Álgebra /Álgebra II Clase 4 -Sistemas de ecuaciones lineales 2

FAMAF / UNC

21 de marzo de 2024

En la clase 3 motivamos la idea general del método de Gauss a través de ejemplos y vimos el concepto de sistemas de ecuaciones lineales equivalentes.

En esta clase presentaremos las nociones de:

- Matriz.
- Matriz ampliada.
- Operaciones elementales por fila.

Relacionaremos todos estos conceptos con los sistemas de ecuaciones lineales.

- o Matriz: representará un sistema de ecuaciones homogéneo.
- Matriz ampliada: representara un sistema de ecuaciones lineales no homogéneo.
- Operaciones elementales por fila: representarán ciertas operaciones entre las diferentes ecuaciones del sistema.

Definición

Una $matriz m \times n$ es un arreglo de números reales de m filas y n columnas.

 $\mathbb{R}^{m \times n}$ y $M_{m \times n}(\mathbb{R})$ denotan el conjunto de matrices $m \times n$.

Ejemplos

$$\begin{bmatrix} 2 & 1 & 2 \\ 3 & 0 & \pi \end{bmatrix} \qquad \begin{bmatrix} \sqrt{2} & \frac{1}{2} & 9 \end{bmatrix} \qquad \begin{bmatrix} 10 \\ -1 \\ 1 \end{bmatrix}$$

Convenciones

La notación $A=[a_{ij}]\in\mathbb{R}^{m\times n}$ quiere decir que A es una matriz $m\times n$ de la siguiente forma

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix}$$

La *fila i* de una matriz es la fila (una *n*-upla) ubicada en la posición *i* desde arriba:

$$F_{i} \longrightarrow \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

La columna i de una matriz es la columna (una m-upla) ubicada en la posición i desde la izquierda:

$$C_{i}$$

$$\downarrow$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mi} & \cdots & a_{mn} \end{bmatrix}$$

Convenciones

- ∘ Sea $A = [a_{ij}] \in \mathbb{R}^{m \times n}$ una matriz. Escribiremos $[A]_{ij}$ para denotar la entrada a_{ij} de A.
- o Dos matrices del mismo tamaño $A = [a_{ij}] \in \mathbb{R}^{m \times n}$ y $B = [b_{ii}] \in \mathbb{R}^{m \times n}$ son iguales si cada una de sus entradas lo son:

$$A = B \iff a_{ij} = b_{ij}, \quad 1 \le i \le m, \ 1 \le j \le n$$

Sistemas de ecuaciones

Usaremos matrices para representar los sistemas de ecuaciones.

Definición

Si
$$A=[a_{ij}]\in\mathbb{R}^{m imes n}$$
, $X=[x_i]\in\mathbb{R}^{n imes 1}$ e $Y=[y_i]\in\mathbb{R}^{m imes 1}$ entonces $AX=Y$

representa al sistema de ecuaciones

(se usa en la pantalla 20)

También lo podemos denotar

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & & & a_{1n} \\ a_{21} & a_{22} & \cdots & & & a_{2n} \\ \vdots & \vdots & \ddots & & \vdots \\ & & & & & \vdots \\ a_{m1} & a_{m2} & \cdots & & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

Ejemplo

El sistema de ecuaciones

$$x_1$$
 $+2x_3$ = 1
 x_1 $-3x_2$ $+3x_3$ = 2
 $2x_1$ $-3x_2$ $+5x_3$ = 3
 x_1 $+3x_3$ = -1

es representado de la forma AX = Y:

$$\begin{bmatrix} 1 & 0 & 2 \\ 1 & -3 & 3 \\ 2 & -3 & 5 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ -1 \end{bmatrix}$$

- Si una incógnita no aparece en una ecuación, el correspondiente coeficiente de la matriz es 0.
- La cantidad de incógnitas es igual a la cantidad de columnas de la matriz A.

Operaciones elementales por fila: motivación

Las operaciones elementales por fila son:

- transformaciones con las cuales podemos modificar una matriz de manera tal que los correspondientes sistemas de ecuaciones tengan las mismas soluciones.
- la versión "matricial" de las combinaciones lineales de ecuaciones que hicimos en la clase anterior para encontrar las soluciones de los sistemas.

Observación

Hay tres tipos de operaciones las cuales definiremos a continuación.

En una matriz A de $m \times n$, cada fila puede ser considerada un vector en \mathbb{R}^n .

Si la fila i de A es

$$\begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{bmatrix},$$

y la denotamos $F_i(A)$ o simplemente F_i si A. Si $c \in \mathbb{K}$, entonces

$$\circ$$
 $cF_i = \begin{bmatrix} ca_{i1} & ca_{i2} & \cdots & ca_{in} \end{bmatrix}$.

$$\circ F_r + F_s = [a_{r1} + a_{s1} \ a_{i2} + a_{s2} \ \cdots \ a_{in} + a_{sn}].$$

$$\circ$$
 $F_i = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}$, la fila nula.

