Announcement

- No class on Monday (holiday)
- A make-up class on Thursday (here at Hebb 100, at 13:00 pm)
- Survey: your feedback (best over the long weekend)

https://ubc.ca1.qualtrics.com/jfe/form/SV 1ZCDtHXC0sLIIVA

Lecture 13.

Energy balance and earth climate

• Wien's law

Last Time

$$\lambda_{max} = \frac{b}{T}$$

$$H = \frac{Q}{\Delta t} = Ae\sigma T^4$$

• Emissivity

Q: Yoltar heats their little planet (far from any stars) with a 1GW heater. If they wish to double the equilibrium surface temperature of their planet, they should increase the power of their heater to:

- A. 1.21 GW
- B. 2 GW
- C. 4 GW
- D. 8 GW
- E. 16 GW

Hint: where does the energy from the heater go?

Q: Yoltar heats their little planet (far from any stars) with a 1GW heater. If they wish to double the equilibrium surface temperature of their planet, they should increase the power of their heater to:

Steady state:

power from heater = power radiated

To double T, need 16 x P

A. 1.21 GW

B. 2 GW

C. 4 GW

D. 8 GW

E. 16 GW

Hint: where does the energy from the heater go?

A harder problem, but really interesting!

A planet with radius r = 6400 km lies at a distance R = 150,000,000 km from a yellow star with temperature T = 5700K and radius $R_S = 695,000$ km.

Which planet are we talking about?

The earth!

Let's use our knowledge of thermodynamics to estimate the surface temperature of our planet!

Energy balance for the earth

Model:

• Key relation for steady state heat flow:

$$H_{in} = H_{out}$$

- H_{in} = absorbed sunlight = ??
- H_{out} = IR radiation = $Ae\sigma T^4$
 - \triangleright The emissivity e of earth is close to 1.

What is H_{in} ?

Q: A light bulb producing 100 W of radiation is placed at the center of a sphere of perfectly absorbing material, with radius R. A hole is cut into the sphere, removing an area A of material. Assume the light from the bulb spreads out uniformly in all directions.

What is the rate of energy flow through the hole?

A. 100W

B. $100W \times A$

C. $100W \times A/R^2$

D. $100W \times A/(\pi R^2)$

E. $100W \times A/(4 \pi R^2)$

Pbulb Acatch
Asphere

Remember: Area of circle: πR^2

Area of sphere: $4\pi R^2$

Q: A light bulb producing 100 W of radiation is placed at the center of a sphere of perfectly absorbing material, with radius R. A hole is cut into the sphere, removing an area A of material. Assume the light from the bulb spreads out uniformly in all directions.

What is the rate of energy flow through the hole?

A. 100W

B. $100W \times A$

C. $100W \times A/R^2$

D. $100W \times A/(\pi R^2)$

E. $100W \times A/(4 \pi R^2)$

Light spreads out uniformly Power leaving bulb = power reaching sphere Hole covers fraction $A/(4\pi R^2)$ of sphere So power of light coming out is 100W x $A/(4\pi R^2)$

Remember:

Area of circle: πR^2

Area of sphere: $4\pi R^2$

Albedo

- Albedo is the overall average reflection coefficient for solar radiation incident on an object
- Albedo of the Earth is about 0.3 which means that the Earth as a whole reflects 30% of solar radiation

Picture of earth taken by Apollo 17, December 7, 1972

Q: Let us put these two pieces together:

Rsun

6

- The power from the sun is: $H_{sun} \approx A_{sun} \sigma T_{sun}^4$
- Albedo (reflection coefficient) is α_e

What is the power H_{in} of solar radiation absorbed by the Earth? Answer in terms of H_{sun} , earth's albedo, a_e , (fraction of sunlight reflected) and the parameters r_e and R_{s-e} as shown.

Hint: think about the earlier clicker question.

A.
$$H_{sun} \frac{\pi r_e^2}{4\pi R_{s-e}^2} a_e$$

B.
$$H_{sun} \frac{\pi r_e^2}{4\pi R_{s-e}^2} (1 - a_e)$$

C.
$$H_{sun} \frac{2\pi r_e^2}{4\pi R_{s-e}^2} a_e$$

D.
$$H_{sun} \frac{2\pi r_e^2}{4\pi R_{s-e}^2} (1 - a_e)$$

E.
$$H_{sun} \frac{4\pi r_e^2}{4\pi R_{s-e}^2} a_e$$

- > Each blocks the same amount of sunlight
- \succ What matters for catching radiation is the cross-sectional area: πr_e^2
- \triangleright What matters for emitting radiation is the surface area: $4\pi r_e^2$

Q: Let us put these two pieces together:

6

- The power from the sun is: $H_{sun} \approx A_{sun} \sigma T_{sun}^4$
- Albedo (reflection coefficient) is α_e

What is the power H_{in} of solar radiation absorbed by the Earth? Answer in terms of H_{sun} , earth's albedo, a_e , (fraction of sunlight reflected) and the parameters r_e and R_{s-e} as shown.

