线性规划和对偶

李飞 2016年1月10日

Contents

1	内容引入	4
2	对偶的用处	4
3	DIET 问题 3.1 原始问题 3.2 对偶问题 3.3 DIET 问题总结	
4	原始问题和对偶问题 4.1 线性规划矩阵 4.2 原始问题 4.3 对偶问题 4.4 原始问题与对偶问题之间的转换	7
5	拉格朗日乘子和 KKT 条件 5.1 拉格朗日乘子 5.1.1 引入 5.1.2 求解 5.2 KKT 条件 5.2.1 引入 5.2.2 满足条件	7 8 9
6	向线性规划中引入拉格朗日对偶 6.1 拉格朗日对偶 6.2 强边界 6.3 例子 6.4 拉格朗日──原问题和对偶问题之间的桥梁 6.5 对偶变量 y	10 10 11
7	对偶的四个性质 7.1 性质一: 对偶的对偶就是原问题 7.2 性质二: 弱对偶性 7.2.1 内容 7.2.2 例子 7.2.3 证明 7.3 性质三: 强对偶性 7.3.1 内容 7.3.2 证明 7.4 性质四: 互补松弛性 7.4.1 内容 7.4.2 例子 7.4.3 证明	12 12 13 13 13 13 13
8	原问题和对偶问题的 9 种情况 8.1 例子 1: 原问题有无界最优解,对偶问题无解	

9	对偶	B应用 1: Farkas 引理	15
	9.1	引理内容	15
	9.2	引理图例解释	15
	9.3	引理证明	15
	9.4	Farkas 引理变种	15
		9.4.1 变种 1	16
		9.4.2 变种 2	16
		9.4.3 变种 3	16
10	对偶	应用 2: 最短路径问题	16
	10.1	最短路径问题回顾	16
	10.2	线性规划形式	16
	10.3	写出对偶问题	17
11	对偶	3 单纯形算法	18
	11.1	回顾原始问题单纯形算法	18
	11.2	从另一个角度看原始问题单纯形算法	19
	11.3	对偶单纯形算法	19
	11.4	例子	20
		11.4.1 第一步	20
		11.4.2 第二步	20
		11.4.3 第三步	20
		11.4.4 第四步	21
	11 5	对偶单纯形管注用协	91

1 内容引入

任何一个线性规划或者写一个线性规划其实你得到的不是一个东西,而是两个东西,这另外一个东西就是他的对偶。

2 对偶的用处

我们之所以要讲对偶,对偶的作用如下:

- 1. 第一点用处是再往后了,等到我们讲近似算法的时候,非常重要,我们经常碰到一些优化一个目标函数,比如说最小化 f(x),但是最小化 f(x),有时候可能是 NP 完全的,是非常难的,所以我们只好求近似,不求最优求个差不多,求近似的时候如果我们一开始就知道 f(x) 的界,就非常有帮助,那怎么得到这种界呢,这种界还有一个用处就是在分支限界里面,千方百计得到一个界,对偶和松弛是非常有力的一种形式的界,所以我们要将对偶。
- 2. 第二点用处是线性规划一般是成对出现的,我们写了一个 LP 之后,马上就可以写出对偶形式出来,所以我们就得到两个。那写了这个对偶之后怎么得到这个界呢?同时得到两个问题,对于其中一个问题的可行解就天然的是另外一个问题的一个界。

3 DIET 问题

3.1 原始问题

我们还是先从上面这最简单的例子看起,从家庭主妇买食品的例子入手,我们先回顾一下家庭主妇买食品,家庭主妇呢在市场上有这四种食品,每种食品他的成分都清楚,价格也知道,家庭主妇呢又想知道这一天呢我每种食品各买多少,使我花的钱最少,同时满足我能量的基本需求,我们已经讲过了,碰见这种问题我们怎么构建动态规划,这里面 WILL? 对象联系起来,还得稍微重塑一下。

问题: 家庭主妇想知道她每天必须花费在食品上多少钱,以获得所有的能量(2000 大卡),蛋白质(55 克),钙(800 毫克)。

表格:

Food	Energy	Protein	Calcium	Price	Quantity
Oatmeal	110	4	2	3	x_1
Whole milk	160	8	285	9	x_2
Cherry pie	420	4	22	20	x_3
Pork beans	260	14	80	19	x_4

线性规划方程:

我们的目标函数是什么呢?目标函数就是 $3x_1 + 9x_2 + 20x_3 + 19x_4$ 这是我们的总价格,我们总共要花多少钱,约束是什么呢?我们只看一个吧,能量约束,买 x_1 份燕麦我们要得到这么多能量,所以得到能量为 $110x_1 + 160x_2 + 420x_3 + 260x_4$,最小需求呢是 2000 大卡,所以约束是这个意思。

3.2 对偶问题

这个市场上总是有两类商品,不是只有一类,不仅有卖原始的燕麦、牛奶这些商品,还有一些公司呢分解的成果,比如说他是卖蛋白粉,单卖蛋白粉,单卖能量棒,单卖钙片。

问题表格:

Food	Energy	Protein	Calcium	Price (cents)
Oatmeal	110	4	2	3
Whole milk	160	8	285	9
Cherry pie	420	4	22	20
Pork with beans	260	14	80	19
Price	y_1	y_2	y_3	

线性规划方程:

