ДОМАШНЕЕ ЗАДАНИЕ (ЛИСТОК) 3 Анализ, 2 курс, весенний семестр 2021 Дедлайн: 27.05.2021

Во всех задачах по уравнениям с частными производными нужно обсуждать является ли полученное решение классическим.

Задача 1. Решите задачу теплопроводности $u_t = c^2 u_{xx}$ для стержня [0, l] с изолированными концами $(u_x(t, 0) = u_x(t, l) = 0)$ и начальным распределением температуры $u(0, x) = \chi_{[0, l/2]}$, где $\chi_{[0, l/2]}$ обозначает индикаторную функцию отрезка [0, l/2]. Каково предельное распределение температуры при $t \to \infty$? Попробуйте его угадать из физических соображений прежде чем решать задачу.

Задача 2. Решите следующее уравнение теплопроводности на отрезке $[0,\pi]$:

$$u_t = u_{xx} + te^{-t}\sin(3x/2), \quad u(t,0) = u_x(t,\pi) = 0, \quad u(0,x) = 1 - \cos x.$$

 $\it 3a$ мечание. $\it B$ граничных условиях опечатки нет: на левом конце отрезка поддерживается нулевая температура, а правый конец изолирован.

Задача 3. Решите следующее волновое уравнение на отрезке $[0,\pi]$:

$$u_{tt} = u_{xx} + u + \sin x$$
, $u(t, 0) = u(t, \pi) = 0$, $u(0, x) = \sin 2x$, $u_t(0, x) = \sin 3x$.

Задача 4. а) Рассмотрим волновое уравнение на всей прямой

$$u_{tt} = c^2 u_{xx}, \quad x \in \mathbb{R}, \quad t \ge 0,$$

с начальными условиями $u(0,x) = \phi(x)$, $u_t(0,x) = \psi(x)$, где $\phi \in C^2(\mathbb{R})$, а $\psi \in C^1(\mathbb{R})$. Докажите, что следующая функция $u(t,x) \in C^2(\mathbb{R} \times \mathbb{R})$ является решением рассматриваемого уравнения:

$$u(t,x) = \frac{\phi(x+ct) + \phi(x-ct)}{2} + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) \, ds.$$

Эта формула называется формулой Даламбера.

- б) Придумайте аналог формулы Даламбера для волнового уравнения на отрезке $[0,\pi]$ с граничными условиями $u(t,0)=u(t,\pi)=0$ (струна с закрепленными концами). Теперь начальные условия ϕ,ψ , конечно, заданы только на отрезке $[0,\pi]$.
- в) Та же задача, что и в пункте б), но для струны со свободными концами (т.е. $u_x(t,0)=u_x(t,\pi)=0$).

Замечание. Формула Даламбера дает решение волнового уравнения в виде суммы двух функций f(x+ct)+g(x-ct). Чтобы это увидеть, нужно записать $\int_{x-ct}^{x+ct}=\int_{x-ct}^{0}+\int_{0}^{x+ct}$. Функция f(x-ct) описывает волну, бегущую вправо, а функция g(x+ct) — волну, бегущую влево. Таким образом, решение представляется в виде суммы двух бегущих волн.

Задача 5. (*) Решите уравнение Лапласа $\Delta u=0$ в круге $\{x^2+y^2\leq 1\}$ с граничными условиями $u|_{x^2+y^2=1}=f(x,y)$, где функция f непрерывно дифференцируема.

Указание. Знания об уравнении и функциях Бесселя здесь не пригодятся.

Задача 6. Найдите $\lim_{\varepsilon \to 0+} \frac{1}{x} \sin \frac{x}{\varepsilon}$ в $\mathcal{D}'(\mathbb{R})$.

Задача 7. Найдите все такие $f \in \mathcal{D}'(\mathbb{R})$, что $x^3(x-1)^2 f(x) = 0$.

Задача 8. Найдите все такие $f \in \mathcal{D}'(\mathbb{R})$, что $(\sin x)f(x) = 0$.

Задача 9. (*) Вычислите $\Delta \ln \sqrt{x^2 + y^2}$ в $\mathcal{D}'(\mathbb{R}^2)$.