Chương 2: GIẢI GẦN ĐÚNG PHƯƠNG TRÌNH PHI TUYẾN

Ton Duc Thang University

Ngày 5 tháng 4 năm 2016

NỘI DUNG

- 2.1. Khái niệm về nghiệm xấp xỉ
- 2.2. Tìm khoảng tách nghiệm
 - 2.3. Chính xác hoá nghiệm
 - 2.3.1. Phương pháp chia đôi (Bisection)
 - 2.3.2. Phương pháp lặp
 - 2.3.3. Phương pháp Newton
 - 2.3.4. Phương pháp dây cung (Secant)
 - 2.3.5. Phương pháp điểm bất động (Fixed point)

2. Giải gần đúng phương trình phi tuyến

BAI HOC TON ĐỰC THẮNG TON DỰC THÁNG UNIVERSITY

2.1. Khái niệm về nghiệm xấp xỉ

• Giả sử ta cần tìm nghiệm gần đúng của phương trình

$$f(x) = 0$$

ullet Nghiệm chính xác của phương trình là giá trị x^* thỏa mãn

$$f(x^*)=0$$

ullet Giải gần đúng phương trình trên là tìm một giá trị \overline{x} sao cho

$$f(\overline{x}) \approx 0$$

theo một nghĩa nào đó hoặc với một sai số cho phép nào đó.

2. Giải gần đúng phương trình phi tuyến

2.1. Khái niệm về nghiệm xấp xỉ Đánh giá sai số của nghiệm xấp xỉ

- Giả sử x^* là nghiệm đúng của phương trình f(x) = 0.
- Để tìm nghiệm gần đúng của phương trình, ta thiết lập một dãy $x_0, x_1, ..., x_n, ...$ sao cho $x_n \to x^*$ khi $n \to \infty$.
- Do f liên tục nên:

$$\lim_{n\to\infty}f(x_n)=f(x^*)=0$$

- Khi chọn x_N khá gần x^* thì $f(x_N)$ khá gần 0 và có thể xem x_N là nghiệm xấp xỉ của phương trình.
- ullet Người ta thường chọn trước arepsilon>0 đủ nhỏ và nếu

$$|x_n - x^*| < \varepsilon$$

thì chọn x_n là nghiệm xấp xỉ và dừng quá trình tính toán nếu ta có

$$|f(x_n)|<\delta$$

với δ đủ bé.

2. Giải gần đúng phương trình phi tuyến

2.1. Khái niệm về nghiệm xấp xỉ

Để tìm nghiệm xấp xỉ của phương trình f(x)=0 ta cần thực hiện hai bước sau:

- Tách nghiệm: xét tính chất nghiệm (phương trình có nghiệm hay không, có bao nhiêu nghiệm, các khoảng chứa nghiệm nếu có).
- Chính xác hoá nghiệm: tiến hành thu hẹp khoảng chứa nghiệm dần đến giá trị gần đúng với độ chính xác cho phép.

NỘI DUNG

- 2.1. Khái niệm về nghiệm xấp xỉ
- 2.2. Tìm khoảng tách nghiệm
 - 2.3. Chính xác hoá nghiệm
 - 2.3.1. Phương pháp chia đôi (Bisection)
 - 2.3.2. Phương pháp lặp
 - 2.3.3. Phương pháp Newton
 - 2.3.4. Phương pháp dây cung (Secant)
 - 2.3.5. Phương pháp điểm bất động (Fixed point)

- Tìm các khoảng tách nghiệm là những khoảng mà trên đó phương trình có nghiệm duy nhất.
- Có nhiều cách tìm khoảng tách nghiệm, ta thường vẽ đồ thị y = f(x) dựa vào đó tìm khoảng tách nghiệm.

Dịnh lý

Giả sử phương trình

$$f(x) = 0$$

có đạo hàm f'(x) không đổi dấu trên [a, b]. Khi đó:

- Nếu f(a)f(b) > 0 thì phương trình không có nghiệm trên [a, b],
- Nếu f(a)f(b) < 0 thì phương trình có nghiệm trên [a, b].

Ví dụ

Hãy xét xem [1,2] có phải là khoảng tách nghiệm của các phương trình dưới đây không?

$$(x) = x^2 - 2 = 0$$

$$f(x) = x^3 - x - 1 = 0$$

Phương pháp đồ thị tìm khoảng tách nghiệm.

Phương pháp đồ thị

- 1 Trường hợp hàm f(x) đơn giản.
 - Vẽ đồ thị f(x).
 - Nghiệm phương trình là hoành độ giao điểm của đồ thị f(x) với trục Ox, từ đó suy ra số nghiệm, khoảng nghiệm.
- ② Trường hợp hàm f(x) phức tạp.
 - Biến đổi tương đương $f(x) = 0 \Leftrightarrow g(x) = h(x)$.
 - Vẽ đồ thị của hai hàm g(x) và h(x).
 - Hoành độ giao điểm của g(x) và h(x) là nghiệm của phương trình, từ đó suy ra số nghiệm, khoảng nghiệm.

Ví dụ

Hãy tìm khoảng tách nghiệm của phương trình: (Giờ thực hành)

$$f(x) = x^3 - 3x + 5 = 0$$

2
$$f(x) = x + e^x = 0$$

3
$$f(x) = 2^x - x + 4 = 0$$

$$f(x) = x^4 - x - 1 = 0$$

$$f(x) = \sin x - x + \frac{1}{4} = 0$$

$$(x) = e^x - 10x + 7 = 0.$$

Định lý (Sai số)

Giả sử x^* là nghiệm đúng và x là nghiệm gần đúng của phương trình f(x)=0 cùng nằm trong khoảng nghiệm [a,b] và $f'(x)=m\geq 0$ khi $a\leq x\leq b$. Khi đó

$$|x-x^*| \le \frac{|f(x)|}{m}$$

Định lý (Sai số)

Giả sử x^* là nghiệm đúng và x là nghiệm gần đúng của phương trình f(x)=0 cùng nằm trong khoảng nghiệm [a,b] và $f'(x)=m\geq 0$ khi $a\leq x\leq b$. Khi đó

$$|x-x^*| \le \frac{|f(x)|}{m}$$

Ví dụ: Cho nghiệm gần đúng của phương trình $x^4 - x - 1 = 0$ là 1.22. Hãy ước lượng sai số tuyệt đối là bao nhiều?

Định lý (Sai số)

Giả sử x^* là nghiệm đúng và x là nghiệm gần đúng của phương trình f(x)=0 cùng nằm trong khoảng nghiệm [a,b] và $f'(x)=m\geq 0$ khi $a\leq x\leq b$. Khi đó

$$|x-x^*| \le \frac{|f(x)|}{m}$$

Ví dụ: Cho nghiệm gần đúng của phương trình $x^4 - x - 1 = 0$ là 1.22.

Hãy ước lượng sai số tuyệt đối là bao nhiêu?

Lời giải: Ta có f(1.22) = -0.0047 < 0 mà f(1.23) = 0.588 > 0.

Suy ra nghiệm của phương trình $x \in (1.22, 1.23)$.

Ta có f'(1.22) = m = 6.624 > 0 nên theo định lý trên

$$\Delta x = \frac{0.0047}{6.624} = 0.0008$$

Định lý tách nghiệm cho phương trình đại số

Xét phương trình đại số $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n = 0$ (1) Đặt:

$$m_1 = \max\{|a_i|\}, \quad i = \overline{1, n}$$

 $m_2 = \min\{|a_i|\}, \quad i = \overline{1, n}$

Khi đó mọi nghiệm x của phương trình đều thỏa mãn:

$$\frac{|a_n|}{m_2 + |a_n|} \le x \le 1 + \frac{m_1}{|a_0|}$$

Định lý

Cho phương trình (1) có $a_0>0$ và a_m là hệ số âm đầu tiên. Khi đó mọi nghiệm dương của phương trình x đều thỏa:

$$x \le 1 + \sqrt[m]{\frac{a}{a_0}}$$

trong đó $a = \max\{|a_i|\}, \forall i = \overline{0, n} \text{ sao cho } a_i < 0.$

Ví dụ: Cho phương trình $5x^4 + 2x^3 - 8x^2 - x + 6 = 0$. Tìm cận trên nghiệm dương của phương trình.

