HASHING

- 1) Open Husbing (closed addressing)
- 2) Closed Mashing Copen addressing)

- Open Hashing Chaining method
- -> Closed Kashing (Open addressing)

Linear Probing

alteady for

Quadrate Dupind

Double Hashing

h(k) = 2k+3

4111 6 G 13 M

clused addressing/chang -> evente linked lift when collision occur

m=10 (site of hesh +ade)

Ause division mothera & closed addressing technique to store these values &

	key	Iucation
•	3	[2(3) +37% 10=9% 10=9
	a	7 % 10 =7
•	9	21 % 10 = 1
Z	6	(12)+3=15%10 TS)7
7	· U	25°6 10 =5
\$	13	29 00 10 = 9
	7	17% 10 =7
	12	27 % 10 = 7

- Linear Probing Method Open addressing

90. 3	key	Lucation	Probes
12	3	9)
12 -	1	7	
3	9	1	1
Ч	6	5)
\$ 6	l)	(5)	2
6 11 4	13	9	۵ ع
7 7	7	(7)	2
9 3	12		G
Collyan at			
5th place so			
Collynn at 5-in place so go to next place			

Order of clement: 13, 9, 12, -,-, 6, 11, 2, 7, 3

Finish Ki at first free location from (u + i) b n where i = 0 + v (m - 1) for 11 = (u + i) b r = (5 + 0) b l0 = 5 b l0 = 5Su not free so i = 1 (5 + i) b lo = 6 b l0 = 6Yese

Double flashing

if collision, insert Ki at first free place from (u + y * i) % m [i = 0 + (m-1)]

(U +i) olo m (u+j2) 060 m

<i>о</i> І	9	
2		
3	H	
	12	
५ ऽ ७	G	
G		
7	2	
8 9]
41	<u> </u>	_ 4

Key	(location (u)	\ <u>\</u>	Probe
3	1000tion(4) (2(3)+3)% w=9	_	1
2	7]
9	1	_	
6	5	<u> </u>	1
$\overline{11}$	5 (colligion)	30 00 10=	3
		4 -	
x 13	\	304910=D	_
x 7	7	V=2736	
12	7	v = 37%	

Calculate using and hain function v= hz(K) ob m apply unly during Collism

grwdys 9ct 9 su can't insert 13 Mto Norgh +all

(u+v + i) 9 m (5 +(4 + 1)) 0 m Prol(1)(5 + 0) % m 500 10 =5 -> not free

prof()(5+(4 + 1))/6 m 9 06 10 = 9 - not free Prox(3)(5 + (4 +2)) 06 m 13 0/0 10 = 3 -> FRESE

- (1) (1+(2+0))%m 7 0/31037 -) not-free
- (1+(2+1)0610 906 W - 1007
- (7+4)06102 1900 = 1 sml
- (7+6) (0 = 3 -) NOT
- € (7+8) % No 5 5 + 50 t
- ((7+6) blu=7-n&
- (7+2(5)) 0610= 19010=1 (7+2(7)) 0610= 2106=1
- (7+2(8)) のりいこでろかしころ
- also oucore (nextra) (1+2(9)) \$10 = 2501>10=5 Tree

A order of evenests:

- , 9, _ , (1, 2,6, _ , *2,* _,3

Hashing Bractice Sroblems 0,4,7,1,2,3,6,11,16

u(x) = 4x

m=12

Key		
0	460) °6 12=0	
4	16% 12 = 4	
7	2640 n= & q	
I	40/012=4	
2	89012 - 8	
3	120612=0	
6	290612=0	
11	44 % 12= 8	
G (6	54 -1012 = 4	
	' '	

LINGAR PROBING

2,4,6,7,15,13,19

	/s =	1	3
U	(x)	_	34

Key	hash	Pol.
	3(2) % 13 = 6	T6
2 4	12	12
ه	18	5
7	21	િ જ
(5	2151	6
13	39	0
19	57	5
,		
	5 -	

1	1		
"O	13		
	/		
2	/		
3	, ,		_
4	1		
5	6		_
5	2		
7	15		-
8	7		_
3 9 00	19		_
(0	1		
[[J		
12	4		

Double Hashing_ m=1)

keys to Insert: 20,34,