11.0. HOMEOSTASIS SUGGESTED RESPONSES

1. (a) What is meant by the term *homeostasis*?

(01 marks)

- This the process by which the body maintains a constant internal environment;
 - (b) Explain the need for homeostasis in living organisms.

(05 marks)

- The body metabolic processes take place within a narrow range of optimum conditions; at a rate that support life;
- Homeostasis ensures that the internal conditions are kept within this narrow range for the
 enzymes to work best; by correcting any deviation from the optimum; caused by changes
 in the internal and external environments;
 - (c) Describe the basic components homeostatic control system. (06 marks)
- The detector; this detect and changes in the internal environment from the norm and sends this information to the regulator;
- The regulator; this responds in accordance with the information from the detector by sending out appropriate instructions to the effector;
- The effector; this carries the events that lead to correction of the deviation; depending on the information from the regulator;
 - (d) Describe the properties of an efficient homeostatic mechanism. (02 marks)
- An efficient respiratory system has detectors that easily detects any small changes in the
 quantity of the variable controlled; and sets into motion measures to quickly; return the
 variable to set norm;
- 2. (a) Giving examples in each case, explain what is meant by the each of the following terms.
 - (i) Negative feedback.

(02 marks)

- This is when a deviation from the norm sets in to motion a series of events that remove the deviation; For example; in the control of blood sugar, temperature and blood pH;
 - (ii) Positive feedback.

(03 marks)

- This when a deviation from the set norm sets into motion events that cause further deviation; for example axon membrane permeability to sodium ions during depolarisation;
 - (b) Describe the situation in humans where positive feedback occurs.

•

- (c) Explain the need for the human body to
 - (i) Control blood sugar levels

(04 marks)

- Glucose is the main respiratory substrate; and should be maintained in a range that does not cause harm to the cells;
- Low glucose levels reduced energy production in cells; which can lead to their death;
- High glucose levels leads to cell damage;

(ii) Regulate temperature.

(04 marks)

- Body metabolism is regulated by enzyme; which work efficiently within a narrow temperature range;
- Low temperatures would inactivate enzymes; reducing metabolic rates;
- High temperature would denature enzymes; reducing metabolic rate as well

3. Explain how the human body deals with

(a) High blood glucose levels.

(06 marks)

- High glucose levels are detect by the beta cells of the islets of Langerhans; that respond by releasing the hormone insulin; that travels to the liver cells; from where it causes the
- conversion of excess glucose to glycogen;
- increased rate of glucose respiration;
- conversion to fats which are stored under the skin; and the glucose levels decrease

(b) Low blood glucose level.

(14 marks)

- Low blood glucose levels are detected by the alpha cells of the islets of Langerhans; that respond by releasing the hormone glucagon;
- the hypothalamus also detects the low levels and stimulates the pituitary gland to release
- · Adrenal cortical tropic hormone that stimulates release of cortisol; from adrenal cortex
- Thyroid stimulating hormone; that stimulates the thyroid gland to produce thyroxine;
- the growth hormone;
- all these hormones cause the liver cells to convert glycogen to glucose; and protein to glucose; which all increase the glucose levels in blood

4. Explain the influence of temperature on the following processes in plants

(a) Plant growth.

(10 marks)

- Temperature is a limiting factor in plant growth; as it influences the rate of cells division; photosynthesis (metabolic reactions);
- Within suitable temperature range; plant growth is occurs at maximum rate; because cell division occurs faster; enzymes are activated; and metabolic rates like photosynthesis occur faster;
- Below the suitable temperature plant growth reduces; because enzymes are inactivated;
- Above the suitable temperature range; plant growth reduces; because enzymes are denatured;
- Low temperature stimulates flowering; germination; and induces bud dormancy; in some plants

(b) Plant distribution

(10 marks)

- Plant are distributed to areas where their bodies can withstand the environmental temperatures;
- C4 plants grow efficiently in hot climatic regions; because they can efficiently take up carbon dioxide with minimum loss of water; C4 plants are not common in cooler areas; because they need more energy to fix carbon dioxide; which is a limiting factor in cooler areas;

