PGM in Modern AI Approaches

Eric Walzthöny Shanshan Zhang

2022-05-24

Contents

Transformers

Multi-Head Self-Attention $Q_h K_h^{\top} V_h$

Layer-norm and residual connection

$$X = \text{LayerNorm}(F_S(X)) + X$$

Position-wise Feed-

Feed-

 $F_2(ReLU(F_1(X_A)))$

~1/2

Layer-norm and residual connection

 $X_B = \text{LayerNorm}(X_A) + X_A$

Attention is all you need https://arxiv.org/pdf/1706.03762.pdf

Different Normalization

BN VS. LN

Efficient Transformers

Efficient Transformers: https://arxiv.org/pdf/2009.06732.pdf

Sparse Transformer

Figure 4: Illustration of patterns of the attention matrix for dense self-attention in Transformers and sparse fixed attention in Sparse Transformers. Blue in the right diagram represents the local self-attention while green represents the strided component of the sparse attention.

Axical Transformer

Figure 5: Attention span in Axial Transformer on a two-dimensional input.

Sparse vs. axial attention

Vision Transformer https://arxiv.org/pdf/2010.11929.pdf
Sparse Transformer https://arxiv.org/pdf/1912.12180.pdf
Axial Transformer https://arxiv.org/pdf/1912.12180.pdf

Axial attention over axis k can be implemented by transposing all axes except k to the batch axis, calling standard attention as a subroutine

$$O(n\sqrt[p]{n})$$

Formally, $A_i^{(1)} = \{t, t+1, ..., i\}$ for $t \neq \max(0, i-l)$ and $A_i^{(2)} = \{j : (i-j) \bmod l = 0\}$. This pattern can be visualized in Figure 3(b).

Formally, $A_i^{(1)} = \{j : (\lfloor j/l \rfloor = \lfloor i/l \rfloor)\}$, where the brackets denote the floor operation, and $A_i^{(2)} = \{j : j \bmod l \in \{t,t+1,...,l\}$, where t=l-c and c is a hyperparameter.

VAE in NN perspective

Deep Generative MODELS

Explicit probabilistic models

Provide an explicit parametric specification of the distribution of x

1 Tractable likelihood function p#(x)

1 E.g., Deep generative model parameterized with NNs (e.g., VAEs)

$$P_{\emptyset}(x|z) = N(x; \mu_{\emptyset}, \sigma)$$

$$\mathbf{P}(\mathbf{z}) = N(\mathbf{x}; \mathbf{0}, \mathbf{I})$$

Figure courtesy: Kingma & Welling, 2014

VAE: https://arxiv.org/pdf/1312.6114.pdf

Variational Inference in VAE

DEEP GENERATIVE MODEL

Implicit probabilistic models – GANs

- Defines a stochastic process to simulate data $x = G_{\theta}(z)$
- Define an implicit distribution over x: $P_{g_{\theta}}(x)$
- Do not require tractable likelihood function

$$\min_{G} \max_{D} V(D,G) = E_{x \sim p_{data}(x)} \left[\log D(x) \right] + E_{z \sim p_{z}(z)} \left[\log \left(1 - D(G(z)) \right) \right].$$

- Generate data from a deterministic equation given parameters and random noise $z \sim N(0, I)$
- Intractable to evaluate likelihood

Mode Collapse?!

Motivating entropy regularization!! Adding the entropy of G(z) to the objective

Goodfellow et

https://arxiv.org/pdf/1406.2661.pdf

GAN Variants

Pixel2Pixel

3.1.1.1 Original minimax game: The objective function of GANs [3] is

$$\min_{G} \max_{D} V\left(D, G\right) = E_{x \sim p_{data}(x)} \left[\log D\left(x\right)\right] \\ + E_{z \sim p_{z}(z)} \left[\log \left(1 - D\left(G\left(z\right)\right)\right)\right]. \tag{1}$$

$$D_G^*\left(x\right) = \frac{p_{data}\left(x\right)}{p_{data}\left(x\right) + p_g\left(x\right)}.$$
 (2)

The minmax game in (1) can be reformulated as:

$$\begin{split} &C(G) = \max_{D} V\left(D,G\right) \\ &= E_{x \sim p_{edata}} \left[\log D_{G}^{*}\left(x\right) \right] \\ &+ E_{x \sim p_{e}} \left[\log\left(1 - D_{G}^{*}\left(G\left(x\right)\right)\right) \right] \\ &= E_{x \sim p_{edata}} \left[\log D_{G}^{*}\left(x\right) \right] + E_{x \sim p_{g}} \left[\log\left(1 - D_{G}^{*}\left(x\right)\right) \right] \\ &= E_{x \sim p_{edata}} \left[\log\frac{p_{edata}\left(x\right) + p_{g}\left(x\right)}{2\left[p_{edata}\left(x\right) + p_{g}\left(x\right)\right]} \right] \\ &+ E_{x \sim p_{g}} \left[\frac{p_{g}\left(x\right)}{2\left[p_{edata}\left(x\right) + p_{g}\left(x\right)\right]} \right] - 2\log 2. \end{split} \tag{3}$$

The definition of KullbackLeibler (KL) divergence and Jensen-Shannon (JS) divergence between two probabilistic distributions $p\left(x\right)$ and $q\left(x\right)$ are defined as

$$KL(p||q) = \int p(x) \log \frac{p(x)}{q(x)} dx,$$
(4)

$$JS(p||q) = \frac{1}{2}KL(p||\frac{p+q}{2}) + \frac{1}{2}KL(q||\frac{p+q}{2}).$$
 (5)

Therefore, (3) is equal to

$$\begin{split} C(G) &= KL(p_{data}\|\frac{p_{data} + p_g}{2}) + KL(p_g\|\frac{p_{data} + p_g}{2}) \\ &- 2\log 2 \\ &= 2JS(p_{data}\|p_g) - 2\log 2. \end{split} \tag{6}$$

Thus, the objective function of GANs is related to both KL divergence and JS divergence.

Conditional

(a) Unconditional

GAN Survey (including 400+ variants): https://arxiv.org/pdf/2001.06937.pdf

Deep Reinforcement learning

There are four key ingredients for a RL system:

Environment: Physical world in which the agent operates

State: Current situation of the agent

Reward: Feedback from the environment

Policy: Method to map agent's state to actions

Directed Acyclic Graph For Markov Decision Process

DRL+PGM survey: https://arxiv.org/pdf/1906.10025.pdf

Partially Observable MDP

Partially Observable Markov Decision process with its DAG representation shows that the agent could only observe the state partially by observing O_t through a non invertible function of the next state S_{t+1} and the action a_t , as indicated the Figure by $P(O_t | S_{t+1}, a_t)$

For POMDP, belief state $\boldsymbol{b_t}$ $\sum_{\mathcal{S}} b(S_t) = 1$

The distributions on other edges are omitted in last slide

$$b_{t+1}(s_{t+1})$$
= $p(s_{t+1} \mid o_t, a_t, b_t)$
= $p(o_t \mid s_{t+1}, a_t) \frac{\sum_{s_t} p(s_{t+1} \mid s_t, a_t) p(s_t \mid a_t, b_t)}{p(o_t \mid a_t, b_t)}$

RBM in DRL

state variables

$$p(a|s) = 1/Z(s)e^{-F(s,a)/T} = 1/Z(s)e^{Q(s,a)/T}$$

Approximate the value function of an MDP with the negative free energy of the restricted Boltzmann machine.

The state and action variables will be assumed to be discrete, and will be represented by the visible binary variables of the restricted Boltzmann machine.

action variables

Undirected graph defines a joint probability distribution over state and action pairs through hidden state

$$P(\mathbf{v}, \mathbf{h}) = \frac{\exp(-E(\mathbf{v}, \mathbf{h}))}{\sum_{\widehat{\mathbf{v}}, \widehat{\mathbf{h}}} \exp(-E(\widehat{\mathbf{v}}, \widehat{\mathbf{h}}))},$$

Function Approximation Q(S, a)

$$\exp(-F(\mathbf{v})) = \sum_{\mathbf{h}} \exp(-E(\mathbf{v}, \mathbf{h})),$$

$$P(\mathbf{v}) = \frac{\exp(-F(\mathbf{v}))}{\sum_{\widehat{\mathbf{v}}} \exp(-F(\widehat{\mathbf{v}}))}.$$

Temporal Difference Learning

$$E_{\text{TD}}(\mathbf{s}^t, \mathbf{a}^t) = \left[r^t + \gamma Q(\mathbf{s}^{t+1}, \mathbf{a}^{t+1}) \right] - Q(\mathbf{s}^t, \mathbf{a}^t). \qquad \frac{\partial F(\mathbf{v})}{\partial w_{ik}} = -v_i \langle h_k \rangle_{P(h_k|\mathbf{v})}$$

The negative free energy to approximate the state action value function Q(s, a).