Dynamic Programming

Outline and Reading

- Matrix Chain-Product (5.3.1)
- Dynamic Programming: The General Technique (5.3.2)
- 0-1 Knapsack Problem (5.3.3)

Matrix Chain Product

Dynamic Programming is a general algorithm design paradigm.

Rather than give the general structure, we first give a motivating example: Matrix Chain-Product

Review: Matrix Multiplication

- C = A *B
- A is $d \times e$ and B is $e \times f$

$$C[i,j] = \sum_{k=0}^{e-1} A[i,k] * B[k,j]$$

 $O(d \cdot e \cdot f)$ time

Matrix Chain Product

Matrix Chain-Product:

- Compute $A = A_0 * A_1 * ... * A_{n-1}$
- A_i is $d_i \times d_{i+1}$
- **Problem**: How to parenthesize in such a way that **minimizes** the total number of scalar multiplications?

Example:

- B is 3×100
- C is 100×5
- D is 5×5
- (B*C)*D takes 1500 + 75 = 1575 ops
- B*(C*D) takes 1500 + 2500 = 4000 ops

Another Approach: Greedy (v1)

<u>Idea</u>: Repeatedly select the product that uses (up) the most operations.

Counter-example:

- A is 10×5
- B is 5×10
- C is 10×5
- D is 5×10

This greedy approach gives (A*B)*(C*D)

• takes 500+1000+500 = 2000 ops

A better solution: A*((B*C)*D)

• takes 500+250+250 = 1000 ops

Another Approach: Greedy (v2)

<u>Idea</u>: Repeatedly select the product that uses the fewest operations.

Counter-example:

- A is 101×11
- B is 11×9
- C is 9×100
- D is 100×99

This greedy approach gives A*((B*C)*D)

• takes 109989+9900+108900=228789 ops

A better solution is (A*B)*(C*D)

• takes 9999+89991+89100=189090 ops

The greedy approach is not giving us the optimal value.

"Recursive" Approach

Define subproblems:

- Find the best parenthesization of $A_i * A_{i+1} * ... * A_i$.
- Let $N_{i,j}$ denote the number of operations done by this subproblem.
- The optimal solution for the whole problem is $N_{0,n-1}$.

Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems

- There has to be a final multiplication (root of the expression tree) for the optimal solution.
- Say, the final multiply is at index i: $(A_0^*...^*A_i)^*(A_{i+1}^*...^*A_{n-1})$.
- Then the optimal solution $N_{0,n-1}$ is the sum of two optimal subproblems, $N_{0,i}$ and $N_{i+1,n-1}$ plus the time for the last multiply.
- If the global optimum did not have these optimal subproblems, we could define an even better "optimal" solution.

Characterizing Equation

- The global optimal has to be defined in terms of optimal subproblems, depending on where the final multiply is at.
- Consider all possible places for that final multiply:
 - Recall that A_i is a $d_i \times d_{i+1}$ dimensional matrix.
 - So, a characterizing equation for $N_{i,j}$ is the following:

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

• Note that subproblems are not independent – meaning subproblems overlap.

Dynamic Programming Algorithm Visualization

the N array by diagonals

The bottom-up construction fills in
$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

N_{i,i} gets values from previous entries in i-th row and j-th column

Filling in each entry in the N table takes O(n) time.

• Total run time: O(n³)

Getting actual parenthesization can be done by remembering "k" for each N entry in a separate table

Dynamic Programming Algorithm

Since subproblems overlap, we don't use recursion.

Instead, we construct optimal subproblems "bottom-up."

 $N_{i,i}$'s are easy, so start with them

Then do problems of "length" 2,3,... subproblems, and so on.

Running time: $O(n^3)$

```
Algorithm matrixChain(S):
    Input: sequence S of n matrices to be multiplied
    Output: number of operations in an optimal
        parenthesization of S
    for i \leftarrow 0 to n-1 do
        N_{i,i} \leftarrow \mathbf{0}
    for length \leftarrow 1 to n-1 do
        { length=j-i is the length of the chain }
        for i \leftarrow 0 to n-1 – length do
            j \leftarrow i + length
            N_{i,i} \leftarrow +\infty
            for k \leftarrow i to j - 1 do
                 N_{i,i} \leftarrow \min\{N_{i,i}, N_{i,k} + N_{k+1,i} + d_i d_{k+1} d_{j+1}\}
                 record k that produces minimum N_{i,i}
    return N_{0,n-1}
```


number of scalar operations required to multiply $A_i \cdot A_{i+1} \cdot A_{i+2} \cdot \ldots \cdot A_{j-1} \cdot A_j$

matrix index where final multiplication occurred to obtain optimal solution given in N[i][j]

