

# 动态因子模型在高维数据中的应用 有监督的动态图子模型预测

汪利军(导师:张荣茂)

数学科学学院

March 8, 2018





#### 内容概要

研究背景

数学定义

方法综述

研究内容





- 在宏观经济学中,用于预测的实际序列的个数 N 非常大,经常远大于观测值个数 T,即 N >> T。这种高维问题可以用少量的潜在因子来建模,采用动态因子模型能够起到降维目的(Stock and Watson, 2002);
- 估计动态因子模型中的参数有多种方法,如传统的主成分方法 (PC)(Stock and Watson, 2002),以及更适用于异方差情形的广义最小二乘 (GLS)(Breitung and Tenhofen, 2011)。



## 动态因子模型

令  $x_{it}$  为在时间  $t=1,\ldots,T$  第  $i=1,\ldots,N$  个观测值。因子模型由下式给出(Breitung and Tenhofen, 2011)

$$x_{it} = \lambda_i' F_t + e_{it}$$

其中  $F_t = [f_{1t}, \dots, f_{rt}]'$  是 r 维公共因子的向量, $\lambda_i$  是对应的 r 维因子载荷向量。用矩阵表示,模型可写成

$$\mathbf{X} = \mathbf{F} \boldsymbol{\Lambda}' + \mathbf{e}$$





### 动态因子模型

#### 其中

- $\mathbf{X} = [X_1, ..., X_T]'$  是  $T \times N$  的观测矩阵,行向量为  $X'_t = [x_{1t}, ..., x_{Nt}];$
- $\mathbf{e} = [\mathbf{e}_1, \dots, \mathbf{e}_T]'$  是  $T \times N$  的特质 (idiosyncratic) 误差矩阵,行向量为  $\mathbf{e}'_t = [e_{1t}, \dots, e_{Nt}];$
- $\mathbf{F} = [F_1, \dots, F_T]'$
- $\Lambda = [\lambda_1, \dots, \lambda_N]'$



#### 预测问题

用时间序列向量  $X_t$  对单时间序列变量  $y_t$  进行预测。

- 一般地, 预测问题可以分两步求解(Stock and Watson, 2002)
  - ① 根据  $X_t$  估计出因子  $F_t$ ;
  - ② 估计  $y_t$  和因子  $F_t$  之间的关系。





#### 主成分估计

在  $T^{-1}\mathbf{F}\mathbf{F}' = \mathbf{I}_r$  约束下以及一定的假设条件下,最小化

$$S(\mathbf{F}, \mathbf{\Lambda}) = \operatorname{tr}[(\mathbf{X} - \mathbf{F}\mathbf{\Lambda}')'(\mathbf{X} - \mathbf{F}\mathbf{\Lambda}')]$$

得到估计

$$\hat{\mathbf{F}} = \sqrt{T}\hat{\mathbf{V}}_r$$

其中  $\hat{\mathbf{V}}_r$  是  $\mathbf{X}\mathbf{X}'$  的前 r 个最大的特征值对应的特征向量组成的 矩阵。(Stock and Watson, 2002)



#### GLS 估计

考虑异方差,提出 GLS 估计,对加权残差平方和进行最小化

$$S(\mathbf{F}, \boldsymbol{\Lambda}, \boldsymbol{\Omega}) = \operatorname{tr}[\boldsymbol{\Omega}^{-1}(\mathbf{X} - \mathbf{F}\boldsymbol{\Lambda}')'(\mathbf{X} - \mathbf{F}\boldsymbol{\Lambda}')]$$
(3)

根据  $\Omega$  的不同, 衍生了不同的方法

- **1**  $\Omega = \text{diag}[E(e_{1t}^2), \dots, E(e_{Nt}^2)]$  (Choi, 2012)
- ② 任意阵 (Forni et al., 2005; Choi, 2012)
- 3  $\Omega = \sigma^2 (\mathbf{I}_N \varrho \mathbf{W}_N)^{-1} (\mathbf{I}_N \varrho \mathbf{W}_N')^{-1}$  (Chudik et al., 2011)
- 4 同时考虑异方差和自相关性(Breitung and Tenhofen, 2011)

