Tetrathiorhenate(v_I), ReS₄²⁻. Spectroelectrochemical Characterization (UV–VIS–IR) of a Small New d¹ System and of its Tetrakis(2,2'-bipyridine)diruthenium(II) Complex (EPR)

Roland Schäfer, Wolfgang Kaim, Michael Moscherosch and Michael Krejčik

Institut für Anorganische Chemie der Universität, Pfaffenwaldring 55, W-7000 Stuttgart 80, Germany
J. Heyrovsky Institute of Physical Chemistry and Electrochemistry, Czechoslovak Academy of Sciences, Dolejškova, 3
CS-182 23 Prague, Czechoslovakia

 ReS_4^{2-} is the first d¹ tetrathiometallate persistent enough to be studied with respect to change transfer, ligand field and IR vibrational spectra *via* spectroelectrochemistry; an EPR spectrum could only be detected of its trinuclear derivative $[(bpy)_2Ru(\mu-ReS_4)Ru(bpy)_2]^{2+}$ (bpy=2,2'-bipyridine) at 4 K.

The tetrathiometallates MS_4^{n-} with d^0 configuration have been intensively studied for a variety of reasons. These relatively simple pentaatomic species have low lying unoccupied d orbitals which are responsible for the conspicuous colours due to ligand-to-metal charge transfer (LMCT) transitions, $p(S) \rightarrow d(M)$. Furthermore, the negative charge and the presence of potentially bis-chelating sulfur atoms make these metal-containing anions useful as π accepting bridging ligands in the formation of homo- and heteropolynuclear systems, 1-6 the electronic structures of which have been related to heterometallic sulfide clusters such as the Fe-Mo or Fe-V centres of nitrogenases.3 With respect to this latter aspect, the groups of Müller⁴ and Holm⁵ have recently drawn attention to the particular behaviour of the ReS₄⁻ ion as compared to MoS_4^{2-} or WS_4^{2-} . For instance, the lower lying unoccupied orbitals of ReS₄- are believed to be responsible for an apparent electron transfer reaction with FeCl₂ to yield $[Cl_2Fe(\mu-ReS_4)FeCl_2]^{2-}$, with formally hexavalent rhenium, as a stable product.4

While the facilitated reduction of a bridging π acceptor system after twofold metal coordination is common with inorganic⁶ and organic⁷ bis(chelate) ligands (*vide infra*), the reduction behaviour of the 'free', *e.g.* merely ion-paired, tetrathiometallates of Mo^{VI}, W^{VI} and Re^{VII} has not been extensively studied because of the negative potentials and the high nucleophilicity of the species thus generated.

We have now used the possibility of (spectro)electrochemistry in a specially designed cell⁸ using very dry solvents to study the reduction of the tetraethylammonium salts of $MoS_4{}^2-$, $WS_4{}^2-$ and $ReS_4{}^{-1}$ in dimethylformamide (DMF) or MeCN–0.1 mol dm⁻³ Bu₄NClO₄. In contrast to previous statements on $MoS_4{}^2{}^{-4b}$ or $WS_4{}^2-$, these ions can be reduced *reversibly* in very dry DMF at half-wave potentials of -2.94 and -3.16 V vs. ferrocene/ferrocenium (Fc/Fc⁺), respectively; unfortunately, the persistence of the trianions is not sufficient for detailed spectroscopic studies.

ReS₄⁻, on the other hand, is reduced in two reversible one-electron steps⁵ in acetonitrile at less negative half-wave potentials of -1.58 and -2.46 V vs. Fc/Fc⁺ which enabled us to study the Re^{VI} intermediate with its comproportionation constant of $K_c = 10^{\Delta E/59}$ mV $= 10^{15}$ by optical and vibrational

Fig. 1 UV–VIS–near IR absorption spectra of ReS $_4$ ⁻ (----) and ReS $_4$ ²⁻ (----) from spectroelectrochemistry in acetonitrile–0.1 mol dm⁻³ Bu $_4$ NClO $_4$

spectroelectrochemistry in the UV, visible, near-IR and IR regions (Figs. 1 and 2).

The two major LMCT bands¹ of purple ReS₄⁻ at 509 and 313 nm in acetonitrile exhibit shifts to 486 and 326 upon reduction to ReS₄²⁻ (Fig. 1). In addition to these intense bands (the small band at 589 nm is assigned to a triplet charge transfer transition typical for 5d systems¹⁰), there are now three weak ligand field (LF) bands in the long-wavelength region of that d¹ system at 1046, 950 and 874 nm (9560, 10 530 and 11 450 cm⁻¹), corresponding to $10 Dq = 10\,520$ cm⁻¹ and a splitting of about 2×950 cm⁻¹ (Fig. 1). The number and approximate positions of these bands for ReS₄²⁻ corresponds closely to those of MnO₄²⁻ in various host crystals¹¹ (about $10\,690$, $11\,030$ and $11\,370$ cm⁻¹; $10\,Dq = 11\,030$ cm⁻¹, split by 2×340 cm⁻¹) which suggests an analogous assignment e → t₂ where the levels are split¹² by (Jahn–Teller) distortion and spin–orbit coupling:¹¹ $\xi(Re) \gg \xi(Mn)$.

