Thyroid Cancer Prediction

Objective:

Build a system that can predict if a Thyroid Cancer survivor can relapse(his or her cancer reoccurs

1. Problem Statement

The task is to do EDA on dataset and build a model to predict thyroid disease based on the features provided. The challenge is to create a model that can accurately predict the outcome.

2. Data Pre-Processing

2.1 Data Inspection and Summary Statistics

- Load the Dataset: Import the dataset and review its basic structure, including column names, data types, and a few initial records.
- **Generate Summary Statistics:** Calculate key statistics (mean, median, min, max, standard deviation, etc.) to understand the primary characteristics of each column.
- Changing column names and data types

2.2 Data Cleaning and Feature Engineering

- Missing Values: Check and handle missing values if present.
- Duplicate Values: Check duplicate values and handle if present.

2.3 Outlier Treatment

• **Outlier Detection:** Identify outliers in features box plots or Z-scores and apply treatment if necessary.

3. Exploratory Data Analysis (EDA)

3.1 Univariate Analysis

- Numerical Data: Visualize distributions with histograms and box plots.
- Categorical Data: Use bar charts to observe the distribution of the outcome variable.

3.2 Bivariate Analysis

Create scatter plots to observe relationships between numerical features.

• Use box plots to explore how numerical features differ based on the outcome variable.

3.3 Multivariate Analysis

• Generate a heatmap of the correlation matrix to identify potential relationships.

4. Model Building

4.1 Encoding Categorical Variables:

Convert the Categorical columns to binary format

4.2 Feature Engineering

• This step involves transforming raw data into meaningful features and outcome

4.3 Model Training

- Split the dataset into training and testing sets.
- Scalling the data
- Use a Logistic Regression to train the model on the training data.
- Model Evaluation
- Visualize the result

5. Advanced Modeling:

• Experiment with more complex models like RandomForest to improve predictions.

Import Libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
import plotly.express as px
import matplotlib.pyplot as plt
from sklearn.preprocessing import
OneHotEncoder,MinMaxScaler,LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear model import LogisticRegression,SGDClassifier
from sklearn.ensemble import
RandomForestClassifier,AdaBoostClassifier,GradientBoostingClassifier,B
aggingClassifier
from sklearn.svm import SVC
from xgboost import XGBRFClassifier
from sklearn.metrics import
classification report, confusion matrix, ConfusionMatrixDisplay, accuracy
score
import joblib
```

```
import warnings # ignore warnings
warnings.filterwarnings('ignore')
df = pd.read csv('C://Users//PC\Downloads//Projects-20240722T093004Z-
001//Projects//thyroid cancer//thyroid cancer//dataset.csv')
df.head() # First 5 records
   Age Gender Smoking Hx Smoking Hx Radiothreapy Thyroid Function \
                                                          Euthyroid
0
    27
            F
                   No
                               No
                                                No
            F
1
    34
                   No
                              Yes
                                                No
                                                          Euthyroid
            F
2
    30
                   No
                               No
                                                No
                                                          Euthyroid
3
            F
                                                          Euthyroid
    62
                    No
                               No
                                                No
4
    62
                   No
                               No
                                                No
                                                          Euthyroid
          Physical Examination Adenopathy
                                                  Pathology
                                                                 Focality
Risk \
    Single nodular goiter-left
                                        No
                                            Micropapillary
                                                               Uni-Focal
Low
1
           Multinodular goiter
                                            Micropapillary
                                                               Uni-Focal
                                        No
Low
2 Single nodular goiter-right
                                        No
                                             Micropapillary
                                                               Uni-Focal
Low
3 Single nodular goiter-right
                                            Micropapillary
                                                               Uni-Focal
                                        No
Low
           Multinodular goiter
4
                                            Micropapillary Multi-Focal
                                        No
Low
     Т
             M Stage
                            Response Recurred
         N
  T1a
       N0
            M0
                   Ι
                       Indeterminate
                                            No
1
  T1a
                    Ι
                           Excellent
        NO
            M0
                                            No
                   Ι
2
                           Excellent
                                            No
  T1a
        NO
            M0
3
  T1a
        NO
            M0
                    Ι
                           Excellent
                                            No
  T1a
       N0
            M0
                    Ι
                           Excellent
                                            No
df.tail() # Last 5 records
     Age Gender Smoking Hx Smoking Hx Radiothreapy
                                                              Thyroid
Function \
              М
378
      72
                    Yes
                                Yes
                                                 Yes
Euthyroid
379
      81
              М
                    Yes
                                 No
                                                 Yes
Euthyroid
```

380 72 Euthyroid	М	Yes	Ye	S			No		
381 61	М	Yes	Ye	S		Υ	es	Clinic	al
Hyperthyroi	dism								
382 67	М	Yes	N	0			No		
Euthyroid									
	Physica	al Exam:	ination	Ader	nopathy		Path	ology	Focality
Risk \									
	nodula	r goite	r-right		Right		Papi	llary	Uni-Focal
High									
379	Multir	nodular	goiter	EXT	tensive		Рар1	llary	Multi-Focal
High 380	M1 + i .	andul an	anitar	D + 1	lateral		Dani	11264	Multi-Focal
High	Mutti	louutai	goiter	DT (laterat		Рарт	llary	Mutti-Focat
381	Mul+ir	nodular	nniter	Fyt	tensive	Hur	thel	cell	Multi-Focal
High	HUCCI	iodacai	gorcei	LX	CHISTVC	Hui	CIICC		nacci rocac
382	Multir	nodular	aoiter	Bil	lateral		Papi	llary	Multi-Focal
High			J				•	,	
J									
Ţ		Stage			Respo		Recu		
	1b M1		Biochemi		•			Yes	
	1b M1	IVB			Incompl			Yes	
	1b M1	IVB			Incompl			Yes	
	1b M0 1b M0	IVA IVA			Incompl			Yes Yes	
302 140 N	טויו טב	IVA	Structu	ıat	Incompl	ete		165	

2 Data Preprocessing¶

2.1 Data Inspection and Summary Statistics

