

Lecture 1

Introduction to Electronics Packaging

ECE 4254/5224: Principles of Electronics Packaging

- Instructor: Dr. Christina DiMarino
- **Lectures**: Tu/Th 5:00pm 6:15pm
 - All lectures will be recorded and uploaded to Canvas (Media Gallery)
 - Note: the captions have errors, especially for technical terms
- Office Hours: Check the Canvas calendar, as office hours may vary certain weeks
 - Typical times: MW 3:30pm-4:30pm
- **Grading**: homework (40 %), group project (30 %), midterm (20 %), quizzes & in-class small-group work (10 %)

Who is in this course?

- ECE 4254 (undergraduate)
 - Computer engineering
 - Electrical engineering
 - Energy & power electronics systems
 - Micro/nano systems
 - Space systems

- ECE 5224 (graduate)
 - MEng, MS, PhD
 - Computer engineering
 - Electrical engineering
 - Materials science & engineering

→ Location: Blacksburg

→ Locations: Blacksburg, NCR, and Virtual

Course Topics

- 1. Introduction (10%)
- 2. Electrical (20%)
- 3. Thermal (20%)
- 4. Materials and Processes (25%)
- 5. Reliability and Failure Mechanisms (10%)
- 6. Characterization and Testing (10%)
- 7. Emerging Technologies (5%)
- + Software and lab demos (677/678 WHIT & 5-021 VTRC)

Course Software

1. LTspice

- Circuit simulator
- Free download: https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html

2. ANSYS V2024R1 Electronics Package

- Electrical and thermal finite element analysis (FEA) software
- Download: https://onecampus.vt.edu/task/all/network-software
- Download and installation instructions on the following slides

ANSYS Electronics Package Download

https://onecampus.vt.edu/task/all/network-software

Only download the ANSYS V2024R1 Electronics Package (can only be used with Windows or Linux, not Mac)

ANSYS V2024R1 Electronics Package for Linux
ANSYS V2024R1 Electronics Package for Windows

ANSYS (V2023R2 and Previous Releases)

ANSYS V2024R1 Rocky Main Package for Windows

ANSYS V2024R1 Rocky Additional Packages for Windows
 ANSYS V2024R1 Rocky SDK Modules for Windows

ANSYS Electronics Package Download

ANSYS Electromagnetics Suite Installation

ANSYS Installation

*For Windows 8 usernames we would suggest creating a new Local User Account that matches the PID, logging in, and installing ANSYS on that account. This can be done through Control Panel -> User Accounts -> Manage another account -> Add a new user.

Note: For ANSYS to activate correctly, it must be installed on the C:\ drive and the windows username must match the student's VT PID.

Changing Windows 7 & 10 Username

- 1. Find the "Run..." box or the "Search" box.
- 2. Enter compmgmt.msc
- 3. System Tools -> Local Users and Groups -> Users
- 4. Right click on your username and select "Rename"
- 5. Enter your Virginia Tech PID exactly and hit enter.
- 6. Exit the Computer Management tool and logout of your modified user account.
- 7. Restart the computer.

To connect to the license server off-campus, <u>you must use VPN</u>. See link below for setup instructions.

https://vt4help.servicenow.com/sp?id=kb_article&sys_id=d5496fca0f8b4200d3254b9ce1050ee5

CPES Packaging Lab (677/678 WHIT)

- Substrate patterning and cutting (laser, etcher)
- Die attach (soldering, sintering)
- Interconnect (wire bonding)
- Encapsulation (degassing, curing)

https://cpes.vt.edu/about/facilities

CPES Packaging Lab (677/678 WHIT)

- Bond tester (die shear test, wire bond pull test)
- Static electrical characterization (curve tracer)
- Reliability (thermal cycling chamber)

https://cpes.vt.edu/about/facilities

CPES Packaging Lab in Arlington, VA

CPES Packaging Lab in Arlington, VA

Flip-chip die bonder, pressure sintering, wire bonding, profilometry, 3D printing, thermal resistance measurements and power cycling, bond testing, optical imaging

For More Information...

- Fundamentals of Device and Systems Packaging: Technologies and Applications,
 2nd edition, Tummala, 2019
 - Fundamentals of Microsystems Packaging, 1st edition, Tummala, 2001
- Essentials of Electronic Packaging, Viswanadham, 2011
- Power Electronic Packaging, Liu, 2012
- IEEE Transactions on Components, Packaging and Manufacturing Technology (<u>CPMT</u>)

14

- IEEE Electronics Packaging Society (<u>EPS</u>)
- International Microelectronics Assembly and Packaging Society (<u>IMAPS</u>)
- Power Sources Manufacturers Association (<u>PSMA</u>)
- International Technology Roadmap for Semiconductors (ITRS)
- Heterogeneous Integration Roadmap (<u>HIR</u>)

Electronics

- Electronics is one of the largest industry segments in the world, and is growing.
- Wide range of applications, spanning defense, consumer, computer, communications, transportation, and medical industries.
- Every electronic product or system includes semiconductor devices, packaging, and system-level assemblies.

15

Tummala, 1st Ed.

Microelectronics Applications

These applications have different requirements for the package.

Power Applications

Example Application Requirements

Category	Operating temperature range (°C)	Design life range (years)
1 Auto—under the hood	(-85 °F) -65 to +150 (300 °F)	5–10
2 Industrial auto	-55 to +95	10 or more
3 Military avionics	-55 to +95	5 or more
4 Commercial avionics	−55 to +95	10 or more
5 Military—ground/marine	−55 to +95	5 or more
6 Space geo/LEO	-40 to +85	5-20
7 Telecommunications	-40 to +85	7–20
8 Computer	+15 to +60	5 or more
9 Consumer/portable	0 to +60	1–3

Automobile — Under the Hood

Figure from "Fundamentals of Microelectronics Sys Packaging" Rao Tummala

20

 Interconnecting, powering, cooling, and protecting the semiconductor devices and other system components [so that they perform reliably over a period of time]

 Interconnecting, powering, cooling, and protecting the semiconductor devices and other system components [so that they perform reliably over a period of time]

An Analogy...

Human

Electronic System

Why is Packaging Important?

 There are >100 billion ICs and devices manufactured worldwide, all of which need to be packaged.

 Packaging directly impacts the electrical performance, cost, size, and reliability.

 Semiconductor packaging market valued at \$28B in 2019, and expected >\$40B by 2025 by Mordor Intelligence.

Continuing Moore's Law

Aspiring to

1 Trillion

transistors in 2030

- **✓** RibbonFET
- ✓ PowerVia
- High NA
- 2.5D/3D packaging

"Advanced packaging gives architects and designers new tools in their pursuit of Moore's Law," — Dr. Kelleher, EVP & General Manager of Technology Development at Intel

Advanced packaging era

Package main function:

provide power and signaling from motherboard to die

Added Package value:

high density interconnects that enable larger die complexes from multiple process nodes

U.S. CHIPS and Science Act

\$39 billion for manufacturing

- Incentivize expansion of manufacturing capacity for semiconductors
- Attract large-scale investments in advanced technologies such as leading-edge logic and memory
- Advance U.S. technical leadership
- NDAA Section 9902

\$11 billion for R&D

- National Semiconductor Technology Center
- National Advanced Packaging Manufacturing Program
- Manufacturing USA institute(s)
- National Institute of Standards and Technology measurement science
- NDAA Section 9906

\$3B allocated for advanced packaging

Workforce development

Why is Packaging Needed?

- Package Functions:
 - 1. Signal distribution & integrity
 - 2. Power distribution & integrity
 - 3. Thermal management/heat dissipation
 - 4. Protection
 - Mechanical
 - Chemical
 - Environmental
 - Electrical

- Impacts:
 - 1. Performance (e.g., speed)
 - 2. Cost
 - 3. Size
 - 4. Reliability
 - Electrical
 - Mechanical
 - Thermomechanical

Packaging Considerations

- Electrical
- Thermal
- Mechanical
- Reliability
- Manufacturability

- Testability
- Size
- Weight
- Environmental/safety
- Cost
- ...

31

Complex, Interdependent Nature of Packaging

P. Sandborn, M. Vertal, "Analyzing Packaging Trade-Offs During System Design," IEEE Design & Test of Computers, 1998.

Packaging is an Interdisciplinary Field

Electrical Sciences

- Signal Integrity
- Power Integrity
- EMI

Material Sciences

- Dielectrics
- Conductors
- Magnetics
- Encapsulants
- . C, L, R, Materials

Bioelectronics

- Biocompatible
- Components
- Interconnections

Mechanical Sciences

- Thermomechanical Reliability
 - Fatigue and Creep
 - Warpage
- Heat Transfer

Chemical Sciences

- Lithographic Processes
- Microstructure vs. Properties

"Quiet" Revolutions in Packaging

<u>1990s</u>: Packaging revolutionized by launch of the <u>first flip-chip</u> <u>organic substrate</u>; A New Package Industry is born

<u>2000s</u>: Copper Pillar Bumps on die are introduced as an extension on Cu backend; Intel leads the industry by deploying <u>fully lead & halogen</u> <u>free packages</u>; High Pin Count Land Grid Sockets Become Mainstream; Drive to greater adoption of Ball Grid Arrays enables "Small and Thin"

2010s: Thermo-Compression Bonding Tools enable Fine Pitch Flip-Chip; Multiple Breakthrough 2D Multi-Chip Packaging Technologies (CoWOS, EMIB, FOCOS) Introduced: HBM, Foveros, SOIC open up the 3rd Dimension

Ceramic Packaging → Organic Packaging

Wire-Bond → Organic Flip-Chip

Thermo-compression Bonding for Fine-pitch Copper-pillar Flip-chip Interconnect
- Tool Features as Enablers of Unique Technology

Amram Eitan; Kin-Yik Hung
Intel Corporation; ASM Pacific Technology Ltd.
5000 W. Chandler Blvd., AZ, USA; 16-22 Kung Yip Street, Kwai Chung, Hong Kong
Anram eitan@intel com; kyhung@asmpt.com

34

Technology Waves

35

- 1. Microelectronics
- 2. RF and Wireless
- 3. Photonics
- 4. Micro-electro-mechanical Systems (MEMS)
- 5. Quantum

Year

Moore's Law

Moore's Law for ICs

Large IC

Largest IC with smallest transistors at low performance and high cost

- 5-30 Billion transistors
- 30-50 miles of wiring
- Low transistor performance
- High RC interconnect delays
- High design and manufacturing cost

Moore's Law for Packaging

Large Package

Large package with small ICs with transistors and interconnects at high performance and low cost

- 5-30 Billion transistors
- <30 miles of wiring</p>
- High transistor performance
- Low RC interconnect delays
- Low design and manufacturing cost

Moore's Law for Packaging: Number of I/Os

Why Take a Class on Electronics Packaging?

Growing demand for well-trained packaging engineers

- Most packaging engineers in industry are self-taught, acquiring experience on the job
 - As a result, most books/textbooks are authored by industry professionals
 - Strong focus on application and technologies and less on theory

Understand electrical-thermal-mechanical trade-offs

Companies with Electronics Packaging

- IBM
- Intel
- TSMC
- GlobalFoundries
- HP
- ASE
- Amkor
- Kyocera
- Samsung
- Motorola
- Nokia

- ON Semiconductor
- Texas Instruments
- STMicroelectronics
- Cree / Wolfspeed
- Infineon
- Mitsubishi
- Hitachi
- General Electric
- Raytheon Technologies
- Lockheed Martin
- BAE Systems
- BorgWarner

• ...

Packaging Levels

Dual In-Line (DIP)

Example of Level 1 Packaging

The wafer is separated into chips by a diamond grindstone. A fully automatic dic-ing saw is used for dicing.

Die Bonding Chip

The separated IC chip (die) is bonded into the center of a lead frame or package.

Wire Bonding (Interconnection)

The pads on the IC chip and adjoining terminals on the lead frame are connected, one-by-one, with gold wire.

Molding (encapsulation)

The chip is sealed with a macro-molecule plastic, like epoxy resin, thus finishing the plastic package container.

Forming & Marking

The lead frame is cut, and leads are bent thus forming the package. The manufacturer's name and model number are stamped on top.

Package Components

Component	Description/Purpose	Examples
Chip (die, device, semiconductor)	Device being packaged	IC, transistor, diode
Die attach	Bonds the chip to the substrate	Solder (paste, preform, ball), conductive epoxy
Substrate (chip carrier)	Mechanical foundation and electrical routing/wiring	Laminate, ceramic
Interconnect	Forms electrical connections within the package	Wire bonds, solder balls
Encapsulation (molding)	Protects the chip(s) and package	Epoxy, silicone gel
Terminals	Provides electrical connection to the next level	Lead frame, pins, solder balls, screws