FUENTES DE CORRIENTE

22.11 - Electrónica I - 2021

Motivación

La FUENTE DE CORRIENTE IDEAL entrega una corriente constante independientemente de la tensión entre sus bornes.

Usos

- Polarización: usar una fuente de corriente para polarizar una o varias etapas. Mejora la estabilidad y la sensibilidad frente a cambios de tensión y temperatura.
- Mejorar la impedancia de salida.
- Carga Activa: La carga que ve el amplificador ahora entrega energía.
- Acople entre etapas.
- Generar señales triangulares

Características

- I_{O} : Qué corriente entrega.
- $[V_{min}, V_{max}]$: Rango de tensión de funcionamiento.
- Respuesta en frecuencia (buscamos conocer el lugar de raíces)
- R_{O_F} : Impedancia de salida

Tipos de fuentes de corriente

En las **fuentes simples**, el valor de la corriente esta fijo por la polarización.

En las **fuentes referenciales**, el valor de corriente es función del valor de otra corriente denominada corriente de referencia

TOPOLOGIAS – Fuentes Simples

"La fuente más simple que hay"

Fuente simple con transistor

TOPOLOGIAS – Fuentes Simples

Fuentes simples compensadas

TOPOLOGIAS – Fuentes Simples

Fuentes simples con JFET

TOPOLOGIAS – Fuentes Referenciales

Análisis

- 1° APROXIMACIÓN $V_A o \infty \ oldsymbol{eta} \gg \mathbf{1}$
- 2° APROXIMACIÓN $V_A o \infty \ oldsymbol{eta} \ oldsymbol{1}$
- 3° APROXIMACIÓN $V_A \not\to \infty \not \beta \not\gg 1$

¿Cómo debe ser el circuito interno para que $I_O = I_{REF}$?

$$I_{O}$$

$$I_{REF} = I_{O} = I_{S1}.e^{\frac{V_{BE1}}{V_{T}}} = I_{S1}.e^{\frac{V_{X}}{V_{T}}}$$

$$V_X = V_T \cdot \ln \frac{I_{REF}}{I_{S1}}$$

Debemos buscar un circuito cuya tensión de salida sea proporcional logaritmo natural de su entrada.

¿Alguna idea?

Podemos conseguir esto conectando el transistor como diodo:

$$I_{REF} = I_{S_{REF}}.e^{\frac{V_X}{V_T}}$$

Podemos conseguir esto conectando el transistor como diodo:

$$I_{REF} = I_{S_{REF}} \cdot e^{\frac{V_X}{V_T}}$$

$$I_O = \frac{I_{S_1}}{I_{S_{REF}}} I_{REF}$$

$$I_O = I_{S_1} \cdot e^{\frac{V_X}{V_T}}$$

Si ambos transistores son iguales

$$I_O = I_{REF}$$
 1° APROXIMACIÓN $V_A \to \infty \beta \gg 1$

2° APROXIMACIÓN
$$V_A \to \infty \beta \not > 1$$

$$I_{O} \qquad V_{BE_{REF}} = V_{BE_{1}} \Rightarrow I_{B_{REF}} = I_{B_{1}} = \frac{I_{C_{1}}}{\beta}$$

$$I_{C_{REF}} = I_{REF} - \left(I_{B_{REF}} + I_{B_{1}}\right)$$

$$I_{C_{REF}} = I_{REF} - 2 \cdot I_{B_{REF}} = I_{REF} - 2 \cdot \frac{I_{C_{REF}}}{\beta}$$

$$I_{C_{REF}} \cdot \left(1 + \frac{2}{\beta}\right) = I_{REF}$$

$$\Rightarrow I_{O} = I_{C_{1}} = I_{C_{REF}} = \frac{I_{REF}}{1 + \frac{2}{\beta}}$$

