

SDS 385: Stat Models for Big Data

Lecture 4: GD with momentum.

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

https://psarkar.github.io/teaching

Polyak's heavy ball method

Figure 1: B. Polyak

•

$$\beta_{t+1} = \beta_t - \alpha \nabla f(\beta_t) + \underbrace{\theta(\beta_t - \beta_{t-1})}_{\text{momentum term}}$$

Momentum

Recall GD?

• For a L smooth and μ convex optimization problem, i.e. $\mu I \leq H \leq LI$,

$$\|\beta_t - \beta^*\| \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^t \|\beta_0 - \beta^*\|$$

where $\kappa = L/\mu$ i.e. the condition number of the Hessian.

• For the same problem, using Polyak's method we can show that,

$$\left\| \begin{bmatrix} \beta_{t+1} - \beta^* \\ \beta_t - \beta^* \end{bmatrix} \right\| \le \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^t \left\| \begin{bmatrix} \beta_1 - \beta^* \\ \beta_0 - \beta^* \end{bmatrix} \right\|$$

3

Momentum method

Recall we have:

$$\beta_{t+1} - \beta^* = (1+\theta)(\beta_t - \beta^*) - \alpha \nabla f(\beta_t) - \theta(\beta_{t-1} - \beta^*)$$
$$= ((1+\theta)I - \alpha \nabla^2 f(z_t))(\beta_t - \beta^*) - \theta(\beta_{t-1} - \beta^*)$$

• This gives the dynamic system:

$$\begin{bmatrix} \beta_{t+1} - \beta^* \\ \beta_t - \beta^* \end{bmatrix} \le \begin{bmatrix} (1+\theta)I - \alpha \nabla^2 f(z_t) & -\theta I \\ I & 0 \end{bmatrix} \begin{bmatrix} \beta_t - \beta^* \\ \beta_{t-1} - \beta^* \end{bmatrix}$$

4

Momentum method

• We need to upper bound the norm of

$$M := \begin{bmatrix} (1+\theta)I - \alpha \nabla^2 f(z_t) & -\theta I \\ I & 0 \end{bmatrix}$$

• It can be shown that:

$$||M|| = \left\| \begin{bmatrix} (1+\theta) - \alpha \Lambda & -\theta I \\ I & 0 \end{bmatrix} \right\|$$
$$= \max_{i} \left\| \begin{bmatrix} (1+\theta) - \alpha \lambda_{i} & -\theta \\ 1 & 0 \end{bmatrix} \right\|$$

 Eigenvalues of the 2 x 2 matrix can be written as a solution of the following quadratic:

$$\sigma^2 - \sigma((1+\theta) - \alpha\lambda_i) + \theta = 0$$

Momentum method - simple example

- Take $f(x) = \frac{h}{2}x^2$.
- Now $M := \begin{bmatrix} 1 + \theta \alpha h & -\theta \\ 1 & 0 \end{bmatrix}$
- The two eigenvalues of this matrix are:

$$\sigma_1 = \frac{1}{2} \left(1 - \alpha h + \theta + \sqrt{(1 + \theta - \alpha h)^2 - 4\theta} \right)$$

$$\sigma_2 = \frac{1}{2} \left(1 - \alpha h + \theta - \sqrt{(1 + \theta - \alpha h)^2 - 4\theta} \right)$$

• When $(1 + \theta - \alpha h)^2 < 4\theta$, then the roots are complex conjugates, and each have the same absolute value $\sqrt{\theta}$

Momentum method - simple example

Momentum method

- If $((1+\theta)-\alpha\lambda_i)^2 \leq 4\theta$, the roots are imaginary and the magnitude is $\sqrt{\theta}$
- This is satisfied if

$$\alpha \in \left[\frac{(1 - \sqrt{\theta})^2}{\lambda_i}, \frac{(1 + \sqrt{\theta})^2}{\lambda_i} \right]$$

- But recall that $\lambda_i \in [\mu, L]$.
- If we set $1 \sqrt{\alpha L} = -(1 \sqrt{\alpha \mu})$, then we have

$$\alpha = \left(\frac{2}{\sqrt{L} + \sqrt{\mu}}\right)^2$$
 $\theta = \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^2$

 \bullet So the new contraction factor becomes $\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$

• If we only assume that $\|\nabla^2 f(x)\| \le L$ and not strong convexity, then in your homework you will prove that

$$f(\beta_t) - f(\beta^*) \le c_L \frac{\|\beta_0 - \beta^*\|^2}{t}$$

- Note that this is much weaker than the linear convergence we saw before.
- Question is can we do better?

