E.P.I.T.A. 2019

Corrigé de l'épreuve de mathématiques MP - PC - PSI (3h)

■ PARTIE I : Premières propriétés des fonctions S_{α} ($\alpha > 0$)

1°) Etude du cas particulier de la fonction S_1

a) Pour tout réel x > 0, la série définissant $S_1(x)$ est géométrique de raison e^{-x} : elle converge donc si et seulement si $e^{-x} < 1$; soit x > 0, et on a donc:

$$S_1(x) = \sum_{n=0}^{+\infty} e^{-xn} = \frac{1}{1 - e^{-x}}.$$

b) Lorsque x tend vers $0, S_1(x)$ tend vers $+\infty$.

Et comme on a $e^{-x} = 1 - x + o(x)$, d'où $1 - e^{-x} \sim x$ en 0, on a donc $S_1(x) \sim \frac{1}{x}$ en 0.

- c) Lorsque x tend vers $+\infty$, $S_1(x)$ tend vers 1, et on a $S_1(x) 1 = \frac{e^{-x}}{1 e^{-x}} \sim e^{-x}$ en $+\infty$.
- 2°) Etude du domaine de définition des fonctions S_{α} ($\alpha > 0$)
- a) Pour x = 0, on a $e^{-x n^{\alpha}} = 1$ et la série diverge puisque son terme général ne tend pas vers 0. Pour x < 0, le terme général $e^{-x n^{\alpha}}$ tend vers $+\infty$, et la série diverge par le même argument.
- b) Pour tout réel x > 0, posons : $u_n(x) = n^2 e^{-x n^{\alpha}}$, soit en posant $t = x n^{\alpha}$:

$$u_n(x) = n^2 e^{-x n^{\alpha}} = \frac{1}{x^{2/\alpha}} t^{2/\alpha} e^{-t}.$$

Lorsque n tend vers $+\infty$, $t = x n^{\alpha}$ tend vers $+\infty$ et $\lim_{t \to +\infty} t^{2/\alpha} e^{-t} = 0$ d'après les croissances comparées des fonctions puissances et exponentielle. Il en résulte que $\lim_{n \to +\infty} u_n(x) = 0$:

Par conséquent, on a $e^{-xn^{\alpha}} = o\left(\frac{1}{n^2}\right)$ quand n tend vers $+\infty$.

Ceci assure la convergence de la série à termes positifs $\sum e^{-xn^{\alpha}}$ pour x > 0.

- c) La série définissant $S_{\alpha}(x)$ converge si et seulement si x > 0 et S_{α} est définie sur] 0, $+\infty$ [.
- 3°) Premières propriétés des fonctions S_{α} ($\alpha > 0$)
- a) On remarque que : $\forall x \ge \varepsilon$, $0 \le e^{-x n^{\alpha}} \le e^{-\varepsilon n^{\alpha}}$.

Et comme $\varepsilon > 0$, la série $\sum e^{-\varepsilon \, n^{\alpha}}$ converge d'après la question précédente.

Donc la série $\sum e^{-x n^{\alpha}}$ converge normalement, donc uniformément sur $[\varepsilon, +\infty[$.

Par théorème, on sait que la somme d'une série uniformément convergente de fonctions continues est continue. D'après ce qui précède, et d'après la continuité des fonctions $x \to e^{-x n^{\alpha}}$, on obtient la continuité de S_{α} sur tout intervalle $[\varepsilon, +\infty[$. Comme tout réel x > 0 appartient à un tel intervalle $[\varepsilon, +\infty[$, on en déduit que S_{α} est continue en tout réel x > 0, donc sur $]0, +\infty[$.

