Data Normalization

- ☐ A function that maps the entire set of values of a given attribute to a new set of replacement values s.t. each old value can be identified with one of the new values
- Methods
 - Normalization: Scaled to fall within a smaller, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling

Min-Max Normalization

Min-max normalization: to [new_min_A, new_max_A]

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

- Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0]
 - ☐ Then \$73,000 is mapped to

$$\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$$

Z-score Normalization

 \square **Z-score normalization** (μ : mean, σ : standard deviation):

$$v' = \frac{v - \mu_A}{\sigma_A}$$

Z-score: The distance between the raw score and the population mean in the unit of the standard deviation

 \Box Ex. Let μ = 54,000, σ = 16,000. Then

$$\frac{73,600-54,000}{16,000} = 1.225$$

Normalization by Decimal Scaling

Normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$
 Where j is the smallest integer such that Max(|v'|) < 1

□ Example:

- Data ranges from -986 to 917.
- Maximum absolute value is 986.
- Normalize by dividing by 1000 (since j=3).
- After normalization, -986 becomes -0.986 and 917 becomes 0.917.