- C3 plants are not common in hot areas because they lose more water during uptake of carbon dioxide; water stress reduces their productivity;
- C3 plants grow more efficiently in cooler areas; where they do not lose much water as they take in carbon dioxide;
- CAM plants are mostly found in hot areas;
- Temperate plants are distributed in cooler regions; while xerophytes are found in hot dry areas;

Alternative approach

- Plant are distributed to areas where their bodies can withstand the environmental temperatures;
- Plants that can withstand high temperatures are located in the deserts; as they have mechanisms regulate water loss by transpiration; and avoid excess heating; while utilising the high light intensities and temperature for their productivity; for example the xerophytes and C4 plants;
- Plants that cannot withstand high temperatures (can withstand low temperatures) for found in the cooler temperate regions; they have mechanisms to prevent over cooling; and maximum utilisation of the low temperatures and light intensities; for example the C3 plants;

5. (a) Explain the adaptations of plants to low temperature.

(10 marks)

• Structural adaptations

Feature	Suitability
 Loss of leaves when it's too cold; 	To avoid damage caused by snow;
Buds are covered by scale leaves;	Protection from cold conditions;
Needle-like leaves;	Reduce the amount of snow accumulating on the leaf;
Thick cuticle;	To prevent water loss when it's frozen;
Low stature;	Keeps them near the ground; where wind speeds and
	thus rate of heat loss are low;
Dense rosette of leaves round	Insulate them against heat loss; and protects them
growing buds that can close	from frost damage;
during the cold conditions;	

• Physiological adaptations

•	Produce much abscisic acid	Reduce metabolism; and induce dormancy in buds;	
•	Short growing periods To utilise the short periods of good growing cond		
•	Produce cold resistant seeds	To survive the harsh winter condtions	
High respiration rates To produce much heat during extremely cold		To produce much heat during extremely cold	
	(thermogenesis)	conditions	

(b) Explain the effect of low temperature on plant growth.

(10 marks)

(14 marks)

- Low temperature reduces the primary growth rate of a plant; because enzymes are inactive; and metabolism is slow;
- Root hair membranes of some plants like ferns are damaged by low temperatures; impairing their ability to take up minerals; and plants growth is stunted;
- Low temperatures can induce seed germination (pre-chilling); by lowering the level of growth inhibitors;
- It's a stimulus for flowering in some plants; by activating the hormone "vernalin";
- low temperatures promote bud dormancy in some plants; when plants produce abscisic acid; allowing them to remain alive for the next growing season;
- Low temperature increase hardiness in many woody plants when exposed for a few weeks;

6. (a) Explain the adaptations of plants high temperatures. Structural adaptations

- Thin leaves; have low heat capacity; to prevent over heating;
- Shinny cuticle; to reflect much of the incident light;
- Thorn (needle-shaped) leaves; permit maximum heat loss;
- Hairs or spines on the leave; shade the more sensitive tissues in the mesophyll of the leave from high energy irradiations;
- High thermal mass; encourages thermal damping;
- Possession of thick succulent tissues like cacti; allows small changes in temperature;

Physiological adaptations

- Vertical orientation of leaves; minimises sun heat gain at midday when heating is greatest;
- Temperature sensitive meristems located well above the ground; or under the ground; where it is cooler;
- Opening of numerous stomata; encourage transpiration; to promote cooling;

(b) Explain how plants respond to an increase in environmental temperature in the presence of adequate water supply. (06 marks)

- More stomata are open; transpiration rates increase; and more heat is lost;
- Production of more abscisic acid; wilting occurs; reducing surface area of the heat; to gain less heat;

7. (a) Explain the influence of temperature on distribution of animals. (10 marks)