那假如说你是卖蛋白粉的商家,如果让你来定价格,你应该怎么来定?首先说这个价格,你的总体目标当然是想赚的钱越多越好,每个家庭主妇都要赚的越多钱越好,另外当然你这个价格有一些限制条件,如果你定的价格与原始商品的价格之间有竞争力,家庭主妇就可能考虑购买你的商品,比如不吃燕麦了买一堆的蛋白粉,一堆的能量棒和钙片,混在一块效果和麦片一样。但是你价格定的过高呢,那家庭主妇还不如直接去买麦片,这是一个很简单的道理。

接着我们会考虑到如果你是这个商家,让你来定一个合理的价格,你怎么定呢?你只好写一个这样的线性规划,我们假设能量棒是 y_1 , 1 大卡的能量棒我们的定价是 y_1 , 1 克的蛋白我们定价 y_2 , 1 毫克的钙是 y_3 , $2000y_1 + 55y_2 + 800y_3$ 就是我在一个家庭主妇身上至少赚这么多钱,我的目标就是至少赚的钱,最大化它。下面第一个约束是说各种成分的价格总和一定小于燕麦的价格,不然家庭主妇就会直接购买燕麦。那这个商家要定这个价格,并且在市场上价格越高越好,那么他就必须解这个线性规划。

3.3 **DIET** 问题总结

从 DIET 这个例子中我们可以看出,假如将原先的家庭主妇的问题定为原问题,那这个商家定价的问题就定为对偶问题,这两个是非常紧密关联的,实际上原问题和对偶问题只不过是矩阵 A 的两种看法: 家庭主妇是按照行看,商家问题是按照列看。家庭主妇问题按行看写成矩阵的样子就是: $\min c^T x$ 。商家问题按列看携程矩阵的样子就是: $\max y^T b$ 。基本上两个式子是完全对应的。

4 原始问题和对偶问题

4.1 线性规划矩阵

$$c_1$$
 c_2 ... c_n
 a_{11} a_{12} ... a_{1n} b_1
 a_{21} a_{22} ... a_{2n} b_2
...
 a_{m1} a_{m2} ... a_{mn} b_m

原始问题和对偶问题只是对于线性规划矩阵 A 两种不同的角度:

- 原始问题: 从行看
- 对偶问题: 从列看

4.2 原始问题

详细表示(按行看):

矩阵表示:

$$\label{eq:continuous_continuous} \begin{split} \min & & \mathbf{c^T}\mathbf{x} \\ s.t. & & \mathbf{A}\mathbf{x} & \geq \mathbf{b} \\ & & & \mathbf{x} & \geq \mathbf{0} \end{split}$$

4.3 对偶问题

详细表示(按列看):

矩阵表示:

$$\begin{array}{ll}
\max & \mathbf{y^T b} \\
s.t. & \mathbf{y} \ge \mathbf{0} \\
\mathbf{y^T A} \le \mathbf{c^T}
\end{array}$$

4.4 原始问题与对偶问题之间的转换

写出一个线性规划的时候,可以同时得到他的对偶。原问题为 Min 时,那么对偶就是 Max:

• 一旦原问题是 $Ax \le b$,那么对偶一定是 $y \le 0$;一旦原问题是 $x \ge 0$,那么对偶问题就是 $y^T A \le c$ 。

• 如果原始问题是 Ax = b,那么对偶问题对 y 没有约束,你可以 $y \le 0$ 也可以 $y \ge 0$; $x \ge 0$ 一样需要反 号。

5 拉格朗日乘子和 KKT 条件

我们写出一个线性规划,那么我们就可以机械的写出他的对偶。对偶为何要这样生成,我们可以很容易的从 拉格朗日对偶的观点中得出。

5.1 拉格朗日乘子

5.1.1 引入

拉格朗日是: 求 min f(x),我们可以通过倒数等于零,如果给我们约束 min f(x),一定要满足等式 $g_i(x)=0$ 的条件,再增加难度,再加入不等式条件 $h_i(x)\leq 0$ 。

即以下三步:

1. 首先没有约束条件。

$$\min f(\mathbf{x})$$

2. 加入等式条件 $g_i(\mathbf{x}) = 0$ 。

min
$$f(\mathbf{x})$$

s.t. $g_i(\mathbf{x}) = 0$ $i = 1, 2, ..., m$

3. 再加入不等式条件 $h_i(\mathbf{x}) \leq 0$ 。

min
$$f(\mathbf{x})$$

s.t. $g_i(\mathbf{x}) = 0$ $i = 1, 2, ..., m$
 $h_i(\mathbf{x}) \leq 0$ $i = 1, 2, ..., p$

5.1.2 求解

我们考虑以下问题:

$$\begin{array}{rcl}
\min & f(x,y) \\
s.t. & g(x,y) &= 0
\end{array}$$

我们把 g(x,y) = 0 这条曲线画在图上,把 f(x,y) 画等高线,比如说图上等于 1 和 2,我们的目标是要在 g(x,y) = 0 这条曲线上找一个点使得 f(x,y) 越小越好。

我们就把它想成气球,这个气球一开始比较大,这上面与 g(x,y)=0 交了两个点,这时候能找到两个点且 f(x,y) 等于 2,然后我们尝试 f(x,y) 变小,直到与 g(x,y)=0 有一个交点,最后变成没有交点,这个时候 f(x,y) 达到最小,所以可以得到最后最小的点肯定是 g(x,y) 与等高线若近若离的,这个若近若离的表示方法 就是 g(x,y)=0 与等高线相切的,那个点就是最优点。

所以得到以下式子:

- $\nabla f(x,y) = \lambda \nabla g(x,y)$
- $L(x, y, \lambda) = f(x, y) \lambda g(x, y)$
- $\nabla L(x^*, y^*, \lambda) = 0$

