K-Maps

Instructor: Dr. Vinicius Prado da Fonseca (vpradodafons@online.mun.ca)

- Boolean algebra is prone to errors, requires memorization of rules and theorems
- Karnaugh Maps are a graphical method for simplifying boolean equations
- Invented in 1953 by Maurice Karnaugh

- Logic minimization involves combining terms (Minterms, SOP)
- Two terms containing an implicant P and the true and complementary forms of some variable A are combined to eliminate A:

$$PA + P\bar{A} = P$$

Eliminating redundant terms:

Ex: Minterms 3, $7 = {\sim}abc$, abc

If the function is true in both cases (F = -abc + abc) with "-a" or "a", so it doesn't matter, we can eliminate the literal "a" and keep only "bc".

- Two dimensional truth table for 2, 3, and 4 variable functions
- There also 5 and 6 variable K-maps. Not covered.

$$\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

- 3-variable K-map
- K-maps are arranged such that adjacent cell differ by only one change
- BC -> 00 | 01 | 11 | 10
- 01 -> 10 (both digits change)
- 01 -> 11 (only first digit change)
- Numbering the cells helps

SOP	Α	В	С	х
$\overline{A} \cdot \overline{B} \cdot \overline{C}$	0	0	0	0
$\overline{A} \cdot \overline{B} \cdot C$	0	0	1	0
$\overline{A} \cdot B \cdot \overline{C}$	0	1	0	0
$\overline{A} \cdot B \cdot C$	0	1	1	1
$A \cdot \overline{B} \cdot \overline{C}$	1	0	0	0
$A \cdot \overline{B} \cdot C$	1	0	1	1
$A \cdot B \cdot \overline{C}$	1	1	0	1
A · B · C	1	1	1	1

- 4 variable K-Map
- Any adjacent cell also only be different by a change in only one variable
- AB -> 00 | 01 | 11 | 10
- CD -> 00 | 01 | 11 | 10

$$a \cdot b + a \cdot \overline{b} = a$$

SOP	а	b	х
a · b	0	0	0
a · b	0	1	0
a · b	1	0	1
a · b	1	1	1

$$a \cdot b + a \cdot \overline{b} = a$$

Two Variable K-map Examples

- Grouping of powers of two implicants
- 1, 2 or 4 implicants
- What is the biggest group I can form with this minterm?

NAND
$$\overline{A} \cdot \overline{B} + \overline{A} \cdot B + A \cdot \overline{B}$$

A

www.mun.ca

A NAND B

Vinicius Pr

$$\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC =$$

$$\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC = A \cdot B + A \cdot C + B \cdot C$$

K-map And Truth Table For Three Variables

- Grouping of powers of two implicants
- 1, 2, 4 or 8 implicants
- What is the biggest group I can form with this minterm?

- m0 is $\overline{A} \cdot \overline{B} \cdot \overline{C}$
- m4 is A⋅B⋅C
- m1 is A⋅B⋅C

- m5 is A⋅B⋅C
- m2 is A⋅B⋅C
- m6 is A ⋅ B ⋅ C

• m3 is A ⋅ B ⋅ C

• m7 is A · B · C

Α	В	С	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Four Variable K-maps

- · m0 is A · B · C · D .
- · m1 is A·B·C·D.
- m2 is A · B · C · D .
- · m3 is A · B · C · D .

- m4 is A · B · C · D .
- m5 is A ⋅ B ⋅ C ⋅ D .
- · m6 is A · B · C · D .
- m7 is A · B · C · D .

- · m8 is A · B · C · D .
- m9 is A ⋅ B ⋅ C ⋅ D .
- m10 is A · B · C · D .
- m11 is A · B · C · D .

- m12 is A · B · C · D .
- m13 is A · B · C · D .
- m14 is A · B · C · D .
- m15 is A · B · C · D .

Don't cares

Sometimes your function has terms that could be 1 or 0 and that doesn't affect your systems output.

Example: Representing digits "0-9"

- Useful for 7-segment displays
- We need 4 inputs (ABCD), segment "a" in the example
- We can represent 0-15 with 4 inputs
- But we don't care from 10 (1010) to 15 (1111)

The digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 can be displayed with seven segments. One possibility is:

Don't cares

Sometimes your function has terms that could be 1 or 0 and that doesn't affect your systems output.

Example: Representing digits "0-9"

- Useful for 7-segment displays
- We need 4 inputs (ABCD), segment "a" in the example
- We can represent 0-15 with 4 inputs
- But we don't care from 10 (1010) to 15 (1111)

The digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 can be displayed with seven segments. One possibility is:

Term Summary

- An implicant is a Boolean function term that makes the function true.
 - product/minterm term in Sum of Products (SOP)
 - sum/maxterm term in Product of Sums (POS)
- In an prime implicant, a variable in the expression cannot be removed.
 - A group of square or rectangle made up of bunch of adjacent minterms
 - What is the biggest group can form, 2, 4, 8, 16.
- An essential prime implicant contains a minterm not covered by any other implicant.
 - Always appear in final solution

K-Maps simplification examples

- Extra video lecture
 - ~A~B~C + A~B~C + A~BC
 - AB~C~D + A~B~C~D + ABC~D + A~BC~D
 - A~B~C~D + A~B~CD + A~BCD + A~BC~D + ~A~B~C~D + ~A~B~CD + ~A~BC~D + ~A~BCD

Questions?

- Next: Combinational building blocks
- Multiplex and decoders

