ANDREW SANG-JIN CHOI

Email asjchoi@cs.ucla.edu Website https://quantumope.github.io

Code https://github.com/QuantuMope Google Scholar https://tinyurl.com/quantumope

\mathbf{E}

Sept. 2021 – Dec. 2023 GPA: 4.0/4.0
32 121 2107 210
Sept. 2019 – June 2021 GPA: 4.0/4.0
Sept. 2014 – June 2018 GPA: 3.8/4.0 Top 6% in College of Eng.

\mathbf{P}

IJRR 2024	D. Tong, A. Choi , W. Huang, L. Qin, J. Joo, and M. K. Jawed. "Sim2Real Neural Controllers for Physics-Based Robotic Deployment of Deformable Linear Objects", <i>The International Journal of Robotics Research</i> , 2024
T-ASE 2024	A. Choi* , D. Tong*, D. Terzopoulos, J. Joo, and M. K. Jawed. "Learning Neural Force Manifolds for Sim2Real Robotic Symmetrical Paper Folding", <i>IEEE Transactions on Automation Science and Engineering</i> , 2024
RA-L 2024	A. Choi , R. Jing, A. Sabelhaus, and M. K. Jawed. "DisMech: A Discrete Differential Geometry-based Physical Simulator for Soft Robots and Structures", <i>IEEE Robotics and Automation Letters</i> , 2024
RA-L 2023	A. Choi , D. Tong, B. Park, D. Terzopoulos, J. Joo, and M. K. Jawed. "mBEST: Realtime Deformable Linear Object Detection Through Minimal Bending Energy Skeleton Pixel Traversals", <i>IEEE Robotics and Automation Letters</i> , 2023
EML 2023	D. Tong*, A. Choi*, J. Joo, and M. K. Jawed. "A Fully Implicit Method for Robust Frictional Contact Handling in Elastic Rods", <i>Extreme Mechanics Letters</i> , 2023
JAM 2023	D. Tong, A. Choi, J. Joo, A. Borum, and M. K. Jawed. "Snap Buckling in Overhand Knots", <i>Journal of Applied Mechanics</i> , 2022
ICRA 2022	A. Choi, M. K. Jawed, and J. Joo. "Preemptive Motion Planning for Human-to-Robot Indirect Placement Handovers", <i>IEEE International Conference on Robotics and Automation (ICRA)</i> , 2022
WACV 2022	A. Vepa, A. Choi , N. Nakhaei, W. Lee, et al. "Weakly-Supervised Convolutional Neural Networks for Vessel Segmentation in Cerebral Angiography", <i>IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)</i> , 2022
JAM 2021	A. Choi, D. Tong, M. K. Jawed, and J. Joo. "Implicit Contact Model for Elastic Rods in Knot Tying", <i>Journal of Applied Mechanics</i> , 2021

* Equal Contribution

PRESENTATIONS

APS 2024	R. Lahoti, A. Choi , and M. K. Jawed. "DiSMech: A Simulator for Soft Robots and Flexible Structures based on Discrete Differential Geometry", <i>Bulletin of the American Physical Society</i> , 2024
APS 2024	G. Wang, D. Tong, and A. Choi . "Computer Graphics Inspired Fast Simulation of Knots and Tangles", <i>Bulletin of the American Physical Society</i> , 2024
APS 2023	A. Choi, D. Tong, D. Terzopoulos, J. Joo, and M. K. Jawed. "Deep Learning Force Manifolds from the Physical Simulation of Robotic Paper Folding", <i>Bulletin of the American Physical Society</i> , 2023

D. Tong, A. Choi, J. Joo, and M. K. Jawed. "An Implicit Simulation Framework to Handle Frictional Contact in Elastic Rods", Bulletin of the American Physical Society, 2023

INDUSTRY EXPERIENCES

Research Scientist

Horizon Robotics, General AI Laboratory

Supervisor: Wei Xu

- Conduct research in developing generalizable training strategies for intelligent autonomous robots.
- Work on training control policies for both robotic quadrupeds and manipulators.

Graduate Robotic Software Intern

Waltham, Massachusetts

Vecna Robotics, Research & Advanced Development Division

Supervisors: Siddharth Chhaptar & Magnus Snorrasen

Summer of 2021

Cupertino, California

Feb. 2024 - Present

- Created an end-to-end robotic solution for autonomous refueling of self-driving warehouse vehicles using a 4DOF serial robot manipulator. Achieved a 99.6% success rate for a client specification of 98%.
- Created hydrogen fuel cell nozzle pose estimation and plane segmentation module using Aruco and RANSAC.
- Carried out motion trajectories using velocity control and inverse Jacobian method for the inverse kinematics.
- Designed the control flow pipeline, control & recovery states, and algorithms for the refueling action.
- Created autonomous testing pipeline and GUI for the autonomous refueling framework with the robot arm and mobile vehicle communicating to each other through server connection.
- Researched and implemented an open-source eye-in-hand hand-eye calibration module using dual quaternions for 4DOF manipulators.
- Created URDF models through Xacro for omnidirectional mobile forklift.
- Derived omnidirectional kinematics and created ROS plugin for Gazebo simulations. Solved inverse kinematics using a constraint-based optimization approach.

Control Systems Engineer

Brock Solutions

Los Angeles, California Nov. 2018 – July 2019

- Programmed and debugged the programmable logic controllers (PLCs) that control the various actuators and sensors of the automated LAX baggage handling systems.
- Maintained human machine interfaces that display live system status in a high-stakes real time environment.
- Interfaced with real-time database applications to manage critical production information for airline clients.

R&D Engineering Intern

World Surf League (Kelly Slater Wave Company)

Advisor: Adam Fincham, USC

Culver City, California

Summer of 2017

- Collected and stored data from test runs that led to the world's first artificial 6-foot barreling surf wave.
- Installed, programmed, and maintained pressure sensors, strain sensors, cameras, drones, and velocimeters.
- Performed force calculations for safety structures and managed the ordering of necessary materials/tools.

ACADEMIC & TEACHING EXPERIENCES

Graduate Student Researcher

Los Angeles, California Jan. 2020 – Dec. 2023

UCLA, Structures-Computer Interaction Lab

Advisors: Mohammad Khalid Jawed & Jungseock Joo & Demetri Terzopoulos, UCLA

- Perform research in the general intersection of robotics, simulations, and learning with a focus on sim2real problems.
- Key research areas include #1) developing physically accurate simulations for deformable materials / soft robots, #2) developing sim2real solutions for robotic manipulation of deformable materials, and #3) developing automated robotic solutions for 3D reconstruction of objects / scenes.

Teaching Assistant for CS32: Introduction to Computer Science II (In-Person)

Los Angeles, California Jan. 2023 – March 2023

UCLA, Computer Science Department Instructor: David Smallberg, UCLA

- Taught students how to employ object-oriented programming to build large programs as well as a variety of fundamental data structures and algorithms in C++.
- Held office hours and led discussion sessions consisting of 43 students.
- Received a TA evaluation score of 8.0/9.0 with 19/43 (44.2%) survey participation.

Teaching Assistant for CS31: Introduction to Computer Science I (Online)

UCLA, Computer Science Department

Instructor: Howard Stahl, UCLA

Los Angeles, California Summer of 2022

- Taught students fundamental concepts and principles of CS as well as general programming principles in C++.
- Held office hours and led discussion sessions consisting of 85 students.
- Received a TA evaluation score of 8.6/9.0 with 9/85 (10.6%) survey participation.

Robotics Senior Design Presentation

Nagoya, Japan

Meijo University, Robotics Department

Summer of 2018

Advisor: Jason K. Moore, UC Davis (now at TU Delft)

- Fully funded trip to present the design theory and findings of underactuated shot tying robot manipulator to robotics students and professors of Meijo University.
- Acted as a mentor to students completing their own robotics senior design projects. Provided technical guidance and feedback and partook in culture exchange programs.

Undergraduate Researcher

Davis, California

UC Davis, Green Technology Lab

April 2017 - June 2018

Advisor: Masoud Rahman, UC Davis

- Performed economic analysis on different energy management techniques for various battery systems.
- Modeled the energy parameters of residential and commercial communities using behavioral survey data, load data, PV generation data, etc. to calculate optimal battery sizing.

HONORS & ACHIEVEMENTS

S/NBC, 2018
Davis, 2018
Davis, 2018
Davis, 2018
, 2014 - 2018
C Davis, 2015

SKILLS

Programming Languages Software Tools and Environments Libraries **Prototyping** Spoken Languages

C/C++, Python, Java, MATLAB ROS, Linux, Bash, Git/Github, LATEX, Unity NumPy, OpenCV, MoveIt, SciPy, SymPy, PyTorch, TF2/Keras Arduino, Beaglebone, Raspberry Pi, 3D Printing, SOLIDWORKS English (Native), Korean (Heritage), Spanish (Limited Working Proficiency)

COURSEWORK

Math & Probability: Linear Algebra, Differential Equations, Probabilistic Systems Analysis

Robotics & Engineering: Electrical Circuits & Systems, Dynamics, Mechanical Design, Automatic Control of Engineering Systems, Simulation & Design of Mechatronic Systems, Measurement Systems, Vehicle Stability, Kinematics of Robotic Systems, Computational Robotics, Deformable Simulations for Soft Robotics

Computer Science & Machine Learning: Data Structures, Software Construction, Computer Organization, Operating Systems Principles, Programming Languages, Computer Network Fundamentals, Algorithms & Complexity, Machine Learning Algorithms, Machine Learning in Genetics, Pattern Recognition, Deformable Models in Computer Vision, Reinforcement Learning, Artificial Life in Computer Graphics & Vision, Human-centered AI