative class from SET 2

In [96]:

```
# Please write all the code with proper documentation
# (below code is taken from taken from given website)
https://stackoverflow.com/questions/29867367/sklearn-multinomial-nb-most-informative-features
feature names = vectorizer.get feature names()
coefs with fns = sorted(zip(MNB.coef_[0], feature_names))
top = coefs with fns[:10]
for (coef_1, fn_1) in top:
   print("\t%.4f\t%-15s" % (coef 1, fn 1))
-12.2468 absolutely horrible
-12.2468 complete waste
-12.2468 highly disappointed
-12.2468 horrible not
 -12.2468 money go
-12.2468 product unless
-12.2468 recommend unless
-12.2468 threw rest
-12.2468 wanted love
-12.2468 worst ever
In [33]:
len of review=[]
for i in preprocessed reviews:
   len of review.append(len(i))
In [34]:
# Please write all the code with proper documentation
from sklearn.naive_bayes import MultinomialNB
```

```
# Please write all the code with proper documentation
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import roc_auc_score
from scipy.sparse import coo_matrix, hstack
# this is random splitting
```

In [35]:

```
df=pd.DataFrame(data=list(zip(preprocessed_reviews,preprocessed_summary,len_of_review)),columns=["
preprocessed_reviews","preprocessed_summary","len_of_review"])
```

In [36]:

df

Out[36]:

	preprocessed_reviews	preprocessed_summary	len_of_review
0	bought apartment infested fruit flies hours tr	sure death flies	207
1	really good idea final product outstanding use	great product	109
2	received shipment could hardly wait try produc	wow make islickers	277
3	nothing product bother link top page buy used	chewed gum many times used	99
4	love stuff sugar free not rot gums tastes good	best sugarless gum ever	64
5	never tried kona coffee aloha island definitel	yummy	582
6	fresh limes underappreciated joy kitchen squir	limes rule	596
7	grocery store kinds gourmet coffees laid one t	gave coffees	249

8	blend one starbucks gentler blenderingersed "reviews	five stars like starbuckeeprocessed_summary	<u>L</u> en ₆ _of_review
9	chatchi favorite afternoon treat became myster	fruits labor	500
10	tennis player hubby mine got pack rack opel co	refreshing mouth freshner	311
11	forget store bought jerky make premium jerky a	yummy spicy	150
12	sauce excellent indeed spicy brand also makes	excellent sauce	172
13			767
	never real swiss fondue really missing somethi	try	
14	definitely cute product order get nice amount	cute candy	140
15	discovered oils years ago bought one flavor th	imparts wonderful light flavor dishes	748
16	huge fan jelly belly jelly beans really enjoye	jelly belly overload	344
17	yes juice apparently not person loves drink le	fell love paris	495
18	panko bread crumbs awesome used breading make	best bread crumbs never go back	711
19	japanese version breadcrumb pan bread portugue	essential tonkatsu etc	278
20	highly recommend business company like job nic	everything excellent	82
21	tried many packaged chai products liquid dry s	simply chai	249
22	first turned onto chocolate visited private me	chocolate like never	671
23	searched great decaf chai finally found excell	excellent chai	190
24	enjoy rich spread toast crumpets english muffi	like grandmother used	211
25	good get half pound cotswold english pub chees	yes eat one sitting sipping ha ha beware	536
26	winter fresh blueberries exceed food budget dr	best blueberries	193
27	love sleepytime tea drinking years soothing be	favorite tea	59
28	shaped like legos taste like sweettarts need said	enjoy playing food	49
29	no exagerration roaring blue wonderful mixture	best example blue cheese ever tried	304
87743	recently returned wonderful three week excursi	great irish tea	195
87744	got hooked chai decided give coffee still litt	nice traditional chai	496
87745	love drink mix taste delicious impossible yo f	drink mix	104
87746	individually packaged assorted rice crackers r	delicious	188
87747	best chips ever unsalted low sodium diet criti	michael seasons unsalted potato chips	283
87748	like young coconut tastes like young coconut f	ai not no coconut water better sun tropics coc	116
87749	great coffee good price subscription buyer buy	morning coffee	62
87750	love faucet husband installed one old house cu	love faucet	182
87751	gone treat dinner treat dogs work run chance I	dogs love	100
87752	love think little expensive everyday use refre	love	74
87753	opinion best coconut water especially since no	love	80
87754	great coffee easy brew coffee great aroma good	super coffee	94
87755	hubby drinking oz night months found falling d	sleeping lot better	132
87756	rooibos natural red tea something personal tas	great tea	246
87757	great hs lunch kid enjoy snack also buy salted	great hs lunch	63
87758	nifty hot chocolate discs added warm milk milk	butler chocolate real deal direct ireland	465
87759	loved cranberry like flavor slightly crunchy t	yummy healthy	108
87760	ordered raisins multiple times always great ar	delicious	121
87761	love assortment different countries origins fu	many varieties	88
	wanted food dog skin problems skin greatly imp	great food	299
	everyday coffee choice good around crowd pleas	full bodied without bitter taste	118
	go spread serve cheese platter goes well soft	best fig spread market	184
ı	5 ,		I

87765	like product price point flavor sprengrovensed_reviews	product good preprocessed_summary	æn_of_review
87766	tea good perfect price not go wrong product mu	star tea super price	62
87767	small salty taste good strong good thing packa	not bad	221
87768	recently new keurig world tried handful flavor	one best	171
87769	drink lot tea world far worst tasting tea purc	bad tasting tea	263
87770	tried orange iced coffee morning really liked	chike	69
87771	excellent smooth taste one loves chocolate enj	chocolate heaven	114
87772	purchased product local store ny kids love qui	delicious	114

87773 rows × 3 columns

In [37]:

```
X_train_r, X_test_r, y_train, y_test = train_test_split(df,final['Score'], test_size=0.33,shuffle=F
alse)
```

In [138]:

X_test_r[]

Out[138]:

	preprocessed_reviews	preprocessed_summary	len of review
58807	crisps awesome give english crisps american ch	excellent	119
58808	got bag oinkies pig skin sweet potato middle d	pug loves got different hartz treat	230
58809	individual packaging brand name decent price s	salted cashews planters not love	162
58810	buy type gummi bears haribo brand awesome qual	gummi bears ever eat	186
58811	quite pleased e flavor product good strong yet	yummy hot chocolate	125
58812	serenity house teas arrived today could not ar	absolutiely best chocolate tea ever tasted	1111
58813	not buy product chicken jerky treat product ca	made china fda says contaminated	513
58814	purchased licorice hopes like kind purchased d	tasty	132
58815	ordered chips due readers reviews good additio	itio delicious even dont enjoy healthy food	
58816	oh good first cup medium setting sweet second	edium setting sweet second yummy	
58817	absolute best hot cocoa keurig brewers hot coc	favorite hot cocoa	207
58818	great deal try buy store amazon bought came pl	great deal	109
58819	far best tasting tea around amazon service par	twinings lady grey decaf	51
58820	hot cocoa flavors tried best far richest flavo	good flavor wont break bank	246
58821	good quality product two small pooches loved p	pooches love	143
58822	month old son sees brightly colored pouches si	great baby food	491
58823	disposable cups great simple clean method port	disposable k cups keurig brewers	201
58824	love coffee love kind kona coffee decaf regula	great coffee	81
58825	year old scottish terrier food allergies no wh	healthy treat dogs allergies	129
58826	try consume organic products led tea drink tea	one favs	189
58827	colleague making maple brown sugar oatmeal wor	tasty filling low sugar	223
58828	product arrived promptly packaged efficiently	pleased quality	430
58829	love product recommended co worker gout proble	cherry remedy	163
58830	purchased golden malted natural pancake waffle	stale	209
58831	mother father recipient wonderful pieces choco	chocolate heaven	109
58832	nestle mountain blend best flavor coffees inst	best coffee world	81

58833	green tea really nice lite flav øreprocessied/_reviews	great flavor preprocessed_summary	fen_of_review
58834	followed microwave directions precisely precis	warning little food	589
58835	wabash valley purple popcorn really good lot f	yummy expensive	221
58836	feel love drink spent month trinidad years ago	ordering	88
87743	recently returned wonderful three week excursi	great irish tea	195
87744	got hooked chai decided give coffee still litt	nice traditional chai	496
87745	love drink mix taste delicious impossible yo f	drink mix	104
87746	individually packaged assorted rice crackers r	delicious	188
87747	best chips ever unsalted low sodium diet criti	michael seasons unsalted potato chips	283
87748	like young coconut tastes like young coconut f	ai not no coconut water better sun tropics coc	116
87749	great coffee good price subscription buyer buy	morning coffee	62
87750	love faucet husband installed one old house cu	love faucet	182
87751	gone treat dinner treat dogs work run chance I	dogs love	100
87752	love think little expensive everyday use refre	love	74
87753	opinion best coconut water especially since no	love	80
87754	great coffee easy brew coffee great aroma good	super coffee	94
87755	hubby drinking oz night months found falling d	sleeping lot better	132
87756	rooibos natural red tea something personal tas	great tea	246
87757	great hs lunch kid enjoy snack also buy salted	great hs lunch	63
87758	nifty hot chocolate discs added warm milk milk	butler chocolate real deal direct ireland	465
87759	loved cranberry like flavor slightly crunchy t	yummy healthy	108
87760	ordered raisins multiple times always great ar	delicious	121
87761	love assortment different countries origins fu	many varieties	88
87762	wanted food dog skin problems skin greatly imp	great food	299
87763	everyday coffee choice good around crowd pleas	full bodied without bitter taste	118
87764	go spread serve cheese platter goes well soft	best fig spread market	184
87765	like product price point flavor strong overpow	product good	83
87766	tea good perfect price not go wrong product mu	star tea super price	62
87767	small salty taste good strong good thing packa	not bad	221
87768	recently new keurig world tried handful flavor	one best	171
87769	drink lot tea world far worst tasting tea purc	bad tasting tea	263
87770	tried orange iced coffee morning really liked	chike	69
87771	excellent smooth taste one loves chocolate enj	chocolate heaven	114
87772	purchased product local store ny kids love qui	delicious	114

