1. Pifferential Vector Operators -partial derinatives and = dad - 1 = 1 = Jun2+ 42+ 42 unit vector $\frac{\partial \varphi}{\partial z} = \hat{e}_{x} \left(\frac{\partial \varphi}{\partial x} \right) + \hat{e}_{y} \left(\frac{\partial \varphi}{\partial y} \right) + \hat{e}_{z} \left(\frac{\partial \varphi}{\partial z} \right) = \begin{pmatrix} \partial_{x} \varphi \\ \partial_{z} \varphi \end{pmatrix}$ The direction of maximum increase of \$ increase of \$ directional derivation of palong in : giosin - To = In 1501 cos a = 170/0500 directional derivative vanides it is tangated to contom line / surfaces given by p(1) = C: [directional do votine: a sp of in I to hyporsurfaces defined by PCT) = C gradient of a rotationally symmetric field: Occietary with celal greenby: fir) & Er = 1/2 which is the unit vector along direction of a - Total differential of fields $d\phi = \frac{\partial \varphi}{\partial n} dn + \frac{\partial \varphi}{\partial y} dy + \frac{\partial \varphi}{\partial z} dz$ -> changing x hay dx = of dr when dr is verbial expect (di) // to dx 0 - Measures change do of \$ as 11,4,2 are changed by 11,4,2
- Margares A trade of vertex tooks

- 2nd Order Variations of fields, Laplace Operator. consider O(r) in a scalar field Caplacion - scalar field DØ: = 72 = div grad 0 = di 6+ dy 6 + d= 4 6 : partiel de vatives ore commute t. (TXA) so div curl A T. (JXA) = 0 => 200 divergence

2. Mult: dimensional Integration	
T: S G(r(t)) . r'(t) dt T: S G(r(t)) . r'(t) . r'(t) dt T: S G(r(t)) . r'(t) .	
I: Ger) · dr Courdinate free definition	
(2) (3) (4) dt (5) (4) dt	
del est la the case de te	
te Itital (a) the sum over elementary contributions Gur, dr in the	
Special case when SA=FB Contributions Guer, de in the	
100 integral - result of a line integral is a scalar	
of G(r). dr loop integral - result of a line integral is a scalar	
- defines on which part in taken	
- Const. of Could	
Constructive vector tields	
if line integrals du not depend on dr (1) of dy(b)	
which path as taken from 19 to 18	
checking whether field in conservatives. : (" (1) at 2'(1) at	
Cici in conservative when earl G: VxG:0 : c'(t) dt	
G:G(C(t))	
G(1): T)	
considering a path (parametrises by potential of Gice)	
r(t) where { E [a,b] (1 a): (a): (b): (b): (c) b	
I = D Gill dt : S G (tt) of (t) dt : S cop (rill) or (t) dt	
C	
$=\int_{\mathcal{A}}d\phi(r(u))dt=\left(\phi(r(u))\right)_{c}^{b}=\phi(r_{3}-r_{A})$	
6	
1 independent of the path taken!	
just depends on initial & Final positions Solving (7(5) = VD	
Solving CIUI TOP	
Talve simultaneous Eq.? $G(C)$ is an approxime when: $G(C)$ is an approxime when: $G(C)$ is $G(C)$ is an approximative when:	
$\nabla_{x}G = 0$	
7	

Area integrals $A: \int_{A} \sigma(\alpha) dA = \int_{A} dy \int_{A} n \sigma(n,y)$ ine clement: polar coordinates cordinale transformation de = êrdr + êp do er = (sing) or theyond inverse transformation: ê do = (-sind) 1= July 2 # = arcton () $\Gamma = \Gamma\left(\frac{65}{\sin \beta}\right) = \Gamma\left(\frac{n}{\gamma}\right)$ de: () way total differential x: x((,0) = (Cost) dr+r (cosp) dd area element: dA= dr.rdp 2 rdr ds

Volume integal: T= If (c) dV = III f(n,y,z) dn dy dz weap element - ede Cylindrical coordinates: volume element = ed e d/dz spherical coordinate. all orthogonal all orthogonal to each other

Surface integolo eg total flux of blood all through 7. Total flux of a vector field (7(1) Iz = Ps (G.A) US = Ps G. ds - divide Sinter small area elements ds decomposing & mito components 1/01 to S La Summay individual contributions firlds intle limit ds so eg told change on a current plate -only GICC) contributes through S - assume we know normal vector \$\hat{\Omega}\$

I the Sal pt s ds = Trds (401. 9: (1/0). 3 + 6/101. y = (21(2):2) G(1.) = G1 integrating (Lucr) scalar gives type 1 Iz= SG(1). A ds = SG(1). ds

