Constrained Flows in Networks

Jørgen Bang-Jensen¹, Stéphane Bessy², Lucas Picasarri-Arrieta³

- ¹ University of southern Denmark, Denmark
- ² Université de Montpellier, LIRMM, France
 - ³ Université Côte d'Azur, France

Networks

A **Network** is a quadruplet $\mathcal{N} = (D, s, t, c)$ where:

- D = (V, A) is a digraph,
- $s \in V$ is a source,
- $t \in V$ is a sink, and
- $c: A \to \mathbb{N}$ is a capacity function.

Flows in networks

In a network $\mathcal{N} = (D = (V, A), s, t, c)$, a flow is a function $x : A \to \mathbb{N}$ such that:

- $\forall uv \in A$, $f(uv) \le c(uv)$, and
- $\bullet \ \forall v \in V \setminus \{s,t\}, \ \sum_{u \in N^-(v)} f(uv) = \sum_{w \in N^+(v)} f(vw).$

Flows in networks

In a network $\mathcal{N} = (D = (V, A), s, t, c)$, a flow is a function $x : A \to \mathbb{N}$ such that:

- $\forall uv \in A$, $f(uv) \leq c(uv)$, and
- $\bullet \ \forall v \in V \setminus \{s,t\}, \sum_{u \in N^-(v)} f(uv) = \sum_{w \in N^+(v)} f(vw).$

The value |f|: amount of flow leaving s (= entering t).

Flows in networks

In a network $\mathcal{N} = (D = (V, A), s, t, c)$, a flow is a function $x : A \to \mathbb{N}$ such that:

- $\forall uv \in A$, $f(uv) \leq c(uv)$, and
- $\bullet \ \forall v \in V \setminus \{s,t\}, \sum_{u \in N^-(v)} f(uv) = \sum_{w \in N^+(v)} f(vw).$

The value |f|: amount of flow leaving s (= entering t).

The support D_f : subdigraph of D with the arcs uv s.t. $f(uv) \ge 1$.

MAX-FLOW MIN-CUT theorem

A maximum flow f^* is a flow with maximum value $|f^*|$.

MAX-FLOW MIN-CUT theorem

A maximum flow f^* is a flow with maximum value $|f^*|$.

MAX-FLOW MIN-CUT theorem

A maximum flow f^* is a flow with maximum value $|f^*|$.

The value of a maximum flow is equal to the capacity of a minimum cut (Ford and Fulkerson 1962), and it can be computed in polynomial time (Edmonds and Karp 1972).

Constrained Flows

Given a property \mathcal{P} on flows, we can consider the following problem.

\mathcal{P} -MAXIMUM-FLOW

Input : A network $\mathcal{N} = (D, s, t, c)$ and an integer ℓ

Question: Does there exist a flow $f \in \mathcal{P}$ such that $|f| \geq \ell$?

Our contributions:

- $f \in \mathcal{P}$ iff D_f has bounded out-degree,
- $f \in \mathcal{P}$ iff D_f is highly connected,
- $f \in \mathcal{P}$ iff it is persistent (i.e. $\mathcal{N}_f = (D_f, s, t, c_f)$ has a large flow),
- ullet $f\in\mathcal{P}$ iff it is decomposable into few path-flows, and
- $f \in \mathcal{P}$ iff each arc belongs to few path-flows.

Constrained Flows

Given a property \mathcal{P} on flows, we can consider the following problem.

\mathcal{P} -MAXIMUM-FLOW

Input : A network $\mathcal{N} = (D, s, t, c)$ and an integer ℓ

Question: Does there exist a flow $f \in \mathcal{P}$ such that $|f| \geq \ell$?

Our contributions:

- $f \in \mathcal{P}$ iff D_f has bounded out-degree,
- $f \in \mathcal{P}$ iff D_f is highly connected,
- $f \in \mathcal{P}$ iff it is persistent (i.e. $\mathcal{N}_f = (D_f, s, t, c_f)$ has a large flow),
- ullet $f\in\mathcal{P}$ iff it is decomposable into few path-flows, and
- $f \in \mathcal{P}$ iff each arc belongs to few path-flows.

Constrained Flows

Given a property \mathcal{P} on flows, we can consider the following problem.

\mathcal{P} -MAXIMUM-FLOW

Input : A network $\mathcal{N} = (D, s, t, c)$ and an integer ℓ

Question: Does there exist a flow $f \in \mathcal{P}$ such that $|f| \geq \ell$?

