

computer vision*:

A set of algorithms that allow computers to understand images.

*One of the hardest problems in computer science

Aire dalsa wer watte diffe sonated pagor unbachar uphaleci Bunt gije whehr Carolina propert with

Vision by the brain

- low quality retina image
- multi-channel analysis of vision signal
- inputs from other senses
- years of training
- feedback loops that control the hardware sensors themselves
- attention system compliments vision

The computer vision problem

- An image has no semantic information. It's just an array of small squares (pixels)
- A machine, without special programming, is incapable of making any assertion about an image
- The field of computer vision was born to cover the need for that programming.

50	44	23	31	38	52	75	52
29	09	15	80	38	98	53	52
80	07	12	15	24	30	51	52
10	31	14	38	32	36	53	67
14	33	38	45	53	70	69	40
36	44	58	63	47	53	35	26
68	76	74	76	55	47	38	35
69	68	63	74	50	42	35	32

Pattern recognition

State of the Art

- After a slow start it's now a rapidly growing field
- Already in use in some home appliances and games
- Vast array of tools for artists and amateur programmer
- **but:** professionals use the simple, tried and tested techniques
- A result of:
 - Maturing of vision algorithms
 - Free software movement
 - Affordable processing power
 - Cheaper/better cameras

The beginning

- "Videoplace" (1972-1990s) of Myron Krueger
 - The first interactive artwork using visual information
 - Participants stand in front of back-lit surfaces
 - Silhouette is digitized and analysed

- E-motion brightness tracking
- Catch of the day color tracking
- The Cage IR brightness tracking
- Flatlander background subtraction
- Webcam piano frame differencing
- Mesa di Voce blob detection with physics

Ways to improve simple techniques

- Techniques that increase the contrast and reduce noise in images
- Advanced algorithms that look for more complex patterns
 - why use it? For simplicity + speed!

simple techniques explained

background subtraction

background subtraction

image subtraction explained

background image

255	255	255	255	255
255	255	255	255	255
255	255	255	255	255
255	255	255	255	255
255	255	255	255	255

video image

255	255	255	255	255
255	255	255	255	255
255	255	0	0	255
255	255	0	0	255
255	255	0	0	255

difference image

background subtraction

high-res outline extraction using contour finder

blob tracking + background differencing issues to consider

- changing background
- changing light conditions
- tracking of blob
 - need to implement some sort of tracker

frame differencing

- + drawbacks: variable lighting cond. / result depending on color of obj.
- + solution: use background diff / optical flow / depth camera

I previous frame

255	255	255	255	255
255	255	255	255	255
255	255	255	255	255
255	255	255	255	255
255	255	255	255	255

video image

255	255	255	255	255
255	255	255	255	255
255	255	0	0	255
255	255	0	0	255
255	255	0	0	255

difference image

Good features to track

- Shi-Tomasi technique
- detects corners in image
- is <u>not</u> implemented by ofxOpenCV (the wrapper)
- is implemented by openCV (the <u>native</u> one)

Dance + computer vision

- <u>1st stage:</u> traditional video projections
- <u>2nd stage:</u> video projections to hide/reveal dancers
- 3rd stage: dynamic projections
- <u>4th stage:</u> semi-independence of light + dynamic sound

Gideon Obarzanek

Frieder Weiss