Assignment 6

 $(X, \lambda) = x_1^2 + a_5 x_1^2 + x_1 x_2 - 2x_1 - 3x_2 + \lambda(x_1 + x_2)$

$$\theta(\lambda) = \sup_{x} \inf_{x} L(x, \lambda)$$

全 号=0 得 ∫2X1+X2-2+入=0 解得 ∫X1=-1 X2=4-入

 $\therefore O(\lambda) = \inf_{X} L(X, \lambda) = -0.5\lambda^2 + 2\lambda - 5$

: 对锡问题为 Sup -0.5 x2+2x-5

λ 5.t. λ≥0

显然,对于对偶问题,最优解为 x=2,最优值 00 = -3

对原问题、利用KKT条件

 $\lambda \ge 0$

得一次

x+251 最优值 Vp=-3

2. $ig_f(x) = x_1^4 - 2x_2^2 - x_2 + g(x) = x_1^2 + x_2^2 + x_2$

(i) ▽f(x)= [12xf 0] 不是半正定矩阵

即f以非四,故问题非凸

(ji) 显然,f(x)是一个连续函数,fxeR2 xi+6x+约2543为非空紧集,由Weierstrass定理,这个问题一定存在最优解。

(iii) $L(x, \lambda) = x_1^4 - 2x_2^2 - x_2 + \lambda(x_1^2 + x_2^2 + x_2)$

今及L=0 得 $\begin{cases} 4x_1^2 + 2\lambda x_1 = 0 \\ (2\lambda - 4)x_2 + 2\lambda + 2 = 0 \end{cases}$ は $\begin{cases} x_1 = 0 \\ (2\lambda - 4)x_2 + 2\lambda + 2 = 0 \end{cases}$

 $\frac{1}{2} \frac{\partial(\lambda) = \inf_{X} L(X, \lambda)}{\int_{-\infty}^{\infty} \frac{(\lambda + \lambda)^{2}}{4\lambda - 8}} = \frac{(\lambda + 1)^{2}}{8 - 4\lambda}, \quad \exists \lambda > 2 时$

· 对据问题为 Sup &-12 8-42

 $(0) = -\frac{1}{4}[(\lambda - 2) + \frac{1}{2} + \frac{1}{2}] \quad (\lambda - \frac{3}{4} + \frac{1}{2}) \quad (\lambda - \frac{3}{4} + \frac{1}{2}$

:对偶问题最优解为入=3,最优值以=*二

(iv)

对原问题由KKT条件。

入(xi+xi+xz)=0 将三组解分别代入f(x),比较得

对+X3+X2 <0 原始问题最优解为X=[0],最优值以=-1

,对偶问题的最优值与原始问题的最优值相等

Date. Page.	
2.	
$L(x,z) = \sum_{i=1}^{n} (a_i x_i + (2b_i + 1) x_i + e^{\alpha i x_i}) - \gamma$	
全型= 2aixi+2bity txiexixi=0	
设f(x)= $\frac{1}{2}$ (aixi+2bixi) f ₂ (x)= $\frac{1}{2}e^{\alpha ixi}$	
则原问题等价于: min f.(y)+f.(z)	
y=Z	
$\frac{\sum_{i=1}^{n} y_{i} = 1}{n}$	
$L(y, z, u, w) = f_i(y) + f_2(z) + u^T(y-z) + w(f_1^D y_i - 1)$	
$ \frac{d^2}{dy_i} = 2a_iy_i + 2b_i + w + u_i = 0 $ $ \frac{d^2}{dy_i} = 2a_iy_i + 2b_i + w + u_i = 0 $	
再分号:= 处记以三一心=0 得到=女们就	
$\therefore D(u,w) = \sup_{x \in \mathcal{X}} L(y, \mathbf{Z}, u, w)$	
$= -w + \sum_{i=1}^{n} \left[-\frac{u_i + w + 4b_i + 4b_i w + 2u_i w + 4u_i b_i}{4a_i} + \frac{u_i w + 4u_i b_i}{2i} + \frac{u_i w + 4u_i b_i}{2i} \right]$	u _i
- i=11 40i	di
.: 对锡问题为	
Sup O(u, w), O(u, w) Ret	
M. W	

L. in Fi

第4题见最后

$$L(x,\lambda,u) = \frac{1}{1-1} x_j \ln \frac{x_j}{c_j} + \lambda^T(b-Ax_j) + u(\frac{1}{1-1}x_j-1)$$

$$\frac{A \frac{\partial L}{\partial x_j}}{dx_j} = \ln \frac{x_j}{G_j} + 1 + n - x_j = 0 \quad \text{If } x_j = G_j e^{x_j} - n - 1$$

$$\frac{dx_j}{dx_j} = \ln \frac{x_j}{G_j} + 1 + n - x_j = 0 \quad \text{If } x_j = G_j e^{x_j} - n - 1$$

$$\frac{dx_j}{dx_j} = \ln \frac{x_j}{G_j} + 1 + n - x_j = 0 \quad \text{If } x_j = G_j e^{x_j} - n - 1$$

$$ty \theta(\lambda, u) = \inf_{\chi} L(\chi, \lambda, u) = -\prod_{j=1}^{n} G_j e^{\lambda^T a_j - u - j} + \lambda^T b - u$$

$$\underline{A} = e^{-uA}, \underline{\Sigma}_{G} e^{\lambda T_{G}} - 1 = 0$$

$$\underline{A} = \underline{C}_{G} e^{\lambda T_{G}}$$

$$u = lnS - 1$$

Data	Page.
Date.	rage.

_	
1	
	•

(a) 设f(q, d) = 0 $g(q, d) = ||q||_2^2 - 6$ h(q,x)=Aq-显然f和g均为凸函数,h为估射函数

,原问题为凸问题

又:取分=0 则9(9,以)=-2<0

即 Slater 条件 满足

,强对胃成立

(b) $L(q, \alpha, u) = \alpha + u(Aq - \alpha f)$

设 X = {q | 119112 ≤ E, q ∈ R n }

 $\theta(u) = \inf L(q + u)$

inf [(+uf)x+uAq] 119112 = 2 , XER

it, that = of the solution