Wednesday. Chapter 4. p-Modular Systems and Brauer Characters

R. Brauer started in the late 1920's a systematic investigation of group representations over fields of positive characteristic. In order to relate group representations over fields of positive characteristic to character theory in characteristic zero, Brauer worked with a triple of rings (F, \mathcal{O}, k) , called a p-modular system, and consisting of a complete discrete valuation ring \mathcal{O} with a residue field $k := \mathcal{O}/J(\mathcal{O})$ of prime characteristic p and fraction field $F := \operatorname{Frac}(\mathcal{O})$ of characteristic zero. These are used to gain information about kG and its modules (which is/are extremely complicated) from the group algebra FG, which is semisimple and therefore much better understood, via the group algebra $\mathcal{O}G$. This explains why we considered arbitrary associative rings (resp. algebras / fields) in the previous chapters rather than immediately focusing on fields of positive characteristic.

Notation. Throughout this chapter, unless otherwise specified, we let p be a prime number and let $\Lambda \in \{F, \mathcal{O}, k\}$.

30 p-modular systems

Recall that a commutative ring \mathcal{O} is local iff $\mathcal{O}\backslash\mathcal{O}^\times=J(\mathcal{O})$, i.e. $J(\mathcal{O})$ is the unique maximal ideal of \mathcal{O} . Moreover, by the commutativity assumption this happens if and only if $\mathcal{O}/J(\mathcal{O})$ is a field. In such a situation, we write $k:=\mathcal{O}/J(\mathcal{O})$ and call this field **the residue field of the local ring** \mathcal{O} . To ease up notation, we will often write $\mathfrak{p}:=J(\mathcal{O})$. This is because our aim is a situation in which the residue field is a field of positive characteristic p. Moreover, a commutative ring \mathcal{O} is called a **discrete valuation ring** if \mathcal{O} is a local principal ideal domain such that $J(\mathcal{O})\neq 0$. Such a discrete valuation ring is called **complete** if it is complete in the $J(\mathcal{O})$ -adic topology.

Definition 30.1 (p-modular systems)

Let p be a prime number.

- (a) A triple of rings (F, \mathcal{O}, k) is called a p-modular system if:
 - (1) \mathcal{O} is a complete discrete valuation ring of characteristic zero,
 - (2) $F = \operatorname{Frac}(\mathcal{O})$ is the field of fractions of \mathcal{O} (also of characteristic zero), and
 - (3) $k = \mathcal{O}/J(\mathcal{O})$ is the residue field of \mathcal{O} and has characteristic p.
- (b) If G is a finite group, then a p-modular system (F, \mathcal{O}, k) is a called a **splitting** p-modular system for G, if both F and k are splitting fields for G.

It is often helpful to visualise p-modular systems and the condition on the characteristic of the rings involved through the following commutative diagram of rings and ring homomorphisms:

$$\mathbb{Q} \longleftrightarrow \mathbb{Z} \longrightarrow \mathbb{F}_{p}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$F \longleftrightarrow \mathcal{O} \longrightarrow k$$

where the hook arrows are the canonical inclusions and the two-head arrows the quotient morphisms. Clearly, these morphisms also extend naturally to ring homomorphisms

$$FG \longleftrightarrow \mathcal{O}G \longrightarrow kG$$

between the corresponding group algebras (each mapping an element $g \in G$ to itself).

Example 13

One usually works with a splitting p-modular system for all subgroups of G, because it allows us avoid problems with field extensions. By a theorem of Brauer on splitting fields such a p-modular system can always be obtained by adjoining a primitive m-th root of unity to \mathbb{Q}_p , where m is the exponent of G. (Notice that this extension is unique.) So we may as well assume that our situation is as given in the following commutative diagram:

$$\mathbb{Q}_{p} \longleftrightarrow \mathbb{Z}_{p} \longrightarrow \mathbb{F}_{p}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$F \longleftrightarrow \mathcal{O} \longrightarrow k$$

More generally, we have the following result, which we mention without proof. The proof can be found in [CR90, §17A].

Theorem 30.2

Let (F, \mathcal{O}, k) be a p-modular system. Let G be a finite group of exponent m. Then the following assertions hold.

- (a) The field F contains all m-th roots of unity if and only if F contains the cyclotomic field of m-th roots of unity:
- (b) If F contains all m-th roots of unity, then so does k and F and k are splitting fields for G and all its subgroups.

Remark 30.3

If (F, \mathcal{O}, k) is a p-modular system, then it is not possible to have F and k algebraically closed, while assuming \mathcal{O} is complete. (Depending on your knowledge on valuation rings, you can try to prove this as an exercise!)

Let us now investigate changes of the coefficients given in the setting of a p-modular system for group algebras involved.

Definition 30.4

Let \mathcal{O} be a commutative local ring. A finitely generated $\mathcal{O}G$ -module L is called an $\mathcal{O}G$ -lattice if it is free (= projective) as an \mathcal{O} -module.

Remark 30.5 (Changes of the coefficients)

Let (F, \mathcal{O}, k) be a p-modular system and write $\mathfrak{p} := J(\mathcal{O})$. If L is an $\mathcal{O}G$ -module, then:

- · setting $L^F := F \otimes_{\mathcal{O}} L$ defines an FG-module, and
- · reduction modulo $\mathfrak p$ of L, that is $\overline{L} := L/\mathfrak p L \cong k \otimes_{\mathcal O} L$ defines a kG-module.

We note that, when seen as an \mathcal{O} -module, an $\mathcal{O}G$ -module L may have torsion, which is lost on passage to F. In order to avoid this issue, we usually only work with $\mathcal{O}G$ -lattices. In this way, we obtain functors

$$FG$$
-mod $\longleftrightarrow \mathcal{O}G$ -lat $\longrightarrow kG$ -mod

between the corresponding categories of finitely generated $\mathcal{O}G$ -lattices and finitely generated FG-, kG-modules.

A natural question to ask is: which FG-modules, respectively kG-modules, come from $\mathcal{O}G$ -lattices? In the case of FG-modules we have the following answer.

Proposition-Definition 30.6

Let \mathcal{O} be a complete discrete valuation ring and let $F := \operatorname{Frac}(\mathcal{O})$ be the fraction field of \mathcal{O} . Then, for any finitely generated FG-module V there exists an $\mathcal{O}G$ -lattice L which has an \mathcal{O} -basis which is also an F-basis. In this situation $V \cong L^F$ and we call L an \mathcal{O} -form of V.

Proof: Choose an *F*-basis
$$\{v_1, \ldots, v_n\}$$
 of *V* and set $L := \mathcal{O}Gv_1 + \cdots + \mathcal{O}Gv_n \subseteq V$.

On the other hand, the question has a negative answer for kG-modules.

Definition 30.7 (*liftable kG-module*)

Let $\mathcal O$ be a commutative local ring with unique maximal ideal $\mathfrak p:=J(\mathcal O)$ and residue field $k:=\mathcal O/\mathfrak p$. A kG-module M is called **liftable** if there exists an $\mathcal OG$ -lattice $\widehat M$ whose reduction modulo $\mathfrak p$ of M is isomorphic to M, that is

$$\widehat{\mathcal{M}}/\mathfrak{p}\widehat{\mathcal{M}}\cong \mathcal{M}$$
.

(Alternatively, it is also said that M is **liftable to an** $\mathcal{O}G$ -**lattice**, or **liftable to** \mathcal{O} , or **liftable to characteristic zero**.)

Even though every $\mathcal{O}G$ -lattice can be reduced modulo \mathfrak{p} to produce a kG-module, not every kG-module is liftable to an $\mathcal{O}G$ -lattice.

Being liftable for a kG-module is a rather rare property. However, some classes of kG-modules do lift.

Remark 30.8

It follows from the *lifting of idempotents* theorem that projective indecomposable kG-modules are liftable to projective indecomposable $\mathcal{O}G$ -lattices:

Any (projective) indecomposable kG-module is liftable to a (projective) indecomposable $\mathcal{O}G$ -lattice. More generally, any trivial source kG-module M is liftable to an $\mathcal{O}G$ -lattice. More precisely, among all lifts of M a unique one is a trivial source and we denote it by \widetilde{M} .

The *F*-character of $F \otimes_{\mathcal{O}} \widetilde{M}$ is called **the ordinary character of** M.