Định lý

Cho phương trình (1) có $a_0>0$ và a_m là hệ số âm đầu tiên. Khi đó mọi nghiệm dương của phương trình x đều thỏa:

$$x \le 1 + \sqrt[m]{\frac{a}{a_0}}$$

trong đó $a = \max\{|a_i|\}, \forall i = \overline{0, n} \text{ sao cho } a_i < 0.$

Ví dụ: Cho phương trình $5x^4 + 2x^3 - 8x^2 - x + 6 = 0$. Tìm cận trên nghiệm dương của phương trình.

Lời giải: Ta có $a_2 = -8$ là hệ số âm đầu tiên nên m = 2, và $a = \max\{8, 1\} = 8$.

Vậy cận trên của nghiệm dương là $1 + \sqrt[m]{\frac{a}{a_0}} = 1 + \sqrt{8/5}$.

Định lý

Cho phương trình (1) ta xét các đa thức:

$$\varphi_1 = x^n f(1/x) = a_0 + a_1 x + \dots + a_n x^n$$

$$\varphi_2 = f(-x) = (-1)^n (a_0 x^n - a_1 x^{n-1} + \dots + (-1)^n a_n)$$

$$\varphi_3 = x^n f(-1/x) = (-1)^n (a_n x^n - a_{n-1} x^{n-1} + \dots + (-1)^n a_0)$$

Giả sử N_0, N_1, N_2, N_3 là cận trên các nghiệm dương của các đa thức $f, \varphi_1, \varphi_2, \varphi_3$. Khi đó mọi nghiệm dương của phương trình (1) đều nằm trong khoảng $[\frac{1}{N}, N_0]$ và mọi nghiệm âm nằm trong khoảng $[-N_2, -\frac{1}{N_3}]$.

Ví dụ: Xét phương trình
$$3x^2 + 2x - 5 = 0$$
 ta có $N_0 = 1 + \sqrt{5/3}$ Với $\varphi_1(x) = 3 + 2x - 5x^2$ thì N_1 không tồn tại vì $a_0 < 0$. Với $\varphi_2(x) = 3x^2 - 2x - 5$ thì $N_2 = 1 + 5/3$ Với $\varphi_3(x) = 3 - 2x - 5x^2$ thì N_3 không tồn tại vì $a_0 < 0$. Vậy mọi nghiệm dương $x < 1 + \sqrt{5/3}$ và mọi nghiệm âm $x > -(1 + 5/3) = -8/3$.

NỘI DUNG

- 2.1. Khái niệm về nghiệm xấp xỉ
- 2) 2.2. Tìm khoảng tách nghiệm
- 3 2.3. Chính xác hoá nghiệm
 - 2.3.1. Phương pháp chia đôi (Bisection)
 - 2.3.2. Phương pháp lặp
 - 2.3.3. Phương pháp Newton
 - 2.3.4. Phương pháp dây cung (Secant)
 - 2.3.5. Phương pháp điểm bất động (Fixed point)

2.3.1. Phương pháp chia đôi (Bisection)

- Cho phương trình f(x) = 0 với khoảng tách nghiệm [a, b] và gọi x^* là nghiệm trên [a, b] (sau bước 1).
- Phương pháp chia đôi sẽ chia đôi liên tiếp các khoảng tách nghiệm ra.
 - **1** Trước hết, chia đôi khoảng [a,b] với điểm chi là $c=\frac{a+b}{2}$. Kiểm tra f(a)f(c) để có khoảng tách nghiệm mới là [a,c] hoặc [c,b], gọi là $[a_1,b_1]$.
 - ② Nếu f(c) = 0 thì c là nghiệm, còn nếu $f(c) \neq 0$ ta lại chia khoảng tách nghiệm ra làm đôi bởi điểm chia mới, ta được khoảng tách nghiệm $[a_2, b_2]$.
 - 3 Quá trình này lặp đi lặp lại đến n lần, với khoảng tách nghiệm $[a_n,b_n]$, cho đến khi ta tìm được α sao cho $f(\alpha) \simeq 0$.
- Ta có

