I - GENERALITES

1 Poutre

Pièce allongée L > 10*e

Section sans variation brusque

Exemple : charge répartie de 100 daN /m sur 15 m de long.

La charge totale vaut :

Répartition linéique – Répartition surfacique :

Exemple d'un pont recouvert de 5 cm d'enrobé (béton bitumineux) de masse volumique 2300Kg/m³

3 <u>Fibres tendues – comprimées</u>

4 Répartition des contraintes

5 Déformée - flèche

Courbe représentant la forme de la poutre

Flèche = déformée maxi

II - CALCULS

1 Effort tranchant – Moment fléchissant

Le moment fléchissant agit sur la déformée :

Le moment fléchissant induit une répartition de contrainte sur toute la section de la poutre, certaines fibres sont comprimées et se raccourcissent alors que d'autres sont tendues et s'allongent.

Plus le moment fléchissant est grand plus la courbure est importante.

L'effort tranchant crée du cisaillement dans la pièce.

2 Déformée

$$E.I.\ddot{y}(x) = -Mf(x)$$

Avec E: module de Young de la poutre (Pa)

I: Moment quadratique de la poutre (m⁴)

Pour notre poutre, entre 0 et L/2, on a Mf = P.x/2

Ely"= -P.x/2
$$\rightarrow$$
 y' = -Px²/4 + k; à x = L/2 on a y'=0 d'où k = PL²/16

$$Ely' = PL^2/16 - Px^2/4$$

$$Ely = PL^2x/16 - Px^3/12 + 0 car y(0) = 0$$

$$y(x) = \frac{P}{EI} \cdot (\frac{L^2 x}{16} - \frac{x^3}{12})$$

Flèche f = y(L/2) =
$$\frac{P}{EI}$$
. $(\frac{L^3}{32} - \frac{L^3}{96}) = \frac{P}{EI} \cdot \frac{L^3}{48}$

3 Moment quadratique

Cas de la règle plate

La même règle soumis à un même effort ne se déformera pas de la même manière si elle est placée dans un sens ou dans l'autre.

Pour un même moment fléchissant, les contraintes seront différentes.

Pour caractériser ce comportement, on utilise une grandeur appelée moment quadratique :

Le moment fléchissant qui crée la déformation se situant sur l'axe Z, on note le moment

quadratique : I_{Gz}

Pour une section rectangulaire:

$$|_{\mathsf{Gz}} = \frac{b.h^3}{12}$$

Pour une section circulaire

$$|_{\mathsf{Gz}} = \frac{\pi . D^4}{64}$$

Exercices

- 1 Calculer le moment quadratique pour la règle placée verticalement et horizontalement avec :
 - Largeur = 5 cm
 - Epaisseur = 4mm
- 2 Déterminer le moment quadratique d'un IPE de 100

ÇA ↑	-
	-

Choix	IPE	A Epaisseur de la Semelle	B Epaisseur de l'âme	Hauteur de l'âme	Largeur de la Semelle	Masse Kg/m	Section cm ²
0	80	5.2	3.8	80	46	6.82	7.64
0	100	5.7	4.1	100	55	9.13	10.3
0	120	6.3	4.4	120	64	11.77	13.2
0	140	6.9	4.7	140	73	14.63	16.4
0	160	7.4	5	160	82	17.93	20.1
0	180	8	5.3	180	91	21.34	23.9
0	200	8.5	5.6	200	100	25.41	28.5
0	220	9.2	5.9	220	110	29.70	33.4
0	240	9.8	6.2	240	120	34.76	39.1

Formule de transport

S : section de la surface

$$I_{Gz} = I_{G1z} + S.d^2$$

3 Comparaison de IGz avec une section rectangulaire de même largeur et de même hauteur

4 Calcul de IGz pour tube carré de 25

Dimensions exprimées en millimètres					
Choix	A Hauteur	B Epaisseur	Masse Kg/m		
0	20	1.5	0.96		
0	20	2	1.24		
0	25	1.5	1.22		
0	25	2	1.58		
0	28	2.5	2.08		

Déformée – Flèche - exemples

Sollicitation	Réaction d'appui	Flèche	Équation de la déformée
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}$	$R_A = P$ $M_A = PL$	$f = \frac{PL^3}{3EI}$	$y = \frac{-Px^2}{6EI} \left(3L - x\right)$
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}$	$R_A = wL$ $M_A = rac{wL^2}{2}$	$f = \frac{wL^4}{8EI}$	$y = \frac{-wx^2}{24EI} \left(x^2 - 4Lx + 6L^2 \right)$

Sollicitation	Réaction d'appui	Flèche	Moment
Mo L —x→	$R_A = \frac{M_O}{L}$ $R_B = -\frac{M_O}{L}$	$f = \frac{M_0 X}{XEI}$	Мо
P	$R_A = \frac{Pb}{L}$ $R_B = \frac{Pa}{L}$	$f_P = \frac{Pa^2b^2}{3EIL}$	$M = \frac{Pab}{L}$
ab	$R_B = \frac{Pa}{L}$	$f_{max;a>L/2} = \frac{Pb}{27EIL} \sqrt{3(L^2 - b^2)^3}$	
$-x \rightarrow L$		$x_{fmax} = \frac{\sqrt{3(L^2 - b^2)}}{3}$	
₽ <mark>↓</mark>	$R_A = rac{P}{2}$ $R_B = rac{P}{2}$	$f = \frac{PL^3}{48EI}$	$M = \frac{PL}{4}$
L/2 $L/2$	$R_B = \frac{P}{2}$		