CE 475 Term Project Report Oktay Özkan

¹Computer Engineering, Engineering Faculty, Izmir University of Economics Teleferik Mahallesi, Sakarya Cd. No:156, 35330 Balçova/İzmir, Republic of Turkey

1.Identification and Significance of Problem

In my term project, my problem is that; I have a dataset which contains 100 train data (every x and y values are known) (Fig.1). But I do not know the first 20 y values after hundredth data. (Fig.2) I should predict the y values as best as I can.

SampleNo	x1	x2	x3	x4	x5	Y	ابعد		40		00	_
1	32	37	10	41	6	68	101	55	12	4	36	2
2	72	12	13	69	-6	1266	102	33	48	14	67	8
3			12			3094	103	7	50	18	84	18
4	22		-1	95		89	104	32	38	-3	81	-6
5	_		11	72		1519	105	71	17	16	73	6
6			-6			71	106	49	47	-9	92	-10
7		28			0	3265	107	26	48	6	92	4
8		_	4		_		108	12	35	13	17	-17
0	49	30	4	93	-13	1532	109	27	- 1	-10	83	-12
						•	110	26	29	18	15	7
							111	65	5	17	44	8
92	23	26	4	4	6	862	112	63	36	-10	57	-10
93	82	0	-10	95	-2	12	113	88	22	-10	47	1
94	26	26	17	20	5	2989	114	75	15	1	82	-4
95	83	50	-10	34	-5	107	115	18	28	-3	59	2
96	88	28	-10	36	-7	-1638	116	93	39	18	21	-3
97	57	32	12	52	-13	68	117	16	47	10	32	-14
98	12	30	9	39	10	2104	118	52	24	24	27	0
99	29	35	0	16	-15	76	119	94	17	-6	42	-16
100	24	22	-5	44	-12	-268	120	47	39	2	94	(

Fig.1- Train dataset

Fig.2- Unknown y values

2.Methodology and Implementation

At the beginning, I have used multiple linear regression approach. I have implemented my code according to this formula: y=a*x1+b*x2+c*x3+d*x4+e*x5. I have chosen this approach because I could not found how 1 will predict y values using 5 different x values. In my first implementation, first I have founded a, b, c, d, e values according to my train dataset. (Fig. 1) And then I have predicted y values and calculated the variance. My variance is 0.4134904260249598. It means that, my error difference between train set and test set is much big. (Fig. 3)

```
a,b,c,d,e:
    4.80069386]
 [-16.64459272]
   85.94046075]
    7.14395891]
   13.72313054]]
                           хЗ
                                    х5
      SampleNo
                 х1
                      х2
                                x4
100
                                      2
            101
                 55
                      12
                            4
                                36
                                          692.693674
101
            102
                  33
                      48
                           14
                                67
                                      8
                                         1151.079188
102
            103
                   7
                      50
                           18
                                84
                                    18
                                         1595.412412
103
            104
                  32
                      38
                                81
                                     -6
                           -3
                                         -240.371814
104
            105
                                73
                                      6
                 71
                      17
                           16
                                         2036.786343
105
            106
                 49
                      47
                           -9
                                92
                                   -10
                                         -800.513091
106
            107
                 26
                      48
                            6
                                92
                                      4
                                          553.657096
107
            108
                      35
                  12
                           13
                                17
                                   -17
                                          480.427653
108
            109
                  27
                                   -12
                       1
                          -10
                                83
                                         -318.159443
                           18
109
            110
                  26
                      29
                                15
                                      7
                                         1392.274442
110
            111
                  65
                       5
                           17
                                44
                                      8
                                         2113.929206
111
            112
                  63
                      36
                          -10
                                57
                                   -10
                                         -886.191880
112
            113
                 88
                      22
                          -10
                                47
                                      1
                                         -453.635388
            114
113
                 75
                      15
                            1
                                82
                                     -4
                                          727.235718
114
            115
                 18
                      28
                           -3
                                59
                                      2
                                         -188.517652
                      39
            116
                 93
                                21
                                         1453.107452
115
                           18
                                    -3
                      47
                                   -14
116
            117
                           10
                                32
                                          190.402709
                  16
117
            118
                 52
                      24
                           24
                                27
                                      0
                                         2105.623804
118
            119
                 94
                                42
                                         -266.859432
                      17
                           -6
                                   -16
119
            120
                                94
                 47
                      39
                            2
                                      0
                                          419.906554
            0.4134904260249598
```

Fig.3-(a, b, c, d, e) values, predicted y values and variance

Because of big error difference between train set and test set, I decided to modify my code. My professor said that some x features may not be required. Due to this hint in order to find unnecessary x features I have chosen backward elimination technique. Using backward elimination technique I have eliminated x1 and x4 features according to their p-values.(Fig.4) (p-values of x1 and x4 are greater than my significance level(SL)). After this elimination, I have predicted y values according to ('x2','x3','x5') features.(Fig.5)

rig.4-backward Ellillillation

```
#Predict y
x2_train=df1[['x2','x3','x5']]
y2_train=df1.Y
x2_test=df2[['x2','x3','x5']]
linearRegression.fit(x2_train, y2_train)
df2['Y'] = linearRegression.predict(x2_test)
print(df2)
```

