Boundedness of derivatives and anti-derivatives of holomorphic functions as a rare phenomenon

Maria Siskaki

Abstract

In this article we prove a general result which in particular suggests that, on a simply connected domain Ω in \mathbb{C} , all the derivatives and anti-derivatives of the generic holomorphic function are unbounded. A similar result holds for the operator T_N of partial sums of the Taylor expansion with center $\zeta \in \Omega$ at z = 0, seen as functions of the center ζ . We also discuss a universality result of these operators T_N .

2010 Mathematics Subject Classification: primary 30K99, secondary 30K05.

Keywords: Baire's Theorem, generic property, Differentiation and Integration operators, Taylor expansion, partial sums, universal Taylor series

1 Introduction

Let Ω be a domain in the complex plane and consider the space $\mathcal{H}ol(\Omega)$ of all the functions that are holomorphic on Ω with the topology of uniform convergence on compacta. In the first section of this article we show that, for a function $f \in \mathcal{H}ol(\Omega)$, the phenomenon of its k-th derivative or k-th anti-derivative being bounded on Ω is a rare phenomenon in the topological sense, provided that Ω is simply connected. We do this by using Baire's Theorem and we prove that the set \mathcal{D} of all the functions $f \in \mathcal{H}ol(\Omega)$ with the property that, the derivatives and the anti-derivatives of f of all orders are unbounded on Ω , is a dense G_{δ} set in $\mathcal{H}ol(\Omega)$.

If a function f is holomorphic in an open set containing ζ , then $S_N(f,\zeta)(z)$ denotes the N-th partial sum of the Taylor expansion of f with center ζ evaluated at z. If Ω is a simply connected domain and $\zeta \in \Omega$, we define the class $U(\Omega,\zeta)$ as follows:

Definition 1.1. Let $U(\Omega,\zeta)$ denote the set of all functions $f \in \mathcal{H}ol(\Omega)$ with the property that, for every compact set $K \subset \mathbb{C}$, $K \cap \Omega = \emptyset$, with K^{c} connected, and for every function h which is continuous on K and holomorphic in the interior of K, there exists a sequence $\{\lambda_n\} \in \{0,1,2,...\}$ such that

$$\sup_{z \in K} |S_{\lambda_n}(f,\zeta)(z) - h(z)| \longrightarrow 0, \quad n \to \infty.$$

Denote $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. It is shown in [6] that $U(\mathbb{D}, 0)$ is a dense G_{δ} set in $\mathcal{H}ol(\mathbb{D})$. More generally, in [5] it is shown that $U(\Omega, \zeta)$ is a dense G_{δ} set in $\mathcal{H}ol(\Omega)$, where Ω is any simply connected domain and $\zeta \in \Omega$. Next, for Ω as above, we define the set $U(\Omega)$:

Definition 1.2. Let $U(\Omega)$ denote the set of all functions $f \in \mathcal{H}ol(\Omega)$ with the property that, for every compact set $K \subset \mathbb{C}$, $K \cap \Omega = \emptyset$, with K^{c} connected, and every function h which is continuous on K and holomorphic in the interior of K, there exists a sequence $\{\lambda_n\} \in \{0, 1, 2, ...\}$ such that, for every compact set $L \subset \Omega$,

$$\sup_{\zeta \in L} \sup_{z \in K} |S_{\lambda_n}(f,\zeta)(z) - h(z)| \longrightarrow 0, \quad n \to \infty.$$

In [5] it is shown that $U(\Omega)$ is a dense G_{δ} set in $\mathcal{H}ol(\Omega)$. Furthermore, in [3] it is shown that $U(\Omega,\zeta) = U(\Omega)$, provided that Ω is contained in a half-plane. This result is generalized in [4], where it is shown that $U(\Omega,\zeta) = U(\Omega)$ for any simply connected domain Ω and $\zeta \in \Omega$.

In the second section of this article, we fix a $\zeta_0 \in \Omega$ and, for $N \geq 1$, we consider the function

$$S_N(f,\zeta_0): \mathbb{C} \to \mathbb{C}$$

$$z \mapsto \sum_{n=0}^N \frac{f^{(n)}(\zeta_0)}{n!} (z - \zeta_0)^n = S_N(f,\zeta_0)(z)$$

V. Nestoridis suggested that, contrary to the functions in $U(\Omega, \zeta)$, whose Taylor partial sums are considered as functions of z with the center ζ fixed, we fix z=0 and let the center ζ vary in Ω . Thus, for $N \geq 0$, we obtain an operator

$$\widetilde{T}_N: \mathcal{H}ol(\Omega) \to \mathcal{H}ol(\Omega)$$
 $f \mapsto \widetilde{T}_N(f)$

where

$$\widetilde{T}_N(f): \Omega \to \mathbb{C}$$

$$\zeta \mapsto \sum_{n=0}^N \frac{f^{(n)}(\zeta)}{n!} (-\zeta)^n = \widetilde{T}_N(f)(\zeta)$$

for any $f \in \mathcal{H}ol(\Omega)$ and $N \geq 0$. The set of functions $f \in \mathcal{H}ol(\Omega)$ such that $\widetilde{T}_N(f)$ is unbounded on Ω for all $N \geq 0$ is residual in $\mathcal{H}ol(\Omega)$. This led V.Nestoridis to conjecture that, if $0 \notin \Omega$, then the class $\mathcal{S}(\Omega)$ of all functions $f \in \mathcal{H}ol(\Omega)$ with the property that, the set $\{\widetilde{T}_N(f): N = 0, 1, 2, ...\}$ is dense in $\mathcal{H}ol(\Omega)$, is a dense G_δ set in $\mathcal{H}ol(\Omega)$. In this article we show that either $\mathcal{S}(\Omega) = \emptyset$ or $\mathcal{S}(\Omega)$ is a dense G_δ set in $\mathcal{H}ol(\Omega)$. The question of whether $\mathcal{S}(\Omega) \neq \emptyset$ will be examined in a future article. However, we do show that, if $0 \notin \Omega$, then the set $\mathcal{S}_t(\Omega)$ of the functions $f \in \mathcal{H}ol(\Omega)$ with he property that, the closure

of the set $\{\widetilde{T}_N(f)\}$ contains the constant functions on Ω , is residual in $\mathcal{H}ol(\Omega)$. We do this by proving that $\mathcal{S}_t(\Omega)$ contains the set $U(\Omega)$, which is already proven to be a dense G_δ set in $\mathcal{H}ol(\Omega)$ ([5]).

In the last part of the article, answering a question by T. Chatziafratis, we prove that, for a countable set $E \subset \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$, the generic holomorphic function on \mathbb{D} has unbounded derivatives and anti-derivatives on each ray [0, z), $z \in E$. We also obtain a more general result, where in fact we do not use Baire's Theorem and, therefore, the topological vector space used need not be a Fréchet space.

