

<110> Tuschl, Thomas Martinez, Javier Patkaniowska, Agnieszka Urlaub, Henning Luehrmann, Reinhard

- <120> RNA-Interference by Single-Stranded RNA Molecules
- <130> 2923-673
- <140> 10/520,470
- <141> 2005-01-07
- <150> EP 02015532.1
- <151> 2002-07-10
- <150> EP 02018906.4
- <151> 2002-08-23
- <150> PCT/EP03/007516
- <151> 2003-07-10
- <160> 115
- <170> PatentIn version 3.3
- <210> 1
- <211> 15
- <212> RNA
- <213> Homo sapiens
- <220>
- <221> misc feature
- <223> HeLa S100
- antisense siRNA (5'-3')
- <400> 1
- ucgaaguauu ccgcg
- <210> 2
- <211> 21
- <212> RNA
- <213> Homo sapiens
- <220>
- <221> misc feature
- <223> HeLa S100
- antisense siRNA (5'-3')
- <400> 2

15

ucgaag	uauu ccgcguacgu g	21
<210> <211> <212> <213>	3 25 RNA Homo sapiens	
<223>	misc_feature HeLa S100 nse siRNA (5'-3')	
<400> ucgaag	3 uauu ccgcguacgu gaugu	25
<210> <211> <212> <213>	4 27 RNA Homo sapiens	
<223>	misc_feature HeLa S100 nse siRNA (5'-3')	
	4 uauu ccgcguacgu gauguuc	27
<210> <211> <212> <213>	5 29 RNA Homo sapiens	
	misc_feature HeLa S100 nse siRNA (5'-3')	
<400> ucgaag	5 uauu ccgcguacgu gauguucac	29
<210> <211> <212> <213>		
<220>		

<223>	misc_feature HeLa S100 nse siRNA (5'-3')									
<400>	6									
	<400> 6 ucgaaguauu ccgcg 15									
acgaage	auu oogog									
<210>	7									
<211>	21									
	RNA									
<213>	Homo sapiens									
•										
<220>										
	misc_feature									
	HeLa S100									
	nse siRNA (5'-3')									
<400>	7									
ucgaagu	auu ccgcguacgu g	21								
<210×	0									
<210> <211>	8 25									
<211>	RNA									
	Homo sapiens									
1210	nome daptone									
<220>										
	misc_feature									
	HeLa S100									
antiser	se siRNA (5'-3')									
<400>	8									
	auu ccgcguacgu gaugu	25								
9 9 -										
	9									
<211>	27									
<212>	RNA									
<213>	Homo sapiens									
<220>										
	misc feature									
	HeLa S100									
	ase siRNA (5'-3')									
<400>										
ucgaagı	lauu ccgcguacgu gauguuc	27								
<210>	10									
<211>	29 -									

```
<212> RNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> HeLa S100
antisense siRNA (5'-3')
<400> 10
                                                                      29
ucgaaguauu ccgcguacgu gauguucac
<210> 11
<211> 21
<212> RNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> HeLa S100
antisense siRNA (5'-3')
<400> 11
                                                                      21
ucgaaguauu ccgcguacgu g
<210> 12
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)..(21)
<223> RNA/DNA hybrid
<220>
<221> misc_feature
<223> HeLa S100
antisense siRNA (5'-3')
<220>
<221> misc_feature
<222> (20)..(20)
<223> n = 2'-deoxythymidine
<220>
<221> misc_feature
<222> (21)..(21)
<223> n = 2'-deoxyguanosine
<400> 12
```

```
<210> 13
<211> 21
<212> RNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> HeLa S100
antisense siRNA (5'-3')
<400> 13
ucgaaguauu ccgcguacgu u
                                                                       21
<210> 14
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(21)
<223> RNA/DNA hybrid
<220>
<221> misc_feature
<223> HeLa S100
antisense siRNA (5'-3')
<220>
<221> misc_feature
<222> (20)..(21)
\langle 223 \rangle n = 2'-deoxythymidine
<400> 14
                                                                       21
ucgaaguauu ccgcguacgn n
<210> 15
<211> 21
<212> RNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> HeLa S100
antisense siRNA (5'-3')
```

21

ucgaaguauu ccgcguacgn n

<400> 15

```
<210> 16
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(21)
<223> RNA/DNA hybrid
<220>
<221> misc feature
<223> HeLa S100 cells
antisense siRNA (5'-3')
<220>
<221> misc feature
<222> (20)..(20)
<223> n = 2'-deoxythymidine
<220>
<221> misc_feature
<222> (21)..(21)
<223> n = 2'-deoxyguanosine
<400> 16
                                                                     21
ucgaaguauu ccgcguacgn n
<210> 17
<211> 21
<212> RNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> HeLa S100
antisense siRNA (5'-3')
<400> 17
                                                                     21
ucgaaguauu ccgcguacgu u
<210> 18
<211>
      21
<212> DNA
<213> Homo sapiens
```

ucgaaguauu ccgcguacgu g

<220>

21

```
<221> misc_feature
<222> (1)..(21)
<223> RNA/DNA hybrid
<220>
<221> misc_feature
<223> HeLa S100
antisense siRNA (5'-3')
<220>
<221> misc_feature
<222>
      (20)..(21)
\langle 223 \rangle n = 2'-deoxythymidine
<400> 18
                                                                       21
ucgaaguauu ccgcguacgn n
<210> 19
<211> 21
<212> RNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> HeLa S100
sense siRNA (5'-3')
<400> 19
                                                                       21
cguacgcgga auacuucgaa a
<210> 20
<211> 21
<212> RNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> HeLa S100
antisense siRNA (5'-3')
<400> 20
                                                                       21
ucgaaguauu ccgcguacgu g
<210> 21
<211>
       21
<212>
      RNA
<213> Homo sapiens
<220>
```

<223>	misc_feature HeLa S100 siRNA (5'-3')	
<400> cguacg	21 cgga auacuucgaa a	21
<210> <211> <212>		
	Homo sapiens	
<222>	misc_feature (1)(21) RNA/DNA hybrid	
<223>	misc_feature HeLa S100 nse siRNA (5'-3')	
<222>	<pre>misc_feature (20)(20) n = 2'-deoxythymidine</pre>	
	<pre>misc_feature (21)(21) n = 2'-deoxyguanosine</pre>	
<400> ucgaag	22 uauu ccgcguacgn n	21
<210> <211> <212> <213>	23 21 RNA Homo sapiens	
<220> <221> <223> sense	misc_feature HeLa S100 siRNA (5'-3')	
<400> cguacg	23 cgga auacuucgaa a	21
<210> <211>	24 21	

```
<212> RNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> HeLa S100
antisense siRNA (5'-3')
<400> 24
                                                                     21
ucgaaguauu ccgcguacgu u
<210> 25
<211> 21
<212> RNA
<213> Homo sapiens
<220>
<221> misc feature
<223> HeLa S100
sense siRNA (5'-3')
<400> 25
                                                                     21
cguacgcgga auacuucgaa a-
<210> 26
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)..(21)
<223> RNA/DNA hybrid
<220>
<221> misc feature
<223> HeLa S100
antisense siRNA (5'-3')
<220>
<221> misc feature
<222> (20)..(21)
<223> n = 2'-deoxythymidine
<400> 26
                                                                     21
ucgaaguauu ccgcguacgn n
<210> 27
<211> 21
```

```
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(21)
<223> RNA/DNA hybrid
<220>
<221> misc_feature
<223> HeLa S100
antisense siRNA (5'-3')
<220>
<221> misc_feature
<222>
      (1)..(1)
\langle 223 \rangle n = 2'-deoxythymidine
<400> 27
                                                                       21
ncgaaguauu ccgcguacgu u
<210> 28
<211>
      21
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)..(21)
<223> RNA/DNA hybrid
<220>
<221> misc feature
<223> HeLa S100
sense siRNA (5'-3')
<220>
<221>
      misc_feature
<222>
       (1)..(1)
<223> n = 2'-deoxycytidine
<400> 28
                                                                       21
nguacgcgga auacuucgau u
<210> 29
<211> 21
<212> DNA
<213> Homo sapiens
<220>
```

```
<221> misc feature
<222> (1)..(21)
<223> RNA/DNA hybrid
<220>
     misc_feature
<221>
<223> HeLa S100
antisense siRNA (5'-3')
<220>
<221> misc_feature
<222>
      (1)..(1)
<223> n = 2'-deoxythymidine
<400> 29
                                                                     21
ncgaaguauu ccgcguacgu u
<210>
      30
<211>
      21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(21)
<223> RNA/DNA hybrid
<220>
<221> misc feature
<223> HeLa S100 cells
antisense siRNA (5'-3')
<220>
<221> misc_feature
<222>
      (1)..(21)
<223> n = 2'-deoxythymidine
<400> 30
                                                                     21
ncgaaguauu ccgcguacgn n
<210>
      31
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221>
     misc feature
<222>
      (1)..(21)
<223>
     RNA/DNA hybrid
<220>
```

```
<223> HeLa S100
sense siRNA (5'-3')
<220>
<221>
      misc_feature
<222> (1)..(1)
\langle 223 \rangle n = 2'-deoxycytidine
<220>
<221> misc_feature
<222>
      (20)..(21)
<223>
     n = 2'-deoxythymidine
<400> 31
                                                                        21
nguacgcgga auacuucgan n
       32
<210>
<211>
       21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(21)
<223> RNA/DNA hybrid
<220>
<221> misc feature
<223> HeLa S100
antisense siRNA (5'-3')
<220>
      misc_feature
<221>
<222>
      (1)..(21)
<223>
      n = 2'-deoxythymidine
<400> 32
                                                                        21
ncgaaguauu ccgcguacgn n
<210>
      33
      21
<211>
<212>
      DNA
<213> Homo sapiens
<220>
<221>
      misc_feature
<222>
      (1)..(21)
<223> RNA/DNA hybrid
<220>
```

<221> misc_feature

```
<221> misc_feature
<223> HeLa S100
antisense siRNA (5'-3')
<220>
<221> misc_feature
<222> (1)..(21)
<223> n = 2'-deoxythymidine
<400> 33
                                                                      21
ncgaaguauu ccgcguacgn n
     34
<210>
<211> 13
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
      peptide fragment of HILI, corresponding to position 17-29 of the
<223>
      protein
<400> 34
Asn Lys Gln Asp Phe Met Asp Leu Ser Ile Cys Thr Arg
                                    10
<210> 35
<211>
     14
<212>
      PRT
<213> Homo sapiens
<220>
<221>
      MISC FEATURE
      peptide fragment of HILI, corresponding to position 436-449 of
<223>
       the protein
<400>
      35
Thr Glu Tyr Val Ala Glu Ser Phe Leu Asn Cys Leu Arg Arg
1
                5
<210> 36
<211> 13
<212>
      PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
```

