

École doctorale L2S

THÈSE

pour obtenir le grade de docteur

Université de Montpellier

Spécialité doctorale "Informatique"

présentée et soutenue publiquement par

Jeremy DEVERDUN

le 14 septembre 2015

A la recherche de biomarqueurs vasculaires issues de l'IRM multimodale : mise en place d'un protocole expérimental et d'outils de modélisations associés

Directeur de thèse : François MOLINO

Co-directeurs de thèse : Alain Bonafé, Stéphane Chemouny

Jury

M. Alexandre Krainik,	PU-PH, CHU Grenoble	Rapporteur
M. Emmanuel Barbier,	DR Inserm, GIN	Rapporteur
Mme Emmanuelle Le Bars,	IR, INM	Jury
M. Mokhtar Zagzoule,	Professeur IMFT	Jury
M. Nicolas Menjot de Champfleur,	MCU-PH, INM	Invité
Mme. Agnès Malgouyres ,	Responsable AM, Siemens	Invitée
M. Patrice Mollard,	DR CNRS, IGF	Invité

Table des matières

1	Introduction	2
	1.1 Introduction	2
	1.2 Références	
2	Imagerie morphologique de la circulation intracrânienne	5
	2.1 Anatomie	6
	2.2 Informations structurales fournies par l'imagerie IRM	13
	2.3 Références	2]
3	Implémentation de la reconstruction morphologique	2 4
	3.1 Reconstruction du réseau des artères et des veines	24
	3.2 Artérioles – capillaires - veinules	33
	3.3 Références	35
A	Annexes	J
	A.1 Figures annexes	
	A.2 Tableaux annexes	

Liste des figures

2.1	Schema de l'organisation structurale d'une branche du système sanguin	О
2.2	Représentation schématique du polygone de Willis	7
2.3	Représentation schématique de variations individuelles de la structure du	
	polygone de Willis	8
2.4	Structure des sinus veineux, <i>Elsevier Inc.</i>	11
2.5	Illustration des sinus de la base du crâne, <i>Anatomie de Gray (1858).</i>	12
2.6	Système ventriculaire du cerveau, <i>neurochirurgie-cedres.com</i>	13
2.7	Illustration d'angiographie IRM par injection de produit de contraste. Séquence SPARSE acquise sur une IRM 3T avec une antenne 20 canaux, TE/TR=1.37/3.28 ms, matrice = 384, détection du contraste : carbolus axial, débit = $2cc/s$ (12cc), agent de contraste : Dotarem, taille du voxel = $0.7 \times 0.7 \times 0.7$. L'image est une)
2.8	Saturation partielle et développement de l'état d'équilibre d'aimantation. A) TR >> T1 permettant une refonte complète de la magnétisation avant la 2ieme impulsion RF. B) TR court, la magnétisation Mz ne peut récupérer avant l'impulsion suivante, ce qui se traduit par l'apparition d'un nouvel état d'équilibre de la magnétisation (M_{ss} , avec $M_{ss} < M_0$) après quelques	
	impulsions	15
2.9	Exemple d'image d'IRM par temps de vol. Le sang entrant dans le volume à imager apparait en hyper signal. A gauche l'image brute, à droite une pro-	10
	jection des intensités maximales. mettre la séquence exacte et details sur la projection?	16
2.10	Principe du contraste de phase. En bleu à gauche est représenté le gradient, en rouge clair le vaisseau exploré, et sous forme de disques rouge les spins sanguins. Le spin mobile (M) pris en référence est en jaune. Les spins se déplaçant dans le vaisseau le long du gradient se déphasent de façon d'autant plus importante que leur vitesse est élevée. Après l'inversion des lobes du gradient d'encodage, le déphasage du spin immobile devient nul par rap-	
	port à l'état initial, tandis que le spin mobile lui présente un décalage	17
2.11	Exemple d'image de contraste de phase (projection)	18
2.12	Image de QSM obtenue après projection des intensités maximales. On met en évidence ici les veines pouvant être obtenues par simple seuillage. Notons que les sinus veineux en périphéries sont peu visibles du fait de l'érosion réalisée sur cette image (voir 7.2.3)revoir ref. Résolution 0.6 x 0.6 x 0.6 mm ³	20
3.1	Illustration de la segmentation des artères à partir d'une image de temps de vol. A) Image ToF brute, B) Image seuillée manuellement, C) Image filtrée	
	par le filtre de Frangi, D) Image filtrée seuillée	25

3.2	Schema possible en 3D selon la valeur de la valeur propre Λ_k (H=eleve, L=faible,	,
	N = bruité, +/- indique le signe de la valeur propre). Les valeurs propres sont	
	ordonnées selon ($ \lambda_1 \le \lambda_2 \le \lambda_3 $ (Frangi et collab. [1998])	26
3.3	Comparaison entre une projection des intensités maximales sur une image	
	en temps de vol brute à gauche, et l'image filtrée par le filtre de Frangi à	
	droite. L'image filtrée est moins bruitée et met en évidence les vaisseaux	
	d'intérêt.	27
3.4	Segmentations 3D obtenues à partir du contraste de phase (veines, bleu) et	
0.1	du ToF (artères, rouge)	27
3.5	Illustration de l'apport de l'information de la QSM dans la définition de l'ar-	
0.0	borescence veineuse. En bleu les veines identifiées en contraste de phase et	
	en rouges celles issues de la QSM	28
3.6	Création du squelette d'un rectangle par utilisation de la carte des distances.	20
3.0	De gauche à droite, le rectangle brut, la carte de distance, et le squelette	28
3.7	Exemple de génération de squelette à partir d'un objet avec différentes mé-	20
3.7	thodes. A) Objet brut, B) Squelette par amincissement itératif, C) squelette	
	par carte des distances et D) squelette par carte de champ potentiels. Figure	
	générée par utilisation de la toolbox Volume Skeleton Matlab Toolbox	20
0.0	(Liu, Rutgers University)	30
3.8	Application de la méthode d'amincissement itératif à une segmentation ar-	
	térielle. A gauche la segmentation et à droite le squelette résultant. Le résul-	
	tat est similaire avec les veines.	30
3.9	Illustration d'un graphe, les cercles représentent les nœuds	31
3.10	Illustration de l'élimination automatique des erreurs mis en place. De haut	
	en bas l'évolution du graphe, avec élimination des doubles liens directs, des	
	nœuds en série, puis des segments courts	31
3.11	Exemple de nettoyage automatique d'un graphe artériel. En haut le graphe	
	brut, en bas le graphe nettoyé	32
3.12	Illustration des liens effectués entre les artères et les veines. Les cercles bleus	
	représentent les extrémités des branches et les lignes bleues fines les liaisons.	
3.13	Illustration des rayons moyens dans les différents compartiments du système.	35

Liste des tableaux

Chapitre 1

Introduction

Sommaire

1.1	Introduction	2
1.2	Références	4

1.1 Introduction

La recherche de biomarqueurs originaux issues de l'Imagerie par Résonance Magnétique (IRM) multimodale est un enjeu médical majeur du fait du caractère non-invasif et relativement peu couteux de cette technique. L'imagerie par résonnance magnétique nucléaire est en effet un outil d'une grande versatilité qui permet de fournir plusieurs « points de vue » aussi bien concernant la structure que la dynamique cérébrale. L'étude de la rhéologie du système vasculaire encéphalique en IRM peut recourir à divers outils non invasifs tels que l'imagerie de perfusion par marquage des protons artériels du sang (Arterial Spin Labeling ou ASL - ALSOP et collab. [2014]), l'imagerie en contraste de phase ou l'imagerie de susceptibilité (Susceptibility Weighted Imaging, SWI). Ces mesures permettent l'estimation de différents paramètres de la rhéologie intracrânienne. On peut alors espérer, dans un contexte pathologique particulier, découvrir dans une des différentes modalités d'imagerie le marqueur spécifique qui permettra d'identifier et de suivre la pathologie.

Néanmoins, malgré les succès de cette stratégie, il apparaît naturel de passer aujourd'hui de marqueurs construits à partir d'une seule modalité d'imagerie à des marqueurs multimodaux combinant les riches informations issues de plusieurs imageries dynamiques. Cette combinaison peut être recherchée dans une perspective de pure corrélation, à travers des stratégies de type « data mining » (LIN et collab. [2012]). Cependant, d'un point de vue plus « mécanistique », les différents systèmes circulants cérébraux (liquide cérébrospinal et système vasculaire) étant fortement couplés, il paraît naturel de tenter une modélisation biophysique des écoulements regroupant les différentes informations jusque-là séparées. Sur cette base, les relations entre débit, pression, perfusion, perméabilité, à différentes échelles dans le cerveau, pourront être précisées sur des bases physiques bien établies, une telle description cohérente semble être une condition nécessaire à la découverte de nouveaux biomarqueurs robustes et bien validés.

Plusieurs groupes ont proposé des modélisations globales des écoulements intracrâniens sous forme de systèmes dynamiques d'équations différentielles non-linéaires (SOREK et collab. [1988]). Les écoulements sont décrits par un formalisme de compartiments (veines, capillaires, artérioles, artères), dont les caractéristiques géométriques (volume, rayon moyen,

longueur moyenne entre deux branchements) sont calculées sur la base des données d'imagerie, ou déduites du modèle lui-même. Au sein de ces compartiments, des variables dynamiques couplées (pression, flux) peuvent être calculées, pour des conditions aux limites données.

Les échelles spatiales et temporelles de description auxquelles se placent ces modèles en font de très bons candidats pour les applications cliniques et la comparaison détaillée aux données d'imagerie. De plus, la relative facilité de mise en oeuvre de ces modèles basés sur des équations différentielles

ordinaires devrait rendre possible un aller-retour rapide entre données d'imagerie et simulations afin de converger vers les paramètres significatifs que nous recherchons. Nous nous sommes donc proposé dans ce travail de tenter l'intégration la plus complète possible compte tenu de l'état de l'art des informations concernant la rhéologie intracrânienne au sein d'un modèle biophysique réaliste des écoulements. Nous nous sommes fixés comme but de construire ce modèle de façon sujet-spécifique, afin de rendre compte de la variabilité des structures impliquées.

Deux conditions doivent être réunies pour rendre possible la réalisation de ce programme. Tout d'abord la maîtrise détaillée des modalités d'imagerie IRM qui peuvent nourrir cette modélisation, de leurs possibilités et de leurs limites actuelles. Cette connaissance fixera le degré de détail de la modélisation, aussi bien en termes de résolution (spatiale et temporelle) que de variables dynamiques et de caractéristiques structurales accessibles. Elle aboutira à définir un protocole expérimental standard d'imagerie qui regroupe pour un sujet ou un patient donné toutes les informations qui seront nécessaires au modèle.

La seconde condition est de choisir la stratégie de modélisation la plus adaptée au type de données disponibles. Une revue de la littérature orientée par cette question est donc importante. En vue d'aboutir à un modèle sujet-spécifique le plus correct possible il sera essentiel de décrire la structure de la vascularisation cérébrale et du système ventriculaire. Cela fera ainsi l'objet d'un chapitre dédié au sein duquel nous chercherons en premier lieu à comprendre comment l'arborescence vasculaire, des artères aux veines en passant par les capillaires, se met en place afin d'assurer un apport suffisant en sang aux cellules et quelles en sont les éléments clefs. Nous ferons de même pour le système ventriculaire assurant la circulation du liquide cérébro-spinal. Par la suite, nous évoquerons les outils d'imagerie par résonnance magnétique à notre disposition pouvant fournir une information précise sur les structures du système circulatoire pour un sujet donné pour terminer par la définition d'un protocole d'acquisition morphologique en accord avec les séquences disponibles dans le service.

