David Ebert

Rules

Strategy Space

Expected Value

Genetic

Conclusions

A Genetic Algorithm Approach to Finding an Optimal Strategy for a Folk Dice Game

David Ebert

Tarleton State University

January 3, 2017

David Ebert

Rules

Strateg Space

Expecte Value

Genetic Algorithm

Conclusions

How to Play Fargo

A player begins her turn by rolling 10 dice. Dice are scored as follows:

1 Three of a kind n is worth 100n points, except three 1's count as 1000 points.

David Ebert

Rules

Space

Value

Genetic Algorithm

Conclusions

How to Play Fargo

If a run is continued indefinitely, it will end in one of two ways:

- 1 If 0 points are added to a run's score after a re-roll, then the entire run is worth 0 and the turn is ended.
- 2 If a run ends by running out of dice, then the run's score is added to that player's score and the player begins a new run of 10 dice.

David Ebert

Rules

Strate_i Space

Expecte

Value

Genetic Algorithn

Conclusions

Example Turn

Run value: 200 + 300 + 50 = 550 4 dice remain

David Ebert

Rules

Strateg

Expecte

Value

Genetic Algorithm

Conclusions

David Ebert

Rules

Strateg Space

Expecte Value

Genetic

Algorithm

Conclusions

David Ebert

Rules

Strateg Space

Expecte

Value

Genetic Algorithm

Conclusions

David Ebert

Rules

Strateg Space

Evpost

Value

Genetic Algorithm

Conclusions

David Ebert

Rules

Space

Value

Algorithm

Conclusion:

How (not) to Play Fargo

Endgame: After a player ends his or her turn with 10,000 or more points, all other players may take one more turn, then the player with the highest score wins.

Final Scores					
Adam	10,750				
Mary	8,300				
Mikaela	9,250				
Parker	1,750				
Steph	6,100				
Me	0				

David Ebert

Rules

Strategy Space

Value

Genetic Algorithm

Conclusion

Questions

- ☐ How many strategies are there?
- ☐ What's the expected value of a strategy?
- ☐ Which strategy is the best?

David Ebert

Rule

Strategy Space

Value

Genetic Algorithm

Conclusions

Strategy Space

Two Observations:

- If a reasonable strategy continues rolling n dice and p
 points, then it should also continue rolling with n dice and
- A player should always roll 9 or 10 dice, since it's impossible to lose.

David Ebert

Rule

Strategy Space

Value

Genetic Algorithm

Conclusions

Strategy Space

Dice	Minimum	Maximum	
Remaining	Score	Score	
	Possible	Possible	
1	450	3000	
2	400	2200	
3	350	2100	
4	300	2000	
5	250	1200	
6	200 1100		
7	7 150		
8	100	200	

David Ebert

Rules

Strategy Space

Expecte Value

Genetic

Algorithm

Conclusions

Strategy Space

Conclusion: All reasonable Fargo strategies can be written as a list of $x_1, x_2, ..., x_8$, where x_i indicates that with i dice remaining a player should continue rolling unless their score is at least x_i .

David Ebert

Rule

Strategy Space

Expected Value

Genetic

Algorithm

Conclusions

Strategy Space

Example:

Consider the strategy vector

[450, 600, 700, 650, 500, 1000, 1000, 250]

With one die, always stop rolling

With 2 dice, keep rolling unless the run is worth at least 600 With 3 dice, keep rolling unless the run is worth at least 700

:

With 7 dice, keep rolling unless the run is worth at least 1000 With 8 dice, always keep rolling

David Ebert

Rule

Strategy Space

Expecte Value

Genetic Algorithm

Conclusions

Strategy Space

i	$min(x_i)$	$\max(x_i)$	$count(x_i)$	
1	450	3050	52	
2	400	2250	37	
3	3 350 2150		36	
4	300	2050	35	
5	250	1250	20	
6	200	1150	19	
7	150	1050	18	
8	100	250	4	

Total number of *reasonable* strategy vectors:

$$\prod_{i=1}^{8} \operatorname{count}(x_i s) = 66327206400 > 66 \text{ billion}$$

David Ebert

Expected

Value

Questions

- ☐ What's the expected value of a strategy?
- Which strategy is the best?

David Ebert

Rule

Strate

Space

Expected Value

Genetic

Algorithm

Conclusion

Expected Value

Algorithm 1 Pseudocode for expected Value of Fargo given a strategy vector

```
1: function findEV(strategyVector)
       expectedValue \leftarrow 0
       probRepeat \leftarrow 0
 3:
 4.
       MANAGER(ndice = 10, strategyVector)
       return expectedValue/(1 - probRepeat)
 6: end function
 7: function Manager(ndice, strategyVector, prob = 1, soft = 0)
       if continueRolling is True then
 9:
           for result in resultDict do
10:
              ROLL(ndice, result, prob, soft)
11.
           end for
12:
       else
13:
           expectedValue \leftarrow expectedValue + soft * prob
14.
       end if
15: end function
16: function ROLL(ndice, result, prob = 1, soft = 0)
       ndice, prob, soft \leftarrow result
17:
       if ndice == 0 then
18:
19.
           expectedValue \leftarrow expectedValue + soft * prob
20:
           probRepeat \leftarrow probRepeat + prob
21.
       else
22.
           MANAGER(ndice, strategyVector, prob, soft)
23:
       end if
24: end function
```

