

Fisica Tecnica

Alberto Salioni

Si ringrazia Andrea Ciarallo per la stesura e la revisione della presente raccolta di slides

Contatti

Prof. Alberto Salioni

- tel. Segreteria dipartimento energetica: 02-2399 3803
- email: alberto.salioni@polimi.it

I lucidi proiettati a lezioni, le informazioni sul corso, i risultati delle prove intermedie sono disponibili sul sito:

https://webeep.polimi.it/login/index.php

Programma del corso

Termodinamica

- Termodinamica degli stati di equilibrio
- Termodinamica dei processi

• Termocinetica dei processi energetici

- Conduzione
- Convezione
- (Irraggiamento)
- (Scambiatori)

Energia e sviluppo

Libri di testo

Teoria:

Yunus A. Çengel Termodinamica e trasmissione del calore McGraw-Hill

> G. Dassù F. Inzoli Lezioni di fisica tecnica (Vol I Termodinamica Vol II Trasmissione del calore) Edizioni Cusl

Eserciziari:

E. Colombo F. InzoliTermodinamica e trasmissione del caloreEd Schonenfeld & Ziegler

Casagrande G., Lanzarone E., Marocco L.D., Miglietta F. Esercizi di fisica tecnica Pitagora editrice

Prima lezione

La **Termodinamica** è la scienza che studia l'*energia*, la *materia* e le *leggi* che governano le loro *interazioni*.

Prima lezione

2016

Projected sources of UK electricity

Prima lezione

Problema ambientale

Sistema Termodinamico

Sistema aperto

Sistema chiuso

Siste ma isolato

Sistema semplice

- Chimicamente e fisicamente omogeneo ed isotropo
- Non soggetto a campi gravitazionali, elettrici o magnetici
- Chimicamente inerte
- Esente da effetti di superficie

Ambiente

MONDO ESTERNO

Ambiente

Sistema accoppiato

Stato di equilibrio

Esistono grandezze intensive ed estensive:

Legge di Duhem:

Nel caso di sistema *monocomponente* il numero di *parametri* termodinamici intensivi o estensivi specifici *indipendenti* atti a descrivere compiutamente lo stato interno di *equilibrio* è *due*.

Regola di Gibbs

Stabilisce una relazione fra:

- numero di componenti C
- numero di fasi F
- numero di variabili intensive indipendenti V

$$V = C + 2 - F$$

Per un sistema *monocomponente* (C=1) e *monofase* (F=1), V=2 (il sistema può essere descritto ad esempio da P e T). Per un sistema *monocomponente* e *bifase*, V=1 (il sistema dovrà essere descritto da un'intensiva e da un'estensiva).

Equazione di stato

Dalla legge di Duhem, discende anche l'esistenza dell'equazione di stato:

$$f(P,V,T)=0$$

Molto spesso l'equazione di stato è *ignota*, però la sola consapevolezza della sua esistenza è talvolta molto importante

Tipologie di sistemi termodinamici

	Calore	Lavoro	Massa
Adiabatico	no		
Diatermano	Si		
Rigido		no	
Deformabile		si	
Chiuso (impermeabile)			no
Aperto (permeabile)			si
Isolato	no	no	no

Tipologie di sistemi termodinamici

Caratteristiche:

- Contorno reale
- Contorno rigido chiuso diatermano
- Scambia con l'esterno energia sotto forma di calore

Caratteristiche:

- Contorno reale
- Contorno rigido aperto diatermano
- Scambia con l'esterno energia sotto forma di calore e materia

Caratteristiche:

- Contorno reale
- Contorno deformabile chiuso diatermano
- Scambia con l'esterno energia sotto forma di calore e lavoro

Trasformazioni

Rimozione dei vincoli al contorno

Il sistema scambia con l'ambiente calore e/o lavoro

Gli stati intermedi successivi sono detti nel loro insieme trasformazione termodinamica