- Animals are found in regions where they are adapted to the surrounding temperature; where they can withstand small fluctuations in their environmental temperature;
- Many are found in regions where temperature is moderate; and enzymes work best; to achieve high metabolic rates;
- Few animals are found in very hot conditions like deserts; because their enzymes would be denatured; and metabolic rates decrease; rates of evaporation of water would increase; leading to dehydration;
- Few animals are found in very cold conditions; because their enzymes would be inactive;
 and metabolic rates would decrease; ice would form in the cells; leading to their death;

(b) Explain the effect of the environment on the development of mechanisms for temperature regulation in animals. (10 marks)

- Animals living land have more developed mechanisms for temperature regulation; compared to their aquatic counterparts;
- This is because air has a lower heat capacity; while water has a higher heat capacity; and the fluctuations in environmental temperatures are greater on land; than in water;
- in extreme coldness; water freezes and ice floats on top; insulating the water below it from further heat loss; so that the animals can survive;

8. (a) Explain how the mammalian body respond to decrease in the body temperature. (13 marks)

- A decrease in body temperature is detected by the hypothalamus; as blood flows through the brain; and sends impulses to the skin;
- To reduce rate of sweat production; which reduces heat loss by evaporation;
- Erector pili muscles contract; causing the hair to raise; trapping more air; and reduce heat loss by convection;
- Vasoconstriction of skin arterioles; so that more blood flows through the shunt vessels; and minimising heat loss;
- hypothalamus also stimulate release of hormones thyroxine from the thyroid; and adrenaline from adrenal gland; which raises the metabolic rate in the liver; and shivering in the muscles; to generate more heat;

(b) Explain the advantages of being endothermic.

(07 marks)

Advantages

- Organisms can survive in wide range of habitant; because they can maintain their own body temperatures;
- Metabolic reactions occur faster; because enzymes are activated; which improves the body efficiency;
- There is quicker response to stimuli; due to rapid transmission of impulses; which leads to increased chances of survival;

9. (a) Explain how the mammalian body respond to an increase in the body temperatures (13 marks)

- An increase in the body temperature is detected by the hypothalamus; as blood through the brain; and sends impulses to the skin;
- The arterioles in the skin dilate; allowing more blood to flow near the skin surface; and increase the rate of heat loss;
- To increase the rate of sweat production; and increase the heat loss by evaporation;
- The erector pili muscles relax; the hairs lie flat on the body; to encourage heat loss by convection;
- The metabolic rate reduces; to reduce the production;
- Increased panting; in dogs and cats to encourage heat loss by evaporation;

(b) Explain the disadvantages of being endothermic.

(07 marks)

- High food consumption rates; to maintain a high metabolic rate; to generate enough heat during cold conditions;
- Required better insulation mechanisms; to prevent heat loss during the cold; to prevent body damage from hypothermia;
- Required efficient cooling mechanisms; when the environmental temperatures are hot; to prevent over heating;

10. (a) Describe the adaptations of the mammalian skin to its functions. (12 marks)

- Epidermis; contains melanin; that absorbs ultra violet radiations from the sun;
- Keratinised epidermal cells; protect against abrasion;
- Has blood capillaries; which control the amount of blood flowing near the skin surface; to regulate heat loss;
- Subcutaneous fat; insulates against heat loss;
- Sensory receptors; to transducer stimuli; and inform the brain of the changes in the external environment;
- Erector pili muscles; change the angle between the hairs and the skin; to control heat loss;
- Sweat glands; to produce sweat; and rate increase heat loss from the body;
- Sebaceous gland; produces sebum (waterproof oily secretion); that protects the body against entry of bacteria/dust/water;

(b) Explain the structural modifications of the skin that enable animals inhabit areas of extreme climatic conditions. (08 marks)

- In extremely cold conditions; there is much
 - subcutaneous fat; to reduce heat loss;
 - hairs; to trap air; and insulate the body against heat loss by convection;
- in extremely hot conditions; the skin
 - has less subcutaneous fat; to encourage heat loss by evaporation;
 - few scanty hairs; to encourage heat loss from the body the evaporation;

