Formal Languages

[Linz § 1.2]

Start with an **alphabet**, Σ , a **finite**, **non-empty** set of **symbols**. From symbols, construct **strings**.

Strings: Finite sequences of symbols from Σ .

Notation:

 a, b, c, \dots for symbols u, v, w, \dots for strings

Concatenation of Strings

If $u=a_1...a_n, v=b_1...b_m$ then $uv=a_1...a_nb_1...b_m$

Reverse of a String:

If $u=a_1...a_n$ then $u^{\mathsf{R}}=a_n...a_1$

$$|u| = \text{length of } u.$$

 $\lambda = \text{empty string}$

Note:

$$|\lambda| = 0$$

$$\lambda u = u\lambda = u$$

Substring

If $w = u_1 v u_2$

(possibly $u_1 = \lambda$, $u_2 = \lambda$),

then v is a **substring** of w.

If w = uv

(possibly $u = \lambda$, $v = \lambda$),

then u is a **prefix** or **initial substring** of w and v is a **suffix** or **final substring** of w.

Example:

[Linz, section 1.2]

Prove for any strings u, v

$$|uv| = |u| + |v|$$

(This much is obvious, but can you give a **formal proof**?) First, we need a **formal definition** of the length |u| of a string, u!

Notation

(1)
$$\mathbf{w}^n = \underbrace{\mathbf{w} \ \mathbf{w} \dots \mathbf{w}}_{\text{n times}}$$

Recursive Definition:

$$w^0 = \underline{\lambda}$$
 $w^{n+1} = \underline{w}^n \ \underline{w}$

(2) For any alphabet, Σ :

 Σ^* is the set of all **strings** obtained by concatenating 0 or more symbols from Σ (including λ).

i.e. Σ^* is the set of all Σ -strings

$$\Sigma^+ = \Sigma^* \setminus \{\lambda\}$$

Or in other words, Σ^+ is all Σ^* except for λ .

<u>Note</u>:

Assume $\Sigma \neq \emptyset$

Then Σ^* and Σ^+ are always infinite!

Definition: A language over Σ or a Σ -language is a set of strings over Σ (or Σ -strings).

i.e. a **subset** of Σ^* .

Formal (recursive) definition of Σ^*

Base Clause:

$$\lambda \in \Sigma^*$$

Recursive Clause:

$$u \in \Sigma^*, a \in \Sigma \Longrightarrow u \ a \in \Sigma^*$$

Can give modified BNF (Backus-Naur Form):

Given Σ with symbols a, b, ... define Σ^* with strings u, v, ...

$$u := \lambda \mid u \mid a$$

Now give **formal definition** of length of string u by **recursion** on **construction** of $u \in \Sigma^*$, or **structural recursion** on $u \in \Sigma^*$.

$$|\lambda|=0$$
 $|u\;a|=|u|+1$ (See Linz, Example 1.8)

Going back to our *Example* (p. 1-12):

Prove
$$|u|v| = |u| + |v|$$
 (*)

Use simple induction on |v| (or structural induction on $v \in \Sigma^*$).

Basis (base case) $|v| = 0, v = \lambda$

$$|u v| = \underline{|u \lambda| = |u|}$$
$$|u| + |v| = \underline{|u| + 0 = |u|}$$

Induction step: Assume (*) for |v| = n (i.h.) Prove (*) for |v| = n + 1.

We will actually prove: |u|w| = |u| + |w| for |w| = n + 1.

So suppose |w| = n + 1, say w = v a.

Then |v| = n. So:

$$|u w| = |u (v a)|$$

$$= |(u v) a|$$

$$= |u v| + 1 \qquad \text{(def. of } |.|)$$

$$= (|u| + |v|) + 1 \qquad \text{(i.h.)}$$

$$= |u| + (|v| + 1)$$

$$= |u| + |w| \qquad \text{(def. of } |.|)$$

So we have proved (*) for |v| = n + 1. \square

Definition: Reverse u^{R} of string u.

