The Fertility Race Between Technology and Social Norms

Xican Xi Anson Zhou

March 30, 2025

Motivation

Data source: United Nations, World Population Prospects (2022)

OurWorldInData.org/fertility-rate | CC BY
Note: The total fertility rate is the number of children born to a woman if she were to live to the end of her childbearing years and give birth to children at the current age-specific fertility rates.

This paper

- Document two new facts:
 - Countries experiencing faster structural change have witnessed more drastic fertility decline
 - 2. Relationship is stronger in countries with rigid social norms
- A quantitative model of child bargaining
 - → Fertility decision subject to veto
 - → Childcare allocation under the influence of social norm
 - → Endogenous social norm formation
- A tug-of-war between technological change and social norm
- Calibrate to the transition path of South Korea

Key findings

- 1. In the presence of gender-biased technological change, countries experience steeper fertility decline if
 - → Intense social pressure
 - → Reluctance of older cohorts to adapt
- 2. Slow but eventual fertility recovery as social norm adapt
 - → Within-cohort changes adaptation
 - → Between-cohort changes cohort replacement effects
- 3. Government policies could accelerate the transition

Literature

- Goldin (2024)
- Myong et al. (2021)
- Doepke and Kindermann (2019)
- Fernández and Fogli (2009), Fogli and Veldkemp (2013)

Roadmap

- Motivating facts
- Quantitative model
- Calibration
- Results
- Conclusion

Motivating Facts

Data Source

- Fertility data from the United Nations
- Sectoral employment data from the Groningen Growth and Development Centre (GGDC)
- GDP data from the Penn World Table 10.01
- Cultural tightness data from Uz (2019)
 - → The dispersion of opinions: in a tight culture, people's values, norms, and behavior are similar to each other because deviations are sanctioned
- 23 countries spanning all levels of development

Variable Definition

• Speed of fertility change for country *i*:

$$\log(\mathsf{tfr})_{i,\mathsf{year}} = \alpha_i^{\mathsf{tfr}} + \mathsf{speed_tfr}_i \times \mathsf{year} + u_i \tag{1}$$

• Speed of structural change for country *i*:

$$service share_{i,year} = \alpha_i^{ser} + speed_ser_i \times year + v_i$$
 (2)

$$\operatorname{agriculture share}_{i, \text{year}} = \alpha_i^{\text{agr}} + \operatorname{speed_agr}_i \times \operatorname{year} + v_i \tag{3}$$

Service Expansion and Fertility Decline

Agriculture Shrinkage and Fertility Decline

Regression Results

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Dependent variable: speed_tfr							
speed_ser	-3.32	-2.62	-2.32	-1.70				
	(0.80)	(0.84)	(0.98)	(0.97)				
tight × speed_ser			-1.03	-0.98				
			(0.62)	(0.59)				
speed_agr					2.17	1.78	1.58	1.30
					(0.47)	(0.47)	(0.59)	(0.57)
$tight \times speed_agr$							0.74	0.64
							(0.48)	(0.46)
speed_gdp		-0.15		-0.14		-0.15		-0.14
		(80.0)		(0.07)		(0.07)		(0.07)
Observations	23	23	23	23	23	23	23	23

Model Setup

- Overlapping generations model with J periods of life
- Fertility decision at period J_f
- Gender $g \in \{ \emptyset, \emptyset \}$ with preference

$$u^{g}(c^{g}, n) = c^{g} + \gamma \cdot \frac{n^{1-\rho} - 1}{1-\rho} \qquad \rho > 0$$
 (4)

• Raising each child incurs a time cost ϕ . Parents need to satisfy the childcare provision constraint:

$$n\phi = \left((l^{\mathcal{Q}})^{\frac{\sigma-1}{\sigma}} + (l^{\mathcal{O}})^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}, \qquad \sigma > 1$$
 (5)

Bargaining under limitted committment

Stage 1: Childcare Decision

• For all *n*, the couple solves:

$$\min_{l^{\widehat{Q}}, l^{\widehat{\mathcal{O}}}} \quad w_t^{\widehat{Q}} l^{\widehat{Q}} + w_t^{\widehat{\mathcal{O}}} l^{\widehat{\mathcal{O}}} + \lambda \cdot w_t^{\widehat{\mathcal{O}}} \cdot \left(\frac{l^{\widehat{Q}}}{l^{\widehat{\mathcal{O}}}} - \eta_t\right)^2, \tag{6}$$

- Exogenous wages w_t^{\circlearrowleft} and w_t^{\lozenge}
- Prevailing social norm η_t
- Parameter λ governs social pressure
- Parents can commit to the solution $l_t^{\mathcal{Q}}(n)$ and $l_t^{\mathcal{O}}(n)$

Stage 2: Fertility Decision

• Only mutually agreed-upon fertility is realized, defined as:

$$n_t = \min\{n_t^{\mathcal{Q}}, n_t^{\mathcal{O}}\},\tag{7}$$

• n_t^g is the fertility level that maximizes the ex-post utility of gender $g \in \{ \varphi, \varnothing \}$ in the third stage.

Stage 3: Consumption Allocation

With n children, outside option in the non-cooperative case

$$\overline{u}^g(n) = w_t^g(1 - l_t^g(n)) + \gamma \cdot \frac{n^{1-\rho} - 1}{1 - \rho}, \qquad \rho > 0,$$
(8)

Nash bargaining of consumption

$$\max_{c \stackrel{\circ}{\downarrow}, c \stackrel{\circ}{\circlearrowleft}} \left(u^{\circ}(c^{\circ}, n) - \overline{u}^{\circ}(n) \right)^{1/2} \cdot \left(u^{\circ}(c^{\circ}, n) - \overline{u}^{\circ}(n) \right)^{1/2}, \tag{9}$$

subject to the budget constraint:

$$c^{Q} + c^{Q'} = (1 + \alpha) \cdot [w_t^{Q}(1 - l_t^{Q}(n)) + w_t^{Q'}(1 - l_t^{Q'}(n))], \tag{10}$$

Social Norm

The prevailing social norm at time t is defined as:

$$\eta_t = \sum_{j=1}^{J-J_f} \phi_{J_f+j,t} \cdot \tilde{\eta}_{J_f+j}, \qquad \sum_{j=1}^{J-J_f} \phi_{J_f+j,t} = 1,$$
(11)

Weights reflect population shares:

$$\phi_{j,t} = \frac{\pi_{j,t}}{\sum_{k=J_f+1}^{J} \pi_{k,t}},\tag{12}$$

where $\pi_{j,t}$ denotes the population share of the cohort aged j at time t

Older Cohorts' Re-evaluation

Older cohorts form opinions by solving:

$$\tilde{\eta}_{J_f+j} = \underset{\eta}{\operatorname{arg\,min}} \ w_t^{\circ} \cdot \eta + w_t^{\circ} + \psi \cdot \left(\eta - \frac{l_{t-j}^{\circ}}{l_{t-j}^{\circ}} \right)^2. \tag{13}$$

- $l_{l_{t-j}}^{\varphi}$ is the childcare practice adopted by these agents j periods ago
- Parameter ψ governs "stubbornness"
- Social norm evolution reflects:
 - 1. Within-cohort effects from re-evaluation
 - 2. Between-cohort effects from entry and exit

Demographic Evolution

• The demographic structure of this economy π_t evolves

$$\pi_{t+1} = \frac{\Pi_t \cdot \pi_t}{\|\Pi_t \cdot \pi_t\|_{L^2}},\tag{14}$$

where Π_t is a $J \times J$ demographic transition matrix

• The element in the first row and J_f -th column of Π_t equals $n_t/2.1$

Calibration Strategy (1)

• The parameters to be calibrated are:

$$J,J_f$$
 , $\gamma,\rho,\psi,\lambda,$ ϕ,σ,α . demographics preferences technologies

- Some parameters exogenously set:
 - \rightarrow Each period as 5 years, set J=16 (total lifespan of 80 years) and $J_f=6$ (childbearing between 25 to 30)
 - $ightarrow \, lpha = 1.2$ following Doepke and Kindermann (2019)
 - $ightarrow \phi = 0.15$ following de La Croix and Doepke (2003)

Calibration Strategy (2)

- The fertility weight, γ , is inferred from the initial fertility level
- The fertility curvature, ρ , governs the trade-off between consumption and fertility, identified by the fertility response to rising opportunity costs
- The childcare substitutability, σ , is determined by the initial gender gap in childcare time.
- The weight of individual's own experience in the formation of opinions, i.e., "stubbornness", ψ , is calibrated to match the share of between-cohort component in driving social norm changes
- The social pressure parameter, λ , is calibrated to the persistence of gender gaps in childcare over time

Data Source

Calibrate to match South Korea from 1999 to 2014

- Gendered wage path from the World Bank
- Fertility path from the United Nations
- Childcare time by gender from the Korea Time Use Survey
- Opinion change from the Korean General Social Survey

Calibration Results (1)

Calibration Results (2)

	Parameter	Value	Data moment	Source	Model fit
γ	Fertility weight	0.24	$n_{1999} = 1.42$	United Nations	1.42
σ	Childcare substitutability	3.05	$\eta_{1999} = 5.25$	Park (2021)	5.25
$\boldsymbol{\rho}$	Fertility curvature	2.4	$n_{1999} \sim n_{2014}$	United Nations	See Figure 1
ψ	Stubbornness	3.0	Within-cohort effects	KGSS	80%
λ	Social pressure	0.0006	$\eta_{1999}\sim\eta_{2014}$	Park (2021)	See Figure 1
α	Economies of scale	1.2	Doepke and Kindermann (2019)		
ϕ	Time costs per child	0.15	de La Croix and Doepke (2003)		
\boldsymbol{J}	Total number of periods	16	80 years World Health Organization		rganization
J_f	The fertile period	6	25 to 30 yo	25 to 30 yo Statista	

Calibration Results (3)

	Old tech. & old norm	New tech. & new norm	New tech. & old norm
w^{Q}/w^{O}	0.58	0.74	0.74
η	5.25	2.53	5.25
$l^{\mathbb{Q}}/l^{\mathbb{Q}}$	5.25	2.53	4.66
n	1.43	1.37	1.32

Counterfactual 1: The Speed of Technological Change

Counterfactual 2: The Role of Social Pressure

Counterfactual 3: The Role of Older Cohorts' Reevaluation

Counterfactual 4: Policy Evaluation

Conclusion

- A quantitative model to study the fertility impacts of gender-biased technological change with endogenous social norm
- Intense social pressure and reluctance to adapt result in steep fertility decline and entrenched traditional norms
- Slow but eventual fertility recovery
- Policies could accelerate the transition