Benchmarking

Hibatűrő Rendszerek Kutatócsoport

2017

Tartalomjegyzék

1. Alapfogalma	ak	1	2.2.	Szoftver benchmarkok	3
2. Példa bencl	amarkok*	2	2.3.	$\operatorname{Gr{\}aftransz}$ formáció benchmarkok .	3
2.1. Hardver	benchmarkok	2	Irodalo	omjegyzék	4

Bevezetés

Melyik a legjobb ár-érték arányú processzor egy PC-be? Melyik a leggyorsabb relációs adatbázis-kezelő? Melyik kollekciókat kezelő függvénykönyvtár használja a legkevesebb memóriát? Gyakran szükséges, hogy ezekhez hasonló kérdésekre megbízható választ adjunk. A kérdések megválaszolásában általában komoly segítséget nyújt valamilyen metrika vizsgálata. Például számítsuk ki a másodpercen-ként elvégzett lebegőpontos utasítások számának és az árnak a hányadosát, mérjünk le adott mennyiségű lekérdezéshez szükséges időt egy előre definiált adathalmazon, vagy hozzunk létre egy megadott kollekciót különböző függvénykönyvtárakkal és vizsgáljuk meg a memóriafogyasztásukat. Megfelelő mérések elvégzésével jó képet kaphatunk egy rendszer adott jellemzőiről.

Megjegyzés. Benchmarkokat abban az esetben érdemes alkalmazni, ha egy rendszer objektív jellemzőire vagyunk kíváncsiak. Szubjektív jellemzők esetén (pl. mennyire használható egy programozási nyelv, mennyire alkalmas egy adatmodell bizonyos feladatokra) a kérdés megválaszolása jóval összetettebb lehet. Ezekben az esetekben általában *felhasználói tanulmányok* () végzése célravezető. Utóbbiak elvégzése azonban rendkívül idő- és költségigényes, ezért kevés tudományos eredmény áll rendelkezésre ezekben a kérdésekben.

Fontos megemlíteni, hogy az informatika a klasszikus mérnöki tudományokkal – pl. építészet, gépészet, vegyészet – szemben még fiatal területnek számít. Ennek egyik fő jele, hogy gyakran szubjektív kérdésekről (melyik a legjobb programozási nyelv, melyik a legjobb operációs rendszer vagy melyik a legjobb adatmodell) is véget nem érő "vallási viták" zajlanak. Ezeket érdemes messziről elkerülni.

Az elmúlt évtizedek intenzív kutatómunkája ellenére az informatikai projektekben továbbra is kiemelkedően magas a sikertelen, elvetett (cancelled) vagy költségtervet túllépő (over budget) projektek száma [3]. Az informatikai projektek menedzsment háttere iránt érdeklődőknek javasoljuk a mára "klasszikusnak" számító műveket, mint a *Peopleware* [2] és a *The Mythical Man-Month* [1].

1. Alapfogalmak

A benchmarkolás elsődleges célja egy rendszer teljesítményének mérése. A kapott eredmények felhasználása többféle lehet: hasonló célú rendszerek teljesítményének összehasonlítása, egy rendszer teljesítményének felmérése, annak optimalizálása stb.

¹Érdekes olvasmány a témában Luis Solano "Why Does Programming Suck?" c. cikke: https://medium.com/@luisobo/why-does-programming-suck-6b253ebfc607

Rendszermodellezés Benchmarking

Definíció. A benchmarkolás

- egy program (programok, vagy más műveletek) futtatása,
- szabványos tesztekkel vagy bemenetekkel,
- egy objektum relatív teljesítményének felmérése érdekében.

Megjegyzés. A definíció eredetije az angol Wikipédia definíciója szerint [7] (kiemelések a jegyzet szerzőitől):

In *computing*, a benchmark is the *act of running* a computer program, a set of programs, or other operations, in order to *assess the relative performance* of an object, normally by running a number of *standard tests* and trials against it.

A benchmarkokkal szemben többféle elvárást támasztunk. Nyilvánvalóan nem sokat ér egy olyan benchmark, amit csak egyszer tudunk lefuttatni vagy nem tudunk később (valamilyen pontossággal) reprodukálni.

Definíció. *Ismételhetőség* (*repeatability*): a benchmarkot lehessen egymás után többször futtatni, hogy a mérési eredmények szórása csökkenthető legyen.

Definíció. Reprodukálhatóság (reproducibility): a benchmark legyen hasonló környezetben, hasonló eszközökkel megismételhető.

Definíció. Érthetőség (comprehensibility): átlag felhasználó számára értelmezhető legyen az eredmény.

Definíció. Relevancia (relevance): a benchmarkban megvalósított terhelési profil hasonlít arra a valós terhelésre, amely alatt a rendszer teljesítményéről információt szeretnénk kapni.

