Исследование операций ПМ-1701

Преподаватель:

Чернов Виктор Петрович viktor_chernov@mail.ru

Санкт-Петербург 2020 г., 6 семестр

Список литературы

- [1] Sulsky D., Chen Z., Schreyer H. L. A particle method for history-dependent materials // Computer Methods in Applied Mechanics and Engineering. 1994, V. 118. P. 179–196.
- [2] Liu G. R., Liu M. B. Smoothed particle hydrodynamics: a meshfree particle method. — Singapore: World Scientific Publishing. — 2003. — 449 p.

Содержание

1	Кон	нспекты лекций															2							
	1.1	13.02.2	2020																					2
	1.2	20.02.2	2020																					2
		1.2.1	Стр	атег	ии	уп	pai	вле	ни	Я 3	заг	ıac	an	и	И	ΚĮ	ЭИ'.	гер	ий	i (ЭΠ′	ГИ	_	
			мал	ьнос	ти																			2

1 Конспекты лекций

$1.1 \quad 13.02.2020$

Отчет о результатах: в каких пределах можно менять коэффициенты целевой функции чтобы оптимальний план не изменился.

Перейдем к листу отчета об устойчивости.

Теневая цена - предельная полезность ресурса, компонент оптимального плана двойственной задачи, частная производная целелвой функции по правой части ограничения - величина, показывает на сколько единиц изменится результат, если изменить правую часть на единицу.

Представим задачу, меняем коэффициенты правой части, получили оптимальное решение z^* :

$$CX \to max$$

$$\begin{cases} AX \le B \\ X \ge 0 \end{cases}$$

$$Z^* = Z(B) = Z(b_1, b_2, ..., b_n)$$

$$\frac{\partial Z}{\partial b_i} = y_i^*$$

где y_i^* - теневые цены, компоненты оптимального плана.

График предельной полезности является кусочно-линейным.

Отчет о пределах - сомнительная польза: если объем печенья будем равны 0, то остается один бисквит.

$1.2 \quad 20.02.2020$

1.2.1 Стратегии управления запасами и критерий оптимальности

Рисуем типичный график зависимости запасов от времени. В начальный момент времени есть какой-то запас и он изменяется с течением времени. Склад является аккумулятором запасов потребителя. На склад, в свою очередь постсупает продукция поставщиков.

В какой-то момент времени запас склада пополняется на некоторую величину V_1 . Дефицит может отображаться двумя способами.

- Незадолженный дефицит спустя какое-то время на склад при нулевом запасе приходит товар
- Задолженный дефицит дефицит уходит в отрицательную область.

Последовательность пополнения запасов - результат принятия решений, она возникает тогда, когда потребительская система формирует заказ поставщикам.

$$\begin{cases} V_1 & V_2 & \dots \\ t_1 & t_2 & \dots \end{cases}$$

Данный график носит названя стратегии *управления поставками*. Какой график поставок лучше? В этом и состоит оптимизационная задача.

Сущестует три вида затрат:

- Затраты связаны с поставками
- Затраты связаны с хранением
- Затраты связаны с дефицитом

Каждая из затрат подразделяется на постоянные и переменные затраты Постоянные - не зависещее от объема. Затраты, связанные с поставкой, не зависят от объема: затраты на огранизацию.