Transformada Z

João Victor do Rozário Recla

Janeiro 2023

Resumo

Resolução de exercícios do **capítulo 03** do livro "**Introdução ao Processamento Digital de Sinais**" [1] de José Alexandre Nalon.

1 Exercício 01:

A
$$\mathbf{x[n]}$$
 = $4.\sigma[n-1] + 3.\sigma[n] - 2.\sigma[n+1] + 3.\sigma[n+2]$
 $|\sigma[n] = 1$
 $|\beta.\mathbf{x[n]} = \beta.x[z]$ (Linearidade)
 $|\mathbf{x[n-k]} = x[z].z^{-k}$ (Deslocamento)

Tabela 1: Transformadas Z importantes.

$$\implies$$
 x[z] = $4.1.z^{-(-1)} + 3.1 - 2.1.z^{-1} + 3.1.z^{-2}$ (1a)

$$\implies$$
 x[z] = 4.z + 3 - 2.z⁻¹ + 3.z⁻² (1b)

ROC: $|x[z]| < \infty$, $\forall \mathbf{z} \neq \mathbf{0}$ e $\forall \mathbf{z} \neq \infty$.

$$\mathbf{B} \quad \mathbf{x[n]} = \begin{cases} a^{-n}, & se \ 0 \le n < N. \\ 0, & fora \ do \ intervalo. \end{cases}$$

$$\mathbf{x}[\mathbf{z}] = \sum_{n=-\infty}^{\infty} x[n] \cdot z^{-n}$$

Tabela 2: Transformadas Z importantes.

$$\implies \mathbf{x[z]} = \sum_{n=0}^{N-1} a^{-n} . z^{-n}$$
 (2a)

$$\implies \mathbf{x[z]} = \sum_{n=0}^{N-1} ((a.z)^{-1})^n$$
 (2b)

$$(PG) \implies \mathbf{x[z]} = \frac{1}{1 - (a \cdot z)^{-1}} = \frac{z}{z - a}$$
 (2c)

ROC: $|x[z]| < \infty$ se, e somente se, $|(a.z)^{-1}| < 1 \implies |\mathbf{z}| < \frac{1}{|\mathbf{a}|}$.

$$\mathbf{c} \quad \mathbf{x[n]} = \cos(\omega n) \cdot u[n]$$

$$\begin{vmatrix} \cos(\theta) &= \frac{(e^{j\theta} + e^{-j\theta})}{2} \\ | \mathbf{x}[\mathbf{z}] &= \sum_{n = -\infty}^{\infty} x[n] \cdot z^{-n} \\ | \mathbf{u}[\mathbf{n}] &= \begin{cases} 1, & \forall n \geq 0 \\ 0, & caso \ contrario. \end{cases}$$

Tabela 3: Propriedades importantes.

$$\implies \mathbf{x}[\mathbf{z}] = \sum_{n=-\infty}^{\infty} \cos(\omega n) . u[n] . z^{-n}$$
 (3a)

$$(u[n]) \implies \mathbf{x}[\mathbf{z}] = \sum_{n=0}^{\infty} \cos(\omega n) \cdot z^{-n}$$
 (3b)

$$\implies \mathbf{x[z]} = \sum_{n=0}^{\infty} \frac{(e^{j\omega n} + e^{-j\omega n})}{2} . z^{-n}$$
 (3c)

ROC: |z| > 1.

D
$$x[n] = \cos(\omega n) . u[-n-1]$$

$$\begin{vmatrix} \cos(\theta) &= \frac{(e^{j\theta} + e^{-j\theta})}{2} \\ | \mathbf{x}[\mathbf{z}] &= \sum_{n = -\infty}^{\infty} x[n] \cdot z^{-n} \\ | \mathbf{u}[\mathbf{n} - 1] &= \begin{cases} 1, & \forall \ n > 0 \\ 0, & caso \ contrario. \end{cases}$$
$$| \mathbf{u}[-\mathbf{n} - 1] &= \begin{cases} 1, & \forall \ n < 0 \\ 0, & caso \ contrario. \end{cases}$$

Tabela 4: Propriedades importantes.

