

CTR의 분산 추정 중 빠질 수 있는 함정 (feat. 수리통계학)

방태모 | 지마켓

본인 소개

Data Scientist

Data Scientist

글쓰기

<u>블로그</u> 요즘IT

온라인 통제 실험 연구자로 거듭나기

<u>깃허브</u>에서 공유 중인 자료

- 스터디 자료
- 실험 관련 질문, 고민 나누기 (issues)

온라인 통제 실험 연구자로 거듭나기

가짜연구소 인과추론 팀 <온라인 통제 실험 연구자로 거듭나기> 프로젝트 스터디 자료 모음

회차	날짜	발표자	주제	발표 자료
1회차	2024-03-13	<u>방태모</u>	상반기 스터디 OT	<u>링크</u>
2회차	2024-03-19	<u>방태모</u>	온라인 통제 실험 소개 및 분석 기초	<u>링크</u>
3회차	2024-03-26	<u>방태모</u>	예제를 통한 A/B 실험의 과정 이해	<u>링크</u>
4회차	2024-04-02	<u>이재호</u>	조직 운영을 위한 지표	<u>링크</u>
5회차	2024-04-09	양유승	실험을 위한 지표와 종합평가기준	<u>링크</u>
6회차	2024-04-16	조동민	온라인 종합 대조 실험에 사용되는 통계 이론	<u>링크</u>
7회차	2024-04-23	<u>지서영</u>	분산 추정 및 민감도 개선: 함정 및 해결책	<u>링크</u>
8회차	2024-04-30	-	쉬어가는 주	-
9회차	2024-05-07	<u>박혜지</u>	A/A 테스트	<u>링크</u>
10회차	2024-05-14	황의림	민감도 향상을 위한 트리거링	<u>링크</u>
11회차	2024-05-21	문정하	샘플 비율 불일치 및 기타 신뢰 관련 가드레일 척도	<u>링크</u>

- ▶ 프로젝트 소개
- <u> 스터디 요약, Discuss, Q&A</u> (Open, Closed 둘 다 참고하세요!)
- ▶ 가짜연구소 인과추론팀 블로그
- ▶ 가짜연구소 블로그

References

[1] Kohavi, R., Tang, D., & Xu, Y. (2020). Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing. Cambridge University Press. https://experimentguide.com/

[2] Gupta, S., Ulanova, L., Bhardwaj, S., Dmitriev, P., Raff, P., & Fabijan, A. (2018). The Anatomy of a Large-Scale Experimentation Platform. 2018 IEEE International Conference on Software Architecture (ICSA), 1–109. https://doi.org/10.1109/ICSA.2018.00009

그림 2. <온라인 통제 실험 연구자로 거듭나기 프로젝트> 깃허브

오늘 할 이야기

두 지표 간 비율 지표에 관한 분산 추정

실험설계에서 알아두어야 할 기초 개념

관찰 단위

• 실험에서 최종 측정값이 나오는 최소 단위

온라인 통제 실험의 관찰 단위

퀴즈 1. 온라인 통제 실험의 관찰 단위는?

온라인 통제 실험의 관찰 단위

퀴즈 1. 온라인 통제 실험의 관찰 단위는?

사용자 (고객)

온라인 통제 실험의 관찰 단위

Causal-Lab

대조군, 실험군에 대한 무작위 배정 또한

사용자에 대해 이루어짐

그림 2. 해시 알고리즘을 이용한 무작위화 및 고객 버켓팅 (Source: Spotify, <u>Schultzberg, Kjellin, and Rydberg 2021</u>)

광고 타임

그림 2에 관한 자세한 설명이 궁금하시다면..

실무로 통하는 인과추론 특강 2-1 보러가기

온라인 통제 실험에서의 일반적인 관심사

대조군, 실험군 간 사용자들의 반응 차이가 어떠한가?

- PV
- Click
- SE Conversion (add to cart, buy it now)
- Order
- GMV
- ..

그렇다면, 온라인 실험에서는 어떤 지표를 봐야할까?

• 관찰 단위도 사용자이며, 무작위 배정도 사용자 중심인데..

그렇다면, 온라인 실험에서는 어떤 지표를 봐야할까?

• 관찰 단위도 사용자이며, 무작위 배정도 사용자 중심인데..

먼저, 분석 단위라는 것을 정의해보자

• 분석 단위: 분석에 사용되는 지표의 단위

그렇다면, 온라인 실험에서는 어떤 지표를 봐야할까?

