

BILIARY TRACT CANCER SERUM PROFILING USING MAGNETIC BEADBASED PEPTIDE EXTRACTION AND MALDI-TOF MASS SPECTROMETRY

Stéphane Camuzeaux

Cancer Proteomics Laboratory Institute for Women's Health University College London

Background

- Cholangiocarcinoma and gall bladder cancer are referred to as Biliary Tract Cancer (BTC). Around 1,600 death each year in the UK
- Early diagnosis is key to reducing mortality
- BTC is uniformly fatal unless detected early with the potential for surgical resection and has a dismal prognosis
- The standard for diagnosis is cytological or histological confirmation of malignancy within the biliary stricture; involving invasive procedures
- Need non-invasive alternatives

Background

- Most commonly used blood marker is CA19-9 (carbohydrate antigen 19-9/sialylated Lewis (a) antigen)
- However, CA19-9 lacks adequate sensitivity and specificity; it is often elevated in benign conditions (cholangitis and pancreatitis) and undetectable in 7% of the population who are Lewis (a) negative
- Need to find better diagnostic markers for early BTC detection, preferably from human serum
- It has been postulated that the serum peptidome may be a valuable source of diagnostic cancer biomarkers, specifically in relation to the activity of tumour-related exopeptidases

Generation of surrogate tumour markers in the blood

Serum peptidome profiling

- Peptide signatures diagnostic and specific for prostate, breast and bladder cancer were found by MALDI-TOF profiling using C8-coated magnetic beads for peptide extraction
- Ladders of peptides identified as products of abundant serum proteins hypothesised to be generated ex vivo (at clotting) by tumour-specific exopeptidase activities – surrogate markers

From Villanueva et al., 2006 JCI

High-throughput semi-automated serum peptide profiling by MALDI-TOF MS

Serum collection ——— from patient

Two independent sets: -discovery set

-validation set

Robotic Handling –

C18 magnetic bead extraction Automated mass ——— spectrometry acquisition

Data processing and statistical analysis

Biomarker discovery workflow

- Platform reproducibility assessed (intra/inter assay precision) using QC Sigma serum
- Analyse case and control serum samples
- Data analysis to find discriminatory peaks between groups
- Generation of a model
 - Discovery set: training set and test set
- Validation of the model (validation set)
- Identification of peaks of interest

Sample handling

- Blood collected in gel tubes (gel plug)
- Tubes inverted five times
- 60 min clotting at room temperature
- Centrifuged, aliquoted
- Storage at -80°C
- <u>Discovery set:</u> 95 case control serum samples collected from patients diagnosed with BTC, benign biliary strictures and healthy volunteers attending University College London Hospital between 2006 and 2008
- <u>Validation set:</u> 14 BTC and 16 healthy volunteer samples collected in 2009 and 2010

(Healthy control volunteers had no active illnesses and were not on medication)

Platform reproducibility

- -Three replicate runs, four spotting replicates per sample
- -Intra- and inter-assay variation for quality control using Sigma serum:

Discovery set:

- -27 Sigma serum across 12 MALDI targets:
- -Average intra-assay variation (all peaks; S/N>3): 10.6% +/- 7.2
- -Inter-assay variation (all peaks; S/N>3): 12.8% +/- 6.7

Validation set:

- -24 Sigma serum across 4 MALDI targets:
- -Average intra-assay variation (all peaks; S/N>3): 12.8% +/- 10.0
- -Inter-assay variation (all peaks; S/N>3): 14.5% +/- 10.8

Platform reproducibility

Spectral filtering

- 1000 shots acquired for each spotting (up to 12 positions, 100 shots per position)
- At least 3 spotting replicates with 1000 shots per sample
- At least 2 run replicates per sample

Number of samples included after filtering:	Discovery set	Validation set
number of samples run	95	30
number of spectra acquired	1140	360
number of spectra included after filtering	1079	355
% of spectra included	94.6	98.6
number of spectra included after visual inspection	1069	347
% of spectra included after visual inspection	93.8	96.4
total number of samples included	92	30
% of sample included	96.8	100

3 samples removed from discovery set

Sample sets after filtering

- Discovery set: 92 samples

Group	Patients	Gender	Median age (yrs)	Age range (yrs)	Median bilirubin (g/L)	Median CA19-9 (IU/mL)	CA19-9 >37 IU/ mL	BTC stage <t3< th=""><th>BTC stage ≥T3</th></t3<>	BTC stage ≥T3
ВТС	39	15F:24M	67	26-92	40	295	30/39	21/39	18/39
Healthy	22	7F:15M	60	39-78				n/a	n/a
PSC	10	3F:7M	48	22-76	17	17	3/10	n/a	n/a
AIP/IAC	7	7M	63	43-71	12	15	1/4	n/a	n/a
Benign other	14	9F:5M	53	35-74	8			n/a	n/a