David Ebert

Rule

Strategy Space

Expected Value

Genetic

Conclusions

Expected Value

$$\begin{split} \mathsf{EV}(\mathsf{Turn}|\mathsf{Strategy}) &= \mathsf{\Sigma}\mathsf{Outcome} \ \mathsf{Score} \times \mathsf{P}(\mathsf{Outcome}) \\ &+ \mathsf{EV}(\mathsf{Turn}|\mathsf{Strategy}) \times \mathsf{P}(\mathsf{Repeated} \ \mathsf{Run}) \end{split}$$

$$\mathsf{EV}(\mathsf{Turn}|\mathsf{Strategy}) = \frac{\mathsf{\Sigma}\mathsf{Outcome}\;\mathsf{Score} \times \mathsf{P}(\mathsf{Outcome})}{1 - \mathsf{P}(\mathsf{Repeated}\;\mathsf{Run})}$$

Using a recursive function, it is easy to find a strategy vector's expected value.

David Ebert

Rule

Strateg Space

Value

Genetic Algorithm

Conclusions

Questions

- How many strategies are there?
- What's the expected value of a strategy?
- Which strategy is the best?

David Ebert

Rule

Strateg Space

Value

Genetic Algorithm

Conclusions

Genetic Algorithm

- Introduced by John Holland in the 1970's to explore large solution spaces by mimicking the process of natural selection.
- Applications include the vehicle routing problem, 3D simulated muscles, wind turbine placement, machine learning, & spacecraft antennae.

David Ebert

Rule

Space

Expecte Value

Genetic Algorithm

Conclusions

Genetic Algorithm

3 ingredients:

- 1 Problem encoding (strategy vectors)
- 2 Evaluation function (expected value)
- 3 Rules for genetic succession

David Ebert

Rule

Strateg Space

Expected Value

Genetic Algorithm

Conclusion

Genetic Algorithm

Generation 1:

Select 1000 random strategy vectors (starting population)

Generation 2:

- Sort 1000 strategies from generation 1 by EV
- Keep the best 250 strategies (survival of fittest)
- 3 Add 20 random strategies (2% genetic diversity)
- Randomly combine strategies until there are 1000 strategies (genetic recombination)
- **5** Randomly change 10 entries (1% mutation)

David Ebert

Rule

Strateg Space

Expected Value

Genetic Algorithm

C I

Genetic Algorithm

Generation 1:

Select 1000 random strategy vectors (starting population)

Generation n > 1:

- **1** Sort 1000 strategies from generation n-1 by EV
- 2 Keep the best 250 strategies (survival of fittest)
- 3 Add 20 random strategies (2% genetic diversity)
- Randomly combine strategies until there are 1000 strategies (genetic recombination)
- **5** Randomly change 10 entries (1% mutation)

David Ebert

Rula

Strateg Space

Expecte

Genetic Algorithm

Camalinatani

Results

Results from 100 trials with a population of 1000 strategies over 25 generations.

David Ebert

Rule

Strateg

Expecte

Genetic Algorithm

Conclusions

Results

Results from 100 trials with a population of 1000 strategies over 25 generations.

David Ebert

Rule

Strate, Space

Expecte Value

Genetic Algorithm

Conclusion

Results

 Maximum EV of 962.3343332342337 attained by 8/100 trials with the following strategy vector:

[550, 400, 550, 1150, 1250, 1150, 1050, 250]

 Among the highest-EV vectors from each trial, the mean vector is 2.42 steps away from the best strategy, and the farthest vector was 7 steps away.

David Ebert

Rule

Strates Space

Expected

Genetic Algorithm

Conclusion:

Results

Aggressiveness:

For each strategy vector $x_1, ..., x_8$, define the *aggressiveness* of the vector as $a_1, ..., a_8$, where each a_i denotes the fraction of possible values for x_i that are smaller than x_i .

David Ebert

Rule

Strateg

Expected

Genetic

Algorithm

. . .

Strategy Space

i	$\min(x_i)$	$\max(x_i)$	x_i from Best Strategy	Aggressiveness
1	450	3050	550	2/52
2	400	2250	400	0
3	350	2150	550	4/36
4	300	2050	1150	17/35
5	250	1250	1250	1
6	200	1150	1150	1
7	150	1050	1050	1
8	100	250	250	1

Aggressiveness of [550, 400, 550, 1150, 1250, 1150, 1050, 250] strategy vector, which yielded the highest EV of 962.334332342337.

David Ebert

Rula

Strate

Expecte

Genetic Algorithm

Camalinatani

Results

Aggressiveness of [550, 400, 550, 1150, 1250, 1150, 1050, 250] strategy vector, which yielded the highest EV of 962.3343332342337.

David Ebert

Rule

Strateg Space

Value

Genetic Algorithm

Conclusions

Questions

- How many strategies are there?
- What's the expected value of a strategy?
- Which strategy is (probably) the best?

David Ebert

Rule

Space

Expecte Value

Genetic Algorithm

Conclusions

Conclusions and Future Work

- The genetic algorithm efficiently and consistently yields a viable strategy.
- More work is necessary to confirm the optimal strategy and make the genetic algorithm more efficient.
- The genetic algorithm and EV algorithm are likely to extend to further analyses of Fargo, including the multi-player game and end-game strategies.

David Ebert

Rule

Strate_i Space

Value

Genetic Algorithm

Conclusions

Questions?

- Python code repository: https://github.com/dpebert7/fargo
- david.ebert@go.tarleton.edu
- Special thanks to Dr. Jesse Crawford for his insight and inspiration