DS 593: Privacy in Practice

Systems for Privacy Cont'd

News?

A Win for Encryption: France Rejects Backdoor Mandate

BY JOE MULLIN | MARCH 21, 2025

https://www.eff.org/deeplinks/2025/03/win-encryption-france-rejects-backdoor-mandate

Give Up the Ghost: A Backdoor by Another Name

BY NATE CARDOZO | JANUARY 7, 2019

https://www.eff.org/deeplinks/2019/01/give-ghost-backdoor-another-name

The Trump Administration Accidentally Texted Me Its War Plans

U.S. national-security leaders included me in a group chat about upcoming military strikes in Yemen. I didn't think it could be real. Then the bombs started falling.

By Jeffrey Goldberg

Last time

• How do we use these building blocks for privacy online?

Today

• How do we use these building blocks for privacy online?

Virtual Private Networks (VPN)

- The internet is large public system with many intermediaries
 - Can we pretend it is actually just a small closed network of only the computers I care about or trust?
- Problem: how to hide my browsing from intermediaries between me and the "private network?"
 - Proxying
 - Tunneling

Web Proxy

Tunneling

A way to build a secure connection to a particular server

 You encapsulate your actual network packet in a packet that is sent to the desired server

 A VPN sets up a secure tunnel to a VPN server which then acts as a proxy to forward your packets to the internet

 Depending on the location of the VPN server, this can allow for bypassing censorship or geolocation restrictions

VPN Considerations

Primarily hides your data from ISP

- The VPN server needs to be trusted
 - Learns your IP, your browsing data, etc
 - Could log all this
- VPN Servers are often publicly known and easy to identify
- Important to make sure all traffic goes through the VPN

The onion router (Tor)

- Goal is to provide a strong guarantee of hiding your browsing data in a robust and decentralized way
 - Mitigating limitations of VPNs
- Tor does this by adding multiple layers of encapsulation to ensure no single entity learns everything about your browsing

Other aspects of Tor

- Tor alone cannot bypass censorship as the relays can be blocked
 - Tor Bridges are a way to get around this
- Tor additionally has what are called hidden services, which can only be accessed within the Tor network

TOR Network

.....: Set up connection

: Onion Service meets client

: Relay

Tor Bridges

Tor considerations

- Possibility of leakage if multiple relays on your circuit are compromised
 - How to avoid this?
- Need to make sure you are using secure application layer protocols as well (ex: HTTPS)
- Crucial to keep your Tor and non-Tor logins separate

End to End Encryption (E2EE)

 So far we have focused on how to protect information as it passes through a network

- However, the end server may be able to see all of this
 - HTTPS only has data encrypted to and from the server
- E2EE is when the server only stores encrypted user data, encrypted under a key that the server does not know

Fig. 1a: Encryption in transit Service provider encrypted encrypted unencrypted Fig. 1b: End-to-end encryption Service provider encrypted encrypted encrypted Fig. 1c: End-to-end encryption (no service provider) encrypted encrypted encrypted

BOB

Servers

ALICE

The Signal Protocol

- A protocol for E2EE messaging
 - Also an open-source app
- Messages are only readable by the users in a chat through their device specific keys
 - Lose access to device -> loss access to messages
- Many other platforms such as Whatsapp, Messenger, use an implementation of the protocol as well
- Provides forward and post-compromise security
 - The Double Ratchet regularly changes the public keys and per-message symmetric keys used

Next Time

Defining Surveillance