Listings of equations, figures, tables and sections of the article 'Musical elements in the discrete-time representation of sound' and of the scripts in the MASS toolbox

Renato Fabbri (USP), Vilson Vieira da Silva Junior (Cod.ai), Antônio Carlos Silvano Pessotti (Unimep), Débora Cristina Corrêa, Osvaldo N. Oliveira Jr. (USP)

September 17, 2017

The article is the main document of the MASS toolbox. Being it of considerable length and complexity, this document contains listings of its elements to facilitate its navigation, apprehension and general usage.

Contents

SI-1	Table of Contents of the article
SI-2	Equations
SI-3	Figures
SI-4	Tables
SI-5	Scripts
	SI-5.1 For all equations and relations in each section
	SI-5.2 To render musical pieces
	SI-5.3 To render the figures used in the article
SI-6	Other documents

SI-1 Table of Contents of the article

Abst	tract		1
1	Introd	uction	2
	1.1	Additional material	5
	1.2	Synonymy, polysemy and theoretical frames (disclaimer)	5
2	Charac	cterization of the musical note in discrete-time audio	6
	2.1	Duration	6
	2.2	Loudness	6
	2.3	Pitch	7
	2.4	Timbre	7
	2.5	1	10
	2.6		14
	2.7	Spatialization: localization and reverberation	15
	2.8	0	17
3	Variat		19
	3.1	1	19
	3.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20
	3.3	11 8	23
	3.4		27
	3.5	,	29
	3.6	9	33
4	0		37
	4.1	0)	38
	4.2	r	44
	4.3	1	47
	4.4		47
	4.5	1 0	49
	4.6		51
	4.7	σ	52
	4.8	1	54
	4.9		55
	4.10	0	55
5		1	55
	_	gments	
Refe	rences .		57

SI-2 Equations

Table 0.1: Equation numbers and their descriptions. All these equations are implemented in file src/sections/2.py.

Number	Description		
1	relation between number of samples and duration		
2	power of the wave		
3	decibels by difference by means of the power of each wave		
4	double amplitude implies $\approx 6dB$		
5	double power implies $\approx 3dB$		
6	double volume (10dB) implies a factor of ≈ 3.16 for amplitude		
7	direct relation between variations in amplitude and decibels		
8	equivalences in a periodic sound with respect to wavelength, frequency		
	and sample rate		
9	sample amplitudes in a sinusoid		
10	sample amplitudes in a sawtooth wave		
11	sample amplitudes in a triangular wave		
12	sample amplitude in a square wave		
13	samples in a sound derived from a sampled wave period		
14	reconstruction of samples from the Fourier components		
reconstruction of real samples (e.g. for audio) from Fourier comp			
number of pairs of Fourier coefficients which are related to the			
	frequency		
17	indexes of equivalent frequencies and coefficients for real signals		
18	equal modules between samples of real signals		
19	equivalence in phases between samples of real signals		
20	complete reconstruction of the signal using Fourier components and pre-		
2.4	vious equations		
21	sample sequence related to a basic note		
22	sample sequence of a period of an arbitrary waveform		
23	note samples derived from a sampled waveform		
24	distance of a (sound) source to each ear given the distance between the		
25	ears and an (x,y) position of the source		
25	Interaural Time Difference (ITD), the time difference of a sound reaching		
26	each ear		
26	Interaural Intensity Difference (IID), the intensity difference (in deci-		
97	bels) of a sound reaching each ear		
$\begin{array}{c} 27 \\ 28 \end{array}$	ITD and IID in terms of sample delays and their amplitudes		
28 29	azimuthal angle of a (x, y) source samples that result from mixing sounds		
$\frac{29}{30}$	samples that result from concatenating sounds		
30	samples that result from concatenating sounds		

Table 0.2: Equation numbers and their descriptions. All these equations are implemented in file src/sections/3.py.

