Tarea 02

Matemáticas para las Ciencias Aplicadas II Facultad de Ciencias, UNAM

Flores Morán Julieta Melina Zarco Romero José Antonio

12 de marzo de 2024

1.

Proporcione el dominio de la función vectorial.

$$r(\vec{t}) = \frac{t-2}{t+2}\hat{i} + \sin t\hat{j} + \ln (9-t^2)\hat{k}$$

El dominio de cada función componente es como sigue:

$$f(t) = \frac{t-2}{t+2}$$

$$\{t \in \mathbb{R} \mid t \neq -2\}$$

$$g(t) = \sin t$$

$$\{t \in \mathbb{R}\}$$

$$h(t) = \ln\left(9 - t^2\right)$$

$$\{t \in \mathbb{R} \mid -3 < t < 3\}$$

La intersección de los 3 conjuntos es $\{t \in \mathbb{R} \mid (-3 < t < -2) \land (-2 < t < 3)\}$. \therefore El dominio de la función vectorial $\vec{r(t)}$ es (-3, -2) y (-2, 3). 2.

Sea

$$r(\vec{t}) = \frac{t^2 - t}{t - 1}\hat{i} + \sqrt{t + 8}\hat{j} + \frac{\sin \pi t}{\ln t}\hat{k}$$

Calcule $\lim_{t\to 0} r(\vec{t})$.

Recordemos que el límite de una función vectorial se define obteniendo los límites de sus $funciones\ componentes$:

 $f(t) = \frac{t^2 - t}{t - 1}$

$$\lim_{t \to 0} f(t) = \lim_{t \to 0} \frac{t^2 - t}{t - 1} = 0$$

• $g(t) = \sqrt{t+8}$

$$\lim_{t \to 0} g(t) = \lim_{t \to 0} \sqrt{t+8} = \sqrt{8} = 2\sqrt{2}$$

 $h(t) = \frac{\sin \pi t}{\ln t}$

$$\lim_{t \to 0} h(t) = \lim_{t \to 0} \frac{\sin \pi t}{\ln t}$$

3.

Realice a mano la gráfica de las siguientes funciones vectoriales, indicando el sentido en que se traza la curva:

 $\vec{r(t)} = t^2\hat{i} + t\hat{j} + 2\hat{k}$

 $\vec{r(t)} = \cos t \hat{i} - \cos t \hat{j} + \sin t \hat{k}$

4.

Proporcione las coordenadas del punto donde se intersecta la **hélice** $\vec{r(t)} = \sin t \hat{i} + \cos t \hat{j} + t \hat{k}$, y la **esfera** $x^2 + y^2 + z^2 = 5$.

5.

Dibuje las proyecciones de la curva $\vec{r(t)} = t\hat{i} + t\hat{j} + t^2\hat{k}$ sobre los planos XY, XZ, YZ. Utilice dichas proyecciones para hacer un esbozo de la curva.

6.

Las trayectorias de dos partículas están dadas por las siguientes funciones vectoriales:

$$\vec{r_1(t)} = t\hat{i} + t^2\hat{j} + t^3\hat{k}$$

$$r_2(t) = (1+2t, 1+6t, 1+14t)$$

¿Chocarán las partículas? ¿En qué punto? ¿Se cortarán las trayectorias?

7.

Proporcione las coordenadas del punto sobre la curva $r(t) = (2\cos t, 2\sin t, e^t)$, con $t \in [0, \pi]$, donde la **recta tangente** a la curva es paralela al plano $\sqrt{3}x + y = 1$.

8.

Proporcione las coordenadas del punto donde se intersectan las curvas:

$$r_1(t) = (t, 1 - t, 3 + t^2)$$

$$r_2(s) = (3 - s, s - 2, s^2)$$

9.

Determine la longitud de curva para las siguientes curvas:

•
$$r(t) = (2t, t^2, \frac{t^3}{3})$$
, para $t \in [0, 1]$

•
$$r(t) = (\cos t, \sin t, \ln \cos t)$$
, para $t \in [0, \frac{\pi}{4}]$

10.

Reparametrice la siguiente curva (respecto a la longitud de arco medida desde el punto donde t=0), en la dirección en que t se incrementa.

$$r(\vec{t}) = (2t)\hat{i} + (1-3t)\hat{j} + (5+4t)\hat{k}$$