Modul USB FM rádia USB FM Radio Modul

2015 Bc. Pavel Kovář

Tuto stránku nahradíte v tištěné verzi práce oficiálním zadáním Vaší diplomové či bakalářské práce.

Souhlasím se zveřejněním této bakalářské práce dle požadavků čl. 26, odst. 9 <i>Studijního</i> a zkušebního řádu pro studium v bakalářských programech VŠB-TU Ostrava.				
V Ostravě 1. dubna 2016				
Prohlašuji, že jsem tuto bakalářskou práci vypracoval s literární prameny a publikace, ze kterých jsem čerpal.	amostatně. Uvedl jsem všechny			
V Ostravě 1. dubna 2016				

Abstrakt

Tato práce popisuje návrh USB FM přijímače se dvěma tunery. Jeden tuner slouží pro přehrávání zvuku a druhý pro vyhledávání dalších stanic. přijímač je v systému reprezentován jako USB zvuková karta.

Příjem je realizován dvojicí integrovaných obvodů Si4735-DU. Tyto jsou přes I²S a I²C spojeny s MCU PIC32MX250F128B, který přes USB zajišťuje komunikaci s počítačem. V rámci firmware MCU je, po neúspěchu s Microchip harmony frameworkem, napsán vlastní USB stack.

Knihovna je napsána v jazyku C s využitím knihovny libusb. Poskytuje funkce pro tři úrovně přístupu k tunerům.

Demonstrační aplikace je ve formě grafického uživatelského rozhraní, napsaná v C++ s využitím QT frameworku.

Vše je funkční pod OS Linux i Windows.

Klíčová slova: FM rádio, USB, RDS, QT, libusb, PIC

Abstract

This work describes design of USB FM radio receiver with two tuners. One tuner is for radio playback, second one seeks new stations. In computer, device acts as sound card. Receiving is done by couple of Si4735-DU integrated circuits, which are connected to MCU via I^2C and I^2S . MCU forwards data over USB to computer and back. Use of Microchip harmony framework was not successful so in firmware is USB stack written from scratch.

Library is written in C with use of libusb library. There are three levels of functions to access tuners.

Demo application has graphical user interface and is written in C++ in QT framework. All works under Linux and Windows.

Keywords: FM radio receiver, USB, RDS, QT, libusb, PIC

Seznam použitých zkratek a symbolů

CD

Compact discInter-Integrated CircuitIntegrated Interchip Sound I^2C I^2S

 Microcontroller unit MCU PCM - Pulse-code modulation Radio Data SystemUniversal Serial Bus RDS USB

Obsah

1	Úvod	5		
2	Výběr součástek2.1 Volba rozhraní pro spojení modulu a počítače2.2 Způsob příjmu rozhlasového vyslání2.3 Napojení tuneru na USB	6 6 6 7		
3	USB 3.1 USB audio	8		
4	Tuner 4.1 I2S 4.2 Ovládání tuneru	9 9 9		
5	Knihovna5.1Nízko úrovňové funkce5.2Středně úrovňové funkce5.3Vysoko úrovňové funkce	10 10 10 10		
6	Závěr	11		
7	7 Reference			
Př	ílohy	13		
A	Grafy a měření			

Seznam tabulek

_				,	. 0
Sez	nai	m /	۱h	r 27	'VII
JEL	ııaı	11 (JIJ	ıaz	.nu

1	Blokové schéma TAS1020b. (Převzato z [13])	7

Seznam výpisů zdrojového kódu

1 Úvod

Tento text je ukázkou sazby diplomové práce v La pomocí třídy dokumentů diploma. Pochopitelně text není skutečnou diplomovou prací, ale jen ukázkou použití implementovaných maker v praxi. V kapitole ?? jsou ukázky použití různých maker a prostředí. V kapitole 6 bude "jako závěr". Zároveň tato kapitola slouží jako ukázka generování křížových odkazů v La prostředí.

2 Výběr součástek

Vzhledem k tomu, že není možné se cenou zařízení přiblížit zavedeným výrobcům elektroniky, rozhodl jsme se výběr součástek a konstrukci modulu přizpůsobit tak, aby bylo možné modul vyrobit v domácích podmínkách.

2.1 Volba rozhraní pro spojení modulu a počítače

Po tomto rozhraní se budou přenášet dva druhy informací a to samotný zvuk a ovládání tunerů.

V současné době je prakticky jediným schůdným řešením použití rozhraní USB díky celé řadě výhod, které nabízí. Zejména jeho širokým rozšířením na téměř všech počítačích, od osobních přes servery až po jednodeskové či průmyslové počítače. Stejně tak je k dispozici velké množství součástek se zabudovanou podporou tohoto rozhraní. USB dále poskytuje možnost napájení připojených zařízení až do příkonu 2,5W. Má zabudovanou podporu pro různé druhy přenosů včetně isochronních (garantovaný periodický přenos předem dohodnutého množství dat). Specifikace USB zavádí standardní třídy funkcí v zařízení. V době psaní tohoto textu sice neexistuje třída pro ovládání tuneru, ale existuje třída popisující zvuková zařízení. Díky tomuto není potřeba vyvíjet vlastní ovladač zvukové karty na straně počítače.

-je nemožné konkurovat cenou -hoby platforma -způsoby jak to vyřešit -diskrítní tuner -analogový zvuk -digitální zvuk -připojení s PC USB - požadavky na USB

Bud v uvodu a nebo tady zmínit, že pro nemožnost konkurovat výrobcům spotřební elektroniy byl výběr součástek a celá konstrukce přispůsobena možnosti amatérké výroby a dostupnosti součástek u nás.

