## В.Г.Болтянский

(Москва)

## ОБРАТНАЯ ФУНКЦИЯ

Функция — одно из важнейших понятий современной математики. Несмотря на это, основные определения и терминология, связанные с функиями, до сих пор не являются устоявшимися и унифицированными. Ученые, работающие в разных областях математики, применяют разную терминологию; например, в анализе чаще используется термин «функция», в топологии — «отображение», в функциональном анализе — «функционал», «оператор» и т.д. Существуют и разные тенденции в понимании смысла функции. Так, одна тенденция (идущая, по-видимому, от книг американского тополога Келли) состоит в том, что рассматриваются только сюръективные отображения, т.е. отображения одного множества на другое. Она принята сейчас в школьных учебниках алгебры. Одна из основных отличительных черт этой тенденции состоит в том, что если каждому элементу x множества A поставлен в соответствие некоторый элемент  $f(x) \in B$ , причем не все элементы множества B являются образами элементов из A, то можно выбросить из B «лишние» элементы (в примере на рис.1 они обведены штриховой рамкой), благодаря чему f станет отображением множества A на некоторое множество  $B' \subset B$ . Считая, что каждый раз «лишние» элементы автоматически отбрасываются, мы и приходим к рассмотрению только сюръективных отображений.



Другая тенденция (назовем ее условно «тенденцией Бурбаки») состоит в том, что  $f \colon A \to B$  и  $f \colon A \to B'$  – это разные отображения (в связи с чем второе из них правильнее обозначать не f, а другой буквой). Этой тенденции придерживается большая часть современных математиков. Достаточно сказать, что вся алгебраическая топология и другие разделы математики (связанные с рассмотрением так называемых категорий и функторов) немыслимы без такого различения. В связи с этим рассматриваются не только сюръективные отображения, но и отображения, не являющиеся сюръективными (отображения одного множества в другое).

Приведу два примера, иллюстрирующие большую гибкость и удобство «тенденции Бурбаки» по сравнению с «тенденцией Келли».

Формула  $y=x^6+2x^2-11x$  задает некоторую числовую функцию, областью определения которой служит вся числовая прямая  $\mathbb R$ . Однако множество значений этой функции есть какой-то луч  $[a;+\infty]$ , который мы не знаем (для нахождения минимума выражения  $x^6+2x^2-11x$  нужно было найти корень производной, т.е. решить уравнение пятой степени). Вместе с тем ясно, что эта функция ставит в соответствие любому числу  $x \in \mathbb R$  некоторое число (также принадлежащее  $\mathbb R$ ), т.е представляет собой отображение  $\mathbb R$  снова в множество  $\mathbb R$ . Вряд ли выбрасывание «лишних» элементов, т.е. замена области значений  $\mathbb R$  множеством значений (т.е. лучом, который мы не знаем), способствует достижению у школьников яности понимания (ведь речь идет о такой простой функции, как многочлен!).

В качестве второго примера отметим, что плоскость P является односвязной фигурой: тождественные отображение  $e:K\to P$  любой замкнутой линии K в плоскость P может быть непрерывно продеформировано (рис.2)



в отображение всей линии K в одну точку, или, как говорят для краткости, отображение e стягиваемо в точку. Однако тождественное отображение  $e:K\to K$  линии K на себя нельзя стянуть в точку (т.е. перемещая, деформируя линию по самой себе, а не по плоскости, мы не сможем осуществить стягивание ее в точку). Это связано как раз с наличием «лишних» элементов у отображения  $e:K\to P$ . В отличие от плоскости кольцо и другие фигуры, изображенные на рис. 3, неодносвязны. Понятие односвязаности является одним из основополагающих в алгебраической топологии, в теории функций комплексного переменного, в анализе. Выбрасывание «лишних» элементов зачеркнуло бы эти области математики!

Было бы неправильным ограничивать кругозор учителя, считая, что если тенденции и определения не соответствуют сегодняшним учебникам, то они «не верны».

В предлагаемой статье дается подход к понятию обратной функции (и связанным с ней вопросам школьного курса) с точки зрения «тенденции Бурбаки». Учитель легко разберется, где определения, принятые в статье, соответствуют принятым сейчас в учебниках алгебры, а где расходятся с ними.

