

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C12N 15/12, C07K 14/47, C12N 9/12, 5/10, C07K 16/18, A61K 38/17		A2	(11) International Publication Number: WO 00/06728 (43) International Publication Date: 10 February 2000 (10.02.00)																																																																													
<p>(21) International Application Number: PCT/US99/17132</p> <p>(22) International Filing Date: 28 July 1999 (28.07.99)</p> <p>(30) Priority Data:</p> <table> <tbody> <tr><td>09/123,494</td><td>28 July 1998 (28.07.98)</td><td>US</td></tr> <tr><td>Not furnished</td><td>28 July 1998 (28.07.98)</td><td>US</td></tr> <tr><td>09/152,814</td><td>14 September 1998 (14.09.98)</td><td>US</td></tr> <tr><td>Not furnished</td><td>14 September 1998 (14.09.98)</td><td>US</td></tr> <tr><td>09/173,482</td><td>14 October 1998 (14.10.98)</td><td>US</td></tr> <tr><td>Not furnished</td><td>14 October 1998 (14.10.98)</td><td>US</td></tr> <tr><td>60/106,889</td><td>3 November 1998 (03.11.98)</td><td>US</td></tr> <tr><td>60/109,093</td><td>19 November 1998 (19.11.98)</td><td>US</td></tr> <tr><td>60/113,796</td><td>22 December 1998 (22.12.98)</td><td>US</td></tr> <tr><td>09/229,005</td><td>12 January 1999 (12.01.99)</td><td>US</td></tr> <tr><td>Not furnished</td><td>12 January 1999 (12.01.99)</td><td>US</td></tr> </tbody> </table> <p>(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications</p> <table> <tbody> <tr><td>US</td><td>Not furnished (CIP)</td></tr> <tr><td>Filed on</td><td>28 July 1998 (28.07.98)</td></tr> <tr><td>US</td><td>09/123,494 (CIP)</td></tr> <tr><td>Filed on</td><td>28 July 1998 (28.07.98)</td></tr> <tr><td>US</td><td>09/152,814 (CIP)</td></tr> <tr><td>Filed on</td><td>14 September 1998 (14.09.98)</td></tr> <tr><td>US</td><td>Not furnished (CIP)</td></tr> <tr><td>Filed on</td><td>14 September 1998 (14.09.98)</td></tr> <tr><td>US</td><td>09/173,482 (CIP)</td></tr> <tr><td>Filed on</td><td>14 October 1998 (14.10.98)</td></tr> <tr><td>US</td><td>Not furnished (CIP)</td></tr> <tr><td>Filed on</td><td>14 October 1998 (14.10.98)</td></tr> <tr><td>US</td><td>60/106,889 (CIP)</td></tr> <tr><td>Filed on</td><td>3 November 1998 (03.11.98)</td></tr> <tr><td>US</td><td>60/109,093 (CIP)</td></tr> <tr><td>Filed on</td><td>19 November 1998 (19.11.98)</td></tr> <tr><td>US</td><td>60/113,796 (CIP)</td></tr> <tr><td>Filed on</td><td>22 December 1998 (22.12.98)</td></tr> <tr><td>US</td><td>09/229,005 (CIP)</td></tr> <tr><td>Filed on</td><td>12 January 1999 (12.01.99)</td></tr> <tr><td>US</td><td>Not furnished (CIP)</td></tr> <tr><td>Filed on</td><td>12 January 1999 (12.01.99)</td></tr> </tbody> </table> <p>(71) Applicant (for all designated States except US): INCYTE PHARMACEUTICALS, INC. [US/US]; 3174 Porter Drive, Palo Alto, CA 94304 (US).</p>		09/123,494	28 July 1998 (28.07.98)	US	Not furnished	28 July 1998 (28.07.98)	US	09/152,814	14 September 1998 (14.09.98)	US	Not furnished	14 September 1998 (14.09.98)	US	09/173,482	14 October 1998 (14.10.98)	US	Not furnished	14 October 1998 (14.10.98)	US	60/106,889	3 November 1998 (03.11.98)	US	60/109,093	19 November 1998 (19.11.98)	US	60/113,796	22 December 1998 (22.12.98)	US	09/229,005	12 January 1999 (12.01.99)	US	Not furnished	12 January 1999 (12.01.99)	US	US	Not furnished (CIP)	Filed on	28 July 1998 (28.07.98)	US	09/123,494 (CIP)	Filed on	28 July 1998 (28.07.98)	US	09/152,814 (CIP)	Filed on	14 September 1998 (14.09.98)	US	Not furnished (CIP)	Filed on	14 September 1998 (14.09.98)	US	09/173,482 (CIP)	Filed on	14 October 1998 (14.10.98)	US	Not furnished (CIP)	Filed on	14 October 1998 (14.10.98)	US	60/106,889 (CIP)	Filed on	3 November 1998 (03.11.98)	US	60/109,093 (CIP)	Filed on	19 November 1998 (19.11.98)	US	60/113,796 (CIP)	Filed on	22 December 1998 (22.12.98)	US	09/229,005 (CIP)	Filed on	12 January 1999 (12.01.99)	US	Not furnished (CIP)	Filed on	12 January 1999 (12.01.99)	<p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (for US only): HILLMAN, Jennifer, L. [US/US]; 230 Monroe Drive #12, Mountain View, CA 94040 (US). LAL, Preeti [IN/US]; 2382 Lass Drive, Santa Clara, CA 95054 (US). TANG, Y., Tom [CN/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). CORLEY, Neil, C. [US/US]; 1240 Dale Avenue #30, Mountain View, CA 94040 (US). GUEGLER, Karl, J. [CH/US]; 1048 Oakland Avenue, Menlo Park, CA 94025 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). PATTERSON, Chandra [US/US]; 490 Sherwood Way #1, Menlo Park, CA 94025 (US). BANDMAN, Olga [US/US]; 366 Anna Avenue, Mountain View, CA 94043 (US). AU-YOUNG, Janice [US/US]; 1419 Kains Avenue, Berkeley, CA 94709 (US). GORGONE, Gina, A. [US/US]; 1253 Pinecrest Drive, Boulder Creek, CA 95006 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). AZIMZAI, Yalda [US/US]; 2045 Rock Springs Drive, Hayward, CA 94545 (US). REDDY, Roopa [IN/US]; 1233 W. McKinley Drive, Sunnyvale, CA 94086 (US). LU, Duyng, Aina, M. [US/US]; 55 Park Belmont Place, San Jose, CA 95136 (US). SHIH, Leo, L. [US/US]; Apt. B, 1081 Tanland Drive, Palo Alto, CA 94303 (US).</p> <p>(74) Agents: BILLINGS, Lucy, J. et al.; Incyte Pharmaceuticals, Inc., 3174 Porter Drive, Palo Alto, CA 94304 (US).</p> <p>(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Published Without international search report and to be republished upon receipt of that report.</p>	
09/123,494	28 July 1998 (28.07.98)	US																																																																														
Not furnished	28 July 1998 (28.07.98)	US																																																																														
09/152,814	14 September 1998 (14.09.98)	US																																																																														
Not furnished	14 September 1998 (14.09.98)	US																																																																														
09/173,482	14 October 1998 (14.10.98)	US																																																																														
Not furnished	14 October 1998 (14.10.98)	US																																																																														
60/106,889	3 November 1998 (03.11.98)	US																																																																														
60/109,093	19 November 1998 (19.11.98)	US																																																																														
60/113,796	22 December 1998 (22.12.98)	US																																																																														
09/229,005	12 January 1999 (12.01.99)	US																																																																														
Not furnished	12 January 1999 (12.01.99)	US																																																																														
US	Not furnished (CIP)																																																																															
Filed on	28 July 1998 (28.07.98)																																																																															
US	09/123,494 (CIP)																																																																															
Filed on	28 July 1998 (28.07.98)																																																																															
US	09/152,814 (CIP)																																																																															
Filed on	14 September 1998 (14.09.98)																																																																															
US	Not furnished (CIP)																																																																															
Filed on	14 September 1998 (14.09.98)																																																																															
US	09/173,482 (CIP)																																																																															
Filed on	14 October 1998 (14.10.98)																																																																															
US	Not furnished (CIP)																																																																															
Filed on	14 October 1998 (14.10.98)																																																																															
US	60/106,889 (CIP)																																																																															
Filed on	3 November 1998 (03.11.98)																																																																															
US	60/109,093 (CIP)																																																																															
Filed on	19 November 1998 (19.11.98)																																																																															
US	60/113,796 (CIP)																																																																															
Filed on	22 December 1998 (22.12.98)																																																																															
US	09/229,005 (CIP)																																																																															
Filed on	12 January 1999 (12.01.99)																																																																															
US	Not furnished (CIP)																																																																															
Filed on	12 January 1999 (12.01.99)																																																																															
(54) Title: PHOSPHORYLATION EFFECTORS																																																																																
<p>(57) Abstract</p> <p>The invention provides human phosphorylation effectors (PHSP) and polynucleotides which identify and encode PHSP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of PHSP.</p>																																																																																

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KC	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

PHOSPHORYLATION EFFECTORS

TECHNICAL FIELD

5 This invention relates to nucleic acid and amino acid sequences of phosphorylation effectors and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative, immune, and neuronal disorders.

Kinases and phosphatases are critical components of intracellular signal transduction mechanisms. Kinases catalyze the transfer of high energy phosphate groups from adenosine triphosphate (ATP) to various target proteins. Phosphatases, in contrast, remove phosphate groups from proteins. Reversible protein phosphorylation is the main strategy for regulating protein activity in eukaryotic cells. In general, proteins are activated by phosphorylation in response to extracellular signals such as hormones, neurotransmitters, and growth and differentiation factors.

10 Protein dephosphorylation occurs when down-regulation of a signaling pathway is required. The coordinate activities of kinases and phosphatases regulate key cellular processes such as proliferation, differentiation, and cell cycle progression. Kinases comprise the largest known enzyme superfamily and are widely varied in their substrate specificities. Kinases may be categorized based on the specific amino acid residues that are phosphorylated in their substrates:

15 protein tyrosine kinases (PTK) phosphorylate tyrosine residues, and protein serine/threonine kinases (STK) phosphorylate serine and/or threonine residues. Almost all kinases contain a conserved 250-300 amino acid catalytic domain. This domain can be further divided into 11 subdomains. N-terminal subdomains I-IV fold into a two-lobed structure which binds and orients the ATP donor molecule, and subdomain V spans the two lobes. C-terminal subdomains VIA-XI bind the protein substrate and transfer the gamma phosphate from ATP to the hydroxyl group of a serine, threonine, or tyrosine residue. Each of the 11 subdomains contains specific catalytic residues or amino acid motifs characteristic of that subdomain. For example, subdomain I contains an 8-amino acid glycine-rich ATP binding consensus motif, subdomain II contains a critical lysine residue required for maximal catalytic activity, and subdomains VI and IX comprise the highly conserved catalytic core. Kinases may also be categorized by additional amino acid sequences, generally between 5 and 100 residues, which either flank or occur within the kinase domain. These additional amino acid sequences regulate kinase activity and determine substrate specificity. (Reviewed in Hardie, G. and Hanks, S. (1995) The Protein Kinase Facts Books, Vol I:7-20 Academic Press, San Diego, CA.)

20

25

30

35 STKs include both protein kinase A (PKA) and calcium-dependent protein kinase C

(PKC), both of which transduce signals from plasma membrane receptors. The activities of PKA and PKC are directly regulated by second messenger signaling molecules such as cyclic AMP and diacylglycerol, respectively. A novel kinase identified by genetic analysis in the fission yeast Schizosaccharomyces pombe is encoded by the *cek1⁺* gene and is related to both PKA and PKC

- 5 (Samejima, I. and Yanagida, M. (1994) Mol. Cell. Biol. 14:6361-6371). *cek1⁺* encodes an unusually large kinase of 1309 amino acids. The kinase domain spans residues 585 to 987, and 112 additional amino acids are present in this domain between subdomains VII and VIII. Overexpression of *cek1⁺* suppresses mutations in *cut8⁺*, a gene required for chromosome segregation during mitosis. Therefore, *cek1⁺* may encode a unique member of the PKA/PKC
- 10 protein family with a role in mitotic signaling and cell cycle progression.

PTKs may be classified as either transmembrane or nontransmembrane proteins.

Transmembrane tyrosine kinases function as receptors for most growth factors. Binding of growth factor to the receptor activates the transfer of a phosphate group from ATP to selected tyrosine side chains of the receptor itself and other specific second messenger proteins. Growth factors

- 15 (GF) that associate with receptor PTKs include epidermal GF, platelet-derived GF, fibroblast GF, hepatocyte GF, insulin and insulin-like GFs, nerve GF, vascular endothelial GF, and macrophage colony stimulating factor. Nontransmembrane PTKs form signaling complexes with the cytosolic domains of plasma membrane receptors. Receptors that signal through nontransmembrane PTKs include cytokine, hormone, and antigen-specific lymphocytic receptors. Many PTKs were first
- 20 identified as oncogene products in cancer cells in which PTK activation was no longer subject to normal cellular controls. In fact, about one third of the known oncogenes encode PTKs. Furthermore, cellular transformation (oncogenesis) is often accompanied by increased tyrosine phosphorylation activity (Charbonneau, H. and Tonks, N. K. (1992) Annu. Rev. Cell Biol. 8:463-93). Regulation of PTK activity may therefore be an important strategy in controlling some
- 25 types of cancer.

- Some kinases utilize carbohydrates as their substrates and are important for glucose metabolism. For example, glycolysis employs four distinct kinases to effect the conversion of glucose to pyruvate, a key metabolite in the production of ATP. One of these enzymes is phosphofructokinase (PFK) which catalyzes the transfer of phosphate from ATP to fructose 6-phosphate. PFK is an allosteric enzyme and a key regulator of glycolysis. In certain genetic muscle disorders, such as muscle phosphofructokinase deficiency type VII, phosphofructokinase activity is absent in muscle and deficient in red blood cells. As a result, afflicted individuals suffer from mild hemolytic anemia and muscle pain (Isselbacher, K.J. et al. (1994) Harrison's Principles of Internal Medicine, McGraw-Hill, New York, NY, p. 2102).

- 35 Kinase-mediated phosphorylation is antagonized by the activity of phosphatases, which

- remove phosphate groups by hydrolysis. Phosphatases are classified into one of three evolutionarily distinct families: the protein serine/threonine phosphatases (PPs), the protein tyrosine phosphatases, and the acid/alkaline phosphatases. PP may be further categorized into four distinct groups: PP-I, PP-IIA, PP-IIB, and PP-IIC. (Cohen, P. (1989) Annu. Rev. Biochem. 58:453-508). PP-I, in particular, dephosphorylates many of the proteins phosphorylated by PKA and is therefore an important regulator of signal transduction pathways. Kinase-activated proteins which bind to and inhibit PP-I have been identified. These inhibitors potentiate the activity of kinases such as PKA by allowing protein substrates to remain in their phosphorylated, activated state. A novel inhibitor of PP-1 has been purified from porcine aorta (Eto, M. et al. (1995) J. Biochem. 118:1104-1107; Eto, M. et al. (1997) FEBS Lett. 410:356-360). This inhibitor, called CPI17, is 147 amino acids in length and is activated by PKC. CPI17 expression is restricted to smooth muscle tissues such as aorta and bladder, suggesting that CPI17 functions in PKC-mediated signal transduction pathways in these tissues, possibly through a calcium-dependent mechanism.
- 15 The discovery of new phosphorylation effectors and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative, immune, and neuronal disorders.

SUMMARY OF THE INVENTION

- 20 The invention features substantially purified polypeptides, phosphorylation effectors, referred to collectively as "PHSP" and individually as "PHSP-1 to PHSP-31". In one aspect, the invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-31, and fragments thereof.
- 25 The invention further provides a substantially purified variant having at least 90% amino acid identity to at least one of the amino acid sequences selected from the group consisting of SEQ ID NO:1-31, and fragments thereof. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-31, and fragments thereof. The invention also includes an
- 30 isolated and purified polynucleotide variant having at least 80% polynucleotide sequence identity to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-31, and fragments thereof.
- 35 Additionally, the invention provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-31, and fragments

thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:1-31, and fragments thereof.

The invention also provides a method for detecting a polynucleotide in a sample

- 5 containing nucleic acids, the method comprising the steps of (a) hybridizing the complement of the polynucleotide sequence to at least one of the polynucleotides of the sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide in the sample. In one aspect, the method further comprises amplifying the polynucleotide prior to hybridization.

- 10 The invention also provides an isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:32-62, and fragments thereof. The invention further provides an isolated and purified polynucleotide variant having at least 80% polynucleotide sequence identity to the polynucleotide sequence selected from the group consisting of SEQ ID NO:32-62, and fragments thereof. The invention also provides an
- 15 isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:32-62, and fragments thereof.

- 20 The invention further provides an expression vector containing at least a fragment of the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-31, and fragments thereof. In another aspect, the expression vector is contained within a host cell.

- 25 The invention also provides a method for producing a polypeptide, the method comprising the steps of: (a) culturing the host cell containing an expression vector containing at least a fragment of a polynucleotide under conditions suitable for the expression of the polypeptide; and (b) recovering the polypeptide from the host cell culture.

The invention also provides a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-31, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

- 30 The invention further includes a purified antibody which binds to a polypeptide selected from the group consisting of SEQ ID NO:1-31, and fragments thereof. The invention also provides a purified agonist and a purified antagonist to the polypeptide.

- 35 The invention also provides a method for treating or preventing a disorder associated with decreased expression or activity of PHSP, the method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group

consisting of SEQ ID NO:1-31, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

- The invention also provides a method for treating or preventing a disorder associated with increased expression or activity of PHSP, the method comprising administering to a subject in
5 need of such treatment an effective amount of an antagonist of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-31, and fragments thereof.

BRIEF DESCRIPTION OF THE TABLES

Table 1 shows nucleotide and polypeptide sequence identification numbers (SEQ ID NO),
10 clone identification numbers (clone ID), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding PHSP.

Table 2 shows features of each polypeptide sequence, including potential motifs, homologous sequences, and methods and algorithms used for identification of PHSP.

Table 3 shows the tissue-specific expression patterns of each nucleic acid sequence as
15 determined by northern analysis, diseases, disorders, or conditions associated with these tissues, and the vector into which each cDNA was cloned.

Table 4 describes the tissues used to construct the cDNA libraries from which cDNA clones encoding PHSP were isolated.

Table 5 shows the tools, programs, and algorithms used to analyze PHSP, along with
20 applicable descriptions, references, and threshold parameters.

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods
25 described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for
30 example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention
35 belongs. Although any machines, materials, and methods similar or equivalent to those described

herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be
5 construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

"PHSP" refers to the amino acid sequences of substantially purified PHSP obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine,
10 and preferably the human species, from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which, when bound to PHSP, increases or prolongs the duration of the effect of PHSP. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to and modulate the effect of PHSP.

15 An "allelic variant" is an alternative form of the gene encoding PHSP. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or
20 substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

"Altered" nucleic acid sequences encoding PHSP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polynucleotide the same as PHSP or a polypeptide with at least one functional characteristic of PHSP. Included within this
25 definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding PHSP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding PHSP. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change
30 and result in a functionally equivalent PHSP. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of PHSP is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, positively charged amino acids may include lysine and arginine, and amino acids with
35 uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine,

and valine; glycine and alanine; asparagine and glutamin ; serine and threonine; and phenylalanine and tyrosine.

The terms "amino acid" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. In this context, "fragments," "immunogenic fragments," or "antigenic fragments" refer to fragments of PHSP which are preferably at least 5 to about 15 amino acids in length, most preferably at least 14 amino acids, and which retain some biological activity or immunological activity of PHSP. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

The term "antagonist" refers to a molecule which, when bound to PHSP, decreases the amount or the duration of the effect of the biological or immunological activity of PHSP. Antagonists may include proteins, nucleic acids, carbohydrates, antibodies, or any other molecules which decrease the effect of PHSP.

The term "antibody" refers to intact molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding the epitopic determinant. Antibodies that bind PHSP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant" refers to that fragment of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (given regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "antisense" refers to any composition containing a nucleic acid sequence which is complementary to the "sense" strand of a specific nucleic acid sequence. Antisense molecules may be produced by any method including synthesis or transcription. Once introduced into a cell,

the complementary nucleotides combine with natural sequences produced by the cell to form duplexes and to block either transcription or translation. The designation "negative" can refer to the antisense strand, and the designation "positive" can refer to the sense strand.

The term "biologically active," refers to a protein having structural, regulatory, or 5 biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" refers to the capability of the natural, recombinant, or synthetic PHSP, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The terms "complementary" or "complementarity" refer to the natural binding of 10 polynucleotides by base pairing. For example, the sequence "5' A-G-T 3'" bonds to the complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules may be "partial," such that only some of the nucleic acids bind, or it may be "complete," such that total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength 15 of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acids strands, and in the design and use of peptide nucleic acid (PNA) molecules.

A "composition comprising a given polynucleotide sequence" or a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given 20 polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding PHSP or fragments of PHSP may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), 25 detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using the XL-PCR kit (Perkin-Elmer, Norwalk CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping 30 sequences of more than one Incyte Clone using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI). Some sequences have been both extended and assembled to produce the consensus sequence.

The term "correlates with expression of a polynucleotide" indicates that the detection of 35 the presence of nucleic acids, the same or related to a nucleic acid sequence encoding PHSP, by northern analysis is indicative of the presence of nucleic acids encoding PHSP in a sample, and

thereby correlates with expression of the transcript from the polynucleotide encoding PHSP.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to the chemical modification of a polypeptide sequence, or a
5 polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide
10 from which it was derived.

The term "similarity" refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity" may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as "substantially similar." The inhibition of
15 hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced
20 stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not
25 hybridize to the second non-complementary target sequence.

The phrases "percent identity" and "% identity" refer to the percentage of sequence similarity found in a comparison of two or more amino acid or nucleic acid sequences. Percent identity can be determined electronically, e.g., by using the MEGALIGN program (DNASTAR, Madison WI) which creates alignments between two or more sequences according to methods
30 selected by the user, e.g., the clustal method. (See, e.g., Higgins, D.G. and P.M. Sharp (1988) Gene 73:237-244.) The clustal algorithm groups sequences into clusters by examining the distances between all pairs. The clusters are aligned pairwise and then in groups. The percentage similarity between two amino acid sequences, e.g., sequence A and sequence B, is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the
35 number of gap residues in sequence B, into the sum of the residue matches between sequence A

and sequence B, times one hundred. Gaps of low or of no similarity between the two amino acid sequences are not included in determining percentage similarity. Percent identity between nucleic acid sequences can also be counted or calculated by other methods known in the art, e.g., the Jotun Hein method. (See, e.g., Hein, J. (1990) Methods Enzymol. 183:626-645.) Identity between 5 sequences can also be determined by other methods known in the art, e.g., by varying hybridization conditions.

“Human artificial chromosomes” (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance.

10 The term “humanized antibody” refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

“Hybridization” refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing.

15 The term “hybridization complex” refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C_{ot} or R_{ot} analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate 20 substrate to which cells or their nucleic acids have been fixed).

The words “insertion” or “addition” refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, to the sequence found in the naturally occurring molecule.

“Immune response” can refer to conditions associated with inflammation, trauma, immune 25 disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

The term “microarray” refers to an arrangement of distinct polynucleotides on a substrate.

30 The terms “element” or “array element” in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.

The term “modulate” refers to a change in the activity of PHSP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of PHSP.

35 The phrases “nucleic acid” or “nucleic acid sequence,” as used herein, refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to

DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material. In this context, "fragments" refers to those nucleic acid sequences which, comprise a region of unique polynucleotide sequence that specifically identifies

- 5 SEQ ID NO:32-62, for example, as distinct from any other sequence in the same genome. For example, a fragment of SEQ ID NO:32-62 is useful in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:32-62 from related polynucleotide sequences. A fragment of SEQ ID NO:32-62 is at least about 15-20 nucleotides in length. The precise length of the fragment of SEQ ID NO:32-62 and the region of SEQ ID
10 NO:32-62 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment. In some cases, a fragment, when translated, would produce polypeptides retaining some functional characteristic, e.g., antigenicity, or structural domain characteristic, e.g., ATP-binding site, of the full-length polypeptide

The terms "operably associated" or "operably linked" refer to functionally related nucleic acid sequences. A promoter is operably associated or operably linked with a coding sequence if the promoter controls the translation of the encoded polypeptide. While operably associated or operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements, e.g., repressor genes, are not contiguously linked to the sequence encoding the polypeptide but still bind to operator sequences that control expression of the polypeptide.

20 The term "oligonucleotide" refers to a nucleic acid sequence of at least about 6 nucleotides to 60 nucleotides, preferably about 15 to 30 nucleotides, and most preferably about 20 to 25 nucleotides, which can be used in PCR amplification or in a hybridization assay or microarray. "Oligonucleotide" is substantially equivalent to the terms "amplimer," "primer," "oligomer," and "probe," as these terms are commonly defined in the art.

25 "Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

30 The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding PHSP, or fragments thereof, or PHSP itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

35 The terms "specific binding" or "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, or an antagonist. The interaction is dependent upon

the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds 5 to the antibody.

The term "stringent conditions" refers to conditions which permit hybridization between polynucleotides and the claimed polynucleotides. Stringent conditions can be defined by salt concentration, the concentration of organic solvent, e.g., formamide, temperature, and other conditions well known in the art. In particular, stringency can be increased by reducing the 10 concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature.

The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably about 75% free, and most preferably about 90% free from other components with 15 which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, 20 microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

"Transformation" describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of 25 foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host 30 chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "variant" of PHSP polypeptides refers to an amino acid sequence that is altered by one or more amino acid residues. The variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties (e.g., replacement of leucine with 35 isoleucine). More rarely, a variant may have "nonconservative" changes (e.g., replacement of

glycine with tryptophan). Analogous minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, LASERGENE software (DNASTAR).

5 The term "variant," when used in the context of a polynucleotide sequence, may encompass a polynucleotide sequence related to PHSP. This definition may also include, for example, "allelic" (as defined above), "splice," "species," or "polymorphic" variants. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The
10 corresponding polypeptide may possess additional functional domains or an absence of domains. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide
15 polymorphisms" (SNPs) in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

THE INVENTION

The invention is based on the discovery of new human phosphorylation effectors (PHSP),
20 the polynucleotides encoding PHSP, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative, immune, and neuronal disorders.

Table 1 lists the Incyte clones used to assemble full length nucleotide sequences encoding PHSP. Columns 1 and 2 show the sequence identification numbers (SEQ ID NOs) of the polypeptide and nucleotide sequences, respectively. Column 3 shows the clone IDs of the Incyte
25 clones in which nucleic acids encoding each PHSP were identified, and column 4 shows the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones and their corresponding cDNA libraries. Clones for which cDNA libraries are not indicated were derived from pooled cDNA libraries. The clones in column 5 were used to assemble the consensus nucleotide sequence of each PHSP and are useful as fragments in hybridization technologies.

30 The columns of Table 2 show various properties of each of the polypeptides of the invention: column 1 references the SEQ ID NO and column 2 shows the number of amino acid residues in each polypeptide. Columns 3 and 4 show potential phosphorylation sites and potential glycosylation sites, respectively. Column 5 shows the amino acid residues comprising signature sequences and motifs. Column 6 shows homologous sequences as identified by BLAST analysis,
35 while column 7 shows analytical methods used to identify each polypeptide through sequence

homology and protein motifs.

The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding PHSP. The first column of Table 3 lists the SEQ ID NOs. Column 2 lists tissue categories which express PHSP as a fraction of total tissue 5 categories expressing PHSP. Column 3 lists diseases, disorders, or conditions associated with those tissues expressing PHSP. Column 4 lists the vectors used to subclone the cDNA library.

The columns of Table 4 show descriptions of the tissues used to construct the cDNA libraries from which cDNA clones encoding PHSP were isolated. Column 1 references the SEQ ID NO, column 2 shows the cDNA libraries from which these clones were isolated, and column 3 10 shows the tissue origins and other descriptive information relevant to the cDNA libraries in column 2.

The following fragments of the nucleotide sequences encoding PHSP are useful, for example, in hybridization or amplification technologies to identify SEQ ID NO:32-62 and to distinguish between SEQ ID NO:32-62 and related polynucleotide sequences. The useful 15 fragments include, the fragment of SEQ ID NO:32 from about nucleotide 81 to about nucleotide 110; the fragment of SEQ ID NO:33 from about nucleotide 323 to about nucleotide 352; the fragment of SEQ ID NO:34 from about nucleotide 83 to about nucleotide 112; the fragment of SEQ ID NO:35 from about nucleotide 524 to about nucleotide 553; the fragment of SEQ ID NO:36 from about nucleotide 275 to about nucleotide 346; the fragment of SEQ ID NO:37 from 20 about nucleotide 1328 to about nucleotide 1396; the fragment of SEQ ID NO:38 from about nucleotide 245 to about nucleotide 304; the fragment of SEQ ID NO:39 from about nucleotide 1253 to about nucleotide 1312; the fragment of SEQ ID NO:41 from about nucleotide 117 to about nucleotide 170; the fragments of SEQ ID NO:42 from about nucleotide 109 to about nucleotide 153, and from about nucleotide 325 to about nucleotide 369; the fragments of SEQ ID NO:43 from 25 about nucleotide 380 to about nucleotide 424, and from about nucleotide 1190 to about nucleotide 1234; the fragment of SEQ ID NO:44 from about nucleotide 1 to about nucleotide 46; the fragment of SEQ ID NO:45 from about nucleotide 533 to about nucleotide 577; the fragments of SEQ ID NO:46 from about nucleotide 109 to about nucleotide 153, and from about nucleotide 379 to about nucleotide 423; the fragment of SEQ ID NO:47 from about nucleotide 1730 to about 30 nucleotide 1774; the fragment of SEQ ID NO:48 from about nucleotide 433 to about nucleotide 477; the fragment of SEQ ID NO:49 from about nucleotide 1117 to about nucleotide 1155; the fragment of SEQ ID NO:50 from about nucleotide 166 to about nucleotide 213; the fragment of SEQ ID NO:51 from about nucleotide 60 to about nucleotide 95; the fragment of SEQ ID NO:52 from about nucleotide 326 to about nucleotide 370; the fragment of SEQ ID NO:53 from about 35 nucleotide 25 to about nucleotide 66; the fragment of SEQ ID NO:54 from about nucleotide 55 to

about nucleotide 102; the fragment of SEQ ID NO:55 from about nucleotide 138 to about nucleotide 167; the fragment of SEQ ID NO:56 from about nucleotide 29 to about nucleotide 58; the fragment of SEQ ID NO:57 from about nucleotide 455 to about nucleotide 484; the fragment of SEQ ID NO:58 from about nucleotide 226 to about nucleotide 255; the fragment of SEQ ID NO:59 from about nucleotide 557 to about nucleotide 598; the fragment of SEQ ID NO:60 from about nucleotide 284 to about nucleotide 325; the fragment of SEQ ID NO:61 from about nucleotide 1043 to about nucleotide 1090; and the fragment of SEQ ID NO:62 from about nucleotide 84 to about nucleotide 132. The polypeptides encoded by the fragments of SEQ ID NO:32-62 are useful, for example, as immunogenic peptides.

10 The invention also encompasses PHSP variants. A preferred PHSP variant is one which has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% amino acid sequence identity to the PHSP amino acid sequence, and which contains at least one functional or structural characteristic of PHSP.

15 The invention also encompasses polynucleotides which encode PHSP. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:32-62, which encodes PHSP.

20 The invention also encompasses a variant of a polynucleotide sequence encoding PHSP. In particular, such a variant polynucleotide sequence will have at least about 80%, more preferably at least about 85%, and most preferably at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding PHSP. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:32-62 which has at least about 80%, more preferably at least about 85%, and most preferably at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:32-62. Any one of the polynucleotide variants described above can encode 25 an amino acid sequence which contains at least one functional or structural characteristic of PHSP.

30 It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding PHSP, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring PHSP, and all such variations are to be considered as being specifically disclosed.

35 Although nucleotide sequences which encode PHSP and its variants are preferably capable of hybridizing to the nucleotide sequence of the naturally occurring PHSP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding

PHSP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding PHSP and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode PHSP and PHSP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding PHSP or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:32-62 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) *Methods Enzymol.* 152:399-407; Kimmel, A.R. (1987) *Methods Enzymol.* 152:507-511.) For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and most preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide, and most preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30°C, more preferably of at least about 37°C, and most preferably of at least about 42°C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion of carrier DNA, are well known to those skilled in the art. Various levels of stringency are accomplished by combining these various conditions as needed. In a preferred embodiment, hybridization will occur at 30°C in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37°C in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 µg/ml denatured salmon sperm DNA (ssDNA). In a most preferred embodiment, hybridization will occur at 42°C in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50 % formamide, and 200 µg/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.

The washing steps which follow hybridization can also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can

be increased by decreasing salt concentration or by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include temperature of at least 5 about 25°C, more preferably of at least about 42°C, and most preferably of at least about 68°C. In a preferred embodiment, wash steps will occur at 25°C in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a most preferred embodiment, wash steps will occur at 68°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will 10 be readily apparent to those skilled in the art.

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Perkin-Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations 15 of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 (Hamilton, Reno NV), Peltier thermal cycler 200 (PTC200; MJ Research, Watertown MA) and the ABI CATALYST 800 (Perkin-Elmer). Sequencing is then carried out using the ABI 373 or 377 DNA sequencing systems (Perkin-Elmer), or the MEGABACE 20 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

25 The nucleic acid sequences encoding PHSP may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) 30 Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et 35 al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions

and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-306). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin-Elmer), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode PHSP may be cloned in recombinant DNA molecules that direct expression of PHSP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express PHSP.

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter PHSP-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction

sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

In another embodiment, sequences encoding PHSP may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) *Nucl. Acids Res. Symp. Ser.* 215-223, and Horn, T. et al. (1980) *Nucl. Acids Res. Symp. Ser.* 225-232.)

- 5 Alternatively, PHSP itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al. (1995) *Science* 269:202-204.) Automated synthesis may be achieved using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of PHSP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other
- 10 proteins, or any part thereof, to produce a variant polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) *Methods Enzymol.* 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New

15 York NY.)

In order to express a biologically active PHSP, the nucleotide sequences encoding PHSP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding PHSP. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding PHSP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding PHSP and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) *Results Probl. Cell Differ.* 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding PHSP and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and

35 in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory

Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences encoding PHSP. These include, but are not limited to, microorganisms such as bacteria transformed 5 with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.

10 In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding PHSP. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding PHSP can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or pSPORT1 plasmid (Life Technologies). Ligation of sequences encoding PHSP into the vector's multiple cloning site 15 disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) *J. Biol. Chem.* 264:5503-5509.) When large quantities of PHSP are needed, e.g. for the production of antibodies, 20 vectors which direct high level expression of PHSP may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of PHSP. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct 25 either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Grant et al. (1987) *Methods Enzymol.* 153:516-54; and Scorer, C. A. et al. (1994) *Bio/Technology* 12:181-184.)

Plant systems may also be used for expression of PHSP. Transcription of sequences encoding PHSP may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in 30 combination with the omega leader sequence from TMV (Takamatsu, N. (1987) *EMBO J.* 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) *EMBO J.* 3:1671-1680; Broglie, R. et al. (1984) *Science* 224:838-843; and Winter, J. et al. (1991) *Results Probl. Cell Differ.* 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, 35 e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY,

pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding PHSP may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses PHSP in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

10 Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat Genet. 15:345-355.)

15 For long term production of recombinant proteins in mammalian systems, stable expression of PHSP in cell lines is preferred. For example, sequences encoding PHSP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before
20 being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These
25 include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in *tk* or *apr* cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, *dfr* confers resistance to methotrexate; *neo* confers resistance to the aminoglycosides, neomycin and G-418; and *als* or *pat*
30 confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., *trpB* and *hisD*, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP;
35 Clontech), β glucuronidase and its substrate β -glucuronide, or luciferase and its substrate luciferin may

be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) *Methods Mol. Biol.* 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest 5 is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding PHSP is inserted within a marker gene sequence, transformed cells containing sequences encoding PHSP can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding PHSP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates 10 expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding PHSP and that express PHSP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, 15 or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of PHSP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing 20 monoclonal antibodies reactive to two non-interfering epitopes on PHSP is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) *Serological Methods, a Laboratory Manual*, APS Press, St Paul MN, Sect. IV; Coligan, J. E. et al. (1997) *Current Protocols in Immunology*, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) *Immunochemical Protocols*, Humana 25 Press, Totowa NJ).

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding PHSP include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. 30 Alternatively, the sequences encoding PHSP, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes *in vitro* by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega 35 (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for

ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding PHSP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode PHSP may be designed to contain signal sequences which direct secretion of PHSP through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "proprotein" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from the American Type Culture Collection (ATCC, Bethesda MD) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding PHSP may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric PHSP protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of PHSP activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, *c-myc*, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, *c-myc*, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the PHSP encoding sequence and the heterologous protein sequence, so that PHSP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, *supra*, ch 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled PHSP may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract systems (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, preferably ³⁵S-methionine.

Fragments of PHSP may be produced not only by recombinant production, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, supra, pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Various fragments 10 of PHSP may be synthesized separately and then combined to produce the full length molecule.

THERAPEUTICS

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of PHSP and protein phosphatases. In addition, the expression of PHSP is closely associated with reproductive tissue, nervous tissue, gastrointestinal tissue, cell proliferation, cancer, 15 inflammation, and immune response. Therefore, PHSP appears to play a role in cell proliferative, immune, and neuronal disorders. In the treatment of disorders associated with increased PHSP expression or activity, it is desirable to decrease the expression or activity of PHSP. In the treatment of disorders associated with decreased PHSP expression or activity, it is desirable to increase the expression or activity of PHSP.

Therefore, in one embodiment, PHSP or a fragment or derivative thereof may be administered 20 to a subject to treat or prevent a disorder associated with decreased expression or activity of PHSP. Examples of such disorders include, but are not limited to, a cell proliferative disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary 25 thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an immune disorder, such as acquired immunodeficiency syndrome (AIDS), 30 Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic 35 gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis,

hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; and a neuronal disorder, such as akathesia, Alzheimer's disease, amnesia, amyotrophic lateral sclerosis, bipolar disorder, catatonia, dementia, depression, diabetic neuropathy, Down's syndrome, tardive dyskinesia, dystonias, epilepsy, Huntington's disease, peripheral neuropathy, multiple sclerosis, neurofibromatosis, Parkinson's disease, paranoid psychoses, postherpetic neuralgia, schizophrenia, and Tourette's disorder.

In another embodiment, a vector capable of expressing PHSP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PHSP including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified PHSP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PHSP including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of PHSP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PHSP including, but not limited to, those listed above.

