ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SỬ PHẠM

TRƯƠNG THỊ HOA

NGHIÊN CỬU KHẢ NĂNG HẤP PHỤ XANH METYLEN VÀ TÍM TINH THỂ CỦA ĐÁ ONG BIẾN TÍNH

LUẬN VĂN THẠC SĨ HÓA HỌC

THÁI NGUYÊN – 2018

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM

TRƯƠNG THỊ HOA

NGHIÊN CỬU KHẢ NĂNG HẤP PHỤ XANH METYLEN VÀ TÍM TINH THỂ CỦA ĐÁ ONG BIẾN TÍNH

Hóa Phân Tích Mã ngành: 8.44.01.18

LUẬN VĂN THẠC SĨ HÓA HỌC

Người hướng dẫn khoa học: PGS.TS. Ngô Thị Mai Việt

THÁI NGUYÊN - 2018

LÒI CAM ĐOAN

Tôi xin cam đoan: Đề tài: "Nghiên cứu khả năng hấp phụ xanh metylen, tím tinh thể của đá ong biến tính" là do bản thân tôi thực hiện. Các số liệu, kết quả trong đề tài là trung thực. Nếu sai sự thật tôi xin chịu trách nhiệm.

Thái Nguyên, tháng 5 năm 2018

Tác giả

Trương Thị Hoa

Xác nhận của trưởng khoa chuyên môn

Xác nhận của giáo viên hướng dẫn

PGS.TS. Nguyễn Thị Hiền Lan

PGS.TS. Ngô Thị Mai Việt

LỜI CẢM ƠN

Trong suốt quá trình học tập và thực hiện đề tài luận văn thạc sĩ, chuyên ngành

Hóa Phân tích, Khoa Hóa học – Trường Đại học Sư phạm – Đại học Thái Nguyên, em

đã nhận được sự ủng hộ, giúp đỡ của các thầy cô giáo, các đồng nghiệp, bạn bè và gia

đình.

Trước tiên, em xin bày tỏ lòng biết ơn sâu sắc nhất đến PGS.TS. Ngô Thị Mai

Việt, cô đã tận tình hướng dẫn, truyền đạt kiến thức và kinh nghiệm quý báu để em có

thể hoàn thành luận văn này.

Em xin bày tỏ lòng biết ơn chân thành đến các thầy giáo, cô giáo Khoa Hóa học,

các thầy cô trong Ban Giám hiệu Trường Đại học Sư phạm - Đại học Thái Nguyên đã

giảng dạy, tạo điều kiện thuận lợi, giúp đỡ em trong quá trình học tập và nghiên cứu.

Mặc dù đã có nhiều cố gắng, song do thời gian có hạn, khả năng nghiên cứu của

bản thân còn hạn chế, nên kết quả nghiên cứu của em có thể còn nhiều thiếu sót. Em rất

mong nhận được sự góp ý, chỉ bảo của các thầy giáo, cô giáo, các bạn đồng nghiệp để

luân văn của em hoàn thiên hơn.

Em xin chân thành cảm ơn!

Thái Nguyên, tháng 05 năm 2018

Tác giả

Trương Thị Hoa

ii

MŲC LŲC

	Trang
Trang phụ bìa	
Lời cam đoan	i
Lời cảm ơn	ii
Mục lục	iii
Danh mục các kí hiệu và chữ viết tắt	iv
Danh mục bảng biểu	v
Danh mục các hình	vi
MỞ ĐẦU	1
NÔI DUNG	3
Chương 1. TỔNG QUAN	3
1.1. Giới thiệu về thuốc nhuộm	3
1.1.1. Khái quát về thuốc nhuộm	3
1.1.2. Phân loại thuốc nhuộm	3
1.2. Giới thiệu chung về xanh metylen, tím tinh thể	5
1.2.1. Xanh metylen	5
1.2.2. Tím tinh thể	7
1.3. Nước thải dệt nhuộm	9
1.3.1. Thành phần nước của thải dệt nhuộm	9
1.3.2. Nguồn phát sinh nước thải trong công nghiệp dệt nhuộm	10
1.3.3. Thực trạng ô nhiễm nước thải dệt nhuộm ở nước ta	11
1.3.4. Quy chuẩn kỹ thuật quốc gia về nước thải công nghiệp	11
1.3.5. Tác hại của ô nhiễm nước thải dệt nhuộm	12
1.4. Giới thiệu về đá ong và SDS	13
1.4.1 Giới thiệu về đá ong	13
1.4.2. Giới thiệu về SDS	14
1.5. Phương pháp phân tích quang phổ hấp thụ phân tử (UV – Vis)	15

1.5.1. Độ hấp thụ quang	. 15
1.5.2. Phương pháp đường chuẩn	. 16
1.5.3. Phương pháp thêm chuẩn	. 17
1.6. Tổng quan tình hình nghiên cứu	. 18
Chương 2. THỰC NGHIỆM	. 26
2.1. Hóa chất, dụng cụ và thiết bị máy móc	. 26
2.1.1. Hóa chất	. 26
2.1.2. Dụng cụ	. 26
2.1.3. Thiết bị máy móc	. 27
2.2. Chuẩn bị đá ong	. 27
2.3. Biến tính đá ong	. 27
2.4. Xác định một số đặc trưng hóa lý của đá ong tự nhiên và đá ong biến	
tính	. 27
2.5. Xác định điểm đẳng điện của đá ong biến tính	. 28
2.6. Xây dựng đường chuẩn xác định xanh metylen và tím tinh thể theo	
phương pháp UV – Vis	. 28
2.7. Phương pháp hấp phụ tĩnh	. 28
2.7.1. Khảo sát ảnh hưởng của pH	. 28
2.7.2. Khảo sát ảnh hưởng của khối lượng vật liệu hấp phụ	. 29
2.7.3. Khảo sát ảnh hưởng của thời gian tiếp xúc	. 29
2.7.4. Khảo sát ảnh hưởng của lực ion đến khả năng hấp phụ	. 30
2.7.5. Khảo sát ảnh hưởng của chất lạ đến khả năng hấp phụ xanh metylen	
và tím tinh thể của các vật liệu	.31
2.7.6. Ảnh hưởng của nồng độ đầu đến khả năng hấp phụ xanh metylen và	
tím tinh thể của vật liệu hấp phụ	. 33
2.8. Nghiên cứu khả năng hấp phụ xanh metylen và tím tinh thể của đá ong	
biến tính bằng chất hoạt động bề mặt theo phương pháp hấp phụ động	. 34
2.9. Xử lí mẫu nước thải	. 35

Chương 3. KẾT QUẢ NGHIÊN CỨU VÀ THẢO LUẬN36
3.1. Kết quả xác định một số đặc trưng hóa lí của đá ong tự nhiên36
3.2. Kết quả xác định một số đặc trưng hóa lí của đá ong biến tính37
3.3. Kết quả xác định điểm đẳng điện của đá ong biến tính
3.4. Xây dựng đường chuẩn xác định xanh metylen và tím tinh thể40
3.5. Kết quả khảo sát một số yếu tố ảnh hưởng đến khả năng hấp phụ xanh
metylen và tím tinh thể của vật liệu theo phương pháp hấp phụ tĩnh41
3.5.1. Ảnh hưởng của tỉ lệ khối lượng vật liệu
3.5.2. Khảo sát ảnh hưởng của thời gian tiếp xúc
3.5.3. Khảo sát ảnh hưởng của pH
3.5.4. Ånh hưởng của lực ion
3.5.5. Ảnh hưởng của nồng độ đầu của dung dịch nghiên cứu
3.5.6. Ảnh hưởng của chất lạ đến khả năng hấp phụ xanh metylen và tím
tinh thể của vật liệu
3.6. Nghiên cứu khả năng hấp phụ xanh metylen và tím tinh thể của vật liệu
theo phương pháp hấp phụ động70
3.7. Xử lí mẫu nước thải71
KÉT LUẬN74
TÀI LIỆU THAM KHẢO75

DANH MỤC CÁC KÍ HIỆU VÀ CHỮ VIẾT TẮT

Tên tiếng việt	Tên tiếng Anh	Viết tắt
Tím tinh thể	Crystal Violet	CV
Xanh Metylen	Methylen Blue	MB
Nhiễu xạ tia X	X-ray Diffraction	XRD
Quang phổ hồng ngoại	InfraRet	IR
Đá ong tự nhiên	Raw Laterit	RL
Đá ong biến tính	Surfactant Modified Laterit	SML
Natri dodexyl Sunfat	Sodium dodecyl sunfate	SDS
Metyl da cam	Methylen Organe	МО
Nhu cầu oxi sinh hóa	Biochemical Oxygen Demand	BOD
Nhu cầu oxi hóa hóa học	Chemical Oxygen Demand	COD
Vật liệu hấp phụ	Material for Adsorption	VLHP

DANH MỤC BẢNG BIỂU

Bảng 1.1. Quy chuẩn kỹ thuật quốc gia về nước thải công nghiệp dệt nhuộm	12
Bảng 1.2. Thành phần khoáng vật kết tinh trong đá ong tự nhiên	14
Bảng 2.1 Các hóa chất cần dùng trong thực nghiệm	26
Bảng 3.1. Điểm đẳng điện của SML	40
Bảng 3.2. Kết quả khảo sát khoảng nồng độ tuyến tính của MB và CV	41
Bảng 3.3. Ảnh hưởng của tỉ lệ khối lượng vật liệu đến khả năng hấp phụ xanh	
metylen	42
Bảng 3.4. Ảnh hưởng của tỉ lệ khối lượng vật liệu đến khả năng hấp phụ tím tinh	
thể	43
Bảng 3.5. Ảnh hưởng của thời gian đến khả năng hấp phụ xanh metylen của vật liệu	45
Bảng 3.6. Ảnh hưởng của thời gian tiếp xúc đến khả năng hấp phụ tím tinh thể	
của vật liệu	46
Bảng 3.7. Ảnh hưởng của pH đến khả năng hấp phụ xanh metylen của vật liệu	48
Bảng 3.8. Ảnh hưởng của pH đến khả năng hấp phụ tím tinh thể của vật liệu	49
Bảng 3.9. Ảnh hưởng của lực ion đến khả năng hấp phụ MB của vật liệu	51
Bảng 3.10. Ảnh hưởng của lực ion đến khả năng hấp phụ CV của vật liệu	52
Bảng 3.11. Ảnh hưởng của nồng độ đầu đến khả năng hấp phụ xanh metylen của	
vật liệu	55
Bảng 3.12. Các thông số đẳng nhiệt hấp phụ của Langmuir và Freundlich	56
Bảng 3.13. Ảnh hưởng của nồng độ đầu đến khả năng hấp phụ CV của vật liệu	
trong nền là NaCl 1mM	57
Bảng 3.14. Ảnh hưởng của nồng độ đầu đến khả năng hấp phụ CV của vật liệu	
trong nền là NaCl 10mM	58
Bảng 3.15. Ảnh hưởng của nồng độ đầu đến khả năng hấp phụ CV của vật liệu	
trong nền là NaCl 50 mM	59
Bảng 3.16. Các thông số hấp phụ theo mô hình Langmuir của CV	63
Bảng 3.17. Ảnh hưởng của chất lạ đến khả năng hấp phụ xanh metylen của các	
vật liệu	64
Bảng 3.18. Ảnh hưởng của chất lạ đến khả năng hấp phụ tím tinh thể của các vật liệu	67
Bảng 3.19. Hàm lượng của MB và CV sau mỗi phân đoạn thể tích	70
Bảng 3.20. Hàm lượng của MB sau mỗi phân đoạn thể tích	72

DANH MỤC CÁC HÌNH

Hình 1.1. Công thức cấu tạo của xanh metylen	6
Hình 1.2. Công thức cấu tạo cation MB ⁺	6
Hình 1.3. Dạng oxy hóa và dạng khử của MB	6
Hình 1.4. Công thức cấu tạo của CV	7
Hình 1.5. Mô hình phân tử của CV	7
Hình 1.6. Hình chụp bề mặt đá ong	14
Hình 1.7. Sơ đồ minh họa quá trình hấp phụ và giải hấp SDS trên bề mặt vật liệu	
	15
Hình 3.1. Giản đồ nhiễu xạ tia X (XRD) của đá ong tự nhiên	36
Hình 3.2. Vân phổ hồng ngoại IR của đá ong tự nhiên	36
Hình 3.3. Giản đồ nhiễu xạ tia X (XRD) của SML trước khi hấp phụ	37
Hình 3.4. Giản đồ nhiễu xạ tia X (XRD) của SML sau khi hấp phụ CV	37
Hình 3.5. Giản đồ nhiễu xạ tia X (XRD) của SML sau hấp phụ MB	38
Hình 3.6. Vân phổ hồng ngoại IR của SML trước hấp phụ	38
Hình 3.7. Vân phổ hồng ngoại IR của SML sau khi hấp phụ CV	39
Hình 3.8. Vân phổ hồng ngoại IR của SML sau khi hấp phụ MB	39
Hình 3.9. Điểm đẳng điện của SML	40
Hình 3.10. Đồ thị khảo sát khoảng nồng độ tuyến tính MB	41
Hình 3.11. Đồ thị khảo sát khoảng nồng độ tuyến tính MB	41
Hình 3.12. Ảnh hưởng của tỉ lệ khối lượng SML đến khả năng hấp phụ chất màu.	44
Hình 3.13. Ảnh hưởng của tỉ lệ khối lượng RL đến khả năng hấp phụ chất màu	44
Hình 3.14. Ảnh hưởng của thời gian tiếp xúc đến khả năng hấp phụ xanh metylen	ı
của vật liệu	47
Hình 3.15. Ảnh hưởng của thời gian tiếp xúc đến khả năng hấp phụ tím tinh thể của	ı
vật liệu	47
Hình 3.16. Ảnh hưởng của pH đến khả năng hấp phụ xanh metylen của vật liệu	50
Hình 3.17. Ảnh hưởng của pH đến khả năng hấp phụ tím tinh thể của vật liệu	50
Hình 3.18. Ảnh hưởng của lực ion đến khả năng hấp phụ MB của vật liệu	53
Hình 3.19. Ảnh hưởng của lực ion đến khả năng hấp phụ CV của vật liệu	53
Hình 3.20. Đường đẳng nhiệt hấp phụ Langmuir của các vật liệu đối với MB	. 56