2011-2012 Answer

1. (10%) Find the minimum POS form for the following expression

$$Y = \overline{(A \oplus B)\overline{\overline{B}}(\overline{A}B\overline{C}\overline{D} + \overline{A}C\overline{D})}$$

Solution.

=
$$(\overline{A}\overline{B} + AB) + \overline{A}\overline{B}C\overline{D} = \overline{A}\overline{B} + AB = (A+B)(\overline{A}+B)$$

(a) Waveforms for the desired circuit

INPUTS			OUTPUTS									
S1	$\overline{S}_2 + \overline{S}_3$	A ₂	A1	Ao	Yo	\overline{Y}_1	\overline{Y}_2	₹3	$\overline{\gamma}_4$	₹5	∀ 6	∀ 7
0	×	x	x	x	1	1	1	1	1	1	1	1
×	1	x	X	×	1	1	1	1	1	1	1	1
1	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	1	1	0	1	1	1	1	1	1
1	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1	1	1
1	0	1	0	0	1	1	1	1	0	1	1	1
1	0	1	0	1	1	1	1	1	1	0	1	1
1	0	1	1	0	1	1	1	1	1	1	0	1
1	0	1	1	1	1	1	1	1	1	1	1	0

(b) Function Table for 74LS138

(c) Logic symbol for 74LS138

4. (10%) Use 4-bit adders to implement a circuit which adds up two 11-bit numbers. Label all critical inputs and outputs.

5. (15%) Use J-K flip-flops and the minimum number of gates to implement a synchronous 2-bit up/down counter with a Gray code sequence. The counter should count up when an UP/DOWN control input is 1 and count down when the control input is 0.

State diagram for a 2-bit Gray code counter

state table.

onon	Quel Quel				
Qi Ro	UN=0	UX=			
0 0	10	01			
01	00	11			
1.1	0.1	10			
10	111	00			

@ J-k:

Q"+Q	HI J	K
0 0	0	X
0 1	1	X
1 0	×	1
1 1	X	0

Figure 3

J. = QIŪ + QIU, K. = QIŪ + QIU, ØJ, = QOŪ + QOU, KI = QOŪ + QOU

6. (15%) In Figure 4, $R_1 = 150 \text{ k}\Omega$, $R_2 = R_3 = 24 \text{ k}\Omega$, $C_1 = 0.033 \mu\text{F}$, $C_2 = C_3 = C_4 = 0.01 \mu\text{F}$. (1) What is the function of the circuit in block 2? (3) Suppose that the input v_{IN} , a single negative-going pulse, is applied at t = 0, sketch the waveforms v_{O1} , v_{O2} , and v_{O2} . Suppose that both v_{O1} and v_{O2} are initially 0.

Figure 4

- (1) It is a one-shot.
- (2) It works as an astable multivator.
- (3) $t\omega_1 = \frac{1}{8} \cdot 1 \cdot 1 \cdot R_1 \cdot C_1 = 5.445 \times (\tilde{o}^3 s)$. $t\omega_1 = 0.7 \cdot (R_2 + R_3) \cdot C_3 = 0.336 \times (\tilde{o}^3 s)$. $t\omega_2 = 0.7 \cdot R_3 \cdot C_3 = 0.168 \times (\tilde{o}^3 s)$. $T = 6\omega_1 + 6\omega_2 = 0.504 \times (\tilde{o}^3 s)$.

7. (15%) The input to the circuit in Figure 5 is $v_{IN}(t) = 4 + 4\sin(100\pi t)$ V, $0 \le t \le 20$ ms. The sampling signal has a frequency of 400 Hz. Determine the binary code sequence $D_2D_1D_0$ and the output $v_{OUT}(t)$ for $0 \le t \le 20$ ms.

2015-2016 Answer

(I)True/False

FFFTF FFTTF

(II)Choice

BDEAB AABBA

(III)Problem

—.

(III) Problem (60')

—) Using Algebra method to simplify the function. (10')

$$F = XZ + \overline{Y}Z + Y\overline{Q} + Z\overline{Q}C + Z\overline{Q}C + X(Y + \overline{Z}) + \overline{X}YZ\overline{Q} + X\overline{Y}QC$$

$$= XZ + \overline{Y}Z + Y\overline{Q} + Z\overline{Q}(C + \overline{C}) + X(Y + \overline{Z}) + \overline{X}YZ\overline{Q} + X\overline{Y}QC$$

$$= X(Z+\overline{Z}) + \overline{Y}Z + Y\overline{Q} + Z\overline{Q}(1+\overline{X}Y) + X + X + \overline{Y}Z\overline{Q}C$$

$$= X(Z+\overline{Z}) + \overline{Y}Z + Y\overline{Q}C + X + X + X + \overline{Y}ZC$$

$$= X+\overline{Y}Z + Y\overline{Q}C + Y\overline{Z}C + X + \overline{Y}CC$$

$$= (X+X'(+X')QC) + \overline{Y}Z + Y\overline{Q}C + Z\overline{Q}C$$

$$= X+\overline{Y}Z + Y\overline{Q}C + Y\overline{Z}C + Y\overline{Z}C + Y\overline{Z}C + Y\overline{Z}C + Y\overline{Z}C + Y\overline{Z}C + Y\overline{Z}C$$

$$= X+\overline{Y}Z + Y\overline{Q}C + Y\overline{Z}C + Y$$

三.