- b) Si $0 < x \le y$, on a $0 < x n^{\alpha} \le y n^{\alpha}$, donc $e^{-x n^{\alpha}} \ge e^{-y n^{\alpha}}$, puis par sommation : $S_{\alpha}(x) \ge S_{\alpha}(y)$. Ainsi, la fonction S_{α} est décroissante sur son intervalle de définition $]0, +\infty[$. On sait par théorème qu'une fonction monotone admet des limites, finies ou infinies, aux bornes de son intervalle de définition. Donc S_{α} admet des limites finies ou infinies en 0 et $+\infty$.
- c) Pour n = 0, on a : $\forall x > 0$, $e^{-x n^{\alpha}} = 1$. Et pour $n \ge 1$, on a $\lim_{x \to +\infty} e^{-x n^{\alpha}} = 0$. De plus, on a vu que la série $\sum e^{-x n^{\alpha}}$ converge normalement, donc uniformément sur $[\varepsilon, +\infty[$. Le théorème de double limite s'applique donc au voisinage de $+\infty$ et permet d'affirmer :

$$\lim_{x \to +\infty} S_{\alpha}(x) = \lim_{x \to +\infty} \sum_{n=0}^{+\infty} e^{-x n^{\alpha}} = \sum_{n=0}^{+\infty} \lim_{x \to +\infty} e^{-x n^{\alpha}} = 1.$$

d) La série $\sum e^{-x n^{\alpha}}$ étant à termes positifs, on a pour tout $N \in \mathbb{N}$ et pour tout x > 0:

$$S_{\alpha}(x) = \sum_{n=0}^{+\infty} e^{-x n^{\alpha}} \ge \sum_{n=0}^{N} e^{-x n^{\alpha}}.$$

Puisque S_{α} admet une limite finie ou infinie en 0, on peut donc passer à la limite dans l'inégalité précédente, ce qui-implique, pour tout $N \in \mathbb{N}$, que $\lim_{x \to 0} S_{\alpha}(x) \ge N + 1$.

Cette inégalité étant vérifiée pour tout entier naturel N, on a nécessairement $\lim_{x\to 0} S_{\alpha}(x) = +\infty$.

■ PARTIE II : Etude de la fonction S_2

- 4°) Recherche d'un équivalent de S_2 en 0
- a) Pour x > 0 et pour $n \le t \le n+1$, on a $e^{-x(n+1)^2} \le e^{-xt^2} \le e^{-xn^2}$, d'où par intégration :

$$e^{-x(n+1)^2} \le \int_n^{n+1} e^{-xt^2} dt \le e^{-xn^2}.$$

b) En sommant pour tout entier naturel n avec x > 0, il vient :

$$\sum_{n=0}^{+\infty} e^{-x(n+1)^2} \leq \sum_{n=0}^{+\infty} \int_n^{n+1} e^{-x\,t^2} \,\mathrm{d}t \leq \sum_{n=0}^{+\infty} e^{-x\,n^2}.$$

Ce qui s'écrit encore :

$$S_2(x) - 1 \le \int_0^{+\infty} e^{-xt^2} dt \le S_2(x).$$

Enfin, en posant $u = t\sqrt{x}$ dans cette dernière intégrale, on a : $\int_0^{+\infty} e^{-xt^2} dt = \frac{1}{\sqrt{x}} \int_0^{+\infty} e^{-u^2} du$.

D'après l'inégalité précédente et selon la valeur rappelée de cette intégrale, il vient enfin :

$$S_2(x)-1 \leq \frac{\sqrt{\pi}}{2\sqrt{x}} \leq S_2(x).$$

Soit encore, en transformant cette inégalité:

$$\frac{\sqrt{\pi}}{2\sqrt{x}} \leq S_2(x) \leq \frac{\sqrt{\pi}}{2\sqrt{x}} + 1.$$

c) D'après cette inégalité, on obtient $\lim_{x\to 0} S_2(x) = +\infty$.

Et on a $S_2(x) \sim \frac{\sqrt{\pi}}{2\sqrt{x}}$ en 0 car leur quotient tend vers 1 d'après l'encadrement suivant :

$$1 \leq \frac{2\sqrt{x}}{\sqrt{\pi}} S_2(x) \leq 1 + \frac{2\sqrt{x}}{\sqrt{\pi}}$$

5°) Recherche d'un équivalent de $S_2 - 1$ en $+\infty$

a) Pour tout réel x > 0 et tout $n \in \mathbb{N}$, on a $x n \le x n^2$, donc $e^{-x n^2} \le e^{-x n}$, d'où :

$$S_2(x) - 1 - e^{-x} = \sum_{n=2}^{+\infty} e^{-xn^2} \le \sum_{n=2}^{+\infty} e^{-xn}.$$

b) En calculant la somme de cette série géométrique, on obtient plus précisément en $+\infty$:

$$S_2(x) - 1 - e^{-x} \le \sum_{n=2}^{+\infty} e^{-xn} = \frac{e^{-2x}}{1 - e^{-x}} = \frac{e^{-x}}{1 - e^{-x}} e^{-x} = o(e^{-x}).$$

On a donc $S_2(x) = 1 + e^{-x} + o(e^{-x})$, ce qui implique $S_2(x) - 1 \sim e^{-x}$ en $+\infty$.

6°) Recherche d'une valeur approchée de $S_2(x)$

a) D'après l'inégalité 4.a) appliquée avec x > 0, on obtient pour tout entier naturel N:

$$S_2(x) - \sum_{n=0}^{N} e^{-n^2 x} = \sum_{n=N+1}^{+\infty} e^{-x n^2} \le \sum_{n=N+1}^{+\infty} \int_{n-1}^{n} e^{-x t^2} dt = \int_{N}^{+\infty} e^{-x t^2} dt.$$

b) A l'aide du changement de variables $u = x t^2$ dans cette dernière intégrale, on obtient :

$$S_2(x) - \sum_{n=0}^{N} e^{-xn^2} \le \int_{N}^{+\infty} e^{-xt^2} dt = \frac{1}{2\sqrt{x}} \int_{xN^2}^{+\infty} \frac{e^{-u}}{\sqrt{u}} du.$$

Comme $\frac{1}{\sqrt{u}} \le \frac{1}{N\sqrt{x}}$ pour $u \ge x N^2$, on en déduit pour tout $N \ge 1$ que :

$$S_2(x) - \sum_{n=0}^N e^{-x n^2} \le \frac{1}{2\sqrt{x}} \int_{xN^2}^{+\infty} \frac{e^{-u}}{\sqrt{u}} \, \mathrm{d}u \le \frac{1}{2Nx} \int_{xN^2}^{+\infty} e^{-u} \, \mathrm{d}u = \frac{e^{-xN^2}}{2Nx}.$$

c) Ce qui précède montre qu'on a pour $N \ge 1$: $\sum_{n=0}^{N} e^{-x n^2} \le S_2(x) \le \sum_{n=0}^{N} e^{-x n^2} + \frac{e^{-x N^2}}{2 N x}$.

Pour tout $\varepsilon > 0$, l'algorithme suivant donne donc un encadrement de $S_2(x)$ à ε près :

$$N := 1$$
; $S := 1 + e^{-x}$; Erreur $:= \frac{e^{-x}}{2x}$;

Tant que Erreur > ε faire ;

$$N := N + 1$$
; $S := S + e^{-xN^2}$; Erreur $:= \frac{e^{-xN^2}}{2Nx}$;

Ecrire N et S;

d) Avec x = 1 et $\varepsilon = 10^{-7}$, on obtient N = 4 et S = 1, 38 631 860 ..., d'où l'encadrement suivant : 1, 3 863 186 $\leq S_2(1) \leq 1$, 3 863 187.

■ PARTIE III : Etude de $S_{\alpha}(x)$ quand x tend vers 0 et $+\infty$

- 7°) Comparaison de deux intégrales
- a) Considérons pour $\alpha > 0$ et u > 0 la fonction $u \mapsto e^{-u} u^{\alpha 1}$.