20x25

4

5

k	0	1	2	3	4	5
0		0				
1						
2						
3						
4						
5						

number of scalar operations required to multiply $A_i \cdot A_{i+1} \cdot A_{i+2} \cdot \ldots \cdot A_{j-1} \cdot A_j$ $A_0 \cdot A_1 \quad \text{N[0][1]} = 0 + 0 + 30*35*15 = 15750$

k	0	1	2	3	4	5
0		0				
1			1			
2						
3						
4						
5						

10x20

 d_4

number of scalar operations required to multiply

$$A_i \cdot A_{i+1} \cdot A_{i+2} \cdot \dots \cdot A_{j-1} \cdot A_j$$

 $A_0 \cdot A_1 \quad N[0][1] = 0 + 0 + 30*35*15 = 15750$
 $A_1 \cdot A_2 \quad N[1][2] = 0 + 0 + 35*15*5 = 2626$

d		natrix nsior		d_0 x35 d_0		d_2	A_2 5 x5 d_3
	N	0	1	2	3	4	5
	0	0	15750				
	1		0	2625			
start	2			0	750		
i	3				0		
	4					0	
	5						0

k	0	1	2	3	4	5
0		0				
1			1			
2				2		
3						
4						
5						

10x20

5x10

number of scalar operations required to multiply

$$A_i \cdot A_{i+1} \cdot A_{i+2} \cdot \dots \cdot A_{j-1} \cdot A_j$$

 $A_0 \cdot A_1 \quad N[0][1] = 0 + 0 + 30*35*15 = 15750$
 $A_1 \cdot A_2 \quad N[1][2] = 0 + 0 + 35*15*5 = 2626$
 $A_2 \cdot A_3 \quad N[2][3] = 0 + 0 + 15*5*10 = 750$

matrix: A_0 A_1 A_2 dimension: $30x35$ $35x15$ $15x5$ d_0 d_1 d_2 d_3 end j									
	N	0	1	2	3	4	5		
	0	0	15750						
	1		0	2625					
start	2			0	750				
i	3				0	1000			
	4					0			
	5						0		

k	0	1	2	3	4	5
0		0				
1			1			
2				2		
3					3	
4						
5						

10x20

5x10

number of scalar operations required to multiply

$$A_i \cdot A_{i+1} \cdot A_{i+2} \cdot \dots \cdot A_{j-1} \cdot A_j$$

 $A_0 \cdot A_1$ $N[0][1] = 0 + 0 + 30*35*15 = 15750$
 $A_1 \cdot A_2$ $N[1][2] = 0 + 0 + 35*15*5 = 2626$
 $A_2 \cdot A_3$ $N[2][3] = 0 + 0 + 15*5*10 = 750$
 $A_3 \cdot A_4$ $N[3][4] = 0 + 0 + 5*10*20 = 1000$

matrix:
$$A_0$$
 A_1 A_2 A_3 A_4 dimension: A_0 A_1 A_2 A_3 A_4 A_5 A_5 A_5 A_5 A_5 A_6 A_7 A_8 A_8

N	0	1	2	3	4	5
0	0	15750				
1		0	2625			
2			0	750		
3				0	1000	
4					0	5000
5						0
	0 1 2 3 4	0 0 1 2 3 4	0 0 15750 1 0 2 3 4	0 0 15750 1 0 2625 2 0 3 4	0 0 15750 1 0 2625 2 0 750 3 0 4 0	0 0 15750 1 0 2625 2 0 750 3 0 1000 4 0

