Discrete Mathematics CHAPTER 05 함수

본 강의자료는 강의의 편의를 위해 교수님들께 제공되는 자료입니다. 자료의 글과 그림은 저작권이 저자에게 있으므로 **대중적인 배포를 할 수 없음**을 유의해주시길 바랍니다.

학습개요

- 기본 개념
 - ◆ 관계의 특수한 형태인 함수의 개념을 파악한다
- 함수의 성질
 - ◆ 단사함수, 전사함수, 전단사함수를 통하여 함수의 성질을 이해한다
- 합성함수
 - ◆ 두 가지 이상의 함수로 합성함수를 만들어본다
- 여러 가지 함수
 - ◆ 항등함수, 역함수, 상수함수, 특성함수, 바닥함수, 천정함수 등을 살펴 본다

Section 01 기본 개념 (1)

- 함수(function)
 - ◆ 한 집합에 있는 각각의 모든 원소가 다른 집합의 원소에 한 번씩만 대응되는 관계

정의 5.1

공집합이 아닌 두 개의 집합 X, Y가 있을 때 집합 X로부터 집합 Y로의 함수 f는 집합 X의 각각의 원소에 집합 Y의 원소를 단 하나씩만 대응시킨 것이다(일반적으로 함수는 f, g, h, i 등으로 나타낸다). 집합 X로부터 집합 Y로의 함수 f는 f: $X \rightarrow Y$ 로 나타내며, f는 집합 X에서 집합 Y로 사상(mapping)한다고 말한다. 이때 집합 X는 함수 f의 정의역 (domain), 집합 Y는 함수 f의 공변역(codomain, 공역)이라고 하며, 각각 dom(f), codom(f)로 나타낸다.

Section 01 기본 개념 (2)

예제 5.1

다음 그림에서 나타내는 관계가 함수인지 아닌지 판별하여라.

풀이

- (1) 집합 X의 원소 a가 집합 Y의 원소에 대응되지 않았으므로 함수가 아니다.
- (2) 집합 X의 모든 원소가 집합 Y의 원소에 한 번씩 대응되었으므로 함수다.
- (3) 집합 X의 원소 a가 집합 Y의 원소인 1과 2에 두 번 대응되었으므로 함수가 아니다.

Section 01 기본 개념 (3)

예제 5.4

 $x \in R$ 일 때 다음 함수의 정의역을 구하여라.

$$(1) f(x) = \frac{3}{2x - 1}$$

$$(2) f(x) = \sqrt{4 - x^2}$$

- (1) 함수 f는 $2x-1\neq 0$ 일 때 정의된다. 즉 정의역은 $\frac{1}{2}$ 을 제외한 실수 전체의 집합이다.
- (2) 함수f는 $4-x^2 \ge 0$ 일 때 정의된다. 즉 정의역은 $-2 \le x \le 2$ 인 실수의 집합이다.

Section 01 기본 개념 (4)

정의 5.2

함수 $f: X \rightarrow Y$ 일 때 집합 X의 원소 x가 집합 Y의 원소 y에 대응된다면 f(x) = y로 나타낼 수 있다. 이때 $y \in x$ 의 상(image, value)이라고 하고, $x \in y$ 의 원상(pre-image)이라고 한다. 또한 X의 원소에 대응되는 모든 상의 집합을 치역(range)이라고 하며, range(f)로 나타낸다. $range(f) \subseteq Y$ 다.

집합 X로부터 집합 Y로 사상하는 함수

입력 x에 대한 출력 y

Section 01 기본 개념 (5)

예제 5.5

두 개의 집합 $X=\{a,b,c,d\},Y=\{1,2,3,4\}$ 일 때 다음의 관계가 함수인지 아닌지를 판별하고, 함수일 경우 정의역, 공변역, 치역을 구하여라.

- $(1) \{(a, 1), (b, 2), (c, 3)\}$
- $(2) \{(a, 1), (b, 2), (c, 4), (d, 4)\}$
- (3) $\{(x, y) | x \in X, y \in Y, y = 3\}$

풀이

- (1) 집합 X의 원소 d에 대응되는 집합 Y의 원소가 없으므로 함수가 아니다.
- (2) 집합 X의 각각의 모든 원소가 집합 Y의 원소에 한 번씩 대응되므로 함수다. 이때 정의역은 $\{a, b, c, d\}$, 공변역은 $\{1, 2, 3, 4\}$, 치역은 $\{1, 2, 4\}$ 다.
- (3) 집합 X의 각각의 모든 원소가 집합 Y의 원소 3에 대응되므로 함수다. 이때 정의역은 $\{a, b, c, d\}$, 공변역은 $\{1, 2, 3, 4\}$, 치역은 $\{3\}$ 이다.

Section 01 기본 개념 (6)

예제 5.8

정의역은 다음과 같고 공변역은 ASCII 코드값 전체라고 할 때 치역을 구하여라. 'A'의 ASCII 코드값은 65, 'a'의 ASCII 코드값은 97이다.

- $(1) \{K, O, R, E, A\}$
- (2) $\{K, o, r, e, a\}$

- (1) 치역은 {65, 69, 75, 79, 82}다.
- (2) 치역은 {75, 97, 101, 111, 114}다.

Section 01 기본 개념 (7)

정의 5.3

두 함수 $f: X \rightarrow R$ 과 $g: Y \rightarrow R$ 이 있을 때f와 g의 합(sum)과 곱(product)을 각각f+g와 fg로 나타내어 다음과 같이 함수로 정의할 수 있다.

$$(f+g)(x)=f(x)+g(x)$$
$$(fg)(x)=f(x)\cdot g(x)$$

따라서 $dom(f+g)=dom(fg)=dom(f)\cap dom(g)$ 다.

Section 01 기본 개념 (8)

예제 5.10

다음 두 함수의 합과 곱에 대한 정의역을 구하여라.

$$dom(f) = (-\infty, \infty)$$
일 때 $f(x) = x^2$
 $dom(g) = [2, \infty]$ 일 때 $g(x) = \sqrt{x-2}$

풀이

f+g와fg를 나타내면 다음과 같다.

$$(f+g)(x)=f(x)+g(x)=x^2+\sqrt{x-2}$$

 $(fg)(x)=f(x)\cdot g(x)=x^2\sqrt{x-2}$

 $dom(f) \cap dom(g) = [2, \infty)$ 므로f(x)와 g(x)는 $x \ge 2$ 일 때 정의된다.

즉
$$dom(f+g)=dom(fg)=[2,\infty)$$
다.

Section 02 함수의 성질 (1)

정의 5.4

함수 $f: X \rightarrow Y$ 가 있을 때

 $(1)x_1, x_2 \in X$ 에 대하여 $f(x_1) = f(x_2)$ 면 $x_1 = x_2$ 일 경우 함수 f를 단사함수(injection, injective function, one-to-one function)라고 한다. 즉 다음과 같다.

$$\forall x_1, x_2 \in X, f(x_1) = f(x_2) \rightarrow x_1 = x_2$$

(2) $y \in Y$ 에 대하여 f(x)=y인 원소 $x \in X$ 가 적어도 하나 존재할 경우 함수 f를 전사함수 (surjection, surjective function, onto function)라고 한다. 즉 다음과 같다.

$$\forall y \in Y, \exists x \in X \text{ such that } f(x) = y$$

(3) 단사함수며 동시에 전사함수인 함수 f를 전단사함수(bijection, bijective function, one-to-one correspondence)라고 한다.

Section 02 함수의 성질 (2)

● 단사함수 / 전사함수 / 전단사함수

- 유한집합 X, Y에 대하여 함수 f: X→Y일 때
 - ① 함수 f가 단사함수면 $|X| \le |Y|$ 다.
 - ② 함수 f가 전사함수면 $|X| \ge |Y|$ 다.
 - 3 함수 f가 전단사함수면 |X| = |Y|다.

Section 02 함수의 성질 (3)

예제 5.14

다음의 함수가 단사함수 또는 전사함수인지 전단사함수인지를 판별하여라.

- $(1) f: N \rightarrow Z$ 일 때 $f(x) = 2x + 3, \forall x \in N$
- $(2) f: R \rightarrow R$ 일 때 $f(x) = 2x + 3, \forall x \in R$
- $(3) f: Z \rightarrow Z$ 일 때 $f(x) = x^2, \forall x \in Z$
- $(4) f: N \rightarrow Z$ 일 때 $f(x) = x^2, \forall x \in N$
- $(5) f: Z \{0\} \rightarrow N$ 일 때 $f(x) = |x|, \forall x \in Z \{0\}$
- 풀이
- (1) x, y∈N이고 f(x)=f(y)라고 가정하면 다음과 같이 나타낼 수 있으므로 f는 단사함수다.

그러나 $6 \in \mathbb{Z}$ 일 때는 원상(pre-image)이 없다. 즉 f는 전사함수는 아니다.

