## A Novel Testing Framework For Vision Models Using Bayesian Network



By Arooj Arif aa3506phd

Mini-thesis is submitted for the probation review of PhD July 2024

Northeastern University London, London - UK Spring, 2024

### Final Approval

#### This Mni-thesis titled

## A Novel Testing Framework For Vision Models Using Bayesian Network

 $\begin{array}{c} \text{By} \\ Arooj \ Arif \\ aa 3506 phd \end{array}$ 

has been approved For the Northeastern University, London

| Chair:       |                                                     |
|--------------|-----------------------------------------------------|
|              | Alex Freitas,                                       |
|              | Professor, Department of Computer Science,          |
|              | University of Kent, Kent                            |
|              |                                                     |
|              |                                                     |
| Supervisor:_ |                                                     |
|              | Alexandros Koliousis,                               |
|              | Associate Professor, Department of Computer Science |
|              | Northeastern University London, UK                  |
|              |                                                     |
|              |                                                     |
| Co-Supervis  |                                                     |
| o-supervis   | Dr.Elena Botoeva,                                   |
|              | Lecturer, Department of Computer Science,           |
|              | University of Kent, Kent                            |

#### ABSTRACT

Deep learning models, particularly vision models (VMs), are critical in high-stake domains such as autonomous driving, medical diagnostics, and security systems. The real-world deployment of VMs require rigorous robustness testing due to diverse environmental conditions. Current testing approaches primarily focus on neuron coverage. Although this metric is critical; however, it alone does not ensure comprehensive coverage of all corner cases, which can lead to unexpected failures, thus leaving a gap in the overall evaluation of the VMs robustness. My research develops a comprehensive testing framework designed to enhance the evaluation of VMs through a structured five-stage process. The initial stage, Specification Module, focuses on clearly defining all necessary properties of the system to guide the entire testing process and ensure comprehensive coverage. The second stage, Sampling, involves to gather all relevant samples necessary for thorough model testing. In the third stage, Test Case Generation, the properties are specified in the first stage are applied to the collected samples, and test cases are generated accordingly. For example, in autonomous car testing, properties such as dust, noise, rain, and night conditions are considered to evaluate model performance under these conditions. The fourth stage, Testing & Probabilistic Graph, begins with testing the generated test cases to validate their effectiveness. After testing, robustness assessments are conducted both locally and globally. Locally, the robustness of model is evaluated within individual categories or classes to identify weaknesses. In contrast, globally, the model's performance is assessed across various categories to enhance its generalisation capabilities across different scenarios. Errors are systematically recorded for later analysis. This stage integrates a probabilistic approach using Bayesian network, combined with solid mathematical formulation, to provide a comprehensive visual and quantitative analysis of the model's performance at both local and global levels. The final stage, Error Summarization, compiles and analyses the recorded errors, producing actionable graphical error reports and recommendations for VMs refinement.

## TABLE OF CONTENTS

| Al  | ostrac | et       |                                               | iii  |
|-----|--------|----------|-----------------------------------------------|------|
| Lis | st of  | Figures  |                                               | vi   |
| Lis | st of  | Tables   |                                               | vii  |
| Lis | st of  | Algorit  | hms                                           | viii |
| 1   | Intr   | oductio  | on .                                          | 1    |
|     | 1.1    | Overv    | riew                                          | . 1  |
|     |        | 1.1.1    | Background and motivation                     | . 1  |
|     |        | 1.1.2    | Challenges of Deep Learning Models            | . 2  |
|     |        | 1.1.3    | Challenges in Testing of Deep Learning Models | . 3  |
|     |        | 1.1.4    | Problem Statement                             | . 4  |
|     |        | 1.1.5    | Research Goal                                 | . 4  |
|     |        | 1.1.6    | Research Questions                            | . 4  |
|     |        | 1.1.7    | Thesis Contributions                          | . 5  |
|     |        | 1.1.8    | Organization of thesis                        | . 5  |
| 2   | Lite   | rature   | Review                                        | 6    |
|     | 2.1    | Overv    | riew                                          | . 6  |
|     |        | 2.1.1    | Coverage Criteria for Deep Learning Models    | . 6  |
|     |        | 2.1.2    | Test Case Generation for Deep Learning Models | . 7  |
| 3   | Pro    | posed F  | Framework                                     | 13   |
|     |        | 3.0.1    | Bayesian Network-based Coverage Metrics       | . 13 |
|     |        | 3.0.2    | Gradient based Test Generation                | . 13 |
| 4   | Sim    | ulations | s and Results                                 | 17   |
| 5   | Con    | clusion  |                                               | 18   |
| 6   |        |          |                                               | 19   |

