# COS 284 TUTORIAL 3 CLASS TEST 2 RECAP

#### FOR DECIMAL INPUT X = 55 WHAT IS THE OUTPUT?





















F(x,y,z) = (xy)+(xz)'y'

F(x,y,z) = (xy)+(xz)'y'

= (x AND y) OR NOT(x AND z) AND NOT(y)

F(x,y,z) = (xy)+(xz)'y'

= (x AND y) OR NOT(x AND z) AND NOT(y)



F(x,y,z) = (xy)+(xz)'y'

= (x AND y) OR NOT(x AND z) AND NOT(y)



F(x,y,z) = (xy)+(xz)'y'

= (x AND y) OR NOT(x AND z) AND NOT(y)

F(x,y,z) = (xy)+(xz)'y'

= (x AND y) OR NOT(x AND z) AND NOT(y)

F(x,y,z) = (xy)+(xz)'y'= (x AND y) OR NOT(x AND z) AND NOT(y)

F(x,y,z) = (xy)+(xz)'y'

= (x AND y) OR NOT(x AND z) AND NOT(y)



F(x,y,z) = (xy)+(xz)'y' = (x AND y) OR NOT(x AND z) AND NOT(y)







(A XOR B)



(A XOR B) = A'B + AB'



(A XOR B) = A'B + AB' = (A+B)(A'+B')



(A XOR B) = A'B + AB' = (A+B)(A'+B') (B AND C)



$$(A XOR B) = A'B + AB' = (A+B)(A'+B')$$

$$(B AND C) = BC$$



$$(A XOR B) = A'B + AB' = (A+B)(A'+B')$$

$$(B AND C) = BC = (B)(C)$$



(A XOR B) = A'B + AB' = (A+B)(A'+B')

(B AND C) = BC = (B)(C)

(A NAND C)



(A XOR B) = A'B + AB' = (A+B)(A'+B')

(B AND C) = BC = (B)(C)

(A NAND C) = (AC)



(A XOR B) = A'B + AB' = (A+B)(A'+B')

(B AND C) = BC = (B)(C)

(A NAND C) = (AC)' = (A'+C')



$$(A XOR B) = A'B + AB' = (A+B)(A'+B')$$

$$(B AND C) = BC = (B)(C)$$

$$(A NAND C) = (AC)' = (A'+C')$$

$$Y = (A+B)(A'+B')(B)(C)(A'+C')$$





| a | b | С | a'b | a'c | bc | D | В |
|---|---|---|-----|-----|----|---|---|
| 0 | 0 | 0 |     |     |    |   |   |
| 0 | 0 | 1 |     |     |    |   |   |
| 0 | 1 | 0 |     |     |    |   |   |
| 0 | 1 | 1 |     |     |    |   |   |
| 1 | 0 | 0 |     |     |    |   |   |
| 1 | 0 | 1 |     |     |    |   |   |
| 1 | 1 | 0 |     |     |    |   |   |
| 1 | 1 | 1 |     |     |    |   |   |



| a | b | С | a'b | a'c | bc | D | В |
|---|---|---|-----|-----|----|---|---|
| 0 | 0 | 0 | 0   |     |    |   |   |
| 0 | 0 | 1 | 0   |     |    |   |   |
| 0 | 1 | 0 | 1   |     |    |   |   |
| 0 | 1 | 1 | 1   |     |    |   |   |
| 1 | 0 | 0 | 0   |     |    |   |   |
| 1 | 0 | 1 | 0   |     |    |   |   |
| 1 | 1 | 0 | 0   |     |    |   |   |
| 1 | 1 | 1 | 0   |     |    |   |   |



