

Data Science with Python

Pasindu Marasinghe ppm@ucsc.cmb.ac.lk

Why Do We Have to Normalize Data?

Scaling to a range

$$X_{new} = \frac{(X - X_{min})}{(X_{max} - X_{min})}$$

Clipping

Log Scaling

Z-score

$$X_{new} = \frac{(X - \mu)}{\sigma}$$

Regression

What will be the temperature tomorrow?

Fahrenheit

Classification

Will it be hot or cold tomorrow?

Fahrenheit

ANN = MLP?

Activation Function

Sigmoid vs Relu vs tanh

Model Evaluation

Confusion Matrix

		Actual	
		Positive	Negative
redicted	Positive	True Positive	False Positive
Predi	Negative	False Negative	True Negative

Accuracy

$$Accuracy = \frac{(TP + TN)}{(TP + TN + FP + FN)}$$

Precision

$$Precision = \frac{(TP)}{(TP + FP)}$$

Recall

$$Recall = \frac{(TP)}{(TP + FN)}$$

F1 Score

$$F1 \, Score = 2 \frac{(Precision * Recall)}{(Precision + Recall)}$$