Contents

1	Startup templates		2
	1.1 template	 	2
	1.2 gvimrc	 	2
2	Graph Algorithms		3
	2.1 Dinic Max-Flow	 	3
	2.2 Hungary Algo	 	3
	2.3 Min Cut	 	4
	2.4 Bridges	 	4
	2.5 Cut Vertices	 	5
	2.6 Min-Cost Max-Flow	 	5
	2.7 Strongly Connected Components	 	6
	2.8 2-SAT	 	7
3	Linear Algebra		8
•	3.1 Gauss Elimination		8
	3.2 Fast-Fourier Transform		8
	3.3 Simplex		9
			Ü
4	String Algorithms		10
	4.1 Suffix Array		10
	4.2 Suffix Tree from Suffix Array		10
	4.3 Z-function		11
	4.4 Suffix Automata		12
	4.5 Palindromes		12
	4.6 Lyndon decomposition & Duval	 	12
5	Modular		14
6	Data Structures		16
U	6.1 Treap		16
	6.2 Implicit Treap		16
	6.3 Fenwick Tree		16
	6.4 Stack with Min		17
	6.5 Queue with Min		17
	o.o - Queue with inin	 •	
7	Geometry		18
	7.1 Point 2D		
	7.2 Point 3D	 	19

1 Startup templates

1.1 template

```
1 #include < vector >
2 #include < list >
3 #include <map>
4 #include <set>
5 #include <deque>
6 #include <stack>
7 #include <bitset>
8 #include <algorithm>
9 #include <functional>
10 #include < numeric>
11 #include <utility>
12 #include <sstream>
13 #include <iostream>
14 #include <cstdio>
15 #include <cmath>
16 #include < cstdlib>
17 #include < cstring >
18 #include < cassert >
19
20
  using namespace std;
21
22 typedef long long 11;
23 typedef pair<int, int> pii;
25 template<typename T> int size(T& a) { return (int) a.size(); }
26 template<typename T> T sqr(T a) { return a * a; }
28 #define _(a, b) memset((a), (b), sizeof(a))
29 #define fs first
30 #define sc second
31 #define pb push_back
32 #define mp make_pair
33 #define all(a) a.begin(), a.end()
34 #define REP(i, a, b) for (int i = (a); i < (b); ++i)
35 #define REPD(i, a, b) for (int i = (b) - 1; i >= a; --i)
36 #define ve vector
```

1.2 gvimrc

```
set autoread
set autoindent
set autochdir
set cindent
set number
syntax on
set shiftwidth =4
set tabstop =4
colorscheme desert
set gfn =Monospace\ 12
```

2 Graph Algorithms

2.1 Dinic Max-Flow

```
// need: graph( head, nxt, to, capa, flow ), dist, q
   bool bfs(int src, int dest) {
        (dist, -1);
       dist[src] = 0;
4
       int \dot{H} = 0;
5
6
       q[H ++] = src;
7
       REP(i, 0, H) {
           \quad \mathbf{int} \ \mathbf{cur} \ = \ \mathbf{q} \ [\ \mathbf{i}\ ] \ ;
           for (int e = head[cur]; e != -1; e = nxt[e]) {
9
10
                if (capa[e] > flow[e] && dist[to[e]] = -1) {
                    dist[to[e]] = dist[cur] + 1;
11
12
                    q[H ++] = to[e];
13
           }
14
15
16
       return dist [dest] >= 0;
17
18
19
   int dfs(int cur, int curflow) {
20
       if (cur == dest) return curflow;
21
       int d;
       22
23
24
                    (d = dfs(to[e], min(curflow, capa[e] - flow[e])))) {
                flow [e] += d;
flow [e ^ 1] -= d;
25
26
27
                return d;
28
           }
29
30
       return 0;
31
   }
32
33
   int dinic() {
34
       int res = 0;
35
       while (bfs(src, des)) {
36
           int d;
37
           memcpy(work, head, sizeof(head));
           while (true) {
38
39
                d = dfs(src, INF);
                if (d = 0) break;
40
41
                res += d;
42
           }
43
44
       return res;
45
```

2.2 Hungary Algo

```
// need: a[n][m], all indices start with 1
   vector < int > u (n+1), v (m+1), p (m+1), way (m+1);
3
   for (int i=1; i<=n; ++i) {
     p[0] = i;
     int j0 = 0;
6
     vector < int > minv (m+1, INF);
7
     vector < char > used (m+1, false);
     \mathbf{do}\ \{
8
9
        used[j0] = true;
10
       int i0 = p[j0], delta = INF, j1;
        for (int j=1; j <= m; ++j)
11
12
          if (!used[j]) {
13
            {\bf int}\ cur\ =\ a\,[\,i\,0\,]\,[\,j\,] - u\,[\,i\,0\,] - v\,[\,j\,]\,;
14
            if (cur < minv[j])
               \min [j] = cur,
                                 way[j] = j0;
15
            if (minv[j] < delta)
16
17
               delta = minv[j],
18
19
        for (int j=0; j <= m; ++j)
```

```
if (used[j])
21
           u[p[j]] += delta, v[j] -= delta;
22
23
           minv[j] -= delta;
       j0\ =\ j1\ ;
24
25
     } while (p[j0] != 0);
26
     do {
27
      int j1 = way[j0];
28
       p[j0] = p[j1];
29
       j0 = j1;
     } while (j0);
30
31
   // restore ans[] -- selected column for each row
32
33 for (int j=1; j \le m; ++j)
    ans[p[j]] = j;
35
   // cost
36 int cost = -v[0];
```

2.3 Min Cut

```
pair < int , ve < int > > GetMinCut (ve < ve < int > > & weights) {
2
     int N = weights.size();
3
     ve < int > used(N), cut, best_cut;
4
     int best_weight = -1;
5
     REPD(phase, 0, N) {
 6
7
       ve < int > w = weights [0];
       ve < int > added = used;
8
9
       int prev, last = 0;
10
       REP(i, 0, phase) {
11
         prev = last;
         last = -1;
12
13
         REP(j, 1, N)
             \mbox{\bf if } \mbox{ $(!$ added [j] \&\& (last == -1 \ || \ w[j] > w[last]))$ last = j; } 
14
15
          if (i = phase-1) {
            REP(j, 0, N) weights[prev][j] += weights[last][j];
16
            REP(j, 0, N) weights [j][prev] = weights[prev][j];
17
18
            used [last] = true;
19
            cut.pb(last);
            if (best_weight == -1 || w[last] < best_weight) {
20
21
              best_cut = cut;
              best_weight = w[last];
22
23
24
          } else {}
25
            REP(j, 0, N)
26
              w[j] += weights[last][j];
27
            added[last] = true;
28
29
       }
30
31
     return mp(best_weight, best_cut);
32
```

2.4 Bridges

```
// need: graph( head, to, nxt ), used, tin, fup, timer
   void dfs (int v, int par = -1) {
 3
      used[v] = true;
      tin[v] = fup[v] = timer++;
 4
      for (int e = head[v]; e != -1; e = nxt[e]) {
 6
         int u = to[e];
 7
         \quad \textbf{if} \ (u = par) \quad \textbf{continue}; \\
 8
         if (used[u])
            fup[v] = min (fup[v], tin[u]);
10
         else {
11
            dfs(u, v);
12
            fup \left[\,v\,\right] \;=\; min\;\; \left(\,fup \left[\,v\,\right]\,,\;\; fup \left[\,u\,\right]\,\right)\,;
            if (fup[u] > tin[v])
13
              IS_BRIDGE(v, u);
14
15
```

2.5 Cut Vertices

```
// need: graph (head, to, nxt), tin, fup, used, timer
   void dfs (int v, int par = -1) {
3
     used[v] = true;
     tin[v] = fup[v] = timer++;
     int children = 0;
6
     for (int e = head[v]; e != -1; e = nxt[e]) {
       int u = to[e];
       \quad if \ (u = par) \quad continue;
8
       if (used[u])
10
         fup[v] = min (fup[v], tin[u]);
       else {
11
12
         dfs(u, v);
13
         fup[v] = min (fup[v], fup[u]);
14
         if (fup[u] >= tin[v] && p != -1)
           IS_CUTPOINT(v);
15
16
         ++children;
17
18
19
     if (p = -1 \&\& children > 1)
20
       IS_CUTPOINT(v);
21
22
23
  int main() {
24
     timer = 0;
25
      (used, 0);
26
     \overline{d}fs(0);
27
```

2.6 Min-Cost Max-Flow

```
need: graph (head, nxt, to, from, capa, cost, flow)
   // pi, dist, prve
   void updatePotentials() {
     memcpy(pi, dist, sizeof(int) * N);
5
   }
6
7
   bool fordBellman(int src, int dst) {
     REP(i, 0, N) dist[i] = INF;
9
      dist[src] = 0;
10
      bool changed;
11
     REP(phase, 0, N) {
12
13
        changed = false;
14
        REP(v, 0, N) {
           \quad \textbf{if} \, (\, \text{dist} \, [\, v \, ] \, \stackrel{\cdot}{==} \, INF) \  \, \textbf{continue} \, ; \\
15
16
           for (int e = head[v]; e != -1; e = nxt[e]) {
              \quad \textbf{int} \ u \, = \, to \, [\, e \, ] \, ; \quad
17
              if(capa[e] > flow[e] \&\& dist[u] > dist[v] + cost[e]) {
18
                dist[u] = dist[v] + cost[e];
19
20
                prve[u] = e;
21
                changed = true;
22
           }
23
24
25
        if (!changed) break;
26
27
      return !changed;
```

```
29
30
   set < \ pii \ > \ q;
   bool dijkstra (int src, int dst) {
31
32
     REP(i, 0, N) dist[i] = INF;
     dist[src] = 0;
33
34
     q.insert (mp(0, 0));
35
36
     while (size (q)) {
37
        pii tmp = (*q.begin());
38
       \mathbf{int} \ v = tmp.\,sc \;, \; d = tmp.\,fs \;;
39
       q.erase(q.begin());
40
        if(d != dist[v]) continue;
41
        for (int e = head[v]; e != -1; e = nxt[e]) {
42
43
          int u = to[e];
44
          if(capa[e] > flow[e] \&\& dist[u] > dist[v] + cost[e] - pi[v] + pi[u]) {
45
            dist\,[\,u\,] \,=\, dist\,[\,v\,] \,+\, cost\,[\,e\,] \,-\, pi\,[\,v\,] \,+\, pi\,[\,u\,]\,;
46
            prve[u] = e;
47
            q.insert( mp(dist[u], u));
48
49
       }
50
51
     return dist[dst] != INF;
52
53
   pii minCostMaxFlow(int src, int dst) {
54
55
     if(!fordBellman(src, dst)) return mp(0, 0);
56
     int sumFlow = 0, sumCost = 0;
57
58
     do {
59
       int curFlow = INF, curCost = 0;
60
       int cur = dst;
61
        while (cur != src) {
62
          int e = prve[cur];
63
          curFlow = min(curFlow, capa[e] - flow[e]);
64
          curCost += cost[e];
65
          cur = from[e];
66
67
       cur = dst;
68
        while (cur != src) {
69
          int e = prve[cur];
70
          flow[e] += curFlow;
flow[e ^ 1] -= curFlow;
71
72
          cur = from[e];
73
74
       sumCost += curFlow * curCost;
75
        updatePotentials();
76
     } while(dijkstra(src, dst));
77
78
     return mp(sumFlow, sumCost);
```

