ثانوية أبو حياهُ التوحيـدي

المتتاليات العدديلة

الاستاذ: محمد حمدان

السنة الدراسية : 2011-2011 الثانية باك علوم رياضية

سلسلة التماريسن

$$v_n=2\sqrt{n}$$
 و $u_n=rac{\sqrt{n}+1}{2\sqrt{n}}$ نعتبر المتتاليتين: $oldsymbol{0}$

 $\lim_{n o +\infty}v_n=+\infty$ بين باستعمال التعريف أن: $u_n=rac{1}{2}$ و

$$a_n = \left(rac{\sqrt{2}}{3}
ight)^n + \left(rac{\sqrt{3}}{2}
ight)^n$$
 : حدد نهاية المتتاليات التالية $oldsymbol{arrho}$

$$c_n \; = \; \sqrt[3]{n+1} - \sqrt{n} \;\; , \;\; b_n \; = \; rac{2011^n - 2012^n}{2011^n + 2012^n} \;\; ,$$

$$g \ e_n \ = \ rac{4n + (-1)^n}{3n - 2(-1)^n} \ g \ d_n \ = \ rac{\sqrt{2^n} + \sqrt{3^n}}{\sqrt{2^n + 3^n}} \ g \ h_n \ = \ rac{1}{n(3 - \sin n)} \ g \ g_n \ = \ rac{(-2)^n + 1}{5^n + 7} \ g \ f_n \ = \ rac{(-1)^n}{n}$$

$$n(3-\sin n)$$
 b^n+7 n $w_n=rac{7^n+\sin(n)}{7^n+\cos(5^n)}$ $b^n=\sum_{i=0}^n\left(rac{\sqrt{3}}{2}
ight)^i$ $b^n=\sum_{k=0}^n k$ $b^n=\sum_{i=0}^n k$ $b^n=\sum_{k=0}^n k$

$$n\in\mathbb{N}^*$$
لتكن $u_n=1+rac{1}{\sqrt{2}}+rac{1}{\sqrt{3}}+\ldots+rac{1}{\sqrt{n}}$ لتكن $orall n\in\mathbb{N}^*$ لكل $u_n=1+rac{1}{\sqrt{2}}+rac{1}{\sqrt{2}}+rac{1}{\sqrt{2}}+\ldots+rac{1}{\sqrt{2}}$ بين أن: $n\in\mathbb{N}^*$ $n\in\mathbb{N}^*$ رثم حدد ...

$$n\in\mathbb{N}^*$$
 نعتبر المتتالية: $u_n=\sum_{k=1}^nrac{1}{\sqrt{k+n^2}}$ نعتبر المتتالية

. أحسب الحدود الثلاثة الأولى للمتتالية $oldsymbol{0}$

$$(orall n\in \mathbb{N}^*):rac{n}{\sqrt{n^2+n}}\leqslant u_n\leqslant rac{n}{\sqrt{n^2+1}}:$$
ين ان $\lim_{n o +\infty}u_n$ عدد وم

$$n\in\mathbb{N}^*$$
 نعتبر $u_n=rac{1}{1.2}+rac{1}{2.3}+\ldots+rac{1}{n.(n+1)}$ نعتبر

. (u_n) أحسب الحدود الثلاثة الأولى للمتتالية $oldsymbol{0}$

$$.(orall k\in \mathbb{N}^*): \ rac{1}{k(k+1)}=rac{1}{k}-rac{1}{k+1}$$
 نحقق آن: $\lim_{n o +\infty}u_n$ ثم حدد

$$n\in\mathbb{N}^*$$
 نعتبر المتتالية: $u_n=1+rac{1}{4}+rac{1}{9}+\cdots+rac{1}{n^2}$ لكل

أدرس رتابة المتتالية (u_n) .

$$. orall k \in \mathbb{N}^* ackslash \{1\}$$
 $\dfrac{1}{k^2} < \dfrac{1}{k-1} - \dfrac{1}{k}$:استنتج أن (u_n) متقاربة.

