The Processor: Exception, Speculations, Instruction-Level Parallelism

Dr. Vincent C. Emeakaroha

01-03-2017

vc.emeakaroha@cs.ucc.ie

Exception Example

• Exception on add in

```
      40
      sub
      $11, $2, $4

      44
      and
      $12, $2, $5

      48
      or
      $13, $2, $6

      4C
      add
      $1, $2, $1

      50
      slt
      $15, $6, $7

      54
      lw
      $16, 50($7)
```

•••

Handler

```
80000180 sw $25, 1000($0)
80000184 sw $26, 1004($0)
```

•••

Exception Example

Exception Example

Multiple Exceptions

- Pipelining overlaps multiple instructions
 - Could have multiple exceptions at once
- Simple approach: deal with exception from earliest instruction
 - Flush subsequent instructions
 - "Precise" exceptions supported in MIPS
 - Exceptions that are always associated with the correct instructions in the pipeline
- In complex pipelines
 - Multiple instructions issued per cycle
 - Out-of-order completion
 - Maintaining precise exceptions is difficult!

Imprecise Exceptions Handling

- Just stop pipeline and save state
 - Including exception cause(s)
- Let the handler work out
 - Which instruction(s) had exceptions
 - Which to complete or flush
 - May require "manual" completion
- Simplifies hardware, but more complex handler software
- Not feasible for complex multiple-issue out-of-order pipelines

Instruction-Level Parallelism (ILP)

- Pipelining exploits potential parallelism among instructions
 - executing multiple instructions in parallel is known as Instruction-Level Parallelism
- Two methods of realising ILP
 - Deeper pipeline
 - Less work per stage ⇒ shorter clock cycle
 - Multiple issue
 - Replicate pipeline stages ⇒ multiple pipelines
 - Start multiple instructions per clock cycle
 - CPI < 1, so use Instructions Per Cycle (IPC)
 - E.g., 4GHz 4-way multiple-issue
 - 16 BIPS, peak CPI = 0.25, peak IPC = 4
 - But dependencies reduce this in practice

Multiple Issue

- Static multiple issue
 - Compiler groups instructions to be issued together
 - Packages them into "issue slots"
 - Compiler detects and avoids hazards
- Dynamic multiple issue
 - CPU examines instruction stream and chooses instructions to issue each cycle
 - Compiler can help by reordering instructions
 - CPU resolves hazards using advanced techniques at runtime

Speculation

- "Guess" about the properties of an instruction
 - Start operation as soon as possible of dependent instructions
 - Check whether guess was right
 - If so, complete the operation
 - If not, roll-back and do the right thing
- Common to static and dynamic multiple issue
- Examples
 - Speculate on branch outcome
 - Roll back if path taken is different
 - Speculate on load
 - Roll back if location is updated

Compiler/Hardware Speculation

- Compiler can reorder instructions
 - e.g., move load before branch
 - Can include "fix-up" instructions to recover from incorrect guess
- Hardware can look ahead for instructions to execute
 - Buffer results until it determines they are actually needed
 - Flush buffers on incorrect speculation
- Compiler speculation
 - Known as static speculation
 - Connected to static multiple issue
- Hardware speculation
 - Known as dynamic speculation
 - Connected to dynamic multiple issue

Speculation and Exceptions

- What if exception occurs on a speculatively executed instruction?
 - e.g., speculative load before null-pointer check
- Static speculation
 - Can add ISA support for deferring exceptions to a later stage
- Dynamic speculation
 - Can buffer exceptions until instruction completion to determine if it is real
 - In case of real exception, normal handling is invoked

Static Multiple Issue

- Compiler groups instructions into "issue packets"
 - Group of instructions that can be issued on a single cycle
 - Determined by pipeline resources required
- Think of an issue packet as a very long instruction
 - Specifies multiple concurrent operations
 - → Very Long Instruction Word (VLIW)

Scheduling Static Multiple Issue

- Compiler must remove some/all hazards
 - Reorder instructions into issue packets
 - No dependencies with a packet
 - Possibly some dependencies between packets
 - Varies between ISAs; compiler must know!
 - Pad with nop if necessary