Section 02 함수의 성질 (4)

- (2) f는 단사함수면서 전사함수므로 전단사함수다.
- (3) -1, $1 \in \mathbb{Z}$ 고 $f(-1) = (-1)^2 = 1 = 1^2 = f(1)$ 일 때 $-1 \neq 1$ 이므로 f는 단사함수가 아니다. 그리고 $-1 \in \mathbb{Z}$ 일 때 $f(x) = x^2 = -1$ 을 만족하는 x가 없으므로 -1에는 원상이 없다. 즉 f는 전사함수도 아니다.
- (4) f는 단사함수지만 전사함수는 아니다.
- (5) -1, 1∈Z고 f(-1)=|-1|=1=|1|=f(1)일 때 -1≠1이므로 f는 단사 함수가 아니다. 그러나 f(x)=1일 때와 같이 x의 값은 -1과 1이 될 수 있 으므로 공변역에 있는 모든 원소에 대해 정의역의 원상이 존재한다. 즉 f는 전사함수다.

Section 02 함수의 성질 (5)

- 해시함수(hash function)
 - ◆ 해시테이블(hash table)에서 키값을 주소로 변환하는 데 사용되는 함수
 - ◆ 데이터베이스 저장이나 검색에 사용
 - ◆ 해싱(hashing)

Section 02 함수의 성질 (6)

예제 5.17

데이터들의 키값 집합 K에서 해시테이블의 주소 집합 A로 가는 해시함수 h : $K \rightarrow A$ 가 $x \in K$ 에 대하여 $h(x) = x \mod 10$ 일 때 다음의 값을 구하여라.

- (1) h(46)
- (2) h(251)
- (3) h(3256)

풀이

- $(1) h(46) = 46 \mod 10 = 6$
- $(2) h(251) = 251 \mod 10 = 1$
- $(3) h(3256) = 3256 \mod 10 = 6$

	251					46			
0	1	2	3	4	5	6	7	8	9

Section 03 합성함수 (1)

정의 5.5

함수 $f: X \rightarrow Y$ 와 함수 $g: Y \rightarrow Z$ 에 대하여 집합 X에서 집합 Z로의 함수를 $g \circ f: X \rightarrow Z$ 로 나타내며, f와 g의 합성함수(composite function)라고 한다. 합성함수 $g \circ f$ 는 다음을 만족한다.

$$(g \circ f)(x) = g(f(x)), \forall x \in X$$

Section 03 합성함수 (2)

예제 5.19

두 함수 $f: R \to R$, $g: R \to R$ 에서 f(x) = 2x + 1, $g(x) = x^2$ 이라고 할 때 $(g \circ f)(x)$ 와 $(f \circ g)(x)$ 를 구하고 두 값이 같은지 판별하여라.

풀이

 $(g \circ f)(x)$ 와 $(f \circ g)(x)$ 의 결과는 다음과 같다.

$$(g \circ f)(x) = g(f(x)) = g(2x+1) = (2x+1)^2$$

 $(f \circ g)(x) = f(g(x)) = f(x^2) = 2(x^2) + 1 = 2x^2 + 1$

즉 $g \circ f \neq f \circ g$ 다. 합성함수에서는 교환법칙이 성립하지 않는다는 것을 알 수 있다.

Section 03 합성함수 (3)

정리 5.1

세 함수 $f: W \rightarrow X$, $g: X \rightarrow Y$, $h: Y \rightarrow Z$ 일 때 합성함수에 대하여 다음과 같은 결합법칙이 성립한다.

$$h \circ (g \circ f) = (h \circ g) \circ f$$

【증명 】 $x \in W$ 라고 하면 $h \circ (g \circ f) : W \rightarrow Z$ 는 다음과 같다.

그리고 $(h \circ g) \circ f : W \rightarrow Z$ 는 다음과 같다.

①과 ②로부터 $(h \circ (g \circ f))(x) = ((h \circ g) \circ f)(x)$ 를 얻을 수 있다.

그러므로 $h \circ (g \circ f) = (h \circ g) \circ f$ 가 성립한다.

Section 03 합성함수 (4)

정리 5.2

두 함수 $f: X \rightarrow Y, g: Y \rightarrow Z$ 일 때

- (1) f와 g가 단사함수면 $g \circ f$ 도 단사함수다.
- (2) f와 g가 전사함수면 $g \circ f$ 도 전사함수다.
- (3) f와 g가 전단사함수면 $g \circ f$ 도 전단사함수다.

【증명】 $(1) x_1, x_2 \in X$ 일 때 $(g \circ f)(x_1) = (g \circ f)(x_2)$ 라고 가정하면

$$(g \circ f)(x_1) = (g \circ f)(x_2)$$

$$g(f(x_1)) = g(f(x_2))$$

$$f(x_1) = f(x_2)$$

$$x_1 = x_2$$

므로 $g \circ f$ 는 단사함수다.

