2559_2_Function_L4_Tiling_Puzzle

์ คงเคยเล่นเกมเลื่อนแผ่นพลาสติกเล็กๆ จำนวน 15 อัน ให้เรียง 1 ถึง 15 จากซ้ายไปขวาบนลงล่าง ดังตัวอย่างในรูปข้างล่างนี้

1	7	2	3
6		8	4
5	9	10	11
13	14	15	12

1		2	3	4
5		6	7	8
9		10	11	12
13	3	14	15	

เราสามารถแทนตารางข้างบนนี้ด้วย list of lists of ints (แทนช่องว่างด้วยเลข o) เช่น ตารางรูปซ้ายจะแทนด้วย

$$[[1,7,2,3], [6,0,8,4], [5,9,10,11], [13,14,15,12]]$$

ให้สังเกตว่า ไม่ใช่ทุกตารางจะสามารถเลื่อนไปสู่เป้าหมายที่ต้องการได้ เช่น แค่สลับ 14 กับ 15 ในตารางทางขวาบนนี้ ซึ่งแทนด้วย [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,15,14,0]] ก็ไม่สามารถเลื่อนไปสู่เป้าหมายได้ (ขอไม่พิสูจน์)

โจทย์ข้อนี้เกี่ยวกับการตรวจตาราง (ในรูปของ list of lists) ว่าเป็นตารางที่สามารถเลื่อนไปหาเป้าหมายได้หรือไม่ เราตรวจได้โดยไม่ต้องลงมือเลื่อนหมายเลขในตาราง ดังนี้ (การตรวจสอบนี้ใช้ได้กับตารางที่มีขนาด n×n ใดๆ)

- flatten: เปลี่ยน list of lists of ints เป็น list of ints โดยตัด 0 ทิ้ง เช่น (ขอแสดงกรณีตารางขนาด 3×3)
 จาก [[1,2,0],[3,5,6],[4,7,8]] ก็เปลี่ยนเป็น [1,2,3,5,6,4,7,8]
- 2. inversions: หาจำนวน inversion ซึ่งคือจำนวนคู่ของข้อมูลใน list of ints ว่า <mark>มีกี่คู่ที่ตัวซ้ายมากกว่าตัวขวา</mark> เช่น จากตัวอย่างข้างบนนี้ มีข้อมูล 8 ตัว ก็มีทั้งหมด 8*7/2 = 28 คู่ ดังนี้
 (1,2),(1,3),(1,5),(1,6),(1,4),(1,7),(1,8),(2,3),(2,5),(2,6),(2,4),(2,7),(2,8),(3,5),(3,6),(3,4),(3,7),(3,8),(5,6),(5,4),(5,7),(5,8),(6,4),(6,7),(6,8),(4,7),(4,8),(7,8) ซึ่งมี 2 คู่ที่ตัวซ้ายมากกว่าตัวขวา ดังนั้น จำนวน inversion จึงมีค่าเป็น 2
- ตารางที่ได้รับ จะเลื่อนได้ไปสู่เป้าหมายได้ ก็เมื่อมีลักษณะ ตรงตามเงื่อนไขข้างล่างนี้

จำนวนแถวของตาราง	จำนวน inversions	หมายเลขแถวของตารางที่เลข o อยู่ (แถวบนสุดคือแถวที่ o)
เลขคี่	เลขคู่	อยู่แถวใดก็ได้
12010	เลขคี่	เลขคู่
l ରଥନ୍	เลขคู่	เลขคี่

จากตัวอย่างในขั้นตอนที่ **1** ตารางมีจำนวน **3** แถวเป็นเลขคี่ จำนวน **inversions** เป็นเลขคู่ จึงสามารถเลื่อนไปยังเป้าหมายได้ (รายละเอียดอ่านเพิ่มเติมได้ที่ https://www.cs.bham.ac.uk/~mdr/teaching/modules04/java2/TilesSolvability.html)

จงเขียนฟังก์ชันต่าง ๆ ที่ทำงานตาม comment ที่เขียนไว้ ในโครงของโปรแกรมข้างล่างนี้

```
def row_number(t, e): # return row number of t containing e (top row is row #0)

def flatten(t): # return a list of ints converted from list of lists of ints t

def inversions(x): # return the number of inversions of list x

def solvable(t): # return True if tiling t (list of lists of ints) is solvable # otherwise return False

exec(input().strip()) # do not remove this line
```

ข้อมูลนำเข้า

คำสั่งในการทดสอบฟังก์ชันที่เขียน

ข้อมูลส่งออก

ผลที่ได้จากคำสั่งที่ป้อนเป็นข้อมูลนำเข้า

ตัวอย่าง

input	output (ทางจอภาพ)
print(row_number([[0,8,7],[6,5,4],[3,2,1]], 0)	0
print(flatten([[0,8,7],[6,5,4],[3,2,1]]))	[8, 7, 6, 5, 4, 3, 2, 1]
print(inversions([8,7,6,5,4,3,2,1]))	28
print(solvable([[0,8,7],[6,5,4],[3,2,1]]))	True