

Microcontroladores

Sistemas embebidos para tiempo real

Este material didáctico fue elaborado por docentes del Departamento de Electrónica de la Universidad de la República a lo largo a varios años. Se pone a disposición de la comunidad bajo la licencia "Creative Commons Attribution 4.0 International License".

Ver detalles de la licencia aquí: https://creativecommons.org/licenses/by/4.0/

Co-funded by the Erasmus+ Programme of the European Union

Objetivos

- Describir los conceptos y bloques básicos de microcontroladores
 - CPU, ISA, arquitectura
- Comprender la importancia de conocer el uC
- Utilizar e interpretar manuales de usuario

Agenda

- Repaso:
 - uP vs. uC, CPU, tamaño de palabra.
- Arquitectura
 - RISC vs. CISC
 - Harvard vs. von Neumann
- Comparación AVR vs. MSP430

uP vs. uC

Figura modificada de "Fundamentals of Microcontrollers" de John Donovan (NXP)

CPU: unidad central de proc. (core)

Figura extraída de "Fundamentals of Microcontrollers" de John Donovan (NXP)

Tipos:

- Acumulador
- Registros
- Pila (stack)

CPU: pipeline

Tamaño de palabra

- Bus de datos
- Bus de direcciones

Figura extraída de "Fundamentals of Microcontrollers" de John Donovan (NXP)

Procesadores CISC vs. RISC

Complex Instruction Set Computing

Reduced Instruction Set Computing

Figura modificada de "Fundamentals of Microcontrollers" de John Donovan (NXP)

Procesadores CISC vs. RISC

- Procesador CISC (Complex Instruction Set Computing)
 - Instrucciones de largo variable
 - Decodificación de instrucciones complejo (microcoding)
 - Número de ciclos de reloj de ejecución variable
 - Ejemplo: shift and rotate (2 ciclos), integer multiply (~ 80)
- Procesador RISC (Reduced Instruction Set Computing)
 - Conjunto de instrucciones reducidas y ortogonal
 - Instrucciones de tamaño fijo (o varía muy poco) y similar formato
 - Decodificación de instrucciones más fácil
 - Ejecuta misma (aprox.) cantidad de ciclos

Arquitectura Harvard vs. von Neumann

Figura modificada de "Fundamentals of Microcontrollers" de John Donovan (NXP)

Arquitectura Harvard vs. von Neumann

- Arquitectura Harvard
 - Memorias de código y datos
 - Espacio de memoria diferentes
 - Caminos separados hacia la CPU.
 - Más rápida
- Arquitectura von Neumann
 - Código y datos son mapeados en uno solo espacio.
 - Más flexible:
 - Fácilmente puede escribir en memoria de código
 - Pueden ejecutar código desde RAM
- Arquitectura Harvard modificada
 - Contenido de la memoria de código puede

Controlador de interrupciones

Fuente: Figura modificada de "Fundamentals of Microcontrollers" de John Donovan (NXP)

- Interrupciones: fundamental importancia
 - Señal asíncrona
 - Flujo de ejecución del programa
 - Arquitectura de software

Modos de operación

Idea básica:

- Modos de bajo consumo: CPU y periféricos no usados.
- Prever mecanismo para reactivarse.
- Modo de operación compatible con arquitectura

Periféricos

- Puertos digitales de E/S (I/O pin)
- Temporizadores (Timers)
 - Watchdog timer (WDT)
- Conversores A/D y D/A (ADC / DAC)
- Interfaz/protocolos de comunicación
 - E/S de datos digitales (UART, SPI, I2C)
- DMA
- Especializados (no siempre disponibles)
 - MPU / MMU (Memory Protection Unit / Memory Management Unit)
 - SVS

Watchdog Timer (WDT)

- Permite realizar un reset
- Protege de problemas de software
- Ejemplo:
 - Habilitado por defecto!
 - Si no quiero que resetee:
 - WDTCTL = WDTHOLD | WDTPW; //deshabilita WDT

Interfaces E/S

- Seriales
 - Asíncorono
 - UART (Universal Asynchronous Receiver / Trasmitter)
 - Síncronos
 - SPI (Serial Peripheral Interface)
 - I2C (Inter-Integrated Circuit Circuit)

Interfaces E/S

- Más complejos y mayores funcionalidades:
 - USB (Universal Serial Bus)
 - CAN (Controller Area NEtwork)
 - Ethernet
 - IEEE 802.15.4/Zigbee

Paseo guiado

- Documentos técnicos del MSP430G2553 (uC del laboratorio):
 - MSP430x2xx Family User's Guide (SLAU144J.pdf)
 - MSP430G2x53 MSP430G2x13 Mixed Signal Microcontroller (SLAS735J.pdf) Datasheet
 - MSP430G2553 Device Erratasheet (SLAZ440I.pdf)
 - MSP430G2553 LaunchPad Development Kit (SLAU772.pdf)
 - MSP430 Optimizing C/C++ Compiler v18.1.0.LTS User's Guide (SLAU132R.pdf)
 - Code Composer StudioTM IDE v8.x for MSP430TM MCUs (SLAU157AR.pdf)

Actividad en grupo

- Diferencias: ATmega32 versus MSP430 (familias)
 - Actividad: Comparar los μC en función de:
 - Tipo procesador, N-bits, frecuencia máxima
 - Arquitectura y mapa de memoria
 - Registros (cantidad, uso, etc.)
 - Características del PC, SR y SP
 - Modos de direccionamiento
 - Set de instrucciones
 - Modos de bajo consumo
 - Grupos: 4-5 estudiantes
 - Material: Manuales de los fabricantes
 - Tiempo: 10 minutos

Tabla comparativa

	ATmega32	MSP430
Tipo CPU / Tamaño palabra		
Arquitectura / Mapa de memoria		
Set de instrucciones		
Modos de direccionamiento		
Modos de bajo consumo		
Registros		

Ejemplo de uC: ATmega32

Figura modificada de: "ATmega32 (L)" datasheet (Figure 2. Block Diagram, page 3)

Fuente: "ATmega32 (L)" datasheet (Figure 2. Block Diagram, page 3)

Sistemas embebidos para tiempo real

Arquitectura de microcontroladores

Ejemplo de uC: MSP430 (familia)

Fuente: "MSP430x2xx Family User's Guide" (file: SLAU144H.pdf) Figure 1-1. MSP430 Architecture, page 26.

Ejemplo de uC: MSP430 (device)

Fuente: "MSP430G2x53 MSP430G2x13 MIXED SIGNAL MICROC." (file: SLAS735J.pdf) Functional Block Diagram, MSP430G2x53, page 5.

Deberes

- Compilación "manual"
 - Actividad
 - Bosquejar el código assembler del siguiente código C
 - Contabilizar:
 - Memoria de programa
 - ciclos
 - Grupos:
 - MSP430
 - AVR (ATmega32)
 - Materiales
 - Manuales correspondientes
 - Puesta en común
 - Comparación programas: complejidad, ciclos reloj, uso memoria

```
int a, b, c;
int main( void )
{
   a = 1;
   b = 2;
   c = a + b;
}
```

Comparación

AVR (ATmega32)

MSP430

mali				
	000006	E001	LDI	R16,0x01
	000008	E010	LDI	R17,0x00
	00000A	E6E0	LDI	R30,0x60
	00000C	8300	ST	Z,R16
	00000E	8311	STD	Z+1,R17
<u>b</u>	= 2;			
	000010	E002	LDI	R16,0x02
	000012		LDI	R17,0x00
	000014	E6E2	LDI	R30,0x62
	000016		ST	Z,R16
	000018	8311	STD	Z+1,R17
	= a + b;	ECEO	TDT	B00 0 60
	00001A	E6E0	LDI	R30,0x60 R16,Z
	00001C	8100	LD	MIN /
	00001E	8111	LDD	R17,Z+1
	00001E 000020	8111 E6E2	LDD LDI	R17,Z+1 R30,0x62
	00001E 000020 000022	8111 E6E2 8120	LDD LDI LD	R17,Z+1 R30,0x62 R18,Z
	00001E 000020 000022 000024	8111 E6E2 8120 8131	LDD LDI LD LDD	R17,Z+1 R30,0x62 R18,Z R19,Z+1
	00001E 000020 000022 000024 000026	8111 E6E2 8120 8131 OFO2	LDD LDI LD LDD ADD	R17,Z+1 R30,0x62 R18,Z R19,Z+1 R16,R18
	00001E 000020 000022 000024 000026 000028	8111 E6E2 8120 8131 0F02 1F13	LDD LDI LD LDD ADD ADC	R17,Z+1 R30,0x62 R18,Z R19,Z+1 R16,R18 R17,R19
	00001E 000020 000022 000024 000026 000028 00002A	8111 E6E2 8120 8131 0F02 1F13 E6E4	LDD LDI LD LDD ADD ADC LDI	R17,Z+1 R30,0x62 R18,Z R19,Z+1 R16,R18 R17,R19 R30,0x64
	00001E 000020 000022 000024 000026 000028 00002A 00002C	8111 E6E2 8120 8131 0F02 1F13 E6E4 8300	LDD LDI LD LDD ADD ADC LDI ST	R17,Z+1 R30,0x62 R18,Z R19,Z+1 R16,R18 R17,R19 R30,0x64 Z,R16
,	00001E 000020 000022 000024 000026 000028 00002A	8111 E6E2 8120 8131 0F02 1F13 E6E4	LDD LDI LD LDD ADD ADC LDI	R17,Z+1 R30,0x62 R18,Z R19,Z+1 R16,R18 R17,R19 R30,0x64
ŀ	00001E 000020 000022 000024 000026 000028 00002A 00002C	8111 E6E2 8120 8131 0F02 1F13 E6E4 8300	LDD LDI LD LDD ADD ADC LDI ST	R17,Z+1 R30,0x62 R18,Z R19,Z+1 R16,R18 R17,R19 R30,0x64 Z,R16

4392	0200	MOV.W	#0x1,&a
43A2	0202	mov.w	#0x2,&b
<u>b;</u>			
421F	0200	mov.w	&a,R15
521F	0202	add.w	&Ь,R15
4F82	0204	mov.w	R15,&c
0;			
430C		clr.w	R12
4130		ret	
	43A2 b; 421F 521F 4F82 0; 430C	421F 0200 521F 0202 4F82 0204 0; 430C	43A2 0202 mov.w b; 421F 0200 mov.w 521F 0202 add.w 4F82 0204 mov.w 0; 430C clr.w

Comparación

- AVR (ATmega32)
 - ciclos: 139-104 = 35
 - memoria código: 44 (0006-0031, 0x2c bytes)
- MSP430
 - ciclos: 95-74 = 21
 - memoria código: 22 (021E 0233, 0x16 bytes)

Bibliografía

- "An Embedded Software Primer"
 - David E. Simon
- "MSP430x2xx Familiy User's Guide"
- "ATmega32 (L)"