概率统计各章节总结

第一章

概率的计算

- 1)统计定义: $f_n(A) \xrightarrow[n \to \infty]{}$ 稳定值 = P(A)
- 2)概率的性质: 1~5
- 3) 等可能概型 : $P(A) = \frac{m}{n}$
- 4) 条件概率: $P(B|A) = \frac{k}{m} = \frac{P(AB)}{P(A)}$ 独立
- 5) 乘法定理: P(AB) = P(A)P(B|A) = P(A)P(B)= $1 - P(\overline{A} \cup \overline{B})$ $A = AB_1 \cup AB_2$
- 6) 全概率公式 $P(A) = P(B_1)P(A|B_1) + P(B_2)P(A|B_2)$

第二章

随机变量概率分布

分布函数
$F(x) = P(X \le x)$
概率的累加,不
49T 32 /\ /-
概率分布
概率 1 分布

离散型随机变量

$$F(x) = \sum_{x_k \le x} p_k$$

右连续

直观

连续型随机变量

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

连续

情况,直观

概率计算

$$P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(t)dt$$
$$= F(x_2) - F(x_1)$$

非连续型随机变量

第二章

随机变量重要分布

	离散型随机变量	连续型随机变量
	1 (0-1) 分布 $P(X = k) = p^k (1 - p)^{1-k}$	
重要分布	$ \begin{array}{ccc} 2 & B(n,p) \\ P(X=k) = C_n^k p^k (1-p)^{n-k} \end{array} $	
	$P(\lambda)$ $(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$	$3 N(\mu, \sigma^2) \star$ $)f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
函数的分布 $Y = g(X)$	X 的分布律 → Y 的分布律	$f_X(x) \to f_Y(y) = F_Y'(y)$

第二章

1. 随机变量的分布函数 $F(x) = P(X \le x)$

作用:
$$P(x_1 < X \le x_2) = F(x_2) - F(x_1)$$

性质 1 F(x) 是一个不减函数

性质 2
$$0 \le F(x) \le 1$$
, $F(-\infty) = 0$, $F(+\infty) = 1$

性质 3 F(x) 是右连续的函数

2. 连续型随机变量的概率密度 $F(x) = \int_{-\infty}^{x} f(t)dt$

性质 1、 2
$$f(x)$$
 0 $\int_{-\infty}^{\infty} f(x)dx = 1$

性质 3
$$P(x_1 < X \le x_2) = F(x_2) - F(x_1) = \int_{x_1}^{x_2} f(x) dx$$

性质 4
$$F'(x) = f(x)$$

第三章

二维随机变量 (X,Y)

		(X,Y) 离散型	(X,Y) 连续型
(X,Y)	联合分布函数	联合分布律	联合概率密度
整体	F(x,y)	$P(X = x_i, Y = y_j) = p_{ij}$	f(x,y)
(X,Y)	边缘分布函数	边缘分布。律	边缘概率密度
个体	$F_X(x) = \lim_{y \to \infty} F(x, y)$	$P(X = x_i) = \sum_{i=1}^{n} p_{ij} = p_i$	$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$
	$F_{Y}(y) = \lim_{x \to \infty} F(x, y)$	$P(Y = y_j) = \sum_{i=1}^{\infty} p_{ij} = p_{ij}$	$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$
X与Y	对∀x, y	$P(X = x_i, Y = y_j)$	
独立 ————	$F(x,y) = F_X(x)F_Y(y)$	$= P(X = x_i)P(Y = y_j)$	$f(x,y) = f_X(x)f_Y(y)$
概率 计算		$P\{(X,Y) \in G\} = \sum_{(x_i,y_i) \in G} p_{ij}$	$P\{(X,Y) \in G\}$ $= \iint_{\mathbb{R}} f(x,y) dx dy$

_				
	一维 X	二维 (X,Y)	边缘 X	关系
分布函数	F(x)	F(x,y)	$F_X(x) = P(X \le x)$	$F_X(x) = \lim_{v \to \infty} F(x, y)$
函数	$= P(X \le x)$	$= P(X \le x, Y \le y)$	$= P(X \le x, Y < +\infty)$	y
几何意义	///// I → <i>x</i>	(x,y)	(X,Y) x	第三章
离散型	$F(x) = \sum_{x_k \le x} p_k$	$F(x,y) = \sum_{\substack{x_i \le x \\ y_j \le y}} p_{ij}$	$F_X(x) = \sum_{x_i \le x} \sum_{j=1}^{\infty} P_{ij}$	
连	F(x)	F(x,y)	$F_X(x)$ $f_X(x)$	$f_X(x) \bigstar$
续 型	$= \int_{-\infty}^{x} f(t)dt =$	$\int_{-\infty}^{x} \int_{-\infty}^{v} f(u,v) du dv$	$F_X(x) \qquad f_X(x)$ $= \int_{-\infty}^{x} \int_{-\infty}^{+\infty} f(x, y) dy dx$	$= \int_{-\infty}^{+\infty} f(x, y) dy$
分布律	$P\{X=x_k\}=p_k$	$P\{X = x_i, Y = y_j\}$ $= p_{ij}$	$P\{X=x_i\} = \sum_{j=1}^{\infty} p_{ij}$	$P\{X=x_i\}=\sum_{j=1}^{\infty}p_{ij}$
概率	$P(x_1 < X \le x_2) = F(.$	$(x_2) - F(x_1) = \int_{x_1}^{x_2} f(x) dx$	$P\{(X,Y) \in G\} = \iint_G f$	$f(x,y)dxdx = \sum_{(x_i,y_j)\in G} p_{ij}$

