broadcast ephemeris algorithm

Interface Control Document

Table 20-11. Ephemens Data Definitions				
\mathbf{M}_0	Mean Anomaly at Reference Time			
Δn	Mean Motion Difference From Computed Value			
e	Eccentricity			
$(A)^{1/2}$	Square Root of the Semi-Major Axis			
(OMEGA) ₀	Longitude of Ascending Node of Orbit Plane at Weekly Epoch			
i_0	Inclination Angle at Reference Time			
ω	Argument of Perigee			
OMEGADOT	Rate of Right Ascension			
IDOT	Rate of Inclination Angle			
\mathbf{C}_{uc}	Amplitude of the Cosine Harmonic Correction Term to the Argument of Latitude			
\mathbf{C}_{us}	Amplitude of the Sine Harmonic Correction Term to the Argument of Latitude			
C_{rc}	Amplitude of the Cosine Harmonic Correction Term to the Orbit Radius			
C_{rs}	Amplitude of the Sine Harmonic Correction Term to the Orbit Radius			
C_{ic}	Amplitude of the Cosine Harmonic Correction Term to the Angle of Inclination			
C_{is}	Amplitude of the Sine Harmonic Correction Term to the Angle of Inclination			
t _{oe}	Reference Time Ephemeris (reference paragraph 20.3.4.5)			
IODE	Issue of Data (Ephemeris)			

Parameter	No. of Bits**	Scale Factor (LSB)	Effective Range***	Units
IODE	8			(see text)
C _{rs}	16*	2-5		meters
Δn	16*	2-43		semi-circles/sec
M_0	32*	2-31		semi-circles
Cuc	16*	2 ⁻²⁹		radians
e	32	2-33	0.03	dimensionless
Cus	16*	2 ⁻²⁹		radians
(A) ^{1/2}	32	2 ⁻¹⁹		meters ^{1/2}
t _{oe}	16	24	604,784	seconds
Cic	16*	2 ⁻²⁹		radians
(OMEGA) ₀	32*	2-31		semi-circles
Cis	16*	2 ⁻²⁹		radians
i_0	32*	2-31		semi-circles
Crc	16*	2-5		meters
ω	32*	2-31		semi-circles
OMEGADOT	24*	2 ⁻⁴³		semi-circles/sec
IDOT	14*	2-43		semi-circles/sec

Parameters so indicated shall be two's complement, with the sign bit (+ or -) occupying the MSB;
 See Figure 20-1 for complete bit allocation in subframe;

^{***} Unless otherwise indicated in this column, effective range is the maximum range attainable with indicated bit allocation and scale factor.

Table 20-IV. Elements of Coordinate Systems (sheet 1 of 3)

 $\mu = 3.986005 \text{ x } 10^{14} \text{ meters}^3/\text{sec}^2$

WGS 84 value of the earth's universal gravitational

parameter

 $\Omega_e = 7.2921151467 \times 10^{-5} \text{ rad/sec}$

WGS 84 value of the earth's rotation rate

 $A = \left(\sqrt{A}\right)^2$

Semi-major axis

 $n_0 = \sqrt{\frac{\mu}{A^3}}$

Computed mean motion (rad/sec)

 $t_k = t - t_{oe}^*$

Time from ephemeris reference epoch

 $n = n_0 + \Delta n$

Corrected mean motion

 $\mathbf{M}_{k} = \mathbf{M}_{0} + \mathbf{n}\mathbf{t}_{k}$

Mean anomaly

* t is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light). Furthermore, t_k shall be the actual total time difference between the time t and the epoch time t_{oe}, and must account for beginning or end of week crossovers. That is, if t_k is greater than 302,400 seconds, subtract 604,800 seconds from t_k. If t_k is less than -302,400 seconds, add 604,800 seconds to t_k.

Table 20-IV. Elements of Coordinate Systems (sheet 2 of 3)

 $M_k = E_k - e \sin E_k$

Kepler's Equation for Eccentric Anomaly (may be solved by iteration)(radians)

$$v_k = \tan^{-1} \left\{ \frac{\sin v_k}{\cos v_k} \right\}$$

True Anomaly

$$= \tan^{-1} \left\{ \frac{\sqrt{1 - e^2} \sin E_k / (1 - e \cos E_k)}{(\cos E_k - e) / (1 - e \cos E_k)} \right\}$$

$$E_k = \cos^{-1} \left\{ \frac{e + \cos v_k}{1 + e \cos v_k} \right\}$$

Eccentric Anomaly

 $\Phi_k = \nu_k + \omega$

Argument of Latitude

$$\delta u_k = c_{us} sin2\Phi_k + c_{uc} cos2\Phi_k$$

$$\delta r_k = c_{rs} sin2\Phi_k + c_{rc} cos2\Phi_k$$

$$\delta i_k = c_{is} sin2\Phi_k + c_{ic} cos2\Phi_k$$

Argument of Latitude Correction
Radius Correction
Inclination Correction

 $u_k = \Phi_k + \delta u_k$

Corrected Argument of Latitude

Second Harmonic Perturbations

 $r_k = A(1 - e \cos E_k) + \delta r_k$

Corrected Radius

 $i_k = i_0 + \delta i_k + (IDOT) t_k$

Corrected Inclination

Table 20-IV. Elements of Coordinate Systems (sheet 3 of 3)

$$\begin{cases} x_k' = r_k \cos u_k \\ y_k' = r_k \sin u_k \end{cases}$$

Positions in orbital plane.

$$\Omega_k = \Omega_0 + (\Omega - \Omega_e) t_k - \Omega_e t_{oe}$$

Corrected longitude of ascending node.

$$x_k = x_k' \cos \Omega_k - y_k' \cos i_k \sin \Omega_k$$

$$y_k = x_k' \sin \Omega_k + y_k' \cos i_k \cos \Omega_k$$

$$z_k = y_k' \sin i_k$$

Earth-fixed coordinates.

20.3.3.4.3.2 <u>Parameter Sensitivity</u>. The sensitivity of the SV's antenna phase center position to small perturbations in most ephemeris parameters is extreme. The sensitivity of position to the parameters (A)^{1/2}, C_{rc} and C_{rs} is about one meter/meter. The sensitivity of position to the angular parameters is on the order of 10^8 meters/semicircle, and to the angular rate parameters is on the order of 10^{12} meters/semicircle/second. Because of this extreme sensitivity to angular perturbations, the value of π used in the curve fit is given here. π is a mathematical constant, the ratio of a circle's circumference to its diameter. Here π is taken as

 $\pi = 3.1415926535898$.