II. kolo kategorie Z9

Z9-II-1

Babička měla čtvercovou zahradu. Dokoupila několik sousedních pozemků, čímž získala zase čtvercový pozemek, jehož strana byla o tři metry delší než strana původní zahrady. Výměra nového pozemku byla o devět čtverečních metrů větší než dvojnásobek původní výměry.

Jak dlouhá byla strana původní zahrady?

(K. Buzáková)

Možné řešení. Označme a délku strany původní čtvercové zahrady. Po dokupování vznikl nový čtvercový pozemek, jehož strana měla délku a+3. Pro výměry pozemků podle zadání platí

$$(a+3)^2 = 2a^2 + 9.$$

Ekvivalentními úpravami dostáváme

$$a^{2} + 6a + 9 = 2a^{2} + 9,$$

 $6a = a^{2},$
 $0 = a(a - 6).$

Uvedená rovnice má dvě řešení: a = 0 a a = 6.

Původní zahrada měla nenulové rozměry, tedy její strana byla dlouhá šest metrů.

Poznámka. Sice nevíme, jak vypadaly dokoupené pozemky, ale výměry zahrad (a jejich pomocná dělení) můžeme znázornit následovně:

Velký čtverec je složen ze dvou čtverců a dvou shodných obdélníků, resp. z jednoho čtverce a čtyř shodných obdélníků. Takto názorně vyjevujeme výsledek a = 3 + 3 = 6.

Hodnocení. 2 body za formulaci podmínek ze zadání pomocí jedné neznámé; 2 body za ekvivalentní úpravy; 2 body za vyloučení nulového řešení a závěr.

Řešení založená na grafickém znázornění hodnoťte podle kvality doprovodného komentáře.

Z9-II-2

Babičce ještě není 100 let, vnučka má více než 10 let a věk babičky je násobkem věku vnučky. Když vnučka napsala věk babičky a za něj věk svůj, dostala čtyřmístné číslo. Když babička napsala věk vnučky a za něj věk svůj, dostala jiné čtyřmístné číslo. Rozdíl těchto dvou čtyřmístných čísel je 7128.

Kolik let může být babičce a kolik vnučce? Uveďte všechny možnosti.

(L. Hozová)

Možné řešení. Označme v věk vnučky a b věk babičky. Věk babičky je násobkem věku vnučky, tedy b = kv pro nějaké přirozené k.

Čtyřmístné číslo zapsané vnučkou bylo 100b+v, čtyřmístné číslo napsané babičkou bylo 100v+b, tedy

$$(100b + v) - (100v + b) = 7128.$$

Po úpravách (a dosazení b = kv) dostáváme

$$99(kv - v) = 7128,$$

$$v(k - 1) = 72.$$

Úkolem je najít v a k tak, aby platila předchozí rovnost a navíc v > 10 a b = kv < 100. Číslo 72 lze (až na pořadí činitelů) vyjádřit následujícími šesti způsoby:

$$72 = 72 \cdot 1 = 36 \cdot 2 = 24 \cdot 3 = 18 \cdot 4 = 12 \cdot 6 = 9 \cdot 8.$$

Postupně probereme všechny možnosti vyhovující v > 10 a určíme odpovídající k a b = kv:

v	72	36	24	18	12	
k	2	3	4	5	7	
b	144	108	96	90	84	

Silně jsou vyznačeny vyhovující výsledky, tj. ty, pro něž platí b < 100. Úloha má tři řešení.

Jiné řešení. Označme v věk vnučky a b věk babičky, dále $v=\overline{AB}$ a $b=\overline{CD}$ dekadické zápisy těchto čísel. Informaci o rozdílu čtyřmístných čísel ze zadání vyjádříme pomocí algebrogramu

$$\frac{C\,D\,A\,B}{-\,A\,B\,C\,D}$$

$$\frac{-\,A\,B\,C\,D}{7\,1\,2\,8}$$

Protože vnučka je mladší než babička, dochází na posledních dvou místech k "přechodu přes desítku", tj.

Tedy babička je o 72 let starší než vnučka.

Protože vnučka má alespoň 11 let, má babička alespoň 83 let. Protože babička má nejvýše 99 let, má vnučka nejvýše 27 let. V těchto mezích stačí probrat všechny dvojice v a b=v+72 a ověřit, zda b je násobkem v:

v	11	12	13	14	15	16	17	18	19
b	83	84	85	86	87	88	89	90	91

v	20	21	22	23	24	25	26	27
b	92	93	94	95	96	97	98	99

Vyhovující výsledky jsou vyznačeny silně; úloha má tři řešení.

Hodnocení. Po 1 bodě za každé vyhovující řešení; 3 body za úplnost a kvalitu komentáře.

Z9-II-3

Karel, Mirek a Luděk porovnávali své sbírky známek. Když kontrolovali počty, zjistili, že Karel a Mirek mají dohromady 101 známku, Karel a Luděk 115 známek, Mirek a Luděk 110. Když ověřovali, co by mohli měnit, zjistili, že žádnou známku nemají všichni stejnou, ale že Karel a Mirek mají 5 známek stejných, Karel a Luděk 12 stejných, Mirek a Luděk 7.