2 Preliminaries

Regarding the terminology used, a set of first category in $\mathcal{H}ol(\Omega)$ is a set that can be expressed as a countable union of nowhere dense sets in $\mathcal{H}ol(\Omega)$. Because the space $\mathcal{H}ol(\Omega)$ is metrizable complete, Baire's theorem implies that a subset of $\mathcal{H}ol(\Omega)$ is G_{δ} dense iff it is the countable intersection of open and dense subsets of $\mathcal{H}ol(\Omega)$. A subset of $\mathcal{H}ol(\Omega)$ is called residual if it contains a G_{δ} dense set. Equivalently, if its complement is contained in an F_{σ} set of first category.

Let Ω_1, Ω_2 be two domains in \mathbb{C} and $T : \mathcal{H}ol(\Omega_1) \to \mathcal{H}ol(\Omega_2)$ be a linear operator with the property that for every $z \in \Omega_2$, the function $f \mapsto T(f)(z)$ is continuous in $\mathcal{H}ol(\Omega_1)$. Observe that this latter property is weaker than T being continuous. Define

$$\mathcal{U}_T = \{ f \in \mathcal{H}ol(\Omega_1) : T(f) \text{ is unbounded on } \Omega_2 \}.$$

Proposition 2.1. If Ω_1, Ω_2 are two domains in \mathbb{C} and T is as above, then either $\mathcal{U}_T = \emptyset$ or \mathcal{U}_T is a dense G_δ set in $\mathcal{H}ol(\Omega_1)$.

Proof. If $\mathcal{U}_T \neq \emptyset$, for $m \geq 1$ define

$$U_m = \{ f \in \mathcal{H}ol(\Omega_1) : |T(f)(z)| \le m \text{ for all } z \in \Omega_2 \}.$$

Then

$$\mathcal{U}_T = \Big(\bigcup_{m=1}^{\infty} U_m\Big)^{\mathsf{c}} = \bigcap_{m=1}^{\infty} U_m^{\mathsf{c}}.$$

We will show that U_m is closed and nowhere dense in $\mathcal{H}ol(\Omega_1)$ for each $m \geq 1$.

To see that it is closed, take a sequence $\{f_n\}$ in U_m such that $f_n \longrightarrow f$ uniformly on compact subsets of Ω_1 for some function f. Then $f \in \mathcal{H}ol(\Omega_1)$ and, for $z \in \Omega_2$ we have

$$|T(f)(z)| \le |T(f)(z) - T(f_n)(z)| + |T(f_n)(z)|$$

 $\le |T(f - f_n)(z)| + m.$

Taking $n \to \infty$ we get that $|T(f)(z)| \le m$ because of the continuity of $f \mapsto T(f)(z)$, i.e. $f \in U_m$. Thus, U_m is closed.

To see that U_m is nowhere dense, it suffices to show that $U_m^{\circ} = \emptyset$. Suppose $f \in U_m^{\circ}$. Since $\mathcal{U}_T \neq \emptyset$, there exists a function $g \in \mathcal{H}ol(\Omega_1)$ such that T(g) is unbounded on Ω_2 . Then $\{f + \frac{1}{n}g\}_n$ is a sequence in $\mathcal{H}ol(\Omega_1)$ and, if K is a compact subset of Ω_1 , we have

$$||(f + \frac{1}{n}g) - f||_K = \sup_{z \in K} |f(z) + \frac{1}{n}g(z) - f(z)|$$
$$= \sup_{z \in K} |\frac{1}{n}g(z)| = \frac{1}{n}||g||_K.$$

By taking $n \to \infty$ and observing that $||g||_K < \infty$, g being holomorphic on $\Omega_1 \supset K$, we obtain that $f + \frac{1}{n}g \longrightarrow f$ uniformly on K. Since K was an arbitrary compact subset of Ω_1 , $f + \frac{1}{n}g \longrightarrow f$ uniformly on compact subsets of Ω_1 .

 Ω_1 , $f + \frac{1}{n}g \longrightarrow f$ uniformly on compact subsets of Ω_1 . Since $f \in U_m^{\circ}$, there exists an n_0 such that $f + \frac{1}{n_0}g \in U_m$. By the linearity of $f \mapsto T(f)$ this means that

$$\frac{1}{n_0} |T(g)(z)| \le |T(f)(z) + \frac{1}{n_0} |T(g)(z)| + |T(f)(z)|$$

$$\le m + m$$

or $|T(g)(z)| \leq 2mn_0$, for all $z \in \Omega_2$, which is contradictory to the fact that T(g) is unbounded on Ω_2 . Thus, $U_m^{\circ} = \emptyset$ and the proof is complete.

Proposition 2.2. For $n \in \mathbb{Z}$, let $T_n : \mathcal{H}ol(\Omega_1) \to \mathcal{H}ol(\Omega_2)$ be linear and such that for every $z \in \Omega_2$, the function $f \mapsto T_n(f)(z)$ is continuous in $\mathcal{H}ol(\Omega_1)$. If $\mathcal{U}_{T_n} \neq \emptyset$ for all $n \in \mathbb{Z}$ then the set $\bigcap \mathcal{U}_{T_n}$ is dense G_{δ} in $\mathcal{H}ol(\Omega_1)$.

Proof. The space $\mathcal{H}ol(\Omega_1)$ with the metric of uniform convergence on compacta is a complete metric space, so by Baire's Theorem any countable intersection of dense G_{δ} sets in $\mathcal{H}ol(\Omega_1)$ is again a dense G_{δ} set in $\mathcal{H}ol(\Omega_1)$. Since $\mathcal{U}_{T_n} \neq \emptyset$, it is a dense G_{δ} set in $\mathcal{H}ol(\Omega)$ by Proposition 2.1, $n \in \mathbb{Z}$, and the desired result follows immediately.

Observe that Propositions 2.1 and 2.2 still hold if we replace $\mathcal{H}ol(\Omega_2)$ by \mathbb{C}^X , where X is any non-empty set and \mathbb{C}^X is the set of all functions from X to \mathbb{C} .

3 Boundedness of derivatives and anti-derivatives as a rare phenomenon

For $f \in \mathcal{H}ol(\Omega)$, we denote by $f^{(k)}$ the k-th derivative of $f, k \geq 1$. By $f^{(0)}$ we denote f itself.

Proposition 3.1. Let $\Omega \subset \mathbb{C}$ be open and non-empty and $k \in \mathbb{N} \cup \{0\}$. The set \mathcal{A}_k of all functions $f \in \mathcal{H}ol(\Omega)$ such that $f^{(k)}$ is bounded on Ω is a set of first category in $\mathcal{H}ol(\Omega)$.

Proof. For $m \in \mathbb{N}$, define

$$A_m = \left\{ f \in \mathcal{H}ol(\Omega) : |f^{(k)}(z)| \le m, \text{ for all } z \in \Omega \right\}.$$

It is obvious that

$$\mathcal{A}_k = \bigcup_{m=1}^{+\infty} A_m.$$

We will show that each A_m is closed and has empty interior in $\mathcal{H}ol(\Omega)$.

To see that it is closed, take a sequence $\{f_n\}$ in A_m and a function f on Ω such that $f_n \longrightarrow f$ uniformly on compact subsets of Ω . By the Weierstrass theorem we have that $f \in \mathcal{H}ol(\Omega)$ and $f_n^{(k)} \longrightarrow f^{(k)}$ uniformly on compact subsets of Ω . Therefore, for any $z \in \Omega$ we have that

$$|f^{(k)}(z)| = \lim_{n \to \infty} |f_n^{(k)}(z)| \le m$$

i.e. $f \in A_m$. Thus, A_m is closed.

To see that $A_m^{\circ} = \emptyset$, first observe that there exists a function $g \in \mathcal{H}ol(\Omega)$ such that $g^{(k)}$ is unbounded on Ω . Indeed, if Ω is unbounded take $g(z) = z^{k+1}$ and if Ω is bounded take $\zeta_0 \in \partial \Omega$ and $g(z) = \frac{1}{z-\zeta_0}$.

Now assume that there exists $f \in A_m^{\circ}$. Then $\{f + \frac{1}{n}g\}_n$ is a sequence in $\mathcal{H}ol(\Omega)$ and $f + \frac{1}{n}g \longrightarrow f$ uniformly on compact subsets of Ω , $n \to \infty$. But $f \in A_m^{\circ}$, hence there exists an $n_0 \in \mathbb{N}$ such that $f + \frac{1}{n_0}g \in A_m^{\circ}$. This means that

$$|f^{(k)}(z) + \frac{1}{n_0}g^{(k)}(z)| \le m$$
, for all $z \in \Omega$

where the linearity of the derivative operator is used. But then, for any $z \in \Omega$ we would have

$$\begin{aligned} \left| \frac{1}{n_0} g^{(k)}(z) \right| &= |f^{(k)}(z) + \frac{1}{n_0} g^{(k)}(z) - f^{(k)}(z)| \\ &\le |f^{(k)}(z) + \frac{1}{n_0} g^{(k)}(z)| + |f^{(k)}(z)| \\ &\le m + m. \end{aligned}$$

Thus $|g^{(k)}(z)| \leq 2mn_0$ for all $z \in \Omega$, which is contradictory to the fact that $g^{(k)}$ is unbounded on Ω . Thus, $A_m^{\circ} = \emptyset$ and the proof is complete.

At this point observe that the preceding result can be viewed as a corollary of Proposition 2.1: Consider the operators $\Lambda_k : \mathcal{H}ol(\Omega) \mapsto \mathcal{H}ol(\Omega)$, defined by $\Lambda_k(f) = f^{(k)}$, $k \in \mathbb{N} \cup \{0\}$. These operators are linear and continuous (by Weierstrass Theorem). It just suffices to observe that $\mathcal{U}_{\Lambda_n} \neq \emptyset$ for each n, which follows from the argument provided in the proof of the above proposition.

Also observe that for k=0 we get that the set of holomorphic functions that are unbounded on Ω is a dense G_{δ} set in $\mathcal{H}ol(\Omega)$. In [2] it is shown that, for each domain $\Omega \neq \mathbb{C}$ and $\zeta \in \Omega$, all functions in $U(\Omega,\zeta)$ are unbounded (if they exist). Thus, for each domain Ω for which $U(\Omega,\zeta)$ is a dense G_{δ} subset of $\mathcal{H}ol(\Omega)$ (for some $\zeta \in \Omega$), we can immediately deduce that the set of unbounded holomorphic functions on Ω is a residual set. For example, this is the case when Ω is simply connected or when it is the complement of a non-degenerate continuum.

Proposition 3.2. Let $\Omega \subset \mathbb{C}$ be open and non-empty. The set \mathcal{E} of all functions $f \in \mathcal{H}ol(\Omega)$ with the property that $f^{(k)}$ is unbounded on Ω , for all $k \in \mathbb{N} \cup \{0\}$, is a dense G_{δ} set in $\mathcal{H}ol(\Omega)$.

Proof. In view of the remark preceding this proposition, the result follows immediately by Proposition 2.2

From now on, and throughout the remainder of this section, consider an $\Omega \subset \mathbb{C}$ which is non-empty, open and simply connected. Fix $\zeta_0 \in \Omega$ and, for $f \in \mathcal{H}ol(\Omega)$ define

$$\Lambda_{-1}(f)(z) = \int_{\gamma_z} f(\xi)d\xi, \qquad \text{for all } z \in \Omega$$

$$\Lambda_k(f)(z) = \int_{\gamma_z} \Lambda^{(k+1)}(f)(\xi)d\xi, \qquad \text{for all } z \in \Omega, \ k \le -2$$

where γ_z is any polygonal line in Ω that starts at ζ_0 and ends at z. Since Ω is assumed to be simply connected, for each $k \leq -1$, Λ_k is well-defined and holomorphic in Ω and its |k|-th derivative is f.

Proposition 3.3. The operator

$$\Lambda_{-1}: \mathcal{H}ol(\Omega) \longrightarrow \mathcal{H}ol(\Omega)$$
$$f \mapsto \Lambda_{-1}(f)$$

is linear and continuous on $\mathcal{H}ol(\Omega)$.

Proof. The linearity of Λ_{-1} is obvious from the linearity of the integral. For the continuity, take a sequence $\{f_n\}$ in $\mathcal{H}ol(\Omega)$ and a function f on Ω such that $f_n \longrightarrow f$ uniformly on compact subsets of Ω . By the Weierstrass theorem we have that $f \in \mathcal{H}ol(\Omega)$. We must show that $\Lambda_{-1}(f_n) \longrightarrow \Lambda_{-1}(f)$ on compact subsets of Ω .

Let K be a compact subset of Ω . Either $\Omega = \mathbb{C}$ or $\Omega \neq \mathbb{C}$.

In the first case, i.e. $\Omega=\mathbb{C}$, for $z\in K$ we take γ_z to be the line segment $[\zeta_0,z]$. Set $M=\max\{|\zeta_0|,\max_{z\in K}|z|\}$ and observe that M is well defined and finite because K is compact in \mathbb{C} . Define $L=\overline{D(0,M)}=\{z\in\mathbb{C}:|z|\leq M\}$. Then L is compact in \mathbb{C} , $K\subset L$ and $\gamma_z\subset L$, for all $z\in K$. Therefore, for $z\in K$ we have

$$|\Lambda_{-1}(f_n)(z) - \Lambda_{-1}(f)(z)| = \Big| \int_{\gamma_z} f_n(\xi) d\xi - \int_{\gamma_z} f(\xi) d\xi \Big|$$

$$= \Big| \int_{\gamma_z} (f_n(\xi) - f(\xi)) d\xi \Big|$$

$$\leq \|f_n - f\|_L |z - \zeta_0|$$

$$\leq 2M \|f_n - f\|_L.$$

Thus $\|\Lambda_{-1}(f_n) - \Lambda_{-1}(f)\|_K \leq 2M\|f_n - f\|_L \longrightarrow 0, n \to \infty.$

In the second case, i.e. $\Omega \neq \mathbb{C}$, since Ω is a simply connected domain, by the Riemann Mapping Theorem there exists an analytic function $\phi: \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\} \longrightarrow \mathbb{C}$ such that ϕ is univalent and $\phi(\mathbb{D}) = \Omega$. Obviously ϕ is a homeomorphism between \mathbb{D} and Ω . Since the set $\{\zeta_0\} \cup K \subset \Omega$ is compact, the set $\phi^{-1}(\{\zeta_0\} \cup K) \subset \mathbb{D}$ is also compact. Therefore, there exists an r, with 0 < r < 1, such that $\phi^{-1}(\{\zeta_0\} \cup K) \subset \overline{D(0,r)} = \{z \in \mathbb{C} : |z| \le r\}$. Define $L = \phi(\overline{D(0,r)}) \subset \phi(\mathbb{D}) = \Omega$. Then L is compact and $K \subset L$. For $z \in K$ we have that $\phi^{-1}(\zeta_0)$, $\phi^{-1}(z) \in \overline{D(0,r)}$, hence the line segment $[\phi^{-1}(\zeta_0), \phi^{-1}(z)] \subset \overline{D(0,r)}$. Therefore, if $\sigma: [0,1] \longrightarrow \mathbb{C}$ is a parametrization of $[\phi^{-1}(\zeta_0), \phi^{-1}(z)]$, then $Length(\sigma) \le 2r$. Take $\gamma_z = \phi([\phi^{-1}(\zeta_0), \phi^{-1}(z)]) \subset \phi(\overline{D(0,r)}) = L$ and observe that γ_z is rectifiable: $\phi \circ \sigma: [0,1] \longrightarrow \Omega$ is a parametrization of γ_z and

$$Length(\gamma_z) = \int_0^1 |\gamma_z'(t)| dt$$

$$= \int_0^1 |(\phi \circ \sigma)'(t)| dt$$

$$= \int_0^1 |(\phi'(\sigma(t))| |\sigma'(t)| dt$$

$$\leq \max \{|\phi'(z)| : z \in \overline{D(0,r)}\} \ Length(\sigma)$$

$$\leq \max \{|\phi'(z)| : z \in \overline{D(0,r)}\} \ 2r$$

which is of course finite because ϕ' is continuous on the compact set $\overline{D(0,r)}$. We then have

$$|\Lambda_{-1}(f_n)(z) - \Lambda_{-1}(f)(z)| = \Big| \int_{\gamma_z} f_n(\xi) d\xi - \int_{\gamma_z} f(\xi) d\xi \Big|$$

$$= \Big| \int_{\gamma_z} (f_n(\xi) - f(\xi)) d\xi \Big|$$

$$\leq \|f_n - f\|_L \ Length(\gamma_z)$$

$$\leq \|f_n - f\|_L \ \max \Big\{ |\phi'(z)| : z \in \overline{D(0, r)} \Big\} \ 2r.$$

Thus $\|\Lambda_{-1}(f_n) - \Lambda_{-1}(f)\|_K \le \|f_n - f\|_L \max\{|\phi'(z)| : z \in \overline{D(0,1)}\} \ 2r \longrightarrow 0, n \to \infty.$

In any case we have shown that $\Lambda_{-1}(f_n) \longrightarrow \Lambda_{-1}(f)$ uniformly on K. Since K was an arbitrary compact subset of Ω , the continuity of Λ_{-1} follows.

Corollary 3.4. Let $k \leq -2$. The operator

$$\Lambda_k : \mathcal{H}ol(\Omega) \longrightarrow \mathcal{H}ol(\Omega)$$

$$f \mapsto \Lambda_k(f)$$

is linear and continuous on $\mathcal{H}ol(\Omega)$.

Proof. We have that $\Lambda_k = \Lambda_{-1} \circ \Lambda_{-1} \circ ... \circ \Lambda_{-1}$, the composition of Λ_{-1} k times. Therefore linearity and continuity both follow by Proposition 3.3.

Corollary 3.5. If $f_n \longrightarrow f$ uniformly on compact subsets of Ω and $k \leq -1$, then $\Lambda_k(f_n) \longrightarrow \Lambda_k(f)$ pointwise in Ω .

Proof. By the Weierstrass Theorem, $f \in \mathcal{H}ol(\Omega)$. By Corollary 3.4 we have that $\Lambda_k(f_n) \longrightarrow \Lambda_k(f)$ uniformly on compact subsets of Ω and therefore $\Lambda_k(f_n) \longrightarrow \Lambda_k(f)$ pointwise in Ω .

Proposition 3.6. Let $\Omega \subset \mathbb{C}$ be a simply connected domain and $k \leq -1$. The set \mathcal{B}_k of all $f \in \mathcal{H}ol(\Omega)$ such that $\Lambda_k(f)$ is bounded on Ω is a set of first category in $\mathcal{H}ol(\Omega)$.

Proof. Consider the operator Λ_k as defined above and observe that $\mathcal{U}_{\Lambda_k} \neq \emptyset$: Indeed, if Ω is unbounded take g(z) = 1, $z \in \Omega$, and if Ω is bounded take $\zeta \in \partial \Omega$ and $g(z) = \frac{1}{(z-\zeta)^{-k+1}}$, $z \in \Omega$. Now use Proposition 2.1.

For $f \in \mathcal{H}ol(\Omega)$, where $\Omega \subset \mathbb{C}$ is a simply connected domain, consider the functions $\Lambda_k(f)$, $k \in \mathbb{Z}$, as were defined after Proposition 3.1 and before Proposition 3.3. Collecting all the above results together we get

Theorem 3.7. Let $\Omega \subset \mathbb{C}$ be a simply connected domain. The set \mathcal{D} of all functions $f \in \mathcal{H}ol(\Omega)$ with the property that, $\Lambda_k(f)$ is unbounded on Ω for all $k \in \mathbb{Z}$, is a dense G_{δ} subset of $\mathcal{H}ol(\Omega)$.

Proof. For $k \in \mathbb{Z}$ define

$$D_k = \{ f \in \mathcal{H}ol(\Omega) : \Lambda_k(f) \text{ is unbounded on } \Omega \}$$

Then $\mathcal{D} = \bigcap_{k \in \mathbb{Z}} D_k$. By Propositions 3.1 and 3.6 we have that each D_k is a dense G_δ set in $\mathcal{H}ol(\Omega)$, because its complement is a countable union of closed, nowhere dense sets in $\mathcal{H}ol(\Omega)$. Since $\mathcal{H}ol(\Omega)$ is a complete metric space, Baire's Theorem gives that any countable intersection of dense G_δ sets is again a dense G_δ set.

4 Universality of operators related to the partial sums

Now assume that Ω is a domain in \mathbb{C} . For $N \geq 0$ we define:

$$S_N : \mathcal{H}ol(\Omega) \to \mathcal{H}ol(\Omega \times \mathbb{C})$$

 $f \mapsto S_N(f, \cdot)(\cdot) = S_N(f)$

where

$$S_N(f,\zeta)(z) = \sum_{n=0}^N \frac{f^{(n)}(\zeta)}{n!} (z-\zeta)^n, \ \zeta \in \Omega, z \in \mathbb{C}$$

Then S_N is obviously linear. By the Weierstrass Theorem it is also continuous; indeed suppose $K = K_1 \times K_2$ is a compact subset of $\Omega \times \mathbb{C}$, where K_1, K_2 are compact subsets

of Ω and \mathbb{C} respectively, and $f_k \longrightarrow f$ uniformly on compact subsets of Ω . Set $M = \max_{(\zeta,z)\in K} |z-\zeta|$. Then, for $(\zeta,z)\in K$ we have that

$$|S_N(f_k,\zeta)(z) - S_N(f,\zeta)(z)| = \Big| \sum_{n=0}^N \frac{f_k^{(n)}(\zeta) - f^{(n)}(\zeta)}{n!} (z - \zeta)^n \Big|$$

$$\leq \sum_{n=0}^N \frac{|f_k^{(n)}(\zeta) - f^{(n)}(\zeta)|}{n!} |z - \zeta|^n$$

$$\leq \sum_{n=0}^N \frac{\|f_k^{(n)} - f^{(n)}\|_{K_1}}{n!} M^n$$

which means that

$$||S_N(f_k) - S_N(f)||_K \le \sum_{n=0}^N \frac{||f_k^{(n)} - f^{(n)}||_{K_1}}{n!} M^n$$

and therefore $S_N(f_k) \longrightarrow S_N(f)$ uniformly on K, for each N = 0, 1, 2, ...Now fix $\zeta_0 \in \Omega$ and, for $N \geq 0$, define

$$T_N: \mathcal{H}ol(\Omega) \to \mathcal{H}ol(\mathbb{C})$$

 $f \mapsto S_N(f, \zeta_0)(\cdot)$

Then each T_N is linear and continuous in $\mathcal{H}ol(\Omega)$ and

$$\mathcal{U}_{T_N} = \{ f \in \mathcal{H}ol(\Omega) : S_N(f, \zeta_0) \text{ is unbounded in } \mathbb{C} \}.$$

Observe that $S_N(f,\zeta_0)$ is a polynomial, so it is bounded in \mathbb{C} if and only if it is constant in \mathbb{C} . Therefore

$$\mathcal{U}_{T_N} = \{ f \in \mathcal{H}ol(\Omega) : S_N(f, \zeta_0) \text{ is non-constant in } \mathbb{C} \}.$$

For N = 0 we have that $S_N(f, \zeta_0)(z) = f(\zeta_0), z \in \mathbb{C}$, so $\mathcal{U}_{T_N} = \emptyset$. For $N \geq 1$, we have that

$$S_N(f,\zeta_0)(z) = \sum_{n=0}^{N} \frac{f^{(n)}(\zeta_0)}{n!} (z - \zeta_0)^n$$

is constant if and only if $f'(\zeta_0) = f''(\zeta_0) = \dots = f^{(N)}(\zeta_0) = 0$. But there always exists a function $f \in \mathcal{H}ol(\Omega)$ such that $f^{(k)}(\zeta_0) \neq 0$, for all $k \in \mathbb{N}$, for example $f(z) = e^z$. Therefore, $\mathcal{U}_{T_N} \neq \emptyset$, for all $N \geq 1$. By Proposition 2.2 we have that the set $\bigcap_{N=1}^{\infty} \mathcal{U}_{T_N}$ of all the functions $f \in \mathcal{H}ol(\Omega)$ with the property that the function $S_N(f, \zeta_0)$ is unbounded in \mathbb{C} for all $N \geq 1$, is a dense G_δ set in $\mathcal{H}ol(\Omega)$.

We mention that \mathcal{U}_{T_1} is an open dense set in $\mathcal{H}ol(\Omega)$ because $\mathcal{U}_{T_1} = \{ f \in \mathcal{H}ol(\Omega) : f'(\zeta_0) \neq 0 \}$. Similarly, \mathcal{U}_{T_N} is also an open dense set in $\mathcal{H}ol(\Omega)$, so $\bigcap_{N=1}^{\infty} \mathcal{U}_{T_N}$ is G_{δ} dense in $\mathcal{H}ol(\Omega)$. So this corollary of Proposition 2.2 is well known and obvious. A similar result holds if we replace \mathbb{C} by any unbounded domain Ω_2 .

Now fix z = 0 and, for $N \ge 0$, define

$$\widetilde{T}_N: \mathcal{H}ol(\Omega) \to \mathcal{H}ol(\Omega)$$

 $f \mapsto S_N(f, \cdot)(0)$

Each \widetilde{T}_N is linear and continuous in $\mathcal{H}ol(\Omega)$.

For N=0, we have that $S_0(f,\zeta)(0)=f(\zeta),\,\zeta\in\Omega$, and therefore

$$\mathcal{U}_{\widetilde{T}_{N}} = \{ f \in \mathcal{H}ol(\Omega) : f \text{ is unbounded in } \Omega \}$$

which is a dense G_{δ} set in $\mathcal{H}ol(\Omega)$ by Proposition 3.1.

For $N \geq 1$, if $\Omega = \mathbb{C}$, take $f(z) = e^z$, $z \in \mathbb{C}$. Then

$$S_N(f,\zeta)(0) = \sum_{n=0}^{N} \frac{f^{(n)}(\zeta)}{n!} (0-\zeta)^n = \sum_{n=0}^{N} \frac{e^{\zeta}}{n!} (-\zeta)^n,$$

from which we deduce that the function $S_N(f,\zeta)(0)$ is unbounded in \mathbb{C} . If $\Omega \neq \mathbb{C}$, take $\zeta_0 \in \partial \Omega$ and $f(z) = \frac{1}{z-\zeta_0}, z \in \Omega$. Then $f \in \mathcal{H}ol(\Omega)$ and

$$S_N(f,\zeta)(0) = \sum_{n=0}^{N} \frac{\zeta^n}{(\zeta - \zeta_0)^{n+1}}, \ \zeta \in \Omega$$

which is a rational function with poles only at $z = \zeta_0$. Hence $\lim_{\zeta \to \zeta_0} |S_N(f,\zeta)(0)| = \infty$ and $S_N(f,\cdot)(0)$ is unbounded in Ω .

Therefore, $\mathcal{U}_{\widetilde{T}_N} \neq \emptyset$ for all $N \geq 0$, so by Proposition 2.2 we have that the set $\bigcap_{N=0}^{\infty} \mathcal{U}_{\widetilde{T}_N}$ of all functions $f \in \mathcal{H}ol(\Omega)$ with the property that $S_N(f,\cdot)(0)$ is unbounded in Ω for all $N \geq 0$, is a dense G_{δ} set in $\mathcal{H}ol(\Omega)$.

Next we consider the following class $S(\Omega)$ of functions on Ω :

Definition 4.1. Let Ω be an open, non-empty subset of \mathbb{C} . We define $\mathcal{S}(\Omega)$ to be the set of all functions $f \in \mathcal{H}ol(\Omega)$ such that $\{\widetilde{T}_N(f)\}_{N\geq 0}$ is dense in $\mathcal{H}ol(\Omega)$.

From now on and unless otherwise stated we assume that Ω is a simply connected domain in \mathbb{C} . Our goal is to show that either $S(\Omega) = \emptyset$ or $S(\Omega)$ is a dense G_{δ} set in $\mathcal{H}ol(\Omega)$. To this end, first observe that, $\mathcal{H}ol(\Omega)$ is separable: the set $\{p_j\}_j$ of all polynomials with coefficients having rational coordinates is dense in $\mathcal{H}ol(\Omega)$ by Runge's Theorem. Now consider an exhaustive sequence $\{K_m\}_m$ of compact subsets of Ω , i.e. a sequence $\{K_m\}_m$ of compact subsets of Ω such that

1.
$$\Omega = \bigcup_{m=1}^{\infty} K_m$$

- 2. K_m lies in the interior of K_{m+1} , for m = 1, 2, ...
- 3. Every compact subset of Ω lies in some K_m
- 4. Every component of K_m^{c} contains a component of $\Omega^{\mathsf{c}}, m = 1, 2, ...$

(See [8].)

Now we can show that $S(\Omega)$ can be expressed as a G_{δ} set in $\mathcal{H}ol(\Omega)$:

Proposition 4.2.
$$S(\Omega) = \bigcap_{s,j,m=1}^{\infty} \bigcup_{N=0}^{\infty} \left\{ f \in \mathcal{H}ol(\Omega) : \sup_{\zeta \in K_m} |\widetilde{T}_N(f)(\zeta) - p_j(\zeta)| < \frac{1}{s} \right\}$$

Proof. That $S(\Omega)$ is a subset of the set

$$\bigcap_{s,j}^{\infty} \bigcup_{N=0}^{\infty} \left\{ f \in \mathcal{H}ol(\Omega) : \sup_{\zeta \in K_m} |\widetilde{T}_N(f)(\zeta) - p_j(\zeta)| < \frac{1}{s} \right\}$$

is an immediate consequence of the definition of $\mathcal{S}(\Omega)$.

Consider now a function f in the set

$$\bigcap_{s,i,m=1}^{\infty} \bigcup_{N=0}^{\infty} \big\{ f \in \mathcal{H}ol(\Omega) : \sup_{\zeta \in K_m} |\widetilde{T}_N(f)(\zeta) - p_j(\zeta)| < \frac{1}{s} \big\},$$

a function $g \in \mathcal{H}ol(\Omega)$, a compact subset K of Ω and an $\epsilon > 0$. There exists an $m \ge 1$ such that $K \subset K_m$ and an $s \ge 1$ such that $\frac{1}{s} < \epsilon$. For these g, K_m and s, there exists a $j \ge 1$ such that

$$\sup_{\zeta \in K} |p_j(\zeta) - g(\zeta)| \le \sup_{\zeta \in K_m} |p_j(\zeta) - g(\zeta)| < \frac{1}{2s}$$

For these K_m , s and j, there exists an $N \geq 0$ such that

$$\sup_{\zeta \in K} |\widetilde{T}_N(f)(\zeta) - p_j(\zeta)| \le \sup_{\zeta \in K_m} |\widetilde{T}_N(f)(\zeta) - p_j(\zeta)| < \frac{1}{2s}$$

By the triangle inequality, for $z \in K$, we have

$$|\widetilde{T}_N(f)(z) - g(z)| \le |\widetilde{T}_N(f)(z) - p_j(z)| + |p_j(\zeta) - g(\zeta)|$$

$$\le \sup_{\zeta \in K} |\widetilde{T}_N(f)(\zeta) - p_j(\zeta)| + \sup_{\zeta \in K} |p_j(\zeta) - g(\zeta)|$$

$$< \frac{1}{2s} + \frac{1}{2s}.$$

Therefore, $\sup_{\zeta \in K} |\widetilde{T}_N(f)(\zeta) - g(\zeta)| \leq \frac{1}{s} < \epsilon$, so $\{\widetilde{T}_N(f)\}$ is dense in $\mathcal{H}ol(\Omega)$.

Proposition 4.3. $S(\Omega)$ is a G_{δ} set in $Hol(\Omega)$.

Proof. By Proposition 4.2, it suffices to show that, for $j, s, m \ge 1$ and $N \ge 0$, the set

$$E_{j,s,m,N} := \left\{ f \in \mathcal{H}ol(\Omega) : \sup_{\zeta \in K_m} |\widetilde{T}_N(f)(\zeta) - p_j(\zeta)| < \frac{1}{s} \right\}$$

is open in $\mathcal{H}ol(\Omega)$.

To this end, denote by $C(K_m)$ the space of continuous functions on K_m , endowed with the supremum norm. The mapping $\widetilde{T}_N : \mathcal{H}ol(\Omega) \to C(K_m)$ with $\widetilde{T}_N(f) = S_N(f,\cdot)(0)|_{C(K_m)}$ is continuous. The set $E_{j,s,m,N}$ is the inverse image of the open ball in $C(K_m)$ centered at p_j , with radius 1/s, of the continuous mapping \widetilde{T}_N ; therefore it is open.

Proposition 4.4. Let Ω be a simply connected domain in \mathbb{C} . Either $S(\Omega) = \emptyset$ or $S(\Omega)$ is a dense G_{δ} set in $Hol(\Omega)$.

Proof. If $S(\Omega) \neq \emptyset$, by Proposition 4.3 it suffices to show that $S(\Omega)$ is dense in $\mathcal{H}ol(\Omega)$. Let $f \in S(\Omega)$. Observe that, if p is a polynomial, then $f + p \in S(\Omega)$. Indeed, $f + p \in \mathcal{H}ol(\Omega)$ and, for all $N > \deg p$, we have that $\widetilde{T}_N(f + p) = \widetilde{T}_N(f) + q_p$, where

$$q_p(\zeta) = \sum_{n=0}^{N} \frac{(-1)^n p^{(n)}(\zeta)}{n!} \zeta^n, \quad \zeta \in \Omega$$

is a polynomial which is independent of N, when $N > \deg p$. For a function $g \in \mathcal{H}ol(\Omega)$, we have that $g - q_p \in \mathcal{H}ol(\Omega)$, and therefore there exists a sequence $\{\lambda_n\}$ in \mathbb{N} such that $\widetilde{T}_{\lambda_n}(f) \longrightarrow g - q_p$ uniformly on compact subsets of Ω . But then $\widetilde{T}_{\lambda_n}(f+p) = \widetilde{T}_{\lambda_n}(f) + q_p \longrightarrow g$ uniformly on compact subsets of Ω , i.e. $\{\widetilde{T}_N(f+p)\}$ is dense in $\mathcal{H}ol(\Omega)$ and $f + p \in \mathcal{S}(\Omega)$.

Now the density of $S(\Omega)$ in $Hol(\Omega)$ follows easily because by Runge's Theorem the polynomials are dense in $Hol(\Omega)$.

At this point observe that, if $0 \in \Omega$, then $\mathcal{S}(\Omega) = \emptyset$. Indeed, for $f, g \in \mathcal{H}ol(\Omega)$ such that $f(0) \neq g(0)$, we have that, for any $N \in \mathbb{N}$ and any compact subset L of Ω such that $0 \in L$,

$$\sup_{\zeta \in L} |\widetilde{T}_N(f)(\zeta) - g(\zeta)| \ge |\widetilde{T}_N(f)(0) - g(0)| = |f(0) - g(0)| > 0$$

so there is no subsequence of $\{\widetilde{T}_N(f)\}$ that converges to g uniformly on compact subsets of Ω .

Definition 4.5. Let Ω be open in \mathbb{C} . The set $\mathcal{S}_t(\Omega)$ is the set of all $f \in \mathcal{H}ol(\Omega)$ with the property that, for every $c \in \mathbb{C}$ there exists a sequence $\{\lambda_n\}$ in \mathbb{N} such that, for every $L \subset \Omega$ compact,

$$\sup_{\zeta \in L} |\widetilde{T}_{\lambda_n}(f)(\zeta) - c| \longrightarrow 0, \quad n \to \infty.$$

Proposition 4.6. The set $S_t(\Omega)$ is a G_{δ} set in $Hol(\Omega)$.

Proof. Let $\{z_j\}_{j\in\mathbb{N}}$ be an enumeration of the points in the complex plane with rational coordinates. Following the proof of Propositions 4.2 and 4.3, we get that

$$S_t(\Omega) = \bigcap_{s,j,m=1}^{\infty} \bigcup_{N=0}^{\infty} \left\{ f \in \mathcal{H}ol(\Omega) : \sup_{\zeta \in K_m} |\widetilde{T}_N(f)(\zeta) - z_j| < \frac{1}{s} \right\}$$

and that the set

$$\{f \in \mathcal{H}ol(\Omega) : \sup_{\zeta \in K_m} |\widetilde{T}_N(f)(\zeta) - z_j| < \frac{1}{s}\}$$

is open in $\mathcal{H}ol(\Omega)$, $m, j, s \ge 1$, $N \ge 0$.

Observe again that, if $0 \in \Omega$, then $S_t(\Omega) = \emptyset$. Indeed, for $f \in \mathcal{H}ol(\Omega)$, $c \in \mathbb{C}$ with $f(0) \neq c$ and $L \subset \Omega$ compact, we have that

$$\sup_{\zeta \in L} |\widetilde{T}_N(f)(\zeta) - c| \ge |\widetilde{T}_N(f)(0) - c| = |f(0) - c| > 0$$

for all $N \in \mathbb{N}$. However, we can show that $\mathcal{S}_t(\Omega)$ is dense in $\mathcal{H}ol(\Omega)$ if Ω is a simply connected domain and $0 \notin \Omega$:

Theorem 4.7. Let Ω be a simply connected domain with $0 \notin \Omega$. Then $S_t(\Omega)$ contains a dense G_{δ} set in $\mathcal{H}ol(\Omega)$.

Proof. Since Ω is a simply connected domain, the class $U(\Omega)$ is a dense G_{δ} set in $\mathcal{H}ol(\Omega)$. We will show that $U(\Omega) \subset \mathcal{S}_t(\Omega)$.

Let $f \in U(\Omega)$ and $c \in \mathbb{C}$. Take $K = \{0\}$, which is disjoint from Ω because $0 \notin \Omega$. Then K is a compact set in \mathbb{C} , $K \cap \Omega = \emptyset$, K^c is connected, and the function h(z) = c, $z \in K$, is continuous on K and (trivially) analytic in the interior of K. By definition of the class $U(\Omega)$, there exists a sequence $\{\lambda_n\}$ in \mathbb{N} such that, for every compact set $L \subset \Omega$,

$$\sup_{\zeta \in L} \sup_{z \in K} |S_{\lambda_n}(f,\zeta)(z) - h(z)| \longrightarrow 0, \quad n \to \infty$$

or

$$\sup_{\zeta \in L} |S_{\lambda_n}(f,\zeta)(0) - c| \longrightarrow 0, \quad n \to \infty$$

or

$$\sup_{\zeta \in L} |\widetilde{T}_{\lambda_n}(f)(\zeta) - c| \longrightarrow 0, \quad n \to \infty.$$

Therefore, $f \in \mathcal{S}_t(\Omega)$. This completes the proof.

5 A more general statement

In [1] it is shown that, for each function $f \in U(\mathbb{D}, 0)$, there exists a residual subset G of the unit circle, such that for every positive integer n, the derivative $f^{(n)}$ is unbounded on all radii with endpoints in the set G. Thus the generic function in $\mathcal{H}ol(\mathbb{D})$ has this

property. During a seminar on the topics of this paper, T. Chatziafratis posed the following question: Let E be a countable dense subset of the unit circle. Is it true that, for the generic function $f \in \mathcal{H}ol(\mathbb{D})$, all the derivatives and anti-derivatives of f are unbounded on every radius joining 0 to a point of E?

The answer to this question is affirmative. To see this, we examine a more general case:

Proposition 5.1. Let $\Omega \subset \mathbb{C}$ be an open set, X a non-empty subset of Ω .

