Chapter 11: Multiple Regression

MATH 560-01 Statistical Data Analysis

April 5, 2021

These slides are based on material from *Introduction to the Practice of Statistics* by David S. Moore, George P. McCabe, and Bruce A. Craig, 9th edition.

Sections

11.1 Inference for Multiple Regression

After completing this section, students should be able to:

▶ compute *confidence intervals* for the regression coefficients of a multiple linear regression model with normal errors

11.1 Inference for Multiple Regression

After completing this section, students should be able to:

- ► compute *confidence intervals* for the regression coefficients of a multiple linear regression model with normal errors
- ▶ perform *one-sided* or *two-sided tests* for significance of the regression coefficients in a multiple linear regression model with normal errors

11.1 Inference for Multiple Regression

After completing this section, students should be able to:

- ► compute *confidence intervals* for the regression coefficients of a multiple linear regression model with normal errors
- ▶ perform *one-sided* or *two-sided tests* for significance of the regression coefficients in a multiple linear regression model with normal errors
- ▶ perform an overall F test in a multiple linear regression model with normal errors

▶ In Chapter 10, we discussed the simple linear regression model which modeled a response variable y using a linear function of a *single* explanatory variable x.

- ▶ In Chapter 10, we discussed the simple linear regression model which modeled a response variable y using a linear function of a *single* explanatory variable x.
- ▶ In this chapter, we use more than one explanatory variable to explain or predict the response variable.

- ▶ In Chapter 10, we discussed the simple linear regression model which modeled a response variable y using a linear function of a *single* explanatory variable x.
- ▶ In this chapter, we use more than one explanatory variable to explain or predict the response variable.
- ▶ Many of the same ideas that we used in making inferences for simple linear regression models also apply for multiple linear regression models.

- ▶ In Chapter 10, we discussed the simple linear regression model which modeled a response variable y using a linear function of a *single* explanatory variable x.
- ▶ In this chapter, we use more than one explanatory variable to explain or predict the response variable.
- ▶ Many of the same ideas that we used in making inferences for simple linear regression models also apply for multiple linear regression models.
- ▶ However, there are some more complicated additional issues which arise. In this chapter, we only discuss some basic facts for making inferences for multiple regression models.

Population multiple regression equation

► We assume the population follows a **multiple regression** model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p + \varepsilon$$

where y is the response variable, x_1, x_2, \ldots, x_p are the p explanatory variables, and ε follows a $N(0, \sigma)$ distribution.

▶ We assume the observations in the sample

Case 1 :
$$(x_{11}, x_{12}, \dots, x_{1p}, y_1)$$

Case 2 : $(x_{21}, x_{22}, \dots, x_{2p}, y_2)$
:
Case n : $(x_{n1}, x_{n2}, \dots, x_{np}, y_p)$

are independent observations from the multiple regression model following the equation

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip} + \varepsilon_i$$

where the errors ε_i are independent and Normally distributed with mean 0 and standard deviation σ .

Parameter estimation

Estimation of the model parameters is more complicated in the multiple regression model.

Parameter estimation

- Estimation of the model parameters is more complicated in the multiple regression model.
- ► Formulas for the estimates are not discussed in the book, but we will discuss them in these slides.

Parameter estimation

- Estimation of the model parameters is more complicated in the multiple regression model.
- ► Formulas for the estimates are not discussed in the book, but we will discuss them in these slides.
- ➤ To obtain the estimates, we need to put the model in matrix form.

$$oldsymbol{Y} = \left[egin{array}{c} y_1 \ y_2 \ dots \ y_n \end{array}
ight], oldsymbol{X} = \left[egin{array}{cccc} 1 & x_{11} & x_{12} & \cdots & x_{1p} \ 1 & x_{21} & x_{22} & \cdots & x_{2p} \ dots & dots \ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{array}
ight], oldsymbol{arepsilon} oldsymbol{arepsilon} = \left[egin{array}{c} arepsilon_1 \ arepsilon_2 \ dots \ dots \ dots \ dots \end{array}
ight]$$

Parameter estimation

▶ Then the model can be written in matrix form as

$$oldsymbol{Y} = oldsymbol{X}oldsymbol{eta} + oldsymbol{arepsilon} ext{ where } oldsymbol{eta} = egin{bmatrix} eta_0 & eta_1 & eta_2 &$$

Parameter estimation

▶ Then the model can be written in matrix form as

$$oldsymbol{Y} = oldsymbol{X}oldsymbol{eta} + oldsymbol{arepsilon} ext{ where } oldsymbol{eta} = egin{bmatrix} eta_0 \ eta_1 \ eta_2 \ dots \ eta_p \end{bmatrix}.$$

The method of least squares chooses the values $b_0, b_1, b_2, \ldots, b_p$ which minimize

$$\sum_{i=1}^{n} (y_i - b_0 - b_1 x_{i1} - b_2 x_{i2} - \dots - b_p x_{ip})^2 = \|\mathbf{Y} - \mathbf{X}\mathbf{b}\|^2$$

where
$$\boldsymbol{b} = \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$
.