2.7 Strongly Connected Components

```
// need: graph (head, to, nxt), reverse graph (rhead, rto, rnxt)
   // used, compID, order
   void dfs1(int v) {
3
4
      used[v] = true;
5
      for(int e = head[v]; e != -1; e = nxt[e]) {
6
        if (!used [to [e]]) dfs1(to [e]);
7
8
      order.pb(v);
   }
9
10 void dfs2(int v, int id) {
      used[v] = true;
11
12
      compID[v] = id;
13
      \mathbf{for}(\mathbf{int} \ \mathbf{e} = \mathbf{rhead}[\mathbf{v}]; \ \mathbf{e} := -1; \ \mathbf{e} = \mathbf{rnxt}[\mathbf{e}]) \ \{
        if (!used[ rto[e] ]) dfs2(rto[e]);
14
15
16 }
17 void main() {
     _(used, false);
```

```
REP(\,i\,\,,\,\,0\,,\,\,N)
19
        if (!used[i]) dfs1(i);
20
21
      (used, false);
22
     int id = 0;
23
     REPD(i, 0, N)  {
24
        int v = order[i];
25
        if(!used[v]) dfs2(v, id++);
26
27 }
```

2.8 2-SAT

```
Problem: (a \lor c) \& (a \lor !b) \& \dots
Edges: (a \lor b) is equivalent to (!a \Rightarrow b) \lor (!b \Rightarrow a)
Solution: there is no solution iff for some x \ compID[x] = compID[!x], else see code below
```

```
// need: graph, scc
   int main() {
 2
 3
       _(used, false);
     \overline{REP}(i, 0, N)
 4
 5
        if (!used[i]) dfs1 (i);
 6
 7
       (\text{compID}, -1);
      \overline{\mathbf{i}}\mathbf{n}\mathbf{t} id = 0;
     REPD(i, 0, N) {
 9
        int v = order[i];
10
        if (comp[v] = -1) dfs2(v, id++);
11
12
13
     REP(\,i\ ,\ 0\,,\ N)
14
15
        if (compID[i] = compID[i^1]) {
           puts ("NO SOLUTION");
16
17
           return 0;
18
     \overrightarrow{REP}(i, 0, N) {
19
20
        int ans = comp[i] > comp[i^1] ? i : i^1;
        printf ("%d ", ans);
21
22
23 }
```

3 Linear Algebra

3.1 Gauss Elimination

```
//Ax = B. RETURN: determinant, A \rightarrow A^{(-1)}, B \rightarrow solution
2|T Gauss Jordan (VVT &a, VT &b) {
     const int n = a.size();
     ve{<}\textbf{int}{>}\ irow\,(n)\;,\ icol\,(n)\;,\ ipiv\,(n)\;;
5
     T \det = 1;
6
7
     REP(\,i\;,\;\;0\,,\;\;n\,)\;\;\{
        {\bf int} \ pj \, = \, -1, \ pk \, = \, -1;
8
       REP(j, 0, n) if (!ipiv[j])
9
          REP(k, 0, n) if (!ipiv[k])
10
             if (pj = -1 | | fabs(a[j][k]) > fabs(a[pj][pk])) { pj = j; pk = k; }
11
        if (fabs(a[pj][pk]) < EPS) { cerr << "Matrix is singular." << endl; exit(0); }
12
13
        ipiv [pk]++;
        swap(a[pj], a[pk]);
14
        swap(b[pj], b[pk]);
15
16
        if (pj != pk) det *= -1;
17
        i\,row\,[\,i\,]\ =\ pj\,;
18
        icol[i] = pk;
19
20
       T c = 1.0 / a[pk][pk];
21
        det *= a[pk][pk];
22
        a\,[\,pk\,]\,[\,pk\,] \ = \ 1.0\,;
23
       REP(p, 0, n) a[pk][p] *= c;
24
       b[pk] *= c;
25
       REP(p, 0, n) if (p != pk) {
26
          c = a[p][pk];
          a[p][pk] = 0;

REP(q, 0, n) a[p][q] -= a[pk][q] * c;
27
28
29
          b[p] -= b[pk] * c;
30
31
     }
32
     REPD(p, 0, n) if (irow[p] != icol[p]) {
33
34
       REP(k, 0, n) swap(a[k][irow[p]], a[k][icol[p]]);
35
36
37
     return det;
38
```

3.2 Fast-Fourier Transform

```
typedef complex<double> base;
 3
   void fft (vector<base> & a, bool invert) {
      int n = (int) a.size();
 5
 6
      \mbox{for } (\mbox{int} \ i \ = \ 1 \, , \ j \ = \ 0 \, ; \ i \ < \ n \, ; \ i \ ++) \ \{
 7
         int bit = n >> 1;
         for (; j >= bit; bit >>= 1)
           j -= bit;
10
         j += bit;
         if \ (i \ < \ j \,) \ swap \ (a [ \, i \, ] \, , \ a [ \, j \, ]) \ ;
11
12
13
14
      for (int len = 2; len \leq n; len \leq 1) {
         double ang = 2 * PI/len * (invert ? -1 : 1);
15
16
         base wlen (cos(ang), sin(ang));
17
         \mathbf{for} \ (\mathbf{int} \ \mathbf{i} \ = \ \mathbf{0}; \ \mathbf{i} \ < \ \mathbf{n}; \ \mathbf{i} \ +\!\!\!= \ \mathbf{len}) \ \{
            base w (1);
18
19
            for (int j = 0; j < len/2; j++) {
20
              base u = a[i+j], v = a[i+j+len/2] * w;
21
               a[i+j] = u + v;
22
              a[i+j+len/2] = u - v;
23
              w = wlen;
24
            }
25
         }
26
      }
```

3.3 Simplex

```
maximize \ c \ ^T \ x
       Ax <= b
 3
      x>=0
 4
 5
   struct LPSolver {
      \mathbf{int}\ \mathrm{m,\ n}\,;
 7
      ve < int > B, N;
 8
      ve < ve < double > > D;
 9
10
      LPSolver(const ve< ve<double> &A, const ve<double> &b, const ve<double> &c) :
11
        m(b.size()), n(c.size()), N(n+1), B(m), D(m+2, ve< double>(n+2)) {
12
           REP(\,i\;,\;\;0\;,\;\;m)\;\;REP(\,j\;,\;\;0\;,\;\;n)\;\;D[\,i\;][\,j\,]\;=\;A[\,i\;][\,j\;];
13
           REP(i, 0, m) \{ B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i]; \}
           REP(\,j\;,\;\;0\;,\;\;n)\;\;\{\;\;N[\,j\,]\;=\;j\;;\;\;D[m][\,j\,]\;=-c\,[\,j\,]\;;\;\;\}
14
15
           N[n] = -1; D[m+1][n] = 1;
16
17
18
      void Pivot(int r, int s) {
19
        REP(i, 0, m + 2) if (i != r)
20
           REP(j, 0, n + 2) if (j != s)
21
             D[i][j] = D[r][j] * D[i][s] / D[r][s];
        22
23
24
        D[r][s] = 1.0 / D[r][s];
25
        swap(B[r], N[s]);
26
27
28
      bool Simplex (int phase) {
        int x = phase == 1 ? m+1 : m;
29
30
         while (true) {
31
           int s = -1;
32
           REP(j, 0, n + 1) {
              if (phase = 2 \&\& N[j] = -1) continue;
33
               \mbox{if } (s =\!\!\! -1 \ || \ D[x][j] < D[x][s] \ || \ D[x][j] =\!\!\!\! D[x][s] \ \&\& \ N[j] < N[s]) \ s = j; 
34
35
36
           if (D[x][s] >= -EPS) return true;
37
           int r = -1;
           REP(i\ ,\ 0\ ,\ m)\ \{
38
39
              \quad \textbf{if} \ (D[\ i\ ][\ s\ ] \ <= \ 0) \ \ \textbf{continue}\,;
              if (r = -1 \mid | D[i][n+1] / D[i][s] < D[r][n+1] / D[r][s] \mid |
40
41
                   D[i][n+1] / D[i][s] = D[r][n+1] / D[r][s] & B[i] < B[r]) r = i;
42
           if (r = -1) return false;
43
44
           Pivot(r, s);
45
46
      }
47
48
      double Solve(ve < double > \&x)  {
49
        REP(\,i\;,\;\;1\;,\;\;m)\quad \textbf{if}\quad (D[\,i\,][\,n\!+\!1]\;<\;D[\,r\,][\,n\!+\!1])\quad r\;=\;i\;;
50
51
         if (D[r][n+1] \le -EPS) {
52
           Pivot(r, n);
           \textbf{if} \hspace{0.2cm} (!\,Simplex\,(1) \hspace{0.2cm}||\hspace{0.2cm}D[m+1][n+1] < -EPS) \hspace{0.2cm} \textbf{return} \hspace{0.2cm} -numeric\_limits < \textbf{double} > :: infinity\,() \ ;
53
54
           REP(i, 0, m) if (B[i] = -1) {
55
              int s = -1;
56
             REP(j, 0, n + 1)
57
                 \mbox{if } (s = -1 \ || \ D[i][j] < D[i][s] \ || \ D[i][j] = D[i][s] \ \&\& \ N[j] < N[s]) \ s = j; \\ 
              Pivot(i, s);
58
59
           }
60
61
         if (!Simplex(2)) return numeric_limits<double>::infinity();
62
        x = ve < double > (n);
63
        REP(\,i\;,\;\;0\;,\;m)\ \ \textbf{if}\ \ (B[\,i\,]\;<\;n)\ \ x\,[B[\,i\,]]\;=\,D[\,i\,][\,n\!+\!1];
64
        return D[m][n+1];
65
66
   };
```