<223>	peptide fragment of HILI, corresponding to position $591\text{-}603$ of the protein	
<400>	36	
Tyr Ası 1	n His Asp Leu Pro Ala Arg Ile Ile Val Tyr Arg 5 10	
<210> <211> <212> <213>	35	
	misc_feature HeLa S100 RNA	
<400> aacauca	37 acgu acgcggaaua cuucgaaaug uccgu	35
<210> <211> <212> <213>	21	
<223>	misc_feature HeLa S100 of siRNA duplex	
<400> cguacgo	38 ogga auacuucgau u	21
<210><211><211><212><213>	39 21 RNA Homo sapiens	
<223>	misc_feature HeLa S100 of siRNA duplex	
<400> ucgaagı	39 uauu ccgcguacgu u	21
<210>	40	

```
<211> 21
<212> RNA
<213> Homo sapiens
<220>
<221> misc feature
<223> HeLa S100
strand of siRNA duplex
<400> 40
                                                                      21
cguacgcgga auacuucgaa a
<210>
      41
<211>
      20
<212> RNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> HeLa S100
strand of siRNA duplex
<400> 41
                                                                      20
ucgaaguauu ccgcguacgu
<210> 42
<211> 12
<212> PRT
<213> Homo sapiens
<220>
      MISC FEATURE
<221>
<223>
      peptide fragment of eIF2C2, obtained by mass spectrometry
<400>
     42
Val Leu Gln Pro Pro Ser Ile Leu Tyr Gly Gly Arg
                5
                                    10
<210> 43
<211>
       12
<212>
      PRT
<213> Homo sapiens
<220>
<221>
     MISC FEATURE
<223> peptide fragment of eIF2C2, obtained by mass spectrometry
```

```
<400> 43
Gln Glu Ile Ile Gln Asp Leu Ala Ala Met Val Arg
                5
<210> 44
<211> 12
<212> PRT
<213> Homo sapiens
<220>
<221>
      MISC FEATURE
      peptide fragment of eIF2C2, obtained by mass spectrometry
<223>
     44
<400>
His Leu Pro Ser Met Arg Tyr Thr Pro Val Gly Arg
                5
<210> 45
<211> 12
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
      peptide fragment of eIF2C2, obtained by mass spectrometry
<400> 45
Lys Leu Thr Asp Asn Gln Thr Ser Thr Met Ile Arg
1
                5
                                    10
<210> 46
<211> 13
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
      peptide fragment of eIF2C2, obtained by mass spectrometry
<400>
      46
Tyr Ala Gln Gly Ala Asp Ser Val Glu Pro Met Phe Arg
                                    10
<210> 47
```

```
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> peptide fragment of eIF2C2, obtained by mass spectrometry
<400> 47
Asp Lys Val Glu Leu Glu Val Thr Leu Pro Gly Glu Gly Lys
<210> 48
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> peptide fragment of eIF2C2, obtained by mass spectrometry
<400> 48
Asp Ala Gly Met Pro Ile Gln Gly Gln Pro Cys Phe Cys Lys
               5
<210> 49
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> peptide fragment of eIF2C2, obtained by mass spectrometry
<400> 49
Thr Gln Ile Phe Gly Asp Arg Lys Pro Val Phe Asp Gly Arg
               5
<210> 50
<211> 15
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
```

```
<223> peptide fragment of eIF2C2, obtained by mass spectrometry
<400> 50
Ala Thr Ala Arg Ser Ala Pro Asp Arg Gln Glu Glu Ile Ser Lys
                                                        15
                                    10
<210> 51
<211>
      14
<212> PRT
<213> Homo sapiens
<220>
<221>
      MISC FEATURE
<223>
      peptide fragment of eIF2C2, obtained by mass spectrometry
<400> 51
Asp Tyr Gln Pro Gly Ile Thr Phe Ile Val Val Gln Lys Arg
                5
<210> 52
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221>
      MISC FEATURE
      peptide fragment of eIF2C2, obtained by mass spectrometry
<223>
<400>
      52
Ser Ala Pro Asp Arg Gln Glu Glu Ile Ser Lys Leu Met Arg
                5
<210> 53
<211> 14
<212>
      PRT
<213> Homo sapiens
<220>
<221>
      MISC FEATURE
<223>
      peptide fragment of eIF2C2, obtained by mass spectrometry
<400>
      53
Tyr Pro His Leu Pro Cys Leu Gln Val Gly Gln Glu Gln Lys
```

10

5

```
<210>
        54
        17
 <211>
 <212>
        PRT
 <213>
       Homo sapiens
 <220>
 <221>
        MISC FEATURE
        peptide fragment of eIF2C2, obtained by mass spectrometry
 <223>
 <400>
 Ser Phe Phe Thr Ala Ser Glu Gly Cys Ser Asn Pro Leu Gly Gly Gly
                                      10
 Arg
 <210>
       55
 <211>
        23
 <212>
        PRT
 <213>
       Homo sapiens
 <220>
        MISC FEATURE
 <221>
        peptide fragment of eIF2C2, obtained by mass spectrometry
 <223>
 <400>
        55
 Tyr His Leu Val Asp Lys Glu His Asp Ser Ala Glu Gly Ser His Thr
                                      10
 Ser Gly Gln Ser Asn Gly Arg
             20
<210> 56
 <211>
        12
 <212>
       PRT
 <213> Homo sapiens
 <220>
 <221>
        MISC FEATURE
 <223>
        peptide fragment of eIF2C1, obtained by mass spectrometry
 <400>
        56
 Val Leu Pro Ala Pro Ile Leu Gln Tyr Gly Gly Arg
                 5
                                      10
```

```
<210> 57
<211>
      12
<212>
      PRT
<213> Homo sapiens
<220>
<221>
      MISC FEATURE
       peptide fragment of eIF2C1, obtained by mass spectrometry
<400>
      57
Ser Val Ser Ile Pro Ala Pro Ala Tyr Tyr Ala Arg
                                    10
                5
<210>
       58
<211> 12
<212> PRT
<213> Homo sapiens
<220>
<221>
      MISC FEATURE
<223>
      peptide fragment of eIF2C1, obtained by mass spectrometry
     58
<400>
Thr Ser Pro Gln Thr Leu Ser Asn Leu Cys Leu Lys
                5
                                    10
<210>
      59
<211>
      13
<212> PRT
<213> Homo sapiens
<220>
      MISC_FEATURE
<221>
       peptide fragment of eIF2C1, obtained by mass spectrometry
<400> 59
Tyr Ala Gln Gly Ala Asp Ser Val Glu Pro Met Phe Arg
                5
                                    10
<210>
       60
<211>
       14
<212>
       PRT
<213> Homo sapiens
```

```
<220>
<221> MISC FEATURE
       peptide fragment of eIF2C1, obtained by mass spectrometry
      60
<400>
Asn Ile Tyr Thr Val Thr Ala Leu Pro Ile Gly Asn Glu Arg
                5
<210> 61
<211> 14
<212> PRT
<213> Homo sapiens
<220>
      MISC FEATURE
<221>
       peptide fragment of eIF2C1, obtained by mass spectrometry
<400>
      61
Val Asp Phe Glu Val Thr Ile Pro Gly Glu Gly Lys Asp Arg
                                    10
<210> 62
<211>
      14
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> HeLa S100 cells
      peptide fragment of eIF2Cl obtained by mass spectrometry
<400> 62
Asp Ala Gly Met Pro Ile Gln Gly Gln Pro Cys Phe Cys Lys
                                    10
<210>
     63
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221>
      MISC FEATURE
<223>
      peptide fragment of eIF2C1, obtained by mass spectrometry
<400> 63
```

```
Asn Ile Asp Glu Gln Pro Lys Pro Leu Thr Asp Ser Gln Arg
                                    10
<210> 64
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223>
      peptide fragment of eIF2C1, obtained by mass spectrometry
<400>
      64
Ser Ala Pro Asp Arg Gln Glu Glu Ile Ser Arg Leu Met Lys
                                    10
<210> 65
<211> 14
<212>
      PRT
<213> Homo sapiens
<220>
<221>
      MISC FEATURE
<223>
      peptide fragment of eIF2C1, obtained by mass spectrometry
<400> 65
Asp Tyr Gln Pro Gly Ile Thr Tyr Ile Val Val Gln Lys Arg
<210> 66
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221>
      MISC FEATURE
      peptide fragment of eIF2C1, obtained by mass spectrometry
<223>
<400>
      66
Tyr Pro His Leu Pro Cys Leu Gln Val Gly Gln Glu Gln Lys
                                    10
<210>
       67
<211> 17
```

