SH의 학습노트

[Python]변수선택법 실습(2) - 전진선택법/후진소거법/단계적선택법/MAPE 모델 성능 평가 (변수선택법 실습(1)에 전처리과정존재)

2020. 6. 19. 14:44 · ML in Python/Python

*아래 학습은 Fastcampus의 "머신러닝 A-Z까지"라는 인터넷 강의에서 실습한 내용을 복습하며 학습 과정을 공유하고자 복기한 내용입니다.

실습에 사용될 데이터 : Toyota Corolla Data (Toyota Corolla 모델 차 가격/기능 데이터)

ToyotaCorolla.csv 0.21MB 2020. 9. 19. [Python]변수선택법 실습(2) - 전진선택법/후진소거법/단계적선택법/MAPE 모델 성능 평가 (변수선택법 실습(1)에 전처리과정 존재) 회귀분석을 할 때 다중공선성이 발생하면, 데이터 분석의 신뢰성이나 예측 정확도를 떨어뜨린다. 이러한 문제를 하기 위한 방법 중 하나로 데이터 선정/전처리 과정에서 "**변수선택**" O SH의 학습노트 구독하기

변수 선택법(Variable Selection)은

- 1. 전진선택법(Forward Selection)
- 2. **후진소거법**(Backward Elimination)
- 3. **단계적선택법**(Stepwise Selection)
- 이 있다.

이 변수 선택법들을 알아가기 위해 Python을 통한 실습을 진행해보자. 이전 전치리과정과 모델 확인 과정은

이전게시물: 변수선택법(1)에 존재한다. 학습이 목적이라면 보고 오는 것이 좋다.

link: https://todayisbetterthanyesterday.tistory.com/9

[Pvthon]변수선택법 실습(1) - 변수선택법 실습 이전단계, 불필요한 …

todayisbetterthanyesterday.tistory.com

0. 변수선택법 (전체 경우의 수를 찾는 방법)

변수선택을 통해 형성한 모델의 AIC를 구하는 함수

```
# AIC가 낮을 수록 모델이 좋다고 평가된다.

def processSubset(X,y,feature_set):
    model = sm.OLS(y,X[list(feature_set)]) # Modeling
    regr = model.fit() # model fitting
    AIC = regr.aic # model's AIC
    return {"model" : regr, "AIC" : AIC}

print(processSubset(X = train_x, y = train_y, feature_set = feature_columns[0:5]))
```

{'model': <statsmodels,regression,linear_model.RegressionResultsWrapper object at 0x00000230B700EE08>, 'AIC': 19071.920536897833}

```
print(processSubset(X = train_x, y = train_y, feature_set = feature_columns[0:5]))
```

```
# 전체 변수의 AIC test
processSubset(X=train x, y=train y, feature set = feature columns)
     {'model': <statsmodels.regression.linear_model.RegressionResultsWrapper at 0x230b700e148>,
      'AIC': 17001.91610144188}
                              전체 변수 모델의 AIC
import time
import itertools
# getBest : 가장 낮은 AIC를 가지는 모델을 선택하고 저장하는 함수
def getBest(X,y,k):
                            # 시작 시간
# 결과 저장 공간
    tic = time.time()
    results = []
    for combo in
itertools.combinations(X.columns.difference(['const'],k) :
                # 각 변수 조합을 고려한 경우의수
        combo = (list(combo)+['const'])
        # 상수항을 추가하여 combo를 결성
        results.append(processSubset(X,y,feature set = combo)) # 모델링된
것을 저장
        # 만약 k=2이면 여기서 두가지 변수만 뽑아서 경우의 수를 분석하여
        # 저장 후 그 중 AIC가 가장 낮은 모델을 선택하도록 함
    models = pd.DataFrame(results) # 데이터프레임으로 모델결과 변환
    best model = models.loc[models['AIC'].argmin()] # argmin은 최소값의
인덱스를 뽑는 함수
    toc = time.time()
                             # 종료 시간
    print("Processed", models.shape[0], "models on", k, "predictors
in",(toc - tic), "seconds.")
    return best model
print(getBest(X=train x, y = train y, k=2))
             Processed 630 models on 2 predictors in 1.4959793090820312 seconds.
                    <statsmodels.regression.linear_model.Regressio...</pre>
             mode I
                                                  17484.3
             Name: 211, dtype: object
                       print(getBest(X=train_x, y = train_y, k=2))
```

2020. 9. 19. [Python]변수선택법 실습(2) - 전진선택법/후진소거법/단계적선택법/MAPE 모델 성능 평가 (변수선택법 실습(1)에 전처리과정 존재) 위의 함수는 **전체 변수의 가능한 조합을 모두 확인**하는 함수이다. 좋은 변수를 선택하여 모델을 만들수 있겠지만, 문제는 **변수의 총 수와 k가 증가할때마다 시간이 기하급수적으로** SH의 학습노트 구독하기

다. 그렇기 때문에 "**변수를 선택하는 방법"을 선정해야한다**.

변수 선택에 따른 학습시간과 저장

Processed 36 models on 1 predictors in 0.06781911849975586 seconds. Processed 630 models on 2 predictors in 1.148927927017212 seconds. Processed 7140 models on 3 predictors in 12.886253356933594 seconds. Total elapsed time: 14.36683964729309 seconds.

변수 조합 가능 경우의 수와 선별소요시간을 알려준다.

선택된 변수의 개수(1,2,3)별 가장낮은 AIC를 보유한 모델들이 들어있는 DF models

	AIC	model
1	17744.411952	$<\!\!\!\text{statsmodels.regression.linear_model.Regressio}$
2	17484.284528	$<\!statsmodels.regression.linear_model.Regressio$
3	17347.522955	$<\!statsmodels.regression.linear_model.Regressio$

models DataFrame

가장 AIC가 낮은 3번째 모델의 OLS결과를 출력

models.loc[3,"model"].summary()

OLS Regression Results

Dep. Variable	:	Price	R	-sqı	uared:	0.852	
Model	:	OLS	Adj. R	-sqı	uared:	0.851	
Method	: Least S	quares	F	-sta	tistic:	1919.	
Date	: Tue, 17 M	ar 2020 F	rob (F	stat	tistic):	0.00	
Time	: 1	4:41:49	Log-Li	ikeli	hood:	-8669.8	
No. Observations	:	1005			AIC:	1.735e+04	
Df Residuals	:	1001			BIC:	1.737e+04	
Df Model	:	3					
Covariance Type	: no	nrobust					
					D. 111		0.075
	coef	std err		t	P> t	[0.025	0.975]
Automatic_airco	3728.2370	208.908	17.8	46	0.000	3318.289	4138.185
КМ	-0.0158	0.001	-12.1	74	0.000	-0.018	-0.013
Mfg_Year	1586.9349	34.582	45.8	89	0.000	1519.074	1654.796
const	-3.162e+06	6.92e+04	-45.7	00	0.000	-3.3e+06	-3.03e+06
Omnibus:	150.836	Durbin-Wa	itson:		2.032		
Prob(Omnibus):	0.000 Ja	rque-Bera	(JB):	148	80.385		
Skew:	0.326	Prol	b(JB):		0.00		
Kurtosis:	8.910	Con	d. No.	1.2	8e+08		

Warnings

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.28e+08. This might indicate that there are strong multicollinearity or other numerical problems.

models.loc[3, "model"].summary()

```
# 모든 변수를 모델링한 것과 비교

print("full model Rsquared:","{:.5f}".format(fitted_full_model.rsquared))
print("full model AIC:","{:.5f}".format(fitted_full_model.aic))
print("full model MSE:","{:.5f}".format(fitted_full_model.mse_total))

print("selected model Rsquared:","
{:.5f}".format(models.loc[3,"model"].rsquared))
print("selected model AIC:","{:.5f}".format(models.loc[3,"model"].aic))
print("selected model MSE:","{:.5f}".format(models.loc[3,"model"].mse_total))
```

full model Rsquared: 0.90106 full model AIC: 17001.91610 full model MSE: 12310969.98808 selected model Rsquared: 0.85186 selected model AIC: 17347.52296 selected model MSE: 12310969.98808

full model vs selected model

1. 저지선택법

SH의 학습노트 구독하기

```
### 전진석택법(step=1)
def forward(X,y,predictors):
   # predictor - 현재 선택되어있는 변수
   # 데이터 변수들이 미리정의된 predictors에 있는지 없는지 확인 및 분류
   remaining predictors = [p for p in X.columns.difference(['const']) if p
not in predictors1
   tic = time.time()
   results = []
    for p in remaining predictors :
       results.append(processSubset(X=X,y=y,feature_set=predictors+[p]+
['const']))
   # 데이터프레임으로 변환
   models = pd.DataFrame(results)
   # AIC가 가장 낮은 것을 선택
   best model = models.loc[models['AIC'].argmin()]
   toc = time.time()
   print("Processed ",models.shape[0]. "models on", len(predictors)+1,
"predictors in", (toc-tic))
   print("Selected predictors:",best_model["model"].model.exog_names,"AIC:
",best_model[0])
   return best_model
### 전진선택법 모델
def forward model(X,y):
   Fmodels = pd.DataFrame(columns=["AIC", "model"])
   tic = time.time()
   # 미리 정의된 데이터 변수
   predictors = []
   # 변수 1~10개 : 0-9 -> 1-10
   for i in range(1,len(X,columns.difference(['const']))+1):
        Forward result = forward(X=X,y=y,predictors=predictors)
       if i > 1:
           if Forward_result["AIC"] > Fmodel_before:
               break
       Fmodels.loc[i] = Forward result
       predictors = Fmodels.loc[i]["model"].model.exog_names
       Fmodel_before = Fmodels.loc[i]["AIC"]
       predictors = [k for k in predictors if k != 'const']
   toc = time.time()
   print("Total elapsed time:",(toc-tic), "seconds.")
    return (Fmodels['model'][len(Fmodels['model'])])
```

```
Forward best model = forward model(X=train x, y=train y)
```