$$x_n = \frac{a_n + b_n}{2}$$

2.3.1. Phương pháp chia đôi (Bisection)

Sự hội tụ của phương pháp

• Dãy $a_0, a_1, ..., a_n$ tăng và bị chặn bởi b. Dãy $b_0, b_1, ..., b_n$ giảm và bị chặn bởi a. Mặt khác, dãy $b_n - a_n$ dương và giảm dần đến 0, khi $n \to \infty$

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \lim_{n\to\infty} x_n = x^*$$

Sai số của phương pháp chia đôi

$$|x_n - \alpha| \le \frac{b - a}{2^{n+1}}$$

Thực hành

Hãy viết chương trình minh họa cho thuật toán chia đôi.

2.3.1. Phương pháp chia đôi (Bisection)

Ví du

- Hãy làm lại các ví dụ trong phương pháp lặp.
- ② Cho $f(x) = x^4 3x^2 + 75x 10000$. Hãy tìm nghiêm của phương trình f(x) = 0 bằng phương pháp chia đôi với 5 chữ số chắc, biết rằng nghiệm có hai chữ số trước dấu chấm thập phân.
- Nhận xét, so sánh ba phương pháp.
- Giải phương trình $f(x) = \sin x x^2 \cos x = 0$ với sai số cho phép là 10^{-3} . (Chú ý nghiệm đúng là $x^* = 0$).

2.3.2. Phương pháp lặp

- Cho phương trình f(x) = 0 với khoảng tách nghiệm [a, b] và gọi x^* là nghiệm trên [a, b] (sau bước 1).
- ullet Đưa phương trình về dạng x=arphi(x) sao cho

$$|\varphi'(x)| \le q \le 1, \quad \forall x \in [a, b]$$

Chọn $x_0 \in [a, b]$ làm giá trị ban đầu. Ta tính các phần tử của dãy số sau:

$$x_1 = \varphi(x_0); x_2 = \varphi(x_1); ...; x_n = \varphi(x_{n-1})$$

Nếu các phần tử trên đều thuộc khoảng tách nghiệm thì dãy số sẽ hội tụ về nghiệm x_0 . Sau n bước tính nghiệm gần đúng của phương trình $x^* \approx x_n$.

• Sai số tuyệt đối của phương pháp lặp:

$$|x_n - x^*| \le \frac{q}{1 - a} |x_n - x_{n-1}|$$

2.3.2. Phương pháp lặp

Có hai câu hỏi đặt ra:

 Áp dụng phương pháp lặp có cho ta nghiệm cuối cùng chính là nghiệm xấp xỉ của nghiệm cho phương trình cần tìm?

2.3.2. Phương pháp lặp

Có hai câu hỏi đặt ra:

- Áp dụng phương pháp lặp có cho ta nghiệm cuối cùng chính là nghiệm xấp xỉ của nghiệm cho phương trình cần tìm? Sự hội tụ của phương pháp
- Nếu tìm được nghiệm xấp xỉ, vậy sai số cho phép khi áp dụng phương pháp lặp là như thế nào?

2.3.2. Phương pháp lặp

Có hai câu hỏi đặt ra:

- Áp dụng phương pháp lặp có cho ta nghiệm cuối cùng chính là nghiệm xấp xỉ của nghiệm cho phương trình cần tìm? Sự hội tụ của phương pháp
- Nếu tìm được nghiệm xấp xỉ, vậy sai số cho phép khi áp dụng phương pháp lặp là như thế nào? Sai số của phương pháp

2.3.2. Phương pháp lặp

Sự hội tụ của Phương pháp lặp

Nhắc lại định lý giá trị trung bình Lagrange:

Cho $\varphi:[a,b]\to\mathbb{R}$ liên tục trên [a,b] và khả vi trên (a,b). Khi đó tồn tại $c\in(a,b)$ sao cho:

$$\varphi'(c) = \frac{f(b) - f(a)}{b - a}$$

2.3.2. Phương pháp lặp

Sự hội tụ của Phương pháp lặp

Áp dụng định lý giá trị trung bình:

$$|x_{n+1} - x_n| = |\varphi(x_n) - \varphi(x_{n-1})| = |\varphi'(c)(x_n - x_{n-1})|$$

$$\leq q|x_n - x_{n-1}| \leq \dots \leq q^{n-1}|x_1 - x_0| \longrightarrow 0$$

Dãy (x_n) là dãy Cauchy nên hội tụ. Đặt $\lim_{n \to \infty} x_n = a$.

Do φ liên tục nên $\lim_{n \to \infty} \varphi(x_n) = \varphi(a)$. Suy ra

$$\lim_{n\to\infty} x_{n+1} = \varphi(a) = a$$

Dãy $\{x_n\}$ hội tụ về nghiệm của phương trình trên [a, b].

2.3.2. Phương pháp lặp

Sai số của Phương pháp lặp

Với k bất kỳ ta có

$$|x_{n+k} - x_n| \le |x_{n+k} - x_{n+1}| + |x_{n+1} - x_n|$$

$$\le q(|x_{n+k-1} - x_n| + |x_n - x_{n-1}|)$$

Cho $k \to +\infty$:

$$|x^* - x_n| \le q (|x^* - x_n| + |x_n - x_{n-1}|)$$

 $\le \frac{q}{1 - q} |x_n - x_{n-1}|$

Chú ý

Khi hệ số q gần 1 thì phép lặp hội tụ rất chậm.

2.3.2. Phương pháp lặp

Cách chọn giá trị x₀

- Nếu $x^* \in [a, \frac{a+b}{2}]$, tức $f(a)f\left(\frac{a+b}{2}\right) < 0$ ta chọn $x_0 = a$.
- Nếu $x^* \in \left[\frac{a+b}{2}, b\right]$, tức $f(a)f\left(\frac{a+b}{2}\right) > 0$ ta chọn $x_0 = b$.

Thực hành

Hãy viết thuật toán giải các phương trình đã cho trong phần tách nghiệm bằng phương pháp lặp.

2.3.2. Phương pháp lặp

Ví du

Cho phương trình $f(x) = x^3 - 3x - 5 = 0$. Dùng phương pháp lặp giải phương trình trên với khoảng tách nghiệm [2, 3] thỏa:

- 10 bước lặp và đánh giá sai số.
- Nghiệm gần đúng có 5 chữ số chắc, biết nghiệm có 1 chữ số bên trái dấu thập phân.
- \odot Với sai số không quá 3×10^{-7} .

2.3.2. Phương pháp lặp

• Trước hết ta đưa phương trình về dạng: $x = \sqrt[3]{3x+5} = \varphi(x)$. Khi đó $\forall x \in [2,3]$:

$$|\varphi'(x)| = \frac{1}{\sqrt[3]{(3x+5)^2}} \le \frac{1}{\sqrt[3]{(6+5)^2}} \le 0.203 = q$$

Xét f(a) = f(2) < 0 và f(2.5) > 0 nên chọn $x_0 = 2$. Bước lặp:

- $x_0 = 2$
- $x_1 = \varphi(x_0)$
- $x_{10} = \varphi(x_9)$

và nghiệm gần đúng là $x_{10} \simeq$?. Đánh giá sai số:

$$\frac{q}{1-q}|x_{10}-x_9|\leq \dots$$

2.3.2. Phương pháp lặp

② Do có 1 chữ số bên trái dấu thập phân nên nghiệm gần đúng có 5 chữ số chắc nên 4 chữ số sau dấu chấm thập phân là chắc. Tức là sai số không quá 0.5×10^{-4} . Đánh giá :

$$\frac{q}{1-q}|x_n-x_{n-1}| \le 0.5 \times 10^{-4} \Leftrightarrow |x_n-x_{n-1}| \le \dots$$