| а | b | С | a'b | a'c | bc | D | В |
|---|---|---|-----|-----|----|---|---|
| 0 | 0 | 0 | 0   | 0   |    |   |   |
| 0 | 0 | 1 | 0   | 1   |    |   |   |
| 0 | 1 | 0 | 1   | 0   |    |   |   |
| 0 | 1 | 1 | 1   | 1   |    |   |   |
| 1 | 0 | 0 | 0   | 0   |    |   |   |
| 1 | 0 | 1 | 0   | 0   |    |   |   |
| 1 | 1 | 0 | 0   | 0   |    |   |   |
| 1 | 1 | 1 | 0   | 0   |    |   |   |



| a | b | С | a'b | a'c | bc | D | В |
|---|---|---|-----|-----|----|---|---|
| 0 | 0 | 0 | 0   | 0   | 0  |   |   |
| 0 | 0 | 1 | 0   | 1   | 0  |   |   |
| 0 | 1 | 0 | 1   | 0   | 0  |   |   |
| 0 | 1 | 1 | 1   | 1   | 1  |   |   |
| 1 | 0 | 0 | 0   | 0   | 0  |   |   |
| 1 | 0 | 1 | 0   | 0   | 0  |   |   |
| 1 | 1 | 0 | 0   | 0   | 0  |   |   |
| 1 | 1 | 1 | 0   | 0   | 1  |   |   |



| a | b | С | a'b | a'c | bc | D | В |
|---|---|---|-----|-----|----|---|---|
| 0 | 0 | 0 | 0   | 0   | 0  | 0 |   |
| 0 | 0 | 1 | 0   | 1   | 0  | 1 |   |
| 0 | 1 | 0 | 1   | 0   | 0  | 1 |   |
| 0 | 1 | 1 | 1   | 1   | 1  | 0 |   |
| 1 | 0 | 0 | 0   | 0   | 0  | 1 |   |
| 1 | 0 | 1 | 0   | 0   | 0  | 0 |   |
| 1 | 1 | 0 | 0   | 0   | 0  | 0 |   |
| 1 | 1 | 1 | 0   | 0   | 1  | 1 |   |



| a | b | С | a'b | a'c | bc | D | В |
|---|---|---|-----|-----|----|---|---|
| 0 | 0 | 0 | 0   | 0   | 0  | 0 | 0 |
| 0 | 0 | 1 | 0   | 1   | 0  | 1 | 1 |
| 0 | 1 | 0 | 1   | 0   | 0  | 1 | 1 |
| 0 | 1 | 1 | 1   | 1   | 1  | 0 | 1 |
| 1 | 0 | 0 | 0   | 0   | 0  | 1 | 0 |
| 1 | 0 | 1 | 0   | 0   | 0  | 0 | 0 |
| 1 | 1 | 0 | 0   | 0   | 0  | 0 | 0 |
| 1 | 1 | 1 | 0   | 0   | 1  | 1 | 1 |



| а | b | С | D | В |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |



| а | b | С | D | В |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |

#### Full subtractor:

A circuit used for the subtraction of three input bits: minuend a, subtrahend b, and borrow in c.

| а | b | С | D | В |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | Ī |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |

#### Full subtractor:

A circuit used for the subtraction of three input bits: minuend a, subtrahend b, and borrow in c.

It generates two output bits: difference D and borrow out B.

| а | b | С | D | В |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |

#### Full subtractor:

A circuit used for the subtraction of three input bits: minuend a, subtrahend b, and borrow in c.

It generates two output bits: difference D and borrow out B.

The borrow in c is set when the previous digit is borrowed from a. Thus, the subtrahend b and borrow in c are both subtracted from a.

| а | b | С | D | В |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |

#### **Full subtractor:**

A circuit used for the subtraction of three input bits: minuend a, subtrahend b, and borrow in c.

It generates two output bits: difference D and borrow out B.

The borrow in c is set when the previous digit is borrowed from a. Thus, the subtrahend b and borrow in c are both subtracted from a.

A borrow out B needs to be generated when a < b + c. When a borrow out is generated, 2 is added in the current digit.

Therefore, the computed difference is D = a - b - c + 2B.