JC07 Rec'd PCT/PTO 2 5 JAN 2002

FORM PTO (REV 12-2		MERCE PATENT AND TRADEMARK OFFICE	ATTORNEY 'S DOCKET NUMBER
		TO THE UNITED STATES	WFU.99-35
-		ED OFFICE (DO/EO/US)	US APPLICATION NO (If known, see 37 CFR 15
		IG UNDER 35 U.S.C. 371	nat Oct Orszelfue 889
	NATIONAL APPLICATION NO.	INTERNATIONAL FILING DATE	PRIORITY DATE CLAIMED
	/US00/20400	27 July 2000	27 July 1999
AND	DYSPLASIAS AND OTHER PI	COMPOSITIONS FOR DIAGNOSING ERIODONTAL DISEASES	G PALMOPLANTAR KERATODERMAS
APPLIO HAR	CANT(S) FOR DO/EO/US T, Thomas C.		
		ites Designated/Elected Office (DO/EO/US)	the following items and other information:
1. X	This is a FIRST submission of items	concerning a filing under 35 U.S.C. 371.	•
2.		T submission of items concerning a filing u	
3. X	This is an express request to begin natitems (5), (6), (9) and (21) indicated	ational examination procedures (35 U.S.C. 37 below.	71(f)). The submission must include
4. X	•	ration of 19 months from the priority date (A	rticle 31).
5. X	A copy of the International Application		aal Durgan)
•	. 🖼	l only if not communicated by the Internation	iai Bureau).
		cation was filed in the United States Receiving	ng Office (RO/US)
61		ne International Application as filed (35 U.S.	- · · · · · · · · · · · · · · · · · · ·
٠. ت	a. is attached hereto.	to members as many control of the co	S. 3/1(-)(-)/-
	. =	tted under 35 U.S.C. 154(d)(4).	
7. X		ernational Aplication under PCT Article 19 ((35 U.S.C. 371(c)(3))
	_	ed only if not communicated by the Internation	
	b. have been communicated by	by the International Bureau.	
	c. have not been made; howe	ver, the time limit for making such amendme	ents has NOT expired.
	d. have not been made and wi	ll not be made.	
8.	An English language translation of the	ne amendments to the claims under PCT Artic	cle 19 (35 U.S.C. 371 (c)(3)).
9. X	An oath or declaration of the invento	or(s) (35 U.S.C. 371(c)(4)).	
10.	An English lanugage translation of the Article 36 (35 U.S.C. 371(c)(5)).	ne annexes of the International Preliminary E	xamination Report under PCT
Iten	ns 11 to 20 below concern document	t(s) or information included:	
11.	An Information Disclosure Stateme	ent under 37 CFR 1.97 and 1.98.	
12.	An assignment document for recor-	ding. A separate cover sheet in compliance	with 37 CFR 3.28 and 3.31 is included.
13.X	A FIRST preliminary amendment.		-
14.	A SECOND or SUBSEQUENT pr	eliminary amendment.	
15.	A substitute specification.	•	
16.	A change of power of attorney and		
17.	A computer-readable form of the se	equence listing in accordance with PCT Rule	: 13ter.2 and 35 U.S.C. 1.821 - 1.825.
18.	A second copy of the published int	ernational application under 35 U.S.C. 154(d	1)(4).
19.	A second copy of the English lang	uage translation of the international application	on under 35 U.S.C. 154(d)(4).
20. X	Other items or information: Copy of Form PCT/IB/3	08	

u.s.application no (station, see 37 CFR 13) nat left (as pigned 8) PCT/US00/20400						ATTORNEY'S DOG	
21. X The following fees are submitted.						CULATIONS	PTO USE ONLY
BASIC NATIONAL	-		(1) - (5)):				
	,		on fee (37 CFR 1.482)				
nor international se	arch fee (37 CFR	1.445(2	a)(2)) paid to USPTO d by the EPO or JPO	2101000			
International prelim	ninary examination	n fee (3	7 CFR 1.482) not paid to				
ł	•	• •	pared by the EPO or JPO				
International prelim but international sea	arch fee (37 CFR						
International prelim but all claims did no							
			7 CFR 1 482) paid to US				
	-		ticle 33(1)-(4)		Φ.		
ENTE	R APPROPRI	AIL	BASIC FEE AMOU	JIN 1 =	\$	100.00	
Surcharge of \$130.0 months from the ear			or declaration later than (37 CFR 1.492(e))	20 30	\$	0	
CLAIMS	NUMBER FILI	ΞD	NUMBER EXTRA	RATE	\$		
Total claims	40 - 20	=]	20	x \$18.00		360.00	
Independent claims	7 -3		4	x \$84.00		336.00	
MULTIPLE DEPEN		<u> </u>		+ \$280.00	\$	0	
<u></u>			F ABOVE CALCU		\$	796.00	
Applicant claim are reduced by		us See	37 CFR 1.27. The fees	indicated above +	_	398.00	
				JBTOTAL =	\$	398.00	
Processing fee of \$1 months from the ear	Processing fee of \$130.00 for furnishing the English translation later than 20 30 months from the earliest claimed priority date (37 CFR 1.492(f)).						
TOTAL NATIONAL FEE =					\$	398.00	
Fee for recording the accompanied by an a	Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3 28, 3.31). \$40.00 per property +					0	
			TOTAL FEES EI	NCLOSED =	\$	398.00	
						unt to be refunded:	\$
						charged:	\$
a. 🔀 A check in	the amount of \$	_ 398	to cover th	e above fees is enclos	sed.		
b. Please char	ge my Deposit Ac	count N	No in	the amount of \$		to cover the	e above fees.
			zed to charge any additio	nal faas whish man b	e rea	ired or credit o	nv.
			04-1406 A duplic				<i>,</i>
d. Fees are to be charged to a credit card WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.							
NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137 (a) or (b)) must be filed and granted to restore the application to pending status.							
							1
SEND ALL CORRESPONDENCE TO						leen y	egaled
Kathleen D. Rigaut, Ph.D., J.D. AGANTU DANN, DORFMAN, HERRELL AND SKILLMAN Kathle							Q
1601 Market					en I	. Rigaut,	Ph.D., J.D.
Philadelphia				NAME 43,	047		
U.S.A.	, = = === , = •		_, _,				
}				REGISTR.	ATION	NUMBER	

JC14 Rec'd PCT/PTO 2 8 MAY 2002

#5

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of)
)
Thomas C. Hart)
)
Serial No. 10/031,889)
)
Filed: January 25, 2002)
)
For: "Methods and Compositions)
For Diagnosing)
Palmoplantar Keratodermas)
And Dysplasias and Other)
Periodontal Diseases")

SUBMISSION OF SEQUENCE LISTING UNDER 37 C.F.R. §§1.821-1.825 AND PRELIMINARY AMENDMENT

This submission is in response to the April 22, 2002 Office Communication enclosing a Notification Of Missing Requirements Under 35 U.S.C. 371 In The United States Designated/Elected Office.

To comply with the requirements under 37 C.F.R. §§1.821-1.825, submitted herewith is a sequence listing of the nucleotide and amino acid sequences presented in the above-referenced application. The sequence listing is being submitted in both paper copy and computer-readable form. Applicants respectfully request entry of the sequence listing into the above identified patent application. The undersigned hereby verifies that the paper copy and computer readable form of the sequence listing are identical and do not contain any new matter.

In the event that a fee is required, the Commissioner is authorized to charge the account of the undersigned, Account No. 04-1406. A duplicate copy of this sheet is enclosed.

Respectfully submitted,

DANN, DORFMAN, HERRELL AND SKILLMAN A Professional Corporation

Βv

Kathleen D. Rigaut, Ph. J. J. D

PTO Registration No. 43,047

Telephone: (215) 563-4100

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of)					
)	,				
Thomas C. Hart et al.					
)					
Serial No. Not yet assigned)	1				
) -:1 1 - 05 0000					
Filed: January 25, 2002					
For: WMothoda and Compositions)					
For: "Methods and Compositions)					
For Diagnosing)	!				
Palmoplantar Keratodermas)					
And Dysplasias and Other)	,				
Periodontal Diseases")	,				

The present application is based on International Application PCT/US00/20400. Before calculation of the filing fee, please amend the above-referenced patent application as follows:

In the specification:

At page 1, line 2, please insert the following priority claim:

-- This application is a 35 U.S.C. §371 application which claims priority to PCT/US00/20400 filed July 27, 2000 which in turn claims priority to U.S. Provisional Applications, 60/145,644 and 60/165,016 filed July 27, 1999 and November 12, 1999 respectively, the disclosure of each of these applications being incorporated herein by reference.

Please amend the specification at page 80 to include a copy of the abstract which is attached hereto on a separate sheet.

In the claims:

25. The method of claim 13 wherein a germline alteration is detected by obtaining a first CTSC gene fragment from (a) CTSC gene genomic DNA isolated from said sample, (b) CTSC RNA

isolated from said sample or (c) CTSC cDNA made from mRNA isolated from said sample and a second CTSC gene fragment from a CTSC allele specific for one of said alterations, said second fragment corresponding to said first fragment, forming single-stranded DNA from said first CTSC gene fragment and from said second CTSC gene fragment, forming a heteroduplex consisting of single-stranded DNA from said first CTSC gene fragment and single-stranded DNA from said second CTSC gene fragment and analyzing for the presence of a mismatch in said heteroduplex, wherein no mismatch indicates the presence of said alteration.

- 26. A method as claimed in claim 13, wherein said germline alteration comprises a substitution of a C for a T at nucleotide position 856 in Exon 6, thereby replacing a codon encoding glutamine for a stop codon.
- 27. A method as claimed in claim 13, wherein said germline alteration comprises a substitution of an A for a G at nucleotide position 857 in Exon 6, thereby replacing a codon encoding glutamine for an arginine encoding codon.
- 28. A method as claimed in claim 13, wherein said germline alteration comprises a deletion of an A at nucleotide position 1047 in Exon 7, thereby causing a frameshift and a premature stop codon.
- 29. A method as claimed in claim 13, wherein said germline alteration comprises a deletion of a dinucleotide CT at nucleotide positions 1028 and 1029 in Exon 7, thereby causing a premature stop codon.
- 30. A method as claimed in claim 13, wherein said germline alteration comprises a substitution of a G for a A at nucleotide position 1286 in Exon 7, thereby replacing a

tryptophan codon with a premature stop codon.

- 31. A method as claimed in claim 13, wherein said germline alteration comprises a substitution of a C for a T at nucleotide position 1015 in Exon 7, thereby replacing a codon encoding arginine for a cysteine encoding codon.
- 32. A method as claimed in claim 13, wherein said germline alteration comprises a substitution of an A for a G at nucleotide position 1019 in Exon 7, thereby replacing a codon encoding tyrosine for a cysteine encoding codon.
- 33. A method as claimed in claim 13, wherein said germline alteration comprises a substitution of an A for a G at nucleotide position 1040 in Exon 7, thereby replacing a codon encoding tyrosine for a cysteine encoding codon.
- 34. A method for detecting a germline alteration in a CTSC human encoding nucleic acid, said method comprising comparing a sequence of a CTSC DNA or CTSC RNA from a human sample with an isolated wild type CTSC sequence as provided in SEQ ID NO:1.
- 35. A method as claimed in claim 34, wherein stability of said altered CTSC mRNA is compared with stability of wild type CTSC mRNA.
- 36. A method as claimed in claim 34, further comprising expressing an altered CTSC protein from said altered CTSC encoding nucleic acid and comparing cathepsin C enzymatic activity of said altered CTSC protein to enzymatic activity of wild-type cathepsin C.
- 37. A kit for detecting the presence of an altered CTSC encoding nucleic acid in a biological sample, comprising:

- i) oligonucleotides which specifically hybridize with CTSC encoding nucleic acids having the alterations set forth in Table 1;
 - ii) reaction buffer; and
 - iii) an instruction sheet.
- 38. A kit as claimed in claim 37, wherein said oligonucleotide contains a tag.
- 39. A kit for detecting the presence an altered CTSC encoding nucleic acid in a biological sample, comprising:
- i) antibodies immunologically specific for the altered CTSC proteins of the invention;
- ii) a solid support with immobilized CTSC antigens as a positive control; and
 - iii) an instruction sheet.
- 40. A kit as claimed in claim 39, wherein said antibody contains a tag.

REMARKS

The purpose of this preliminary amendment is to 1) correct a minor error in the numbering of the claims; 2) insert a priority claim into the specification and 3) provide a copy of the abstract on a separate sheet.

Favorable consideration leading to prompt allowance of the present application is respectfully requested.

Respectfully submitted,
DANN, DORFMAN, HERRELL AND SKILLMAN
A Professional Corporation

Kathleen D. Rigaut, Ph.D., J.D. PTO Registration No. 43,047

Telephone: (215) 563-4100

Enclosures: Marked up copy of the claims showing where

amendments have been made

Copy of an abstract of the specification on a

separate sheet

Marked up draft of claims:

- [26] <u>25</u>. The method of claim 13 wherein a germline alteration is detected by obtaining a first CTSC gene fragment from (a) CTSC gene genomic DNA isolated from said sample, (b) CTSC RNA isolated from said sample or (c) CTSC cDNA made from mRNA isolated from said sample and a second CTSC gene fragment from a CTSC allele specific for one of said alterations, said second fragment corresponding to said first fragment, forming single-stranded DNA from said first CTSC gene fragment and from said second CTSC gene fragment, forming a heteroduplex consisting of single-stranded DNA from said first CTSC gene fragment and single-stranded DNA from said second CTSC gene fragment and analyzing for the presence of a mismatch in said heteroduplex, wherein no mismatch indicates the presence of said alteration.
- [27] <u>26</u>. A method as claimed in claim 13, wherein said germline alteration comprises a substitution of a C for a T at nucleotide position 856 in Exon 6, thereby replacing a codon encoding glutamine for a stop codon.
- [28] <u>27</u>. A method as claimed in claim 13, wherein said germline alteration comprises a substitution of an A for a G at nucleotide position 857 in Exon 6, thereby replacing a codon encoding glutamine for an arginine encoding codon.
- [29] 28. A method as claimed in claim 13, wherein said germline alteration comprises a deletion of an A at nucleotide position 1047 in Exon 7, thereby causing a frameshift and a premature stop codon.
- [30] 29. A method as claimed in claim 13, wherein said germline alteration comprises a deletion of a dinucleotide CT at nucleotide positions 1028 and 1029 in Exon 7, thereby

causing a premature stop codon.

- [31] 30. A method as claimed in claim 13, wherein said germline alteration comprises a substitution of a G for a A at nucleotide position 1286 in Exon 7, thereby replacing a tryptophan codon with a premature stop codon.
- [32] <u>31</u>. A method as claimed in claim 13, wherein said germline alteration comprises a substitution of a C for a T at nucleotide position 1015 in Exon 7, thereby replacing a codon encoding arginine for a cysteine encoding codon.
- [33] 32. A method as claimed in claim 13, wherein said germline alteration comprises a substitution of an A for a G at nucleotide position 1019 in Exon 7, thereby replacing a codon encoding tyrosine for a cysteine encoding codon.
- [34] 33. A method as claimed in claim 13, wherein said germline alteration comprises a substitution of an A for a G at nucleotide position 1040 in Exon 7, thereby replacing a codon encoding tyrosine for a cysteine encoding codon.
- [35] 34. A method for detecting a germline alteration in a CTSC human encoding nucleic acid, said method comprising comparing a sequence of a CTSC DNA or CTSC RNA from a human sample with an isolated wild type CTSC sequence as provided in SEQ ID NO:1.
- [36] $\underline{35}$. A method as claimed in claim $3[5]\underline{4}$, wherein stability of said altered CTSC mRNA is compared with stability of wild type CTSC mRNA.
- [37] 36. A method as claimed in claim 3[5]4, further comprising expressing an altered CTSC protein from said altered CTSC encoding nucleic acid and comparing cathepsin C

enzymatic activity of said altered CTSC protein to enzymatic activity of wild-type cathepsin C.

- [38] <u>37</u>. A kit for detecting the presence of an altered CTSC encoding nucleic acid in a biological sample, comprising:
- i) oligonucleotides which specifically hybridize with CTSC encoding nucleic acids having the alterations set forth in Table 1;
 - ii) reaction buffer; and
 - iii) an instruction sheet.
- [39] <u>38</u>. A kit as claimed in claim 3[8]<u>7</u>, wherein said oligonucleotide contains a tag.
- [40] 39. A kit for detecting the presence an altered CTSC encoding nucleic acid in a biological sample, comprising:
- i) antibodies immunologically specific for the altered CTSC proteins of the invention;
- ii) a solid support with immobilized CTSC antigens as a positive control; and
 - iii) an instruction sheet.
- [41] $\underline{40}$. A kit as claimed in claim [40] $\underline{39}$, wherein said antibody contains a tag.

ABSTRACT

Compositions relating to mutations in the CTSC gene associated with palmoplantar keradermas are disclosed. Also provided are methods for using the compositions of the invention in diagnostic and prognostic screening assays.

METHODS-AND COMPOSITIONS FOR DIAGNOSING PALMOPLANTAR KERATODERMAS AND DYSPLASIAS AND OTHER PERIODONTAL DISEASES

5

10

15

20

25

30

35

Pursuant to 35 U.S.C. §202(c), it is acknowledged that the U.S. Government has certain rights in the invention described herein, which was made in part with funds from NIDCR, Grant Numbers: DE11601 and DE12920.

FIELD OF THE INVENTION

The present invention relates to the fields of genetic screening and molecular biology. specifically, the invention provides compositions and methods that may be used to advantage to isolate and detect a palmoplantar keratoderma predisposing gene, cathepsin C (CTSC), some mutant alleles of which cause susceptibility to certain pathological disorders, in particular Papillon-LeFevre Syndrome, Haim-Munk Syndrome and certain forms of early onset periodontal diseases. More specifically, the invention relates to germline mutations and functional polymorphisms in the CTSC gene and their use in the diagnosis of predisposition to palmoplantar ectodermal disorders/ dysplasias and The invention also relates to the periodontal diseases. therapy of palmoplantar ectodermal disorders/dysplasias and periodontal diseases which have a mutation or functional polymorphisms in the CTSC gene, including gene therapy, protein replacement therapy and protein mimetics. The invention further relates to the screening of drugs for treating and alleviating disease symptoms. Finally, the invention relates to the screening of the CTSC gene for disease-related mutations, which are useful for diagnosing the predisposition to additional disorders and dysplasias, including but not limited to prepubertal periodontitis, early onset periodontal disease or other forms of gum disease.

BACKGROUND OF THE INVENTION

5

10

15

20

25

30

35

Various publications or patents may be referenced in this application by numerals in parentheses to describe the state of the art to which the invention pertains. Full citations for these references are provided at the end of the specification. Each of these publications or patents is incorporated by reference herein.

Most forms of inflammatory periodontal disease can be successfully treated and managed. As a result, the ultimate goal of periodontal therapy has changed from that of simply arresting disease progression to one aimed at regenerating the supporting tissues.

Unfortunately, not all forms of periodontal disease respond to treatment. Severe periodontitis that is resistant to conventional periodontal treatment has been recognized in a number of monogenic conditions.

Certainly some of the most intriguing and dentally challenging of these conditions include Papillon-Lefevre syndrome (PLS), Haim-Munk syndrome (HMS) and periodontal diseases.

In 1924, Papillon and Lefevre described two siblings, the products of a first cousin mating, with a condition characterized by diffuse transgradient palmoplantar keratosis (PPK) and the premature loss of both the decidous and permanent dentitions. condition came to be known as Papillon-Lefevre syndrome and subsequently over 200 cases have been described. The hallmarks of PLS are palmoplantar keratosis and rapid periodontal destruction of both dentitions. An increased susceptibility to infection has been reported in approximately 20% of PLS patients. Additional findings include intracranial calcifications, retardation of the somatic development, follicular hyperkeratosis and onychogryphosis. Clinical findings reported in PLS patients suggest that the clinical expression of the condition is

highly variable. Unfortunately, to date, no pathognomonic disease marker exists allowing definitive diagnosis of PLS.

In 1965, Haim and Munk described an unusual syndrome in four siblings of a Jewish religious isolate from Cochin, India [21]. In addition to congenital palmoplantar keratosis and progressive early onset periodontal destruction, other clinical findings shared by these individuals included recurrent pyogenic skin infections, acroosteolysis, atrophic changes of the nails, arachnodactyly, and a peculiar radiographic deformity of the fingers consisting of tapered pointed phalangeal ends and a clawlike volar curve. Subsequently pes planus was reported to be associated with the This was the first reported association syndrome [24]. of these clinical findings, and the condition became known as Haim Munk syndrome, or keratosis palmoplantaris with periodontopathia and onychogryposis (HMS; MIM245010)[22]. Although the palmoplantar findings and severe periodontitis were suggestive of the Papillon-Lefevre syndrome (PLS; MIM245000)[3], the association of other clinical features, particularly nail deformities and arachnodactyly, argued that HMS was a distinct disorder.

25

30

5

10

15

20

PLS and HMS are classified as type IV palmoplantar ectodermal keratodermas [2]. The unique presence of severe, early onset periodontitis distinguishes PLS and HMS from other PPKs and raises the question of whether they result from the variable clinical expression of a common gene mutation, are allelic mutations at the same genetic locus, or result from expression of gene mutations at separate loci. Although Haim and Munk's initial report proposed HMS was a distinct entity, Hacham-Zadeh and co-workers referred to the disorder as Papillon-Lefevre syndrome and cited Gorlin's suggestion that HMS was a clinical variant of PLS [23,25]. In his review of PLS cases reported in the literature, Haenke

[5] summarizes an extensive list of clinical findings reported in PLS affected individuals, including increased susceptibility to infections, ectopic cranial calcifications and nail anomalies [5,26]. It is unclear if these additional clinical features are coincidental findings that may be segregating in a particular family or if they are etiologically related to a syndrome with a very variable clinical expression. Because PLS is an uncommon condition, and generally occurs only in a single generation it is difficult to determine if these occasional reports of associated clinical findings are etiologically related to PLS. Additionally, consanguinity is common among parents of PLS cases and therefore, it may be expected that an increased number of rare recessive conditions may be seen. Such is likely the case for the reports of mental retardation associated with PLS [5].

Pre-pubertal periodontitis (PPP) is a rare and rapidly progressive disease that results in destruction of the periodontal support of the primary dentition. The condition may be localized (usually to deciduous molars) or generalized. The localized form begins at approximately 4 years of age and is associated with only mild gingival inflammation in the presence of relatively little plaque. The generalized form begins earlier, immediately after eruption of the deciduous teeth. It is associated with severe gingival inflammation and hyperplasia, although significant gingival recession has also been described as an associated clinical feature. The attachment loss appears to be continuous rather than intermittent as with most other forms of periodontitis.

A varied clinical phenotype has been reported for PPP, probably reflecting the fact that the term PP describes an etiologically heterogeneous group of conditions that share an overlapping clinical presentation. Although PPP can occur as an isolated finding, many reports of PPP describe an increased

35

5

10

15

20

25

30

systemic susceptibility to infections. Children with PPP have frequent inner ear infections and infections of the respiratory tract [39,40]. Prepubertal periodontitis is known to be associated with Papillon Lefevre syndrome and with a number of systemic disease states that share an increased susceptibility to microbial infections.

To date, no pathognomonic disease marker exists for most PPKs allowing for definitive diagnosis. The present invention provides such a disease marker and methods of use thereof having diagnostic and prognostic utilities for several PPKs and many periodontal diseases.

SUMMARY OF THE INVENTION

5

10

15

20

25

30

35

The present invention provides compositions and methods which allow for genetic screening and diagnosis of certain palmoplantar keratodermas and periodontal disease states in affected individuals. In accordance with the present invention, it has been discovered that mutations or functional polymorphisms in the cathepsin C gene (CTSC) give rise to certain pathological conditions including PLS, HMS and periodontal diseases. Mutations or functional polymorphisms associated with the disease state are those which give rise to a altered, truncated, misfolded or otherwise non-functional CTSC polypeptides. Polymorphisms in the CTSC sequence which do not affect the nature of the encoded protein are not associated with PLS, HMS or periodontal disease.

Thus, in one embodiment of the invention, a method is provided for determining the presence of alterations in CTSC encoding nucleic acids which give rise to altered CTSC proteins. The wild-type CTSC nucleic acid sequence and its encoded amino acid sequence are known. See SEQ ID NOS: 1-3 provided herein. This sequence information facilitates the identification of genetic changes that give rise to aberrant CTSC proteins.

CTSC mutations specifically associated with PLS,

HMS and PPP are described herein and are set forth in Table 1. Accordingly in one embodiment of the invention, nucleic acid molecules encoding altered CTSC proteins are considered to be within the scope of the present invention. In a preferred embodiment of the invention, the altered CTSC nucleic acid has at least one of the alterations set forth in Table 1.

5

10

15

20

25

30

35

In a further embodiment of the invention, nucleic acid probes which specifically hybridize to the human altered CTSC-encoding nucleic acids described herein and not to wild-type CTSC encoding nucleic acids are provided. In a preferred embodiment, the probes specifically hybridize with altered CTSC encoding nucleic acids having at least one of the alterations set forth in Table 1.

In yet another embodiment of the invention, a mutated CTSC protein encoded by the altered CTSC encoding nucleic acids of the invention is provided. Preferably such CTSC proteins are encoded by a nucleic acid containing a mutation as set forth in Table 1. Also provided are assays for biochemically assessing altered cathepsin C activity. Antibodies immunologically specific for altered CTSC proteins are also contemplated to be within the scope of the present invention.

In another aspect of the invention, a method for detecting a germline alteration in a CTSC gene is provided. In a preferred embodiment the alteration is selected from the group consisting of the alterations set forth in Table 1. The method comprises analyzing a sequence of a CTSC gene or CTSC RNA from a human sample or analyzing a sequence of CTSC cDNA made from mRNA from a human sample and comparing sequences so isolated to the wild type sequence encoding CTSC. Inasmuch as certain alterations of the CTSC coding sequence may not alter the function of CTSC, methods are provided for assessing the enzymatic activity of proteins encoded by nucleic acid molecules which do not possess the wild

type CTSC sequence.

5

10

15

20

25

30

35

In yet another embodiment of the invention, kits are provided for detecting the presence of an altered CTSC encoding nucleic acids in a biological sample. exemplary kit comprises the following: oligonucleotides which specifically hybridize with CTSC encoding nucleic acids having the alterations set forth in Table 1; ii) reaction buffer; and iii) instruction sheet. Kits for detecting the presence an altered CTSC proteins in a biological sample are also Exemplary kits for this purpose comprise: i) provided. antibodies immunologically specific for the altered CTSC proteins of the invention; a solid support with ii) immobilized CTSC antigens as a positive control; and Optionally, anti-CTSC iii) an instruction sheet. antibodies used for this purpose may contain a detectable label or tag for used in isolating or detecting immune complexes.

Various terms relating to the biological molecules and cells of the present invention are used throughout the specifications and claims.

With reference to nucleic acids used in the invention, the term "isolated nucleic acid" is sometimes employed. This term, when applied to DNA, refers to a DNA molecule that is separated from sequences with which it is immediately contiguous (in the 5' and 3' directions) in the naturally occurring genome of the organism from which it was derived. For example, the "isolated nucleic acid" may comprise a DNA molecule inserted into a vector, such as a plasmid or virus vector, or integrated into the genomic DNA of a procaryote or eucaryote. An "isolated nucleic acid molecule" may also comprise a cDNA molecule. An isolated nucleic acid molecule inserted into a vector is also sometimes referred to herein as a Arecombinant@ nucleic acid molecule.

With respect to RNA molecules, the term "isolated

nucleic acid" primarily refers to an RNA molecule encoded by an isolated DNA molecule as defined above. Alternatively, the term may refer to an RNA molecule that has been sufficiently separated from RNA molecules with which it would be associated in its natural state (i.e., in cells or tissues), such that it exists in a "substantially pure" form (the term "substantially pure" is defined below).

5

10

15

20

25

30

35

With respect to protein, the term "isolated protein" or "isolated and purified protein" is sometimes used herein. This term refers primarily to a protein produced by expression of an isolated nucleic acid molecule of the invention. Alternatively, this term may refer to a protein which has been sufficiently separated from other proteins with which it would naturally be associated, so as to exist in "substantially pure" form.

The term "substantially pure" refers to a preparation comprising at least 50-60% by weight the compound of interest (e.g., nucleic acid, oligonucleotide, protein, etc.). More preferably, the preparation comprises at least 75% by weight, and most preferably 90-99% by weight, the compound of interest. Purity is measured by methods appropriate for the compound of interest (e.g. chromatographic methods, agarose or polyacrylamide gel electrophoresis, HPLC analysis, and the like).

With respect to antibodies, the term
"immunologically specific" refers to antibodies that
bind to one or more epitopes of a protein of interest,
but which do not substantially recognize and bind other
molecules in a sample containing a mixed population of
antigenic biological molecules.

With respect to single stranded nucleic acids, particularly oligonucleotides, the term "specifically hybridizing" refers to the association between two single-stranded nucleotide molecules of sufficiently complementary sequence to permit such hybridization

under pre-determined conditions generally used in the art (sometimes termed "substantially complementary"). In particular, the term refers to hybridization of an oligonucleotide with a substantially complementary sequence contained within a single-stranded DNA or RNA molecule of the invention, to the substantial exclusion of hybridization of the oligonucleotide with single-stranded nucleic acids of non-complementary sequence. Appropriate conditions enabling specific hybridization of single stranded nucleic acid molecules of varying complementarity are well known in the art.

5

10

15

20

25

30

35

For instance, one common formula for calculating the stringency conditions required to achieve hybridization between nucleic acid molecules of a specified sequence homology is set forth below (Sambrook et al., 1989):

 $T_m = 81.5$ °C + 16.6Log [Na+] + 0.41(% G+C) ~ 0.63 (% formamide) ~ 600/#bp in duplex

As an illustration of the above formula, using [Na+] = [0.368] and 50% formamide, with GC content of 42% and an average probe size of 200 bases, the T_m is 57°C. The T_m of a DNA duplex decreases by 1 - 1.5°C with every 1% decrease in homology. Thus, targets with greater than about 75% sequence identity would be observed using a hybridization temperature of 42°C.

The term "promoter region" refers to the transcriptional regulatory regions of a gene, which may be found at the 5' or 3' side of the coding region, or within the coding region, or within introns. In the present invention, the use of SV40, TK, Albumin, SP6, T7 gene promoters, among others, is contemplated. Specific promoters for the yeast and mammalian expression systems of the invention are available and known to those of ordinary skill in the art.

The term "operably linked" means that the

PCT/US00/20400 WO 01/07663

regulatory sequences necessary for expression of the coding sequence are placed in the DNA molecule in the appropriate positions relative to the coding sequence so as to enable expression of the coding sequence. same definition is sometimes applied to the arrangement of transcription units and other transcription control elements (e.g. enhancers) in an expression vector.

The phrase "functional polymorphism" refers to a change in wild type CTSC coding sequence giving rise to altered cathepsin C activity as assayed using conventional methods.

The term "oligonucleotide," as used herein refers to primers and probes of the present invention, and is defined as a nucleic acid molecule comprised of two or more ribo- or deoxyribonucleotides, preferably more than The exact size of the oligonucleotide will depend on various factors and on the particular application and use of the oligonucleotide.

The term "probe" as used herein refers to an oligonucleotide, polynucleotide or nucleic acid, either RNA or DNA, whether occurring naturally as in a purified restriction enzyme digest or produced synthetically, which is capable of annealing with or specifically hybridizing to a nucleic acid with sequences complementary to the probe. A probe may be either The exact length of single-stranded or double-stranded. the probe will depend upon many factors, including temperature, source of probe and use of the method. example, for diagnostic applications, depending on the complexity of the target sequence, the oligonucleotide probe typically contains 15-25 or more nucleotides, although it may contain fewer nucleotides. The probes herein are selected to be complementary to different strands of a particular target nucleic acid sequence. This means that the probes must be sufficiently complementary so as to be able to "specifically hybridize" or anneal with their respective target

35

5

10

15

20

25

strands under a set of pre-determined conditions. Therefore, the probe sequence need not reflect the exact complementary sequence of the target. For example, a non-complementary nucleotide fragment may be attached to the 5' or 3' end of the probe, with the remainder of the probe sequence being complementary to the target strand. Alternatively, non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the sequence of the target nucleic acid to anneal therewith specifically.

5

10

15

20

25

30

35

The term "primer" as used herein refers to an oligonucleotide, either RNA or DNA, either single-stranded or double-stranded, either derived from a biological system, generated by restriction enzyme digestion, or produced synthetically which, when placed in the proper environment, is able to functionally act as an initiator of template-dependent nucleic acid synthesis. When presented with an appropriate nucleic acid template, suitable nucleoside triphosphate precursors of nucleic acids, a polymerase enzyme, suitable cofactors and conditions such as a suitable temperature and pH, the primer may be extended at its 3' terminus by the addition of nucleotides by the action of a polymerase or similar activity to yield an primer extension product. The primer may vary in length depending on the particular conditions and requirement of the application. For example, in diagnostic applications, the oligonucleotide primer is typically 15-25 or more nucleotides in length. The primer must be of sufficient complementarity to the desired template to prime the synthesis of the desired extension product, that is, to be able anneal with the desired template strand in a manner sufficient to provide the 3' hydroxyl moiety of the primer in appropriate juxtaposition for use in the initiation of synthesis by a polymerase or similar enzyme. It is not required that the primer

sequence represent an exact complement of the desired template. For example, a non-complementary nucleotide sequence may be attached to the 5' end of an otherwise complementary primer. Alternatively, non-complementary bases may be interspersed within the oligonucleotide primer sequence, provided that the primer sequence has sufficient complementarity with the sequence of the desired template strand to functionally provide a template-primer complex for the synthesis of the extension product.

BRIEF DESCRIPTION OF THE DRAWINGS

5

10

15

20

25

30

35

Figures 1A-1E are a series of clinical photographs showing palmoplantar keratosis and periodontal disease in PLS study patient. Fig. 1A: palmar hyperkeratotic lesions; Fig. 1B: plantar hyperkeratotic lesions; Fig. 1C: hyperkeratotic lesions affecting the knees; Fig. 1D: periodontitis involving erupting permanent dentition and Fig. 1E: periapical radiographs showing severe alveolar bone loss affecting erupting permanent teeth.

Figure 2 shows haplotype data for chromosome 11q short tandem repeat polymorphisms (STRP) markers spanning the PLS gene locus. Segments which are likely to be homozygous by descent are boxed. Arrows indicate recombinant events. Individuals 7 and 22 share a common haplotype for D11S1979, D11S1887, D11S1780, D11S1367, D11S931, and D11S4175.

Figure 3 depicts pedigree and sequence analysis of CTSC exon 6. The numbering of the wildtype sequence shown above the figure is based upon the genomic sequence of CTSC. See SEQ ID NO: 1. Circles represent females and squares represent males. Filled symbols indicate affected individuals. Half-shading indicates carriers based upon DNA sequencing results. All affected individuals are homozygous for the specific CTSC

mutations. Arrows indicate the position of the mutation. This family has a nonsense mutation (856 C->T) at codon 286 resulting in a truncated protein of 286 amino acids.

5

10

15

20

25

30

35

Figures 4A - 4D show pedigrees and sequence analysis of CTSC exon 7 for 4 Families with PLS. Symbols are as described for Figure 3. Fig. 4A: Family with a single base pair deletion (1047delA) of CTSC resulting in a frameshift and premature termination. Fig. 4B: Family with a 2bp deletion (1028-1029delCT) of CTSC resulting in a frameshift and premature termination. Fig. 4C. and Fig. 4D: pedigrees of families with a nonsense mutation (1286G->A) at codon 429 resulting in a truncated protein of 428 amino acids. The father in family C is deceased and no sample was available for analysis.

Figures 5A-5C is a schematic diagram of the CTSC gene showing the locations of the mutations described herein. Panel 5A. Genomic structure of CTSC gene with introns shown as solid lines and exons depicted as boxes. The 5' and 3' untranslated regions are shown as filled boxes. Panel 5B. Coding region of CTSC gene. The amino acid numbers are shown at the end of each exon. Mutations listed in Table 1 are shown according to their genomic locations with Missense, ★; Nonsense, ♦; Insertion, ■; and Deletion,□. The splicing site mutation is indicated by an arrow. Panel 5C. Subunit structure of CTSC polypeptide with SP, signal peptide; P1, 13.5 kDa pro-region; P2, 10 kDa pro-region; H, heavy chain; and L, light chain. The 10 kDa pro-region is cleaved out upon activation. The disulfide bond within the 13.5 pro-region is shown. The glycosylation sites are indicated by filled circle and arrows indicate the active sites.

Figures 6A-6F show a series of micrographs

depicting the clinical and radiographic findings in Haim Munk syndrome. Fig. 6A: dermal involvement of fingers in individual #34. Fig. 6B: Individual #34 radiograph of terminal phalanges of the fingers showing marked thinning increasing towards the distal, tapering pointed ends showing a claw-like volar bend. Fig. 6C: Individual #17 palmar keratosis; Fig. 6D: Individual #17 plantar keratosis: Fig. 6E: Individual #17 gingival inflammation; Fig. 6F: Individual #17 radiograph showing alveolar bone destruction associated with gingival inflammation shown in 6D.

Figure 7A shows pedigree of Cochin descendents segregating Haim Munk syndrome (HMS). Numbered individuals have been analyzed for the current study. Circles = females, squares = males, shaded symbols = HMS affected individuals. Double lines = consanguinity. Individuals #10,11 * = second cousins. Numbers inside circles, squares and diamonds indicate the number of additional offspring not examined in this study. Sibships described in previous reports are indicated and referenced below the pedigrees. The subjects of Haim and Munks original report (1965) are individuals 33, 34, 35, and 36. Half-shading indicates carriers based upon DNA sequencing and/or restriction enzyme analysis. Unshaded numbered individuals represent non-carriers based upon DNA analysis. Figure 7B shows a pedigree of a Turkish family segregating PLS. Numbered individuals were available for study. Half-shading indicates carrier based upon DNA analysis. Individual 77 is a non-carrier based upon DNA sequencing.

Figures 8A and 8B show the results of sequence analysis of exon 6 of CTSC. The numbering of the wildtype sequence is based upon the cDNA sequence of CTSC. See SEQ ID NO: 1. Fig. 8A: Family A (Cochin isolate diagnosed with Haim Munk syndrome) from Figure

35

5

10

15

20

25

1. Affected individuals are homozygous for a 857A->G missense mutation which results in a conserved glutamine being changed to an arginine (Q286R). Representative sequences are shown for individuals #36 (affected) and #31(carrier). Fig. 8B. Family B from Figure 1. Affected individuals are homozygous for a 856C->T nonsense mutation which results in a premature stop codon at position 286 (Q286X). The Q286X mutation has been previously reported in an inbred Turkish family [12].