## List of Figures

| 1.1 | The internal logic of a deep neural network is opaque to humans,       |    |
|-----|------------------------------------------------------------------------|----|
|     | as opposed to the well laid out decision logic of traditional software |    |
|     | programs [1]                                                           | ;  |
| 1.2 | A high-level representation of most existing DNN testing methods [1]   | ,  |
| 3.1 | The outline of proposed approach explains overall flow of work         | 1  |
| 3.2 | Coverage Assesment (Local and Global)                                  | 1  |
| 3.3 | Error Summarization                                                    | 16 |

## List of Tables

| 2.1 | Coverage Methods, Descriptions, and Limitations         |  |  | 6  |
|-----|---------------------------------------------------------|--|--|----|
| 2.2 | Summary of Existing Test Input Generation Methods       |  |  | 7  |
| 2.3 | Limitations of Existing Approaches in DNN Testing       |  |  | 7  |
| 2.4 | Summary of Test Methodologies and Their Characteristics |  |  | 8  |
| 2.4 | Summary of Test Methodologies and Their Characteristics |  |  | 9  |
| 2.4 | Summary of Test Methodologies and Their Characteristics |  |  | 10 |
| 2.4 | Summary of Test Methodologies and Their Characteristics |  |  | 11 |
| 2.4 | Summary of Test Methodologies and Their Characteristics |  |  | 12 |

## List of Algorithms

| 1 | Test Case | Generation v | via ( | Gradient-Based | Attacks |  |  |  |  | 1 | 3 |
|---|-----------|--------------|-------|----------------|---------|--|--|--|--|---|---|
|   |           |              |       |                |         |  |  |  |  |   |   |

#### Introduction

#### 1.1 Overview

Deep Neural Networks, or DNNs, are increasingly being used in diverse applications owing to their ability to match or exceed human level performance. The availability of large datasets, fast computing methods and their ability to achieve good performance has paved way for DNNs into safety-critical avenues such as autonomous car driving, medical diagnosis, security, etc. The safety-critical nature of such applications makes it imperative to adequately test these DNNs before deployment. However, unlike traditional software, DNNs do not have a clear control-flow structure. They learn their decision policy through training on a large dataset, adjusting parameters gradually using several methods to achieve desired accuracy. Consequently, traditional software testing methods like functional coverage, branch coverage, etc. cannot be applied to DNNs, thereby challenging their use for safety critical applications. A lot of recent work, discussed in chapter II, has looked into developing testing frameworks for DNNs. These methods suffer from certain limitations, as discussed in . In our work, we intend to make an effort to overcome these limitations and build a fast, scalable, efficient, generalizable testing framework for deep neural networks.

In this section of thesis, the background and motivation, Research Questions, contributions and organization of thesis have been presented.

#### 1.1.1 Background and motivation

In the past few years, deep neural networks (DNNs) have made remarkable progress in achieving human-level performance. With the broader deployment of DNNs on

various safety critical systems like autonomous, healthcare, avionics, etc., the concerns over their safety and trustworthiness have been raised in public, particularly highlighted by incidents involving self-driving cars.

An important low-level requirement for DNNs is that they are robustness against input perturbations. DNNs have been shown to suffer from a lack of robustness because of their susceptibility to adversarial examples such that small modifications to an input, sometimes imperceptible to humans, can make the network unstable.

In this thesis, we examine existing testing methods for deep neural networks, the opportunities for improvement and the need for a fast, scalable, generalizable end-to-end testing method.

Coverage criteria for traditional software programs, such as code coverage and branch coverage check that all parts of the logic in the program have been tested by at least one test input and all conditions have been tested to independently affect the entailing decisions. On similar lines, any coverage criterion for deep neural networks must be able to guarantee completeness, that is, it must be able to ensure that all parts of the internal decision-making structure of the DNN have been exercised by at least one test input.

Generating or selecting test inputs in a guided manner usually has two major goals - maximizing the number of uncovered faults, and maximizing the coverage.

Testing DNNs for correctness involves verifying behaviors against a ground truth or oracle. The traditional approach, collecting and manually labeling real-world data, is labor-intensive. Another method compares outputs across multiple DNNs for the same task, identifying discrepancies as corner cases. However, this can misclassify inputs if all models agree, due to shared biases or errors. This comparative approach is further limited to tasks with multiple reliable models, which may not always be available, especially in innovative or specialized applications.

#### 1.1.2 Challenges of Deep Learning Models

The growing use of deep neural networks in safety critical applications makes it necessary to carry out adequate testing to detect and correct any incorrect behavior for corner case inputs before they can be actually used. Deep neural networks lack an explicit control-flow structure, making it impossible to apply to them traditional software testing criteria such as code coverage



Figure 1.1: The internal logic of a deep neural network is opaque to humans, as opposed to the well laid out decision logic of traditional software programs [1]



FIGURE 1.2: A high-level representation of most existing DNN testing methods [1]

• input space is extremely large, **unguided simulation** are highly unlikely to find erroneous behavior

#### 1.1.3 Challenges in Testing of Deep Learning Models

unlike traditional software, DNNs do not have a clear control-flow structure. They learn their decision policy through training on a large dataset, adjusting parameters gradually using several methods to achieve desired accuracy. Consequently, traditional software testing methods like functional coverage, branch coverage, etc. cannot be applied to DNNs, thereby challenging their use for safety-critical applications. Traditional software testing methods fail when applied to DNNs because the code for deep neural networks holds no information about the internal decision-making logic of a DNN.

DNNs testing techniques aim to discover bugs, through finding counter examples that challenge the system's correctness, or to establish confidence by rigorously

evaluating the system with numerous test cases. These testing techniques are computationally less expensive and therefore are able to work with state-of-the-art DNNs. However, DL testing has some limitations:

- Standards available in industry but Lack of Logical Structure and System Specification
- Heavily depend on manual collections of test data under different conditions which become expensive as number of test condition increases
- existing coverage criteria are not detailed enough to notice subtle behaviours exhibited by DL systems.

coarse coverage criteria, open ended processes, unreliable oracles, inefficient test input generation methods, inability to scale to larger DNNs and different network architectures

#### 1.1.4 Problem Statement

Deep learning models are being more widely used in a variety of applications, yet their reliability in practical applications remains a challenge.

#### 1.1.5 Research Goal

This thesis aims to develop a systematic framework for evaluating local and global robustness in deep learning models. The goal is to provide a comprehensive error summary to improve model design and training, ensuring their reliability for real-world applications.

#### 1.1.6 Research Questions

- How we sample inputs efficiently?
- How can we design a comprehensive framework to test system robustness?
- How can we systematically evaluated the robustness both at local (property-specific) and global (overall system) levels within framework?
- How can error summarization be employed to quantify the impacts on model robustness?

#### 1.1.7 Thesis Contributions

This research makes the following key contributions to the field of deep learning robustness evaluation:

- We design an **end-to-end pipeline** for evaluating the robustness of system.
- We propose a **conceptual framework** that quantifies both local and global robustness, with formalized approach to verify system robustness.
- A novel **error summarization** approach which allows better identification of model weaknesses related to class and property.
- We perform all our **experiments** using publicly available deep learning models and MNIST dataset.

#### 1.1.8 Organization of thesis

The remainder of the thesis is organized as follows: related studies are presented in Chapter 2. System model and proposed methodology are demonstrated in Chapter 3. Chapter 4 describes the simulation results of our proposed schemes. Finally, the findings of this work along with future directions are presented in Chapter 5.

