200

# SERVICE MANUAL

COMPACT DISC PLAYER

# SANSUI PC-V1000



## CAUTION

- 1. Parts identified by the A symbol on the schematic diagram and the parts list are critical for safety.

  Use only replacement parts that have critical characteristics recommended by the manufacturer.
- 2. Make leakage-current or resistance measurements to determine that exposed parts are acceptably insulated from the supply circuit before returning the appliance to the customer.

#### SPECIFICATIONS

Type...... Compact disc digital audio System

Pickup Semiconductor laser

Channels 2-channels

Frequency response More than 96 dB,

Harmonic distortion (1, kHz) Harmonic distortion (1 kHz) ...... 0.003% or less Wow and Flutter..... Below measurable limits

Output voltage...... 2V

Signal format

Sampling frequency .... 44.1 kHz Quantization bit number

Compact disc

Playing time ...... About 60 minutes Dimensions ...... Diameter 120 mm

Power requirements ......, 120/220/240V 50/60 Hz

For U.S.A. and Canada

Power consumption ...... 50W

Dimensions'

Compact disc player ... 430 mm (16-15/16\*)W

111.5 mm (4-3/8")H 297 mm (11-11/16")D

Remote control...,..... 66 mm (2-5/8\*)W 23 mm (15/16")H

168 mm (6-5/8")D

Compact disc player ... 7.2 kg (15.9 lbs) net Remote control.......... 160g (0.35 lbs) net

Design and specifications subject to changes without notice for improvements.

## **CAUTION**

1. The symbols, UL, CSA, BS, UK, EU, AS and XX on the parts list and the schematic diagram mean followings respectively.

| UL       | Manufactured for U.S.A market.              |
|----------|---------------------------------------------|
|          | (Underwriters Laboratories approved model.) |
| CSA      | Manufactured for Canadian market.           |
| SA       | Manufactured for South African market.      |
| BS, UK   | Manufactured for United Kingdom market.     |
| EU       | Manufactured for European market.           |
| AS       | Manufactured for Australian market.         |
| XX       | Standard Version.                           |
| NON MARK | Common Parts.                               |

- Some printed circuit boards are not supplied as the assembled.
   To separate these in this service manual, the stock No's are not indicated at the ends of the board names. However, the individual parts on the circuit boards are provided by orders.
- 3. Since some of capacitors and resistors are omitted from parts lists in this service manual, refer to the Common Parts List for capacitors & resistors, which was issued on February 1983.
- 4. Abbreviations in this service manual are as follows.

| C.R.   | : Carbon Resistor          | E.B.   | : Bi-Polar Electrolytic     |
|--------|----------------------------|--------|-----------------------------|
| S.R.   | : Solid Resistor           | L.D.   | Capacitor                   |
| Ce.R.  | : Cement Resistor          | E.B.L. | : Low Leak Bi-Polar         |
| M.R.   | : Metal Film Resistor      |        | Electrolytic Capacitor      |
| F.R.   | : Fusing Resistor          | Ta.C.  | : Tantalum Capacitor        |
| N.I.R. | : Non-Inflammable Resistor | F.C.   | : Film Capacitor            |
| A.R.   | : Array Resistor           | M.P.   | : Metalized Paper Capacitor |
| C.C.   | : Ceramic Capacitor        | P.C.   | : Polystyrene Capacitor     |
| C.T.   | : Ceramic Capacitor,       | G.C.   | : Gimmic Capacitor          |
|        | Temoerature Compensation   | A.C.   | : Array Capacitor           |
| E.C.   | : Electrolytic Capacitor   | V.R.   | : Variable Resistor         |
| E.L.   | : Low Leak Electrolytic    | S.V.R. | : Semi Variable Resistor    |
|        | Capacitor                  | SW.    | : Switch                    |

1

## 1. BLOCK DIAGRAM



## 2. FUNCTIONS OF MAIN ICs

## A. HA12049A (Input signal processing IC for CD)

- \* Four-divided photodiode output signal amplifier/adder
- \* AGC amplifier
- \* Signal waveform shaper with slice-level controller
- Three-beam tracking error detector
- \* Focus error detector
- \* Focus lock detector
- \* LASER power stabilizer

## B. SAA7010 (Demodulator, PLL)

- EFM-modulated 14-bit PCM signals are returned to original 8-bit signals.
- PLL circuit produces 4.3-MHz CLOCK signals in synchronization with input signals.

#### C. MB88401, MB8841H (Microcomputers)

- \* Operation and indication controls
- \* Mechanism sensor control
- \* Signal processing in signal system

#### D. SAA7020 (Error correction)

- This IC corrects data sampling error as correctly as possible and feeds the correctly sampled data to the next stage SAA7000 together with timing signals.
- Non-corrected data are fed to the next error-recognized stage SAA7000.
- \* DD motor speed controlling signal is supplied.

#### E. MB8128-15 (RAM)

- Write and read of information necessary for error detection and error
- \* Revolution fluctuation absorption and data rearrangement

#### F. SAA7000 (Interpolation, clock generation)

 Harmful influence due to error information upon original signals is reduced. The error information results from misscorrection at the preceding stage SAA7020.

#### G. TDA1540 (D-A converter)

- 14-bit converter for converting PCM digital signals into analog ignals.
   By the use of this D-A converter, it is possible to obtain a high S/N
- \* By the use of this D-A converter, it is possible to obtain a high S/N ratio and an excellent linearity as in 16-bits, in combination with the preceding stage digital filter.

#### H. SAA7030 (Digital filter)

- \* After analog signals are reproduced through D-A converte sampling frequency modulated signals (the fundamental harmonic is modulated by the sampling frequency) and higher harmonic are included in the fundamental harmonic.
  - The higher-order harmonic cannot be eliminated by a low-pas filter through which 20 kHz or more frequency components are out off. Therefore, a digital filter system has been adopted. A signal with a frequency of 44.1 kHz is frequency-converted into another signal with a frequency of 176.4 kHz (4 times). By this, no modulated wave is included within the fundamental harmonics of 1764 kHz ± 20 kHz and 20 kHz. Additionally, a low-pass filter throughwhich of preventing higher-order harmonics from being generated within audible range of 20 kHz or less.



## 3. OPERATION PRINCIPLE OF COMPACT DISC PLAYER

## 3-1. Comparison of Compact Disc Player and Conventional Disc Player

| Compact Disc                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            | Conventional Disc (30 cm disc)                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transparent resin disc with a signal surface of aluminum reflecting film                                                                                                                                                                                                                                                                                                                                                                                                        | Disc structure                             | Black resin disc                                                                                                                                                                                                                                          |
| 12 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dia.                                       | 30 cm                                                                                                                                                                                                                                                     |
| 1.2 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Thickness                                  | About 1.8 mm                                                                                                                                                                                                                                              |
| About 15 gram                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weight                                     | About 120 gram                                                                                                                                                                                                                                            |
| LASER beam from inner to outer circumference                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pickup travel direction                    | Stylus from outer to inner circumferences                                                                                                                                                                                                                 |
| About 500 rpm near inner circumference, about 200 rpm near outer circumference (constant linear velocity: 1.2—1.4 m/sec.)                                                                                                                                                                                                                                                                                                                                                       | Revolution speed                           | 33-1/3 rpm (Constant revolution speed)                                                                                                                                                                                                                    |
| Digital signals are recorded on presence or absence of a series of fine hollows (See fig a))                                                                                                                                                                                                                                                                                                                                                                                    | Music signals recorded on disc             | Music vibrations are directly recorded on continuous zigzag lines of a V-shaped groove                                                                                                                                                                    |
| 1.6 micron                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pitch (Width between two adjacent signals) | About 60 – 200 micron (variable pitches according to vibration magnitude)                                                                                                                                                                                 |
| One surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Recording surface                          | Both surfaces                                                                                                                                                                                                                                             |
| Ordinally one hour (2ch stereo), 78 min. at maximum                                                                                                                                                                                                                                                                                                                                                                                                                             | Recording time period                      | Ordinally one hour (both surfaces) (2ch stereo)                                                                                                                                                                                                           |
| LASER beam is allowed to be incident to the lower surface of a disc, transmitting through a transparent resin body, being reflected from a signal surface of reflecting film. The beam reflected by and transmitted from resin body is sensed in dependence upon fluctuations in magnitude of beam caused by presence or absence of a series of fine hollows.                                                                                                                   | Reproductions of recorded signals          | A pickup stylus vibrates in a groove. Vibrations are sensed with a pickup cartridge as electrical music signals.                                                                                                                                          |
| Fluctuations in magnitude of beam are sensed as digital signals. After being D-A converted (incorporated in a player), these signals are amplified to actuate a speaker.                                                                                                                                                                                                                                                                                                        | Processing of sensed signals               | Signals outputted from a cartridge are directly amplified to actuate a speaker.                                                                                                                                                                           |
| Signals indicative of music numbers, music playing time intervals, etc. are included in recorded music signals in order to enable selection of music start, automatic music selecting program or indication of music playing time periods. Additionally, information signals indicative of music contents are recorded at the innermost circumference (lead-in portion), by which various interesting functions are synthetically enabled corresponding to the type of players. | Music discrimination or other              | Musics recorded on a disc can be selected by eyesight on the basis of lead-over grooves between two modulated grooves. A stylus can be put onto any desired lead-over groove. Playing time periods are usually recorded on a disc label or record jacket. |

## 3-2. Disc Structure and LASER Beam Reflection





d) Cross-sectional view and LASER spot



- e) Flat portion
- f) Pit portion
- g) Pit and output signal

## 3-3. Optical System and Servo Mechanism



## 3-4. Three-beam tracking detection method



#### <Focusing line of cylindrical lens>



## 3-5. Focus detection on astigmatism method

## a) Normal position





#### b) When disc is too close





#### c) When disc is too far



Beam image is long in the longitudinal direction

## 3-6. Principle of PCM

Pulse code Modulation system is adopted in the compact disk. The PCM system is superior in improvement of frequency band, S/N, non-linearlity, and time fluctuations.

Sampling ..... In PCM system, sampling values are read from timeseries original signals at appropriate time intervals and coded by the combinations of two pulses (0 and 1). The sampling frequency is 44.1 kHz.

Quantization ..... When the original signals are sampled, finite values can be obtained. However, since these values cannot indicate the magnitude of amplitude, the sampled values are divided into finite amplitude segments. Quantization is to code these amplitude segments. (Quantization bits are sixteen)

PM..... Phase Modulation

PAM...... Pulse Amplitude Modulation PPM..... Pulse Position Modulation PWM .... Pulse Width Modulation PNM ..... Pulse Number Modulation







Pulse parameter modulation





· 1 Hz 16 bits Sampling values of 65,536 kinds 000000000000000

- •If quantization is implemented by use of 16 bits, it is possible to divide the amplitude of a signal into 65,536.
- •If a signal is sampled at a sampling frequency of 44.1 kHz and further the sampled data is quantized by 16 bits, 1.4M bits can be obtained in stereo.
- •If EFM (eight-to-fourteen modulation) is implemented by adding a control signal, synchro signal, parity word, etc. to 1.4 bits, the sum total is 4,3218M bits per sec.

