学号	姓名
23214321	陈宁浩
23214322	何昌烨
23214323	胡静静
23214324	黄项龙
23214326	刘润尧
23214329	水闸元
23214329	戴泳涛
23214338	杜冠男
23214339	段培明
23214345	黄瀚
23214346	黄樾
23214353	梁励
23214364	毛睿
23214369	钱甜奕
23214378	吴昊
23214383	徐博研
23214395	赵海洋
23214410	陈东
23214417	陈宁宁
23214421	陈腾跃
23214426	陈煜彦
23214427	崔铮浩
23214446	何鸿荣
23214449	何鸿荣
23214452	洪桂航
23214460	黄泽林
23214466	赖柔成
23214474	李宏立
23214478	李茂锦
23214491	梁恒中
23214503	刘星宇
23214509	罗经周
23214534	苏达威
23214534	<u>小</u>
	王辉
23214564	熊泽华
23214565	徐浩耀
23214573	杨坤业
23214576	杨子逸
23214578	杨沅旭
23214590	易钰淇
23214594	曾家洋
23214600	张珊
23214601	张晓逊
23214615	钟龙广
23214624	庄梓轩
23214625	邹国煌
23220055	李品律

page 71-72

Ex.1

- (a) $f(z) = \overline{z} = x iy$. So u = x, v = -y. Inasmuch as $u_x = v_y \Rightarrow 1 = -1$, the Cauchy-Riemann equations are not satisfied anywhere.
- (b) $f(z)=z-\overline{z}=(x+iy)-(x-iy)=0+i2y$. So u=0, v=2y. Since $u_x=v_y \Rightarrow 0=2$, the Cauchy-Riemann equations are not satisfied anywhere.
- (c) $f(z)=2x+ixy^2$. Here u=2x, $v=xy^2$. $u_x=v_y\Rightarrow 2=2xy\Rightarrow xy=1$. $u_y=-v_x\Rightarrow 0=-y^2\Rightarrow y=0$. Substituting y=0 into xy=1, we have 0=1. Thus the Cauchy-Riemann equations do not hold anywhere.
- (d) $f(z) = e^x e^{-iy} = e^x (\cos y i\sin y) = e^x \cos y ie^x \sin y. \text{ So } u = e^x \cos y, v = -e^x \sin y.$ $u_x = v_y \Rightarrow e^x \cos y = -e^x \cos y \Rightarrow 2e^x \cos y = 0 \Rightarrow \cos y = 0. \text{ Thus}$ $y = \frac{\pi}{2} + n\pi \qquad (n = 0, \pm 1, \pm 2, \ldots).$

$$u_y = -v_x \Rightarrow -e^x \sin y = e^x \sin y \Rightarrow 2e^x \sin y = 0 \Rightarrow \sin y = 0.$$
 Hence
 $y = n\pi$ $(n = 0, \pm 1, \pm 2, ...)$

Since these are two different sets of values of y, the Cauchy-Riemann equations cannot be satisfied anywhere.

Ex.2

- (a) f(z) = iz + 2 = 2 y + ix, u(x,y) = 2 y, v(x,y) = x, 一阶偏导 $u_x = 0$, $u_y = -1$, $v_x = 1$, $v_y = 0$ 在复平面上处处连续,并且柯西方程 $u_x = v_y$, $u_y = -v_x$ 在复平面上任意点成立,因此 f'(z) = i 在复平面上处处存在,同理 f''(z) = 0 也存在于整个复平面。
- (b) $f(z) = e^{-x}e^{-iy} = e^{-x}\cos y ie^{-x}\sin y$, 一阶偏导 $u_x = -e^{-x}\cos y$, $u_y = -e^{-x}\sin y$, $v_x = e^{-x}\sin y$, $v_y = -e^{-x}\cos y$ 在复平面上处处连续,并且柯西方程 $u_x = v_y$, $u_y = -v_x$ 在复平面上任意点成立,因此 $f'(z) = -e^{-x}\cos y + ie^{-x}\sin y = -f(z)$ 在复平面上处处存在,同理 $f''(z) = -f'(z) = -(-f(z)) = f(z) = e^{-x}e^{-iy} = e^{-x}\cos y ie^{-x}\sin y$ 在复平面上处处存在。

(c)
$$f(z) = z^3 = x^3 - 3xy^2 + i(3x^2y - y^3)$$
, 一阶偏导 $u_x = 3x^2 - 3y^2$, $u_y = -6xy$, $v_x = -6xy$

