

FCC 47 CFR PART 15 SUBPART B

Product Type : DLP Projector

Applicant : Qisda Corporation

Address : 157 Shan-Ying Road, Gueishan, Taoyuan 333, Taiwan, R.O.C.

Trade Name : acer

Model Number : P1500, M342, PE-833, Q1P1301

Reference Number : TL-16931

Test Specification : FCC 47 CFR PART 15 SUBPART B: Oct., 2012

ANSI C63.4: 2009 ICES-003: Issue 5

Receive Date : Dec. 16, 2013

Test Period : Dec. 17 ~ Dec. 24, 2013

Issue Date : Jan. 17, 2014

Issue by

A Test Lab Techno Corp.

No. 140-1, Changan Street, Bade City, Taoyuan County 334, Taiwan R.O.C.

Tel: +886-3-2710188 / Fax: +886-3-2710190

Taiwan Accreditation Foundation accreditation number: 1330

Note: This report shall not be reproduced except in full, without the written approval of A Test Lab Techno Corp. This document may be altered or revised by A Test Lab Techno Corp. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, or any government agencies. The test results in the report only apply to the tested sample.

Revision History

Rev.	Issue Date	Revisions	Revised By
00	Dec. 27, 2013	Initial Issue	
01	Jan. 10, 2014	Revised report information.	Joyce Liao
01	Jan. 17, 2014	Revised report information.	Joyce Liao

Verification of Compliance

Issued Date: 2014/01/17

Product Type : DLP Projector

Applicant : Qisda Corporation

Address : 157 Shan-Ying Road, Gueishan, Taoyuan 333, Taiwan, R.O.C.

Trade Name : acer

Model Number : P1500, M342, PE-833, Q1P1301

Reference Number : TL-16931

EUT Rated Voltage : AC 100-240V, 50-60Hz

Test Voltage : 120 Vac / 60 Hz

Applicable Standard : FCC 47 CFR PART 15 SUBPART B: Oct., 2012

ANSI C63.4: 2009 ICES-003: Issue 5

Test Result : Complied

Performing Lab. : A Test Lab Techno Corp.

No. 140-1, Changan Street, Bade City,

Taoyuan County 334, Taiwan R.O.C.

Tel: +886-3-2710188 / Fax: +886-3-2710190

Taiwan Accreditation Foundation accreditation number: 1330

http://www.atl-lab.com.tw/e-index.htm

The above equipment has been tested by A Test Lab Techno Corp., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved By

(Manager)

(2)

Reviewed By

(Testing Engineer) (Frank Lin

TABLE OF CONTENTS

1	General Information	5
	1.1. Summary of Test Result	5
	1.2. Measurement Uncertainty	5
2	EUT Description	6
3	Test Methodology	7
	3.1. Decision of Test Mode	7
	3.2. EUT Exercise Software	7
	3.3. Configuration of Test System Details	8
	3.4. Test Site Environment	9
4	Emission Test	10
	4.1. Conducted Emission Measurement	10
	4.2. Radiated Interference Measurement	15
5	EUT Photograph	25

1 General Information

1.1. Summary of Test Result

Emission					
Standard	Item	Result	Remark		
FCC 47 CFR PART 15 SUBPART B ANSI C63.4 ICES-003	Conducted Emission	PASS	Meet Class B limit		
FCC 47 CFR PART 15 SUBPART B ANSI C63.4 ICES-003	Radiated Emission	PASS	Meet Class B limit		

The test results of this report relate only to the tested sample(s) identified in this report. Manufacturer or whom it may concern should recognize the pass or fail of the test result.