Our contributions:

- $f \in \mathcal{P}$ iff D_f has bounded out-degree,
- $f \in \mathcal{P}$ iff D_f is highly connected,
- $f \in \mathcal{P}$ iff it is persistent (i.e. $\mathcal{N}_f = (D_f, s, t, c_f)$ has a large flow),
- ullet $f\in\mathcal{P}$ iff it is decomposable into few path-flows, and
- $f \in \mathcal{P}$ iff each arc belongs to few path-flows.

Theorem

Given a network \mathcal{N} , for every flow f there exists a flow f' s.t. |f'| = |f| and $D_{f'}$ is acyclic.

Theorem

Given a network \mathcal{N} , for every flow f there exists a flow f' s.t. |f'| = |f| and $D_{f'}$ is acyclic.

Theorem

Given a network \mathcal{N} , for every flow f there exists a flow f' s.t. |f'| = |f| and $D_{f'}$ is acyclic.

Theorem

Given a network \mathcal{N} , for every flow f there exists a flow f' s.t. |f'| = |f| and $D_{f'}$ is acyclic.

Degree constrained flows

$(\Delta^+ \le k)$ -Maximum-Flow

Input : A network $\mathcal{N} = (D, s, t, c)$ and an integer ℓ

Question: Does there exist a flow f such that $\Delta^+(D_f) \leq k$ and $|f| \geq \ell$?

Trivial when k = 1.

Theorem

For every fixed $k \ge 2$, $(\Delta^+ \le k)$ -MAXIMUM-FLOW is NP-complete even when restricted to acyclic networks.

Degree constrained flows

$(\Delta^+ \le k)$ -Maximum-Flow

Input : A network $\mathcal{N} = (D, s, t, c)$ and an integer ℓ

Question: Does there exist a flow f such that $\Delta^+(D_f) \leq k$ and $|f| \geq \ell$?

Trivial when k = 1.

Theorem

For every fixed $k \ge 2$, $(\Delta^+ \le k)$ -MAXIMUM-FLOW is NP-complete even when restricted to acyclic networks.

Degree constrained flows

$(\Delta^+ \le k)$ -Maximum-Flow

Input : A network $\mathcal{N} = (D, s, t, c)$ and an integer ℓ

Question: Does there exist a flow f such that $\Delta^+(D_f) \leq k$ and $|f| \geq \ell$?

Trivial when k = 1.

Theorem

For every fixed $k \ge 2$, $(\Delta^+ \le k)$ -Maximum-Flow is NP-complete even when restricted to acyclic networks.

NP-hardness of ($\Delta^+ \leq 2)\text{-}\mathrm{MAXIMUM}\text{-}\mathrm{FLOW}$

Reduction from 3-SAT. $\mathcal{F} = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$

F satisfiable iff there exists a flow f with $\Delta^+(D_f) \geq 2$ and $|f| \geq 3m + 1$.

Reduction from 3-SAT. $\mathcal{F} = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$

F satisfiable iff there exists a flow f with $\Delta^+(D_f) \ge 2$ and $|f| \ge 3m + 1$. Question: What if we have bounded capacities?

$(\Delta^+ \le k)$ -MAXIMUM-FLOW when $\ell \notin \text{input}$

$$(\Delta^+ \le k)$$
-Flow of Value $k + p$

Input : A network $\mathcal{N} = (D, s, t, c)$.

Question: Does there exist a flow f such that $\Delta^+(D_f) \leq k$ and $|f| \geq k + p$?

Theorem

 $(\Delta^+ \leq k)$ -Flow of Value k + p is solvable in time $O(n^{g(k,p)})$.

Corollary

 $(\Delta^+ \le k)$ -MAXIMUM-FLOW is solvable in polynomial time on networks with bounded capacities (in time $O(n^{g(k,k\cdot c_{max})})$.

$(\Delta^+ \le k)$ -MAXIMUM-FLOW when $\ell \notin \text{input}$

$$(\Delta^+ \le k)$$
-Flow of Value $k + p$

Input : A network $\mathcal{N} = (D, s, t, c)$.

Question: Does there exist a flow f such that $\Delta^+(D_f) \leq k$ and $|f| \geq k + p$?

