Exercise 1.1

Let $A \subset B$ be an integral extension of rings and assume that B is an integral domain. Suppose $\mathfrak{q} \subset B$ is a prime ideal and let $\mathfrak{p} := \mathfrak{q} \cap A \subset A$.

1. Prove that A is a field if and only if B is a field.

Proof. Let's do this a little different. Let \mathfrak{m} be a maximal ideal in B and fix a nonzero element $b \in \mathfrak{m}$. Because b is integral over A, we have an expression

$$0 = a_0 + a_1b + a_2b^2 + \dots + a_nb^n \iff -a_0 = a_1b + a_2b^2 + \dots + a_nb^n.$$

On the right side, for each $1 \le i \le n$, we have that $a_i b^i$ is in \mathfrak{m} , so the whole sum is in \mathfrak{m} . This implies the absurdity that $-a_0$ which is a unit is contained in \mathfrak{m} .