RAW SEQUENCE LISTING

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) no errors detected.

Application Serial Number: $\frac{10/591,095}{1FWP}$ Date Processed by STIC: $\frac{9/12/06}{1}$

ENTERED

IFWP

RAW SEQUENCE LISTING DATE: 09/12/2006
PATENT APPLICATION: US/10/591,095 TIME: 10:56:18

Input Set : A:\Final Sequence List-14546-00001-US.txt

Output Set: N:\CRF4\09122006\J591095.raw

```
3 <110> APPLICANT: Frankard, Valerie
      5 <120> TITLE OF INVENTION: Plants having increased yield and method for making the same
      7 <130> FILE REFERENCE: 14546-00001-US
C--> 9 <140> CURRENT APPLICATION NUMBER: US/10/591,095
C--> 9 <141> CURRENT FILING DATE: 2006-08-29
     9 <150> PRIOR APPLICATION NUMBER: PCT/EP2005/050874
     10 <151> PRIOR FILING DATE: 2005-03-01
     12 <150> PRIOR APPLICATION NUMBER: EP 04100841.5
    13 <151> PRIOR FILING DATE: 2004-03-01
    15 <150> PRIOR APPLICATION NUMBER: US 60/550,918
    16 <151> PRIOR FILING DATE: 2004-03-05
    18 <160> NUMBER OF SEQ ID NOS: 5
    20 <170> SOFTWARE: PatentIn version 3.3
    22 <210> SEQ ID NO: 1
    23 <211> LENGTH: 1256
    24 <212> TYPE: DNA
    25 <213> ORGANISM: Arabidopsis thaliana
    27 <400> SEQUENCE: 1
    28 atggaacagc cgaagaaagt tgctgatagg tatctaaagc gagaggttct tggtcaaggt
                                                                               60
    30 acttatggag tcgtcttcaa agctactgat acaaagaatg gagaaactgt agcgatcaag
                                                                              120
    32 aaaataagac ttggtaaaga gaaagaaggt gtgaatgtaa cagctcttag agaaatcaaa
                                                                              180
    34 ttacttaaag agcttaagca tccacatata attgagttga ttgatgcgtt tcctcacaag
                                                                              240
    36 gagaatttgc acatcgtgtt tgagttcatg gagactgatc tcgaagcagt tatccgagat
                                                                              300
    38 cgtaatetet atetttegee tggtgatgte aaatettace tecaaatgat attgaaaggt
                                                                              360
    40 cttgaatatt gccatggcaa atgggttctg cacagagata tgaagccaaa caacttgttg
                                                                              420
    42 ataggaccca atggacagct gaaacttgca gattttgggt tagcacgtat atttggtagc
                                                                              480
    44 ccaggtcgta agtttaccca ccaggtgttt gctagatggt atagagcacc tgaacttttg
                                                                              540
    46 tttggtgcaa aacaatatga tggtgcagtt gatgtttggg ctgctggctg catttttgct
                                                                              600
    48 gaacttctat tacgcagacc atttcttcag ggaaacagtg atattgatca attaagcaaa
                                                                              660
    50 atetttgetg cetttgggae tecaaaagea gateagtgge etgacatgat etgeetteet
                                                                              720
    52 gattatgtag agtatcaatt tgtccctgct ccttctttac gttctttact cccaacggtt
                                                                              780
    54 agtgaggatg ctttagattt gttgtcaaag atgttcacct atgaccccaa gtctagaata
                                                                              840
    56 togattcagc aggetetaaa acacaggtac tteacatetg cacettcace tactgaceet
                                                                              900
    58 ttaaagctcc caagaccagt ttccaagcaa gatgctaagt catctgatag taaacttgaa
                                                                              960
    60 gccattaaag tgctgtcacc agcacataag tttagaagag tgatgcctga ccgaggaaag
                                                                             1020
    62 tetggtaatg gtttcaagga ecagagtgtt gatgtcatga gacaagetag ecatgatgga
                                                                             1080
    64 caagcaccaa tgtctttaga tttcaccatc ttagctgagc ggccaccaaa ccgaccaacc
                                                                             1140
    66 atcaccagtg cagatagatc tcatctgaag aggaaacttg atctcgagtt cctataggat
                                                                             1200
    68 atcgcgtaac aggcttcttc ttgacgtcgt tcttcaggtt cctatagcct atagga
                                                                             1256
    71 <210> SEQ ID NO: 2
    72 <211> LENGTH: 398
    73 <212> TYPE: PRT
```

