Universidade de Aveiro Exame de Sistemas Digitais

		5	_	ב	٥	ב	
	1	0,5					
	2	0,5					
	3	0,5 0,5 0,5					
	4	1					
	5	1					
	6	1					
	7	1					
	8	1,5					
	9	1,5					
	10	1,5					•

Parte I

NOTE BEM: Para cada questão proposta existem quatro alternativas de resposta, das quais apenas uma é completamente correcta. Deve assinalar uma e uma só resposta, fazendo um X na célula correspondente na tabela do canto superior. No caso de se enganar, pode anular a resposta assinalada desenhando um círculo a cheio sobre o X . Cada questão errada desconta 1/3 da cotação que lhe estiver atribuída. Cada questão não respondida vale 0.

- 1 Seja 1000 uma palavra do código BCD. A correspondente palavra no código Gray é:
 - a. 1100
 - b. 1111
 - c. 1001
 - d. 1011
- 2 Para uma representação binária com 6 bits o resultado da operação -10 25 em notação de complemento para 2
 - a. 111111
 - b. 100001
 - c. 011101
 - d. Nenhuma das anteriores
- 3 Seja F(x,y,z) = 1 quando duas ou mais variáveis independentes são 1. A representação de F(x,y,z) na 2^a Forma Canónica é:

a.
$$F(x, y, z) = \overline{(x+y+z)} + \overline{(x+y+\overline{z})} + \overline{(x+\overline{y}+z)} + \overline{(\overline{x}+y+z)}$$

b.
$$F(x, y, z) = xy\overline{z} + \overline{x}yz + x\overline{y}z + xyz$$

c.
$$F(x, y, z) = (x + y + z)(x + y + \overline{z})(x + \overline{y} + z)(\overline{x} + y + z)$$

d.
$$F(x, y, z) = \overline{\overline{xy\overline{z}}.\overline{\overline{x}yz}.\overline{x\overline{y}z}.\overline{xy}\overline{z}}$$

4 O mapa de Karnaugh seguinte descreve uma função booleana cuja expressão pode ser:

a.
$$xy\overline{w} + \overline{x}yw + \overline{w}z\overline{x} + wzx$$

b.
$$y(x \oplus w) + z(\overline{x \oplus w})$$

c.
$$\overline{xyw}.\overline{\overline{x}yw}.\overline{\overline{w}z\overline{x}}.\overline{wzx}$$

d. Todas as anteriores

Questão 4

5 A expressão mais simples para a função F implementada no circuito da figura é

a. $x_1x_0 + x_3x_2x_1$

b.
$$(x_1 + x_0)(x_3 + x_2 + x_1)$$

c.
$$\bar{x}_1 x_0 + \bar{x}_3 \bar{x}_2$$

d. Nenhuma das a nteriores

- Dado o circuito aritmético da figura e assumindo uma notação em complemento para 2 o valor decimal do resultado quando a variável X = 1 será:
 - 4 Bit Full Adder

- a. -3
- b. -2
- c. 3
- d. 2

- 7 O funcionamento do circuito da figura tem problemas quando
 - a. JK = 11 e há comutação permanente de estado
 - b. JK = 00 e há comutação de estado
 - c. JK = 10 e Q = 1
 - d. JK = 01 e Q = 0

Questão 6

8 O contador da figura pode funcionar

- a. Num de 3 ciclos de contagem
- b. Num de 2 ciclos de contagem
- c. Num de 4 ciclos de contagem
- d. Nenhuma das anteriores

(Nota: O 74175 tem 4 Flip-Flops D em paralelo)

Questão 8

9 Num contador binário de n bits implementado com flip-flops D as equações de excitação são (Veja o que acontece por exemplo com n=4)

$$\text{a.} \quad D_0 = \overline{Q}_0, \quad D_1 = Q_1 \oplus Q_0, \quad D_2 = Q_2 \oplus Q_1 Q_0, \ldots, \quad D_{n-1} = Q_{n-1} \oplus Q_{n-2} Q_{n-3} \ldots Q_0$$

$$\text{b.} \quad D_0 = 1, \quad D_1 = Q_1 + Q_0, \quad D_2 = Q_2 + Q_1 Q_0, \ldots, \quad D_{n-1} = Q_{n-1} + Q_{n-2} Q_{n-3} \ldots Q_0$$

- c. $D_0 = 1$, $D_1 = Q_1 \oplus Q_0$, $D_2 = Q_2 \oplus Q_1Q_0$,..., $D_{n-1} = Q_{n-1} \oplus Q_{n-2}Q_{n-3} \dots Q_0$
- d. Nenhuma das anteriores
- 10 O diagrama de estados da figura apresenta
 - a. 3 estados redundantes
 - b. 2 estados redundantes
 - c. 4 estados redundantes
 - d. Nenhum estado redundante

Questão 10

Parte II

1. Considere o circuito da figura e tenha em conta o conteúdo da PROM de acordo com a tabela. Note que o 74163 é um contador binário de 4 bits com LOAD e CLR síncronos

Conteúdo da PROM

OUT5OUT0											
0	0	1	0	0	0						
1	0	0	1	0	0						
0	0	1	1	0	0						
0	0	0	1	0	0						
0	0	1	0	0	0						
0	1	0	0	0	0						
0	0	1	0	0	0						
1	0	0	0	1	0						
1 0	0	1	1	0	0						
1	1	0	1	0	1						
1	1	1	0	0	0						
0	1	0	1	0	0						
0	1	1	0	0	0						
1	0	0	0	0	0						
0	1	1	0	0	0						
0	1	0	1	0	1						

Problema 1

- a. Diga, justificando qual o modelo de máquina sequencial síncrona representado pelo circuito da figura
- b. Determine o digrama de estados
- c. Quais os padrões binários que o sistema detecta e em que condições ocorrem essas detecções.
- d. Pretende-se substituir a PROM por uma PAL. Diga quais as dimensões mínimas que a PAL deverá apresentar.
- e. Sendo tsu = 10 ns, th = 5 ns e tphl = tplh = 20 ns os tempos de *setup*, *hold* e de propagação dos flip-flops, qual o máximo tempo de atraso que a PAL deverá introduzir no sistema de tal forma que a frequência máxima de funcionamento seja de 25 MHz.
- 2. Pretende-se projectar uma linha de atraso programável que permita atrasos até 16 ciclos de relógio. Para além da entrada série X, o sistema tem ainda 4 entradas A3...A0 que permitem definir o tempo de atraso associado à saída Y. Concretamente o nº de atrasos será N+1 em que N é o equivalente decimal do número binário A3...A0
- a. Implemente o sistema apenas com registos de deslocamento de 4 bits e multiplexers de 4:1. Minimize o nº de componentes.
- b. De acordo com a solução proposta em a) determine a máxima frequência de funcionamento da linha de atraso admitindo que tsu = 10 ns, th = 5 ns e tphl = tplh = 20 ns os tempos de *setup*, *hold* e de propagação dos flip-flops e o tempo de atraso de propagação associado a cada multiplexer é de 10 ns.