11. Explain the factors that affect the rate of heat loss in mammals. (20 marks)

- The rate of blood flow near the skin surface; Increase in rate of blood through the skin capillaries; due to dilation of arterioles in the skin; increases the rate of heat loss; Decrease in the rate of blood flow through the skin capillaries; due to constriction of arterioles; decreases the rate of heat loss;
- The rate of sweat production and evaporation from the skin surface; increase in the rate of sweat production; and its evaporation from the skin; increases the rate of heat loss from the body; while its decrease, decreases the rate of heat loss; because the evaporating sweat goes with heat inform of latent heat of vaporisation;
- Amount of insulation between the body core and the environment; increased insulation in form of subcutaneous fat; and body fur; reduces rate of heat loss from the body; while a decrease in insulation increases the rate of heat loss; because fat is a poor conductor of heat that prevents the heat generated within the body from being lost; and fur traps much air between itself and the skin; reducing heat loss by convection;

• **Size of the body**; the rate of heat loss increases with decrease in the size of the mammal; small mammals have higher surface are to volume ratio; hence much heat can be lost in the same period of time; as a large organism that has a small surface area to volume ratio;

12. Explain the adaptations of animals living in areas of

(a) Structural adaptations to high temperatures.

(07 marks)

Feature of the body	Suitability
 Larger body extremities; and smaller 	To increase surface area for heat loss;
body;	
 Less subcutaneous fat; 	Reduce insulation and encourage heat loss;
 Fewer scanty hairs; 	To encourage heat loss by convection;

(b) Physiological adaptations to low temperatures.

(06 marks)

Feature	Suitability
 Deposition of glycerol in blood; 	Prevent the formation of ice crystals in cells;
 Counter current heat exchange; 	Reduces the temperature gradient between the
	body and environment; reducing rate of heat loss;
	maintaining the core temperature at optimum;

(c) Structural adaptations to low temperatures.

(07 marks)

Feature of the body	Suitability
 smaller body extremities; and larger body; 	To reduce surface area for heat loss;
much subcutaneous fat;	increase insulation against heat loss;
thick fur;	To trap air; and prevent heat loss by
	convection;

13. (a) Describe the suitability of the mammalian liver to its functions. (13 marks)

Feature of the liver	Suitability	
Has numerous blood vessels;	To transport materials in and out the liver;	
 Hepatocytes have ✓ prominent Golgi bodies; ✓ many mitochondria; ✓ glycogen granules; ✓ numerous microvilli; 	 For ✓ secretion of materials; ✓ to produce energy; ✓ to store energy; ✓ increase surface area for absorption of materials; 	
Kupffer cells;	To defend the body; engulf worn out red blood cells;	
Undifferentiated cells;	To carry out many activities;	
It is large;	To increase its surface area;	
Has canaliculi	To remove bile from the livers	

(b) Explain the role of the liver in lipid metabolism.

(07 marks)

- Liver cells convert excess carbohydrates to fats; which are stored in the body; and in short supply of glucose; liver cells convert fats to fatty acids; and glycerol; for respiration
- Liver cells remove excess cholesterol from blood; and breaks it down; or synthesise it when required;

14. (a) Explain the fate of worn out red blood cells.

(10 marks)

- Old red blood cells are engulfed by phagocytes in spleen/liver/bone marrow;
- These are broken down and their haemoglobin released;
- Released haemoglobin is taken up by the Kupffer cells in the liver; and broken down into haem; and globin;
- The haem group is broken down into iron; and biliverdin;
- Biliverdin is converted to bilirubin; which forms part of bile;
- Iron is stored as ferritin in the hepatocytes; or reused by bone marrow cells to make more haemoglobin;

(b) Explain the role of the liver in carbohydrate metabolism. (10 marks)

- When there is excess glucose in the blood stream; the beta cells of the Islets of Langerhans
 release insulin which causes liver cells to take up more glucose; and break it down during
 respiration; Liver cells also convert excess glucose to glycogen; and fat; and stored in the
 liver;
- When blood glucose level is low; the alpha cells of the Islets of Langerhans release glucagon; which causes the conversion of glycogen to glucose in the liver cells;
- Cortisol hormone; increases rate of synthesis of enzymes in the liver which convert amino acids; and glycerol; into glucose;