 $6xy, v_y = 3x^2 - 3y^2$ 在整个复平面上连续,并且柯西方程 $u_x = v_y, u_y = -v_x$ 在复平面上任意点成立,因此 $f'(z) = 3x^2 - 3y^2 + i6xy = 3z^2$ 在复平面上处处存在,同理 $f''(z) = (3z^2)' = 6z$ 在复平面上处处存在。

(d) $f(z) = \cos x \cosh y - i \sin x \sinh y$, 一阶偏导 $u_x = -\sin x \cosh y$, $u_y = \cos x \sinh y$, $v_x = -\cos x \sinh y$, $v_y = -\sin x \cosh y$ 在整个复平面上连续,并且柯西方程 $u_x = v_y$, $u_y = -v_x$ 在复平面上任意点成立,因此 $f'(z) = -\sin x \cosh y - i \cos x \sinh y$ 在复平面上处处存在,同理 $f''(z) = -\cos x \cosh y + i \sin x \sinh y = -f(z)$ 在复平面上处处存在。

Ex.6

Here u and v denote the real and imaginary components of the function f defined by means of the equations

$$f(z) = \begin{cases} \overline{z}^2 / z & \text{when } z \neq 0, \\ 0 & \text{when } z = 0. \end{cases}$$

Now

$$f(z) = \underbrace{\frac{x^3 - 3xy^2}{x^2 + y^2}}_{u} + i \underbrace{\frac{y^3 - 3x^2y}{x^2 + y^2}}_{v}$$

when $z \neq 0$, and the following calculations show that

$$u_{x}(0,0) = v_{y}(0,0) \text{ and } u_{y}(0,0) = -v_{x}(0,0):$$

$$u_{x}(0,0) = \lim_{\Delta x \to 0} \frac{u(0 + \Delta x, 0) - u(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x} = 1,$$

$$u_{y}(0,0) = \lim_{\Delta y \to 0} \frac{u(0,0 + \Delta y) - u(0,0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{0}{\Delta y} = 0,$$

$$v_{x}(0,0) = \lim_{\Delta x \to 0} \frac{v(0 + \Delta x, 0) - v(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{0}{\Delta x} = 0,$$

$$v_{y}(0,0) = \lim_{\Delta y \to 0} \frac{v(0,0 + \Delta y) - v(0,0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{\Delta y}{\Delta y} = 1.$$

Equations (2), Sec. 23, are

$$u_x \cos \theta + u_y \sin \theta = u_r,$$

$$-u_x r \sin \theta + u_y r \cos \theta = u_\theta.$$

Solving these simultaneous linear equations for u_x and u_y , we find that

$$u_x = u_r \cos \theta - u_\theta \frac{\sin \theta}{r}$$
 and $u_y = u_r \sin \theta + u_\theta \frac{\cos \theta}{r}$.

Likewise,

$$v_x = v_r \cos\theta - v_\theta \frac{\sin\theta}{r}$$
 and $v_y = v_r \sin\theta + v_\theta \frac{\cos\theta}{r}$.

Assume now that the Cauchy-Riemann equations in polar form,

$$ru_r = v_{\theta}, \quad u_{\theta} = -rv_{r},$$

are satisfied at z_0 . It follows that

$$u_x = u_r \cos\theta - u_\theta \frac{\sin\theta}{r} = v_\theta \frac{\cos\theta}{r} + v_r \sin\theta = v_r \sin\theta + v_\theta \frac{\cos\theta}{r} = v_y$$

$$u_{y} = u_{r}\sin\theta + u_{\theta}\frac{\cos\theta}{r} = v_{\theta}\frac{\sin\theta}{r} - v_{r}\cos\theta = -\left(v_{r}\cos\theta - v_{\theta}\frac{\sin\theta}{r}\right) = -v_{x}.$$

$$f'(z_0) = u_x + iv_x$$

$$= u_r \cos \theta - u_\theta \frac{\sin \theta}{r} + i(v_r \cos \theta - v_\theta \frac{\sin \theta}{r})$$

$$= u_r \cos \theta - iv_\theta \frac{\sin \theta}{r} + i(v_r \cos \theta + iu_\theta \frac{\sin \theta}{r})$$

$$= u_r(\cos \theta - i\sin \theta) + iv_r(\cos \theta - i\sin \theta)$$

$$= e^{-i\theta}(u_r + iv_r)$$

page 77-78

Ex.2

(a) $f(z) = \underbrace{xy}_{u} + i\underbrace{y}_{v}$ is nowhere analytic since

$$u_x = v_y \Rightarrow y = 1$$
 and $u_y = -v_x \Rightarrow x = 0$,

which means that the Cauchy-Riemann equations hold only at the point z = (0,1) = i.

(c) $f(z) = e^y e^{ix} = e^y (\cos x + i \sin x) = \underbrace{e^y \cos x}_u + i \underbrace{e^y \sin x}_v$ is nowhere analytic since $u_x = v_y \Rightarrow -e^y \sin x = e^y \sin x \Rightarrow 2e^y \sin x = 0 \Rightarrow \sin x = 0$

and

$$u_{v} = -v_{x} \Rightarrow e^{y} \cos x = -e^{y} \cos x \Rightarrow 2e^{y} \cos x = 0 \Rightarrow \cos x = 0.$$

More precisely, the roots of the equation $\sin x = 0$ are $n\pi$ $(n = 0, \pm 1, \pm 2, ...)$, and $\cos n\pi = (-1)^n \neq 0$. Consequently, the Cauchy-Riemann equations are not satisfied anywhere.

Ex.3

- 1. 假定 g(z), f(z) 为整函数,由于 f(z) 的值域是复平面的子集,因此 g[f(z)] 在整个复平面也是解析的,即 g[f(z)] 为整函数。
- 2. 假定 $f_1(z)$, $f_2(z)$ 为整函数,乘上一个不为 0 的常数 c 不影响函数的解析性,则 $c_1f_1(z)$, $c_2f_2(z)$ 仍然为整函数,两函数之和的解析域为两函数自身解析域的交集,因此 $c_1f_1(z) + c_2f_2(z)$ 在复平面上是解析的,即为整函数。

(a) $f(z) = \frac{P(z)}{Q(z)} = \frac{2z+1}{z(z^2+1)}$

 $z(z^2+1)=0\Rightarrow z=0,\pm i,\; P(z),Q(z)$ 是整函数,因此 f(z)=P(z)/Q(z) 在除 Q(z)=0的点以外解析。

(b) $f(z) = \frac{P(z)}{Q(z)} = \frac{z^3 + i}{z^2 - 3z + 2}$

 $z^2 - 3z + 2 = 0 \Rightarrow z = 1, 2, P(z), Q(z)$ 是整函数,因此 f(z) = P(z)/Q(z) 在除 Q(z) = 0 的点以外解析。

(c) $f(z) = \frac{P(z)}{Q(z)} = \frac{z^2 + 1}{(z+2)(z^2 + 2z + 2)}$

 $(z+2)(z^2+2z+2)=0 \Rightarrow z=-2,-1\pm i,\ P(z),Q(z)$ 是整函数,因此 f(z)=P(z)/Q(z) 在除 Q(z)=0 的点以外解析。

Ex.6

 $g(z) = \ln r + i\theta$ 在 $D = \{r > 0, 0 < \theta < 2\pi\}$ 上有定义,一阶偏导 $u_r = \frac{1}{r}, u_\theta = 0, v_r = 0, v_\theta = 1$ 在 D 上连续,并且柯西方程 $ru_r = v_\theta, u_\theta = -rv_r$ 成立,因此 g(z) 在 D 上解析,

$$g'(z) = e^{-i\theta}(u_r + iv_r) = (re^{i\theta})^{-1} = z^{-1}$$

令 $f(z)=z^2+1=x^2-y^2+1+i2xy$, f(z) 为整函数,在 x>0,y>0 象限上有 ${\rm Im}[f(z)]>0$,因此该象限内 f(z) 的值域是 D 的子集,G(z)=g[f(z)] 在 x>0,y>0 上解析,

$$G'(z) = g'[f(z)]f'(z) = \frac{f'(z)}{f(z)} = \frac{2z}{z^2 + 1}$$

Suppose that a function f(z) = u(x,y) + iv(x,y) is analytic and real-valued in a domain D. Since f(z) is real-valued, it has the form f(z) = u(x,y) + i0. The Cauchy-Riemann equations $u_x = v_y, u_y = -v_x$ thus become $u_x = 0, u_y = 0$; and this means that u(x,y) = a, where a is a (real) constant. (See the proof of the theorem in Sec. 24.) Evidently, then, f(z) = a. That is, f is constant in D.

page 81-82

Ex.1

(a) It is straightforward to show that $u_{xx} + u_{yy} = 0$ when u(x,y) = 2x(1-y). To find a harmonic conjugate v(x,y), we start with $u_{x}(x,y) = 2-2y$. Now

$$u_x = v_y \Rightarrow v_y = 2 - 2y \Rightarrow v(x, y) = 2y - y^2 + \phi(x).$$

Then

$$u_{v} = -v_{x} \Longrightarrow -2x = -\phi'(x) \Longrightarrow \phi'(x) = 2x \Longrightarrow \phi(x) = x^{2} + c.$$

