PRÁCTICAS CON ARDUINO

Práctica 7: Sensor de temperatura. (Snap4arduino)

Grupo de Trabajo

Juan Antonio Perez. IES Murillo 30 abril 2018

Finalidad de la práctica.

En esta práctica vamos a ver cómo medir la temperatura en arduino. Utilizaremos para ello un sensor muy conocido y barato, el TMP36. En la práctica haremos que cuándo el sensor mida más de 24 grados se encienda un led rojo y cuándo sea menor un led verde.

Información

Un sensor de temperatura es simplemente LM35DZ un chip que nos devuelve un valor de tensión proporcional a la temperatura a la que está sometido. En esta sesión vamos a utilizar unos modelos comerciales muy extendidos y fáciles de encontrar por muy poco dinero:

TMP36 o LM35DZ.

Características del sensor

- Mide la temperatura en grados centígrados.
- o Funciona entre -50° C y 125°C para el TMP36.
- Funciona entre 0° C y 100°C para el *LM35DZ*.
- No es especialmente preciso, ya que tiene ± 1°C de incertidumbre, pero normalmente nos sobra para proyectos sencillos y es muy barato.
- EL encapsulado es similar al de un transistor y también tiene tres patas, así que mucho cuidado con confundirlos. Intentad leer las letras que lleva serigrafiadas (si podéis, porque suelen ser tan pequeñas que a veces no se leen ni con lupa).

Fuente: www.prometec.ne

Hardware necesario

- 1. Placa arduino uno
- 2. Sensor de temperatura TMP36 o similar
- 3. led rojo + resistencia 220
- 4. Led verde + resistencia 220
- 5. Cables de conexión
- 6. Placa protoboard

1. Esquema de conexiones

A la hora de conectar el sensor debes respetar las conexiones, de no hacerlo bien puedes sobrecalentar el sensor y al tocarlo hacerte una quemadura. POR LO TANTO HAZ LAS CONEXIONES CON CUIDADO Y SI TIENE DUDAS LLAMA AL PROFE.

2. Esquema electrónico

Programación

A la hora de hacer la programación, la manera de calcular la temperatura en función del voltaje que nos dé el sensor será diferente en función del sensor que estemos utilizando.

Explicación de la fórmula

Fuente: www.prometec.net

En el caso del **LM35DZ**, el fabricante nos dice que para calcular la temperatura debemos hacer la siguiente operación:

En el caso del **TMP36**, como empieza de -50°C, habrá que restarlo a la fórmula anterior:


```
TEMPERATURA 21.360153257
```

 Si queréis ver cómo cambia la temperatura,
 probad a agarrar el sensor entre los dedos para subirla y soplad para bajarla.

Una vez que tenemos la lectura de nuestro sensor los podemos utilizar en nuestro proyecto. En este caso vamos a encender el led verde si la temperatura es menor de 24 grados y el led rojo si es mayor.

```
Al presionar

por slempre

fijar TEMPERATURA - a

5 / 1044 × lectura analógica 3 × 100 - 50

si TEMPERATURA > 24

fijar pin digital 3 • en ✓

fijar pin digital 5 • en ✓

fijar pin digital 5 • en ✓

esperar 0.1 segs
```

Programación con IDE Arduino

```
//Declaramos las variables
const int Sensor = 3:
                                 // Pin que lee la temperatura
                                 //Pin del led verde y rojo
const int ledVerde = 5;
const int ledRojo = 3;
void setup() {
pinMode (ledRojo, OUTPUT);
                                 //los pines de los diodos se configuran como salidas. Los
pines analógicos no hace falta ponerlos como entrada
pinMode (ledVerde, OUTPUT);
                                //Se inicializa la comunicación serie
Serial.begin(115200);
}
void loop(){
 int lectura = analogRead(Sensor);
                                       // guardamos la lectura del sensor en l variable
"lectura"
 float voltaje = 5.0 /1024 * lectura;
                                       // realizamos los cálculos para pasar a grados
 float temp = voltaje * 100;
 Serial.println(temp);
                                      // se imprime por el pueRto serie el valor leÍdo
 if (temp < 24) {
                                       // si la temp es < 24 se enciende el verde
      digitalWrite (ledVerde, HIGH);
      digitalWrite (ledRojo, LOW);
 if (temp > 24) {
                                        //si la temp > 24 se enciende en rojo
      digitalWrite (ledVerde, LOW);
      digitalWrite (ledRojo, HIGH);
 delay(200);
```

Actividades y propuestas de mejora

- Conecta más led e intenta hacer una escala luminosa en función de la temperatura
- 2. A la práctica con el led rojo y verde añade un motor de modo que simule la puesta en marcha de un ventilador cuando al temperatura sea superior a 26 grados