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

<223> peptide fragment of eIF2C1, obtained by mass spectrometry

<400> 67

Ser Phe Phe Ser Pro Pro Glu Gly Tyr Tyr His Pro Leu Gly Gly Gly 1 5 10 15

Arg

<210> 68

<211> 857

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

<223> eIF2C1, predicted protein sequence

<400> 68

Met Glu Ala Gly Pro Ser Gly Ala Ala Ala Gly Ala Tyr Leu Pro Pro 1 5 10 15

Leu Gln Gln Val Phe Gln Ala Pro Arg Arg Pro Gly Ile Gly Thr Val 20 25 30

Gly Lys Pro Ile Lys Leu Leu Ala Asn Tyr Phe Glu Val Asp Ile Pro 35 40 45

Lys Ile Asp Val Tyr His Tyr Glu Val Asp Ile Lys Pro Asp Lys Cys 50 55 60

Pro Arg Arg Val Asn Arg Glu Val Val Glu Tyr Met Val Gln His Phe 70 75 80

Lys Pro Gln Ile Phe Gly Asp Arg Lys Pro Val Tyr Asp Gly Lys Lys 85 90 95

Asn Ile Tyr Thr Val Thr Ala Leu Pro Ile Gly Asn Glu Arg Val Asp

Pro His Leu Pro Cys Leu Gln Val Gly Gln Glu Gln Lys His Thr Tyr 325 330 335

Leu Pro Leu Glu Val Cys Asn Ile Val Ala Gly Gln Arg Cys Ile Lys 340 345 350

Lys Leu Thr Asp Asn Gln Thr Ser Thr Met Ile Lys Ala Thr Ala Arg 355 360 365

Ser Ala Pro Asp Arg Gln Glu Glu Ile Ser Arg Leu Met Lys Asn Ala 370 375 380

Ser Tyr Asn Leu Asp Pro Tyr Ile Gln Glu Phe Gly Ile Lys Val Lys 385 390 395 400

Asp Asp Met Thr Glu Val Thr Gly Arg Val Leu Pro Ala Pro Ile Leu 405 410 415

Gln Tyr Gly Gly Arg Asn Arg Ala Ile Ala Thr Pro Asn Gln Gly Val 420 425 430

Trp Asp Met Arg Gly Lys Gln Phe Tyr Asn Gly Ile Glu Ile Lys Val 435 440 445

Trp Ala Ile Ala Cys Phe Ala Pro Gln Lys Gln Cys Arg Glu Glu Val 450 455 460

Leu Lys Asn Phe Thr Asp Gln Leu Arg Lys Ile Ser Lys Asp Ala Gly 465 470 475 480

Met Pro Ile Gln Gly Gln Pro Cys Phe Cys Lys Tyr Ala Gln Gly Ala 485 490 495

Asp Ser Val Glu Pro Met Phe Arg His Leu Lys Asn Thr Tyr Ser Gly 500 505 510

Leu Gln Leu Ile Ile Val Ile Leu Pro Gly Lys Thr Pro Val Tyr Ala 515 520 525

Glu Val Lys Arg Val Gly Asp Thr Leu Leu Gly Met Ala Thr Gln Cys 530 540

Asp Asn Arg Phe Thr Ala Asp Glu Leu Gln Ile Leu Thr Tyr Gln Leu 770 775 780

Cys His Thr Tyr Val Arg Cys Thr Arg Ser Val Ser Ile Pro Ala Pro 785 790 795 800

Ala Tyr Tyr Ala Arg Leu Val Ala Phe Arg Ala Arg Tyr His Leu Val 805 810 815

Asp Lys Glu His Asp Ser Gly Glu Gly Ser His Ile Ser Gly Gln Ser 820 825 830

Asn Gly Arg Asp Pro Gln Ala Leu Ala Lys Ala Val Gln Val His Gln 835 840 845

Asp Thr Leu Arg Thr Met Tyr Phe Ala 850 855

<210> 69

<211> 860

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

<223> eIF2C2, predicted protein sequence

<400> 69

Met Gly Val Leu Ser Ala Ile Pro Ala Leu Ala Pro Pro Ala Pro Pro 1 5 10 15

Pro Pro Ile Gln Gly Tyr Ala Phe Lys Pro Pro Pro Arg Pro Asp Phe 20 25 30

Gly Thr Ser Gly Arg Thr Ile Lys Leu Gln Ala Asn Phe Phe Glu Met 35 40 45

Asp Ile Pro Lys Ile Asp Ile Tyr His Tyr Glu Leu Asp Ile Lys Pro 50 55 60

Glu Lys Cys Pro Arg Arg Val Asn Arg Glu Ile Val Glu His Met Val

Gln His Phe Lys Thr Gln Ile Phe Gly Asp Arg Lys Pro Val Phe Asp 85 90 95

Gly Arg Lys Asn Leu Tyr Thr Ala Met Pro Leu Pro Ile Gly Arg Asp 100 105 110

Lys Val Glu Leu Glu Val Thr Leu Pro Gly Glu Gly Lys Asp Arg Ile 115 120 125

Phe Lys Val Ser Ile Lys Trp Val Ser Cys Val Ser Leu Gln Ala Leu 130 135 140

His Asp Ala Leu Ser Gly Arg Leu Pro Ser Val Pro Phe Glu Thr Ile 145 150 155 160

Gln Ala Leu Asp Val Val Met Arg His Leu Pro Ser Met Arg Tyr Thr 165 170 175

Pro Val Gly Arg Ser Phe Phe Thr Ala Ser Glu Gly Cys Ser Asn Pro 180 185 190

Leu Gly Gly Gly Arg Glu Val Trp Phe Gly Phe His Gln Ser Val Arg 195 200 205

Pro Ser Leu Trp Lys Met Met Leu Asn Ile Asp Val Ser Ala Thr Ala 210 215 220

Phe Tyr Lys Ala Gln Pro Val Ile Glu Phe Val Cys Glu Val Leu Asp 225 230 235 240

Phe Lys Ser Ile Glu Glu Gln Gln Lys Pro Leu Thr Asp Ser Gln Arg 245 250 255

Val Lys Phe Thr Lys Glu Ile Lys Gly Leu Lys Val Glu Ile Thr His 260 265 270

Cys Gly Gln Met Lys Arg Lys Tyr Arg Val Cys Asn Val Thr Arg Arg 275 280 285

Pro Ala Ser His Gln Thr Phe Pro Leu Gln Gln Glu Ser Gly Gln Thr 290 295 300

Val Glu Cys Thr Val Ala Gln Tyr Phe Lys Asp Arg His Lys Leu Val 305 310 315 320

Leu Arg Tyr Pro His Leu Pro Cys Leu Gln Val Gly Gln Glu Gln Lys 325 330 335

His Thr Tyr Leu Pro Leu Glu Val Cys Asn Ile Val Ala Gly Gln Arg 340 345 350

Cys Ile Lys Lys Leu Thr Asp Asn Gln Thr Ser Thr Met Ile Arg Ala 355 360 365

Thr Ala Arg Ser Ala Pro Asp Arg Gln Glu Glu Ile Ser Lys Leu Met 370 375 380

Arg Ser Ala Ser Phe Asn Thr Asp Pro Tyr Val Arg Glu Phe Gly Ile 385 390 395 400

Met Val Lys Asp Glu Met Thr Asp Val Thr Gly Arg Val Leu Gln Pro 405 410 415

Pro Ser Ile Leu Tyr Gly Gly Arg Asn Lys Ala Ile Ala Thr Pro Val 420 425 430

Gln Gly Val Trp Asp Met Arg Asn Lys Gln Phe His Thr Gly Ile Glu 435 440 445

Ile Lys Val Trp Ala Ile Ala Cys Phe Ala Pro Gln Arg Gln Cys Thr 450 455 460

Glu Val His Leu Lys Ser Phe Thr Glu Gln Leu Arg Lys Ile Ser Arg 465 470 475 480

Asp Ala Gly Met Pro Ile Gln Gly Gln Pro Cys Phe Cys Lys Tyr Ala 485 490 495

Gln Gly Ala Asp Ser Val Glu Pro Met Phe Arg His Leu Lys Asn Thr 500 505 510

Val Asp Thr Lys Ile Thr His Pro Thr Glu Phe Asp Phe Tyr Leu Cys
740 745 750

Ser His Ala Gly Ile Gln Gly Thr Ser Arg Pro Ser His Tyr His Val 755 760 765

Leu Trp Asp Asp Asn Arg Phe Ser Ser Asp Glu Leu Gln Ile Leu Thr 770 775 780

Tyr Gln Leu Cys His Thr Tyr Val Arg Cys Thr Arg Ser Val Ser Ile 785 790 795 800

Pro Ala Pro Ala Tyr Tyr Ala His Leu Val Ala Phe Arg Ala Arg Tyr 805 810 815

His Leu Val Asp Lys Glu His Asp Ser Ala Glu Gly Ser His Thr Ser 820 825 830

Gly Gln Ser Asn Gly Arg Asp His Gln Ala Leu Ala Lys Ala Val Gln 835 840 845

Val His Gln Asp Thr Leu Arg Thr Met Tyr Phe Ala 850 855 860

<210> 70

<211> 924

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

<223> eIF2C3, predicted protein sequence

<400> 70

Ser Arg Ser Arg Val Pro Val Pro Gly Pro Gly Ala Ala Ala Pro 1 15

Cys Pro Ala Pro Ala Ser Pro Arg Arg His Pro Ser Ala Asn Ile Pro 20 25 30

Glu Ile Lys Arg Tyr Ala Ala Ala Ala Ala Ala Ala Gly Pro Gly

35 40 45

Ala	Gly 50	Gly	Ala	Gly	Asp	Arg 55	Gly	Glu	Ala	Ala	Pro 60	Ala	Ala	Ala	Met
Glu 65	Ala	Leu	Gly	Pro	Gly 70	Pro	Pro	Ala	Ser	Leu 75	Phe	Gln	Pro	Pro	Arg 80
Arg	Pro	Gly	Leu	Gly 85	Thr	Val	Gly	Lys	Pro 90	Ile	Arg	Leu	Leu	Ala 95	Asn
His	Phe	Gln	Val 100	Gln	Ile	Pro	Lys	Ile 105	Asp	Val	Tyr	His	Tyr 110	Asp	Val
Asp	Ile	Lys 115	Pro	Glu	Lys	Arg	Pro 120	Arg	Arg	Val	Asn	Arg 125	Glu	Val	Val
Asp	Thr 130	Met	Val	Arg	His	Phe 135	Lys	Met	Gln	Ile	Phe 140	Gly	Asp	Arg	Gln
Pro 145	Gly	Tyr	Asp	Gly	Lys 150	Arg	Asn	Met	Tyr	Thr 155	Ala	His	Pro	Leu	Pro 160
Ile	Gly	Arg	Asp	Arg 165	Val	Asp	Met	Glu	Val 170	Thr	Leu	Pro	Gly	Glu 175	Gly
Lys	Asp	Gln	Thr 180	Phe	Lys	Val	Ser	Val 185	Gln	Trp	Val	Ser	Val 190	Val	Ser
Leu	Gln	Leu 195	Leu	Leu	Glu	Ala	Leu 200	Ala	Gly	His	Leu	Asn 205	Glu	Val	Pro
Asp	Asp 210	Ser	Val	Gln	Ala	Leu 215	Asp	Val	Ile	Thr	Arg 220	His	Leu.	Pro	Ser
Met 225	Arg	Tyr	Thr	Pro	Val 230	Gly	Arg	Ser	Phe	Phe 235	Ser	Pro	Pro	Glu	Gly 240
Tyr	Tyr	His	Pro	Leu 245	Gly	Gly	Gly	Arg	Glu 250	Val	Trp	Phe	Gly	Phe 255	His

Gln	Ser	Val	Arg 260	Pro	Ala	Met	Trp	Asn 265	Met	Met	Leu	Asn	Ile 270	Asp	Val
Ser	Ala	Thr 275	Ala	Phe	Tyr	Arg	Ala 280	Gln	Pro	Ile	Ile	Glu 285	Phe	Met	Cys
Glu	Val 290	Leu	Asp	Ile	Gln	Asn 295	Ile	Asn	Glu	Gln	Thr 300	Lys	Pro	Leu	Thr
Asp 305	Ser	Gln	Arg	Val	Lys 310	Phe	Thr	Lys	Glu	Ile 315	Arg	Gly	Leu	Lys	Val 320
Glu	Val	Thr	His	Cys 325	Gly	Gln	Met	Lys	Arg 330	Lys	Tyr	Arg	Val	Cys 335	Asn
Val	Thr	Arg	Arg 340	Pro	Ala	Ser	His	Gln 345	Thr	Phe	Pro	Leu	Gln 350	Leu	Glu
Asn	Gly	Gln 355	Ala	Met	Glu	Cys	Thr 360	Val	Ala	Gln	Tyr	Phe 365	Lys	Gln	Lys
Tyr	Ser 370	Leu	Gln	Leu	Lys	Tyr 375	Pro	His	Leu	Pro	Cys 380	Leu	Gln	Val	Gly
Gln 385	Glu	Gln	Lys	His	Thr 390	Tyr	Leu	Pro	Leu	Glu 395	Val	Cys	Asn	Ile	Val 400
Ala	Gly		_	_	Ile	_	_			_					Thr
Met	Ile	Lys	Ala 420	Thr	Ala	Arg	Ser	Ala 425	Pro	Asp	Arg	Gln	Glu 430	Glu	Ile
Ser	Arg	Leu 435	Val	Lys	Ser	Asn	Ser 440	Met	Val	Gly	Gly	Pro 445	Asp	Pro	Tyr
Leu	Lys 450	Glu	Phe	Gly	Ile	Val 455	Val	His	Asn	Glu	Met 460	Thr	Glu	Leu	Thr
Gly 465	Arg	Val	Leu	Pro	Ala 470	Pro	Met	Leu	Gln	Tyr 475	Gly	Gly	Arg	Asn	Lys 480

Thr	Val	Ala	Thr	Pro 485	Asn	Gln	Gly	Val	Trp 490	Asp	Met	Arg	Gly	Lys 495	Gln
Phe	Tyr	Ala	Gly 500	Ile	Glu	Ile	Lys	Val 505	Trp	Ala	Val	Ala	Cys 510	Phe	Ala
Pro	Gln	Lys 515	Gln	Cys	Arg	Glu	Asp 520	Leu	Leu	Lys	Ser	Phe 525	Thr	Asp	Gln
Leu	Arg 530	Lys	Ile	Ser	Lys	Asp 535	Ala	Gly	Met	Pro	Ile 540	Gln	Gly	Gln	Pro
Cys 545	Phe	Cys	Lys	Tyr	Ala 550	Gln	Gly	Ala	Asp	Ser 555	Val	Glu	Pro	Met	Phe 560
Lys	His	Leu	Lys	Met 565	Thr	Tyr	Val	Gly	Leu 570	Gln	Leu	Ile	Val	Val 575	Ile
Leu	Pro	Gly	Lys 580	Thr	Pro	Val	Tyr	Ala 585	Glu	Val	Lys	Arg	Val 590	Gly	Asp
Thr	Leu	Leu 595	Gly	Met	Ala	Thr	Gln 600	Cys	Val	Gln	Val	Lys 605	Asn	Val	Val
Lys	Thr 610	Ser	Pro	Gln	Thr	Leu 615	Ser	Asn	Leu	Cys	Leu, 620	Lys	Ile	Asn	Ala
Lys 625	Leu	Gly	Gly		Asn 630		Val	Leu	Val	Pro 635	His	Gln	Arg	Pro	Ser 640
Val	Phe	Gln	Gln	Pro 645	Val	Ile	Phe	Leu	Gly 650	Ala	Asp	Val	Thr	His 655	Pro
Pro	Ala	Gly	Asp 660	Gly	Lys	Lys	Pro	Ser 665	Ile	Ala	Ala	Val	Val 670	Gly	Ser
Met	Asp	Gly 675	His	Pro	Ser	Arg	Tyr 680	Cys	Ala	Thr	Val	Arg 685	Val	Gln	Thr
Ser	Arg 690	Gln	Glu	Ile	Ser	Gln 695	Glu	Leu	Leu	Tyr	Ser 700	Gln	Glu	Val	Ile

Gln Asp Leu Thr Asn Met Val Arg Glu Leu Leu Ile Gln Phe Tyr Lys Ser Thr Arg Phe Lys Pro Thr Arg Ile Ile Tyr Tyr Arg Gly Gly Val Ser Glu Gly Gln Met Lys Gln Val Ala Trp Pro Glu Leu Ile Ala Ile Arg Lys Ala Cys Ile Ser Leu Glu Glu Asp Tyr Arg Pro Gly Ile Thr Tyr Ile Val Val Gln Lys Arg His His Thr Arg Leu Phe Cys Ala Asp Lys Thr Glu Arg Val Gly Lys Ser Gly Asn Val Pro Ala Gly Thr Thr Val Asp Ser Thr Ile Thr His Pro Ser Glu Phe Asp Phe Tyr Leu Cys Ser His Ala Gly Ile Gln Gly Thr Ser Arg Pro Ser His Tyr Gln Val Leu Trp Asp Asp Asn Cys Phe Thr Ala Asp Glu Leu Gln Leu Leu Thr Tyr Gln Leu Cys His Thr Tyr Val Arg Cys Thr Arg Ser Val Ser Ile Pro Ala Pro Ala Tyr Tyr Ala Arg Leu Val Ala Phe Arg Ala Arg Tyr His Leu Val Asp Lys Asp His Asp Ser Ala Glu Gly Ser His Val Ser Gly Gln Ser Asn Gly Arg Asp Pro Gln Ala Leu Ala Lys Ala Val Gln

Ile His His Asp Thr Gln His Thr Met Tyr Phe Ala

915 920

<210> 71 <211> 855 <212> PRT <213> Homo sapiens <220> MISC FEATURE <221> <223> eIF2C4, predicted protein sequence <400> 71 Ala Gly Pro Ala Gly Ala Gln Pro Leu Leu Met Val Pro Arg Arg Pro Gly Tyr Gly Thr Met Gly Lys Pro Ile Lys Leu Leu Ala Asn Cys Phe 20 25 Gln Val Glu Ile Pro Lys Ile Asp Val Tyr Leu Tyr Glu Val Asp Ile 35 40 45 Lys Pro Asp Lys Cys Pro Arg Arg Val Asn Arg Glu Val Val Asp Ser 50 55 60 Met Val Gln His Phe Lys Val Thr Ile Phe Gly Asp Arg Arg Pro Val 70 Tyr Asp Gly Lys Arg Ser Leu Tyr Thr Ala Asn Pro Leu Pro Val Ala 85 90

Thr Thr Gly Val Asp Leu Asp Val Thr Leu Pro Gly Glu Gly Gly Lys 100 105 110

Asp Arg Pro Phe Lys Val Ser Ile Lys Phe Val Ser Arg Val Ser Trp 115 120 125

His Leu Leu His Glu Val Leu Thr Gly Arg Thr Leu Pro Glu Pro Leu 130 135 140

Glu Leu Asp Lys Pro Ile Ser Thr Asn Pro Val His Ala Val Asp Val 150 155 160

														<i></i>	
Val	Leu	Arg	His	Leu 165	Pro	Ser	Met	Lys	Tyr 170	Thr	Pro	Val	Gly	Arg 175	Ser
Phe	Phe	Ser	Ala 180	Pro	Glu	Gly	Tyr	Asp 185	His	Pro	Leu	Gly	Gly 190	Gly	Arg
Glu	Val	Trp 195	Phe	Gly	Phe	His	Gln 200	Ser	Val	Arg	Pro	Ala 205	Met	Trp	Lys
Met	Met 210	Leu	Asn	Ile	Asp	Val 215	Ser	Ala	Thr	Ala	Phe 220	Tyr	Lys	Ala	Gln
Pro 225	Val	Ile	Gln	Phe	Met 230	Cys	Glu	Val	Leu	Asp 235	Ile	His	Asn	Ile	Asp 240
Glu	Gln	Pro	Arg	Pro 245	Leu	Thr	Asp	Ser	His 250	Arg	Val	Lys	Phe	Thr 255	Lys
Glu	Ile	Lys	Gly 260	Leu	Lys	Val	Glu	Val 265	Thr	His	Cys	Gly	Thr 270	Met	Arg
Arg	Lys	Tyr 275	Arg	Val	Cys	Asn	Val 280	Thr	Arg	Arg	Pro	Ala 285	Ser	His	Gln
Thr	Phe 290	Pro	Leu	Gln	Leu	Glu 295	Asn	Gly	Gln	Thr	Val 300	Glu	Arg	Thr	Val
Ala 305	Gln	Tyr	Phe		Glu 310		Tyr	Thr		Gln 315		Lys	Tyr	Pro	His 320
Leu	Pro	Cys	Leu	Gln 325	Val	Gly	Gln	Glu	Gln 330	Lys	His	Thr	Tyr	Leu 335	Pro
Leu	Glu	Val	Cys 340	Asn	Ile	Val	Ala	Gly 345	Gln	Arg	Cys	Ile	Lys 350	Lys	Leu
Thr	Asp	Asn 355	Gln	Thr	Ser	Thr	Met 360	Ile	Lys	Ala	Thr	Ala 365	Arg	Ser	Ala
Pro	Asp 370	Arg	Gln	Glu	Glu	Ile 375	Ser	Arg	Leu	Val	Arg 380	Ser	Ala	Asn	Tyr

Gİu 385	Thr	Asp	Pro	Phe	Val 390	Gln	Glu	Phe	Gln	Phe 395	Lys	Val	Arg	Asp	Glu 400
Met	Ala	His	Val	Thr 405	Gly	Arg	Val	Leu	Pro 410	Ala	Pro	Met	Leu	Gln 415	Tyr
Gly	Gly	Arg	Asn 420	Arg	Thr	Val	Ala	Thr 425	Pro	Ser	His	Gly	Val 430	Trp	Asp
Met	Arg	Gly 435	Lys	Gln	Phe	His	Thr 440	Gly	Val	Glu	Ile	Lys 445	Met	Trp	Ala
Ile	Ala 450	Cys	Phe	Ala	Thr	Gln 455	Arg	Gln	Cys	Arg	Glu 460	Glu	Ile	Leu	Lys
Gly 465	Phe	Thr	Asp	Gln	Leu 470	Arg	Lys	Ile	Ser	Lys 475	Asp	Ala	Gly	Met	Pro 480
Ile	Gln	Gly	Gln	Pro 485	Cys	Phe	Cys	Lys	Tyr 490	Ala	Gln	Gly	Ala	Asp 495	Ser
Val	Glu	Pro	Met 500	Phe	Arg	His	Leu	Lys 505	Asn	Thr	Tyr	Ser	Gly 510	Leu	Gln
Leu	Ile	Ile 515	Val	Ile	Leu	Pro	Gly 520	Lys	Thr	Pro	Val	Tyr 525	Ala	Glu	Val
Lys	Arg 530		Gly	Asp	Thr		Leu	_		Ala	Thr 540	Gln	Cys	Val	Gln
Val 545		Asn	Val	Ile	Lys 550	Thr	Ser	Pro	Gln	Thr 555	Leu	Ser	Asn	Leu	Cys 560
Leu	Lys	Ile	Asn	Val 565	Lys	Leu	Gly	Gly	Ile 570	Asn	Asn	Ile	Leu	Val 575	Pro
His	Gln	Arg	Pro 580	Ser	Val	Phe	Gln	Gln 585	Pro	Val	Ile	Phe	Leu 590	Gly	Ala
Asp	Val	Thr 595	His	Pro	Pro	Ala	Gly 600	Asp	Gly	Lys	Lys	Pro 605	Ser	Ile	Ala

Ala Val Val Gly Ser Met Asp Ala His Pro Ser Arg Tyr Cys Ala Thr Val Arg Val Gln Arg Pro Arg Gln Glu Ile Ile Gln Asp Leu Ala Ser Met Val Arq Glu Leu Leu Ile Gln Phe Tyr Lys Ser Thr Arg Phe Lys . 650 Pro Thr Arg Ile Ile Phe Tyr Arg Asp Gly Val Ser Glu Gly Gln Phe Arg Gln Val Leu Tyr Tyr Glu Leu Leu Ala Ile Arg Glu Ala Cys Ile Ser Leu Glu Lys Asp Tyr Gln Pro Gly Ile Thr Tyr Ile Val Val Gln Lys Arg His His Thr Arg Leu Phe Cys Ala Asp Arg Thr Glu Arg Val Gly Arg Ser Gly Asn Ile Pro Ala Gly Thr Thr Val Asp Thr Asp Ile Thr His Pro Tyr Glu Phe Asp Phe Tyr Leu Cys Ser His Ala Gly Ile Gln Gly Thr Ser Arg Pro Ser His Tyr His Val Leu Trp Asp Asp Asn Cys Phe Thr Ala Asp Glu Leu Gln Leu Leu Thr Tyr Gln Leu Cys His Thr Tyr Val Arg Cys Thr Arg Ser Val Ser Ile Pro Ala Pro Ala Tyr Tyr Ala His Leu Val Ala Phe Arg Ala Arg Tyr His Leu Val Asp Lys

