EE288 – HW5 Report 4-bit DAC design

(using 45nm CMOS Technology)

Muhammad Aldacher

Student ID: 011510317

Overview

- 1. High-Swing Cascose Bias circuit
 - Circuit
 - > Testbench
- 2. Current Mirror branches (1x, 2x, 4x, & 8x)
- 3. DAC circuits
 - ➤ Binary DAC
 - ➤ Segmented DAC
- 4. Monte Carlo Simulations
- 5. Transient Simulations
- 6. Results & Summary

(1) High-Swing Cascode Bias Circuit

Circuit

Testbench

Testbench

Sizing:

Device	Size (in terms of fingers, m)
M1	6
M2	5
M3	1
M4	5
M5	6
M6	5
Msw	4
Ideal Current Sources	15 uA

- → The aim is to have M1 & M2 in saturation with low Vds. (Vds of both transistors is monitored in the test)
- M2, M4, M6 are sized together to have equal current densities.
- M3 is in triode. It's (W/L) is increased to decrease its Vds, which will also be equal to Vds of M5 & M1.
- M5's (W/L) is increased to decrease Vg till M1 becomes in Saturation.
- M1's (W/L) is then increased to provide a current of 15uA in the mirror branch.
- M2 & Msw's sizes must ensure the passage of the 15uA in the mirror branch.
- In the testbench, besides using the $2K\Omega$ load, a voltage source is used to make sure the mirror branch provides a 15uA at different output voltages (\sim 0.4v-1.4v).

Testbench (for more than 1 mirror branch)

(2) Current Mirror Branches

(3) DAC Circuits

Binary DAC Circuit

Segmented DAC Circuit

VerilogA: BinaryToThermometer Block (2-to-3 bits)

```
// VerilogA for ADC DACs, B2T 2to3bits, veriloga
'include "constants.vams"
'include "disciplines.vams"
module B2T 2to3bits(D0,D1,B0,B1,B2,vdd,vss);
parameter real vtrans=0.5;
parameter real delay = 0;
parameter real ttime = 1p;
inout vdd, vss;
input D0,D1;
output B0,B1,B2;
electrical vdd, vss;
electrical D0,D1;
electrical B0,B1,B2;
real b 0,b 1,b 2;
```

```
analog begin
                 if ((V(D1)>0.9) && (V(D0)>0.9)) begin
                 b 2 = V(vdd); b 1 = V(vdd);
                                                   b 0 = V(vdd);
                 end
                 else if ((V(D1)>0.9) && (V(D0)<0.9)) begin
                 b 2 = V(vss);
                                  b 1 = V(vdd);
                                                 b 0 = V(vdd);
                 end
                 else if ((V(D1)<0.9) && (V(D0)>0.9)) begin
                 b 2 = V(vss);
                                  b 1 = V(vss);
                                                   b 0 = V(vdd);
                 end
                 else begin
                 b 2 = V(vss);
                                  b 1 = V(vss);
                                                   b 0 = V(vss);
                 end
                 V(B2) <+ transition(b 2,delay,ttime);
                 V(B1) <+ transition(b_1,delay,ttime);
                 V(B0) <+ transition(b 0,delay,ttime);
end
endmodule
```

(4) Monte Carlo Simulations

Testbench

Transient Simulation

Monte Carlo Simulation (Binary DAC)

Monte Carlo Simulation (Binary DAC)

Monte Carlo Simulation (Segmented DAC)

Monte Carlo Simulation (Segmented DAC)

Monte Carlo Simulation (Binary DAC VS Segmented DAC)

Parameter	Binary DAC	Segmented DAC
Mean (μ)	59.074 mV	60.015 mV
Standard Deviation (σ)	1.3866 mV	1.1095 mV
5 σ	6.933 mV	5.548 mV
X	7	7

- Both $5*\sigma$ of the 2 DACs are less than 1/8 of 1 LSB (~7.8mV) by choosing X = 7, which is the factor multiplied by all Ws & Ls of the Biasing & the Current Mirrors transistors.
- The standard deviation of the segmented DAC is smaller than that of the Binary DAC, giving better DNL performance.

(5) <u>Transient Simulations of</u> the Whole System

Whole System Testbench

Waveforms

DFT of Binary DAC output

DFT of Segmented DAC output

SUMMARY

Summary Notes:

- When designing the high-swing biasing circuit, it is important to size the transistors such that the current mirror transistors would have a small Vds while also being in saturation, or else the variation seen in the Monte Carlo will be high.
- Increasing the W & L of the biasing & the current mirror circuits decreases the standard deviation observed in the Monte Carlo simulation, which means giving a better DNL performance.
- The Segmented DAC is shown to have smaller variation (standard deviation) than that in the Binary DAC.