The IR vibrational spectrum measured in CD₃CN-0.1 mol dm⁻³ Bu₄NPF₆ shows that the typical ν_{as} band of tetrathiometallates¹ shifts from 490 to 439 cm⁻¹ upon reduction to ReS₄²⁻ (Fig. 2). This confirms that the added electron is placed in a partly antibonding orbital³ and suggests a Re^{VI} formulation for [Cl₂Fe(μ -ReS₄)FeCl₂]²⁻ (ν_{as} = 446 cm⁻¹);⁴ for the size- and charge-related WS₄²⁻ ν_{as} is 455 cm⁻¹ in Me₂SO.^{1b}

While EPR studies of the electrogenerated ReS₄²⁻ did not show a distinct signal at 4 K in frozen acetonitrile solution, perhaps owing to very short relaxation times, the less symmetrical trinuclear ion [(bpy)₂Ru(μ-ReS₄)Ru(bpy)₂]³⁺ (bpy = 2,2'-bipyridine), obtained in analogy to Mo and W complexes,⁶ has a small frontier orbital gap (Ru^{II} → Re^{VII} transitions at 826 and 713 nm) and is reduced at a much less negative potential ($-0.73 \text{ V } vs. \text{ Fc/Fc}^+ \text{ in acetonitrile}$) to a paramagnetic Re^{VI} species which gave a detectable EPR signal at 4 K. The values of $g_x = 1.73$, $A_x(Re) = 49 \text{ mT}$, $g_y =$ 1.78, $A_y(Re) = 39.0 \text{ mT}$; $g_z = 2.08 \text{ and } A_z(Re) < 6 \text{ mT reflect}$ the high spin-orbit coupling constant and the nuclear magnetic properties of rhenium ($\xi > 2000 \text{ cm}^{-1}$; 185,187Re: I =5/2). The results may be compared to those of a 'true' Re^{VI} species, viz., tetragonally distorted ReO₄²⁻ in CaWO₄ (g_{\perp} = 1.7164, $A_{\perp}(Re) = 0.0324$ cm⁻¹ = 40.4 mT, $g_{\parallel} = 1.8549$. $A_{\parallel} =$

Fig. 2 IR vibrational spectra of ReS₄ $^-$ (\downarrow) and ReS₄ $^-$ (\uparrow) from spectroelectrochemistry in CD₃CN–0.1 mol dm⁻³ Bu₄NPF₆

 $0.0042 \text{ cm}^- = 4.85 \text{ mT}$; the $g_z > 2$ component of the trinuclear tetrathiorhenate(vi) complex indicates contributions from the ligand-based t₁ orbitals, ¹³ i.e. considerable metal-ligand orbital mixing as was recently reported also for RuO_4^{-13}

The striking correspondence in spectral data for MnO₄²⁻ and ReS₄²⁻ and the EPR results suggest a high degree of covalency of the metal-chalcogen bond, reducing the effective oxidation state of the metal. In fact, Müller and coworkers have deduced from XPS and XANES studies4b that such a delocalization should be quite strong for the ReS₄ⁿ⁻ system, preventing it from being useful within artificial nitrogenase

Support from DFG (Schwerpunktprogramm and Exchange Program with ČSAV) is gratefully acknowledged.

Received, 28th February 1992; Com. 2/01071B

References

1 (a) A. Müller, E. Diemann, R. Jostes and H. Bögge, Angew. Chem., 1981, 93, 957; Angew. Chem., Int. Ed. Engl., 1981, 20, 934; (b) K. H. Schmidt and A. Müller, Coord. Chem. Rev., 1974, 14, 115.

- 2 A. Müller, E. Krickemeyer, A. Hildebrand, H. Bögge, K. Schneider and M. Lemke, J. Chem. Soc., Chem. Commun., 1991, 1685
- 3 A. Müller, R. Jostes, E. Krickemeyer and H. Bögge, Naturwissenschaften, 1987, 74, 388.
- 4 (a) A. Müller, E. Krickemeyer, F.-W. Baumann, R. Jostes and H. Bögge, Chimia, 1986, 40, 310; (b) A. Müller, E. Krickemeyer, V. Wittneben, H. Bögge and M. Lemke, Angew. Chem., 1991, 103, 1501; Angew. Chem., Int. Ed. Engl., 1991, 30, 1512.
- 5 S. Ciurli, M. J. Carney, R. H. Holm and G. C. Papaefthymiou, Inorg. Chem., 1989, 28, 2696.
- 6 M. A. Greaney, C. L. Coyle, M. A. Harmer, A. Jordan and E. I. Stiefel, Inorg. Chem., 1989, 28, 912.
- S. D. Ernst and W. Kaim, Inorg. Chem., 1989, 28, 1520.
- 8 M. Krejčik, M. Danek and F. Hartl, J. Electroanal. Chem., 1991, **317**, 179.
- 9 D. E. Pratt, S. H. Laurie and R. H. Dahm, Inorg. Chim. Acta, 1987, 135, L21.
- 10 E. M. Kober and T. J. Meyer, *Inorg. Chem.*, 1982, **21**, 3967. 11 P. Day, L. DiSipio, G. Ingletto and L. Oleari, *J. Chem. Soc.*, Dalton Trans., 1973, 2595.
- 12 P. McGeehin, B. Henderson and P. C. Benson, Proc. R. Soc. London A., 1975, 346, 497.
- 13 A. C. Dengel, J. F. Gibson and W. P. Griffith, J. Chem. Soc., Dalton Trans., 1991, 2799.