Processed 36 models on 1 predictors in 0.07032036781311035

Selected predictors: ['Mfg_Year', 'const'] AIC: <statsmodels.regression.linear_model.RegressionResultsWrapper object at 0x0000026A

Processed 35 models on 2 predictors in 0.06881427764892578

Selected predictors: ['Mfg_Year', 'Automatic_airco', 'const'] AIC: <statsmodels.regression.linear_model.RegressionResultsWrapper o biect at 0x0000026AAA6A9448>

Processed 34 models on 3 predictors in 0.074798583984375

Selected predictors: ['Mfg_Year', 'Automatic_airco', 'KM', 'const'] AIC: <statsmodels.regression.linear_model.RegressionResultsWrapper object at 0x0000026AAA695F48>

Processed 33 models on 4 predictors in 0.07679438591003418

Selected predictors: ['Mfg_Year', 'Automatic_airco', 'KM', 'Weight', 'const'] AIC: <statsmodels.regression.linear_model.Regression ResultsWrapper object at 0x0000026AA9679DC8>

Processed 32 models on 5 predictors in 0.07779335975646973

Selected predictors: ['Mfg_Year', 'Automatic_airco', 'KM', 'Weight', 'HP', 'const'] AIC: <statsmodels.regression.linear_model.Regr essionResultsWrapper object at 0x0000026AAA665C48>

Processed 31 models on 6 predictors in 0.06683850288391113

Selected predictors: ['Mfg_Year', 'Automatic_airco', 'KM', 'Weight', 'HP', 'Powered_Windows', 'const'] AIC: <statsmodels.regressio n.linear_model.RegressionResultsWrapper object at 0x0000026AA9687D88>

Processed 30 models on 7 predictors in 0.0718083381652832

Selected predictors: ['Mfg_Year', 'Automatic_airco', 'KM', 'Weight', 'HP', 'Powered_Windows', 'BOVAG_Guarantee', 'const'] AIC: <st atsmodels.regression.linear_model.RegressionResultsWrapper object at 0x0000026AAA6B4A48>

Processed 29 models on 8 predictors in 0.06183338165283203

Selected predictors: ['Mfg_Year', 'Automatic_airco', 'KM', 'Weight', 'HP', 'Powered_Windows', 'BOVAG_Guarantee', 'Guarantee_Perio d', 'const'] AIC: <statsmodels.regression.linear_model.RegressionResultsWrapper object at 0x0000026AAA690208>

Processed 28 models on 9 predictors in 0.05884099006652832

Selected predictors: ['Mfg_Year', 'Automatic_airco', 'KM', 'Weight', 'HP', 'Powered_Windows', 'BOVAG_Guarantee', 'Guarantee_Perio d', 'Sport_Model', 'const'] AlC: <statsmodels.regression.linear_model.RegressionResultsWrapper object at 0x0000026AAA674B08>

Processed 27 models on 10 predictors in 0.05086493492126465

Selected predictors: ['Mfg_Year', 'Automatic_airco', 'KM', 'Weight', 'HP', 'Powered_Windows', 'BOVAG_Guarantee', 'Guarantee_Perio d', 'Sport_Model', 'Quarterly_Tax', 'const'] AIC: <statsmodels.regression.linear_model.RegressionResultsWrapper object at 0x000002 6AA9683CC8>

변수를 계속 추가하며 AIC가 증가하는 경우가 생기면, 이전 모델을 선택하는 학습과정을 진행한다.

Forward best model.aic

16931.423078614705

전진선택법 AIC

Forward best model.summary()

