CLAIMS

What is claimed is:

A machine-implemented method comprising:
 extracting portions from time-domain speech segments;
 creating feature vectors that represent the portions in a vector space, the feature
 vectors incorporating phase information of the portions; and
 determining a distance between the feature vectors in the vector space.

2. The machine-implemented method of claim 1, wherein creating feature vectors comprises:

constructing a matrix W from the portions; and decomposing the matrix W.

- 3. The machine-implemented method of claim 2, wherein decomposing the matrix W comprises extracting global boundary-centric features from the portions.
- 4. The machine-implemented method of claim 2, wherein the speech segments each include a segment boundary within a phoneme.
- 5. The machine-implemented method of claim 4, wherein the speech segments each include at least one diphone.

Attorney Docket: 4860.P3128

- 6. The machine-implemented method of claim 5, wherein the portions include at least one pitch period.
- 7. The machine-implemented method of claim 6, wherein decomposing the matrix W comprises performing a pitch synchronous singular value analysis on the pitch periods of the time-domain segments.
- 8. The machine-implemented method of claim 6, wherein the matrix W is a $2KM \times N$ matrix represented by

$$W = U \Sigma V^T$$

where K is the number of pitch periods near the segment boundary extracted from each segment, N is the maximum number of samples among the pitch periods, M is the number of segments in the voice table having a segment boundary within the phoneme, U is the $2KM \times R$ left singular matrix with row vectors u_i ($1 \le i \le 2KM$), Σ is the $R \times R$ diagonal matrix of singular values $s_1 \ge s_2 \ge ... \ge s_R > 0$, V is the $N \times R$ right singular matrix with row vectors v_j ($1 \le j \le N$), R << 2KM, and T denotes matrix transposition, wherein decomposing the matrix W comprises performing a singular value decomposition of W.

9. The machine-implemented method of claim 8, wherein the pitch periods are zero padded to N samples.

10. The machine-implemented method of claim 9, wherein a feature vector \bar{u}_i is calculated as

$$\bar{u}_i = u_i \Sigma$$

where u_i is a row vector associated with a pitch period i, and Σ is the singular diagonal matrix.

- 11. The machine-implemented method of claim 10, wherein the distance between two feature vectors is determined by a metric comprising the cosine of the angle between the two feature vectors.
- 12. The machine-implemented method of claim 11, wherein the metric comprises a closeness measure, C, between two feature vectors, \bar{u}_k and \bar{u}_l , wherein C is calculated as

$$C(\bar{u}_k, \bar{u}_l) = \cos(u_k \Sigma, u_l \Sigma) = \frac{u_k \Sigma^2 u_l^T}{\|u_k \Sigma\| \|u_l \Sigma\|}$$

for any $1 \le k$, $l \le 2KM$.

13. The machine-implemented method of claim 12, wherein a difference $d(S_1, S_2)$ between two segments in the voice table, S_1 and S_2 , is calculated as

$$d(S_1,S_2) = d_0(p_1, q_1) = 1 - C(\overline{u}_{p_1}, \overline{u}_{q_1})$$

where d_0 is the distance between pitch periods p_1 and q_1, p_1 is the last pitch period of S_1 , q_1 is the first pitch period of S_2 , \overline{u}_{p_1} is a feature vector associated with pitch period p_1 , and \overline{u}_{q_1} is a feature vector associated with pitch period q_1 .

- 14. The machine-implemented method of claim 13, wherein the calculation for the difference between two segments in the voice table, S_1 and S_2 , is expanded to include a plurality of pitch periods from each segment.
- 15. The machine-implemented method of claim 13, wherein the difference between two segments in the voice table, S_1 and S_2 , is associated with a discontinuity between S_1 and S_2 .
- 16. The machine-implemented method of claim 12, wherein a difference $d(S_1, S_2)$ between two segments in the voice table, S_1 and S_2 , is calculated as

$$d(S_1,S_2) = \left| d_0(p_1, q_1) - d_0(p_1, \overline{p}_1) + d_0(q_1, \overline{q}_1) \right| = \left| \frac{C(\overline{u}_{p_1}, \overline{u}_{\overline{p}_1}) + C(\overline{u}_{q_1}, \overline{u}_{\overline{q}_1}) - C(\overline{u}_{p_1}, \overline{u}_{q_1}) \right|$$

where d_0 is the distance between pitch periods, p_1 is the last pitch period of S_1 , \overline{p}_1 is the first pitch period of a segment contiguous to S_1 , q_1 is the first pitch period of S_2 , \overline{q}_1 is the last pitch period of a segment contiguous to S_2 , \overline{u}_{p_1} is a feature vector associated with pitch period p_1 , \overline{u}_{q_1} is a feature vector associated with pitch period q_1 , \overline{u}_{p_1} is a feature vector associated with pitch period \overline{q}_1 , and \overline{u}_{q_1} is a feature vector associated with pitch period \overline{q}_1 .

17. The machine-implemented method of claim 2, further comprising associating the distance between the feature vectors with speech segments in the voice table.

- 18. The machine-implemented method of claim 17, further comprising:
 selecting speech segments from the voice table based on the distance between the feature vectors.
- 19. The machine-implemented method of claim 5, wherein the portions include centered pitch periods.
- 20. The machine-implemented method of claim 19, wherein the matrix W is a $(2(K-1)+1)M \times N$ matrix represented by

1:36 -

27 C 22 10

$$W = U \Sigma V^T$$

where K-1 is the number of centered pitch periods near the segment boundary extracted from each segment, N is the maximum number of samples among the centered pitch periods, M is the number of segments in the voice table having a segment boundary within the phoneme, U is the $(2(K-1)+1)M \times R$ left singular matrix with row vectors u_i $(1 \le i \le (2(K-1)+1)M)$, Σ is the $R \times R$ diagonal matrix of singular values $s_1 \ge s_2 \ge ...$ $\ge s_R > 0$, V is the $N \times R$ right singular matrix with row vectors v_j $(1 \le j \le N)$, R << (2(K-1)+1)M), and T denotes matrix transposition, wherein decomposing the matrix W comprises performing a singular value decomposition of W.

21. The machine-implemented method of claim 20, wherein the centered pitch periods are symmetrically zero padded to N samples.

22. The machine-implemented method of claim 21, wherein a feature vector \bar{u}_i is calculated as

$$\bar{u}_i = u_i \Sigma$$

where u_i is a row vector associated with a centered pitch period i, and Σ is the singular diagonal matrix.

23. The machine-implemented method of claim 22, wherein the distance between two feature vectors is determined by a metric comprising a closeness measure, C, between two feature vectors, \bar{u}_k and \bar{u}_l , wherein C is calculated as

$$C(\bar{u}_k, \bar{u}_l) = \cos(u_k \Sigma, u_l \Sigma) = \frac{u_k \Sigma^2 u_l^T}{\|u_k \Sigma\| \|u_l \Sigma\|}$$

for any $1 \le k$, $l \le (2(K-1)+1)M$.

24. The machine-implemented method of claim 23, wherein a difference $d(S_1, S_2)$ between two segments in the voice table, S_1 and S_2 , is calculated as

$$d(S_1,S_2) = C(u_{\pi_{-1}},u_{\delta_0}) + C(u_{\delta_0},u_{\sigma_1}) - C(u_{\pi_{-1}},u_{\pi_0}) - C(u_{\sigma_0},u_{\sigma_1})$$

where $u_{\pi_{-1}}$ is a feature vector associated with a centered pitch period π_{-1} , u_{δ_0} is a feature vector associated with a centered pitch period δ_0 , u_{σ_1} is a feature vector associated with a centered pitch period σ_1 , u_{π_0} is a feature vector associated with a centered pitch period σ_0 , and u_{σ_0} is a feature vector associated with a centered pitch period σ_0 .

25. A machine-readable medium having instructions to cause a machine to perform a machine-implemented method comprising:

extracting portions from time-domain speech segments;

creating feature vectors that represent the portions in a vector space, the feature vectors incorporating phase information of the portions; and

determining a distance between the feature vectors in the vector space.

26. The machine-readable medium of claim 25, wherein creating feature vectors comprises:

Contract Contract

constructing a matrix W from the portions; and decomposing the matrix W.