我们将相切继续表示,表示成它们的法线,也就是梯度,这个梯度都会垂直于这个切线,所以我们直观上看,假如说 (x^*,y^*) 是最优解的话,那么在这个点上 f(x,y) 不会再改变值了,沿着这条线走的话 f(x,y) 数值不变,也就是说他两的梯度要在同一条直线上,有可能同向也有可能反向。可以表示为两个梯度成一定比例,我们把比例用 λ 表示 $\nabla f(x,y) = \lambda \nabla g(x,y)$,接着就可以得到拉格朗日方程 $L(x,y,\lambda) = f(x,y) - \lambda g(x,y)$,接着对于拉格朗日方程求导,等于 0 可以得到 $\nabla f(x,y) = \lambda \nabla g(x,y)$,所以得到求有约束的最小值,可以转化成 $\nabla L(x^*,y^*,\lambda) = 0$ 。

朗格朗日方程式原始的优化目标减去一个东西,这个东西可以看作是违反约束的阀,因为我们要求约束的结果等于 0,如果 g(x,y) 不等于 0 那么我们就要减去后面这个式子,这个 λ 就是拉格朗日乘子。

拉格朗日乘子:

$$L(x, y, \lambda) = f(x, y) - \lambda g(x, y)$$

5.2 KKT 条件

前面我们已经完成了约束为 g(x) = 0 的求解方法,那如果是小于等于 0,那就不在是拉格朗日了,是拉格朗日的拓展,叫 KKT 条件。

5.2.1 引入

要求 $g(x,y) \le 0$,也就是说图中的阴影区我们是要在阴影区或者边界上找一个点,使得 f(x,y) 最小,我们把他分成两种情况:

- 1. 如果最优解恰好在这条边界上,那么这个就可以通过拉格朗日来求解。
- 2. 如果最优解在阴影区内部,我们是要找最优解,这个最优解不在边界上,在他内部,如果在内部那这个解一定是单纯考虑 f(x,y) 的最优解,也就是直接求 $\nabla f(x,y) = 0$ 的解。

5.2.2 满足条件

KKT 条件可以这样来表示,首先先写一个拉格朗日 $L(x,y,\lambda)=f(x,y)-\lambda g(x,y)$,这个最优解需要满足的条件就是:

- 1. 与拉格朗日一样, 使得式子的倒数等于 0。
- 2. 满足原先的可行性, 原先的 $g(x,y) \leq 0$ 。
- 3. 对偶的可行性 $\lambda_i < 0$ 。
- 4. 满足互补的松弛性。每个 $\lambda_i g_i(x) = 0$ 。

6 向线性规划中引入拉格朗日对偶

6.1 拉格朗日对偶

对于线性规划:

$$\begin{array}{rcl}
\min & \mathbf{c}^{\mathbf{T}} \mathbf{x} \\
s.t. & \mathbf{A} \mathbf{x} & \geq & \mathbf{b} \\
& \mathbf{x} & \geq & \mathbf{0}
\end{array}$$

这是一个约束优化问题,反正对于约束优化问题都可以写出拉格朗日,拉格朗日是对每一个约束加了一个 λ ,变成:

$$L(\mathbf{x}, \lambda) = \mathbf{c}^{\mathbf{T}} \mathbf{x} - \sum_{i=1}^{m} \lambda_i (a_{i1}x_1 + a_{i2}x_2 + ...a_{in}x_n - b_i)$$

如果我们要求 $\lambda \geq 0$, 并且 α 是可行解的话,那么我们原先的目标函数肯定比 $L(\alpha, \lambda)$ 要大。

对于 $g(\lambda) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda)$,就是对于任意的 λ 我都把所有的 \mathbf{x} 都枚举一遍,算出它的下界当中最大的下区界, 所以 $L(\mathbf{x}, \lambda)$ 一定大于等于 $g(\lambda)$ 。这里的 $g(\lambda)$ 就是拉格朗日对偶。

现在对于拉格朗日对偶进行解释,得到以下求解过程:

$$g(\lambda) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda)$$

$$= \inf_{\mathbf{x}} (\mathbf{c}^{\mathbf{T}} \mathbf{x} - \sum_{i=1}^{m} \lambda_{i} (a_{i1}x_{1} + a_{i2}x_{2} + \dots a_{in}x_{n} - b_{i}))$$

$$= \inf_{\mathbf{x}} (\mathbf{c}^{\mathbf{T}} \mathbf{x} - \lambda^{\mathbf{T}} (\mathbf{A} \mathbf{x} - \mathbf{b}))$$

$$= \inf_{\mathbf{x}} (\mathbf{c}^{\mathbf{T}} \mathbf{x} - \lambda^{\mathbf{T}} \mathbf{A} \mathbf{x} + \lambda^{\mathbf{T}} \mathbf{b})$$

$$= \inf_{\mathbf{x}} (\lambda^{\mathbf{T}} \mathbf{b} + (\mathbf{c}^{\mathbf{T}} - \lambda^{\mathbf{T}} \mathbf{A}) \mathbf{x})$$

$$= \begin{cases} \lambda^{\mathbf{T}} \mathbf{b} & \text{if } \mathbf{c}^{\mathbf{T}} \geq \lambda^{\mathbf{T}} \mathbf{A} \text{ and } \mathbf{x} \geq \mathbf{0} \\ -\infty & \text{otherwise} \end{cases}$$

6.2 强边界

现在我们给出任意一个 f(x),我们现在可以通过拉格朗日搭一下桥,我们想 $\min f(x)$,现在可以得到 $f(x) \ge L(x,\lambda) \ge g(\lambda)$,所以得到我要 $\min f(x)$,最小最小不可能比 $g(\lambda)$ 要小了,所以我们就 $\max g(\lambda)$,任何一个 $g(\lambda)$ 都要比 f(x) 要小,所以最大的值就是 f(x) 的最小值,所以将 λ 换成 y 就是我们所要得到的对偶。

6.3 例子

接着看一个例子,原问题是:

$$\begin{array}{cccc} \min & x \\ s.t. & x & \geq & 2 \\ & x & \geq & 0 \end{array}$$

写出他的拉格朗日为:

$$L(x,y) = x - y * (x - 2) = 2y + x * (1 - y)$$

所以拉格朗日对偶为:

$$g(y) = \inf_{x} L(x, y) = \begin{cases} 2y & \text{if } x \ge 0 \text{ and } (1 - y) \ge 0 \\ -\infty & \text{otherwise} \end{cases}$$

所以对偶问题为:

$$\begin{array}{ll}
\max & 2y \\
s.t. & y \le 1 \\
y \ge 0
\end{array}$$

6.4 拉格朗日——原问题和对偶问题之间的桥梁

核心的问题是,我们原先要 min 的目标函数大于等于拉格朗日,拉格朗日大于等于对偶目标函数,也就是说 min $\mathbf{c^T}\mathbf{x} \geq \mathbf{L}(\mathbf{x}, \mathbf{y}) \geq \mathbf{y^T}\mathbf{b}$,所以通过拉格朗日搭了一下桥,所以我们原先的目标函数一定大于对偶的目标函数。图下图所示:

6.5 对偶变量 y

对偶用途非常广,尤其在经济学领域,经常把它叫做一个价格,经济学领域中常常用到线性规划,常常把对偶变量 y 叫做影子价格或者叫边界成本。边界成本就是说,当我们放松或者加强一个东西的时候,你要多少钱。边界成本就是拉格朗日乘子。

拉格朗日乘子就是说我违反了任意一个约束的时候你要罚我多少钱,我们原本的约束是 $Ax \geq b$, 违反了以后就变成了 $b_i + \Delta b_i$, 变了一点点,那要罚我都少钱呢?那罚的钱数目就是 $\frac{\partial L(\mathbf{x},\lambda)}{\partial b_i} = \lambda_i$ 。

通过例子可以看出对偶变量就是拉格朗日乘子。拉格朗日乘子就是约束稍微改变一点,对于目标函数有什么变化,有的改变对于目标函数没有变化,有的有变化,这个变化多少就是拉格朗日乘子就是我们的对偶变量。

例子:

DIET 问题的 **b** 的值为 $b_1 = 2000, b_2 = 55, b_3 = 800$, 原始问题的可行解:

$$\mathbf{x} = (14.24, 2.70, 0, 0)$$

 $\mathbf{c}^{\mathbf{T}}\mathbf{x} = 67.096$

对偶问题的可行解:

$$\mathbf{y} = (0.0269, 0, 0.0164)$$

 $\mathbf{y}^{\mathbf{T}}\mathbf{b} = 67.096$

稍稍改变 b,看对于 $\max \mathbf{c^T x}$ 的影响:

- $b_1 = 2001$: max $\mathbf{c^T x} = 67.123$ ($\mathbf{y_1} = 0.0269 = 67.123 67.096$)
- $b_2 = 56$: $\max \mathbf{c^T} \mathbf{x} = 67.096 \quad (\mathbf{y_2} = 0 = 67.096 67.096)$
- $b_3 = 801$: $\max \mathbf{c^T} \mathbf{x} = 67.112 \ (\mathbf{y_3} = 0.0164 = 67.112 67.096)$

7 对偶的四个性质

7.1 性质一:对偶的对偶就是原问题

原始问题 (P):

$$\begin{array}{cccc} \min & \mathbf{c^T} \mathbf{x} \\ s.t. & \mathbf{A} \mathbf{x} & \geq & \mathbf{b} \\ & \mathbf{x} & \geq & \mathbf{0} \end{array}$$

对偶问题 (D):

$$\begin{array}{cccc} \max & \mathbf{y^Tb} \\ s.t. & \mathbf{x} & \geq & \mathbf{0} \\ & \mathbf{y^TA} & \leq & \mathbf{c^T} \end{array}$$

对偶的改变 (D'):

$$\begin{array}{lll} \min & \mathbf{y^T}(-\mathbf{b}) \\ s.t. & \mathbf{x} & \geq & \mathbf{0} \\ & \mathbf{y^T}(-\mathbf{A}) & \geq & (-\mathbf{c^T}) \end{array}$$

对偶的对偶 (D'D):

$$\max \quad \mathbf{x^T}(-\mathbf{c^T})$$
 $s.t. \quad \mathbf{x} \geq \mathbf{0}$ $\mathbf{x^T}(-\mathbf{A}) \leq -\mathbf{b^T}$ 与原问题相同

7.2 性质二:弱对偶性

7.2.1 内容

对于一般问题,对偶问题的任意一个可行解总是原问题的一个下界。

7.2.2 例子

7.2.3 证明

原始问题:

$$\begin{aligned} & \min \quad \mathbf{c^T x} \\ & s.t. \quad \mathbf{Ax} \quad \ge \mathbf{b} \\ & \quad \mathbf{x} \quad \ge \mathbf{0} \end{aligned}$$

对偶问题:

$$\begin{array}{ll} \max & \mathbf{y^T b} \\ s.t. & \mathbf{y} & \geq \mathbf{0} \\ & \mathbf{y^T A} & \leq \mathbf{c^T} \end{array}$$

推导:

- 由于 $\mathbf{y}^{T}\mathbf{A} < \mathbf{c}^{T}$ 并且 $\mathbf{x}^{T} > \mathbf{0}$, 所以 $\mathbf{c}^{T}\mathbf{x} > \mathbf{y}^{T}\mathbf{A}\mathbf{x}$.
- 由于 $\mathbf{A}\mathbf{x} \geq \mathbf{b}$ 并且 $\mathbf{y} \geq \mathbf{0}$,所以 $\mathbf{c}^{\mathbf{T}}\mathbf{x} \geq \mathbf{y}^{\mathbf{T}}\mathbf{A}\mathbf{x} \geq \mathbf{y}^{\mathbf{T}}\mathbf{b}$ 。

7.3 性质三:强对偶性

7.3.1 内容

对于线性规划,原问题的存在最优解,那对偶问题也存在一个最优解,它们的数值相等。

7.3.2 证明

- 线性规划的最优解肯定能够写成 $\mathbf{x}^* = \begin{bmatrix} \mathbf{B^{-1}b} \\ 0 \end{bmatrix}$,最优解肯定在顶点上,顶点就是一个基,假如这个基是 \mathbf{B} 则 \mathbf{x} 一定写成 $\mathbf{B^{-1}b}$,其它的非基向量为 $\mathbf{0}$ 。且停止条件是 $\mathbf{c^T} \mathbf{c_R^T} \mathbf{B^{-1}A} \geq \mathbf{0}$ 。
- 我们定义: $\mathbf{y}^{*T} = \mathbf{c_B}^T \mathbf{B}^{-1} \cdot \mathbf{y}^{*T}$ 是对偶的最优解。
- 带入得到, $\mathbf{y}^{*T}\mathbf{b} = \mathbf{c_B}^T \mathbf{B}^{-1} \mathbf{b} = \mathbf{c}^T \mathbf{x}^*$ 。
- 因为所有的 y 带入对偶问题都小于等于原始问题,现在找到一个相等的了,所以这个 y^* 一定是最优解。

7.4 性质四: 互补松弛性

7.4.1 内容

假如 x 是原问题的可行解, y 为对偶问题的可行解, 那么 x 和 y 是最优解时, 当且仅当:

- 对于任意 $1 \le i \le m$, $u_i = y_i(a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n b_i) = 0$.
- 对于任意 $1 \le j \le n$, $v_j = (c_j a_{1j}y_1 a_{2j}y_2 \dots a_{mj}y_m)x_j = 0$.

7.4.2 例子

DIET 问题的可行解和他的对偶问题的可行解是: $\mathbf{x} = (14.244, 2.707, 0, 0)$ 和 $\mathbf{y} = (0.0269, 0, 0.0164)$ 。可以得到:

7.4.3 证明

证:

• 对于任意 i 和 $j,u_i=0$ 并且 $v_j=0$

•
$$\Leftrightarrow \sum_i u_i = 0$$
 并且 $\sum_j v_j = 0$ (因为 $u_i \ge 0, v_j \ge 0$)

•
$$\Leftrightarrow \sum_{i} u_i + \sum_{j} v_j = 0$$

•
$$\Leftrightarrow (\mathbf{y}^{\mathbf{T}}\mathbf{A}\mathbf{x} - \mathbf{y}^{\mathbf{T}}\mathbf{b}) + (\mathbf{c}^{\mathbf{T}}\mathbf{x} - \mathbf{y}^{\mathbf{T}}\mathbf{A}\mathbf{x}) = \mathbf{0}$$

•
$$\Leftrightarrow \mathbf{y^T}\mathbf{b} = \mathbf{c^T}\mathbf{x}$$

• \Leftrightarrow **y** 和**x** 是可行解 (通过强对偶性质可以得到,**y**^T**b** 和 **c**^T**x** 到达了他们自身的边界)

8 原问题和对偶问题的 9 种情况

给我们任何的实际问题,我们可以写出他的线性规划,然后我们就可以机械的写出他的对偶,然后分别进行 求解。

Primal Dual	Bounded Optimal Objective Value	Unbounded Optimal Objective Value	Infeasible
Bounded Optimal Objective Value	Possible	Impossible	Impossible
Unbounded Optimal Objective Value	Impossible	Impossible	Possible
Infeasible	Impossible	Possible	Possible

8.1 例子 1: 原问题有无界最优解,对偶问题无解

• 原问题:

• 对偶问题

8.2 例子 2: 原问题和对偶问题都无解

• 原问题:

• 对偶问题:

9 对偶应用 1: Farkas 引理

9.1 引理内容

给我一堆的向量 $\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_m}, \mathbf{c} \in \mathbb{R}^n$, 那么就可以得到:

- 1. $\mathbf{c} \in \mathbf{C}(\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_m})$,或者
- 2. 存在一个向量 $\mathbf{y} \in \mathbb{R}^n$, 对于任意的 i, $\mathbf{y^Ta_i} \ge \mathbf{0}$ 但是 $\mathbf{y^Tc} < \mathbf{0}$ 成立。

9.2 引理图例解释

图 1: 第一种情况: $\mathbf{c} \in \mathbf{C}(\mathbf{a_1}, \mathbf{a_2})$

图 2: 第二种情况: $\mathbf{c} \notin \mathbf{C}(\mathbf{a_1}, \mathbf{a_2})$

9.3 引理证明

证:

- 假如对于任意向量 $\mathbf{y} \in \mathbb{R}^n$, $\mathbf{y^Ta_i} \ge \mathbf{0}$ (i = 1, 2, ..., m), 同时和任意的边界都大于等于 0, 即 $\mathbf{y^Tc} \ge \mathbf{0}$ 。那么 \mathbf{c} 一定在 $\mathbf{C}(\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_m})$ 中。
- 考虑到以下的线性规划的原始问题:

$$\begin{aligned} & \min \quad \mathbf{c^T y} \\ & s.t. \quad \mathbf{a_i^T y} \quad \geq \quad \mathbf{0} \quad i = 1, 2, ..., m \end{aligned}$$

- 由于 $\mathbf{c^T y} \ge \mathbf{0}$, 所以显然可以得到 $\mathbf{c^T y}$ 有一个下界为 0, 所以可以得到原问题的一个可行解是 $\mathbf{y} = \mathbf{0}$ 。
- 因此可以得到他的对偶为:

$$\begin{array}{ccc} \max & 0 \\ s.t. & \mathbf{x^T} \mathbf{A^T} & = & \mathbf{c^T} \\ & \mathbf{x} & \geq & \mathbf{0} \end{array}$$

• 因此我们可以得到,存在一个向量 \mathbf{x} 使得 $\mathbf{c} = \sum_{i=1}^m x_i \mathbf{a}_i$ 。所以得 \mathbf{c} 可以分解为 \mathbf{A} 的一个线性组合,即 \mathbf{c} 在 \mathbf{A} 的内部。

9.4 Farkas 引理变种

Farkas 引理是线性规划的核心,它可以推出很多东西,比如分离引理,博弈论里的 MINMAX 引理等等。

9.4.1 变种 1

如果 **A** 是一个 $m \times n$ 的矩阵, 并且 **b** $\in \mathbb{R}^m$, 那么可以得到:

- 1. $\mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}$ 是一个可行解,或者
- 2. 存在一个向量 $\mathbf{y} \in \mathbb{R}^m$ 使得 $\mathbf{y}^T \mathbf{A} \ge \mathbf{0}$ 但是 $\mathbf{y}^T \mathbf{b} < \mathbf{0}$ 。

9.4.2 变种 2

给一些向量 $\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_m} \in \mathbb{R}^n$ 。如果 $\mathbf{x} \in \mathbf{C}(\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_m})$,那么就存在一个线性堵路的向量集 $\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_m}$,对于向量集 $\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_r}$,可以得到 $\mathbf{x} \in \mathbf{C}(\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_r})$ 。

9.4.3 变种 3

如果 $\mathbf{C} \subset \mathbb{R}^n$ 是一个闭的凸集,并且 $\mathbf{x} \in \mathbb{R}^n$. 如果 $\mathbf{x} \notin \mathbf{C}$,那么肯定存在一个超平面分离 \mathbf{x} 和 \mathbf{C} 。

10 对偶应用 2: 最短路径问题

10.1 最短路径问题回顾

输入: n 个城市和一些道路的集合。一条从城市 i 到城市 j 的路的距离记作 d(i,j)。两个特殊的城市: s 和 t。

输出: 城市 s 和城市 t 之间的最短路径。

10.2 线性规划形式

每条边我都设一个变量,可以得到以下图:

如果我用了这条边,我就让 x_i 的值等于 1,没走这条边 x_i 等于 0,所以可以写成一个 0/1 的线性规划,即一个整数线性规划。

写出整数线性规划方程:

min
$$5x_1 + 8x_2 + 1x_3 + 6x_4 + 2x_5$$

 $s.t.$ $x_1 + x_2$ $= 1$ 向量 s
 $-x_1 + x_3 + x_4 = 0$ 向量 s
 $-x_2 - x_3 + x_5 = 0$ 向量 s
 $x_1 , x_2 , x_3 , x_4 , x_5 = 0/1$

由于纯在全单模条件, 所以可以将这个 ILP 问题转化成 LP 问题, 可以得到以下的线性规划方程:

min
$$5x_1 + 8x_2 + 1x_3 + 6x_4 + 2x_5$$

 $s.t.$ $x_1 + x_2$ $= 1$ 向量 s
 $-x_4 - x_5 = -1$ 向量 s
 $-x_1 + x_3 + x_4 = 0$ 向量 s
 $-x_2 - x_3 + x_5 = 0$ 向量 s
 $x_1 , x_2 , x_3 , x_4 , x_5 \ge 0$
 $x_1 , x_2 , x_3 , x_4 , x_5 \le 1$

10.3 写出对偶问题

通过原始问题我们可以机械的写出它的对偶问题,得到对偶的线性规划方程为:

max
$$y_s$$
 - y_t
 $s.t.$ y_s - y_u ≤ 5 $x_1: 边(s,u)$
 y_s - y_v ≤ 8 $x_2: 边(s,v)$
 y_u - y_v ≤ 1 $x_3: 边(u,v)$
- y_t + y_u ≤ 6 $x_4: 边(u,t)$
- y_t + y_v ≤ 2 $x_5: 边(v,t)$

