PCT

(30) Priority Data:

PA 1998 01124

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:
A61C 19/00
A1
(11) International Publication Number: WO 00/13608
(43) International Publication Date: 16 March 2000 (16.03.00)

DK

(21) International Application Number: PCT/DK99/00475

(22) International Filing Date: 8 September 1999 (08.09.99)

(71) Applicant (for all designated States except US): AKEDA DEN-

8 September 1998 (08.09.98)

TAL A/S [DK/DK]; Nordlandsvej 86, DK-8240 Risskov (DK).

(72) Inventor; and(75) Inventor/Applicant (for US only): MORGENSTJERNE, Per [DK/DK]; Ørnebakken 25, DK-8520 Lystrup (DK).

(74) Agent: K. SKØTT-JENSEN PATENTINGENIØRER A/S; Lemmingvej 225, DK-8361 Hasselager (DK). (81) Designated States: AE, AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

In English translation (filed in Danish).

(54) Title: IRRADIATION APPARATUS FOR LIGHT CURING OF COMPOSITES, IN PARTICULAR FOR DENTAL USE

(57) Abstract

An irradiation apparatus for light curing of composites, in particular for dental use, comprises a handpiece with a light source in the form of a number of "blue" high effect diodes (LED) and is characterized in that the light diodes are mounted in close formation near a front end portion of the handpiece, radiating against the rear end of a light conductor rod projecting forwardly from this portion.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	•						
AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 00/13608 PCT/DK99/00475

Irradiation apparatus for light curing of composites, in particular for dental use.

The present invention concerns an irradiation apparatus for polymerisation of light-activated plastic, especially for the hardening of tooth fillings and fissuresealing lacquer.

10

15

20

25

30

For this purpose, use has earlier been made of ultra-violet light, but for various reasons a change has been made to the use of visible light with correspondingly adapted plastic materials. However, considerable problems continue to be experienced with this technique, primarily because in order to achieve an acceptable depth effect, work must be carried out with a quite high power, which gives rise to an extremely unpleasant development of heat in the actual working area, i.e. in the hand tool used by the dentist for this purpose and an undesirable influence by the heat on the irradiated tooth. Use is typically made of a halogen lamp of the size up to 100 w, and it is quite normal for a cooling blower to be built into the handle of the tool itself, which makes the equipment voluminous and difficult to handle. Moreover, it is quite expensive, among other things because use must be made not only of a colour filter for selection of the most relevant light wavelength range, but also of a heatreflecting filter for the protection of the patient.

After the arrival of the optical fibre technique, attempts have been made to get the whole of this apparatus placed at a distance from the working area, but it has proved that flexible optical fibres are vulnerable to the movements which must be made during the course of treatment. While optical fibre cables can distinguish themselves by a particularly good durability when they are laid out in a permanently-installed manner, this does not apply if they are exposed to regular operative movements. It is timized for a

PCT/DK99/00475 WO 00/13608

2

break to occur in a progressive number of the fibres of which such a cable is built up, whereby the light conductivity characteristic is weakened to an increasing degree. To a certain extent, this could be compensated for, without inconvenience to the patient or the dentist, by the possibility of being able to make use of an external, even more powerful light equipment, but for several reasons this must be considered to be an unrealistic emergency solution. With this technique in mind, there must be awaited a development in the field of optical fibres such that it gives rise to conductors which are readily flexible and yet have a long life. There are excellent stiff optical fibre conductors in existence, but these will again simply require that the light source is placed in the handle of the tool, consequently with the problems of heat associated herewith.

10

15

20

25

30

It must thus be mentioned that there can be expectations that a newer type of light source, i.e. the so-called photo-diodes (LEDs), can with time be developed to such a degree of efficiency that they will find immediate application as "irradiation tips" in hand tools for the purpose discussed, such as already foreseen in EP-A-0 780 103. These diodes, which are already produced commercially for emission of blue light in a spectral range which almost corresponds with the area which is relevant here (470 nm \pm 35 nm at 3 dB), distinguish themselves by a very low development of heat, and since they are also available in very small dimensions, typically with a diameter of 4-5 mm and a length of 8-9 mm, they will therefore e ideal for use in the present connection, when or if they can be developed for the emission of light of the necessary strength. However, here again there is a long way to go.

Moreover, it is also disclosed in said EP-A-0 780

103 that instead of a single diode, the "irradiation tip" can

10

15

20

25

30

lens can concentrate the emitted light towards the place of treatment. However, in principle this involves two problems, i.e. partly that the irradiation head hereby becomes inconveniently voluminous, and partly that even with the very latest technology it is not possible to achieve the necessary total light intensity with the use of only 3-5 diodes.

With the present invention, however, it has been ascertained that the diodes are now already developed as so-called "daylight diodes", primarily for use in various sign-posting situations, with such a considerable light intensity that 6-7 diodes together are enough to provide the light necessary for the present purpose, but it must be noted that this is when use is made of the special circumstance that it has shown that these diodes can be overloaded quite considerably within the relatively short periods which are involved in the treatments which are relevant here, i.e. an overloading of 2-300% in relation to the stated normal values. There can hereby be achieved a total light strength of more than the 8-10 candela (cd) which, for the time being, are a minimum for the necessary intensity for the hardening of the current plastic composites.

In that the diode dimensions can not be expected to be reduced, the problem will still thus prevail that a group of e.g. 5-8 diodes arranged in an irradiation tip will be inconveniently voluminous. In connection with the invention, however, it has been recognised that precisely with the use of the said stiff optical fibres it will be possible to configure the hand-tool in such a manner that the necessary diode group is placed in a suitably wide hand-grip part with light emission towards the rear end of a light conductor rod extending from said hand-grip, which thus via a possibly bent-out front end can conduct the total light to the place of treatment. Preferably, a selection will be made of diodes

5

10

15

20

25

des in the actual ring of diodes are brought to emit light at an angle in towards the said rear end of the light conductor rod for further conduction, it will not be necessary to make use of a convex lens.

While the ring of diodes will probably be larger than convenient for the thickness of an "irradiation tip", it can nevertheless be fully acceptable for incorporation in a broader handle part of the relevant tool when the result will be that the total light will, however, be transferred to the place of treatment via the fixed light conductor connection. This light conductor can thus be pivotable so that its bentout tip can be turned out in different directions as required. However, the same can be achieved by the turning of the whole tool.

With the invention it has been found to be fully realistic to work with a power supply from a battery built into the tool, preferably of the rechargeable type. A typical current consumption for 7 diodes will be approx. 500 mA, approx. 2W, but the actual periods of use will hardly exceed 1 minute, so that a battery of reasonably small size will, for example, still be operative throughout the whole of a working day.

With these dental lacquering treatments, it is practical to make use of a relatively wide beam of light, and associated with the tool there can be two or more light-conducting attachments for replaceable mounting on the tool.

In the following, the invention will be described with reference to the drawing, in which

fig. 1 is a perspective view of a tool according to the invention, and

fig. 2 is a side view of the tool, partly in section.

The tool has a tubular hand-grip part 2 which at the rear has a replaceable battery bousing 4 while at the

10

15

20

front it has a projecting, endwise bent-out light conductor rod 6 of the substantially stiff type, preferably based on optical fibres, mounted in a holder 8 for replaceable attachment to the hand-grip part. Immediately behind the part 6, 8, there is a lamp housing 10 in which are mounted a number of "blue" light diodes 12 pointing towards the end of the rod 6. In a preferred embodiment, use is made of seven diodes, i.e. a central diode with a surrounding ring of six diodes. These are configured with built-in reflectors, whereby it is not necessary to use an additional reflector.

The hand-grip part 2 has a display 14 for showing the setting of the activation time in seconds, and one or more operating buttons 16 for time adjustment and activation, and possibly for selection of a reduced number of diodes for use in connection with tasks where use can be made of light with reduced intensity. However, these buttons preferably consist of fixed touch-sensitive areas.

It must be noted that the total light intensity should be at least 8-10 candela (cd), preferably approx. 14 cd, i.e. for seven diodes an intensity of approx. 2 cd per diode will be required. It has been found possible for this to be achieved with diodes of the NSPB 500S type from Nichia Corporation, irradiation angle 15°.

The tool's internal power supply is configured as a constant current generator which, independently of temperature and battery condition, will ensure that the light gained from the diodes will be constant.

