COMP551-A1-Report

Jawdat Al-Jabi, Tal Smith, Steven Thao September 2025

Abstract

This project explores the implementation and analysis of two machine learning models: Linear Regression and Logistic Regression, and their applications to two distinct datasets. The first, Parkinson's Telemonitoring, involves predicting motor skill scores using linear regression. The second, Breast Cancer Diagnostic, involves a binary classification using logistic regression with gradient descent. Both models were implemented from scratch in Python without reliance on ML libraries. Experiments include comparisons between fully-batched and mini-batch gradient descent, the effect of training data size, different learning rates, and feature contributions. Using our implementation, we were able to achieve a test MSE loss value as low as about 61 for regression while we also obtained accuracy values closing in on 96.5% for the classification task. The results demonstrate the practical application of these classical models, the importance of careful pre-processing, and the influence of hyperparameters on model performance, providing a foundation for understanding more advanced machine learning techniques.

1 Introduction

The purpose of this project is to examine two datasets using different machine learning models:

- 1. Linear regression is used to predict motor scores (motor UPDRS) of patients with Parkinson's disease.
- 2. Logistic regression is used to predict the presence of breast cancer in a patient given their test results.

Within the project, we use various methods, with the aim to compare them:

- We report the performance of our models when using an 80/20 train/test split.
- We compare the results of using differently sized subsets of the training data.
- We verify the accuracy of stochastic gradient descent given different batch sizes.
- We compare the performance of gradient descent given different learning rates.
- We compare the the analytical linear regression solution and that using gradient descent.

Numerous notable results were discovered through our experimentation, including, but not limited to:

- Larger train splits lead to higher test accuracy although too much training can counterintuitively lead to worse testing accuracy.
- Smaller batch sizes generally mean faster convergence, with some exceptions.
- Higher learning rates mean higher accuracy.

$\mathbf{2}$ **Datasets**

The two datasets that were used were:

- 1. Parkinsons Telemonitoring [1]: Biomedical voice measurements of 42 people with early-stage Parkinson's. The trial lasted 6 months and consisted of 16 different voice measures. The target value is the motor UPDRS, which is a value quantifying the loss of motor skills due of the disease. We have observed that the data was often bunched up around a defined range of values for many features, which would reduce the robustness of our model, but the occasional spikes in UPDRS value does help provide a better model.
- 2. Breast Cancer Wisconsin (Diagnostic) [2]: Descriptions of cell nuclei characteristics are used to classify possible breast cancer tumours as Malignant (M) or Benign (B). Some features, such as radius1, show clear value ranges (e.g., smaller radii usually indicate benign tumours), making diagnosis easier. Others, like fractal dimension3, contribute little and are expected to have small weights. In general, when group means are distinct, higher weights are expected; when they overlap, weights approach zero.

Note: The features age, sex, and test time were dropped from dataset 1, as the dataset's stated aim is to predict motor UPDRS and total UPDRS from the 16 voice measures.

The datasets were pre-processed by transforming the features into a design matrix and the targets were put in vectors. Thereafter, we have standardized the data to have a zero mean, unit standard deviation to facilitate convergence and prevent exploding gradients / weights while training.

3 Results

80/20 analytic linear regression & full-batch logistic regression

For our linear regression model, we obtained a MSE of 58.6705 on our training data, and 61.2742 on our testing data. For logistic regression, we obtained an accuracy of 0.9868 on our training data, and 0.9561 on our testing data.

3.2 Weights of models trained in 3.1

Dataset 1: Top 10 features by weight in different orders

Feature	Weight	Feature	Weight	Feature	Weight
Jitter(Abs)	-54022.809240	Jitter:DDP	10605.220591	Jitter(Abs)	-54022.809240
Jitter:RAP	-31539.713646	Shimmer:DDA	1251.161776	Jitter:RAP	-31539.713646
Jitter:DDP	10605.220591	Jitter(%)	151.198116	Shimmer:APQ3	-3878.273253
Shimmer:APQ3	-3878.273253	Shimmer:APQ11	148.697495	Shimmer:APQ5	-243.273964
Shimmer:DDA	1251.161776	Shimmer	126.048493	NHR	-29.175656
Shimmer:APQ5	-243.273964	Jitter:PPQ5	100.297881	DFA	-28.829803
Jitter(%)	151.198116	PPE	19.250856	Shimmer(dB)	-2.817814
Shimmer:APQ11	148.697495	RPDE	0.443245	HNR	-0.424450
Shimmer	126.048493	HNR	-0.424450	RPDE	0.443245
Jitter:PPQ5	100.297881	Shimmer(dB)	-2.817814	PPE	19.250856

Table 1: By absolute weight value Table 2: By positive weight value Table 3: By negative weight value

Features such as Jitter(Abs), Jitter:RAP, Shimmer:APQ3 contribute largely to a low score. Features like Shimmer:DDA, Jitter:DDP contribute largely to a high score. Features with decreasing absolute weight are less impactful on the score.