## 3-7. CD Signal Processing Step



#### Circuit Functions

#### < Recording side>

•Lowpass filter..... Frequencies of 20 kHz more are eliminated to perfectly demodulate PCMed original signals.

•Sample and hold...... Original signals are sampled and held until the sampled signals are A-D converted. •A-D converter..... Original sampled signals (analog signals) are

converted to pulse code signals (digital signals).

•Error detector, parity word adder and interleave

are not subject to dust or stains. However, in case information signals are deficient due to cracks, it is impossible to reproduce the information signals. To overcome these problem, error-correcting codes are added or information signals are rearranged on the so-called interleave method.

•EFM modulation ...... PCM method are of several systems in dependence upon how to select waveform corresponding to binary codes (1 or 0) of pulse data. The compact disc employs Eight-to-Fourteen Modulation system in which 8-bit pulses are converted into 14-bit pulses. This system is easy to correct error produced in reproducing information signals.

#### < Reproduction side >

•On this sound reproduction side, information signals recorded on a disc are reproduced through almost the reverse operation of the recording side.

•Lowpass filter...... Higher-frequency signals other than the original signals generated in PCM sampling are eliminated.

## 3-8. Recording Method on Disc





#### Contents of one frame

| Synchro signal                 | 24-ch lits                       |
|--------------------------------|----------------------------------|
| Control signal (user's signal) | 1×14-ch lits                     |
| Data signal                    | $12 \times 2 \times 14$ -ch lits |
| Parity word signal             | $4 \times 2 \times 14$ -ch lits  |
| Combined bits                  | 34 × 3-ch lits                   |
|                                |                                  |

·Channel bits (ch bits)

Total:

Bits converted from 8 bits to 14 bits by EMF modulation are called channel bits to distinguish them from the original data bts.

588-ch lits

## 4. INTERIOR BLOCK DIAGRAM & TERMINAL FUNCTION OF IC

## •HA12049 (Input Signal Process)



### •TDA1540D (Digital-to-Analog Converter)



## •M5218L (Dual Operation Amp)



### •TC4081BP (Quad And Gate)



#### •TDA1540D



### •M74LS32P (Quad OR Gate)



## • μPC1373H (Pre Amp of Remote Control)



#### •TC40H004P (Hex Inverter)



#### •M74LS74P (Each Flip-Flop)



## •MB84081B (Quad And Gate)



### •TC4090BP (Inverter)



## •MB3614 (Quad Operation Amp)



## •MB840693 (Inverter)



#### •MB84040B (12-bit Ripple-Carry Binary Counter)



#### •BA6109 (Motor Driver)



| FIN | RIN | Vout ! | Vout 2 |
|-----|-----|--------|--------|
| 1   | 1   | L      | L      |
| 0   | 1   | L      | н      |
| 1   | 0   | Н      | L      |
| 0   | 0   | L      | Ļ      |

## •TC4011RS (NAND1~4)/MSM4011 (NAND1~4)



#### •TC4538BP (Resettable Monostable Multiviblator)



#### <TC4538P>

| INPUT        |     | INPUT |        | PUT | NOTE          |
|--------------|-----|-------|--------|-----|---------------|
| Ain          | BIN | CD    | Q      | Q   | NOTE          |
| <del>-</del> | Н   | Н     | $\Box$ |     | OUTPUT ENABLE |
| Ŧ            | L   | Н     | L      | Н   | INHIBIT       |
| н            | Ł   | Н     | L      | Н   | INHIBIT       |
| L            | Ł   | Н     | П      |     | OUTPUT ENABLE |
| *            | *   | L     | L      | н   | INHIBIT       |

\* : Don't Care

### •NJM4558D/NJM4559D (Operation Amp)



### •MB74LS74 (Flip-Flop)



<MB74LS74>

|        | INF   | OUT   | PUT |                |    |
|--------|-------|-------|-----|----------------|----|
| PRESET | CLEAR | CLOCK | D   | Q              | Q  |
| L      | н     | ×     | ×   | Н              | L  |
| Н      | L     | ×     | ×   | L              | н  |
| L      | 1-    | ×     | ×   | н*             | н* |
| н      | H     | 1     | Н   | Н              | L  |
| н      | н     | ↑     | L   | L              | н  |
| Н      | Н     | L     | ×   | Q <sub>0</sub> | Q. |

#### •M74LS164P (8 bit Serial-In Parallel-Out Shift Resister)



#### •MSN2128-15RS/MB8128-15 (RAM)



## <MSN2128-15RS/MB8128-15>

| CS | WE | ŌĒ | Operation<br>Mode | Input/<br>Output  | Comsumed<br>Power |
|----|----|----|-------------------|-------------------|-------------------|
| Н  | х  | х  | Non<br>Selection  | High<br>Impedance | Stand-by          |
| L  | L  | Х  | Write<br>Mode     | Input             | Operation         |
| L  | Н  | L  | Read<br>Mode      | Output            | Operation         |
| L  | н  | Н  | Output<br>disable | High<br>Impedance | Operation         |

H: high level L: low level X: Unrelated to "H" and "L"

### •M74LS86P (EXOR Gate)



## •SAA7010 (Demodulator/PLL)



Description of terminals < SAA-7010>

|         | I      | terminals < SAA-7010>                                                                                                                                                                                                                      |
|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin No. | Symbol | Function and operation                                                                                                                                                                                                                     |
| 1       | VBB    | -2.5V. Back Bias Supply.                                                                                                                                                                                                                   |
| 2       | SDATA  | Push-pull output for subcoding data. An 8 bit burst of data (including a 1 bit subcoding frame sync) is output serially once per frame coincident with SBCL.                                                                               |
| 3       | SBCL   | Push-pull output for subcoding bit clock. An 8 bit burst clock at nominally 2.1609MHz which is used to sychronise the subcoding data.                                                                                                      |
| 4       | SWCL   | Push-pull output for subcoding word clock. A square wave signal at data frame rate (7.35kHz) used to synchronise the subcoding words and the pause (P) bit.                                                                                |
| 5       | Р      | Push-pull output for the subcoding Pause bit. This signal is derived from the encoded subcoding word and is used to indicate a music pause. A debounce circuit is incorporated to eliminate erroneous data.                                |
| 6       | HFD    | Input from external High Frequency Detector. When this signal is high the frequency detector output (FD) and phase detector are enabled.                                                                                                   |
| 7       | HFI    | Non-inverting input to the Level Detector. A differential signal of between 0.5V and 2.5V peak-peak is required between pins 7 and 8 drive the Level Detector correctly.                                                                   |
| 8       | HF     | Inverting inpu to the Level Detector.                                                                                                                                                                                                      |
| 9       | FB     | Inverted feedback output from the Level Detector. These outputs ( $\overline{FB}$ and $\overline{FB}$ ) have a nominal impedance of $10k\Omega$ and will default to $1/2$ VDD1 when a drop-out is sensed.                                  |
| 10      | FB     | Non-inverted feedback output from the Level Detector (see FB).                                                                                                                                                                             |
| 11      | DEFM   | Push-pull output for EFM data after it has passed through the level detector.                                                                                                                                                              |
| 12      | PD2    | Phase Detector output signal. These outputs (PD1 and PD2) have a nominal impedance of $10k\Omega$ and the differential dc content of the signals is a measure of the phase difference between the data and the internal $4.3218MHz$ clock. |
| 13      | PD1    | Phase detector reference signal. (see PD2)                                                                                                                                                                                                 |

| Pin No. | Symbol | Function and operation                                                                                                                                                                              |
|---------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14      | VSSD   | Digital Ground. Main ground terminal                                                                                                                                                                |
| 15      | VDD2   | +12V supply.                                                                                                                                                                                        |
| 16      | OA1    | Non-Inverting input to the Operational Amplifier.                                                                                                                                                   |
| 17      | OA2    | Inverting input to the Operational Amplifier.                                                                                                                                                       |
| 18      | OA3    | Source follower output of Operational Amplifier.                                                                                                                                                    |
| 19      | VSSA   | Analogue Ground. Ground terminal for Operational Amplifier only. Connected internally to VSSD via a nominal $25\Omega$ resistor.                                                                    |
| 20      | VC01   | Input to Voltage Controlled Oscillator amplifier. The amplifier is a simple inverter designed for up to 10MHz operation. The frequency control is achieved via an external 'Varicap' tuned circuit. |
| 21      | VC02   | Output from Voltage Controlled Oscillator amplifier. The load for the inverting transistor may be turned off for test purposes by reducing VDD2 to 0V.                                              |
| 22      | CEFM   | A push-pull output from the internal 4.3218MHz clock generator.                                                                                                                                     |
| 23      | FD     | Three state push-pull output from the Frequency Detector. This output has a nominal $1k\Omega$ impedance when active but assumes a high impedance state once the system is in lock.                 |
| 24      | FSDE   | Push-pull output for Frame Sync signal to ERCO. A positive going pulse occuring at the end of each data frame (nominal frequency 7.35kHz).                                                          |
| 25      | SSDE   | Push-pull output for Symbol Sync. signal to ERCO. A negative going pulse occuring during the last bit of each data symbol (nominal frequency 254kHz).                                               |
| 26      | CLDE   | Push-pull output for Data bit clock to ERCO. An 8 bit burst clock at nominally 2.1609MHz which is used to synchronise the data to ERCO.                                                             |
| 27      | DADE   | Push-pull output for Data to ERCO. Serial data consisting of 32×8 bit symbols per frame which is synchronised to CLDE.                                                                              |
| 28      | VDD1   | +5V Supply.                                                                                                                                                                                         |

| •SAA7020 (Error Correction)     | DOER<br>10<br>D7ER<br>28 + 35 | ADER W CEE AAER S 9 19 24 25 26 |            | VBB V    | /odi Vdd2 Vss<br> 40  21  20 |
|---------------------------------|-------------------------------|---------------------------------|------------|----------|------------------------------|
| DADE 0 5                        | INPUT<br>REGISTER<br>ARRAY    |                                 | C1 C2      | <i>5</i> | OUTPUT 37 ODAEC REGISTER     |
| CLDE o 5                        |                               |                                 | FLAG DELAY |          | 36 UNEC 27 OCLEC             |
| FSDE 08<br>CLOX 0 <sup>23</sup> | 4<br>MCFS                     | ING & CONTROL                   |            |          | 2 o FSEC                     |

