Package 'POPInf'

February 20, 2024

Type Package								
Title Assumption-Lean and Data-Adaptive Post-Prediction Inference								
Version 1.0.0								
Maintainer Jiacheng Miao <jiacheng.miao@wisc.edu></jiacheng.miao@wisc.edu>								
Description Implementation of assumption-lean and data-adaptive post-prediction inference (POPInf), for valid and efficient statistical inference based on data predicted by machine learning. See Miao, Miao, Wu, Zhao, and Lu (2023) <arxiv:2311.14220>.</arxiv:2311.14220>								
<pre>URL https://arxiv.org/abs/2311.14220,</pre>								
https://github.com/qlu-lab/POPInf								
Depends R ($>= 3.5.0$),								
Imports randomForest, MASS								
License GPL-3								
Encoding UTF-8								
RoxygenNote 7.2.3								
NeedsCompilation no								
Author Jiacheng Miao [aut, cre] (https://orcid.org/0000-0002-4524-7408)								
Repository CRAN								
Date/Publication 2024-02-20 20:40:12 UTC								
R topics documented:								
A								
est_ini 2 link_grad 3								
link_Hessian								
mean_psi								
mean_psi_pop								
optim_est								
pop_M								

2 est_ini

psi																	9	9
Sigma_cal																	10	0
sim_data .																	1	1

Index 12

Α

Calculation of the matrix A based on single dataset

Description

A function for the calculation of the matrix A based on single dataset

Usage

```
A(X, Y, quant = NA, theta, method)
```

Arguments

X Array or DataFrame containing covariates

Y Array or DataFrame of outcomes quant quantile for quantile estimation

theta parameter theta

method indicates the method to be used for M-estimation. Options include "mean",

"quantile", "ols", "logistic", and "poisson".

Value

matrix A based on single dataset

Description

est_ini function for initial estimation

Usage

```
est_ini(X, Y, quant = NA, method)
```

link_grad 3

Arguments

X Array or DataFrame containing covariates

Y Array or DataFrame of outcomes quant quantile for quantile estimation

method indicates the method to be used for M-estimation. Options include "mean",

"quantile", "ols", "logistic", and "poisson".

Value

initial estimation

link_grad

gradient of the link function

Description

link_grad function for gradient of the link function

Usage

```
link_grad(t, method)
```

Arguments

t

method indicates the method to be used for M-estimation. Options include "mean",

"quantile", "ols", "logistic", and "poisson".

Value

gradient of the link function

link_Hessian

Hessians of the link function

Description

link_Hessian function for Hessians of the link function

Usage

```
link_Hessian(t, method)
```

4 mean_psi

Arguments

t 1

method indicates the method to be used for M-estimation. Options include "mean",

"quantile", "ols", "logistic", and "poisson".

Value

Hessians of the link function

mean_psi

Sample expectation of psi

Description

mean_psi function for sample expectation of psi

Usage

```
mean_psi(X, Y, theta, quant = NA, method)
```

Arguments

X Array or DataFrame containing covariates

Y Array or DataFrame of outcomes

theta parameter theta

quantile for quantile estimation

method indicates the method to be used for M-estimation. Options include "mean",

"quantile", "ols", "logistic", and "poisson".

Value

sample expectation of psi

mean_psi_pop 5

mean_psi_pop	Sample expectation of POP-Inf psi	

Description

 ${\tt mean_psi_pop}\ function\ for\ sample\ expectation\ of\ POP-Inf\ psi$

Usage

```
mean_psi_pop(
  X_lab,
  X_unlab,
  Y_lab,
  Yhat_lab,
  Yhat_unlab,
  w,
  theta,
  quant = NA,
  method
)
```

Arguments

X_lab	Array or DataFrame containing observed covariates in labeled data.
X_unlab	Array or DataFrame containing observed or predicted covariates in unlabeled data.
Y_lab	Array or DataFrame of observed outcomes in labeled data.
Yhat_lab	Array or DataFrame of predicted outcomes in labeled data.
Yhat_unlab	Array or DataFrame of predicted outcomes in unlabeled data.
W	weights vector POP-Inf linear regression (d-dimensional, where d equals the number of covariates).
theta	parameter theta
quant	quantile for quantile estimation
method	indicates the method to be used for M-estimation. Options include "mean", "quantile", "ols", "logistic", and "poisson".

Value

sample expectation of POP-Inf psi

optim_est

optim_est

Gradient descent for obtaining estimator

Description

optim_est function for gradient descent for obtaining estimator

Usage

```
optim_est(
   X_lab,
   X_unlab,
   Y_lab,
   Yhat_lab,
   Yhat_unlab,
   w,
   theta,
   quant = NA,
   method,
   step_size = 0.1,
   max_iterations = 500,
   convergence_threshold = 1e-06
)
```

Arguments

X_lab	Array or DataFrame containing observed covariates in labeled data.
X_unlab	Array or DataFrame containing observed or predicted covariates in unlabeled data.
Y_lab	Array or DataFrame of observed outcomes in labeled data.
Yhat_lab	Array or DataFrame of predicted outcomes in labeled data.
Yhat_unlab	Array or DataFrame of predicted outcomes in unlabeled data.
W	weights vector POP-Inf linear regression (d-dimensional, where d equals the number of covariates).
theta	parameter theta
quant	quantile for quantile estimation
method	indicates the method to be used for M-estimation. Options include "mean", "quantile", "ols", "logistic", and "poisson".
step_size	step size for gradient descent
max_iterations convergence_th	maximum of iterations for gradient descent reshold
	convergence threshold for gradient descent

Value

estimator

optim_weights 7

optim_weights Gradient descent for obtaining the weight vector	optim_weights	Gradient descent for obtaining the weight vector	
--	---------------	--	--

Description

 ${\tt optim_weights}$ function for gradient descent for obtaining estimator

Usage

```
optim_weights(
   j,
   X_lab,
   X_unlab,
   Y_lab,
   Yhat_lab,
   Yhat_unlab,
   w,
   theta,
   quant = NA,
   method
)
```

Arguments

j	j-th coordinate of weights vector
X_lab	Array or DataFrame containing observed covariates in labeled data.
X_unlab	Array or DataFrame containing observed or predicted covariates in unlabeled data.
Y_lab	Array or DataFrame of observed outcomes in labeled data.
Yhat_lab	Array or DataFrame of predicted outcomes in labeled data.
Yhat_unlab	Array or DataFrame of predicted outcomes in unlabeled data.
W	weights vector POP-Inf linear regression (d-dimensional, where d equals the number of covariates).
theta	parameter theta
quant	quantile for quantile estimation
method	indicates the method to be used for M-estimation. Options include "mean", "quantile", "ols", "logistic", and "poisson".

Value

weights

pop_M

pop_M

POP-Inf M-Estimation

Description

pop_M function conducts post-prediction M-Estimation.

Usage

```
pop_M(
    X_lab = NA,
    X_unlab = NA,
    Y_lab,
    Yhat_lab,
    Yhat_unlab,
    alpha = 0.05,
    weights = NA,
    max_iterations = 100,
    convergence_threshold = 0.05,
    quant = NA,
    intercept = FALSE,
    focal_index = NA,
    method
)
```

Arguments

X_lab	Array or DataFrame containing observed covariates in labeled data.
X_unlab	Array or DataFrame containing observed or predicted covariates in unlabeled data.
Y_lab	Array or DataFrame of observed outcomes in labeled data.
Yhat_lab	Array or DataFrame of predicted outcomes in labeled data.
Yhat_unlab	Array or DataFrame of predicted outcomes in unlabeled data.
alpha	Specifies the confidence level as 1 - alpha for confidence intervals.
weights	weights vector POP-Inf linear regression (d-dimensional, where d equals the number of covariates).
max_iterations	Sets the maximum number of iterations for the optimization process to derive weights.
convergence_th	reshold
	Sets the convergence threshold for the optimization process to derive weights.
quant	quantile for quantile estimation
intercept	Boolean indicating if the input covariates' data contains the intercept (TRUE if the input data contains)
focal_index	Identifies the focal index for variance reduction.
method	indicates the method to be used for M-estimation. Options include "mean", "quantile", "ols", "logistic", and "poisson".

psi 9

Value

A summary table presenting point estimates, standard error, confidence intervals (1 - alpha), P-values, and weights.

Examples

psi

Esimating equation

Description

psi function for esimating equation

Usage

```
psi(X, Y, theta, quant = NA, method)
```

Arguments

X Array or DataFrame containing covariates

Y Array or DataFrame of outcomes

theta parameter theta

quantile for quantile estimation

method indicates the method to be used for M-estimation. Options include "mean",

"quantile", "ols", "logistic", and "poisson".

Value

esimating equation

10 Sigma_cal

Sigma_cal

Variance-covariance matrix of the estimation equation

Description

Sigma_cal function for variance-covariance matrix of the estimation equation

Usage

```
Sigma_cal(
   X_lab,
   X_unlab,
   Y_lab,
   Yhat_lab,
   Yhat_unlab,
   w,
   theta,
   quant = NA,
   A_lab_inv,
   A_unlab_inv,
   method
)
```

Arguments

X_lab	Array or DataFrame containing observed covariates in labeled data.
X_unlab	Array or DataFrame containing observed or predicted covariates in unlabeled data.
Y_lab	Array or DataFrame of observed outcomes in labeled data.
Yhat_lab	Array or DataFrame of predicted outcomes in labeled data.
Yhat_unlab	Array or DataFrame of predicted outcomes in unlabeled data.
W	weights vector POP-Inf linear regression (d-dimensional, where d equals the number of covariates).
theta	parameter theta
quant	quantile for quantile estimation
A_lab_inv	Inverse of matrix A using labeled data
A_unlab_inv	Inverse of matrix A using unlabeled data
method	indicates the method to be used for M-estimation. Options include "mean", "quantile", "ols", "logistic", and "poisson".

Value

variance-covariance matrix of the estimation equation

sim_data 11

sim_data

Simulate the data for testing the functions

Description

sim_data function for the calculation of the matrix A

Usage

```
sim_data(r = 0.9, binary = FALSE)
```

Arguments

r imputation correlation

binary simulate binary outcome or not

Value

simulated data

Index

```
A, 2
est_ini, 2
link_grad, 3
link_Hessian, 3
mean_psi, 4
mean_psi_pop, 5
optim_est, 6
optim_weights, 7
pop_M, 8
psi, 9
Sigma_cal, 10
sim_data, 11
```