根据下图, 我们从对偶问题中可以看出,现在我们对于每个城市设一个变量 y_s ,我们用 y_s 来表示这个城市的海拔高度, y_u 来表达另一个城市的海拔高度,现在我们知道 s 到 u 有一条路走 5 公里,那么他们两的海拔高度差肯定不会超过 5 公里,目标函数是 y_s 减去 y_t 就是 s 到 t 的最小的海拔差,我们 \max 下它,可以得到它的下界。这就是对偶问题的直观含义。

图 3: 对偶问题的直观含义

11 对偶单纯形算法

11.1 回顾原始问题单纯形算法

原始问题:

单纯形算法很简单,你把矩阵 **A** 照抄下来,上面把 c 都照抄下来,b 写在左边,初始化的最优值写左边为 0,可以得到下图所示表格:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7
-z = 0	$\overline{c_1} = 1$	$\overline{c_2}=14$	$\overline{c_3} = 6$	$\overline{c_4} = 0$	$\overline{c_5} = 0$	$\overline{c_6} = 0$	$\overline{c_7} = 0$
$\mathbf{x_{B1}} = b_1' = 4$	1	1	1	1	0	0	0
$\mathbf{x_{B2}} = b_2' = 2$	1	0	0	0	1	0	0
$\mathbf{x_{B3}} = b_3' = 3$	0	0	1	0	0	1	0
$\mathbf{x_{B4}} = b_4' = 6$	0	3	1	0	0	0	1

先找一个基可行解,所有都对他做高斯行变换,包括右边的部分都变成 0。然后写一个 While 循环,里面分三步:

- 先找上面 c_i 内有没有负数的
- 有负数的话找对应的一列,在里面正的里面找最小,做高斯行变换
- 直到 c_i 内全是非负为止。

最终就能得到最优解。

原始的解为 \mathbf{x} , 什么时候可行呢? 即 \mathbf{x} 等于 $\mathbf{B}^{-1}\mathbf{b}$, 那么 $\mathbf{B}^{-1}\mathbf{b} > 0$ 是显然的。

将线性规划写出他的对偶出来,可以得到:

对应下表:

可以得到:

- 对偶变量是: $\mathbf{y^T} = \mathbf{c_B^T B^{-1}}$, 可行解为 $\mathbf{y^T A}$ 且可行性是 $\mathbf{y^T A} \leq \mathbf{c^T}$ 。
- 如果一个基称为对偶可行是说 $\overline{\mathbf{c}^{\mathbf{T}}} = \mathbf{c} \mathbf{c}_{\mathbf{B}}^{\mathbf{T}} \mathbf{B}^{-1} \mathbf{A} = \mathbf{c}^{\mathbf{T}} \mathbf{y}^{\mathbf{T}} \mathbf{A} \geq 0$ 。即只要 c_i 行都大于等于 0,就是对偶可行解。

	x_1	x_2	x_3	x_4	x_5	x_6	x_7
-z=0	$\overline{c_1} = 1$	$\overline{c_2}=14$	$\overline{c_3}=6$	$\overline{c_4} = 0$	$\overline{c_5}=0$	$\overline{c_6} = 0$	$\overline{c_7} = 0$
$\mathbf{x_{B1}} = b_1' = 4$	1	1	1	1	0	0	0
$\mathbf{x_{B2}} = b_2' {=} 2$	1	0	0	0	1	0	0
$\mathbf{x_{B3}} = b_3' = 3$	0	0	1	0	0	1	0
$\mathbf{x_{B4}} = b_4' = 6$	0	3	1	0	0	0	1

11.2 从另一个角度看原始问题单纯形算法

可以将单纯形算法看做:

- 起始点: 一开始的时候我们找一个可行解,这个可行解是 $\mathbf{x_B} = \mathbf{B^{-1}b}$ 且 $\mathbf{B^{-1}b} \geq \mathbf{0}$ 。
- 保持: 我们在做的过程中,始终要保持左边大于等于 0,原问题是可行解。
- 停止: 停止是最上面的 $\mathbf{c_i}$ 行要大于等于 0, 即 $\overline{\mathbf{c^T}} = \mathbf{c^T} \mathbf{c_R^T} \mathbf{B^{-1} A} \ge \mathbf{0}$ 。这个从另外一个角度看就是对 偶是可行的。

我们把我们过去的算法从对偶的观点重新再解释一遍,从一个原问题可行解出发,始终保持原问题是可行 的,不断地做直到对偶也可行,一旦对偶可行我们就知道了这两者都可行了,我们就得到了最优解了。

我们也可以这样做,假如我们始终保持对偶可行,初始的数值就让对偶可行,在做的过程中始终保持对偶可 行,直到最后原问题也可行,因为这两个问题都可行的话就得到最优解了,所以这么做也可以。

对偶单纯形算法 11.3

通过上述的推倒,我们可以得到对偶单纯形算法为:

20: end while

```
Dual simplex(B_I, z, \mathbf{A}, \mathbf{b}, \mathbf{c})
 1: //Dual simplex starts with a dual feasible basis. Here, B_I contains the indices of the basic variables.
 2: while TRUE do
        if there is no index l (1 \le l \le m) has b_l < 0 then
           \mathbf{x} = \text{CALCULATEX}(B_I, \mathbf{A}, \mathbf{b}, \mathbf{c});
 4:
           return (\mathbf{x}, z);
 5:
        end if;
 6:
        choose an index l having b_l < 0 according to a certain rule;
 7:
        for each index j (1 \le i \le n) do
 8:
           if a_{lj} < 0 then
 9:
              \Delta_j = -\frac{c_j}{a_{lj}};
10:
11:
              \Delta_i = \infty;
12:
           end if
13:
        end for
14:
15:
        choose an index e that minimizes \Delta_j;
        if \Delta_e = \infty then
16:
           return ''no feasible solution'';
17:
        end if
18:
        (B_I, \mathbf{A}, \mathbf{b}, \mathbf{c}, z) = \text{PIVOT}(B_I, \mathbf{A}, \mathbf{b}, \mathbf{c}, z, e, l);
```