```
df.shape # rews and col.
(383, 17)

df.ndim # dimentionality of data
2

df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 383 entries, 0 to 382
Data columns (total 17 columns):
     Column
                           Non-Null Count Dtype
     -----
0
                           383 non-null
                                            int64
     Age
1
     Gender
                           383 non-null
                                            object
 2
     Smoking
                           383 non-null
                                            object
 3
     Hx Smoking
                           383 non-null
                                            object
4
     Hx Radiothreapy
                           383 non-null
                                            object
5
     Thyroid Function
                           383 non-null
                                            object
 6
     Physical Examination 383 non-null
                                            object
 7
     Adenopathy
                           383 non-null
                                            object
 8
                                            object
     Pathology
                           383 non-null
 9
     Focality
                           383 non-null
                                            object
10
    Risk
                           383 non-null
                                            object
 11
    Т
                           383 non-null
                                            object
    N
 12
                           383 non-null
                                            object
13 M
                           383 non-null
                                            object
14
    Stage
                           383 non-null
                                            object
15
     Response
                           383 non-null
                                            object
16
    Recurred
                           383 non-null
                                           object
dtypes: int64(1), object(16)
memory usage: 51.0+ KB
df.describe() # Description of data
              Age
       383.000000
count
        40.866841
mean
std
        15.134494
        15.000000
min
25%
        29.000000
50%
        37.000000
75%
        51.000000
max
        82.000000
df.size # Total no. of elements
6511
```

2.2 Data Cleaning

Renaming columns¶

Missing Values

```
df.isnull().sum()
                         0
Age
Gender
                         0
Smoking
                         0
Hx Smoking
                         0
Hx Radiothreapy
                         0
Thyroid Function
                         0
Physical Examination
                         0
Adenopathy
                         0
Pathology
                         0
                         0
Focality
                         0
Risk
                         0
Tumor
Nodal
                         0
Metastasis
                         0
                         0
Stage
                         0
Response
Recurred
dtype: int64
```

Duplicate Values

```
df.duplicated().sum()

19

df = df.drop_duplicates()

df.duplicated().sum()
0
```

There are no duplicate values

```
df.nunique() # Unique values of columns
                         65
Age
Gender
                          2
                          2
Smoking
                          2
Hx Smoking
                          2
Hx Radiothreapy
                          5
Thyroid Function
Physical Examination
                          5
                          6
Adenopathy
Pathology
                          4
                          2
Focality
                          3
Risk
                          7
Tumor
                          3
Nodal
Metastasis
                          2
                          5
Stage
                          4
Response
Recurred
dtype: int64
```

2.3 Outlier Treatment

```
df.dtypes

Age int64
Gender object
Smoking object
Hx Smoking object
Hx Radiothreapy object
Thyroid Function object
```

```
Physical Examination
                         object
Adenopathy
                         object
Pathology
                         object
Focality
                         object
Risk
                         object
Tumor
                         object
Nodal
                         object
Metastasis
                         object
Stage
                         object
Response
                         object
Recurred
                         object
dtype: object
```

sns.boxplot (data = df['Age'])

<Axes: ylabel='Age'>

No Outlier

3. EDA

3.1 Univariate Analysis

Visualize individual variables to understand their distribution (e.g., histograms for numerical data, bar charts for categorical data).

3.2 Bivariate and Multivariate Analysis

Explore relationships between variables by visualizing pairs of variables or groups of variables (e.g., scatter plots, heatmaps).

3.1 Univariate Analysis

Age Analysis

```
fig = px.histogram(data frame=df,
                   x = 'Age',
                   nbins=20, marginal='box',
color discrete sequence=px.colors.sequential.GnBu r,
                   text auto=True, title='The Distribution of Age')
fig.update layout()
fig.show()
{"config":{"plotlyServerURL":"https://plot.ly"},"data":
[{"alignmentgroup":"True","bingroup":"x","hovertemplate":"Age=%
{x}<br>count=%{y}<extra></extra>","legendgroup":"","marker":
{"color": "rgb(8,64,129)", "pattern":
{"shape":""}}, "name":"", "nbinsx":20, "offsetgroup":"", "orientation":"v"
 "showlegend":false,"texttemplate":"%{value}","type":"histogram","x":
[27,34,30,62,62,52,41,46,51,40,75,59,49,50,76,42,40,44,43,52,41,44,36,
70,60,33,43,26,41,37,37,30,55,52,37,31,43,34,45,20,38,38,33,31,31,26,2
9,43,30,25,27,25,21,43,23,23,43,24,35,54,54,22,38,51,22,40,69,31,29,30
, 28, 22, 35, 50, 27, 17, 27, 40, 33, 25, 73, 36, 35, 31, 18, 62, 62, 39, 37, 26, 31, 24, 57,
28,44,42,27,51,33,42,26,24,60,60,31,66,44,32,26,37,33,23,47,28,28,44,3
1,27,56,63,24,30,31,28,51,20,21,42,28,41,42,49,29,29,25,41,33,27,50,19
,35,63,24,36,31,24,33,24,28,22,27,28,29,40,55,40,38,21,31,30,50,34,45,
52,67,72,45,45,67,56,30,50,35,23,44,23,26,61,31,68,57,27,25,20,33,36,3
6,40,17,24,38,28,36,50,51,55,31,33,28,48,40,29,20,35,56,20,62,17,21,20
,40,38,21,31,34,60,60,62,36,29,33,75,62,56,52,35,34,32,27,52,46,30,32,
25,38,31,37,21,34,30,48,31,52,38,41,41,70,19,41,32,35,39,45,46,45,28,3
1,81,41,56,47,37,32,53,30,34,62,58,55,21,27,46,44,29,26,42,56,51,61,42
,34,67,63,67,73,26,30,36,31,40,49,38,27,27,33,32,29,37,48,30,33,80,62,
63,60,79,65,35,58,34,56,52,51,31,44,15,29,53,45,38,48,42,23,22,44,31,2
```