74 <213> ORGANISM: Arabidopsis thaliana

RAW SEQUENCE LISTING DATE: 09/12/2006
PATENT APPLICATION: US/10/591,095 TIME: 10:56:18

Input Set : A:\Final Sequence List-14546-00001-US.txt

Output Set: N:\CRF4\09122006\J591095.raw

76	<400	> SE	EQUEN	ICE:	2											
78	Met	Glu	Gln	Pro	Lys	Lys	Val	Ala	Asp	Arg	Tyr	Leu	Lys	Arg	Glu	Val
79	1				5					10				_	15	
82	Leu	Gly	Gln	Gly	Thr	Tyr	Gly	Val	Val	Phe	Lys	Ala	Thr	Asp	Thr	Lys
83				20					25					30		
86	Asn	Gly	Glu	Thr	Val	Ala	Ile	Lys	Lys	Ile	Arg	Leu	Gly	Lys	Glu	Lys
87			35					40					45			
90	Glu	Gly	Val	Asn	Val	Thr	Ala	Leu	Arg	Glu	Ile	Lys	Leu	Leu	Lys	Glu
91		50					55					60				
94	Leu	Lys	His	Pro	His	Ile	Ile	Glu	Leu	Ile	Asp	Ala	Phe	Pro	His	Lys
95	65					70					75					80
98	Glu	Asn	Leu	His	Ile	Val	Phe	Glu	Phe	Met	Glu	Thr	Asp	Leu	Glu	Ala
99					85					90					95	
102	. Val	Ile	e Arg			Asn	Lev	ι Туг	: Lei	ı Ser	Pro	Gly	/ As <u>r</u>	val	Lys	Ser
103				100					105					110		
106	Tyr	Leu	ı Glr	Met	: Ile	Leu	Lys	Gl	/ Let	ı Glı	туз	Cys	His	s Gly	Lys	\mathtt{Trp}
107			115					120					125			
		Leu	ı His	Arc	, Asp	Met) Asr	ı Asr	ı Leı			e Gly	Pro	Asn
111		130				_	135		_			140		_	_	
			ı Lev	Lys	Leu) Phe	e Gly	r Leι		-	j Ile	e Phe	Gly	Ser
	145		_	_		150					155		_	_	_	160
		GT	/ Arg	Lys			His	GIr	ı Val			a Arg	y Tr	у Туг		
119		~7	_	_	165			_	~-7	170					175	
		GIU	ı Leu			GIY	Ala	L Lys			Asp	o GTA	Ala			Val
123		n 7 -		180		- T -	Dh-		185				. 3	190		Dl
	_	Ala		_	Cys	ire	Pne			тет	тет	тес	_	_	Pro	Phe
127		C1-	195			7.00	т1.	200					205		. 77-	77-
131		210	_	ASI	ser	ASL	215	_	GII	т пес	ı sei	. шуг 220		: FIIe	На	Ala
				Dro	Taže	בומ י			ነ ጥምን	Dro	λer			- Cvc	T.A.	Pro
	225		1111		, Llys	230		, 611	1 11.	, FIC	235		. 110	- Cys	пси	240
			· Val	Gli	Tvr			Val	Pro	. Δ1 =			· I.e.	ı Aro	Ser	Leu
139	_	-1-			245					250				3	255	
		Pro	Thr	Va]			Ast	Ala	ı Leı			ı Lev	ı Sei	Lvs		Phe
143				260					265					270		
146	Thr	Туг	Asp	Pro	Lys	Ser	Aro	Ile	e Ser	Ile	Glr	ı Glr	ı Ala	a Leu	Lys	His
147		-	275		-		_	280					285		-	
150	Arg	Туг	Phe	Thr	Ser	Ala	Pro	Ser	Pro	Thi	Asp	Pro	Lei	ı Lys	Leu	Pro
151		290)				295	;			_	300)	_		
154	Arg	Pro	val	Ser	Lys	Gln	Asp	Ala	Lys	Ser	Ser	Asp	Ser	Lys	Leu	Glu
	305					310					315					320
158	Ala	Ile	Lys	Val	Leu	Ser	Pro	Ala	His	Lys	Phe	Arg	Arg	y Val	Met	Pro
159)				325					330)				335	
162	Asp	Arg	Gly	Lys	Ser	Gly	Asn	Gly	/ Phe	Lys	Asp	Glr	ı Sei	. Val	Asp	Val
163				340)				345	;				350	1	
166	Met	Arg	g Gln	Ala	Ser	His	Asp	Gly	/ Glr	ı Ala	Pro	Met	: Ser	Leu	Asp	Phe
167	,		355					360)				365	5		
170	Thr	Ile	Leu	Ala	Glu	Arg	Pro	Pro) Asr	Arg	Pro	Thr	: Ile	Thr	Ser	Ala
171		370)				375	i				380)			

