EnergizeOS™ Intelligent EMS

Industrial & Commercial Microgrid and Energy Storage Control Platform | Strategy-Based Subscription Control Engine

Version 1.0 available | Version 2.0 Coming Q4 2025

Chapter 1: Product Positioning & Architecture Overview

EnergizeOS™ is a collaborative control platform tailored for industrial and commercial energy storage and microgrid applications, supporting a flexible deployment model with "one-time hardware purchase + strategy subscription authorization".

🔀 System Highlights:

- Five-layer modular architecture (Strategy Engine / Control Core / Communication Layer / UI / Security Mechanism)
- Flexible strategy subscription and activation
- Supports complex scenarios: grid instability, demand shaving, diesel optimization
- Factory pre-configured, ready for turnkey deployment

Chapter 2: Typical Turnkey Deployment Structure

- DO/DI wiring, Modbus address mapping, and strategy loading are preconfigured at factory
- A Plug-and-play on arrival, auto-start upon power-up
- Cloud platform supports OTA strategy activation, remote diagnostics, and log rollback

Chapter 3: Control Cabinet Hardware Comparison

 # Feature	Lite Version	Pro Version
Size	300×400×150 mm - Compact design	800×600×250 mm – Industrial-grade, spacious
CPU	Industrial-grade IPC (heat- resistant, compact form)	Industrial-grade IPC (ruggedized, performance- grade)
Communication	Built-in switch + industrial Ethernet ports	Built-in switch + industrial Ethernet ports
Interface	Modbus TCP , basic DI/DO (fixed)	Modbus TCP , expandable RS485 , CAN , extra I/O
Power Supply	AC110–230V input + UPS with 24VDC output	Same as Lite, with optional 24VDC external feed
Display	7" / 10" Industrial Touchscreen (optional)	7" / 10" Industrial Touchscreen (default included)
Cooling System	➤ No active cooling — for indoor use	Active cooling with temp/humidity sensor — outdoor use
I/O Capacity	Fixed I/O only – for standard microgrid setups	Expandable – supports large-scale and complex scenarios
Deployment	Indoor rooms, labs, pilot projects	Harsh sites, rooftops, 24/7 outdoor systems

♦ Chapter 4: Strategy Engine Modules (15 Total)

No.	Strategy Name (CN/EN)
01	TOU Arbitrage
02	Demand Charge Management
03	Energy Arbitrage
04	SOC Floor Enforcement
05	Battery Balancing Control
06	Renewable Self-Consumption
07	Renewable Battery Priority
08	Anti-Backfeed Protection
09	Overload Protection
10	Emergency Shutdown
11	Grid-Tie/Island Transition
12	Anti-Islanding Protection
13	Diesel Generator Coordination

No.	Strategy Name (CN/EN)
14	Remote Stop / Manual Control
15	Flexible Strategy Triggering

Chapter 5: Function Module Overview

Module	Description
Strategy Engine	Parametric configuration, interlock logic, version control
Control Core	Manages BESS, PV, DG, breakers
Access Control	Admin / Operator roles
Communication Protocols	MQTT / WebSocket / RESTful API
Logging & Diagnostics	Strategy logs + alarm exports
Local/Cloud UI	Browser-based UI + industrial touchscreen
Security Mechanism	Whitelist, OTA signature, tamper-proof logs

◆ Chapter 6: Business Model & Subscription Licensing

Component	Business Model	Notes
Control Cabinet (Lite/Pro)	One-time purchase	Preloaded with wiring map & strategy templates
Control Engine	Annual subscription	Includes access control, log system, OTA features
Strategy Modules	Per-module subscription	Subscribed annually per strategy
OTA Cloud Service	Included by default	For pushing strategies and version updates
Cloud Management	Value-added service	Multi-site configuration and analytics

★ Activation Methods:

- Online Subscription: Instant activation via Stripe credit card
- Offline Authorization: One-time license key binding
- Lifetime License: Available for government or enterprise clients

Chapter 7: Typical Deployments & Savings

Scenario	Strategy Set	Result
Caribbean Microgrid	DG Optimization + Grid-Tie	48% diesel savings
US East Data Center	TOU + SOC Management	12% electricity cost reduction
Middle East Industrial Park	Multi-site + OTA Updates	Saved 10+ man-days/month
Southern California Project	Anti-Islanding + Anti- Backfeed	Passed Rule 21 interconnection quickly

Chapter 8: Standards & Compliance

- ✓ Complies with Rule 21 (California Interconnection)
- V Meets IEEE 1547 Grid Interconnection Standard
- Cabinets meet UL/CSA structural requirements
- Strategy modules include field validation and version locking

Chapter 9: Technical Case & Trust Anchor

Reference Case | PepsiCo SDG&E Grid-Connected Storage Project (California)

- Project Name: PepsiCo Campus Energy Storage Project
- Client: B&V (on behalf of PepsiCo)
- Location: San Diego, California, USA
- Scale: 1MW / 2.064MWh Storage + 480V Grid-Tied