- Validation set: 30 samples

Group	Patients	Gender	Median age (yrs)	Age range (yrs)	Median bilirubin (g/L)	Median CA19-9 (IU/mL)	CA19-9 >37 IU/ mL	BTC stage <t3< th=""><th>BTC stage ≥T3</th></t3<>	BTC stage ≥T3
втс	14	7F:7M	73	44-90	19	404	11/14	6/14	8/14
Healthy	16	8F:8M	34	23-80				n/a	n/a

Average MALDI-TOF spectra

Discovery set: BTC (red) and healthy (green)

Discriminatory peaks in discovery set

- 8 peaks found to significantly discriminate BTC from healthy (p<0.001, average fold ≥ 2)
- 5 peaks discriminate BTC from benign group (p<0.05, average fold ≥ 1.5); 4 common

ROC Curve Analysis

- ROC curve BTC vs. Healthy AUC:

m/z 2606.6: 0.82 m/z 2084.1: 0.86 m/z 2556.8: 0.91 m/z 1265.3: 0.91 m/z 2212.3: 0.92 m/z 1352.6: 0.92 m/z 5812.6: 0.96

m/z 2906.0 : 0.97

- ROC curves BTC vs. Benign AUC:

m/z 5812.6 : 0.70 *m/z* 2935.7 : 0.71 *m/z* 2556.8 : 0.73 *m/z* 2906.0 : 0.76 *m/z* 2212.3 : 0.77

Model generation and validation

- 5 permutations of : 75% BTC/Healthy training set; 25% BTC/Healthy test set
- Models generated per permutation:
 - Genetic Algorithms (GA) or Support Vector Machine (SVM)
 - Number of k-Nearest Neighbours (k-NN)
 - Number of peaks
- 20% Leave Out Cross Validation (20% LOCV)
- Best performing model SVM 8 peaks, 3 k-NN, 20% LOCV 95.2% :

m/*z*: 1021.7, **1265.3**, **1352.6**, 1364.9, **2556.8**, **2906.0**, 5070.7, 8779.6

Classification of independent validation set: BTC (n=14) / Healthy (n=16)

Sensitivity = 85.7%; Specificity = 100%; PPV = 100%; NPV = 88.9%

Peak identification

- BTC samples pool and healthy samples pool prepared
- Extraction using C18 magnetic bead
- Extracts split in two for parallel top-down analysis: GeLC-MS/MS / Zip-Tip LC-MS/MS

Av Mass (m/z)	Name	Fragment Sequence	Identification
1021.7	Fibrinopeptide A	DFLAEGGGVR	yes; Villanueva et al; Tiss et al
1265.3	Fibrinopeptide A	GEGDFLAEGGGVR	yes; Villanueva et al; Tiss et al
1352.6	Fibrinopeptide A	SGEGDFLAEGGGVR	yes; Villanueva et al; Tiss et al
2084.1	Fibrinogen alpha	GGSTSYGTGSETESPRNPSSAG	Koomen et al;
2212.3	HMW kininogen	KHNLGHGHKHERDQGHGHQ	Villanueva et al; Tiss et al
2556.8	Fibrinogen alpha	SSSYSKQFTSSTSYNRGDSTFES	Villanueva et al; Tiss et al
2935.7	Fibrinogen alpha	SSSYSKQFTSSTSYNRGDSTFESKSY	Villanueva et al; Tiss et al
5812.6	Fibrinogen alpha	SSSYSKQFTSSTSYNRGDSTFESKSYKMADEAGSEADHEGTHSTKRGHAKSRP	yes
1364.9			no
2606.6			no
2906.0*			no
5070.7			no
8779.6			no

Conclusions

- Applied a semi-automated MALDI-TOF MS serum peptidome profiling strategy to a set of BTC case control samples
- Identified discriminatory peaks for BTC vs. healthy. Less robust discrimination of BTC vs. benign group (inflammatory response?)
- Tested a model on an independent validation set that accurately classified BTC cases from healthy control
- Identified peaks used in the model; mostly fragments of abundant serum proteins, suggesting tumour-specific exopeptidase activities
- Need to further define and test models for discrimination of BTC vs. benign group
- Further work: specific assays to develop a clinical test (e.g. using SRM)

Acknowledgements

Cancer Proteomics Laboratory
Institute for Women's Health UCL

Institute of Hepatology UCL & UCLH

Dr John F. Timms Dr John Sinclair Dr Stephen P. Pereira Dr Neomal S. Sandanayake Dr George Webster

BILIARY TRACT CANCER SERUM PROFILING USING MAGNETIC BEADBASED PEPTIDE EXTRACTION AND MALDI-TOF MASS SPECTROMETRY

Stéphane Camuzeaux

Cancer Proteomics Laboratory Institute for Women's Health University College London