Parameter estimation

▶ Matrix algebra can be used to show that the minimizer is

$$\boldsymbol{b} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{Y}.$$

Parameter estimation

▶ Matrix algebra can be used to show that the minimizer is

$$\boldsymbol{b} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}.$$

► The predicted response when $x_1 = x_{i1}, x_2 = x_{i2}, ..., x_p = x_{ip}$ is $\hat{y}_i = b_0 + b_1 x_{i1} + b_2 x_{i2} + ... + b_p x_{ip}$.

Parameter estimation

▶ Matrix algebra can be used to show that the minimizer is

$$\boldsymbol{b} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}.$$

- ► The predicted response when $x_1 = x_{i1}, x_2 = x_{i2}, ..., x_p = x_{ip}$ is $\hat{y}_i = b_0 + b_1 x_{i1} + b_2 x_{i2} + ... + b_p x_{ip}$.
- ▶ The residual for the *i*th case is $e_i = y_i \hat{y}_i$.

Parameter estimation

▶ Matrix algebra can be used to show that the minimizer is

$$\boldsymbol{b} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}.$$

- ► The predicted response when $x_1 = x_{i1}, x_2 = x_{i2}, ..., x_p = x_{ip}$ is $\hat{y}_i = b_0 + b_1 x_{i1} + b_2 x_{i2} + ... + b_p x_{ip}$.
- ▶ The residual for the *i*th case is $e_i = y_i \hat{y}_i$.
- ▶ The estimate of σ^2 for the multiple regression model is

$$s^{2} = \frac{\sum e_{i}^{2}}{n-p-1} = \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{n-p-1}.$$

Then $s = \sqrt{s^2}$ estimates σ .

Parameter estimation

▶ Matrix algebra can be used to show that the minimizer is

$$\boldsymbol{b} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}.$$

- The predicted response when $x_1 = x_{i1}, x_2 = x_{i2}, ..., x_p = x_{ip}$ is $\hat{y}_i = b_0 + b_1 x_{i1} + b_2 x_{i2} + ... + b_p x_{ip}$.
- ▶ The residual for the *i*th case is $e_i = y_i \hat{y}_i$.
- ▶ The estimate of σ^2 for the multiple regression model is

$$s^{2} = \frac{\sum e_{i}^{2}}{n-p-1} = \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{n-p-1}.$$

Then $s = \sqrt{s^2}$ estimates σ .

▶ The quantity n - p - 1 is the degrees of freedom for a multiple regression model with p explanatory variables.

Standard errors for parameter estimates

▶ Computer software typically includes built-in functions which report the parameter estimates as well as standard errors for these estimates.

Standard errors for parameter estimates

- ► Computer software typically includes built-in functions which report the parameter estimates as well as standard errors for these estimates.
- ► Formulas for standard errors of the estimates are not discussed in the book, but we will discuss them in these slides.

Standard errors for parameter estimates

- ▶ Computer software typically includes built-in functions which report the parameter estimates as well as standard errors for these estimates.
- ▶ Formulas for standard errors of the estimates are not discussed in the book, but we will discuss them in these slides.
- If the ε 's are normally distributed, then b_i follows a Normal distribution with mean β_i and standard error SE_i which is the square root of the (i+1)th diagonal element of $\sigma^2(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}$.

Standard errors for parameter estimates

- ➤ Computer software typically includes built-in functions which report the parameter estimates as well as standard errors for these estimates.
- ▶ Formulas for standard errors of the estimates are not discussed in the book, but we will discuss them in these slides.
- ▶ If the ε 's are normally distributed, then b_i follows a Normal distribution with mean β_i and standard error SE_i which is the square root of the (i+1)th diagonal element of $\sigma^2(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}$.
- Since σ is unknown, it is replaced by s and $t = \frac{b_i \beta_i}{SE_i}$ follows a t-distribution with n p 1 degrees of freedom.