RAW SEQUENCE LISTING DATE: 09/12/2006
PATENT APPLICATION: US/10/591,095 TIME: 10:56:19

Input Set : A:\Final Sequence List-14546-00001-US.txt

Output Set: N:\CRF4\09122006\J591095.raw

```
174 Asp Arg Ser His Leu Lys Arg Lys Leu Asp Leu Glu Phe Leu
175 385
178 <210> SEO ID NO: 3
179 <211> LENGTH: 2193
180 <212> TYPE: DNA
181 <213> ORGANISM: Oryza sativa
183 <400> SEQUENCE: 3
184 aatccgaaaa gtttctgcac cgttttcacc ccctaactaa caatataggg aacgtgtgct
                                                                           60
186 aaatataaaa tgagacctta tatatgtagc gctgataact agaactatgc aagaaaaact
                                                                          120
188 catccaccta ctttagtggc aatcgggcta aataaaaaag agtcgctaca ctagtttcgt
                                                                          180
190 tttccttagt aattaagtgg gaaaatgaaa tcattattgc ttagaatata cgttcacatc
                                                                          240
192 tctgtcatga agttaaatta ttcgaggtag ccataattgt catcaaactc ttcttgaata
                                                                          300
194 aaaaaatctt tctagctgaa ctcaatgggt aaagagagag atttttttta aaaaaataga
                                                                          360
196 atgaagatat tetgaaegta ttggeaaaga tttaaacata taattatata attttatagt
                                                                          420
198 ttgtgcattc gtcatatcgc acatcattaa ggacatgtct tactccatcc caatttttat
                                                                          480
200 ttagtaatta aagacaattg acttattttt attatttatc ttttttcgat tagatgcaag
                                                                          540
202 gtacttacgc acacactttg tgctcatgtg catgtgtgag tgcacctcct caatacacqt
                                                                          600
204 tcaactagca acacatetet aatateaete geetatttaa taeatttagg tagcaatate
                                                                          660
206 tgaattcaag cactccacca tcaccagacc acttttaata atatctaaaa tacaaaaaat
                                                                          720
208 aattttacag aatagcatga aaagtatgaa acgaactatt taggtttttc acatacaaaa
                                                                          780
210 aaaaaaagaa ttttgctcgt gcgcgagcgc caatctccca tattgggcac acaggcaaca
                                                                          840
212 acagagtggc tgcccacaga acaacccaca aaaaacgatg atctaacgga ggacagcaag
                                                                          900
214 teegeaacaa eettttaaca geaggetttg eggeeaggag agaggaggag agqeaaaqaa
                                                                          960
216 aaccaagcat cctcctcctc ccatctataa attcctcccc ccttttcccc tctctatata
                                                                         1020
218 ggaggcatcc aagccaagaa gagggagagc accaaggaca cgcgactagc agaagccgag
                                                                         1080
220 cgaccgcctt cttcgatcca tatcttccgg tcgagttctt ggtcgatctc ttccctcctc
                                                                         1140
222 cacctcctcc tcacagggta tgtgcccttc ggttgttctt ggatttattg ttctaggttg
                                                                         1200
224 tgtagtacgg gcgttgatgt taggaaaggg gatctgtatc tgtgatgatt cctgttcttg
