Digital Image Processing COSC 6380/4393

Lecture – 15

Mar. 9th, 2023

Pranav Mantini

Slides from Dr. Shishir K Shah and S. Narasimhan

Spatial Domain $(x) \longrightarrow$ Frequency Domain (u)

Fourier Transform

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-\sqrt{-1}ux}dx$$

Discrete Fourier Transform
$$F(u) = \sum_{x=-\infty}^{\infty} f(x)e^{-\sqrt{-1}ux} \qquad e^{-\sqrt{-1}x} = \cos x - \sqrt{-1}\sin x$$

$$e^{-\sqrt{-1}x} = \cos x - \sqrt{-1}\sin x$$

Frequency Domain $(u) \longrightarrow$ Spatial Domain (x)

Inverse Fourier Transform

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{\sqrt{-1}ux}du$$

Inverse Discrete Fourier Transform

$$f(x) = \sum_{u = -\infty}^{\infty} F(u)e^{\sqrt{-1}ux} \Big|_{e^{\sqrt{-1}x} = \cos x + \sqrt{-1}\sin x}$$

$$e^{\sqrt{-1}x} = \cos x + \sqrt{-1}\sin x$$

From 1D \rightarrow 2D

- One dimension (x) \rightarrow frequency (u)
- Two dimensions \rightarrow (i, j)
- Frequencies along $(I,j) \rightarrow (u,v)$

Sinusoidal Images

2D sine wave $\Rightarrow \sin(ui + vj)(u \text{ and } v \text{ are frequencies along } i \text{ and } j)$

$$\sin(i+j)(u=1,v=1) \qquad \sin(i+0.5j)(u=1,v=0.5) \qquad \sin(0.5i+0.5j) \\ u=v=0.5$$

$$\text{Waveform}_{0.0}^{0.5} \qquad \text{Waveform}_{0.0}^{0.5} \qquad \text{$$

Spatial Domain (i,j) \longrightarrow Frequency Domain (u,v)

Fourier Transform

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(i,j)e^{-\sqrt{-1}(ui+vj)}di\,dj$$

Discrete Fourier Transform
$$F(u,v) = \sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} f(i,j)e^{-\sqrt{-1}(ui+vj)}$$

Frequency Domain (u,v) \longrightarrow Spatial Domain (i,j)

Inverse Fourier Transform

$$f(i,j) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{\sqrt{-1}(ui+vj)} du dv$$

Inverse Discrete Fourier Transform

$$f(i,j) = \sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty} F(u,v)e^{\sqrt{-1}(ui+vj)}$$

Sinusoidal Images

- We shall make frequent discussion in this module of the frequency content of an image.
- First consider images having the simplest frequency content.
- A digital sine image I is an image having elements

$$I_1(i, j) = \sin \left[\frac{2\pi}{N} (ui + vj)\right]$$
 for $0 \le i, j \le N-1$

and a digital cosine image has elements

$$I_2(i, j) = \cos \left[\frac{2\pi}{N} (ui + vj)\right]$$
 for $0 \le i, j \le N-1$

where u and v are **integer frequencies** in the i- and j-directions (measured in cycles/image; **notice** division by N).

If I is an image of size N then

Sin image
$$I_1(i,j) = \sin\left[\frac{2\pi}{N}\left(ui + vj\right)\right] \text{ for } 0 \leq i,j \leq N-1$$
 Cos image
$$I_2(i,j) = \cos\left[\frac{2\pi}{N}\left(ui + vj\right)\right] \text{ for } 0 \leq i,j \leq N-1$$

• Let \tilde{I} be the DFT of the I

$$\tilde{I}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i,j) e^{-\sqrt{-1}\frac{2\pi}{N}(ui+vj)}$$

$$F(u,v) = \sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} f(i,j)e^{-\sqrt{-1}(ui+vj)}$$

2D Inverse Discrete Fourier Transform

• Let \tilde{I} be the DFT of the I

$$I(i,j) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \tilde{I}(u,v) e^{\sqrt{-1}\frac{2\pi}{N}(ui+vj)}$$

$$f(i,j) = \sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty} F(u,v)e^{\sqrt{-1}(ui+vj)}$$