Le passage de plusieurs images à une structure 3D complète de l'arbre vasculaire est non trivial (LUBOZ et collab. [2005]). Il requiert l'identification des éléments d'intérêt dans l'image. Chaque imagerie fournira ainsi une partie du puzzle permettant d'appréhender l'ensemble de l'architecture. Nous évoquerons cette problématique dans un second chapitre dédié aux algorithmes de reconstructions nous ayant permis tout d'abord d'identifier les artères et les veines indépendamment et d'en extraire une représentation 3D sous forme de segments, d'appréhender ensuite les compartiments artériolaires, capillaires, et veinulaires en vue de faire la jonction entre artères et veines, et enfin de caractériser le système ventriculaire des ventricules latéraux à l'espace sous arachnoïdien.

L'information anatomique fournit la base structurelle au modèle. Pour être complet il doit se nourrir de données de la dynamique des flux intracrâniens, d'une part afin de définir les conditions limites et d'autre part afin de valider et interpréter les résultats de la simulation. Le troisième chapitre se focalisera sur l'imagerie dynamique de la circulation intracrânienne où, après quelques rappels sur les flux vasculaires et ventriculaires, seront

brièvement présentées les principales séquences IRM que nous allons utiliser pour caractériser les flux et le protocole mis en place. Sur la base de ces données nous pouvons établir un modèle de la circulation intracrânienne. Pour ce faire nous décrirons dans un quatrième chapitre brièvement les modèles à compartiments existants, les essais d'intégration des données structurales, et enfin notre modèle, avec les équations qui le composent et les résultats qu'il fournit. Nous tenterons dans ce cadre de les comparer à des travaux antérieurs d'autres équipes.

Parmi les séquences utilisées deux d'entre elles sont encore en pleine évolution car relativement récentes. La technique de marquage des protons artériels du sang (Arterial Spin Labeling) et l'imagerie quantitative de susceptibilité magnétique (QSM). Ces deux techniques sont plus compliquées à mettre en place et ont nécessité une attention toute particulière en vue d'obtenir des résultats de qualité. Il semble important de détailler dans des chapitres indépendants notre travail de développement et de validation de ces deux méthodes. Nous commencerons ainsi par l'Arterial Spin Labeling en décrivant les séquences existantes, les méthodes de quantifications de la perfusion cérébrale, les limitations, et une application sur un protocole de recherche. Nous continuerons ensuite par l'imagerie de susceptibilité magnétique (QSM) avec des bases théoriques, l'implémentation que nous avons réalisé et la validation de la mesure. Nous terminerons par les perspectives d'optimisation du modèle et ses applications.

1.2 Références

- ALSOP, D. C., J. A. DETRE, X. GOLAY, M. GÜNTHER, J. HENDRIKSE, L. HERNANDEZ-GARCIA, H. LU, B. J. MACINTOSH, L. M. PARKES, M. SMITS, M. J. P. VAN OSCH, D. J. J. WANG, E. C. WONG et G. ZAHARCHUK. 2014, «Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the european consortium for ASL in dementia», doi:10.1002/mrm.25197.
- LIN, A. L., A. R. LAIRD, P. T. FOX et J. H. GAO. 2012, «Multimodal MRI neuroimaging biomarkers for cognitive normal adults, amnestic mild cognitive impairment, and Alzheimer's disease», doi:10.1155/2012/907409.
- LUBOZ, V., X. WU, K. KRISSIAN, C. F. WESTIN, R. KIKINIS, S. COTIN et S. DAWSON. 2005, «A segmentation and reconstruction technique for 3D vascular structures», dans *Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)*, vol. 3749 LNCS, ISBN 3540293272, ISSN 03029743, p. 43–50, doi:10.1007/11566465_6.
- SOREK, S., J. BEAR et Z. KARNI. 1988, «A non-steady compartmental flow model of the cerebrovascular system.», *J. Biomech.*, vol. 21, n° 9, doi:10.1016/0021-9290(88)90279-5, p. 695–704, ISSN 00219290.

Chapitre 2

Imagerie morphologique de la circulation intracrânienne

Sommaire

2.1	Anato	omie	6	
	2.1.1	Artères et artérioles	6	
	2.1.2	Microcirculation	9	
	2.1.3	Veines	10	
	2.1.4	Liquide cérébro-spinal	12	
2.2	2 Informations structurales fournies par l'imagerie IRM			
	2.2.1	Imagerie par injection de produit de contraste	14	
	2.2.2	Système artériel : imagerie par temps de vol	15	
	2.2.3	Système artériel et veineux : imagerie en contraste de phase	16	
	2.2.4	Système veineux : Imagerie de susceptibilité magnétique	17	
	2.2.5	Mise en place d'un protocole d'acquisition	20	
2.3	Référ	ences	21	

Dans ce chapitre nous allons décrire comment l'imagerie IRM permet de reconstruire, pour un sujet ou un patient, une partie de l'anatomie du système circulant intracrânien. Dans un premier temps nous ferons une revue anatomique détaillée. En effet il est nécessaire, pour motiver toute simplification ultérieure, de s'appuyer sur la description la plus complète possible des données anatomiques. Dans une deuxième partie nous nous intéresserons aux outils d'imagerie IRM disponibles. Notre objectif sera, en référence à la description anatomique complète, de mettre en évidence le degré de précision actuel auquel peut descendre l'imagerie en termes de données de morphologie quantitative, de façon à adapter à ces données notre modèle biophysique.

FIGURE 2.1 – Schéma de l'organisation structurale d'une branche du système sanguin.

2.1 Anatomie

Les vaisseaux sanguins ont plusieurs fonctions. Ils permettent d'apporter les nutriments et l'oxygène nécessaire au bon fonctionnement des organes, tout en étant les porteurs des messagers hormonaux à grande distance dans l'organisme. La même structure simple de circulation sanguine se reproduit dans tous les tissus (Figure 2.1). Les artères amènent le sang oxygéné vers les muscles (dans notre cas le cerveau), ces artères se divisent en artérioles de calibres moins importants et capables d'assurer le contrôle du débit, pour enfin arriver aux capillaires, lieu d'échange moléculaire avec le tissu environnant. Le sang désoxygéné est ensuite évacué vers les veinules puis veines. Au niveau cérébral, nous retrouvons cette structure artères, capillaires, veines. Notons que les systèmes artériels et veineux ne sont pas symétriques.

2.1.1 Artères et artérioles

Architecture

Le cerveau est extrêmement dépendant de la circulation cérébrale du fait de son métabolisme élevé que manifeste sa sensibilité à l'ischémie (apport insuffisant de sang). La régularité de l'apport en sang dans le cerveau est assurée par plusieurs mécanismes. Structuralement, la présence de *vaisseaux collatéraux* fournit des voies d'accès parallèle au tissu cérébral. Dynamiquement, un système précis d'*autorégulation* impliquant des phénomènes de vasodilatation et vasoconstriction régule en permanence le débit.

On distingue morphologiquement et physiologiquement les circulations *antérieures* et *postérieures*. Du côté de la circulation antérieure, le sang est délivré au cerveau par l'intermédiaire des deux *carotides internes* (Figure 2). Chaque carotide interne bifurque pour former une *artère cérébrale moyenne* (ACM) et une *artère cérébrale antérieure* (ACA), allant perfuser respectivement les régions *temporales* et *pariétales* d'une part et les régions *frontales* de l'autre.

L'artère cérébrale antérieure se dirige en avant et en dedans, passe au-dessus du nerf optique et se rapproche de celle du côté opposé pour lui devenir parallèle et pénétrer dans la scissure qui sépare les deux hémisphères cérébraux. Elle contourne l'extrémité antérieure du corps calleux pour se diriger d'abord en haut, puis en haut et en arrière, et enfin en arrière et en bas, en suivant toute la surface supérieure du corps calleux. Elle se termine par trois branches : antérieure, moyenne et postérieure qui vont vasculariser la face interne des lobes frontaux et pariétaux débordant sur la face externe, ainsi que le bord supérieur

FIGURE 2.2 – Représentation schématique du polygone de Willis.

et l'extrémité antérieure de la face externe des hémisphères cérébraux.

L'artère cérébrale moyenne irrigue en superficie la majeure partie de la surface latérale de l'hémisphère, en dehors de l'extrémité supérieure des lobes frontaux et pariétaux et de la partie inférieure du lobe temporal; en profondeur, les ganglions de la base et la capsule interne.

Du côté de la *circulation postérieure*, l'entrée se fait par les deux *artères vertébrales* (VA). Elles se rejoignent pour former l'*artère basilaire*, qui se divise à son tour pour donner les *artères cérébrales postérieures gauches* et *droites* (ACP). Les branches *perforantes* de l'artère cérébrale postérieure sont à destination du thalamus et de la paroi du troisième ventricule. Les branches *choroïdiennes* irriguent le troisième ventricule, les plexus choroïdes, le pédoncule cérébral, le fornix, le thalamus et le noyau caudé. Les branches *corticales* vascularisent les lobes temporaux et occipitaux.

Les circulations postérieures et antérieures sont interconnectées par les *artères communicantes antérieures* et *postérieures* (ACoA et PCoA). Il en résulte une structure en forme d'anneau, appelée le *polygone ou cercle de Willis* (CoW, voir figure 2.2). Cette structure est la voie collatérale principale de la circulation cérébrale, elle fournit un apport parallèle de sang aux artères efférentes en cas de vaisseaux manquants ou bouchés (ALASTRUEY et collab. [2007]). Le cerveau représente 2% du poids total du corps humain, pourtant, il représente 20% de la consommation totale en oxygène et 25% de la consommation en glucose. Il est ainsi crucial de maintenir un apport constant et coordonné à l'activité neuronale. Le système artériel est principalement conducteur, c'est-à-dire qu'il amène le sang vers le cerveau. La présence du polygone de Willis permet de protéger en partie le cerveau. Les artères communicantes permettent d'alimenter des artères cérébrales par une source qui n'est pas l'artère habituelle. Ainsi, on peut vivre avec une carotide bouchée, car le sang

FIGURE 2.3 – Représentation schématique de variations individuelles de la structure du polygone de Willis.

passe tout de même dans les artères cérébrales qu'elle est censée desservir, en passant par le tronc basilaire ou l'artère communicante antérieure. Certaines occlusions ne peuvent cependant pas être compensées. Une anomalie du cercle de Willis n'est pas un danger en soi, mais rend un éventuel accident vasculaire plus dangereux.

Il existe une grande variabilité anatomique du polygone de Willis (figure 2.3). Sur la base de plus de 50 études anatomiques et radiologiques, Lippert et Pabst (LIPPERT et PABST [1985]) ont montré que près de 50 % de la population dispose d'un polygone de Willis avec au moins une artère absente, très petite ou incomplètement développée (hypoplasique) (Figure 3). Ces variations anatomiques réduisent la disponibilité des artères collatérales et augmentent le risque d'accident vasculaire cérébral (AVC) et d'accident ischémique transitoire (AIT) chez les patients (HENDERSON et collab. [2000]).

D'autres systèmes d'anastomoses sont présents au niveau du cerveau comme entre les artères cérébrales à la surface du cortex mais sont considérées comme peu efficace.

Microstructure

Les artères et artérioles sont constituées de trois couches appelées *adventice*, *média* et *intima*. Leur importance varie en fonction du type de vaisseau.

L' adventice est composée de tissu de connexion lâche dans lequel se terminent des fibres nerveuses amyéliniques. Une lame élastique externe peut être mise en évidence entre l'adventice et la média des artères cérébrales et des artères pie-mériennes.

La *média* est constituée de *cellules musculaires lisses* (SMC) responsables de la vasomotricité. Elles sont présentes dans les artères cérébrales, les artères pie-mériennes et les artérioles. Leur nombre diminue lorsque le diamètre des vaisseaux décroit.

