

Universidade Federal do Pará Instituto de Tecnologia Faculdade de Engenharia Mecânica Mecânica Geral Prof. MSc. Igor dos Santos Gomes

1ª Lista de Exercícios – Mecânica Geral

1ª Questão) No processo de torneamento de um eixo, este exerce três componentes de força na ferramenta de corte, tal como pode ser observado na Figura 1. Encontre a magnitude e os ângulos diretores da força resultante.

Figura 1 – Forças exercidas por um eixo em um bit durante o processo de usinagem.

2ª Questão) Um vaso de planta é suportado por três cordas as quais interceptam o ponto *O*, de acordo com a Figura 2. Se a força resultante atuando sobre este ponto possui módulo igual a 7

N e está direcionada ao longo do sentido negativo do eixo z, determine os vetores força em cada uma das cordas.

Figura 2 – Esquema de um vaso de planta suportado por três cordas.

 3^{a} Questão) Linha de vida é usada para desenvolver trabalhos em altura. Normas como as EN795, NBR 16325 e NR 35 versam acerca das especificações técnicas que os projetos devem conter para os dimensionamentos de um aparato como esse, para que no caso de uma queda, os cabos sustentem o trabalhador com segurança. Conforme a situação hipotética e simplificada, mostrada na Figura 3, em que um trabalhador de massa igual a 75 kg está suspenso em uma linha de vida, determine a magnitude dos vetores força F_1 , F_2 e F_3 .

Figura 3 – Esquema de um trabalhador em uma linha de vida. Fonte: Adaptado de Honeywell Miller (2019).

 4^a Questão) Em um gancho (também chamado de escápula) são atadas duas redes, de acordo com a Figura 4, as quais em uso conferem aos vetores F_1 e F_2 as intensidades de 600 N e 750 N, respectivamente. Conforme informado pelo fabricante, o gancho suporta em alvenaria até 1400 N. Deste modo, além de expressar na forma cartesiana cada uma das forças, determinar a força resultante, sua magnitude e ângulos diretores, verifique, pautando-se nos resultados, se a situação é segura. Considere α , β e γ de F_2 iguais a 45°, 60° e 120°, respectivamente.

Figura 4 – Esquema de forças em uma escápula com duas redes atadas.

 5^{a} Questão) A necessidade de rebocar-se uma embarcação acontece com frequência e demanda certo domínio de técnicas e métodos de reboque, além de equipamentos adequados. Na situação mostrada na Figura 5, por exemplos, estão sendo utilizados cabos de aço, de rigidez da ordem de 68 kN/m, um elo (ponto A) e cunhos (pontos B, C e D). O barco rebocado exercer uma força F_1 ao elo cuja expressão vetorial cartesiana é $\{-2500i\}$ N. Determine a intensidade dos vetores força F_2 , F_3 que os cunhos B e C exercem no elo, encontre a expressão vetorial cartesiana da força resultante e calcule a deformação em cada um dos cabos.

Figura 5 – Esquema de uma embarcação sendo rebocada. Fonte: Adaptado de CSL Marinharia (2020).

 6^{a} Questão) Considerando que uma turbina eólica de pequeno porte montada em uma torre, como pode ser visto na Figura 6, é suportada por dois cabos que vão de A a B e de A a C, se F_{B} e F_{C} possuem magnitudes de 450 N e 380 N, respectivamente, determine a intensidade e os ângulos diretores da força resultante atuando na torre.

Figura 6 – Turbina eólica de pequeno porte montada em uma torre.

 7^a **Questão)** Uma turbina eólica é formada essencialmente por um conjunto de pás que são submetidas à ação do vento. As forças que são exercidas sobre as pás, conforme ilustrado na Figura 7, fazem com que estas girem em torno de um eixo. A ação do vento sobre as pás pode ser definida por duas componentes de forças: o arrasto (F_A) e a sustentação (F_S). A força de arrasto é a componente na direção da velocidade de vento relativa (V_R), enquanto a força de sustentação é a componente perpendicular a esta direção. Tendo como referência o plano de rotação das pás, existe uma força normal (F_N) e uma força tangencial (F_T) a este plano, além do ângulo de torção da pá (β). Há ainda o ângulo de ataque (α), que é o ângulo com que o vento incide na pá em relação à linha que passa pelo centro desta. A soma de α e β resulta no ângulo de escoamento φ . Neste sentido, considerando que os vetores F_A e F_S sejam respectivamente $-\{60i\}$ N e $\{110j\}$ N, na medida em que α seja igual a 15° e β igual a 30° , determine os vetores F_N e F_T expressos em forma cartesiana.

Figura 7 – Representação dos vetores força atuando sobre um perfil aerodinâmico de uma pá eólica. Fonte: Adaptado de Silva (2013).

Referências

Honeywell Miller. **FAQ Software de Cálculo para Linhas de Vida**. 2020. Disponível em: Millerhttps://www.honeywellsafety.com/Supplementary/Documents_and_Downloads/Fall_Pr otection/Permanent_Anchorage_Systems/4294996417/1046.aspx. Acesso: 17/07/2021.

CSL Marinharia. **Rebocando uma embarcação na água**. 2019. Disponível em: http://cslmarinharia.com.br/blog/rebocando-uma-embarcacao-nagua/. Acesso: 17/07/2021.

Silva, S. R. **Tecnologia em aerogeradores**. Apostila, 58f. Curso de Especialização em Energia Eólica, UFMG. Disponível em:

http://ead2.ctgas.com.br/a_rquivos/Pos_Tecnico/Especializacao_Energia_Eolica/Tecnologia_Aerogeradores/Tecnologia_de_Aerogeradores_2013.pdf. Acesso: 17/07/2021.