5. Waagerechte und senkrechte Asymptoten

Bisher: Wir haben hauptsächliche Ganzrationele Funktinen betrachtet. Es gibt aber auch Funktionen, mit ganzrationaler Funktion im Nenner, z.B.:

$$f(x) = \frac{2x^2 + 1}{3x^3 - 2x + 1}$$

Diese Funktionen heißen gebrochenrationale Funktionen.

Definition:

Funktionen der Art $f(x) = \frac{g(x)}{h(x)}$, bei denen g und h ganzrationele Funktionen sind und h einen Grad größer gleich 1 hat, heißen **gebrochenrationale Funktionen**.

Beispiele:

1.

$$g(x) = \frac{1}{x}$$

2.

$$h(x) = \frac{x^2 + 2x}{2}$$
 keine gebrochen
rationale Funktion

3.

$$i(x) = \frac{2x^2 - \sin(x)}{x^2 + 2}$$
 keine gebrochen
rationale Funktion

4.

$$j(x) = \frac{x^4 - \frac{1}{2}x^2}{x^6 - x^4 - \frac{3}{4}x^2 - 5}$$

Beobachtung:

Ganzrationale Funktionen haben Definitionslücken, da nicht durch 0 geteilt werden darf.

Die Untersuchung und Angabe der Defintionsmenge ist folgliche obligatorisch. Dafür reicht es aus den Nenner zu betrachten.

Wie verläuft der Graph bei sochen Definitionslücken?

Beispiel:

$$f(x)=\frac{2x^2+1}{3x^3-2x+1},\quad D=\mathbb{R}\smallsetminus\{-1\}$$

Beobachtung

Die Graphen von gebrochenrationalen Funktionen besitzen an den Defintionslücken senkrechte Asymptoten.

Untersuchung des Verhaltens an den Definitionslücken

Idee: Man nähert sich in einer Umgebung der Defintionslücke von beiden Seiten an und betrachtet die Veränderung der Funktionswerte.

Beispiel:

$$\begin{split} f(x) &= \frac{2x^2+1}{3x^3-x+1}, \quad D = \mathbb{R} \smallsetminus \{-1\} \\ \lim_{x \searrow -1} f(x) &= ? \\ \lim_{x \nearrow -1} f(x) &= ? \end{split}$$

 $x \searrow -1$:

\overline{x}	f(x)
0	?
-0, 5	?
-0, 9	?
-0,99	?

 $x \nearrow -1$:

\overline{x}	f(x)
-2	?
-1, 5	?
-1, 1	?
-1,01	?

Satz:

Gegeben: - ganz
rationale Funktion $f=\frac{g(x)}{h(x)}$ - g und
 h differenzierbare Funktionen Es gilt:

Wenn $g(x_0) \neq 0$ und h(x_0)=0\$ gilt, dann

- ist x_0 eine **Polstelle** von f - Die Gerade mit der Gleichung $x=x_0$ ist eine senkrechte Asymptote von f.

Bemerkung:

- Der Pol ist die Stelle auf der x-Achse, durch welche die senkrechte Asmptote verläuft.
- Man bezeichnet die Polstelle mit Vorzeichenwechsel, wenn einer der beiden "Äste" an der Senkrechten Asymptote gegen $+\infty$ und der andere gegen $-\infty$ läuft.

Forscheraufgabe

Wenn die Voraussetzungen $g(x_0)=0$ und gleichzeitig $h(x_0)=0$ erfüllt sind, lässt sich der Satz nicht anwenden!

Welche Aussgaben kann man dann machen? \Rightarrow Buch Seite 155 Nr. 13

Beispiel:

$$f(x)=\frac{2x^2+1}{3x^3-2x+1},\quad D=\mathbb{R}\smallsetminus\{-1\}$$

Beobachtung

- Es gibt auch waagerechte Asymptoten.
- Waagerechte Asymptoten lassen sich mit Hilfe der Grenzwertbetrachtung suchen.

Grenzwertbetrachtung

$$f(x) = \frac{2x^2 + 1}{3x^3 - 2x + 1}$$

$$\lim_{x \to \infty} \frac{x^3 \cdot \left(\frac{2}{x} + \frac{1}{x^3}\right)}{x^3 \cdot \left(3 - \frac{2}{x^2} + \frac{1}{x^3}\right)}$$

$$= \lim_{x \to \infty} \frac{\left(\frac{2}{x} + \frac{1}{x^3}\right)}{\left(3 - \frac{2}{x^2} + \frac{1}{x^3}\right)}$$

$$= \frac{0}{3}$$

$$= 0$$

$$f(x) = \frac{2x^2 + 1}{3x^3 - x + 1}$$

$$\lim_{x \to -\infty} \frac{x^3 \cdot \left(\frac{2}{x} + \frac{1}{x^3}\right)}{x^3 \cdot \left(3 - \frac{2}{x^2} + \frac{1}{x^3}\right)}$$

$$= \lim_{x \to -\infty} \frac{\left(\frac{2}{x} + \frac{1}{x^3}\right)}{\left(3 - \frac{2}{x^2} + \frac{1}{x^3}\right)}$$

$$= \frac{0}{3}$$

$$= 0$$

Beobachtung

- Der Graph nähert sich für $x \to \pm \infty$ der Geraden mit der Gleichung y = 0 an.
- Diese Gerade heißt waagerechte Asymptote

Satz:

Gegeben: - ganzrationale Funktion $f=\frac{g(x)}{h(x)}$ - der Grad des Zählers g sei a - der Grad des Nenners h sei b.

Es gilt:

- a < b: waagerechte Asymptote mit y = 0.
- a = b: waagerechte Asymptote mit $y = \frac{a}{b}$
- a > b: keine waagerechte Asymptote.