Arytmetyka komputerowa

Metody Obliczeniowe w Nauce i Technice

laboratorium I

Aleksandra Smela

Zadanie

Wyznaczyć kolejne elementy ciągu

$$x_{k+1} = x_k + 3x_k(1 - x_k), x_0 = 0.1$$

i porównać otrzymane wartości dla różnej precyzji zmiennych (float, double, long double).

Powtórzyć doświadczenie dla przekształconej postaci wzoru:

$$x_{k+1} = 4x_k - 3x_k^2$$

Spróbować wyjaśnić otrzymane wyniki.

Sposób realizacji zadania

Generowanie danych

Dane zostały wygenerowane przy użyciu języka C++ oraz IDE Clion 2021.3.4.

Zapis danych do pliku csv

Dane zapisano do pliku csv z 18 miejscami po przecinku.

Analiza danych

Następnie wczytano dane do arkusza kalkulacyjnego jako tekst, dokonano wstępnej analizy, po czym obcięto je (bez zaokrąglania) do 6 miejsc po przecinku i przekonwertowano na liczby.

Precyzja typów float, double i long double

Sprawdzono precyzję danych typów liczbowych.

std::numeric_limits<long double>::digits10

Тур	Liczba cyfr
float	6
double	15
long double	18

tabela I: precyzja typów float, double i long double

Kolejne elementy ciągu

$$x_{k+1} = x_k + 3x_k(1 - x_k)$$

	float	double	long double
0	0.100000001490116119	0.1000000000000000006	0.100000000000000006
1	0.370000004768371582	0.370000000000000107	0.370000000000000019
2	1.06929993629455566	1.06930000000000014	1.06930000000000003
3	0.846992671489715576	0.846992529999999633	0.846992529999999919
4	1.23578095436096191	1.23578108237259765	1.23578108237259739
5	0.361660122871398926	0.361659678840423715	0.36165967884042456

tabela II: kolejne elementy ciągu w różnej reprezentacji zmiennych

Na co warto zwrócić uwagę przyglądając się tym liczbom to zgodność z deklarowaną precyzją.

Faktycznie zgodnie z tabelą I dokładność float, double i long double pokrywa się z deklarowaną dla elementu ciągu nr. 0.

Jednakże element nr. 2 w reprezentacji float odbiega od double i long double już na 4 miejscu po przecinku. Teoretycznie powinien mieć 6 cyfrową dokładność, czyli pokrywać się z pozostałymi liczbami do 5 miejsc po przecinku.

Błąd ten najprawdopodobniej wynika z niedokładności wykonanych działań arytmetycznych.

Wyniki – wzór w wersji l: $x_{k+1} = x_k + 3x_k(1 - x_k)$

wykres I: wartość bezwzględna różnicy między danymi elementami ciągu (wzór w wersji I) – zmienne typu long double i double

wykres II: wartość bezwzględna różnicy między danymi elementami ciągu (wzór w wersji I) – zmienne typu float i double

tabela III: wartość bezwzględna różnic między danymi elementami ciągu	reprezentowanymi przez poszczególne typy danych (wzór w wersji 1)
-	_

	Jaoubie -	Flong double -	Tiong double
	float	double	float
0	0.000000	0.000000	0.000000
1	0.000000	0.000000	0.000000
2	0.000001	0.000000	0.000001
3	0.000000	0.000000	0.000000
4	0.000001	0.000000	0.000001
5	0.000001	0.000000	0.000001
6	0.000001	0.000000	0.000001
7	0.000002	0.000000	0.000002
8	0.000003	0.000000	0.000003
9	0.000009	0.000000	0.000009
10	0.000009	0.000000	0.000009
11	0.000029	0.000000	0.000029
12	0.000064	0.000000	0.000064
13	0.000108	0.000000	0.000108
14	0.000276	0.000000	0.000276
15	0.000192	0.000000	0.000192
16	0.000721	0.000000	0.000721
17	0.002208	0.000000	0.002208
18	0.001530	0.000000	0.001530
19	0.005752	0.000000	0.005752
20	0.017652	0.000000	0.017652
21	0.012509	0.000000	0.012509
22	0.046876	0.000000	0.046876
23	0.141689	0.000000	0.141689
24	0.081876	0.000000	0.081876
25	0.306440	0.000000	0.306440
26	0.929754	0.000000	0.929754
27	0.953298	0.000000	0.953298
28	0.396226	0.000000	0.396226
29	0.069686	0.000000	0.069686
30	0.228434	0.000000	0.228434
31	0.318592	0.000000	0.318592
32	0.889706	0.000000	0.889706
33	0.316830	0.000000	0.316830
34	0.118651	0.000000	0.118651
35	0.412688	0.000001	0.412687
36	0.871661	0.000001	0.871660
37	0.874279	0.000003	0.874276
38	0.068128	0.000010	0.068138
39	0.037969	0.000007	0.037976
40	0.145187	0.000026	0.145213
41	0.481622	0.000073	0.481695
42	0.769106	0.000012	0.769118
43	1.292962	0.000045	1.293007
44	0.096903	0.000176	0.097079
45	0.341651	0.000672	0.342323
46	0.771274	0.002209	0.773483
47	0.714665	0.003079	0.711586
48	0.638783	0.009326	0.629457
49	0.831815	0.005467	0.837282
50	1.094633	0.020925	1.115558