4 String Algorithms

4.1 Suffix Array

```
struct entry {
     int nr [2], p;
   } L[MAXN], tmp[MAXN];
 4 | \# define \ eq(a, b) \ ((a).nr[0] = (b).nr[0] \&\& (a).nr[1] = (b).nr[1]
 5 int cnt [MAXN], p [2] [MAXN];
 7
   void radixPass(entry * a, int N, int pass, int K, entry * b) {
 8
     memset(cnt, 0, (K + 1) * sizeof(int));
     REP(i, 0, N) cnt[a[i].nr[pass]]++;
10
     int sum = 0;
     REP(i, 0, K + 1) {
11
12
        sum \; +\!= \; cnt \, [\; i \; ] \, ;
13
        cnt[i] = sum - cnt[i];
14
     REP(i, 0, N) b[cnt[a[i].nr[pass]]++] = a[i];
15
16
   }
17
18
   void makeSA(int * s , int N, int * suftab , int * isuftab) {
19
     REP(i, 0, N) p[0][i] = s[i];
20
      int k = 200;
21
      {\bf for}\,(\,{\bf int}\  \, {\rm step}\  \, =\,1\,,\  \, {\rm len}\  \, =\,1\,;\  \, ;\  \, {\rm step}\  \, \, \hat{}=\,1\,,\  \, {\rm len}\,<\!\!<\!\!=\,1)\  \, \big\{
        22
23
24
          L[i]. nr[1] = j < N ? p[step ^ 1][j] : 0;
25
          L[i].p = i;
26
27
        radixPass(L, N, 1, k, tmp);
28
        radixPass(tmp, N, 0, k, L);
        k \ = \ 1\,;
29
30
        REP(i, 0, N)
           \label{eq:pstep} {\tt p[step][L[i].p] = i > 0 \&\& eq(L[i], L[i-1]) ?}
31
32
             p[step][L[i-1].p] : k++;
33
34
        if(k > N) break;
35
36
     \hat{R}EP(i, 0, N) suftab[i] = L[i].p;
37
     REP(i, 0, N) isuftab[suftab[i]] = i;
38
   void makeLCP(int * s, int * suftab, int * isuftab, int N, int * lcptab) {
40
41
     int cur = 0;
42
     REP(i, 0, N)
        if(isuftab[i] = 0) continue;
43
        \mbox{int} \ \ \mbox{ii} \ = \ \mbox{i} \ + \ \mbox{cur} \ , \ \ \mbox{jj} \ = \ \mbox{suftab} \left[ \mbox{isuftab} \left[ \mbox{i} \, \right] \ - \ 1 \right] \ + \ \mbox{cur} \ ;
45
        while(ii < N && jj < N && s[ii] == s[jj]) ii++, jj++, cur++;
46
        lcptab [isuftab [i]] = cur --;
47
        if(cur < 0) cur = 0;
48
49
   }
```

4.2 Suffix Tree from Suffix Array

```
struct Seg {
1
2
     int lb, rb, lcp;
     vector < Seg*> childList;
4
     void init(int 1, int i, int j) {
5
       lb = i; rb = j; lcp = l;
6
7
     void add(Seg * son) {
        childList.pb(son);
9
10
   };
11 typedef Seg* pSeg;
12
13 struct Stack {
     pSeg\ segs\left[M\!\!\!/\!\!\!AX\!N<<\ 1\,\right];
14
15
     int size;
```

```
void push(pSeg seg) {
17
       segs[size++] = seg;
18
19
     pSeg pop() {
20
       return segs[--size];
21
22
     pSeg top() {
23
       return segs[size - 1];
24
25
  } stack;
26
27
  pSeg top() { return stack.top(); }
28
   void push(pSeg seg) { stack.push(seg); }
29
  pSeg pop() { return stack.pop(); }
31
  pSeg init(int lcp, int lb, int rb) {
32
    pSeg ret = new Seg;
33
     ret->init(lcp, lb, rb);
34
     \textbf{return} \quad \texttt{ret} \ ;
35
  }
36
  pSeg makeTree() {
37
38
     stack.size = 0;
     pSeg lastInterval = NULL;
39
     stack.push(init(0, 0, -1));
41
    REP(i, 1, N) {
42
       int lb = i - 1;
       pSeg singleton = init (N - suftab[i-1] - 1, i-1, i-1);
43
44
       //process(singleton);
45
46
       while ( lcptab [i] < top () -> lcp )  {
47
         if(singleton != NULL) {
48
           top()->add(singleton);
49
           singleton = NULL;
50
51
         top()->rb = i - 1;
         lastInterval = pop();
52
53
          //process(lastInterval);
54
         lb = lastInterval \rightarrow lb;
55
         if(lcptab[i] \ll top()->lcp) {
56
           top()->add(lastInterval);
57
           lastInterval = NULL;
58
59
       if (lcptab[i] > top()->lcp) {
60
61
         if(lastInterval != NULL) {
62
           pSeg seg = init(lcptab[i], lb, -1);
           seg->add(lastInterval);
63
64
           push(seg);
65
           lastInterval = NULL;
66
         } else push(init(lcptab[i], lb, -1));
67
       if(singleton != NULL) {
68
69
         top()->add(singleton);
70
71
72
     assert(stack.size == 1);
73
     //process(top());
74
     return top();
75
```

4.3 Z-function

```
ve < int > z_function (string s)  {
2
     int n = (int) s.length();
3
     ve < int > z (n);
4
     if (i <= r)
5
6
         z[i] = min (r-i+1, z[i-l]);
7
       \mathbf{while} \ (\,i\!+\!z\,[\,i\,] \ < \ n \ \&\& \ s\,[\,z\,[\,i\,]\,] \ = \ s\,[\,i\!+\!z\,[\,i\,]\,]\,)
8
         +\!\!+\!\!z\,[\;i\;]\,;
9
       if (i+z[i]-1 > r)
```

4.4 Suffix Automata

```
1 struct state {
     int len , link ;
    map<char, int> next;
4
5
   state st [MAXLEN*2];
7 int sz, last;
9
   void sa_init() {
10
     sz = last = 0;
11
     st[0].len = 0;
     st[0]. link = -1;
12
13
     ++sz;
14
   }
15
16
   void sa_extend (char c) {
     int cur = sz++;
17
18
     st[cur].len = st[last].len + 1;
19
20
     for (p=last; p!=-1 && !st[p].next.count(c); p=st[p].link)
21
       st[p].next[c] = cur;
22
     if (p = -1)
23
       st[cur].link = 0;
24
     else {
25
       int q = st[p].next[c];
26
       if (st[p].len + 1 = st[q].len)
27
          st[cur].link = q;
28
       else {
29
         \quad \textbf{int} \  \, \textbf{clone} \, = \, \textbf{sz} +\!\!\! +\!;
30
          st[clone].len = st[p].len + 1;
31
          st[clone].next = st[q].next;
          st clone link = st [q]. link;
32
33
          for (; p!=-1 \&\& st[p].next[c]==q; p=st[p].link)
34
            st[p].next[c] = clone;
35
          st[q]. link = st[cur]. link = clone;
36
37
38
     last = cur;
39
```

4.5 Palindromes

```
for(i = 0; i < n; i++){
     if(i > r) k = 1;
 3
     else k = \min(d1[l + r - i], r - i);
 4
 5
     while (0 \le i-k \&\& i+k < n \&\& s[i-k] == s[i+k]) k++;
 6
     d1[i] = k;
 7
     if(i + k - 1 > r)
 8
       r \; = \; i \; + \; k \; - \; 1 \, , \; \; l \; = \; i \; - \; k \; + \; 1 \, ;
 9
   }
10
11
   for (i = 0; i < n; i++){
12
     if(i > r) k = 0;
13
     else k = \min(d2[1 + r - i + 1], r - i + 1);
     while(i + k < n \&\& i - k - 1 >= 0 \&\& s[i+k] == s[i - k - 1]) k++;
15
16
     d2[i] = k;
17
     if(i + k - 1 > r)
18
19
        l = i - k, r = i + k - 1;
20
```

4.6 Lyndon decomposition & Duval

```
// Lyndon decomposition
 2|\mathbf{for}(\mathbf{int} \ i = 0; \ i < n;)|
      \quad \textbf{int} \quad j{=}i{+}1, \ k{=}i \ ;
       while (j < n \&\& s[k] <= s[j]) {
 4
 5
         if (s[k] < s[j])
 6
           k = i;
 7
         else
           ++k;
 9
         ++j;
10
       while (i \le k) {
11
         cout \ll s.substr (i, j-k) \ll ';
12
13
         i \ += \ j \ - \ k \, ;
14
15
16
17
    string \ min\_cyclic\_shift \ (string \ s) \ \{
18
      s += s;
19
      int n = (int) s.length();
20
      int i=0, ans=0;
21
      \mathbf{while} \ (\, i \, < \, n/2) \ \{\,
         ans = i;
23
         int j=i+1, k=i;
24
         \label{eq:while} \textbf{while} \ (\, j \ < \ n \ \&\& \ s \, [\, k \, ] \ <= \ s \, [\, j \, ]\,) \ \{\,
25
            if (s[k] < s[j])
              k = i;
26
27
            _{
m else}
28
               +\!\!+\!\!k;
29
            ++j;
30
31
         \mathbf{while} \ (i <= k) \quad i += j - k;
32
33
      return s.substr (ans, n/2);
34 }
```

5 Modular

```
All \ algorithms \ described \ here \ work \ on \ nonnegative \ integers \, .
 3
   // return a % b (positive value)
 4 int mod(int a, int b) {
    return ((a\%b)+b)\%b;
 6
 8
   // computes gcd(a,b)
 9 int gcd(int a, int b) {
10
     int tmp;
     while(b){a%=b; tmp=a; a=b; b=tmp;}
11
12
13
14
15
   // computes lcm(a,b)
16 int lcm(int a, int b) {
17
     return a/\gcd(a,b)*b;
18
19
   // returns d=\gcd(a,b); finds x,y such that d=ax+by
20
21 int extended_euclid(int a, int b, int &x, int &y) {
     \quad \textbf{int} \ xx \, = \, y \, = \, 0\,; \\
22
     int yy = x = 1;
23
24
     while (b) {
25
       \quad \textbf{int} \ q \, = \, a/b \, ;
26
       int t = b; b = a\%b; a = t;
27
       t = xx; xx = x-q*xx; x = t;
28
       t = yy; yy = y-q*yy; y = t;
29
30
     return a;
31
32
33
   // finds all solutions to ax = b \pmod{n}
34 ve<int> modular linear equation solver(int a, int b, int n) {
35
     int x, y;
36
     ve<int> solutions;
     int d = extended_euclid(a, n, x, y);
37
38
     if (!(b%d)) {
39
       x = mod (x*(b/d), n);
40
       \mbox{ for } (\mbox{ int } i = 0; \ i < d; \ i++)
41
          solutions.push back(mod(x + i*(n/d), n));
42
43
     return solutions;
44
45
46
   // computes b such that ab = 1 \pmod{n}, returns -1 on failure
47 int mod_inverse(int a, int n) {
48
     \mathbf{int}\ \mathbf{x}\,,\ \mathbf{y}\,;
     \mathbf{int}\ d = \mathtt{extended\_euclid}(\mathtt{a},\ \mathtt{n},\ \mathtt{x},\ \mathtt{y})\,;
49
50
     if (d > 1) return -1;
51
     return mod(x,n);
52
53
54
   // find z such that z % x=a, z % y=b. Here, z is unique modulo M=lcm(x,y).
55
   // Return (z,M). On failure, M=-1.
56
   pii chinese_remainder_theorem(int x, int a, int y, int b) {
57
     int s, t;
58
     int d = extended_euclid(x, y, s, t);
59
     if (a\%d != b\%d) return make_pair(0, -1);
60
     return make pair(mod(s*b*x+t*a*y,x*y)/d, x*y/d);
61|}
62
63
   // Chinese remainder theorem: find z such that
   // z % x[i] = a[i] for all i. Note that the solution is
64
      unique modulo M = lcm i (x[i]). Return (z,M). On failure, M = -1.
   pii chinese_remainder_theorem(const ve<int> &x, const ve<int> &a) {
66
     pii ret = make pair(a[0], x[0]);
68
     for (int i = 1; i < x.size(); i++) {
69
       ret = chinese\_remainder\_theorem(ret.second, ret.first, x[i], a[i]);
70
       if (ret.second = -1) break;
71
72
     return ret;
```