OLS Regression Results

OLS Regression Resu	ilts						
Dep. Variable:	Р	rice	R-square	ed:	0.913	(9	SH의 학습노트 구독하기
Model:	c	DLS Adj.	R-square	ed:	0.911		
Method:	Least Squa	ires	F-statist	ic:	430.2		
Date:	Fri, 19 Jun 2	020 Prob (F-statisti	c):	0.00		
Time:	13:40	:36 Log-	Likelihoo	od:	-8440.7		
No. Observations:	1	005	A	IC: 1.6	93e+04		
Df Residuals:	(980	В	IC: 1.7	05e+04		
Df Model:							
Covariance Type:							
	coef	std err	t	P> t	[0.025	0.975]	
Mfg_Year		128.927	8.418	0.000	832.350	1338.359	
Automatic_airco		181.656	11.857		1797.379	2510.337	
KM			-13.476		-0.020	-0.015	
Weight		1.344	11.324		12.581	17.858	
HP		3.569		0.000	10.763	24.771	
Powered Windows	447.7987	144.318		0.002	164.591	731.008	
BOVAG_Guarantee		132.596	3.772	0.000	239.999	760.408	
Guarantee_Period	70.6432	15.236	4.637	0.000	40.745	100.542	
Sport_Model	342.1842	87.579	3.907	0.000	170.320	514.049	
Quarterly_Tax	13.1931	1.829	7.213	0.000	9.604	16.782	
Petrol	2364.8527	374.446	6.316	0.000	1630.044	3099.661	
Tow_Bar	-245.6801	79.388	-3.094	0.002	-401.450	-89.871	
Backseat_Divider	-371.1265	123.808	-2.998	0.003	-614.086	-128.167	
Mfr_Guarantee	213.7289	75.902	2.816	0.005	64.781	362.677	
Metallic_Rim	257.6785	94.246	2.734	0.006	72.731	442.626	
Airco	247.9995	89.804	2.762	0.006	71.770	424.229	
ABS	-305.2334	104.103	-2.932	0.003	-509.524	-100.943	
Diesel	996.9856	380.576	2.765	0.008	289.396	1704.576	
Age_08_04	-22.3608	10.775	-2.075	0.038	-43.505	-1.217	
Automatic	308.1617	159.519	1.932	0.054	-4.876	621.199	
CD_Player	227.6148	100.891	2.256	0.024	29.627	425.602	
Boardcomputer	-220.5754	119.962	-1.839	0.066	-455.987	14.837	
Central_Lock	-228.2779	142.448	-1.603	0.109	-507.816	51.261	
Airbag_1	324.3694	222.848	1.456	0.146	-112.945	761.684	
const	-2.18e+08	2.58e+05	-8.440	0.000	-2.69e+06	-1.67e+08	
Omnibus: 7	2.129 Dur	bin-Watson	: 2.0	21			

 Omnibus:
 72.129
 Durbin-Watson:
 2.021

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 280.121

 Skew:
 0.211
 Prob(JB):
 1.49e-61

전진선택법 모델 OLS 결과

2. 후진소거법

후진소거법(step=1)

def backward(X,y,predictors):

```
[Python]변수선택법 실습(2) - 전진선택법/후진소거법/단계적선택법/MAPE 모델 성능 평가 (변수선택법 실습(1)에 전처리과정 존재)
    tic = time.time()
    results = []
                                                               SH의 학습노트 구독하기
   # 데이터 변수들이 미리 정의된 predictors 조합 확인
    for combo in itertools.combinations(predictors, len(predictors) - 1):
        results.append(processSubset(X=X,y=y,feature set=list(combo)+
['const']))
   models = pd.DataFrame(results)
   # 가장 낮은 AIC를 가진 모델을 선택
   best_model = models.loc[models['AIC'].argmin()]
   toc = time.time()
    print("Processed ",models.shape[0], "models on", len(predictors) - 1,
"predictors in",(toc-tic))
    print("Selected predictors:",best model['model'].model.exog names,'
AIC:',best_model[0])
    return best_model
def backward model(X,y) :
    Bmodels = pd.DataFrame(columns=["AIC", "model"], index =
range(1,len(X.columns))
    tic = time.time()
    predictors = X.columns.difference(['const'])
    Bmodel_before = processSubset(X,y,predictors)['AIC']
   while (len(predictors) > 1):
       Backward result = backward(X=train x, y= train y,
predictors=predictors)
       if Backward_result['AIC'] > Bmodel_before :
               break
       Bmodels.loc[len(predictors) -1] = Backward result
       predictors = Bmodel.loc[len(predictors) - 1]
['model'].model.exog_names
       Bmodel_before = Backward_result["AIC"]
       predictors = [k for k in predictors if k != 'const']
   toc = time.time()
    print("Total elapsed time:",(toc-tic),"seconds.")
    return (Bmodels["model"].dropna().iloc[0]
```

```
Backward_best_model = backward_model(X=train_x, y= train_y)
```

Processed 36 models on 35 predictors in 0.22747516632080078 Selected predictors: ['ABS', 'Age_08_04', 'Airbag_1', 'Airbag_2', 'Airco', 'Automatic', 'Automatic_airco'. 'BOVAG Guarantee'. 'Back seat_Divider', 'Boardcomputer', 'CD_Player', 'CNG', 'Central_Lock', 'Cylinders', 'Diesel', 'Doors', 'SH의 학습노트 구독하기 arterly_Tax', 'Radio,', 'Radio_cassette', 'Sport_Model', 'Tow_Bar', 'Weight', 'cc', 'const'] AIC: <statsmoders.regression.iinear_model.RegressionResultsWrapper object at 0x00000230CF44CD489

