Practice Problems 3

Office Hours: Tuesdays, Thursdays from 3:30 to 4:30 at SS 7218 (TA Preparation Room). E-mail: mpark88@wisc.edu

SEQUENCES AND LIMITS

- 1. * Show that if $\{x_k\} \subset \mathbb{R}$ converges to $x \in \mathbb{R}$, so does every subsequence.
- 2. * Show that $\{x_k\} \subset \mathbb{R}$ converges to $x \in \mathbb{R}$ iff every subsequence of it has a subsequence that converges to x.
- 3. * Suppose $\{p_n\}$ and $\{q_n\}$ are Cauchy sequences in a metric space X. Show that the sequence $\{d(p_n,q_n)\}$ converges.
- 4. Prove or disprove the following:
 - (a) $y_k = \frac{1}{k}$ is a subsequence of $x_k = \frac{1}{\sqrt{k}}$.
 - (b) $x_k = \frac{1}{\sqrt{k}}$ is a subsequence of $y_k = \frac{1}{k}$.

OPEN AND CLOSED AND COMPACT SETS

- 5. * Is (0,1) a open set in \mathbb{R} ? What about \mathbb{R}^2 ?
- 6. * Disprove that [0,1) is closed in \mathbb{R} . Is it open?
- 7. Prove that $[0,1] \in \mathbb{R}$ is a closed set.
- 8. Is $A = [0,1)^2$ an open set in \mathbb{R}^2 ?
- 9. * For each of the following subsets of \mathbb{R}^2 , draw the set and determine whether it is open, closed, and bounded. Give reasons for your answers
 - (a) $\{(x,y); x=0, y \ge 0\}$
 - (b) $\{(x,y); 1 \le x^2 + y^2 < 2\}$
 - (c) $\{(x,y); 1 \le x \le 2\}$
 - (d) $\{(x,y); x = 0 \text{ or } y = 0, \text{ but not both}\}\$

CONTINUITY

- 10. * Continuity can be defined in 4 equivalent ways. Show that the four definitions of continuity, given above, are equivalent.
 - (a) Say f is continuous if O open implies $f^{-1}(O)$ is open.
 - (b) Say f is continuous if C closed implies $f^{-1}(C)$ is closed.

- (c) Say f is continuous if for every x, and $\epsilon > 0$ there is a $\delta > 0$ such that $|y x| < \delta$ implies $|f(y) f(x)| < \epsilon$.
- (d) Say f is continuous if $x_n \to x$ implies $f(x_n) \to f(x)$.
- 11. * Do continuous functions map closed sets into closed sets and open sets into open sets? Consider $f(x) = x^2$ and $g(x) = \frac{1}{x}$.

MISCELLANEOUS

12. * (Manipulating Subscripts) We say a random variable X follows a Poisson distribution if $p(X=x)=exp(-\lambda)\frac{\lambda^x}{x!}, x\in\{0\}\cup\mathbb{N}$, given a parameter λ . Show that $E(X)=\lambda$. (hint: Use $E(X)=\Sigma_{x=0}^{\infty}xexp(-\lambda)\frac{\lambda^x}{x!}$, and $\Sigma_{x=0}^{\infty}p(X=x)=\Sigma_{x=0}^{\infty}exp(-\lambda)\frac{\lambda^x}{x!}=1$)