Lecture 09: Model compression & acceleration

Michael Diskin (with the help of one shy hedgehog)

Chapter 1: why should you care?

Three kinds of efficiency:

Throughput samples/second

Three kinds of efficiency:

Throughput samples/second

Latency ms@percentile

- + relatively easy to deploy
- + you control model & inference
- + clients don't run compute

- + relatively easy to deploy
- + you control model & inference
- + clients don't run compute
- you pay for each inference
- clients can't work offline
- network latency

Which is the most important?

?

?

?

- + relatively easy to deploy
- + you control model & inference
- + clients don't run compute
- you pay for each inference
- clients can't work offline
- network latency

Priorities:

Note: smaller model = you can fit more models in the same memory

- + relatively easy to deploy
- + you control model & inference
- + clients don't run compute
- you pay for each inference
- clients can't work offline
- network latency

- Group inputs into batches (e.g. by length)
 - improves throughput at the cost of latency
- Multiple servers with load balancing

- Group inputs into batches (e.g. by length)
 - improves throughput at the cost of latency
- Multiple servers with load balancing improves throughput at the cost of your budget :)

Popular frameworks:

TensorRT Inference Server (Triton)

Custom model-dependent code

priorities

efficiency ≪ developer time efficiency ≈ developer time

efficiency ≫ developer time

Scenario 2: local inference

- Preload model onto a dedicated device, infer locally using that device
- Typical use cases:
 - Parallel speech recognition
 - "Smart" cameras
 - Autonomous drones
 - Self-driving cars

Priorities:

Scenario 3: web/smartphone app

- Load model weights on the fly and infer locally
- Model size is critical for both you and the user

Scenario 3: web/smartphone app

- Load model weights on the fly and infer locally
- Model size is critical for both you and the user
- Autonomous machine translation (<u>tinyurl.com/yandex-translate-app</u>)
- Pix2pix demo in a browser (https://affinelayer.com/pixsrv)

• Priorities:

Scenario 3: web/smartphone app

- Load model weights on the fly and infer locally
- Model size is critical for both you and the user
- Autonomous machine translation (<u>tinyurl.com/yandex-translate-app</u>)
- Pix2pix demo in a browser (https://affinelayer.com/pixsrv)
- Priorities: 🖟 🔟
- Popular frameworks:
 - TensorFlow.js

៓ NNAPI

Platform
All modern browsers
iOS devices
Android devices

Chapter 2: how do I improve my model?

Distillation...
Heard that word before?

First, get the best performing model regardless of size

Then, train a more compact model to approximate it!

Student architecture choices:

Naïve: same but smaller, less layers / hidden units

e.g. DistillBERT: https://arxiv.org/pdf/1910.01108.pdf

• Same as BERT-base, but

- with half as many layers
- (and ≈1.5 times faster)

Model	# param. (Millions)	Inf. time (seconds)		
ELMo	180	895		
BERT-base	110	668		
DistilBERT	66	410		

Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI
ELMo	68.7	44.1	68.6	76.6	71.1	86.2	53.4	91.5	70.4	56.3
BERT-base	79.5	56.3	86.7	88.6	91.8	89.6	69.3	92.7	89.0	53.5
DistilBERT	77.0	51.3	82.2	87.5	89.2	88.5	59.9	91.3	86.9	56.3

Student architecture choices:

Naïve: same but smaller, less layers / hidden units

Factorized: product of smaller matrices or tensors

• Student architecture choices:

Naïve: same but smaller, less layers / hidden units

• Factorized: product of smaller matrices or tensors

• Student architecture choices:

Naïve: same but smaller, less layers / hidden units

Factorized: product of smaller matrices or tensors

• Sparse: only a small (random) subset of weights are nonzero

• Student architecture choices:

Naïve: same but smaller, less layers / hidden units

Factorized: product of smaller matrices or tensors

• Sparse: only a small (random) subset of weights are nonzero

Q: how to store sparse weights?

Images: https://openreview.net/pdf

• Student architecture choices:

Naïve: same but smaller, less layers / hidden units

Factorized: product of smaller matrices or tensors

• Sparse: only a small (random) subset of weights are nonzero

Storage: only store random seed and nonzero weights.

Compute: sparse matrix multiply

- Student architecture choices:
 - Naïve: same but smaller, less layers / hidden units
- Factorized: product of smaller matrices or tensors
- Sparse: only a small fraction of weights are nonzero
- Read more: https://openreview.net/pdf?id=zx80ka09eF
- Also: factorized embeddings https://arxiv.org/abs/1901.10787
- . Also also: small-world sparse weights graphs for RNNs
 - https://tinyurl.com/openai-blocksparse

•

- Student architecture choices:
 - Naïve: same but smaller, less layers / hidden units
- Factorized: product of smaller matrices or tensors
- Sparse: only a small fraction of weights are nonzero
- Read more: https://openreview.net/pdf?id=_zx80ka09eF
- Also: factorized embeddings https://arxiv.org/abs/1901.10787
 - Also also: https://tinyurl.com/openai-blocksparse
- More distillation tricks:
 - Ensemble distillation
 Dropout distillation
 - Co-distillation

https://arxiv.org/abs/1702.01802

http://proceedings.mlr.press/v48/bulo16.pdf

https://arxiv.org/abs/1804.03235

Do we really need every layer all the time?