5

10

15

20

25

30

35

Figure 9 depicts a gel showing the results of restriction enzyme analysis of Q286R mutation in Family A of Fig. 7. A 465 bp fragment of exon 6 was amplified and subjected to restriction digestion with AvaI as described under methods. The Q286R mutation introduces a new AvaI site. After digestion and electrophoresis through 1.8% agarose gels, wildtype individuals exhibit bands of 465 bp, affected individuals have bands of 404 and 61 bp, and carriers have bands of 465, 404, and 61 bp. M. 1 kb ladder (Gibco). Lane 1. Individual #5 uncut, demonstrating 465bp amplicon. Lane 2. Individual #5 cut with AvaI. Only the 465 bp fragment is observed. Thus individual #5 has the wildtype sequence on both alleles. Lane 3. Individual #31 uncut. Lane 4. Individual # 31 cut with AvaI. The 465 and 404bp fragments are visible, confirming that individual #31 is a carrier of the Q286R, consistent with the sequencing results shown in Figure 3A. Lane 5. Individual #34 uncut. Lane 6. Individual #34 cut with AvaI. The 404 and 61bp fragments are indicated by arrows.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates generally to the field of human genetics. Specifically, the present invention relates to methods and materials used to isolate and detect mutated forms of the lysosomal

protease cathepsin C (CTSC) gene, associated with autosomal recessive disorders characterized by palmar hyperkeratosis and/or periodontitis. More specifically, the present invention relates to germline mutations in the CTSC gene and their use in the diagnosis of predisposition to such pathological conditions. Additionally, the invention relates to germline mutations in the CTSC gene in other palmoplantar ectodermal disorders and dysplasias and their use in the diagnosis and prognosis of such pathological conditions. The invention also relates to the therapy of palmoplantar ectodermal disorders and dysplasias which have a mutation or functional polymorphism in the CTSC gene, including gene therapy, protein replacement therapy and protein mimetics. The invention further relates to the screening of drugs which may have therapeutic value. Biochemical assays are provided for the assessment of altered activity of aberrant CTSC enzymes encoded by the mutated CTSC encoding nucleic acids of the invention. Finally, the invention relates to the screening of the CTSC gene for mutations, which are useful for diagnosing the predisposition to ectodermal disorders and dysplasias.

The present invention provides an isolated polynucleotide comprising all, or a portion of the CTSC locus or of a mutated CTSC locus, preferably at least eight bases and not more than about 100 kb in length. Such polynucleotides may be antisense polynucleotides. The present invention also provides a recombinant construct comprising such an isolated polynucleotide, for example, a recombinant construct suitable for expression in a transformed host cell.

Also provided by the present invention are methods of detecting a polynucleotide comprising a portion of the CTSC locus or its expression product in an analyte. Such methods may further comprise the step of amplifying the portion of the CTSC locus, and may further include a

5

10

15

20

25

step of providing a set of polynucleotides which are primers for amplification of said portion of the CTSC locus. The method is useful for either diagnosis of the predisposition to PPKs or the diagnosis or prognosis of keratodermal disorders/dysplasias and periodontal diseases.

The present invention also provides isolated antibodies, preferably monoclonal antibodies, which specifically bind to an isolated polypeptide comprised of at least five amino acid residues encoded by the altered CTSC locus.

The present invention also provides kits for detecting in an analyte a polynucleotide comprising a portion of the CTSC locus, the kits comprising a polynucleotide complementary to the portion of the CTSC locus packaged in a suitable container, and instructions for its use.

The present invention further provides methods of preparing a polynucleotide comprising polymerizing nucleotides to yield a sequence comprised of at least eight consecutive nucleotides of the CTSC locus; and methods of preparing a polypeptide comprising polymerizing amino acids to yield a sequence comprising at least five amino acids encoded within the CTSC locus.

The present invention further provides methods of screening the CTSC gene to identify mutations. Such methods may further comprise the step of amplifying a portion of the CTSC locus, and may further include a step of providing a set of polynucleotides which are primers for amplification of said portion of the CTSC locus. Exemplary primers are set forth in Table A.

The method is useful for identifying mutations for use in either diagnosis of the predisposition to keratodermal disorders/dysplasias and periodontal diseases or the diagnosis of such disorders.

The present invention further provides methods of screening suspected CTSC mutant alleles and functional

10

5

15

20

25

30

polymorphisms to identify mutations in the CTSC gene. In addition, the present invention provides methods of screening drugs for therapy and to identify suitable drugs for restoring CTSC gene product function.

Finally, the present invention provides the means necessary for production of gene-based therapies directed at aberrant cells associated with keratodermal disorders and dysplasias. These therapeutic agents may take the form of polynucleotides comprising all or a portion of the CTSC locus placed in appropriate vectors or delivered to target cells in more direct ways such that the function of the CTSC protein is reconstituted. Therapeutic agents may also take the form of polypeptides based on either a portion of, or the entire protein sequence of CTSC. These may functionally replace the activity of CTSC in vivo.

It is a discovery of the present invention that mutations in the CTSC locus in the germline are indicative of a predisposition to keratodermal disorders/dysplasias and periodontal diseases. The mutational events of the CTSC locus can involve deletions, insertions and point mutations within the coding sequence and the non-coding sequence.

A major gene locus associated with the keratodermal disorders and dysplasias of the invention has been localized to a 2.8 cM interval on chromosome 11q14 of the human genome. This region contains a genetic locus, CTSC. The CTSC message is expressed at high levels in a variety of immune cells including polymorphonuclear leukocytes, macrophages and their precursors. This gene is expressed in the palms, soles, knees, and oral keratinized gingiva.

The CTSC gene was originally reported to consist of 2 exons. US Provisional Application 60/165,016 from which the present application claims priority, describes mutations in Exons 1 and 2. The mutations described actually fall within Exons 6 and 7. Reference numerals

35

30

5

10

15

20

to the altered amino acids are the same as those in US Provisional 60/165,016, only the nucleotide numbering has changed to reflect the actual genomic structure of the CTSC gene which is now known to contain 7 exons. The sequence encoding the wild type human CTSC gene is provided below (SEQ ID NO: 1):

5

AGGGAGATAT AAGTGAATAA TTTGGACCTG CTCTCTTTGA ATGTTTATAA TCTGGTGGAA AAAAAATGGA CATATGAATA TTGATTTGTG ACCAGTGCAA AGGGGGCAAA AATTCATATC CCAAAGAAAA CGGGGACACA TCAGGTCTGT CTTGTTCATC ACTGTGTCCA CAGGGCCTGA 10 CACCTAGTAG GCTCAGTGGG AGAAAGGAGC CCCAATTACC AACAAAAGCC AGGAAAGAAC GGGAGGCTCT TACGGAAAAG GGTGATACTT AAACTGAGCA AGGAGGCACC TGGAAATAGT GCCACCTAAT AATTTTTGGC GATCAGACTG ACACACTAGA ACGGTTCATA AGACCAGCCT TCTCCCATTG GCTAGCTTCC TTCCTCACCC TTCTCACCCT GGGCAAGCCG CTTCCTCTCT CTGGGCCTCT TGCTTTTCCT CTGTAACATA AAAGGGGTTG AGCAATATCA TCTCTGAGAG 15 CGCCATGTGT GTGCGTGCCA GAGGGAAAAC CCCCACAACG CTAATACATC AAAACTGCAG GTTTGCACAA AAACTGAATT CTGCTGAATG CAAACAGGCA AACAGCATTT ACCAGGAAAC AAAACAAAAT CAAGCACATA AAAAAGTAGG AAGAGTTGGA AAACGGAAGG AAGATAAGTT CTCAAACAGC TGGAATAGTT GATGTTAGCT AGCGAAGTTT TTCAGAGGAA AAAACAAGAA GTTGGTTATG AGGCAAGTGG ACCTGAGAAA AAAGACTAAA GGGGAAGAAT AGCAAGTAAA 20 ACAGAACTCC ACTTGCTAGA TCTCTCCCTC TGTCGCGCTC TTTCACCTGA CCCACTCCCT TATTCCCCCC ACACCCTTTC CTTCTCCCC TACGTTACCG CACAGGAACG AAGTCTGGGT CATGTGCGGA CCGCTTGTGG CTCTTAAATC CTCTTTTTGT CACCCTGGCC GTGCAAAATT TTGAAACGTC CCTCGGCAAA AAAAATAAAA ATAAAAAAA AAAATCTGTC CCTGGCCTCT TCCCTAGTTC TGGGTCCAGT TGCAGCCAAG TGAGGGGCAG CGCGCGCTCC CAAGTCCCCG 25 TTTCAGAGAC GCGCACGCGC CTGGCGCCCA ACCCCCAATC CCCTGCTGCT CAGTGACCCC GCCCACGGGT TTCCGGGCCG GCGTAGCTAT TTCAAGGCGC GCGCCTCGTG GTGGACTCAC CGCTAGCCCG CAGCGCTCGG CTTCCTGGTA ATTCTTCACC TCTTTTCTCA GCTCCCTGCA GCATGGGTGC TGGGCCCTCC TTGCTGCTCG CCGCCCTCCT GCTGCTTCTC TCCGGCGACG GCGCCGTGCG CTGCGACACA CCTGCCAACT GCACCTATCT TGACCTGCTG GGCACCTGGG 30 TCTTCCAGGT GGGCTCCAGC GGTTCCCAGC GCGATGTCAA CTGCTCGGTT ATGGGTAAGC CGCCGGCTCG GCAGTCCTCC GGGTCGTCCT TTCTGCCCTT GAGCCCCTAA CGCAGCGCCA CGCCAACTAC CGCTTCCCCC CAGGCAGACG CTTGTGGGTG GCCAGAGCAT CTTGACTGGA TTCGGGGACC CTTGGGGACC TTCTTCCCCG CCAGGCTCGC GAAGTTAAAG TTCATCTGCT GAGAACTTCT AACTCCACAC TTTCTTGGTT ATCTTGGGGA CTCAACACTT TGATCAAGAA 35 CTTTTTTATT CCTCCCGCTT AATTTTGTTT GCTTTGAGAG AGACTTGGGA ACTGCAATCG TTTGGTTCTC CAGTCCGATC TGGTAGCGTT ATTTTTAAAA TTTATTTTTA TTTTTTATTA CTATTTTACT AGTGAAGATA GATGAGCTCA GAGACTCTCG AGGATATAGC ATGAAGTTTT CTCTTTTTGT TAGATGGTGG GAAAGGGACT TTCTGCCCAG CGATTTTGGT TTGAGCGGGT GTTGATGAGT ACTAGAAAAC GGCTAGTACC ACTCTGCATT GTTTCATGCA TTGCAAGGAG 40 GTAAAAATTT TTTAAAAAAT TAATAACAAA GAAAACTTAA CTCTGAACCT AGTAATTAGA AATGCCCAGA GTCTGCACAA TGTTTGGCTC ATGGAAGGCT CTCAATAAAT ACCTAGTGTT TGAACATACT GGAGATATTC CATATGCCTT CAGATAACAT GGTTACCCCT AGAACAAAGA $/\mathcal{G}$

				* ~ * * * * * * * * * * * * * * * * * *	CMM3 C3 3 C3 C	mana an amama
		GGGGGTGGGG				
	-	ACCCTCTTAC				
		CAACAGAACA				
		GCATTTCATA				
5		CTCTGTCACC				
		CGGGTTTAAG				
		ACCACGCCCG				
		ATGGTCTCCA				
		ACAGGCGGGA				
10		AGGTTGGGGC				
		AGAGCATTAC				
	-	CTGAATCATT				
		AAAGGCACCC				
		ACTAATTGGT				
15	_	GATTATGAGG				
	· -	ATAGATCATT				
		CTGTTTATTT				
		CATTTTGCCT				
		TTGTTCAGTG				
20		GGGTCTCCCT				
		GTGTTGCCCA				
		GGCTCAAGCA				
		GCACCACCAT				
		TTGCCCAAAC				
25		TGAGCCACTG				
		CTCGGAGCAG				
						TTAAAATTGA
						TGCTTTTTTT
						CTGGATACAG
30						GGCTTTGAGA
						GGAAGTTGGA
						CTCAGAATTT
						TAGTAGTAGT
						AAATACCAGT
35						TATGACTAAA
	TTCTTAATT	T ATTTTCCTTA	TTACTACCAC	TTTATTTCTA	AATGTTGCCA	TAGTCATTTG
	GCTTTGTTC	T AAATCTGTAG	GAAAGATAGA	A GAGATTACAC	ATTTTGTTTT	CTTGCAGTTA
	CTATGCTGT	C CTTCCTATCA	CTACCTGTTC	GCTGAGGTAC	G TGATAGGCCT	AAATGATTCA
	TTATCTTAA	A TGTACTAAAT	ATGTTGAGT	ATTTTTCT	CTAAACTAAC	AGAAAGAGAG
40	AACCTAGGA	G TTACTCCCTT	AGGCTGGTT	A AAGTGAAAG	G TAGCCAAGTO	AACCCAGCTT
	GTTTCCTTC	T CTCATTAGGA	A AAGAACTAT	r GTTCATTCTC	C ATAACACACT	TTTTCCAATT
	GCAAACATA	C TCAGGGTTA	A AATAGTTTA	G CACAAATTG	C AGCCCATTTC	ATTTGTTCTT
						TTGGATACAT
	AAGCCTGAA	A CTAGGCGTT	CTCATTATA	TATAGAGTAT	A AATTAAGACA	A GACTTTTTCA

•

		mmma	mm, , , , , C, mc	mccca, a, c, a, c,	macan n a amn	CCCA AMA ACM
		TTTACAGCCT TGATAAAAGA				
		AGTTGTGGTT				
		ATAACTCCCA				
5		GAAATAGAGA				
5		_				
		GTGGAAACCA				
		ACCCATGCTT				
	••	TTTGTAAAAA				
1.0		TGGTATATTT				
10		GACCTCTTAC				
		CAATTGCATG				
		CCATAAACCT				
		TTTGACACAC				
		ATTCAGTTGG				
15		CAAGTACATA				
		GGAGAAACTG				
		TAGACAAAAG				
		GTAGTCCAAA				
		ACTTTTTGTG				
20		TCACATTAGG				
		CCATGAGTTG				
		TGGTTCTGGA				
	ATAGAAAAA	TACTCCTGCC	CTACTGATTT	CAGGATATGT	CTATTTTAAA	GTGCCCATTT
	GACAAAACCA	TTATCAGGGC	CATGTTTTCT	TTTTCTGCAG	AAAAATCAAC	CACTCTGGTC
25	AGTAGTTAGG	TCTTATGACA	AGCACCATAA	TTTCCTTAGG	CAGAGTAGAA	TATAATAGGA
	TACTTCTTT	TGAAACTTAA	TATAATCAGG	TAGTTCCAGA	TAAACATAGC	TTGCAAAGTG
	ATAAAATACO	ATGTTATTT	AGTAAATCCA	ATTGCAAGAG	TGATGGGAAA	CAGAGTTTAA
	AAACTTAAGA	A AAGATATTAA	GATGGAGTTG	ACTTTGAATA	ATAAAGTCAT	CCACTGTTGA
	TGGGTGACAT	CATAATTATT	AGAAAGTTTA	CAGATTTTAC	CATAAGCATC	AGGGTATTTC
30	CTGCAGCTGC	G GGAAACCGTG	CTTGAAAGGA	TGCGTAACTC	AAGGAAAACA	CAAGCCCATG
	TAATAAGTAT	T TGCATGTGAG	AATTGTTCCT	ATAGAATTAG	AAAGCATCTT	TTACATTAAA
	ATTTATTTT	r gtaaaaagag	AAAACATCAA	AACTTGAGTA	GTATTTGCTA	TTCAAAGAGT
	CTTACATAA	A CGAAAACATA	CTCAACCTAC	TGCCATTACA	GAAATATTTG	ACAAATTCTT
	GCCATGCTT	A CCTGCCATCG	TTGTTGTTAT	CCTACAAATC	AATTGGATTT	TCACGCCTCT
35	CCACTGACT	G GAACCCTACA	ACTTGCTTCC	TTTTATCCTC	TTTATATATG	CTTCAGATAT
	GCTTGAAGT	A GATTGTTTCT	TATTGTTCTI	GCTGCTCGAG	TTTGTTGAGT	AGTTGGTACA
	TGCAGAGTA'	T TTGTATGTTA	TGACATATAT	AGGTTTTGTC	CATGGTTCCT	GGCTCATAAC
	TCACTCCCA	A GACCCTTGT1	ACAGAAACCA	GAATCTCTCT	CTCTGATCTT	CTCCTACCCT
	CCTTTCATC	r gcccactgc	GAACTCTAAT	CTGATTATGG	TTTCTAAGAC	CCTCATACCA
40	GAGAGTATT	C TGCCCCATAC	CATAGCAGA	GGAACACTGC	ACAGAGACAC	CAAGAAGAAT
	CTGAACAGA	C AGGCCTTGTT	T AGGTTTAGAT	CATGTCCTTA	TAACCTAATT	ATATTTTAAC
	ATGGTTATC	C ATGCTTTAAT	CATGTGTATT	CAATGAACGC	TCCATAAAAG	CCCAAGAAGA
	ACAGATTTG	A GGGAATTCT	AAGCGCTAAA	CATGTAGGGT	CTGACAGGAA	GGTGAAGAAG
	AACTCATCA	T GCTGGAAGG	TGGTCCACC	TAACTCCGCA	GGGACAGAAG	CTCCTGTGTC

					~~~~~~	
		CCAGAACTTG				
		TTTGTAATAA				
		AACCCAAAGA				
		GCCTGGACTT				
5		CTACGGGATC				
		GCTGGTGTCT				
	-	TTGGGGTCAC				
		TGCTTTATTA				
		GAGATTTCTA				
10		GGGATGGAGA				
	GGAAGGAATA	AAAGTTTGAC	ATCTAAAGTT	TTTGCATAGT	TTGAGTTGAG	CAGGAGGTAC
	TAGGTATGTT	TTTAAAATAT	TTTTTTCAGC	CAGGCACGGT	GACTCATACC	TGTAATCCCA
	GCACTTTGGG	AGGCCGAGAC	AGGCGATCAC	CTGAGGTCAG	GCGTTCGAGA	CCAGTCTGGC
	CAACATGAAG	AAACCCCGTC	TCTACTAAAA	ATACAAAAAT	TAGCTGGGTG	CGGTGACACA
15	TGCCTGTAAT	CCCAGCTATT	CAGGAGGCTG	AGGCAGGAGA	ATTGCTTGAA	CCCAGGAGGC
	AGAGGTTGCA	GTGAGCCGAG	ATCACACCAT	TGCACTCCAG	CCTGGGTGTC	TCAAAATAAT
	AATAATAATA	AAAAAATGAA	AGATTTTTTC	TTACTCAGCA	TCCTCCAGGC	ATTTTATTAT
	CTGAGCACTT	TATGGGAGTT	GCATATTACA	TTTAGGGCCC	ACTCAGGTGG	GTGGGTATCT
	AAGCATTTGA	AATAACCTTA	TGTAAACTAA	TAAGGAGTAA	${\tt TCAGGCCTGT}$	GGCAAGATGG
20	AAACAGTCTT	AGAGGCATTC	AAATTCAAAT	TTCCTTTAAA	ACACTGGGCT	GGCCAAAACA
	AAAGACAATA	CTATCTACAG	GCCAGTTTCT	AAGATTATCA	GATTTTAGTA	GCATTTACCA
	TTTCATTGTA	CTTGGCACAC	TTTAGCAAAT	TTGCACTTCT	TAAAAGTACC	TGCAGGCAAT
	СТССТАТАТА	AAAACACAAT	GCAGGCTAGC	TTGGCTCCTG	CCTTTAATTC	CAGCACTTTG
	AGAAGTTGGA	GACTAGCGTG	GCCAACGTGG	TGAAACCTCA	TCTCCACTAA	AAATACAAAA
25	ATTAGCCAGG	CATAGCAGCG	CACGCCTGTA	GTCCCAGTTA	CTTGGGAGGC	CGAGGCAGTA
	GAATCACTTG	AACGCTGGAG	ACAGAGCATG	GAGTGAGCTG	AGATTGCACC	ACTGCACTCC
	ATCCTGGGTG	ACAGCGTGAG	ACTCTGTCTC	CAAACAAAAC	AAAACACACA	CACACACAAT
	GTAACAACAC	GAAACAGAAT	ACTGTGAAAA	TGCTTAATTA	TGTCTGACTT	TACATGATGG
	CTGGATATGT	GATTATTTT	TCTTCTTTAT	GCTCTTATGT	ACTTTGTTCA	TTTTTAATGA
30	TGATCATGTA	TAAAGCTCCT	CTGTGTAGCA	TTCTCTCCAC	CAAATTGCCC	AGAGACAGGA
	AGTCCTGTA	А ААСАААСТАА	GCTCCAAAAA	ATGACCTCCT	GTTGAATAGG	CTTTTTTTTT
	TTTTTTTTT	TTTTTTTTTG	AAATGGAGTC	TAGCTCTGTC	TCCCAGGCCC	TCGCTCCTTC
	CACCTCCTGG	G GTTTAAGAGA	TTGTCCTTCC	TCAGCCTCCA	GAGTAGATTG	GATTACAGGT
	GCCCGCCATO	ACGCCCAGCT	AATTTTTGTA	TTTTTAGTAG	AGATGGGGTT	TCACCATGTT
35						CTCCCCAAGT
	GCTGGGATTA	A CAGGTGTGAG	CCACCACGCC	CAGCCTGAAT	AGGCTTTCTA	ACCTACTGTT
						GCAGTAGAGA
	AGGAACTCAG	S ATTTTATTT	GAAGATTAAG	CTACTCAAGG	GCTGAGGAAA	TATGTAGAGG
						ATCTTAGGGC
40						GCTAAAAAAA
						TGGGAGGCTG
						TGAAACCCCT
						TCTCAGCCAC
						AGTGAGCTGA
	CIGGRAGGC	L GGGGCAGAAG		22		

	CATTGTGCCA	CTGCATTTCA	GCCTGGGTGA	CAGAGTGAGA	CTCTGTCTCA	AAAACAAAAC
	AAACAGAAAC	AAGAACTCTA	TGTTGAGAAA	TCCATACTAG	AGGGTTTAAT	TTCTCACTTT
	GTGTGCTAGT	GATTAATAAA	TTTCAAGCTT	ATCACACAGC	CAGAAATGTC	GCCTGTGTTT
	CTACAATAAA	AGATTTGGGA	ATATTGTGAC	ATTTTTCAC	TGAGCCTTCT	GGGTTCATTA
5	TTAAGATATA	ACAATTTTAG	AAGACTTATT	GAGATAGGTA	TACTTTTTAA	AATTTGGATT
	СААТАТАТСА	AGCTCAGCAT	TTTGTCTTTT	TTTTGTTTTG	TTTTAAACAA	CTTTGGGTTT
	ACTTGTAAGA	GTATTTCAGT	GGAGGAAAAG	TATCAGAAGT	TTAGCACTGA	GTGCCTGCCT
	AACTATTTTA	TGTCTTCTTT	CATGATGATG	CTTAATCTCA	ACATAATGAC	TCAGTTTACC
	ATTGTAAACT	CTTTGTAGGA	TGTCACTGAT	TTTATCAGTC	ATTTGTTCAT	GCAGCTGGGA
10	ACTGTGGGGA	TATATGATTT	GCCACATCTG	AGGAACAAAC	TGGGTGAGCT	CCATTGAAAA
	ATTTCTAACT	TTCTTATTAA	AAGCAAGCTT	CCTCACTTCC	${\tt TGATGGCTTA}$	TGCAAATTAA
	TGCCTATTTA	TTCATCAGAG	GGTGACTGGA	GAGATTATGG	TTTTCTTATG	AATTTCTTGC
	TTGAGCCTGC	TTGTCTGCTG	TTTCTAAGTT	GTCTGCACTA	TTTTATGTGA	GTAATTTTCT
	ACTTTATTAT	GTTCTGTTTT	CACATGTCAA	ATCAGCTCTC	CCAAGAATGC	TACTTGTAAC
15	CTAAGTAGAC	GTGAACCGAA	AAGGGTAAAG	ACCCAGCTAA	AAAAAAGGTT	GACTCAAGTT
	CAGTTCACAT	TCGTAAAGTA	GTTAGGCTGC	${\tt CTTAGGTTGC}$	${\tt TTATTCTTTT}$	CTTGAAAAGA
	ATCCCTCAAG	AGAGAAACAT	GTGAGGCCAC	AGCAGCTTAG	ATCTGTCTTC	CACAGAGAAG
	GTGGCTTTTA	CAGAGAAATT	GACATACTCA	TCACTTATCT	GACATGACCC	AGCTTTGTAA
	AACTGGCTTC	TATTAAAATA	GTCTTAATAG	ACTATTCACT	GAGGAGGAGA	GAATCTTATT
20	CACTCTTTAC	ATTCTCTTCA	CATTTTCAGA	ATAGATGTTT	AAATCATTGC	TCACACTGGA
	TCCATAAATG	TCTAAAATGT	TGATGAAGAA	ATAGGTGATT	AGAGAGTAAA	ATTAATAGAG
	ACTTACCCTT	CCTTGCATTT	TAACATAATA	TTCTTTCCCC	TTTTCCTTCC	TCTGTTACTT
	GGCTCTTAAA	TACCAGAAGT	GAGATATGAA	AAAGGGAACT	GGGAACAAGT	ATTGAAAGCA
	CCATAGGTTT	ATCTTATATT	AGCATTTTCC	AAACTTTATA	ATGAACCAGC	AGTGACCCAC
25	ACATCTGCCA	GGTAGGAATT	GCTCATCAGT	TGTGTCGCGT	TATCTTGTTA	AGCTTCAGCA
	ATGTTCCATA	CAGCCACTAA	TAACAGATCA	AAGTGAGCAT	TAGGGTTGAA	ATTAGTAAGC
	TGTTTCTTCT	CAGTTCTTTC	TGGTAGTTGA	ATAAATATAG	AATGTATTAA	ATAGTTTTCT
	TTATTTCAGA	ACTTCTCAGA	GTCTGTAATA	TATTGTATGG	TGGTAGCTTA	GGAGGAAGAT
	GCAATAGGAA	ACTTTTCCCA	GATAGGTTCA	CTATTTTTT	TTTCCACGAA	AAATAAGCTG
30	TTCTCAAAAT	ACAGTTTACA	AAATTTTATC	CTTAACTCTT	CACTCTTTCT	CCTAGTTAGG
	GAGACCGCTC	CACCAGTAGA	AAAGATAAAC	CCTGGTAATT	TGTTGTGTAA	ATGGGATAAA
	TAGCCTAGTA	CCTAGTCATG	TGGATTCAGG	CAGCACTGAG	CCTAAATTAA	AGTTTGCAAG
	GTATACATGT	TAATGTATCT	AAGTTACTAT	ATTTAGCCTG	TTTCTTAAGT	ATGTTTCAGA
	AACATATTCG	TTTTTTCAG	TGGCAGTTAC	CTTCAGATGC	ATGTGCTTCT	AAAGCATGTT
35	GGTTGCATGT	GCAGTACATO	TTGCTTAAGC	ATTTAGCTTC	AGAATGGCAT	CTTTCCTGTG
	AATGTCTTAA	CATTTACAAA	AATATACCAG	GATCTCAAAT	ATCAGTGCTG	GTATTTTTTT
	TTTTTTTAC	TTAAAGAAA	TGATATGATT	AAATATTAAG	AGACAATATG	ATCCTTGTTG
	GCTTGTAACC	CTAGTTTTT	TTGTCTTGTA	GTTATTAAAT	AGAGCATCTG	TTGAGGGACT
	CTTTTAAAAC	CACAGCCATO	AACAGACGTT	GGGGCTAAGA	GACAGAGCAG	CCTGCGACAG
40	TGTGGACCTA	CCTGTAGCA	CTAGCAAAGG	CCTCTAGCAG	CTACAGTCCC	TTCTGGAGTC
	TTTATTTGC <i>I</i>	TGCAAAATG	AAAGGAGTCC	TGGTGACCTA	CCTCCAAGGC	AGCTGCCCTC
	CTGAACACTO	CCTTGGAAA	A CAGTAAACAT	CATTTTGGAA	TGTGAACAAC	CAGAGACTAC
	ACAGGAGAA	GGAAAAAAA	A ATTCTGAAGA	TGCAAAATCT	TGGGTGGCTT	CACCGTTCAG
	TTTTTTAAT	A AAAGGAACA	A TATACAACAC		TTCTCTTTTG	AAATCCCTTC
				.2.3		

PCT/US00/20400 WO 01/07663

-						
		ATTTTTTTCT				
		TTTATTCACA				
	<del>-</del>	CCCAAGAGCC				
		AAGTTATTGA				
5		TTTCTCAGAT				
		CTGGCCAGAA				
	· =	ACAAGCTTTG				
		TAACTAGTTT				
		TTTCTAACTG				
10		TAGTGAAAAA				
	TTGGATTTCC	TGGTAAATTC	CAGTCTGTGA	GCATCATGAA	TATTAGTTTA	ATGTTGCATG
	GGCTCATGTT	GAAGTTTTAA	GAGAAGAACT	GCCTTGAAGC	TTAGGTTTCC	TTAGCTATTA
	GGCTACTGAC	TTTCTTGCCT	AAACCAGGGT	TTTTTCATTG	AAGACCAAAA	CTTACCTTCT
	CCTTCAGTTT	GTAGTTTGGA	AATTGGTAGA	AGAGCTTTGT	AAACTTCAAA	TTAAGTACAA
15	ACTAAGTGTC	ATAGTCAAAT	TTACTAATCT	TAATTACAGT	ATTGTTCAAC	TGATTGCTAT
	CTTCTAGCTC	TTTCCTGCCG	AATAATGGTC	TTGTTTCCTG	CTCTGTTGGT	TTAGAGCTGA
	CTTCTTTCAG	CTTTGGTAAG	CCTGAAATTA	TGGGGTTATG	TTTAATTCAT	ATTGTCTGGG
	TGGACTTTCC	TCTCTTGCAT	TTCTGCTTGA	ATAGAAGAAT	TTTTCTCTAG	AGAGTAGTTT
	GTCATCCTTA	CTCTGTTGAT	TCAGATGACT	CTTTGTATGA	TCTGAGAGGT	ATACTGTTCT
20	GCTATTCTGA	GAAGAAGTAT	TTCAGAAAGA	TGAATTAAGA	GTACAGTGGA	CTGCTCCCAC
	CTGGAAACTT	TTATCTATCT	CACCTCTGGA	CCTGATAAAT	TCTTTATCAC	TCAGGACCTT
	GATGACGCTG	CTCTCTGAAA	CCCTCCCCAG	CTCTCTCTAT	TACCGTGAGA	AACATCAGAA
	CTTTGGTTCC	CATTGCATAT	CGCAGGTACC	TCTGCTTTCA	TGCCATGCTG	TAATGGAGTG
	ATTGGGTAGC	ATGTTTTCAT	CTCTTTCCAG	ATTGAAAATC	TGTATTTCTC	CCTGTATATC
25	TTCAACACCT	AATGCACATA	GAACTTTGTA	GGTACCTGGA	AAATGCACCA	CAGTTTTCTT
	TTCTTTTTGC	AGACTTTTCA	CAAGTATTAC	CAACTTACAA	AGAATTAATT	TTGTAGGATT
	CTAGAAAGAC	AAATCAGGAA	TGGTGCCAT	A TACATCTTT	T TTGATTCCC	T GCTCTAAAGA
	ATATTATCAG	GTTACCTTCC	TGCAGAGTTT	TAAAAGAATT	GCATATTTCA	AGCTGACTTT
	CAGGATGTAA	ATATAACCAA	AGCAACTGAT	ATGTAAAAAA	тататтсаат	GGCATTCCTA
30	GATTTTCTTC	TAGGGTGTTT	TATTGTTTTG	GGTTTTACAT	TTAAGTCTTT	AATCCATCTT
	GAGTTAAT'I'I	TTGTATAGGT	ATAAGAAAGG	GGTCCAGTTT	TAATTTTCTG	CGTATGGCTA
						TTGTTTTTGT
						ATCTTCATTC
						GTAGCCTTGT
35						AGGATTGTCT
33						TCTAATTGTG
						GCTTTGGGCA
						TTTTTCCCTT
						AAGAGATCCT
40						ATGGGAGTTC
<del>4</del> 0						GTGACTTCTG
						GAAGCTTTTG
						AAGACAATTT
						TTGCCCTGGC
	GACTICCIC	i CIICCIAII.	. Gridinosci	34		

PCT/US00/20400 WO 01/07663

	CAGAACTCCC A	AATACTATAT	TGAATAAGAA	TGGTGAGAGA	GGGCATCCTT	GTCTTGTGCC
	AGTTTTCACG (	GGGAATGCTT	CCAGCTTTTG	CCCATTCAGT	ATGATATTAT	CTGTGGGTTT
	CTCATAAAAA (	GCTCTTATTA	TTTGAGATAC	GTTCCTTCAA	TACCTAGTTT	ATTGAGAGTT
	TTTAACATGA	AGCGATGTTG	AATTGTATCG	AAGGCCTTTT	CTGTGTCTAT	TGAGATAATC
5	ATGTGGTTTT '	TGTCTTTAGT	TCTGTTTATG	TGATGAATGA	CGTTTATTGA	TTTGCATATG
	TTGAACCGGC	CTTGCATCCT	GGGGATGAAG	CCAACTTGAC	TGTGGTAGAT	AAGCTTTTGG
	ATGTGCTGCT	GGATTTGGTT	TATCAGTATT	TCATTGAGAT	TTTTTGCGTC	GAAGTTCATC
	AGGGATATTG	GACTGAAGTT	TTCTTTTTGT	TGTCGTATCT	CTGCCAGGTT	TTGGTATCAG
	GATGATGCTG	GCCTCATAAA	ATGAGTTAGG	GAGGAGTCCC	TCCTTTTCAA	TTGTTTGGAA
10	TAGTTTCAGA	AGAAAGGGTA	TCAGCTCCTC	TTTGTACCTC	TGGTAGAATT	CAACTGTAAA
	TCCATCTGGT	CCTGGACTTT	${\tt TTTTCATTAG}$	TAGGCTATTT	ATTACTGCCT	CACTTTCATA
	ACTTGTTATT	GATCTATTCA	GGGATCCAAC	TTCTTCCTGA	TTCAGTCTTG	GGAGTGTGTA
	TGCATCCAGG	AATTTATCCA	${\bf T}{\bf T}{\bf T}{\bf C}{\bf T}{\bf T}{\bf C}{\bf T}{\bf A}{\bf G}$	ATTTTCTAGT	TTCTTTGCAT	AGAGGTGTTT
	GTAGTATTTG	CTGTTGGTTG	${\tt TTTGTACTTC}$	TGTGAGATCA	GTGGTGGTAT	CCTGTTTATC
15	ATTTTTTATT	GTGTCTGTTT	GATTCTTCTC	${\tt TTATTTTTGA}$	CAAAGCTGAC	AAAAAGAAGC
	AATAGGGAAA	GGACTCTCTA	TTCAATTAAT	CCTACTGTAT	ATCTGGCTAG	CCATATGCAG
	AAAATTGAAA	CTGTTCCTGT	TTCTTAATCC	ATATACGAAA	ATCAACTTAC	GATGGATTAA
	AGACTTAAAT	GTÀAAACCCA	AAATTATAAA	ACCCTGGAAT	AGAATATAGG	CAATATCATT
	CTGGACATAG	GAATGGGCAA	AGATTTTATG	AGAAAGACAC	CAAAAGCAAT	TACAACAAAA
20	GCAAAAATTG	GCAAATGAGA	TCTAATTAAA	CTAAAGAGCT	CTGCACAGCA	AAAGAAACTA
	CTGTCAGAGT	GAACAGGCAA	CCAACAGAAT	GGGAGAAAAT	TTTTTCAATC	TATCCATATG
	ACAAAGGTCT	AACATCCAGA	ATCTACAAGG	AACTTAACAA	ATTTACAAGA	AAAAAGGAGC
	CCCATTAAAA	AGTTGGCAAA	GAACATGAAC	AGACACTTCC	CAGAAGATAT	TCATGTGGCC
	AATAAACATG	AAGAAAAGCT	CAACATCACT	GACCATTAGA	GACGTGCATA	TCAAAATCAC
25	AATGAGATAC	CATCTCATGT	CACAATGGTG	ATTATTAAAA	AGTCAAACAA	CATGCTAGTG
	AGGTTGTAGA	GAAATAAGAA	CGCTTTTACA	CTGTTGGTGG	GAATGTCAAC	TAATTCAACC
	ACTGTGGAAG	ACAGTGTGGT	GATTCCTCAA	GGATTTAGAA	CCAGAAATAT	CATTACTGCA
	TATAGACCCA	AAGGAATAGA	AATCATTCTA	TTACAAAGAT	ACATGCACAT	GTATGTTTAT
	TACAGCACTA	TTCACAATAG	CAAAGACATG	GAATCAACCC	AAATGCTCAT	CAGTGATAGA
30				CATGGAATAC		
	TGAGATCCTG	TCCTTTTCAG	GGACATGGAT	GGAGTTGGAA	GCTGTTATCC	TCAGCAAACT
	AATGCAGGAA	CAGAAAACCA	ACCACCACAT	GTTCTCACTT	ATAAGTGGGA	GCTGAACAAT
	AGAACACATG	GGCACAGGGA	GGGGAATAAC	ACACACTGGG	GCCAGTCAGG	GGGTGGGGG
	TCAAGCTGAG	GGAGAGCATT	' AGAAAAAATA	GCTAATGCAT	TCTGGGCTTA	ACCCATTTAT
35	GCCTAGTGTT	CCATTTCTGG	AATGCTAAGC	ATGTGGAAGT	TCTTTATATC	CTGCTCAAGG
	TCATTGCCAA	GGTCTGATTT	TTCACATTCA	ACAAATTGCA	ACCTCTGGCA	TAAATGGGTT
	AATACCTAGG	TGATGAGTTG	ATAGGTGCAG	GAAACCACCA	TGGCACATGT	TTATCTATGT
	AAGAAACCTG	CACATCCTAC	ACATGTACCO	TGGAACTTAA	AAATTTAAA	ATATATATGT
	ATATATATT	AATATGGAAT	TTAAAAATT	ACTAATGAGT	TCTTTTATCT	GAGTAATTTT
40				GATTCAGTGA		
				TTAGTATTCT		
				GGCAAGGATC		
						AATACTTGTA
	AAATAAAGAA	TGTTATGTA	A TATATCATGI	GGTATTGTTT 25	TATTGATGTG	TTCTTTGAAG