Section 03 합성함수 (5)

- (2) z은Z라고 하면 g는 전사함수므로 g(y)=z를 만족하는 y은Y가 존재한다. 또한 y은Y고f가 전사함수므로f(x)=y를 만족하는 x은X가 존재한다. 따라서 $(g \circ f)(x)=g(f(x))=g(y)=z$ 다. 즉 $g \circ f$ 는 전사함수다.
- (3) $g \circ f$ 는 (1)과 (2)에 따라 단사함수면서 전사함수므로 전단사함수다.

Section 04 여러 가지 함수 (1)

정의 5.6

집합 X에 대한 함수 $f: X \rightarrow X$ 가 모든 $x \in X$ 에 대하여 f(x) = x일 때 f를 항등함수(identity function)라고 하며, i_X 로 나타낸다. 즉 다음과 같다.

$$\forall x \in X, i_X(x) = x$$

예제 5.22

집합 $X = \{-1, 0, 1\}$ 일 때 모든 $x \in X$ 에 대한 $f(x) = x^3$ 은 항등함수인가?

풀이
$$f(-1)=-1, f(0)=0, f(1)=1$$
이므로 항등함수다.

Section 04 역러 가지 함수 (2)

정의 5.7

전단사함수 $f: X \to Y$ 에 대하여 Y에서 X로의 역관계가 존재하면 이를 역함수(inverse function)라고 하며, $f^{-1}: Y \to X$ 로 나타낸다. 즉 모든 x와 y가 $x \in X$, $y \in Y$ 고 f(x) = y 일 때 $f^{-1}(y) = x$ 다.

함수 f의 역함수 f^{-1}

Section 04 여러 가지 함수 (3)

- 가역함수(invertible function)
 - ◆ 역함수가 존재하는 전단사함수

예제 5.25

 $X=\{1,2,3\}$ 에서 $Y=\{x,y,z\}$ 로의 함수 f가 f(1)=z,f(2)=x,f(3)=y일 때 이 함수는 가역함수인가? 만일 가역함수라면 그 역함수를 구하여라.

풀이

함수 f는 전단사함수므로 가역함수다. 역함수는 $f^{-1}(z)=1$, $f^{-1}(x)=2$, $f^{-1}(y)=3$ 이다.

Section 04 역러 가지 함수 (4)

정리 5.3

전단사함수 $f: X \rightarrow Y$ 가 있을 때 $f^{-1} \circ f = i_X$ 와 $f \circ f^{-1} = i_Y$ 가 성립한다.

【증명】 $x \in X$ 라고 하고 Y의 원소 y에 대하여 f(x) = y라고 가정하면 f는 전단사함수 므로 $f^{-1}(y) = x$ 가 존재한다. 이때 $f^{-1} \circ f$ 는 다음과 같이 나타낼 수 있다.

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x = i_X(x)$$

즉
$$f^{-1} \circ f = i_X$$
다.

또한 $f \circ f^{-1}$ 는 다음과 같이 나타낼 수 있다.

$$(f \circ f^{-1})(y) = f(f^{-1}(y)) = f^{-1}(x) = y = i_Y(y)$$

즉 $f \circ f^{-1} = i_Y$ 다.

Section 04 여러 가지 함수 (5)

정의 5.8

함수 $f: X \rightarrow Y$ 에서 집합X의 모든 원소가 집합Y의 하나의 원소에만 대응할 때 함수f를 상수함수(constant function)라고 한다. 즉 다음과 같다.

 $\forall x \in X, \exists c \in Y \text{ such that } f(x) = c$

예제 5.26

함수 $f: N \rightarrow \{1, 2, 5, 7\}$ 이 있을 때 N(N)은 자연수)의 모든 원소 x에 대하여 f(x)=5라면 이 함수는 상수함수인가? 상수함수라면 화살도표로 나타내어라.

풀이

정의역에 있는 모든 원소는 다음과 같이 5에 대응한다.

$$f(1)=5, f(2)=5, f(3)=5, \cdots$$

즉 공변역에 있는 원소 5에만 대응하므로 상수함수다.

Section 04 여러 가지 함수 (6)

정의 5.9

전체집합 U의 임의의 부분집합 S에 대하여 함수 $f_S:U \rightarrow \{0,1\}$ 을 다음과 같이 정의할 때 이 함수 f_S 를 S의 특성함수(characteristic function)라고 한다.

$$f_S(x) = \begin{cases} 1 & x \in S 일 & \mathbf{w} \\ 0 & x \notin S & \mathbf{w} \end{cases}$$

예제 5.27

전체집합 $U=\{1,2,3,4,5,6,7\}$ 일 때 다음의 부분집합에 대한 특성함수를 구하고 화살도표로 나타내어라.

$$(1) A = \{2, 3, 4, 5, 6\}$$

(2)
$$B = \{1, 2, 7\}$$

Section 04 역러 가지 함수 (7)

풀이

(1) 전체집합 U의 부분집합 A에 대한 특성함수는 다음과 같다.

$$f_A(x) = \begin{cases} 1 & x = 2, 3, 4, 5, 6 일 때 \\ 0 & 기타 \end{cases}$$

즉
$$f_A(2)=f_A(3)=f_A(4)=f_A(5)=f_A(6)=1$$
이고 $f_A(1)=f_A(7)=0$ 이다.

Section 04 여러 가지 함수 (8)

(2) 전체집합 U의 부분집합 B에 대한 특성함수는 다음과 같다.

$$f_B(x) = \begin{cases} 1 & x = 1, 2, 7 일 때 \\ 0 & 기타 \end{cases}$$

즉
$$f_B(1)=f_B(2)=f_B(7)=1$$
이고, $f_B(3)=f_B(4)=f_B(5)=f_B(6)=0$ 이다.

Section 04 여러 가지 함수 (9)

정의 5.10

 $x \in R$ 에 대해 x와 같거나 x보다 작은 수 중에서 x에 가장 가까운 정수를 대응시키는 함수를 [x]와 같이 나타내며, 바닥함수(floor function) 또는 최대정수함수(greatest integer function)라고 한다. 또한 x와 같거나 x보다 큰 수 중에서 x에 가장 가까운 정수를 대응시키는 함수를 [x]와 같이 나타내며, 천정함수(ceiling function) 또는 최소정수함수 (least integer function)라고 한다.

정리 5.4

 $x \in R$ 이고 $n \in N$ 일 때 [x+n]=[x]+n이다.

【증명】 k=[x]고 $0\le a<1$ 이라고 하면 실수 x=k+a다. 그러면 x+n=k+a+n=(k+n)+a고 $0\le a<1$ 이므로 [x+n]=n+k=[x]+n이다.

Section 04 역러 가지 함수 (10)

예제 5.32

70비트의 데이터를 네트워크로 전송하기 위해 부호화하려고 한다. 이때 필요한 바이트 수를 구하여라.

풀이 1바이트는 8비트므로 다음과 같이 계산한다.

$$\left[\frac{70}{8}\right] = \left[8.75\right] = 9$$

즉 9바이트가 필요하다.

[정리 5.4]에서와 마찬가지로 $x \in R$ 이고 $n \in N$ 일 때 [x+n]=[x]+n이 성립한다. 이 천정함수의 특성을 이용하여 [예제 5.32]를 다시 풀어보면 다음과 같다.

$$\left[\frac{70}{8}\right] = \left[8 + \frac{6}{8}\right] = 8 + \left[\frac{3}{4}\right] = 8 + 1 = 9$$

Section 04 역러 가지 함수 (11)

정의 5.11

함수 $f: R \rightarrow R^+(R^+)$ 는 양의 실수)일 때 $a \in R^+$, $a \neq 1$, $x \in R$ 에 대하여 다음과 같이 정의되는 함수를 베이스(base, 밑) a에 대한 지수함수(exponential function)라고 한다.

$$f(x) = a^x$$

정의 5.12

 $a \in R^+$, $a \ne 1$, x, $y \in R$ 에 대하여 $y = a^x$ 일 때 x는 베이스 a에 대한 y의 로그(logarithm) 라고 하며, $\log_a y$ 라고 나타낸다. 즉 $y = a^x$ 와 $\log_a y = x$ 는 동치다. 따라서 함수 $f: R^+ \rightarrow R$ 일 때 다음과 같이 정의되는 함수를 베이스(base, 밑) a에 대한 로그함수(logarithmic function)라고 한다.

$$f(x) = \log_a x$$

Section 04 역러 가지 함수 (12)

예제 5.34

다음 두 개의 지수함수를 하나의 좌표평면 위에 나타내어라.

$$y=3^x, y=3^{2x}$$

풀이

예제 5.35

다음 지수함수와 로그함수를 하나의 좌표평면 위에 나타내어라.

$$y = \left(\frac{1}{2}\right)^x, y = \log_{\frac{1}{2}} x$$

풀이

Discrete Mathematics The End

본 강의자료는 강의의 편의를 위해 교수님들께 제공되는 자료입니다. 자료의 글과 그림은 저작권이 저자에게 있으므로 **대중적인 배포를 할 수 없음**을 유의해주시길 바랍니다.