1.2. Measurement Uncertainty

Test Item	Frequency Ra	Uncertainty (dB)	
Conducted Emission	9kHz ~ 30Mł	± 2.02	
	30MHz ~ 1000MHz	Horizontal	± 3.98
	301VIH2 ~ 10001VIH2	Vertical	± 3.62
Radiated Emission	1000MHz ~ 18000MHz	Horizontal	± 3.11
Radiated Effission	1000IVIH2 ~ 10000IVIH2	Vertical	± 3.07
	400000411- 400000411-	Horizontal	± 3.66
	18000MHz ~ 40000MHz	Vertical	± 3.54

2 **EUT Description**

Product Type	DLP Projector
Trade Name	acer
Model Number	P1500, M342, PE-833, Q1P1301 (The four model numbers differ from each other in selling region.)
Modify Description	The P1500, M342, PE-833, Q1P1301 are modify form original report (1302FE18-02). Different parts are list below: 1.Main board: 5E.2E601.001 - Himax HX6A29 change to ADI ADV7612 2.FAN: (a) 2C.10153.181 change to 2C.10181.011 (b) 2C.10120.191 change to 2C.10182.011 3.Chip board: 5E.1TV23.001 change to 5E.2E623.001 4.Ballast wire: 5K.0PN05.011 change to 5K.2E601.001
Reference Number	TL-16931
Highest Frequency Generated	162 MHz
Applicant	Qisda Corporation 157 Shan-Ying Road, Gueishan, Taoyuan 333, Taiwan, R.O.C.
Manufacturer (1)	Qisda (Suzhou) Co., Ltd. No. 169, Zhujiang Road, New District, Suzhou, Jiangsu 215129, P.R. China
Manufacturer (2)	Qisda Mexicana S.A. De C.V. Calzada Venustiano Carranza, No. 88 Col. Plutarco Elias Calles 21376 Mexocali, B.C. Mexico C.P Mexico
Manufacturer (3)	Qisda Optronics (Suzhou) Co., Ltd. No.169, Zhujiang Road, New District, Suzhou, Jiangsu 215129, P.R. China
Manufacturer (4)	Qisda Corporation 157, Shan-Ying Road, Gueishan, Taoyuan 333, Taiwan

Componet:

Componet	Q'TY	Signal Cable Description
1). D-SUB Cable	1	Shielded, 1.8m with 2 cores
2). AC Power Cable	1	Non-Shielded, 1.8m

I/O Port Description:

I/O Port Types	Q'TY	Test Description
1). Audio in Port	1	Connected to PC
2). Audio out Port	1	Connected to Earphone
3). D-SUB IN Port	1	Connected to PC
4). D-SUB OUT Port	1	Connected to Monitor
5). Video Port	1	Connected to DVD Player
6). S-Video Port	1	Connected to DVD Player
7). HDMI Port	1	Connected to PC
8). Mini USB Port	1	Connected to PC
9). RS-232 Port	1	Connected to Terminal
10).AC Power Port	1	Connected to AC Power Cable

3 Test Methodology

3.1. Decision of Test Mode

3.1.1. The following test mode(s) were scanned during the preliminary test:

Pre-Test Mode
Mode 1: D-SUB in 1920 x 1080 / 60Hz + D-SUB out Mode
Mode 2: S-Video / 60Hz Mode
Mode 3: Video / 60Hz Mode
Mode 4: HDMI 1080P / 60Hz Mode

3.1.2. After the preliminary scan, the following test mode was found to produce the highest emission level.

Final Test Mode					
	Conducted Emission		Mode 1		
Emission	Radiated Emission	Below 1GHz	Mode 1		
	Radiated Effilssion	Above 1GHz	Mode 1		

Then, the above highest emission mode of the configuration of the EUT and cable was chosen for all final test items.

3.2. EUT Exercise Software

1	Setup the EUT and simulators as shown on 3.3.
2	Turn on the power of all equipment.
3	Exercise the test program Burn in V5.3.
4	According to the user manual choose display mode and adjust resolution.
5	The projector (EUT) will start to operate and display the video figure from the signal source.
6	Adjust the projector (EUT) display brightness and contrast to maximum level.
7	Start to test till get the worst reading.
8	Repeat the above procedure (3) to (7).