Braneling surface:
$$|avb| = A$$
 $|avb| = A$
 $|avb| = A$

J. G(1)
Gives soowan V sinks outnails Gauss's Divergence Thousan G(c) · d s = J P · G(r) dV

Surface integral
Volume integral
Volume integral

S=01 Proving the theorem via sketch & states that: Step1: prove the thorem for an intinitesimal cuboid of whome dV= dndydz flux of a vector field Giri Centred arread pt I in volume V. through a closed surface SodV is equal to $dS = \hat{e}_x dy dz$ $dS = \hat{e}_x dy dz$ the integral of div G over enclosed volume of V. Step 2. de s:-ez dady field where c: 2+ 2 cn x direction, 410 dx infinitesimal flux, of F through surface wher G (=) is a vertor field: $dF = \vec{C}_1 \left(\vec{r} + \frac{dn}{2} \hat{e}_n \right) \cdot \hat{e}_n dy dz + \vec{C}_1 \left(\vec{r} - \frac{dn}{2} \hat{e}_n \right) \cdot \left(-\hat{e}_n \right) dy dz$ $+\vec{G}(\vec{r} - \frac{dy}{2}\hat{e}_y) \cdot \hat{e}_y dn dz + \vec{G}(\vec{r} - \frac{dy}{2}\hat{e}_y) \cdot (-\hat{e}_y) dz dz$ $+ \vec{G}(\vec{r} + \frac{d_2}{2}\hat{e}_2) \cdot \hat{e}_2 dx dy + \vec{G}(\vec{r} - \frac{d_2}{2}\hat{e}_2) \cdot (-\hat{e}_2) dx dy$ [Gx(2+ dn ên) - Gn(2- dn En)]dy dz = $\left[\left(G_{n}(\varepsilon) + \partial_{n}G_{n}(\varepsilon) \frac{d_{n}}{2}\right) - \left(G_{n}(\varepsilon) - \partial_{n}G_{n}(\varepsilon) \frac{d_{n}}{2}\right)\right] d_{y}d_{z}$ Summing fluxes of: G.ds - du Ga (=) dudyd2 dF= (da Gn+ dyGy+dzGz)dndydz through surfaces of all Cuboids wonly surface contributions = 7. G 1V Survive, internal Contributions Ster 3, consider/integral over volume V with surface 5-2V integrating : So div G dV carrel out Jdf: Jdf = JG.ds s=2 S=2v

Stoke's Therran:	<u></u>	- 46	
toop interg			
loop integral of a vector field GIII around the boundary (2=05		
of an open surface 5 is equal to			
the flux of the curl of the vertor field, tag th	rough the surface	2	Total Control
	1013	celative	Resi PER
G G (r) · dr = ∫ Dx G · d S	as s	orientation of	
Prainz Stoke'r theorem		ds & C	
		right hondrule	
1 start w/ infinitesimal surface area element ds		7 9 6 7 600	
introduce local courdinate system (11,14) containing patch	5		
and the state of t		18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
dy ds=êz dndy			
∂n			
2. of Gor, or given by the sum of contributions from 4 sides	*		
		7	
$dI = G(S - \frac{dy}{2}\hat{e}_y) - \hat{e}_n dx + G(S + \frac{dx}{2}\hat{e}_n) - \hat{e}_y dy$			
7 G (s + dy er) . (-êr) dn + G (s - dx en) e, dy	*		
3(2) (9)(0)			
= (Gn (r- dye)) - Gn (r+ dyey) dn			
+ [Gy (r+ 2ex) - Gr, (r- dn ex)] dy			
	,		
= - dyGn (r) dndy + on G, (1) dady = tx 5/2 dady		Indy	
11 = (x) ds			-
3. Summing up the individual loop integrals wintegrale over surface s.	25 25 F		
dI from all surface area elements Q.W.S = } (EXG)			U
4s internal con Cributions cancel	I = [G.] s		
internal constributions cancel of some the	26.3		
boundary surl survivo			

OPE, d (f.g): f.s + g.f' - Seperable -> A-lovel stuff A(5.4) = 5 dy + y 5' - Linear 1 storder ODEs coon-superable) Integrating factor mother do Shidy - Pin Sail = Sin Qin San [dy + Penny] = [Qoe] Son -> 5 = Pan Sin = ds => finding San that satisfies Supe e Slow de integrating fortor => S. dy +y ds = S(h) R(h) = d (5.4) alsy): SQ 4= () 500 QW d (4) 7() Sal: e SPanda Perfect differential method/Brat-differential method

Titue,y)= Def dn Quy) dy + P(My) 20 = f_ + g(y) , g(y) & h (w) P(ny) dn + Q(n,y) dy = 0 $I: f(x,y) = \int \frac{\partial f}{\partial y} dy$ Assume: PLD are partial diff wrt x by = for how I. $\frac{\partial F}{\partial x} = P(n,y)$ I. $\frac{\partial F}{\partial y} = Q(x,y)$ E that f(n,y) = const i. df = of dx + of dy =0 df:0 : f(n,y)=C Can use if $\frac{\partial P}{\partial y} = \frac{\partial^2 f}{\partial y \partial n} = \frac{\partial^2 f}{\partial n \partial y} = \frac{\partial Q}{\partial n}$ dp = da Sufficient condition

Y = Yest Yei and order: 斯 Yes YPL - Homogeneous: y" + py + toy = 0 - In homo genera 1. Real routs: 1. Polynomials fw = A. + A. x + A. x p. 1 (0 6 YPZ = Q. + Q. K T ... X NA" y = Ae kix + Be xx 2. exponentials fw = Aceur 2. Complex roots: YPI = X. EWX p. 900 ki, 2 = ating ADEWE = NO y't py'tq = 00 (w2 + pw+4) e " $\alpha = -\frac{P}{2}$, $\beta = \sqrt{2 - P_4^2}$ do = Ao y = Ae kin + Bekin = Ae (atip) + Be (x-ip)x it w= k1,2 (from yn) YPZ: Bzewx = exx (Aeign + Beign) y = e an [(A+B) cos(Bn) + i (A-B) sin (Bn)] 3. sih Vos + (w = A. WI(WA) + A, Sin (MA) y= ean [Ccos (pn) + D sin (pn)] YPI= do COI (WH) Yd, shown y= e da [(4tB)con(Ax) + i (A-B)sin(Bx)) Comparing cofficed 3. Pegerante roots F - 9 20 y = Ae un + Bre un

