Advanced Operating Systems (and System Security)
MS degree in Computer Engineering
University of Rome Tor Vergata
Lecturer: Francesco Quaglia

Virtual file system

- 1. VFS basic concepts
- 2. VFS design approach and architecture
- 3. Device drivers
- 4. The Linux case study

File system representations

- In RAM
 - Partial/full representation of the current structure and content of the File System (namely of its I/O objects)
- On device
 - (non-updated) representation of the structure and of the content of the File System
- Data access and manipulation
 - FS independent part: interfacing-layer towards other subsystems within the kernel
 - <u>FS dependent part</u>: data access/manipulation modules targeted at a specific file system type

Connections

- Any FS object (dir/file) is represented in RAM via specific data structures
- The object <u>keeps a reference to the module instances</u> for its own operations
- The reference is accessed in a File System independent manner by any overlying kernel layer → the virtual file system (VFS)
- This is achieved thanks to multiple different instances of a same function-pointers' (drivers') table

VFS hints

- Devices can be seen as files
- What we drive, in terms of state update, is <u>the structure used to represent the device in memory</u>
- Then we can also reflect such state somewhere out of memory (on a hardware component)
- Classical devices we already know of
 - ✓ Pipes and FIFO
 - ✓ sockets

An overall scheme

Lets' focus on the true files example

- Files are backed by data on a hard drive
- What **software modules do we need** for managing files on that hard drive in a well shaped OS-kernel??
 - 1. A function to <u>read the device superblock</u> for determining what files exist and where their data are
 - 2. A function to <u>read device blocks</u> for bringing them into a <u>buffer cache</u>
 - 3. A function to <u>flush updated blocks</u> back to the device
 - 4. A set of functions to actually work on the <u>in-memory cached data</u> and to trigger the activation of the above functions

Block vs char device drivers

- The <u>first three points</u> in the previous slide are linked to the notion of block device and <u>block-device driver</u>
- The <u>last point (number 4)</u> is linked to the notion of char device and <u>char</u>-<u>device driver</u>
- These drivers are essentially <u>tables of function pointers</u>, pointing to the actual implementation of the operations that can be executed on the target object
- The core point is therefore how to allow a VFS supported system call to determine what is the actual driver to run when a given system call is called

File system types in Linux

- To be able to manage a file system type we need a **superblock read function**
- This function relies on the block-device driver of a device to instantiate the corresponding file system superblock in memory
- Each file system type has a superblock that needs to match its read function

Actual architecture (i)

- The super-block read function can exploit kernel level API in order to setup the VFS portion of the superblock, like:
 - mount_bdev(), which mounts a file system stored on a block device
 - mount_single(), which mounts a file system that shares an instance between all mount operations
 - mount_nodev(), which mounts a file system that is not on a physical device
 - mount_pseudo(), a helper function for pseudo-file systems (sockfs, pipefs, generally file systems that can not be mounted)

Actual architecture (ii)

- All the previously listed functions will take a call-back function as a parameter, which will be called in order to finalize the super-block materialization
- This will be done in file-system specific manner
- This function typically just **fills** the super-block content

The "magic number"

- In the end a block device is anyhow a sequence of bytes
- We can read this sequence and check whether it contains (e.g. in the super block) some identifying code we are expecting
- If this is not true, then we can abort the instantiation of the superblock in memory
- For Posix the command "file [-s] /dev/{device-name}" allows to extract the magic number (the code) and reports the information on the actual file system type kept by a device

Buffer/page cache

- It is simply a memory area where we keep blocks of devices for managing operations (read/write)
- Linux offers the struct buffer_head data structure to manage these blocks, which is made by the following main data
 - *b_data, pointer to a memory area where the data was read from or where the data must be written to
 - b_size, buffer size
 - *b_bdev, the block device
 - b_blocknr, the number of the block on the device that has been loaded or needs to be saved on the device

A scheme

Getting/putting device blocks

__bread() → reads a block with the given number and given size in a buffer_head structure; returns a pointer to the buffer_head structure (NULL on error)

sb_bread() → the size of the read block is taken from the superblock;

mark_buffer_dirty() → marks the buffer as dirty (sets the BH_Dirty bit); the buffer will be written to the disk at a later time (from time to time the bdflush kernel thread wakes up and writes the buffers to disk);

brelse() → frees up the memory used by the buffer, after it has previously written the buffer on disk if needed;

map_bh() → associates the buffer-head with the corresponding sector

The overall layering

Regular files vs devices

- Any regular file can be seen as a block device hosting a file system
- To correctly associate this role to the file we will need to mount the corresponding file system using a specific block-device driver
- This is the -o loop driver
- This enables passing through the VFS architecture multiple times (in terms of actual actions excuted when system calls are called)
- We can therefore create a stack of file system devices

What about RAM file systems?

