行列表現による重回帰分析(1)

新村秀一

1. はじめに

広義の多変量解析いのなかで、重回帰分析は最も重要なモデルの1つであり、実用性も高い。このため数多くの良書が出版されている。本講座では、理論の記述に適した行列表記を用いて各種統計量を導くとともに、理解しやすい数値例を示して計算手順を示すことにする。

行列表記を用いることの利点は,重回帰分析の全体的な視野に立つ整理ができることである。行列表記に慣れておられない読者も恐れずに慣れることに努力していただきたい。

2. データ

以下のデータは、 応答変数 $y \ge x_1$ から x_4 までの 4 個の説明変数からなる 7 個の観測データである.

y:分娩までの経過時間の自然対数による表示

 x_1 :子宮口開大度

 x_2 : 陣庸間欠時間

x₈: 胎児心拍数

 x_{\bullet} : 陣痛持続時間

4個の説明変数はある観測時点において計測され、応答変数はその時点から分娩までの経過時間を示す.次の7個の時系列データは同一母体からのものである.

このデータに、多重共線性の説明に用いる変数 x_s を 追加する.

 $x_5: x_2+x_4$. ただし、最初のデータのみ、この値に 2 をさらに加える。

1) 多変量解析とは相互に相関のある多くの特性値の 問題を分析する手法であるので、重回帰分析は特性値が 1つしかないことから厳密な定義では多変量には入らな い. しかし多変量解析に大いに関係のある分析手法であ ることは明らかなので、広義では多変量解析の中に入れ ることもある.

しんむら しゅういち 住商コンピュータサービス(株)

x_{5}	x_4	x_3	x_2	x_1	\boldsymbol{y}	No.
49	18	150	29	8	7.390	1
24	20	144	4	5	7.300	2
39	30	134	9	7	7.215	3
58	40	150	18	7	7.162	4
84	30	130	54	7	5. 193	5
37	30	130	7	7	4.654	6
108	100	120	8	5	2.708	7

m 5.946 6.571 18.429 136.857 38.286 57.000
 σ 1.813 1.134 17.859 11.423 28.176 29.462

ここで、データの各列をベクトルとみなし、次の行列 を以下の議論で主として用いる.

$$D = (x_1, x_2, x_3, x_4)$$

$$X = (1, x_1, x_2, x_3, x_4)$$
(2)

[注] 1はすべての要素が1の列ベクトル.他の列ベクトルと同じ扱いをするため x₀ と表わす.

3. 重回帰モデルの定義とパラメータの推定

重回帰モデルは、変数のレベルで表わすと、応答変数y、説明変数を x_i ($i=1,\dots,p$)と表わして、

 $y=\beta_0+\beta_1x_1+\beta_2x_2+\cdots+\beta_px_p+\varepsilon$ (3) と表わされる.ここで ε は誤差である.なお,説明変数は確率変数でも決定論的変数でもよいが,確率変数の場合には,その実現値は 正確 に 測定されるものと仮定する.

これをデータのレベルで表わすと式(4)で説明される。 $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_p x_{pi} + \varepsilon_i$ (4) $(i = 1, \dots, n)$

ここで、nはサンプル数、pは説明変数の個数を示す。 これを、さらに行列表記すれば式(5)になる。

ただし、これらのモデル中に現われる誤差 & について、

以下の仮定を置く.

- i) 不偏性: ε_t の期待値は零である. $E(\varepsilon_t)=0$
- ii) 等分散性: ϵ_i の分散はi の 値 によらず一定である。 $V(\epsilon_i)=\sigma^2$
- iii) 独立性:誤差 ϵ_i が互いに独立である. $\epsilon_i \perp \epsilon_i (i \neq j)$
- iv) 正規性:誤差は正規分布をする.

以上をまとめると、誤差 ϵ_i は平均 0 、 分散 σ^2 の正規 分布をすることになる。 すなわち、 $\epsilon_i \in N(0,\sigma^2)$ になる。 行列表記でまとめると、E(s)=0, $Var(s)=E(ss')=\sigma^2E$ になる。

[例] 今回のデータ(1)を式(5)にあてはめれば、n=7、p=4の重回帰モデル $y=X\beta+\epsilon$ になる.

$$\begin{bmatrix} 7,390\\7,300\\\vdots\\2,708 \end{bmatrix} = \begin{bmatrix} 1 & 8 \cdots 18\\1 & 5 & 20\\\vdots&\vdots&\vdots\\1 & 5 & 100 \end{bmatrix} \begin{bmatrix} \beta_0\\\beta_1\\\vdots\\\beta_4 \end{bmatrix} + \begin{bmatrix} \varepsilon_1\\\varepsilon_2\\\vdots\\\varepsilon_7 \end{bmatrix}$$
(5')

次の誤差平方和 (SSE) を最小にする未知母数 β の推定値 $\hat{\beta}$ を求める次の方法を最小二乗法という.

SSE=
$$\mathbf{e}'\mathbf{e}$$

$$= (\mathbf{y} - X\mathbf{\beta})'(\mathbf{y} - X\mathbf{\beta})$$

$$= \mathbf{y}'\mathbf{y} - \mathbf{y}'X\mathbf{\beta} - \mathbf{\beta}'X'\mathbf{y} + \mathbf{\beta}'X'X\mathbf{\beta}$$

$$= \mathbf{y}'\mathbf{y} - 2\mathbf{\beta}'X'\mathbf{y} + \mathbf{\beta}'X'X\mathbf{\beta}$$
(6)

[注1] $y'X\beta$ はスカラー量であるので、その転置行列である $\beta'X'y$ と等しくなる.

[注2] 誤差 $\mathbf{s}(=\mathbf{y}-X\boldsymbol{\beta})$ は,最小二乗法で得られた推定値 $\hat{\boldsymbol{\beta}}$ から計算される残差 $\boldsymbol{\mu}(=\mathbf{y}-X\hat{\boldsymbol{\beta}})$ と区別すべきだが,本稿では誤差に統一して扱う.

SSE を最小にする β を求めるために,式(6) を β で 偏数分して零と置く. ベクトル微分を知らない方は [注 3] を見られよ.

$$\frac{\partial}{\partial \boldsymbol{\beta}}(SSE) = \frac{\partial}{\partial \boldsymbol{\beta}}(\boldsymbol{y}'\boldsymbol{y} - 2\boldsymbol{\beta}'X'\boldsymbol{y} + \boldsymbol{\beta}'X'X\boldsymbol{\beta})$$

$$= -2X'\boldsymbol{y} + 2X'X\boldsymbol{\beta}$$

$$= 0$$
(7)

この式を満たす $\hat{\boldsymbol{\beta}}$ は極値であるが、最大値か最小値かは次の 2 階数分で決まる.

$$\frac{\partial^{2}}{\partial \boldsymbol{\beta}^{2}}(SSE) = \frac{\partial}{\partial \boldsymbol{\beta}}(-2X'\boldsymbol{y} + 2X'X\boldsymbol{\beta})$$

$$= 2X'X > 0$$
(8)

行列微分において、2階微分が正定値の場合、推定値 $\hat{\boldsymbol{\beta}}$ は最小値になる。X'Xが正則の場合、必ず正定値になることは、ここでは天下り的に仮定する(文献[4]).

「注3]式(6)を通常の式で表わせば次式になる。

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$= \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{1i} - \dots - \beta_p x_{pi})^2$$

これを $\beta_k(k=1,\cdots,p)$ で微分すれば、

$$\frac{\partial}{\partial \beta_k}(SSE) = \sum_{i=1}^n 2(y_i - \beta_0 - \beta_1 x_{1i} \cdots - \beta_p x_{pi})(-x_{ki})$$

これを零と置いて得られる p 個の連立方程式の解 β_k は、次の 2 次微分が正になるので最小値を与える。ただし、すべてのデータは零でない。

$$\frac{\partial^2}{\partial \theta_k^2}(SSE) = \sum_{i=1}^n 2x_{ki}^2 > 0$$

以上から、推定値 $\hat{oldsymbol{eta}}$ は 次の正規方程式 を解いて求まる。

$$X'X\hat{\boldsymbol{\beta}} = X'\boldsymbol{y}$$
 (正規方程式) (9)
$$\hat{\boldsymbol{\beta}} = (X'X)^{-1}X'\boldsymbol{y}$$
 (解)

[注 4] 実際の重回帰分析のアルゴリズムは、 行列 $\begin{pmatrix} X'X & X'y \\ y'X & y'y \end{pmatrix}$ の X'X の対角要素を掃き出すことにより、X'y の場所に β の推定値が求まる.

[例] 平方和・積和行列 X'X は次のとおりである.

