This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. - 15. (Canceled)

16. (New) A method of treating a cancer, which comprises administering an effective amount of a compound of formula I to a patient:

$$R^7$$
 R^6
 R^5
 R^4
 R^3
 R^5
 R^4
 R^3
 R^5
 R^4
 R^3

in which

- stands for linear or branched C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkinyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio or C_3 - C_{12} -cycloalkyl, C_3 - C_{12} -cycloalkyl, C_3 - C_{12} -heterocycloalkyl, aryl or heteroaryl, which optionally can be substituted,
- R^2 and R^3 are the same or different and stand for hydrogen, linear or branched C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkinyl or C_1 - C_6 -alkoxy, which optionally can be substituted,
- R⁴ and R⁵ are the same or different and stand for hydrogen, halogen, linear or branched C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl or C₁-C₆-alkoxy, which optionally can be substituted, or together stand for a carbonyl group, or

together form a cyclic five- or six-ring-acetal with O,O; N,O; O,S; or S,S, which optionally can be substituted with C₁-C₆-alkyl,

or

- R² and R⁴ together form a C₃-C₁₂-cycloalkyl ring or a C₃-C₁₂-cycloalkenyl ring, which optionally can be substituted,
- R⁶ and R⁷ are the same or different and stand for hydrogen, linear or branched C₁-C₆-alkyl, C₂-C₆-alkenyl or C₂-C₆-alkinyl, which optionally can be substituted, or together form a C₃-C₁₂-cycloalkyl ring or a C₃-C₁₂-cycloalkenyl ring, which optionally can be substituted, or
- R⁵ and R⁶ optionally together form a double bond, or
- R³ and R⁵ together form a C₃-C₁₂-cycloalkyl ring or a C₃-C₁₂-cycloalkenyl ring, which optionally can be substituted,
- stands for $-CH_2$ -, -O-, $-CH_2$ = CH_2 -, -CH=CH-, $-CH_2$ -O- CH_2 -, $-CH_2$ -O-, -O- CH_2 or =CO, and
- n stands for 0 6,

or a tautomer, isomer or salt thereof.

17. (New) A method of claim 16, wherein, in formula I:

stands for linear or branched C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkinyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio or C_3 - C_{12} -cycloalkyl, C_3 - C_{12} -cycloalkenyl, C_3 - C_{12} -heterocycloalkenyl, aryl or heteroaryl, which optionally can be substituted with hydroxy, halogen, amino, C_{1-6} -alkyl, C_{1-6} -alkoxy, C_{1-6} -alkylthio, halo- C_{1-6} -alkyl, halo- C_{1-6} -alkoxy, C_{1-6} -alkoxycarbonyl, cyano, nitro, C_{1-6} -alkylsulfanyl, C_{1-6} -alkylsulfonyl, or with

the group -C(O) C_{1-6} -alkyl, $-N+C_{1-6}$ -alkyl, $-N-di-C_{1-6}$ -alkyl, $-CONH_2$, $-CONHC_{1-6}$ -alkyl or $-CON-di-C_{1-6}$ -alkyl, or can be substituted with another aryl radical or heteroaryl radical that optionally itself can be substituted,

- R^2 and R^3 are the same or different and stand for hydrogen, linear or branched C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkinyl or C_1 - C_6 -alkoxy, which optionally can be substituted with hydroxy, halogen, amino, C_{1-6} -alkoxy, or with the group -NHC₁₋₆-alkyl or -N-di- C_{1-6} -alkyl,
- R⁴ and R⁵ are the same or different and stand for hydrogen, halogen, linear or branched C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl or C₁-C₆-alkoxy, which optionally can be substituted with hydroxy, halogen, amino, C₁₋₆-alkoxy, or with the group -NHC₁₋₆-alkyl or -N-di-C₁₋₆-alkyl, or together stand for a carbonyl group, or together form a cyclic five- or six-ring-acetal of the structure

or

 R^2 and R^4 together form a C_3 - C_{12} -cycloalkyl ring or a C_3 - C_{12} -cycloalkenyl ring, which optionally can be substituted with hydroxy, halogen, amino, C_{1-6} -alkyl, or with the group -NHC₁₋₆-alkyl or -N-di-C₁₋₆-alkyl,

