\mathbb{Z}_p -extensions, $L \leq \mathbb{Z}_p^n$ -extensions

0.1 Filtration de ramification

On se met dans le cadre totalement ramifié et $G = Gal(K_{\infty}/K) = \mathbb{Z}_p$ avec K local. Par exemple $\mathbb{Q}_p(\zeta_{p^{\infty}})/\mathbb{Q}_p(\zeta_p)$.

0.1.1 Cadre

On a $G = G_K^{ab}/H$ et si $\theta_K(N) = H \cap P_{ab,K}$ via la réciprocité alors

$$G^{(\nu)} = (G_K^{ab})^{(\nu)}/(G_K^{ab})^{(\nu)} \cap H = U_K^{(\nu)}/N \cap U_K^{(\nu)}$$

0.1.2 Sauts de ramification

Si les (ν_i) sont les sauts de ramifications c'est des entiers via ceux de G_K^{ab} puis comme $G^{\nu_i}/G^{\nu_{i+1}}$ est p-élémentaire (ça se fait bien) bah

$$G^{(\nu_i)} \simeq p^i \mathbb{Z}_p$$

pour chaque $i \geq 1$.

0.2 Sauts asymptotiques et différentes

Si i_0 est le premier i tel que $\nu_i > e_K/(p-1)$ alors pour tout $i \geq i_0$ (!)

$$\nu_{i+n} = \nu_i + ne_K$$

et si $K_n = K_{\infty}^{p^n \mathbb{Z}_p}$ alors $v_K(\mathcal{D}_{K_n/K}) = c + ne_K + a_n/p^n$ avec c une constante et a_n bornée.

0.2.1 Sauts asymptotiques

On a trois identification, $U^{(\nu_i)} \simeq G^{(\nu_i)} \simeq p^i \mathbb{Z}_p$. Maintenant on a $U_K^{(i+e_k)} = (U_K^{(i)})^p$ quand $i > e_K/(p-1)$ simplement en appliquant $\exp \circ \log$. Via un générateur g topologique et $\rho \colon G^{(\nu)} \to \mathscr{U}^{(\nu)}$ $\rho(g)$ engendre \mathscr{U} . Maintenant g^{p^i} est un générateur de $p^i \mathbb{Z}_p$ (additif) d'où $\rho(g^{p^i})$ de $\mathscr{U}^{(\nu_i)}$. On prend $n = i_0$ tel que $\nu_{i_0} > e_K/(p-1)$. Alors $(\mathscr{U}^{(\nu_{i_0})})^p = \mathscr{U}^{(\nu_{i_0}+e_K)}$.

Maintenant faut regarder dans \mathbb{Z}_p , $(\mathscr{U}^{(\nu_{i_0})})^p$ correspond à $p^{i_0+1}\mathbb{Z}_p$ qui correspond à $G^{(\nu_{i_0+1})}$.

0.2.2 Différente

En notant $G(n) = G/G^{\nu_n} \cap G = \mathbb{Z}_p/p^n\mathbb{Z}_p$ puis on a

$$G(n)^{(\nu_i)} = G^{(\nu_i)}/G(n) \cap G^{(\nu_i)} = p^i \mathbb{Z}_p/p^n \mathbb{Z}_p \simeq \mathbb{Z}_p/p^{n-i} \mathbb{Z}_p$$

d'où

$$|G(n)^{(\nu)}| = \begin{cases} p^{n-i}, \ \nu_{i-1} < \nu \le \nu_i \\ 1, \ \nu > \nu_{n-1} \end{cases}$$

Maintenant on coupe

$$v_K(\mathscr{D}_{K_n/K}) = \int_{-1}^{\infty} (1 - 1/|G(n)^{(\nu)}|) d\nu$$

en $A_n = \int_{-1}^{i_0} \dots$ avec $i_0 > e_K/(p-1)$ et $B_n = \int_{i_0}^{\infty} \left(1 - 1/|G(n)^{(\nu)}|\right) d\nu$. Vu qu'on connait $\nu_{i+1} - \nu_i$ à partir de i_0 on a

$$B_n = \sum_{i=i_0}^{n-1} e_K(1 - 1/p^{n-i}) = e_k(n - i_0 - 1) - e_k(p - 1)/p^{n-i_0}$$

d'où le résultat en arreangeant un peu.

0.3 Remarques