				~~~~~~~~~	GGGA MA MA MG	mmaca maa mm
				GGGCCCTCAG		
				TATTCTATTT		
				TCAGAGTTAA		
_				AAGGGAAATC		
5				TGAAATGCTG		
				GTGGATTAGA		
				TAAGTGAGGA		
				TTAGCTAATT		
				AAACAGATTT		
10				GAAGTTGCTT		
				TCGACTTTTT		
				GGAACTGACA		
				GGCAAAATAC		
				TGTACGTATA		
15	AGGGCAAAAA	TGGAAACATT	TTTTGTTTT	TAATGTTGCT	GGAATATAAT	ATTTCCATAT
	TTGGTTAATC	ATCAAATCAT	TCAACTCCAT	GCAAAGTACT	CTTTTCAAAA	TTACAAATCA
	TCTTGATGGA	TTAGACTTGG	ATGTCTAAAT	TTTTTTTTT	GTATTCTAAA	TTATCTATAG
	GTACATTTTG	AAAATTATAT	ATACATGTAT	CACTGTACTA	CATTTGTTAT	AAAATGTGAA
	ATATTAAGCG	ATTAAATACT	TTATTAATGT	CATAAAATTG	TGCCCTACCC	AAAATATATT
20	TTAAGAAGAT	ATCATTTGAA	AATAATGTAA	AATATTCTTC	ATTATTATGA	TTTTGTTGCC
	AAAAGTAATG	TTAGAGTCCC	TGTTACTGAT	AATTTTCATG	ACTGTAAATT	TTCAACATTT
	GGAAACAAAA	TTTTCTGATG	TGTTTTAAAA	TCTTAAAGAA	TTTCAGTAGA	TTTTGACACA
	TTTTTGTTAA	AAGTATGAAA	GTGTCACAGC	TTTAGAAGGA	TTTAGAATAA	TTATCAATTG
	GTATTAGGGA	TGACAATTTT	AATAGACAAA	TTTTAACTGA	AACATTTGCT	TTATTGATGT
25	CTAGGACTAA	AAAAATATT	ATAGTGATGG	AACCATTTCA	AAACATCTGT	TTTTAAAAAAC
	TTCTGTCAAC	ATGTTTGACA	GAAGTCAGAA	TAGGGTAATT	ATAAAAAAAC	TGCCATTTTC
	TTATGTTTGC	ATCATTAGTA	TTTGCAAATC	CTTGTTTCTT	TGCAAGTATA	TTTTAAACTA
	CTTGTTCATT	TTATGAGTGT	TAGCCTGATT	AATTCAGATA	AGATGCTCAA	GTCAGTTTAA
	GCAGGCAGAT	GTGAAAAAGG	GAATATGCTG	TGCCTTAACT	ATCTTATAGG	GACTTACTAG
30	CACACTGTAC	ATAACAGATG	AACATCTGAT	ATTAGATCTG	ATGGGCACAC	CAATGTTGTT
	TCATATATT	AATAATAGTG	GAAGTTTTCA	ATTTAATTAG	TTTATTTATT	TATTTATTTA
	TTTTTGAGCC	GGTGTTTCCC	TCTTTTTGCC	AAGGCTGGGG	TGCAATGGCA	CATGGTTGCA
	GCTCACTGC	ATCTCCACCT	CCCAGGTTCA	AAGGATTCTT	CTGCCTCATC	CTCCCAAGTA
				CAGGCTAATTT		
35				AAAATCCCGA		
33				ATGAGCCACT		
				TACTTTGTTT		
				G CTGCCCAGTT		
				TTCATGGTAA		
40				A CTCTTCCAAC		
-20				r atagatatca		
				A AGGTTACGTA		
				C TGCCTCTGTC		
				TAÄTTATTAT.		
	TAAAGTAAG	I ATTCAGACA'	1 IGGCIAAGIA	76	CILIGAAAACA	5211012101100

	TTTAAGGAAT	TTTTTTTCC	CTCTCCTCAG	TGTCAAAAAG	CAGTCAAGTA	AAAGATCCAA
	GATAAATAAC	TTCAGTTCCC	AAAAATAACT	TCAATTCCAA	AATTTCCCTA	TGACTAGGTA
	TATCTAATTG	GATAGCTGAT	AAAATGAGTG	GGAAATTGAA	GAAGGGATAT	TTTGAGAATG
	TGTGGCAACT	TAATGGTAAT	ATTGAAGAAG	CAAATGGATA	GTTATTGAAT	CATAATAGTT
5	TTTTAAACTT	AAATACTAGG	GCTTGATCTT	CATATTTTAG	GAAATTATCT	ATTTGTTGCA
	GTAGAAATTA	GCATAAATGA	ATGGAAACTT	AAATTATCTC	ATCTGTGCAA	GGCAGTCTTC
	AGAGACTGAT	GTTTATATAA	GTGAAAACTC	AGAAAAATTT	TTTGGCTGCA	TTTCAAGCTG
	GATAGCGGGG	TCAAAACTTC	AACTTCTTAA	TTGGTGATAC	AACGTCAGAA	ATCACAAAAG
	AAGTATTTCA	CAGGAAAAA	TGACATACCC	CGAAAACATT	CAAATCAAGA	AAATCACAGG
10	GGTACAGTGG	ATGGTCCCCC	TTAAGGTACT	GCGTACTTGG	CTTCCCCGCT	GGTAAATGCC
	TCTCTTTTAC	TAAGTTGTTG	TCGTGCAGAG	TGGCATTGCA	GCTCTGTACT	TTTACAGAAT
	AATTTCAGGT	TCTAAAATTG	ATACATTATT	TCAGATTGTA	AGAATAGTAT	AAAATAAAAT
	TTTAAAAGGG	ААААТААТТС	CATCAATTTA	ATGGAATGTG	TAGGGTTTAA	GTTATAACAA
	CAAAAACAAA	GTTGTAGTTT	TTTAGGATTA	CTCATATAAA	TAGTGTGTCT	ATTAAGAATT
15	ACTGGCTTTA	TGAATATTAA	ATAAGAAGGC	TGGCCGTGGT	GGATCATGCC	TGTAATCCCA
	GCACTTTGGG	AGGCCGAGGC	AGACGGATCA	CCTGAGGTCA	GGAGTTCAAG	ACCAGCCTGG
	CCAACATGGC	GAAACCCTGT	CTCTACTAAA	ААТАСААААА	TTAGCCGGGC	GTGGTGACGC
	ATGCCTGTAA	TCCCAGCTAC	TCAGGCGGCT	GAGGCAGGAG	AATTGCTTGA	ACCCGGAAGA
	CGGAGGTTGC	AGTGAGCTGA	GATCGCGCCA	CTGCACTCCA	GCCTGGGTGA	CAGAACAAGA
20	CTCCATCTTG	ААААААААА	AAAATTAAGA	CAACCACAGA	TATAAGGATT	TGCAATTAGA
					AAATTACAAA	
					GATTTGGACT	
					TTACCTATTC	
					TCTTCTGTTA	
25	_				TTTCTAGGTA	
20					AACCTGATAG	
					ATATAGTCTG	
					GAATGGATCT	
					ACCTCAAAAC	
30					TAAAGGCATG	
					GTACAGAGAG	
					GGCAGTCTAG	
					GGCATGGTAA	
					CCTATGAGGA	
35					CGTGACTCAT	
33					AAGCAATGAC	
					TGCAGAGTCA	
					TCAAATAATA	
					GTATCTCCCG	
40						GAAGTGGAGG
					CCTTAGGTCT	
						GTAATCTGTA
						TAGACAATGT
						GGCAGTCTTC
	IIIIIIII OIMI.	2000111001		27		

			aaammmaama	ma	CDDDD DC 2 D2	m > C > > mCmm >
		GTTTGCTCAC CTTTGAATAA				
	_	TGTTTTTATT				
		TTTGTGTATG				
_						
5	•	ACTGCTTCCT				
		TTACCAGCAT				
		САТААТАСАА				
		CGATCTACCA				
		CACACAACAC				
10		CATCATATTG				
		TGAAGCCATT				
		GGGTACAGTG				
		CTCAGGTCAG				
		ATACAAAAAT				
15		AGGCAGGAGA				
		TGTACTCCAG				
		ATCACCAAAG				
		ATATAACACA				
		CATACATTTT				
20		GTAATTTTAA				
		CTACAAACCT				
	ATTCATTTAT	GTATTCCCTT	TGCACCTTTT	AGGTTGAGTA	GTTGTGACTG	AGGTCTTCCA
	GCCTTCAAGC	CTAAAATATT	TACTATCTAG	TCCTTCAAAA	AGAAGTTTGC	CAACCTCTGC
	AAACAAGTGA	AATAATGTGT	ATTAGAGTAG	AGCAGGAGTC	CACAAACTAC	AACCTCTGGA
25	GCCAAAACCA	CCCTACTGTC	TGTTTTTGTA	AACAGAAATT	TTATAGAAAC	ATAGTTGACC
	CCTGTGCCAA	TTTGTTTGAG	TCTTGCTTTT	GATGGCTTTT	GTGCTACAAG	GGCAGAGTTG
	AACAGTTGCA	AGAGAACTAA	GTGGCCTGCA	AAGCCTAGTG	GTCTTTGCTG	TCTGGCCATT
	ATAGGAAGTG	TTTACCAAAC	CCTGCATTTG	ATCATGGAAT	CCCAGAATGT	TTATACCTTT
	GAGGATTTTT	TTTTCTACTT	TCCATATTTT	ACAGGCAACA	GAACTAAAGC	CTCGTAAAAT
30	CTTGCCCAAG	GTTCTACAAA	TAGTCTTTTC	TATTAAATTA	AGTCAGAGCC	TGAAATTGTC
	TGTGCCCAAG	TCTCTCCTCA	GAAATTTAGC	ACAGCATTTT	CCCTTTCTGT	CTCCCACATG
	CTACACAGTC	ATCCTGGATC	ATGTGCCCCG	CCTCCATGAG	GAGATGTTCT	AACATGAGGG
	TGACTAGGCT	CTGGAGCCAG	AGCATCTTAG	TTCAAATCCT	GGATCTGTTA	AAAATAATAG
	TTATTTTCA	GTTCTAACAC	TGAAATAAGA	CAAAAGGCCA	TATTACTGAA	ATAAAGTGTA
35	AAGAATATAT	TTAATACTCA	GGTTACTTTA	GCCCCTCAT	GATCAGAATA	TGCTAATAAA
	TTGAGAGATT	GACAGAAAAA	AAGGATTCTG	TTTCACTGTG	GCTCACACCT	GTAATCCCAT
	CACTTTGGGA	GGCCGAGGTG	GGTGGATCAC	TTGTCTGGAG	TTCAAGACCA	GCCTGGCCAA
	CATGGCAAAA	CCCCGTCTCT	ACTAAACAAT	ACAAAAATTA	GCCAGGCGTG	GTGGTAAGCA
	CCTTTAATCC	CAGCTACTCG	GGAGGTTGAG	GCAAGAGAAT	CGCTTGAACC	TGGGAGGTGC
40	AAGTTGCAGT	GAGCCAAGAT	CACACCACTG	CACTCCAGCC	TGGGCAACAC	AGCAAGACTC
	CATCCCTGGA	AAAAAAAAGT	TCATCATTTG	TTCTTGTAGT	TTCCTAGTGT	GGCCCTTGTC
	TCAGTGGAAZ	A ATTGTAGTGT	GATAGACTGA	GGAGAATTCT	GTTTCTGCCA	CTTCGCCTGT
	TGCCTTGGT	GGAGCTCCTI	ATCTCTGAGC	TGAGCTCCTT	TTGTCCTTGG	TAAAATGTGG
	TTATTATCAT	CTGCATCCTC	ATAGTCTTCT	TGTAAGGACT	GTGAAGTCAC	TTTTGAAAAA
				28		

PCT/US00/20400 WO 01/07663

	TGCCTTGAAT	ATGCCAGATG	GTCTGTTTTC	TTTCTTTTTT	GTTTTGTTTT	GTTTTGTTTT
	CCCTTGGCCT	TCATTCCTGG	AAGTGTTTTG	TTATATACAT	TTTGTTTGGT	GGCCAACAGT
	GCTAACCACA	GAAAAGTTTG	TATGTCTTCT	TTTTCTAGAA	TAATTCTTAC	AGTGTAACCT
	CTCAGGGTGA	AGTTTTTGTT	TTGAAAGGGG	CACATTTACT	GTGAATGAGA	GCCATGGAAA
5	TGGACCTGAA	ATTTGAAGAC	AGATTTTACT	TGGTTTTCTT	TTCTCTTATT	TGTTTGCAGT
	ATAAAGAAGA	GGGCAGCAAG	GTGACCACTT	ACTGCAACGA	GACAATGACT	GGGTGGGTGC
	ATGATGTGTT	GGGCCGGAAC	TGGGCTTGTT	TCACCGGAAA	GAAGGTGGGA	ACTGCCTCTG
	AGAATGTGTA	TGTCAACACA	GCACACCTTA	AGAATTCTCA	GGAAAAGTGA	GTTGCTACAA
	ATGAGACATA	CGTTTAGTTT	TGTTTTATAG	TATATATGAA	TATGTGTGTA	CATTTTTGGA
10	ATTTTAGTTT	GATTATACAA	AATATCTTTG	GCTTAGAAAT	ATTAGGCATG	CTATGTAAAA
	CCTTACTGGA	AAAATAAATT	GACCAACATT	ATTGAGAGTA	TTTTTCAAA	GTGTTCCAAA
	AGTAATGGAC	CAATGATTAC	TTTAAATGAA	ATCATGTAAT	GGACCACAGA	ATTGCAAATT
	ACTAATAAAG	AAAAGCCATT	TTGCTTATTG	CCATGTAATA	ACATGTTGCA	TGATACAAGT
	AGATACGTAT	GTTTATGCTG	CAACAAGTAT	AGGTGATACT	AATTGGGCAA	CTTTTAAACA
15	AGACCATAAA	TAACTGAAAT	CAAAGTTCTT	AGTATTTATG	CAGCCTGTTG	GTTTGCGAGG
	GCTGCCATAA	CAAAGTACCA	CAGACTGGGT	GGCTTAAGGA	AGGTTGTTTT	TTCACAGTTT
	TGGAGGCTAG	AAGTCCAAGA	TTGAGGTGTT	GTCAGGTTTG	GTTTCTTCCA	AGGCCACACT
	CCTTGGCTTG	CAGATGTCTG	CTTGCTTACT	GGGCTCCTAA	ACAGTCTTTT	CTGATTGTCC
	TAATGTCCTC	TTCTTATAAG	GGCATCAGTC	ATATTGGATT	GGGCCCACC	CATATGACCT
20	AATTTTACCT	TAATGACCTC	TTTAAAGCTC	TGTCTCCAAA	TACAGTCATA	${\tt TGGCTGTGAT}$
	ACAGGGGGTT	AGAATTTCAA	CGTATGAATT	TTGAGGGGGA	CACAATTCAG	ACTATAAACT
	GCAGTTAATG	TTTACTGTTA	AATTAAATCT	ATAACTGACT	AAACCACACA	AACAGGAGAT
	TTCAAATTAG	ACTTTATTAG	TTTTGGAAGG	AAGAGATGAA	ATGTTGTTAC	${\tt TTTTTCTGTT}$
	TTATGTAGTT	GTAAAAGCCA	CTAAAAATGT	ACATGTACAA	ATCATCCCAA	GCCAGGCAAC
25	ATTAGTAATG	AATGACTGCA	GCACAGAGGT	AAGAGAGATG	ATTTAAAGGA	${\tt GGATGAATTG}$
	TCTGCAAAGG	TGCTGGGCAA	GATCTAGACT	AATTCATCCC	CTTCATTTTA	AGTTTAGGTT
	TTAAATAGCT	TTGTTTGGCT	TGATCCTAGA	GCTACACATT	TACTTTTAAC	${\tt TTGTTTACTT}$
	TGTACCCTAT	CATTTAGGAT	ATGCTATGTA	CTATTGTACT	CTATTTGATA	TTTCAAACAT
	TCTCTCATTT	AGTGAAGAAG	CTCCCAACCG	GAGTGCTCAG	AACCTACATT	GCCTCACCTG
30	TGAAGTGAGC	ATGTGGGACT	GAATTGCCTT	TGAGGTCTCT	TTCAGCTCTT	AATGATCTGT
	TATCCCATAG	TAAGATACAT	TATTTTTAAT	CTCGTTGGAT	CTTAAACACC	AAAAATAATA
	GTATTTAAGA	CGTAGGATGC	TATCTTGTCA	TAATTTTAAT	GCACATGTCA	ACACACGAGG
	TTTTGCTAGA	TGTTATGATA	AAGCAAGCGA	AACAGCAGGC	TACTGCTCCT	САААТАТСТА
	CAGTCAATGA	AATATTGACT	GGCGTTGTGG	GAAAATATCT	CAAAAGTATT	TTATTTACAA
35	TTTAAAATTT	ATTCTTTTGC	CTAAAGAAAC	AATGAAACAA	CTATAACTTG	TTTTTGTTAT
	TGTGTTAGTG	TAGTCATACA	TATGATACAG	TTTTATAATC	TGCTTGATAA	GGGTACGTCT
	CTGGGTTTTT	CACACTTTGC	AACAAGTGGG	AAAGAACTTC	GACAAAAACA	TTAAAACATT
	ATCAACCTG	TTGCACGTTT	TTCTGATTAT	TTTCAGTGCT	CTTAGGTTTT	TAGACCATAT
	CAAAATTCTC	TCTCTACACA	CATGATTTAT	AAGGGAAAGA	AAAGTTTGCA	GTATGCCTAA
40	AATGTTCCTC	C AGGTTAATTA	A TATCTTGTTT	TGCATAGTTG	AATGTTTATG	GAAGTCTTAG
	ATAGTGAGT	CACTCTGAAAC	CACAGACTCT	TTTTTAATAG	TAATAATATG	GTGAGTTCTA
	TAATTCCTAC	G CATCTAGCAC	ACAGGTATGA	TAAATGTTT	AATTAAGTGA	ATAATCAGCT
	TCCTGAATT	r ttctactttc	TAAATATGCT	CTTTGTGTGT	TGAATCTATT	TACATATATA
	TCCAAGCAT	r TGGCACAAGG	TAAACCAATG	TGGCTCAGAT	TTTAATGTTA	TTGTGAATCA
				29		

	CTTGGGGATC	TTGTTTAAAA	АААААААА	AAAGGAGATT	CTGATTCAGG	TGATCTGGGC
	TGAGTACTTA	CAGTATGCAT	TTCTAATAAA	CTTCTGGGTG	TTGCTACTGA	TATTGGTTCA
	AGAACTAAAT	TCTGAGTAAC	AAGTATAAAC	CGAATGTCCA	TAAAGTATAA	TTTCTTTTAG
	TATCATATGG	TTATAATGCT	TGCATTTTGT	ATATATGTTG	CATACAGGTT	TTGCTTTTCT
5	CTTTTTTCTT	ATTAAAAAGG	TTATAAAGGT	ACACTGTAGA	AACTGTAGGG	AGTAGGGGAA
	AGCTTGGCAT	CTCATGCCAC	CATTCAGAGG	TAACCATGTT	${\tt TGGCATTTTA}$	AAAATGCATT
	TATAGTGTGT	GTGTGTGTGT	GTGTGTGTGT	GTGTGTGTGC	GCGCATACAT	ATATATGTAT
	GTATTATACA	TATACGTTAA	TATACATATA	ATATACATAT	ATTACTGTGC	AAAAGTTGAT
	AAATTGATTA	TGATTATGTA	${\tt TAAACTTTGA}$	TATCTTCTCA	${\tt TATTTAATT}$	AATATAGTTG
10	TGAGCACTCT	TCCATATCAT	TAAATAACTT	TCTAGACATT	${\tt TTAAATGAAT}$	ATATAGAAAA
	TGAAACATCA	TTAATCAGTC	CCTTATCTTA	GAATATTTAT	${\tt TTCGGTTATT}$	TACAATCTAT
	TAGTAGTTTA	AAAGTACTTC	ATGGAAAATC	CTTATACATG	CATCTTAGTT	AACTTGAACT
	TTTATTTTA	GAGAAGACAT	GCCAGGCTGT	TCTAGGCTAT	TGATACATAT	TGCCAATTAC
	CTTCCTGAAA	GATTGTACCA	CTTTCCACTT	AGGCACAGAG	TGTGAATGCC	${\tt TGTTTTAATT}$
15	ACTCTATTTA	CATCAGTAAA	GACTATATCT	GAAATTATCT	CATTTTTGGG	GACAGGTATT
	CTAATAGGCT	CTACAAGTAT	GATCACAACT	TTGTGAAAGC	TATCAATGCC	ATTCAGAAGT
	CTTGGACTGC	AACTACATAC	ATGGAATATG	AGACTCTTAC	CCTGGGAGAT	ATGATTAGGA
	GAAGTGGTGG	CCACAGTCGA	AAAATCCCAA	GGTAATCAAG	CACACATTTT	ATCATTAATA
	AAAATATGAA	TGCTGAATAC	CATCCTCCCT	CCTAAGCAGT	CCTACCAGTG	TTGCTCGCCA
20	TTTTATTGGT	CATCCCAGTT	GTAACTTTTT	ATGTGATCTG	TTAACGATCT	TTATCTCCTA
	TTGATACATA	TTCTGTCACT	CTCCAAGTCC	TATTTATGAG	TTTTTCTTTC	ACATGTCTGT
	TGTTTCCATT	GCCCCTTTC	CATTTTCTAC	ACTCTGGCAT	GCAGCTTTGT	CCTGTTTCCC
	CCATGCTATG	GATTAGCCTC	CTGCCGGTAA	CCACCTGAGG	GGTTCTTCCT	GCCTGCTGCA
	TAAAGAAAAA	CCATGGCAAT	ATAGTAGAGA	AAGAGCTTAA	GAGACACTAG	GCTGGCCATG
25	CCACGTGGGG	GATGGAGTTC	ATATTCAAAT	TATCTTGTCC	AAAGCTCATA	GGTAGGGGTT
	TTTCAAAGGC	AGCTTGGGGG	AAGGGGTGGG	GGTGGCCAGG	TAACAGATGC	TTGCTGCTGA
	TTGGTTGGGG	TGGGTGAAAT	CACAGGGAGT	TGAAGCTGTC	CTCCTGTGGG	CTGAATTGCT
	TCTAGGTGGG	GCCATAGGAG	TGGGGTTGCT	GGGTCCAGGT	AGAACCACGG	GTGTCAGACA
	TGCAAAAATA	ATAAAATAAA	AAATAAGATA	ANGGTAAGAT	AAAATAAAAT	AAAATAAAAT
30	AATAAATAA	ATAAATATA	AATTTCCCTG	AAAAGATATT	TCAAAAAGCC	AGTCTTAGAT
	TCTACAATAA	TGATGTTATT	TGCTGGAGTA	ATTGATGGAG	TTGCATGTCT	TATAACCTCT
	GGAATAACGG	CTGACAATCT	CTCAAGTCTG	CGCCTTAGCT	GGACTCAGGT	TCCTCTTCTC
	CCCACAGCCT	GACTGCCTCC	ATTAGCTTCA	CAAAAGTGGT	TGGGTTTCAG	GGCAAGGCCC
	ATTGTCATTT	AAACTGTAGC	CGAAATGACT	TCCAAAGTTA	GCTTGGCCCA	ATAGCCCAGG
35	AATATTTAAG	TGGAAGGCAA	GATGGGGGAT	GGGTTAGCTT	AGCTCTCTTT	CACTCTCATA
	GTTTTCTCAC	TGGTATAAT1	TTTGCAAAGG	CGGTTTCATG	CCTGCCATCT	CTTTCGTCGC
	TACCTCTCCC	AGTTCCCATI	CTTAGCTGTT	TTATGAAATG	CTTCTAGTTT	CATCCTCTTA
	TACCAAGTTO	TGGGAGACTG	ATTTGAGTAA	ТААТААААСТ	CCAGTTTCCC	ATACAGCCGG
	CTCTGCGTG	A ATTAAACTCA	TTTTCTATTC	CAATTTCCCT	GTCTTGATAA	TCAGTTCTGT
40	GTAGGCCGT	G AGGAAGGAGA	ACCCGTTGGG	TGATTACGAG	ACTGTGTTAC	TGCCCACTAC
	CTAATGGAT	A CATTTAGCCT	GGTATCCAAA	CCCATCTAAT	TATGACCATA	ACTATATTA
	TCACCTTGCT	r ctgctttca <i>z</i>	ACGATATGAC	: ACACAATGAA	TGAAAACTTT	CATTTTTCAT
	CTTCATTTG:	r GCTGTTCCCT	TTGCCTCAAA	TAGCCCTCAA	CTTGCCTACA	GTAACTGTAA
	AATTTGCCA	C CTAAAAAAA	ATCTCAAAAT	CCTCTCTATG	CTTTGATGTC	CAGCAAAAAA

PCT/US00/20400 WO 01/07663

	AAAAAAAAA	AAAAAAAAGT	TATCAGTATA	GCTCTATTAC	TCTCAACCAG	AGGTGGCATT
	TTTCATCTTT	ACCCATAAGC	CCCATGGTAT	ATTTCTTAGT	TTGGGAAATT	ATATCATAAT
	ACTTTGAATC	TGTCTAGTCA	GAAATTTAGA	AAATTTAAT	TTATTAAAAA	TTTCTGAAAG
	TATAGCTGGA	TCTAGCTTAG	GATCTACATC	TATCTAATAT	AGTTCCTTAA	CATNTTGTTA
5	AATGGCCACN	GGNATAAGTC	CTGTAATGCC	ATACTTTGCT	TTAGGATCAT	GTGACTAAGG
	GGTAAGGAAT	TGGAAAGCAA	TGGGGAGCTA	GCAGAATTTG	ATATAAAA	TAGGTAGGTT
	ATTTTTCCTT	AATACATTGA	AATAGCCTCA	AATTCTCAGA	GAATACAATG	TTTAATCCTC
	TAATATCTGT	AGAGTTCATG	GCTCAAATTT	GTATTATTTG	AATAAACTAC	TAATAGATTA
	ATAATTACTC	AACTAAAACA	CTTTGAAATG	TGAGAGTTCC	CTTATCTCCC	TCGCAGGCAT
10	ATGACAGAGG	${\tt TGTGGCTTCT}$	CACACCTTTG	${\tt GTTGCCCTTG}$	CCCTACCACC	CAAACCCCTA
	GGGGGAGCAT	GCAGAGGGGC	AGGTGCAGAG	GCCATGGGGG	${\tt GTGCTTTTGG}$	GCTCTGGCCC
	CACAGCAGTG	TCTAGGAGTG	GATGTTGGAG	ACTCCTGAAG	CCCAAGTGGG	CATGTGTTAC
	AGTGTGCTCT	TTCAGCTTAG	CCGTCTGCAG	ATGGCTTGTG	${\tt TTAATCAGGT}$	CATTAGACCC
	CATGCCTTAT	TGCAAGGGCA	GGGGTCCAAT	GTGACAGCCT	AAGTTCTTGC	TCAGTGTACC
15	AGAAGAATTG	GATCACACGT	GGGCTGGAAG	GATGAGCACA	${\tt AGGTTTTATT}$	GAGTGGTGGA
	GGTGGCTCTC	CGCGAGACGA	CTCTCAGCCA	GAGAAGGAGG	ATGGAGGGGA	AAGGTGTTCT
	TCCCCTGGAG	TCCACTTGTT	CCTGTTCTCC	TCTGGGTTCA	AATACCTCTT	CCCTCCTTTT
	CTGCTGTGCT	GTCCCACCAC	TCTCCACAGC	TCTGTGCCGC	TCTGTTCCTC	TGCTCCTCTG
	GATGTTCAGC	TCCTTGTATC	TGTGCCTGCT	AAGATTTTGG	GTTTATATGG	GGGAAGGATG
20	GGGGCATGG	CGGGCCAAAA	GGCACCTTTT	TTGGTGTGAA	AACAGAAATG	CCTGTCTTCT
	CTTAGGGCCT	TAGGTCTTCA	GGCTTGAGGG	TGGGGCCTTT	GCTGAGGGAC	CACCCTCTTC
	TACCCAGTAT	TTCCCTGTCT	CCTGTCCATA	TCAACATTAC	TAACTTTTTC	ATCTGCAGAC
	TAATAATGCT	AAGGTGTGGC	ATTTTTCAAC	TGTGAGACTA	TGTGAAGGTT	TTTCCTGTCC
	AACTGATGGC	ATCCTCCCAT	AATTCTACCC	CTTTCTTAAA	AGAATCTTTT	GCAGTATTTC
25	TCCAAGTTTA	TTCTAGAGAA	TTTCTTGTCT	GTGAAATGCT	CTAGTTAATC	AAAATTGGAA
	AACGGAGCAT	ATCATATCCC	CTTCTCAAAT	TCACCAAAGT	GAAGTCCTAA	TGTGTCTTAA
	TGTATCTGCA	TGAGACAGGA	AGCTGAGATC	TATTCAACAA	CAAAAATCCA	AACAAGCATC
	AAGAGGAGGA	GTGTTAGCAC	TTGAGCCTAG	GGAGACTGTG	GCTCCTGCCT	GAAAGATGGG
	AGCCTCAGTC	ACAGCTGCTT	TACCAAGTGT	CATATGCTAT	GTTTCTGAGG	ACTCCTGCTA
30						GTTTATGAAG
	GACTGTTTTC	ATGACTAAAG	CTTTATAGAA	GGTTTAAGAT	AAGGAGATGG	AATTGAGTGA
	AGTAGGAAAT	' ATGAAAGCAG	TAATTATAA	CTGGCTTCCT	GATTTTTCAC	TAGCATTTTT
	GTTTATAAAT	TAGTTCTGTT	CTAAGAATCC	AATGACGTAA	TAGAAACTCT	CAAAGATTCT
	TAACTTGAGA	TATAGGGAGT	CTTTGAAACT	GCTGAAATTA	CAGACAGCAT	TTATTGTTTA
35	TGAGCATTTC	TGAATCTAGA	GCTTTCACTA	GATTTGTAAA	GAATGTGGGC	CAAAAGATTA
						TATCCCCCAG
	ACTCCTCTTC	G CTCTCTCTTC	ATTTTCACAG	TGTTACTGGA	AAGGGGTCCT	GATCCAGACC
						TCAATGCAAA
	GTGAAAGCAA	A GTTTATTAAC	AAAGTAAAGG	AATAAAAGAA	TGGCTACTCC	ATAGACAGAG
40						ATGCTAAACA
						CTGACATTGT
						GGAGTGCGGT
						TCCTGCCTCA
	GCCTCCCAA	G TAGCTGGGAT	TACAGGCATO	S ACCCACCATO	CCCAGCCAAT	TTTTGTATTT

	TTAGTTGAAA	CAGGGTTTTG	CCATGTTGGC	CAGGCTGGTC	TTGAACTCCT	GACTTCAGGT
	GATCTGCCTA	CCTTGGCCTC	CCAAAGTGCT	GCAATTACAG	ATGTGAGCCA	CCAAACCTGG
	CCTGTCATGG	CATTCTTAAA	CTGTCATGGT	GCTGGTGGGA	GTGTAGCAGT	GAGGAAGACC
	AGAGGTCACT	CTCATCGCCA	TCTTGGTTTT	GGTGGGTTTT	AGCTGGCTTC	TTTACTGCAG
5	CCTGTCTGTT	CTATCAGCAA	GGTCTTTATG	ACCTGAATCT	TGTGCTGACC	TCCTATCTCA
	${\tt TTCTATGACT}$	TAGAATGCCT	TAACTGTCTG	GGAATGCAGC	CCAGTAGGTC	TCAGCCTCAT
	CTTACCCAGC	TCCTATTCAA	GATGGAGTTG	CTCTGGGTCA	AACACCTTTG	ACAACATCAT
	TAAGCCTCAG	TTCTCACACT	GTTTTTGTTT	TGTTTGTGTG	TGCAATGATG	GGCAAATCTC
	${\tt TGCCTTATAG}$	GATGGTAGAA	AAAAGGAACT	${\tt TAATATTGTA}$	ATGACTGTTT	TGTGCCAGAT
10	AATTGCTTTA	AACTGTATCA	GCATCTTATT	TAGTCCTGTT	AATGATATGA	ATGTTATCTT
	CATAACAGCT	${\tt GCCATTTTAT}$	${\tt TAAGGACTTA}$	TCAGAGAAAA	${\tt ACACTGTTCT}$	AAGCACTTGT
	TACCCATTAT	${\tt TACATTGAAT}$	${\tt TTTCATAACA}$	ACCCTTTGAG	${\tt GTAAGCATGA}$	TTATACCCAC
	TTTAATAGAA	${\tt GTGAACTGTA}$	GTTTTGTAAT	GTTAGGTTCC	$\mathtt{TTGCCAAATG}$	TTACACAGAT
	AGTAAGTGAT	AAAATCATAT	GCCCTGAAAT	${\tt TACATTATGC}$	${\tt TGCCAAACTT}$	AAATTTCTTT
15	TTTATCCTTT	ATATTAGTAT	ATTCTTAGGT	${\tt TTAAACAAGA}$	CAACTAGTTA	ACACATACTA
	GATTTTGTCC	ACAGTTCCTG	GCTCATAACT	CCCATAGCCC	TTGTCACTAT	CTTTTAANCG
	TTGGGGCACA	TTAGGCCTCA	GAAGTAGGCC	TCANGAAAAC	AGAGTCTCTC	TCTCTCTCTC
	TCTCTGATCT	TCTTCCGCCC	TCCTCTCACC	TGCCCAGGGC	AGCACTTTAA	TCTTCTCCTG
	CCTTTCTGAT	CTTGGGTCAT	AAGACCTTCA	TTTCCAAAGA	TGTCCTGTGT	CATACCCTAA
20	AGGAAGGAAC	ACTGAACAGA	GAGAGGCTCA	GAAGAATCTG	GACAGGCCTT	GCTGTGTTTA
	CATCATTCCC	TTTATGTCCA	GTCACATCTC	TACATGGTTG	TCAGTTGTGC	CTATTTGATG
	AAGTCCCCAT	ATAAGGCTCA	CAAGGACAGG	GTGCAGAGAG	CTTCCAGATA	GCTGAACAAG
	TGGAAGTTCC	TGGAGGGTGG	CGTGTTCAGG	GAGGGCATGG	AAGCTGTGTG	CCCCTTCCCC
	CATACCTTGC	CCTACTCATT	TCTTCATCTG	TTTCATTTGT	AGTATCTTTT	ATAATAAACC
25	ACTAAACATT	AGTTAGTATT	TCTCTGAGTT	CTGTGAGTCA	CTCTAGCAAA	TTAATTGAAC
	CCAAGGAGGG	TGTCATAGGA	TCCCCNACAT	TATAGCTGGT	TGGCCAGAAG	CACAGGTAAA
	CAACCTAGGG	CTTTCAATTG	GCATGAGAAG	TAGGGGGCAG	TTTTGTGGGA	CGGAGCCCTC
	AGCCTGTGAG	ATCTGATGCC	ATCTCTAAGT	ACACAGTGTC	AAAACTGGAT	TGGAGGACAC
	CCAGCTAGTA	TTCACTGTGA	AATTGGTTGC	TTGCTTGATT	TGTGGGGAAA	AACCCACATG
30	CATTTGATCA	CAGAAGTCTT	TTGTGTTGAC	AGTTGATAGT	GTTCAGTGAG	AGAATTAAAA
	AAAAATTGAG	TTTCTTCTTC	AACATACTCT	CTCAATGTGA	AACCACAGAA	ACTATTTCCA
	TTCAAAGATG	GAAATGGTTT	GTTTGCATCT	TAGTTTTTAT	TTATACATCT	TAGAAGAAAT
	GTCCAAGCTT	TGTTTTTCT	CTCACCCTAT	ATATAAAATT	ACCTATGAGG	CACAGATTTT
	TATGATCCTT	GATTATATAG	ACTTTGTCCA	AATTGTGTGT	TTTATAGCAT	TACTGTAACT
35	TGTTATAGTA	ATCTTTGTGT	ATATTATGTC	TCTTAACATT	GTCTTCCATA	TTGTTAATGA
	CCATCTCATA	TTTATCTCTG	TATCATGTAT	ATCTTCAACC	AATGTGACTG	GCTTAGGAGA
	AAAAATTAGT	GAACAATTAA	CTAGTGTTTG	TGTAATCTAT	ACAATTGTCA	AGGTTACAAT
	TGCTATTTTT	GAAGAAATCG	TTGTTGTTTT	TCTCTTTGTT	TCATCTCAGT	TCCATTTTGT
	CAAGGATTCC	TTTTTTTT	TTTTTTTTT	TTTTTGAGGC	GGAGTCTTGC	TCTGTCACCC
40	GGGCTGGAGT	GCAGTGGTGC	AATCTCGGCT	CGCTGCAAGC	TCCACCTCCT	GGGTTCATGC
	CATTCTCCTG	CCTCAGCCTC	CCGAGTAGCT	GGGACTACAG	GCACCCGCCA	CCACGCCCAG
	СТААТТТТТТ	TTTGTATTTT	TAGTAGGGAC	GGGGTTTCAC	TGTGTTAGCC	AGGATGGTCT
	CAATCTCCTG	ACCTCGTGAT	CCGCCCGCCT	CGGCCTCCCA	ATGCTGGGAT	TACAGGCGTG
	AGCCACCGCG	CGTGGCCCCT	TGTCATGTAT	TCTTAACCTG	TGTTATATCT	AAGAGAAGGT

