同济大学计算机系

数字逻辑课程综合实验报告

学	号	2352595
姓	名	张嘉麟
专	业	计算机科学与技术
授课	老师	郭玉臣

一、实验内容

本实验主要包括两个部分:基本门电路设计与数据扩展模块的实现。通过 Verilog HDL 语言实现各模块,并进行功能验证。具体步骤包括:

- 1. 设计基本的与、或、非门电路。
- 2. 实现三态门电路,控制信号的传输。
- 3. 设计一个数据扩展模块,将输入数据扩展为32位,支持符号扩展与零扩展。

二、与或非、三态门系统总框图

输入模块:接收外部信号,处理并传递给逻辑运算模块。

逻辑运算模块:包括与、或、非电路。

模块功能描述表:

模块名	功能描述
logic_gates_1	实现与、或、非门的组合,使用结构化描述方式。
logic_gates_2	实现与、或、非门的组合,使用数据流描述方式。
logic_gates_3	实现与、或、非门的组合,使用行为描述方式。
logic_gates_tb	测试模块,产生不同的输入信号组合以验证逻辑。

测试用例表:

测试用例编号	iΑ	iВ	预期	输	出	(oAnd,	o0r,	oNot)
TC1	0	0	(0,	0,	1)			
TC2	0	1	(0,	1,	1)			
TC3	1	0	(0,	1,	0)			
TC4	1	1	(1,	1,	0)			

模块接口定义表:

模块名	输入	信号	输出信号		
logic_gates_1	iA,	iВ	oAnd,	o0r,	oNot
logic_gates_2	iA,	iВ	oAnd,	o0r,	oNot

模块名	输	\信号	输出信号		
logic_gates_3	iA,	iВ	oAnd,	o0r,	oNot

状态转移真值表:

当前状态(i	A, iB)	输出	状	态	(oAnd,	o0r,	oNot)
(0, 0)		(0,	0,	1)			
(0, 1)		(0,	1,	1)			
(1, 0)		(0,	1,	0)			
(1, 1)		(1,	1,	0)			

接口信号定义表:

信号名	类型	描述
iA	输入	输入信号 A
iВ	输入	输入信号 B
oAnd	输出	与运算结果
o0r	输出	或运算结果
oNot	输出	非运算结果

三、三态门系统设计

三态门实现

```
verilog代码:
module logic_gates(iA, iB, oAnd, oOr, oNot);
input iA, iB;
output oAnd, oOr, oNot;
assign oAnd = iA & iB;
assign oOr = iA | iB;
assign oNot = ~iA;
Endmodule
```

模块功能描述表:

模块名

功能描述

three_state_gates_1 实现三态门的基本功能,使用结构化描述方式。
three_state_gates_2 实现三态门的基本功能,使用数据流描述方式。
three_state_gates_3 实现三态门的基本功能,使用行为描述方式。
three_state_gates_tb 测试模块,产生不同的输入信号组合以验证三态门逻辑。

测试用例表:

测试用例编号 iA iEna 预期输出 (oTriState)

TC1	0	0	Z
TC2	0	1	0
TC3	1	0	Z
TC4	1	1	1

模块接口定义表:

模块名 输入信号 输出信号

three_state_gates_1 iA, iEna oTriState three_state_gates_2 iA, iEna oTriState three_state_gates_3 iA, iEna oTriState

状态转移真值表:

当前状态 (iA, iEna) 输出状态 (oTriState)

(0,	0)	Z
(0,	1)	0
(1,	0)	Z
(1,	1)	1

接口信号定义表:

信号名 类型 描述

iA 输入输入信号 A

信号名 类型 描述

iEna 输入 使能信号 oTriState 输出 三态输出结果

四、系统控制器设计

控制器设计的核心在于状态机的设计,包括以下步骤:

- 1. 状态转移真值表: 真值表记录每个状态下的输出与下一个状态, 为后续逻辑表达式的推导提供依据。
- 2. 激励函数和逻辑表达式推导:
 - 。 **核心步骤**: 从真值表推导出次态激励函数和控制命令的逻辑表达式。例如, 使用卡诺图简化逻辑表达式。
- 3. Logisim 逻辑方案图: 将逻辑表达式实现为电路图,通过 Logisim 工具验证逻辑正确性。

与或非门电路实验:

三态门实验:

五、测试模块建模

测试模块的设计至关重要,确保每个子系统功能正常:

• Test Bench 描述:

设计 test bench 时,定义输入信号并设置激励波形,观察输出结果是否符合预期。

核心步骤:确保每个模块的 test bench 能够全面覆盖可能的输入情况,从而提高测试的有效性和可靠性。

与或非门实验 tb.v 文件核心代码:

```
module logic_gates_tb;
reg iA;
reg iB;
wire oAnd;
wire oOr;
wire oNot;
initial begin
    iB = 0; #40 iB = 1; #40 iB = 0;
end
initial begin
    iA = 0; #40 iA = 1; #40 iA = 0;
end
logic_gates logic_gates_inst(
    .iA(iA),
   .iB(iB),
    .oAnd(oAnd),
    .o0r(o0r),
    .oNot(oNot)
);
endmodule
```

三态门实验 tb.v 文件核心代码:

```
three_state_gates uut (
  .iA(iA),
  .iEna(iEna),
  .oTri(oTriState)
);
initial begin
  // 初始化输入信号
  iA = 0;
  iEna = 1;
  #20;
  // 改变 iA 和 iEna
  iA = 1;
  iEna = 0;
  #40;
  // 改变 iA 和 iEna
  iA = 0;
  iEna = 1;
  #40;
  // 改变 iA 和 iEna
  iA = 1;
  iEna = 0;
```

#20;

// 结束仿真

\$finish;

end

// 显示输出信号

always @(posedge iA or posedge iEna) begin

\$display("iA=%b, iEna=%b, oTriState=%b", iA, iEna, oTriState);

end

endmodule

五、实验结果

这一部分通过截图和数据展示实验验证的结果:

- Logisim 逻辑验证图: 展示设计电路的逻辑实现,确认与预期逻辑一致。(见上文)
- ModelSim 仿真波形图:提供信号在时间域上的变化图,验证时序关系是否正确。

与或非门仿真图:

三态门仿真图:

• **实际硬件测试结果**:通过开发板进行测试,记录测试过程中 LED 状态的变化,附测试照片:

LED 小灯实验:

与或非门电路实验:

三态门实验:

(点击手指所指按键后亮灯)

核心步骤:确保所有测试结果与设计预期相符,特别是在时序和逻辑正确性上,进行反复验证。

六、结论

在结论部分总结实验成果和经验:

- 成功之处:指出在逻辑设计、Verilog编程以及仿真方面的收获,强调项目的整体成功
- **不足之处**: 反思在模块连接和信号时序方面的潜在问题,建议改进设计流程。有几个地方尝试了更改小灯泡的对应关系,最后没有成功,交给 chatgpt 之后成功了。

七、心得体会及建议

结合实验经历,分享个人感悟:

- 收获: 深入理解数字电路的设计与实现过程,提升了 Verilog HDL 的编程能力。
- 建议: 在未来的实验中,可以增加对复杂电路的设计挑战,提升模块化设计和测试的质量。