Deriver ession results wapper object at 0x00000000074400407

Processed 35 models on 34 predictors in 0.1767542831420898

Selected predictors: ['ABS', 'Age_08_04', 'Airbag_1', 'Airbag_2', 'Airco', 'Automatic', 'Automatic_airco', 'B0VAG_Guarantee', 'Back seat_Divider', 'Boardcomputer', 'CD_Player', 'CNG', 'Central_Lock', 'Cylinders', 'Diesel', 'Doors', 'Gears', 'Guarantee_Period', 'H P', 'KM', 'Met_Color', 'Metallic_Rim', 'Mfg_Month', 'Mfg_Year', 'Mfr_Guarantee', 'Petrol', 'Powered_Windows', 'Quarterly_Tax', 'Rad io', 'Radio_cassette', 'Sport_Model', 'Tow_Bar', 'Weight', 'cc', 'const'] AIC: <statsmodels.regression.linear_model.RegressionResu ItsWrapper object at 0x00000230CF437908>

Processed 34 models on 33 predictors in 0.18745827674865723

Selected predictors: ['ABS', 'Age_08_04', 'Airbag_2', 'Airco', 'Automatic', 'Automatic_airco', 'BOVAG_Guarantee', 'Backseat_Divide r', 'Boardcomputer', 'CD_Player', 'CNG', 'Central_Lock', 'Cylinders', 'Diesel', 'Doors', 'Gears', 'Guarantee_Period', 'HP', 'KM', 'Met_Color', 'Metallic_Rim', 'Mfg_Month', 'Mfg_Vear', 'Mfr_Guarantee', 'Petrol', 'Powered_Windows', 'Quarterly_Tax', 'Radio', 'Radio_cassette', 'Sport_Model', 'Tow_Bar', 'Weight', 'cc', 'const'] AIC: <statsmodels.regression.linear_model.RegressionResultsWrapper object at 0x00000230CF429A48>

Processed 33 models on 32 predictors in 0.17581558227539062

Selected predictors: ['ABS', 'Age_08_04', 'Airco', 'Automatic', 'Automatic_airco', 'B0VAG_Guarantee', 'Backseat_Divider', 'Boardcom puter', 'CD_Player', 'CNG', 'Central_Lock', 'Cylinders', 'Diesel', 'Doors', 'Gears', 'Guarantee_Period', 'HP', 'KM', 'Met_Color', 'Metallic_Rim', 'Mfg_Month', 'Mfg_Vear', 'Mfr_Guarantee', 'Petrol', 'Powered_Windows', 'Quarterly_Tax', 'Radio', 'Radio_cassette', 'Sport_Model', 'Tow_Bar', 'Weight', 'cc', 'const'] AlC: <statsmodels.regression.linear_model.RegressionResultsWrapper object at 0x 00000230CF4291C8>

Processed 32 models on 31 predictors in 0.22132134437561035

Selected predictors: ['ABS', 'Age_08_04', 'Airco', 'Automatic', 'Automatic_airco', 'B0VAG_Guarantee', 'Backseat_Divider', 'Boardcom puter', 'CD_Player', 'CNG', 'Central_Lock', 'Cylinders', 'Diesel', 'Doors', 'Guarantee_Period', 'HP', 'KM', 'Met_Color', 'Metallic_ Rim', 'Mfg_Month', 'Mfg_Year', 'Mfr_Guarantee', 'Petrol', 'Powered_Windows', 'Quarterly_Tax', 'Radio', 'Radio_cassette', 'Sport_Mod el', 'Tow_Bar', 'Weight', 'cc', 'const'] AlC: <statsmodels.regression.linear_model.RegressionResultsWrapper object at 0x00000230CF 43B548>

Processed 31 models on 30 predictors in 0.15282320976257324

Selected predictors: ['ABS', 'Age_08_04', 'Airco', 'Automatic', 'Automatic_airco', 'B0VAG_Guarantee', 'Backseat_Divider', 'Boardcom puter', 'CD_Player', 'CNG', 'Central_Lock', 'Cylinders', 'Diesel', 'Doors', 'Guarantee_Period', 'HP', 'KM', 'Metallic_Rim', 'Mfg_Month', 'Mfg_Vear', 'Mfr_Guarantee', 'Petrol', 'Powered_Windows', 'Quarterly_Tax', 'Radio', 'Radio_cassette', 'Sport_Model', 'Tow_Bar', 'Weight', 'cc', 'const'] AIC: <statsmodels.regression.linear_model.RegressionResultsWrapper object at 0x00000230CF443488>

전체 변수를 다 넣은 full모델부터 개수가 하나씩 줄며 AIC가 높아지면 그 변수는 제외하는 방식이다.

