César Isaí García Cornejo

cesar.cornejo@cimat.mx Computo Científico

Ejercicio 1

Simular n = 5 y n = 40 v.a. Bernoulli Be(1/3); sea r el número de éxitos en cada caso.

Solución:

Ejercicio 2

Implementar el algoritmo Metropolis-Hastings para simular de la posterior

$$f(p|\bar{x}) \propto p^r (1-p)^{n-r} cos(\pi p) I_{[0,\frac{1}{2}]}(p),$$

con los dos casos de n y r de arriba. Para ello poner la propuesta $(p'|p)=p'\sim Bete(r+1,n-r+1)$ y la distribución inicial de la cadena $\mu\sim U(0,\frac{1}{2})$

Solución:

Ejercicio 3

Argumentar porque la cadena es f-irreducible y porque es ergódica. Implementar el algoritmo con los datos descritos y discutir los resultados.

Solución:

Ejercicio 4

Implementar el algoritmo Metropolis-Hastings con la posterior de arriba tomando una propuesta diferente.

Solución: