EEE-352

Electrical Machine Design

Reference Book

✓ Design & Testing of Electrical Machines

By M. V. Deshpande

Every student is required to **bring this book** from next class. **Otherwise**, he/she will be noted as "**Absent**".

Core Type and Shell Type Transformer

Power Transformer and Distribution Transformer

Transformer Specifications & Nameplate

Assumption of basic quantities

- 1. Specific magnetic loading
- 2. Specific electrical loading
- 3. Space factor
- 4. Staking factor/ Lamination factor

CHOICE OF MAGNETIC LO	OADING (B _m)		
Normal Si-Steel (0.35 mm thickness, 1.5%–	0.9 to 1.1 T –3.5% Si)		
HRGO 1.2 to 1.4 T (Hot Rolled Grain Oriented Si Steel)			
CRGO 1.4 to 1.7 T (Cold Rolled Grain Oriented Si Steel) (0.140.28 mm thickness)			

<u>CHOICE OF ELECTRIC LOADING</u> (δ)					
Natural Cooling:	1.52.5 A/mm ² AN Air Natural cooling ON Oil Natural cooling OFAN Oil Forced circulated with Natural air cooling				
Forced Cooling:	2.24.0 A/mm ² AB Air Blast cooling OB Oil Blast cooling OFAB Oil Forced circulated with air Blast cooling				
Water Cooling:	5.06.0 A/mm ² OW Oil immersed with circulated Water cooling OFW Oil Forced with circulated Water cooling				

STANDARDIZATION AND STANDARDS

Standardization and standards play an important part in the choice, design, manufacturer and operation of any apparatus.

- 1) To the manufacturer it means reduction in cost (a number of objects are built at the same time)
- 2) To the user, it means interchangeability of equipment's
- 3) To the designer, it means rigidity.

Design procedure of distribution transformer

- 1) Specification of the transformer to be design
- 2) Assumption of basic quantities (E_t , B_m , δ)
- 3) Design of Main dimension (A_i, D, A_w, k_w)
- 4) Design of winding (T_1, T_2, a_1, a_2)
- 5) Design winding layout (no. of turn per layer, no of coils, clearance between core & LV, LV & HV, HV & tank etc.)
- 6) Design core frame, core dia, widow, yoke, oveall core size
- 7) Calculate % R, %X, %Z
- 8) Calculate magnetizing VA, No-load loss, Cu loss, stray loss and load loss at 75°C
- 9) Calculation of performance
- 10) Thermal design (Design of Tank, Radiator)

Objective of this Class

> To Design a distribution transformer

Design Example:

"Design a **100** kVA, 3 phase, 50 Hz, **11** KV/415 V, delta/star distribution transformer. Tapping ± 2.5%, ± 5% on high voltage side. Cooling ON (self oil cooled); **Temperature rise over oil 50**°C. No load loss not more than **250** watts; copper and stray load loss not more than **2000** watts. Percentage **impedance 4.5%.** Calculate: No load current, efficiency at 75°C on full load,75% load and 50% load at unity power factor; Voltage regulation on full load at 75°C at unity power factor and at 0.8 power factor lagging".

> Voltage per turn: E_t

$$E_t = \frac{\sqrt{\left(\frac{kVA \times 1000}{no.of legs}\right)}}{40}$$

This is an empirical expression which gives E_t fairly accurate. Here, no. of legs for this three phase core type transformer is 3

Hence,

$$E_t = 4.56 \approx 4.5 \ volts/turn$$

- > Choice of core material: CRGO steel lamination of 0.35mm
- > Choice of specific magnetic loading, B_{max} : 1.7 Wb/m²

> Cross Section area of the core A_i:

We know,
$$E_t = 4.44 \times B_m \times f \times A_i$$

Where, $B_m = \text{flux density in wb/} m^2$; $f = 50 \text{ Hz and}$
 $A_i = \text{net cross section area of the core}$

$$A_{i} = \frac{E_{t}}{4.44f B_{m}}$$

$$= \frac{4.5}{4.44 \times 50 \times 1.7} = 0.01192m^{2}$$

$$= 11,923mm^{2}$$

Choice of core section

➤ Which type of core is preferable for transformer design? And why?

