

✓ Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

GRADE 100%

Recurrent Neural Networks

LATEST SUBMISSION GRADE

100%

1. Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the 1/1 point i^{th} training example?

- $x^{(i) < j > }$
- $\bigcirc \ x^{< i > (j)}$
- $\bigcirc \ x^{(j) < i>}$
- $\bigcirc \ x^{< j > (i)}$

✓ Correct

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

2. Consider this RNN:

1/1 point

This specific type of architecture is appropriate when:

- \bigcirc $T_x = T_y$
- $\bigcap T_x < T_y$
- $\bigcap T_x > T_y$
- $\bigcap T_x = 1$

It is appropriate when every input should be matched to an output.

3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

 $\chi^{-1}\chi^{-}$

- Speech recognition (input an audio clip and output a transcript)
- Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

✓ Correct!

- Image classification (input an image and output a label)
- Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

✓ Correct!

4. You are training this RNN language model.

1/1 point

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- $\bigcirc \ \ \operatorname{Estimating} P(y^{<1>},y^{<2>},\ldots,y^{< t-1>})$
- \bigcap Estimating $P(y^{< t>})$
- Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t-1>})$
- $\bigcirc \ \, \text{Estimating} \, P\big(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \dots, y^{< t>}\big)$

✓ Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

 $5. \ \ You have finished training a language model RNN and are using it to sample random sentences, as follows:$

1/1 point

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- \bigcap (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then

	\smile		a the arround to the world from the training out to the position of		
	\circ		is the ground-truth word from the training set to the next time-step.	on as û≤t≥ (ii) Than	
		pass	Use the probabilities output by the RNN to pick the highest probability word for that time-steps this selected word to the next time-step.		
	•		Use the probabilities output by the RNN to randomly sample a chosen word for that time-ste is this selected word to the next time-step.	p as $\hat{y}^{< t>}$. (ii) Then	
	`	•	Correct Yes!		
6.			training an RNN, and find that your weights and activations are all taking on the value of Na of these is the most likely cause of this problem?	N ("Not a Number").	1/1 point
	0	Vani	nishing gradient problem.		
	•	Expl	oloding gradient problem.		
	0	ReLl	.U activation function g(.) used to compute g(z), where z is too large.		
	0	Sign	moid activation function g(.) used to compute g(z), where z is too large.		
	,	/ (Correct		
7.	Sup	opose ivatio	e you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 1 ons $a^{}$. What is the dimension of Γ_u at each time step?	00-dimensional	1/1 point
	0	1			
	•	100			
	0	300			
	0	1000	000		
	`	•	$\label{eq:Correct} \mbox{Correct, } \Gamma_u \mbox{ is a vector of dimension equal to the number of hidden units in the LSTM.}$		
8.	Her	re're t	the update equations for the GRU.		1/1 point
			GRU		
$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$					
$\Gamma_{u} = \sigma(W_{u}[c^{}, x^{}] + b_{u})$ $\Gamma_{r} = \sigma(W_{r}[c^{}, x^{}] + b_{r})$ $c^{} = \Gamma_{u} * \tilde{c}^{} + (1 - \Gamma_{u}) * c^{}$					
		а	$a^{< t>} = c^{< t>}$		
	rem	novin	oposes to simplify the GRU by always removing the Γ_u . i.e., setting Γ_u = 1. Betty proposes to Γ_u the Γ_r , i.e., setting Γ_r = 1 always. Which of these models is more likely to work without values even when trained on very long input sequences?		
	0		te's model (removing Γ_u), because if $\Gamma_rpprox 0$ for a timestep, the gradient can propagate back estep without much decay.	through that	
	0		te's model (removing Γ_u), because if $\Gamma_r pprox 1$ for a timestep, the gradient can propagate back estep without much decay.	through that	
	•		ty's model (removing Γ_r), because if $\Gamma_u pprox 0$ for a timestep, the gradient can propagate backestep without much decay.	k through that	
	0		ty's model (removing Γ_r), because if $\Gamma_u pprox 1$ for a timestep, the gradient can propagate backestep without much decay.	k through that	

✓ Correct

LSTM

 $a^{<t>} = \Gamma_o * c^{<t>}$

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$\Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the the blanks?

- $\bigcap \ \Gamma_u \text{ and } \Gamma_r$
- $\bigcirc \ \ \, 1-\Gamma_u \text{ and } \Gamma_u$
- \bigcap Γ_r and Γ_u

✓ Correct

Yes, correct!

10. You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\dots,x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>},\dots,y^{<365>}$. You'd like to build a model to map from $x\to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

1 / 1 point

- O Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
- Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
- $\textcircled{0} \quad \text{Unidirectional RNN, because the value of } y^{< t>} \text{ depends only on } x^{< 1>}, \ldots, x^{< t>} \text{, but not on } x^{< t+1>}, \ldots, x^{< 365>} \text{ and } x^{< t+1>}, \ldots, x^{< t} \text{ and } x^{< t+1>}, \ldots, x^{<$
- O Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather.

✓ Correct

Yes!