

Boltzman Machine

Review and Prospects

Hooman Zolfaghari Ramtin Moslem Borna (lastname) Houman (lastname)

Energy Based Models

Botzman Machine

Research Prospect

Template Things

Single Column

For 4-by-3 aspect ratio slides, specify standard as an option to the document class. Write your presentation like a normal MEX file with a \maketitle command and \chapter and \section headings. The \maketitle contents are defined by the following macros:

\pretitle \author

\title \subtitle

The \chapter heading creates a slide with just the chapter name, and the \section heading sets the title of a new slide. However, if no text follows the section, no slide will be created. Text which does not fit on one slide will flow onto the next slide automatically.

Double Column

Use the \twocolumn and \onecolumn commands right after the section heading to control the number of columns. Text will flow from the left column to the right.

- Point one
- Point two
- · Point three
- Point four
- · Point five
- Point six

- Point seven
- Point eight
- Point nine
- Point ten
- Point eleven
- Point twelve

You can use \pagebreak to force text onto the next column.

Table of Stuff

You can create any variety of subdivisions on your slide by using the tabular environment.

Primary	Secondary	Tertiary
First	Second	Third
One	Two	Three
Alpha	Beta	Gamma
Аірпа	Deta	Gaiiiiia
Green	Blue	Red
Cyan	Yellow	Magenta

The \cellcolor command sets the background color of a table cell.

Centering

Use the Center environment to center horizontally *and* vertically.

Explicit Code

Python

Use the python environment for Python code.

```
def write_list(fid, x, level):
          ind = ' '*level
          xs = '0' \text{ if abs}(x[0]) < 1e-3 \text{ else "%.3f"}
          txt = '\n\svalues=\''\s' \% (ind. xs)
4
          for n in range(1, len(x)):
5
               xs = '0' \text{ if abs}(x[n]) < 1e-3 \text{ else "%.3f"}
               if len(txt) + 3 + len(xs) >= 80:
                   fid.write(txt + ':\n')
                   txt = ind + ' ' + xs
9
               else:
10
                   txt += '; ' + xs
11
12
          fid.write(txt + '\"')
```

Python

You can use the `\HL` command to highlight a line of code.

```
def write_list(fid, x, level):
          ind = ' '*level
          xs = '0' \text{ if abs}(x[0]) < 1e-3 \text{ else "%.3f"}
          txt = '\n\svalues=\''\s' \% (ind. xs)
          for n in range(1, len(x)):
               xs = '0' \text{ if abs}(x[n]) < 1e-3 \text{ else "%.3f"}
               if len(txt) + 3 + len(xs) >= 80:
                   fid.write(txt + ';\n')
                   txt = ind + ' ' + xs
9
               else:
10
                   txt += '; ' + xs
11
12
          fid.write(txt + '\"')
```

MATLAB

Use the matlab environment for MATLAB code.

```
function savepdf(name, width, height)
% name is the file name including ".pdf".
% Both width and height are in (cm).
set(gcf, 'units', 'centimeters', ...
'position', [0, 0, width, height])
set(gca, 'FontSize', 9);
set(gca, 'FontName', 'Times New Roman');
exportgraphics(gcf, name, ...
'ContentType', 'vector');
end
```

R Language

Use the rlang environment for R code.

```
factorial <- function(n) {
    if (n == 0 || n == 1) {
        return(1)
    } else {
        return(n * factorial(n - 1))
    }
}</pre>
```


