Duality & Sensitivity

(P) max
$$Z = \sum_{j=1}^{n} c_j x_j$$

s.t. $\sum_{j=1}^{n} a_{ij} x_j \leq b_i, \quad \forall i$
 $x_j \geq 0, \quad \forall j$

(D) min
$$W = \sum_{i=1}^{m} b_i y_i$$

s.t. $\sum_{i=1}^{m} a_{ij} y_i \ge c_j, \quad \forall j$
 $y_i \ge 0, \quad \forall i$

- The Weak Duality Property: $cx \leq yb$
- The Strong Duality Property: $cx^* = yb^*$
- Complementary Solution Property: the simplex method simultaneously identifies a CPF solution x and a complementary solution y such that cx = yb. (y may be infeasible)
- Duality Theorem: (P) Feasible and Bounded →
 (D) Feasible and Bounded; (P) Feasible and Unbounded → (D) Infeasible; (P) Infeasible →

 (D) Infeasible or Unbounded
- Shadow Prices y_i^* (0 if constrain not tight)
- Complementary Slackness Conditions:

$$\sum_{j=1}^{n} (c_j - \sum_{i=1}^{m} y_i^* a_{ij}) x_j^* + \sum_{i=1}^{m} y_i^* (\sum_{j=1}^{n} a_{ij} x_j^* - b_i) = 0$$

For every j, either $x_j^* = 0$ or $\sum_{i=1}^m y_i^* a_{ij} = c_j$; For every i, either $y_i^* = 0$ or $\sum_{j=1}^n a_{ij} x_j^* = b_i$; x^* and y^* are optimal \iff CSCs hold

- Complementary Slackness Theorem: Let x^* be feasible for (P) and y^* be feasible for (D). Then x^* and y^* are optimal if and only if the complementary slackness conditions hold.
- Universal Transform:

Type	Primal (max)	Dual (min)		
Sensible	<u>≤</u>	$y_i \ge 0$		
Odd	=	Unrestricted		
Bizarre	≥	$y_i \le 0$		
Sensible	$x_j \ge 0$	≥		
Odd	Unrestricted	=		
Bizarre	$x_j \leq 0$	<u> </u>		

• Sensitivity Analysis:

Network Optimization

- Network (G), Nodes (V), Arcs (A): G = (V, A)
- Tree: connected network with no cycles
- Dijkstra's Algorithm for SPP:

n	Conn. Solved Nodes	Closest Conn. Unsolved	Total Dist.	nth Nearest Node	Min. Dist.	Last Conn.
1	3	5	180	5	180	3-5
2	3 5	8 6	195 272	8	195	3-8
3	3 5 8	9 6 7	246 272 274	9	246	3-9
		• • •		• • •		• • •

- Greedy Algorithm for Minimum Spanning Tree Problem: 1. choose any node and connect its nearest neighbor; 2. choose node that is closest to the connected nodes until all are connected.
- Augmenting Path: path from source to sink that every arc has a *strictly positive residual capacity*.
- Augmenting Path Algorithm for Maximum Flow Problem: 1. identify an augmenting path; 2. find the minimum residual capacity (c*) of all arcs on the path; 3. decrease the capacity of each arc by c*; 4. repeat until no augmenting path exists.
- Max-Flow Min-Cut Theorem: for any network, the maximum feasible flow from the source to the sink *equals* the minimum cut value for all cuts in the network.
- Integer Solutions Property: for minimum-cost flow problems in which every b_i and u_{ij} have in-

teger values, all basic variables in every basic feasible solution, including every optimal one, also have integer values.

• The Min-Cost Flow Problem

$$\begin{aligned} & \min & & \sum_{(i,j) \in E} c_{ij} x_{ij} \\ & \text{s.t.} & & \sum_{j} x_{ij} - \sum_{k} x_{ki} = b_i, \ \forall i \\ & & l_{ij} \leq x_{ij} \leq u_{ij} \\ & & x_{ij} > 0, \ \forall (i,j) \ inE \end{aligned}$$

• The Balanced Transportation Problem

$$\begin{aligned} & \min & & \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \\ & \text{s.t.} & & \sum_{j=1}^{n} x_{ij} = a_i, \ \forall i \\ & & \sum_{i=1}^{m} x_{ij} = b_j, \ \forall j \\ & & x_{ij} \geq 0, \ \forall i, j \end{aligned}$$