```
5,32,82,58,68,37,59,21,73,35,32,54,26,53,35,49,34,80,67,68,71,64,80,56
,71,78,51,67,31,62,59,40,46,72,81,72,61,67],"xaxis":"x","yaxis":"y"},
{"alignmentgroup":"True","hovertemplate":"Age=%{x}<extra></
extra>","legendgroup":"","marker":
 \label{eq:color: "rgb(8,64,129)"}, "name": "", "notched": true, "offsetgroup": "", "showlegend": false, "type": "box", "x": 
[27,34,30,62,62,52,41,46,51,40,75,59,49,50,76,42,40,44,43,52,41,44,36,
70,60,33,43,26,41,37,37,30,55,52,37,31,43,34,45,20,38,38,33,31,31,26,2
9,43,30,25,27,25,21,43,23,23,43,24,35,54,54,22,38,51,22,40,69,31,29,30
,28,22,35,50,27,17,27,40,33,25,73,36,35,31,18,62,62,39,37,26,31,24,57,
28,44,42,27,51,33,42,26,24,60,60,31,66,44,32,26,37,33,23,47,28,28,44,3
1,27,56,63,24,30,31,28,51,20,21,42,28,41,42,49,29,29,25,41,33,27,50,19
,35,63,24,36,31,24,33,24,28,22,27,28,29,40,55,40,38,21,31,30,50,34,45,
52,67,72,45,45,67,56,30,50,35,23,44,23,26,61,31,68,57,27,25,20,33,36,3
6,40,17,24,38,28,36,50,51,55,31,33,28,48,40,29,20,35,56,20,62,17,21,20
,40,38,21,31,34,60,60,62,36,29,33,75,62,56,52,35,34,32,27,52,46,30,32,
25,38,31,37,21,34,30,48,31,52,38,41,41,70,19,41,32,35,39,45,46,45,28,3
1,81,41,56,47,37,32,53,30,34,62,58,55,21,27,46,44,29,26,42,56,51,61,42
,34,67,63,67,73,26,30,36,31,40,49,38,27,27,33,32,29,37,48,30,33,80,62,
63,60,79,65,35,58,34,56,52,51,31,44,15,29,53,45,38,48,42,23,22,44,31,2
5,32,82,58,68,37,59,21,73,35,32,54,26,53,35,49,34,80,67,68,71,64,80,56
,71,78,51,67,31,62,59,40,46,72,81,72,61,67],"xaxis":"x2","yaxis":"y2"}
], "layout": { "autosize": true, "barmode": "relative", "legend":
{"tracegroupgap":0}, "template":{"data":{"bar":[{"error_x":
{"color": "#2a3f5f"}, "error y": {"color": "#2a3f5f"}, "marker": {"line":
{"color": "#E5ECF6", "width": 0.5}, "pattern":
{"fillmode":"overlay", "size": 10, "solidity": 0.2}}, "type": "bar"}], "barpo
lar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":
{"fillmode": "overlay", "size": 10, "solidity": 0.2}}, "type": "barpolar"}], "
carpet":[{"aaxis":
{"endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "min
orgridcolor": "white", "startlinecolor": "#2a3f5f"}, "baxis":
{"endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "min
orgridcolor": "white", "startlinecolor": "#2a3f5f"}, "type": "carpet"}], "ch
oropleth":[{"colorbar":
{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0, "#0d0887"], [0.1111111111111111, "#46039f"],
[0.2222222222222, "#7201a8"], [0.3333333333333333, "#9c179e"],
[0.666666666666666, "#ed7953"], [0.7777777777778, "#fb9f3a"],
[1, "#f0f921"]], "type": "contour"}], "contourcarpet": [{"colorbar":
{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}],"heatmap":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0,"#0d0887"],[0.1111111111111111,"#46039f"],
[0.22222222222222, "#7201a8"], [0.333333333333333, "#9c179e"],
[0.666666666666666, "#ed7953"], [0.7777777777778, "#fb9f3a"],
```

```
[1, "#f0f921"]], "type": "heatmap"}], "heatmapgl": [{"colorbar":
{"outlinewidth": 0, "ticks": ""}, "colorscale": [[0, "#0d0887"],
[0.111111111111111, "#46039f"], [0.222222222222222, "#7201a8"],
[0.333333333333333, "#9c179e"], [0.444444444444444, "#bd3786"],
[0.7777777777778, "#fb9f3a"], [0.888888888888888, "#fdca26"],
[1, "#f0f921"]], "type": "heatmapgl"}], "histogram": [{"marker": {"pattern":
{"fillmode": "overlay", "size": 10, "solidity": 0.2}}, "type": "histogram"}],
"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0, "#0d0887"], [0.1111111111111111, "#46039f"],
[0.2222222222222, "#7201a8"], [0.333333333333333, "#9c179e"],
[0.444444444444444, "#bd3786"], [0.55555555555556, "#d8576b"],
[0.666666666666666, "#ed7953"], [0.7777777777778, "#fb9f3a"],
[1, "#f0f921"]], "type": "histogram2d"}], "histogram2dcontour":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0,"#0d0887"],[0.111111111111111,"#46039f"],
[0.2222222222222, "#7201a8"], [0.333333333333333, "#9c179e"],
[1, "#f0f921"]], "type": "histogram2dcontour"}], "mesh3d":[{"colorbar":
{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":
{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":
[{"automargin":true,"type":"pie"}],"scatter":[{"fillpattern":
{"fillmode":"overlay", "size": 10, "solidity": 0.2}, "type": "scatter"}], "sc
atter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":
{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":
[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}],"scattergeo":
[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":
[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermapbox":
[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar"
:[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl
":[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterterna
ry":[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scatterternary"}],"surface":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0,"#0d0887"],[0.1111111111111111,"#46039f"],
[0.2222222222222, "#7201a8"], [0.333333333333333, "#9c179e"],
[0.444444444444444, "#bd3786"], [0.5555555555556, "#d8576b"],
```

