

《计算机操作系统》

骆斌教授、 葛季栋副教授、 李传艺助理教授 南京大学软件学院

开课信息

- 必修课程,每学年春季学期,4学分
- 4年内的修课机会只有3次
- 考研专业课35分/150分
- 前驱课程
 - 计算系统基础、软件工程与计算I/II、计算机组成原理、数据结构
- 相关课程
 - Linux系统基础、嵌入式系统基础、分布式计算、 云计算等

课程简介

- 一、操作系统发展简史
- 二、南京大学《操作系统》课程简史
- 三、操作系统课程特点与地位、教学要求与教学目标
- 四、操作系统核心知识单元及知识点
- 五、教学参考书以及与操作系统相关的学术

一、操作系统发展简史

小历史 - 操作系统与图灵奖

- · 操作系统的理论产生于1960s~1980s,有很多先驱者为操作系统的理论奠定了基础,与操作系统有关的获得图灵奖科学家:
 - Ken Thompson、Dennis M. Ritchie, 1983年度
 - Unix & C语言之父

Kenneth Lane Thompson, (1943~)

Dennis MacAlistair Ritchie, (1941~2011)

Linux传奇

Linus & Tanenbaum (MINIX之父, 荷 兰阿姆斯特丹自由大学教授)

Linus Benedict Torvalds, 1969年~ http://www.cs.vu.nl/~ast/

小历史 - 操作系统与图灵奖

- · 操作系统的理论产生于1960s~1980s,有很多先驱者为操作系统的理论奠定了基础,与操作系统有关的获得图灵奖科学家:
 - Dijkstra (1931~2002), 1972年度获奖
 - · 并发进程, PV操作, 死锁避免的银行家算法, 哲学家就餐问题
 - Tony Hoare, 1980年度图灵奖,
 - 管程
 - CSP-Communicating Sequential Processes
 - Ken Thompson、Dennis M. Ritchie, 1983年度图灵奖,
 - · Unix系统, C语言
 - Brooks, 《人月神话》, 1999年度图灵奖, IBM OS/360,
 - Donald Ervin Knuth, 1974年度图灵奖,伙伴算法(内存管理)
 - David A. Patterson, 2017年度图灵奖,磁盘冗余阵列(RAID)
 - 图灵奖华人得主?学术贡献?

小历史-操作系统与图灵奖

- · 操作系统的理论产生于1960s~1980s,有很多先驱者为操作系统的理论奠定了基础,与操作系统有关的获得图灵奖科学家:
 - Dijkstra (1931~2002), 1972年度获奖
 - · 并发进程, PV操作, 死锁避免的银行家算法, 哲学家就餐问题, 算法: 最短路径算法

Edsger Wybe Dijkstra http://www.cs.utexas.edu/users/EWD/

Leonhard Euler (1707~1783)

读一读欧拉,他是所有人的老师。----法国数学家拉普拉斯(Laplace)读一读Dijkstra,他是所有CSer和SEer的老师。----

小历史 - 操作系统与图灵奖

- · 操作系统的理论产生于1960s~1980s,有很多先驱者为操作系统的理论奠定了基础,与操作系统有关的获得图灵奖科学家:
 - Tony Hoare (C. A. R. Hoare, 1934~), 1980年度获奖
 - 管程, CSP-Communicating Sequential Processes

http://www.cs.ox.ac.uk/people/tony.hoare/

小历史-操作系统与图灵奖

- · 操作系统的理论产生于1960s~1980s,有很多先驱者为操作系统的理论奠定了基础,与操作系统有关的获得图灵奖科学家:
 - Frederick P. Brooks, Jr. (1931~), 1999年度获奖
 - · IBM OS/360,《人月神话》

小历史-操作系统与图灵奖

- · 操作系统的理论产生于1960s~1980s,有很多先驱者为操作系统的理论奠定了基础,与操作系统有关的获得图灵奖科学家:
 - Donald Ervin Knuth ,1974年度图灵奖,伙伴算法(内存管理)