Example

$$I = \begin{bmatrix} 5 & 7 \\ 8 & 3 \end{bmatrix}$$

$$\tilde{I}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i,j) e^{-\sqrt{-1}\frac{2\pi}{N}(ui+vj)}$$

$$\tilde{I}(0,0) = \sum_{i=0}^{2-1} \sum_{j=0}^{2-1} I(i,j) e^{-\sqrt{-1}\frac{2\pi}{2}(0*i+0*j)}$$

$$= \sum_{i=0}^{1} \sum_{j=0}^{1} I(i,j) = 21 \qquad \tilde{I}(0,1) = 3.+0. \sqrt{-1}$$

$$\tilde{I}(1,0) = 1. +0. \sqrt{-1}$$
 $\tilde{I}(1,1) = -7. +0. \sqrt{-1}$

23	
	-7.+0.j

Example

$$I = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$\tilde{I}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} I(i,j) e^{-\sqrt{-1}(\frac{2\pi}{N}ui + \frac{2\pi}{M}vj)}$$

$$\tilde{I}(0,0) = \sum_{i=0}^{2-1} \sum_{j=0}^{3-1} I(i,j) e^{-\sqrt{-1}(\frac{2\pi}{N}0*i + \frac{2\pi}{M}0*j)}$$

$$= \sum_{i=0}^{1} \sum_{j=0}^{2} I(i,j) = 21 \quad \tilde{I}(0,1) = -3 + 1.732051j \qquad \tilde{I}(0,2) = -3 - 1.732051j$$

$$\tilde{I}(1,0) = -9$$

$$\tilde{I}(1,0) = -9$$
 $\tilde{I}(1,1) = 0 + 0j$

$$\tilde{I}(1,2) = 0 + 0j$$

$$\tilde{I} = \begin{bmatrix} 21 + 0\sqrt{-1} & -3 + 1.73\sqrt{-1} & -3 - 1.73\sqrt{-1} \\ -9 + 0\sqrt{-1} & 0 + 0\sqrt{-1} & 0 + 0\sqrt{-1} \end{bmatrix}$$

Complex **Image**

Properties of DFT Matrix

- We can understand the DFT matrix better by studying some of its properties.
- Any image I of interest to us is composed of real integers.
- However, the DFT of I is generally complex.
- It can be written in the form

$$\mathbf{\tilde{I}} = \mathbf{\tilde{I}}_{\text{real}} + \sqrt{-1} \, \mathbf{\tilde{I}}_{\text{imag}}$$

where $\mathbf{\tilde{I}}_{\text{real}}$ and $\mathbf{\tilde{I}}_{\text{imag}}$ have components

$$\tilde{I}_{real}(u, v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \cos \left[\frac{2\pi}{N} (ui + vj) \right]$$

$$\tilde{I}_{imag}(u, v) = -\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \sin \left[\frac{2\pi}{N} (ui + vj) \right]$$

i.e.,

$$\tilde{I}(u, v) = \tilde{I}_{real}(u, v) + \sqrt{-1} \, \tilde{I}_{imag}(u, v) \text{ for } 0 \leq u, v \leq N-1$$

(These are taken directly from the original DFT equation).

Therefore I has a magnitude and a phase.

Properties of DFT Matrix

- We can understand the DFT matrix better by studying some of its properties.
- Any image I of interest to us is composed of real integers.
- However, the DFT of I is generally complex.
- It can be written in the form

$$\mathbf{\tilde{I}} = \mathbf{\tilde{I}}_{real} + \sqrt{-1} \, \mathbf{\tilde{I}}_{imag}$$

where $\tilde{\boldsymbol{I}}_{\text{real}}$ and $\tilde{\boldsymbol{I}}_{\text{imag}}$ have components

$$\tilde{I}_{real}(u, v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \cos \left[\frac{2\pi}{N} (ui + vj) \right]$$

$$\tilde{I}_{imag}(u, v) = -\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \sin \left[\frac{2\pi}{N} (ui + vj) \right]$$

i.e.,

$$\tilde{I}(u, v) = \tilde{I}_{real}(u, v) + \sqrt{-1} \tilde{I}_{imag}(u, v) \text{ for } 0 \le u, v \le N-1$$

(These are taken directly from the original DFT equation).

Therefore \tilde{I} has a **magnitude** and a **phase**.

$21 + 0\sqrt{-1}$	$-3 + 1.73 \sqrt{-1}$	$-3 - 1.73 \sqrt{-1}$
$-9 + 0 \sqrt{-1}$	$0 + 0 \sqrt{-1}$	$0 + 0\sqrt{-1}$

21	-3	-3
-9	0	0

0	1.73	- 1.73
0	0	0

Magnitude and Phase of DFT

• The **magnitude** of the DFT is the matrix

$$\left|\mathbf{\tilde{I}}\right| = \left[\left|\mathbf{\tilde{I}}(u,\,v)\right|\,;\,0\leq\,u,\,v\leq\,N\text{-}1\right]$$
 with elements

$$\left|\tilde{I}(u,\,v)\right| = \sqrt{\tilde{I}_{\text{real}}^{\,2}(u,v) + \tilde{I}_{\text{imag}}^{\,2}(u,v)}$$

