STP220N6F7

N-channel 60 V, 0.0021 Ω typ., 120 A, STripFET™ F7 Power MOSFET in a TO-220 package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)max}	ΙD	Ртот
STP220N6F7	60 V	0.0024 Ω	120 A	237 W

- Among the lowest R_{DS(on)} on the market
- Excellent figure of merit (FoM)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

• Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packaging
STP220N6F7	220N6F7	TO-220	Tube

Contents STP220N6F7

Contents

1	Electrical ratings			
2	Electric	cal characteristics	4	
	2.1	Electrical characteristics (curves)	6	
3	Test cir	rcuits	8	
4	Packag	e mechanical data	9	
	4.1	TO-220 package mechanical data	10	
5	Revisio	on history	12	

STP220N6F7 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	60	V
V _G s	Gate-source voltage	±20	V
I _D ⁽¹⁾	Drain current (continuous)	120	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	120	Α
I _{DM} ⁽²⁾	Drain current (pulsed) T _C = 25 °C	480	Α
P _{TOT}	Total dissipation at T _C = 25 °C	237	W
E _{AS} ⁽³⁾	Single pulse avalanche energy	1	J
TJ	Operating junction temperature		°C
T _{stg}	Storage temperature	-55 to 175	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.63	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	°C/W

⁽¹⁾Current limited by package

⁽²⁾Pulse width is limited by safe operating area

 $^{^{(3)}}Starting~T_j$ = 25°C, I_d = 20 A, V_{dd} = 50 V

Electrical characteristics STP220N6F7

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4: On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Uni t
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0, I _D = 1 mA	60			٧
	Zero gate voltage	$V_{GS} = 0$, $V_{DS} = 60 \text{ V}$			1	μΑ
IDSS	I _{DSS} Zero gate voltage drain current	V _{GS} = 0, V _{DS} = 60 V, T _C = 125 °C			100	μΑ
Igss	Gate-body leakage current	V _{DS} = 0, V _{GS} = + 20 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	2		4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 60 A		0.002	0.002 4	Ω

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Uni t
Ciss	Input capacitance		1	6400	ı	pF
Coss	Output capacitance	$V_{GS} = 0$, $V_{DS} = 25 V$,	-	3880	-	pF
Crss	Reverse transfer capacitance	f = 1 MHz	1	175	1	pF
Q_g	Total gate charge	$V_{DD} = 30 \text{ V}, I_D = 120 \text{ A},$	ı	100	ı	nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V	ı	36	ı	nC
Q_{gd}	Gate-drain charge	(see Figure 14: "Test circuit for gate charge behavior")	-	24	-	nC

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 30 \text{ V}, I_D = 60 \text{ A},$	-	33	ı	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	-	103	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 13: "Test circuit for resistive load switching	-	54	-	ns
t _f	Fall time	times")	-	29	-	ns

Table 7: Source drain diode

Table 7. Course drain diode						
Symbol	Parameter	Test conditions	Min	Typ ·	Max	Un it
V _{SD} ⁽¹⁾	Forward on voltage	V _{GS} = 0, I _{SD} = 120 A	ı	ı	1.1	V
t _{rr}	Reverse recovery time	I _{SD} = 120 A,	ı	69		ns
Qrr	Reverse recovery charge	di/dt = 100 A/μs	ı	104		nC
IRRM	Reverse recovery current	V _{DD} = 48 V, T _J = 150 °C (see Figure 15: "Test circuit for inductive load switching and diode recovery times")	-	3		А

Notes:

 $^{^{(1)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 3: Thermal impedance

K

O=0.5

0.2

0.01

0.02

Cip = k R_{thJ-c} $\delta = t_p/\tau$ Single pulse $t_p = t_p/\tau$ $t_p = t_p/\tau$

Figure 4: Output characteristics

GIPGOS1120141150MT

VGS=8, 9, 10V

350

300

7V

6V

150

0

2

4

6

8

VDS(V)

STP220N6F7 Electrical characteristics

Figure 9: Normalized gate threshold voltage vs temperature GIPG051120141232MT VGS(th) (norm) 1.10 ID=250μ A 1.00 0.90 0.80 0.70 0.60 0.50 0.40 -25 25 75 175 TJ(°C) 125

Figure 10: Normalized on-resistance vs temperature GIPG051120141240MT RDS(on) (norm) VGS=10V Id=60 A 1.60 1.40 1.20 1.00 0.80 0.60 25 75 125 175 TJ(°C)

Figure 12: Source-drain diode forward characteristics GIPG051120141326MT Vsp(V) 1.00 TJ=-55°C 0.90 TJ=25°C 0.80 0.70 TJ=175°C 0.60 0.50 30 70 10 50 90 110 ISD(A)

Test circuits STP220N6F7

3 Test circuits

Figure 13: Test circuit for resistive load switching times

Figure 14: Test circuit for gate charge behavior

12 V 47 KΩ 100 NF D.U.T.

VGS 1 KΩ 100 NF D.U.T.

AM01469v1

Figure 15: Test circuit for inductive load switching and diode recovery times

577

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

4.1 TO-220 package mechanical data

Figure 19: TO-220 type A package outline

Table 8: TO-220 type A mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
øΡ	3.75		3.85
Q	2.65		2.95

Revision history STP220N6F7

5 Revision history

12/13

Table 9: Document revision history

Date	Revision	Changes
17-Jun-2014	1	Initial release.
05-Nov-2014	2	Updated title and features in cover page. Updated Electrical rating and Electrical characteristics. Added Electrical characteristics (curves). Minor text changes.
07-Oct-2015	3	Document status promoted from preliminary to production data.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