256 K

D = 256 K

64 K

256 K

小历史 - 操作系统与图灵奖

操作系统的理论产生于1960s~1980s,有很多先驱者为操作系统的理论奠定了基础,与操作系统有关的获得图灵奖科学家:
David A. Patterson, 2017年度图灵奖,磁盘冗余阵列(RAID)

加利福尼亚大学伯克利分校 (University of California-Berkeley) Patterson教授在1988年,发布RAID 技术,定义了RAID的5层级,该技术,定义了RAID的5层级,该技术的每际标准。 进步意义: RAID磁盘冗余阵列以多块磁盘构建更大的外存储空间,提高磁盘存取效率和容错性能。 图灵奖成果: 处理器的RISC技术

两位图灵典获得者主编的经典教材: John L. Hennessy, David A. Patterson, Computer Architecture: A Quantitative Approach (6th edition), Morgan Kaufmann, 2017

小哲学

职业:科学家?

- 形而上学谓之道,形而下学谓之器。--《易经》
- 道——自然科学
 - 研究自然物质的运动与变化规律。
 - 物理、化学、天文、大气、生物、地理/地质
 - 特点:
 - •精确、绝对;
 - 从对自然存在的观察导出;
 - 不依赖于人的主观判断力;
 - 通常违反人的直觉。
 - 牛顿深思: 这些规律为什么存在?

小哲学

- 形而上学谓之道,形而下学谓之器。--《易经》
- 器——人工科学
 - 研究人造物的设计、生产制造、运行与维护。
 - 机械、化工、电子电气工程、建筑、桥梁隧道、交通、通信、计算机硬件/软件.....
 - 特点:

古代职业:工匠?

• 不精确、具有相对性;

- 职业:工程师、设计师.....?
- 从对人类活动的观察导出;
- 依赖于人的主观判断力;
- 通常符合人的直觉。

推荐闲书:《人工科学》,(美)赫伯 特·A·西蒙(人工智能: 1975年的图灵奖、 经济学: 1978年的诺贝尔经济奖)

小哲学

· 操作系统是管理人造的计算机软硬件资源, 因此在技术上讲, 既有体现计算技术的方面, 又有管理学和运筹学的思想和理念。

为什么要学习操作系统

• 基本问题

- 如何使用和操作计算环境,如何利用计算资源?

意义

- 计算无处不在, 软件定义世界
- 普适计算 Pervasive/Ubiquitous Computing
- 物联网 Things of Internet, CPS
- 移动计算 Mobile Computing (移动互联网)
- 嵌入式的OS: μC/OS-II, VxWorks, LiteOS, 翼辉SylixOS......
- 移动终端的OS: Android, iOS, 鸿蒙OS, Tizen, Windows Phone,
 Meego, Symbian,
- PC机器的OS: 微软的桌面系统?
- 服务器的OS: CentOS, Ubuntu等Linux各类发行版, EulerOS, ...
- 只要有计算,就有操作系统,操作系统伴随计算无处不在

华为的系统软件战略

- 华为与国内一流高校合作智能基座课程
 - 推广与建设国产系统软件的生态系统
- 上交大陈海波教授领衔:
 - 华为操作系统实验室 -> 鸿蒙OS, 鲲鹏软件EulerOS
 - 一 开源openEuler
- 南京大学冯新宇教授领衔:
 - 华为编译器实验室(杭州)->仓颉编程语言, 方舟编译器
- 其他:高斯数据库GaussDB

