

Разработка управленческих решений в маркетинге

ОТТОК КЛИЕНТОВ

Метрики классификации. Рекомендательные системы

Элен Теванян

Москва, 2018

ПРИМЕР ЗАДАЧИ КЛАССИФИКАЦИИ

- Изготовлена тестовая партия нового продукта, которая была предложена части клиентской базы.
- Хотим понять, стоит ли выпускать его в массовое производство будут ли все клиенты заказывать новый продукт?
- Задача: клиент → [купит продукт (1)/ не купит продукт (0)]
- x_i объект, для которого строим предсказания (клиент)
- y_i целевая переменная: 1 или 0
- (x_i, y_i) прецедент
- Обучающая выборка все клиенты, кому предложили тестовую партию продукта.
- Обучили классификатор a(x). Хороший? Плохой? Поможет принять решение?

ПРИМЕР ЗАДАЧИ КЛАССИФИКАЦИИ

- Пусть в эксперименте участвовало 100 клиентов
- В таблице приведены результаты обучения модели машинного обучения

	Клиент купил $y=1$	Клиент не купил $y=0$		
Модель спрогнозировала, что клиент купил $a(x) = 1$	60 True Positive (TP)	5 False Positive(FP)		
Модель спрогнозировала, что клиент не купил $a(x) = 0$	25 False Negative (FN)	10 True Negative (TN)		

ДОЛЯ ПРАВИЛЬНЫХ ОТВЕТОВ

• Доля правильных ответов (accuracy) показывает долю объектов в выборке, которым классификатор присвоил их истинный класс.

Accuracy =
$$\sum_{i=1}^{\ell} [a(x_i) = y_i]$$

	y = 1	y = 0		
a(x) = 1	60	5		
a(x) = 0	25	10		

ДОЛЯ ПРАВИЛЬНЫХ ОТВЕТОВ

• Доля правильных ответов (accuracy) показывает долю объектов в выборке, которым классификатор присвоил их истинный класс.

Accuracy =
$$\sum_{i=1}^{\ell} [a(x_i) = y_i]$$

	y = 1	y = 0		
a(x) = 1	60	5		
a(x) = 0	25	10		

Accuracy =
$$\frac{60+10}{100}$$
 = 0.7

ТОЧНОСТЬ

• Точность (precision) показывает уровень доверия к классификатору при a(x) = 1

$$Precision = \frac{TP}{TP + FP}$$

	y = 1	y = 0		
a(x) = 1	60	5		
a(x) = 0	25	10		

ТОЧНОСТЬ

• Точность (precision) показывает уровень доверия к классификатору при a(x) = 1

$$Precision = \frac{TP}{TP + FP}$$

	y = 1	y = 0		
a(x) = 1	60	5		
a(x) = 0	25	10		

$$P = \frac{60}{60+5} = 0.92$$

• Отвечаем на вопрос: можно ли доверять классификатору при $a(x) = \mathbf{1}$

ПОЛНОТА

• Полнота (recall) показывает, какую долю правильноположительных ответов находит классификатор

$$Recall = \frac{TP}{TP + FN}$$

	y = 1	y = 0
a(x) = 1	60	5
a(x) = 0	25	10

ПОЛНОТА

• Полнота (recall) показывает, какую долю правильноположительных ответов находит классификатор

$$Recall = \frac{TP}{TP + FN}$$

	y = 1	y = 0		
a(x) = 1	60	5		
a(x) = 0	25	10		

$$P = \frac{60}{60 + 25} = 0.71$$

• Отвечаем на вопрос: много ли положительных ответов находит классификатор?

- Будем жить в мире, где два класса: +1 и -1
- t порог
- b(x) оценка принадлежности к классу +1

• Классифицируем так:

$$a(x) = [b(x) > t]$$

- Как оценить качество b(x)?
- Как выбрать порог?

- Как оценить качество b(x)?
- Как выбрать порог?
- Порог выбирается позже
- Порог высокий:
- Мало объектов к классу +1
- о Точность выше
- Полнота ниже
- Порог низкий:
- Много объектов относим к +1
- Точность ниже
- Полнота выше

-1	-1	+1	-1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

-1		-1	+1	-1	-1	-1	+1	+1	-1	+1
0.	.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

- Пример: кредитный скоринг
- b(x) оценка вероятности возврата кредита
- a(x) = [b(x) > 0.5]
- precision = 0.1
- recall = 0.7
- ??????

PR-КРИВАЯ

- Кривая точности-полноты
- Ось X полнота
- Ось У точность
- Точки значения полноты и точности при последовательных порогах

ROC-КРИВАЯ

- Receiver Operating Characteristic
- Ось X False Positive Rate

$$FPR = \frac{FP}{FP + TN}$$

• Ось У – True Positive Rate

$$TPR = \frac{TP}{TP + TN}$$

ROC-КРИВАЯ В РЕАЛЬНОСТИ

ROC-КРИВАЯ

- Левая точка: (0, 0)
- Правая: (1,1)
- Идеально:
 захватили точку (0, 1)
- Считаем еще AUC-ROC площадь под кривой

ROC-КРИВАЯ

- Левая точка: (0, 0)
- Правая: (1,1)
- Идеально:
 захватили точку (0, 1)
- Считаем еще AUC-ROC площадь под кривой
- Идеально: AUC-ROC = 1
- Плохо: AUC-ROC = 0.5

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