

ΦΑΣΜΑΤΟΜΕΤΡΙΑ ΜΑΖΩΝ

Ίσως η τεχνική με τη μεγαλύτερη ποικιλία εφαρμογών και την εντυπωσιακότερη ανάπτυξη την τελευταία δεκαετία. Η τεχνική MS παρέχει πληροφορίες σχετικά με:

- Τη στοιχειακή σύσταση του δείγματος
- Τη δομή ανόργανων, οργανικών, οργανομεταλλικών και βιολογικών μορίων
- Την ποιοτική και ποσοτική σύσταση μιγμάτων
- Τη δομή και τη σύσταση επιφανειών
- Την αναλογία ισοτόπων στοιχείων

ΦΑΣΜΑΤΟΜΕΤΡΙΑ ΜΑΖΩΝ

ΟΡΙΣΜΟΣ:

Οικογένεια τεχνικών προσδιορισμού δομής και ποσοτικού προσδιορισμού ενώσεων και στοιχείων, οι οποίες βασίζονται στον ιοντισμό ατόμων ή μορίων ή την παραγωγή ιοντικών θραυσμάτων μορίων στην αέρια φάση και την καταγραφή της σχετικής έντασης του ιοντικού ρεύματος που αντιστοιχεί σε κάθε λόγο μάζας προς φορτίο (m/z)

ΦΑΣΜΑΤΟΜΕΤΡΙΑ ΜΑΖΩΝ

Ιοντισμός:

$$M + e^- \rightarrow M^{\bullet +} + 2e^-$$

Θραυσματοποίηση:

ΕΕ+: ιόν με άρτιο αριθμό e

ΟΕ+: ιόν με περιττό αριθμό e

ΦΑΣΜΑΤΟΜΕΤΡΙΑ ΜΑΖΩΝ

Nitrogen Rule:

Μόρια με περιττό αριθμό ατόμων Ν θα έχουν περιττό MB. Τα ιοντικά θράυσματα που προκύπτουν με απλή θραυσματοποίηση θα έχουν άρτια μάζα.

Μόρια με άρτιο αριθμό N θα έχουν άρτιο MB. Τα θραύσματα τους θα έχουν περιττή μάζα.

ΦΑΣΜΑ ΜΑΖΩΝ

Λογικές απώλειες μαζών για την εύρεση του μοριακού ιόντος

From Bond Cleavage		From rearrangements	
Fragment	Mass	Neutral Molecule	Mass
Н	1	H ₂	2
CH₃	15	NH ₃	17
NH ₂ or O (from NO)	16	H ₂ O	18
OH	17	C ₂ H ₂	26
F	19	HCN	27
CN	26	CO or C ₂ H ₄	28
C₂H₃	27	CH₂O	30
C ₂ H ₅ or CHO	29	CH₃OH	32
NO	30	H ₂ S	34
OCH ₃ or CH ₂ OH	31	C ₃ H ₆ or C ₂ H ₂ O	42
SH or H ₂ O+CH ₃	33	CO ₂	44
Cl	35	C ₂ H ₅ OH	46
C ₃ H ₇ or CH ₃ CO	43	C ₃ H ₇ OH or CH ₃ CO ₂ H	60
NO ₂	46	C _e H _e	78
C ₄ H ₉	57	HBr	80

ΦΑΣΜΑ ΜΑΖΩΝ

Τυπικά ιοντικά θραύσματα οργανικών μορίων

Compound type	Formula	Typical Fragments
Alkanes	$C_{n}H_{2n+1}^{+}$	15, 29, 43, 57, 71, 85
Alkenes, Cycloalkanes	$C_nH_{2n}^+$	28, 42, 56, 70, 84
Cycloalkenes	$C_nH_{2n-1}^+$	27, 41, 55, 69, 83
Aldehydes, Ketones	$C_n H_{2n-1} O^+$	29, 41, 55, 69, 83
Amines	$C_n H_{2n+2} N^+$	30, 44, 58, 72, 86
Alcohols, Ethers	$C_nH_{2n+1}O^+$	31, 45, 59, 73, 87
Acids, Esters	$C_nH_{2n-1}O^+$	45, 59, 73, 87
Aromatic compounds		91, 77

