		Assignment 2, Due Monday, July 15 at 4:30 pm.
1.		cace curve has the parametrization $\mathbf{r}(t) = \langle \sin t \cos t, \sin^2 t, \cos t \rangle$ where $0 \le t \le 2\pi$. Calculate $ \mathbf{r}(t) $. Simplify your answer as much as possible.
	(b)	This space curve lies on the intersection of 3 different quadratic surfaces. Using
	(**)	the fact that $\mathbf{r}(t) = \langle x, y, z \rangle$ in \mathcal{R}^3 , give the equation of one of the three quadratic surfaces. Write the equation in standard form.
	(c)	Calculate $\mathbf{r}'(t)$ and prove that $\mathbf{r}(t)$ and $\mathbf{r}'(t)$ are orthogonal.

(d) Why are $\mathbf{r}(t)$ and $\mathbf{r}'(t)$ orthogonal?