PWM Drawer using Graphical LCD and ATmega32

AMIT Graduation Project
Presented by: Eng. Abdelrahman ahmed safina
OCT 9 Group

Layered Architecture

Flowchart

Flowchart Continued (1)

Measure_Signal

ICU_GetDutyCycle();

Clear Input Capture Flag Set Trigger Edge: RISING_EDGE

Wait for Input Capture → i.e. Start of Cycle

Clear Input Capture Flag and Timer Counter Set Trigger Edge: FALLING_EDGE

Wait for Input Capture → i.e. High Count

Clear Input Capture Flag and Timer Counter Set Trigger Edge: RSING_EDGE

Wait for Input Capture → i.e. Low Count

$$Duty \ Cycle \% = \frac{High \ Time}{Period \ Time} \times 100$$

High Time
$$ms = \frac{High\ Count\ *Prescaler\ *10^3}{F_{CP}}$$

$$Period Time ms = \frac{(High Count + Low Count) *Prescaler *10^3}{F_{CP}}$$

Flowchart Continued (2)

Draw_Signal

GLCD_DisplayString();
GLCD_DisplayFloatingPoint();
GLCD_DisplayInteger();
GLCD_DisplaySpecialPattern();

Choose a scale (milliseconds

Period Time

to pixel) as 5

GLCD Line 0: Display Frequency Value in kHz.

GLCD Line 1: Display Duty Cycle Value in %.

GLCD Line 4: Display Period Time Value in milliseconds.

GLCD Line 5: Display Arrow on First Cycle Period Time.

GLCD Line 6: Display the PWM signal shape.

Flowchart Continued (3)

Draw_Sign al

GLCD_DisplayString(); GLCD_DisplayFloatingPoint(); GLCD_DisplayInteger(); GLCD_DisplaySpecialPattern();

GLCD Line 6: Display the PWM signal shape.

Special Patterns on Graphical LCD

Special Patterns on Graphical LCD