MIPS with Static Dual Issue

- Two-issue packets
 - One ALU/branch instruction
 - One load/store instruction
 - 64-bit aligned register
 - ALU/branch, then load/store
 - Pad an unused instruction with nop

Address	Instruction type	Pipeline Stages						
n	ALU/branch	IF	ID	EX	MEM	WB		
n + 4	Load/store	IF	ID	EX	MEM	WB		
n + 8	ALU/branch		IF	ID	EX	MEM	WB	
n + 12	Load/store		IF	ID	EX	MEM	WB	
n + 16	ALU/branch			IF	ID	EX	MEM	WB
n + 20	Load/store			IF	ID	EX	MEM	WB

MIPS with Static Dual Issue

Hazards in the Dual-Issue MIPS

- More instructions executing in parallel
- Execution stage data hazard
 - Forwarding avoided stalls with single-issue
 - Now can't use ALU result in load/store in same packet
 - add \$t0, \$s0, \$s1load \$s2, 0(\$t0)
 - Split into two packets, effectively a stall
- Load-use hazard
 - Still one cycle use latency, but now two instructions
- More aggressive scheduling required

Scheduling Example

Schedule this for dual-issue MIPS

```
Loop: lw $t0, 0($s1) # $t0=array element addu $t0, $t0, $s2 # add scalar in $s2 sw $t0, 0($s1) # store result addi $s1, $s1,-4 # decrement pointer bne $s1, $zero, Loop # branch $s1!=0
```

	ALU/branch	Load/store	cycle
Loop:	nop	<pre>lw \$t0, 0(\$s1)</pre>	1
	addi \$s1 , \$s1 ,-4	nop	2
	addu \$t0, \$t0 , \$s2	nop	3
	bne \$s1 , \$zero , Loop	sw \$t0, 4(\$s1)	4

• IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

Loop Unrolling

- A technique to get more performance from loops
- Replicate loop body to expose more parallelism
 - Reduces loop-control overhead
- Use different registers per replication
 - Called "register renaming"
 - Avoid loop-carried "anti-dependencies"
 - Store followed by a load of the same register
 - Aka "name dependence"
 - Reuse of a register name

Loop Unrolling Example

	ALU/branch	Load/store	cycle
Loop:	addi \$s1 , \$s1 ,-16	<pre>lw \$t0, 0(\$s1)</pre>	1
	nop	lw \$t1 , 12(\$ s1)	2
	addu \$t0, \$ t0, \$ s2	lw \$t2, 8(\$s1)	3
	addu \$t1, \$t1 , \$s2	lw \$t3, 4(\$s1)	4
	addu \$t2, \$t2 , \$ s2	sw \$t0, 16(\$s1)	5
	addu \$t3, \$ t4, \$ s2	sw \$t1, 12(\$s1)	6
	nop	sw \$t2, 8(\$s1)	7
	bne \$s1 , \$zero , Loop	sw \$t3, 4(\$s1)	8

- IPC = 14/8 = 1.75
 - Closer to 2, but at cost of registers and code size

Dynamic Multiple Issue

- Popularly known as "Superscalar" processors
- CPU decides whether to issue 0, 1, 2, ... each cycle
 - Avoiding structural and data hazards
- Avoids the need for compiler scheduling
 - Though it may still help
 - Code semantics ensured by the CPU

Dynamic Pipeline Scheduling

- Allow the CPU to execute instructions out of order to avoid stalls
 - But commit result to registers in order
- Example

```
lw $t0, 20($s2)
addu $t1, $t0, $t2
sub $s4, $s4, $t3
slti $t5, $s4, 20
```

Can start sub while addu is waiting for lw

Dynamically Scheduled CPU

Register Renaming in Dynamic Scheduling

- Reservation stations and reorder buffer effectively provide register renaming
- On instruction issue to reservation station
 - If operand is available in register file or reorder buffer
 - Copied to reservation station
 - No longer required in the register; can be overwritten
 - If operand is not yet available
 - It will be provided to the reservation station by a function unit
 - Register update may not be required