

VERIFICATION

I, Koji Kikawa

of 3rd Floor No.8 Kikuboshi Tower Building, 20-18 Asakusabashi 3-chome, Taito-ku, Tokyo, JAPAN 111-0053

do hereby verify that I am fully conversant with the Japanese and English languages and that attached translation signed by me is, to the best of my knowledge and belief, a true and correct English translation of the Japanese Patent Application No. 2002-77821.

DATED	October 26, 2006	
SIGNED		

PATENT OFFICE JAPANESE GOVERNMENT

This is to certify that the annexed is a true copy of the following application as filed with this office.

Date of Application:

March 20, 2002

Application Number:

2002-77821

Applicant(s):

NGK Insulators, Ltd.

CERTIFIED COPY OF PRIORITY DOCUMENT

Commissioner,

Japan Patent Office

[NAME OF DOCUMENT]

APPLICATION FOR PATENT

[SERIAL NUMBER]

WP04032

[FILING DATE]

March 20, 2002

[ADDRESSEE]

Kozo Oikawa

Commissioner of the Patent Office

[INTERNATIONAL PATENT CLASSIFICATION]

G06K 7/00

B01J 35/04 F01N 3/28

[TITLE OF THE INVENTION]

METHOD FOR PROTECTING DISPLAYED

INFORMATION AND CELL STRUCTURE

WHOSE SURFACE INFORMATION IS

PROTECTED BY THE PROTECTING METHOD

[NUMBER OF CLAIMS]

11

[INVENTOR]

[Address or Residence]

c/o NGK Insulators, Ltd.

2-56, Suda-cho, Mizuho-ku,

Nagoya-city, Aichi-prefecture

[Name]

Masayoshi Miwa

[INVENTOR]

[Address or Residence]

c/o NGK Insulators, Ltd.

2-56, Suda-cho, Mizuho-ku,

Nagoya-city, Aichi-prefecture

[Name]

Masayasu Ishikawa

[APPLICANT FOR PATENT]

[Identification number]

000004064

[Name]

NGK Insulators, Ltd.

[AGENT]

[Identification number]

100088616

[Patent attorney]

[Name]

Kazuhira Watanabe

[OFFICIAL FEE]

[Payment registered number]

009689

[Amount of payment]

¥21,000

[LIST OF SUBMITTED DOCUMENT]

[NAME OF DOCUMENT]

Specification: 1

[NAME OF DOCUMENT]

Drawings: 1

[NAME OF DOCUMENT] Abstract : 1

[General power of attorney number] 9001231

[PROOF] Necessary

[Name of Document] SPECIFICATION

[Title of the Invention] METHOD FOR PROTECTING DISPLAYED INFORMATION AND CELL STRUCTURE WHOSE SURFACE INFORMATION IS PROTECED BY THE PROTECTING METHOD

5 [Scope of the Claim for Patent]

20

- [Claim 1] A method for protecting displayed information, comprising the steps of: displaying information on the surface of an outer wall of a cell structure; and subsequently coating a portion surrounding the displayed information with a coating agent to form a region permeated with a coating agent wherein pores of the outer wall are filled with the coating agent in a section of the outer wall on which the information is displayed, so that the region permeated with a coating agent prevents a catalyst solution from exuding from the inside of the outer wall of the cell structure
 - [Claim 2] The method for protecting the displayed information according to claim 1, wherein the coating agent is formed by dispersing a fine powder in a sol form in a liquid.
 - [Claim 3] The method for protecting the displayed information according to claim 2, wherein a concentration of the fine powder in the coating agent is 40% by weight or less.
- 25 [Claim 4] The method for protecting the displayed information according to claim 1 or 2, wherein a particle size of the fine powder is in a range of 10 to 30 nm.
 - [Claim 5] The method for protecting the displayed information according to any one of claims 2 to 4, wherein

the fine powder comprises one or two or more materials selected from a group consisting of silica, alumina, zirconia, and titania.

