Mathematics for Economists Kapitel 12 – Optimering i Diskret Tid

Eric Hillebrand

Institut for økonomi og CREATES Aarhus Universitet

Disposition Kapitel 12

- Dynamisk programmering (12.1)
- Euler ligningen (12.2)
- Ubegrænset periode (12.3)
- Maksimumsprincippet (12.4)

Betragt

$$\begin{aligned} \max_{u_t \in U \subseteq \mathbb{R}} \sum_{t=0}^{\infty} \beta^t f(x_t, u_t), \\ x_{t+1} &= g(x_t, u_t), \quad x_0 \text{ givet,} \end{aligned}$$

med $\beta \in (0,1)$ diskonteringssats.

Funktionerne f, g afhænger ikke direkte af t, de er **autonome** eller **stationære**. Derudover er f begrænset:

$$M_1 \leq f(x, u) \leq M_2$$
 for hvert (x, u) .

Det sikrer konvergensen af summen

$$\sum_{t=0}^{\infty} \beta^t f(x_t, u_t).$$

I periode s og givet tilstand $x = x_s$, tag en vilkårlig kontrolsekvens

$$\pi_s = \{u_t\}_{t=s}^{\infty}, \quad u_t \in U.$$

Løs for de efterfølgende tilstande

$$x_{t+1} = g(x_t, u_t), \quad t = s, s+1, \dots$$

 $\text{med } x_s = x.$

Evaluér objektfunktionen i perioden s i π_s :

$$V_s(x, \pi_s) = \sum_{t=s}^{\infty} \beta^t f(x_t, u_t) = \beta^s V^s(x, \pi_s)$$
 (diskonteret til $t = 0$),
$$V^s(x, \pi_s) = \sum_{t=s}^{\infty} \beta^{t-s} f(x_t, u_t)$$
 (diskonteret til $t = s$).

Definér værdifunktionen

$$\begin{split} J_s(x) &= \max_{\pi_s} V_s(x,\pi_s) = \beta^s J^s(x), \\ J^s(x) &= \max_{\pi_s} V^s(x,\pi_s). \end{split}$$

Eksistensen af disse maksima kræver, at f er begrænset, f og g er kontinuerte, og U er lukket og begrænset. Vi begynder i perioden s med $x_s = x$, $\pi_s = (u_s, u_{s+1}, \ldots)$. Fordi problemet er autonomt, kan

$$V^{s}(x, \pi_{s}) = \sum_{t=s}^{\infty} \beta^{t-s} f(x_{t}, u_{t})$$

omskrives når flytter kontrolsekvensen π_s til 0:

$$\pi_0^0 = (u_0^0, u_1^0, \ldots)$$

$$\text{med } u_0^0 = u_s, \ u_1^0 = u_{s+1}, \ldots,$$

og

$$V^{s}(x, \pi_{s}) = \sum_{t=s}^{\infty} \beta^{t-s} f(x_{t}, u_{t}) = \sum_{t=0}^{\infty} \beta^{t} f(x_{t}, u_{t}) = V^{0}(x, \pi_{0}^{0}).$$

Bemærk at vi begynder sekvensen $\{x_t\}$ med x i begge tilfælde. Derved fås

$$J^0(x) = J^s(x).$$

Fra

$$J_{s}(x) = \beta^{s} J^{s}(x)$$

følger

$$J_s(x) = \beta^s J^0(x), \quad s = 0, 1, \dots$$

Hvis vi kender til $J(x) = J^0(x) = J_0(x)$, så kender vi til $J_s(x)$ for hver s.

Teorem (Bellman equation)

Værdifunktionen $J(x) = J_0(x)$ opfylder **Bellman ligningen**

$$J(x) = \max_{u \in U} \left[f(x, u) + \beta J(g(x, u)) \right].$$

- Begynd i t = 0. Vælg $u \in U$ for at give $\beta^0 f(x, u)$.
- I periode t = 1, få $x_1 = g(x, u)$.
- ullet En optimal kontrolsekvens fra t=1 giver over alle efterfølgende perioder

$$J_1(x_1) = \beta J(g(x, u)).$$

• Derfor maksimerer den bedste valg for $u \in U$ summen

$$f(x, u) + \beta J(g(x, u)).$$

Standardproblemet

Betragt problemet

$$\max_{u_t \in U \subseteq \mathbb{R}} \sum_{t=0}^{T} f(t, x_t, u_t), \tag{1}$$

 $x_{t+1} = g(t, x_t, u_t), \quad t = 0, \ldots, T-1,$

med x_0 givet og x_T fri. Lad kontrolregionen U være et interval (konveks mængde). Lad Hamilton funktionen være

$$H(t,x,u,p) = \begin{cases} f(t,x,u) + pg(t,x,u) & \text{for } t < T, \\ f(t,x,u) & \text{for } t = T, \end{cases}$$
 (2)

hvor $p = p_t$ kaldes for **co-state** eller **adjungeret sekvens**.

Teorem (12.4.1, Maksimumsprincippet)

Antag at (x_t^*, u_t^*) er et optimalt sekvenspar for problem (1), og lad H være defineret ved (2). Så findes en sekvens p_t med $p_T=0$, således at for hvert $t=0,\ldots,T$ gælder at

$$H'_{u}(t, x_{t}^{*}, u_{t}^{*}, p_{t})(u - u_{t}^{*}) \le 0 \text{ for hvert } u \in U.$$
 (3)

Bemærk at hvis u_t^* er et indre punkt i U, så implicerer (3) at $H'_u(t, x_t^*, u_t^*, p_t)(u - u_t^*) = 0$. Derudover er p_t løsningen på differensligningen

$$p_{t-1} = H_X'(t, x_t^*, u_t^*, p_t), \quad t = 1, ..., T.$$
 (4)

Teorem (12.4.2, Tilstrækkelige betingelser, Mangasarian)

Antag at sekvens-tre-tuplen (x_t^*, u_t^*, p_t) opfylder alle betingelser i Teorem 12.4.1, og derudover at H(t, x, u, p) er **konkav** med hensigt til (x, u) for hvert t. Så er tre-tuplen (x_t^*, u_t^*, p_t) optimal.

Bemærkning

Hvis vi skriver differensligningen i (1) i formen $x_{t+1} - x_t = g(t, x_t, u_t)$ og omskriver Hamilton funktionen tilsvarende, så bliver (4) til

$$p_t - p_{t-1} = -H'_x(t, x_t^*, u_t^*, p_t),$$

som tilsvarer det kontinuerte tilfælde.

Bemærkning

Hvis U er lukket og begrænset og f, g er kontinuerte, så sikrer ekstremværdi-sætningen, at der altid findes en optimal løsning.