start

k	0	1	2	3	4	5
0		0				
1			1			
2				2		
3					3	
4						4
5						

20x25

number of scalar operations required to multiply

$$A_i \cdot A_{i+1} \cdot A_{i+2} \cdot \dots \cdot A_{j-1} \cdot A_j$$

 $A_0 \cdot A_1 \quad N[0][1] = 0 + 0 + 30*35*15 = 15750$

$$A_1 \cdot A_2$$
 N[1][2] = 0 + 0 + 35*15*5 = 2626

$$A_2 \cdot A_3$$
 N[2][3] = 0 + 0 + 15*5*10 = 750

$$A_3 \cdot A_4 \quad N[3][4] = 0 + 0 + 5*10*20 = 1000$$

$$A_4 \cdot A_5 \quad N[4][5] = 0 + 0 + 10*20*25 = 5000$$

matrix:
$$A_0$$
 A_1 A_2 dimension: A_0 A_1 A_2 A_3 A_4 A_5 A_5 A_6 A_1 A_2 A_3 A_4 A_5 A_5 A_5 A_5 A_7 A_8 A_8 A_8 A_9 A_9

_							
	k	0	1	2	3	4	5
	0		0	0			
	1			1			
	2				2		
	3					3	
	4						4
	5						

 $5x10 d_4 10x20$

$$(A_0) \cdot (A_1 \cdot A_2)$$
 = 0 + 2625 + 30*35*5 = 7875
 $(A_0 \cdot A_1) \cdot (A_2)$ = 15750 + 0 + 30*15*5 = 18000

d	ma imen	atrix sion		_			A_2 5 x5 d_3
	N	0	1	2	3	4	5
	0	0	15750	7875			
	1		0	2625	4375		
start	2			0	750		
i	3				0	1000	
	4					0	5000
	5						0

k	0	1	2	3	4	5
0		0	0			
1			1	2		
2				2		
3					3	
4						4
5						

5x10 d_4 10x20 d_5

$$(A_1) \cdot (A_2 \cdot A_3) = 0 + 750 + 35*15*10 = 6000$$

 $(A_1 \cdot A_2) \cdot (A_3) = 2625 + 0 + 35*5*10 = 4375$

d	ma imen	atrix sion		-			A_2 5 x5 d_3
	N	0	1	2	3	4	5
	0	0	15750	7875			
	1		0	2625	4375		
start	2			0	750	2500	
	3				0	1000	
	4					0	5000
	5						0

k	0	1	2	3	4	5
0		0	0			
1			1	2		
2				2	2	
3					3	
4						4
5						

 A_3

$$(A_2) \cdot (A_3 \cdot A_4) = 0 + 1000 + 15*5*20 = 2500$$

 $(A_2 \cdot A_3) \cdot (A_4) = 750 + 0 + 15*10*20 = 3750$

d	ma imen	atrix sion		_		d_2	A_2 5 x5 d_3
	N	0	1	2	3	4	5
	0	0	15750	7875			
	1		0	2625	4375		
start	2			0	750	2500	
i	3				0	1000	3500
	4					0	5000
	5						0

k	0	1	2	3	4	5
0		0	0			
1			1	2		
2				2	2	
3					3	4
4						4
5						

 d_4 d_5 d_5

$$(A_3) \cdot (A_4 \cdot A_5) = 0 + 5000 + 5*10*25 = 6250$$

 $(A_3 \cdot A_4) \cdot (A_5) = 1000 + 0 + 5*20*25 = 3500$

matrix:
$$A_0$$
 A_1 A_2 A_3 A_4 dimension: A_0 A_1 A_2 A_3 A_4 A_5 A_5

k	0	1	2	3	4	5
0		0	0	2		
1			1	2		
2				2	2	
3					3	4
4						4
5						

$$(A_0) \cdot (A_1 \cdot A_2 \cdot A_3) = 0 + 4375 + 30*35*10 = 14875$$

 $(A_0 \cdot A_1) \cdot (A_2 \cdot A_3) = 15750 + 750 + 30*15*10 = 21000$
 $(A_0 \cdot A_1 \cdot A_2) \cdot (A_3) = 7875 + 0 + 30*5*10 = 9375$

matrix:
$$A_0$$
 A_1 A_2 A_3 A_4 dimension: A_0 A_1 A_2 A_3 A_4 A_5 A_5

k	0	1	2	3	4	5
0		0	0	2		
1			1	2	2	
2				2	2	
3					3	4
4						4
5						

$$(A_1) \cdot (A_2 \cdot A_3 \cdot A_4) = 0 + 2500 + 35*15*20 = 13000$$

 $(A_1 \cdot A_2) \cdot (A_3 \cdot A_4) = 2625 + 1000 + 35*5*20 = 7125$
 $(A_1 \cdot A_2 \cdot A_3) \cdot (A_4) = 4375 + 0 + 35*10*20 = 11375$

