Continuidad uniforme

Análisis Matemático 1 Prof. J. Rivera Noriega

ITAM

Primavera de 2020

Continuidad uniforme

Dada $f:D(f)\subseteq\mathbb{R}^p\to\mathbb{R}^q$ y $A\subseteq D(f)$, se dice que f es uniformemente continua en A si para toda $\epsilon>0$ existe $\delta>0$ tal que para todo $x,u\in A$ que cumpla $\|x-u\|<\delta$ se tendrá $\|f(x)-f(u)\|<\epsilon$.

Nótese que si f es uniformemente continua en $A \subseteq D(f)$ entonces continua en todo $a \in A$.

Sin embargo el recíproco es falso:

Basta considerar la función $g(x) = \frac{1}{x}$ para x > 0.

Intuitivamente, dada la misma $\epsilon>0$, entre más cerca estamos de x=0, se va requiriendo una $\delta>0$ más pequeña. Ésto puede verse al tratar de estimar

$$|g(x) - g(u)| = \frac{|u - x|}{ux} \le \frac{\delta}{ux}$$
 suponiendo $|x - u| < \delta$

Al intentar que $\frac{\delta}{ux} < \epsilon$, entre más pequeñas son x y u se requerirá $\delta < \epsilon(ux)$ más pequeña. (ver detalles en [Bartle, pag. 159])

MAT24630 (ITAM) Continuidad uniforme Primavera de 2020

Criterio para la NO continuidad uniforme

• Para verificar que $f: D(f) \subseteq \mathbb{R}^p \to \mathbb{R}^q$ NO es uniformemente continua en $A \subseteq D(f)$ basta exhibir una $\varepsilon_0 > 0$ y dos sucesiones (x_n) y (y_n) en A tales que, aunque $||x_n - y_n|| < 1/n$, se cumplirá $||f(x_n) - f(y_n)|| \ge \varepsilon_0$.

Por ejemplo, en el caso anterior, si $\varepsilon_0=1/2$ y elegimos $x_n=\frac{1}{n},\ y_n=\frac{1}{2n}.$

tendremos
$$|x_n - y_n| = \frac{1}{2n} < \frac{1}{n}$$
 pero

$$|f(x_n)-f(y_n)|=\left|\frac{1}{x_n}-\frac{1}{y_n}\right|=n>\varepsilon_0$$

Teorema de la continuidad uniforme

Teorema

Sea $f: D(f) \subseteq \mathbb{R}^p \to \mathbb{R}^q$ continua en su dominio. Si $K \subseteq D(f)$ es compacto entonces f es uniformemente continua en K

En [Bartle, pag. 160] hay dos demostraciones. Nosostros daremos la demostración a través de sucesiones.

Argumentando por contradicción, supongamos que existen $\varepsilon_0 > 0$ y dos sucesiones (x_n) y (y_n) en K tales que $||x_n - y_n|| < 1/n$ pero $||f(x_n) - f(y_n)|| \ge \varepsilon_0$.

Como K es compacto, ambas sucesiones tienen subsucesiones (x'_k) y (y'_k) que son convergentes al mismo límite $z \in K$.

Como f es continua en K debe ocurrir que $f(x'_k)$ y $f(y'_k)$ convergen a f(z), por lo que dada $\epsilon > 0$ debería cumplirse para k suficientemente grande

$$||f(x'_k) - f(y'_k)|| \le ||f(x'_k) - f(z)|| + ||f(z) - f(y'_k)|| < \epsilon$$

lo cual contraviene la cosntrucción de las sucesiones.

MAT24630 (ITAM) Continuidad uniforme Primavera de 2020

Funciones tipo Lipschitz y contracciones

Una clase de ejemplos de funciones uniformemente continuas en su dominio son aquellas para las que existe M>0 tal que

$$||f(x) - f(y)|| \le M||x - y||$$
 para toda $x, y \in D(f)$

A tales funciones se les llaman funciones de tipo Lipschitz.

Y dentro de esta clase serán de nuestro interés las contracciones, es decir aquellas para las que 0 < M < 1.

Una observación importante es que no toda función uniformemente continua es de tipo Lipschitz.

Por ejemplo $f(x) = \sqrt{x}$ con D(f) = [0,1] es uniformemente continua en su dominio, pero no es de tipo Lipschitz, pues con y=0 se tendría $\sqrt{x} \leq Mx$ para $x \in (0,1]$, o sea que $x \geq 1/M$ para todo $x \in (0,1]$, lo cual es falso.

MAT24630 (ITAM) Continuidad uniforme Primavera de 2020

Teorema del punto fijo para contracciones

Para $f: D(f) \subseteq \mathbb{R}^p \to \mathbb{R}^q$, se dice que $u \in D(f)$ es un punto fijo de f si f(u) = u.

Teorema

Sea $f: \mathbb{R}^p \to \mathbb{R}^p$ una contracción. Entonces existe $u \in \mathbb{R}^p$ que es punto fijo de f.

Para la demostración construiremos una sucesión contractiva, cuyo límite será el punto fijo.

Iniciamos con $x_1 \in \mathbb{R}^p$ arbitrario, y recursivamente $x_{n+1} = f(x_n)$ para $n \in \mathbb{N}$.

Por la propiedad de contracción se cumplirá:

$$||x_{n+1} - x_n|| = ||f(x_n) - f(x_{n-1})|| \le M||x_n - x_{n-1}||, \qquad 0 < M < 1$$

Entonces ya hemos probado que las sucesiones contractivas como (x_n) son sucesiones de Cauchy, que por lo tanto serán convergentes. Digamos que $l\text{im }x_n=u$.

Teorema del punto fijo para contracciones

Ahora veremos que u es punto fijo de f, sustituyendo en la fórmula recursiva para obtener u = f(u).

Veremos ahora que además dicho punto fijo es único: Si $u, v \in \mathbb{R}^p$ cumplen u = f(u), v = f(v) entonces

$$||u-v|| = ||f(u)-f(v)|| \le ||u-v||$$

Si ocurriera que $u \neq v$ obtendríamos $1 \leq M$ (!!)

Recurriendo a la teoría de sucesiones contractivas, de hecho se puede calcular qué tan cerca está el término *n*-ésimo del límite:

$$||u-x_n|| \le \frac{M^{n-1}}{1-M}||x_2-x_1||$$

Contracciones definidas en bolas euclidianas

Teorema

Supóngase que f es una contracción definida en $D = \{x \in \mathbb{R}^p : ||x|| \le B\}$ con constante 0 < C < 1, y que se cumple $||f(\vec{0})|| \le B(1 - C)$. Entonces la sucesión

$$x_1 = \vec{0}, x_2 = f(x_1), \ldots, x_{n+1} = f(x_n), \ldots$$

converge al único punto fijo de f que está en D.

En efecto si $x \in D$ entonces $||f(x) - f(\vec{0})|| \le ||x - \vec{0}|| \le BC$. Por tanto

$$||f(x)|| \le ||f(\vec{0}) + CB \le B(1-C) + BC = B$$

Entonces $f(D) \subseteq D$, lo cual implica que la sucesión definida en la prueba del teorema está bien definida. La prueba anterior puede entonces seguirse literalmente.