MATH 320: Test 2 Study Guide

Lecture $7 - Random \ Variables (2.1 and 3.1)$

Random variables

- Definition: Function from a sample space S into real numbers.
- Range of a RV: The set of possible values of X, $\mathcal{X} = \{x : X(s) = x, s \in S\}$
- RV X is discrete $\iff \mathcal{X}$ is a finite or countable set $\iff F_X(x)$ is a step function of x.
- RV X is continuous $\iff \mathcal{X}$ is an interval (or union of intervals) on the real number line $\iff F_X(x)$ is a continuous function of x.

Lecture 8 – Distribution Functions (2.1 and 3.1)

Calculating probabilities

- Definition: The probability mass function (pmf) of a discrete random variable X is given by $f_X(x) = P(X = x)$, for all x
- \bullet Definition: A probability density function (pdf) is a continuous random variable X is a real-valued function that can be used to find probabilities using

$$P(a \le X \le b) = \int_a^b f(x) \, \mathrm{d}x$$

For
$$a \in \mathcal{X}$$
, $P(X = a) = \int_a^a f(x) \, \mathrm{d}x = 0 \implies \text{For } (a, b) \in \mathcal{X}$, $P(a < X < b) = P(a \le X \le b)$

Valid pmfs and pdfs

- Theorem: A function $f_X(x)$ is a pdf (or pmf) of a random variable X if and only if
 - (a) $f_X(x) \ge 0$ for all x.

(b)
$$\sum_{x} f_X(x) = 1$$
 (pmf) or $\int_{-\infty}^{\infty} f_X(x) dx = 1$ (pdf).

Cumulative distribution function (cdf)

- Definition: $F_X(x) = P_X(X \le x), -\infty < x < \infty$
- Properties of cdfs:
 - 1. The cdf is defined for $-\infty < x < \infty$ always.
 - 2. The range of every cdf is $0 \le F(x) \le 1 \iff \text{Limits: } \lim_{x \to -\infty} F(x) = 0 \quad \text{ and } \quad \lim_{x \to \infty} F(x) = 1$
 - 3. $F_X(x)$ is a non-decreasing function.

4. If X is discrete $\to F(x)$ is a right continuous step function.

If X is continuous $\rightarrow F(x)$ is a continuous function.

• Relationship between continuous cdf and pdf

$$F'(x) = f(x)$$
, or equivalently $\frac{d}{dx} F_X(x) = f_X(x)$

• Alternate definition of pdf:

The pdf of a continuous random variable X as the function that satisfies $F_X(x) = \int_{-\infty}^x f(t) dt$ for all x.

Finding probabilities using the cdf

- Cdf always gives a left probability.
- If X is discrete, $F(a) = P(X \le a) = \sum_{x \le a} f(x)$

"Complement of cdf": $1 - F(x) = 1 - P(X \le x) = P(X > x)$

Interval probabilities: $P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$

• If X is continuous: $F_X(x) = \int_{-\infty}^x f(t) dt$

For a specific value of x = a, we find probability with: $F(a) = \int_{-\infty}^{a} f(x) dx$

Complement of cdf: $1 - F(a) = 1 - P(X \le a) = 1 - F(a)$

Interval probabilities: $P(a \le X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$

Lecture 9 - Summary Measures (2.2, 2.3 and 3.1)

Expected value

• Definition:

If X is discrete
$$\rightarrow \mu = E(X) = \sum x f(x)$$

If X is continuous
$$\rightarrow \mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

Expected value of a function of a random variable

- If $Y = aX + b \to E(Y) = E(aX + b) = aE(X) + b$
- If X is discrete:

(Used in the derivation of the above identity) If $Y = aX + b \rightarrow f_Y(y) = f_Y(ax + b) = f_X(x)$

In general, if
$$Y = g(X) \to E(Y) = \sum_y y \, f(y) = E[g(X)] = \sum_x g(x) \, f(x)$$

• If X is continuous
$$\to E(Y) = \int_{-\infty}^{\infty} y f(y) dy = E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) dx$$

• Linear / Distributive property of expectation:

$$E\left[\sum_{i=1}^{k} c_i g_i(X)\right] = \sum_{i=1}^{k} c_i E[g_i(X)]$$

Variance and standard deviation

• Variance definitions:

$$V(X) = \begin{cases} &\frac{\text{In general}}{\sigma^2} & \frac{\text{Discrete}}{\sigma^2} & \frac{\text{Continuous}}{\sigma^2} \\ &1) & E[(X-\mu)^2] & \rightarrow & \sum (x-\mu)^2 f(x) & \int_{-\infty}^{\infty} (x-\mu)^2 f(x) \, \mathrm{d}x \\ &2) & E(X^2) - \mu^2 & \rightarrow & \sum x^2 f(x) - \left[\sum x f(x)\right]^2 & \int_{-\infty}^{\infty} x^2 f(x) \, \mathrm{d}x - \left[\int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x\right]^2 \end{cases}$$

- Using variance definition 2) $\Rightarrow E(X^2) = V(X) + [E(X)]^2$
- Standard deviation definition: $\sigma = SD(X) = \sqrt{V(X)}$

Variance and standard deviation of Y = aX + b

• If
$$Y = aX + b \rightarrow \sigma_Y^2 = V(Y) = V(aX + b) = a^2V(X) = a^2\sigma_X^2$$

$$\Rightarrow \sigma_Y = SD(Y) = SD(aX + b) = |a|SD(X) = |a|\sigma_X$$

Mode

• Definition: Mode is the x value which maximizes the distribution function f(x).

Median and Percentiles

- Median m of a continuous random variable X is the solution to: $F(m) = P(X \le m) = 0.5$.
- Percentile: For $0 \le p \le 1$, the $100p^{th}$ percentile of X is the number x_p defined by $F(x_p) = p$.
- $IQR = Q_3 Q_1$.