COS210 - Theoretical Computer Science Pushdown Automata (Part 3)

The descriptive power of a **non-deterministic pushdown automaton** (NPDA) is **equivalent to** that of a **context-free grammar**:

- If there exits an NPDA M with language L = L(M), then there exists a context-free grammar G with language L = L(G) = L(M)
- If there exits a context-free grammar G with language L = L(G), then there exits an NPDA M with language L = L(M) = L(G)

Theorem

Let A be a language over an alphabet Σ . Then A is context-free

 \iff

there exists a non-deterministic pushdown automaton that accepts A.

- In this course we will only prove the "⇒" part of the theorem
- We will show how to convert an arbitrary context-free grammar to a non-deterministic pushdown automaton

Proof:

- Let $G = (V, \Sigma, R, \$)$ be a context-free grammar such that L(G) = A
- We will construct an NPDA M that accepts L(M) = L(G) = A
- We know from Theorem 3.4.2 that every context-free grammar can be converted to Chomsky Normal Form (CNF)
- Hence, we can assume that G is in CNF and each substitution rule in R is of one of the following forms
 - ▶ $A \rightarrow BC$, where A, B, and C are variables, $B \neq \$$, and $C \neq \$$
 - ightharpoonup A
 ightharpoonup a, where A is a variable and a is a terminal
 - \blacktriangleright \$ $\rightarrow \epsilon$

The pushdown automaton M must have the following property

- For every string $w = a_1 a_2 \dots a_n$ over Σ $w \in L(G) \iff M$ accepts w
- Which means that

$$\$ \stackrel{*}{\Longrightarrow} a_1 a_2 \dots a_n$$

if and only if,

there exists a run of M that starts in the initial configuration

and ends in the accepting configuration

- **Premise**: $\$ \stackrel{*}{\Longrightarrow} a_1 \dots a_n \ (a_1 \dots a_n \ \text{derivable from start variable } \$)$
- We can assume that in each step of this derivation, a rule is applied to the leftmost variable in the current string, e.g.

$$\$ \implies AB \implies aB \implies ab$$

 Because the grammar is in CNF, at any time during the derivation the current string will have the form

$$a_1 a_2 \dots a_{i-1} A_k A_{k-1} \dots A_1$$

- At the **start** of the derivation, we have i=1 and k=1, and the current string is $A_k=\$$
- At the **end** of the derivation, we have i = n + 1 and k = 0, and the current string is $a_1 a_2 \dots a_n$

 We will construct the pushdown automaton M such that the current string

$$a_1 a_2 \dots a_{i-1} A_k A_{k-1} \dots A_1$$

corresponds to the configuration

• i.e. the NPDA M has already read symbols $a_1 \ldots, a_{i-1}$ in that order

Given $G = (V, \Sigma, R, \$)$, we construct $M = (Q, \Sigma, \Gamma, \delta, q)$ as follows

- the **set of states** Q consists of the initial state q only
- ullet the **tape alphabet** Σ is equal to the **set of terminals**
- the stack alphabet is the set of variables: $\Gamma = V$
- the transition function δ is obtained from the rules in R as follows
 - ▶ For each rule of the form $A \rightarrow BC$ we introduce an instruction

$$\mathit{qaA} \to \mathit{qNCB}, \text{ for all } \mathit{a} \in \Sigma$$

• For each rule of the form $A \rightarrow a$ we introduce an instruction

$$gaA \rightarrow gR\epsilon$$

• If there is the rule $\$ \rightarrow \epsilon$, then we introduce the instruction

$$q \square \$ \rightarrow q N \epsilon$$
 (accepting termination)

We still need to show that the language of M is the language of G, i.e.

$$\$ \stackrel{*}{\Longrightarrow} a_1 a_2 \dots a_n \iff M \text{ accepts } a_1 a_2 \dots a_n$$

We first prove the following:

Claim

$$\$ \stackrel{*}{\Longrightarrow} a_1 a_2 \dots a_{i-1} A_k A_{k-1} \dots A_1$$

 \Longrightarrow

there exists a run in M from the initial configuration

to the configuration

Proof of Claim:

Induction over the structure of strings w

Base Case:

• The claim holds for the string w = \$ (we have $\$ \stackrel{*}{\Longrightarrow} \$$)

Inductive Step:

- Assume that the claim holds for $w = a_1 a_2 \dots a_{i-1} A_k A_{k-1} \dots A_1$
- ullet Need to show that claim still holds after applying any rule in R to A_k
- Such a rule must be in one of the following forms:
 - $ightharpoonup A_k o BC$ or
 - $A_{k} \rightarrow a_{i}$
- In both cases the claim will still hold for the resulting string

Now we can show

$$\$ \stackrel{*}{\Longrightarrow} a_1 a_2 \dots a_n \iff M \text{ accepts } a_1 a_2 \dots a_n$$

by applying the claim with i = n + 1 and k = 0

$$\$ \stackrel{*}{\Longrightarrow} a_1 a_2 \dots a_n$$

$$\iff$$

there exists a run in M from the initial configuration

to the configuration

We can conclude that L(M) = L(G)

We can even strengthen the theorem as follows:

Theorem

Let A be a language over an alphabet Σ . Then A is context-free

there exists a non-deterministic pushdown automaton that accepts A and the automaton has only one state.