PCT/US00/20400 WO 01/07663

	amar ar acac	CCA CCA MMMC	TO CATA COTO	CACACCCCAM	GAAGTAGCCC	7.C222.C227.MC
	<u> </u>				GTAACCACTG	
					AATAGTTTAT	
					ATTTGAAGGA	
					TACTTTATGA	
-					TGGTGAGCAA	
					GCCATTTGGC	
					TCTCTGTGTG	
					TATGTATGTG	
- •					AAATGTCCGT	
					TGTCATATAA	
					AGCCTGTGTT	
					AATTGGACAA	
					TTGAAAATGA	
15					TGGTTACAGA	
	•				GTATGCCTTA	
	GAGGGTGGAG	TTAAGTTACA	AAGTCATTTA	CTCAGTATAG	GCCTTGTGTT	AATGGAGAGG
	GTGTTACTCC	TGGGGGTTGT	GGCCCATGTA	AACGGAGAGG	ATGAAGTGAA	GTGACAAAGC
	CCTTCGCATT	CCTGCCATTG	CTGAAGTGTT	TCCACTTTAT	TTAGTTCTAG	GAAGTCAGTG
20	TGAATTGGCC	TTATGTTCCC	TGCCTCCAGA	ACCTGTTCTC	CTGCCTCACA	TAGACCCTTT
	TTTCCCTTTG	CCAACTTCAC	TTCTTTTACA	GCCACCTCAC	TACCAATGTG	TCTGTCTCCT
	AAGTCAAACA	TCAGTGATTC	CTCTGTTTTC	TCTAAACCCT	TCTTATGTCT	TCTACTTCTC
	ATCTCTTTCT	TGGTCAAAAA	TCTTTCAAAA	ATGAGTAAGA	ATGCAGCTAT	TCAGGCAAAC
	${\tt TAAAAATAAC}$	ATCACAGTGA	TATACAAAAC	CAGTGTCATT	TCACAAAGGA	AAATTATCAA
25	TACTAGATCC	TGAAAAAGAA	ACAGCGAATG	AAAGCCATTT	ACACAACTCC	ATTGTGTAAT
	${\tt TGACACATTG}$	AATCACTCAT	AAAACAGGTG	CTCTGGGTCT	GAATCTAGAT	CCTAGCTAGT
	${\tt CTGGTAGCTG}$	AAATCATAGA	ATTATAGTAG	AGTTTAGGAA	ATCATCCTCA	AAGGAAAGAT
	TATATGTTGA	TATCAAATGT	ATATTTCCTT	TCTAGGCCCA	AACCTGCACC	ACTGACTGCT
	GAAATACAGC	AAAAGATTTT	GCATTTGCCA	ACATCTTGGG	ACTGGAGAAA	TGTTCATGGT
30	ATCAATTTTG	TCAGTCCTGT	TCGAAACCAA	GGTAAAAAAA	TAAGCCTAAG	TTTTTTTTTTA
	ATTTGTTTGG	AACTATTTAT	TGAACAGTTG	CTCTGTGTGA	${\tt TGGATTTCGG}$	GGATACCTAG
	ATGGAATGGG	CATGATCCCC	TTTTTACAGA	AATAGAAAAT	AGGTGGCCTA	TGAATTATTC
	TTTCCTTTTA	TATCCATGAC	AAACTTTAGT	AAAAAATTTT	CTTTTCTACT	GAGCTTAGCA
	TTTATTCAGT	ACTCTTCTCA	ATATATTTTC	CAGGTAGCTA	GTGACAATCA	GAGTGATATG
35	TAAGACAAAC	TCATTTGTCC	TCCTAGTAGG	AAAGATTCTA	GTAGAAGCAA	AGAATTGTGT
	ACCATTCTGC	AAGTGGTTTG	TTGGAATCTT	TCTTTGATAC	CTGTTCCTGT	ATTCCCCCAC
	CCCCATTAAT	TTAGTCATTA	ATTACTACAT	GAACCCGTAA	AATAAATCCT	TTAAATTATTT
	TCCTGGTAGA	TTTTTTGAGC	TGTGTAAGGA	CCTTTCAATT	CACTTTACAT	TAGAATACGA
	TATGTGATGG	TAAGTATTAA	CCCAGCTTCC	TGAGTGATGG	CGTGAGGGCG	GAACCCAGGT
40	TCATGAAAAG	TATTCCTATT	ATTGAATTTT	ACCAGTTATT	TTCAGAAGTT	TGATACAATG
	TGAGTTGATT	TCATAACATG	TCCTCTAACT	GCACTTGATA	GCAAATTATC	TTGTTATCCT
	GAGTTGTAGC	CAACAATGAC	TTGGAGAATC	TATGCAATAC	TCAGTTTTAT	TACTTCTAAG
	CTCATTTTGA	AGATAATACT	ACCCATGGCT	GATTTGTTAC	TATAAAATAG	GTTTAGTATT
	TGCTGTCTGG	AAACATTCTG	ATTAGTGTCT	CCTGGGAGGA	TTATAAATTT	ATAGTACCCA
				3 3		ATAGTACCCA

	AAGANTAAAC	NTGTTGTTTC	CCTTTCCTAA	ACTTTTAGTG	NATAATNCAG	TCTCTGCCGT
	GTCTCATTTT	CATCACTTGC	CCTCCANAGC	TCCCATCTCA	CTGAATTCTT	GCAGTGTTCT
	GAATGTTGAG	AGCCCCAANG	TGGGTCTTAT	AACAGCCAGT	CAGCAACATT	TCTGTTTTTC
	ATCTGACACC	AAGGGTCTCG	${\tt TCTCTTTGCT}$	${\tt TTTCTACCAG}$	${\tt TTATTCTGGG}$	CTCTTCAGCT
5	CTAAAGAAAG	TATAGGTCCT	GAAATCTTTC	CCTACCTTCT	CAATTTCCTG	GGGAGGCTT
	CTTTGGAAAG	TGGGATTGGA	AATAAGATAA	ATTTGAAGAT	AATTGAGAAA	TGAATGGAAA
	GTGAAATTGA	AGGGTCCATG	${\tt TTAAGAGATT}$	${\tt GCAAGTTATG}$	${\tt CTATCACCAA}$	ATAGATTTTT
	TGTGCCTGAG	AGGATTAATT	CATAGTGCAT	ATTATGTGTT	${\tt GACTTTATCA}$	TTGAGGTCCT
	GGCACATGAT	AGCATTGGCA	TGATATAATT	${\tt TGAGCTACTG}$	ATACTATAGT	GTTGCTTCTG
10	GTGTTGTTAC	CAGAACATCT	AAAATATATT	${\tt AGGATTTTT}$	${\tt TAATGGCAGA}$	GGAAATGAAG
	ACTAATATGA	CATAGTCCTT	GTCCTAGTGA	${\tt TTTACAGTTT}$	AGCAAGACAT	ACAAGCAAAA
	CATTAAAGTA	AAGCATGATA	ACTACTTTAA	TAAAGCATTT	TTTAAATTCA	TTGGTAACAT
	AAGAGAAGGT	AGAAGAGTTT	AGCAAACCCT	TCCCAAAAGA	AATGATTGAC	AAGTTATATG
	AGATAATAAT	TCAGGGAAAG	GAAATTCGAC	TTTCTAAAGC	${\tt CAAATTATTT}$	GACATTGGTT
15	TTCATATAGC	TTGGTAAAAG	CTGTTATTTT	CTCCCATGTT	CTTTATTCTT	TGACTGTTAT
	AAGTATGATT	TGTACAGAGA	AATGGCAATT	TCAAAACAGA	GGGCTTTGAT	GGATTAATTG
	CTTTGAATTG	ATCCCTCATC	TACAGTATCT	TGTCAGGTAC	TTGAGAAAAT	AATGTACTTA
	AAGTTTCCTC	TTTTGACTTT	CTTTTGGTAT	TCTATACTGT	AAGTTGGGGA	AAAAAGTATT
	TTCTCTTCCT	GCTAATTGGG	CTACTTGAAA	ATTCCCACCA	ACTTTGCCAA	TACCAGTGTT
20	CTGTATAACC	CAGAATTCAG	AATTAGCTGC	AATTAAGGGA	ATTCACAGCT	TTTCTGTAGT
	CAGAGAGCAA	ATTGAAATTA	AAGAAAAAAG	AAATAGTGGG	AGGACAAATG	AGGTTTTACC
1	TTTACACTTG	AAAACAGATT	TAAGAACAAG	CCTTATACCT	AGATTTATTA	ATACTTTGAG
	GTATGAGAGG	GAAGAGAAGC	TTAGAAATAC	GGCAGAATGG	GCTTTCTTTG	TTCTTCTCCC
	AGCTATGCTG	TTTTTATTTA	TTATTGTATT	TTTAAGAGAG	AAGGGAAGTG	TCTCTCCTGG
25	GTCACATTAA	TTAGGAAATA	CAGAGTGTTT	TCATAATGCG	TAAAGTCTAG	TCCATTTAAG
	TCTTGTTTCA	AAATGCTATT	TATATTATTT	GAGCAGGAAG	GCAGAGACCT	TAAACTGCTC
	CACCCAATTC	ATTTTACACA	AAAGATTAAA	AAGAAAAAA	CAGTGTCAAA	AGGTCAAGTG
	CCCAGTGTTC	CACAACTAAT	GATAGGCAAA	ACAAGAGAGG	AGGGGAAAAA	AAAGAATCCT
	GACTCCCGAC	TCCTAGTTCA	GTGTGTTCTT	CACTGTTAGA	AGGTGCTGCT	GAACATAGTT
30		AAGATCACAC				
	CTGGCTGGGC	TAGATTCACT	TCTTATTCTT	TATTGCATTG	CAGTATTCTT	AAGAGATAAA
	TGGCTCTTT	T AGAATCAGAT	TGGCCTTGGC	TGTTGAAATG	AGGCATTAAT	TACCTTGGTA
	GCTGACACA	TCTTACAGGT	CAGGGGCTTG	ATGAAGTTTA	TCTTCTTCCC	TTGTTCCTGT
	GATTGCTCTC	G TAAATAGAAC	ACATTCAGAG	CCCTTGAATG	CACTTGCAGC	CTGTGCCTCC
35	CACAGTGATO	C GATGGTCAGA	TAATGGGAGT	TTAATGACCA	GTACTGAGAG	AGATTATTTC
	CATGGCTGC	r atgggccaac	AAAGCTGGGT	GGTCAGAAAG	GGACCTTTTC	CAGACTCTCC
	TGGGTTGTG	r TATTTCTTTG	ACATTGGTTT	CCTTTCATGA	GGCGCCAAGG	TGTATTTGTA
	AGTTGTCCAG	G TGTTGCACAG	CTAATGAGGG	GCAAAACAAG	AAAGGAGGAA	AAAAAAAGTA
	TCCTCACTC	C TAGTTCAGTG	TGTTCTTCAC	TGTTGGAAGG	TACTGCTGAA	CACAGTTATA
40	TGTTCAGTG	r acaatgtaca	ATGTTCTTTG	ACATTCCGTC	ATTTGAAGGA	TGGGTCCTAT
	GGATAGTAT	C ATCTGCATGG	TTTTGAAAAC	AAAAGATATA	AGCTAATTTT	GCCCTGTCTA
	GTGACTACG	A GACAGGGAGA	GAAAATCTGA	ATATTTGTTA	AAGTAGACAC	AGACCCATAA
	ATTGAAAAG	G ACACTAATCO	TGCCTTAGGA	GACAGTAAGG	CACTTGTCCC	TGCTATCTAT
	TAGCTGTGT	G TCCTTGGAC	A GCTCATTGCT	TCTTTCTGAG	CCACCGTTAC	ACGTTATCTA

	TCAAGTGAGC	AGGTTGTACA	CTAGATGAAT	TCACAGGTCC	TTCTTCCAAG	TGCTTTTCTA
	ATCTTCATAA	TTTAGATAAT	CTCTCAGTAG	CAAAACAGTG	TACAATATGG	TCAATCTGAG
	ATTTTAGGG	GGAGAATTTT	AGGGAACATC	AGAAATGGCA	GTAGTTAAAA	GGAAATAGGA
	CTCACAGGCT	GACTTCTCTC	TATAACTTCA	CATGGTAGAA	GGGATGAGAG	TTCTCTCTGG
5	AGCCTTTTGT	ATTAGGTCAC	TAATCCCAAA	GGCCCACCT	CCTAAGACCA	TCACTTTTGG
	GATTGGGGTT	TTAACATGAT	TTTAGAGGGA	CATAAACCTT	CATCTCATTG	CATTAGAGAT
	ATTTGAAAGC	TCAGCTCACG	TGTATTCCTC	CACAGCTCAC	ATGTATTCCT	CCATCACCCA
	ACCTGATGGC	TTTGAACGTT	GTAGACATAA	ATCCTTTCAT	CATTATCAAG	AATATTGCCA
	AAAGCTTCTC	AGAAATTATG	AGGGGTTTTT	${\bf TTAGTTTCTA}$	AAATATTCTC	AAAGAAAGTC
10	CCATGTACTA	ATGTTTGCCT	TTTGATGAAA	AAGGATGAAA	TCTTAATGAT	TGCCTTAATA
	AGCTCAACAA	TGCTTGTTAG	${\tt TTGAGTCTTC}$	TTATTGTGCT	GATTCTTATA	AACAACAACA
	TTCAGTATAA	ACATTAATGT	ATGTGATTCA	CTAAGGTTTT	TGCATGATTC	TCTGTGAGGC
	TTCAGATGTC	TCTTGGATTA	TGTGTCTTTT	TTTCATCGCC	AGCATCCTGT	GGCAGCTGCT
	ACTCATTTGC	TTCTATGGGT	ATGCTAGAAG	CGAGAATCCG	TATACTAACC	AACAATTCTC
15	AGACCCCAAT	CCTAAGCCCT	CAGGAGGTTG	TGTCTTGTAG	CCAGTATGCT	CAAGGTAAGT
	GTTGCATTTC	AGACACCATT	TATGAGCTAT	TTACCTGTGT	GCAGCTGGCT	GTTGTTGGCA
	AAGGCAAAAG	GATGATGCAG	TAGAGAGAGC	GCAGTGTCTA	TAGTCAGAAA	ATCTGAGTGC
	AAGTCTGGCC	CTATCACTTA	TTAATGGATG	ATTGCTCATG	GAATTTACTG	TACCATCCAG
	CAAAATGTCA	ATAGTTACTA	TATATTGAGT	GAGCTCTGCT	TGTTACATAT	ATTGCCTAAC
20	AATGCTCAAA	ACTCTGAGAA	GTAGTAAGTA	TAATCCCTAT	TTATGGGCGG	GGAACAGGAA
	CTAAGAAATT	тттстаатаа	TTTGAAGGTC	TCACAGCTTT	TAGCATTGGA	GTTTCACTTC
	TAATCATCGT	CTCCAAAACC	CAACTTTTAT	ТААААСТАТА	CTAACACTGG	TTTCTCTCTG
	GGAGAATTTT	AAAATTCTGT	ACTTAGGGCT	GGGCACAGTG	GCTTATGCCT	ATAACCCTAT
	CACTTTGGGA	GGCTGAGATG	GGTGAATCTC	TTGAGTCCTA	GAGTTTGAGA	CCAGCCTGGG
25	CAACACGGCG	AAACCCCTTC	TCTATTAAAA	ATACAAAAAA	TTAGCTGGGC	GTGGTGGTGT
	GTGCTTGTAG	TCCCAGCTAT	TCAGGAGGCG	GAGGTGTAAG	AATCACCTGA	GCCCAGGAGG
	TCAAGGCTGC	AGTGAGCCGA	TATCATGCCA	CTGCACTCCA	GCCTGGGCAA	ACGGAGTGAG
	GCCCTGTTAT	GAAAAAAAAA	AAATCTGTAC	TTAGGCTTTC	AGATCAGGCT	GTATGTGATG
	TATGTCGAAA	ACACAGCTAT	AATTGATTGA	GGGAGAAACG	TTACCATTTT	AAAGTTTATG
30		CAGATTTGGC				
	GTGATTATTT	r GCCAGTGAGC	CTTTCATTCT	TTCTAAAATA	TGTACTACTA	GTTGTGACTT
	GTAGGCTATA	A GGGGCTATAA	TATATCAAGA	CAATCTTTAT	CCTCATGAAG	CTTACAGTTA
	AGTAAGAGAT	r AGAGATTAAA	TAATTATAAC	AACAGAGTGA	AGAACAGTGA	AGAAAAAGTA
	CAGAGTTATA	AATATATATA	TAGGGCCAGG	ACTGCATGAG	GAAGGTAGGA	AAGACATTTC
35	GGCAAGAGG:	r TGTCAGGGAA	AAGACTTGCT	TGAGAAAGAG	CCAAGTTGTG	GGGTCTGGCT
	GCTTAGCAA	r gaccataata	CCTAACTTT	GCTATTTTA	CATGAAGTAA	CTAATTTAAC
	CCTATGAGG	A AAGTACTACT	ACCATCTAGA	TTTTACAGGT	AAGTAAGCAG	AGATACAGAG
	AAGTTAAAC	r CTTCACACGO	CTTTGGCTTT	AAACCTATAT	AGGCTTCAGA	GCCTCCCCAC
	TTAACCACT	T TGCCATAGCT	C ACATCCATAT	TAGGTGCTAA	GTAGATATCT	GTTAAGTAGA
40	AGGAGGATG	A AAGGATAGTT	T AGCTAGTTGG	S AAAATGGATG	GATGAATGAA	GTGATGCTTA
	AGCTAAGAA	C AACTTTCAGO	GGTAACATGO	AAAGAATAAT	GGAGCAAAGA	AGAAAAAATA
	GAAAATGGG	A TAATCCTTT	TCTACTAAGO	G GGTAACCATG	TGTGTTATTC	ATCTTCAGGC
	TGTGAAGGC	G GCTTCCCATA	A CCTTATTGC	A GGAAAGTACG	CCCAAGATTT	TGGGCTGGTG
	GAAGAAGCT	T GCTTCCCCT	A CACAGGCACT	GATTCTCCAT	GCAAAATGAA	GGAAGACTGC

TTTCGTTATT ACTCCTCTGA GTACCACTAT GTAGGAGGTT TCTATGGAGG CTGCAATGAA
GCCCTGATGA AGCTTGAGTT GGTCCATCAT GGGCCCATGG CAGTTGCTTT TGAAGTATAT
GATGACTTCC TCCACTACAA AAAGGGGATC TACCACCACA CTGGTCTAAG AGACCCTTTC
AACCCCTTTG AGCTGACTAA TCATGCTGTT CTGCTTGTGG GCTATGGCAC TGACTCAGCC
TCTGGGATGG ATTACTGGAT TGTTAAAAAC AGCTGGGCA CCGGCTGGGG TGAGAATGGC
TACTTCCGGA TCCGCAGAGG AACTGATGAG TGTGCAATTG AGAGCATAGC AGTGGCAGCC
ACACCAATTC CTAAATTGTA GGGTATGCCT TCCAGTATTT CATAATGATC TGCATCAGTT
GTAAAGGGGA ATTGGTATAT TCACAGACTG TAGACTTTCA GCAGCAATCT CAGAAGCTTA
ACCTTTCAAT CGGCCACTGG CCATTTTTT CTAAAGTATC AATTAAGTGG GAATTTTCTG
GAAGATGGTC AGCTATGAAG TAATAGAGTT TGCTTAATCA TTTGTAATCT AAACATGCTA
TATTTTTAAAA
AATCAATGTA AAACATAGA CTTATTTTA AATTGTACCA ATCACAAGAA
AATAATGGCA ATAATTACA AAACATAGA CTTATTTTA AATTTTTTAAAA

15

5

10

The corresponding cDNA sequence for CTSC is provided below (SEQ ID NO: 2):

1 aattetteac etetttete ageteectge ageatgggtg etgggeecte ettgetgete 61 geogecetee tgetgettet eteeggegae ggegeegtge getgegaeae acetgeeaae 20 121 tgcacctatc ttgacctgct gggcacctgg gtcttccagg tgggctccag cggttcccag 181 cgcgatgtca actgctcggt tatgggacca caagaaaaaa aagtagtggt gtaccttcag 241 aagetggata cagcatatga tgacettgge aattetggee attteaceat catttacaac 301 caaggetttg agattgtgtt gaatgactac aagtggtttg cettttttaa gtataaagaa 361 gagggcagca aggtgaccac ttactgcaac gagacaatga ctgggtgggt gcatgatgtg 25 421 ttgggccgga actgggcttg tttcaccgga aagaaggtgg gaactgcctc tgagaatgtg 481 tatgtcaaca cagcacacct taagaattct caggaaaagt attctaatag gctctacaag 541 tatgatcaca actttgtgaa agctatcaat gccattcaga agtcttggac tgcaactaca 601 tacatggaat atgagactct taccctggga gatatgatta ggagaagtgg tggccacagt 661 cgaaaaatcc caaggcccaa acctgcacca ctgactgctg aaatacagca aaagattttg 30 721 catttgccaa catcttggga ctggagaaat gttcatggta tcaattttgt cagtcctgtt 781 cgaaaccaag catcctgtgg cagctgctac tcatttgctt ctatgggtat gctagaagcg 841 agaatccgta tactaaccaa caattctcag accccaatcc taagccctca ggaggttgtg 901 tcttgtagcc agtatgctca aggctgtgaa ggcggcttcc cataccttat tgcaggaaag 961 tacgcccaag attttgggct ggtggaagaa gcttgcttcc cctacacagg cactgattct 35 1021 ccatgcaaaa tgaaggaaga ctgctttcgt tattactcct ctgagtacca ctatgtagga 1081 ggtttctatg gaggctgcaa tgaagccctg atgaagcttg agttggtcca tcatgggccc 1141 atggcagttg cttttgaagt atatgatgac ttcctccact acaaaaaggg gatctaccac 1201 cacactggtc taagagaccc tttcaacccc tttgagctga ctaatcatgc tgttctgctt 1261 gtgggctatg gcactgactc agcctctggg atggattact ggattgttaa aaacagctgg 40 1321 ggcaccggct ggggtgagaa tggctacttc cggatccgca gaggaactga tgagtgtgca 1381 attgagagca tagcagtggc agccacacca attcctaaat tgtagggtat gccttccagt 1441 atttcataat gatctgcatc agttgtaaag gggaattggt atattcacag actgtagact

ttcagcagca atctcagaag cttacaaata gatttcatg aagatattg tcttcagaat taaaactgcc cttaatttta atataccttt caatcggcca ctggccattt ttttctaagt attcaattaa gtgggaattt tctggaagat ggtcagctat gaagtaatag agtttgctta atcatttgta attcaaacat gctatattt ttaaaatcaa tgtgaaaaca tagacttatt tttaaaattgt accaatcaca agaaaataat ggcaataatt atcaaaactt ttaaaataga tgctcatatt tttaaaatat tttaaaataa agttttaaaa ataactgc

The wild type CTSC protein sequence is set forth below as SEQ ID NO: 3:

MGAGPSLLLAALLLLLSGDGAVRCDTPANCTYLDLLGTWVFQVG
SSGSQRDVNCSVMGPQEKKVVVYLQKLDTAYDDLGNSGHFTIIYNQGFEIVLNDYKWF
AFFKYKEEGSKVTTYCNETMTGWVHDVLGRNWACFTGKKVGTASENVYVNTAHLKNSQ
EKYSNRLYKYDHNFVKAINAIQKSWTATTYMEYETLTLGDMIRRSGGHSRKIPRPKPA
PLTAEIQQKILHLPTSWDWRNVHGINFVSPVRNQASCGSCYSFASMGMLEARIRILTN
NSQTPILSPQEVVSCSQYAQGCEGGFPYLIAGKYAQDFGLVEEACFPYTGTDSPCKMK
EDCFRYYSSEYHYVGGFYGGCNEALMKLELVHHGPMAVAFEVYDDFLHYKKGIYHHTG
LRDPFNPFELTNHAVLLVGYGTDSASGMDYWIVKNSWGTGWGENGYFRIRRGTDECAI
ESIAVAATPIPKL.

Papillon Lefevre syndrome (PLS) is an autosomal recessive disorder characterized by palmoplantar hyperkeratosis and severe early onset periodontitis that results in the premature loss of the primary and secondary dentitions. The 46 kb CTSC gene consists of 7 exons and is mutated in PLS patients. Sequence analysis of CTSC from PLS affected individuals from thirty-two Turkish families identified four different mutations. An exon 6 nonsense mutation (856C->T) introduces a premature stop codon at amino acid 286. Three exon 2 mutations were identified including a single nucleotide deletion (1047delA) of codon 349 introducing a frameshift and premature termination codon, a two base pair deletion (1028-1029delCT) that results in introduction of a stop codon at amino acid 343, and a G->A substitution in codon 429 (1286G->A) introducing a premature termination codon. All PLS affected individuals examined were homozygous for cathepsin C mutations inherited from a common ancestor. Parents and siblings heterozygous for cathepsin C mutations do not show either the palmoplantar hyperkeratosis or severe early onset periodontitis characteristic of PLS.

40

35

5

10

15

20

25

addition to the 5 families described above, Table I summarizes CTSC mutations identified in 27 other families presenting with symptoms of PLS.

Haim-Munk syndrome is a rare condition associated with congenital palmoplantar keratosis, pes planus, onychogyrphosis, periodontosis, arachnodactyly and acroosteolysis. In an additional embodiment of the invention, a mutation in cathepsin C causing Haim-Munk Syndrome has been identified. It appears that substitution of an A for a G at CTSC nucleotide position 857 in Exon 6 is responsible for this syndrome in patients.

Based on the data presented herein, it appears that additional mutations or functional polymorphisms are associated with other pathological conditions, including, but not limited to prepubertal periodontitis (PPP), early onset periodontal disease or other forms of gum disease. For example, as shown herein, PPP is caused a substitution of a G for an A at position 1040 in the CTSC coding sequence. Thus, the invention also provides methods for screening the CTSC gene for alterations associated with these disease states.

Preparation of Altered Human CTSC-Encoding Nucleic Acid Molecules, CTSC Proteins, and Antibodies Thereto

A. Nucleic Acid Molecules

Nucleic acid molecules encoding the human CTSC proteins of the invention may be prepared by two general methods: (1) synthesis from appropriate nucleotide triphosphates, or (2) isolation from biological sources. Both methods utilize protocols well known in the art. The availability of nucleotide sequence information, such as a DNA having the sequence of SEQ ID NOS:1-2 enables preparation of an isolated nucleic acid molecule of the invention by oligonucleotide synthesis. Synthetic oligonucleotides may be prepared by the

35

30

5

10

15

20

phosphoramidite method employed in the Applied Biosystems 38A DNA Synthesizer or similar devices. resultant construct may be purified according to methods known in the art, such as high performance liquid chromatography (HPLC). Long, double-stranded polynucleotides, such as a DNA molecule of the present invention, must be synthesized in stages, due to the size limitations inherent in current oligonucleotide Thus, for example, a 4.7 kb doublesynthetic methods. stranded molecule may be synthesized as several smaller segments of appropriate complementarity. Complementary segments thus produced may be annealed such that each segment possesses appropriate cohesive termini for attachment of an adjacent segment. Adjacent segments may be ligated by annealing cohesive termini in the presence of DNA ligase to construct an entire 4.7 kb double-stranded molecule. A synthetic DNA molecule so constructed may then be cloned and amplified in an appropriate vector.

Nucleic acid sequences encoding the altered human CTSC proteins of the invention may be isolated from appropriate biological sources using methods known in the art. In a preferred embodiment, a cDNA clone is isolated from a cDNA expression library of human origin. In an alternative embodiment, utilizing the sequence information provided by the cDNA sequence, human genomic clones encoding altered CTSC proteins may be isolated.

Table 1 sets forth several different mutations associated with particular PPKs and PPP. Altered CTSC-specific probes for identifying such sequences may be between 15 and 40 nucleotides in length. For probes longer than those shown above, the additional contiguous nucleotides are provided within SEQ ID NOS:1 and 2.

Additionally, cDNA or genomic clones having homology with human CTSC may be isolated from other species using oligonucleotide probes corresponding to predetermined sequences within the human CTSC encoding

35

30

5

10

15

20

nucleic acids.

In accordance with the present invention, nucleic acids having the appropriate level of sequence homology with the protein coding region of SEQ ID NO:1 may be identified by using hybridization and washing conditions of appropriate stringency. For example, hybridizations may be performed, according to the method of Sambrook et al., Molecular Cloning, Cold Spring Harbor Laboratory (1989), using a hybridization solution comprising: 5X SSC, 5X Denhardt's reagent, 1.0% SDS, 100 µg/ml denatured, fragmented salmon sperm DNA, 0.05% sodium pyrophosphate and up to 50% formamide. Hybridization is carried out at 37-42°C for at least six hours. Following hybridization, filters are washed as follows: (1) 5 minutes at room temperature in 2X SSC and 1% SDS; (2) 15 minutes at room temperature in 2X SSC and 0.1% SDS; (3) 30 minutes-1 hour at 37°C in 1X SSC and 1% SDS; (4) 2 hours at 42-65°C in 1X SSC and 1% SDS, changing

(4) 2 hours at 42-65°C in 1X SSC and 1% SDS, changing the solution every 30 minutes.

Nucleic acids of the present invention may be

maintained as DNA in any convenient cloning vector. In a preferred embodiment, clones are maintained in a plasmid cloning/expression vector, such as pBluescript (Stratagene, La Jolla, CA), which is propagated in a suitable E. coli host cell.

Altered CTSC-encoding nucleic acid molecules of the invention include cDNA, genomic DNA, RNA, and fragments thereof which may be single- or double-stranded. Thus, this invention provides oligonucleotides having sequences capable of hybridizing with at least one sequence of a nucleic acid molecule of the present invention, such as selected segments of the DNA having SEQ ID NO:1. Also contemplated in the scope of the present invention are oligonucleotide probes which specifically hybridize with the mutated CTSC genes of the invention while not hybridizing with the wild type sequence under high stringency conditions. Primers

20

5

10

15

30

25

capable of specifically amplifying the altered CTSC encoding nucleic acids described herein are also contemplated herein. As mentioned previously, such oligonucleotides are useful as probes and primers for detecting, isolating or amplifying altered CTSC genes.

5

10

15

20

25

30

35

Antisense nucleic acid molecules may be targeted to translation initiation sites and/or splice sites to inhibit the expression of the CTSC gene or production of the CTSC protein of the invention. Such antisense molecules are typically between 15 and 30 nucleotides in length and often span the translational start site of CTSC encoding mRNA molecules.

Alternatively, antisense constructs may be generated which contain the entire CTSC cDNA in reverse orientation. Such antisense constructs are easily prepared by one of ordinary skill in the art.

It will be appreciated by persons skilled in the art that variants (e.g., allelic variants) of CTSC sequences exist in the human population, and must be taken into account when designing and/or utilizing oligonucleotides of the invention. Accordingly, it is within the scope of the present invention to encompass such variants, with respect to the CTSC sequences disclosed herein or the oligonucleotides targeted to specific locations on the respective genes or RNA transcripts. Accordingly, the term "natural allelic variants" is used herein to refer to various specific nucleotide sequences of the invention and variants thereof that would occur in a human population. The usage of different wobble codons and genetic polymorphisms which give rise to conservative or neutral amino acid substitutions in the encoded protein are examples of such variants. Such variants would not demonstrate altered CTSC activity. Additionally, the term "substantially complementary" refers to oligonucleotide sequences that may not be perfectly matched to a target sequence, but such mismatches do not

materially affect the ability of the oligonucleotide to hybridize with its target sequence under the conditions described.

B. Proteins

Full-length, altered, human CTSC proteins of the present invention may be prepared in a variety of ways, according to known methods. The proteins may be purified from appropriate sources, e.g., transformed bacterial or animal cultured cells or tissues, by immunoaffinity purification. However, this is not a preferred method due to the low amount of protein likely to be present in a given cell type at any time. availability of nucleic acid molecules encoding CTSC protein enables production of the protein using in vitro expression methods known in the art. For example, a cDNA or gene may be cloned into an appropriate in vitro transcription vector, such as pSP64 or pSP65 for in vitro transcription, followed by cell-free translation in a suitable cell-free translation system, such as wheat germ or rabbit reticulocyte lysates. In vitro transcription and translation systems are commercially available, e.g., from Promega Biotech, Madison, Wisconsin or Gibco-BRL, Gaithersburg, Maryland.

Alternatively, according to a preferred embodiment, larger quantities of CTSC protein may be produced by expression in a suitable prokaryotic or eukaryotic system. For example, part or all of a DNA molecule, such as a DNA having SEQ ID NOS:1 or 2 containing an alteration set forth in Table 1 may be inserted into a plasmid vector adapted for expression in a bacterial cell, such as *E. coli*. Such vectors comprise the regulatory elements necessary for expression of the DNA in the host cell positioned in such a manner as to permit expression of the DNA in the host cell. Such regulatory elements required for expression include

35

5

10

15

20

25

promoter sequences, transcription initiation sequences and, optionally, enhancer sequences.

The human CTSC protein produced by gene expression in a recombinant procaryotic or eukaryotic system may be purified according to methods known in the art. preferred embodiment, a commercially available expression/secretion system can be used, whereby the recombinant protein is expressed and thereafter secreted from the host cell, and readily purified from the surrounding medium. If expression/secretion vectors are not used, an alternative approach involves purifying the recombinant protein by affinity separation, such as by immunological interaction with antibodies that bind specifically to the recombinant protein or nickel columns for isolation of recombinant proteins tagged with 6-8 histidine residues at their N-terminus or Cterminus. Alternative tags may comprise the FLAG epitope or the hemagglutinin epitope. Such methods are commonly used by skilled practitioners.

The human CTSC protein of the invention, prepared by the aforementioned methods, may be analyzed according to standard procedures. For example, such protein may be subjected to amino acid sequence analysis, according to known methods.

The present invention also provides antibodies capable of immunospecifically binding to proteins of the invention. Polyclonal antibodies directed toward altered human CTSC proteins may be prepared according to standard methods. In a preferred embodiment, monoclonal antibodies are prepared, which react immunospecifically with the various epitopes of the CTSC protein described herein. Monoclonal antibodies may be prepared according to general methods of Köhler and Milstein, following standard protocols. Polyclonal or monoclonal antibodies that immunospecifically interact with altered CTSC proteins can be utilized for identifying and purifying such proteins. For example, antibodies may be utilized

30

25

5

10

15

20

PCT/US00/20400 WO 01/07663

for affinity separation of proteins with which they immunospecifically interact. Antibodies may also be used to immunoprecipitate proteins from a sample containing a mixture of proteins and other biological molecules. Other uses of anti-CTSC antibodies are described below.

DETECTION OF KERATODERMAL DISORDERS/DYSPLASIAS and II. PERIODONTAL DISEASE-ASSOCIATED MUTATIONS AND DIAGNOSTIC SCREENING ASSAYS THEREFORE

Currently, the most direct method for mutational analysis is DNA sequencing, however it is also the most labor intensive and expensive. It is usually not practical to sequence all potentially relevant regions of every experimental sample. Instead some type of preliminary screening method is commonly used to identify and target for sequencing only those samples Single stranded conformational that contain mutations. polymorphism (SSCP) is a widely used screening method based on mobility differences between single-stranded wild type and mutant sequences on native polyacrylamide gels. Other methods are based on mobility differences in wild type/mutant heteroduplexes (compared to control homoduplexes) on native gels (heteroduplex analysis) or denaturing gels (denaturing gradient gel electrophoresis). Sample preparation is relatively easy in these assays, and conditions for electrophoresis required to generate the often subtle mobility differences that form the basis for identifying the targets that contain mutations are known to those of skill in the art. Another parameter to be considered is the size of the target region being screened. general, SSCP is used to screen target regions no longer than about 200-300 bases.

Another type of screening technique currently in use is based on cleavage of unpaired bases in

35

5

10

15

20

25

heteroduplexes formed between wild type probes hybridized to experimental targets containing point The cleavage products are also analyzed by mutations. gel electrophoresis, as subfragments generated by cleavage of the probe at a mismatch generally differ significantly in size from full length, uncleaved probe and are easily detected with a standard gel system. Mismatch cleavage has been effected either chemically (osmium tetroxide, hydroxylamine) or with a less toxic, enzymatic alternative, using RNase A. The RNase A cleavage assay has also been used, although much less frequently, to screen for mutations in endogenous mRNA targets for detecting mutations in DNA targets amplified by PCR. A mutation detection rate of over 50% was reported for the original RNase screening method.

10

15

20

25

30

35

A newer method to detect mutations in DNA relies on DNA ligase which covalently joins two adjacent oligonucleotides which are hybridized on a complementary target nucleic acid. The mismatch must occur at the site of ligation. As with other methods that rely on oligonucleotides, salt concentration and temperature at hybridization are crucial. Another consideration is the amount of enzyme added relative to the DNA concentration. In summary, exemplary approaches for detecting alterations in CTSC encoding nucleic acids or polypeptides/proteins include:

- a) comparing the sequence of nucleic acid in the sample with the wild-type CTSC nucleic acid sequence to determine whether the sample from the patient contains mutations; or
- b) determining the presence, in a sample from a patient, of the polypeptide encoded by the CTSC gene and, if present, determining whether the polypeptide is full length, and/or is mutated, and/or is expressed at the normal level; or
- c) using DNA restriction mapping to compare the restriction pattern produced when a restriction enzyme $95\,$

cuts a sample of nucleic acid from the patient with the restriction pattern obtained from normal CTSC gene or from known mutations thereof; or,

- d) using a specific binding member capable of binding to a CTSC nucleic acid sequence (either normal sequence or known mutated sequence), the specific binding member comprising nucleic acid hybridizable with the CTSC sequence, or substances comprising an antibody domain with specificity for a native or mutated CTSC nucleic acid sequence or the polypeptide encoded by it, the specific binding member being labeled so that binding of the specific binding member to its binding partner is detectable; or,
- e) using PCR involving one or more primers based on normal or mutated CTSC gene sequence to screen for normal or mutant CTSC gene in a sample from a patient.

A "specific binding pair" comprises a specific binding member (sbm) and a binding partner (bp) which have a particular specificity for each other and which in normal conditions bind to each other in preference to other molecules. Examples of specific binding pairs are antigens and antibodies, ligands and receptors and complementary nucleotide sequences. The skilled person is aware of many other examples and they do not need to be listed here. Further, the term "specific binding pair" is also applicable where either or both of the specific binding member and the binding partner comprise a part of a large molecule. In embodiments in which the specific binding pair are nucleic acid sequences, they will be of a length to hybridize to each other under conditions of the assay, preferably greater than 10 nucleotides long, more preferably greater than 15 or 20 nucleotides long.

In most embodiments for screening for susceptibility alleles, the CTSC nucleic acid in the sample will initially be amplified, e.g. using PCR, to increase the amount of the analyte as compared to other

35

10

15

20

25

sequences present in the sample. This allows the target CTSC sequences to be detected with a high degree of sensitivity if they are present in the sample. This initial step may be avoided by using highly sensitive array techniques that are becoming increasingly important in the art.

The identification of the CTSC gene and its association with keratodermal disorders/dysplasias and peridontal diseases paves the way for aspects of the present invention to provide the use of materials and methods, such as are disclosed and discussed above, for establishing the presence or absence in a test sample of a variant form of the gene, in particular an allele or variant specifically associated with PLS, HMS or periodontal diseases. This may be for diagnosing a predisposition of an individual to PLS, HMS or periodontal disease. It may be for diagnosing PLS, HMS or periodontal disease in a patient with the disease as being associated with the altered CTSC gene.

This allows for planning of appropriate therapeutic and/or prophylactic measures, permitting stream-lining of diagnosis, treatment and outcome assessments. The approach further stream-lines treatment by targeting those patients most likely to benefit.

According to another aspect of the invention, methods of screening drugs for therapy to identify suitable drugs for restoring CTSC product functions are provided.

The CTSC polypeptide or fragment employed in drug screening assays may either be free in solution, such as gingival crevicular fluid, affixed to a solid support or within a cell. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant polynucleotides expressing the polypeptide or fragment, preferably in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may

20

10

15

25

30

determine, for example, formation of complexes between a CTSC polypeptide or fragment and the agent being tested, or examine the degree to which the formation of a complex between a CTSC polypeptide or fragment and a known ligand is interfered with by the agent being tested.

5

10

15

20

25

30

35

Another technique for drug screening provides high throughput screening for compounds having suitable binding affinity to CTSC polypeptides and is described in detail in Geysen, PCT published application WO 84/03564, published on Sep. 13, 1984. Briefly stated, large numbers of different, small peptide test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. The peptide test compounds are reacted with CTSC polypeptide and washed. Bound CTSC polypeptide is then detected by methods well known in the art.

A further technique for drug screening involves the use of host eukaryotic cell lines or cells (such as described above) which have a nonfunctional CTSC gene. These host cell lines or cells are defective at the CTSC polypeptide level. The host cell lines or cells are grown in the presence of drug compound. The rate of growth of the host cells is measured to determine if the compound is capable of regulating the growth of CTSC defective cells.