matrix:
$$A_0$$
 A_1 A_2 A_3 A_4 A_5 dimension: A_0 A_1 A_2 A_3 A_4 A_5 A_5

	_					
k	0	1	2	3	4	5
0		0	0	2		
1			1	2	2	
2				2	2	2
3					3	4
4						4
5						

$$(A_2) \cdot (A_3 \cdot A_4 \cdot A_5) = 0 + 3500 + 15*5*25 = 5375$$

 $(A_2 \cdot A_3) \cdot (A_4 \cdot A_5) = 750 + 5000 + 15*10*25 = 9500$
 $(A_2 \cdot A_3 \cdot A_4) \cdot (A_5) = 2500 + 0 + 15*20*25 = 10000$

matrix:
$$A_0$$
 A_1 A_2 A_3 A_4 dimension: A_0 A_1 A_2 A_3 A_4 A_4 A_5 A_5

k	0	1	2	3	4	5
0		0	0	2	2	
1			1	2	2	
2				2	2	2
3					3	4
4						4
5						

$$(A_0) \cdot (A_1 \cdot A_2 \cdot A_3 \cdot A_4) = 0 + 7125 + 30*35*20 = 28125$$

 $(A_0 \cdot A_1) \cdot (A_2 \cdot A_3 \cdot A_4) = 15750 + 2500 + 30*15*20 = 27250$
 $(A_0 \cdot A_1 \cdot A_2) \cdot (A_3 \cdot A_4) = 7875 + 1000 + 30*5*20 = 11875$
 $(A_0 \cdot A_1 \cdot A_2 \cdot A_3) \cdot (A_4) = 9375 + 0 + 30*10*20 = 15375$

d	ma imen	atrix sion		d_0 d d		d_2	A_2 5 x5 d_3
	N	0	1	2	3	4	5
	0	0	15750	7875	9375	11875	
	1		0	2625	4375	7125	10500
start	2			0	750	2500	5375
i	3				0	1000	3500
	4					0	5000
	5						0

	_					
k	0	1	2	3	4	5
0		0	0	2	2	
1			1	2	2	2
2				2	2	2
3					3	4
4						4
5						

10x20

5x10

 d_4

$$(A_1) \cdot (A_2 \cdot A_3 \cdot A_4 \cdot A_5) = 0 + 5375 + 35*15*25 = 18500$$

 $(A_1 \cdot A_2) \cdot (A_3 \cdot A_4 \cdot A_5) = 2625 + 3500 + 35*5*25 = 10500$
 $(A_1 \cdot A_2 \cdot A_3) \cdot (A_4 \cdot A_5) = 4375 + 5000 + 35*10*25 = 18125$
 $(A_1 \cdot A_2 \cdot A_3 \cdot A_4) \cdot (A_5) = 7125 + 0 + 35*20*25 = 24625$

matrix: dimension:	A_0 30x35	A_1 35x15	J	A ₂ 15x5	J	A ₃ 5x10	J	A_4 $10x20$	A_5 $20x25$
	a_0	a_1	a_2		a_3	1	a_4	a_5	a_6
		end j			_				
[1				

N	0	1	2	3	4	5
0	0	15750	7875	9375	11875	15125
1		0	2625	4375	7125	10500
2			0	750	2500	5375
3				0	1000	3500
4					0	5000
5						0
	0 1 2 3 4	0 0 1 2 3 4	0 0 15750 1 0 2 3 4	0 0 15750 7875 1 0 2625 2 0 3 4	0 0 15750 7875 9375 1 0 2625 4375 2 0 750 3 0 0 4 0 0	0 0 15750 7875 9375 11875 1 0 2625 4375 7125 2 0 750 2500 3 0 1000 4 0 0

start

k		0	1	2	3	4	5
0)		0	0	2	2	2
1				1	2	2	2
2					2	2	2
3						3	4
4	-						4
5	,						

$$(A_0) \cdot (A_1 \cdot A_2 \cdot A_3 \cdot A_4 \cdot A_5) = 0 + 10500 + 30*35*25 = 36750$$

