Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Физико-технический факультет

Задачи по электричеству и магнетизму из разных учебников

Содержание

1	Эле	ектростатика 3		
	1.1	Закон Кулона. Принцип суперпозиции.		
	1.2	Расчет	г напряженности непрерывного распределения	
		заряда	а в вакууме на основе теоремы Гаусса.	4
1.3 Потенциал электрического поля. Рабо		Потен	циал электрического поля. Работа электриче-	
		ского :	- ПОЛЯ	4
1.4 Электрическое поле диполя.		Элект	рическое поле диполя.	6
	1.5			6 7
	1.6			
	1.7	_	остоянный электрический ток. Правила Киргофа.	
2	Магнитное поле.			
	2.1	Стационарное магнитное поле		9
		2.1.1	Закон Био-Савара-Лапласа. (3 балла)	9
		2.1.2	Закон полного тока. (1 балл)	10
		2.1.3	Магнитное поле в веществе. (2 балла)	10
		2.1.4	Силы в магнитном поле. Момент сил. Работа	
			сил в магнитном поле. (2 балла)	11
	2.2			12
		2.2.1	Закон Фарадея. Правило Ленца. (1.5 баллов)	12
		2.2.2	Энергия магнитного поля. (0.5 баллов)	12

1 Электростатика

1.1 Закон Кулона. Принцип суперпозиции.

1. В центре равностороннего треугольника расположен заряд $q_0 = 10$ нКл. Рассчитайте, какие одинаковые заряды q_1 необходимо расположить в вершинах этого треугольника, чтобы результирующая сила, действующая на каждый заряд, была равна нулю.

Ответ: $q_1 = -1.7$ нКл.

2. Система состоит из протона p и электрона e, расстояние между которыми r=50 пм. Рассчитать модуль напряжённости электрического поля, создаваемого этими частицами в точках A и B, когда эти частицы находятся в положении, изображённом на (рис. 1).

Ответ: $|\mathbf{E}_B| = 4.3 \cdot 10^{11} \,\, \mathrm{B/m}, \, |\mathbf{E}_B| = 4.4 \cdot 10^{11} \,\, \mathrm{B/m}.$

Рис. 1. К задаче 1

3. В вершинах квадрата со сторонами a=0.08 м расположены одинаковые заряды $q^{(+)}=5$ нКл. Рассчитайте модуль напряжённости электрического поля в середине одной из сторон квадрата.

Ответ: $|E| \approx 10 \text{ кB/м}.$

4. Свинцовый шарик диаметр которого d=7 мм поместили в однородное электрическое поле в глицериновый раствор и взвесили. Рассчитать заряд этого шарика, если электрическое поле направленно вверх, а его модуль его напряжённости $|\mathbf{E}|=9$ к \mathbf{B}/cm .

Ответ: $q \approx 20$ нКл.

- 5. Тонкий стержень длины l имеет равномерно распределённый заряд q. Рассчитать, модуль напряжённости электрического поля в точке расположенной на расстоянии a от одного из концов стержня, по линии стержня.
- 6. Линейная плотность тонкого заряженного кольца радиуса R зависит от азимутального угла по закону $\rho = \rho_0 \cos \varphi \ (\rho_0 \text{постоянная})$. Рассчитать модуль напряжённости электрического поля в центра кольца и на оси симметрии кольца в зависимости от расстояния до центра кольца.

1.2 Расчет напряженности непрерывного распределения заряда в вакууме на основе теоремы Гаусса.

1. Система представлена областью пространства. По пространству распределён заряд, плотность которого зависит от расстояния до центра по закону $\rho = \rho_0 \exp(-\alpha r^3)$, где α некоторая постоянная. Найти модуль напряжённости электрического поля, как функцию r.

1.3 Потенциал электрического поля. Работа электрического поля.

- 1. Потенциал электрического поля зависит от координат x,y по закону:
 - $\varphi(x,y) = \alpha(x^2 + y^2)$,
 - $\varphi(x,y) = \alpha xy$,

где $\alpha = const.$ Определить напряжённости этих полей.

2. В вершинах равностороннего треугольника, сторона которого a=5 см, расположены 3 точечных заряда q и -2q, как это показано на (рис. 2). Рассчитать работу электрических сил при перемещении заряда -2q из точки B в точку C если q=3 нКл.

Ответ: A = 6.5 мкДж.

Рис. 2

3. Тонкая проволока свёрнутая в кольцо несёт равномерный заряд q=20 нКл. Рассчитать потенциал электрического поля кольца в точке, лежащей на оси кольца на расстоянии a=50 см от центра кольца. Радиус кольца R=8 см.

Ответ: $\varphi = 0.36 \text{ кB}.$

4. Электрическое поле создано равномерно заряженным шаром радиуса R=20 см. Объёмная плотность заряда $\rho=10$ нК $\pi/\text{м}^3$. Рассчитать разность потенциалов между точками, лежащими на расстоянии $r_1=1$ см и $r_2=25$ см от центра шара соответ-

ственно. Диэлектрическая проницаемость всюду равна 1. **Ответ:** $\Delta \varphi = 11~\mathrm{B}.$

1.4 Электрическое поле диполя.

