

<u>Home</u> > <u>Gameboard</u> > Biology > Biochemistry > Respiration & Photosynthesis Revision

Respiration & Photosynthesis Revision

Part A	Respiration
Name the reaction.	e molecule that is produced during glycolysis and which is converted to acetyl CoA during the link
lame the	molecule that reacts with acetyl CoA during the Krebs cycle to produce citric acid.
Name the	e part of the mitochondrion in which the Krebs cycle takes place.

~
R

Part C Photosynthesis: light-independent reaction >
Name the part of the chloroplast in which the Calvin cycle takes place.
Name the enzyme that catalyses the fixation of carbon dioxide.
Name the first stable product of carbon dioxide fixation.
Name the compound that is regenerated in the Calvin cycle so that more carbon dioxide can be fixed.
7
Parts B and C adapted with permission from OCR A Level Biology A, June 2014, Communication, Homeostasis and Energy, Question 1.

<u>Home</u> > <u>Gameboard</u> > Biology > Biochemistry > Respiration > ATP and NAD

ATP and NAD

ATP and NAD both play important roles in respiration. Both compounds are modified nucleotides. **Figure 1** represents the molecular structures of ATP and NAD.

Figure 1: ATP and NAD.

Part A Structural similarities	^
Which of the following are structural similarities between ATP and NAD? Select all that apply. both contain adenine both contain a hexose sugar both contain phosphate groups both contain ribose both contain deoxyribose	
	۶
Part B Structural differences	~
Which of the following are structural differences between ATP and NAD? Select all that apply. ATP contains three phosphate groups whereas NAD contains two phosphate groups. NAD contains two pentose sugars whereas ATP only contains one pentose sugar. ATP contains a purine base whereas NAD does not. ATP contains ribose whereas NAD does not. NAD contains nicotinamide whereas ATP does not.	
	P
Part C ATP synthesis Name the type of chemical reaction by which ATP is made during the Krebs cycle.	~
	p

Part D NAD functions	~
Which of the following are functions of NAD ⁺ in the cytoplasm of a eukaryotic cell? Select all that apply.	
accepts electrons from the electron transport chain	
donates electrons to the electron transport chain	
accepts electrons from other molecules	
phosphorylates other molecules	
	~
l l	2
Adapted with permission from CIE A Level Biology, June 2016, Paper 4, Question 1	
Gameboard:	
STEM SMART Biology Week 48 - Revision - Respiration &	
<u>Photosynthesis</u>	

<u>Home</u> > <u>Gameboard</u> > Biology > Cell Biology > Cell Structure > Mitochondrial Molecules and Numbers

Mitochondrial Molecules and Numbers

Figure 1: Simplified diagram of a transmission electron micrograph of a section through a mitochondrion.

Part A Aerobic respiration

The table below shows some structures and compounds involved in aerobic respiration.

Use letter **A** or **B** from **Figure 1** to show where each structure/compound is found/used.

Compound or structure	Location
ATP synthase	
acetyl CoA	
phospholipid bilayer	
oxaloacetate	

Items:

P

				-
Part B	Cell types	& mitocho	ondrial n	umbers

The table below shows the mean number of mitochondria per cell and the mean cell volume for three types of mammalian cells.

Cell type	Mean number of mitochondria per cell	Mean cell volume / $\mu\mathrm{m}^3$
fat cell	100	600 000
heart cell	2000	45 000
liver cell	2000	125 000

liver cell	2000	123 000
Calculate the mean nu	umber of mitochondria per $ m \mu m^3$ for each cell. Giv	ve your answers to 2 significant figures.
fat cell:		
heart cell:		
liver cell:		

P

Part C Fat cell vs heart cell	~
Which of the following statements explain the difference in mean number of mitochondria per μm^3 between the fat cell and the heart cell in part B? Select all that apply.	en
fat cells have a higher mean number of mitochondria per $\mu\mathrm{m}^3$ than heart cells because they require more energy	
heart cells have a higher mean number of mitochondria per $\mu\mathrm{m}^3$ than fat cells because they require more energy	
mitochondria produce ATP by aerobic respiration	
mitochondria produce ATP by photophosphorylation	
ATP is required for lipogenesis	
ATP is required for muscle contraction	
	p
Adapted with permission from CIE A Level Biology, June 2018, Paper 4, Question 6	
Gameboard: <u>STEM SMART Biology Week 48 - Revision - Respiration & Photosynthesis</u>	

<u>Home</u> > <u>Gameboard</u> > Biology > Physiology > Breathing & Circulation > Respiratory Systems Revision