Backward best model.aic

16986.47214565498

후진소거법 AIC

Backward best model.summary()

OLS Regression Results SH의 학습노트 구독하기 Dep. Variable: 0.900 Price R-squared: OLS Model: Adj. R-squared: 0.898 Method: Least Squares F-statistic: 422.3 Tue, 17 Mar 2020 Prob (F-statistic): 0.00 Time: 17:22:41 Log-Likelihood: -8471.2 No. Observations: 1005 AIC: 1.699e+04 Df Residuals: 983 BIC: 1.709e+04 Df Model: 21 Covariance Type: nonrobust std err t P>|t| [0.025 0.9751 coef ABS -268.6265 104.984 -2.559 0.011 -474.644 -62.609 10.948 -1.060 Age_08_04 -22.5415 -2.059 0.040 -44.023169.5263 91.126 1.860 0.063 348.350 Airco -9.298 Automatic 376.4619 145.954 2.579 0.010 90.045 662.879 2861.2599 190.430 13.975 0.000 2287.563 3034.957 Automatic_airco BOVAG_Guarantee 443.9018 133.050 3.336 0.001 182.806 704.997 Backseat_Divider -364.0490 119.959 -3.035 0.002 -500 455 -128 843 CD Player 183.5882 104.925 1.750 0.080 -22.315389.491 CNG -2362.4514 421.520 -5.605 0.000 -3189.633 -1535.270 -8.377 0.000 -6.37e+05 -3.95e+05 Cylinders -5.162e+05 6.16e+04 -1475.9059 298.201 -4.949 0.000 -2061.089 -890.723 Diesel 13.792 4.731 0.000 92.316 Guarantee_Period 65.2507 38,185 HP 13.3830 3.715 3.602 0.000 6.093 20.673 KM -0.0168 0.001 -12.640 0.000 -0.019 -0.014 1097.3548 130.738 8.394 0.000 840.801 1353,909 Mfg_Year 362.406 Mfr Guarantee 207.6703 78.851 2.634 0.009 52.934 Powered_Windows 418.7317 85,732 4.884 0.000 250,493 586,971 Quarterly_Tax 8.808 0.000 12,972 20,408 16,6899 1.895 Radio_cassette -175.8576 107.080 -1.642 0.101 -385.989 34.273 344.5004 88.377 3.898 0.000 171.070 517.931 Sport_Model Tow Bar -148.0873 82.311 -1.799 0.072 -309.614 13.439 8.7320 1.176 7.425 0.000 6.424 11.040 const -1 291e+05 1 54e+04 -8.377 0.000 -1.59e+05 -9.88e+04 Omnibus: 111.195 Durbin-Watson: 1.974 Prob(Omnibus): 0.000 Jarque-Bera (JB): 767.547 Skew: 0.211 Prob(JB): 2.13e-167 7.261 Kurtosis: Cond. No. 2.60e+20