Kolik známek má Luděk jiných než ostatní chlapci?

(M. Smitková)

Možné řešení. Označme po řadě K, L a M počty známek, které vlastní Karel, Mirek a Luděk. Podle zadání platí

$$K + M = 101$$
, $K + L = 115$, $M + L = 110$.

Součtem těchto tří rovností a dalšími úpravami postupně dostáváme:

$$2K + 2M + 2L = 326,$$

 $K + M + L = 163,$
 $L = 163 - (K + M).$

Dosazením první z úvodní trojice rovnic zjišťujeme, že Luděk má celkem 62 známek (L=163-101=62).

Z těchto 62 známek má 12 stejných jako Karel a 7 stejných jako Mirek. Luděk tedy má 43 známek jiných než ostatní chlapci (62 - 12 - 7 = 43).

Jiné řešení. Označme po řadě k, l a m počty známek, které vlastní pouze Karel, pouze Mirek a pouze Luděk. Podle zadání platí

$$(k+5+12) + (m+5+7) = 101,$$

 $(k+5+12) + (l+7+12) = 115,$
 $(m+5+7) + (l+7+12) = 110.$

Úpravami jednotlivých řádků dostáváme ekvivalentní soustavu

$$k + m = 72,$$

 $k + l = 79,$
 $m + l = 79.$

Z posledních dvou rovnic vyplývá, že k=m, z první potom k=m=36. Odtud dále dopočítáme l=43. Luděk má 43 známek jiných než ostatní chlapci.

Poznámka. Informace o počtech známek lze znázornit pomocí Vennova diagramu takto:

Při vyjadřování součtů známek se hodnoty z příslušných průniků počítají dvakrát. Přehledněji lze tento poznatek znázornit následovně:

Hodnocení. 3 body za vyjádření informací ze zadání pomocí rovnic a jejich úpravy; 3 body za dořešení soustavy a závěr.

Z9-II-4

Pan učitel chtěl po Adamovi a Evě, aby vypočetli obvod lichoběžníku, jehož delší základna měřila 30 cm, výška 24 cm a ramena 25 cm a 30 cm. Adamovi vyšel jiný obvod než Evě, přece však pan učitel oba pochválil za správná řešení.

Určete výsledky Adama a Evy. (L. Hozová)

Možné řešení. Lichoběžník s danými velikostmi základny (AB), výšky (AF) a ramen $(AD \ a \ BC)$ není určen jednoznačně; mohou nastat následující možnosti:

Všechny tyto lichoběžníky chápeme tak, že vznikly z obdélníku ABEF přikládáním, příp. odebíráním pravoúhlých trojúhelníků AFD a BEC. V závislosti na velikostech daných úseček se obecně může stát, že čtyřúhelník ABCD je nekonvexní. To uvidíme, jakmile dopočítáme neznámé velikosti úseček.

V následujících výpočtech nepíšeme jednotky (všude cm) a dosazujeme hodnoty ze zadání: |AB|=30, |AF|=24, |AD|=25 a |BC|=30. Podle Pythagorovy věty v trojúhelnících AFD a BEC dopočítáme velikosti zbylých odvěsen:

$$|FD| = \sqrt{|AD|^2 - |AF|^2} = \sqrt{25^2 - 24^2} = 7,$$

 $|EC| = \sqrt{|BC|^2 - |BE|^2} = \sqrt{30^2 - 24^2} = 18.$

V prvním, resp. ve druhém případě vychází

$$|CD| = |AB| - |FD| - |EC| = 30 - 7 - 18 = 5,$$

 $|CD| = |AB| + |FD| - |EC| = 30 + 7 - 18 = 19.$

V obou případech je výsledný rozdíl kladný a menší než 30, tedy se jedná o lichoběžník, jehož delší základna je AB. Ve zbylých dvou případech vychází jako delší základna CD, pročež se těmito případy nemusíme zaobírat.

[†] Např. v prvním případě by tato situace nastala, pokud by |AB| < |FD| + |EC|.

V prvním, resp. ve druhém případě obvod lichoběžníku |AB| + |BC| + |CD| + |DA| vychází

$$30 + 30 + 5 + 25 = 90$$
, resp. $30 + 30 + 19 + 25 = 104$,

a to jsou výsledky Adama a Evy.

Poznámka. Při ručním počítání velikostí odvěsen FD a EC lze s výhodou využít následujících úprav:

$$\sqrt{25^2 - 24^2} = \sqrt{(25 - 24)(25 + 24)} = \sqrt{49} = 7,$$

$$\sqrt{30^2 - 24^2} = \sqrt{(30 - 24)(30 + 24)} = \sqrt{6 \cdot 54} = \sqrt{18 \cdot 18} = 18.$$

Hodnocení. 2 body za rozbor možností; 2 body za pomocné výpočty; 2 body podle kvality komentáře.