Exploratory and Explanatory Visualization of Molecules and Chemical Models

Henry Heberle
Data Science (Visualization)
Germany

Visual Data Science Lab Christina Humer
Data Science (Visualization)
Austria

Machine Learning models can predict molecules' properties

J. J. Naveja and J. L. Medina-Franco. Finding constellations in chemical space through core analysis. Frontiers in Chemistry, 7, 2019. Image under CC BY 4.0. Edited: colors were set to gray.

Machine Learning models can predict molecules' properties

Explainable AI (XAI) techniques highlight important regions

Explainable AI (XAI) techniques highlight important regions

Multiple explanations from different methods or properties

Big chemical space

Exploratory Visualization

Example of task: comparing two XAI methods

Suppose we want a model to predict solubility that:

- -is accurate
- -reveals *regions* that increase solubility

Example Dataset (SDF)

Atoms

Atom Bonds

Properties

xAl

RDKit 2D

```
26 28
            0 0 0
                        0
                           0999 V2000
                      0
  -3.8971
          -10.3573
                       0.0000 C
 -3.8971
           -8.8573
                      0.0000 C
  -2.5981
           -8.1073
                      0.0000 C
           -3.6073
   0.0000
                      0.0000 N
           -2.7256
   1.2135
                       0.0000 N
```

1 2 1 0 2 3 1 0 3 4 1 0 3 5 1 0 3 6 1 0

```
M END
```

```
> <fingerprint_0>
2.4448594558634795e-05
...
> <fingerprint_127>
0.3827087283134461
> <predicted_LOD>
3.2429239749908447
...
> <measured_LOD>
2.98
...
```

```
> <atom.dprop.rep_1>
-0.746948 -0.746948 -0.1121631 -0.1121631 -0.4463508 ...
> <atom.dprop.rep_2>
1.1985533 1.1985533 1.1985533 1.4049025 -0.5853193 ...
...
```


CIME

Scatter View ID: 158 Projection

CIME

Table View

Samuel Gratzl, Alexander Lex, Nils Gehlenborg, Hanspeter Pfister, and Marc Streit. **LineUp**: Visual Analysis of Multi-Attribute Rankings IEEE Transactions on Visualization and Computer Graphics (InfoVis '13), 19(12), pp. 2277–2286, doi:10.1109/TVCG.2013.173, 2013.

Table View

Samuel Gratzl, Alexander Lex, Nils Gehlenborg, Hanspeter Pfister, and Marc Streit. **LineUp**: Visual Analysis of Multi-Attribute Rankings IEEE Transactions on Visualization and Computer Graphics (InfoVis '13), 19(12), pp. 2277–2286, doi:10.1109/TVCG.2013.173, 2013.

CIME

Contribution View

Use Case: Comparing attributions from 2 models for lipophilicity

- Lipophilicity dataset from MoleculeNet^[1]
 - 4200 molecules
- 2 models^[2] trained to predict logD

B: base model

X: designed to be more interpretable [is it?]

One XAI method

[1] Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., ... & Pande, V. (2018). MoleculeNet: a benchmark for molecular machine learning. Chemical science, 9(2), 513-530.

[2] Henderson, R., Clevert, D. A., & Montanari, F. (2021). Improving Molecular Graph Neural Network Explainability with Orthonormalization and Induced Sparsity. arXiv preprint arXiv:2105.04854.

Use Case: Comparing attributions from 2 models for lipophilicity

Demo

Summary

- Model-agnostic Web Application
- Exploratory Visualization: Overview + Details
- Not only for (X)AI: any dataset with molecular or atom-level features
- Helping to:
 - Explore chemical space
 - Improve model's performance
 - Increase model's interpretability
 - Increase Trust in AI / Communicate
 - To experts
 - To Regulatory Agencies

Acknowledgments

Julian Heinrich

Floriane Montanari

Ryan Henderson

Thomas Wolf

Florian Huber

Christina Humer

christina.humer@jku.at

Marc Streit

Demo Website

https://jku-vds-lab.at/cime-demo

Github

https://github.com/jku-vds-lab/projection-space-explorer/tree/cimeV0.1.17c

Article in preparation