15. (a) Explain how the rate of heat production in the body is controlled. (14 marks)

- When the body temperature falls below the norm; it is detected by the hypothalamus as blood flows through the brain;
- The hypothalamus releases the thyroid releasing hormone; which stimulates the pituitary to release the thyroid stimulating hormone; that stimulates the thyroid gland to release thyroxine; that increases the metabolic rate increase rate of heat production;
- The hypothalamus as well send impulses to the skeletal muscles; causing them to contract repeatedly; which also generates more heat;
- Adrenal medulla also secretes adrenaline which increase the metabolic activity;
- When the body temperature increases beyond the set norm; the hypothalamus responds by inhibiting release of thyroxine; and metabolic rate falls; and contraction of skeletal muscles is inhibited; so that less heat is produced;

(b) Explain how the camel overcomes the problem of heat stress in its habitats.

(06 marks)

- Has tissues that are heat tolerant; hence can withstand high body temperature;
- Counter current flow in the nasal passage; cools inhaled and exhaled air;
- Tends to face the sun when at rest; to minimise heat gain;
- Stands off the ground when hot; to minimise heat gains;
- Fur; insulates the body against heat gain and loss from environment;
- Able to maintain high body temperature reduces the temperature difference between the body and the environment; reducing the rate of heat gain;
- Long tail; increases surface area for heat loss;
- Light coloured fur; to reflect much of the incident light rays;
- Walks on toes with pads; to minimise heat gain;

16. (a) Explain the role of the hypothalamus in temperature regulation. (10 marks)

- The hypothalamus contains thermoregulatory centre; that detects changes in the body core temperatures; and sends impulses to correct the deviation
- When temperature core increases above the set norm; the heat loss centre in the anterior hypothalamus is stimulated; which responds by causing a decline in metabolic rate; increased sweat production; and vasodilation of skin arterioles; so as to increase rate of heat loss;
- When temperature core temperature decreases below the set norm; the heat gains centre is
 in the posterior stimulated; and responds by sending impulses to skin to cause
 vasoconstriction; reduced sweating; and metabolic rate increases through the release of
 thyroxine and adrenaline;

(b) Explain the role of the skin thermoreceptors in temperature regulation

(06 marks)

- The skin contains hot; and cold thermoreceptors;
- Hot receptors are stimulates by increase in temperature; while cold receptors by decrease in temperature;
- They detect temperature changes on the surface of the body; and send impulses to the;
 - Hypothalamus; allowing the changes in the core temperature take place;
 - Cortex; for the organism to feel cold or hot;
- allowing the body to make rapid and precise adjustments to maintain a constant core temperature;

(c) Explain the advantages and disadvantages of being ectothermic. (04 marks)

- Advantages of being ectothermic
- Lower food consumption; because they do not generate heat internally from metabolic reactions for temperature regulation;
- Disadvantages of being ectothermic
- They are restricted to habitants where their bodies withstand temperature of the environment;
- Metabolic rate is normally low; hence lower body temperatures reduces the activity of the organism; speed of impulse transmission is low; hence slow response to stimuli;

17. (a) What is meant by the term "efficiency range"

(01 mark)

• This is the temperature range within which physical mechanisms alone can regulate the body temperature;

(b) Explain the factor the affect the low critical temperature of mammals.

(07 marks)

- Low critical temperature is the lowest environmental temperature below which physical mechanisms alone cannot maintain a constant body temperature;
- This depends on the amount of insulation between the body and the environment; and body size;
- Mammals with much fur; and subcutaneous fat; lose heat slowly; hence their low critical temperatures are lower; than mammals with less fur and less subcutaneous fat;
- Large sized mammals have smaller surface area to volume ratio; compared to the smaller ones; and lose heat slowly; hence have lower low critical temperatures; compared to the smaller ones;
- Mammals with smaller extremities; lose heat more slowly; than those with larger extremities; hence their low critical temperature is lower in comparison;

(c) Heat exhaustion in humans occurs at a lower temperature in

i) More humid environments.

