

 $Head to \underline{www.savemyexams.com} for more awe some resources$

Radioactivity

Question Paper

Course	CIE IGCSE Physics		
Section	5. Nuclear Physics		
Topic	Radioactivity		
Difficulty	Medium		

Time Allowed 10

Score /5

Percentage /100

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

Question 1

A student carried out an experiment to find the half-life of a radioactive substance. Their results are shown in the table below.

Time(seconds)	Count-rate from source(counts per second)		
0	300		
20	200		
40	150		
60	100		
80	75		

What is the half-life of this substance?

- A. 20 seconds
- **B.** 40 seconds
- C. 60 seconds
- D. 80 seconds

Question 2

Extended tier only

Strontium-90 is a radioactive substance with the nuclide symbol $^{90}_{38}Sr$.

It decays by emitting radiation, as shown by the following equation.

$${}^{90}_{38}Sr \rightarrow {}^{90}_{39}Y + ?$$

What is missing in this equation?

- A. α-particle
- **B.** Neutron
- C. y-ray
- D. β-particle

Question 3

Extended tier only

A radioactive nucleus emits a β -particle.

What happens to the proton number and the nucleon number of this nucleus?

	Proton number	Nucleon number			
Α	increases by 1	stays the same			
В	stays the same	decreases by one			
С	decreases by 2	decreases by 4			
D	decreases by 1	stays the same			

[1 mark]

Question 4

The count rate from a radioactive isotope is recorded every hour. The count rate is corrected for background radiation. The table shows the readings.

time/hours	0	1	2	3	4	5
corrected count rate / counts/s	1200	990	816	673	555	458

What estimate of the half-life of the isotope can be obtained from the readings in the table?

- A. between 1 and 2 hours
- **B.** between 2 and 3 hours
- C. between 3 and 4 hours
- **D.** between 4 and 5 hours

Question 5

Extended tier only

A nucleus of uranium ($^{238}_{~92}U$) is unstable and decays by emitting an ${\bf \alpha}$ -particle.

Which equation correctly describes this process?

A.
$$\frac{238}{92}U \rightarrow \frac{4}{2}\alpha + \frac{234}{90}Th$$

$${}_{\mathrm{B.}}\frac{238}{92}U \to \frac{4}{2}\alpha + \frac{234}{90}U$$

c.
$$\frac{238}{92}U + \frac{4}{2}\alpha \rightarrow \frac{234}{90}Th$$

D.
$$\frac{238}{92}U \rightarrow \frac{4}{2}\alpha + \frac{234}{88}Ra$$