Confidence interval for β_i in the multiple linear regression model

A level C confidence interval for β_i is

$$b_i \pm t^* S E_{b_i}$$

where t^* is the value for the t(n-p-1) density curve with area C between -C and C.

Example 11A: A study at a large university examined GPA (on a 4-point scale) for computer science majors based on high school grades in mathematics (HSM), science (HSS), and english (HSE) (on a 10-point scale: A=10, A-=9, B+=8, etc.). The following table gives the least squares estimates and standard errors for the multiple linear regression model based on a sample of 224 students.

Estimate	${f SE}$
0.5899	0.2942
0.1686	0.0355
0.0343	0.0376
0.0451	0.0387
	0.5899 0.1686 0.0343

- (a) Predict the GPA for a student who got an A in Mathematics, B in Science, and C+ in English.
- (b) Give a 95% confidence interval for $\beta_0, \beta_1, \beta_2$, and β_3 .

Answer:

Two-sided significance test for the slope in the multiple linear regression model

- 1. Test $H_0: \beta_i = 0$ vs. $H_a: \beta_i \neq 0$
- 2. Test statistic: $t = \frac{b_i}{SE_{b_i}}$
- 3. Use the t-table to find the value t^* such that $P(T>t^*)=\frac{\alpha}{2}$ where T follows a t distribution with n-p-1 degrees of freedom
- 4. Reject H_0 is $|t| > t^*$

One-sided (left-sided) significance test for the slope in the multiple linear regression model

- 1. Test $H_0: \beta_i = 0$ vs. $H_a: \beta_i < 0$
- 2. Test statistic: $t = \frac{b_i}{SE_{b_i}}$
- 3. Use the t-table to find the value t^* such that $P(T<-t^*)=P(T>t^*)=\alpha$ where T follows a t distribution with n-p-1 degrees of freedom
- 4. Reject H_0 is $t < -t^*$

One-sided (right-sided) significance test for the slope in the multiple linear regression model

- 1. Test $H_0: \beta_i = 0$ vs. $H_a: \beta_i > 0$
- 2. Test statistic: $t = \frac{b_i}{SE_{b_i}}$
- 3. Use the t-table to find the value t^* such that $P(T>t^*)=\alpha$ where T follows a t distribution with n-p-1 degrees of freedom
- 4. Reject H_0 is $t > t^*$

Example 11B: A study at a large university examined GPA (on a 4-point scale) for computer science majors based on high school grades in mathematics (HSM), science (HSS), and english (HSE) (on a 10-point scale: A=10, A-=9, B+=8, etc.). The following table gives the least squares estimates and standard errors for the multiple linear regression model based on a sample of 224 students.

Variable	Estimate	\mathbf{SE}
Intercept	0.5899	0.2942
HSM	0.1686	0.0355
HSS	0.0343	0.0376
HSE	0.0451	0.0387

Perform a two-sided test of significance for each explanatory variable in the multiple regression model at level .05.

Answer:

ANOVA F test

▶ In simple linear regression, the ANOVA F test compares the model with $H_0: \beta_1 = 0$ against the alternative model with $H_a: \beta_1 \neq 0$.

ANOVA F test

- ▶ In simple linear regression, the ANOVA F test compares the model with $H_0: \beta_1 = 0$ against the alternative model with $H_a: \beta_1 \neq 0$.
- ▶ In multiple linear regression, the ANOVA F test compares the model where all coefficients for the explanatory variables (with the exception of the intercept) are 0 against the alternative that at least one is not 0.

ANOVA F test

- ▶ In simple linear regression, the ANOVA F test compares the model with $H_0: \beta_1 = 0$ against the alternative model with $H_a: \beta_1 \neq 0$.
- ▶ In multiple linear regression, the ANOVA F test compares the model where all coefficients for the explanatory variables (with the exception of the intercept) are 0 against the alternative that at least one is not 0.
- When the null hypothesis is true, the F statistic follows an F distribution with p degrees of freedom in the numerator and n-p-1 degrees of freedom in the denominator.

ANOVA table for multiple regression

ightharpoonup The computations for the F statistic can be summarized in the following table.