[Claim 6] The method for protecting the displayed information according to any one of claims 2 to 5, wherein the liquid is water or organic solvent.

5

10

15

20

25

[Claim 7] The method for protecting the displayed information according to any one of claims 1 to 6, wherein the information is displayed in one or two or more display forms selected from a group consisting of display forms of the information such as characters, barcodes, and two-dimensional codes.

for protecting the displayed [Claim 81 The method information according to any one of claims 1 to 7, wherein the information is displayed in one or two or more methods selected from a group consisting of a stamping method, ink jet method, thermal transfer method, and laser baking method. method for protecting the displayed [Claim 91 The information according to any one of claims 1 to 8, wherein the information is displayed in ink.

[Claim 10] The method for protecting the displayed information according to any one of claims 1 to 9, wherein the cell structure comprises a compound of one or two or more types of ceramic materials selected from a group consisting of cordierite, alumina, mullite, lithium aluminum silicate, aluminum titanate, titania, zirconia, silicon nitride, aluminum nitride, and silicon carbide.

[Claim 11] A cell structure, wherein surface information is protected by the protection method according to any one

of claims 1 to 10.

[Detailed Description of the Invention]

[0001]

[Technical Field of the Invention]

5 The present invention relates to a method for protecting displayed information and a cell structure whose surface information is protected by the protection method.

[0002]

25

[Prior Art]

- As an assembly for use in applications such as a catalyst 10 converter for use in a chemical reaction apparatus using exhaust gas purification and catalyst functions of internal combustion engine, a filter, and a heat exchanger, an assembly has been known in which a compressive material having a cushioning property is disposed between a cell 15 structure and a cylindrical metal container (can member) and a predetermined compressive surface pressure is applied to cell structure via the compressive material accommodate and hold (canning) the cell structure in the 20 metal container.
 - [0003] For example, when the assembly is used as the catalyst converter for purifying a car exhaust gas, noble metals such as platinum, palladium, and rhodium are dispersed and loaded as a catalyst component in a ceramic honeycomb structure as one type of the cell structures, and this structure is accommodated and held in the metal container (can member) via a ceramic mat and mounted on an exhaust system.
 - [0004] At this time, when the catalyst components are

loaded in the cell structure as described above, a loading amount changes with a weight of the structure. In order to control this loading amount, it is necessary to correctly manage the weight of the cell structure in a loading process.

Moreover, the cell structure accommodated and held in the metal container in an Since an outer shape dimension of the appropriate state. cell structure is correctly managed in the canning process, ceramic honeycomb structure having a dimensional fluctuation after firing can practically be used without machining/processing an outer periphery of the structure.

5

10

15

20

[0006] Furthermore, the steps for manufacturing, loading, canning, and the like can be traced back and recognized, by checking a lot number of the cell structure marketed after having been mounted on a car.

[0007] Therefore, for the cell structure, as shown in FIG. 2, an outer wall 4 has been marked with useful information 10 such as the weight, dimension, characteristics, lot number, and manufacturing conditions.

The information 10 is practically used for smooth and efficient operation of the production line, by reading it visually or mechanically by the users.

[0008] When the catalyst is loaded, in general, the catalyst components are not loaded by the outer wall of the honeycomb structure, and therefore the marked displayed information is not buried in the catalyst components. However, when the catalyst is loaded by applying it to the through channels in the cell structure, a solution

containing a catalyst exudes to the outer wall of the cell structure by a capillary phenomenon through pores connected to one another, and an information displayed portion on an outer wall surface is also colored. Further, in this case, the information is not easily read. When the information is not uniformly colored or colored in a spotted manner, there is a problem that the information cannot be read in a mechanical read method requiring clearness as in image analysis.

10 To solve the problem, marking ink has been selected so that the developed color of the displayed information obtains a sufficient contrast with respect to the catalyst solution. However, the information is colored mainly in various brownish colors from dark brown to black in accordance with types or concentrations 15 of the catalyst components. Therefore, it is difficult to handle all the catalyst solutions, and this has been a factor for inhibiting automation of the marking.

[0009]

5

[Problems to be solved by the Invention] The present invention has been developed in consideration of the above-described conventional problems, and an object is to provide a method for protecting displayed information, on which a displayed information portion is prevented from being colored after loading catalyst components and the displayed information can be maintained in a readable state, and a cell structure of which the surface information is protected by the protection method.

[0010]

[Means to solve the Invention] According to the present invention, there is provided a method for protecting displayed information, comprising the steps of: displaying information on the surface of an outer wall of a cell structure; and subsequently coating a portion surrounding the displayed information with a coating agent to form a region permeated with a coating agent wherein pores of the outer wall are filled with the coating agent in a section of the outer wall on which the information is displayed, so that the region permeated with a coating agent prevents a catalyst solution from exuding from the inside of the outer wall of the cell structure.

10

15

20

[0011] In the present invention, the coating agent is preferably one wherein fine powders are dispersed in a sol form in a liquid.

At this time, a concentration of the fine powder in the coating agent is preferably 40% by weight or less, and the liquid is preferably water or an organic solvent.

[0012] Moreover, in the present invention, a particle size of the fine powder is preferably 10 to 30 nm.

At this time, the fine powder preferably comprises one or two or more materials selected from a group consisting of silica, alumina, zirconia, and titania.

[0013] Furthermore, in the present invention, the information is preferably displayed in one or two or more display forms selected from a group consisting of characters, barcodes, and two-dimensional codes.

At this time, the information is preferably displayed in one or two or more methods selected from a group consisting of a

stamping method, ink jet method, thermal transfer method, and laser baking method. The information is preferably displayed in ink.

[0014] It is to be noted that in the present invention the cell structure preferably comprises one of the ceramic material selected from a group consisting of cordierite, alumina, mullite, lithium aluminum silicate, aluminum titanate, titania, zirconia, silicon nitride, aluminum nitride, and silicon carbide or a compound of two or more thereof.

[0015] Moreover, according to the present invention, there is provided a cell structure of which surface information is protected by the protection method described above.

15 [0016]

10

[MODE FOR CARRYING OUT THE INVENTION]

As described above, in a method for protecting displayed information according to the present invention, displaying information on the surface of an outer wall of a 20 portion surrounding the cell structure, a displayed information is coated with a coating agent. Accordingly, a region permeated with a coating agent wherein pores of the outer wall are filled with the coating agent is formed in a section of the outer wall on which the information is 25 displayed. The region permeated with a coating agent prevents a catalyst solution from exuding from the inside of the outer wall of the cell structure.

Accordingly, after loading catalyst components, a displayed information portion is prevented from being colored, and the

displayed information can be maintained in a readable state.

[0017] Here, in the present invention, the coating agent is preferably wherein fine powders are dispersed in a sol form in a liquid.

The coating agent is used to coat a portion surrounding marked displayed information 10 in an outer wall 4. As shown in FIG. 3, a region 24 permeated with a coating agent where pores 22 are filled with the coating agent can preferably be formed in a section of the outer wall 4 in the portion surrounding the displayed information 10.

5

10

15

The coating of the coating agent can be carried out by spraying, brushing, dropping, or impregnation.

[0018] At this time, in order to promote permeation of fine particles, a concentration of the fine powder in the coating agent is preferably 40% by weight or less. However, since there is such a trouble that the number of the coatings is increased if the concentration of the fine powder is extremely low, the concentration is usually preferably about 10 to 30% by weight.

20 [0019] Furthermore, the shape of the fine powder for use in the present invention should be spherical as much as possible and the particle size thereof is 10 to 30 nm. This is preferable because the fine powder can easily enter the pores of the outer wall of the cell structure without any hindrance.

[0020] It is to be noted that the fine powder for use in the present invention is not especially limited, but preferably contains one or two or more materials selected from a group consisting of silica, alumina, zirconia, and

titania, and especially silica is preferable.