ATOMIKH & MOPIAKH MAZA

Μονάδα ατομικής μάζας (u ή Da) :

Το 1/12 της μάζας ενός ουδέτερου ατόμου ¹²C

1 u = 1 Da = $1,66054 \times 10^{-27}$ kg / атоµо 12 C

Ακριβής μάζα (exact mass):

Ατομική μάζα ³⁵CI : 2,91407×12,0000 Da = 34,9688 Da

Μοριακή μάζα 12C1H₄:

 $12,0000 \times 1 + 1,007825 \times 4 = 16,0313 \text{ Da}$

Ονομαστική (μονοϊσοτοπική) μάζα (nominal mass)

Гіа то ${}^{12}C^{1}H_{4}$: 16 и

Μέση μάζα (average mass): συνδυασμός των ακριβών μαζών των ισοτόπων (AB) ή των μέσων ατομικών μαζών (MB)

ΛΟΓΟΣ ΜΑΖΑ-ΠΡΟΣ-ΦΟΡΤΙΟ

Ο λόγος μάζα-προς φορτίο (m/z) :

Λαμβάνεται με διαίρεση της ατομικής ή μοριακής μάζας ενός ιόντος (m) με τον αριθμό (z) των φορτίων που φέρει

 $^{12}C^{1}H_{4}^{+}$: m/z = 16,0313 / 1 = 16,0313

 $^{12}C^{1}H_{4}^{2+}$: m/z = 16,0313 / 2 = 8,0156

(χωρίς μονάδες)

Ισότοπα – Ισοτοπικές κορυφές

ΠΙΝΑΚΑΣ 20-3 Φυσική αφθονία ισοτόπων μερικών συνηθισμένων στοιχείων

Στοιχείο" Υδρογόνο	αφθονότερο ισάτοπο ¹ Η	Αφθυνία άλλοιν καιπόσου σε πχέση με 100 μέρη του αφθονότερου ⁶	
		² H	0.015
Άνθρακας	¹² C	1°C	1,08
Άζωτο	¹⁴ N	^{12}N	0.37
Οξυγόνο	¹⁶ O	17 _O	0,04
		U _{S1}	0,20
⊕ sio	³² S	³³ S	0.80
		³⁴ S	4.40
Χλώριο	35CI	⁸⁷ CI	32,5
Βρώμιο	⁷⁹ B1	⁵¹ B₁	98,0
Πυρίτιο	²⁸ S1	²⁹ S1	5,1
		³⁰ Si	3,4

 $^{^{\}circ}$ Ta afform ($^{9}\mathrm{Y}),$ rasporac ($^{41}\mathrm{P}),$ natric ($^{42}\mathrm{Na})$ has indic ($^{42}\mathrm{P})$ den diabetoun alla cusha isotoita.

Ισότοπα – Ισοτοπικές κορυφές

Στη φύση υπάρχουν τρεις κατηγορίες στοιχείων:

"Α" στοιχεία – Μόνο ένα φυσικό ισότοπο υπάρχει πχ Φθόριο

"A+1" στοιχεία – Δύο φυσικά ισότοπα υπάρχουν τα οποία διαφέρουν κατά 1 Da πχ Άνθρακας

"A+2" στοιχεία – Δύο φυσικά ισότοπα υπάρχουν τα οποία διαφέρουν κατά 2 Da πχ Χλώριο

⁶ Οι αριθμοί δείγγουν το μέσο όρο του πλήθους των ισοτόπων ατόμων που υπάρχουν ανά 100 άτομα του αφθανότερου ισοτόπου. Δηλαθή για κάθε 100 άτομα ¹²C θα υπάρχουν κατά μόσο όρο 1,08 άτομα ¹³C.

