昌平区 2015-2016 学年第二学期初二年级期末质量抽测

数学试卷 120分钟 120分 2016. 7

- **一、选择题**(本题共10道小题,每小题3分,共30分) 下面各题均有四个选项,其中只有一个是符合题意的.
- 1. 下列图形中,是中心对称图形的是

- 2. 若一个多边形的内角和为720°,则这个多边形是
 - A. 四边形
- B. 五边形
- C. 六边形
- D. 七边形
- 3. 如图, 在 $\triangle ABC$ 中, 点 D, E 分别在 AB, AC 上, 且 DE // BC, 若 AD=1,

- A. 1: 2 B. 1: 3
- D. 2: 3
- 4. 用配方法解方程 $x^2 4x 7 = 0$ 时, 应变形为

A.
$$(x-2)^2 = 11$$

B.
$$(x+2)^2 = 11$$

A.
$$(x-2)^2 = 11$$
 B. $(x+2)^2 = 11$ C. $(x-4)^2 = 23$ D. $(x+4)^2 = 23$

D.
$$(x+4)^2 = 23$$

5. 如图所示,有点光源 S在平面镜上方,若点 P恰好在点光源 S的反射光线上,并测得 $AB=10\mathrm{cm}$,

BC=20cm, $PC \perp AC$,且 PC=12cm,则点光源 S 到平面镜的距离 SA 的长度为

- A. 4cm B. 5cm C. 6cm
- D. 8cm

6. 甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.5环,方差分别是 $S_{\text{\tiny H}}^{2}$ =0.91, $S_{\text{\tiny Z}}^{2}$ =0.45, $S_{\text{\tiny T}}^{2}$ =1.20, $S_{\text{\tiny T}}^{2}$ =0.36,在本次射击测试中,成绩最稳定的是

- B. 乙 C. 丙 D. 丁
- 7. 已知抛物线的表达式为 $y = 2(x+1)^2 3$,则它的顶点坐标是
 - A. (1, 3)
- B. (1, -3) C. (-1, 3) D. (-1, -3)
- 8. 如图,抛物线顶点坐标是P(1, 2),函数y随自变量x的增大而减小的x的取值范围是
 - A. x>0

9. 如图,正方形 ABCD 的边长为 2,点 E 在 AB 边上,四边形 EFGB 也为正方形,

设 $\triangle AFC$ 的面积为S,则

- A. S=2
- B. S=2.4
- C. S=4
- D.S随BE长度的变化而变化
- 10. 如图 1, 在 $\triangle ABC$ 中,AB=AC,点 D 是 BC 的中点,点 P 沿 $B \rightarrow A \rightarrow C$ 方向从点 B 运动到点 C. 设点 P 经过的路径长为 x,图 1 中某条线段的长为 y,若表示 y 与 x 的函数关系的图象大致如图 2 所示,则这条线段可能是图 1 中的

- A. BP
- B. AP
- C. DP
- D. CP

- 二、填空题(本题共6道小题,每小题3分,共18分)
- 11. 若 3*a* =4b,则 *a*:*b* =____.
- 12. 若关于 x 的方程 $x^2 6x + m = 0$ 有两个相等的实数根,则 $m = _____$.
- 13. 已知两个三角形相似,它们的一组对应边分别是3和4,那么它们对应高的比等于______.
- 14. 写出一个对称轴是 y 轴的二次函数表达式: . . .
- 15. 已知: 线段 AC, 如图. A C 求作: 以线段 AC 为对角线的一个菱形 ABCD.

作法: (1) 作线段 AC 的垂直平分线 MN 交 AC 点于 O;

- (2) 以点O为圆心,任意长为半径画弧,交直线MN于点B,D;
- (3) 顺次连结点 A, B, C, D.

则四边形 ABCD 即为所求作的菱形.

请回答:上面尺规作图作出菱形 ABCD 的依据是_____

- 三、解答题(本题共6道小题,每题5分,共30分)
- 17. 解一元二次方程: $x^2-2x-3=0$.

18. 如图,在 □ ABCD 中,E,F 分别是边 AB,DC 上的点,且 AE=CF, ∠DEB=90°. 求证: 四边形 DEBF 是矩形.

19. 若x = 2是方程 $x^2 - 4mx + m^2 = 0$ 的一个根,求代数式m(m-8)-1的值.

20. 如图,在平行四边形 ABCD 中,E 为边 CD 上一点,连结 AE,BD,交点为 F,若 $S_{\triangle DEF}$: $S_{\triangle BAF}$ = 9:64,求:DE:EC 的值.

- 21. 已知关于 x 的一元二次方程 $x^2 + 2(a-1)x + a^2 4 = 0$ 有两个不相等的实数根.
- (1) 求a的取值范围;
- (2) 若 a 为正整数, 且该方程的两个根都是整数, 求 a 的值.

22. 如图,在 $\triangle ABC$ 中, $\angle BAC$ =90°,M是 BC的中点,过点 A作 AM的垂线,交 CB的延长线于点 D. 求证: $\triangle DBA \hookrightarrow \triangle DAC$.

四、解答题(本题共4道小题,每小题5分,共20分)

23. 2016年计划新安排 600万套棚户区改造任务,某工程队承包了一项拆迁工程.第一天拆迁了 1000*m*²,从第二天开始,该工程队加快了拆迁速度,第三天拆迁了 1440*m*². 若该工程队第二天、第三天 每天的拆迁面积比前一天增加的百分率相同,求这个百分率.

24. 如图,已知抛物线 $y=x^2+2(m-1)x+m^2$ 经过原点,与 x 轴的另一交点为A,顶点为B.

- (1) 求出抛物线对应的二次函数表达式;
- (2) 若点C是抛物线上一点,且 $\triangle AOC$ 的面积是 $\triangle AOB$ 的面积的2倍,求点C的坐标.

25. 某学校为了解八年级学生的身体素质情况,随机抽取了八年级 40 名学生进行一分钟跳绳个数测试,以测试数据为样本,绘制出频数分布表和频数分布直方图,如下所示:

八年级 40 名学生跳绳个数频数分布表

八年级 40 名学生跳绳个数频数分布直方图

请结合图表完成下列问题:

- (1) 表中的m= ;
- (2) 请把频数分布直方图补充完整;
- (3) 已知八年级学生一分钟跳绳个数的成绩标准是: x<120 为不合格; $120 \le x<140$ 为合格; $140 \le x<160$ 为良; $x\ge160$ 为优. 如果该年级有 360 名学生,根据以上信息,请你估算该年级跳绳不合格的人数约为______名,成绩为优的人数约为______名.
- 26. 阅读下面解题过程,解答相关问题.

求一元二次不等式 $-2x^2+4x>0$ 的解集的过程:

步骤一:构造函数,画出图象

根据不等式特征构造二次函数 $y = -2x^2 + 4x$;

并在坐标系中画出二次函数 $y = -2x^2 + 4x$ 的图象,如图 1.

步骤二: 求得界点, 标示所需

当 y=0 时,求得方程 $-2x^2+4x=0$ 的解为 $x_1=0$, $x_2=2$;

并用锯齿线标示出函数 $y = -2x^2 + 4x$ 的图象中 y > 0 的部分,如图 2.

步骤三:借助图象,写出解集

由所标示的图象,可得不等式 $-2x^2+4x>0$ 的解集为0<x<2.

请你利用上面求一元二次不等式解集的过程,求不等式 $x^2 - 3x \le 0$ 的解集.

解:步骤一:构造二次函数 $y = ____$.在坐标系中画出示意图,如图.

步骤二: 求得方程 的解为 .

步骤三:借助图象,可得不等式 $x^2 - 3x \le 0$ 的解集为

- **五、解答题**(本题共3道小题,27题7分,28题7分,29题8分,共22分)
- 27. 已知: 抛物线 $y = x^2 + 2(k+1)x + k^2 + 2k$.
 - (1) 求证:无论k取任何实数,抛物线与x轴总有两个交点;
 - (2) 设抛物线顶点为C,与x轴交于A,B两点,点A在点B的左边,求证:无论k取任何实数, $\triangle ABC$ 的面积总为确定的值.

- 28. 如图,已知正方形 ABCD,E 是 CB 延长线上一点,连接 DE,交 AB 于点 F,过点 B 作 $BG \bot DE$ 于点 G,连接 AG.
 - (1) 依题意补全图形;
 - (2) 求证: ∠*ABG*=∠*ADE*;
 - (3) 写出 DG, AG, BG之间的等量关系, 并证明.

29. 【定义】如图 1,在四边形 ABCD 中,点 E 在边 BC 上(不与点 B, C 重合),连接 AE, DE,

四边形 ABCD 分成三个三角形: $\triangle ABE$, $\triangle AED$ 和 $\triangle ECD$,如果其中有 $\triangle ABE$ 与 $\triangle ECD$ 相似,我们就把点 E 叫做四边形 ABCD 在边 BC 上的相似点: 如果这三个三角形都相似,我们就把点 E 叫做四边形 ABCD 在边 BC 上的完美相似点.

图2

【解决问题】如图 2,在平面直角坐标系中,过点 A(6,0) 作 x 轴的垂线交

二次函数
$$y = \frac{1}{2}x^2 - 2x - 4$$
 的图象于点 *B*.

昌平区 2015-2016 学年第二学期初二年级期末质量抽测

数学试卷参考答案及评分标准 2016.7

一、选择题(本题共10道小题,每小题3分,共30分)

题号	1	2	3	4	5	6	7	8	9	10
答案	С	С	А	А	С	D	D	В	Α	С

二、填空题(本题共6道小题,每小题3分,共18分)

题号	11	12	13	14	15 16
答案	4:3	9	3:4	y = x ² (不唯一)	对角线互相垂直平分的四边形是菱形 $2, \frac{2^5}{2^n}$ 或 2^{5-n} 或四条边都相等的四边形是菱形,等.

三、解答题(本题共6道小题,每题5分,共30分)

17. 解: 移项, 得 $x^2 - 2x = 3$,

.....1分

配方,得 $x^2-2x+1=3+1$,

.....2分

$$(x-1)^2 = 4$$
.

......3 分

由此可得 $x-1=\pm 2$,

.....4分

$$x_1 = -1, x_2 = 3.$$

.....5分

(其他方法酌情给分)

18. 解: ∵四边形 ABCD 是平行四边形,

∴*AB*=*CD*, *AB*|| *CD*. 2 分

:: AE = CF,

∴*BE*=*DF*.

......3分

∴四边形 DEBF是平行四边形.

......4分

又∵∠*DEB*=90°,

∴四边形 DEBF 是矩形.

......5分

19. 解: x = 2 是方程 $x^2 - 4mx + m^2 = 0$ 的一个根,

$$\therefore 4 - 8m + m^2 = 0$$
.

$$\therefore m^2 - 8m = -4.$$

:
$$m(m-8)-1=m^2-8m-1$$

20. 解:

::四边形 ABCD 是平行四边形,

$$\therefore DE || AB, AB = DC.$$

$$: S_{\triangle DEF} : S_{\triangle ABF} = 9 : 64, \quad \therefore DE : AB = 3 : 8.$$

$$\therefore DE: DC=3:8.$$
 $\therefore DE: EC=3:5.$

$$\therefore a < \frac{5}{2}$$

当
$$a=1$$
时, $x^2-3=0$, $x=\pm\sqrt{3}$ (舍).

$$\therefore a=2$$
.

22. 证明:

::∠ <i>BAC</i> =90°,	点 M是	BC的中	卢点.
	/// / //E	~ C H J	. ///\ ·

∴ <i>AM= CM</i>	1分
∴∠ <i>C</i> =∠ <i>C</i> AM.	2分
<i>∵DA</i> ⊥ <i>AM</i> , ∴∠ <i>DAM</i> =90°.	
∴∠ <i>DAB</i> =∠ <i>CAM</i> .	3分
∴∠ <i>DAB</i> =∠ <i>C</i> .	4分
∵∠ <i>D</i> =∠ <i>D</i> ,	
∴ <i>△ DBA</i> ∽ <i>△ DAC</i> .	5分

四、解答题 (本题共4道小题, 每题5分, 共20分)

23. 解:	设这个百分率为 x .	1分			
	根据题意列方程,得 $1000(x+1)^2 = 144$	0			
	解方程得: $x_1 = 0.2$, $x_2 = -2.2$ (舍).	4分			
	所以 <i>x</i> =0.2=20%.				
	答:这个百分率为20%.	5分			
24. 解:	(1) 由题意得, <i>m</i> =0.	1分			

∴二次函数表达式为: $y = x^2 - 2x$

..... 2 5

(2) 由 $y = x^2 - 2x = (x-1)^2 - 1$, 可得顶点 B(1, -1)

令
$$y=0$$
, $x=0$ 或 2, ∴A (2, 0) ∴OA=2, $S_{\square AOB}=1$.

设点 C的纵坐标为 h, 由题意 ΔAOC 的面积是 ΔAOB 面积的 2 倍,

$$\therefore S_{\square AOC} = 2.$$

$$\therefore \frac{1}{2} OA \cdot |h| = 2.$$

$$\therefore h = 2$$
, 或 $h = -2$ (舍去).3分

令
$$2 = x^2 - 2x$$
,解得 $x = 1 \pm \sqrt{3}$

∴ 点 *C*的坐标为 $(1+\sqrt{3},2)$ 或 $(1-\sqrt{3},2)$.

.....5分

25. (1) 表中的 *m* =13.

1分

(2) 如图:

...... 3分

(3) 108, 27.

.....5分

26. 步骤一: x^2-3x

......2分

- 五、解答题 (本题共3道小题, 27题7分, 28题7分, 29题8分, 共22分))
- 27. (1) **M**: $\Rightarrow y = 0$, $\bigcup x^2 + 2(k+1)x + k^2 + 2k = 0$.

$$\Delta = 4(k+1)^2 - 4(k^2 + 2k) = 4 > 0.$$

(2) 证明: 解方程 $x^2 + 2(k+1)x + k^2 + 2k = 0$,

- $\therefore A (-k-2, 0), B (-k, 0)$
- ∴ *AB=*2.

∴ *AB*的中点 *D* (-k-1, 0)

当 x = -k-1 时,y = -1.

28. 解: (1) 补全图形, 如图.

	1分
--	----

- (2) 证明∵ 正方形 ABCD,
- ∴ *AD*IIBC.
- ∴ ∠*DEC*=∠*ADE*.2分
- :: ∠*ABC*=90°,
- ∴ ∠*FBE*=90°.
- ∵ BG⊥DE于点 G,

- (3) $DG = \sqrt{2} AG + BG$.

证明: 在 DE上截取 DH=BG, 连接 AH,5 分

- : 四边形 ABCD 是正方形,
- ∴ ∠*DAB*=90°, *AB*=*AD*.
- ∵ ∠ABG=∠ADH(已证).
- ∴ △*ABG*≌△*ADH*(SAS).
- $\therefore AG = AH, \angle GAB = \angle HAD.$
- ∴ ∠*GAH*=90°.

- $\therefore AG^2 + AH^2 = GH^2.$

- (2) 由题意得, ∠*BAP=∠COP*=90°.

- $:: PC \perp PB$,
- ∴ ∠*BPC*=90°.
- ∴ ∠*CPO+∠APB*=90°.
- ::∠*CPO+∠OCP*=90°,
- ∴∠*OCP*=∠*APB*.
- ∴ △ *OCP*~ △ *APB*.4 分
- (3) 点 P的坐标为 (3, 0),(3+ $\sqrt{5}$,0),(3- $\sqrt{5}$,0).8分