Vẽ bảng tính với n=1,2,... ta chọn n=6 và $x_6\simeq 2.279004141.$

2.3.2. Phương pháp lặp

3 Để nghiệm xấp xỉ thỏa $|x_n-x^*|<arepsilon$ với $arepsilon=10^{-7}$, ta cần:

$$|x_n - x^*| \le \frac{q}{1 - q} |x_n - x_{n-1}| \Leftrightarrow |x_n - x^*| \le \frac{q^n}{1 - q} |x_1 - x_0|$$

Khi đó

$$n > \left[ln \left(rac{arepsilon(1-q)}{|x_1-x_0|}
ight) / lnq
ight] + 1 = n_0$$

Vậy ta chỉ áp dùng phương pháp lặp đến n đủ lớn như trên và có nghiệm xấp xỉ thứ n.

2.3.3. Phương pháp Newton

- Cho phương trình f(x) = 0 với khoảng tách nghiệm [a, b] và gọi x^* là nghiệm trên [a, b] (sau bước 1).
- Giả sử $f'(x) \neq 0$ và f'(x) và f''(x) không đổi dấu trên khoảng tách nghiệm.
- Chọn một giá trị $x_0 \in [a, b]$ sao cho $f(x_0)$ cùng dấu với $f''(x_0)$ làm giá trị ban đầu.
- Tính dần các phần tử của dãy số

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}; x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}; ...; x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$
 (1)

• Khi đó dãy (x_n) sẽ đơn điệu hội tụ về nghiệm chính xác x^* . Sau một số bước lặp n đủ lớn ta có nghiệm gần đúng (nghiệm xấp xỉ)

$$x_n \approx x^*$$

2.3.3. Phương pháp Newton

• Sai số tuyệt đối của phương pháp Newton được cho bởi:

$$\Delta x = |x_n - x^*| \le \frac{M}{2m} (x_n - x_{n-1})^2$$

trong đó M và m là các số dương xác định bởi:

$$|f'(x)| \ge m > 0$$
 và $|f''(x)| \le M, \forall x \in [a, b]$

2.3.3. Phương pháp Newton

Có hai câu hỏi đặt ra:

• Áp dụng phương pháp Newton có cho ta nghiệm cuối cùng chính là nghiệm xấp xỉ của nghiệm cho phương trình cần tìm?

2.3.3. Phương pháp Newton

Có hai câu hỏi đặt ra:

- Áp dụng phương pháp Newton có cho ta nghiệm cuối cùng chính là nghiệm xấp xỉ của nghiệm cho phương trình cần tìm? Sự hội tụ của phương pháp
- Nếu tìm được nghiệm xấp xỉ, vậy sai số cho phép khi áp dụng phương pháp Newton là như thế nào?

2.3.3. Phương pháp Newton

Có hai câu hỏi đặt ra:

- Áp dụng phương pháp Newton có cho ta nghiệm cuối cùng chính là nghiệm xấp xỉ của nghiệm cho phương trình cần tìm? Sự hội tụ của phương pháp
- Nếu tìm được nghiệm xấp xỉ, vậy sai số cho phép khi áp dụng phương pháp Newton là như thế nào? Sai số của phương pháp

2.3.3. Phương pháp Newton

Sự hội tụ của Phương pháp Newton

Nhắc lại định lý khai triển Taylor:

Cho hàm số f(x) xác định và có đạo hàm đến cấp n+1 tại x_0 và lân cận của x_0 . Giải sử h là một giá trị sao cho x_0+h cũng thuộc lân cận này. Ta có công thức khai triển Taylor bậc n của f(x) tại x_0 :

$$f(x_0+h) = f(x_0) + \frac{h}{1!}f'(x_0) + \frac{h^2}{2!}f''(x_0) + \dots + \frac{h^n}{n!}f^{(n)}(x_0) + \frac{h^{n+1}}{(n+1)!}f^{(n+1)}(c)$$

2.3.3. Phương pháp Newton

Sự hội tụ của Phương pháp Newton

Với $x = x_1$ theo khai triển Taylor:

$$f(x_1) = f(x_0) + f'(x_0) + \frac{f''(c)}{2}f''(c)$$

Thay vào biểu thức (1) ta có:

$$f(x_1) = \frac{f''(c)}{2}(x_1 - x_0)^2$$

Giả sử f và f' cùng dấu, nên hàm f đồng biến và $f(x_1) \ge 0$. Suy ra $x_1 \ge x^*$.

2.3.3. Phương pháp Newton

Sự hội tụ của Phương pháp Newton

Theo công thức (1) với n = 1:

$$x_1 - x_0 = -\frac{f(x_0)}{f'(x_0)} \le 0$$

hay $x_1 \le x_0$. Ta đã chỉ ra $x_0 \ge x_1 \ge x^*$. Tương tự ta chứng minh được với $x_2, x_3, ..., x_n$.

Dãy $\{x_n\}$ giảm và bị chặn dưới bởi x^* nên hội tụ. Đặt

$$\lim_{n\to\infty}x_n=a$$

theo (1) ta có $f(a) = f(x^*) = 0$.

2.3.3. Phương pháp Newton

Sai số của phương pháp Newton

Áp dụng công thức (1) ta có:

$$|x_{n+1}-x_n| = \left|-\frac{f(x_n)}{f'(x_n)}\right| = \left|\frac{f''(c)(x_n-x_{n-1})^2}{2f'(x_{n-1})}\right| \le \frac{M}{2m}(x_n-x_{n-1})^2$$

Do đó

$$|x_{n+1}-x^*| \le |x_{n+1}-x_n| \le \frac{M}{2m}(x_n-x_{n-1})^2$$

Ta có công thức sai số của phương pháp Newton.

Thực hành

Hãy viết thuật toán giải các phương trình đã cho trong phần tách nghiệm bằng phương pháp Newton.

2.3.3. Phương pháp Newton

Ví du

- Hãy làm lại các ví dụ trong phương pháp lặp.
- ② Cho $f(x) = x^4 3x^2 + 75x 10000$. Hãy tìm nghiêm của phương trình f(x) = 0 bằng phương pháp Newton với 5 chữ số chắc, biết rằng nghiệm có hai chữ số trước dấu chấm thập phân.
- 3 Nhận xét, so sánh hai phương pháp.

2.3.4. Phương pháp dây cung (Secant)

- Cho phương trình f(x) = 0 với khoảng tách nghiệm [a, b] và gọi x^* là nghiệm trên [a, b] (sau bước 1).
- Gọi A, B là 2 điểm trên đồ thị f(x) có hoành độ tương ứng là a, b.
- Phương trình đường thẳng qua A, B có dạng:

$$\frac{y-f(a)}{f(b)-f(a)}=\frac{x_1-a}{b-a}$$

• Dây cung AB cắt trục Ox tại điểm C có tọa độ $(x_1,0)$.

2.3.4. Phương pháp dây cung (Secant)

• Điểm C có $y_1 = 0$, thay vào phương trình trên ta được:

$$x_1 = a - \frac{(b-a)f(a)}{f(b) - f(a)}$$

- Nếu $f(a)f(x_1) < 0$ thì khoảng tách nghiệm mới là (a, x_1) , ngược lại thì khoảng tách nghiệm là (x_1, b) .
- Áp dụng tiếp tục phương pháp dây cung vào khoảng tách nghiệm mới này, ta được x_2 , sau đó $x_3, x_4, ..., x_n$.
- Công thức lặp của phương pháp dây cung

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}, \quad k = 1, 2, ...$$

2.3.4. Phương pháp dây cung (Secant)

Sai số của phương pháp

Định lý

Giả sử f'(x) liên tục và không đổi dấu trên [a,b] và tồn tại m,M sao cho:

$$0 < m < |f'(x)| < M < \infty, \quad \forall x \in [a, b]$$

Khi đó ta có

$$|x_n - x^*| \le \frac{M - m}{m} |x_n - x_{n-1}|$$

2.3.4. Phương pháp dây cung (Secant)

Thực hành

Hãy viết chương trình minh họa cho thuật toán dây cung.

