Лабораторная работа 2.2.1 Исследование взаимной диффузии газов

Кагарманов Радмир Б01-106 $17~{\rm мая}~2022~{\rm r}.$

Цель работы: исследовать взаимную диффузию двух газов.

В работе используется: два сосуда объёмами V_1 и V_2 , соединённые трубкой длиной L и сечения S; система откачки и напуска воздуха и гелия; форвауумный насос; манометр.

Теоретические сведения

Диффузией называют самопроизвольное взаимное проникновение веществ друг в друга, происходящее вследствие хаотичного теплового движения молекул.

Диффузия в системе, состоящей из двух компонентов а и b (бинарная смесь), подчиняется закону Фика. Перемешивание газов в работе можно приближенно описывать как диффузию примеси лёгких частиц Не на практически стационарном фоне воздуха. Коэффициент диффузии в таком приближении равен:

$$D = \frac{1}{3}\lambda \bar{v},\tag{1}$$

где $\bar{v}=\sqrt{\frac{8RT}{\pi\mu}}$ - средняя тепловая скорость частиц примеси, $\lambda=\frac{1}{n_0\sigma}$ - их длина свободного пробега, n_0 - концентрация рассеивающих центров(фона), σ - сечение столкновения частиц примеси с частицами фона. Для бинарной смеси формула (1) сохраняется, если 1) под λ понимать величину $\lambda=\frac{1}{n_\Sigma\sigma}$, где $n_\Sigma=n_{\rm He}+n_{\rm B}=\frac{P}{k_{\rm B}T}$ - полная концентрация частиц и 2) под \bar{v} понимать среднюю относительную скорость скорость частиц разных сортов.

Таким образом, теория предсказывает, что коэффициент диффузии бинарной смеси обратно пропорционален давлению в системе $D \propto \frac{1}{P}$. Разность концентраций будет убывать по экспоненциальному закону:

$$\Delta n = \Delta n_0 e^{-\frac{t}{\tau}},\tag{2}$$

где $\tau = \frac{1}{D} \frac{VL}{2S}$.

В процессе диффузии разность концентраций убывает по закону (2), и по тому же закону изменяется напряжение:

$$U = U_0 e^{-\frac{t}{\tau}} \tag{3}$$

Установка

Измерительная часть установки состоит из двух сосудов V_1 и V_2 , размещённых вертикально. Краны K_1 и K_2 служат для управления откачкой и подачей воздуха/гелия в сосуды. Диффузия осуществляется через тонкую короткую трубку, соединяющую сосуды, оснащённую краном K_3 .

Рис. 1: Экспериментальная установка

 ${
m K}$ соединительным трубкам подключен манометр M, измеряющий разность давлений между соединительными трубками и атмосферой, и позволяющий измерять давления в разных частях системы (в зависимости от положения кранов).

Обработка результатов

1. Построим график зависимости $ln\ U$ от t, чтобы по формулам (3) и $\tau = \frac{1}{D} \frac{VL}{2S}$ найти Dдля каждого эксперимента. Коэффициент диффузии

Рис. 2: Графики зависимости $ln\ U$ от t

рассчитывается по формуле $D=-\frac{kVL}{2S}$, его ошибка будет составлять $\sigma_D=D\sqrt{(\frac{\sigma_V}{V})^2+(\frac{\sigma_k}{k})^2+(\frac{\sigma_{L/S}}{L/S})^2}$

Параметры установки: $V=420\pm10$ см³, $L/S=(9,0\pm0,1)$ $\frac{1}{_{\mathrm{CM}}}.$

 $P_1 = 41,47 \text{ Topp}: D_1 = 7,10 \pm 0,19 \frac{\text{cm}^2}{\text{c}}$ $P_2 = 82,94 \text{ Topp}: D_1 = 4,61 \pm 0,12 \frac{\text{cm}^2}{\text{c}}$ $P_3 = 120,64 \text{ Topp}: D_1 = 3,10 \pm 0,08 \frac{\text{cm}^2}{\text{c}}$

2. На Рис. 3 изображена зависимость $D(\frac{1}{P})$. С её помощью мы найдём коэффициент диффузии при атмосферном давлении.

Рис. 3: График зависимости $D(\frac{1}{P})$

$$D_{\rm a} = 0,675 \pm 0,061 \; \frac{{}_{\rm CM}^2}{c}$$

3. Оценим длину свободного пробега молекулы по формуле:

$$\lambda = 3D\sqrt{\frac{\pi\mu}{8RT}}$$

Возьмём температуру 296 K. Тогда $\lambda = 162$ нм.

Оценим эффективное сечение столконевний атомов гелия с частицами воздуха при температуре 299 K и давлении $10^5~\Pi a$:

$$\sigma = \frac{1}{\lambda n}$$

$$\sigma = \frac{kT}{\lambda P} = 2, 5 \cdot 10^{-19} \text{ m}^2$$

Вывод: в данной лабораторной работе мы исследовали взаимную диффузию воздуха и гелия. Были найдены длина свободного пробега атомов гелия в воздухе $\lambda=162$ нм и эффективное сечение столкновений атомов гелия с воздухом $\sigma=2,5\cdot 10^{-19}~{\rm m}^2$