La se studiese connergento unnatorelos serie:

@ Criterial comparation

1.
$$\frac{27}{2}$$
 $\frac{m m}{3m^2 + 2}$

3.
$$\frac{1}{m^{2}}$$
 $\frac{1}{m}$ $\frac{1}{2}$ $\frac{1}{m}$ $\frac{1}{m}$ $\frac{1}{m^{2}}$ $\frac{1}{m^{3}}$ $\frac{1}{m^{3}}$ $\frac{1}{m^{3}}$

5.
$$\sum_{n=1}^{\infty} \sqrt{n^{\frac{1}{4}} + 3n + 1} - n^2 = 6$$
. $\sum_{n=1}^{\infty} 2^n \min_{\frac{1}{4}n} \frac{11}{4^n}$

& Critain raportules

7.
$$\frac{\sum_{n \geq 1}^{7} \frac{x^{n}}{n \sqrt{\sum_{n = 1}^{7} n}} x > 0 \quad 8. \quad \sum_{n \geq 1}^{7} \frac{x^{2n}}{n^{2} + 1} \frac{m \sqrt{n}}{n^{2} + 1} x > 0$$

$$9 \frac{\sum_{n=1}^{\infty} \frac{2^m n!}{n^m}}{n^m} = 10 \frac{\sum_{n=1}^{\infty} \frac{4^m n!}{n^m}}{n^m}$$

$$11 \frac{\sum_{m=1}^{n} (m!)^{\frac{n}{2}}}{(2m)!}$$

C. Criterial radicalalue

12. $\sum_{n \neq 1}^{\infty} \chi^{n} \cdot \left(1 + \frac{1}{n}\right) \chi_{70}$ 13. $\sum_{n \neq 1}^{\infty} \left(\frac{3 + (-1)^{n} \cdot 2}{4}\right)^{n}$

$$\frac{14. \sum_{n \neq i} \left(\frac{a_{n+1}}{b_{n+1}}\right)^{n} a_{i} a_{i} a_{i} 0}{\left(\frac{a_{n}}{b_{n+1}}\right)^{n} a_{i} a_{i} a_{i} 0} = \frac{15. \sum_{n \neq i}^{n} n^{(-1)} a^{n}}{a^{n}} a_{i} 0.$$

16).
$$\overline{Z} = \frac{(M!)}{(3+\sqrt{1})(3+\sqrt{2})} = (3+\sqrt{m})$$

17).
$$\frac{1!+2!+..+m!}{(m+2)!}$$

18).
$$\frac{1}{n^2}$$
 $\frac{1}{n^2}$ $\frac{1}{n^2}$

© Semi cu lement

$$21)$$
 \mathbb{Z} $\mathfrak{X}^{\mathfrak{M}}$ $\min \frac{1}{\mathfrak{M}^{\mathfrak{A}}}$ 270 $22)$ \mathbb{Z} $\mathfrak{X}^{\mathfrak{M}}$ $\operatorname{arctg} \frac{1}{\mathfrak{M}^{\mathfrak{A}}}$ $261R$
 $21)$ \mathbb{Z} $\mathfrak{X}^{\mathfrak{M}}$ $\min \frac{1}{\mathfrak{M}^{\mathfrak{A}}}$ 270 $22)$ \mathbb{Z} \mathfrak{M} \mathfrak{M}

21)
$$\mathbb{Z}^{n}$$
 \mathbb{Z}^{n} $\mathbb{Z}^$

25)
$$\frac{1}{25}$$
 $\frac{1}{25}$ $\frac{1}{$

26)
$$\sum_{n=1}^{7} \chi^{n}(a - \sqrt{e})(2 - \sqrt{2}\sqrt{a}) - (2 - \sqrt{2})$$
 $\chi \in \mathbb{R}$

lezalván

$$a_n = \frac{1+\frac{1}{2}+\dots+\frac{1}{m}}{m}$$

9) lim
$$\frac{\alpha_{n+1}}{\alpha_n} = \lim_{n \to \infty} \frac{2^{n+1}(\alpha n) + n^n}{(1+n)^{n+1}} = 2\left(\frac{n}{n+1}\right)^n$$

19)
$$\lim_{M \to 0} m \left(\frac{an}{an+1} - 1\right) = \lim_{M \to 0} m \left(\frac{n+7}{a+n+1} - 1\right) = \lim_{M \to 0} m \left(\frac{n+7}{a+n+1$$

Doea 1+121 seria est als. conv 1+171 seria este direcguta (an +0) 1+1=1 (X21) Conv 221 din 231 lim 1 = 1 27 (-1) M rin 1 121 1 10=) mm 1 10 =) 271 abalut lonnelgenta OL Sie 1 semi can udgemta.