Lung Cancer Classification and Prediction

Detecting and classifying lung cancer from CT scans using Convolutional Neural Networks (CNN) and MobileNet models is crucial for improving patient outcomes. I developed a project that achieved over **95% accuracy** in classifying four types of lung cancers: adenocarcinoma, large cell carcinoma, squamous cell carcinoma, and normal lung tissue.

This project has the potential to assist radiologists and healthcare professionals in making accurate diagnoses and treatment plans.

Importing the Images and Labels

Preprocessing the Images and Creating Labels

```
data_set = []
labels = []

for i in file_names:

l1 = str(i)
    df1 = os.listdir('/content/gdrive/MyDrive/Colab Notebooks/Data/train/' + str(i))
    df2 = os.listdir('/content/gdrive/MyDrive/Colab Notebooks/Data/valid/' + str(i))

for j in range(len(df1)):
    data_set.append('/content/gdrive/MyDrive/Colab Notebooks/Data/train/' + str(i) + '/' + df1[j])
    labels.append(l1[@])

for k in range(len(df2)):
    data_set.append('/content/gdrive/MyDrive/Colab Notebooks/Data/valid/' + str(i) + '/' + df2[k])
    labels.append(l1[@])
```

```
joined_photos_path_final = []

for i in range(len(joined_photos_path)):
   input_image_path = cv2.imread(joined_photos_path[i])
   input_image_path_resized = cv2.resize(input_image_path, (224,224))
   input_image_path_resized_scaled = input_image_path_resized/224

   joined_photos_path_final.append(input_image_path_resized_scaled)
```

Training the Model

I used the MobileNet Pretrained model for this project.

```
[ ] mobilenet_model = 'https://tfhub.dev/google/tf2-preview/mobilenet_v2/feature_vector/4'
    pretrained_model = hub.KerasLayer(mobilenet_model, input_shape=(224,224,3), trainable=False)
num_of_classes = 4
    model = tf.keras.Sequential([
        pretrained_model,
         tf.keras.layers.Dense(num_of_classes)
    model.summary()
Layer (type)
                                 Output Shape
                                                             Param #
     keras_layer (KerasLayer) (None, 1280)
                                                              2257984
     dense (Dense)
                                  (None, 4)
    Total params: 2,263,108
Trainable params: 5,124
Non-trainable params: 2,257,984
 ] model.compile(
        optimizer = 'adam',
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
        metrics = ['acc']
```

Evaluating and Predicting

