Henry Clausen

Detecting semantic anomalies in network traffic

Increasing Number of Data Breaches by Industry

Source: Identity Theft Resource Center: ITRC Breach Report as of Feb 21, 2018

Network intrusion detection

- Monitors network for malicious activity
- Identify intrusion before harm is done
 - Data exfiltration
 - Ransomware
 - Service disruption
 - ..
- Second line of defense

Network intrusion detection

- Analyses in- and outgoing traffic
- Data:
 - Packets
 - Flows
- Often encrypted

Transmission Control Protocol (TCP) Header 20-60 bytes

source port number			destination port number		
2 bytes			2 bytes		
sequence number 4 bytes					
acknowledgement number 4 bytes					
data offset	reserved	control flags	window size		
4 bits	3 bits	9 bits	2 bytes		
checksum			urgent pointer		
2 bytes			2 bytes		
optional data 0-40 bytes					

Date flow start	Duration Proto	Src IP Addr:Port	Dst IP Addr:Port	Packets	Bytes Flows
2010-09-01 00:00:00.459	0.000 UDP	127.0.0.1:24920 ->	192.168.0.1:22126	1	46 1
2010-09-01 00:00:00.363	0.000 UDP	192.168.0.1:22126 ->	127.0.0.1:24920	1	80 1

Signature-based

Looking for "known patterns" of detrimental activity

A summer of the second of t

- Benefits:
 - Accurate
 - Low false alert rate
 - Fast

Drawbacks:

- Need for updated library of signatures
- Ineffective against new attacks

```
alert udp any any -> any 53 (content:"|01 00 00 01 00 00 00 00 00 01|"; offset:
2; depth: 10; content:"|00 00 29 10 00 00 00 80 00 00 00|"; \
msg: "covert iodine tunnel request"; threshold: type limit, track by_src, count
1, seconds 300; sid: 5619500; rev: 1;)
```

Anomaly-based

- Use training data to create model of normal traffic
- Compare new traffic against this model
- No assumptions about potential attack

Disadvantages:

- Difficult
- False alerts
- Computationally more intensive
- Lack of datasets
- Increasingly used in industry for unknown attacks

Where it currently works well

- Group anomalies:
 - DoS attacks
 - Network probing
- Activity-based:
 - User active at strange times
 - Temporal pattern of network activity
- Point anomalies (partly):
 - Odd connection pairs
 - Unusually large flows to specific ports

Semantic gap

- Many access attack events do not look suspicious when isolated
 - Few events
 - Normal size, length, ...
 - Hide in traffic diversity
- However, they are clearly anomalous from a contextual perspective
- How do we close this semantic gap?

Client Server

		Delta-time	Size	Flags
	Passw-req.	0.041	79	Α
Passw:		0.005	961	Α
	Failure	0.044	100	AP
	Success	0.022	81	AP
Req: PWD		3.073	89	AP

• • •

Reverse TCP Connection

Aim: semantic traffic model

- Applications have finite set of actions
 - Actions correspond to semantic structures in traffic

- Capture representation of semantic substructures using self-prediction
- Inspiration from state-based software models and natural language prediction

Negotiation phase model

 TCP connections typically have a strong semantic structure in the first few packets

- Packet features:
 - Binary: source, flags
 - Continuous: size, time, window size
- Variation can be stronger or softer:
 - packet order or missing/additional packet
 - Input and time
 - Connection restart

Modelling methods

Probabilistic Real-Time Automata

LSTM-Autoencoder

Validation

- Detection accuracy in existing datasets
 - Must contain both benign and malicious events
 - Few and not necessarily realistic attacks
- Need to validate that our model learned meaningful structures
 - Need for ground truth data

Validation

- Data generation framework:
 - Isolated traffic from set of application/scenarios
 - Randomised passwords, input, etc. to recreate true traffic variation
- Inject isolated instances both in training and test set
- Compare how well applications are recognized
 - Closeness measure for similar actions
 - Anomaly for new actions

The End

IN SECURITIES

(c) AMANDA ROUSSEAU

