

# Лекция 4 Визуализация результатов кластеризации

Николай Анохин

19 марта 2015 г.

#### Краткое содержание предыдущих лекций

**Дано.** N обучающих D-мерных объектов  $\mathbf{x}_i \in \mathcal{X}$ , образующих тренировочный набор данных (training data set) X.

**Найти.** Модель  $h^*(\mathbf{x})$  из семейства параметрических функций  $H = \{h(\mathbf{x}, \theta): \mathcal{X} \times \Theta \to \mathbb{N}\}$ , ставящую в соответствие произвольному  $\mathbf{x} \in \mathcal{X}$  один из K кластеров так, чтобы объекты внутри одного кластера были похожи, а объекты из разных кластеров различались.

#### Краткое содержание предыдущей лекции

# Рассмотрели классические алгоритмы кластеризации

- 1. Смесь гауссовских распределений и k-means
- 2. Hierarchical Clustering
- 3. DBSCAN



## Multidimensional Scaling

#### Идея метода

Перейти в пространство меньшей размерности так, чтобы расстояния между объектами в новом пространстве были подобны расстояниям в исходном пространстве.

#### Обозначения

- lacktriangledown  $oldsymbol{x}_i \in \mathcal{X} \subset R^D$  объекты в исходном многомерном пространстве
- ▶  $\delta_{ii}$  расстояние между  $\mathbf{x}_i$  и  $\mathbf{x}_i$
- $\mathbf{x}_i \in \mathcal{Y} \subset R^E$  объекты в целевом пространстве (E=2 или E=3)
- ▶  $d_{ij}$  расстояние между  $\mathbf{y}_i$  и  $\mathbf{y}_j$



#### Критерии

#### Выбираем кофигурацию $\mathbf{y}_i$ , соответствующую минимуму критерия

$$J_{\text{ee}} = \frac{\sum_{i < j} (d_{ij} - \delta_{ij})^2}{\sum_{i < j} \delta_{ij}^2}$$

$$J_{ff} = \sum_{i < j} \frac{(d_{ij} - \delta_{ij})^2}{\delta_{ij}^2}$$

$$J_{\mathsf{ef}} = \frac{1}{\sum_{i < j} \delta_{ij}} \sum_{i < j} \frac{(d_{ij} - \delta_{ij})^2}{\delta_{ij}}$$

$$\nabla_{\mathbf{y}_{k}} J_{ee} = \frac{2}{\sum_{i < j} \delta_{ij}^{2}} \sum_{j \neq k} (d_{kj} - \delta_{kj}) \frac{\mathbf{y}_{k} - \mathbf{y}_{j}}{d_{kj}}$$

$$\nabla_{\mathbf{y}_{k}} J_{ff} = 2 \sum_{j \neq k} \frac{d_{kj} - \delta_{kj}}{\delta_{kj}^{2}} \frac{\mathbf{y}_{k} - \mathbf{y}_{j}}{d_{kj}}$$

$$\nabla_{\mathbf{y}_{k}} J_{ef} = \frac{2}{\sum_{i < j} \delta_{ij}} \sum_{i \neq k} \frac{d_{kj} - \delta_{kj}}{\delta_{kj}} \frac{\mathbf{y}_{k} - \mathbf{y}_{j}}{d_{kj}}$$

#### T-SNE

## Вопросы