- 2) Negative
- 3) More layers!

Only if "more layers"

- 1) Positive
- 2) Negative
- 3) More layers!

Adaptive Computation Time

block of residual units

Origina ACTI (for RNN) https://arxiv.org/abs/1603.08983 Spatial ACT (conv)
https://tinyurl.com/sact-pdf

ACT Transformers https://arxiv.org/abs/1807.03819

ACT-like metods for LLMs

https://arxiv.org/abs/2207.07061 https://arxiv.org/abs/2307.02628

https://arxiv.org/abs/2211.17192

Two models: main model (LLaMA-70B) and draft model (LLaMA-7B)

Greedy decoding:

Step 1: generate with draft model (sequential)

Generated Text: Several famous songs

https://arxiv.org/abs/2211.17192

Two models: main model (LLaMA-70B) and draft model (LLaMA-7B)

Greedy decoding:

Step 1: generate with draft model (sequential)

Step 2: verify with large model (parallel)

Generated Text: Several famous songs

https://arxiv.org/abs/2211.17192

Two models: main model (LLaMA-70B) and draft model (LLaMA-7B)

Greedy decoding:

Step 1: generate with draft model (sequential)

Step 2: verify with large model (parallel)

Accept multiple tokens

https://arxiv.org/abs/2211.17192

Two models: main model (LLaMA-70B) and draft model (LLaMA-7B)

Greedy decoding:

Step 1: generate with draft model (sequential)

Step 2: verify with large model (parallel)

Accept multiple tokens

Repeat

https://arxiv.org/abs/2211.17192

Two models: main model (LLaMA-70B) and draft model (LLaMA-7B)

Sampling (temperature, top-p, top-k): generate, then reject with probability sampling probability proven equal to regular sampling

Going inside model layers

Compression by sparsification

Do we really need all D by D weights?

Compression by pruning

Do we really need all D by D weights?

Magnitude pruning

Drop ~5% smallest weights from each layer every 1000 steps (and keep training)

Reminds you of something?

Magnitude pruning

Drop ~5% smallest weights from each layer every 1000 steps (and keep training)

Reminds you of something?
See ML course, Optimal Brain Damage

Pruning with L₀ regularization

Add a special regularizer that encourages dropping unnecessary weights

Whiteboard time!

Read more: https://arxiv.org/abs/1712.01312

Alternative: https://arxiv.org/abs/1701.05369

Which one works best?

Transformer BLEU

Source https://arxiv.org/abs/1902.09574

Pruning with L₀ regularization

Add a special regularizer that encourages dropping unnecessary weights

Whiteboard time!

Pruning with L₀ regularization

Add a special regularizer that encourages dropping unnecessary weights

- Can prune
 - individual weights
 - Individual neurons
 - attention heads
 - entire layers!

$$\lambda = 0.01$$

Pruning heads: https://lena-voita.github.io/posts/acl19_heads.html

Compression by sparsification

Unstructured sparsity = prune individual weights (minimal model size)

Structured sparsity= prune entire neurons/heads (fastest inference)

Compression by sparsification

Unstructured sparsity = prune individual weights (minimal model size)

Structured sparsity= prune entire neurons/heads (fastest inference)

Note: some GPU/FPGAs also run fast with low-level structured sparsity, e.g. "Any 2 of 4 consecutive weights" (left)

Compression by quantization

Quantization basics

Goal: encode data as int8 / int4

Quantization basics

Goal: encode data as int8 / int4

not an ideal range for int4

Linear quantization

Fit a linear range to data

scale =
$$(max(w) - min(w)) / 2^4$$

zero = $-min(w) / scale$

Linear quantization

Fit a linear range to data

Encode:
$$\mathbf{c_i} = (\mathbf{w_i} / \mathbf{s} + \mathbf{z}).\text{clip}(0, 15)$$

Decode: $w_i = ???$ ideas?

scale =
$$(max(w) - min(w)) / 2^4$$

zero = $-min(w) / scale$

Linear quantization

Fit a linear range to data

Encode:
$$\mathbf{c_i} = (\mathbf{w_i} / \mathbf{s} + \mathbf{z}).\text{clip}(0, 15)$$
uint4 range

