

elimination of state r

$$(s,q) = 0 + 10^{*}1$$
 $(hht) \rightarrow 0$
 (hht)

elementary of q

$$(s,p) = \beta + (0+10^*1) \beta^*0$$
 $(s,s) = \beta + (0+10^*1) \beta^*1$
 $= (0+10^*1)0$ $= (0+(0^*1))1$

stat
$$\Rightarrow$$
 $(0+10^{+1})$ 0 $(0+10^{+1})$ 1

olumeter of s

d. R(s+T) : \$5 + ET

Supplies a string w is in R(s+T), then w=xy where x ER and y E offer S or T.

If y & S. then xy . & S and therefore & RS + RT. Conversely, if y & T, then xy : RT and therefore in RS + RT.

suppose w is in RS+RT, then w is either RS or RT. Then for w=xy. if x is it x is it x is it is i

e. (R+S) + = RT + ST

suppose a string w is it (R+S)T, then n:xy where x t efter R or S and y E T.

If y e R, then xy: RT and therefore E RT+ST. conversely if x & S, then xy: ST and therefore

E RT+ST.

suppose w E RT + ST, then we either RT or ST. Then for w = xy, if x E R and y ET then some x E R then it is in 12 to and conversely for X E S.

9.
$$(\xi + R)^* = R^*$$
by substitution of symbols: $(\xi + \alpha)^* = \alpha^*$
since $\xi^* = \xi$ and $\alpha^* : \alpha^0 + \alpha^1 + \alpha^2 + \dots$
 $= \xi + \alpha + \alpha \alpha$
 ξ is already ontoined by α^*

It is clear that both sides intritorely represent all strings of a end b.
Thus, the two concrete expressions denote the same language so $(k^*s^*)^* = (R+s)^*$ holds.

L.
$$(RS \perp R)^*R = R(SR + R)^*$$

True

Concrete expression:

$$(ab+a)^*a : a(ba+a)^*$$

by visual inspection, it is clear that both these languages represent strings that start with a and contain any number of a's or single occurrences of L that end in a.

concrete expression:

False, proof by contradiction