Emergent Equivariance in Deep Ensembles

Jan E. Gerken

in collaboration with

from

Pan Kessel²

凸 Easy to implement

台 Easy to implement

ர No exact equivariance

Toy example

After 1 Training Step

After 2 Training Steps

After 3 Training Steps

After 2000 Training Steps

After 2000 Training Steps

Can ensembles help?

- Proof of exact equivariance for
 - full data augmentation
 - infinite ensembles
 - · at infinite width

- Proof of exact equivariance for
 - full data augmentation
 - infinite ensembles
 - at infinite width
- ✓ Equivariance holds for all training times

- Proof of exact equivariance for
 - full data augmentation
 - infinite ensembles
 - at infinite width
- ✓ Equivariance holds for all training times
- Equivariance holds away from the training data

Intuitive explanation

- ✓ Equivariance holds for all training times
- ✓ Equivariance holds away from the training data

Intuitive explanation

- Equivariance holds for all training times
- ✓ Equivariance holds away from the training data

① At infinite width, the mean output at initialization is zero everywhere.

Intuitive explanation

- ✓ Equivariance holds for all training times
- ✓ Equivariance holds away from the training data

- At infinite width, the mean output at initialization is zero everywhere.
- Training with full data augmentation leads to an equivariant function.

Toy example

After 1 Training Step

After 2 Training Steps

After 3 Training Steps

After 2000 Training Steps

After 2000 Training Steps

mean prediction of deep ensemble

$$\lim_{n \to \infty} \underbrace{\frac{1}{n} \sum_{\theta_0 = \text{init}_1}^{\text{init}_n} f_{\theta_t}(x)}_{\text{init}_1} = \mathbb{E}_{\theta_0 \sim \text{initializations}} [f_{\theta_t}(x)] = \mu_t(x)$$

mean prediction of deep ensemble

 At infinite width, the mean prediction is given in terms of the neural tangent kernel (NTK)

$$\mu_t(x) = \Theta(x, X)\Theta(X, X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X, X)t})Y$$

① At infinite width, the mean prediction is given in terms of the neural tangent kernel (NTK)

neural tangent kernel
$$\mu_t(x) = \Theta(x,X)\Theta(X,X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X,X)t})Y$$

① At infinite width, the mean prediction is given in terms of the neural tangent kernel (NTK)

 At infinite width, the mean prediction is given in terms of the neural tangent kernel (NTK)

 At infinite width, the mean prediction is given in terms of the neural tangent kernel (NTK)

$$\mu_t(x) = \Theta(x, X) \Theta(X, X)^{-1} (\mathbb{I} - e^{-\eta \Theta(X, X)t}) Y$$

$$\mu_t(\rho(g)x) = \Theta(x,X)\Theta(X,X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X,X)t})\underbrace{\rho(g)Y}_{=Y}$$
 for invariance

group transformation
$$\mu_t(\rho(g)x) = \Theta(x,X)\Theta(X,X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X,X)t})\underbrace{\rho(g)Y}_{=Y}$$
 for invariance

Experiments

Relative Standard Deviation

[Kather et al. 2018]

[Kather et al. 2018]

Histological slices

Histological slices

Orbit Same Predictions = 3

Comparison to other methods

Comparison to other methods

⇔ Models trained on rotated FashionMNIST

Comparison to other methods

Orbit same predictions out of distribution:

	C ₄	C ₈	C ₁₆
DeepEns+DA	3.85±0.12	7.72±0.34	15.24±0.69
only DA	3.41 ± 0.18	6.73 ± 0.24	12.77 ± 0.71
E2CNN ¹	4 ± 0.0	7.71±0.21	15.08 ± 0.34
Canon ²	4±0.0	7.45±0.14	12.41±0.85

¹[Weiler et al. 2019], ²[Kaba et al. 2022]

Key takeaways

Key takeaways

If you need ensembles

也 use data augmentation to obtain an equivariant model.

Key takeaways

If you need ensembles

If you need data augmentation

△ use an ensemble to boost the equivariance.

Poster

Thursday, 25 July 2024 11.30am – 1.00pm Hall C 4-9 **Poster 817**