Decode: $\mathbf{w}_i \approx \mathbf{s} * \mathbf{c}_i - \mathbf{z}$

scale =
$$(max(w) - min(w)) / 2^4$$

zero = $-min(w) / scale$

Nonlinear quantization

Fit codes to data

Compute a grid of percentiles or centroids (k-means 1d)

Store each weight as the index of nearest percentile/centroid

High-dimensional case

Quantize entire vectors as K-means

Quantization Example

 $quantizer = KMeans(n_clusters=7).fit(X)$

Images: <u>Jeremy Jordan</u>

OPQ, AQ, LSQ

Product Quantization
Split vectors into chunks, quantize each chunk separately

Orthogonal Product Quantization
First run orthogonal transform, then product quantization
http://kaiminghe.com/publications/cvpr13opq.pdf

More:

Additive Quantization Local Search Quantization https://tinyurl.com/babenko-aq-pdf https://tinyurl.com/martinez-lsq-pdf

Images: <u>Jeremy Jordan</u>

LLM.8bit(): some weights are more important

https://arxiv.org/abs/2208.07339

TL;DR in very LLM, some input features become outliers
Weights for those features are sensitive
KEEP <1% MOST SENSITIVE WEIGHTS IN 16-bit!

Static nonlinear case: NF4

https://arxiv.org/abs/2305.14314 https://arxiv.org/abs/2306.06965

Static nonlinear case: NF4

https://arxiv.org/abs/2305.14314

https://arxiv.org/abs/2306.06965

How many bits is best?

https://arxiv.org/abs/2212.09720

TL;DR 3-4 bits looks optimal 2-bit: 100B in 2-bit often worse than 50B in 4-bit

Model compression landscape

Goal: faster / smaller / both

Compression: quantize / prune / factorize

Setup: no data, some data, training data

Model compression landscape

Goal: faster / smaller / both

Compression: quantize / prune / factorize

Setup: no data, some data, training data

Q: can we take advantage of data to improve quantization?

Model compression landscape

Goal: faster / smaller / both

Compression: quantize / prune / factorize

Setup: no data, some data, training data

Compression-aware training

Step 1: train normally for T steps

Step 2: prune 5% weights (or quantize 10% layers)

Step 3: freeze pruned/quantized parts

GoTo step 1

Post-training compression

Can we take advantage of **a few** data points without training the model?

Post-training compression

Can we take advantage of **a few** data points without training the model?

- find which weights are multiplied by larger inputs
- find correlated or anti-correlated weights
- try to "cancel out" quantization errors

Optimal Brain Damage

Le Cun et al, 1989

Approximate loss function with Taylor series up to squared term

$$\delta E = \left(\frac{\partial E}{\partial \mathbf{w}}\right)^T \cdot \delta \mathbf{w} + \frac{1}{2} \delta \mathbf{w}^T \cdot \mathbf{H} \cdot \delta \mathbf{w} + O(||\delta \mathbf{w}||^3) \quad (1)$$

Note: this Taylor expansion assumes that model is trained to the exact minimum of loss function, i.e. initial gradients are zero

Optimal Brain Damage

Le Cun et al, 1989

Approximate loss function with Taylor series up to squared term

$$\delta E = (\frac{\partial E}{\partial \mathbf{w}})^T \cdot \delta \mathbf{w} + \frac{1}{2} \delta \mathbf{w}^T \cdot \mathbf{H} \cdot \delta \mathbf{w} + O(\| \delta \mathbf{w} \|^3)$$
 (1) increase weight loss in error change hessian

Optimal Brain Damage

Le Cun et al, 1989

Approximate loss function with Taylor series up to squared term

$$\delta E = (\frac{\partial E}{\partial \mathbf{w}})^T \cdot \delta \mathbf{w} + \frac{1}{2} \delta \mathbf{w}^T \cdot \mathbf{H} \cdot \delta \mathbf{w} + O(\| \delta \mathbf{w} \|^3)$$
 (1) increase weight loss in error change hessian

Find Δw that minimizes the error **AND** (w+ Δw) is sparse or quantized

Optimal Brain Surgeon

Hassibi et al, 1993

Approximate loss function with Taylor series up to squared term

$$\delta E = \left(\frac{\partial E}{\partial \mathbf{w}}\right)^T \cdot \delta \mathbf{w} + \frac{1}{2} \delta \mathbf{w}^T \cdot \mathbf{H} \cdot \delta \mathbf{w} + O(||\delta \mathbf{w}||^3) \quad (1)$$

Repeat steps 1-2 until model is fully quantized / pruned

Step 1: find Δw to sparsify or quantize a small portion of weights

Step 2: update the remaining (dense fp32) weights to compensate

Optimal Brain Surgeon

Hassibi et al, 1993

Approximate loss function with Taylor series up to squared term

$$\delta E = \left(\frac{\partial E}{\partial \mathbf{w}}\right)^T \cdot \delta \mathbf{w} + \frac{1}{2} \delta \mathbf{w}^T \cdot \mathbf{H} \cdot \delta \mathbf{w} + O(||\delta \mathbf{w}||^3) \quad (1)$$

Repeat steps 1-2 until model is fully quantized / pruned

Step 1: find Δw to sparsify or quantize a small portion of weights

Step 2: update the remaining (dense fp32) weights to compensate

Doesn't work for LLM: hessian is too large

Optimal Brain Surgeon

Frantar et al, 2022

Minimize layer-wise MSE loss $\operatorname{argmin}_{\widehat{\mathbf{W}}_{\ell}} ||\mathbf{W}_{\ell}\mathbf{X}_{\ell} - \widehat{\mathbf{W}}_{\ell}\mathbf{X}_{\ell}||_2^2$

Use the same math as Optimal Brain Surgeon

$$\delta E = \left(\frac{\partial E}{\partial \mathbf{w}}\right)^T \cdot \delta \mathbf{w} + \frac{1}{2} \delta \mathbf{w}^T \cdot \mathbf{H} \cdot \delta \mathbf{w} + O(||\delta \mathbf{w}||^3) \quad (1)$$

Why:

- hessian H is identical for each neuron: $H = X \times X^T$
- even if model is not trained to convergence, MSE with itself is optimal (and equals zero) used to simplify Taylor
- still much better than rounding

GPTQ

Frantar et al, 2022

Minimize the same objective

$$\operatorname{argmin}_{\widehat{\mathbf{W}}_{\ell}}$$

$$||\mathbf{W}_{\ell}\mathbf{X}_{\ell} - \widehat{\mathbf{W}}_{\ell}\mathbf{X}_{\ell}||_2^2$$

For i = 1 ... in_features:

- quantize i-th column of weight matrix (from one input feature and all outputs)
- freeze the quantized model forever
- update all remaining columns

GPTQ

Frantar et al, 2022

Minimize the same objective

$$\operatorname{argmin}_{\widehat{\mathbf{W}}}$$

$$||\mathbf{W}_{\ell}\mathbf{X}_{\ell} - \widehat{\mathbf{W}}_{\ell}\mathbf{X}_{\ell}||_2^2$$

For i = 1 ... in_features:

- quantize i-th column of weight matrix (from one input feature and all outputs)
- freeze the quantized model forever
- update all remaining columns

Use linear quantization with one scale & zero per each group of G weights

Inverse Layer Hessian (Cholesky Form)

Weight Matrix / Block

Computed initially

block i quantized recursively column-by-column

quantized weights

unquantized weights that are updated

Tricks: process weights in "hacky" order

GPTQ

Frantar et al, 2022

Minimize the same objective

$$\operatorname{argmin}_{\widehat{\mathbf{W}}_{\ell}}$$

$$||\mathbf{W}_{\ell}\mathbf{X}_{\ell} - \widehat{\mathbf{W}}_{\ell}\mathbf{X}_{\ell}||_2^2$$

For i = 1

- quantiz

(from

- freeze t
- update

Use linear zero per ea

Native support in HF Transformers: https://huggingface.co/blog/gptq-integration

Original implementation:

https://github.com/IST-DASLab/gptq

Tricks: process weights in "hacky" order

SparseGPT

Frantar et al, 2023

Minimize the same objective

$$\operatorname{argmin}_{\widehat{\mathbf{W}}_{\ell}}$$

$$\operatorname{argmin}_{\widehat{\mathbf{W}}_{\ell}} \quad ||\mathbf{W}_{\ell}\mathbf{X}_{\ell} - \widehat{\mathbf{W}}_{\ell}\mathbf{X}_{\ell}||_2^2$$

For $i = 1 \dots in$ features:

- sparsify i-th column of weight matrix (from one input feature and all outputs)
- freeze the quantized model forever
- update all remaining columns

Dynamically choose how many weights to prune on each step (threshold on error)

Trick: can do 2-out-of-4 sparsity for A100

More quantization papers

SmoothQuant – quantize both weights <u>and activations</u> <u>https://arxiv.org/abs/2211.10438</u>

SpQR – in gptq, keep some sensitive weights in 16-bit https://arxiv.org/abs/2306.03078

AWQ – tune scale/zero to better fit sensitive weights https://arxiv.org/abs/2306.00978

QUIK – sensitive outliers + quantize activations + black magic https://arxiv.org/abs/2310.09259

Many more cool papers

What did we learn?

Wanna compress an LLM / BERT-like?

TL;DR try quantization first, pruning/factorization later

No time? load_in_4bit=True
Some time? GPTQ / AWQ / SpQR /SparseGPT+Q
A ton of time? Quantization-aware training

Combine with ACT (e.g. CALM) and/or speculative decoding