Redes inalámbricas

Espectro electromagnético

IEEE 802.3 vs. IEEE 802.11

Ethernet	Wireless
Medio guiado, generalmente cobre	Medio inalámbrico o <i>wireless</i>
Infraestructura para backbone de redes locales	Tecnología complementaria a las cableadas, para incluir estaciones móviles
Señalización por niveles eléctricos	Señalización por ondas de radio
Protocolo de acceso al medio CSMA/CD Sin reconocimientos ni confiabilidad	Protocolo CSMA/CA Con reconocimientos y opcionalmente con intercambios RTS/CTS
Baja tasa de errores	Sensible a factores ambientales

Interferencia electromagnética (EMI)
Interferencia de radiofrecuencia (RFI)
Obstáculos que absorben o reflejan radiación (concreto, metal, obstáculos naturales)

Punto de Acceso

Punto de Acceso

Punto de Acceso

Terminología IEEE 802.11

- Sistema de distribución (DS)
- Medio inalámbrico (wireless)
- Punto de acceso (AP, access point)
- Estaciones (STA)

Redes inalámbricas 802.11

- BSA = Basic Service Area
 - Área de cobertura del AP
 - Asociarse al AP
 - Proceso asimétrico iniciado por los clientes
- BSS = Basic Service Set
 - Conjunto AP + estaciones asociadas
 - BSSID, nombre o identificador, MAC del AP

- Modo Infraestructura (managed)
 - Las estaciones se asocian al AP y se comunican por intermedio del mismo
- Modo AP
 - La NIC funciona como AP
- Modo Independiente (IBSS) o ad hoc
 - Las estaciones se comunican directamente entre sí
- Modo Monitor
 - La NIC recoge todo el tráfico en forma promiscua
- Modo Mesh
 - Topología de malla

Tipos de Tramas o Frames

- De administración
 - Authentication
 - Deauthentication
 - Association request/response
 - Reassociation request/response
 - Disassociation
 - Beacon o baliza
 - Probe request/response

- De control
 - Request to Send (RTS)
 - Clear to Send (CTS)
 - Acknowledgement (ACK)

Asociación al AP

- Beacon o baliza emitida por cada AP
 - Cada 1/10 s, en cada canal
 - Nombres del BSSID y ESSID si existe
- Probe Requests emitidos por estaciones
- Probe Responses emitidos por APs
 - Conteniendo capacidades y volumen de tráfico demandado
 - Permite a las estaciones elegir el AP al cual se asociarán.

RTS/CTS

AP

- RTS, Request To Send
 - Antes de emitir un frame de un tamaño superior a cierto umbral, cada estación emite un frame de control RTS solicitando permiso de transmitir
- CTS, Clear To Send
 - El AP contesta dando el permiso con un frame de control CTS
 - Todas las demás estaciones son notificadas

ESS, Extended Service Set

- Un mismo ESSID de 32 caracteres para todos los AP
- Permite

 la transición
 entre APs
 o Roaming

Wireless Distribution System

• WDS

Estándares 802.11

Estándar 802.11	Frecuencia	Velocidad máxima	Throughput típico	Alcance interior	Alcance exterior
a	5 GHz	54 Mbps	23 Mbps	35 m	120 m
b	2.4 GHz	11 Mbps	4.3 Mbps	35 m	140 m
g	2.4 GHz	54 Mbps	19 Mbps	38 m	140 m
n	2.4 GHz	72 Mbps	74 Mbps	70 m	250 m
n	5 GHz	135 Mbps	74 Mbps	70 m	250 m

Interfaz de comando iw

iw dev wlan0 scan	Busca dispositivos vecinos
iw dev wlan0 station dump	Muestra estadísticas
iw list	Da información sobre los dispositivos
iw dev wlan0 get power_save	Muestra el modo de ahorro de energía
iw dev wlan0 set type ibss	Cambia el modo a Independiente o Ad Hoc
iw dev wlan0 ibss join osolan 2437	Se une a (o crea, si no existe) una celda <i>Ad</i> <i>Hoc</i> llamada <i>osolan</i> en el canal de 2.437 GHz
iw dev wlan0 set type monitor	Pasa a modo monitor para capturar tráfico
iw dev wlan0 set type managed	Pasa a modo infraestructura
iw dev wlan0 set type mesh	Pasa a modo mesh o malla
iw dev wlan0 link	Muestra parámetros ESSID, RX, TX
iw wlan0 interface add ah0 type ibss	Agrega una subinterfaz en modo <i>Ad Hoc</i>