Respiratory Systems Revision

of the following statements describe how fish gills take in oxygen? Select all that apply.
water moves in through the mouth and out across the gills
water moves in across the gills and out through the mouth
blood is pumped through the gills in the same direction to the flow of water across the gills
blood is pumped through the gills in the opposite direction to the flow of water across the gills
because blood and water flow in the same direction, a steep diffusion gradient is maintained across the gill capillaries, thus increasing gas exchange efficiency
because blood and water flow in opposite directions, a steep diffusion gradient is maintained across the gill capillaries, thus increasing gas exchange efficiency

Part B Mammalian lungs adaptations Fill in the table below by matching the feature of the mammalian lungs to the description of how this feature improves efficiency of gas exchange between the air and the bloodstream. **Feature** How this feature improves efficiency of gas exchange ensures a very small distance for gases to diffuse across increases the surface area for diffusion of gases to occur increases the concentration gradient of oxygen by ensuring that the lungs are continuously supplied with oxygen-poor blood increases concentration gradient of oxygen by ensuring that the lungs are continuously filled with oxygen-rich air Items: veoli are lined with thin layer of cells of a large number P Part C Mammalian ventilation Which of the following statements describe how mammalian lungs take in air? Select all that apply. The diaphragm contracts, changing from a more domed shape to a flatter shape, causing the lungs to expand downwards. The diaphragm relaxes, changing from a flatter shape to a more domed shape, causing the lungs to expand downwards. The external intercostal muscles contract, causing the lungs to expand outwards and upwards. The external intercostal muscles relax, causing the lungs to expand outwards and upwards. The expansion of the lungs increases thoracic pressure, which causes air to move into the lungs from outside the body. The expansion of the lungs decreases thoracic pressure, which causes air to move into the lungs from outside the body. P

Part D Pulmonary ventilation

A group of students were investigating the effect of exercise on pulmonary ventilation.

The table below shows some of the results recorded for one of the students in the group.

Tidal volume	$0.45\mathrm{dm^3}$
Vital capacity	$3.45\mathrm{dm^3}$
Mean breathing rate at rest	14 min ⁻¹
Mean breathing rate during exercise	18 min ⁻¹

Calculate the total volume of air that moved in and out of this student's lungs in a five minute period **before** the start of exercise.

Created for isaacphysics.org by Lewis Thomson. Part B adapted with permission from OCR AS Level Biology A, May 2013, Cells, Exchange and Transport, Question 2c. Part D adapted with permission from OCR AS Level Biology B, June 2016, Foundations of Biology, Question 9.

Gameboard:

<u>STEM SMART Biology Week 48 - Revision - Respiration & Photosynthesis</u>

<u>Home</u> > <u>Gameboard</u> > Biology > Physiology > Breathing & Circulation > Circulatory Systems Revision

Circulatory Systems Revision

Part A Double circulation
Which of the following statements about double circulation are correct? Select all that apply.
double circulation refers to the fact that the heart has two types of chambers: atria and ventricles
double circulation refers to the fact that blood passes through the heart twice for each complete circuit of the circulatory system
all vertebrates have a double circulatory system
mammals and birds have a double circulatory system, whereas fish have a single circulatory system
double circulation ensures that blood travels through the body at a higher pressure and faster speed than in a single circulatory system
double circulation ensures that blood travels through the body at a lower pressure and slower speed than in a single circulatory system
9

Part B Systole vs diastole	~
In the table below, show which process each statement refers to: systole or diastole	
Statement	Systole or Diastole
blood moves from the vena cava and pulmonary veins into the atria	
blood moves from the ventricles out into the aorta and pulmonary artery	
the semi-lunar valves open	
the atrioventricular valves open	
caused by electrical excitation (i.e. depolarisation)	
Items: systole diastole	
	ج م
Part C Oxygen saturation	~
In mammalian blood, oxygen is mainly transported combined with haemoglobin. The haemoglobin greatly increases the oxygen carrying capacity of blood. • $100\mathrm{cm^3}$ of plasma contains $0.3\mathrm{cm^3}$ of oxygen when fully saturated. • $100\mathrm{cm^3}$ of blood contains $20.1\mathrm{cm^3}$ of oxygen when fully saturated. Calculate the percentage increase in oxygen carried in fully saturated blood compartfully saturated plasma. Give your answer to the nearest percent.	
	7