3.3. Configuration of Test System Details

Note: (*) = Accessory by manufacturer

	Devices Description							
Product Manufacturer Model Number Serial Number F					Power Cord			
(1)	LCD Monitor	DELL	U2410f	CN-OJ257M-72872 -09J-01AL	Non-Shielded, 1.8m			
(2)	DVD Player	SONY	DVP-NS708HP	5202915	Non-Shielded, 1.5m			
(3)	Keyboard	HP	KU-0316	BC3870DVBVI1PJ	Power by PC			
(4)	Mouse	DELL	M-UK DEL3	HC7490C10LQ	Power by PC			
(5)	Earphone	Audio-technical	ATH-C101	N/A	N/A			
(6)	PC	DELL	Insprion 560 MT	724H6-U4239-PPXGK-2K WT3-K3F4HX16-96072	Non-Shielded, 1.8m			

3.4. Test Site Environment

Items	Test Item	Required (IEC 60068-1)	Actual
Temperature (°C)	FCC part 15: 15.107 Conducted Emission	15-35	26
Humidity (%RH)		25-75	60
Barometric pressure (mbar)		860-1060	950
Temperature (°C)	FCC part 15: 15.109 Radiated Emission	15-35	26
Humidity (%RH)		25-75	60
Barometric pressure (mbar)		860-1060	950

4 Emission Test

4.1. Conducted Emission Measurement

4.1.1. Limit

A.C. Mains Conducted Interference Limit

Frequency (MHz)	Class A	(dBuV)	Class B (dBuV)		
Frequency (Miriz)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

Note: (1) The lower limit shall apply at the transition frequencies.

(2) The limit decreases in line with the logarithm of the frequency in the range 0.15 to 0.50 MHz.

4.1.2. Test Instruments

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
Test Receiver	R&S	ESCI	100367	06/06/2013	(1)
LISN	R&S	ENV216	101040	03/04/2013	(1)
LISN	R&S	ENV216	101041	03/04/2013	(1)
Test Site	ATL	TE02	TE02	N.C.R.	

Remark: (1) Calibration period 1 year. (2) Calibration period 2 years.

Note: N.C.R. = No Calibration Request.

4.1.3. Test Setup

A.C. mains setup

4.1.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination.

For A.C. mains conducted interference, measured both sides of A.C. lines and carried out using quasi-peak and average detector receivers of maximum conducted interference.

Conducted emissions were invested over the frequency range from 0.15 MHz to 30 MHz using a receiver bandwidth of 9 kHz. The equipment under test (EUT) shall be meet the limits in section 4.1.1, as applicable, including the average limit and the quasi-peak limit when using respectively, an average detector and quasi-peak detector measured in accordance with the methods described of related standard. The voltage limits shall be met. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

If the reading of the measuring receiver shows fluctuations close to the limit, the reading shall be observed for at least 15 s at each measurement frequency; the higher reading shall be recorded with the exception of any brief isolated high reading which shall be ignored.

4.1.5. Test Result

Standard: FCC Part 15B Class B Line: L1 Test item: Conducted Emission Power: AC 120V/60Hz Model Number: P1500 Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26(°C)/60%RH 12/17/2013 Mode: 1 Date: Test By: Frank Lin Description:

No.	Frequency (MHz)	QP reading (dBuV)	AVG reading (dBuV)	Correction factor (dB)	QP result (dBuV)	AVG result (dBuV)	QP limit (dBuV)	AVG limit (dBuV)	QP margin (dB)	AVG margin (dB)	Remark
1	0.1620	42.19	30.86	9.62	51.81	40.48	65.36	55.36	-13.55	-14.88	Pass
2	0.1700	43.14	27.33	9.62	52.76	36.95	64.96	54.96	-12.20	-18.01	Pass
3	0.1780	42.54	29.13	9.62	52.16	38.75	64.58	54.58	-12.42	-15.83	Pass
4	0.1860	41.18	24.27	9.62	50.80	33.89	64.21	54.21	-13.41	-20.32	Pass
5	0.5580	24.18	15.04	9.63	33.81	24.67	56.00	46.00	-22.19	-21.33	Pass
6	0.6220	29.61	16.51	9.64	39.25	26.15	56.00	46.00	-16.75	-19.85	Pass
7	17.9380	26.69	19.46	9.81	36.50	29.27	60.00	50.00	-23.50	-20.73	Pass
8	22.4860	27.04	19.79	9.79	36.83	29.58	60.00	50.00	-23.17	-20.42	Pass

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).