L' *intima* enfin est formée d'une monocouche de cellules endothéliales qui sont jointives par l'intermédiaire de *jonctions serrées*. Ces jonctions séparent le cerveau du sang par une barrière dite *barrière hémato-encéphalique* (Blood Brain Barrier, BBB). La BBB a une

perméabilité sélective pour les molécules lipophiles à faible poids moléculaire et pour celles qui possèdent un transporteur spécifique. Toutefois, les capillaires de certaines régions situées près des ventricules sont fenestrés. Les substances sanguines peuvent alors atteindre le liquide extracellulaire et les neurones. En sens inverse, les neurohormones peuvent être déversées dans la circulation qui les transportera vers leurs cibles.

Les artères se caractérisent par une média épaisse. Les artérioles, elles, représentent le site primaire de la résistance vasculaire, ce sont des vaisseaux de faible diamètres (<0.5 mm) disposant d'une paroi épaisse. L'intima est réduite à l'endothélium reposant sur la membrane basale. La média est très musculaire et innervée par le système nerveux sympathique. L'adventice lui, se fond dans le tissu conjonctif environnant. Leur diamètre peut être modifié en fonction de plusieurs facteurs (molécules circulantes, pH, contraintes mécaniques etc.). Les artérioles jouent ainsi un rôle important dans le contrôle du débit sanguin.

2.1.2 Microcirculation

En raison du caractère invasif des techniques requises pour son étude, les caractérisations de la microanatomie chez l'homme sont rares (Brett et collab. [2002]) et il n'existe dans la littérature que peu de données quantitatives sur la microvascularisation cérébrale. Néanmoins une étude récente au moins a permis une caractérisation morphologique de cette microcirculation (Lauwers et collab. [2008]). Il a ainsi été observé une taille moyenne des capillaires de 6.47 μm de diamètre pour une longueur de 52.95 μm et ce avec une remarquable constance. On considère de manière générale que les capillaires sont des vaisseaux de diamètre inférieur à 10 μm . L'organisation topologique des capillaires ne fait pas l'objet d'un consensus clair notamment entre organisation en réseau, et organisation en arbre. Il semble néanmoins admis que les capillaires s'organisent préférentiellement en réseau de façon à ce que tout soit connecté, c'est-à-dire que l'ensemble du réseau puisse être complètement perfusé quelle que soit l'entrée. Quelques structures de type « arbre » avec une entrée de subdivisant en plusieurs vaisseaux ont malgré tout été observées.

Les capillaires représentent des réseaux denses avec une densité de longueur moyenne de 500 mm/mm³ de parenchyme. Des variations de cette valeur sont observées entre la surface du cerveau (613 mm/mm³) et le bas de la scissure (411 mm/mm³) (LAUWERS et collab. [2008]). Cela est lié à l'orientation opposée des plis dans ces territoires : la contraction au sommet du gyrus induit géométriquement une augmentation de la densité. La surface d'échange chez l'homme (mesuré par la surface vasculaire par mm³) semble être plus importante que chez le primate (11.74 mm²/mm³ versus 4.5 mm²/mm³) (LAUWERS et collab. [2008], RISSER et collab. [2007]). Enfin, le volume vasculaire par mm³, qui permet d'estimer le volume sanguin cortical, est de l'ordre de 2.4 à 3% selon le territoire. Du point de vue microstructural, les capillaires ne présentent pas de tissu conjonctif périvasculaire, remplacé par les prolongements astrocytaires. On peut noter la présence de jonctions serrées réunissant les cellules endothéliales, et d'un équipement enzymatique riche et parfois spécifique. Les capillaires permettent de fournir les nutriments et le dioxygène aux tissus. Ils jouent un rôle important dans le contrôle du passage des molécules : les macromolécules ne franchissent pas la barrière hématotissulaire tandis que pour les petites molécules la perméabilité est identique à celle de la membrane cellulaire. Ils permettent le passage libre des molécules lipophiles mais requierent l'utilisation de transporteurs membranaires, parfois spécifiques, pour les molécules hydrophiles. Enfin ils assurent le contrôle du passage des cellules, en le réduisant au renouvellement lent mais constant des cellules microgliales par des précurseurs dérivant de la moelle osseuse.

2.1.3 Veines

L'union de plusieurs capillaires donne des *veinules* qui elles-mêmes se déversent dans des *veines* de diamètre croissant. Habituellement on classe les veines en fonction de leur taille. Dans l'espèce humaine, les petites veines ont un diamètre compris entre $50~\mu m$ et 1~mm; les veines moyennes ont un diamètre compris entre 1~mm et 10~mm et les larges veines ont plus d'un centimètre de diamètre. Les veinules ont le même aspect que les capillaires, mais leur diamètre est supérieur.

Comme les capillaires, les veinules interviennent dans les échanges métaboliques. Leur principale caractéristique est leur sensibilité aux agents inflammatoires qui augmentent leur perméabilité, ce qui permet la diffusion du plasma et le passage de protéines de haut poids moléculaire. Ces agents favorisent aussi l'adhérence des leucocytes aux parois vasculaires et leur diapédèse (intercalation entre les cellules endothéliales) , en ralentissant le flux sanguin. Les veines enfin disposent d'une structure similaire aux artères mais avec une lumière plus grande, une paroi plus fine avec peu d'éléments musculaires et élastiques dans la média.

Le système veineux cérébral est un système interconnecté et communiquant librement, composé des *sinus veineux* et des *veines cérébrales* (SCHALLER [2004]). Les veinules du réseau post-capillaire se regroupent en veines cheminant dans la substance blanche (veines médullaire) qui vont converger vers la surface de l'encéphale pour donner naissance à deux systèmes de veines regroupées, appelés *système superficiel* et *système profond*. Compte tenu de leur importance dans la modélisation des flux intracrâniens, on va en faire une description détaillée issue de RADIOANATOMIE.COM [2015].

Le système superficiel (cortical) draine le sang du cortex et de la matière blanche sous corticale (AYDIN et collab. [1997]). Les veines dites superficielles ou corticales cheminent à la surface de l'encéphale et vont gagner (directement ou indirectement) par l'intermédiaire de veines collectrices plus volumineuses, un sinus veineux. Ainsi les veines corticales proches de la convexité haute se jettent directement dans le *sinus sagittal supérieur*, les veines des faces inférieures et latérales de l'encéphale forment des collecteurs plus volumineux (veines *sylviennes* en avant et latéralement, veines *basales* en dedans et en arrière) rejoignant soit le système profond (veines basales), soit directement un sinus.

Le système profond (*médullaire* et *sous épendymaire*) draine les structures profondes et médianes du cerveau (commissures interhémisphériques, noyaux gris, système ventriculaire). Il est essentiellement constitué par les deux veines cérébrales internes cheminant d'avant en arrière sur la toile choroïdienne du 3ème ventricule et le bord inférieur du splenium du corps calleux. Chacune des veines cérébrales internes s'unit en arrière à son homologue controlatérale pour donner au point le plus déclive du splenium du corps calleux la *grande veine de Galien*.

On observe différents sinus veineux (Figure 2.4). Tout d'abord le *sinus sagittal supérieur* (SSS) contenu dans un dédoublement de l'insertion supérieure de la faux du cerveau en position médiane, reçoit les veines corticales des régions fronto-pariéto-occipitales supéro-externe et interne du cerveau. Il se termine dans la région occipitale médiane au niveau d'une structure particulière appelée *torcular* ou *pressoir d'Hérophile* en deux sinus latéraux. Les sinus latéraux vont cheminer dans l'insertion de la grande circonférence de la tente du cervelet au niveau de la voûte occipitale. Chaque sinus latéral rejoint la ré-

FIGURE 2.4 – Structure des sinus veineux, Elsevier Inc.

gion temporo-occipito-pétreuse latérale, puis par un trajet descendant sigmoïde dans le dièdre squamo-pétreux, va gagner la partie veineuse du foramen jugulaire et donner naissance à l'origine du golfe de la veine jugulaire interne.

Le *sinus sagittal inférieur*, d'importance moindre, chemine dans un dédoublement de la partie inférieure libre de la faux du cerveau, d'avant en arrière pour gagner le sinus droit. Ce dernier est contenu dans l'insertion de la faux du cerveau sur la tente du cervelet en position médiane. Il se jette, après avoir reçu la veine de Galien, dans le pressoir d'Hérophile, zone de confluence entre sinus sagittal supérieur, sinus droit et origine des deux sinus latéraux.

Enfin, les *sinus veineux de la base du crâne* cheminent dans un dédoublement de la partie inférieur libre de la faux du cerveau, d'avant en arrière, pour gagner différents sinus (Figure 2.5). Le *sinus caverneux*, situé de part et d'autre de la loge hypophysaire contre la face latérale du corps du sphénoïde, dans lequel chemine l'artère carotide interne. Le *sinus sphéno-pariétal de Breschet*, qui draine les veines méningées moyennes et parfois la veine sylvienne. En arrière le sinus caverneux se draine dans le *sinus pétreux inférieur*, cheminant dans la suture sphéno-pétreuse en haut, pétro-occipitale en bas, et rejoignant à la face inférieure de la base du crâne le golfe de la jugulaire. En arrière et latéralement, le *sinus pétreux supérieur*, contenu dans l'insertion pétreuse de la grande circonférence de la tente du cervelet, au niveau du bord supérieur du rocher, se termine au niveau du tiers externe de celui-ci en s'abouchant dans le sinus latéral.

Contrairement aux artères où l'on observe peu de suppléance vasculaire (hors polygone de Willis), le système veineux s'anastomose beaucoup. Les sinus pétreux anastomosent la

FIGURE 2.5 - Illustration des sinus de la base du crâne, Anatomie de Gray (1858).

circulation veineuse antérieure et postérieure. Le sinus sagittal supérieur et la veine cérébrale moyenne s'anastomosent par la *grande veine anastomotique de Trolard*. La veine cérébrale moyenne avec le sinus transverse par la *veine anastomotique de Labbé*. Des anastomoses existent aussi entre les sinus caverneux par les sinus inter caverneux antérieur et postérieur.

2.1.4 Liquide cérébro-spinal

Le liquide cérébro-spinal est un liquide biologique transparent dans lequel baigne le cerveau. Il est contenu dans les méninges entre la pie-mère qui recouvre le système nerveux central et l'arachnoïde qui tapisse le versant interne de la dure-mère, c'est-à-dire dans l'espace sous-arachnoïdien.

Le cerveau comprend des cavités remplies de liquide céphalorachidien. Ce réseau de canaux situé à l'intérieur du cerveau forme le système ventriculaire (Figure 2.6). Il y a en tout quatre ventricules.

Le deux premiers ventricules cérébraux, sont habituellement appelés *ventricules latéraux*. Ils sont situés en profondeur dans chacun des deux hémisphères cérébraux. Ils présentent une forme de fer à cheval, orientée d'arrière en avant. Chaque ventricule possède une *corne frontale* (en avant) située dans le lobe frontal de l'hémisphère cérébral correspondant, une branche inférieure (*corne temporale*, sur les côtés du cerveau), une partie postérieure appelée *carrefour* qui rassemble les branches inférieures et supérieures, et enfin une petite zone supplémentaire, appelée *corne occipitale*, qui communique avec le carrefour, et se situe dans le lobe occipital.

Le *troisième ventricule* est situé dans le diencéphale (partie du cerveau située entre les deux hémisphères). Il communique avec les ventricules latéraux de chaque côté par le *trou de Monro*.

Le *quatrième ventricule*, se situe sous le troisième, entre le cervelet, et le tronc cérébral. Ce ventricule communique avec le troisième ventricule par l'*aqueduc de Sylvius*, et avec

FIGURE 2.6 - Système ventriculaire du cerveau, neurochirurgie-cedres.com.

la surface de l'encéphale, par trois orifices qui sont le *trou de Magendie* et les deux *trous de Luschka*. Enfin, ce ventricule communique avec le reste de la moelle épinière par l'intermédiaire d'un canal allant du bas du ventricule vers le canal de l'épendyme situé au centre de la moelle épinière.