Fig.5-Predict y

OLS Regression Results

Dep. Variable:	Υ		0.467			
Model:	OLS	Adj. R-squared:	0.439			
Method:	Least Squares	F-statistic:	16.47			
Date:	Tue, 04 Dec 2018	Prob (F-statistic)	: 1.20e-11			
Time:	23:35:10	Log-Likelihood:	-825.21			
No. Observations:	100	_	1662.			
Df Residuals:	94	BIC:	1678.			
Df Model:	5	bic.	1070.			
Covariance Type:	nonrobust					
covariance Type.						
		+ p. +	10 025 0 0751			
coe	f std err	t P> t	[0.025 0.975]			
x0 1113.104		3.182 0.002	418.446 1807.762			
x1 -0.148		-0.042 0.967				
x2 -32.100	7 7.468 -	-4.298 0.000	-46.929 -17.272			
x3 82.674	4 10.004	8.264 0.000	62.810 102.538			
x4 0.597	4 3.631	0.165 0.870	-6.612 7.807			
x5 12.214	0 8.437	1.448 0.151	-4.538 28.966			
Omnibus:	6.029	Durbin-Watson:	1.890			
Prob(Omnibus):	0.049	Jarque-Bera (JB):	5.501			
Skew:	0.555	Prob(JB):	0.0639			
Kurtosis:	3.298	· /	296.			

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least Squares Tue, 04 Dec 2018 23:35:10	Adj. R-squared: F-statistic: Prob (F-statistic) Log-Likelihood: AIC:	0.467 0.444 20.80 : 2.44e-12 -825.21 1660. 1673.
coe		t P> t	
x0 1106.727	1 312.948	3.536 0.001	485.447 1728.008
x2 -32.077	9 7.409 -	-4.330 0.000	-46.787 -17.369
x3 82.673	1 9.952	8.307 0.000	62.916 102.430
x4 0.578	8 3.585	0.161 0.872	-6.538 7.696
x5 12.222	3 8.390	1.457 0.148	-4.434 28.879
=======================================			
Omnibus:	5.964	Durbin-Watson:	1.889
Prob(Omnibus):	0.051	Jarque-Bera (JB):	5.432
Skew:	0.552	, , ,	0.0661
Kurtosis:	3,295	· /	217.
Kul. COSTS!	5.295	Cond. No.	21/.

2.1.Libraries

```
@author: oktay
"""
#Libraries
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
from pandas.core.common import SettingWithCopyWarning
warnings.filterwarnings(action = 'ignore',category = SettingWithCopyWarning)
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import statsmodels.formula.api as sm
from sklearn.model_selection import cross_val_score
```

3.Result

After I predict y values, in order to compare approach 1 ['x1','x2','x3','x4','x5'] and approach 2 ['x2','x3','x5'] I calculated root mean squared error.(Fig.6) RMSE of approach 1 is greater than RMSE of approach 2. (Fig.7) That is to say, approach 2 ['x2','x3','x5'] is better than the other.

```
from sklearn.model_selection import cross_val_score

print("Mean of rmse [ 'x2','x3','x5' ]: ", np.sqrt(-cross_val_score(linearRegression, x3, y, cv=10, scoring='neg_mean_squared_error')).mean())
print("Mean of rmse [ 'x1','x2','x3','x4','x5' ]: ", np.sqrt(-cross_val_score(linearRegression, x2, y, cv=10, scoring='neg_mean_squared_error')).mean())
```

Fig.6-Code of RMSE

```
SampleNo
                                     x5
                  x1
                       x2
                           хЗ
                                x4
100
            101
                  55
                             4
                                36
                                      2
                                          1110.362913
                       12
                       48
                           14
                                           850.545366
101
            102
                  33
                                67
                                       8
102
            103
                   7
                       50
                           18
                                84
                                     18
                                          1238.375785
103
            104
                  32
                       38
                            -3
                                81
                                     -6
                                          -403.082481
                                73
                                      6
104
            105
                  71
                       17
                            16
                                          1990.107544
                       47
105
            106
                  49
                            -9
                                92
                                    -10
                                         -1237.671312
106
            107
                  26
                       48
                             6
                                92
                                      4
                                           140.480205
                                    -17
107
            108
                  12
                       35
                            13
                                17
                                           882.785903
108
            109
                  27
                        1
                          -10
                                83
                                    -12
                                           136.991003
109
            110
                  26
                       29
                           18
                                15
                                          1781.106779
110
            111
                  65
                        5
                           17
                                44
                                       8
                                          2483.610998
            112
                  63
                       36 -10
                                57
111
                                    -10
                                          -966.046072
                       22 - 10
                                47
112
            113
                  88
                                      1
                                          -381.435654
113
            114
                  75
                       15
                             1
                                82
                                      -4
                                           692.774456
114
            115
                  18
                       28
                            -3
                                59
                                      2
                                             16.232413
                                          1337.487548
115
            116
                  93
                       39
                            18
                                21
                                     -3
                       47
                                    -14
                                           284.679171
116
            117
                  16
                            10
                                32
117
            118
                  52
                       24
                            24
                                27
                                      0
                                          2353.182738
118
            119
                  94
                       17
                            -6
                                42
                                    -16
                                            -96.245501
119
            120
                  47
                       39
                             2
                               94
                                      О
                                             51.031079
Mean of rmse [ 'x2','x3','x5' ]: 962.5889085840488
Mean of rmse [ 'x1','x2','x3','x4','x5' ]: 1000.0719831858909
                        Fig.7-Result
```

4.Conclusion

I have learned fundamentals of machine learning and statistical math concept. I can compare single linear and multiple linear regression and I know which one is more effective in which cases. Furthermore I have learned Python language and using its libraries. Now still I am learning nonlinear models. There is no limit of learning.