CytoAutoCluster Overview

CytoAutoCluster is a deep learning-based solution designed for clustering cells based on identifiable characteristics. It uses semi-supervised learning techniques to improve clustering accuracy and computational efficiency, enabling meaningful insights from high-dimensional cytometry data.

Key Features

- Semi-Supervised Learning: Leverages both labelled and unlabelled data to enhance clustering accuracy.
- Efficient Grouping: Segments cells into distinct clusters for better interpretation of complex datasets.
- Interpretability: Generates clear visualizations of clusters for improved insights.

Problem Overview

Cytometry data is high-dimensional, which poses several challenges for analysis:

- High Dimensionality: Makes it difficult to interpret and visualize.
- Scarcity of Labelled Data: Limited labelled datasets hinder model performance.
- Noise and Variability: Biological noise can distort clustering accuracy.

CytoAutoCluster addresses these challenges by minimizing reliance on labelled data while maintaining high performance and interpretability.

Features Breakdown

- Dimensionality Reduction:
 - o PCA: Reduces dimensions while preserving variance.
 - t-SNE: Preserves local structure in lower dimensions.
- Semi-Supervised Learning:
 - o Consistency Regularization: Stabilizes predictions with input perturbations.
 - o Entropy Minimization: Promotes confident predictions for unlabelled data.
 - Binary Masking: Focuses on relevant features.
- Advanced Models:
 - o Autoencoder: Learns efficient data representations for clustering.
 - XGBoost: Enhances classification performance using both labelled and unlabelled data.
 - Logistic Regression: A baseline model to improve clustering accuracy with labelled data.

• Visualization:

t-SNE Visualization: Visualizes clusters using t-SNE for easy interpretation.

- Correlation Matrix: Identifies relationships between features.
- Performance Metrics:
 - Silhouette Score: Measures cluster quality.
 - o Purity Score: Evaluates the purity of clusters.
 - o Adjusted Rand Index: Assesses clustering accuracy.
- Gradio Interface: An interactive interface for real-time model exploration and visualization.

Methodology

- 1. Data Preparation: Clean high-dimensional cytometry data through exploratory analysis.
- 2. Dimensionality Reduction: Apply PCA and t-SNE for dimensionality reduction and visualization.
- 3. Semi-Supervised Learning: Use binary masking and consistency regularization for improved performance.
- 4. Model Training: Train both baseline and custom models to enhance clustering accuracy.
- 5. Visualization: Generate clear visualizations using Matplotlib and Seaborn.

Technical Details

- Key Techniques:
 - o Kurtosis & Skewness Analysis: Identifies outliers and assesses data distribution.
 - Cluster Validation: Use Silhouette Score, Purity Score, and Adjusted Rand Index to evaluate clustering quality.

Results

- Improved clustering accuracy using semi-supervised learning techniques.
- Reduced reliance on labelled datasets with the help of consistency regularization and entropy minimization.
- Demonstrated robustness in handling noisy, high-dimensional data with minimal preprocessing.
- Provided clear and interpretable visualizations for the clustering results.