Hint: think about the earlier clicker question.

A.
$$H_{sun} \frac{\pi r_e^2}{4\pi R_{s-e}^2} a_e$$

B.
$$H_{sun} \frac{\pi r_e^2}{4\pi R_e^2} (1 - a_e)$$

C.
$$H_{sun} \frac{2\pi r_e^2}{4\pi R_{s-e}^2} a_e$$

D.
$$H_{sun} \frac{2\pi r_e^2}{4\pi R_{s-e}^2} (1 - a_e)$$

E.
$$H_{sun} \frac{4\pi r_e^2}{4\pi R_{s-e}^2} a_e$$

Cross-sectional area of earth is πr_e^2

Power hitting earth is: $H_{sun} \frac{\pi r_e^2}{4\pi R_{s-e}^2}$

Fraction $(1-a_e)$ is absorbed, so:

$$H_{in} = H_{sun} \frac{\pi r_e^2}{4\pi R_{s-e}^2} (1 - a_e)$$

$$e_{sun} \approx 1$$
 $A_{sun} = 4\pi R_s^2$

The solar constant

• At earth's orbit, the power per unit area, or intensity, of sunlight is:

$$I_{sc} = \frac{H_s}{4\pi R_{s-e}^2} = 1367 \text{ W/}_{m^2}$$

- *I_{sc}* is called the "solar constant"
 - ➤ Doubling the distance would mean 1/4 the intensity

• In terms of I_{sc} , the heat current into the earth due to sunlight is:

$$H_{in} \approx \pi r_e^2 (1 - a_e) I_{sc}$$
 = source intensity

Q: The diameter of Saturn is \sim 10x that of Earth and it is \sim 10x as far away from the Sun. The power of solar radiation hitting Saturn compared to that hitting Earth is:

- A. 100x smaller
- B. 10x smaller
- C. the same
- D. 10x bigger
- E. 100x bigger

Q: The diameter of Saturn is \sim 10x that of Earth and it is \sim 10x as far away from the Sun. The power of solar radiation hitting Saturn compared to that hitting Earth is:

- A. 100x smaller
- B. 10x smaller
- C. the same
- D. 10x bigger
- E. 100x bigger

Intensity of sunlight (power per unit area): $I = \frac{H_{Sun}}{4\pi R^2}$

$$10x R \Rightarrow I_j = \frac{1}{100} I_e$$

Total power (area x Intensity) and $A=\pi r^2$

$$10x r \Rightarrow A_j = 100A_e$$

So,
$$H_j = H_e$$

Here R = distance from the source to the planet (determines "spread area"), and r is the radius of the planet (determines "catching area").

Q: Calculate the equilibrium surface temperature T_e in terms a_e , I_{sc} , r_e , R_{s-e} , σ , and the emissivity e_e

Our model:

• Steady state: $H_{in} = H_{out}$

A.
$$T_e = \left[\frac{a_e I_{SC}}{4e_e \sigma}\right]^{1/4}$$

B.
$$T_e = \left[\frac{(1-a_e)I_{SC}}{4e_e\sigma}\right]^{1/2}$$

C.
$$T_e = \left[\frac{(1-a_e)I_{SC}}{4e_e\sigma}\right]^{1/4}$$

D.
$$T_e = \left[\frac{\pi r_e^2}{4\pi R_{S-e}^2} \frac{(1-a_e)I_{SC}}{e_e \sigma} \right]^{1/4}$$

Q: Calculate the equilibrium surface temperature T_e in terms a_e , I_{sc} , r_e , R_{s-e} , σ , and the emissivity e_e

Our model:

- Steady state: $H_{in} = H_{out}$
- H_{in} = Absorbed sunlight $\approx \pi r_e^2 (1 a_e) I_{sc}$

