University of California Berkeley

Interactive Visualizer Tool

UC Berkeley EECS Department

James Geronimo, Malavikha Sudarshan, Sean Lim

{jegeronimo, malavikhasudarshan, seanlim}@berkeley.edu

Advisors: Professors Armando Fox, Narges Norouzi, and Dan Garcia

Interactive Demo

Current Formative Learning Methods

- Text-heavy worksheets
- 1. We want to minimize the loss function $L(\theta) = (\theta_1 1)^2 + |\theta_2 3|$. While you may notice that this function is not differentiable everywhere, we can still use gradient descent wherever Recall that for a function f(x) = k|x|, $\frac{df}{dx} = k$ for all x > 0 and $\frac{df}{dx} = -k$ for all x < 0.
- (a) What are the optimal values $\hat{\theta}_1$ and $\hat{\theta}_2$ to minimize $L(\theta)$? What is the gradient at those values $\nabla L = \begin{bmatrix} \frac{\partial L}{\partial \theta_1} & \frac{\partial L}{\partial \theta_2} \end{bmatrix}^T \Big|_{\theta_1 = \hat{\theta}_1, \theta_2 = \hat{\theta}}$
- (b) Suppose we initialize our gradient descent algorithm randomly at $\theta_1=2$ and $\theta_2=5$ Calculate the gradient $\nabla L = \begin{bmatrix} \frac{\partial L}{\partial \theta_1} & \frac{\partial L}{\partial \theta_2} \end{bmatrix}^T \Big|_{\theta_1 = 2, \theta_2 = 5}$ at the specified θ_1 and θ_2 values.
- Static visualizations

Research Question + Motivation

 RQ: Does interactivity in visualizations improve student's performance in formative assessments, as opposed to static visualizations?

Engagement Taxonomy: Presenting > Constructing > Changing > Responding >

Viewing > No Viewing

Our Work: A New Element

- A 3D, interactive visualization tool inside PrairieLearn (an online assessment/learning platform) with dynamic rendering using **Plotly**
 - Rotate, Zoom, Plot/Remove points on graphs
 - Assess plotted points on the graph as answers to be marked
 - Multiple colourways

PL-Interactive-Visualizer

Main Benefits

- Encourages active learning through direct manipulation with the visualization
- Stimulates interaction through changing and responding, which are more pedagogically engaging than just viewing
- Applicable across various courses and disciplines, such as identifying critical points and creating any surface visualizations

3-Group Study Format

Preliminary Results

- **N=7** (Group A: 3, Group B: 2, Group C: 2)
- Group A exhibited the most improvement between Pre and Post

User Feedback

- Helpful for building intuition when first learning about gradient descent
- The interactive visualization made it easy to conceptualize the landscape and optimal values
- Make it clearer to visualize or adjust the step size during gradient descent
- Allow for typing out coordinates to place points