11.4 例子

• 标准型:

• 松弛型:

11.4.1 第一步

	x_1	x_2	x_3	x_4	x_5
-z = 0	$\overline{c_1} = 5$	$\overline{c_2} = 35$	$\overline{c_3}=20$	$\overline{c_4} = 0$	$\overline{c_5}=0$
$\mathbf{x_{B1}} = b_1' = -2$	1	-1	-1	1	0
$\mathbf{x_{B2}} = b_2' = -3$	-1	-3	0	0	1

• 基 (蓝色): $B = \{a_4, a_5\}$.

•
$$\mathbf{F}: \mathbf{x} = \begin{bmatrix} \mathbf{B^{-1}b} \\ \mathbf{0} \end{bmatrix} = [0, 0, 0, -2, -3]^T$$

• 推进: 选择 $\mathbf{a_5}$ 是因为 $b_2'=-3<0$; 选择 $\mathbf{a_1}$ 是因为 $\min_{j,a_{2j}<0}\frac{\overline{c}_j}{-a_{2j}}=\frac{\overline{c}_1}{-a_{21}}$ 。

11.4.2 第二步

	x_1	x_2	x_3	x_4	x_5
-z = -15	$\overline{c_1} = 0$	$\overline{c_2} = 20$	$\overline{c_3}=20$	$\overline{c_4} = 0$	$\overline{c_5}=5$
$\mathbf{x_{B1}} = b_1' = -5$	0	-4	-1	1	1
$\mathbf{x_{B2}} = b_2' = 3$	1	3	0	0	-1

• \pm (蓝色): $\mathbf{B} = \{\mathbf{a_1}, \mathbf{a_4}\}$.

•
$$\mathbf{M}$$
: $\mathbf{x} = \begin{bmatrix} \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} \end{bmatrix} = [3, 0, 0, -5, 0]^T$.

• 推进: 选择 $\frac{\mathbf{a_4}}{\mathbf{a_4}}$ 是因为 $b_1' = -5 < 0$; 选着 $\frac{\mathbf{a_2}}{\mathbf{a_2}}$ 是因为 $\min_{j,a_{1j} < 0} \frac{\overline{c_j}}{-a_{1j}} = \frac{\overline{c_2}}{-a_{12}}$ 。

11.4.3 第三步

	x_1	x_2	x_3	x_4	x_5
-z = -40	$\overline{c_1} = 0$	$\overline{c_2} = 0$	$\overline{c_3}=15$	$\overline{c_4}=5$	$\overline{c_5} = 10$
$\mathbf{x_{B1}} = b_1' = \frac{5}{4}$	0	1	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$
$\mathbf{x_{B2}} = b_2' = -\frac{3}{4}$	1	0	$-\frac{3}{4}$	$\frac{3}{4}$	$-\frac{1}{4}$

• 基(蓝色): textcolorblue $\mathbf{B} = \{\mathbf{a_1}, \mathbf{a_2}\}$.

•
$$\mathbf{W}$$
: $\mathbf{x} = \begin{bmatrix} \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \frac{5}{4}, -\frac{3}{4}, 0, 0, 0 \end{bmatrix}^T$.

• 推进: 选择 $\mathbf{a_1}$ 是因为 $b_2' = -\frac{3}{4} < 0$; 选择 $\mathbf{a_3}$ 是因为 $\min_{j,a_{2j} < 0} \frac{\overline{c}_j}{-a_{2j}} = \frac{\overline{c}_3}{-a_{23}}$ 。

11.4.4 第四步

	x_1	x_2	x_3	x_4	x_5
-z = -55	$\overline{c_1} = 20$	$\overline{c_2} = 0$	$\overline{c_3} = 0$	$\overline{c_4}=20$	$\overline{c_5}=5$
$\mathbf{x_{B1}} = b_1' = 1$	$\frac{1}{3}$	1	0	0	$-\frac{1}{3}$
$\mathbf{x_{B2}} = b_2' {=} 1$	$-\frac{4}{3}$	0	1	-1	$\frac{1}{3}$

• \pm (蓝色): $\mathbf{B} = \{\mathbf{a_2}, \mathbf{a_3}\}$.

•
$$\mathbf{H}$$
: $\mathbf{x} = \begin{bmatrix} \mathbf{B^{-1}b} \\ \mathbf{0} \end{bmatrix} = [0, 1, 1, 0, 0]^T$.

• 完成!

11.5 对偶单纯形算法用处

- 1. 对偶单纯形,如果我们原始对偶可行解好找,我们就跑对偶单纯形。很多问题我们的 ${\bf c}$ 都大于等于 ${\bf 0}$,那么一开始就可以找到对偶可行解,就不用一开始费劲找原始问题的可行解了。
- 2. 我们日常会碰到很多的需求,比如解一个特别大的线性规划,但是解了之后别人又提了一些新要求,又 要添加新约束或者更改参数,使用对偶单纯形就不用重新计算。
- 3. 如果我们约束的数目比变量的数目大很多,跑对偶单纯形要好,速度非常快。
- 4. 如果我们的线性规划是退化的情形,我们也要试一下对偶单纯形,这点是非常快的。