- 27. The machine-readable medium of claim 26, wherein decomposing the matrix W comprises extracting global boundary-centric features from the portions.
- 28. The machine-readable medium of claim 26, wherein the speech segments each include a segment boundary within a phoneme.
- 29. The machine-readable medium of claim 28, wherein the speech segments each include at least one diphone.
- 30. The machine-readable medium of claim 29, wherein the portions include at least one pitch period.

Attorney Docket: 4860.P3128

- 31. The machine-readable medium of claim 30, wherein decomposing the matrix W comprises performing a pitch synchronous singular value analysis on the pitch periods of the time-domain segments.
- 32. The machine-readable medium of claim 30, wherein the matrix W is a $2KM \times N$ matrix represented by

$$W = U \Sigma V^T$$

where K is the number of pitch periods near the segment boundary extracted from each segment, N is the maximum number of samples among the pitch periods, M is the number of segments in the voice table having a segment boundary within the phoneme, U is the $2KM \times R$ left singular matrix with row vectors u_i ($1 \le i \le 2KM$), Σ is the $R \times R$ diagonal matrix of singular values $s_1 \ge s_2 \ge ... \ge s_R > 0$, V is the $N \times R$ right singular matrix with row vectors v_j ($1 \le j \le N$), R << 2KM, and T denotes matrix transposition, wherein decomposing the matrix W comprises performing a singular value decomposition of W.

- 33. The machine-readable medium of claim 32, wherein the pitch periods are zero padded to N samples.
- 34. The machine-readable medium of claim 33, wherein a feature vector \bar{u}_i is calculated as

$$\bar{u}_i = u_i \Sigma$$

where u_i is a row vector associated with a pitch period i, and Σ is the singular diagonal matrix.

- 35. The machine-readable medium of claim 34, wherein the distance between two feature vectors is determined by a metric comprising the cosine of the angle between the two feature vectors.
- 36. The machine-readable medium of claim 35, wherein the metric comprises a closeness measure, C, between two feature vectors, \bar{u}_k and \bar{u}_l , wherein C is calculated as

$$C(\bar{u}_k, \bar{u}_l) = \cos(u_k \Sigma, u_l \Sigma) = \frac{u_k \Sigma^2 u_l^T}{\|u_k \Sigma\| \|u_l \Sigma\|}$$

for any $1 \le k$, $l \le 2KM$.

医内膜性坏疽 化二十二

37. The machine-readable medium of claim 36, wherein a difference $d(S_1, S_2)$ between two segments in the voice table, S_1 and S_2 , is calculated as

$$d(S_1,S_2) = d_0(p_1,q_1) = 1 - C(\overline{u}_{p_1}, \overline{u}_{q_1})$$

where d_0 is the distance between pitch periods p_1 and q_1, p_1 is the last pitch period of S_1 , q_1 is the first pitch period of S_2 , \overline{u}_{p_1} is a feature vector associated with pitch period p_1 , and \overline{u}_{q_1} is a feature vector associated with pitch period q_1 .

38. The machine-readable medium of claim 37, wherein the calculation for the difference between two segments in the voice table, S_1 and S_2 , is expanded to include a plurality of pitch periods from each segment.

- 39. The machine-readable medium of claim 37, wherein the difference between two segments in the voice table, S_1 and S_2 , is associated with a discontinuity between S_1 and S_2 .
- 40. The machine-readable medium of claim 36, wherein a difference $d(S_1, S_2)$ between two segments in the voice table, S_1 and S_2 , is calculated as $d(S_1, S_2) = \left| d_0(p_1, q_1) d_0(p_1, \overline{p}_1) + d_0(q_1, \overline{q}_1) \right| = \left| C(\overline{u}_{p_1}, \overline{u}_{\overline{p}_1}) + C(\overline{u}_{q_1}, \overline{u}_{\overline{q}_1}) C(\overline{u}_{p_1}, \overline{u}_{q_1}) \right|$

where d_0 is the distance between pitch periods, p_1 is the last pitch period of S_1 , \overline{p}_1 is the first pitch period of a segment contiguous to S_1 , q_1 is the first pitch period of S_2 , \overline{q}_1 is the last pitch period of a segment contiguous to S_2 , \overline{u}_{p_1} is a feature vector associated with pitch period p_1 , \overline{u}_{q_1} is a feature vector associated with pitch period q_1 , $\overline{u}_{\overline{p}_1}$ is a feature vector associated with pitch period \overline{q}_1 , and $\overline{u}_{\overline{q}_1}$ is a feature vector associated with pitch period \overline{q}_1 .

