Confidence Intervals Summary

<u>Case 0</u>: X is normal, σ^2 is known. Then $\bar{X} \sim \text{Normal}(\mu, \sigma^2/n)$.

$$\bar{x}_{\rm obs} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

is a $(1-\alpha)100\%$ CI for μ .

<u>Case 1</u>: σ^2 is known, n is large. By the CLT $\bar{X} \approx \text{Normal}(\mu, \sigma^2/n)$. In this case,

$$\bar{x}_{\rm obs} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

is an approximate $(1 - \alpha)100\%$ CI for μ .

<u>Case 2</u>: σ^2 is unknown, n is large. By the CLT $\bar{X} \approx \text{Normal}(\mu, \sigma^2/n)$. In this realistic case,

$$\bar{x}_{\rm obs} \pm z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

is an approximate $(1-\alpha)100\%$ CI for μ where s is the sample standard deviation.

% Confidence	Critical Value
90	$Z_{\alpha/2} = Z_{0.05} = 1.645$
95	$Z_{\alpha/2} = Z_{0.025} = 1.96$
99	$Z_{\alpha/2} = Z_{0.005} = 2.576$
99.9	$Z_{\alpha/2} = Z_{0.0005} = 3.29$

If we are given a desired width of the confidence interval, we can solve for the unknown, required n.

<u>Case 3</u>: X is normal, σ^2 is unknown, n is small.

$$\bar{x}_{\text{obs}} \pm t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

 $(1-\alpha)$ **100**% confidence interval for μ .

<u>Case 4</u>: X is binomial(n,p), $\hat{p}_{obs} = x_{obs}/n$, $n\hat{p}_{obs} \ge 5$ and $n(1-\hat{p}_{obs}) \ge 5$

$$\hat{p}_{\text{obs}} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_{\text{obs}}(1 - \hat{p}_{\text{obs}})}{n}}$$

is an approximate $(1 - \alpha)100\%$ CI for p.

In practice, we get lazy in our notation and drop the subscript 'obs' from $\bar{x}_{\rm obs}$ and $\hat{p}_{\rm obs}$.