Universidade de Aveiro

Departamento de Matemática

Cálculo I - C 2024/2025

Soluções do 1º Teste (Versão 1)

- 1. (a) se f(a) < 0, f(b) < 0 e existe $c \in]a, b[$ tal que f(c) > 0 então f tem, pelo menos, dois zeros em]a, b[.
 - (b) a função φ tem mínimo e máximo globais.
 - (c) $h'(c) = \frac{3\pi}{4}$
 - (d) 3
 - (e) 1
 - (f) $G'(x) = -2\ln(2x+1)$
- 2. (a) $D_{f^{-1}} =]-\infty, \ln(\pi)], CD_{f^{-1}} = [-1, 1[e f^{-1}(x) = \cos(e^x).$
 - (b) $y = \frac{\pi}{2} \left(\ln \frac{\pi}{2} x \right)$.
- 3. (a) $T_{\pi}^3 g(x) = x + 1 \frac{(x-\pi)^2}{2}$.
 - (b) —
- 4. (a) $\frac{1}{3} \frac{\sqrt{x^2 3}}{x} + C$, $C \in \mathbb{R}$.
 - (b) $-\frac{1}{2}\ln|x+3| + \frac{1}{4}\ln(x^2+1) \frac{1}{2}\operatorname{arctg}(x) + C$, $C \in \mathbb{R}$.
- 5. (a) $x \arctan(x) \frac{1}{2} \ln(1 + x^2) + C$, $C \in \mathbb{R}$.
 - (b) f é integrável em [-1,1] porque f é contínua neste intervalo e $\int_{-1}^{1} f(x) dx = \frac{\pi + 2 \ln 4 2\cos(2)}{4}$
- 6. $\frac{3(e-1)}{2e}$