```
[1, "#f0f921"]], "type": "surface"}], "table": [{"cells": {"fill":
{"color": "#EBF0F8"}, "line": {"color": "white"}}, "header": {"fill":
{"color":"#C8D4E3"},"line":
{"color": "white"}}, "type": "table"}]}, "layout": {"annotationdefaults":
{"arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1}, "autotypenumbers
":"strict","coloraxis":{"colorbar":
{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":
[[0, "#8e0152"], [0.1, "#c51b7d"], [0.2, "#de77ae"], [0.3, "#f1b6da"],
[0.4, "#fde0ef"], [0.5, "#f7f7f7"], [0.6, "#e6f5d0"], [0.7, "#b8e186"],
[0.8, "#7fbc41"], [0.9, "#4d9221"], [1, "#276419"]], "sequential":
[[0,"#0d0887"],[0.1111111111111111,"#46039f"],
[0.2222222222222, "#7201a8"], [0.333333333333333, "#9c179e"],
[0.666666666666666, "#ed7953"], [0.77777777777778, "#fb9f3a"], [0.8888888888888888, "#fdca26"], [1, "#f0f921"]], "sequentialminus":
[[0, "#0d0887"], [0.1111111111111111, "#46039f"],
[0.2222222222222, "#7201a8"], [0.333333333333333, "#9c179e"],
[0.444444444444444, "#bd3786"], [0.55555555555556, "#d8576b"],
[0.666666666666666, "#ed7953"], [0.77777777777778, "#fb9f3a"],
[0.8888888888888888, "#fdca26"], [1, "#f0f921"]]}, "colorway":
["#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692"
, "#B6E880", "#FF97FF", "#FECB52"], "font": {"color": "#2a3f5f"}, "geo":
{"bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlake
s":true, "showland":true, "subunitcolor": "white"}, "hoverlabel":
{"align":"left"},"hovermode":"closest","mapbox":
{"style":"light"}, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "po
lar":{"angularaxis":
{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF
6","radialaxis":
{"gridcolor":"white","linecolor":"white","ticks":""}},"scene":
{"xaxis":
{"backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "lineco
lor":"white", "showbackground":true, "ticks":"", "zerolinecolor":"white"}
{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"lineco
lor":"white", "showbackground":true, "ticks":"", "zerolinecolor":"white"}
, "zaxis":
{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"lineco
lor":"white", "showbackground":true, "ticks":"", "zerolinecolor":"white"}
}, "shapedefaults":{"line":{"color":"#2a3f5f"}}, "ternary":{"aaxis":
{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":
{"gridcolor": "white", "linecolor": "white", "ticks": ""}, "bgcolor": "#E5ECF
6", "caxis":
{"gridcolor":"white","linecolor":"white","ticks":""}},"title":
{"x":5.0e-2}, "xaxis":
{"automargin":true, "gridcolor": "white", "linecolor": "white", "ticks": "",
"title":
{"standoff":15}, "zerolinecolor": "white", "zerolinewidth":2}, "yaxis":
```

```
{"automargin":true, "gridcolor": "white", "linecolor": "white", "ticks": "",
"title":
{"standoff": 15}, "zerolinecolor": "white", "zerolinewidth": 2}}}, "title":
{"text":"The Distribution of Age"}, "xaxis":
{"anchor": "y", "autorange": true, "domain": [0,1], "range":
[11.27777777777779,85.722222222223],"title":
{"text": "Age"}, "type": "linear"}, "xaxis2":
{"anchor": "y2", "autorange": true, "domain": [0,1], "matches": "x", "range":
[11.2777777777779,85.722222222223], "showgrid": true, "showticklabels
":false,"type":"linear"},"yaxis":
{"anchor": "x", "autorange": true, "domain": [0,0.8316], "range":
[0,66.3157894736842], "title":{"text":"count"}}, "yaxis2":
{"anchor": "x2", "autorange": true, "domain":
[0.8416,1], "matches": "y2", "range": [-
0.5,0.5], "showgrid": false, "showline": false, "showticklabels": false, "tic
ks":"", "type": "category"}}}
fig = px.histogram(data frame=df,
                    x = 'Age',
                    nbins=20, marginal='box',
                    color='Recurred',
color discrete sequence=px.colors.sequential.Agsunset r,
                    text auto=True, title='The Distribution of Recurred
based on Age')
fig.update layout()
fig.show()
{"config":{"plotlyServerURL":"https://plot.ly"},"data":
[{"alignmentgroup":"True","bingroup":"x","hovertemplate":"Recurred=No<
br>Age=%{x}<br>count=%{y}<extra></extra>","legendgroup":"No","marker":
{"color": "rgb(237, 217, 163) ", "pattern":
{"shape":""}}, "name": "No", "nbinsx": 20, "offsetgroup": "No", "orientation"
:"v", "showlegend":true, "texttemplate": "%
{value}","type":"histogram","x":
[27,34,30,62,62,52,41,46,51,40,75,59,49,50,76,42,40,44,43,52,41,44,36,
70,60,33,43,26,41,37,37,30,55,52,37,31,43,34,45,20,38,38,33,31,31,29,4
3,30,25,27,25,21,43,23,23,43,24,35,54,54,22,38,51,22,40,69,31,29,30,28
, 22, 35, 50, 27, 17, 27, 40, 33, 25, 73, 62, 39, 37, 26, 31, 24, 57, 28, 44, 42, 27, 51, 33,
42, 26, 24, 60, 60, 31, 66, 44, 32, 26, 37, 33, 23, 47, 28, 28, 44, 31, 27, 56, 63, 24, 30, 3
1,28,51,20,21,42,28,41,42,49,29,29,25,41,33,27,50,19,35,63,24,36,31,24
,33,24,28,22,27,28,29,40,55,40,38,21,31,30,50,34,45,52,67,72,45,45,67,
56,30,50,35,23,44,23,26,61,31,68,57,27,25,20,33,36,36,40,17,24,38,28,3
6,50,51,55,31,33,28,48,40,29,20,35,52,35,34,32,27,52,46,30,32,25,38,31
,37,21,34,30,48,31,52,38,41,41,70,19,41,32,35,39,45,46,45,28,31,81,41,
56,47,37,32,53,30,34,62,58,55,21,27,46,44,29,26,42,56,51,61,48,42,32],
"xaxis": "x", "yaxis": "y"},
{"alignmentgroup": "True", "hovertemplate": "Recurred=No<br>Age=%
{x}<extra></extra>","legendgroup":"No","marker":{"color":"rgb(237,
217,
```

```
163)"}, "name": "No", "notched": true, "offsetgroup": "No", "showlegend": fals
e, "type": "box", "x":
[27,34,30,62,62,52,41,46,51,40,75,59,49,50,76,42,40,44,43,52,41,44,36,
70,60,33,43,26,41,37,37,30,55,52,37,31,43,34,45,20,38,38,33,31,31,29,4
3,30,25,27,25,21,43,23,23,43,24,35,54,54,22,38,51,22,40,69,31,29,30,28
, 22, 35, 50, 27, 17, 27, 40, 33, 25, 73, 62, 39, 37, 26, 31, 24, 57, 28, 44, 42, 27, 51, 33,
42, 26, 24, 60, 60, 31, 66, 44, 32, 26, 37, 33, 23, 47, 28, 28, 44, 31, 27, 56, 63, 24, 30, 3
1,28,51,20,21,42,28,41,42,49,29,29,25,41,33,27,50,19,35,63,24,36,31,24
,33,24,28,22,27,28,29,40,55,40,38,21,31,30,50,34,45,52,67,72,45,45,67,
56, 30, 50, 35, 23, 44, 23, 26, 61, 31, 68, 57, 27, 25, 20, 33, 36, 36, 40, 17, 24, 38, 28, 3
6,50,51,55,31,33,28,48,40,29,20,35,52,35,34,32,27,52,46,30,32,25,38,31
,37,21,34,30,48,31,52,38,41,41,70,19,41,32,35,39,45,46,45,28,31,81,41,
56,47,37,32,53,30,34,62,58,55,21,27,46,44,29,26,42,56,51,61,48,42,32],
"xaxis": "x2", "yaxis": "y2"},
{"alignmentgroup":"True","bingroup":"x","hovertemplate":"Recurred=Yes<
br>Age=%{x}<br>count=%{y}<extra>/
extra>","legendgroup":"Yes","marker":{"color":"rgb(246, 169,
122) ", "pattern":
{"shape":""}}, "name": "Yes", "nbinsx": 20, "offsetgroup": "Yes", "orientatio
n":"v", "showlegend":true, "texttemplate": "%
{value}","type":"histogram","x":
[26,36,35,31,18,62,56,20,62,17,21,20,40,38,21,31,34,60,60,62,36,29,33,
75,62,56,42,34,67,63,67,73,26,30,36,31,40,49,38,27,27,33,32,29,37,48,3
0,33,80,62,63,60,79,65,35,58,34,56,52,51,31,44,15,29,53,45,38,23,22,44
,31,25,32,82,58,68,37,59,21,73,35,54,26,53,35,49,34,80,67,68,71,64,80,
56,71,78,51,67,31,62,59,40,46,72,81,72,61,67], "xaxis": "x", "yaxis": "y"}
, {"alignmentgroup": "True", "hovertemplate": "Recurred=Yes<br>Age=%
{x}<extra></extra>","legendgroup":"Yes","marker":{"color":"rgb(246,
169,
122)"}, "name": "Yes", "notched": true, "offsetgroup": "Yes", "showlegend": fa
lse,"type":"box","x":
[26, 36, 35, 31, 18, 62, 56, 20, 62, 17, 21, 20, 40, 38, 21, 31, 34, 60, 60, 62, 36, 29, 33,
75,62,56,42,34,67,63,67,73,26,30,36,31,40,49,38,27,27,33,32,29,37,48,3
0,33,80,62,63,60,79,65,35,58,34,56,52,51,31,44,15,29,53,45,38,23,22,44
,31,25,32,82,58,68,37,59,21,73,35,54,26,53,35,49,34,80,67,68,71,64,80,
56,71,78,51,67,31,62,59,40,46,72,81,72,61,67], "xaxis": "x2", "yaxis": "y2
"}],"layout":{"autosize":true,"barmode":"relative","legend":{"title":
{"text": "Recurred"}, "tracegroupgap": 0}, "template": {"data": {"bar":
[{"error_x":{"color":"#2a3f5f"},"error_y":
{"color": "#2a3f5f"}, "marker": {"line":
{"color": "#E5ECF6", "width": 0.5}, "pattern":
{"fillmode": "overlay", "size": 10, "solidity": 0.2}}, "type": "bar"}], "barpo
lar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":
{"fillmode": "overlay", "size": 10, "solidity": 0.2}}, "type": "barpolar"}], "
carpet":[{"aaxis":
{"endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "min
orgridcolor": "white", "startlinecolor": "#2a3f5f"}, "baxis":
{"endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "min
orgridcolor": "white", "startlinecolor": "#2a3f5f"}, "type": "carpet"}], "ch
```

