Data Structures and Algorithms

Data Structures and Algorithms

Lecture 7 – Binary Trees-Basics
Miao Zhang

Why Do We Need Trees?

- Lists, Stacks, and Queues are linear relationships (serially ordered data)
 - \triangleright (e₁,e₂,e₃,...,e_n)
 - Days of week
 - ➤ Months in a year
 - > Students in a class
- ➤ Information often contains hierarchical relationships (hierarchically ordered data)
 - > Joe's descendants
 - > Corporate structure
 - ➤ Government Subdivisions
 - > Software structure
 - File directories or folders
 - ➤ Moves in a game
- > Tree structures permit both efficient access and update to large collections of data

Joe's Descendants

What are other examples of hierarchically ordered data?

Hierarchies in organizations

- root
- nodes and edges
- leaves
- parent, children, siblings
- ancestors, descendants
- subtrees
- path, path length
- height, depth

- The element at the top of the hierarchy is the root.
- Elements next in the hierarchy are the children of the root.
- Elements next in the hierarchy are the grandchildren of the root and so on.
- **Elements that have empty** children are leaves.

➤ Leaves, Parent, Grandparent, Siblings, Ancestors, Descendents

Leaves = {Mike,AI,Sue,Chris}

Parent(Mary) = Joe

Grandparent(Sue) = Mary

Siblings(Mary) = {Ann,John}

Ancestors(Mike) = {Ann,Joe}

Descendents(Mary)={Mark,Sue}

If n1, n2, ..., nk is a sequence of nodes in the tree

- **►** Length of a path = number of edges
- \triangleright Depth of a node N = length of path from root to N
- > Depth of tree = depth of deepest node
- ➤ Height of tree = one more than the depth of the deepest node in the tree
- >A leaf node is any node that has two empty children.
- An internal node is any node that has at least one non-empty child.

Levels and Height

- > Root is at level 0 and its children are at level 1.
- depth = number of levels

Node Degree

> Node degree is the number of children the node has

Tree Degree

> Tree degree is the maximum of node degrees

Definition and Tree Trivia

- > A tree is a set of nodes, i.e., either
 - it's an empty set of nodes, or
 - it has one node called the <u>root</u> from which zero or more subtrees descend
- > Two nodes in a tree have at most one path between them
- > Can a non-zero path from node N reach node N again?

❖ No! Trees can never have cycles (loops)

Tree Properties

- 1. The number of nodes in the tree is one more than the sum of node degrees .
- 2. If the degree of the tree is m, there are mⁱ nodes at most on the level i.
- 3. If the depth of the tree is h-1, the tree with m degree has a maximum of $\frac{m^h-1}{m-1}$ nodes.
- 4. If the tree with m degree has n nodes, the least height of the tree is $\lceil \log_m(n(m-1)+1) \rceil$

Tree Properties

- 1. The number of nodes in the tree is one more than the sum of node degrees .
- 2. If the degree of the tree is m, there are mⁱ nodes at most on the level i.
- 3. If the depth of the tree is h-1, the tree with m degree has a maximum of $\frac{m^h-1}{m-1}$ nodes.
- 4. If the tree with m degree has n nodes, the least height of the tree is $\lceil \log_m(n(m-1)+1) \rceil$

• (1) Tree shaped

• (2) Venn Diagram

• (3) Invagination

A		
	В	
		E
		F
	C	
		G
		J
		,
	D	
		Н
		T
		I
		•
		K
		K L

• (4) Generalized list

A(B(E,F),C(G(J)),D(H,I(K,L,M)))

Binary Trees

Binary Trees

➤ A binary tree is a tree in which no node can have more than two children

A binary tree consisting of a root and two subtrees T_L and T_R , both of which could possibly be empty.

Binary Tree Terminology

- Left Child The left child of node n is a node directly below and to the left of node n in a binary tree.
- Right Child The right child of node n is a node directly below and to the right of node n in a binary tree.
- Left Subtree In a binary tree, the left subtree of node n is the left child (if any) of node n plus its descendants.
- Right Subtree In a binary tree, the right subtree of node n is the right child (if any) of node n plus its descendants.