                                                                         1260
226 gatttgggat agaggggttc ttgatgttgc atgttatcgg ttcggtttga ttagtagtat
                                                                         1320
228 ggttttcaat cgtctggaga gctctatgga aatgaaatgg tttagggtac ggaatcttgc
                                                                         1380
230 gattttgtga gtaccttttg tttgaggtaa aatcagagca ccggtgattt tgcttggtgt
                                                                         1440
232 aataaaagta eggttgtttg gteetegatt etggtagtga tgettetega tttgaegaag
                                                                         1500
234 ctatcctttg tttattccct attgaacaaa aataatccaa ctttgaagac ggtcccgttg
                                                                         1560
236 atgagattga atgattgatt cttaagcctg tccaaaattt cgcagctggc ttgtttagat
                                                                         1620
238 acagtagtcc ccatcacgaa attcatggaa acagttataa tcctcaggaa caggggattc
                                                                         1680
240 cctgttcttc cgatttgctt tagtcccaga attttttttc ccaaatatct taaaaagtca
                                                                         1740
242 ctttctggtt cagttcaatg aattgattgc tacaaataat gcttttatag cgttatccta
                                                                         1800
244 gctgtagttc agttaatagg taatacccct atagtttagt caggagaaga acttatccga
246 tttctgatct ccatttttaa ttatatgaaa tgaactgtag cataagcagt attcatttgg
                                                                         1920
248 attattttt ttattagete teacecette attattetga getgaaagte tggcatgaac
                                                                         1980
250 tgtcctcaat tttgttttca aattcacatc gattatctat gcattatcct cttgtatcta
                                                                         2040
252 cctgtagaag tttctttttg gttattcctt gactgcttga ttacagaaag aaatttatga
                                                                         2100
254 agetgtaate gggatagtta tactgettgt tettatgatt cattteettt gtgeagttet
                                                                         2160
256 tggtgtagct tgccactttc accagcaaag ttc
                                                                         2193
259 <210> SEQ ID NO: 4
260 <211> LENGTH: 53
261 <212> TYPE: DNA
262 <213> ORGANISM: Artificial sequence
264 <220> FEATURE:
```

53

RAW SEQUENCE LISTING DATE: 09/12/2006
PATENT APPLICATION: US/10/591,095 TIME: 10:56:19

Input Set : A:\Final Sequence List-14546-00001-US.txt

Output Set: N:\CRF4\09122006\J591095.raw

265 <223> OTHER INFORMATION: primer prm2676
267 <400> SEQUENCE: 4

268 ggggacaagt ttgtacaaaa aagcaggctt cacaatggaa cagccgaaga aag
271 <210> SEQ ID NO: 5

272 <211> LENGTH: 53

273 <212> TYPE: DNA

274 <213> ORGANISM: Artificial sequence
276 <220> FEATURE:
277 <223> OTHER INFORMATION: primer prm2677

279 <400> SEQUENCE: 5

280 ggggaccact ttgtacaaga aagctgggtc ctataggaac tcgagatcaa gtt

VERIFICATION SUMMARY

DATE: 09/12/2006

PATENT APPLICATION: US/10/591,095

TIME: 10:56:20

Input Set : A:\Final Sequence List-14546-00001-US.txt

Output Set: N:\CRF4\09122006\J591095.raw

L:9 M:270 C: Current Application Number differs, Replaced Current Application No

L:9 M:271 C: Current Filing Date differs, Replaced Current Filing Date