$$n\in\mathbb{N}^*$$
 نعتبر $u_n=1+rac{1}{2!}+rac{1}{3!}+\cdots+rac{1}{n!}$: نعتبر

- (u_n) أدرس رتابة المتتالية (u_n).
- ب (u_n) بین أن: $k!\geqslant 2^k$: استنتج أن $(orall k\in \mathbb{N}^*)$ متقاربة

 $n\in\mathbb{N}^*$ نعتبر المتتالية: $u_n=rac{2^n}{n!}$ لكل

 $\lim_{n o +\infty}u_n$ بین آن: $u_n\leqslant u_3\left(rac{1}{2}
ight)^{n-3}$: ثم حدد $u_n\leqslant u_3\left(rac{1}{2}
ight)^{n-3}$

نعتبر المتتالية $(u_n)_{n\geqslant 1}$ المعرفة بما يلي:

$$\left\{ \begin{array}{l} u_1 = 1; \\ u_{n+1} = \frac{1}{16} \left(1 + 4u_n + \sqrt{1 + 24u_n} \right) \end{array} \right.$$

 $v_{n+1}-3=rac{1}{2}(v_n-3)$ نضع $v_n=\sqrt{1+24u_n}$ بين أن . $\lim_{n o +\infty}u_n$ بدلالة u_n بدلالة u_n بدلالة الم

نعتبر المتتالية $(u_n)_{n\in\mathbb{N}}$ المعرفة بما يلي:

$$\left\{egin{array}{l} u_0=0 \ arrho=u_1=1 \ u_{n+2}=rac{2}{5}u_{n+1}-rac{1}{25}u_n \end{array}
ight.$$

 $w_n=5^nu_n$ نضع لكل n من $v_n=u_{n+1}$ نضع لكل $v_n=1$

n بين أن (v_n) هندسية أساسها $rac{1}{5}$ ثم أكتب v_n بدلالة $oldsymbol{0}$

بين أن المتتالية (w_n) حسابية أساسها v_n بين أن المتتالية v_n بدلالة v_n بدلالة v_n بدلالة v_n بدلالة v_n بدلالة v_n

 $.(orall n\in \mathbb{N}^*):\ 0< u_{n+1}\leqslant rac{2}{5}u_n$: (ا

 $.(orall n\in \mathbb{N}^*): 0 < u_n \leqslant \left(rac{2}{5}
ight)^n$ ب) باستنتج أن: $\lim_{n o +\infty} u_n$ ثم حدد ثم حدد

بين أن المتتاليتان $(u_n)_{n\geqslant 1}$ و $(v_n)_{n\geqslant 1}$ المعرفتان بما يلي: $v_n = \sum\limits_{k=1}^n rac{1}{\sqrt{k}} - 2\sqrt{n}$ g $u_n = \sum\limits_{k=1}^n rac{1}{\sqrt{k}} - 2\sqrt{n+1}$

ر المتتالية $(u_n)_{n\in\mathbb{N}}$ المعرفة بما يلى:

$$\begin{cases} u_0 = 2; \\ u_{n+1} = \frac{2u_n - 3}{4 - u_n} \end{cases}$$

- $.(orall n\in \mathbb{N}): \ -1\leqslant u_n\leqslant 3$ بين أن: $oldsymbol{0}$
- . أدرس وتابة المتتالية (u_n) ، ثم استنتج أنها متقاربة $oldsymbol{arrho}$
 - $n\in\mathbb{N}$ نعتبر المتالية : $v_n=rac{u_n-3}{u_n+1}$ لكل $v_n\in\mathbb{N}$
-) بين أن (v_n) هندسية محددا أساسها و حدها الأول.
- $\lim_{n o +\infty}v_n$ ب v_n ثم u_n برلالة v_n استنتج v_n و
 - ج) أحسب بدلالة $n \rightleftharpoons 0$