第三章

第四节 两个随机变量的函数的分布

$$Z = g(X,Y) \qquad f(X,Y) \implies f_{Z}(z) = ? \qquad f_{Z}(z) = F'_{Z}(z) \implies$$

$$1)Z = X + Y \qquad f_{Z}(z) = \int_{-\infty}^{+\infty} f(z - y, y) dy = \int_{-\infty}^{+\infty} f_{X}(z - y) f_{Y}(y) dy$$

$$2)Z = \max\{X,Y\} \qquad X,Y \implies F_{Z}(z) = F_{X}(z) F_{Y}(z) \qquad \implies Z = \min\{X,Y\} \qquad X,Y \implies F_{Z}(z) = 1 - [1 - F_{X}(z)][1 - F_{Y}(z)]$$

$$X_{1},X_{2},\cdots,X_{n} \implies F_{X_{i}}(x) = F(x)$$

$$M = \max(X_{1},X_{2},\cdots X_{n}) \implies N = \min(X_{1},X_{2},\cdots X_{n})$$

$$F_{\max}(z) = F_{X_{1}}(z) \cdot F_{X_{2}}(z) \cdots F_{X_{n}}(z) = [F(z)]^{n}$$

$$F_{\min}(z) = 1 - [1 - F_{X_{1}}(z)] \cdot [1 - F_{X_{2}}(z)] \cdots [1 - F_{X_{n}}(z)] = 1 - [1 - F(z)]^{n}$$

第三章

计算难点

1)
$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

2)
$$P\{(X,Y) \in G\} = \iint_G f(x,y) dx dx$$

$$\mathbf{3} \)f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy$$

独立

4)
$$f_Z(z) = \int_{-\infty}^{+\infty} f(z-y,y) dy = \int_{-\infty}^{+\infty} f_X(z-y) f_Y(y) dy$$

5)
$$Z = g(X,Y)$$
 $f(X,Y) \longrightarrow f_Z(z) = ?$ $f_Z(z) = F'_Z(z)$

D是积分区域 $g(x,y) \le z$ 与f(x,y)

取值非零区域的交集

第四章

随机变量的数学期望与方差

	离散型随机变量	连续型随机变量
X	$E(X) = \sum_{k=1}^{\infty} x_k p_k$	$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$
Y = g(X) g 连续	$E(Y) = E[g(X)]$ $= \sum_{k=1}^{\infty} g(x_k) p_k$	$E(Y) = E[g(X)]$ $= \int_{-\infty}^{+\infty} g(x) f(x) dx$
Z = g(X,Y) g 连续	$E(Z) = E[g(X,Y)]$ $= \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} g(x_i, y_j) p_{ij}$	$E(Z) = E[g(X,Y)]$ $= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) dx dy$
$D(X)$ $= E[X - E(X)]^{2}$	$D(X) = \sum_{k=1}^{\infty} (x_k - E(X))^2 p_k$	$D(X) = \int_{-\infty}^{+\infty} (x - E(X))^2 f(x) dx$

第四章

随机变量的数字特征

$$E(X)$$
 性质
$$E(C) = c \quad E(CX) = c E(X) \quad E(X+Y) = E(X) + E(Y)$$
 X,Y 独立
$$E(XY) = E(X) E(Y)$$

$$D(X)$$
 性质
$$D(X) = E(X^2) - [E(X)]^2 \quad D(c) = 0 \quad D(cX) = c^2 D(X)$$
 X,Y 独立
$$D(X+Y) = D(X) + D(Y) \quad D(X) = 0 \Longrightarrow P(X=c) = 1$$
协方差
$$Cov(X,Y) = E\{[X-E(X)][(Y-E(Y)]\}$$

$$= E(XY) - E(X)E(Y) \quad \text{独立}$$

$$D(X+Y) = D(X) + D(Y) + 2 \operatorname{cov}(X,Y) = D(X) + D(Y)$$

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}}$$

$$(1). \quad |\rho_{XY}| \le 1$$

$$(2). \quad |\rho_{XY}| = 1 \Leftrightarrow$$
 存在常数 a,b 使得 $: P(Y=aX+b) = 1$

第四章

几种常见分布的数学期望和方差

	概率	分布	E(X)	D(X)
	(0-1) 分布	$X \sim B(1, p)$	p	pq
离散型	二项分布	$X \sim B(n, p)$	np	npq
型	泊松分布	$X \sim P(\lambda)$	λ	λ
.	均匀分布	$X \sim U(a,b)$	(a+b)/2	$(b-a)^2/12$
连续型	指数分布	$X \sim Exp(\theta)$	$oldsymbol{ heta}$	$\boldsymbol{\theta}^2$
型	正态分布	$X \sim N(\mu, \sigma^2)$	μ	σ^2