In a further embodiment, an antagonist of PHSP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of PHSP. Examples of such disorders include, but are not limited to, those described above. In one aspect, an antibody which specifically binds PHSP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissue which express PHSP.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding PHSP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of PHSP including, but not limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of PHSP may be produced using methods which are generally known in the art. In particular, purified PHSP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind PHSP. Antibodies to PHSP may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are especially preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with PHSP or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to PHSP have an amino acid sequence consisting of at least about 5 amino acids, and, more preferably, of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of PHSP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Monoclonal antibodies to PHSP may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) *Nature* 256:495-497; Kozbor, D. et al. (1985) *J. Immunol. Methods* 81:31-42; Cote, R.J. et al. (1983) *Proc. Natl. Acad. Sci.* 80:2026-2030; and Cole, S.P. et al. (1984) *Mol. Cell Biol.* 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) *Proc. Natl. Acad. Sci.* 81:6851-6855; Neuberger, M.S. et al. (1984) *Nature* 312:604-608; and Takeda, S. et al. (1985) *Nature* 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce PHSP-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton

D.R. (1991) Proc. Natl. Acad. Sci. 88:10134-10137.)

Antibodies may also be produced by inducing in viv production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. 86: 3833-3837; 5 Winter, G. et al. (1991) Nature 349:293-299.)

Antibody fragments which contain specific binding sites for PHSP may also be generated. For example, such fragments include, but are not limited to, F(ab')2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and 10 easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such 15 immunoassays typically involve the measurement of complex formation between PHSP and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering PHSP epitopes is preferred, but a competitive binding assay may also be employed (Pound, supra).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay 20 techniques may be used to assess the affinity of antibodies for PHSP. Affinity is expressed as an association constant, K_a , which is defined as the molar concentration of PHSP-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple PHSP epitopes, represents the average affinity, or avidity, of the antibodies for 25 PHSP. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular PHSP epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10^9 to 10^{12} L/mole are preferred for use in immunoassays in which the PHSP-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10^6 to 10^7 L/mole are preferred for use in immunopurification and similar 30 procedures which ultimately require dissociation of PHSP, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington, DC; Liddell, J. E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to 35 determine the quality and suitability of such preparations for certain downstream applications. For

example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is preferred for use in procedures requiring precipitation of PHSP-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra,
5 and Coligan et al. supra.)

In another embodiment of the invention, the polynucleotides encoding PHSP, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding PHSP may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary
10 to polynucleotides encoding PHSP. Thus, complementary molecules or fragments may be used to modulate PHSP activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding PHSP.

Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or
15 from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding PHSP. (See, e.g., Sambrook, supra; Ausubel, 1995, supra.)

Genes encoding PHSP can be turned off by transforming a cell or tissue with expression
20 vectors which express high levels of a polynucleotide, or fragment thereof, encoding PHSP. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector, and may last even longer if appropriate replication elements are part of the
25 vector system.

As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding PHSP. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, are preferred. Similarly,
30 inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A
35 complementary sequence or antisense molecule may also be designed to block translation of mRNA

by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For 5 example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding PHSP.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, 10 corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared 15 by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding PHSP. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs 20 that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterate linkages 25 within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

Many methods for introducing vectors into cells or tissues are available and equally suitable 30 for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nature Biotechnology 15:462-466.)

35 Any of the therapeutic methods described above may be applied to any subject in need of such

therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the 5 therapeutic effects discussed above. Such pharmaceutical compositions may consist of PHSP, antibodies to PHSP, and mimetics, agonists, antagonists, or inhibitors of PHSP. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered 10 to a patient alone, or in combination with other agents, drugs, or hormones.

The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

15 In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA).

20 Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

25 Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and 30 tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene 35 glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.

Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol.

- 5 Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Pharmaceutical formulations suitable for parenteral administration may be formulated in
10 aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil,
15 or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be
20 permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with many
25 acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acid. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

30 After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of PHSP, such labeling would include amount, frequency, and method of administration.

35 Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for 5 administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example PHSP or fragments thereof, antibodies of PHSP, and agonists, antagonists or inhibitors of PHSP, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by 10 calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or LD₅₀ (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD₅₀/ED₅₀ ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal 15 studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the 20 active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular 25 formulation.

Normal dosage amounts may vary from about 0.1 µg to 100,000 µg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their 30 inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

In another embodiment, antibodies which specifically bind PHSP may be used for the diagnosis of disorders characterized by expression of PHSP, or in assays to monitor patients being 35 treated with PHSP or agonists, antagonists, or inhibitors of PHSP. Antibodies useful for diagnostic

purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for PHSP include methods which utilize the antibody and a label to detect PHSP in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring PHSP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of PHSP expression. Normal or standard values for PHSP expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to PHSP under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, preferably by photometric means. Quantities of PHSP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding PHSP may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression of PHSP may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of PHSP, and to monitor regulation of PHSP levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding PHSP or closely related molecules may be used to identify nucleic acid sequences which encode PHSP. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification (maximal, high, intermediate, or low), will determine whether the probe identifies only naturally occurring sequences encoding PHSP, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and should preferably have at least 50% sequence identity to any of the PHSP encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:32-30 62 or from genomic sequences including promoters, enhancers, and introns of the PHSP gene.

Means for producing specific hybridization probes for DNAs encoding PHSP include the cloning of polynucleotide sequences encoding PHSP or PHSP derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a

variety of reporter groups, for example, by radionuclides such as ^{32}P or ^{35}S , or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding PHSP may be used for the diagnosis of disorders associated with expression of PHSP. Examples of such disorders include, but are not limited to, a cell
5 proliferative disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall
10 bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an immune disorder, such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-
15 candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation,
20 osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; and a neuronal disorder, such as akathesia,
25 Alzheimer's disease, amnesia, amyotrophic lateral sclerosis, bipolar disorder, catatonia, dementia, depression, diabetic neuropathy, Down's syndrome, tardive dyskinesia, dystonias, epilepsy, Huntington's disease, peripheral neuropathy, multiple sclerosis, neurofibromatosis, Parkinson's disease, paranoid psychoses, postherpetic neuralgia, schizophrenia, and Tourette's disorder. The polynucleotide sequences encoding PHSP may be used in Southern or northern analysis, dot blot, or
30 other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered PHSP expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding PHSP may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide
35 sequences encoding PHSP may be labeled by standard methods and added to a fluid or tissue sample

from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantitated and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding PHSP in the sample 5 indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of PHSP, a normal or standard profile for expression is established. This may be accomplished by combining 10 body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding PHSP, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples 15 from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from 20 successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance 25 of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding PHSP may involve the use of PCR. These oligomers may be chemically synthesized, generated 30 enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding PHSP, or a fragment of a polynucleotide complementary to the polynucleotide encoding PHSP, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantitation of closely related DNA or RNA sequences.

35 Methods which may also be used to quantify the expression of PHSP include radiolabeling

or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) *J. Immunol. Methods* 159:235-244; Duplaa, C. et al. (1993) *Anal. Biochem.* 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in an ELISA format where the oligomer of interest is presented in 5 various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify 10 genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) *Proc. Natl. Acad. Sci.* 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. 15 (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) *Proc. Natl. Acad. Sci.* 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.)

In another embodiment of the invention, nucleic acid sequences encoding PHSP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to 20 artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) *Nat Genet.* 15:345-355; Price, C.M. (1993) *Blood Rev.* 7:127-134; and Trask, B.J. (1991) *Trends Genet.* 7:149-154.)

Fluorescent in situ hybridization (FISH) may be correlated with other physical chromosome 25 mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) site. Correlation between the location of the gene encoding PHSP on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide 30 sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may 35 reveal associated markers even if the number or arm of a particular human chromosome is not known.

New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) *Nature* 336:577-580.) The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, PHSP, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between PHSP and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with PHSP, or fragments thereof, and washed. Bound PHSP is then detected by methods well known in the art. Purified PHSP can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding PHSP specifically compete with a test compound for binding PHSP. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with PHSP.

In additional embodiments, the nucleotide sequences which encode PHSP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

The disclosures of all patents, applications, and publications mentioned above and below, in particular U.S. Ser. No. 09/173,482, 09/123,494, 09/152,814, 09/229,005, 60/106,889, 60/109,093, and 60/113,796, are hereby expressly incorporated by reference.

EXAMPLES

I. Construction of cDNA Libraries

RNA was purchased from Clontech or isolated from tissues described in Table 4. Some 5 tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

10 Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA 15 purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, *supra*, units 20 5.1-6.6). Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs 25 were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), pSPORT1 plasmid (Life Technologies), or pINCY (Incyte Pharmaceuticals, Palo Alto CA). Recombinant plasmids were transformed into competent *E. coli* cells including XL1-BLUE, XL1-BLUEMRF, or SOLR from Stratagene or DH5 α , DH10B, or ELECTROMAX DH10B from Life Technologies.

30 II. Isolation of cDNA Clones

Plasmids were recovered from host cells by *in vivo* excision, using the UNIZAP vector system (Stratagene) or cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, 35 QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid kit from QIAGEN.

Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) *Anal. Biochem.* 216:1-14). Host cell lysis and thermal 5 cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a Fluoroskan II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

10 cDNA sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Perkin-Elmer) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing 15 kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing systems (Perkin-Elmer) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading 20 frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, *supra*, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example V.

The polynucleotide sequences derived from cDNA sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the 25 art. Table 5 summarizes the tools, programs, and algorithms used and provides applicable descriptions, references, and threshold parameters. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other 30 parameters used to evaluate the strength of a match between two sequences (the higher the score, the greater the homology between two sequences). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR).

The polynucleotide sequences were validated by removing vector, linker, and polyA 35 sequences and by masking ambiguous bases, using algorithms and programs based on BLAST,

dynamic programming, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases, such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS to acquire annotation using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences
5 using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, Prosite, and Hidden Markov Model (HMM)-based
10 protein family databases such as PFAM. HMM is a probabilistic approach which analyzes consensus primary structures of gene families. (See, e.g., Eddy, S.R. (1996) Curr. Opin. Str. Biol. 6:361-365.)

The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:32-62. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and
15 amplification technologies were described in The Invention section above.

IV. Northern Analysis

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel,
20 1995, supra, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in nucleotide databases such as GenBank or LIFESEQ database (Incyte Pharmaceuticals). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as
25 exact or similar. The basis of the search is the product score, which is defined as:

$$\frac{\% \text{ sequence identity} \times \% \text{ maximum BLAST score}}{100}$$

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within
30 a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.

The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding PHSP occurred. Analysis involved the categorization of cDNA libraries by
35 organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic,

developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease/condition categories included cancer, inflammation/trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories.

- 5 Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table
3.

V. Extension of PHSP Encoding Polynucleotides

The full length nucleic acid sequences of SEQ ID NO:32-62 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this
10 fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in
15 hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction
20 mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the
25 alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 μl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE
30 and 0.5 μl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μl to 10 μl aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending
35 the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent *E. coli* cells. Transformed cells were selected on antibiotic-containing media, individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethylsulphoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).

In like manner, the nucleotide sequences of SEQ ID NO:32-62 are used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.

VI. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:32-62 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 µCi of [γ -³²P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10⁷ counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon

membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under increasingly stringent conditions up to 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are compared.

5 **VII. Microarrays**

A chemical coupling procedure and an ink jet device can be used to synthesize array elements on the surface of a substrate. (See, e.g., Baldeschweiler, *supra*.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand 10 or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the scanned images.

15 Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an 20 appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.

25 **VIII. Complementary Polynucleotides**

Sequences complementary to the PHSP-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring PHSP. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are 30 designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of PHSP. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the PHSP-encoding transcript.

IX. Expression f PHSP

35 Expression and purification of PHSP is achieved using bacterial or virus-based expression

systems. For expression of PHSP in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the *trp-lac* (*tac*) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the *lac* operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express PHSP upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of PHSP in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant *Autographica californica* nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding PHSP by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect *Spodoptera frugiperda* (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E. K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, PHSP is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from *Schistosoma japonicum*, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from PHSP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, *supra*, ch 10 and 16). Purified PHSP obtained by these methods can be used directly in the following activity assay.

X. Demonstration of PHSP Activity

PHSP protein kinase is measured by the phosphorylation of a substrate in the presence of gamma-labeled ³²P-ATP. PHSP is incubated with an appropriate substrate and ³²P-ATP in a buffered solution. ³²P-labeled product is separated from free ³²P-ATP by gel electrophoresis or chromatographic procedures, and the incorporated ³²P is quantified by phosphorimage analysis or using a scintillation counter. The amount of ³²P detected is proportional to the activity of PHSP in this assay. The specific amino acid residue phosphorylated by PHSP may be determined by

phosphoamino acid analysis of the labeled, hydrolyzed protein.

PHSP phosphatase activity is measured by the removal of phosphate from a [³²P]-labelled substrate. PHSP is incubated with an appropriate [³²P]-labelled substrate in a buffered solution. Reaction products are separated by gel electrophoresis or chromatographic procedures, and the level 5 of ³²P associated with the substrate molecule is quantified by phospho-image analysis or scintillation counting. The difference in ³²P associated with untreated substrate versus PHSP-treated substrate is a measure of phosphatase activity and is proportional to PHSP activity.

XI. Functional Assays

PHSP function is assessed by expressing the sequences encoding PHSP at physiologically 10 elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT (Life Technologies) and pCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 µg of recombinant vector are transiently transfected into a human cell line, preferably of endothelial or hematopoietic origin, using either liposome 15 formulations or electroporation. 1-2 µg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate properties, for example, their apoptotic state. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation 20 of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated 25 Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M. G. (1994) Flow Cytometry, Oxford, New York NY.

The influence of PHSP on gene expression can be assessed using highly purified populations 30 of cells transfected with sequences encoding PHSP and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success 35 NY). mRNA can be purified from the cells using methods well known by those of skill in the art.

Expression of mRNA encoding PHSP and other genes of interest can be analyzed by northern analysis or microarray techniques.

XII. Production of PHSP Specific Antibodies

PHSP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., 5 Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the PHSP amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for 10 selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, *supra*, ch. 11.)

Typically, oligopeptides 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Perkin-Elmer) using fmoc-chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase 15 immunogenicity. (See, e.g., Ausubel, 1995, *supra*.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide activity by, for example, binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XIII. Purification of Naturally Occurring PHSP Using Specific Antibodies

20 Naturally occurring or recombinant PHSP is substantially purified by immunoaffinity chromatography using antibodies specific for PHSP. An immunoaffinity column is constructed by covalently coupling anti-PHSP antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

25 Media containing PHSP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of PHSP (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/PNSP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotropic, such as urea or thiocyanate ion), and PHSP is collected.

30 XIV. Identification of Molecules Which Interact with PHSP

PHSP, or biologically active fragments thereof, are labeled with ¹²⁵I Bolton-Hunter reagent. (See, e.g., Bolton et al. (1973) Biochem. J. 133:529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled PHSP, washed, and any wells with labeled 35 PHSP complex are assayed. Data obtained using different concentrations of PHSP are used to calculate values for the number, affinity, and association of PHSP with the candidate molecules.

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific 5 embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

TABLE 1

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
1 32	132240	BMARNOT02	132240H1 and 132240R1 (BMARNOT02), 3254142H1 (OVARTUN01), 1453821X14F1 and 1453821F6 (PENITUT01)	
2 33	2180116	SIN1NOT01	2180116H1 and 2180116T6 (SIN1NOT01), 3046645H1 (HEANOT01), 1918183H1 (PROSNOT06), and 1482405F1 (CORPNOT02)	
3 34	2197671	SPLNFET02	2197671H1 (SPLNFET02), 666366X22R1 (SCORNOT01), 693783X14 (SYNORAT03), 824265X33F1 (FROSNOT06), 039482R1 and 039482F1 (HUVENOB01), 1453984T6 (PENITUT01), 1663987H1 (BRSTNOT09), and 125901R1 (LUNGNOT01)	
4 35	2594943	OVARTUT02	2594943H1 (OVARTUT02), 3617557H1 (EPIPNCOT01), 2269005R6 (UTRSNOT02), 1307764F6 (COLNFET02), 1377794F6 (LUNGNOT10), and 1286608H1 (BRAINOT11)	
5 36	1513871	PANCUTT01	754239R6 (BRAUTUT02), 1513871H1 (PANCUTUT01), 2414420F6 (HNT3AZT01), 3291775F6 (BONRFET01), 3821451F6 (BONSTUT01)	
6 37	156108	THP1PLB02	156108F1 and 156108H1 (THP1PLB02), 336346R6 (EOSIHET02), 1319528F1 (BLADNOT04), 2375549F6 (ISLTNOT01), SBFA04563F1, SBFA04977F1	
7 38	2883243	UTRSTUT05	1342082F6 (COLNTUT03), 1933387T6 (COLANNOT16), 2766460F6 (BRSTNOT12), 2883243H1 (UTRSTUT05), 3524262H1 (ESCGTUN01), 3766487F6 (BRSTNOT24)	

TABLE 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
8	39	3173355	UTRSTRUT04	1300803F6 and 1300803T6 (BRSTNOT07), 2477542F6 (SMCANOT01), 2477542T6 (SMCANOT01), 2875968H1 (THYRNOT10), 3173355F6 and 3173355H1 (UTRSRUT04), 3290825H1 (BONRFET01), 5192561H1 (OVRDIT06)
9	40	5116906	SMCBUNT01	267517F1 (HNT2NOT01), 263823R1 (HNT2AGT01), 5116906H1 (SMCBUNT01)
10	41	940589	ADRENOT03	029801R6 (SPLNFET01), 940589H1 (ADRENOT03), 1737403T6 (COLNNOT22), 1805477F6 and 1805477T6 (SINTNOT13), 2447613H1 (THP1NOT03), 3408563H1 (PROSTUS08), 3519506H1 (LUNGNON03), 3637343T6 (LUNGNOT30)
11	42	304421	TESTNOT04	304421H1, 304421X318B2, and 304421X323B2 (TESTNOT04), 2639579F6 (BONTNOT01), 2951859H1 (KIDNFET01)
12	43	12113802	BRSTUT01	894574R1 (BRSTNOT05), 12113802H1 (BRSTUT01), 1233414F1 and 1234238H1 (LUNGFET03), 1255782F2 and 1255782T1 (MENITUT03), 1455429F1 (COLNFET02), 1576102T1 (LNODNOT03), 2189267F6 (PROSNOT26), 2748179F6 (LUNGUT11), 2831667H1 (TLYMNNOT03), 3031229H1 (TLYMNNOT05), 3054893H1 (LNODNOT08), 3797030F6 (SPLNNNOT12), 3880154H1 (SPLNNNOT11), 4852525H1 (TESTNOT10), 5514137H1 (BRADDIR01), 5518378H1 (LIVRDIR01)
13	44	1378134	LUNGNOT10	1378134H1 and 1378134X11 (LUNGNOT10), 2205185F6 (SPLNFET02), 4959694H1 (TLYMNNOT05), SAMA0020F1, SAMA00160F1, SAMA00020F1

TABLE 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
14	45	1490070	UCMCIL5T01	432218H1 (BRAVUNT02), 1490070H1 (UCMCIL5T01), 1535394F1 (SPLNNNOT04), 1616509F6 and 1616509T6 (BRAITUT012), 2490845H1 (EOSITXT01), 2723789F6 (LUNGTT010), SAOA00263F1
15	46	1997814	BRSTTUT03	8553350R1 (NGANNOT01), 875417R1 (LUNGAST01), 895096R1 (BRSTNOT05), 1271348F1 (TESTTUT02), 1331289F6 (PANCNOT07), 1359243F1 (LUNGNOT12), 1540824T1 (SINTTUT01), 1839828H1 (EOSITXT01), 1997814H1 (BRSTTUT03), 2170638F6 (ENDCNOT03), 3751363F6 (UTRSNOT18)
16	47	2299715	BRSTNOT05	637354R6 and 637354T6 (NEUTGMMT01), 1852144F6 (LUNGFFET03), 2172576F6 (ENDCNOT03), 2232449F6 (PROSNOT16), 2299715H1 (BRSTNOT05), 2509737X325D2 (CONUTUT01), 2606210F6 (LUNGUT07), 2692024F6 (LUNGNOT23), 2805893F6 (BLADTUT08), 2986160H1 (CARGDIT01), 3085382H1 (HEAONOT03), 3136101F6 and 3136587H1 (SMCCNOT01), 4249977H1 (BRADDIR01)
17	48	209854	SPLNNNOT02	209854H1 and 209854T6 (SPLNNNOT02), 3152165R6 and 3152165T6 (ADRENON04)
18	49	1384286	BRAITUT08	676123R6 and 676123T6 (CRBLNOT01), 989218X11 and 989218X12 (LVENNNOT03), 1384286H1 (BRAITUT08), 3099868H1 (PROSBPT03), 4693167H1 (BRAENOT02)
19	50	1512656	PANCTUT01	322847X5 (EOSIHET02), 1253795T6 (LUNGFFET03), 1512656H1 (PANCUT01), 1561686X303D1 (SPLNNNOT04), 2212305H1 (SINTFET03), 2697679H1 (UTRSNOT12), 3205172H1 (PENCNOT03), 5313318H1 (KIDETXS02)

TABLE 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
20	51	2098635	BRAITUT02	1268848T1, 1268848X301F1, and 2157157H1 (BRAINOT09), 2098635H1 and 2098635R6 (BRAITUT02), 2198819F6, 2198819X301D4, 2198819X303D1, 2198819X309B2, and 2198819X309D4 (SPLNFET02), 2784975H2 (BRSTNOT13), 3320340H1 (PROSBPT03)
21	52	2446646	THP1NOT03	000297R6 and 000297X61 (U937NOT01), 2446646H1 (THP1NOT03), 2557274F6 (THYMNOT03)
22	53	2764911	BRSTNOT12	678618T6 and 678618X14 (UTRSNOT02), 2304126R6 (BRSTNOT05), 2764911H1 (BRSTNOT12), 2834475F6 (TLYMNNOT03), 2915803F6 (THYMFET03), 3035012F6 (TLYMNNOT05), SAFC00027F1, SAFC00254F1, SAFC02376F1, SAFC01609F1
23	54	3013946	MUSCNOT07	673753H1 (CRBLNOT01), 989218X11 and 989218X14 (LVENNTO3), 2821720F6 (ADRETUT06), 3013946F6, 3013946H1, and 3013946T6 (MUSCNOT07), 4693167H1 (BRAENOT02)
24	55	067967	HUVESTB01	067967X92, 067966R1, and 067967H1 (HUVESTB01), SAIA02074F1, SAIA03254F1, SAIA03603F1, and SAIA02259F1
25	56	346275	THYMNOT02	346275H1 (THYMNOT02), 609792X12 (COLNNNOT01), SAGA00285F1, SAGA02528F1, and SAGA00285F1
26	57	283746	CARDNOT01	283746H1 and 283746X10 (CARDNOT01), 4903108H1 (TLYMNNOT08), 557918X15 (MPHGLPT02), and 2379045F6 (ISLTNOT01)
27	58	2696537	UTRSNOT12	2696537H1 (UTRSNOT12), 3173337F6 (UTRSTUT04), 082658X100 (HUVESTB01), and 603219T6 (BRSTUT01)

TABLE 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
28	59	551178	BEPINOT01	551178H1 (BEPINOT01), 861522R1 (BRAITUT03), 965838R1 (BRSTNOT05), 1574007F1 and 1574007T1 (LNODNOT03), 1830083T6 and 18311194T6 (THP1AZT01), 3098496H1 (CERVNOT03), 3293481H1 (TLYJINT01)
29	60	619292	PGANNOT01	613165F1 (COLNTUT02), 619292H1 and 619292X13 (PGANNOT01)
30	61	2054049	BEPINOT01	1736355F6 (COLNNOT22), 2054049H1 (BEPINOT01), 2379092T6 (ISLTINT01), 3127284T3 (LUNGUT12), 3136377F6 (SMCCNOT01).
31	62	2843910	DRGLNOT01	SBMA00545F1, SBMA00827F1, SBMA02930F1, SBMA02853F1 036294X71 (HUYENOB01), 066017X102, 068399R1, and 068399X3 (HUYESTB01), 1527276H1 (UCMCL5T01), 1846570T6 (COLNNOT09), 2843910H1 (DRGLNOT01)

TABLE 2

P Lyptide SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous sequences	Analytical Methods
1 300	S3 S15 S19 S20 S24 T98 S125 S231 T238 S257 S282 S12 S41 S70 T120 T143 S146 T242	N85 N88 N96	Protein kinase motifs: G161-F256 catalytic tk domain IX: V180-E202	Protein kinase	BLAST PFAM PRINTS	
2 147	S85 T38 S90		Calcium-binding repeat motifs: G28-L115	PKC- potentiated inhibitory protein of PP1 (CPI17)	BLAST PRINTS BLOCKS	
3 431	T178 S282 T25 S34 S75 S106 S194 S198 T208 T264 S299 S303 S304 S308 T328 S345 S388 T46 S137 S260	N44 N242	PTK signatures: A18-Y283 ATP-binding site: I30-K53, E127-G164 Y196-H219 PK catalytic subdomains: M99-E112, Y134-L152 G181-I191, Y243- A265	Ste20-like protein kinase	BLOCKS PRINTS PROFILESCAN BLAST	
4 218	S108 S68 S90 T133 T170 S172 T34 T123 T207		Phosphofructokinase domains: I47, V177-Q195 L148-Y164	PRINTS		

TABLE 2 cont.

Polypeptide SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous sequences	Analytical Methods
5	474	S14 S89 S98 S132 S472 T22 S26 S62 S66 T204 T320 T345 T359 S427 S443 S94 S128 T211 T336 S443 Y155		Protein kinase family signature: Y144-F425	serine /threonine protein kinase	MOTIFS PFAM BLOCKS PRINT'S ProfileScan BLAST
6	540	S102 S183 S267 T296 T301 S442 S34 S58 S180 S207 S224 T360 S374 S401 S428 S478 T484 Y23	N100 N391 N457 N537	Protein kinase family signature: L18-L287	serine /threonine protein kinase	MOTIFS PFAM BLOCKS PRINT'S PROFILESCAN BLAST
7	454	S57 S69 S130 T203 T212 S338 S420 S91 T101 T220 S271 S295 T315 S359 S381 Y197	N55 N140 N218 N403 N437 N441	SH2 domain: W63-Y138, W354-Y428 PI 3 kinase P85 regulator: K153-G176, A216- N257, R287-N332	phosphatidylinositol 3-kinase	PFAM BLOCKS PRINT'S BLAST
8	502	S246 T498 T21 S65 S76 T193 T203 S275 S312 S355 T484 S106 T222 S323 T498 Y347	N302 N414	Signal peptide: M1-T21 SH2 domain: V70-E80 ER targeting signal: K499-L502	tyrosine kinase	SigPept BLOCKS MOTIFS BLAST

TABLE 2 (cont.)

Polypeptide SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous sequences	Analytical Methods
9	281	T66 T140 T141 T182 S210	N117 N139	Signal peptide: M1-I76	calcium /calmodulin-dependent protein kinase	PFAM BLAST
10	510	T297 S323 S358 S51 T312 S323 T325 S329 T377 T390 T483 S24 S152 T201 S210 S247 T292 T406 T407	N185 N349 N381 N405	Protein kinase family signature: R52-V261	Serine /threonine protein kinase	PFAM BLOCKS PRINTS MOTIFS BLAST
11	248	S5 S20 S36 T210 T245	N208	Tyrosine specific phosphatase active site: F166-A220 Dual specificity phosphatase: H95-R240	Tyrosine phosphatase or Dual specificity phosphatase	BLAST, MOTIFS BLOCKS, PRINTS PROFILESCAN PFAM

TABLE 2 cont.

Polyptide SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous sequences	Analytical Methods
12	810	S62 S290 T429 S758 T17 T104 S108 T216 S279 T316 S330 T360 S386 T405 S425 S465 T473 S497 T547 T561 T715 S733 S738 S768 S196 S222 S229 S267 T281 T321 T347 S370 T400 T512 S534 T609 S617 S663 S751 T754 T762 Y67	N33		Protein kinase	BLAST, MOTIFS
13	549	S6 T502 T21 T116 S125 S320 T417 S46 S87 T240 S390 S397 S405 S430 S497	N238	ATP/GTP-binding site (p-loop) : G58-T65 Protein kinase signature: I176-K199 I292-L304 Y347-L370 F456-L483	Dual specificity tyrosine / serine protein kinase	BLAST, MOTIFS BLOCKS, PRINTS PFAM
14	416	S312 T20 T97 S104 S183 T185 T211 T274 S381 S411 S72 S79 S140 S318 Y53		SH3 domain: A366-D384 N402-E414	PEST phosphatase interacting protein	BLAST, MOTIFS BLOCKS, PRINTS PFAM

TABLE 2 cont.

Poly peptide SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous sequences	Analytical Methods
15	425	T34 S233 S234 S25 S107 T144 T198 T250 S251 S258 S282 S300 S324 S345 T390 T51 T133 S365 S383 Y71	N23 N176 N362		SH3 binding protein	BLAST, MOTIFS
16	1135	S77 T187 S259 S554 S815 S9 S17 T59 S112 T124 T222 S264 T319 S324 S326 S550 T572 S625 S681 S682 T688 T689 S706 S720 T931 S958 S978 S999 S255 T309 T351 T543 S550 S624 S632 S726 T811 S898 S1012 S1113 Y321 Y323 Y467	N33 N570 N718 N1067	Protein kinase signature: V31-K54 V149-L161 W129-V182 Tyrosine kinase catalytic site: G190-I200 S214-M236 NIK1-like kinase domain: Y836-R1115	NIK kinase	BLAST, MOTIFS PROFILESCAN BLOCKS, PRINTS PFAM
17	228		T163 S60 T78 T68 S88 S147	N19 N100 N114	Interferon-induced PK regulator (P52rIPK)	BLAST

TABLE 2 cont.

Polypeptide SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous sequences	Analytical Methods
18	503	S51 T262 T36 S79 T94 S109 T361 T362 T403 S472 T47 S334 S343 Y17	N313 N333 N360	Protein kinase signature: I20-K43 V132-L144 V195-E217 Protein kinase domain: Y14-V272	calcium /calmodulin-dependent protein kinase II, beta 3 isoform	BLAST, BLOCKS, PRINTS, MOTIFS, PFAM, PROFILESCAN
19	433	S12 S77 S124 S131 S255 S290 T327 S365 S402 T70 Y88			Choline kinase isolog 384D8_3	BLAST, MOTIFS
20	527	S417 S154 S199 T367 S453 T120 S178 S413 T447 S473	N470	Protein kinase signature: I144-K167 I260-V172 ATP-binding site: Q247-G284 Y318-F341 Protein kinase domain: I138-L427	MAP-related protein kinase	BLAST, BLOCKS, MOTIFS, PFAM, PROFILESCAN

TABLE 2 cont.

Polypeptide SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous sequences	Analytical Methods
21	322	S19 S122 T198 T200 T236 S251 T260 S264 T301 S14 S52 T181 T225	N196 N249	Protein kinase signature: L163-I175 ATP-binding site: M150-V187 I224-H247 Protein kinase domain: S32-E316	Protein tyrosine kinase	BLAST, BLOCKS, PRINTS, MOTIFS, PFAM, PROFILESCAN
22	802	S70 T87 S750 T14 T98 S144 T150 S230 S263 T353 T465 T470 S517 S633 T751 S758 T27 T74 T100 T207 S268 S368 S458	N36 N655	Protein kinase signature: L55-K81, L432-K455 ATP-binding site: E160-G197, H232-F255 PTK catalytic domain: H534-F552, C603-H625 Protein kinase domains: F49-F318, L427-L687 Protein kinase C domain: Q319-I382	Ribosomal S6 protein kinase	BLAST, BLOCKS, PRINTS, MOTIFS, PFAM, PROFILESCAN
23	641	S51 T262 S398 S436 S479 T36 S79 T94 S109 T375 T376 T541 S610 T47 S315 S333 S342 S393 S422 S431 S465 S474 S508 Y17	N313 N332 N374	Protein kinase signature: I20-K43 V132-L144 ATP-binding site: Q119-A156 Y191-F214 Protein kinase domain: Y14-V272	Ca2+ /calmodulin dependent protein kinase	BLAST, BLOCKS, PRINTS, MOTIFS, PFAM, PROFILESCAN

TABLE 2 cont.

Polypeptide SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous sequences	Analytical Methods
24	588	S106 T155 S359 T388 T456 T531 T4, S58 S108 T126 S132 T279 S350 S436 S469 S508 S537 Y32	N63 N130 N574	Protein kinase catalytic domain: Y209-S445, F495-I522 ATP-binding site: I215-K238 STK core catalytic motif: I331-L343	Protein kinase Dyrk2	MOTIFS PFAM BLOCKS PRINTS BLAST
25	389	S31 T301 S56 S96 S134 T149 S186 S201 S283 S358 S375 Y148 Y165	N257 N343 N364	Protein kinase catalytic domain: E73-I311 STK core catalytic motif: I172-Y184 PTK core domain: D152-D208	CaM-like protein kinase	BLAST PFAM MOTIFS BLOCKS PRINTS PROFILESCAN
26	343	S68 S81 S137 S184 T219 S276 S297 T29 T125 Y86 Y211	N332	EF hand calcium-binding protein signature: D176-L188	phosphatase 2A (PR72)	BLAST MOTIFS BLOCKS
27	184	S36 T105 S40 S70 T117 Y50	N62	Tyrosine phosphatase active site domain: L63-V118	MAP kinase phosphatase (X17C)	BLAST PROFILESCAN BLOCKS PRINTS MOTIFS

TABLE 2 cont.

P ly peptide SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous sequences	Analytical Methods
28	367	S10 S21 S44 S103 T116 T267 T309 S191 S213 S218 S256 T305 S352 Y159 Y344	N16 N17		protein phosphatase 2A, A-subunit	BLAST
29	118	S34 S84	N43	Signal peptide: M1-A27 PDZ domain: H8-S73	tyrosine phosphatase	SPScan PFAM BLAST
30	356	S9 S94 T209 T220 S259 S337 S5 S26 S75 S121 T154 S282 S332 S339 Y15 Y84	N333	tyrosine-specific protein phosphatase active site: R108-K164	tyrosine phosphatase (myotubularin)	PROFILESCAN MOTIFS BLOCKS PRINTS BLAST
31	453	S38 S73 S119 S131 S193 S200 T236 S293 S341 T379 T124 S173 T214 S252 T256 S282 S302 S313 S391 S397	N43 N67 N357	protein phosphatase 2A p55 subunit: P10-K451	protein phosphatase 2A p55 regulatory subunit, alpha isoform	PFAM MOTIFS BLOCKS PRINTS BLAST

TABLE 3

Nucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
32	Hematopoietic/Immune (0.333) Reproductive (0.333)	Cell proliferation (0.500) Inflammation (0.333)	PBLUESCRIPT
33	Nervous (0.216) Reproductive (0.235) Cardiovascular (0.118)	Cell proliferation (0.530) Inflammation (0.352)	PINCY
34	Reproductive (0.293) Gastrointestinal (0.192)	Cell proliferation (0.641) Inflammation (0.335)	PINCY
35	Reproductive (0.284) Nervous (0.210) Cardiovascular (0.1213)	Cell proliferation (0.729) Inflammation (0.272)	PINCY
36	Nervous (0.529) Developmental (0.118) Gastrointestinal (0.118)	Cell proliferation (0.588) Neurological (0.118) Inflammation (0.118)	PINCY
37	Hematopoietic/Immune (0.268) Reproductive (0.244) Nervous (0.122)	Inflammation (0.488) Cell Proliferative (0.415)	PBLUESCRIPT
38	Reproductive (0.400) Hematopoietic/Immune (0.160) Nervous (0.160)	Cell proliferation (0.600) Inflammation (0.320)	PINCY
39	Cardiovascular (0.312) Reproductive (0.312) Developmental (0.188)	Cell proliferation (0.938) Inflammation (0.125)	PINCY
40	Nervous (0.400) Gastrointestinal (0.267) Developmental (0.133)	Cell proliferation (0.733) Neurological (0.133) Inflammation (0.133)	PINCY
41	Gastrointestinal (0.267) Nervous (0.233) Reproductive (0.167)	Inflammation (0.533) Cell proliferation (0.534)	PSPORT1

Table 3 cont.

Nucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
42	Musculoskeletal (0.500) Developmental (0.167) Gastrointestinal (0.167)	Cancer (0.834) Inflammation (0.167)	PBLUESCRIPT
43	Reproductive (0.240) Nervous (0.151) Gastrointestinal (0.135)	Cell proliferation (0.536) Inflammation (0.417)	PSPORT1
44	Hematopoietic/Immune (0.278) Nervous (0.222) Dermatologic (0.111)	Cell proliferation (0.444) Inflammation (0.389)	PINCY
45	Hematopoietic/Immune (0.500) Gastrointestinal (0.125) Nervous (0.125)	Inflammation (0.500) Cell proliferative (0.500)	PBLUESCRIPT
46	Nervous (0.220) Reproductive (0.213) Hematopoietic/Immune (0.140)	Cell proliferation (0.573) Inflammation (0.380)	PSPORT1
47	Hematopoietic/Immune (0.190) Gastrointestinal (0.165) Nervous (0.139)	Cell proliferation (0.582) Inflammation (0.354)	PSPORT1

Table 3 cont.

Nucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
48	Nervous (0.333) Reproductive (0.333) Hematopoietic/Immune (0.111)	Cancer (0.444) Inflammation (0.222) Neurological (0.111)	PBLUESCRIPT
49	Nervous (0.724) Cardiovascular (0.103)	Inflammation (0.276) Cancer (0.241) Neurological (0.172)	PINCY
50	Reproductive (0.235) Hematopoietic/Immune (0.188) Gastrointestinal (0.129)	Cancer (0.447) Inflammation (0.282) Fetal (0.153)	PINCY
51	Nervous (0.368) Developmental (0.158) Gastrointestinal (0.105)	Cancer (0.368) Fetal (0.211) Inflammation (0.105)	PSPORT1
52	Cardiovascular (0.312) Hematopoietic/Immune (0.312) Reproductive (0.158)	Fetal (0.688) Cancer (0.421) Inflammation (0.125)	PINCY
53	Reproductive (0.412) Nervous (0.235) Developmental (0.118)	Cancer (0.471) Fetal (0.235) Inflammation (0.235)	PINCY
54	Nervous (0.714) Cardiovascular (0.107)	Cancer (0.250) Inflammation (0.250) Neurological (0.179)	PINCY

Table 3 cont.

Nucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	PBLUESCRIPT
55	Reproductive (0.533) Nervous (0.133)	Cell proliferation (0.601) Inflammation (0.270)	PBLUESCRIPT
56	Hematopoietic/Immune (0.278) Nervous (0.222) Reproductive (0.154)	Cell proliferation (0.388) Inflammation (0.333) Neurological (0.111)	PBLUESCRIPT
57	Hematopoietic/Immune (0.211) Cardiovascular (0.193) Nervous (0.175)	Cell proliferation (0.474) Inflammation (0.491)	PBLUESCRIPT
58	Reproductive (0.286) Cardiovascular (0.229) Musculoskeletal (0.143)	Cell proliferation (0.715) Inflammation (0.200)	PINCY
59	Reproductive (0.253) Gastrointestinal (0.211) Nervous (0.147)	Cancer and Cell proliferation (0.684) Inflammation and Immune Response (0.242)	PSPORT1
60	Nervous (0.667) Reproductive (0.333)	Cancer (1.000)	PSPORT1
61	Reproductive (0.357) Cardiovascular (0.179) Nervous (0.125)	Cancer and Cell proliferation (0.642) Inflammation and Immune Response (0.232)	PSPORT1
62	Nervous (0.228) Reproductive (0.175) Cardiovascular (0.158) Hematopoietic/Immune (0.158)	Cancer (0.368) Inflammation and Immune Response (0.263) Fetal (0.211)	PINCY

TABLE 4

Polynucleotide SEQ ID NO:	Library	Library Comment
32	BMARNOT02	Library was constructed using RNA isolated from the bone marrow of 24 male and female Caucasian donors, 16 to 70 years old.
33	SININOT01	Library was constructed using RNA isolated from ileum tissue removed from the small intestine of a 4-year-old Caucasian female, who died from a closed head injury. Patient history included jaundice as a baby. Previous surgeries included a double hernia repair.
34	SPLNFET02	Library was constructed using RNA isolated from spleen tissue removed from a Caucasian male fetus, who died at 23 weeks' gestation from premature birth. Family history included diabetes.
35	OVARITUT02	Library was constructed using RNA isolated from ovarian tumor tissue removed from a 51-year-old Caucasian female during an exploratory laparotomy, total abdominal hysterectomy, salpingo-oophorectomy, and an incidental appendectomy. Pathology indicated mucinous cystadenoma presenting as a multiloculated neoplasm involving the entire left ovary. The right ovary contained a follicular cyst and a hemorrhagic corpus luteum. The uterus showed proliferative endometrium and a single intramural leiomyoma. The peritoneal biopsy indicated benign glandular inclusions consistent with endosalpingiosis. The patient presented with abnormal weight gain and ascites. Patient history included depressive disorder, joint pain, allergies, alcohol use, and a normal delivery. Family history included atherosclerotic coronary artery disease, benign hypertension, breast cancer and uterine cancer.

TABLE 4 cont.

Polynucleotide SEQ ID NO:	Library	Library Comment
36	PANCTUT01	library was constructed using RNA isolated from pancreatic tumor tissue removed from a 65-year-old Caucasian female during radical subtotal pancreatectomy. Pathology indicated an invasive grade 2 adenocarcinoma. Patient history included type II diabetes, osteoarthritis, cardiovascular disease, and benign neoplasm in the large bowel. Previous surgeries included a total splenectomy, cholecystectomy, and abdominal hysterectomy. Family history included cardiovascular disease, type II diabetes, and stomach cancer.
37	SMCBUNT01	library was constructed using RNA isolated from bronchial smooth muscle c 11 tissue removed from a 21-year-old Caucasian male.
38	UTRSTUT05	Library was constructed using RNA isolated from uterine tumor tissue removed from a 41-year-old Caucasian female during a vaginal hysterectomy with dilation and curettage. Pathology indicated uterine leiomyoma. The endometrium was secretory and contained fragments of endometrial polyps. Benign endo- and ectocervical mucosa were identified in the endocervix. Patient history included a ventral hernia and a benign ovarian neoplasm.
39	UTRSTUT04	library was constructed using RNA isolated from uterine tumor tissue removed from a 34-year-old Caucasian female during a hysteroscopy and an exploratory laparotomy with dilation and curettage. Pathology indicated an endometrial polyp, subserosal leiomyoma, and fragments of leiomyoma. Family history included hyperlipidemia, depressive disorder, benign hypertension, cerebrovascular disease, arteriosclerotic cardiovascular disease, and type II diabetes.

TABLE 4 cont.

Polynucleotide SEQ ID NO:	Library	Library Comment
40	SMCBUNT01	library was constructed using RNA isolated from bronchial smooth muscle cell tissue removed from a 21-year-old Caucasian male.
41	ADREN0T03	library was constructed using RNA isolated from the adrenal tissue of a 17-year-old Caucasian male, who died from cerebral anoxia.
42	TESTNOT04	library was constructed using RNA isolated from testicular tissue removed from a 37-year-old Caucasian male who died from liver disease. Patient history included cirrhosis, jaundice, and liver failure.
43	BRSTTUT01	library was constructed using RNA isolated from breast tumor tissue removed from a 55-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated invasive grade 4 mammary adenocarcinoma of mixed lobular and ductal type, extensively involving the left breast. The tumor was identified in the deep dermis near the lactiferous ducts with extracapsular extension. Seven mid and low and five high axillary lymph nodes were positive for tumor. Proliferative fibrocystic changes were characterized by apocrine metaplasia, sclerosing adenosis, cyst formation, and ductal hyperplasia without atypia. Patient history included atrial tachycardia, blood in the stool, and a benign breast neoplasm. Family history included benign hypertension, atherosclerotic coronary artery disease, cerebrovascular disease, and depressive disorder.
44	LUNGNOT10	library was constructed using RNA isolated from the lung tissue of a Caucasian male fetus who died at 23 weeks' gestation.
45	UCMCL5T01	library was constructed using RNA isolated from mononuclear cells obtained from the umbilical cord blood of 12 individuals. The cells were cultured for 12 days with IL-5 before RNA was isolated from the pooled lysates.

TABLE 4 cont.

Polynucleotide SEQ ID NO:	Library	Library Comment
46	BRSTTUT03	library was constructed using RNA isolated from breast tumor tissue removed from a 58-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated multicentric invasive grade 4 lobular carcinoma. The mass was identified in the upper outer quadrant, and three separate nodules were found in the lower outer quadrant of the left breast. Patient history included skin cancer, rheumatic heart disease, osteoarthritis, and tuberculosis. Family history included cerebrovascular disease, coronary artery aneurysm, breast cancer, prostate cancer, atherosclerotic coronary artery disease, and type I diabetes.
47	BRSTNOT05	library was constructed using RNA isolated from breast tissue removed from a 58-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated multicentric invasive grade 4 lobular carcinoma. Patient history included skin cancer, rheumatic heart disease, osteoarthritis, and tuberculosis. Family history included cerebrovascular and cardiovascular disease, breast and prostate cancer, and type I diabetes.

TABLE 4 cont.

Polynucleotide SEQ ID NO:	Library	Library Comment
48	SPLANN02	The library was constructed using RNA isolated from the spleen tissue of a 29-year-old Caucasian male, who died from head trauma. Serologies were positive for cytomegalovirus (CMV). Patient history included alcohol, marijuana, and tobacco use.
49	BRAITUT08	The library was constructed using RNA isolated from brain tumor tissue removed from the left frontal lobe of a 47-year-old Caucasian male during excision of cerebral meningeal tissue. Pathology indicated grade 4 fibrillary astrocytoma with focal tumoral radionecrosis. Patient history included cerebrovascular disease, deficiency anemia, hyperlipidemia, epilepsy, and tobacco use. Family history included cerebrovascular disease and a malignant prostate neoplasm.
50	PANCTUT01	The library was constructed using RNA isolated from pancreatic tumor tissue removed from a 65-year-old Caucasian female during radical subtotal pancreatectomy. Pathology indicated an invasive grade 2 adenocarcinoma. Patient history included type II diabetes, osteoarthritis, cardiovascular disease, benign neoplasm in the large bowel, and a cataract. Previous surgeries included a total splenectomy, cholecystectomy, and abdominal hysterectomy. Family history included cardiovascular disease, type II diabetes, and stomach cancer.
51	BRAITUT02	The library was constructed using RNA isolated from brain tumor tissue removed from the frontal lobe of a 58-year-old Caucasian male during excision of a cerebral meningeal lesion. Pathology indicated a grade 2 metastatic hypernephroma. Patient history included a grade 2 renal cell carcinoma, insomnia, and chronic airway obstruction. Family history included a malignant neoplasm of the kidney.

TABLE 4 cont.

Polynucleotide SEQ ID NO:	Library	Library Comment
52	THP1NOT03	The library was constructed using RNA isolated from untreated THP-1 cells. THP-1 (ATCC TIB 202) is a human promonocyte line derived from the peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia (ref: Int. J. Cancer (1980) 26:171).
53	BRSTNOT12	The library was constructed using RNA isolated from diseased breast tissue removed from a 32-year-old Caucasian female during a bilateral reduction mammoplasty. Pathology indicated nonproliferative fibrocystic disease. Family history included cardiovascular disease.
54	MUSCNOT07	The library was constructed using RNA isolated from muscle tissue removed from the forearm of a 38-year-old Caucasian female during a soft tissue excision. Pathology for the associated tumor tissue indicated intramuscular hemangioma. Family history included breast cancer, benign hypertension, cerebrovascular disease, colon cancer, and type II diabetes.
55	HUVESTB01	Library was constructed using RNA isolated from shear-stressed HUV-EC-C (ATCC CRL 1730) cells. HUV-EC-C is an endothelial cell line derived from the vein of a normal human umbilical cord (ref:PNAS 81:6413).
56	THYMNOT02	Library was constructed using polyA RNA isolated from thymus tissue removed from a 3-year-old Caucasian male, who died from drowning.
57	CARDNOT01	Library was constructed using RNA isolated from the cardiac muscle of a 65-year-old Caucasian male, who died from a self-inflicted gunshot wound.

TABLE 4 cont.

Polynucleotide SEQ ID NO:	Library	Library Comment
58	UTRSNOT12	Library was constructed using RNA isolated from uterine myometrial tissue removed from a 41-year-old Caucasian female during a vaginal hysterectomy with a dilatation and curettage. The endometrium was secretory and contained fragments of endometrial polyps. Benign endo- and ectocervical mucosa were identified in the endocervix. Pathology for the associated tumor tissue indicated uterine leiomyoma. The patient presented with an unspecified menstrual disorder. Patient history included ventral hernia, normal delivery, a benign ovarian neoplasm, and tobacco abuse. Previous surgeries included a bilateral destruction of fallopian tubes, removal of a solitary ovary, and an exploratory laparotomy.
59	BEPINOT01	Library was constructed using RNA isolated from a bronchial epithelium primary cell line derived from a 54-year-old Caucasian male.
60	PGANNNOT01	Library was constructed using RNA isolated from paranglionic tumor tissue removed from the intra-abdominal region of a 46-year-old Caucasian male during exploratory laparotomy. Pathology indicated a benign paraganglioma and association with a grade 2 renal cell carcinoma, clear cell type.
61	BEPINOT01	Library was constructed using RNA isolated from a bronchial epithelium primary cell line derived from a 54-year-old Caucasian male.
62	DRGLNOT01	Library was constructed using RNA isolated from dorsal root ganglion tissue removed from the low thoracic/high lumbar region of a 32-year-old Caucasian male who died from acute pulmonary edema and bronchopneumonia, bilateral pleural and pericardial effusions, and malignant lymphoma (natural killer cell type). Patient history included probable cytomegalovirus infection, hepatic congestion and steatosis, splenomegaly, hemorrhagic cystitis, thyroid hemorrhage, and Bell's palsy.

Table 5

Program	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	
ABI/PARACEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	Mismatch <50%
ABI AutoAssembler	A program that assembles nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) <i>J. Mol. Biol.</i> 215:403-410; Altschul, S.F. et al. (1997) <i>Nucleic Acids Res.</i> 25: 3389-3402.	<i>EST3</i> : Probability value= 1.0E-8 or less <i>Full Length sequences</i> : Probability value= 1.0E-10 or less
FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises at least five functions: fasta, fastx, ffastr, and search.	Pearson, W.R. and D.J. Lipman (1988) <i>Proc. Natl. Acad. Sci.</i> 85:2444-2448; Pearson, W.R. (1990) <i>Methods Enzymol.</i> 183: 63-98; and Smith, T.F. and M. S. Waterman (1981) <i>Adv. Appl. Math.</i> 2:482-489.	<i>EST3</i> : fasta E value= 1.0E-6 <i>Assembled ESTs</i> : fasta Identity= 95% or greater and Match length=200 bases or greater; fasta E value= 1.0E-8 or less <i>Full Length sequences</i> : fasta score=100 or greater
BLIMPS	A BLocks IMProved Searcher that matches a sequence against those in BLOCKS, PRNTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S and J.G. Henikoff, <i>Nucl. Acid Res.</i> 19:6565-72, 1991. J.G. Henikoff and S. Henikoff (1996) <i>Methods Enzymol.</i> 266:88-105; and Atwood, T.K. et al. (1997) <i>J. Chem. Inf. Comput. Sci.</i> 37: 417-424.	Score=1000 or greater; Ratio of Score/Strength = 0.75 or larger; and, if applicable, Probability value= 1.0E-3 or less
HMMER	An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.	Krogh, A. et al. (1994) <i>J. Mol. Biol.</i> , 235:1501-1531; Sonhammer, E.L.L. et al. (1988) <i>Nucleic Acids Res.</i> 26:320-322.	Score=10-50 bits for PFAM hits, depending on individual protein families

Table 5 (cont.)

Program	Description	Reference	Parameter Threshold
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25: 217-221.	Normalized quality score>GCG-specified "HIGH" value for that particular Prosite motif. Generally, score=1.4-2.1.
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.	
Phrap	A Phils Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M. S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12: 431-439.	Score=3.5 or greater
Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch et al. supra; Wisconsin Package Program Manual, version 9, page MS1-59, Genetics Computer Group, Madison, WI.	

What is claimed is:

1. A substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-31, and fragments thereof.
- 5 2. A substantially purified variant having at least 90% amino acid sequence identity to the amino acid sequence of claim 1.
3. An isolated and purified polynucleotide encoding the polypeptide of claim 1.
4. An isolated and purified polynucleotide variant having at least 80% polynucleotide sequence identity to the polynucleotide of claim 3.
- 10 5. An isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide of claim 3.
6. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 3.
7. A method for detecting a polynucleotide, the method comprising the steps of:
 - 15 (a) hybridizing the polynucleotide of claim 6 to at least one nucleic acid in a sample, thereby forming a hybridization complex; and
 - (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of the polynucleotide in the sample.
8. The method of claim 7 further comprising amplifying the polynucleotide prior to
20 hybridization.
9. An isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:32-62 and fragments thereof.
10. An isolated and purified polynucleotide variant having at least 80% polynucleotide sequence identity to the polynucleotide of claim 9.
- 25 11. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 9.
12. An expression vector comprising at least a fragment of the polynucleotide of claim
3.
13. A host cell comprising the expression vector of claim 12.
- 30 14. A method for producing a polypeptide, the method comprising the steps of:
 - a) culturing the host cell of claim 13 under conditions suitable for the expression of the polypeptide; and
 - b) recovering the polypeptide from the host cell culture.
15. A pharmaceutical composition comprising the polypeptide of claim 1 in conjunction
35 with a suitable pharmaceutical carrier.
16. A purified antibody which specifically binds to the polypeptide of claim 1.

17. A purified agonist of the polypeptide of claim 1.
18. A purified antagonist of the polypeptide of claim 1.
19. A method for treating or preventing a disorder associated with decreased expression or activity of PHSP, the method comprising administering to a subject in need of such treatment an effective amount of the pharmaceutical composition of claim 15.
5
20. A method for treating or preventing a disorder associated with increased expression or activity of PHSP, the method comprising administering to a subject in need of such treatment an effective amount of the antagonist of claim 18.

SEQUENCE LISTING

<110> INCYTE PHARMACEUTICALS, INC.
HILLMAN, Jennifer L.
LAL, Preeti
TANG, Y. Tom
CORLEY, Neil C.
GUEGLER, Karl J.
BAUGHN, Mariah R.
PATTERSON, Chandra
BANDMAN, Olga
AU-YOUNG, Janice
GORCOME, Gina A.
YUE, Henry
AZIMZAI, Yalda
REDDY, Roopa
LU, Dzung Aina M.
SHIH, Leo L.

<120> PHOSPHORYLATION EFFECTORS

<130> PF-0565 PCT

<140> To Be Assigned
<141> Herewith

<150> 09/123,494; unassigned; 09/152,814; unassigned; 09/173,482;
unassigned; 60/106,889; 60/109,093; 60/113,796;
<151> 1998-07-28; 1998-07-28; 1998-09-14; 1998-09-14; 1998-10-14;
1998-10-14; 1998-11-03; 1998-11-19; 1998-12-22

<160> 61

<170> PERL Program

<210> 1
<211> 300
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 132240

<400> 1
Met Glu Ser Pro Leu Glu Ser Gln Pro Leu Asp Ser Asp Arg Ser
1 5 10 15
Ile Lys Glu Ser Ser Phe Glu Glu Ser Asn Ile Glu Asp Pro Leu
20 25 30
Ile Val Thr Pro Asp Cys Gln Glu Lys Thr Ser Pro Lys Gly Val
35 40 45
Glu Asn Pro Ala Val Gln Glu Ser Asn Gln Lys Met Leu Gly Pro
50 55 60
Pro Leu Glu Val Leu Lys Thr Leu Ala Ser Lys Arg Asn Ala Val
65 70 75

Ala	Phe	Arg	Ser	Phe	Asn	Ser	His	Ile	Asn	Ala	Ser	Asn	Asn	Ser
80					85									90
Glu	Pro	Ser	Arg	Met	Asn	Met	Thr	Ser	Leu	Asp	Ala	Met	Asp	Ile
95						100								105
Ser	Cys	Ala	Tyr	Ser	Gly	Ser	Tyr	Pro	Met	Ala	Ile	Thr	Pro	Thr
110								115						120
Gln	Lys	Arg	Arg	Ser	Cys	Met	Pro	His	Gln	Thr	Pro	Asn	Gln	Ile
125								130						135
Lys	Ser	Gly	Thr	Pro	Tyr	Arg	Thr	Pro	Lys	Ser	Val	Arg	Arg	Gly
140								145						150
Val	Ala	Pro	Val	Asp	Asp	Gly	Arg	Ile	Leu	Gly	Thr	Pro	Asp	Tyr
155								160						165
Leu	Ala	Pro	Glu	Leu	Leu	Leu	Gly	Arg	Ala	His	Gly	Pro	Ala	Val
170								175						180
Asp	Trp	Trp	Ala	Leu	Gly	Val	Cys	Leu	Phe	Glu	Phe	Leu	Thr	Gly
185								190						195
Ile	Pro	Pro	Phe	Asn	Asp	Glu	Thr	Pro	Gln	Gln	Val	Phe	Gln	Asn
200								205						210
Ile	Leu	Lys	Arg	Asp	Ile	Pro	Trp	Pro	Glu	Gly	Glu	Glu	Lys	Leu
215								220						225
Ser	Asp	Asn	Ala	Gln	Ser	Ala	Val	Glu	Ile	Leu	Leu	Thr	Ile	Asp
230								235						240
Asp	Thr	Lys	Arg	Ala	Gly	Met	Lys	Glu	Leu	Lys	Arg	His	Pro	Leu
245								250						255
Phe	Ser	Asp	Val	Asp	Trp	Glu	Asn	Leu	Gln	His	Gln	Thr	Met	Pro
260								265						270
Phe	Ile	Pro	Gln	Pro	Asp	Asp	Glu	Thr	Asp	Thr	Ser	Tyr	Phe	Glu
275								280						285
Ala	Arg	Asn	Thr	Ala	Gln	His	Leu	Thr	Val	Ser	Gly	Phe	Ser	Leu
290								295						300

<210> 2
<211> 147
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 2180116

Met	Ala	Ala	Gln	Arg	Leu	Gly	Lys	Arg	Val	Leu	Ser	Lys	Leu	Gln
1					5				10					15
Ser	Pro	Ser	Arg	Ala	Arg	Gly	Pro	Gly	Gly	Ser	Pro	Gly	Gly	Met
					20				25					30
Gln	Lys	Arg	His	Ala	Arg	Val	Thr	Val	Lys	Tyr	Asp	Arg	Arg	Glu
					35				40					45
Leu	Gln	Arg	Arg	Leu	Asp	Val	Glu	Lys	Trp	Ile	Asp	Gly	Arg	Leu
					50				55					60
Glu	Glu	Leu	Tyr	Arg	Gly	Met	Glu	Ala	Asp	Met	Pro	Asp	Glu	Ile
					65				70					75
Asn	Ile	Asp	Glu	Leu	Leu	Glu	Leu	Glu	Ser	Glu	Glu	Glu	Arg	Ser
					80				85					90
Arg	Lys	Ile	Gln	Gly	Leu	Leu	Lys	Ser	Cys	Gly	Lys	Pro	Val	Glu
					95				100					105

Asp	Phe	Ile	Gln	Glu	Leu	Leu	Ala	Lys	Leu	Gln	Gly	Leu	His	Arg
110									115					120
Gln	Pro	Gly	Leu	Arg	Gln	Pro	Ser	Pro	Ser	His	Asp	Gly	Ser	Leu
125									130					135
Ser	Pro	Leu	Gln	Asp	Arg	Ala	Arg	Thr	Ala	His	Pro			
140									145					

<210> 3
<211> 431
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 2197671

<400>	3													
Met	Ala	His	Ser	Pro	Val	Gln	Ser	Gly	Leu	Pro	Gly	Met	Gln	Asn
1					5				10					15
Leu	Lys	Ala	Asp	Pro	Glu	Glu	Leu	Phe	Thr	Lys	Leu	Glu	Lys	Ile
					20				25					30
Gly	Lys	Gly	Ser	Phe	Gly	Glu	Val	Phe	Lys	Gly	Ile	Asp	Asn	Arg
					35				40					45
Thr	Gln	Lys	Val	Val	Ala	Ile	Lys	Ile	Ile	Asp	Leu	Glu	Glu	Ala
					50				55					60
Glu	Asp	Glu	Ile	Glu	Asp	Ile	Gln	Glu	Ile	Thr	Val	Leu	Ser	
					65				70					75
Gln	Cys	Asp	Ser	Pro	Tyr	Val	Thr	Lys	Tyr	Tyr	Gly	Ser	Tyr	Leu
					80				85					90
Lys	Asp	Thr	Lys	Leu	Trp	Ile	Ile	Met	Glu	Tyr	Leu	Gly	Gly	
					95				100					105
Ser	Ala	Leu	Asp	Leu	Leu	Glu	Pro	Gly	Arg	Leu	Asp	Glu	Thr	Gln
					110				115					120
Ile	Ala	Thr	Ile	Leu	Arg	Glu	Ile	Leu	Lys	Gly	Leu	Asp	Tyr	Leu
					125				130					135
His	Ser	Glu	Lys	Lys	Ile	His	Arg	Asp	Ile	Lys	Ala	Ala	Asn	Val
					140				145					150
Leu	Leu	Ser	Glu	His	Gly	Glu	Val	Lys	Leu	Ala	Asp	Phe	Gly	Val
					155				160					165
Ala	Gly	Gln	Leu	Thr	Asp	Thr	Gln	Ile	Lys	Arg	Asn	Thr	Phe	Val
					170				175					180
Gly	Thr	Pro	Phe	Trp	Met	Ala	Pro	Glu	Val	Ile	Lys	Gln	Ser	Ala
					185				190					195
Tyr	Asp	Ser	Lys	Ala	Asp	Ile	Trp	Ser	Leu	Gly	Ile	Thr	Ala	Ile
					200				205					210
Glu	Leu	Ala	Arg	Gly	Glu	Pro	Pro	His	Ser	Glu	Leu	His	Pro	Met
					215				220					225
Lys	Val	Leu	Phe	Leu	Ile	Pro	Lys	Asn	Asn	Pro	Pro	Thr	Leu	Glu
					230				235					240
Gly	Asn	Tyr	Ser	Lys	Pro	Leu	Lys	Glu	Phe	Val	Glu	Ala	Cys	Leu
					245				250					255
Asn	Lys	Glu	Pro	Ser	Phe	Arg	Pro	Thr	Ala	Lys	Glu	Leu	Leu	Lys
					260				265					270
His	Lys	Phe	Ile	Leu	Arg	Asn	Ala	Lys	Lys	Thr	Ser	Tyr	Leu	Thr
					275				280					285

Glu Leu Ile Asp Arg Tyr Lys Arg Trp Lys Ala Glu Gln Ser His
 290 295 300
 Asp Asp Ser Ser Ser Glu Asp Ser Asp Ala Glu Thr Asp Gly Gln
 305 310 315
 Ala Ser Gly Gly Ser Asp Ser Gly Asp Trp Ile Phe Thr Ile Arg
 320 325 330
 Glu Lys Asp Pro Lys Asn Leu Glu Asn Gly Ala Leu Gln Pro Ser
 335 340 345
 Asp Leu Asp Arg Asn Lys Met Lys Asp Ile Pro Lys Arg Pro Phe
 350 355 360
 Ser Gln Cys Leu Ser Thr Ile Ile Ser Pro Leu Phe Ala Glu Leu
 365 370 375
 Lys Glu Lys Ser Gln Ala Cys Gly Gly Asn Leu Gly Ser Ile Glu
 380 385 390
 Glu Leu Arg Gly Ala Ile Tyr Leu Ala Glu Glu Ala Cys Pro Gly
 395 400 405
 Ile Ser Asp Thr Met Val Ala Gln Leu Val Gln Arg Leu Gln Arg
 410 415 420
 Tyr Ser Leu Ser Gly Gly Gly Thr Ser Ser His
 425 430

<210> 4
 <211> 218
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone Number: 2594943

<400> 4

Met Asn Cys Arg Ser Glu Val	Leu Glu Val	Ser Val Glu Gly Arg
1	5	10 15
Gln Val Glu Glu Ala Met	Leu Ala Val	Leu His Thr Val Leu Leu
20	25	30
His Arg Ser Thr Gly Lys	Phe His Tyr Lys	Lys Glu Gly Thr Tyr
35	40	45
Ser Ile Gly Thr Val Gly	Thr Gln Asp Val	Asp Cys Asp Phe Ile
50	55	60
Asp Phe Thr Tyr Val Arg	Val Ser Ser Glu	Glu Leu Asp Arg Ala
65	70	75
Leu Arg Lys Val Val Gly	Glu Phe Lys Asp	Ala Leu Arg Asn Ser
80	85	90
Gly Gly Asp Gly Leu	Gly Gln Met Ser	Leu Glu Phe Tyr Gln Lys
95	100	105
Lys Lys Ser Arg Trp	Pro Phe Ser Asp	Glu Cys Ile Pro Trp Glu
110	115	120
Val Trp Thr Val Lys	Val His Val Val	Ala Leu Ala Thr Glu Gln
125	130	135
Glu Arg Gln Ile Cys	Arg Glu Lys Val	Gly Glu Lys Leu Cys Glu
140	145	150
Lys Ile Ile Asn Ile	Val Glu Val Met	Asn Arg His Glu Tyr Leu
155	160	165
Pro Lys Met Pro Thr	Gln Ser Glu Val	Asp Asn Val Phe Asp Thr
170	175	180

Gly Leu Arg Asp Val Gln Pro Tyr Leu Tyr Lys Ile Ser Phe Gln
 185 190 195
 Ile Thr Asp Ala Leu Gly Thr Ser Val Thr Thr Thr Met Arg Arg
 200 205 210
 Leu Ile Lys Asp Thr Leu Ala Leu
 215

<210> 5
 <211> 474
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone Number: 1513871

<400> 5
 Met Ile Met Asn Lys Met Lys Asn Phe Lys Arg Arg Phe Ser Leu
 1 5 10 15
 Ser Val Pro Arg Thr Glu Thr Ile Glu Glu Ser Leu Ala Glu Phe
 20 25 30
 Thr Glu Gln Phe Asn Gln Leu His Asn Arg Arg Asn Glu Asn Leu
 35 40 45
 Gln Leu Gly Pro Leu Gly Arg Asp Pro Pro Gln Glu Cys Ser Thr
 50 55 60
 Phe Ser Pro Thr Asp Ser Gly Glu Glu Pro Gly Gln Leu Ser Pro
 65 70 75
 Gly Val Gln Phe Gln Arg Arg Gln Asn Gln Arg Arg Phe Ser Met
 80 85 90
 Glu Asp Val Ser Lys Arg Leu Ser Leu Pro Met Asp Ile Arg Leu
 95 100 105
 Pro Gln Glu Phe Leu Gln Lys Leu Gln Met Glu Ser Pro Asp Leu
 110 115 120
 Pro Lys Pro Leu Ser Arg Met Ser Arg Arg Ala Ser Leu Ser Asp
 125 130 135
 Ile Gly Phe Gly Lys Leu Glu Thr Tyr Val Lys Leu Asp Lys Leu
 140 145 150
 Gly Glu Gly Thr Tyr Ala Thr Val Phe Lys Gly Arg Ser Lys Leu
 155 160 165
 Thr Glu Asn Leu Val Ala Leu Lys Glu Ile Arg Leu Glu His Glu
 170 175 180
 Glu Gly Ala Pro Cys Thr Ala Ile Arg Glu Val Ser Leu Leu Lys
 185 190 195
 Asn Leu Lys His Ala Asn Ile Val Thr Leu His Asp Leu Ile His
 200 205 210
 Thr Asp Arg Ser Leu Thr Leu Val Phe Glu Tyr Leu Asp Ser Asp
 215 220 225
 Leu Lys Gln Tyr Leu Asp His Cys Gly Asn Leu Met Ser Met His
 230 235 240
 Asn Val Lys Ile Phe Met Phe Gln Leu Leu Arg Gly Leu Ala Tyr
 245 250 255
 Cys His His Arg Lys Ile Leu His Arg Asp Leu Lys Pro Gln Asn
 260 265 270
 Leu Leu Ile Asn Glu Arg Gly Glu Leu Lys Leu Ala Asp Phe Gly
 275 280 285

Leu Ala Arg Ala Lys Ser Val Pro Thr Lys Thr Tyr Ser Asn Glu
 290 295 300
 Val Val Thr Leu Trp Tyr Arg Pro Pro Asp Val Leu Leu Gly Ser
 305 310 315
 Thr Glu Tyr Ser Thr Pro Ile Asp Met Trp Gly Val Gly Cys Ile
 320 325 330
 His Tyr Glu Met Ala Thr Gly Arg Pro Leu Phe Pro Gly Ser Thr
 335 340 345
 Val Lys Glu Glu Leu His Leu Ile Phe Arg Leu Leu Gly Thr Pro
 350 355 360
 Thr Glu Glu Thr Trp Pro Gly Val Thr Ala Phe Ser Glu Phe Arg
 365 370 375
 Thr Tyr Ser Phe Pro Cys Tyr Leu Pro Gln Pro Leu Ile Asn His
 380 385 390
 Ala Pro Arg Leu Asp Thr Asp Gly Ile His Leu Leu Ser Ser Leu
 395 400 405
 Leu Leu Tyr Glu Ser Lys Ser Arg Met Ser Ala Glu Ala Ala Leu
 410 415 420
 Ser His Ser Tyr Phe Arg Ser Leu Gly Glu Arg Val His Gln Leu
 425 430 435
 Glu Asp Thr Ala Ser Ile Phe Ser Leu Lys Glu Ile Gln Leu Gln
 440 445 450
 Lys Asp Pro Gly Tyr Arg Gly Leu Ala Phe Gln Gln Pro Gly Arg
 455 460 465
 Gly Lys Asn Arg Arg Gln Ser Ile Phe
 470

<210> 6
 <211> 540
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone Number: 156108

<400> 6

Met Asn Gly Glu Ala Ile Cys Ser Ala Leu Pro Thr Ile Pro Tyr			
1	5	10	15
His Lys Leu Ala Asp Leu Arg Tyr Leu Ser Arg Gly Ala Ser Gly			
20	25	30	
Thr Val Ser Ser Ala Arg His Ala Asp Trp Arg Val Gln Val Ala			
35	40	45	
Val Lys His Leu His Ile His Thr Pro Leu Leu Asp Ser Glu Arg			
50	55	60	
Lys Asp Val Leu Arg Glu Ala Glu Ile Leu His Lys Ala Arg Phe			
65	70	75	
Ser Tyr Ile Leu Pro Ile Leu Gly Ile Cys Asn Glu Pro Glu Phe			
80	85	90	
Leu Gly Ile Val Thr Glu Tyr Met Pro Asn Gly Ser Leu Asn Glu			
95	100	105	
Leu Leu His Arg Lys Thr Glu Tyr Pro Asp Val Ala Trp Pro Leu			
110	115	120	
Arg Phe Arg Ile Leu His Glu Ile Ala Leu Gly Val Asn Tyr Leu			

	125	130	135
His Asn Met Thr Pro Pro Leu Leu His		His Asp Leu Lys Thr Gln	
140	145	150	
Asn Ile Leu Leu Asp Asn Glu Phe His		Val Lys Ile Ala Asp Phe	
155	160	165	
Gly Leu Ser Lys Trp Arg Met Met Ser		Leu Ser Gln Ser Arg Ser	
170	175	180	
Ser Lys Ser Ala Pro Glu Gly Gly Thr		Ile Ile Tyr Met Pro Pro	
185	190	195	
Glu Asn Tyr Glu Pro Gly Gln Lys Ser		Arg Ala Ser Ile Lys His	
200	205	210	
Asp Ile Tyr Ser Tyr Ala Val Ile Thr		Trp Glu Val Leu Ser Arg	
215	220	225	
Lys Gln Pro Phe Glu Asp Val Thr Asn		Pro Leu Gln Ile Met Tyr	
230	235	240	
Ser Val Ser Gln Gly His Arg Pro Val		Ile Asn Glu Glu Ser Leu	
245	250	255	
Pro Tyr Asp Ile Pro His Arg Ala Arg		Met Ile Ser Leu Ile Glu	
260	265	270	
Ser Gly Trp Ala Gln Asn Pro Asp Glu		Arg Pro Ser Phe Leu Lys	
275	280	285	
Cys Leu Ile Glu Leu Glu Pro Val Leu		Arg Thr Phe Glu Glu Ile	
290	295	300	
Thr Phe Leu Glu Ala Val Ile Gln Leu		Lys Lys Thr Lys Leu Gln	
305	310	315	
Ser Val Ser Ser Ala Ile His Leu Cys		Asp Lys Lys Lys Met Glu	
320	325	330	
Leu Ser Leu Asn Ile Pro Val Asn His		Gly Pro Gln Glu Glu Ser	
335	340	345	
Cys Gly Ser Ser Gln Leu His Glu Asn		Ser Gly Ser Pro Glu Thr	
350	355	360	
Ser Arg Ser Leu Pro Ala Pro Gln Asp		Asn Asp Phe Leu Ser Arg	
365	370	375	
Lys Ala Gln Asp Cys Tyr Phe Met Lys		Leu His His Cys Pro Gly	
380	385	390	
Asn His Ser Trp Asp Ser Thr Ile Ser		Gly Ser Gln Arg Ala Ala	
395	400	405	
Phe Cys Asp His Lys Thr Thr Pro Cys		Ser Ser Ala Ile Ile Asn	
410	415	420	
Pro Leu Ser Thr Ala Gly Asn Ser Glu		Arg Leu Gln Pro Gly Ile	
425	430	435	
Ala Gln Gln Trp Ile Gln Ser Lys Arg		Glu Asp Ile Val Asn Gln	
440	445	450	
Met Thr Glu Ala Cys Leu Asn Gln Ser		Leu Asp Ala Leu Leu Ser	
455	460	465	
Arg Asp Leu Ile Met Lys Glu Asp Tyr		Glu Leu Val Ser Thr Lys	
470	475	480	
Pro Thr Arg Thr Ser Lys Val Arg Gln		Leu Leu Asp Thr Thr Asp	
485	490	495	
Ile Gln Gly Glu Glu Phe Ala Lys Val		Ile Val Gln Lys Leu Lys	
500	505	510	
Asp Asn Lys Gln Met Gly Leu Gln Pro		Tyr Pro Glu Ile Leu Val	
515	520	525	
Val Ser Arg Ser Pro Ser Leu Asn Leu		Leu Gln Asn Lys Ser Met	
530	535	540	

<210> 7
<211> 454
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 2883243

<400> 7
Met Tyr Asn Thr Val Trp Asn Met Glu Asp Leu Asp Leu Glu Tyr
1 5 10 15
Ala Lys Thr Asp Ile Asn Cys Gly Thr Asp Leu Met Phe Tyr Ile
20 25 30
Glu Met Asp Pro Pro Ala Leu Pro Pro Lys Pro Pro Lys Pro Thr
35 40 45
Thr Val Ala Asn Asn Gly Met Asn Asn Asn Met Ser Leu Gln Asp
50 55 60
Ala Glu Trp Tyr Trp Gly Asp Ile Ser Arg Glu Glu Val Asn Glu
65 70 75
Lys Leu Arg Asp Thr Ala Asp Gly Thr Phe Leu Val Arg Asp Ala
80 85 90
Ser Thr Lys Met His Gly Asp Tyr Thr Leu Thr Leu Arg Lys Gly
95 100 105
Gly Asn Asn Lys Leu Ile Lys Ile Phe His Arg Asp Gly Lys Tyr
110 115 120
Gly Phe Ser Asp Pro Leu Thr Phe Ser Ser Val Val Glu Leu Ile
125 130 135
Asn His Tyr Arg Asn Glu Ser Leu Ala Gln Tyr Asn Pro Lys Leu
140 145 150
Asp Val Lys Leu Leu Tyr Pro Val Ser Lys Tyr Gln Gln Asp Gln
155 160 165
Val Val Lys Glu Asp Asn Ile Glu Ala Val Gly Lys Lys Leu His
170 175 180
Glu Tyr Asn Thr Gln Phe Gln Glu Lys Ser Arg Glu Tyr Asp Arg
185 190 195
Leu Tyr Glu Glu Tyr Thr Arg Thr Ser Gln Glu Ile Gln Met Lys
200 205 210
Arg Thr Ala Ile Glu Ala Phe Asn Glu Thr Ile Lys Ile Phe Glu
215 220 225
Glu Gln Cys Gln Thr Gln Glu Arg Tyr Ser Lys Glu Tyr Ile Glu
230 235 240
Lys Phe Lys Arg Glu Gly Asn Glu Lys Glu Ile Gln Arg Ile Met
245 250 255
His Asn Tyr Asp Lys Leu Lys Ser Arg Ile Ser Glu Ile Ile Asp
260 265 270
Ser Arg Arg Arg Leu Glu Glu Asp Leu Lys Lys Gln Ala Ala Glu
275 280 285
Tyr Arg Glu Ile Asp Lys Arg Met Asn Ser Ile Lys Pro Asp Leu
290 295 300
Ile Gln Leu Arg Lys Thr Arg Asp Gln Tyr Leu Met Trp Leu Thr
305 310 315
Gln Lys Gly Val Arg Gln Lys Lys Leu Asn Glu Trp Leu Gly Asn
320 325 330
Glu Asn Thr Glu Asp Gln Tyr Ser Leu Val Glu Asp Asp Glu Asp
335 340 345

Leu Pro His His Asp Glu Lys Thr Trp Asn Val Gly Ser Ser Asn
 350 355 360
 Arg Asn Lys Ala Glu Asn Leu Leu Arg Gly Lys Arg Asp Gly Thr
 365 370 375
 Phe Leu Val Arg Glu Ser Ser Lys Gln Gly Cys Tyr Ala Cys Ser
 380 385 390
 Val Val Val Asp Gly Glu Val Lys His Cys Val Ile Asn Lys Thr
 395 400 405
 Ala Thr Gly Tyr Gly Phe Ala Glu Pro Tyr Asn Leu Tyr Ser Ser
 410 415 420
 Leu Lys Glu Leu Val Leu His Tyr Gln His Thr Ser Leu Val Gln
 425 430 435
 His Asn Asp Ser Leu Asn Val Thr Leu Ala Tyr Pro Val Tyr Ala
 440 445 450
 Gln Gln Arg Arg

<210> 8
 <211> 502
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone Number: 3173355

<400> 8

Met	Phe	Gly	Thr	Leu	Leu	Leu	Tyr	Cys	Phe	Phe	Leu	Ala	Thr	Val
1				5					10				15	
Pro	Ala	Leu	Ala	Glu	Thr	Gly	Gly	Glu	Arg	Gln	Leu	Ser	Pro	Glu
				20					25				30	
Lys	Ser	Glu	Ile	Trp	Gly	Pro	Gly	Leu	Lys	Ala	Asp	Val	Val	Leu
				35					40				45	
Pro	Ala	Arg	Tyr	Phe	Tyr	Ile	Gln	Ala	Val	Asp	Thr	Ser	Gly	Asn
				50					55				60	
Lys	Phe	Thr	Ser	Ser	Pro	Gly	Glu	Lys	Val	Phe	Gln	Val	Lys	Val
				65					70				75	
Ser	Ala	Pro	Glu	Glu	Gln	Phe	Thr	Arg	Val	Gly	Val	Gln	Val	Leu
				80					85				90	
Asp	Arg	Lys	Asp	Gly	Ser	Phe	Ile	Val	Arg	Tyr	Arg	Met	Tyr	Ala
				95					100				105	
Ser	Tyr	Lys	Asn	Leu	Lys	Val	Glu	Ile	Lys	Phe	Gln	Gly	Gln	His
				110					115				120	
Val	Ala	Lys	Ser	Pro	Tyr	Ile	Leu	Lys	Gly	Pro	Val	Tyr	His	Glu
				125					130				135	
Asn	Cys	Asp	Cys	Pro	Leu	Gln	Asp	Ser	Ala	Ala	Trp	Leu	Arg	Glu
				140					145				150	
Met	Asn	Cys	Pro	Glu	Thr	Ile	Ala	Gln	Ile	Gln	Arg	Asp	Leu	Ala
				155					160				165	
His	Phe	Pro	Ala	Val	Asp	Pro	Glu	Lys	Ile	Ala	Val	Glu	Ile	Pro
				170					175				180	
Lys	Arg	Phe	Gly	Gln	Arg	Gln	Ser	Leu	Cys	His	Tyr	Thr	Leu	Lys
				185					190				195	
Asp	Asn	Lys	Val	Tyr	Ile	Lys	Thr	His	Gly	Glu	His	Val	Gly	Phe
				200					205				210	
Arg	Ile	Phe	Met	Asp	Ala	Ile	Leu	Leu	Ser	Leu	Thr	Arg	Lys	Val

215	220	225
Lys Met Pro Asp Val Glu Leu Phe Val	Asn Leu Gly Asp Trp	Pro
230	235	240
Leu Glu Lys Lys Lys Ser Asn Ser Asn Ile His Pro Ile Phe Ser		
245	250	255
Trp Cys Gly Ser Thr Asp Ser Lys Asp Ile Val Met Pro Thr Tyr		
260	265	270
Asp Leu Thr Asp Ser Val Leu Glu Thr Met Gly Arg Val Ser Leu		
275	280	285
Asp Met Met Ser Val Gln Ala Asn Thr Gly Pro Pro Trp Glu Ser		
290	295	300
Lys Asn Ser Thr Ala Val Trp Arg Gly Arg Asp Ser Arg Lys Glu		
305	310	315
Arg Leu Glu Leu Val Lys Leu Ser Arg Lys His Pro Glu Leu Ile		
320	325	330
Asp Ala Ala Phe Thr Asn Phe Phe Phe Lys His Asp Glu Asn		
335	340	345
Leu Tyr Gly Pro Ile Val Lys His Ile Ser Phe Phe Asp Phe Phe		
350	355	360
Lys His Lys Tyr Gln Ile Asn Ile Asp Gly Thr Val Ala Ala Tyr		
365	370	375
Arg Leu Pro Tyr Leu Leu Val Gly Asp Ser Val Val Leu Lys Gln		
380	385	390
Asp Ser Ile Tyr Tyr Glu His Phe Tyr Asn Glu Leu Gln Pro Trp		
395	400	405
Lys His Tyr Ile Pro Val Lys Ser Asn Leu Ser Asp Leu Leu Glu		
410	415	420
Lys Leu Lys Trp Ala Lys Asp His Asp Glu Glu Ala Lys Lys Ile		
425	430	435
Ala Lys Ala Gly Gln Glu Phe Ala Arg Asn Asn Leu Met Gly Asp		
440	445	450
Asp Ile Phe Cys Tyr Tyr Phe Lys Leu Phe Gln Glu Tyr Ala Asn		
455	460	465
Leu Gln Val Ser Glu Pro Gln Ile Arg Glu Gly Met Lys Arg Val		
470	475	480
Glu Pro Gln Thr Glu Asp Asp Leu Phe Pro Cys Thr Cys His Arg		
485	490	495
Lys Lys Thr Lys Asp Glu Leu		
500		

<210> 9
<211> 282
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 5116906

<400> 9
Met Trp Ala Cys Gly Val Ile Leu Tyr Ile Leu Leu Val Gly Tyr
1 5 10 15
Pro Pro Phe Trp Asp Glu Asp Gln His Arg Leu Tyr Gln Gln Ile
20 25 30
Lys Ala Gly Ala Tyr Asp Phe Pro Ser Pro Glu Trp Asp Thr Val
35 40 45

Thr Pro Glu Ala Lys Asp Leu Ile Asn Lys Met Leu Thr Ile Asn		
50	55	60
Pro Ala Lys Arg Ile Thr Ala Ser Glu Ala Leu Lys His Pro Trp		
65	70	75
Ile Cys Gln Arg Ser Thr Val Ala Ser Met Met His Arg Gln Glu		
80	85	90
Thr Val Asp Cys Leu Lys Lys Phe Asn Ala Arg Arg Lys Leu Lys		
95	100	105
Gly Ala Ile Leu Thr Thr Met Leu Ala Thr Arg Asn Phe Ser Ala		
110	115	120
Ala Lys Ser Leu Leu Lys Lys Pro Asp Gly Val Lys Glu Ser Thr		
125	130	135
Glu Ser Ser Asn Thr Thr Ile Glu Asp Glu Asp Val Lys Ala Arg		
140	145	150
Lys Gln Glu Ile Ile Lys Val Thr Glu Gln Leu Ile Glu Ala Ile		
155	160	165
Asn Asn Gly Asp Phe Glu Ala Tyr Thr Lys Ile Cys Asp Pro Gly		
170	175	180
Leu Thr Ala Phe Glu Pro Glu Ala Leu Gly Asn Leu Val Glu Gly		
185	190	195
Met Asp Phe His Arg Phe Tyr Phe Glu Asn Ala Leu Ser Lys Ser		
200	205	210
Asn Lys Pro Ile His Thr Ile Ile Leu Asn Pro His Val His Leu		
215	220	225
Val Gly Asp Asp Ala Ala Cys Ile Ala Tyr Ile Arg Leu Thr Gln		
230	235	240
Tyr Met Asp Gly Ser Gly Met Pro Lys Thr Met Gln Ser Glu Glu		
245	250	255
Thr Arg Val Trp His Arg Arg Asp Gly Lys Trp Gln Asn Val His		
260	265	270
Phe His Arg Ser Gly Ser Pro Thr Val Pro Ile Asn		
275	280	

<210> 10
<211> 510
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 940589

<400> 10		
Met Lys Ala Asp Ile Lys Ile Trp Ile Leu Thr Gly Asp Lys Gln		
1	5	10
Glu Thr Ala Ile Asn Ile Gly His Ser Cys Lys Leu Leu Lys Lys		
20	25	30
Asn Met Gly Met Ile Val Ile Asn Glu Gly Ser Leu Asp Ser Phe		
35	40	45
Ser Asn Thr Gln Asn Ser Arg Lys Glu Ala Val Leu Leu Ala Lys		
50	55	60
Met Lys His Pro Asn Ile Val Ala Phe Lys Glu Ser Phe Glu Ala		
65	70	75
Glu Gly His Leu Tyr Ile Val Met Glu Tyr Cys Asp Gly Gly Asp		
80	85	90

Leu	Met	Gln	Lys	Ile	Lys	Gln	Gln	Lys	Gly	Lys	Leu	Phe	Pro	Glu
				95				100						105
Asp	Met	Ile	Leu	Asn	Trp	Phe	Thr	Gln	Met	Cys	Leu	Gly	Val	Asn
				110				115						120
His	Ile	His	Lys	Lys	Arg	Val	Leu	His	Arg	Asp	Ile	Lys	Ser	Lys
				125				130						135
Asn	Ile	Phe	Leu	Thr	Gln	Asn	Gly	Lys	Val	Lys	Leu	Gly	Asp	Phe
				140				145						150
Gly	Ser	Ala	Arg	Leu	Leu	Ser	Asn	Pro	Met	Ala	Phe	Ala	Cys	Thr
				155				160						165
Tyr	Val	Gly	Thr	Pro	Tyr	Tyr	Val	Pro	Pro	Glu	Ile	Trp	Glu	Asn
				170				175						180
Leu	Pro	Tyr	Asn	Asn	Lys	Ser	Asp	Ile	Trp	Ser	Leu	Gly	Cys	Ile
				185				190						195
Leu	Tyr	Glu	Leu	Cys	Thr	Leu	Lys	His	Pro	Phe	Gln	Ala	Asn	Ser
				200				205						210
Trp	Lys	Asn	Leu	Ile	Leu	Lys	Val	Cys	Gln	Gly	Cys	Ile	Ser	Pro
				215				220						225
Leu	Pro	Ser	His	Tyr	Ser	Tyr	Glu	Leu	Gln	Phe	Leu	Val	Lys	Gln
				230				235						240
Met	Phe	Lys	Arg	Asn	Pro	Ser	His	Arg	Pro	Ser	Ala	Thr	Thr	Leu
				245				250						255
Leu	Ser	Arg	Gly	Ile	Val	Ala	Arg	Leu	Val	Gln	Lys	Cys	Leu	Pro
				260				265						270
Pro	Glu	Ile	Ile	Met	Glu	Tyr	Gly	Glu	Glu	Val	Leu	Glu	Glu	Ile
				275				280						285
Lys	Asn	Ser	Lys	His	Asn	Thr	Pro	Arg	Lys	Lys	Thr	Asn	Pro	Ser
				290				295						300
Arg	Ile	Arg	Ile	Ala	Leu	Gly	Asn	Glu	Ala	Ser	Thr	Val	Gln	Glu
				305				310						315
Glu	Glu	Gln	Asp	Arg	Lys	Gly	Ser	His	Thr	Asp	Leu	Glu	Ser	Ile
				320				325						330
Asn	Glu	Asn	Leu	Val	Glu	Ser	Ala	Leu	Arg	Arg	Val	Asn	Arg	Glu
				335				340						345
Glu	Lys	Gly	Asn	Lys	Ser	Val	His	Leu	Arg	Lys	Ala	Ser	Ser	Pro
				350				355						360
Asn	Leu	His	Arg	Arg	Gln	Trp	Glu	Lys	Asn	Val	Pro	Asn	Thr	Ala
				365				370						375
Leu	Thr	Ala	Leu	Glu	Asn	Ala	Ser	Ile	Leu	Thr	Ser	Ser	Leu	Thr
				380				385						390
Ala	Glu	Asp	Asp	Arg	Gly	Gly	Ser	Val	Ile	Lys	Tyr	Ser	Lys	Asn
				395				400						405
Thr	Thr	Arg	Lys	Gln	Trp	Leu	Lys	Glu	Thr	Pro	Asp	Thr	Leu	Leu
				410				415						420
Asn	Ile	Leu	Lys	Asn	Ala	Asp	Leu	Ser	Leu	Ala	Phe	Gln	Thr	Tyr
				425				430						435
Thr	Ile	Tyr	Arg	Pro	Gly	Ser	Glu	Gly	Phe	Leu	Lys	Gly	Pro	Leu
				440				445						450
Ser	Glu	Glu	Thr	Glu	Ala	Ser	Asp	Ser	Val	Asp	Gly	Gly	His	Asp
				455				460						465
Ser	Val	Ile	Leu	Asp	Pro	Glu	Arg	Leu	Glu	Pro	Gly	Leu	Asp	Glu
				470				475						480
Glu	Asp	Thr	Asp	Phe	Glu	Glu	Glu	Asp	Asp	Asn	Pro	Asp	Trp	Val
				485				490						495
Ser	Glu	Leu	Lys	Lys	Arg	Ala	Gly	Trp	Gln	Gly	Leu	Cys	Asp	Arg
				500				505						510

<210> 11
<211> 248
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 304421

<400> 11
Met Ala Glu Thr Ser Leu Pro Glu Leu Gly Gly Glu Asp Lys Ala
1 5 10 15
Thr Pro Cys Pro Ser Ile Leu Glu Leu Glu Glu Leu Leu Arg Ala
20 25 30
Gly Lys Ser Ser Cys Ser Arg Val Asp Glu Val Trp Pro Asn Leu
35 40 45
Phe Ile Gly Asp Ala Met Asp Ser Leu Gln Lys Gln Asp Leu Arg
50 55 60
Arg Pro Lys Ile His Gly Ala Val Gln Ala Ser Pro Tyr Gln Pro
65 70 75
Pro Thr Leu Ala Ser Leu Gln Arg Leu Leu Trp Val Arg Gln Ala
80 85 90
Ala Thr Leu Asn His Ile Asp Glu Val Trp Pro Ser Leu Phe Leu
95 100 105
Gly Asp Ala Tyr Ala Ala Arg Asp Lys Ser Lys Leu Ile Gln Leu
110 115 120
Gly Ile Thr His Val Val Asn Ala Ala Gly Lys Phe Gln Val
125 130 135
Asp Thr Gly Ala Lys Phe Tyr Arg Gly Met Ser Leu Glu Tyr Tyr
140 145 150
Gly Ile Glu Ala Asp Asp Asn Pro Phe Phe Asp Leu Ser Val Tyr
155 160 165
Phe Leu Pro Val Ala Arg Tyr Ile Arg Ala Ala Leu Ser Val Pro
170 175 180
Gln Gly Arg Val Leu Val His Cys Ala Met Gly Val Ser Arg Ser
185 190 195
Ala Thr Leu Val Leu Ala Phe Leu Met Ile Tyr Glu Asn Met Thr
200 205 210
Leu Val Glu Ala Ile Gln Thr Val Gln Ala His Arg Asn Ile Cys
215 220 225
Pro Asn Ser Gly Phe Leu Arg Gln Leu Gln Val Leu Asp Asn Arg
230 235 240
Leu Gly Arg Glu Thr Gly Arg Phe
245

<210> 12
<211> 810
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 1213802

<400> 12

Met Pro Asn Gln Gly Glu Asp Cys Tyr Phe Phe Phe Tyr Ser Thr
 1 5 10 15
 Cys Thr Lys Gly Asp Ser Cys Pro Phe Arg His Cys Glu Ala Ala
 20 25 30
 Ile Gly Asn Glu Thr Val Cys Thr Leu Trp Gln Glu Gly Arg Cys
 35 40 45
 Phe Arg Gln Val Cys Arg Phe Arg His Met Glu Ile Asp Lys Lys
 50 55 60
 Arg Ser Glu Ile Pro Cys Tyr Trp Glu Asn Gln Pro Thr Gly Cys
 65 70 75
 Gln Lys Leu Asn Cys Ala Phe His His Asn Arg Gly Arg Tyr Val
 80 85 90
 Asp Gly Leu Phe Ileu Pro Pro Ser Lys Thr Val Leu Pro Thr Val
 95 100 105
 Pro Glu Ser Pro Glu Glu Val Lys Ala Ser Gln Leu Ser Val
 110 115 120
 Gln Gln Asn Lys Leu Ser Val Gln Ser Asn Pro Ser Pro Gln Leu
 125 130 135
 Arg Ser Val Met Lys Val Glu Ser Ser Glu Asn Val Pro Ser Pro
 140 145 150
 Thr His Pro Pro Val Val Ile Asn Ala Ala Asp Asp Asp Glu Asp
 155 160 165
 Asp Asp Asp Gln Phe Ser Glu Glu Gly Asp Glu Thr Lys Thr Pro
 170 175 180
 Thr Leu Gln Pro Thr Pro Glu Val His Asn Gly Leu Arg Val Thr
 185 190 195
 Ser Val Arg Lys Pro Ala Val Asn Ile Lys Gln Gly Glu Cys Leu
 200 205 210
 Asn Phe Gly Ile Lys Thr Leu Glu Glu Ile Lys Ser Lys Lys Met
 215 220 225
 Lys Glu Lys Ser Lys Gln Gly Glu Gly Ser Ser Gly Val Ser
 230 235 240
 Ser Leu Leu Leu His Pro Glu Pro Val Pro Gly Pro Glu Lys Glu
 245 250 255
 Asn Val Arg Thr Val Val Arg Thr Val Thr Leu Ser Thr Lys Gln
 260 265 270
 Gly Glu Glu Pro Leu Val Arg Leu Ser Leu Thr Glu Arg Leu Gly
 275 280 285
 Lys Arg Lys Phe Ser Ala Gly Gly Asp Ser Asp Pro Pro Leu Lys
 290 295 300
 Arg Ser Leu Ala Gln Arg Leu Gly Lys Lys Val Glu Ala Pro Glu
 305 310 315
 Thr Asn Ile Asp Lys Thr Pro Lys Lys Ala Gln Val Ser Lys Ser
 320 325 330
 Leu Lys Glu Arg Leu Gly Met Ser Ala Asp Pro Asp Asn Glu Asp
 335 340 345
 Ala Thr Asp Lys Val Asn Lys Val Gly Glu Ile His Val Lys Thr
 350 355 360
 Leu Glu Glu Ile Leu Leu Glu Arg Ala Ser Gln Lys Arg Gly Glu
 365 370 375
 Leu Gln Thr Lys Leu Lys Thr Glu Gly Pro Ser Lys Thr Asp Asp
 380 385 390
 Ser Thr Ser Gly Ala Arg Ser Ser Ser Thr Ile Arg Ile Lys Thr
 395 400 405
 Phe Ser Glu Val Leu Ala Glu Lys Lys His Arg Gln Gln Glu Ala

410	415	420
Glu Arg Gln Lys Ser Lys Lys Asp Thr	Thr Cys Ile Lys Leu Lys	
425	430	435
Ile Asp Ser Glu Ile Lys Lys Thr Val	Val Val Leu Pro Pro Ile Val	
440	445	450
Ala Ser Arg Gly Gln Ser Glu Glu Pro Ala	Gly Lys Thr Lys Ser	
455	460	465
Met Gln Glu Val His Ile Lys Thr Leu Glu	Ile Lys Leu Glu	
470	475	480
Lys Ala Leu Arg Val Gln Gln Ser Ser Glu	Ser Ser Thr Ser Ser	
485	490	495
Pro Ser Gln His Glu Ala Thr Pro Gly Ala	Arg Arg Leu Leu Arg	
500	505	510
Ile Thr Lys Arg Thr Gly Met Lys Glu Glu	Lys Asn Leu Gln Glu	
515	520	525
Gly Asn Glu Val Asp Ser Gln Ser Ser Ile	Arg Thr Glu Ala Lys	
530	535	540
Glu Ala Ser Gly Glu Thr Thr Gly Val Asp	Ile Thr Lys Ile Gln	
545	550	555
Val Lys Arg Cys Glu Thr Met Arg Glu Lys	His Met Gln Lys Gln	
560	565	570
Gln Glu Arg Glu Lys Ser Val Leu Thr Pro	Leu Arg Gly Asp Val	
575	580	585
Ala Ser Cys Asn Thr Gln Val Ala Glu Lys	Pro Val Leu Thr Ala	
590	595	600
Val Pro Gly Ile Thr Arg His Leu Thr Lys	Arg Leu Pro Thr Lys	
605	610	615
Ser Ser Gln Lys Val Glu Val Glu Thr Ser	Gly Ile Gly Asp Ser	
620	625	630
Leu Leu Asn Val Lys Cys Ala Ala Gln Thr	Leu Glu Lys Arg Gly	
635	640	645
Lys Ala Lys Pro Lys Val Asn Val Lys Pro	Ser Val Val Lys Val	
650	655	660
Val Ser Ser Pro Lys Leu Ala Pro Lys Arg	Lys Ala Val Glu Met	
665	670	675
His Ala Ala Val Ile Ala Ala Val Lys Pro	Leu Ser Ser Ser Ser	
680	685	690
Val Leu Gln Glu Pro Pro Ala Lys Lys Ala	Ala Val Ala Val Val	
695	700	705
Pro Leu Val Ser Glu Asp Lys Ser Val Thr	Val Pro Glu Ala Glu	
710	715	720
Asn Pro Arg Asp Ser Leu Val Leu Pro Pro	Thr Gln Ser Ser Ser	
725	730	735
Asp Ser Ser Pro Pro Glu Val Ser Gly Pro	Ser Ser Ser Gln Met	
740	745	750
Ser Met Lys Thr Arg Arg Leu Ser Ser Ala	Ser Thr Gly Lys Pro	
755	760	765
Pro Leu Ser Val Glu Asp Asp Phe Glu Lys	Leu Ile Trp Glu Ile	
770	775	780
Ser Gly Gly Lys Leu Glu Ala Glu Ile Asp	Leu Asp Pro Gly Lys	
785	790	795
Asp Glu Asp Asp Leu Leu Leu Glu Leu Ser	Glu Met Ile Asp Ser	
800	805	810

<211> 549
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 1378134

<400> 13
Met Arg Arg Arg Ala Ser Asn Ala Ala Ala Ala His Thr Ile
1 5 10 15
Gly Gly Ser Lys His Thr Met Asn Asp His Leu His Val Gly Ser
20 25 30
His Ala His Gly Gln Ile Gln Val Arg Gln Leu Phe Glu Asp Asn
35 40 45
Ser Asn Lys Arg Thr Val Leu Thr Thr Gln Pro Asn Gly Leu Thr
50 55 60
Thr Val Gly Lys Thr Gly Leu Pro Val Val Pro Glu Arg Gln Leu
65 70 75
Asp Ser Ile His Arg Arg Gln Gly Ser Ser Thr Ser Leu Lys Ser
80 85 90
Met Glu Gly Met Gly Lys Val Lys Ala Thr Pro Met Thr Pro Glu
95 100 105
Gln Ala Met Lys Gln Tyr Met Gln Lys Leu Thr Ala Phe Glu His
110 115 120
His Glu Ile Phe Ser Tyr Pro Glu Ile Tyr Phe Leu Gly Leu Asn
125 130 135
Ala Lys Lys Arg Gln Gly Met Thr Gly Gly Pro Asn Asn Gly Gly
140 145 150
Tyr Asp Asp Asp Gln Gly Ser Tyr Val Gln Val Pro His Asp His
155 160 165
Val Ala Tyr Arg Tyr Glu Val Leu Lys Val Ile Gly Lys Gly Ser
170 175 180
Phe Gly Gln Val Val Lys Ala Tyr Asp His Lys Val His Gln His
185 190 195
Val Ala Leu Lys Met Val Arg Asn Glu Lys Arg Phe His Arg Gln
200 205 210
Ala Ala Glu Glu Ile Arg Ile Leu Glu His Leu Arg Lys Gln Asp
215 220 225
Lys Asp Asn Thr Met Asn Val Ile His Met Leu Glu Asn Phe Thr
230 235 240
Phe Arg Asn His Ile Cys Met Thr Phe Glu Leu Leu Ser Met Asn
245 250 255
Leu Tyr Glu Leu Ile Lys Lys Asn Lys Phe Gln Gly Phe Ser Leu
260 265 270
Pro Leu Val Arg Lys Phe Ala His Ser Ile Leu Gln Cys Leu Asp
275 280 285
Ala Leu His Lys Asn Arg Ile Ile His Cys Asp Leu Lys Pro Glu
290 295 300
Asn Ile Leu Leu Lys Gln Gln Gly Arg Ser Gly Ile Lys Val Ile
305 310 315
Asp Phe Gly Ser Ser Cys Tyr Glu His Gln Arg Val Tyr Thr Tyr
320 325 330
Ile Gln Ser Arg Phe Tyr Arg Ala Pro Glu Val Ile Leu Gly Ala
335 340 345
Arg Tyr Gly Met Pro Ile Asp Met Trp Ser Leu Gly Cys Ile Leu

350	355	360
Ala Glu Leu Leu Thr Gly Tyr Pro Leu Leu Pro Gly Glu Asp Glu		
365	370	375
Gly Asp Gln Leu Ala Cys Met Ile Glu Leu Leu Gly Met Pro Ser		
380	385	390
Gln Lys Leu Leu Asp Ala Ser Lys Arg Ala Lys Asn Phe Val Ser		
395	400	405
Ser Lys Gly Tyr Pro Arg Tyr Cys Thr Val Thr Thr Leu Ser Asp		
410	415	420
Gly Ser Val Val Leu Asn Gly Gly Arg Ser Arg Arg Gly Lys Leu		
425	430	435
Arg Gly Pro Pro Glu Ser Arg Glu Trp Gly Asn Ala Leu Lys Gly		
440	445	450
Cys Asp Asp Pro Leu Phe Leu Asp Phe Leu Lys Gln Cys Leu Glu		
455	460	465
Trp Asp Pro Ala Val Arg Met Thr Pro Gly Gln Ala Leu Arg His		
470	475	480
Pro Trp Leu Arg Arg Arg Leu Pro Lys Pro Pro Thr Gly Glu Lys		
485	490	495
Thr Ser Val Lys Arg Ile Thr Glu Ser Thr Gly Ala Ile Thr Ser		
500	505	510
Ile Ser Lys Leu Pro Pro Pro Ser Ser Ala Ser Lys Leu Arg		
515	520	525
Thr Asn Leu Ala Gln Met Thr Asp Ala Asn Gly Asn Ile Gln Gln		
530	535	540
Arg Thr Val Leu Pro Lys Leu Val Ser		
545		

<210> 14
<211> 416
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 1490070

<400> 14
Met Met Pro Gln Leu Gln Phe Lys Asp Ala Phe Trp Cys Arg Asp
1 5 10 15
Phe Thr Ala His Thr Gly Tyr Glu Val Leu Leu Gln Arg Leu Leu
20 25 30
Asp Gly Arg Lys Met Cys Lys Asp Met Val Glu Leu Leu Trp Gln
35 40 45
Arg Ala Gln Ala Glu Glu Arg Tyr Gly Lys Glu Leu Val Gln Ile
50 55 60
Ala Arg Lys Ala Gly Gly Gln Thr Glu Ile Asn Ser Leu Arg Ala
65 70 75
Ser Phe Asp Ser Leu Lys Gln Gln Met Glu Asn Val Gly Ser Ser
80 85 90
His Ile Gln Leu Ala Leu Thr Leu Arg Glu Glu Leu Arg Ser Leu
95 100 105
Glu Glu Phe Arg Glu Arg Gln Lys Glu Gln Arg Lys Lys Tyr Glu
110 115 120
Ala Val Met Asp Arg Val Gln Lys Ser Lys Leu Ser Leu Tyr Lys

125	130	135
Lys Ala Met Glu Ser Lys Lys Thr Tyr	Glu Gln Lys Cys Arg Asp	
140	145	150
Ala Asp Asp Ala Glu Gln Ala Phe Glu Arg Ile Ser Ala Asn Gly		
155	160	165
His Gln Lys Gln Val Glu Lys Ser Gln Asn Lys Ala Arg Gln Cys		
170	175	180
Lys Asp Ser Ala Thr Glu Ala Glu Arg Val Tyr Arg Gln Ser Ile		
185	190	195
Ala Gln Leu Glu Lys Val Arg Ala Glu Trp Glu Gln Glu His Arg		
200	205	210
Thr Thr Cys Glu Ala Phe Gln Leu Gln Glu Phe Asp Arg Leu Thr		
215	220	225
Ile Leu Arg Asn Ala Leu Trp Val His Ser Asn Gln Leu Ser Met		
230	235	240
Gln Cys Val Lys Asp Asp Glu Leu Tyr Glu Glu Val Arg Leu Thr		
245	250	255
Leu Glu Gly Cys Ser Ile Asp Ala Asp Ile Asp Ser Phe Ile Gln		
260	265	270
Ala Lys Ser Thr Gly Thr Glu Pro Pro Ala Pro Val Pro Tyr Gln		
275	280	285
Asn Tyr Tyr Asp Arg Glu Val Thr Pro Leu Thr Ser Ser Pro Gly		
290	295	300
Ile Gln Pro Ser Cys Gly Met Ile Lys Arg Phe Ser Gly Leu Leu		
305	310	315
His Gly Ser Pro Lys Thr Thr Ser Leu Ala Ala Ser Ala Ala Ser		
320	325	330
Thr Glu Thr Leu Thr Pro Thr Pro Glu Arg Asn Glu Gly Val Tyr		
335	340	345
Thr Ala Ile Ala Val Gln Glu Ile Gln Gly Asn Pro Ala Ser Pro		
350	355	360
Ala Gln Glu Tyr Arg Ala Leu Tyr Asp Tyr Thr Ala Gln Asn Pro		
365	370	375
Asp Glu Leu Asp Leu Ser Ala Gly Asp Ile Leu Glu Val Ile Leu		
380	385	390
Glu Gly Glu Asp Gly Trp Trp Thr Val Glu Arg Asn Gly Gln Arg		
395	400	405
Gly Phe Val Pro Gly Ser Tyr Leu Glu Lys Leu		
410	415	

<210> 15
<211> 425
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 1997814

<400> 15
Met Glu Gln Gly Leu Glu Glu Glu Glu Val Asp Pro Arg Ile
1 5 10 15
Gln Gly Glu Leu Glu Lys Leu Asn Gln Ser Thr Asp Asp Ile Asn
20 25 30
Arg Arg Glu Thr Glu Leu Glu Asp Ala Arg Gln Lys Phe Arg Ser
35 40 45

Val Leu Val Glu Ala Thr Val Lys Leu Asp Glu Leu Val Lys Lys
 50 55 60
 Ile Gly Lys Ala Val Glu Asp Ser Lys Pro Tyr Trp Glu Ala Arg
 65 70 75
 Arg Val Ala Arg Gln Ala Gln Leu Glu Ala Gln Lys Ala Thr Gln
 80 85 90
 Asp Phe Gln Arg Ala Thr Glu Val Leu Arg Ala Ala Lys Glu Thr
 95 100 105
 Ile Ser Leu Ala Glu Gln Arg Leu Leu Glu Asp Asp Lys Arg Gln
 110 115 120
 Phe Asp Ser Ala Trp Gln Glu Met Leu Asn His Ala Thr Gln Arg
 125 130 135
 Val Met Glu Ala Glu Gln Thr Lys Thr Arg Ser Glu Leu Val His
 140 145 150
 Lys Glu Thr Ala Ala Arg Tyr Asn Ala Ala Met Gly Arg Met Arg
 155 160 165
 Gln Leu Glu Lys Lys Leu Lys Arg Ala Ile Asn Lys Ser Lys Pro
 170 175 180
 Tyr Phe Glu Leu Lys Ala Lys Tyr Tyr Val Gln Leu Glu Gln Leu
 185 190 195
 Lys Lys Thr Val Asp Asp Leu Gln Ala Lys Leu Thr Leu Ala Lys
 200 205 210
 Gly Glu Tyr Lys Met Ala Leu Lys Asn Leu Glu Met Ile Ser Asp
 215 220 225
 Glu Ile His Glu Arg Arg Arg Ser Ser Ala Met Gly Pro Arg Gly
 230 235 240
 Cys Gly Val Gly Ala Glu Gly Ser Ser Thr Ser Val Glu Asp Leu
 245 250 255
 Pro Gly Ser Lys Pro Glu Pro Asp Ala Ile Ser Val Ala Ser Glu
 260 265 270
 Ala Phe Glu Asp Asp Ser Cys Ser Asn Phe Val Ser Glu Asp Asp
 275 280 285
 Ser Glu Thr Gln Ser Val Ser Ser Phe Ser Ser Gly Pro Thr Ser
 290 295 300
 Pro Ser Glu Met Pro Asp Gln Phe Pro Ala Val Val Arg Pro Gly
 305 310 315
 Ser Leu Asp Leu Pro Ser Pro Val Ser Leu Ser Glu Phe Gly Met
 320 325 330
 Met Phe Pro Val Leu Gly Pro Arg Ser Glu Cys Ser Gly Ala Ser
 335 340 345
 Ser Pro Glu Cys Glu Val Glu Arg Gly Asp Arg Ala Glu Gly Ala
 350 355 360
 Glu Asn Lys Thr Ser Asp Lys Ala Asn Asn Asn Arg Gly Leu Ser
 365 370 375
 Ser Ser Ser Gly Ser Gly Ser Ser Lys Ser Gln Ser Ser Thr
 380 385 390
 Ser Pro Glu Gly Gln Ala Leu Glu Asn Arg Met Lys Gln Leu Ser
 395 400 405
 Leu Gln Cys Ser Lys Gly Arg Asp Gly Ile Ile Ala Asp Ile Lys
 410 415 420
 Met Val Gln Ile Gly
 425

<210> 16
 <211> 1135

<212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone Number: 2299715

<400> 16

Met	Ala	Asn	Asp	Ser	Pro	Ala	Lys	Ser	Leu	Val	Asp	Ile	Asp	Leu	
1						5			10					15	
Ser	Ser	Leu	Arg	Asp	Pro	Ala	Gly	Ile	Phe	Glu	Leu	Val	Glu	Val	
						20			25					30	
Val	Gly	Asn	Gly	Thr	Tyr	Gly	Gln	Val	Tyr	Lys	Gly	Arg	His	Val	
						35			40					45	
Lys	Thr	Gly	Gln	Leu	Ala	Ala	Ile	Lys	Val	Met	Asp	Val	Thr	Glu	
						50			55					60	
 Asp Glu Glu Glu Glu Ile Lys Leu Glu Ile Asn Met Leu Lys Lys															
						65			70					75	
Tyr	Ser	His	His	Arg	Asn	Ile	Ala	Thr	Tyr	Tyr	Gly	Ala	Phe	Ile	
						80			85					90	
Lys	Lys	Ser	Pro	Pro	Gly	His	Asp	Asp	Gln	Leu	Trp	Leu	Val	Met	
						95			100					105	
Glu	Phe	Cys	Gly	Ala	Gly	Ser	Ile	Thr	Asp	Leu	Val	Lys	Asn	Thr	
						110			115					120	
Lys	Gly	Asn	Thr	Leu	Lys	Glu	Asp	Trp	Ile	Ala	Tyr	Ile	Ser	Arg	
						125			130					135	
Glu	Ile	Leu	Arg	Gly	Leu	Ala	His	Leu	His	Ile	His	His	Val	Ile	
						140			145					150	
His	Arg	Asp	Ile	Lys	Gly	Gln	Asn	Val	Leu	Leu	Thr	Glu	Asn	Ala	
						155			160					165	
Gly	Val	Lys	Leu	Val	Asp	Phe	Gly	Val	Ser	Ala	Gln	Leu	Asp	Arg	
						170			175					180	
Thr	Val	Gly	Arg	Arg	Asn	Thr	Phe	Ile	Gly	Thr	Pro	Tyr	Trp	Met	
						185			190					195	
Ala	Pro	Glu	Val	Ile	Ala	Cys	Asp	Glu	Asn	Pro	Asp	Ala	Thr	Tyr	
						200			205					210	
Asp	Tyr	Arg	Ser	Asp	Leu	Trp	Ser	Cys	Gly	Ile	Thr	Ala	Ile	Glu	
						215			220					225	
Met	Ala	Glu	Gly	Ala	Pro	Pro	Leu	Cys	Asp	Met	His	Pro	Met	Arg	
						230			235					240	
Ala	Leu	Phe	Leu	Ile	Pro	Arg	Asn	Pro	Pro	Pro	Arg	Leu	Lys	Ser	
						245			250					255	
Lys	Lys	Trp	Ser	Lys	Lys	Phe	Phe	Ser	Phe	Ile	Glu	Gly	Cys	Leu	
						260			265					270	
Val	Lys	Asn	Tyr	Met	Gln	Arg	Pro	Ser	Thr	Glu	Gln	Leu	Leu	Lys	
						275			280					285	
His	Pro	Phe	Ile	Arg	Asp	Gln	Pro	Asn	Glu	Arg	Gln	Val	Arg	Ile	
						290			295					300	
Gln	Leu	Lys	Asp	His	Ile	Asp	Arg	Thr	Arg	Lys	Lys	Arg	Gly	Glu	
						305			310					315	
Lys	Asp	Glu	Thr	Glu	Tyr	Glu	Tyr	Ser	Gly	Ser	Glu	Glu	Glu		
						320			325					330	
Glu	Glu	Val	Pro	Glu	Gln	Glu	Gly	Glu	Pro	Ser	Ser	Ile	Val	Asn	
						335			340					345	
Val	Pro	Gly	Glu	Ser	Thr	Leu	Arg	Arg	Asp	Phe	Leu	Arg	Leu	Gln	

	350	355	360
Gln Glu Asn Lys	Glu Arg Ser Glu Ala	Leu Arg Arg Gln Gln	Leu
	365	370	375
Leu Gln Glu Gln	Gln Leu Arg Glu Gln	Glu Glu Tyr Lys Arg	Gln
	380	385	390
Leu Leu Ala Glu	Arg Gln Lys Arg Ile	Glu Gln Gln Lys Glu	Gln
	395	400	405
Arg Arg Arg Leu	Glu Gln Gln Arg Arg	Glu Arg Glu Ala Arg	
	410	415	420
Arg Gln Gln Glu	Arg Glu Gln Arg Arg	Glu Gln Glu Glu	Lys
	425	430	435
Arg Arg Leu Glu	Glu Leu Glu Arg Arg	Lys Glu Glu Glu	
	440	445	450
Arg Arg Arg Ala	Glu Glu Glu Lys Arg Arg	Val Glu Arg Glu	Gln
	455	460	465
Glu Tyr Ile Arg	Arg Gln Leu Glu Glu Gln Arg His	Leu Glu	
	470	475	480
Val Leu Gln Gln	Gln Leu Leu Gln Glu Gln Ala Met	Leu Leu His	
	485	490	495
Asp His Arg Arg	Pro His Pro Gln His Ser Gln Gln	Pro Pro Pro	
	500	505	510
Pro Gln Gln Glu	Arg Ser Lys Pro Ser Phe His Ala Pro	Glu Pro	
	515	520	525
Lys Ala His Tyr	Glu Pro Ala Asp Arg Ala Arg Glu	Val Pro Val	
	530	535	540
Arg Thr Thr Ser	Arg Ser Pro Val Leu Ser Arg Arg Asp	Ser Pro	
	545	550	555
Leu Gln Gly Ser	Gly Gln Gln Asn Ser Gln Ala Gly Gln Arg	Asn	
	560	565	570
Ser Thr Ser Ile	Glu Pro Arg Leu Leu Trp Glu Arg Val	Glu Lys	
	575	580	585
Leu Val Pro Arg	Pro Gly Ser Gly Ser Ser Ser Gly	Ser Ser Asn	
	590	595	600
Ser Gly Ser Gln	Pro Gly Ser His Pro Gly Ser Gln Ser	Gly Ser	
	605	610	615
Gly Glu Arg Phe	Arg Val Arg Ser Ser Ser Lys Ser Glu	Gly Ser	
	620	625	630
Pro Ser Gln Arg	Leu Glu Asn Ala Val Lys Lys Pro Glu Asp	Lys	
	635	640	645
Lys Glu Val Phe	Arg Pro Leu Lys Pro Ala Asp Leu Thr	Ala Leu	
	650	655	660
Ala Lys Glu Leu	Arg Ala Val Glu Asp Val Arg Pro Pro His	Lys	
	665	670	675
Val Thr Asp Tyr	Ser Ser Ser Ser Glu Glu Ser Gly Thr	Thr Asp	
	680	685	690
Glu Glu Asp Asp	Asp Val Glu Gln Glu Gly Ala Asp Glu	Ser Thr	
	695	700	705
Ser Gly Pro Glu	Asp Thr Arg Ala Ala Ser Ser Leu Asn	Leu Ser	
	710	715	720
Asn Gly Glu Thr	Glu Ser Val Lys Thr Met Ile Val His	Asp Asp	
	725	730	735
Val Glu Ser Glu	Pro Ala Met Thr Pro Ser Lys Glu Gly	Thr Leu	
	740	745	750
Ile Val Arg Gln	Thr Gln Ser Ala Ser Ser Thr Leu Gln	Lys His	
	755	760	765
Lys Ser Ser Ser	Ser Phe Thr Pro Phe Ile Asp Pro Arg	Leu Leu	

	770	775	780
Gln Ile Ser Pro	Ser Ser Gly Thr Thr Val	Thr Ser Val Val	Gly
785	790	795	
Phe Ser Cys Asp	Gly Met Arg Pro Glu Ala Ile Arg Gln Asp	Pro	
800	805	810	
Thr Arg Lys Gly	Ser Val Val Asn Val Asn Pro Thr Asn Thr Arg		
815	820	825	
Pro Gln Ser Asp	Thr Pro Glu Ile Arg Lys Tyr Lys Lys Arg Phe		
830	835	840	
Asn Ser Glu Ile	Leu Cys Ala Ala Leu Trp Gly Val Asn Leu Leu		
845	850	855	
Val Gly Thr Glu	Ser Gly Leu Met Leu Leu Asp Arg Ser Gly Gln		
860	865	870	
Gly Lys Val Tyr	Pro Leu Ile Asn Arg Arg Arg Phe Gln Gln Met		
875	880	885	
Asp Val Leu Glu	Gly Leu Asn Val Leu Val Thr Ile Ser Gly Lys		
890	895	900	
Lys Asp Lys Leu	Arg Val Tyr Tyr Leu Ser Trp Leu Arg Asn Lys		
905	910	915	
Ile Leu His Asn	Asp Pro Glu Val Glu Lys Lys Gln Gly Trp Thr		
920	925	930	
Thr Val Gly Asp	Leu Glu Gly Cys Val His Tyr Lys Val Val Lys		
935	940	945	
Tyr Glu Arg Ile	Lys Phe Leu Val Ile Ala Leu Lys Ser Ser Val		
950	955	960	
Glu Val Tyr Ala	Trp Ala Pro Lys Pro Tyr His Lys Phe Met Ala		
965	970	975	
Phe Lys Ser Phe	Gly Glu Leu Val His Gly Ser Cys Ala Gly Phe		
980	985	990	
His Ala Val Asp	Val Asp Ser Gly Ser Val Tyr Asp Ile Tyr Leu		
995	1000	1005	
Pro Thr His Ile	Gln Cys Ser Ile Lys Pro His Ala Ile Ile Ile		
1010	1015	1020	
Leu Pro Asn Thr Asp	Gly Met Glu Leu Leu Val Cys Tyr Glu Asp		
1025	1030	1035	
Glu Gly Val Tyr Val	Asn Thr Tyr Gly Arg Ile Thr Lys Asp Val		
1040	1045	1050	
Val Leu Gln Trp	Gly Glu Met Pro Thr Ser Val Ala Tyr Ile Arg		
1055	1060	1065	
Ser Asn Gln Thr Met	Gly Trp Gly Glu Lys Ala Ile Glu Ile Arg		
1070	1075	1080	
Ser Val Glu Thr Gly	His Leu Asp Gly Val Phe Met His Lys Arg		
1085	1090	1095	
Ala Gln Arg Leu Lys	Phe Leu Cys Glu Arg Asn Asp Lys Val Phe		
1100	1105	1110	
Phe Ala Ser Val Arg	Ser Gly Gly Ser Ser Gln Val Tyr Phe Met		
1115	1120	1125	
Thr Leu Gly Arg Thr Ser Leu Leu Ser Trp			
1130	1135		

<210> 17
 <211> 228
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone Number: 209854

<400> 17

Met	Pro	Thr	Asn	Cys	Ala	Ala	Ala	Gly	Cys	Ala	Thr	Thr	Tyr	Asn
1				5				10						15
Lys	His	Ile	Asn	Ile	Ser	Phe	His	Arg	Phe	Pro	Leu	Asp	Pro	Lys
				20				25						30
Arg	Arg	Lys	Glu	Trp	Val	Arg	Leu	Val	Arg	Arg	Lys	Asn	Phe	Val
				35				40						45
Pro	Gly	Lys	His	Thr	Phe	Leu	Cys	Ser	Lys	His	Phe	Glu	Ala	Ser
	50							55						60
Cys	Phe	Asp	Leu	Thr	Gly	Gln	Thr	Arg	Arg	Leu	Lys	Met	Asp	Ala
	65							70						75
Val	Pro	Thr	Ile	Phe	Asp	Phe	Cys	Thr	His	Ile	Lys	Ser	Met	Lys
	80							85						90
Leu	Lys	Ser	Arg	Asn	Leu	Leu	Lys	Lys	Asn	Asn	Ser	Cys	Ser	Pro
	95							100						105
Ala	Gly	Pro	Ser	Asn	Leu	Lys	Ser	Asn	Ile	Ser	Ser	Gln	Gln	Val
	110							115						120
Leu	Leu	Glu	His	Ser	Tyr	Ala	Phe	Arg	Asn	Pro	Met	Glu	Ala	Lys
	125							130						135
Lys	Arg	Ile	Ile	Lys	Leu	Glu	Lys	Glu	Ile	Ala	Ser	Leu	Arg	Arg
	140							145						150
Lys	Met	Lys	Thr	Cys	Leu	Gln	Lys	Glu	Arg	Arg	Ala	Thr	Arg	Arg
	155							160						165
Trp	Ile	Lys	Ala	Thr	Cys	Leu	Val	Lys	Asn	Leu	Glu	Ala	Asn	Ser
	170							175						180
Val	Leu	Pro	Lys	Gly	Thr	Ser	Glu	His	Met	Leu	Pro	Thr	Ala	Leu
	185							190						195
Ser	Ser	Leu	Pro	Leu	Glu	Asp	Phe	Lys	Ile	Leu	Glu	Gln	Asp	Gln
	200							205						210
Gln	Asp	Lys	Thr	Leu	Leu	Ser	Leu	Asn	Leu	Lys	Gln	Thr	Lys	Ser
	215							220						225
Thr	Phe	Ile												

<210> 18
 <211> 503
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone Number: 1384286

<400> 18

Met	Ala	Thr	Thr	Val	Thr	Cys	Thr	Arg	Phe	Thr	Asp	Glu	Tyr	Gln
1				5				10						15
Leu	Tyr	Glu	Asp	Ile	Gly	Lys	Gly	Ala	Phe	Ser	Val	Val	Arg	Arg
				20				25						30
Cys	Val	Lys	Leu	Cys	Thr	Gly	His	Glu	Tyr	Ala	Ala	Lys	Ile	Ile
				35				40						45
Asn	Thr	Lys	Lys	Leu	Ser	Ala	Arg	Asp	His	Gln	Lys	Leu	Glu	Arg

50	55	60
Glu Ala Arg Ile Cys Arg Leu Leu Lys His Ser Asn Ile Val Arg		
65	70	75
Leu His Asp Ser Ile Ser Glu Glu Gly Phe His Tyr Leu Val Phe		
80	85	90
Asp Leu Val Thr Gly Gly Glu Leu Phe Glu Asp Ile Val Ala Arg		
95	100	105
Glu Tyr Tyr Ser Glu Ala Asp Ala Ser His Cys Ile Gln Gln Ile		
110	115	120
Leu Glu Ala Val Leu His Cys His Gln Met Gly Val Val His Arg		
125	130	135
Asp Leu Lys Pro Glu Asn Leu Leu Leu Ala Ser Lys Cys Lys Gly		
140	145	150
Ala Ala Val Lys Leu Ala Asp Phe Gly Leu Ala Ile Glu Val Gln		
155	160	165
Gly Asp Gln Gln Ala Trp Phe Gly Phe Ala Gly Thr Pro Gly Tyr		
170	175	180
Leu Ser Pro Glu Val Leu Arg Lys Glu Ala Tyr Gly Lys Pro Val		
185	190	195
Asp Ile Trp Ala Cys Gly Val Ile Leu Tyr Ile Leu Leu Val Gly		
200	205	210
Tyr Pro Pro Phe Trp Asp Glu Asp Gln His Lys Leu Tyr Gln Gln		
215	220	225
Ile Lys Ala Gly Ala Tyr Asp Phe Pro Ser Pro Glu Trp Asp Thr		
230	235	240
Val Thr Pro Glu Ala Lys Asn Leu Ile Asn Gln Met Leu Thr Ile		
245	250	255
Asn Pro Ala Lys Arg Ile Thr Ala His Glu Ala Leu Lys His Pro		
260	265	270
Trp Val Cys Gln Arg Ser Thr Val Ala Ser Met Met His Arg Gln		
275	280	285
Glu Thr Val Glu Cys Leu Lys Lys Phe Asn Ala Arg Arg Lys Leu		
290	295	300
Lys Gly Ala Ile Leu Thr Thr Met Leu Ala Thr Arg Asn Phe Ser		
305	310	315
Ala Ala Lys Ser Leu Leu Asn Lys Lys Ala Asp Gly Val Lys Pro		
320	325	330
His Thr Asn Ser Thr Lys Asn Ser Ala Ala Ala Thr Ser Pro Lys		
335	340	345
Gly Thr Leu Pro Pro Ala Ala Leu Glu Ser Ser Asp Ser Ala Asn		
350	355	360
Thr Thr Ile Glu Asp Glu Asp Ala Lys Ala Arg Lys Gln Glu Ile		
365	370	375
Ile Lys Thr Thr Glu Gln Leu Ile Glu Ala Val Asn Asn Gly Asp		
380	385	390
Phe Glu Ala Tyr Ala Lys Ile Cys Asp Pro Gly Leu Thr Ser Phe		
395	400	405
Glu Pro Glu Ala Leu Gly Asn Leu Val Glu Gly Met Asp Phe His		
410	415	420
Arg Phe Tyr Phe Glu Asn Leu Leu Ala Lys Asn Ser Lys Pro Ile		
425	430	435
His Thr Thr Ile Leu Asn Pro His Val His Val Ile Gly Glu Asp		
440	445	450
Ala Ala Cys Ile Ala Tyr Ile Arg Leu Thr Gln Tyr Ile Asp Gly		
455	460	465
Gln Gly Arg Pro Arg Thr Ser Gln Ser Glu Glu Thr Arg Val Trp		

	470	475	480
His Arg Arg Asp	Gly Lys Trp Gln Asn Val His Phe His Cys Ser		
	485	490	495
Gly Ala Pro Val	Ala Pro Leu Gln		
	500		

<210> 19
<211> 433
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 1512656

<400> 19

Met Thr Gly Glu Ala Gln Ala Gly Arg Lys Arg Ser Arg Ala Arg			
1	5	10	15
Pro Glu Gly Thr Glu Pro Val Arg Arg Glu Arg Thr Gln Pro Gly			
20	25	30	
Leu Gly Pro Gly Arg Ala Arg Ala Met Ala Ala Glu Ala Thr Ala			
35	40	45	
Val Ala Gly Ser Gly Ala Val Gly Gly Cys Leu Ala Lys Asp Gly			
50	55	60	
Leu Gln Gln Ser Lys Cys Pro Asp Thr Thr Pro Lys Arg Arg Arg			
65	70	75	
Ala Ser Ser Leu Ser Arg Asp Ala Glu Arg Arg Ala Tyr Gln Trp			
80	85	90	
Cys Arg Glu Tyr Leu Gly Gly Ala Trp Arg Arg Val Gln Pro Glu			
95	100	105	
Glu Leu Arg Val Tyr Pro Val Ser Gly Gly Leu Ser Asn Leu Leu			
110	115	120	
Phe Arg Cys Ser Leu Pro Asp His Leu Pro Ser Val Gly Glu Glu			
125	130	135	
Pro Arg Glu Val Leu Leu Arg Leu Tyr Gly Ala Ile Leu Gln Gly			
140	145	150	
Val Asp Ser Leu Val Leu Glu Ser Val Met Phe Ala Ile Leu Ala			
155	160	165	
Glu Arg Ser Leu Gly Pro Gln Leu Tyr Gly Val Phe Pro Glu Gly			
170	175	180	
Arg Leu Glu Gln Tyr Ile Pro Ser Arg Pro Leu Lys Thr Gln Glu			
185	190	195	
Leu Arg Glu Pro Val Leu Ser Ala Ala Ile Ala Thr Lys Met Ala			
200	205	210	
Gln Phe His Gly Met Glu Met Pro Phe Thr Lys Glu Pro His Trp			
215	220	225	
Leu Phe Gly Thr Met Glu Arg Tyr Leu Lys Gln Ile Gln Asp Leu			
230	235	240	
Pro Pro Thr Gly Leu Pro Glu Met Asn Leu Leu Glu Met Tyr Ser			
245	250	255	
Leu Lys Asp Glu Met Gly Asn Leu Arg Lys Leu Leu Glu Ser Thr			
260	265	270	
Pro Ser Pro Val Val Phe Cys His Asn Asp Ile Gln Glu Gly Asn			

275	280	285
Ile Leu Leu Leu Ser Glu Pro Glu Asn Ala Asp Ser Leu Met	Leu	
290	295	300
Val Asp Phe Glu Tyr Ser Ser Tyr Asn Tyr Arg Gly Phe Asp	Ile	
305	310	315
Gly Asn His Phe Cys Glu Trp Val Tyr Asp Tyr Thr His Glu	Glu	
320	325	330
Trp Pro Phe Tyr Lys Ala Arg Pro Thr Asp Tyr Pro Thr Gln	Glu	
335	340	345
Gln Gln Leu His Phe Ile Arg His Tyr Leu Ala Glu Ala Lys	Lys	
350	355	360
Gly Glu Thr Leu Ser Gln Glu Glu Gln Arg Lys Leu Glu Glu	Asp	
365	370	375
Leu Leu Val Glu Val Ser Arg Tyr Ala Leu Ala Ser His Phe	Phe	
380	385	390
Trp Gly Leu Trp Ser Ile Leu Gln Ala Ser Met Ser Thr Ile	Glu	
395	400	405
Phe Gly Tyr Leu Asp Tyr Ala Gln Ser Arg Phe Gln Phe Tyr	Phe	
410	415	420
Gln Gln Lys Gly Gln Leu Thr Ser Val His Ser Ser Ser		
425	430	

<210> 20
<211> 527
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 2098635

<400> 20		
Met Ser Leu Cys Gly Ala Arg Ala Asn Ala Lys Met Met Ala		
1 5 10 15		
Tyr Asn Gly Gly Thr Ser Ala Ala Ala Ala Gly His His His		
20 25 30		
His His His His Leu Pro His Leu Pro Pro Pro His Leu Leu His		
35 40 45		
His His His Pro Gln His His Leu His Pro Gly Ser Ala Ala Ala		
50 55 60		
Val His Pro Val Gln Gln His Thr Ser Ser Ala Ala Ala Ala		
65 70 75		
Ala Ala Ala Ala Ala Ala Ala Met Leu Asn Pro Gly Gln Gln		
80 85 90		
Gln Pro Tyr Phe Pro Ser Pro Ala Pro Gly Gln Ala Pro Gly Pro		
95 100 105		
Ala Ala Ala Ala Pro Ala Gln Val Gln Ala Ala Ala Ala Thr		
110 115 120		
Val Lys Ala His His His Gln His Ser His His Pro Gln Gln Gln		
125 130 135		
Leu Asp Ile Glu Pro Asp Arg Pro Ile Gly Tyr Gly Ala Phe Gly		
140 145 150		
Val Val Trp Ser Val Thr Asp Pro Arg Asp Gly Lys Arg Val Ala		
155 160 165		
Leu Lys Lys Met Pro Asn Val Phe Gln Asn Leu Val Ser Cys Lys		

	170	175	180
Arg Val Phe Arg	Glu Leu Lys Met Leu	Cys Phe Phe Lys His Asp	
	185	190	195
Asn Val Leu Ser	Ala Leu Asp Ile Leu	Gln Pro Pro His Ile Asp	
	200	205	210
Tyr Phe Glu Glu	Ile Tyr Val Val Thr	Glu Leu Met Gln Ser Asp	
	215	220	225
Leu His Lys Ile	Ile Val Ser Pro Gln	Pro Leu Ser Ser Asp His	
	230	235	240
Val Lys Val Phe	Leu Tyr Gln Ile Leu	Arg Gly Leu Lys Tyr Leu	
	245	250	255
His Ser Ala Gly	Ile Leu His Arg Asp	Ile Lys Pro Gly Asn Leu	
	260	265	270
Leu Val Asn Ser	Asn Cys Val Leu Lys	Ile Cys Asp Phe Gly Leu	
	275	280	285
Ala Arg Val Glu	Glu Leu Asp Glu Ser	Arg His Met Thr Gln Glu	
	290	295	300
Val Val Thr Gln	Tyr Tyr Arg Ala Pro	Glu Ile Leu Met Gly Ser	
	305	310	315
Arg His Tyr Ser	Asn Ala Ile Asp Ile	Trp Ser Val Gly Cys Ile	
	320	325	330
Phe Ala Glu Leu	Leu Gly Arg Arg Ile	Leu Phe Gln Ala Gln Ser	
	335	340	345
Pro Ile Gln Gln	Leu Asp Leu Ile Thr	Asp Leu Leu Gly Thr Pro	
	350	355	360
Ser Leu Glu Ala	Met Arg Thr Ala Cys	Glu Gly Ala Lys Ala His	
	365	370	375
Ile Leu Arg Gly	Pro His Lys Gln Pro	Ser Leu Pro Val Leu Tyr	
	380	385	390
Thr Leu Ser Ser	Gln Ala Thr His Glu	Ala Val His Leu Leu Cys	
	395	400	405
Arg Met Leu Val	Phe Asp Pro Ser Lys	Arg Ile Ser Ala Lys Asp	
	410	415	420
Ala Leu Ala His	Pro Tyr Leu Asp Glu	Gly Arg Leu Arg Tyr His	
	425	430	435
Thr Cys Met Cys	Lys Cys Cys Phe Ser	Thr Ser Thr Gly Arg Val	
	440	445	450
Tyr Thr Ser Asp	Phe Glu Pro Val Thr	Asn Pro Lys Phe Asp Asp	
	455	460	465
Thr Phe Glu Lys	Asn Leu Ser Ser Val	Arg Gln Val Lys Glu Ile	
	470	475	480
Ile His Gln Phe	Ile Leu Glu Gln Gln	Lys Gly Asn Arg Val Pro	
	485	490	495
Leu Cys Ile Asn	Pro Gln Ser Ala Ala	Phe Lys Ser Phe Ile Ser	
	500	505	510
Ser Thr Val Ala	Gln Pro Ser Glu Met	Pro Pro Ser Pro Leu Val	
	515	520	525
Trp Glu			

<210> 21
<211> 322
<212> PRT
<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone Number: 2446646

<400> 21

Met	Glu	Gly	Ile	Ser	Asn	Phe	Lys	Thr	Pro	Ser	Lys	Leu	Ser	Glu
1									10					15
Lys	Lys	Lys	Ser	Val	Leu	Cys	Ser	Thr	Pro	Thr	Ile	Asn	Ile	Pro
									20	25				30
Ala	Ser	Pro	Phe	Met	Gln	Lys	Leu	Gly	Phe	Gly	Thr	Gly	Val	Asn
									35	40				45
Val	Tyr	Leu	Met	Lys	Arg	Ser	Pro	Arg	Gly	Leu	Ser	His	Ser	Pro
									50	55				60
Trp	Ala	Val	Lys	Lys	Ile	Asn	Pro	Ile	Cys	Asn	Asp	His	Tyr	Arg
									65	70				75
Ser	Val	Tyr	Gln	Lys	Arg	Leu	Met	Asp	Glu	Ala	Lys	Ile	Leu	Lys
									80	85				90
Ser	Leu	His	His	Pro	Asn	Ile	Val	Gly	Tyr	Arg	Ala	Phe	Thr	Glu
									95	100				105
Ala	Asn	Asp	Gly	Ser	Leu	Cys	Leu	Ala	Met	Glu	Tyr	Gly	Gly	Glu
									110	115				120
Lys	Ser	Leu	Asn	Asp	Leu	Ile	Glu	Glu	Arg	Tyr	Lys	Ala	Ser	Gln
									125	130				135
Asp	Pro	Phe	Pro	Ala	Ala	Ile	Ile	Leu	Lys	Val	Ala	Leu	Asn	Met
									140	145				150
Ala	Arg	Gly	Leu	Lys	Tyr	Leu	His	Gln	Glu	Lys	Lys	Leu	Leu	His
									155	160				165
Gly	Asp	Ile	Lys	Ser	Ser	Asn	Val	Val	Ile	Lys	Gly	Asp	Phe	Glu
									170	175				180
Thr	Ile	Lys	Ile	Cys	Asp	Val	Gly	Val	Ser	Leu	Pro	Leu	Asp	Glu
									185	190				195
Asn	Met	Thr	Val	Thr	Asp	Pro	Glu	Ala	Cys	Tyr	Ile	Gly	Thr	Glu
									200	205				210
Pro	Trp	Lys	Pro	Lys	Glu	Ala	Val	Glu	Glu	Asn	Gly	Val	Ile	Thr
									215	220				225
Asp	Lys	Ala	Asp	Ile	Phe	Ala	Phe	Gly	Leu	Thr	Leu	Trp	Glu	Met
									230	235				240
Met	Thr	Leu	Ser	Ile	Pro	His	Ile	Asn	Leu	Ser	Asn	Asp	Asp	Asp
									245	250				255
Asp	Glu	Asp	Lys	Thr	Phe	Asp	Glu	Ser	Asp	Phe	Asp	Asp	Glu	Ala
									260	265				270
Tyr	Tyr	Ala	Ala	Leu	Gly	Thr	Arg	Pro	Pro	Ile	Asn	Met	Glu	Glu
									275	280				285
Leu	Asp	Glu	Ser	Tyr	Gln	Lys	Val	Ile	Glu	Leu	Phe	Ser	Val	Cys
									290	295				300
Thr	Asn	Glu	Asp	Pro	Lys	Asp	Arg	Pro	Ser	Ala	Ala	His	Ile	Val
									305	310				315
Glu	Ala	Leu	Glu	Thr	Asp	Val								
									320					

<210> 22

<211> 802

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone Number: 2764911

<400> 22

Met	Glu	Glu	Glu	Gly	Gly	Ser	Ser	Gly	Gly	Ala	Ala	Gly	Thr	Ser
1				5				10					15	
Ala	Asp	Gly	Gly	Asp	Gly	Gly	Glu	Gln	Leu	Leu	Thr	Val	Lys	His
				20					25				30	
Glu	Leu	Arg	Thr	Ala	Asn	Leu	Thr	Gly	His	Ala	Glu	Lys	Val	Gly
				35				40				45		
Ile	Glu	Asn	Phe	Glu	Leu	Leu	Lys	Val	Leu	Gly	Thr	Gly	Ala	Tyr
				50				55				60		
Gly	Lys	Val	Phe	Leu	Val	Arg	Lys	Ile	Ser	Gly	His	Asp	Thr	Gly
				65				70				75		
Lys	Leu	Tyr	Ala	Met	Lys	Val	Leu	Lys	Lys	Ala	Thr	Ile	Val	Gln
				80				85				90		
Lys	Ala	Lys	Thr	Thr	Glu	His	Thr	Arg	Thr	Glu	Arg	Gln	Val	Leu
				95				100				105		
Glu	His	Ile	Arg	Gln	Ser	Pro	Phe	Leu	Val	Thr	Leu	His	Tyr	Ala
				110				115				120		
Phe	Gln	Thr	Glu	Thr	Lys	Leu	His	Leu	Ile	Leu	Asp	Tyr	Ile	Asn
				125				130				135		
Gly	Gly	Glu	Leu	Phe	Thr	His	Leu	Ser	Gln	Arg	Glu	Arg	Phe	Thr
				140				145				150		
Glu	His	Glu	Val	Gln	Ile	Tyr	Val	Gly	Glu	Ile	Val	Leu	Ala	Leu
				155				160				165		
Glu	His	Leu	His	Lys	Leu	Gly	Ile	Ile	Tyr	Arg	Asp	Ile	Lys	Leu
				170				175				180		
Glu	Asn	Ile	Leu	Leu	Asp	Ser	Asn	Gly	His	Val	Val	Leu	Thr	Asp
				185				190				195		
Phe	Gly	Leu	Ser	Lys	Glu	Phe	Val	Ala	Asp	Glu	Thr	Glu	Arg	Ala
				200				205				210		
Tyr	Ser	Phe	Cys	Gly	Thr	Ile	Glu	Tyr	Met	Ala	Pro	Asp	Ile	Val
				215				220				225		
Arg	Gly	Gly	Asp	Ser	Gly	His	Asp	Lys	Ala	Val	Asp	Trp	Trp	Ser
				230				235				240		
Leu	Gly	Val	Leu	Met	Tyr	Glu	Leu	Leu	Thr	Gly	Ala	Ser	Pro	Phe
				245				250				255		
Thr	Val	Asp	Gly	Glu	Lys	Asn	Ser	Gln	Ala	Glu	Ile	Ser	Arg	Arg
				260				265				270		
Ile	Leu	Lys	Ser	Glu	Pro	Pro	Tyr	Pro	Gln	Glu	Met	Ser	Ala	Leu
				275				280				285		
Ala	Lys	Asp	Leu	Ile	Gln	Arg	Leu	Leu	Met	Lys	Asp	Pro	Lys	Lys
				290				295				300		
Arg	Leu	Gly	Cys	Gly	Pro	Arg	Asp	Ala	Asp	Glu	Ile	Lys	Glu	His
				305				310				315		
Leu	Phe	Phe	Gln	Lys	Ile	Asn	Trp	Asp	Asp	Leu	Ala	Ala	Lys	Lys
				320				325				330		
Val	Pro	Ala	Pro	Phe	Lys	Pro	Val	Ile	Arg	Asp	Glu	Leu	Asp	Val
				335				340				345		
Ser	Asn	Phe	Ala	Glu	Glu	Phe	Thr	Glu	Met	Asp	Pro	Thr	Tyr	Ser
				350				355				360		
Pro	Ala	Ala	Leu	Pro	Gln	Ser	Ser	Glu	Lys	Leu	Phe	Gln	Gly	Tyr
				365				370				375		
Ser	Phe	Val	Ala	Pro	Ser	Ile	Leu	Phe	Lys	Arg	Asn	Ala	Ala	Val
				380				385				390		
Ile	Asp	Pro	Leu	Gln	Phe	His	Met	Gly	Val	Glu	Arg	Pro	Gly	Val

395	400	405
Thr Asn Val Ala Arg Ser Ala Met Met	Lys Asp Ser Pro Phe	Tyr
410	415	420
Gln His Tyr Asp Leu Asp Leu Lys Asp	Lys Pro Leu Gly Glu	Gly
425	430	435
Ser Phe Ser Ile Cys Arg Lys Cys Val	His Lys Lys Ser Asn	Gln
440	445	450
Ala Phe Ala Val Lys Ile Ile Ser Lys	Arg Met Glu Ala Asn	Thr
455	460	465
Gln Lys Glu Ile Thr Ala Leu Glu Leu	Cys Glu Gly His Pro	Asn
470	475	480
Ile Val Lys Leu His Glu Val Phe His	Asp Gln Leu His Thr	Phe
485	490	495
Leu Val Met Glu Leu Leu Asn Gly Gly	Glu Leu Phe Glu Arg	Ile
500	505	510
Lys Lys Lys His Phe Ser Glu Thr	Glu Ala Ser Tyr	Ile Met
515	520	525
Arg Lys Leu Val Ser Ala Val Ser His	Met His Asp Val Gly	Val
530	535	540
Val His Arg Asp Leu Lys Pro Glu Asn	Leu Leu Phe Thr Asp	Glu
545	550	555
Asn Asp Asn Leu Glu Ile Lys Ile Asp	Phe Gly Phe Ala Arg	
560	565	570
Leu Lys Pro Pro Asp Asn Gln Pro Leu	Lys Thr Pro Cys Phe	Thr
575	580	585
Leu His Tyr Ala Ala Pro Glu Leu Leu	Asn Gln Asn Gly Tyr	Asp
590	595	600
Glu Ser Cys Asp Leu Trp Ser Leu Gly	Val Ile Leu Tyr Thr	Met
605	610	615
Leu Ser Gly Gln Val Pro Phe Gln Ser	His Asp Arg Ser Leu	Thr
620	625	630
Cys Thr Ser Ala Val Glu Ile Met Lys	Ile Lys Lys Gly Asp	
635	640	645
Phe Ser Phe Glu Gly Glu Ala Trp Lys	Asn Val Ser Gln Glu	Ala
650	655	660
Lys Asp Leu Ile Gln Gly Leu Leu Thr	Val Asp Pro Asn Lys	Arg
665	670	675
Leu Lys Met Ser Gly Leu Arg Tyr Asn	Glu Trp Leu Gln Asp	Gly
680	685	690
Ser Gln Leu Ser Ser Asn Pro Leu Met	Thr Pro Asp Ile Leu	Gly
695	700	705
Ser Ser Gly Ala Ala Val His Thr Cys	Val Lys Ala Thr Phe	His
710	715	720
Ala Phe Asn Lys Tyr Lys Arg Glu Gly	Phe Cys Leu Gln Asn	Val
725	730	735
Asp Lys Ala Pro Leu Ala Lys Arg Arg	Lys Met Lys Lys Thr	Ser
740	745	750
Thr Ser Thr Glu Thr Arg Ser Ser Ser	Ser Glu Ser Ser His	Ser
755	760	765
Ser Ser Ser His Ser His Gly Lys Thr	Thr Pro Thr Lys Thr	Leu
770	775	780
Gln Pro Ser Asn Pro Ala Asp Ser Asn	Asn Pro Glu Thr Leu	Phe
785	790	795
Gln Phe Ser Asp Ser Val Ala		
800		

<210> 23
<211> 641
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 3013946

<400> 23

Met	Ala	Thr	Thr	Val	Thr	Cys	Thr	Arg	Phe	Thr	Asp	Glu	Tyr	Gln
1														15
Leu	Tyr	Glu	Asp	Ile	Gly	Lys	Gly	Ala	Phe	Ser	Val	Val	Arg	Arg
														30
				20						25				
Cys	Val	Lys	Leu	Cys	Thr	Gly	His	Glu	Tyr	Ala	Ala	Lys	Ile	Ile
														45
				35				40						
Asn	Thr	Lys	Lys	Leu	Ser	Ala	Arg	Asp	His	Gln	Lys	Leu	Glu	Arg
														60
				50				55						
Glu	Ala	Arg	Ile	Cys	Arg	Leu	Leu	Lys	His	Ser	Asn	Ile	Val	Arg
														75
				65				70						
Leu	His	Asp	Ser	Ile	Ser	Glu	Glu	Gly	Phe	His	Tyr	Leu	Val	Phe
														90
				80				85						
Asp	Leu	Val	Thr	Gly	Gly	Glu	Leu	Phe	Glu	Asp	Ile	Val	Ala	Arg
														105
				95				100						
Glu	Tyr	Tyr	Ser	Glu	Ala	Asp	Ala	Ser	His	Cys	Ile	Gln	Gln	Ile
														120
				110				115						
Leu	Glu	Ala	Val	Leu	His	Cys	His	Gln	Met	Gly	Val	Val	His	Arg
														135
				125				130						
Asp	Leu	Lys	Pro	Glu	Asn	Leu	Leu	Leu	Ala	Ser	Lys	Cys	Lys	Gly
														150
				140				145						
Ala	Ala	Val	Lys	Leu	Ala	Asp	Phe	Gly	Leu	Ala	Ile	Glu	Val	Gln
														165
				155				160						
Gly	Asp	Gln	Gln	Ala	Trp	Phe	Gly	Phe	Ala	Gly	Thr	Pro	Gly	Tyr
														180
				170				175						
Leu	Ser	Pro	Glu	Val	Leu	Arg	Lys	Glu	Ala	Tyr	Gly	Lys	Pro	Val
														195
				185				190						
Asp	Ile	Trp	Ala	Cys	Gly	Val	Ile	Leu	Tyr	Ile	Leu	Leu	Val	Gly
														210
				200				205						
Tyr	Pro	Pro	Phe	Trp	Asp	Glu	Asp	Gln	His	Lys	Leu	Tyr	Gln	Gln
														225
				215				220						
Ile	Lys	Ala	Gly	Ala	Tyr	Asp	Phe	Pro	Ser	Pro	Glu	Trp	Asp	Thr
														240
				230				235						
Val	Thr	Pro	Glu	Ala	Lys	Asn	Leu	Ile	Asn	Gln	Met	Leu	Thr	Ile
														255
				245				250						
Asn	Pro	Ala	Lys	Arg	Ile	Thr	Ala	His	Glu	Ala	Leu	Lys	His	Pro
														270
				260				265						
Trp	Val	Cys	Gln	Arg	Ser	Thr	Val	Ala	Ser	Met	Met	His	Arg	Gln
														285
				275				280						
Glu	Thr	Val	Glu	Cys	Leu	Lys	Lys	Phe	Asn	Ala	Arg	Arg	Lys	Leu
														300
				290				295						
Lys	Gly	Ala	Ile	Leu	Thr	Thr	Met	Leu	Ala	Thr	Arg	Asn	Phe	Ser
														315
				305				310						
Ala	Lys	Ser	Leu	Leu	Asn	Lys	Lys	Ala	Asp	Gly	Val	Lys	Pro	Gln
														330
				320				325						
Thr	Asn	Ser	Thr	Lys	Asn	Ser	Ala	Ala	Ala	Thr	Ser	Pro	Lys	Gly
														345
				335				340						

Thr Leu Pro Pro Ala Ala Leu Glu Pro Gln Thr Thr Val Ile His
 350 355 360
 Asn Pro Val Asp Gly Ile Lys Glu Ser Ser Asp Ser Ala Asn Thr
 365 370 375
 Thr Ile Glu Asp Glu Asp Ala Lys Ala Pro Arg Val Pro Asp Ile
 380 385 390
 Leu Ser Ser Val Arg Arg Gly Ser Gly Ala Pro Glu Ala Glu Gly
 395 400 405
 Pro Leu Pro Cys Pro Ser Pro Ala Pro Phe Gly Pro Leu Pro Ala
 410 415 420
 Pro Ser Pro Arg Ile Ser Asp Ile Leu Asn Ser Val Arg Arg Gly
 425 430 435
 Ser Gly Thr Pro Glu Ala Glu Gly Pro Leu Ser Ala Gly Pro Pro
 440 445 450
 Pro Cys Leu Ser Pro Ala Leu Leu Gly Pro Leu Ser Ser Pro Ser
 455 460 465
 Pro Arg Ile Ser Asp Ile Leu Asn Ser Val Arg Arg Gly Ser Gly
 470 475 480
 Thr Pro Glu Ala Lys Gly Pro Ser Pro Val Gly Pro Pro Pro Cys
 485 490 495
 Pro Ser Pro Thr Ile Pro Gly Pro Leu Pro Thr Pro Ser Arg Lys
 500 505 510
 Gln Glu Ile Ile Lys Thr Thr Glu Gln Leu Ile Glu Ala Val Asn
 515 520 525
 Asn Gly Asp Phe Glu Ala Tyr Ala Lys Ile Cys Asp Pro Gly Leu
 530 535 540
 Thr Ser Phe Glu Pro Glu Ala Leu Gly Asn Leu Val Glu Gly Met
 545 550 555
 Asp Phe His Arg Phe Tyr Phe Glu Asn Leu Leu Ala Lys Asn Ser
 560 565 570
 Lys Pro Ile His Thr Thr Ile Leu Asn Pro His Val His Val Ile
 575 580 585
 Gly Glu Asp Ala Ala Cys Ile Ala Tyr Ile Arg Leu Thr Gln Tyr
 590 595 600
 Ile Asp Gly Gln Gly Arg Pro Arg Thr Ser Gln Ser Glu Glu Thr
 605 610 615
 Arg Val Trp His Arg Arg Asp Gly Lys Trp Gln Asn Val His Phe
 620 625 630
 His Cys Ser Gly Ala Pro Val Ala Pro Leu Gln
 635 640

<210> 24
 <211> 588
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone Number: 067967

<400> 24
 Met Gly Gly Thr Ala Arg Gly Pro Gly Arg Lys Asp Ala Gly Pro
 1 5 10 15
 Pro Gly Ala Gly Leu Pro Pro Gln Gln Arg Arg Leu Gly Asp Gly
 20 25 30
 Val Tyr Asp Thr Phe Met Met Ile Asp Glu Thr Lys Cys Pro Pro

35	40	45
Cys Ser Asn Val Leu Cys Asn Pro Ser	Glu Pro Pro Ser Pro Arg	
50	55	60
Arg Leu Asn Met Thr Thr Glu Gln Phe	Thr Gly Asp His Thr Gln	
65	70	75
His Phe Leu Asp Gly Gly Glu Met Lys	Val Glu Gln Leu Phe Gln	
80	85	90
Glu Phe Gly Asn Arg Lys Ser Asn Thr	Ile Gln Ser Asp Gly Ile	
95	100	105
Ser Asp Ser Glu Lys Cys Ser Pro Thr	Val Ser Gln Gly Lys Ser	
110	115	120
Ser Asp Cys Leu Asn Thr Val Lys Ser	Asn Ser Ser Ser Lys Ala	
125	130	135
Pro Lys Val Val Pro Leu Thr Pro Glu	Gln Ala Leu Lys Gln Tyr	
140	145	150
Lys His His Leu Thr Ala Tyr Glu Lys	Leu Glu Ile Ile Asn Tyr	
155	160	165
Pro Glu Ile Tyr Phe Val Gly Pro Asn	Ala Lys Lys Arg His Gly	
170	175	180
Val Ile Gly Gly Pro Asn Asn Gly Gly	Tyr Asp Asp Ala Asp Gly	
185	190	195
Ala Tyr Ile His Val Pro Arg Asp His	Leu Ala Tyr Arg Tyr Glu	
200	205	210
Val Leu Lys Ile Ile Gly Lys Gly Ser	Phe Gly Gln Val Ala Arg	
215	220	225
Val Tyr Asp His Lys Leu Arg Gln Tyr	Val Ala Leu Lys Met Val	
230	235	240
Arg Asn Glu Lys Arg Phe His Arg Gln	Ala Ala Glu Glu Ile Arg	
245	250	255
Ile Leu Glu His Leu Lys Lys Gln Asp	Lys Thr Gly Ser Met Asn	
260	265	270
Val Ile His Met Leu Glu Ser Phe Thr	Phe Arg Asn His Val Cys	
275	280	285
Met Ala Phe Glu Leu Leu Ser Ile Asp	Leu Tyr Glu Leu Ile Lys	
290	295	300
Lys Asn Lys Phe Gln Gly Phe Ser Val	Gln Leu Val Arg Lys Phe	
305	310	315
Ala Gln Ser Ile Leu Gln Ser Leu Asp	Ala Leu His Lys Asn Lys	
320	325	330
Ile Ile His Cys Asp Leu Lys Pro Glu	Asn Ile Leu Leu Lys His	
335	340	345
His Gly Arg Ser Ser Thr Lys Val Ile	Asp Phe Gly Ser Ser Cys	
350	355	360
Phe Glu Tyr Gln Lys Leu Tyr Thr Tyr	Ile Gln Ser Arg Phe Tyr	
365	370	375
Arg Ala Pro Glu Ile Ile Leu Gly Ser	Arg Tyr Ser Thr Pro Ile	
380	385	390
Asp Ile Trp Ser Phe Gly Cys Ile Leu	Ala Glu Leu Thr Gly	
395	400	405
Gln Pro Leu Phe Pro Gly Glu Asp Glu	Gly Asp Gln Leu Ala Cys	
410	415	420
Met Met Glu Leu Leu Gly Met Pro Pro	Pro Lys Leu Leu Glu Gln	
425	430	435
Ser Lys Arg Ala Lys Tyr Phe Ile Asn	Ser Lys Gly Ile Pro Arg	
440	445	450
Tyr Cys Ser Val Thr Gln Ala Asp Gly	Arg Val Val Leu Val	

455	460	465
Gly Gly Arg Ser Arg Arg Gly Lys Lys Arg Gly Pro Pro Gly Ser		
470	475	480
Lys Asp Trp Gly Thr Ala Leu Lys Gly Cys Asp Asp Tyr Leu Phe		
485	490	495
Ile Glu Phe Leu Lys Arg Cys Leu His Trp Asp Pro Ser Ala Arg		
500	505	510
Leu Thr Pro Ala Gln Ala Leu Arg His Pro Trp Ile Ser Lys Ser		
515	520	525
Val Pro Arg Pro Leu Thr Thr Ile Asp Lys Val Ser Gly Lys Arg		
530	535	540
Val Val Asn Pro Ala Ser Ala Phe Gln Gly Leu Gly Ser Lys Leu		
545	550	555
Pro Pro Val Val Gly Ile Ala Asn Lys Leu Lys Ala Asn Leu Met		
560	565	570
Ser Glu Thr Asn Gly Ser Ile Pro Leu Cys Ser Val Leu Pro Lys		
575	580	585
Leu Ile Ser		

<210> 25
<211> 389
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 346275

<400> 25			
Met Ser Asp Val Cys Ser Ser Gln Arg Ala Glu His Glu His Leu			
1	5	10	15
Pro Gly Leu Val Pro Pro Pro Ser Gly Met Gly Val Arg Lys Gly			
20	25	30	
Ser Ser Pro Leu Lys Ser His Pro Cys Arg Glu Lys Ser Val Ser			
35	40	45	
Asn Arg Arg Ser Gly Lys Thr Ile Val Arg Ser Ala Val Glu Glu			
50	55	60	
Val Arg Thr Ala Gly Leu Phe Arg Ser Gly Phe Ser Glu Glu Lys			
65	70	75	
Ala Thr Gly Lys Leu Phe Ala Val Lys Cys Ile Pro Lys Lys Ala			
80	85	90	
Leu Lys Gly Lys Glu Ser Ser Ile Glu Asn Glu Ile Ala Val Leu			
95	100	105	
Arg Lys Ile Lys His Glu Asn Ile Val Ala Leu Glu Asp Ile Tyr			
110	115	120	
Glu Ser Pro Asn His Leu Tyr Leu Val Met Gln Leu Val Ser Gly			
125	130	135	
Gly Glu Leu Phe Asp Arg Ile Val Glu Lys Gly Phe Tyr Thr Glu			
140	145	150	
Lys Asp Ala Ser Thr Leu Ile Arg Gln Val Leu Asp Ala Val Tyr			
155	160	165	
Tyr Leu His Arg Met Gly Ile Val His Arg Asp Leu Lys Pro Glu			
170	175	180	
Asn Leu Leu Tyr Tyr Ser Gln Asp Glu Glu Ser Lys Ile Met Ile			
185	190	195	

Ser	Asp	Phe	Gly	Leu	Ser	Lys	Met	Glu	Gly	Lys	Gly	Asp	Val	Met
							200		205					210
Ser	Thr	Ala	Cys	Gly	Thr	Pro	Gly	Tyr	Val	Ala	Pro	Glu	Val	Leu
							215		220					225
Ala	Gln	Lys	Pro	Tyr	Ser	Lys	Ala	Val	Asp	Cys	Trp	Ser	Ile	Gly
							230		235					240
Val	Ile	Ala	Tyr	Ile	Leu	Leu	Cys	Gly	Tyr	Pro	Pro	Phe	Tyr	Asp
							245		250					255
Glu	Asn	Asp	Ser	Lys	Leu	Phe	Glu	Gln	Ile	Leu	Lys	Ala	Glu	Tyr
							260		265					270
Glu	Phe	Asp	Ser	Pro	Tyr	Trp	Asp	Asp	Ile	Ser	Asp	Ser	Ala	Lys
							275		280					285
Asp	Phe	Ile	Arg	Asn	Leu	Met	Glu	Lys	Asp	Pro	Asn	Lys	Arg	Tyr
							290		295					300
Thr	Cys	Glu	Gln	Ala	Ala	Arg	His	Pro	Trp	Ile	Ala	Gly	Asp	Thr
							305		310					315
Ala	Leu	Asn	Lys	Asn	Ile	His	Glu	Ser	Val	Ser	Ala	Gln	Ile	Arg
							320		325					330
Lys	Asn	Phe	Ala	Lys	Ser	Lys	Trp	Arg	Gln	Ala	Phe	Asn	Ala	Thr
							335		340					345
Ala	Val	Val	Arg	His	Met	Arg	Lys	Leu	His	Leu	Gly	Ser	Ser	Leu
							350		355					360
Asp	Ser	Ser	Asn	Ala	Ser	Val	Ser	Ser	Ser	Leu	Ser	Leu	Ala	Ser
							365		370					375
Gln	Lys	Asp	Cys	Ala	Tyr	Val	Ala	Lys	Pro	Glu	Ser	Leu	Ser	
							380		385					

<210> 26
<211> 343
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 283746

<400> 26														
Met	Ile	Gly	Glu	Glu	Ala	Met	Ile	Asn	Tyr	Glu	Asn	Phe	Leu	Lys
1						5				10				15
Val	Gly	Glu	Lys	Ala	Gly	Ala	Lys	Cys	Lys	Gln	Phe	Phe	Thr	Ala
							20			25				30
Lys	Val	Phe	Ala	Lys	Leu	Leu	His	Thr	Asp	Ser	Tyr	Gly	Arg	Ile
							35			40				45
Ser	Ile	Met	Gln	Phe	Phe	Asn	Tyr	Val	Met	Arg	Lys	Val	Trp	Leu
							50			55				60
His	Gln	Thr	Arg	Ile	Gly	Leu	Ser	Leu	Tyr	Asp	Val	Ala	Gly	Gln
							65			70				75
Gly	Tyr	Leu	Arg	Glu	Ser	Asp	Leu	Glu	Asn	Tyr	Ile	Leu	Glu	Leu
							80			85				90
Ile	Pro	Thr	Leu	Pro	Gln	Leu	Asp	Gly	Leu	Glu	Lys	Ser	Phe	Tyr
							95			100				105
Ser	Phe	Tyr	Val	Cys	Thr	Ala	Val	Arg	Lys	Phe	Phe	Phe	Phe	Leu
							110			115				120
Asp	Pro	Leu	Arg	Thr	Gly	Lys	Ile	Lys	Ile	Gln	Asp	Ile	Leu	Ala
							125			130				135

Cys Ser Phe Leu Asp Asp Leu Leu Glu Leu Arg Asp Glu Glu Leu
 140 145 150
 Ser Lys Glu Ser Gln Glu Thr Asn Trp Phe Ser Ala Pro Ser Ala
 155 160 165
 Leu Arg Val Tyr Gly Gln Tyr Leu Asn Leu Asp Lys Asp His Asn
 170 175 180
 Gly Met Leu Ser Lys Glu Glu Leu Ser Arg Tyr Gly Thr Ala Thr
 185 190 195
 Met Thr Asn Val Phe Leu Asp Arg Val Phe Gln Glu Cys Leu Thr
 200 205 210
 Tyr Asp Gly Glu Met Asp Tyr Lys Thr Tyr Leu Asp Phe Val Leu
 215 220 225
 Ala Leu Glu Asn Arg Lys Glu Pro Ala Ala Leu Gln Tyr Ile Phe
 230 235 240
 Lys Leu Leu Asp Ile Glu Asn Lys Gly Tyr Leu Asn Val Phe Ser
 245 250 255
 Leu Asn Tyr Phe Phe Arg Ala Ile Gln Glu Leu Met Lys Ile His
 260 265 270
 Gly Gln Asp Pro Val Ser Phe Gln Asp Val Lys Asp Glu Ile Phe
 275 280 285
 Asp Met Val Lys Pro Lys Asp Pro Leu Lys Ile Ser Leu Gln Asp
 290 295 300
 Leu Ile Asn Ser Asn Gln Gly Asp Thr Val Thr Thr Ile Leu Ile
 305 310 315
 Asp Leu Asn Gly Phe Trp Thr Tyr Glu Asn Arg Glu Ala Leu Val
 320 325 330
 Ala Asn Asp Ser Glu Asn Ser Ala Asp Leu Asp Asp Thr
 335 340

<210> 27
 <211> 184
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone Number: 2696537

<400> 27

Met	Gly	Asn	Gly	Met	Asn	Lys	Ile	Leu	Pro	Gly	Leu	Tyr	Ile	Gly
1				5			10			15				
Asn	Phe	Lys	Asp	Ala	Arg	Asp	Ala	Glu	Gln	Leu	Ser	Lys	Asn	Lys
	20						25			30				
Val	Thr	His	Ile	Leu	Ser	Val	His	Asp	Ser	Ala	Arg	Pro	Met	Leu
	35						40			45				
Glu	Gly	Val	Lys	Tyr	Leu	Cys	Ile	Pro	Ala	Ala	Asp	Ser	Pro	Ser
	50						55			60				
Gln	Asn	Leu	Thr	Arg	His	Phe	Lys	Glu	Ser	Ile	Lys	Phe	Ile	His
	65						70			75				
Glu	Cys	Arg	Leu	Arg	Gly	Glu	Ser	Cys	Leu	Val	His	Cys	Leu	Ala
	80						85			90				
Gly	Val	Ser	Arg	Ser	Val	Thr	Leu	Val	Ile	Ala	Tyr	Ile	Met	Thr
	95						100			105				
Val	Thr	Asp	Phe	Gly	Trp	Glu	Asp	Ala	Leu	His	Thr	Val	Arg	Ala
	110						115			120				

Gly Arg Ser Cys Ala Asn Pro Asn Val Gly Phe Gln Arg Gln Leu
 125 130 135
 Gln Glu Phe Glu Lys His Glu Val His Gln Tyr Arg Gln Trp Leu
 140 145 150
 Lys Glu Glu Tyr Gly Glu Ser Pro Leu Gln Asp Ala Glu Glu Ala
 155 160 165
 Lys Asn Ile Leu Ala Ala Pro Gly Ile Leu Lys Phe Trp Ala Phe
 170 175 180
 Leu Arg Arg Leu

<210> 29
<211> 118
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 619292

<400> 29
Met Gly Leu Ile Asp Gly Met His Thr His Leu Gly Ala Pro Gly
 1 5 10 15
 Leu Tyr Ile Gln Thr Leu Leu Pro Gly Ser Pro Ala Ala Ala Asp
 20 25 30
 Gly Arg Leu Ser Leu Gly Asp Arg Ile Leu Glu Val Asn Gly Ser
 35 40 45
 Ser Leu Leu Gly Leu Gly Tyr Leu Arg Ala Val Asp Leu Ile Arg
 50 55 60
 His Gly Gly Lys Lys Met Arg Phe Leu Val Ala Lys Ser Asp Val
 65 70 75
 Gly Lys Gln Pro Arg Arg Ser Ile Ser Ala Arg Pro Leu Ser Arg
 80 85 90
 Gly Ala Ala Arg Thr Pro Pro Gln Ala Arg His Pro Val Pro Pro
 95 100 105
 Gly Asp Thr Gly Leu Pro Pro Ala Phe Val Pro Val Leu
 110 115

<210> 30
<211> 356
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 2054049

<400> 30
Met Val Gly Val Ser Gly Lys Arg Ser Lys Glu Asp Glu Lys Tyr
 1 5 10 15
 Leu Gln Ala Ile Met Asp Ser Asn Ala Gln Ser His Lys Ile Phe
 20 25 30
 Ile Phe Asp Ala Arg Pro Ser Val Asn Ala Val Ala Asn Lys Ala
 35 40 45
 Lys Gly Gly Gly Tyr Glu Ser Glu Asp Ala Tyr Gln Asn Ala Glu

50	55	60
Leu Val Phe Leu Asp Ile His Asn Ile His Val Met Arg Glu Ser		
65	70	75
Leu Arg Lys Leu Lys Glu Ile Val Tyr Pro Asn Ile Glu Glu Thr		
80	85	90
His Trp Leu Ser Asn Leu Glu Ser Thr His Trp Leu Glu His Ile		
95	100	105
Lys Leu Ile Leu Ala Gly Ala Leu Arg Ile Ala Asp Lys Val Glu		
110	115	120
Ser Gly Lys Thr Ser Val Val Val His Cys Ser Asp Gly Trp Asp		
125	130	135
Arg Thr Ala Gln Leu Thr Ser Leu Ala Met Leu Met Leu Asp Gly		
140	145	150
Tyr Tyr Arg Thr Ile Arg Gly Phe Glu Val Leu Val Glu Lys Glu		
155	160	165
Trp Leu Ser Phe Gly His Arg Phe Gln Leu Arg Val Gly His Gly		
170	175	180
Asp Lys Asn His Ala Asp Ala Asp Arg Ser Pro Val Phe Leu Gln		
185	190	195
Phe Ile Asp Cys Val Trp Gln Met Thr Arg Gln Phe Pro Thr Ala		
200	205	210
Phe Glu Phe Asn Glu Tyr Phe Leu Ile Thr Ile Leu Asp His Leu		
215	220	225
Tyr Ser Cys Leu Phe Gly Thr Phe Leu Cys Asn Ser Glu Gln Gln		
230	235	240
Arg Gly Lys Glu Asn Leu Pro Lys Arg Thr Val Ser Leu Trp Ser		
245	250	255
Tyr Ile Asn Ser Gln Leu Glu Asp Phe Thr Asn Pro Leu Tyr Gly		
260	265	270
Ser Tyr Ser Asn His Val Leu Tyr Pro Val Ala Ser Met Arg His		
275	280	285
Leu Glu Leu Trp Val Gly Tyr Tyr Ile Arg Trp Asn Pro Arg Met		
290	295	300
Lys Pro Gln Glu Pro Ile His Asn Arg Tyr Lys Glu Leu Leu Ala		
305	310	315
Lys Arg Ala Glu Leu Gln Lys Lys Val Glu Glu Leu Gln Arg Glu		
320	325	330
Ile Ser Asn Arg Ser Thr Ser Ser Ser Glu Arg Ala Ser Ser Pro		
335	340	345
Ala Gln Cys Val Thr Pro Val Gln Thr Val Val		
350	355	

<210> 31
<211> 453
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 2843910

<400> 31
Met Ala Gly Ala Gly Gly Phe Gly Cys Pro Ala Gly Gly Asn Asp
1 5 10 15
Phe Gln Trp Cys Phe Ser Gln Val Lys Gly Ala Ile Asp Glu Asp

20	25	.30
Val Ala Glu Ala Asp Ile Ile Ser Thr Val Glu Phe Asn Tyr Ser		
35	40	45
Gly Asp Leu Leu Ala Thr Gly Asp Lys Gly Gly Arg Val Val Ile		
50	55	60
Phe Gln Arg Glu Gln Glu Asn Lys Ser Arg Pro His Ser Arg Gly		
65	70	75
Glu Tyr Asn Val Tyr Ser Thr Phe Gln Ser His Glu Pro Glu Phe		
80	85	90
Asp Tyr Leu Lys Ser Leu Glu Ile Glu Glu Lys Ile Asn Lys Ile		
95	100	105
Arg Trp Leu Pro Gln Gln Asn Ala Ala His Phe Leu Leu Ser Thr		
110	115	120
Asn Asp Lys Thr Ile Lys Leu Trp Lys Ile Ser Glu Arg Asp Lys		
125	130	135
Arg Ala Glu Gly Tyr Asn Leu Lys Asp Glu Asp Gly Arg Leu Arg		
140	145	150
Asp Pro Phe Arg Ile Thr Ala Leu Arg Val Pro Ile Leu Lys Pro		
155	160	165
Met Asp Leu Met Val Glu Ala Ser Pro Arg Arg Ile Phe Ala Asn		
170	175	180
Ala His Thr Tyr His Ile Asn Ser Ile Ser Val Asn Ser Asp His		
185	190	195
Glu Thr Tyr Leu Ser Ala Asp Asp Leu Arg Ile Asn Leu Trp His		
200	205	210
Leu Glu Ile Thr Asp Arg Ser Phe Asn Ile Val Asp Ile Lys Pro		
215	220	225
Ala Asn Met Glu Glu Leu Thr Glu Val Ile Thr Ala Ala Glu Phe		
230	235	240
His Pro His Gln Cys Asn Val Phe Val Tyr Ser Ser Ser Lys Gly		
245	250	255
Thr Ile Arg Leu Cys Asp Met Arg Ser Ser Ala Leu Cys Asp Arg		
260	265	270
His Ser Lys Phe Phe Glu Glu Pro Glu Asp Pro Ser Ser Arg Ser		
275	280	285
Phe Phe Ser Glu Ile Ile Ser Ser Ile Ser Asp Val Lys Phe Ser		
290	295	300
His Ser Gly Arg Tyr Met Met Thr Arg Asp Tyr Leu Ser Val Lys		
305	310	315
Val Trp Asp Leu Asn Met Glu Ser Arg Pro Val Glu Thr His Gln		
320	325	330
Val His Glu Tyr Leu Arg Ser Lys Leu Cys Ser Leu Tyr Glu Asn		
335	340	345
Asp Cys Ile Phe Asp Lys Phe Glu Cys Cys Trp Asn Gly Ser Asp		
350	355	360
Ser Ala Ile Met Thr Gly Ser Tyr Asn Asn Phe Phe Arg Met Phe		
365	370	375
Asp Arg Asp Thr Arg Arg Asp Val Thr Leu Glu Ala Ser Arg Glu		
380	385	390
Ser Ser Lys Pro Arg Ala Ser Leu Lys Pro Arg Lys Val Cys Thr		
395	400	405
Gly Gly Lys Arg Arg Lys Asp Glu Ile Ser Val Asp Ser Leu Asp		
410	415	420
Phe Asn Lys Lys Ile Leu His Thr Ala Trp His Pro Val Asp Asn		
425	430	435
Val Ile Ala Val Ala Ala Thr Asn Asn Leu Tyr Ile Phe Gln Asp		

440 445 450
Lys Ile Asn

<210> 32
<211> 1221
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 132240

<400> 32
ctttcctgg aatttctata atgaaaagtc cattagaaag tcagccctta gattcagata 60
gaagcatcaa agaatctct tttgaagaat caaatattga agatccactt attgtaacac 120
cagattgccs agaaaaagacc tcacccaaag gtgtcgagaa ccctgtgtca aagagagta 180
accaaaaaaat gtttaggtctt ccttggagg tgctgaaaac gtttagctct aaaagaaaatg 240
ctgttgcctt tcgaagttt aacagtata ttaatgcata caataactca gaaccatcca 300
gaatgaacat gacttcttta gatgcaatgg atatttcgtg tgcctacagt gttcatatc 360
ccatggctat aaccctact caaaaaagaa gatcctgtat gccacatcg accccaaatc 420
agatcaagtc gggactcca taccgaactc cgaagagtgt gagaagaggg gtggcccccgg 480
ttgtatgtgg gcaattcta ggaacccccag actaccttc acctgagctg ttactaggca 540
ggcccatgg tcctcggtta gactgggtgg cacttggagt ttgctgttt gaatttctaa 600
caggaattcc cccttcataat gatgaaacac cacaacaatg attccagaat attctgaaaa 660
gagatatccc ttggccagaa ggtgaagaaa agttatctga taatgctcaa agtgcagtag 720
aaatactttt aaccattgtat gatacaaaga gagctggaat gaaagagcta aaacgtcatc 780
ctctcttcag tgatgtggac tggaaaatc tgcaagcatca gactatgcet ttcatcccc 840
agccagatga taaaacagat acctcctatt ttgaagccag gaatactgcet cagcacctga 900
ctgtatctgg atttagtctg tagcacaaaa attttcttt tagtctagcc ttgtgttata 960
gaatgaactt gcataattat atactctta atactagatt gatctaagggg ggaaagatca 1020
ttattnaacc tagtcaatg tgcttttaat gtacgttaca gcttcacag agttaaaagg 1080
ctgaaaggaa tatagtcagt aatttatctt aacctcaaaa ctgtatataa atcttcaaag 1140
ctttttcat ttatttattt tgtttattgc actttatgaa aactgaagca tcaataaaat 1200
tagaggacac taaaaaaaaa a 1221

<210> 33
<211> 542
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 2180116

<400> 33
tggccaggct gggtccagca ggcgcgtggc agctcagcgg ctggcaagc gcgtgctgag 60
caagctgcag tctccatcgc gggccgcgg gcccaggggc agtccggggg ggatgcagaa 120
gcggcacgcg cgctcaccgc tcaagtatga cccggggggc ctgcagcggc ggctggacgt 180
ggagaagtgg atcgacgggc gcctggagga gctgtaccgc ggcatggagg cagacatgcc 240
cgatgagatc aacattgtatc aatttgttggaa gttagagatg gaagaggaga gaagccggaa 300
aatccagggaa ctccctgaatg catgtggaa acctgtcgag gacttcatec aggagctgt 360
ggcaaagctt caaggcctcc acaggcagcc cggccctccgc cagccaaagcc cctccacgca 420
cggcagcctc agccccctcc aggaccgggc cggactgtc caccctgac cctttgcac 480
tctccctgccc ccccgacgc cggccagctt gcttgcgtat aagttgtatt taatggattc 540

tt

542

<210> 34
<211> 2778
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 2548, 2557, 2645, 2722, 2557, 2762, 2765
<223> Incyte Clone Number: 2197671

<400> 34
cgccggatcgt cgccggccgg ccgtccccgtc ccaggaagtg gccgtcctga gcgcgcattggc 60
tcactccccg gtgcagtcgg gcctgcccgg catgcagaac ctaaaaggcag acccagaaga 120
gttttttaca aaactagaga aaattggaa gggctcctt ggagaggtgt tcaaaggcat 180
tgacaatcgg actcagaaaag tgggtgccat aaagatcatt gatctggaaag aagctgaaga 240
tgagatagag gacattcaac aaaaaatcac agtgtcgaat cagtgtgaca gtccatatgt 300
aaccataat tatggatcct atctgaagga tacaaaattt tggataataa tggaaatatct 360
tggtgaggc tccgcactag atctattaga acctggccga ttagatgaaa cccagatcgc 420
tactatatta agagaaaatac tgaaaggact cgattatctc cattcggaga agaaaaatcca 480
cagagacatt aaagcggcca acgtcctgtc gtctgagcat ggcgagggtga agctggcgga 540
cttggcgtg gctggccagc tgacagacac ccagatcaaa aggaacacct tcgtggcac 600
ccattctgg atggcaccccg aggtcatcaa acagtccggc tatgactcga aggccagacat 660
ctggtcctg ggcataaacag ctattgaact tgcaagaggg gaaccacctc attccgagct 720
gcaccccatg aaagtttat tcctcattcc aaagaacaac ccaccgacgt tggaaaggaaa 780
ctacagtaaa cccctcaagg agtttgtgga ggcctgttt aataaggagc cgagctttag 840
acccactgct aaggagttat tgaaggcaca gtttatacta cgcaatgcaa agaaaaacttc 900
ctacttgacc gagtcatcg acaggtacaa gagatggaaag gccgagcaga gccatgacga 960
ctcgagctcc gaggattccg acgcggaaac agatggccaa gcctcggggg gcagtgatc 1020
tggggactgg atcttcacaa tccgagaaaa agatcccaag aatctcgaga atggagctct 1080
tcagccatcg gacttggaca gaaaataagat gaaagacatc ccaaagaggg ctttctctca 1140
gtgtttatct acaattattt ctctctgtt tgcaagagtt aaggagaaga gccaggcgtg 1200
cgaggagaac ttgggttcca ttgaagagct gcgagggggc atctacctag cggaggaggo 1260
gtgccctggc atctccgaca ccatggtggc ccagctcg cagcggctcc agagatactc 1320
tctaagtggt ggaggaactt catccactg aaattcctt ggcatttggg gttttgtttt 1380
tcttttttc ttcttcatc ctccctctt tttaaaagtc aacgagagcc ttctgtact 1440
ccacccgaaga ggtgcggccac tggagccac cccagtgcga ggccgcgcgc cagggacaca 1500
cacagtctc actgtgtgc agccagatga agtctctcag atgggtgggg agggtcagct 1560
ccttccagcg atcattttat ttatatttt tactttgtt tttaattttt accatagtgc 1620
acatattcca gggaaagtgtc tttaaaaaca aaaacaaacc ctgaaatgtt tatttggat 1680
tatgataagg caactaaaga catgaaacact caggtatcct gtttaagtt gataactccc 1740
tctggagct ggagaatcgc tctggatggat ggggttacag atttttatat aatgtcattt 1800
ttacggaaac ctttccggcg tgcatagga atcactgtgt acaaactggc caagtgcctc 1860
tgtagataac gtcagttggag taatattcg acaggccata acttgagtct atgccttgc 1920
cttattaca tgtacatctt gaattctgtg accagtgatt tgggttttat ttgttatttg 1980
cagggtttgtt cattaataat taatgcctt ctcttacaga acactcttat ttgttacctca 2040
acaaatgcaa atttccccg tttccctac gcccctttt gtacacctag aggttgattt 2100
ccttttcat cgatggtaact atttttagt gttttaaatt ggaacatatac ttgcctcatg 2160
aagctttaaa ttataatttt cagttctcc ccatgaageg ctctcgctg acattttgttt 2220
ggaatcgtgc cactgtgtt ctgcggccaga tgcgttgc tttccaaatac gattttctgt 2280
tgcaccttgc agtggattct gcatatcattt tttccacact aaaaatgtct gaatgttac 2340
acaaataaat ttataaacac gcttattttt catactccctt gaaatgtgac ttttcagagg 2400
acagggttacc tgctgtgtat gtgtggccgt gctgtgttac tgcgttgcgt gtgtgtgtga 2460

tgagacactt tggaaagactc cagggagaag ttcccaggc tggagctgcc gagtgcccag 2520
 gtcagcgccc tgggctgttt gcgcataatngc tcaccngat gatgcattgg aggttgcgtga 2580
 cctgtgcgtat tgctgttagcg gtggccaggg accttaaggg gttatgttgc ttccctggga 2640
 ggggnccat gtttcttaggc aagcagccat gtgtctaatt ttctgggtt gctgtggggaa 2700
 cctgattggg ggagggggaa ancttgggg ttcttgaggt gggaggggttc gtgccancaa 2760
 tnttnccctgg taaaaaaag 2778

<210> 35

<211> 1424

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone Number: 2594943

<400> 35

ggctcagccct ccgaccagg tggctctggag cctgcccggga gagtggtggc atctgagagg 60
 ctggtegtgg actgtgttg ggggaggtgg gagctgttt aaccgtgtgc cccctcttct 120
 gtgcggcgt gggcatcccc cggggcagtg gaacgcggc gctccctccag ctcccgagtc 180
 cagccagccct gggcgccgggg cgccgcccccc gagacaccccg aggagtcgt tcctccctgg 240
 ttacgtggac tgtggagctg gtctttgtg gctcagcgc gtgcggaggt tgaagcgtac 300
 ctgcggaggt cgcaccagg cgtgaggagg aggaggaagg gcatgagccg agcttgagga 360
 atccgtgtct caaactctac actcaagggtt ggccttggg tagggtaag atccccgttc 420
 ttatccctag ttccacacct tggtgtgggt tactgggtgc aggtgaact gtcgctcgga 480
 ggtgtggag gtgtcggtgg agggcgccca ggtggaggag gccatgtgg ctgtgctgca 540
 cacgggtgtt ctgcaccgcga gcacaggcaaa gttccactac aagaaggagg gcacctactc 600
 cattggcacc gtgggcaccc aggtatgtga ctgtgacttc atcgacttca cttatgtgcg 660
 tgtctcttct gaggaactgg atcgtgcct ggcgaagggtt gttggggagt tcaaggatgc 720
 actgcgcacac tctgggtggcg atgggctggg gcagatgtcc ttggagttct accagaagaa 780
 gaagtctcgc tggccattct cagacgagtg catcccatgg gaagtgtggaa cggtaaggt 840
 gcatgtggta gccctggcca cggagcggaa gccgcagatc tgccgggaga aggtgggtga 900
 gaaaactctgc gagaagatca tcaacatgtt ggaggtgtat aatcgcatg agtacttgc 960
 caagatgccc acacagtccg aggtggataa cgtgtttgac acaggcttgc gggacgtgca 1020
 gccctcacctg tacaagatct cttccagat cactgatgcc ctgggcaccc cagtcaccac 1080
 caccatgcgc aggctcatca aagacaccct tggccctgttgc gctgcgtgg atctctggga 1140
 gctccttgc ggtcccgaga cttggcttt tggaaattgc actttggc ctttgggctc 1200
 tggAACCTGC tctgggtcat tggtgagact tggaaaggggc agcccccgct ggcttcttgg 1260
 ttttgtgggtt gccagcctca ggtcattttt ttaatcttgc ctgatgttc agtcctgcct 1320
 ctactgtgtctc tccatagcccc tggtggttgc ccccttctt ctccactgtt cagaagagcc 1380
 accactggaa tggggataaa agttgagaac atgaaaaaaaaaaaa 1424

<210> 36

<211> 1839

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone Number: 1513871

<400> 36

cctccttcctc ggccagctca gggtgcagct tctctggggaa actgcgtcacc ttccggagc 60
 agggaaagct gccccgtgcc cgggaggagg cgggcgcacc gggccccca ggacacgcgc 120
 tgacccggct gcccagttcc tcgtatgtat gaacaagatg aagaacttta agcgccgttt 180
 ctccctgtca gtggcccgca ctgagaccat tgaagaatcc ttggctgaat tcacggagca 240

attcaaccag ctccacaacc ggccgaaatga gaacttgcag ctcggtcctc ttggcagaga 300
 ccccccgca gagtgcagca ctttctcccc aacagacagc ggggaggagc cggggcagct 360
 ctcccctggc gtgcagttcc agccggggca gaaccagcgc cgcttctcca tggaggacgt 420
 cagcaagagg ctctctctgc ccatggatat ccgcctgc caggaattcc tacagaagct 480
 acagatggag agcccaagatc tgcccaagcc gtcagccgc atgtcccgcc gggcctccct 540
 gtcagacatt ggctttggaa aactggaaac atacgtaaa ctggacaaac tggagaggg 600
 cacctatgcc acagtcttca aaggcgcag caaaactgacg gagaaccttg tggccctgaa 660
 agagatccgg ctggagcacg aggaggagc gccctgcact gccatccgag aggtgtctct 720
 gctgaagaac ctgaagcacg ccaatattgt gacccctgcac gacccatcc acacagatcg 780
 gtccctcacc ctggtgtttt agtacctgga cagtgcctg aagcgtatc tggaccactg 840
 tgggaacctc atgagcatgc acaacgtcaa gattttcatg ttccagctgc tccggggcct 900
 cgcctactgt caccaccgca agatcctgca ccgggacctg aagccccaga acctgtctcat 960
 caacgagagg ggggagctga agctggccg ctttggactg gccaggggcca agtcagtgcc 1020
 cacaaagact tactccaatg aggtgggtac cctgtggta agggcccccc atgtgtctct 1080
 gggatccaca gagtactcca ccccccattga tatgtggggc gtgggctgca tccactacga 1140
 gatggccaca gggagggccc tcttcccccctt ccacacatgc aaggaggagc tgacacccat 1200
 ctttcgcctc ctcgggaccc ccacagaaga gacgtggccc ggcgtgaccc ctttctctga 1260
 gttccgcacc tacagttcc cctgtctaccc cccgcacccg ctcatcaacc acgegcggccag 1320
 gttggatacg gatggcatacc acctcctgag cagcctgtcc ctgtatgaat ccaagagtcg 1380
 catgtcagca gaggctgccc ttagtcaactc ctacttccgg tctctggag agcgtgtgca 1440
 ccagcttcaa gacactgect ccacatccctc cctgaaggag atccagctcc agaaggacc 1500
 aggctaccga ggcttggct tccagcagcc aggacgaggg aagaacacggc ggcagagcat 1560
 cttctgagcc acgccccaccc tgcgtggcc aaggggacaag agatcacatg ggcacacaaat 1620
 tcgggtagga tggagctgt gtggccctcg gaggactgaa gaacgagggc tgacagcagc 1680
 ctggaaagacc gcttggcagg ctttggcca agtgtttttc tttgtggttt cgatctgtctg 1740
 ccagttagttt cagtggataac aacgtgtttt aggagttggg tggaaagtc ttgttagagg 1800
 gtttaggggg aggtttctac cgttgactcg gtttagggc 1839

<210> 37
 <211> 2024
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone Number: 156108

<400> 37
 gtcagctctg gttcggagaa gcagcggctg gctgtggcca tccggggaaat gggggccctc 60
 gtgacctagt gttgcggggc aaaaagggtc ttgcgggcct cgctcgtgca gggggctatc 120
 tgggcgcctg agcgcggcgt gggagccctg ggagccgcg cagcaggggg cacacccgga 180
 accggcctga ggcggggga ccatgaacgg ggagggccatc tgccggccg tggccaccat 240
 tccctaccac aaactcgcgg acctgcgtca cctgagccgc ggcgcctctg gcactgtgtc 300
 gtccggccgc cacgcagact ggcgcgtcca ggtggccgtg aagcacctgc acatcccac 360
 tccgcgtctc gacagtaaa gaaaggatgt cttaaagagaa gctaaaaattt tacacaaaac 420
 tagatttagt tacatttcttca aattttggg aatttgcattt gacccatgat ttttggaaat 480
 agttactgaa tacatgccaa atggatattt aatgtactc ctacatagga aaactgaata 540
 tcctgatgtt gcttggccat ttagatttgc cttctgtcat gaaattgccc ttgggttaaaa 600
 ttacctgcac aatatgactc ctctttact tcatcatgac ttgaagactc agaatatctt 660
 attggacaat gaatttgcattt ttaagattgc agatttgtt ttatcaaagt ggcgcgtat 720
 gtccctctca cagtacgaa ttagccaaatc tgcaccagaa ggaggagcaat ttatctat 780
 gccacctgaa aactatgaaac ctggacaaaa atcaaggggcc agtatcaagc acgatata 840
 tagctatgca gttatcacat gggaaagtgtt atccagaaaa cagcccttttgc aagatgtcac 900
 caatcccttg cagataatgt atagtgtgtc acaaggacat cgaccctgttta ttaatgaaga 960
 aagtttgccttca tatgatatac ctcaccggc acgtatgtatc tctctaatag aaagtggatg 1020

ggcacaaaat ccagatggaa gaccatcttt cttaaaatgt ttaatagaac ttgaaccagt 1080
tttggaaaaca tttgaagaga taactttct tgaagctggtt attcagctaa agaaaaacaaa 1140
gttacagagt gtttcaagtg ccattcacct atgtgacaag aagaaaatgg aattatctct 1200
gaacataacct gtaaatcatg gtccacaaga ggaatcatgt ggatcctctc agtccatga 1260
aaatagtggt ttcctgaaa cttcaagggtc cctgcccagct cctcaagaca atgatfffff 1320
atcttagaaaa gctcaagact gttattttat gaagctgcat cactgtccctg gaaatcacag 1380
ttgggatagc accatttctg gatctcaaag ggctgcattc tgtgtatcaca agaccactcc 1440
atgctcttca gcaataataa atccactctc aactgcagga aactcagaac gtctgcagcc 1500
tggtagcc cagcagtggc tccagagcaa aagggaaagac attgtgaacc aaatgacaga 1560
agcctgcctt aaccagtgcg tagatgcctt tctgtccagg gacttgcata tgaaagagga 1620
ctatgaacct gtttagtacca agcctacaag gacctaaaa gtcagacaat tactagacac 1680
tactgacatc caaggagaag aatttgccaa agttatagta caaaaattga aagataacaa 1740
acaatgggt cttcagccctt accccggaaat acttgggtt tctagatcac catctttaaa 1800
tttacttcaa aataaaagca tgtaagtgcg tgttttcaaa gaagaaaatgt gtttcataaa 1860
aggatattta tatctctgtt gttttgactt tttttatata aaatccgtga gtattaaagc 1920
tttattgaag gttctttggg taaatattag tctccctcca tgacactgcg gtatfffff 1980
taattaatac aagtaaaaaag tttgaatttt gctacataaa aaaa 2024

<210> 38
<211> 1861
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte Clone Number: 2883243

<400> 38
gcttcattgtt gagggtggca ttatgttaag gctggtatgg aagacaactg atgaagcagg 60
agtggctgg tgacattttt ctgacttgat tggctgggc gtgtgatgta ataggtttca 120
gtgcagcccc ttatacggtt taaaatgaat tccaagacac cattacaaag aaagccggac 180
tctttctta taactgagct cagccaaagg aactctgca caaatgtaca atactgttg 240
gaatatgaa gacctggatt tagaatatgc caagacagat ataaattgtg gcacagact 300
gatgtttat atagaaaatgg accccaccage actgcctcct aaaccaccaa aacctactac 360
tgtagccaaac aacggtatga ataacaataat gtccttacaa gatgtgat ggtactgggg 420
agatatctcg agggagaag tgaatgaaaaa acttcgagat acagcagacg ggacctttt 480
ggtacgagat gcgtctacta aatatgcattgg tgattatact cttacactaa gggaaaggggg 540
aaataacaaa ttaatcaaaa tatttcatcg agatggaaaa tatggctct ctgaccatt 600
aaccttcagt tctgtgggtt aattaataaa ccactaccgg aatgaatctc tagctca 660
taatccaaa ttggatgtga aattacttta tccagtatcc aaataccaac aggatcaagt 720
tgtcaaagaa gataatattg aagctgttagg gaaaaaattt catgaatata acactcagtt 780
tcaagaaaaa agtcgagaat atgatagatt atatgaagaa tatacccgca catcccagga 840
aatccaaatg aaaaggacag ctattgaagc attaatgaa accataaaaaa tatttgaaga 900
acagtgcacg acccaagagc ggtacagcaa agaatacata gaaaagttt aacgtgaagg 960
caatgagaaa gaaatacaaa ggattatgc taattatgt aagttgaagt ctcgaatcag 1020
tgaaaattatt gacagtagaa gaagattggg agaagacttg aagaagcagg cagctgagta 1080
tcgagaaatt gacaaacgta tgaacagcat taaaccagac cttatccagc tgagaaagac 1140
gagagacca tacttgatgt ggttgactca aaaaggtgtt cggcaaaaaga agttgaacga 1200
gtggttgggc aatggaaaaca ctgaagacca atattcaactg gtggaagatg atgaagattt 1260
gccccatcat gatgagaaga catggaaatgt tggaaagcgc aaccgaaaca aagctgaaaa 1320
cctgttgca gggaaagcgcg atggcactt tcttgccgg gagagcgtt aacaggctg 1380
ctatgcctgc tctgttagtgg tggacggcga agttaaagcat tggatcataa acaaaaacgc 1440
aactggctat ggctttggcg agccctataa cttgtacgc tctctgaaag aactggtgct 1500
acattacca cacacccccc ttgtgcagca caacgactcc ctcataatgtca cactagccca 1560
cccagtatat gcacagcaga ggcgcgtgaag cgcttactct ttgatcccttcc tctgtaaattt 1620

cagccaccct gaggcctctg gaaagcaaag ggctcctctc cagtctgatc tgtgaattga 1680
 gtcgcagaaa cgaagccaac ttttttggta tgggactagt gcttttttc acaaaaaaga 1740
 agtagggaa gacatgcagc ctaaggctgt atgatgacca cacgttccta agctggagtg 1800
 cttatccctt ctttttcttt ttttcttgg ttaatttaa agccacaacc acataacaaca 1860
 c 1861

<210> 39
 <211> 2045
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone Number: 3173355

<400> 39
 cttggctgga acctgagacg gatcgctcc caaatgatgc tccagtggca ggagcaactc 60
 aagttcatca ttgtcctgag agagaggagc aegcgccgttc tggccggga cagcagaacg 120
 ccaggggacc ctcacccctggg cgccgcgggg caccggctt gattgtcctg ggtgcggga 180
 gaccggcgcg cctgcctgc acgcggggcg gcaacctttg cagtcgcgtt ggtgcgtgcg 240
 atcggccggc gggteccctgc cgaaggctcg gtcgttctg tccacctttt acacttcttc 300
 atttatcggt ggtatcatttc gagagtccgt tttgtaaatg tttggactt tgctacttta 360
 ttgttcttt ctggcgacag ttccagact cgccgagacc ggcggagaaa ggcagctgag 420
 cccggagaag agcgaaatat ggggaccgg gctaaaagca gacgtcgtcc ttcccgcccc 480
 ctatttcttat attcaggcag tggatacatc agggataaaa ttcacatttt ctccaggcga 540
 aaaggcttc caggtgaaag tctcagcacc agaggagcaa ttcaactagag ttggagttca 600
 gtgttagac cgaaaagatg ggtccttcat agtaagatac agaatgtatg caagctacaa 660
 aaatctgaag gtggaaatta aattccaagg gcaacatgtg gc当地atccc catatatttt 720
 aaaaggcccg gtttaccatg agaactgtga ctgtcctctg caagatagt cagcctggct 780
 acggggagatg aactgcctg aaaccattgc tcagattcg agagatctgg cacatttccc 840
 tgctgtggat ccagaaaaga ttgcagtaga aatcccaaaa agattggac agaggcagag 900
 cctatgtcac tacacccctaa aggataacaa gttttatatc aagactcatg gt当地acatgt 960
 aggtttttaga attttcatgg atgccatact actttcttt actagaaaagg tgaagatgcc 1020
 agatgtggag ctctttgtta atttggaga ctggccttgg gaaaaaaaaa aatcccaattt 1080
 aaacatccat ccgatctttt cctgggtgtgg ctccacagat tccaggata tc当地gtatgcc 1140
 tacgtacgt ttgactgtt ctgttctgg aaccatggc cgggttaagtc tgatatgtat 1200
 gtccgtgcaa gctaacacgg gtctccctg gggaaagcaa aattccactg cc当地ctggag 1260
 agggcgagac agccgcaaag agagactcg a gctggtaaaa ctcagtagaa aacacccaga 1320
 actcatagac gctgcttca ccaactttt ctctttaaa cacatgaaa acctgtatgg 1380
 tcccattgtg aaacatattt catttttga ttcttcaag cataagtatc aataatattat 1440
 cgatggcact gtagcagctt atgcctgccc atatttgcata gttggatc gt当地gtatgt 1500
 gaagcaggat tccatctact atgaacattt ttacaatgag ctgcagccct gggaaacacta 1560
 cattccaggat aagagcaacc tgagcgtatc gctggaaaaa cttaaatggg cggaaagatca 1620
 cgatgaagag gccaaaaaga tagaaaaagc aggacaagaa ttgcagaaa ataatctcat 1680
 gggcgatgac atattctgtt attatttcaa actttccag gaatatgcc attacaagt 1740
 gagtgagccc caaatccgag agggcatgaa aagggttagaa ccacagactg aggacgaccc 1800
 ctcccttgt acttgcata gggaaaagac caaagatgaa ctctgatatg caaaataact 1860
 tctatttagaa taatgggtgtt ctgaagactc ttcttaacta aaaagaagaa ttttttaag 1920
 tataattcc atggacaata taaaatctgt gtgattgttt gcagttgaa gacacatttcc 1980
 tacttatgca gtattctcat gactgtactt taaagtacat tttagaatt ttataataaaa 2040
 accac 2045

<210> 40

<211> 1260
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 5116906

<400> 40
cgatattttt ctttcttagt ttcccatttc atattgtttt gtcaaataaa ctgtgactca 60
ttaacatctc tttccctag gttttgctgg cacacctgaa tatctttctc cagaagtttt 120
acgtaaaagat ctttatggaa agccagtggaa tatgtggca tgggtgtca ttctctat 180
tctacttgtg gggtatccac cttctggaa tgaagaccaa cacagactct atcagcagat 240
caaggctgaa gcttatgatt ttccatcacc agaatggac acggtgactc ctgaagccaa 300
agacctcatc aataaaaatgc ttactatcaa ccctgccaag cgcatcacag cctcagaggc 360
actgaagcac ccatggatct gtcaacgttc tactgttgc tccatgatgc acagacagga 420
gactgttagac tgcttgaaga aatttaatgc tagaagaaaa ctaaagggtg ccattttgac 480
aactatgtg gctacaagga atttctcagc agccaagagt ttgttgaaga aaccagatgg 540
agtaaaggag tcaactgaga gttcaaataac aacaattttagt gatgaagatg taaaaggcac 600
aaagcaagag attatcaaag tcactgaaca actgatcgaa gctatcaaca atggggactt 660
tgaagcctac acaaaaatct gtgaccagg ccttactgct ttgaacctg aagctttggg 720
taattttagtg gaaggatgg attttcacccg attctacttt gaaaatgttt tggccaaaag 780
caataaaacca atccacacta ttattctaaa ccctcatgta catctggtag gggatgatgc 840
cgccctgcata gcatatatta ggctcacaca gtacatggat ggcagtggaa tgccaaagac 900
aatgcgtca gaagagactc gtgtgtggca ccggccggat ggaaagtggc agaatgttca 960
ttttcategc tgggggtcac caacagtacc catcaactaa atttcaacag tgccacttct 1020
gcattctctg ttctcaaggc acctggatgg tgaccctgg ccgtctctc ctccctttca 1080
tgcatgttgc tgagtgcacg aagttgtgaa ggtctacat gtaatgcata tggatgcac 1140
catcttatca tatattccctt cctatacatt gtttacactt caactacggg gatgttccac 1200
acaaaacttaa attactgtt gcaaaaacaat agggggagat tagacaaaaa aaaaaaaaaa 1260

<210> 41
<211> 2059
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 940589

<400> 41
aaaccataga aacgctaattt aaagcagaca tcaaaaatcg gatccttaca ggggacaagc 60
aagaaaactgc cattaacatc ggacactcct gcaaaactttt gaagaagaac atgggaatga 120
ttgttataaa tgaaggctct cttgattttt tctctaatc acagaattct agaaggagg 180
ctgttctttt agccaaaatg aaacacccta atattgttc cttcaagaaa tcatttgaag 240
ctgaaggaca cttgtatattt gtgtatggat actgtatgg agggatcta atgaaaaaga 300
ttaaacagca gaaaggaaag ttatttcctg aagacatgtt acttaattgg ttacccaaa 360
tggcccttgg agttaatcac attcacaaga aacgtgttgc acacagagat atcaagtcca 420
agaatatctt cctcactcag aatggaaaag taaaatttggg agactttgg tctggccgtc 480
ttctctccaa tccgatggca tttgttgc tctatgtggg aactccttat tatgtgcctc 540
cagaaaatttgg gggaaacctg ctttataaca ataaaatgtt gatctggcc ttgggttgca 600
tcctgtatgc actctgttacc cttaagcattc catttcaggc aaatagttgg aaaaatctt 660
tcctcaaagt atgtcaaggg tgcattcagtc cactggccgtc tcattactcc tatgaacttc 720
agttccttagt caagcagatg tttaaaaagga atccctcaca tggccctcg gatacaacgc 780
ttctctctcg aggcatcgta gctcggttg tccagaagtg cttacccccc gagatcatca 840

<210> 42
<211> 1023
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte Clone Number: 304421

```

<400> 42
gaggccatgg ggtggccggg ctggcccatt gctgagaccc ctctcccaaga gctggggggga 60
gaggacaaag ccacgccttgc cccagcattt ctggagctgg aggagctctt gccccgggggg 120
aagtcttctt gcagccgtgt ggacgaagtt tggcccaacc ttcatagg agatgcgtg 180
gactcaactgc agaagcaggg cctccggagg cccaaagatcc atggggcagt ccaggcatct 240
ccctaccaggc cgccccacatt ggcttcgtgtt cagcgcttgc tggtgggtccg tcaggctgcc 300
acactgaacc atatcgatga ggtctggccc agcctttcc tggagatgc gtacgcagcc 360
cgggacaaga gcaagctgtat ccagctggga atcacccacg ttgtgaatgc cgctgcaggg 420
aagttccagg tggacacagg tgccaaattt taccgtggaa tgcccttgaa gtactatggc 480
atcgaggccgg atgacaaccc ttcttcgac ctcagtgctt actttctgcc tggatcgaa 540
tacatccgag ctgccttcag tggtccccaa ggccgcgtgc tggatcgatg tgccatgggg 600
gtaaggccgt ctgcacact tgccttgcc ttccatgtt tctatgagaa catgacgtg 660
gttagaggcca tccagacggt gcaggccccac cgcaatatctt gcccataactc aggcttcctc 720
ccgcagctcc aggttctggaa caaccgactg gggcggggaga cggggccgggtt ctgtatctggc 780
aggcagccag gatccctgac cttggccca accccaccag cctggccctg ggaacagcag 840
gctctgtgtt ttctagtgtt cctgagatgt aaacagcaag tgggggtgtt ggcagaggca 900
gggatagctg ggtgggtgacc tcttagccggg tggattttcc ttcatgttcaaaaaaaaattt cagagattct 960
ttatgcaaaaa gtgagttcag tccatctttaataaaaaata ttcatgttcaaaaaaaaaaaaa 1020
aaa 1023

```

<210> 43
<211> 4416
<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone Number: 1213802

<400> 43

gaaatttttt tctgcctcat tattattaat tcatggattt agtgtggtt cgacctacag 60
 gcgtaataga ttgaaactca gtgaagacac agatgtcct gttcagagca accagctaatt 120
 gattacagtt taaagacaat ttctgtatc aagtgtatc ttgaaagatt aaaccattt 180
 cacgaggact tggagctgg tccttgctt gaggaagcag tggcttgc caagaagcca 240
 cttctgtatc aagaatctac ccagcatgcc taatcaagga gaagactgtc attttttttt 300
 ctattccaca tgtaccaaag gcgacagctg cccattccgt caactgtgaag ctgcaatagg 360
 aaatgaaact gtttgcacat tatggcaaga agggcgctgt ttcgacagg tgcagggtt 420
 tcggcacatg gagattgata aaaaacgcag taaaaattct tggttattggg aaaatcagcc 480
 aacaggatgt caaaaattaa actgcgttt ccatcacaat agaggacgt atgttgcatt 540
 cttttctca cctccgagca aaactgtgtt gcccactgtg cctgactcac cagaagagga 600
 agtgaaggct agccaaactt cagttcagca gaacaaattt tctgtccagt ccaatccttc 660
 ccctcagctg cggagcgta tgaaaagttaga aagttccgaa aatttcccta gccccacgca 720
 tccaccagtt gtaattatg ctgcagatga tggatgatgatc agtttctgt 780
 ggaagggtat gaaacccaaa cacctaccct gcaaccaact cctgaagttc acaatggatt 840
 acgagtgact tctgtccgga aacctgcagt caatataaaag caaggtgaat gtttgaattt 900
 tggaaataaaa actcttgagg aaattaatgc aaaaaaaaaat aagaaaaat ctaagaagca 960
 aggtgagggt tcttcaggag tttccagttt ttactccac cctgagcccg ttccagggtcc 1020
 tgaaaaagaaa aatgtcagga ctgtggtag gacagtaact ctctccacca aacaaggaga 1080
 agaacccttg gtttagattga gtcttactga gagactgggg aaacaaaaat ttcagcagg 1140
 cggtgacagt gatcctccat taaagcgtag cctggcacag aggctaggaa agaaagttga 1200
 agctccagaaa actaacattt aaaaaacacc aaagaaaaat caagtttcca agtctctttaa 1260
 ggagcgttta ggcatgtcag ctgatccaga taatgaggat gcaacagata aagttataaa 1320
 agttggtag gatccatgttga agacattttaga agaaattttt cttgaaaagag ccagtcagaa 1380
 acgtggagaa ttgcaaaacta aactcaagac agaaggaccc tcaaaaaactg atgattctac 1440
 ttcaggagca agaagcttcc tcaactatccg tatcaaaaacc ttctctgagg ttctggctga 1500
 aaaaaaaacat cggcagcagg aagcagagag aaaaaaaaaac aaaaaggata caacttgcac 1560
 caagctaaag attgatagtg aaattaaaaaa aacagttttt ttgcacccca ttgttgccag 1620
 cagaggacaa tcagaggagc ctgcaggtaa aacaaagtct atgcaggagg tgcacatcaa 1680
 gacgctggaa gaaattaaac tggagaaggc actgagggtt cagcagagct ctgagagcag 1740
 caccagctcc cctgtctcaac acgaggccac tccaggggca aggccgctgc tgcgaatcac 1800
 caaaaagaaca gggatgaaaag aagagaagaa ctttcagaa gggaaatgaaat ttgattctca 1860
 gagcagtatt agaacagaag cttaaagggc ttcaaggtag accacaggag ttgacatcac 1920
 taaaattcaa gtcaagagat gtgagaccat gagagagaag cacatgcaga aacagcagga 1980
 gagggaaaaaa tcagtcttgc caccttctcg gggagatgtt gcctcttgc atacccaagt 2040
 ggcagagaaa ccagtgtca ctgtgtgtc aggaatcaca cggcacctga ccaagcggct 2100
 tccccacaaag tcatcccaga aggtggagg agaaacctca gggattggag actcattatt 2160
 gaatgtgaaa tgtgcagcac agaccttggg aaaaagggtt aaagctaaac ccaaagtgaa 2220
 cgtgaagcca tctgtggta aagttgtgtc atccccaaa ttggcccaa aacgtaaaggc 2280
 agtggagatg cacgtctgtc tcatggccgc tggatggcca ctcagcttca gcagtgtcct 2340
 acaggaaccc ccagccaaaa aggcaatgtt ggctgttgc ccgttgcct ctgaggacaa 2400
 atcagtcaact gtgccttgcag cagaaaaatcc tagagacagt cttgtgtgc ctccaaaccca 2460
 gtccttctca gattccatc cccggaggt gtctggccct tcctcatcccc aatgagcat 2520
 gaaaactcgc cgaactcagct ctgcctcaac agggaaagccc ccactctgt tggaggatga 2580
 ttttggaaaaa ctaatatggg agatccagg aggcaattt gaaatgttgc ttgacatggaa 2640
 tcctggaaaaa gatgaagatg accttctgtc tgatgtatca gaaatgttgc atagctgaa 2700
 gtggtagtgc ggacacttta aaaaaaaaaat cggccaaaaaa ctggacttag ttcatcttat 2760
 tgtaacattt acctgagatg atcatttctt tagtcttagaa ttggcccaa atcagaagta 2820
 tacctctgaa ttatctgtat gtgtcctggaa ttccctgggg tcagatcccc aatgttactt 2880

tataaccatt ttgtccatTT gatGCCATTG tttatcatct tttgagaaaa aagtTCTGTC 2940
 ataccCCTTCT cTCCACAAAA aAGAGACTGA gAGGGAGATC aAGTGAAGAGG GTGCAAGCGA 3000
 acttagtGAC TCTTGAGGT GTTGTCAgT tttggTTTT ttCTTCTTTG ttGTATTCTT 3060
 tatgtATTGT CTTGATGTAC ttaATATTAC CTGAGTTGA aATGGATGAA GACAGCTGCT 3120
 accattaagg accaaATTTT atGCTACCAC taaACAAAAA TACCCACTCA GTCTGTGTTA 3180
 aattgtatgt ctTTTAAAG gtATTTAAAG attcaactaa GCTTTAAAGA GGGCTGAGCA 3240
 GCTCAGGAAG CCTGTAATGT GGGCATAACT CTTTGGACCT GATCTGTGATC CTTCTGTGCTC 3300
 TCTGTTAGCC TCTGAAGAGC AATATCTAAT TTATTATTAC TGTAATTTT TAAGGCTT 3360
 TAAGTGCCT CAGGGTCCC CTGAAACTAA TTTCTATT CTGGGATTCC CTGGATTCT 3420
 TATATGAGAT GGTGACATGA TTAGAGGAAT TCTTTTTAG TATGAAAATT GTCCCTTTC 3480
 TTCTTCAGTA CTTGCCCTCT TGCTGGCATT GAATTAACAC AGGGACAAAAA TTGGTTAAT 3540
 TTTTATTTC TAACTCTCCC AACAAACCCCC TGTGCCCAG TATTGTTG GTGGCCTTA 3600
 ACCACCTGAG GGAAAATG AGCTTATTCA AGCTGCAAT ATTATCTAT GGGCTGTAGC 3660
 AGTACACTGA ATTGTACTGT GCCAGGGATA TTGAGATGCT CTGGGGGTGT ATTGTATACC 3720
 TGCCAGTTT CTTCAATTCT GAATTGAGTT TTCTTTCTT GATGTTGGTT TCCTTCATAT 3780
 CACCTCAAGG TTAGATTG TGAAGGAATA AGCATGATGG AAATAATAGT CTGAAAGGA 3840
 GATATGTTGT ATATAATCAG GAGGAAGAGG AAGGAAGGAC TTACCCATT TGATATTG 3900
 CTGTTAGGTGG CCAGTTTGT TTCTCATAGG GAAATCTGAC CCACCTGTCA TGTGGCTCC 3960
 TAAGGAACTG CTGTTGTAAG CGGCTCATCA AGAGTTGAAC TTCACGTAGC TTGTTGGGA 4020
 ATATGGAAAAA GGAAGAAAGC CACAGGACTG CCCATTCACT CTTGGGAAGA TTGGGATGAT 4080
 TCTGCACAAG CAAAATGAC TGAAGTTTAT GTATAGACAC ACCTCTACCA ATCCATCTC 4140
 AGCTGACTGA ATGTTGTATG ATAGCCCTC TCCAAAGCAG AGGTAGAATG TTCAGGTTTC 4200
 ACCATGGATT TTCTACTTAT TTGTTTTG GAATCAGCTT ACAGATTCCA GGTCCCTTT 4260
 GTATATATTCTT TTATTCTT TGTCTTTTA AAAAATAATT TTGTTTCATA TTAAAGCAC 4320
 TTGTATTAGT CAATGTTTCG TGTCCCGCAT TATTGAAACC ATTTGCCCTT ACAGAAAAGAG 4380
 AAATACTTGT TTGTCTTTA AATAAAACTG ATGTA 4416

<210> 44
<211> 2068
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 1378134

<400> 44
gcAGTCCATC AGTCCGCTGA TGCGTGCCTG GGCCAGCAAC GCTGCCGCCG CAGCCCACAC 60
GATTGGCGGC AGTAAGCACA CAATGAATGA TCACCTGCA TCGGCAGCC ACGCTCACGG 120
ACAGATCCAG GTTCGACAGT TGTGAGGA TAACAGTAAC AAGCGGACAG TGCTCACGAC 180
ACAACCAAAT GGGCTTACAA CAGTGGGCAA AACGGGCTT CCAGTGGTGC CAGAGCGGCA 240
GCTGGACAGC ATTCA TAGAC GGCAGGGGAG CTCCACCTCT CTAAGTCCA TGGAAAGGCAT 300
GGGGAAAGGTG AAAGCCACCC CCA TAGACACCC TGAACAAGCA ATGAAGCAAT ACATGCAAAA 360
ACTCACAGCC TTCGAACACCC ATGAGATTT CAGCTACCTT GAAATATATT TCTTGGGTCT 420
AAATGCTAAAG AAGCGCCAGG GCA TAGACAGG TGGGCCAAC AATGGTGGCT ATGATGATGA 480
CCAGGGATCA TATGTGCAGG TGCCCCACGA TCACGTGGCT TACAGGTATG AGGTCCCTAA 540
GGTCATTGGG AAGGGGAGCT TTGGGCGAGGT GGTCAAGGCC TACGATCACA AAGTCCACCA 600
GCACGTGGCC CTAAGATGG TGCGGAATGA GAAGCGCTTC CACCGGCAAG CAGCGGAGGA 660
GATCCGAATC CTGGAACACCC TGCGGAAGCA GGACAAGGAT AACACAATGA ATGTCATCCA 720
TATGCTGGAG AATTTCACCT TCCGCAACCA CATCTGCA TACGTTGAGC TGCTGAGCAT 780
GAACCTCTAT GAGCTCATCA AGAAGAATAA ATTCCAGGGC TTCAGTCTGC CTTGGTTCG 840
CAAGTTGCC CACTCGATTC TGCACTGCTT GGATGTTTG CACAAAAACA GAATAATTCA 900
CTGTGACCTT AAGCCCGAGA ACATTTGTT AAAGCAGCAG GGTAGAAGCG GTATTAAGT 960
AATTGATTCTT GGCTCCAGTT GTTACGAGCA TCAGCGTGC TACACGTACA TCCAGTGC 1020
TTTTACCGG GTCAGAAG TGATCCTTGG GGCCAGGTAT GGCATGCCA TTGATATGTG 1080

gagcctgggc tgcattttag cagagtcct gacgggttac cccctttgc ctgggaaga 1140
 tgaaggggac cagctggcct gtatgattga actgttggc atgccctcac agaaaactgct 1200
 ggatgcatec aaacgagcca aaaattttgt gagctccaag gtttatcccc gttaactgcac 1260
 tgtcacact ctctcagatg gctctgtgtt cctaaacgga ggccgttccc ggagggggaa 1320
 actgagggc ccacceggaga gcagagagtg gggaaacgcg ctgaaggggt gtgatgatcc 1380
 ccttttcctt gacttcttaa aacagtgtt agagtggat cctgcagtgc gcatgacccc 1440
 aggccaggct ttgeggacc cctggcttag gaggcggtt ccaaagcctc ccaccgggaa 1500
 gaaaacgtca gtgaaaagga taactgagag caccgggtct atcacatcta tatccaagtt 1560
 acctccaccc tctagtcag cttccaaact gaggactaat ttggcgcaga tgacagatgc 1620
 caatggaaat attcagcaga ggacagtgtt gccaaaactt gttagcttag ctcacgtccc 1680
 ctgatgctgg taacctgaaa gatacgacat tgctgagct tactgggtt aaaaggagta 1740
 gtcagaccc gtttttattt gctcaataac tctactcatt tttatctttt cagcacttaa 1800
 ttttaatgtt agaaaattgt tcattttgtt tttataaaat acatgaggac aatgctttaa 1860
 gttttatac tttcagaaac tttttgtttt cttaaaagtac aatgagcctt actgttattta 1920
 gtgtggcaga ataataacat cagtgccagg ccactgatta cttcatgact gccacgcatt 1980
 tacagattgg tgtcaaagac attcactatg tttttatgtt tcatgttata tcctccccag 2040
 ggtgacagcc ccttaaggcc ctccctttt 2068

<210> 45
 <211> 1850
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone Number: 1490070

<400> 45
 gggctgcctg cctgcctgcc tgcctgcctg gccccggcccg agctccagcc tgcctttcc 60
 actggccact gcctccacc caggcgtggc atccctgcctc cctgccttgg gtcccgact 120
 gtgtccctca tcacceggagg tcggtgaggg gctgggtctgg acaccaggcc ccccccctccc 180
 atcaactgagc tccactccctt cctcattttg ctgctgattc tagccccaaa caaaacagg 240
 tgagctttt cctccctca gaagctccctc tctggctctg ggctgccttc tgagtgttgc 300
 agacggcgcc ggccgggaag gggggcttgg gccagccctg ccaggactgg gacgctgtg 360
 ctggcgctg gcctccatc agggcagcc gttggcaggag agtggactttt gccgcggcag 420
 acgcctgagg atgatggccc agtgcagtt caaagatgcc ttttggtgc gggacttcac 480
 agcccacacg ggctacgagg tgcgtgcga gccggcttctg gatggcaggaa agatgtgcaa 540
 agacatgggt gactactgt ggcagaggcc ccaggcggag gagcggta ggaaggagct 600
 ggtgcagatc gcacggaaagg cagggtggcca gacggagatc aactccctga gggccctt 660
 tgactccctt aagcagcaaa tggagaatgt gggcagctca cacatccagc tgccctgac 720
 cctgcgttag gagctgcggg gtctcgagga gtttcgttag aggcagaagg agcagaggaa 780
 gaagtatgttag gccgtcatgg accgggtcca gaagagcaag ctgtcgctct acaagaaggc 840
 catggagtcc aagaagacat acgagcagaa gtgcgggac gcccggcagc cggagcaggc 900
 cttcgagcgc attagcgcca acggccacca gaaggcagggt gagaagatgc agaacaaggc 960
 caggcagtgc aaggactcgg ccaccggggc agagcgggtt tacaggcaga gcattgcgc 1020
 gctggagaag gtccggctg agtgggagca ggagcacccgg accacctgtt aggccttca 1080
 gctgcaagag tttgaccggc tgaccattct ccgcaacggcc ctgtgggtgc acagcaacca 1140
 gctctccatg cagtgtgtca aggtatgtt gctctacggag gaagtgcggc tgacgctgg 1200
 aggctgcgcg atagacgcgg acatcgacag tttcatccag gccaagagca cgggcacaga 1260
 gccccccgtt ccgggtccctt accagaactt ttacgatgg gaggtcaccc cgctgaccag 1320
 cagccctggc atacagccgt cctgcggcat gataaaagagg ttctctggac tgctgcacgg 1380
 aagtcccaag accacttcgt tggcagcttc tgctgcgtcc acagagaccc tgaccccccac 1440
 ccccgagcgg aatgaggggtg tctacacagc catcgacgtt caggagatac agggaaacccc 1500
 ggcctcaccg gcccaggagt accggccgtt ctacgattt acagcgcaga acccagatga 1560
 gctggacctg tccgcgggag acatcccttga ggtgatcctg gaaggggagg atggctgggt 1620

```

gactgtggag aggaacgggc agcgtggctt cgccccctgg tcctacctgg agaagctttg 1680
aggaagggcc aggagccccc tcggacacctgc cctgccatgt gagccagcag tgccccccagc 1740
actgtccccca ccttgcttagg gcccagaacc aagcgtcccc cagccccggag agggagcctg 1800
tcgtctccca gggaaataaaag qagtgcgttc tggttctcaaa aaaaaaaaaa 1850

```

<210> 46
<211> 2534
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte Clone Number: 1997814

<400> 46
gaagaggggg tggagcaggg gctggaggag gaagaagagg tggatccccg gatccaggga 60
gaactggaga agttaaatca gtccacggat gatataaca gacgggagac tgaacttgag 120
gatgtcgctc agaagtccg ctctgttctg gttgaagcaa cggtgaaact ggtatgaactg 180
gtgaagaaaa ttggcaaagc tggaaagac tccaaggccct actgggaggc acggagggtg 240
gcgaggcagg ctcagctgga agctcagaaa gcccacgcagg acttccagag ggccacagag 300
gtgctccgtg ccgccaagga gaccatctcc ctggccgagc agccgctgt ggaggatgac 360
aagcgccagt tcgactccgc ctggcaggag atgctgaatc acgccactca gagggtcatg 420
gaggcggagc agaccaagac caggagcggag ctggtgcatc aggagacggc agccaggtac 480
aatgcccca tggccgcat ggcacagctg gagaagaaaac tcaagagagc catcaacaag 540
tccaagcctt atttgaact caaggcaaa tactatgtc agctcgagca actgaaaaaaag 600
actgtggatg acctgcaggc caaactgacc ctggcaaaag gcgagtacaa gatggccctg 660
aagaacctgg agatgatctc agatgagatc cacgagcggc ggcgctccag tgccatgggg 720
cctcggggat gcggttgg tgctgaggggc agcageacat ctgtggagga tctggcagggg 780
agcaaacctg agectgtatc catttctgtg gccteggagg ccttgaaga tgacagctgt 840
agcaacttgc tgcgtgaaga tgactcgaaa acccagtcg tgccagctt tagttcagga 900
ccaacaagcc cgtctgagat gctgaccag tccctgcgg ttgtgaggcc tggcagectg 960
gatctgcca gcccctgtgc cctgtcagag tttggatga tttcccagt gttggccct 1020
cgaagtgaat gcagcggggc ctcccccct gaatgtgaag tagaacggggc agacaggggca 1080
gaaggggcag agaataaaaac aagtgacaaa gccaacaaca acgggggcet cagcagtagc 1140
agtggcagtg gtggcagcgg taagagccaa agcagcacct ccctgaggg ccaggcettg 1200
gagaaccgga tgaagcagct ctccctacag tgctcaaagg gaagagatgg aattattgtct 1260
gacataaaaa tggtgcagat tggctgatcc atcctggcc ctggccgatc tgcatatcaa 1320
catttatatac tggacttggc gaacattgtg ccaataatca tttatatat gccaaatctt 1380
acacgtctac tctaaactgc tctaattggaa ttctcgtac ctggagggtt aaagattgtt 1440
cttctggta agagcttgc ggctgggtt tcagagcaga gttttgtt tgggttagact 1500
gtgacttagt tcacagcctt tggaaacat tccgtataac ggcattgtgg aagcaataac 1560
tagttccat gaaagaacca gagctggaa gatggctggg aagccaggcc aaagtggggg 1620
caacagcttgc tttcttttc tttctcacc ctcagttgt atggaaaat ggagatgtcc 1680
tctccactt atccacacat atctaaatga aaaagaaaaga aaacccacac acaaagcaaa 1740
aactcaagta ttaagagcac atattttga cccagtgag gctaaaaaaa aaaaaaatcc 1800
aagaacacaa ttcatttca ccacccctgg tgccaggg gggctttaa aaaagcgtgt 1860
atgctggat accattttaa accatttttc agaaggctac catgagctgc actttttggg 1920
gtggggaaagg tgaatgccag tggggatgc gggggatgg ggtaggaggg acttatagaa 1980
ggggattttgt ggctgtgggg gagaagggtt tacagcataa gccttaccc gccagccaaag 2040
gggattttatt ctaagagaag tgcatgtgaa gaatgggtgc cactgttatt agattgacaa 2100
gatgttaatt tctctgttagg ttgtactt aaaaataaaat gaaatttatt aagggttatg 2160
ctgcactagt attcccttgc gggaaacagg cttaaaatggg aggaaaggaa gttaggcaggc 2220
atgtgttggc aaaggctgtt aatagtagtt aagtgtttaag actgttttc ttacacccatc 2280
tcatggtaat gcatattttgc agcactgtat tttgtcttgc ttaagaaaat ttagcattc 2340
aaaaagaaaaaa aaccaacccctt tttccaaact gtttttttttgc tccacccctg tatatttttag 2400

tcatttgtaa atctcttcat acaaatagtga cttcttttt gactgataca gtatcttaat 2460
tacaaggta tttgtactt gtcttaatac actaagtgt aaaaaaaaaacgg cttgagaaaa 2520
gttaaaaaaaaaaa aaaa 2534

<210> 47
<211> 3786
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 2299715

<400> 47
ccgtccctcgaa ggcgaggaga gtaccgggcc ggcccggctg ccgcgcgagg agcgccgtcg 60
ggggcctgggt ctgcggctga gatacacaga gcgcacagaga catttattgt tatttgtttt 120
ttgggtggcaaa aaaggaaaaa tggcgaacga ctccccgtca aaaagtctgg tggacatcgaa 180
cctctcttcctcc ctgcgggatc ctgtgggat tttttagctg gtggaaagtgg ttggaaatgg 240
cacctatggaa caagtctata agggtcgaca tggtaaaacg ggtcagttgg cagccatcaa 300
agttatggat gtcactgagg atgaagagga agaaaatcaa ctggagataa atatgctaaa 360
gaaatactct catcacagaa acattgcaac atattatgtt gtttcatca aaaagagccc 420
tccaggacat gatgaccaac tctgggttgc tatggagttc tggggctg ggtccattac 480
agaccttgcg aagaacacca aaggaaacac actcaaagaa gactggatcg ttacatctc 540
cagagaaatc ctgaggggac tggcacatct tcacattcat catgtgatcc accgggatata 600
caagggcccg aatgtgttgc tgactgagaa tgcaggggtt aaacttggg accttgggt 660
gagtgcgtcg ctggacagga ctgtggggcg gagaaatacg ttcataggca ctccctactg 720
gatggctctt gagggtcatcg cctgtgtatga gaacccagat gccacctatg attacagaag 780
tgatctttgg tcttggcata ttacagccat tgagatggca gaaggtgtc cccctctctg 840
tgacatgcata ccaatgagag cactgtttct cattttccaga aacccttctc cccggctgaa 900
gtcaaaaaaaaaa tggtcgaaga agttttttttttatagaa ggggtggctgg tgaagaatta 960
catgcagcgcc ccctctacag agcagctttt gaaacatctt tttataaggg atcagccaaa 1020
tgaaaggcaaa gttagaatcc agcttaagga tcataatagat cgtaccaggaa agaagagagg 1080
cgagaaagat gaaactgtgt atgatgtacag tgggagttgag gaagaagagg aggaagtggcc 1140
tgaacaggaa ggagagccaa gttccatttttgc gaaacgtgcct ggtgagtcta ctcttcggc 1200
agatttcctg agactgcagc aggagaacaa ggaacgttcc gaggcttcc ggagacaaca 1260
gttactacag gagcaacagc tccggggac ggaagaatat aaaaggcaac tgctggcaga 1320
gagacagaag cggattggac agcagaaaga acagaggcga cggctagaag agcaacaaag 1380
gagagagcgaa gaagcttagaa ggcagcagga acgtgaacag cgaaggagag aacaagaaga 1440
aaagaggcgct ctagaggagt tggagagaag ggcgaaagaa gaagaggaga ggagacggggc 1500
agaagaagaa aagaggagag ttgaaagaga acaggagat atcaggcgc acgttagaaga 1560
ggagcagcgcc cacttggaaat tccttcagca gcaatgtgtc caggagcagg ccatgttact 1620
gcatgaccat aggaggccgc acccgccagca ctgcgcagcag cccgcacccac cgccagcagga 1680
aaggagcaag ccaagcttcc atgctcccgaa gcccggccat cactacgagc ctgtgtaccg 1740
agcgcgagag gttcctgtga gaacaacatc tcgcgtccct gttctgtccc gtcgagatcc 1800
cccactgcagc ggcagttggc agcagaatag ccaggcagga cagagaaact ccaccgttat 1860
tgagcccagg cttctgtggg agagagtggaa gaagctggc gggccacccctg gcagtggcag 1920
ctccctcaggc tccagcaact caggatccca gcccgggtct caccctgggtt ctcagagtgg 1980
ctccggggaa cgttccagag tgagatcatc atccaatgtt gaaggctctc catctcagcg 2040
cctggaaaat gcaatgtggaa aacatgtggaa taaaaaaggaa gtttccatca ggcacccatc 2100
tgctgatctg accgcactgg ccaaaagatc tcgcgtggc gaaatgttgc aaaaccatca ttgtccatca 2160
caaagtaacg gactactt catccgtga ggatcgcccc acgcacggatc aggaggacga 2220
cgatgtggag caggaagggg ctgcacgttc cacctcaggaa ccagaggaca ccagagcagc 2280
gtcatctctg aatgtggaaat gcaatgtggaaac ggaatgttgc aaaaccatca ttgtccatca 2340
tgatgttagaa agtggccgg ccatgacccca atccaatgttgc ggcacccatc ttacacccctt 2400
gactcagtcgcttccatca cactccagaa acacaatctt ccacccatc ttacacccctt 2460

tatagacccc	agattactac	agatttctcc	atctagcgg	acaacagtga	catctgtgg	2520
gggattttcc	tgtgatggg	tgagaccaga	agccataagg	caagatccta	cccgaaagg	2580
ctcagtgtc	aatgtgaatc	ctaccaaac	taggccacag	agtacaccc	cggagattc	2640
taaatacaga	aagaggttt	actctgagat	tctgtgtgct	gccttatggg	gagtgaattt	2700
gctagtgggt	acagagagt	gcctgatgc	gctggacaga	agtggccaag	ggaaggctca	2760
tcctcttata	aaccgaagac	gattcaaca	aatggacgt	cttggggct	tgaatgtct	2820
ggtgacaata	tctgcaaaa	aggataagtt	acgtgtctac	tatttgtct	ggttaagaaa	2880
taaaatactt	cacaatgatc	cagaagttg	gaagaagcag	ggatggacaa	ccgtagggg	2940
tttggaaagga	tgttacatt	ataaaagttgt	aaaatatgaa	agaatcaaat	ttctgtgtat	3000
tgctttaaag	agttctgtgg	aagtctatgc	gtgggcacca	aagccatata	acaattttat	3060
ggccctttaag	tcatttggag	aattggtaca	tggatctgt	gctggattcc	atgctgttga	3120
tgtggattca	ggatcagtct	atgacattt	tctaccaaca	catatccagt	gtagcatcaa	3180
accccattca	atcatcatcc	tcccaatac	agatgaaatg	gagcttctgg	tgtgctatga	3240
agatgagggg	gtttatgtaa	acacatatgg	aaggatcacc	aagatgttag	ttctacagt	3300
gggagagatg	cctacatcag	tagcatata	tcgatccaa	cagacaatgg	gctggggaga	3360
gaaggccata	gagatccgat	ctgtggaaac	tggtcactt	gatgggtgt	tcatgcacaa	3420
aagggctcaa	agactaaaat	tcttgtgt	acgcaatgac	aaggtttct	ttgeetctgt	3480
tcggctgtgt	ggcagcagtc	aggtttattt	catgaccta	ggeaggactt	ctttctgag	3540
ctggtagaaag	cagtgtgatc	cagggattac	tggcctccag	agtcttcaag	atcctgagaa	3600
cttggaaatc	ctttaactg	gagctcgag	ctgcaccgag	ggcaaccagg	acagctgtgt	3660
gtgcagacat	catgtgttgg	ttctctccc	ctccttctgt	ttctctttat	ataccagttt	3720
atccccatcc	ttttttttt	tcttactcca	aaataaatca	aggctgcaat	gcagctgg	3780
ctgtta						3786

