Московский физико-технический институт Физтех-школа прикладной математики и информатики

БОЛЬШОЕ НАЗВАНИЕ КУРСА

V CEMECTP

Лектор: Иван Иванович Иванов

Автор: Павел Дуров Репозиторий на Github

Содержание

1	Про	одолжение ДП	2
	1.1	Рюкзак с оптимизацией	2
		1.1.1 Альтернативный вариант	2
	1.2	Динамическое программирование с помощью матриц	2
	1.3	Задача	3
	1.4	Задача	3
	1.5	Залача	4

1 Продолжение ДП

1.1 Рюкзак с оптимизацией

- $\longrightarrow w$ предметов
- $\longrightarrow w_i$ \sec
- $\longrightarrow c_i$ стоимость

Решение мы помним с прошлой лекции, а сейчас займемся оптимизацией памяти: $dp[i][\circ]$ зависят только от $dp[i-1][\circ]$, поэтому нам достаточно хранить не всю таблицу целиком, а всего 2 слоя, с которыми мы работаем.

Итог - память O(W)

1.1.1 Альтернативный вариант

Будем действовать от стоимости предметов:

- 1. Заводим массив dp[0...n-1][0...C-1], где $C=\sum_{i=0}^{n-1}c_i$
- 2. dp'[i][b] min суммарный вес предметов, имеющих номера $\leq i$, и общую стоимость b
- 3. $dp'[i][b] = min(dp[i-1][b], dp'[i-1][b-c_i] + w_i)$

Это используется, если суммарная стоимость значительно меньше суммарного веса.

1.2 Динамическое программирование с помощью матриц

Попробуем найти $F_n = F_{n-1} + F_{n-2}$ с методом матриц.

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} F_{n-2} \\ F_{n-3} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \cdot \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}$$

Бинарное возведение матрицы в степень

Проводится так же, как и для натуральных чисел:

$$a^{n} = \begin{cases} 1, & \text{если } n = 0\\ \left(a^{\frac{n}{2}}\right)^{2}, & \text{если } n \text{ четно}\\ a \cdot a^{n-1}, & \text{если } n \text{ нечетно} \end{cases}$$
 (1.1)

Если две матрицы имеют размеры $k \times k$, то их произведение можно найти за $O(k^3)$ Тогда A^n описанным алгоритмом находится за $O(k^3 \log n)$

Задача $a_n = \lambda a_{n-1} + \mu a_{n-2} + 1$

$$\begin{pmatrix} a_n \\ a_{n-1} \\ 1 \end{pmatrix} = \begin{pmatrix} \lambda & \mu & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a_{n-1} \\ a_{n-2} \\ 1 \end{pmatrix}$$

Взяв произведение этих матриц, получим ответ за $O(3^3 \log n)$

3адача Пусть G – невзвешенный ориентированный граф. Найти количество путей длины ровно k из вершины x в вершину y

На ввод дается матрица смежности M, где $m_{ij}=1\Leftrightarrow ecm_b$ ребро $i\to j,\ a\ 0$ иначе.

Пусть dp[v][l] - количество путей длины l от x до v.

Тогда $dp[v][l] = \sum_{u \in v: M_{uv}=1} dp[u][l-1]$

$$\begin{pmatrix} dp[1][l] \\ dp[2][l] \\ \vdots \\ dp[v][l] \\ \vdots \\ dp[n][l] \end{pmatrix} = M^T \cdot \begin{pmatrix} dp[1][l-1] \\ dp[2][l-1] \\ \vdots \\ dp[v][l-1] \\ \vdots \\ dp[n][l-1] \end{pmatrix}$$

Комментарий от эксперта:

Пересчет динамики получается домножением столбца dp[v][i-1] на транспонированную матрицу смежности слева

Утверждение 1.1. M^k - количество путей из и в v длины ровно k.

1.3 Задача

Найти количество путей длины $\leq k$ из x в y.

Можно найти ответ из суммы $(M^0 + M^1 + \cdots + M^k)_{xy}$, но как ее посчитать быстро? Введем $f(M,k) = (M^k, M^0 + M^1 + \dots + M^{k-1}).$

- 1. $k = 0 \to f(M, k) = (E, E)$
- 2. $k \nmid 2 \to f(M,k-1) = (M^{k-1},M^0+M^1+\cdots+M^{k-2}),$ откуда f(M,k) = f(M,k-1), в котором умножили первый элемент на M, предварительно прибавив его ко второму.
- 3. k:2, f(M,k) получается из $f(M,\frac{k}{2})$ умножением первой части, увеличенной на 1, на вторую и возведением первой части в квадрат.

Второй комментарий от эксперта: По формуле геометрической прогрессии $\sum_{i=0}^k M^i = (M^{k+1} - E) \cdot (M-E)^{-1}$. Если M-E необратима, подкрутим её коэффициент на 0.00001.

1.4 Задача

Пусть G - граф. Надо проверить, есть ли хотя бы 1 путь из x в y длины ровно k?

$$d[v][l] = \bigvee_{u} (dp[u][l-1] \wedge M_{uv})$$

Обозначим A * B = C, где * - булевское умножение, такое выражение:

$$c_{ij} = \bigvee_{k} (A_{ik} \wedge B_{kj})$$

Утверждение 1.2. $M_{uv}^{*k} = 1, ecnu \ ecmb \ nycmb \ u \to v, \ a \ uначе \ 0$ Такое тоже работает за $O(n^3 \log k)$

1.5 Задача

G - взвешенный граф. Хотим найти min стоимость пути длины ровно k из x в y. Пусть dp[v][l] - минимальная стоимость пути $x\to v$ за l ребер. Тогда его можно найти

по формуле min(dp[u][l-1] + cost(u,v))

Обозначим: $A \circ B = C$, где

$$c_{ij} = min_k(a_{ik} + b_{kj})$$

$$(A \circ B) \circ C = A \circ (B \ circ C)$$

Утверждение 1.3. $M^{\circ k}$ - минимальная стоимость пути из и в v, используя ровно k ребер.