wavemon - scan

```
Terminal
                                                                      \bigcirc \bigcirc \bigcirc
                C8:60:87:62:B2:14 33%, -87 dBm, ch 11, 2462 MHz
paola
SMC
                00:13:F7:EB:90:68 100%, -33 dBm, ch 6, 2437 MHz
                                  50%, -75 dBm, ch 6, 2437 MHz, WPA/WPA2
Edusan.
flia
                                  36%, -85 dBm, ch 6, 2437 MHz, WPA
Fibertel WiFi637 B0:77
                                  27%, -91 dBm, ch 6, 2437 MHz, WPA
                                  96%, -43 dBm, ch 1, 2412 MHz
Speedy-WYkimg
56%, -71 dBm, ch 1, 2412 MHz, WPA/WPA2
total: 7 Ch/Sg desc, 1 open top-3: ch#6 (4), ch#1 (2), ch#11 (1)
F1info F2lhist F3scan F4
                              F5
                                             F7prefs F8help F9about F10quit
                                     F6
```

wavemon - info

wavemon - histograma

Planificación

Distancias al AP

- La energía de la señal decae con la distancia
- La relación señal-ruido es importante
 - Para mejorar la performance inalámbrica es necesario aumentar el ancho de banda analógico o mejorar la codificación
 - El espectro electromagnético es un recurso escaso y regulado
 - Mejores codificaciones requieren mejor relación señal-ruido
- Las distancias efectivas se reducen

Planificación

Obstáculos

- La transmisión inalámbrica es energía que viaja por el espacio, y todos los cuerpos son opacos en alguna medida
- Las construcciones que se interponen entre los dispositivos son problemáticas
- Especialmente si contienen concreto de gran espesor o enrejados de metal

Enemy of the State (1998) Full Movie In English [HD

Canales

 Los AP cuyas áreas de cobertura se superponen pueden funcionar en diferentes canales para minimizar la

 Tener en cuenta la tercera dimensión

interferencia

Nodos ocultos

- En redes muy extensas suele aparecer el fenómeno de nodos ocultos
- El mecanismo RTS/CTS se utiliza para frames de un cierto tamaño en adelante
- RTS/CTS minimiza la interferencia de nodos ocultos al informar a todas las estaciones cercanas que está por ocurrir una emisión
- Si existen muchas retransmisiones en la red debidas a nodos ocultos, es posible mejorar la performance al disminuir el umbral de RTS

Parámetro	Significado	Cuando se disminuye	Cuando se aumenta
Beacon Interval	Tiempo entre transmisión de beacons	Los scans pasivos se completan antes, y las estaciones se mueven más rápido sin perder conectividad	Aumentan la capacidad de radio, el throughput y la vida de las baterías
Fragmentation Threshold	Los frames más largos que el FT se transmiten usando el procedimiento de fragmentación	En zonas con ruido, la interferencia solamente corrompe los fragmentos, aumentando el throughput	En zonas sin ruido, aumenta el throughput al reducirse la fragmentación
RTS Threshold	A los frames más largos que el RTS Threshold se les antepone el intercambio RTS/CTS	Mejor throughput donde hay muchas situaciones de nodos ocultos	Mejor throughput si no hay interferencia

Parámetro	Significado	Cuando se disminuye	Cuando se aumenta
Listen Interval	Las estaciones que entran en ahorro de energía despiertan al transcurrir esta cantidad de intervalos entre beacons del AP	Los frames unicast hacia la estación tienen menor latencia y la carga en memoria de los AP se ve reducida	El transceiver queda apagado más tiempo y así se conservan más tiempo las baterías de las estaciones móviles
Long Retry Limit	Cantidad de intentos de retransmisión para frames más largos que el RTS Threshold	Los frames se descartan más rápidamente y el espacio de memoria requerido es menor	La retransmisión lleva más tiempo y puede causar que el TCP disminuya la tasa de transferencia
Short Retry Limit	Cantidad de intentos de retransmisión para frames más cortos que el RTS Threshold	Lo mismo que para Long Retry Limit	Lo mismo que para Long Retry Limit

Seguridad

- Wired Equivalent Privacy, WEP
 - Desaconsejado
- Especificación 802.1X
 - Supplicant
 - Authenticator
 - Authentication server

802.1X

