```
v0 := ld state[748]
                        // load primes from the trace activation record
      st sp[0], v0
                        // store primes to interpreter stack
v1 := ld state[764]
                        // load k from the trace activation record
v2 := i2f(v1)
                        // convert k from int to double
      st sp[8], v1
                        // store k to interpreter stack
                        // store false to interpreter stack
      st sp[16], 0
v3 := 1d \ v0[4]
                        // load class word for primes
v4 := and v3, -4
                        // mask out object class tag for primes
v5 := eq v4, Array
                        // test whether primes is an array
      xf v5
                        // side exit if v5 is false
v6 := js_Array_set(v0, v2, false) // call function to set array element
v7 := eq v6, 0
                        // test return value from call
                        // side exit if js_Array_set returns false.
      xt v7
```

Figure 3. LIR snippet for sample program. This is the LIR recorded for line 5 of the sample program in Figure 1. The LIR encodes the semantics in SSA form using temporary variables. The LIR also encodes all the stores that the interpreter would do to its data stack. Sometimes these stores can be optimized away as the stack locations are live only on exits to the interpreter. Finally, the LIR records guards and side exits to verify the assumptions made in this recording: that primes is an array and that the call to set its element succeeds.

```
mov edx, ebx(748)
                       // load primes from the trace activation record
mov edi(0), edx
                       // (*) store primes to interpreter stack
                       // load k from the trace activation record
mov esi, ebx(764)
mov edi(8), esi
                       // (*) store k to interpreter stack
mov edi(16), 0
                       // (*) store false to interpreter stack
                       // (*) load object class word for primes
mov eax, edx(4)
and eax, -4
                       // (*) mask out object class tag for primes
cmp eax, Array
                       // (*) test whether primes is an array
jne side_exit_1
                       // (*) side exit if primes is not an array
                       // bump stack for call alignment convention
sub esp, 8
push false
                       // push last argument for call
                       // push first argument for call
push esi
call js_Array_set
                       // call function to set array element
add esp, 8
                       // clean up extra stack space
                       // (*) created by register allocator
mov ecx, ebx
test eax, eax
                       // (*) test return value of js_Array_set
je side_exit_2
                       // (*) side exit if call failed
side_exit_1:
mov ecx, ebp(-4)
                       // restore ecx
                       // restore esp
mov esp, ebp
                       // jump to ret statement
jmp epilog
```

Figure 4. x86 snippet for sample program. This is the x86 code compiled from the LIR snippet in Figure 3. Most LIR instructions compile to a single x86 instruction. Instructions marked with (*) would be omitted by an idealized compiler that knew that none of the side exits would ever be taken. The 17 instructions generated by the compiler compare favorably with the 100+ instructions that the interpreter would execute for the same code snippet, including 4 indirect jumps.

i=2. This is the first iteration of the outer loop. The loop on lines 4-5 becomes hot on its second iteration, so TraceMonkey enters recording mode on line 4. In recording mode, TraceMonkey records the code along the trace in a low-level compiler intermediate representation we call *LIR*. The LIR trace encodes all the operations performed and the types of all operands. The LIR trace also encodes *guards*, which are checks that verify that the control flow and types are identical to those observed during trace recording. Thus, on later executions, if and only if all guards are passed, the trace has the required program semantics.

TraceMonkey stops recording when execution returns to the loop header or exits the loop. In this case, execution returns to the loop header on line 4.

After recording is finished, TraceMonkey compiles the trace to native code using the recorded type information for optimization. The result is a native code fragment that can be entered if the

interpreter PC and the types of values match those observed when trace recording was started. The first trace in our example, T_{45} , covers lines 4 and 5. This trace can be entered if the PC is at line 4, i and k are integers, and primes is an object. After compiling T_{45} , TraceMonkey returns to the interpreter and loops back to line 1.

i=3. Now the loop header at line 1 has become hot, so Trace-Monkey starts recording. When recording reaches line 4, Trace-Monkey observes that it has reached an inner loop header that already has a compiled trace, so Trace-Monkey attempts to nest the inner loop inside the current trace. The first step is to call the inner trace as a subroutine. This executes the loop on line 4 to completion and then returns to the recorder. Trace-Monkey verifies that the call was successful and then records the call to the inner trace as part of the current trace. Recording continues until execution reaches line 1, and at which point Trace-Monkey finishes and compiles a trace for the outer loop, T_{16} .