Cette fonction est positive et continue sur] $0, +\infty$ [et elle est :

- équivalente en 0 à $u^{\alpha-1} = \frac{1}{u^{1-\alpha}}$, dont l'intégrale converge sur] 0, 1] si et seulement si $\alpha > 0$.
- négligeable en $+\infty$ devant $\frac{1}{n^2}$ (car $\lim_{n\to\infty} e^{-u} u^{\alpha+1} = 0$) dont l'intégrale converge sur $[1, +\infty[$. Ainsi, l'intégrale $\Gamma(\alpha)$ converge si et seulement si $\alpha > 0$.
- b) Une intégration par parties donne pour 0 < a < b:

$$\int_{a}^{b} e^{-u} u^{\alpha} du = [-e^{-u} u^{\alpha}]_{a}^{b} + \alpha \int_{a}^{b} e^{-u} u^{\alpha-1} du.$$

En faisant tendre a vers 0 et b vers $+\infty$, il vient donc : $\Gamma(\alpha+1)=\alpha$ $\Gamma(\alpha)$. Et comme $\Gamma(1)=\int_0^{+\infty}e^{-t}\,\mathrm{d}t=1$, on en déduit $\Gamma(2)=1$, $\Gamma(3)=2$ $\Gamma(2)=2$, $\Gamma(4)=3$ $\Gamma(3)=6$, ...

Et par récurrence immédiate, $\Gamma(n+1) = n \Gamma(n) = n!$

Ainsi, la fonction Γ réalise une extrapolation de la fonction factorielle à \mathbb{R}_{+}^{*} .

c) La fonction $t \mapsto u = x t^{\alpha}$, dont la réciproque est $t \mapsto \frac{u^{1/\alpha}}{u!/\alpha}$, réalise un difféomorphisme de \mathbb{R}_+^* dans \mathbb{R}_+^* , de sorte qu'en effectuant ce changement de variables dans l'intégrale $\Gamma(\alpha)$, on ne modifie ni la convergence, ni la valeur de cette intégrale. Comme $du = \alpha x t^{\alpha-1} dt$, il vient donc :

$$\Gamma\left(\frac{1}{\alpha}\right) = \int_0^{+\infty} e^{-u} u^{\frac{1}{\alpha}-1} du = \int_0^{+\infty} e^{-xt^{\alpha}} (x t^{\alpha})^{\frac{1}{\alpha}-1} \alpha x t^{\alpha-1} dt = \alpha x^{\frac{1}{\alpha}} \int_0^{+\infty} e^{-xt^{\alpha}} dt.$$

Ainsi donc, l'intégrale $I(\alpha)$ converge pour $\alpha > 0$, et on a la relation :

$$\Gamma\left(\frac{1}{\alpha}\right) = \alpha x^{\frac{1}{\alpha}} I(\alpha).$$

- 8°) Recherche d'un équivalent de S_{α} en 0 ($\alpha > 0$)
- a) Pour x > 0 et pour $n \le t \le n+1$, on a $e^{-x(n+1)^{\alpha}} \le e^{-xt^{\alpha}} \le e^{-xn^{\alpha}}$, d'où par intégration :

$$e^{-x(n+1)^{\alpha}} \leq \int_{n}^{n+1} e^{-xt^{\alpha}} dt \leq e^{-xn^{\alpha}}.$$

En sommant pour tout entier naturel n avec x > 0, on obtient donc:

$$\sum_{n=0}^{+\infty} e^{-x(n+1)^{\alpha}} \le \int_0^{+\infty} e^{-xt^{\alpha}} dt \le \sum_{n=0}^{+\infty} e^{-xn^2}.$$

Soit encore $S_{\alpha}(x) - 1 \le I(\alpha) \le S_{\alpha}(x)$, d'où l'on tire compte tenu de la question précédente :

$$0 \leq S_{\alpha}(x) - \frac{1}{\alpha} \Gamma\left(\frac{1}{\alpha}\right) \frac{1}{x^{1/\alpha}} \leq 1.$$

b) Comme $\frac{1}{\alpha} \Gamma\left(\frac{1}{\alpha}\right) \frac{1}{x^{1/\alpha}} \le S_{\alpha}(x) \le \frac{1}{\alpha} \Gamma\left(\frac{1}{\alpha}\right) \frac{1}{x^{1/\alpha}} + 1$, on obtient $\lim_{x \to 0} S_{\alpha}(x) = +\infty$.