Standard: FCC Part 15B Class B Line: Test item: Conducted Emission Power: AC 120V/60Hz Model Number: P1500 Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26(°C)/60%RH Mode: 1 Date: 12/17/2013 Test By: Frank Lin

Description:

No.	Frequency	QP reading	AVG reading	Correction factor	QP result	AVG result	QP limit	AVG limit	QP margin	AVG margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1580	41.65	28.45	9.63	51.28	38.08	65.57	55.57	-14.29	-17.49	Pass
2	0.1700	42.47	26.28	9.63	52.10	35.91	64.96	54.96	-12.86	-19.05	Pass
3	0.1820	41.18	27.12	9.63	50.81	36.75	64.39	54.39	-13.58	-17.64	Pass
4	0.1900	40.51	24.20	9.63	50.14	33.83	64.04	54.04	-13.90	-20.21	Pass
5	0.6260	30.06	16.69	9.64	39.70	26.33	56.00	46.00	-16.30	-19.67	Pass
6	18.7860	33.49	26.73	9.88	43.37	36.61	60.00	50.00	-16.63	-13.39	Pass
7	20.0700	34.94	28.16	9.85	44.79	38.01	60.00	50.00	-15.21	-11.99	Pass
8	21.2740	33.80	26.04	9.90	43.70	35.94	60.00	50.00	-16.30	-14.06	Pass

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).

4.1.6. Test Photograph

Test Mode: Mode 1

Description: Front View of Conducted Test

Test Mode: Mode 1

Description: Back View of Conducted Test

4.2. **Radiated Interference Measurement**

4.2.1. Limit

Under 1GHz test shall not exceed following value

71doi 1012 toot ondir not oxecod following valdo									
	FCC 47 CFR PART 15 SUBPART B								
Frequency range	Clas	ss A	Class B						
(MHz)	Distance (m)	dBuV/m	Distance (m)	dBuV/m					
30 to 88	10	39	3	40					
88 to 216	10	43.5	3	43.5					
216 to 960	10	46.4	3	46					
Above 960	10	49.5	3	54					

CISPR 22							
Frequency range	Clas	ss A	Class B				
(MHz)	Distance (m)	dBuV/m	Distance (m)	dBuV/m			
30 to 230	10	40	10	30			
230 to 1000	10	47	10	37			

Above 1GHz test shall not exceed following value

_		dBuV/m (Distance 3m)					
Frequency (MHz)	Clas	ss A	Class B				
(:=/	Average	Peak	Average	Peak			
1000 ~ 40000	60	80	54	74			

- Remark: 1. The tighter limit shall apply at the edge between two frequency bands.
 - 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
 - 3. RF Voltage (dBuV/m) = 20 log RF Voltage (uV/m)
 - 4. Peak detector limit is corresponding to 20 dB above the maximum permitted average limit.

According to FCC Part 15.33 (b), for an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

_ 1	, ,
Highest frequency generated or used in the device or in which the device operated or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.75	30
1.75-108	1000
108-500	2000
500-1000	5000
Above 1000	5th harmonic of the highest frequency or 40GHz, whichever is lower

4.2.2. Test Instruments

	1	0 Meter Chamber			
Equipment	Manufacturer	Model Number Serial Number		Cal. Date	Remark
Pre Amplifier	Agilent	8447D	2944A11120	01/10/2013	(1)
Pre Amplifier	Agilent	8447D	2944A11119	01/10/2013	(1)
Test Receiver	R&S	ESCI	100722	10/26/2013	(1)
Test Receiver	R&S	ESCI	101000	12/03/2013	(1)
Broadband Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB 9160	9160-3268	06/05/2013	(1)
Broadband Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB 9160	9160-3273	11/29/2013	(1)
Test Site	ATL	TE06	TE06	08/10/2013	(1)

