

TOPST AI-G Hardware User Guide

Rev. 1.01 [G] 2025-07-18

* The information in this document is subject to change without notice and should not be construed as a commitment by Telechips, Inc.

Kindly visit www.telechips.com for more information.

© 2025 Telechips Inc. All rights reserved.

TABLE OF CONTENTS

Contents

TABLE	LE OF CONTENTS	2
1	Introduction	3
1.1	1 Terminology	3
2	Block Diagram	4
2.1	-	
2.2		
3		
3.1		
4	Specifications	
4.1		
4.2		
4.3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
4.4	` '	
4.5		
	4.5.1 USB Boot Mode (FWDN)	
4.6		
4.7	· · · · · · · · · · · · · · · · · · ·	
4.8	· · · · · · · · · · · · · · · · · · ·	
4.9		
	10 CAN Pin Header (Male) (J5D2)	
	11 General Purpose I/O Pin Header (Male) (JH1)	
	References	
	Revision History	
	ev. 1.01: 2025-07-18	
Kev	ev. 1.00: 2025-02-28	1/
Figur	ires	
_	Figure 2.1 System Block Diagram	4
	Figure 3.1 AI-G Board (Top View)	
	Figure 4.1 Plug Size for DC 5V Power Supply	7
	Figure 4.2 Power Connector (J1)	
	Figure 4.3 JTAG Connector (J5D1)	
	Figure 4.4 Boot Mode Switch and RESET Switch for Entering USB Boot Mode	
	Figure 4.5 Sequence of Entering USB Boot Mode (FWDN)	
	Figure 4.6 PCIe Standard Connector (JC1)	
	Figure 4.7 MIPI DSI Connector (CONN2)	
	Figure 4.8 MIPI CSI Connector (CONN3)	
	Figure 4.9 Debug UART Pin Header (Male) (J4S1)	
	Figure 4.10 Ethernet Connector (JC2)	
	Figure 4.11 CAN Pin Header (Male) (J5D2)	14
	Figure 4.12 General Purpose I/O Pin Header (Male) (JH1)	15
Table	es	
	THE DATE IS CATOR IN	_
	Table 2.1 Features of AI-G Board	
	Table 3.1 Description of AI-G Board (Top View)	
	Table 4.1 J5D1 Pin Description	
	Table 4.2 JC1 Pin Description	
	Table 4.3 CONN2 Pin Description	
	Table 4.4 CONN3 Pin Description	
	Table 4.6 JED3 Pin Description	
	Table 4.6 J5D2 Pin Description	
	Table 4.7 JH1 Pin Description	

1 Introduction

This document is a hardware user guide for the AI-G based on the TCC7501. This document describes system installation, debugging, and detailed information on the overall design and usage of the AI-G.

1.1 Terminology

Terminology	Definition	
CPU	Central Processing Unit	
FWDN	Firmware Download	
GPIO	General Purpose Input Output	
HAT	Hardware Attached on Top	
TOPS	Tera Operations Per Second	
TOPST	Total Open-platform for System development and Training	

2 BLOCK DIAGRAM

2.1 System Block Diagram

Figure 2.1 shows the system block diagram of the AI-G.

Figure 2.1 System Block Diagram

2.2 Features of AI-G Board

Table 2.1 describes the features of the AI-G board.