- These are file systems whose data disappear at system shutdown
- On the basis of what described before, these file systems **do not have an on-device** representation
- Their superblock read function does not really need to read blocks from a device
- It typically relies on in-memory instantiation of a fresh superblock representing the new incarnation of the file system

RAM file system fill example – from kernel 5

```
static int ramfs_fill_super(struct super_block *sb, struct fs_context *fc){
      struct ramfs_fs_info *fsi = sb->s_fs_info;
      struct inode *inode;
      sb->s_blocksize_bits = PAGE_SHIFT;
                 = RAMFS_MAGIC;
      sb->s magic
      sb->s on
                = &ramfs ops;
      sb->s time gran
                           = 1;
      inode = ramfs_get_inode(sb, NULL, S_IFDIR | fsi->mount_opts.mode, 0);
      sb->s root = d make root
      if (!sb->s_root)
                                                Here we are simply allocating other
             return - ENOMEM;
                                                two data structures in memory,
      return 0;
                                                namely the inode and the dentry
```

Baseline API for i-nodes and dentry

struct inode *new_inode(struct super_block *sb) → we simply allocate a generic i-node data structure making id refer to a generic super-bloc data structure

struct dentry *d_make_root(strct inode *root_inode) → we simply create a generic dentry data structure that will figure out as the root one, and we link it to the root-inode

The root-inode can be populated in a FS specific manner (e.g. upon file system mount) reading an actual inode from a device

It is typical that these data structures will keep generic fields used by the VFS plus some filed (e.g. a pointer) usable for linking FS specific data

generic inode FS specific inode data

Data structures vs drivers

- A driver for operations on a data structure in the VFS is a table of function pointers
- When one of the operations is invoked we can pass as parameter the address of the generic data structure
- From this address the driver can access (more or less directly) the FS specific data
- As mentioned before a data structure in the VFS keeps a reference to the actual driver for its operations

The VFS startup in Linux

• This is the minimal startup path

This tells we are instantiating at least one FS type – the **Rootfs**

- Typically, at least two different FS types are supported
 - Rootfs (file system in RAM)
 - Ext (in the various flavors)
- However, in principles, the Linux kernel could be configured such in a way to support no FS
- In this case, any task to be executed needs to be coded within the kernel (hence being loaded at boot time)

"File system types" data structures

- The description of a specific FS type is done via the structure file_system_type defined in include/linux/fs.h
- This structure keeps information related to
 - The actual file system type
 - A pointer to a function to be executed upon mounting the file system (superblock-read)

```
struct file_system_type {
    const char *name;
    int fs_flags;
    .....
    struct super_block *(*read_super) (struct super_block *, void *, int);
    struct module *owner;
    struct file_system_type * next;
    struct list_head fs_supers;
    ......
};
```

... newer kernel version alignment

```
struct file system type {
   const char *name;
   int fs_flags;
   struct dentry *(*mount) (struct file system type *,
                                 int, const char *, void *);
   void (*kill_sb) (struct_super_block *);
   struct (module *owner;
   struct file_system_type * next;
                        Beware this!!
```

Rootfs and basic fs-type API (i)

- Upon booting, a compile time defined instance of the structure file_system_type keeps meta-data for the Rootfs
- This file system only lives in main memory (hence it is re-initialized each time the kernel boots)
- The associated data act as initial "inspection" point for reaching additional file systems (starting from the root one)
- We can exploit kernel macros/functions in order to allocate/initialize a
 file_system_type variable for a specific file system, and link it to a proper list
- The linkage one is
 int register_filesystem(struct file_system_type *)

Rootfs and basic fs-type API (ii)

- Allocation of the structure keeping track of **Rootfs** is done statically (compile time)
- The linkage to the list is done by the function init_rootfs()
- The name of the structured variable is rootfs_fs_type

```
int __init init_rootfs(void){
...
register_filesystem(&rootfs_fs_type);
...
let's check with the details ____
```

Kernel 4.xx instance

```
static struct file system type rootfs fs type = {
                       = "rootfs",
        - name
        .mount = rootfs_mount,
                       = kill litter super.
        .kill sb
};
int __init init_rootfs(void)
        int err = register_filesystem(&rootfs_fs_type);
        if (err)
                return err:
        if (IS_ENABLED(CONFIG TMPFS) && !saved_root_name[0] &&
                (!root_fs_names || strstr(root_fs_names, "tmpfs"))) {
                err = shmem init();
               is_tmpfs = true;
        } else {
               err = init_ramfs_fs();
        if (err)
                unregister_filesystem(&rootfs_fs_type);
       return err;
```