Διακριτική Ικανότητα Resolving Power, R

Διακριτική ικανότητα φασματόμετρου μαζών:

$$R = m/\Delta m$$

Η ικανότητα να διακρίνει δύο μόλις διαχωριζόμενες κορυφές, m και m+Δm.

Διάκριση μεταξύ ιόντων ίδιας ονομαστικής μάζας, πχ:

$$N_2^+$$
: 28,0061
CO+: 27,9949 $\Delta m = 28,0061 - 27,9949 = 0,0112$

'Aρα: R = m/ Δ m = 27,9949/0,0112 = 2500

Διακρισιμότητα Resolution

Διακρισιμότητα είναι η διαφορά δυο γειτονικών τιμών m/z ($m_2 - m_1$) και εκφράζεται σε ppm:

$$(m_2 - m_1)/m_1 = \Delta m/m_1$$

Π.χ. για:

 $N_2^+ : 28,0061 \text{ kai CO}^+ : 27,9949$

 $\Delta m/m_1 = 0,0004 \dot{\eta} 400 ppm$

Πολλές φορές αναφέρεται και ως ακρίβεια (accuracy)

Ακρίβεια Μάζας Mass Accuracy

 $\Delta m = Mass Offset = Centroid Mass - Accurate Mass$ 0.0015 = 58.9342 - 58.9327

Mass Accuracy (ppm) = [(Mass Offset)/Accurate Mass]×10⁶ Mass Accuracy (ppm) = (0.0015/58.9327) ×10⁶ Mass Accuracy = 25.4 ppm

Ταχύτητα και εύρος σάρωσης Scan Rate and Scan Range

Εύρος σάρωσης: ελάχιστο – μέγιστο m/z που μπορεί να «καταγράψει» ο αναλυτής μάζας

Ταχύτητα σάρωσης: αριθμός των φασμάτων (ένα συγκεκριμένο εύρος μαζών) που μπορεί να καταγράψει ο αναλυτής μάζας σε 1 sec. Μονάδες: Ηz (HR-MS) ή u/sec (Q)

Scan Time / Dwell time: ο χρόνος που ο αναλυτής μάζας ολοκληρώνει ένα «scan event» και καταγράφει τις ιοντικές κρούσεις του

ΑΝΑΛΥΤΕΣ ΜΑΖΩΝ

Ο αναλυτής μαζών διαχωρίζει ιόντα με βάση το λόγο μάζαπρος-φορτίο (m/z). Το ιοντικό ρεύμα που καταγράφεται οφείλεται σε ένα μόνο m/z κάθε στιγμή.

- Συνεχείς αναλυτές μαζών:
- Τετραπολικός αναλυτής μαζών ή τετράπολο (quadrupole, Q)
- Αναλυτές μαγνητικού τομέα (magnetic sector)
- Παλμικοί αναλυτές μαζών:
 - Τετραπολική παγίδα ιόντων (ion trap, IT)
 - Αναλυτές μαζών χρόνου πτήσης (Time of Flight, TOF)
 - Αναλυτής κυκλοτρονιακού συντονισμού ιόντων με μετασχηματισμό Fourier (Fourier-transform Ion Cyclotron Resonance, FTICR)
- Orbitrap

Διακριτική ικανότητα αναλυτών μαζών

- Η διακριτική ικανότητα (R) των φασματόμετρων μαζών διαφέρει σημαντικά:
- Τα τετράπολα και οι παγίδες ιόντων έχουν σταθερό FWHM σε όλο το εύρος μαζών (συνήθως 0,7-0,4 u). Επομένως, η R μεταβάλλεται ανάλογα με το m/z. Αυτά είναι όργανα χαμηλής διακριτικής ικανότητας (Low Resolution MS)
- Τα ΤΟΓ και οι μαγνητικοί αναλυτές έχουν σταθερή R σε όλο το εύρος μαζών. Αν π.χ. R=20000 σε m/z 200, τότε το Δm=0,01u (ή 50 ppm)
- Τα FTICR σε σταθερό χρόνο ανίχνευσης έχουν R αντιστρόφως ανάλογο του m/z. Έτσι, αν $R=10^7$ σε m/z 100, τότε το $R=10^6$ σε m/z 1000 (FTICR). Για το Orbitrap ισχύει κάτι ανάλογο: αν $R=6\times10^4$ σε m/z 400, τότε το $R=2\times10^4$ σε m/z 4000