$$\implies$$
 $\mathbf{x[z]} = \sum_{n=-\infty}^{\infty} \cos(\omega n).u[-n-1].z^{-n}$ (4a)

$$(m=-n) \implies \mathbf{x[z]} = \sum_{m=-\infty}^{\infty} \cos(-\omega m) \cdot u[m-1] \cdot z^m$$
 (4b)

$$(u[m-1]) \implies \mathbf{x[z]} = \sum_{m=-\infty}^{1} \cos(-\omega m) \cdot z^{m}$$
 (4c)

$$(m=n) \implies \mathbf{x}[\mathbf{z}] = \sum_{n=1}^{\infty} \cos(-\omega n).z^n$$
 (4d)

$$\implies$$
 $\mathbf{x}[\mathbf{z}] = -1 + \sum_{n=0}^{\infty} \cos(-\omega n).z^n$ (4e)

$$\implies$$
 $\mathbf{x[z]} = -1 + \sum_{n=0}^{\infty} \frac{(e^{-j\omega n} + e^{-j(-\omega n)})}{2} . z^n$ (4f)

$$\implies \mathbf{x[z]} = -1 + \sum_{n=0}^{\infty} \frac{(e^{-j\omega} + e^{j\omega})^n}{2} . z^n$$
 (4g)

$$\implies$$
 $\mathbf{x}[\mathbf{z}] = -1 + \sum_{n=0}^{\infty} (\cos(\omega).z)^n$ (4h)

$$(PG) \implies \mathbf{x}[\mathbf{z}] = \frac{1}{1 - \cos(\omega) \cdot z} - 1$$
 (4i)

ROC: $|x[z]| < \infty$ se, e somente se, $|\cos(\omega) \cdot \mathbf{z}| < \mathbf{1} \implies |\mathbf{z}| < \mathbf{1}$.

$$\mathbf{E} \quad \mathbf{x[n]} = \frac{1}{2^n} . \cos(\omega n) . u[n]$$

$$\begin{vmatrix} \cos(\theta) &= \frac{(e^{j\theta} + e^{-j\theta})}{2} \\ | \mathbf{x}[\mathbf{z}] &= \sum_{n = -\infty}^{\infty} x[n] \cdot z^{-n} \\ | \mathbf{u}[\mathbf{n}] &= \begin{cases} 1, & \forall n \geq 0 \\ 0, & caso \ contrario. \end{cases}$$

Tabela 5: Propriedades importantes.

$$\implies \mathbf{x[z]} = \sum_{n=-\infty}^{\infty} \frac{1}{2^n} .\cos(\omega n) .u[n] .z^{-n}$$
 (5a)

$$(u[n]) \implies \mathbf{x[z]} = \sum_{n=0}^{\infty} \frac{1}{2^n} \cdot \cos(\omega n) \cdot z^{-n}$$
 (5b)

$$\implies \mathbf{x[z]} = \sum_{n=0}^{\infty} 2^{-n} \cdot \frac{(e^{j\omega n} + e^{-j\omega n})}{2} \cdot z^{-n}$$
 (5c)

$$\implies$$
 x[**z**] = $\sum_{n=0}^{\infty} (2^{-1} \cdot \frac{(e^{j\omega} + e^{-j\omega})}{2} \cdot z^{-1})^n$ (5d)

$$\implies$$
 $\mathbf{x}[\mathbf{z}] = \sum_{n=0}^{\infty} \left(\frac{1}{2} \cdot \cos(\omega) \cdot z^{-1}\right)^n$ (5e)

$$(PG) \implies \mathbf{x[z]} = \frac{1}{1 - \frac{\cos(\omega)}{2} \cdot z^{-1}}$$
 (5f)

ROC:
$$\left| \frac{\cos(\omega)}{2} . z^{-1} \right| < 1 \implies |\mathbf{z}| > \frac{1}{2}$$
.

F
$$\mathbf{x}[\mathbf{n}] = a^{|n|}, |a| < 1$$

$$\begin{vmatrix} \mathbf{x}[\mathbf{z}] = \sum_{n=-\infty}^{\infty} x[n] \cdot z^{-n} \\ a^{|n|} = \begin{cases} a^n, & \forall \ n \ge 0 \\ a^{-n}, & \forall \ n < 0 \end{cases}$$

Tabela 6: Propriedades importantes.

$$\implies$$
 $\mathbf{x}[\mathbf{z}] = \sum_{n=-\infty}^{\infty} a^{|n|}.z^{-n}$ (6a)

$$(a^{|n|}) \implies \mathbf{x}[\mathbf{z}] = \sum_{n=-\infty}^{-1} a^{-n}.z^{-n} + \sum_{n=0}^{\infty} a^{n}.z^{-n}$$
 (6b)

$$(m = -n) \implies \mathbf{x}[\mathbf{z}] = \sum_{m=\infty}^{1} a^m \cdot z^m + \sum_{n=0}^{\infty} a^n \cdot z^{-n}$$
 (6c)

$$(m=n) \implies \mathbf{x[z]} = \sum_{n=1}^{\infty} a^n \cdot z^n + \sum_{n=0}^{\infty} a^n \cdot z^{-n}$$
 (6d)

$$\implies$$
 x[**z**] = -1 + $\sum_{n=0}^{\infty} a^n.z^n$ + $\sum_{n=0}^{\infty} a^n.z^{-n}$ (6e)

$$\implies$$
 x[z] = -1 + $\sum_{n=0}^{\infty} (a.z)^n$ + $\sum_{n=0}^{\infty} (a.z^{-1})^n$ (6f)

ROC:

- Convergência 1º somatório: $|a.z| < 1 \implies |\mathbf{z}| < \frac{1}{|\mathbf{a}|}$.
- Convergência 2º somatório: $|a.z^{-1}| < 1 \implies |\mathbf{z}| > \frac{1}{|\mathbf{a}|}$.
- **Conclusão:** A função $\mathbf{x}[\mathbf{n}] = a^{|n|}$ **não possui** transformada **Z**, pois os somatórios não convergem simultaneamente para os mesmos valores de **z**.

G x[n] =
$$a^{-n} . u[-n]$$

$$| \mathbf{x}[\mathbf{z}] = \sum_{n=-\infty}^{\infty} x[n] \cdot z^{-n}$$

$$| \mathbf{u}[\mathbf{n}] = \begin{cases} 1, & \forall n \geq 0 \\ 0, & caso \ contrrio. \end{cases}$$

$$| \mathbf{u}[-\mathbf{n}] = \begin{cases} 1, & \forall n \leq 0 \\ 0, & caso \ contrrio. \end{cases}$$

Tabela 7: Propriedades importantes.

$$\implies \mathbf{x[z]} = \sum_{n=-\infty}^{\infty} a^{-n} . u[-n] . z^{-n}$$
 (7a)

$$(m = -n) \implies \mathbf{x[z]} = \sum_{m=\infty}^{1} a^m . u[m] . z^m$$
 (7b)

$$(u[m]) \implies \mathbf{x[z]} = \sum_{m=-\infty}^{0} a^{m}.z^{m}$$
 (7c)

$$(m=n) \implies \mathbf{x[z]} = \sum_{n=0}^{\infty} a^n . z^n$$
 (7d)

$$\implies \mathbf{x[z]} = \sum_{n=0}^{\infty} (a.z)^n \tag{7e}$$

$$(PG) \implies \mathbf{x[z]} = \frac{1}{1 - a.z} \tag{7f}$$

ROC: $|a.z| < 1 \implies |\mathbf{z}| < \frac{1}{|\mathbf{a}|}$.

4 Exercício 04:

A
$$y[n] = 3.x_1[n] - 2.x_2[n]$$

$$\beta \cdot \mathbf{x}[\mathbf{n}] = \beta \cdot x[z]$$
 (Linearidade)

Tabela 8: Transformadas Z importantes.

$$\implies$$
 y[**z**] = 3. $x_1[z]$ - 2. $x_2[z]$ (8a)

ROC: $\mathbf{R}_{y} = R_{x1} \cap R_{x2}$

B
$$y[n] = 2^{n-1}.x_2[n-1]$$

$$|\mathbf{x}[\text{n-k}] = x[z].z^{-k}$$
 (Deslocamento.)

$$\mid z_0^n$$
 . $\mathbf{x}[\mathbf{n}]$ = $x[z/z_0]$ (Mudança de escala.)

