数学分析 B2 第四次作业

9.2.7
$$\frac{\pi}{2}$$
, $\frac{\pi}{6}$, $\frac{\pi}{3}$.

9.2.8 略.

9.2.9 (4)
$$z_{xx} = 2a^2 \cos 2(ax + by), z_{xy} = 2ab \cos 2(ax + by), z_{yy} = 2b^2 \cos 4(ax + by).$$

(6) $z_{xx} = \frac{xy^3}{(1-x^2y^2)^{3/2}}, z_{xy} = \frac{1}{(1-x^2y^2)^{3/2}}, z_{yy} = \frac{x^3y}{(1-x^2y^2)^{3/2}}$

9.2.11 (3) 略.

9.2.12 要先计算 $(x,y) \neq (0,0)$ 处和 (x,y) = (0,0) 处的二阶偏导数均存在, 再证明其不连续.

9.2.13 (3)
$$du = -\frac{2t}{(s-t)^2} ds + \frac{2s}{(s-t)^2} dt$$

(6) $dz|_{(0,0)} = 0$, $dz|_{(1,1)} = -4dx - 4dy$.

9.2.16 注意可微性要用定义验证.

9.2.17 同上.

9.2.19 (3)
$$u_r = \frac{2x}{x^2+y^2}e^{t+s+r}$$
, $u_s = \frac{2x}{x^2+y^2}e^{t+s+r} + \frac{16y}{x^2+y^2}s$, $u_t = \frac{2x}{x^2+y^2}e^{t+s+r} + \frac{16y}{x^2+y^2}t$. (4) $u_x = e^{ax}\sin x$.

9.2.22 $\frac{1}{2}$. 注意方向导数是一个数.

9.2.31 略.

9.2.38 *r*.

9.3.1 (1) 用隐函数定理. $-\frac{5}{4}$, $-\frac{21}{32}$.

9.3.2 (1)
$$\frac{dy}{dx} = -\frac{y \cos xy - ye^{xy} - 2xy}{x \cos xy - xe^{xy} - x^2}$$
.
(6) $z_x = -\frac{F_1 + F_2 + F_3}{F_3}$, $z_y = -\frac{F_2 + F_3}{F_3}$.

9.3.36, -6.