2.2 Způsob příjmu rozhlasového vyslání

Jednou možností je řešení příjmu z diskrétních součástek a nebo s pomocí analogových IO. Ovšem toto je příliš komplikované.

Na trhu je ovšem řada integrovaných obvodů, které zajišťují samotný příjem vysílání včetně vyhledávání static, měření kvality signálu a přijmu RDS a to s minimem potřebných externích součástek. Tyto IO se typicky ovládají pomocí I²C nebo SPI a zvuk poskytují digitálně přes rozhraní I²S a nebo analogově.

Bohužel drtivá většina je dostupná pouze v pouzdru QFN, které se velmi obtížně pájí a v minimální množství 1000 kusů. Výjimkou je SI4735-D60 od výrobce SILICON LABS, který je dostupný v pouzdru SSOP24 a je možné jej u nás zakoupit i po jednotlivých kusech. IO neumožňuje přijímat DAB, ale umí nasledující:

- Pásma: FM, SW, MW, LW
- Vzorkovací frekvence až do 48kHz
- Rozlišení vzorku kanálu až do 24bitů
- Stereofonní příjem.

• Příjem RDS

2.3 Napojení tuneru na USB

TAS x Osmi bit x PIC32mx

3 USB

minimální zařízení suspend a test mod

3.1 USB audio

Nepoužitelnost Harmony frameworku i2c -> usb zmínit chyby v křemíku (nefunkčnost pinu, a problém dvojího zápisu po přerušení)

4 Tuner

4.1 I2S

Popis

Problém synchronizace hodin

4.2 Ovládání tuneru

4.2.1 RDS

čtení z tuneru dekódování základních informací

5 Knihovna

- 5.1 Nízko úrovňové funkce
- 5.2 Středně úrovňové funkce
- 5.3 Vysoko úrovňové funkce
- 5.3.1 RDS dekodér

6 Závěr

Tak doufám, že Vám tato ukázka k něčemu byla. Další informace najdete v publikacích

Bc. Pavel Kovář

7 Reference

- [1] AXELSON, Jan. *USB complete: the developer's guide.* 4th ed. Madison, WI: Lakeview Research, 2009, xxiii, 504 p. ISBN 1-931448-08-6.
- [2] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, Philips. *Universal Serial Bus Specification: Revision 2.0* [online] 2000-04-27 [2015-12-26] http://www.usb.org/developers/docs/usb20_docs/usb_20_0702115.zip
- [3] Gal Ashour, Billy Brackenridge, Oren Tirosh, Altec Lansing, Craig Todd, Remy Zimmermann, Geert Knapen. *Universal Serial Bus Device Class Definition for Audio Devices: Release 1.0* [online] 1998-03-18 [2015-12-26] http://www.usb.org/developers/docs/devclass_docs/audio10.pdf
- [4] Silicon Laboratories, Si4730/Si4731/Si4734/Si4735-D60 Broadcast AM/FM/SW/LW Radio Receiver: Rev. 1.2 8/13 [online] 2013-08-08 [2015-12-26] https://www.silabs.com/Support%20Documents/TechnicalDocs/Si4730-31-34-35-D60.pdf
- [5] Silicon Laboratories, AN332: Si47xx Programming Guide: Rev. 1.0 9/14 [online] 2014-09-10 [2015-12-26] http://www.silabs.com/Support%20Documents/TechnicalDocs/AN332.pdf
- [6] Microchip Technology Inc. PIC32MX1XX/2XX Family Data Sheet: Revision H [online] 2015-07-29 [2015-12-26] http://wwl.microchip.com/downloads/en/DeviceDoc/60001168H.pdf
- [7] Microchip Technology Inc. PIC32 Family Reference Manual, Sect. 23 Serial Peripheral Interface [online] 2011-10-11 [2015-12-26] http://wwwl.microchip.com/downloads/en/DeviceDoc/61106G.pdf
- [8] Microchihttp://ww1.microchip.com/downloads/en/DeviceDoc/61116F.pdp
 Technology Inc. PIC32 Family Reference Manual, Sect 24. Inter-Integrated Circui
 [online] 2013-03 [2015-12-26] http://ww1.microchip.com/downloads/en/
 DeviceDoc/61116F.pdf
- [9] Microchip Technology Inc. PIC32 Family Reference Manual, Sect. 31 DMA Controller [online] 2013-11-15 [2015-12-26] http://wwl.microchip.com/downloads/en/DeviceDoc/60001117H.pdf
- [10] Microchip Technology Inc. PIC32 Family Reference Manual, Sect. 27 USB On-The-Go [online] 2011-04-13 [2015-12-26] http://wwl.microchip.com/downloads/en/DeviceDoc/61126F.pdf
- [11] Microchip Technology Inc. PIC32MX1XX/2XX 28/36/44-pin Family Silicon Errata and Data Sheet Clarification [online] 2015-07-29 [2015-12-26] http://wwl.microchip.com/downloads/en/DeviceDoc/80000531G.pdf

- [12] Microchip Technology Inc. MPLAB Harmony USB Libraries Help [online] 2012-11-15 [2015-12-26] http://wwl.microchip.com/downloads/en/DeviceDoc/MPLAB%20Harmony%20USB%20Libraries%20%28v1.06.02%29.pdf
- [13] TAS1020B USB Streaming Controller [online] 2011-05 [2015-12-29] http://www.ti.com/lit/ds/symlink/tas1020b.pdf

A Grafy a měření

Tohle je příloha k práci. Většinou se sem dávají grafy, tabulky, které by vzhledem ke svému počtu překážely v textu diplomky. (Upravit)