Spring 2022 Math 3607: Final Exam

Due: 11:59PM, Friday, April 29, 2022

Please read the statements below and sign your name.

Disclaimers and Instructions

- You are **not** allowed to use MATLAB commands and functions **other than** the ones discussed in lectures, accompanying live scripts, textbooks, and homework/practice problem solutions.
- You may be requested to explain your code to me, in which case a proper and satisfactory explanation must be provided to receive any credits on relevant parts.
- You are **not** allowed to search online forums or even MathWorks website for this exam.
- You are **not** allowed to collaborate with classmates, unlike for homework.
- If any code is found to be plagiarized from the internet or another person, you will receive a zero on the *entire* exam and will be reported to the COAM.
- Do not carry out computations using *Symbolic Math Toolbox*. Any work done using sym, syms, vpa, and such will receive NO credit.
- **Notation.** Problems marked with \nearrow are to be done by hand; those marked with \square are to be solved using a computer.
- Answers to analytical questions (ones marked with \nearrow) without supporting work or justification will not receive any credit.

Academic Integrity Statements

- All of the work shown on this exam is my own.
- I will not consult with any resources (MathWorks website, online searches, etc.) other than the textbooks, lecture notes, supplementary resources provided on the course Carmen pages, or MATLAB's built-in help documentation.
- I will not discuss any part of this exam with anyone, online or offline.
- I understand that academic misconduct during an exam at The Ohio State University is very serious and can result in my failing this class or worse.
- I understand that any suspicious activity on my part will be automatically reported to the OSU Committee on Academic Misconduct (COAM) for their review.

ignat	ure					
	ignat	ignature	ignature	ignature	ignature	ignature

Notation. Problems marked with \mathscr{P} are to be done by hand; those marked with \square are to be solved using a computer.

1 Newton's method faster than quadratic? [20 points]

Suppose that f has a simple root at r at which f'' vanishes, that is,

$$f(r) = 0, \quad f'(r) \neq 0, \quad f''(r) = 0.$$

Assuming that f is (at least) three times continuously differentiable near r, determine the rate of convergence of Newton's method. That is, express the relationship between ϵ_{k+1} and ϵ_k in the form

$$\epsilon_{k+1} = C\epsilon_k^p + O(\epsilon_k^{p+1}),$$

where C and p are to be determined. Recall that $\epsilon_k = x_k - r$.

[20 points]

Suppose that f is differentiable at x and f'(x) is to be approximated using the first-order forward difference formula $D_h^{[1f]}\{f\}(x)$ on a computer. Determine the optimal step size h and the corresponding leading error.

Let A and W be m-by-n matrices representing two grayscale images of the same pixel dimensions as shown below. The image W is embedded inside the image A using an SVD-based scheme described below.

Figure 1: Two original images. The image represented by A on the left and the image represented by W on the right.

Let $A = U\Sigma V^{\mathrm{T}}$ be an SVD of A. For some small scaling factor $\alpha > 0$, construct a new matrix $\Sigma + \alpha W$ and consider its SVD

$$\Sigma + \alpha W = U_m \Sigma_m V_m^{\mathrm{T}}.\tag{1}$$

Note that both Σ and Σ_w are diagonal matrices and, for a suitably chosen α , $\Sigma \approx \Sigma_w$. Thus, A_w obtained by

$$A_w = U\Sigma_w V^{\mathrm{T}} \tag{2}$$

is approximately equal to A and so represents an image which looks nearly identical to that of A, while containing information about the image W as well.

Your mission, should you choose to accept it, is to establish an algorithm to retrieve (an approximation of) W embedded in A_w given U_w , V_w , Σ , and α .

Begin by loading the data with

>> load watermark % download and save 'watermark.mat' first

This loads Aw, Uw, Vw, S, and alpha, which correspond to A_w , U_w , V_w , Σ , and α as described above, respectively. Note that Aw is a matrix of double-precision floating point numbers whose elements range from 0 to 255.

- (a) Write a MATLAB code to find a matrix W_0 , an approximation of W, out of A_w .
- (b) Display the images represented by A_w and W_0 side by side using subplot. Do they look similar to their respective original images in Figure 2?

4 Air Resistance, Rootfinding, and Lambert W

[25 points]

The function

$$h(t) = -30t + 780(1 - e^{-t/3})$$

models the height of a rocket in the air at time t, subject to air resistance; see the figure below. Let $t_{\rm max}$ be the time at which the rocket reaches its maximum height and let $t_{\rm ground}$ be the time at which the rocket hits the ground.

