Assignment – 1

Python Programming

Assignment Date	12/09/2022
Student Name	Snega S
Student Roll Number	110519106025
Maximum Mark	2 Mark

1) Split this string

Solution:

```
- Basic Python

- 1. Split this string

[1] s = "Hi there Sanjay!"

[2] s.split()

['Hi', 'there', 'Sanjay!']
```

2) Use .format() to print the following string

Solution:

```
    ✓ 2. Use .format() to print the following string.
    Output should be: The diameter of Earth is 12742 kilometers.
    ✓ [3] planet = "Earth" diameter = 12742
    ✓ [4] print("The diameter of {} is {} kilometers." format(planet , diameter))
    The diameter of Earth is 12742 kilometers.
```

3) In this nest dictionary grab the word "hello"

Solution:

```
→ 3. In this nest dictionary grab the word "hello"

[5] d = {'k1':[1,2,3,{'tricky':['oh', 'man', 'inception', {'target':[1,2,3, 'hello']}]}}]

[6] d['k1'][3]['tricky'][3]['target'][3]

[7] hello'

[7] hello'

[8] hello'

[8] hello'

[9] hell
```

4) Numpy

Solution:

```
Numpy

[] import numpy as np

4.1 Create an array of 10 zeros?
4.2 Create an array of 10 fives?

[] a = np.zeros(10)
a = np.zeros(10)
array([0., 0., 0., 0., 0., 0., 0., 0., 0.])

[] b = np.ones(10)*5
b = np.ones(10)*5
```

5) Create an array of all the even integers from 20 to 35

Solution:

6) Create a 3×3 matrix with values ranging from 0 to 8

Solution:

7) Concatinate a and b

Solution:

```
    7. Concatinate a and b
    a = np.array([1, 2, 3]), b = np.array([4, 5, 6])
    [ ] a-np.array([1,2,3]) b-np.array([4,5,6]) np.concatenate((a,b),axis=0)
    array([1, 2, 3, 4, 5, 6])
```

8) Create a dataframe with 3 rows and 2 columns

Solution:

 8. Create a dataframe with 3 rows and 2 columns 	
[] import pandas as pd	
[] d = {"name":["Mani","Peter","Vicky"],"age":[20,21,22]} df = pd.DataFrame(d) df	
name age	
0 Mani 20	
1 Peter 21	
2 Vicky 22	

9) Generate the series of dates from 1st jan, 2023 to 10th Feb, 2023

Solution:

```
9. Generate the series of dates from 1st Jan, 2023 to 10th Feb, 2023

↑ P - pd.date_range(start='1-1-2023', end='10-2-2023')
for val in P;
print(val)

② 2023-01-03 80:00:00

② 2023-01-04 80:00:00

② 2023-01-05 80:00:00

② 2023-01-06 80:00:00

② 2023-01-06 80:00:00

② 2023-01-06 80:00:00

② 2023-01-06 80:00:00

② 2023-01-10 80:00:00

② 2023-01-10 80:00:00

② 2023-01-10 80:00:00

② 2023-01-10 80:00:00

② 2023-01-10 80:00:00

② 2023-01-10 80:00:00

② 2023-01-10 80:00:00

② 2023-01-10 80:00:00

② 2023-01-10 80:00:00

② 2023-01-10 80:00:00

② 2023-01-10 80:00:00

② 2023-01-10 80:00:00

② 2023-01-10 80:00:00

② 2023-01-10 80:00:00

② 2023-01-10 80:00:00

② 2023-01-10 80:00:00

② 2023-01-10 80:00:00

② 2023-01-10 80:00:00

② 2023-01-20 80:00:00

② 2023-01-21 80:00:00

② 2023-01-21 80:00:00

② 2023-01-21 80:00:00

② 2023-01-21 80:00:00

② 2023-01-21 80:00:00

② 2023-01-21 80:00:00

② 2023-01-21 80:00:00

② 2023-01-21 80:00:00

② 2023-01-21 80:00:00

② 2023-01-21 80:00:00

② 2023-01-21 80:00:00

② 2023-01-21 80:00:00

② 2023-01-21 80:00:00

② 2023-01-21 80:00:00

② 2023-01-21 80:00:00

② 2023-01-21 80:00:00

② 2023-01-21 80:00:00:00

② 2023-01-21 80:00:00:00

② 2023-01-21 80:00:00:00

② 2023-01-21 80:00:00:00

② 2023-01-21 80:00:00:00

② 2023-01-21 80:00:00:00
```

10) Create 2D list to Dataframe

Solution: