前置预案自动化-技术方案

- 文档历史
- 摘要
- 编写目的
- 项目背景
- 任务概述
- 规范与约定
- ↑ルンモゴルウョケン
- 矣老次料
- 系统分析设计
 - 系统设计目标
 - 总体架构分析
 - 核心业を抑励
 - 自动执行 apollo类前置预案
 - 结果检查
 - 异常回滚
 - 异常发现
 - 前置预案回滚
 - 交互图
 - 数据表结构
 - 接口文档
- 非功能性特性设计
 - 可靠性
 - 可维护性
 - 回滚方案

文档历史

			T
修订日期	修订内容	修订版本	修订人
2022.04.21	创建文档	v0	lin.zhu
2022.04.24	增加接口文档,更新用例图、核心业务规则,增加数据表结构	v0.1	Peiguan Li
2022.05.11	增加系统设计目标、总体架构分析	v0.2	lin.zhu@shopee.com

摘要

编写目的

此说明书着重阐述大促系统中前置预案自动执行的详细方案,为后期开发、前端UI设计、用户使用提供指导和帮助。

项目背景

每次促销我们都需要执行和恢复各服务的前置预案。为应对日趋频繁的各种促销活动,我们需要实现前置预案自动执行与恢复以节省值班人力。

任务概述

新增功能主要包括如下方面:

- 1. Apollo类前置预案配置,包括地区、时间、apollo配置内容。
- 2. Apollo类前置预案自动执行和恢复

规范与约定

术语和缩略语

缩略语/术语	全称	说明	
前置预案	前置预案	大促前需要执行、大促后需要恢复的固定操作	

参考资料

预案平台需求说明书

Apollo open api

系统分析设计

系统设计目标

首先分析现有前置预案

系统设计的目标是针对上述前置预案,实现自动执行、结果检测、异常回滚。

总体架构分析

大促系统通过调用基础设施API实现前置预案的自动执行、结果检查、异常回滚。

核心业务规则

自动执行 - apollo类前置预案

Saturn定时任务扫描生效中前置预案计划,在到达预案执行时间时,调用 apollo openapi 修改配置。同一时间多个配置串行执行,间隔一定时间 (30s),并发送 Seatalk 通知。

结果检查

前置预案	检查方式
提高日志级别	调用LogPlat api,查询是否存在低级别日志
关闭压测日志	调用LogPlat api,查询是否存在压测日志
关闭流量回放	调用LogPlat api,查询是否存在流量回放日志
关闭缓存刷新	调用LogPlat api,查询是否存在缓存刷新日志
关闭计费对比	

关闭非核心业务定时任务	WEIL
重启容器	
关闭拉取黑猫	

异常回滚

异常发现

异常发现实际上是将我们人工发现的方法程序化。异常来源主要包括:

1. Prometheus: 比较业务、系统指标是否超过阈值,判断系统存在异常。这里比较类似NOC告警或应急预案触发。

指标	阈值
PDP、CHECKOUTS成功率	18:2
下单成功率	1.1
接口耗时	nli ve
接口报错	122, 3404
CPU负载	COLL, VIC.
内存占用	W. W.

2. CAT: 通过CAT可以看到链路系数、业务错误码、慢查询等信息

指标	阈值
链路系数	NEID
接口错误码	
慢查询	

3. LogPlat: 另外通过日志也可以发现异常,例如未捕捉的panic、业务报错。需要规范日志级别和格式便于程序分析。

指标	阈值
panic	
error日志增长	
特定关键词日志增长	18

目前程序消费kafka可以得到系统日志。

上述指标基本覆盖了我们日常排查问题的方法。

需要具体梳理每个服务的特点,结合已经配置的告警,反复调整得到合适的指标阈值。

前置预案回滚

大促系统保存了前置预案执行前的相关配置,用于预案恢复。发现系统异常时直接执行预案恢复操作。

交互图

配置前置预案时,增加预案类型、可生效地区,针对apollo类预案增加namespace、key、value配置

配置前置预案执行计划时,增加执行地区、执行时间、恢复时间配置

数据表结构

接口文档

新增接口: 检查现有 Apollo 配置与 大促系统中的期望的配置是否一致

http://apidoc.i.ssc.shopeemobile.com/project/2255/interface/api/117233

非功能性特性设计

可靠性

定期演练验证前置预案模块功能正常。

前置预案自动执行模块的可靠性由、结果检查、异常回滚模块保证。

结果检查、异常回滚模块的可靠性由值班同学人工确认。

可维护性

数据表结构和代码设计支持新类型的前置预案执行、检查、回滚。

回滚方案

属于新上线功能,不影响线上已有功能,回滚版本。