TO 00 Hil JWEROME! ME, YOU PREM ISE SYLLA BUS IROBLEM SETS GITHUB AXIOMS OF PROBABILITY PS1 WELCOME TO MATM227C STO CHASIC & STATISTICAL MODERING THE LIFE SCIENCES IN CONTEXT $(S,E),R;B,\gamma$

X - RAMOOM VARIABLE

X & STATE SPACE OR SAMPLE SPACE

EX. FLIP A COIN & H, T }

ROLL PICE & 1, 2, 3, 4, 5, 6 }

(0, 60)

ELEMENTS AND SETS IN STATE SPACE

ARE EVENTS

EVENTS CAN BE COMBINE	
	S - STATE
e, Ue2 e, Ne	SOACE
1 N 7 F RS	\sim $^{\sim}$
UNION "OR" (AND	
	NOTI
X MAS A PROBABILITY	7 FUNCTION,
P(e)	
• 0 \ \(\extstyle \) \(\extstyle \)	
• $0 \le f(e)$ • $f(s) = 1$	6
· IF e, \ e_z = NO-	IMM THEN
$\mathbb{P}(e, Ue_2) =$	P(e,) + P(e,)
P(e) \left\{ 1 \\ \text{ANY}} \\ \partial \text{(NOTHING)} = 0	e
P (NOTHING) =0	
EX. FAIR DIE	SAMPLE SNAUP =
	81,2,3,95,63

$$\begin{array}{c} e_{A} = \{ w_{BN} \} = \{ 2, 4, 65 \} \\ e_{B} = \{ < 33 \} = \{ 1, 23 \} \\ \hline P(e_{B}) = \frac{7}{6} \\ \hline P(e_{A}) + P(e_{B}) = \frac{1}{6} \\ \hline P(e_{A}) + P(e_{B}) = \frac{1}{6} \\ \hline P(e_{A}) + P(e_{B}) = \frac{1}{6} \\ \hline P(A | B) = P(A | B) \\ \hline P(B) \\ \hline Ex, P(e_{A} | e_{B}) = P(e_{A} | e_{B}) \\ \hline P(e_{B}) = \frac{1}{6} \\ \hline P(e_{A}) + P(e_{B}) = P(e_{A} | e_{B}) \\ \hline P(e_{A}) + P(e_{B}) = P(e_{A} | e_{B}) \\ \hline P(e_{B}) = \frac{1}{6} \\ \hline P(e_{A}) + P(e_{B}) = P(e_{A} | e_{B}) \\ \hline P(e_{B}) = \frac{1}{6} \\ \hline P(e_{A}) + P(e_{B}) = P(e_{A} | e_{B}) \\ \hline P(e_{A}) + P(e_{B}) \\ \hline P($$

NOTE $P(A|B) = P(A \cap B) = P(A) \cdot P(B)$ P(B) = P(B)

$= \mathcal{P}(A)$