

Interconnexion dans les Réseaux Télécoms

André-Luc BEYLOT ENSEEIHT

Département Télécommunications et Réseaux

PLAN

- Interconnexion réseaux d'accès réseau de transport
- Voix sur IP et interconnexion avec le RTC
- Stratégies de « transformation » du RTC vers le NGN

Le réseau téléphonique

Principes d'interconnexion

- Interconnexion par traduction
 - ◆ Dans le plan de données : numérisation de la voix
 - Dans le plan de contrôle : numérisation de la signalisation et passerelle vers le réseau sémaphore
- Mise en correspondance:
 - Sensiblement 1 signal analogique (sonnerie, décroché...) avec un message ISUP
 - Adressage : cf. cours de première année.
 - → L'adresse obtenue par la demande d'appel permet de trouver le commutateur de raccordement du destinataire;
 - le routage dans le réseau téléphonique est fondé sur l'adressage
- QoS: ressources dédiées sur la liaison d'abonné et idem pour le RTC (pas de gigue, délai constant)

Passage au RNIS (et au GSM)

- Numérisation du réseau d'accès
- Mise en place de protocoles dans le plan de contrôle

Principes d'interconnexion - RNIS(GSM)/RTC

- Interconnexion par traduction
 - Dans le plan de données : en RNIS rien ; en GSM transcodage de la parole (codage GSM/codage RTC)
 - Dans le plan de contrôle : passerelle applicative de signalisation
- Mise en correspondance:
 - ◆ Facile: cf. dynamique suivante
 - Adressage: identique raccordement analogique.
- QoS:
 - Pour le plan de données : un canal B dédié un IT dans des trames MIC dans le RTC (pas de gigue, délai faible)
 - Pour la SIG : fiabilisé par LAP-D/Q.921 sur le RNIS et par MTP-2 sur le RTC

Dynamique des Echanges

Dynamique des échanges (2/2)

Voix sur IP

André-Luc Beylot Département Télécoms et Réseaux ENSEEIHT

Plan

- Introduction
- Le plan de données : RTP/RTCP
- Les protocoles de signalisation :
 - ◆ SIP
 - ◆ H.323
- L'Interconnexion avec le RTC
- Les évolutions vers la suppression du RTC

Introduction

- Objectifs:
 - Passage en mode paquet et réduction des coûts
 - Enrichissement des services : visiophonie, envoi de documents vidéo en cours de communication
 - Interopérabilité avec le réseau téléphonique
- REMARQUE: La voix en mode paquet a déjà existé par le passé
 - Sur liaison louée en Frame Relay (interco de réseau d'entreprise)
 - ◆ En ATM (AAL-1... succès d'estime ; volonté déjà de migration de coeur de réseau téléphonique en mode paquet, en UMTS)

• ...

Principes

- Services et Protocoles nécessaires :
 - Protocoles de "Transport" des données
 - + pour la voix
 - pour la vidéo en temps réel
 - + pour la vidéo stockée
 - Solution : RTP diffusion en direct RTSP données stockées
 - Protocoles de signalisation
 - mise en place de connexion
 - trouver les correspondants (pages blanches)
 - multicast
 - negociations des formats des médias (audio ; audio et video)
 - contrôle des passerelles entre Internet et RTC
 - Nombreuses solutions: H323, SIP, MGCP

Introduction: RTC

- Le RTC a de nombreux avantages :
 - Une bonne qualité de voix
 - Grande robustesse (système de signalisation : SS7)
 - ◆ Très sûr
 - Services efficaces (réseau intelligent, fax)
- Mais le RTC a atteint ses limites : introduction de nouveaux services (de données) trop cher :
 - le dernier km constitue un goulot d'étranglement
 - ATM, qui était "la solution", est arrivé trop tard pas d'applications ATM natives)

Introduction: Internet

- Internet offre une base réelle pour une intégration de service efficace (orienté paquet)
- Mais le transport de la voix ne s'accomode pas bien :
 - + d'1 délai trop important
 - d'1 gigue trop importante (service isochrone)
 - Solutions possibles: DiffServ, MPLS, IntServ
- Conclusion : dans un premier temps, la voix sur IP devra coexister avec le RTC