The goal of rational drug design is to produce structural analogs of biologically active polypeptides of interest or of small molecules with which they interact (e.g., agonists, antagonists, inhibitors) in order to fashion drugs which are, for example, more active or stable forms of the polypeptide, or which, e.g., enhance or interfere with the function of a polypeptide in vivo. See, e.g., Hodgson, (1991) Bio/Technology 9:19-21. In one approach, one first determines the three-dimensional structure of a protein of interest (e.g., CTSC polypeptide) or, for example,

of the CTSC-substrate complex, by x-ray crystallography, by nuclear magnetic resonance, by computer modeling or most typically, by a combination of approaches. Less often, useful information regarding the structure of a polypeptide may be gained by modeling based on the structure of homologous proteins. An example of rational drug design is the development of HIV protease inhibitors (Erickson et al., (1990) Science 249:527-533). In addition, peptides (e.g., CTSC polypeptide) may be analyzed by an alanine scan (Wells, 1991) Meth. Enzym. 202:390-411. In this technique, an amino acid residue is replaced by Ala, and its effect on the peptide's activity is determined. Each of the amino acid residues of the peptide is analyzed in this manner to determine the important regions of the peptide.

It is also possible to isolate a target-specific antibody, selected by a functional assay, and then to solve its crystal structure. In principle, this approach yields a pharmacore upon which subsequent drug It is possible to bypass protein design can be based. crystallography altogether by generating anti-idiotypic antibodies (anti-ids) to a functional, pharmacologically active antibody. As a mirror image of a mirror image, the binding site of the anti-ids would be expected to be The anti-id could an analog of the original molecule. then be used to identify and isolate peptides from banks of chemically or biologically produced banks of peptides. Selected peptides would then act as the pharmacore.

Thus, one may design drugs which have, e.g., improved CTSC polypeptide activity or stability or which act as inhibitors, agonists, antagonists, etc. of CTSC polypeptide activity. By virtue of the availability of cloned CTSC sequences, sufficient amounts of the CTSC polypeptide may be made available to perform such analytical studies as x-ray crystallography. In addition, the knowledge of the CTSC protein sequence

35

30

5

10

15

20

provided herein will guide those employing computer modeling techniques in place of, or in addition to x-ray crystallography.

5

10

15

20

25

30

III Therapeutics

A. Pharmaceuticals and Peptide Therapies

The discovery that mutations in the CTSC gene give rise to PLS, HMS, and periodontal disease facilitates the development of pharmaceutical compositions useful for treatment and diagnosis of these syndromes and conditions. These compositions may comprise, in addition to one of the above substances, a pharmaceutcally acceptable excipient, carrier, buffer, stabilizer or other materials well known to those skilled in the art. Such materials should be non-toxic and should not interfere with the efficacy of the active ingredient. The precise nature of the carrier or other material may depend on the route of administration, e.g. oral, intravenous, cutaneous or subcutaneous, nasal, intramuscular, intraperitoneal routes.

Whether it is a polypeptide, antibody, peptide, nucleic acid molecule, small molecule or other pharmaceutically useful compound according to the present invention that is to be given to an individual, administration is preferably in a "prophylactically effective amount" or a "therapeutically effective amount" (as the case may be, although prophylaxis may be considered therapy), this being sufficient to show benefit to the individual.

B. Methods of Gene Therapy

As a further alternative, the nucleic acid encoding the authentic biologically active CTSC polypeptide could be used in a method of gene therapy, to treat a patient who is unable to synthesize the active "normal" polypeptide or unable to synthesize it at the normal

level, thereby providing the effect elicited by wildtype CTSC and suppressing the occurrence of "abnormal" CTSC associated with keratodermal disorders and dysplasias.

5

10

15

20

25

30

35

Vectors, such as viral vectors have been used in the prior art to introduce genes into a wide variety of different target cells. Typically the vectors are exposed to the target cells so that transformation can take place in a sufficient proportion of the cells to provide a useful therapeutic or prophylactic effect from the expression of the desired polypeptide. The transfected nucleic acid may be permanently incorporated into the genome of each of the targeted cells, providing long lasting effect, or alternatively the treatment may have to be repeated periodically.

A variety of vectors, both viral vectors and plasmid vectors are known in the art, see US Patent No. 5,252,479 and WO 93/07282. In particular, a number of viruses have been used as gene transfer vectors, including papovaviruses, such as SV40, vaccinia virus, herpes viruses including HSV and EBV, and retroviruses. Many gene therapy protocols in the prior art have employed disabled murine retroviruses.

Gene transfer techniques which selectively target the CTSC nucleic acid to oral tissues are preferred. Examples of this include receptor-mediated gene transfer, in which the nucleic acid is linked to a protein ligand via polylysine, with the ligand being specific for a receptor present on the surface of the target cells.

The following methods are provided to facilitate the practice of the present invention.

Family material and clinical diagnosis.

Five Turkish families were described previously
[8]. All available family members provided consent for

the study and were clinically examined. A diagnosis of PLS was made in individuals with severe early onset periodontitis and the clinical appearance of hyperkeratosis on the palmar and plantar surfaces. All affected individuals also had hyperkeratosis on the knees. DNA was isolated from peripheral blood samples from all available members from these nuclear families using standard techniques (Qiamp Blood Kit, Qiagen).

RNA Isolation, Amplification, and Tissue Expression Analysis.

Total RNA was generated from fresh tissue samples (gingiva, palm, sole, knee) using TRIZOL reagent (Molecular Research Center, Inc.; Cincinnati, OH) according to the manufacturer's protocol. To determine if cathepsin C was expressed in a given tissue, singletube RT-PCR was carried out using the Access RT-PCR System (Promega; Madison, WI), following the manufacturer's protocol. A portion of each reaction was visualized following agarose gel electrophoresis in the presence of ethidium bromide. Amplification primers located within exon 6 F 5'-AGGAGGTTGTGTCTTGTAGCC-3'(nt. 857-877; SEQ ID NO: 4) and exon 7 \mathbf{R} 5'-AGTGCCTGTGTAGGGGAAGC-3' (NT 981-962; SEQ ID NO: 5) produce an amplicon of 123 base pairs from cDNA. A standard PCR protocol was followed with an annealing temperature of 65°C.

GenBank accession numbers.

5

10

15

20

25

30

35

Full-length cDNA of CTSC (NM-001814) and full-length genomic DNA of CTSC contained within a BAC vector, Genbank accession number (AC011088). See SEQ ID NO: 1.

Cathepsin C Activity Assay

In unafffected non-carriers, cathepsin C activity ranges from $600-1200~\mu\text{mol/min/mg}$. As carriers of a

cathepsin C mutation do not have clinical manifestations, measurement of cathepsin C enzymatic activity can be used to determine whether at-risk family members are carriers. Enzymatic activity can also be used to determine if individuals marrying into a family are carriers. Carriers typically have approximately 50% of normal enzyme activity. Determination of enzymatic activity can also be used to establish a diagnosis of PLS when mutational studies of cathepsin C have been negative. This is important in assuring that a diagnosis of PLS has been properly given to an individual with clinical symptoms suggestive of PLS.

5

10

15

20

25

30

35

Viable leukocyte pellets are obtained from lithium heparinized whole blood by mixing blood with 3 volumes of 3% dextran in normal saline, and allowing the red cells to settle for 45 min at room temperature. Cells are pelleted by centrifugation at 1500 rpm for 5 min at 4*C. After washing and removal of contaminating red cells, leukocyte pellets are resuspended in dH2O and sonicated on ice for 5 sec each for total of 6 blasts using a Sonic 300 Dismembrator. Protein concentration is determined by the Lowry method.

Enzymatic activity is determined by measuring hydrolysis of the synthetic substrate glycyl-L-arginine-7-amido-4-methylcoumarin at a final concentration of 5 mM using a modified method. reactions are performed in duplicate. Twenty ul of leukocyte lysate are added to 200 µl of Na₃PO₄ buffer (0.1M, pH 6.5) in a 96 well plate and then substrate added. Reactions are allowed to proceed for 1 hr at room temperature at which time 10 µl of glycine-NaOH buffer (0.5M, pH 9.8) is added to stop the reaction. Fluorescence is determined using a Perkin-Elmer LS50B luminescence spectrometer at 370-nm excitation and 460-nm emission. The amount of NHMec released is determined by generating a standard curve using NHMec. Cathepsin C activity is reported as µmol

NHMec released per min per mg protein.

Sequencing and mutation analysis.

PCR primers were designed to cover the entire cathepsin C gene in overlapping fragments, from 955 nucleotides 5' to the start codon to 240 nucleotides 3' to the termination codon using cathepsin C (DPP-I) sequence data (Accession # U79415; SEQ ID NO: 1). The PCR products were prepared for sequencing by excising the bands from the agarose gel and extracting the fragments using a Qiagen Gel Clean-up Kit. The sense and antisense strand of each PCR product were directly sequenced on an ABI Prism 310 Genetic Analyzer (Perkin-Elmer) using four dye terminator chemistry. Approximately 1-3 ng of purified product and 3.2 pmol primer were added to premixed reagents from the ABI Prism Big Dye Terminator Cycle Sequencing Ready Reaction Kit, FS (Perkin-Elmer) and underwent a cycle sequencing reaction in a GeneAmp PCR System 9700 (Perkin Elmer). The linear amplification started with a 10 s denaturation at 96°C, 5 s annealing at 50°C and 4 min extension at 60°C. The fluorescently labeled sequencing products were separated from residual reaction reagents using a Centri-Sep spin column (Princeton Separations, Aldelphia NJ) and electrophoresed on POP6 capillary at 1500 V for 30 min. Sequencing data were automatically collected and analyzed by the ABI Prism 310 software.

Table A:

Primers Used to Determine Genomic Organization of

Cathepsin C

Region	Primer Sequences
Intron 1	F: 5'- TGTCAACTGCTCGGTTATGGGTAA-3' (#6)
	R: 5'- TCGAGCTTCTCTTCGTACACCACT-3' (#7)
Intron 2	F: 5'- TGACTACAAGTGGTTTGCCTTTTT-3' (#8)
	R: 5' TGCTGCCCTCTTCTTTATACTGC-3' (#9)
Intron 3	F: 5'- GCCTCTGAGAATGTGTATGTCAAC-3' (#10)
	R: 5' CCTGCCCCAAAAATGAGATA-3" (#11)

30

5

10

15

20

WO 01/07663

5

10

15

20

PCT/US00/20400

Intron 4	F: 5' TCGAAAAATCCCAAGGTAATC-3' (#12) R: 5' GGGCCTAGAAAGGAAATATACATT-3' (#13)
Intron 5	F: 5' AATTTGTTCGGAACTATTTATTGA-3' (#14) R: 5' TCGCTTCTAGCATACCCATA-3' (#15)

Exon	Primer Sequences	
1	F: 5'-GGCGATCAGACTGGCACACTAGAA -3'	(#16)
	R: 5'-CTTACCCATAACCGAGCAGTTGAC-3'	(#17)
2	F: 5'- GCAGACTGTGCTCAAACTGGGTAG-3'	(#18)
	R: 5'-TCTACTAATCAGAAGAGGTTTCAG-3'	(#19)
3	F: 5'-GGCACATTTACTGTGAATGAGAG-3'	(#20)
	R: 5'-GTCTCATTTGTAGCAACTCAC-3'	(#21)
4	F: 5'-CCACTTTCCACTTAGGCACAG-3'	(#22)
	R: 5'-AGGATGGTATTCAGCATTCATA-3'	(#23)
5	F: 5'-ATCCTAGCTAGTCTGGTAGCTGAA-3'	(#24)
	R: 5'-TCTAGGTATCCCCGAAATCCATCA-3'	(#25)
6	F: 5'-GATTCTCTGTGAGGCTTCAGATGT-3'	(#26)
	R: 5'-GCCAACAACAGCCAGCTGCACACA-3'	(#27)
7	F: 5'-TCCCCACTTAACCACTTTGC-3'	(#28)
	R: 5'-ACTTCATAGCTGACCATCTTCC-3'	(#29)

Primers for cDNA templates:

F:5'-GCCGCCCTCCTGCTGCTTCT-3' (#30)

R: 5'-GGCTTAGGATTGGGGTCTGA-3'(#31)

We analyzed raw sequence data, generated consensus sequences, and produced nucleotide/amino acid alignments (DNASIS V2.6 for Windows, Hitachi Software Engineering Co., Ltd.). Mutations were detected by creating nucleotide/amino acid alignments of reported cathepsin C sequence data versus affected PLS patients sequence data using the Higgins-Sharpe UPGMA. Numbers in parentheses are SEQ ID NOS:.

Example I PLS families

25

30

Parents of most families were consanguineous. Linkage studies localized a PLS gene in these five families to chromosome 11q14 [8]. Most affected individuals were homozygous for SSTR markers within the PLS candidate interval on chromosome 11q14, consistent with inheritance of both maternal and paternal copies of this genetic interval from a common familial ancestor ("identical by descent"). Four different haplotypes for short sequence tandem repeat (SSTR) markers spanning the

critical region were identified (Fig. 2), consistent with four independent mutations in the gene responsible for PLS.

Analysis of cathepsin C

Using RT-PCR, we found cathepsin C is normally expressed in epithelium from palms, soles, knees and keratinized oral gingiva from unaffected individuals (data not shown). The cathepsin C gene spans approximately 46 kb and consists of 7 exons. Sequence analysis of exonic, intronic and the 5'regulatory regions of the cathepsin C gene revealed PLS affected individuals from these families were homozygous for CTSC mutations that significantly altered the cathepsin C open reading frame.

Exon 6: Two affected individuals from one family were found to have an exon 6 nonsense mutation (856C->T) which introduces a stop codon at amino acid 286 (Fig. 3).

Exon 7: Three different exon 7 mutations were detected (Fig. 4). A deletion of a single nucleotide (1047delA) of codon 349 was found that introduced a frame shift and an early termination codon (TGA) 27 bases downstream. This mutation would result in a mutated protein of 358 amino acids, compared to the normal (wild type) 463 amino acids. A deletion of 2 bases of codon 343 (1028-1029delCT) resulting in the introduction of an early termination codon (TGA), and a truncated protein of 342 amino acids was identified in another family. A G->A substitution in codon 429 (1286G->A) that altered the original TRP codon (TGG) to a terminator codon (TAG) was identified in two affected individuals (#7 and #22) from two additional families. The expected truncated protein is 428 amino acids. Although these families were not known to be related, the fact that affected individuals from these two Turkish families are homozygous for a common cathepsin C

35

5

10

15

20

25

30

gene mutation and also share a common haplotype for SSTR markers in the PLS candidate interval flanking the cathepsin C gene (D11S931 - D11S1311) suggests that these individuals have inherited the same cathepsin C gene mutation from a common ancestor. Additional mutations were also identified in Exons 2, 3, 4, 5, 6 and 7. Summaries of the mutations identified to date are set forth in Table I and locations are shown in Figure 5.

Papillon Lefevre syndrome is a palmoplantar keratoderma (PPK) with the characteristic clinical features of palmoplantar hyperkeratosis and severe periodontal destruction. The PPKs are a heterogeneous group of diseases all having gross thickening of the palmoplantar skin. Clinically, the finding that distinguishes PLS from other PPKs is severe, early onset periodontal destruction. In affected individuals, the development and eruption of the primary teeth proceed normally, but the eruption of these teeth into the oral cavity is associated with gingival inflammation and subsequent rapid destruction of the periodontium. This form of destructive periodontitis is characteristically unresponsive to traditional periodontal treatment modalities, and consequently, the primary dentition is usually exfoliated prematurely. After exfoliation, the inflammation subsides, and the gingiva resumes a healthy appearance. However, with the eruption of the permanent dentition the process is usually repeated, resulting in the premature exfoliation of the permanent dentition, although the third molars are sometimes spared [5]. Destruction of the alveolar bone in PLS is usually severe, resulting in generalized atrophy of the alveolar ridges, further complicating dental therapy.

Because cathepsin C both localized to the refined PLS candidate interval on chromosome 11q14 and was normally expressed in epithelium from sites affected by PLS it was evaluated as a candidate gene for PLS.

35

5

10

15

20

25

30

5

10

15

20

25

30

35

Cathepsin C, or dipeptidyl aminopeptidase I (EC 3.4.14.1), is a lysosomal cysteine protease capable of removing dipeptides from the terminus of protein substrates, but at higher pH it also exhibits dipeptidyl transferase activity [10]. The cathepsin C gene spans approximately 46 kb and consists of 7 exons that encode a 463-amino acid polypeptide with predicted features of the papain family of cysteine proteases [11]. Unlike cathepsin B, H, L, and S, which are small monomeric enzymes, cathepsin C is a large (200 kD) oligomeric protein that consists of four identical subunits, each composed of three different polypeptide chains [12,13]. Expression of cathepsin C (CTSC) is tissue dependent [14]. CTSC is expressed in pituitary gland, spinal cord, aorta, left atrium, right atrium, left ventricle, right ventricle, inter ventricular septum, apex of heart, esophagus, stomach, duodenum, jejunum, ileum, ileocecum, appendix, ascending colon, transverse colon, descending colon, rectum, kidney, skeletal muscle, spleen, thymus, peripheral blood lymphocytes, lymph node, bone marrow, trachea, lung, placenta, bladder, uterus, testis, liver, pancreas, adrenal gland, thyroid gland, salivary gland, mammary gland, fetal heart, fetal kidney, fetal liver, fetal spleen, fetal thymus, and fetal lung. The CTSC message is also expressed at high levels in immune cells including polymorphonuclear leukocytes and alveolar macrophages and is also expressed at high levels in osteoclasts [11,16]. The pathologic clinical findings of the PLS affected individuals studied here involve severe inflammation and destruction of the gingiva as well as hyperkeratosis of the skin from palmar, plantar and knee sites. In unaffected individuals, cathepsin C is normally expressed in epithelial tissues from sites clinically affected by PLS.

Most parents of the PLS affected individuals in this study are consanguineous. As a result, most PLS

affected individuals in each family are homozygous for cathepsin C mutations inherited from a common ancestor. Yet parents and several siblings who are heterozygous carriers for cathepsin C mutations do not appear to show either the palmoplantar hyperkeratosis or severe early onset periodontitis characteristic of PLS. It appears that the presence of one wild type cathepsin C gene is sufficient to prevent PPK and periodontal destruction in most patients. However, 1 mutation identified to date, (1047 A->G) appears to be associated with the presence of dermatological lesions. A consistent finding in the three linkage reports to date is the lack of a common haplotype among affected individuals from different families. The present report describes 20 different cathepsin C gene mutations associated with PLS. These findings suggest that the CTSC mutations responsible for Several mutations PLS have arisen independently. reported here result in the introduction of premature stop codons. While the W429X mutation encodes a protein shortened by only 35 amino acids, the introduced stop codon is 1 amino acid from the asparagine residue in the active site (Fig. 5). It is likely that such a mutation would cause a conformational alteration that may decrease or abolish activity. Additionally, we have also identified single nucleotide changes that result in missense amino acid changes in several additional PLS affected individuals from other populations, suggesting that structural alterations of cathepsin C may cause PLS.

In addition to the cardinal features of PLS, reports suggest some PLS patients have an increased susceptibility to infections [5]. This generalized increased susceptibility to infection may reflect the more deleterious effects of specific cathepsin C mutations, or may reflect the epigenetic effects of other gene loci. A variety of immunological findings have been reported in PLS affected individuals including

35

5

10

15

20

25

decreased monocyte chemotaxis, decreased neutrophil chemotaxis, impaired neutrophil phagocytosis, altered superoxide production, and decreased blastogenic response, but it has been difficult to extrapolate results of these studies. Consequently, the underlying pathogenesis of PLS has been poorly understood [17]. Immunological findings previously reported for affected individuals from the current families includes decreased PMN chemotaxis and elevated CD11b expression [18,19]. The pathologic clinical findings associated with PLS suggest that cathepsin C is functionally important in the structural growth and development of skin and in susceptibility to periodontal disease. As a lysosomal cysteine proteinase, cathepsin C is important in intracellular degradation of proteins and appears to be a central coordinator for activation of many serine proteinases in immune/inflammatory cells [11]. unknown if the profound periodontal disease susceptibility is a consequence of altered integrity of junctional epithelium surrounding the teeth. interesting that once teeth are exfoliated, and consequently the junctional epithelium is eliminated, the severe gingival inflammation resolves. complete understanding of the functional physiology of cathepsin C carries significant implications for understanding periodontal disease susceptibility. Identification of cathepsin C gene mutations in PLS raises the possibility of creating an animal model to study the development, treatment and prevention of hyperkeratosis and periodontitis.

Classification of the PPKs based upon histological findings, epidermolysis and localization of lesions within the skin (diffuse, linear or focal) has not been helpful in understanding the pathomechanism of disease [20]. Identification of mutations in specific genes has led to development of a revised nosology of these diseases in which PLS is grouped with the palmoplantar

35

5

10

15

20

25

ectodermal dysplasias [2]. In addition to providing insight into both normal as well abnormal epithelial growth and development, identification of mutations in cathepsin C associated with PLS will contribute to the overall nosology of the PPKs.

5

10

15

20

25

30

35

EXAMPLE II

CTSC Mutation in Haim-Munk Syndrome

Of the many palmoplantar keratoderma (PPK) conditions, only Papillon Lefevre syndrome (PLS) and Haim Munk syndrome (HMS) are associated with premature periodontal destruction. Although both PLS and HMS share the cardinal features of PPK and severe periodontitis, a number of additional findings are reported in HMS including arachnodactyly, acroosteolysis, atrophic changes of the nails, and a radiographic deformity of the fingers. While PLS cases have been identified throughout the world, HMS has only been described among descendents of a religious isolate originally from Cochin, India. Parental consanguinity is a characteristic of many cases of both conditions. Although autosomal recessive transmission of PLS is evident, a more "complex" autosomal recessive pattern of inheritance with phenotypic influences from a closely linked modifying locus has been hypothesized for HMS. As set forth in Example I, mutations of the cathepsin C gene have been identified as the underlying genetic defect in PLS. To determine if a cathepsin C mutation is also responsible for HMS, we sequenced the gene in affected and unaffected individuals from families with HMS. Here we report identification a mutation of cathepsin C (exon 6, 857A->G) that changes a highly conserved amino acid in the cathpesin C peptide. This mutation segregates with HMS in four nuclear families. Additionally, the existence of a shared common haplotype for genetic loci flanking the cathepsin C gene suggests that affected individuals descended from the Cochin

isolate are homozygous for a mutation inherited "identical by descent" from a common ancestor. This finding supports simple autosomal recessive inheritance for HMS in these families. As described above, we also report a mutation of the same exon 6 CTSC codon (856C->T) in a Turkish family with classic PLS. These findings provide evidence that PLS and HMS are allelic variants of cathepsin C gene mutations.

In addition to congenital palmoplantar keratosis and progressive early onset periodontal destruction, other clinical findings shared by these individuals included recurrent pyogenic skin infections, acroosteolysis, atrophic changes of the nails, arachnodactyly, and a peculiar radiographic deformity of the fingers consisting of tapered pointed phalangeal ends and a clawlike volar curve (Figures 6A and 6B). Subsequently pes planus was reported to be associated with the syndrome [24]. This was the first reported association of these clinical findings, and the condition became known as Haim Munk syndrome, or keratosis palmoplantaris with periodontopathia and onychogryposis (HMS1; MIM245010)[22]. Although the palmoplantar findings and severe periodontitis were suggestive of the Papillon-Lefevre syndrome (PLS; MIM245000)[3], the association of other clinical features, particularly nail deformities and arachnodactyly, argued that HMS was a distinct disorder. In contrast to PLS, the skin manifestations in HMS were reported to be more severe and extensive. In addition to a marked palmoplantar keratosis (Figure 6C, 6D), affected individuals had scaly erythematous and circumscribed patches on the elbows, knees, forearms, shins and dorsum of the hands. While the periodontium in HMS was reported to be less severely affected than in PLS, gingival inflammation and alveolar bone destruction are present and severe (Figure 6E, 6F). In a subsequent genetic study of this extended family, Hacham-Zadeh and

35

5

10

15

20

25

coworkers [25] concluded that the syndrome might not behave as a simple autosomal recessive trait. Based upon their estimate of the disease allele frequency in this population (0.1), the absence of the condition in other kindreds of the Cochin isolate, and an inability to document consanguinity for many of the parents of affected individuals, they hypothesized that a "complex" autosomal recessive inheritance pattern with a closely linked dominant modifier locus may be responsible for the HMS phenotype.

HMS families

Pedigrees of the reported familial relationships for the Cochin descendents are shown in Figure 7A.

Descendents of the Cochin isolate studied include sibships 2, 3, 4 and 5 in the kindred pedigree originally described by Hacham-Zadeh and coworkers [25].

HMS family genotyping results

All HMS affected individuals from the Cochin kindred were found to be homozygous for all three polymorphic DNA loci (D11S1887, D11S1780 and D11S1367) flanking the cathepsin C locus. Additionally, these individuals shared a common haplotype for these polymorphic markers. These findings are consistent with inheritance of both maternal and paternal copies of this genetic interval from a common familial ancestor ("identical by descent").

Analysis of cathepsin C in HMS

The cathepsin C gene spans approximately 46 kb and consists of 7 exons. Sequence analysis of exonic, intronic and the 5'regulatory regions of the cathepsin C gene revealed that HMS affected individuals from the Cochin kindred were homozygous for a mutation in codon 286 of exon 6 (857A->G) which results in substitution of a conserved glutamine residue at position 286 by an

35

30

5

10

15

20

arginine: Q286R (Figure 8). This glutamine residue is normally completely conserved in wild type cathepsin C from at least five species (data not shown). This was the only sequence change different from the reported, highly conserved, wild type CTSC sequence (GenBank Accession No.: AC011088; SEQ ID NO: 1). All available parents of HMS affected individuals were found to be heterozygous for the mutated (857A->G) allele and the wild type allele. None of the parents or siblings heterozygous for the mutated (857A->G) allele and the wild type allele manifested clinically identifiable characteristics of PPK or had a history of severe, early onset periodontitis.

Restriction Analysis

5

10

15

20

25

30

35

The Q286R mutation creates an AvaI restriction cleavage site. We utilized this newly created restriction site to develop a rapid test to screen for the Q286R mutation. After amplification of a 465bp fragment encompassing the 3' end of exon 6 using primers: Forward 5'-GTATGCTAGAAGCGAGAATCCGTAT-3' (SEQ ID NO: 32) and Reverse 5'-CCAATGCTAAAACTTGTTGAGACC-3' (SEQ ID NO: 33), the PCR products were purified using the Promega PCR kit according to the manufacturer's instructions. Purified products were eluted in 20 µl water. Approximately 5-10 µl of purified product was digested with 5U AvaI (New England Biolabs) in a total volume of 15 µl for 1.5 hr at 37°C. Following digestion, the products were separated by electrophoresis through an 1.8 % agarose gel. Amplification of the wildtype sequence results in a 465 bp product that is not cleaved by AvaI. Amplification of the mutated (857A(G) sequence results in a 465 bp product that is cleaved by AvaI to yield products of 404 and 61 bp. Accordingly, individuals who are homozygous for the wildtype sequence exhibit a 465 bp band. Heterozygous individuals exhibit 3 bands: 465, 404, and

61 bp bands. Individuals who are homozygous for the Q286R mutation exhibit bands of 404 and 61 bp. Restriction analysis confirmed the sequencing results of all examined individuals (Figure 9).

EXAMPLE III

Genetic Screening for PPK-Associated Mutations

The foregoing findings provide the basis for screening and diagnostic assays for assessing patients for the presence of mutations in the CTSC gene related to the pathological conditions described herein. A summary of the mutations in CTSC identified as associated with PPKs are set forth in Table 1.

15

10

Table 1. Phenotype correlations with CTSC mutations

Mutation ^a	Predicted Effect	Location	Phenotype ^b	# of Families
199-222del	Deletion of aa 67-74	Exon 2	PLS	1
445-446insATGT	Frameshift, termination at aa 157	Exon 3	PLS	1
458C⊚T	Threonine 153 Isoleucine	Exon 3	PLS	2
622-623insC	Frameshift, termination at aa 223	Exon 4	PLS	1
704G®A	Tryptophan 235 Stop	Exon 5	PLS	1
748C®T	Arginine 250 Stop	Exon 5	PLS	1
815G@C	Arginine 272 Proline	Exon 6	PLS	1
856C®T	Glutamine 286 Stop	Exon 6	PLS	2
857A@G	Glutamine 286 Arginine	Exon 6	HMS	1
898G®A	Glycine 300 Serine	Exon 7	PLS	1
901G®T	Glycine 301 Valine	Exon 7	PLS	1
901G®A	Glycine 301 Serine	Exon 7	PLS	1
910T®A	Tyrosine 304 Asparagine	Exon 7	PLS, RP	1
956A©G	Glutamic Acid 319 Glycine	Exon 7	PLS	1
1015C®T	Arginine 339 Cysteine	Exon 7	PLS	2
1019A@G	Tyrosine 340 Cysteine	Exon 7	PLS	1
1028-1029delCT	Introduction of premature termination codon	Exon 7	PLS	1
1040A®G	Tyrosine 347 Cysteine	Exon 7	PPP	2
1047delA	Frameshift, termination at aa 349	Exon 7	PLS	1
1286G®A	Tryptophan 429 Stop	Exon 7	PLS	3
1360A®G	Glutamic Acid 447 Glycine	Exon 7	PLS	1

- 1. cDNA numbering considering the initiator Met codon as nucleotide +1.
- 2. Phenotype symbols: PLS, Papillon-Lefevre syndrome; PPP, Prepubertal periodontitis;

HMS, Haim Munk syndrome; RP, Retinitis pigmentosa

While the mutations described in the previous examples are associated with certain pathological conditions, it is important to note that the CTSC gene contains many polymorphisms. Many of these genetic changes are not associated with the disease state. The genetic changes assessed by the methods of the present invention must be associated with the production of an aberrant CTSC protein. Accordingly, a suitable assay for diagnosing this disorder includes the step of differentiating harmless polymorphisms from those

5

10

15

20

25

30

35

mutations which give rise to PPKs and periodontal disorders. These include changes in the coding sequence which give rise to decreased mRNA stability as compared to wild type CTSC mRNA. Alternatively cathepsin C enzymatic activity can be compared between altered CTSC coding sequences and nucleic acids encoding the wild type enzyme. Such assays are well known in the art and need not be set forth here. See for example, McGuire et al., Archives of Biochemistry and Biophysics 295:280-8, 1992; McDonald et al., J. of Biological Chemistry 244:2693-26709, 1969; Metroione et al, Biochemistry 5:1597-1604, 1966; and Vanha-Perttula et al., Histochemie 5:170-181, 1965.

References:

5

10

15

20

25

30

35

40

- 1. Papillon, M.M., and Lefevre, P. Deux cas de keratodermie palmaire et plantaire symetrique familiale (maladie de Meleda) chez le frere et la soeur. Coexistence dans les deus cas d'alterations dentaires grabes. Bull Soc Fr Dermatol Syphilis 1924;31:82-87.
- 2. Stevens, H.P., Kelsell, D.P., Bryant, S.P., Bishop, D.T., Spurr, N.K., Weissenbach, J., Marger, D., Marger, R.S., Leigh, I.M. Linkage of an American pedigree with palmoplantar keratoderma and malignancy (palmoplantar ectodermal dysplasia type III) to 17q24. Literature survey and proposed updated classification of the keratodermas. Arch Dermatol. 1996;132:(6) 640-51.
 - 3. Online Mendelian Inheritance in Man, OMIM (TM). Johns Hopkins University, Baltimore, MD. MIM Number: {MIM 245000}: {8/20/98}: World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/
 - 4. Gorlin, RJ, Sedano H, and Anderson VE (1964), RJ. The syndrome of palmar-plantar hyperkeratosis and premature periodontal destruction of the teeth. J Pediatr 1964; **65**:895-908.
 - 5. Haneke, E. The Papillon-Lefevre syndrome: keratosis palmoplantaris with periodontopathy. Report of a case and review of the cases in the literature. *Hum Genet* 1979;**51**:(1) 1-35.
 - 6. Laass, M.W., Hennies, H.C., Preis, S., Stevens, H.P., Jung, M., Leigh, I.M., Wienker, T.F., Reis, A..

Localization of a gene for Papillon-Lefevre syndrome to chromosome 11q14-q21 by homozygosity mapping. *Hum Genet* 1997;101:(3) 376-82.

- 7. Fischer, J., Blanchet-Bardon, C., Prud'homme, J.F., Pavek, S., Steijlen, P.M., Dubertret, L., Weissenbach, J. Mapping of Papillon-Lefevre syndrome to the chromosome 11q14 region. Eur J Hum Genet 1997; 5:(3)156-60.
- 8. Hart, T.C., Bowden, D.W., Ghaffar, K.A., Wang, W., Cutler, C.W., Cebeci, I., Efeoglu, A., Firatli, E. Sublocalization of the Papillon-Lefevre syndrome locus on 11q14-q21. Amer J Med Genet 1998;79:(2) 134-139.
- 9. Hart TC, Bowden DW, Hart PS, Walker SJ, Callison SA, Bobby PL, Firatli E. An integrated physical and genetic map of the PLS locus interval on chromosome 11g14. Mammalian Genome *In Press*
- 10.Kirschke, H., Barrett, A.J., Rawlings, N.D.
 Proteinases 1: Lysosomal cysteine proteinases. In:
 Protein Profile **Vol.2**, P. Sheterline, ed. (London, UK:
 Academic Press Ltd.) 1995;1587-1643.
- 25 11. Rao, N.V., Rao, G.V., Hoidal, J.R. Human dipeptidylpeptidase I. *J Biol Chem*.1997; **272**:10260-10265.
- 12. Paris, A., Strukelj, B., Pungercar, J., Renko, M., Dolenc, I., Turk, V. Molecular cloning and sequence analysis of human preprocathepsin C. FEBS Lett 1995;369:326-330.
- 13. Dolenc, I., Turk, B., Pungercic, G., Ritonja, A., Turk, V. Oligomeric structure and substrate induced inhibition of human cathepsin C. *J Biol Chem* 1995; 270:21626-31.
- 14. Pham, C. T. N., Armstrong, R. J., Zimonjic, D.B., Popescu, N. C., Payan, D. G., Ley, T. J. Molecular cloning, chromosomal localization, and expression of murine dipeptidyl peptidase I. *J Biol Chem* 1997;272:10695-10703.
- 15. McGuire, M.J., Lipsky, P.E., Thiele, D.L. Cloning nad characterization of the cDNA encoding mouse dipeptidyl peptidase I (cathepsin C). Biochimica et Biophysica Acta 1997; 1351:267-73.
- 16. Hakeda, Y., Kumegawa, M. Osteoclasts in bone metabolism. Kaibogaku Zasshi *J Anat* 1991; **66**:215-225.
 - 17. Hart , T.C. and Shapira, L. Papillon Lefevre syndrome. Periodontol 2000 1994;6, 88-100.

18.	Firatli,	Ε.,	Tuzun,	В.,	Efeoglu,	Α.	Papillon-	
Lefevr	e syndrom	e. A	Analysis	of	neutrophi	1 c	hemotaxis.	J
Period	dontol 199	6;67	7:617-20					

- 19. Firatli, E., Gurel, N., Efeoglu, A., Badur, S. Clinical and immunological findings in 2 siblings with Papillon-Lefevre syndrome. *J Periodontol* 1996; 67:1210-5.
- 20. Itin, P.H. Classification of autosomal dominant palmoplantar keratoderme: past-present-future. *Dermatol* 1992;**185**:163-165.
- 21. Haim, S., Munk J: Keratosis palmo-plantaris congenita, with periodontosis, arachnodactyly and peculiar deformity of the terminal phalanges. Br J Dermatol 1965;77:42-45.

5

35

40

45

50

- 22. Online Mendelian Inheritance in Man, OMIM (TM).
 Johns Hopkins University, Baltimore, MD. MIM Number:
 {MIM 245010}: {5/20/97}: World Wide Web URL:
 http://www.ncbi.nlm.nih.gov/omim/
- 23.Gorlin, R. J., Pindborg, J. J., Cohen, M. M., Jr. Syndromes of the Head and Neck. New York: McGraw-Hill (pub.) (2nd ed.) 1976. Pp. 373-376.
- 24. Puliyel JM, Sridharan Iyer KS. A syndrome of keratosis palmo-plantaris congenita, pes planus, onychogryphosis, periodontosis, arachnodactyly and a peculiar acro-osteolysis. Brit J Derm 1986;115:243-248.
 - 25. Hacham-Zadeh S, Schaap T, Cohen MM. A genetic analysis of the Papillon-Lefevre syndrome in a Jewish family from Cochin. Am J Med Genet 1978;2:153-157.
 - 26 Gorlin RJ, Cohen MM jr., Levin LS. Syndromes of the head and neck . 3rd edn. New York. Oxford University Press, 1990:853-854 (Oxford Monographs on Medical Genetics, No.19).
 - 27. Hart T, Hart PS, Bowden D, Walker S, Callison S, Michalec M, Firatli E. Mutations of the cathepsin C gene are responsible for Papillon Lefevre syndrome. In Press J Med Genet
 - 28. Hart TC, Stabholz A, Meyle J, Shapira L, Van Dyke TE, Cutler CW, Soskolne WA. Genetic studies of syndromes with severe periodontitis and palmoplantar hyperkeratosis. J Periodont Res 1997;32:81-89.
 - 29. Weissenbach J, Gyapay G, Dib C, Vignal A, Morissette J, Millasseau P, Vaysseix G, Lathrop M. A second-generation linkage map of the human genome.

Nature 1992;359:794-801.

5

20

25

30

35

40

45

55

30. Lucker GP, Van de Kerkhof PC, Steijlen PM. The hereditary palmoplantar keratoses: an updated review and classification. Brit J Derm 1994;131(1):1-14.

- 31. Smith P, Rosenzweig KA. Seven cases of Papillon Lefevre Syndrome. Periodontics 1967;5:42-6.
- 32. Cohen T, Bloch N. Immigrant Jews from Cochin. In Goldschmidt E (ed) The Genetics of Migrant and Isolate Populations. Baltimore: Williams & Wilkins 1963;352.
- 33. Wilkie AO. Craniosynostosis: genes and mechanisms. Hum Molec Genet 1997;6:1647-56.
 - 34. Hola-Jamriska L, Tort JF, Dalton JP, Day SR, Fan J, Asskov J and Brindley PJ. Cathepsin C from Schistosoma japonicum; cDNA encoding the preproenzyme and its phylogenetic relationships. Eur J Biochem 1998;255:527-534.
 - 35. Wolters PJ, Raymond WW, Blount JL, Caughey GH. Regulated expression, processing, and secretion of dog mast cell dipeptidyl peptidase I. J Biol Chem 1998;25:15514-15520.
 - 36. Mackenzie IC, Rittman G, Gao Z, Leigh I, Lane EB. Patterns of cytokeratin expression in human gingival epithelia. J Periodont Res 1991;26468-478.
 - 37. Hormia M, Sahlberg C, Thesleff I, Airenne T. The epithelium-tooth interface—a basal lamina rich in laminin—5 and lacking other known laminin isoforms. J Den Res (1998);77:1479-85.
 - 38. Stabholz A, Taichman NS, Soskolne WA. Occurrence of Actinobacillus actinomycetemcomitans and anti leukotoxin antibodies in some members of an extended family affected by Papillon-Lefevre syndrome. J Periodontol 1995;66:653-57.
 - 39. Page RC. Altman LC. Ebersole JL. Vandesteen GE. Dahlberg WH. Williams BL. Osterberg SK. Rapidly progressive periodontitis. A distinct clinical condition. Journal of Periodontology. 54(4):197-209, 1983
- 40. Page RC. Bowen T. Altman L. Vandesteen E. Ochs H. Mackenzie P. Osterberg S. Engel LD. Williams BL. Prepubertal periodontitis. I. Definition of clinical disease entity. Journal of Periodontology. 54(5):257-71, 1983

While certain of the preferred embodiments of the present invention have been described and specifically exemplified above, it is not intended that the invention be limited to such embodiments. Various modifications may be made thereto without departing from the scope and spirit of the present invention, as set forth in the following claims.

