Quotient Topologies

Recall an **equivalence relation** on a set X is a set of pairs, $\sim \subset X \times X$, such that

- 1. $x \sim x$ (reflexivity)
- 2. $x \sim y$ iff $y \sim x$ (symmetry)
- 3. If $x \sim y$ and $y \sim z$, then $x \sim z$ (transitivity)

(where we use the notation $x \sim y$ for $(x, y) \in \sim$)

Definition 1. If X is a set, and \sim is an equivalence relation on X, then the **quotient set** X/\sim is the set of equivalence classes of \sim .

That is,

$$X/\sim = \{\{y \in X : y \sim x\} \in \mathcal{P}(X) : x \in X\}$$

Notice there is a canonical function $\pi: X \to X/\sim$, called the **projection** associated to \sim , given by

$$\pi(x) = \{ y \in X : y \sim x \}.$$

Definition 2. If (X, τ) is a topological space, and \sim is an equivalence relation on X, then the **quotient topology** on X/\sim is giveny by

$$\tau_{\sim} = \{ U \in \mathcal{P}(X/\sim) : \pi^{-1}(U) \in \tau \}$$

That is, a set in the quotient is open if its preimage under the canonical projection is open.

Remark 1. In particular, the projection map is continuous. It follows that the quotient of a connected or compact space is connected or compact.

Example 1. If \mathbb{Z} is given the discrete topology, and we take $\mod 3$ as the equivalence relation, then $\mathbb{Z}/3\mathbb{Z}$ has the discrete topology.

In general, any quotient of the discrete topology will be discrete.

Example 2. If \mathbb{R} is the real numbers with the usual topology, define an equivalence relation $x \sim y$ iff there is some $k \in \mathbb{Z}$ such that x + k = y. Then every number is equivalent to a unique number in [0,1), so take this to model \mathbb{R}/\sim .

For any positive number t, consider $\delta < \frac{t}{2}$. This is just so $(t - \delta, t + \delta)$ is completely contained in (0,1). It's preimage in \mathbb{R} is

$$\bigcup_{k \in \mathbb{Z}} \{x \in \mathbb{R} : t - \delta + k < x < t + \delta + k\},\$$

which is open. One should argue that any open set in \mathbb{R}/\sim containing a positive t must contain such an interval, again by considering the preimage in \mathbb{R} . The goal here is to say the topology is generated by sufficiently small intervals around the points. But what happens at 0?

Since any open set in \mathbb{R} containing 0 must contain some interval $(-\varepsilon_1, \varepsilon_2)$, an open set in \mathbb{R}/\sim must contain $[0, \varepsilon_2) \cup (1-\varepsilon_1, 1)$, and of course any such set is open.

Then, one should argue, say by thinking about the map $[0,1) \to \mathbb{C} :: t \mapsto e^{2\pi i t}$, that \mathbb{R}/\sim is homeomorphic to a circle, usually denoted \mathbb{S}^1 .

Example 3. A fairly simple example that shows quotient topologies are not always nice is called 'the line with two origins'. This is given by a relation defined on two copies of the real line: $X = \mathbb{R} \times \{0\} \cup \mathbb{R} \times \{1\}$, with $(x, a) \sim (y, b)$ if x = y and $x \neq 0$. So, $(t, 0) \sim (t, 1)$ for any $t \neq 0$.

In particular, (0,0) and (0,1) are in distinct equivalence classes. Any open set U_0 containing (0,0) (in the quotient) must contain an open interval $\{(t,0): -\varepsilon_1 < t < \varepsilon_2\}$ in its preimage, and any open set U_1 containing (0,1) (in the quotient) must contain some interval $\{(t,1): -\varepsilon_3 < t < \varepsilon_4\}$ in its preimage. Then, for $s = \frac{\min(\varepsilon_2, \varepsilon_4)}{2}$, we have $\{(s,0), (s,1)\} \in U_0 \cap U_1$.

In particular, X/\sim is not Hausdorff, even though X is.

Remark 2. Suppose we have a subset $A \subseteq X$. Then we can define an equivalence relation on X by saying every element of A is related, and no elements not in A are related to anything other then themselves (required by reflexivity). In symbols, $x \sim y$ if $x, y \in A$, and if $x \notin A$ then $x \sim y$ only if y = x.

For instance, $[0,1]/\{0,1\}$ is homeomorphic to the circle \mathbb{S}^1 , similar to example 2.

Another good example here is $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}/\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. This is the unit disk quotiented by its boundary, the unit circle. This turns out to be homeomorphic to the 2-sphere $\mathbb{S}^2 = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$

Example 4. Consider $X = \mathbb{R}$ with the usual topology, and the subset $A = \mathbb{Z}$. Then X/A is an 'infinite wedge of circles'. That is, each interval [k, k+1] in \mathbb{R} becomes a copy of the circle with k and k+1 glued together. Then, the gluing points on all these different circles are glued together to a single point.

Call the k-th circle $C_k = \pi([k, k+1])$, so $X/A = \bigcup_{k \in \mathbb{Z}} C_k$ and $\bigcap_{k \in \mathbb{Z}} = \{p\}$ is a single point, called the 'wedge point' (this point is the equivalence class of \mathbb{Z} , but writing $\{\mathbb{Z}\}$ to mean the single point set is potentially confusing).

Suppose that $\{U_n\}_{n\in\mathbb{N}}$ is a countable family of open sets which contain the wedge point. This means the preimages \tilde{U}_n are open in \mathbb{R} . For each choice of n and k, we must have positive numbers $\varepsilon_{n,k}$ such that $(k-\varepsilon_{n,k},k+\varepsilon_{n,k})\subseteq \tilde{U}_n$. Now, consider $\delta_k=\frac{\varepsilon_{k,k}}{2}$ and form the open set $\tilde{V}=\cup(k-\delta_k,k+\delta_k)$. We claim that $\tilde{U}_n\not\subseteq \tilde{V}$ for any n, so $U_n\not\subseteq V$ for any n.

What we have just shown is that X/A is not first countable, in particular the wedge point does not have a countable neighborhood basis. This also shows X/A is not metrizable.

Remark 3. Why did I write X and A instead of \mathbb{R} and \mathbb{Z} ? Notice that $\mathbb{Z} \subseteq \mathbb{R}$ can also define another equivalence relation, namely the the relation in Example 2. This takes advantage of the group structure + on \mathbb{R} , and \mathbb{Z} as a subgroup of \mathbb{R} . So, in group theory, the quotient \mathbb{R}/\mathbb{Z} ' means something different (Example 2) than what \mathbb{R}/\mathbb{Z} ' means in topology (Example 4), viewing \mathbb{Z} as (only) a subspace of \mathbb{R} instead of a subgroup.

Proposition 1. Suppose X is a topological space, $Y = X/\sim$ some quotient, and $\pi: X \to Y$ the canonical projection. Consider any topological space Z. A function $f: Y \to Z$ is continuous if and only if $f \circ \pi: X \to Z$ is continuous.

Proof. This follows from the definition of the quotient topology. \Box

Proposition 2. If \sim is an equivalence relation on X, and $f: X \to Z$ is a continuous function such that $x \sim y$ implies f(x) = f(y), then there is a unique continuous map $\hat{f}: X/\sim \to Z$.

Proof. Since f has the same image on equivalent elements, we get a well-defined map \hat{f} on equivalence classes. It is not hard to check this map is continuous.

Remark 4. This proposition says that the quotient space satisfies a 'universal property'. Universal here means 'for any function on X which sends equivalent elements to equal images, (something)'

Some words: the quotient topology is the **finest** topology on X/\sim such that π_{\sim} is continuous. This means that if τ' is a topology on X/\sim such that π_{\sim} is continuous, then any τ' -open set is open in the quotient topology.

An important case, alread hinted at in Example 2, is the notion of 'quotient by a group action': in Example 2, the group action was $\mathbb{Z} \curvearrowright \mathbb{R} :: k \mapsto$ ' $r \mapsto r + k'$

In general, we have

Definition 3. An action of a group G on a 'structure' X (read: on a topological space (X,τ)) is a group homomorphism $\alpha: G \to Aut(X)$ (read: $\alpha: G \to Homeo(X;\tau) = \{f: X \to X: f \text{ is a homeomorphism (continuous bijection with continuous inverse) w.r.t. <math>\tau\}$)

The more common definition is, an action of a group G on a set(/space) X is a map

$$\alpha: G \times X \to X$$

usually written $\alpha(g,x) = g \cdot x$ such that

$$(g \cdot h) \cdot x = g \cdot (h \cdot x)$$

Here I used $g \cdot h$ to mean the group product of g and h. So the definition is that the function α 'behaves nicely' with the group multiplication. Of course, if I'm thinking of X as a topological space, I should ask for α to be continuous. This raises the issue of the topology on G. If G is a finite group, the discrete topology is the most obvious choice. In fact, for any group G, the discrete topology is a choice, so why not use it. This gives the notion of a group action on a topological space.

Given an action (of sets) $\alpha: G \times X \to X$, there is an equivalence relation on X given by $x \sim y$ if $y = \alpha(g, x)$ for some $g \in G$. If X is a topological space, the quotient topology of X by this equivalence relation is denoted by X/G (with the α typically left implicit).

Example 5. Consider $X = \mathbb{R}$. The non-zero real numbers form a group under multiplication, $G = \mathbb{R} \setminus \{0\}$. There is an action (on sets) $G \cdot X \to \mathbb{X}$ given by $(r, x) \mapsto r \cdot x$, where $r \neq 0$. Then \mathbb{R}/G is an interesting space.