A Soft Introduction to zkML

Lucas A. Vittor

lucasvittor.com, @lvvittor

August 26, 2023

zkML

Warm Up

- 1. Who works in Web3 as a developer/researcher?
- 2. Who works in a data-first company?
- 3. Who works with Machine Learning (ML)?
- 4. Who knows what Zero Knowledge Proofs (ZKPs) are?
- 5. What is the name of the set of problems that can be solved in the $\mathcal{O}(n^k)$ time complexity type?

What are Proofs?

Def. Mathematical Proof

A deductive argument for a proposition, showing that the stated assumptions logically guarantee the conclusion.

Common methods of proof:

- 1. Direct
- 2. Contradiction
- 3. Contraposition
- 4. Induction

Proofs as Static Objects

Example of a Proof

$\sqrt{2}$ is irrational

Assume $\sqrt{2}$ is rational, so $\sqrt{2} = \frac{a}{b}$ in simplest form.

Squaring both sides yields $2 = \frac{a^2}{b^2}$, implying $a^2 = 2b^2$.

Since a^2 is even, a must be even (odd² is odd).

Let a = 2k, then $4k^2 = 2b^2$, giving $2k^2 = b^2$.

Now, both a and b are even, contradicting their coprimality.

Thus, our assumption is false, and $\sqrt{2}$ is irrational.

How about efficiency?

Given a valid proof Π about a proposition X, how "easy" is to convince me it's true?

An Intuition About Interactive Proofs (IPs)

- 1. True propositions are Provable
 - 2. False propositions NOT

Visualizing IPs

Warm Up

Defining Knowledge

Q: How much knowledge to verify a proof?

Q: What is knowledge?

Warm Up

Zero Knowledge Proofs (ZKPs)

"Nothing but the truth"

Formal Definition of ZKPs

Def. Zero Knowledge Proof

Suppose \mathcal{L} is a language. A zero-knowledge protocol is an interaction between two algorithms \mathbf{P} and a probabilistic polynomial time (PPT) algorithm \mathbf{V} with \mathbf{P} trying to convince \mathbf{V} that $x \in \mathcal{L}$ and the satisfying properties:

- (i) Completeness
- (ii) Soundness
- (iii) Zero-knowledge

ZK Properties Definition

Completeness

If the proposition X is **true** and V, P are honest $\implies V$ will be convinced.

Soundness

If the proposition \mathbb{X} is **false** $\Longrightarrow \nexists$ cheating P who can convince an honest V that \mathbb{X} is true (except with some small probability).

Zero Knowledge

 $\forall x \in \mathcal{L}, z \in \{0,1\}^*, View_V[P(x) \longleftrightarrow V(x,z)] = S(x,z)$

The Two Balls Problem

Proposition X:

 $I\ have\ two\ balls\ of\ different\ colors.$

 $\mathop{\rm Warm}_{\bigcirc} \mathop{\rm Up}_{\bigcirc}$

Soundness Score

k	$1/2^k$
1	0.5
2	0.25
3	0.125
4	0.0625
5	0.03125
6	0.015625
:	:

Warm Up

Where We Can Use ZKPs?

One proposition?

Some propositions?

Special propositions?

Warm Up

Tip of the Iceberg

Everything provable is provable in Zero-Knowledge.

Machine Learning (ML)

Which option is correct?

- 1) AI = ML
- 2) $AI \neq ML$

000

What is AI?

What is ML?

A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E. — Tom Mitchell, 1997

It is the adaptation of the free parameters of a system in order to satisfy an object function. — $J.\ M.\ Santos$

Venn Diagram

 $Artificial\ Intelligence\ (AI)$ Machine Learning (ML) Deep Learning (DL)

ELI5 ML

Issues with State Of the Art ML

- 1. Black-box nature of NNs
 - 2. Privacy

Machine Learning (ML)

zkML

Web3 Tales

 $zk + ML = \heartsuit$

zkML

Web3 Tales

Making web3 uncool again @ web3tales.com