• 관찰 단위도 사용자이며, 무작위 배정도 사용자 중심인데..

먼저, 분석 단위라는 것을 정의해보자

• 분석 단위: 분석에 사용되는 지표의 단위

퀴즈 2. 그렇다면, 온라인 통제 실험에서 분석 단위는 무엇이 되어야할까?

그렇다면, 온라인 실험에서는 어떤 지표를 봐야할까?

• 관찰 단위도 사용자이며, 무작위 배정도 사용자 중심인데..

먼저, 분석 단위라는 것을 정의해보자

• 분석 단위: 분석에 사용되는 지표의 단위

퀴즈 2. 그렇다면, 온라인 통제 실험에서 분석 단위는 무엇이 되어야할까?

사용자

사용자 단위 지표

- PV per visitor
- Click per visitor
- Order per visitor
- Orderer per visitor (Conversion 개념)
- GMV per visitor
- ..

우리 프로덕트의 핵심 지표는 CTR인데요?..

관찰단위와 분석단위가 다르면 발생하는 상황

CTR = Sum(Click) / Sum(PV)

→ 분석 단위: PV

→ 온라인 실험의 관찰 단위: 사용자

→ 분석 단위 ≠ 관찰 단위

- 해당 관심 지표의 분산 추정에 주의를 기울이지 않으면 Bias가 생김
- 이에 따라, 통계적 가설 검정 시 잘못된 의사 결정을 할 수 있게됨

관찰 단위와 일치하지 않는 분석 단위를 갖는 지표의 분산 추정에 Bias가 생기는 이유

- 확률표본(random sample)의 i.i.d. 가정이 깨지기 때문
 - Independent and identically distributed (i.i.d.)
 - Independent 가정이 깨짐

다시 CTR로 돌아가보면..

- CTR = Sum(Click) / Sum(PV)
- 관찰 단위는 사용자이나.. CTR의 분석 단위는 PV

다시 CTR로 돌아가보면..

- CTR = Sum(Click) / Sum(PV)
- 관찰 단위는 사용자이나.. CTR의 분석 단위는 PV

퀴즈 3. PV가 독립적이라고 할 수 있는가?

다시 CTR로 돌아가보면..

- CTR = Sum(Click) / Sum(PV)
- 관찰 단위는 사용자이나.. CTR의 분석 단위는 PV

퀴즈 3. PV가 독립적이라고 할 수 있는가?

No, 사용자가 해당 페이지에서 어떤 경험을 했는지에 따라 다음 PV 여부가 결정됨

그럼 이러한 지표들에 대한 분산 추정이 필요할때는 어떻게 해야하나요?

CTR와 같은 지표를 비율 지표(Ratio metric)이라고 칭합니다.

- CTR
- GMV per order

• ..

$$CTR = \frac{\sum Click}{\sum PV}$$

$$CTR = \frac{\sum Click}{\sum PV}$$

여기서 중요한 포인트

- 사용자로부터 측정되는 모든 지표들은 확률변수(random variable)
- 상수로 취급할 수 있는 값은 고유 사용자의 수 (표본 크기, N)

광고 타임

확률변수, 통계량, 추정량에 관한 개념을 잡고 싶으시다면..

실무로 통하는 인과추론 특강 2-1 보러가기

$$CTR = \frac{\sum Click}{\sum PV}$$

여기서 중요한 포인트

- 사용자로부터 측정되는 모든 지표들은 확률변수(random variable)
- 상수로 취급할 수 있는 값은 고유 사용자의 수 (표본 크기, N)

$$CTR = \frac{\sum Click}{\sum PV} = \frac{\frac{1}{N}\sum Click}{\frac{1}{N}\sum PV} = \frac{\overline{X}}{\overline{Y}} = M_{ctr}$$

$$Var(M_{ctr}) = Var\left(\frac{\overline{X}}{\overline{Y}}\right)$$

두 표본평균의 비(i.e. 비율지표)에 관한 분산 추정이 필요한 상황..

• 사용자 단위 지표의 분산 추정은 굉장히 간단함 (Click per visitor = \bar{X})

$$Var(M_{ctr}) = Var\left(\frac{\overline{X}}{\overline{Y}}\right)$$

두 표본평균의 비(i.e. 비율지표)에 관한 분산 추정이 필요한 상황..

• 사용자 단위 지표의 분산 추정은 굉장히 간단함 (Click per visitor = \bar{X})

$$Var(\bar{X}) = Var(\frac{1}{N}\sum X_i) = \frac{1}{N^2}Var(\sum X_i) = \frac{1}{N^2} \cdot N \cdot Var(X)$$

$$Var(X) = \hat{\sigma}^2 = \frac{1}{N-1} \sum (X_i - \bar{X})^2$$
이라 하자:

$$\therefore Var(\bar{X}) = \frac{1}{N^2} \cdot N \cdot \hat{\sigma}^2 = \frac{\hat{\sigma}^2}{N}$$

아무튼, 사용자 단위 지표의 분산 추정은 쉬운 것을 알겠고..

그래서, 비율 지표는 두 표본평균의 비에 관한 통계량에 해당하는데.. 이럴 때엔 분산 추정을 어떻게?..

$$Var(M_{ctr}) = Var\left(\frac{\overline{X}}{\overline{Y}}\right)$$

아무튼, 사용자 단위 지표의 분산 추정은 쉬운 것을 알겠고..

그래서, 비율 지표는 두 표본평균의 비에 관한 통계량에 해당하는데.. 이럴 때엔 분산 추정을 어떻게?.

$$Var(M_{ctr}) = Var\left(\frac{\overline{X}}{\overline{Y}}\right)$$

- → Delta Method (*Deng et al., 2018*)
- → 확률변수의 점근분포(asymptotic distribution)를 유도하는데에 사용되는 수리통계학적 방법론
- → 두 표본평균의 비는 새로운 통계량이자 확률변수에 해당
- → 두 표본평균의 비에 관한 분산 추정에도 Delta Method가 사용됨

$$Var(M_{ctr}) = Var\left(\frac{\overline{X}}{\overline{Y}}\right) = \frac{1}{\overline{Y}^2}Var(\overline{X}) + \frac{\overline{X}^2}{\overline{Y}^4}Var(\overline{Y}) - 2\frac{\overline{X}}{\overline{Y}^3}Cov(\overline{X}, \overline{Y})$$

$$Var(M_{ctr}) = Var\left(\frac{\overline{X}}{\overline{Y}}\right) = \frac{1}{\overline{Y}^2}Var(\overline{X}) + \frac{\overline{X}^2}{\overline{Y}^4}Var(\overline{Y}) - 2\frac{\overline{X}}{\overline{Y}^3}Cov(\overline{X}, \overline{Y})$$

$$Var(M_{ctr}) = \frac{\overline{Y}^2 Var(\overline{X}) - 2\overline{X}\overline{Y}Cov(\overline{X}, \overline{Y}) + \overline{X}^2 Var(\overline{Y})}{\overline{Y}^4}$$

Symmetric하게 예쁘게 식이 떨어짐

$$Var(M_{ctr}) = Var\left(\frac{\overline{X}}{\overline{Y}}\right) = \frac{1}{\overline{Y}^2}Var(\overline{X}) + \frac{\overline{X}^2}{\overline{Y}^4}Var(\overline{Y}) - 2\frac{\overline{X}}{\overline{Y}^3}Cov(\overline{X}, \overline{Y})$$

$$Var(M_{ctr}) = \frac{\overline{Y}^2 Var(\overline{X}) - 2\overline{X}\overline{Y}Cov(\overline{X}, \overline{Y}) + \overline{X}^2 Var(\overline{Y})}{\overline{Y}^4}$$

Symmetric하게 예쁘게 식이 떨어짐

여기서 생각해볼만한 재밌는 점은..

$$\bar{X} = \frac{1}{N} \sum Click, \bar{Y} = \frac{1}{N} \sum PV$$

퀴즈 4. 두 지표 각각을 한마디로 정의해본다고 하면, 무엇이 떠오르시나요?

비율 지표의 분산 추정

$$Var(M_{ctr}) = Var\left(\frac{\overline{X}}{\overline{Y}}\right) = \frac{1}{\overline{Y}^2}Var(\overline{X}) + \frac{\overline{X}^2}{\overline{Y}^4}Var(\overline{Y}) - 2\frac{\overline{X}}{\overline{Y}^3}Cov(\overline{X}, \overline{Y})$$

$$Var(M_{ctr}) = \frac{\overline{Y}^2 Var(\overline{X}) - 2\overline{X}\overline{Y}Cov(\overline{X}, \overline{Y}) + \overline{X}^2 Var(\overline{Y})}{\overline{Y}^4}$$

Symmetric하게 예쁘게 식이 떨어짐

여기서 생각해볼만한 재밌는 점은..

$$\bar{X} = \frac{1}{N} \sum Click, \bar{Y} = \frac{1}{N} \sum PV$$

퀴즈 4. 두 지표 각각을 한마디로 정의해본다고 하면, 무엇이 떠오르시나요?

 \bar{X} 는 사용자 당 클릭, \bar{Y} 는 사용자 당 PV (즉, CTR은 사용자 단위의 두 지표 간 비율지표)

비율 지표의 분산 추정

$$Var(M_{ctr}) = \frac{\overline{Y}^2 Var(\overline{X}) - 2\overline{X}\overline{Y}Cov(\overline{X}, \overline{Y}) + \overline{X}^2 Var(\overline{Y})}{\overline{Y}^4}$$

사용자 단위 지표의 표본평균, 표본분산, 공분산 정보만 있으면 됨

- → CTR의 분산 추정이 굉장히 쉬워짐
- → 수리통계학의 아름다움

비율 지표의 분산 추정

$$Var(M_{ctr}) = \frac{\overline{Y}^2 Var(\overline{X}) - 2\overline{X}\overline{Y}Cov(\overline{X}, \overline{Y}) + \overline{X}^2 Var(\overline{Y})}{\overline{Y}^4}$$

필요 데이터는 이게 끝 -> 실험 기간 동안 관측된 개별 사용자의 클릭(X), PV(Y) 관측값

- 사용자 당 클릭, 사용자 당 PV 연산
- 사용자 당 클릭, 사용자 당 PV 각각의 표본분산 연산
- 사용자 당 클릭, 사용자 당 PV 간 표본 공분산 연산 $(Cov(\bar{X}, \bar{Y}) = \frac{1}{n}Cov(X, Y))$

보너스. A/B 테스트의 최종 관심인 Delta %에 관한 분산 추정

$$\Delta\% = \frac{M_{trt} - M_{con}}{M_{con}}$$

 Δ %는 대조군 대비 실험군에서 핵심 관심 지표(M)의 변화율

$$\Delta\% = \frac{M_{trt} - M_{con}}{M_{con}}$$

Δ% 에 대해 통계적 가설 검정을 한다고 해보자.

퀴즈 5. Δ% 값 자체 외에 추가적으로 꼭 필요로 되는 값은?

$$\Delta\% = \frac{M_{trt} - M_{con}}{M_{con}}$$

Δ% 에 대해 통계적 가설 검정을 한다고 해보자.

퀴즈 5. Δ% 값 자체 외에 추가적으로 꼭 필요로 되는 값은?

- → ∆%의 분산
- \rightarrow 표본평균의 계산은 쉬움.. 문제는 표본분산인 $Var(\Delta\%)$ 에 관한 추정

$$Var(\Delta\%) = Var\left(\frac{M_{trt} - M_{con}}{M_{con}}\right) = Var\left(\frac{M_{trt}}{M_{con}} - 1\right) = Var\left(\frac{M_{trt}}{M_{con}}\right)$$

또 한 번 비율 지표에 관한 분산 추정 필요

$$Var(\Delta\%) = Var\left(\frac{M_{trt} - M_{con}}{M_{con}}\right) = Var\left(\frac{M_{trt}}{M_{con}} - 1\right) = Var\left(\frac{M_{trt}}{M_{con}}\right)$$

또 한 번 비율 지표에 관한 분산 추정 필요

여기서 실험의 핵심 관심 지표 M을 앞서 구해둔 CTR이라 하자.

앞서 배운 Delta method를 그대로 적용하면:

$$Var\left(\frac{M_{trt}}{M_{con}}\right) = \frac{M_{con}^2 Var(M_{trt}) - 2M_{trt}M_{con}Cov(M_{trt},M_{con}) + {M_{trt}}^2 Var(M_{con})}{M_{con}^4}$$

$$Var(\Delta\%) = Var\left(\frac{M_{trt} - M_{con}}{M_{con}}\right) = Var\left(\frac{M_{trt}}{M_{con}} - 1\right) = Var\left(\frac{M_{trt}}{M_{con}}\right)$$

또 한 번 비율 지표에 관한 분산 추정 필요

여기서 실험의 핵심 관심 지표 M을 앞서 구해둔 CTR이라 하자.