or

- R^3 and R^5 together form a C_3 - C_{12} -cycloalkyl ring or a C_3 - C_{12} -cycloalkenyl ring, which optionally can be substituted with hydroxy, halogen, amino, C_{1-6} -alkyl, or with the group -NHC₁₋₆-alkyl or -N-di-C₁₋₆-alkyl,
- R^6 and R^7 are the same or different and stand for hydrogen, linear or branched C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl or C_2 - C_6 -alkinyl, which optionally can be substituted with hydroxy, halogen, amino, C_{1-6} -alkoxy, or with the group -NHC₁₋₆-alkyl or -N-di- C_{1-6} -alkyl, or together form a C_3 - C_{12} -cycloalkyl ring or a C_3 - C_{12} -cycloalkenyl ring, which optionally can be substituted with hydroxy, halogen, amino, C_{1-6} -alkoxy, or with the group -NHC₁₋₆-alkyl or -N-di- C_{1-6} -alkyl, or

R⁵ and R⁶ optionally together form a double bond,

- T stands for $-CH_2$ -, -O-, $-CH_2$ = CH_2 -, -CH=CH-, $-CH_2$ -O- CH_2 -, $-CH_2$ -O-, -O- $-CH_2$ or $-CH_2$ and
- n stands for 0 6.

18. (New) A method of claim 16, wherein, in formula I:

stands for linear or branched C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio or C₃-C₁₂-cycloalkyl, C₃-C₁₂-cycloalkenyl, C₃-C₁₂-heterocycloalkenyl, aryl or heteroaryl, which optionally can be substituted with hydroxy, halogen, amino, C₁₋₆-alkyl, C₁₋₆-alkoxy, C₁₋₆-alkylthio, halo-C₁₋₆-alkyl, halo-C₁₋₆-alkoxy, C₁₋₆-alkoxycarbonyl, cyano, nitro, C₁₋₆-alkylsulfanyl, C₁₋₆-alkylsulfinyl, C₁₋₆-alkylsulfonyl, or with the group -C(O) C₁₋₆-alkyl, -NHC₁₋₆-alkyl, -N-di-C₁₋₆-alkyl, -CONH₂, -CONHC₁₋₆-alkyl or -CON-di-C₁₋₆-alkyl, or can be substituted with another aryl or heteroaryl radical, which optionally itself can be substituted with

hydroxy, halogen, amino, C_{1-6} -alkyl, C_{1-6} -alkoxy, C_{1-6} -alkylthio, halo- C_{1-6} -alkyl, halo- C_{1-6} -alkoxy, C_{1-6} -alkoxycarbonyl, cyano, nitro, C_{1-6} -alkylcarbonyl, C_{1-6} -alkylsulfanyl, C_{1-6} -alkylsulfinyl, C_{1-6} -alkylsulfonyl, or with the group - C(O) C_{1-6} -alkyl, -NHC₁₋₆-alkyl, -N-di- C_{1-6} -alkyl, -CONH₂, -CONHC₁₋₆-alkyl or -CON-di- C_{1-6} -alkyl,

- R² and R³ are the same or different and stand for hydrogen, linear or branched C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl or C₁-C₆-alkoxy, which optionally can be substituted with hydroxy, halogen, amino, C₁₋₆-alkoxy, or with the group -NHC₁₋₆-alkyl or -N-di-C₁₋₆-alkyl,
- R⁴ and R⁵ are the same or different and stand for hydrogen, halogen, linear or branched C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl or C₁-C₆-alkoxy, which optionally can be substituted with hydroxy, halogen, amino, C₁₋₆-alkoxy, or with the group -NHC₁₋₆-alkyl or -N-di-C₁₋₆-alkyl, or together stand for a carbonyl group, or together form a cyclic five- or six-ring-acetal of the structure

or

 R^2 and R^4 together form a C_3 - C_{12} -cycloalkyl ring or a C_3 - C_{12} -cycloalkenyl ring, which optionally can be substituted with hydroxy, halogen, amino, C_{1-6} -alkoxy, or with the group -NHC₁₋₆-alkyl or -N-di- C_{1-6} -alkyl,