4x3.16=12.64cm

(10+1)2=22cm

 $= \pi x 3.56 = 11.2 \text{ cm}$

Choice of core section

Another reason....

- □ Very high value of mechanical forces tries to deform the shape of the square or rectangular coil (the mechanical forces try to deform to a circular shape) and hence damage the coil and insulation.
- ☐ Since this is not so in case of circular coils, circular coils are preferable to square or rectangular coils.

Selection of the no of step in core design.

- ☐ Thus a circular core and a circular coil is preferable.
- ☐ Since the core has to be of laminated type, circular core is not practicable as it required more number of different size laminations and poses the problem of securing them together is in position.
- ☐ However, a circular core can be approximated to a stepped core having different number of steps.
- ☐ In practice the core is built of 0.35 mm thin strips arrange in a number of steps.
- ☐ By increasing the no of steps, the area of the circumscribing circle is more effectively utilized.
- ☐ Iron space factor for typical number of steps in core is presented table 6.4, Page 147 [Deshpande]

- > Diameter of the circumscribing circle for the core: d
- ☐ Chosen seven step cores so, the area should be nearly circular. In the case of a 7 step core,
- \Box Iron space factor, $K_i = 0.88$ and
- Stacking factor for laminations, $K_s = 0.92$

$$A_{i} = K_{i}K_{s} \times \frac{\pi}{4}d^{2}$$

$$= 0.88 \times 0.92 \times \frac{\pi}{4}d^{2}$$

$$d^{2} = \frac{4 \times 11923}{0.88 \times 0.92 \times \pi}$$

$$d^{2} = 18760 \text{ mm}^{2}$$

$$d = 136.96$$
Choose $d \approx 140 \text{ mm}$
then area $A_{i} = K_{i}K_{s} \times \frac{\pi}{4}d^{2}$

$$= 12,456 \text{ mm}^{2}$$

\rightarrow Check B_m :

With this area
$$A_i = 12,456 \text{ mm}^2$$

$$B_m = \frac{E_t}{4.44 f A_i}$$

$$= \frac{4.5}{4.44 \times 50 \times 12463 \times 10^{-6}} = 1.63 \text{ Wb/ } m^2$$

> Window area A_w:

$$S = 3.33 \times A_{i} \times A_{w} \times k_{w} \times \delta \times B_{m} \times f \times 10^{-3} \quad kVA$$

$$A_{w} = \frac{S}{3.33 \times A_{i} \times k_{w} \times \delta \times B_{m} \times f \times 10^{-3}} mm^{2}$$

$$3.33 \times A_{i} \times k_{w} \times \delta \times B_{m} \times f \times 10^{-3}$$

Here,

 $K_w = Window space factor (k_w)$

Empirical formula is used for k_w

See, Art 6.6 and Table 6.5 page 149 [Deshpande]

K_w is taken approximately 0.29

 $A_w = Window area ?$

 A_i = net cross section area of the core, m^2

 δ = current density taken as 2.5 A/ mm²

S = output in kVA (100 kVA);

 \rightarrow Therefore, $A_w = 40,779 \text{ mm}^2$

Core and Window Dimensions:

Choose window width=150 mm (about d); then height of window= $\frac{40779}{150}$ =272 mm. Choose height of the window= $2 \times \text{width of window approx.} = 150 \times 2 = 300 \text{ mm}$ checking clearance to yoke. This is later taken as 334 mm.

Then window area= $300 \times 150 = 45000 \text{mm}^2$ The main dimensions of the core are therefore: diameter d=140 mm; D=distance between the centres of the adjacent limbs = 150 + 133 = 283 mm; with a 7 step core, the largest width of the core with d=140 mm is $0.95 \times 140 = 133 \text{ mm}$. Fig. 6.8 shows the core and yoke assembly dimensions.

Height of window=334 mm; total width= $(2\times283)+133=699$ mm Total height=334+133+133=600 mm

Number of turn in L.V. winding: $(\Delta$ -yn)

Voltage per phase = $415 / \sqrt{3} = 239.6 \text{ V}$ [L.V. is Y connected]

Turns per phase on l.v winding = $239.6 \div 4.5$ =53.24 turns, choose 54 turns.

