Power Series

Series	Summation	Expanded	Radius, Interval of conv.
Taylor/ Maclaurin	$\sum_{n>0} \frac{f^{(n)}(a)}{n!} (x-a)^n$	a=0 if Maclaurin	R
Power Series	$\sum_{n\geq 0} c_n (x-a)^n$	-	$R = \lim_{n \to \infty} \left \frac{c_n}{c_{n+1}} \right = \lim_{n \to \infty} \frac{1}{\sqrt[n]{ c_n }}$ For all series: $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right < 1$
$\frac{1}{1-x}$	$\sum_{n\geq 0} x^n$	$1 + x + x^2 + \cdots$	R=1
$\frac{1}{1+x}$	$\sum_{n\geq 0} (-1)^n x^n$	$1 - x + x^2 - x^3 + \cdots$	R = 1
e^x	$\sum_{n\geq 0} \frac{x^n}{n!}$	$1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots$	$R = \infty$
$\sin x$	$\sum_{n\geq 0} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$	$x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \dots$	$R = \infty$
$\cos x$	$\sum_{n\geq 0} (-1)^n \frac{x^{2n}}{(2n)!}$	$1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \cdots$	$R = \infty$
$(1+x)^k$	$\sum_{n\geq 0} \binom{k}{n} x^n$	$1 + kx + \frac{1}{2!}k(k-1)x^2 + \cdots$	R=1
$\arctan x$	$\sum_{n\geq 0} (-1)^n \frac{x^{2n+1}}{2n+1}$	$x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \cdots$	R=1
$\ln(1+x)$	$\sum_{n\geq 0} (-1)^{n+1} \frac{x^n}{n}$	$x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \cdots$	R=1
Can be useful if the question asks			
$\ln(1-x)$	$-\sum_{n\geq 1} \frac{x^n}{n}$		
$\ln\left(\frac{1-x}{1+x}\right)$	$2\sum_{n\geq 0}\frac{x^{2n+1}}{2n+1}$		
$\arcsin x$	$x + \sum_{n \ge 1} \frac{(2n-1)!!}{(2n)!!} \frac{x^{2n+1}}{2n+1} = \sum_{n \ge 0} \frac{(2n)!}{2^{2n}(n!)^2} \frac{x^{2n+1}}{2n+1}$		
$\arccos x$	$\frac{\pi}{2} - \arcsin x$		
Super useful for bypassing			
Fresnel Int. $S(x)$	$\int_0^x \sin t^2 \mathrm{d}t = \sum_{n \ge 0} (-1)^n \frac{x^{4n+3}}{(2n+1)! (4n+3)}$		$R = \infty$
Fresnel Int. $C(x)$	$\int_0^x \sin t^2 dt = \sum_{n \ge 0} (-1)^n \frac{x^{4n+3}}{(2n+1)! (4n+3)}$ $\int_0^x \cos t^2 dt = \sum_{n \ge 0} (-1)^n \frac{x^{4n+1}}{(2n)! (4n+1)}$		$R = \infty$