41. The machine-readable medium of claim 26, wherein the method further comprises associating the distance between the feature vectors with speech segments in the voice table.

42. The machine-readable medium of claim 41, wherein the method further comprises:

selecting speech segments from the voice table based on the distance between the feature vectors.

- 43. The machine-readable medium of claim 29, wherein the portions include centered pitch periods.
- 44. The machine-readable medium of claim 43, wherein the matrix W is a $(2(K-1)+1)M \times N$ matrix represented by

$$W = U \Sigma V^T$$

where K-1 is the number of centered pitch periods near the segment boundary extracted from each segment, N is the maximum number of samples among the centered pitch periods, M is the number of segments in the voice table having a segment boundary within the phoneme, U is the $(2(K-1)+1)M \times R$ left singular matrix with row vectors u_i $(1 \le i \le (2(K-1)+1)M)$, Σ is the $R \times R$ diagonal matrix of singular values $s_1 \ge s_2 \ge ...$ $\ge s_R > 0$, V is the $N \times R$ right singular matrix with row vectors v_j $(1 \le j \le N)$, R << (2(K-1)+1)M), and T denotes matrix transposition, wherein decomposing the matrix W comprises performing a singular value decomposition of W.

45. The machine-readable medium of claim 44, wherein the centered pitch periods are symmetrically zero padded to *N* samples.

46. The machine-readable medium of claim 45, wherein a feature vector \bar{u}_i is calculated as

$$\bar{u}_i = u_i \Sigma$$

where u_i is a row vector associated with a centered pitch period i, and Σ is the singular diagonal matrix.

The machine-readable medium of claim 46, wherein the distance between two feature vectors is determined by a metric comprising a closeness measure, C, between two feature vectors, \bar{u}_k and \bar{u}_l , wherein C is calculated as

$$C(\bar{u}_k, \bar{u}_l) = \cos(u_k \Sigma, u_l \Sigma) = \frac{u_k \Sigma^2 u_l^T}{\|u_k \Sigma\| \|u_l \Sigma\|}$$

for any $1 \le k$, $l \le (2(K-1)+1)M$.

48. The machine-readable medium of claim 47, wherein a difference $d(S_1, S_2)$ between two segments in the voice table, S_1 and S_2 , is calculated as

$$d(S_1,S_2) = C(u_{\pi_{-1}},u_{\delta_0}) + C(u_{\delta_0},u_{\sigma_1}) - C(u_{\pi_{-1}},u_{\pi_0}) - C(u_{\sigma_0},u_{\sigma_1})$$

where $u_{\pi_{-1}}$ is a feature vector associated with a centered pitch period π_{-1} , u_{δ_0} is a feature vector associated with a centered pitch period δ_0 , u_{σ_1} is a feature vector associated with a centered pitch period σ_1 , u_{π_0} is a feature vector associated with a centered pitch period σ_0 , and u_{σ_0} is a feature vector associated with a centered pitch period σ_0 .

- 49. An apparatus comprising:
 means for extracting portions from time-domain speech segments;
 means for creating feature vectors that represent the portions in a vector space,
 the feature vectors incorporating phase information of the portions; and
 means for determining a distance between the feature vectors in the vector space.
- The apparatus of claim 49, wherein creating feature vectors comprises:

 means for constructing a matrix W from the portions; and

 means for decomposing the matrix W.
- 51. The apparatus of claim 50, wherein the means for decomposing the matrix W comprises means for extracting global boundary-centric features from the portions.

र दुश्ची

- 52. The apparatus of claim 50, wherein the speech segments each include a segment boundary within a phoneme.
- 53. The apparatus of claim 52, wherein the speech segments each include at least one diphone.
- 54. The apparatus of claim 53, wherein the portions include at least one pitch period.