Trasformazioni

TRASFORMAZIONE	CARATTERISTICHE	
Quasi statica (internamente reversibile)	È una trasformazione costituita da una successione di stati di equilibrio. Può non essere reversibile.	
Reversibile	Può essere percorsa in senso inverso in modo tale da riportare sia il sistema, sia l'ambiente esterno, allo stato di partenza.	
Irreversibile	Trasformazione totalmente o in parte non reversibile. Non rappresentabile su un diagramma di stato.	
Chiusa (ciclica)	I due estremi della trasformazione coincidono	
Elementare	Una delle grandezze di stato è costante durante tutta la trasformazione	

Analisi di un sistema termodinamico

Punto di vista:

Macroscopico

Per definire lo stato del sistema le grandezze rilevate utilizzando normali strumenti di misura [pressione, temperatura, volume] hanno in comune che:

- Non implicano alcuna ipotesi sulla struttura della materia
- Sono in numero relativamente *piccolo*
- Sono suggerite più o meno dai nostri sensi
- Possono essere misurate direttamente

Microscopico

Descrive il sistema, fornendo le coordinate per ciascuna delle molecole che lo costituiscono.

Con questo approccio:

- Si fanno delle *ipotesi sulla struttura della* materia, ad esempio che esistano le molecole
- Occorre precisare il valore di *molte grandezze*
- L'esistenza di queste grandezze <u>non</u> è suggerita dalle nostre *percezioni sensoriali*
- Queste grandezze <u>non</u> possono essere *misurate*

Gas ideale

La **teoria cinetica dei gas** ci assicura che le coordinate di stato (p,V,T) sono legate da una equazione del tipo: f(p,V,T) = 0(Alla stessa conclusione si arriva per mezzo della legge di Duhem)

Per un gas ideale, in particolare, l'equazione di stato è del tipo:

$$ar{v} = rac{V}{n}$$
 $PV = nRT$ $PV = mR^*T$ $PV = mR^*T$ $PV = mR^*T$ $PV = mR^*T$ $PV = R^* = \frac{R}{M_m}$ $PV = R^*T$ $PV =$

$$PV = mR^*T$$
 $R^* = \frac{R}{M_m}$ $Pv = R^*T$ $v = \frac{V}{m}$

R è la costante universale dei gas=8314 $\left\lceil \frac{J}{kmol + K} \right\rceil$ T è la temperatura [K]

v è il volume specifico $\left|\frac{m^3}{ka}\right|$

Perché R è costante per tutti i gas?

 R^* è la costante specifica del gas $\left| \frac{J}{k a K} \right|$

Legge di Avogadro

La legge di Avogadro ci assicura che una chilomole di un qualsiasi gas nelle stesse condizioni di pressione e temperatura occupa sempre lo stesso volume.

Secondo la legge di Avogadro, per T = 273 K e P = 1 atm, risulta che $\overline{\boldsymbol{v}}$ = 22,41 m³/kmole (se indichiamo con $\overline{\boldsymbol{v}}$ il volume molare) ed esso, a parità di p e T, è uguale per tutti i gas, quindi R è una costante universale.

Liquidi e solidi

Nel caso di liquidi e solidi non esistono equazioni atte ad approssimarne il comportamento termodinamico.

La sola consapevolezza dell'esistenza dell'equazione di stato però permette utili deduzioni.

$$v = v(T, P)$$

Differenziale dell'equazione di stato scritta in forma implicita

$$dv = \left(\frac{\partial v}{\partial T}\right)_P dT + \left(\frac{\partial v}{\partial P}\right)_T dP$$

Coefficiente di dilatazione isobaro

$$\beta = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_{P}$$

Coefficiente di comprimibilità isotermo

$$K_T = -\frac{1}{v} \left(\frac{\partial v}{\partial P} \right)_T$$

Liquidi e solidi

I due coefficienti introdotti, dipendenti debolmente da pressione e temperatura, sono misurabili sperimentalmente.

La precedente relazione differenziale risulta quindi:

$$dv = \beta v dT - K_T v dP$$

Considerando costanti i coefficienti per intervalli anche piuttosto ampi di temperatura e pressione, si rende possibile l'integrazione della relazione differenziale e il calcolo dello stato finale a partire da condizioni iniziali note.