Number of turns of H.V. winding: $(\Delta$ -yn)

Voltage per phase = 11 KV [H.V. is Δ connected]

Turns per phase on h.v. winding = $11 \times 10^3 \div 4.5 = 2444.44$ = chosen as 2445 turns.

Tapings of \pm 5% and \pm 2.5% are to be provided on the h.v. winding.

	5%	Normal	2.5%	
More	2568	2445	2383	turn
Less	2506		2322	turn

LOW VOLTAGE WINDING: $(\Delta$ -yn)

Current per phase = $(100 \times 10^3) \div \{(\sqrt{3}) \times 415\} = 139 \text{ A}$

Here, choose helical cylindrical coil.

Current density, $\delta = 2.5 \text{ A} / \text{mm}^2$; (assumed)

✓ Area of L.V. conductor, $a_2 = 139 \div 2.5$ = 55.6 mm² \cong 56 mm²

Choosing, rectangular copper conductor from IS:6160:1977 specs.

Let, Cross Section = $T \times W = 4 \text{ mm} \times 7 \text{ mm}$; 2 conductor strips

Therefore,

Forming conductor of L.V. area, $a_2 = 4 \times 7 \times 2 \text{ mm}^2$; = 56 mm²

High voltage winding: $(\Delta$ -yn) Choose disc coils.

current in H.V. winding per phase

- $= (100 \times 10^3) \div (3 \times 11 \times 10^3)$
- = 3.03 A

Cross section of conductor for H.V. winding ,

$$a_1 = 3.03 \div 2.5 = 1.21 \text{ mm}^2$$


```
Choosing round conductor where,
d = diameter of conductor
a_1 = \pi d^2 \div 4; d^2 = 1.54;
Therefore, d = 1.212 \text{ mm}
Now choosing, d = 1.25 \text{ mm};
Then area, \mathbf{a_1} = 1.23 \text{ mm}^2
Copper area in window = 2(a_1T_1 + a_2T_2) = 2(1.23 \times 2568 + 54 \times 56)
                                               = 12,365.28 \text{ mm}^2
Now for this dimensions, we get, window space factor,
                             k_w = (12,365.28 \div 40,800) = 0.3
                                   which is near about 0.29 (chosen)
```

Winding Types

SLL / Layer / Barrel

Winding Types (cont.)

Helical / Screw

Winding Types (cont.)

Continuous Disk Winding

For more: http://electrical-engineering-portal.com/power-transformer-construction-windings

DESIGN AND LAYOUT OF L.V. WINDING

- \square Number of turns in L.V= 54.
- \square Size of conductor: 2 strips of 4×7 mm,
- \square Consider paper insulation of conductor is = 0.25 mm;
- With paper insulation: 2 strips of conductor (4+0.25) mm \times (7+0.25) mm
- \square Choosing 2 layers for L.V. winding, Turns per layer = 54 / 2 = 27
- Width of conductor 7.25 mm is taken along the window,
- \square with 2 conductor sides 4.25 + 4.25 = 8.5 mm forming conductor per layer.
- ☐ For two layers, the dimension of conductors width wise is 17 mm

DESIGN AND LAYOUT OF L.V. WINDING

- \triangleright height of l.v. winding in window= $27 \times 7.25 = 195.75$ mm; say 196 mm;
- \triangleright thickness of l.v. coil = 8.5× 2 = 17 mm
- \triangleright distance between core and l.v. coil = 3.5 mm
- \triangleright inside diameter of l.v. coil = 140+ (2 × 3.5) = 147 mm
- \triangleright outside diameter of l.v. winding = $147 + (2 \times 17) = 181$ mm
- \triangleright mean diameter of l.v. coil = 147 + 17= 164 mm
- \triangleright mean length of turn of l.v. coil = π d= 164× π = 515 mm

DESIGN AND LAYOUT OF L.V. WINDING

DESIGN AND LAYOUT OF H.V. WINDING

- \Box The distance between L.V. and H.V. = 12 mm
- ☐ Inside diameter of h.v. = $181 + (12 \times 2) = 205$ mm
- □ Now, Split h.v. winding in 4 coils each with turns =
- 2568/4 = 642
- \square The size of conductor = 1.25 mm diameter.
- With paper insulation on conductor, the diameter = (1.25 + 0.25) mm = 1.50 mm