Problèmes liés à la transmission de la voix

- Délai et gigue dans le RTC :
 - Gigue négligeable (Commutation de Circuits)
 - Délai ~ Propagation. Faible sauf satellite (écho acoustique)
- Dans la VoIP : 2 problèmes : partie fixe et variable.
- Partie Fixe :
 - Carte Son/OS:
 - Codeur : orienté trame ; plus on en sait mieux on compresse
 - ◆ Politique de redondance : limitation impact des pertes
 - Protocoles (RTP, UDP, IP): délai, overhead

Problèmes liés à la transmission de la voix

- Partie Variable (gigue):
 - due aux variations de délai dans le réseau
 - Solution : utiliser un buffer de réception
 - Principle : à la réception du premier paquet, le bufferiser pendant une période fixe L puis lire de façon continue.
 - + Difficulté: dimensionner L
 - trop petit => trop de paquets perdus (arrivent trop tard)
 - trop grand => delai inacceptable (la voix = signal temps réel!)

RTP/RTCP

- RTP solution communément acceptée pour transférer de la voix sur un réseau de type paquet (Internet).
- ◆ RTP envoie des données au-dessus de TCP ou de UDP
- RTP permet de numéroter pour reséquencer et de compenser la gigue due au multiplexage statistique (< routeurs) :
 - + estampille : synchronisation
 - numérotation (pas fait par UDP)
 - type de données (e.g : PCM, H.263)
- RTP permet des sessions unicast ou multicast
- Une session RTP par flux (port UDP / adresse Multicast).
 - + Flux synchronisés par RTCP

RTCP - RTP Control Protocol

- RTCP port # = RTP port # +1
- RTCP a pour but :
 - distribuer des statistiques (Evaluation de la QoS) entre les participants (émetteurs et récepteurs)
 - Synchronisation entre les médias en comparant les estampilles RTP (media relative time)
- RTP et RTCP permettent un contrôle de niveau applicatif de le connexion téléphonique
- RTP/RTCP n'ont pas d'influence sur le réseau lui-même
- l'Internet n'est pas capable de garantir des délais/gigue/ pertes faibles : problème pour la voix
 - RTP permet de compenser une gigue modérée et RTCP permet d'effectuer des adaptations au niveau des terminaux

SDP: Session Description Protocol

SDP: Session Description Protocol

- RFC 2237
- Pas vraiment un protocole les données sont véhiculées par d'autres protocoles
- Utilisé SIP, RTSP, H.332, MGCP
- Décrit les sessions multimédia :
 - codeurs audio et vidéo utilisés (payload type)
 - information sur la session (nom, description courte)
 - adresse multicast à utiliser (en cas de conférence multiparties)

Protocoles de signalisation:

SIP

Introduction

- SIP (RFC 2543) issu du groupe de travail MMUSIC (Multiparty Multimedia Session Control) de l'IETF
- MMUSIC:
 - SIP: Session Initiation Protocol
 - SDP: Session Description Protocol
 - + (type de format échangé, adresses, nom de la session ...)
 - RTSP: Real-time Streaming Protocol
- Objectifs de SIP
 - Localisation
 - Etablissement d'appel
 - (Re)-Négociation des paramètres de session
 - Gestion des participants de l'appel
 - Fin et transferts d'appels

Transactions et messages SIP

- Entités SIP communiquent via des 'transactions' :
 - ◆ 1 transaction = 1 requête + 1 ou plusieurs réponses
 - Transactions numérotées, mode client/serveur
- SIP peut fonctionner sur TCP ou UDP
 - Rem : les flux sont eux véhiculés par RTP/RTCP sur UDP
- 2 types de messages : Requêtes et Réponses
 - ◆ En-tête:
 - → Call-ID. E.g. maconference23sept9h30@conf.com
 - Cseq: numéro de séquence
 - From : e.g. From: 'Mydisplayname' <sip:me@company.com>
 - To: e.g. To: 'Helpdesk' <sip:helpdesk@company.com>;
 - Via : e.g. Via : router1@provider.com;

SIP Requêtes et Réponses

Requêtes

- ◆ INVITE : mises en place de connexion
- ACK
- BYE
- CANCEL: arrêter la recherche d'un utilisateur
- ◆ REGISTER: pour s'enregistrer auprès d'un serveur

Réponses

- Traitement en cours
- Succès
- Redirection
- Echec (du client, du serveur)

Appel Téléphonique entre utilisateurs Internet

Entités SIP

Annuaire:

- garde la trace de la correspondance = SIP @ / IP @
- utilise la requête 'Register'
- Découverte de l'annuaire : Groupe multicast dédié : sip.mcast.net:224.0.1.75 (TTL=1)
- Communication possible en unicast si on connaît sa localisation
- Enregistrement non permanent (timeout)
- Serveur de redirection:
 - répond à des demandes de connexions par des réponses 3xx
 - en donnant d'autres adresses ...