Figure 2: Y. Nesterov

- Keep track of two vectors x_t and y_t
- $\bullet \ \ x_{t+1} = y_t \alpha_t \nabla f(y_t)$
- $y_{t+1} = x_{t+1} + \underbrace{\frac{t}{t+3}}_{\mu_{t+1}} (x_{t+1} x_t)$

• Can be re-written as:

$$x_{t+1} = x_t + \mu(x_t - x_{t-1}) - \alpha_t \nabla f(x_t + \mu_t(x_t - x_{t-1}))$$

 Very much like the momentum method, but computes the derivative at a future step.

- Not a descent method.
- If f is convex and L smooth and the learning rate is 1/L, this obtains the optimal $O(1/t^2)$ error after t steps.
- Proof is complicated, but can be simplified using intuitions from differential equations.

Subgradient methods

- So far we have assumed differentiable f.
- What if *f* is not differentiable?
- Instead of a gradient we will define a subgradient.

Subgradient methods

• We will say that g is a subgradient of f at point x if

$$f(z) \ge f(x) + g^{T}(z - x), \quad \forall z$$

 Set of all gradients is called the sub-differential of f at point x and is denoted by ∂f(x)

Example

$$f(x) = \max(g(x), h(x)) \qquad \delta f(x) = \begin{cases} \{g'(x)\} & \text{if } g(x) > h(x) \\ \in [g'(x), h'(x)] & \text{if } g(x) = h(x) \\ \{h'(x)\} & \text{if } g(x) < h(x) \end{cases}$$

Example

$$f(x) = |x| \qquad \delta f(x) = \begin{cases} \{-1\} & \text{if } x < 0 \\ [-1, 1] & \text{if } x = 0 \\ \{1\} & \text{if } x > 0 \end{cases}$$

Subgradients

Behaves very much like a gradient;

- $\partial(\alpha f) = \alpha \partial f$ for $\alpha \ge 0$
- $\partial(f+g) = \partial f + \partial g$
- For convex f, if g(x) = f(Ax + b), $\partial g(x) = A^T \partial f(Ax + b)$

$$f(x) = ||x||_1 = \sum_{i=1}^n \underbrace{|x_i|}_{:=f_i(x)}$$

since

$$\partial f_i(\mathbf{x}) = \begin{cases} \operatorname{sgn}(x_i)\mathbf{e}_i, & \text{if } x_i \neq 0 \\ [-1, 1] \cdot \mathbf{e}_i, & \text{if } x_i = 0 \end{cases}$$

we have

$$\sum_{i:x_i \neq 0} \operatorname{sgn}(x_i) e_i \in \partial f(x)$$

Lets talk about Lasso

$$\hat{\boldsymbol{\beta}}_{LASSO} = \min_{\boldsymbol{\beta}} (\boldsymbol{y} - \boldsymbol{x}\boldsymbol{\beta})^{\top} (\boldsymbol{y} - \boldsymbol{x}\boldsymbol{\beta}) + \lambda \sum_{j=1}^{p} |\beta_{j}|$$
(1)

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

Alternative formulation

$$\hat{\boldsymbol{\beta}}_{ridge} = \min_{\boldsymbol{\beta}} (\boldsymbol{y} - \boldsymbol{x}\boldsymbol{\beta})^{\top} (\boldsymbol{y} - \boldsymbol{x}\boldsymbol{\beta})$$
 Subject to $\boldsymbol{\beta}^{\top} \boldsymbol{\beta} \leq \tau^2$ (2)

$$\hat{\boldsymbol{\beta}}_{lasso} = \min_{\boldsymbol{\beta}} (\mathbf{y} - \mathbf{x}\boldsymbol{\beta})^{\top} (\mathbf{y} - \mathbf{x}\boldsymbol{\beta}) \quad \text{Subject to } \|\boldsymbol{\beta}\|_{1} \leq \tau \quad (3)$$

Uniqueness - OLS (Thanks to Piaoping Jiang for asking this in class)

- So what happens to linear regression when p > n or rank(X) < p?
- There are many solutions,
 - You can just add a vector lying in the null space of X to a solution to get another
 - In particular, you can always find a variable which has +ve sign on solution and -ve sign on another.
 - This makes interpreting a solution rather difficult.

Uniqueness - Lasso

- So the question is, what happens in Lasso, when X is rank deficient.
 - For a fixed λ , can one lasso solution have a positive i^{th} coefficient, and another have a negative i^{th} coefficient?
 - Must any two lasso solutions, at the same value of λ , necessarily share the same support, and differ only in their estimates of the nonzero coefficient values? Or can different lasso solutions exhibit different active sets?

