D	A	tø	

第十章: Statistical Inference.
Overview
Important concepts: Population >分本, F
Important concepts: Population → 方布, F Sample → 样本, random vector X=(X1,···, Xn), n为sample size
Random Sample → [7i] are i.i.d r.v. Xi~F
Data -> 数据, 真实的向量 不=(1,, 1n), i.e., X.组
Statistic -> 统计, sample X的函数
Goal: From sample to infer property of population
上> 结出一个参数模型·F={p(x;θ):ΘER]
Exo random sample from model: X = (X1,, Xn),
已知 random sample from model· X = (X1,, Xn), 如何去参数化地统计推理呢?
例: 尝试使用正意分布批合:
例: 尝试使用正总分布拟台: -{p(x; u.6)====================================
(Bayesian & Frequentist) To take & as a constant
贝叶斯方法与频率方法的区别在于: 如何对待 0 ?
⇒ take 0 as r.v. with prior distribution.
Core task of statistical Inference:
· Point Estimation · Interval Estimation
· Hypothesis Testing
= Point Estimation: Frequentist Perspective
の Px(xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Px(nsxe)
ESTIMUM, 113 A HAR IT.

 $Pipeline: 生成 p(\Lambda; \theta) \longrightarrow 採样 \vec{\chi} = (\Lambda_i, \dots, \Lambda_n)$ $\longrightarrow \hat{G} = g(\vec{\chi}) \longrightarrow$ 预测 $\theta = g(\vec{\chi})$, 求为观测数据, i.e., $\vec{\chi} = \vec{\chi}$

Def: Likelihood, 一个新的函数, 输出值是见到文观测

数据的概率, i.e., p(ズ;θ) 则: Maximum Likelihood Estimate (MLE) 是使p(ズ;θ)

最大的考数日:

 $\hat{\theta} = \underset{\theta}{\operatorname{argmax}} p(\vec{\alpha}; \theta)$ 若 [xi] are i.i.d. 则考虑, lag[p(xi,0)] $= \log \prod_{i=1}^{n} p(\mathcal{X}_i; \theta) = \sum_{i=1}^{n} \log [p(\mathcal{X}_i; \theta)]$ $\operatorname{II} = \operatorname{argmax} \sum_{i=1}^{n} (\operatorname{og}[p(Ai; \theta)])$

例:一枚硬币,户概率头朝上。在采的数据中,有n次投掷,令X代表n次投掷中头朝上次数,发现X=火。 用ME末户, i.e.,近的户。

Solution: 生成p(Ni;0): Px(Ni;0)= pni(1-p) 1-Ni.

因为: Xi=1代表 Head, Ri= p in=0, Tail, Pxi = 1-p. 则 $PX(\alpha;p) = \prod_{i=1}^{n} p^{Ai} (p)^{iAi} = p^{K} (1-p)^{n-K}, [X=k]$ 2g(p)=log[pk (1-p) n-k] - klogp + (n-k) log(1-p).

 $g'(p) = (k\log p + (n-k)\log (1-p)) - \frac{n}{p} - \frac{n-k}{1-p} = 0$: $\hat{p} = \frac{k}{n}$

		_loses ner	٠,
		No.	
		Date	,
= Point Estima	tion: Bayesian S	Statistical Infer	ence
Pipeline: prior Pe Conditional PX10	⇒ observation → process	posterior POIX (1X=12)
最后结出的是 Pol 然后拟台出 O的 ① Ø=E(Ol ② MAP (Max	手段: X=α) (Po	sterior Mean)	
	max POIX (O/X)		
or: $\hat{g} = arg$	max $P_{\Theta}(\theta)$ p_{i}	KIB (X/0)	
而 prior po 进什	《勾呢? 常见的	含Beta & Gamma	分布,见下:
1: Betal Gamme		n nr v	
Beta: Vet: ;	参数有a.b, a	b>0, (VF 77:	

 $f(x) = \frac{1}{\beta(a,b)} x^{a+} (F-x)^{b+}, x \in (0,1), x^{a} \text{ Beta(a,b)}$ $\overline{M} = \int_{0}^{1} x^{a+} (F-x)^{b+} dx \qquad (\overline{M})^{\frac{1}{2}} - (x)$ $\overline{Gamma} : Def : \frac{1}{2} \frac{$

Theorem: XI, ", Xn i.i.d, N Expo(), N:

Xi+··+ Xn ~ Gamma (n, λ)

A: Xi 矩母为: 1-t 刚 Xit···+Xn = Gamma (n,1)矩母为:

 $Mn(t) = \left(\frac{\lambda}{\lambda + t}\right)^n$

Proof (Gamma 短母节它力):

 $E(e^{tY}) = \int_{0}^{+\infty} e^{ty} \overline{\Gamma(n)} (\lambda y)^{n} e^{-\lambda y} \frac{dy}{y}$ $= \frac{\lambda^{n}}{(\lambda - t)^{n}} \int_{0}^{+\infty} \overline{\Gamma(n)} \frac{(\lambda - t)y}{(\lambda - t)y} \frac{dy}{y} = \frac{\lambda^{n}}{(\lambda + t)^{n}}$ Gamma (n, 1-t)的PDF

Gamma与 Beta之间也有联系:

Independent Gamma r.us Xer, A相同:则XY有相同分布,而 XXX 也是一个Beta分布

五 Conjugate Prior: A Weapon of Bayesian distribution family中 举: 先验分布与仍然模型共轭, 计 先验与后验分布者在一个

而 Gamma 5 Beta 正好有共轭性: We say that Beta is the conjugate prior of the Binomial. (If we have a Beta Prior on p and data are conditionally Binomial given p)