MNTF Mathematics for New Technologies in Finance

professor: Josef Teichmann

author: walkerchi

Approximation

Weierstrass

Weierstrass Approximation Theorem

A is dense in $C(\mathcal{X},\mathbb{R}^m)=\{f_i|f_i\in C^0_{pw},f_i\in\mathcal{X} o\mathbb{R}^m,\mathcal{X}\subset\mathbb{R}^n\}$ if

- 1. A contains all polynomial functions: $\mathcal{P} \subset A$
 - 1. A is vector subspace of C : $A \subset C(\mathcal{X}, \mathbb{R}^m)$
 - $lacksquare f_1(x)+f_2(x)=f_3(x) \quad orall f_1,f_2\in A, \exists f_3\in A$
 - $lacksquare cf_1(x) = f_2(x) \quad orall c \in \mathbb{R}, orall f_1 \in A, \exists f_2 \in A$
 - 2. A is closed under multiplication : $f_1(x)f_2(x)=f_3(x) \quad orall f_1, f_2\in A, \exists f_3\in A$
 - 3. A contains constant function : $f(v) = c \quad orall v \in \mathcal{X}, \exists f \in A$
- 2. points seperation : $f(v) \neq f(w) \quad \forall v \neq w \land v, w \in \mathcal{X}$

for shallow NN with ReLU

- contains all polynomial functions
 - vector space
 - closed under multiplication
 - contains constant function
- v points seperation
- \Rightarrow NN with ReLU is dense in $C(\mathcal{X}, \mathbb{R}^m)$

Faber-Schauder

Faber-Schauder basis : $s_{n,k}=2^{1+rac{n}{2}}\int_0^t\psi_{n,k}(u)\mathrm{d}u\quad n,k\in\mathbb{Z}$

• equivalent to the linear combination of ReLU

$$\text{Haar function}: \psi_{n,k}(t) = 2^{n/2} \psi(2^n t - k) \quad n,k \in \mathbb{Z} \quad \psi(t) = \begin{cases} 1 & t \in [0,\frac{1}{2}) \\ -1 & t \in [\frac{1}{2},1) \\ 0 & \text{otherwise} \end{cases}$$

- $\operatorname{supp}(\psi_{n,k}) = [k2^{-n}, (k+1)2^{-n})$
- $\int_{\mathbb{R}} \psi_{n,k}(t) \mathrm{d}t = 0$
- $ullet \|\psi_{n,k}\|_{L^2(\mathbb{R})}=1$

$$ullet$$
 $\int_{\mathbb{R}} \psi_{n_1,k_1} \psi_{n_2,k_2} \mathrm{d}t = \delta_{n_1 n_2} \delta_{k_1 k_2}$

Banach

A is Banach space if :

- 1. Cauchy sequence : $\|f_m-f_n\|\leq \epsilon \quad orall \epsilon>0, \exists N_\epsilon\in\mathbb{N}, orall m,n>N_\epsilon$
- 2. completeness : $\|f-f_m\| \leq \epsilon \quad orall \epsilon > 0, m o \infty$

Signature

for path/curve $X_t \in \mathbb{R}^d$, $X_t = \begin{bmatrix} X^1(t) & X^2(t) & \cdots & X^d(t) \end{bmatrix}^{ op}$, signature could determine the curve in tree like equivalences

n-th level of signature : $S(X)_{a,b}^{i_1,i_2,\cdots,i_n}=\int_a^b\int_a^{t_{n-1}}\cdots\int_a^{t_2}\mathrm{d}X_{t_1}^{i_1}\cdots\mathrm{d}X_{t_n}^{i_n}\quad n\leq d$

ullet $S(X)_{a,b}^{i_1,i_2,\cdots,i_n}\in\mathbb{R}^{n^{\otimes d}}$, it's a d dimension tensor with each dimension of span n

signature : $S(X)_{a,b}=(1,S(X)_{a,b}^{i_1},S(X)_{a,b}^{i_1,i_2},\cdots,S(X)_{a,b}^{i_1,i_2,\cdots,i_d})$

- ullet the maximum length of $S(X)_{a,b}$ is $d^0+d^1+d^2+\cdots+d^d=rac{d^{d+1}-1}{d-1}$
- ullet the length of depth M is $d^0+\cdots+d^M=rac{d^{M+1}-1}{d-1}$

normally we got : X_a^i denotes i-th component at time $\ a$ of vector of function X