## 1. Общие свойства обратных отображений

Пусть f – некоторое отображение множества A в множество B (для краткости пишут  $f: A \to B$ ). Это означает, что каждому элементу  $x_0 \in A$  поставлен с соответствие какой-то элемент множества B, обозначаемый через  $f(x_0)$  и называемый образом элемента  $x_0$  при отображении f. Множество A называется областью определения отображения f, а B – множеством значений этого отображения.

Пусть  $f: A \to B$ . Возьмем произвольный элемент  $y_0 \in B$ . Множество всех корней уравнения  $f(x) = y_0$  называется прообразом элемента  $y_0$  и обозначается через  $f^{-1}(y_0)$ . Иначе говоря, элемент  $x_0 \in A$  в том и только в том случае принадлежит множеству  $f^{-1}(y_0)$ , если  $f(x_0) = y_0$ .



<sup>&</sup>lt;sup>1</sup>Несмотря на то что речь идет о произвольном отображении  $f \colon A \to B$  (не заданном с помощью аналитического выражения), имеет смысл говорить о решении «уравнения», т.е. о нахождении всех тех  $x \in A$ , при которых соотношение  $f(x) = y_0$  превращается в истинное высказывание.

Прообраз  $f^{-1}(x)$  может быть пустым множеством, а может состоять из одного, двух или большего (даже бесконечного) числа элементов. Так, для отображения  $f \colon A \to B$ , показанного на рис.4, прообразы элементов будут следующими:

$$f^{-1}(p) = \varnothing, f^{-1}(q) = \{b\}$$
  
 $f^{-1}(r) = \{a; c; d\}$ 

Если для любого элемента  $y_0 \in B$  его прообраз  $f^{-1}(y_0)$  состоит ровно из одного элемента, то отображение  $f \colon A \to B$  называется биективным (или взаимно-однозначным). В случае биективного отображения  $f \colon A \to B$  принято записывать прообразы без фигурных скобок: если  $f(x_0) = y_0$ , то пишут

$$f^{-1}(y_0) = x_0.$$

Этим определяется некоторое отображение  $B \to A$ , которое называется обратным к отображению f и обозначается через  $f^{-1}$ 

Обратное отображение как бы возвращает элементы на свои места. Если отображение f переводит элемент  $x_0 \in A$  в элемент  $y_0 \in B$ , то отображение  $f^{-1}$  переводит  $y_0$  обратно в  $x_0$  (этим и объясняется название обратное отображение). Ясно, что обратное отображение  $f^{-1}$  также является биективным, причем обратным к  $f^{-1}$  является исходное отображение f, т.е.  $(f^{-1})^{-1} = f$ . На этом основании говорят, что отображения f и  $f^{-1}$  являются взаимно-обратными.

Из сказанного выше непосредственно следует, что при переходе к обратному отображению область определения и область значений меняются местами, т.е. если  $f\colon A\to B$  - произвольное биективное отображение, то обратное отображение  $f^{-1}$  определено на множестве B и имеет область значений A.

$$f^{-1}: B \to A$$
.

Легко видеть, что композиция  $f^{-1} \circ f$ , т.е. результат последовательно выполнения сначала отображения f, а затем отображения  $f^{-1}$  представляет собой тождественное отображение множества A. В самом деле, если  $f(x_0) = y_0$ , то

$$(f^{-1} \circ f)(x_0) = f^{-1}(f(x_0)) = f^{-1}(y_0) = x_0$$

Следовательно, отображение  $f^{-1} \circ f$  переводит элемент  $x_0$  в себя. Так как это справедливо для любого элемента  $x_0 \in A$ , то  $f^{-1} \circ f$  — тождественное отображение. Точно так же композиция  $f^{-1} \circ f$  (сначала выполняется  $f^{-1}$ , затем f) есть тождественное отображение множества B. Условившись обозначать тождественное отображение символом id (от английского identity - тождество), можем написать

$$f^{-1} \circ f = id, f \circ f^{-1} = id$$
 (1)

Сформулируем доказанную теорему.

**Теорема 1.** Пусть  $f: A \to B$  — произвольное биективное отображение, а  $f^{-1}: B \to A$  — обратное к нему отображение. Тогда верны равенства (1).

Важно отметить, что теорема, обратная теореме 1, также верна.

