

Πανεπιστήμιο Δυτικής Αττικής Τμήμα Μηχανικών Πληροφορικής και Ηλεκτρονικών Υπολογιστών

Ενσωματωμένα Συστήματα - Τελική Εργασία

Χρήστος Μαργιώλης - 19390133 Ιανουάριος 2022

Περιεχόμενα

1	Πληροφορίες						
	1.1	Λίστα υλικών – ΒΟΜ	2				
	1.2	Κόστος παραγωγής	2				
	1.3	Θερμοχρασίες λειτουργίας	3				
	1.4	Διάρχεια ζωής	3				
2	Ανάπτυξη συστήματος						
_	2.1	Εργαλεία	3				
		Σχηματικό					
	2.3	PĈB	4				
	2.4	Κώδιχας	4				
	2.5	Ειχόνες	4				

1 Πληροφορίες

1.1 Λίστα υλικών – ΒΟΜ

- Microchip PIC16F877A I/P μικροελεγκτής.
- Adafruit BME280 σένσορας θερμοχρασίας, υγρασίας και πίεσης.
- 16x2 LCD οθόνη.
- 1x 16 MHz κρυσταλλικός ταλαντωτής.
- 2x 10 kΩ αντίσταση.
- 2x 330 Ω αντίσταση.
- 1x 10 kΩ ποτενσιόμετρο.
- 2x 22 pF κεραμεικός πυκωντής.
- 2x LED
- 2x κουμπί.
- Καλώδια.
- 3x ΑΑΑ μπαταρίες (4.5V) ή μπαταρία 9V με 5V διαιρέτη τάσης.

1.2 Κόστος παραγωγής

Οι τιμές υπολογίστηκαν με βάση τα τιμολόγια του https://www.digikey.com.

Για 100 τεμάχια:

Μέρος	Τιμή
PIC16F877A	\$706
BME280	\$1495
LCD	\$365
Σύνολο	\$2566

Για 1500 τεμάχια:

Μέρος	Τιμή
PIC16F877A	\$10.590
BME280	\$22.420
LCD	\$5.470
Σύνολο	\$38.480

^{&#}x27;Οχι και ό,τι πιο οικονομικό έχει βγει...

1.3 Θερμοχρασίες λειτουργίας

Μέρος	Εύρος θερμοκρασίας
PIC16F877A	$-40^{\circ}\mathrm{C} \sim 85^{\circ}\mathrm{C}$
BME280	$-40^{\circ}\mathrm{C} \sim 85^{\circ}\mathrm{C}$
LCD	$-20^{\circ}\mathrm{C} \sim 70^{\circ}\mathrm{C}$

Οπότε, παίρνοντας υπόψη την οθόνη LCD η οποία έχει το μικρότερο εύρος θερμοκρασίας λειτουργίας, το σύστημα είναι ασφαλές να λειτουργήσει στους $-20\,^{\circ}\mathrm{C}\sim70\,^{\circ}\mathrm{C}.$

1.4 Διάρκεια ζωής

;++;

2 Ανάπτυξη συστήματος

2.1 Εργαλεία

Η ανάπτυξη του συστήματος έγινε σε FreeBSD 13.0 με την χρήση του sdcc C compiler, και το pk2cmd για την επικοινωνία του μικροελεγκτή με το PICKit2 – τον προγραμματιστή. Έχω αναλύσει την διαδικασία αυτή σε μορφή οδηγού στην ιστοσελίδα μου και στο FreeBSD Wiki: https://wiki.freebsd.org/Microcontrollers/PIC

2.2 Σχηματικό

2.3 PCB

j++;

2.4 Κώδικας

j++*į*

2.5 Εικόνες

j++į