Binary Tree

Binary tree examples

Binary tree

- > Characteristics:
- > 1 The node degree is not more than 2.
- > 2 The left subtree and right subtree can not be exchanged.(The two trees below are different.)

Binary tree

Ex.: How many shapes of binary tree with 3 nodes?

Full binary tree

Full binary tree: Any internal node has exactly two non-empty children, and all leaf nodes are on the same level.

Characteristics of full binary trees

- > The full binary tree with height k has 2^k-1 nodes.
 - > Each level has the maximum number of nodes;
 - > The degree of each internal node is two;
 - > Leaf nodes are on the same level.

Complete binary tree: A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible.

A complete binary tree is a special kind of binary tree which will be useful to us.

When a complete binary tree is built, its first node must be the root.

The second node of a complete binary tree is always the left child of the root...

The second node of a complete binary tree is always the left child of the root...

... and the third node is always the right child of the root.

Is This Complete?

Is This Complete?

Is This Complete?

Is this a complete binary tree?

Q: What is the relationship between full binary tree and complete binary tree?

- ➤ If the binary tree has empty subtree, add new special nodes (empty leaves)
 - For the nodes with degree 1, add one empty leaf in its subtree;
 - > For the leaves, add two empty leaves for each original leaf.

- ► Length of External path E The sum of the path length from the root to every external node.
- ➤ Length of Internal path I The sum of the path length from the root to every internal node.
- > E=I+2n n is the number of internal nodes

♦ 10 internal nodes

$$\bullet \quad I = 0 + 1 + 2 + 3 + 2 + 3 + 1 + 2 + 3 + 2 = 19$$

$$\bullet$$
 E = I + 2n=19+2*10=39

Binary Tree Theorem

Six important properties for binary trees

Binary Tree Theorem

Theorem: The number of leaves in a non-empty binary tree is one more than the number of internal nodes with degree 2.

$$n_0 = n_2 + 1$$

The number of the leaves in a non-empty full binary tree is one more than the number of internal nodes.

 \triangleright There are 2ⁱ nodes(i≥0) at most on the level i.

- The binary tree with height h(depth is h-1) has a maximum of 2^h -1 nodes.
- The height of a complete binary tree with n nodes (n>0) is $\lceil \log_2(n+1) \rceil$.

➤ In the complete binary tree, if the index of a node is i (1≤i≤n, n≥1,n is the total number of the nodes):

Complete binary tree

- (1) If i=1,the node i is root, it has no parents.
- (2) If i>1,its parent index is [i/2].

If i is even number, its parent index is i/2, it is left child node.

If i is odd number, its parent index is (i-1) /2, it is right child.

(3) If node i has left child, the index number of its left child is 2i; If node i has right child, the index number of its right child is (2i+1).

(4) If n is odd number, each internal node has both left child and right child; If n is even number, the internal node with biggest index number only has left child, others have both left and right children.

The storage structure of binary tree

> Sequential Storage Structure

> Linked Storage structure

Sequential Storage Structure

Arbitrary binary tree: add empty nodes

(a)Normal binary tree

(b)Complete binary tree

array	$ \mathbf{A} $	B	$ \mathbf{C} $	Λ	$ \mathbf{D} $	E	\	Λ	Λ	F	Λ	Λ	$\overline{\mathbf{G}}$
i	0	1	2	3	4	5	6	7	8	9	10	11	12

(c) array-based storage

Height 4, 7 nodes

Height 4, only 3 right children

Sequential Storage Structure is efficient for full binary trees and complete binary trees.

Linked structure storage

> Three fields: data, left pointer and right pointer

leftChild data rightChild

Linked structure storage

For n nodes, there are n+1 empty pointer field.

Linked structure storage

- > Trigeminal linked list:
- > Add parent pointer for searching the parent node.

leftChild	data	parent	rightChild
-----------	------	--------	------------

Trigeminal linked list for binary tree

Homework

- > Please refer to Icourse, Huawei Cloud.
- > Due date for quiz: 23:30 2022/4/12
- > Due date for homework: 23:30 2022/4/17
- > Due data for online lab assignment: 2022/4/17 23: 30
- > Due data for offline lab assignment: 2022/4/24 18:00