**Теорема 2.** Пусть  $f \colon A \to B$  и  $g \colon B \to A$  — некоторые отображения. Если справедливы соотношения

$$g \circ f = id, f \circ g = id, \tag{2}$$

то оба отображения f, g биективны и являются взаимно-обратными.

**Доказательство.** Прежде всего установим биективность отображения f. Пусть  $y_0$  — произвольный элемент множества B. Положим  $x_0 = g(y_0)$ . Тогда  $f(x_0) = f(g(y_0)) = (f \circ g)(y_0)$ (поскольку  $f \circ g = id$ ). Итак,

$$x_0 \in f^{-1}(y_0).$$

Допустим, что существует еще один элемент

$$x_1 \in f^{-1}(y_0)$$

т.е. элемент  $x_1 \in A$ , удовлетворяющий условию  $f(x_1) = y_0$ . Применяя отображение g, находим  $g(f(x_1)) = g(y_0) = x_0$ , т.е.  $(g \circ f)(x_1) = x_0$ . Но так как  $g \circ f = id$ , то  $(g \circ f)(x_1) = x_1$  Следовательно,  $x_0 = x_1$ .

Таким образом доказано, что дли любого  $_0 \in$  прообраз  $f^{-1}(y_0)$  состоит из одного элемента. Это, по определению, означает, что отображение f биективно.

Полученное в процессе доказательства соотношение  $f(x_0) = y_0$  означает, что  $f^{-1}(y_0) = x_0$ . Но первоначально мы определили элемент  $x_0$  равенством  $x_0 = g(y_0)$ . Таким образом,  $g(y_0) = f^{-1}(y_0)$ . Поскольку это справедливо для любого элемемта  $y_0 \in B$ , отображение g совпадает с  $f^{-1}$ .

**Пример 1.** Пусть A — плоскость, B — некоторая содержащаяся в этой плоскости прямая. Через f обозначим ортогональное проектирование плоскости на прямую . Далее через  $g\colon B\to A$  обозначим отображение, которое произвольной точке  $\in$  ставит в соответствие ту же самую точку (но уже рассматриваемую как элемент множества A). Ясно, что если  $N\in$ , то верны равенства  $f(N)=N, \ g(N)=N, \ u$  потому  $f\circ g=id$ , т. е. выполнено второе из соотношений (2). Первое же из этих соотношений не выполнено: легко видеть, что  $g\circ f=f$ . Поэтому отображения f и g не являются взаимно-обратными. Этот пример показывает, что выполнения только одного из равенств (2) недостаточно для справедливости заключения теоремы 2.

Пусть  $f\colon A\to B$  – произвольное отображение. Обозначим через E(f) множество всех тех элементов  $_0\in B$ , для которых прообраз  $f^{-1}(y_0)$  является непустым множеством. Множество E(f) называется образом (или множеством значений) отображения f.

Если отображение  $f: A \to B$  удовлетворяет условию B = E(f), то оно называется сюръективным отображением (или отображением множества на множество B).

Далее, отображение  $f \colon A \to B$  называется инъективным, если для любого элемента  $y_0 \in B$  прообраз  $f^{-1}(y_0)$  либо является пустым множеством, либо состоит ровно иэ одного элемента. Легко видеть, что отображение  $f \colon A \to B$  в том и только в том случае является биективным, если оно сюръективно и инъективно одновременно. В самом деле, сюръективность означает, что для любого  $y_0 \in B$  прообраз  $f^{-1}(y_0)$  является непустым множеством, и потому (в силу инъективности) он состоит ровно из одного элемента.

## 2. Числовые функции

Числовой функцией условимся называть всякое сюръективное отображение  $f\colon A\to B$ , где  $A\subset\mathbb{R}, B\subset\mathbb{R}.$ 

Наиболее часто употребляемым способом задания числовой функции является запись ее равенством, в левой части которого стоит y, а в правой — некоторое выражение, содержащее переменную . Например,

$$y = x^2$$
,  $y = \sqrt{x-1} + lg(x^2 - 5)$ 

и т. д. Когда говорят, что такая запись определяет некоторую числовую функцию f, то имеют в виду следующие соглашения:

- 1. Областью определения функции f является множество всех тех действительных чисел, при подстановке которых вместо x выполнимы (в области действительных чисел) все действия, указанные в рассматриваемом выражении.
- 2. Если  $x_0 \in A$ , то за  $f(x_0)$  принимается значение стоящего в правой части выражения при = 0.
- 3. Функция f сюръективна, т. е. областью ее значений является множество всех чисел вида  $f(x_0)$ , где  $\in A$ ,

Если F(x) — некоторое выражение с переменной, то для краткости вместо «числовая функция, определенная равенством y=F(x)» говорят просто «функция y=F(x)». Именно в этом смысле употребляются привычные для школьного обихода обороты «функция  $y=x^2$ », «функция  $y=\sin x$ » и т. п.

Заметим, что часто числовая функция задается несколькими различными формулами, рассматриваемыми на непересекающихся промежутках. Например, функция y=|x| определяется следующим образом:

$$y = \begin{cases} x & \text{при} x \ge 0 \\ -x & \text{при} x < 0 \end{cases}$$

В таких записях традиционно используется фигурная скобка, означающая, что правая часть рассматривается как единое выражение.

Пусть F(x) — некоторое выражение с переменной x. Обозначим через область определения функции

$$y = F(x), (3)$$

а через B — множество ее значений. Предположим, что соотношение (3), рассматриваемое как уравнение относительно x, имеет для любого  $y \in B$  ровно один корень, который можно явно найти в виде выражения G(y). Тогда справедлива следующая теорема.

**Теорема 3.** Функция y = G(x) является обратной для функции y = F(x).

Доказательство. Для удобства обозначим функцию y = F(x) через f, а функцию y = G(x) — через g. Если  $x_0 \in A$ , то число  $y_0 = F(x_0)$  является образом точки  $x_0$  при отображении f, т. е.  $y_0 = f(x_0)$ . Кроме того, равенство  $y_0 = F(x_0)$  означает, что  $x_0$  есть корень уравнения (3) при  $y = y_0$ , иначе говоря,  $x_0 = G(y_0)$ . Следовательно,  $x_0$  есть образ точки  $y_0$  при отображении g,  $x_0 = g(y_0)$ . Таким образом,

$$(g \circ f)(x_0) = g(f(x_0)) = g(y_0) = x_0$$

и  $f \circ g$  есть тождественное отображение множества B.

Пусть теперь  $y_1 \in B$ . Тогда уравнение (3) имеет при  $y = y_1$  единственный корень  $x_1 = G(y_1)$ . Отсюда можно сделать 2 вывода: 1)  $x_1 = g(y_1)$ , 2)  $y_1 = F(x_1)$ , т.е.  $y_1 = f(x_1)$ . Таким образом,

$$(g \circ f)(y_1) = f(g(y_1)) = f(x_1) = y_1$$

и  $f \circ g$  есть тождественное отображение множества B.

Мы видим, что  $g \circ f = id$ ,  $f \circ g = id$ , и потому, согласно теореме 2,  $g = f^{-1}$ .

Замечание. Соотношение (3), рассматриваемое как уравнение относительно x, имеет корень только при  $y \in B$  (так как B = E(f)). Следовательно, если установлено, что уравнение (3) имеет при любом  $y \in \mathbb{R}$  не более одного корня, то это означает, что при  $y \notin B$  оно корней не имеет, а при  $y \in B$  имеет ровно один корень. Таким образом, мы получаем следующее практическое правило для нахождения функции y = G(x), обратной для функции y = F(x).

Решить уравнение (3) относительно x (убедившись в процессе решения, что это уравнение имеет не более одного корня) и записать этот корень в виде x = G(y). где G(y) — некоторое выражение, содержащее переменную y. Если это удастся, то надо затем поменять местами x и y, y. е. написать y = G(x).

Это практическое правило удобно тем, что не требует предварительно находить область определения и множество значений функции (3): при правильном решении уравнения (3) получаемое выражение G(y) имеет в качестве своей области определения множество B (т е. множество значений функции y = F(x)).

Пример 2. Найти функцию, обратную следующей:

$$y = \frac{2x - 1}{x - 2} \tag{4}$$

**Решение.** Рассматривая соотношение (4) как уравнение относительно x, находим (при  $y \neq 2$ ) единственный корень

$$x = \frac{2y - 1}{y - 2}$$