Αυτά τα ὀργανα είναι υψηλής διακριτικής ικανότητας (High Resolution MS, HRMS)

Φασματόμετρα μαζών μαγνητικού τομέα

ΠΛΕΟΝΕΚΤΗΜΑΤΑ:

- Υψηλή διακριτική ικανότητα (διπλής εστίασης)
- Προσδιορισμός μοριακών μαζών
- Δυνατότητα προσδιορισμού ισοτόπων
- Πολύ καλή ευαισθησία σε χαμηλή R
- Δυνατότητα MS/MS
- Εφαρμογή στον προσδιορισμό διοξινών, ουσιών doping

MEIONEKTHMATA:

- Ογκώδη όργανα
- Υψηλό κόστος αγοράς και συντήρησης
- Απαιτούν υψηλό κενό και υψηλές τάσεις λειτουργίας
- Μειωμένη ευαισθησία σε υψηλή R
- Προβληματική σύζευξη με πηγές ιοντισμού AP (ESI)
- Ειδικά εκπαιδευμένο προσωπικό

Φασματόμετρα μαζών με τετράπολο

ΠΛΕΟΝΕΚΤΗΜΑΤΑ:

- Ο πιο αξιόπιστος και διαδεδομένος αναλυτής μαζών
- Κατάλληλος για ποσοτική ανάλυση
- Κατάλληλος ανιχνευτής χρωματογραφίας
- Μεγάλη ταχύτητα σάρωσης (>(1000 m/z) s⁻¹)
- Φθηνός αναλυτής μικρό μέγεθος εύκολη χρήση
- Μέτριες απαιτήσεις κενού (10⁻⁵ Torr) και τάσης λειτουργίας
- Δυνατότητα MS/MS (τριπλό τετράπολο)
- Ιδανικό για σύζευξη με πηγές ιοντισμού ΑΡ

MEIONEKTHMATA:

- Χαμηλή διακριτική ικανότητα (FWHM: 0,5 u R: 1000-2000)
- Περιορισμένο εύρος m/z (μέγιστο 4000 u)
- Μειωμένη ευαισθησία σε υψηλή R
- Τυπικά σε πλήρη σάρωση, η ταχύτητα είναι 1 Hz (1 φάσμα/s)

Τετραπολική Παγίδα Ιόντων (3D-IT)

ΠΛΕΟΝΕΚΤΗΜΑΤΑ:

- Φθηνός αναλυτής με μικρό μέγεθος
- Μεγάλη ταχύτητα σάρωσης (>(1000 m/z) s-1)
- Χαμηλή απαίτηση κενού (10-3 Torr)
- Δυνατότητα MS/MS και MSⁿ (ταυτοποίηση δομής)
- Υψηλή ευαισθησία (περιορισμό στις ενώσεις)
- Κατάλληλος ανιχνευτής χρωματογραφίας
- Μεταβολίτες φαρμάκων, μελέτες δομής πρωτεϊνών

MEIONEKTHMATA:

- Χαμηλή διακριτική ικανότητα (FWHM: 0,3 u R< 4000)
- Περιορισμένο εύρος m/z (ελάχιστο 100, μέγιστο 6000 u)
- Περίπλοκη λειτουργία (παλμική), μεγάλος χρόνος από τη στιγμή που παράγονται τα ιόντα μέχρι την καταγραφή τους
- Ανεπιθύμητη θραυσματοποίηση, κορεσμός παγίδας
- Μικρή ακρίβεια ποσοτικοποίησης, μικρή γραμμική περιοχή

Γραμμική Παγίδα Ιόντων (2D-IT ή LIT)

Στις 2D-IT, τα ιόντα ενίονται αξονικά στην παγίδα, και κατά τη σάρωση εκβάλλονται ακτινικά σε 2 ανιχνευτές