21	3.46	3.46
9	0	0

which are just the magnitudes of the complex components of ${f I}$

The phase of the DFT is the matrix

$$\angle \tilde{\mathbf{I}} = \left[\angle \tilde{\mathbf{I}}(u, v) ; 0 \le u, v \le N-1\right]$$

with elements

$$\label{eq:interpolation} \begin{split} \angle \tilde{I}(u,\,v) = tan^{\text{-}1} \big[\tilde{I}_{imag}(u,\,v) \, / \, \tilde{I}_{real}(u,\,v) \big] \end{split}$$

Therefore which are just the phases of the complex components of \(\tilde{\ell} \).

$$\tilde{I}(u, v) = \left| \tilde{I}(u, v) \right| \exp \left\{ \sqrt{-1} \angle \tilde{I}(u, v) \right\}$$
University of Housian

Magnitude and Phase of DFT

The magnitude of the DFT is the matrix

$$\left|\mathbf{\tilde{I}}\right| = \left[\left|\mathbf{\tilde{I}}(u, v)\right| \; ; \; 0 \leq \; u, \, v \leq \; N\text{-}1\right]$$

with elements

$$|\tilde{I}(u, v)| = \sqrt{\tilde{I}_{real}^{2}(u, v) + \tilde{I}_{imag}^{2}(u, v)}$$

which are just the magnitudes of the complex components of ${f I}$

The phase of the DFT is the matrix

$$\angle \tilde{\mathbf{I}} = \left[\angle \tilde{\mathbf{I}}(u, v) ; 0 \le u, v \le N-1\right]$$

with elements

~	_~	~	_
$\angle I(u, v) =$	= tan-1[Î _{imag} (1	$(u, v) / I_{real}(u,$	v)

0	150	-150
180	0	0

• Therefore which are just the phases of the complex components of $\tilde{\mathbf{I}}$.

$$\tilde{I}(u, v) = \left| \tilde{I}(u, v) \right| \exp \left\{ \sqrt{-1} \angle \tilde{I}(u, v) \right\}$$
University of Housian

Then

$$\tilde{I}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i,j) e^{-\sqrt{-1}\frac{2\pi}{N}(ui+vj)}$$

We will use the abbreviation

$$W_N = e^{-\sqrt{-1}\frac{2\pi}{N}} \Rightarrow W_N^{ui+vj} = e^{-\sqrt{-1}\frac{2\pi}{N}(ui+vj)}$$

Then

$$\tilde{I}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i,j) e^{-\sqrt{-1}\frac{2\pi}{N}(ui+vj)}$$

We will use the abbreviation

$$W_N = e^{-\sqrt{-1}\frac{2\pi}{N}} \Rightarrow W_N^{ui+vj} = e^{-\sqrt{-1}\frac{2\pi}{N}(ui+vj)}$$

Then

$$\tilde{I}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i,j) e^{-\sqrt{-1}\frac{2\pi}{N}(ui+vj)}
= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i,j) W_N^{ui+vj}
I(i,j) = \sum_{u=0}^{N-1} \sum_{u=0}^{N-1} \tilde{I}(u,v) W_N^{-(ui+vj)}$$

$$\tilde{I}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i,j) W_N^{ui+vj}$$

$$\tilde{I}(N - u, N - v)$$

$$\tilde{I}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i,j) W_N^{ui+vj}$$

$$\tilde{I}(N - u, N - v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) W_N^{[(N-u)i+(N-v)j]}$$
_{N-1} N-1

$$\tilde{I}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i,j) W_N^{ui+vj}$$

$$\begin{split} \tilde{I}(N - u, N - v) &= \sum_{i = 0}^{N-1} \sum_{j = 0}^{N-1} & I(i, j) \ W_N^{[(N-u)i + (N-v)j]} \\ &= \sum_{i = 0}^{N-1} \sum_{j = 0}^{N-1} & I(i, j) \ W_N^{N(i+j)} \ W_N^{-(ui+vj)} \end{split}$$

$$\tilde{I}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i,j) W_N^{ui+vj}$$

$$\begin{split} \tilde{I}(N-u,\,N-v) &= \sum_{i\,=\,0}^{N-1} \, \, \sum_{j\,=\,0}^{N-1} \quad I(i,\,j) \, \, W_N^{[(N-u)i+(N-v)j]} \\ &= \sum_{i\,=\,0}^{N-1} \, \, \sum_{j\,=\,0}^{N-1} \quad I(i,\,j) \, \, W_N^{N(i+j)} \, \, W_N^{-(ui+vj)} \end{split}$$

since

and

$$W_{N}^{N(i+j)} = e^{-\sqrt{-1}\frac{2\pi}{N} \cdot N(i+j)} = e^{-2\pi\sqrt{-1}(i+j)} = 1^{(i+j)} = 1 \text{ for any } i, j$$

$$W_N^{(ui+vj)} = \left[W_N^{(ui+vj)} \right]^*.$$

$$\tilde{I}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i,j) W_N^{ui+vj}$$

$$\begin{split} \tilde{I}(N-u,\,N-v) &= \sum_{i\,=\,0}^{N\text{-}1} \sum_{j\,=\,0}^{N\text{-}1} \quad I(i,\,j) \ W_N^{[(N\text{-}u)i+(N-v)j]} \\ &= \sum_{i\,=\,0}^{N\text{-}1} \sum_{j\,=\,0}^{N\text{-}1} \quad I(i,\,j) \ W_N^{N(i+\,j)} \ W_N^{-(ui+vj)} \\ &= \sum_{i\,=\,0}^{N\text{-}1} \sum_{j\,=\,0}^{N\text{-}1} \quad I(i,\,j) \left[W_N^{(ui+vj)} \right]^* = \tilde{I}^*(u,\,v) \end{split}$$

since

and

$$W_{N}^{N(i+j)} = e^{-\sqrt{-1} \frac{2\pi}{N} \cdot N(i+j)} = e^{-2\pi \sqrt{-1} (i+j)} = 1^{(i+j)} = 1 \text{ for any } i, j$$

$$W_N^{(ui+vj)} = \left[\left. W_N^{(ui+vj)} \right. \right] *.$$

The DFT of an image I is conjugate symmetric:

$$\tilde{I}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i,j) W_N^{ui+vj}$$

$$\begin{split} \tilde{I}(N-u, N-v) &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \ W_N^{[(N-u)i+(N-v)j]} \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \ W_N^{N(i+j)} \ W_N^{-(ui+vj)} \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \left[W_N^{(ui+vj)} \right]^* = \tilde{I}^*(u, v) \end{split}$$

since

$$W_{N}^{N(i+j)} = e^{-\sqrt{-1}\frac{2\pi}{N} \cdot N(i+j)} = e^{-2\pi\sqrt{-1}(i+j)} = 1^{(i+j)} = 1 \text{ for any } i, j$$

and

$$W_N^{(ui+vj)} = \left[W_N^{(ui+vj)} \right]^*.$$

The DFT of an image I is conjugate symmetric:

$$\begin{split} \tilde{I}_{real}(N - u, N - v) &= \tilde{I}_{real}(u, v) \; ; \; 0 \leq u, \, v \leq N - 1 \\ \tilde{I}_{imag}(N - u, N - v) &= - \tilde{I}_{imag}(u, v) \; ; \; 0 \leq u, \, v \leq N - 1 \end{split}$$

$$\begin{split} \tilde{I}(N-u,N-v) &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i,j) \ W_N^{[(N-u)i+(N-v)j]} \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i,j) \ W_N^{N(i+j)} \ W_N^{-(ui+vj)} \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i,j) \left[W_N^{(ui+vj)} \right]^* = \tilde{I}^*(u,v) \\ \text{since} \\ &W_N^{N(i+j)} = e^{-\sqrt{-1} \frac{2\pi}{N} \cdot N(i+j)} = e^{-2\pi \sqrt{-1} \, (i+j)} = 1^{(i+j)} = 1 \text{ for any } i,j \\ \text{and} \\ &W_N^{-(ui+vj)} = \left[W_N^{(ui+vj)} \right]^*. \end{split}$$

The DFT of an image I is conjugate symmetric:

 $|\tilde{I}(N-u,N-v)| = |\tilde{I}(u,v)|$ The magnitude DFT of an image I is symmetric:

Symmetry of DFT

 Depiction of the symmetry of the DFT (magnitude).

 The highest frequencies are represented near (u, v) = (N/2, N/2).

$$\tilde{\mathbf{I}} = [\tilde{\mathbf{I}}(\mathbf{u}, \mathbf{v}); 0 \le \mathbf{u}, \mathbf{v} \le N-1]$$

- However, if the arguments are allowed to take values outside the range $0 \le u, v \le N-1$, we find that the DFT is periodic in both the u- and v-directions, with **period N**:
- For any integers m, n

$$I(u+nN, v+mN)$$

$$\tilde{\mathbf{I}} = [\tilde{\mathbf{I}}(\mathbf{u}, \mathbf{v}); 0 \le \mathbf{u}, \mathbf{v} \le N-1]$$

- However, if the arguments are allowed to take values outside the range $0 \le u, v \le N-1$, we find that the DFT is periodic in both the u- and v-directions, with **period N**:
- For any integers m, n $\tilde{I}(u+nN,\,v+mN) = \sum_{i\,=\,0}^{N-1}\,\sum_{j\,=\,0}^{N-1}\,\,I(i,j)\,\,W_N^{[(u+nN)i+(v+mN)j]}$

$$\tilde{\mathbf{I}} = [\tilde{\mathbf{I}}(\mathbf{u}, \mathbf{v}); 0 \le \mathbf{u}, \mathbf{v} \le N-1]$$

- However, if the arguments are allowed to take values outside the range $0 \le u, v \le N-1$, we find that the DFT is periodic in both the u- and v-directions, with **period N**:
- For any integers m, n

$$\begin{split} \tilde{I}(u+nN, v+mN) &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \ W_N^{[(u+nN)i+(v+mN)j]} \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \ W_N^{N(ni+mj)} \ W_N^{(ui+vj)} \end{split}$$

$$\tilde{\mathbf{I}} = [\tilde{\mathbf{I}}(\mathbf{u}, \mathbf{v}); 0 \le \mathbf{u}, \mathbf{v} \le N-1]$$

- However, if the arguments are allowed to take values outside the range $0 \le u, v \le N-1$, we find that the DFT is periodic in both the u- and v-directions, with **period N**:
- For any integers m, n

$$\begin{split} \tilde{I}(u+nN, v+mN) &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \ W_N^{[(u+nN)i+(v+mN)j]} \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \ W_N^{N(ni+mj)} \ W_N^{(ui+vj)} \end{split}$$

since

$$W_N^{N(ni+mj)} = e^{-\sqrt{-1} \frac{2\pi}{N} \cdot N(ni+mj)} = e^{-2\pi \sqrt{-1} (ni+mj)} = 1^{(ni+mj)} = 1$$

$$\tilde{\mathbf{I}} = [\tilde{\mathbf{I}}(\mathbf{u}, \mathbf{v}); 0 \le \mathbf{u}, \mathbf{v} \le N-1]$$

- However, if the arguments are allowed to take values outside the range 0 ≤ u, v ≤ N-1, we find that the DFT is periodic in both the u- and v-directions, with period N:
- For any integers m, n

$$\begin{split} \tilde{I}(u+nN, \, v+mN) &= \sum_{i\,=\,0}^{N-1} \sum_{j\,=\,0}^{N-1} \quad I(i,j) \, \, W_N^{[(u+nN)i+(v+mN)j]} \\ &= \sum_{i\,=\,0}^{N-1} \sum_{j\,=\,0}^{N-1} \quad I(i,j) \, \, W_N^{N(ni+mj)} \, \, W_N^{(ui+vj)} \\ &= \sum_{i\,=\,0}^{N-1} \sum_{j\,=\,0}^{N-1} \quad I(i,j) \, \, W_N^{(ui+vj)} \end{split}$$

since

$$W_N^{N(ni+mj)} = e^{-\sqrt{-1}\,\frac{2\pi}{N}\,\cdot\,N(ni+mj)} = e^{-2\pi\,\sqrt{-1}\,(ni+mj)} = 1^{(ni+mj)} = 1$$

$$\tilde{\mathbf{I}} = [\tilde{\mathbf{I}}(\mathbf{u}, \mathbf{v}); 0 \le \mathbf{u}, \mathbf{v} \le N-1]$$

- However, if the arguments are allowed to take values outside the range 0 ≤ u, v ≤ N-1, we find that the DFT is periodic in both the u- and v-directions, with period N:
- For any integers m, n

$$\begin{split} \tilde{I}(u+nN, v+mN) &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \ W_N^{[(u+nN)i+(v+mN)j]} \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \ W_N^{N(ni+mj)} \ W_N^{(ui+vj)} \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \ W_N^{(ui+vj)} = \tilde{I}(u, v) \end{split}$$

since

$$W_N^{N(ni+mj)} = e^{-\sqrt{-1} \frac{2\pi}{N} \cdot N(ni+mj)} = e^{-2\pi \sqrt{-1} (ni+mj)} = 1^{(ni+mj)} = 1$$

Periodicity of DFT

• We have defined the DFT matrix as **finite** in extent (N x N):

$$\tilde{\mathbf{I}} = [\tilde{\mathbf{I}}(\mathbf{u}, \mathbf{v}); 0 \le \mathbf{u}, \mathbf{v} \le N-1]$$

