Feuille de TD 5 : intégrale de Riemann

Exercice 1. Calculs.

- (a) Calculer $\int_1^2 x^a dx$ pour tout $a \in \mathbb{R}$.
- (b) Calculer $\int_0^1 \frac{dx}{\sqrt{1-x^2}}$.
- (c) Calculer une primitive de ln sur \mathbb{R}_+^* .
- (d) Calculer les primitives de $x \mapsto 1/x$ sur \mathbb{R}^* .
- (e) Calculer $\int_0^{\frac{\pi}{4}} \tan(x) dx$.
- (f) Calculer $\int_0^{\frac{\pi}{2}} e^{\sin(x)} \sin(x) \cos(x) dx.$
- (g) Calculer $\int_0^{\pi} \sin(x)^3 dx$.

Exercice 2. On veut calculer $I = \int_0^{2\pi} \frac{dt}{2 + \sin t}$.

- (a) Pourquoi I est-elle bien définie?
- (b) Montrer que $I = \lim_{T \to \pi} \int_{-T}^{T} \frac{dt}{2 + \sin t}$.
- (c) Soit $t \in]-\pi,\pi[$. Justifier la formule $\sin(t) = \frac{2\tan(t/2)}{1+\tan^2(t/2)}$.
- (d) En déduire un calcul de I.

Exercice 3. Soit $f:[a,b] \to [c,d]$ une bijection croissante de classe C^1 .

- (a) Représenter graphiquement $\int_{c}^{d} f^{-1}(t)dt$.
- (b) En déduire, graphiquement, la formule $\int_a^b f(t)dt + \int_c^d f^{-1}(t)dt = bd ac$.
- (c) Démontrer cette formule par un calcul. On pourra commencer par un changement de variable sur l'intégrale du (a).

Exercice 4. Soient $m, n \in \mathbb{Z}$ tels que $m \leq n$. Calculer $\int_{m}^{n} E(t)dt$, où E est la fonction calculant la partie entière d'un réel.

1

Exercice 5. Soit f une fonction continue et positive sur un segment [a, b], avec a < b. On s'intéresse à la suite définie par

$$\forall n \in \mathbb{N}^*, \qquad u_n = \left(\int_a^b f(x)^n dx\right)^{\frac{1}{n}}.$$

- (a) On note $M = \sup_{[a,b]} f$. Montrer que $u_n \leq M(b-a)^{\frac{1}{n}}$ pour tout indice n.
- (b) Soit $\epsilon > 0$. Prouver qu'il existe c < d tels que $[c,d] \subset [a,b]$ et

$$\forall x \in [c, d], \quad f(x) \ge M - \epsilon.$$

(c) Prouver que (u_n) converge vers M.

Exercice 6. (Constante d'Euler)

(a) Soit $k \in \mathbb{N}^*$. Justifier l'encadrement

$$\frac{1}{k+1} \le \int_{k}^{k+1} \frac{dt}{t} \le \frac{1}{k}.$$

(b) Prouver l'existence d'une constante $\gamma \geq 0$ telle que

$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1) \qquad \text{quand } n \to +\infty.$$

Indication : montrer que la suite $\left(\sum_{k=1}^n \frac{1}{k} - \ln(n)\right)$ est décroissante minorée.

Exercice 7. Soit f une fonction continue sur un intervalle I autour de 0. On suppose que f a un développement limité du type

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + o(x^n)$$

en 0. On notera $p(X) = a_0 + a_1 X + \dots + a_n X^n$.

(a) Soit $\epsilon > 0$. Vérifier qu'il existe $\eta > 0$ tel que pour $|x| < \eta$

$$|f(x) - p(x)| \le \epsilon |x|^n.$$

(b) Soit F la primitive de f sur I qui s'annule en 0. Démontrer que F a un développement limité du type

$$F(x) = a_0 x + a_1 \frac{x^2}{2} + \dots + a_n \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

quand x tend vers 0.

(c) Application : quel est le développement limité de arctan en 0 à l'ordre 7?

Exercice 8. Soit $f:[a,b] \to \mathbb{R}$. Prouver que f est intégrable si et seulement si, pour tout $\epsilon > 0$, il existe des fonctions en escalier ψ et φ telles que

$$\psi \le f \le \varphi$$
 et $\int_a^b (\varphi - \psi) \le \epsilon$.

Exercice 9. Soit f une fonction intégrable et positive sur un segment [a,b] telle que $\int_a^b f = 0$. On se donne $\alpha < \beta$ tels que $[\alpha, \beta] \subset [a,b]$.

- (a) Vérifier que $\int_{\alpha}^{\beta} f = 0$.
- (b) Soit $\epsilon > 0$. Montrer qu'il existe une fonction ϕ en escalier sur $[\alpha, \beta]$ telle que $f \leq \phi$ et $\int_{\alpha}^{\beta} \phi \leq (\beta \alpha)\epsilon$.
- (c) En déduire qu'on peut trouver un segment $[\alpha', \beta'] \subset [\alpha, \beta]$ tel que $\alpha' < \beta'$ et pour tout $x \in [\alpha', \beta'], f(x) \le \epsilon$.
- (d) Démontrer qu'il existe $x \in [\alpha, \beta]$ tel que f(x) = 0.
- (e) Donner une condition nécessaire et suffisante pour qu'une fonction intégrable et positive soit d'intégrale nulle sur un segment [a, b].

Exercice 10. Montrer que les suites définies ci-dessous convergent et calculer leur limite.

$$u_n = \sum_{k=0}^{n-1} \frac{1}{k+n}, \qquad v_n = \sum_{k=0}^{n-1} \frac{n}{k^2 + 3n^2}, \qquad w_n = \sum_{k=0}^{n-1} \frac{\sin\left(\frac{k\pi}{3n}\right)\cos\left(\frac{k\pi}{3n}\right)}{n}.$$

Exercice 11. (méthode des trapèzes) Soit $f:[a,b] \to \mathbb{R}$ une fonction de classe C^2 . On considère la subdivision régulière $\{x_0 < ... < x_n\}$, qui partage le segment [a,b] en n intervalles de longueur (b-a)/n.

(a) Fixons un indice i entre 0 et n-1. On note ϕ_i la fonction affine qui coïncide avec f en x_i et en x_{i+1} . Faire un dessin et montrer que

$$\text{avec } \alpha_i = \frac{\forall x \in [x_i, x_{i+1}], \quad \phi_i(x) = \alpha_i(x - x_i) + \beta_i,}{x_{i+1} - x_i} \text{ et } \beta_i = f(x_i).$$

- (b) On considère la fonction $\phi:[a,b]\to\mathbb{R}$ telle que $\phi=\phi_i$ sur chaque segment $[x_i,x_{i+1}]$. Montrer que ϕ est bien définie et continue. Calculer son intégrale.
- (c) Soit $x \in [x_i, x_{i+1}]$. Prouver qu'il existe $\mu, \nu \in [x_i, x_{i+1}]$ tels que

$$f(x) - \phi_i(x) = (f'(\mu) - f'(\nu))(x - x_i).$$

(d) En déduire qu'il existe une constante C dépendant de a, b et f telle que

$$\left| \int_{a}^{b} f - \int_{a}^{b} \phi \right| \le \frac{C}{n^{2}}.$$

Exercice 12. En utilisant une formule de Taylor, démontrer la formule

$$\forall x \in \mathbb{R}, \qquad e^x = \lim_{n \to +\infty} \sum_{k=0}^n \frac{x^k}{k!}.$$

Exercice 13. Démontrer l'inégalité : $\forall x \in \mathbb{R}_+, \quad \left| \ln(1+x) - x + \frac{x^2}{2} \right| \leq \frac{x^3}{3}$. En déduire une valeur approchée de $\ln(1,003)$ à 10^{-8} près.