6 Data Structures

6.1 Treap

```
// key(l) < key, key(r) >= key
   void split (pitem t, int key, pitem & l, pitem & r) {
      if (!t) l = r = NULL;
      else if (key < t->key)
 4
 5
        split (t->l, key, l, t->l), r = t;
 6
 7
        s\, p\, l\, i\, t \quad (\, t -\!\!> \!\! r\;,\;\; key\;,\;\; t -\!\!> \!\! r\;,\;\; r\,)\;, \quad l\; =\; t\;;
 8
 9
10
   void insert (pitem & t, pitem it) {
11
      if (!t) t = it;
12
      else if (it->prior > t->prior)
13
        split (t, it \rightarrow key, it \rightarrow l, it \rightarrow r), t = it;
14
      else
        insert (it->key < t->key ? t->l : t->r, it);
15
16
17
   18
19
20
      else if (l->prior > r->prior)
21
        merge (1->r, 1->r, r), t = 1;
22
      else
        merge \ (r \! - \! > \! l \;, \ l \;, \ r \! - \! > \! l \;) \;, \quad t \; = \; r \;;
23
24 }
```

6.2 Implicit Treap

```
1 int cnt (pitem t) { return t ? t->cnt : 0; }
   void upd cnt (pitem t) {
 4
      if (t) t \rightarrow cnt = 1 + cnt(t \rightarrow l) + cnt(t \rightarrow r);
 5|}
 6
 7
   void merge (pitem & t, pitem l, pitem r) {
      if (! l | | ! r)
         t = 1 ? 1 : r;
 9
10
      else if (l->prior > r->prior)
11
        merge (1->r, 1->r, r), t = 1;
12
13
        merge (r\rightarrow l, l, r\rightarrow l), t = r;
      upd_cnt (t);
14
15
16
   // key(l) < key, key(r) > key
   void split (pitem t, pitem & l, pitem & r, int key, int add = 0) {
17
18
      if (!t)
19
         return void (l = r = 0);
20
      \mathbf{int} \ \mathbf{cur} \underline{\ } \mathbf{key} \ = \ \mathbf{add} \ + \ \mathbf{cnt} \, (\, \mathbf{t} - \!\!\! > \!\! \mathbf{l} \,) \, ;
21
      if (key <= cur_key)</pre>
22
         split (t\rightarrow l, l, t\rightarrow l, key, add), r = t;
23
24
         split \ (t-\!\!>\!\! r\,,\ t-\!\!>\!\! r\,,\ key\,,\ add\,+\,1\,+\,cnt\,(\,t-\!\!>\!\! l\,)\,)\,,\quad l\,=\,t\,;
25
      upd_cnt (t);
26
27
28
   pitem build(int *a, int cnt) {
29
      if (cnt <= 0) return NULL;</pre>
30
      int p = cnt/2;
      pitem root = &buf[buf_sz++];
31
32
      root->val = a[p]; // root->prior ???
33
      root -> l = build(a, p);
34
      root \rightarrow r = build(a + p + 1, cnt - p - 1);
35
      upd cnt(root);
36
      return root;
37 }
```

6.3 Fenwick Tree

```
// 1-indexation
   void set(int x, int v) {
     \mathbf{while}\,(\,x\,<=\,N)\ \{
4
       tree[x] += v;
       x += (x \& -x);
5
6
7
   int get(int x) {
9
     int res = 0;
10
     \mathbf{while}(x) {
11
       res += tree[x];
12
       x = (x \& -x);
13
14
     return res;
15
16
17
   // 0-indexation
18 | int sum(int r) {
19
     int res = 0;
20
     for (; r >= 0; r = (r & (r+1)) - 1)
21
       res += t[r];
     return res;
23 }
24
   void inc(int i, int val) {
     for (; i < n; i = (i | (i+1)))
 t[i] += val;
25
26
27
```

6.4 Stack with Min

6.5 Queue with Min

7 Geometry

7.1 Point 2D

```
// point projection on line (A, B)
   pt getH(const pt & A, const pt & B) const {
     pt C = *this;
      pt v = B - A;
4
     \begin{array}{lll} pt & u = C - A; \\ \textbf{double} & k = v \ \hat{} \ u \ / \ v.len(); \end{array}
5
6
7
     v = v.norm(k);
8
      pt H = A + v;
9
     return H;
10 }
11
12
   // Intersection of lines (A, B) & (C, D)
13 int getIntersection (const pt & A, const pt & B, const pt & C, const pt & D, pt & O) {
     pt\ v\,=\,B\,-\,A;
14
      double s1 = (C - A) * (D - A);
15
16
      double s2 = (D - B) * (C - B);
      \mathbf{double} \ \ \mathbf{s} \ = \ \mathbf{s1} \ + \ \mathbf{s2} \ ;
17
18
      if(doubleEqual(s, 0)) {
        if (!A.isOnLine(C, D) ) {
19
20
           return 0;
21
22
        return 2;
23
24
     v = v / s;
25
      v = v * s1;
26
     O = A + v;
27
      return 1;
28
29
30
   // Intersection of circles (A, rA) & (B, rB)
31 int getIntersection (const pt & A, double rA, const pt & B, double rB, pt & M, pt & N) {
      double d = A. \operatorname{distTo}(B);
33
      \mathbf{if}\left(\mathsf{doubleLess}\left(\mathsf{rA}\,+\,\mathsf{rB}\,,\;\,\mathsf{d}\right)\;\;|\;|\;\;\mathsf{doubleLess}\left(\mathsf{d},\;\;\mathsf{fabs}\left(\mathsf{rA}\,-\,\mathsf{rB}\right)\right)\;\;\right)\;\;\{
34
        return 0;
35
36
      double a = (sqr(rA) - sqr(rB) + sqr(d)) / 2 / d;
37
      double h = mySqrt(sqr(rA) - sqr(a));
      pt v = B - A;
38
     pt u = v.rotate();
40
      v = v.norm(a);
41
     u = u.norm(h);
42
      pt H = A + v;
     M = H + u;
43
44
     N = H - u;
      if(u.isZero()) return 1;
45
      return 2;
46
47
48
   // Intersection of line (A, B) & circle (O, r)
50 int getIntersection (const pt & A, const pt & B, const pt & O, double r, pt & M, pt & N) {
51
      double h = O. \operatorname{distTo}(A, B);
52
      if(doubleLess(r, h) ) {
53
        return 0:
54
55
     pt H = O.getH(A, B);
56
     pt v = B - A;
      \mathbf{double} \ k = \, \mathrm{mySqrt} \left( \, \mathrm{sqr} \left( \, \mathrm{r} \, \right) \, - \, \mathrm{sqr} \left( \, \mathrm{h} \right) \, \right) \, ;
57
58
      v = v.norm(k);
59
     M = H + v;
60
     N\,=\,H\,-\,\,v\,;
61
      if(v.isZero() ) return 1;
62
      return 2;
63 }
64
   // Tangent lines through point A to circle (O, r)
65
66 int getTangent(const pt & A, const pt & O, double r, pt & M, pt & N) {
67
     pt v = O - A;
      double d = v.len();
68
69
      if(doubleLess(d, r) ) return 0;
```

```
double alpha = asin(r / d);
71
      double L = mySqrt(sqr(d) - sqr(r));
72
      v = v.norm(L);
73
     M = A + v.rotate(alpha);
74
     N = A - v.rotate(alpha);
75
      if(doubleEqual(r, d)) return 1;
76
      return 2;
77
78
79
    // Outer tangent lines between circles (A, rA) & (B, rB)
80
   void getOutTangent(pt A, double rA, pt B, double rB, pair<pt, pt> & P, pair<pt, pt> & Q) {
81
      if(rA > rB) {
82
        swap(rA, rB);
        swap(A, B);
83
84
85
     pt u = (A - B) \cdot rotate(asin(r / d)) \cdot rotate() \cdot norm(rA);
86
     P. first = A + u;
87
     Q. first = A - u;
     pt\ T1\,,\ T2\,;
88
     getTangent(A, B, rB - rA, T1, T2);
90
     P.second = T1 + u;
91
     Q.second = T2 - u;
92
93
   // Inner tangent lines between circles (A, rA) & (B, rB)
   void getInTangent(pt A, double rA, pt B, double rB, pair<pt, pt> & P, pair<pt, pt> & Q) {
95
     pt I = (A * rB / (rA + rB)) + (B * rA / (rA + rB));
      pt M1, N1, M2, N2;
97
      getTangent(I, A, rA, M1, N1);
98
99
      getTangent(I, B, rB, M2, N2);
100
      if(I.isOnLine(M1, M2)) P = mp(M1, M2), Q = mp(N1, N2);
101
      else P = mp(M1, N2), Q = mp(N1, M2);
102
```