	3 Meter Chamber									
Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark					
Spectrum Analyzer	Agilent	E4445A	MY46181986	05/16/2013	(1)					
Amplifier	EM	EM330	060545	11/18/2013	(1)					
Amplifier	Mini-Circuits	ZVA-213-S+	467900926	05/26/2013	(1)					
RF Pre-selector	Agilent	N9039A	MY46520255	05/16/2013	(1)					
Horn Antenna (1~18GHz)	ETS-Lindgren	3117	00128055	08/08/2013	(1)					
Horn Antenna (18~40GHz)	SCHWARZBECK MESS-ELEKTRONIK	BBHA9170	9170-320	06/13/2013	(1)					
Test Site	ATL	TE09	TE09	05/09/2013	(1)					

Remark: (1) Calibration period 1 year. (2) Calibration period 2 years.

Note: N.C.R. = No Calibration Request.

4.2.3. Setup

Below 1GHz

Above 1GHz

4.2.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. When the EUT is floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 10 meters for under 1GHz, and 3 meter for above 1GHz, the highest frequency performed according to internal source frequency of the EUT, the specification was below:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705 - 108	1000
108 - 500	2000
500 - 1000	5000
Above 1000	5th harmonic of the highest frequency or 40 GHz, whichever is lower

According to this standard paragraph 15.109, as an alternative to the radiated emission limits, digital devices may be shown to comply with the standards contained in Third Edition of the International Special Committee on Radio Interference (CISPR), Pub. 22, "Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement".

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated on radiated measurement.

Radiated emissions were invested over the frequency range from 30MHz to1GHz using a receiver bandwidth of 120 kHz. Radiated was performed at an antenna to EUT distance of 10 meters.

4.2.5. Test Result

Standard: CISPR 22 Class B Test Distance: 10m Test item: Radiated Emission Power: AC 120V/60Hz Model Number: P1500 Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26(°C)/60%RH Mode: 1 Date: 12/24/2013 Ant.Polar.: Test By: Frank Lin Horizontal

No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Height	Degree	Remark
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	Remark
1	41.1320	39.64	-15.34	24.30	30.00	-5.70	100	39	QP
2	195.8220	38.69	-16.09	22.60	30.00	-7.40	400	199	QP
3	245.9508	39.78	-13.88	25.90	37.00	-11.10	400	74	QP
4	307.8312	35.55	-11.75	23.80	37.00	-13.20	300	88	QP
5	399.0300	39.56	-10.16	29.40	37.00	-7.60	200	155	QP
6	785.0934	26.68	-2.58	24.10	37.00	-12.90	200	250	QP

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

Standard: CISPR 22 Class B Test Distance: 10m Test item: AC 120V/60Hz Radiated Emission Power: Model Number: P1500 Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26(°C)/60%RH Mode: 1 Date: 12/24/2013 Ant.Polar.: Vertical Test By: Frank Lin

No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Height	Degree	Remark	
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)		
1	31.9546	40.98	-15.78	25.20	30.00	-4.80	200	315	QP	
2	40.9881	40.48	-14.68	25.80	30.00	-4.20	300	127	QP	
3	52.2080	39.64	-14.24	25.40	30.00	-4.60	100	173	QP	
4	94.0980	42.04	-18.14	23.90	30.00	-6.10	100	200	QP	
5	266.6090	39.06	-12.16	26.90	37.00	-10.10	200	191	QP	
6	455.9058	35.98	-7.48	28.50	37.00	-8.50	300	17	QP	

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

Standard: FCC Part 15B Class B Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

 $\label{eq:model_number:} \mbox{Model Number:} \qquad \mbox{P1500} \qquad \mbox{Temp.($^{\circ}$C)/Hum.($^{\circ}$RH):} \qquad \mbox{26($^{\circ}$C)/60$\%RH}$

Mode: 1 (1GHz~13GHz) Date: 12/17/2013

Ant.Polar.: Horizontal Test By: Frank Lin

No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark	
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	1288.000	75.49	-23.52	51.97	74.00	-22.03	peak	
2	1612.000	81.25	-22.45	58.80	74.00	-15.20	peak	
3	1612.000	58.24	-22.45	35.79	54.00	-18.21	AVG	
4	2080.000	75.55	-19.26	56.29	74.00	-17.71	peak	
5	2080.000	51.78	-19.26	32.52	54.00	-21.48	AVG	
6	2224.000	80.01	-19.02	60.99	74.00	-13.01	peak	
7	2224.000	51.59	-19.02	32.57	54.00	-21.43	AVG	
8	2368.000	70.55	-18.76	51.79	74.00	-22.21	peak	
9	2596.000	72.51	-18.25	54.26	74.00	-19.74	peak	
10	2596.000	52.32	-18.25	34.07	54.00	-19.93	AVG	

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

Standard: FCC Part 15B Class B Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

Model Number: P1500 Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60%RH

Mode: 1 (1GHz~13GHz) Date: 12/17/2013

Ant.Polar.: Vertical Test By: Frank Lin

No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Pomark	
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Remark	
1	1612.000	84.16	-22.45	61.71	74.00	-12.29	peak	
2	1612.000	62.12	-22.45	39.67	54.00	-14.33	AVG	
3	2080.000	73.89	-19.26	54.63	74.00	-19.37	peak	
4	2080.000	59.40	-19.26	40.14	54.00	-13.86	AVG	
5	2224.000	75.43	-19.02	56.41	74.00	-17.59	peak	
6	2224.000	66.75	-19.02	47.73	54.00	-6.27	AVG	
7	2392.000	72.35	-18.72	53.63	74.00	-20.37	peak	
8	2392.000	52.14	-18.72	33.42	54.00	-20.58	AVG	
9	2596.000	70.20	-18.25	51.95	74.00	-22.05	peak	
10	3196.000	68.26	-16.91	51.35	74.00	-22.65	peak	

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

4.2.6. Test Photograph

Test Mode: Mode 1

Description: Front View of Radiated Emission Test _ Below 1GHz

Test Mode: Mode 1

Description: Back View of Radiated Emission Test _ Below 1GHz

Test Mode: Mode 1

Description: Front View of Radiated Emission Test _ Above 1GHz

Test Mode: Mode 1

Description: Back View of Radiated Emission Test _ Above 1GHz

5 EUT Photograph

(1) EUT Photo

(2) EUT Photo

(3) EUT Photo

(4) EUT Photo

(5) EUT Photo

(6) EUT Photo

(7) EUT Photo

(8) EUT Photo

(9) EUT Photo

(10)EUT Photo

(11)EUT Photo

(12)EUT Photo

(13)EUT Photo

(14)EUT Photo

(15)EUT Photo

(16)EUT Photo

(17)EUT Photo

(18)EUT Photo

(19)EUT Photo

(20)EUT Photo

(21)EUT Photo

(22) EUT Photo

(23)EUT Photo

(24)EUT Photo

(25)EUT Photo

(26) EUT Photo

(27)EUT Photo

(28)EUT Photo

(29) EUT Photo

(30) EUT Photo

(31)EUT Photo

(32)EUT Photo

(33)EUT Photo

(34)EUT Photo

(35)EUT Photo

(36) EUT Photo

(37)EUT Photo

(38)EUT Photo

(39) EUT Photo

(40)EUT Photo

(41)EUT Photo

(42)EUT Photo

(43)EUT Photo

(44)EUT Photo

(45)EUT Photo

(46)EUT Photo

(47) EUT Photo

(48) EUT Photo

