Task 1.1

A university determined the following joint frequency distribution of the variables "gender" (G), "subject" (F) and "accepted" (A) in applications for university places:

('Fach'='subject', 'Geschlecht'='gender', 'Angenommen'='accepted')

	Angenommen	0	1
Fach	Geschlecht		
Informatik	m	36	54
	w	18	27
IntMgmt	m	36	9
	w	108	27
wı	m	27	27
	w	18	18

- a) Show that there is a relationship (=stochastic dependence) between G and A.
- b) Use the data to check whether the correlation can be explained by the variable F. (This would mean that G has an influence on F, and F on A, but G does not have a direct influence on A.)
- c) Interpretation:
 - i. For machine learning: If you want to learn a classification model that predicts A, is there any point in using both, G and F as inputs, or would one of the variables suffice?
 - ii. Is there evidence of gender discrimination, i.e. are men or women favored because of their gender?
- d) Carry out the calculations for (a) and (b) ...
 - i. ... by hand based on the table shown above. Make your calculations comprehensible.
 - ii. ... in Python. The raw data and the code used to generate the table shown can be found in ILIAS under "Code examples/03_Discrete_Data_University_Applications ".

Hints and tips:

- 1. Hint for (b): If G influences F and F influences A, but G does not influence A directly, then G and A must be conditionally independent of each other.
- 2. A summary of the relevant statistical basics can be found in ILIAS
 under "Expected_prior_knowledge/00_Statistics_Foundations" especially on slides 6 20