Description of terminals < SAA-7020>

| Pin No.    | Symbol        | Function and operation                                                                                                                                                                                                                                                                                      |
|------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | VBB           | Supply. This pin will be connected externally to a $-2.5V$ supply for back bias.                                                                                                                                                                                                                            |
| 2          | FSEC          | Output. Output data clock, data is valid on the falling edge.                                                                                                                                                                                                                                               |
| 3          | C1 FLAG       | Output. This pin is not connected for nomal operation, it is for testing purposes. Indicating Flags in the C1 Flag store and hence showing the positions of multiple errors.                                                                                                                                |
| 4          | MCES          | Output. This is an open drain output providing a pulse-width modulated signal to control the rate of data entry. If the data rate has been correct for a period, MCES will have a 50% duty cycle. If MCES is mostly high data is entering too slowly and if MCES is mostly low data is entering to quickly. |
| 5          | DADE          | Input. This pin takes in the data for processing from the DEMOD I.C. Data is clocked in by CLDE in 8 bit symbols, m.s.b. first.                                                                                                                                                                             |
| 6          | CLDE          | Input. This is the clock for the data input. Data is accepted into DADE on the negative edge of CLDE.                                                                                                                                                                                                       |
| 7          | SSDE          | Input. This signal indicates the last bit of each 8 bit symbol. If it is low during the negative transisition of CLDE a symbol is counted and clocked in, therefore SSDE must remain low for only one negative transition in eight for correct operation.                                                   |
| 8          | FSDE          | Input. A high on this pin during the negative transition of CLDE indicates the end of a frame of data. The minimum duration of FSDE is critical at high rates of data input, to ensure no FSDE pulses are missed causing erroneous speed indications of MCES.                                               |
| 9 <u> </u> | AOER—<br>AAER | Outputs. Eleven address outputs to 2K8 Ram. Provided data is being received by DADE, CLDE etc. then address AOER to AAER are completely exercised every four frames ena bling refresh to be automatic for pseudo-static rams.                                                                               |
| 20         | VSS           | Supply. Ground supply for ERCO.                                                                                                                                                                                                                                                                             |
| 21         | VDD2          | Nominal 12V supply.                                                                                                                                                                                                                                                                                         |

| Pin No.   | Symbol        | Function and operation                                                                                                                                                                                                                                                                                                                 |
|-----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22        | TEST          | Input. This pin should be connected directly to VDD1 or VDD2 for normal operation.                                                                                                                                                                                                                                                     |
| 23        | CLOX          | Input. This is the basic Clock input for the ERCO I.C. A nominal frequency of 4.2336MHs is fed in from the CIM I.C.                                                                                                                                                                                                                    |
| 24        | WEER          | Output. Write enable bar for control of the memory, when low ERCO is writing to the RAM.                                                                                                                                                                                                                                               |
| 25        | OEER          | Output enable bar for control of the memory output buffers, when low the memory outputs must be tri-stated.                                                                                                                                                                                                                            |
| 26        | CEER          | Output. Chip enable bar for use with pseudostatic memories.                                                                                                                                                                                                                                                                            |
| 27        | CLEC          | Output data clock, data is valid on the falling edge.                                                                                                                                                                                                                                                                                  |
| 28—<br>35 | DOER—<br>D7ER | Inputs/Outputs. An 8 bit parallel data bus between ERCO and the RAM. The outputs are high impedance state when OEER is low.                                                                                                                                                                                                            |
| 36        | UNEC          | Output. Unreliable data flag, when high indicates that output data is unreliable. During active data output (i.e. when CLEC is operating) UNEC applies to each symbol of 8 bits of data output at that time. Before each data word of two symbols is output, UNEC applies to the whole data word that will follow in five frames time. |
| 37        | DAEC          | Data output to CIM I.C. Data is output in 16 bit words separated by gaps. Each word is in two's complement format with msb first and is made up of 2×8 bit symbols. Between the data words the state of the GAP pin is output. Data is valid on the falling edge of CLEC.                                                              |
| 38        | GAP           | Input. The state of this pin is reflected in the state of the data output between words on DAEC. It is used to pass information with the data words. A high on GAP making the GAP level on DAEC high and vice versa.                                                                                                                   |
| 39        | SMSE          | Input. If SMSE is held low the UNEC output will be held high. This input is used to cause the CIM I.C. to mute the data.                                                                                                                                                                                                               |
| 40        | VDD1          | Nominal 5V supply.                                                                                                                                                                                                                                                                                                                     |

#### •SAA7030 (Digital Filter)



Description of terminals < SAA-7030>

| Pin No. | Symbol | Function and operation                                                                                                                                       |
|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | VBB    | $-2.5V \pm 0.5V$ supply.                                                                                                                                     |
| 2       | OS     | Offset select input. When connected to VDD1 the data output has a fixed DC offset of 3%. When connected to VSS the output has no offset.                     |
| 3       | DLFD   | Left channel data output. The data is 14 bit serial, MSB first and is valid on the falling edge of output clock CLFD.                                        |
| 6       | CLFD   | Output data clock, nominal frequency 4.2336MHz (= CLOX). The falling edge of this signal defines output data valid.                                          |
| 7       | LAT    | Output 176.4MHz strobe. The rising edge of this pulse says that the output of a 14 bit data word has been completed.                                         |
| 10      | DRFD   | Right channel data output.                                                                                                                                   |
| 11      | OB     | Offset Binary Not Input. When connected to VDD1 the output data is coded as 2's complement. When connected to VSS the output data is coded as Offset Binary. |
| 12      | VSS    | Ground                                                                                                                                                       |
| 13      | VDD2   | 12V±10% supply                                                                                                                                               |
| 15      | TINR   | Test input (R). Right channel test chain input. In normal operation this pin should be connected to either VSS or VDD1.                                      |
| 16      | TINL   | Test input (L). Left channel test chain input.                                                                                                               |
| 17      | DRCF   | Right Channel Data Input. Data should be 16 bit serial, MSB first, offset binary coded. It should be valid on the falling edge of the data clock CLCF.       |
| 18      | CLCF   | Input Data Clock. The falling edge of this signal defines input data valid.                                                                                  |
| 19      | CLOX   | Master Input Clock. runs continuously at a nominal frequency of 4.2336MHz.                                                                                   |
| 20      | DLCF   | Left Channel Data Input. See DRCF.                                                                                                                           |

| Pin No. | Symbol | Function and operation                                                                                                                                                                                                                                                                         |
|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21      | STR1   | Input 44.1kHz strobe. The circuit's internal timing chain is synchronized by the rising edge of STR1 which must run synchronously with CLOX in accordance with the timings specified in the Electrical Characteristics. The rising edge should follow the completion of the input data stream. |
| 22      | RT     | Reset Test Not Input. When low resets the part of the acumulator not reset in normal operation to initialise the accumulator for testing. In normal operation should be connected to VDD1.                                                                                                     |
| 23      | TE     | Test Enable Not Input. When low switches the internal circuitry into the sequertial scan test mode. In normal operation should be connected to VDD1.                                                                                                                                           |
| 24      | VDD1   | 5V ± 10% supply.                                                                                                                                                                                                                                                                               |

## 5. OPERATION OF MICRO COMPUTER MB8841 & MB88401

## 5-1. MB8841H

#### •Function of Terminal





#### ●LED output of SIC1 (8841H)

| Pin | i/s            | LED      | Operation                                                                                                    |
|-----|----------------|----------|--------------------------------------------------------------------------------------------------------------|
| 13  | Oo             | DISC SET | Warning: during OPEN/CLOSE operation ON: when disc is present Note) Quick warning in hardware error          |
| 14  | 01             | PLAY     | ON: during PLAY operation inclusive of PAUSE and INTRO                                                       |
| 15  | O <sub>2</sub> | PROGRAM  | Warning: when musics more than 15 are stored Informs that programmed musics are selectably stored in memory. |

LED comes on when static display operates. H.... OFF

| Pin | i/s            | LED      | Operation                                          |
|-----|----------------|----------|----------------------------------------------------|
| 16  | Оз             | PAUSE    | ON: during PAUSE operation                         |
| 17  | 04             | REPEAT   | ON: during REPEAT operation                        |
| 18  | O <sub>5</sub> | INTRO    | ON: during INTRO SKIP operation                    |
| 19  | O <sub>6</sub> | A, B     | Warning: by A input, ON: by B input                |
| 20  | O <sub>7</sub> | RECEIVED | ON 500msec: when remote control signal is received |

## ●Operation timing of SIC1 (8841H) system



During loading operation, DISC SET LED comes on at about 0.5 Hz for warning. When no predetermind signal is inputted for 10 sec or more, the operation stops and DISC SET LED comes on at about 0.2 Hz for warning of hardware error.



## 7. PARTS LOCATION & PARTS LIST

## 7-1. S-2011 Mechanism Servo Control Circuit Board (Stock No. 13706101)



| Parts | List |
|-------|------|
|-------|------|

| Parts No.               | Stock No.   | Description                | Parts No.  | Stock No.   | Description |
|-------------------------|-------------|----------------------------|------------|-------------|-------------|
| • Transistor            |             |                            | Transistor |             |             |
| eQ1                     | 46367101    | 2SC2603                    | pQ1        | 46359701    | 2SA952      |
| 04.                     | or 46367301 | 2SC2458                    | pQ2        | 46359701    | 2SA952      |
|                         | or 46391901 | 2SC2785                    | pQ3        | 46149401    | 2SD794      |
| eQ2                     | 46367101    | 2SC2603                    | pQ4        | 46149301    | 2SB744      |
| 042                     | or 46367301 | 2SC2458                    | pQ5        | 46149401    | 2SD794      |
|                         | or 46391901 | 2SC2785                    | pQ6        | 46149301    | 2SB744      |
| eQ3                     | 46149401    | 2SD794                     | pQ7        | 46149401    | 2SD794      |
| eQ4                     | 46149301    | 2SB744                     | pQ8        | 46149301    | 2SB744      |
| eQ5                     | 46367101    | 2SC2603                    | pQ9        | 46367001    | 2SA1115     |
| cao                     | or 46367301 | 2SC2458                    |            | or 46367201 | 2SA1048     |
|                         | or 46391901 | 2SC2785                    |            | or 46392001 | 2SA1175     |
|                         | 01 40001001 | 2002700                    | pQ10       | 46367001    | 2SA1115     |
| •FET                    |             |                            |            | or 46367201 | 2SA1048     |
| eFT1                    | 46643500    | 2SK163-K1                  |            | or 46392001 | 2SA1175     |
| CITI                    | or 46643501 | 2SK163-K2                  | pQ11       | 46367102    | 2SC2603     |
|                         | or 46643502 | 2SK163-L1                  | ,          | or 46367301 | 2SC2458     |
|                         | or 46643503 | 2SK163-L2                  |            | or 46361901 | 2SC2785     |
|                         | or 46643504 | 2SK163-M1                  | pQ12       | 46367001    | 2SA1115     |
|                         | or 46643505 | 2SK163-M2                  |            | or 46367201 | 2SA1048     |
|                         | or 46643506 | 2SK163-N1                  |            | or 46392001 | 2SA1175     |
|                         | 01 40040000 | 201100111                  | pQ13       | 46367101    | 2SC2603     |
| •IC                     |             |                            | Į          | or 46367301 | 2SC2458     |
| elC1                    | 03607700    | NJM4558D                   |            | or 46391901 | 2SC2785     |
| CIC I                   | 03007700    | 11011110000                | pQ14       | 46367001    | 2SA1115     |
| <ul><li>Diode</li></ul> |             |                            |            | or 46362201 | 2SA1048     |
| eD1                     | 03117600    | 1S2473T77                  |            | or 46392001 | 2SA1175     |
| CDI                     | 00117000    | 162 17 617 7               | pQ15       | 46367101    | 2SC2603     |
| •Zener Dio              | da          |                            | ·          | or 46367301 | 2SC2458     |
| eDZ1                    | 46111500    | 05Z 5.6-Y                  |            | or 46391901 | 2SC2785     |
| CDZI                    | 40111300    | 002 0.0 1                  | pQ16       | 46367101    | 2SC2603     |
| eR15                    | 46624000    | 56 <b>Ω</b> 2W N.I.R       | •          | or 46367301 | 2SC2458     |
| enis                    | 40024000    | JONE 200 10.1.11           |            | or 46391901 | 2SC2785     |
| eC5                     | 08451700    | 10 μF 50V E.B.             | pQ17       | 46367001    | 2SA1115     |
| eC6                     | 46368200    | 22 μF 25V E.B.             |            | or 46367201 | 2SA1048     |
| 000                     | 40000200    | 22 p. 201 2.5.             |            | or 46392001 | 2SA1175     |
| EVR1                    | 46924600    | 47kΩ(B) S.V.R., Main Motor | pQ18       | 46367101    | 2SC2603     |
|                         | 1002 1000   |                            | ·          | or 46367301 | 2SC2458     |