 $(A_0 \cdot A_1) \cdot (A_2 \cdot A_3 \cdot A_4 \cdot A_5) = 15750 + 5375 + 30*15*25 = 32375$
 $(A_0 \cdot A_1 \cdot A_2) \cdot (A_3 \cdot A_4 \cdot A_5) = 7875 + 3500 + 30*5*25 = 15125$
 $(A_0 \cdot A_1 \cdot A_2 \cdot A_3) \cdot (A_4 \cdot A_5) = 9375 + 5000 + 30*10*25 = 21875$
 $(A_0 \cdot A_1 \cdot A_2 \cdot A_3 \cdot A_4) \cdot (A_5) = 11875 + 0 + 30*20*25 = 26875$

matri dimensio				on: d_0 30x35		$egin{array}{ccc} A_1 & & & & \ 35\mathrm{x}15 & & & \ d_1 & & d_2 & & \ \mathrm{ad} & j & & & \end{array}$		A_2 $5x5$ d_3	A_3 5 x 10 d_4		,	A_4 10 x20 d_5		20	A_5 20 x 25 d_6	
		.		1	2		4			1	0	1		2	4	_
$ \begin{array}{c} \text{start} \\ i \end{array} $		N	0	I	2	3	4	5		k	0	1	2	3	4	5
		0	0	15750	7875	9375	11875	15125		0		0	0	2	2	2
		1		0	2625	4375	7125	10500		1			1	2	2	2
		2			0	750	2500	5375		2				2	2	2
		3				0	1000	3500		3					3	4
		4					0	5000		4						4
	4	5						0		5						

optimal order in which the following matrices should be multiplied:

$$[(A_0) \cdot (A_1 \cdot A_2)] \cdot [(A_3 \cdot A_4) \cdot (A_5)]$$

General Dynamic Programming Technique

Applies to an optimization problem that at first seems to require a lot of time (possibly exponential), provided we have:

- Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, l, m, and so on.
- Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).
- Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems

0/1 Knapsack Problem

Given: A set S of n items, with each item i having

- w_i a positive weight
- b_i a positive benefit

<u>Goal</u>: Choose items with maximum total benefit but with weight at most W.

If we are not allowed to take fractional amounts, then this is the 0/1 knapsack problem.

- In this case, we let T denote the set of items we take
- Objective: maximize

$$\sum_{i \in T} b_i$$

• Constraint:

$$\sum_{i \in T} w_i \le W$$

Example

- Given: A set S of n items, with each item i having
 - b_i a positive "benefit"
 - w_i a positive "weight"
- Goal: Choose items with maximum total benefit but with weight at most W.

"knapsack"

box of width 9 in

Solution:

- item 5 (\$80, 2 in)
- item 3 (\$6, 2in)
- item 1 (\$20, 4in)

A 0/1 Knapsack Algorithm: First Attempt

 S_k : Set of items numbered 1 to k.

- <u>Idea</u>: Define B[k] = best selection from S_k .
- Problem: does not have subproblem optimality.
 - Consider set $S=\{(3,2),(5,4),(8,5),(4,3),(10,9)\}$ of (benefit, weight) pairs and total weight W=20

Best for S_4 :

Best for S_5 :

A 0/1 Knapsack Algorithm: Second Attempt

S_k: Set of items numbered 1 to k.

- Idea: Define B[k,w] to be the best selection from S_k with weight at most w
- Good news: this does have subproblem optimality.

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

That is, the best subset of S_k with weight at most w is either

- the best subset of S_{k-1} with weight at most w or
- the best subset of S_{k-1} with weight at most w-w_k plus item k

0/1 Knapsack Algorithm

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

- Recall the definition of B[k,w]
- Since B[k,w] is defined in terms of B[k-1,*], we can use two arrays of instead of a matrix
- Running time: O(nW).
- Not a polynomial-time algorithm since W may be large
- This is a pseudo-polynomial time algorithm

```
Algorithm 01Knapsack(S, W):
    Input: set S of n items with benefit b_i
            and weight w_i; maximum weight W
    Output: benefit of best subset of S with
            weight at most W
    let A and B be arrays of length W+1
    for w \leftarrow 0 to W do
        B[w] \leftarrow 0
    for k \leftarrow 1 to n do
        copy array B into array A
        for w \leftarrow w_k to W do
            if A[w-w_k] + b_k > A[w] then
                B[w] \leftarrow A[w-w_k] + b_k
    return B[W]
```