to special relativity Linear Algebra Knonaku Della Sij = { o (1) $\hat{\mathcal{C}}_{\mathbf{x}} = \hat{\mathcal{C}}_{\mathbf{x}}$ $\hat{\mathcal{C}}_{\mathbf{x}} = \hat{\mathcal{C}}_{\mathbf{x}} = \hat{\mathcal{C}}_{\mathbf{x}} + \hat{\mathcal{C}}_{\mathbf{x}} = \hat{\mathcal{$ ey= e1 => $e_1 \cdot e_1 = e_2 \cdot e_3 = e_3 \cdot e_4 = 0$ (1 to each other) La Summarismy: $\hat{e}_i \cdot \hat{e}_j = \delta_{ij} = \begin{cases} 1 & (i=j) - 1/1 \\ 0 & (i\neq j) - 1 \end{cases}$ $V = V_1 \hat{e}_1 + V_2 \hat{e}_2 + V_3 \hat{e}_3$ Loefficient $V_i =$ $V_i = \hat{\underline{e}}_i \cdot \underline{V}_i$ $= \hat{\underline{e}}_i \cdot \begin{pmatrix} V_i \\ V_{iL} \end{pmatrix} = \hat{\underline{e}}_i \cdot V_i + 0 + 0 = \underbrace{V_i}_{L}$ Scalar product: $\underline{\mathbf{u}} \cdot \underline{\mathbf{v}} = \left(\mathbf{v}_1 \hat{\underline{\mathbf{e}}}_1 + \mathbf{v}_2 \hat{\underline{\mathbf{e}}}_2 + \mathbf{v}_3 \hat{\underline{\mathbf{e}}}_2 + \cdots \mathbf{v}_n \hat{\underline{\mathbf{e}}}_n \right) \cdot \left(\mathbf{v}_1 \hat{\underline{\mathbf{e}}}_1 + \mathbf{v}_2 \hat{\underline{\mathbf{e}}}_2 + \mathbf{v}_3 \hat{\underline{\mathbf{e}}}_3 + \cdots \mathbf{v}_n \underline{\mathbf{e}}_n \right)$ V.V = E W.V; 30 space length of verter: V: (V = \v.2+ v.2- -. Vn2 Is defined as one where there are 3 (but no more) y= 1 → unit vector ¥=0 → null vector or thonormal linearly Linear Dependence: dependent vector è: Set of vectors are linearly dependent when it is possible to find a set of scalar coefficients C, X, + C2 X2 + ... Cn x = 0 Tilse > vector are linearly independent A Basis vector are Unearly independent · no linear combination of Einstrict which vanishes (unless & p are all 200) ê, # a ê, + pê2

1- Dimensional Linear Vector Space (aes, bes) Def: C=a+b=b+a - commutative Exists a null vector QES (ath)+ c = a+ (b+c) - Associative 6 a+ 0= a for every vector a sexist a unique vector - a ge5=> 20 €(26 €) 7(0+6) = 26+76 2(49) = Ar (2/4) 2 (16 C) - not assumed that the bosis voctor is a set of linearly independent Basis vectors lamponent: are unit veilors &: vector that spon the full space V = 5 V; e1 arthogonal to one another disto M. (an+BA)= 4M. A +BM.A Definition of scalar product in Son (only " comprients antribute) ñ· ⊼=0 (T) $\vec{v} \cdot \vec{v} = v_1^* v_1 + v_2^* v_2 + \dots + v_n^* v_n$ Vi = ê · · V y.y = vitu, + vs " uz +...+ v, " uh = (u.v) " evaluting action of on y = \(\Sigma\)iej Matrices - sperator allowing you to du $\underline{\mathbf{v}} = \widehat{\mathbf{A}} \mathbf{v} = \sum_{j} \mathbf{v}_{i} (\widehat{\mathbf{A}} \hat{\mathbf{e}}_{j}^{2}) = \sum_{ij} \mathbf{a}_{ij} \mathbf{v}_{i} \hat{\mathbf{e}}_{i}$ Linear transformation on vectors Linear transformation M = Z viêi - S aij viêi - expressing operation: A in terms of basis $\hat{\mathcal{C}}_{i} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \qquad \underline{a}_{i} = \hat{A} \hat{\mathcal{C}}_{i}$ Miz Zaij vi > vector andergone Set of no. aij represento A lincor transformation A = (a21 ans ... a2n) where it is a square matrix acting on all basis verton \hat{e}_j (generalized) $\hat{a}_j = \hat{A}\hat{e}_j = \begin{pmatrix} \hat{a}_j \\ \hat{a}_j \\ \hat{a}_j \end{pmatrix}$ I is commy $Q_1 = \alpha_{ij} \hat{\varrho}_i + \alpha_{2j} \hat{\varrho}_2 + \dots + \alpha_{nj} \hat{\varrho}_n = \sum_{i=1}^{n} \alpha_{ij} \cdot \hat{\varrho}_i$ e; has I in it position & O me in every where else

Matrix multiplication (月第 tem1) Matrix add Windtract. -commutation (家人 詞) · M= nij = (AB) ; non commutative ABFBA = \(\frac{5}{4} a: k bk \) = a ik bk \(\frac{5}{4} a: k bk \) = a ik bk \(\frac{5}{4} a: k bk \) Dassociative (brackets) Mij+ Mij = gij+bij associative proof! [AB)c]ie = \ (AB), c;2 Considering = \(\(\sum_{k} \) cil = \(\sum_{k} \alpha_{ik} \) by cil Kaik (BC) kr = [A(BC)]ie w= By u = Av u = Av v = Av v = Av v = Cvfinding matrix representation of c: v = Sv v = Sv v = Sv v = SvUk = \sum aki w; = \sum aki hij vj S ROLL TO SELECT THE CONTRACT OF THE CONTRACT = \(\frac{1}{\psi} \lambda_k \j \v_j\) Ckj = \(\frac{1}{12} \) aki bij Peterminants (A\$ tem 1)

2x2: detA = | a11 a21 |
6,2 621 | = a,a,,-a,a,1 $det A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{21} & a_{22} \end{bmatrix} = a_{11} \begin{bmatrix} a_{22} & a_{23} \\ a_{31} & a_{12} & a_{33} \end{bmatrix} = a_{11} \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} = a_{12} \begin{bmatrix} a_{22} & a_{23} \\ a_{31} & a_{32} \end{bmatrix} = a_{13} \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = a_{13} \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = a_{13} \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = a_{13} \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = a_{13} \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = a_{13} \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = a_{13} \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = a_{13} \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = a_{13} \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = a_{13} \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = a_{13} \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = a_{13} \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = a_{13} \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = a_{13} \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = a_{13} \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = a_{13} \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = a_{13} \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = a_{21} \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = a_{22} \begin{bmatrix} a_{21} & a_{22} \\ a_{32} & a_{32} \end{bmatrix} = a_{23} \begin{bmatrix} a_{21} & a_{22} \\ a_{32} & a_{32} \end{bmatrix} = a_{23} \begin{bmatrix} a_{21} & a_{22} \\ a_{32} & a_{32} \end{bmatrix} = a_{23} \begin{bmatrix} a_{21} & a_{22} \\ a_{32} & a_{32} \end{bmatrix} = a_{23} \begin{bmatrix} a_{21} & a_{22} \\ a_{32} & a_{32} \end{bmatrix} = a_{23} \begin{bmatrix} a_{21} & a_{22} \\ a_{32} & a_{32} \end{bmatrix} = a_{23} \begin{bmatrix} a_{21} & a_{22} \\ a_{32} & a_{32} \end{bmatrix} = a_{23} \begin{bmatrix} a_{21} & a_{22} \\ a_{32} & a_{32} \end{bmatrix} = a_{23} \begin{bmatrix} a_{21} & a_{22} \\ a_{32} & a_{32} \end{bmatrix} = a_{23} \begin{bmatrix} a_{21} & a_{22} \\ a_{32} & a_{32} \end{bmatrix} = a_{23} \begin{bmatrix} a_{21} & a_{22} \\ a_{32} & a_{32} \end{bmatrix} = a_{23} \begin{bmatrix} a_{21} & a_{22} \\ a_{32} & a_{32} \end{bmatrix} = a_{23} \begin{bmatrix} a_{21} & a_{22} \\ a_{32} & a_{32} \end{bmatrix} = a_{23} \begin{bmatrix} a_{21} & a_{22} \\ a_{22} & a_{32} \end{bmatrix} = a_{23} \begin{bmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{bmatrix} = a_{23} \begin{bmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{bmatrix} = a_{23} \begin{bmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{bmatrix} = a_{23} \begin{bmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{bmatrix} = a_{23} \begin{bmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{bmatrix} = a_{23} \begin{bmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{bmatrix} = a_{23} \begin{bmatrix} a_{21} & a_{22} \\ a_{22} & a_{22}$ Cofactor of Matrix element: Cij = (-1) it det Mij | t - t |

Mij in the Matrix remaining when | - + - |

out ill column j have been removed | t - t | from the original matrix

UXY sredne 67x3 s adua to 2x2 ez

1. It rows are written as columns, columns written as rows

U) det is unchanged
$$\Delta' = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix} = a_{11} a_{22} - a_{21} a_{12} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = D$$

3. If we maltiply a row/column by a constant, bodet will also be multiplied by the constant

$$\Delta = \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} = \langle \alpha_{11} \alpha_{22} - \alpha_{1221} = \langle \alpha \rangle \begin{pmatrix} \alpha_{11} \alpha_{21} \\ \alpha_{21} \alpha_{22} \end{pmatrix}$$

4. If 2 mms / columns are multiples if each other,

det = 0 can be need to test for linear independing if
$$a_{12} = \alpha a_{12}$$
 for $i = 1,2$ $u = \left(\frac{1}{3}\right)$ $v = \left(\frac{7}{3}\right)$ $v = \left(\frac{7}{3}\right)$

$$a_{i_{2}} = \alpha a_{i_{1}}$$
 for $i:1,2$ $u = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ $v = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$

$$b = \alpha a_{i_{1}} a_{2i_{1}} - \alpha a_{i_{1}} a_{2i_{1}} = 0$$

$$\begin{vmatrix} 1 & 4 & 3 \\ 3 & 4 & 4 \end{vmatrix} = 0$$

6. Adding a multiple of one revisalumn to another (det remains unchanged if you and a det does not change another with a multiple of a row to another now

$$D' = \begin{vmatrix} (a_{11} + ka_{12}) & a_{12} \\ (a_{21} + ka_{22}) & a_{22} \end{vmatrix} = (a_{11} + ka_{12}a_{22}) - a_{12}(a_{21} + ka_{22})$$

Equal Matrices: A=B if a; =b: j are equal Veterminant of a Matrix product all corresponding elements are equal |AB| = |A| x |B| for any square matrice Multiplication of Matrix by a scolar Atleminant of AB product = product of A, B's determinants B: AA => hij = haij \$ AB1 = 18A =-1. Transpose of a matrix Identity / unit matrix I $A^{T} = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{12} & a_{12} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}.$ IA: AI = A for square motion A (A7) = aji Transpose of AXM : MXM Component notation Transpox of a transpose $(\Delta^{7})^{T} = A$ (AI) = E aik Ski = aij if AT=A => A in symmetric · · · Sij : 0 for 17; if AT = - A => A is antisymmetric Transposing matrix products Worthogonal Matrices: if ATA = I => Ain orthogonal transposing a product of matricies revenues 1=1= INTA) order of multiplication (ATI(AI=[I] = 1 det of AT = det &A (AB)7: 87 AT 1A7 = 1A1 (ABC) T = CTBTAT 4 |A||A| = |A2| = |I|=1 Cij = & aikbkj (C=AB) (A= +1 CT: Ci = E bikaki Complex conjugation Product of orthogonal matrices suppose C=AB, AD Bare orthorgonal (A*) ; j = a ; j = (is also orthogonal Change signs in imaginary part CT(= (AR) (AB) ifA=A* CTC = BTATAB AER 6 CTC = BTBATA = I