二、南京大学《操作系统》。课程简史

南京大学《操作系统》课程简史

- 孙钟秀院士
 - DJS200系列计算机的操作系统
 - 1970s: 《操作系统》课程
 - 1980s: 《操作系统》 教材
 - 1982: ZCZ分布式微型计算机系统, 令牌—分布式同步算法
- 费翔林教授、骆斌教授
 - 《操作系统教程》第3版2003年,第4版2008年
 - 第4版获"十一五" 国家级规划教材,第4版获2008年度教育部精品教材
 - 2010年度国家精品课程
 - 第5版获"十二五"国家级规划教材
 - 第6版获首届国家优秀教材
- 骆斌教授、葛季栋副教授
 - 2017年国家精品在线开放课程
 - 2020年国家一流本科课程(线上线下混合式)

孙钟秀院士

孙钟秀(1936~2013),男,原籍浙江余杭(今杭州),生于江苏南京。中国共产党党员,中国科学院院士,中国著名计算机科学家,全国政协第七、八、九、十届委员,江苏省科协第四、五届主席,南京大学原教授、博士生导师,南京大学原副校长。1957年毕业于南京大学数学系。1965年赴英国曼彻斯特ICL公司进修。回国后,历任南京大学副教授、教授、计算机科学系主任,江苏省科技协会主席。从事计算机操作系统和分布式系统研究,培养博士生和硕士生50余名。主持研制的分布式系统CZ和ZH等1985年获国家科技进步奖二等奖。著有《分布式计算机系统》《操作系统原理》等。1991年当选中科院院士。

父亲: **孙光远**(1900~1979),数学家,历任清华大学、原中央大学、南京大学数学系教授,中国近代数学奠基人之一,中国微分几何与数理逻辑研究的先行者、国内近代数学奠基人之一。

孙光远教授:陈省身(华人数学家)的硕士导师

课程起步阶段(1)

《操作系统原理》, 1980年,人民邮电 出版社,以DJS200 操作系统作为实例。

课程起步阶段(2)

《分布式计算机系统》, 1987年国防工业出版社。 以ZCZ(祖冲之)分布式计算 机系统(包含了分布式程序 设计语言及实验性分布式 数据库)和SN(神农)分布式 单板机系统(用于数据采集 和处理)为实例

课程发展阶段(1)

《操作系统教程》, 1989年高等教育 出版社,以VM/SP、 MP/M和PC-DOS为实例。 **获1992年国家级优 秀教材奖。**

课程发展阶段(2)

《操作系统教程》(第 2版),1995年高等教育出版社,以MS-DOS、 CC-DOS和UNIX为实例。 获1997年江苏省二类优秀课程。

课程提高阶段

《操作系统教程》(第3版), 2003年高等教育出版社, 面向21世纪教材,融入 主流操作系统,Windows、 UNIX和Linux作为实例。 获2004年江苏省优秀课程群奖。

课程成熟阶段(1)

《操作系统教程》(第4版), 2008年4月高等教育 出版社,面向21世纪教材, Linux和Windows作为实例。 评为2008年教育部精品 教材。

课程成熟阶段(2)

《Linux操作系统实验 教程》2009年4月出版。

课程成熟阶段(3)

《操作系统教程》 (第5版),2014 年高等教育出版社, 十三五规划教材

课程成熟阶段(4)

- 《操作系统教程》(第6版),2020年高 等教育出版社
- 首届国家优秀教材奖 二等奖

孙钟秀院士、谢立教授

谭耀铭教授

费翔林教授

骆斌教授

《计算机操作系统》慕课

南京大学

《计算机操作系统》慕课

序	平台	上线时间	运营模式	注册 学习人数
1	Coursera平台(美国)	2015.8.4起	自助模式	累计13808人
2	中国大学MOOC平台 icourse163.org	2016.4.20起7期	学期模式	期合计 366594人
3	学堂在线(清华)	2016.12.18起	自助模式	34243
合计				414645人