A relevancia biztosításához fontos, hogy:

- tényleg azt az alkalmazást mérjük, amit kell,
- terhelésgenerálás jellege közelítse a valódi terhelést, valamint
- minimalizáljuk a zavaró tényezőket, pl. megfelelően ürítjük a *gyorsítótárak* (pl. diszk cache, CPU cache) tartalmát és az operációs rendszeren futó többi felhasználói folyamatot leállítjuk.

Megjegyzés. Érdeklődőknek javasolt olvasmány a Benchmarking Handbook [4] 1. fejezete.

2. Példa benchmarkok*

Többféle területen is specifikál benchmarkokat a SPEC ($Standard\ Performance\ Evaluation\ Corporation$)².

2.1. Hardver benchmarkok

A PassMark³ különböző benchmarkokat definiált, pl. processzorok teljesítményméréshez a PassMark CPU benchmarkot⁴.

Böngészőmotorok teljesítményméréshez: Octane 5 , Kraken 6 .

Okostelefonok teljesítményméréséhez: Antutu⁷.

²https://www.spec.org/benchmarks.html

https://www.passmark.com/

⁴https://www.cpubenchmark.net/

⁵https://developers.google.com/octane/

⁶http://krakenbenchmark.mozilla.org/

⁷http://www.antutu.com/en/index.shtml

2.2. Szoftver benchmarkok

Relációs adatbázis-kezelő rendszerek teljesítményének méréséhez a TPC (*Transaction Processing Performance Council*) szervezet definiált különféle benchmarkokat. Például a TPC-C⁸ célja tranzakciós rendszerek (OLTP (*Online Transaction Processing*)) teljesítménymérése.

Megjegyzés. Az OLTP rendszerekkel szemben az OLAP (*Online Analytical Processing*) rendszerekben (általában) nagyobb mennyiségű adaton összetettebb, analitikus jellegű lekérdezéseket futtatnak. OLAP rendszerek teljesítménymérésére tervezték a TPC-DS benchmarkot.

2.3. Gráftranszformáció benchmarkok

A kutatócsoportunkban készült el az egyik első gráftranszformációk teljesítményét vizsgáló benchmark [6]. A területen azóta is aktív kutatási munkát végzünk [5].

⁸http://www.tpc.org/tpcc/

Hivatkozások

[1] F.P. Brooks: The Mythical Man-Month, Anniversary Edition: Essays On Software Engineering. 1995, Pearson Education. ISBN 9780132119160. URL https://books.google.hu/books?id=Yq35BY5Fk3gC.

- [2] T. DeMarco-T. Lister: Peopleware: Productive Projects and Teams. 2013, Pearson Education. ISBN 9780133440737. URL https://books.google.hu/books?id=TVQUAAAAQBAJ.
- [3] Bent Flyvbjerg-Alexander Budzier: Why your IT project may be riskier than you think. https://hbr.org/2011/09/why-your-it-project-may-be-riskier-than-you-think/ar, 2011. October.
- [4] Jim Gray (szerk.): The Benchmark Handbook for Database and Transaction Systems (2nd Edition). 1993, Morgan Kaufmann. ISBN 1-55860-292-5.
- [5] Gábor Szárnyas Oszkár Semeráth István Ráth Dániel Varró: The TTC 2015 Train Benchmark case for incremental model validation. In Louis M. Rose Tassilo Horn Filip Krikava (szerk.): Proceedings of the 8th Transformation Tool Contest, a part of the Software Technologies: Applications and Foundations (STAF 2015) federation of conferences, L'Aquila, Italy, July 24, 2015., CEUR Workshop Proceedings konferenciasorozat, 1524. köt. 2015, CEUR-WS.org, 129–141. p. URL http://ceur-ws.org/Vol-1524/paper2.pdf.
- [6] Gergely Varró-Andy Schürr-Dániel Varró: Benchmarking for graph transformation. In *Proc. IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 05)* (konferenciaanyag). Dallas, Texas, USA, 2005. September, IEEE Press, 79–88. p.
- [7] Wikipedia: Benchmark (computing). https://en.wikipedia.org/wiki/Benchmark_ (computing), 2016. április.

Tárgymutató

benchmarkolás benchmarking 2

érthetőség comprehensibility 2

gyorsítótár cache 2

ismételhetőség repeatability 2

OLAP Online Analytical Processing; Online Analytical Processing 3

OLTP Online Transaction Processing; Online Transaction Processing 3

 ${f relevancia}$ relevance 2

reprodukálhatóság reproducibility 2

SPEC Standard Performance Evaluation Corporation; Standard Performance Evaluation Corporation 2

TPC Transaction Processing Performance Council; Transaction Processing Performance Council 3

TPC-C -; TPC-C 3

valódi real-world 2