Table 2.1 Features of AI-G Board

E.	ınction	Description	Note	
1 (Main Processor: Cortex-A53 Quad	Note	
Processor	TCC7501	Neural Processor: 8 TOPS		
		eMMC 5.1		
	eMMC			
	eMMC	Speed: HS200		
Memory		Density: 8 GB Maximum Clock: 2133 MHz		
	LDDDD 4V			
	LPDDR4X	Density: 2 GB		
\/:d== O.d	MIDI DCI	32-bit		
Video Out	MIPI DSI	1-channel MIPI DSI-2 2-lane	0.11 2.1 1.14757	
Video In	MIPI CSI	1-channel MIPI CSI-2 2-lane	Option: 2-channel MIPI CSI-2 4-lane	
		3 CAN Transceivers		
	CAN	Vendor: Microchip		
Peripheral		Part number: MCP2562FD-E/SN		
Periprierai		Ethernet PHY 1000Base-T	For Firmware Downloader	
	Ethernet	Vendor: Realtek		
		Part number: RTL8211E	(FWDN)	
X-TAL	Main	24 MHz		
	UART	DBG UART 4-pin/2.54 mm Pin Header (Male)		
	CAN	CAN 10-pin/2.54 mm Pin Header (Male)		
	CAN	CAN Channel selection: CAN 0 and CAN 1		
Pin Header (Male)	eader (Male)	JTAG 10-pin/1.27 mm Pin Header (Male)		
, ,	JTAG	System debugging		
	CDIO	GPIO 40-pin/1.27 mm Pin Header (Male)		
	GPIO	Provide 28 GPIOs through 40-pin header		
	LIADT	FWDN UART 1-port		
	UART	■ USB Type-C Connector		
	MIPI DSI	1.0 mm pitch 15-pin		
Connector	MIPI CSI	0.8 mm pitch 40-pin		
Connector	Peripheral Component			
	Interconnect Express	PCI Express Standard		
	(PCIe)	· ·		
	Ethernet	RJ45		
Jack	DC Jack	For power input (5V)		
Cuitale	Boot Mode	System Boot mode switch		
Switch	Reset	System RESET switch		

Note: For inquiries about the AI-G, contact TOPST. [1]

3 OVERVIEW

3.1 AI-G Board

Figure 3.1 shows the top view of the AI-G board.

Figure 3.1 AI-G Board (Top View)

Table 3.1 describes the connectors of the AI-G board (top view).

Table 3.1 Description of AI-G Board (Top View)

Number	Reference Number	Name	Description
1	J5D1	JTAG Connector	JTAG Connector for system debugging
2	JH1	GPIO Pin Header (Male)	General Function Interface Header
3	J1	Power Jack	5V Power Jack
4	SW8	Boot Mode Switch	Switch for changing boot mode
5	SW9	RESET Switch	Switch for system reset
6	JC2	RJ45 Connector	Legacy Ethernet port
7	J5D2	10-pin Header (Male)	CAN Header
8	CONN3	MIPI CSI Connector	Connect to the Camera module
9	CONN2	MIPI DSI Connector	Connect to the Display module
10	J4S1	DBG UART Connector	UART Debug Port
11	JC3	USB Type-C Connector	USB 2.0 FWDN connector
12	JC1	PCIe Standard Connector	Connect to the PCIe Device

4 SPECIFICATIONS

4.1 LPDDR4X

The LPDDR4X memory is located on the AI-G board and the information is as follows:

■ 32-bit

■ Density: 2 GB

■ Maximum Clock: 2133 MHz

4.2 eMMC

The eMMC memory is located on the AI-G board and the information is as follows:

■ eMMC 5.1

■ Density: 8 GB

■ Supports up to HS200

4.3 Power Connector (J1)

J1 is a DC 5V external power supply connector with a 2.5 mm x 5.5 mm plug. It is used to supply power to the AI-G board. The power supply current should be at least 5A.

Figure 4.1 shows the power plug size for DC 5V power supply.

Figure 4.1 Plug Size for DC 5V Power Supply

Note: The plug size must be compatible with 2.1 mm to 2.5 mm.

Caution: Compatibility problems may occur if you use an adapter other than the power adapter provided by TOPST.

Figure 4.2 Power Connector (J1)

4.4 JTAG Connector (J5D1)

J5D1 is a standard 10-pin/1.27 mm connector for the JTAG emulator.

Figure 4.3 shows the location of J5D1 on the AI-G board.

Figure 4.3 JTAG Connector (J5D1)

Table 4.1 describes the pins of J5D1.

Table 4.1 J5D1 Pin Description

1 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					
Din Number	Calcamatic Nat Name	Schomatic Not Name DIR		Description	
Pin Number	Schematic Net Name	CPU ∢ ▶ J5D1	Description		
1	SYS_3P3	-	Power 3.3V		
2	TMS	•	Test Mode State		
3	DGND	-	Ground		
4	TCK	◀	Test Clock		
5	DGND	-	Ground		
6	TDO	>	Test Data Output		
7	NC	-	Not Connected		
8	TDI	◀	Test Data In		
9	DGND	-	Ground		
10	JTAG RST#	◀	System Reset		

4.5 Boot Mode

The AI-G board supports two boot modes:

- USB Boot Mode (FWDN)
- eMMC Boot Mode (GPIO_SD Group)

The AI-G board is set to eMMC Boot Mode by default. If there is no boot image in the eMMC Device, the boot mode is automatically switched to USB Boot Mode.

4.5.1 USB Boot Mode (FWDN)

Figure 4.4 shows the Boot Mode switch and RESET switch. USB Boot Mode is used for firmware updates. To enter USB boot mode, both the Boot mode switch and RESET switch are required. It is recommended to use this method when uploading the image.

Figure 4.4 Boot Mode Switch and RESET Switch for Entering USB Boot Mode

The following steps describe the switch operation for entering USB Boot Mode.

- 1. When power is supplied, the LED above the RESET switch turns on.
- 2. Press and hold the Boot Mode switch. When you press the Boot Mode switch, you can see the red LED above the Boot Mode switch turn on. Keep pressing the switch to keep the LED on.
- 3. The RESET switch LED is green by default. If you press the RESET switch once, the green LED turns off and then turns on again.
- 4. Release the Boot Mode switch.

Figure 4.5 shows the operation sequence of the Boot Mode and RESET switches for entering USB Boot Mode (FWDN).

Figure 4.5 Sequence of Entering USB Boot Mode (FWDN)

4.6 PCIe Connector (JC1)

Figure 4.6 shows the PCIe connector that enables the use of the PCIe interface devices on the AI-G board. The AI-G supports PCIegen3 x 1-lane.

- PCIe Controller: Supports Gen3, 1-lane operation
- Inbound/Outbound Address Translation Units (iATU): 4 channels available
- PCIe Reference Clock: Internal clock (refclk_type = 0)

Figure 4.6 PCIe Standard Connector (JC1)

Table 4.2 describes the pins of JC1.

Table 4.2 JC1 Pin Description

Table 4.2 JC1 Pili Description				
Pin Number	Schematic Net Name	DIR CPU ∢ ▶ JC1	Description	
A1	PCIe_DETECT	4	PCIe Card Detection	
B1	12V_TP	-	Power 12V Test Point	
A2	 12V_TP	-	Power 12V Test Point	
B2	12V_TP	-	Power 12V Test Point	
A3	12V_TP	-	Power 12V Test Point	
B3	12V TP	-	Power 12V Test Point	
A4	DGND	-	Ground	
B4	DGND	-	Ground	
A5	NC	-	Not Connected	
B5	NC	-	Not Connected	
A6	NC	-	Not Connected	
В6	NC	-	Not Connected	
A7	NC	-	Not Connected	
B7	DGND	-	Ground	
A8	NC	-	Not Connected	
B8	PCIe_3P3	-	Power 3.3V	
A9	PCIe_3P3	-	Power 3.3V	
B9	NC	-	Not Connected	
A10	PCIe_3P3	-	Power 3.3V	
B10	PCIe_3P3	-	Power 3.3V	
A11	PCIe_RST#	>	PCIe Reset	
B11	PCIe_WAKE#	◀	PCIe Wake	
A12	DGND	-	Ground	
B12	PCIe_CLKREQ#	◀	PCIe Clock Request	
A13	PCIe_REFCLKOUT_P	>	PCIe Positive Clock	
B13	DGND	-	Ground	
A14	PCIe_REFCLKOUT_N	>	PCIe Negative Clock	
B14	PCIe_TXP	>	PCIe Transmit Positive Data	
A15	DGND	-	Ground	
B15	PCIe_TXN	>	PCIe Transmit Negative Data	
A16	PCIe_RXP	4	PCIe Receive Positive Data	
B16	DGND	-	Ground	
A17	PCIe_RXN	◀	PCIe Receive Negative Data	
B17	PCIe_DET#	4	PCIe Card Detection	
A18	DGND	-	Ground	

Pin Number	Schematic Net Name	DIR CPU ∢ ▶ JC1	Description
B18	DGND	-	Ground

4.7 MIPI DSI and MIPI CSI Connectors (CONN2 and CONN3)

Figure 4.7 and Figure 4.8 show the MIPI DSI and MIPI CSI connectors on the AI-G board. The AI-G supports 1 channel of MIPI CSI and MIPI DSI, each configured with 2-lane interface. A 4-lane interface (MIPI CSI) is optional and requires a 20-pin connector instead of a 15-pin connector.

The supported output media through MIPI includes:

■ MIPI DSI: Supports resolutions up to 1920 x 1080 at 60 fps

Figure 4.7 MIPI DSI Connector (CONN2)

Table 4.3 describes the pins of CONN2.

Table 4.3 CONN2 Pin Description

Table 4.5 CONN2 Pill Description				
Pin Number	mber Schematic Net Name	DIR	Description	
Pin Number	Schematic Net Name	CPU ∢ ▶ CONN2	Description	
1	SYS_3P3	-	Power 3.3V	
2	SYS_3P3	-	Power 3.3V	
3	DGND	-	MIPIO_I2C Clock	
4	MIPI_M_SDA	♦ ►	Serial Data for SerDes IC	
5	MIPI_M_SCL	>	Serial Data for SerDes Clock	
6	DGND	-	Ground	
7	MIPI_M_D0P	>	MIPI DSI-2 Positive Data 0	
8	MIPI_M_D0N	>	MIPI DSI-2 Negative Data 0	
9	DGND	-	Ground	
10	MIPI_M_CLKP	>	MIPI DSI-2 Positive Clock	
11	MIPI_M_CLKN	>	MIPI DSI-2 Negative Clock	
12	DGND	-	Ground	
13	MIPI_M_D1P	•	MIPI DSI-2 Positive Data 1	
14	MIPI_M_D1N	•	MIPI DSI-2 Negative Data 1	
15	DGND	-	Ground	

Figure 4.8 MIPI CSI Connector (CONN3)

Table 4.4 describes the pins of CONN3.

Table 4.4 CONN3 Pin Description

		DIR	•
Pin Number	Schematic Net Name	CPU ∢ ▶ CONN3	Description
1	RPI_CAM_3P3	-	Power 3.3V
2	MIPI_S_SDA	♦	MIPIO_I2C Data
3	MIPI_S_SCL	>	MIPIO_I2C Clock
4	MIPI_S_GPIO1	◀	General Purpose I/O
5	MIPI_S_PWDN	>	General Purpose I/O
6	GND	-	Ground
7	MIPI_S_CLKP	◀	MIPI CSI-2 Positive Clock
8	MIPI_S_CLKN	◀	MIPI CSI-2 Negative Clock
9	GND	-	Ground
10	MIPI_S_D1P	◀	MIPI CSI-2 Positive Data 1
11	MIPI_S_D1N	◀	MIPI CSI-2 Negative Data 1
12	GND	-	Ground
13	MIPI_S_D0P	◀	MIPI CSI-2 Positive Data 0
14	MIPI_S_D0N	◀	MIPI CSI-2 Negative Data 0
15	GND	-	Ground
16	MIPI_S_D3P	◀	MIPI CSI-2 Positive Data 3
17	MIPI_S_D3N	■	MIPI CSI-2 Negative Data 3
18	GND	-	Ground
19	MIPI_S_D2P	-	MIPI CSI-2 Positive Data 2
20	MIPI_S_D2N	4	MIPI CSI-2 Negative Data 2

4.8 Debug UART Pin Header (Male) (J4S1)

Figure 4.9 shows the debug UART header pin for system debugging. Pin 1 (UART 5V) is a dummy pin and does not provide an output.

Figure 4.9 Debug UART Pin Header (Male) (J4S1)

Table 4.5 describes the pins of J4S1.

Table 4.5 J4S1 Pin Description

Din Number	Cohomatic Not Name	DIR	Description
Pin Number	oer Schematic Net Name CPU ◀▶ J49	CPU ∢ ▶ J4S1	Description
1	USB_5P0	-	Dummy Pin
2	DBG_UT_TX	>	UART Transmit Data
3	DBG_UT_RX	◀	UART Receive Data
4	GND	-	Ground

4.9 Ethernet Connector (JC2)

Figure 4.10 shows the Ethernet connector on the AI-G board. The AI-G board has one Ethernet MAC controller (JC2). JC2 is an RJ45 connector that supports 10 Mbps, 100 Mbps, and 1000 Mbps Ethernet connections.

Figure 4.10 Ethernet Connector (JC2)

4.10 CAN Pin Header (Male) (J5D2)

Figure 4.11 shows the CAN pin header (male) on the AI-G board. The AI-G board supports 2-channel CAN.

Figure 4.11 CAN Pin Header (Male) (J5D2)

Table 4.6 describes the pins of J5D2.

Table 4.6 J5D2 Pin Description

Pin Number	Schematic Net Name	DIR	Description
Pili Nullibei	CPU ♦ J5D	CPU ∢ ▶ J5D2	Description
1	CAN_3P3	•	Power 3.3V
2	CAN_3P3		Power 3.3V
3	CAN0_TX	•	Transmit Data of CAN0 channel
4	CAN0_RX	•	Receive Data of CAN0 channel
5	CAN1_TX	•	Transmit Data of CAN1 channel
6	CAN1_RX	•	Receive Data of CAN1 channel
7	NC	-	Not Connected
8	NC	-	Not Connected
9	DGND	-	Ground
10	DGND	-	Ground

4.11 General Purpose I/O Pin Header (Male) (JH1)

Figure 4.12 shows the general purpose I/O (GPIO) pin header on the AI-G board. The GPIO pin header can be used to connect the Hardware Attached on Top (HAT), which is a Raspberry Pi accessory.

Figure 4.12 General Purpose I/O Pin Header (Male) (JH1)

Table 4.7 describes the pins of JH1.

Table 4.7 JH1 Pin Description

Table 4.7 Jr. Fill Description				
Pin Number	Schematic Net Name	DIR CPU∢► JH1	Description	
1	SYS_3P3	-	Power 3.3V	
2	SYS_5P0	-	Power 5.0V	
3	I2C_SDA	∢ ▶	I2C Data	
4	SYS_5P0	-	Power 5.0V	
5	I2C_SCL	◆ ▶	I2C Clock	
6	GND	-	Ground	
7	GPIO_D3/MFIO	∢ ▶	General Purpose I/O	
8	EXT_TXD	∢ ▶	UART Transmit Data	
9	GND	-	Ground	
10	EXT_RXD	◆ ▶	UART Receive Data	
11	GPIO_D02/MFIO	◆ ▶	General Purpose I/O	
12	GPIO_E09	♦ ▶	General Purpose I/O	
13	GPIO_D01/MFIO	◆ ▶	General Purpose I/O	
14	GND	-	Ground	
15	GPIO_D00/MFIO	♦ ▶	General Purpose I/O	
16	GPIO_F02	♦ ▶	General Purpose I/O	
17	SYS_3P3	-	Power 3.3V	
18	GPIO_F03	◆ ▶	General Purpose I/O	
19	SPI0_MOSI	◆ ▶	SPI MOSI	
20	GND	-	Ground	
21	SPI0_MISO	◆ ▶	SPI MISO	
22	GPIO_E07		General Purpose I/O	
23	SPI0_SCLK	∢ ▶	SPI SCLK	
24	SPI0_CS0	◆ ▶	SPI CS	
25	GND	-	Ground	
26	GPIO_E00	∢ ▶	General Purpose I/O	
27	RESERVED0(NC)	-	Not Connection	
28	RESERVED1(NC)	-	Not Connection	
29	GPIO_F10	∢ ▶	General Purpose I/O	
30	GND	-	Ground	
31	GPIO_F08	∢ ▶	General Purpose I/O	
32	GPIO_E10	4 ▶	General Purpose I/O	
33	GPIO_E08	◆▶	General Purpose I/O	
34	GND	-	Ground	
35	SPI1_MISO	◆ ▶	SPI MISO	
36	SPI1_CS0	◆▶	SPI CS	
37	GPIO_F09	◆ ▶	General Purpose I/O	
38	SPI1_MOSI	◆ ▶	SPI MOSI	
39	GND	-	Ground	
40	SPI1_SCLK	◆ ▶	SPI SCLK	

5 REFERENCES

[1] Contact TOPST for more details: topst@topst.ai

Note: Reference documents can be provided whenever available, depending on the terms of a contract. If the reference documents are unavailable, the contents directly related to your development can be guided.

6 REVISION HISTORY

Rev. 1.01: 2025-07-18

- Updated
 - Chapter 2.1: Figure 2.1
 - Chapter 2.2:
 - Changed chapter title from "Features of TOPST AI-G Board" to "Features of AI-G Board"
 - Added Note
 - Chapter 3.1: Changed chapter title from "TOPST AI-G Board" to "AI-G Board"
 - Chapter 4.3: Added Caution
 - Chapter 4.6: Description
 - Chapter 4.7: Description
 - Chapter 4.11: Table 4.7

Rev. 1.00: 2025-02-28

Official version release

DISCLAIMER

This material is being made available solely for your internal use with its products and service offerings of Telechips, Inc ("Telechips"). and/or licensors and shall not be used for any other purposes. This material may not be altered, edited, or modified in any way without Telechips' prior written approval. Unauthorized use or disclosure of this material or the information contained herein is strictly prohibited, and you agree to indemnify Telechips and licensors for any damages or losses suffered by Telechips and/or licensors for any unauthorized uses or disclosures of this material, in whole or part. Further, Telechips, Inc. reserves the right to revise this material and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

THIS MATERIAL IS BEING PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESSED, IMPLIED, STATUTORY OR OTHERWISE. TO THE MAXIMUM EXTENT PERMITTED BY LAW, TELECHIPS AND/OR LICENSORS SPECIFICALLY DISCLAIM ALL WARRANTIES OF TITLE, MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, SATISFACTORY QUALITY, COMPLETENESS OR ACCURACY, AND ALL WARRANTIES ARISING OUT OF TRADE USAGE OR OUT OF A COURSE OF DEALING OR COURSE OF PERFORMANCE. MOREOVER, NEITHER TELECHIPS, INC. NOR LICENSORS, SHALL BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY EXPENSES, LOSSES, USE, OR ACTIONS HOWSOEVER INCURRED OR UNDERTAKEN BY YOU IN RELIANCE ON THIS MATERIAL.

THIS MATERIAL IS DESIGNED FOR GENERAL PURPOSE, AND ACCORDINGLY YOU ARE RESPONSIBLE FOR ALL OR ANY OF INTELLECTUAL PROPERTY LICENSES REQUIRED FOR ACTUAL APPLICATION. TELECHIPS, INC. DOES NOT PROVIDE ANY INDEMNIFICATION FOR ANY INTELLECTUAL PROPERTIES OWNED BY THIRD PARTY.

COPYRIGHT STATEMENT

Copyright in this material provided by Telechips, Inc. is owned by Telechips unless otherwise noted. For reproduction or use of Telechips' copyright material, prior written consent should be obtained from Telechips. That prior written consent, if given, will be subject to conditions that Telechips' name should be included and interest in the material should be acknowledged when the material is reproduced or quoted, either in whole or in part. You must not copy, adapt, publish, distribute, or commercialize any contents contained in the material in any manner without the written permission of Telechips. Trademarks used in Telechips' copyright material are the property of Telechips.

For customers who use Google technology:

"Copyright © 2013 Google Inc. All rights reserved."