후진소거법으로 선택된 모델의 OLS 결과

3. 단계적선택법

```
def Stepwise_model(X,y):
    Stepmodels = pd.DataFrame(columns = ["AIC","model"])
    tic = time.time()
    predictors = []
```

```
2020. 9. 19.
```

```
[Python]변수선택법 실습(2) - 전진선택법/후진소거법/단계적선택법/MAPE 모델 성능 평가 (변수선택법 실습(1)에 전처리과정 존재)
    Smodel_before = processSubset(X,y,predictors + ['const'])['AIC']
                                                                SH의 학습노트 구독하기
    # 변수 1~10개 0-9 -> 1-10
    for i in range(1,len(X.columns.difference(['const']))+1) :
        Forward result = forward(X=X,y=y,predictors = predictors) # constant
added
        print('forward')
        predictors = Stepmodels.loc[i]['model'].model.exog_names
        predictors = [k for k in predictors if k != 'const']
        Backward_result = backward(X=X,y=y,predictors = predictors)
        if Backward_result["AIC"] < Forward_result["AIC"]</pre>
            Stepmodels.loc[i] = Backward_result
            predictors = Stepmodels.loc[i]["model"].model.exog_names
            Smodel_before = Stepmodels.loc[i]["AIC"]
            predictors = [k for k in predictors k != "const"]
            print('backward')
        if Stepmodels.loc[i]["AIC"] > Smodel before:
        else :
            Smodel_before = Stepmodels.loc[i]["AIC"]
    toc = time.time()
    print("Total elapsed time:",(toc-tic),"seconds.")
    return (Stepmodels["model"][len(Stepmodels["model"])])
```

```
Processed 21 models on 20 predictors in 0.07889747619628906
Selected predictors: ['Mfg_Vear', 'Automatic_airco', 'KM', 'Weight', 'Powered_Windows', 'HP', 'Quarterly_Tax', 'Petrol', 'Guarantee
_Period', 'BOVAG_Guarantee', 'Sport_Model', 'Backseat_Divider', 'Mfr_Guarantee', 'CD_Player', 'Automatic', 'CNG', 'Tow_Bar', 'ABS',
'Mfg_Month', 'Airco', 'const'] AIC: <statsmodels.regression.linear_model.RegressionResultsWrapper object at 0x00000230CF476E08>
Nocessed 15 models on 22 predictors in U.U5292391777038574

Selected predictors: ['Mfg_Year', 'Automatic_airco', 'KM', 'Weight', 'Powered_Windows', 'HP', 'Quarterly_Tax', 'Petrol', 'Guarantee _Period', 'B0VAG_Guarantee', 'Sport_Model', 'Backseat_Divider', 'Mfr_Guarantee', 'CD_Player', 'Automatic', 'CNG', 'Tow_Bar', 'ABS', 'Mfg_Month', 'Airco', 'Radio_cassette', 'Cylinders', 'const'] AIC: <statsmodels.regression.linear_model.RegressionResultsWrapper object at 0x00000230B6F61408>
 forward
 Processed 22 models on 21 predictors in 0.08675932884216309
Selected predictors: ['Mfg_Year', 'Automatic_airco', 'KM', 'Weight', 'Powered_Windows', 'HP', 'Quarterly_Tax', 'Petrol', 'Guarantee _Period', 'BOYAG_Guarantee', 'Sport_Model', 'Backseat_Divider', 'Mfr_Guarantee', 'CD_Player', 'Automatic', 'CNG', 'Tow_Bar', 'ABS',
                                 'Airco', 'Radio_cassette', 'const'] AIC: <statsmodels.regression.linear_model.RegressionResultsWrapper object at 0x00
  'Mfg_Month',
 000230CF443AC8>
 Processed 14 models on 23 predictors in 0.062087059020996094
Selected predictors: ['Mfg_Year', 'Automatic_airco', 'KM', 'Weight', 'Powered_Windows', 'HP', 'Quarterly_Tax', 'Petrol', 'Guarantee _Period', 'BOVAG_Guarantee', 'Sport_Model', 'Backseat_Divider', 'Mfr_Guarantee', 'CD_Player', 'Automatic', 'CNG', 'Tow_Bar', 'ABS', 'Mfg_Month', 'Airco', 'Radio_cassette', 'Cylinders', 'Age_08_04', 'const'] AIC: <statsmodels.regression.linear_model.RegressionRes
'Mfg_Month', 'Airco', 'Radio_cassette', '
ultsWrapper object at 0x00000230B6F8BB08>
Processed 23 models on 22 predictors in 0.10551786422729492
Selected predictors: ['Mfg_Vear', 'Automatic_airco', 'KM', 'Weight', 'Powered_Windows', 'HP', 'Quarterly_Tax', 'Petrol', 'Guarantee
_Period', 'BOVAG_Guarantee', 'Sport_Model', 'Backseat_Divider', 'Mfr_Guarantee', 'CD_Player', 'Automatic', 'CNG', 'Tow_Bar', 'ABS',
'Mfg_Month', 'Airco', 'Radio_cassette', 'Cylinders', 'const'] AIC: <statsmodels.regression.linear_model.RegressionResultsWrapper o
bject at 0x00000230B3EC3E08>
**Record of the models on 25 predictors in 0.0695044994354248

Selected predictors: ['Mfg_Year', 'Automatic_airco', 'KM', 'Weight', 'Powered_Windows', 'HP', 'Quarterly_Tax', 'Petrol', 'Guarantee _Period', 'B0VAG_Guarantee', 'Sport_Model', 'Backseat_Divider', 'Mfr_Guarantee', 'CD_Player', 'Automatic', 'CNG', 'Tow_Bar', 'ABS', 'Mfg_Month', 'Airco', 'Radio_cassette', 'Cylinders', 'Age_08_04', 'const'] AIC: <statsmodels.regression.linear_model.RegressionRes ultsWrapper object at 0x00000230CF443A48>

forward
 Processed 14 models on 23 predictors in 0.0695044994354248
 Processed 23 models on 22 predictors in 0.09905004501342773
Selected predictors: ['Mfg_Year', 'Automatic_airco', 'KM', 'Weight', 'Powered_Windows', 'HP', 'Quarterly_Tax', 'Petrol', 'Guarantee _Period', 'BOVAG_Guarantee', 'Sport_Model', 'Backseat_Divider', 'Mfr_Guarantee', 'CD_Player', 'Automatic', 'CNG', 'Tow_Bar', 'ABS', 'Mfg_Month', 'Airco', 'Radio_cassette', 'Cylinders', 'const'] AIC: <statsmodels.regression.linear_model.RegressionResultsWrapper o
bject at 0x00000230D04F4588>
backward
Processed 14 models on 23 predictors in 0.0680246353149414

Selected predictors: ['Mfg_Vear', 'Automatic_airco', 'KM', 'Weight', 'Powered_Windows', 'HP', 'Quarterly_Tax', 'Petrol', 'Guarantee
_Period', 'B0VAG_Guarantee', 'Sport_Model', 'Backseat_Divider', 'Mfr_Guarantee', 'CD_Player', 'Automatic', 'CNG', 'Tow_Bar', 'ABS',
'Mfg_Month', 'Airco', 'Radio_cassette', 'Cylinders', 'Age_08_04', 'const'] AIC: <statsmodels.regression.linear_model.RegressionRes
ultsWrapper object at 0x00000230B3EC3888>
 forward
Processed 23 models on 22 predictors in 0.08278298377990723

Selected predictors: ['Mfg_Vear', 'Automatic_airco', 'KM', 'Weight', 'Powered_Windows', 'HP', 'Quarterly_Tax', 'Petrol', 'Guarantee
_Period', 'B0VAG_Guarantee', 'Sport_Model', 'Backseat_Divider', 'Mfr_Guarantee', 'CD_Player', 'Automatic', 'CNG', 'Tow_Bar', 'ABS',
'Mfg_Month', 'Airco', 'Radio_cassette', 'Cylinders', 'const'] AIC: <statsmodels.regression.linear_model.RegressionResultsWrapper o
 bject at 0x00000230CF4046C8>
 backward
```

forward와 backward를 AIC를 기준으로 비교하며 단계적 반복진행하는 학습을 통해 변수를 선택한다 (Stepwise)