or 46391901

2SC2785

#### Parts List < S-2011>

| Parts No. | Stock No.   | Description |
|-----------|-------------|-------------|
| •FET      |             |             |
| pFT1      | 46643800    | 2SJ103-Y    |
|           | or 46643801 | 2SJ103-GR   |
|           | or 46643802 | 2SJ103-BL   |
| pFT2      | 46643800    | 2SJ103-Y    |
|           | or 46643801 | 2SJ103-GR   |
|           | or 46643802 | 2SJ103-BL   |
| pFT3      | 46643500    | 2SK163-K1   |
|           | or 46643501 | 2SK163-K2   |
|           | or 46643502 | 2SK163-L1   |
|           | or 46643503 | 2SK163-L2   |
|           | or 46643504 | 2SK163-M1   |
|           | or 46643505 | 2SK163-M2   |
|           | or 46643506 | 2SK163-N1   |
| pFT4      | 46643500    | 2SK163-K1   |
| •         | or 46643501 | 2SK163-K2   |
|           | or 46643502 | 2SK163-L1   |
|           | or 46643503 | 2SK163-L2   |
|           | or 46643504 | 2SK163-M1   |
|           | or 46643505 | 2SK163-M2   |
|           | or 46643506 | 2SK163-N1   |
| pFT5      | 46643500    | 2SK163-K1   |
| •         | or 46643501 | 2SK163-K2   |
|           | or 46643502 | 2SK163-L1   |
|           | or 46643503 | 2SK163-L2   |
|           | or 46643504 | 2SK163-M1   |
|           | or 46643505 | 2SK163-M2   |
|           | or 46643506 | 2SK163-N1   |
| pFT6      | 46643500    | 2SK163-K1   |
| •         | or 46643501 | 2SK163-K2   |
|           | or 46643502 | 2SK163-L1   |
|           | or 46643503 | 2SK163-L2   |
|           | or 46643504 | 2SK163-M1   |
|           | or 46643505 | 2SK163-M2   |
|           | or 46643506 | 2SK163-N1   |
| pFT7      | 46643800    | 2SJ103-Y    |
|           | or 46643801 | 2SJ103-GR   |
|           | or 46643802 | 2SJ103-BL   |
| pFT8      | 46643500    | 2SK163-K1   |
|           | or 46643501 | 2SK163-K2   |
|           | or 46643502 | 2SK163-L1   |
|           | or 46643503 | 2SK163-L2   |
|           | or 46643504 | 2SK163-M1   |
|           | or 46643505 | 2SK163-M2   |
|           | or 46643506 | 2SK163-N1   |

## 7-2. S-2005 Remote Control Circuit Baord (Stock No. 13701501)



| Parts List  |           |                          |  |
|-------------|-----------|--------------------------|--|
| Parts No.   | Stock No. | Description              |  |
| •IC<br>tlC1 | 46707600  | μPC1373H                 |  |
| tD1         | 46706900  | PH302 Photo Diode        |  |
| tL1         | 46090700  | Inductor 3.9MH           |  |
| ⚠ tR1       | 00130900  | 100 <b>Ω</b> 1/2W N.I.R. |  |
|             |           |                          |  |

#### Description Parts No. Stock No. •IC pIC1 46707500 HA12049A plC2 03607700 NJM4558D 07258300 07258300 MB3614M pIC3 pIC4 MB3614M NJM4558D pIC5 03667700 Diode 03117600 1S2473T77 pD1 03117600 1S2473T77 pD2 pD3 03117600 1S2473T77 pD4 03117600 1S2473T77 pD5 03117600 03117600 1S2473T77 1S2473T77 pD6 pD7 03117600 1S2473T77 pD9 03117600 1S2473T77 pD10 03117600 1S2473T77 03117600 1S2473T77 pD11 pD12 03117600 1S2473T77 pD13 03117600 1S2473T77 •Zener Diode 46111500 05Z 5.6-Y pDZ1 46111500 pDZ2 05Z 5.6-Y 05Z 8.2-Y pDZ3 46112700 pC3 08451700 1 μF 50V E.B. pC25 08451700 1μF 50V E.B. pC31 08451700 1μF 50V E.B. pC34 46281800 1000pF 50V F.C. pC35 46286100 0.22µF 63V F.C. 0.22µF 63V F.C. pC40 46286100 pC42 46281800 1000pF 50V F.C. 08451000 10μF 16V E.B. pL1 46706800 Inductor pVR1 46738600 4.7kΩ S.V.R., Laser Power pVR2 46738700 10kΩ S.V.R., Focus offset 10kΩ S.V.R., Focus Gain pVR3 46738700 10k $\Omega$ S.V.R., Tracking offset 10k $\Omega$ S.V.R., Tracking Gain 10k $\Omega$ S.V.R., Tracking Millar pVR4 46738700 pVR5 46738700 pVR6 46738700

## 7-3. S-2002 Power Fuse Circuit Board < XX, CS>

### **Component Side**



| Parts List    |                      |                                    |  |
|---------------|----------------------|------------------------------------|--|
| Parts No.     | Stock No.            | Description                        |  |
| <b>⚠</b> hC19 | 46425800             | 0.01 μF 400V C.C.                  |  |
| ⚠ hSW1        | 46364300             | Push SW., POWER                    |  |
| ⚠ hF1<br>⚠    | 07188600<br>07188400 | 2A 250V AC Fuse<br>1A 250V AC Fuse |  |



| Parts No.         | Stock No.               | Description        |
|-------------------|-------------------------|--------------------|
| Transistor        | •                       |                    |
| gQ1               | 46367001                | 2SA1115            |
| •                 | or 46367201             | 2SA1048            |
| 0.0               | or 46392001             | 2SA1175            |
| gQ2               | 46367001<br>or 46367201 | 2SA1115<br>2SA1048 |
|                   | or 46392001             | 2SA1175            |
| gQ3               | 46367001                | 2SA1115            |
| _                 | or 46367201             | 2SA1048            |
| 0.4               | or 46392001             | 2SA1175            |
| gQ4               | 46367001<br>or 46367201 | 2SA1115<br>2SA1048 |
|                   | or 46392001             | 2SA1046<br>2SA1175 |
| gQ5               | 46367001                | 2SA1115            |
|                   | or 46367201             | 2SA1048            |
| -00               | or 46392001             | 2SA1175            |
| gQ6               | 46367001<br>or 46367201 | 2SA1115<br>2SA1048 |
|                   | or 46392001             | 2SA1175            |
| gQ7               | 46367001                | 2SA1115            |
|                   | or 46367201             | 2SA1048            |
| ~00               | or 46392001             | 2SA1175            |
| gQ8               | 46367001<br>or 46367201 | 2SA1115<br>2SA1048 |
|                   | or 46392001             | 2SA1046<br>2SA1175 |
|                   |                         |                    |
|                   | 46547200                | Jack               |
| ·IC               |                         |                    |
| qIC2              | 46722400                | SAA7020            |
| qIC6              | 46707200                | MSM2128-15RS       |
|                   | or 46707300             | MB8128-15          |
| Diode             |                         |                    |
| qD5               | 03111600                | 1S2473D            |
| qD6               | 03117600                | 1S2473T77          |
| Zener Dio         | de                      |                    |
| qDZ2              | 46109100                | 05Z 2.7-Y          |
| Transistor        |                         |                    |
| rQ5               | 46367101                | 2SC2603            |
| 140               | or 46367301             | 2SC2458            |
|                   | or 46391901             | 2SC2785            |
| rQ6               | 46367201                | 2SA1048            |
|                   | or 46392001             | 2SA1175            |
| IC                |                         |                    |
| rIC3              | 46078900                | M5218L             |
|                   |                         |                    |
| Diode             | 00117700                | 1050               |
| rD1               | 03117700                | 10E2               |
| Zener Dioc        | de                      |                    |
| rDZ1              | 46109100                | 05Z 2.7-Y          |
| 010               | 00454000                |                    |
| rC12              | 08451000                | 10μF 16V E.B.      |
| rRL1              | 46706400                | Relay              |
|                   |                         | •                  |
| Transistor<br>sQ1 | 46067001                | 2002450            |
| 5Q I              | 46367301<br>or 46391901 | 2SC2458<br>2SC2785 |
| sQ2               | 46367301                | 2SC2458            |
|                   | or 46391901             | 2SC2785            |
| uc.               |                         |                    |
| sIC1              | 46720700                | MB8841H-1225M      |
| sIC2              | 46720600                | MB88401-254M       |
| sIC3              | 07233100                | BA6109             |
| sIC4              | 46428900                | TC40H004P          |
| sIC5              | 07107600<br>or 07207400 | TC4069UBP          |
|                   | or 07207400             | MB84069BM          |