What is claimed is:

5

10

15

20

25

30

35

1. An nucleic acid molecule encoding an altered CTSC protein, said nucleic acid having at least one of the alterations set forth in Table 1.

- 2. A nucleic acid probe specifically hybridizable to a human altered CTSC-encoding nucleic acid and not to wild-type CTSC encoding nucleic acids, said altered CTSC encoding nucleic acid having one of the alterations set forth in Table 1.
- 3. The nucleic acid probe of claim 2 wherein said altered CTSC DNA has the alteration comprising a substitution of a C for a T at nucleotide position 856 in Exon 6, thereby replacing a codon encoding glutamine for a stop codon.
- 4. The nucleic acid probe of claim 2 wherein said altered CTSC DNA has the alteration comprising a substitution of an A for a G at nucleotide position 857 in Exon 6, thereby replacing a codon encoding glutamine for an arginine encoding codon.
- 5. The nucleic acid probe of claim 2 wherein said altered CTSC DNA has the alteration comprising a deletion of an A at nucleotide position 1047 in Exon 7, thereby causing a frameshift and a premature stop codon.
- 6. The nucleic acid probe of claim 2 wherein said altered CTSC DNA has the alteration comprising a deletion of a dinucleotide CT at nucleotide positions 1028 and 1029 in Exon 7, thereby causing a premature stop codon.
- 7. The nucleic acid probe of claim 2 wherein said altered CTSC DNA has the alteration comprising a

substitution of a G for a A at nucleotide position 1286 in Exon 7, thereby replacing a tryptophan codon with a premature stop codon.

8. The nucleic acid probe of claim 2 wherein said altered CTSC DNA has the alteration comprising a substitution of a C for a T at nucleotide position 1015 in Exon 7, thereby replacing a codon encoding arginine for a cysteine encoding codon.

5

10

20

- 9. The nucleic acid probe of claim 2 wherein said altered CTSC DNA has the alteration comprising a substitution of an A for a G at nucleotide position 1019 in Exon 7, thereby replacing a codon encoding tyrosine for a cysteine encoding codon.
 - 10. The nucleic acid probe of claim 2 wherein said altered CTSC DNA has the alteration comprising a substitution of an A for a G at nucleotide position 1040 in Exon 7, thereby replacing a codon encoding tyrosine for a cysteine encoding codon.
 - 11. A mutated CTSC protein encoded by a CTSC encoding nucleic acid, said nucleic acid containing a mutation as set forth in Table 1.
 - 12. An antibody immunologically specific for the protein of claim 11.
- 13. A method for detecting a germline alteration in a CTSC gene, said alteration selected from the group consisting of the alterations set forth in Table 1 in a human, said method comprising analyzing a sequence of a CTSC gene or CTSC RNA from a human sample or analyzing a sequence of CTSC cDNA made from mRNA from said human sample.
 - 14. The method of claim 13 which comprises 73

analyzing CTSC RNA from the subject.

5

10

15

20

25

30

35

15. The method of claim 14 wherein a germline alteration is detected by hybridizing a CTSC gene probe which specifically hybridizes to nucleic acids containing at least one of said alterations and not to wild-type CTSC sequences to RNA isolated from said human sample and detecting the presence of a hybridization product, wherein the presence of said product indicates the presence of said alteration in said RNA and thereby the presence of said germline alteration in said sample.

- alteration is detected by obtaining a first CTSC gene fragment from a CTSC gene isolated from said human sample and a second CTSC gene fragment from a wild-type CTSC gene, said second fragment corresponding to said first fragment, forming single-stranded DNA from said first CTSC gene fragment and from said second CTSC gene fragment, electrophoresing said single-stranded DNAs on a non-denaturing polyacrylamide gel, comparing the mobility of said single-stranded DNAs on said gel to determine if said single-stranded DNA from said first CTSC gene fragment is shifted relative to said second CTSC gene fragment and sequencing said single-stranded DNA from said first CTSC gene fragment and sequencing said single-stranded DNA from said first CTSC gene fragment having a shift in mobility.
 - 17. The method of claim 13 wherein a germline alteration is detected by hybridizing a CTSC probe which specifically hybridizes to nucleic acids containing at least one of said alterations and not to wild-type CTSC sequences to genomic DNA isolated from said sample and detecting the presence of a hybridization product, wherein a presence of said product indicates the presence of said germline alteration in the sample.
 - 18. The method of claim 13 wherein a germline

alteration is detected by amplifying all or part of a CTSC gene in said sample using a set of primers specific for a wild-type CTSC gene to produce amplified CTSC nucleic acids and sequencing the amplified CTSC nucleic acids.

5

19. The method of claim 13 wherein a germline alteration is detected by amplifying all or part of a CTSC gene in said sample using a primer specific for an allele having for one of said alterations and detecting the presence of an amplified product, wherein the presence of said product indicates the presence of said allele in the sample.

15

10

20. The method of claim 13 wherein a germline alteration is detected by molecularly cloning all or part of a CTSC gene in said sample to produce a cloned nucleic acid and sequencing the cloned nucleic acid.

20

25

21. The method of claim 13 wherein a germline alteration is detected by forming a heteroduplex consisting of a first strand of nucleic acid selected from the group consisting of CTSC gene genomic DNA fragment isolated from said sample, CTSC RNA fragment isolated from said sample and CTSC cDNA fragment made from mRNA from said sample and a second strand of a nucleic acid consisting of a corresponding human wild-type CTSC gene fragment, analyzing for the presence of a mismatch in said heteroduplex, and sequencing said first strand of nucleic acid having a mismatch.

30

22. The method of claim 13 wherein a germline alteration is detected by amplifying CTSC gene nucleic acids in said sample, hybridizing the amplified nucleic acids to a CTSC DNA probe which specifically hybridizes to nucleic acids containing at least one of said alterations and not to wild-type CTSC sequences and detecting the presence of a hybridization product,

wherein a presence of said product indicates the presence of said germline alteration.

- 23. The method of claim 13 wherein a germline alteration is detected by analyzing the sequence of a CTSC gene in said sample for one of the mutations set forth in Table 1.
- 24. The method of claim 13 wherein a germline alteration is detected by obtaining a first CTSC gene fragment from a CTSC gene isolated from said human sample and a second CTSC gene fragment from a CTSC allele specific for one of said alterations, said second fragment corresponding to said first fragment, forming single-stranded DNA from said first CTSC gene fragment and from said second CTSC gene fragment, electrophoresing said single-stranded DNAs on a non-denaturing polyacrylamide gel and comparing the mobility of said single-stranded DNAs on said gel to determine if said single-stranded DNA from said first CTSC gene fragment is shifted relative to said second CTSC gene fragment, wherein no shift in electrophoretic mobility indicates the presence of said alteration in said sample.

25

30

35

5

10

15

20

26. The method of claim 13 wherein a germline alteration is detected by obtaining a first CTSC gene fragment from (a) CTSC gene genomic DNA isolated from said sample, (b) CTSC RNA isolated from said sample or (c) CTSC cDNA made from mRNA isolated from said sample and a second CTSC gene fragment from a CTSC allele specific for one of said alterations, said second fragment corresponding to said first fragment, forming single-stranded DNA from said first CTSC gene fragment and from said second CTSC gene fragment, forming a heteroduplex consisting of single-stranded DNA from said first CTSC gene fragment and from said

said second CTSC gene fragment and analyzing for the presence of a mismatch in said heteroduplex, wherein no mismatch indicates the presence of said alteration.

5

27. A method as claimed in claim 13, wherein said germline alteration comprises a substitution of a C for a T at nucleotide position 856 in Exon 6, thereby replacing a codon encoding glutamine for a stop codon.

10

28. A method as claimed in claim 13, wherein said germline alteration comprises a substitution of an A for a G at nucleotide position 857 in Exon 6, thereby replacing a codon encoding glutamine for an arginine encoding codon.

15

29. A method as claimed in claim 13, wherein said germline alteration comprises a deletion of an A at nucleotide position 1047 in Exon 7, thereby causing a frameshift and a premature stop codon.

20

30. A method as claimed in claim 13, wherein said germline alteration comprises a deletion of a dinucleotide CT at nucleotide positions 1028 and 1029 in Exon 7, thereby causing a premature stop codon.

25

31. A method as claimed in claim 13, wherein said germline alteration comprises a substitution of a G for a A at nucleotide position 1286 in Exon 7, thereby replacing a tryptophan codon with a premature stop codon.

30

32. A method as claimed in claim 13, wherein said germline alteration comprises a substitution of a C for a T at nucleotide position 1015 in Exon 7, thereby replacing a codon encoding arginine for a cysteine encoding codon.

33. A method as claimed in claim 13, wherein said germline alteration comprises a substitution of an A for a G at nucleotide position 1019 in Exon 7, thereby replacing a codon encoding tyrosine for a cysteine encoding codon.

5

10

15

20

25

30

- 34. A method as claimed in claim 13, wherein said germline alteration comprises a substitution of an A for a G at nucleotide position 1040 in Exon 7, thereby replacing a codon encoding tyrosine for a cysteine encoding codon.
- 35. A method for detecting a germline alteration in a CTSC human encoding nucleic acid, said method comprising comparing a sequence of a CTSC DNA or CTSC RNA from a human sample with an isolated wild type CTSC sequence as provided in SEQ ID NO:1.
- 36. A method as claimed in claim 35, wherein stability of said altered CTSC mRNA is compared with stability of wild type CTSC mRNA.
- 37. A method as claimed in claim 35, further comprising expressing an altered CTSC protein from said altered CTSC encoding nucleic acid and comparing cathepsin C enzymatic activity of said altered CTSC protein to enzymatic activity of wild-type cathepsin C.
- 38. A kit for detecting the presence of an altered CTSC encoding nucleic acid in a biological sample, comprising:
 - i) oligonucleotides which specifically hybridize with CTSC encoding nucleic acids having the alterations set forth in Table 1;
 - ii) reaction buffer; and
 - iii) an instruction sheet.

39. A kit as claimed in claim 38, wherein said oligonucleotide contains a tag.

- 40. A kit for detecting the presence an altered CTSC encoding nucleic acid in a biological sample, comprising:
- i) antibodies immunologically specific for the altered CTSC proteins of the invention;
- ii) a solid support with immobilized CTSC antigens as a positive control; and
 - iii) an instruction sheet.
- 41. A kit as claimed in claim 40, wherein said antibody contains a tag.

15

10

5

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

AIPO OMPL

T TRANS ANNONE IN RESENT REPORTED TO AN AN AREA WAS ARRESTED AND AN AREA AND A CONTRACT TO A STATE OF THE PART

(43) International Publication Date 1 February 2001 (01.02.2001)

PCT

(10) International Publication Number WO 01/07663 A1

- (51) International Patent Classification⁷: C12Q 1/68, C12P 19/34, C07H 21/04, C07K 14/435, 16/18, G01N 33/53
- (21) International Application Number: PCT/US00/20400
- (22) International Filing Date: 27 July 2000 (27.07.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/145,644 60/165,016 27 July 1999 (27.07.1999) US 12 November 1999 (12.11.1999) US

- (71) Applicant (for all designated States except US): WAKE FOREST UNIVERSITY [US/US]; Medical-Center Boulevard, Winston-Salem, NC 27157 (US).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): HART, Thomas, C. [US/US]: 2476 Matterhorn Drive, Wexford, PA 15090-7612 (US).
- (74) Agents: RIGAUT, Kathleen, D. et al.; Dann, Dorfman, Herrell and Skillman, Suite 720, 1601 Market Street, Philadelphia, PA 19103-2307 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS AND COMPOSITIONS FOR DIAGNOSING PALMOPLANTAR KERATODERMAS AND DYSPLASIAS AND OTHER PERIODONTAL DISEASES

Wildtype sequence from nt 844 to 862 - ATCCTAAGCCCTCAGGAGG

Figure

Figure 4

10/031889 PCT/US00/20400

Figure 5

Figure 6

B.

Figure 7

Figure 8

WO 01/07663

9/9

Figure 9

CTILITY
Original U.S. or PCT DA

DECLARATION, POWER OF ATTORNEY AND POWER TO INSPECT

As a below named inventor, I hereby declare:

that my residence, post office address and stratenship are as stated below next to my name;

that I verify believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural inventors are named below) of the inventor entitled: METHODS AND COMPOSITIONS FOR DIAGNOSING PALMOPLANTAR KERATODERWAS AND DYSPLASIAS AND OTHER PERIODONTAL DISEASES

Application No.	ternational Application No. PCT/US00/20400 on which U.S. Pate
	filed January 25, 2002 is bused.
and was emended by Amendment filed	(if applicable); [or];
is smarked to this Declaration, Power of Ano	mey and Power to Inspect; ars of the above-identified specification, including the claims, as amunded i
any amendment referred to above; and that I acknowle this application in accordance wit Rule 56 (a) [37 C F	edge my duty to disclose information which is material to the examination.
CLAIM UNDER 35 USC \$119(e): I hereby claim applications listed below:	n the benefit under 35 USC §119(e) of any United States provision
Provisional Apolication	1 No. FINDS Date Day/Morrang
60/144,644	27 July 1999
60/185,018	12 November 1999
Philadelphia, PA, and the following individual(s) as application and to transact all business in the Patent w	spoolnt DANN, DORFMAN, HERRELL AND SKILLMAN, P.C., is my attomicys or agents with full power of substitution to prosecute the doraclemark Office connected therewith: Kathleen D. Bigust, Ph.D., J.1 41, 126 and Patrick J. Bagan, Esq. Req. No. 27,643
POWER TO INSPECT: I hereby give DANN, DORI accredited representatives power to inspect and obtain	FMAN, HERRELL AND SKILLMAN, P.C. of Philadelphia, PA or its du copies of the papers on file relating to this application.
SEND CORRESPONDENCE TO: CUSTOMER N	
DIRECT INQUIRIES TO: Telephone: (215) 363-6 Factionile: (215) 563-6	
I hereby declare that all statements made herein of my can be	
or architecture of party rangel accident 1001 of 1462 18 of Ga	he knowledge that willful false abit-monte and the library and a made and a mile abit and the
of the application of any palent liqued digrams SOLE OR FIRST JOINT INVENTOR	he knowledge that willful false abit-monte and the library and a made and a mile abit and the
of the application of any palent listed discrete SOLE OR FIRST JOINT INVENTOR Full Name Thomas C. Hart	he knowledge that willful false statements and the like so made are punishable by fin e United States Code and that such willful false assertions may seepardize the validi
of the application of any palent liqued digrams SOLE OR FIRST JOINT INVENTOR	he knowledge that willful false statements and the like so made are punishable by the United States Code and that such willful false statements may separatize the walldide the control of the statement of the st
SOLE OR FIRST JOINT INVENTOR Full Name Thomas C. Hart	the knowledge that willful false statements and the like so made are punishable by the United States Code and that such willful (also assertants may separatize the validity of the Country of the Countr
SOLE OR FIRST JOINT INVENTOR Full Name Thomas C. Hart	he knowledge that willful false statements and the like so made are punishable by fine United States Code and that such willful false assertance may separatize the validities of the County County of the County of
Sole or First Joint Inventor Full Name Thomas C. Hart First Middle tast Signature L. 25, 2002	he knowledge that willful false statements and the like so made are punishable by fire United States Code and that such willful false assertment may soprardize the validities of the states Code and that such willful false assertment may soprardize the validities of the Code and that such willful false assertment may soprardize the validities of the Code and that such as the Code and the Code
Sole or First Joint Inventor Full Name Thomas C. Hart First Middle tast Signature 25, 2002 Residence Wexford Petnsylvania	he knowledge that willful false statements and the like so made are punishable by fine cultived States Code and that such willful false assessment may separative the validities of the cultived States Code and that such willful false assessment may separative the validities of the cultived States Code and that such willful false assessment may separative the validities of the cultived false first Midelle Last Signature Date Residence City State or Country
Sole OR FIRST JOINT INVENTOR Full Name Thomas C. Hart First Middle test Signature 25, 2002 Residence Wexford Petnaylyania City States of Americ	he knowledge that willful false statements and the like so made are punishable by fine cultived States Code and that such willful false assertment may sopportize the validity of the cultived States Code and that such willful false assertment may sopportize the validity of the cultive form of the cultive first midele tast signature Date
Sole OR FIRST JOINT INVENTOR Full Name Thomas C. Hart First Middle test Signature 25, 2002 Residence Wexford Petnaylyania City State of Americ Cost Office Address.	he knowledge that willful false statements and the like so made are punishable by fine United States Code and that such willful false assertment may sopportize the validity of the United States Code and that such willful false assertment may sopportize the validity of the United States Code and that such willful false assertment may sopportize the validity of the United States Code and the United States of Country of of Countr
of the application of any polent issued digreen SOLE OR FIRST JOINT INVENTOR Full Name Thomas C. Hart	Full Name First Middle Last Signature Date Residence City State or Country Residence City State or Country Post Office Address:

Rec'd PCT/PTO 28 MAY 2002

#5

SEQUENCE LISTING

```
<110> Hart, Thomas C.
      <120> Methods and Compositions for Diagnosing
            Palmoplantar Keratodermas and Dysplasias and other
            Periodontal Diseases
      <130> WFU 99-35
      <140> 10/031,889
      <141> 2002-01-25
      <150> PCT/US00/20400
      <151> 2000-07-27
      <150> 60/144,644
      <151> 1999-07-27
      <160> 33
      <170> FastSEQ for Windows Version 3.0
      <210> 1
      <211> 45186
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> misc_feature
       <222> (0)...(0)
       <223> n = a, c, t, or g
agggagatat aagtgaataa tttggacctg ctctctttga atgtttataa tctggtggaa
                                                                        60
aaaaaatgga catatgaata ttgatttgtg accagtgcaa agggggcaaa aattcatatc
                                                                       120
                                                                       180
ccaaagaaaa cggggacaca tcaggtctgt cttgttcatc actgtgtcca cagggcctga
                                                                       240
cacctagtag gctcagtggg agaaaggagc cccaattacc aacaaaagcc aggaaagaac
gggaggetet taeggaaaag ggtgataett aaaetgagea aggaggeaee tggaaatagt
                                                                       300
gccacctaat aatttttggc gatcagactg acacactaga acggttcata agaccagcct
                                                                       360
teteceattg getagettee tteeteacee tteteaceet gggcaageeg etteetetet
                                                                       420
                                                                       480
etgggeetet tgetttteet etgtaacata aaaggggttg ageaatatea tetetgagag
                                                                       540
cgccatgtgt gtgcgtgcca gagggaaaac ccccacaacg ctaatacatc aaaactgcag
gtttgcacaa aaactgaatt ctgctgaatg caaacaggca aacagcattt accaggaaac
                                                                       600
aaaacaaaat caagcacata aaaaagtagg aagagttgga aaacggaagg aagataagtt
                                                                       660
                                                                       720
ctcaaacagc tggaatagtt gatgttagct agcgaagttt ttcagaggaa aaaacaagaa
gttggttatg aggcaagtgg acctgagaaa aaagactaaa ggggaagaat agcaagtaaa
                                                                       780
acagaactee acttgetaga teteteete tgtegegete ttteacetga eccaeteeet
                                                                       840
tattccccc acaccettte ettetetece taegttaeeg cacaggaaeg aagtetgggt
                                                                       900
catgtgcgga ccgcttgtgg ctcttaaatc ctctttttgt caccetggcc gtgcaaaatt
                                                                       960
ttgaaacgtc cctcggcaaa aaaaataaaa ataaaaaaaa aaaatctgtc cctggcctct
                                                                      1020
tecetagite tgggteeagt tgeagecaag tgaggggeag egegegetee eaagteeeeg
                                                                      1080
tttcagagac gcgcacgegc ctggcgccca acccccaatc ccctgctgct cagtgacccc
                                                                      1140
geceaegggt tteegggeeg gegtagetat tteaaggege gegeetegtg gtggaeteae
                                                                      1200
egetageeeg eagegetegg etteetggta attetteace tettttetea geteeetgea
                                                                      1260
                                                                      1320
geatgggtge tgggecetee ttgetgeteg eegeeeteet getgettete teeggegaeg
gegeegtgeg etgegacaca cetgecaact geacetatet tgacetgetg ggeacetggg
                                                                      1380
tettecaggt gggetecage ggtteccage gegatgteaa etgeteggtt atgggtaage
                                                                      1440
                                                                      1500
egeeggeteg geagteetee gggtegteet ttetgeeett gageeeetaa egeagegeea
                                                                      1560
cgccaactac cgcttccccc caggcagacg cttgtgggtg gccagagcat cttgactgga
                                                                      1620
ttcggggacc cttggggacc ttcttccccg ccaggctcgc gaagttaaag ttcatctgct
gagaacttct aactccacac tttcttggtt atcttgggga ctcaacactt tgatcaagaa
                                                                      1680
cttttttatt cctcccgctt aattttgttt gctttgagag agacttggga actgcaatcg
                                                                      1740
```

```
tttqqttctc caqtccgatc tggtaqcqtt atttttaaaa tttatttta tttttatta
                                                                     1800
                                                                     1860
ctattttact agtgaagata gatgagctca gagactctcg aggatatagc atgaagtttt
                                                                     1920
ctctttttgt tagatggtgg gaaagggact ttctgcccag cgattttggt ttgagcgggt
gttgatgagt actagaaaac ggctagtacc actetgcatt gtttcatgca ttgcaaggag
                                                                     1980
gtaqaaattt tttaaaaaat taataacaaa gaaaacttaa ctctgaacct agtaattaga
                                                                     2040
aatgeecaga gtetgeacaa tgtttggete atggaagget eteaataaat acetagtgtt
                                                                     2100
tgaacatact ggagatatte catatgeett cagataacat ggttaceect agaacaaaga
                                                                     2160
                                                                     2220
acctagtgaa gggggtgggg tggaaaaaag acaatcacta gttagaagag tcacactgtg
gtctacccaa accctcttac agcctgtgac ttctgcagag tcagtaaaaa atcagctata
                                                                     2280
attttcttgt caacagaaca aagattaagt catttgttac taaagaaata cctttttaac
                                                                     2340
                                                                     2400
tgactgtata gcatttcata atcctgaaca ttgtaacttt ttttttttt tttttgagaa
tggagtettg etetgteace caggetgtag tteagtggeg ggatetegge teactgeaac
                                                                     2460
ctecgectee egggtttaag egatteteet geeteagtet eeegagtage taggattaeg
                                                                     2520
                                                                     2580
ggcacatgcc accacgcccg gctaatattt tgtattttta gtagagacgg gtttcactgt
gttagccagg atggtctcca tctcctgacc tcgtgatccg cccgcctcgg cctcccaaag
                                                                     2640
tactgggatt acaggeggga gtcaccacge ctggeetttt ttttttttt tttttaaat
                                                                     2700
ttgagtttga aggttgggge agaaagagat caggatttgc actgccctgt cacatgcaat
                                                                     2760
eteccatgte agageattae teteaaacat ggaaaaactt taaaatacae aactetecag
                                                                     2820
atggacacag ctgaatcatt ttcaggaagg ctctgcctat aaaattacct ttggccttaa
                                                                     2880
ttcagtaatt aaaggcaccc acaggtctga gccctcatct atgaaggtta aacgtatcat
                                                                     2940
tectateage actaattggt tttataggat acagacetet agtttgetga ataaactttg
                                                                     3000
gaaggattca gattatgagg ttctaaactg tagagccttt gaggagaaag gtaccccatt
                                                                     3060
tetteteega atagateatt ttgtgtette teetgggett ageacattgt etteettagg
                                                                     3120
atctgatagt ctgtttattt atctttttgt tgtcatacct tttattcttg catttcccac
                                                                     3180
ttttgactag cattttgcct tttctccgtt tctggaagec tgtaattttc aacattcccc
                                                                     3240
atttctcctt ttgttcagtg gaaaaatttc ttcagtgttg ggatgctctg gaaaggtact
                                                                     3300
gtagttttgg gggtctccct gcctgctggg ctgcatagca tatctctctt ttttgagaca
                                                                     3360
aggteteact gtgttgeeca ggttggaatg cagttgtgea atcatagete actgeageet
                                                                     3420
ccaactectg ggetcaagca atcettecae etcagettea geegetcaaa tagetgggae
                                                                     3480
tacaggcaat gcaccaccat aaccagcgaa tttttaaaaa ttatttttgt agagacaggg
                                                                     3540
teteactatg ttgeccaaac tagtettgaa gttetgacet cageecegea aagtgetagg
                                                                     3600
attacaggcg tgagccactg cttctgcttg cattatctca aatttttaga gcctaacttc
                                                                     3660
                                                                     3720
acagtettge eteggageag gaactgtttg aggeaacaag atggageete tggtttette
actaggcaga ctgtgctcaa actgggtagc atgaaaggaa agcagcacaa ttaaaattga
                                                                     3780
                                                                     3840
aattggggga ttettteece tattgaaate caaataattt teetttattg tgettttttt
ttttttcttt aggaccacaa gaaaaaaaag tagtggtgta ccttcagaag ctggatacag
                                                                     3900
catatgatga cettggcaat tetggccatt teaccateat ttacaaccaa ggetttgaga
                                                                     3960
ttgtgttgaa tgactacaag tggtttgcct tttttaaggt tagttttgtt ggaagttgga
                                                                     4020
tttacatttt caatgatttg atatctgaaa cctcttctga ttagtagacc ctcagaattt
                                                                     4080
taattttaga ttaagaagat gaccggaatt gacaccactc ttcccaagag tagtagtagt
                                                                     4140
tggtataatt ttgccacttt atttaaaatt atgattttag taggtttaca aaataccagt
                                                                     4200
gctacatttg aatatgtata aattatgttt aaaatttaca ttttggtaag tatgactaaa
                                                                     4260
ttcttaattt attttcctta ttactaccac tttatttcta aatqttqcca tagtcatttq
                                                                     4320
gctttgttct aaatctgtag gaaagataga gagattacac attttgtttt cttgcagtta
                                                                     4380
ctatgctgtc cttcctatca ctacctgttg gctgaggtag tgataggcct aaatgattca
                                                                     4440
ttatcttaaa tgtactaaat atgttgagta attttttctt ctaaactaac agaaagagag
                                                                     4500
                                                                     4560
aacctaggag ttactccctt aggctggtta aagtgaaagg tagccaagtc aacccagett
qtttccttct ctcattagga aagaactatt qttcattctc ataacacact ttttccaatt
                                                                     4620
gcaaacatac tcagggttaa aatagtttag cacaaattgc agcccatttc atttgttctt
                                                                     4680
cacaagctgg aacttttctt gtaagctaaa tattaaatgg ttcaagtaaa ttggatacat
                                                                     4740
aageetgaaa etaggegttt eteattatae atagagtata aattaagaea gaetttttea
                                                                     4800
tggtgaaagg tttacagcct ttaaaacatc tgggaagaag tgggaaagta gggaataact
                                                                     4860
ctgttaaata tgataaaaga caaagcacca acaaaggcct agttctaaac ttgttataat
                                                                     4920
ttctcatggg agttgtggtt tgtcacaagg ttatggcggt ccaagcaagt ttacaatatt
                                                                     4980
ttttagaata ataactccca gaaatatttt taaaataagg acctttcttt aatatggaaa
                                                                     5040
                                                                     5100
aaaaaaagat gaaatagaga ggaagaggtt gcctttcctc aactggattt gctggtgtga
tatgcagetg gtggaaacca gtttgtccat gctagetgtt gatggccacc agtccactga
                                                                     5160
attagtggaa acccatgctt aaccagttgt taactatttt tagtatcatt tccagatgct
                                                                     5220
acgcattttt tttgtaaaaa acatacttac aatagtatct atataaattt ttaaaattgt
                                                                     5280
aatgtatatg tggtatattt aacctgaaaa taatctttgg tgtatacgtt gatgagccta
                                                                     5340
ggcctttgca gacctcttac agttactctg tcacagccct tcaaaggttc tttgacttca
                                                                     5400
                                                                     5460
gattaagaat caattgcatg tggaatgcat gtgcaaagga agagatattc aaggcaattg
ttaccatgta ccataaacct tgtacataat tttttgtcat tttcttttcc tctgtctcta
                                                                     5520
tecettette titigacacae aatagacace tagteaatti attacaaaaa aaatgaatga
                                                                     5580
atgaagtgga attcagttgg gaaataggtt aaataaatta tttaggagat qaggaatagg
                                                                     5640
```

taaaaagaga	caagtacata	gtttattctt	ttgacttaga	aaacttttga	ttcttaaatt	5700
ctgcagaatt	ddadaaactd	gtggggaaac	ttctaaaatc	attatttaat	taccagagat	5760
gtaatagata	tagacaaaag	cagttttctt	cttttattat	tttttcatca	gttagttett	5820
arcttaaata	gtagtccaaa	getagtaggg	acagagggaa	ttagctggtg	gctgaatgag	5880
gaattgtatc	actttttata	aatcacqqtg	taagcacatt	tggtgttttg	ccattgccta	5940
agaacattag	tcacattagg	tcaatagaaa	atcacttttt	aaagccaaat	aaagttatat	6000
atattacaa	ccatgagttg	gaaagaatta	atatatatgc	tgttggaggg	tagaaccctg	6060
cctaatcata	taattetaaa	tggcattgat	cgaatcctta	ttctttcatt	aggaataaca	6120
atagaaaaaa	tactcctqcc	ctactgattt	caggatatgt	ctattttaaa	gtgcccattt	6180
gacaaaacca	ttatcagggc	catgttttct	ttttctgcag	aaaaatcaac	cactetggte	6240
agtagttagg	tettatgaca	agcaccataa	tttccttagg	cagagtagaa	tataatagga	6300
tacttctttt	tgaaacttaa	tataatcagg	tagttccaga	taaacatagc	ttgcaaagtg	6360
ataaaatacc	atottattt	agtaaatcca	attgcaagag	tgatgggaaa	cagagtttaa	6420
aaacttaaga	aagatattaa	gatggagttg	actttgaata	ataaagtcat	ccactgttga	6480
tagataacat	ttattaatac	agaaagttta	cagattttac	cataagcatc	agggtatttc	6540
ctacaactaa	ggaaaccgtg	cttgaaagga	tgcgtaactc	aaggaaaaca	caagcccatg	6600
taataaqtat	tacatataaa	aattgttcct	atagaattag	aaagcatctt	ttacattaaa	6660
atttatttt	gtaaaaagag	aaaacatcaa	aacttgagta	gtatttgcta	ttcaaagagt	6720
cttacataaa	cgaaaacata	ctcaacctac	tgccattaca	gaaatatttg	acaaattett	6780
gccatgctta	cctaccatca	ttattattat	cctacaaatc	aattggattt	tcacgcctct	6840
ccactgactg	gaaccctaca	acttgcttcc	ttttatcctc	tttatatatg	cttcagatat	6900
acttaaaata	gattgtttct	tattattctt	getgetegag	tttgttgagt	agttggtaca	6960
tacagagtat	ttgtatgtta	tgacatatat	aggttttgtc	catggttcct	ggctcataac	7020
tractrocaa	gacccttgtt	acagaaacca	gaatctctct	ctctgatctt	ctcctaccct	7080
cctttcatct	gcccactgca	gaactctaat	ctgattatgg	tttctaagac	cctcatacca	7140
gagagtattc	toccccatac	catagcagaa	ggaacactgc	acagagacac	caagaagaat	7200
ctgaacagac	aggccttgtt	aggtttagat	catqtcctta	taacctaatt	atattttaac	7260
atggttatcc	atgetttaat	catgtgtatt	caatgaacgc	tccataaaag	cccaagaaga	7320
acadatttda	gggaattetg	aagcgctaaa	catgtagggt	ctgacaggaa	ggtgaagaag	7380
aactcatcat	actagaaggg	taatecaece	taactccgca	gggacagaag	ctcctgtgtc	7440
taggaccctt	ccagaacttg	ctctatqtat	ctcttcaagt	gcctgtgtat	ttatateett	7500
tcaaatatcc	tttgtaataa	atcataaaca	tgtttccctg	agtttttatg	ccactetgle	7560
aaattaatto	aacccaaaga	gggggttatg	ggaaccccaa	tttgaagcca	gtccatcaga	7620
agttctggag	geetggaett	gagactggtg	tctaaagtgg	gcaggcagtc	ttggggaeta	7680
adccctcaac	ctacgggatc	tgaaactgtc	teetggtagg	tagcattgga	gttgtactgg	7740
adddcactda	actaatatet	getgeagaat	tgattgcttg	cttgctggtg	gggagaactt	7800
cctacatatt	ttggggtcac	cgaagtettt	tgtattgatt	gttgttgctg	agetectati	7860
getagaaact	tactttatta	agttctgttt	attcagggct	tatctgaaag	agaaacattt	7920
tttatgattt	gagatttcta	agccatttta	aaacttggtt	ttaacagctt	gagaaattgg	7980
gggtatagta	gggatggaga	tacatatatt	tggatgtgac	ttcaagctag	ataaaagttt	8040
ggaaggaata	aaagtttgac	atctaaagtt	tttgcatagt	ttgagttgag	caggaggtac	8100
taggtatgtt	tttaaaatat	ttttttcagc	caggcacggt	gactcatacc	tgtaateeca	8160
gcactttggg	aggccgagac	aggegateae	ctgaggtcag	gcgttcgaga	ccagtctggc	8220
caacatgaag	aaaccccqtc	tctactaaaa	atacaaaaat	tagetgggtg	eggigacaca	8280
tacctateat	cccagctatt	caggaggetg	aggcaggaga	attgcttgaa	cccaggaggc	8340
agaggttgca	ataaaccaaa	atcacaccat	tqcactccag	cctgggtgtc	tcaaaataat	8400
aataataata	aaaaaat.gaa	agatttttc	ttactcagca	tectecagge	attttattat	8460
ctgaggagtt	tatgggagtt	gcatattaca	tttagggccc	actcaggtgg	gtgggtatet	8520
aaggatttga	aataacctta	totaaactaa	taaggagtaa	tcaggcctgt	. ggcaagatgg	8580
aaacadtott	agaggcattc	. aaattcaaat	ttcctttaaa	acactgggct	ggccaaaaca	8640
aaadadaata	ctatctacad	r accaatttct	aagattatca	gattttagta	gcatttacca	8700
tttcattqta	cttgggagag	: tttagcaaat	ttgcacttct	taaaagtacc	tgcaggcaat	8760
ctcctatata	aaaacacaat	. gcaggetage	ttaactccta	cctttaattc	: cagcactttg	8820
agaagttgga	gactagogto	r accaacataa	· tgaaacctca	. tctccactaa	ı aaatacaaaa	8880
attagggagg	r cataggagg	r cacacctata	gteceagtta	. cttgggaggc	cgaggcagta	8940
caatcactto	r aacdctddad	r acadadcato	gagtgagetg	agattgcacc	actgcactcc	9000
atcctgggtc	r acadodtdac	r actctqtctc	caaacaaaac	aaaacacaca	cacacacaat	9060
otaacaacac	· gaaacagaat	: actotoaaaa	, tgcttaatta	ı tgtctgactt	tacatgatgg	9120
ctggatatgt	gattatttt	: tcttcttat	getettatgt	: actttgttca	tttttaatga	9180
tratcatri	a taaageteet	ctatatagea	ı ttctctccac	: caaattgccc	: agagacagga	9240
agtectotaa	a aacaaactaa	a getecaaaaa	ı atgacetect	gttgaatagg	getttttttt	9300
+++++++++	- ttttttttt	r aaatggagtc	: tagetetgte	tcccaggccc	tegeteette	9360
cacctcctgc	r gtttaagaga	a ttatacttac	tcagcctcca	ı gagtagattç	g gattacaggt	9420
accaccato	acacccaact	. aatttttgta	ı tttttagtaç	, agatggggtt	t caccatgtt	9480
gaccagacto	g gtcttgaact	cctgacccca	a agtgatccgc	c ccgcctggad	c ctccccaagt	9540