## Literature Review

#### 2.1 Overview

#### 2.1.1 Coverage Criteria for Deep Learning Models

| Existing Coverage   | Description                    | Limitation                   |  |  |
|---------------------|--------------------------------|------------------------------|--|--|
| Methods             |                                |                              |  |  |
| Neuron Coverage     | Measures the model's logic     | Doesn't capture all poten-   |  |  |
|                     | use by counting activated      | tial DNN behaviors and can   |  |  |
|                     | neurons from test inputs.      | achieve high coverage with   |  |  |
|                     |                                | few inputs; it is a coarse   |  |  |
|                     |                                | measure.                     |  |  |
| k-Multisection Neu- | Divides neuron activation      | Loses information on acti-   |  |  |
| ron Coverage        | values observed during         | vations beyond the observed  |  |  |
|                     | training into k buckets and    | range during aggregation.    |  |  |
|                     | counts how many buckets        |                              |  |  |
|                     | are covered by a set of        |                              |  |  |
|                     | inputs.                        |                              |  |  |
| DeepCover           | Considers condition-           | Limited to small, feedfor-   |  |  |
|                     | decision dependencies          | ward, fully-connected net-   |  |  |
|                     | between adjacent DNN           | works; doesn't generalize to |  |  |
|                     | layers.                        | complex architectures like   |  |  |
|                     |                                | RNNs or LSTMs.               |  |  |
| DeepCT              | Inspired by combinatorial      | Lacks consideration for      |  |  |
|                     | testing, assesses logic use by | inter-layer relationships    |  |  |
|                     | the fraction of neurons acti-  | - and hasn't been proven to  |  |  |
|                     | vated in each layer.           | scale to real-world DNNs.    |  |  |

Table 2.1: Coverage Methods, Descriptions, and Limitations

#### 2.1.2 Test Case Generation for Deep Learning Models

| Existing Meth-     | Description                        | Limitation                        |  |  |
|--------------------|------------------------------------|-----------------------------------|--|--|
| ods                |                                    |                                   |  |  |
| Joint Optimization | Modifies an existing input         | Time-consuming and produces       |  |  |
|                    | through image manipulations        | a low ratio of impactful test     |  |  |
|                    | recursively until it triggers dif- | inputs compared to the total      |  |  |
|                    | ferent behavior in the model.      | tested/generated.                 |  |  |
| Greedy Search      | Applies random transforma-         | Similar to joint optimization,    |  |  |
|                    | tions to an existing test input    | it is also time-intensive and re- |  |  |
|                    | until a suitable test input is     | sults in a low number of effec-   |  |  |
|                    | identified.                        | tive test inputs relative to the  |  |  |
|                    |                                    | total tested.                     |  |  |

Table 2.2: Summary of Existing Test Input Generation Methods

| Existing Approaches               | Limitations                        |
|-----------------------------------|------------------------------------|
| Collecting as much real-world     | The process requires a lot of man- |
| data as possible and manually la- | ual effort.                        |
| beling it for correctness.        |                                    |
| Comparing outputs across mul-     | Can misclassify inputs if all mod- |
| tiple DNNs for the same task,     | els agree, due to shared biases or |
| identifying discrepancies as cor- | errors. Limited to tasks with mul- |
| ner cases.                        | tiple reliable models, which may   |
|                                   | not always be available.           |

Table 2.3: Limitations of Existing Approaches in DNN Testing

Table 2.4: Summary of Test Methodologies and Their Characteristics

| Methodology      | Dataset          | Benchmark           | Limitation/Future Work          | Coverage     | Test       |
|------------------|------------------|---------------------|---------------------------------|--------------|------------|
|                  |                  |                     |                                 | Criteria     | Generation |
| Symbolic         | German Credit    | THEMIS              | FW: Expand to text and image    | _            | Concolic   |
| execution with   | Data, Adult      | (Algorithm) The     | domains FW: Measure symbolic    |              |            |
| local            | census income,   | technique produces  | execution efficacy using neuron |              |            |
| explainability.  | Bank marketing,  | 3.72 times more     | coverage, boundary value        |              |            |
| LIME provides    | US Executions,   | successful test     | coverage.                       |              |            |
| explanations for | Fraud Detection, | cases than existing |                                 |              |            |
| predictions[2]   | Raw Car Rentals, | state-of-the-art.   |                                 |              |            |
|                  | Credit data,     |                     |                                 |              |            |
|                  | Census data      |                     |                                 |              |            |
| Concolic testing | MNIST            | DeepXplore,         |                                 | NC, SSC, NBC | Concolic   |
| method [3]       | CIFAR-10         | DeepTest,           |                                 |              |            |
|                  |                  | DeepCover, and      |                                 |              |            |
|                  |                  | DeepGauge           |                                 |              |            |