(06 marks)

• In hot more humid conditions the body loses heat slowly; because the rate at which sweat evaporates from the skin is low; as the atmosphere is saturated with moisture; while in less humid conditions; the diffusion gradient greater; allowing faster evaporation of sweat from the body; which leads to cooling;

ii) Still air than windy conditions

(08 marks)

- In hot conditions, much sweat is produced by the body which evaporates from the body with some heat; allowing it to cool;
- In still air, the evaporates sweat remains around the body; saturating the air around the body; and reducing the diffusion gradient; while in windy conditions the evaporated moisture around the body is taken away; replacing it with unsaturated air; that encourages further evaporation and hence heat loss from the body;

(d) Explain the response of a mammalian body to

(i) An increase in temperature above the efficiency range. (04 marks)

- The ability of the body to regulate temperature breaks down;
- Increase in temperature further activates enzymes; which increases the metabolic rate hence generating more heat; in a positive feedback mechanism; (metabolic rate doubles for every 10°C rise in temperature) heat exhaustion takes place and the individual dies;

(ii) A decrease in temperature below the efficiency range. (04 marks)

- The physical mechanisms alone fail to maintain constant body temperature; metabolic rate increases; to provide more heat;
- With further decrease in temperature, the chemical mechanisms also breakdown; and individual dies;

18. (a) Explain why plants suffer permanent physiological damage when exposed to high temperatures in high humidity. (05 marks)

• In high humidity, transpiration rates are low; because the water vapour diffusion gradient between the leaf and atmosphere is low; the plant cannot lose heat; leading to overheating and denaturation of enzymes; leading to slowing of metabolism of plants;

(b) Explain who ectotherms control their body temperature.

(14 marks)

How to avoid overheating/ reduce heat gain	How to gain more heat/ avoid heat loss
 Becoming lighter in colour; to reduce heat absorption; e.g some lizards 	 Becoming darker in colour; to absorb more heat;
 Aligning the body parallel to the sun rays; reducing the surface area of the body exposed; to absorb less heat; 	 Aligning the body at right angles to the sun rays; increasing the body surface area exposed; to absorb much heat;
 Opening the mouth; to increase heat loss by evaporation; e.g crocodiles; 	•
 Moving to cooler places like burrows; eg lizards 	 Moving to warm places/ basking in the sun; e.g. lizards
 Moving to the water when it is too hot; to cool the body 	Moving to water when it's too cold;

19. (a) Explain the role of the liver in protein metabolism.

(10 marks)

- Excess amino acids; are deaminated in the liver; the amino group is removed from an amino acid; and converted into ammonia; which is converted in to urea; while the remaining carbon compound is used for respiration;
- Transamination; where new amino acids are synthesised by the liver; by transferring amino groups from one amino acids to another;
- Synthesis of plasma proteins; such as albumin/fibrinogen/globulins; from amino acids occurs in the liver cells

(b) Explain what is meant by the term *hibernation*?

(03 marks)

• Is a state in which the metabolic rate of animal is lowered to a minimum; in response to a decrease in environmental temperature; which leads to a decrease in the body temperature; so as to allow the organism survive such conditions

(c) Explain the importance of hibernation in animals.

(06 marks)

- During periods of extremely cold conditions; there is low supply of food; and the high rate of heat loss; thus animals sets the optimum temperature at a low set-point; the metabolic rate reduces; and body temperature falls;
- This reduces energy expenditure; and enables the organisms to survive the cold; during periods of short food supply;

(d) Explain why hibernation is more common in small animals than large ones.

(06 marks)

- Small animals have a large surface area to volume ratio; than larger animals;
- Their rate heat loss is therefore higher than in larger animals;
- To maintain high metabolic rate;, they would need to consume more food; which is in short supply during very cold conditions;

THE END; FOR NOW