• The Assignment Problem

min
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
s.t.
$$\sum_{j=1}^{n} x_{ij} = 1, \forall i$$

$$\sum_{i=1}^{m} x_{ij} = 1, \forall j$$

$$x_{ij} = \{0, 1\}, \forall i, j$$

• The Maximum Flow Problem

min
$$v$$

s.t.
$$\sum_{j} x_{ij} - \sum_{k} x_{ki} = \begin{cases} v & \text{if } i = s, \\ -v & \text{if } i = t, \\ 0 & \text{otherwise} \end{cases}$$

$$0 \le x_{ij} \le u_{ij}, \ \forall (i,j) \in E$$

• The Shortest Path Problem

$$\min \sum_{(i,j)\in E} c_{ij} x_{ij}$$
s.t.
$$\sum_{j} x_{ij} - \sum_{k} x_{ki} = \begin{cases} 1 & \text{if } i = s, \\ -1 & \text{if } i = t, \\ 0 & \text{otherwise} \end{cases}$$

$$x_{ij} \ge 0, \ \forall (i,j) \in E$$

Integer Programming

- LP is easy to solve because there is always an optimal solution that is a CPF solution, which is not necessarily true in IP.
- Fixed-Charge Problems:

$$\min Z = \sum_{j=1}^{n} (c_j x_j + k_j y_j)$$

• Contingent Decisions:

$$x_i \leq My_i, \quad \forall j = 1, \dots, n$$

in whichi M is a huge number.

• Either-Or Constraints:

ConsONE
$$\leq My$$
, and ConsTWO $\leq M(1-y)$

• K-out-of-N Constraints:

$$\sum_{i} a_{ij} x_{ij} \le b_i + M y_i, \text{ and } \sum_{i} y_i = N - K$$

• Constraints with m Possible RHSs:

$$\sum_{i=1}^{n} a_i x_i = \sum_{k=1}^{m} d_k y_k, \text{ and } \sum_{k=1}^{m} y_k = 1$$

- $\begin{array}{ll} \bullet & z=x \ \, \texttt{O_R} \ \, y \colon \, z \geq x, z \geq y, z \leq x+y \\ z=x \ \, \texttt{AND} \ \, y \colon \, z \leq x, z \leq y, z \geq x+y-1 \end{array}$
- If-Then Constraints: if f(x) > 0, then g(x) > 0

$$-g(x) \le My, f(x) \le M(1-y)$$

• Piecewise Linear Approach $(x = \sum_i z_i b_i)$:

$$z_1 < y_1, z_k < y_{k-1} + y_k, z_n < y_{n-1}$$

$$\sum_{i=1}^{n-1} y_i = 1, \ \sum_{i=1}^{n} z_i = 1, \ y_i \in \{0, 1\}, \ z_i \ge 0$$

- Minimax or Maximin: replace the inner max{}
 (min{}) with a new decision variable t, which
 is an upper (lower) bound for all the terms in
 max{} (min{}).
- Absolute Values (min $Z = |x_j|$): $x_j = x_j^+ x_j^-$ with an objective function [min $Z = x_j^+ + x_j^-$], in which $x_j^+, x_j^- \ge 0$. Then, one of x_j^+ and x_j^- will be **zero** in a *minimization* problem.
- Absolute Values in Constraints:

$$\left|\sum a_i x_i\right| \le b \Rightarrow \sum a_i x_i \le b \text{ and } -\sum a_i x_i \le b$$

- LP Relaxation: $x_i \in \{0, 1\} \Rightarrow 0 \le x_i \le 1$
- The LP relaxation of any maximization (min) problem provides an upper (lower) bound on the optimal objective value; The bound attained at child nodes is always less (greater) than or equal to the bound attained at parent nodes.

- Divide and Conquer: partition the set of feasible solutions into smaller subsets (branching), stop partitioning a particular subset if we can tell it's no good (fathoming).
- Branch-and-Bound Algrithm:
 - -0. Initialization: set $Z^* = -\infty$;
 - 1. Branching: among all unfathomed subproblems, select the one that was created most recently. (If tie, choose the one with larger bound.) Branch to create 2 subproblems setting $x_i = 0$ or 1;
 - 2. Bounding: for each new subproblem solve LP relaxation using simplex method and rounding down optimal Z (assumes objective function coefficients are integer);
 - 3. Fathoming: fathom any new subproblem that meets one of the 3 fathoming reasons. If subproblem has integer solution with larger objective value than current incumbent, replace incumbent with it. If there are no remaining (unfathomed) subproblems, stop; the current incumbent is optimal. Otherwise, go to 1.

