

Systeme II

2. Die physikalische Schicht

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg
Version 26.04.2017

Smart Antennas, MIMO, SIMO, MISO

Smart antennas

- MIMO (multiple input/multiple output)
- SIMO (single input/multiple output)
- MISO, SISO
- sind mehrere Antennen, welche koordiniert Signale übertragen und empfangen

Vorteile

- Beam forming
- Power gain
- Diversity gain
- Anwendungen
 - IEEE-802.11n-WLAN

Suphrposition

Beamforming

Durch geschickte
 Phasenverschiebung
 kann ein gerichteter
 Sendestrahl
 gesendet werden

 oder symmetrisch auch empfangen werden

Enegic ist of malgo B

Amplitude: mms/210/h

Power Gain

- Wieso können n Sender oder n Empfänger weiterreichen als 1 Sender und Empfänger?
 - mit gleichen Antennen
 - mit gleicher Energie
- Superposition:
 - Die elektrischen Felder überlagern sich (nicht die Energie)
 - Energy = $P \sim E^2 = (el. Feld)^2$
 - El. Feldstärke = D ~ 1/d

- 1 Sender
 - Energie: P
 - Energie im Abstand d: P/d²
- n Sender
 - Energie von n Sendern: P
 - Feldstärke eines von n $\sqrt{\frac{P}{n}}$ Sendern:
 - Feldstärke im Abstand d von n Sendern: $\frac{n}{d}\sqrt{\frac{P}{n}} = \frac{\sqrt{Pn}}{d}$
 - Gesamtenergie im Abstand d: $n \cdot \frac{r}{d^2}$
- Der selbe Effekt funktioniert auch beim Empfänger
 - führt zu einem Power Gain von Faktor n für n Sender und n Empfänger

Multipath Channel

Superposition von Reflektionen

$$h = s_1 + s_2 + s_3$$

Rayleigh fading

Superposition führt zu drastischen Einbrüchen

Introduction to Wireless MIMO – Theory and Applications Jacob Sharony IEEE LI 2006

Diversity Gain

Hij E (| Hij | = Amplitale

- Wenn in der Umgebung viele Reflektoren (scatterers) vorhanden sind,
 - dann ergibt sich für die Beschreibung der Sender-/Empfänger-Beziehung eine Kanalmatrix H
- H_{i,j} =
 - resultierende Dämpfung und Phasenverschiebung zwischen Sender i und Empfänger j
- Für geeignete Kanalmatrizen
 - mit "guter" Singulärwertzerlegung
 - können bis zu max{#Sender, #Empfänger} parallele Kommunikationskanäle verwendet werden
- Dadurch können mehr Daten übertragen werden, als Shannons Theorem für SISO zulässt

$$|-| \cdot S = r = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

$$S = H \cdot r$$

$$\left| \begin{array}{c} \left| \begin{array}{c} X_{\Lambda} \\ \vdots \\ X_{M} \end{array} \right| = \left(\begin{array}{c} Y_{\Lambda} \\ \vdots \\ Y_{M} \end{array} \right)$$

Systeme II

2. Die physikalische Schicht

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

2

01011010

7