Assignment: HW 2

Class: ECE 5224

Name: Joshua Hopkins

VT ID: Hopkinsjg1

Date: February 24th, 2025

• Problem 1:

o DC Resistance:

o AC Resistance at 500 MHz:

O Wire bond:

• Problem 2

o Ribbon DC Resistance:

o Ribbon AC at 500 MHz:

o Ribbon Bond:

o Problem 1 and 2 Results:

Component and Parameter	Calculation (mΩ)	ANSYS Q3D (mΩ)	Percent Error %
Wire Bond DC Resistance	120.4	143.977	16.3755322
Wire Bond AC Resistance at 500 MHz	467.3	460.83	1.403988456
Ribbon DC Resistance	37.8	37.804	0.010580891
Ribbon AC Resistance at 500 MHz	127.4	195.798	34.93294109

• Problem 3a:

o Length 10mm:

o Length 15mm:

o Length 20mm:

o Problem 3a Results and Plot:

Length (mm)	Simulated Inductance at 500 MHz (nH)
10	8.325
15	14.341
20	18.645
Length (mm)	Calculated Simplified Inductance (nH)
10	8.618600932
15	14.14429672
20	20.00979059
Length (mm)	RoT Inductance (nH)
10	10
15	15
20	20

• Problem 3b:

I believe the reason why the simulated values are less in most cases and more in one case is since the simulation is taking the actual bond material and all of the extra parameters of the wire, seen below, into detail when performing the analysis.

Name	Value	Unit	E۱
Command	CreateBondwire		
Coordinate Sy	Global		
Туре	JEDEC 4-Point		
Pad position	-0.5 ,0 ,0	mm	-0.
Direction	0, 0, 0, 0.	mm	0.9
Distance	16.7	mm	16
H1	3	mm	3m
H2	0	mm	0m
Diameter	5	mil	5m
Number of Fa	6		6
Axis	Z		
Reverse Direc			

The simulation is also being run at a 500 MHz frequency and is probably considering the skin and proximity effects of the wire bond. When using the RoT, it's not considering anything b/c the wire bond is the "ideal" wire in this case. Below you can see the results for an "ideal" bond with no bends and how the length is basically the same as the inductance.

4. Problem 4, Ruad, Lundi a) Load Record i vice 69 Ruadzvice Llead 2 Vec Lleadtona Reads and Readive L-lead Ivu 4 Readzerd Vu

Problem 4'.

case A'. L Total = 2 Lead - 2 Milend

Rank Highest

case B', LTotal = 4 Lead - 2 MLead

Ranki Middle

case L. Listal = 42 ead - 2 (3 Meand) Rank, Lonest

- lase A has the highest total inductance due to it only having I lead for both the Vice and GNO. This allows for a limited mutal inductance and less self inductance than the other cases. Not to mention that its not splitting its current source like the other 2 gringist a higher inductance to maintain.

ECE 5224 Hopkins is 1 Problem 5.

1= 1cm , f= 16Hz, rketime = bops, and Er=4A

tr= 100 ps => 100 ps = 33,33 J 4.7 (2)(1)

The transmission line effects should be considered blc the rise time (100 ps) is less than the calculated time delay (139.827ps).

length > 0.5tr/(33.33)/fr - The assumption also holds up when => 1 > 0.5(100)/(33.33)/fA using the length method.

=> 1 > 0.715 ECE 5224 Hopkinsjøl

Problem 6 .015cm .002cm

line width = 150 mm, signal line thickness = 20 mm,

dielectric thickness = 200 mm, dielectric constant = 4.0 = &r

102cm

Vp= LETHE [m/6]

1) micropatrip line. b = 200 mm and a = 150 mm.

East = & [& +1 + & -1 .] = 8.854E+4 [4+1 + 4-1 .] = 8.854E+4 [4+1 + 4-1 .] = 8.854E+4 [2+1 + 4-1 .] = 8.854E+4 [2.5 + 1.5 · .2425] = 2.54E-13

a < b = > 20 = 1 $\int \frac{1}{2\pi} \ln \left(\frac{8b}{a} + \frac{a}{4b} \right) = 1$ $\int \frac{4\pi E - 8}{2\pi} \ln \left(\frac{8(D2)}{254E - 15} \right) \frac{8(D2)}{254E - 15} + \frac{105}{254E - 15}$ $= 266.94 \Omega$

Problem 6

2) embedded microstrip line w=.015 cm , + = .002 cm, n= .02 cm Vp= Jne = Jno, nrévér = J(ATE-2)(1)(8.954E-14)(4) =[4.74E9 cm/s 3) stripline: b=.02cm and a=.015cm Up2 1 2/4,74E9cm/s 0.35% = 0.35(.02) = ,007 < a = app = a $Z_0 = \frac{30\pi}{\text{Jer}} \frac{b}{q_{eff} + 0.441(b)} = \frac{30\pi}{\sqrt{4}} \frac{.62}{.015 + .441(02)}$ = 39.57.1 The microstrip line has the highest propagation velocity ble
it's not fully embedded allowing for a higher signal propagation
thanks to the mixture of air and dielectric.