Theorem

 $(\Delta^+ \leq k)$ -Flow of Value k + p is solvable in time $O(n^{g(k,p)})$.

Corollary

 $(\Delta^+ \le k)$ -MAXIMUM-FLOW is solvable in polynomial time on networks with bounded capacities (in time $O(n^{g(k,k\cdot c_{\text{max}})})$.

$(\Delta^+ \le k)$ -MAXIMUM-FLOW when $\ell \notin \text{input}$

$$(\Delta^+ \le k)$$
-Flow of Value $k + p$

Input : A network $\mathcal{N} = (D, s, t, c)$.

Question: Does there exist a flow f such that $\Delta^+(D_f) \leq k$ and $|f| \geq k + p$?

Theorem

 $(\Delta^+ \leq k)$ -Flow of Value k + p is solvable in time $O(n^{g(k,p)})$.

Corollary

 $(\Delta^+ \le k)$ -MAXIMUM-FLOW is solvable in polynomial time on networks with bounded capacities (in time $O(n^{g(k,k\cdot c_{max})})$.

$$(\Delta^+ \le k)$$
-Flow of Value $k + p$ is solvable in polynomial time

Sketch of proof for p = 1

• Check that \mathcal{N} has a flow of value k+1 (if not, \mathcal{N} is a negative instance).

$(\Delta^+ \le k)$ -FLOW OF VALUE k+p is solvable in polynomial time

- Check that \mathcal{N} has a flow of value k+1 (if not, \mathcal{N} is a negative instance).
- ② Split every vertex (except s, t) to ensure $\Delta^+(D_f) \leq k$ for every flow f.

$(\Delta^+ \le k)$ -FLOW OF VALUE k + p is solvable in polynomial time

- Check that \mathcal{N} has a flow of value k+1 (if not, \mathcal{N} is a negative instance).
- ② Split every vertex (except s, t) to ensure $\Delta^+(D_f) \leq k$ for every flow f.
- \bullet Using the cuts of capacity k, partition into smaller networks.

$(\Delta^+ < k)$ -FLOW OF VALUE k + p is solvable in polynomial time

- Check that \mathcal{N} has a flow of value k+1 (if not, \mathcal{N} is a negative instance).
- ② Split every vertex (except s, t) to ensure $\Delta^+(D_f) \leq k$ for every flow f.
- \bullet Using the cuts of capacity k, partition into smaller networks.

$(\Delta^+ \leq k)$ -Flow of Value k+p is solvable in polynomial time

- Check that \mathcal{N} has a flow of value k+1 (if not, \mathcal{N} is a negative instance).
- ② Split every vertex (except s, t) to ensure $\Delta^+(D_f) \leq k$ for every flow f.
- \bullet Using the cuts of capacity k, partition into smaller networks.
- **1** \mathcal{N} is a positive instance iff for every sub-network \mathcal{N}_i , there exists a flow f_i of value k+1 with $f_i(s_iu) \geq 2$ for some arc s_iu .

Flows decomposable into few path-flows

p-Decomposable-Maximum-Flow

Input : A network $\mathcal{N} = (D, s, t, c)$

Output: The maximum value of a flow f s.t. f decomposes into at most p

path-flows.

Theorem (Baier, Köhler, and Skutella 2005

2-DECOMPOSABLE-MAXIMUM-FLOW is NP-hard and cannot be approximated by any ratio larger than $\frac{2}{3}$.

Theorem (Baier, Köhler, and Skutella 2005)

p-Decomposable-Maximum-Flow can be approximated by a ratio $\rho = \frac{2}{3}$ when $p \in \{2,3\}$ and by a ratio $\rho = \frac{1}{2}$ when $p \geq 4$.

Flows decomposable into few path-flows

p-Decomposable-Maximum-Flow

Input : A network $\mathcal{N} = (D, s, t, c)$

Output: The maximum value of a flow f s.t. f decomposes into at most p

path-flows.

Theorem (Baier, Köhler, and Skutella 2005)

2-DECOMPOSABLE-MAXIMUM-FLOW is NP-hard and cannot be approximated by any ratio larger than $\frac{2}{3}$.

Theorem (Baier, Köhler, and Skutella 2005)

p-Decomposable-Maximum-Flow can be approximated by a ratio $\rho = \frac{2}{3}$ when $p \in \{2,3\}$ and by a ratio $\rho = \frac{1}{2}$ when $p \geq 4$.

Flows decomposable into few path-flows

p-Decomposable-Maximum-Flow

Input : A network $\mathcal{N} = (D, s, t, c)$

Output: The maximum value of a flow f s.t. f decomposes into at most p

path-flows.

Theorem (Baier, Köhler, and Skutella 2005)

2-DECOMPOSABLE-MAXIMUM-FLOW is NP-hard and cannot be approximated by any ratio larger than $\frac{2}{3}$.

Theorem (Baier, Köhler, and Skutella 2005)

p-Decomposable-Maximum-Flow can be approximated by a ratio $\rho=\frac{2}{3}$ when $p\in\{2,3\}$ and by a ratio $\rho=\frac{1}{2}$ when $p\geq 4$.

Flows decomposable into few path-flows : Hardness

Theorem

For every fixed $p \ge 2$, the p-DECOMPOSABLE-MAX-FLOW problem is NP-hard. Moreover, unless P=NP, it cannot be approximated by any ratio larger than $\rho(p)=\min(\rho_1(p),\rho_2(p))$, where $\rho_1(p),\rho_2(p)$ are defined as follows:

$$\rho_1(p) = \begin{cases} \frac{5}{6} & \text{if } p = 0 \mod 4\\ \frac{5p-1}{6p-2} & \text{if } p = 1 \mod 4\\ \frac{5p-2}{6p} & \text{if } p = 2 \mod 4\\ \frac{5p-3}{6p-2} & \text{if } p = 3 \mod 4 \end{cases}$$

$$\rho_2(p) = \begin{cases} \frac{4}{5} & \text{if p is even} \\ \frac{4p-2}{5p-3} & \text{otherwise.} \end{cases}$$

In particular, $\rho(2) = \frac{2}{3}$, $\rho(3) = \frac{3}{4}$, $\rho(p) \xrightarrow[p \to +\infty]{} \frac{4}{5}$, and $\rho(p) \leq \frac{9}{11}$ in general.

Flows decomposable into few disjoint path-flows.

p-Vertex-Decomposable-Maximum-Flow

Input : A network $\mathcal{N} = (D, s, t, c)$

Output: The maximum value of a flow f s.t. f decomposes into at most p

path-flows intersecting exactly on $\{s, t\}$.

Theorem

For every fixed $p \ge 2$, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW is NP-hard and cannot be approximated by any ratio larger than $\frac{2}{3}$.

Theorem

For every fixed $p \ge 2$, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW can be approximated by a ratio $\rho = \frac{1}{H(p)}$ where $H(p) = \sum_{i=1}^{p} \frac{1}{i} \sim_{p} \ln(p)$.

Flows decomposable into few disjoint path-flows.

p-Vertex-Decomposable-Maximum-Flow

Input: A network $\mathcal{N} = (D, s, t, c)$

Output: The maximum value of a flow f s.t. f decomposes into at most p

path-flows intersecting exactly on $\{s, t\}$.

Theorem

For every fixed $p \ge 2$, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW is NP-hard and cannot be approximated by any ratio larger than $\frac{2}{3}$.

Theorem

For every fixed $p \ge 2$, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW can be approximated by a ratio $\rho = \frac{1}{H(p)}$ where $H(p) = \sum_{i=1}^p \frac{1}{i} \sim_p \ln(p)$.

Flows decomposable into few disjoint path-flows.

p-Vertex-Decomposable-Maximum-Flow

Input : A network $\mathcal{N} = (D, s, t, c)$

Output: The maximum value of a flow f s.t. f decomposes into at most p

path-flows intersecting exactly on $\{s, t\}$.

Theorem

For every fixed $p \ge 2$, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW is NP-hard and cannot be approximated by any ratio larger than $\frac{2}{3}$.

Theorem

For every fixed $p \ge 2$, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW can be approximated by a ratio $\rho = \frac{1}{H(p)}$ where $H(p) = \sum_{i=1}^p \frac{1}{i} \sim_p \ln(p)$.

Algorithm:

- for every $i \in \{1, ..., p\}$, find the largest capacity c_i s.t. $D \setminus \{uv \in A \mid c(uv) < c_i\}$ contains i disjoint (s, t)-paths.
- \bigcirc return max $\{i \cdot c_i \mid i \in \{1, \dots, p\}\}$.

Proof

- Let f^* be an optimal solution with path-flows P_1^*, \ldots, P_p^* of values respectively $c_1^* \leq \cdots \leq c_p^*$ and f be the flow computed by the algorithm above.
- For every $i \in \{1, \ldots, p\}$, $|f| \ge i \cdot c_i \ge i \cdot c_i^*$.
- Summing the inequalities above for every *i* we obtain:

$$|x| \cdot \sum_{i=1}^{p} \frac{1}{i} \ge \sum_{i=1}^{p} c_i^* = |f^*|.$$

Algorithm:

- for every $i \in \{1, ..., p\}$, find the largest capacity c_i s.t. $D \setminus \{uv \in A \mid c(uv) < c_i\}$ contains i disjoint (s, t)-paths.
- \bigcirc return max $\{i \cdot c_i \mid i \in \{1, \dots, p\}\}$.

Proof

- Let f^* be an optimal solution with path-flows P_1^*, \ldots, P_p^* of values respectively $c_1^* \leq \cdots \leq c_p^*$ and f be the flow computed by the algorithm above.
- For every $i \in \{1, \ldots, p\}$, $|f| \ge i \cdot c_i \ge i \cdot c_i^*$.
- Summing the inequalities above for every *i* we obtain:

$$|x| \cdot \sum_{i=1}^{p} \frac{1}{i} \ge \sum_{i=1}^{p} c_i^* = |f^*|.$$

Algorithm:

- for every $i \in \{1, ..., p\}$, find the largest capacity c_i s.t. $D \setminus \{uv \in A \mid c(uv) < c_i\}$ contains i disjoint (s, t)-paths.
- 2 return $\max\{i \cdot c_i \mid i \in \{1, \dots, p\}\}$.

Proof:

- Let f^* be an optimal solution with path-flows P_1^*, \ldots, P_p^* of values respectively $c_1^* \leq \cdots \leq c_p^*$ and f be the flow computed by the algorithm above.
- For every $i \in \{1, ..., p\}$, $|f| \ge i \cdot c_i \ge i \cdot c_i^*$.
- Summing the inequalities above for every *i* we obtain:

$$|x| \cdot \sum_{i=1}^{p} \frac{1}{i} \ge \sum_{i=1}^{p} c_i^* = |f^*|.$$

Algorithm:

- for every $i \in \{1, ..., p\}$, find the largest capacity c_i s.t. $D \setminus \{uv \in A \mid c(uv) < c_i\}$ contains i disjoint (s, t)-paths.
- \bigcirc return max $\{i \cdot c_i \mid i \in \{1, \dots, p\}\}$.

Proof:

- Let f^* be an optimal solution with path-flows P_1^*, \ldots, P_p^* of values respectively $c_1^* \leq \cdots \leq c_p^*$ and f be the flow computed by the algorithm above.
- For every $i \in \{1, \ldots, p\}$, $|f| \ge i \cdot c_i \ge i \cdot c_i^*$.
- Summing the inequalities above for every *i* we obtain:

$$|x| \cdot \sum_{i=1}^{p} \frac{1}{i} \ge \sum_{i=1}^{p} c_i^* = |f^*|.$$

Algorithm:

- for every $i \in \{1, ..., p\}$, find the largest capacity c_i s.t. $D \setminus \{uv \in A \mid c(uv) < c_i\}$ contains i disjoint (s, t)-paths.
- \bigcirc return max $\{i \cdot c_i \mid i \in \{1, \dots, p\}\}$.

Proof:

- Let f^* be an optimal solution with path-flows P_1^*, \ldots, P_p^* of values respectively $c_1^* \leq \cdots \leq c_p^*$ and f be the flow computed by the algorithm above.
- For every $i \in \{1, \ldots, p\}$, $|f| \ge i \cdot c_i \ge i \cdot c_i^*$.
- Summing the inequalities above for every *i* we obtain:

$$|x| \cdot \sum_{i=1}^{p} \frac{1}{i} \ge \sum_{i=1}^{p} c_i^* = |f^*|.$$

p-Vertex-Decomposable-Maximum-Flow on acyclic networks

Theorem

When p is part of the input, p-Vertex-Decomposable-Maximum-Flow on acyclic networks is NP-hard, even when the capacities are in $\{1,2\}$.

Theorem

p-Vertex-Decomposable-Maximum-Flow on acyclic networks is solvable in time $O\left(n^{f(p)}\right)$ for some computable function f.

Theorem

When parameterized by p, p-Vertex-Decomposable-Maximum-Flow on acyclic networks is W[1]-hard.

p-Vertex-Decomposable-Maximum-Flow on acyclic networks

Theorem

When p is part of the input, p-Vertex-Decomposable-Maximum-Flow on acyclic networks is NP-hard, even when the capacities are in $\{1,2\}$.

Theorem

p-Vertex-Decomposable-Maximum-Flow on acyclic networks is solvable in time $O(n^{f(p)})$ for some computable function f.

Theorem

When parameterized by p, p-Vertex-Decomposable-Maximum-Flow on acyclic networks is W[1]-hard.

p-Vertex-Decomposable-Maximum-Flow on acyclic networks

Theorem

When p is part of the input, p-Vertex-Decomposable-Maximum-Flow on acyclic networks is NP-hard, even when the capacities are in $\{1,2\}$.

Theorem

p-Vertex-Decomposable-Maximum-Flow on acyclic networks is solvable in time $O(n^{f(p)})$ for some computable function f.

Theorem

When parameterized by p, p-Vertex-Decomposable-Maximum-Flow on acyclic networks is W[1]-hard.

 $W \subseteq V(D) \setminus \{s, t\}$: an ordered set of p vertices (v_1, \dots, v_p) .

• A W-tricot T is a sequence of paths (Q_1, \ldots, Q_p) pairwise intersecting exactly on $\{s\}$ s.t. $\operatorname{end}(Q_i) = v_i$.

 $W \subseteq V(D) \setminus \{s, t\}$: an ordered set of p vertices (v_1, \dots, v_p) .

- A W-tricot T is a sequence of paths (Q_1, \ldots, Q_p) pairwise intersecting exactly on $\{s\}$ s.t. $\operatorname{end}(Q_i) = v_i$.
- The value $\operatorname{tv}(T)$ of T is (c_1, \ldots, c_p) where c_i is the minimum capacity along Q_i .

 $W \subseteq V(D) \setminus \{s, t\}$: an ordered set of p vertices (v_1, \ldots, v_p) .

- A W-tricot T is a sequence of paths (Q_1, \ldots, Q_p) pairwise intersecting exactly on $\{s\}$ s.t. $\operatorname{end}(Q_i) = v_i$.
- The value tv(T) of T is (c_1, \ldots, c_p) where c_i is the minimum capacity along Q_i .
- The total value of T is $\sum_{i=1}^{p} c_i$.

 $W \subseteq V(D) \setminus \{s, t\}$: an ordered set of p vertices (v_1, \dots, v_p) .

- A W-tricot T is a sequence of paths (Q_1, \ldots, Q_p) pairwise intersecting exactly on $\{s\}$ s.t. $\operatorname{end}(Q_i) = v_i$.
- The value tv(T) of T is (c_1, \ldots, c_p) where c_i is the minimum capacity along Q_i .
- The total value of T is $\sum_{i=1}^{p} c_i$.
- We have value(T) \leq value(T') iff $\forall i \in \{1, ..., p\}, c_i \leq c'_i$.

Properties of the W-tricots

• After subdividing every arc *vt*, the optimal solution of *p*-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW is exactly:

$$\max_{W\subseteq N^-(t),\ |W|\le p} \max\{\operatorname{tv}(T)\mid T \text{ is a } W\text{-tricot}\}. \quad (\star)$$

Properties of the W-tricots

 After subdividing every arc vt, the optimal solution of p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW is exactly:

$$\max_{W\subseteq N^-(t),\ |W|\le \rho} \max\{\operatorname{tv}(T)\mid T \text{ is a } W\text{-tricot}\}. \quad (\star)$$

• The size of $\{value(T) \mid T \text{ is a } W\text{-tricot}\}\$ is bounded by $O(m^p)$.

Properties of the W-tricots

 After subdividing every arc vt, the optimal solution of p-Vertex-Decomposable-Maximum-Flow is exactly:

$$\max_{W\subseteq N^-(t),\ |W|\leq \rho} \max\{\operatorname{tv}(T)\mid T \text{ is a W-tricot}\}. \quad (\star)$$

- The size of $\{value(T) \mid T \text{ is a } W\text{-tricot}\}\$ is bounded by $O(m^p)$.
- Goal: compute $\{value(T) \mid T \text{ is a } W\text{-tricot}\}\$ for every W, and return (\star) .

L: list indexed by the p-tuples of $V(D) \setminus \{s\}$. Each cell L[W] is a set of W-tricots.

③ $\forall W \subseteq N^+(s)$, $L[W] \leftarrow \{\text{the only } W\text{-tricot}\}.$

L: list indexed by the p-tuples of $V(D) \setminus \{s\}$. Each cell L[W] is a set of W-tricots.

- **●** $\forall W \subseteq N^+(s)$, $L[W] \leftarrow \{\text{the only } W\text{-tricot}\}.$
- **②** Fix an acyclic ordering v_1, \ldots, v_n with initial vertices $N^+[s]$, and the corresponding lexicographic ordering of the p-tuples W_1, \ldots, W_r where $r = \binom{n}{p} \cdot p!$.

L: list indexed by the p-tuples of $V(D) \setminus \{s\}$. Each cell L[W] is a set of W-tricots.

- **③** $\forall W \subseteq N^+(s)$, $L[W] \leftarrow \{\text{the only } W\text{-tricot}\}.$
- ② Fix an acyclic ordering v_1, \ldots, v_n with initial vertices $N^+[s]$, and the corresponding lexicographic ordering of the p-tuples W_1, \ldots, W_r where $r = \binom{n}{p} \cdot p!$.
- **③** $\forall W_i$ in this order, $\forall T = (Q_1, \ldots, Q_p) \in L[W_i]$, consider every extension $T' = (Q_1, \ldots, Q_j \cup \{y\}, \ldots, Q_p)$ of T s.t. $\forall k$, end $(Q_k) \prec y$.

L: list indexed by the p-tuples of $V(D) \setminus \{s\}$. Each cell L[W] is a set of W-tricots.

- **③** $\forall W \subseteq N^+(s)$, $L[W] \leftarrow \{\text{the only } W\text{-tricot}\}.$
- **②** Fix an acyclic ordering v_1, \ldots, v_n with initial vertices $N^+[s]$, and the corresponding lexicographic ordering of the p-tuples W_1, \ldots, W_r where $r = \binom{n}{n} \cdot p!$.
- **③** $\forall W_i$ in this order, $\forall T = (Q_1, \ldots, Q_p) \in L[W_i]$, consider every extension $T' = (Q_1, \ldots, Q_j \cup \{y\}, \ldots, Q_p)$ of T s.t. $\forall k$, end $(Q_k) \prec y$.
- If for all W'-tricot $\tilde{T} \in L[W']$, value $(T') \not\preceq \text{value}(\tilde{T})$, then $L[W'] \leftarrow L[W'] \cup \{T'\}$.

Validity of the algorithm

Invariant: when W_i is considered, $\forall W_i$ -tricot T, $L[W_i]$ contains a tricot T' s.t. $value(T) \leq value(T')$.

Validity of the algorithm

Invariant: when W_i is considered, $\forall W_i$ -tricot T, $L[W_i]$ contains a tricot T' s.t. $value(T) \leq value(T')$.

Open questions

Question: Is there a way to approximate the $(\Delta^+ \leq k)$ -MAXIMUM-FLOW problem?

Question: What is the best approximation guarantee one can obtain for the p-DECOMPOSABLE-MAXIMUM-FLOW problem when p > 2?

$$\frac{2}{3} \le \rho(3) \le \frac{3}{4}$$

Thank you

Open questions

Question: Is there a way to approximate the $(\Delta^+ \leq k)$ -MAXIMUM-FLOW problem?

Question: What is the best approximation guarantee one can obtain for the $p\text{-}\mathrm{DECOMPOSABLE}\text{-}\mathrm{MAXIMUM}\text{-}\mathrm{FLOW}$ problem when p>2?

$$\frac{2}{3} \le \rho(3) \le \frac{3}{4}$$

Thank you!

Open questions

Question: Is there a way to approximate the $(\Delta^+ \leq k)$ -MAXIMUM-FLOW problem?

Question: What is the best approximation guarantee one can obtain for the $p\text{-}\mathrm{DECOMPOSABLE}\text{-}\mathrm{MAXIMUM}\text{-}\mathrm{FLOW}$ problem when p>2?

$$\frac{2}{3} \le \rho(3) \le \frac{3}{4}$$

Thank you!