第五章

大数定律及中心极限定理

定理 1	$X_1, X_2, \dots, X_n, \dots$ 相互独立 $E(X_k) = \mu D(X_k) = \sigma^2$	$\frac{1}{n}\sum_{k=1}^{n}X_{k}\xrightarrow{P}\mu$
定理 2 (贝努利)	$X_1, X_2, \dots, X_n, \dots$ 相互独立 $\sim (0-1)分布(参数p)$	$\frac{n_A}{n} = \frac{1}{n} \sum_{k=1}^n X_k \xrightarrow{P} p$
定理 3 (辛钦)	$X_1, X_2, \dots, X_n, \dots$ 相互独立 $E(X_k) = \mu$ 同分布	$\frac{1}{n}\sum_{k=1}^{n}X_{k}\xrightarrow{P}\mu$
定理 1 (林德)	$X_1, X_2, \dots, X_n, \dots$ 相互独立 同分布 $E(X_k) = \mu D(X_k) = \sigma^2$	\overline{L}
定理 2 (德莫弗)	$X_n \sim B(n,p)$	$\frac{X_n - np}{\sqrt{np(1-p)}} \stackrel{近似}{\sim} N(0,1)$

常用统计量及抽样分布

χ^2 分布	$X_i \sim N(0,1) \ i = 1,2,\dots,n $ 独立	$ \frac{1}{\chi_{\alpha}^{2}(n)}, n > 45 $ $ \chi_{\alpha}^{2}(n) \approx 1/2(z_{\alpha} + \sqrt{2n-1})^{2} $
t分布	$X \sim N(0,1), Y \sim \chi^{2}(n), 独立$ $\star t = \frac{X}{\sqrt{Y/n}} \sim t(n)$	$t_{\alpha}(n) n > 45$ $t_{\alpha}(n) = -t_{1-\alpha}(n), \ t_{\alpha}(n) \approx z_{\alpha}$
F分布	$U \sim \chi^2(n_1), V \sim \chi^2(n_2),$ 独立	$F_{\alpha}(n_1, n_2)$ $F_{1-\alpha}(n_1, n_2) = 1/F_{\alpha}(n_2, n_1)$
$X \sim N(\mu, \sigma^2)$	Th1 $\overline{X} \sim N(\mu, \sigma^2/n)$,	Th2 $\overline{X} - \mu$
X_1, X_2, \dots, X_n	$(n-1)S^2/\sigma^2 \sim \chi^2(n-1)$ 独立	$\frac{Th2}{\star} \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$
\overline{X},S^2 \bar{X}	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$ $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$	

常用统计量及抽样分布

$$X \sim N(\mu, \sigma^2)$$
$$X_1, X_2, \dots, X_n$$

χ²统计量	$\chi^2 = \sum_{i=1}^n X_i^2$	$\sim \chi^2(n)$	
t 统计量	$t = \frac{X}{\sqrt{Y/n}}$	$\sim t(n)$	
F 统计量	$F = \frac{U/n_1}{V/n_2}$	$\sim F(n_1,n_2)$	
样本均值	$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	$\sim N(\mu, \frac{\sigma^2}{n})$	$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$
样本方差	$\frac{(n-1)S^2}{\sigma^2}$	$\sim \chi^2(n-1)$	1 <i>n</i>
	$\frac{\overline{X} - \mu}{S/\sqrt{n}}$	$\sim t(n-1)$	

连续型随机变量及其分布

$$X \sim U(a,b) \qquad f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & 其它 \end{cases}$$

$$X \sim E(\theta) \qquad f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}} & x > 0 \\ 0 & \cancel{\exists} \cancel{\Box} \end{aligned}$$

$$X \sim N(\mu, \sigma^2) \qquad f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$X \sim \Gamma(\alpha, \beta) \qquad f(x) = \begin{cases} \frac{\beta^{\alpha_1}}{\Gamma(\alpha_1)} x^{\alpha_1 - 1} e^{-\beta x} & x > 0 \\ 0 & x \le 0 \end{cases}$$

常用统计量及抽样分布

$$\chi^{2} \sim \chi^{2}(n) \quad f(x) = \begin{cases} \frac{1}{2^{n/2} \Gamma(n/2)} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}} & x \neq 0 \\ 0 & x < 0 \end{cases}$$

$$t \sim t(n) \quad t(x) = \frac{\Gamma[(n+1)/2]}{\Gamma(n/2) \sqrt{n\pi}} (1 + \frac{x^{2}}{n})^{-\frac{n+1}{2}}$$

$$F \sim F(n_{1}, n_{2}) \varphi(x) = \begin{cases} \frac{\Gamma(\frac{n_{1} + n_{2}}{2})}{\Gamma(\frac{n_{1}}{2}) \Gamma(\frac{n_{2}}{2})} (\frac{n_{1}}{n_{2}}) (\frac{n_{1}}{n_{2}}) (\frac{n_{1}}{n_{2}} x)^{\frac{n_{1} + n_{2}}{2}}, x \neq 0 \end{cases}$$

第七章

总体
$$X \sim F(x,\theta)$$
, $X_1 X_2, \dots, X_n$ 对 θ 进行估计

★ 点估计

统计量
$$\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n) \rightarrow \theta$$
估计量

- 1) 矩估计法:求解: $\mu_i = A_i$, $i = 1, 2, \dots, k$
- **2) 极大似然估计法:求解: $L(\hat{\theta}) = \max_{\theta \in H} L(\theta)$

估计量的 优良性

- 1) 无偏性 $\mathcal{E}(\hat{\theta}) = \theta$
- **2**) 有效性 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$

$$P(\underline{\theta} < \theta < \overline{\theta}) = 1 - \alpha$$

 $(\underline{\theta}, \overline{\theta})$ 是置信度为 $1-\alpha$ 的置信区间

★区间估计

 $X \sim N(\mu, \sigma^2)$,对 μ, σ^2 进行区间估计

- 1)求 μ 的置信区间 σ^2 为已知
- 2)求 μ 的置信区间 σ^2 为未知
- 3)求 σ^2 的置信区间

第七章

$X \sim N(\mu, \sigma^2)$,对 μ, σ^2 进行区间估计置信度 $1-\alpha$

	统计量	置信区间
1)求 μ 的置信区间 σ^2 为已知	, $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$	$\bigstar (\overline{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2})$
$oldsymbol{2}$)求 $oldsymbol{\mu}$ 的置信区间 $oldsymbol{\sigma}^2$ 为未知	, $\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t(n-1)$	$\bigstar (\bar{X} \pm \frac{S}{\sqrt{n}} t_{\alpha/2} (n-1))$
$3)求\sigma^2的置信区间$	$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$	$(\frac{(n-1)S^{2}}{\chi_{\alpha/2}^{2}(n-1)}, \frac{(n-1)S^{2}}{\chi_{1-\alpha/2}^{2}(n-1)})$
(0-1) 分布 p 的置信区间	$\frac{n\overline{X} - np}{\sqrt{np(1-p)}} \sim N(0,1)$	(p_1, p_2) $p_{1,2} = \frac{1}{2a}(-b \mp \sqrt{b^2 - 4ac})$

第八章

 $X \sim N(\mu, \sigma^2)$,对 μ, σ^2 进行假设检验显著性水平 α ,

	原假设 H_δ	备择假设#	检验统计量	★ 拒绝域
μ的检验	$\mu = \mu_0$	$\mu \neq \mu_0$	$U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$ig Uig >z_{lpha/2}$
¹ ℃²为已知	$\mu \leq \mu_0$ $\mu \mu_0$	$\mu > \mu_0$		$U > z_{\alpha}$
		$\mu < \mu_0$	~ N(0,1)	$U < -z_{\alpha}$
2) µ的检验	$\mu = \mu_0$ $\mu \le \mu_0$	$\mu \neq \mu_0$ $\mu > \mu_0$	$t = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$	$ t > t_{\alpha/2}(n-1)$ $t > t_{\alpha}(n-1)$
σ^2 为未知	$\mu = \mu_0$ $\mu = \mu_0$	$\mu < \mu_0$	$\sim t(n-1)$	$t < -t_{\alpha}(n-1)$
244 14 74	1	$\sigma^2 \neq \sigma_0^2$	$_2 (n-1)S^2$	$\chi^2 > \chi^2_{\alpha/2}(n-1)$ 或
$3)\sigma^2$ 的检验	$\sigma^2 \leq \sigma_0^2$	$\sigma^2 > \sigma_0^2$	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\chi^{2} < \chi_{1-\alpha/2}^{2}(n-1)$ $\chi^{2} > \chi_{\alpha}^{2}(n-1)$
	σ^2 σ_0^2	$\sigma^2 < \sigma_0^2$	$\sim \chi^2(n-1)$	$\chi^2 < \chi_{1-\alpha}^2 (n-1)$