EnergizeOS™ Strategies:

- Grid-Tie/Island Transition Control
- C1–C7 Interlock Logic
- Compliant with Rule 21 / UL1741 SB
- Redundant Judgement via Relay + eGauge

Value Delivered:

- Passed SDG&E inspection
- Closed-loop strategy execution with logs
- Minimized auto-close violations
- Established foundation for future Pro deployments

Reference Case | ABB & GridBeyond – AI-Optimized BESS-asa-Service Deployment

- Project Name: ABB-GridBeyond-Tallarna BESSaaS Commercial Rollout
- Partners: ABB (BESS Technology), GridBeyond (Al Optimization), Tallarna (Climate FinTech)
- Location: United Kingdom & EU Expansion Sites
- Scale: Modular deployments, including 7.5MW at Northwold Solar

Strategy Highlights:

- Al-driven price forecasting and trade optimization
- Zero CapEx deployment with full lifecycle service
- Stacked value streams: TOU arbitrage, frequency response, DR
- Integrated financial risk modeling for project bankability
- Vendor-paid-on-performance service model

Value Delivered:

- Enabled rapid C&I adoption without capital outlay
- · Improved dispatch accuracy and asset ROI via AI

- Created investable energy infrastructure for funds
- Reduced lifecycle degradation with predictive optimization

Chapter 10: Risk Control & Debugging Fail-safes

Factory Acceptance Test (FAT):

- DO/DI control loop test
- Modbus communication validation
- UPS power loss simulation
- C1–C7 strategy interlock check
- Close-failure protection + red light alert + logging
- National line in the large state of the large state

🔽 Remote Debugging:

- VPN / remote backend UI
- Strategy pause / rollback (last 3 versions kept)
- Forced UI mode (Bypass)
- Watchdog auto-recovery
- Log export + fault codes
- 14-day remote commissioning window + 4hr Tier-1 response

Chapter 11: Delivery Training & Support

One of the Example 2 Training Formats:

- User Manual (PDF / Web)
- Video Tutorials (20–40 mins)
- Live Demos (Zoom / Teams)
- In-UI Configuration Tips & Guidance

Delivery Documents:

- Wiring diagrams + interface definitions
- Strategy registry + parameter definitions
- UI guide + button map
- Factory test records + log snapshots
- OTA & strategy update manuals

Tech Support:

- Email: 24h response
- X OTA updates quarterly (priority for subscribers)
- La Tier-1 issues: 4-hour response
- Premium Support: 24/7 hotline, project manager checks, custom strategies

Chapter 12: Typical Config Templates & Selection Guide

▼ Sample Customer Bundles:

Scenario	Version	Strategy Set	Price
Peak shaving + Diesel Saving	Lite	TOU + Diesel	\$8K-\$12K
Rooftop PV + Microgrid	Lite	PV + Grid-Tie	\$9K-\$13K
PV-DG-Storage Cogen	Pro	PV + DG + TOU + Grid-Tie	\$15K-\$22K
Hotel Islanding + PV	Pro	PV + Load Limit + Islanding	\$18K-\$25K
DEMO	Lite/Pro	Single Strategy	From \$6K

★ Includes cabinet + setup + 1-year subscription

Feature Checklist:

Feature Need	Module	Suggestion
Save on Electricity Bills	TOU	Price gap > 5 cents/hr
Has Diesel Generator	Diesel	Requires control signal
Has PV	PV	Use meter + SOC recommendation
Requires Island/Grid-Tie	Grid-Tie	Setup interlock logic
Export Charts	UI + Logs	Supported by all versions

◆ Chapter 13: System Roadmap & Lifecycle Commitment

Technology Roadmap (2024–2026)

Time	Goal	Status
2024 Q4	Lite/Pro Launch + 5 Key Strategies	✓ Completed
2025 Q2	OTA + C1-C7 Interlocks + Logging	✓ Completed
2025 Q4	Al Strategy Optimization (Load Modeling)	⇒ In Progress
2026 Q1	OAuth2 / Webhook API Integration	soon In Planning
2026 Q2	Multi-site Console + Multilingual UI	⇒ In Planning

★ Quarterly minor releases, biannual stable versions with OTA & version retention

Customer Co-Development:

- UI feedback channels + email suggestions
- Custom strategy API (from 2026)
- · Monthly changelog on website

- Beta test program (priority for pilot sites)
- Annual "Strategy Co-Design Day"

Adopted feedback: DG close logic optimization, SOC% criteria, PV backfeed limit (10+ items)

Lifecycle Commitments:

- ≥5 years support per major version
- ≥3 years strategy upgrade support
- Cabinets support ≥3 future major versions
- Fully standalone local runtime (no cloud dependency)
- UPS, CPU, communication modules: 5-year serviceable availability

Case Study: Islanding Protection and Energy Strategy for PepsiCo EV Depot

1. Project Background

Client: PepsiCo

Location: North America

Partner: Black & Veatch (EPC and grid interconnection engineering)

Application: Electrified fleet depot with 56 EV chargers, operating in a high-rate utility region with frequent peak demand surges and potential grid instability.

Challenges:

High energy bills driven by TOU pricing and demand charges

- No backup generation on-site; full reliance on utility grid
- Need for uninterrupted charging to support time-sensitive logistics
- Utility compliance for safe disconnection during outages (anti-islanding)

2. System Deployment

PepsiCo deployed an integrated energy control and protection solution based on:

- 1000 kW / 2000 kWh BESS
- 56 EV chargers (mix of Level 2 and Level 3)
- EnergizeOS™ EMS Control Panel (ECP)
- Anti-Islanding Protection Panel (AIPP) with smart relay and motorized breaker
- Full system commissioned in partnership with Black & Veatch under SDG&E oversight

3. Strategy Design

EnergizeOS™ was configured to operate under two key scenarios:

A. Grid-Connected Optimization

- TOU Strategy: BESS charges during off-peak, discharges during peak rates
- Demand Control: Real-time peak shaving limits site demand to avoid utility penalties

- SOC Buffering: EMS ensures reserve capacity is maintained for emergency islanding
- Charger Coordination: EMS controls aggregated load to match real-time grid conditions

B. Grid-Outage Islanding

- Upon utility failure, EMS disconnects site using AIPP within 150 ms
- All 56 chargers continue operating on BESS power in full islanded mode
- Priority-based charging ensures critical fleet vehicles are served first
- System remains isolated until reconnection logic and interlocks are fully verified

4. Results

Metric	Result
Diesel-free Resilience	Full EV charging availability during outage
Energy Bill Reduction	28-35% savings through TOU + demand control
Regulatory Compliance	Passed SDG&E anti-islanding certification
Fleet Uptime Improvement	No delivery interruptions during grid loss

5. Client Feedback

"Our trucks can't wait for the grid. EnergizeOS™ gave us control, savings, and resilience—all without adding a generator."

— Site Energy Manager, PepsiCo

6. Conclusion

This case illustrates how EnergizeOS™ and its integrated AIPP system can transform an EV fleet depot into a fully resilient, intelligent microgrid—capable of saving on every kilowatt-hour while staying online in every blackout.

The system is scalable, utility-compliant, and sets a benchmark for commercial fleet electrification projects across North America.

Case Study: ABB & GridBeyond – AI-Optimized BESS-as-a-Service Deployment

1. Overview

- Partners: ABB (Electrification & BESS Technology) + GridBeyond (Al Energy Platform) + Tallarna (Climate FinTech)
- Launch Date: Strategic expansion in May 2025
- Target Clients: Global Commercial & Industrial (C&I) users
- Offering: Fully managed, CapEx-free Battery Energy Storage as a Service (BESSaaS)

2. Business Model Highlights

Feature	Description
Zero CapEx Deployment	ABB provides hardware, software, and lifecycle services without upfront cost
Al-driven Optimization	GridBeyond's platform forecasts prices, manages dispatch, and improves system ROI
Stacked Revenue Streams	Participation in frequency markets, TOU arbitrage, demand response, etc.
Financial De-risking	Tallarna provides insurance and modeling to ensure bankability of each deployment
Technology-Agnostic	BESSaaS can integrate various battery brands and PCS types

3. Al & Optimization Capabilities

GridBeyond's Al engine powers:

- Real-time price forecasting
- Smart charging/discharging strategy
- X Trade optimization & submission automation
- Performance reporting & revenue tracking
- Quantity
 Learning-based dispatch tuning per site

This enables:

- Reduction in energy procurement cost
- Active participation in grid services
- Lifecycle performance improvements of BESS

4. Financial & Market Implications

- BESSaaS reduces adoption barrier for C&I sites lacking CapEx
- Al improves system utilization rate and speeds ROI
- Service model aligns incentives: vendor gets paid only if savings happen

De-risked assets open new channels for institutional investors

5. Strategic Impacts

"To truly unlock BESS value, you need accurate AI forecasting, financial modeling, and zero-barrier entry for users."

- Michael Phelan, CEO of GridBeyond

This model has already expanded with GridBeyond Storage and Triodos Energy Transition Europe Fund committing £9M, and a 7.5MW deployment at Northwold Solar (400MWp).

6. Lessons for EnergizeOS™

Learning	EnergizeOS™ Implication
BESSaaS lowers friction for market adoption	Consider bundling SaaS + Hardware for zero-CapEx deals

Learning	EnergizeOS™ Implication
Al as value driver, not accessory	Strengthen internal AI modules for dispatch, fuel saving, PV optimization
Multi-party delivery (ABB + GridBeyond + Tallarna)	Build partnership models with EPC + platform + financier
Use-case clarity (TOU, DR, frequency, etc.)	Continue strategy modularization for each revenue stream