Optimization Theory

Lecture 14

Fudan University

luoluo@fudan.edu.cn

Outline

1 Stochastic Variance Reduced Gradient

2 Catalyst Acceleration and Direct Acceleration

Outline

1 Stochastic Variance Reduced Gradient

2 Catalyst Acceleration and Direct Acceleration

Stochastic Variance Reduced Gradient (SVRG)

$\textbf{Algorithm} \ \textbf{1} \ \mathsf{Stochastic} \ \mathsf{Variance} \ \mathsf{Reduced} \ \mathsf{Gradient}$

```
1: Input: x_0, \eta, m, S
 2: \tilde{\mathbf{x}}^{(0)} = \mathbf{x}_0
 3: for s = 0, \dots, S-1
 4: \tilde{\boldsymbol{\mu}} = \nabla f(\tilde{\mathbf{x}}^{(s)})
 5: \mathbf{x}_0 = \tilde{\mathbf{x}} = \tilde{\mathbf{x}}^{(s)}
         for t = 0, ..., m-1
  6:
                draw i_t from \{1,\ldots,n\} uniformly
  7:
                \mathbf{x}_{t+1} = \mathbf{x}_t - \eta(\nabla f_{i,t}(\mathbf{x}_t) - \nabla f_{i,t}(\tilde{\mathbf{x}}) + \tilde{\boldsymbol{\mu}}),
  8:
            end for
 g.
           Option I: \tilde{\mathbf{x}}^{(s+1)} = \mathbf{x}_m
10:
            Option II: \tilde{\mathbf{x}}^{(s+1)} = \mathbf{x}_t for randomly chosen t \in \{0, \dots, m-1\}
11:
12: end for
13: Output: \tilde{\mathbf{x}}^{(S)}
```

Stochastic Variance Reduced Gradient (SVRG)

Assume $\eta = \Theta(1/L)$ and m is sufficient large so that

$$\rho = \frac{1}{\mu \eta (1 - 2L\eta)m} + \frac{2L\eta}{1 - 2L\eta} < 1,$$

then SVRG holds that

$$\mathbb{E}\big[f(\tilde{\mathbf{x}}^{(s)}) - f(\mathbf{x}^*)\big] \le \rho^s(f(\tilde{\mathbf{x}}_0) - f(\mathbf{x}^*)).$$

The incremental first-order oracle complexity to achieve

$$\mathbb{E}\big[f(\tilde{\mathbf{x}}^{(s)}) - f(\mathbf{x}^*)\big] \le \epsilon$$

is at most $\mathcal{O}((\kappa + n) \log(1/\epsilon))$.

Loopless SVRG

Algorithm 2 L-SVRG

- 1: **Input:** η , T and p.
- 2: $\mathbf{x}_0 = \mathbf{w}_0$
- 3: **for** t = 0, 1, ..., T do
- 4: draw i_t from $\{1, \ldots, n\}$ uniformly
- 5: $\mathbf{v}_t = \nabla f_{i_t}(\mathbf{x}_t) \nabla f_{i_t}(\mathbf{w}_t) + \nabla f(\mathbf{w}_t)$
- 6: $\mathbf{x}_{t+1} = \mathbf{x}_t \eta \mathbf{v}_t$
- 7: $\mathbf{w}_{t+1} = \begin{cases} \mathbf{x}_t & \text{with probability } p \\ \mathbf{w}_t & \text{with probability } 1 p \end{cases}$
- 8: end for

Outline

1 Stochastic Variance Reduced Gradien

2 Catalyst Acceleration and Direct Acceleration

Variance Reduction

Comparisons on IFO complexities:

- SAG/SVRG/SAGA is better than GD.
- ② SAG/SVRG/SAGA is worse than AGD when $\kappa \geq \Omega(n^2)$.
- **1** The optimal dependency on condition number should be $\sqrt{\kappa}$.

How to accelerate variance reduced methods?

Catalyst Acceleration

Consider the inexact proximal point iteration

$$\begin{split} \mathbf{x}_{t+1} &\approx \mathsf{prox}_{f/\gamma}(\mathbf{x}_t) \\ &= \mathop{\mathsf{arg\,min}}_{\mathbf{x} \in \mathbb{R}^d} \left(f(\mathbf{x}) + \frac{\gamma}{2} \left\| \mathbf{x} - \mathbf{x}_t \right\|_2^2 \right). \end{split}$$

How design the algorithm?

- **1** Select appropriate value of γ .
- Introduce the step of acceleration.