Operaciones elementales por fila: definición

Definición

Sea $A = [a_{ij}]$ una matriz $m \times n$, diremos que e es una operación elemental por fila si aplicada a la matriz A se obtiene e(A) de la siguiente manera:

- E1. multiplicando la fila r por una constante $c \neq 0$, o
- E2. cambiando la fila F_r por $F_r + tF_s$ con $r \neq s$, para algún $t \in \mathbb{K}$, o
- E3. permutando la fila r por la fila s.
- E1, E2 y E3 son tres tipos de operaciones elementales,

E1: multiplicar la fila *i* por un número real $c \neq 0$.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$\xrightarrow{c F_i}$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \xrightarrow{cF_i} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ c & a_{i1} & c & a_{i2} & \cdots & c & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Ejemplo

Multiplicar la primer fila por -2:

$$\left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{array}\right]$$

$$\begin{bmatrix} -2 & -4 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

E2: sumar a la fila r un múltiplo de la fila s.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{sn} \\ \vdots & \vdots & & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rn} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \qquad \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{sn} \\ \vdots & \vdots & & \vdots \\ a_{r1} + ta_{s1} & a_{r2} + ta_{s2} & \cdots & a_{rn} + ta_{sn} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Ejemplo

Sumar a la segunda fila la primer fila multiplicada por 3:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \xrightarrow{F_2 + 3F_1} \begin{bmatrix} 1 & 2 \\ 3 + 3 \cdot 1 & 4 + 3 \cdot 2 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 6 & 10 \\ 5 & 6 \end{bmatrix}$$

E3: intercambiar las fila r y s.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rn} \\ \vdots & \vdots & & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{sn} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$\xrightarrow{F_r \leftrightarrow F_s}$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{sn} \\ \vdots & \vdots & & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rn} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Ejemplo

Intercambiar la segunda y tercer fila:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

$$\xrightarrow{F_3 \leftrightarrow F_2}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \xrightarrow{F_3 \leftrightarrow F_2} \begin{bmatrix} 1 & 2 \\ 5 & 6 \\ 3 & 4 \end{bmatrix}$$

Convenciones

 Si A es una matriz, e(A) denotará la matriz que obtenemos después de modificar a A por cierta operación elemental e.

Ejemplo

Si e es la operación intercambiar la segunda y tercer fila y $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$,

entonces
$$e(A) = \begin{bmatrix} 1 & 2 \\ 5 & 6 \\ 3 & 4 \end{bmatrix}$$
.

 Como hicimos en los ejemplos, cuando le apliquemos una operación elemental a una matriz especificaremos arriba de una flecha que operación aplicamos:

$$A \stackrel{e}{\longrightarrow} e(A)$$

Esta notación es obligatoria para la corrección de exámenes.

Teorema

A cada operación elemental por fila e le corresponde otra operación elemental e' (del mismo tipo que e) tal que e'(e(A)) = A y e(e'(A)) = A. En otras palabras, la operación inversa de una operación elemental es otra operación elemental del mismo tipo.

Demostración

- E1. Para $c \neq 0$, la operación inversa de cF_r es $\frac{1}{c}F_r$.
- E2. La operación inversa de $F_r + cF_s$ es $F_r cF_s$ $(r \neq s)$.
- E3. La operación inversa de permutar la fila r por la fila s es la misma operación.

Observación

- Las operaciones elementales son operaciones lineales entre filas, es decir del tipo sF + tF' donde $s, t \in \mathbb{R}$ y F, F' son filas.
- De una sucesión de operaciones elementales obtenemos una matriz donde cada fila es combinación lineal de las filas de la matriz original.

21/03/2024

Definición

Consideremos un sistema como en (E) y sea A la matriz correspondiente al sistema. La matriz ampliada del sistema es

$$A' = \begin{bmatrix} a_{11} & \cdots & a_{1n} & y_1 \\ a_{21} & \cdots & a_{2n} & y_2 \\ \vdots & & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & y_m \end{bmatrix}$$
 (1)

que también podemos denotar

$$A' = [A|Y].$$

Observación

Hay una correspondencia biunívoca entre

sistemas de ecuaciones lineales \longleftrightarrow matrices ampliadas.

Ejemplo

Dado el sistema

$$\begin{bmatrix} 1 & 0 & 2 \\ 1 & -3 & 3 \\ 2 & -3 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix},$$

la matriz ampliada es

$$\left[\begin{array}{ccc|c} 1 & 0 & 2 & 1 \\ 1 & -3 & 3 & 2 \\ 2 & -3 & 5 & 3 \end{array}\right].$$

Operaciones elementales — operaciones entre ecuaciones

Sea AX = Y un sistema de ecuaciones lineales y [A|Y] su matriz ampliada.