gctgggatta	caggtgtgag	ccaccacgcc	cagcctgaat	aggctttcta	acctactgtt	9600
tctcatttta	ctttctctga	ggcagtaaaa	gaaactgact	ctaaaaggga	gcagtagaga	9660
aggaagtgag	attttatttt	gaagattaag	ctactcaagg	gctgaggaaa	tatgtagagg	9720
agaagtagac	tcattatggc	tagaaatttt	atttqqtgat	agtgaagcaa	atettaggge	9780
tttctaattq	agetettatt	tgaaaggete	caatcttaat	agaactataa	gctaaaaaaa	9840
atdaccatca	atatttctaa	agcaagttgc	tactcaaaac	aagaacactt	tgggaggetg	9900 9960
gggctggtgg	atcacctgag	gtcagaagat	ggagtccagc	ctcaacatgg	tgaaacccct	10020
ctatactaaa	aatacaaaaa	gtagccgggt	gtggtggtgc	acgcctatag	reteageeae	10020
ctgggaggct	ggggcagaag	aatcgcttga	acccgggagg	tggaggttge	agrgagerga	10140
cattgtgcca	ctgcatttca	gcctgggtga	cagagtgaga	aggettaat	ttctcacttt	10200
aaacagaaac	aagaactcta	tgttgagaaa	tccatactag	cadaaatdtc	acctatattt	10260
gtgtgctagt	gattaataaa	cticaagett	atcacacage attttttcac	trarcettet	gggttcatta	10320
ctacaataaa	agatttggga	acactgugac	gagataggta	tactttttaa	aatttggatt	10380
ctaagatata	acaaccccay	tttatcttt	ttttgttttg	ttttaaacaa	ctttgggttt	10440
caatatatca	atatttcaat	adaddaaaaa	tatcagaagt	ttagcactga	gtgcctgcct	10500
accigladga	tatattatt	catgatgatg	cttaatctca	acataatgac	tcagtttacc	10560
attotaaact	ctttatagga	tatcactgat	tttatcagtc	atttgttcat	gcagctggga	10620
actataaaaa	tatatgattt	accacateta	aggaacaaac	tgggtgagct	ccattgaaaa	10680
atttctaact	ttettattaa	aagcaagctt	cctcacttcc	tgatggctta	tgcaaattaa	10740
tacctattta	ttcatcagag	ggtgactgga	gagattatgg	ttttcttatg	aatttettge	10800
ttgagggtgg	ttatatacta	tttctaaqtt	gtctgcacta	ttttatgtga	gtaattttet	10860
actttattat	attetatttt	cacatotcaa	atcagetete	ccaagaatgc	tacttgtaac	10920
ctaagtagac	gtgaaccgaa	aagggtaaag	acccagctaa	aaaaaaggtt	gactcaagtt	10980
cacttcacat	tegtaaagta	attagactac	cttaggttgc	ttattcttt	cttgaaaaga	11040
atccctcaad	agagaaacat	ataaaaccac	agcagettag	atctgtcttc	cacagagaag	11100
gtggctttta	cagagaaatt	gacatactca	tcacttatct	gacatgaccc	agetttgtaa	11160
aactggcttc	tattaaaata	gtcttaatag	actattcact	gaggaggaga	gaatettatt	11220 11280
cactctttac	attctcttca	cattttcaga	atagatgttt	aaatcattgc	tcacactgga	11340
tccataaatg	tctaaaatgt	tgatgaagaa	ataggtgatt	agagagtaaa	tetettagt	11400
acttaccctt	ccttgcattt	taacataata	ttettteece	ttttccttcc	attgaaagga	11460
ggctcttaaa	taccagaagt	gagatatgaa	aaagggaact	gggaacaagc	attgaaagca	11520
ccataggttt	atcttatatt	agcattttee	tatatagaat	tatettetta	agtgacccac	11580
acatctgcca	ggtaggaatt	geteateagt taagagatga	aagtgagcat	tagggttgaa	agetteagea attagtaage	11640
atgttccata	cagecactaa	taacayacca	ataaatataa	aatgtattaa	atagttttct	11700
tgtttettet	agttetete	atatata	tattgtatgg	tagtagetta	ggaggaagat	11760
ggaatagga	acttttccca	gataggttca	ctattttttt	tttccacgaa	aaataagctg	11820
ttctcaaaat	acadtttaca	aaattttatc	cttaactctt	cactctttct	cctagttagg	11880
dadaccdctc	caccagtaga	aaagataaac	cctggtaatt	tgttgtgtaa	atgggataaa	11940
taggetagta	cctagtcatg	tagattcagg	cagcactgag	cctaaattaa	agiligeaag	12000
gtatacatgt	taatgtatct	aagttactat	atttagcctg	tttcttaagt	atgtttcaga	12060
aacatattco	ttttttcag	tagcagttac	cttcagatgc	atgtgcttct	aaagcatgtt	12120
aattacatat	gcagtacatg	ttgcttaagc	atttagcttc	agaatggcat	ctttcctgtg	12180
aatgtettaa	catttacaaa	aatataccaq	gatctcaaat	atcagtgctg	gtatililli	12240
ttttttac	ttaaagaaac	taatataatt	aaatattaag	agacaatatg	accelliging	12300 12360
gcttgtaacc	ctagttttta	ttgtcttgta	gttattaaat	agagcatctg	ttgagggact	12420
cttttaaaac	cacagccatg	aacagacgtt	ggggctaaga	gacagagcag	cctgcgacag	12420
tgtggaccta	cctgtagcag	ctagcaaagg	cctctagcag	ctacagtccc	ttetggagte	12540
tttatttgca	tgcaaaatgc	aaaggagtcc	tggtgaccta	ceteeaagge	agetgeeete	12600
ctgaacactc	ccttggaaaa	cagtaaacat	cattttggaa	tagatagatt	cagagactac	12660
acaggagaaa	ggaaaaaaaa	attetgaaga	tgcaaaatct	ttatattt	caccgttcag	12720
ttttttaata	aaaggaacaa	tatacaacac	grigitetti	tatatattt	aaatcccttc gttttattca	12780
tattacagtg	atttttttt	aagattgtca	ggatttgaag	atctttcctt	tctctaatta	12840
cagcgtaaat	cttattcaca	tattataaa	. ctycctydyt	geeettaaat	ctcttgagat	12900
ccttgaggaa	. cccaagagcc	addaaaata	atcctatara	ggacatattt	aaagaaggga	12960
ccacagatat	tttataaret	atotoanact	gctatagtat	acttctacac	attatagacc	13020
tacaataaa	. ctccccayat	agatagtate	gtaaacaccc	tattttttt	cttttcttt	13080
ttgattaggt	. ceggedayaa . acaaddttta	tactaadaad	ttgacatact	ataagctaca	aaagttctgt	13140
aaadtadata	taactagttt	cattttatac	r atagagaaaa	ı ttaatctctt	acagtgetaa	13200
actcacagag	r titictaactd	· taaaatqcta	ı qaacttgtct	: ttcaagccta	aagaetteet	13260
tagaactaaa	tagtgaaaaa	agccatttca	ı caaataagta	ı aatggtatti	agaggcatat	13320
ttggatttcc	: tootaaatto	: caatctataa	ı qcatcatgaa	ı tattagitt	a atgitgeatg	13380
ggctcatgtt	gaagttttaa	gagaagaact	geettgaage	ttaggtttcc	ttagctatta	13440
33	J -	-				

		nnnaanaaat	tttttcattg	aagaccaaaa	cttaccttct	13500
ggctactgac	tttettgeet	aaaccayyyc	agagetttgt	aaacttcaaa	ttaadtacaa	13560
ccttcagttt	gtagtttgga	aartygtaga	agageeege	attattaaa	taattactat	13620
actaagtgtc	atagtcaaat	ttactaatct	taattacagt	attgttcaac	ttagaggtga	13680
cttctagctc	tttcctgccg	aataatggtc	ttgtttcctg	cicigitiggt	ctagagetga	13740
cttctttcag	ctttggtaag	cctgaaatta	tggggttatg	tttaattcat	actgtetggg	13800
tggactttcc	tctcttgcat	ttctgcttga	atagaagaat	ttttctctag	agagtagttt	
gtcatcctta	ctctgttgat	tcagatgact	ctttgtatga	tctgagaggt	atactgttct	13860
gctattctga	gaagaagtat	ttcagaaaga	tgaattaaga	gtacagtgga	ctgctcccac	13920
ctggaaactt	ttatctatct	cacctctgga	cctgataaat	tctttatcac	tcaggacctt	13980
gatgacgctg	ctctctgaaa	ccctccccag	ctctctctat	taccgtgaga	aacatcagaa	14040
ctttaattcc	cattgcatat	cacagatacc	tctgctttca	tgccatgctg	taatggagtg	14100
attaggtagg	atgttttcat	ctctttccag	attgaaaatc	tgtatttctc	cctgtatatc	14160
ttgaagaggt	aatgcacata	gaactttgta	ggtacctgga	aaatgcacca	cagttttctt	14220
ttattttaa	agacttttca	caagtattac	caacttacaa	agaattaatt	ttgtaggatt	14280
atemater	agacceccea	taataccata	tacatctttt	ttgattccct	gctctaaaga	14340
ctagaaagac	adattaggaa	tacacacttt	taaaagaatt	gcatatttca	agctgacttt	14400
atattatcag	gttaccttcc	aggaggeet	atgtaaaaaa	tatattcaat	ggcattccta	14460
caggatgtaa	atataaccaa	agcaactgat	ggttttacat	ttaagtettt	aatccatctt	14520
gattttcttc	tagggtgttt	tattgttttg	ggtttatat	taattttata	catataacta	14580
gagttaattt	ttgtataggt	ataagaaagg	ggtccagttt	taggtattat	cgtatggcta	14640
gccagttctc	ccagcaccat	ttattaaata	gggaatcctt	tettatasa	atottcatto	14700
acggtttgtc	aaagattaga	tggttgtaga	tgtgtggtct	tatttetgag	attendated	14760
tcttccactg	gtctatgtgt	ctgtttttgt	accatgcttt	tttggttact	gtagccttgt	14820
agtatagtat	gaaagatagc	atgatgcctc	caggtttgtt	ctttttgctt	aggattgtet	
taactataca	agctttttt	tggttctata	tgaattttaa	aatagtttct	tctaattgig	14880
tgaagaatgt	taatggtagt	ttaatgggaa	tagcattgaa	tctgtgaatt	gctttgggca	14940
gtatggccat	tttcatgata	ttgattcttc	ctatccatga	gcatgtaacg	tttttccctt	15000
catttatata	ctctctcatt	tccttgagta	gtggtttgta	gtteteettg	aagagatcct	15060
tcacttcttc	totattccta	gatattttat	tetetetgta	gctattggga	atgggagttc	15120
attcatgatt	ttactctcta	cttgcctttt	gttggtgtat	agggatcctg	gtgacttctg	15180
cacattgatt	ttgtatcctg	agactttacc	gaagttgctt	atcagcttaa	gaagcttttg	15240
aactaaaata	atggggtttt	ctagatatag	gatcatgtta	tcttcaaaca	aagacaattt	15300
gacttcctct	cttcctattt	gagtacgett	tatttcttc	tcttgcctga	ttgccctggc	15360
gactectec	aatactatat	tgaataagaa	taataaaaaa	gggcatcctt	gtcttgtgcc	15420
cagaaccccc	aacaecacac	ccaacttta	cccattcagt	atgatattat	ctgtgggttt	15480
agtiticacg	gggaatgete	tttgagatag	ottoottoaa	tacctagttt	attgagagtt	15540
ClCaladaa	getettatta	aattatataa	aaggeetttt	ctgtgtctat	tgagataatc	15600
tttaacatga	agegatgitg	tatatttata	tastastas	catttattaa	tttgcatatg	15660
atgtggtttt	tgtettagt	eggittaty	cgacgaacga	tataataaat	aagcttttgg	15720
ttgaaccggc	ettgeatect	ggggacgaag	tasttasast	tttttacata	gaagttcatc	15780
atgtgctgct	ggatttggtt	taccagiaci	teactgagac	ctaccacatt	gaagttcatc	15840
agggatattg	gactgaagtt	ttettttgt	tgtegtatet	tagttttaaa	ttggtatcag	15900
gatgatgctg	gcctcataaa	atgagttagg	gaggagteee	teetteeta	ttgtttggaa	15960
tagtttcaga	agaaagggta	teageteete	tttgtacctc	tygtagaatt	caactgtaaa	16020
tccatctggt	cctggacttt	ttttcattag	taggctattt	attactgect	cactttcata	16080
acttgttatt	gatctattca	. gggatccaac	ttetteetga	tteagtettg	ggagtgtgta	16140
tgcatccagg	aatttatcca	. tttcttctag	attttctagt	ttetttgeat	agaggtgttt	16200
gtagtatttg	ctgttggttg	tttgtacttc	tgtgagatca	gtggtggtat	cctgtttatc	
attttttatt	atatatatt	gattettete	: ttatttttga	caaagctgac	aaaaagaagc	16260 16320
aatagggaaa	ggactctcta	ttcaattaat	. cctactgtat	atctggctag	ccatatgcag	
aaaattgaaa	ctattectat	: ttcttaatcc	: atatacgaaa	atcaacttac	gatggattaa	16380
agacttaaat	gtaaaaccca	aaattataaa	. accctggaat	. agaatatagg	r caatatcatt	16440
ctggacatag	r daatdddcaa	. agattttatc	agaaagacac	caaaagcaat	tacaacaaaa	16500
gcaaaaattg	r dcaaatdada	tctaattaaa	ctaaagagct	. ctgcacagca	ı aaagaaacta	16560
ctatcagagt	: gaacaggcaa	ı ccaacaqaat	: gggagaaaat	. tttttcaatc	tatccatatg	16620
acaaaggtct	: aacatccaga	atctacaago	_r aacttaacaa	. atttacaaga	aaaaaggagc	16680
cccattaaaa	anttoocaaa	gaacatgaac	agacacttcc	cagaagatat	tcatgtggcc	16740
aataaacato	r aadaaaadct	caacatcact	gaccattaga	gacgtgcata	tcaaaatcac	16800
aataaacaeg	, catctcatct	cacaatggtg	r attattaaaa	agtcaaacaa	a catgctagtg	16860
aacyayacac	. caeeteaege	cacttttaca	ctattaataa	r gaatgtcaac	: taattcaacc	16920
aggittgtage	r sasatataat	. cgcccccas	. ccatttacaa	ccagaaatat	cattactgca	16980
actgtggaag	acayiyiygu	aatcattcts	ttacaaacat	acatocacat	gtatgtttat	17040
Lacagaccca	aayyaataya x ttasasstii	, datedatete	r daatcaaccc	aaatoctcat	cagtgataga	17100
tacagcacta	Licacaatag	g caaayacatg	, gaaccaaccc	tatocacca	taaaaaggaa	17160
ctggaaaaag	g agaatgtgga	a acataaacac	. caryydaid	, catycaycae	a taaaaaggaa	17220
tgagatcctg	g teetttteag	g ggacatggat	. ggagttggaa	ataartaar	tcagcaaact	17280
aatgcaggaa	a cagaaaacca	a accaccacat	guidicadu	acaaytyyya	a getgaacaat	17340
agaacacato	g ggcacaggga	a ggggaataad	: acacactggg	gecagecage	a adaraaaaaa	1,340

tcaagctgag ggagagcatt agaaaaaata gctaatgcat tctgggctta acccatttat 17400 17460 gcctagtgtt ccatttctgg aatgctaagc atgtggaagt tctttatatc ctgctcaagg tcattgccaa ggtctgattt ttcacattca acaaattgca acctctggca taaatgggtt 17520 aatacctagg tgatgagttg ataggtgcag gaaaccacca tggcacatgt ttatctatgt 17580 aagaaacctg cacatcctac acatgtaccc tggaacttaa aaaatttaaa atatatatgt 17640 atatatattt aatatggaat tttaaaaaatt actaatgagt tcttttatct gagtaatttt 17700 gcatcaacat gcttttatta tggaagagaa gattcagtga gtacaaaatt gcagatacat 17760 gtgtcagaag atccctgaat ataataaggc ttagtattct gtgtcataat tgcctgtttg 17820 17880 tattcctctc tggtctttaa acttcattag ggcaaggatc aactccatct tactaaccat ttgattccct atgtattaca cgatatatga ccaataataa gccttcaata aatacttgta 17940 aaataaagaa tgttatgtaa tatatcatgt ggtattgttt tattgatgtg ttctttgaag 18000 tgttaccttt gtgtccttag aggctatggt gggccctcag gccatatatg ttggatgatt 18060 tagtggaaaa gagattagac ttttatattt tattctattt atttatttat gttttaatct 18120 tgtgtaagcc tatagaggcc aagatagggc tcagagttaa aaacagtgat gttctaactt 18180 18240 tcaaaactac taaaaacaaa attagctatc aagggaaatc ctgagtgttc tgactgcagg ggttccccaa agcctggagg accgaagctt tgaaatgctg catggtgtgc ctcacctctg 18300 ttgagtatag tgaggaacat gagctgagga gtggattaga tgaactctta agatttttt 18360 18420 ccaactttac ggtttgagtt tatgagtaag taagtgagga atgagcccag ggactttgac tactttgctg tgcagtaaat tgctgttttc ttagctaatt ctggagtgtg tattttggtt 18480 ttaatgtaat gtcctttcag cactggaaat aaacagattt atgaccctcc attttcacat 18540 gtaacttcca gttccttcag taaaatgctg gaagttgctt ggctgtaacc actgtaacta 18600 18660 tttcctggca gttttgcatt ttattacaat tcgacttttt aaatgcatgg ttcagtccag 18720 ttaataggca gaaaactata gctattcctt ggaactgaca tagggaagtt ggtttctttc tgaggaaaga tgtgacactc tgatggattt ggcaaaatac caattcagta aaatttgcct 18780 ggttcctttc tgacagcaaa tggaggtaat tgtacgtata tagatttcta cagtaaacaa 18840 agggcaaaaa tggaaacatt ttttgttttt taatgttgct ggaatataat atttccatat 18900 ttggttaatc atcaaatcat tcaactccat gcaaagtact cttttcaaaa ttacaaatca 18960 tettgatgga ttagaettgg atgtetaaat tttttattat gtattetaaa ttatetatag 19020 gtacattttg aaaattatat atacatgtat cactgtacta catttgttat aaaatgtgaa 19080 19140 atattaagcg attaaatact ttattaatgt cataaaattg tgccctaccc aaaatatatt 19200 ttaagaagat atcatttgaa aataatgtaa aatattcttc attattatga ttttgttgcc aaaagtaatg ttagagtccc tgttactgat aattttcatg actgtaaatt ttcaacattt 19260 ggaaacaaaa ttttctgatg tgttttaaaa tcttaaagaa tttcagtaga ttttgacaca 19320 tttttgttaa aagtatgaaa gtgtcacagc tttagaagga tttagaataa ttatcaattg 19380 19440 gtattaggga tgacaatttt aatagacaaa ttttaactga aacatttgct ttattgatgt 19500 ctaggactaa aaaaaatatt atagtgatgg aaccatttca aaacatctgt ttttaaaaac ttctgtcaac atgtttgaca gaagtcagaa tagggtaatt ataaaaaaac tgccattttc 19560 ttatgtttgc atcattagta tttgcaaatc cttgtttctt tgcaagtata ttttaaacta 19620 cttgttcatt ttatgagtgt tagcctgatt aattcagata agatgctcaa gtcagtttaa 19680 gcaggcagat gtgaaaaagg gaatatgctg tgccttaact atcttatagg gacttactag 19740 cacactgtac ataacagatg aacatctgat attagatctg atgggcacac caatgttgtt 19800 tcatatatta aataatagtg gaagttttca atttaattag tttatttatt tatttattta 19860 19920 tttttgagec ggtgttteec tetttttgec aaggetgggg tgeaatggea catggttgea geteaetgea atetecaeet eccaggttea aaggattett etgeeteate eteccaagta 19980 gctgggatta caggcgtgtg ccactatgcc aggctaattt ttgtattatt agtagagaca 20040 aggtttcace atgttggtga ggctgctctc aaaatcccga cttcaggtga tccacccgcc 20100 tcagcctcct aaagtgttgg gattacaggc atgagccact gcgcctggcc aattgtattt 20160 ttatgttaga aatatatatg ggagttacaa tactttgttt ccaatgttcc gctggaaacc 20220 actggttgaa aggataggtc ccagtgtcag ctgcccagtt ggcagttttg gatagaatat 20280 aagttctatg aaggcatgga tgaagtatcc ttcatggtaa tgatggtaat gttagtatag 20340 tcacttgttt aatgttgtat aactttttaa ctcttccaac ttcaatttca tctatatctt 20400 tcatagcagt ccagtaaagt agtatcaatt atagatatca ttcctacttt cagataaagt 20460 aactgaggct cactagtttt gacttgctca aggttacgta aatgataagt gacagactgg 20520 atttaaaggg cggagtccac tttactaaac tgcctctgtc ttctagccaa gtttgttatg 20580 taaagtaagt attcagacat tggctaagta tattattaat caagaaaaca gtagaacagg 20640 tttaaggaat ttttttttcc ctctcctcag tgtcaaaaag cagtcaagta aaagatccaa 20700 gataaataac ttcagttccc aaaaataact tcaattccaa aatttcccta tgactaggta 20760 tatctaattg gatagctgat aaaatgagtg ggaaattgaa gaagggatat titgagaatg 20820 20880 tgtggcaact taatggtaat attgaagaag caaatggata gttattgaat cataatagtt ttttaaactt aaatactagg gettgatett eatattttag gaaattatet atttgttgea 20940 gtagaaatta gcataaatga atggaaactt aaattatctc atctgtgcaa ggcagtcttc 21000 21060 agagactgat gtttatataa gtgaaaactc agaaaaattt tttggctgca tttcaagctg 21120 gatagegggg teaaaaette aacttettaa ttggtgatae aaegteagaa ateacaaaag aagtatttca caggaaaaaa tgacataccc cgaaaacatt caaatcaaga aaatcacagg 21180 ggtacagtgg atggtccccc ttaaggtact gcgtacttgg cttccccgct ggtaaatgcc 21240

			ttaan	aatatataat	tttagagaat	21300
tctcttttac	taagttgttg	tegtgeagag	tggcattgca	getetgtact	ccacagaac	21360
aatttcaggt	tctaaaattg	atacattatt	tcagattgta	agaatagtat	addatadaat	
tttaaaaggg	aaaataattc	catcaattta	atggaatgtg	tagggtttaa	gttataacaa	21420
сааааасааа	attataattt	tttaggatta	ctcatataaa	tagtgtgtct	attaagaatt	21480
actggcttta	tgaatattaa	ataagaaggc	tggccgtggt	ggatcatgcc	tgtaatccca	21540
aceggeteaa	aggccgaggc	agacggatca	cctgaggtca	ggagttcaag	accagcctgg	21600
geactitiggg	gaaaccctgt	atatactasa	aatacaaaaa	ttagccgggc	ataataacac	21660
ccaacatggc	gaaaccccgc	Ciciaciaaa	aacacaaaaa	aattaattaa	acccatasats	21720
atgcctgtaa	tcccagctac	teaggegget	gaggcaggag	aactgcccga	acceggaaga	21780
cggaggttgc	agtgagctga	gatcgcgcca	ctgcactcca	geetgggtga	cagaacaaga	
ctccatcttg	aaaaaaaaaa	aaaattaaga	caaccacaga	tataaggatt	tgcaattaga	21840
aaggttgaag	ggaaattttt	ggaacttcta	ggtcaaccta	aaattacaaa	tagggaagca	21900
actttagaga	ggaacatttg	cacttctgaa	gtaatactgt	gatttggact	gtcagacatt	21960
geeeeggaga	ggcatcacca	gacctctgtt	aattataaac	ttacctattc	tcagtgcctt	22020
grgatatatt	gaaataggac	ttesestte	ttattattac	tettetatta	ttcatttatt	22080
gttaactgtt	gaaataggac	Ligacativy		tttataggta	ctcaetaaac	22140
cactcattta	gtagttaatt	acttcctagt	gecagatagt	tttttaggta	cegaacaaac	22200
aaaaatccta	ttgtcatagt	tatgtttttg	tggaaagaac	aacctgatag	actategiga	
aaaataaatg	agttagtata	cataaaacac	agcccatgag	atatagtctg	taattatcat	22260
ccctacttca	tttatttatt	tatttattta	tttatttaga	gaatggatct	gattetgtea	22320
tacaaacaa	agttcagtgg	ctggatcatt	gctcactgta	acctcaaaac	acctggcctc	22380
trattag	cccaacctcg	acattccaaa	gractaggat	taaaggcatg	agccactgta	22440
aagtgattee	getectgttt	teenataaa	gegeegggaa	atacagagag	gaacgtgact	22500
cctggccatt	geteetgttt	taaagatgag	gaaactgaaa	gracagagag	gaatgegaac	22560
tgctcaggat	cacacagcca	atcagtggca	gageagreta	ggeagtetag	geeegaagge	22620
attattcttt	ctttctgttc	tgcgtcaaaa	accctaggca	ggcatggtaa	aaagactgaa	
agagggaagg	caacataggt	acctgaagaa	tgggagaaca	cctatgagga	ctgctagaaa	22680
ttttagggag	ccctttaaag	accttagaca	acaatttgaa	cgtgactcat	gagtcagtta	22740
attatataca	ccttttttt	tttagagaat	acaatggata	aaqcaatgac	ctttgtaaca	22800
actettegea	tatttgaatc	atttactata	catttaattt	tacagagtca	ccttttcttc	22860
tgtaaacetg	aattttatcc	cccccccc	ataataaaa	tcaaataata	taggtggaag	22920
attagaaaga	aattttatee	caaagagatt	accytyayyc	atatagaa	taggeggatt	22980
ccctttgggt	ttaaaaaaaa	gccttttctg	tcatttctgg	glateredeg		23040
tagtaattgt	ttacctctct	ggctcttcgt	gagaagacaa	attgtaggaa	gaagtggagg	
atogcattoo	gtaggatgct	tagttctagt	tccaccactt	ccttaggtct	ttttttgtc	23100
ccccaagact	atatcatttc	tatattetet	tgaacctgta	agatttatga	gtaatetgta	23160
gootatttat	aaagtatgaa	atctctgcca	ttgtggcaca	aaagtagcca	tagacaatgt	23220
caacacccac	gggcatgctg	ttetecaeta	aaactatatt	tatagaaata	ggcagtcttc	23280
ataaatgaat	gggcatgety	th-agta	tagaagtgag	otttatoata	tacaatotta	23340
tccaatttta	gtttgctcac	ccctttccta	Lagaactcag	taaatttaaa	tacaatgtta	23400
cacattattc	ctttgaataa	attgtttacc	taatactitt	Ladatttygy	cattttctag	23460
gacattctat	tgtttttatt	tttaacttgt	gttatactgc	agtgaatgtc	ttcctgtgtg	
taggattttg	tttatatata	tatatcaata	tctataaagt	agctcttaag	aactctggaa	23520
acattotcad	actacttcct	caaacagcag	aqqtgggagg	gagcatcggc	ctaaccctac	23580
ataacataca	ttaccaccat	gcaaccaagg	agaagagaat	aggatcaaga	gccagtgcca	23640
ceggeeegee	antontagan	ctttatorao	tttaggttgc	atcctataaa	gttaccatgt	23700
gagagaagta	Cataatacaa	ccctatggag	tttacatact	ttagtatgaa	gttaatttta	23760
tacactgttt	cgatetacea	aagtagaagt	ttacacage	angetetee	tagatatta	23820
ttaacctttt	cacacaacac	acceteteat	attgetgeee	aacaacgccc	tgggtctttg	23880
tttccatggt	: catcatattg	agtagggttt	tagcagggac	ttgagtagtt	gggaactgaa	23940
ctcatgctag	tgaagccatt	cttcactaga	. agcagacata	tgggatccag	aatatcatga	
acaaccacct	gaatacaata	deteacacet	gtaatcccag	cactttggga	. ggctgaagga	24000
aggagatgag	rctcaddtcad	gagtttgaga	. ccaqcctggc	caacatggtg	aaaccctatc	24060
tataataaa	atacaaaaat	tagggaggg	taataacaca	tgcctgtagt	cgcagctact	24120
t cac caaac	acacaaaaac	atgggttgaa	cctadaaaac	agaggttgca	gtgagccgac	24180
tgggaggetg	aggcaggaga	accycecydd taaaaaa	. cccgggagge	teteteteaa	aaaaagagaa	24240
atctcgccag	f tgtactccag	cetgggeaac	agagtgagac	teratora	aaaaagagaa	24300
tatcatgaat	: atcaccaaag	ataaaagcaa	gatgeggala	. tgagtageee	agagtaactt	24360
ttcctgtgct	: atataacaca	. gtgagtggtg	attcccacaa	ttcaagtcca	gtttttctgg	24420
attetaaag	c catacatttt	taactctccc	: cctaaatatg	atttgaattc	agagagtcag	
atocaataac	r otaattttaa	. ctttaaqtqt	, agtttagccc	e acacatttct	ctaaactggg	24480
acttaccaa	ctacaaacct	ctttttgtaa	gtaaagtttt	attqqaacac	agcctagctc	24540
ggeeggeaa	- atattacatt	tacacctttt	aggttgagta	attataacta	aggtcttcca	24600
atteattla	gracecec	togtatet	toottoaaaa	agaagtttgg	caacctctgc	24660
gccttcaago	ctaaaatatt	. caccacccag	- 2000000000000000000000000000000000000	. cacasactac	aacctctada	24720
aaacaagtga	a aataatgtgt	attagagtag	, agcaggagtc	. cacaaactac	aacctctgga	24780
gccaaaacca	a ccctactgto	: tgtttttgta	a aacagaaatt	. ctatagaaad	atagttgacc	
cctatacca	a tttatttaac	r tettaettt	: gatggctttt	: gtgctacaag	g ggcagagttg	24840
aadadttad	adadaactaa	a taacctaca	a aageetagte	, atctttgctg	g tetggeeatt	24900
ataccaact	r tttaccaaac	cctgcatttc	atcatggaat	cccagaatgt	ttataccttt	24960
acayyaayt.	t ttttataat	tccatattt	. acaddcaaca	gaactaaag	ctcgtaaaat	25020
gaggatttt	attataass	tartettt	tattaaatta	agtcagagg	tgaaattgtc	25080
cttgcccaa	g gululadaa	. cagicticit	a acadesttt	cocttatat	ctccacatg	25140
tgtgcccaa	g teteteete	ı yaaaı'ılago	. acaycacic	_ cocceety		

	atcctggatc	atatagggg	cctccatgag	gagatgttct	aacatgaggg	25200
ctacacagtc	ctggagccag	acguatetta	ttgaaatgg	gagacgcccc	aaaataatag	25260
tgactaggct	ctggageeag	ageatettag	cccaaacccc	tattagtgaa	ataaaatata	25320
ttatttttca	gttctaacac	tgaaataaga	caaaaggcca	cattactgaa	taataataa	25380
aagaatatat	ttaatactca	ggttacttta	geececteat	gatcagaata	tyctaataaa	25440
ttgagagatt	gacagaaaaa	aaggattctg	tttcactgtg	geteacacet	graareeear	25500
cactttggga	ggccgaggtg	ggtggatcac	ttgtctggag	ttcaagacca	gcctggccaa	
catoocaaaa	ccccatctct	actaaacaat	acaaaaatta	gccaggcgtg	gtggtaagca	25560
cctttaatcc	cagetacteg	ggaggttgag	gcaagagaat	cgcttgaacc	tgggaggtgc	25620
aagttggagt	gagccaagat	cacaccacto	cactccagcc	tgggcaacac	agcaagactc	25680
catecetera	aaaaaaaagt	tcatcatttq	ttcttgtagt	ttcctagtgt	ggcccttgtc	25740
tanataasa	attgtagtgt	gatagactga	ggagaattct	gtttctgcca	cttcgcctgt	25800
tracttrata	ggagctcctt	atctctgage	tgageteett	ttatacttaa	taaaatgtgg	25860
tgeettggta	ctgcatcctc	attettet	tataagaact	atgaaatcac	ttttgaaaaa	25920
ttattatcat	etgeateete	atagtettet	tgtaaggact	atttt	atttattt	25980
tgccttgaat	atgccagatg	grergrille		getetgetet	gccccgcccc	26040
cccttggcct	teattectgg	aagtgttttg	ttatatacat	tetgettggt	ggccaacagt	26100
gctaaccaca	gaaaagtttg	tatgtcttct	ttttctagaa	taattettae	agtgtaacct	
ctcagggtga	agtttttgtt	ttgaaagggg	cacatttact	gtgaatgaga	gccatggaaa	26160
tagacctgaa	atttgaagac	agattttact	tggttttctt	ttctcttatt	tgtttgcagt	26220
ataaagaaga	aaacaacaaa	gtgaccactt	actgcaacga	gacaatgact	gggtgggtgc	26280
atgatgtgtt	gggccggaac	tagacttatt	tcaccggaaa	gaaggtggga	actgcctctg	26340
agatgtgta	tgtcaacaca	gcacacctta	agaattetea	ggaaaagtga	gttgctacaa	26400
ataaaaata	cgtttagttt	tattttataa	tatatatgaa	tatatatata	catttttgga	26460
atyayacata	gattatacaa	astatette	acttagaaat	attaggcatg	ctatotaaaa	26520
atttagttt	aaaataaatt	aacacccccg	attracarta	tttttcaaa	gtgttccaaa	26580
ccttactgga	aaaataaatt	gaccaacacc	attgagagta	aasaasaaa	attocaaatt	26640
agtaatggac	caatgattac	tttaaatgaa	accatgtaat	ggaccacaga	tastagaagt	26700
actaataaag	aaaagccatt	ttgcttattg	ccatgtaata	acatguigea	tyatacaagt	26760
agatacgtat	gtttatgctg	caacaagtat	aggtgatact	aattgggcaa	cttttaaaca	26820
agaccataaa	taactgaaat	caaagttctt	agtatttatg	cagcctgttg	gtttgcgagg	
gctgccataa	caaagtacca	cagactgggt	ggcttaagga	aggttgtttt	ttcacagttt	26880
tagaaactag	aagtccaaga	ttgaggtgtt	gtcaggtttg	gtttcttcca	aggccacact	26940
cettagetta	cagatgtctg	cttgcttact	gggctcctaa	acagtetttt	ctgattgtcc	27000
taatgtcctc	ttcttataag	ggcatcagtc	atattggatt	ggggcccacc	catatgacct	27060
aattttacct	taatgacctc	tttaaaggtg	tatctccaaa	tacagtcata	tggctgtgat	27120
adecedacet	agaatttcaa	cotatogatt	ttgaggggga	cacaattcag	actataaact	27180
acayggggcc	tttactgtta	aattaaatct	ataactgact	aaaccacaca	aacaggagat	27240
geagttaatg	actttattag	tttaaaccc	aagagatgaa	atattattac	tttttctatt	27300
ttcaaattag	actitating	ttttggaagg	aagagacgaa	atcatcccaa	accadacaac	27360
ttatgtagtt	gtaaaagcca	ctaaaaatgt	acatytacaa	attaccccaa	gccaggcaac	27420
attagtaatg	aatgactgca	gcacagaggt	aagagagatg	atttaaagga	ggatgaattg	27480
tctgcaaagg	tgctgggcaa	gațctagact	aattcatccc	cttcatttta	agittaggit	27540
ttaaatagct	ttgtttggct	tgatcctaga	gctacacatt	tacttttaac	ttgtttactt	
tgtaccctat	catttaggat	atgctatgta	ctattgtact	ctatttgata	tttcaaacat	27600
tctctcattt	agtgaagaag	ctcccaaccg	gagtgeteag	aacctacatt	geeteacetg	27660
tgaagtgagg	atgtgggact	gaattgcctt	tgaggtetet	ttcagctctt	aatgatetgt	27720
tateceatad	taagatacat	tatttttaat	ctcgttggat	cttaaacacc	aaaaataata	27780
gtatttaaga	cataggatac	tatcttqtca	ttattttaat	gcacatgtca	acacacgagg	27840
ttttactaga	tattataata	aagcaagcga	aacagcaggc	tactgctcct	caaatatcta	27900
gagtgaatga	aatattgact	aacatiataa	gaaaatatct	caaaagtatt	ttatttacaa	27960
tagicaatga	attattgace	ctaaccaac	aatgaaagaa	ctataacttq	tttttgttat	28020
tttaaaatat	. accertings	totaaagaaac	tttataato	tacttaataa	gggtacgtct	28080
tgtgttagtg	tagicalaca	. Latyataday	coccacactta	racaaaaaca	ttaaaacatt	28140
ctgggttttt	cacactttge	aacaagtggg	aaayaacccc	gacaaaaaaca	ttaaaacatt	28200
atcaacctgg	ttgcacgttt	ttctgattat	. cccagcgcc	eccayyeee	tagaccatat	28260
caaaattctc	: tctctacaca	catgatttat	aagggaaaga	. aaagtttyca	gtatgcctaa	28320
aatgttcctc	: aggttaatta	. tatcttgttt	. tgcatagttg	aatgtttatg	gaagtettag	28380
atagtgagto	actctgaaac	cacagactct	: tttttaatag	taataatatg	gtgagttcta	
taattootao	r catctaggag	. acaggtatga	ı taaatqtttt	. aattaagtga	ataatcagct	28440
tecteaattt	ttctactttq	taaatatgct	: ctttgtgtgt	. tgaatctatt	: tacatatata	28500
tccaagcatt	tagcacaagg	r taaaccaato	, tggctcagat	: tttaatgtta	ttgtgaatca	28560
cttagagata	: ttgtttaaaa	aaaaaaaaaa	ı aaaggagatt	: ctgattcagg	f tgatctgggc	28620
tragtactta	cagtatocat	ttctaataaa	cttctaaata	ttgctactga	tattggttca	28680
agagtasat	totoactaac	aagtataaac	cgaatgtcca	taaagtataa	tttcttttag	28740
ayaactadat	ttataataat	tagattttat	atatatotto	rcatacacott	ttgcttttct	28800
catcatatgg	, clacaatycu	, tyculling	acactotace	a aactotado	g agtaggggaa	28860
CEEEEE	attaaaaagg	, ccacaaaygu	, acactytage	taacatttt	aaaatggatt	28920
agcttggcat	ctcatgccac	catteagage	, caaccatgtt	, cyycattice	aaaatgcatt	28980
tatagtgtgt	t gtgtgtgtgt	grgrgrgrgt	_ grararacac	gegeataeat	atatatgtat	29040
gtattataca	a tatacgttaa	a tatacatata	a atatacatat	attactgtgo	aaaagttgat	∠ ୬ ∪ ಈ ∪

```
aaattgatta tgattatgta taaactttga tatcttctca tatttaatat aatatagttg
                                                                    29100
                                                                    29160
tgagcactct tccatatcat taaataactt tctagacatt ttaaatgaat atatagaaaa
tgaaacatca ttaatcagtc ccttatctta gaatatttat ttcggttatt tacaatctat
                                                                    29220
tagtagttta aaagtacttc atggaaaatc cttatacatg catcttagtt aacttgaact
                                                                    29280
tttattttta gagaagacat gccaggctgt tctaggctat tgatacatat tgccaattac
                                                                    29340
cttcctgaaa gattgtacca ctttccactt aggcacagag tgtgaatgcc tgttttaatt
                                                                    29400
                                                                    29460
acticatta catcagtaaa gactatatit gaaattatit cattitiggg gacaggtatt
                                                                    29520
ctaataggct ctacaagtat gatcacaact ttgtgaaagc tatcaatgcc attcagaagt
                                                                    29580
cttggactgc aactacatac atggaatatg agactcttac cctgggagat atgattagga
gaagtggtgg ccacagtcga aaaatcccaa ggtaatcaag cacacatttt atcattaata
                                                                    29640
aaaatatgaa tgctgaatac catcctccct cctaagcagt cctaccagtg ttgctcgcca
                                                                    29700
ttttattggt catcccagtt gtaacttttt atgtgatctg ttaacgatct ttatctccta
                                                                    29760
ttgatacata ttctgtcact ctccaagtcc tatttatgag tttttctttc acatgtctgt
                                                                    29820
tgtttccatt gcccctttc cattttctac actctggcat gcagctttgt cctgtttccc
                                                                    29880
                                                                    29940
ccatgctatg gattagcctc ctgccggtaa ccacctgagg ggttcttcct gcctgctgca
                                                                    30000
taaagaaaaa ccatggcaat atagtagaga aagagcttaa gagacactag gctggccatg
ccacgtgggg gatggagttc atattcaaat tatcttgtcc aaagctcata ggtaggggtt
                                                                    30060
tttcaaaggc agcttggggg aaggggtggg ggtggccagg taacagatgc ttgctgctga
                                                                    30120
ttggttgggg tgggtgaaat cacagggagt tgaagctgtc ctcctgtggg ctgaattgct
                                                                    30180
tctaggtggg gccataggag tggggttgct gggtccaggt agaaccacgg gtgtcagaca
                                                                    30240
                                                                    30300
30360
aataaataaa ataaatataa aatttccctg aaaagatatt tcaaaaaagcc agtcttagat
                                                                    30420
tctacaataa tgatgttatt tgctggagta attgatggag ttgcatgtct tataacctct
ggaataacgg ctgacaatct ctcaagtctg cgccttagct ggactcaggt tcctcttctc
                                                                    30480
cecacageet gaetgeetee attagettea caaaagtggt tgggttteag ggcaaggeee
                                                                    30540
                                                                    30600
attqtcattt aaactgtagc cgaaatgact tccaaagtta gcttggccca atagcccagg
aatatttaag tggaaggcaa gatgggggat gggttagctt agctctcttt cactctcata
                                                                    30660
gttttctcac tggtataatt tttgcaaagg cggtttcatg cctgccatct ctttcgtcgc
                                                                    30720
tacctctccc agttcccatt cttagctgtt ttatgaaatg cttctagttt catcctctta
                                                                    30780
taccaagttc tgggagactg atttgagtaa taataaaact ccagtttccc atacagccgg
                                                                    30840
ctctgcgtga attaaactca ttttctattg caatttccct gtcttgataa tcagttctgt
                                                                    30900
gtaggeegtg aggaaggaga accegttggg tgattaegag actgtgttae tgeecactae
                                                                    30960
ctaatggata catttagcct ggtatccaaa cccatctaat tatgaccata actatattta
                                                                    31020
tcaccttgct ctgctttcaa acgatatgac acacaatgaa tgaaaacttt catttttcat
                                                                    31080
cttcatttgt gctgttccct ttgcctcaaa tagccctcaa cttgcctaca gtaactgtaa
                                                                    31140
                                                                    31200
aatttgccac ctaaaaaaaa atctcaaaat cctctctatg ctttgatgtc cagcaaaaaa
aaaaaaaaaa aaaaaaaagt tatcagtata gctctattac tctcaaccag aggtggcatt
                                                                    31260
tttcatcttt acccataagc cccatggtat atttcttagt ttgggaaatt atatcataat
                                                                    31320
actttgaatc tgtctagtca gaaatttaga taatttaaaa aaaaattatt tttctgaaag
                                                                    31380
tatagetgga tetagettag gatetacate tatetaatat agtteettaa catnitgtta
                                                                    31440
aatggccacn ggnataagtc ctgtaatgcc atactttgct ttaggatcat gtgactaagg
                                                                    31500
                                                                    31560
ggtaaggaat tggaaagcaa tggggagcta gcagaatttg aaaaattata taggtaggtt
                                                                    31620
atttttcctt aatacattga aatagcctca aattctcaga gaatacaatg tttaatcctc
taatatctgt agagttcatg gctcaaattt gtattatttg aataaactac taatagatta
                                                                    31680
                                                                    31740
ataattactc aactaaaaca ctttgaaatg tgagagttcc cttatctccc tcgcaggcat
atgacagagg tgtggcttct cacacctttg gttgcccttg ccctaccacc caaaccccta
                                                                    31800
gggggagcat gcagagggc aggtgcagag gccatggggg gtgcttttgg gctctggccc
                                                                    31860
                                                                    31920
cacagcagtg tctaggagtg gatgttggag actcctgaag cccaagtggg catgtgttac
                                                                    31980
agtgtgctct ttcagcttag ccgtctgcag atggcttgtg ttaatcaggt cattagaccc
catgccttat tgcaagggca ggggtccaat gtgacagcct aagttcttgc tcagtgtacc
                                                                    32040
agaagaattg gatcacacgt gggctggaag gatgagcaca aggttttatt gagtggtgga
                                                                    32100
ggtggetete egegagaega eteteageea gagaaggagg atggagggga aaggtgttet
                                                                    32160
                                                                    32220
teccetggag tecacttgtt cetgttetee tetgggttea aatacetett eceteetttt
                                                                    32280
ctgctgtgct gtcccaccac tctccacage tctgtgccgc tctgttcctc tgctcctctg
gatgttcage teettgtate tgtgeetget aagattttgg gtttatatgg gggaaggatg
                                                                    32340
gggggcatgg cgggccaaaa ggcacctttt ttggtgtgaa aacagaaatg cctgtcttct
                                                                    32400
cttagggcct taggtcttca ggcttgaggg tggggccttt gctgagggac caccctcttc
                                                                    32460
tacccagtat ttccctgtct cctgtccata tcaacattac taactttttc atctgcagac
                                                                    32520
taataatgct aaggtgtggc atttttcaac tgtgagacta tgtgaaggtt tttcctgtcc
                                                                    32580
aactgatggc atcctcccat aattctaccc ctttcttaaa agaatctttt gcagtatttc
                                                                    32640
tccaagttta ttctagagaa tttcttgtct gtgaaatgct ctagttaatc aaaattggaa
                                                                    32700
                                                                    32760
aacggagcat atcatatccc cttctcaaat tcaccaaagt gaagtcctaa tgtgtcttaa
tgtatctgca tgagacagga agctgagatc tattcaacaa caaaaatcca aacaagcatc
                                                                    32820
aagaggagga gtgttagcac ttgagcctag ggagactgtg gctcctgcct gaaagatggg
                                                                    32880
agcctcagtc acagctgctt taccaagtgt catatgctat gtttctgagg actcctgcta
                                                                    32940
```

