

Regression Modeling on Bike Sharing Data Set

T. Sai Harish Sarma

Content

- Business Context
- Problem Statement
- Data Cleaning & EDA
- •Feature Engineering
- Pre Processing Data
- Target Conditioning
- Modelling, Evaluation & Tuning
- Model Explainability & Conclusion

Business Context

- ✓ Seoul is the official capital city of South Korea.
- ✓ Seoul Metropolitan Government provides Rental Bike Service to the public.
- ✓ These Public Bikes are designed to be used by all women, the elderly and the infirm.
- ✓ These Bikes are made light weight and durable.

Problem Statement

Currently Rental bikes are introduced in many urban cities for the enhancement of mobility comfort. It is important to make the rental bike available and accessible to the public at the right time as it lessens the waiting time. Eventually, providing the city with a stable supply of rental bikes becomes a major concern. The crucial part is the prediction of bike count required at each hour for the stable supply of rental bikes.

Data Cleaning

```
### Getting info about null / NaN values count in each column
data.isna().sum()
Date
Rented Bike Count
Hour
Temperature(°C)
Humidity(%)
Wind speed (m/s)
Visibility (10m)
Dew point temperature(°C)
Solar Radiation (MJ/m2)
Rainfall(mm)
Snowfall (cm)
Seasons
Holiday
Functioning Day
dtype: int64
```


Feature Engineering

- > Feature Encoding
- **≻**Correlation Check
- **≻**Outlier Treatment
- ➤ Multicollinearity Check
- ➤ Linearity Check

Feature Engineering – Correlation

- 0.8

- 0.6

-0.4

- 0.2

- 0.0

--0.2

-0.4

- −0.6

Feature Engineering – Correlation

Positive Correlation:

- 1.Temperature
- 2.Dew Point Temperature
- 3. Solar Radiation

Negative correlation:

- 1.Winter
- 2.Humidity
- 3.Snowfall

The feature Dew Point Temperature is positively and highly correlated with Temperature.

There will be no effect in our model if Dew Point Temp. variable is removed.

Linearity Check

Linearity Check

Pre Processing Data - Outliers

Outlier Treatment

```
Q1 - 25% & Q3 - 75%

IQR =Q3-Q1

u_lim= Q3+ 1.5*(IQR)

I_lim= Q1- 1.5*(IQR)
```

Target Feature Conditioning

Creating Input and Out Features

5.1. Creating X and Y Variables

```
[56] ## x as Independant variable
    ## y as dependant variable

x=data.drop(['Rented_Bike_Count'], axis=1)
y=data['Rented_Bike_Count']

[63] ### Creating Test and Train Set of input and output variables
    x_train,x_test,y_train,y_test= train_test_split(x,y, test_size=0.30, random_state=42)

[64] x_train.shape, x_test.shape, y_train.shape, y_test.shape

((6132, 16), (2628, 16), (6132,), (2628,))
```

Feature Scaling

```
[65] scaler= StandardScaler()
     x_train= scaler.fit_transform(x_train)
     x test= scaler.fit transform(x test)
[66] x_train
     array([[-1.09359218, -2.02557075, -0.40155174, ..., -0.5853851,
             -0.57986105, 1.76898076],
            [ 1.23323198, -1.58026093, -0.69489404, ..., -0.5853851 ,
             -0.57986105, 1.76898076],
            [-0.51188614, -0.13510455, 0.3806944, ..., -0.5853851,
             -0.57986105, -0.56529727],
            [ 0.36067292, 1.38567048, 0.18513286, ..., -0.5853851 ,
              1.72455109, -0.56529727],
            [ 1.23323198, -1.37861121, -0.35266136, ..., -0.5853851 ,
             -0.57986105, 1.76898076],
            [ 1.524085 , 0.52865914, -0.15709982, ..., -0.5853851 ,
             -0 57986105 -0 5652972711)
```

- 1. Linear Regression
- 2. Lasso Regression with GridSearchCV
- 3. Ridge Regression with GridSearchCV
- 4. Random Forest with GridSearchCV
- 5. Gradient Boosting Regressor with GridSearchCV

