Greining Rása

Lögmál Kirchhoffs

Ólafur Bjarki Bogason

14. Janúar 2021

sem pólar tveggja eða fleiri rásaeininga tengjast saman

Lögmál Kirchoff

- T. 1 (**)
- Kirchoff's Current Law Á hverjum tíma er summa strauma að hverjum hnútpunkti núll

Spennulögmál Kirchoff

- straumnum i.

 Eins hafa punktarnir c og d sömu spennu.
 - Ems nara punktarini e og d somu spennu
- Spennuris yfir spennulindina er jafn spennufallinu yfir viðnámið

við efri pól viðnámsins; a og b hafa sömu spennu óháð

Jafngildisrásir

• Ef $i_1 = i_2$ og $v_1 = v_2$ þá eru rásirnar sagðar **jafngildar**

Spennulögmál Kirchhoff

Ef við raðtengjum tvær spennulindir v_1 og v_2 þá eru þærjafngildar einni spennulind með spennu sem er summa hinna tveggja

- KVL fyrir vinstri rás gefur $v_a = v_1 + v_2$
- $\bullet\,$ KVL fyrir hægri rás gefur $v_b=v_{eq}$
- Svo $v_{eq} = v_1 + v_2$

Gauss yfirborð

- Straumlögmál Kirchhoffs gildir einnig fyrir lokuð yfirborð
- KCL fyrir lokuð yfirborð: summa strauma sem koma að (eða yfirgefa) Gaussískt yfirborð á hverjum tíma er núll

Raðtengd viðnám

Tvær rásaeiningar eru raðtengdar þá og því aðeins að

- annar póll annarrar tengist öðrum pól hinnar í hnútpunkti
- engar aðrar rásaeiningar tengjast þeim í hnútpunkti

Fyrir raðtengdar rásaeiningar gildir $i = i_1 = i_2$ og $v = v_1 + v_2$

Raðtengd viðnám

Fyrir tvö raðtengd viðnám má finna **jafngildisviðnám**, það er eitt viðnám sem gefur sama samband milli spennu og straums og raðtengingin.

KVL fyrir vinstri rás:

$$v_0 = iR_1 + iR_2 = i(R_1 + R_2)$$

KVL fyrir hægri rás $v_0 = iR_{eq}$ svo

$$= R_1 + R_2$$

Raðtengd viðnám

Þetta má útvíkka á n raðtengd viðnám

$$R_{\rm eq} = \sum_{i=1}^{n} R_i$$

Jafngildisviðnám raðtengingar er alltaf stærra en stærsta viðnámið í raðtenginunni.

Hliðtengd viðnám

Tvær rásaeiningar eru hliðtengdar þá og því aðeins að

- annar póll annarar tengist öðrum pól hinnar í hnútpunkti
- hinir pólarnir tengjast einnig saman í öðrum hnútpunkti

Séu tvær rásaeiningar hliðtengdar er

- spennan sú sama yfir þær báðar
- heildarstraumurinn jafn summu straumanna í hvorri einingu fyrir sig

Hliðtengd viðnám

Fyrir tvö hliðtengd viðnám má finna jafngildisviðnám

Með KCL fæst

$$i = i_1 + i_2 = \frac{v_o}{R_1} + \frac{v_o}{R_2} = v_o \left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{v_o}{R_{eq}}$$

$$\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

SVO

eða

Hliðtengd viðnám

Þessa niðurstöðu má auðveldlega útvíkka á n hliðtengd viðnám

$$\frac{1}{R_{\rm eq}} = \sum_{i=1}^{n} \frac{1}{R_i}$$

Jafngildisviðnámið er alltaf minna en minnsta viðnámið.

$$V = Ri$$

Spennudeiling Ratteryny KNL @

Oft þekkjum við heildarspennu yfir raðtengingu tveggja viðnáma en þurfum að vita spennuna yfir annað viðnámið.

Viljum t.d. finna v_2 ef við þekkjum v_0 (mynd). Getum fundið i með því að nota jafngildisviðnám $i = \frac{v_0}{R_{\rm eq}} = \frac{v_0}{R_1 + R_2}$ og síðan samkvæmt lögmáli Ohms $v_2 = iR_2 = v_0 \frac{R_2}{R_1 + R_2}$

$$y = R_1 + R_2$$

$$\frac{\text{fundið } i}{0} = V_1 + V_2$$

Spennudeiling

- Sjáum að $R_2/(R_1 + R_2) < 1$
- Þessi stærð segir til um hversu stórt hlutfall heildarspennunnar v_0 fellur yfir viðnámið R_2 .
- Á sama hátt er

Straumdeiling

- $\bullet\,$ Höfum tvö samsíða tengd viðnám
- \bullet Heildarstraumur er $i_{\rm o};$ viljum finna straum í hvoru viðnámi fyrir sig

Straumdeiling

$$R_2 \rightleftharpoons R_1 \rightleftharpoons \downarrow i_1$$

Notum jafngildisviðnám

$$v_0 = i_0 R_{\text{eq}} = i_0 \frac{R_1 R_2}{R_1 + R_2}$$

samkvæmt lögmáli Ohms er

$$i_1 = \frac{v_0}{R_1} = i_0 \frac{R_2}{R_1 + R_2}$$

og

$$i_2 = i_0 \frac{R_1}{R_1 + R_2}$$

• Stærri hluti straumsins fer í gegnum minnsta viðnámið.

Wheatstone mælir