DESIGN AND LAYOUT OF H.V. WINDING

- □ Choose 15 layers; turns per layer = $642/15 \cong 43$
- \triangleright height of winding in each h.v. coil = $43 \times 1.5 = 64.5$ mm
- \rightarrow thickness of each coil = $15 \times 1.5 = 22.5$ mm
- \triangleright outside diameter of h.v. coil = 205 + (2×22.5) = 250 mm
- \triangleright mean diameter of h.v. coil = 205 + 22.5 = 227.5 mm
- \triangleright mean length of turn $=\pi \times d=227.5 \times \pi = 714.35$ mm
- \rightarrow height of h.v. coils in window = $(64.5 \times 4) + 8 + 8 + 8 = 282 \text{ mm}$
- The space required between coils and core on either side is taken as 26 mm.
- The height of window required:= $282 + 26 \times 2 = 334$ mm; Which is acceptable

DESIGN AND LAYOUT OF H.V. WINDING

Fig. 6.10. Layout of h,v, winding

PERCENTAGE REACTANCE

L.V. mean length of turn= $164 \times \pi = 515$ mm H.V. mean length of turn = $227.5 \times \pi = 714.35$ mm

$$Average, L_{mt} = \frac{515 + 714.35}{2} = 614.67 \, mm$$

$$AT = 139 \times 54 \; ; (L.V. Amp \& L.V. Turn) = 7506$$

$$mean \ height \ of \ coils, h_c = \frac{196 + 282}{2} = 239 \, mm$$

$$a = 12mm, b_1 = \text{width of h.v.} = 22.5; b_2 = \text{width of l.v.} = 17 \, mm$$

$$a + \frac{b_1 + b_2}{3} = 12 + \frac{22.5 + 17}{3} = 25.16 \, mm$$

$$\% \ X = \frac{2\pi f \mu_0 L_{mt} (AT)}{h_c E_t} \left(a + \frac{b_1 + b_2}{3} \right)$$

$$= \frac{2\pi \times 50 \times 4\pi \times 10^{-7} \times 0.6146 \times 7506 \times 0.02516}{0.239 \times 4.5} = 0.04256 \ p.u.$$

$$or; \ \% \ X = 4.256\%$$

PERCENTAGE RESISTANCE

We Know,

$$\rho_{20} = 0.01724 \ \Omega/\text{mm}^2/\text{m} \text{ and } \alpha_{20} = 0.00393$$

- Resistance of low voltage (l.v.) winding: (per phase) $(R=\rho L/\underline{A})$

$$= (0.021 \times 515 \times 54) \div (56 \times 1000) \Omega$$

- = 0.01043Ω (per phase)
- Resistance of high voltage (h.v.) winding: (per phase) $(R=\rho L/\underline{A})$

=
$$(0.021 \times 714.35 \times 2568) \div (1.23 \times 1000) \Omega$$

= 33.32 Ω (per phase) (calculation error)

PERCENTAGE RESISTANCE

Here, Ratio of transformation = $(11 \times 10^3) \div (239) = 46$

And, L.V. winding: 0.01043Ω (per phase)

Resistance of H.V. winding: 33.32 Ω (per phase)

Now,

Equivalent resistance referred to h.v. winding (per phase)

$$R = 33.32 + 0.0104 \times (46)^{2} \Omega$$
$$= 33.32 + 21.92 \Omega$$
$$= 55.32 \Omega$$

Percentage of Impedance

- Percentage resistance
- % R =(Eq. Resistance / Base Resistance); [Base R= h.v. Voltage/h.v. Current] = $(55.32) \div (11 \times 10^3/3.03) \times 100\%$ = 1.65%

Here,

- \sim % X = 4.25 %
- □ % R = 1.65%

Therefore,

Percentage impedance,
$$\%Z = \sqrt{(4.25^2 + 1.65^2)} \times 100\%$$

= 4.6 \%

N.B: % Z is beyond expectable limit (3.5-4.5%)!!!