1. Linear Regression

Fitting the Model

```
[69] model 1=LinearRegression().fit(x train,y train)
     model_1.score(x_train,y_train), model_1.score(x_test,y_test)
     (0.6388208407560204, 0.622310483063715)
[71] model 1.coef
     array([ 3.44347399e+00, 5.09673318e+00, -3.14430579e+00, 9.02250273e-02,
             3.29599814e-01, 2.47844904e-01, -4.44089210e-16, -9.99200722e-16,
            -6.46957344e-01, 5.22892019e+00, 8.34607438e-02, -6.76237225e-01,
            1.64634705e+00, 2.41078939e-01, 3.95201814e-01, -2.31191860e+00])
[72] model 1.intercept
     23.458551814426663
[73] ### Predicting of Target with Training and Testing Data
     y_train_predict = model_1.predict(x_train)
     y test predict = model 1.predict(x test)
```

```
MSE = mean_squared_error(y_train, y_train_predict)

print("MSE :",MSE)

RMSE= np.sqrt(MSE)

print("RMSE :",RMSE)

MAE= mean_absolute_error(y_train, y_train_predict)

print("MAE :",MAE)

R2_Score = r2_score(y_train, y_train_predict)

print("R2_Score :",R2_Score)

Adj_R2_Score = (1-(1-R2_Score)* (x_train.shape[0]-1) /(x_train.shape[0] - x_train.shape[1] - 1))

print("Adj_R2_Score :",Adj_R2_Score)

□ MSE : 56.464645536297915

RMSE : 7.51429607723158

MAE : 5.781371705477361

R2_Score : 0.6388143766387069

Adj_R2_Score : 0.6378693284009668
```

[93] Training_DF= Training_DF.append(Dict,ignore_index=True)
 Training_DF

	Model	MSE	RMSE	MAE	R2_Score	Adj_R2_Score	0
0	Linear regression	56.464	7.514	5.783	0.639	0.638	
1	Lasso regression	56.465	7.514	5.781	0.639	0.638	

Evaluation Metrics:

- •MSE
- •MAE
- •RMSE
- •R2 SCORE
- •ADJUSTED R2 SCORE

[140] Training DF

	Model	MSE	RMSE	MAE	R2_Score	Adj_R2_Score
0	Linear regression	56.464	7.514	5.783	0.639	0.638
1	Lasso regression	56.465	7.514	5.781	0.639	0.638
2	Ridge regression	56.464	7.514	5.783	0.639	0.638
3	Random Forest	14.243	3.774	2.579	0.909	0.909
4	Gradient Boosting	8.728	2.954	2.040	0.944	0.944

	Tes	ting_DF					
C→		Model	MSE	RMSE	MAE	R2_Score	Adj_R2_Score
	0	Linear regression	57.380	7.575	5.823	0.622	0.620
	1	Lasso regression	57.368	7.574	5.822	0.622	0.620
	2	Ridge regression	57.379	7.575	5.823	0.622	0.620
	3	Random Forest	21.527	4.640	3.141	0.858	0.857
	4	Gradient Boosting	19.367	4.401	3.040	0.873	0.872

Comparing Models - Training

Comparing Models - Testing

Model Explainability

Linear Regression

Lasso Regression

Model Explainability

Conclusions

1. EDA Outcomes

- * The use of bikes is high in between the months of MAY and OCTOBER.
- * The bikes are using while reaching and leaving office hours.
- * The count of rental bikes is high in summer, Demand is very low in Winter.
- * The use of bikes is high, when the temperature ranges between 25 and 30 degrees.
- 2. Data Quality Issues
- * Outliers available, they are removed.
- * Multicollinearity
- * Correlation
- * Feature Encoding

Conclusions

3. Model Outcomes

- Among all models, Random Forest and Gradient Boosting are worked better.
- * Temperature, Humidity, Hour and Functionalday are the most influencing features on Count of Rental Bikes.
- * Linear, Lasso and Ridge Models giving poor results as they are giving r2_score of 0.622, where as the Random forest and Gradient Boosting models giving as 0.858 and 0.873 respectively.
- * Ensemble Modeling is preferred as the Mean Squared Error is drastically decreased with Random Forest and Gradient Boosting Regressor.

Thankyou