If $T: \mathcal{H}ol(\Omega) \to \mathcal{H}ol(\Omega)$ is a linear operator with the property that, for every $z \in \Omega$, the mapping $\mathcal{H}ol(\Omega) \ni f \mapsto T(f)(z) \in \mathbb{C}$ is continuous, and

$$S = S(T, \Omega, X) = \{ f \in \mathcal{H}ol(\Omega) : T(f) \text{ is unbounded on } X \},$$

then either $S = \emptyset$ or S is a dense G_{δ} set in $\mathcal{H}ol(\Omega)$.

Proof. To show that S is a G_{δ} set, for $m \geq 1$, define

$$S_m = \{ f \in \mathcal{H}ol(\Omega) : \exists z \in X \text{ such that } |T(f)(z)| > m \}$$

Then $S = \bigcap_{m=1}^{\infty} S_m$. Since the mapping $f \mapsto T(f)(z)$ is continuous, the set S_m is open in $\mathcal{H}ol(\Omega)$, for each $m \geq 1$. Hence, S is a G_{δ} set in $\mathcal{H}ol(\Omega)$.

To show that S is dense in $\mathcal{H}ol(\Omega)$ if it is not empty, let $g \in S$, i.e. $g \in \mathcal{H}ol(\Omega)$ and T(g) is unbounded on X, and let $f \in \mathcal{H}ol(\Omega)$. If T(f) is unbounded on X, then $f \in S$ and f is (trivially) the limit in $\mathcal{H}ol(\Omega)$ of a sequence of functions in S. If T(f) is bounded on X by, say, M_1 , then, for a fixed $n \geq 1$, the function $T(f + \frac{1}{n}g)$ is unbounded on X. Indeed, suppose it is bounded on X by a positive number M_2 . Then, if $z \in X$, by the linearity of T we would have

$$|T(g)(z)| = n |T(\frac{1}{n}g)(z)|$$

$$= n |T(f + \frac{1}{n}g)(z) - T(f)(z)|$$

$$\leq n |T(f + \frac{1}{n}g)(z)| + n |T(f)(z)|$$

$$\leq n M_2 + n M_1.$$

This means that T(g) is bounded on X by $n(M_1 + M_2)$, which is contradictory to the fact that T(g) is unbounded on X. Therefore, $T(f + \frac{1}{n}g)$ is unbounded on X for every $n \geq 1$; in other words $f + \frac{1}{n}g \in S$, for every $n \geq 1$. But $f + \frac{1}{n}g \longrightarrow f$, $n \to \infty$, uniformly on compact subsets of Ω , so f is again the limit in $\mathcal{H}ol(\Omega)$ of a sequence of functions in S. Since f was an arbitrary function in $\mathcal{H}ol(\Omega)$, S is dense in $\mathcal{H}ol(\Omega)$ and the proof is complete.

Consider now countable $T^{(k)}$ and X_m such that $S(T^{(k)}, \Omega, X_m) \neq \emptyset$, for all k, m. Then Baire's Theorem gives that $\bigcap_{k,m} S(T^{(k)}, \Omega, X_m)$ is a dense G_δ set in $\mathcal{H}ol(\Omega)$. This answers the aforementioned question in the affirmative, because if $E = \{\zeta_m : m \in \mathbb{Z}\}$ and X_m is the radius joining 0 to ζ_m , then the function $g(z) = \frac{1}{z - \zeta_m}$, $z \in \mathbb{D}$, belongs to $S(T^{(k)}, \mathbb{D}, X_m)$ for all $k \geq 0$, where T is the differentiation operator.

More generally, we can replace \mathbb{D} with any open non-empty set Ω in \mathbb{C} , T being the differentiation operator and $X_m \subset \Omega$ having at least one accumulation point in $\partial\Omega$. If Ω is simply connected, then we obtain the analogous result for both the integration operator and the operator related to Taylor partial sums \tilde{T}_N that was defined before.

Observing that in the proof of Proposition 5.1 no properties of $\mathcal{H}ol(\Omega)$ were used other than those of a topological vector space, we can obtain a generalization of our result, where completeness is not assumed and the proof does not use Baire's Theorem:

Proposition 5.2. Let V be a topological vector space over the field \mathbb{R} or \mathbb{C} and X a non-empty set. Denote by F(X) the set of all complex-valued functions on X and consider a linear operator $T: \mathcal{V} \to F(X)$ with the property that, for all $x \in X$, the mapping $\mathcal{V} \ni \alpha \mapsto T(\alpha)(x) \in \mathbb{C}$ is continuous. Let $S = \{\alpha \in \mathcal{V} : T(\alpha) \text{ is unbounded on } X\}$. Then either $S = \emptyset$ or S is a dense G_{δ} set in \mathcal{V} .

Proof. That S is a G_{δ} set follows from the fact that $S = \bigcap_{m=1}^{\infty} \bigcup_{x \in X} \{\alpha \in \mathcal{V} : |T(\alpha)(x)| > m\}$ and the continuity of $\alpha \mapsto T(\alpha)(x)$. The proof that S is dense if it is non-empty is identical to the proof of Proposition 5.1.

Acknowledgements— The topics discussed in this article were suggested by V. Nestoridis. I would like to thank him for the guidance and the insightful suggestions offered. I would also like to thank T. Chatziafratis for his interest in the topics discussed. In addition I would like to thank the referee for their helpful suggestions which improved this paper.

References

- [1] D. H. Armitage and G. Costakis. Boundary behavior of universal taylor series and their derivatives. *Constructive approximation*, 24(1):1–15, 2006.
- [2] S. J. Gardiner and M. Manolaki. Boundary behaviour of universal taylor series on multiply connected domains. *Constructive Approximation*, 40(2):259–279, 2014.
- [3] A. Melas and V. Nestoridis. Universality of Taylor series as a generic property of holomorphic functions. *Advances in Mathematics*, 157(2001)(no. 2):pages 138–176.
- [4] J. Müller, V. Vlachou, and A. Yavrian. Universal overconvergence and Ostrowski-gaps. Bulletin of the London Mathematical Society, 38(2006)(no. 4):pages 597–606.
- [5] V. Nestoridis. An extension of the notion of universal Taylor series. CMFT 1997(Nicosia) 421-430. Ser. Approx. Decompos., II, World Sci. Publ. River Edge, NI. 1999.

- [6] V. Nestoridis. Universal Taylor series. Annales de l'institut Fourier (Grenoble), 46 (1996)(no. 5):pages 1293–1306.
- [7] V. Nestoridis. Non extendable holomorphic functions. *Mathematical Proceedings of the Cambridge Philosophical Society*, 139(2):351–360, 2005.
- [8] W. Rudin. Real and Complex Analysis, 3rd Ed. McGraw-Hill, Inc., New York, NY, USA, 1987.

Current Address:

Department of Mathematics University of Illinois at Urbana-Champaign 1409 W Green St, Urbana, IL 61801 USA

e-mail: siskaki2@illinois.edu