(Thermo LTQ)

ΠΛΕΟΝΕΚΤΗΜΑΤΑ:

Έχει μεγαλύτερη χωρητικότητα σε ιόντα από την 3D-IT, αυτό βελτιώνει τη γραμμική περιοχή και μειώνει τις ανεπιθύμητες αλληλεπιδράσεις μεταξύ ιόντων, δεν έχει κατώτατο περιορισμό μαζών, μπορεί να λειτουργήσει σαν κυψελίδα θραυσματοποίησης χωρίς παγίδευση (ταχύτερη λειτουργία), συμβατή με Orbitrap.

TOF-MS

ΠΛΕΟΝΕΚΤΗΜΑΤΑ:

- Απλότητα λειτουργίας αναλυτή μαζών
- Θεωρητικά απεριόριστο εύρος μαζών (reflectron TOF: 10000 u)
- Τη μεγαλύτερη ταχύτητα σάρωσης (106 m/z s-1 ή τυπικό εὐρος σάρωσης σε 50Hz)
- Υψηλή διακριτική ικανότητα (R: 10000 40000)
- Δυνατότητα MS/MS (υβριδικό Q-TOF-MS)
- Βιομόρια, μελέτες δομής πρωτεϊνών

MEIONEKTHMATA:

- Περιορισμένη δυναμική περιοχή σε ποσοτική ανάλυση
- Απαιτούνται ακριβά και ταχύτατα ηλεκτρονικά
- Περιορισμένη ευαισθησία (βελτιώνεται σημαντικά ως Q-TOF)
- Παλμική πηγή ιοντισμού (MALDI)
- Υψηλή απαίτηση κενού (10⁻⁷ Torr)

Ιοντικός κυκλοτρονικός συντονισμός Ιοη Cyclotron Resonance, ICR

Ιοντική Κυτροτρονική κίνηση - Ion Cyclotron Motion

 ω_c : Ιοντική Κυκλοτρονική συχνότητα

FT-ICR-MS

ΠΛΕΟΝΕΚΤΗΜΑΤΑ:

- Την υψηλότερη διακριτική ικανότητα (R> 1 000 000)
- Θεωρητικά ο καλύτερος αναλυτής μαζών
- Μεγάλη ακρίβεια στον προσδιορισμό μαζών (<5 ppm)
- Σταθερότητα στη βαθμονόμηση μαζών
- Μη καταστρεπτική ανίχνευση ιόντων
- Δυνατότητα MS/MS
- Ανάλυση εξαιρετικά πολύπλοκων μιγμάτων
- Εφαρμογές: Βιομόρια, περιβαλλοντικές μελέτες, ισοτοπική ανάλυση, προσδιορισμός λεπτής δομής, πρωτεΐνες, πεπτίδια

MEIONEKTHMATA:

- Εξαιρετικά ακριβό όργανο πολύπλοκη λειτουργία
- Μικρή ταχύτητα σάρωσης (τυπικά 1 Hz)
- Ογκώδες, ειδικές εργαστηριακές εγκαταστάσεις
- Υψηλή απαίτηση κενού (10⁻⁸ -10⁻¹⁰ Torr)

Orbitrap

ΠΛΕΟΝΕΚΤΗΜΑΤΑ:

- Την υψηλότερη διακριτική ικανότητα μετά το FT-ICR (R= 10000
- 140000) μέχρι m/z 4000
- Μεγάλη ακρίβεια στον προσδιορισμό μαζών (<5 ppm)
- Μεγαλύτερη χωρητικότητα από τις ιοντικές παγίδες
- Μη καταστρεπτική ανίχνευση ιόντων
- Δυνατότητα MS/MS (σε συνδυασμό με ιοντική παγίδα)
- Ανάλυση εξαιρετικά πολύπλοκων μιγμάτων
- Εφαρμογές: Προσδιορισμός από μικρά μόρια έως μεγαλομόρια
- Βιομόρια, περιβάλλον και τρόφιμα, proteomics, lipidomics

MEIONEKTHMATA:

- Ακριβό όργανο (ειδικά τα υβριδικά) πολύπλοκη λειτουργία
- Σχετικά αργή σάρωση για εφαρμογές UPLC
- Υψηλή απαίτηση κενού (10⁻⁸ Torr)

Τριπλό τετράπολο Triple Stage Quadrupole (TSQ ή QqQ)

- 1. Το μητρικό ή πρόδρομο ιόν (parent or precursor ion) παράγεται στην πηγή ιοντισμού και επιλέγεται από το 1° τετράπολο (MS1)
- 2. Οδηγείται στο 2° τετράπολο (κυψελίδα συγκρούσεων) όπου συγκρούεται με περίσσεια ενός αδρανούς αερίου (Ar ή He), παράγοντας θυγατρικά ιόντα (daughter or product ions)
- 3. Ο διαχωρισμός και μέτρηση των θυγατρικών ιόντων γίνεται στο 3° τετράπολο (MS2)

Παρακολούθηση επιλεγμένου ιόντος Single Ion Monitoring (SIM)

- Πλεονεκτήματα:
 - Παρακολούθηση συγκεκριμένου αναλύτη
 - Γρήγορη σάρωση
 - Απλότητα

- Μειονεκτήματα:
 - Παρεμποδίσεις
 - Οχι τόσο ευαίσθητο όσο η SRM λειτουργία

Precursor ion scans

Οι σαρώσεις πρόδρομων ιόντων χρησιμοποιούνται για πειράματα διαλογής (screening)

Όταν μια ομάδα ενώσεων, όλες δίνουν το ίδιο ιοντικό θραύσμα

$$m/z$$
 H_2N
 H

Neutral loss scans

Η σάρωση με ανίχνευση απώλειας ουδέτερου μορίου χρησιμοποιείται για πειράματα διαλογής (screening), όταν το MS/MS μιας ομάδας ενώσεων εμφανίζει την ίδια απώλεια (μορίου ή ρίζας)

$$H_2N$$
 H_2N
 H_2N

ΜΕΘΟΔΟΣ ΔΙΑΛΟΓΗΣ (SCREENING METHOD)

ΤΕΧΝΙΚΗ ΣΑΡΩΣΗΣ ΠΡΟΔΡΟΜΟΥ ΙΟΝΤΟΣ:

Λήψη φάσματος μαζών των πρόδρομων ιόντων τα οποία θραυσματοποιούνται σε συγκεκριμένο προϊόν ιόν

	Μετάπτωση	
Diuron	$232,9 \rightarrow \begin{array}{c} 72,3 \\ \rightarrow 46,5 \end{array}$	
DCPMU	$218,9 \rightarrow 127,0 \\ \rightarrow 161,9$	
DCPU	$205,0 \rightarrow $ 127,1 $\rightarrow $ 161,9	Κοινό προϊόν
DCA	$162,0 \rightarrow 127,1 \\ \rightarrow 109,1$	m/z
Irgarol	$254,0 \rightarrow 197,9 \\ \rightarrow 108,1$	
M1	$214,0 \rightarrow 158,0$ $\rightarrow 68,3$	96

ΜΕΘΟΔΟΣ ΔΙΑΛΟΓΗΣ (SCREENING METHOD)

ΤΕΧΝΙΚΗ ΣΑΡΩΣΗΣ ΑΠΩΛΕΙΑΣ ΟΥΔΕΤΕΡΟΥ ΜΟΡΙΟΥ:

Λήψη φάσματος μαζών των πρόδρομων ιόντων που χάνουν ένα συγκεκριμένο κοινό θραύσμα

	Μετάπτωση	
Diuron	$\begin{array}{ccc} 232,9 & \rightarrow & 72,3 \\ & \rightarrow & 46,5 \end{array}$	
DCPMU	$218,9 \rightarrow 127,0 \\ \rightarrow 161,9$	
DCPU	$205,0 \rightarrow 127,1 \\ \rightarrow 161,9$	
DCA	$162,0 \to 127,1 \\ \to 109,1$	
Irgarol	254,0 ® 197,9 → 108,1	Neutral loss: m/z 56
M1	214,0 ® 158,0 → 68,3	Neutral loss: m/z 56

ΜΕΘΟΔΟΣ ΔΙΑΛΟΓΗΣ (SCREENING METHOD)

- Μμιποσοτικοί προσδιορισμοί: διαχωρισμός δειγμάτων που περιέχουν τις ενώσεις από μία δεδομένη συγκέντρωση (LOD) και πάνω από εκείνα που τις περιέχουν σε χαμηλότερες συγκεντρώσεις
- Θ Ποιοτική εφαρμογή: μέσω των φασμάτων μαζών, για την ανίχνευση ενώσεων με παρόμοια δομή ή άγνωστους μεταβολίτες μιας ένωσης που είτε δίνουν κοινό προϊόν ιόν ή έχουν κοινή απώλεια ουδέτερου μορίου

104

Παρακολούθησης επιλεγμένης αντίδρασης **Selected Reaction Monitoring (SRM)** Θραυσματοποίηση Επιλεγμένο Επιλεγμένο m/z Μετάπτωση ή «αντίδραση» : $m_1/z \rightarrow m_2/z$ • Πλεονεκτήματα: • Μειονέκτημα: -Παρακολούθηση -Οι πληροφορίες για τη δομή της επιλεγμένου αναλύτη ένωσης είναι περιορισμένες -Γρήγορη σάρωση - "Ταυτόχρονη" παρακολούθηση πολλών μεταπτώσεων (MRM)

Scan Modes: Quadrupole MS

Scan Mode	Q1	Q2	Q3	Purpose
Full-Scan	Scanning	Pass All	Pass All	MW Info.
SIM	Fixed m/z	Pass All	Pass All	Quantitation
Product	Fixed m/z	Pass All (+ CE)	Scanning	Structural Info.
SRM	Fixed m/z	Pass All (+ CE)	Fixed m/z	Targeted Quantitation
Neutral Loss	Scanning	Pass All (+ CE)	Scanning	Analyte Screening
Precursor	Scanning	Pass All (+ CE)	Fixed m/z	Analyte Screening

• Red: single or triple quadrupole MS

• Green: triple quadrupole MS only

Microchannel plate (MCP) ανιχνευτής

Χρήσιμος σε παλμική λειτουργία (TOF-MS)

Συγγράμματα

- D.A. Skoog, F.J. Holler, T.A. Nieman «Αρχές της Ενόργανης Ανάλυσης», Μτφ. Μ.Ι. Καραγιάννης, Κ.Η. Ευσταθίου, Ν. Χανιωτάκης, Εκδόσεις Κωσταράκη, Αθήνα, 2002: Κεφ. 11 και 20
- J. Throck Watson and O. David Sparkman "Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation" 4th Edition, John Wiley & Sons, 2007
- E. De Hoffmann and V. Stroobant "Mass Spectrometry, Principles and Applications" 3rd Edition, John Wiley & Sons, 2007
- K. Downard "Mass Spectrometry A Foundation Course" 2nd Edition, RSC, 2007

Σχήματα

Τα σχήματα της παρουσίασης ήταν από τις παρακάτω πηγές:

- Ευγενική παραχώρηση από τον Prof. O. David Sparkman (από το βιβλίο του J. Throck Watson and O. David Sparkman "Introduction to Mass Spectrometry, 4th Edition: Instrumentation, Applications, and Strategies for Data Interpretation" John Wiley & Sons, 2007)
- D.A. Skoog, F.J. Holler, T.A. Nieman «Αρχές της Ενόργανης Ανάλυσης», Εκδόσεις Κωσταράκη, Αθήνα, 2002: Κεφ. 11 και 20
- Thermo
- Brucker
- Shimadzu
- AB Sciex

ntho@chem.uoa.gr

http://trams.chem.uoa.gr

ΕΥΧΑΡΙΣΤΩ ΠΟΛΥ