Probability theory

Lecture 4: Random variables and vectors

Maksim Zhukovskii

MIPT

 \mathcal{A} — $\sigma\text{-algebra}$ on A, \mathfrak{B} — $\sigma\text{-algebra}$ on B

 $\mathcal{A} - \sigma$ -algebra on A, $\mathcal{B} - \sigma$ -algebra on B

▶ $f: A \to B$ is (A|B)-measurable, if, for every $X \in B$, $f^{-1}(X) \in A$.

$$\mathcal{A}$$
 — σ -algebra on A , \mathcal{B} — σ -algebra on B

▶ $f: A \to B$ is (A|B)-measurable, if, for every $X \in B$, $f^{-1}(X) \in A$.

Theorem

Let $\mathcal{M} \subset \mathcal{B}$ such that $\sigma(\mathcal{M}) = \mathcal{B}$.

 \mathcal{A} — σ -algebra on A, \mathcal{B} — σ -algebra on B

▶ $f: A \to B$ is (A|B)-measurable, if, for every $X \in B$, $f^{-1}(X) \in A$.

Theorem

Let $\mathcal{M} \subset \mathcal{B}$ such that $\sigma(\mathcal{M}) = \mathcal{B}$.

F is (A|B)-measurable

for every
$$X \in \mathcal{M}$$
, $f^{-1}(X) \in \mathcal{A}$.

if and only if.

 (Ω, \mathcal{F}, P) — probability space, \mathcal{E} — σ -algebra on E.

$$(\Omega, \mathcal{F}, \mathsf{P})$$
 — probability space, $\mathcal{E} = \sigma$ -algebra on \mathcal{E} .

▶ If $f: \Omega \to E$ is $(\mathcal{F}|\mathcal{E})$ -measurable, then it is called a random element.

$$(\Omega, \mathcal{F}, \mathsf{P})$$
 — probability space, $\mathcal{E} = \sigma$ -algebra on \mathcal{E} .

▶ If $f: \Omega \to E$ is $(\mathcal{F}|\mathcal{E})$ -measurable, then it is called a random element.

$$E = \mathbb{R}, \ \mathcal{E} = \mathcal{B}(\mathbb{R}) \Rightarrow$$

f — a random variable,

$$(\Omega, \mathcal{F}, \mathsf{P})$$
 — probability space, $\mathcal{E} = \sigma$ -algebra on \mathcal{E} .

▶ If $f: \Omega \to E$ is $(\mathcal{F}|\mathcal{E})$ -measurable, then it is called a random element.

$$E = \mathbb{R}, \ \mathcal{E} = \mathcal{B}(\mathbb{R}) \Rightarrow$$

 f — a random variable,
 $E = \mathbb{R}^n, \ \mathcal{E} = \mathcal{B}(\mathbb{R}^n)$
 $\Rightarrow f$ — a random vector.

Why do we need measurability?

Example: an indicator random variable

Let $A \in \mathcal{F}$.

Example: an indicator random variable

Let $A \in \mathfrak{F}$.

Indicator of A

 $I_A:\Omega\to\{0,1\}$,

 $I_A(\omega) = 1$ if and only if $\omega \in A$.

Functions of random variables

▶ $f: \mathbb{R}^n \to \mathbb{R}^k$ — Borel function, if it is $(\mathcal{B}(\mathbb{R}^n)|\mathcal{B}(\mathbb{R}^k))$ -measurable

Functions of random variables

• $f: \mathbb{R}^n \to \mathbb{R}^k$ — Borel function, if it is $(\mathfrak{B}(\mathbb{R}^n)|\mathfrak{B}(\mathbb{R}^k))$ -measurable

Theorem

If ξ is an n-dimensional random vector, $f: \mathbb{R}^n \to \mathbb{R}^k$ is a Borel function,

Functions of random variables

▶ $f: \mathbb{R}^n \to \mathbb{R}^k$ — Borel function, if it is $(\mathcal{B}(\mathbb{R}^n)|\mathcal{B}(\mathbb{R}^k))$ -measurable

Theorem

If ξ is an n-dimensional random vector, $f: \mathbb{R}^n \to \mathbb{R}^k$ is a Borel function, then $f(\xi)$ is a random vector as well.

Components of a random vector

Theorem

Let $\xi:\Omega\to\mathbb{R}^n$.

Components of a random vector

Theorem

Let
$$\xi: \Omega \to \mathbb{R}^n$$
.

$$\xi = (\xi_1, \dots, \xi_n)$$
 is a random vector

 ξ_1, \ldots, ξ_n are random variables.

Continuous functions

If $f: \mathbb{R}^n \to \mathbb{R}^k$ is continuous (or has a finite number of dicontinuities), then f is Borel.

Continuous functions

If $f: \mathbb{R}^n \to \mathbb{R}^k$ is continuous (or has a finite number of dicontinuities), then f is Borel.

Corollary

If ξ, η are random variables, then

$$\xi + \eta$$
, $\xi - \eta$, $\xi \eta$, $(\xi/\eta)I(\eta \neq 0)$ are random variables as well.

Limits

Theorem

Let ξ_1, ξ_2, \ldots be random variables.

Then $\overline{\lim}_{n\to\infty}\xi_n$, $\underline{\lim}_{n\to\infty}\xi_n$, $\sup_n\xi_n$, $\inf_n\xi_n$ are random variables as well.

 $\overline{\lim}_{n\to\infty}\xi_n$

$$\overline{\lim}_{n\to\infty}\xi_n$$

$$\overline{\lim}_{n\to\infty} x_n > x$$

$$\overline{\lim}_{n\to\infty}\xi_n$$

$$\overline{\lim}_{n\to\infty}x_n>x$$

$$\overline{\lim}_{n\to\infty}\xi_n$$

$$\overline{\lim}_{n\to\infty}x_n>x$$

$$\exists \varepsilon > 0$$

$$\overline{\lim}_{n\to\infty}\xi_n$$

$$\overline{\lim}_{n\to\infty}x_n>x$$

$$\exists \varepsilon > 0 \, \forall n$$

$$\overline{\lim}_{n\to\infty}\xi_n$$

$$\overline{\lim}_{n\to\infty} x_n > x$$

$$\exists \varepsilon > 0 \, \forall n \, \exists k \geq n$$

$$\overline{\lim}_{n\to\infty}\xi_n$$

$$\overline{\lim}_{n\to\infty} x_n > x$$

$$\exists \varepsilon > 0 \, \forall n \, \exists k \geq n \, | x_k > x + \varepsilon$$

$$\overline{\lim}_{n\to\infty}\xi_n$$

$$\overline{\lim}_{n\to\infty} x_n > x$$

$$\Leftrightarrow$$

$$\exists \varepsilon > 0 \,\forall n \,\exists k \geq n \ x_k > x + \varepsilon$$

$$\left\{\overline{\lim}_{n\to\infty}\xi_n>x\right\}=$$

$$\overline{\lim}_{n\to\infty}\xi_n$$

$$\overline{\lim}_{n\to\infty} x_n > x$$

$$\Leftrightarrow$$

$$\exists \varepsilon > 0 \,\forall n \,\exists k \geq n \, | \, x_k > x + \varepsilon$$

$$\left\{\overline{\lim}_{n\to\infty}\xi_n>x\right\}=$$

$$\bigcup_{m=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \{ \xi_k > x + \frac{1}{m} \}$$

$$\overline{\lim}_{n\to\infty}\xi_n$$

$$\overline{\lim}_{n\to\infty} x_n > x$$

$$\Leftrightarrow$$

$$\exists \varepsilon > 0 \, \forall n \, \exists k > n \, x_k > x + \varepsilon$$

$$\left\{\overline{\lim}_{n\to\infty}\xi_n>x\right\}=$$

$$\bigcup_{m=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \{\xi_k > x + \frac{1}{m}\} \in \mathcal{F}$$

Probability distribution

Theorem

The function

 $\mathsf{P}_{\varepsilon}: \mathfrak{B}(\mathbb{R}^n) \to [0,1], \, \mathsf{P}_{\varepsilon}(B) = \mathsf{P}(\xi \in B),$

is a probability on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Probability distribution

▶ P_{ξ} is called distribution of ξ .

Probability distribution

- ▶ P_{ξ} is called distribution of ξ .
- ▶ The distribution function F_{ξ} of P_{ξ} is called distribution function of ξ .

Probability distribution

- ▶ P_{ξ} is called distribution of ξ .
- ▶ The distribution function F_{ξ} of P_{ξ} is called distribution function of ξ .
- ▶ If P_{ξ} is absolutely continuous, then its density p_{ξ} is called density of ξ , ξ is called absolutely continuous.

Probability distribution

- ▶ P_{ξ} is called distribution of ξ .
- ▶ The distribution function F_{ξ} of P_{ξ} is called distribution function of ξ .
- ▶ If P_{ξ} is absolutely continuous, then its density p_{ξ} is called density of ξ , ξ is called absolutely continuous.
- ▶ If P_{ξ} is discrete, then ξ is called discrete as well.

$$P(\{\omega : \xi(\omega) \in B\}) =: P(\xi \in B).$$

$$P(\{\omega : \xi(\omega) \in B\}) =: P(\xi \in B).$$

$$P(\{\omega : \xi(\omega) \in B\}) =: P(\xi \in B).$$

1.
$$P(\{\omega : \xi(\omega) < x\}) =: P(\xi < x),$$

$$P(\{\omega : \xi(\omega) \in B\}) =: P(\xi \in B).$$

1.
$$P(\{\omega : \xi(\omega) < x\}) =: P(\xi < x),$$

2.
$$P(\{\omega : \xi(\omega) = x\}) =: P(\xi = x),$$

$$P(\{\omega: \xi(\omega) \in B\}) =: P(\xi \in B).$$

1.
$$P(\{\omega : \xi(\omega) < x\}) =: P(\xi < x),$$

2.
$$P(\{\omega : \xi(\omega) = x\}) =: P(\xi = x),$$

3.
$$F_{\xi}(x) = P(\{\omega : \xi(\omega) \le x\}) =: P(\xi \le x).$$

1. Let ξ take values 0,1,2,3 with equal probabilities 1/4.

1. Let ξ take values 0,1,2,3 with equal probabilities 1/4.

$$F_{\xi}(x) = 0, \quad x < 0,$$
 $\frac{1}{4}, \quad 0 \le x < 1,$
 $\frac{1}{2}, \quad 1 \le x < 2,$
 $\frac{3}{4}, \quad 2 \le x < 3,$
 $1, \quad x \ge 3.$

2. ξ — a number chosen from [1, 4] uniformly at random.

2. ξ — a number chosen from [1, 4] uniformly at random.

$$F_{\xi}(x) = \frac{x-1}{3}I(1 \le x < 4) + I(x \ge 4),$$

2. ξ — a number chosen from [1, 4] uniformly at random.

$$F_{\xi}(x) = \frac{x-1}{3}I(1 \le x < 4) + I(x \ge 4),$$

$$p_{\xi}(x) = \frac{1}{3}I(1 \le x \le 4).$$

• ξ_1, ξ_2 are independent,

• ξ_1, ξ_2 are independent, if for all $B_1 \in \mathcal{B}(\mathbb{R}^{k_1})$, $B_2 \in \mathcal{B}(\mathbb{R}^{k_2})$, $P(\xi_1 \in B_1, \xi_2 \in B_2) =$ $P(\xi_1 \in B_1)P(\xi_2 \in B_2)$.

•
$$\xi_1, \ldots, \xi_n$$
 are pairwise independent,

• ξ_1, ξ_2 are independent, if for all $B_1 \in \mathcal{B}(\mathbb{R}^{k_1})$, $B_2 \in \mathcal{B}(\mathbb{R}^{k_2})$, $P(\xi_1 \in B_1, \xi_2 \in B_2) =$

$$\mathsf{P}(\xi_1 \in B_1)\mathsf{P}(\xi_2 \in B_2).$$

• ξ_1, \ldots, ξ_n are pairwise independent, if, for every i, j, ξ_i, ξ_j are independent.

• ξ_1, \ldots, ξ_n are mutually independent (simply independent),

- ξ_1, \ldots, ξ_n are mutually independent (simply independent), if,
 - for all $B_1 \in \mathcal{B}(\mathbb{R}^{k_1}), \ldots, B_n \in \mathcal{B}(\mathbb{R}^{k_n}),$

$$\mathsf{P}(\xi_1 \in B_1, \dots, \xi_n \in B_n) = \mathsf{P}(\xi_1 \in B_1) \dots \mathsf{P}(\xi_n \in B_n).$$

- ξ_1, \ldots, ξ_n are mutually independent (simply independent), if, for all $B_1 \in \mathcal{B}(\mathbb{R}^{k_1}), \ldots, B_n \in \mathcal{B}(\mathbb{R}^{k_n})$,
 - for all $B_1 \in \mathcal{B}(\mathbb{R}^n)$, ..., $B_n \in \mathcal{B}(\mathbb{R}^n)$ $\mathsf{P}(\xi_1 \in B_1, \dots, \xi_n \in B_n) =$

$$\mathsf{P}(\xi_1 \in B_1, \dots, \xi_n \in B_n) = \mathsf{P}(\xi_1 \in B_1) \dots \mathsf{P}(\xi_n \in B_n).$$

