Übungen zur Linearen Algebra I 9. Übungsblatt

Abgabe bis zum 19.12.19, 9:15 Uhr

Aufgabe 1 (3+3) Punkte). Es sei K ein Körper.

- (a) Wir betrachten lineare Abbildungen $f: V \to W$ und $g: W \to V$ zwischen K-Vektorräumen V und W. Zeigen Sie: Es gibt genau dann ein $v \in V \setminus \{0\}$ mit $(g \circ f)(v) = v$, wenn es ein $w \in W \setminus \{0\}$ gibt mit $(f \circ g)(w) = w$.
- (b) Es sei $A \in M_{n,m}(K)$ und $B \in M_{m,n}(K)$. Zeigen Sie: Die Matrix $E_n AB$ ist genau dann invertierbar, wenn die Matrix $E_m BA$ invertierbar ist.

Aufgabe 2 (2+4 Punkte). Sei K ein Körper. Seien ferner $A \in M_{n,m}(K)$ und $B \in M_{m,n}(K)$ zwei Matrizen, für die ABA = A gilt. Zeigen Sie:

- (a) $\ker A = \{x BAx \mid x \in K^m\}.$
- (b) Das inhomogene Gleichungssystem Ax = b hat für $b \in K^n$ genau dann eine Lösung, wenn ABb = b gilt. In diesem Fall gilt:

$$\{x \in K^m \mid Ax = b\} = \{Bb + x' - BAx' \mid x' \in K^m\}.$$

Aufgabe 3 $(4 \cdot 1 + 2 \text{ Punkte})$. Sei $a \in \mathbb{Q}$. Bringen Sie die folgenden Matrizen über \mathbb{Q} mit dem Verfahren der Vorlesung in strenge Zeilenstufenform und bestimmen Sie die jeweiligen Ränge.

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \end{pmatrix}, \begin{pmatrix} a & 1 & a \\ 1 & a & 1 \\ a & 1 & a \end{pmatrix}.$$

Aufgabe 4 (1+2+2+1 Punkte). Sei $\underline{e}=(e_1,e_2)$ die Standardbasis von $V=\mathbb{Q}^2, \ \underline{v}=((1,2)^t,(0,-1)^t)$ und $\underline{w}=((1,1)^t,(3,2)^t)$.

- (a) Zeigen Sie, dass auch \underline{v} und \underline{w} Basen von V sind. Bestimmen Sie $T = M_{\underline{e}}^{\underline{v}}(\mathrm{id}_V)$ und $S = M_{\underline{e}}^{\underline{w}}(\mathrm{id}_V)$.
- (b) Invertieren Sie T und S mit dem Verfahren der Vorlesung.
- (c) Bestimmen Sie die Darstellungsmatrizen $M_{\underline{e}}^{\underline{e}}(f)$, $A = M_{\underline{v}}^{\underline{v}}(f)$, $B = M_{\underline{w}}^{\underline{w}}(f)$ und $C = M_{\underline{v}}^{\underline{w}}(\mathrm{id}_V)$ zum Endomorphismus $f \colon V \to V$, welcher durch $x \mapsto \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix} \cdot x$ definiert ist.
- (d) Bestimmen Sie AC CB.