また、X'X の逆行列、行列 X'y、推定値 $\boldsymbol{\beta}$ は 次のとおりである。

定数項
$$x_1$$
 x_2 x_8 x_4

$$(X'X)^{-1} = \begin{cases} 56.936 & -1.086 & -0.009 & -0.328 & -0.122 \\ -1.086 & 0.243 & -0.006 & -0.004 & 0.003 \\ -0.009 & -0.006 & 7.2E-4 & 2.6E-4 & 3.9E-5 \\ -0.328 & -0.004 & 2.6E-4 & 0.002 & 5.9E-5 \\ -0.122 & 0.003 & 3.9E-5 & 5.9E-5 & 4.5E-4 \end{cases}$$

$$X'y = \begin{cases} -5.790 \\ -0.046 \\ -0.010 \\ 0.097 \\ -0.028 \end{cases}$$

$$\hat{\boldsymbol{\beta}} = \begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \\ \hat{\beta}_3 \\ \hat{\beta}_4 \end{pmatrix} = \begin{pmatrix} -5.790 \\ -0.046 \\ -0.010 \\ 0.097 \\ -0.028 \end{pmatrix} \tag{9'}$$

データ行列Dの各列から、その列の平均を引きさったものを偏差行列 D_d とよぶことにする、この時、 $D_d'D_a$ は偏差平方和積和行列になる。Dの各列の平均値を行べクトル M の要素とすれば、D'D と $D_d'D_a$ の関係は次のとおりになる。

$$D_d'D_d = D'D - nM'M \tag{11}$$

「例] D'D は式(10)で求めた X'X の1行1列を省い たものに等しくなる.

$$7*M'M = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ 302.286 & 847.714 & 6295.430 & 1761.140 \\ 847.714 & 2377.290 & 17654.600 & 4938.860 \\ 6295.430 & 17654.600 & 131109.000 & 36677.700 \\ 1761.140 & 4938.860 & 36677.700 & 10260.600 \end{bmatrix}$$

これを自由度 (n-1) で割ったものがデータの分散共 分散行列 V_a になる.

$$V_d(v_{ij}) = D_d' D_d / (n-1) \tag{12}$$

[例] 行列(111)より分散共分散行列は次のとおり.

$$V_d(v_{ij}) = \begin{bmatrix} 1.286 & 10.048 & 5.429 & -17.857 \\ 10.048 & 318.952 & 11.238 & -119.476 \\ 5.429 & 11.238 & 130.476 & -212.952 \\ -17.857 & -119.476 & -212.952 & 793.905 \end{bmatrix}$$

この行列の(i,j) 要素 v_{ij} を(i,i) 要素 v_{ii} と(j,j) 要素 v_{ij} の積の平方根で割った $v_{ij}/\sqrt{v_{ii}v_{jj}}$ は変数 x_i と x_j の相関係数 r_{ij} になる。同様に、 D_d の(i,j) 要素を d_{ij} とした場合、 $d_{ij}/\sqrt{d_{ii}d_{jj}}$ も r_{ij} になる。

[例](11')または(12')より次の相関行列Rが求まる.

$$R = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ 1.000 & 0.496 & 0.419 & -0.559 \\ 0.496 & 1.000 & 0.055 & -0.237 \\ 0.419 & 0.055 & 1.000 & -0.662 \\ -0.559 & -0.237 & -0.662 & 1.000 \end{bmatrix}$$

以上の行列による表現は、元のデータ x_i を平均 \bar{x}_i と 平方和 $S_{x_ix_i}$ を用いて式 (13) で 規準化したことに 等し

$$x_i' = \frac{x_i - \bar{x}_i}{\sqrt{S_{x_i x_i}}} \tag{13}$$

同様にして、y を平均 \bar{y} と 平方和 S_{yy} で 規準化した ものを y' とすれば、式(3)は次の式(14)になる.

$$y' = \beta_0' + \beta_1' x_1' + \beta_2' x_2' + \dots + \beta_p' x_p' + \varepsilon'$$

$$\beta_0' = 0, \ \beta_i' = \beta_i \frac{\sqrt{S_{x_i x_i}}}{\sqrt{S_{yy}}}$$
(14)

「注」変換後の各変数の平均が 零より 定数項は零にな る. stx_i を α 倍すればその係数は $1/\alpha$ 倍 になる. \triangle よって、式(14)の正規方程式と解は次のとおりになる。 ただし、 $D \ge y$ はデータ(1)を式(13)で規準化した後の ものをあらためてDとyとおく.

$$R\hat{\boldsymbol{\beta}}_1 = D'\boldsymbol{y}$$
 (正規方程式) (15)

 $\hat{\boldsymbol{\beta}}_1 = R^{-1}D'\boldsymbol{y} \quad (\mathbf{M})$

このことから、重回帰分析と重相関分析を一度に行な うことができる(文献[5]).

[例] 規準化データによる重回帰式は式(15)により次 式で表わされる.

 $\hat{y} = -0.029x_1 - 0.097x_2 + 0.612x_3 - 0.435x_4 \tag{16}$ 変数 x1 が他の説明変数と独立であると考えれば、こ れが 1 標準偏差動いた時、 \hat{y} は -0.029 偏差だけ影響を 受ける。

4. 分散分析表

重回帰分析の結果の評価 には 分散分析表 が 用いられ

(5)の行列 X を (ク+1) 個 の n 次元列ベクトル x t か ら構成されているものとする.

$$X = (x_0 x_1, \dots, x_n) \tag{17}$$

この列ペクトルで張られる n 次元空間の部分空間 L (X)を考える.

$$L(X) = \{X\boldsymbol{a} = \alpha_0 \boldsymbol{x}_0 + \alpha_1 \boldsymbol{x}_1 + \dots + \alpha_p \boldsymbol{x}_p$$

$$\boldsymbol{a} \in R^{p+1}, \boldsymbol{x}_i \in R^n\}$$
(18)

この時、n 次元空間の点 y から L(X)へ下した垂線の 足を図 1 に示すように $X\hat{m{eta}}$ とする.この変換行列 Q を $m{m{y}}$ の L(X)への射影行列とよぶことにする。

$$Qy = X\hat{\boldsymbol{\beta}} (= X(X'X)^{-1}X'y) \tag{19}$$

L(X)への垂線は、 $y-X\hat{\beta}$ で表わされ、L(X)内のす べてのベクトルに垂直である.

$$X'(\mathbf{y} - X\hat{\boldsymbol{\beta}}) = 0 \tag{20}$$

これを変形すれば式(9)と同じ正規方程式が得られる.

$$X'X\hat{\boldsymbol{\beta}} = X'\boldsymbol{y} \tag{9"}$$

図1からわかるとおり、直角三角形に対するピタゴラ スの定理を適用すれば、ベクトル Wの長さの二乗は、重 回帰モデルの予測値ペクトル $\hat{y}(=X\hat{\beta}=Qy)$ の長さの二 乗と誤差ベクトル $\mathbf{e}(=\mathbf{y}-X\hat{\boldsymbol{\beta}})$ の長さの二乗とに分解さ れる。

$$\mathbf{u}'\mathbf{u} = \hat{\mathbf{u}}'\hat{\mathbf{u}} + \mathbf{e}'\mathbf{e} \tag{21}$$

これを次のような形で表にまとめたものを分散分析表 (修正前)とよぶ.

		7万取2	才们衣(修止削)		
	D. F.	平方	和 平均平方和	F值	
回帰 誤差 全体	$\begin{vmatrix} p+1 \\ n-p-1 \\ n \end{vmatrix}$	ŷ'ŷ e'e y'y	$S_1 = \hat{y}'\hat{y}/(p+1)$ $S_2 = e'e/(n-p-1)$	S_1/S_2	(22)

1)分散分析表の理解を助けるため、以下で射影行列(文 献 2)を導入する。射影行列 Q は,Q'=Q, $Q^{z}=Q$, QX= $X(X \in L(X))$, rank $Q = \operatorname{rank} X$ の性質をもつ.

図 1 射影子の幾何学表現

ただし、D.F.は自由度を示し、行列Xの列数が回帰の、行数から列数を引いたものが誤差の自由度を表わす。F値は自由度 (p+1,n-p-1) のF分布にしたがう。

[例] $y = \beta_0 + \sum_{i=1}^4 \beta_i x_i + \varepsilon_i$ に 対する 分散 分析表は次のとおり.

	D.F.	平方和	平均平方和	F值	
回帰	5	264.706	52.941	42.218*	
誤差	2	2.507	1.254		(22')
全体	7	267.213			•

このF検定は、次の帰無仮説 H_0 を検定することに等しい。

$$H_0: \beta_0 = \beta_1 = \dots = \beta_n = 0 \tag{23}$$

この検定は現在考えているモデルが y=&のモデルと 比較して有意か否かの検定であり、当然すぎて有効な情報をもたらさない。そこで、すべての回帰モデルのベースとして次の定数項モデルを考えることにする。

$$y_i = \bar{y} + \varepsilon_i (i = 1, \dots, n)$$

$$= \hat{\beta}_0 + \varepsilon_i$$
(24)

このモデルに対応する帰無仮説 H_0' と対立仮説 H_1' は次のとおり.

$$H_0': \beta_0 = \bar{y}, \beta_1 = \beta_2 = \dots = \beta_p = 0$$

$$H_1': \beta_0 = \hat{\beta}_0, \bar{x}_{\beta_1} \neq 0 \quad (\text{for } i = 1, \dots, p)$$
(25)

これらの関係を図 2 に示す。 す な わ ち,分散分析表 (22) は回帰平方和として $\sum \hat{y}_i^2$ を表わすのに対し,モデル(24) をベースにした回帰平方和は, \hat{y}_i の偏差平方和 $\sum_{t=1}^n (\hat{y}_i - \hat{y})^2$ になる。このことは,分散分析表(22) の回帰平方和と全体の平方和から中心効果 $n\bar{y}^2$ を差し引き,自由度を p と (n-1) に修正した次の分散分析表を求めたことになる。

