	<pre># # Read Heart Failure dataset # df = pd.read_csv('./heart_failure_clinical_records_dataset.csv', index_col=False) df.reset_index(drop=True, inplace=True) df.head()</pre>
Out[2]:	age anaemia creatinine_phosphokinase diabetes ejection_fraction high_blood_pressure platelets serum_cr 0 75.0 0 582 0 20 1 265000.00 1 1 55.0 0 7861 0 38 0 263358.03 2 2 65.0 0 146 0 20 0 162000.00 3 50.0 1 111 0 20 0 210000.00 4 65.0 1 160 1 20 0 327000.00
<pre>In [3]: Out[3]:</pre>	Check for mising values df.isna().any() age False anaemia False creatinine_phosphokinase False diabetes False ejection_fraction False high_blood_pressure False platelets False
In [4]:	<pre>serum_creatinine</pre>
	RangeIndex: 299 entries, 0 to 298 Data columns (total 13 columns): # Column
In [5]: Out[5]:	8 serum_sodium 299 non-null int64 9 sex 299 non-null int64 10 smoking 299 non-null int64 11 time 299 non-null int64 12 DEATH_EVENT 299 non-null int64 dtypes: float64(3), int64(10) memory usage: 30.5 KB df.describe() age anaemia creatinine_phosphokinase diabetes ejection_fraction high_blood_pressure
	count 299.000000 299.000000 299.000000 299.000000 299.000000 mean 60.833893 0.431438 581.839465 0.418060 38.083612 0.351171 263 std 11.894809 0.496107 970.287881 0.494067 11.834841 0.478136 97 min 40.000000 0.000000 23.000000 0.000000 14.000000 0.000000 25 25% 51.000000 0.000000 116.500000 0.000000 30.000000 0.000000 262 50% 60.000000 1.000000 582.000000 1.000000 45.000000 1.000000 303
	max 95.000000 1.000000 7861.000000 1.000000 80.000000 1.000000 850 Apply Standard Scaler to entire dataframe - except target feature Target Feature of 1 == Died Target Feature of 0 == Lived
In [6]:	<pre>y_data = df.iloc[:,[12]] print("Target Feature:") print(y_data.columns) print("\n") ss = StandardScaler() df = pd.DataFrame(ss.fit_transform(df),columns = df.columns) df.head()</pre>
	<pre>print("Independent Features:") X_data = df.iloc[:,[0,1,2,3,4,5,6,7,8,9,10,11]] print(X_data.columns) Target Feature: Index(['DEATH_EVENT'], dtype='object') Independent Features: Index(['age', 'anaemia', 'creatinine_phosphokinase', 'diabetes',</pre>
In [7]:	<pre>dtype='object') Correlation Heatmap mask = np.triu(np.ones_like(df.corr(), dtype=bool)) plt.figure(figsize=(14, 10)) heatmap = sns.heatmap(df.corr(), mask=mask, vmin=-1, vmax=1, annot=True); heatmap.set_title('Heart Failure Correlation Heatmap', fontdict={'fontsize':18}, pad=12);</pre>
	Heart Failure Correlation Heatmap - 1.0 -
	high_blood_pressure - 0.093
	smoking - 0.019 -0.11 0.0024 -0.15 -0.067 -0.056 0.028 -0.027 0.0048 0.45 time0.22 -0.14 -0.0093 0.034 0.042 -0.2 0.011 -0.15 0.088 -0.016 -0.023 DEATH_EVENT - 0.25 0.066 0.063 -0.0019 -0.27 0.079 -0.049 0.29 -0.2 -0.0043 -0.013 -0.53 The second of the second o
In [8]: Out[8]:	Correlation with Target (DEATH_EVENT) df.corrwith(df['DEATH_EVENT']) age
	diabetes -0.001943 ejection_fraction -0.268603 high_blood_pressure 0.079351 platelets -0.049139 serum_creatinine 0.294278 serum_sodium -0.195204 sex -0.004316 smoking -0.012623 time -0.526964 DEATH_EVENT 1.0000000 dtype: float64
In [9]:	<pre>plt.figure(figsize=(8, 10)) heatmap = sns.heatmap(df.corr()[['DEATH_EVENT']].sort_values(by='DEATH_EVENT', ascending=False),</pre>
	serum_creatinine - 0.29 - 0.75 age - 0.25 high_blood_pressure - 0.079 anaemia - 0.066
	creatinine_phosphokinase - 0.063 - 0.0019 - 0.000 sex0.0043
	smoking0.2 platelets0.049 0.5 serum_sodium0.2 ejection_fraction0.27
	time0.53 DEATH_EVENT Part 2 - Machine Learning Models
In [10]:	<pre># # Train/Test Split - 30% for test # X_train, X_test, y_train, y_test = train_test_split(X_data, y_data, test_size=0.3, random_state= y_train = y_train.values y_train = y_train.reshape(1, -1) y_train = y_train.flatten()</pre>
In [11]:	<pre>y_test = y_test.values y_test = y_test.reshape(1, -1) y_test = y_test.flatten() Logistic Regression - Grid Search parameters = [</pre>
	<pre>'solver': ['lbfgs'], 'penalty': ['l2', 'none'] }, { 'solver': ['liblinear'], 'penalty': ['l1', 'l2'], }, { 'solver': ['newton-cg'], 'penalty': ['l2', 'none'], }, {</pre>
	<pre>'solver': ['sag'], 'penalty': ['l2', 'none'], }, { 'solver': ['saga'], 'penalty': ['l1', 'l2', 'none'], }, { 'solver': ['saga'], 'penalty': ['elasticnet'], 'l1_ratio': [1]</pre>
	<pre>#ll_ratio=1 'll', lr_classifier = GridSearchCV(estimator=LogisticRegression(random_state=0), param_grid=parameters</pre>
	<pre># Show best parameters print("\nBest Parameters:") print(lr_classifier.best_params_) print() predict = lr_classifier.predict(X_test) accuracy_lr_classifier = np.mean(predict == y_test) print("Logistic Regression Accuracy: " + str(accuracy_lr_classifier)) print() print("ROC-AUC Score: " + str(roc_auc_score(y_test, predict, average=None)))</pre>
	Fitting 5 folds for each of 12 candidates, totalling 60 fits Best Parameters: {'penalty': 'l2', 'solver': 'lbfgs'} Logistic Regression Accuracy: 0.8333333333333333333333333333333333333
In [12]:	<pre>Decision Tree Classifier - Grid Search parameters = [</pre>
	<pre>verbose=1, return_train_score=True, n_jobs=-1) # Fit the model for grid search dtree_classifier.fit(X_train, y_train) # Show best parameters print("\nBest Parameters:") print(dtree_classifier.best_params_) print() # Run prediction with best parameters</pre>
	<pre>predict = dtree_classifier.predict(X_test) accuracy_dtree_classifier = np.mean(predict == y_test) print("Decision Tree Accuracy: " + str(accuracy_dtree_classifier)) print() print("ROC-AUC Score: " + str(roc_auc_score(y_test, predict, average=None))) Fitting 5 folds for each of 12 candidates, totalling 60 fits Best Parameters: {'class_weight': {0: 8, 1: 2}, 'criterion': 'entropy', 'splitter': 'best'}</pre>
	ROC-AUC Score: 0.7914663461538461 Random Forest - Grid Search
In [13]:	<pre>parameters = [</pre>
In [13]:	<pre>{'n_estimators': [10, 100, 200, 500], 'criterion': ['gini', 'entropy', 'log_loss'], 'bootstrap': [True, False], 'class_weight': [{0:8,1:2}, 'balanced', 'balanced_subsample'] } rf_classifier = GridSearchCV(estimator=RandomForestClassifier(random_state=0), param_grid=parame</pre>
In [13]:	<pre>{'n_estimators': [10, 100, 200, 500],</pre>
In [13]:	<pre>{'n_estimators': [10, 100, 200, 500], 'criterion': ['gini', 'entropy', 'log_loss'], 'bootstrap': [True, False], 'class_weight': [{0:8,1:2}, 'balanced', 'balanced_subsample'] } rf_classifier = GridSearchCV(estimator=RandomForestClassifier(random_state=0), param_grid=parame</pre>
	<pre>{</pre>
	<pre>{</pre>
	<pre>('m_estimators': [10, 100, 200, 500],</pre>
In [14]:	<pre>{"nestimators": [10, 100, 200, 200, 300],</pre>
	<pre>{"nestimators": [10, 100, 200, 200, 300],</pre>
In [14]:	Interest 18, 180, 280, 280, 280, 180, 180, 180, 180, 180, 180, 180, 1
In [14]:	<pre>("nestimators": 10. 10. 200</pre>
In [14]:	Continue of Cont
In [14]:	<pre>("m_stimators": [18, 184, 286, 280),</pre>
In [14]: In [15]:	Content content Content co
In [14]: In [15]:	Comparison of the time, and particles of the comparison of the com
<pre>In [14]: In [16]: Out [16]:</pre>	Construction Dec. No. 1989, No.
<pre>In [14]: In [16]: Out [16]:</pre>	Contraction (1 to 10 to
<pre>In [14]:</pre> In [16]: Out [16]:	Control of the Cont
<pre>In [14]:</pre> In [16]: Out [16]:	Content Cont
In [14]: In [16]: Out [16]: Out [17]:	Contraction of the price of the
In [14]: In [16]: Out [16]: Out [17]: Out [17]:	Contraction of the process of the contraction of th
In [14]: In [16]: Out [16]: Out [17]: Out [17]:	Contention of the Contention
<pre>In [16]: In [16]: Out [16]: In [18]: Out [17]: Out [17]: </pre>	Comparison Com
In [14]: Out [16]: Out [17]: Out [17]: Out [17]:	
In [14]: In [16]: Out [16]: In [19]: Out [19]:	
In [14]: In [16]: Out[16]: Out[17]: Out[19]:	
In [14]: In [16]: Out [16]: In [19]: Out [19]:	For a control of the
In [14]: In [16]: Out [16]: In [19]: Out [19]:	The state of the control of the cont
In [14]: In [14]: In [16]: Out [17]: Out [17]: Out [19]: Out [20]: Out [21]:	Control of the Control of State of Control o
In [14]: In [14]: Unt [16]: Unt [17]: Unt [17]: Unt [17]: Unt [21]: Unt [21]: Unt [21]: Unt [21]:	**Committee Control Co
In [14]: In [15]: In [16]: Unt [17]: Unt [17]: Unt [17]: Unt [21]: Unt [22]: Unt [22]: Unt [22]:	PART SA PAR
In [14]: In [16]: In [17]: Out [17]: Ut [17]: Ut [17]: Ut [17]: Ut [21]: Ut [21]: Ut [22]: Ut [22]:	The control of the co
In [14]: In [16]: In [16]: In [27]: Out [27]: In [27]: Out [27]: Out [27]: In [27]: Out [27]:	The control of the co
In [16]: In [16]: Unt [21]: Unt [21]: Unt [22]: Unt [22]: Unt [22]: Unt [22]: Unt [22]: Unt [22]:	The control of the co
In [14]: In [16]: In [16]: Out [17]: Out [17]: Out [21]: Out [22]: Out [23]: Out [24]: Out [24]: Out [24]: Out [24]: Out [25]:	Security of the control of the contr
In [14]: In [16]: In [16]: Out [17]: Out [17]: Out [21]: Out [22]: Out [23]: Out [24]: Out [24]: Out [24]: Out [24]: Out [25]:	Section 1997 Secti

Ray Jennings

Project #3

CS 677, Fall 2022

smoking \leq = -0.69 -1.36 < sex <= 0.74Value Feature -0.58 serum_creatinine $serum_sodium$ LIME model coefficients: 71201711015), (8, -0.04714517620576748), (0, -0.03335973186981707), (1, 0.02459997522978538), (2, -0.04714517620576748)0.018494894377077735), (3, 0.010482891131236856), (5, 0.0023478522646774276), (10, -0.001916155234) 1074857), (9, 0.0014423363912904627)]} LIME model intercept:{1: 0.36430457421174234} LIME model R2 score: 0.16458880215821514 ^^ VERY Low R^2 Score For the *DEATH_EVENT = 1* instance In [30]: explanation = explainer.explain_instance(X_sample_1, rf_classifier.predict_proba, num_features=12) explanation.show_in_notebook(show_all=True) print("LIME model coefficients:\n" + str(explanation.local_exp)) print() print("LIME model intercept:" + str(explanation.intercept)) print("LIME model R2 score: " + str(explanation.score)) 0 Prediction probabilities $time \le -0.76$ 0 0.44 0.46 ejection_fraction <= ... 1 0.56 0.10 creatinine_phosphoki. 0.09 < serum_sodium -0.87 < anaemia <= 1.15-0.83 < age <= -0.07diabetes \leq = -0.85 $sex \le -1.36$ smoking ≤ -0.69 -0.74 < high_blood_pre... platelets > 0.40-0.28 < serum_creatin. Feature Value creatinine_phosphokinase platelets $serum_creatinine$ serum_sodium LIME model coefficients: 9215759709), (1, 0.01639555388219574), (0, -0.010651066315354311), (3, 0.0098406569335405), (9, 0. 003826318825577311), (10, -0.0016175989520438975), (5, 0.001551054986766725), (6, -0.0008035820809456576), (7, -7.543159703485565e-05)]} LIME model intercept:{1: 0.22011357558650296} LIME model R2 score: 0.711663531493109 ...for XBG In [31]: xgb_classifier = XGBClassifier(booster='gbtree', eval_metric='mlogloss', learning_rate=0.05, n_esti # Convert this to "values" only to avoid warning with LIME ! xgb_classifier.fit(X_train.values, y_train) explainer = lime.lime_tabular.LimeTabularExplainer(X_train.values, mode="classification", feature_r For the *DEATH_EVENT = 0* instance In [32]: # # Explain the DEATH_EVENT = 0 instance explanation = explainer.explain_instance(X_sample_0, xgb_classifier.predict_proba, num_features=12) explanation.show_in_notebook(show_all=True) print("LIME model coefficients:\n" + str(explanation.local_exp)) print("LIME model intercept:" + str(explanation.intercept)) print("LIME model R2 score: " + str(explanation.score)) Prediction probabilities rejection fraction <= ... 0 0.51 0.20 -0.22 < time <= 0.961 0.49 0.12 serum creatinine <= platelets <= -0.53 0.09 < serum_sodium. 0.08 age ≤ -0.83 0.04 -0.49 < creatinine_pho... smoking \leq = -0.69 -0.87 < anaemia <= 1.15 $-1.36 < \text{sex} \le 0.74$ diabetes \leq = -0.85 high_blood_pressure <. Feature Value diabetes -0.74 high_blood_pressure serum_creatinine -0.58 serum_sodium 0.54 LIME model coefficients: $\{1: [(4, 0.20385546515802275), (11, -0.1202702903458361), (7, -0.09097255330848032), (6, 0.0908183)\}$ $2580667888), \ (8, \ -0.07770583847340379), \ (0, \ -0.04316019858523787), \ (2, \ 0.024387104558295025), \ (10, \ -0.04316019858523787), \ (2, \ 0.024387104558295025), \ (10, \ -0.04316019858523787), \ (2, \ 0.024387104558295025), \ (2, \ 0.02487104558295025), \ (2, \ 0.02487104558295025), \ (2, \ 0.024871$ 0.022107435542976273), (1, 0.019458316370638506), (9, 0.005803862136943835), (3, -0.00127080995132), (1, 0.019458316370638506), (1, 0.019458316370638506), (2, 0.005803862136943835), (3, -0.00127080995132), (3, -0.00127080995132), (4, 0.005803862136943835), (5, 0.005803862136943835), (6, 0.005803862136943836), (6, 0.00580386213694386), (6, 0.00580386213694386), (6, 0.00580386213694386), (6, 0.00580386213694386), (6, 0.00580386213694386), (6, 0.00580386213694386), (6, 0.00580386213694386), (6, 0.00580386213694386), (6, 0.00580386213694386), (6, 0.00580386213694386), (6, 0.00580386213694386), (6, 0.00580386213694386), (6, 0.00580386213694386), (6, 0.00580386213694386), (6, 0.00580386213694386), (6, 0.00580386213694386), (6, 0.005803862136943860), (6, 0.005803860), (6, 0.005803860), (6, 0.005803860), (6, 0.0058060), (6, 091434), (5, -0.0010266467495306675)]} LIME model intercept:{1: 0.29696951474665134} LIME model R2 score: 0.12964761261436253 ^^ VERY Low R^2 Score For the *DEATH_EVENT = 1* instance In [33]: explanation = explainer.explain_instance(X_sample_1, xgb_classifier.predict_proba, num_features=12) explanation.show_in_notebook(show_all=True) print("LIME model coefficients:\n" + str(explanation.local_exp)) print("LIME model intercept:" + str(explanation.intercept)) print("LIME model R2 score: " + str(explanation.score)) 0 Prediction probabilities $time \le -0.76$ 0.08 creatinine_phosphoki.. 0.92 ejection_fraction <= ... 0.09 < serum_sodium -0.83 < age <= -0.07platelets > 0.40smoking <= **-**0.69 diabetes \leq = -0.85 -0.74 < high_blood_pre... $sex \le -1.36$ 0.01 -0.28 < serum_creatin... -0.87 < anaemia <= 1.15Feature Value creatinine_phosphokinase platelets 0.54 serum_sodium LIME model coefficients: $\{1: \ [(11,\ 0.6272305619277275),\ (2,\ -0.17013032296522998),\ (4,\ 0.16823828400370097),\ (8,\ -0.075643713032296522998),\ (4,\ 0.16823828400370097),\ (8,\ -0.075643713032296522998),\ (9,\ -0.17013032296522998),\ (9,\ -0.16823828400370097),\ (11,\ -0.16823828400370097),\$ 6743589782), (0, -0.031660347690149686), (6, -0.024083805910100547), (10, 0.01688334421423432), (3, 0.01579732504660968), (5, 0.006955370958375614), (9, 0.00568297198470326), (7, 0.0036850174256)08867), (1, 0.0006335121259776529)]} LIME model intercept:{1: 0.18044836609501524} LIME model R2 score: 0.6710157417485589 Part 3D In [34]: **import** warnings warnings.filterwarnings('ignore') # Need to convert to numpy array now for some reason !!! X_train_values = X_train.values X_test_values = X_test.values xgb_clf = XGBClassifier(booster='gbtree', eval_metric='mlogloss', learning_rate=0.05, n_estimators= # Fit the model for grid search xgb_clf.fit(X_train_values, y_train); In [35]: # # Need to reshape the one row sample instances into 2-dimensional # otherwise it WILL FAIL - see note in previous cell # $x_samples_0 = X_sample_0.values$ $x_samples_0 = np.reshape(x_samples_0, (1, 12))$ print(x_samples_0) $x_samples_1 = X_sample_1.values$ $x_samples_1 = np.reshape(x_samples_1, (1, 12))$ print(x_samples_1) $[[-0.9123354 \quad 1.14796753 \quad -0.4819416 \quad -0.84757938 \quad -1.53055953 \quad -0.73568819]$ -0.76154867 - 0.57503085 0.53905383 0.73568819 - 0.68768191 0.20312668] $[[-0.65970173 \ 1.14796753 \ -0.506718 \ -0.84757938 \ -1.53055953 \ 1.35927151]$ 1.58378844 0.00592615 0.53905383 -1.35927151 -0.68768191 -1.12617471] In [36]: pred = xgb_clf.predict(x_samples_0) #, output_margin=True) explainer = shap.TreeExplainer(xgb_clf) shap_value = explainer.shap_values(x_samples_0) # Terrible hack to get this to work with the module versions in place force_plot = shap.force_plot(base_value=explainer.expected_value, shap_values=shap_value, features=X_sample_0 shap_html = f"{shap.getjs()}{force_plot.html()}" display(HTML(shap_html)) higher \rightleftharpoons lower base value f(x) -2.916 **-0.04**128 1.084 2.084 -4.916 -3.916 -1.916 -0.9157 platelets = -0.7615ejection_fraction = -1.531 serum_creatinine = -0.575 | serum_sodium = (In [37]: pred = xgb_clf.predict(x_samples_1) explainer = shap.TreeExplainer(xgb_clf) shap_value = explainer.shap_values(x_samples_1) force_plot = shap.force_plot(base_value=explainer.expected_value, shap_values=shap_value, features=X_sample_1 shap_html = f"{shap.getjs()}{force_plot.html()}" display(HTML(shap_html)) base value f(x) -6.916 -4.916 -2.916 -0.9157 1.084 **2.44** 3.084 5.0 serum_creatinine = 0.005926 | ejection_fraction = -1.531 time = -1.126creatinine_phosphokinase Feature Importance Plot In [38]: shap_values = explainer(X_test) shap.plots.bar(shap_values, max_display=12) +1.84time serum_creatinine ejection_fraction +0.54creatinine_phosphokinase +0.45platelets +0.41serum_sodium +0.34age +0.12sex +0.11smoking +0.05diabetes +0.05anaemia +0.02 high_blood_pressure 0.25 0.50 1.75 2.00 0.00 0.75 1.00 1.50 mean(|SHAP value|) Part 4 - Predict Observations In [39]: arr = lr_clf.predict_proba(x_samples_0) print("Logistic Regression probabilities for \"Lived\":") print(arr) print() arr = lr_clf.predict_proba(x_samples_1) print("Logistic Regression probabilities for \"Died\":") print(arr) Logistic Regression probabilities for "Lived": [[0.79937398 0.20062602]] Logistic Regression probabilities for "Died": [[0.34908408 0.65091592]] In [40]: arr = dt_clf.predict_proba(x_samples_0) print("Decision Tree probabilities for \"Lived\":") print(arr) print() arr = dt_clf.predict_proba(x_samples_1) print("Decision Tree probabilities for \"Died\":") print(arr) Decision Tree probabilities for "Lived": [[1. 0.]] Decision Tree probabilities for "Died": [[0. 1.]]In [41]: arr = rf_classifier.predict_proba(x_samples_0) print("Random Forest probabilities for \"Lived\":") print(arr) print() arr = rf_classifier.predict_proba(x_samples_1) print("Random Forest probabilities for \"Died\":") Random Forest probabilities for "Lived": [[0.69 0.31]] Random Forest probabilities for "Died": [[0.44 0.56]] In [42]: arr = xgb_clf.predict_proba(x_samples_0) print("Xgboost probabilities for \"Lived\":") print(arr) print() arr = xgb_clf.predict_proba(x_samples_1) print("Xgboost probabilities for \"Died\":") print(arr) Xgboost probabilities for "Lived": [[0.5103786 0.4896214]] Xgboost probabilities for "Died": [[0.07982033 0.92017967]] For the two test samples: Decision Tree Classifier has the highest probabilities: For Lived: [1, 0] For Died: [0, 1] In []:

0

-0.22 < time <= 0.96

ejection_fraction <= ...
0.10
platelets <= -0.53

-0.87 < anaemia <= 1.15

-0.49 < creatinine_pho...

high_blood_pressure <...

diabetes \leq = -0.85

serum_creatinine <= ...

0.09 < serum_sodium

age <= -0.83

Prediction probabilities

0.69

0.31