Team 4 - Visibility Checks

Wang, Mao, Sebastian G.

November 17, 2015

1 Problem Description

Given

- A graph G = (V, E) describing a landscape with obstacles modeled through simple polygons with n vertices in total
- A straight-line drawing of the landscape $\Gamma: V \to \mathbb{R}^2$
- The position $P \in \mathbb{R}^2$ (Pacman)
- The positions $(Q_i \in \mathbb{R}^2)_{i \in \{1,\dots,m\}}$ of m ghosts
- \bullet The visibility radius r

Find an efficient way to determine if P is visible from Q_i for each $i \in \{1, ..., m\}$, using "reasonable" preprocessing time (e.g. about a minute on typical inputs).

For positions $A, B \in \mathbb{R}^2$, A is *visible* from B iff $|\overline{AB}| \leq r$ and the segment \overline{AB} has no intersection with any polygon in Γ .

2 Suggested Approach

We took inspiration in ray tracing and settled for a solution involving a spatial data structure like a BVH tree, quadtree or kd-tree. This is to bring down the asymptotic complexity of visibility tests to $\mathcal{O}(m \log n)$, but comes at the cost of having to build such that data structure at preprocessing time, which will happen in $\Omega(n \log n)$.

The outline of the algorithm is as follows:

- 1. Triangulate the input polygons (or split them in any other kind of convex polygon) for efficient intersection tests
- 2. Build the spatial data structure on this (convex) polygon soup
- 3. Perform the m visibility checks through intersection tests with the data structure in $\mathcal{O}(\log n)$ each