Московский Физико-Технический Институт (государственный университет)

Работа 19 Задание 3

Цель работы: познакомиться с поведением фильтров Чебышева и Баттерворта, эллпитическим фильтром и посмотреть, как они ведут себя при преобразовании в полосовые фильтры.

text

В работе используются: matlab v.8 для анализа поведения фильтров.

text

Теория

Фильтр Баттерворта порядка п получается при выборе:

Выполнение работы

1. Посмотрим на поведение фильтра Баттервота при увеличении количества полюсов (n). На АЧХ можем видеть, что скорость затухания на декаду увеличивается пропорционально $20 \cdot n$, что совпадает с теорией. Также можем заметить, что когда количество полюсов нечетное - один из них лежит на вещественной оси, а когда четное - нет.

Перейдем к фильтру Чебышева. Заметим, что при увеличении количества полюсов они начинают сдвигаться в сторону мнимой оси на комплексной плоскости. На АЧХ с увеличением полюсов увеличивается количество колебаний в полосе пропускания. При уменьшении параметра неравномерности (ε), ширина полосы неравномерности (на АЧХ) уменьшается, если для $\varepsilon=1$ полоса имела ширину в 3dB, то при $\varepsilon=0.1$ полоса имеет ширину « 1 dB. Также при уменьшении ε расстояние между полюсами и мнимой осью в комплескной плоскости увеличивается.

Наконец рассмотрим эллиптический фильтр. При увеличении количества полюсов они смещаются в сторону мнимой оси в комплексной плоскости, а на самой мнимой оси появляются нули. На АЧХ увеличивается величина затухания на декаду. При уменьшении неравномерности уменьшается скорость затухания на декаду (график на АЧХ сужается), а на комплексной плоскости расстояние между полюсами и мнимой осью увеличивается. При уменьшении селективности (η) график сужается к оси у, а на комплексной плоскости нули сдвигаются в сторону вещественной оси. Также можем подтвердить, что при нечетном количестве полюсов эллиптический фильтр имеет нули в бесконечности, а при четном, нет.

2. Найдем уровень затухания фильтра Чебышева при параметрах $n=7, \varepsilon=1, \eta=2$:

$$20\log_1 0 \mid H(s) \mid = -74dB$$

Тот же уровень затухания достигается у фильтра Баттерворта с параметрами $n=7, \eta=3.4.$

3. Уровень затухания фильтра Чебышева с параметрами $n=7, \varepsilon=1, \eta=1.5$ будет равень $stoplevel \simeq 421.5(52.5dB)$. Такое же затухание будет у фильтра Баттерворта при $n=15, \eta=1.5$.

- 4. Уровень затухания эллиптического фильтра с параметрами $n=7, \varepsilon=1, \eta=1.1$ будет равен $stoplevel \simeq 608.5(55.7dB)$. Такое же значение затухания достигается фильтром Чебышева с $n=7, \varepsilon=1$ и селективностью $\eta=1.1$.
- 5. Определим максимальные добротности полюса полосовых фильтров Баттерворта и Чебышева с $Q=10, n=9, \varepsilon=1$. Для преобразованного фильтра Чебышева $Q_{max}=357.9$, а для преобразованного фильтра Баттерворта $Q_{max}=57.7$.
- 6. Вычислим созвездия и характеристики эллиптического фильтра ellp(7,1,1.5). Преборазуем его в филтр верхних частот с параметрами $n=7, \varepsilon=1, \eta=1.5$ и полосовой фильтр с параметрами $n=7, \varepsilon=1, \eta=1.5$ и меняющейся добротностью Q=2;5;10. Для всех Q измерим максимальные добротности полосового фильтра:

	Фильтр верхних частот	Поло	совой ф	ильтр
Q		2	5	10
Q_{max}	23.48	97.97	238.94	476.14

7. Возьмем полосовой фильтр с параметрами $Q=20, \varepsilon=1, \eta_1=10^4~(80dB)$. Оценим селективность η , которую обеспечивает эллиптический фильтр порядка n=7 с таким затуханием: $\eta=1.36$. Подберем порядок фильтра Чебышева, который обеспечит сопоставимое с ним значение селективности: n=12.

Преобразуем эти фильтры в полосовые с Q=20, сравним максимальные добротности полюсов:

	Фильтр Чебышева	Фильтр Баттерворта
Q_{max}	2084.96	1049.39