

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

ИКБ направление «Киберразведка и противодействие угрозам с применением технологий искусственного интеллекта» 10.04.01

Кафедра КБ-4 «Интеллектуальные системы информационной безопасности»

Лабораторная работа №2

по дисциплине

«Анализ защищенности систем искусственного интеллекта»

Группа: ББМО-01-22 Выполнил: Феденёв А.В.

Проверил: Спирин А.А.

Задание 1

В начале работы установили необходимые библиотеки и подключились к google drive.

Создадим модель ResNet50:

Создадим модель VGG16:

По завершении обучения были сформированы следующие графики точности для моделей ResNet50, VGG16:

В результате была получена следующая результирующая таблица:

Модель	Обучение	Валидация	Тест
VGG16	Loss:0.1443 accuracy:0.9713	Loss:0.1997 accuracy:0.9631	Loss:0.4049 accuracy:0.9235
ResNet50	Loss:0.065 accuracy:0.9835	Loss:0.1074 accuracy:0.9719	Loss:0.4224 accuracy:0.9172

Задание 2

Для второго задания использовали тысячу первых тестовых изображений.

ResNet50: График зависимости точности классификации от параметра искажения.

VGG16: График зависимости точности классификации от параметра искажения.

В результате была получена следующая результирующая таблица:

Модель	Исходные	Adversarial	Adversarial	Adversarial
	изображения	images ϵ =1/255	images ϵ =5/255	images ϵ =10/255
VGG16-FGSM	92%	82%	45%	22%
VGG16-PGD	92%	79%	50%	33%
ResNet50-FGSM	92%	77%	40%	19%
ResNet50-PGD	92%	75%	37%	24%

Задание 3

FGSM: Пример исходных изображений знака «Стоп» и соответствующих атакующих примеров.

Изображение с eps: 0.0392156862745098 , предсказанный класс: 1, действительный класс 14

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098, предсказанный класс: 1, действительный класс 14

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098, предсказанный класс: 1, действительный класс 14

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098 , предсказанный класс: 1, действительный класс 14

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098, предсказанный класс: 1, действительный класс 14

PGD: Пример исходных изображений знака «Стоп» и соответствующих атакующих примеров.

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098, предсказанный класс: 1, действительный класс 14

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098, предсказанный класс: 1, действительный класс 14

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098 , предсказанный класс: 1, действительный класс 14

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098 , предсказанный класс: 14, действительный класс 14

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098, предсказанный класс: 14, действительный класс 14

Результирующая таблица по заданию:

Искажение	PGD attack – Stop sign images	FGSM attack – Stop sign images
<i>∈</i> =1/255	98%	93%
€=3/255	92%	76%
€=5/255	80%	59%
€=10/255	80%	11%
€=20/255	34%	0%
€=50/255	2%	0%
€=80/255	1%	0%

Вывод: Метод Fast Gradient Sign Method (FGSM) неэффективен для выполнения целевых атак, поскольку при увеличении искажения, модель начинает выдавать ошибки в классификации. Вместо этого, для целевых атак более предпочтительным является метод Projected Gradient Descent (PGD). Даже если искажение сильно велико, модель все равно будет определять класс, который мы задали.