Part D Cardiac output	~
The average stroke volume of a particular person is $60\mathrm{ml}$, and their average heart rate is $82\mathrm{bpm}$.	
Calculate this person's cardiac output.	
	P
Created for isaacphysics.org by Lewis Thomson. Part C adapted with permission from OCR AS Level Biology A, May 2016, Breadth in Biology, Question 24	
Gameboard:	
STEM SMART Biology Week 48 - Revision - Respiration &	
<u>Photosynthesis</u>	

 $\underline{\mathsf{Home}} \; \blacktriangleright \; \underline{\mathsf{Gameboard}} \; \blacktriangleright \; \mathsf{Biology} \; \blacktriangleright \; \mathsf{Plants} \; \blacktriangleright \; \mathsf{Plant} \; \mathsf{Physiology} \; \mathsf{Revision}$

Plant Physiology Revision

Part A Xylem vs phloem	^
Fill in the table below to compare xylen	n and phloem.
Xylem	Phloem
xylem transports water and	phloem transports
xylem vessel walls are reinforced with	sieve tube walls have no additional support
that allow water to pass into adjacent vessels	there are many gaps in the cell walls between companion cells and sieve tube elements called
Items:	
mineral ions e.g. nitrates and phosphates [lignin] chitin	pits assimilates e.g. sucrose and amino acids
	7

Part B Phloem loading	~
A scientist isolated companion cells and conducted some experiments to investigate the mechanism involving loading sucrose into the sieve tubes. The scientist recorded the following observations:	/ed
 Observation 1: isolated companion cells became slightly negatively charged compared with their surroundings. 	
 Observation 2: companion cells could decrease the pH of the surrounding solution from 7.0 to 5.6. Observation 3: the pH inside the companion cells rose from 7.0 to 8.2. 	
 Observation 4: treatment with cyanide (which stops aerobic respiration) prevents the change in pH occurring. 	
Which of the following conclusions can be drawn from the observations above? Select all that apply.	
hydrogen ions are moving from the companion cells to the surrounding solution	
hydrogen ions are moving from the surrounding solution into the companion cells	
hydrogen ions are moving by passive transport	
hydrogen ions are moving by active transport	
	~
	P

Part C Xerophytes	~
Xerophytes are plants that are adapted to living in dry c	onditions.
The table below describes four general features of leave	es. In each section, one leaf belongs to a xerophyte.
Presence of ha	airs on leaves
Leaf A	no
Leaf B	yes
Leaf C	no
Mean number of	stomata (cm ⁻²)
Leaf D	30 000
Leaf E	23 000
Leaf F	13 000
Mean surface area	of one leaf (cm ²)
Leaf G	0.2
Leaf H	10.0
Leaf I	23.0
Thickness of	cuticle (µm)
Leaf J	4.25
Leaf K	8.50
Leaf L	2.00
Which four leaves belong to xerophytes? Choose one fr	om each section.
A	
В	
С	
D	
E	
F	
G	
Н	

J
□ K
L
7
Adapted with permission from OCR AS Level Biology A, June 2013, Cells, Exchange and Transport, Question 6 and OCR AS Level Biology A, June 2014, Cells, Exchange and Transport, Question 4
Gameboard:
STEM SMART Biology Week 48 - Revision - Respiration &
<u>Photosynthesis</u>

<u>Home</u> > <u>Gameboard</u> > Biology > Biochemistry > Carbohydrates > Sucrose Reactions and Transport

Sucrose Reactions and Transport

Figure 1 shows how sucrose is broken down.

Figure 1: Sucrose breakdown. A sucrose molecule reacts with water to form two monosaccharides.

Part A Products	^
Name product A from the reaction shown	n in Figure 1.
Name product B from the reaction shown	n in Figure 1 .
	7
Part B Bond	^
Name the type of bond that is broken in the	he reaction shown in Figure 1 .
	7
Part C Reaction	^
State the type of reaction shown in Figure	
	re 1.

Part D Transport Drag the items below into the correct order on the right to show how sucrose is transported from photosynthetic tissue in the leaves of plants to storage tissues in the roots. Available items sucrose moves from companion cells into other cells in the roots either by diffusion through plasmodesmata or by active transport liquid moves away from high pressure regions towards low pressure regions (where the water potential is higher due to low sucrose concentrations) sucrose moves from sieve tube elements into companion cells by diffusion through plasmodesmata the water potential in this region decreases, and so water moves in from surrounding tissues, increasing the hydrostatic pressure here sucrose moves from companion cells into sieve tube elements by diffusion through plasmodesmata sucrose moves from mesophyll tissue into companion cells either by diffusion through plasmodesmata or by active transport