9

Table 2.4: Summary of Test Methodologies and Their Characteristics

| Methodology     | Dataset      | Benchmark          | Limitation/Future Work             | Coverage | Test          |
|-----------------|--------------|--------------------|------------------------------------|----------|---------------|
|                 |              |                    |                                    | Criteria | Generation    |
| Whitebox        | MNIST        | LeNet variations   | Inherits differential testing      | NC       | Dual-         |
| framework for   | ImageNet     | State-of-the-art   | constraints.                       |          | optimisation  |
| testing DL      | Driving      | image classifiers  |                                    |          |               |
| systems,        | VirusTotal   | Nvidia DAVE        |                                    |          |               |
| introducing     | Drebin       | PDF malware detect | ors                                |          |               |
| neuron coverage |              | Android app        |                                    |          |               |
| for test        |              | malware detectors  |                                    |          |               |
| measurement [4] |              |                    |                                    |          |               |
| Automates       | Udacity self | Chauffeur-         | L:missing some realistic cases.    | NC       | Greedy search |
| testing for     | driving car  | Epoch              | L: restricted only steering angle, |          |               |
| DNN-driven      | challenge 2  | Rambo-S1           | not focus on brake and accelerator |          |               |
| autonomous cars |              | Rambo-S2           | L: cannot simulate complex road s  | cene     |               |
| [5]             |              | Rambo-S3           | •                                  |          |               |

Table 2.4: Summary of Test Methodologies and Their Characteristics

| Methodology         | Dataset   | Benchmark            | Limitation/Future Work | Coverage | Test       |
|---------------------|-----------|----------------------|------------------------|----------|------------|
|                     |           |                      |                        | Criteria | Generation |
| White box           | MNIST,    | State-of-the-art     |                        | MC/DC    | Symbolic   |
| methodology,        | CIFAR-10, | neural networks of   |                        |          | execution  |
| Proposed four       | ImageNet  | different sizes      |                        |          |            |
| novel test criteria |           | (from a few          |                        |          |            |
| tailored to DNN,    |           | hundred up to        |                        |          |            |
| structural          |           | millions of          |                        |          |            |
| features. able to   |           | neurons) to          |                        |          |            |
| capture and         |           | demonstrate their    |                        |          |            |
| quantify causal     |           | utility with respect |                        |          |            |
| relations existing  |           | to four aspects:     |                        |          |            |
| in a DNN,           |           | bug finding, DNN     |                        |          |            |
| Achieved balance    |           | safety statistics,   |                        |          |            |
| between bug         |           | testing efficiency,  |                        |          |            |
| finding ability     |           | DNN internal         |                        |          |            |
| and                 |           | structure analysis   |                        |          |            |
| computational       |           |                      |                        |          |            |
| cost [6]            |           |                      |                        |          |            |

Table 2.4: Summary of Test Methodologies and Their Characteristics

| Methodology       | Dataset          | Benchmark | Limitation/Future Work               | Coverage | Test            |
|-------------------|------------------|-----------|--------------------------------------|----------|-----------------|
|                   |                  |           |                                      | Criteria | Generation      |
| Proposed criteria | MNIST, ImageNet  | LeNet-1   | More diverse datasets                | NBC      | Gradient        |
| facilitate the    |                  | LeNet-4   | and DL architectures needed.         |          | descent methods |
| understanding of  |                  | LeNet-5,  | Check on real-world systems.         |          |                 |
| DNNs as well as   |                  | VGG-19,   |                                      |          |                 |
| the test data     |                  | ResNet-50 |                                      |          |                 |
| quality from      |                  |           |                                      |          |                 |
| different levels  |                  |           |                                      |          |                 |
| and angles[7]     |                  |           |                                      |          |                 |
| An unsupervised   | Udacity Training | Autumn,   | Lack a good standard to evaluate     | image    | Mutation        |
| learning          | Udacity Test Ep1 | Chauffeur | quality (i.e., realism). Udacity dat | aset is  | testing         |
| framework to      | Udacity Test Ep2 |           | relatively small and the             |          |                 |
| synthesize        | Youtube Ep1      |           | autonomous driving models are        |          |                 |
| realistic driving | Youtube Ep2      |           | quite simple. Only focus on steering | ng       |                 |
| scenes to test    |                  |           | wheel.                               |          |                 |
| inconsistent      |                  |           |                                      |          |                 |
| behaviors[8]      |                  |           |                                      |          |                 |

