《辐射防护及保健物理》需要掌握的公式

第一章 放射性及辐射场的量和单位

$$N = N_0 e^{-\lambda t}$$
 $\tau = 1/\lambda$ $\lambda = \ln 2/T_{1/2}$

活度: $A = \lambda N(t)$ [Bq]or[Ci]

$$N = \mathbf{m} \cdot N_A / M$$

粒子注量: $\Phi = dN / da = \Delta L / \Delta V$ (da 小球体截面积)

粒子注量率: $\varphi = d\Phi / dt = d^2N / (da \cdot dt)$ [m⁻²·s⁻¹]

能量注量: $\Psi = dE_n / da$ [J·m⁻²]

能量注量率: $\psi = d\Psi / dt [J \cdot m^{-2} \cdot s^{-1}]$

$$\Psi = \Phi \cdot E \qquad \Psi = \int_0^\infty \frac{d\Phi}{dE} E \cdot dE$$

$$\Phi = \int_0^\infty \frac{d\Phi(E)}{dE} dE \quad \Psi = \int_0^\infty \frac{d\Phi(E)}{dE} E \cdot dE$$

第三章 辐射与物质的相互作用

总质量阻止本领:

$$\frac{S}{\rho} = \frac{1}{\rho} \left(\frac{dE}{dI} \right) \qquad \left(\frac{S}{\rho} \right) = \left(\frac{S}{\rho} \right)_{col} + \left(\frac{S}{\rho} \right)_{rad}$$

线衰减系数: $\mu = \tau + \sigma_c + \sigma_{coh} + \kappa$

线能量转移系数:

$$\begin{split} &\tau_{tr} = \tau_{a} + \sigma_{a} + \kappa_{a} \\ &= \tau (1 - \frac{\delta}{h\nu}) + \sigma_{c} \frac{E}{h\nu} + \kappa (1 - \frac{2mc^{2}}{h\nu})cm^{-1} \end{split}$$

质能吸收系数: $\mu_{en}/\rho = \mu_{tr}(1-g)/\rho$

(g 为次级电子轫致辐射损失的能量份额)

混合物/化合物: $\mu/\rho = \sum_{i} (\mu/\rho)_{i} \omega_{i}$

(ω_i为元素 i 的重量百分比)

物理量	符号	物理含义
质量 衰减 系数	$\frac{\mu}{\rho}$	描述单位质量厚度上,入射 线减弱的特性

质能 转移 系数	$rac{\mu_{ m tr}}{ ho}$	描述单位质量厚度上,入射 线转移给次级带电粒子的能 量份额
质能 吸收 系数	$rac{\mu_{ ext{en}}}{ ho}$	描述单位质量厚度上,次级 带电粒子沉积的能量份额

第四章 辐射防护的相关量与系数

1. 基本量

比释动能:

$$K = \frac{dE_{tr}}{dm}$$
 [Gy] (J/kg) $\dot{K} = \frac{dK}{dt}$

空气比释动能率系数:

$$\dot{K}_{\delta} = A\Gamma_{\delta}/I^{2}$$
 $\Gamma_{\delta} = I^{2} \dot{K}_{\delta}/A$ 吸收剂量: $D = \frac{d\varepsilon}{dm} = (1 - g) \frac{dE_{tr}}{dm}$ [Gy]

照射量:
$$X = \frac{dQ}{dm} = \Psi \frac{\mu_{en}}{\rho} \frac{e}{\overline{W}} = f_x \cdot \phi$$
 [C/kg]

照射量因子: fx(查表可知)

$$D_{_{\mathit{I\! M}}} \; = \; f_{_{\mathit{I\! M}}} \, \cdot \, X$$

(单位: fm~Gy/R, X~R or fm~J/C, X~C/kg)

$$D_{m} = \frac{(\mu_{en} / \rho)_{m}}{(\mu_{on} / \rho)_{a}} \cdot \frac{W_{a}}{e} \cdot X$$

2. 防护量

当量剂量(器官 T): $H_{\scriptscriptstyle T} = \sum_{\scriptscriptstyle R} w_{\scriptscriptstyle R} D_{\scriptscriptstyle T,\scriptscriptstyle R}$ [Sv](J/kg)

有效剂量:
$$E = \sum_{T} w_{T} \sum_{R} w_{R} D_{T,R} = \sum_{T} w_{T} H_{T}$$

集体有效剂量:
$$S = \sum_{i} \overline{E_i} \cdot N_i$$
 [人·希]

待积当量剂量、待积有效剂量:

$$H_{T}(\tau) = \int_{t_0}^{t_0+\tau} \dot{H}_{T}(t)dt \qquad E(\tau) = \sum_{T} w_{T}H_{T}(\tau)$$

3. 运行实用量

剂量当量: H = QD [Sv]

第六章 外照射剂量计算与防护

1.β 核素皮肤沾污的情况: $D = \varphi \cdot E \cdot \mu_{\beta} = \varphi \cdot S / \rho$

2. 重带电粒子:

质子的有表可查,其他重带电粒子:

$$\frac{s}{\rho} = (\frac{z}{z_p})^2 (\frac{s}{\rho})_{\varepsilon} = Z^2 (\frac{s}{\rho})_{\varepsilon} \qquad \varepsilon = \frac{M_p}{M} E$$

E 为入射重带电粒子的能量(MeV)

屏蔽计算时重带电粒子修正: $R \approx \frac{1}{Z^2} \frac{M}{M_p} R_0$

Ro 为与重带电粒子有相同速度的质子的连续慢化近似射程(mg/cm²)。

- 3. 光子的剂量与防护
- (1) 剂量计算

 \mathbf{x} 射线机 $K = I \delta_x (1/r)^2$ [mGy/min]

(I 为管电流强度, mA, r 为距靶的距离, m)

加速器: $D = I\delta_a(1/r)^2$ [Gy/min]

γ辐射源

点源照射量率:
$$\dot{X} = \sum_{i=1}^{m} \varphi_{i}(\frac{\mu_{en}}{\rho})_{i} E_{i} \frac{e}{W} = \frac{A\Gamma}{r^{2}}$$

吸收剂量率: $D = \frac{W}{R} \dot{X} = f \dot{X}$

 $\dot{K} = \frac{A\Gamma_k}{r^2} \, \left(\, \Gamma_k \, \text{为空气比释动能率常数,可查表} \right)$

(2) X、v 射线在物质中的减弱:

窄東: $N = N_0 e^{-\mu d}$

宽束: $N = N_0 B e^{-\mu d}$ (B 为积累因子)

(3) X、y 射线屏蔽计算

透射公式: $\dot{D} = \dot{D}_0 / r^2 \prod_{i=1}^n 10^{d_i/TVT_i}$

 $(D_0$ 源项剂量率 $\mu Gy/h; D$ 计算点; r 点到源点的距

离 m; d_i 第 i 种屏蔽体厚度, cm; $TVT_i = \Delta_{1/10}$ cm)

散射公式: $D = D_0 s\alpha/r^2 r_R^2$

(s 散射体面积 m^2 , α 散射系数, r 源点到散射点, 散射点到计算点 m)

屏蔽厚度: $d = \log_{10}(\dot{D}_0/\dot{D}) \times \Delta_{1/10}$

减弱系数: $K = D_0 / D = e^{\mu d} / B(E_{\gamma}, \mu d)$

透射比: $\eta = H_0 / H = K^{-1}$ (K, η 可查表)

第七章 内照射剂量计算与防护

有效廓清速率: $\lambda_{\text{eff}} = \lambda_{\text{b}} + \lambda_{\text{r}}$

有效滞留分数: $r(t) = R(t) \cdot e^{-\lambda_{r} \cdot t} = \exp(-\lambda_{eff} \cdot t)$

累积剂量

单一器官:
$$D = \frac{kEn}{m} \int_{0}^{T} A(0) \exp(-\lambda_{eff} t) dt = \tilde{A} S$$

其中:
$$\tilde{A} = \int_{0}^{T} A(0) \exp(-\lambda_{eff} t) dt$$
 $S = \frac{kEn}{m}$

多器官: $D=\Delta \tilde{A}F$ 其中: $\Delta = kEn$, $F = \frac{f}{m}$

可以写成: $D = \widetilde{A}S(T \leftarrow S)$

靶器官的待积当量剂量: $H_{50,T} = \sum_{S} \sum_{i} H_{50} \left(T \leftarrow S \right)_{i}$ 待积有效剂量: $E = \sum_{T} w_{T} H_{50,T}$

第八章 辐射与剂量的测量

空腔电离理论(布拉格-格雷理论):

$$D_{g} = \frac{dE_{g}}{dm_{g}} = \frac{nW}{dm_{g}} = \frac{ne\frac{W}{e}}{dm_{g}} = q_{g}\frac{W}{e}$$

布拉格-格雷关系式: $D_{\scriptscriptstyle m} = D_{\scriptscriptstyle g} \cdot \overline{S}_{\scriptscriptstyle m,g} = q_{\scriptscriptstyle g} (\frac{W_{\scriptscriptstyle g}}{e}) \overline{S}_{\scriptscriptstyle m,g}$

第九章 环境辐射监测

计数率:

$$n = \frac{N_s}{t_s} - \frac{N_b}{t_b}$$
 $\sigma_n = \sqrt{\frac{N_s}{t_s^2} + \frac{N_b}{t_b^2}} = \sqrt{\frac{n_s}{t_s} + \frac{n_b}{t_b}}$

最小可探测活度(MDA):

$$MDA = \frac{L_D}{t_{live}(测量活时间)P_x(发射概率)\varepsilon(探测效率)}$$

注:其他公式考试会给出。