Ví dụ

Giải phương trình $f(x) = x^3 + x - 5 = 0$ với sai số cho phép là 10^{-3} bằng các phương pháp đã học, từ đó so sánh chúng với nhau.

2.3.5. Phương pháp điểm bất động (Fixed point)

Định nghĩa điểm bất động (fixed point)

Một số $p \in \mathbb{R}$ được gọi là điểm bất động của một hàm g nếu g(p) = p.

• Xét phương trình f(x) = 0, để giải phương trình này ta cần tìm hàm g có điểm bất động tại p,

$$g(x) = x - f(x)$$
 hoặc $g(x) = x + kf(x), k = const$

• Nếu g được tìm có điểm bất động tại p, thì hàm

$$f(x) = x - g(x)$$

đạt 0 tại p.

• Điểm bất động của hàm g là giao điểm của đồ thị hàm g và đường thẳng d: y = x.

2.3.5. Phương pháp điểm bất động (Fixed point)

Ví dụ

Hãy tìm điểm bất động của hàm $g(x) = x^2 - 2$.

• Điểm bất động p thỏa: $p = g(p) = p^2 - 2$ hay p = -1 v p = 2.

2.3.5. Phương pháp điểm bất động (Fixed point)

Định lý về Sự duy nhất của điểm bất động

- (i) Nếu $g \in C([a, b])$ và $g(x) \in [a, b]$ với mọi $x \in [a, b]$, khi đó g có ít nhất một điểm bất động trong [a, b].
- (ii) Nếu g còn thỏa g'(x) tồn tại trên (a,b) và tồn tại k<1 thỏa

$$|g'(x)| \le k, \forall x \in (a, b)$$

Khi đó, tồn tại duy nhất một điểm bất động của g trong [a, b].

2.3.5. Phương pháp điểm bất động (Fixed point) 7

Câu hỏi: Làm thế nào ta biết được dãy (p_n) có hội tụ đến nghiệm của phương trình cần giải xấp xỉ hay không?

Định lý điểm bất động

Cho $g \in C[a,b]$ thỏa mãn $g(x) \in (a,b)$ với mọi $x \in [a,b]$. Giả sử thêm rằng g' tồn tại trên (a,b) và một hằng số k thỏa 0 < k < 1 tồn tại với

$$|g'(x)| \le k, \forall x \in (a, b)$$

Khi đó, với $p_0 \in [a, b]$ bất kỳ thì dãy (p_n) xác định bởi

$$p_n=g(p_{n-1}), n\geq 1$$

hộ tụ đến điểm bất động duy nhất p trong [a, b].

2.3.5. Phương pháp điểm bất động (Fixed point)

Để tìm xấp xỉ điểm bất động của hàm g nào đó, ta:

- Xác định một xấp xỉ ban đầu p_0
- ullet Thiết lập một dãy $\{p_n\}_{n\in\mathbb{N}}$ bằng cách đặt

$$p_n=g(p_{n-1})$$

với mỗi $n \geq 1$.

ullet Nếu dãy này hội tụ đến p thì đó chính là điểm bất động của g.

Bài tập thực hành

Hãy viết thuật toán chương trình tìm điểm bất động của hàm số.

2.3.5. Phương pháp điểm bất động (Fixed point) 7

Sai số của phương pháp

Sai số của phương pháp tìm điểm bất động được cho bởi:

$$|p_n-p|\leq k^n\max\{p_0-a,b-p_0\}$$

và

$$|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0|, \forall n \ge 1$$

Chú ý: Phương pháp sẽ hội tụ càng chậm nếu k càng gần 1.

2.3.5. Phương pháp điểm bất động (Fixed point) 7

Ví du

Dùng phương pháp điểm bất động vừa học hãy tìm nghiệm xấp xỉ của phương trình

$$x^3 + 4x^2 - 10 = 0$$

Hãy áp dụng giải lại các bài tập trước.