Работа 4.4.1

Амплитудная дифракционная решётка (гониометр) Киркича Андрей, Б01-202, МФТИ

Цель работы: знакомство с работой и настройкой гониометра, определение спектральных характеристик амплитудной решётки.

В работе используются: гониометр, дифракционная решётка, ртутная лампа.

В работе исследуются спектр ртутной лампы и дисперсия ртутной решётки, определяются период и спектральные характеристики решётки и оценивается влияние ширины пучка на разрешающаую способность.

Теоретическая справка

Основное соотношение приближенной теории дифракционной решётки:

$$d\sin\varphi_m = m\lambda. \tag{1}$$

Угловая дисперсия D характеризует угловое расстояние между близкими спектральными линиями:

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi} = \frac{m}{\sqrt{d^2 - m^2\lambda^2}}.$$
 (2)

Рассмотрим изображения спектра для двух узких спектральных линий с длинами волн λ и $\lambda+\delta\lambda$. Для минимального значения $\lambda+\delta\lambda$, которое может быть определено по результатам измерений, вводят важнейшую характеристику спектрального прибора — разрешающую способность:

$$R = \frac{\lambda}{\delta \lambda}.\tag{3}$$

Экспериментальная установка

Устройство гониометра

Гониометр служит для точного измерения углов и находит широкое применение в оптических лабораториях.

Оптическая схема и внешний вид гониометра

Ртутная лампа

Характеристики спектра ртутной лампы привдены в таблице ниже.

$N_{\overline{0}}$	K_1	K_2	1	2	3	4	5	6
λ нм.	690,7	623,4	579,1	577,0	546,1	491,6	435,8	404,7
Цвет	красн.	красн.	желт.	желт.	зелен.	голуб.	синий	фиолет.
Яркость	4	4	10	8	10	4	4	3

Ход работы

Сначала были измерены углы для максимумов линий спектра ртутной лампы порядков ± 1 . Полученные данные приведены в Таблице 1.

№ линии	1 порядок	-1 порядок
6	11°41′57″	11°38′29″
5	12°36′34″	12°33′37″
4	14°15′39″	14°11′58″
3	15°52′33″	15°48′17″
2	16°48′04″	16°43′18″
1	16°51′56″	16°47′01″
K_2	17°52′08″	17°47′11″
K_1	18°12′43″	18°06′48″

Таблица 1: Углы линий спектра ртути

Далее для оценки угловой дисперсии решётки были измерены угловые координаты линий жёлтого дублета для всех видимых порядков спектра, положительных и отрицательных. Данные представлены в таблице 2.

m	$arphi_1$	$arphi_2$
-3	59°13′38″	59°35′05″
-2	35°03′45″	35°12′46″
$\overline{-1}$	16°43′18″	16°47′01″
1	16°48′04″	16°51′56″
2	35°24′15″	35°33′12″
3	60°41′58″	61°04′30″

Таблица 2: Углы жёлтых линий

Наконец, для оценки разрешающей способности спектрального прибора была измерена угловая ширина одной из линий жёлтого дублета по нулям интенсивности в первом и втором порядках. Угловая ширина составила $\Delta \varphi_1 = 1'30''$ и $\Delta \varphi_2 = 1'53''$ соответственно.

Обработка данных

По полученным данным был построен график на рис. 1 зависимости $\sin \varphi_m$ от длины волны. По коэффициенту наклона с использованием формулы (1) был найден период решётки $d=\frac{1}{k}=2.04\pm0.05$ мкм.

Рис. 1: График зависимости $\sin\varphi$ от длины волны для первых максимумов

Далее изучим зависимость D от m и сравним результат с формулой 2. Результат наглядно представлен на рисунке 2.

Рис. 2: Зависимость угловой дисперсии от порядка

Черная прямая - это теоретическая зависимость, построенная по параметру d, ранее определенному. Легко видеть, что теория очень хорошо описывает эксперимент

Определим также разрешающую способность по формуле $R=\frac{\lambda}{\delta\lambda}\approx 680$, число рабочих штрихов решётки $N\approx 680$ и размер освещённой части $l=Nd\approx 1.36$ мм.

Заключение

Мы исследовали спектральные линии ртути, определили шаг решётки, её угловую дисперсию, а также её разрешающую способность. Полученные результаты близки к теоретическим предсказаниям.