Lecture 10

The degree of reaction

$$\Lambda = \frac{\Delta T_A}{\Delta T_A + \Delta T_B} \tag{10.3}$$

With the help of Eq. (10.2), it becomes

$$\Lambda = \frac{UV_f \left(\tan \alpha_2 - \tan \alpha_1\right) - \frac{1}{2}V_f^2 \left(\tan^2 \alpha_2 - \tan^2 \alpha_1\right)}{UV_f \left(\tan \alpha_2 - \tan \alpha_1\right)}$$

and

$$\Lambda = 1 - \frac{V_f}{2U} (\tan \alpha_2 + \tan \alpha_1)$$

By adding up Eq. (9.1) and Eq. (9.2) we get

$$\frac{2U}{V_f} = \tan \alpha_1 + \tan \beta_1 + \tan \alpha_2 + \tan \beta_2$$

Replacing $\alpha_{\!1}$ and $\alpha_{\!2}$ in the expression for Λ with $\,\beta_{\!1}$ and $\,\beta_{\!2}$,

$$\Lambda = \frac{V_f}{2U} (\tan \beta_1 + \tan \beta_2)$$
 (10.4)

As the case of 50% reaction blading is important in design, it is of interest to see the result for $\Lambda=0.5$,

$$\tan \beta_1 + \tan \beta_2 = \frac{U}{V_f}$$

and it follows from Eqs. (9.1) and (9.2) that

$$\tan \alpha_1 = \tan \beta_2$$
, i.e. $\alpha_1 = \beta_2$ (10.5a)

$$\tan \beta_1 = \tan \alpha_2$$
, i.e. $\beta_1 = \alpha_2$ (10.5b)

Furthermore since V_f is constant through the stage.

$$V_f = V_1 \cos \alpha_1 = V_3 \cos \alpha_3$$

And since we have initially assumed that $V_3 = V_1$, it follows that $\alpha_1 = \alpha_3$. Because of this equality of angles, namely, $\alpha_1 = \beta_2 = \alpha_3$ and $\beta_1 = \alpha_2$, blading designed on this basis is sometimes referred to as symmetrical blading. The 50% reaction stage is called a repeating stage.

It is to be remembered that in deriving Eq. (10.4) for Λ , we have implicitly assumed a work done factor λ of unity in making use of Eq. (10.2). A stage designed with symmetrical blading is referred to as 50% reaction stage, although Λ will differ slightly for λ .