# AER210 Abridged

Aman Bhargava

September 2019

# Contents

| 1 | Rev  | view: Stuff to Have Memorized                                     | 2  |  |  |  |  |  |  |  |  |  |
|---|------|-------------------------------------------------------------------|----|--|--|--|--|--|--|--|--|--|
|   | 1.1  | Trig Functions and Derivatives                                    | 2  |  |  |  |  |  |  |  |  |  |
|   | 1.2  | Inverse Trig Derivatives                                          | 2  |  |  |  |  |  |  |  |  |  |
|   | 1.3  | How to complete the Square                                        | 2  |  |  |  |  |  |  |  |  |  |
|   | 1.4  | Trig Angle Sums                                                   | 3  |  |  |  |  |  |  |  |  |  |
|   | 1.5  | Identities Assorted                                               | 3  |  |  |  |  |  |  |  |  |  |
| 2 | In-0 | Class Review                                                      | 4  |  |  |  |  |  |  |  |  |  |
|   | 2.1  | Vectors & Vector Functions                                        | 4  |  |  |  |  |  |  |  |  |  |
|   | 2.2  | Arc Length                                                        | 4  |  |  |  |  |  |  |  |  |  |
|   |      | 2.2.1 One-Variable Functions                                      | 4  |  |  |  |  |  |  |  |  |  |
|   |      | 2.2.2 Parametric Functions                                        | 5  |  |  |  |  |  |  |  |  |  |
|   |      | 2.2.3 Vector Funtions                                             | 5  |  |  |  |  |  |  |  |  |  |
|   |      | 2.2.4 Reparamerizing with respect to Arc Length                   | 5  |  |  |  |  |  |  |  |  |  |
|   | 2.3  | Partial Derivatives                                               | 5  |  |  |  |  |  |  |  |  |  |
|   |      | 2.3.1 Functions of Several Variables                              | 5  |  |  |  |  |  |  |  |  |  |
|   |      | 2.3.2 Limits and Continuity with Functions of Several Variables   | 6  |  |  |  |  |  |  |  |  |  |
|   |      | 2.3.3 Higher Partial Derivatives                                  | 6  |  |  |  |  |  |  |  |  |  |
|   | 2.4  | Gradient                                                          | 6  |  |  |  |  |  |  |  |  |  |
|   | 2.5  | Chain Rule with Many Variables                                    | 7  |  |  |  |  |  |  |  |  |  |
| 3 | Mu   | ltiple Integrals                                                  | 8  |  |  |  |  |  |  |  |  |  |
|   | 3.1  | Basic Meaning and Solving                                         | 8  |  |  |  |  |  |  |  |  |  |
|   | 3.2  | Leibniz Integral Rule (Differentiability of Integral with Respect |    |  |  |  |  |  |  |  |  |  |
|   |      | to Parameter)                                                     | 8  |  |  |  |  |  |  |  |  |  |
|   |      | 3.2.1 Constant Bounds of Integration                              | 8  |  |  |  |  |  |  |  |  |  |
|   |      | 3.2.2 Derivation                                                  | 9  |  |  |  |  |  |  |  |  |  |
|   |      | 3.2.3 Variable Bounds of Integration                              | 9  |  |  |  |  |  |  |  |  |  |
|   | 3.3  | Polar Coordinates with Multiple Integrals                         | 9  |  |  |  |  |  |  |  |  |  |
|   |      | 3.3.1 Change to Polar Coordinates in Double Integrals             | 9  |  |  |  |  |  |  |  |  |  |
|   |      | · · · · · · · · · · · · · · · · · · ·                             | 10 |  |  |  |  |  |  |  |  |  |

| $^{\circ}$ | Applications  | - f N/14:1-  | T4 1       |   |       |   |   |       |   |   |   |   |   |   |   | 10   |
|------------|---------------|--------------|------------|---|-------|---|---|-------|---|---|---|---|---|---|---|------|
| 34         | ADDITIONS     | OF MINITINIE | Integrals  |   |       |   |   |       |   |   |   |   |   |   |   | - 11 |
| o. $r$     | Tippiicautons | or manufact  | TITUCSTAID | • | <br>• | • | • | <br>• | • | • | • | • | • | • | • | 10   |