So change your dimension

Change window for improving % Z

Choosing desire window width:

$$\begin{split} W_W &= 0.7xd {=} 0.7x140 = 102 \text{ mm} \\ H \Longrightarrow L = 400 \text{ mm} \\ m_w &= 12 {+} 5 {+} 14 {=} 31 \cong 30 \text{mm} \\ H_y &= 28 \text{ mm} \\ D &= 140x0.95 {+} 102 = 235 \text{ mm} \end{split}$$

Height of window $H = 400\,$ mm; Clearance to yoke=30 mm Then, Height of window $H = 400 + 28 \times 2 = 456\,$ m; Total width = $(2 \times 235) + 133 =$ mm=603 mm; Total height = $400 + 133 + 133 = 666\,$ mm; D= Distance between center of adjacent limb
= d+W_w

Where

W_w=width of window
H_w=Height of window
H_y= Height of the yoke
H=Overall height of frame
=H_w+2H_y
W=Overall width of frame
=2D+a

Change Design layout of L.V. winding

- \square Number of turns in L.V= 54.
- \square Size of conductor : 2 strips of 4×7 mm, If, paper insulation of conductor=0.25 mm;
- ☐ With paper insulation for conductors,
- $= (4+0.25) \text{ mm} \times (7+0.25) \text{ mm}; = (4.25 \times 7.25) \text{ mm}$
- $= 30.81 \text{ mm}^2$
- Choosing single layers for l.v. winding,
- \Box Turns per layer = 54
- Width of conductor 7.25 mm is taken along the winding,
- \square with 2 conductor sides 4.25 + 4.25 = 8.5 mm forming conductor per layer.
- ☐ For single layers, the dimension of conductors,
- width wise is 8.5 mm and
- \triangleright height of l.v. winding in window = $54 \times 7.25 = 391.5$ mm; say 392 mm;
- \triangleright thickness of l.v. coil = 8.5 × 1 = 8.5 mm
- \triangleright distance between core and 1.v. coil = 3.5 mm
- \triangleright inside diameter of l.v. coil = 140+ (2 × 3.5) = 147 mm
- \triangleright outside diameter of l.v. winding = 147 + (2 × 8.5) = 164 mm
- \triangleright mean diameter of 1.v. coil = 147 + 8.5 = 155.5 mm
- \triangleright mean length of turn of l.v. coil = π d= 155.5× π = 488.27 mm

Change Design and layout of H.V. winding

- \Box The distance between L.V. and H.V. = 12 mm
- ☐ Inside diameter of h.v. = $164 + (12 \times 2) = 188 \text{ mm}$
- \square Now, Split h.v. winding in 4 coils each with turns = 2568/4 = 634
- \square The size of conductor = 1.25 mm diameter.
- With paper insulation on conductor, the diameter = (1.25 + 0.25) mm= 1.50 mm
- \triangleright Choose 12 layers; turns per layer = 634/10 = 64
- \triangleright height of winding in each h.v. coil = 64× 1.5 = 96 mm
- \triangleright thickness of each coil = $10 \times 1.5 = 15$ mm
- \rightarrow outside diameter of h.v. coil = 188 + (2×15) = 218 mm
- \triangleright mean diameter of h.v. coil = 188 + 15 = 203 mm
- \rightarrow mean length of turn $=\pi \times d=203 \times \pi = 637.42$ mm
- \triangleright height of h.v. coils in window = $(96 \times 4) + 8 + 8 = 408$ mm
- The space required between coils and core on either side is taken as 26 mm.
- \triangleright The height of window required:= $408 + 24 \times 2 = 456$ mm; Which is acceptable
- \triangleright [N:B: window width=102 mm, height = 456 mm;]***

Percentage Reactance

L.V. mean length of turn= $155.5 \times \pi = 488.27$ mm H.V. mean length of turn = $206 \times \pi = 646.84$ mm

$$\begin{split} L_{mt} &= \frac{488.27 + 637.42}{2} = 562.84mm \\ AT &= 139 \times 54 \\ mean \ height \ of \ coils = \frac{392 + 408}{2} = 400mm \\ a &= 12mm, \ b1 = \ width \ of \ h, \ v = 22.5; \ b2 = \ width \ of \ l. \ v = 17mm \\ a &+ \frac{b_1 + b_2}{3} = 12 + \frac{22.5 + 17}{3} = 25.16mm \\ \% \ X &= \frac{2\pi f \mu L_{mt} (AT)}{h_c E_t} \left(a + \frac{b_1 + b_2}{3} \right) \\ &= \frac{2\pi \times 50 \times 4\pi \times 10^{-7} \times 0.56284 \times 7506 \times 0.02516}{0.4 \times 4.5} = 0.04256 \ p.u. \\ or; \ \% \ X = 2.32\% \end{split}$$