7.2 Point 3D

```
1 pt operator*(const pt & p) const {
    return pt(y * p.z - z * p.y,
3
            z * p.x - x * p.z,
            x * p.y - y * p.x );
4
5
6
   // Projection on line (A, B)
  pt getH(const pt & A, const pt & B) const {
8
    pt C = *this;
10
    pt v = B - A;
11
    pt u = C - A;
    double k = v \hat{u} / v.length();
12
13
    v = v.norm(k);
14
    pt H = A + v;
15
    return H;
16
17
  // Rotation
18
  pt rotate(pt normal) const { return *this * normal; }
21 pt rotate (double alpha, const pt & normal) const {
22
    return rotate(cos(alpha), sin(alpha), normal);
23 }
24
25
  pt rotate (double cosa, double sina, const pt & normal) const {
26
    pt v = *this;
27
    pt u = v.rotate(normal);
28
    pt w = v * cosa + u * sina;
29
    return w;
30
31
   // Undirected angle
32
33 double getAngle(pt u) const {
    pt v = *this;
35
    return atan2((v * u).length(), v ^ u);
36 }
```

```
38
  bool isOnPlane(const pt & A, const pt & B, const pt & C) const {
39
    return doubleEqual( (A - *this) * (B - *this) ^ (C - *this), 0);
40
41
42
   // Intersection of lines (A, B) & (C, D)
43 int getIntersection(const pt & A, const pt & B, const pt & C, const pt & D, pt & O) {
     if(!doubleEqual((B-A)*(C-A)^(D-A), 0)) {
44
      throw "It's not plane";
45
46
     if(doubleEqual((A - B) * (C - D)).length(), 0)) 
47
       if (A. isOnLine (C, D) ) return 2;
48
49
       return 0;
50
     pt normal = ((A - B) * (C - B)).norm();
51
52
     pt v = B - A;
    53
54
55
     \mathbf{double} \ \ \mathbf{s} \ = \ \mathbf{s1} \ + \ \mathbf{s2} \ ;
56
    v = v / s;
57
    v = v * s1;
58
    O = A + v;
59
     return 1;
60
   // Intersection of line (A, B) & plane (C, D, E)
62
63 int getIntersection (const pt & A, const pt & B, const pt & C, const pt & D, const pt & E, pt & O) {
    pt v = B - A;
64
    double V1 = (C - A) * (D - A) ^ (E - A); // thetrahedra (A, C, D, E) volume
65
     double V2 = (D - B) * (C - B) ^{\circ} (E - B);
67
     \mathbf{double}\ V=\,V1\,+\,V2\,;
     v = v / V;
68
     if(doubleEqual(V, 0))
69
       if (A. isOnPlane (C, D, E) ) return 2;
70
71
72
73
    v = v * V1;
    O = A + v;
74
75
    return 1;
76
77
78
   // Intersection of planes (A, nA) \& (B, nB)
79 bool getIntersection (const pt & A, const pt & nA, const pt & B, const pt & nB, pt & P, pt & Q) {
80
    pt\ n = nA * nB;
     if(n.isZero() ) return false;
81
82
     pt v = n * nA;
     double k = (B - A) \hat{n} B / (v \hat{n} B);
83
84
85
    v = v * k;
86
    P = A + v;
87
    Q = P + n;
88
     return true;
89
```

	Theoretical	Computer Science Cheat Sheet			
	Definitions	Series			
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$			
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	i=1 $i=1$ $i=1$ In general:			
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$			
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{n-1} i^m = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k n^{m+1-k}.$			
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:			
$\sup S$	least $b \in \mathbb{R}$ such that $b \geq s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$			
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$			
$ \liminf_{n \to \infty} a_n $	$\lim_{n\to\infty}\inf\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	Harmonic series: $ \frac{n}{n} = \sum_{i=1}^{n} 1 \qquad \sum_{i=1}^{n} \frac{n(n+1)}{n} \qquad n(n-1) $			
$ \limsup_{n \to \infty} a_n $	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	$H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$			
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$			
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^n$, 3. $\binom{n}{k} = \binom{n}{n-k}$,			
${n \brace k}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n},$			
$\binom{n}{k}$	1st order Eulerian numbers: Permutations $\pi_1 \pi_2 \dots \pi_n$ on $\{1, 2, \dots, n\}$ with k ascents.	$8. \ \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, \qquad \qquad 9. \ \sum_{k=0}^{n-1} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n},$			
$\left\langle\!\left\langle {n\atop k}\right\rangle\!\right\rangle$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k},$ 11. $\binom{n}{1} = \binom{n}{n} = 1,$			
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1,$ 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1},$			
		$16. \ \begin{bmatrix} n \\ n \end{bmatrix} = 1, \qquad \qquad 17. \ \begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$			
		${n \choose n-1} = {n \choose n-1} = {n \choose 2}, 20. \ \sum_{k=0}^n {n \choose k} = n!, 21. \ C_n = \frac{1}{n+1} {2n \choose n},$			
$22. \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n-1} \right\rangle$	22. $\binom{n}{0} = \binom{n}{n-1} = 1$, 23. $\binom{n}{k} = \binom{n}{n-1-k}$, 24. $\binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$,				
25. $\begin{pmatrix} 0 \\ k \end{pmatrix} = \begin{cases} 1 & \text{if } k = 0, \\ 0 & \text{otherwise} \end{cases}$ 26. $\begin{pmatrix} n \\ 1 \end{pmatrix} = 2^n - n - 1,$ 27. $\begin{pmatrix} n \\ 2 \end{pmatrix} = 3^n - (n+1)2^n + \binom{n+1}{2},$					
$28. \ \ x^n = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {x+k \choose n}, \qquad 29. \ \left\langle {n \atop m} \right\rangle = \sum_{k=0}^m {n+1 \choose k} (m+1-k)^n (-1)^k, \qquad 30. \ \ m! \left\{ {n \atop m} \right\} = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {k \choose n-m},$					
$31. \left\langle {n \atop m} \right\rangle = \sum_{k=0}^{n}$	$ \binom{n}{k} \binom{n-k}{m} (-1)^{n-k-m} k!, $	32. $\left\langle \left\langle n \atop 0 \right\rangle \right\rangle = 1,$ 33. $\left\langle \left\langle n \atop n \right\rangle \right\rangle = 0$ for $n \neq 0,$			
34. $\left\langle \!\! \left\langle \!\! \right\rangle \!\! \right\rangle = (k+1)^n$	$+1$ $\binom{n-1}{k}$ $+(2n-1-k)$ $\binom{n-1}{k}$	$ \begin{array}{c c} -1 \\ -1 \\ \end{array} $ $ 35. \sum_{k=0}^{n} \left\langle \left\langle {n \atop k} \right\rangle \right\rangle = \frac{(2n)^n}{2^n}, $			
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \frac{1}{k}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle n \right\rangle \!\! \right\rangle \left(x + n - 1 - k \right), $ $2n$	37. $\binom{n+1}{m+1} = \sum_{k} \binom{n}{k} \binom{k}{m} = \sum_{k=0}^{n} \binom{k}{m} (m+1)^{n-k},$			

Identities Cont.

38. $\begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} n^{\underline{n-k}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix}, \qquad \textbf{39.} \quad \begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \binom{n}{k} \binom{x+k}{2n},$ **41.** $\begin{bmatrix} n \\ m \end{bmatrix} = \sum_{k=1}^{n} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix} {k \choose m} (-1)^{m-k},$ **40.** $\binom{n}{m} = \sum_{k} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k},$

42.
$${m+n+1 \brace m} = \sum_{k=0}^{m} k {n+k \brace k},$$
43.
$${m+n+1 \brack m} = \sum_{k=0}^{m} k(n+k) {n+k \brack k},$$
44.
$${n \brack m} = \sum_{k=0}^{m} k(n+k) {n+k \brack k},$$

44.
$$\binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k},$$
 45. $(n-m)! \binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k},$ for $n \ge m$, **46.** $\binom{n}{n-m} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k},$ **47.** $\binom{n}{n-m} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k},$

$$\mathbf{48.} \ \, \left\{ \begin{array}{l} n \\ \ell+m \end{array} \right\} \begin{pmatrix} \ell+m \\ \ell \end{pmatrix} = \sum_{k} \left\{ \begin{array}{l} k \\ \ell \end{array} \right\} \begin{Bmatrix} n-k \\ m \end{Bmatrix} \binom{n}{k}, \qquad \qquad \mathbf{49.} \ \, \left[\begin{array}{l} n \\ \ell+m \end{array} \right] \binom{\ell+m}{\ell} = \sum_{k} \left[\begin{array}{l} k \\ \ell \end{array} \right] \begin{bmatrix} n-k \\ m \end{bmatrix} \binom{n}{k}.$$

Trees

Every tree with nvertices has n-1edges.

Kraft inequality: If the depths of the leaves of a binary tree are

$$d_1, \dots, d_n:$$

$$\sum_{i=1}^n 2^{-d_i} \le 1,$$

and equality holds only if every internal node has 2 sons.

Recurrences

Master method:

$$T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$ then

$$T(n) = \Theta(n^{\log_b a}).$$

If
$$f(n) = \Theta(n^{\log_b a})$$
 then
$$T(n) = \Theta(n^{\log_b a} \log_2 n).$$

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ such that af(n/b) < cf(n)for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have

$$t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n$$
, $T(1) = 1$.

Rewrite so that all terms involving Tare on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) - 3T(n/2) = n)$$

$$3(T(n/2) - 3T(n/4) = n/2)$$

. . .

$$3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$. Summing the right side we get

$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let $c=\frac{3}{2}$. Then we have

$$n \sum_{i=0}^{m-1} c^{i} = n \left(\frac{c^{m} - 1}{c - 1} \right)$$

$$= 2n(c^{\log_{2} n} - 1)$$

$$= 2n(c^{(k-1)\log_{c} n} - 1)$$

$$= 2n^{k} - 2n,$$

and so $T(n) = 3n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

= T_i .

And so
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^i .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- 3. Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- 5. The coefficient of x^i in G(x) is g_i . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

Multiply and sum:

$$\sum_{i\geq 0}^{1} g_{i+1} x^i = \sum_{i\geq 0}^{1} 2g_i x^i + \sum_{i\geq 0}^{1} x^i.$$

We choose $G(x) = \sum_{i \geq 0} x^i g_i$. Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

Simplify:

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for G(x):

$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions:

$$G(x) = x \left(\frac{2}{1 - 2x} - \frac{1}{1 - x} \right)$$

$$= x \left(2 \sum_{i \ge 0} 2^i x^i - \sum_{i \ge 0} x^i \right)$$

$$= \sum_{i \ge 0} (2^{i+1} - 1) x^{i+1}.$$

So
$$g_i = 2^i - 1$$
.