SH의 학습노트 구독하기

```
Stepwise_best_model.aic
```

16986.472145654916

Stepwise 모델 AIC

4. 성능평가

```
# number of params
print(Forward_best_model.params.shape, Backward_best_model.params.shape,
Stepwise_best_model.params.shape)
```

(23,) (23,) (23,)

변수선택법에 따른 선택된 변수개수 (같다)

```
# 모델에 의해 예측된/추정된 값 = test_y
pred_y_full = fitted_full_model.predict(test_x)
pred_y_forward =
Forward_best_model.predict(test_x[Forward_best_model.model.exog_names])
pred_y_backward =
Backward_best_model.predict(test_x[Backward_best_model.model.exog_names])
pred_y_stepwise =
Stepwise_best_model.predict(test_x[Stepwise_best_model.model.exog_names])
```

```
# MSE, RMSE, MAE, MAPE 4가지 지표를 통해 예측성능을 확인할 예정

perf_mat = pd.DataFrame(columns=["ALL", "FORWARD", "BACKWARD",
"STEPWISE"],index =['MSE', 'RMSE','MAE', 'MAPE'])

# MAPE의 함수

def mean_absolute_percentage_error(y_true, y_pred):
    y_true, y_pred = np.array(y_true), np.array(y_pred)
    return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

from sklearn import metrics # 나머지는 sklearn에서 활용

# 성능지표
perf_mat.loc['MSE']['ALL'] = metrics.mean_squared_error(test_y,pred_y_full)
perf_mat.loc['MSE']['FORWARD'] =
metrics.mean_squared_error(test_y,pred_y_forward)
```

```
perf_mat.loc['MSE']['BACKWARD'] =
metrics.mean_squared_error(test_y,pred_y_backward)
                                                                SH의 학습노트 구독하기
perf mat.loc['MSE']['STEPWISE'] =
metrics.mean squared error(test y,pred y stepwise)
perf mat.loc['RMSE']['ALL'] = np.sqrt(metrics.mean_squared_error(test_y,
pred y full))
perf_mat.loc['RMSE']['FORWARD'] = np.sqrt(metrics.mean_squared error(test y,
pred y forward))
perf mat.loc['RMSE']['BACKWARD'] = np.sqrt(metrics.mean squared error(test y,
pred_y_backward))
perf_mat.loc['RMSE']['STEPWISE'] = np.sqrt(metrics.mean_squared_error(test_y,
pred_y_stepwise))
perf_mat.loc['MAE']['ALL'] = metrics.mean_absolute_error(test_y, pred y full)
perf mat.loc['MAE']['FORWARD'] = metrics.mean absolute error(test y,
pred y forward)
perf mat.loc['MAE']['BACKWARD'] = metrics.mean absolute error(test y,
pred y backward)
perf mat.loc['MAE']['STEPWISE'] = metrics.mean_absolute_error(test_y,
pred_y_stepwise)
perf_mat.loc['MAPE']['ALL'] = mean_absolute_percentage_error(test_y,
pred_y_full)
perf mat.loc['MAPE']['FORWARD'] = mean absolute percentage error(test y,
pred_y_forward)
perf mat.loc['MAPE']['BACKWARD'] = mean absolute percentage error(test y,
pred y backward)
perf_mat.loc['MAPE']['STEPWISE'] = mean_absolute_percentage_error(test_y,
pred_y_stepwise)
print(perf mat)
```

	ALL	FORWARD	BACKWARD	STEPWISE
MSE	1.25986e+06	1.2825e+06	1.2825e+06	1.2825e+06
RMSE	1122.44	1132.47	1132.47	1132.47
MAE	808.762	812.329	812.329	812.329
MAPE	7.32996	7.32908	7.32908	7.32908

Full, Forward, Backward, Stepwise 네가지 예측오차 성능

위의 표를 보면 4가지 모두 모든 변수를 넣었을때 오차와 비슷하다는 것을 확인할 수 있다. 하지만, 모 든 변수를 넣은 모델은 변수가 37개나 되기에, 학습의 효율성 측면에서 Full 변수 모델보다 효율적이다. 그리고 다중공선성 과적합과 같은 문제가 발생할 때. 변수를 줄이는 방법을 통해서 모델의 신뢰성을 높 일 수 있을 것이다.

1 구독하기

티스토리

© 2018 TISTORY. All rights reserved.