Tabela 9: Transformadas Z importantes.

$$(m=n-1) \implies \mathbf{y}[\mathbf{z}] = 2^m . x_2[m]$$
 (9a)

$$\implies$$
 $\mathbf{y}[\mathbf{z}] = x_2[z/2]$ (9b)

ROC: $\mathbf{R}_y = 2.R_{x2}$

F y[**n**] =
$$n.x_1[n]$$

$$| \mathbf{n} \cdot \mathbf{x}[\mathbf{n}] = -z \cdot \frac{\partial x[z]}{\partial z}, \quad \mathbf{ROC} = R_x$$

(Diferenciação no domínio complexo.)

Tabela 10: Transformadas Z importantes.

$$\implies \mathbf{y[z]} = -z.\frac{\partial \ x_1[z]}{\partial z} \tag{10a}$$

ROC: $\mathbf{R}_y = R_{x1}$

5 Exercício 05:

A
$$\mathbf{x}[\mathbf{z}] = (1+z^{-1}).(1-\frac{1}{2}.z^{-1}).(1+2.z^{-1}), \ R_x: 0 < |z| < \infty$$

$$\implies \mathbf{x[z]} = 1 + \frac{1}{2} \cdot z^{-1} + \frac{1}{2} \cdot z^{-2} + z^{-3}$$
(11a)
$$(Inversa) \implies \mathbf{x[n]} = \sigma[n] + \frac{1}{2} \cdot \sigma[n-1] + \frac{1}{2} \cdot \sigma[n-2] + \sigma[n-3]$$
(11b)

B
$$\mathbf{x}[\mathbf{z}] = \frac{1}{1-a.z^{-1}}, \ R_x: |z| > |a|$$

$$|\mathbf{x}[\mathbf{z}] = \frac{1}{1-a.z^{-1}}, \ \mathbf{R}_x: |z| > |a|$$

$$|\mathbf{x}[\mathbf{n}] = a^n.u[n] \quad \text{(Inversa)}$$

Tabela 11: Inversa das transformadas Z.

$$(Inversa) \implies \mathbf{x[n]} = a^n.u[n] \tag{12a}$$

$$\mathbf{C} \quad \mathbf{x}[\mathbf{z}] = \frac{1 - b \cdot z^{-1}}{1 - a \cdot z^{-1}}, \quad R_x : |z| < |a|$$

$$| \mathbf{x}[\mathbf{z}] = \frac{1}{1 - a \cdot z^{-1}}, \quad \mathbf{R}_x : |z| < |a|$$

$$| \mathbf{x}[\mathbf{n}] = -a^n \cdot u[-n - 1] \quad \text{(Inversa)}$$

$$| \mathbf{x}[\mathbf{n} - \mathbf{k}] = x[z] \cdot z^{-k} \quad \text{(Deslocamento)}$$

Tabela 12: Inversa das transformadas Z.

$$\implies \mathbf{x}[\mathbf{z}] = \frac{1}{1 - a.z^{-1}} \cdot b.z^{-1}.\frac{1}{1 - a.z^{-1}} \quad (13a)$$

$$\implies \mathbf{x}[\mathbf{z}] = x_1[z] \cdot b.z^{-1}.x_1[z] \quad (13b)$$

$$(Deslocamento) \implies \mathbf{x}[\mathbf{z}] = x_1[z] \cdot b.x_1[n-1] \quad (13c)$$

$$(Inversa) \implies \mathbf{x}[\mathbf{z}] = -a^n.u[-n-1] + b.a^{n-1}.u[-n]$$

(13d)

Universidade Federal do Espírito Santo (**UFES**) Centro Universitário Norte do Espírito Santo (**CEUNES**) **Bacharelado em Ciência da Computação**

Transformada Z

Referências

Atividade 06

[1] J. A. Nalon, Introdução ao processamento digital de sinais. Grupo Gen-LTC, 2000.