Hermitian Conjugation combining complex conjugation of transpisition (order does not matter) $A^{+} = (A^{+})^{*} = (A^{*})^{T}$ (A+)+= A if A+ = A => Air Hermitian At = -A => A is anti-Homitian * All real symmetric matrices are Harmitian (AB) = B+A+ Prof: Trace of a matrix to Sum of the diagonal element:

Unitary Matrices
natrix U is unitary

if

U^U=I

using |AB|=|A|x|B|

[|U^{\dagger}||U|=|I|=|

L|U^{\dagger}||U|=|I|=|

| Change now & columns |

| change now & columns |
| co

 $T_r(A) = \alpha_{i,1} + \alpha_{i,2} + \alpha_{i,3} \dots \alpha_{i,n} = \sum \alpha_{i,l} = \alpha_{i,l}$ using Einstein summation convention \rightarrow represented indicine in a term imply a sum

Tr(A): Tr(AT)

Scaling of volume, Jacobian matrix

i Al=a > the area by a factor 'a'

30: Volume is scaled by the det of the transformations

(see notes for examples)

Q. Let A = (a a)

w/2 vector

u=(a,c); x=(b,d)

show that Al is the area

of the //gram spanned by UNY

Effect of a linear transformation on the volume/area element We have 2 sets of coordinates:

 $(n_1, n_2, n_3) \cup (n_1', n_2', n_3')$

Change in prime coordinates using partial derivative

$$dx_i' = \frac{\partial x_i'}{\partial x_i} dx_i + \frac{\partial x_i'}{\partial x_2} dx_i + \frac{\partial x_i'}{\partial x_3} dx_i$$

$$dn'_1 := \frac{\partial n_1}{\partial n_1} dn_1 + \frac{\partial n_2}{\partial n_2} dn_3 + \frac{\partial n_3}{\partial n_3} dn_3$$

Example of spherical coordinates in note

Matrix form

$$\left(\frac{dn_1'}{dn_2'} \right) = \left(\frac{\partial n_1'}{\partial n_1} \right) = \left(\frac{\partial n_1'}{\partial n_3} \right) = \left(\frac{\partial n_2'}{\partial n_3} \right) = \left(\frac{\partial n_2'}{\partial n_3} \right) = \left(\frac{\partial n_1'}{\partial n_3} \right) = \left(\frac{\partial n_2'}{\partial n_3} \right) = \left(\frac{\partial n_2'}{\partial$$

dr: Jdr Where J = Tacahian

> det J = factor by which the volume element changes when we make the transformation

Multiplicative invose of a matrix

$$A^{-1} = \frac{1}{4!} \begin{bmatrix} C^{-1} \\ F \end{bmatrix}$$

$$A = \begin{bmatrix} C^{-1} \\ F \end{bmatrix}$$

$$C^{-1} \begin{bmatrix} S - F \\ F \end{bmatrix}$$

$$C^{-1} \begin{bmatrix} S$$

do just bot nech

$$C = \begin{pmatrix} * & (()) & -(()) & (()) \\ & -(()) & (()) & -(()) \\ & & (()) & -1(()) & (()) \end{pmatrix}$$

minor matrix det CT

target = make zeros bolon

Lover triangle

Solutions of Linear Smultaneous Ey
$$^{\prime\prime}$$
 a_{1} A_{1} A_{2} A_{3} A_{4} A_{4} A_{5} A_{5}

Ax=0

(ligenidas)

at least one ey" is not independent

41-14N

so solve by trial & error

$$3M_{1} - 2M_{1} + M_{2} + M_{3} = 10$$

$$X_{1} + M_{3} + M_{3} = 10$$

$$X_{1} = \begin{bmatrix} 3 & -2 & -1 \\ 2 & 3 & -4 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 2 \\ 3 & 3 & -4 \end{bmatrix} = \begin{bmatrix} 5 & 6 & -2 \\ 5 & 3 & -4 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 5 & 0 \\ -2 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & -4 & -1 \\ 6 & 5 & 2 \\ -5 & -5 & -4 \end{bmatrix} = \begin{bmatrix} 6 & -4 \\ 5 & 5 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 15 & 0 \\ -12 & 4 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 4 & -1 \\ 5 & 5 & 2 \end{bmatrix} = \begin{bmatrix} 10 & -4 \\ 5 & 5 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 15 & 0 \\ -2 & 4 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 4 & -1 \\ 5 & -4 \end{bmatrix} = \begin{bmatrix} 0 & -11 \\ 3 & 15 & -2 \\ 1 & 5 & -4 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 10 \\ 1 & 5 & -4 \end{bmatrix} = \begin{bmatrix} 3 & 4 & -1 \\ 3 & 15 & -2 \\ 1 & 5 & -4 \end{bmatrix} = \begin{bmatrix} 0 & -11 \\ 3 & 15 & -2 \\ 1 & 5 & -4 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 10 \\ -11 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 10 & -(-11) \\ -12 & 10 \end{bmatrix} = \begin{bmatrix} -10 & -(-11) \\ -13 & 5 \end{bmatrix} = \begin{bmatrix} 0 & -6 & -14 \\ -11 & 0 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 5 \end{bmatrix} = -550$$

