MATH 416H HW 6

James Liu

Due: Oct 10 Edit: October 16, 2024

1. a) Rank would be 3 and Nullity would be 2 as the matrix is already in reduced row-echlon form and the number of pivots is the rank and the number of none pivot column is Nullity.

b)

$$\begin{bmatrix} 1 & 2 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \rightarrow \begin{cases} x_1 = -2x_2 - x_4 \\ x_2 = x_2 \\ x_3 = -x_4 \\ x_4 = x_4 \\ x_5 = 0 \end{cases}$$

Take $x_2 = 1, x_4 = 1$, separatly, we have a basis consisting 2 element:

$$\left\{
 \begin{pmatrix}
 -2 \\
 1 \\
 0 \\
 0
 \end{pmatrix},
 \begin{pmatrix}
 -1 \\
 0 \\
 -1 \\
 1 \\
 0
 \end{pmatrix}
 \right\}$$

2. a) Scaler Multiplication: multiplying a scaler does not change the symetric of the matrix.

$$A = A^{T}$$

$$a_{ij} = A_{ji} \quad 0 \le ij \le n$$

$$ka_{ij} = ka_{ji} \quad k \in F$$

Vector Addition: Adding two such matrix also does not change such symetry:

$$A = A^{T}$$

$$a_{ij} = a_{ji}$$

$$a_{ij} + b_{ij} = a_{ji} + b_{ji}$$

$$B = B^{T}$$

$$b_{ij} = b_{ji}$$

Consider $a_{ij} = 0$, $\forall i, j$, such matrix will be the additive identity. And these operations do fullfill the 8 properties as in the question,

 $M_{n,n}(F)$ is already a vector space. And S_n is close under the 2 operations, thus it is a subspace.

b) Notice that one possible set of basis would be:

$$\left\{\begin{pmatrix}0&1&0\\1&0&0\\0&0&0\end{pmatrix},\begin{pmatrix}0&0&1\\0&0&0\\1&0&0\end{pmatrix},\begin{pmatrix}0&0&0\\0&0&1\\0&1&0\end{pmatrix},\begin{pmatrix}1&0&0\\0&0&0\\0&0&0\end{pmatrix},\begin{pmatrix}0&0&0\\0&1&0\\0&0&0\end{pmatrix},\begin{pmatrix}0&0&0\\0&0&0\\0&0&1\end{pmatrix}\right\}$$

3. T is injective, then $\forall w \in W$, $\exists v \in V$ such that w = T(v). By definition, $T^*(\psi) = \psi \circ T(v)$, $\psi \in W^*$. Consider $T^*(\psi)(v) = 0$

$$T^*(\psi)(v) = 0$$

$$\psi(T(v)) = 0 \ \forall v \in V$$

As T(v) is surjective on W, which means that $\psi(w) = 0$, $\forall w \in W$. Thus, ψ is a zero map, thus, $N(T^*) = \{\overrightarrow{0}\}$. Thus, by rank/nullity, the T^* is injective.

- 4. $\forall \ell \in U^0$, $\ell_1(x) + \ell_2(x) = 0 + 0$. Thus, $\exists \ell_3$ such that $\ell_1 + \ell_2 = \ell_3$. Thus U^0 is closed under addition. $\forall \lambda \in F$, $\lambda \ell(x) = \lambda \times 0 = 0$. Thus, it is also closed under scaler multiplication. Also, $\ell + \ell = \ell$ as 0 + 0 = 0, thus, there also exists a zero element. Thus, U^0 is a subspace.
- 5. Consider a map: $\pi: V \to V/U$, $\pi(v) = v + U$. Thus, $\forall u \in U$, $\exists v$ that u = v + U by definition. Thus, π is surjective. Thus, according to 3., the dual map $\pi^*: (V/U)^* \to V^*$ is injective. Thus, $N(\pi^*) = \overrightarrow{0}$. In this case, profed by 4., $\overrightarrow{0} = U^0 = \{\ell\}$. Thus, according to the 1st isomorphism law, $(V/U)^*/N(\pi^*) \to R(\pi^*)$ is isomorphic.