- However, if the arguments are allowed to take values outside the range $0 \le u, v \le N-1$, we find that the DFT is periodic in both the u- and v-directions, with **period N**:
- For any integers m, n

$$\begin{split} \tilde{I}(u+nN, v+mN) &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \ W_N^{[(u+nN)i+(v+mN)j]} \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \ W_N^{N(ni+mj)} \ W_N^{(ui+vj)} \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \ W_N^{(ui+vj)} = \tilde{I}(u, v) \end{split}$$

since

$$W_N^{N(ni+mj)} = e^{-\sqrt{-1} \frac{2\pi}{N} \cdot N(ni+mj)} = e^{-2\pi \sqrt{-1} (ni+mj)} = 1^{(ni+mj)} = 1$$

 This is called the periodic extension of the DFT. It is defined for all integer frequencies u, v. UNIVERSITY of HOUSTON

• The IDFT equation
$$I(i, j) = \frac{1}{N^2} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \tilde{I}(u, v) \ W_N^{-(ui+vj)}$$

Note that for any integers n. m

$$I(i+nN, j+mN)$$

.

• The IDFT equation
$$I(i,j) = \frac{1}{N^2} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \tilde{I}(u,v) \ W_N^{-(ui+vj)}$$

Note that for any integers n. m

$$I(i+nN, j+mN) = \frac{1}{N^2} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \tilde{I}(u, v) \ W_N^{[u(i+nN)+v(j+mN)]}$$

.

• The IDFT equation
$$I(i,j) = \frac{1}{N^2} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \tilde{I}(u,v) \ W_N^{\text{-}(ui+vj)}$$

Note that for any integers n. m

ntegers n. m
$$\begin{split} I(i+nN,\,j+mN) &= \frac{1}{N^2} \sum_{u=\,0}^{N\text{-}1} \sum_{v=\,0}^{N\text{-}1} \tilde{I}(u,\,v) \,\, W_N^{[u(i+nN)+v(j+mN)]} \\ &= \frac{1}{N^2} \sum_{u=\,0}^{N\text{-}1} \sum_{v=\,0}^{N\text{-}1} \tilde{I}(u,\,v) \,\, W_N^{(ui+vj)} \,\, W_N^{N(nu+mv)} \end{split}$$

.

The IDFT equation

$$I(i, j) = \frac{1}{N^2} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \tilde{I}(u, v) W_N^{-(ui+vj)}$$

Note that for any integers n. m

$$\begin{split} I(i+nN,\,j+mN) &= \frac{1}{N^2} \sum_{u=\,0}^{N-1} \sum_{v=\,0}^{N-1} \tilde{I}(u,\,v) \,\, W_N^{[u(i+nN)+v(j+mN)]} \\ &= \frac{1}{N^2} \sum_{u=\,0}^{N-1} \sum_{v=\,0}^{N-1} \tilde{I}(u,\,v) \,\, W_N^{(ui+vj)} \,\, W_N^{N(nu+mv)} \end{split}$$

$$W_{N}^{\text{-N(nu+mv)}} = e^{\text{-}\sqrt{-1}\frac{2\pi}{N} \cdot \text{N(nu+mv)}} = e^{\text{-}2\pi\sqrt{-1} \text{(nu+mv)}} = 1^{\text{(nu+mv)}} = 1$$

The IDFT equation

$$I(i, j) = \frac{1}{N^2} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \tilde{I}(u, v) W_N^{-(ui+vj)}$$

Note that for any integers n. m

$$\begin{split} I(i+nN,\,j+mN) &= \frac{1}{N^2} \sum_{u=\,0}^{N-1} \sum_{v=\,0}^{N-1} \tilde{I}(u,\,v) \,\, W_N^{[u(i+nN)+v(j+mN)]} \\ &= \frac{1}{N^2} \sum_{u=\,0}^{N-1} \sum_{v=\,0}^{N-1} \tilde{I}(u,\,v) \,\, W_N^{-(ui+vj)} \,\, W_N^{-N(nu+mv)} \\ &= \frac{1}{N^2} \sum_{u=\,0}^{N-1} \sum_{v=\,0}^{N-1} \tilde{I}(u,\,v) \,\, W_N^{-(ui+vj)} \end{split}$$

$$W_{N}^{\text{-N(nu+mv)}} = e^{\text{-}\sqrt{-1}\frac{2\pi}{N} \cdot \text{N(nu+mv)}} = e^{\text{-}2\pi\sqrt{-1} \text{(nu+mv)}} = 1^{\text{(nu+mv)}} = 1$$

