Question Number	Scheme	Marks
8.	(a) Gradient of l_1 is $-\frac{2}{3}$	B1
	1 2	
	(b) Gradient of l_2 is $-\frac{1}{-\frac{2}{3}} = \frac{3}{2}$	M1
	Equation of l_2 is $y-2=\frac{3}{2}(x-7)$ [2y=3x-17]	M1 A1
	(c) $2x+3y=-6 \Rightarrow 6x+9y=-18$ $3x-2y=17 \Rightarrow 6x-4y=34$	
	$3x - 2y = 17 \implies 6x - 4y = 34$ $13y = -52$	M1
	y = -4	A1
	$2x-12=-6 \Rightarrow \qquad x=3 \qquad \qquad [Q(3,-4)]$	A1
	(d) Equation of l_3 is $y-2=-\frac{2}{3}(x-7)$ $[3y+2x=20]$	M1 A1
	or $2x + 3y + k = 0$ so at $P(7,2)$, $14 + 6 + k = 0$ M1	
	$k = -20 \implies 2x + 3y - 20 = 0$ A1	
	(e) at R , $y = 0$ so $2x + 6 = 0 \Rightarrow x = -3$	B1
	$QR^2 = (3+3)^2 + (-4-0)^2$ and $PQ^2 = (7-3)^2 + (2+4)^2$	M1
	$\Rightarrow QR = \sqrt{36+16} = \sqrt{52}$ and $PQ = \sqrt{4^2+6^2} = \sqrt{52}$ or $QR^2 = PQ^2 = 52$	A1
	(f) PQRS is a square	B1
	so area = $PQ \times QR = -\sqrt{52} \times \sqrt{52}$	M1
	= 52	A1 (15)

Notes for Question 8

(a)

B1 for $-\frac{2}{3}$ (or - 0.6 rec. or - 0.667, seen occasionally). Must be shown explicitly (re-arranging the equation to $y = -\frac{2}{3}x - 2$ is not sufficient).

(b)

- M1 for finding the gradient of l_2 as $-\frac{1}{\text{their gradient of } l_1}$
- M1 for any complete method for finding the equation of l_2 . Award M0 if gradient of l_1 is used. Use of y = mx + c needs a value for c to be found.

A1cso for $y-2=\frac{3}{2}(x-7)$ oe. No need to simplify so ignore any simplification shown.

(c)

- M1 for attempting the solution of the pair of simultaneous equations
- A1 for x = 3 or y = -4
- A1 for the second value correct. No need to write in coordinate brackets

(d)

- M1 for attempting the equation of l_3 any complete valid method.
- A1 for $y-2=-\frac{2}{3}(x-7)$ oe (Ignore any simplification shown)

(e)

- B1 for x = -3 No working need be shown.
- M1 for attempting to obtain the length of either PQ or QR or PQ^2 or QR^2 using **their** coordinates of Q.

A1cao for both lengths or squares of lengths correct.

(f)

- B1 state that or use the fact that *PQRS* is a square
- M1 for Area = $PQ \times QR$ = using their values

A1cso for 52

Notes for Question 8 Continued

Alternatives:

- 1. "Determinant" method:
- B1 for S is (1, 6) seen explicitly or used
- M1 for using **their** coordinates for P, Q, R and S in the "determinant"
 - must have the points in order, clockwise or anticlockwise
 - must have a closed shape, ie first and last in the determinant are the same
 - must use $\frac{1}{2}$, either now or to complete the work

Example "determinant" $\frac{1}{2}\begin{vmatrix} 7 & 3 & -3 & 1 & 7 \\ 2 & -4 & 0 & 6 & 2 \end{vmatrix}$

- A1 for 52 (must be positive)
- 2. Drawing a square around *PQRS*, finding area of this square and subtracting the triangular corners.
- B1 for S is (1, 6) seen explicitly or used
- M1 for a complete method, ie find **all** required areas and attempt the subtractions needed
- A1 for 52