分散分析表(修正済み)

	D. F.	平方和	平均平方和	F値
回帰 誤差 全体	$ \begin{array}{c} p\\n-p-1\\n-1 \end{array} $	$\hat{\boldsymbol{y}}'\hat{\boldsymbol{y}}-nar{y}^2$ $\boldsymbol{\varepsilon}'\boldsymbol{\varepsilon}$ $\boldsymbol{y}'\boldsymbol{y}-nar{y}^2$	$\begin{array}{l} S_1 \! = \! (\hat{\pmb{y}}'\hat{\pmb{y}} \! - \! n\bar{y}^2)/p \\ S_2 \! = \! \pmb{s's}/(n\! - \! p \! - \! 1) \end{array}$	S_1/S_2 (26)

図 2 修正項 $n(\bar{y})^2$ の幾何学表現

 $R^2 = (\hat{\pmb{y}}'\hat{\pmb{y}} - n\bar{y}^2)/(\pmb{y}'\pmb{y} - n\bar{y}^2)$

[例] $y=\beta_0+\sum_{i=1}^4\beta_ix_i+\varepsilon_i$ の修正済み分散分析表は $\bar{y}=5.946$ として次のとおりになる。

	D. F.	平方和	平均平方和	F値
回帰	4	17.221	4.305	$3.434 < F_2^4(0.05)$
誤差	2	2.508	1.254	(26')
全体	6	19.728		

$$R^2 = 0.873$$

誤差の平均平方和 1.254 は,データのバラッキを示す 分散 σ^2 の推定量 s^2 であるので,その平方根は σ の推定量 s になる¹⁾.

$$s = \sqrt{1.254} = 1.120$$
 (27)

一方,応答変数 y と予測値 \hat{y} の相関係数は 重相関係数とよばれ,その平方は多重決定係数または寄与率とよばれ R^2 で表わされるが, 修正済み回帰平方和と全体平方和の比に等しい.

$$R^{2} = (\hat{\boldsymbol{y}}'\hat{\boldsymbol{y}} - n\bar{\boldsymbol{y}}^{2})/(\boldsymbol{y}'\boldsymbol{y} - n\bar{\boldsymbol{y}}^{2})$$

$$= pS_{1}/\{pS_{1} + (n-p-1)S_{2}\}$$
(28)

この R^2 値は、式変形により、平均回帰平方和 S_1 と平均誤差平方和 S_2 の比で表わされるので、分散分析表による F 検定と、決定係数 R^2 に対する検定は 型式が違っても本質的に同じであるので、一方を行なえば、他方を行なう必要はない。

5. パラメータの各種統計量

パラメータ β の推定値 $\hat{\beta}$ の期待値は次式で与えられる。

1)不偏推定ではない。

$$E(\hat{\boldsymbol{\beta}}) = E((X'X)^{-1}X'\boldsymbol{y})$$

$$= (X'X)^{-1}X'E(\boldsymbol{y})$$

$$= (X'X)^{-1}X'E(X\boldsymbol{\beta} + \boldsymbol{\varepsilon})$$

$$= (X'X)^{-1}X'X\boldsymbol{\beta}$$

$$= \boldsymbol{\beta}$$
(29)

y の分散行列 Var(y)は、 $\varepsilon_i \sim N(0, \sigma^2)$ と $\varepsilon_i \perp \varepsilon_j (i \Rightarrow j)$ であるので、次式になる。

$$Var(\mathbf{y}) = E((\mathbf{y} - X\boldsymbol{\beta})(\mathbf{y} - X\boldsymbol{\beta})')$$

$$= E(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}')$$

$$= \sigma^2 E$$
(30)

推定値 β の分散行列は、次式になる。

$$\operatorname{Var}(\hat{\boldsymbol{\beta}}) = \operatorname{Var}((X'X)^{-1}X'\boldsymbol{y})$$

$$= (X'X)^{-1}X' \cdot \operatorname{Var}(\boldsymbol{y}) \cdot X(X'X)^{-1}$$

$$= (X'X)^{-1}X'X(X'X)^{-1}\sigma^{2}$$

$$= (X'X)^{-1}\sigma^{2}$$

[例] σ^2 は平均誤差平方和 $s^2=1.254$ により推定されるので、 $(X'X)^{-1}s^2$ が $Var(\pmb{\beta})$ の推定値になる。