自助模式: 一次性发布所有教学视频, 学习者自行制定符合自己需求的学习计划

学期模式:按照预设的教学周计划表发布各周教学视频,学习者按照周计划学习

OSMOOC@coursera

性别&年龄

您的课程 所有课程 ■ 女性 ■ 男性 ■

学生状态

基于 320 名学生的数据绘制。 估计值精确到 ± 5.5 个 百分点。 ②

最高学历

全职就业学习者占比40%

工作情况

三、操作系统课程特点与地位、教学要求与教学目标

操作系统课程性质

- 计算机科学与技术专业专业核心课程,也是全国硕士研究生专业基础统考科目(四门)之一,2009年1月开始推行全国统考,2013年1月南大恢复专业课自主命题,考研时间每年12月下旬最后一个周末
 - 必修, 4学分,
 - 考研课程(专业课试卷150分)
 - •全国统考:数据结构45分,组成原理45分,操作系统35分,网络25分。
 - 南大软院自主命题: 数据结构45分, 软件工程45分, 操作系统35分, 网络25分。

操作系统课程性质

该课程内容理论与实践结合紧密,既与硬件相关又属于(系统)软件技术系列,涉及学科抽象、理论、设计3个形态。具体地说与理论模型、算法设计、软件系统、工程实现、程序设计、领域应用等密切相关,是工程技术领域硬件和软件的融合体。

操作系统课程特点

- (1) 理论性强、概念抽象、理解掌握有困难;
- (2)与实践结合紧密,设计技巧高、实现机制精妙,代码量巨大,教好学好有难度;
- (3)技术发展迅速,知识更新快;
- (4)内容广泛,与多个方向交叉;
- (5)知识点多、综合性强、灵活性大。//名词概念繁多,能记得住吗?怎么理解和记忆这些名词术语?

操作系统课程地位

- 操作系统是计算机系统的核心和灵魂,是计算机系统必不可少的组成部分,因此它是计算机教学的核心内容,是计算机相关专业的核心课程;
- 操作系统是硬件的首次扩充,又是最重要的系统软件,该课程具有承上启下的重要作用,
 - 既能对前导课程进行总结和提高,
 - //紧密相关的前导课程有: 《计算系统基础》、《计算机组成原理》、《数据结构与算法》、《计算与软件工程I/II》
 - 同时也为后继专业课程(嵌入式系统、服务计算、 分布式计算、网格计算、云计算等方向的专业课) 的学习打下良好基础:

课程学习目标

- 明确计算机操作系统的作用与功能
- 掌握操作系统实现的基本原理与方法
 - 在微观上,掌握设计实现各个操作系统模块的方法、策略与算法
 - 在宏观上,掌握操作系统的结构和设计实现方法,进一步从工程师的角度了解大型软件系统的结构和设计实现方法。//解决复杂问题,经常需要采用折衷的方案,具体问题具体分析,很多时候很难找到一个绝对最优的解。
- 掌握并发程序设计的基本方法
- 课程对于个人专业技能的发展
 - 从事0S方面的开发
 - 利用OS提供的服务和接口开发高效可信的应用系统

操作系统课程的教学原则

- 用系统的观点、全局的观点、整体的观点来看待操作系统的实现
- 理解软硬件协同解决问题的方法
- · 理解分而治之、分层实现在复杂软件系统实现中的重要作用
- 用工程师的立场来看待操作系统的实现
- 理解文化在操作系统实现中的重要作用

四、操作系统核心知识单元及知识点

操作系统原理剖析思路

A京大学 NAMING UNIVERSITY

- ◆两个角度:用户角度、系统角度
- ◆两种方法:静态方法、动态方法
- ◆四种观点
 - ✓ 服务用户观点、资源管理观点
 - ✓ 系统实现观点、进程交互观点
- ◆围绕六个问题
 - ✓ 什么是操作系统?
 - ✓ 为什么要操作系统?
 - ✓操作系统是做什么的?
 - ✓操作系统是如何做的?
 - ✓操作系统是如何使用的?
 - ✓操作系统是如何构造的?