•
$$H_{out}$$
 = IR radiation = $Ae\sigma T^4$

Surficiently

$$\pi r_e^2 (1 - a_e) I_{sc} = 4\pi r_e^2 e_e \sigma T_e^4$$

$$T_e = \left[\frac{(1 - a_e) I_{sc}}{4e_o \sigma} \right]^{1/4}$$

A.
$$T_e = \left[\frac{a_e I_{SC}}{4e_e \sigma}\right]^{1/4}$$

B.
$$T_e = \left[\frac{(1-a_e)I_{SC}}{4e_e\sigma}\right]^{1/2}$$

C.
$$T_e = \left[\frac{(1-a_e)I_{SC}}{4e_e\sigma}\right]^{1/4}$$

D.
$$T_e = \left[\frac{\pi r_e^2}{4\pi R_{S-e}^2} \frac{(1-a_e)I_{SC}}{e_e \sigma}\right]^{1/4}$$

Equilibrium surface temperature of earth: Summary

• Steady state: $H_{in} = H_{out}$

- H_{in} = Absorbed sunlight $\approx \pi r_e^2 (1 a_e) I_{sc}$
- H_{out} = IR radiation = $Ae\sigma T^4$

$$r_e
ightharpoonup R_{s-e}$$
 earth sun

$$I_{sc} = \frac{H_s}{4\pi R_{s-e}^2} = 1367 \, W/_{m^2}$$

Plug in and get:

$$\pi r_e^2 (1 - a_e) I_{sc} = 4\pi r_e^2 e_e \sigma T_e^4$$
 \Box $T_e = \left[\frac{(1 - a_e) I_{sc}}{4e_e \sigma} \right]^{1/4}$

Does this make sense?

$$T_e = \left[\frac{(1 - a_e)I_{sc}}{4e_e\sigma}\right]^{1/4}$$

• Surface of earth has $e_e \approx 1$ for IR radiation and

$$I_{sc} = 1367 \text{ W}/_{m^2}$$
 $a_e = 0.3$ $\sigma = 5.67 \times 10^{-8} \frac{W}{m^2 K^4}$

- These give: $T_e \cong -18^{\circ}C$
- Something is off.....
- What have we neglected?
 - Heating from earth's core (like Yoltar)?
 - \triangleright Nope; that amounts to 47 TW whereas $H_{in} \sim 173,000$ TW !!
- There is something else going on...

Actual surface temperature is larger due to the greenhouse effect

 Greenhouse effect: Some IR radiation is absorbed by "greenhouse gases" and re-emitted back to earth

Greenhouse Effect

$$T_e = \left[\frac{(1 - a_e)I_{sc}}{4e_e\sigma}\right]^{1/4}$$

- Lower $e \Rightarrow higher T$
- Greenhouse effect: $e \approx 0.6 \Rightarrow T \cong 14.5^{\circ}C$
- Actual average surface temperature of earth $T \cong 13.9^{\circ}C$
 - > Our simple calculation is amazingly close to the actual value!
- But *e* can decrease due to, e.g., increasing CO₂ concentration in atmosphere
 - Resulting in Global Warming...

Global Warming

• Greenhouse gases, especially CO₂, absorb IR radiation emitted by the earth and re-emit it back to earth, effectively reducing the earth's emissivity

• In addition, as earth warms, white, sunlight reflecting ice in the Arctic disappears, lowering our albedo and further increasing the temperature

CO₂ correlates closely with temperature

- There is nothing guaranteed about our current temperature of ~ 14°C
- With plausible changes to our atmosphere (emissivity) and albedo, we can dial up pretty much any temperature we like, from freezing to boiling

CO₂ correlates closely with temperature

 Almost all climate scientists believe this rise due to human activity

Temperature of Venus...

- Venus has an albedo of 0.750 and lets assume it's emissivity is ~1. The radius of Venus is 6052 km. The Solar constant at Earth is 1367 W/m² and the distance from Venus to the Sun is 0.72 times the Earth to Sun distance.
- What is the temperature of Venus?

- A. Click A if you are done
- B. Click B if you are stuck

Temperature of Venus...

- Venus has an albedo of 0.750 and lets assume it's emissivity is ~1. The radius of Venus is 6052 km. The Solar constant at Earth is 1367 W/m² and the distance from Venus to the Sun is 0.72 times the Earth to Sun distance.
- What is the temperature of Venus?

We still have:
$$H_{in} = H_{out}$$

$$\pi r_v^2 (1 - a_v) I_v = 4\pi r_v^2 e_v \sigma T_v^4$$

$$T_v = \left[\frac{(1 - a_v) I_v}{4e_v \sigma} \right]^{1/4}$$

 I_v is different than I_{SC} :

$$I_{sc}$$

- Actual temperature is $T_v = 464^o$ C
- What could we be missing?
- Atmosphere of Venus is dense and predominately CO₂
- ⇒ effective emissivity ~ 0.01!!
- Huge greenhouse effect!!

$$I_{v} = \frac{H_{s}}{4\pi R_{s-v}^{2}} = \frac{R_{s-e}^{2}}{R_{s-v}^{2}} \frac{H_{s}}{4\pi R_{s-e}^{2}} = \frac{R_{s-e}^{2}}{R_{s-v}^{2}} I_{sc} = \left(\frac{1}{0.72}\right)^{2} 1367 = 2637 \frac{W}{m^{2}}$$

$$T_{v} = -41^{o} C$$