A few modifications in the structure of init_rootfs() are in kernel 5

User level checks on the managed file systems

- The file system currently manageable by the kernel can be listed by accessing the /proc/filesystems file
- The nodev field in the output tells that a specific file system is handled as a inmemory one, e.g.:

```
nodev sysfs
nodev rootfs
nodev ramfs
.....
nodev proc
.....
ext3
ext4
```

Among the nodev file systems we typically find sys and proc

Creating and mounting the Rootfs instance

- Creation and mounting of the **Rootfs** instance takes place via the function init_mount_tree()
- The whole task relies on manipulating 4 data structures
 - >struct vfsmount
 - >struct super_block
 - ▶struct inode
 - >struct dentry
- The instances of struct vfsmount and struct super_block keep file system proper information (e.g. in terms of relation with other file systems)
- The instances of struct inode and struct dentry are such that one copy exits for any file/directory of the specific file system

More details on the data structures

struct vfsmount ———— Tells, e.g., what is the parent FS

struct super_block —— Keeps basic FS metadata

struct inode — Keeps per I/O object metadata

Struct dentry

Tells what is a name for an I/O object along the FS hierarchy

The structure vfsmount (still in place in kernel 3.xx)

```
struct vfsmount {
    struct list head mnt hash;
    struct vfsmount *mnt_parent;
                                    /*fs we are mounted on */
    struct dentry *mnt_mountpoint;
                                   /*dentry of mountpoint */
    struct dentry *mnt root;
                                    /*root of the mounted tree*/
    struct super_block *mnt_sb;
                                   /*pointer to superblock */
    struct list head mnt mounts;
                                    /*list of children, anchored here */
                                   /*and going through their mnt_child */
    struct list_head mnt_child;
    atomic_t mnt_count;
    int mnt_flags;
    char *mnt_devname;
                                    /* Name of device e.g. /dev/dsk/hda1 */
    struct list head mnt list;
```

.... now structured this way in kernel 4.xx or later

This feature is supported by the randstruct plugin Let's look at the details

randstruct

- Access to any field of a structure is based on compiler rules when relying on classical '.' or '->' operators
- Machine code is generated in such a way to correctly displace into the proper field
- __randomize_layout introduces a reshuffle of the fields, with the inclusion of padding
- This is done based on pseudo random values selected at compile time
- Hence an attacker that discovers the address of a structure but does not know what's the randomization, will not be able to easily trap into the target field
- Linux usage (stable since kernel 4.8):
 - on demand (via ___randomize_layout)
 - by default on any **struct** only made by function pointers (a driver!!!)
 - the latter can be disabled with ___no_randomize_layout

The structure super_block - Kernel 5 example

```
struct super block {
    struct list_head s_list; /* Keep this first */
                      s_dev; /* search index; _not_ kdev_t */
    dev t
    unsigned long s blocksize;
    loff t
                      s_maxbytes; /* Max file size */
    struct file system type *s type;
    const struct super operations *s op;
    unsigned long s magic;
    struct dentry *s root;
    struct list_head s_mounts; /* list of mounts; _not_ for fs use */
    struct block device *s bdev;
                  *s fs info; /* Filesystem private info */
    void
    const struct dentry_operations *s_d_op; /* default d_op for dentries */
    struct user namespace *s user ns;
   randomize layout;
```

The structure dentry - Kernel 5 example

```
struct dentry {
   struct dentry *d_parent; /* parent directory */
   struct qstr d_name;
   struct inode *d_inode; /* Where the name belongs to */
   unsigned char d_iname[DNAME_INLINE_LEN]; /* small names */
   const struct dentry operations *d op;
   struct super_block *d_sb; /* The root of the dentry tree */
   void *d fsdata; /* fs-specific data */
   struct list_head d_child; /* child of parent list */
   struct list_head d_subdirs; /* our children */
} ___randomize_layout;
```

The structure inode - Kernel 5 example

```
struct inode {
    umode t i mode;
   unsigned short i_opflags;
   kuid t
                   i uid;
   kgid_t i_gid;
   unsigned int i_flags;
    const struct inode_operations *i_op;
    struct super_block *i_sb;
    loff t
                   i_size;
    spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */
    union {
       const struct file_operations *i_fop; /* former ->i_op->default_file ops */
       void (*free_inode)(struct inode *);
    };
                *i private; /* fs or device private pointer */
   void
 randomize layout;
```

Overall scheme

Initializing the Rootfs instance

- The main tasks, carried out by init_mount_tree(), are
 - 1. Allocation of the 4 data structures for **Rootfs**
 - 2. Linkage of the data structures
 - 3. Setup of the name "/" for the root of the file system
 - 4. Linkage between the IDLE PROCESS and Rootfs
- The first three tasks are carried out via the function do_kern_mount() or vfs_kern_mount(), which are in charge of invoking the execution of the super-block read-function for **Rootfs**
- Linkage with the IDLE PROCESS occurs via the functions set_fs_pwd()
 and set_fs_root()

Mount tree setup – kernel 3

```
static void __init init_mount_tree(void){
   struct vfsmount *mnt;
   struct namespace *namespace;
   struct task_struct *p;
   mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
   if (IS_ERR(mnt))
       panic("Can't create rootfs");
   set_fs_pwd(current->fs, namespace->root,
               namespace->root->mnt root);
   set_fs_root(current->fs, namespace->root,
               namespace->root->mnt_root);
```

.... very minor changes of this function are in kernel 4.xx/5.xx

FS mounting and namespaces

Moving to another mount namespace makes mount/unmount operations only acting on the current namespace (except if the mount operation is tagged with SHARED)

Actual system calls for mount namespaces

clone(... int flags ...) CLONE_NEWNS unshare(int flags)

An overall view

Super operations

Update superblock (and flush on device)

Get superblock info (e.g. statfs/fstatfs)

Manage i-nodes (read/write them from/ to superlock)

Dentry operations

Allocate/deallocate dentries
Link them to other data structures

i-node operations

creat/link/unlink/lookup

The char-device driver

Actual operations on data

TCB vs VFS

• The TCB keeps the field struct fs_struct *fs pointing to I nformation related to the current directory and the root directory for the associated process

• fs_struct was defined as follows in kernel 2.4

3.xx/4.7 kernel style

See include/linux/fs_struct.h

```
8 struct fs_struct {
9
      int users;
       spinlock_t lock;
10
      seqcount_t seq;
12
       int umask;
13
       int in_exec;
14
       struct path root, pwd;
15 };
```

... and then 4.8 or later style

```
struct fs struct {
   int users;
                                          Towards more security
   spinlock t lock;
   seqcount tseq;
   int umask;
   int in exec;
   struct path root, pwd;
   randomize layout;
```

File descriptor table

- It builds a <u>relation between an I/O channel</u> (a numerical ID code) and <u>an I/O object</u> we are currently working with along an I/O session
- It enables fast search of the data structures used to represent I/O objects and sessions
- The search is based on the channel ID as the key
- The actual implementation of the layout for the file descriptor table is system specific
- In Linux we have the below scheme

Classical file descriptor table (a few variations in very recent kernel versions)

- TCB keeps the field struct files_struct *files which points to the descriptor table
- This table is defined in as

```
struct files_struct {
  atomic_t count;
  rwlock t file lock; /* Protects all the below
                                                                          members.
                           inside tsk->alloc lock */
Nests
  int max fds;
  int max fdset;
  int next_fd;
  struct file ** fd; /* current fd array */
                                                 bitmap for close on exec flags
  fd_set *close_on_exec;
  fd_set *open_fds; ←
                                            bitmap identifying open fds
  fd_set close_on_exec_init;
  fd_set open_fds_init;
  struct file * fd_array[NR_OPEN_DEFAULT];
};
```

The session data - struct file (the very classical shape)

```
struct file {
   struct list_head f_list;
   struct dentry *f_dentry;
   struct vfsmount *f vfsmnt;
   struct file_operations *f_op;
   atomic t f count;
   unsigned int f_flags;
   mode t f mode;
   loff_t f_pos;
   unsigned long f_reada, f_ramax, f_raend, f_ralen, f_rawin;
   struct fown struct f owner;
   unsigned int f_uid, f_gid;
   int f error;
   unsigned long f_version;
   /* needed for tty driver, and maybe others */
   void *private data;
   /* preallocated helper kiobuf to speedup O_DIRECT */
   struct kiobuf *f iobuf;
   long f iobuf lock;
};
```

3.xx/4.xx/5.xx style (quite similar to 2.4)

```
775 struct file {
776
        union {
777
             struct llist node
                                 fu llist:
778
             struct rcu head
                                 fu rcuhead:
779
        } f_u;
780
        struct path
                          f_path;
781 #define f_dentry
                         f_path.dentry
782
         struct inode
                                        /* cached value */
                           *f inode:
783
        const struct file_operations *f_op;
784
785
786
         * Protects f_ep_links, f_flags.
787
         * Must not be taken from IRO context.
788
         */
789
        spinlock_t
                          f lock:
790
        atomic_long_t
                            f_count;
        unsigned int
791
                           f_flags;
792
        fmode t
                          f_mode;
793
                            f_pos_lock;
        struct mutex
794
        loff t
                        f_pos;
795
        struct fown_struct
                              f owner:
796
        const struct cred
                             *f cred:
797
        struct file_ra_state
                             f_ra;
798
        _randomize_layout;;
```

Now we have randomized layout and a few fields are moved to other pointed tables

Randomized from kernel 4.8

Linux VFS API layering

- System call layer
 - ✓ Session setup
 - ✓ Channel ID based data access/manipulation
- Path-based VFS layer
 - ✓ Do something on file system based on a path passed as parameter
- Data structure based VFS layer
 - ✓ Do something on file system based on pointers to data structures

Relations

Path-based API examples

```
struct file *filp_open(const char * filename, int flags,
int mode)
```

returns the address of the struct file associated with the opened file

In the end we pass trough dentry/i-node/char-dev/superblock drivers

Data-structure based API examples

int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
Creates an i-node and associates it with dentry. The parameter dir is used to point to a
parent i-node from which basic information for the setup of the child is retrieved. mode
specifies the access rights for the created object

int vfs_create(struct inode *dir, struct dentry *dentry, int mode)
Creates an i-node linked to the structure pointed by dentry, which is child of the i-node pointed by dir. The parameter mode corresponds to the value of the permission mask passed in input to the open system call. Returns 0 in case of success (it relies on the i-node-operation create)

```
static __inline__ struct dentry * dget(struct dentry *dentry)
Acquires a dentry (by incrementing the reference counter)
```

```
void dput(struct dentry *dentry)
Releases a dentry (this module relies on the dentry operation d_delete)
```

... still on data-structure based API examples

```
ssize_t vfs_read(struct file *file, char __user *buf,
size_t count, loff_t *pos)
ssize_t vfs_write(struct file *file, char __user *buf,
size_t count, loff_t *pos)
                             file operation read (.....)
                             file operation write(.....)
```

In the end we traverse dentry/i-node structures to retrieve the file operations table associated with that dentry

Relating I/O objects and drivers - the MAJOR number

- A driver (for either a block or a char device) is registered into so called devicedrivers table
- The table is an array and the displacement into the array where the driver is registered is called MAJOR number
- Suppose we have to instantiate in memory the dentry/i-node of a file belonging to a specific file system type, then we need to:
 - Identify the char-dev driver for operating on the file (this will depend on where we registered the driver for files of that file system into the table)
 - ✓ Link the dentry/i-node to that driver (recall a char-device driver is a table of file-operations

Lets' simplify the job

- Suppose we instantiate in memory a dentry/i-node that depends on another one on the same file system
- They are "homogeneous"
- In this case we simply inherit the same char-device driver of the parent

What about data isolation?

- Generally the i-node identifies what data are touched by a call to a function in file_operations
- This might not be the case with generic I/O objects that are not regular files
- As an example, what about things that are not files??
- We may have an I/O object that
 - ✓ Can be managed by a given char-device driver
 - ✓ Can be an instance in a group of many that need to be driven by the same char-device driver (they are homogeneous but are not regular files)

VFS "nodes" and device numbers

- The field umode_t i_mode within struct inode keps an information indicating the type of the i-node, e.g.:
 - **>** directory
 - **≻**file
 - > char device
 - ►block device
 - (named) pipe
- sys_mknod() allows creating an i-node associated with a generic type
- In case the i-inode represents a device, the operations for managing the device are retrieved via the device driver tables
- Particularly, the i-node keeps the field kdev_t i_rdev which logs information related to both **MAJOR and MINOR** numbers for the device

The mknod() system call

int mknod(const char *pathname, mode_t mode, dev_t dev)

- •mode specifies the permissions to be used and the type of the node to be created
- permissions are filtered via the umask of the calling process (mode & umask)
- several different macros can be used for defining the node type: S_IFREG, S_IFCHR, S_IFBLK, S_IFIFO
- when using S_IFCHR or S_IFBLK, the parameter dev specifies <u>MAJOR and</u> <u>MINOR numbers for the device file that gets created</u>, otherwise this parameter is a don't care

Device numbers

- for x86 machines, device numbers are represented as bit masks
- MAJOR corresponds to the least significant byte within the mask
- MINOR corresponds to the second least significant byte within the mask
- The macro MKDEV(ma, mi), which is defined in include/linux/kdev_t.h, can be used to setup a correct bit mask by starting from the two numbers