0.1 二次型的化简

0.1.1 配方法

引理 0.1

$$(x_1 + x_2 + \dots + x_n)^2 = x_1^2 + x_2^2 + \dots + x_n^2$$

$$+ 2x_1x_2 + 2x_1x_3 + \dots + 2x_1x_n$$

$$+ 2x_2x_3 + \dots + 2x_2x_n$$

$$+ \dots$$

$$+ 2x_{n-1}x_n.$$

通过下面这个例子介绍配方法.

例题 0.1 将下列二次型化成对角型:

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 - 4x_1x_3 - 3x_2^2 - 6x_2x_3 + x_3^2.$$

解 先将含有 x1 的项放在一起凑成完全平方再减去必要的项:

$$f(x_1, x_2, x_3) = (x_1^2 + 2x_1x_2 - 4x_1x_3) - 3x_2^2 - 6x_2x_3 + x_3^2$$

= $((x_1 + x_2 - 2x_3)^2 - x_2^2 - 4x_3^2 + 4x_2x_3) - 3x_2^2 - 6x_2x_3 + x_3^2$
= $(x_1 + x_2 - 2x_3)^2 - 4x_2^2 - 2x_2x_3 - 3x_3^2$.

再对后面那些项配方:

$$-4x_2^2 - 2x_2x_3 - 3x_3^2 = -\left((2x_2 + \frac{1}{2}x_3)^2 - \frac{1}{4}x_3^2\right) - 3x_3^2$$
$$= -(2x_2 + \frac{1}{2}x_3)^2 - \frac{11}{4}x_3^2.$$

于是

$$f(x_1, x_2, x_3) = (x_1 + x_2 - 2x_3)^2 - (2x_2 + \frac{1}{2}x_3)^2 - \frac{11}{4}x_3^2.$$

令

$$\begin{cases} y_1 = x_1 + x_2 - 2x_3, \\ y_2 = 2x_2 + \frac{1}{2}x_3, \\ y_3 = x_3, \end{cases}$$

则

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & -2 \\ 0 & 2 & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix},$$

因此 $f = y_1^2 - y_2^2 - \frac{11}{4}y_3^2$, 其变换矩阵为

$$C = \begin{pmatrix} 1 & 1 & -2 \\ 0 & 2 & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -\frac{1}{2} & \frac{9}{4} \\ 0 & \frac{1}{2} & -\frac{1}{4} \\ 0 & 0 & 1 \end{pmatrix}.$$

 $\dot{\mathbf{z}}$ 在用配方法化二次型为只含平方项的标准型的过程中, 必须保证变换矩阵 \mathbf{C} 是非异阵. 如果我们按照上面例题的方法, 将含 x_1 的项放在一起配成一个完全平方, 接下来将含 x_2 的项放在一起再配方, 如此不断做下去. 最后得到的变换矩阵 \mathbf{C} 是一个主对角元全不为零的上三角阵, 因此是一个非异阵. 有时我们用看似简单的方法得到的结果未必正确. 比如用观察法即可得到下列配方:

$$f = 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 + 2x_1x_3 + 2x_2x_3$$

= $(x_1 - x_2)^2 + (x_1 + x_3)^2 + (x_2 + x_3)^2$.

若令 $y_1 = x_1 - x_2$, $y_2 = x_1 + x_3$, $y_3 = x_2 + x_3$, 则 $f = y_1^2 + y_2^2 + y_3^2$. 由于矩阵

$$\begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

不是非异阵, 因此上述配方不是我们所需要的结论.

如果已知的二次型中没有平方项, 我们可以采用下面例子中的方法.

例题 0.2 将二次型

$$f(x_1, x_2, x_3, x_4) = 2x_1x_2 - x_1x_3 + x_1x_4 - x_2x_3 + x_2x_4 - 2x_3x_4$$

化成对角型.

解 这个二次型缺少了 x_i^2 项,因此无法用例题0.1的方法配方,但我们可作如下变换:

$$\begin{cases} x_1 = y_1 + y_2, \\ x_2 = y_1 - y_2, \\ x_3 = y_3, \\ x_4 = y_4. \end{cases}$$

代入原二次型得

$$f = 2y_1^2 - 2y_2^2 - 2y_1y_3 + 2y_1y_4 - 2y_3y_4.$$

这时 y_1^2 项不为零, 于是

$$\begin{split} f &= (2y_1^2 - 2y_1y_3 + 2y_1y_4) - 2y_2^2 - 2y_3y_4 \\ &= 2\left((y_1 - \frac{1}{2}y_3 + \frac{1}{2}y_4)^2 - \frac{1}{4}y_3^2 - \frac{1}{4}y_4^2 + \frac{1}{2}y_3y_4\right) - 2y_2^2 - 2y_3y_4 \\ &= 2(y_1 - \frac{1}{2}y_3 + \frac{1}{2}y_4)^2 - 2y_2^2 - \frac{1}{2}y_3^2 - y_3y_4 - \frac{1}{2}y_4^2 \\ &= 2(y_1 - \frac{1}{2}y_3 + \frac{1}{2}y_4)^2 - 2y_2^2 - \frac{1}{2}(y_3 + y_4)^2. \end{split}$$

令

$$\begin{cases} z_1 = y_1 - \frac{1}{2}y_3 + \frac{1}{2}y_4, \\ z_2 = y_2, \\ z_3 = y_3 + y_4, \\ z_4 = y_4, \end{cases}$$

于是

$$f = 2z_1^2 - 2z_2^2 - \frac{1}{2}z_3^2,$$

其中 z² 的系数为零, 故未写出.

为求变换矩阵 C, 可从上面 Z_i 的表示式中解出 y_i :

$$\begin{cases} y_1 = z_1 + \frac{1}{2}z_3 - z_4, \\ y_2 = z_2, \\ y_3 = z_3 - z_4, \\ y_4 = z_4, \end{cases}$$

再将 xi 求出:

$$\begin{cases} x_1 = z_1 + z_2 + \frac{1}{2}z_3 - z_4, \\ x_2 = z_1 - z_2 + \frac{1}{2}z_3 - z_4, \\ x_3 = z_3 - z_4, \\ x_4 = z_4, \end{cases}$$

于是

$$C = \begin{pmatrix} 1 & 1 & \frac{1}{2} & -1 \\ 1 & -1 & \frac{1}{2} & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

0.1.2 初等变换法

用配方法化简二次型有时比较麻烦, 求非异阵 C 也比较麻烦. 我们常常用初等变换法来化简二次型, 初等变换法的依据是初等合同变换.

这种方法可总结如下: 作 $n \times 2n$ 矩阵 $(A:I_n)$, 对这个矩阵实施初等行变换, 同时施以同样的初等列变换, 将它左半边化为对角阵, 则这个对角阵就是已化简的二次型的相伴矩阵, 右半边的转置便是变换矩阵 C.

如碰到第(1,1)元素是零的矩阵,可先设法将第(1,1)元素化成非零,再进行上述过程.

下面我们通过例子来说明这种方法.

例题 0.3 将下列二次型化为对角型:

$$f(x_1, x_2, x_3) = x_1^2 - 3x_2^2 - 2x_1x_2 + 2x_1x_3 - 6x_2x_3$$

解 记与 f 相伴的对称阵为 A, 写出 $(A:I_3)$ 并作初等变换:

$$(A \mid I_3) = \begin{pmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ -1 & -3 & -3 & 0 & 1 & 0 \\ 1 & -3 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 + r_2}$$

$$\begin{pmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ 0 & -4 & -2 & 1 & 1 & 0 \\ 1 & -3 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{j_1 + j_2} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & -4 & -2 & 1 & 1 & 0 \\ 1 & -2 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{-r_1 + r_3}$$

$$\begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & -4 & -2 & 1 & 1 & 0 \\ 0 & -4 & -2 & 1 & 1 & 0 \\ 0 & -2 & -1 & -1 & 0 & 1 \end{pmatrix} \xrightarrow{-j_1 + j_3} \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -4 & -2 & 1 & 1 & 0 \\ 0 & -2 & -1 & -1 & 0 & 1 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2 + r_3}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -4 & -2 & 1 & 1 & 0 \\ 0 & 0 & 0 & -\frac{3}{2} & -\frac{1}{2} & 1 \end{pmatrix} \xrightarrow{-\frac{1}{2}j_2 + j_3} \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -4 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & -\frac{3}{2} & -\frac{1}{2} & 1 \end{pmatrix}.$$

于是 f 可化简为

$$C = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -\frac{3}{2} & -\frac{1}{2} & 1 \end{pmatrix}' = \begin{pmatrix} 1 & 1 & -\frac{3}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix}.$$

例题 **0.4** 将二次型 $f(x_1,x_2,x_3) = 2x_1x_2 + 4x_1x_3 - 4x_2x_3$ 化成对角型.

解 写出与 f 相伴的对称阵 A, 作 $(A:I_3)$ 并将它的第二行加到第一行上, 再将第二列加到第一列上:

$$(A:I_3) = \begin{pmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & -2 & 0 & 1 & 0 \\ 2 & -2 & 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & -2 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

同例题 0.3一样, 对上述矩阵进行初等变换得到

$$\begin{pmatrix} 2 & 0 & 0 & 1 & 1 & 0 \\ 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 8 & 2 & -2 & 1 \end{pmatrix}.$$

因此 f 化简为

$$2y_1^2 - \frac{1}{2}y_2^2 + 8y_3^2,$$

$$C = \begin{pmatrix} 1 & -\frac{1}{2} & 2 \\ 1 & \frac{1}{2} & -2 \\ 0 & 0 & 1 \end{pmatrix}.$$