Entités et adresses SIP

- Agent d'appel (Call Agent) :
 - proxy (doit se trouver sur le chemin de chaque appel)
 - ◆ Tâches :
 - doit trouver l'utilisateur en lui redirigeant les messages
 - implante les règles de redirection (call forward on busy ...)
 - filtrage d'appel
- Adresses SIP = URL
 - pas une adresse de transport, le plus souvent @mail
 - Localisation en 2 temps :
 - Trouver le serveur SIP à partir de SIP URL, en utilisant le DNS (en retrouvant des enregistrements 'sip.udp' or 'sip.tcp')
 - Envoyer un INVITE au Serveur qui redirige l'appel

Protocole de signalisation

H.323

H.323

- H.323: standard ITU-T.
 - Début des travaux sur H.323v1 Mai 1995
 - Version 2 Février 1998
 - Version 3 utilisation possible d'UDP
- H.323: vidéo-conférence sur des réseaux de paquets (IP, ATM, IPX)
- Video-conférence existait déjà sur Internet avec le Mbone :
 - Media transportés par RTP/RTCP
 - arbre MC construit avec DVMRP
- Solution fruste:
 - DVMRP ne permet pas le passage à l'échelle
 - · on ne peut pas négocier le codec
 - pas de possibilité de contacter un utilisateur du RTC
 - Pas de service de "pages blanches"
- H.323 a pour objectif de résoudre ces problèmes

Caractéristiques de H.323

- Gatekeeper (contrôleur) : contrôle la session : traduction d'adresse, contrôle d'admission/BP, gère une zone
- Gateway: passerelle H.323/RTC
- Initialisation: enregistrement auprès du GK
- GK admission: obtenir l'autorisation GK résout les @
- Signalisation d'appel:
 - initialisation et mise en place/rejet de la demande (cnx sig)
- Négociation/configuration:
 - + échange du type de données que les entités peuvent traiter
- Echange de données:
 - configuration et ouverture de canaux logiques
 - + envoyer et recevoir des flux de données
- Re-négociation: changer participants/ médias/ paramètres
- Fin: terminer l'appel/conférence; supprimer un utilisateur référencé

Composants et Canaux H.323

- Utilisateur contrôleur GK (H.225.0)
 - UDP
- Signalisation : H.225 (Q.931)
 - Contrôle d'appel
 - service supplémentaires
 - ◆ TCP; depuis la v3: éventuellement UDP
- contrôle (H.245):
 - Négociation type de données et capacités des intervenants;
 - ouverture des "canaux logiques"
 - Reste ouverte pendant toute la durée des échanges
 - Utilise TCP
- Canaux logiques: transporte flux audio, video (UDP)

1ère Phase: Initialisation de l'appel (H.225)

1ère Phase: Initialisation (H.225)

@ H.323v2

- + E.164
- H.323-ID (chaîne de catactères)
- + url-ID
- transport-ID (ex:10.2.3.4:1720)
- + E-mail ID : Mark@domain2.com

Identifiants:

- + H.225.0:
 - Référence de l'appel (unique entre A et B)
- + H.323:
 - Identifiant d'appel
 - · Identifiant de conférence (CID) : unique pour tous les participants

2ème Phase : Canal de contrôle (H.245)

3ème phase : Mise en place du Dialogue

4ème phase : Dialogue

Dernière Phase: Fin

- Sur le canal H.245, fermeture de tous les canaux de données
 - Initié par le premier qui raccroche
 - CloseLogicalChannel et CloseLogicalChannel Ack
- Si le canal H.225 n'a pas été fermé, Release Complete message est envoyé

Appel RTC/Internet (H.323)

- Gatekeepers (GK):
 - gère une zone locale (contrôle des appels entrants/sortants)
 - enregistre les utilisateurs locaux
 - joue le rôle d'agent d'appel (redirection si appelé occupé ...)
 - → Communication entre utilisateur et GK définie dans RAS (Registration, administration and status) inclus dans $H.225.0 \Rightarrow Canal RAS$
- Gateways (GW):
 - gérés par les GK
 - interface entre Internet et RTC/Réseau d'accès
 - + accès RNIS:
 - GW envoie directement les messages Q.931 (SETUP, ALERTING)
 - liaisons analogiques :
 - numérotation DTMF
 - envoie un message "ALERTING" quand il détecte une sonnerie
 - Raccordement RTC : passerelle dans le plan de données et de contrôle

Signalisation d'appel

Fin d'appel

Adressage

- Problème : comment atteindre un téléphone IP à partir d'un téléphone du RTC ?
 - Appeler une passerelle interactive qui demande une adresse
 IP ou un e-mail => Problème de passage à l'échelle
- Besoin d'une procédure automatique. Plusieurs solutions :
 - 1 préfixe spécial par pays
 - ◆ 1 code spécial (comme les numéros 800)
 - 1 code de pays pour les téléphones IP
- C'est la première solution qui a été retenue
- Pb : on ne rentre sur Internet que dans le pays du destinataire!
- Attention à la portabilité du numéro!

"Transformation" du RTC: Mise en place de passerelles

Introduction

- Les solutions précédentes permettent les communications entre le monde IP et le RTC
- Inefficace pour les grandes passerelles d'opérateurs
 - Nombreuses Connexions (H.225, H.245, RTP)
 - Traitements Longs (message en ASN.1)
- Objectifs:
 - Suppression à terme du RTC
 - Besoin de solutions et de stratégies de migration
- Nécessité de prendre en charge au moins pendant quelques années des raccordements RNIS/Analogique
- Besoin de passerelles
 - Plan de données, plan de contrôle

Mise en place de passerelles

SG: Signaling Gateway, MG: Media Gateway, MGC: Media Gateway Controller

MGCP/Megaco protocoles de gestion des passerelles

Media Gateway Control Protocol (MGCP)

- RFC 2705
- MGCP utilisé pour contrôler des passerelles téléphoniques (de cœur ou résidentielles) par des éléments de contrôle d'appel externes appelés media gateway controllers ou call agents.
- MGCP au-dessus d'UDP : passage à l'échelle, delai
- MGCP utilise SDP pour décrire les connexions:
 - + v=0
 - + c=IN IP4 128.16.59.1
 - m=audio 3456 RTP/AVP 0 96
 - + a=rtpmap:96 G726/4

Equipements du réseau

2 types de passerelles :

- Residential Gateways (RGW):
 - Conversion format : voix analogique vers numériques
 - Emule la signalisation téléphonique (côté utilisateur)
- Trunk Gateway (TGW):
 - Interconnexion Internet-RTC: convertit les formats TDM/RTP - RTP/TDM
 - Supporte MGCP (contrôlé par un Call Agent)
- Call Agent (CA) ou Media Gateway Controller:
 - Contrôle RGW et TGW
 - S'occupe de la signalisation SS7 (TGW est simple: s'occupe de la conversion TDM/RTP)
 - 1 CA contrôle plusieurs GWs

Configurations MGCP (1/3)

TGW: Trunk Gateway

CO: Central Office

STP: Switching Transfer Point

Configurations MGCP (2/3)

Configurations MGCP (3/3)

Le CA met en œuvre de nombreux protocoles (SS7,H.323 ou SIP), utilise MGCP pour contrôler les GWs

Communication MGCP/RTC

Communication MGCP/SIP

Migration du réseau (d'accès)

- Les raccordements de type VoIP des abonnés résidentiels (ADSL, Fibre...), l'essentiel du travail est fait - on parle de simulation du service Téléphonique (éventuellement un adaptateur chez l'abonné qui prend en charge la numérisation de la voix et la signalisation SIP)
- Raccordement entreprise : Passage des PABX à des IPBX (idem terminaux analogiques)
- Raccordement Analogique/RNIS: à faire
- Remplacement à terme de l'intégralité du coeur de réseau
- Deux grandes solutions :
 - PES: POTS Emulation System par des passerelles uniquement (Recommandation ITU-T Y.2271)
 - IMS: raccordement par les services (besoin de passerelles)
 (Recommandation ETSI TS 183 043) => en 3ème année 53

Différentes solutions de migration (Y.2262)

ADF = fonction d'adaptation

Principaux protocoles

Y.2262(06)_FII-1

- AG = Access Gateway
- HG = Home Gateway

Architecture Générale avec et sans IMS

AMGC = Access Media Gateway Controller

TMGC = Trunking Media Gateway Controller

Figure 2. NGN_CN architecture.

SG = Signalling Gateway

TG = Trunking Gateway