Universität Hamburg, Fachbereich Informatik Arbeitsbereich Wissenschaftliches Rechnen Prof. Dr. T. Ludwig, Anna Fuchs, Jannek Squar Georg von Bismarck, Niclas Schroeter Übungsblatt 8 zur Vorlesung Hochleistungsrechnen im WiSe 2021/2022 Abgabe: 04.12.2021, 23:59

Parallelisierung mit MPI (Jacobi: 240 Punkte)

Parallelisieren Sie das Jacobi-Verfahren in dem sequentiellen partdiff-Programm gemäß dem besprochenen Parallelisierungsschema. Beachten Sie dabei folgende Anforderungen:

• Abbruch

- Es gibt hier zwei Fälle, die auf Korrektheit der Parallelisierung zu prüfen sind:
 - 1. Abbruch nach fester Iterationszahl (beide Störfunktionen)
 - 2. Abbruch nach Genauigkeit (beide Störfunktionen)
- Dabei soll nach gleicher Iterationszahl das Ergebnis (Matrix und Fehlerwert) identisch bleiben. Außerdem soll bei Abbruch nach Genauigkeit im parallelen Programm nach derselben Iterationszahl wie im sequentiellen abgebrochen werden.
- Überprüfen Sie, dass die Ergebnisse mit 24 Prozessen auf zwei Knoten identisch zum sequentiellen (Original als Referenz nehmen) Fall sind.

Code

- Zu keinem Zeitpunkt darf ein Prozess die gesamte Matrix im Speicher halten. DIe Matrix soll auf alle Prozesse gleichmäßig verteilt werden.
- Das Programm muss weiterhin mit einem Prozess funktionieren (kontrolliert Abbrechen zählt nicht als funktionieren).
- Das Programm muss mit beliebigen Prozesszahlen funktionieren.
- Erstellen Sie eine eigene Funktion für die MPI-Parallelisierung des Jacobi-Verfahrens.
- GS muss dabei weiterhin (sequentiell) funktionieren.
- **Hinweis:** Sie können die in den Materialien bereitgestellte DisplayMatrix-Funktion als Grundlage für die parallele Ausgabe der Matrix benutzen.

• Laufzeit

- Das Programm darf nicht langsamer als die sequentielle Variante sein.

• Kommunikation

- Sie dürfen die Funktionen MPI_Send und MPI_Isend **nicht** verwenden. Nutzen Sie stattdessen ggf. die Funktionen MPI_**Ss**end und MPI_**Iss**end.
- Jeder nichtblockierende Kommunikationsaufruf (meist beginnend mit MPI_I...) muss mit einem passenden MPI_Wait oder einem erfolgreichen MPI_Test abgeschlossen werden. Anderenfalls ist der Aufruf falsch.

Hybride Parallelisierung (60 Bonuspunkte)

Erweitern Sie Ihre MPI-Version des Jacobi-Verfahrens zusätzlich um OpenMP.

Leistungsanalyse

Ermitteln Sie die Leistungsdaten Ihres Hybrid-Programms und vergleichen Sie die Laufzeiten für folgende Konfigurationen in einem beschrifteten Diagramm:

- 3 Knoten × 12 Prozesse
- 3 Knoten × 24 Prozesse
- 3 Knoten \times 1 Prozess \times 12 Threads
- 3 Knoten \times 1 Prozess \times 24 Threads
- 3 Knoten × 2 Prozesse × 6 Threads
- 3 Knoten \times 2 Prozesse \times 12 Threads
- 3 Knoten \times 12 Prozesse \times 2 Threads

Verwenden Sie hierzu 512 Interlines. Der kürzeste Lauf sollte mindestens 10 Sekunden rechnen; wählen Sie geeignete Parameter aus!

Schreiben Sie eine halbe Seite Interpretation zu diesen Ergebnissen. Beachten Sie die bisherigen Vorgaben zu Messungen (3x, gleicher Knoten, Tabelle, etc.).

Hinweis: Es ist empfehlenswert die Störfunktion $f(x,y) = 2\pi^2 \sin(\pi x) \sin(\pi y)$ zu verwenden, da der erhöhte Rechenaufwand das Skalierungsverhalten verbessert.

Abgabe des Programms

Abzugeben ist ein gemäß den bekannten Richtlinien erstelltes und benanntes Archiv. Das enthaltene und gewohnt benannte Verzeichnis soll folgenden Inhalt haben:

- Alle Quellen, aus denen Ihr Programm besteht; **gut** dokumentiert! (Kommentare bei geänderten Code-Teilen!)
 - Erwartet werden die Dateien Makefile, askparams.c, partdiff.c und partdiff.h.
 - **Optional:** Eine Ausarbeitung leistungsanalyse.pdf mit den ermittelten Laufzeiten und der Leistungsanalyse.
- Ein Makefile
 - **Optional:** Ein Target partdiff-par-hybrid für die Binärdatei partdiffpar-hybrid, welche die Hybrid-Parallelisierung umsetzt.
- Keine Binärdateien!

Senden Sie das Archiv an hr-abgabe@wr.informatik.uni-hamburg.de.