2° APROXIMACIÓN $V_A \to \infty \beta \not > 1$

3° APROXIMACIÓN $V_A \not\to \infty \not \beta \not \gg 1$

$$I_C = I_S \cdot e^{\frac{V_{BE}}{V_T}} \cdot (1 + \frac{V_{CE}}{V_A})$$

3° APROXIMACIÓN
$$V_A \not\to \infty \not \beta \not \gg 1$$

$$I_{C_{2}} = I_{S} \cdot e^{\frac{V_{BE_{2}}}{V_{T}}} \cdot (1 + \frac{V_{CE_{2}}}{V_{A}})$$

$$I_{C_{1}} = I_{S} \cdot e^{\frac{V_{BE_{1}}}{V_{T}}} \cdot (1 + \frac{V_{CE_{1}}}{V_{A}})$$

$$= K$$

Se define el factor K como la proporción entre las corrientes de colector, y depende esencialmente de cómo se cargan los circuitos (diferencia de V_{CE}).

$$K = \frac{I_{C_2}}{I_{C_1}}$$

3° APROXIMACIÓN
$$V_A \not\to \infty \not \beta \not \gg 1$$

$$I_{REF} = I_{C_1} + I_{B_1} + I_{B_2}$$

$$I_{REF} = I_{C_1} + \frac{I_{C_1}}{\beta} + \frac{I_{C_1} \cdot K}{\beta}$$

$$I_{REF} = I_{C_1} \cdot \left(1 + \frac{K+1}{\beta}\right)$$

$$\Rightarrow I_0 = I_{C_2} = K \cdot I_{C_1} = \frac{I_{REF} \cdot K}{(1 + \frac{K + 1}{\beta})}$$

$$R_{O_F} = r_{ce_2}$$

FUENTE ESPEJO MEJORADA

2° APROXIMACIÓN $V_A \rightarrow \infty \beta \gg 1$

$$V_{BE_1} = V_{BE_2} \Rightarrow I_{B_1} = I_{B_2} = \frac{I_{C_1}}{\beta}$$

$$I_{C_1} = I_{REF} - I_{B_3} = I_{REF} - \frac{I_{B_1} + I_{B_2}}{\beta + 1}$$

$$I_{C_1} = I_{REF} - 2 \cdot \frac{I_{C_1}}{\beta} \cdot \left(\frac{1}{\beta + 1}\right)$$

$$I_{C_1} \cdot \left(1 + \frac{2}{\beta \cdot (1+\beta)}\right) = I_{REF}$$

FUENTE ESPEJO MEJORADA

2° APROXIMACIÓN $V_A \rightarrow \infty \beta \not\gg 1$

$$\Rightarrow I_{O} = I_{C_{2}} = I_{C_{1}} = \frac{I_{REF}}{1 + \frac{2}{\beta \cdot (1 + \beta)}}$$

¿Qué es lo que se mejora?

¿Cambia la impedancia de salida?

FUENTE ESPEJO PROPORCIONAL

1° APROXIMACIÓN $V_A
ightarrow \infty \ oldsymbol{eta} \gg \mathbf{1}$

$$I_{O}$$
 $I_{REF} = I_{C_1}$ $I_{O} = I_{C_2}$
 $V_{BE_1} + R_1 \cdot I_{C_1} = V_{BE_2} + R_2 \cdot I_{C_2}$
 $\begin{cases} V_{BE_1} = V_{BE_{ON}} + \Delta V_{BE_1} \\ V_{BE_2} = V_{BE_{ON}} + \Delta V_{BE_2} \end{cases}$

Esta es justamente lo que solemos hacer siempre, pero acá es importante hacer énfasis en el concepto! Supongamos que en realidad,

$$V_{BE_1} = 0,65V = 0,7V - 0,05V$$

$$V_{BE_2} = 0,73V = 0,7V + 0,03V$$

FUENTE ESPEJO PROPORCIONAL

1° APROXIMACIÓN $V_A
ightarrow \infty \ oldsymbol{eta} \gg \mathbf{1}$

$$I_{REF} = I_{C_1}$$
 $I_{O} = I_{C_2}$ $V_{DD} + R_1 \cdot I_{C_1} = V_{DD} + R_2 \cdot I_{C_2}$

$$V_{BE_1} + R_1 \cdot I_{C_1} = V_{BE_2} + R_2 \cdot I_{C_2}$$

$$(V_{B})_{ON} + \Delta V_{BE_1}) + R_1 \cdot I_{C_1} = (V_{B})_{ON} + \Delta V_{BE_2} + R_2 \cdot I_{C_2}$$

$$\Delta V_{BE_1} + R_1 \cdot I_{C_1} = \Delta V_{BE_2} + R_2 \cdot I_{C_2}$$

$$\Delta V_{\mathrm{BE}_{\mathrm{i}}} \ll \mathrm{R}_{\mathrm{i}} \cdot I_{C_{i}} \Rightarrow \Delta V_{BE_{i}} + R_{i} \cdot I_{C_{i}} \approx R_{i} \cdot I_{C_{i}}$$

$$R_1 \cdot I_{C_1} \approx R_2 \cdot I_{C_2} \qquad \Rightarrow I_0 \approx I_{REF} \cdot \left(\frac{R_1}{R_2}\right)$$

FUENTE ESPEJO PROPORCIONAL

$$R_{OF} \approx r_{ce_2} \cdot (1 + h_{fe}^*)$$

Respecto de la configuración fuente espejo simple, agrega una resistencia en el emisor de alguno de las mallas, referencia o salida.

Respecto de la configuración **fuente espejo** simple, agrega una **resistencia** en el emisor de alguno de las mallas, **referencia** o **salida**.

La tensión *VBE* del transistor con la resistencia en el emisor, será menor que la del otro. En consecuencia, [...], su corriente es menor.

Respecto de la configuración **fuente espejo** simple, agrega una **resistencia** en el emisor de alguno de las mallas, **referencia** o **salida**.

Cuando la resistencia en el emisor está en la rama salida, la impedancia de salida crece como vimos con la fuente proporcional.

1° APROXIMACIÓN
$$V_A \rightarrow \infty$$
 $\beta \gg 1$

$$I_{REF} = I_{C_1} \quad I_O = I_{C_2}$$

$$V_{BE_2} = V_{BE_1} + R_1 \cdot I_{C_1}$$

$$I_C = I_S \cdot e^{\frac{V_{BE}}{V_T}} \quad \Rightarrow V_{BE} = V_T \cdot \ln\left(\frac{I_C}{I_S}\right)$$

$$V_T \cdot \ln\left(\frac{I_{C_2}}{I_S}\right) = V_T \cdot \ln\left(\frac{I_{C_1}}{I_S}\right) + R_1 \cdot I_{C_1}$$

$$V_T \cdot \ln\left(\frac{I_{C_2}}{I_S}\right) = V_T \cdot \ln\left(\frac{I_{C_1}}{I_S}\right) + R_1 \cdot I_{C_1}$$

$$V_T \cdot \left[\ln\left(\frac{I_{C_2}}{I_S}\right) - \ln\left(\frac{I_{C_1}}{I_S}\right)\right] = R_1 \cdot I_{C_1}$$

1° APROXIMACIÓN $V_A o \infty \ oldsymbol{eta} \gg \mathbf{1}$

$$\left(\frac{V_T}{R_1}\right) \cdot ln\left(\frac{I_O}{I_{REF}}\right) = I_{REF}$$

$$R_{OF} = r_{ce_2}$$

$$\left(\frac{V_T}{R_1}\right) \cdot ln\left(\frac{I_{REF}}{I_O}\right) = I_O$$

$$R_{OF} \approx r_{ce_2} \cdot (1 + h_{fe}^*)$$

FUENTE PEAK CURRENT

1° APROXIMACIÓN
$$V_A o \infty \ oldsymbol{eta} \gg \mathbf{1}$$

$$I_{REF} = I_{C_1} \qquad I_{O} = I_{C_2}$$

$$V_{BE_1} = V_{BE_2} + R \cdot I_{C_1}$$

$$V_T \cdot \left[\ln\left(\frac{I_{C_1}}{I_S}\right) - \ln\left(\frac{I_{C_2}}{I_S}\right)\right] = R \cdot I_{C_1}$$

$$\Rightarrow V_T \cdot \ln\left(\frac{I_{C_1}}{I_{C_2}}\right) = R \cdot I_{C_1}$$

$$\Rightarrow \left(\frac{V_T}{R}\right) \cdot \ln\left(\frac{I_{REF}}{I_{O}}\right) = I_{REF}$$

FUENTE PEAK CURRENT

$$\Rightarrow \left(\frac{V_T}{R}\right) \cdot ln\left(\frac{I_{REF}}{I_O}\right) = I_{REF}$$

$$\Rightarrow I_{O} = I_{REF} \cdot e^{-\frac{I_{REF} \cdot R}{V_{T}}}$$

$$R_{O_F} = r_{ce_2}$$

FUENTE PEAK CURRENT

$$I_{O} = I_{REF} \cdot e^{-\frac{I_{REF} \cdot R}{V_{T}}}$$

¿Qué beneficios trae esta fuente?

$$\frac{\partial I_O}{\partial I_{REF}} = 0$$

$$I_{REF} = \frac{V_T}{R} \qquad I_O = I_{REF}.e^{-1}$$

FUENTE WILSON

(1) En 1° aproximación, [...], como fuente de corriente relacional posee las mismas características que una fuente de corriente espejo, no nos debería sorprender pues no modificamos la malla de polarización.

$$I_{O} \approx I_{REF}$$

FUENTE WILSON

(2) En 2° aproximación, [...], como fuente de corriente relacional posee un menor error de copia por la cascada de amplificación de corriente.

$$I_{O} \approx I_{REF} \cdot \left[1 - \frac{2}{\beta^2 + 2 \cdot \beta + 2}\right]$$

FUENTE WILSON

PROTIP, considerar que $r_{\pi_1}=r_{\pi_2}=r_{\pi_3}=\overline{r_\pi}$ y despreciar $\overline{r_{ce_1},r_{ce_2}}$

$$R_{OF} \approx \frac{1}{2} \cdot \boldsymbol{\beta} \cdot \boldsymbol{r}_{ce_3}$$

FUENTE CASCODE

Con los mismos criterios y aproximaciones que con la fuente Wilson, de acá se puede deducir que, en 2° aproximación la corriente se expresa de la siguiente forma, y además su impedancia de salida es,

$$I_{O} \approx I_{REF} \cdot \left(1 - \frac{(4 \cdot \beta + 2)}{(\beta^{2} + 4 \cdot \beta + 2)}\right)$$

$$R_{OF} \approx \frac{1}{2} \cdot \boldsymbol{\beta} \cdot \boldsymbol{r_{ce}}_2$$

ESPEJO SIMPLE	ESPEJO MEJORADA	ESPEJO PROPORCIONAL	WIDLAR	PCS	WILSON	CASCODE
Impedancia media	Impedancia media	≈ Impedancia alta	≈ Impedancia alta	Impedancia media	Alta Impedancia	Alta Impedancia
Corriente igual	Corriente igual	Corriente proporcional	Corriente exponencial	Corriente estabilizada*	Corriente igual	Corriente igual
Sensible a diferencias de junturas	Sensible a diferencias de junturas	Poco sensible a diferencias de junturas []	Sensible a diferencias de junturas	Sensible a diferencias de junturas	Sensible a diferencias de junturas	Sensible a diferencias de junturas
Error de copia con β	Error de copia con $oldsymbol{eta}^2$	Error de copia con $oldsymbol{eta}$	Error de copia con β	Error de copia con β	Error de copia con β^2	Error de copia con β
2 transistores	3 transistores	2 transistores 2 resistencias	2 transistores 1 resistencia	2 transistores 1 resistencia	3 transistores	4 transistores
De menor a mayor sofisticación						