Source	\mathbf{DF}	\mathbf{SS}	MS	${f F}$
Model	p	$\sum (\hat{y}_i - \bar{y})^2$	SSM/DFM	MSM/MSE
Error	n-p-1	$\sum (y_i - \hat{y}_i)^2$	SSE/DFE	
Total	n-1	$\sum (y_i - \bar{y})^2$	SST/DFT	

ANOVA table for multiple regression

ightharpoonup The computations for the F statistic can be summarized in the following table.

Source	\mathbf{DF}	\mathbf{SS}	MS	${f F}$
Model	p	$\sum (\hat{y}_i - \bar{y})^2$	SSM/DFM	MSM/MSE
Error	n-p-1	$\sum (y_i - \hat{y}_i)^2$	SSE/DFE	
Total	n-1	$\sum (y_i - \bar{y})^2$	SST/DFT	

The squared multiple correlation coefficient $R^2 = \frac{SSM}{SST} = \frac{\sum (\hat{y}_i - \bar{y})^2}{\sum (y_i - \bar{y})^2}$ is the proportion of variation of the response variable that is explained by the explanatory variables x_1, x_2, \ldots, x_p in a multiple linear regression.

F distribution

▶ The density curve of the F distribution with df1 degrees of freedom in the numerator and df2 degrees of freedom in the denominator has the form

$$f(x) = \frac{\Gamma(\frac{df1+df2}{2})}{\Gamma(\frac{df1}{2})\Gamma(\frac{df2}{2})} \left(\frac{df1}{df2}\right)^{\frac{df1}{2}} x^{\frac{df1}{2}-1} \left(1 + \frac{df1}{df2}x\right)^{-\frac{df1+df2}{2}},$$

for x > 0.

F distribution

▶ The density curve of the F distribution with df1 degrees of freedom in the numerator and df2 degrees of freedom in the denominator has the form

$$f(x) = \frac{\Gamma(\frac{df1+df2}{2})}{\Gamma(\frac{df1}{2})\Gamma(\frac{df2}{2})} \left(\frac{df1}{df2}\right)^{\frac{df1}{2}} x^{\frac{df1}{2}-1} \left(1 + \frac{df1}{df2}x\right)^{-\frac{df1+df2}{2}},$$

for x > 0.

► This distribution is skewed to the right.

F distribution

▶ The density curve of the F distribution with df1 degrees of freedom in the numerator and df2 degrees of freedom in the denominator has the form

$$f(x) = \frac{\Gamma(\frac{df1+df2}{2})}{\Gamma(\frac{df1}{2})\Gamma(\frac{df2}{2})} \left(\frac{df1}{df2}\right)^{\frac{df1}{2}} x^{\frac{df1}{2}-1} \left(1 + \frac{df1}{df2}x\right)^{-\frac{df1+df2}{2}},$$

for x > 0.

- ► This distribution is skewed to the right.
- Sometimes, we abbreviate the F distribution with df1 and df2 degrees of freedom by F(df1, df2).

Table for F distribution

F distribution critical values

		df1 = deg	rees of fre	edom in th	ne num	erator		
		1	2	3		40	50	100
	1	161.45	199.50	215.71		251.14	251.77	253.04
df2 =	2	18.51	19.00	19.16		19.47	19.48	19.49
degrees	3	10.13	9.55	9.28		8.59	8.58	8.55
of freedom				:				
in the	50	4.03	3.18	2.79		1.63	1.60	1.52
denominator	100	3.94	3.09	2.70		1.52	1.48	1.39
	1000	3.85	3.00	2.61		1.41	1.36	1.26

ANOVA F test in the multiple linear regression model

- 1. Test $H_0: \beta_1 = \beta_2 = \ldots = \beta_p = 0$ vs. $H_a:$ at least one β_i is not 0
- 2. Test statistic: $F = \frac{\text{MSM}}{\text{MSE}}$
- 3. Use the F-table to find the value f^* such that $P(\mathcal{F} > f^*) = \alpha$ where \mathcal{F} follows a F distribution with p degrees of freedom in the numerator and n p 1 degrees of freedom in the denominator
- 4. Reject H_0 if $F > f^*$

Example 11C: A study at a large university examined GPA (on a 4-point scale) for computer science majors based on high school grades in mathematics (HSM), science (HSS), and english (HSE) (on a 10-point scale: A=10, A-=9, B+=8, etc.). Use the following information based on a sample of 224 students to test the null hypothesis that the coefficients of HSM, HSS, and HSE are 0 versus the alternative that at least one of these coefficients is not 0 at level .05.

Source	Sum of Squares
Model	27.712
Error	107.750
Total	135.462

Answer: