Data 8, Lab 9

The Central Limit Theorem and Sample Means

Hubert Luo Fall 2019

8 November 2019

Agenda

- 1. Skewness
- 2. Variability
- 3. Chebyshev's Bounds
- 4. Standard Units
- 5. Normal Distribution
- 6. Central Limit Theorem
- 7. Distribution of Sample Means

Skewness

- Left skew
 - Long left tail
 - Mean < Median</p>
- Right skew
 - Long right tail
 - Mean > Median

Variability

- Variance: How spread out is the data?
- Standard Deviation: Square root of the variance
 - Same unit as the data
 - The larger the SD, the more spread out the data is

Chebyshev's Bounds

• Regardless of the distribution, the proportion of values in the range "average $\pm z$ SDs" is at least $1 - 1/z^2$

Range	Proportion
average ± 2 SDs	at least 1 - 1/4 (75%)
average ± 3 SDs	at least 1 - 1/9 (88.888%)
average ± 4 SDs	at least 1 - 1/16 (93.75%)
average ± 5 SDs	at least 1 - 1/25 (96%)

Standard Units

- Standard Unit: Number of SD's above or below average
- Allows us to easily compare different distributions and units
- Z = (value-average)/SD
- Average of standard units is always 0
- SD of standard units is always 1

Normal Distribution

- An extremely common distribution in statistics, shaped like a bell curve
- Most of the data is within a few SD's of the mean

Normal Distribution (cont'd)

Range	All Distributions	Normal
average ± 1 SDs	at least 0%	68%
average ± 2 SDs	at least 75%	95%
average ± 3 SDs	at least 88.9%	99.7%

Central Limit Theorem

- If the sample is large and drawn at random with replacement
- Regardless of the distribution of the population, the distribution of the sample sum or average is roughly normal
- Distribution of the sample sum/average:
 - Many possible random samples of the same size
 - Distribution is based on the sum/average of different samples

Distribution of Sample Mean

- As the sample size increases, the sample mean is more likely to be closer to the population mean
- As a result, the distribution of sample means will have lower
 SD a "narrower bell shape" when the sample size increases

$$SD\ of\ Sample\ Means = rac{Population\ SD}{\sqrt{Sample\ Size}}$$

Distribution of Sample Mean

Announcements

- Checkpoint 2 of Project 2 due today (11/8)
- Homework 10 due next Thursday (11/14)
- No class next Monday (11/11)