- 1. Заряд q помещён в точку с координатами (a,0). Найти дипольный момент, если заряд -q поместить в точку с координатами:
 - (-a, -0);
 - (0,a);
 - (-a, -a).
- 2. По полуокружности радиуса R равномерно распределён положительный заряд q. В центре полуокружности расположен отрицательный заряд -q. Найти:
 - Электрический дипольный момент р этой системы.
 - Модуль напряжённости электрического поля, создаваемого этой системой на оси дипольного момента на расстоянии $r\gg R.$

1.5 Проводники и диэлектрики в электрическом поле.

- 1. С одной стороны проводящей плоскости расположены 2 заряда q и -q. Расстояние между зарядами равно l, расстояние от каждого заряда до плоскости равно l/2. Рассчитать модуль силы, действующей на каждый заряд.
- 2. Система состоит из нити и проводящей плоскости. Нить заряжена равномерно, с линейной плотностью λ , и ориентирована перпендикулярно плоскости. Расстояние от ближайшего конца нити, ближайшего к плоскости, до плоскости l. Рассчитать поверхностную плотность индуцированного на плоскости заряда:
 - \bullet в точке O, являющейся следом нити на плоскости;

- \bullet как функцию расстояния x до точки O.
- 3. В центре шара, состоящего из однородного диэлектрика с проницаемостью ε расположен точечный заряд q. Найти поляризованность \mathbf{P} , как функцию радиус-вектора \mathbf{r} относительно центра шара, а также связанный заряд q' внутри сферы, радиус которой меньше радиуса шара.
- 4. Показать, что на границе однородного диэлектрика с проводником поверхностная плотность связанных зарядов $\sigma_{\text{св}} = -\frac{\sigma(\varepsilon-1)}{\varepsilon}$, где ε диэлектрическая проницаемость, а σ поверхностная плотность зарядов на проводнике.

1.6 Энергия электростатического поля. Конденсаторы.

1. Система состоит из 4-х одинаковых зарядов q=500 нКл, расположенных в вершинах квадрата сторона которого a=20 см. Рассчитать потенциальную энергию взаимодействия данной системы.

Ответ: W = 61 мДж.

- 2. Получить формулы для расчёта ёмкости следующих конденсаторов (ε среды между обкладками принять равной 1):
 - Сферического, если известно что радиус внутренней обкладки R_1 , а внешней R_2 ;
 - Цилиндрического, если известно, что радиус внутренней обкладки R_1 , внешней R_2 , а высота равна d;
 - Плоского, если известно, что площадь обкладок равна S, а расстояние между обкладками d.
- 3. Система состоит из двух концентрических проводящих сфер радиусами $R_1=10$ см и $R_2=40$ см, имеющими одинаковый заряд q=200 нКл. Рассчитать энергию электрического поля заключённого между двумя этими сферами и ёмкость этой

системы.

Ответ: $W = 1.4 \text{ млДж}, C = 14.8 \text{ п}\Phi.$

1.7 Постоянный электрический ток. Правила Киргофа.

- 1. Бесконечно тонкая трубка радиуса R, заряженная равномерно, движется со скоростью, модуль которой v, вдоль своей оси. Рассчитать постоянный электрический ток, обусловленный механическим переносом заряда, если модуль напряжённости поля у поверхности трубки равен E.
- 2. По прямому проводнику длина которого $l=400\,\mathrm{m}$ течёт постоянный ток, сила которого $I=10\,\mathrm{A}$. Рассчитать суммарный импульс электронов в проводнике.

Ответ: $p = 2.3 \cdot 10^{-8}$ H c.

3. В схеме, изображённой на (рис. 3) $\varepsilon_1=40$ В, $\varepsilon_2=10$ В, $\varepsilon_3=20$ В, $R_1=R_2=R_3=10$ Ом, внутренними сопротивлениями источников э.д.с. можно пренебречь. Рассчитать токи I_1 и I_{ε_2} , протекающие через R_1 и ε_2 , соответственно.

Рис. 3

2 Магнитное поле.

2.1 Стационарное магнитное поле.

2.1.1 Закон Био-Савара-Лапласа. (3 балла)

1. Замкнутый контур, по которому течёт ток силы I имеет форму показанную на (рис. 4). Радиус окружности R, длина стороны квадрата a. Найти индукцию магнитного поля в точке O.

Other:
$$B=rac{\mu_0 I}{4\pi}\left(rac{3\pi}{4R}-rac{\sqrt{2}}{a}
ight)$$

Рис. 4

2. Тонкий провод с изоляцией образует плоскую спираль из N=200 плотно прилегающих витков, по которым течёт ток I=5 мА. Радиус внутреннего витка a=100 мм, радиус внешнего витка b=200 мм. Рассчитать индукцию магнитного поля в центре спирали.