aagctccctt ctccctccag ccaaccactt ttgttttaga caagggctgg gtttatgaag 33000 33060 gactgttttc atgactaaag ctttatagaa ggtttaagat aaggagatgg aattgagtga 33120 agtaggaaat atgaaagcag atattataat ctggcttcct gatttttcac tagcattttt gtttataaat tagttctgtt ctaagaatcc aatgacgtaa tagaaactct caaagattct 33180 taacttgaga tatagggagt ctttgaaact gctgaaatta cagacagcat ttattgttta 33240 tgagcatttc tgaatctaga gctttcacta gatttgtaaa gaatgtgggc caaaagatta 33300 agagecaate etgtatettg tacteaaaat gtttgtaatt eteacetttt tateeeceag 33360 actectettg etetetette atttteaeag tgttaetgga aaggggteet gateeagace 33420 33480 ccaagagagg gctcttggat cttgtgcaag aaagaattta gggcgagtcc tcaatgcaaa gtgaaagcaa gtttattaag aaagtaaagg aataaaagaa tggctactcc atagacagag 33540 cagccctgag ggcagctggt tgtccatttt tatggttatt tcttgattgt atgctaaaca 33600 agggatggat tattcatgcc teceettttt agaccataga gggtaactte etgacattgt 33660 catggcattc ttttttttt ttgacagagt ctcactgtgt tgtccaggct ggagtgcggt 33720 aaagcaatet tggeteactg caacetetge etectgggtt taaatgatte teetgeetea 33780 33840 gcctcccaag tagctgggat tacaggcatg acccaccatg cccagccaat ttttgtattt ttagttgaaa cagggttttg ccatgttggc caggctggtc ttgaactcct gacttcaggt 33900 gatetgeeta cettggeete ceaaagtget geaattacag atgtgageea eeaaaeetgg 33960 cctgtcatgg cattcttaaa ctgtcatggt gctggtggga gtgtagcagt gaggaagacc 34020 34080 agaggtcact ctcatcgcca tcttggtttt ggtgggtttt agctggcttc tttactgcag cetgtetgtt etateageaa ggtetttatg acetgaatet tgtgetgace teetatetea 34140 ttctatgact tagaatgcct taactgtctg ggaatgcagc ccagtaggtc tcagcctcat 34200 cttacccage tectatteaa gatggagttg etetgggtea aacacetttg acaacateat 34260 34320 taagcctcag ttctcacact gtttttgttt tgtttgtgtg tgcaatgatg ggcaaatctc tgccttatag gatggtagaa aaaaggaact taatattgta atgactgttt tgtgccagat 34380 aattgettta aactgtatea geatettatt tagteetgtt aatgatatga atgttatett 34440 cataacagct gccattttat taaggactta tcagagaaaa acactgttct aagcacttgt 34500 34560 tacccattat tacattgaat tttcataaca accctttgag gtaagcatga ttatacccac tttaatagaa gtgaactgta gttttgtaat gttaggttcc ttgccaaatg ttacacagat 34620 agtaagtgat aaaatcatat geeetgaaat tacattatge tgeeaaactt aaatttettt . 34680 34740 tttatccttt atattagtat attcttaggt ttaaacaaga caactagtta acacatacta gattttgtcc acagttcctg gctcataact cccatagccc ttgtcactat cttttaancg 34800 ttggggcaca ttaggcctca gaagtaggcc tcangaaaac agagtctctc tctctctc 34860 tetetgatet tetteegeee teeteteace tgeecaggge ageaetttaa tetteteetg 34920 cetttetgat ettgggteat aagacettea ttteeaaaga tgteetgtgt eataceetaa 34980 35040 aggaaggaac actgaacaga gagaggctca gaagaatctg gacaggcctt gctgtgttta 35100 catcattccc tttatgtcca gtcacatctc tacatggttg tcagttgtgc ctatttgatg aagtccccat ataaggctca caaggacagg gtgcagagag cttccagata gctgaacaag 35160 tggaagttcc tggagggtgg cgtgttcagg gagggcatgg aagctgtgtg ccccttcccc 35220 35280 catacettge ectactcatt tetteatetg ttteatttgt agtatetttt ataataaace 35340 actaaacatt agttagtatt tctctgagtt ctgtgagtca ctctagcaaa ttaattgaac ccaaggaggg tgtcatagga tccccnacat tatagctggt tggccagaag cacaggtaaa 35400 35460 caacctaggg ctttcaattg gcatgagaag tagggggcag ttttgtggga cggagccctc 35520 agectgtgag atetgatgee atetetaagt acacagtgte aaaactggat tggaggacae ccagctagta ttcactgtga aattggttgc ttgcttgatt tgtggggaaa aacccacatg 35580 35640 catttgatca cagaagtctt ttgtgttgac agttgatagt gttcagtgag agaattaaaa aaaaattgag tttcttcttc aacatactct ctcaatgtga aaccacagaa actatttcca 35700 ttcaaagatg gaaatggttt gtttgcatct tagtttttat ttatacatct tagaagaaat 35760 gtccaagett tgttttttet etcaeectat atataaaatt aeetatgagg caeagatttt 35820 tatgateett gattatatag actttgteea aattgtgtgt tttatageat taetgtaaet 35880 tgttatagta atctttgtgt atattatgtc tcttaacatt gtcttccata ttgttaatga 35940 ccatctcata tttatctctg tatcatgtat atcttcaacc aatgtgactg gcttaggaga 36000 36060 aaaaattagt gaacaattaa ctagtgtttg tgtaatctat acaattgtca aggttacaat 36120 tgctattttt gaagaaatcg ttgttgtttt tctctttgtt tcatctcagt tccattttgt caaggattcc ttttttttt tttttttt tttttgaggc ggagtcttgc tctgtcaccc 36180 36240 gggctggagt gcagtggtgc aatctcggct cgctgcaagc tccacctcct gggttcatgc 36300 cattetectg ceteageete eegagtaget gggaetaeag geaceegeea eeaegeeeag ctaatttttt tttgtatttt tagtagggac ggggtttcac tgtgttagcc aggatggtct 36360 36420 caateteetg acctegtgat eegeeegeet eggeeteeca atgetgggat tacaggegtg agccaccgcg cgtggcccct tgtcatgtat tcttaacctg tgttatatct aagagaaggt 36480 36540 gtgagaggcg ggaccatttg tggataggtg cagagggcat gaagtagccc agaaagaatc 36600 tttgccattg actaaatttt agcctagtaa aaaacatgtg gtaaccactg aaaaactaga 36660 acagtgtgat atgacaatgc ccagttgaat aagaaattca aatagtttat agtaacaaaa 36720 aataattttt accacattgt gactagtgcc ctaaaaacaa atttgaagga gcagagagag agaggaagtg agttttcgct gggggctggt gagtggaggc tactttatga gcagttttga 36780 36840 aaattacaag ttagggaaaa actcttaggg gagttttaag tggtgagcaa caggcacttg

		taaaaatata	assesaeau	accatttaac	agtettaggg	36900
aggttacagg	agcagcagca aagtcgaatg	tatataaaaa	tataattata	tetetatata	tatatata	36960
aaactccaag	cgcgcgtgtg	tytetaaage	tatacatata	tatatatata	tgaaatcgct	37020
tgtgtgtgtg	agctgttaga	acaattttct	cacttcccaa	aaatgtccgt	tcattcatgg	37080
aatacagaga	ctctcctttg	tatatattac	acccaacac	totcatataa	aatataattc	37140
geetaggeaa	cagttttatc	tattatttac	ggaggtagtc	agectatatt	atgcttgtta	37200
ctacatyaaa	gtgtccaggt	tettaaette	ttgaacaaag	aattggacaa	aactcacaaa	37260
cugguugagg	aaagaatgaa	acaacaaaaa	cadadattta	ttgaaaatga	aagcacactc	37320
tgaggcaagg	gagtgggcct	aadtaaatda	ttcaangccc	tagttacaga	attttctggg	37380
cacaggargg	cgtctagagg	tttcccatta	attacctaat	gtatgcctta	tgtaaatgaa	37440
guitaataa	ttaagttaca	aactcattta	ctcagtatag	accttatatt	aatggagagg	37500
gagggraggag	tgggggttgt	aagecatata	aacqqaqaqq	atgaagtgaa	gtgacaaagc	37560
grattaggatt	cctgccattg	ctgaagtgtt	tccactttat	ttagttctag	gaagtcagtg	37620
taaattaacc	ttatgttccc	tacatacada	acctattata	ctgcctcaca	tagacccttt	37680
tttaattta	ccaacttcac	ttcttttaca	accacctcac	taccaatqtq	tetgteteet	37740
andtcanaca	tcagtgattc	ctctattttc	tctaaaccct	tettatgtet	tctacttctc	37800
atgtctataca	tggtcaaaaa	tettteaaaa	atgagtaaga	atgcagctat	tcaggcaaac	37860
taaaataac	atcacagtga	tatacaaaac	cagtgtcatt	tcacaaagga	aaattatcaa	37920
tactacatcc	tgaaaaagaa	acagcgaatg	aaagccattt	acacaactcc	attgtgtaat	37980
tracacattr	aatcactcat	aaaacaggtg	ctctagatct	gaatctagat	cctagctagt	38040
ctactacta	aaatcataga	attatagtag	agtttaggaa	atcatcctca	aaggaaagat	38100
tatatattaa	tatcaaatgt	atatttcctt	tctaggccca	aacctgcacc	actgactgct	38160
rasatacarc	aaaagatttt	gcatttgcca	acatettqqq	actggagaaa	tgttcatggt	38220
atcaatttta	teagteetgt	tcgaaaccaa	ggtaaaaaaa	taagcctaag	ttttttgtta	38280
atttatttaa	aactatttat	tgaacagttg	ctctqtqtqa	tggatttcgg	ggatacctag	38340
atagaataga	catgatcccc	tttttacaga	aatagaaaat	aggtggccta	tgaattattc	38400
tttcctttta	tatccatgac	aaactttagt	aaaaaatttt	cttttctact	gagcttagca	38460
tttattcagt	actettetea	atatattttc	caggtagcta	gtgacaatca	gagtgatatg	38520
taacacaaac	tcatttgtcc	tectagtagg	aaagattcta	gtagaagcaa	agaattgtgt	38580
accattetee	aagtggtttg	ttggaatctt	tctttgatac	ctgttcctgt	attcccccac	38640
ccccattaat	ttagtcatta	attactacat	gaacccgtaa	aataaatcct	taaattattt	38700
teetaataaa	ttttttgagc	tgtgtaagga	cctttcaatt	cactttacat	tagaatacga	38760
tatgtgatgg	taaqtattaa	cccagettee	tgagtgatgg	cgtgagggcg	gaacccaggt	38820
tcatgaaaag	tattcctatt	attgaatttt	accagttatt	ttcagaagtt	tgatacaatg	38880
tgagttgatt	tcataacatq	tcctctaact	gcacttgata	gcaaattatc	ttgttatcct	38940
gagttgtagc	caacaatgac	ttggagaatc	tatgcaatac	tcagttttat	tacttctaag	39000
ctcattttga	agataatact	acccatggct	gatttgttac	tataaaatag	gtttagtatt	39060
tactatetaa	aaacattctg	attagtgtct	cctgggagga	ttataaattt	atagtaccca	39120
aagantaaac	ntattatttc	cctttcctaa	acttttagtg	nataatncag	tetetgeegt	39180
gtctcatttt	catcacttqc	cctccanagc	teccatetca	ctgaattctt	gcagtgttct	39240
gaatgttgag	agccccaang	tgggtcttat	aacagccagt	cagcaacatt	tatgtttta	39300
atctgacacc	aagggtctcg	tctctttgct	tttctaccag	ttattctggg	ctcttcagct	39360
ctaaagaaag	tataggtcct	gaaatctttc	cctaccttct	caatttcctg	gggagggctt	39 4 20 39480
ctttggaaag	tgggattgga	aataagataa	atttgaagat	aattgagaaa	tgaatggaaa	39540
gtgaaattga	. agggtccatg	ttaagagatt	gcaagttatg	ctatcaccaa	atagattttt	39600
tgtgcctgag	aggattaatt	catagtgcat	attatgtgtt	gactttatea	ettagttata	39660
ggcacatgat	agcattggca	tgatataatt	tgagctactg	atactatagi	gttgcttctg	39720
gtgttgttac	cagaacatct	aaaatatatt	aggattttt	taatggcaga	ggaaatgaag	39780
actaatatga	catagtcctt	gtcctagtga	tttacagttt	agcaagacac	acaagcaaaa	39840
cattaaagta	aagcatgata	actactttaa	taaagcattt	citaaatica	ttggtaacat	39900
aagagaaggt	. agaagagttt	agcaaacccu	teccaaaaya	aacyaccyac	aagttatatg	39960
agataataat	. tcagggaaag	gaaattegae	atagastatt	ctttattctt	gacattggtt tgactgttat	40020
ttcatatago	ttggtaaaag	ctgttattt	tananaga	ggggtttgat	ggattaattg	40080
aagtatgatt	tgtacagaga	taggeaact	tataaaacaga	ttgagaaaat	aatgtactta	40140
ctttgaattg	f ateceteate	attttaatat	totatactot	aagttgggg	aaaaagtatt	40200
aagttteett	e cullyactic	ctcttggtat	atteccacea	actttqccaa	taccagtgtt	40260
ttetetteet	. getaattggg	ecacecgaaa aattaactaa	aattaaggga	attcacagct	tttctgtagt	40320
etgtataacc	: cayaacccay	aaccagcege	. aaetaatgga	aggacaaato	aggttttacc	40380
tttagagagcaa	i allyaaalla raaaacacatt	taadaadaag	r cettatacet	agatttatta	atactttgag	40440
atatacaculo	, dadacayatt	ttanaaatan	gagagaataa	getttettte	ttettetee	40500
graryayay	, yaayayaayc , tttttattta	ttattatat	: tttaagagag	aagggaagtg	teteteetgg	40560
agetatgete	, ttaggaaata	cagagtgtt	tcataatoco	taaagtetac	tccatttaag	40620
tettette	a aaatootatt	tatattattt	gagcaggaac	gcagagacct	taaactgctc	40680
cacccaatt	attttacaca	aaagattaaa	aagaaaaaaa	cagtgtcaaa	a aggtcaagtg	40740
			_		_	

cccagtgttg	cacaactaat	gataggcaaa	acaagagagg	aggggaaaaa	aaagaatcct	40800
gactcccgac	tcctagttca	atatattett	cactgttaga	aggtgctgct	gaacatagtt	40860
ataccatato	aagatcacac	tatctatttq	agattgtaga	aatttgatta	ctgcagagct	40920
ctaactaaac	tagattcact	tcttattctt	tattgcattg	cagtattctt	aagagataaa	40980
taactetttt	agaatcagat	taacettaae	tqttqaaatg	aggcattaat	taccttggta	41040
gctgacacat	tettacaggt	caggggcttg	atgaagttta	tcttcttccc	ttgttcctgt	41100
gattgctctg	taaatagaac	acattcagag	cccttgaatg	cacttgcagc	ctgtgcctcc	41160
cacagtgatc	gatggtcaga	taatgggagt	ttaatgacca	gtactgagag	agattatttc	41220
catggctgct	atoggooda	aaaactaaat	ggtcagaaag	ggaccttttc	cagactctcc	41280
tacattatat	tatttctttd	acattggttt	cctttcatga	ggcgccaagg	tgtatttgta	41340
agttgtccag	tattacacaa	ctaatgaggg	gcaaaacaag	aaaqqaqqaa	aaaaaagta	41400
tecteactee	tagttcagtg	tattetteac	tattagaagg	tactgctgaa	cacagttata	41460
tattaaatat	acaatotaca	atgttctttg	acattccatc	atttgaagga	tgggtcctat	41520
ageteagege	atctgcatgg	ttttgaaaac	aaaagatata	agctaatttt	gccctgtcta	41580
ggacagcacc	decededada	gaaaatctga	atatttatta	aagtagacac	agacccataa	41640
gtgactacga	acactaatcc	taccttagga	gacagtaagg	cacttgtccc	tgctatctat	41700
tagatatata	teettagaea	acteattact	tetttetgag	ccaccgttac	acgttatcta	41760
tagetgegeg	aggttgtaga	ctagatgaat	tcacaggtcc	ttcttccaag	tgcttttcta	41820
atattaataa	tttacataat	ctctcagtag	caaaacagtg	tacaatatgg	tcaatctgag	41880
atttttaggg	ggagaattt	adddaacatc	agaaatggca	gtagttaaaa	ggaaatagga	41940
attectaggg	ggagaacccc	tataacttca	catootagaa	gggatgagag	ttctctctgg	42000
eccacagget	attaggtgag	taatcccaaa	aaccccacct	cctaagacca	tcacttttgg	42060
ageetttgt	ttaaggtcat	tttagaggga	cataaacctt	catctcattg	cattagagat	42120
gattggggtt	taacatgat	tatattacta	cacadateee	atgtattcct	ccatcaccca	42180
atttgaaage	teageteacg	atagacataa	atcettteat	cattatcaag	aatattgcca	42240
acctgatgge	cuigaacgu	aggatataa	ttagtttcta	aaatattctc	aaagaaagtc	42300
aaagettete	agaaactacg	tttgatgaaa	aaggatgaaa	tcttaatgat	tgccttaata	42360
ccatgtacta	acguigeer	ttaaatatta	ttattatact	gattettata	aacaaca	42420
agctcaacaa		atgageetee	ctaacgtgee	tgcatgattc	tetataaaac	42480
ttcagtataa	acattaatgt	tatatattt	tttcatcacc	agcatcctgt	ggcagctgct	42540
ttcagatgtc	terregaria	ataataaaa	canagateca	tatactaacc	aacaattctc	42600
actcatttgc	ttetatgggt	acgeragaay	tatattataa	ccagtatgct	caaggtaagt	42660
agaccccaat	ectaagecet	tatgaggteg	ttacctatat	acaactaact	gttgttggca	42720
gttgcatttc	agacaccatt	targagerar	gaatatata	tagtcagaaa	atctgagtgc	42780
aaggcaaaag	gatgatgeag	Lagagagage	attactcata	gaatttactg	taccatccag	42840
aagtetggee	ctatcactta	tatattgat	gagetetact	tottacatat	attgcctaac	42900
caaaatgtca	atagttacta	ataattaatta	tastocctat	ttataaacaa	ggaacaggaa	42960
aatgctcaaa	actetgagaa	gtagtaagta	taacecctat	taccattoga	atttcacttc	43020
ctaagaaatt	tttctaataa	gaaggee	taaaactata	ctaacactgg	gtttcacttc	43080
taatcatcgt	ctccaaaacc	caactttat	ggggagagtg	acttatacct	ataaccctat	43140
ggagaatttt	aaaattetgt	acttaggget	ttgagtggta	gagtttgaga	ataaccctat ccagcctggg	43200
cactttggga	ggetgagatg	ggtgaatete	atacaaaaaa	ttagetgaga	gtggtggtgt	43260
caacacggcg	aaaccccttc	tenagagaga	acacaaaaaa	aatcacctga	acccadaada	43320
gtgcttgtag	teccagetat	teaggaggeg	gaggigiaag	acctaaccaa	gcccaggagg	43380
tcaaggctgc	agtgageega	tateatgeea	ttagggette	agatcaggeat	acggagtgag	43440
gccctgttat	gaaaaaaaaa	adatetytae	ggggggggg	ttaccatttt	gtatgtgatg aaagtttatg	43500
tatgtcgaaa	acacagetat	aactgactga	ttcccaactc	actagtgaaa	ctgctgatga	43560
cttcaagcc	cagatttggc	cactaggaat	ttctaaaata	totactacta	gttgtgactt	43620
gtgattatt	geeagtgage	totatata	castctttat	cctcatgaag	cttacagtta	43680
gtaggctata	ggggctataa	tacaccaaga	aacadadtda	agaacagtga	agaaaaagta	43740
agtaagagat	agagattaaa	taaccacaac	actocatoan	: daadatadda	aagacatttc	43800
cagagttata	atatataa	cagggccagg	taaaaaaaa	ccaagttgtg	gggtctggct	43860
ggcaagaggt	tgtcagggaa	aagacttyct	. cyagaaagag	catgaagtaa	. ctaatttaac	43920
gcttagcaat	gaccataata	. cctaacttt	. getatttta	aartaarcar	agatacagag	43980
cctatgagga	aagtactact	accatctaga	: cccacaggc	adgedageag	agatacagag	44040
aagttaaact	cttcacacgg	etttggettt	. aaacctatat	. aggetteage	geeteeeae	44100
ttaaccactt	tgccatagct	acatecatat	. cayytyctaa	r datdaatdaa	gttaagtaga gtgatgetta	44160
aggaggatga	aaggatagtt	agetagttgg	aaaalyyaly	gatyaatyaa	gtgatgctta	44220
agctaagaac	aactttcagg	ggtaacatgo	: aaayaataat	. gyaycaaaya	agaaaaaata	44280
gaaaatggga	taatcctttt	cctactaagg	gytaaccatg	r cocaacattt	atetteagge	44340
tgtgaaggcg	getteceata	ccllattgca	gyaaagtacg	rananatra	tgggctggtg	44400
gaagaagctt	getteeceta	cacaggcact	. galletecat	, ycaaaatyac . totatoosoo	ggaagactgc	44460
tttcgttatt	actcctctga	gtaccactat	. gtaggaggtt	, colatygage	ctgcaatgaa	44520
gccctgatga	. agcttgagtt	ggtccatcat	. gggeceatgg	ataatataa	tgaagtatat	44580
gatgacttcc	tccactacaa	aaaggggato	: Laccaccaca	a detatorea	g agaccettte	44640
aacccctttg	agctgactaa	i ceatgetgtt	. algeriging	y getatggeat	tgactcagec	

```
tctgggatgg attactggat tgttaaaaac agctggggca ccggctgggg tgagaatggc
                                                                     44700
                                                                     44760
tacttccgga tccgcagagg aactgatgag tgtgcaattg agagcatagc agtggcagcc
                                                                     44820
acaccaattc ctaaattgta gggtatgcct tccagtattt cataatgatc tgcatcagtt
gtaaagggga attggtatat tcacagactg tagactttca gcagcaatct cagaagctta
                                                                     44880
caaatagatt teeatgaaga tatttgtett eagaattaaa aetgeeetta attttaatat
                                                                     44940
acctttcaat cggccactgg ccatttttt ctaagtattc aattaagtgg gaattttctg
                                                                     45000
gaagatggtc agctatgaag taatagagtt tgcttaatca tttgtaattc aaacatgcta
                                                                     45060
                                                                     45120
tattttttaa aatcaatgtg aaaacataga cttattttta aattgtacca atcacaagaa
aataatggca ataattatca aaacttttaa aatagatgct catattttta aaataaagtt
                                                                     45180
                                                                     45186
ttaaaa
       <210> 2
       <211> 1838
       <212> DNA
       <213> Homo sapiens
       <400> 2
 aattetteae etetttete ageteeetge ageatgggtg etgggeeete ettgetgete
                                                                         60
 geogeoetee tgetgettet eteeggegae ggegeegtge getgegaeae acetgeeaae
                                                                        120
 tgcacctatc ttgacctgct gggcacctgg gtcttccagg tgggctccag cggttcccag
                                                                        180
                                                                        240
 cgcgatgtca actgctcggt tatgggacca caagaaaaaa aagtagtggt gtaccttcag
                                                                        300
 aagetggata cagcatatga tgacettgge aattetggee attteaceat catttacaac
 caaggetttg agattgtgtt gaatgactae aagtggtttg eetttttaa gtataaagaa
                                                                        360
                                                                        420
 qaqqqcaqca aggtgaccac ttactgcaac gagacaatga ctgggtgggt gcatgatgtg
 ttgggccgga actgggcttg tttcaccgga aagaaggtgg gaactgcctc tgagaatgtg
                                                                        480
                                                                        540
 tatgtcaaca cagcacacct taagaattct caggaaaagt attctaatag gctctacaag
                                                                        600
 tatgatcaca actitgtgaa agctatcaat gccattcaga agtcttggac tgcaactaca
 tacatggaat atgagactct taccetggga gatatgatta ggagaagtgg tggccacagt
                                                                        660
                                                                        720
 cgaaaaatcc caaggcccaa acctgcacca ctgactgctg aaatacagca aaagattttg
 catttgccaa catcttggga ctggagaaat gttcatggta tcaattttgt cagtcctgtt
                                                                        780
 cqaaaccaaq catcetgtgg cagetgetac teatttgett etatgggtat getagaageg
                                                                        840
                                                                        900
 agaatccgta tactaaccaa caattctcag accccaatcc taagccctca ggaggttgtg
 tcttgtagcc agtatgctca aggctgtgaa ggcggcttcc cataccttat tgcaggaaag
                                                                        960
 tacgcccaag attttgggct ggtggaagaa gcttgcttcc cctacacagg cactgattct
                                                                       1020
                                                                       1080
 ccatgcaaaa tgaaggaaga ctgctttcgt tattactcct ctgagtacca ctatgtagga
 ggtttctatg gaggctgcaa tgaagccctg atgaagcttg agttggtcca tcatgggccc
                                                                       1140
 atggcagttg cttttgaagt atatgatgac ttcctccact acaaaaaggg gatctaccac
                                                                       1200
 cacactggtc taagagaccc tttcaacccc tttgagctga ctaatcatgc tgttctgctt
                                                                       1260
 gtgggctatg gcactgactc agcctctggg atggattact ggattgttaa aaacagctgg
                                                                       1320
                                                                       1380
 ggcaccggct ggggtgagaa tggctacttc cggatccgca gaggaactga tgagtgtgca
 attgagagca tagcagtggc agccacacca attcctaaat tgtagggtat gccttccagt
                                                                       1440
                                                                       1500
 atticataat gatctgcatc agttgtaaag gggaattggt atattcacag actgtagact
 ttcagcagca atctcagaag cttacaaata gatttccatg aagatatttg tcttcagaat
                                                                       1560
 taaaactgcc cttaatttta atataccttt caatcggcca ctggccattt ttttctaagt
                                                                       1620
                                                                       1680
 attcaattaa gtgggaattt tctggaagat ggtcagctat gaagtaatag agtttgctta
 atcatttgta attcaaacat gctatatttt ttaaaatcaa tgtgaaaaca tagacttatt
                                                                       1740
 tttaaattgt accaatcaca agaaaataat ggcaataatt atcaaaactt ttaaaataga
                                                                       1800
                                                                       1838
 tgctcatatt tttaaaataa agttttaaaa ataactgc
       <210> 3
       <211> 463
       <212> PRT
       <213> Homo sapiens
       <400> 3
 Met Gly Ala Gly Pro Ser Leu Leu Leu Ala Ala Leu Leu Leu Leu
                                      10
 Ser Gly Asp Gly Ala Val Arg Cys Asp Thr Pro Ala Asn Cys Thr Tyr
                                  25
 Leu Asp Leu Leu Gly Thr Trp Val Phe Gln Val Gly Ser Ser Gly Ser
                                                  45
                             40
 Gln Arg Asp Val Asn Cys Ser Val Met Gly Pro Gln Glu Lys Lys Val
```

```
Val Val Tyr Leu Gln Lys Leu Asp Thr Ala Tyr Asp Asp Leu Gly Asn
                                      75
Ser Gly His Phe Thr Ile Ile Tyr Asn Gln Gly Phe Glu Ile Val Leu
                                 90
              85
Asn Asp Tyr Lys Trp Phe Ala Phe Phe Lys Tyr Lys Glu Glu Gly Ser
                              105
                                                 110
           100
Lys Val Thr Thr Tyr Cys Asn Glu Thr Met Thr Gly Trp Val His Asp
       115
                       120
Val Leu Gly Arg Asn Trp Ala Cys Phe Thr Gly Lys Lys Val Gly Thr
           135
                                        140
Ala Ser Glu Asn Val Tyr Val Asn Thr Ala His Leu Lys Asn Ser Gln
                  150
                                   155
Glu Lys Tyr Ser Asn Arg Leu Tyr Lys Tyr Asp His Asn Phe Val Lys
                                  170
               165
Ala Ile Asn Ala Ile Gln Lys Ser Trp Thr Ala Thr Thr Tyr Met Glu
                             185
                                                 190
Tyr Glu Thr Leu Thr Leu Gly Asp Met Ile Arg Arg Ser Gly Gly His
                          200
Ser Arg Lys Ile Pro Arg Pro Lys Pro Ala Pro Leu Thr Ala Glu Ile
                       215
                                         220
Gln Gln Lys Ile Leu His Leu Pro Thr Ser Trp Asp Trp Arg Asn Val
                                  235
       230
His Gly Ile Asn Phe Val Ser Pro Val Arg Asn Gln Ala Ser Cys Gly
                                 250
              245
Ser Cys Tyr Ser Phe Ala Ser Met Gly Met Leu Glu Ala Arg Ile Arg
                              265
                                                 270
Ile Leu Thr Asn Asn Ser Gln Thr Pro Ile Leu Ser Pro Gln Glu Val
                          280
Val Ser Cys Ser Gln Tyr Ala Gln Gly Cys Glu Gly Gly Phe Pro Tyr
                      295
                                         300
Leu Ile Ala Gly Lys Tyr Ala Gln Asp Phe Gly Leu Val Glu Glu Ala
                                      315
                  310
Cys Phe Pro Tyr Thr Gly Thr Asp Ser Pro Cys Lys Met Lys Glu Asp
               325
                                  330
Cys Phe Arg Tyr Tyr Ser Ser Glu Tyr His Tyr Val Gly Gly Phe Tyr
                             345
                                                 350
           340
Gly Gly Cys Asn Glu Ala Leu Met Lys Leu Glu Leu Val His His Gly
                360
       355
Pro Met Ala Val Ala Phe Glu Val Tyr Asp Asp Phe Leu His Tyr Lys
                       375
                                          380
Lys Gly Ile Tyr His His Thr Gly Leu Arg Asp Pro Phe Asn Pro Phe
                                      395
                   390
Glu Leu Thr Asn His Ala Val Leu Leu Val Gly Tyr Gly Thr Asp Ser
              405
                                                     415
                                  410
Ala Ser Gly Met Asp Tyr Trp Ile Val Lys Asn Ser Trp Gly Thr Gly
                              425
                                                 430
           420
Trp Gly Glu Asn Gly Tyr Phe Arg Ile Arg Arg Gly Thr Asp Glu Cys
                                             445
       435
                          440
Ala Ile Glu Ser Ile Ala Val Ala Ala Thr Pro Ile Pro Lys Leu
      <210> 4
      <211> 21
      <212> DNA
      <213> Artificial Sequence
```

<223> Description of Artificial Sequence: Primer

<400> 4

aggaggttgt gtcttgtagc c

<210> 5 <211> 20 <212> DNA <213> Artificia	l Sequence			
<220> <223> Descripti	on of Artificial	Sequence:	Primer	
<400> 5 agtgcctgtg taggggaago	:			20
<210> 6 <211> 24 <212> DNA <213> Artificia	al Sequence			
<220> <223> Descripti	on of Artificial	Sequence:	Primer	
<400> 6 tgtcaactgc tcggttatgg	g gtaa			24
<210> 7 <211> 24 <212> DNA <213> Artificia	al Sequence			
<220> <223> Descript	ion of Artificial	Sequence:	Primer	
<400> 7 tegagettet ettegtaea	c cact			24
<210> 8 <211> 24 <212> DNA <213> Artifici	al Sequence			
<220> <223> Descript	ion of Artificial	Sequence:	Primer	
<400> 8 tgactacaag tggtttgcc	t tttt			24
<210> 9 <211> 23 <212> DNA <213> Artifici	al Sequence			
<220> <223> Descript	ion of Artificial	Sequence:	Primer	
<400> 9 tgctgccctc ttctttata	c tgc			23
<210> 10 <211> 24 <212> DNA <213> Artifici	al Sequence			

	<220> <223> Description of Artificial Sequence: Primer	
gaata	<400> 10 tgaga atgtgtatgt caac	24
	<210> 11 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Primer	
cctgc	<400> 11 cccaa aaatgagata	20
	<210> 12 <211> 21 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Primer	
tcgaa	<400> 12 aaatc ccaaggtaat c	21
	<210> 13 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Primer	
gggcc	<400> 13 tagaa aggaaatata catt	24
	<210> 14 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Primer	
aattt	<400> 14 cgttcg gaactattta ttga	24
	<210> 15 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Primer	

<400> 15 tcgcttctag catacccata	20
<210> 16 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 16 ggcgatcaga ctggcacact agaa	24
<210> 17 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 17 cttacccata accgagcagt tgac	24
<210> 18 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 18 gcagactgtg ctcaaactgg gtag	24
<210> 19 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 19 tctactaatc agaagaggtt tcag	24
<210> 20 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 20 ggcacattta ctgtgaatga gag	23

```
<210> 21
      <211> 21
      <212> DNA
      <213> Artificial Sequence
      <223> Description of Artificial Sequence: Primer
      <400> 21
                                                                         21
gtctcatttg tagcaactca c
      <210> 22
      <211> 21
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Description of Artificial Sequence: Primer
      <400> 22
                                                                         21
ccactttcca cttaggcaca g
      <210> 23
      <211> 22
      <212> DNA
      <213> Artificial Sequence
      <223> Description of Artificial Sequence: Primer
      <400> 23
                                                                         22
aggatggtat tcagcattca ta
      <210> 24
      <211> 24
      <212> DNA
      <213> Artificial Sequence
      <223> Description of Artificial Sequence: Primer
      <400> 24
                                                                         24
atcctagcta gtctggtagc tgaa
      <210> 25
      <211> 24
      <212> DNA
      <213> Artificial Sequence
      <223> Description of Artificial Sequence: Primer
      <400> 25
                                                                         24
tctaggtatc cccgaaatcc atca
      <210> 26
      <211> 24
      <212> DNA
      <213> Artificial Sequence
```

<220> <223>	Description of Artificial Sequence: Primer	
<400>	26 gaggetteag atgt	24
garrenge		
<210> <211>		
<212> <213>	DNA Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Primer	
<400> gccaacaaca	27 gecagetgea caca	24
<210> <211>	20	
<212> <213>	DNA Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Primer	
<400> tccccactta		20
<210>		
<211>		
<212> <213>	Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Primer	
<400>	29	22
acttcatagc	tgaccatctt cc	22
<210>		
<211> <212>		
	Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Primer	
<400>	• 30	
geegeeetee		20
<210> <211>		
	> DNA	
	Artificial Sequence	
<220>	> > Description of Artificial Sequence: Primer	
<4237	Description of Artificial Dequence. Illimor	
<400> ggcttaggat	> 31 tggggtctga	20

	210> 32 211> 25	
	212> DNA	
<	213> Artificial Sequence	
	220>	
<	223> Description of Artificial Sequence: Primer	
	400> 32	
gtatgct	aga agcgagaatc cgtat	25
<	2210> 33	
<	:211> 24	
<	:212> DNA	
<	213> Artificial Sequence	
	220>	
<	223> Description of Artificial Sequence: Primer	
<	2400> 33	<u> </u>
ccaatgo	taa aacttottoa gacc	24