

Lecture 19: Evaluation Metrics

Recap

- •Ensemble Learning
- Random Forest

Why evaluation metrics

Three type of binary classification models

- Categorization based on model output
- Models that output categorical class
 - K Nearest Neighbors, Decision Tree
- Models that output a real valued score
 - •SVM
- Models that output a probability
 - Logistic Regression, Neural Networks
- Raw output (scores) across models cannot be compared

Reasons for having metrics

- Machine Learning task has a real world objective
- •The ML algorithm + cost function is only a proxy for the real world objective
 - Different algorithms give different loss values
 - Comparing loss values across algorithms is meaningless
- Different distributions in data favor different algorithms
- Quantify gap between
 - Baseline model & a better model across algorithms
 - Desired performance and current performance

Eval metrics categories

Confusion Matrix

- Not a metric by itself
- Captures raw prediction type
- •TP, TN, FP, FN
- Comes in many flavors
- Stick to one

Confusion matrix for binary classification					
Actual	Α	TP	FN		
value	В	FP	TN		
A B					
	Predicted value				

ACTUAL VALUES

Format used in this lecture

Predicted Assigned class **Actual** Negative Positive Positive TP FN Real class Negative FP TN

Positive/
Negative
1/0
1/-1

Confusion Matrix elements as joint probabilities

 $P(\hat{y}=1)$

		Assigne		
		Positive	Negative	
class	Positive	$\begin{array}{c} \text{TP} \\ P(\hat{y}=1 \cap y=1) \end{array}$	$\Pr(\hat{y}=0\cap y=1)$	P(y=1)
Real	Negative	$\begin{array}{c} \text{FP} \\ P(\hat{y}=1\cap y=0) \end{array}$	TN $P(\hat{y} = 0 \cap y = 0)$	P(y=0)

 $P(\hat{y} = 0)$

Type I error (false positive)

Type II error

(false negative)

Understanding Type I and II errors

Types of Metrics for Classification

- Point Metrics
 - Accuracy, Precision/Recall
- Composite Metrics
 - F-Score (F-1, F-Beta), Balanced Accuracy
- Summary Metrics
 - AU-ROC, AU-PRC

Point metrics

Accuracy, Precision, Recall

when +ve class is Assigned class minority& its prediction is impt Negative Positive Recall Positive TP FN TΡ Real class TP+FN Not a good measure for Negative FP TN imbalanced datasets

Not a good measure when -ve class is minority& its prediction is impt

Precision
TP
TP+FP

Accuracy
TP+TN
TP+TN+FP+FN

Not a good measure

Precision

- •TP/(TP+FP)
- •P(actual=1 | predicted=1)
- Higher the Precision lesser the false positives
- Reducing FP leads to increase in FN
 - •FP can be reduced by increasing threshold

		Assigned class		
		Positive	Negative	
Real class	Positive	TP	FN	
Real	Negative	FP	TN	

Recall / Sensitivity / True Positive Rate

- •TP/(TP+FN)
- •P(predicted=1 | actual=1)
- Higher the Recall lesser the false negatives
- Reducing FP leads to increase in FN
 - FN can be reduced by decreasing threshold
- Always Tug of war between
 Precision & Recall

Specificity

Composite metrics

Balanced Accuracy

- •For binary classification: (Sensitivity + Specificity)/2
- •For multiclass: Average of all recall
- For balanced datasets accuracy ~ balanced accuracy
- Imbalanced dataset
 - Accounts for imbalance

F-1 and F-Beta

Harmonic mean

$$\begin{array}{c|c} 1 & 2 \\ \hline \frac{1}{Precision} \frac{1}{Recall} & \overline{\frac{1}{Precision}} \frac{1}{Recall} \\ \hline \end{array}$$

$$2*\frac{precision \times recall}{precision + recall} = (1+\beta^2)*\frac{precision \times recall}{\beta^2*precision + recall}$$

- Why harmonic mean?
 - Penalizes extreme values of either Precision or Recall
- Beta = 1 F- 1
- Beta < 1 favors Precision (i.e. ok to have False Negative)
- Beta > 1 favors Recall (i.e. ok to have False Positive)

Summary metrics

True positive rate versus threshold

False positive rate versus threshold

AU ROC

AU PRC

Recall

Use for comparing multiple models robustness over a range of thresholds

Multi class evaluation metrics

Multi class confusion matrix

		Predicted		
		Airplane	<u></u> Boat	©≟⊚ Car
	Airplane	2	1	0
Actual	Boat	0	1	0
	© Car	1	2	3

Classification report

	precision	recall	f1-score	support
Aeroplane	0.67	0.67	0.67	3
Boat	0.25	1.00	0.40	1
Car	1.00	0.50	0.67	6
accuracy			0.60	10
macro avg	0.64	0.72	0.58	10
weighted avg	0.82	0.60	0.64	10

Macro average

Label	Per-Class F1 Score	Macro-Averaged F1 Score
Airplane	0.67	0.67 + 0.40 + 0.67
Boat	0.40	3
© Car	0.67	= 0.58

Weighted average

Label	Per-Class F1 Score	Support	Support Proportion	Weighted Average F1 Score	
Airplane	0.67	3	0.3	(0 (7 0 2) 1	
Boat	0.40	1	0.1	(0.67 * 0.3) + (0.40 * 0.1) +	
© Car	0.67	6	0.6	(0.67 * 0.6) = 0.64	
Total	=	10	1.0	- 0.04	