Scalar product using Matrices 70 M V.W = VTW = Z Vivi V.W = (V, V2 V) (W) We had generally: $V \cdot W = V^{T} G V = (V_{1} V_{2} V_{3}) \begin{pmatrix} 9_{11} & 7+2 & 9_{17} \\ 9_{21} & 9_{22} & 9_{23} \\ 9_{31} & 9_{32} & 9_{31} \end{pmatrix} \begin{pmatrix} W_{1} \\ W_{2} \\ W_{3} \end{pmatrix}$ for cartesian -> G is the identity matrix Surface elements $ds^2 = da^2 + dy^2 + dz^2$: can ignore = metric : $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = T$ for $ds^2 = dr^2 + r^2d\theta^2 + dz^2$ oreas Metric: $\begin{pmatrix} 1 & 0 & 0 \\ 1 & r^2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ Metric define how diff coordinates combine to give length elements => eg.) Jacobian armely ter on Vector cross product [only I components two linearly independent vectors contribute) germetric meaning | axb | => magnitude of the comproduct axb - vector L to both is the area of the //gram a and b spanned by the a D & rection resulting vector is normal to the plane exb by axb ixjek ← jxi=k ixi:0 $\int_{-\infty}^{\infty} k^{2} \hat{k} = 0$ $\int_{-\infty}^{\infty} k^{2} \hat{k} = 0$ a = a, b + a, f + a, b ; b = b, a + h, f + b, b axb = (a,1+ a,1 +a, h) x (b, 2+ bz j+b, h) = a, b, k - a, b3) - a, b, k + a, b, i + a, b, j -a, b, i arb = (asb3 - asb2) 2 + (asb1-asb3) 3 + (asb2-a2b1) 6

The Eigenvalues & eigenvector of a linear operator scaling characteristic e eigenvectors is squicked or checked linear transformation transformation matrix vector) is shows the effect of the operator M on v eigenvalues is new vector has the same direction of matrix m of the original water of the original vector by Vector which remains in its own span ofter linear transformation matrix-vector / stay at its own bles motion transformation

ofter linear transformation

motion - verter / stay at its own span

multiplication

Av = 1

scalar multiplication

scalar multiplication I IMV = A IV => MV = IAV Hini to solve for All r whoy seed ! -> (M-2I)v = & (homogeneous eq ") > whoy seed only way passible for a matrix We know that a non zero & satisfying the eg ~ w/ a non-zero vector to become zero exists only if (M-II) = 0 (stransformation associated w) a motion to be an eigenvalue of M -> disquisitialin > det=0 must be a noot of the charcorderstice eg " independent Orang Mr=2r A for square matrix only More than one eigenvector det (M-22) = 0 a, 2 a2 - a, 2 may correspond to the same eigenvalue 2; it we multiply eigenvector by another scalar by yields another eigenvector associated & the same eigenvalue (Proved @ not page) Vin an eightector of M there is a value of A And a non-zero vertor it so that ' (M-A) = 0 MV -201=0 Mi = NIV T can squishsparinte aline & Tv=3

let's assume v; is an eigenvector of M with λ_j [: My = 2; v;] AND consider action of M on the nector Cri W(c x?) = c wx? = c y?x? = y? cx? . My = 7 y => poving cr; is also an eigenvector w/ eigenvalue 7; Is eigenvectors can only be determined up to an arbitrary multiplicative factor Keeipe & find oigenvalues & eigenvectors A=(1 0) 1. Write down characteristic eq > => solve it to find 2 (it no real pluties 4 no eigenventur
eg. Atto det (A- 21) = 0 72-120 1:11 $\det \left(\begin{array}{c} -\lambda & 1 \\ 1 - \lambda \end{array} \right) = 0$ 2. For each I there will be an eigenvector to give => find eigenvector &, corresponding to 2, $(M-\lambda_k I)V_{k}=0$ $A_{y,=}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\begin{pmatrix} 4 \\ 4 \end{pmatrix}=\begin{pmatrix} 6 \\ 4 \end{pmatrix}=\frac{-y_1}{(4-1)}$ Csolve eigensystem Av, = 2, v, b=-a; a=-b 3. Set one of the elements arbitrary => pick one element - make some eigensystem does not imply Vi=0 laset v, 21 V solve the eigency stem lets say a=1 => N1=(-1) 1. no. of eigenvectors in indeterminate => determine normalized eigenvectors => eigenvectors w/ madulus of 1

1. | V = 1 | (v2) |

The one eigenvalue 5. It normalized eigenvertor by ming the longth | euclidian length to set the basis vector 101= V12+V2+ ... + V2 = (Y1V)2 just like how 1,78 k are $V_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix} \div \sqrt{1^2 + (-1)^2} = \begin{pmatrix} -1 \\ -1 \end{pmatrix} \frac{1}{f_2}$ nomal vertir 2, 2, 2 scale each united 分かりかい:(1)方 いっぱ [normalized]

(.
$$det(\lambda 1 - B) = D$$

$$\det \begin{pmatrix} \lambda - 1 \\ 1 \\ \lambda \end{pmatrix} = \lambda^2 + 1 = (\lambda - 1)(\lambda + i) = 0$$

$$\lambda_1 = -i \quad \text{or} \quad \lambda_2 = +i \quad (eigenvalue)$$

$$B_{y_i} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} q \\ b \end{pmatrix} = \begin{pmatrix} b \\ -a \end{pmatrix} = \lambda_i v_i$$

$$= -iV_1 = -i\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} -ia \\ -ib \end{pmatrix} = \begin{pmatrix} b \\ -a \end{pmatrix}$$

