Wiederholungsaufgaben 2: Themen 10-13 Lösung

1 Automatische Syntaxanalyse B

Grammatiktypen

- Nennen Sie die wichtigsten differenzierenden Merkmale der unten genannten Modellierungen der Syntax natürlicher Sprachen.
- Berücksichtigen Sie dabei auch folgende Kriterien:
 - Gegenstand der Strukturanalyse
 - Analysetiefe (hierarchische vs. flache Strukturanalyse)
 - formale Modellierung
 - Verarbeitung / verwendbare Parsingalgorithmen

1. Merkmalsstrukturbasierte Grammatik (FCFG)

- Modellierung von Phrasenstruktur und Morphosyntax
- hierarchische Konstituenten-Strukturanalyse
- Erweiterung atomarer CFG-Kategorien zu Merkmalstrukturen mit grammatischen Merkmalen
 - ermöglicht Bestimmung von morphosyntaktischen Constraints
 - verhindert Überproduktion
- Verarbeitung: Unifikation als zentraler Mechanismus

2. Probabilistische kontextfreie Grammatik (PCFG)

Lösung:

- statistische Modellierung von Phrasenstruktur (gewichtete CFG-Regeln)
- hierarchische Konstituenten-Strukturanalyse
- statistisches Modell (aus Korpus induzierte gewichtete CFG-Regeln)
 - Abschätzung der Regelwahrscheinlichkeit über MLE
 - verhindert Überproduktion (unwahrscheinlich = nicht-grammatisch)
 - ermöglicht strukturelle Disambiguierung (Auswahl wahrscheinlichster Ableitung)
- Verarbeitung u.a. mit Viterbi-Parser
- 2 Erweiterungen der Kategorien von PCFGS:
 - lexikalisierte PCFG: Erweiterung um Kopfannotation
 - history-based PCFG: Erweiterung um Parent-Annotation

3. Partielles Parsing (Chunking)

- Identifizierung der wichtigsten Syntaktischen Einheiten (NP, VP, PP)
- partielle, flache Konstituenten-Strukturanalyse
 - durch Hintereinanderschalten von Grammatiken: Erzeugung hierarchischer Strukturen
- formale Modellierung mit regulären Grammatiken oder statistischem Modell (gelernt aus IOB-Tag-Sequenzen)

10 Unifikationsparsing und getypte Merkmalstrukturen

Gegeben sei folgende Typhierarchie:

Typhierarchien

Unifizieren Sie die folgenden Paare von Typen. Typen, die nicht unifizieren, markieren Sie als *undefiniert*.

- (a) Nom ⊔ Akk = _____
- (b) $GenDat \sqcup NonDat =$
- (c) GenDat \sqcup Gen = _____
- (d) Nom $|\cdot|$ =
- (e) Akk \(\triangle \text{NomAkk} = \(\triangle \text{...} \)

Lösung:

- (a) undefiniert
- (b) Gen
- (c) Gen
- (d) Nom
- (e) Akk

Subsumption

Gegeben seien nun zusätzlich folgende Merkmalstrukturen mit $\theta(FS1) = \theta(FS2) = \theta(FS3) = \bot$.

$$FS1 = \begin{bmatrix} CAS & NomAkk \\ GEN & mask \end{bmatrix}$$
 $FS2 = \begin{bmatrix} CAS & Nom \\ GEN & mask \end{bmatrix}$

$$FS2 = \begin{bmatrix} CAS & Nom \\ GEN & mask \\ PER & 3 \end{bmatrix}$$

$$FS3 = \begin{bmatrix} CAS & Akk \\ PER & 3 \end{bmatrix}$$

Entscheiden Sie jeweils mit ja oder nein:

 $FS2 \sqsubseteq FS3$?

 $FS1 \subseteq FS2$? (b)

 $FS2 \sqsubseteq FS1$? (c)

 $FS3 \subseteq FS2$? (d)

(e) Fs3 ⊆ Fs3 ? _____

- (a) nein
- (b) ja
- (c) nein
- (d) nein
- (e) ja

(d) nein

(e) ja

Lċ	isung:
	ein, da FS2@CAS = Nom, FS3@CAS = Akk und Nom ⊔ Akk undefiniert ist (bzw. eil Nom und Akk nicht unifizieren).
_	${f ungen}$ scheiden Sie jeweils mit ja oder $nein$:
(a)	$FS2 \models CAS: \bot$?
b)	$FS2 \models GEN : neut ?$
(c)	FS3 ⊨ PER:3 ?
d)	$FS1 \vDash NomAkk \land mask$?
(e)	$FS2 \models CAS:NomAkk$?
Lċ	ösung:
(a)) ja
(b)) nein
(c) ja

11 Statistisches Parsing

PCFG: Gewichte und Ableitungswahrscheinlichkeit

Betrachten Sie folgendes PCFG-Parsing (** = unkenntlich gemacht):

```
grammar = nltk.PCFG.fromstring("""
2
             -> NP VP
                                      [1.0]
             -> TV NP
3
        VP
                                      [0.4]
        VP
             -> IV
                                      [**]
4
5
        VP
             \rightarrow DatV NP NP
                                      [0.3]
        TV
             -> 'saw'
                                      [1.0]
6
                                      [1.0]
             -> 'ate'
7
        IV
8
       DatV -> 'gave'
                                      [1.0]
                                      [0.8]
9
             -> 'telescopes'
       NP
             -> 'Jack'
                                      [0.2]
10
        """)
11
   viterbi_parser = nltk.ViterbiParser(grammar)
12
13
   for tree in viterbi_parser.parse(['Jack', 'saw', 'telescopes']):
       print(tree)
14
15 (S (NP Jack) (VP (TV saw) (NP telescopes))) (p=0.064)
```

(a) Geben Sie die Berechnung für die Ableitungswahrscheinlichkeit in Zeile 15 an?

```
Lösung:
```

1.0 * 0.2 * 0.4 * 1.0 * 0.8 oder 0.2 * 0.4 * 0.8 oder beliebige Permutationen

(b) Welchen Wert muss das Gewicht für die Regel $VP \rightarrow IV$ haben?

Lösung:

0.3

- Gewichte der beiden andere VP-Regeln:
 - VP \rightarrow TV NP: 0.4
 - VP → DatV NP NP: 0.3
- Gesamtwahrscheinlichkeit für VP-Regeln muss 1 ergeben:
 - 1 0.4 0.3 = 0.3

Übergangsbasierter Shift-Reduce-Dependency-Parser

- In welcher Reihenfolge werden im Folgenden jeweils die angegebenen REDUCE-Übergange durchgeführt?
- Begründen Sie.
- Wie unterscheiden sich die beiden Syntaxbäume?

(a)

Lösung:

- RIGHTARC C, dann RIGHTARC B, dann RIGHTARC A
- anderenfalls werden die Dependenten Bonbons (mit RIGHTARC A)
 bzw. aus (mit RIGHTARC B) zu früh vom Stack genommen
 - diese sind nämlich selbst wiederum Köpfe von Dependenten
 - würde man beispielsweise mit RIGHTARC A beginnen, könnte der RIGHTARC B-Übergang nicht mehr durchgeführt werden, da Bonbons als Dependent von Kaufe schon vom Stack gelöscht wäre.

• RICHTARC-Regel:

- RICHTARC-Übergang nur durchführen, wenn der Dependent der möglichen Relation nicht Kopf einer der Relationen aus der Menge offener Relationen ist
- sonst: SHIFT-Übergang

(b)

- LEFTARC A, dann LEFTARC B, dann RIGHTARC
- im Unterschied zu oben ist diese Reihenfolge (RIGHTARC zuletzt) nicht durch die RICHTARC-Regel (s.o.) bedingt, sondern kommt durch das sukzessive Hinzufügen der Wörter auf den Stack (SHIFT-Übergang):
 - zwischen kaufen und in gibt es hier keine Relation
 - entsprechend wird mit SHIFT Wien auf den Stack geschoben, der dann so aussieht: [kaufen, in, Wien]
 - nun wird mit LEFTARC B in als Dependent dieser Relation vom Stack entfernt; dieser sieht nun so aus: [kaufen, Wien]
 - jetzt kann mit RICHTARC Wien vom Stack gelöscht werden (da es keine offene Relation mehr gibt, in der Wien Kopf ist)
- Unterschied zu oben:
 - diese Dependenzanalyse folgt der primacy of content words-Maxime des UD-Schemas (Substantiv als Dependent statt Präposition)
 - Wortstellung (Imperativ vs Infinitiv)
 - Präpositionalphrase ist hier Adverbial, nicht Attribut

12 Datengestützte Syntaxanalyse

Datengestützte Methoden: Abschätzung Regelwahrscheinlichkeiten

(a) Für ein großes Korpus sei lediglich part of speech (POS) annotiert; Syntaxbäume stehen nicht zur Verfügung.

Welche Arten von Regeln einer kontextfreien Grammatik kann man mit diesen Daten automatisch generieren?

Lösung:

Lexikalische Regeln

(b) Folgende Häufigkeiten wurden aus einem Datensatz gezählt: $count(VP \rightarrow V) = 200, count(VP \rightarrow V NP) = 100, count(VP \rightarrow **) = 300.$ Berechnen Sie $P(VNP \mid VP)$ mit der MLE-Methode.

Lösung:

$$\frac{100}{300} = \frac{1}{3} \approx 33.3\%$$

Methoden für lexikalisierte und history-based PCFGs

(a) Führen Sie im linken Syntaxbaum eine Kopfannotation durch; Geben Sie anschließend die lexikalisierte Regel für den Wurzelknoten an. Orientieren Sie bei der Kopfannotation an der Strukturposition des Kopfes im X-Bar-Schema (vgl. rechter Syntaxbaum).

(b) Führen Sie für die CFG-Regel
n ${\bf C}\to {\bf D}$ und ${\bf A}\to {\bf B}$ in unterem Syntax
baum parent-annotation durch.

D

D^C-A

 D^C

13 Partielles Parsing

Chunking

Markieren Sie alle Nominalphrasen (NPs), indem Sie den folgenden deutschen Satz vollständig nach dem IOB-Tagging-Schema annotieren; verwenden Sie nur folgende Label: B-NP, I-NP, O.

Token	Der	junge	Mann	gab	ihr	das	Buch	
Tag								

Lösung:

Token	Der	junge	Mann	gab	ihr	das	Buch	
Tag	B-NP	I-NP	I-NP	О	B-NP	B-NP	I-NP	О

Kaskadierende Chunk-Parser

(a) Mit welcher Methode kann z.B. folgende hierarchische Struktur einer Präpositionalphrase mit flachen Chunk-Parsern erzeugt werden:

[PP auf/P [NP dem/DET Baum/N]]

- hintereinandergeschaltete flache Chunk-Parser
 (= kaskadierender Chunk-Parser)
- Output des einen als Input des folgenden Chunkers

Evaluationsmetriken

Berechnen Sie Accuracy, Precision und Recall für folgende korrekte Annotationen (truth) und folgende Hypothesen (predict). Geben Sie bitte jeweils Brüche an.

Sample	0	1	2	3	4	5	6	7	8	9
truth	PP	PP	PP	0	0	0	0	PP	0	PP
predict	PP	0	0	PP	0	PP	PP	0	PP	PP

Λ	
Accuracy	
A NOCHI CICA	

Precision (für die Klasse PP):

Recall (für die Klasse PP):

Lösung:

Accuracy: $\frac{3}{10} = 30\%$

Precision (für die Klasse PP): $\frac{2}{6} \approx 33.3\%$

Recall (für die Klasse PP): $\frac{2}{5} = 40\%$