|double - |long double - |long double

Wyniki – wzór w wersji II:

$$x_{k+1} = 4x_k - 3x_k^2$$

wykres III: wartość bezwzględna różnicy między danymi elementami ciągu (wzór w wersji II) – zmienne typu long double i double

wykres IV: wartość bezwzględna różnicy między danymi elementami ciągu (wzór w wersji II) – zmienne typu float i double

tabela IV: wartość bezwzględna różnic między danymi elementami ciągu reprezentowanymi przez poszczególne typy danych (wzór w wersji II)

	float	double	float
0	0.000000	0.000000	0.000000
1	0.000001	0.000001	0.000000
2	0.000001	0.000000	0.000001
3	0.000000	0.000000	0.000000
4	0.000001	0.000000	0.000001
5	0.000001	0.000000	0.000001
6	0.000001	0.000000	0.000001
7	0.000002	0.000000	0.000002
8	0.000002	0.000000	0.000002
9	0.000006	0.000000	0.000006
10	0.000006	0.000000	0.000006
11	0.000020	0.000000	0.000020
12	0.000044	0.000000	0.000044
13	0.000074	0.000000	0.000074
14	0.000191	0.000000	0.000191
15	0.000132	0.000000	0.000132
16	0.000496	0.000000	0.000496
17	0.001520	0.000000	0.001520
18	0.001056	0.000000	0.001056
19	0.003969	0.000000	0.003969
20	0.012160	0.000000	0.012160
21	0.008417	0.000000	0.008417
22	0.031645	0.000000	0.031645
23	0.097096	0.000000	0.097096
24	0.069097	0.000000	0.069097
25	0.255962	0.000000	0.255962
26	0.737839	0.000000	0.737839
27	0.331716	0.000000	0.331716
28	0.480693	0.000000	0.480693
29	1.180045	0.000000	1.180045
30	0.062568	0.000000	0.062568
31	0.141884	0.000000	0.141884
32	0.200225	0.000000	0.200225
33	0.583392	0.000000	0.583392
34	0.248052	0.000000	0.248052
35	0.589880	0.000002	0.589882
36	0.528271	0.000002	0.528269
37	1.074070	0.000007	1.074063
38 39	0.727440	0.000019	0.727459
40	1.033452 0.629980	0.000014 0.000053	1.033438 0.629927
41	0.624880	0.000152	0.624728
41	1.076122	0.000132	1.076146
43	0.817855	0.000024	0.817948
44	1.226766	0.000366	1.227132
45	0.165565	0.000300	0.166962
46	0.460505	0.001397	0.465090
47	0.003933	0.006358	0.002425
48	0.011979	0.019318	0.007339
49	0.007645	0.011903	0.004258
50	0.029017	0.045331	0.016314
-	3.023027	0.0 .5551	0.010017

|double - | long double - |long double

Wyniki – porównanie obu wzorów

|double - float|

$$x_{k+1} = x_k + 3x_k(1 - x_k)$$

wykres V: wartość bezwzględna różnicy między danymi elementami ciągu (wzór w wersji I) – zmienne typu double i float

$$x_{k+1} = 4x_k - 3x_k^2$$

wykres VI: wartość bezwzględna różnicy między danymi elementami ciągu (wzór w wersji II) – zmienne typu double i float

Wyniki – porównanie obu wzorów

|long double - double|

$$x_{k+1} = x_k + 3x_k(1 - x_k)$$

wykres VII: wartość bezwzględna różnicy między danymi elementami ciągu (wzór w wersji I) – zmienne typu long double i double

$$x_{k+1} = 4x_k - 3x_k^2$$

wykres VIII: wartość bezwzględna różnicy między danymi elementami ciągu (wzór w wersji II) – zmienne typu long double i double

Wnioski

- Matematycznie tożsame ciągi osiągnęły inne wyniki oznacza to, że błędy reprezentacji liczb są zależne od rodzaju i kolejności działań arytmetycznych.
- Błędy nakładają się na siebie. Kilka początkowych elementów ciągu ma taką samą reprezentację (dla różnych precyzji) z zaokrągleniem do odpowiedniej liczby miejsc po przecinku. Jednakże kolejne elementy znacząco się różnią ze względu na nakładające się błędy wynikające z niedokładności obliczeń.
- Niektóre elementy osiągają znaczną różnicę w zależności od precyzji zmiennych (nawet ponad 9).

Arytmetyka komputerowa

Metody Obliczeniowe w Nauce i Technice laboratorium I

Aleksandra Smela

Bibliografia:

Wykład

Blog:

https://randomascii.wordpress.com/2012/06/26/doubles-are-not-floats-so-dont-compare-them/

Dane techniczne:

Komputer z systemem Windows 10 Procesor: AMD Ryzen 7 3700X 3,6GHz

Pamięć RAM: 32 GB