实验二 三极管放大电路

一、实验目的

- 1、掌握三极管放大电路静态工作点的测量方法。
- 2、掌握放大电路主要性能参数的测量方法。
- 3、熟悉用 LTspice 仿真电路。

三、实验内容

1、搭建图 1 所示电路。用示波器、微安表和毫安表等,测量三极管 2N3904 的输入特性和输出特性,分别绘制曲线; 计算其 β 值。 V_1 , V_2 用可调直流电源(注意:通电前一定要将两个通道的电压旋钮调到零位)。设计测试方案,记录测量结果。

图 1

- 2、搭建图 2 所示电路。
 - (1)测量电路的静态工作点。
- (2)测量电压放大倍数、输入电阻 R_i 、输出电阻 R_o ;设置正弦波输入信号,有效值 $V_{RMS} \approx 5 \text{mV}$,频率为 10 kHz。
- (3) 改变输入信号频率(100Hz、1kHz.....),测量输出信号幅值,画出幅 频特性曲线。
- (4) 在发射极与 R_E 之间串联一 100Ω 电阻 (保持 C_E 与 R_E 并联),测量输出波形及电压放大倍数,与上面结果比较,分析发射极电阻对放大电路的影响。

- (5)将 R_1 更换为 $5k\Omega$ 电阻,测量静态工作点、输出波形及电压放大倍数等参数。
 - 3、用LTspice 软件仿真图 2 所示电路。

四、实验注意事项

- 1、信号发生器的两输出端不得短路。
- 2、所有实验仪器、实验电路要接公共地(简称共地)。
- 3、在搭接与测量硬件电路前,通常要先进行理论计算和电路仿真;测量结束后对实测值、仿真值、理论计算值进行对比,分析测量误差大小及产生误差的原因。

五、实验报告

完成上述实验内容 1、2 和 3,整理实验数据,分析结果。

附: 放大电路的输入、输出电阻测量方法

1、输入电阻测量

输入电阻 R_i 表示从放大电路输入端看进去的等效电阻,即 R_i = U_i / I_i 。附图 1 所示为一种常用测量输入电阻的方法。在被测电路的输入回路中串入一个已知电阻 R_1 ,在输入端加入正弦信号,用示波器分别测量电阻 R_1 两端对地的电压有效值,则可求出输入电流,由此计算输入电阻为 R_i = U_i / $(U_i$ '- U_i)* R_1

为减小测量误差,选取的 R_1 的阻值应与 R_i 接近。此外,所施加信号,应在电路的输入信号允许值范围内。

2、输出电阻测量

在输入端加正弦信号,将负载电阻 R_L 开路,测量电路的开路输出电压 U_o ';然后接入负载电阻 R_L ,测量带载输出电压 U_o L。输出电阻为 R_o =(U_o '/ U_o L-1)* R_L 为减小测量误差, R_L 的阻值应与 R_o 接近。但当被测电路(如稳压电源、由集成运放组成的运算电路等)的输出电阻 R_o 很小时,就不能采用此方法,否则会使输出电流过大,造成元件的损坏。

测量中应注意,输出负载电阻的变化可能会引起输出信号的失真。