- 55. The apparatus of claim 54, wherein the means for decomposing the matrix W comprises means for performing a pitch synchronous singular value analysis on the pitch periods of the time-domain segments.
- 56. The apparatus of claim 54, wherein the matrix W is a $2KM \times N$ matrix represented by

$$W = U \Sigma V^T$$

where K is the number of pitch periods near the segment boundary extracted from each segment, N is the maximum number of samples among the pitch periods, M is the number of segments in the voice table having a segment boundary within the phoneme, U is the $2KM \times R$ left singular matrix with row vectors u_i ($1 \le i \le 2KM$), Σ is the $R \times R$ diagonal matrix of singular values $s_1 \ge s_2 \ge ... \ge s_R > 0$, V is the $N \times R$ right singular matrix with row vectors v_j ($1 \le j \le N$), R << 2KM, and T denotes matrix transposition, wherein decomposing the matrix W comprises performing a singular value decomposition of W.

Carrier to the

n es des mango

- 57. The apparatus of claim 56, wherein the pitch periods are zero padded to N samples.
- 58. The apparatus of claim 57, wherein a feature vector \bar{u}_i is calculated as

$$\bar{u}_i = u_i \Sigma$$

where u_i is a row vector associated with a pitch period i, and Σ is the singular diagonal matrix.

- 59. The apparatus of claim 58, wherein the distance between two feature vectors is determined by a metric comprising the cosine of the angle between the two feature vectors.
- 60. The apparatus of claim 59, wherein the metric comprises a closeness measure, C, between two feature vectors, \bar{u}_k and \bar{u}_l , wherein C is calculated as

$$C(\bar{u}_k, \bar{u}_l) = \cos(u_k \Sigma, u_l \Sigma) = \frac{u_k \Sigma^2 u_l^T}{\|u_k \Sigma\| \|u_l \Sigma\|}$$

for any $1 \le k, l \le 2KM$.

61. The apparatus of claim 60, wherein a difference $d(S_1, S_2)$ between two segments in the voice table, S_1 and S_2 , is calculated as

$$d(S_1,S_2)=d_0(p_1,q_1)=1-C(\overline{u}_{p_1},\overline{u}_{q_1})$$

where d_0 is the distance between pitch periods p_1 and q_1 , p_1 is the last pitch period of S_1 , q_1 is the first pitch period of S_2 , \overline{u}_{p_1} is a feature vector associated with pitch period p_1 , and \overline{u}_{q_1} is a feature vector associated with pitch period q_1 .

62. The apparatus of claim 61, wherein the calculation for the difference between two segments in the voice table, S_1 and S_2 , is expanded to include a plurality of pitch periods from each segment.

- 63. The apparatus of claim 61, wherein the difference between two segments in the voice table, S_1 and S_2 , is associated with a discontinuity between S_1 and S_2 .
- 64. The apparatus of claim 60, wherein a difference $d(S_1, S_2)$ between two segments in the voice table, S_1 and S_2 , is calculated as

$$d(S_1, S_2) = \left| d_0(p_1, q_1) - \frac{d_0(p_1, \overline{p}_1) + d_0(q_1, \overline{q}_1)}{2} \right| = \left| \frac{C(\overline{u}_{p_1}, \overline{u}_{\overline{p}_1}) + C(\overline{u}_{q_1}, \overline{u}_{\overline{q}_1}) - C(\overline{u}_{p_1}, \overline{u}_{q_1})}{2} \right|$$

where d_0 is the distance between pitch periods, p_1 is the last pitch period of S_1 , \overline{p}_1 is the first pitch period of a segment contiguous to S_1 , q_1 is the first pitch period of S_2 , \overline{q}_1 is the last pitch period of a segment contiguous to S_2 , \overline{u}_{p_1} is a feature vector associated with pitch period p_1 , \overline{u}_{q_1} is a feature vector associated with pitch period q_1 , $\overline{u}_{\overline{p}_1}$ is a feature vector associated with pitch period \overline{q}_1 , and $\overline{u}_{\overline{q}_1}$ is a feature vector associated with pitch period \overline{q}_1 .

- 65. The apparatus of claim 50, further comprising means for associating the distance between the feature vectors with speech segments in the voice table.
- 66. The apparatus of claim 65, further comprising:

 means for selecting speech segments from the voice table based on the distance between the feature vectors.
- 67. The apparatus of claim 53, wherein the portions include centered pitch periods.