 $1\ 10\ 45\ 120\ 210\ 252\ 210\ 120\ 45\ 10\ 1$

	Theoretical Computer Science Cheat Sheet					
	$\pi \approx 3.14159, \qquad e \approx 2.7$		1828, $\gamma \approx 0.57721$, $\phi = \frac{1+\sqrt{5}}{2} \approx$	1.61803, $\hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx61803$		
i	2^i	p_i	General	Probability		
1	2	2	Bernoulli Numbers ($B_i = 0$, odd $i \neq 1$):	Continuous distributions: If		
2	4	3	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30},$	$\Pr[a < X < b] = \int_{-b}^{b} p(x) dx,$		
3	8	5	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}.$	Ja		
4	16	7	Change of base, quadratic formula:	then p is the probability density function of X . If		
5	32	11	$\log_b x = \frac{\log_a x}{\log_a b}, \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	$\Pr[X < a] = P(a),$		
6	64	13	oa -	then P is the distribution function of X . If		
7	128	17	Euler's number e : $e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	P and p both exist then		
8	256	19	2 0 21 120	$P(a) = \int_{-a}^{a} p(x) dx.$		
9	512	23	$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$	$J_{-\infty}$ Expectation: If X is discrete		
10	1,024	29	$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$.	-		
11	2,048	31	$(1,1)^n$ e $11e$ 0 1	$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$		
12	4,096	37	$\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{11e}{24n^2} - O\left(\frac{1}{n^3}\right).$	If X continuous then		
13	8,192	41	Harmonic numbers:	$E[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$		
14 15	16,384 32,768	43 47	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \dots$	$J-\infty$ $J-\infty$		
16	65,536	53	1	Variance, standard deviation: $VAR[X] = E[X^{2}] - E[X]^{2},$		
17	131,072	59	$ \ln n < H_n < \ln n + 1, $	$\sigma = \sqrt{\text{VAR}[X]}.$		
18	262,144	61	$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$	$\sigma = \sqrt{VAR[A]}.$ For events A and B:		
19	524,288	67	Factorial, Stirling's approximation:	$\Pr[A \vee B] = \Pr[A] + \Pr[B] - \Pr[A \wedge B]$		
20	1,048,576	71	1, 2, 6, 24, 120, 720, 5040, 40320, 362880,	$\Pr[A \wedge B] = \Pr[A] \cdot \Pr[B],$		
21	2,097,152	73		iff A and B are independent.		
22	4,194,304	79	$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$	$\Pr[A \land B]$		
23	8,388,608	83	Ackermann's function and inverse:	$\Pr[A B] = \frac{\Pr[A \land B]}{\Pr[B]}$		
24	16,777,216	89		For random variables X and Y :		
25	33,554,432	97	$a(i,j) = \begin{cases} 2^j & i = 1\\ a(i-1,2) & j = 1\\ a(i-1,a(i,j-1)) & i,j \ge 2 \end{cases}$	$E[X \cdot Y] = E[X] \cdot E[Y],$		
26	67,108,864	101		if X and Y are independent.		
27	134,217,728	103	$\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$	E[X+Y] = E[X] + E[Y],		
28	268,435,456	107	Binomial distribution:	E[cX] = c E[X]. Bayes' theorem:		
29	536,870,912	109	$\Pr[X=k] = \binom{n}{k} p^k q^{n-k}, \qquad q = 1 - p,$	-		
30	1,073,741,824	113	(**/	$\Pr[A_i B] = \frac{\Pr[B A_i]\Pr[A_i]}{\sum_{i=1}^n \Pr[A_i]\Pr[B A_i]}.$		
31	2,147,483,648	127	$E[X] = \sum_{k=1}^{n} k \binom{n}{k} p^k q^{n-k} = np.$	Inclusion-exclusion:		
32	4,294,967,296	131	k=1	$\Pr\left[\sqrt[n]{Y_{\cdot}}\right] = \sum_{i=1}^{n} \Pr[Y_{\cdot}] +$		
Pascal's Triangle			Poisson distribution: $e^{-\lambda}\lambda^k$	$\Pr\left[\bigvee_{i=1}^{N} X_i\right] = \sum_{i=1}^{N} \Pr[X_i] +$		
1			$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}, E[X] = \lambda.$	$\sum_{k=1}^{n} (x_k)^{k+1} \sum_{k=1}^{n} \sum_{k=1}^{n} [A, Y_k]$		
11			Normal (Gaussian) distribution:	$\sum_{k=2}^{n} (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr\left[\bigwedge_{j=1}^{k} X_{i_j}\right].$		
	121		$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}, E[X] = \mu.$	Moment inequalities: $i_i < \dots < i_k$ $j-1$		
	$\begin{array}{c} 1\ 3\ 3\ 1 \\ 1\ 4\ 6\ 4\ 1 \end{array}$		$\sqrt{2\pi\sigma}$ The "coupon collector": We are given a	$\Pr\left[X \ge \lambda \operatorname{E}[X]\right] \le \frac{1}{\lambda},$		
1 4 6 4 1 1 5 10 10 5 1			random coupon each day, and there are n	A .		
1 6 15 20 15 6 1			different types of coupons. The distribu-	$\Pr\left[\left X - \operatorname{E}[X]\right \ge \lambda \cdot \sigma\right] \le \frac{1}{\lambda^2}.$		
1 7 21 35 35 21 7 1			tion of coupons is uniform. The expected number of days to pass before we to col-	Geometric distribution:		
1 8 28 56 70 56 28 8 1			lect all n types is	$\Pr[X = k] = pq^{k-1}, \qquad q = 1 - p,$		
1 :	9 36 84 126 126 84		nH_n .	$\mathrm{E}[X] = \sum_{k=0}^{\infty} kpq^{k-1} = \frac{1}{2}.$		

Trigonometry

Pythagorean theorem: $C^2 = A^2 + B^2. \label{eq:constraint}$

$$C^2 = A^2 + B^2$$

Definitions:

$$\begin{aligned} \sin a &= A/C, & \cos a &= B/C, \\ \csc a &= C/A, & \sec a &= C/B, \\ \tan a &= \frac{\sin a}{\cos a} &= \frac{A}{B}, & \cot a &= \frac{\cos a}{\sin a} &= \frac{B}{A}. \end{aligned}$$

Area, radius of inscribed circle:

$$\frac{1}{2}AB$$
, $\frac{AB}{A+B+C}$.

$$\begin{split} & \operatorname{Identities:} \\ & \sin x = \frac{1}{\csc x}, & \cos x = \frac{1}{\sec x}, \\ & \tan x = \frac{1}{\cot x}, & \sin^2 x + \cos^2 x = 1, \\ & 1 + \tan^2 x = \sec^2 x, & 1 + \cot^2 x = \csc^2 x, \\ & \sin x = \cos\left(\frac{\pi}{2} - x\right), & \sin x = \sin(\pi - x), \\ & \cos x = -\cos(\pi - x), & \tan x = \cot\left(\frac{\pi}{2} - x\right), \\ & \cot x = -\cot(\pi - x), & \csc x = \cot\frac{\pi}{2} - \cot x, \\ & \sin(x \pm y) = \sin x \cos y \pm \cos x \sin y, \\ & \cos(x \pm y) = \cos x \cos y \mp \sin x \sin y, \\ & \tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}, \end{split}$$

$$\tan(x \pm y) = \frac{1}{1 + \tan x \tan y},$$

$$\cot(x + y) = \cot x \cot y \mp 1$$

$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y},$$

$$\sin 2x = 2\sin x \cos x, \qquad \qquad \sin 2x = \frac{2\tan x}{1 + \tan^2 x},$$

$$\cos 2x = \cos^2 x - \sin^2 x$$
, $\cos 2x = 2\cos^2 x - 1$

$$\cos 2x = 1 - 2\sin^2 x,$$
 $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x},$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}, \qquad \cot 2x = \frac{\cot^2 x - 1}{2\cot x},$$

$$\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$$

$$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$$

Euler's equation:

$$e^{ix} = \cos x + i\sin x, \qquad e^{i\pi} = -1.$$

v2.02 © 1994 by Steve Seiden sseiden@acm.org http://www.csc.lsu.edu/~seiden

Matrices

Multiplication:

$$C = A \cdot B$$
, $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$.

Determinants: $\det A \neq 0$ iff A is non-singular.

$$\det A \cdot B = \det A \cdot \det B,$$

$$\det A = \sum_{\pi} \prod_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$$

 2×2 and 3×3 determinant:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$$

$$\begin{vmatrix} a & b & c \\ d & e & f \end{vmatrix} = a \begin{vmatrix} b & c \\ -b \end{vmatrix} a \begin{vmatrix} c \\ -b \end{vmatrix} + bc$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$
$$= \underbrace{aei + bfg + cdh}_{aea} \underbrace{ihd}_{aea}$$

Permanents:

perm
$$A = \sum_{\pi} \prod_{i=1}^{n} a_{i,\pi(i)}$$
.

Hyperbolic Functions

Definitions:

$$\sinh x = \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2},$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \qquad \operatorname{csch} x = \frac{1}{\sinh x},$$

$$\operatorname{sech} x = \frac{1}{\cosh x}, \qquad \coth x = \frac{1}{\tanh x}.$$

Identities:

$$\cosh^2 x - \sinh^2 x = 1, \qquad \tanh^2 x + \operatorname{sech}^2 x = 1,$$

$$\coth^2 x - \operatorname{csch}^2 x = 1, \qquad \sinh(-x) = -\sinh x,$$

$$\cosh(-x) = \cosh x, \qquad \tanh(-x) = -\tanh x,$$

$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y,$$

$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y,$$

$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$$

 $\sinh 2x = 2 \sinh x \cosh x$,

$$\cosh 2x = \cosh^2 x + \sinh^2 x,$$

$$\cosh x + \sinh x = e^x, \qquad \cosh x - \sinh x = e^{-x},$$

$$(\cosh x + \sinh x)^n = \cosh nx + \sinh nx, \quad n \in \mathbb{Z},$$

$$2\sinh^2\frac{x}{2} = \cosh x - 1$$
, $2\cosh^2\frac{x}{2} = \cosh x + 1$.

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	in mathematics
0	0	1	0	you don't under-
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	stand things, you just get used to
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	them.
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	– J. von Neumann
$\frac{\pi}{2}$	1	$\overset{2}{0}$	∞	

More Trig.

$$c^2 = a^2 + b^2 - 2ab \cos C.$$

Area:

$$A = \frac{1}{2}hc,$$

$$= \frac{1}{2}ab\sin C,$$

$$= \frac{c^2\sin A\sin B}{2\sin C}.$$

$$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$$

$$s = \frac{1}{2}(a+b+c),$$

$$s_a = s-a,$$

$$s_b = s-b,$$

$$s_c = s-c.$$

More identities:

$$\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}},$$

$$\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}},$$

$$\tan \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}},$$

$$= \frac{1 - \cos x}{\sin x},$$

$$= \frac{1 + \cos x}{1 + \cos x},$$

$$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$$

$$= \frac{\sin x}{1 - \cos x},$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i},$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2},$$

$$\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}},$$

$$= -i\frac{e^{2ix} - 1}{e^{2ix} + 1},$$
$$\sin x = \frac{\sinh ix}{i},$$

$$cos x = cosh ix,$$

$$\tan x = \frac{\tanh ix}{1}$$

$$\tan x = \frac{\tanh ix}{i}.$$

Definitions:

Number Theory The Chinese remainder theorem: There exists a number C such that:

 $C \equiv r_1 \mod m_1$

: : :

 $C \equiv r_n \bmod m_n$

if m_i and m_j are relatively prime for $i \neq j$. Euler's function: $\phi(x)$ is the number of positive integers less than x relatively prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then

$$\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$$

Euler's theorem: If a and b are relatively prime then

$$1 \equiv a^{\phi(b)} \bmod b.$$

Fermat's theorem:

$$1 \equiv a^{p-1} \bmod p.$$

The Euclidean algorithm: if a > b are integers then

$$gcd(a, b) = gcd(a \mod b, b).$$

If $\prod_{i=1}^n p_i^{e_i}$ is the prime factorization of x

$$S(x) = \sum_{d|x} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$$

Perfect Numbers: x is an even perfect number iff $x = 2^{n-1}(2^n-1)$ and 2^n-1 is prime. Wilson's theorem: n is a prime iff

$$(n-1)! \equiv -1 \bmod n$$
.

Möbius inversion:
$$\mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of } \\ r & \text{distinct primes.} \end{cases}$$

$$G(a) = \sum_{d|a} F(d),$$

then

$$F(a) = \sum_{d|a} \mu(d) G\left(\frac{a}{d}\right).$$

Prime numbers:

$$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n} + O\left(\frac{n}{\ln n}\right),$$

$$n \qquad n \qquad 2!n$$

$$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3} + O\left(\frac{n}{(\ln n)^4}\right).$$

Graph	Tr	ieor

Loop	An edge connecting a ver-
_	tex to itself

DirectedEach edge has a direction. SimpleGraph with no loops or multi-edges.

WalkA sequence $v_0e_1v_1\dots e_\ell v_\ell$. TrailA walk with distinct edges. Pathwith distinct A trail vertices.

ConnectedA graph where there exists a path between any two vertices.

Component Α maximal connected subgraph.

Tree A connected acyclic graph. Free tree A tree with no root. DAGDirected acyclic graph. EulerianGraph with a trail visiting each edge exactly once.

Hamiltonian Graph with a cycle visiting each vertex exactly once. CutA set of edges whose re-

moval increases the number of components.

Cut-setA minimal cut. $Cut\ edge$ A size 1 cut. k-Connected A graph connected with

the removal of any k-1vertices.

 $\forall S \subseteq V, S \neq \emptyset$ we have k-Tough $k \cdot c(G - S) \le |S|$.

k-Regular A graph where all vertices have degree k.

k-Factor k-regular spanning subgraph.

A set of edges, no two of Matching which are adjacent.

CliqueA set of vertices, all of which are adjacent.

A set of vertices, none of Ind. set which are adjacent.

Vertex cover A set of vertices which cover all edges.

Planar graph A graph which can be embeded in the plane.

Plane graph An embedding of a planar graph.

$$\sum_{v \in V} \deg(v) = 2m.$$

If G is planar then n-m+f=2, so

$$f \le 2n - 4, \quad m \le 3n - 6.$$

Any planar graph has a vertex with de-

Notation:

E(G)Edge set

V(G)Vertex set

Number of components c(G)G[S]Induced subgraph

deg(v)Degree of v

 $\Delta(G)$ Maximum degree

 $\delta(G)$ Minimum degree Chromatic number

 $\chi(G)$ $\chi_E(G)$ Edge chromatic number

Complement graph G^c K_n Complete graph

 K_{n_1,n_2} Complete bipartite graph

 $r(k, \ell)$ Ramsey number

Geometry

Projective coordinates: triples (x, y, z), not all x, y and z zero.

$$(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$$

Cartesian Projective

(x, y)(x, y, 1)y = mx + b(m, -1, b)x = c(1,0,-c)

Distance formula, L_p and L_{∞}

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$
$$[|x_1 - x_0|^p + |y_1 - y_0|^p]^{1/p}.$$

$$\lim_{p \to \infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) :

$$\frac{1}{2}$$
 abs $\begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}$.

Angle formed by three points:

Line through two points (x_0, y_0) and (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$$

If I have seen farther than others. it is because I have stood on the shoulders of giants.

- Issac Newton

Wallis' identity:

$$\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$$

Brouncker's continued fraction expansion:

$$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \dots}}}}$$

Gregrory's series:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

Newton's series:

$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$$

Sharp's series:

$$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \dots \right)$$

Euler's series:

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$$

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots$$

$$\frac{\pi^2}{1^2} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$$

Partial Fractions

Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining

$$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)}$$

where the degree of N' is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor:

$$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$$

where

$$A = \left[\frac{N(x)}{D(x)}\right]_{x=a}.$$

For a repeated factor:

$$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$$

where

$$A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$$

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. - George Bernard Shaw

Calculus

Derivatives:

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
,

$$2. \frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx},$$

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
, 2. $\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$, 3. $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

$$\mathbf{4.} \ \frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx},$$

4.
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}, \quad \textbf{5.} \quad \frac{d(u/v)}{dx} = \frac{v\left(\frac{du}{dx}\right) - u\left(\frac{dv}{dx}\right)}{v^2}, \quad \textbf{6.} \quad \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx},$$

$$6. \ \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

7.
$$\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx}$$

$$8. \ \frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx},$$

$$9. \ \frac{d(\sin u)}{dx} = \cos u \frac{du}{dx},$$

$$\mathbf{10.} \ \frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx}$$

11.
$$\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx},$$

$$12. \ \frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx}$$

13.
$$\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$$

$$14. \ \frac{d(\csc u)}{dx} = -\cot u \csc u \frac{du}{dx}$$

$$15. \ \frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx},$$

$$16. \ \frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx},$$

17.
$$\frac{d(\arctan u)}{dx} = \frac{1}{1+u^2} \frac{du}{dx}$$

18.
$$\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1+u^2} \frac{du}{dx}$$

19.
$$\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

20.
$$\frac{d(\operatorname{arccsc} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx}$$

21.
$$\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx}$$

$$22. \frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$$

23.
$$\frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx}$$

24.
$$\frac{d(\coth u)}{dx} = -\operatorname{csch}^2 u \frac{du}{dx}$$

25.
$$\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$$

26.
$$\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

27.
$$\frac{d(\operatorname{arcsinh} u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx},$$

28.
$$\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}$$

$$29. \ \frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx},$$

30.
$$\frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx}$$

31.
$$\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

32.
$$\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}$$

Integrals:

$$1. \int cu \, dx = c \int u \, dx,$$

$$2. \int (u+v) dx = \int u dx + \int v dx,$$

3.
$$\int x^n dx = \frac{1}{n+1}x^{n+1}, \quad n \neq -1,$$

4.
$$\int \frac{1}{x} dx = \ln x$$
, **5.** $\int e^x dx = e^x$,

$$5. \int e^x \, dx = e^x,$$

$$6. \int \frac{dx}{1+x^2} = \arctan x,$$

$$\int x^{uu} dv$$

7.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$$

8.
$$\int \sin x \, dx = -\cos x,$$

$$9. \int \cos x \, dx = \sin x,$$

$$10. \int \tan x \, dx = -\ln|\cos x|,$$

$$\mathbf{11.} \int \cot x \, dx = \ln|\cos x|,$$

$$12. \int \sec x \, dx = \ln|\sec x + \tan x|$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$
, **13.** $\int \csc x \, dx = \ln|\csc x + \cot x|$,

14.
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}, \quad a > 0$$

Calculus Cont.

15.
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$$

16.
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), \quad a > 0,$$

17.
$$\int \sin^2(ax) dx = \frac{1}{2a} (ax - \sin(ax)\cos(ax)),$$

18.
$$\int \cos^2(ax)dx = \frac{1}{2a}(ax + \sin(ax)\cos(ax)),$$

$$19. \int \sec^2 x \, dx = \tan x,$$

$$20. \int \csc^2 x \, dx = -\cot x,$$

21.
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$
 22.
$$\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx,$$

22.
$$\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx,$$

23.
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \quad n \neq 1,$$

24.
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx, \quad n \neq 1,$$

25.
$$\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1,$$

26.
$$\int \csc^n x \, dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx$$
, $n \neq 1$, **27.** $\int \sinh x \, dx = \cosh x$, **28.** $\int \cosh x \, dx = \sinh x$,

29.
$$\int \tanh x \, dx = \ln|\cosh x|, \ \mathbf{30.} \ \int \coth x \, dx = \ln|\sinh x|, \ \mathbf{31.} \ \int \operatorname{sech} x \, dx = \arctan \sinh x, \ \mathbf{32.} \ \int \operatorname{csch} x \, dx = \ln|\tanh \frac{x}{2}|,$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$
 34.
$$\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x,$$

35.
$$\int \operatorname{sech}^2 x \, dx = \tanh x,$$

36.
$$\int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0,$$

37.
$$\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|,$$

38.
$$\int \operatorname{arccosh} \frac{x}{a} dx = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{cases}$$

39.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0,$$

40.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0,$$

41.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

42.
$$\int (a^2 - x^2)^{3/2} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

43.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, \quad a > 0,$$
 44.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$$
 45.
$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$$

44.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$$

45.
$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}}$$

46.
$$\int \sqrt{a^2 \pm x^2} \, dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right|,$$

47.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left| x + \sqrt{x^2 - a^2} \right|, \quad a > 0,$$

$$48. \int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|,$$

49.
$$\int x\sqrt{a+bx}\,dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2},$$

50.
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$$

51.
$$\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0,$$

52.
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

53.
$$\int x\sqrt{a^2 - x^2} \, dx = -\frac{1}{3}(a^2 - x^2)^{3/2},$$

54.
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

55.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

56.
$$\int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$$

57.
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

58.
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|,$$

59.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|}, \quad a > 0,$$

60.
$$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$$

61.
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|,$$

Calculus Cont.

62.
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{|x|}, \quad a > 0, \qquad 63. \int \frac{dx}{x^2\sqrt{x^2 + a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x},$$

63.
$$\int \frac{dx}{x^2 \sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x},$$

64.
$$\int \frac{x \, dx}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2},$$

65.
$$\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2 x^3},$$

66.
$$\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right|, & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$$

67.
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|, & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$$

68.
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$$

69.
$$\int \frac{x \, dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

70.
$$\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left| \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right|, & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{|x|\sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$$

71.
$$\int x^3 \sqrt{x^2 + a^2} \, dx = \left(\frac{1}{3}x^2 - \frac{2}{15}a^2\right)(x^2 + a^2)^{3/2}$$

72.
$$\int x^n \sin(ax) \, dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) \, dx,$$

73.
$$\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) dx$$

74.
$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$$

75.
$$\int x^n \ln(ax) \, dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$$

76.
$$\int x^n (\ln ax)^m \, dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} \, dx.$$

$$\begin{vmatrix} x^1 = & x^{\frac{1}{2}} & = & x^{\frac{1}{4}} \\ x^2 = & x^2 + x^{\frac{1}{2}} & = & x^{\frac{1}{2}} - x^{\frac{1}{4}} \\ x^3 = & x^{\frac{3}{2}} + 3x^{\frac{2}{2}} + x^{\frac{1}{2}} & = & x^{\frac{3}{3}} - 3x^{\frac{2}{2}} + x^{\frac{1}{4}} \\ x^4 = & x^{\frac{4}{4}} + 6x^{\frac{3}{4}} + 7x^{\frac{2}{2}} + x^{\frac{1}{4}} & = & x^{\frac{4}{4}} - 6x^{\frac{3}{4}} + 7x^{\frac{2}{2}} - x^{\frac{1}{4}} \\ x^5 = & x^{\frac{5}{2}} + 15x^{\frac{4}{4}} + 25x^{\frac{3}{2}} + 10x^{\frac{2}{2}} + x^{\frac{1}{4}} & = & x^{\frac{5}{2}} - 15x^{\frac{1}{4}} + 25x^{\frac{3}{3}} - 10x^{\frac{1}{2}} + x^{\frac{1}{4}} \\ x^{\frac{1}{4}} = & x^1 & x^{\frac{1}{4}} = & x^1 & x^{\frac{1}{4}} = & x^1 \\ x^{\frac{3}{4}} = & x^2 + x^1 & x^{\frac{3}{2}} = & x^2 - x^1 \\ x^{\frac{3}{4}} = & x^3 + 3x^2 + 2x^1 & x^{\frac{3}{2}} = & x^3 - 3x^2 + 2x^1 \\ x^{\frac{3}{4}} = & x^4 + 6x^3 + 11x^2 + 6x^1 & x^{\frac{4}{4}} = & x^4 - 6x^3 + 11x^2 - 6x^1 \\ x^{\frac{1}{5}} = & x^5 + 10x^4 + 35x^3 + 50x^2 + 24x^1 & x^{\frac{5}{2}} = & x^5 - 10x^4 + 35x^3 - 50x^2 + 24x^1 \end{vmatrix}$$

Finite Calculus

Difference, shift operators:

$$\Delta f(x) = f(x+1) - f(x),$$

$$E f(x) = f(x+1).$$

Fundamental Theorem:

$$f(x) = \Delta F(x) \Leftrightarrow \sum_{b} f(x)\delta x = F(x) + C.$$

$$\sum_{a}^{b} f(x)\delta x = \sum_{i=a}^{b-1} f(i).$$

Differences:

$$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$$

$$\Delta(uv) = u\Delta v + \operatorname{E} v\Delta u,$$

$$\Delta(x^{\underline{n}}) = nx^{\underline{n}-1},$$

$$\Delta(H_x) = x^{-1}, \qquad \Delta(2^x) = 2^x,$$

$$\Delta(c^x) = (c-1)c^x, \qquad \Delta\binom{x}{m} = \binom{x}{m-1}.$$

$$\Delta\binom{x}{m} = \binom{x}{m-1}$$

$$\sum cu\,\delta x = c\sum u\,\delta x,$$

$$\sum (u+v)\,\delta x = \sum u\,\delta x + \sum v\,\delta x,$$

$$\sum u \Delta v \, \delta x = uv - \sum \mathbf{E} \, v \Delta u \, \delta x,$$

$$\sum x^{\underline{n}} \, \delta x = \frac{x^{\underline{n+1}}}{\underline{m+1}}, \qquad \qquad \sum x^{\underline{-1}} \, \delta x = H_x,$$

$$\sum c^x \, \delta x = \frac{c^x}{c-1}, \qquad \sum {x \choose m} \, \delta x = {x \choose m+1}.$$

Falling Factorial Powers:

$$x^{\underline{n}} = x(x-1)\cdots(x-n+1), \quad n > 0,$$

 $x^{\underline{0}} = 1.$

$$x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+|n|)}, \quad n < 0,$$

$$x^{\underline{n+m}} = x^{\underline{m}}(x-m)^{\underline{n}}.$$

Rising Factorial Powers:

$$x^{\overline{n}} = x(x+1)\cdots(x+n-1), \quad n > 0,$$

$$x^0 = 1$$
.

$$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x-|n|)}, \quad n < 0,$$

$$x^{\overline{n+m}} = x^{\overline{m}} (x+m)^{\overline{n}}.$$

Conversion:

$$x^{\underline{n}} = (-1)^{n} (-x)^{\overline{n}} = (x - n + 1)^{\overline{n}}$$
$$= 1/(x + 1)^{-\overline{n}}.$$

$$x^{\overline{n}} = (-1)^n (-x)^{\underline{n}} = (x+n-1)^{\underline{n}}$$

$$= (-1)^{n} (-x)^{-1} = (x + n - 1)^{n}$$
$$= 1/(x - 1)^{-n},$$

$$x^{n} = \sum_{k=1}^{n} \begin{Bmatrix} n \\ k \end{Bmatrix} x^{\underline{k}} = \sum_{k=1}^{n} \begin{Bmatrix} n \\ k \end{Bmatrix} (-1)^{n-k} x^{\overline{k}},$$

$$x^{\underline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^k,$$

$$x^{\overline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k.$$

Series

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

Expansions:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} x^i,$$

$$\frac{1}{1-cx} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} c^i x^i,$$

$$\frac{1}{1-cx} = 1 + x^n + x^{2n} + x^{3n} + \cdots = \sum_{i=0}^{\infty} c^i x^i,$$

$$\frac{1}{1-x^n} = 1 + x^n + x^{2n} + x^{3n} + \cdots = \sum_{i=0}^{\infty} ix^i,$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \cdots = \sum_{i=0}^{\infty} ix^i,$$

$$x^k \frac{d^n}{dx^n} \left(\frac{1}{1-x}\right) = x + 2^n x^2 + 3^n x^3 + 4^n x^4 + \cdots = \sum_{i=0}^{\infty} i^n x^i,$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots = \sum_{i=0}^{\infty} (-1)^{i+1} \frac{x^i}{i},$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots = \sum_{i=0}^{\infty} (-1)^{i+1} \frac{x^i}{i},$$

$$\sin x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$\frac{1}{(1-x)^{n+1}} = 1 + (n+1)x + \binom{n+2}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{1}{2x}(1 - \sqrt{1-4x}) = 1 + x + 2x^2 + 5x^3 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{1}{1-x}\ln\frac{1}{1-x} = 1 + (2+n)x + \binom{4+n}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{1-x}\ln\frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{11}{6}x^3 + \frac{25}{12}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{H_{i-1}x^i}{i},$$

$$\frac{x}{1-x-x^2} = x + x^2 + 2x^3 + 3x^4 + \cdots = \sum_{i=0}^{\infty} F_{i}x^i,$$

$$\frac{x}{1-x} + \frac{x}{1-x} + \cdots = \sum_{i=0}^{\infty} F_{i}x^i.$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power series:

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Difference of like powers:

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power series:

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i,$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i,$$

$$xA'(x) = \sum_{i=1}^{\infty} i a_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} i a_{i-1} x^i,$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If $b_i = \sum_{i=0}^i a_i$ then

$$B(x) = \frac{1}{1 - x} A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j} \right) x^i.$$

God made the natural numbers; all the rest is the work of man. Leopold Kronecker

Series

Escher's Knot

Expansions:

Expansions:
$$\frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x} = \sum_{i=0}^{\infty} (H_{n+i} - H_n) \binom{n+i}{i} x^i, \qquad \left(\frac{1}{x}\right)^{\frac{1}{n}} = \sum_{i=0}^{\infty} \binom{1}{n} x^i, \qquad (e^x - 1)^n = \sum_{i=0}^{\infty} \binom{1}{n} \frac{1}{n} x^i, \qquad (e^x - 1)^n = \sum_{i=0}^{\infty} \binom{1}{n} \frac{n!}{i} x^i, \qquad (e^x - 1)^n = \sum_{i=0}^{\infty} \binom{1}{n} \frac{n!}{i} x^i, \qquad x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_2}{(2i)} x^i, \qquad x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_2}{(2i)} x^i, \qquad x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_2}{(2i)} x^i, \qquad x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_2}{(2i)} x^i, \qquad x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_2}{(2i)} x^i, \qquad x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_2}{(2i)} x^i, \qquad x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_2}{(2i)} x^i, \qquad x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_2}{i^x}, \qquad x \cot x = \sum_{i=1}^{\infty} \frac{(-4)^i B_2}{i^x}, \qquad x \cot x = \sum_{i=1}^{\infty} \frac{(-4)^i B_2}{i^x}, \qquad x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_2}{i^x},$$

$$\begin{pmatrix}
\frac{1}{x}
\end{pmatrix}^{-n} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} x^{i},$$

$$(e^{x} - 1)^{n} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} \frac{n!x^{i}}{i!},$$

$$x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^{i} B_{2i} x^{2i}}{(2i)!},$$

$$\frac{B_{2i} x^{2i-1}}{!}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^{x}},$$

$$\frac{\zeta(x-1)}{\zeta(x)} = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^{x}},$$

Stieltjes Integration

If G is continuous in the interval [a,b] and F is nondecreasing then

$$\int_{a}^{b} G(x) \, dF(x)$$

exists. If a < b < c then

$$\int_{a}^{c} G(x) \, dF(x) = \int_{a}^{b} G(x) \, dF(x) + \int_{b}^{c} G(x) \, dF(x).$$

$$\int_{a}^{b} (G(x) + H(x)) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$$

$$\int_{a}^{b} G(x) d(F(x) + H(x)) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$$

$$\int_{a}^{b} c \cdot G(x) dF(x) = \int_{a}^{b} G(x) d(c \cdot F(x)) = c \int_{a}^{b} G(x) dF(x),$$

$$\int_{a}^{b} G(x) dF(x) = G(b)F(b) - G(a)F(a) - \int_{a}^{b} F(x) dG(x).$$

If the integrals involved exist, and F possesses a derivative F' at every point in [a, b] then

$$\int_a^b G(x) dF(x) = \int_a^b G(x) F'(x) dx.$$

Cramer's Rule

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

Let $A = (a_{i,j})$ and B be the column matrix (b_i) . Then there is a unique solution iff $\det A \neq 0$. Let A_i be A with column i replaced by B. Then $x_i = \frac{\det A_i}{\det A}.$

$$x_i = \frac{\det A_i}{\det A}.$$

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius.

- William Blake (The Marriage of Heaven and Hell)

00 47 18 76 29 93 85 34 61 52 86 11 57 28 70 39 94 45 02 63 95 80 22 67 38 71 49 56 13 04 59 96 81 33 07 48 72 60 24 15 37 08 75 19 92 84 66 23 50 41 14 25 36 40 51 62 03 77 88 99 21 32 43 54 65 06 10 89 97 78 42 53 64 05 16 20 31 98 79 87

The Fibonacci number system: Every integer n has a unique representation

$$n = F_{k_1} + F_{k_2} + \dots + F_{k_m},$$

where $k_i \ge k_{i+1} + 2$ for all i , $1 \le i < m$ and $k_m \ge 2$.

Fibonacci Numbers

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$ Definitions:

$$F_i = F_{i-1} + F_{i-2}, \quad F_0 = F_1 = 1,$$

 $F_{-i} = (-1)^{i-1} F_i,$
 $F_i = \frac{1}{\sqrt{5}} \left(\phi^i - \hat{\phi}^i \right),$

Cassini's identity: for i > 0:

$$F_{i+1}F_{i-1} - F_i^2 = (-1)^i.$$

Additive rule:

$$F_{n+k} = F_k F_{n+1} + F_{k-1} F_n,$$

$$F_{2n} = F_n F_{n+1} + F_{n-1} F_n.$$

Calculation by matrices:

$$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$$