```
oropleth":[{"colorbar":
{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0, "#0d0887"], [0.1111111111111111, "#46039f"],
[0.2222222222222, "#7201a8"], [0.333333333333333, "#9c179e"],
[1, "#f0f921"]], "type": "contour"}], "contourcarpet": [{"colorbar":
{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}],"heatmap":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0,"#0d0887"],[0.1111111111111111,"#46039f"],
[0.2222222222222, "#7201a8"], [0.333333333333333, "#9c179e"],
[0.444444444444444, "#bd3786"], [0.5555555555556, "#d8576b"],
[0.666666666666666, "#ed7953"], [0.77777777777778, "#fb9f3a"], [0.888888888888888, "#fdca26"],
[1, "#f0f921"]], "type": "heatmap"}], "heatmapgl": [{"colorbar":
{"outlinewidth":0,"ticks":""},"colorscale":[[0,"#0d0887"],
[0.1111111111111111, "#46039f"], [0.222222222222222, "#7201a8"],
[0.33333333333333333,"#9c179e"],[0.444444444444444,"#bd3786"],
[0.7777777777778, "#fb9f3a"], [0.8888888888888888, "#fdca26"],
[1, "#f0f921"]], "type": "heatmapgl"}], "histogram": [{"marker": {"pattern":
{"fillmode":"overlay", "size": 10, "solidity": 0.2}}, "type": "histogram"}],
"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0, "#0d0887"], [0.1111111111111111, "#46039f"],
[0.2222222222222, "#7201a8"], [0.333333333333333, "#9c179e"],
[0.444444444444444, "#bd3786"], [0.5555555555556, "#d8576b"],
[0.666666666666666, "#ed7953"], [0.77777777777778, "#fb9f3a"], [0.888888888888888, "#fdca26"],
[1, "#f0f921"]], "type": "histogram2d"}], "histogram2dcontour":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0,"#0d0887"],[0.1111111111111111,"#46039f"],
[0.2222222222222, "#7201a8"], [0.3333333333333333, "#9c179e"], [0.4444444444444444, "#bd3786"], [0.55555555555556, "#d8576b"],
[0.666666666666666, "#ed7953"], [0.7777777777778, "#fb9f3a"],
[1, "#f0f921"]], "type": "histogram2dcontour"}], "mesh3d": [{"colorbar":
{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":
{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":
[{"automargin":true,"type":"pie"}],"scatter":[{"fillpattern":
{"fillmode":"overlay", "size":10, "solidity":0.2}, "type":"scatter"}], "sc
atter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":
{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":
[{"marker":{"colorbar":
{"outlinewidth": 0, "ticks": ""}}, "type": "scattercarpet"}], "scattergeo":
[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":
```

```
[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermapbox":
[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar"
:[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl
":[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterterna
ry":[{"marker":{"colorbar":
{"outlinewidth":0, "ticks": ""}}, "type": "scatterternary"}], "surface":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0, "#0d0887"], [0.1111111111111111, "#46039f"],
[0.2222222222222, "#7201a8"], [0.333333333333333, "#9c179e"],
[0.666666666666666, "#ed7953"], [0.77777777777778, "#fb9f3a"], [0.8888888888888888, "#fdca26"],
[1, "#f0f921"]], "type": "surface"}], "table": [{"cells": {"fill":
{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":
{"color":"#C8D4E3"},"line":
{"color":"white"}},"type":"table"}]},"layout":{"annotationdefaults":
{"arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1}, "autotypenumbers
":"strict", "coloraxis": { "colorbar":
{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":
[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],
[0.4, "#fde0ef"], [0.5, "#f7f7f7"], [0.6, "#e6f5d0"], [0.7, "#b8e186"],
[0.8, "#7fbc41"], [0.9, "#4d9221"], [1, "#276419"]], "sequential":
[[0,"#0d0887"],[0.1111111111111111,"#46039f"],
[0.22222222222222, "#7201a8"], [0.333333333333333, "#9c179e"],
[0.888888888888888, "#fdca26"], [1, "#f0f921"]], "sequentialminus":
[[0,"#0d0887"],[0.111111111111111,"#46039f"],
[0.2222222222222, "#7201a8"], [0.333333333333333, "#9c179e"],
[0.8888888888888888, "#fdca26"], [1, "#f0f921"]]}, "colorway":
["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"geo":
{"bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlake
s":true, "showland":true, "subunitcolor": "white"}, "hoverlabel":
{"align":"left"}, "hovermode": "closest", "mapbox":
{"style":"light"}, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "po
lar":{"angularaxis":
{"gridcolor": "white", "linecolor": "white", "ticks": ""}, "bgcolor": "#E5ECF
6", "radialaxis":
{"gridcolor": "white", "linecolor": "white", "ticks": ""}}, "scene":
{"xaxis":
{"backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "lineco
lor":"white", "showbackground":true, "ticks":"", "zerolinecolor":"white"}
```

```
"yaxis":
{"backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "lineco
lor":"white", "showbackground":true, "ticks":"", "zerolinecolor":"white"}
,"zaxis":
{"backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "lineco
lor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}
}, "shapedefaults":{"line":{"color":"#2a3f5f"}}, "ternary":{"aaxis":
{"gridcolor": "white", "linecolor": "white", "ticks": ""}, "baxis":
{"gridcolor": "white", "linecolor": "white", "ticks": ""}, "bgcolor": "#E5ECF
6", "caxis":
{"gridcolor":"white","linecolor":"white","ticks":""}},"title":
{"x":5.0e-2},"xaxis":
{"automargin":true, "gridcolor": "white", "linecolor": "white", "ticks": "",
"title":
{"standoff": 15}, "zerolinecolor": "white", "zerolinewidth": 2}, "yaxis":
{"automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "",
{"standoff":15}, "zerolinecolor": "white", "zerolinewidth":2}}}, "title":
{"text": "The Distribution of Recurred based on Age"}, "xaxis":
{"anchor": "y", "autorange": true, "domain": [0,1], "range":
[11.27777777777779,85.722222222223],"title":
{"text": "Age"}, "type": "linear"}, "xaxis2":
{"anchor": "y2", "autorange": true, "domain": [0,1], "matches": "x", "range":
[11.2777777777779,85.722222222223], "showgrid": true, "showticklabels
":false, "type": "linear" }, "yaxis":
{"anchor": "x", "autorange": true, "domain": [0,0.7326], "range":
[0,66.3157894736842], "title": {"text": "count"}}, "yaxis2":
{"anchor": "x2", "autorange": true, "domain":
[0.7426,1], "matches": "y2", "range": [-
0.5,1.5], "showgrid": false, "showline": false, "showticklabels": false, "tic
ks":"","type":"category"}}}
```

Gender Analysis

```
fig, ax = plt.subplots(3, 1, figsize=(6, 8))
fig.suptitle('Gender Analysis', fontsize=10, fontweight='bold')
plt.tight_layout()

count = df['Gender'].value_counts()

labels = df['Gender'].value_counts().index.tolist()