3. Set a=1

$$Y_i=(-i)/\sqrt{r^2+i(r)}=(-i)\frac{1}{r^2}$$

$$V_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \frac{1}{\sqrt{2}}$$

Degenerate eigenvalues Wr = yr - : I two ormore solutions this eg " coincide is then degenerate roots - if eg in if order 1 4 there will be less than a eigenvalue $R=\left(\begin{array}{ccc} 5 & 12 \\ 1 & 5-2 \\ 2 & 2 \end{array}\right)$ choices of coeffs are arbritary sobices led to Yally being orthogonal det (7I-B) =0 $\det \begin{pmatrix} \lambda - 5 & -1 & -2 \\ -1 & \lambda - 5 & 2 \\ -2 & 2 & \lambda - 2 \end{pmatrix} : 0$ (2-2) (2-2) (2-1) -4 - $-(-1)[(2-\lambda)+4] = \lambda^{3}-(2\lambda^{2}+36\lambda+3(\lambda-6)^{3}=0$ $+(-2)[(-2)+(\lambda-5)-1] = \lambda^{3}-(2\lambda^{2}+36\lambda+3(\lambda-6)^{3}=0$ $\gamma_2: \gamma_3 = 6$ Solving eigenvalue for $By = \lambda_1 y_1$ $By = \begin{pmatrix} 5 & 1 & 2 \\ 1 & 5 & -2 \\ 2 & -2 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 5a+b+bc \\ a+5b-2c \\ 2a-3b+2c \end{pmatrix}$ 3 y 1 x 1 = (0) Setting c=1 a:- 2 b: 2 5at ht2c = 0 a + 56-2c = 0 => V1=(-1) 2a-26+21:0 6a = - 66 ta+2c = 0 normalized U = () 16 c = -2a 2:6 => Setting V1=(b) a-b-2c=0 By $_2 = \lambda_2 V_2$ By $_2 = \begin{pmatrix} 5 & 1 & 2 \\ 1 & 5 & -2 \\ 2 & 2 & 2 \end{pmatrix} \begin{pmatrix} 5 & 1 & 2 \\ 6 & 2 \end{pmatrix} = \begin{pmatrix} 66 \\ 6c \end{pmatrix} \Rightarrow _2$ all vector satisfying this relationship are eigen values for λ_2 Set arbritang 2 elements a:1, C:1

All $_2 = \begin{pmatrix} 66 \\ 6c \end{pmatrix} \Rightarrow _2 = \begin{pmatrix} 66 \\ 6c \end{pmatrix} \Rightarrow _3 = \begin{pmatrix} 66 \\ 6c \end{pmatrix} \Rightarrow _4 =$ V3=(1) normalized = > V3 = (1)/Jz V2 = (-1) y2) x, are bith eigenvectors to the same eigenvalue λ_2

Diagonal Matrix: all basis vorters are eigenvertors

Is a square matrix we elements only along the diagonal A= (0 an 0 .-Oigen basis when both busis vectors ar eigenvecton using 1 1=1 (A) ij = aij Sij Si = { o i tj 44 [0 2] ADB are both dry diagonal (AB) ij = \(\int a_{ik} b_{kj} = \(\sum a_i \ \subseteq i_k b_k \ \subsete k_j \) = Zaisikskibk= 2 = aibi Sij => AB is also a diagonal matrix THE AB: BA => commutative Diagnalizing a matrix will simplify it, Not all matricies can be diagonalized consider a new matrix B that has columns an eg. of a diagonalisable matrix the normal eigenvectors of A $A = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ B= (= 1/2) A1=2 A1=5 normalized eigenvecton: $V_1 = \begin{pmatrix} -1 \\ 2 \end{pmatrix} \sqrt{5}$ $V_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \sqrt{5}$ $B = \begin{pmatrix} -\frac{2}{3} & \frac{12}{3} \\ \frac{1}{2} & \frac{12}{3} \end{pmatrix}$ B'AB: (2 0) => A is diagonalizable [-1 (m) (N - N) - (N N - N) - (N N N - N) Generalizing the procedure 1. bet L => nxn matrix with columns equal to the n vectors vi L= (v, ... v; -.. vn) 2. -: Limins the invertible -> representing L"; DELEGRESTINGU. OR AWK Vj= Sik

the perspective of the nan basis vectors coordinate system 7) has matrix will be diagonal

Not all square matricies can be diagonalized J= (0 0) => Jv = Avi V, = (a b) Ju, = 20, $\int_{2}^{1} \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$ => no other knearly independent eigenvector exists
: Dismit diagonalizable Jordan block => 2=0 led by Jy= Ty Introducing as invertible matrix N (Using D:L'ML) M'=N-MN Im @ X NUN' matrix of eigen vectors NWW_1 = MN_W NN_1 Charge from Linto N'L => diagonal matrix of eigenvalue 0 => M=NM'N-1 I Sub D = L ML stays The same D= F-WF = F, NW, N-TE (F=N-F) but there must be NL=L D=L'-M'L'. D:L'ML in variance det (AB) = det (A) det (B) -> Biret's formula Two more invariant quarticle: det(L-'ML)=det(L-') det(M)det(L) using Binet's formula for del if products det (L'MC) = Jet dille del (M) = det M 1. Det of M 2. Trace: Tr(M) -> Sum of all elements in the diagonal Tr(M) = \$ 75 Ro A = (4 1); det(A):10; tr(A):1 D=(205) => det (A)=10 1 tr(A)=7

Application of diagonalization (as long as matrix in diagonizable) Powers of matrix: if D=L'ML Isolating M: M=LDL-1 - computing M2: using the usual trick m2=(LDL')2=(LDL')(LDL')=LO(L'L)DL' M2: [D2 [-1 for any power: M=LD^L Eigenvalues Veigenvalues of Hermitian matrices H=HT in diagonisable Penoting 2 & DR be 2 eigenvalues of H w/ the 2 consymmetry eigenvectors 4, 8 Vk Hy; = 2jyj -4.19 -multiplying 4.73 by yut Vxt Hyj= xjyky - consider ey". 4.15 & recall: (AB) = B+A+ 4 VETH = VETH = TK VE (using H=H+) [properly] => Vut Hyj = 2* Vk yj] > (2j - 2k*) Vk yj = 0

