Problemas Indecidíveis e Reduções

Prof^a Jerusa Marchi

Departamento de Informática e Estatística
Universidade Federal de Santa Catarina
e-mail: jerusa@inf.ufsc.br

Decidibilidade

- Problemas indecidíveis
 - Problemas que não podem ser resolvidos por uma MT
- Como saber se um problema é solucionável ou não??
 - Escrevendo um algoritmo para ele
 - Provando que não existe tal algoritmo

Redução

Sejam L_1 e $L_2\subseteq \Sigma^*$ duas linguagens. Uma redução de L_1 para L_2 é uma função recursiva $\tau:\Sigma^*\mapsto \Sigma^*$, tal que $x\in L_1$ se e somente se $\tau(x)\in L_2$

Redução

- Para mostrar que uma linguagem L_2 é não recursiva, deve-se identificar uma linguagem L_1 sabidamente não recursiva e, então, reduzir L_1 a L_2
 - Observe que reduzir L_2 a L_1 seria inócuo, pois apenas mostra que L_2 só poderá ser decidida se pudermos decidir L_1
 - equivale a dizer "se L_1 é decidível, então L_2 é decidível", sendo portanto falsa a hipótese

Redução

- Formalmente, o uso correto de reduções em provas de indecidibilidade é o seguinte:
 - Se L_1 é uma linguagem não-recursiva, e se houver uma redução de L_1 para L_2 então L_2 também é não recursiva
 - ▶ Prova: Seja L_2 uma linguagem recursiva. Seja M_2 uma MT que decida L_2 , e T uma MT que computa a redução τ . Nessas condições, a MT TM_2 deveria decidir L_1 . Mas L_1 é indecidível. Contradição.
 - Em outras palavras
 - Se um problema P_1 é indecidível, e se houver uma redução de P_1 para P_2 então P_2 também é indecidível

- Da indecidibilidade do problema da parada, decorre a indecidibilidade de uma grande variedade de problemas
 - São indecidíveis os seguintes problemas acerca de Máquinas de Turing
 - 1. Dada uma máquina de Turing M e uma cadeia de entrada w, M pára em resposta a w (problema da parada)
 - 2. Dada uma máquina de Turing M, M pára em resposta a entrada vazia
 - 3. Dadas duas máquinas de Turing M_1 e M_2 , elas param em resposta às mesmas cadeias de entrada?
 - 4. Dada uma MT M, a linguagem que M semidecide é regular? Livre de contexto? Recursiva?
 - 5. Existe alguma máquina fixa M para a qual o seguinte problema é indecidível: dado w, M pára em resposta a w?

Exemplo de Prova:

2. O problema da parada, descrito como a linguagem

 $H = \{"Mw" : aMTM \text{ pára em resposta à sentença } w\}$ pode ser reduzido para a linguagem

 $L = \{"M" : M \text{ pára em resposta à sentença vazia } \varepsilon\}$

Dada a descrição "M" da MT M e uma entrada w, a redução constrói a descrição de uma máquina de Turing M_w que opera da seguinte forma: quando acionada em sua fita de entrada vazia, M_w grava w em sua fita e então inicia a simulação de M, consumindo a entrada

- São indecidíveis os seguintes problemas envolvendo Gramáticas Irrestritas:
 - 1. Para uma dada gramática G e uma cadeia w, determinar se $w \in L(G)$
 - 2. Para uma dada gramática G, determinar se $\varepsilon \in L(G)$
 - 3. Para duas gramáticas G_1 e G_2 , determinar de $L(G_1) = L(G_2)$
 - 4. Para uma gramática arbitrária G, determinar se $L(G) = \emptyset$
 - 5. Existe uma certa gramática fixa G_0 para a qual é indecidível determinar se qualquer cadeia w está em $L(G_0)$

Teorema de Rice

- Dada uma propriedade P de uma linguagem recursivamente enumerável, ela é trivial se e somente se ela não é satisfeita por nenhuma linguagem Recursivamente Enumerável, ou é satisfeita por todas as linguagens Recursivamente Enumeráveis.
- O teorema de Rice prova a indecidibilidade de todas as propriedades não triviais de linguagens RE, como, por exemplo, "ser livre de contexto", "ser finita", "ser decidível", etc.

Teorema de Rice

Seja $\mathcal C$ um subconjunto próprio não-vazio da classe de linguagens recursivamente enumeráveis. Então o seguinte problema é indecidível: dada uma máquina de Turing $M, L(M) \in \mathcal C$?

- Decorre do Teorema de Rice
 - ullet É indecidível o problema de saber, dada uma MT M, se a linguagem semidecidida por M é regular, livre de contexto ou recursiva.