Glu His Asp Ser Ala Glu Gly Ser His Val Ser Gly Gln Ser Asn Gly

820 825 830

Arg Asp Pro Gln Ala Leu Ala Lys Ala Val Gln Ile His Gln Asp Thr 835 840 845

Leu Arg Thr Met Tyr Phe Ala 850 855

<210> 72

<211> 764

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

<223> HILI, predicted protein sequence

<400> 72

Ile Ser Ser Gly Asp Ala Gly Ser Thr Phe Met Glu Arg Gly Val Lys 1 5 10 15

Asn Lys Gln Asp Phe Met Asp Leu Ser Ile Cys Thr Arg Glu Lys Leu 20 25 30

Ala His Val Arg Asn Cys Lys Thr Gly Ser Ser Gly Ile Pro Val Lys 35 40 45

Leu Val Thr Asn Leu Phe Asn Leu Asp Phe Pro Gln Asp Trp Gln Leu 50 55 60

Tyr Gln Tyr His Val Thr Tyr Île Pro Asp Leu Ala Ser Arg Arg Leu 65 70 75 80

Arg Ile Ala Leu Leu Tyr Ser His Ser Glu Leu Ser Asn Lys Ala Lys 85 90 95

Ala Phe Asp Gly Ala Ile Leu Phe Leu Ser Gln Lys Leu Glu Glu Lys
100 105 110

Val Thr Glu Leu Ser Ser Glu Thr Gln Arg Gly Glu Thr Ile Lys Met 115 120 125

Gln Arg Leu Ala Arg Leu Val Asp Asn Ile Gln Arg Asn Thr Asn Ala Arg Phe Glu Leu Glu Thr Trp Gly Leu His Phe Gly Ser Gln Ile Ser Leu Thr Gly Arg Ile Val Pro Ser Glu Lys Ile Leu Met Gln Asp His Ile Cys Gln Pro Val Ser Ala Ala Asp Trp Ser Lys Asp Ile Arg Thr Cys Lys Ile Leu Asn Ala Gln Ser Leu Asn Thr Trp Leu Ile Leu Cys Ser Asp Arg Thr Glu Tyr Val Ala Glu Ser Phe Leu Asn Cys Leu Arg Arg Val Ala Gly Ser Met Gly Phe Asn Val Met Cys Ile Leu Pro Ser Asn Gln Lys Thr Tyr Tyr Asp Ser Ile Lys Lys Tyr Leu Ser Ser Asp Cys Pro Val Pro Ser Gln Cys Val Leu Ala Arg Thr Leu Asn Lys Gln Gly Met Met Ser Ile Ala Thr Lys Ile Ala Met Gln Met Thr Cys Lys Leu Gly Gly Glu Leu Trp Ala Val Glu Ile Pro Leu Lys Ser Leu Met Val Val Gly Ile Asp Val Cys Lys Asp Ala Leu Ser Lys Asp Val Met Val Val Gly Cys Val Ala Ser Val Asn Pro Arg Ile Thr Arg Trp Phe Ser Arg Cys Ile Leu Gln Arg Thr Met Thr Asp Val Ala Asp Cys

Leu Lys Val Phe Met Thr Gly Ala Leu Asn Lys Trp Tyr Lys Tyr Asn 580 585 590

His Asp Leu Pro Ala Arg Ile Ile Val Tyr Arg Ala Gly Val Gly Asp 595 600 605

Gly Gln Leu Lys Thr Leu Ile Glu Tyr Glu Val Pro Gln Leu Leu Ser 610 620

Ser Val Ala Glu Ser Ser Ser Asn Thr Ser Ser Arg Leu Ser Val Ile 625 630 635 640

Val Val Arg Lys Lys Cys Met Pro Arg Phe Phe Thr Glu Met Asn Arg 645 650 655

Thr Val Gln Asn Pro Pro Leu Gly Thr Val Val Asp Ser Glu Ala Thr 660 665 670

Arg Asn Glu Trp Gln Tyr Asp Phe Tyr Leu Ile Ser Gln Val Ala Cys 675 680 685

Arg Gly Thr Val Ser Pro Thr Tyr Tyr Asn Val Ile Tyr Asp Asp Asn 690 695 700

Gly Leu Lys Pro Asp His Met Gln Arg Leu Thr Phe Lys Leu Cys His 705 710 715 720

Leu Tyr Tyr Asn Trp Pro Gly Ile Val Ser Val Pro Ala Pro Cys Gln 725 730 735

Tyr Ala His Lys Leu Thr Phe Leu Val Ala Gln Ser Ile His Lys Glu 740 745 750

Pro Ser Leu Glu Leu Ala Asn His Leu Phe Tyr Leu 755 760

<210> 73

<211> 861

<212> PRT

<213> Homo sapiens

<220 <220 <220	1> 1	_	_FEAT		ted p	prote	ein s	seque	ence						
<400	0> ^	73													
Met 1	Thr	Gly	Arg	Ala 5	Arg	Ala	Arg	Ala	Arg 10	Gly	Arg	Ala	Arg	Gly 15	Gln
Glu	Thr	Ala	Gln 20	Leu	Val	Gly	Ser	Thr 25	Ala	Ser	Gln	Gln	Pro 30	Gly	Tyr
Ile	Gln	Pro 35	Arg	Pro	Gln	Pro	Pro 40	Pro	Ala	Glu	Gly	Glu 45	Leu	Phe	Gly
Arg	Gly 50	Arg	Gln	Arg	Gly	Thr 55	Ala	Gly	Gly	Thr	Ala 60	Lys	Ser	Gln	Gly
Leu 65	Gln	Ile	Ser	Ala	Gly 70	Phe	Gln	Glu	Leu	Ser 75	Leu	Ala	Glu	Arg	Gly 80
Gly	Arg	Arg	Arg	Asp 85	Phe	His	Asp	Leu	Gly 90	Val	Asn	Thr	Arg	Gln 95	Asn
Leu	Asp	His	Val	Lys	Glu	Ser	Lys	Thr 105	Gly	Ser	Ser	Gly	Ile 110	Ile	Val
Arg	Leu	Ser 115	Thr	Asn	His	Phe [,]	Arg 120	Leu	Thr	Ser	Arg	Pro 125	Gln	Trp	Ala
Leu	Tyr 130	Gln	Tyr	His	Ile	Asp 135	Tyr	Asn	Pro	Leu	Met 140	Glu	Ala	Arg	Arg
Leu 145	Arg	Ser	Ala	Leu	Leu 150	Phe	Gln	His	Glu	Asp 155	Leu	Ile	Gly	Lys	Cys 160
His	Ala	Phe	Asp	Gly 165	Thr	Ile	Leu	Phe	Leu 170	Pro	Lys	Arg	Leu	Gln 175	Gln

Lys Val Thr Glu Val Phe Ser Lys Thr Arg Asn Gly Glu Asp Val Arg 180 185 190

Ile	Thr	Ile 195	Thr	Leu	Thr	Asn	Glu 200	Leu	Pro	Pro	Thr	Ser 205	Pro	Thr	Cys
Leu	Gln 210	Phe	Tyr	Asn	Ile	Ile 215	Phe	Arg	Arg	Leu	Leu 220	Lys	Ile	Met	Asn
Leu 225	Gln	Gln	Ile	Gly	Arg 230	Asn	Tyr	Tyr	Asn	Pro 235	Asn	Asp	Pro	Ile	Asp 240
Ile	Pro	Ser	His	Arg 245	Leu	Val	Ile	Trp	Pro 250	Gly	Phe	Thr	Thr	Ser 255	Ile
Leu	Gln	Tyr	Glu 260	Asn	Ser	Ile	Met	Leu 265	Cys	Thr	Asp	Val	Ser 270	His	Lys
Val	Leu	Arg 275	Ser	Glu	Thr	Val	Leu 280	Asp	Phe	Met	Phe	Asn 285	Phe	Tyr	His
Gln	Thr 290	Glu	Glu	His	Lys	Phe 295	Gln	Glu	Gln	Val	Ser 300	Lys	Glu	Leu	Ile
Gly 305	Leu	Val	Val	Leu	Thr 310	Lys	Tyr	Asn	Asn	Lys 315	Thr	Tyr	Arg	Val	Asp 320
Asp	Ile	Asp	Trp	Asp 325	Gln	Asn	Pro	Lys	Ser 330	Thr	Phe	Lys	Lys	Ala 335	Asp
Gly	Ser	Glu	Val 340		Phe		Glu	_	_	_	Lys		Tyr 350	Asn	Gln
Glu	Ile	Thr 355	Asp	Leu	Lys	Gln	Pro 360	Val	Leu	Val	Ser	Gln 365	Pro	Lys	Arg
Arg	Arg 370	Gly	Pro	Gly	Gly	Thr 375	Leu	Pro	Gly	Pro	Ala 380	Met	Leu	Ile	Pro
Glu 385	Leu	Cys	Tyr	Leu	Thr 390	Gly	Leu	Thr	Asp	Lys 395	Met	Arg	Asn		Phe 400
Asn	Val	Met	Lys	Asp 405	Leu	Ala	Val	His	Thr 410	Arg	Leu	Thr	Pro	Glu 415	Gln

Arg	Gln	Arg	Glu 420	Val	Gly	Arg	Leu	Ile 425	Asp	Tyr	Ile	His	Lys 430	Asn	Asp
Asn	Val	Gln 435	Arg	Glu	Leu	Arg	Asp 440	Trp	Gly	Leu	Ser	Phe 445	Asp	Ser	Asn
Leu	Leu 450	Ser	Phe	Ser	Gly	Arg 455	Ile	Leu	Gln	Thr	Glu 460	Lys	Ile	His	Gln
Gly 465	Gly	Lys	Thr	Phe	Asp 470	Tyr	Asn	Pro	Gln	Phe 475	Ala	Asp	Trp	Ser	Lys 480
Glu	Thr	Arg	Gly	Ala 485	Pro	Leu	Ile	Ser	Val 490	Lys	Pro	Leu	Asp	Asn 495	Trp
Leu	Leu	Ile	Tyr 500	Thr	Arg	Arg	Asn	Tyr 505	Glu	Ala	Ala	Asn	Ser 510	Leu	Ile
Gln	Asn	Leu 515	Phe	Lys	Val	Thr	Pro 520	Ala	Met	Gly	Met	Gln 525	Met	Arg	Lys
Ala	Ile 530	Met	Ile	Glu	Val	Asp 535	Asp	Arg	Thr	Glu	Ala 540	Tyr	Leu	Arg	Val
Leu 545	Gln	Gln	Lys	Val	Thr 550	Ala	Asp	Thr	Gln	Ile 555	Val	Val	Суз	Leu	Leu 560
Ser	Ser	Asn	Arg	Lys 565	Asp	_	Tyr	_	F 7 0		Lys	Lys	Tyr	Leu 575	Cys
Thr	Asp	Cys	Pro 580	Thr	Pro	Ser	Gln	Cys 585	Val	Val	Ala	Arg	Thr 590	Leu	Gly
Lys	Gln	Gln 595	Thr	Val	Met	Ala	Ile 600	Ala	Thr	Lys	Ile	Ala 605	Leu	Gln	Met
Asn	Cys 610	Lys	Met	Gly	Gly	Glu 615	Leu	Trp	Arg	Val	Asp 620	Ile	Pro	Leu	Lys
Leu 625	Val	Met	Ile	Val	Gly 630	Ile	Asp	Cys	Tyr	His 635	Asp	Met	Thr	Ala	Gly 640

- Arg Arg Ser Ile Ala Gly Phe Val Ala Ser Ile Asn Glu Gly Met Thr 645 650 655
- Arg Trp Phe Ser Arg Cys Ile Phe Gln Asp Arg Gly Gln Glu Leu Val 660 665 670
- Asp Gly Leu Lys Val Cys Leu Gln Ala Ala Leu Arg Ala Trp Asn Ser 675 680 685
- Cys Asn Glu Tyr Met Pro Ser Arg Ile Ile Val Tyr Arg Asp Gly Val 690 695 700
- Gly Asp Gly Gln Leu Lys Thr Leu Val Asn Tyr Glu Val Pro Gln Phe 705 710 715 720
- Leu Asp Cys Leu Lys Ser Ile Gly Arg Gly Tyr Asn Pro Arg Leu Thr 725 730 735
- Val Ile Val Val Lys Lys Arg Val Asn Thr Arg Phe Phe Ala Gln Ser 740 745 750
- Gly Gly Arg Leu Gln Asn Pro Leu Pro Gly Thr Val Ile Asp Val Glu 755 760 765
- Val Thr Arg Pro Glu Trp Tyr Asp Phe Phe Ile Val Ser Gln Ala Val 770 775 780
- Arg Ser Gly Ser Val Ser Pro Thr His Tyr Asn Val Ile Tyr Asp Asn 785 790 795 800
- Ser Gly Leu Lys Pro Asp His Ile Gln Arg Leu Thr Tyr Lys Leu Cys 805 810 815
- His Ile Tyr Tyr Asn Trp Pro Gly Val Ile Arg Val Pro Ala Pro Cys 820 825 830
- Gln Tyr Ala His Lys Leu Ala Phe Leu Val Gly Gln Ser Ile His Arg 835 840 845
- Glu Pro Asn Leu Ser Leu Ser Asn Arg Leu Tyr Tyr Leu

860 850 855

<210> 74 <211> 2571 <212> DNA <213>

Homo sapiens

<220>

<221> misc feature

<223> eIF2C1, cDNA sequence of predicted ORF

<400> 60 atggaagegg gacceteggg ageagetgeg ggegettace tgeececet geageaggtg ttccaggcac ctcgccggcc tggcattggc actgtgggga aaccaatcaa gctcctggcc 120 aattactttg aggtggacat ccctaagatc gacgtgtacc actacgaggt ggacatcaag 180 ccggataagt gtccccgtag agtcaaccgg gaagtggtgg aatacatggt ccagcatttc 240 300 aagcctcaga tctttggtga tcgcaagcct gtgtatgatg gaaagaagaa catttacact 360 gtcacagcac tgcccattgg caacgaacgg gtcgactttg aggtgacaat ccctggggaa 420 gggaaggatc gaatctttaa ggtctccatc aagtggctag ccattgtgag ctggcgaatg ctgcatgagg ccctggtcag cggccagatc cctgttccct tggagtctgt gcaagccctg 480 540 gatgtggcca tgaggcacct ggcatccatg aggtacaccc ctgtgggccg ctccttcttc tcaccgcctg agggctacta ccacccgctg gggggtgggc gcgaggtctg gttcggcttt 600 660 caccagtetg tgcgccctgc catgtggaag atgatgetca acattgatgt ctcagccact 720 gccttttata aggcacagcc agtgattgag ttcatgtgtg aggtgctgga catcaggaac 780 atagatgage ageceaagee ceteaeggae teteagegeg ttegetteae caaggagate 840 aagggcctga aggtggaagt cacccactgt ggacagatga agaggaagta ccgcgtgtgt 900 aatgttaccc gtcgccctgc tagccatcag acattcccct tacagctgga gagtggacag 960 actgtggagt gcacagtggc acagtatttc aagcagaaat ataaccttca gctcaagtat 1020 coccatctgc cctgcctaca agttggccag gaacaaaagc atacctacct tcccctagag gtctgtaaca ttgtggctgg gcagcgctgt attaaaaagc tgaccgacaa ccagacctcg 1080 accatgataa aggccacagc tagatccgct ccagacagac aggaggagat cagtcgcctg 1140 1200 atgaagaatg ccagctacaa cttagatccc tacatccagg aatttgggat caaagtgaag 1260

gatgacatga cggaggtgac agggcgagtg ctgccggcgc ccatcttgca gtacggcggc

cggaaccggg ccattgccac acccaatcag ggtg	tctggg acatgcgggg gaaacagttc 1320)
tacaatggga ttgagatcaa agtctgggcc atcg	cctgct tcgcacccca aaaacagtgt 1380)
cgagaagagg tgctcaagaa cttcacagac cagc	tgcgga agatttccaa ggatgcgggg 1440)
atgcctatcc agggtcaacc ttgtttctgc aaat	atgcac agggggcaga cagcgtggag 1500	ı
cctatgttcc ggcatctcaa gaacacctac tcag	ggctgc agctcattat tgtcatcctg 1560	l
ccagggaaga cgccggtgta tgctgaggtg aaac	gtgtcg gagatacact cttgggaatg 1620	l
gctacgcagt gtgtgcaggt gaagaacgtg gtca	agacct cacctcagac tctgtccaac 1680)
ctctgcctca agatcaatgt caaacttggt ggca	ttaaca acatcctagt cccacaccag 1740)
cgctctgccg tttttcaaca gccagtgata ttcc	tgggag cagatgttac acacccccca 1800)
gcaggggatg ggaaaaaacc ttctatcaca gcag	tggtag gcagtatgga tgcccacccc 1860)
agccgatact gtgctactgt gcgggtacag cgac	cacggc aagagatcat tgaagacttg 1920	ı
tcctacatgg tgcgtgagct cctcatccaa ttct	acaagt ccacccgttt caagcctacc 1980)
cgcatcatct tctaccgaga tggggtgcct gaag	gccagc taccccagat actccactat 2040	١
gagctactgg ccattcgtga tgcctgcatc aaac	tggaaa aggactacca gcctgggatc 2100)
acttatattg tggtgcagaa acgccatcac accc	gccttt tctgtgctga caagaatgag 2160	١
cgaattggga agagtggtaa catcccagct ggga	ccacag tggacaccaa catcacccac 2220	١
ccatttgagt ttgacttcta tctgtgcagc cacg	caggca tccagggcac cagccgacca 2280)
tcccattact atgttctttg ggatgacaac cgtt	tcacag cagatgagct ccagatcctg 2340)
acgtaccage tgtgccacac ttacgtacga tgca	cacget etgtetetat eccageacet 2400	1
gcctactatg cccgcctggt ggctttccgg gcac	gatacc acctggtgga caaggagcat 2460)
gacagtggag aggggagcca catatcgggg caga	gcaatg ggcgggaccc ccaggccctg 2520)
gccaaagccg tgcaggttca ccaggatact ctgc	gcacca tgtacttcgc t 2571	

<210> 75

<211> 2580

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature <223> eIF2C2, cDNA sequence of predicted ORF

<400> 75 atgggtgttc	tctctgccat	tcccgcactt	gcacctcctg	cgccgccgcc	ccccatccaa	60
ggatatgcct	tcaagcctcc	acctagaccc	gactttggga	cctccgggag	aacaatcaaa	120
ttacaggcca	atttcttcga	aatggacatc	cccaaaattg	acatctatca	ttatgaattg	180
gatatcaagc	cagagaagtg	cccgaggaga	gttaacaggg	aaatcgtgga	acacatggtc	240
cagcacttta	aaacacagat	ctttggggat	cggaagcccg	tgtttgacgg	caggaagaat	300
ctatacacag	ccatgcccct	tccgattggg	agggacaagg	tggagctgga	ggtcacgctg	360
ccaggagaag	gcaaggatcg	catcttcaag	gtgtccatca	agtgggtgtc	ctgcgtgagc	420
ttgcaggcgt	tacacgatgc	actttcaggg	cggctgccca	gcgtcccttt	tgagacgatc	480
caggccctgg	acgtggtcat	gaggcacttg	ccatccatga	ggtacacccc	cgtgggccgc	540
tccttcttca	ccgcgtccga	aggctgctct	aaccctcttg	gcgggggccg	agaagtgtgg	600
tttggcttcc	atcagtccgt	ccggccttct	ctctggaaaa	tgatgctgaa	tattgatgtg	660
tcagcaacag	cgttttacaa	ggcacagcca	gtaatcgagt	ttgtttgtga	agttttggat	720
tttaaaagta	ttgaagaaca	acaaaaacct	ctgacagatt	cccaaagggt	aaagtttacc	780
aaagaaatta	aaggtctaaa	ggtggagata	acgcactgtg	ggcagatgaa	gaggaagtac	840
cgtgtctgca	atgtgacccg	gcggcccgcc	agtcaccaaa	cattcccgct	gcagcaggag	900
agcgggcaga	cggtggagtg	cacggtggcc	cagtatttca	aggacaggca	caagttggtt	960
ctgcgctacc	cccacctccc	atgtttacaa	gtcggacagg	agcagaaaca	cacctacctt	1020
cccctggagg	tctgtaacat	tgtggcagga	caaagatgta	ttaaaaaatt	aacggacaat	1080
cagacctcaa	ccatgatcag	agcaactgct	aggtcggcgc	ccgatcggca	agaagagatt	1140
agcaaattga	tgcgaagtgc	aagtttcaac	acagatccat	acgtccgtga	atttggaatc	1200
atggtcaaag	atgagatgac	agacgtgact	gggcgggtgc	tgcagccgcc	ctccatcctc	1260
tacgggggca	ggaataaagc	tattgcgacc	cctgtccagg	gcgtctggga	catgcggaac	1320
aagcagttcc	acacgggcat	cgagatcaag	gtgtgggcca	ttgcgtgctt	cgcccccag	1380
cgccagtgca	cggaagtcca	tctgaagtcc	ttcacagagc	agctcagaaa	gatctcgaga	1440
gacgctggca	tgcccatcca	gggccagccg	tgcttctgca	aatacgcgca	gggggcggac	1500
agcgtggagc	ccatgttccg	gcacctgaag	aacacgtatg	cgggcctgca	gctggtggtg	1560
gtcatcctgc	ccggcaagac	gcccgtgtac	gccgaggtca	agcgcgtggg	agacacggtg	1620

ctggggatgg	ccacgcagtg	cgtgcagatg	aagaacgtgc	agaggaccac	gccacagacc	1680
ctgtccaacc	tttgcctgaa	gatcaacgtc	aagctgggag	gcgtgaacaa	catcctgctg	1740
ccccagggca	ggccgccggt	gttccagcag	cccgtcatct	ttctgggagc	agacgtcact	1800
caccccccg	ccggggatgg	gaagaagccc	tccattgccg	ccgtggtggg	cagcatggac	1860
gcccacccca	atcgctactg	cgccaccgtg	cgcgtgcagc	agcaccggca	ggagatcata	1920
caagacctgg	ccgccatggt	ccgcgagctc	ctcatccagt	tctacaagtc	cacgcgcttc	1980
aagcccaccc	gcatcatctt	ctaccgcgac	ggtgtctctg	aaggccagtt	ccagcaggtt	2040
ctccaccacg	agttgctggc	catccgtgag	gcctgtatca	agctagaaaa	agactaccag	2100
cccgggatca	ccttcatcgt	ggtgcagaag	aggcaccaca	cccggctctt	ctgcactgac	2160
aagaacgagc	gggttgggaa	aagtggaaac	attccagcag	gcacgactgt	ggacacgaaa	2220
atcacccacc	ccaccgagtt	cgacttctac	ctgtgtagtc	acgctggcat	ccaggggaca	2280
agcaggcctt	cgcactatca	cgtcctctgg	gacgacaatc	gtttctcctc	tgatgagctg	2340
cagatcctaa	cctaccagct	gtgtcacacc	tacgtgcgct	gcacacgctc	cgtgtccatc	2400
ccagcgccag	catactacgc	tcacctggtg	gccttccggg	ccaggtacca	cctggtggat	2460
aaggaacatg	acagtgctga	aggaagccat	acctctgggc	agagtaacgg	gcgagaccac	2520
caagcactgg	ccaaggcggt	ccaggttcac	caagacactc	tgcgcaccat	gtactttgct	2580

<210> 76

<220>

<400> 76

<211> 2772

<212> DNA

<213> Homo sapiens

<221> misc_feature

<223> eIF2C3, cDNA sequence of predicted ORF

agceggagee gggteetgt eccegggeeg ggegeegeeg eegeeectg eccagegee 60 gegteteege ggegeeace cagegeeaat atteeggaga teaagegtta egeggeggeg 120 geggeggeg eggegggee eggagegga ggegeeggg accggggg accggggega ggegeeece 180 geegeegea tggaggeet gggaceegga eeteeggeta geetgttea geeacetegt 240 egteetggee ttggaactgt tggaaaacca attegactgt tagecaatca tttteaggtt 300