PERCENTAGE OF IMPEDANCE

- percentage resistance
- □ % R =(Eq. Resistance / Base Resistance)

$$= (55.24) \div (11 \times 10^3/3.03) \times 100\% = 1.52\%$$

Here,

- \mathbf{Q} % $\mathbf{X} = 2.32$ %;
- \sim % R = 1.52%

Therefore,

- □ Percentage impedance, %Z = $\sqrt{(2.32^2 + 1.52^2)} \times 100\%$ = 2.77 %
- N.B: % Z is too low expectable limit, So change your dimension again

Again Change window dimension for modifiying % Z

$$W_{W} = 0.78 \times 140 = 109.2 \approx 110 mm$$

$$L = \frac{A_{W}}{W_{W}} = \frac{40779}{110} = 370.7 \approx 370 mm$$
And $A_{W} = 40,700 mm^{2}$

D= Distance between center of adjacent limb = d+W_w

Choosing desire window width:

$$\begin{split} W_W &= 0.78xd {=} 0.78x140 = 110 \text{ mm} \\ H \Longrightarrow L = 370 \text{ mm} \\ m_w &= 12 {+} 5 {+} 14 {=} 31 \cong 30 \text{mm} \\ H_y &= 28 \text{ mm} \\ D &= 140x0.95 {+} 110 = 243 \text{ mm} \end{split}$$

Height of window H = 370 mm; Clearance to yoke=30 mm Then, Height of window H = $370 + 30 \times 2=430$ mm; Total width = $(2 \times 243) + 133 = mm=619$ mm; Total height = 430 + 133+133 = 696 mm; Where

W_w=width of window

H_w=Height of window

H_y= Height of the yoke

H=Overall height of frame

=H_w+2H_y

W=Overall width of frame

=2D+a

Design the layout of l.v. winding

- Number of turns in L.V= 54.
- \square Size of conductor : 2 strips of 4×7 mm, If, paper insulation of conductor=0.25 mm;
- ☐ With paper insulation for conductors,
- $= (4+0.25) \text{ mm} \times (7+0.25) \text{ mm}; = (4.25 \times 7.25) \text{ mm}$
- $= 30.81 \text{ mm}^2$
- ☐ Choosing 2 layers for l.v. winding,
- \square Turns per layer = 54 / 2 = 27
- Width of conductor 7.25 mm is taken along the winding,
- \square with 2 conductor sides 4.25 + 4.25 = 8.5 mm forming conductor per layer.
- ☐ For two layers, the dimension of conductors,
- width wise is 17mm and
- \triangleright height of l.v. winding in window = $27 \times 7.25 = 195.75$ mm; say 196 mm;
- \triangleright thickness of 1.v. coil = 8.5× 2 = 17 mm
- \triangleright distance between core and l.v. coil = 3.5 mm
- \triangleright inside diameter of l.v. coil = 140+ (2 × 3.5) = 147 mm
- \triangleright outside diameter of l.v. winding = 147 + (2 × 17) = 181 mm
- \triangleright mean diameter of l.v. coil = 147 + 17= 164 mm
- \triangleright mean length of turn of l.v. coil = π d= 164× π = 515 mm