Proof:

- Since A is context-free, there exists a grammar G_0 with $L(G_0) = A$
- There exists a grammar G in Chomsky Normal Form with $L(G) = L(G_0)$
- The grammar G can be coverted to an NPDA M with L(M) = L(G) that has only one state

Assume the following grammar in Chomsky Normal Form $G = (V, \Sigma, R, S = \$)$ where $\Sigma = \{0\}$, $V = \{S, A, B, A_1, A_2\}$ and R:

$$S \rightarrow BB|AB|BA|A_2A_2|BA_1|\epsilon$$
 $A \rightarrow BB|AB|BA|A_2A_2|BA_1$
 $B \rightarrow A_2A_2$
 $A_1 \rightarrow AB$
 $A_2 \rightarrow 0$

We construct an equivalent pushdown automaton $M = (Q, \Sigma, \Gamma, \delta, q)$ with

- $Q = \{q\}$
- $\Sigma = \{0\}$
- $\Gamma = \{S, A, B, A_1, A_2\}$
- δ...

For each rule in R of the form $A \rightarrow BC$ we add the instructions

$$\mathit{qaA} \to \mathit{qNCB}, \text{ for all } \mathit{a} \in \Sigma$$

Rules:

$S \rightarrow BB|AB|BA|A_2A_2|BA_1|\epsilon$ $A \rightarrow BB|AB|BA|A_2A_2|BA_1$ $B \rightarrow A_2A_2$ $A_1 \rightarrow AB$ $A_2 \rightarrow 0$

Added instructions:

q0A
ightarrow qNBB q0A
ightarrow qNAB q0A
ightarrow qNBA $q0A
ightarrow qNA_2A_2$ $q0A
ightarrow qNA_1B$

For each rule in R of the form $A \rightarrow BC$ we add the instructions

$$\mathit{qaA} \to \mathit{qNCB}, \text{ for all } \mathit{a} \in \Sigma$$

Rules:

$S \rightarrow BB|AB|BA|A_2A_2|BA_1|\epsilon$ $A \rightarrow BB|AB|BA|A_2A_2|BA_1$ $B \rightarrow A_2A_2$ $A_1 \rightarrow AB$ $A_2 \rightarrow 0$

Added instructions:

 $q0S \rightarrow qNBB$ $q0S \rightarrow qNAB$ $q0S \rightarrow qNBA$ $q0S \rightarrow qNA_2A_2$ $q0S \rightarrow qNA_1B$

For each rule in R of the form $A \rightarrow BC$ we add the instructions

$$\mathit{qaA} \to \mathit{qNCB}, \text{ for all } \mathit{a} \in \Sigma$$

Rules:

Added instructions:

$$S \rightarrow BB|AB|BA|A_2A_2|BA_1|\epsilon$$
 $A \rightarrow BB|AB|BA|A_2A_2|BA_1$
 $B \rightarrow A_2A_2$
 $A_1 \rightarrow AB$
 $q0B \rightarrow qNA_2A_2$
 $q0A_1 \rightarrow qNBA$
 $q0A_1 \rightarrow qNBA$

Context-Free Grammar to Pushdown Automaton: Example For each rule in R of the form $A \rightarrow a$ we add the instruction

 $qaA o qR\epsilon$

Rule: Added instruction: $A_2 \rightarrow 0 \qquad \qquad q0A_2 \rightarrow qR\epsilon$

If R contains the rule $\$ o \epsilon$, then we add the instruction $q \Box \$ o q N \epsilon$

 $S \rightarrow \epsilon$

Rule:

Added instruction:

 $q \square S \rightarrow q N \epsilon$

Exercise

Given the following derivation of the grammar G:

$$S \Rightarrow BB \Rightarrow A_2A_2B \Rightarrow 0A_2B \Rightarrow 00B \Rightarrow 00A_2A_2 \Rightarrow 000A_2 \Rightarrow 0000$$

and the initial configuration of the pushdown automaton M:

- Write down the sequence of instructions corresponding to the derivation above
- Update the configuration of *M* for each instruction step