▶ Random vectors from $\{\xi_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ are independent,

- $\blacktriangleright \xi_1, \dots, \xi_n$ are mutually independent
 - (simply independent), if, for all $B_1 \in \mathfrak{B}(\mathbb{R}^{k_1}), \ldots, B_n \in \mathfrak{B}(\mathbb{R}^{k_n}),$

P(
$$\xi_1 \in B_1, \ldots, \xi_n \in B_n$$
) =

$$\mathsf{P}(\xi_1 \in B_1, \dots, \xi_n \in B_n) = \\ \mathsf{P}(\xi_1 \in B_1) \dots \mathsf{P}(\xi_n \in B_n).$$

▶ Random vectors from $\{\xi_{\alpha}\}_{\alpha\in\mathcal{A}}$ are independent, if,

for every $n \in \mathbb{N}$ and any $t_1, \ldots, t_n \in \mathcal{A}$, the random vectors $\xi_{t_1}, \ldots, \xi_{t_n}$ are independent.

Independent discrete random variables

Theorem

Discrete random variables ξ_1, \ldots, ξ_n are independent

Independent discrete random variables

Theorem

Discrete random variables ξ_1, \ldots, ξ_n are independent

if and only if,

Independent discrete random variables

Theorem

Discrete random variables ξ_1, \ldots, ξ_n are independent

 $P(\xi_1 = x_1) \dots P(\xi_n = x_n).$

for all $x_1, \ldots, x_n \in \mathbb{R}$,

 $P(\xi_1 = x_1, \dots, \xi_n = x_n) =$

The proof

Theorem

Random variables ξ_1, \ldots, ξ_n are independent

Theorem

Random variables ξ_1, \ldots, ξ_n are independent

if and only if,

Theorem

Random variables ξ_1, \ldots, ξ_n are independent

if and only if,
$$for every x = (x, \dots, x_n) \in \mathbb{R}^n$$

for every
$$x=(x_1,\ldots,x_n)\in\mathbb{R}^n$$
,

 $F_{(\xi_1,\ldots,\xi_n)}(x) = \prod_{i=1}^n F_{\xi_i}(x_i).$

Theorem

Random variables ξ_1, \ldots, ξ_n are independent

for every $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$,

$$F_{(\xi_1,...,\xi_n)}(x) = \prod_{i=1}^n F_{\xi_i}(x_i).$$

The same is true for random **vectors**.

Functions of independent vectors

Theorem

• $\xi = (\xi_1, \dots, \xi_{n_1}) \ \eta = (\eta_1, \dots, \eta_{n_2}) \ be$ independent random vectors,

• $f: \mathbb{R}^{n_1} \to \mathbb{R}^{k_1}$, $g: \mathbb{R}^{n_2} \to \mathbb{R}^{k_2}$ be Borel functions.

Functions of independent vectors

Theorem

Let

functions.

• $\xi = (\xi_1, \dots, \xi_{n_1}) \ \eta = (\eta_1, \dots, \eta_{n_2}) \ be$

independent random vectors,

• $f: \mathbb{R}^{n_1} \to \mathbb{R}^{k_1}$, $g: \mathbb{R}^{n_2} \to \mathbb{R}^{k_2}$ be Borel

Then $f(\xi)$, $g(\eta)$ are independent.

Functions of independent vectors

Theorem

Let

•
$$\xi = (\xi_1, \dots, \xi_{n_1}) \ \eta = (\eta_1, \dots, \eta_{n_2})$$
 be independent random vectors,

• $f: \mathbb{R}^{n_1} \to \mathbb{R}^{k_1}$, $g: \mathbb{R}^{n_2} \to \mathbb{R}^{k_2}$ be Borel functions.

Then $f(\xi)$, $g(\eta)$ are independent.

The same is true for **several** vectors.

The proof

Convolution

Theorem

Let ξ, η be independent absolutely continuous random variables with densities p_{ξ}, p_{η} .

Convolution

Theorem

Let ξ, η be independent absolutely continuous random variables with densities p_{ε} , p_n .

 $F_{\xi+\eta}(x) = \int_{\mathbb{D}} F_{\xi}(x-u)p_{\eta}(u)du,$

Convolution

Theorem

Let ξ, η be independent absolutely continuous random variables with densities p_{ε} , p_n .

random variables with densities
$$p_{\xi}, p_{\eta}.$$

Then $F_{\xi+\eta}(x)=\int_{\mathbb{R}}F_{\xi}(x-u)p_{\eta}(u)du,$

The proof

An example