- La matriz ampliada, es una matriz con una columna más. La raya vertical es para distinguir los coeficientes de las variables de las constantes a las que se igualan las ecuaciones.
- Es decir, si el sistema es AX = Y donde A es matriz $m \times n$, entonces la matriz ampliada es [A|Y] es una matriz $m \times (n+1)$, es decir de m-filas y n+1-columnas.
- Podemos aplicar la operaciones elementales por fila a una matriz ampliada, y eso es lo que haremos en las próximas pantallas.

Operaciones elementales por fila en matrices ampliadas

La relación biunívoca entre sistemas de ecuaciones lineales y matrices ampliadas, resulta en:

Multiplicar fila
$$r$$
 por $c \neq 0$
 \updownarrow (E1) multiplicar ecuación r -ésima por $c \neq 0$.

Cambiar fila
$$F_r$$
 por F_r+tF_s con $r \neq s$, para algún $t \in \mathbb{K}$ \updownarrow (E2)

sumar a la ecuación *r*-ésima *t* veces la ecuación *s*-ésima.

Permutar fila
$$r$$
 por fila s

$$\updownarrow$$
(E3)

permutar la ecuación r-ésima por la ecuación s-ésima.

Teorema

Sea [A|Y] la matriz ampliada de un sistema de ecuaciones lineales y sea [B|Z] una matriz que se obtiene a partir de [A|Y] por medio de operaciones elementales. Entonces, los sistemas [A|Y] y [B|Z] tienen las mismas soluciones.

Demostración

- $\circ \ [A|Y] \leadsto [B|Z] \quad \Rightarrow \quad \mathsf{filas}[B|Z] = \mathsf{c.\,I.\,filas}[A|Y].$
- ∘ Luego, Soluciones[A|Y] \Rightarrow Soluciones[B|Z].

Como toda operación elemental tiene inversa ⇒

- $\circ \ [B|Z] \leadsto [A|Y] \quad \Rightarrow \quad \mathsf{filas}[A|Y] = \mathsf{c.\,I.\,filas}[B|Z].$
- Luego, Soluciones[B|Z] \Rightarrow Soluciones[A|Y].

Por lo tanto Soluciones[A|Y] = Soluciones[B|Z].

Ejemplo

Resolvamos el siguiente sistema:

$$2x_1 - 6x_2 + x_3 = 2$$
$$x_1 - 4x_2 = 1$$
$$2x_1 - 4x_2 - x_3 = 0,$$

para $x_i \in \mathbb{R} \ (1 \le i \le 4)$.

La matriz ampliada correspondiente a este sistema de ecuaciones es

$$\left[\begin{array}{ccc|c} 2 & -6 & 1 & 2 \\ 1 & -4 & 0 & 1 \\ 2 & -4 & -1 & 0 \end{array}\right].$$

Encontraremos una matriz que nos dará un sistema de ecuaciones equivalente, pero con soluciones mucho más evidentes:

$$\begin{bmatrix} 2 & -6 & 1 & 2 \\ 1 & -4 & 0 & 1 \\ 2 & -4 & -1 & 0 \end{bmatrix} \xrightarrow{F_1 \leftrightarrow F_2} \begin{bmatrix} 1 & -4 & 0 & 1 \\ 2 & -6 & 1 & 2 \\ 2 & -4 & -1 & 0 \end{bmatrix}$$

$$\xrightarrow{F_2 \to 2F_1} \begin{bmatrix} 1 & -4 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 4 & -1 & -2 \end{bmatrix} \xrightarrow{F_2/2} \begin{bmatrix} 1 & -4 & 0 & 1 \\ 0 & 1 & 1/2 & 0 \\ 0 & 4 & -1 & -2 \end{bmatrix}$$

$$\xrightarrow{F_1 + 4F_2} \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1/2 & 0 \\ 0 & 0 & -3 & -2 \end{bmatrix} \xrightarrow{F_3/(-3)} \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1/2 & 0 \\ 0 & 0 & 1 & 2/3 \end{bmatrix}$$

$$\xrightarrow{F_1 \to 2F_3} \begin{bmatrix} 1 & 0 & 0 & -1/3 \\ 0 & 1 & 0 & -1/3 \\ 0 & 0 & 1 & 2/3 \end{bmatrix}.$$

Volvamos a las ecuaciones: el nuevo sistema de ecuaciones, equivalente al original, es

$$x_1 = -\frac{1}{3}$$
$$x_2 = -\frac{1}{3}$$
$$x_3 = \frac{2}{3}$$

Por lo tanto, el sistema tiene una sola solución:

$$(-\frac{1}{3}, -\frac{1}{3}, \frac{2}{3}).$$

Sistemas homogéneos

Si el sistema de ecuaciones lineales es homogéneo, es decir del tipo AX=0, entonces la matriz ampliada es

[A|0].

Haciendo operaciones elementales sucesivas llegamos a otra matriz

[B|0].

Luego, en este caso (sistema homogéneo) la convención es no escribir la matriz ampliada para resolver el sistema, sino trabajar directamente sobre la matriz A.