2.2 Informations structurales fournies par l'imagerie IRM

Dans notre approche, nous avons choisi de baser l'architecture de notre modèle sur celle du sujet lui-même. Cette ambition requiert l'acquisition de données spécifiques permettant d'appréhender son anatomie vasculaire.

Les propriétés biophysiques respectives du système artériel et du système veineux (vitesses d'écoulements, susceptibilité magnétique) font que les mêmes séquences d'imagerie ne fournissent pas la même qualité de détails pour ces deux systèmes. Seule l'injection d'un produit de contraste permet d'utiliser la même séquence pour visualiser le système artériel et le système veineux moyennant une adaptation des paramètres d'acquisitions au temps d'arrivée du produit de contraste dans les deux systèmes. Cette imagerie par injection de produit de contraste constitue d'ailleurs l'outil de référence pour l'imagerie morphologique qui nous intéresse, et c'est à ce titre que nous allons commencer par la décrireref: Takano et al., "Dynamic Contrast-Enhanced Subtraction MR Angiography in Intracranial Vascular Abnormalities." et Sohn, Sevick, and Frayne, "Contrast-Enhanced MR Angiography of the Intracranial Circulation.". En effet, c'est la technique offrant le meilleur rapport signal sur bruit, et permettant la meilleure imagerie des flux turbulents. Néanmoins, le caractère invasif de l'injection limite l'application pour des raisons à la fois médicales et techniques. Dans un deuxième temps nous décrirons donc des modalités d'imagerie de substitution davantage utilisables en « routine » pour l'imagerie des systèmes artériels et veineux.

FIGURE 2.7 – Illustration d'angiographie IRM par injection de produit de contraste. Séquence SPARSE acquise sur une IRM 3T avec une antenne 20 canaux, TE/TR=1.37/3.28 ms, matrice = 384, détection du contraste : carbolus axial, débit = 2cc/s (12cc), agent de contraste : Dotarem, taille du voxel = $0.7 \times 0.7 \times 0.7$. L'image est une projection des intensités maximales selon le plan sagittal.

2.2.1 Imagerie par injection de produit de contraste

L'injection d'un produit de contraste permet, comme son nom l'indique, d'améliorer le contraste entre les tissus. Il a pour but d'augmenter le signal d'un type de structure en particulier. Le principe repose sur l'utilisation de substances paramagnétique ou super paramagnétique qui vont réduire le temps de relaxation longitudinal (T1) et transversal (effet T2*) des tissus avoisinant, permettant ainsi la création d'un signal plus important en T1. L'environnement interne du cerveau étant très stable, ceci est autorisé par la présence d'une barrière appelée barrière hémato encéphalique limitant le passage de certaines molécules du compartiment sanguin au liquide cérébrospinal et au liquide extracellulaire du parenchyme cérébral. La présence de cette barrière va ainsi limiter le produit de contraste au compartiment vasculaire après injection intravasculaire, ce qui permet d'apprécier l'architecture vasculaire \(^1\).

Afin d'imager correctement le produit de contraste, les séquences adaptées imposent une synchronisation précise par rapport à l'injection du bolus pour que l'acquisition coïncide avec le passage intravasculaire du produit. Le couplage de ce type d'acquisition à des techniques d'accélération des séquences (acquisition parallèle, acquisitions partielles de l'espace K corrélées dans le temps ...) permettent d'aboutir à une imagerie 4D des vaisseaux : c'est la CEMRA (« Contrast Enhanced Magnetic Resonnance Angiography »). Dans ce cas, les premiers volumes avant rehaussement servent de masque de soustraction pour

^{1.} Notons tout de même que la diffusion du produit de contraste à l'extérieur du compartiment vasculaire reste néanmoins possible (et souvent utilisée comme critère diagnostique) dans le cadre de pathologies (gliomes) modifiant la barrière hémato-encéphalique.

FIGURE 2.8 – Saturation partielle et développement de l'état d'équilibre d'aimantation. A) TR >> T1 permettant une refonte complète de la magnétisation avant la 2ieme impulsion RF. B) TR court, la magnétisation Mz ne peut récupérer avant l'impulsion suivante, ce qui se traduit par l'apparition d'un nouvel état d'équilibre de la magnétisation (M_{ss} , avec M_{ss} < M_0) après quelques impulsions.

extraire l'arbre vasculaire des images suivantes. Si la durée d'acquisition est suffisamment longue, les artères puis les veines seront visibles.

Ces approches souffrent actuellement de leur faible résolution, inhérente aux grandes vitesses d'acquisitions. Cette difficulté peut cependant être surmontée. Les images IRM telles que les angiogrammes contiennent en effet des informations très localisées : les pixels contenant de l'information sont relativement rares dans l'espace 3D. On a des matrices 3D creuses (« sparse »). Au vue des récents développements dans la théorie mathématique des acquisitions compressées (« compressed-sensing »), les images possédant une représentation de ce type peuvent être reconstruites à partir d'un sous-échantillonnage aléatoire de l'espace réciproque (LUSTIG et collab. [2007]). En effet, le passage de cet échantillonnage vers l'espace image se traduit par un bruit aléatoire qui se neutralise, tandis que l'information d'intérêt, regroupée en cluster (artères etc.) ressort clairement. Ce type d'acquisition permet de l'obtention de cartographies vasculaires avec un excellent niveau de détail (Figure 2.7).

2.2.2 Système artériel : imagerie par temps de vol

L'imagerie par temps de vol ("Time Of Flight" ou TOF) est une technique d'acquisition sans injection de produit de contraste permettant de mettre en évidence les flux artériels en utilisant les modifications liées au déplacement du volume sanguin, qui ne sera pas soumis à l'ensemble des impulsions radiofréquences contrairement au tissu stationnaire. Ce phénomène, appelé phénomène d'entrée de coupe, s'obtient en jouant sur la dynamique de la saturation magnétique, via les valeurs relatives du temps de répétition TR de l'impulsion radiofréquence et du temps de relaxation T1. Lorsque les impulsions radiofréquences (90°) sont suffisamment éloignées (TR > 5T1) la magnétisation longitudinale a le temps de retrouver son état initial (voir Figure 2.8) avant la prochaine impulsion. En revanche, lorsque les impulsions sont très rapprochées, cette magnétisation ne peut revenir à son état initial, et une plus faible aimantation longitudinale sera disponible pour les impulsions suivantes. Après quelques impulsions RF, un nouvel état d'équilibre moyen apparait (Figure 2.8) à un niveau inférieur au niveau original, c'est la saturation magnétique (voir pour une explication très claire le site MRIQUESTIONS.COM [2015]).

FIGURE 2.9 – Exemple d'image d'IRM par temps de vol. Le sang entrant dans le volume à imager apparait en hyper signal. A gauche l'image brute, à droite une projection des intensités maximales. mettre la séquence exacte et details sur la projection?

Dans une imagerie par temps de vol, les tissus stationnaires sont saturés grâce à des TR très courts, ce qui conduit à une diminution de leur signal, et induit le phénomène d'entrée de coupe. En effet, comme le sang artériel circulant entrant dans la zone explorée n'a pas été saturé, son aimantation longitudinale est maximale. Le signal du sang entrant apparait alors comme plus important que celui du tissu stationnaire (Figure 2.9). La visualisation des structures artérielles peut être ensuite améliorée lors du traitement de l'image par projection des intensités maximales selon différents angles afin d'aboutir à une « pseudo » vue 3D.

Du fait du principe de l'imagerie TOF, la qualité de l'image récupérée va dépendre des caractéristiques des vaisseaux et des flux sanguins. Ainsi des flux lentsordre de grandeur? ou orientés parallèlement au plan de coupe entrainent une perte de signal de même que les flux turbulents (sténoses). C'est la raison pour laquelle cette modalité est peu adaptée au système veineux.

En fonction du contexte, l'acquisition peut être 2D ou 3D. Lors d'une acquisition 2D un ensemble de coupes fines est effectué pour aboutir à un pseudo-volume 3D. Les coupes fines autorisent une meilleure sensibilité aux flux lents du fait du temps plus court passé dans la coupe. développer un peu En contrepartie, la résolution spatiale dans l'axe de la pile de coupe est limitée. Les acquisitions 3D autorisent elles l'obtention d'une bonne résolution spatiale dans les 3 directions, ainsi qu'un meilleur rapport signal sur bruit. En revanche les flux lents risquent d'être peu voir non visibles.

Cette séquence permet donc une *très bonne visualisation des artères principales du cerveau* (artères cérébrales moyennes, antérieurs et postérieurs), la visualisation des artères communicantes ou des veines en revanche peut s'avérer plus compliquée du fait de leur orientation et des débits relativement faibles attendus.

2.2.3 Système artériel et veineux : imagerie en contraste de phase

L'*imagerie en contraste de phase* repose sur le déphasage des spins mobiles soumis à un gradient bipolaire. Pour un gradient bipolaire d'une intensité et d'une durée donnée, les spins mobiles vont se déphaser en fonction de leur vitesse.

Le gradient est orienté de telle façon à ce qu'il soit parallèle au vaisseau d'intérêt. Ainsi

FIGURE 2.10 – Principe du contraste de phase. En bleu à gauche est représenté le gradient, en rouge clair le vaisseau exploré, et sous forme de disques rouge les spins sanguins. Le spin mobile (M) pris en référence est en jaune. Les spins se déplaçant dans le vaisseau le long du gradient se déphasent de façon d'autant plus importante que leur vitesse est élevée. Après l'inversion des lobes du gradient d'encodage, le déphasage du spin immobile devient nul par rapport à l'état initial, tandis que le spin mobile lui présente un décalage.

lors d'une première acquisiion, les spins mobiles se déphasent d'autant plus que leur vitesse est grande dans le vaisseau tandis que les spins immobiles présentent un déphasage fixe. Puis, dans un second temps, les lobes du gradient d'encodage sont inversés et une seconde acquisition est réalisée. Ainsi par soustraction des deux images, le déphasage des spins stationnaires dû aux hétérogénéités de champ sera identique dans les deux acquisitions et s'annulera, tandis que les spins mobiles vont accumuler deux déphasages de sens opposés que la soustraction va cumuler (Figure 2.10).

Pour étudier les mouvements dans toutes les directions de l'espace, on répète ceci avec des gradients d'encodage de flux dans chacune des trois directions de l'espace. Une acquisition supplémentaire sans gradient d'encodage de flux sert de référence. Les séquences employées sont de type écho de gradient.

Cette technique permet de mesurer de façon relative la vitesse et la direction des flux grâce à l'information de phase. Les flux se dirigeant vers l'examinateur sont codés en noir, ceux s'en éloignant en blanc. On peut ici mesurer des flux plus lents qu'en imagerie par temps de vol. donner des ordres de grandeur de temps dans la séquence et dans les vitesses mesurables Le contraste obtenu est adapté en particulier à la reconstruction du système veineux.

Les images obtenues permettent de visualiser l'ensemble des vaisseaux (Figure 2.11).

2.2.4 Système veineux : Imagerie de susceptibilité magnétique

Une autre technique mettant en relief de nouveaux contrastes plus fins a été développée plus récemment : l'*imagerie de susceptibilité*. Définissons la susceptibilité χ_m : la plupart des matériaux placés dans un champ magnétique possèdent la capacité de s'aimanter sous l'action de ce champ.

$$\mathbf{M} = \chi_m \mathbf{B}_0. \tag{2.1}$$

FIGURE 2.11 – Exemple d'image de contraste de phase (projection).