The IDFT equation

$$I(i, j) = \frac{1}{N^2} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \tilde{I}(u, v) W_N^{-(ui+vj)}$$

Note that for any integers n. m

$$\begin{split} I(i+nN,\,j+mN) &= \frac{1}{N^2} \sum_{u=\,0}^{N-1} \sum_{v=\,0}^{N-1} \tilde{I}(u,\,v) \,\, W_N^{[u(i+nN)+v(j+mN)]} \\ &= \frac{1}{N^2} \sum_{u=\,0}^{N-1} \sum_{v=\,0}^{N-1} \tilde{I}(u,\,v) \,\, W_N^{-(ui+vj)} \,\, W_N^{N(nu+mv)} \\ &= \frac{1}{N^2} \sum_{u=\,0}^{N-1} \sum_{v=\,0}^{N-1} \tilde{I}(u,\,v) \,\, W_N^{-(ui+vj)} \,= I(i,\,j) \end{split}$$

$$W_N^{\text{-N(nu+mv)}} = e^{\text{-}\sqrt{-1}\,\frac{2\pi}{N}\,\cdot\,\,N(nu+mv)} = e^{\text{-}2\pi\,\sqrt{-1}\,\,(nu+mv)} = 1^{(nu+mv)} = 1$$

Periodic Extension of Image

The IDFT equation

$$I(i, j) = \frac{1}{N^2} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \tilde{I}(u, v) W_N^{-(ui+vj)}$$

implies the **periodic extension of the image I** as well (with period N), simply by letting the arguments (i, j) take any integer value.

Note that for any integers n, m

$$\begin{split} I(i+nN,\,j+mN) &= \frac{1}{N^2} \sum_{u=\,0}^{N-1} \sum_{v=\,0}^{N-1} \tilde{I}(u,\,v) \,\, W_N^{[u(i+nN)+v(j+mN)]} \\ &= \frac{1}{N^2} \sum_{u=\,0}^{N-1} \sum_{v=\,0}^{N-1} \tilde{I}(u,\,v) \,\, W_N^{(ui+vj)} \,\, W_N^{-N(nu+mv)} \\ &= \frac{1}{N^2} \sum_{u=\,0}^{N-1} \sum_{v=\,0}^{N-1} \tilde{I}(u,\,v) \,\, W_N^{(ui+vj)} = I(i,\,j) \end{split}$$

$$W_N^{\text{-N(nu+mv)}} = e^{\text{-}\sqrt{-1}\,\frac{2\pi}{N}\,\cdot\,\,N(nu+mv)} = e^{\text{-}2\pi\,\sqrt{-1}\,\,(nu+mv)} = 1^{(nu+mv)} = 1$$

- In a sense, the DFT implies that the image I is already periodic.
- This will be extremely important when we consider convolution

Periodic Extension of Image

Frequencies DFT

 The highest frequencies are represented near (u, v) = (N/2, N/2).

- Usually, the DFT is displayed with its center coordinate (u, v) = (0, 0) at the center of the image.
- This way, the lower frequency information (which usually dominates an image) is clustered together near the origin at the center of the display.

- Usually, the DFT is displayed with its center coordinate (u, v) = (0, 0) at the center of the image.
- This way, the lower frequency information (which usually dominates an image) is clustered together near the origin at the center of the display.

$$I(u - \frac{N}{2}, v - \frac{N}{2})$$

- Usually, the DFT is displayed with its center coordinate (u, v) = (0, 0) at the center of the image.
- This way, the lower frequency information (which usually dominates an image) is clustered together near the origin at the center of the display.

$$\tilde{I}(u - \frac{N}{2}, v - \frac{N}{2}) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) W_N^{[(u-N/2)i+(v-N/2)j]}$$

- Usually, the DFT is displayed with its center coordinate (u, v) = (0, 0) at the center of the image.
- This way, the lower frequency information (which usually dominates an image) is clustered together near the origin at the center of the display.

$$\begin{split} \tilde{I}(u - \frac{N}{2}, v - \frac{N}{2}) &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \ W_N^{[(u-N/2)i+(v-N/2)j]} \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \ W_N^{(ui+vj)} \ W_N^{-N(i+j)/2} \end{split}$$

- Usually, the DFT is displayed with its center coordinate (u, v) = (0, 0) at the center of the image.
- This way, the lower frequency information (which usually dominates an image) is clustered together near the origin at the center of the display.

$$\begin{split} \tilde{I}(u - \frac{N}{2}, v - \frac{N}{2}) &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \ W_N^{[(u-N/2)i+(v-N/2)j]} \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \ W_N^{(ui+vj)} \ W_N^{N(i+j)/2} \\ W_N^{N(i+j)/2} &= e^{\sqrt{-1} \frac{2\pi}{N} N(i+j)/2} = e^{\sqrt{-1\pi} (i+j)} = (-1)^{i+j} \end{split}$$

- Usually, the DFT is displayed with its center coordinate (u, v) = (0, 0) at the center of the image.
- This way, the lower frequency information (which usually dominates an image) is clustered together near the origin at the center of the display.

$$\begin{split} \tilde{I}(u - \frac{N}{2}, v - \frac{N}{2}) &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \ W_{N}^{[(u-N/2)i+(v-N/2)j]} \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \ W_{N}^{(ui+vj)} \ W_{N}^{-N(i+j)/2} \\ W_{N}^{-N(i+j)/2} &= e^{\sqrt{-1} \frac{2\pi}{N} N(i+j)/2} = e^{\sqrt{-1}\pi (i+j)} = (-1)^{i+j} \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) (-1)^{i+j} \ W_{N}^{(ui+vj)} \end{split}$$

- Usually, the DFT is displayed with its center coordinate (u, v) = (0, 0) at the center of the image.
- This way, the lower frequency information (which usually dominates an image) is clustered together near the origin at the center of the display.

$$\begin{split} \tilde{I}(u - \frac{N}{2}, v - \frac{N}{2}) &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \ W_N^{[(u-N/2)i+(v-N/2)j]} \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) \ W_N^{(ui+vj)} \ W_N^{N(i+j)/2} \\ W_N^{N(i+j)/2} &= e^{\sqrt{-1} \frac{2\pi}{N} N(i+j)/2} = e^{\sqrt{-1\pi} (i+j)} = (-1)^{i+j} \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} I(i, j) (-1)^{i+j} \ W_N^{(ui+vj)} \\ &= DFT \Big[(-1)^{i+j} I(i, j) \Big] \end{split}$$

 This can be accomplished in practice by taking the DFT of the alternating image (for display purposes only!)

$$[(-1)^{i+j}|(i,j); 0 \le i, j \le N-1]$$

- Usually, the DFT is displayed with its center coordinate (u, v) = (0, 0) at the center of the image.
- This way, the lower frequency information (which usually dominates an image) is clustered together near the origin at the center of the display.
- This can be accomplished in practice by taking the DFT of the alternating image (for display purposes only!)

$$[(-1)^{i+j}|(i,j); 0 \le i, j \le N-1]$$

Observe that

$$(-1)^{i+j} = e^{\sqrt{-1}\pi \; (i+j)} = e^{\sqrt{-1} \; \frac{2\pi}{N} \; N(i+j)/2} = W_N^{N(i+j)/2}$$
 so
$$DFT\Big[(-1)^{i+j} I(i,j) \Big] = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \; I(i,j) \; (-1)^{i+j} \; W_N^{(ui+vj)}$$

$$= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \; I(i,j) \; W_N^{(ui+vj)} \; W_N^{-N(i+j)/2}$$

$$= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \; I(i,j) \; W_N^{(ui-vj)} \; W_N^{-N(i+j)/2}$$

$$= \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \; I(i,j) \; W_N^{[(u-N/2)i+(v-N/2)j]}$$

$$= \tilde{I} (u - \frac{N}{2}, v - \frac{N}{2})$$

Centered DFT

Original DFT

Centered DFT

UNIVERSITY of **HOUSTON**

- Since the DFT is complex one can display only either the magnitude or phase as an image at a time.
- Usually the phase is very difficult to interpret visually.
- To display the magnitude, usually it's best to logarithmically compress it:

$$\log \left[1 + \left|\tilde{I}(u, v)\right|\right]$$

prior to display, since (visually) the low-amplitude frequencies will be hard to see.

 Following the logarithm, it is necessary to use a linear point operation to stretch the contrast, since the log values will be very small.

The Meaning of Image Frequencies

- It is sometimes easy to lose track of the meaning of the DFT and of the frequency content of an image in all the math.
- The DFT is precisely that a description of the frequency content.
- By looking at the DFT or **spectrum** of an image (especially its magnitude), we can determine much about the image.

Qualitative Properties of DFT

- We may regard the DFT as an **image of frequency content**.
- Bright regions in the DFT "image" correspond to frequencies that have large magnitudes in the real image.
- It is very intuitive to think of the frequency content of an image in terms of its granularity (distribution of radial frequencies) and its orientation.

Periodic Noise removal

Periodic Noise removal

Narrowband Image

• It is also possible to produce an images that are highly granular **and** highly oriented:

• This mask was created by (pointwise) multiplying the midfrequency mask with one of the oriented masks.

Filtered Image