# Chapter 1

# Review: Stuff to Have Memorized

### 1.1 Trig Functions and Derivatives

$$\frac{d}{dx}sin(x) = cos(x) \qquad \frac{d}{dx}csc(x) = -csc(x)cot(x)$$

$$\frac{d}{dx}cos(x) = -sin(x) \qquad \frac{d}{dx}sec(x) = sec(x)tan(x)$$

$$\frac{d}{dx}tan(x) = sec^{2}(x) \qquad \frac{d}{dx}cot(x) = -csc^{2}(x)$$

### 1.2 Inverse Trig Derivatives

$$\frac{d}{dx}sin^{-1}(x) = \frac{1}{\sqrt{(1-x^2)}}$$
$$\frac{d}{dx}cos^{-1}(x) = \frac{-1}{\sqrt{(1-x^2)}}$$
$$\frac{d}{dx}tan^{-1}(x) = \frac{1}{1+x^2}$$

### 1.3 How to complete the Square

- 1. Put  $ax^2 + bx$  in brackets and forcefully factor out the a
- 2. Add  $(\frac{b}{2})^2$  to the inside of the brackets and subtract it from the outside (you got it)
- 3. Factor and be happy that you've completed the square;

### 1.4 Trig Angle Sums

1. 
$$sin(A + B) = sin(A)cos(B) + cos(A)sin(B)$$

2. 
$$cos(A + B) = cos(A)cos(B) - sin(A)sin(B)$$

3. 
$$sin(A - B) = sin(A)cos(B) - cos(A)sin(B)$$

4. 
$$cos(A - B) = cos(A)cos(B) + sin(A)sin(B)$$

### 1.5 Identities Assorted

$$sin^{2}(x) = 1/2(1 - cos(2x))$$
(1.1)

$$\cos^2(x) = 1/2(1 + \cos(2x)) \tag{1.2}$$

$$sinxcosx = 1/2sin2x (1.3)$$

$$sinAcosB = 1/2[sin(A - B) + sin(A + B)]$$
(1.4)

$$sinAsinB = 1/2[cos(A - B) - cos(A + B)]$$
(1.5)

$$cosAcosB = 1/2[cos(A - B) + cos(A + B)]$$
(1.6)

$$\frac{d}{dx}csc(x) = -csc(x)cot(x) \tag{1.7}$$

$$\cot^2(x) = \csc^2(x) - 1$$
 (1.8)

$$\frac{d}{dx}cot(x) = -csc^2(x) \tag{1.9}$$

# Chapter 2

## In-Class Review

#### 2.1 Vectors & Vector Functions

- Vector = magnitude + direction
- If the origin of the vector is the origin of the coordinate system, it's a position vector.
- Dot product:  $\vec{a} \cdot \vec{b} = \vec{a}_1 \cdot \vec{b}_1 + ... + \vec{a}_n \cdot \vec{b}_n$
- Cross product:  $\vec{a} \times \vec{b} = det(i, j, k; \vec{a}^T; \vec{b}^T)$
- Cross product is the area of the paralellogram traced out by the two vectors.
- Scalar triple product:  $\vec{a} \cdot (\vec{b} \times \vec{c})$ , produces a scalar, represents the volume of the parallelepiped formed by the three vectors.
- To get the derivative of a vector function, simply take the derivative of each of the internal functions and package them into a new vector function.

### 2.2 Arc Length

#### 2.2.1 One-Variable Functions

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} dx$$

#### 2.2.2 Parametric Functions

Let y(t) and x(t) describe a parametric function in 2 dimensions. Then the arc length would be:

$$L = \int_{a}^{b} \sqrt{[x'(t)]^{2} + [y'(t)]^{2}} dx$$

#### 2.2.3 Vector Funtions

Let  $\vec{r}(t)$  describe a vector function that converts a scalar t into a vector. Then the arclength function would be:

$$L = \int_{a}^{b} |\vec{r}(t)| dt$$

#### 2.2.4 Reparamerizing with respect to Arc Length

What is this? Let there be a vector function  $\vec{r}(t)$  and its corresponding arc length function s(t). Since s is strictly increasing, we can safely **reparameterize**  $\vec{r}(t)$  to be  $\vec{r}(s(t)) \to \vec{r}(s)$ .

Why would you want to do this? This type of reparameterization is useful because now we do not have to rely on any particular coordinate system.

#### Steps to Reparameterizing

- 1. Find  $s(t) = \int_a^b |\vec{r}(u)| du$ .
- 2. Put s in terms of t.
- 3. Substitute the expression found in part 2 in the original  $\vec{r}(t)$ .

#### 2.3 Partial Derivatives

#### 2.3.1 Functions of Several Variables

A function of two variables transforms each pair of Reals (x, y) in a given set to a single real number. The given set is the domain, and the set of reals that the pair is transformed to is the range.

**Level functions** are functions that have f(x,y) = k for given ranges of (x,y)

Functions of 3 or more variables are pretty easy to extrapolate from functions of two variables, tbh.

# 2.3.2 Limits and Continuity with Functions of Several Variables

Limits

**Definition of limit** with many variables:

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

if for every number  $\epsilon>0$  there is a corresponding number  $\delta>0$  s.t. if  $0<\sqrt{(x-a)^2+(y-b)^2}<\delta$  then  $|f(x,y)-L|<\epsilon$ 

**How to find:** Regard the non-mentioned variable in the notation as a constant and differentiate with respect to the mentioned variable.

#### 2.3.3 Higher Partial Derivatives

$$(f_x)_y = f_{xy} = f_{12} = \frac{\partial}{\partial y} (\frac{\partial f}{\partial x}) = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial z}{\partial y \partial x}$$

#### Clairaut's Theorem

If  $f_{xy}$  and  $f_{yx}$  are both **defined** and **continuous** on disk D then:

$$f_{xy}(a,b) = f_{yx}(a,b)$$

#### 2.4 Gradient

Think of the gradient like an operator that applies to functions of many variables (functions of vectors). The  $\nabla$  just calculates the partial derivatative of the function with respect to each of its input variables and puts it into a vector.

$$\nabla f(x,y) = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

Or, more generally for a function  $f(\vec{x})$ ,

$$\nabla f(\vec{x}) = \left[\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_n}\right]$$

# 2.5 Chain Rule with Many Variables

Let there be a function  $f(\vec{x})$ . Let  $\vec{x}$  of length n be a function of  $\vec{t}$  of length m. We take the partial derivative of f with respect to  $t_i$  by the following:

$$\frac{\partial f}{\partial t_i} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \dots + \frac{\partial f}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

# Chapter 3

# Multiple Integrals

Pretty much the same as regular integrals, you just do two. You can apply them to volumes under surfaces.

### 3.1 Basic Meaning and Solving

# 3.2 Leibniz Integral Rule (Differentiability of Integral with Respect to Parameter)

The Leibniz integral rule simply lets you more easily take the derivative of the integral of a multivariable function where the variable you are integrating with respect to is not the same as the variable you are taking the derivative with respect to.

$$\frac{d}{dx} \int_{a}^{b} f(x,t)dt$$

### 3.2.1 Constant Bounds of Integration

When you are integrating from one constant to another [a, b], the result is quite simple and elegant.

$$\frac{d}{dx} \int_{a}^{b} f(x,t)dt = \int_{a}^{b} \frac{\partial f}{\partial x}dt$$

#### 3.2.2 Derivation

Let's write  $\frac{d}{dx} \int_a^b f(x,t) dt$  in terms of the definition of the derivative:

$$= \frac{\int_{a}^{b} f(x + \Delta x, t)dt - \int_{a}^{b} f(x + \Delta x, t)dt}{\Delta x}$$

$$= \frac{\int_{a}^{b} f(x, t)dx + \int_{a}^{b} \frac{\partial f}{\partial x}dt\Delta tdx - \int_{a}^{b} f(x, t)dt}{\Delta x}$$

$$= \int_{a}^{b} \frac{\partial f}{\partial t}dx$$

#### 3.2.3 Variable Bounds of Integration

Final result:

$$\frac{d}{dx} \int_{a(t)}^{b^t} f(x,t)dt = \int_{a(t)}^{b(t)} \frac{\partial f}{\partial x} dt - f(a,t) \frac{da}{dt} + f(b,t) \frac{db}{dt}$$

### 3.3 Polar Coordinates with Multiple Integrals

Recall 
$$r^2 = x^2 + y^2$$
,  $x = rcos(\theta)$ ,  $y = rsin(\theta)$ 

A polar rectangle is of the form

$$R = (r, \theta) | a \le r \le b, \alpha \le \theta \le \beta$$

Basic form of double integral in polar coordinates:

$$\iint_{R} g dA = \int_{\alpha}^{\beta} \int_{a}^{b} g(r, \theta) dr d\theta$$

#### 3.3.1 Change to Polar Coordinates in Double Integrals

$$\iint_{R} f(x,y)dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos(\theta), r\sin(\theta)) * r dr d\theta$$

Make sure not to forget the r in the integral!

### 3.3.2 Variable Bounds of Integration for r

$$D = (r, \theta) | \alpha \le \theta \le \beta, h(\theta) \le r \le g(\theta)$$

Then:

$$\iint_D f(r,\theta) = \int_{\alpha}^{\beta} \int_{h(\theta)}^{h(\theta)} f(r,\theta) * r \, dr \, d\theta$$

# 3.4 Applications of Multiple Integrals