شبکه های کامپیوتری ۲

جلسه ۱۴ فصل ۹

Multimedia Protocols

دانشگاه صنعتی اصفهان دانشکده مهندسی برق و کامپیوتر

Chapter 9 Multimedia Networking

A note on the use of these Powerpoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

© All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top Down Approach

7th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016

Multimedia networking: outline

- 9. I multimedia networking applications
- 9.2 streaming stored video
- 9.3 voice-over-IP
- 9.4 protocols for *real-time* conversational applications: RTP, SIP
- 9.5 network support for multimedia

Real-Time Protocol (RTP)

- RTP specifies packet structure for packets carrying audio, video data
- RFC 3550
- RTP packet provides
 - payload type identification
 - packet sequence numbering
 - time stamping

- RTP runs in end systems
- RTP packets encapsulated in UDP segments
- interoperability: if two VoIP applications run RTP, they may be able to work together

RTP runs on top of UDP

RTP libraries provide transport-layer interface that extends UDP:

- port numbers, IP addresses
- payload type identification
- packet sequence numbering
- time-stamping

RTP example

example: sending 64 kbps PCM-encoded voice over RTP

- application collects encoded data in chunks, e.g., every 20 msec = 160 bytes in a chunk
- audio chunk + RTP header form RTP packet, which is encapsulated in UDP segment

- RTP header indicates type of audio encoding in each packet
 - sender can change encoding during conference
- RTP header also contains sequence numbers, timestamps

RTP and QoS

- RTP does not provide any mechanism to ensure timely data delivery or other QoS guarantees
- RTP encapsulation only seen at end systems (not by intermediate routers)
 - routers provide best-effort service, making no special effort to ensure that RTP packets arrive at destination in timely matter

RTP header

payload type

sequence number

time stamp

Synchronization Source ID Miscellaneous fields

payload type (7 bits): indicates type of encoding currently being used. If sender changes encoding during call, sender informs receiver via payload type field

Payload type 0: PCM mu-law, 64 kbps

Payload type 3: GSM, I3 kbps

Payload type 7: LPC, 2.4 kbps

Payload type 26: Motion JPEG

Payload type 31: H.261

Payload type 33: MPEG2 video

sequence # (16 bits): increment by one for each RTP packet sent

detect packet loss, restore packet sequence

RTP header

payload type

sequence number

time stamp

Synchronization Source ID Miscellaneous fields

- timestamp field (32 bits long): sampling instant of first byte in this RTP data packet
 - for audio, timestamp clock increments by one for each sampling period (e.g., each 125 usecs for 8 KHz sampling clock)
 - if application generates chunks of 160 encoded samples, timestamp increases by 160 for each RTP packet when source is active. Timestamp clock continues to increase at constant rate when source is inactive.
- SSRC field (32 bits long): identifies source of RTP stream. Each stream in RTP session has distinct SSRC

RTSP/RTP programming assignment

- build a server that encapsulates stored video frames into RTP packets
 - grab video frame, add RTP headers, create UDP segments, send segments to UDP socket
 - include seq numbers and time stamps
 - client RTP provided for you
- also write client side of RTSP
 - issue play/pause commands
 - server RTSP provided for you

Real-Time Control Protocol (RTCP)

- works in conjunction with RTP
- each participant in RTP session periodically sends RTCP control packets to all other participants
- each RTCP packet contains sender and/or receiver reports
 - report statistics useful to application: # packets sent, # packets lost, interarrival jitter
- feedback used to control performance
 - sender may modify its transmissions based on feedback

RTCP: multiple multicast senders

- each RTP session: typically a single multicast address; all RTP /RTCP packets belonging to session use multicast address
- RTP, RTCP packets distinguished from each other via distinct port numbers
- to limit traffic, each participant reduces RTCP traffic as number of conference participants increases

RTCP: packet types

receiver report packets:

 fraction of packets lost, last sequence number, average interarrival jitter

sender report packets:

 SSRC of RTP stream, current time, number of packets sent, number of bytes sent

source description packets:

- e-mail address of sender, sender's name, SSRC of associated RTP stream
- provide mapping between the SSRC and the user/host name

SIP: Session Initiation Protocol [RFC 3261]

long-term vision:

- all telephone calls, video conference calls take place over Internet
- people identified by names or e-mail addresses, rather than by phone numbers
- can reach callee (if callee so desires), no matter where callee roams, no matter what IP device callee is currently using

SIP services

- SIP provides mechanisms for call setup:
 - for caller to let callee know she wants to establish a call
 - so caller, callee can agree on media type, encoding
 - to end call

- determine current IP address of callee:
 - maps mnemonic identifier to current IP address
- call management:
 - add new media streams during call
 - change encoding during call
 - invite others
 - transfer, hold calls

Example: setting up call to known IP address

- Alice's SIP invite message indicates her port number, IP address, encoding she prefers to receive (PCM µlaw)
- Bob's 200 OK message indicates his port number, IP address, preferred encoding (GSM)
- SIP messages can be sent over TCP or UDP; here sent over RTP/UDP
- default SIP port number is 5060

Setting up a call (more)

- codec negotiation:
 - suppose Bob doesn't have PCM µlaw encoder
 - Bob will instead reply with 606 Not Acceptable Reply, listing his encoders. Alice can then send new INVITE message, advertising different encoder

- rejecting a call
 - Bob can reject with replies "busy," "gone," "payment required," "forbidden"
- media can be sent over RTP or some other protocol

Example of SIP message

```
INVITE sip:bob@domain.com SIP/2.0
Via: SIP/2.0/UDP 167.180.112.24
From: sip:alice@hereway.com
To: sip:bob@domain.com
Call-ID: a2e3a@pigeon.hereway.com
Content-Type: application/sdp
Content-Length: 885

c=IN IP4 167.180.112.24
m=audio 38060 RTP/AVP 0
```

Notes:

- HTTP message syntax
- sdp = session description protocol
- Call-ID is unique for every call

- Here we don't know Bob's IP address
 - intermediate SIP servers needed
- Alice sends, receives
 SIP messages using
 SIP default port 506
- Alice specifies in header that SIP client sends, receives SIP messages over UDP

Name translation, user location

- caller wants to call callee, but only has callee's name or e-mail address.
- need to get IP address of callee's current host:
 - user moves around
 - DHCP protocol
 - user has different IP devices (PC, smartphone, car device)

- result can be based on:
 - time of day (work, home)
 - caller (don't want boss to call you at home)
 - status of callee (calls sent to voicemail when callee is already talking to someone)

SIP registrar

- one function of SIP server: registrar
- when Bob starts SIP client, client sends SIP REGISTER message to Bob's registrar server

register message:

```
REGISTER sip:domain.com SIP/2.0
Via: SIP/2.0/UDP 193.64.210.89
From: sip:bob@domain.com
```

To: sip:bob@domain.com

Expires: 3600

SIP proxy

- another function of SIP server: proxy
- Alice sends invite message to her proxy server
 - contains address sip:bob@domain.com
 - proxy responsible for routing SIP messages to callee, possibly through multiple proxies
- Bob sends response back through same set of SIP proxies
- proxy returns Bob's SIP response message to Alice
 - contains Bob's IP address
- SIP proxy analogous to local DNS server plus TCP setup

SIP example: jim@umass.edu calls keith@poly.edu

Comparison with H.323

- H.323: another signaling protocol for real-time, interactive multimedia
- H.323: complete, vertically integrated suite of protocols for multimedia conferencing: signaling, registration, admission control, transport, codecs
- SIP: single component. Works with RTP, but does not mandate it. Can be combined with other protocols, services

- H.323 comes from the ITU (telephony)
- SIP comes from IETF: borrows much of its concepts from HTTP
 - SIP has Web flavor; H.323 has telephony flavor
- SIP uses KISS principle: Keep It Simple Stupid