# EDAN20 - Assignment 4 A simple language classifier

Hugo Mattsson hu5174ma-s

October 2024

### 1 Objectives and dataset

#### 1.1 Objectives

The objectives of the assignment were to use both sklearn and PyTorch to to create neural networks that classify languages.

#### 1.2 Dataset

The dataset used was Tatoeba, downloaded on 2014-10-05.

### 2 Method and program structure

#### 2.1 Compact Language Detector v3 - CLD3

CDL3 extracts character n-grams from a text and hashes down to an id within a small range. It also computes the relative frequency for each of them within the text. These n-gram ids and frequencies are then in some way averaged down to an embedding and concatenated together to produce the embedding layer.

#### 2.2 My program

My program finds all uni-, bi- and trigrams and their relative frequencies from a sentence. The n-grams themselves are then hashed and, using modulo, reduced to fit into a smaller interval. This modulo reduction creates overlap between different n-gram sizes, so the id ranges for bi- and trigrams are shifted upwards. All the n-gram ids and frequencies are then concatenated to create the final representation of a given sentence.

The difference between my architecture and CDL3 is that I don't perform any sort of avaraging on the n-gram frequencies, they stay as a raw relative sentence frequency.

### 2.3 scikit-learn vs PyTorch

Both scikit-learn and PyTorch are great libraries/frameworks when doing some sort of machine-learning. The main difference between them is that sklearn seems to be a more high-level library making it easier to use. PyTorch instead is more low-level and therefore expects more of the user, but instead granting finer control and better understanding.

### 3 Results

We can see that both the sklearn and PyTorch models performed similarly.

### 3.1 The feature matrix - X

| 8 | 0 | 8 | 1 | 0 | 0 |
|---|---|---|---|---|---|
| 0 | 0 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 0 |
| 3 | 1 | 2 | 1 | 0 | 0 |
| 4 | 1 | 6 | 1 | 0 | 0 |
| 4 | 0 | 1 | 1 | 0 | 0 |
| 5 | 2 | 2 | 0 | 1 | 0 |
| 2 | 0 | 2 | 1 | 0 | 0 |

Table 1: The feature matrix - X

#### 3.2 sklearn

|                      | Precision | Recall | F1-Score | Support |
|----------------------|-----------|--------|----------|---------|
| cmn                  | 1.00      | 1.00   | 1.00     | 9866    |
| $\operatorname{dan}$ | 0.99      | 0.97   | 0.98     | 9963    |
| eng                  | 1.00      | 1.00   | 1.00     | 10059   |
| fra                  | 1.00      | 1.00   | 1.00     | 10041   |
| jpn                  | 1.00      | 1.00   | 1.00     | 10005   |
| swe                  | 0.97      | 0.99   | 0.98     | 10066   |
| accuracy             |           |        | 0.99     | 60000   |
| macro avg            | 0.99      | 0.99   | 0.99     | 60000   |
| weighted avg         | 0.99      | 0.99   | 0.99     | 60000   |
| Micro F1:            | 0.9921    |        |          |         |
| Macro F1:            | 0.9921    |        |          |         |
|                      |           |        | ·        |         |

Table 2: sklearn accurracy



Figure 1: sklearn confusion matrix

## 3.3 PyTorch

|                | Precision | Recall | F1-Score | Support |
|----------------|-----------|--------|----------|---------|
| cmn            | 1.00      | 1.00   | 1.00     | 9866    |
| dan            | 0.98      | 0.99   | 0.98     | 9963    |
| eng            | 1.00      | 1.00   | 1.00     | 10059   |
| fra            | 1.00      | 1.00   | 1.00     | 10041   |
| $\mathbf{jpn}$ | 1.00      | 1.00   | 1.00     | 10005   |
| swe            | 0.99      | 0.98   | 0.98     | 10066   |
| accuracy       |           |        | 0.99     | 60000   |
| macro avg      | 0.99      | 0.99   | 0.99     | 60000   |
| weighted avg   | 0.99      | 0.99   | 0.99     | 60000   |
| Micro F1:      | 0.9929    |        |          |         |
| Macro F1:      | 0.9929    |        |          |         |

Table 3: PyTorch accuracy



Figure 2: PyTorch Loss and Confusion Matrix

### 4 Conclusion

The objective of this assignment, to create a language classification model was accomplished. Both sklearn and PyTorch were used and they both performed very similarly to each other.