PCT/DK99/00475

15

6

CLAIMS

- 1. Irradiation apparatus for light curing of composites with blue light, especially for dental use, comprising a hand piece with a light source in the form of a number of "blue" high-effect diodes (LED), c h a r a c t e r i z e d in that the light diodes are disposed in close formation near a front end part of the hand piece, radiating towards the rear end of a light conductor rod extending from said hand piece.
- 2. Apparatus according to claim 1, where the diodes appear in a number of 5-10.
 - 3. Apparatus according to claim 1, where the light conductor rod is thinner than the circumference of the diode group.
 - 4. Apparatus according to claim 1, where the diodes are battery-driven via a constant current generator.
 - 5. Apparatus according to claim 1, where the hand piece has a battery housing for battery operation of the diodes.
- 6. Apparatus according to claim 1, where the hand piece has means for the selection of a reduced number of active di20 odes.
 - 7. Apparatus according to claim 1, where the light conductor rod is removable and replaceable with one or more other light conductor rods with different thickness.
- 8. Apparatus according to claim 1, where the total irra-25 diation strength amounts to at least 8-10 candela, preferably 12-16 candela.
 - 9. Apparatus according to claim 1, where the power supply is arranged to drive the diodes with an effect which is several times the nominal working effect.
- 30 10. Apparatus according to claim 1, where the diodes are driven with a light strength of at least approx. 2 candela and with a radiation angle of 15°.

BEST AVAILABLE COPY

1/1

Fig.1

BEST AVAILABLE COPY

INTERNATIONAL SEARCH REPORT

Name and mailing address of the ISA/

International application No.

PCT/DK 99/00475

A. CLASSIFICATION OF SUBJECT MATTER IPC7: A61C 19/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC7: A61C Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched SE,DK,FI,NO classes as above Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category* 1-10 WO 9507731 A1 (EFOS CANADA INC.), 23 March 1995 X (23.03.95), page 6, line 18 - line 25, figure 1, abstract WO 9736552 A1 (NULITE SYSTEMS INTERNATIONAL PTY. 1-10 X LTD.), 9 October 1997 (09.10.97), page 3, line 38 - page 4, line 13, figure 2, abstract EP 0755662 A1 (THERA PATENT GMBH & CO. KG 1 - 10A GESELLSCHAFT FÜR INDUSTIELLE SCHUTZRECHTE), 29 January 1997 (29.01.97), column 3, line 39 - column 4, line 5, figure 1 See patent family annex. Further documents are listed in the continuation of Box C. later document published after the international filing date or priority Special categories of cited documents: date and not in conflict with the application but cited to understand "A" document defining the general state of the art which is not considered the principle or theory underlying the invention to be of particular relevance "X" document of particular relevance: the claimed invention cannot be "E" erlier document but published on or after the international filing date considered novel or cannot be considered to involve an inventive "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other step when the document is taken alone "Y" document of particular relevance: the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination means being obvious to a person skilled in the art document published prior to the international filing date but later than "&" document member of the same patent family the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 28.02.2000 4 January 2000

Authorized officer

INTERNATIONAL SEARCH REPORT

International application No.

PCT/DK 99/00475

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
P,X	EP 0879582 A2 (EKA GESELLSCHAFT FÜR MEDIZINISCH-TECHNISCHE GERÄTE MBH), 25 November 1998 (25.11.98), column 1, line 40 - line 56, figures 1,6, abstract	1-10
Ρ,Χ	WO 9916136 A1 (UNIVERSITY OF BRISTOL), 1 April 1999 (01.04.99), figure 5, abstract	1-10
Ρ,Χ	 WO 9935995 A1 (KERR CORPORATION), 22 July 1999 (22.07.99), figure 1, abstract	1-10
		·

INTERNATIONAL SEARCH REPORT

Information on patent family members

02/12/99

International application No. PCT/DK 99/00475

Patent document cited in search report			Publication date		Patent family member(s)	Publication date
WO	9507731	A1	23/03/95	AU CA US US	7737894 A 2149339 A 5420768 A 5634711 A	03/04/95 23/03/95 30/05/95 03/06/97
WO	9736552	A1	09/10/97	AU AU	2144797 A PN898196 D	22/10/97 00/00/00
EP	0755662	A1	29/01/97	DE JP	29511927 U 9028719 A	09/01/97 04/02/97
EP	0879582	A2	25/11/98	DE	19721311 C	03/12/98
WO	9916136	A1	01/04/99	AU GB GB GB	9178398 A 2329756 A 9720443 D 9806046 D	12/04/99 31/03/99 00/00/00 00/00/00
MO	9935995	A1	22/07/99	AU	2236899 A	02/08/99