$$S_n = \sum_{i=0}^n v_i = v_0 + v_1 + \dots + v_n$$

$$P_n = \prod_{i=0}^n v_i = v_0.v_1\cdots v_n$$

 P_n د $\lim_{n o +\infty} S_n$ و $\lim_{n o +\infty} S_n$

نعتبر المتتالية (u_n) المعرفة بما يلى:

$$\left\{egin{array}{l} u_0=1$$
 و $u_1=1$ $u_{n+2}=u_{n+1}+u_n$

- $(orall n\in\mathbb{N}):\;u_n\geqslant n$ أحسب u_3 و u_3 . u_3 أحسب u_2
- $(orall n\in \mathbb{N}):\; u_nu_{n+2}-u_{n+1}^2=(-1)^n$ بين أن ${f 2}$
- $eta_n=rac{u_{2n}}{u_{2n+1}}$ و نعتبر المتتاليتين: $lpha_n=rac{u_{2n-1}}{u_{2n}}$ ونعتبر المتتاليتين: $oldsymbol{artheta}$
- $(orall n\in \mathbb{N}): \quad eta_n\!-\!lpha_n=rac{1}{u_{2n}u_{2n+1}}$ بين أن (
 - $(orall n \in \mathbb{N}^*): \quad lpha_n < eta_n$ ب (ب) $(orall n \in \mathbb{N}^*): \quad 0 < eta_n - lpha_n < rac{1}{n}$ و أن
- $(orall n\in \mathbb{N}): \quad lpha_{n+1}\!-\!lpha_n=rac{1}{u_{2n}u_{2n+2}}$ ج) بین أن (
- د) بین أن $(orall n\in \mathbb{N}):\; lpha_n=rac{1}{eta_n}-1$. ثم استنتج أن $(lpha_n)$ و (eta_n) متحاديتان و أحسب نهايتهما
 - ${\mathbb N}$ بين أن لكل n من ${\mathbb N}$ لدينا:
- $u_n = rac{1}{\sqrt{5}} \left(\left(rac{1+\sqrt{5}}{2}
 ight)^{n+1} \left(rac{1-\sqrt{5}}{2}
 ight)^{n+1}
 ight)$

- $n\geqslant 1$ عدد صحیح طبیعی بحیث n
- - $rac{1}{2}$ بين أن المتتالية (a_n) تناقصية و مصغورة بالعدد $oldsymbol{2}$
- $\lim_{n o +\infty}u_n=rac{1}{2}$ بين أن المتتالية (a_n) متقاربة و أن $oldsymbol{\mathfrak{G}}$

نعتبر المتتاليتين $(a_n)_{n\in\mathbb{N}^*}$ و $(a_n)_{n\in\mathbb{N}^*}$ بحيث:

$$\left\{egin{array}{l} a_1 < 0; \ (orall n \in \mathbb{N}^*): a_{n+1} = rac{a_n}{n} \end{array}
ight. egin{array}{l} b_1 > 0; \ (orall n \in \mathbb{N}^*): b_{n+1} = rac{b_n}{n} \end{array}
ight.$$

- $a_n < 0 < b_n$. 1 بين أن
- $(b_n)_{n\in\mathbb{N}^*}$ أدر س رتابة كل من المتتاليتين $(a_n)_{n\in\mathbb{N}^*}$ و $(a_n)_{n\in\mathbb{N}^*}$
 - $a_n(orall n\in \mathbb{N}^*): \quad b_n-a_n=rac{b_1-a_1}{(n-1)!}$ بين أن $oldsymbol{arphi}$
 - ا استنتج أن $(a_n)_{n\in\mathbb{N}^*}$ و $(a_n)_{n\in\mathbb{N}^*}$ متحاديتان.
 - $\lim_{n o +\infty} b_n$ و $\lim_{n o +\infty} a_n$ احسب $oldsymbol{6}$

ر المتتا $\overline{ ext{U}_n}$ يتين $(u_n)_{n\in\mathbb{N}}$ و $(v_n)_{n\in\mathbb{N}}$ بحيث:

$$\left\{egin{array}{ll} u_0=1; \ u_{n+1}=rac{u_n+v_n}{2} \end{array}
ight.$$
 9 $\left\{egin{array}{ll} v_0=\sqrt{2}; \ v_{n+1}=\sqrt{u_{n+1}.v_n} \end{array}
ight.$

- $.(orall n \in \mathbb{N}): \quad 0 < u_n < v_n$ بين أن 0
- $(v_n)_{n\in\mathbb{N}}$ أدرس رتابة كل من المتتاليتين $(u_n)_{n\in\mathbb{N}}$ و 2
- $(orall n\in\mathbb{N}):\ v_{n+1}-u_{n+1}<rac{1}{2}(v_n-u_n)$ بین آن ${f 3}$
- $(orall n\in \mathbb{N}):\ v_n\!-\!u_n<\left(rac{1}{2}
 ight)^n \left(\!oldsymbol{v}_0\!-\!oldsymbol{u_0}\!
 ight)$ اِستنتج أن $oldsymbol{0}$
- (v_n) و (u_n) حدد $\lim (v_n-u_n)$ حدد $oldsymbol{\mathfrak{G}}$
 - $(orall n\in \mathbb{N}):$ $oldsymbol{v_n}=rac{1}{2^n\sin\left(rac{\pi}{2^{n+2}}
 ight)}$:بین آن
 - $u_n=v_n\cos\left(rac{\pi}{2^{n+2}}
 ight)$. ($orall n\in\mathbb{N}$): و أن
 - $\lim_{n o +\infty}v_n$ و $\lim_{n o +\infty}u_n$. حدد النهايتين0

نعتبر المتتالية $(u_n)_{n\in\mathbb{N}}$ المعرفة بما يلى:

$$\left\{egin{array}{l} u_o=1; \ (orall n\in \mathbb{N}): \ u_{n+1}=\sqrt{u_n^2+rac{1}{(n+1)^2}} \end{array}
ight.$$

بین أن $u_n>0$: $(\forall n\in\mathbb{N}):\ u_n>0$ بین أن $\mathbf{0}$

$$v_n = \sum_{k=1}^n rac{1}{k^2}$$
: نعتبر المتتالية $(v_n)_{n \in \mathbb{N}^*}$ المعرفة ب

$$.(orall n\in \mathbb{N}^*): \quad v_n\leqslant 2-rac{1}{n}$$
 بين أن (۱

$$u_n = \sqrt{1+v_n}$$
 ب $v_n = \sqrt{1+v_n}$ ب $v_n \in \mathbb{N}^*$ ب $v_n \in \mathbb{N}^*$

$$(u_n)$$
 . $(orall n\in \mathbb{N}^*):u_n\leqslant \sqrt{3}$. و أن ℓ إستنتج أن ℓ متقاربة نهايتها ℓ

$$.(orall k\in \mathbb{N}^*ackslash\{1;2\}):\ 2^{k+1}\geqslant (k+1)^2$$
ب بين ان $(orall k\geqslant 3):\ u_{k+1}^2-u_k^2\leqslant rac{1}{2^{k+1}}$ ب) استنتج ان (ب

$$\sqrt{rac{179}{72}}\leqslant \ell\leqslant \sqrt{3}$$
 :إستنتج أن ℓ تحقق ℓ

$$\left\{egin{array}{ll} u_0=2; & & & \\ u_{n+1}=2+rac{1}{u_n} & & & \\ & & & & \end{array}
ight.$$
نعتبر المتتالية $(u_n)_{n\in\mathbb{N}}$ بحيث

$$(orall n\in \mathbb{N}): \quad 2\leqslant u_n\leqslant 3$$
 بين أن: $oldsymbol{0}$

$$w_n=u_{2n+1}$$
 و نعتبر المتتاليتين $w_n=u_{2n}:$ و نعتبر المتتاليتين $v_{n+1}=2+rac{v_n}{1+2v_n}$ انه لكل n من n لدينا: $w_{n+1}=2+rac{w_n}{1+2w_n}$ و $w_n=2+rac{1}{v_n}$

$$(orall n\in \mathbb{N}): \quad v_n\leqslant w_n$$
 اثبت أن $($ $oldsymbol{0}$

$$(w_n)$$
 و (v_n) و رتابة كل من المتتاليتين و أدرس رتابة أدرس

$$(orall n \in \mathbb{N}): w_{n+1} - v_{n+1} \leqslant rac{1}{25}(w_n - v_n)$$

ب $\left(v_{n}
ight)$ ب $\left(v_{n}
ight)$ و $\left(w_{n}
ight)$ متحادیتین و حدد

 $f(t)=rac{t}{\sqrt{1+t}}$: يما يلي $0;+\infty[$ على $f(t)=rac{t}{\sqrt{1+t}}$ على $f(t)=(0;+\infty[$ على الله معرفة على $f(t)=(0;+\infty[$ على الله على الله

$$u_n=\frac{1}{n^2}+\frac{2}{n^2}+\ldots+\frac{n}{n^2}$$

$$v_n = f\left(\frac{1}{n^2}\right) + f\left(\frac{2}{n^2}\right) + \ldots + f\left(\frac{n}{n^2}\right)$$

$$|f(t)-t|\leqslant rac{t^2}{2}$$
 $:\mathbb{R}^+$ بین أن ٹکل t من $oldsymbol{0}$

$$|w_n| \leqslant rac{1}{2} \sum_{k=1}^n rac{k^2}{n^4}$$
 ابین آن ٹکل n من n من 2

$$|w_n|\leqslant rac{1}{2n}$$
 : \mathbb{N}^* من n استنتج أن لكل n من $\lim_{n o +\infty}v_n=rac{1}{2}$ و أن

 (u_n) عدد حقيقي موجب قطعا. نعتبر المتتالية $\left\{egin{array}{l} u_{n+1}=rac{1}{2}\left(u_n+rac{a}{u_n}
ight) \end{array}
ight.$ المعرفة بما يلي:

$$u(orall n\in\mathbb{N}):\ u_{n+1}^2-a=rac{\left(u_n^2-a
ight)^2}{4u_n^2}$$
بين أن $\mathbf{0}$

$$(orall n\in \mathbb{N}^*):\; u_n\geqslant \sqrt{a}$$
 بين أن Q

بين أن المتتالية
$$(u_n)_{n\in\mathbb{N}}$$
 تناقصية. $oldsymbol{\Im}$

$$\lim_{n o +\infty}u_n=\sqrt{a}$$
 استنتج أن (u_n) متقاربة. و أن $oldsymbol{0}$

$$u_{n+1}-\sqrt{a}\leqslant rac{1}{2\sqrt{a}}(u_n-\sqrt{a})^2$$
 بین آن $oldsymbol{6}$

$$u_1-\sqrt{a}\leqslant k$$
 نفتر k نفتر ف أنه يو جد عدد حقيقي k بحيث $u_1-\sqrt{a}\leqslant k$. $(orall n\in\mathbb{N}):\ u_n-\sqrt{a}\leqslant 2\sqrt{a}\left(rac{k}{2\sqrt{a}}
ight)^{2^{n-1}}$: بين أن

نأخذ
$$u_o=3$$
 ، أعط قيمة مقربة للعدد $u_o=3$ بالدقة 0 . 10^{-8}

 $f(x)=x+\cos(x)$ دالة معرفة على $\left[0;rac{\pi}{2}
ight]$ بما يلي: f $\left\{egin{array}{l} u_0=lpha\in\left[0;rac{\pi}{2}
ight]; \ \end{array}
ight.$ نعتبر المتتالية $(u_n)_{n\in\mathbb{N}}$ بحيث: $\Big|\ u_{n+1}=f(u_n)$

أدر س تغيرات الدالة
$$f$$
 ثم استنتج أن: $f\left[0; \frac{\pi}{2}\right] \subset \left[0; \frac{\pi}{2}\right]$

$$(orall n\in \mathbb{N}):\ 0\leqslant u_n$$
 بين أن: $(1$

ب) بين أن المتتالية
$$(u_n)_{n\in\mathbb{N}}$$
 تزايدية.

ج) استنتج أن
$$(u_n)$$
 متقاربة ثم أحسب نهايتها.

$$oldsymbol{v_n} = rac{\pi}{2} - u_n$$
 : نعتبر المتتالية $oldsymbol{\Im}$

$$(orall n\in \mathbb{N}):0\leqslant v_n\leqslant rac{\pi}{2}$$
 () نحقق آن: $(orall n\in \mathbb{N}):v_{n+1}=v_n-\sin(v_n)$ () بين آن:

.
$$(orall n \in \mathbb{N}): v_{n+1} = v_n - \sin(v_n)$$
 بين أن:

$$-\left(orall x\in\left[0;rac{\pi}{2}
ight]
ight):\;0\leqslant x-\sin(x)\leqslantrac{x^3}{6}$$
 نقبل أن: $oldsymbol{0}$

$$(orall n\in \mathbb{N}):\; 0\leqslant v_{n+1}\leqslant rac{1}{6}v_n^3$$
 بين أن: $($

$$(orall n\in \mathbb{N}):\ 0\leqslant v_n\leqslant \left(rac{1}{6}
ight)^{rac{3^n-1}{2}}\left(v_0
ight)^{3^n}$$
ب) استنتج أن:

تمرین 21

 $f(x)=rac{1}{4x^2+4}$: لتكن f دالة معرفة بما يليf بحيث $f(x)=rac{1}{4x^2+4}$ نعتبر المتتالية $f(x)=rac{1}{2}$ بحيث $f(x)=rac{1}{4x^2+4}$ نعتبر المتتالية $f(x)=rac{1}{4x^2+4}$

 \mathbb{R}^+ ا أدر س تغيرات الدالة f على \mathbb{R}^+ .

 $lpha \in \left]0; rac{1}{2}
ight[$ بین آن f(x) = x تقبل حلا و حیداf(x) = x بین آن:

 $\left(orall (x,y)\in [0;1]^2
ight): |f(x)\!-\!f(y)|\leqslant rac{1}{2}|x\!-\!y|$

$$.(orall n \in \mathbb{N}): \ 0 < u_n \leqslant rac{1}{2}$$
 بين أن: 2

 $|u_{n+1}-lpha|\leqslant rac{1}{2}|u_n-lpha|$ بین آن: $|u_{n+1}-lpha|\leqslant rac{1}{2}|u_n-lpha|$ بین آن: (u_n) متقاربة ثم أحسب نهایتها.

$$w_n=u_{2n+1}$$
 و نعتبر المتتاليتين $oldsymbol{v}_n=u_{2n}$ نعتبر المتاليتين $oldsymbol{0}$

را
$$(orall n\in \mathbb{N}): \ w_n\leqslant lpha\leqslant v_n$$
 ابين أن $($

 (w_n) أدرس رتابة كل من المتتاليتين (v_n) و (w_n)

🗗 ۱) بین أن:

$$(orall n\in\mathbb{N}):v_{n+1}-w_{n+1}\leqslantrac{1}{4}(v_n-w_n)$$

ب $\left(v_{n}
ight)$ با استنتج ان $\left(v_{n}
ight)$ و $\left(w_{n}
ight)$ متحاديتان و حدد نهايتهما

تمرین 22

نعتبر الدالة \overline{g} المعرفة على $I=[1;+\infty[$ بما يلي:

$$g(x) = x^3 - 3x - 5$$

- أدرس تغيرات الدالة g على I. ثم بين أن المعادلة $\mathbf{0}$ أدر α تقبل حلا وحيدا α بحيث g(x)=0
- أدر س إشارة g(x) على I ثم استنتج حلول المتراجحة I على I على I على I على I على I
 - $I:=[1;+\infty[$ دالة معرفة على $f:=[1;+\infty[$ بما يلي:

$$f(x) = \sqrt[3]{3x+5}$$

أدرس تغيرات الدالة f على I ثم بين أن:

$$f\left(\left[\alpha;\frac{5}{2}\right[\right)\subset\left[\alpha;\frac{5}{2}\right[$$

$$\left\{egin{array}{ll} u_0\geqslant 1;\ u_{n+1}=f(u_n) \end{array}
ight.$$
نعتبر المتتالية (u_n) بحيث $oldsymbol{0}$

- ا) حدد u_o بحيث تكون المتتالية (u_n) ثابتة. $u_o=rac{5}{2}$ ب) نأخذ $u_o=rac{5}{2}$
- $.(orall n \in \mathbb{N}): \; lpha < u_n < rac{5}{2}$:بين أن (a)
 - بین أن $\stackrel{-}{(u_n)}$ تناقصیة قطعا. ig(big)
- . استنتج أن (u_n) متقاربة ثم حدد نهايتها (c)
- . $(orall n\in \mathbb{N}):\ u_{n+1}-lpha\leqslant rac{1}{lpha^2}(u_n-lpha)$: رین آن (a_n+a_n)
 - $(orall n \in \mathbb{N}): \; u_{n+1} lpha \leqslant \left(rac{1}{lpha}
 ight)^{2n} \left(rac{5}{2} lpha
 ight)$
 - ه) حدد من جدید نهایة المتتالیة (u_n).

نمرین 23

نعتبر الدالة العددية f المعرفة بما يلي:

$$f(x) = 2 \operatorname{Arctg} \left(\frac{2\sqrt{x}}{1+x} \right)$$

- حدد \mathscr{D}_f مجموعة تعريف الدالة f. ثم أحسب النهاية $\lim\limits_{x o +\infty}f(x)$
 - $oldsymbol{arphi}$ أدرس تغيرات الدالة f على مجموعة تعريفها.
 - $I=[1;+\infty[$ ليكن g قصور f على المجال g
- ا) بین أن g تقبل دالة عکسیة g^{-1} معرفة علی مجال J یتم تحدیده.
 - $\cdot J$ لکال x مسن $g^{-1}(x)$ کال x مسن $g^{-1}(x)$
- lpha بيــن أن المعادلة f(x)=x تقبل حلا وحيدا ينتمي إلى المحال [1;2].

$$\left\{egin{array}{ll} u_o=1 \ u_{n+1}=f(u_n) \end{array}
ight.$$
نعتبر المتالية المعرفة ب $egin{array}{ll} egin{array}{ll} u_o=1 \ u_{n+1}=f(u_n) \end{array}
ight.$

$$f(2)>rac{\pi}{3}$$
 : ا بیسن أن (۱

.
$$(orall n \in \mathbb{N})$$
 : $1 \leqslant u_n \leqslant 2$: ب $)$ بين أن

ج) نقبل أن:

 $\left(orall (x,y)\in [1;2]^2
ight): |f(x)-f(y)|\leqslant rac{1}{4}|x-y|$

 $(orall n\in \mathbb{N}): \, |u_{n+1}-lpha|\leqslant rac{1}{4}\,|u_n-lpha|$ بین آن:

 $|u_n-lpha|\leqslant \left(rac{1}{4}
ight)^n(lpha-1)$ د) استنتج أن: $\lim_{n o +\infty}u_n$ عدد ثم حدد