Consequently,

$$v(x,y) = 2y - y^2 + (x^2 + c) = x^2 - y^2 + 2y + c.$$

(b) It is straightforward to show that $u_{xx} + u_{yy} = 0$ when $u(x,y) = 2x - x^3 + 3xy^2$. To find a harmonic conjugate v(x,y), we start with $u_x(x,y) = 2 - 3x^2 + 3y^2$. Now

$$u_x = v_y \Rightarrow v_y = 2 - 3x^2 + 3y^2 \Rightarrow v(x, y) = 2y - 3x^2y + y^3 + \phi(x).$$

Then

$$u_y = -v_x \Rightarrow 6xy = 6xy - \phi'(x) \Rightarrow \phi'(x) = 0 \Rightarrow \phi(x) = c.$$

Consequently,

$$v(x,y) = 2y - 3x^2y + y^3 + c$$
.

(c) It is straightforward to show that $u_{xx} + u_{yy} = 0$ when $u(x,y) = \sinh x \sin y$. To find a harmonic conjugate v(x,y), we start with $u_{x}(x,y) = \cosh x \sin y$. Now

$$u_x = v_y \Rightarrow v_y = \cosh x \sin y \Rightarrow v(x, y) = -\cosh x \cos y + \phi(x).$$

Then

$$u_y = -v_x \Rightarrow \sinh x \cos y = \sinh x \cos y - \phi'(x) \Rightarrow \phi'(x) = 0 \Rightarrow \phi(x) = c.$$

Consequently,

$$v(x,y) = -\cosh x \cos y + c$$
.

(d) It is straightforward to show that $u_{xx} + u_{yy} = 0$ when $u(x,y) = \frac{y}{x^2 + y^2}$. To find a harmonic conjugate v(x,y), we start with $u_x(x,y) = -\frac{2xy}{(x^2 + y^2)^2}$. Now

$$u_x = v_y \Rightarrow v_y = -\frac{2xy}{(x^2 + y^2)^2} \Rightarrow v(x, y) = \frac{x}{x^2 + y^2} + \phi(x).$$

Then

$$u_y = -v_x \Rightarrow \frac{x^2 - y^2}{(x^2 + y^2)^2} = \frac{x^2 - y^2}{(x^2 + y^2)^2} - \phi'(x) \Rightarrow \phi'(x) = 0 \Rightarrow \phi(x) = c.$$

Consequently,

$$v(x,y) = \frac{x}{x^2 + v^2} + c.$$

Ex.2

Suppose that v and V are harmonic conjugates of u in a domain D. This means that

$$u_x = v_y$$
, $u_y = -v_x$ and $u_x = V_y$, $u_y = -V_x$.

If w = v - V, then,

$$w_x = v_x - V_x = -u_y + u_y = 0$$
 and $w_y = v_y - V_y = u_x - u_x = 0$.

Hence w(x,y)=c, where c is a (real) constant (compare the proof of the theorem in Scc. 24). That is, v(x,y)-V(x,y)=c.

Suppose that u and v are harmonic conjugates of each other in a domain D. Then

$$u_x = v_y$$
, $u_y = -v_x$ and $v_x = u_y$, $v_y = -u_x$.

It follows readily from these equations that

$$u_x = 0$$
, $u_y = 0$ and $v_x = 0$, $v_y = 0$.

Consequently, u(x,y) and v(x,y) must be constant throughout D (compare the proof of the theorem in Sec. 24).

Ex.5

The Cauchy-Riemann equations in polar coordinates are

 $ru_r = v_\theta$ and $u_\theta = -rv_r$.

Now

 $nu_r = v_\theta \Rightarrow nu_r + u_r = v_{\theta r}$

and

 $u_{\theta} = -rv_{r} \Rightarrow u_{\theta\theta} = -rv_{r\theta}.$

Thus

$$r^2 u_{rr} + n u_{r} + u_{\theta\theta} = r v_{\theta r} - r v_{r\theta};$$

and, since $v_{\theta r} = v_{r\theta}$, we have

$$r^2 u_{rr} + n u_{r} + u_{\theta\theta} = 0,$$

which is the polar form of Laplace's equation. To show that ν satisfies the same equation, we observe that

$$u_{\theta} = -rv_{r} \Rightarrow v_{r} = -\frac{1}{r}u_{\theta} \Rightarrow v_{rr} = \frac{1}{r^{2}}u_{\theta} - \frac{1}{r}u_{\theta r}$$

and

$$ru_r = v_\theta \Longrightarrow v_{\theta\theta} = ru_{r\theta}.$$

Since $u_{\theta r} = u_{r\theta}$, then,

$$r^2 v_{rr} + r v_{r} + v_{\theta\theta} = u_{\theta} - r u_{\theta r} - u_{\theta} + r u_{r\theta} = 0.$$