Ответ: B = 4.4 мкТл.

3. В параллельных плоскостях, расположенных на расстоянии d=8 см друг от друга на одной оси находятся два круговых витка радиуса R=5 см каждый. По виткам в одном направлении текут токи $I_1=I_2=2$ А. Рассчитать напряжённость магнитного поля в центре одного из витков.

Ответ: H = 23 A/M.

2.1.2 Закон полного тока. (1 балл)

- 1. По бесконечному прямому проводу, радиус сечения которого R, течёт постоянный ток, плотность которого \mathbf{j} . Найти вектор магнитной индукции поля, создаваемого этим током, в точке, положение которой относительно оси провода определяется радиус-вектором \mathbf{r} .
- 2. По длинному цилиндрическому проводу течёт ток, плотность которого **j**. Внутри провода имеется цилиндрическая полость, идущая параллельно оси провода. Расстояние от оси провода до оси полости задаётся вектором 1. Найти вектор индукции магнитного поля внутри полости.

2.1.3 Магнитное поле в веществе. (2 балла)

- 1. Среда состоит из однородного изотропного магнетика и вакуума. Модуль вектора индукция магнитного поля вблизи поверхности магнетика со стороны вакуума равен B. Найти модуль индукции магнитного поля B' в магнетике вблизи его поверхности, если вектор $\mathbf B$ составляет угол α с нормалью к поверхности раздела магнетика и вакуума (поверхность можно считать плоскостью), а магнитная проницаемость магнетика μ .
- 2. По длинному цилиндрическому проводу течёт ток перпендикулярно плоскости поперечного сечения. Сила тока I. Провод изготовлен из парамагнетика с магнитной восприимчивостью χ . Найти:
 - силу поверхностного молекулярного тока $I'_{\text{пов}}$;
 - ullet силу объёмного молекулярного тока $I'_{
 m ob}$.

Определить, как эти токи направлены друг относительно друга.

2.1.4 Силы в магнитном поле. Момент сил. Работа сил в магнитном поле. (2 балла)

1. В однородное магнитное поле направленное по вертикали поместили медный провод изогнутый в виде 3-х сторон квадрата так, что он может вращаться вокруг горизонтальной оси OO' (рис. 5). Рассчитать индукцию поля, если при пропускании по проводу тока I=16 A, он отклоняется от первоначального положения на угол $\vartheta=20^o$. Сечение провода имеет площадь $S=2.5~{\rm mm}^2$.

Ответ: B = 10 мТл.

Рис. 5

2. Магнитное поле создаётся длинным прямым проводником, по которому течёт ток $I_0=5~\mathrm{A.~B}$ одной плоскости с проводником расположена квадратная рамка с током $I=0.9~\mathrm{A},$ сторона рамки $a=8~\mathrm{cm.~Pacc}$ читать работу, которую необходимо совершить при медленном повороте рамки вокруг оси параллельной проводнику, проходящей через центры противоположных сторон рамки, если расстояние от этой оси до проводника в $1.5~\mathrm{pas}$ больше стороны рамки.

Ответ: A = 0.1 мкДж.

2.2 Электромагнитная индукция.

2.2.1 Закон Фарадея. Правило Ленца. (1.5 балла)

1. Квадратная рамка со стороной a=70 см помещена в магнитное поле так, что нормаль к рамке составляет угол $\alpha=45^o$ с направлением магнитного поля. Индукция магнитного поря меняется по закону $B=B_0\cos\omega t$, где $B_0=0.2$ Тл, $\omega=6$ с $^{-1}$. Рассчитать ЭДС индукции, возникающей в рамке в момент времени t=3 с.

Ответ: $\varepsilon = -0.31 \; \text{B}.$

2. В прямом бесконечном проводнике течёт ток, сила которого меняется по закону $I=\beta t^3$, где $\beta=2~{\rm A/c^3}$. В одной плоскости с проводником, параллельно ему, расположена квадратная рамка, сторона которой $a=20~{\rm cm}$, а сопротивление материала рамки $R=7~{\rm Om}$. Расстояние от ближайшей стороны рамки до проводника $l=20~{\rm cm}$. Рассчитать силу тока в рамке в момент времени $t=10~{\rm c}$.

Ответ: $I \approx 2.4 \cdot 10^{-6} \text{ A}.$

3. Ток сила которого I=0.5 А протекает через соленоид индуктивностью L=0.4 мГн. Намотка соленоида состоит за N=100 витков проволоки, площадь поперечного сечения соленоида $S=10~{\rm cm}^2$. Рассчитать индукцию магнитного поля внутри соленоида.

Ответ: B = 2 мТл.

2.2.2 Энергия магнитного поля. (0.5 балла)

1. Рассчитать энергию взаимодействия 2-х контуров с током имеющих форму окружностей с радиусами R_1 и R_2 ($R_2\gg R_1$) если центры этих контуров располагаются в одной точке, а плоскости контуров составляют угол ϑ друг с другом. По контурам текут токи силой I_1 и I_2 соответственно.