操作系统中最基础的抽象

- 进程抽象--是对已进入主存的程序交替使用处理 器的状态集的抽象。
- 虚存抽象--是对物理主存的抽象,进程可获得足够的地址空间来存放可执行程序和数据,可使用虚拟地址来引用物理主存单元。(动态重定位,逻辑上连续的地址空间 --> 物理上不完全连续的地址空间,且支持部分装入和部分对换)
- 文件抽象--是对设备(磁盘)的抽象。磁盘数据的 按名存取,磁盘I/O对应于文件的读写操作,外设 的I/O也可以被抽象为类似于文件的读写操作。

操作系统的三个基础抽象

OS中 最基 础的

进程抽象

Process is the abstraction of processor

虚存抽象

Virtual memory is the abstraction of memory

文件抽象

File is the abstraction of device

操作系统的三个基础抽象

进程抽象

图 1-4 操作系统中的基础抽象 第五版教材 page 9

图 1-5 物理计算机仿真成虚拟计算机

半导体业的 大伯乐,

1955年, "晶体管之父"威廉·肖 克利(1956年诺贝尔物理学奖), 离开贝尔实验室创建肖克利半导 体实验室(旧金山湾区)

FAIRCHILD

SEMICONDUCTOR®

八人接受位于纽约的仙童摄影器 材公司的资助,于1957年,创办

罗伯特·诺依斯(Robert Noyce)、 戈登·摩尔(Gordon Moore)、 朱利亚斯·布兰克(Julius Blank)、 尤金·克莱尔(Eugene Kleiner)、 金·赫尔尼(Jean Hoerni)、 杰·拉斯特(Jay Last)、 谢尔顿·罗伯茨(Sheldon Roberts) 维克多·格里尼克(Victor Grinich)

了仙童半导体公司 仙童公司是超大规模集成电路产业的黄埔军校 "仙童半导体公司就象个成熟了的蒲公英,你一吹它, 这种创业精神的种子就随风四处飘扬了"

罗伯特·诺依斯(Robert Noyce)、戈登·摩尔(Gordon Moore) +安迪·格鲁夫(Andrew S·Grove)==》Intel公司

朱利亚斯·布兰克(Julius Blank)、 尤金·克莱尔(Eugene Kleiner)、 金·赫尔尼(Jean Hoerni)、 杰·拉斯特(Jay Last)、 谢尔顿·罗伯茨(Sheldon Roberts) 维克多·格里尼克(Victor Grinich)

桑德斯则是仙童半导体公司销售部主任, 1969年,他带着7位仙童员工创办高级微型仪器公司(AMD)

在1969年的半导体工程师大会,400位与会者中只有24位的履历表上没有在 仙童公司的工作的经历

《操作系统》教学单元

第一章	计算机操作系统概述
1. 1	计算机系统
1.2	计算机操作系统
1.3	深入观察操作系统
第二章	处理器管理
2. 1	处理器
2.2	中断管理
2.3	进程管理
2.4	多线程技术
2.5	处理器调度
第三章	存储管理
3. 1	存储管理基础
3. 2	单连续分区存储管理
3. 3	页式存储管理
3. 4	段式存储管理

第四章	设备管理	
4. 1	设备管理基础	
4. 2	设备管理软件	
4. 3	独占型外围设备的分配	
4.4	共享型外围设备的驱动	
4.5	虚拟设备	
第五章	文件管理	
5. 1	文件系统概述	
5. 2	文件的组织	
5. 3	文件目录	
5. 4	文件的共享、保护和保密	
5. 5	文件的使用	
5. 6	文件的实现	
第六章	并发程序设计	
6. 1	并发进程	
6. 2	临界区管理	
6.3	PV操作	
6.4	管程	
6. 5	进程通信	
6.6	死锁 50	6

五、教学参考书以及与操作系统相关的学术

- 1. William Stallings. Operating Systems: Internals and Design Principles (9th edition). Prentice-Hall International Inc, 2017
- 2. Abraham Silberschatz. Operating System Concepts (10th Edition), Wiley, 2021
- 3. Andrew S. Tanenbaum. Modern Operating Systems (5th edition), Prentices Hall, 2022
- 4. Gary Nutt. Operating System (Third Edition). Addison-Wesley, 2003

教学参考书(操作系统)

南京大学 NANJING UNIVERSITY

1. William Stallings. Operating Systems: Internals and Design Principles (9th edition). Prentice-Hall International Inc, 2017

南京大学 NANJING UNIVERSITY

2. Abraham Silberschatz. Operating System Concepts (10th Edition). John Wiley & Sons Inc, 2021

2. Abraham Silberschatz. Operating System Concepts (10th Edition). John Wiley & Sons Inc, 2021

教学参考书(操作系统)

3. Andrew S. Tanenbaum. Modern Operating Systems (5th edition), Prentices Hall, 2022

中文教学参考书(操作系统)MANJING UNIVERSITY

- 1. 陈海波, 夏虞斌, 操作系统原理与实现, 机械工业出版社, 2023.
- 2. 任炬, 张尧学, openEuler操作系统(第2版), 清华大学出版社, 2022
- 3. 统信软件技术有限公司,统信UOS操作系统基础与应用教程(异步图书出品),人民邮电出版社,2021.

- 1. John L. Hennessy, David A. Patterson, Computer Architecture: A Quantitative Approach (6th edition), Morgan Kaufmann, 2017
- 2. William Stallings, Computer Organization and Architecture (10th edition), Pearson, 2015
- 3. Randal E. Bryant, David R. O'Hallaron, Computer Systems: A Programmer's Perspective (2nd Edition), Pearson, 2010.
- 4. Andrew S. Tanenbaum, Todd Austin, Structured Computer Organization (6th edition), Pearson, 2012.
- 5. Irv Englander, Wilson Wong, The Architecture of Computer Hardware, Systems Software, and Networking: An Information Technology Approach (6th edition), Wiley, 2021
- 6. Umakishore Ramachandran, William Leahy Jr., Computer Systems: An Integrated Approach to Architecture and Operating Systems, 2010.

- 1. John L. Hennessy, David A. Patterson, Computer Architecture: A Quantitative Approach (6th edition), Morgan Kaufmann, 2017
- 2. William Stallings, Computer Organization and Architecture (10th edition), Pearson, 2015

- 3. Randal E. Bryant, David R. O'Hallaron, Computer Systems: A Programmer's Perspective (2nd Edition), Pearson, 2010.
- 3. Randal E. Bryant, David R. O'Hallaron, Computer Systems: A Programmer's Perspective (3rd Edition), Pearson, 2016.

- 4. Andrew S. Tanenbaum, Todd Austin, Structured Computer Organization (6th edition), Pearson, 2012.
- 5. Irv Englander 、 Wilson Wong, The Architecture of Computer Hardware, Systems Software, and Networking: An Information Technology Approach (6th edition), Wiley, 2021

6. Umakishore Ramachandran, William Leahy Jr., Computer Systems: An Integrated Approach to Architecture and Operating Systems, 2010.

与操作系统相关的学术(国际)

- · 操作系统学术机构 ACM SIGOPS
 - Special Interest Group on Operating Systems (SIGOPS)
 - http://www.sigops.org/
- **USENIX** | The Advanced Computing Systems Association
 - https://www.usenix.org/
- 操作系统学术刊物 ACM
 - Operating Systems Review (OSR)
 - http://www.sigops.org/osr.html
- · 操作系统学术会议 OSDI
 - Operating Systems Design and Implementation (OSDI)
 - http://www.informatik.uni-trier.de/~ley/db/conf/osdi/
 - USENIX Annual Technical Conference
 - https://dblp.org/db/conf/usenix/index.html

与操作系统相关的学术(国内)

- · 中国计算机学会(CCF-China Computer Federation)
 - 系统软件专业委员会
 - 相当于中国版 Special Interest Group on Operating Systems (SIGOPS)