5

[0021] Moreover, the liquid for use in the present invention is preferably water or organic solvent.

It is to be noted that the organic solvent is not especially limited and, for example, methanol, isopropanol, xylene, n-butanol, methyl ethyl ketone, ethylene glycol, and dimethyl acetamide are preferably appropriately selected and used, but it is more preferable to use alcohols which have little harm.

10 [0022] Here, a display form of the information is not especially limited, but the information is preferably displayed in one or two or more display forms selected from a group consisting of characters, barcodes, and two-dimensional codes (see FIG. 2).

15 [0023] The present invention is not especially limited to a method of displaying the information in ink, and an effect of protecting the displayed information can be obtained even in methods such as laser baking.

[0024] Also for these methods of displaying the information, two types of methods can be combined for use. For example, it is also possible to combine and use both the display methods including an ink jet method or a thermal transfer method and a stamping method. When the information is displayed by ink, two types of ink such as heat resistant ink and non-heat resistant ink may also be combined for use if necessary.

[0025] Moreover, it is preferable to use heat resistant ink when the information is displayed in the ink after loading the catalyst components, since the baking is carried

out by subjecting to a heat treatment at about 400 to 800°C. Furthermore, since the catalyst components are generally loaded on a substrate in the form of an aqueous solution, the ink preferably has water resistance.

5 [0026] For example, as shown in FIGS. 1(a) and 1(b), the cell structure is preferably a honeycomb structure which includes a plurality of cell passages 3 formed by a plurality of partition walls 2 and in which a cell partition wall thickness is 0.11 mm or less and an open frontal area ratio is 85% or more.

Moreover, the honeycomb structure includes the outer wall 4 forming outer-diameter contour around the structure, and the thickness of the outer wall is preferably at least 0.05 mm.

15 Furthermore, as the cell structure for use in the present invention, in addition to the honeycomb structure, a foam structure may also be used.

[0027] It is to be noted that the cell structure for use in the present invention preferably contains one or two or more of ceramic materials selected from a group consisting of cordierite, alumina, mullite, lithium aluminum silicate, aluminum titanate, titania, zirconia, silicon nitride, aluminum nitride, and silicon carbide or of a compound thereof. The adsorption material selected from a group consisting of active carbon, silica gel, and zeolite can also preferably be used for the cell structure.

[0028] Moreover, as to the cell shape for the honeycomb structure formed by extrusion molding, there are triangular, quadrangular, hexagonal, and round shaped cells. In general,

the structure having square shaped cells as one of quadrangular shaped cells is frequently used. However, in recent years, the use of the honeycomb structure having hexagonal shaped cells has also spread.

5 [0029]

[Example] The present invention will further be described hereinafter in detail based on examples, but the present invention is not limited to these examples.

(Examples 1 to 11, Comparative Examples 1 to 6)

10 After measuring an outer diameter of a cordierite honeycomb structure (2 mil partition wall, cell density of 900 cpsi, nominal outer diameter of \$\phi106\$ mm, length of 114 mm) with a measurement apparatus, as shown in FIG. 2, a honeycomb structure 1 discharged from the measurement apparatus was next sent to an ink jet apparatus 13, and the outer surface of the honeycomb structure 1 was marked with a barcode based on the information simultaneously sent.

At this time, examples of conditions for the marking by ink jet are as follows.

- 20 [Example of Ink Jet]
 - Ink jet apparatus: Emerge Co. S4 Plus
 - Type of ink:

Heat resistant ink (dark brown at room temperature, orange after the heat treatment)

- Form of information laid on the honeycomb structure:

 Numeric characters
- Information laid on the honeycomb structure:

 Average outer-diameter of the honeycomb structure by

actual measurement

[0030] After the printing on these conditions, a frame larger in length and breadth than the marked information by about 5 mm was prepared, and the coating agent shown in Table 1 was used in the frame to apply the coating (twice) (see FIG. 3). After the catalyst components were loaded by the honeycomb structure, it was checked if it was possible to recognize the information by image analysis. As Comparative Example 1, an uncoated sample was used.

5

Matching |rate (%) By image treatment 83 95 96 97 95 30 30 29 30 28 99 98 97 97 81 31 distinction Character rate Satisfactory|100 Satisfactory 100 98 96 95 45 47 55 50 48 51 Disapproved Disapproved Disapproved Disapproved Disapproved preventive effect exudation Concentrati Catalyst on of fine solution Good Good Good powder (wt%) 10 20 40 30 40 30 20 20 30 30 20 50 10 20 20 20 Isopropanol Xylene-n-butanol acetamide solvent] Ethylene Solution Dimethyl Methanol Methanol Methyl ethyl ketone glycol Water Water Water Water Water Water Particulate|Water Water Water Bar-shaped Spherical Particle Feathery shape Particle Material of Failicie fine powder (nm) 250-350 100×10 10 - 2010-20 10-20 10 - 2020-30 10-20 10 - 2010 - 2010-20 10 - 2010 - 2010 - 20(mu) 100 50 Magnesia Zirconia Alumina Alumina Titania Silica (Table 1) Comparative Example 4 Comparative Example 2 Comparative Example 3 Comparative Example 5 Comparative Example 6 Comparative 10 ഹ 9 _ ത \sim ന 4 ω Example 1 Example [0031]

[0032] From results of Table 1, in any of Examples 1 to 11, the catalyst was not permeated in the outer wall marked with the information in a process for loading by catalyst solution, therefore the information clearly remained, and a character recognition rate by image analysis was 95% or more.

On the other hand, in Comparative Example 1, especially for the information colored in the spotted form, it was impossible to recognize the information by image analysis, and the character recognition rate was about 45%.

Moreover, in Comparative Example 2, because the fine powder in the coating agent agglutinated and the coating was not going well, the information was colored, and the character recognition rate by image analysis was 50%.

Furthermore, in Comparative Examples 3 to 6, since the particle size of the fine powder in the coating agent was excessively large, it was impossible to charge the fine particles into pores in the outer wall well, the information was colored, and the character recognition rate by image analysis was 47 to 55%.

20 [0033]

5

15

25

[Effect of the Invention]

As described above, according to the present invention, there are provided a method for protecting displayed information, on which a displayed information portion is prevented from being colored after loading catalyst components and the displayed information can be maintained in a readable state, and a cell structure of which the surface information is protected by the protection method.

[BRIEF DESCRIPTION OF THE DRAWINGS]

[FIG. 1] The explanatory views showing a honeycomb structure for use as a cell structure in to examples, (a) is a plan view, and (b) is a perspective view.

[FIG. 2] An explanatory view showing a marking method of a barcode by an ink jet apparatus.

[FIG. 3] An explanatory view showing a state in which an outer wall of the honeycomb structure marked with information in the present invention is coated with a coating agent.

10 [Examination of Symbols]

1...honeycomb structure (cell structure), 2...partition wall, 3...cell passage, 4...outer wall, 10...information (displayed information), 13...ink jet apparatus, 22...pore, 24...region permeated with a coating agent

15

5

20

(b)

FIG.2

FIG.3

[NAME OF DOCUMENT] Abstract

[ABSTRACT]

[Theme]

5

There are provided a method for protecting displayed information, on which a displayed information portion is prevented from being colored after loading catalyst components and the displayed information can be maintained in a readable state, and a cell structure of which the surface information is protected by the protection method.

10 [Means] After displaying information 10 on the surface of an outer wall 4 of a cell structure, a portion surrounding the displayed information 10 is coated with a coating agent to form a region 24 permeated with a coating agent wherein pores 22 of the outer wall 4 are filled with the coating agent in a section of the outer wall 4 on which the information 10 is displayed. The region 24 permeated with a coating agent prevents a catalyst solution from exuding from the inside of the outer wall 4 of the cell structure.

[Adopted Figure] Fig. 3