() - > k) v + v = 0 Con Sequences! - if j:k , then Ykt y = y j v j = [vi] +0 => eigen values of hermitian matrices are always real - if jth & njth ithen vktrj=0 eigenvertors of Hermition operation associated t diff eigenvalues are orthogonal - Diagonize H: D=U"HU > matrix w/ columns = eigenvectro of H orthonormal n= (ñ " ... x! ... x") w/ yityu= Six [note that yjyk=Six is iner product] => U-1 = (1) = U+] . mud lung? where ????

any Hernitian matrix in diagonisable by a unitary matrix

Recall:	
Kecall:	1
- MT -> transpose of M [Swapping row obtained by writing the Mix - Mix	المام الم
Mile - Mr	Admin no Cinhuis
- M -> Hermitian conjugate	The state of the s
obtained by complex com	ingution of Mi
$M^{\dagger}jk = M^{\dagger}kj$	
Special matrices:	
- Square motion M is normal	- square matrix. It is thermitian
- Square matrix M is normal	- square matrix. It is deconition
- Squar matrix V is unitary	- square matrix O is orthoropol
y UTU=UUT=I	# TO=00T=I
Dependancies	- square matrix S is symmetric if entries one real
1. Real or thorganal matrices are uni	tary
0 + 0 = 0 TO = I	
2. Real symmetric matrices are Herm	itian
$S^{\dagger} = S^{\top} = S^{-}$	*
	A 3 A
3. Hermitian matrices are normal:	
HTHEHH = HH	
4. normal matrices are diagonisable	
4 unitary, hernitian, orthorgon	U roal symmetric matrices
are all diagonisable.	they are normal

Real quadratei forms quadratic forms - polynomials w/ a variables, all of degree to Lot x by he two sets of variables (real) E = Sixiy - in matrix form: E = xTQY compute the following expression Let's have 2 variothes M. Unz = x, (3M, -2x2) + x2(2M1+7 M2) : 3n, - 4n, Nz+ 7n, -> quadation Related every PE = 1 K (x,-M2) = 1 K (M, 2+x) - 2x, M2). = 1 Kor, 2+ 1 Kn2 - 1 2nine = 2 Kn, + 2 Mn - hx, x. $K = \begin{pmatrix} \frac{1}{2}k & \frac{k}{2} \\ -\frac{k}{2} & \frac{1}{2}k \end{pmatrix}$

Example for	Ped &	gnadratie	forms:
A/	(0 11	<u>.</u>

Momal modes of oscillation

Coding for classical, non-generalize system)

Consider 3 particles of equal mass m

on kil m kil m

on one one one one one of the still constant k

one one one one one of the still constant k

one one one one of the still constant k

one one one of the still constant k

one one of the still constant k

one

equations of motion governing the positions a, , x , x , x of the 3 particles.

$$M\dot{x}_{1} = k(x_{2}-x_{1}-1) = -kx_{1}+kx_{2}-k1$$
 $M\ddot{x}_{2} = -k(x_{2}-x_{1}-1) + k(x_{3}-x_{2}-1) = -kx_{2}+kx_{1}+kx_{2}-kx_{2}-k1$
 $M\ddot{x}_{3} = -k(x_{3}-x_{2}-1) = kx_{2}-kx_{3}+k1$
 $= kx_{1}-2kx_{2}+kx_{3}$
 $= kx_{1}-2kx_{2}+kx_{3}$
 $= kx_{1}-2kx_{2}+kx_{3}$
 $= x_{2}-kx_{2}+kx_{3}$
 $= x_{3}-kx_{2}+kx_{3}$
 $= x_{3}-kx_{2}+kx_{3}$
 $= x_{3}-kx_{2}+kx_{3}$
 $= x_{3}-kx_{3}+kx_{3}$
 $= x_{3}-kx_{3}+kx_{3}$

$$M \begin{pmatrix} n_{1} \\ n_{2} \\ \vdots \\ n_{s} \end{pmatrix} = k \begin{pmatrix} -x_{1} + x_{2} + 0n_{3} - 2 \\ x_{1} - 2x_{2} - x_{3} - 01 \\ 0n_{1} + x_{2} - x_{3} + 2 \end{pmatrix}$$

$$\begin{pmatrix} n_{1} \\ x_{2} \\ h_{3} \end{pmatrix} = k \begin{pmatrix} -1 & 1 & 0 \\ 1 - 2 & 1 \\ 0 & 1 - 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} + k \begin{pmatrix} -1 \\ x_{2} \\ x_{3} \end{pmatrix}$$

$$X = k A x + k x_{0} - x_{1} + x_{2}$$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 - 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 - 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 - 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 - 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 - 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 - 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 - 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 - 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 - 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 - 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 - 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 - 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 - 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 - 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 - 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 - 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 - 1 \end{pmatrix}$$

$$(-1-3)(-2+3)(-1+3) - 1 - (1)(-1-2) = 0$$

$$(-1-\lambda)((2+\lambda)(1+\lambda)-1)-(-1-\lambda)=0$$

$$(-1-7)((2+7)(1+2)-1-1)$$
 = 0
 $(1+7)(x+2x+2+2^2-z)$ = 0
 $(1+7)(x^2+3x)$ = 0

$$\frac{\lambda(1+\lambda)(\lambda+3\lambda)}{\lambda(1+\lambda)(\lambda+3\lambda)} = 0$$

$$\frac{\lambda_2 - 1}{\lambda_2 - 1}$$

$$\frac{\lambda_{z=0}}{A_{y} = \lambda_{y}}$$

$$-\alpha + b = -\alpha$$

$$\frac{\lambda_{z=0}}{\lambda_{z=0}}$$

$$-\alpha + b = -\alpha$$

$$-\alpha + b = -\alpha$$

$$-\alpha + b = -\alpha$$

$$-\beta + c = -c$$

- a +h = 0

led a:

$$a + b + c = 0$$
 $a - b + c = 0$
 $b = 0$
 $a - b + c =$

$$N = 0; \quad N_{0} = 1; \quad N_{0} =$$

A.