Álgebra 1 - Turma C $-1^{\circ}/2018$

3^a Lista de Exercícios – Funções

Prof. José Antônio O. Freitas

Notações:

i) $\mathbb{R}_{+}^{*} = \{x \in \mathbb{R} \mid x > 0\}$

iii) $\mathbb{R}_+ = \{x \in \mathbb{R} \mid x \geqslant 0\}$

ii) $\mathbb{R}^* = \{x \in \mathbb{R} \mid x < 0\}$

iv) $\mathbb{R}_{-} = \{x \in \mathbb{R} \mid x \leq 0\}$

Exercício 1: Considere a função $f: \mathbb{R} \to \mathbb{R}$ dada por f(x) = |x-2|. Encontre:

a) $f(\{1\})$

b) $f(\{-\sqrt{2},3\})$

d) f((-3,5)) g) $f^{-1}([0,2])$ e) $f^{-1}(\{3\})$ h) $f^{-1}([-3,3])$

c) f([-2,2])

f) $f^{-1}(\{-3,5\})$

i) $f^{-1}(\mathbb{R}^*)$

Exercício 2: Seja $g: \mathbb{R} \to \mathbb{R}$ dada por

$$g(x) = \begin{cases} x^2, & \text{se } x \leq 0\\ \sqrt[3]{x}, & \text{se } x > 0. \end{cases}$$

Encontre:

a) g([-1,8])

d) $g(\mathbb{R}_{-})$

b) $q(\mathbb{R}_+)$

e) $q^{-1}([1, 25])$

c) $q^{-1}([-1, 16])$

f) $q^{-1}(\mathbb{R}^*)$

Exercício 3: Seja $f(x) = x^4$ e $g(x) = x^7$. Verifique que $(f \circ g)(x) = (g \circ f)(x)$.

Exercício 4: Dadas as funções f(x) = 3x + m e g(x) = ax + 2, determine condições sobre $a \in m$ para que $(f \circ g)(x) = (g \circ f)(x)$.

Exercício 5: Dada as funções

$$f(x) = \begin{cases} 1, & \text{se } x < 0 \\ 2x^2, & \text{se } 0 \le x \le 1 \\ 0, & \text{se } x > 1 \end{cases} \qquad g(x) = \begin{cases} x, & \text{se } x < 0 \\ 0, & \text{se } 0 \le x \le 1 \\ 1, & \text{se } x > 1. \end{cases}$$

Determine $f \circ g$.

Exercício 6: Dada as funções

$$f(x) = \begin{cases} x^2 + 2, & \text{se } x \le -1\\ \frac{1}{x - 2}, & \text{se } -1 < x < 1\\ 4 - x^2, & \text{se } x \ge 1 \end{cases}$$
 $g(x) = 2 - 3x$.

Determine $f \circ g \in g \circ f$.

Exercício 7: Seja $f: \mathbb{R}^2 \to \mathbb{R}$ dada por f(x,y) = xy.

- a) f é injetora?
- b) f é sobrejetora?
- c) Obter $f^{-1}(0)$.
- d) Obter $f([0,1] \times [0,1])$.

Exercício 8: Seja $f: A \to [-9, -1)$ dada por $f(x) = \frac{4x + 3}{3 - x}$.

- a) Determine A.
- b) Mostre que f é injetora.
- c) É verdade que f é sobrejetora?

Exercício 9: Seja $f: A \to (1, 10]$ dada por $f(x) = \frac{4 - 11x}{4 - 2x}$.

- a) Determine A.
- b) Mostre que f é injetora.
- c) É verdade que f é sobrejetora?

Exercício 10: Considere a função $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ tal que f(x,y) = (2x + 3, 4y + 5). Prove que f é injetora. Verifique se f é bijetora.

Exercício 11: Mostre que a função $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = ax + b, com $a \in b$ constantes reais, $a \neq 0$, é uma bijeção. Obter f^{-1} .

Exercício 12: Mostrar que $f: \mathbb{R} - \left\{-\frac{d}{c}\right\} \to \mathbb{R} - \left\{\frac{a}{c}\right\}$ dada por $f(x) = \frac{ax+b}{cx+d}$, onde a, b, c, d são números reais constantes, $ad-bc \neq 0$, é uma bijeção. Descrever a função f^{-1} .

Exercício 13: Achar uma função $f:A\to B,$ com A e B subconjuntos de $\mathbb{R},$ para cada caso abaixo:

- a) $A=\mathbb{R},\,B \varsubsetneqq \mathbb{R}$ e finjetora e não sobrejetora.
- b) $A \subsetneq \mathbb{R},\, B = \mathbb{R}$ e finjetora e não sobrejetora.
- c) $A=\mathbb{R},\,B \varsubsetneq \mathbb{R}$ e f sobrejetora e não injetora.
- d) $A \varsubsetneq \mathbb{R},\, B = \mathbb{R}$ e f sobrejetora e não injetora.

Exercício 14: Classificar (se possível) em injetora ou sobrejetora as seguintes funções de \mathbb{R} em \mathbb{R} .

a)
$$f(x) = x^3$$

f)
$$f(x) = x + 3$$

b)
$$f(x) = x^2 - 5x - 6$$

g)
$$f(x) = |x - 1|$$

c)
$$f(x) = 2^x$$

$$h) f(x) = \frac{1}{x}$$

d)
$$f(x) = |\sin x|$$

i)
$$f(x) = 1 - x^2$$

e)
$$f(x) = x + |x|$$

j)
$$f(x) = |x|(x-1)$$

Exercício 15: Seja $f:A\to B$ e $g:B\to A$ funções tais que $g\circ f=i_A$. Quais das afirmações seguintes são verdadeiras?

a)
$$g = f^{-1}$$

- b) f é sobrejetora
- c) f é injetora
- d) g é sobrejetora
- e) g é injetora

Exercício 16: Sejam $f:A\to B,\,g:A\to B$ e $h:B\to C$ funções. Prove que se h é injetora e $h\circ g=h\circ f,$ então g=f.

Exercício 17: Seja $f:A\to B$ uma função e sejam P e Q subconjuntos de A. Mostre que:

- a) Se $P \subset Q$, então $f(P) \subset f(Q)$.
- b) $f(P \cup Q) = f(P) \cup f(Q)$.
- c) $f(P \cap Q) \subset f(P) \cap f(Q)$.
- d) Se f é injetora, então $f(P \cap B) = f(P) \cap f(Q)$.
- e) f é bijetora se, e somente se, $f(P^C) = (f(P))^C$ para todo $P \subseteq A$. (Aqui P^C é o complementar de P em relação à A.)

Exercício 18: Seja $f:A\to B$ uma função e sejam $P\subset A$ e $X,Y\subset B$. Mostre que:

- a) Se $X \subset Y$, então $f^{-1}(X) \subset f^{-1}(Y)$.
- b) $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.
- c) $f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$.
- d) $P \subset f^{-1}(f(P))$.
- e) $f(f^{-1}(X)) = X \cap \text{Im } f$ e conclua que se f é sobrejetora então $f(f^{-1}(X)) = X$.

Exercício 19: Se as funções $f:A\to B$ e $g:B\to A$ são tais que $g\circ f$ é injetora, então f é injetora.

Exercício 20: Se as funções $f:A\to B$ e $g:B\to A$ são tais que $g\circ f$ é sobrejetora, então g é sobrejetora.

Exercício 21: Mostrar que toda função injetora (sobrejetora) de um conjunto finito em si mesmo é também sobrejetora (injetora).