앞서 배운 Delta method를 그대로 적용하면:

$$Var\left(\frac{M_{trt}}{M_{con}}\right) = \frac{M_{con}^2 Var(M_{trt}) - 2M_{trt}M_{con}Cov(M_{trt},M_{con}) + {M_{trt}}^2 Var(M_{con})}{M_{con}^4}$$

여기서 희소식은 공분산 항을 소거할 수 있다는 것!

퀴즈 6. 대조군과 실험군 각각의 관심지표에 관한 공분산은 어째서 소거가 될까?

$$Var(\Delta\%) = Var\left(\frac{M_{trt} - M_{con}}{M_{con}}\right) = Var\left(\frac{M_{trt}}{M_{con}} - 1\right) = Var\left(\frac{M_{trt}}{M_{con}}\right)$$

또 한 번 비율 지표에 관한 분산 추정 필요

여기서 실험의 핵심 관심 지표 M을 앞서 구해둔 CTR이라 하자.

앞서 배운 Delta method를 그대로 적용하면:

$$Var\left(\frac{M_{trt}}{M_{con}}\right) = \frac{M_{con}^2 Var(M_{trt}) - 2M_{trt}M_{con}Cov(M_{trt}, M_{con}) + M_{trt}^2 Var(M_{con})}{M_{con}^4}$$

여기서 희소식은 공분산 항을 소거할 수 있다는 것!

퀴즈 6. 대조군과 실험군 각각의 관심지표에 관한 공분산은 어째서 소거가 될까?

실험군과 대조군은 무작위 배정을 통해 독립적으로 할당되기 때문 (독립 -> 공분산 0, 단 역은 성립 안함)

$$Var\left(\frac{M_{trt}}{M_{con}}\right) = \frac{M_{con}^2 Var(M_{trt}) + M_{trt}^2 Var(M_{con})}{M_{con}^4}$$

결론적으로 필요한 데이터는 여전히 똑같다.

$$Var\left(\frac{M_{trt}}{M_{con}}\right) = \frac{M_{con}^2 Var(M_{trt}) + M_{trt}^2 Var(M_{con})}{M_{con}^4}$$

결론적으로 필요한 데이터는 여전히 똑같다.

실험 기간 동안 관측된 개별 사용자의 클릭(X), PV(Y) 관측값

- 실험군과 대조군 각각의 CTR 연산 (M_{trt} , M_{con})
- 실험군과 대조군 각각의 CTR의 표본분산 연산 $(Var(M_{trt}), Var(M_{con}))$

$$Var\left(\frac{M_{trt}}{M_{con}}\right) = \frac{M_{con}^2 Var(M_{trt}) + M_{trt}^2 Var(M_{con})}{M_{con}^4}$$

결론적으로 필요한 데이터는 여전히 똑같다.

실험 기간 동안 관측된 개별 사용자의 클릭(X), PV(Y) 관측값

- 실험군과 대조군 각각의 CTR 연산 (M_{trt} , M_{con})
- 실험군과 대조군 각각의 CTR의 표본분산 연산 ($Var(M_{trt}), Var(M_{con})$)

수리통계학의 아름다움

오늘 한 이야기 요약

- 사용자로부터 측정되는 모든 값은 확률변수
- 실험 기간 동안 관측된 사용자의 개별 관심 행동(e.g. Order, Order Conversion, Click) 데이터만 있다면 사용자 단위 지표 외에도 실험에서 관심을 가질만한 거의 모든 통계량이 계산 가능해짐
 - How? Delta Method 이용
 - CTR, GMV per order 등과 같은 비율 지표에 관한 분산 추정 가능
 - A/B 테스트의 최종 관심인 Δ%에 관한 분산 추정 가능

References

[1] Deng, A., Knoblich, U., & Lu, J. (2018). Applying the Delta method in metric analytics: A practical guide with novel ideas (arXiv:1803.06336). arXiv. http://arxiv.org/abs/1803.06336

[2] Bao, W. (2023, March 28). How to Size For Online Experiments With Ratio Metrics. Expedia Group Technology. https://medium.com/expedia-group-tech/how-to-size-for-online-experiments-with-ratio-metrics-3d57362f1967

[3] Kohavi, R., Tang, D., & Xu, Y. (2020). *Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing*. Cambridge University Press. https://experimentguide.com/

[4] Metric Deltas | Statsig Docs