Causal Inference 1: Police Stops

Eric Chan

2023-02-01

Table of contents

Import File	1
Does race correlate with REASON for traffic stop?	1
Linear Probability Models (LPMs)	2
Logistic Regression Models	2
Does race correlate with OUTCOMES of traffic stops?	3
Linear Probability Models	3
Logistic Regression Models	4
How do demographics of whose who receive a citation differ from those who do not	
recieve a citation?	4
Linear Probability Models	5
Logistic Regression Models	5

Import File

```
# Import Data
nashville <- read.csv("nashville.csv")</pre>
```

Does race correlate with REASON for traffic stop?

Let's take a look at how race correlates with REASONS for traffic stops, such as moving violations, equipment issues, safety issues, seatbelts, and investigations.

Table 1: Table 1. Police Stops: Is race predictive of reasons for stop? (LPMs)

	moving	equipment	safety	seatbelt	investigate
(Intercept)	0.534***	0.304***	0.055***	0.030***	0.017***
	(0.004)	(0.004)	(0.002)	(0.002)	(0.001)
black	-0.071***	0.043***	0.015***	0.001	0.004*
	(0.007)	(0.007)	(0.003)	(0.003)	(0.002)
Num.Obs.	19942	19942	19942	19 942	19 942
R2	0.005	0.002	0.001	0.000	0.000
R2 Adj.	0.005	0.002	0.001	0.000	0.000
AIC	28855.4	26153.6	-397.0	-13403.3	-23027.0
BIC	28879.1	26177.3	-373.3	-13379.6	-23003.3
Log.Lik.	-14424.692	-13073.790	201.503	6704.658	11516.498
\mathbf{F}	93.954	39.457	19.552	0.137	4.696
RMSE	0.50	0.47	0.24	0.17	0.14

⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Linear Probability Models (LPMs)

```
# Run models to test the differences of demographic variables.
library(modelsummary)
models_reasons <- list()

models_reasons[['moving']] <- lm(moving~black, data=nashville)
models_reasons[['equipment']] <- lm(equipment~black, data=nashville)
models_reasons[['safety']] <- lm(safety~black, data=nashville)
models_reasons[['seatbelt']] <- lm(seatbelt~black, data=nashville)
models_reasons[['investigate']] <- lm(investigate~black, data=nashville)
modelsummary(models_reasons, stars=TRUE, title="Table 1. Police Stops: Is race predictive</pre>
```

Logistic Regression Models

```
# Run models to test the differences of demographic variables.
library(modelsummary)
models_reasons <- list()

models_reasons[['moving']] <- glm(moving~black, data=nashville, family="binomial")</pre>
```

Table 2: Table 2. Police Stops: Is race predictive of reasons for stop? (Logistic)

	moving	equipment	safety	seatbelt	investigate
(Intercept)	0.137***	-0.828***	-2.838***	-3.460***	-4.047***
	(0.018)	(0.020)	(0.039)	(0.052)	(0.069)
black	-0.283***	0.195***	0.263***	0.031	0.228*
	(0.029)	(0.031)	(0.060)	(0.084)	(0.105)
Num.Obs.	19942	19942	19942	19942	19942
AIC	27551.6	24973.7	9165.9	5493.8	3722.5
BIC	27567.4	24989.5	9181.7	5509.6	3738.3
Log.Lik.	-13773.782	-12484.874	-4580.942	-2744.911	-1859.263
\mathbf{F}	93.340	39.336	19.442	0.137	4.677
RMSE	0.50	0.47	0.24	0.17	0.14

⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

```
models_reasons[['equipment']] <- glm(equipment~black, data=nashville, family="binomial")
models_reasons[['safety']] <- glm(safety~black, data=nashville, family="binomial")
models_reasons[['seatbelt']] <- glm(seatbelt~black, data=nashville, family="binomial")
models_reasons[['investigate']] <- glm(investigate~black, data=nashville, family="binomial")
modelsummary(models_reasons, stars=TRUE, title="Table 2. Police Stops: Is race predictive)</pre>
```

Does race correlate with OUTCOMES of traffic stops?

Let's take a look at race and outcomes like frsiking, searching, warning, citation, and being arrested.

Linear Probability Models

```
models_outcomes <- list()
models_outcomes[['frisk']] <- lm(frisk~black, data=nashville)
models_outcomes[['search']] <- lm(search~black, data=nashville)
models_outcomes[['warning']] <- lm(warning~black, data=nashville)
models_outcomes[['citation']] <- lm(citation~black, data=nashville)
models_outcomes[['arrest']] <- lm(arrest~black, data=nashville)
modelsummary(models_outcomes, stars=TRUE, title="Table 3. Nashville Police Stops: Is race</pre>
```

Table 3: Table 3. Nashville Police Stops: Is race predictive of outcomes of stop? (LPM)

	frisk	search	warning	citation	arrest
(Intercept)	0.013***	0.030***	0.776***	0.239***	0.013***
	(0.001)	(0.002)	(0.004)	(0.004)	(0.001)
black	0.013***	0.026***	0.044***	-0.034***	0.008***
	(0.002)	(0.003)	(0.006)	(0.006)	(0.002)
Num.Obs.	19 989	19 989	19 987	19 987	19 989
R2	0.002	0.004	0.003	0.002	0.001
R2 Adj.	0.002	0.004	0.003	0.002	0.001
AIC	-23486.1	-8810.4	20598.0	21843.4	-25769.5
BIC	-23462.4	-8786.7	20621.7	21867.1	-25745.8
Log.Lik.	11746.047	4408.181	-10296.007	-10918.696	12887.765
\mathbf{F}	47.120	81.330	54.474	31.407	17.873
RMSE	0.13	0.19	0.41	0.42	0.13

⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Logistic Regression Models

```
models_outcomes <- list()
models_outcomes[['frisk']] <- glm(frisk~black, data=nashville, family="binomial")
models_outcomes[['search']] <- glm(search~black, data=nashville, family="binomial")
models_outcomes[['warning']] <- glm(warning~black, data=nashville, family="binomial")
models_outcomes[['citation']] <- glm(citation~black, data=nashville, family="binomial")
models_outcomes[['arrest']] <- glm(arrest~black, data=nashville, family="binomial")
modelsummary(models_outcomes, stars=TRUE, title="Table 4. Nashville Police Stops: Is race</pre>
```

How do demographics of whose who receive a citation differ from those who do not recieve a citation?

General demographics of whose who gets stopped, then receive a citation vs. not.

Table 4: Table 4. Nashville Police Stops: Is race predictive of outcomes of stop? (Logistic)

	frisk	search	warning	citation	arrest
(Intercept)	-4.302***	-3.486***	1.242***	-1.159***	-4.296***
	(0.078)	(0.053)	(0.022)	(0.021)	(0.078)
black	0.710***	0.647***	0.271***	-0.198***	0.467***
	(0.106)	(0.073)	(0.037)	(0.035)	(0.111)
Num.Obs.	19 989	19 989	19 987	19987	19 989
AIC	3636.0	6559.7	20365.2	21329.3	3333.3
BIC	3651.8	6575.5	20381.0	21345.1	3349.1
Log.Lik.	-1816.005	-3277.846	-10180.589	-10662.638	-1664.671
\mathbf{F}	45.192	78.561	54.147	31.308	17.553
RMSE	0.13	0.19	0.41	0.42	0.13

⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Linear Probability Models

```
models_demo <- list()
models_demo[['Black']] <- lm(black~citation, data=nashville)
models_demo[['White']] <- lm(white~citation, data=nashville)
models_demo[['Hispanic']] <- lm(hispanic~citation, data=nashville)
models_demo[['Male']] <- lm(male~citation, data=nashville)
models_demo[['Age']] <- lm(subject_age~citation, data=nashville)
models_demo[['Age']] <- lm(subject_age~citation, data=nashville)</pre>
```

Logistic Regression Models

```
models_demo <- list()
models_demo[['Black']] <- glm(black~citation, data=nashville, family="binomial")
models_demo[['White']] <- glm(white~citation, data=nashville, family="binomial")
models_demo[['Hispanic']] <- glm(hispanic~citation, data=nashville, family="binomial")
models_demo[['Male']] <- glm(male~citation, data=nashville, family="binomial")
models_demo[['Age']] <- lm(subject_age~citation, data=nashville)

modelsummary(models_demo, stars=TRUE, title="Table 6. Demographics for receiving a citation)</pre>
```

Table 5: Table 5. Demographics for receiving a citation (LPM, where applicable)

	Black	White	Hispanic	Male	Age
(Intercept)	0.389***	0.536***	0.048***	0.588***	37.553***
	(0.004)	(0.004)	(0.002)	(0.004)	(0.114)
citation	-0.046***	0.004	0.037***	0.023**	-2.353***
	(0.008)	(0.008)	(0.004)	(0.008)	(0.239)
Num.Obs.	19 987	19 987	19997	19915	19 996
R2	0.002	0.000	0.005	0.000	0.005
R2 Adj.	0.002	0.000	0.005	0.000	0.005
AIC	27773.9	28907.9	-2025.8	28208.3	162732.6
BIC	27797.6	28931.6	-2002.1	28232.0	162756.3
Log.Lik.	-13883.960	-14450.947	1015.887	-14101.149	-81363.296
\mathbf{F}	31.407	0.251	92.477	7.561	96.574
RMSE	0.48	0.50	0.23	0.49	14.15

⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table 6: Table 6. Demographics for receiving a citation (Logistic, where applicable)

	Black	White	Hispanic	Male	Age
(Intercept)	-0.451***	0.145***	-2.990***	0.354***	37.553***
	(0.016)	(0.016)	(0.038)	(0.016)	(0.114)
citation	-0.198***	0.017	0.618***	0.095**	-2.353***
	(0.035)	(0.034)	(0.065)	(0.035)	(0.239)
Num.Obs.	19987	19987	19997	19915	19 996
R2					0.005
R2 Adj.					0.005
AIC	26491.0	27601.2	8586.3	26914.2	162732.6
BIC	26506.8	27617.0	8602.1	26930.0	162756.3
Log.Lik.	-13243.494	-13798.590	-4291.133	-13455.081	-81363.296
F	31.308	0.251	89.607	7.556	96.574
RMSE	0.48	0.50	0.23	0.49	14.15

⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001