360 cagattccta aaatagatgt gtatcactat gatgtggata ttaagcctga aaaacggcct 420 cgtagagtca acagggaggt agtagataca atggtgcggc acttcaagat gcaaatattt 480 ggtgatcggc agcctgggta tgatggcaaa agaaacatgt acacagcaca tccactacca 540 attggacggg atagggttga tatggaggtg actcttccag gcgagggtaa agaccaaaca 600 tttaaaqtqt ctqttcaqtq qqtqtcaqtt qtgagccttc agttgctttt agaagctttg 660 gctgggcact tgaatgaagt cccagatgac tcagtacaag cacttgatgt tatcacaaga caccttccct ccatgaggta caccccagtg ggccgttcct ttttctcacc cccggaaggt 720 780 tactaccacc ctctgggagg gggcagggag gtctggtttg gttttcatca gtctgtgaga 840 cctgccatgt ggaatatgat gctcaacatt gatgtatctg caactgcttt ctaccgggct 900 cagcctatca ttgagttcat gtgtgaggtt ttagacattc agaacatcaa tgaacagacc 960 aaacctctaa cagactccca gcgtgtcaaa tttaccaaag aaatcagagg tctcaaagtt 1020 gaggtgaccc actgtggaca gatgaaacga aaataccgag tttgtaatgt gactagacgg 1080 . ccagccagtc atcaaacttt tcctttgcag ctagaaaacg gtcaagctat ggaatgtaca 1140 qtaqctcaat attttaagca aaagtatagt ctgcaactga aataccccca tcttccctgt ctccaagtgg gacaagaaca aaagcataca tacttgccac tcgaggtctg taatatagtg 1200 1260 gcaggacagc gatgtatcaa gaagctcaca gacaatcaga cttccacaat gatcaaagct 1320 acagcaagat ctgctcctga cagacaggaa gagatcagta gactggtgaa gagcaacagt 1380 atggtgggtg gacctgatcc ataccttaaa gaatttggta ttgttgtcca caatgaaatg 1440 acagagetea caggeagggt acttecagea ceaatgetge aatatggagg eeggaataaa 1500 acaqtaqcca cacccaacca gggtgtctgg gacatgcgag gaaagcagtt ttatgctggc 1560 attgaaatta aagtttgggc agttgcttgt tttgcacctc agaaacaatg tagggaagat ttactaaaga gtttcactga ccagctgcgt aaaatctcta aggatgcagg aatgcccatc 1620 cagggtcagc catgtttctg caagtatgca caaggtgcag acagtgtgga gcctatgttt 1680 1740 aaacatctga aaatgactta tgtgggccta cagctaatag tggttatcct gcctggaaag acaccagtat atgcggaggt gaaacgtgtt ggagataccc ttctaggtat ggccacacag 1800 tgtgtccagg taaaaaatgt agtgaagacc tcacctcaaa ccctttccaa tctttgcctg 1860 1920 aagataaatg caaaacttgg aggaattaac aatgtgcttg tgcctcatca aaggccctcg 1980 gtgttccagc agcctgtcat cttcctggga gcggatgtca cacaccccc agcaggggat

gggaagaaac	cttccattgc	tgctgtggtt	ggcagtatgg	atggccaccc	cagccggtac	2040
tgtgccaccg	ttcgggtgca	gacttcccgg	caggagatct	cccaagagct	cctctacagt	2100
caagaggtca	tccaggacct	gactaacatg	gttcgagagc	tgctgattca	gttctacaaa	2160
tccacacgct	tcaaacccac	tcggatcatc	tattaccgtg	gaggggtatc	tgagggacaa	2220
atgaaacagg	tagcttggcc	agaactaata	gcaattcgaa	aggcatgtat	tagcttggaa	2280
gaagattacc	ggccaggaat	aacttatatt	gtggtgcaaa	aaagacatca	cacacgactc	2340
ttctgtgcag	ataaaacaga	aagggtaggg	aaaagtggca	atgtaccagc	aggcactaca	2400
gtggatagta	ccatcacaca	tccatctgag	tttgactttt	acctctgtag	tcatgcagga	2460
attcagggaa	ccagccgtcc	ctcacattac	caggtcttgt	gggatgacaa	ctgcttcact	2520
gcagatgaac	tccagctact	gacttaccag	ctgtgtcaca	cctatgtgag	gtgcactcgc	2580
tcagtctcta	ttccagcccc	tgcatattat	gcccggcttg	tagcatttag	ggcaaggtat	2640
catctggtgg	ataaagatca	tgacagtgcg	gaaggcagtc	atgtgtcagg	acagagcaac	2700
ggccgggatc	ctcaggcctt	ggctaaggct	gtgcaaatcc	accatgatac	ccagcacacg	2760
atgtattttg	сс					2772

<210> 77 <211> 2568

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> eIF2C4, cDNA sequence of predicted ORF

<400> 77

gcaggacccg ctggggcca gccctactc atggtgcca gaagacctgg ctatggcacc 60
atgggcaaac ccattaaact gctggctaac tgttttcaag ttgaaatccc aaagattgat 120
gtctacctct atgaggtaga tattaaacca gacaagtgtc ctaggagagt gaacagggag 180
gtggttgact caatggttca gcattttaaa gtaactatat ttggagaccg tagaccagtt 240
tatgatggaa aaagaagtct ttacaccgcc aatccacttc ctgtggcaac tacaggggta 300
gatttagacg ttactttacc tggggaaggt ggaaaagatc gacctttcaa ggtgtcaatc 360
aaatttgtct ctcgggtgag ttggcaccta ctgcatgaag tactgacagg acggaccttg 420

attgtagttc	agaagagaca	tcacactcga	ttattttgtg	ctgataggac	agaaagggtt	2160
ggaagaagtg	gcaatatccc	agctggaaca	acagttgata	cagacattac	acacccatat	2220
gagttcgatt	tttacctctg	tagccatgct	ggaatacagg	gtaccagtcg	tccttcacac	2280
tatcatgttt	tatgggatga	taactgcttt	actgcagatg	aacttcagct	gctaacttac	2340
cagctctgcc	acacttacgt	acgctgtaca	cgatctgttt	ctatacctgc	accagcgtat	2400
tatgctcacc	tggtagcatt	tagagccaga	tatcatcttg	tggacaaaga	acatgacagt	2460
gctgaaggaa	gtcacgtttc	aggacaaagc	aatgggcgag	atccacaagc	tcttgccaag	2520
gctgtacaga	ttcaccaaga	taccttacgc	acaatgtact	tcgcttaa		2568

<210> 78

<211> 2292

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<223> HILI, cDNA sequence of predicted ORF

<400> 78 60 atatcttctg gtgatgctgg aagtaccttc atggaaagag gtgtgaaaaa caaacaggac 120 tttatggatt tgagtatctg taccagagaa aaattggcac atgtgagaaa ttgtaaaaca 180 ggttccagtg gaatacctgt gaaactggtt acaaacctct ttaacttaga ttttccccaa gactggcagc tataccagta ccatgtgaca tatattccag atttagcatc tagaaggctg 240 300 agaattgctt tactttatag tcatagtgaa ctttccaaca aagcaaaagc attcgacggt 360 gccatccttt ttctgtcaca aaagctagaa gaaaaggtca cagagttgtc aagtgaaact 420 caaagaggtg agactataaa gatgactatc accctgaaga gggagctgcc atcaagttct cccgtgtgca tccaggtctt caatatcatc ttcagaaaga tcctcaaaaa gttgtccatg 480 540 taccaaattg gacggaactt ctataatcct tcagagccaa tggaaattcc ccagcacaaa ttatcccttt ggcctgggtt tgccatttct gtgtcatatt ttgaaaggaa gctcctgttt 600 660 agtgctgatg tgagttacaa agtcctccgg aatgagacgg ttctggaatt catgactgct ctctgtcaaa gaactggctt gtcctgtttc acccagacgt gtgagaagca gctaataggg 720

ctcattgtcc ttacaagata caataacaga acctactcca ttgatgacat tgactggtca

780

<210> 79 <211> 2583 <212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<223> HIWI, cDNA sequence of predicted ORF

<400> 79

atgactggga gagcccgagc cagagccaga ggaagggccc gcggtcagga gacagcgcag 60 120 ctggtgggct ccactgccag tcagcaacct ggttatattc agcctaggcc tcagccgcca 180 ccagcagagg gggaattatt tggccgtgga cggcagagag gaacagcagg aggaacagcc 240 aagtcacaag gactccagat atctgctgga tttcaggagt tatcgttagc agagagagga 300 ggtcgtcgta gagattttca tgatcttggt gtgaatacaa ggcagaacct agaccatgtt 360 aaagaatcaa aaacaggttc ttcaggcatt atagtaaggt taagcactaa ccatttccgg 420 ctgacatccc gtccccagtg ggccttatat cagtatcaca ttgactataa cccactgatg 480 gaagccagaa gactccgttc agctcttctt tttcaacacg aagatctaat tggaaagtgc 540 catgcttttg atggaacgat attattttta cctaaaagac tacagcaaaa ggttactgaa 600 gtttttagta agacccggaa tggagaggat gtgaggataa cgatcacttt aacaaatgaa 660 cttccaccta catcaccaac ttgtttgcag ttctataata ttattttcag gaggcttttg 720 aaaatcatga atttgcaaca aattggacga aattattata acccaaatga cccaattgat 780 attccaagtc acaggttggt gatttggcct ggcttcacta cttccatcct tcagtatgaa 840 aacagcatca tgctctgcac tgacgttagc cataaagtcc ttcgaagtga gactgttttg 900 gatttcatgt tcaactttta tcatcagaca gaagaacata aatttcaaga acaagtttcc 960 aaagaactaa taggtttagt tgttcttacc aagtataaca ataagacata cagagtggat gatattgact gggaccagaa tcccaagagc acctttaaga aagccgacgg ctctgaagtc 1020 1080 agcttcttag aatactacag gaagcaatac aaccaagaga tcaccgactt gaagcagcct 1140 gtcttggtca gccagcccaa gagaaggcgg ggccctgggg ggacactgcc agggcctgcc 1200 atgctcattc ctgagctctg ctatcttaca ggtctaactg ataaaatgcg taatgatttt 1260 aacgtgatga aagacttagc cgttcataca agactaactc cagagcaaag gcagcgtgaa 1320 gtgggacgac tcattgatta cattcataaa aacgataatg ttcaaaggga gcttcgagac 1380 tggggtttga gctttgattc caacttactg tccttctcag gaagaatttt gcaaacagaa

aagattcacc	aaggtggaaa	aacatttgat	tacaatccac	aatttgcaga	ttggtccaaa	1440
gaaacaagag	gtgcaccatt	aattagtgtt	aagccactag	ataactggct	gttgatctat'	1500
acgcgaagaa	attatgaagc	agccaattca	ttgatacaaa	atctatttaa	agttacacca	1560
gccatgggca	tgcaaatgag	aaaagcaata	atgattgaag	tggatgacag	aactgaagcc	1620
tacttaagag	tcttacagca	aaaggtcaca	gcagacaccc	agatagttgt	ctgtctgttg	1680
tcaagtaatc	ggaaggacaa	atacgatgct	attaaaaaat	acctgtgtac	agattgccct	1740
accccaagtc	agtgtgtggt	ggcccgaacc	ttaggcaaac	agcaaactgt	catggccatt	1800
gctacaaaga	ttgccctaca	gatgaactgc	aagatgggag	gagagctctg	gagggtggac	1860
atccccctga	agctcgtgat	gatcgttggc	atcgattgtt	accatgacat	gacagctggg	1920
cggaggtcaa	tcgcaggatt	tgttgccagc	atcaatgaag	ggatgacccg	ctggttctca	1980
cgctgcatat	ttcaggatag	aggacaggag	ctggtagatg	ggctcaaagt	ctgcctgcaa	2040
gcggctctga	gggcttggaa	tagctgcaat	gagtacatgc	ccagccggat	catcgtgtac	2100
cgcgatggcg	taggagacgg	ccagctgaaa	acactggtga	actacgaagt	gccacagttt	2160
ttggattgtc	taaaatccat	tggtagaggt	tacaacccta	gactaacggt	aattgtggtg	2220
aagaaaagag	tgaacaccag	attttttgct	cagtctggag	gaagacttca	gaatccactt	2280
cctggaacag	ttattgatgt	agaggttacc	agaccagaat	ggtatgactt	ttttatcgtg	2340
agccaggctg	tgagaagtgg	tagtgtttct	cccacacatt	acaatgtcat	ctatgacaac	2400
agcggcctga	agccagacca	catacagcgc	ttgacctaca	agctgtgcca	catctattac	2460
aactggccag	gtgtcattcg	tgttcctgct	ccttgccagt	acgcccacaa	gctggctttt	2520
cttgttggcc	agagtattca	cagagagcca	aatctgtcac	tgtcaaaccg	cctttactac	2580
ctc						2583

<210> 80

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligodeoxynucleotide with homology to human gene

<220>

<221> misc_feature <223> eIF2C1, primer (5'-3')

```
<400> 80
                                                                       20
gaggtctgta acattgtggc
<210>
      81
      20
<211>
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
      Oligodeoxynucleotide with homology to human gene
<220>
      misc feature
<221>
      eIF2C1, primer (5'-3')
<223>
<400> 81
                                                                       20
cggtagaaga tgatgcgggt
<210>
     82
<211>
      20
<212>
     DNA
<213> Artificial Sequence
<220>
<223> Oligodeoxynucleotide with homology to human gene
<220>
<221>
      misc_feature
      eIF2C1, primer (5'-3')
<223>
<400> 82
                                                                       20
gaggtctgta acattgtggc
<210> 83
<211>
       24
<212>
      DNA
<213> Artificial Sequence
<220>
<223>
      Oligodeoxynucleotide with homology to human gene
<220>
<221>
       misc feature
<223>
       eIF2C1, primer (5'-3')
<400> 83
                                                                       24
aagttcttga gcacctcttc tcga
```

```
<210>
       84
<211>
       20
<212>
       DNA
<213> Artificial Sequence
<220>
<223>
       Oligodeoxynucleotide with homology to human gene
<220>
<221>
      misc feature
       eIF2C1, primer (5'-3')
<400> 84
                                                                         20
gaggtctgta acattgtggc
<210>
       85
<211>
       20
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223>
      Oligodeoxynucleotide with homology to human gene
<220>
<221>
       misc feature
<223>
       eIF2\overline{C1}, primer (5'-3')
<400> 85
                                                                         20
cggtagaaga tgatgcgggt
<210>
      86
<211>
      18
<212>
       DNA
<213> Artificial Sequence
<220>
<223>
      Oligodeoxynucleotide with homology to human gene
<220>
<221>
      misc feature
<223>
       eIF2C1, primer (5'-3')
<400> 86
ccacaccagc gctctgcc
                                                                         18
<210>
      87
<211>
       18
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Oligodeoxynucleotide with homology to human gene
<220>
<221>
      misc feature
<223>
       eIF2C1, primer (5'-3')
<400> 87
ctcacgcacc atgtagga
                                                                        18
<210> 88
<211>
       20
<212>
      DNA
<213> Artificial Sequence
<220>
<223>
       Oligodeoxynucleotide with homology to human gene
<220>
<221>
       misc_feature
<223>
       eIF2C2, primer (5'-3')
<400> 88
gaggtctgta acattgtggc
                                                                        20
<210>
      89
<211>
       20
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223>
      Oligodeoxynucleotide with homology to human gene
<220>
<221>
      misc feature
<223>
       eIF2C2, primer (5'-3')
<400>
       89
cggtagaaga tgatgcgggt
                                                                       20
<210>
       90
<211>
       18
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223>
      Oligodeoxynucleotide with homology to human gene
```

```
<220>
<221> misc feature
<223>
       eIF2C2, primer (5'-3')
<400>
      90
                                                                          18
atcctgctgc cccaaggg
<210>
       91
<211>
       18
<212>
       DNA
<213> Artificial Sequence
<220>
<223>
      Oligodeoxynucleotide with homology to human gene
<220>
<221>
       misc feature
       eIF2C2, primer (5'-3')
<400>
       91
gatctcctgc cggtgctg
                                                                          18
<210>
       92
<211>
       20
<212>
       DNA
<213> Artificial Sequence
<220>
<223>
      Oligodeoxynucleotide with homology to human gene
<220>
<221>
       misc feature
<223>
       eIF2C2, primer (5'-3')
<400> 92
                                                                          20
gaggtctgta acattgtggc
<210>
       93
<211>
       20
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       Oligodeoxynucleotide with homology to human gene
<220>
<221>
       misc feature
<223>
       eIF2\overline{C2}, primer (5'-3')
```

```
<400> 93
                                                                         20
cggtagaaga tgatgcgggt
<210>
       94
       20
<211>
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       Oligodeoxynucleotide with homology to human gene
<220>
<221>
       misc feature
<223>
       eIF2C2, primer (5'-3')
<400> 94
                                                                         20
gaggtctgta acattgtggc
<210>
       95
<211>
       18
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       Oligodeoxynucleotide with homology to human gene
<220>
<221>
       misc_feature
       eIF2C2, primer (5'-3')
<223>
<400> 95
                                                                         18
gatctcctgc cggtgctg
<210>
       96
<211>
       24
<212>
       DNA ·
<213>
       Artificial Sequence
<220>
<223>
       Oligodeoxynucleotide with homology to human gene
<220>
<221>
       misc feature
<223>
       eIF2C3, primer (5'-3')
<400>
       96
                                                                         24
agagcaacag tatggtgggt ggac
```

```
<210>
       97
<211>
       18
<212>
       DNA
<213> Artificial Sequence
<220>
<223>
      Oligodeoxynucleotide with homology to human gene
<220>
<221>
       misc feature
<223>
       eIF2C3, primer (5'-3')
<400>
       97.
                                                                         18
tggatgtgtg atggtact
       98
<210>
<211>
       18
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       Oligodeoxynucleotide with homology to human gene
<220>
<221>
      misc feature
       eIF2\overline{C3}, primer (5'-3')
<223>
<400> 98
cctctacagt caagaggt
                                                                         18
<210>
       99
<211>
       18
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223>
      Oligodeoxynucleotide with homology to human gene
<220>
       misc feature
<221>
<223>
       eIF2C3, primer (5'-3')
<400> 99
                                                                         18
tggatgtgtg atggtact
<210>
      100
<211>
       18
<212> DNA
```

```
<213>
      Artificial Sequence
<220>
<223> Oligodeoxynucleotide with homology to human gene
<220>
<221>
       misc feature
<223>
       eIF2C3, primer (5'-3')
<400> 100
cacttgaatg aagtccca
                                                                        18
<210> 101
<211>
      24
<212>
      DNA
<213>
       Artificial Sequence
<220>
<223>
       Oligodeoxynucleotide with homology to human gene
<220>
<221>
       misc feature
<223>
       eIF2C3, primer (5'-3')
<400> 101
                                                                        24
tcctggatga cctcttgact gtag
<210> 102
<211>
       24
<212>
      DNA
<213>
      Artificial Sequence
<220>
<223>
       Oligodeoxynucleotide with homology to human gene
<220>
<221>
       misc_feature
<223>
       eIF2C3, primer (5'-3')
<400> 102
                                                                        24
agagcaacag tatggtgggt ggac
<210>
       103
<211>
       24
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223> Oligodeoxynucleotide with homology to human gene
```

```
<220>
<221>
      misc feature
<223>
      eIF2\overline{C3}, primer (5'-3')
<400> 103
                                                                         24
tcctggatga cctcttgact gtag
<210>
       104
<211>
      26
<212>
      DNA
<213> Artificial Sequence
<220>
<223>
      Oligodeoxynucleotide with homology to human gene
<220>
<221>
      misc feature
       eIF2C4, primer (5'-3')
<223>
<400>
      104
                                                                         26
tccggcatct caagaacaca tattct
<210>
       105
<211>
       26
<212>
       DNA
<213>
       Artificial Sequence
<220>
      Oligodeoxynucleotide with homology to human gene
<223>
<220>
<221> misc feature
      eIF2C4, primer (5'-3')
<223>
<400> 105
                                                                         26
gaactcatat gggtgtgtaa tgtctg
<210>
       106
<211>
       18
<212>
       DNA
<213>
       Artificial Sequence
<220>
       Oligodeoxynucleotide with homology to human gene
<223>
<220>
<221> misc feature
```

```
<223> eIF2C4, primer (5'-3')
<400> 106
atccaggact tggcctcc
                                                                         18
<210> 107
<211>
      26
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
      Oligodeoxynucleotide with homology to human gene
<220>
<221>
       misc feature
<223>
       eIF2C4, primer (5'-3')
<400>
       107
gaactcatat gggtgtgtaa tgtctg
                                                                        26
<210>
       108
<211>
       18
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223>
       Oligodeoxynucleotide with homology to human gene
<220>
<221>
       misc_feature
<223>
       HILI, primer (5'-3')
<400> 108
cagcacaaat tatccctt
                                                                        18
<210>
       109
<211>
       23
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223>
      Oligodeoxynucleotide with homology to human gene
<220>
<221>
      misc feature
<223>
      HILI, primer (5'-3')
<400>
      109
cggcctgaag gactgagacg tgt
                                                                        23
```

```
<210>
        110
 <211>
        18
 <212>
        DNA
 <213>
        Artificial Sequence
 <220>
 <223> Oligodeoxynucleotide with homology to human gene
 <220>
 <221> misc_feature
 <223> HILI, primer (5'-3')
 <400> 110
 cagcacaaat tatccctt
                                                                        18
 <210>
       111
 <211>
       18
 <212>
       DNA
<213> Artificial Sequence
<220>
       Oligodeoxynucleotide with homology to human gene
<223>
<220>
<221>
       misc feature
<223>
       HILI, primer (5'-3')
<400> 111
gtgtgtgggc ttcactga
                                                                        18
<210>
       112
<211>
       26
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223> Oligodeoxynucleotide with homology to human gene
<220>
<221>
       misc feature
<223>
       HILI, primer (5'-3')
<400>
      112
tctctgtcaa agaactggct tgtcct
                                                                       26
<210>
      113
<211> 18
```

```
<212>
       DNA
       Artificial Sequence
<213>
<220>
<223>
       Oligodeoxynucleotide with homology to human gene
<220>
<221>
       misc feature
<223>
       HILI, primer (5'-3')
<400> 113
                                                                        18
ctgtacagtg cggttcat
<210>
      114
<211>
       26
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       Oligodeoxynucleotide with homology to human gene
<220>
<221>
      misc feature
<223>
      HILI, primer (5'-3')
<400> 114
                                                                        26
tctctgtcaa agaactggct tgtcct
       115
<210>
       23
<211>
<212>
       DNA
<213>
       Artificial Sequence
<220>
       Oligodeoxynucleotide with homology to human gene
<223>
<220>
<221>
       misc feature
<223>
      HILI, primer (5'-3')
<400> 115
                                                                        23
cggcctgaag gactgagacg tgt
```