- (a) \nearrow Find t_{max} analytically. That is, find an exact expression for t_{max} . Justify all your steps.
- (b) Find t_{max} numerically, using fzero. Then compare the result against the analytical answer obtained in part (a).

Figure 2: Example output.

- (c) \mathcal{O} (Optional/Bonus) Find t_{ground} analytically. That is, find an exact expression for t_{ground} . Justify all your steps.
- (d) \square Find t_{ground} numerically, using fzero. Then compare the result against the analytical answer obtained in part (c), only if you did it.
- (e) \square Produce a well-labeled plot of h(x) as shown in the figure. Clearly mark the maximum height and the time the rocket hits the ground.

Hints for (a) and (c). To find t_{max} which maximizes the height h(t), use just what you know from Calculus. To find t_{ground} analytically, you need to solve an equation of the form

$$At + e^{Bt} = 1 (3)$$

for t. To do this, introduce a new variable u by the transformation

$$t = -\frac{1}{B}u + \frac{1}{A}. (4)$$

Substitute this into (3) and solve for u, using Lambert W function. Then use the transformation (4) to solve for t.

The radar stations A and B, separated by the distance a=500 m, track a plane C by recording the angles α and β at one-second intervals.

Successive readings for α and β at integer times $t=7,8,\ldots,14$ are stored in the file plane.dat. The columns of the data file are the observation time t, the angle α (in degrees), and the angle β (also in degrees), in that order. At each time t, the Cartesian coordinates of the plane can be calculated from the angles α and β as follows:

Figure 3: An airplane and two radar stations

$$x(\alpha, \beta) = a \frac{\tan(\beta)}{\tan(\beta) - \tan(\alpha)} \quad \text{and} \quad y(\alpha, \beta) = a \frac{\tan(\beta)\tan(\alpha)}{\tan(\beta) - \tan(\alpha)}.$$
 (5)

(**Note.** Be sure to distinguish a and α in the above formulae.)

Denote the position vector of the plane at time t by $\mathbf{s}(t) = (x(t), y(t))^{\mathrm{T}}$. Then the speed at time t, which is the magnitude (or the 2-norm) of the velocity vector, is given by

(speed) =
$$\|\mathbf{s}'(t)\| = \sqrt{x'(t)^2 + y'(t)^2}$$
. (6)

Your goal, back at the air traffic control, is to determine the position and the speed of the airplane at finer time steps (0.01-second intervals).

(a) Load the data, convert α and β to radians¹, and then compute the coordinates x(t) and y(t) at each given $t = 7, 8, \ldots, 14$ using (5). Store them as xdp and ydp. (Do NOT print these out.)

Note. • To load the data, type load plane.dat. To see how the data file is arranged, type type plane.dat.

- For consistency of notation and for later use, store the time data $t = 7, 8, \dots, 14$ as tdp.
- (b) Let $t_1, t_2, \ldots, t_{701}$ be evenly-spaced points on [7, 14], that is,

$$t_j = 7 + \frac{j-1}{100}$$
, for $j = 1, \dots, 701$.

Interpolate xdp and ydp using (not-a-knot) cubic splines to obtain the coordinates $x(t_j)$ and $y(t_j)$, for j = 1, ..., 701. Store them as x and y. (Do NOT print these out.) Then plot the trajectory of the airplane using x and y, with the positions obtained from radar readings circled in a well-labeled graph; see the figure below. Determine the maximum height and the corresponding time.

¹You may ignore this step and use tand.

- **Notes.** Note that t_j 's are spaced out by $\Delta t = 0.01$ second. Use either linspace or the colon operator to construct them and store it as a vector t, for consistency of notation.
 - For cubic spline interpolation, you may use either interp1 or spline.
 - This is a 2-D spline in which x = x(t) and y = y(t) are independently interpolated with respect to their common parameter, the time t.
- (c) Approximate $x'(t_j)$ and $y'(t_j)$, for j = 1, 2, ..., 701, using **second-order** finite difference methods. In particular, use the second-order forward difference for $t = t_1$, the second-order backward difference for $t = t_{701}$, and the second-order centered difference for $t = t_2, ..., t_{700}$. Then calculate the speed at each t_j using (6). Vectorize your code as much as possible. Store the speed as spd. (Do NOT print out $x'(t_j)$, $y'(t_j)$, nor the speed.) Determine the maximum speed and the corresponding time.

Figure 4: Example output for part (b).