On distingue deux comportements différents. Certains comme l'eau, le cuivre ou le zinc, vont s'*opposer au champ*, entrainant une diminution de la densité des lignes de forces : on les appelle *diamagnétiques* (leur susceptibilité est *inférieure* à 0). D'autres au contraire vont se *placer dans le sens due champ* (air, fer, magnésium), induisant un accroissement de la densité des lignes de forces : ce sont les substances *paramagnétiques* (susceptibilité *supérieure* à 0).

A l'intérieur du cerveau coexistent des substances possédant différentes propriétés vis-àvis de la magnétisation : certaines structures vont ainsi être plutôt diamagnétique (myéline) ou paramagnétique (veines, pallidum; WANG et LIU [2014]). La possibilité de mesurer quantitativement cette susceptibilité a été évoquée dès les premières années de l'imagerie IRM (Young et collab. [1987]). Les variations locales de la susceptibilité engendrent des variations locales concomitantes du champ magnétique effectif subit par le matériau, qui vont engendrer des distorsions locales des lignes de champ et ainsi des décalages en fréquence localisés. Les variations de susceptibilités sont donc à première vue des source d'artéfacts. Depuis une quinzaine d'années a été développée une première modalité d'imagerie sensible aux variations de susceptibilité : l'imagerie pondérée en susceptibilité (Susceptibility Weighted Imaging ou SWI; REICHENBACH et HAACKE [2001]). Cette méthode tente d'utiliser l'information portée par l'imagerie de phase afin de fournir un contraste nouveau sensible en particulier aux veines et autres structures disposant d'une forte susceptibilité (cavernomes, calcifications etc.). En effet la saturation en oxygène dans le système veineux étant faible, le sang veineux est riche en déoxyhémoglobine, molécule disposant d'une forte susceptibilité. De ce fait cette imagerie donne accès au système veineux et ce potentiellement avec une meilleure résolution que le contraste de phasepourquoi? preciser les tailles de voxels :on peut avoir accès à des veines plus petites. En revanche l'image ne contient pas que des vaisseaux, toutes les structures présentant une susceptibilité importante et du fait de la magnitude, les autres tissus. Il reste cependant possible d'extraire une partie des veines de l'image via des algorithmes dédiés (MANNIESING et collab. [2006]) avec plus ou moins de succès.

Rappelons que lors d'une acquisition standard en IRM, le signal récupéré est codé sous forme complexe, et contient donc deux informations : partie imaginaire et partie réelle. Le plus usuellement ces deux informations sont combinées pour générer une imagerie de magnitude correspondant à la somme du carré des parties réelles et imaginaires :

$$M = Re^2 + Im^2. (2.2)$$

Cette image de magnitude est la plus utilisée en IRM pour le diagnostic. Elle permet de maximiser le rapport signal sur bruit et fournit le meilleur contraste anatomique. L'image de phase, elle, est obtenue en calculant la tangente inverse du rapport partie imaginaire sur partie réelle :

$$\Phi = atan\left(\frac{\mathrm{R}e}{\mathrm{I}m}\right). \tag{2.3}$$

Cette imagerie de phase reflète directement les déphasages dû à la variabilité de la susceptibilité magnétique et donc du champ. Ces mêmes effets se traduisent par une perte de signal dans l'imagerie de magnitude. L'image de SWI combine ces deux informations selon une pondération arbitraire conduisnat au peilleur rendu visuel.

La séquence correspondante elle-même est une séquence en *écho de gradient* standard. Le paramètre important est ici le temps d'écho. En effet, un temps d'écho court limitera la présence d'artéfacts mais réduira la visibilité des faibles susceptibilités, tandis que un temps d'écho long favorisera la détection de petites lésions hémorragiques et par la même occasion augmentera les artéfacts de l'image liés aux très fortes susceptibilités. donner des ordres de grandeurBien qu'un temps d'écho unique suffise à générer une cartographique pondérée en susceptibilité, il est bon de noter que de nouvelles approches à multi temps d'échos se développent afin de limiter la présence d'artéfacts dans l'image (OH et collab. [2013]). Les séquences peuvent être trouvées chez la plupart des constructeurs sous différents acronymes : SWI, SWAN, PADRE.

Néanmoins, en imagerie pondéré en susceptibilité magnétique l'apport de l'image de phase n'est comme on l'a noté que qualitatif, cette dernière servant seulement de facteur multiplicatif à l'imagerie de magnitude (voir détails chapitre 0)...chap.0???.

Plus récemment, une nouvelle technique intitulé *cartographie quantitative de susceptibilité* (Quantitative Susceptibility Mapping : QSM) a été développée avec l'ambition de remonter aux valeurs physiques exactes de la susceptibilité locale. En effet, la capacité à estimer quantitativement et non plus qualitativement a un nombre important d'applications potentielles. Comme on l'a dit, de nombreux tissus possèdent des susceptibilités différentes de leur environnement. Le calcium par exemple, possède une susceptibilité négative (diamagnétique) par rapport à l'eau. La mesure de susceptibilité pourrait ainsi permettre de mesurer la densité minérale de l'os (Chung et collab. [1996]). Nous pouvons aussi mentionner, parmi les applications possibles : la différenciation des calcifications et des hémorragies chroniques (KOZIĆ et collab. [2009]), la mesure de la perte de myéline (LIU et collab. [2011]), la quantification de la CMRO2 (ZHANG et collab. [2014]), ou encore la mesure de la saturation en oxygène dans les veines (FAN et collab. [2014]).

Nous développerons au chapitre 0 ...chap.0??? les difficultés intrinsèques à la reconstruction de cette susceptibilité. Pour résumer, la difficulté est double, reconstruire le champ à l'intérieur de l'espace intracrânien, puis à partir de ce champ obtenir la carte de susceptibilité. Ce problème est analytiquement mal posé et doit être abordé à l'aide de techniques numériques sophistiquées (HAACKE et collab. [2005], SHMUELI et collab. [2009]). Ce caractère mal posé conduit à la présence persistante d'artéfacts dans la carte de susceptibilité reconstruite. En l'état de l'art ces artéfacts ont été maîtrisés de façon suffisante pour faire émerger la QSM dans le domaine de la recherche clinique (WANG et LIU [2014], BILGIC

FIGURE 2.12 – Image de QSM obtenue après projection des intensités maximales. On met en évidence ici les veines pouvant être obtenues par simple seuillage. Notons que les sinus veineux en périphéries sont peu visibles du fait de l'érosion réalisée sur cette image (voir 7.2.3)revoir ref. Résolution $0.6 \times 0.6 \times 0.6 \times 0.6 \text{ mm}^3$.

et collab. [2013], DEISTUNG et collab. [2013]).

En résumé, nous utiliserons principalement cette technique pour raffiner la reconstruction du système veineux fournit par le contraste de phase (Figure 2.12). En effet, la résolution plus fine de la carte de susceptibilité magnétique et son aspect quantitatif vont permettre de visualiser de plus petites veines et de les extraire facilement par simple seuillage sur la base de la valeur en ppm.

2.2.5 Mise en place d'un protocole d'acquisition

Compte tenu du cahier des charges défini dans l'introduction, la construction d'un modèle quantitatif détaillé adapté à la morphologie de chaque patient doit s'appuyer sur deux groupes d'informations. Les informations *morphologiques* correspondent à l'architecture du réseau artériel et du système veineux du patient, et les volumes de matière grise, blanche et du liquide cérébro-spinal du patient.

Nous avons donc défini un protocole d'acquisition IRM dédié à l'implémentation de ce modèle qui incorpore toutes les séquences nécessaires à la collecte de ces informations au vue de l'état de l'art et des contraintes techniques de nos appareils. Nous faisons le choix, de n'utiliser que des séquences non-injectées afin de ne limiter le protocole à aucune catégorie de patients. Néanmoins, dans le cadre de la validation du modèle, nous n'excluons évidemment pas d'utiliser dans certains cas particuliers des protocoles avec injection. Les données d'imagerie IRM ont été recueillies sur une IRM 3 tesla (Skyra, Siemens, Allemagne) en utilisant une antenne tête 32 éléments.

Concernant les informations morphologiques, le protocole inclus les imageries anatomiques suivantes :

- un 3DT1 pour récupérer les volumes de matière grise, de matière blanche et de LCS, acquis avec les paramètres suivants : champ de vue = 25 x 25 cm, temps d'écho = 2.5 ms, temps de répétition = 1690 ms, angle de bascule = 9°, taille de voxel = 0.98 x 0.98 x 1 mm, 176 niveaux de coupes ;
- un temps de vol artériel pour accéder à l'architecture artérielle, avec les paramètres :

- champ de vue 18.1×20 cm, temps d'écho = 3.43 ms, temps de répétition = 21 ms, angle de bascule = 18° , taille de voxel = $0.26 \times 0.26 \times 0.6$ mm, 220 niveaux de coupes ; avec une couverture suffisante pour imager jusqu'à la partie supérieure de l'artère cérébrale antérieure
- un contraste de phase qualitatif pour récupérer le compartiment veineux avec les paramètres : champ de vue 24 x 24 cm, temps d'écho = 7.91 ms, temps de répétition = 35.7 ms, angle de bascule = 15°, taille de voxel = 0.47 x 0.47 x 1 mm, 144 niveaux de coupes ;
- une imagerie quantitative de susceptibilité magnétique afin de préciser l'arborescence veineuse avec les paramètres : champ de vue 20 x 22 cm, temps d'échos = 10/20 ms, temps de répétition = 27 ms, angle de bascule = 15°, taille de voxel = 0.69 x 0.69 x 0.6 mm, 224 niveaux de coupes ; avec sauvegarde des raw data.

Comme nous l'avons vu l'arbre vasculaire est un système complexe. Il convient donc de définir clairement à quel niveau nous souhaitons nous placer afin de définir les entrées et sorties utilisées. Le sang entre dans le cerveau principalement par 4 voies : les deux carotides internes et les artères vertébrales. Ces artères vertébrales se rejoignent pour former l'artère basilaire. Ainsi pour limiter la complexité du système nous avons choisi de positionner notre boite d'acquisition de telle sorte à ce que le premier niveau de coupe intègre les *deux carotides* et l'*artère basilaire*, pour un total de trois entrées. De plus l'artère basilaire sera plus visible du fait de son diamètre et donc plus facilement segmentable en comparaison des artères vertébrales. En terme de sorties, nous récupèrerons à ce niveau les deux *veines jugulaires*.

Ce protocole sera complété à la fin de la seconde partie par les modes d'imagerie donnant accès à la *dynamique*.

2.3 Références

- ALASTRUEY, J., K. H. PARKER, J. PEIRÓ, S. M. BYRD et S. J. SHERWIN. 2007, «Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows», *J. Biomech.*, vol. 40, n° 8, doi:10.1016/j.jbiomech.2006.07.008, p. 1794–1805, ISSN 00219290.
- Aydın, I. H., Y. Tüzün, E. Takçı, H. H. Kadıoğlu, C. R. Kayaoğlu et E. Barlas. 1997, «The anatomical variations of sylvian veins and cisterns.», *Minim. Invasive Neurosurg.*, vol. 40, n° 2, doi:10.1055/s-2008-1053419, p. 68–73, ISSN 0946-7211.
- BILGIC, B., A. P. FAN, J. R. POLIMENI, S. F. CAULEY, M. BIANCIARDI, E. ADALSTEINSSON, L. L. WALD et K. Setsompop. 2013, «Fast quantitative susceptibility mapping with L1-regularization and automatic parameter selection», doi:10.1002/mrm.25029.
- Brett, M., I. S. Johnsrude et A. M. Owen. 2002, «The problem of functional localization in the human brain.», *Nat. Rev. Neurosci.*, vol. 3, n° 3, doi:10.1038/nrn756, p. 243–249, ISSN 1471-003X.
- CHUNG, H. W., S. N. HWANG, H. N. YEUNG et F. W. WEHRLI. 1996, «Mapping of the magnetic-field distribution in cancellous bone.», *J. Magn. Reson. B*, vol. 113, p. 172–176.
- DEISTUNG, A., A. SCHÄFER, F. SCHWESER, U. BIEDERMANN, R. TURNER et J. R. REICHEN-BACH. 2013, «Toward in vivo histology: A comparison of quantitative susceptibility

- mapping (QSM) with magnitude-, phase-, and R2 *-imaging at ultra-high magnetic field strength», *Neuroimage*, vol. 65, doi:10.1016/j.neuroimage.2012.09.055, p. 299–314, ISSN 10538119.
- FAN, A. P., B. BILGIC, L. GAGNON, T. WITZEL, H. BHAT, B. R. ROSEN et E. ADALSTEINSSON. 2014, "Quantitative oxygenation venography from MRI phase", *Magn. Reson. Med.*, vol. 72, no 1, doi:10.1002/mrm.24918, p. 149–159, ISSN 15222594.
- HAACKE, E. M., N. Y. CHENG, M. J. HOUSE, Q. LIU, J. NEELAVALLI, R. J. OGG, A. KHAN, M. AYAZ, W. KIRSCH et A. OBENAUS. 2005, «Imaging iron stores in the brain using magnetic resonance imaging», *Magn. Reson. Imaging*, vol. 23, no 1, doi:10.1016/j.mri.2004.10.001, p. 1–25, ISSN 0730-725X. URL papers://4b497daf-11fc-4b77-bfc5-b5ecbecc5200/Paper/p1060.
- HENDERSON, R. D., M. ELIASZIW, A. J. FOX, P. M. ROTHWELL et H. J. BARNETT. 2000, «Angiographically defined collateral circulation and risk of stroke in patients with severe carotid artery stenosis. North American Symptomatic Carotid Endarterectomy Trial (NASCET) Group.», cahier de recherche 1, doi:10.1161/01.STR.31.1.128.
- KOZIĆ, D., L. TODOROVIC-DJILAS, R. SEMNIC, I. MIUCIN-VUKADINOVIC et M. LUCIC. 2009, «MR imaging An unreliable and potentially misleading diagnostic modality in patients with intracerebral calcium depositions», *Neuroendocrinol. Lett.*, vol. 30, nº 5, doi:NEL300509A02[pii]ET-2009/12/26, p. 553–557, ISSN 0172780X.
- LAUWERS, F., F. CASSOT, V. LAUWERS-CANCES, P. PUWANARAJAH et H. DUVERNOY. 2008, «Morphometry of the human cerebral cortex microcirculation: General characteristics and space-related profiles», *Neuroimage*, vol. 39, n° 3, doi:10.1016/j.neuroimage.2007. 09.024, p. 936–948, ISSN 10538119.
- LIPPERT, H. et R. PABST. 1985, Arterial variation in man Classification and frequency, Springer.
- LIU, C., W. LI, G. A. JOHNSON et B. WU. 2011, «High-field (9.4 T) MRI of brain dysmyelination by quantitative mapping of magnetic susceptibility», *NeuroImage*, vol. 56, p. 930—-938.
- LUSTIG, M., D. DONOHO et J. M. PAULY. 2007, «Sparse MRI: The application of compressed sensing for rapid MR imaging», *Magn. Reson. Med.*, vol. 58, nº 6, doi:10.1002/mrm. 21391, p. 1182–1195, ISSN 07403194.
- Manniesing, R., M. A. Viergever et W. J. Niessen. 2006, «Vessel enhancing diffusion. A scale space representation of vessel structures», *Med. Image Anal.*, vol. 10, n° 6, doi: 10.1016/j.media.2006.06.003, p. 815–825, ISSN 13618415.
- MRIQUESTIONS.COM. 2015, «Time of flight effects qustions and answers», mriquestions.com.
- OH, S. S., S.-H. OH, Y. NAM, D. HAN, R. B. STAFFORD, J. HWANG, D.-H. KIM, H. PARK et J. Lee. 2013, «Improved susceptibility weighted imaging method using multi-echo acquisition.», *Magn. Reson. Med.*, vol. 00, doi:10.1002/mrm.24940, p. 1–7, ISSN 1522-2594. URL http://www.ncbi.nlm.nih.gov/pubmed/24105838.
- RADIOANATOMIE.COM. 2015, «Le drainage veineux de l'encépahle», Radioanatomie.com.

- REICHENBACH, J. R. et E. M. HAACKE. 2001, «High-resolution BOLD venographic imaging: A window into brain function», *NMR Biomed.*, vol. 14, n° 7-8, doi:10.1002/nbm. 722, p. 453–467, ISSN 09523480.
- RISSER, L., F. PLOURABOUÉ, A. STEYER, P. CLOETENS, G. LE DUC et C. FONTA. 2007, «From homogeneous to fractal normal and tumorous microvascular networks in the brain.», *J. Cereb. Blood Flow Metab.*, vol. 27, n° 2, doi:10.1038/sj.jcbfm.9600332, p. 293–303, ISSN 0271-678X.
- SCHALLER, B. 2004, «Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans.», *Brain Res. Brain Res. Rev.*, vol. 46, n° 3, doi: 10.1016/j.brainresrev.2004.04.005, p. 243–260.
- SHMUELI, K., K. SHMUELI, J. A. DE ZWART, J. A. DE ZWART, P. VAN GELDEREN, P. VAN GELDEREN, T.-Q. LI, T.-Q. LI, S. J. DODD, S. J. DODD, J. H. DUYN et J. H. DUYN. 2009, «Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data.», *Magn. Reson. Med.*, vol. 000, doi:10.1002/mrm.22135, p. 1–13, ISSN 1522-2594. URL http://www.ncbi.nlm.nih.gov/pubmed/19859937.
- WANG, Y. et T. LIU. 2014, «Quantitative susceptibility mapping (qsm): Decoding mri data for a tissue magnetic biomarker.», *Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine*, vol. 00, doi:10.1002/mrm.25358, p. n/a–n/a, ISSN 1522-2594.
- Young, I. R., S. Khenia, D. G. Thomas, C. H. Davis, D. G. Gadian, I. J. Cox, B. D. Ross et G. M. Bydder. 1987, «Clinical Magnetic Susceptibility Mapping of the Brain.», *J. Comput. Assist. Tomogr.*, vol. 11, no 1, p. 2–6.
- ZHANG, J., T. LIU, A. GUPTA, P. SPINCEMAILLE, T. D. NGUYEN et Y. WANG. 2014, «Quantitative mapping of cerebral metabolic rate of oxygen (CMRO2) using quantitative susceptibility mapping (QSM)», *Magn. Reson. Med.*, p. n/a–n/a.

Chapitre 3

Implémentation de la reconstruction morphologique

Sommaire

3.1	Reconstruction du réseau des artères et des veines 2				
	3.1.1	Segmentation	25		
	3.1.2	Extraction du squelette	28		
	3.1.3	Création du graphe	29		
3.2	Artéri	oles – capillaires - veinules	33		
	3.2.1	Quelle artère avec quelle veine?	33		
	3.2.2	Estimation des paramètres des tubes	34		
3.3	Référe	ences	35		

La reconstruction de la morphologie des vaisseaux est la première étape dans la construction du modèle. Les différentes modalités d'imagerie exposées au chapitre 2.2 vont assurer l'extraction quantitative à la fois de l'architecture des vaisseaux et des paramètres géométriques associés : longueurs et aire.

Les images d'intérêt issues des différentes modalités d'acquisition doivent être rapportées dans le même espace : les acquisitions en contraste de phase et le T1 sont donc coregistrées (voir Appendice 1.2.2) refaire les refs après avec l'image disposant de la meilleure résolution, l'imagerie par temps de vol. Ce choix permet d'extraire le maximum d'informations.

3.1 Reconstruction du réseau des artères et des veines

Comme nous l'avons précisé ci-dessus, deux types d'informations doivent être extraites des données structurales : des informations géométriques locales (aire et longueur) mais aussi des informations topologiques sur l'organisation de ce réseau. Le résultat de l'analyse doit donc être de nous fournir un graphe représentant l'arborescence du système. Les deux étapes naturelles sont donc d'abord de segmenter dans nos imageries structurales les parties correspondantes au système circulant puis d'extraire la topologie de ce système. Cet objectif impose des contraintes spécifiques, telles que l'intégrité et la complétude du réseau qui gouverne les choix fait dans les étapes successives.

L'un des critères importants à prendre en compte lors de la sélection de la chaîne de traitement est le degré d'implication de l'utilisateur. A quels moments et combien de fois doit

FIGURE 3.1 – Illustration de la segmentation des artères à partir d'une image de temps de vol. A) Image ToF brute, B) Image seuillée manuellement, C) Image filtrée par le filtre de Frangi, D) Image filtrée seuillée.

il intervenir? Pour nous, l'idéal serait de réduire au maximum cette intervention, ou du moins de la limiter à des actions simples.

3.1.1 Segmentation

Que ce soit en imagerie par temps de vol ou en contraste de phase, les vaisseaux (artères et veines) apparaissent avec une intensité plus élevée que les autres tissus. L'approche la plus simple est donc de seuiller l'image afin d'en extraire les hypersignaux, et donc les vaisseaux. Cette approche permet de récupérer rapidement une segmentation mais le résultat reste très sensible aux inhomogénéités du signal et au bruit, qui peuvent en diminuer la qualité (Figure 3.1).

Un grand nombre d'outils de segmentation existent dédiés aux images IRM. Mais ils recherchent un but spécifique : l'extraction des différents types de tissus présents dans le cerveau, la matière grise, la matière blanche, et le liquide cérébro-spinal (voir Appendice 1.2.4) refaire les refs après. Les approches optimisées pour ce genre de segmentation ne peuvent pas être appliqué dans le cadre des vaisseaux. Pour ces derniers des approches dédiées ont été développées (LESAGE et collab. [2009]). Elles se décomposent toutes en deux étapes, chacune devant être optimisée : le prétraitement des images puis la segmentation elle-même.

Les prétraitements consistent à simplifier les informations contenues dans les images d'angiographie IRM. Les traitements génériques disponibles entre lesquels il s'agît de faire un choix ont été développés dans d'autres contextes comme le sous-échantillonnage et la quantification (TSCHIRREN et collab. [2005]). Les outils les plus courants restent cependant les filtres améliorant la qualité de l'image. Citons les filtres gradients (KOLLER et collab. [1995]), les filtres morphologiques (WILKINSON et WESTENBERG [2001]), ou les filtres à base de matrice Hessienne (FRANGI et collab. [1998]).

λ ₁	λ_2	λ_3	Schéma d'orientation
N	N	N	Bruité, pas de direction préférentielle
L	L	H-	Structure aplatie (clair)
L	L	H+	Structure aplatie (sombre)
L	H-	H-	Structure tubulaire (clair)
L	H+	H+	Structure tubulaire (sombre)
H-	H-	H-	Structure en forme de balle (clair)
H+	H+	H+	Structure en forme de balle (sombre)

FIGURE 3.2 – Schéma possible en 3D selon la valeur de la valeur propre λ_k (H=élevé, L=faible, N = bruité, +/- indique le signe de la valeur propre). Les valeurs propres sont ordonnées selon $(|\lambda_1| \le |\lambda_2| \le |\lambda_3|$ (FRANGI et collab. [1998]).

A l'issue du prétraitement, les principaux algorithmes de segmentation utilisés dans des contextes vasculaires se regroupent en trois approches principales : la croissance de région, les contours actifs, les lignes médianes (Lesage et collab. [2009]). La croissance de région segmente de façon incrémentielle un objet en recrutant les voxels adjacents selon certains critères comme par exemple la variation locale de l'intensité. Elle requiert le plus souvent la définition d'un point initial, qui peut être obtenu via un simple seuillage sur l'image (Boskamp et collab. [2004]). Les contours actifs font évoluer une interface sous l'action de différentes forces : des forces externes calculées à partir des intensités de l'image, et des forces internes de type tension de lignes exprimant des contraintes apriori la géométrie du contour et sa régularité (McInerney et Terzopoulos [1996]). Les lignes médianes se focalisent sur l'extraction directe du centre des vaisseaux en utilisant des informations de plus haut niveaux telles que la localisation du centre du vaisseau, l'estimation de sa direction et de sa taille caractéristique (Aylward et Bullitt [2002]).