<210> 48
<211> 1182
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte Clone Number: 209854

<210> 49
 <211> 1676
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone Number: 1384286

<400> 49
 tcgcccagcc cgtccggccgc cgccatggcc accacggtga cctgcacccg cttcaccgac 60
 gaggattcgg tctacgagga tattggcaag ggggctttct ctgtggcccg acgtgtgtc 120
 aagctctgca ccggccatga gtatgcagcc aagatcatca acaccaagaa gctgtcagcc 180
 agagatcacc agaagctgga gagagaggct cggatctgcc gccttctgaa gcattccaac 240
 atcgtgcgtc tccacgacag catctccgag gagggttcc actacctggt cttcgatctg 300
 gtcactggtg gggagcttct tgaagacatt gtggcgagag agtactacag cgaggctgtat 360
 gccagtcact gtatccagca gatcctggag gcegttctcc attgtcacca aatgggggtc 420
 gtccacagag acctaagcc ggagaacctg cttctggca gcaagtgcac aggggctgca 480
 gtgaagctgg cagacttcgg cctagctatc gaggtgcagg gggaccagca ggcatagggtt 540
 gtttcgtctg gcacaccagg ctacctgtcc cctgaggtcc ttgcacaaaga ggctacggc 600
 aagccccgtgg acatctggc atgtgggtg atcctgtaca tcctgcttgtt gggcttaccca 660
 cccttctggg acgaggacca gcacaagctg taccagcaga tcaaggctgg tgccatgtac 720
 tttccgtcccc ctgagtgaaa caccgtcaact cctgaagccaa aaaacctcat caaccagatg 780
 ctgaccatca accctgcca ggcacatcaca gcccattggg ccctgaagca cccgtgggtc 840
 tgccaaacgc ccacggtagc atccatgtatc cacagacagg agactgtggt gtgtctgaaa 900
 aagttcaatg ccaggagaaaa gctcaaggga gccatcctca ccaccatgtt ggccacacgg 960
 aatttctcag cagccaaagag tttaactcaac aagaaaacggc atggagtcaa gccccatacg 1020
 aatagcacca aaaacagtgc agccggccacc agccccaaag ggacgcttcc tcctggcc 1080
 ctggagtctt ctgacagtgc caataccacc atagaggatg aagacgctaa agcccgaaag 1140
 caggagatca ttaagaccac ggacggatc atcgaggccg tcaacaacgg tgacttttag 1200
 gcctacgcga aaatctgtga cccagggtcg acctcggtt agcctgaagc actggcaac 1260
 ctgggttgaag ggatggactt ccacagattt tacttcgaga acctgctggc caagaacagg 1320
 aagccgatcc acacgaccat cctgaaccca cacgtgcacg tcattggaga ggatggcc 1380
 tgcacatcgatc acatccggctt cacgcgtatc attgacgggc agggccggcc cccgaccaggc 1440
 cagtctgagg agacccgggtt gtggcaccgc cgacggcata agtggcagaa cgtgcacttc 1500
 cactgctcggtt ggcgcgtt ggcgcgtt cagtgaagag ctgcgcgtt gtttcgcgg 1560
 acagagttgg ttttttttttcc cccactggcc tggggcacac ggcctgcgtt tcgcacatgttt 1620
 gtgtctgcctt cgttccctcc cctgggtgcctt gtgtctgcag aaaaacaaggc ccgact 1676

<210> 50
 <211> 1597
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone Number: 1512656

<400> 50
 tcggcccttcg gaaagacccc cggggccgggg cacggagaga gccgagcgcc gtagccgtga 60
 gcccgaataga gcccggagaga cccgagtatg accggagaag cccaggccgg ccggaaagg 120
 agcccgagcgc ggccggaaagg aaccggaccc gtccgaaggg agcggacgcac gcctggccctg 180
 gggcccccgggtc gagcccccgc cttttttttt gaggcgacag ctgtggccgg aagcgggggtt 240
 gttggcgggtt gcctggccaa agacggctt cagcagtttta agtggccggaa cactacccca 300
 aaacggccggc ggcctcgcc gctgtcgctt gacggccgaccc gccgagccta ccaatgggtc 360

cgggagtaact tgggcggggc ctggcgccga gtgcagcccg aggagctgag ggtttacccc 420
 gtgagcggag gcctcagcaa cctgcttcc cgctgctcgc tccccgacca cctgcccage 480
 gttggcgagg agccccggga ggtgtttctg cggctgtacg gagccatctt gcagggcgtg 540
 gactccctgg tgctagaaaag cgtatgttc gccatacttg cggagcggtc gctggggccc 600
 cagctgtacg gagttttccc agagggccgg ctgaaacagt acatccaaag tcggccattt 660
 aaaaactcaag agcttcgaga gccagtgttgc tcagcagcca ttgccacgaa gatggcgcaa 720
 tttcatggca tggagatgcc tttaccaag gagccccact ggctgtttgg gaccatggag 780
 cggtagctaa aacagatcca ggacactgccc ccaactggcc tccctgagat gaacctgctg 840
 gagatgtaca gcctgaagga tgagatggc aacctcagga agttactaga gtctacccca 900
 tcgcccagtcg tcttcgtcca caatgacatc caggaaggaa acatcttgcgt gctctcagag 960
 ccagaaaaatg ctgacagcct catgttggc gacttcgagt acagcagtt taactatagg 1020
 ggctttgaca ttgggaacca ttttgttag tgggtttatg attatactca cgaggaatgg 1080
 cctttctaca aagcaaggcc cacagactac cccactcaag aacaggcgtt gcattttatt 1140
 cgtcatttacc tggcagggc aaagaaaggt gagaccctt cccaaagagga gcagagaaaa 1200
 ctggaaagaag atttgttgcgtt agaagtcaat cggtatgttc tggcatccca tttttctgg 1260
 ggtctgtggc ccatcttcca ggcattccatg tccaccatag aattttgtta ctggactat 1320
 gcccagtctc ggttccagtt ctacttccatg cagaaggggc agctgaccag tgtccactcc 1380
 tcatctgtac tccacccctcc cactccttgg atttcttctg gagcctccatg ggcaggaccc 1440
 tggagggagg aacaacgagc agaaggccct ggcgactggg ctgagcccc aagtgaaaact 1500
 gaggttcagg agaccggcct gttcctgagt tttagtaggt cccatggct ggcaggccag 1560
 agccccgtgc tgttatgtt acacaataaa caagctg 1597

<210> 51
 <211> 2145
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone Number: 2098635

<400> 51
 cccacgcgtc cggacagctt gacccagttt gctttccaaat caaagggcat ttatggaa 60
 tgcgttttgc tggcgcaaga gccaacgc当地 aaatgtatgc ggcttacaat ggcggtacat 120
 ctgcagcagc agcaggatcac caccaccacc atcaccacca cttccacac cttccctctc 180
 ctcacccgtt tcaccaccac caccctcaac accatttca tccgggtcg gctggcgctg 240
 tacaccctgt acagcagcac acctttcg cagctgcgc agccgcagca gcccgtcag 300
 ctgcagccat gttaaaaaccct gggcaacaac agccatattt cccatcaccc gcaaccggggc 360
 aggtctctgg accagctgca gcagccccag ctcaggtaca ggctggcga gctgtacag 420
 ttaaggcgca ccatcatcag cactcgatc atccacagca gcagctggat attgagccgg 480
 atagacctat tggatatggc gcctttggt ttgtctggc agtaacagat ccaagagatg 540
 gaaagagatc agcgttccaa aagatggccca acgtttccca gaatctggc ttttgc当地 600
 gggtcttcgg ggaatttgc当地 atttgtgtt ttttaagca tgataatgtt ctctctgccc 660
 ttgacatact ccaaccttcca cacatgact attttgc当地 aatataatgtt gtcacagaat 720
 tgatgcagag tgacctacat aaaattatcg tctctcttca accactcage tcagatcatg 780
 tcaaaggatc tctttatcag atttgc当地 gtttggaaata tetccattca gtcggcattt 840
 tacatcgaga cattaagccca gggaaatctcc ttgtgaacag caactgtgtt ctaaagatgg 900
 gtgtatggc当地 atttggccaga gtggaaagatc tagatgttcc cctgtatgtg actcagggaa 960
 ttgttactca gtattatcg gctccagaaa tcctgtatgg cagccgtcat tacagcaatg 1020
 ctattgtacat ctggctgtg ggatgtatct ttgcagaaact actaggacga agaatattgt 1080
 ttcaaggccaca gagtcccatt cagcagttgg atttgtatcac ggatctgtt ggcacaccat 1140
 cactggaaagc aatgaggaca gcttgc当地 ag ggcgttaagcc acatataactc aggggtccctc 1200
 ataaacagcc atctcttccat gtactctata ccctgtctag ccaggttaca catgaagctg 1260
 ttcatcttccat ttgcagatg ttgttcttgc atccatccaa aagaatatcc gctaaggatg 1320
 ctttagccca cccctaccta gatgaaggc gactacgata tcacacatgt atgtgtaaat 1380

gttgctttc cacctccact ggaagagt tt ataccagtga ctttgagcct gtcaccaatc 1440
 ccaaatttga tgacacttgc gagaagaacc tcagttctgt ccgacaggaa aaagaaaatta 1500
 ttcatcagtt catttggaa cagcagaaag gaaacagagt gcctctctgc atcaaccctc 1560
 agtctgtgc ttttaagagc tttattagtt ccaactgttgc tcagccatct gagatcccc 1620
 catctcctct ggtgtgggg tgatgggttga agataaatgtt ctactgaaga tggatgttag 1680
 ctttccactg gagtctggaa ttttcaattc tggaggtaa tcatgttgc actgttaattt 1740
 tactaatgaa gtttaaattt aacaaccact acttgttatga tatgaataat atttagaaat 1800
 gtactagac ttttaatctt gtaaaagtggt tggcttttga aaaaaat attttaccca 1860
 gagttgcaca tgttttatgtt atttagtgca gctgttatgg ctcacccatc aacaaaagag 1920
 aattgaacca aatttgggg tttgggggtt tatgtttgtt ttttctttc taaaatgtaaag 1980
 tgagattgtt cacacacaca cacacacaca cacacacaca cacaacacaca aaggacagtc 2040
 atacattttg atatttgagc cattcctaaa gatttgggg tttctaaaac taaaagaatct 2100
 aggaaccttg cctgcgacca atcatggagc cacgtgagct gatcg 2145

<210> 52
 <211> 1454
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone Number: 2446646

<400> 52
 gggttcgaat tgcaacggca gctgccgggc gtatgttttgcgttagagg cagctgcagg 60
 gtctcgctgg gggccgcctcg ggaccaattt tgaagaggta cttggccacg acttattttc 120
 acctccgacc tttcccttcca ggccgtgaga ctctggactg agatggctt tcacaatgg 180
 agggatcagt aatttcaaga caccacacaa attatcgaaa aaaaaat ctgtattatg 240
 ttcaacttcca actataaata tcccccctc tccgtttatg cagaagcttgcgttgc 300
 tggggtaaat gtgtaccta taaaagatc tccaaagaggat ttgtctcatt ctccctggc 360
 tggaaaaat attaatccta tatgtatgttcaattatcgatc agtgtgtatc aaaagagact 420
 aatggatgaa gctaagatattt tggaaaaggctt tcatcatccaa aacattttgtt gttatcgatc 480
 ttttactgaa gccaatgtatg gcaatgtatg ttttgcgtatg gaatatggag gtggaaatgtc 540
 tctaaatgac ttaatagaag aacgatataa aacatggccaa gatcctttc cagcagccat 600
 aattttaaaa gttgttttgcgtatg atatggcaag agggtaaaatg tatctgcacc aaaaaagaaa 660
 actgtttcat ggagacataa agtcttcaaa tggatgttattt aaaggccattt ttggaaacaaat 720
 taaaatctgtt gatgttaggat tctcttacc actggatgaa aatatgtactg tgactgaccc 780
 tgaggcttgcgtatg tacattggca cagagccatg gaaacccaaa gaagctgtgg aggagaatgg 840
 tggatgttact gacaaggccatg acatatttgc tttggccctt actttgtggg aatatgtatgac 900
 ttatcgattt ccacacatatttcaaa tggatgtatg gatgtatgat aatatttttgc 960
 tggaaaatgtatg tttgtatgatg aacgatataa tggatgtatg gatgtatgat aatatttttgc 1020
 tatggaaatggaa ctggatgtatg cataccagaa agttaatggaa ctcttcttgc tatgtatgat 1080
 tggaaaatgtatg tttgtatgatg aacgatataa tggatgtatg gatgtatgat aatatttttgc 1140
 ctgtatgtatg tttgtatgatg aacgatataa tggatgtatg gatgtatgat aatatttttgc 1200
 acatagtttac tttgtatgatg aacgatataa tggatgtatg gatgtatgat aatatttttgc 1260
 ctgtatgtatg tttgtatgatg aacgatataa tggatgtatg gatgtatgat aatatttttgc 1320
 ttggaaatgtatg tttgtatgatg aacgatataa tggatgtatg gatgtatgat aatatttttgc 1380
 ctgtatgtatg tttgtatgatg aacgatataa tggatgtatg gatgtatgat aatatttttgc 1440
 atgaccatatttttgc 1454

<210> 53
 <211> 3225
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone Number: 2764911

<400> 53

tggagcagg ggcgggttgg ttgcgcggta ctgcgggtgc cggccgaatg gggaggaggc 60
 gaggagcgag ccgtgcggcc agagcgggaa agagactcgt ctttgcgtcc gagttctgga 120
 gcccggcac cccgactctt gggccgggg cagggctgc gaggggacgg gcgtccgctg 180
 ttcctgggt tccccctcgta gcgaccggcg ggatcgaaa aaaaggagaa gatggaggag 240
 gagggtggca gcagcggcg cgccgggggg accagcggcg acggccgca cggaggagag 300
 cagctcctca ctgtcaagca cgagctgcgg actgctaatt tgacaggaca tgctgagaag 360
 gtggaaatag aaaatttga gtcctctgaag gtccttaggaa ctggagctta tgaaaaagta 420
 tttctatgttc gtaaaataag tggccatgt actggaaagc tgcgtccat gaaagtttg 480
 aaaaaggca caatcggtca aaaggccaaa accacagagc atacaaggac agaacgacaa 540
 gtcctggaa acataggca gtcgccattt ttggtaacat tacattatgc ttccagaca 600
 gaaaccaaac ttcatctcat tttagattat ataaatggt gtgaactttt taccatctt 660
 tctcaaagag agcggttcac agagcatgag gtgcagattt atgttggaga gattgtgtt 720
 gccctcgaaac atctccacaa gttgggatt atatatcgat atattaagct tgagaatatt 780
 ctacttgatt ctaatggcca tgggtgtctg acagatttg gtctgagta ggagtttg 840
 gctgatgaaa ctgaaagagc atattcctt tggactacta ttgaatacat ggcaccagat 900
 attgtcagag ggggagattc aggacatgac aaggcagtgg actgggtggag ttgggtgtt 960
 ctaatgtatg aattactaac tggagcatct ccttcactg ttgatggaga aaaaattcc 1020
 caagctgaga tatcttaggaa aatattaaaa agtgagccctc catatccccaa agaaatgagt 1080
 gctttagcga aagacctaattcagcgtttt ttgatgaaag atccaaagaa gagattggga 1140
 tgggtccac gtgatgcaga tgaaatcaaa gaacatctt tcttcagaa aataaattgg 1200
 gatgattttag ccgcacaaaaa agtgcctgca ccatttaagc cagtcattcg agatgaatta 1260
 gatgtgagta actttgcaga agagttcaca gaaatggatc ccacttatttcc tccgcagcc 1320
 ctgccccaga gttctgagaa gctgtttcag ggctattctt ttgttgcgtcc ttccatctta 1380
 ttcaagcgta atgcagctgt catagaccctt cttcagttt acatgggagt tgaacgttct 1440
 ggagtgacaa atgttgcacag gagtgcaatg atgaaggact ctccattcta tcaacactat 1500
 gacctagatt tgaaggacaa accctggga gaaggtagtt ttcaatttg tcgaaagtgt 1560
 gtgcataaaaaaa aagtaacca agcttttgc gtcacaaataa tcagccaaag gatggaaagcc 1620
 aataactcaaa agggaaataac agctctggaa ctctgtgaag gacacccaa tattgtgaag 1680
 ttgcatgaag ttttcatga tcagcgtttc acgtttctag tgatgaaact tctgaatgg 1740
 ggagaactgt ttgagcgcattaaag aagcacttca gtgagacggaa agccagctac 1800
 atcatgagga agcttttgc agctgtaaac cacatgcattt atgttggagt ggtgcacagg 1860
 gatctgaaac ctgagaattt attttcacc gatgaaaatg acaatttggaa aattaaaaata 1920
 attgattttg gatttgcacg gctaaagcca ccggataatc agccctgaa gactccatgc 1980
 ttccacccttc attatgccgc cccagagctt ttgaatcaga acggctacga tgagtctgt 2040
 gacctgtggaa gcttggcgtt cattttgtac acaatgttgc caggacaggt tcccttccaa 2100
 ttcctatgacc gaagtttgcgtt gtgtaccaggc gcgggtggaaa tcatgaagaa aattaaaaag 2160
 ggagatttctt ctttgcatttgg agaaggctgg aagaatgtat cccaaaggcc taaagatttg 2220
 atccaaaggac ttctcacagt agatccaaac aaaaggctta aatgtctgg ttgaggtac 2280
 aatgaatggc tacaagatgg aagtcaatgc tcctccaaatc ctctgtatgc tccggatatt 2340
 ctaggatctt ccggagctgc cgtgcataacc tggatggaaa caaccccttca cgcctttaac 2400
 aaatacaaga gagaggggtt ttgcgtttcag aatgttgcata aggcccctt ggctaaagaga 2460
 agaaaaatgaa aaaagacttag caccaggatc gagacacgc gcaatggcgt tgagagttcc 2520
 cattttttttt ctttgcatttca tcacggtaaa actacaccca ccaagacact gcaagccagc 2580
 aatccctgcgc acagcaataa cccggagacc ctcttccagg tctcgactc agtagcttag 2640
 gcatggtagg agtgtatcag tgatccattt cacccttattt ccctcagcat atgcctgagg 2700
 cgatctttta tgcttttaaa aatgtttccc gttggatctca ttggatctg cttcttaatg 2760
 atttttttca gggaaaacctg tttggttatc ctcatcaaa agcactggac agagaatgtt 2820
 actgtgaata gagcacatata tactttttt agcaacctag catgtgcac acaagactat 2880
 tcttgcatttgc gcaaaaggatc ctgtttttttt aattaggctt agatttgagc tgcttgcataag 2940
 tcaacaggatc tccagatgtc tgccacaacaa aatgtactca tactgtatgc ataccttttgc 3000
 ctttgcatttgc tggacaatgtt gggtttttgc aatttgaccc cttcaacaa tgatttatca 3060

gagaaaagggg tctgtttca aaaaagattc tgtaatgaat tttatgtgtg gcataatactt 3120
 atttcttag agaagatttt aacttattgt ttttattta tggttacata tgatgataac 3180
 ctgttattat taaaactttt ctaaaaaagtg aaaaaaaaaa aaaaaa 3225

<210> 54
 <211> 2110
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone Number: 3013946

<400> 54
 tcgcggagcc cgccatggcc accacggta cctgcacccg cttcaccgac 60
 gagtaccaggc tctaegagga tattggcaag ggggctttct ctgttgtcc acgtgtgtc 120
 aagctctgca cggccatga gtatgcagcc aagatcatca acaccaagaa gctgtcagcc 180
 agagatcacc agaagctgga gagagaggct cggatctgcc gccttctgaa gcattccaac 240
 atcggtcggtc tccacgacag catctccgag gagggcttcc actacctggt cttcgatcty 300
 gtcactgggt gggagctctt tgaagacatt gtggcgagag agtactacag cgaggctgt 360
 gccagtcact gtatccagca gatcctggag gccgttctcc attgtcacca aatgggggtc 420
 gtccacagag acctcaagcc ggagaacctg ctctggcca gcaagtcaa aggggctgca 480
 gtgaagctgg cagacttgg cctagctatc gaggtgcagg gggaccagca ggcatggtt 540
 ggttctgctg gcacaccagg ctacatgtcc cctgagggtcc ttgcacaaga ggcgtatggc 600
 aagectgtgg acatctgggc atgtgggtg atcctgtaca ttctgtctgt gggcttaccca 660
 cccttctggg acgaggacca gcacaagctg taccagcaga tcaaggctgg tgcctatgac 720
 ttcccgtccc ctgagtggtt caccgtcaact cctgaaggcca aaaacctcat caaccagatg 780
 ctgaccatca accctgccaa ggcatacaca gcccattggg ccctgtaaagca cccgtgggtc 840
 tgccaaacgtt ccacggtagc atccatgtatc cacagacagg agactgtggt gtgtctgaaa 900
 aagttcaatg ccaggagaaa gctcaaggga gccatctca ccaccatgtt ggccacacgg 960
 aatttctcaag ccaagagttt actcaacaag aaagcagatg gagtaaagcc ccagacgaat 1020
 agcaccaaaa acagtgcagc cgccaccagg cccaaaggga cgcttctcc tgccgcccctg 1080
 gagcctcaaa ccaccgtcat ccataaccca gtggacggga ttaaggatgc ttctgacagt 1140
 gccaataccca ccatacggaa tgaagacgtt aaagccccca gggccccca catcctgagc 1200
 tcagtgagga ggggctggg agccccagaa gccgaggggc ccctgcccctg cccatctccg 1260
 gtccttcttg gccccctgcc agctccatcc cccaggatct ctgacatctt gaactctgtg 1320
 agaagggggtt caggaacccc agaagccgag gggccctct cagccccccccc cccgcccctgc 1380
 ctgtctccgg ctctcttagg cccccctgtcc tccccgtccc ccaggatctc tgacatctgt 1440
 aactctgtga ggaggggttc aggacccca gaagccaagg gcccctcgcc agtggggccc 1500
 ccccccctgccc catctccgac tatccctggc cccctgccc ccccatcccc gaagcaggag 1560
 atcattaaga ccacggagca gctcatcgag gccgtcaaca acggtgactt tgaggcctac 1620
 gcgaaaatct gtgaccagg gctgacccctg tttagccctg aagcactggg caacctgggt 1680
 gaagggatgg acttccacag attctacttc gagaacctgc tggccaagaa cagcaagcca 1740
 atccacacgca ccatactgaa cccacacgtg cacgtcattt gagaggatgc cgcctgcattc 1800
 gettacatcc ggctcaacgtca gtacatttgc gggcaggggcc gggcccccac cagccagtct 1860
 gaggagaccc gctgtgtggca ccccccggc ggcacgtggc agaatgtgca ttccactgc 1920
 tcggggcgcc ctgtggcccc gctgcagtta agagctgcgc cctggtttcg ccggacagag 1980
 ttgggtttt gggcccgact gcccctggc acacggccctg cctgtcgcat gtttgtgtct 2040
 gcctcggttcc ctccccctggt gcctgtgtct gcagaaaaac aagaccagat gtgatttgtt 2100
 aaaaaaaaaa 2110

<210> 55
 <211> 2140
 <212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone Number: 067967

<400> 55

<210> 56

<211> 1728

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone Number: 346275

<400> 56

gacagacaaa gcgcgcacat gctccgtt tggatgtc agagagcaga 60

<210> 57
<211> 1610
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte Clone Number: 283746

<400> 57
gtgcgcctcg aaggagaacc attttccatc tctttcatag tttttcccc cagtcagcgt 60
ggtagcgta ttctcccggg cagtgcacgt aattttttt gccttttag ccaagacttc 120
cgccctcgat caagatggtg gttggacggc ctccctaacc ttacggggc ctggcggtgc 180
tgacgcctga gctggtaggg gtggagcagg tagaaacag caaatgcaga agctgctgcg 240
cggaagtcgg ccatggactg gaaagaagg ctgcgtcgcc gcctagcgcac gccaacacc 300
tgtccaaaca ctgcctgtcg aagatgaagt cttactacag aaattaagag aggaatcaag 360
agctgtcttt ctacaaagaa aaagcagaga actgttagat aatgaagaat tacagaactt 420
atggtttttg ctggacaaac accagacacc acctatgatt ggagagggag cgatgatcaa 480
ttacgaaaac ttttgaagg ttggtaaaaa ggctggagca aagtgcacgc aatttttccac 540
agcaaaagtc ttgtctaaac tccttcatac agattcatat ggaagaattt ccatcatgca 600
gttcttaat tatgtcatga gaaaagtgg gcttcatcaa acaagaatag gactcagttt 660
atatgatgtc gctgggcagg ggtaccttcg ggaatctgtat tttagaaaaact acatattgg 720
acttatccct acgttgccac aatttagatgg tctggaaaaa tctttctact ctttttatgt 780
ttgtacagca gtttaggaagt tcttcttctt tttagatcct ttaagaacag gaaagataaa 840
aattcaagat attttagcat gcagcttcct agatgattta ttggactaa gggatgagga 900

actgtccaag	gagagtcaag	aaacaaaattt	gttttctgct	ccttctgcc	taagagttt	960
tggccagtag	ttgaatcttg	ataaagatca	caatggcatg	ctcagtaaag	aagaactctc	1020
acgctatgg	acagctacca	tgaccaatgt	cttcttagac	cgtgtttcc	aggagtgtct	1080
cacttatgt	ggagaaaatgg	actataagac	ctacttggac	tttgtcttg	cattagaaaa	1140
cagaaaaggaa	cctgcagctc	tacaatataat	tttcaaactg	cttgatattt	agaacaaaagg	1200
ataacctgaat	gtctttcac	ttaatttattt	ctttagggcc	atacaggaac	taatggaaaat	1260
ccatggacaa	gatcctgttt	catttcaaga	tgtcaaggat	gaaatcttt	acatggtaaa	1320
acccaaaggat	ccttgaaaaa	tctcttcc	ggatttaatc	aacagtaatc	aaggagacac	1380
agtaaccacc	attctaattcg	atttgaatgg	cttctggact	tacgagaaca	gagaggctct	1440
tgttgcaaat	gacagtggaa	actctgcaga	ccttgcgtat	acatgatctc	tgaaagacta	1500
gactgtctt	tattatgaga	tacttgaatg	ctgcgtat	agcctttaaa	gcaaaatct	1560
cagaaaatgg	ctaaataaaaa	cacttgcata	gccttagagaa	aaaaaaaaaa		1610

<210> 58
<211> 1290
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte Clone Number: 2696537

<400> 58
ccggctcccc ccgggaagtt ctagggcgcc gcacagaaaag ccctgcgcgc caccgcccgtt 60
ctctggagcg ccctgggttg cccggccggc ccctgcgcgt gacttgttga cactgcgagc 120
actcagtccc tccccgcgc ctcctccccc cccggccggc cgctccctct ccctgtaaaca 180
tgccatagtg cgccctgcgcac cacacggccg gggcgctagc gtgcgccttc agccaccatg 240
ggaaatggga tgaacaagat cctgcccggc ctgtacatcg gcaacttcaa agatgccaga 300
gacgcggaaac aatttggacaa gaacaagggtt acacatattc tgctgttcca tgatagtgcc 360
aggcctatgt tggagggagt taaaatacctg tgcacccagc cagcgattt accatctcaa 420
aacctgacaa gacatttcaa agaaaagtatt aaattcattt acgagtgcgc gctcccgccgt 480
gagagctgcc ttgtacactg cttggccggg gtctccagga gcgtgacact ggtgatcgca 540
tacatcatga ccgtcaactga ctttggctgg gaggatgccc tgcacaccgt gctgtctggg 600
agatccctgt ccaaaaaaaa cttggggcttc cagagacagc tccaggagtt tgagaagcat 660
gaggccatc agtacggca gtggctgaag gaagaatatg gagagagccc tttgcaggat 720
gcagaagaag ccaaaaaacat tctggccgc cccggaaattt tgaagttctg ggcctttctc 780
agaagactgt aatgtacactg aagtttctga aatattgcaaa acccacagag ttttaggctgg 840
tgctgccaaa aagaaaaagca acatagagtt taagtatcca gtatgttattt gtaaaacttgt 900
tttccattt aagctgaata tatacgtatg catgtttatg ttgagaacta aggatattct 960
tttagcaagag aaaatatttt ccccttatcc ccactgtgt ggagggttct gtacctcgct 1020
tggatgcctg taaggatccc gggagccctt ccgcactgccc ttgtgggtgg cttggcgcctc 1080
gtgattgtt cctgtgaacg cttcccaagg acgagccagc tggatgttgc tggcgtgaac 1140
tctggccgtg tgttctaaaa ttccccagct tggaaaatag cccttgggtt gggttttatc 1200
tctggtttgt gttctccgtg gtggaaattga ccgaaagctc tatgttttcg ttaataaagg 1260
gcaactttagc caagttaaaa aaaaaaaaaaa 1290

<210> 59
<211> 2281
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte Clone Number: 551178

<400> 59

tgatgatcca gatgttaaag cacaagtggc agtgctgtcc gtcactac gtgccttccag 60
 cctggatgca catgaagaga ccatcgttat agaaaaagaga agtgattgc aagatgaact 120
 gatatataat gagctaccaa attgtaaaat aaatcaagaa gattctgtgc cttaatcag 180
 cgatgctgtt gagaatatgg actccactct tcactatatt cacagcgatt cagacttgag 240
 caacaatagc agtttagcc ctgatgagga aaggagaact aaagtacaag atgttgtacc 300
 tcaggcgttg ttagatcgtt atttatctat gactgaccct ttcgtgcac agacggttga 360
 cactgaaatt gctaaggact gtgcataatag cctccctgtt gtggccttga cactcggaaag 420
 acagaattgg cactgcctga gagagacgt tgagactctg gcctcagaca tgcagtggaa 480
 agttcgacga actctagcat tctccatcca cgagcttgc gttattctt gagatcaatt 540
 gacagctgca gatctggttc caatttttaa tggattttt aaagacctcg atgaagtca 600
 gatagggtttt cttaaacact tgcatttgcatt tctgaagctt cttcatattt aaaaaagaag 660
 agaatatctt tatcaacttc aggagttttt ggtgacagat aatagtagaa attgccgggtt 720
 tcgagctgaa ctggctgaac agctgattttt acttcttagag ttatatagtc ccagagatgt 780
 ttatgactat ttacgtccccca ttgctctgaa tctgtgtgc gacaaggattt cttctgttcg 840
 ttggatttcc tacaagggttgg tcagcgagat ggtgaagaag ctgcacgcgg caacaccacc 900
 aacgttcggg gtggacctca tcaatgagct tttggagaac tttggcagat gtcccaagtg 960
 gtctggcggg caagcccttgc tcttgcgttgc ccagactgtc attgaggatg atgccttcc 1020
 catggaccag tttgtgtgc atctcatgcc gcatctgcata accttagcaa atgacagggt 1080
 tcctaactgtc cgagtgtgc ttgcaaggac attaagacaa actctactag aaaaagacta 1140
 tttcttggcc tctgcacgtt gccaccaggaa ggctgtggag cagaccatca tggctttca 1200
 gatggaccgt gacagegatg tcaagtattt tgcaagcatc caccctgcgc gtaaaaaat 1260
 ctccgaagat gccatgagca cagcgtccctc aacctactag aaggcttgcgatccgttgc 1320
 tttcctgttcc ccatgagagc cgagggttcag tggcatttgc ccacgcgttgc gacctggat 1380
 agctttcggtt ggaggagaga ctttcccttc ctgcggactt cattgcggat gcaagttgcc 1440
 tacacccaaat accagggtt tcaagagtca agagaaaagta cagtaaacac tattatctta 1500
 tcttgcattt aaggggaaat aatttctcag aggattataa ttgtcaccgcgatccgttgc 1560
 ccttctgtct tcctgactga atgaaaacttg aattggcaga gcattttccct tatggaaagg 1620
 atgagattcc cagagacccgtt cattgttttcc ttctggttt atttaacaat cgacaaatga 1680
 aattcttaca gcctgaaggc agacgtgtgc ccagatgtga aagagacctt cagttatcgc 1740
 cctaactctt ctctcccgagg aaggacttgc tggctctgttgc ggcagctgttgc 1800
 cctgtgtgtt aatcggtttt gacgtgtgc aatggggaaag gagggtttt tacatcttct 1860
 aaaggacccgtt atgccaacac aagttaggatt gactttaactt cttaaagcgc gcatattgtc 1920
 gtacacattt acagaatggt tgctgagtgtt ctgtgttgc ttttttcatg ctggcatgaa 1980
 cctgaaggaa atttatttgcgatccgttgc atgtctgggtt tttttaactt gatcatgatc 2040
 agctctgagg tgcaacttct tcacatactg tacataccgcgatccgttgc tgggagtgtc 2100
 gcagtcctta atcatgtgtt ttaaactgtt gtggcacaag ttctttgtc caaataaaaat 2160
 ttatataataa gatctataga gagagatata tacacttttgcgatccgttgc atgtgttgc 2220
 caataaaatgc aatttgcgatccgttgc gatttaaatgatccgttgc gggaaacttag attaaaaat 2280
 a

2281

<210> 60

<211> 632

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone Number: 619292

<400> 60

cggacgcgtt gggcccgccgc gcaagctccag caccgaggac ttctgttgc tcttcacgg 60
 ggagctggaa cgaggcccccctt ccggggcttgg gatggggcttgc atcgacgggaa tgcacacgc 120
 cctggggccgc cccgggttgc acatccagac cctgttgc ggcagccccgg cagggccgc 180
 cggggcccttgc tggctgggggg accgttgcgttgc ggcagcagcc tcttggccct 240

tggctacctg	agagctgtgg	acctgatccg	tcatggcgaa	aagaagatgc	ggttcctggt	300
cgcgaagtcc	gacgttggga	aacagccaag	aagatccatt	tccgcacgcc	ccctctctag	360
gggggctcg	aggacaccccc	cacaggcccg	gcacccggtc	ccacctggtg	acactgggct	420
tcctcccgcc	ttcgctccctg	ttttgttaact	gaccaagttg	ggtcccggtt	ggggagcctc	480
accctgggaa	catgcctgtt	gataaacatgc	atctcagtgt	aggttctatt	tatatggcag	540
atgacgtgaa	attgtgatgt	ttgttacaga	gttttatgt	ttaaagactt	caatggagaaa	600
gtacggttca	ataaaactatt	tttcccggtt	tt			632

<210> 61
<211> 2347
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte Clone Number: 2054049

ctctgatgtc tattttattc tacataagag ccatatgtaa tgtactgtaa caaaggagct 2280
tcttgcccc ttggtcttt aattaaaaga aattccaact gactttaaa cttaaaaaaaa 2340
aaaaaaaaa 2347

<210> 62
<211> 1737
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone Number: 2843910

<400> 62
ccggggctga gcgctcgct gcagcggcgc ggaggccgtc tccctggct gcccgggtcc 60
ccgccccgtcc cgccgcggc tgccatggca ggagccggag ggttcggctg cccgggggc 120
ggcaacgact tccagtggtg ctctcgcag gtcaaggggg ccategacga ggacgtggcc 180
gaagcggaca tcatttccac cggttagttt aattactctg gagatcttct tgcaacagga 240
gacaaggccg gcagagttgt tatttttagt cgtgaacaag agaataaaag ccgcctcat 300
tctaggggag aatataatgt ttacagcacc tttcaaaagtc atgaaccgga gtttactat 360
ttgaaaagtc tagaaattga ggaaaaaaatt aataaaattt ggtggttacc acaacagaat 420
gtctgtcatt ttctactgtc tacaaatgtt aaaaactataa aattatggaa aataagtgaa 480
cgggataaaa gggcagaagg ttataacctg aaagacgaaat atggaaagact tcgagaccca 540
tttaggatca cggcgctacg ggtcccaata ttgaagccca tggatctt ggtagaagcg 600
agtccacggc gaatttttcg aaatgtcact acatatcata taaaattccat ttctgtaaat 660
agtgtatcatg aaacatatct ttctgcagat gacctgagaa ttaatttgcgactttagaa 720
atcacagata gaagctttaa catcggttgc atcaagcctg ctaacatggaa ggagctgacc 780
gaagtcatca ctgcagccga gttccaccccg caccagtgcg acgtgttgcgactacagcgt 840
agcaaaaggga ccattccgcct gtgtgacatg cgctccctgg ccctgtgcga cagacactcc 900
aagtttttg aagagcttgc agatcccage agtaggtcct ttttctcaga aataatttca 960
tccatatccg atgtaaaaattt cagtcatacg gggcggtaca tgatgaccag agactacctg 1020
tcgggtgaagg tggggaccc caacatggag agcaggccgg tggagaccca ccaggtccac 1080
gagttacctgc gcagcaagct ctgtctctc tatgagaacg actgcacatct tgacaagttt 1140
gagtgttgcg tggaaacgggttc ggatagcgcc atcatgaccg ggtcctataa caacttcttc 1200
agatgttttgc atagagacac gggggat gtgaccctgg aggccctcgag agagagcagc 1260
aaaccgcgcg ccagcctcaa accccggaaat ggtgtacgg gggtaagcg gaggaaagac 1320
gagatcagtgc tggacagctt ggacttcaac aagaagatcc tgacacacgc ctggcaccccc 1380
gtggacaatgc tcatttgcgt ggctgccacc aataacttgt acatattcca ggacaaaatc 1440
aactagagac gcgaacgtga ggaccaagtc ttgtcttgcg tagttaagcc ggacatcccc 1500
ctgtcagaga aaaggcatca ttgtccgtc cattaagaac agtgcacgc acgtctacttc 1560
ccttcacaga cacaggagaa agccgcctcc gctggaggcc cggtgtggtt ccgcctcgcc 1620
gaggcgcgag acaggcgctg ctgtcacgt ggagacgctc tcgaagcaga gttgacggac 1680
actgctccca aaaggtcatt actcagaata aatgtatttta tttcaaaaaa aaaaaaaaaa 1737