WENJIE SUN

email: 12233339@mail.sustech.edu.cn; wj.sun@siat.ac.cn; wenjie1835@gmail.com Tel: +86 13895591107 Adress: Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Shenzhen, China 518055

EDUCATION

Northeast University (NEU)

Shenyang, China

Bachelor of Applied Chemistry

2018.09 - 2022.07

• Overall GPA: 3.03/5.0(80.3/35%)

Southern University of Science and Technology (SUSTech)

Shenzhen, China

Master of Electronic Information

2022.09-2025.07(expected)

• Overall GPA: 3.39/4.0(86.3/7%)

Major Courses: C++ Programming, MATLAB Programming, Modern Signal Processing, Mathematical Statistics, Linear Algebra, Scientific Robot Design, Electronic Functional Materials and Devices, Principles of Automatic Control.

PUBLICATIONS

- Wenjie Sun, ..., Wenjiao Yao, Zhile Yang. "State-of-charge estimation of sodium-ion batteries: A fusion deep learning approach" published in Journal of Energy Storage.
- Wenjie Sun, Chengke Wu, ..., Zhile Yang. "CauseTerML: Causal Learning via Term Mining for Assessing Review Discrepancies" under the second round of review in IEEE Transactions on Artificial Intelligence.
- Wenjie Sun, ..., Wenjiao Yao, Zhile Yang "Fine-Tuning Enables State of Health Estimation in Lithium-Ion Batteries via Time Series Foundation Model" under the first round of review in Energy.
- Junjie Jiang, Wenjie Sun, ..., Zhile Yang "Ont4RE: A computational framework for distant supervision and entity-property relation extraction from construction documents" under the first round of review in Engineering **Applications of Artificial Intelligence.**

RESEARCH INTERESTS

Causal Inference; Causal Discovery, Language Understanding, Trustworthy AI.

RESEARCH EXPERIENCE

Estimating Lithium Battery State of Health by Fine-tuning Time Series Base Model

SUSTech

Advisors: Prof. Wenjiao Yao (Department of Carbon Neutrality, Shenzhen Institutes of Advanced Technology, CAS)

Nov. 2023 - Present

- •We fine-tuned TimeGPT, a time series foundation model, to achieve high-precision state of health estimation for lithium-ion batteries, eliminating the need for complex feature engineering traditionally required in battery health estimation.
- •To enhance generalization, we utilized a diverse fine-tuning dataset comprising 143 lithium-ion batteries with six different cathode materials. The resulting model demonstrated strong performance on unknown battery domains, indicating its potential for rapid adaptation to novel scenarios.
- •Our fine-tuned TimeGPT model outperformed the majority of state-of-the-art approaches, including supervised models, when compared against five categories of neural network-based models across 12 strong baselines.
- This paper has been submitted to Energy (Under review, First author).

Causal Learning via Term Mining for Assessing Review Discrepancies

SUSTech

Advisors: Dr. Chengke Wu (Department of Integration, Shenzhen Institutes of Advanced Technology, CAS)

Jun. 2023 - Present

•Proposed CauseTerML, a novel framework combining term mining and causal inference techniques to assess biases in innovation evaluation processes, particularly focusing on the impact of title technicality on patent authorization duration.

- •Developed TerPOSMMI, a hybrid unsupervised term extraction method that integrates statistical and rule-based approaches, addressing challenges in handling interdisciplinary and time-sensitive terminology.
- •Introduced Multi-character Mutual Information (MMI) to overcome limitations of traditional Point-wise Mutual Information, enhancing the ability to identify multi-word terms and normalize for word frequency effects.
- •This paper has been submitted to IEEE Transactions on Artificial Intelligence (Under review, First author).

State of Charge estimation of Sodium-Ion batteries based on deep learning method

SUSTech

Advisors: Prof. Zhile Yang (Department of Integration, Shenzhen Institutes of Advanced Technology, CAS)

Dec. 2022 - Mar. 2024

- •Conducted comprehensive experimental studies on laboratory-fabricated sodium-ion batteries, providing valuable datasets for research on various cathode materials under different operating conditions.
- •Proposed a novel fusion deep learning model combining BiLSTM and N-BEATS to address the unique challenges of SOC estimation in sodium-ion batteries, particularly the low voltage sensitivity to SOC.
- •Developed an adaptive fusion algorithm to integrate BiLSTM and N-BEATS networks in parallel, demonstrating superior performance compared to individual models and offering a viable solution for battery management systems in sodium-ion batteries.

•Paper link: https://www.sciencedirect.com/science/article/abs/pii/S2352152X24011125/ (First Author)

Undergraduate Graduation Project

NEU

Mar. 2022 - Jul. 2022

Advisors: Prof. Xinxin Xu (Department of Science, NEU)

Preparation and Electrocatalytic Performance Study of Polypyrrole-Derived Carbon Materials

- Synthesized and characterized polypyrrole/butane carboxylic acid (PPy/BTA) gels doped with various Fe/Ni ratios, identifying the optimal Fe:Ni ratio of 1:2 for enhanced oxygen evolution reaction (OER) catalytic activity in alkaline conditions.
- Demonstrated the superior electrocatalytic performance and stability of the optimized Fe:Ni 1:2 PPy/BTA gel catalyst for both OER and hydrogen evolution reaction (HER), exhibiting low overpotentials and minimal degradation after prolonged cycling.

ACADEMIC PROJECTS

Design Optimization and Structural Performance Assessment of Reachy Robot

SUSTech

Advisors: **Dr. Fang Wan** (Innovation and Creative Design, SUSTech)

Overview: Developed a robotic prototype aimed at addressing social challenges through innovative design and ethical considerations..

Contribution:

Advanced 3D Modeling and Simulation: Utilized Fusion 360 to create detailed 3D models and simulations, optimizing robotic components for both performance and manufacturability.

Algorithm Development for Autonomous Functionality: Designed and implemented sophisticated control algorithms to enable autonomous decision-making and interaction, ensuring ethical and socially beneficial behavior in real-world scenarios.

Course Website: https://des5002.ancorasir.com/des5002-designing-robots-for-social-good-autumn-2022/

HONORS AND AWARDS

Northeastern University's Annual Outstanding Student Journalist

Outstanding Volunteer for the Undergraduate Robotics Competition

Northeastern University Chemistry Experiment Innovation Design Competition – Second Place

2022 CAS University Science and Art Fusion Creation Competition - Second Place

Nov.2022

EXTRACURRICULAR ACTIVITIES & SKILLS

• Head of Planning Department in NEU Online Network Media Studio

May. 2019 - Jul.2021

Interests: Photography; Basketball; Travelling; Hiking; Fitness;

Content creater: https://space.bilibili.com/416517790?spm_id_from=333.1007.0.0

Programming: C, C++, Python (Pytorch, Tensorflow, PyG), Mathematica, LATEX, R, MATLAB

English: TOEFL: 93 (Currently), CET-6: 526, CET-4: 543, Mandarin (native speaker)