

数字逻辑 09 时序线路分析

触发器和时序线路分析方法

杨永全

计算机科学与技术学院

<u>目录</u>

- 1. 课程目标
- 2. 课程内容
- 3. 课堂练习
- 4. 课堂讨论
- 5. 课堂总结
- 6. 作业

1.课程目标

1. 目标

- 1. 掌握触发器的特征表达式
- 2. 掌握触发器的激励表
- 3. 掌握触发器的状态表
- 4. 掌握时序线路分析方法

2.课程内容

当 CP=1 时, D 的变化将不会影响输出结果

D 触发器的逻辑符号

特征表达式、状态图与激励表

$$Q^{n+1} = D (R_D = S_D = 1 CP = 1)$$

Q	Qn+1	$D=D_1D_2$
0	0	0
0	1	1
1	0	0
1	1	1

D 触发器的计数功能

JK 触发器的特征表达式

特征表达式: $K = K_1K_2$, $J = J_1J_2$ 根据逻辑图相当于: R = KQS = JQ 且 RS 不可能同时为 1. 所以:

$$Q_m^{n+1} = S + \overline{R}Q = J\overline{Q} + \overline{K}QQ = J\overline{Q} + \overline{K}Q$$

$$Q^{n+1} = Q_m^{n+1} = J\overline{Q} + \overline{K}Q$$

JK 触发器特征函数表

J	K	Qn+1
0	0	Q
0	1	0
1	0	1
1	1	\overline{Q}

JK 触发器状态图和激励表

Q	Qn+1	J	K
0	0	0	Φ
0	1	1	Φ
1	0	Φ	1
1	1	Φ	0

JK 触发器逻辑符号

1. 触发器 3.T 触发器

Т	Qn+1
0	Q
1	\overline{Q}

Q	Qn+1	Т
0	0	0
0	1	1
1	0	1
1	1	0

$$Q^{n+1}=T\overline{Q}+\overline{T}Q$$

1. 触发器 4.常见触发器的特征函数

$$Q^{n+1} = R_D \overline{S_D} + \overline{R_D} \overline{S_D} + R_D S_D Q$$

$$= \overline{S_D} + R_D Q (\overline{S_D} \overline{R_D} = 0)$$

$$Q^{n+1} = \overline{R} \overline{S} Q + \overline{R}S + RS = S + \overline{R}Q (RS = 0)$$

$$Q^{n+1} = D$$

$$Q^{n+1} = Q_m^{n+1} = J\overline{Q} + \overline{K}Q$$

$$Q^{n+1} = T\overline{Q} + \overline{T}Q$$

1、列输出函数及控制函数的表达式

$$Z = \overline{\overline{Xy_2} \, \overline{y_1}} \, \overline{\overline{x}y_2y_1} = X\overline{y_2} \, \overline{y_1} + \overline{X}y_2y_1$$

$$J_1 = K_1 = 1$$

$$J_2 = K_2 = X \oplus y_1$$

2、建立次态表达式及状态转移表

$$Q^{n+1} = J\overline{Q} + \overline{K}Q$$

$$y_1^{n+1} = J_1 \overline{y_1} + \overline{K_1} y_1 = \overline{y_1}$$

$$\begin{aligned} y_2^{n+1} &= J_2 \overline{y_2} + \overline{K_2} y_2 \\ &= (X \oplus y_1) \overline{y_2} + \overline{X \oplus y_1} y_2 = X \oplus y_1 \oplus y_2 \end{aligned}$$

状态转移表、状态表

Х	y ₂	У1	y ₂ n+1	y ₁ n+1	Z
0	0	0	0	1	0
0	0	1	1	0	0
0	1	0	1	1	0
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	0	1	0
1	1	1	1	0	0

把y₂y₁的所有状态用字母表示

a 00b 01c 10

d 11

S X	0	1
а	b 0	d 1
b	с 0	a 0
С	d 0	b 0
d	a 1	c 0

3、状态图

4、画波形图

5、分析逻辑功能

该电路为能对 CP 脉冲计数的模 4 可逆计数器。

3. 时序线路的分析步骤

- 1. 列控制函数、输出函数表达式
- 2. 列次态表达式及画状态转移表
- 3. 画状态表及状态图
- 4. 画波形图
- 5. 分析逻辑功能

4. 时序逻辑电路分类

时序逻辑电路分为:

Mealy 型电路和 Moore 型电路

Mealy 型电路: 输出与外部输入有关 Moore 型电路: 输出与外部输入无关

1、列输出函数及控制函数的表达式

$$Z = \overline{y_2 y_1}$$

$$J_1 = K_1 = 1$$

$$J_2 = K_2 = X \oplus y_1$$

2、建立次态表达式及状态转移表

$$y_1^{n+1} = J_1 \overline{y_1} + \overline{K_1} y_1 = \overline{y_1}$$

$$y_2^{n+1} = J_2\overline{y_2} + \overline{K_2}y_2 = X \oplus y_1 \oplus y_2$$

状态转移表、状态表

Х	y ₂	У1	y ₂ n+1	y ₁ ⁿ⁺¹	Z
0	0	0	0	1	1
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	0	0	1
1	1	0	0	1	1
1	1	1	1	0	0

а	00
b	01
С	10
d	11

s X	0	1
а	b 1	d 1
b	c 1	a 1
С	d 1	b 1
d	a 0	с 0

3、分析逻辑功能

无论 x=0 或 x=1,以 d 为初态都是四个脉冲回到初态,输出为 0。 x=0 时为进位,x=1 时为借位。 为模四可逆计数器。

3.课堂练习

分析线路的逻辑功能:

控制函数:

$$D_4 = y_3$$

$$D_3 = y_2$$

$$D_2 = y_1$$

$$D_1 = \overline{y_3 \cdot \overline{y_1}} \cdot \overline{y_4} = (\overline{y_3} + y_1) \cdot \overline{y_4} = y_1 \overline{y_4} + \overline{y_3} \overline{y_4}$$

列次态表达式,状态转移表:

$$y_4^{n+1} = D_4 = y_3$$

$$y_3^{n+1} = D_3 = y_2$$

$$y_2^{n+1} = D_2 = y_1$$

$$y_1^{n+1} = D_1$$

$$= \overline{y_3 \cdot \overline{y_1}} \cdot \overline{y_4}$$

$$= (\overline{y_3} + y_1) \cdot \overline{y_4}$$

$$= y_1 \overline{y_4} + \overline{y_3} \overline{y_4}$$

请大家画出状态图。

y ₄	y ₃	У	₂ y ₁	y ₄ n+1	y ₃ n+1	y ₂ n+1	y ₁ n+1
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	1
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	1
0	1	0	0	1	0	0	0
0	1	0	1	1	0	1	1
0	1	1	0	1	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	1	0
1	1	1	0	1	1	0	0
1	1	1	1	1	1	1	0

状态图:

更改上述例子:

$$D_1 = \overline{y_4}$$

状态图:

4.课堂讨论

所有的触发器中, 谁的功能最强大?

5.课堂总结

1. 课堂总结

□ 笔记

现在可以总结自己的笔记,提炼大纲,回顾课程。

● 总结

还可以将课程的总结、心得记录在总结区。

6.作业

1. 题目

试分析图所示的时序线路,要求:

- (1) 列出控制函数和输出函数表达式
- (2) 建立次态表达式及状态转移表
- (3) 建立状态表和状态图
- (4) 画出电位输入 x 为 101101 序列时、线路状态 v 及输出 z 的波形图
- (5) 说明这是一个什么类型的线路,及其完成的逻辑功能。

1. 题目

问答环节