Evaluate testing data (binary-class) - Lasso

EVE W.

2020-04-24

Contents

U. Load Data	
1. Scores	2
1.1 Scores per Class	2
1.2 Average score	3
2. Important Features	4
Note: The two differences between Lasso and Tree-based methods are: 1. Lasso has its own inherent feature selection process.	
2. Lasso's vimp will be based on how many times the feature exist in all runs. Regression coefficient be presented for binary outcomes	ents may
## user input	
<pre>project_home <- "~/EVE/examples"</pre>	
<pre>project_name <- "lasso_binary2"</pre>	

0. Load Data

```
## Error : $ operator is invalid for atomic vectors
## 199 of samples were used
## 100 of full features
## 4 runs, each run contains 5 CVs.
## Labels:
##
## 0 1
## 50 149
run with lasso.r with alpha = 0, 0.5, 1.
```

1. Scores

1.1 Scores per Class

Prevalidation scores during RFE

Confusion Matrix

confusion matrix at feature size = 100

sum across 4 seeds

Reference
Prediction 0 1
0 200 4
1 0 592

1.2 Average score

Prevalidation scores during RFE

2. Important Features

distribution across 4 seed x 5 CV

of times a feature is selected by lasso

```
## [1] "there are 100 unique features used from the 100 feature set"
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 16.00 100.00 100.00 87.35 100.00 100.00
```

^{## [1] &}quot;summary of numer of features used in 4 seeds and 5 CVs"

^{## `}stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Distribution across all 100 features

Top feature, by usage frequency

Heatmap of top 20 important features

Table 1: parameter selection

seed	alpha	lambda	cv
1001	0.0	0.0390268	1
1001	0.0	0.0393106	2
1001	0.0	0.0387182	3
1001	0.5	0.0005100	4
1001	0.0	0.0388060	5
1002	0.0	0.0388340	1
1002	0.0	0.0387347	2
1002	0.5	0.0005194	3
1002	0.0	0.0388192	4
1002	0.0	0.0389460	5
1003	0.0	0.0392710	1
1003	0.5	0.0005150	2
1003	0.0	0.0387054	3
1003	0.0	0.0389664	4
1003	0.0	0.0389099	5
1004	0.0	0.0387564	1
1004	1.0	0.0003695	2
1004	0.0	0.0391371	3
1004	0.0	0.0389803	4
1004	0.0	0.0391363	5