Last time: Mm m'fold, peM point: DefaofTpM: TpM:= Der (Coo(p), R) B Example: (1) Piching local coords, at p (i.e., a chart (U, b) inducing functions get $X_i := \frac{3}{3x_i} \in T_p M$, we have $X_i := X_i \circ \emptyset$, $X_i \circ \emptyset$), $X_i \circ \emptyset$ and $X_i := X_i \circ \emptyset$, $X_i \circ$ meaning $X_{i}(f):=\frac{\partial (f \circ \phi^{-1})}{\partial x_{i}}(\phi(\rho)).$ Note: in \mathbb{R}^{n} , gives a $\in \mathbb{R}^{n}$, ∂x_{i} : ∂x_{i} : 3/2(-)|x=a: Co(a) → R is a derivation (2) Given a: (-E,E) -> M param. curve with a(0)=p, and (f) e C [P), ~ define a denuation X by rep. of [f] X(B) = (tox)(0) Note fox: (-E,E) -> R. Exercises: Check: X((f)) only depends on [f], so gues Xx: Coo(p) -> 1R. · X is a denuation. · It a ~ a in the sense of defin I of tangent space, (meaning (for) (0) = (for) (0) for any chat (4,4) then $X_{\alpha} = X_{\overline{\alpha}}$ wand p). =) get a well-defined map (*) Tp M (bf 2) = Der (C (p), R) TpM(26/1) = <p/ (x) X = only depends on (x) by above. Lemma: The two definitions of Total one equility & in fact (x) is a linear soonephism.

It remains to dech:

(a) (*) is a linear map.

(b) isomorphism (if know both defins are vector spaces of some discussion, impectually or superfued is sufficient).

Most of this is an exercise, by regarding (6): we've shown dim (TpM def 1) = on (by:destification with RM). Let's do the save duretly for ToMdef 2: Lenna: If din (M)=n, then din TpM (as defined via def. 2) = m. Proof: Using a chart (U, p) centered at p, get an identification C[∞](p) ≅ C[∞](O∈ (u) ⊆ Rⁿ), here ariso. TpM= Der (cm(2), R) = Der (cm(0), R) (= T, Rm). >) it suffices + show din (To Rm) = m. Let x, -, x, E Co (Rm) be usual coord. fors, & (xi), -, [xn] E Co (0) assoc. garms, & consider $X_i = \frac{2}{2x_i} \in T_0 \mathbb{R}^m$, $i = l_{-2}m$. (shorthand for $\frac{2}{2x_i}(-)$ (0)). Note $X_i([x_i]) = S_{ii} < knowcler S: Sij = \left\{1 \ i = j\}$ and note in particular that &Xi); are linearly independent So din To Rm > m. Let's show X1,-, Kn Span To Rm. Consider XETOR" an arbitrary denether, & say X ([x;]) = b; for some b; \in IR. Consider Y:= X - Zb; X; ET, Rm. Y: Co(0) -> IR dounter with Y(xi)=0 for all xi.

Ingredient: Taylor's theorem:

Let $f: U \longrightarrow \mathbb{R}$ smooth from, $O \in U$.

Then we can unk $f(x) = a + \sum a_i x_i + \sum_{i=1}^{n} a_{ij}(x) x_i x_j$

on some open rectangle $(-\xi, \xi) \times -- \times (-\xi, \xi)$ in U containing O, where a, $\{a_i\}_{i=1}^m$ are constants and $\{a_{ij}(x)\}_{i,j=1}^m$ are C^∞ functions.

Ye.s., $f(x) = 1 + x + x^3$, then a = 1, $a_1 = 1$, and $a_{j,1} = x$. $= 1 + 1 \cdot x + (x) \cdot x^2$.

Given $(f) \in C^{\infty}(0)$, using Taylor's theorem we can write a representative f of (f) as (shroking donain of f if needed while still contains 0)

a + Za; x; + Za; (x|x; x; as above. (*) by leibniz Rule

Note that be any depution Z, Z(a) = 0, $Z(a; x_i x_j) = 0$.

Applying to Z= Y, we lear that farmy (f), using Tuylor approx. as (*),

 $Y([f]) = Y(\Sigma_{a_i x_i}) = \Sigma_{a_i} Y(x_i) = 0$ 6/2 $Y(x_i) = 0$.

>> Y=0. >> X= Zbj Xj, So Xy-, Kun span T.R.".

=) du ToRm = din TpM = M.

Def. 3 of tanget space: M", pett as before, again begin with Coo(p).

Define: $F_p \subseteq C^{\infty}(p)$ to be gerns of from which are 0 at p. $\{(u, f)|f(p)=0\}/2$

 F_p is an ideal in the algebra $C^{\infty}(P)$, nearing its a linear subspace B if $f \in F_p$, $g \in C^{\infty}(P)$, then $g \in F_p$.

Let $\mathcal{F}_{p}^{2} \subset \mathcal{F}_{p}$ be the ideal in $C^{\infty}(p)$ generated by products of two elements in \mathcal{F}_{p} . $\{ \underbrace{\leq f_{ij} \varphi_{i} \varphi_{j} | \varphi_{i} \in \mathcal{F}_{p}, \varphi_{j} \in \mathcal{F}_{p}, f_{ij} \in C^{\infty}(p) \}}_{i}$

Def 3: TpM:= (Fp/2)* linear dual Lenna: There's a consolid 150. (ToM) def. 2 = (ToM) def. 3. Sketch: Let X: C*(p) -> R be a derention. Then can restrict X/F. : F. -> R, then check (X) F) F2: F2 - O. (execise). ~> got an induced map $X|_{\mathcal{F}_p}: \mathcal{F}_p/_{\mathcal{F}_p}^2 \longrightarrow \mathbb{R}_{s, 1.0}, \ X|_{\mathcal{F}_p} \subset \mathcal{F}_p/_{\mathcal{F}_p}^2$ ~) get our map (TpM) def. 2 ___ > (TpM) def. 3.

Der(C*(1), R) (F1/5)2)* $X \longmapsto \overline{X}_{F_{\bullet}}$.