DESIGN AND LAYOUT OF H.V. WINDING

- \Box The distance between L.V. and H.V. = 12 mm
- ☐ Inside diameter of h.v. = $181 + (12 \times 2) = 205$ mm
- \square Now, Split h.v. winding in 4 coils each with turns = 2568/4 = 634
- \square The size of conductor = 1.25 mm diameter.
- \square With paper insulation on conductor, the diameter = (1.25 + 0.25) mm= 1.50 mm
- \triangleright Choose 12 layers; turns per layer = 634/12 = 54
- \triangleright height of winding in each h.v. coil = 54× 1.5 =81 mm
- \triangleright thickness of each coil = $12 \times 1.5 = 18$ mm
- \rightarrow outside diameter of h.v. coil = 205 + (2×18) = 241 mm
- \triangleright mean diameter of h.v. coil = 205 + 18 = 223 mm
- \rightarrow mean length of turn $=\pi \times d=223 \times \pi = 700.22$ mm
- \triangleright height of h.v. coils in window = $(81 \times 4) + 8 + 8 = 348$ mm
- > The space required between coils and core on either side is taken as 30 mm.
- \triangleright The height of window required:= $348 + 30 \times 2 = 408$ mm; Which is acceptable
- \triangleright [N:B: window width=110 mm, height = 430 mm;]***

Percentage Reactance

L.V. mean length of turn= $164 \times \pi = 515$ mm H.V. mean length of turn = $223 \times \pi = 700.22$ mm

$$\begin{split} L_{mt} &= \frac{515 + 700.22}{2} = 607.61 mm \\ AT &= 139 \times 54 \\ mean \ height \ of \ coils = \frac{196 + 348}{2} = 272 mm \\ a &= 12 mm, \ b1 = \text{width of h, v} = 22.5; \ b2 = \text{width of l.v} = 17 mm \\ a &+ \frac{b_1 + b_2}{3} = 12 + \frac{22.5 + 17}{3} = 25.16 mm \\ \% \ X &= \frac{2\pi f \mu L_{mt} (AT)}{h_c E_t} \left(a + \frac{b_1 + b_2}{3} \right) \\ &= \frac{2\pi \times 50 \times 4\pi \times 10^{-7} \times 0.607 \times 7506 \times 0.02516}{0.272 \times 4.5} = 0.04256 \ pu. \\ or; \ \% \ X &= 3.69\% \end{split}$$

Percentage of IMPEDANCE

- percentage resistance
- □ % R =(Eq. Resistance / Base Resistance)

$$= (55.24) \div (11 \times 10^3/3.03) \times 100\% = 1.52\%$$

Here,

- $\mathbf{X} = 3.69 \%$;
- Arr % R = 1.52%

Therefore,

□ Percentage impedance, $\%Z = \sqrt{(3.69^2 + 1.52^2)} \times 100\%$ = 3.99 %

N.B: This %Z is within expectable limit (3.5-4.5%)

WEIGHT OF IRON IN CORE AND YOKE ASSEMBLY:

From the Figure, the volume of the core and yoke is given by:

- $= A_i \times \{ (619 \times 2) + (430 \times 3) \} \text{ mm}^3$
- $= 12456 \times 2528 \text{ mm}^3$;
- $= 31488768 \text{ mm}^3$

WEIGHT OF IRON IN CORE AND YOKE ASSEMBLY...

Now, volume = 31488768 mm^3

Weight of iron = $7.85 \times 1000 \text{ kg/m}^3$.

Weight of core and yoke

 $= (31488768 \times 7.85) \div (1000 \times 1000) = 247 \text{ kg}$

Core loss at $B_{\text{max}} = 1.63 \text{ wb/} \text{m}^2 \text{ is } 1.2 \text{ watts/kg (Fig. 2.2)}$

Core less in transformer = $247 \times 1.2 \cong 296$ watts

WEIGHT OF IRON IN CORE AND YOKE ASSEMBLY...

Fig. 2.2. Total iron loss watts/kg v/s peak density in Tesla (grade 51)

Fig. 4.10. VA/kg v/s B

MAGNETIZING VOLT AMPERES

Magnetizing volt amperes:

For $B_{max} = 1.63$ wb/m², VA / kg from the curve (Fig. 4.10) is 10 VA/kg Magnetizing volt amperes = 247×10 VA = 2470 VA

Weight of L.V. winding :

We know, density of copper 8.89 g/cm³

Number of <u>turns</u> = 54 & Area of L.V. conductor, $a_2 = 56 \text{ mm}^2$

Mean length of turn = 515 mm

Weight of l.v. winding (per limb)

 $= (8.89 \times 56 \times 515 \times 54) \div (1000 \times 1000) = 13.84 \text{ kg}$