68. The apparatus of claim 67, wherein the matrix W is a $(2(K-1)+1)M \times N$ matrix represented by

$$W = U \Sigma V^T$$

where K-1 is the number of centered pitch periods near the segment boundary extracted from each segment, N is the maximum number of samples among the centered pitch periods, M is the number of segments in the voice table having a segment boundary within the phoneme, U is the $(2(K-1)+1)M \times R$ left singular matrix with row vectors u_i $(1 \le i \le (2(K-1)+1)M)$, Σ is the $R \times R$ diagonal matrix of singular values $s_1 \ge s_2 \ge ...$ $\ge s_R > 0$, V is the $N \times R$ right singular matrix with row vectors v_j $(1 \le j \le N)$, R << (2(K-1)+1)M), and T denotes matrix transposition, wherein decomposing the matrix W comprises performing a singular value decomposition of W.

- 69. The apparatus of claim 68, wherein the centered pitch periods are symmetrically zero padded to *N* samples.
- 70. The apparatus of claim 69, wherein a feature vector \bar{u}_i is calculated as $\bar{u}_i = u_i \Sigma$

where u_i is a row vector associated with a centered pitch period i, and Σ is the singular diagonal matrix.

71. The apparatus of claim 70, wherein the distance between two feature vectors is determined by a metric comprising a closeness measure, C, between two feature vectors, \bar{u}_k and \bar{u}_l , wherein C is calculated as

$$C(\bar{u}_k, \bar{u}_l) = \cos(u_k \Sigma, u_l \Sigma) = \frac{u_k \Sigma^2 u_l^T}{\|u_k \Sigma\| \|u_l \Sigma\|}$$

for any $1 \le k$, $l \le (2(K-1)+1)M$.

72. The apparatus of claim 71, wherein a difference $d(S_1, S_2)$ between two segments in the voice table, S_1 and S_2 , is calculated as

$$d(S_1,S_2) = C(u_{\pi_{-1}},u_{\delta_0}) + C(u_{\delta_0},u_{\sigma_1}) - C(u_{\pi_{-1}},u_{\pi_0}) - C(u_{\sigma_0},u_{\sigma_1})$$

1. 2. L

where $u_{\pi_{-1}}$ is a feature vector associated with a centered pitch period π_{-1} , u_{δ_0} is a feature vector associated with a centered pitch period δ_0 , u_{σ_1} is a feature vector associated with a centered pitch period σ_1 , u_{π_0} is a feature vector associated with a centered pitch period σ_0 , and u_{σ_0} is a feature vector associated with a centered pitch period σ_0 .

73. A system comprising:

a processing unit coupled to a memory through a bus; and

a process executed from the memory by the processing unit to cause the processing unit to extract portions from time-domain speech segments, create feature vectors that represent the portions in a vector space, the feature vectors incorporating phase information of the portions, and determine a distance between the feature vectors in the vector space.

- 74. The system of claim 73, wherein the process further causes the processing unit, when creating feature vectors, to construct a matrix W from the portions, and decompose the matrix W.
- 75. The system of claim 74, wherein the process further causes the processing unit, when decomposing the matrix W, to extract global boundary-centric features from the portions.
- 76. The system of claim 74, wherein the speech segments each include a segment boundary within a phoneme.
- 77. The system of claim 76, wherein the speech segments each include at least one diphone.
- 78. The system of claim 77, wherein the portions include at least one pitch period.
- 79. The system of claim 78, wherein the process further causes the processing unit, when decomposing the matrix W, to perform a pitch synchronous singular value analysis on the pitch periods of the time-domain segments.

80. The system of claim 78, wherein the matrix W is a $2KM \times N$ matrix represented by

$$W = U \Sigma V^T$$

where K is the number of pitch periods near the segment boundary extracted from each segment, N is the maximum number of samples among the pitch periods, M is the number of segments in the voice table having a segment boundary within the phoneme, U is the $2KM \times R$ left singular matrix with row vectors u_i ($1 \le i \le 2KM$), Σ is the $R \times R$ diagonal matrix of singular values $s_1 \ge s_2 \ge ... \ge s_R > 0$, V is the $N \times R$ right singular matrix with row vectors v_j ($1 \le j \le N$), R << 2KM, and T denotes matrix transposition, wherein decomposing the matrix W comprises performing a singular value decomposition of W.