Catalyst Acceleration

Algorithm 3 Catalyst Acceleration

- 1: **Input:** initial point $\mathbf{x}_0 \in \mathbb{R}^d$, iterations number T, parameters γ and $\alpha_0 > 0$, sequence $\{\epsilon_t\}$, sub-problem solver A.
- 2: $q = \mu/(\mu + \gamma)$, $\mathbf{y}_0 = \mathbf{x}_0$
- 3: **for** t = 0, 1, ..., T do
- 4: Apply A to find

$$\begin{aligned} \mathbf{x}_{t+1} &\approx \operatorname{arg\,min}_{\mathbf{x} \in \mathbb{R}^d} \left(G_t(\mathbf{x}) \triangleq f(\mathbf{x}) + \frac{\gamma}{2} \left\| \mathbf{x} - \mathbf{y}_t \right\|_2^2 \right) \\ \text{such that } G_t(\mathbf{x}_{t+1}) - G_t^* \leq \epsilon_t \end{aligned}$$

- 5: Compute $\alpha_t \in (0,1)$ from equation $\alpha_{t+1}^2 = (1 \alpha_{t+1})\alpha_t^2 + q\alpha_{t+1}$
- 6: Compute $\mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \beta_t(\mathbf{x}_{t+1} \mathbf{x}_t)$, where $\beta_t = \frac{\alpha_t(1 \alpha_t)}{\alpha_t^2 + \alpha_{t+1}}$
- 7: end for
- 8: Output: x_T

Catalyst Acceleration

Theorem

Let $\alpha_0 = \sqrt{q}$ with $q = \mu/(\mu + \beta)$ and

$$\epsilon_t = \frac{2}{9}(f(\mathbf{x}_0) - f^*)(1 - \rho)^{t+1}$$
 with $\rho < \sqrt{q}$.

Then Algorithm 3 generates $\{\mathbf{x}_t\}$ such that

$$f(\mathbf{x}_t) - f^* \le \frac{8(1-\rho)^t}{(\sqrt{q}-\rho)^2} (f(\mathbf{x}_0) - f^*).$$

A generic framework for acceleration:

1 Let \mathcal{A} be GD and $\beta = \Theta(L)$, then total FO complexity is

$$\tilde{\mathcal{O}}(\sqrt{\kappa} \log(1/\epsilon)).$$

2 Let A be SVRG and $\beta = \Theta(L/n)$, then total IFO complexity is

$$\tilde{\mathcal{O}}(\sqrt{\kappa n} \log(1/\epsilon)), \quad \text{where} \quad \kappa \geq \Omega(n).$$

Direct Acceleration: Katyusha

Algorithm 4 Katyusha

```
1: Input: \mathbf{x}_0, \eta, m, S, \tau_1, \tau_2
 2: \mathbf{y}_0 = \mathbf{z}_0 = \tilde{\mathbf{x}}^{(0)} = \mathbf{x}_0
 3: for s = 0, \dots, S-1
 4: \tilde{\boldsymbol{\mu}}^{(s)} = \nabla f(\tilde{\mathbf{x}}^{(s)})
  5: for t = 0, ..., m-1
  6:
                 k = sm + t
                  \mathbf{x}_{k+1} = \tau_1 \mathbf{z}_k + \tau_2 \tilde{\mathbf{x}}^{(s)} + (1 - \tau_1 - \tau_2) \mathbf{v}_k
                  draw i_k from \{1, \ldots, n\} uniformly
  8.
                  \mathbf{z}_{k+1} = \mathbf{z}_k - \eta(\nabla f_{i_k}(\mathbf{x}_t) - \nabla f_{i_k}(\tilde{\mathbf{x}}) + \tilde{\boldsymbol{\mu}}^{(s)}),
 g.
10:
                  \mathbf{y}_{k+1} = \mathbf{x}_{k+1} + \tau_1(\mathbf{z}_{k+1} - \mathbf{z}_k).
             end for
11:
             \tilde{\mathbf{x}}^{(s+1)} = \left(\sum_{i=0}^{m-1} (1+\eta\mu)^{j}\right)^{-1} \sum_{i=0}^{m-1} (1+\eta\mu)^{j} \mathbf{y}_{sm+j+1}
12:
13: end for
14: Output: \tilde{\mathbf{x}}^{(S)}
```

Direct Acceleration: Katyusha

Katyusha outputs $\tilde{\mathbf{x}}^{(S)}$ satisfying $\mathbb{E}[f(\tilde{\mathbf{x}}^{(S)})] - f^* \leq \epsilon$ within

- $\mathcal{O}\left((n+\sqrt{\kappa n})\log(1/\epsilon)\right)$ IFO complexity for strongly convex objective;
- $\mathcal{O}(n \log(1/\epsilon) + \sqrt{nL/\epsilon})$ IFO complexity for convex objective.

The above results achieve the near optimal IFO complexities.