Les essais de comparaisons de ces différentes méthodes que nous avons réalisé sur ces différentes images nous ont amené à choisir la combinaison d'un prétraitement Hessien suivit d'un seuillage simple. Le filtre Hessien est en effet extrêmement robuste dans sa capacité à fournir une image très contrastée des vaisseaux, à partir de laquelle un simple seuillage ajusté manuellement (intervention de l'utilisateur) fournit un résultat qui rend superflu l'utilisation de méthodes de segmentation plus sophistiquées.

Le filtre utilisant cette méthode est dit filtre de Frangi (FRANGI et collab. [1998], MANNIE-SING et collab. [2006]). Ce filtre vise à extraire une quantité mesurant la vraisemblance pour une région d'appartenir à un vaisseau : on parle de « vesselness » locale de l'image. L'idée est d'identifier dans l'image les structures en forme de tubes (voir Figure 3.1).

Mathématiquement, on calcule la matrice Hessienne de l'image à partir de ses dérivées secondes (aux différences finies) et on en extrait des valeurs propres. Ces valeurs propres λ_1, λ_2 et λ_3 (à 3D) caractérisent l'anisotropie des intensités de l'image. Les valeurs propres sont classées par ordre croissant du module ($|\lambda_1| \leq |\lambda_2| \leq |\lambda_3|$). Un voxel appartenant à un vaisseau doit se caractériser par un ellipsoïde Hessien local allongé : λ_1 faible (idéalement zéro) et λ_2 et λ_3 de grandes magnitudes de mêmes signes. Le tableau de la figure 3.2 résume les relations existantes entre les valeurs propres de la matrice Hessienne et les différentes structures que l'on cherche à détecter. Avec l'imagerie ToF et le contraste de phase, nous recherchons ainsi les structures claires tubulaires. Le résultat de cette étape est une

FIGURE 3.3 – Comparaison entre une projection des intensités maximales sur une image en temps de vol brute à gauche, et l'image filtrée par le filtre de Frangi à droite. L'image filtrée est moins bruitée et met en évidence les vaisseaux d'intérêt.

FIGURE 3.4 – Segmentations 3D obtenues à partir du contraste de phase (veines, bleu) et du ToF (artères, rouge).

image dont les intensités représentent pour chaque pixel la vraisemblance d'appartenance à un vaisseau (Figure 3.1 C). L'image filtrée est de très bonne qualité (Figure 3.3). L'utilisation de cet outil moins sensible au bruit et offrant des contours plus lisses, facilite donc les étapes postérieures de traitement. Un simple seuillage, ajusté manuellement, suffit à extraire le volume 3D des vaisseaux (Figure 3.1 D, Figure 15). Nous n'avons pas besoin de d'utiliser des algorithmes de croissance de région ou autre. L'utilisateur n'a qu'à adapter le seuil, pour extraire les voxels du masque appartenant aux vaisseaux.

Comme on l'a vue dans le chapitre précédent, les images par temps de vol fournissent une information artérielle. Le contraste de phase par contre met en évidence à la fois le versant veineux et artériel. Pour segmenter les veines, l'information artérielle doit donc être éliminée des images du contraste de phase. Il est donc indispensable de segmenter en premier lieu l'imagerie par temps de vol, d'identifier les artères, et de les soustraire de l'image en contraste de phase. La même méthodologie sera ensuite appliquée sur cette image.

Les volumes 3D obtenus (Figure 3.4) reflètent l'arborescence veineuse et artérielle et fournissent une base solide l'extraction des données géométriques et topologiques. De plus, l'apport de la carte de susceptibilité magnétique se fait ressentir principalement au ni-

FIGURE 3.5 – Illustration de l'apport de l'information de la QSM dans la définition de l'arborescence veineuse. En bleu les veines identifiées en contraste de phase et en rouges celles issues de la QSM.

veau des petites veines (Figure 3.5).

3.1.2 Extraction du squelette

La segmentation permet d'aboutir à un volume 3D représentant notre arbre vasculaire. Cependant en l'état il ne renseigne pas sur la structure du réseau. Pour identifier les différents segments et points de jonction, et réduire la quantité de données, il est indispensable d'extraire le squelette du masque et de le représenter sous forme de graphe. Le squelette est une représentation très utilisée car il contient et résume les propriétés topologiques de la forme qu'il représente. Il permet de décrire les objets par un ensemble de lignes fines réduisant sensiblement le volume d'informations à manipuler. Le squelette est généralement défini comme étant l'ensemble des lignes médianes, c'est-à-dire l'ensemble des points équidistants de deux points de la frontière. Notons que sa construction est très sensible à la qualité de la segmentation, en particulier au bruit.

Il existe une grande variété de méthodes permettant de construire des squelettes à partir de formes données. La plus commune est la méthode dite d'extraction de la carte des distances, qui consiste à calculer en chaque point interne à l'objet, la distance à son contour le plus proche. Une fois cela réalisé, les maximums locaux de cette carte sont récupérés et forment le squelette de l'objet (Figure 3.6).

De façon similaire à la méthode des cartes de distances, la méthode des potentiels généralisés génère un champ à l'intérieur de l'objet. Ce champ n'est plus une simple distance mais un potentiel de type Newtonien, déterminé comme la somme des potentiels gravitationnels générés par des masses placées sur les limites de l'objet. Ce type de méthode peut trouver un grand nombre de variantes en changeant la définition du champ scalaire calculé pour les points intérieur du masque et dont on cherche l'extremum.

Enfin, la méthode dite d'amincissement itératif consiste à retirer au fur et à mesure les points du contour de la forme par érosion (PALÁGYI [2002]), tout en préservant ses caractéristiques topologique. Dans cette approche l'axe médian de l'objet est identifié. Les voxels sont itérativement éliminés de la surface du volume si leur suppression n'affecte pas la connectivité de leur voisinage de 3 x 3 x 3, et si ils ont plus d'un voisin dans ce voisinage. Sinon ils sont définis comme des points terminaux. L'érosion doit être réalisée de façon symétrique afin de garantir la position médiane des lignes du squelette.

Il existe deux approches majeures dans les méthodes d'amincissement itératif : les filtres et les arbres de décisions. Les filtres appliquent un élément structurant à l'image et peuvent

FIGURE 3.6 – Création du squelette d'un rectangle par utilisation de la carte des distances. De gauche à droite, le rectangle brut, la carte de distance, et le squelette.

généralement être étendus à des dimensions supérieures à 3D (JONKER [2000]). Les méthodes basées sur des arbres de décision sont limitées à des données 2D et 3D, mais sont plus rapides que les filtres morphologiques.

Un algorithme de ce type (LEE et collab. [1994]) repose sur un processus itératif dans lequel chaque pixel est testé afin de savoir s'il peut être érodé de l'objet. Le pixel peut être supprimé:

- S'il est un pixel de surface. Ce test ne considère qu'une des six directions possible en 3D (Nord, Sud, Est, Ouest, Dessus, Dessous) à la fois afin de réaliser l'amincissement de façon symétrique;
- S'il n'est pas la fin d'une ligne;
- Si la suppression du point ne change pas la caractéristique d'Euler, par exemple si aucun trou n'est créé lorsque le pixel est retiré (voir table d'Euler de Lee et collab. [1994]);
- Si le point est un point simple, c'est-à-dire qu'il que sa suppression ne change pas le nombre d'objets connectés.

Ce processus est réalisé en parallèle pour chaque pixel de l'image, et répété jusqu'à ce qu'il n'y ait plus de changements. Lee et al. (Lee et collab. [1994]) ont démontré dans leurs travaux, que leur solution basée sur un arbre de décision est capable de trouver correctement l'ensemble des points supprimables à chaque itération. Leur algorithme d'érosion est très rapide.

Les résultats obtenus via les différentes approches sont visible sur la Figure 3.7. Comme on le voit ces différentes approches fournissent différents niveaux de détails sur la structure d'intérêt. Il est donc nécessaire d'évaluer au vu de l'objectif quel niveau de détails nous souhaitons atteindre. Dans notre travail, nous devons extraire le squelette de vaisseaux de diamètres extrêmement variables, et parfois très tortueux. Après quelques tests nous avons décidé d'utiliser la méthode d'amincissement itératif décrit par Lee (Lee et collab. [1994] voir Figure 3.7 B) via l'implémentation Matlab fournit par Kerschnitzki et associés (Kerschnitzki et collab. [2013]).

L'utilisation de cet algorithme sur notre segmentation aboutit à une structure reflétant relativement bien notre topologie initiale (Figure 3.8).

FIGURE 3.7 – Exemple de génération de squelette à partir d'un objet avec différentes méthodes. A) Objet brut, B) Squelette par amincissement itératif, C) squelette par carte des distances et D) squelette par carte de champ potentiels. Figure générée par utilisation de la toolbox Volume Skeleton Matlab Toolbox (Liu, Rutgers University).

FIGURE 3.8 – Application de la méthode d'amincissement itératif à une segmentation artérielle. A gauche la segmentation et à droite le squelette résultant. Le résultat est similaire avec les veines.

3.1.3 Création du graphe

L'arbre vasculaire contient de nombreux vaisseaux qui se subdivisent ou se rejoignent, par exemple au niveau du polygone de Willis. Les structures les plus adaptées pour la représentation de la topologie de ces architectures complexes sont les graphes et plus précisément les graphes orientés. En théorie des graphes, un graphe orienté est défini par un ensemble de nœuds (ou sommets) reliés par des arrêtes (ou liens) orientées. Dans le réseau, un nœud pointe vers un autre dans une direction spécifique. Dans notre contexte les liens représentent les segments de vaisseaux et les nœuds les jonctions entre ces vaisseaux. Notons que la description admet des liens « terminaux » appelés branches qui ne se terminent pas eux même par un nœud (Figure 3.9).

Le passage d'un squelette à une structure de graphe peut être réalisé simplement. On définit comme nœud les groupes de voxels disposants de plus de deux voisins chacun.

FIGURE 3.9 - Illustration d'un graphe, les cercles représentent les nœuds.

FIGURE 3.10 – Illustration de l'élimination automatique des erreurs mis en place. De haut en bas l'évolution du graphe, avec élimination des doubles liens directs, des nœuds en série, puis des segments courts.

Les groupes de voxels possédants exactement deux voisins appartiennent à des liens ou à des branches (si ils ne se connectent qu'à un nœud Kerschnitzki et collab. [2013])]. Cette conversion est standard : nous avons utilisé l'implémentation de Kollmannsberger(Kerschnitzki et collab. [2013]).

Le passage de la segmentation brute au squelette puis au graphe conduit à l'apparition d'erreurs telles que la création de faux liens de faibles longueurs ou de fausses anastomoses (Figure 3.10). Il convient donc de les détecter et de les retirer. C'est ce que nous avons mis en place. On repère tout d'abord les nœuds ayant un double lien direct avec un autre nœud (une distance maximale est utilisée) et on ne conserve que le lien le plus long. On élimine ensuite les nœuds en série de telle sorte à ce que l'on n'ait pas de sous segments pour un même vaisseau. On identifie et supprime les branches les plus courtes (< 2 mm). On réitère ce processus jusqu'à nettoyage complet du graphe. Le résultat est représenté dans la Figure 3.11.