#Top ax
sns.countplot(y="Gender",data=df, ax=ax[0])
#middle ax
ax[1].pie(count, autopct='%.2f%%', labels=labels, shadow=True,
```

```
pctdistance=1.2, labeldistance=0.4)
ax[1].legend(bbox_to_anchor=(1, 1), loc=2, borderaxespad=5)

# Bottom ax
sns.countplot(x='Gender', hue='Recurred', data=df, ax=ax[2])
plt.show()
```

Gender Analysis

Focality Analysis

```
fig, ax = plt.subplots(3, 1, figsize=(6, 8))
fig.suptitle('Focality Analysis', fontsize=20, fontweight='bold')
plt.tight_layout()

count = df['Focality'].value_counts()

labels = df['Focality'].value_counts().index.tolist()

#Top ax
sns.countplot(y="Focality",data=df, ax=ax[0])
#middle ax
ax[1].pie(count, autopct='%.2f%%', labels=labels, shadow=True, pctdistance=1.2, labeldistance=0.4)
ax[1].legend(bbox_to_anchor=(1, 1), loc=2, borderaxespad=5)

# Bottom ax
sns.countplot(x='Focality', hue='Recurred', data=df, ax=ax[2])
plt.show()
```

Focality Analysis

Stage Analysis

```
sns.set_palette('Set1')
fig, ax = plt.subplots(3, 1, figsize=(9, 10))
fig.suptitle('Stage Analysis', fontsize=20, fontweight='bold')
plt.tight_layout()

count = df['Stage'].value_counts()
labels = df['Stage'].value_counts().index.tolist()

#Top ax
sns.countplot(y="Stage",data=df, ax=ax[0])
#middle ax
ax[1].pie(count, autopct='%.2f%%', labels=labels, shadow=True, pctdistance=1.2, labeldistance=0.4)
ax[1].legend(bbox_to_anchor=(1, 1), loc=2, borderaxespad=5)

# Bottom ax
sns.countplot(x='Stage', hue='Recurred', data=df, ax=ax[2])
plt.show()
```

Stage Analysis

Hx-Radiothreapy Analysis

```
sns.set_palette('Set2')
fig, ax = plt.subplots(3, 1, figsize=(7, 8))
fig.suptitle('Hx-Radiothreapy Analysis', fontsize=20,
fontweight='bold')
plt.tight layout()
count = df['Hx Radiothreapy'].value counts()
labels = df['Hx Radiothreapy'].value counts().index.tolist()
#Top ax
sns.countplot(y="Hx Radiothreapy",data=df, ax=ax[0])
#middle ax
ax[1].pie(count, autopct='%.2f%%', labels=labels, shadow=True,
pctdistance=1.2, labeldistance=0.4)
ax[1].legend(bbox to anchor=(1, 1), loc=2, borderaxespad=5)
# Bottom ax
sns.countplot(x='Hx Radiothreapy', hue='Recurred', data=df, ax=ax[2])
plt.show()
```

Hx-Radiothreapy Analysis

Adenopathy Analysis

```
sns.set_palette('Set1')
fig, ax = plt.subplots(3, 1, figsize=(6, 12))
fig.suptitle('Adenopathy Analysis', fontsize=20, fontweight='bold')
plt.tight_layout()

count = df.Adenopathy.value_counts()

labels = df.Adenopathy.value_counts().index.tolist()

#Top ax
sns.countplot(y="Adenopathy",data=df, ax=ax[0])
#middle ax
ax[1].pie(count, autopct='%.2f%%', labels=labels, shadow=True, pctdistance=1.2, labeldistance=0.4)
ax[1].legend(bbox_to_anchor=(1, 1), loc=2, borderaxespad=5)

# Bottom ax
sns.countplot(x='Adenopathy', hue='Recurred', data=df, ax=ax[2])
plt.show()
```

Adenopathy Analysis

Pathology Analysis

```
fig, ax = plt.subplots(3, 1, figsize=(6, 10))
fig.suptitle('Pathology Analysis', fontsize=20, fontweight='bold')
plt.tight_layout()

count = df.Pathology.value_counts()
labels = df.Pathology.value_counts().index.tolist()

#Top ax
sns.countplot(y="Pathology",data=df, ax=ax[0])
#middle ax
ax[1].pie(count, autopct='%.2f%%', labels=labels, shadow=True,
pctdistance=1.2, labeldistance=0.4)
ax[1].legend(bbox_to_anchor=(1, 1), loc=2, borderaxespad=5)

# Bottom ax
sns.countplot(x='Pathology', hue='Recurred', data=df, ax=ax[2])
plt.show()
```

Pathology Analysis

Physical Examination Analysis

```
sns.set palette('Set2')
fig, ax = plt.subplots(3, 1, figsize=(10, 13))
fig.suptitle('Physical Examination Analysis', fontsize=20,
fontweight='bold')
plt.tight_layout()
count = df['Physical Examination'].value counts()
labels = df['Physical Examination'].value counts().index.tolist()
#Top ax
sns.countplot(y="Physical Examination",data=df, ax=ax[0])
#Middle ax
ax[1].pie(count, autopct='%.2f%', labels=labels, shadow=True,
pctdistance=1.2, labeldistance=0.4)
ax[1].legend(bbox_to_anchor=(1, 1), loc=2, borderaxespad=5)
# Bottom ax
sns.countplot(x='Physical Examination', hue='Recurred', data=df,
ax=ax[2]
plt.show()
```


Tumor Analysis

```
sns.set_palette('Set2')
fig, ax = plt.subplots(3, 1, figsize=(8, 12))
fig.suptitle('Tumor Analysis', fontsize=20, fontweight='bold')
plt.tight_layout()

count = df.Tumor.value_counts()
labels = df.Tumor.value_counts().index.tolist()

#Top ax
sns.countplot(y="Tumor",data=df, ax=ax[0])
#middle ax
ax[1].pie(count, autopct='%.2f%%', labels=labels, shadow=True, pctdistance=1.2, labeldistance=0.4)
ax[1].legend(bbox_to_anchor=(1, 1), loc=2, borderaxespad=5)

# Bottom ax
sns.countplot(x='Tumor', hue='Recurred', data=df, ax=ax[2])
plt.show()
```

Tumor Analysis

Nodal Analysis

```
sns.set_palette('Set2')
fig, ax = plt.subplots(3, 1, figsize=(7, 8))
fig.suptitle('Nodal Analysis', fontsize=20, fontweight='bold')
plt.tight_layout()

count = df.Nodal.value_counts()

labels = df.Nodal.value_counts().index.tolist()
#Top ax
sns.countplot(y="Nodal",data=df, ax=ax[0])
#Middle ax
ax[1].pie(count, autopct='%.2f%%', labels=labels, shadow=True, pctdistance=1.2, labeldistance=0.4)
ax[1].legend(bbox_to_anchor=(1, 1), loc=2, borderaxespad=5)

# Bottom ax
sns.countplot(x='Nodal', hue='Recurred', data=df, ax=ax[2])
plt.show()
```

Nodal Analysis

Metastasis Analysis

```
sns.set_palette('Set2')
fig, ax = plt.subplots(3, 1, figsize=(7, 8))
fig.suptitle('Metastasis Analysis', fontsize=20, fontweight='bold')
plt.tight_layout()
count = df.Metastasis.value_counts()

labels = df.Metastasis.value_counts()

#Top ax
sns.countplot(y="Nodal",data=df, ax=ax[0])
#Middle ax
ax[1].pie(count, autopct='%.2f%%', labels=labels, shadow=True, pctdistance=1.2, labeldistance=0.4)
ax[1].legend(bbox_to_anchor=(1, 1), loc=2, borderaxespad=5)

# Bottom ax
sns.countplot(x='Metastasis', hue='Recurred', data=df, ax=ax[2])
plt.show()
```

Metastasis Analysis

3.2 Bivariate and Multivariate Analysis

```
# Stage by Age and Gender
plt.figure(figsize=(10, 6))
sns.boxplot(data=df, x='Stage', y='Age', hue='Gender', palette='Set2')
plt.title('Age Distribution by Stage and Gender')
Text(0.5, 1.0, 'Age Distribution by Stage and Gender')
```



```
plt.figure(figsize=(10, 6))
sns.countplot(data=df, x='Risk', hue='Smoking', palette='coolwarm')
plt.title('Risk Level by Smoking History')

plt.figure(figsize=(10, 6))
sns.countplot(data=df, x='Risk', hue='Hx Radiothreapy',
palette='mako')
plt.title('Risk Level by Radiotherapy History')

Text(0.5, 1.0, 'Risk Level by Radiotherapy History')
```



```
# Crosstab heatmap of T and N
pd.crosstab(df['Tumor'], df['Nodal']).plot(kind='bar', stacked=True,
colormap='Accent')
plt.title('T vs N Classification')

# T/N by Stage
plt.figure(figsize=(12, 6))
sns.countplot(data=df, x='Tumor', hue='Stage', palette='husl')
plt.title('T Classification by Stage')

Text(0.5, 1.0, 'T Classification by Stage')
```


4. Model Building

Encoding and feature engineering

```
inputs df = df.drop('Recurred',axis=1)
targets df= df[['Recurred']]
categorical cols =
inputs df.select dtypes(include='object').columns.tolist()
categorical cols
['Gender',
 'Smoking',
 'Hx Smoking',
 'Hx Radiothreapy',
 'Thyroid Function'
 'Physical Examination',
 'Adenopathy',
 'Pathology',
 'Focality',
 'Risk',
 'Tumor',
 'Nodal',
 'Metastasis',
 'Stage',
 'Response']
# prepocssesse the categorical
encoder = OneHotEncoder(sparse output=False)
encoder.fit(inputs df[categorical cols])
encoder cols = encoder.get feature names out(categorical cols)
inputs df[encoder cols]
=encoder.transform(inputs_df[categorical_cols])
final df =
pd.concat([inputs df['Age'],inputs df[encoder cols]],axis=1)
```

prepocssesse numeric columns

```
scaler = MinMaxScaler()
final_df[['Age']] = scaler.fit_transform(final_df[['Age']])

X = final_df # independent
y= targets_df # dependent
```

5.3 Model Training

```
xtrain, xtest, ytrain, ytest =
train test split(X,y,test size=.20,random state=42)
logist = LogisticRegression()
logist.fit(xtrain,ytrain)
LogisticRegression()
y pred = logist.predict(xtest)
y pred
array(['No', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'No', 'No',
 'No',
                                   'No', 'Yes', 'No', 'No', 'Yes', 'No', 'No', 'Yes', 'No', 'No',
                                   'No', 'No', 'Yes', 'No', 'No', 'Yes', 'Yes', 'Yes', 'Yes',
  'No',
                                   'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'Yes', 'Yes', 'Yes', 'No', 'No', 'No', 'No', 'No', 'Yes', 'Yes',
 'No',
                                  'No', 'Yes', 'No', 'No', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'No', 'N
                                   'Yes'], dtype=object)
```

Model Evaluation

```
0.95
                                                   73
    accuracy
                             0.93
                                       0.93
                                                   73
                   0.93
   macro avg
weighted avg
                   0.95
                             0.95
                                       0.95
                                                   73
cm = confusion matrix(ytest,y pred)
array([[49, 2],
      [ 2, 20]], dtype=int64)
accuracy score(ytest,y pred)
0.9452054794520548
```

5 Advance Modelling

```
random =
RandomForestClassifier(random_state=42,min_samples_split=5,max_depth=1
6,n_jobs=-1)
random.fit(xtrain,ytrain)
accuracy = accuracy_score(ytest,random.predict(xtest))
print("The accuracy is : ",accuracy)
```

The accuracy is : 0.9452054794520548

print(classification_report(ytest,random.predict(xtest)))

	precision	recall	f1-score	support
No Yes	0.96 0.91	0.96 0.91	0.96 0.91	51 22
accuracy macro avg weighted avg	0.93 0.95	0.93 0.95	0.95 0.93 0.95	73 73 73