Programmdokumentation

Dependencies und Versionen

Name	Version
Python	3.12
Flask	3.0.2
Matplotlib	3.6.3
numpy	1.26.4
SciPy	1.11.4
Pandas	2.1.4
Seaborn	0.13.2

Programmübersicht

Quelldateien

HTML, CSS, JS

Dateiname	Erklärung
index.html	HTML-Konstrukt für die Hauptseite
customMatrix.html	HTML-Konstrukt für die Matrix Erstellung Seite
Index.css	Styling
customTableLogic.js	Logik zur Eingabe der Risikomatrix

Python Scripte

Dateiname	Erklärung	
арр.ру	startet die Flask Anwendung	
matrix.py	Klassendefinition für eine Risikomatrix	
main.py	steuert die Kernlogik der Anwendung, indem sie Risikomatrizen verwaltet, Simulationen durchführt und Ergebnisse auf der Webseite darstellt	
Benchmark.py	Berechnet den Benchmark für eine gegebene Risikomatrix	
Plot.py	erzeugt die Diagramme für eine übergebene Matrix und gegebene Simulationspunkte	
predefinedMatrices	Definiert 3 vorgegebene Risikomatrizen	
Simulation	simuliert anhand des gegebenen Erwartungswertes und Varianz Punkte auf der Matrix stellt Funktionen bereit, die eine prozentuale Unsicherheit in Standardabweichung und Varianz umrechnen	

Matrix Datenstruktur

Attribut	Bedeutung	Beispiel
STRING: name	Name der Matrix zur Identifikation	name = "DIN EN 50126 Matrix"
2D-ARRAY <int>: representation</int>	Ein Array, in dem jedes Element ein Feld darstellt. Die Risikoklasse eines Feldes wird numerisch definiert, wobei 1 die niedrigste Klasse ist	matrix_rep = np.array([[3, 4, 4, 4], [2, 3, 4, 4], [2, 3, 3, 4], [1, 2, 3, 3], [1, 1, 2, 2], [1, 1, 1, 1],])
INT: Rows, Cols	Anzahl der Zeilen und Spalten der Matrix, automatisch aus der Repräsentation berechnet	-
2D-ARRAY <int>: representation</int>	Fortlaufende Nummerierung der einzelnen Felder der Matrix	field_nums = np.zeros((len(matrix_rep), len(matrix_rep[0])), dtype=int) counter = 1 for i in range (len(matrix_rep)): for j in range (len(matrix_rep[0])): field_nums[i][j] = counter counter += 1
DICT <int, string=""> RiskLabels</int,>	Zuordnung jeder Zahl aus der Repräsentation zu einer Risikoklassenbezeichnung	risk_labels = {1: "Vernachlässigbar", 2: "Tolerabel", 3: "Unerwünscht", 4: "Intolerabel"}
ARRAY <string> riskColors</string>	Hexadezimale Farbwerte für jede Risikoklasse als Liste	risk_colors = ["#92D050", "#8EB4E3", "#FFC000", "#FF0000"]
ARRAY <string> xLabels, yLabels</string>	Liste der Beschriftungen für die X- und Y-Achse	y_beschriftungen = ["Häufig", "Wahrscheinlich", "Gelegentlich", "Selten", "Unwahrscheinlich", "Unvorstellbar"] x_beschriftungen = ["Unbedeutend", "Marginal", "Kritisch", "Katastrophal"]