Lineare Optimierung Übungsbeispiele BIFIE

- 1) Auf einer Hühnerfarm werden Eier produziert.
 - c) Die Eier werden nach Gewichtskategorien in mittlere und große Eier eingeteilt. Sechser- und Viererpackungen von Eiern werden zum Verkauf angeboten. Die Sechserpackung kostet € 2,50 und beinhaltet je 3 große und 3 mittlere Eier. Die Viererpackung kostet € 1,70 und beinhaltet je 1 großes Ei und 3 mittlere Eier.

Mindestens 60 große und 80 mittlere Eier sollen für eine Großküche eingekauft werden. Für den Einkauf stehen maximal € 65 zur Verfügung.

- Stellen Sie dasjenige Ungleichungssystem auf, das beschreibt, welche Anzahl an Viererpackungen y bei welcher Anzahl von Sechserpackungen x die Großküche kaufen kann.
- Stellen Sie den Lösungsbereich des Ungleichungssystems grafisch dar.
- Beurteilen Sie anhand des Lösungsbereichs, ob die Großküche 12 Sechserpackungen und 25 Viererpackungen kaufen kann.
- 2) Ein Getränkehersteller produziert verschiedene Fruchtsäfte.
 - b) Das Unternehmen stellt aus 2 hochwertigen Vitamingetränken eine neue Mischung her, die bestimmte Mindestmengen von 3 Inhaltsstoffen enthalten muss. Die in der nachstehenden Grafik dargestellte Lösungsmenge erfüllt diese Bedingungen. Der 1. Vitaminsaft kostet dem Unternehmen € 300 pro hl, der 2. Saft € 150 pro hl.

Die neue Mischung soll möglichst kostengünstig sein.

- Stellen Sie die Zielfunktion K für die Kosten auf.
- Zeichnen Sie die Gerade, für die der optimale Wert der Zielfunktion angenommen wird, in die obige Grafik ein.
- Ermitteln Sie, für welche Mischung die Kosten minimal sind.
- Berechnen Sie die minimalen Kosten.
- 3) Biogas ist ein alternativer Energieträger. Es kann unter anderem aus Mais- oder Zuckerrüben gewonnen werden. Der Hauptbestandteil von Biogas ist Methan.
 - x ... Ackerfläche in Hektar (ha), auf der Mais angebaut wird
 - y ... Ackerfläche in Hektar (ha), auf der Zuckerrüben angebaut werden
 - a) Eine Landwirtin hat insgesamt h\u00f6chstens 40 Hektar (ha) Anbaufl\u00e4che zur Verf\u00fcgung. Sie will auf einer Ackerfl\u00e4che von mindestens 5 ha Mais und auf einer Ackerfl\u00e4che von mindestens 10 ha Zuckerr\u00fcben anbauen.

Außerdem möchte sie einen Ertrag von mindestens 480 000 m³ Biogas erzielen. Sie möchte die Kosten für die Erzeugung von Methan möglichst gering halten. In der folgenden Tabelle sind die Kosten und Erträge aufgelistet:

	Produktionskosten für Methan in €/m³	Methanertrag in m³/ha	Biogasertrag in m³/ha
Energiemais	0,2	6 400	11 000
Zuckerrüben	0,25	7 000	12 600

 Stellen Sie die notwendigen Ungleichungen und die Zielfunktion f
ür eine lineare Optimierung auf. Mögliche Werte für x und y werden durch folgende 6 Ungleichungen beschrieben:

Zeichnen Sie diejenige Fläche, die durch diese Ungleichungen bestimmt ist

F 20 60 4 60 60

1) Lösung

c) x ... Anzahl der Viererpackungen y ... Anzahl der Sechserpackungen

$$2,5x + 1,7y \le 65$$
 $3x + y \ge 60$ $3x + 3y \ge 80$ $x \ge 0$ $y \ge 0$

Der Punkt (12|25) liegt nicht im Lösungsbereich. Daher ist es nicht möglich, 12 Sechserpackungen und 25 Viererpackungen zu kaufen.

2) Lösung

b) K(x, y) = 300x + 150y ... Zielfunktion

100 hl Vitaminsaft 1 gemischt mit 500 hl Vitaminsaft 2 sind am günstigsten.

K_{min} = 300 · 100 + 150 · 500 Die minimalen Kosten betragen € 105.000.

3) Lösung

a) Zielfunktion: $Z(x,y) = 0.2 \cdot 6400 \cdot x + 0.25 \cdot 7000 \cdot y = 1280 \cdot x + 1750 \cdot y$

Ungleichungen: $x \ge 5$ $y \ge 10$ $x + y \le 40$ $11\,000 \cdot x + 12\,600 \cdot y \ge 480\,000$