Uniqueness - Lasso

- Q0. When does Lasso have non-unique solutions?
 - If the elements of X are drawn from a continuous probability distribution, then the lasso returns a unique solution with probability one over the distribution of X, regardless of the sizes of n and p.
 - So, the only time you have to worry about non-uniqueness, is when X is discrete.

Uniqueness - Lasso

- Q1. For a fixed λ , can one lasso solution have a positive i^{th} coefficient, and another have a negative i^{th} coefficient?
 - The short answer is no, and you can prove this. So, unlike OLS, lasso solutions do not suffer from sign inconsistencies.
- Q2. Can there be different supports for the same λ ?
 - Unfortunately yes. But you can compute upper and lower bounds for the lasso coefficients, and deal with this.

Optimality condition

• For differentiable *f*

$$f(x^*) = \min_{X} f(x) \leftrightarrow \nabla f(x^*) = 0$$

• For convex f that may not be differentiable,

$$f(x^*) = \min_{X} f(x) \leftrightarrow 0 \in \delta f'(x^*)$$

• Just plug into the definition of a subgradient!

$$f(y) \ge f(x^*) + 0^T (y - x^*) = f(x^*)$$

Soft thresholding

Consider the easier problem

$$x = \arg\min\frac{1}{2}\|y - x\|^2 + \lambda \|x\|_1$$

• Show that the soft thresholding operator $x^* = S_{\lambda}(y)$ is the solution to this.

$$S_{\lambda}(y) = \begin{cases} y_i - \lambda & \text{if } y_i > \lambda \\ 0 & \text{if } y_i \in [-\lambda, \lambda] \\ y_i + \lambda & \text{if } y_i < -\lambda \end{cases}$$

Sub-gradient method

- $\bullet \ \beta_{k+1} = \beta_k \alpha_k g_k$
- Here g_k is any subgradient at the β_k
- Note that subgradient direction is not always a direction of descent
- So we do

$$f(\beta_k^{best}) = \min_{i=1,\dots,k} f(\beta_i)$$

- We can choose it as
 - Fixed, i.e. $t_k = \alpha$
 - \bullet Or diminishing such that $\sum_k t_k^2 < \infty, \sum_k t_k = \infty$

Convergence

 Assume that f is convex, and Lipschitz continuous with some constant G > 0

$$|f(x) - f(y)| \le G||x - y||_2$$
 for all x, y

Theorem

For a fixed step size α ,

$$\lim_{k\to\infty} f(x_{best}^{(k)}) \le f^* + G^2 t/2$$

Theorem

For diminishing step size α_k with $\sum_k \alpha_k \to \infty$ and $\sum_k \alpha_k^2 < \infty$,

$$\lim_{k \to \infty} f(x_{best}^{(k)}) = f^*$$

Regularized logistic regression

- Let $\{x_i, y_i\}_{i=1}^n$ with $x_i \in \Re^p$ and $y_i \in \{-1, 1\}$
- The logistic regression loss is:

$$f(\beta) = \sum_{i} \left(-y_{i}x_{i}^{T}\beta + \log(1 + \exp(x_{i}^{T}\beta)) \right)$$

• With lasso regularization we have:

$$\hat{\beta} = \arg\min f(\beta) + \lambda \|\beta\|_1$$

So, use

$$\Delta_{\beta} = \underbrace{\sum_{i} (y_{i} - p_{i}(\beta))x_{i} + \underbrace{\partial \|\beta\|_{1}}_{\text{subgradient}}}_{\text{gradient}}$$

Convergence

Figure 3: $f - f^*$ on X axis, iterations on Y axis. Logistic regression in two dimensions $\lambda = 1$

Convergence

• Gradient descent takes $1/\epsilon$ time to converge, whereas subgradient descent with variable step-size takes $1/\epsilon^2$ time to converge.

Theorem

For any $k \le n-1$ and starting point $\beta^{(0)}$, there is a function such that any non-smooth first order method satisfies:

$$f(\beta^{(k)}) - f^* \ge \frac{G\|\beta^{(0)} - \beta^*\|}{2(1 + \sqrt{k+1})}$$

• So it seems like we cant really improve on sub-gradient methods.

Acknowledgment

Y. Chen's large scale Optimization class at Princeton and Hastie and Tibshirani's book, Ryan Tibshirani's class, "The Lasso Problem and Uniqueness", R. J. Tibshirani.