Et on a $S_{\alpha}(x) \sim \frac{1}{\alpha} \Gamma\left(\frac{1}{\alpha}\right) \frac{1}{r^{1/\alpha}}$ en 0 car leur quotient tend vers 1 d'après l'encadrement suivant :

$$1 \leq \frac{\alpha x^{1/\alpha}}{\Gamma\left(\frac{1}{\alpha}\right)} S_{\alpha}(x) \leq 1 + \frac{\alpha x^{1/\alpha}}{\Gamma\left(\frac{1}{\alpha}\right)}.$$

9°) Majoration d'une intégrale auxiliaire

a) En reprenant le changement de variables fait à la question 7.c), on a pour tous $\alpha > 0$ et x > 0:

$$\int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-1} du = \alpha x^{1/\alpha} \int_{1}^{+\infty} e^{-xt^{\alpha}} dt.$$

b) En intégrant par parties, on a pour tous $\alpha > 0$ et x > 0:

$$\int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-1} du = e^{-x} x^{\frac{1}{\alpha}-1} + \left(\frac{1}{\alpha} - 1\right) \int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-2} du.$$

Pour $u \ge x$, on a $\frac{1}{u} \le \frac{1}{x}$, ce qui permet de majorer comme suit cette dernière intégrale :

$$\int_{x}^{+\infty} e^{-u} \, u^{\frac{1}{\alpha}-2} \, \mathrm{d}u \ = \int_{x}^{+\infty} \frac{1}{u} \left(e^{-u} \, u^{\frac{1}{\alpha}-1} \right) \mathrm{d}u \ \le \ \frac{1}{x} \int_{x}^{+\infty} e^{-u} \, u^{\frac{1}{\alpha}-1} \, \mathrm{d}u.$$

Il en résulte qu'on a lorsque x tend vers $+\infty$

$$\int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-2} du = o \left(\int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-1} du \right).$$

En reportant dans l'intégration par parties ci-dessus, on obtient donc lorsque x tend vers $+\infty$:

$$\int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-1} du = e^{-x} x^{\frac{1}{\alpha}-1} + o \left(\int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-1} du \right).$$

On en déduit l'équivalence suivante lorsque x tend vers $+\infty$

$$\int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-1} du \sim e^{-x} x^{\frac{1}{\alpha}-1}.$$

c) Il résulte des sous-questions a) et b) qu'on a donc lorsque x tend vers $+\infty$:

$$\int_{1}^{+\infty} e^{-xt^{\alpha}} dt = \frac{1}{\alpha x^{1/\alpha}} \int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-1} du \sim \frac{e^{-x} x^{\frac{1}{\alpha}-1}}{\alpha x^{1/\alpha}} = \frac{e^{-x}}{\alpha x} = o(e^{-x}).$$

10°) Recherche d'un équivalent de S_{α} en $+\infty$ ($\alpha>0$)

a) En reprenant l'inégalité de la question 4.a), on obtient pour $\alpha > 0$ et x > 0:

$$\sum_{n=2}^{+\infty} e^{-x n^{\alpha}} \le \sum_{n=2}^{+\infty} \int_{n-1}^{n} e^{-x t^{\alpha}} dt = \int_{1}^{+\infty} e^{-x t^{\alpha}} dt.$$

b) Comme $\int_{1}^{+\infty} e^{-x} t^{\alpha} dt = o(e^{-x})$ d'après la question 9.c), on en déduit que :

$$S_{\alpha}(x) - 1 - e^{-x} = \sum_{n=2}^{+\infty} e^{-x n^{\alpha}} = o(e^{-x}).$$

Il en résulte que $S_{\alpha}(x) - 1 \sim e^{-x}$ quand x tend vers $+\infty$.