• Fathoming Reason: the solution to the LP relaxation is all-integer; OR the optimal objective value for this LP relaxation is less than or equal to the current incumbent value; OR the LP relaxation is infeasible.

Presentations

- Type of Industry: supply chain management in micro-electronic industry (IBM Microelectronics Division).
- Type of Problem: match assets with demands, to determin which demands it could meet when, and provide manufacturing guidelines.
- Type of Formulation: linear programming (inventory model) with a traditional material resource planning algorithm and a heuristic matching process based on clues established in the explosion algorithm

Additional Lectures

- How to Solve Nonlinear Optimization: use nonlinear solver; take derivatives; numerical search.
- Some Approaches for Large-Scale LPs: column generation; dantzig wolfe decomposition; constraint generation.
- x_{ij}: pounds produced by reactor i under setting j; y_{ij}: 1 if reactor i is in setting j or above, 0 otherwise; c_{ij}: unit cost of reactor i in setting j; P_ij: the cumulative capacity on reactor i under setting j.

$$\begin{aligned} & \min \quad \sum_{i=1}^{4} \sum_{j=1}^{3} c_{ij} x_{ij} \\ & \text{s.t.} \quad \sum_{i=1}^{4} \sum_{j=1}^{3} x_{ij} \geq 360 \\ & \quad P_{i1} y_{i2} \leq x_{i1} \leq P_{i1} y_{i1}, \forall i=1,...,4 \\ & \quad (P_{i2} - P_{i1}) y_{i3} \leq x_{i2} \leq (P_{i2} - P_{i1}) y_{i2}, \forall i=1,...,4 \\ & \quad 0 \leq x_{i3} \leq (P_{i3} - P_{i2}) y_{i3}, \forall i=1,...,4 \\ & \quad y_{i1} \geq y_{i2} \geq y_{i3}, \forall i=1,...,4 \\ & \quad x_{ij} \geq 0, y_{ij} \in \{0,1\}, \forall i=1,...,4,j=1,...,3 \end{aligned}$$

 $z_2 \le x, x_2 \le y, z_2 \ge x + y - 1$

 $z \ge z_1, z \ge z_2, z \le z_1 + z_2$

 Consider a multi-period production problem over the time period t = 1,...,T. The relevant data are given below: d_t = demand in period t; c_t = fixed cost if anything is produced; p_t = unit production cost; h_t = unit holding cost.

$$\begin{aligned} & \min & & \sum_{t=1}^{T} (p_t x_t + h_t S_t + c_t y_t) \\ & \text{s.t.} & & S_{t-1} + x_t = d_t + S_t, \forall t = 1, ..., T \\ & & S_0 = S_T = 0 \\ & & x_t \leq \left(\sum_{k=t}^{T} d_k\right) y_t, \forall t = 1, ..., T \\ & & x_t \geq 0, S_t \geq 0, y_t \in \{0, 1\}, \forall t = 1, ..., T \end{aligned}$$

$$\begin{split} & \min \quad \sum_{i=1}^{T} \sum_{t=1}^{i} (p_t + \sum_{k=t}^{i-1} h_k) q_{it} + \sum_{t=1}^{T} c_t x_t \\ & \text{s.t.} \quad \sum_{t=1}^{i} q_{it} = d_i, \forall i = 1, ..., T \\ & q_{it} \leq d_i x_t, \forall i, t = 1, ..., T \\ & q_{it} \geq 0, \forall i, t = 1, ..., T, x_t \in \{0, 1\}, \forall t = 1, ..., T \end{split}$$

• x_{ij} = amount of orders shipped from region i to j using small-parcel; y_i = amount of orders shipped from region 1 to region i using carrier; $z_i = 1$ if MOM shipped orders from region 1 to region i, 0 otherwise.

$$\begin{aligned} & \min \quad \sum_{i=1}^{27} c_i y_i + \sum_{i=1}^{27} \sum_{j=1}^{27} p_{ij} x_{ij} \\ & \text{s.t.} \quad y_j + \sum_{i=1}^{27} x_{ij} - \sum_{i=2}^{27} x_{ji} \geq q_j, \forall j = 2, ..., 27 \\ & 1000 z_i \leq y_i \leq \left(\sum_{i=1}^{27} q_i\right) z_i, \forall i = 2, ..., 27 \\ & x_{ij}, y_i \in \mathbb{N}^+, z_i \in \{0, 1\}, \forall i, j = 2, ..., 27 \end{aligned}$$

• XNOR Gate:

$$z_1 \le 1 - x, z_1 \le 1 - y, z_1 \ge 1 - x - y$$