

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Homework 3

Measure Theory

Author: Edward McDonald

Student Number: 3375335

Question 1

In this question we work over \mathbb{R}^d , with d > 1. λ_d is the Lebesgue measure on \mathbb{R}^d .

Theorem 1. Let $\ell \subset \mathbb{R}^d$ be a line. Then $\lambda_d(\ell) = 0$.

Proof. Since ℓ is closed, ℓ is Borel and hence Lebesgue measurable.

Since λ_d is translation invariant, we may assume that $0 \in \ell$. Let $v \in \ell$ with $v \neq 0$. Consider half open line segment,

$$S = \{tv : t \in [0,1) \}.$$

S is Borel, hence measurable. Suppose $v = (v_1, v_2, \dots, v_d)$, and define the box,

$$B_n = \prod_{k=1}^{d} [0, \frac{v_k}{2^n}).$$

If $t \in [0,1)$ then for any n > 0 there exists an integer k such that $\frac{k}{2^n} \le v \le \frac{k+1}{2^n}$.

Hence,

$$S \subset \bigcup_{k=0}^{2^n-1} (B_n + \frac{k}{2^n}v).$$

So by translation invariance,

$$\lambda_d(S) \leq 2^n \lambda_d(B_n).$$

But by definition, $\lambda_d(B_n) = \frac{1}{2^{nd}} \lambda_d(B_0)$. Hence,

$$\lambda_d(S) \le 2^{n(1-d)} \lambda_d(B_0).$$

Since d > 1, n is arbitrary and $\lambda_d(B_0)$ is finite, we conclude that $\lambda_d(S) = 0$.

Now since

$$\ell = \bigcup_{n \in \mathbb{Z}} (nv + S)$$

by translation invariance we conclude that $\lambda_d(\ell) = 0$.

Question 2

Let A,B and C be sets, and define $A \triangle B := (A \setminus B) \cup (B \setminus A)$.

(a)

Lemma 1. $A^c \triangle B^c = A \triangle B$.

Proof. This is a simple computation, since by definition,

$$A^{c} \triangle B^{c} = (A^{c} \setminus B^{c}) \cup (B^{c} \setminus A^{c})$$

$$= (A^{c} \cap B) \cup (B^{c} \cap A)$$

$$= (B \cap A^{c}) \cup (A \cap B^{c})$$

$$= (B \setminus A) \cup (A \setminus B)$$

$$= (A \triangle B).$$

Lemma 2. $A \triangle C \subseteq (A \triangle B) \cup (B \triangle C)$

Proof. See that

$$\begin{split} A \bigtriangleup C &= (A \bigtriangleup C) \cap B \cup (A \bigtriangleup C) \cap B^c \\ &= (A \cap B \cap C^c) \cup (A^c \cap B \cap C) \cup (A \cap B^c \cap C^c) \cup (A^c \cap B^c \cap C) \\ &\subseteq (A^c \cap B) \cup (B^c \cap A) \cup (B \cap C^c) \cup (B^c \cap C) \\ &= (A \bigtriangleup B) \cup (B \bigtriangleup C). \end{split}$$

(b)

Now we define

$$\mathcal{G} := \{ B \in \mathcal{F} : \forall \varepsilon > 0 \ \exists B_{\varepsilon} \in \mathcal{A} \text{ such that } \mu(B \triangle B_{\varepsilon}) < \varepsilon \}.$$

Lemma 3. If $A \in \mathcal{G}$, then $A^c \in \mathcal{G}$.

Proof. Let $A \in \mathcal{G}$, and let $\varepsilon > 0$. Then choose $B_{\varepsilon} \in \mathcal{A}$ such that $\mu(A \triangle B_{\varepsilon}) < \varepsilon$. Hence $\mu(A^c \triangle B_{\varepsilon}^c) < \varepsilon$, and since $B_{\varepsilon}^c \in \mathcal{A}$, we conclude $A^c \in \mathcal{G}$.

(c)

Lemma 4. Let $A_n \in \mathcal{G}, n \geq 1$, with $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_n \subseteq \cdots$. If $A = \bigcup_{n \geq 1} A_n$, then for any $\varepsilon > 0$ there exists N > 0 such that $\mu(A \triangle A_N) < \varepsilon$.

Proof. We compute,

$$\mu(A) = \mu(\bigcup_{n=1}^{\infty} A_n)$$
$$= \lim_{n \to \infty} \mu(A_n).$$

And,

$$\mu(A \triangle A_n) = \mu(A \setminus A_n) = \mu(A) - \mu(A_n).$$

Hence,

$$\lim_{n\to\infty}\mu(A\bigtriangleup A_n)=0.$$

(d)

Corollary 1. $A \in \mathcal{G}$

Proof. Let $\varepsilon > 0$. Choose N > 0 such that $\mu(A \triangle A_n) < \varepsilon/2$ and select $B \in \mathcal{A}$ such that $\mu(B \triangle A_n) < \varepsilon/2$. Hence,

$$\mu(A \triangle B) \le \mu(A \triangle A_n \cup B \triangle A_n) \le \mu(A \triangle A_n) + \mu(B \triangle A_n) < \varepsilon.$$

Hence
$$A \in \mathcal{G}$$
.

 \mathbf{e}

Theorem 2. $\mathcal{G} = \mathcal{F}$.

Proof. Suppose $A, B \in \mathcal{G}$. Then choose $A_{\varepsilon}, B_{\varepsilon} \in \mathcal{A}$ such that $\mu(A \triangle A_{\varepsilon}) < \varepsilon/2$ and $\mu(B \triangle B_{\varepsilon}) < \varepsilon/2$.

