

Fundação CECIERI - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística AD2 1° semestre de 2017 GABARITO

Professores: Otton Teixeira da Silveira Filho e Regina Célia de Paula Toledo

1 - Primeira questão (2,0 pontos)

Uma distribuição de probabilidade é dada da seguinte maneira: para x menor que zero ela é nula; para x maior ou igual a zero e menor que um meio ela é expressada por x+1; para x maior ou igual a um meio e menor que três quartos ela é igual a um e meio; para x maior que três quartos ela é nula.

Resolução:

Embora não seja solicitado, verifiquemos se a função apresentada é distribuição de probabilidade. Claramente ela é não negativa. Calculemos a integral

$$\int_{0}^{1/2} (x+1) dx + \int_{1/2}^{3/4} \frac{3}{2} dx$$

afinal, fora do intervalo [0, ¾] a função é nula. Desenvolvendo obtemos

$$\int_{0}^{1/2} (x+1) dx + \int_{1/2}^{3/4} \frac{3}{2} dx = \int_{0}^{1/2} x dx + \int_{0}^{1/2} dx + \frac{3}{2} \int_{1/2}^{3/4} dx = \frac{x^{2}}{2} \Big|_{0}^{1/2} + x \Big|_{0}^{1/2} + \frac{3}{2} x \Big|_{1/2}^{3/4} = \frac{1}{2} \left(\frac{1}{2}\right)^{2} + \frac{1}{2} + \frac{3}{2} \left(\frac{3}{4} - \frac{1}{2}\right) = \frac{1}{8} + \frac{1}{2} + \frac{3}{8} = 1$$

a) Calcule o valor médio da distribuição (0,5 ponto);

Resolução:

A definição de valor médio nos dá

$$\mu = \int_{-\infty}^{\infty} x f(x) dx$$

que neste caso se resume a

$$\mu = \int_{0}^{3/4} x f(x) dx = \int_{0}^{1/2} x(x+1) dx + \frac{3}{2} \int_{1/2}^{3/4} x dx = \int_{0}^{1/2} x^{2} dx + \int_{0}^{1/2} x dx + \frac{3}{2} \int_{1/2}^{3/4} x dx = \frac{x^{3}}{3} \Big|_{0}^{1/2} + \frac{x^{2}}{2} \Big|_{0}^{1/2} + \frac{3}{2} \frac{x^{2}}{2} \Big|_{1/2}^{3/4}$$

o que resulta em

$$\mu = \frac{1}{3} \left(\frac{1}{2}\right)^3 + \frac{1}{2} \left(\frac{1}{2}\right)^2 + \frac{3}{4} \left[\left(\frac{3}{4}\right)^2 - \left(\frac{1}{2}\right)^2 \right] = \frac{1}{24} + \frac{1}{8} + \frac{3}{4} + \frac{5}{16} = \frac{77}{192} \approx 0,4010 .$$

b) Calcule a variância da distribuição (1,0 ponto);

Resolução:

A definição de variância nos dá

$$\sigma^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2 .$$

Resta-nos calcular a integral

$$\int_{0}^{3/4} x^{2} f(x) dx = \int_{0}^{1/2} x^{2} (x+1) dx + \frac{3}{2} \int_{1/2}^{3/4} x^{2} dx = \int_{0}^{1/2} x^{3} dx + \int_{0}^{1/2} x^{2} dx + \frac{3}{2} \int_{1/2}^{3/4} x^{2} dx = \frac{x^{4}}{4} \Big|_{0}^{1/2} + \frac{x^{3}}{3} \Big|_{0}^{1/2} + \frac{3}{2} \frac{x^{3}}{3} \Big|_{1/2}^{3/4}$$

ou seja,

$$\int_{0}^{3/4} x^{3} f(x) dx = \frac{1}{4} \left(\frac{1}{2}\right)^{4} + \frac{1}{3} \left(\frac{1}{2}\right)^{3} + \frac{1}{2} \left[\left(\frac{3}{4}\right)^{3} - \left(\frac{1}{2}\right)^{3} \right] = \frac{1}{64} + \frac{1}{24} + \frac{1}{2} \frac{19}{64} = \frac{79}{384} \approx 0,2057 .$$

Daqui podemos calcularmos

$$\sigma^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2 = \frac{79}{384} - \left(\frac{77}{192}\right)^2 \approx 0,0449 \quad .$$

c) Calcule a moda desta distribuição (0,5 ponto).

Resolução:

A moda é definida como o(s) ponto(s) para o(s) qual(is) a probabilidade é máxima. No caso desta questão a distribuição é multimodal e permite os valores no intervalo $[\frac{1}{2}, \frac{3}{4}]$.