46428900 07107600 or 07207400

TC4069UBP MB84069BM

| Parts No.               | Stock No.               | Description                                        |  |
|-------------------------|-------------------------|----------------------------------------------------|--|
| sIC6                    | 07245800<br>or 46164400 | TC4081BP<br>MB84081B                               |  |
| sX01                    | 07225300<br>or 07225301 | Quartz Element, LN-X-046<br>Quartz Element, 4.0MHz |  |
| <ul><li>Diode</li></ul> |                         |                                                    |  |
| sD1                     | 03117600                | 1S2473T77                                          |  |
| sD2                     | 03117600                | 1S2473T77                                          |  |
| sD3                     | 03117600                | 1S2473T77                                          |  |
| sD4                     | 03117600                | 1S2473T77                                          |  |
| sD5                     | 03117600                | 1S2473T77                                          |  |
| sR4                     | 46038500                | 10kΩ×4 1/8W A.R.                                   |  |
| sR5                     | 46038500                | $10k\Omega \times 4 \ 1/8W \ A.R.$                 |  |
| ⚠ sR6                   | 00140300                | 2.2Ω 1W N.I.R.                                     |  |

## 7-5. S-2003 Function Switch Circuit Board (Stock No. 13701301)



| Parts List<br>Parts No. | Stock No.   | Description | Parts No. | Stock No. | Description          |
|-------------------------|-------------|-------------|-----------|-----------|----------------------|
| Transistor              |             | •           | gLD7      | 07250900  | TLG-123A             |
| gQ9                     | 46367001    | 2SA1115     | gLD7      | 46095200  | TLR123               |
| 940                     | or 46367201 | 2SA1048     | gLD9      | 46095200  | TLR123               |
|                         | or 46392001 | 2SA1175     | gLD10     | 46706100  | 7 Segment LED Ass'y  |
| •IC                     |             |             | gSW1      | 46549500  | Push SW., OPEN/CLOSE |
| gIC1                    | 46720400    | MB74LS138   | gSW2      | 46549500  | Push SW., PLAY       |
| •                       | or 46721200 | M74LS138P   | gSW3      | 46549500  | Push SW., PAUSE      |
| gIC2                    | 46720500    | HD7447A     | gSW4      | 46549500  | Push SW., STOP       |
| •                       | or 46720900 | M53247P     | gSW5      | 46549500  | Push SW., I<◀        |
|                         |             |             | gSW6      | 46549500  | Push SW., ▶>I        |
| <ul><li>LED</li></ul>   |             |             | gSW7      | 46549500  | Push SW., SET        |
| gLD1                    | 46095200    | TLR123      | gSW8      | 46549500  | Push SW., REPEAT     |
| gLD2                    | 07250900    | TLG-123A    | gSW9      | 46549500  | Push SW., START      |
| gLD3                    | 07250900    | TLG-123A    | gSW1'0    | 46549500  | Push SW., END        |
| gLD4                    | 46095200    | TLR123      | gSW11     | 46549500  | Push SW., INTRO SKIP |
| gLD5                    | 46095200    | TLR123      | gSW12     | 46549500  | Push SW., ≪≪         |
| gLD6                    | 46095200    | TLR123      | gSW13     | 46549500  | Push SW., ▶>>        |

## 7-6. S-2016 Mechanism Control Circuit Board



#### Parts List

| Parts No. | Stock No.   | Description     |  |
|-----------|-------------|-----------------|--|
| •IC       |             |                 |  |
| sIC7      | 46160800    | TC4538BP        |  |
|           | or 46122900 | MSM4538RS       |  |
| sIC8      | 46160800    | TC4538BP        |  |
|           | or 46122900 | MSM4538RS       |  |
| sIC9      | 07107600    | TC4069UBP       |  |
|           | or 07207400 | MB84069BM       |  |
|           | or 03605700 | MSM4069RS       |  |
| sIC10     | 07245800    | TC4081BP        |  |
|           | or 46164400 | MB84081B        |  |
|           | or 07272700 | MSM4081RS       |  |
| sIC11     | 03604100    | TC4011P         |  |
|           | or 07207200 | MB84011BM       |  |
|           | or 03604000 | MSM4011RS       |  |
| sIC12     | 03604100    | TC4011P         |  |
|           | or 07207200 | MB84011BM       |  |
|           | or 03604000 | MSM4011RS       |  |
| sIC13     | 03604100    | TC4011P         |  |
|           | or 07207200 | MB84011BM       |  |
|           | or 03604000 | MSM4011RS       |  |
| • Diode   |             |                 |  |
| sD6       | 03117600    | 1S2473T77       |  |
| sD7       | 03117600    | 1S2473T77       |  |
| sC18      | 08451700    | 1μF 50V E.B.    |  |
| sC19      | 46283300    | 0.22μF 50V F.C. |  |
| sC19      | 46283300    | 0.22μF 50V F.C. |  |

## 7-7. S-2008 D/A Converter (Stock No. 13705801)



### Parts List

| Parts No.    | Stock No. | Description                   |
|--------------|-----------|-------------------------------|
| •IC          |           |                               |
| gIC3         | 46721500  | SAA7000                       |
| gIC4         | 46721600  | SAA7030                       |
| qIC5         | 46707400  | TDA1540D                      |
| qX01         | 46708300  | Quartz Element, 4.2336MHz     |
| •Zener Diode |           |                               |
| qDZ1         | 46111500  | 05Z 5.6-Y                     |
| qR21         | 00209700  | 560Ω 1/4W M.R.                |
| qR22         | 00205700  | 270Ω 1/4W M.R.                |
| qR23         | 00211600  | 82Ω 1/4W M.R.                 |
| qR25         | 00210200  | 620 <b>Ω</b> 1/4W M.R.        |
| qC27         | 46286100  | 0.22μF F.C.                   |
| qVR1         | 10335900  | 220Ω(B) S.V.R., Level Balance |

## 7-8. S-2007 Modulation/PLL Circuit Board



## Parts List

| Parts No.  | Stock No.   | Description             |
|------------|-------------|-------------------------|
| Transistor |             |                         |
| qQ1        | 46367101    | 2SC2603                 |
| ·          | or 46367301 | 2SC2458                 |
|            | or 46391901 | 2SC2785                 |
| •IC        |             |                         |
| qIC1       | 46721400    | SAA7011                 |
| alC7       | 46429600    | MB74LS74AM              |
| ., .       | or 46636800 | M74LS74                 |
| gIC8       | 46430200    | MB74LS164M              |
| 4          | or 46721300 | M74LS164P               |
| gIC9       | 46721000    | MB74LS32                |
| ,          | or 46721100 | M74LS32P                |
| • Diode    |             |                         |
| aD1        | 03117600    | 1S2473T77               |
| qD2        | 03117600    | 1S2473T77               |
| qD3        | 46708400    | SVC321                  |
| qD4        | 46708400    | SVC321                  |
| 45 ,       | 10700100    | 3,43021                 |
| qL1        | 46706700    | VCO Coil                |
| •IC        |             |                         |
| tIC2       | 46720100    | TC4040BP                |
|            | or 46720200 | MB84040B                |
| tIC3       | 46160800    | TC4538BP                |
| tIC4       | 07107600    | TC4069UBP               |
|            | or 07207400 | MB84069BM               |
| • Diode    |             |                         |
| tD2        | 03117600    | 1S2473T77               |
| tD3        | 03117600    | 1S2473T77               |
|            | 07074065    | 222524                  |
| tXO1       | 07274000    | CSB550A, Ceramic Filter |

# 7-9. S-2000 Power Supply Circuit Board Component Side (Stock No. 13701001)



| Parts | List |
|-------|------|
|       |      |

| Parts List                                              |                                                                                                 |                                                                                                                         |  |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| Parts No.                                               | Stock No.                                                                                       | Description                                                                                                             |  |
| •Transistor<br>hQ1<br>hQ2                               | 46359801<br>46359701                                                                            | 2SC2001<br>2SA952                                                                                                       |  |
| •IC hIC1 hIC2 hIC3 hIC4 hIC5 hIC6 hIC7                  | 46144600<br>46581200<br>46144600<br>46581200<br>46720300<br>46720300<br>46581400<br>or 46544600 | NJM78M12A<br>NJM79M12A<br>NJM78M12A<br>NJM79M12A<br>µPC7805H<br>µPC7805H<br>NJM79M18A<br>NJM79L18A                      |  |
| • <b>Diode</b><br>⚠ hD1<br>⚠ hD2<br>⚠ hD3<br>nD4<br>hD5 | 07193300<br>03117000<br>03117000<br>46445500<br>46445500                                        | UB-152LFF<br>RB-152<br>RB-152<br>10YD4.5-A<br>10YD4.5-A                                                                 |  |
| • Zener Diode<br>hDZ1<br>hDZ2                           | 46114200<br>46114200                                                                            | 05Z13-Y<br>05Z13-Y                                                                                                      |  |
| hC1<br>hC2<br>hC13<br>hC16<br>hC17<br>hC18              | 46628700<br>46628700<br>46271200<br>00411600<br>00411600<br>00411600                            | 1000µF 50V E.C.<br>1000µF 50V E.C.<br>25V 3300 µF E.C<br>0.047 µF 400V P.C.<br>0.047 µF 400V P.C.<br>0.047 µF 400V P.C. |  |
| ⚠ hR3<br>⚠ hR5<br>⚠ hR6<br>⚠ hR7<br>⚠ hR8<br>⚠ hR9      | 46240900<br>46290900<br>46240900<br>46240900<br>46240000                                        | 5.6Ω 1W N.I.R.<br>5.6Ω 1W N.I.R.<br>5.6Ω 1W N.I.R.<br>5.6Ω 1W N.I.R.<br>1Ω 1W N.I.R.<br>1Ω 1W N.I.R.                    |  |



| Parts No.                      | Stock No.   | Description                                          |  |
|--------------------------------|-------------|------------------------------------------------------|--|
| <ul> <li>Transistor</li> </ul> |             |                                                      |  |
| rQ10                           | 46926201    | 2SC2784                                              |  |
| rQ11                           | 46926201    | 2SC2784                                              |  |
| rQ12                           | 46926201    | 2SC2784                                              |  |
| rQ13                           | 46926101    | 2SA1174                                              |  |
| rQ14                           | 46926101    | 2SA1174                                              |  |
| rQ15                           | 46926201    | 2SC2784                                              |  |
| rQ16                           | 46926201    | 2SC2784                                              |  |
| rQ17                           | 46926101    | 2SA1174                                              |  |
| rQ18                           | 46926201    | 2SC2784                                              |  |
| rQ19                           | 46926201    | 2SC2784                                              |  |
| rQ20                           | 46926201    | 2SC2784                                              |  |
| rQ21                           | 46926201    | 2SC2784                                              |  |
| •FET                           |             |                                                      |  |
| rFT5                           | 46643502    | 2SK163                                               |  |
|                                | or 46643503 | 2SK163-L2                                            |  |
|                                | or 46643504 | 2SK163-M1                                            |  |
|                                | or 46643505 | 2SK163-M2                                            |  |
| rFT6                           | 46643502    | 2SK163-L1                                            |  |
|                                | or 46643503 | 2SK163-L2                                            |  |
|                                | or 46643504 | 2SK163-M1                                            |  |
|                                | or 46643505 | 2SK163-M2                                            |  |
| rFT7                           | 46643502    | 2SK163-L1                                            |  |
|                                | or 46643503 | 2SK163-L2                                            |  |
|                                | or 46643504 | 2SK163-M1                                            |  |
|                                | or 46643505 | 2SK163-M2                                            |  |
| •IC                            |             |                                                      |  |
| rIC4                           | 46078900    | M5218L                                               |  |
| •Diode                         |             |                                                      |  |
| rD5                            | 03117600    | 1S2473T77                                            |  |
| rD6                            | 03104900    | SV02Y                                                |  |
| rD7                            | 03104900    | SV02Y                                                |  |
| rC40                           | 08451700    | 1μF 50V E.B.                                         |  |
| rC41                           | 08451700    | 1μF 50V E.B.                                         |  |
| <u></u> rR82                   | 00135800    | 4.7 <b>Ω</b> 1/2W N.I.R.                             |  |
| Δ rno2<br>Δ rR83               | 00135800    | 4.7 <b>Ω</b> 1/2W N.I.R.<br>4.7 <b>Ω</b> 1/2W N.I.R. |  |
| TT 11100                       | 00133600    | 7./40 1/2VV IN.I.IT.                                 |  |

## 7-11. S-2013 Flip-Flop Circuit Board

Component Side

| Parts List |             |             |  |  |
|------------|-------------|-------------|--|--|
| Parts No.  | Stock No.   | Description |  |  |
| •IC        |             |             |  |  |
| qIC10      | 46863100    | MB74LS86    |  |  |
|            | or 46545600 | M74LS86P    |  |  |
| qIC11      | 46863200    | MB74LS175   |  |  |
|            | or 46863700 | M74LS175P   |  |  |

## 7-12. S-2001 Pilot Lamp Circuit Baord

**Component Side** 



| Parts Lis |
|-----------|
|-----------|

| Parts No. | Stock No. | Description        |
|-----------|-----------|--------------------|
|           | 07913900  | Lamp Holder T47    |
| gPL1      | 46836100  | Pilot Lamp 8V 0.2A |

## 7-13. S-2004 Phones Jack Circuit Board

**Component Side** 



Parts List

| uits List |           |             |  |
|-----------|-----------|-------------|--|
| Parts No. | Stock No. | Description |  |
|           | 46706300  | Jack        |  |

## 7-14. S-2010 Disc Detector LED Circuit Board

**Component Side** 



| rarts List |           |             |  |  |  |
|------------|-----------|-------------|--|--|--|
| Parts No.  | Stock No. | Description |  |  |  |
| •LED       |           |             |  |  |  |
| sLD1       | 46095200  | TLR123      |  |  |  |

## 7-15. S-2012 Disc Photo-Transistor Circuit Board



| Parts | List |
|-------|------|
|-------|------|

| Parts No. | Stock No. | Description             |
|-----------|-----------|-------------------------|
| sOD1      | 46719500  | PH102, Photo Transistor |

## 7-16. S-2014 Power Supply Circuit Board

<EU, BS>



Parts List

| i ai to List  |           |                   |  |
|---------------|-----------|-------------------|--|
| Parts No.     | Stock No. | Description       |  |
| dZ0235S       | 47139300  | LB Fuse           |  |
| <b>∆</b> hC19 | 46425800  | 10000pF 400V C.C. |  |
| ⚠ hSW1        | 46364300  | Push SW., POWER   |  |

## 8. How to Set String for driving Disc Table (See Fig. 8-1)

- 1) Remove mechanism assembly.
- 2) Turn on main switch and then pull disc table at its extreme end.
- 3) Turn off main switch and extract the power supply plug from socket outlet.
- 4) Connect string to §1) and set the string in accordance with the procedure from ① to ① shown below. Fix the string at (2).
- 5) Turn on main switch and check that disk table operates normally repeating the opening and closing of disc table.

•Stock No. of driving string (1.6m) Stock No. 13721800





## 9. WIRERING DIAGRAM





## 10-2. Top, Bottom & Mechanism Section



Parts List < Front View >

| Parts No. | Stock No. | Description                                                                                                 |
|-----------|-----------|-------------------------------------------------------------------------------------------------------------|
| 1         | 46706300  | Phone Jack                                                                                                  |
| 2         | 13714710  | Left Side Panel Ass'y                                                                                       |
| 3         | 13703900  | Knob, power SW.                                                                                             |
| 4         | 13705300  | Joint Shaft, power SW.                                                                                      |
| 5         | 13707600  | Front Panel Ass'y                                                                                           |
| 5-1       | 13703600  | Display Table                                                                                               |
| 6         | 13708300  | Dress Panel                                                                                                 |
| 7         | 13705000  | Bonnet                                                                                                      |
| 8         | 46549500  | Push SW., OPEN/CLOSE, PAUSE, PLAY, CLEAR/STOP, INTRO SKIP, REPEAT, DUAL MOEMORY, ▶>>, <<< ↑, SET, ▶>, ,  << |
| 9         | 13714810  | Right Side Panel Ass'y                                                                                      |

Parts List < Top, Bottom & Mechanism Section >

| Parts No.                              | Stock No. | Description                                   |
|----------------------------------------|-----------|-----------------------------------------------|
| <u></u> 1                              | 38004700  | Power Supply Cord <xx></xx>                   |
| $\stackrel{\overline{\Delta}}{\Delta}$ | 38004500  | Power Supply Cord <eu></eu>                   |
| $\triangle$                            | 38004300  | Power Supply Cord <bs></bs>                   |
|                                        | 47157300  | Cord Cover                                    |
| Δ 3<br>Δ Δ<br>Λ 4                      | 15013701  | Power Transformer < XX>                       |
| $\triangle$                            | 15013705  | Power Transformer < EU>                       |
| <b>1</b> 4                             | 46364900  | AC Outlet < XX, CS>                           |
| 5                                      | 13708100  | Disc Table                                    |
| 6                                      | 13708700  | Disc Table Roller (3)                         |
| 7                                      | 47320900  | Pulley, D28                                   |
| 8                                      | 13721200  | Head, MLP-1A                                  |
| 9                                      | 46719600  | Motor (F), for disc table                     |
| 10                                     | 46722700  | Motor (G), for head base                      |
| . 11                                   | 46719700  | Main Motor, for disc                          |
| 12                                     | 13720900  | Micro Switch, head base position              |
| 13                                     | 13720900  | Micro Switch, inside position of              |
|                                        |           | disc table                                    |
| 14                                     | 13719300  | Micro Switch, out side position of disc table |
| 15                                     | 13709900  | Tension Ass'y                                 |
| 16                                     | 13721800  | Disc Table Drive Cord (1.6m)                  |
| 17                                     | 13714600  | Belt, for disc base drive                     |
| 18                                     | 18087200  | Disc Sensor Switch Ass'y                      |
| 19                                     | 13708500  | Lift Cam                                      |
| <b>∆</b> 20                            | 07188600  | 2A 250V AC Fuse <xx, cs=""></xx,>             |
| <u>↑</u><br><u>↑</u><br><u>↑</u>       | 07188400  | 1A 250V AC Fuse <xx, cs=""></xx,>             |
| $\Delta$                               | 07184400  | 500mA 250V AC Fuse <eu, bs=""></eu,>          |
| $\Delta$                               | 07204700  | Slide Switch < EU, BS>                        |

Fig.2 Top View



Fig.3 Bottom View



Fig. 4 Front View of Mechanism Assembly



Fig. 5 Right Side View of Mechanism Assembly



## 11. HOW TO REPLACE MAIN PARTS

#### A. Bonnet

1) Remove two bonnet fixing screws from the back side.

#### B. Bottom plate

1) Remove three bottom plate fixing screw. (two on the back side and one on the bottom side).

#### C. Backside Panel

- 1) Remove bonnet and bottom plate.
- 2) Remove right and left side plates.
- · 3) Remove reinforcement frame (a) disposed between back plate and backside panel. (See Fig. 1 on page 21.)

## D. Front panel assembly

- 1) Remove bonnet and bottom plate.
- 2) Remove right and left side plates.
- 3) Remove reinforcement frame (A) disposed between back plate and backside panel.
- 4) Remove power switch connecting rod (§) and power switch board S-2004 (See Fig. 1 on page 21.)
- 5) Remove mechanism servo control board S-2011.
- 6) Remove display board S-2003.
- 7) Remove front panel assembly.
- 8) Remove remote-control optical sensor section (See Fig. 1 on page 21.)

### E. Mechanism assembly

- 1) Remove front panel aseembly.
- 2) Remove four back plate and mechanism assembly fixing screws.

#### F. Main motor (for rotaing disc) (1)

- 1) Remove bottom plate.
- 2) Remove the connector leading to main motor from servo control board S-2011.
- 3) Remove board S-2011 from two board holders and then cut off the lead connected to main motor.
- 4) Shift head base © toward the backside of the set. In this case, rotate pulley ① by the hand. After motor has been replaced, the head base will automatically be returned to the original position when power swtich is turned on. (See Fig. 3 on page 21.)
- nal position when power switch is turned on. (See Fig. 3 on page 21.)

  5) Remove three main motor fixing screws (5). (See Fig. 3 on page 21.)
- 6) Shift motor toward the backside of the set and then pull it toward you.

Note: Make sure to perform Adjustment of Main Motor Revolution on page 24 after replacement.

## G. Head base shifting motor 10

- 1) Remove bonnet and bottom plate.
- 2) Loosen reinforcement metal fixture fastening screw ② and then shift the fixture ⑤ upward. (See Fig. 2 on page 21.)
- 3) Remove motor belt ①. (See Fig. 2 on page 21.)
- 4) Remove two motor leads.
- 5) Remove two motor fixing screw 3. (See Fig. 2 on page 21.)

#### H. Disc table shifting motor (9)

- 1) Remove mechanism assembly
- 2) Move FH plate depressing spring (F) in the direction of arrow and then lift FH plate (G) upward. (See Fig. 2 on page 21.)
- 3) Remove two disc plate fixing screws (and (s) and then remove disc plate (s). (See Fig. 1, 2 on page 21.)
- 4) Lift head base ©. (See Fig. 1, 2 on page 21.)
- Shift reinforcement plate (E) and then remove head shifting motor. (See Fig. 2 on page 21.)
- 6) Remove string holder.7) Remove motor leads.
- 8) Remove two motor fixing screws @ and then remove motor. (See Fig. 2 on page 21.)



Note: When installing the reinforcement, be sure to position it in parallel with string as Fig. 2.

## I. Head (LASER pich µp) (8)

- 1) Remove bonnet and bottom plate.
- 2) Pull out disc table.
- 3) Shift head base to the central position by rotating pulley ① of feed unit assembly ① by the hand. (See Fig. 3 on page 21.)
- 4) Remove three pick up fixing screws ⑤ from the top surface of the set. (See Fig. 3 on page 21.)
- 5) Remove connector leading to head and three leads ①. (See Fig. 3 on page 21.)

Note: In removing these leads, use a soldering iron one terminal of which is grounded in order to prevent LASER diode from being damaged due to static electricity.

- 6) After having removed the leads, short red lead to black lead for prevention of damage due to static electricity.
- In heads for service, the red lead is shorted to the back lead on head terminal connecting board. After the lead has been connected, remove this black lead.

**Note:** When head is replaced with a new one, make sure to perform all the adjustments for mechanism control section.

Note: Perform step 6) when mechanism servo control circuit board S-2011 is replaced with a new one.

## 12. ADJUSTMENTS

- A. Check whether or not the mechanism assembly is defective, before adjusting the set.
- 1. When disc plate will not move; that is, LOADING does not operate, check the following points:
  - a) Fixing screws or pins for transmit are removed.
  - b) String is set to pulley correctly.
- c) Main frame does not stay at the uppermost position.
- d) Loading motor is rotating.
- e) When main frame rises up, microswitch for detecting disctable IN-position is depressed.
- f) When disk plate comes out, microswitch for detecting disc-table OUT-position is depressed.
- g) Protection switch is not kept closed.
- h) Protection switch is out of contact with panel edge. (An appropriate clearance is 0.3 to 0.8 mm between switch top surface and panel edge.)
- Disc is correctly chucked. (Pressure of center cap against disc is 200 to 250g, which is determined by the pressure of FH depression spring.)
- i) Disc is correctly fitted.
- 2. When feed (head base) will not move:



- a) There exists no dust or foreign substances around feed screw and drive nut (1).
- b) Rubber belt is set correctly.
- c) When head holder is located at the initial position, microswitch is depressed.
- B. Make sure to perform Adjustment of Mechanism Servo described on page 23, when mechanism servo board S-2011 is replaced with a new one, when optical head is replaced with a new one, or when it seems that mechanism servo system is not adjusted correctly.
- C. Perform Adjustment of Mechanism Assembly when the following troubles occur. However, it is unnecessary to adjust Servo Board by the use of adjusting connector lead assemblies described on page 23 in every case.

## •Examples of Trouble

- a) Sound is reproduced jumpingly or repeatedly during PLAY operation.
- b) Focus is not correct, so that disc table comes out.
- c) Music selection operation is not normal.
- d) The number of musics and the time are not indicated correctly beacause lead-in detection is abnormal.
   Or, music begins to be played beginning from the middle.

- e) Creak sound is produced while oscillating. In these cases, check and adjust the set as follows:
- \* Check the eye pattern of output signal waveform from servo system circuit. In case the eye pattern is not normal, this causes sound jamping, repeat or defective music selection. In case the eye pattern is not correct, finely adjust tracking gain variable resistor PVR05 and focus offset variable resistor PVR02. However, take care that an excessively high tracking gain causes oscillation.

(Refer to the drawing on page 23 with respect to to checked position and adjusted parts.)



- \* In case sound jumping or repeat occurs, finely adjust bit PLL described under Procedure 3 on page 24, in addition to the above eye pattern adjustment.
- \* According to the trouble state, adjust servo board described on page 23. However, when the range to be adjusted is not great, perform step 10 in adjustment of mechanism section and succeeding procedure. In this case, it is unnecessary to disconnect connectors from board S-2011. Therefore, disregard the description of GAIN, LAMP, LASER, PLAY terminals explained under Adjusting Conditions.
- In case lead-in operation is abnormal, adjust it as follows: Shift head base to the innermost position and then adjust adjusting screw so that microswitch is turned on.

After adjustment, check lead-in operation and that the number of musics and time can be displayed and further the first music can be played beginning from the start.

Note: Be sure to remove mechanism assembly before this adjustment. Further, make sure to perform this adjustment whenever microswitch for detecting head-base initial position has been replaced with a new one.



## 12-1. Adjustment of Head Servo Section



## • Preliminary procedure by the use of adjusting connector lead assemblies

- 1. Push the OPEN/CLOSE button to move out the disc table, then pull
- up the dress panel to remove it. Turn off the POWER switch.

  2. Set each variable resistor on board S-2011 as follows: (See Fig. 1) PVR01 ..... MAX, PVR03 ..... MIN, PVR05 ..... MIN, PVR02, PVR04, PVR06 ..... CENTER
- 3. Remove connectors C01 to C06 on board S-2011.
- 4. Connect a lead to 5V power supply pattern lead on board S-2000.
- 5. Connect adjusting connector assemblies TC1 and TC2 to two pin assemblies from which the connectors C01 and C02 have been removed on board S-2011.
- 6. Connect adjusting connector assemblies TC3 and TC4 to two pin assemblies from which the connectors C03 and C04 have been removed on board S-2011.
- 7. Connect GAIN (yellow), LAMP (white) and LASER (red) leads of the adjusting connector assembly TC1 and PLAY (white) lead of the connector assembly TC2 to a 5V lead (red) connected to board S-2000 by use of each clip attached to the end of each connector assembly lead.

Note: Do not connect FOCUS (red) lead of connector assembly CT2 and other two leads of connector assemblies TC3 and TC4. Connected positions of these leads will be instructed under ADJUSTMENT.

#### <Adjustment of Mechanism Servo Section>

|   | Adjustment procedure                                                                         | Checked Position                                                                               | Adjusted Parts                                                 | Adjustment Contents                                                                                                                                                                                                                                                  | Adjusting Conditions                                                                                                                                                              |
|---|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Adjustment of tracking mirror preset value                                                   | Between Q<br>point and<br>ground (Emitter<br>of PQ5)<br>DC voltmeter                           | PVR6                                                           | DC 0V±0.3V                                                                                                                                                                                                                                                           | 1. POWER ON 2. Disc non 3. GAIN, LASER LAMP, PLAY terminals H (5V) 4. MAIN MOTOR OFF                                                                                              |
| 2 | Adjustment of LASER power                                                                    | Upper surface<br>of head lens<br>Power meter                                                   | PVR1                                                           | Power meter  Head Object lens Head base                                                                                                                                                                                                                              | 1. POWER ON 2. Disc non 3. LASER terminal from H(5V) to L(ground) 4. GAIN, LAMP, PLAY terminals H(5V) 5. MAIN MOTOR OFF                                                           |
| 3 | Adjustment of focus offset                                                                   | Between A<br>point and<br>ground (output<br>of PIC1)<br>DC voltmeter                           | PRV2                                                           | DC OV                                                                                                                                                                                                                                                                | 1. POWER ON 2. Disc non 2. GAIN, LASER, LAMP, PLAY terminals H(5V) 3. LASER terminals L (chassis) 4. GAIN, LAMP, PLAY terminal H(5V) 5. MAIN MOTOR OFF                            |
| 4 | Operation check of object lens                                                               | Between S<br>point and<br>ground (Emitter<br>of PQ3)<br>DC voltmeter                           |                                                                | <ul> <li>Head object lens moves toward disc<br/>when LAMP terminal changes from<br/>H(5V) to L(chassis).</li> <li>Potential is DC 0.7V at S point.</li> </ul>                                                                                                        | 1. POWER ON 2. Disc non 3. LASER terminal L(chassis) 4. GAIN, LAMP, PLAY terminals H(5V) 5. MAIN MOTOR OFF                                                                        |
| 5 | Adjustment of fo-<br>cus gain (Focusing<br>head object lens)                                 | FOCUS termi-<br>nal (adjusting<br>lead assembly)<br>Oscilloscope                               | PRV3                                                           | Set a disc to retract disc table.     Immediately after disc table is retracted, remove connector C07 on board S-2006. (Leave this connector remove for the succeeding adjustments.)                                                                                 | 1. POWER ON 2. Disc set<br>3. MAIN MOTOR OFF<br>4. LASER terminal L(chassis)<br>5. GAIN, LAMP, PLAY terminals<br>H(5V)                                                            |
|   |                                                                                              |                                                                                                | -                                                              | <ol> <li>Rotate PVR3 a litle.</li> <li>Change LAMP terminal from H(5V) to L(chassis).</li> <li>Focus terminal of connector CO2 is held at L(OV).</li> <li>In case the terminal is not held at L(OV), rotate PVR3 and repeat the above procedures 4 and 5.</li> </ol> | LASER terminal LASER terminal LAMP terminal 5V FOCUS terminal Good focus FOCUS poor focus                                                                                         |
| 6 | Adjustment of tracking mirror preset value                                                   | B point (pin 28<br>of PIC1)<br>Oscilloscope                                                    | PVR6                                                           | To be MAX  About 1V                                                                                                                                                                                                                                                  | 1. POWER ON 2. Disc set 3. MIAN MOTOR ON (by applying 3.5V to motor as shown in Fig. 1) 4. GAIN, LAMP, PLAY terminals H(5V) 5. LASER terminal L(chassis)                          |
| 7 | Adjustment of odiffraction grating (for detecting tracking error or 3-beam spot positioning) | Between C<br>point and<br>ground (an in-<br>tersection of<br>PR50 and<br>PR51)<br>Oscilloscope | Screw on<br>head lower<br>side (See<br>Fig.3<br>on page<br>21) | o The waveform amplitude becomes maximum at two points (normal point)                                                                                                                                                                                                | 1. POWER ON 2. Disc set 3. MAIN MOTOR ON (by applying 3.5V to motor as shown in Fig. 1) 4. GAIN, LAMP, PLAY terminals H(5V) 5. LASER terminal L(chassis)                          |
|   |                                                                                              |                                                                                                |                                                                | and abnormal point) as shown in the righthand drawing. o Abnormality results from incorrect eye pattern. This cause can be found under Jitter adjustment under Procedure 10.                                                                                         | Normal Abnormal                                                                                                                                                                   |
| 8 | Adjustment of tracking offset                                                                | Between C<br>point and<br>ground (an in-<br>tersection of<br>PR50 and<br>PR51)<br>Oscilloscope | PRV4                                                           | a should be equal to b                                                                                                                                                                                                                                               | 1. POWER ON 2. Disc set 3. MAIN MOTOR ON (by applying 3.5 to motor as shown in Fig. 1) 4. GAIN, LAMP, and PLAY terminals H(5V) 5. LASER terminal L(chassis)                       |
| 9 | Adjustment of tracking gain                                                                  | Between Q<br>point and<br>ground (Emitter<br>of PQ5)<br>Oscilloscope                           | PVR5                                                           | o Adjust the gain at a level beyond which oscillation begins. (Amplitude is about 0.7V)  About 0.7V  About 0.7V  Perfect oscillation (creak noise sound will be produced).                                                                                           | 1. POWER ON 2. Disc set 3. MAIN MOTOR ON (by applying 3.5V to motor as shown in Fig. 1) 4. GAIN and LAMP terminals H(5V) 5. LASER terminal L(chassis) 6. PLAY terminal L(chassis) |