Table 2.4: Summary of Test Methodologies and Their Characteristics

| Methodology       | Dataset   | Benchmark | Limitation/Future Work             | Coverage | Test        |
|-------------------|-----------|-----------|------------------------------------|----------|-------------|
|                   |           |           |                                    | Criteria | Generation  |
| An automated      | MNIST,    | LeNet-1   | NC cannot generate effective       | NC       | Metamorphic |
| fuzz testing      | CIFAR-10, | LeNet-4   | results to evaluate the models     | KMNC     | mutation    |
| framework for     | ImageNet  | LeNet-5   | with various quality. NC is less   | NBC      |             |
| hunting potential |           | RN-20     | effective in error triggering test | SNAC     |             |
| defects of        |           | VGG-16    | detection and sensitive defect     | KNC      |             |
| general-purpose   |           | MobileNet | detection.                         | KNC      |             |
| DNNs[9]           |           | RN-50     |                                    |          |             |

## **Proposed Framework**

#### Proposed Approach

#### 3.0.1 Bayesian Network-based Coverage Metrics

Two testing coverage metrics are defined in Figure.3.2: the local coverage (LC) and the global coverage (GC).

#### 3.0.2 Gradient based Test Generation

```
Algorithm 1: Test Case Generation via Gradient-Based Attacks
 Input:
                      Model \mathcal{M} with bounds [0, 1],
                      Set of images \mathcal{I} = \{i_1, i_2, \dots, i_n\},\
                      Corresponding labels \mathcal{L} = \{l_1, l_2, \dots, l_n\},\
                      Perturbation magnitudes \mathcal{E} = \{\epsilon_1, \epsilon_2, \dots, \epsilon_k\},\
                      Set of attacks \mathcal{A} = \{A_1, A_2, \dots, A_m\}.
 Output:
                      Set of test cases \bigcup TestCases_{ij}.
 Procedure:
                      GenerateTestCases(\mathcal{M}, \mathcal{I}, \mathcal{L}, \mathcal{E}, \mathcal{A})
                         for each attack A_i in \mathcal{A}
                             for each \epsilon_i in \mathcal{E}
                                Generate testcases Adv_{ij} = A_j(\mathcal{M}, \mathcal{I}, \epsilon_i)
                                Verify the Adv_{ij} to obtain V_{ij}
                                Evaluate V_{ij} against \mathcal{L} to determine isRobust_{ij}
                                Compile test cases TestCases_{ij} = \{Adv_{ij}, isRobust_{ij}\}
                             end for
                         end for
                         return \bigcup TestCases_{ij}
```



FIGURE 3.1: The outline of proposed approach explains overall flow of work.



FIGURE 3.2: Coverage Assessment (Local and Global)



FIGURE 3.3: Error Summarization

# Chapter 4 Simulations and Results

Conclusion

References

#### References

- [1] Sekhon, Jasmine, and Cody Fleming. "Towards improved testing for deep learning." 2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER). IEEE, 2019.
- [2] Agarwal, Aniya, et al. "Automated test generation to detect individual discrimination in AI models." arXiv preprint arXiv:1809.03260 (2018).
- [3] Sun, Youcheng, et al. "Concolic testing for deep neural networks." Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. 2018.
- [4] Pei, Kexin, et al. "DeepXplore." Communications of the ACM 62.11 (2019): 137-145.
- [5] Tian, Yuchi, et al. "Deeptest: Automated testing of deep-neural-network-driven autonomous cars." Proceedings of the 40th international conference on software engineering. 2018.
- [6] Sun, Youcheng, et al. "Testing deep neural networks." arXiv preprint arXiv:1803.04792 (2018).
- [7] Ma, Lei, et al. "Deepgauge: Multi-granularity testing criteria for deep learning systems." Proceedings of the 33rd ACM/IEEE international conference on automated software engineering. 2018.
- [8] Zhang, Mengshi, et al. "DeepRoad: GAN-based metamorphic testing and input validation framework for autonomous driving systems." Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. 2018.
- [9] Xie, Xiaofei, et al. "Deephunter: Hunting deep neural network defects via coverage-guided fuzzing." arXiv preprint arXiv:1809.01266 (2018).
- [10] Gopinath, Divya, et al. "Symbolic execution for deep neural networks." arXiv preprint arXiv:1807.10439 (2018).