By structural recursion on $u \in \Sigma^*$

$$\lambda^{\mathsf{R}} = \lambda$$
 $(u \ a)^{\mathsf{R}} = a \ u^{\mathsf{R}}$

Example: Prove $(uv)^R = v^R u^R$ (*) by simple induction on |v|.

Basis
$$|v| = 0, v = \lambda$$
.

So
$$(u \; \lambda)^{\mathsf{R}} = \underline{u}^{\mathsf{R}}$$

$$\lambda^{\mathsf{R}} \; u^{\mathsf{R}} = \underline{\lambda} \; \underline{u}^{\mathsf{R}} = \underline{u}^{\mathsf{R}}$$

Induction step: Assume (*) for
$$|v| = n$$
 (i.h.)
Prove (*) for $|v| = n + 1$.

We will actually prove: $(uw)^R = w^R u^R$ for |w| = n + 1.

So let
$$|w| = n + 1$$
, $w = v a$, $|v| = n$.

We will show in
$$(u w)^R = w^R u^R$$
 (**)

LHS of (**) =
$$(u w)^R$$

$$= (u (v a))^R$$

$$= ((u v) a)^R$$

$$= a (u v)^R$$

$$= a v^R u^R$$
(def. of u^R)
$$= a v^R u^R$$

RHS of (**)
$$= (v \ a)^{R} u^{R}$$

$$= a v^{R} u^{R}$$

$$= LHS of (**)$$
(def. of u^{R})

<u>Exercise</u>: Prove $(u^R)^R = u$.

Let L be a Σ -language, i.e. $L \subseteq \Sigma^*$.

A string in L is called a **sentence** of L.

Languages can be **finite** or **infinite**.

Examples: Let
$$\Sigma = \{a, b\}$$

(1)
$$L = \{ab, a, aba\}$$

(2)
$$L = \{a^n \ b^n \mid n \ge 0\}$$

Definition: For any $L, L_1, L_2 \subseteq \Sigma^*$, we can define:

- (1) $L_1 \cup L_2$
- $(2) L_1 \cap L_2$
- (3) **Complement** of $L = \overline{L} = \underline{\Sigma^* \backslash L}$
- (4) Reverse of $L = L^R = \{ \boldsymbol{u}^R \mid \boldsymbol{u} \in \boldsymbol{L} \}$
- (5) Concatenation of L_1 and L_2 :

$$L_1 L_2 = \{ u v \mid u \in L_1, v \in L_2 \}$$

Note:

$$\emptyset L = L\emptyset = \underline{\emptyset}$$

$$\{\lambda\} L = L\{\lambda\} = \underline{L}$$

So $\{\lambda\}$ acts like an *identity* for *concatenation* of languages. We write $I = \lambda$.

Powers of L:

$$L^2 = L \; L = \{u \; v \; | \; u,v \in L\}$$

$$L^n = \{u_1 \; u_2...u_n \; | \; u_i \in L \quad \text{for } i = 1,...,n\}$$

Recursive Definition of Lⁿ

$$L^0=I=\{\lambda\}$$

$$L^{n+1} = \underline{L^n \cdot L}$$

Star-Closure

$$egin{aligned} L^* &= igcup_{n=0}^\infty L^n \ &= L^0 \cup L^1 \cup L^2 \cup ... \ &= \underline{I \cup L \cup L^2 \cup ...} \end{aligned}$$

Positive Closure

$$egin{aligned} L^+ &= igcup_{n=1}^\infty L^n \ &= L \cup L^2 \cup ... \ &= L^* ackslash \{\lambda\} \end{aligned}$$

Example:

[Linz, Example 1.10]

$$\begin{split} \Sigma &= \{a,b\}, \;\; L = \{a^n \; b^n \; | \; n \geq 0\} \\ L^2 &= \underline{\{a^n \; b^n \; a^m \; b^m \; | \; n,m \geq 0\}} \\ L^{\mathsf{R}} &= \underline{\{b^n \; a^n \; | \; n \geq 0\}} \end{split}$$