定数項
$$x_1$$
 x_2 x_3 x_4

$$Var(\hat{\boldsymbol{\beta}}) = \begin{cases} 71.385 - 1.361 - 0.012 - 0.411 - 0.153 \\ -1.361 & 0.305 - 0.008 - 0.005 & 0.004 \\ -0.012 - 0.008 & 9.1E-4 & 3.3E-4 & 4.9E-5 \\ -0.411 & -0.005 & 3.3E-4 & 0.003 & 7.4E-4 \\ -0.153 & 0.004 & 4.9E-5 & 7.4E-4 & 5.7E-4 \end{cases}$$

この(ij)要素を、(ii)要素と(jj) 要素の積の平方根で割って、推定値 $\hat{\boldsymbol{\beta}}$ の相関行列 $R(\hat{\boldsymbol{\beta}})$ が求まる。

定数項
$$x_1$$
 x_2 x_3 x_4

$$R(\hat{\boldsymbol{\beta}}) = \begin{cases} 1.000 & -0.292 & -0.047 & -0.890 & -0.758 \\ -0.292 & 1.000 & -0.468 & -0.161 & 0.333 \\ -0.047 & -0.468 & 1.000 & 0.198 & 0.068 \\ -0.890 & -0.161 & 0.198 & 1.000 & 0.569 \\ -0.758 & 0.333 & 0.068 & 0.569 & 1.000 \end{cases}$$

参考として、モデル $y=eta_0+\sum\limits_{i=1}^5eta_ix_i+\varepsilon$ での推定値 $\hat{m{eta}}$ の相関行列は次のようになる。

両相関行列を対比してわかることは、 $x_5 \, \& \, x_2$, x_4 が高い相関をもつのは当然として、 x_5 をモデルに入れたことにより x_2 $\& \, x_4$ の間にも高い相関が認められるようになった.

 $(X'X)^{ii}$ を $(X'X)^{-1}$ の i 番目の 対角要素 とすれば、

 \hat{eta}_i の標準偏差 $\operatorname{stderr}(\hat{eta}_i)$ と t 統計量は次式で与えられる。

$$stderr(\hat{\beta}_t) = \sqrt{(X'X)it_{S^2}}$$

$$t = \hat{\beta}_t/stderr(\hat{\beta}_t)$$
(32)

[**例**] 式(31')と式(32)から、**Â** の標準偏差と t 値 は次のとおりになる。

stderr(
$$\hat{\boldsymbol{\beta}}$$
) = $\begin{pmatrix} 8.449 \\ 0.552 \\ 0.030 \\ 0.055 \\ 0.024 \end{pmatrix}$ $t(\hat{\boldsymbol{\beta}}) = \begin{pmatrix} -0.685 \\ -0.084 \\ -0.327 \\ 1.778 \\ \hat{\beta}_3 \\ -1.175 \end{pmatrix}$ $\hat{\beta}_4$

8. 多重共線性(multi-collinearity)

ある説明変数が他の説明変数の1次結合でほぼ表わされる時、 $\hat{\beta}$ は確定的でなく、多重共線性をもつ。

この時,次の好ましくない情況が発生する(文献[4]pp.183-184).

- ① 推定値は、データの小さな変化に対して不安定である.
- ② 推定値は大きな標準誤差をもつ. このため、 t 検定が棄却できないことが多い.

多重共線性の検出方法としては、リッジ回帰分析(文献[3](pp.201-206)),主成分分析(文献[3]),分散拡大要因(Variance Inflation Factor, VIF)等がある. これらの方法を以下に解説しよう.

なお、多重共線性が検出された場合、対応としてはバラッキの弱い次元に広く分布するデータを追加するか、 多重共線関係にある変数のいくつかをモデルから省くという2つの方法が考えられる。

6.1 分散拡大要因(VIF)

 $\hat{\beta}_i$ の VIF_i は、 x_i を応答変数として残りのすべての説明変数で回帰して得られる多重決定係数 R_i 2 を用いて次式で表わされる。

$$VIF_{i} = 1/(1 - R_{i^{2}})$$
 (33)

一応の目安として, VIF が10以上の場合に多重共線性が疑われる(文献[3] pp.201-202).

[例] 説明変数が x_1, x_2, x_3, x_4 の 4 変数の場合, モデル $x_1 = \beta_0 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$ の決定係数を $R_{1,234}^2$ とすれば, x_1 の分散拡大要因は $VIF_{1,234} = 1/(1-R_{1,234}^2)$ になる. 同様に x_2, x_3, x_4 の VIF も計算される.

$$VIF_{1,234} = 1.875$$

$$VIF_{2,134} = 1.385$$

$$VIF_{3,124} = 1.863$$

になる.

多重共線性のない 4 個の説明変数の組に, x₅ を追加す

れば,

$$VIF_{1,2845} = 2.287$$

 $VIF_{2,1845} = 1008.260$
 $VIF_{8,1245} = 2.309$
 $VIF_{4,1285} = 2534.162$
 $VIF_{5,1284} = 2724.858$

と,多重共線関係にある x_2 , x_4 , x_5 の分散拡大要因は極端に大きくなる.