Then

$$\mu((A \cap B) \triangle (A_{\varepsilon} \cap B_{\varepsilon})) = \mu((A \cap B) \setminus (A_{\varepsilon} \cap B_{\varepsilon}) \cup ((A_{\varepsilon} \cap B_{\varepsilon}) \setminus (A \cap B))$$

$$= \mu((A \cap B) \setminus A_{\varepsilon} \cup (A \cap B) \setminus B_{\varepsilon} \cup (A_{\varepsilon} \cap B_{\varepsilon}) \setminus A \cup (A_{\varepsilon} \cap B_{\varepsilon}) \setminus B)$$

$$\leq \mu(A \triangle A_{\varepsilon} \cap B \triangle B_{\varepsilon})$$

$$< \varepsilon.$$

Hence \mathcal{G} is closed under intersection. Thus \mathcal{G} is closed under relative complement since it is closed under complement.

Hence \mathcal{G} is a d-class containing \mathcal{A} since we have shown that it is closed under complement and increasing countable union, hence $d(\mathcal{A}) \subseteq \mathcal{G}$. But since \mathcal{A} is an algebra, it is a π -class. Hence $\mathcal{F} \subseteq \mathcal{G}$ since $\sigma(\mathcal{A}) = d(\mathcal{A})$ by the monotone class theorem.

Since by definition
$$\mathcal{G} \subseteq \mathcal{F}$$
, we conclude $\mathcal{F} = \mathcal{G}$.

Question 3

In this question we consider the measure space (X, \mathcal{A}, μ) and the completed measure $\overline{\mu}$ with associated algebra \mathcal{A}_{μ} .

Lemma 5. A_{μ} is a σ -algebra on X.

Proof. Since $A \subseteq A_{\mu}$, we have $X \in A_{\mu}$.

Suppose $A \in \mathcal{A}_{\mu}$. Then by definition there are $E, F \in \mathcal{A}$ with $E \subseteq A \subseteq F$ and $\mu(F \setminus E) = 0$. Hence we have $F^c \subseteq A^c \subseteq E^c$, and $\mu(E^c \setminus A^c) = \mu(F \setminus E) = 0$. Since $F^c, E^c \in \mathcal{A}$, we conclude that $A^c \in \mathcal{A}_{\mu}$.

Now let $\{A_n\}_{n=1}^{\infty}$ be a countable subcollection of \mathcal{A}_{μ} . Choose $E_n, F_n \in \mathcal{A}$ for each $n \geq 1$ such that $E_n \subseteq A_n \subseteq F_n$ and $\mu(F_n \setminus E_n) = 0$. Hence,

$$\bigcup_{n=1}^{\infty} E_n \subseteq \bigcup_{n=1}^{\infty} A_n \subseteq \bigcup_{n=1}^{\infty} F_n$$

where the left and right hand sides are in A, and

$$\mu(\bigcup_{n=1}^{\infty} F_n \setminus \bigcup_{n=1}^{\infty} E_n) \le \sum_{n=1}^{\infty} \mu(F_n \setminus E_n) = 0.$$

Hence \mathcal{A}_{μ} is a σ -algebra.

Lemma 6. $\overline{\mu}$ is a measure on (X, \mathcal{A}_{μ}) .

Proof. We need to prove that μ is countably additive on \mathcal{A}_{μ} . Suppose

that $\{A_n\}_{n=1}^{\infty}$ is a sequence of $\overline{\mu}$ -measurable sets that is pairwise disjoint. Then choose $E_n, F_n \in \mathcal{A}$ such that $E_n \subseteq A_n \subseteq F_n$ and $\mu(F_n \setminus E_n) = 0$.

Hence $\overline{\mu}(A_n) = \mu(E_n)$. Then we have

$$\bigcup E_n \subseteq_{n=1}^{\infty} \bigcup A_n \subseteq_{n=1}^{\infty} \bigcup_{n=1}^{\infty} F_n$$

Then since $\mu(\bigcup_{n=1}^{\infty} F_n \setminus \bigcup_{n=1}^{\infty} E_n) = 0$, we have

$$\overline{\mu}(\bigcup_{n=1}^{\infty}A_n)=\mu(\bigcup_{n=1}^{\infty}E_n).$$

But since the A_n are pairwise disjoint, so are the E_n , and so

$$\overline{\mu}(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(E_n)$$
$$= \sum_{n=1}^{\infty} \overline{\mu}(A_n).$$

Hence $\overline{\mu}$ is countably additive, hence a measure.

Lemma 7. The restriction of $\overline{\mu}$ to \mathcal{A} is μ .

Proof. Let $E \in \mathcal{A}$. Then $E \in \mathcal{A}_{\mu}$ since $E \subseteq E \subseteq E$, and $\mu(E \setminus E) = 0$.

Then $\overline{\mu} = \mu(E)$. Hence $\overline{\mu}$ restricted to \mathcal{A} is μ .

Lemma 8. The measure space $(X, \mathcal{A}_{\mu}, \overline{\mu})$ is complete.

Proof. We need to show that every subset of a $\overline{\mu}$ -null set is measurable.

Suppose $E \in 2^X$ with $E \subseteq F \in \mathcal{A}_{\mu}$ and $\overline{\mu}(F) = 0$. Then since $\emptyset \in \mathcal{A}$, and there is some set $B \in \mathcal{A}$ with $F \subseteq B$ and $\mu(B \setminus \emptyset) = \mu(B) = 0$, then $F \in \mathcal{A}_{\mu}$ and $\overline{\mu}(F) = \mu(B) = 0$.

5

Hence $(X, \mathcal{A}_{\mu}, \overline{\mu})$ is complete.