

شبكههاي عصبي مصنوعي

جلسه هشتم:

پرسپترون چند لایه (۴) (Multi-Layer Perceptron = MLP)

ضابطه توقف الگوريتم

ضابطه توقف الگوريتم

- هنوز هیچ قاعده مدونی برای این که مشخص شود چه وقت وزنها همگرا شدهاند، وجود ندارد. فقط می توان چند ضابطه برای این کار درنظر گرفت.

ضابطه توقف الگوريتم

- هنوز هیچ قاعده مدونی برای این که مشخص شود چه وقت وزنها همگرا شدهاند، وجود ندارد. فقط می توان چند ضابطه برای این کار درنظر گرفت.
 - فرض کنید \mathbf{w}^* بردار وزنهای بهینه شبکه برای حالتی که خطای شبکه به کمینه محلی یا جهانی رسیده باشد. در این صورت، الگوریتم پسانتشار خطا متوقف شود هنگامی که:

ضابطه توقف الگوريتم

- هنوز هیچ قاعده مدونی برای این که مشخص شود چه وقت وزنها همگرا شدهاند، وجود ندارد. فقط می توان چند ضابطه برای این کار درنظر گرفت.
 - فرض کنید \mathbf{w}^* بردار وزنهای بهینه شبکه برای حالتی که خطای شبکه به کمینه محلی یا جهانی رسیده باشد. در این صورت، الگوریتم پسانتشار خطا متوقف شود هنگامی که:

به مقداری کم رسیده باشد $\mathbf{g}(\mathbf{w}^*)$ به مقداری کم رسیده باشد – ۱

ضابطه توقف الگوريتم

- هنوز هیچ قاعده مدونی برای این که مشخص شود چه وقت وزنها همگرا شدهاند، وجود ندارد. فقط می توان چند ضابطه برای این کار درنظر گرفت.
 - فرض کنید \mathbf{w}^* بردار وزنهای بهینه شبکه برای حالتی که خطای شبکه به کمینه محلی یا جهانی رسیده باشد. در این صورت، الگوریتم پسانتشار خطا متوقف شود هنگامی که:

به مقداری کم رسیده باشد $\mathbf{g}(\mathbf{w}^*)$ به مقداری کم رسیده باشد – ۱

$$\|\mathbf{g}(\mathbf{w}^*)\| \leq \varepsilon$$

ضابطه توقف الگوريتم

- هنوز هیچ قاعده مدونی برای این که مشخص شود چه وقت وزنها همگرا شدهاند، وجود ندارد. فقط می توان چند ضابطه برای این کار درنظر گرفت.
 - فرض کنید \mathbf{w}^* بردار وزنهای بهینه شبکه برای حالتی که خطای شبکه به کمینه محلی یا جهانی رسیده باشد. در این صورت، الگوریتم پسانتشار خطا متوقف شود هنگامی که:

به مقداری کم رسیده باشد $\mathbf{g}(\mathbf{w}^*)$ به مقداری کم رسیده باشد – ۱

$$\|\mathbf{g}(\mathbf{w}^*)\| \leq \varepsilon$$

– معایب:

ضابطه توقف الگوريتم

- هنوز هیچ قاعده مدونی برای این که مشخص شود چه وقت وزنها همگرا شدهاند، وجود ندارد. فقط می توان چند ضابطه برای این کار درنظر گرفت.
 - فرض کنید \mathbf{w}^* بردار وزنهای بهینه شبکه برای حالتی که خطای شبکه به کمینه محلی یا جهانی رسیده باشد. در این صورت، الگوریتم پسانتشار خطا متوقف شود هنگامی که:

به مقداری کم رسیده باشد $\mathbf{g}(\mathbf{w}^*)$ به مقداری کم رسیده باشد اندازه بردار

$$\|\mathbf{g}(\mathbf{w}^*)\| \leq \varepsilon$$

- معایب:
- احتمال دارد خیلی دیر به اندازه از پیش تعیین شده برسد.

ضابطه توقف الگوريتم

- هنوز هیچ قاعده مدونی برای این که مشخص شود چه وقت وزنها همگرا شدهاند، وجود ندارد. فقط می توان چند ضابطه برای این کار درنظر گرفت.
 - فرض کنید \mathbf{w}^* بردار وزنهای بهینه شبکه برای حالتی که خطای شبکه به کمینه محلی یا جهانی رسیده باشد. در این صورت، الگوریتم پسانتشار خطا متوقف شود هنگامی که:

به مقداری کم رسیده باشد $\mathbf{g}(\mathbf{w}^*)$ به مقداری کم رسیده باشد اندازه بردار

$$\|\mathbf{g}(\mathbf{w}^*)\| \leq \varepsilon$$

– معایب:

- احتمال دارد خیلی دیر به اندازه از پیش تعیین شده برسد.
 - نیاز به محاسبه بردار گرادیان دارد.

ضابطه توقف الگوريتم

- هنوز هیچ قاعده مدونی برای این که مشخص شود چه وقت وزنها همگرا شدهاند، وجود ندارد. فقط می توان چند ضابطه برای این کار درنظر گرفت.
 - فرض کنید \mathbf{w}^* بردار وزنهای بهینه شبکه برای حالتی که خطای شبکه به کمینه محلی یا جهانی رسیده باشد. در این صورت، الگوریتم پسانتشار خطا متوقف شود هنگامی که:
 - به مقداری کم رسیده باشد $\mathbf{g}(\mathbf{w}^*)$ به مقداری کم رسیده باشد اندازه بردار
 - اشد. کافی کاهش یافته باشد. $\mathscr{E}_{\mathrm{av}}$ (epoch) میانگین مربعات خطا در یک دوره $\mathscr{E}_{\mathrm{av}}$

ضابطه توقف الگوريتم

- هنوز هیچ قاعده مدونی برای این که مشخص شود چه وقت وزنها همگرا شدهاند، وجود ندارد. فقط می توان چند ضابطه برای این کار درنظر گرفت.
 - فرض کنید \mathbf{w}^* بردار وزنهای بهینه شبکه برای حالتی که خطای شبکه به کمینه محلی یا جهانی رسیده باشد. در این صورت، الگوریتم پسانتشار خطا متوقف شود هنگامی که:
 - به مقداری کم رسیده باشد $\mathbf{g}(\mathbf{w}^*)$ به مقداری کم رسیده باشد ۱
 - اشد. کافی کاهش یافته باشد. $\mathscr{E}_{\mathrm{av}}$ (epoch) میانگین مربعات خطا در یک دوره $\mathscr{E}_{\mathrm{av}}$

عیب این ضابطه در این است که ممکن است هیچگاه به مقدار از پیش تعیین شده نرسد.

ضابطه توقف الگوريتم

- هنوز هیچ قاعده مدونی برای این که مشخص شود چه وقت وزنها همگرا شدهاند، وجود ندارد. فقط می توان چند ضابطه برای این کار درنظر گرفت.
 - فرض کنید \mathbf{w}^* بردار وزنهای بهینه شبکه برای حالتی که خطای شبکه به کمینه محلی یا جهانی رسیده باشد. در این صورت، الگوریتم پسانتشار خطا متوقف شود هنگامی که:
 - به مقداری کم رسیده باشد $\mathbf{g}(\mathbf{w}^*)$ به مقداری کم رسیده باشد اندازه بردار
 - اشد. کافی کاهش یافته باشد. $\mathscr{E}_{\mathrm{av}}$ (epoch) میانگین مربعات خطا در یک دوره $\mathscr{E}_{\mathrm{av}}$
 - ۳ استفاده از هر دو ضابطه ۱ و ۲.

ضابطه توقف الگوريتم

(Cross-Validation) استفاده از دادههای اعتبارسنجی متقابل – ۴

ضابطه توقف الگوريتم

(Cross-Validation) استفاده از دادههای اعتبارسنجی متقابل – ۴

تقسیم دادهها به سه بخش:

ضابطه توقف الگوريتم

۴ – استفاده از دادههای اعتبارسنجی متقابل (Cross-Validation)

تقسیم دادهها به سه بخش:

• آموزش (Train)

ضابطه توقف الگوريتم

۴ – استفاده از دادههای اعتبارسنجی متقابل (Cross-Validation)

تقسیم دادهها به سه بخش:

- آموزش (Train)
- اعتبارسنجی (Validation)

ضابطه توقف الگوريتم

۴ – استفاده از دادههای اعتبارسنجی متقابل (Cross-Validation)

تقسیم دادهها به سه بخش:

- آموزش (Train)
- اعتبارسنجی (Validation)
 - آزمایش (Test)

ضابطه توقف الگوريتم

(Cross-Validation) استفاده از دادههای اعتبارسنجی متقابل – ۴

ضابطه توقف الگوريتم

(Cross-Validation) استفاده از دادههای اعتبارسنجی متقابل – ۴

• به ازای هر چند دوره آموزش (مثلا ۵ دوره)، وزن ها را ثابت نگه دارید و خطای مدلسازی شبکه را با داده های اعتبارسنجی بهدست آورید.

ضابطه توقف الگوريتم

۲ - استفاده از دادههای اعتبارسنجی متقابل (Cross-Validation)

- به ازای هر چند دوره آموزش (مثلا ۵ دوره)، وزن ها را ثابت نگه دارید و خطای مدلسازی شبکه را با داده های اعتبارسنجی بهدست آورید.
- آموزش شبکه هنگامی متوقف شود که خطای اعتبارسنجی به خطای آموزش نزدیک شود.

ضابطه توقف الگوريتم

۲ – استفاده از دادههای اعتبارسنجی متقابل (Cross-Validation)

- به ازای هر چند دوره آموزش (مثلا ۵ دوره)، وزن ها را ثابت نگه دارید و خطای مدلسازی شبکه را با داده های اعتبارسنجی بهدست آورید.
- آموزش شبکه هنگامی متوقف شود که خطای اعتبارسنجی به خطای آموزش نزدیک شود.
- در واقع در این جا باید مصالحهای بین زمان آموزش و دقت تقریب در مدل سازی انجام داد.

ضابطه توقف الگوريتم

۴ - استفاده از دادههای اعتبارسنجی متقابل (Cross-Validation)

- به ازای هر چند دوره آموزش (مثلا ۵ دوره)، وزن ها را ثابت نگه دارید و خطای مدلسازی شبکه را با داده های اعتبارسنجی بهدست آورید.
- آموزش شبکه هنگامی متوقف شود که خطای اعتبارسنجی به خطای آموزش نزدیک شود.
- در واقع در این جا باید مصالحهای بین زمان آموزش و دقت تقریب در مدل سازی انجام داد.
 - ولی باید توجه داشت که همواره نموارهای آموزش و اعتبارسنجی به این شکل که در این جا نشان داده شده، نیست.

ضابطه توقف الگوريتم

۴ – استفاده از دادههای اعتبارسنجی متقابل (Cross-Validation)

• یعنی پس از چند دوره، خطای اعتبارسنجی شروع به افزایش می کند و باید آموزش را زودتر از موعد متوقف کرد.

- به ازای هر چند دوره آموزش (مثلا ۵ دوره)، وزن ها را ثابت نگه دارید و خطای مدلسازی شبکه را با داده های اعتبارسنجی بهدست آورید.
- آموزش شبکه هنگامی متوقف شود که خطای اعتبارسنجی به خطای آموزش نزدیک شود.
- در واقع در این جا باید مصالحهای بین زمان آموزش و دقت تقریب در مدل سازی انجام داد.
 - ولی باید توجه داشت که همواره نموارهای آموزش و اعتبارسنجی به این شکل که در این جا نشان داده شده، نیست.

ضابطه توقف الگوريتم

(Cross-Validation) استفاده از دادههای اعتبارسنجی متقابل – ۴

در مجموع، برای اعتبارسنجی باید چنین عمل کرد:

ضابطه توقف الگوريتم

(Cross-Validation) استفاده از دادههای اعتبارسنجی متقابل – ۴

در مجموع، برای اعتبارسنجی باید چنین عمل کرد:

Dataset

Data Permitting:

Training

Validation

Testing

ضابطه توقف الگوريتم

۴ – استفاده از دادههای اعتبارسنجی متقابل (Cross-Validation)

در مجموع، برای اعتبارسنجی باید چنین عمل کرد:

Dataset

Data Permitting:

Training

Validation

Testing

به این کار، اعتبارسنجی متقابل (Cross-Validation)

ضابطه توقف الگوريتم

۴ – استفاده از دادههای اعتبارسنجی متقابل (Cross-Validation)

در مجموع، برای اعتبارسنجی باید چنین عمل کرد:

Dataset

Data Permitting:

Training

Validation

Testing

به این کار، اعتبارسنجی متقابل (Cross-Validation)

نکته مهم:

همواره، دادههای آموزش بهصورت اتفاقی به شبکه اعمال شوند. البته این کار برای آموزش برخط امکان پذیر نیست.

غنی بودن دادههای آموزش:

غنی بودن داده های آموزش:

- دادههایی که برای آموزش شبکه به کار میروند باید اطلاعات کافی از تابع غیرخطی موردنظر را درخود داشته باشد. ← غنی بودن دادهها

غنی بودن دادههای آموزش:

- دادههایی که برای آموزش شبکه به کار میروند باید اطلاعات کافی از تابع غیر خطی موردنظر را در خود داشته باشد. \rightarrow غنی بودن دادهها

مثال

مقداردهی اولیه وزنها:

مقداردهی اولیه وزنها:

- یکی از نکات مهم در الگوریتم پسانتشار خطا، انتخاب مقداری مناسب برای وزنهای اولیه است.

مقداردهی اولیه وزنها:

- یکی از نکات مهم در الگوریتم پسانتشار خطا، انتخاب مقداری مناسب برای وزنهای اولیه است.
 - انتخاب نامناسب مقدار اولیه وزنها می تواند باعث مشکلات زیر شود:

- یکی از نکات مهم در الگوریتم پسانتشار خطا، انتخاب مقداری مناسب برای وزنهای اولیه است.
 - انتخاب نامناسب مقدار اولیه وزنها می تواند باعث مشکلات زیر شود:
 - ۱- اشباع خروجی سلولها

مقداردهی اولیه وزنها:

- یکی از نکات مهم در الگوریتم پسانتشار خطا، انتخاب مقداری مناسب برای وزنهای اولیه است.
 - انتخاب نامناسب مقدار اولیه وزنها می تواند باعث مشکلات زیر شود:

۱- اشباع خروجی سلولها

- یکی از نکات مهم در الگوریتم پسانتشار خطا، انتخاب مقداری مناسب برای وزنهای اولیه است.
 - انتخاب نامناسب مقدار اولیه وزنها می تواند باعث مشکلات زیر شود:
 - ۱- اشباع خروجی سلولها

- یکی از نکات مهم در الگوریتم پسانتشار خطا، انتخاب مقداری مناسب برای وزنهای اولیه است.
 - انتخاب نامناسب مقدار اولیه وزنها می تواند باعث مشکلات زیر شود:
 - ۱- اشباع خروجی سلولها

- یکی از نکات مهم در الگوریتم پسانتشار خطا، انتخاب مقداری مناسب برای وزنهای اولیه است.
 - انتخاب نامناسب مقدار اولیه وزنها می تواند باعث مشکلات زیر شود:
 - ١- اشباع خروجي سلولها
 - Y- بهوجود آمدن نقاط زینی (Saddle Points)

- یکی از نکات مهم در الگوریتم پسانتشار خطا، انتخاب مقداری مناسب برای وزنهای اولیه است.
 - انتخاب نامناسب مقدار اولیه وزنها می تواند باعث مشکلات زیر شود:
 - ١- اشباع خروجي سلولها
 - Y- بهوجود آمدن نقاط زینی (Saddle Points)
 - ٣- اشباع غلط

مقداردهی اولیه وزنها:

- برای اجتناب از این مشکلات، باید مقدار اولیه وزنهای طوری باشد که جمع خطی ورودی به سلولها، در بین ناحیههای خطی و غیرخطی باشد.