2 – Segunda questão (1,5 pontos)

Verifique se as expressões abaixo são funções de probabilidade. Caso alguma não seja devido à constante de normalização, apresente a função normalizada.

a)
$$f(x)=x^2-x$$
; $x \in [1,2]$

Resolução:

Esta função é não negativa no intervalo apresentado, portanto integremos

$$\int_{1}^{2} (x^{2} - x) dx = \int_{1}^{2} x^{2} dx - \int_{1}^{2} x dx = \frac{x^{3}}{3} |_{1}^{2} - \frac{x^{2}}{2} |_{1}^{2} = \frac{1}{3} (2^{3} - 1^{3}) - \frac{1}{2} (2^{2} - 1^{2}) = \frac{7}{3} - \frac{3}{2} = \frac{5}{6} ,$$

portanto este valor é a constante de normalização e a função normalizada será

$$f(x) = \frac{6}{5}(x^2 - x); x \in [1,2]$$

b)
$$f(x)=x^3-x+1; x \in [-1,3]$$

Resolução:

Um exame cuidadoso nos dá que esta função é não negativa no intervalo dado. Integremos

$$\int_{-1}^{3} \left(x^{3} - x + 1 \right) dx = \int_{-1}^{3} x^{3} dx - \int_{-1}^{3} x dx + \int_{-1}^{3} dx = \frac{x^{4}}{4} \Big|_{-1}^{3} - \frac{x^{2}}{2} \Big|_{-1}^{3} + x \Big|_{-1}^{3} = \frac{1}{4} \Big[3^{4} - (-1)^{4} \Big] - \frac{1}{2} \Big[3^{2} - (-1)^{2} \Big] + \Big[3 - (-1) \Big]$$

ou

$$\int_{-1}^{3} (x^3 - x + 1) dx = 20 - 4 + 4 = 20$$

o que nos dá a constante de normalização. Portanto a função normalizada será

$$f(x) = \frac{x^3 - x + 1}{20}; x \in [-1,3]$$
.

c)
$$f(x) = \frac{2}{3} sen(x); x \in [3/2, 16/5]$$

Resolução:

Observe que o valor 16/5 é igual a 3,2. Para valores maiores que π seno é negativo. Portanto, esta função não é distribuição de probabilidade.

3 – Terceira questão (1,0 ponto)

Testava-se em campo um vermífugo para bovinos baseado em ervas cultivadas pelos próprios criadores. Foram tratados 232 animais e constatou-se que, após a primeira administração do vermífugo, 161 animais não mais apresentavam infestação de vermes. Avalie qual seria a proporção na população geral de bovinos com coeficiente de confiança de 90%.

Resolução:

Para resolver este problema deveremos obter estimativas para a média e a variância baseadas na proporção. A proporção neste caso será dada por

$$\hat{p}_{obs} = \frac{161}{232} \approx 0,6940$$

o que nos permite escrever

$$Var(p_{obs}) = \frac{p_{obs}(1-p_{obs})}{n} = 0,6940 \frac{(1-0,6940)}{232} \approx 0,0009$$
.

Supondo que a amostra nos permite usar o Teorema Central do Limite podemos escrever

$$\hat{p} \sim N \left(p, p \frac{(1-p)}{n} \right)$$
.

Daí escreveremos a equação

$$IC(p, y) = [\hat{p} - z_{y/2} \sqrt{Var}; \hat{p} + z_{y/2} \sqrt{Var}]$$

No caso não temos p e usaremos como estimador \hat{p} . Assim teremos

$$IC = [0,6940 - 1,64\sqrt{0,0009}; 0,6940 + 1,64\sqrt{0,0009}] = [0,6940 - 1,64\times0,03; 0,6940 + 1,64\times0,03]$$

ou

$$IC = [0,6448;0,7432]$$
.

4 – Quarta questão (1,0 ponto)

Uma cultura de morangos foi pulverizada com um produto para controle de ácaros. Podemos usar a distribuição Exponencial para avaliar a probabilidade de termos frutas contaminadas que poderiam gerar intoxicação nos funcionários que colhem ou nos compradores. O parâmetro usado para o cálculo é igual a 3, dado em dias. Calcule a probabilidade de uma fruta colhida aleatoriamente esteja com contaminação após 4 dias. E após 6 dias?

Resolução:

Neste caso a probabilidade será dada por

$$P(a < X < b) = \int_{a}^{b} \alpha e^{-\alpha x} dx = e^{-\alpha a} - e^{-\alpha b} .$$

Queremos a probabilidade após 4 dias, portanto desejamos o complemento da probabilidade abaixo

$$P(0 < X < 4) = 1 - e^{-3 \times 4} \approx 1$$

ou seja, a probabilidade que desejamos calcular é próxima de zero. Com este resultado vemos que para o segundo caso solicitado a probabilidade também será próxima de zero.

5 – Quinta questão (1,0 ponto)

Um estudante de botânica calculava a área foliar de uma variedade de tomateiros. Depois de tediosas medidas diretas de dezenas de folhas, ela obteve a média (6,4 cm²) e variância (7,2 cm⁴) da área das folhas. Calcule a probabilidade de se encontrar num tomateiro similar

Resolução:

Suporemos que o número de folhas é tal que possamos usar a distribuição Normal. Sendo assim podemos escrever

$$P(a < X < b) = P\left(\frac{a - \mu}{G} < Z < \frac{b - \mu}{G}\right)$$
.

a) uma folha com área maior que 8 cm²;

Resolução:

No caso deste problema calcularemos a probabilidade como

$$P(X>8) = P\left(Z > \frac{8-6,4}{\sqrt{7,2}}\right) \approx P\left(Z > \frac{1,6}{2,6833}\right) \approx P(Z>0,5963) \approx P(Z>0,60)$$

e finalmente

$$P(X>8)=0.5-P(Z<0.60)=0.5-0.2257=0.2743$$

b) uma folha com área menor que 4 cm²;

Resolução:

Neste caso teremos

$$P(X<4)=P\left(Z<\frac{4-6,4}{2,6833}\right)\approx P(Z<-0,8944)\approx P(Z<-0,89)=0,5-P(Z<0,89)=0,5-0,3133=0,1867$$

6 – Sexta questão (2,5 pontos)

Calcule as seguintes probabilidades.

a) P(0,13<X<1) para a distribuição de probabilidade da primeira questão;

Resolução:

Para este intervalo a probabilidade em questão é dada portanto

$$P(0,13 < X < 1) = \int_{0,13}^{1/2} (x+1) dx + \int_{1/2}^{3/4} \frac{3}{2} dx$$

afinal, a distribuição vale zero para valores maiores que ¾. Assim teremos

$$P(0,13 < X < 1) = \int_{0.13}^{1/2} x \, dx + \int_{0.13}^{1/2} dx + \frac{3}{2} \int_{1/2}^{3/4} dx = \frac{x^2}{2} \Big|_{0,13}^{1/2} + x \Big|_{0,13}^{1/2} + \frac{3}{2} x \Big|_{1/2}^{3/4}$$

ou

$$P(0,13 < X < 1) = \frac{0.5^2 - 0.13^2}{2} + (0.5 - 0.13) + \frac{3}{2}(0.75 - 0.5) = \frac{0.2331}{2} + 0.37 + \frac{3}{2}0.25 \approx 0.8615$$

b) P(1,21<X<3,23) para a distribuição Normal de média 1,1 e variância 4,3;

Resolução:

Usemos

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$

o que nos dará

$$P(1,21 < X < 3,23) = P\left(\frac{1,21-1,1}{\sqrt{4,3}} < Z < \frac{3,23-1,1}{\sqrt{4,3}}\right) \approx P\left(\frac{0,11}{2,0736} < Z < \frac{2,13}{2,0736}\right) \approx P(0,0530 < Z < 1,0272)$$

ou seja

$$P(1,21 < X < 3,23) \approx P(0,05 < Z < 1,03) = P(0 < Z < 1,03) - P(0 < Z < 0,05) = 0,3485 - 0,0199 = 0,3286$$

c) P(1,21<X<3,23) para a distribuição Normal de média 3,1 e desvio padrão 2,4; **Resolução:**

$$P(1,21 < X < 3,23) = P\left(\frac{1,21-3,1}{2,4} < Z < \frac{3,23-3,1}{2,4}\right) \approx P\left(-\frac{1,89}{2,4} < Z < \frac{0,13}{2,4}\right) \approx P\left(-0,7875 < Z < 0,054\right) \approx P\left(-0,7875 < 2,054\right) \approx P\left(-0,7875 < Z < 0,054\right) \approx P\left(-0,7875 < 2,054\right) \approx P\left(-0,7875 < Z < 0,054\right) \approx P\left(-0,7875 < 2,054\right) \approx P\left(-0,7875 < Z < 0,054\right) \approx P\left(-$$

e daí

$$P(1,21 < X < 3,23) \approx P(-0,79 < Z < 0,05) = P(0 < Z < 0,79) + P(0 < Z < 0,05) = 0,2852 + 0,0193 = 0,3051$$

d) P(0,13 < X < 1,21) para uma distribuição de Exponencial com $\alpha = 1,18$;

Resolução:

A probabilidade aqui é dada por

$$P(a < X < b) = \int_{a}^{b} \alpha e^{-\alpha x} dx = e^{-\alpha a} - e^{-\alpha b}$$

que nos permite escrever

$$P(0,13 < X < 1,21) = e^{-1,18 \times 0,13} - e^{-1,18 \times 1,21} \approx 0,8578 - 0,2398 = 0,618$$

e) P(1,21<X<3,23) para uma distribuição uniforme no intervalo [-3, 4].

Resolução:

Aqui a distribuição é dada por

$$P(a < X < b) = \frac{1}{b-a}; x \in [a,b]$$

sendo nula fora deste intervalo. Disto escrevemos

$$P(1,21 < X < 3,23) = \frac{1}{4 - (-3)} \int_{1,21}^{3,23} dx = \frac{1}{7} (3,23 - 1,21) \approx 0,2886$$
.

7 – Sétima questão (1,0 ponto)

Uma amostra de doze pinos de madeira numa indústria foi avaliada e obteve-se valores do comprimento dos mesmos em centímetros: 5,1; 5,2; 4,9; 5,4; 5,2; 5,5; 5,3; 4,8; 5,0; 5;1;5,0; 4,9.

a) Calcule estimativas para a média usando os estimadores abaixo:

$$\hat{\mu}_1 = (valor \, máximo + valor \, mínimo)/2$$

Resolução:

Por inspeção determinamos os valores máximo e mínimo da amostra. Logo

$$\hat{\mu}_1 = (5,5+4,8)/2 = 5,15$$
.

$$\hat{\mu_2} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Resolução:

$$\hat{\mu}_2 = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{5.1 + 5.2 + 4.9 + 5.4 + 5.2 + 5.5 + 5.3 + 4.8 + 5.0 + 5.1 + 5.0 + 4.9}{12} \approx 5.1166 \approx 5.12$$

b) Calcule também as estimativas para a variância baseado nos estimadores abaixo:

$$\hat{\sigma}_{1}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{X})^{2}$$

Resolução:

Observe que aqui podemos escolher o estimador para a média. Usaremos aqui o valor obtido pela média aritmética.

$$\hat{\sigma}_{1}^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i} = \frac{\left[-0.02 + 0.08 - 0.22 + 0.28 + 0.08 + 0.38 + 0.18 - 0.32 - 0.12 - 0.02 - 0.12 - 0.22\right]^{2}}{12}$$

ou

$$\hat{\sigma} \approx \frac{0.0016}{12} \approx 0.00013$$
.

$$\hat{\sigma}_{2}^{2} = \left(\frac{valor\ m\'{a}ximo - valor\ m\'{i}nimo}}{2}\right)^{2}$$

Resolução:

$$\hat{\sigma}_{2}^{2} = \left(\frac{5,5+4,8}{2}\right)^{2} = 0,1225$$
.

Observe que esta questão chama a atenção para a "qualidade" de determinados estimadores.

Atenção:

- I) Não haverá formulário na segunda avaliação presencial.
- II) Todos os cálculos deverão ser feitos com pelo menos quatro casas decimais e arrendondados para duas APENAS ao final, seja na lista ou na prova.
- III) Tenha cuidado quanto a notação. Caso não a siga, você terá pontos descontados, seja na lista ou na prova.
- IV) Como já foi divulgado por vários meios, só será aceita a entrega da AD que for digitada em algum editor de texto e depois convertida para o formato pdf. A AD que for entregue em outro formato, inclusive digitalizada, será descartada e a nota será 0 (zero).

Tabela da distribuição Normal N(0,1)

\mathbf{Z}_{C}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2.5	0.4020	0.40.40	0.40.44	0.40.40	0.4045	0.40.46	0.40.40	0.4040	±0.4054	0.4050
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	*0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,0	0,4907	0,4967	0,4967	0,4900	0,4900	0,4969	0,4989	0,4969	0,4990	0,4990
3,2	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4995	0,4995
3,3	0,4995	0,4995	0,4994		0,4994	0,4994	0,4994	0,4996	0,4996	0,4993
ر. ا	0,4995	0,4995	0,4995	0,4996	0,4990	0,4990	0,4996	0,4990	0,4996	0,499/

Atribua o valor 0,5 para valores maiores ou iguais a 3,4.