以上みたように多重共線関係にある説明変数の検出は容易に行なえる。しかし、その対応策として、どの変数をどのような基準にもとづいて何個省けばよいかの問題が残る。これを、かりに"多重共線性の解消"問題とよぶが、これは統計論的に決めるべき問題ではなく、その問題の専門分野の知識を参考にして決めるべきであろう。

 $\hat{\beta}_i$ の各 VIF_i の値は, $(X'X)^{-1}$ の 各 i 番目の 対角要素 $(X'X)^{ii}$ の値と比例関係にある.この $(X'X)^{ii}$ は式 (32) からわかるとおり,分散 s^2 を $(X'X)^{ii}$ 倍に拡大したものが $\hat{\beta}_i$ の分散になることを示しているので,分散 拡大要因とよばれる.

[例] 次の簡単なデータを考える.

モデル $y=a_0+a_1x_1+a_2x_2+\varepsilon$ に対して、

$$(X'X)^{-1} = \begin{pmatrix} \frac{3}{4} & 0 & -\frac{1}{2} \\ 0 & \frac{2}{9} & -\frac{1}{9} \\ -\frac{1}{2} & -\frac{1}{9} & \frac{5}{9} \end{pmatrix}$$
 (35)

$$a = \left(\frac{9}{4} \quad \frac{7}{9} \quad -\frac{7}{18}\right)'$$

	D. F.	平方和	平均平方和	F
回帰	2	$2\frac{13}{18}$	49 36	49
誤差	1	$\frac{1}{36}$	$\frac{1}{36}$	
全体	3	$2\frac{3}{4}$		

$$R^2 = \frac{98}{99}$$

モデル $x_1=b_0+b_1x_2+\epsilon$ に対して,

$$(X'X)^{-1} = \begin{pmatrix} \frac{3}{4} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$\boldsymbol{b} = (0 \quad \frac{1}{2})'$$

	D. F.	平方和	平均平方和	F
回帰	2	1 2	14	$\frac{1}{18}$
誤差	1	$\frac{9}{2}$	$\frac{9}{2}$	
全体	3	5		

$$R^2 = \frac{1}{10}$$

$$VIF_{x_1} = 1/(1 - \frac{1}{10}) = \frac{10}{9}$$
 (36)

モデル $x_2=c_0+c_1x_1+\epsilon$ に対して,

$$(X'X)^{-1} = \begin{pmatrix} \frac{3}{10} & -\frac{1}{10} \\ -\frac{1}{10} & \frac{1}{5} \end{pmatrix}$$

$$c = (\frac{9}{10} \quad \frac{1}{5})'$$

	D. F.	平方和	平均平方和	F
回帰誤差	2	3.2	1.6	8
全体	3	5.0		

$$R^2 = 0.64$$

VIF
$$x_2 = 1/(1-0.64) = \frac{25}{9}$$
 (37)

(35), (36), (37) \downarrow \downarrow \downarrow

$$VIF_{x_1}: VIF_{x_2} = (X'X)^{22}: (X'X)^{83} = 2:5$$

6.2 主成分分析の利用

主成分分析は、データが多変量正規分布すなわち確率 楕円にしたがうとして、元の変数の作る旧座標系を座標 変換により楕円の軸を新座標系として 求 め る 手法であ る。

各説明変数を、平均 0 (原点移動) と分散 1 (単位系の違い等による影響を除くため) に規準化したデータ行列 D を考える、この行列の列数(説明変数の数)を p, 行数 (デ-タ数) を n とする、ここで p 個 の 重み ベクトル $a=(a_1\cdots,a_p)'$ による次の座標変換を考える、

$$z = Da \tag{38}$$

Dのi行は旧座標系での観測値iのp個の座標 D_i であり、 D_i aは観測値iの新座標軸aでの座標を与えるスカラー値である。zはこの新座標系a でのn個の観測値の新座標値になる。この分散 V_z は、Dが規準化されて

いることから次式で表わされ、さらにデータの相関行列をRとして次式になる。

$$V_z = \frac{1}{n} z'z = \frac{1}{n} a'D'Da$$

$$= a'(\frac{1}{n}D'D)a = a'Ra$$
(39)

ここで、 $\mathbf{a}'\mathbf{a}=1$ の条件で V_2 を最大にすることを考える。条件つき極値問題になるので、ラグランジェの未定乗数を λ として、次の φ を最大にする \mathbf{a} を求めればよい。

$$\varphi = \mathbf{a}' R \mathbf{a} - \lambda (\mathbf{a}' \mathbf{a} - 1) \tag{40}$$

$$\frac{\partial \varphi}{\partial \boldsymbol{a}} = 2R\boldsymbol{a} - \lambda(2\boldsymbol{a}) = 0 \tag{41}$$

式(41)は、相関行列 R の固有値問題になる.

$$(R - \lambda E) \mathbf{a} = 0 \tag{42}$$

ただし、ここで E は単位行列、 λ は固有値、 α は固有 ベクトルである。

一方、
$$Ra=\lambda a$$
 の両辺の左側に、 a' を乗じれば、 $V_*=a'Ra=\lambda a'a=\lambda$ (43)

となり、固有値 λ は座標 aでのデータの分散を与える. 相関行列 R の階数が p なら、p 組の固有値 λ_i と固有ベクトル a_i が求まる。固有値の大小順に並べかえて λ_1 、…、 λ_p とする。 対応する固有ベクトル a_1 、…, a_p は、 第 1 主成分軸、…、 第 p 主成分軸とよばれる新座標系の係数を与える。このようにして求まった p 個 の 新座標系で、元のデータ D_i は新座標(D_ia_1 ,…, D_ia_p)に変換される。

もし $\lambda_p = 0$ ならば、第 p 主成分軸上のデータ $D_i a_p (i=1,\cdots,n)$ の分散がほぼ零になり、 $D_i a_p$ は一定値とみなせる。元の変数の期待値は零に規準化してあるので、これの合成変数の実現値 $D_i a_p$ の期待値も零になる。すなわち、元の i 番目の変数を x_i とすれば、 $a_{1p}x_1 + a_{2p}x_2 + \cdots + a_{pp}x_p = 0$ という関係式が求まる。この式が変数 x_1,\cdots,x_p の間の多重共線関係を与えるが、小さな値をもつ a_{ip} を零とみなせば特定の変数間の強い多重共線性を検出できる(文献[3] p.179).

[例] x_1 から x_5 までの5変数データ を主成分分析して、次の固有値が得られた。2.683,1.526,0.425,0.367,1.6E-4. すなわち、第4主成分までで、全分散の99.9%が説明できる。第5主成分から次の多重共線関係が求まる。

$$0.00010x_1 + 0.00507x_2 + 0.00011x_3$$

$$+0.00803x_4 - 0.00833x_5 = 0$$
(44)

小数第4位以下を零とみなせば次式が求まる.

 $0.00507x_2+0.00803x_4-0.00833x_5$ $\div 0$ (45) 変数 x_5 の作成過程から次式(46)が期待される.

$$x_2 + x_4 - x_5 \stackrel{.}{=} 0 \tag{46}$$

しかし、実際には式(45)になったのは、データ数が少ないため最初のデータに加えられたバイアスの影響と、データが多変量正規分布から乖離しているためと考えられる.

参考文献

- 1) N. ドレイパー他:応用回帰分析, 森北出版, 1968
- 2) 石井吾郎:実験計画法の基礎, サイエンス社, 1972
- 3) S.チャタジー他:回帰分析の実際,新曜社,1981
- 4) J.ジョンストン:計量経済学の方法, 東洋経済新報 対、1975
- 5) 小林龍一:相関・回帰分析法入門, 日科技連, 1972
- 6) SAS ユーザーズガイド, SAS Inc., 1982
- 7) G. E. P. Box & G.M. Jenkins: Time series analysis (forecasting and control), Holden-Day (1970)
- 8) 新村秀一:多重共線関係の解消とその影響,1983年 度OR学会春季研究発表会,156/157
- 9) Belsley, D. A., Kuh, E., and Welsch, R.E. (1980): Regression Diagnostics, New York, John Wiley & Sons
- 10) Cook, R.D.: Detection of Influential Observations in Linear Regression, Technometrics, 19, 15-18(1977)
- 11) 竹内 啓:現象と行動のなかの統計数理,新曜社, 1972
- 12) 坂元 慶行,石黒 真木夫,北川 源四郎:情報量統計学,共立出版社,1983

次号の内容は次のとおりです.

- 7. 平均予測値の分散と信頼区間
- 8. 観測値 yiの分散と信頼区間
- 9. y の予測値と誤差の期待値・分散
- 10. 誤差 (残差) の検討
- 11. モデルの決定と検定
- 11.1 フルモデルと縮小モデル
- 11.2 F検定
- 11.3 AIC規準と Cp 統計量
- 11.4 総当り法
- 11.5 逐次変数選択法
- 11.6 最終モデルの決定

本稿の作成に際し、小林龍一先生に査読いただき、原稿の不備を指摘していただいた. ここに記して厚くお礼申し上げます.