or

- R^3 and R^5 together form a C_3 - C_{12} -cycloalkyl ring or a C_3 - C_{12} -cycloalkenyl ring, which optionally can be substituted with hydroxy, halogen, amino, C_{1-6} -alkoxy, or with the group -NHC₁₋₆-alkyl or -N-di-C₁₋₆-alkyl,
- R^6 and R^7 are the same or different and stand for hydrogen, linear or branched C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl or C_2 - C_6 -alkinyl, which optionally can be substituted with hydroxy, halogen, amino, C_{1-6} -alkoxy, or with the group -NHC₁₋₆-alkyl or -N-di- C_{1-6} -alkyl, or together form a C_3 - C_{12} -cycloalkyl ring or a C_3 - C_{12} -cycloalkenyl ring, which optionally can be substituted with hydroxy, halogen, amino, C_{1-6} -alkoxy, or with the group -NHC₁₋₆-alkyl or -N-di- C_{1-6} -alkyl, or

R⁵ and R⁶ optionally together form a double bond,

- T stands for $-CH_2$ -, -O-, $-CH_2$ = CH_2 -, -CH=CH-, $-CH_2$ -O- $-CH_2$ -, $-CH_2$ -O-, -O- $-CH_2$ or =CO, and
- n stands for 0 6.

19. (New) A method of claim 16, wherein, in formula I:

R¹ stands for linear or branched C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio or cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, norbornyl, adamantanyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, cyclononenyl or cyclodecenyl, oxiranyl, oxethanyl, aziridinyl, azetidinyl, tetrahydrofuranyl, pyrrolidinyl, dioxolanyl, imidazolidinyl, pyrazolidinyl, dioxanyl, piperidinyl, morpholinyl, dithianyl, thiomorpholinyl, piperazinyl, trithianyl, quinuclidinyl, pyrrolinyl, imidazolinyl, pyrazolinyl, pyranyl, thiinyl,

cyclopentadienyl, phenyl, tropyl, dihydroazetyl, cyclopropenyl, cyclooctadienyl, indenyl, naphthyl, biphenyl, azulenyl, fluorenyl, anthracenyl, thienyl, furanyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, benzofuranyl, benzothienyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, oxepinyl, azocinyl, indolizinyl, indolyl, isoindolyl, indazolyl, benzimidazolyl, purinyl, quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, naphthyridinyl, pteridinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, 1,3-benzodioxol-5-yl, phenoxazinyl or xanthenyl, which optionally can be substituted with hydroxy, halogen, amino, C₁₋₆-alkyl, C₁₋₆-alkoxy, C₁₋₆alkylthio, halo-C₁₋₆-alkyl, halo-C₁₋₆-alkoxy, C₁₋₆-alkoxycarbonyl, cyano, nitro, C_{1.6}-alkylsulfanyl, C_{1.6}-alkylsulfinyl, C_{1.6}-alkylsulfonyl, or can be substituted with the group -C(O) C_{1-6} -alkyl, -NHC₁₋₆-alkyl, -N-di-C₁₋₆-alkyl, -CONH₂, -CONHC₁₋₆-alkyl or -CON-di-C₁₋₆-alkyl, or can be substituted with another aryl or heteroaryl radical, which optionally itself can be substituted with hydroxy, halogen, amino, C₁₋₆-alkyl, C₁₋₆-alkoxy, C₁₋₆-alkylthio, halo-C₁₋₆alkyl, halo-C₁₋₆-alkoxy, C₁₋₆-alkoxycarbonyl, cyano, nitro, C₁₋₆-alkylcarbonyl, C₁₋₆-alkylsulfanyl, C₁₋₆-alkylsulfinyl, C₁₋₆-alkylsulfonyl, or with the group -C(O) C_{1-6} -alkyl, -NHC₁₋₆-alkyl, -N-di- C_{1-6} -alkyl, -CONH₂, -CONHC₁₋₆-alkyl or –CON-di-C₁₋₆-alkyl,

R² and R³ are the same or different and stand for hydrogen, linear or branched C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl or C₁-C₆-alkoxy, which optionally can be substituted with hydroxy, halogen, amino, C₁₋₆-alkoxy, or with the group -NHC₁₋₆-alkyl or -N-di-C₁₋₆-alkyl,

R⁴ and R⁵ are the same or different and stand for hydrogen, halogen, linear or branched C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl or C₁-C₆-alkoxy, which optionally can be substituted with hydroxy, halogen, amino, C₁₋₆-alkoxy, or with the group -NHC₁₋₆-alkyl or -N-di-C₁₋₆-alkyl, or together stand for a carbonyl group, or together form a cyclic five- or six-ring-acetal of the structure

or

 R^2 and R^4 together form a C_3 - C_7 -cycloalkyl ring or a C_3 - C_7 -cycloalkenyl ring, which optionally can be substituted with hydroxy, halogen, amino, C_{1-6} -alkoxy, or with the group -NHC₁₋₆-alkyl or -N-di-C₁₋₆-alkyl,

or

- R³ and R⁵ together form a C₃-C₇-cycloalkyl ring or a C₃-C₇-cycloalkenyl ring, which optionally can be substituted in one or more places in the same way of differently with hydroxy, halogen, amino, C₁₋₆-alkoxy, or with the group -NHC₁₋₆-alkyl or -N-di-C₁₋₆-alkyl,
- R⁶ and R⁷ are the same or different and stand for hydrogen, linear or branched C₁-C₆-alkyl, C₂-C₆-alkenyl or C₂-C₆-alkinyl, which optionally can be substituted with hydroxy, halogen, amino, C₁₋₆-alkoxy, or with the group -NHC₁₋₆-alkyl or -N-di-C₁₋₆-alkyl, or together form a C₃-C₇-cycloalkyl ring or a C₃-C₇-cycloalkenyl

ring, which optionally can be substituted with hydroxy, halogen, amino, C_{1-6} -alkoxy, or with the group -NHC₁₋₆-alkyl or -N-di-C₁₋₆-alkyl, or

R⁵ and R⁶ optionally together form a double bond,

- T stands for $-CH_2$ -, -O-, $-CH_2$ = CH_2 -, -CH=CH-, $-CH_2$ -O- $-CH_2$ -, $-CH_2$ -O-, -O- $-CH_2$ or $-CH_2$ and
- n stands for 0 6.
- 20. (New) A method of claim 16, wherein, in formula I:
 - stands for C₁-C₆-alkylthio, phenyl, biphenyl, thienyl, cyclopropyl, cyclohexyl, pyridyl, naphthyl, 1,3-benzodioxol-5-yl or isoxazolyl, which optionally can be substituted with halogen, amino, cyano, C₁₋₆-alkyl-sulfonyl, C₁₋₆-alkyl, halo-C₁₋₆-alkyl, C₁₋₆-alkoxy, C₁₋₆-alkylthio, or with the group -C(O) C₁₋₆-alkyl, or which can be substituted with phenyl, thienyl, naphthyl, pyridyl, furanyl or pyrimidinyl, which optionally itself can be substituted with C₁₋₆-alkyl, C₁₋₆-alkoxy, amino, C₁₋₆-alkylsulfonyl, cyano or with the group -C(O)NH₂,

 R^2 , R^3 , R^4 , R^5 , R^6 and R^7 stand for hydrogen or C_{1-6} -alkyl,

- T stands for the group $-CH_2$ -, $-CH_2$ -O- CH_2 or $-CH_2$ -O-, and
- n stands for 0-2.
- 21. (New) A method of claim 16, wherein the cancer is a solid tumor cancer.
- 22. (New) A method of claim 16, wherein the cancer is leukemia.

- 23. (New) A method of claim 16, wherein the compound is administered by enteral, parenteral and oral administration.
- 24. (New) The method of claim 16, wherein the compound is administered in a daily dose of 0.5-1000 mg.
- 25. (New) The method of claim 16, wherein the compound is administered in a daily dose of 50-200 mg.