- $S(X)_{a,b}^{i} = \int_{a}^{b} dX = X_{b}^{i} X_{a}^{i}$
- $S(X)_{a,b}^{i,j} = \int_a^b \int_a^{t_2} dX_{t_1}^i dX_{t_2}^j = \int_a^b (X_{t_2}^i X_a^i) dX_{t_2}^j \stackrel{X = \alpha t + \beta}{=} \frac{1}{2} (X_b^i X_a^i) (X_b^j X_a^j)$
- $S(X)_{a,b}^{i,j,k} = \int_a^b \int_a^{t_3} \int_a^{t_2} dX_{t_1}^i dX_{t_2}^j dX_{t_3}^k \stackrel{X=lpha t+eta}{=} rac{1}{6} (X_b^i X_a^i) (X_b^j X_a^j) (X_b^k X_a^k)$
- shuffle product rule : $S(X)_{a,b}^I S(X)_{a,b}^J = \sum\limits_{K=\mathrm{shuff}([I_1,\cdots,J_1,\cdots])} S(X)_{a,b}^K$
 - \circ example : $S(X)^1_{a,b}S(X)^2_{a,b} = S(X)^{1,2}_{a,b} + S(X)^{2,1}_{a,b}$

Financial Market

Notation

- ullet S^i_t : i-th asset prices at time t, $S \in \mathbb{R}^{N imes d+1}$, normally S^0 represent bank account
- ullet ϕ_t^i : holdings/strategy in i-th assets at time t
- ullet V_t : value of portfolio at time t , $V_t = \sum_i \phi_t^i S_t^i$

self-financing : $\mathrm{d}V(t) = \sum_{i=1}^n \phi^i(t) \mathrm{d}S^i(t)$

 $ullet \sum_i \phi^i_{t+1} S^i_t = \sum_i \phi^i_t S^i_t \quad orall t \in [0,N)$

value process : $V_{t+1} - V_t = \sum_i \phi_t^i (S_{t+1}^i - S_t^i) \quad orall t \in [0,N)$

martingale : $\mathbb{E}[X_{n+1}|X_1,\ldots,X_n]=X_n$

Stochastic Differential Equation

Brownian motion/Wiener process : $W_{t+1} - W_t \sim \mathcal{N}(0,1) \quad W_0 = 0 o W_t$

Geometric Brownian motion : $dS_t = \mu \ S_t \ dt + \sigma \ S_t \ dW_t \Leftrightarrow S_t = S_0 e^{\left(\mu - rac{\sigma^2}{2}
ight)t + \sigma W_t}$

- ullet W_t is brownian motion/wiener process
- \bullet μ,σ is the expectation/variance for the GBM

Utility

utility function u: the additional utility or satisfaction from consuming one more unit of a good decreases as more of the good is consumed.

- concave : f''(x) < 0
- monotone increase : f'(x) > 0

Logarithmic Utility Function

expected utility optimization problem : $rgmax_{\phi_i^i} E[u(V_N)]$

Local Volatility Model : $\mathrm{d}S_t = rS_t\mathrm{d}t + \sigma(S_t,t)S_t\mathrm{d}W_t$

- ullet S_t : underlying asset price at time t
- ullet r risk-free interesting rate
- $\sigma(S_t,t)$: local volatility function
- ullet W_t is the Brownian motion/ Wiener process

Local Stochastic volatility model : $\dfrac{\mathrm{d}S_t = \mu S_t \mathrm{d}t + \sqrt{
u_t} S_t \mathrm{d}W_t}{\mathrm{d}
u_t = lpha_t(
u) \mathrm{d}t + eta_t(
u) \mathrm{d}W_t'}$

- $\alpha_t(\nu), \beta_t(\nu)$: functions based on ν
- ullet W_t,W_t' : Wiener process with correlation factor ho
- ullet ν_t : model the variance of S_t , it relies on another stochastic process, so LSV is not a standard SDE

Heston model : $\mathrm{d}
u_t = \kappa (heta -
u_t) \mathrm{d} t + \xi \sqrt{
u_t} \mathrm{d} W_t'$

- θ : long term variance
- κ : rate of variance reverts toward it's long term
- ξ : volatility of volatility, the variance of u_t
- ambitious approach
 - modeling $\theta, \kappa, \xi, \rho, \mu$ where ρ is the correlation between W_t, W_t'
- modest approach
 - \circ modeling θ, κ, ξ , and ρ, μ from emperical

Ito's lemma :
$$\mathrm{d}f(S,t) = \left(\frac{\partial f}{\partial t} + \mu \frac{\partial f}{\partial S} + \frac{1}{2}\sigma^2 \frac{\partial^2 f}{\partial S^2}\right) \mathrm{d}t + \sigma \frac{\partial f}{\partial S} \mathrm{d}W_t$$
 Stochastic Differential Equation

Black Scholes equation : $\frac{\partial C}{\partial t} + rK\frac{\partial C}{\partial K} + \frac{1}{2}\sigma^2K^2\frac{\partial^2 C}{\partial K^2} - rC = 0$: derive from Ito's lemma

- ullet C(K,t) : European call option price, equivalent to value V
- ullet K : strike price, equivalent to assets/stock price S

Dupire's formula :
$$-\frac{\partial C}{\partial T}-rK\frac{\partial C}{\partial K}+\frac{1}{2}\sigma^2K^2\frac{\partial^2 C}{\partial K^2}-\Delta C=0$$

ullet when r=0 , $\sigma^2=rac{2\partial_T C}{K^2\partial_K^2 C}$

Breeden-Litzenberger fromula : $\partial_K^2 C(T,K) \mathrm{d}K = p_T(K) \mathrm{d}K$

• $p_T(K)\mathrm{d}K$ is the risk neural probability, $p_T(K)=p(S_t\in[K,K+\mathrm{d}K])$

Deep portfolio optimization

$$\mathrm{d}S_t = S_t \mu \mathrm{d}t + S_t \sigma \mathrm{d}W_t$$
 $\mathrm{d}X_t = lpha_t X_t rac{\mathrm{d}S_t}{S_t} + (1-lpha)X_t r \mathrm{d}t$ $\max_lpha \mathbb{E}[u(X_T)]$

- ullet X_t is the money at time t
- ullet $lpha_t$ is strategy how much portion of money in the stock rather than in the bank at time t
- S_t is the stocks prices, governed by parameter μ and σ , with W_t a brownian motion or wiener process
- *r* is the interest rate saved in bank
- ullet u is the utility function ,normally $u(x)=rac{x^{\gamma}-1}{\gamma}$

analytical solution : $lpha^* = rac{\mu - r}{\sigma^2(1 - \gamma)}$

Deep Hedging

$$\mathrm{d}S_t = S_t \mu \mathrm{d}t + S_t \sigma \mathrm{d}W_t \ \min_{H,\pi} \mathbb{E}\left[\left\| f(S_T) - \pi - \int_0^T H_t \mathrm{d}S_t
ight\|^2
ight]$$

- ullet S_t is the risky stocks prices, governed by parameter μ and σ , with W_t a brownian motion or wiener process
- ullet $f(S_t)$ is financial claim, the payoff is $f(S_T) = \max(S_T K, 0)$ for European call, K is the strike price
- π the price of the option, the upfront payment you received
- ullet H_t is the hedge strategy at time t
- *T* is the expire date

Deep Calibration

Heston Calibration

$$\mathrm{d}X_t = \left((q-r) - rac{1}{2}Y_t
ight)\mathrm{d}t + \sqrt{Y_t}\mathrm{d}W_t^1$$
 $\mathrm{d}Y_t = (heta - \kappa Y_t)\mathrm{d}t + \sigma\sqrt{Y_t}\mathrm{d}W_t^2$
 $rgmin_{ heta,\kappa,\sigma}\sum_{t=0}^T \|X_t - \log(S_t)\|^2$

- r:interest rate
- q: dividend
- S_t : price of assets
- X_t : predicted log price : $X_0 = \log(S_0)$
- ullet Y_t : variance of Heston model : $Y_0=
 u_0$

Utility Calibration

$$dS_t = S_t lpha_t l(t,S_t) \mathrm{d}W_t$$
 $rgmin_t \left\| \mathbb{E} \left[\max(S_T - K,0) - C(K,T) - \int_0^T H_t \mathrm{d}S_t
ight]
ight\|^2$

- α_t is exogenous process at time
- $l(t, S_t)$ is leverage function
- ullet S_t is the stocks prices, with W_t a brownian motion or wiener process
- ullet H_t is the hedge strategy at time t
- ullet K is the strike price of European call
- *C* is the European call option market price

Deep Simulation

model controlled differential equation

$$\mathrm{d}X_t = \sum_{i=0}^d \sigma(A_i X_t + b_i) \mathrm{d}u_i(t)$$

- ullet A_i,b_i are randomly generated matrices/vectors
- ullet u_i is control coefficient learned by network
- σ is the sigmoid//tanh function

Reinforcement Learning

- a, s: action $a \in A$, state $s \in S$
- ullet V,V^* : value function, optimal value function, $V\in S imes T o \mathbb{R}$
- ullet $\pi(s)$: policy , $\pi \in S o A$
- c(t,s,a) : cost function , $c\in T imes S imes A o \mathbb{R}$
- r,R(s,a) : reward, reward function , $r\in\mathbb{R},R\in S imes A o\mathbb{R}$
- ullet Q(s,a): Q/state action function, return the priority for each state and action, $Q\in S imes A o \mathbb{R}$

[DPP] Dynamic programming principle:

$$V^*(t,s) = \max_a \left\{ \int_t^T c(au,s(au),a(au)) \mathrm{d} au + V*(T,s(T))
ight\}$$

$$ullet V(s) = \max_a \left(R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V(s')
ight)$$

[HJB] Hamiton-Jacobi-Bellman equation : $rac{\partial V(s,t)}{\partial t} + \max_a \left(rac{\partial V(s,t)}{\partial s} \cdot f(t,s,a) + c(t,s,a)
ight) = 0$

- ullet f(t,s,a) : system dynamics, how state change over time, $rac{\mathrm{d}s(t)}{\mathrm{d}t}=f(t,s,a)$
- $ullet V^*(s) = \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V^*(s')
 ight)$

Bellman equation : $Q(s,a) = r + \gamma \max_{a'} Q(s',a')$

Value Iteration : $V^{(n+1)} = \max_{a} \left\{ R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{(n)}(s')
ight\}$

$$V^{\pi^{(n)}}(s) = R(s,\pi(s)) + \gamma \sum_{s'} P(s'|s,\pi(s)) V^{\pi^{(n)}}(s')$$

Policy Iteration:

$$\pi^{(n+1)} = rgmax \left\{ R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\pi^{(n)}}(s')
ight\}$$

Q learning(environment-known/model-based):

$$Q(s,a) \leftarrow R(s,a) + \sum_{s'} P(s'|s,a) \left[\gamma \max_{a'} Q(s',a')
ight]$$

Q learning(environment-unknown/model-free):

$$Q(s,a) \leftarrow (1-lpha)Q(s,a) + lpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a)
ight]$$

Optimization

inverse calibration : $\operatorname*{argmin}_{\theta} \lVert \mathbf{d} - \mathcal{N} \mathcal{N}_{\theta} \rVert^2$

- ullet d is the observed data
- ullet $\mathcal{NN}_{ heta}$ $\theta\in\Theta$ is the pool of the model

optimization approach $: \underset{\theta}{\operatorname{argmin}} \|\mathbf{d} - \mathcal{N} \mathcal{N}_{\theta}\|^2 + \lambda R_{\theta}$

- θ model parameters
- $R_{ heta}$: regularization term ($|\cdot|$: lasso(L1) or $\|\cdot\|^2$: ridge(L2))

bayesian optimization:

$$P(M_i|\mathbf{d}) = rac{P(\mathbf{d}|M_i)P(M_i)}{P(\mathbf{d})} \propto P(d|M_i)P(M_i)$$

- ullet $P(M_i|\mathbf{d})$ posterior probability of model M_i given data \mathbf{d}
- ullet $P(\mathbf{d}|M_i)$ likelihood of data given model M_i
- ullet $P(M_i)$: prior probability of model M_i
- $P(\mathbf{d})$: evidence likelihood

for linear model $Y \sim \mathcal{N}(\theta X, \sigma^2 \mathbf{I}), \theta \sim \mathcal{N}(0, \tau^2 \mathbf{I})$, the maximizing posterior of $p(\theta|x, y)$ is ridge regression:

$$\begin{split} \operatorname*{argmax} p(\theta|x,y) &\propto \operatorname*{argmax}_{\theta} p(\theta) p(y|x,\theta) \\ &\propto \operatorname*{argmax}_{\theta} \exp\left(-\theta^{\top} \mathbf{I} \theta/\tau^{2}\right) \exp\left(-(y-\theta x)^{\top} \mathbf{I} (y-\theta x)/\sigma^{2}\right) \\ &\propto \operatorname*{argmin}_{\theta} \frac{\sigma^{2}}{\tau^{2}} \|\theta\|^{2} + \|y-\theta x\|^{2} \end{split}$$

[SGLD] Stochastic Gradient Langevin Dynamics: gradient descent plus noise:

$$\mathrm{d} heta_t = rac{1}{2}
abla \mathrm{log} \ p(heta_t|x_1,\ldots,x_n) \mathrm{d}t + \mathrm{d}W_t$$

• escape from local minimal