Number Description		
*		
sample sequence generated by means of a lookup table (LUT)		
frequency at each sample in a linear transition of frequency		
indices of a LUT in a linear transition of frequency		
sample sequence obtained through a LUT in a linear transition of frequency		
frequency at each sample in an exponential transition of frequency (linear pitch)		
indices of a LUT in an exponential transition of frequency (linear pitch)		
sample sequence obtained through a LUT in an exponential transition of frequency		
amplitude factors at each sample in an exponential transition of amplitude (\approx linear volume)		
sample sequence with an exponential transition of amplitude (\approx linear		
volume)		
amplitude factors at each sample in a linear transition of amplitude		
sample sequence in an exponential transition of amplitude (\approx linear volume) with difference given in decibels		
sample sequence obtained through the convolution of two other sequences (e.g. for applying FIR filters)		
difference equation (e.g. for applying IIR filters)		
IIR coefficients for a simple, useful and well-behaved low-pass filter		
IIR coefficients for a simple, useful and well-behaved high-pass filter		
auxiliary variables for the following band-pass and band-reject filters		
IIR coefficients for a simple, useful and well-behaved band-pass filter		
IIR coefficients for a simple, useful and well-behaved band-reject filter		
Fourier coefficients of a white noise		
Fourier coefficients of a pink noise		
Fourier coefficients of a brown noise		
Fourier coefficients of a blue noise		
Fourier coefficients of a violet noise		
Fourier coefficients of a black noise		
indices for a vibrato given its frequency and using a LUT		
samples for applying a vibrato		
frequency at each sample of a sound with vibrato		
indices for LUT in a sound with vibrato		
sample sequence of a sound with vibrato		
amplitude at each sample for a tremolo		
sample sequence of a sound with tremolo		
components in FM synthesis when both modulator and carrier are sines		
the Bessel function		
components in AM synthesis when both modulator and carrier are sines		
indices for LUT in modulator of an FM synthesis		
sample sequence of a modulator in an FM synthesis		
frequency at each sample of a sound derived from FM synthesis		
indices for the final signal in FM synthesis using LUT		
sample sequence of a sound generated through FM and using LUT		
amplitude at each sample in a sound generated through AM		
sample sequence of a sound generated through AM and using LUT		

Table 0.3: Equation numbers and their descriptions. All these equations are implemented in file src/sections/3.py.

Number	Description
72	an example of bonds between musical characteristics
73	relation between frequencies and speed in the Doppler effect
74	relation between position, speed and amplitude in the Doppler effect
75	relation between position, speed and amplitude in the Doppler effect
76	samples of a FIR filter for the first period of a reverberation
77	samples of a FIR filter for the second period of a reverberation
78	samples of the FIR filter for a reverberation (considering both first and
	second periods)
79	amplitude factors for each sample in an ADSR envelope
80	sample sequence of a sound with an ADSR envelope

Table 0.4: Equation numbers and their descriptions. All these equations are implemented in file src/sections/4.py.

Number	Description
81	pitches represented in two divisions of the octave
82	perfectly symmetric scales in each octave with the twelve semitones
83	diatonic scales
84	the succession of tones and semitones of a diatonic scale
85	sequences of semitones for the three types minor scales
86	harmonic series in terms of semitones
87	triads (chords constituted by thirds)
88	a convention to specify a unit of rhythmic division or agglomeration
89	definition of algebraic groups

SI-3 Figures

Table 0.5: Figure numbers and their descriptions. All these equations are implemented in files src/aux/*.

Number	Description		
1	PCM audio (discrete and digital) samples		
2	synthetic and sampled waveforms		
3	spectrum of basic waveforms		
4	spectrum of a real note and of one derived from one sampled period		
5	sinusoid represented by two samples		
6	sinusoid represented by three samples		
7	sinusoids in 4 samples		
8	basic waveforms within 4 samples		
9	sinusoids in 6 samples		
10	basic waveforms withing 6 samples		
11	ITD and IID (spatial localization cues)		
12	mixing PCM audio		
13	concatenation/juxtaposition of PCM audio		
14	Lookup table		
15	transitions of intensity		
16	convolution		
17	convolution yielding time shifting, multiple time delays, sound amalgam		
18	frequency response of useful IIR filters		
19	spectrum and waveform of noises		
20	spectrogram of a vibrato		
21	waveform of a tremolo		
22	ADSR envelope		
23	counterpoint movements		
24	musical metric in terms of divisions of temporal units		
25	distinctions of musical climax by localization		

SI-4 Tables

Table 0.6: Table numbers and their descriptions.

Number	Description	
1	musical intervals, their notations and qualities	
2	tonal harmonic functions in the major scale	
3	duration scales yielding perception of pitch and rhythm	
4	music by permutation of units (change ringing)	

SI-5 Scripts

${\sf SI-5.1}$ For all equations and relations in each section.

Table 0.7: Script files and their descriptions.

Filename	Description
src/sections/2.py	implementation of all the equations for the basic note in PCM audio in
	Section 2
<pre>src/sections/3.py</pre>	implementation of all the equations for variations within a note described
	in Section 3
<pre>src/sections/4.py</pre>	implementation of techniques for assembling notes into music described
	in Section 4

SI-5.2 To render musical pieces

Table 0.8: Piece names, script files and the concepts they exemplify from Section 2. All files are in the directory src/pieces2/.

Name	Filename	Description
Reduced-fi	reduced-fi.py	concatenation of simple notes
Sonic pictures	quadrosSonoros.py	mixing of simple notes

Table 0.9: Piece names, script files and the concepts they exemplify from Section 3. All files are in the directory src/pieces3/.

Name	Filename	Description
ADa and SaRah	ADAandSaRah.py	ADSR envelope
Tremolos, Vibratos and Fre-	bonds.py	bonds between tremolos, vibratos
quency		and frequency
Bella Rugosi	bellaRugosi.py	rugosity achieved through frequencies
		between 15 adn 30 Hz
Children Choir	childChoir.py	achieving choir sonorities by small
		variations of the same basic note
Noisy Band	noisyBand.py	using various noises
ParaMeter Transitions	paraMeter.py	gradual changes of parameters within
		one note
Little Train of Impulsive Hill-	littleTrain.py	the use of convolution with impulses
bilies ¹		to achieve rhythm
Shakes and Wiggles	shakesWiggles.py	tremolos and vibratos

Table 0.10: Piece names, script files and the concepts they exemplify from Section 4. All files are in the directory src/pieces4/.

	•	
Name	Filename	Description
Acorde Cedo	acordeCedo.py	chord successions and modulation
Conta Ponto	contaPonto.py	melodic lines conducted within the
		rules of counterpoint
Crystals	crystals.py	symmetric musical scales
Dirracional	dirracional.py	directional arcs
Intervals	intervals.py	musical intervals
MicroTone	microTone.py	microtonality (the use of intervals
		smaller than the semitone)
Poly-Hit-My	polyHitMy.py	polyrhythm (multiple metrics at
		once)
Dirracional Intervals MicroTone	dirracional.py intervals.py microTone.py	directional arcs musical intervals microtonality (the use of intervals smaller than the semitone) polyrhythm (multiple metric

SI-5.3 To render the figures used in the article

The files src/aux/* render each of the figures (listed above in Section SI-3).

SI-6 Other documents

The files in latex/* render the article PDF and this Supporting Information file.

The script src/aux/iso226.py can generate the Equal Loudness Contour as described in its latest revision [2].

The article is largely based on the MSc dissertation [1].

Bibliography

- [1] Fabbri (2013). Música no áudio digital : descrição psicofísica e caixa de ferramentas. MSc dissertation. Available at: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-19042013-095445/publico/RenatoFabbri_ME_corrigida.pdf
- [2] ISO: 226. (2003). Normal Equal-Loudness Level Contours.