| Γ | Adjustment procedure                                                                                   | Checked Position                                                                                | Adjusted Parts                                              | Adjustment Contents                                                                                                                                                                                                                                                            | Adjusting Conditions                                                                                                                                                                                                                                                                                                                                                                                                             |
|---|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | O Adjustment of mechanism section (Jitter adjustment)                                                  | ground (pin 23 of PIC1) Oscilloscope Front Section of D Drees Panel •Remove Dress P.            | © ccentric Cam                                              | o Adjust eye patern at the best condition.  The best condition can be obtained when appropriate openings exist on both the upper and lower sides.                                                                                                                              | POWER ON 2. Disc set     MAIN MOTOR ON (by applying 3.5V to motor as shown in Fig. 1)     GAIN and LAMP terminals H(5V)     LASER terminal L(chassis)     PLAY terminal L(chassis)     Move head base (feed) to the center of the disc in accordance with the following method:     Apply 5V to the connector CO3 on board S-2011 as shown in Fig. 1.     (Connect the adjusting connector lead assembly TC3 as depicted below.) |
|   | justr<br>reve                                                                                          | nent Procedure 7,                                                                               | II not be impro                                             | Waveform of eye pattern central portion  Libit  A:3218MHz at normal revolution  Data reading clock pulse  clock pulse  Divided under this adjustment, return to Adtwo maximum waveform amplitudes are and abnormal points in adjusting diffract-                               | FEED MOTOR  CO3  TC3  Moves outwards  CO3  TC3  Moves inwards  Black  SV  Black  (ERTH)                                                                                                                                                                                                                                                                                                                                          |
| 1 | 1 Adjustment of focus offset                                                                           | Between D<br>point and<br>ground (pin 23<br>of PIC1)<br>Oscilloscope                            | PVR2                                                        | o Adjust eye pattern at the best condition                                                                                                                                                                                                                                     | The same as described under Procedure 10 above.                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 | Fine adjustment of tracking mirror preset result                                                       | B point (pin 28 of PIC1) Oscilloscope. Between Q point and ground (Emitter of PQ5) DC voltmeter |                                                             | The best condition can be obtained when appropriate openings exist on both the upper and lower sides.  o Check that voltage lies within ±0.3V at Q point.                                                                                                                      | 1. POWER ON 2. Disc set 3. MAIN MOTOR ON (by applying 3.5V to motor as shown in Fig. 1) 4. GAIN and LAMP terminals H(5V) 5. LASER terminal L(chassis) 6. PLAY terminal H(5V) 7. Remember the current position of PVR5 and then set PVR5 to MIN. (Return to the current position after Procedure 14.)                                                                                                                             |
| 1 | Fine adjustment of diffraction grating                                                                 | Between C<br>point and<br>ground (an in-<br>tersection of<br>PR50 and<br>PR51)<br>Oscilloscope  | Screw on<br>head lower<br>side (See<br>Fig.3 on<br>page 21) | To be MAX                                                                                                                                                                                                                                                                      | The same as described under Procedure 12 above.                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 | Fine adjustment of tracking offset                                                                     | Between C<br>point and<br>ground (an in-<br>tersection of<br>PR50 and<br>PR51)<br>Oscilloscope  | PVR4                                                        | a should be equal to b                                                                                                                                                                                                                                                         | The same as described under Procedure 12 above.                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 | Check of eye pat-<br>tern when head is<br>move to the inner<br>and outer circum-<br>frences of a disk. | Between D<br>point and<br>ground (pin 23<br>of PIC1)<br>Oscilloscope<br>DC voltmeter            |                                                             | Check that eye pattern is in the best condition when head base (feed) is moved to the inner and outer circumferences. Refer to Procedure 10 with respect to the method of moving head base.)     Check that voltage is L(0V) at Focus terminal while head base is being moved. | POWER ON 2. Disc set     MAIN MOTOR ON (by applying 3.5V to motor as shown in Fig. 1)     GAIN and LAMP terminals H(5V)     LASER and PLAY terminals L(chassis)     Return PVR5 to the position remembered under Procedure 12.                                                                                                                                                                                                   |
| 1 | 6 Check of switching operation of tracking loop                                                        | Between Q<br>point and<br>ground (Emitter<br>of PQ5)<br>Oscilloscope                            |                                                             | o Check that waveform is as shown below with GAIN terminal set to H(5V) or L(chassis). <gain h="" terminal="">  Tracking drive signal including high frequency band components Mirror preset value (The level - changes according to setting method)</gain>                    | The same as described under Procedure 15 above.  GAIN terminal L> Mirror preset value High frequency band components are reduced and low frequency band waveform is obtained due to eccentricity.                                                                                                                                                                                                                                |

|    | Adjustment procedure                                                                                                                                                               | Checked Position                                                                           | Adjusted Parts | Adjustment Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Adjusting Conditions                                                                                                                                                                                   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17 | Check of feed output                                                                                                                                                               | Between E<br>point and<br>ground (Emitter<br>of PQ7)<br>Oscilloscope                       |                | o Check that waveform is as shown below with GAIN terminal set to H(5V) or L(chassis). <gain h="" terminal=""> <gain l="" terminal="">  About 1.5V  About 2V  About</gain></gain> | 15 above.                                                                                                                                                                                              |
| 18 | Adjustment of main motor revolution.                                                                                                                                               | Between F<br>point and<br>ground (an in-<br>tersection of<br>ER20 and ER1)<br>Oscilloscope | EVR1           | o Adjust duty ratio to 50 percent as shown below.  Waveform at F point  Outy ratio: 50%,  about 7.5kHz  Lagging phase difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1. Return connectors C01, C02, C03, C04 C05 and C06 on board S-2011 and C07 on board S-2006 to the original state before adjustment. 2. Operate the set in PLAY after MUSIC SELECT has been completed. |
| 19 | Check of performance  1. Check that no sound jump occurs by the use of a Philips TEST SAMPLE DISC (NR 4A 410-056-2).  2. Check that focus loop is not out of the normal condition. |                                                                                            | PVR5           | Fifteen musics must be reproduced. If not reproduced, adjust tracking gain finely.  Perform start operation after loading open. Repeat this operation two or three times. In this case, music must be reproduced smoothly. If not smoothly, adjust focus gain finely.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The same as described under Procedure 18 above.                                                                                                                                                        |

## 12-2. Adjustment of electric circuits other than Mechanism Servo Section

|   | Adjustment Procedure                                 | Checked Position                                                                                                             | Adjusted Parts                                                   | Adjustment Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Adjusting Conditions                                                                                                                                                                        |
|---|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Rough adjustment of bit PLL                          | Between G<br>point and<br>ground (Pin<br>22 of qIC1)<br>Frequency<br>counter<br>See Parts Lo-<br>cation F-2007<br>on Page 18 | qL1<br>(S-2007)<br>See Parts<br>Location<br>F-2007 on<br>Page 18 | 4.3128MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Check that the connectors of board S-2011 are all connected correctly.     Disc none 3. POWER ON                                                                                            |
| 2 | Adjustment of main motor revolution                  | Between F<br>point and<br>ground (an<br>intersection of<br>eR20 and<br>eR1)<br>Oscilloscope                                  | eVR1                                                             | Adjust duty ratio to 50 percent as shown below.  Waveform at F point  Duty ratio : 50%, revolution (correct adjustment) about 7.5kHz  Lagging phase difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | POWER ON     Operate the set in PLAY after MUSIC SELECT has been completed.                                                                                                                 |
| 3 | Fine adjustment of bit PLL                           | Between<br>TPC1 and<br>ground<br>(S-2006) (See<br>Fig. 1)<br>Oscilloscope                                                    | qL1<br>See Parts<br>Location<br>F-2007 on<br>Page 18             | Adjust error within 2ms.  Error Erro | 1. POWER ON 2. Reproduce the fifteenth music on Philips TEST SAMPLE DISC (NR4A 410-056-2). 3. Set TIME/DIV to 1ms and TRIG MODE to NORMAL, VOLTS/DIV to AC, COUPLING to AC in oscilloscope. |
| 4 | Adjustment of level difference between L-CH and R-CH | OUTPUT<br>terminal,<br>Oscilloscope                                                                                          | qVR1<br>See Parts<br>Location<br>F-2008 on<br>Page 18            | Match the output level of L-CH to that of R-CH (about 2V). The variable range of pVR1 is within ±1dB Therefore, in case of no TEST DISC, set qVR1 at the center.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | POWER ON     Reproduce the first music on SONY TEST DISC (TYPE 3 YEDS7).                                                                                                                    |





## 13-3. Mechanism Control Section

\*Design and specifications subject to change without notice for improvement.
\*La présention et les spécifications sont susceptibles d'être modifiées sans préavis par suites d'améliorations éventuelles.
\*Anderungen, die dem technischen Fortschritt dienen, bleiben vorbehalten.



MSM408IRS,MB8408IB,TC408IBP

SYMBOL

 Ceromic
 in) Mylor
 To Tontolum Electrolytic
 Low-Leak Electrolytic
 Non-Inflommoble Resistor

RESISTORS Are in ohms, I/4 Watts,  $\pm$  5% Talerance Unless Otherwise Noted, k; k $\Omega$ , M; M $\Omega$ 

CAPACITORS
Are in µF, Unless Otherwise Noted. P:pF

,8 TC4538BP
MSM4538RS
TC4069UBP,MSM4069RS
MB84069BM
TC408IBP,MSM408IRS
MB8408IB
MSM408IRS
MB8408IB
MSM408IRS
MB8408IB
MB8408IB









## 14. PACKING LIST

| The second secon |           |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|
| Parts No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stock No. | Description       |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91167620  | Vinyl Bag         |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13707300  | Styrofoam Packing |
| . 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13707200  | Carton Case       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                   |



## 15. ACCESSORY LIST

| 1 46722600 Pin Plug Cord<br>2 46607500 Operating Instruction<br>3 13716900 Transit Screw |  |
|------------------------------------------------------------------------------------------|--|
|                                                                                          |  |
| 3 13/16900 Transit Screw                                                                 |  |
| 4 13239400 Transit Spacer                                                                |  |

Sansui

SANSUL ELECTRIC CO., LTD.:

SANSUI ELECTRONICS CORPORATION:

SANSUI ELECTRONICS (U.K.) LTD.: SANSUI ELECTRONICS G.M.B.H.:

14-1, Izumi 2-chome, Suginami-ku, Tokyo 168 Japan
PHONE: (03) 324-8891/TELEX: 232-2076 (International Divis
1250 Valley Brook Ave. Lyndhurst, N.J. 07071 U.S.A.
17150 South Margay Ave. Carson, California 90746 U.S.A.
3306 Kospake 5t. Honolulu, Hawaii 98619 U.S.A.
Unit 10A, Lyon Industrial Estate, Rockware Avenue, Geenford
Pau Ehrich Strasse 8, 6074 Rödermark 2, West Germany

(SM1-107)

Printed in Japan (N35620) < Stock No. 36483800>