UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA

Ingeniería en Software y Tecnologías Emergentes Estadística Avanzada

Práctica 12. Prueba de Bondad y Ajuste

ALUMNO: Fernando Haro Calvo MATRICULA: 372106

GRUPO: 932

PROFESOR: Juan Iván Nieto Hipólito 2 de noviembre del 2023

Práctica 12 Prueba de bondad

Ejercicio

Probar que los siguientes datos provienen de una distribución normal. Se midió el contenido de nicotina en una muestra aleatoria de 40 cigarrillos. Los datos se presentan en la tabla. Alfa=0.05.

Valores de nicotina para el ejercicio:

```
1.09 1.92 2.31 1.79 2.28 1.74 1.47 1.97 0.85 1.24 1.58 2.03 1.70 2.17 2.55 2.11 1.86 1.90 1.68 1.51 1.64 0.72 1.69 1.85 1.82 1.79 2.46 1.88 2.08 1.67 1.37 1.93 1.40 1.64 2.09 1.75 1.63 2.37 1.75 1.69
```

Código

```
from scipy import stats
import numpy as np
import matplotlib.pyplot as plt
datos= [1.09, 1.92, 2.31, 1.79, 2.28, 1.74, 1.47, 1.97,
0.85, 1.24, 1.58, 2.03, 1.70, 2.17, 2.55, 2.11,
1.86, 1.90, 1.68, 1.51, 1.64, 0.72, 1.69, 1.85,
1.82, 1.79, 2.46, 1.88, 2.08, 1.67, 1.37, 1.93,
1.40, 1.64, 2.09, 1.75, 1.63, 2.37, 1.75, 1.69]
np.std(datos)
num intervalos = 5
intervalos, bordes = np.histogram(datos, bins=num_intervalos)
for i in range(num_intervalos):
    print(f"Intervalo\ \{i\ +\ 1\}:\ \{round(bordes[i],\ 2)\}\ -\ \{round(bordes[i\ +\ 1],\ 2)\},\ Frecuencia:\ \{intervalos[i]\}")
plt.hist(datos, bins=num_intervalos)
res = stats.normaltest(datos)
print("Valor X2: ", res.statistic)
```

Salidas

Práctica 12 Prueba de bondad

Intervalo 1: 0.72 - 1.09, Frecuencia: 2 Intervalo 2: 1.09 - 1.45, Frecuencia: 4 Intervalo 3: 1.45 - 1.82, Frecuencia: 16 Intervalo 4: 1.82 - 2.18, Frecuencia: 13 Intervalo 5: 2.18 - 2.55, Frecuencia: 5 Valor X2: 3.656655307820631

Procedimiento

Práctica 12 Prueba de bondad

Práctica 12 Prueba de bondad 3