Табло / Моите курсове / Бакалаври, летен семестър 2020/2021 / КН / Езици, автомати и изчислимост, летен семестър 2020/2021 / 5 април - 11 април / Тест на регулярни езици и автомати

Започнат на събота, 10 април 2021, 18:02

Състояние Завършен
Приключен на събота, 10 април 2021, 18:45

Изминало време 43 мин.
Оценка 9,42 от 12,00 (78%)

Нека L е език, за който:

0,00 от максимално 1,00 точки

- ullet съществува $p\geq 1$, такова че:
- ullet за всяка дума $w\in L,$ ако $|w|\geq p,$ то:
- ullet съществува разбиване на w в 3 думи $w=xyz, |xy|\leq p, |y|\geq 1,\;$ такова че:
- ullet за всяко $i\geq 0$ е изпълнено $xy^iz\in L$.

Тогава L не е регулярен.

Изберете едно:

⊚ Истина 🗶

🔾 Лъжа

Лемата за покачването е само необходимо условие. Нищо не може да се заключи за един език ако той изпълнява условията на лемата. Той може да е както регулярен така и нерегулярен.

Правилният отговор е "Неистина"

Въпрос **2** Правилен отговор

1,00 от максимално 1,00 точки

Нека Σ е азбука. Вярно ли е, че съществува език S над Σ , такъв че за всеки език L над Σ е в сила $S \cup L = L$

Изберете едно:

Лъжа

Правилният отговор е "Истина"

0/2021	Тест на регулярни езици и автомати: Преглед на опит
Въпрос 3	
Правилен отговор	
1,00 от максимално 1,00 точки	
Да означим с $ \omega _x$ броя на срещанията на букват Да разгледаме езика $L=rac{1}{2}$	та x в думата ω . $\{\omega\in\{a,b\}^\star\mid \omega _a\equiv 1\ \mathrm{mod}\ 3$ и $ \omega _b\geq 2\}.$
Колко състояния има минималния детерминира	н тотален автомат разпознаващ L ?
Отговор: 9	~
Правилният отговор е: 9	
Въпрос 4	
Правилен отговор	
1,00 от максимално 1,00 точки	
Колко състояния има минималният детермини	гран тотален автомат разпознаващ езика на НКА изобразен по-долу ?

Отговор:

Браво!

Автоматът разпознава $\left(bb+a\right)^+$.

Правилният отговор е: 4

Въпрос 5

Правилен отговор

1,00 от максимално 1,00 точки

Вярно ли е, че ако е даден един недетерминиран автомат, то обхождайки състоянията с BFS или DFS започвайки от началното състояние не достигнем до вече обходено състояние, тоест не открием ориентиран цикъл, то дадения автомат разпознава креан език?

Изберете едно:

- Лъжа

Правилният отговор е "Истина"

Въпрос 6

Правилен отговор

1,00 от максимално 1,00 точки

Да означим с \sim_L релацията на Майхил-Нероуд, т.е.

$$lpha \sim_L eta \stackrel{def}{\iff} orall \gamma (lpha \gamma \in L \iff eta \gamma \in L),$$

или еквивалентно

$$\alpha \sim_L \beta \Longleftrightarrow \alpha^{-1}(L) = \beta^{-1}(L).$$

За дума α , с $[\alpha]_L$ означаваме класа на еквивалентност на α , т.е.

$$[\alpha]_L = \{ \beta \in \Sigma^* \mid \alpha \sim_L \beta \}.$$

Да разгледаме езика L, който се описва от регулярния израз $b^\star \cdot a^\star$.

Посочете кои от следните твърдения са верни.

Изберете едно или повече:

- $\ \ \, \square \ \, [\varepsilon]_L = [aaaaaaa]_L$
- \square $\varepsilon \sim_L baba$
- $\ lue{}$ Релацията \sim_L има 2 класа на еквивалентност.
- $\[\varepsilon \]_L = [bbbbbbb]_L$
- extstyle ex

Правилните отговори са: $[arepsilon]_L = [bbbbbbb]_L$

- , $[bbbbb]_L \cup [bbba]_L = L$
- , Релацията \sim_L има 3 класа на еквивалентност.

Въпрос 7 Правилен отговор 1,00 от максимално 1,00 точки

Намерете броят на финалните състоянията на крайният, тотален, минимален, детерминиран автомат разпознаващ езикът

$$\bigcap_{n\in\mathbb{N}} \left(\{a\}^+ \cdot \{b^mc^s \mid m\in\mathbb{N} \ \& \ m\leq n \ \& \ s\in\mathbb{N} \ \& \ s\leq n\} \cdot \{c\}^+\right)$$

над азбуката $\{a, b, c\}$.

Отговор:

Езикът, който се получава е $\{a\}^+ \cdot \{c\}^+$.

Правилният отговор е: 1

Въпрос 8

Частично правилен отговор

0,67 от максимално 1,00 точки

Нека разгледаме езиците $L_n = \{a^n\} \cdot \{b\}^\star$ за $n \in \mathbb{N}$. Кои твърдения са верни ?

Изберете едно или повече:

- $\ensuremath{\mathbb{Z}}$ L_n е регулярен език, за произволно естествено число n.
- igsquare $\{a,b\}^{\star}\setminus igcup_{i\in\mathbb{N}} L_i$ е регулярен език.
- $\ igsqcup L_n$ е краен език, за произволно естествено число n.
- $igsim_{i=0}^n L_i$ е регулярен език, за произволно естествено число n.
- igsquare L_i е краен език.

Вашият отговор отчасти е верен.

Вие правилно сте избрали 2.

Правилните отговори са: L_n е регулярен език, за произволно естествено число n., $\bigcup_{i=0}^n L_i$ е регулярен език, за произволно естествено

число
$$n$$
. , $\{a,b\}^{\star}\setminus \bigcup_{i\in\mathbb{N}}L_i$ е регулярен език.

Тест на регулярни езици и автомати: Преглед на опит Въпрос 9 Правилен отговор 1,00 от максимално 1,00 точки Кои от следните езици са регулярни? Изберете едно или повече: краен краен Правилните отговори са: $\{a^nb^n\mid n=42\}$, $\{a^nb^n\mid n\leq 42\}$ **Въпрос 10**

Намерете броят на състоянията на крайният, тотален, минимален, детерминиран автомат разпознаващ езикът

$$\bigcap_{n\in\mathbb{N}}\{a^kb^kc^k\mid k\in\mathbb{N}\ \&\ k\leq n\}$$

над азбуката $\{a, b, c\}$.

Неправилен отговор

0,00 от максимално 1,00 точки

Отговор:

Езикът, който се получава е $\{\varepsilon\}$.

Правилният отговор е: 2

Въпрос **11**Частично правилен отговор
0,75 от максимално 1,00 точки

Нека L_1 и L_2 са езици над непразната азбука Σ . Посочете верните твърдения.

Изберете едно или повече:

- lacksquare Ако L_1 е регулярен и $L_1 \subseteq L_2$, то L_2 е регулярен.
- lacksquare Ако $L_1 \subseteq L_2$ и L_2 е краен език, то L_1 е регулярен.
- lacksquare Ако L^\star е регулярен език, то L е регулярен.
- lacksquare Ако L_1 и L_2 са регулярни езици, то $L_1 \cap L_2$ е регулярен език.
- lacksquare Ако L_1 и L_2 са регулярни, то $L_1 \setminus L_2$ е регулярен.

Вашият отговор отчасти е верен.

Избрали сте твърде много отговори.

Правилните отговори са: Ако L_1 и L_2 са регулярни езици, то $L_1\cap L_2$ е регулярен език.

- , Ако $L_1 \subseteq L_2$ и L_2 е краен език, то L_1 е регулярен.
- , Ако L_1 и L_2 са регулярни, то $L_1 \setminus L_2$ е регулярен.

Въпрос 12

Правилен отговор

1,00 от максимално 1,00 точки

Да означим с \sim_L релацията на Майхил-Нероуд, т.е.

$$\alpha \sim_L \beta \stackrel{def}{\iff} orall \gamma (\alpha \gamma \in L \iff \beta \gamma \in L),$$

или еквивалентно

$$\alpha \sim_L \beta \iff \alpha^{-1}(L) = \beta^{-1}(L).$$

За дума lpha, с $[lpha]_L$ означаваме класа на еквивалентност на lpha, т.е.

$$[\alpha]_L = \{ \beta \in \Sigma^* \mid \alpha \sim_L \beta \}.$$

Нека L е език над азбуката $\Sigma = \{a,b\}$ и нека имаме следните условия:

- $bbaab \sim_L aaaab$
- $bbaaa \sim_L aabaa$
- $b \sim_L a$

Посочете лексикографски най-малката трибуквена дума lpha, за която $lpha\sim_L bba$.

Отговор: aba

- ullet Ако $bba\sim_L aaa$, то тогава $bbaab\sim_L aaaab$. Противоречие с първото условие.
- ullet Ако $bba\sim_L aab$, то тогава $bbaaa\sim_L aabaa$. Противоречие с второто условие.
- ullet Щом $b\sim_L a$ от третото условие, то $bba\sim_L aba$.

Правилният отговор e: aba

◄ Слайд граматики

Отиди на ...