- 81. The system of claim 80, wherein the pitch periods are zero padded to N samples.
- 82. The system of claim 81, wherein a feature vector \bar{u}_i is calculated as

$$\bar{u}_i = u_i \Sigma$$

where u_i is a row vector associated with a pitch period i, and Σ is the singular diagonal matrix.

83. The system of claim 82, wherein the distance between two feature vectors is determined by a metric comprising the cosine of the angle between the two feature vectors.

84. The system of claim 83, wherein the metric comprises a closeness measure, C, between two feature vectors, \bar{u}_k and \bar{u}_l , wherein C is calculated as

$$C(\bar{u}_k, \bar{u}_l) = \cos(u_k \Sigma, u_l \Sigma) = \frac{u_k \Sigma^2 u_l^T}{\|u_k \Sigma\| \|u_l \Sigma\|}$$

for any $1 \le k$, $l \le 2KM$.

85. The system of claim 84, wherein a difference $d(S_1, S_2)$ between two segments in the voice table, S_1 and S_2 , is calculated as

$$d(S_1,S_2) = d_0(p_1, q_1) = 1 - C(\overline{u}_{p_1}, \overline{u}_{q_1})$$

where d_0 is the distance between pitch periods p_1 and q_1, p_1 is the last pitch period of S_1 , q_1 is the first pitch period of S_2 , \overline{u}_{p_1} is a feature vector associated with pitch period p_1 , and \overline{u}_{q_1} is a feature vector associated with pitch period q_1 .

- 86. The system of claim 85, wherein the calculation for the difference between two segments in the voice table, S_1 and S_2 , is expanded to include a plurality of pitch periods from each segment.
- 87. The system of claim 85, wherein the difference between two segments in the voice table, S_1 and S_2 , is associated with a discontinuity between S_1 and S_2 .

88. The system of claim 84, wherein a difference $d(S_1, S_2)$ between two segments in the voice table, S_1 and S_2 , is calculated as

$$d(S_1,S_2) = \left| d_0(p_1, q_1) - \frac{d_0(p_1, \overline{p}_1) + d_0(q_1, \overline{q}_1)}{2} \right| = \left| \frac{C(\overline{u}_{p_1}, \overline{u}_{\overline{p}_1}) + C(\overline{u}_{q_1}, \overline{u}_{\overline{q}_1}) - C(\overline{u}_{p_1}, \overline{u}_{q_1}) \right|$$

where d_0 is the distance between pitch periods, p_1 is the last pitch period of S_1 , \overline{p}_1 is the first pitch period of a segment contiguous to S_1 , q_1 is the first pitch period of S_2 , \overline{q}_1 is the last pitch period of a segment contiguous to S_2 , \overline{u}_{p_1} is a feature vector associated with pitch period p_1 , \overline{u}_{q_1} is a feature vector associated with pitch period q_1 , \overline{u}_{p_1} is a feature vector associated with pitch period \overline{q}_1 , and \overline{u}_{q_1} is a feature vector associated with pitch period \overline{q}_1 .

- 89. The system of claim 74, wherein the process further causes the processing unit to associate the distance between the feature vectors with speech segments in the voice table.
- 90. The system of claim 89, wherein the process further causes the processing unit to select speech segments from the voice table based on the distance between the feature vectors.
- 91. The system of claim 77, wherein the portions include centered pitch periods.

92. The system of claim 91, wherein the matrix W is a $(2(K-1)+1)M \times N$ matrix represented by

$$W = U \Sigma V^T$$

where K-1 is the number of centered pitch periods near the segment boundary extracted from each segment, N is the maximum number of samples among the centered pitch periods, M is the number of segments in the voice table having a segment boundary within the phoneme, U is the $(2(K-1)+1)M \times R$ left singular matrix with row vectors u_i ($1 \le i \le (2(K-1)+1)M$), Σ is the $R \times R$ diagonal matrix of singular values $s_1 \ge s_2 \ge \dots$ $\ge s_R > 0$, V is the $N \times R$ right singular matrix with row vectors v_j ($1 \le j \le N$), $R < \infty$ (2(K-1)+1)M), and T denotes matrix transposition, wherein decomposing the matrix W comprises performing a singular value decomposition of W.

