

Grundlagen des maschinellen Lernens

github.com/ML-KA/presentations Martin Thoma | 28. Oktober 2015

Was ist Machine Learning?

Definition by Tom Mitchell: ML

A computer program is said to learn from **experience** E with respect to some class of **tasks** T and **performance measure** P, if its performance at tasks in T, as measured by P, improves with experience E.

End

3/17

 Basics
 Tools
 Weiteres

 0●0000
 00
 00

Basics Tools

Weiteres

End 0000

Klassifikation (überwacht)

Basics 000000 Tools

Weiteres

End

28. Oktober 2015

3/17

und Clustering (unüberwacht)

und Clustering (unüberwacht)

Basics Tools

0●00000

Martin Thoma – Grundlagen des maschinellen Lernens

Weiteres 00 End 0000

MNIST - Ziffern klassifizieren

- Klassen: 0, 1, 2, 3, 4, 5, 6,7, 8, 9
- 60 000 Trainigsdaten,
 10 000 Testdaten auf
 yann.lecun.com/exdb/mnist
- Algorithmen zur
 Klassifizierung: SVMs
 (Support Vector Machines),
 CNNs (Convolutional
 Neural Networks),
 k Nearest Neighbors (siehe tinyurl.com/knn-interact)

Datensatz der Klasse "2"; $28 px \times 28 px$

ImageNet

Image by Thomas Deselaers 21841 Synsets, 14197122 Bilder

Basics 0000000 Tools

Weiteres

Daten

- In der Klassifikation: Tupel (X,y), wobei $X\in\mathbb{R}^n$ ein Feature-Vektor, $y\in\{1,\ldots,k\}$ das Label und k die Anzahl der Klassen ist.
- Skalenniveaus
 - Nominal: Namen, Geschlecht
 - Ordinal: Konfektionsgrößen
 - Intervall: Anfangszeit einer Veranstaltung
 - Verhältnis: Temperatur in K
 - Absolut: Anzahl Personen
- Zeitreihen, Mengenwertige Daten
- Datenmenge: "There is no data like more data"

vgl. Vorlesung "Mustererkennung"

Preprocessing / Feature extraction

- Wie bekomme ich meine Features $X \in \mathbb{R}^n$?
- Bilder: Pixel-Werte
 - Kleiner Skalieren? Rotieren?
 - Farbraum? (z.B. RGB, HSV, HSL, HSI)
 - Normalisieren auf [0,1]
- Verhältis zweier Größen
- Deep Learning: Auto-Encoder

vgl. Vorlesung "Neuronale Netze"

Generalisierung und Overfitting

- Generalisierung: Wie gut ist man auf ungesehenen Daten?
- Overfitting: Auswendig lernen

5 Datenpunkte, 3 perfekte Modelle

		Trainingsfehler	
		□	☺
Test- fehler	© ©	Verfahren ändern; bessere Daten Programmierfehler	Overfitting Perfekt

Amazon Mechanical Turk

sklearn

Lasagne

- Neuronale Netze trainieren
- Mit GPU, falls CUDA installiert ist
- github.com/Lasagne
- Lasagne for Python Newbies

Anwendungen: Fotos

- how-old.net
- "Gelöste" Aufgaben:
 - Gesichter in Bild finden,
 z.B. mit Sliding Window
 - Geschlecht klassifizieren: ♂, ♀
 - Regression beim Alter

Wie alt bin ich auf diesem Bild?

Anwendungen: Fotos

- how-old.net
- "Gelöste" Aufgaben:
 - Gesichter in Bild finden, z.B. mit Sliding Window
 - Geschlecht klassifizieren: ♂, ♀
 - Regression beim Alter

20 Jahre alt

Anwendungen: Symbolerkennung

- write-math.com
- Klassifikation (378 Klassen)
 - Hauptsächlich mathematische Symbole
 - 272 427 Datensätze von 2188 Benutzern

On-line Daten

Thanks for Your Attention!

Tools 000 Weiteres

Vorlesungen

- Prof. Dr. Bayerer: Mustererkennung
- Prof. Dr. Waibel:
 - Kognitive Systeme
 - Neuronale Netze (Dr. Kilgour)
- Prof. Dr. Zöllner:
 - Machine Learning 1
 - Machine Learning 2
 - Praktika und Seminare
- Online
 - Machine Learning: Supervised Learning (Udacity)
 - Intro to Artificial Intelligence (Udacity)

15/17

Weiteres

- Introduction to Machine Learning. 1h 29min
- Machine Learning A Cappella Overfitting Thriller!. 5min

Image Sources

- sklearn cheat sheet by Andreas Mueller
- sklearn cheat sheet by Thomas Deselaers