مقداردهی اولیه وزنها:

- برای اجتناب از این مشکلات، باید مقدار اولیه وزنهای طوری باشد که جمع خطی ورودی به سلولها، در بین ناحیههای خطی و غیرخطی باشد.

مقداردهی اولیه وزنها:

- برای به دست آوردن معادله برای این منظور

مقداردهی اولیه وزنها:

- برای به دست آوردن معادله برای این منظور

$$v_j = \sum_{i=1}^m w_{ji} y_i$$
 جمع خطی ورودیها به سلول j

مقداردهی اولیه وزنها:

- برای بهدست آوردن معادله برای این منظور

$$v_j = \sum_{i=1}^m w_{ji} y_i$$
 اجمع خطی ورودیها به سلول j

فرض کنید ورودی های هر سلول در شبکه دارای میانگین صفر و واریانس واحد باشد

$$\mu_{y} = \mathbb{E}[y_{i}] = 0$$
 for all i

$$\sigma_y^2 = \mathbb{E}[(y_i - \mu_i)^2] = \mathbb{E}[y_i^2] = 1$$
 for all i

مقداردهی اولیه وزنها:

- برای بهدست آوردن معادله برای این منظور

$$v_j = \sum_{i=1}^m w_{ji} y_i$$
 اجمع خطی ورودیها به سلول j

فرض کنید ورودی های هر سلول در شبکه دارای میانگین صفر و واریانس واحد باشد

$$\mu_{v} = \mathbb{E}[y_{i}] = 0$$
 for all i

$$\sigma_y^2 = \mathbb{E}[(y_i - \mu_i)^2] = \mathbb{E}[y_i^2] = 1$$
 for all i

همچنین، فرضکنید ورودیها از نظر آماری مستقل از یکدیگر باشند

$$\mathbb{E}[y_i y_k] = \begin{cases} 1 & \text{for } k = i \\ 0 & \text{for } k \neq i \end{cases}$$

مقداردهی اولیه وزنها:

علاوه برآن، فرض كنيد وزنها با استفاده از توزيع يكنواخت اعداد با ميانگين صفر ايجاد شده باشند

مقداردهی اولیه وزنها:

علاوه برآن، فرض كنيد وزنها با استفاده از توزيع يكنواخت اعداد با ميانگين صفر ايجاد شده باشند

$$\mu_w = \mathbb{E}[w_{ji}] = 0$$
 for all (j, i) pairs

$$\sigma_w^2 = \mathbb{E}[(w_{ji} - \mu_w)^2] = \mathbb{E}[w_{ji}^2]$$
 for all (j, i) pairs

مقداردهی اولیه وزنها:

علاوه برآن، فرض کنید وزنها با استفاده از توزیع یکنواخت اعداد با میانگین صفر ایجاد شده باشند

$$\mu_w = \mathbb{E}[w_{ii}] = 0$$
 for all (j, i) pairs

$$\sigma_w^2 = \mathbb{E}[(w_{ji} - \mu_w)^2] = \mathbb{E}[w_{ji}^2]$$
 for all (j, i) pairs

 v_j بنابراین، میانگین

مقداردهی اولیه وزنها:

علاوه برآن، فرض کنید وزنها با استفاده از توزیع یکنواخت اعداد با میانگین صفر ایجاد شده باشند

$$\mu_w = \mathbb{E}[w_{ji}] = 0$$
 for all (j, i) pairs

$$\sigma_w^2 = \mathbb{E}[(w_{ji} - \mu_w)^2] = \mathbb{E}[w_{ji}^2]$$
 for all (j, i) pairs

 v_j بنابراین، میانگین

$$\mu_v = \mathbb{E}[v_j] = \mathbb{E}\left[\sum_{i=1}^m w_{ji} y_i\right] = \sum_{i=1}^m \mathbb{E}[w_{ji}] \mathbb{E}[y_i] = 0$$

مقداردهی اولیه وزنها:

 v_j و واريانس

مقداردهی اولیه وزنها:

 $v_{j}\,$ و واریانس

$$\sigma_v^2 = \mathbb{E}[(v_j - \mu_v)^2] = \mathbb{E}[v_j^2]$$

مقداردهی اولیه وزنها:

 v_i و واريانس

$$\sigma_v^2 = \mathbb{E}[(v_j - \mu_v)^2] = \mathbb{E}[v_j^2]$$
$$= \mathbb{E}\left[\sum_{i=1}^m \sum_{k=1}^m w_{ji} w_{jk} y_i y_k\right]$$

مقداردهی اولیه وزنها:

 v_{j} و واریانس

$$\begin{split} \sigma_v^2 &= \mathbb{E}[(v_j - \mu_v)^2] = \mathbb{E}[v_j^2] \\ &= \mathbb{E}\left[\sum_{i=1}^m \sum_{k=1}^m w_{ji} w_{jk} y_i y_k\right] \\ &= \sum_{i=1}^m \sum_{k=1}^m \mathbb{E}[w_{ji} w_{jk}] \mathbb{E}[y_i y_k] \end{split}$$

مقداردهی اولیه وزنها:

 $v_{j}\,$ و واریانس

$$\begin{split} \sigma_v^2 &= \mathbb{E}[(v_j - \mu_v)^2] = \mathbb{E}[v_j^2] \\ &= \mathbb{E}\left[\sum_{i=1}^m \sum_{k=1}^m w_{ji} w_{jk} y_i y_k\right] \\ &= \sum_{i=1}^m \sum_{k=1}^m \mathbb{E}[w_{ji} w_{jk}] \mathbb{E}[y_i y_k] \\ &= \sum_{i=1}^m \mathbb{E}[w_{ji}^2] \end{split}$$

مقداردهی اولیه وزنها:

 v_i و واريانس

$$\sigma_v^2 = \mathbb{E}[(v_j - \mu_v)^2] = \mathbb{E}[v_j^2]$$

$$= \mathbb{E}\left[\sum_{i=1}^m \sum_{k=1}^m w_{ji} w_{jk} y_i y_k\right]$$

$$= \sum_{i=1}^m \sum_{k=1}^m \mathbb{E}[w_{ji} w_{jk}] \mathbb{E}[y_i y_k]$$

$$= \sum_{i=1}^m \mathbb{E}[w_{ji}^2]$$

$$= m\sigma_w^2$$

مقداردهی اولیه وزنها:

در صورت استفاده از تابع تانژانت هیپربولیک بهصورت زیر:

$$\varphi(v) = a \tanh(bv)$$
 $a = 1.7159$ $b = \frac{2}{3}$

مقداردهی اولیه وزنها:

در صورت استفاده از تابع تانژانت هیپربولیک بهصورت زیر:

$$\varphi(v) = a \tanh(bv)$$
 $a = 1.7159$ $b = \frac{2}{3}$

مقداردهی اولیه وزنها:

در صورت استفاده از تابع تانژانت هیپربولیک بهصورت زیر:

$$\varphi(v) = a \tanh(bv)$$
 $a = 1.7159$ $b = \frac{2}{3}$

$$\sigma_v^2 = m\sigma_w^2$$

مقداردهی اولیه وزنها:

$$\sigma_v^2 = m\sigma_w^2$$

در نتیجه

$$\sigma_{w}=m^{-1/2}$$

مقداردهی اولیه وزنها:

$$\sigma_v^2 = m\sigma_w^2$$

در نتیجه

$$\sigma_{w} = m^{-1/2}$$

یعنی مناسب است که مقدار اولیه وزنها با توزیع یکنواخت، میانگین صفر و واریانس زیر تولید شوند:

$$\sigma_w = \frac{1}{\sqrt{m}}$$

تعداد دادههای لازم برای عمومیت دادن مناسب:

تعداد دادههای لازم برای عمومیت دادن مناسب:

برای جلوگیری از بیشبرازش یا کمبرازش در آموزش شبکه، باید تناسبی بین تعداد دادههای آموزش و ساختار شبکه وجود داشته باشد.

تعداد دادههای لازم برای عمومیت دادن مناسب:

دو حالت را می توان درنظر گرفت:

تعداد دادههای لازم برای عمومیت دادن مناسب:

دو حالت را می توان درنظر گرفت:

۱- تعداد نمونههای آموزش ثابت است و مساله تعیین ساختار شبکه (تعداد لایههای پنهان و تعداد سلول در هر لایه) است. ← قبلا بررسی شد.