- 93. The system of claim 92, wherein the centered pitch periods are symmetrically zero padded to *N* samples.
- 94. The system of claim 93, wherein a feature vector \bar{u}_i is calculated as

$$\bar{u}_i = u_i \Sigma$$

where u_i is a row vector associated with a centered pitch period i, and Σ is the singular diagonal matrix.

95. The system of claim 94, wherein the distance between two feature vectors is determined by a metric comprising a closeness measure, C, between two feature vectors, \vec{u}_k and \vec{u}_l , wherein C is calculated as

$$C(\bar{u}_k, \bar{u}_l) = \cos(u_k \Sigma, u_l \Sigma) = \frac{u_k \Sigma^2 u_l^T}{\|u_k \Sigma\| \|u_l \Sigma\|}$$

for any $1 \le k, l \le (2(K-1)+1)M$.

96. The system of claim 95, wherein a difference $d(S_1, S_2)$ between two segments in the voice table, S_1 and S_2 , is calculated as

$$d(S_1,S_2) = C(u_{\pi_{-1}},u_{\delta_0}) + C(u_{\delta_0},u_{\sigma_1}) - C(u_{\pi_{-1}},u_{\pi_0}) - C(u_{\sigma_0},u_{\sigma_1})$$

where $u_{\pi_{-1}}$ is a feature vector associated with a centered pitch period π_{-1} , u_{δ_0} is a feature vector associated with a centered pitch period δ_0 , u_{σ_1} is a feature vector associated with a centered pitch period σ_1 , u_{π_0} is a feature vector associated with a centered pitch period σ_0 , and u_{σ_0} is a feature vector associated with a centered pitch period σ_0 .

- 97. A machine-implemented method comprising:
 gathering time-domain samples from recorded speech segments;
 extracting features that represent the samples;
 determining a discontinuity between the segments, the discontinuity based on a distance between the features.
- 98. The machine-implemented method of claim 97, wherein the time-domain samples include pitch periods surrounding a boundary of a phoneme.

- 99. The machine-implemented method of claim 98, wherein the features incorporate phase information of the pitch periods.
- 100. The machine-implemented method of claim 99, wherein extracting features comprises constructing a matrix from the time-domain samples and decomposing the matrix.
- 101. A machine-readable medium having instructions to cause a machine to perform a machine-implemented method comprising:

gathering time-domain samples from recorded speech segments; extracting features that represent the samples;

determining a discontinuity between the segments, the discontinuity based on a distance between the features.

- 102. The machine-readable medium of claim 101, wherein the time-domain samples include pitch periods surrounding a boundary of a phoneme.
- 103. The machine-readable medium of claim 102, wherein the features incorporate phase information of the pitch periods.
- 104. The machine-readable medium of claim 103, wherein extracting features comprises constructing a matrix from the time-domain samples and decomposing the matrix.

Attorney Docket: 4860.P3128 -53-

105. An apparatus comprising:

means for gathering time-domain samples from recorded speech segments; means for extracting features that represent the samples;

means for determining a discontinuity between the segments, the discontinuity based on a distance between the features.

- 106. The apparatus of claim 105, wherein the time-domain samples include pitch periods surrounding a boundary of a phoneme.
- 107. The apparatus of claim 106, wherein the features incorporate phase information of the pitch periods.
- 108. The apparatus of claim 107, wherein the means for extracting features comprises means for constructing a matrix from the time-domain samples and means for decomposing the matrix.

109. A system comprising:

a processing unit coupled to a memory through a bus; and a process executed from the memory by the processing unit to cause the processing unit to gather time-domain samples from recorded speech segments, extract features that represent the samples, and determine a discontinuity between the segments, the discontinuity based on a distance between the features.

- 110. The system of claim 109, wherein the time-domain samples include pitch periods surrounding a boundary of a phoneme.
- 111. The system of claim 110, wherein the features incorporate phase information of the pitch periods.
- 112. The system of claim 111, wherein the process further causes the processing unit, when extracting features, to construct a matrix from the time-domain samples and decompose the matrix.