Lecture 12

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

How to find n(x, y, z)

- The total number is known. But, how can we find n(x, y, z)?
 - Each state, $\psi_{k_x,k_y,n}(x,y,z)$, contributes $|\psi_{k_x,k_y,n}(x,y,z)|^2$.
 - Recall that the wavefunction can be written as $\psi_{k_x,k_y,n}(x,y,z) = A_{k_x,k_y,n}e^{+ik_xx}e^{+ik_yy}\psi_{z,n}(z)$
 - Then, $\left| \psi_{k_x, k_y, n}(x, y, z) \right|^2 = \left| A_{k_x, k_y, n} \right|^2 \left| \psi_{z, n}(z) \right|^2$
 - Integration of $\left|\psi_{k_x,k_y,n}(x,y,z)\right|^2$ over the box should give unity.

$$L_x L_y |A_{k_x,k_y,n}|^2 \int_0^{L_z} dz |\psi_{z,n}(z)|^2 = 1$$

GIST Lecture on October 14, 2020

Normalization of $\psi_{z,n}(z)$

- If $\psi_{z,n}(z)$ is normalized in the 1D structure,
 - We have the following condition:

$$\left| A_{k_x, k_y, n} \right|^2 = \frac{1}{L_x L_y}$$

Therefore, each state contributes

$$\left| \psi_{k_x, k_y, n}(x, y, z) \right|^2 = \frac{1}{L_x L_y} \left| \psi_{z, n}(z) \right|^2$$

Note that every state in a subband has the same electron density.
 (In general, it does not hold.)

1D infinite potential well

- When $\psi_{z,n}(z) = A_{z,n} \sin\left(\frac{n\pi}{L_z}z\right)$,
 - The value of $A_{z,n}$ is $\sqrt{\frac{2}{L_z}}$.
 - Therefore, when fully occupied, a state in the n-th subband contributes an electron density of (per spin)

$$\frac{2}{L_x L_y L_z} \sin^2\left(\frac{n\pi}{L_z}z\right)$$

 Finally, the electron density can be obtained by considering all subbands.

MATLAB example (1)

Preparing some constants (the same as before)

```
h = 6.626176e-34; % Planck constant, J s
hbar = h / (2*pi); % Reduced Planck constant, J s
q = 1.602192e-19; % Elementary charge, C
m0 = 9.109534e-31; % Electron rest mass, kg
k B = 1.380662e-23; % Boltzmann constant, J/K
T = 300.0; % Temperature, K
Lx = 100e-9; Ly = 100e-9; Lz = 5e-9; % Lenghs, m
mxx = 0.19; myy = 0.19; mzz = 0.91; % Masses, m0
nmax = 10;
coef = 2*Lx*Ly/(2*pi)*sqrt(mxx*myy)*m0/(hbar^2)*(k_B*T);
```

GIST Lecture on October 14, 2020

MATLAB example (2)

Calculation of elec

```
Electron density (cm<sup>-3</sup>)
totalNumber = 0;
Nz = 51;
z = transpose([0:Nz-1])*Lz/(Nz-1);
elec = zeros(Nz,1); % Electron density, /m^3
for n=1:nmax
  Ez = (hbar^2)/(2*mzz*m0)*(pi*n/Lz)^2;
                                                                z (nm)
  subbandNumber = coef*log(1+exp(-Ez/(k B*T)));
  totalNumber = totalNumber + subbandNumber;
  elec = elec + 2/(Lx*Ly*Lz)*(sin(n*pi*z/Lz).^2)*subbandNumber;
end
plot(z/1e-9,elec/1e6)
```

 4×10^{18}

Potential energy

- In the case of the infinite potential well, the potential energy is 0 eV.
 - Of course, in the realistic case, the potential energy is provided from the Poisson equation.
 - When the electrostatic potential, $\phi(z)$, is given, the potential energy is written as

$$V(z) = -q\phi(z) + (E_c - E_i)$$

 $E_c - E_i$: Constant for a given material

Schrödinger equation

- For the z-directional Schrödinger equation,
 - We have the following form:

$$-\frac{\hbar^2}{2m_{zz}}\frac{d^2}{dz^2}\psi_{z,n}(z) + V(z)\psi_{z,n}(z) = E_{z,n}\psi_{z,n}(z)$$

- After a simple manipulation,

$$\frac{d^2}{dz^2}\psi_{z,n}(z) - \frac{2m_{zz}}{\hbar^2}V(z)\psi_{z,n}(z) = -\frac{2m_{zz}}{\hbar^2}E_{z,n}\psi_{z,n}(z)$$

Discretized version

$$\psi_{z,n,i+1} - 2\psi_{z,n,i} + \psi_{z,n,i-1} - \frac{2m_{zz}}{\hbar^2}V(z_i)(\Delta z)^2\psi_{z,n,i} = -\frac{2m_{zz}}{\hbar^2}E_{z,n}(\Delta z)^2\psi_{z,n,i}$$

Simulation flow

- Anyway, we need the initial solution.
 - It can be obtained from the semi-classical simulation.
 - Then, under the given potential energy, we can calculate the electron density.

 Of course, the electron density is not fully consistent with the Poisson equation. It should be improved later.

Normalization of $\psi_{z,n}(z)$

- Its normalization condition
 - Integration form

$$\int_{0}^{L_{z}} dz \big| \psi_{z,n}(z) \big|^{2} = 1$$

Discretized version (Be careful for the interface nodes!)

$$\sum_{i} \Delta z \left| \psi_{z,n,i} \right|^2 = 1$$

Eigenfunctions should be normalized accordingly.

Six valleys in silicon

- Up to now, we have considered only one band.
 - In silicon, we need to consider three valley pairs.
 - They can be characterized by (for a certain channel direction)

$$m_{xx} = 0.91 m_0, m_{yy} = 0.19 m_0, m_{zz} = 0.19 m_0$$

 $m_{xx} = 0.19 m_0, m_{yy} = 0.91 m_0, m_{zz} = 0.19 m_0$
 $m_{xx} = 0.19 m_0, m_{yy} = 0.19 m_0, m_{zz} = 0.91 m_0$

Each of them has two-fold degeneracy.

Homework#12

- Due: AM08:00, October 19 (Next Monday)
- Problem#1
 - It is based upon your Homework#8.
 - Consider the gate voltages from 0 V to 1 V.
 - For each gate voltage, first solve the nonlinear Poisson equation. (It has been done in Homework#8.)
 - By using the electrostatic potential, calculate the electron density.
 Of course, you must consider six valleys.
 - For each gate voltage, draw the electron densities calculated by two ways in the z axis.