WEIGHT OF IRON IN CORE AND YOKE ASSEMBLY

Weight of h.v. winding (per limb):

```
Number of <u>turns</u> = 2568; (<u>normal</u> 2445); a_1 = 1.21 \text{ mm}^2;
Mean length of turn = 700.22 mm
```

Weight of 4 coils (one limb)

$$= (8.89 \times 1.21 \times 700.22 \times 2568) \div (1000 \times 1000) \text{ kg}$$

= 19.34 kg; for all turns

For normal turns, weight of the coils (one limb)

$$= (8.89 \times 1.29 \times 700.22 \times 2445) \div (1000 \times 1000) \text{ kg}$$

= 18.41 kg

TOTAL WEIGHT OF COPPER IN TRANSFORMER

Total weight of copper in transformer:

Total weight

$$= 3 (L.V + H.V.)$$

$$= 3 (13.84 + 18.41) \text{ kg}$$

$$= 96.75 \text{ kg}$$

Copper loss and Load loss at 75° C

Copper loss and Load loss at 75° C:

```
H.V. current per phase = 3.03 \text{ A}
Copper loss for 3 phases = 3 \times I^2 \times R
                              = 3 \times 3.03^{2} \times 55.24
                              = 1521.76 \text{ W}
Let, stray load loss about 7%,
Then, Load Loss (at 75^{\circ}C) = 1521.76 \times 1.07 = 1628 watts
Iron loss = 296 watts
Hence, Total Loss = (296 + 1628)
                      = 1924 watts
```

CALCULATION OF PERFORMANCE

Calculation of performance:

> Efficiency on full load at unity power factor :

```
Output = 100 \times 1000 watts; (100 kVA Transformer)
```

Efficiency = Output / Input

$$= 100 \times 1000/(100 \times 1000 + 1924) \times 100\%$$

= 98.11%

CALCULATION OF PERFORMANCE

> Efficiency on 3/4th full load at unity power factor:

Core loss = 296 watts;

Load loss on 3/4 load = $1628 \times (3/4)^2 = 916$ Watt;

Total loss = 296 + 916 = 1212 watts

Efficiency on 3/4th of full load

 $=75000/(75000+1212) \times 100\%$

= 98.4%

CALCULATION OF PERFORMANCE

> Efficiency on ½ of full load at unity power factor:

Core loss = 296 watts;

Load loss on $1/2 \text{ load} = 1628 \times (1/2)^2 = 407 \text{ W}$

Total loss = (296 + 407)

=703 watts

Efficiency on 1/2 of full load

 $= 50000/(50000+703) \times 100\%$

= 98.61 %

VOLTAGE REGULATION

Regulation on full load at unity power factor:

% R = 1.52%, % X = 3.69%
Now,
$$(V + IR)^2 + (IX)^2 = E^2$$

or, $(1.0 + 0.0152)^2 + (0.0369)^2 = 1.031 = E^2$
or, E = 1.015
Regulation = 1.015 - 1.0
= 0.015 p.u.
= 1.5%

Regulation on full load at 0.8 power factor lagging

= [IR
$$\cos \varphi + IX \sin \varphi$$
] %

$$= [1.52 \times 0.8 + 3.69 \times 0.6] \% = 3.43 \%$$

CORE LOSS CURRENT, MAGNETIZING CURRENT

Core loss current, magnetizing current:

Core loss = 296 watts.

core loss current,
$$I_c = (296) \div (3 \times 11000)$$

= 0.0089 A

Magnetizing VA = 2470 ; magnetizing current, $I_m = (2470) \div (3 \times 11000)$ = 0.0748 A

NO-LOAD CURRENT

No load current:

No load current per phase ,
$$I_o = \sqrt{(I_c^2 + I_m^2)}$$

= $\sqrt{(0.0748^2 + 0.0089^2)}$
= 0.0753 A

Current per phase = 3.03 A

Hence, No load current is ($0.0753 \div 3.03$) × 100 %

= 2.48% of the full load current

DESIGN OF TANK

Assignment: 13 Batch

Section B:

Design....

6.6kV/210V, (last 3 Digit of Student ID+25) kVA

For example, if your student ID is 1302067then (067+25) = 92 kVA