Dataset 2: Top 10 features by weight in different orders

Feature	Weight	Fea	ture	Weight	•	Feature	Weight
texture3	0.638094	text	ure3	0.638094		fractal_dimension1	-0.303404
radius3	0.626967	radi	us3	0.626967		fractal dimension2	-0.263464
area3	0.609820	area	3	0.609820		compactness2	-0.228651
perimeter3	0.599590	peri	meter3	0.599590		symmetry2	-0.186450
radius2	0.583438	radi	us2	0.583438		concavity2	-0.083579
concave_points3	0.547129	cone	eave_points3	0.547129		symmetry1	0.008997
concave_points1	0.542509		eave_points1			texture2	0.025409
texture1	0.516008	text		0.516008		compactness1	0.036833
smoothness3	0.503896	smo	othness3	0.503896		concave points2	0.074981
area1	0.501992	area	.1	0.501992		smoothness2	0.090984

Table 4: By absolute weight value

Table 5: By positive weight value

Table 6: By negative weight value

80

Features with the highest absolute weights have the highest impact on probability. Features with the most positive weights have the most impact on a high probability, while features with a negative weight have impact on a low probability of malignancy.

3.3 Linear regression and Logistic regression trained with GD with various dataset splits

For dataset 1, the MSE on the used training data increases slightly as training data accumulates. However, the accuracy of the test data becomes higher (lower MSE) as more data is used.

For data set 2, the accuracy of the training data slowly decreases. As training size increases, accuracy on the test data slowly increases.

Figure 1: Learning curves for Dataset 1 (left) and Dataset 2 (right) vs. various dataset splits

3.4 Testing different minibatch sizes

Figure 2: Learning curves for Dataset 1 vs. various minibatch sizes

Figure 3: Learning curves for Dataset 2 vs. various minibatch sizes

According to the graphic above, for linear regression and logistic regression, a smaller batch leads more quickly to a lower convergence. If we judge by generalization (test error/accuracy) + compute time, the sweet spot is a mini-batch, not full batch. We would recommend a minibatch size of about 8-16.

3.5 Testing different learning rates

Figure 4: Learning curves for Dataset 1 (left) and Dataset 2 (right) vs. various learning rates

As shown above, higher learning rate contributes to accurate learning. In dataset 1, the MSE decreases for training and testing data when moving from a small learning rate to an average one. However, further increasing the learning rate does no good for the model. In dataset 2, a higher learning rate consistently improves the accuracy for both the training and testing data.

3.6 Comparing analytic vs. SGD solutions for linear regression

Method	Train MSE	Test MSE
Analytical (closed-form)	58.670	61.274
SGD (mini-batch, std)	58.948	60.042

Table 7: Linear regression comparison for Dataset 1.

As shown above, the analytical solution performs slightly better on the training data, but worse on the test data when compared to SGD. This is an example of a slight overfitting, where the model performs better on the data it has been trained on than all data.

4 Discussion and Conclusion

Below are some key takeaways from this project:

- Weights with the largest absolute values have the strongest impact: positive weights raise predictions, negative weights lower them.
- Accuracy on test data improves with more training data, while training accuracy decreases slightly—indicating broader **learning** rather than narrow **memorization**.
- Smaller batch sizes speed up convergence, though very small ones (e.g., 2 or 4) make training unstable due to noisy gradients.
- Higher learning rates $(> 10^{-4})$ generally improve accuracy for both linear and logistic regression.
- The analytical (closed-form) solution may overfit training data, reducing test performance.
- Regularization (L1/Lasso, L2/Ridge) can improve generalization, especially with many correlated features.
- Non-linear transformations or polynomial expansions may capture relationships beyond linear/logistic regression.

5 Statement of Contributions

Part	Contributor
Part 1	Steven Thao
Part 2	Tal Smith
Part 3	Jawdat Al-Jabi
Code Review	All
Project Write-Up	All

Table 8: Project Contributions

References

- [1] A. Tsanas and M. A. Little, "Parkinsons telemonitoring dataset," https://archive.ics.uci.edu/dataset/189/parkinsons+telemonitoring, 2009, uCI Machine Learning Repository.
- [2] W. H. Wolberg, O. L. Mangasarian, N. Street, and W. Street, "Breast cancer wisconsin (diagnostic) [dataset]," UCI Machine Learning Repository, 1993. [Online]. Available: https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic