Exercices chapitre 9

Version du 24 octobre 2014 CC-BY-SA Olivier Cleynen — thermo.ariadacapo.net

Les propriétés de l'eau sont toutes tabulées dans les abaques n°1, 2 et 3.

L'air est considéré comme un gaz parfait.

$$c_{\nu(air)} = 718 \,\mathrm{J\,kg^{-1}\,K^{-1}}$$
 $R_{air} = 287 \,\mathrm{J\,kg^{-1}\,K^{-1}}$

$$c_{p(air)} = 1005 \,\mathrm{J\,kg^{-1}\,K^{-1}} \quad \gamma_{air} = 1.4$$

9.1 Cycle de Rankine

La centrale EDF de Porcheville (figure 9.22), en bordure de l'A13 à Mantes-la-Jolie, reçoit de la chaleur issue de la combustion de fioul, et utilise un cycle à vapeur pour alimenter une génératrice électrique.

Dans la centrale l'eau évolue entre les pressions de 0,1 bar et 140 bar. La vapeur atteint 545 $^{\circ}$ C, et les turbines ont une efficacité isentropique de 80 %.

Dans cet exercice, nous considérons que le cycle est basé sur un cycle de Rankine surchauffé.

- 1. Schématisez le circuit physique de l'eau dans la centrale; tracez le cycle suivi sur un diagramme température-entropie.
- 2. Quelle est l'enthalpie spécifique de l'eau à la sortie de la turbine ?
- 3. Quelle est l'enthalpie spécifique de l'eau à la sortie des pompes ?
- 4. Quel est le rendement thermodynamique de l'installation?
- 5. Quelle est la consommation spécifique de l'installation, c'est-à-dire la masse de vapeur ayant traversé la turbine lorsque l'installation a généré 1 kWh d'énergie mécanique?
- 6. Quel débit horaire de vapeur faut-il faire circuler dans le circuit pour obtenir une puissance mécanique de 60 MW?

9.2 Chaudière de centrale à vapeur

Dans une centrale à vapeur, la chaudière fonctionne avec la combustion de bois dans de l'air prélevé dans l'atmosphère. Les briquettes utilisées pour la combustion sont faites de résidus de bois et de biomasse (figure 9.23) ; elles ont une capacité calorifique massique de $15\,\mathrm{MJ\,kg^{-1}}$.

L'air pénètre dans la chaudière à température de $15\,^\circ\mathrm{C}$ et pression de 1 bar. Il est porté à température de $1\,000\,^\circ\mathrm{C}$ par combustion à pression constante, avant de passer autour des conduits d'eau. Lorsqu'il quitte la chaudière, sa température est de $180\,^\circ\mathrm{C}$.

L'eau pénètre dans la chaudière à 50 bar et 20 °C. Elle y circule à pression constante. On souhaite la porter jusqu'à une température de 850 °C, avec un débit de $3\,\mathrm{kg}\,\mathrm{s}^{-1}$.

- 1. Quel débit d'air faut-il admettre dans la chaudière pour respecter le cahier des charges?
- 2. Quelle est l'efficacité de la chaudière?
- 3. Un/e ingénieur/e propose de faire passer le conduit d'air d'admission au travers des gaz d'échappement (sans pourtant les mélanger) pour augmenter la température de l'air avant combustion. Cela vous paraît-il être une bonne idée?

FIGURE 9.22 – Centrale électrique de Porcheville, alimentée au charbon jusqu'en 1987 et fonctionnant désormais au fioul. Elle sert principalement les demandes de pointe.

Photo schéma CC-0 o.c.

FIGURE 9.23 – La sciure de bois, produite en très grande quantité dans l'industrie, peut être utilisée comme source d'énergie dans une centrale à vapeur.

Photo CC-BY-SA par l'utilisateur·rice Commons Eivindmy

9.3 Cycle avec resurchauffe

L'installation de Porcheville décrite dans l'exercice 9.1 est modifiée pour accueillir une série de tubes de resurchauffe. La détente de l'eau est interrompue à 18 bar dans la turbine, et la vapeur est ramenée à la température maximale du cycle (c'est-à-dire $545\,^{\circ}$ C).

La centrale est alimentée au fioul lourd dit « TBTS », de masse volumique 1 050 kg m $^{-3}$ et de pouvoir calorifique 40,2 MJ kg $^{-1}$. La chaudière a une efficacité de 80 %.

- 1. Quel est le nouveau rendement de l'installation?
- 2. Quelle est la nouvelle consommation spécifique?
- 3. Quel est le débit volumique horaire de carburant nécessaire pour générer 60 MW électriques?

9.4 Cycle avec régénération

Dans un navire brise-glace polaire (figure 9.24), une installation à vapeur alimente les hélices à partir d'un réacteur nucléaire

Le cycle est basé sur un cycle de Rankine surchauffé à 310 °C (par contact avec les conduites d'eau pressurisée qui, elle, traverse le réacteur), entre les pressions de 30 et 0,5 bar¹². Nous considérons que la turbine est parfaitement isolée et isentropique.

- 1. Quel est le rendement thermodynamique de l'installation?
- 2. On définit la consommation spécifique de vapeur comme l'inverse de la puissance nette de l'installation. C'est la masse de vapeur ayant traversé la turbine lorsque l'installation a généré 1 kWh d'énergie mécanique. Quelle est la consommation spécifique de l'installation?

Un/e ingénieur/e propose de modifier le cycle pour le rendre régénératif, en prélevant de la vapeur de la turbine pour l'insérer dans le circuit de compression.

Figure 9.24 – Le 50 Let Podeby, brise-glace de 25 000 t à propulsion nucléo-turbo-électrique (deux réacteurs de 171 $\rm MW_{chaleur}$, trois moteurs de 17,6 $\rm MW_{m\acute{e}ch.}$). Sa construction a débuté en 1989 mais il n'est entré en service qu'en 2007.

Photo CC-By-sa par l'utilisateur·rice Commons Kiselev d

12. En réalité, entre 29 et 0,75 bar, valeurs qui ne sont pas tabulées dans nos abaques.

Il/elle propose de séparer la compression en deux étapes, l'une de 0,5 à 6 bar, et la seconde de 6 à 30 bar; et d'insérer la vapeur prélevée entre les deux pompes. Le débit de vapeur prélevé est tel que l'eau à la sortie du mélangeur est exactement à saturation.

Pour alléger nos calculs, nous considérons que la puissance de pompage n'est pas modifiée par la régénération.

- 3. Schématisez l'installation proposée (c'est-à-dire le circuit physique suivi par la vapeur).
- 4. Représentez le cycle thermodynamique sur un diagramme température-entropie, en traçant la courbe de saturation de l'eau.
- 5. Quelle proportion du débit de vapeur faudrait-il prélever à 6 bar dans la turbine, pour chauffer l'eau à saturation entre les deux pompes ?
- 6. La puissance aux hélices augmente-t-elle ou diminuet-elle, et de combien ?
- 7. Le rendement de l'installation augmente-t-il ou diminuet-il, et de combien ?

Résultats

(+1,49 pt)

① De nombreux exercices sont corrigés intégralement dans les annales publiées à l'addresse http://thermo.ariadacapo.net/.

9.1 2)
$$h_D = 2287.7 \,\mathrm{kJ \, kg^{-1}}$$
 3) $h_B = 205.9 \,\mathrm{kJ \, kg^{-1}}$ 4) $\eta_{\mathrm{inst.}} = 35.29 \,\%$ 5) $SSC = 3.15 \,\mathrm{kg/(kW \, h)}$ 6) $\dot{m}_{\mathrm{eau}} = 52.5 \,\mathrm{kg \, s^{-1}}$ 2) $\eta_{\mathrm{chaud.}} = 83.25 \,\%$ 9.3 1) $h_{D2} = 2960.8 \,\mathrm{kJ \, kg^{-1}}$, $h_{E2} = 3570.3 \,\mathrm{kJ \, kg^{-1}}$, $h_F = 2642.7 \,\mathrm{kJ \, kg^{-1}} : \eta_{\mathrm{inst.2}} = 36.31 \,\% \,(+1 \,\mathrm{pt})$ 2) $\dot{V}_{\mathrm{carb.}} = 17.6 \,\mathrm{m^3 \, h^{-1}}$. 9.4 1) $h_A = 340.5 \,\mathrm{kJ \, kg^{-1}}$, $h_B = 343.54 \,\mathrm{kJ \, kg^{-1}}$, $h_C = 3017.4 \,\mathrm{kJ \, kg^{-1}}$, $h_D = 2284.5 \,\mathrm{kJ \, kg^{-1}} : \eta_{\mathrm{inst.}} = 27.294 \,\%$. 2) $SSC = 4.93 \,\mathrm{kg/(kW \, h)}$ 5) $h_{\mathrm{prélèvement}} = 2673.9 \,\mathrm{kJ \, kg^{-1}}$, $h_{\mathrm{pré-mélange}} = 341.1 \,\mathrm{kJ \, kg^{-1}}$, $h_{\mathrm{post-mélange}} = 670.4 \,\mathrm{kJ \, kg^{-1}} : z = 14.1 \,\%$ 6) $w_{\mathrm{net} \, 2} = -674.87 \,\mathrm{kJ \, kg^{-1}} \,(-9.2 \,\%)$ 7) $q_{\mathrm{chaud.}} = 2344.4 \,\mathrm{kJ \, kg^{-1}} : \eta_{\mathrm{inst.} \, 2} = 28.786 \,\%$