1

Chapitre

Dérivée et intégrales

1. Dérivées

Fonction	Dérivée
Dérivée de x^n	nx^{n-1}
Dérivée de \sqrt{x}	$0.5x^{-0.5} = \frac{1}{2\sqrt{x}}$
Dérivée de $\frac{1}{x^n}$	$-nx^{-n-1} = \frac{-n}{x^{n+1}}$
Dérivée de e^x	e^x
Dérivée de ku	ku'
Dérivée de $u+v$	u' + v'
Dérivée de uv	u'v + uv'
Dérivée de $\frac{u}{v}$	$\frac{u'v-vu'}{v^2}$
Dérivée de $\frac{1}{u^n}$	$rac{-nu'}{u^{n+1}}$
Dérivée de u^2	2u'u
Dérivée de \sqrt{u}	$\frac{u'}{2\sqrt{u}}$
Dérivée de $\frac{1}{u}$	$\frac{-u'}{u^2}$
Dérivée de e^u	$u'e^u$
Dérivée de u^n	$nu'u^{n-1}$
Dérivée de $(g \circ f(x))'$	$f'(x) \times g'(f(x))$
Dérivée de $\ln(u)$	$\frac{u'}{u}$
Dérivée de $\sin(u)$	$u\cos(u)$
Dérivée de $\cos(u)$	$-u\sin(u)$
Dérivée de $\sinh(u)$	$u \cosh(u)$
Dérivée de $\cosh(u)$	$u\sinh(u)$

Équation de tangente

Équation de la tangente de la courbe de f au point a : y = f'(a)(x-a) + f(a)

1. Intégrales

1.2. Primitives

Fonction	Primitive
Primitive de a	ax+k
Primitive de x^n	$\frac{1}{n+1}x^{n+1} + k$
Primitive de $\frac{1}{x^n}$	$-\frac{1}{(n-1)x^{n-1}} + k$
Primitive de $\frac{a}{x}$	$a \ln x + k$
Primitive de $\frac{1}{\sqrt{x}}$	$2\sqrt{x} + k$
Primitive de $\cos x$	$\sin x + k$
Primitive de $\sin x$	$-\cos x + k$
Primitive de e^x	$e^x + k$
Primitive de $u^\prime u^n$	$\frac{1}{n+1}u^{n+1} + k$
Primitive de $\frac{u'}{u^n}$	$-\frac{1}{n-1} \times \frac{1}{u^{n-1}} + k$
Primitive de $\frac{u'}{\sqrt{u}}$	$2\sqrt{u} + k$
Primitive de $u'\cos u$	$\sin u + k$
Primitive de $u'\sin u$	$-\cos u + k$
Primitive de $\frac{u'}{u}$	$\ln u + k$
Primitive de $u'\sqrt{u}$	$\frac{2}{3}(u)^{3/2} + k$
Primitive de $u^\prime e^u$	e^u
Primitive de $u' \cosh u$	$\sinh u$
Primitive de $u' \sinh u$	$\cosh u$

1.2. Intégration par parties

Théorème 2.1 : Formule

$$\int_{a}^{b} u(x)v'(x) \, dx = \left[u(x)v(x) \right]_{a}^{b} - \int_{a}^{b} u'(x)v(x) \, dx$$

Exemple: Double intégration par parties

On doit calculer

$$\int^x e^{at} \sin(t) dt$$

On va donc faire 2 intégrations par parties successives, en choississant la fonction trigonométrique comme étant v^\prime dans les 2 cas :

$$\begin{split} \int^x e^{at} \sin(t) dt &= [-e^{at} \cos(t)]^x - a \int^x -e^{at} \cos(t) \\ &+ a \int^x e^{at} \cos(t) \\ &+ a ([e^{at} \sin(t)]^x - a \int^x e^{at} \sin(t)) \\ &+ a [e^{at} \sin(t)]^x - a^2 \int^x e^{at} \sin(t) \end{split}$$

On remarque que l'intégrale à calculer se trouve dans les 2 membres, on obtient donc :

$$(1 - a^2) \int^x e^{at} \sin(t)dt = [-e^{at} \cos(t)]^x + a[e^{at} \sin(t)]^x$$

$$= [e^{at}(-\cos(t) + a\sin(t))]^x$$

$$\int^x e^{at} \sin(t)dt = \frac{[e^{at}(-\cos(t) + a\sin(t))]^x}{(1 - a^2)} = \frac{e^{ax}(-\cos(x) + a\sin(x))}{(1 - a^2)}$$

1.2. Intégration par changement de variable

Le but est de simplifier une intégrale en lui attribuant une nouvelle variable intelligemment choisie.

- 1. On définie une nouvelle variable de la forme $t = \varphi(x)$
- 2. $dt = \varphi(x)'dx \iff dx = \frac{dt}{\varphi(x)'}$
- 3. On remplace dans l'intégrale $\varphi(x)$ par t et dx par l'expression calculée à l'étape précédente
- 4. On applique la fonction φ aux bornes de l'intervalle
- 5. On peut simplifier l'expression de l'intégrale et la calculer entre les nouvelles bornes

Exemple

On veut calculer

$$\int_{1}^{e} \frac{\ln(x)}{(x \ln(x) - x)^{1/3}}$$

On remarque $(x \ln(x) - x)' = \ln(x)$, qui se trouve au numérateur.

- 1. On pose : $t = x \ln(x) x$
- 2. $dt = \ln(x)dx \iff dx = \frac{dt}{\ln(x)}$
- 3. On remplace dans l'intégrale $x\ln(x)-x$ par t et dx par l'expression calculée à l'étape précédente : $\int_1^e \frac{\ln(x)}{(t)^{1/3}} \frac{dt}{\ln(x)}$
- 4. On applique $x \ln(x) x$ aux bornes de l'intervalle :
 - Pour $e: e \ln(e) e = 0$
 - Pour 1: $1 \times \ln(1) 1 = -1$

On obtient : $\int_{-1}^{0} \frac{\ln(x)}{(t)^{1/3}} \frac{dt}{\ln(x)}$

5. On simplifie: $\int_{-1}^{0} \frac{dt}{(t)^{1/3}}$

On n'a plus qu'à utiliser la formule de la primitive de $\frac{1}{x^n}$, c'est à dire : $\frac{-1}{(n-1)x^{n-1}}$