Cette méthodologie assure une cohérence à la description topologique fournit par le

FIGURE 3.11 – Exemple de nettoyage automatique d'un graphe artériel. En haut le graphe brut, en bas le graphe nettoyé.

graphe final (Figure 3.11). Notons malgré tout qu'une étape manuelle est indispensable. Au niveau artériel, on demande à l'opérateur 1) de cliquer sur les liens qui lui paraissent complètement incohérents et 2) d'indiquer si la séparation entre les deux artères cérébrales antérieures n'est pas bonne, de manière à dupliquer les segments (un par hémisphère), la segmentation ayant souvent du mal à les séparer.

Par ailleurs la construction automatique ultérieure des équations du modèle demandera

de re-parcourir ce graphe en disposant d'informations supplémentaires que l'opérateur doit également fournir à ce stade. Au niveau artériel l'utilisateur doit 1) cliquer sur les artères communicantes, s'il y en a, pour les identifier, et 2) indiquer au niveau des principales intersections, les hémisphères (cette information sera propagée dans le reste de l'architecture de proche en proche). Au niveau veineux on demande à l'utilisateur l'identification de l'hémisphère pour les veines latérales.

Pour chaque segment il est enfin nécessaire d'extraire les caractéristiques géométriques : volumes, diamètres et longueurs afin de les caractériser et les décrire. Pour ce faire, nous employons une approche simple qui associe à chaque voxel de la segmentation un label qui l'associe au segment le plus proche du squelette en termes e distance euclidienne. On aboutit ainsi à une labélisation en segments du masque des vaisseaux, on récupère ensuite le volume de chaque segment auquel on associe également une longueur identifiée par le nombre de voxels du segment correspondant du squelette. On peut ensuite extraire le rayon en considérant la structure curviligne comme étant de section constante via

$$Rayon = \frac{Volume}{Longueur\pi},$$
(3.1)

où l'on a négligé les écarts de volumes entre tube curviligne et tube droit.

3.2 Artérioles – capillaires - veinules

Les informations artérielles et veineuses peuvent être récupérées par IRM. En revanche les données morphologiques sur les artérioles, capillaires et veinules ne sont pas atteignables à la résolution disponible. Ces compartiments représentent une véritable boite noire pour laquelle il est indispensable de faire des hypothèses basées sur la littérature afin de les représenter au mieux dans le modèle.

3.2.1 Quelle artère avec quelle veine?

Dans une première étape nous devons associer une artère et une veine comme cela se produit physiologiquement, l'ensemble constitue un territoire artério-veineux. Il existe une très forte variabilité de ces territoires du côté veineux en particulier (REINER et collab. [2013]). L'information que l'on pourrait souhaiter utiliser serait un atlas des territoires veineux mais cette variabilité rend impossible d'associer ainsi de façon fine une artère à une veine.

En l'état de l'imagerie nous avons sélectionné une approche simple consistant à trouver la veine la plus proche de l'extrémité de chaque branche du système artériel, en utilisant une distance euclidienne. Si ensuite une veine n'est toujours pas reliée à une artère, l'artère la plus proche est réciproquement recherchée et associée à cette veine (Figure 3.12).

3.2.2 Estimation des paramètres des tubes

La distance euclidienne entre artère et veine permet de proposer une longueur totale approchée, qui correspondra à la somme des artérioles, capillaires et veinules. Nous n'avons aucun moyen d'accéder directement aux informations morphologiques de ces compartiments. Pour limiter le nombre d'hypothèses à réaliser sur le nombre de vaisseaux, il semble plus logique de ne considérer pour chaque couple artère-veine qu'une « super-artériole », qu'un « super-capillaire », et qu'une « super-veinule » regroupant un

FIGURE 3.12 – Illustration des liens effectués entre les artères et les veines. Les cercles bleus représentent les extrémités des branches et les lignes bleues fines les liaisons.

ensemble N de vaisseaux. Bien que ces compartiments soient difficilement accessible (voir 2.1.2), la littérature nous fournit quelques informations sur les rapports de ces différents compartiments via des volumes moyens (ZAGZOULE et MARC-VERGNES [1986], LINNINGER et collab. [2009]). Parmi celles-ci on retrouve des rapports de longueurs et de volumes. Par ailleurs MOODY et collab. [2004] ont estimé la fraction de volume que représentent les artérioles et les capillaires dans la matière grise et blanche par marquage à la phosphatase alcaline. A partir de ces informations et des données issues de la segmentation, il devient possible d'estimer des volumes plausibles pour nos compartiments.

Dans une première étape, nous réalisons une segmentation sur la base de l'imagerie T1 (voir Appendice 1.2.4) revoir cette ref . Les volumes matière grise et blanche sont ainsi extraits et un masque de ces tissus créé (probabilité matière grise + blanche > 0.9). En associant à chaque voxel de ce masque le label correspondant au couple artère-veine le plus proche (voir fin du paragraphe 3.1.3), on reconstruit les territoires.

Les volumes de ces territoires permettent grâces aux rapports issues de littérature d'estimer les volumes des compartiments :

$$V_c = \left(V_s * d_{c-a}\right) * \frac{V_{Ref_c}}{V_{Ref_c} * V_{Ref_a}},\tag{3.2}$$

avec V_c et V_a les volumes des capillaires et des artérioles, V_s le volume segmenté, d_{c-a} la densité estimée d'artérioles e tde capillaires dans un volume (selon MOODY et collab. [2004]), et les V_{ref} associés étant les volumes moyens des compartiments issus de la littérature.

Pour les veinules, nous n'avons pas l'information de densité. Le volume est donc estimé sur la base des volumes capillaires et artérioles précédemment trouvé en résolvant :

$$\frac{V_{v}}{V_{v} + V_{a} + V_{c}} = \frac{V_{ref_{v}}}{V_{ref_{v}} + V_{ref_{a}} + V_{ref_{c}}},$$
(3.3)

avec V_a et V_c les solutions de 3.2, et les volmues de référence toujours donnés par la littérature.

De même la longueur totale entre artères et veines est subdivisée en trois longueurs (artérioles, capillaires, veinules) sur la base des proportions fournit par la littérature (ZAGZOULE et MARC-VERGNES [1986]). En l'état, faute d'informations structurales complémentaires, nous n'utilisons pas de facteurs géométriques correctifs supplémentaires (de

FIGURE 3.13 – Illustration des rayons moyens dans les différents compartiments du système.

type dimensions fractales), pour tenir compte du caractère ramifié de cette partie de la structure.

A partir des volumes et des longueurs de chaque compartiment, les rayons sont déterminés simplement (Équation 3.1).

Les rayons moyens des différents compartiments peuvent être visualisés (Figure 3.13) et leur différences relatives mis en comparaisons aux données de la littérature (Figure 39) pour comparer avec Zagzoule faut faire une table. On voit ainsi que des artères aux veines, les proportions des rayons des différents tubes semblent comparable.

Petite remarque : il y a dans le manuscrit original une figure 25 qui n'est pas referencee dans le texte!

3.3 Références

AYLWARD, S. R. et E. BULLITT. 2002, «Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction», *IEEE Transactions on Medical Imaging*, vol. 21, n° 2, doi:10.1109/42.993126, p. 61–75, ISSN 02780062.

BOSKAMP, D., T. AAND RINCK, F. LINK, B. KÜMMERLEN, G. STAMM et P. MILDENBERGER. 2004, «Multiscale detection of curvilinear structures in 2-D and 3-D image data», *Radiogr. Rev. Publ. Radiol. Soc. N. Am. Inc*, vol. 24, n° 1, p. 287–297.

Frangi, A. F., W. J. Niessen, K. L. Vincken et M. A. Viergever. 1998, «Multiscale ves-

- sel enhancement filtering», dans *Medial Image Computing and Computer-Assisted Invervention MICCAI'98. Lecture Notes in Computer Science, vol 1496*, vol. 1496, ISBN 978-3-540-49563-5, ISSN 13618415, p. 130–137, doi:10.1016/j.media.2004.08.001.
- JONKER, P. P. 2000, «Morphological Operations on 3D and 4D Images: From Shape Primitive Detection to Skeletonization», dans *Discrete Geometry for Computer Imagery, G. Borgefors, I. Nyström, and G. S. di Baja, Eds.*, Springer, p. 371–391.
- Kerschnitzki, M., P. Kollmannsberger, M. Burghammer, G. N. Duda, R. Weinkamer, W. Wagermaier et P. Fratzl. 2013, "Architecture of the osteocyte network correlates with bone material quality", *J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res.*, vol. 28, n° 8, p. 1837—1845.
- KOLLER, T., G. GERIG, G. SZEKELY et D. DETTWILER. 1995, «Multiscale detection of curvilinear structures in 2-D and 3-D image data», *Proceedings of IEEE International Conference on Computer Vision*, doi:10.1109/ICCV.1995.466846.
- LEE, T., R. KASHYAP et C. CHU. 1994, «Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms», doi:10.1006/cgip.1994.1042.
- LESAGE, D., E. D. ANGELINI, I. BLOCH et G. FUNKA-LEA. 2009, «A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes», *Med. Image Anal.*, vol. 13, nº 6, doi:10.1016/j.media.2009.07.011, p. 819–845, ISSN 13618415.
- LINNINGER, A. A., M. XENOS, B. SWEETMAN, S. PONKSHE, X. GUO et R. PENN. 2009, «A mathematical model of blood, cerebrospinal fluid and brain dynamics», *Journal of Mathematical Biology*, vol. 59, n° 6, doi:10.1007/s00285-009-0250-2, p. 729–759, ISSN 03036812.
- MANNIESING, R., M. A. VIERGEVER et W. J. NIESSEN. 2006, «Vessel enhancing diffusion. A scale space representation of vessel structures», *Med. Image Anal.*, vol. 10, n° 6, doi: 10.1016/j.media.2006.06.003, p. 815–825, ISSN 13618415.
- McInerney, T. et D. Terzopoulos. 1996, «Deformable models in medical image analysis: a survey.», *Medical image analysis*, vol. 1, nº 2, doi:10.1016/S1361-8415(96) 80007-7, p. 91–108, ISSN 1361-8415.
- Moody, D. M., C. R. Thore, J. A. Anstrom, V. R. Challa, C. D. Langefeld et W. R. Brown. 2004, "Quantification of afferent vessels shows reduced brain vascular density in subjects with leukoaraiosis.", *Radiology*, vol. 233, n° 3, doi:10.1148/radiol. 2333020981, p. 883–890, ISSN 0033-8419.
- PALÁGYI, K. 2002, «A 3-subiteration 3D thinning algorithm for extracting medial surfaces», *Pattern Recognition Letters*, vol. 23, n° 6, doi:10.1016/S0167-8655(01)00142-8, p. 663–675, ISSN 01678655.
- REINER, P., I. CRASSARD et A.-C. LUKASZEWICZ. 2013, «Thrombose veineuse cérébrale», *Réanimation*, vol. 22, nº 6, p. 624—-633.
- TSCHIRREN, J., E. A. HUFFMAN, G. McLennan et M. Sonka. 2005, «Intrathoracic airway trees: Segmentation and airway morphology analysis from low-dose CT scans», *IEEE Transactions on Medical Imaging*, vol. 24, n° 12, doi:10.1109/TMI.2005.857654, p. 1529–1539, ISSN 02780062.

WILKINSON, M. H. F. et M. A. WESTENBERG. 2001, «Shape Preserving Filament Enhancement Filtering», dans *Medial Image Computing and Computer-Assisted Invervention - MICCAI 2001*, Springer, p. 770—-777.

ZAGZOULE, M. et J.-P. MARC-VERGNES. 1986, «A global mathematical model of the cerebral circulation in man», doi:10.1016/0021-9290(86)90118-1.

Annexe A

Annexes

A.1 Figures annexes

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. On rappelle que α et γ sont liés par la relation (**??**). Pour plus de détails, voir page **??**.

A.2 Tableaux annexes

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.