Homework Quiz 9

Due 1 Dec at 6:00

Points 150

Questions 15

Available 17 Nov at 6:00 - 1 Dec at 6:00

Time limit None

This quiz was locked 1 Dec at 6:00.

Attempt history

	Attempt	Time	Score
LATEST	Attempt 1	15,050 minutes	150 out of 150

Score for this quiz: 150 out of 150

Submitted 1 Dec at 2:56

This attempt took 15,050 minutes.

Question 1

10 / 10 pts

The vectors
$$\mathbf{u}=\begin{bmatrix} 4\\3\\-3\end{bmatrix}$$
 , $\mathbf{v}=\begin{bmatrix} 6\\-3\\5\end{bmatrix}$ are orthogonal.

Correct!

- True
- False

Question 2

10 / 10 pts

The vectors
$$\mathbf{y}=egin{bmatrix} -3 \\ 7 \\ 4 \\ 0 \end{bmatrix}$$
 , $\mathbf{v}=egin{bmatrix} 1 \\ -8 \\ 15 \\ -7 \end{bmatrix}$ are orthogonal.

True

False

Question 3

10 / 10 pts

The vectors $\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} -5 \\ -2 \\ 1 \end{bmatrix}$ form an orthogonal set.

Correct!

- True
- False

Question 4

10 / 10 pts

The vectors $\begin{bmatrix} 5 \\ -4 \\ 0 \\ 3 \end{bmatrix}$, $\begin{bmatrix} -4 \\ 1 \\ -3 \\ 8 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 3 \\ 5 \\ -1 \end{bmatrix}$ form an orthogonal set.

True

Correct!

False

Question 5

10 / 10 pts

If a set $S=\{\mathbf{u}_i,\ldots,\mathbf{u}_p\}$ has the property that $\mathbf{u}_i\cdot\mathbf{u}_j=0$ whenever $i\neq j$, then S is an **orthonormal** set.

False

Question 6

10 / 10 pts

If the columns of an m imes n matrix A are orthonormal, then A'A = I.

Correct!

- True
- False

Question 7

10 / 10 pts

An orthogonal matrix is invertible.

Correct!

- True
- False

Question 8

10 / 10 pts

What is the orthogonal projection of $\mathbf{y}=\begin{bmatrix} 6 \\ 3 \\ -2 \end{bmatrix}$ onto the space spanned

by
$$\mathbf{u_1} = egin{bmatrix} 3 \ 4 \ 0 \end{bmatrix}$$
 and $\mathbf{u_2} = egin{bmatrix} -4 \ 3 \ 0 \end{bmatrix}$?

$$\begin{bmatrix} -6.6 \\ 1.2 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 6 \\ 3 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 6 \\ 3 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 150 \\ 75 \\ 0 \end{bmatrix}$$

Question 9

10 / 10 pts

What is the closest point to $\mathbf{y}=egin{bmatrix}3\\-1\\1\\13\end{bmatrix}$ in the subspace W spanned by $\mathbf{v}_1=egin{bmatrix}1\\-2\\-1\\2\end{bmatrix}$ and $\mathbf{v}_2=egin{bmatrix}-4\\1\\0\\3\end{bmatrix}$?

$$\mathbf{v}_1 = egin{bmatrix} 1 \ -2 \ -1 \ 2 \end{bmatrix}$$
 and $\mathbf{v}_2 = egin{bmatrix} -4 \ 1 \ 0 \ 3 \end{bmatrix}$?

$$\begin{bmatrix} -74 \\ -34 \\ -30 \\ 138 \end{bmatrix}$$

Correct!

$$\begin{bmatrix} -1 \\ -5 \\ -3 \\ 9 \end{bmatrix}$$

$$\begin{bmatrix}
-11 \\
1 \\
-1 \\
11
\end{bmatrix}$$

$$\begin{bmatrix} -0.4111 \\ -0.1889 \\ -0.1667 \\ 0.7667 \end{bmatrix}$$

Question 10

10 / 10 pts

Which of the following collections of vectors is an orthogonal basis for the column space of the matrix:

$$\begin{bmatrix} 1 & 3 & 5 \\ -1 & -3 & 1 \\ 0 & 2 & 3 \\ 1 & 5 & 2 \\ 1 & 5 & 8 \end{bmatrix}$$
?

Mark all correct choices.

Correct!

$$\begin{bmatrix}
1 \\
-1 \\
0 \\
1 \\
1
\end{bmatrix}, \begin{bmatrix}
-1 \\
1 \\
2 \\
1 \\
1
\end{bmatrix}, \begin{bmatrix}
1 \\
1 \\
0 \\
-1 \\
1
\end{bmatrix}$$

$$egin{bmatrix} 1 & 3 & 5 \ -1 & -3 & 1 \ 0 & 5 & 2 \ 1 & 5 & 5 \ \end{bmatrix}, \ \begin{bmatrix} 5 \ 1 \ 3 \ 2 \ 5 \ \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \\ 3 \\ 5 \\ 5 \end{bmatrix}$$

$$egin{bmatrix} 1 & -1 & -1 & 3 \ -1 & 1 & 2 \ 0 & 1 & 1 \ 1 & 1 \end{bmatrix}, \ \begin{bmatrix} -1 \ 3 \ 3 \ 0 \ -3 \ 3 \end{bmatrix}$$

Question 11

10 / 10 pts

Which answer describes the parametric vector form of all possible least squares solutions to $A\mathbf{x}=\mathbf{b}$ when

$$A = egin{bmatrix} 1 & 1 & 0 \ 1 & 1 & 0 \ 1 & 1 & 0 \ 1 & 0 & 1 \ 1 & 0 & 1 \ 1 & 0 & 1 \end{bmatrix}$$
 and $\mathbf{b} = egin{bmatrix} 7 \ 2 \ 3 \ 6 \ 5 \ 4 \end{bmatrix}$?

$$egin{bmatrix} 5 \ -1 \ 0 \end{bmatrix}$$

Correct!

$$egin{array}{c} \left[egin{array}{c} 5 \ -1 \ 0 \end{array}
ight] + c \left[egin{array}{c} -1 \ 1 \ 1 \end{array}
ight] \end{array}$$

$$egin{array}{c} \left[egin{array}{c} 0 \ 0 \ 0 \end{array}
ight] + c \left[egin{array}{c} 0 \ 0 \ 1 \end{array}
ight] \end{array}$$

$$egin{array}{c} \left[egin{array}{c} 5 \ -1 \ 0 \end{array}
ight] + c \left[egin{array}{c} -1 \ 1 \ 0 \end{array}
ight]$$

	Question 12	10 / 10 pts
	If vector ${f b}$ is in the column space of ${m A}$, then every satisfies a least-squares solution.	olution of $A\mathbf{x}=\mathbf{b}$ is
orrect!	True	
	○ False	
	Question 13	10 / 10 pts
	The least-squares solution of $A\mathbf{x}=\mathbf{b}$ is the point in A closest to \mathbf{b} .	n the column space of
	O True	
orrect!	False	
		40 / 40 mts
	Question 14	10 / 10 pts
	A least-squares solution of $A\mathbf{x}=\mathbf{b}$ is a list of weighto the columns of A , produces the orthogonal project	• • • • • • • • • • • • • • • • • • • •
orrect!	True	
	○ False	

Quiz score: **150** out of 150