#### 小结

- ① 很多论文研究对象是时间序列向量  $X_t$  (没有响应变量  $y_t$ ), 单纯考虑根据  $X_t$  来估计  $F_t$ ,如Breitung and Tenhofen, 2011
- ② 即使论文研究对象是对  $y_t$  进行预测,但也是先根据  $X_t$  估计  $F_t$ ,再由  $F_t$  预测  $y_t$ ,如Stock and Watson, 2002



#### 小结

- ① 很多论文研究对象是时间序列向量  $X_t$  (没有响应变量  $y_t$ ),单纯考虑根据  $X_t$  来估计  $F_t$ ,如Breitung and Tenhofen, 2011
- ② 即使论文研究对象是对  $y_t$  进行预测,但也是先根据  $X_t$  估计  $F_t$ ,再由  $F_t$  预测  $y_t$ ,如Stock and Watson, 2002

但此果我们提前用到 yt 的信息呢?





#### 基本想法

处理高维数据时,首先根据  $y_t$  与  $X_t$  中每个时间序列的关系,提取其中与  $y_t$  相关性较大的时间序列构造新的时间序列向量  $X_t^*$ ,对这个新的序列应用 PC 估计或者 GLS 估计。即

- ① 根据  $y_t$  和  $X_t$  得到初步降推后的  $X_t^*$
- ② 根据  $X_t^*$  估计出因子  $F_t$ ;
- **3** 估计  $y_t$  和因子  $F_t$  之间的关系。

这个想法是受监督主成分方法 (Supervised Principal Components)(Bair et al., 2006)的启发。





#### 监督主成分

监督主成分的一般算法如下(Bair et al., 2006)

- 1 分别计算每个特征与输出变量之间的单变量回归系数;
- ② 从  $0 \le \theta_1 \le \cdots \le \theta_K$  中依次取阈值  $\theta$ 
  - a 提取出原特征矩阵中单变量回归系数的绝对值大于  $\theta$  的特征,从新特征中取前 m 个主成分
  - b 采用这些主成分对输出变量进行预测
- 3 通过交叉验证选取  $\theta$  (和 m)

汪利军



#### 监督主成分

监督主成分的一般算法如下(Bair et al., 2006)

- 1 分别计算每个特征与输出变量之间的单变量回归系数;
- ② 从  $0 \le \theta_1 \le \cdots \le \theta_K$  中依次取阈值  $\theta$ 
  - a 提取出原特征矩阵中单变量回归系数的绝对值大于  $\theta$  的特征, 从新特征中取前 m 个主成分
  - b 采用这些主成分对输出变量进行预测
- 3 通过交叉验证选取  $\theta$  (和 m)

后续研究中,在第2(b)步中,尝试除PC 之外的方法,此GLS。

#### 研究计划

- ① 推导有监督的方法(如有监督的主成分和 GLS)应用于动态 因子模型的公式,并给出具体的假设条件,同时尝试讨论其 渐近性质;
- 2 通过模拟实验将之与 PC 估计、GSL 估计进行比较;
- 3 将方法应用于实际数据,如股票数据。



#### 参考文献 |



Journal of the American Statistical Association, 101(473) 119–137.

- Breitung, J. & Tenhofen, J. (2011). Gls estimation of dynamic factor models.
  - Journal of the American Statistical Association, 106(495), 1150–1166.
- Choi, I. (2012). Efficient estimation of factor models. Econometric Theory, 28(2), 274–308.
- Chudik, A., Pesaran, M. H., & Tosetti, E. (2011). Weak and strong cross-section dependence and estimation of large panels. The Econometrics Journal, 14(1).



#### 参考文献 ||



- Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2005). The generalized dynamic factor model: one-sided estimation and forecasting. <u>Journal of the American Statistical Association</u> 100(471), 830–840.
- Friedman, J., Hastie, T., & Tibshirani, R. (2001).

  The elements of statistical learning. Springer series in statistics New York.



#### 参考文献 III



Stock, J. H. & Watson, M. W. (2002). Forecasting using principal components from a large number of predictors.

Journal of the American statistical association, 97(460), 1167–1179.