28966 rows × 3 columns

In [51]:

```
vectorizer = CountVectorizer(ngram_range=(1,2),min_df=10)
```

In [52]:

```
vectorizer.fit(X_train_r["preprocessed_reviews"])
review_train=vectorizer.transform(X_train_r["preprocessed_reviews"])
review_test=vectorizer.transform(X_test_r["preprocessed_reviews"])
```

```
vectorizer.fit(X train r["preprocessed summary"])
summary train=vectorizer.transform(X train r["preprocessed summary"])
summary_test=vectorizer.transform(X_test_r["preprocessed_summary"])
In [54]:
print(review_train.shape,summary_train.shape)
(58807, 34516) (58807, 2973)
In [55]:
X train b=hstack((review train, summary train))
X_test_b=hstack((review_test,summary_test))
In [63]:
X train b.shape
Out[63]:
(58807, 37489)
In [65]:
X train r["len of review"].shape
Out[65]:
(58807,)
In [66]:
X train bow=hstack((X train b, X train r["len of review"].values.reshape(-1,1)))
X test bow=hstack((X test b, X test r["len of review"].values.reshape(-1,1)))
In [67]:
X train bow.shape
Out[67]:
(58807, 37490)
In [68]:
MNB = MultinomialNB()
clf = GridSearchCV(MNB, parameters, cv=3, scoring='roc_auc')
clf.fit(X train bow, y train)
train_auc= clf.cv_results_['mean_train_score']
train auc std= clf.cv results ['std train score']
cv_auc = clf.cv_results_['mean_test_score']
cv auc std= clf.cv results ['std test score']
plt.plot(alp, train_auc, label='Train AUC')
{\it \# this code is copied from here: https://stackoverflow.com/a/48803361/4084039}
plt.gca().fill_between(alp,train_auc - train_auc_std,train_auc + train_auc_std,alpha=0.2,color='dar
kblue')
plt.plot(alp, cv auc, label='CV AUC')
# this code is copied from here: https://stackoverflow.com/a/48803361/4084039
plt.gca().fill_between(alp,cv_auc - cv_auc_std,cv_auc + cv_auc_std,alpha=0.2,color='darkorange')
plt.legend()
plt.xlabel("alpha: hyperparameter")
plt.ylabel("AUC")
plt.title("ERROR PLOTS")
plt.show()
```


In [69]:

```
clf.best_params_
```

Out[69]:

{'alpha': 1}

In [70]:

```
# https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.roc\_curve.html \#sklearn.metrics.roc\_curve.html \#sklearn.metrics.html \#sklearn.html \#sklearn.metrics.html \#sklearn.html \#sklearn.metrics.html \#sklearn.metrics.html \#sklearn.metrics.html \#sklearn.html \#sklearn.metrics.html \#sklearn.html \#sklearn.html \#sklearn.html \#sklearn.html \#sklearn.html \#sklearn.html \#sklearn.html \#sklearn.html #sklearn.html #sklearn.htm
from sklearn.metrics import roc_curve, auc
MNB = MultinomialNB(alpha=1)
MNB.fit(X train bow, y train)
\# roc_auc_score(y_true, y_score) the 2nd parameter should be probability estimates of the positive
class
 # not the predicted outputs
train fpr, train tpr, thresholds = roc curve (y train, MNB.predict proba(X train bow)[:,1])
test_fpr, test_tpr, thresholds = roc_curve(y_test, MNB.predict_proba(X_test_bow)[:,1])
plt.plot(train fpr, train tpr, label="train AUC ="+str(auc(train fpr, train tpr)))
plt.plot(test fpr, test tpr, label="test AUC ="+str(auc(test fpr, test tpr)))
plt.legend()
plt.xlabel("K: hyperparameter")
plt.ylabel("AUC")
plt.title("ERROR PLOTS")
plt.show()
print("="*100)
from sklearn.metrics import confusion matrix
print("Train confusion matrix")
print(confusion matrix(y train, MNB.predict(X train bow)))
print("Test confusion matrix")
print(confusion matrix(y test, MNB.predict(X test bow)))
```



```
r. nyperparameter
```

```
Train confusion matrix
[[ 8426 723]
[ 2408 47250]]
Test confusion matrix
[[ 4357 675]
[ 1397 22537]]
```

[6] Conclusions

In [72]:

```
# Please compare all your models using Prettytable library
from prettytable import PrettyTable
```

In [73]:

```
pt=PrettyTable()

pt.field_names=["vectorizer","Model","Hyper parameter","AUC"]
pt.add_row(["BOW","multinomialNB(MNB)","1","0.945"])
pt.add_row(["tf-idf","multinomialNB(MNB)","1","0.950"])
pt.add_row(["BOW","MNB with lengthofreview,summmary as features","1","0.962"])
```

In [74]:

print(pt)

+-	vectorizer	Model	+ Hyper +	parameter	++ AUC
i	BOW	multinomialNB(MNB)	I	1	0.945
	tf-idf	multinomialNB(MNB)		1	0.950
	BOW	MNB with lengthofreview, summmary as features		1	0.962
1.0					