تعداد دادههای لازم برای عمومیت دادن مناسب:

دو حالت را می توان درنظر گرفت:

۱- تعداد نمونههای آموزش ثابت است و مساله تعیین ساختار شبکه (تعداد لایههای پنهان و تعداد سلول در هر لایه) است. ← قبلا بررسی شد.

۲- ساختار شبکه (تعداد لایههای پنهان و تعداد سلول در هر لایه) ثابت است و مساله
 تعیین تعداد نمونههای آموزش شبکه است. رابطه تقریبی برای این منظور

تعداد دادههای لازم برای عمومیت دادن مناسب:

دو حالت را می توان درنظر گرفت:

۱- تعداد نمونههای آموزش ثابت است و مساله تعیین ساختار شبکه (تعداد لایههای پنهان و تعداد سلول در هر لایه) است. ← قبلا بررسی شد.

۲- ساختار شبکه (تعداد لایههای پنهان و تعداد سلول در هر لایه) ثابت است و مساله
 تعیین تعداد نمونههای آموزش شبکه است. رابطه تقریبی برای این منظور

$$N \simeq rac{W}{arepsilon}$$

تعداد دادههای لازم برای عمومیت دادن مناسب:

دو حالت را می توان درنظر گرفت:

۱- تعداد نمونههای آموزش ثابت است و مساله تعیین ساختار شبکه (تعداد لایههای پنهان و تعداد سلول در هر لایه) است. ← قبلا بررسی شد.

۲- ساختار شبکه (تعداد لایههای پنهان و تعداد سلول در هر لایه) ثابت است و مساله
 تعیین تعداد نمونههای آموزش شبکه است. رابطه تقریبی برای این منظور

$$N \simeq \frac{W}{arepsilon}$$

تعداد وزنها W

تعداد دادههای لازم برای عمومیت دادن مناسب:

دو حالت را می توان درنظر گرفت:

۱- تعداد نمونههای آموزش ثابت است و مساله تعیین ساختار شبکه (تعداد لایههای پنهان و تعداد سلول در هر لایه) است. ← قبلا بررسی شد.

۲- ساختار شبکه (تعداد لایههای پنهان و تعداد سلول در هر لایه) ثابت است و مساله
 تعیین تعداد نمونههای آموزش شبکه است. رابطه تقریبی برای این منظور

$$N \simeq \frac{W}{\varepsilon}$$

تعداد وزنها W

a < 1 برابر بیشینه خطای مجاز به هنگام آزمایش شبکه $a \in a$

تعداد دادههای لازم برای عمومیت دادن مناسب:

دو حالت را می توان درنظر گرفت:

۱- تعداد نمونههای آموزش ثابت است و مساله تعیین ساختار شبکه (تعداد لایههای پنهان و تعداد سلول در هر لایه) است. ← قبلا بررسی شد.

۲- ساختار شبکه (تعداد لایههای پنهان و تعداد سلول در هر لایه) ثابت است و مساله
 تعیین تعداد نمونههای آموزش شبکه است. رابطه تقریبی برای این منظور

$$N \simeq rac{W}{arepsilon}$$

تعداد وزنها W

a < 1 برابر بیشینه خطای مجاز به هنگام آزمایش شبکه $a \in a$

به عنوان مثال، برای 8 = 10% ، تعداد نمونه های لازم تقریبا ده برابر تعداد وزن های شبکه است.

تطبیق ضریب آموزش:

تطبیق ضریب آموزش:

- یکی از راههای تسریع آموزش و در عین حال جلوگیری از واگرایی الگوریتم، تطبیقدادن ضریب آموزش است.

تطبيق ضريب آموزش:

- یکی از راههای تسریع آموزش و در عین حال جلوگیری از واگرایی الگوریتم، تطبیق دادن ضریب آموزش است.
- علاوه بر آن، مناسب است که هر وزنی، ضریب آموزش مختص خودش را داشته باشد. یعنی

تطبيق ضريب آموزش:

- یکی از راههای تسریع آموزش و در عین حال جلوگیری از واگرایی الگوریتم، تطبیقدادن ضریب آموزش است.
- علاوه بر آن، مناسب است که هر وزنی، ضریب آموزش مختص خودش را داشته باشد. یعنی

$$w_{kj}(n+1) = w_{kj}(n) + \Delta w_{kj}(n)$$

$$\eta_{kj}(n+1) = \eta_{kj}(n) + \Delta \eta_{kj}(n)$$

تطبيق ضريب آموزش:

- یکی از راههای تسریع آموزش و در عین حال جلوگیری از واگرایی الگوریتم، تطبیقدادن ضریب آموزش است.
- علاوه بر آن، مناسب است که هر وزنی، ضریب آموزش مختص خودش را داشته باشد. یعنی

$$w_{kj}(n+1) = w_{kj}(n) + \Delta w_{kj}(n)$$

$$w_{kj}(n+1) = w_{kj}(n) + \Delta w_{kj}(n)$$

$$\eta_{kj}(n+1) = \eta_{kj}(n) + \Delta \eta_{kj}(n)$$

تطبيق ضريب آموزش:

- یکی از راههای تسریع آموزش و در عین حال جلوگیری از واگرایی الگوریتم، تطبیقدادن ضریب آموزش است.
- علاوه بر آن، مناسب است که هر وزنی، ضریب آموزش مختص خودش را داشته باشد. یعنی

$$w_{kj}(n+1) = w_{kj}(n) + \Delta w_{kj}(n) \eta_{kj}(n+1) = \eta_{kj}(n) + \Delta \eta_{kj}(n)$$

$$E(n) = \frac{1}{2} \sum_{k=1}^{m} e_k^2(n)$$

$$v_k(n) = \sum_{j=0}^{q} w_{kj}(n) y_j(n)$$

تطبیق ضریب آموزش:

- یکی از راههای تسریع آموزش و در عین حال جلوگیری از واگرایی الگوریتم، تطبیقدادن ضریب آموزش است.
- علاوه بر آن، مناسب است که هر وزنی، ضریب آموزش مختص خودش را داشته باشد. یعنی

$$w_{kj}(n+1) = w_{kj}(n) + \Delta w_{kj}(n) \eta_{kj}(n+1) = \eta_{kj}(n) + \Delta \eta_{kj}(n)$$

$$E(n) = \frac{1}{2} \sum_{k=1}^{m} e_k^2(n)$$

$$v_k(n) = \sum_{j=0}^{q} w_{kj}(n) y_j(n)$$

$$w_{kj}(n) = w_{kj}(n-1) - \eta_{kj}(n) \frac{\partial E(n-1)}{\partial w_{kj}(n-1)}$$

تطبيق ضريب آموزش:

- یکی از راههای تسریع آموزش و در عین حال جلوگیری از واگرایی الگوریتم، تطبیقدادن ضریب آموزش است.
- علاوه بر آن، مناسب است که هر وزنی، ضریب آموزش مختص خودش را داشته باشد. یعنی

$$w_{kj}(n+1) = w_{kj}(n) + \Delta w_{kj}(n) \eta_{kj}(n+1) = \eta_{kj}(n) + \Delta \eta_{kj}(n)$$

$$E(n) = \frac{1}{2} \sum_{k=1}^{m} e_k^2(n)$$

$$v_k(n) = \sum_{j=0}^{q} w_{kj}(n) y_j(n)$$

$$w_{kj}(n) = w_{kj}(n-1) - \eta_{kj}(n) \frac{\partial E(n-1)}{\partial w_{kj}(n-1)}$$

$$\frac{\partial E(n)}{\partial w_{kj}(n)} = -e_k(n) \varphi_k'(v_k(n)) y_j(n)$$

تطبیق ضریب آموزش:

تطبیق ضریب آموزش:

- حال ضريب آموزش

$$\eta_{kj}(n+1) = \eta_{kj}(n) + \Delta \eta_{kj}(n)$$

تطبیق ضریب آموزش:

- حال ضريب آموزش

$$\eta_{kj}(n+1) = \eta_{kj}(n) + \Delta \eta_{kj}(n)$$

$$\eta_{kj}(n+1) = \eta_{kj}(n) - \gamma \frac{\partial E(n)}{\partial \eta_{kj}(n)}$$

تطبيق ضريب آموزش:

- حال ضريب آموزش

$$\eta_{kj}(n+1) = \eta_{kj}(n) + \Delta \eta_{kj}(n)$$

$$\eta_{kj}(n+1) = \eta_{kj}(n) - \gamma \frac{\partial E(n)}{\partial \eta_{kj}(n)}$$

$$E(n) = \frac{1}{2} \sum_{k=1}^{m} e_k^2(n)$$

تابع هزينه

تطبيق ضريب آموزش:

- حال ضريب آموزش

$$\eta_{kj}(n+1) = \eta_{kj}(n) + \Delta \eta_{kj}(n)$$

$$\eta_{kj}(n+1) = \eta_{kj}(n) - \gamma \frac{\partial E(n)}{\partial \eta_{kj}(n)}$$

$$E(n) = \frac{1}{2} \sum_{k=1}^{m} e_k^2(n)$$

تابع هزينه

استفاده از قاعده مشتق زنجیره ای

$$\frac{\partial E(n)}{\partial \eta_{kj}(n)} = \frac{\partial E(n)}{\partial y_k(n)} \ \frac{\partial y_k(n)}{\partial v_k(n)} \ \frac{\partial v_k(n)}{\partial \eta_{kj}(n)}$$

تطبیق ضریب آموزش:

- حال ضريب آموزش

$$\eta_{kj}(n+1) = \eta_{kj}(n) + \Delta \eta_{kj}(n)$$

$$\eta_{kj}(n+1) = \eta_{kj}(n) - \gamma \frac{\partial E(n)}{\partial \eta_{kj}(n)}$$

$$E(n) = \frac{1}{2} \sum_{k=1}^{m} e_k^2(n)$$

تابع هزينه

استفاده از قاعده مشتق زنجیره ای

$$\begin{split} \frac{\partial E(n)}{\partial \eta_{kj}(n)} &= \frac{\partial E(n)}{\partial y_k(n)} \; \frac{\partial y_k(n)}{\partial v_k(n)} \; \frac{\partial v_k(n)}{\partial \eta_{kj}(n)} \\ & \quad \quad \downarrow \quad \quad \downarrow \\ & \quad \quad -e_k(n) \; \; \varphi_k'(v_k(n)) \\ & \quad \quad \quad \text{ قبلا داشتیم} \end{split}$$

تطبيق ضريب آموزش:

- حال ضريب آموزش

$$\eta_{kj}(n+1) = \eta_{kj}(n) + \Delta \eta_{kj}(n)$$

$$\eta_{kj}(n+1) = \eta_{kj}(n) - \gamma \frac{\partial E(n)}{\partial \eta_{kj}(n)}$$

$$E(n) = \frac{1}{2} \sum_{k=1}^{m} e_k^2(n)$$

تابع هزينه

استفاده از قاعده مشتق زنجیره ای

$$\begin{split} \frac{\partial E(n)}{\partial \eta_{kj}(n)} &= \frac{\partial E(n)}{\partial y_k(n)} \; \frac{\partial y_k(n)}{\partial v_k(n)} \; \frac{\partial v_k(n)}{\partial \eta_{kj}(n)} \\ & \quad \quad \downarrow \quad \quad \downarrow \quad \quad \downarrow \quad \quad \downarrow \\ & \quad \quad -e_k(n) \; \; \phi_k'(v_k(n)) \quad \; ? \end{split}$$
قبلا داشتیم

تطبیق ضریب آموزش:

$$rac{\partial v_k(n)}{\partial \eta_{kj}(n)}$$
 محاسبه

تطبيق ضريب آموزش:

$$rac{\partial v_k(n)}{\partial \eta_{kj}(n)}$$
 محاسبه

$$v_k(n) = \sum_{j=0}^q w_{kj}(n) y_j(n) \tag{1}$$

تطبيق ضريب آموزش:

$$rac{\partial v_k(n)}{\partial \eta_{kj}(n)}$$
 محاسبه

$$v_k(n) = \sum_{j=0}^q w_{kj}(n) y_j(n) \tag{1}$$

$$w_{kj}(n)=w_{kj}(n-1)-\eta_{kj}(n)\frac{\partial E(n-1)}{\partial w_{kj}(n-1)} \ \ (\Upsilon)$$

تطبيق ضريب آموزش:

$$rac{\partial v_k(n)}{\partial \eta_{kj}(n)}$$
 محاسبه

$$v_k(n) = \sum_{j=0}^q w_{kj}(n) y_j(n) \tag{1}$$

$$w_{kj}(n) = w_{kj}(n-1) - \eta_{kj}(n) \frac{\partial E(n-1)}{\partial w_{kj}(n-1)} \quad (Y)$$

(۱) در (۱)

$$v_k(n) = \sum_{j=0}^q y_j(n) \left[w_{kj}(n-1) - \eta_{kj}(n) \frac{\partial E(n-1)}{\partial w_{kj}(n-1)} \right]$$

تطبيق ضريب آموزش:

$$rac{\partial v_k(n)}{\partial \eta_{kj}(n)}$$
 محاسبه

$$v_k(n) = \sum_{j=0}^q w_{kj}(n) y_j(n) \tag{1}$$

$$w_{kj}(n) = w_{kj}(n-1) - \eta_{kj}(n) \frac{\partial E(n-1)}{\partial w_{kj}(n-1)} \quad (Y)$$

(۱) در (۱)

$$v_k(n) = \sum_{j=0}^q y_j(n) \left[w_{kj}(n-1) - \eta_{kj}(n) \frac{\partial E(n-1)}{\partial w_{kj}(n-1)} \right]$$

در نتیجه

$$\frac{\partial v_k(n)}{\partial \eta_{kj}(n)} = -y_j(n) \frac{\partial E(n-1)}{\partial w_{kj}(n-1)}$$

تطبيق ضريب آموزش:

$$rac{\partial E(n)}{\partial \eta_{kj}(n)} = -e_k(n) \varphi_k'(v_k(n)) \; y_j(n) \left[rac{\partial E(n-1)}{\partial w_{kj}(n-1)}
ight]$$
 بنابراین

تطبيق ضريب آموزش:

$$\frac{\partial E(n)}{\partial \eta_{kj}(n)} = -e_{\!_{k}}(n) \varphi_k'(v_k(n)) \ y_j(n) \left[\frac{\partial E(n-1)}{\partial w_{kj}(n-1)} \right] \frac{\partial E(n)}{\partial w_{kj}(n)}$$

تطبيق ضريب آموزش:

درنتيجه

$$\frac{\partial E(n)}{\partial \eta_{kj}(n)} = -e_{k}(n) \varphi_{k}'(v_{k}(n)) \ y_{j}(n) \left[\frac{\partial E(n-1)}{\partial w_{kj}(n-1)} \right] \frac{\partial E(n)}{\partial w_{kj}(n)}$$

$$\frac{\partial E(n)}{\partial \eta_{kj}(n)} = -\frac{\partial E(n)}{\partial w_{kj}(n)} \frac{\partial E(n-1)}{\partial w_{kj}(n-1)}$$

تطبيق ضريب آموزش:

$$\frac{\partial E(n)}{\partial \eta_{kj}(n)} = -\underbrace{e_k(n)\varphi_k'(v_k(n))\ y_j(n)}_{\underbrace{\partial E(n)}{\partial w_{kj}(n)}} \left[\frac{\partial E(n-1)}{\partial w_{kj}(n-1)} \right]$$

 $\frac{\partial E(n)}{\partial \eta_{kj}(n)} = -\frac{\partial E(n)}{\partial w_{kj}(n)} \frac{\partial E(n-1)}{\partial w_{kj}(n-1)}$

درنهایت

درنتيجه

$$\Delta \eta_{kj}(n) = -\gamma \frac{\partial E(n)}{\partial \eta_{kj}(n)}$$

$$= \gamma \frac{\partial E(n)}{\partial w_{kj}(n)} \frac{\partial E(n-1)}{\partial w_{kj}(n-1)}$$

تطبيق ضريب آموزش:

$$\eta_{kj}(n+1) = \eta_{kj}(n) + \gamma \frac{\partial E(n)}{\partial w_{kj}(n)} \frac{\partial E(n-1)}{\partial w_{kj}(n-1)}$$

تطبيق ضريب آموزش:

$$\eta_{kj}(n+1) = \eta_{kj}(n) + \gamma \frac{\partial E(n)}{\partial w_{kj}(n)} \frac{\partial E(n-1)}{\partial w_{kj}(n-1)}$$

نتيجهگيري

تطبیق ضریب آموزش:

$$\eta_{kj}(n+1) = \eta_{kj}(n) + \gamma \frac{\partial E(n)}{\partial w_{kj}(n)} \frac{\partial E(n-1)}{\partial w_{kj}(n-1)}$$

نتيجهگيري

۱- هنگامی که مشتق تابع هزینه نسبت به وزن مورد نظر در دو مرحله پیاپی دارای علامت یکسان باشد، ضریب آموزش افزایش مییابد. ← تسریع در همگرایی

تطبيق ضريب آموزش:

$$\eta_{kj}(n+1) = \eta_{kj}(n) + \gamma \frac{\partial E(n)}{\partial w_{kj}(n)} \frac{\partial E(n-1)}{\partial w_{kj}(n-1)}$$

نتيجهگيري

- ۱- هنگامی که مشتق تابع هزینه نسبت به وزن مورد نظر در دو مرحله پیاپی دارای علامت یکسان باشد، ضریب آموزش افزایش مییابد. ← تسریع در همگرایی
- ۲- هنگامی که مشتق تابع هزینه نسبت به وزن مورد نظر در دو مرحله پیاپی دارای
 علامت متفاوت باشد، ضریب آموزش کاهش مییابد. → پایداری الگوریتم

تطبيق ضريب آموزش:

$$\eta_{kj}(n+1) = \eta_{kj}(n) + \gamma \frac{\partial E(n)}{\partial w_{kj}(n)} \frac{\partial E(n-1)}{\partial w_{kj}(n-1)}$$

نتيجهگيري

- ۱- هنگامی که مشتق تابع هزینه نسبت به وزن مورد نظر در دو مرحله پیاپی دارای علامت یکسان باشد، ضریب آموزش افزایش مییابد. ← تسریع در همگرایی
- ۲- هنگامی که مشتق تابع هزینه نسبت به وزن مورد نظر در دو مرحله پیاپی دارای
 علامت متفاوت باشد، ضریب آموزش کاهش مییابد. → پایداری الگوریتم

به این روش، الگوریتم دلتا حدلتا می گویند

تطبيق ضريب آموزش:

$$\eta_{kj}(n+1) = \eta_{kj}(n) + \gamma \frac{\partial E(n)}{\partial w_{kj}(n)} \frac{\partial E(n-1)}{\partial w_{kj}(n-1)}$$

نتيجهگيري

- ۱- هنگامی که مشتق تابع هزینه نسبت به وزن مورد نظر در دو مرحله پیاپی دارای علامت یکسان باشد، ضریب آموزش افزایش مییابد. ← تسریع در همگرایی
- ۲- هنگامی که مشتق تابع هزینه نسبت به وزن مورد نظر در دو مرحله پیاپی دارای
 علامت متفاوت باشد، ضریب آموزش کاهش مییابد. → پایداری الگوریتم

به این روش، الگوریتم دلتا حدلتا می گویند

معایب این روش:

تطبيق ضريب آموزش:

$$\eta_{kj}(n+1) = \eta_{kj}(n) + \gamma \frac{\partial E(n)}{\partial w_{kj}(n)} \frac{\partial E(n-1)}{\partial w_{kj}(n-1)}$$

نتيجهگيري

- ۱- هنگامی که مشتق تابع هزینه نسبت به وزن مورد نظر در دو مرحله پیاپی دارای علامت یکسان باشد، ضریب آموزش افزایش مییابد. ← تسریع در همگرایی
- ۲- هنگامی که مشتق تابع هزینه نسبت به وزن مورد نظر در دو مرحله پیاپی دارای
 علامت متفاوت باشد، ضریب آموزش کاهش مییابد. → پایداری الگوریتم

به این روش، الگوریتم دلتا-دلتا می گویند

معایب این روش:

• نياز به حافظه بيشتر نسبت به الگوريتم پسانتشار خطا

تطبیق ضریب آموزش:

$$\eta_{kj}(n+1) = \eta_{kj}(n) + \gamma \frac{\partial E(n)}{\partial w_{kj}(n)} \frac{\partial E(n-1)}{\partial w_{kj}(n-1)}$$

نتيجهگيري

- ۱- هنگامی که مشتق تابع هزینه نسبت به وزن مورد نظر در دو مرحله پیاپی دارای علامت یکسان باشد، ضریب آموزش افزایش مییابد. ← تسریع در همگرایی
- ۲- هنگامی که مشتق تابع هزینه نسبت به وزن مورد نظر در دو مرحله پیاپی دارای
 علامت متفاوت باشد، ضریب آموزش کاهش مییابد. → پایداری الگوریتم

به این روش، الگوریتم دلتا-دلتا می گویند

معایب این روش:

- نياز به حافظه بيشتر نسبت به الگوريتم پسانتشار خطا
 - یافتن مقدار مناسبی برای گاما

تطبيق ضريب آموزش:

$$\eta_{kj}(n+1) = \eta_{kj}(n) + \gamma \frac{\partial E(n)}{\partial w_{kj}(n)} \frac{\partial E(n-1)}{\partial w_{kj}(n-1)}$$

نتيجهگيري

- ۱- هنگامی که مشتق تابع هزینه نسبت به وزن مورد نظر در دو مرحله پیاپی دارای علامت یکسان باشد، ضریب آموزش افزایش مییابد. ← تسریع در همگرایی
- ۲- هنگامی که مشتق تابع هزینه نسبت به وزن مورد نظر در دو مرحله پیاپی دارای
 علامت متفاوت باشد، ضریب آموزش کاهش مییابد. → پایداری الگوریتم

به این روش، الگوریتم دلتا-دلتا می گویند

معایب این روش:

- نياز به حافظه بيشتر نسبت به الگوريتم پسانتشار خطا
 - یافتن مقدار مناسبی برای گاما
 - امكان منفى شدن ضريب آموزش

تطبيق ضريب آموزش:

برای رفع عیب سوم الگوریتم دلتا-دلتا، از علامت و مقدار مشتق در تمامی مراحل قبلی استفاده میکنیم

تطبيق ضريب آموزش:

برای رفع عیب سوم الگوریتم دلتا-دلتا، از علامت و مقدار مشتق در تمامی مراحل قبلی استفاده میکنیم

$$\Delta \eta_{kj}(n) = \begin{cases} \lambda & \text{if } S_{kj}(n-1)D_{kj}(n) > 0 \\ -\beta \, \eta_{kj}(n) & \text{if } S_{kj}(n-1)D_{kj}(n) < 0 \\ 0 & \text{otherwise} \end{cases}$$

تطبيق ضريب آموزش:

برای رفع عیب سوم الگوریتم دلتا-دلتا، از علامت و مقدار مشتق در تمامی مراحل قبلی استفاده میکنیم

$$\Delta \eta_{kj}(n) = \begin{cases} \lambda & \text{if } S_{kj}(n-1)D_{kj}(n) > 0 \\ -\beta \, \eta_{kj}(n) & \text{if } S_{kj}(n-1)D_{kj}(n) < 0 \\ 0 & \text{otherwise} \end{cases}$$

که در آن

$$D_{kj}(n) = \frac{\partial E(n)}{\partial w_{kj}(n)}$$

$$S_{kj}(n) = (1 - \xi)D_{kj}(n - 1) + \xi S_{kj}(n - 1)$$

تطبيق ضريب آموزش:

برای رفع عیب سوم الگوریتم دلتا-دلتا، از علامت و مقدار مشتق در تمامی مراحل قبلی استفاده میکنیم

$$\Delta \eta_{kj}(n) = \begin{cases} \lambda & \text{if } S_{kj}(n-1)D_{kj}(n) > 0 \\ -\beta \, \eta_{kj}(n) & \text{if } S_{kj}(n-1)D_{kj}(n) < 0 \\ 0 & \text{otherwise} \end{cases}$$

که در آن

$$D_{kj}(n) = \frac{\partial E(n)}{\partial w_{kj}(n)}$$

$$S_{kj}(n) = (1 - \xi) D_{kj}(n - 1) + \xi S_{kj}(n - 1)$$

با حل معادله گسسته اخیر

$$S_{kj}(n) = \sum_{n=1}^{n-2} \xi^p (1-\xi) D_{kj}(n-p-1) + \xi^{(n-1)} S_{kj}(n-1)$$

تطبیق ضریب آموزش:

برای رفع عیب سوم الگوریتم دلتا-دلتا، از علامت و مقدار مشتق در تمامی مراحل قبلی استفاده میکنیم

$$\Delta \eta_{kj}(n) = \begin{cases} \lambda & \text{if } S_{kj}(n-1)D_{kj}(n) > 0 \\ -\beta \, \eta_{kj}(n) & \text{if } S_{kj}(n-1)D_{kj}(n) < 0 \\ 0 & \text{otherwise} \end{cases}$$

که در آن

$$D_{kj}(n) = \frac{\partial E(n)}{\partial w_{kj}(n)}$$

$$S_{kj}(n) = (1 - \xi) D_{kj}(n - 1) + \xi S_{kj}(n - 1)$$

با حل معادله گسسته اخیر

$$S_{kj}(n) = \sum_{p=1}^{n-2} \xi^p (1-\xi) D_{kj}(n-p-1) + \xi^{(n-1)} S_{kj}(n-1)$$

دراین سری زمانی، مشتق تابع هزینه در تمامی مراحلی قبلی برای تغییر ضریب آموزش درنظر گرفته میشود.

تطبيق ضريب آموزش:

$$\Delta \eta_{kj}(n) = \begin{cases} \lambda & \text{if } S_{kj}(n-1)D_{kj}(n) > 0 \\ -\beta \, \eta_{kj}(n) & \text{if } S_{kj}(n-1)D_{kj}(n) < 0 \\ 0 & \text{otherwise} \end{cases}$$

تطبیق ضریب آموزش:

$$\Delta \eta_{kj}(n) = \begin{cases} \lambda & \text{if } S_{kj}(n-1)D_{kj}(n) > 0 \\ -\beta \, \eta_{kj}(n) & \text{if } S_{kj}(n-1)D_{kj}(n) < 0 \\ 0 & \text{otherwise} \end{cases}$$

دراین روش

تطبيق ضريب آموزش:

$$\Delta \eta_{kj}(n) = \begin{cases} \lambda & \text{if } S_{kj}(n-1)D_{kj}(n) > 0 \\ -\beta \, \eta_{kj}(n) & \text{if } S_{kj}(n-1)D_{kj}(n) < 0 \\ 0 & \text{otherwise} \end{cases}$$

دراین روش

 \longrightarrow ۱ با قراردادن لاندا و بتا برابر صفر

تطبيق ضريب آموزش:

$$\Delta \eta_{kj}(n) = \begin{cases} \lambda & \text{if } S_{kj}(n-1)D_{kj}(n) > 0 \\ -\beta \, \eta_{kj}(n) & \text{if } S_{kj}(n-1)D_{kj}(n) < 0 \\ 0 & \text{otherwise} \end{cases}$$

دراین روش

١- با قراردادن لاندا و بتا برابر صفر ← الگوريتم پسانتشار خطا

تطبيق ضريب آموزش:

$$\Delta \eta_{kj}(n) = \begin{cases} \lambda & \text{if } S_{kj}(n-1)D_{kj}(n) > 0 \\ -\beta \, \eta_{kj}(n) & \text{if } S_{kj}(n-1)D_{kj}(n) < 0 \\ 0 & \text{otherwise} \end{cases}$$

دراین روش

١- با قراردادن لاندا و بتا برابر صفر ← الگوريتم پسانتشار خطا

۲- افزایش در ضریب آموزش (یعنی حالتی که مشتق در تمامی مراحلی قبلی دارای علامت یکسان باشد) به طور خطی است.

تطبيق ضريب آموزش:

$$\Delta \eta_{kj}(n) = \begin{cases} \lambda & \text{if } S_{kj}(n-1)D_{kj}(n) > 0 \\ -\beta \, \eta_{kj}(n) & \text{if } S_{kj}(n-1)D_{kj}(n) < 0 \\ 0 & \text{otherwise} \end{cases}$$

دراین روش

- ١- با قراردادن لاندا و بتا برابر صفر ← الگوريتم پسانتشار خطا
- ۲- افزایش در ضریب آموزش (یعنی حالتی که مشتق در تمامی مراحلی قبلی دارای علامت یکسان باشد) بهطور خطی است.
- ۳- کاهش در ضریب آموزش (یعنی حالتی که مشتق در مراحلی قبلی دارای علامت متفاوت باشد) به طور نمایی است.

تطبيق ضريب آموزش:

$$\Delta \eta_{kj}(n) = \begin{cases} \lambda & \text{if } S_{kj}(n-1)D_{kj}(n) > 0 \\ -\beta \, \eta_{kj}(n) & \text{if } S_{kj}(n-1)D_{kj}(n) < 0 \\ 0 & \text{otherwise} \end{cases}$$

دراین روش

- ١- با قراردادن لاندا و بتا برابر صفر ← الگوريتم پسانتشار خطا
- ۲- افزایش در ضریب آموزش (یعنی حالتی که مشتق در تمامی مراحلی قبلی دارای علامت یکسان باشد) بهطور خطی است.
- ۳- کاهش در ضریب آموزش (یعنی حالتی که مشتق در مراحلی قبلی دارای علامت متفاوت باشد) به طور نمایی است.
 - ۴ ضریب آموزش همواره مثبت باقی میماند.

تطبیق ضریب آموزش:

$$\Delta \eta_{kj}(n) = \begin{cases} \lambda & \text{if } S_{kj}(n-1)D_{kj}(n) > 0 \\ -\beta \, \eta_{kj}(n) & \text{if } S_{kj}(n-1)D_{kj}(n) < 0 \\ 0 & \text{otherwise} \end{cases}$$

دراین روش

- ١- با قراردادن لاندا و بتا برابر صفر ← الگوريتم پسانتشار خطا
- ۲- افزایش در ضریب آموزش (یعنی حالتی که مشتق در تمامی مراحلی قبلی دارای علامت یکسان باشد) بهطور خطی است.
- ۳- کاهش در ضریب آموزش (یعنی حالتی که مشتق در مراحلی قبلی دارای علامت متفاوت باشد) به طور نمایی است.
 - ۴ ضریب آموزش همواره مثبت باقی میماند.

به این روش، الگوریتم دلتا-بار-دلتا می گویند.

استفاده از منطق فازی در تطبیق ضریب آموزش:

استفاده از منطق فازی در تطبیق ضریب آموزش:

در منطق فازی:

IF <a set of conditions are satisfied>, THEN <a set of consequences are inferred>

استفاده از منطق فازی در تطبیق ضریب آموزش:

IF <a set of conditions are satisfied>, THEN <a set of consequences are inferred>

مثال:

در منطق فازی:

استفاده از منطق فازی در تطبیق ضریب آموزش:

IF <a set of conditions are satisfied>, THEN <a set of consequences are inferred>

مثال:

در منطق فازی:

فرض کنید که گرادیان سطح خطا تقریبا برابر با تغییرات در خطا (منظور جمع مربعات لحظهای خطا) باشد و آن را با CE نشان دهیم

$$CE(n) = E(n) - E(n-1)$$

استفاده از منطق فازی در تطبیق ضریب آموزش:

IF <a set of conditions are satisfied>, THEN <a set of consequences are inferred>

مثال:

در منطق فازی:

فرض کنید که گرادیان سطح خطا تقریبا برابر با تغییرات در خطا (منظور جمع مربعات لحظهای خطا) باشد و آن را با CE نشان دهیم

$$CE(n) = E(n) - E(n-1)$$

همچنین، فرض کنید که گرادیان دوم سطح خطا تقریبا برابر با تغییرات در تغییرات خطا باشد و آن را با CCE نشان دهیم

$$CCE(n) = CE(n) - CE(n-1)$$

استفاده از منطق فازی در تطبیق ضریب آموزش:

IF <a set of conditions are satisfied>, THEN <a set of consequences are inferred>

مثال:

در منطق فازی:

فرض کنید که گرادیان سطح خطا تقریبا برابر با تغییرات در خطا (منظور جمع مربعات لحظهای خطا) باشد و آن را با CE نشان دهیم

$$CE(n) = E(n) - E(n-1)$$

همچنین، فرض کنید که گرادیان دوم سطح خطا تقریبا برابر با تغییرات در تغییرات خطا باشد و آن را با CCE نشان دهیم

$$CCE(n) = CE(n) - CE(n-1)$$

در این صورت، موارد زیر را می توان تشخیص داد:

استفاده از منطق فازی در تطبیق ضریب آموزش:

IF <a set of conditions are satisfied>, THEN <a set of consequences are inferred>

مثال:

در منطق فازی:

فرض کنید که گرادیان سطح خطا تقریبا برابر با تغییرات در خطا (منظور جمع مربعات لحظهای خطا) باشد و آن را با CE نشان دهیم

$$CE(n) = E(n) - E(n-1)$$

همچنین، فرض کنید که گرادیان دوم سطح خطا تقریبا برابر با تغییرات در تغییرات خطا باشد و آن را با CCE نشان دهیم

$$CCE(n) = CE(n) - CE(n-1)$$

در این صورت، موارد زیر را می توان تشخیص داد:

ا - اگر CE کوچک باشد و هیچ تغییر علامتی در چندین مرحله متوالی تکرار وجودنداشته باشد، آنگاه ضریب یادگیری را باید . . . ?

استفاده از منطق فازی در تطبیق ضریب آموزش:

IF <a set of conditions are satisfied>, THEN <a set of consequences are inferred>

مثال:

در منطق فازی:

فرض کنید که گرادیان سطح خطا تقریبا برابر با تغییرات در خطا (منظور جمع مربعات لحظهای خطا) باشد و آن را با CE نشان دهیم

$$CE(n) = E(n) - E(n-1)$$

همچنین، فرض کنید که گرادیان دوم سطح خطا تقریبا برابر با تغییرات در تغییرات خطا باشد و آن را با CCE نشان دهیم

$$CCE(n) = CE(n) - CE(n-1)$$

در این صورت، موارد زیر را می توان تشخیص داد:

۱- اگر CE کوچک باشد و هیچ تغییر علامتی در چندین مرحله متوالی تکرار وجودنداشته باشد، آنگاه ضریب یادگیری را باید افزایشداد.

استفاده از منطق فازی در تطبیق ضریب آموزش:

IF <a set of conditions are satisfied>, THEN <a set of consequences are inferred>

مثال:

در منطق فازی:

فرض کنید که گرادیان سطح خطا تقریبا برابر با تغییرات در خطا (منظور جمع مربعات لحظهای خطا) باشد و آن را با CE نشان دهیم

$$CE(n) = E(n) - E(n-1)$$

همچنین، فرض کنید که گرادیان دوم سطح خطا تقریبا برابر با تغییرات در تغییرات خطا باشد و آن را با CCE نشان دهیم

$$CCE(n) = CE(n) - CE(n-1)$$

در این صورت، موارد زیر را می توان تشخیص داد:

ا- اگر CE کوچک باشد و هیچ تغییر علامتی در چندین مرحله متوالی تکرار وجودنداشته باشد، آنگاه ضریب یادگیری را باید افزایشداد.

۲- اگر در چندین مرحله تکرار متوالی، تغییر علامت در CE وجود داشته باشد، در آنگاه ضریب یادگیری را باید . . .؟

استفاده از منطق فازی در تطبیق ضریب آموزش:

IF <a set of conditions are satisfied>, THEN <a set of consequences are inferred>

مثال:

در منطق فازی:

فرض کنید که گرادیان سطح خطا تقریبا برابر با تغییرات در خطا (منظور جمع مربعات لحظهای خطا) باشد و آن را با CE نشان دهیم

$$CE(n) = E(n) - E(n-1)$$

همچنین، فرض کنید که گرادیان دوم سطح خطا تقریبا برابر با تغییرات در تغییرات خطا باشد و آن را با CCE نشان دهیم

$$CCE(n) = CE(n) - CE(n-1)$$

در این صورت، موارد زیر را می توان تشخیص داد:

ا- اگر CE کوچک باشد و هیچ تغییر علامتی در چندین مرحله متوالی تکرار وجودنداشته باشد، آنگاه ضریب یادگیری را باید افزایشداد.

۲- اگر در چندین مرحله تکرار متوالی، تغییر علامت در CE وجود داشته باشد، در آنگاه ضریب یادگیری را باید کاهشداد.

استفاده از منطق فازی در تطبیق ضریب آموزش:

مثال (ادامه):

استفاده از منطق فازی در تطبیق ضریب آموزش:

مثال (ادامه):

۳- اگر CE و CE هردو کوچک باشند و هیچ تغییر علامتی در چندین مرحله تکرار متوالی وجود نداشته باشد، در این صورت هر دو ضریب یادگیری و ممنتم را باید افزایش داد.

استفاده از منطق فازی در تطبیق ضریب آموزش:

مثال (ادامه):

۳- اگر CE و CE هردو کوچک باشند و هیچ تغییر علامتی در چندین مرحله تکرار متوالی وجود نداشته باشد، در این صورت هر دو ضریب یادگیری و ممنتم را باید افزایش داد.

نتیجهگیری:

- به سه مورد بالا، قواعد فازی برای تغییر ضریب آموزش (و/یا ضریب ممنتم) می *گ*ویند.

استفاده از منطق فازی در تطبیق ضریب آموزش:

مثال (ادامه):

۳- اگر CE و CE هردو کوچک باشند و هیچ تغییر علامتی در چندین مرحله تکرار متوالی وجود نداشته باشد، در این صورت هر دو ضریب یادگیری و ممنتم را باید افزایش داد.

نتیجهگیری:

– به سه مورد بالا، قواعد فازی برای تغییر ضریب آموزش (و /یا ضریب ممنتم) می گویند.

سوال: فازی (مشکک) بودن این قواعد در چیست؟

استفاده از منطق فازی در تطبیق ضریب آموزش:

توابع عضویت برای ورودیها (CCE و CE)

استفاده از منطق فازی در تطبیق ضریب آموزش:

 $\Delta\eta$ توابع عضویت برای خروجی

استفاده از منطق فازی در تطبیق ضریب آموزش:

- جدول قواعد نمونه برای تنظیم ضریب آموزش می تواند به صورت زیر باشد:

 $\Delta\eta$ تعیین ہوای جدول قواعد فازی برای

	CE					
CCE	NB	NS	ZE	PS	PB	
NB	NS	NS	NS	NS	NS	
NS	NS	ZE	PS	ZE	NS	
ZE	ZE	PS	PS	PS	ZE	
PS	NS	ZE	PS	ZE	NS	
PB	NS	NS	NS	NS	NS	

استفاده از منطق فازی در تطبیق ضریب آموزش:

- جدول قواعد مشابهی را می توان برای تغییر ضریب ممنتم نیز تعریف کرد.

 $\Delta \alpha$ جدول قواعد فازی برای تعیین

		CE					
CCE	NB	NS	ZE	PS	PB		
NB	NS	NS	ZE	ZE	ZE		
NS	NS	ZE	ZE	ZE	ZE		
ZE	ZE	PS	PS	PS	ZE		
PS	ZE	ZE	ZE	ZE	NS		
PB	ZE	ZE	ZE	NS	NS		

استفاده از منطق فازی در تطبیق ضریب آموزش:

- در زمینه استفاده از شبکههای عصبی و منطق فازی مقالات و کتب فراوانی بهچاپ رسیده است.

