General theorems of dynamics (continued)

- 1) A particle of mans m=1 moves in a plane along the line y= x+1 under the action of the force F(X,Y) where $X = 1 - \frac{92}{22}$, $Y = \frac{24}{22}$
 - a) Prove that a function of force V exist and find it.
 - b) Calculate the work done by F when M moves from the point A (1,2) to the point B(1,3)

Solution:

Solution:
a)
$$\frac{\partial X}{\partial y} = -\frac{2Y}{22}$$
; $\frac{\partial Y}{\partial x} = -\frac{2Y}{22} = > \frac{1}{2} U(x,y)$ much that
 $F(x,Y) = \text{grad} U \iff X = \frac{\partial U}{\partial x}$ and $Y = \frac{\partial U}{\partial y}$

We have
$$\frac{\partial U}{\partial x} = 1 - \frac{y^2}{x^2} = \int U = x + \frac{y^2}{x} + \varphi(y)$$
 (*)

On the other hand:

(*) =>
$$\frac{2y}{x} + \varphi(y) = \frac{2y}{x}$$
 => $\varphi'(y) = 0 \Rightarrow \varphi(y) = const$ (=0).

Thus,
$$U(x,y) = x + \frac{y^2}{x}$$

b)
$$SL = dU \Rightarrow L_{AB} = \int_{A}^{B} dV = U(B) - U(A) = U(\frac{1}{2})^{\frac{3}{2}} - U(1,2) = 5 - 5 = 0.$$

(2) Consider the motion of a particle
$$M(m=1)$$
 in the plane $x \circ y$ under the action of the elastic force, $\overrightarrow{F} = -h^2 \overrightarrow{E}$, $\overrightarrow{F} = \overrightarrow{OM}$ (hro, $m = \text{const.}$). At the initial moment, $t = 0$, we have: $x(0) = 1$, $y(0) = 0$, $x(0) = 0$, $y(0) = 2$.

iii) Find the work of
$$\vec{F}$$
 when M moves from $A(t=0)$ to $B(t=\frac{T}{4B})$.

i)
$$\vec{f}(x, y) = -h^2(x, y)$$

=> $\int X = -h^2 \cdot x$
 $\begin{cases} y = -h^2 \cdot y \end{cases}$
Equations of motion:
 $\begin{cases} m \dot{x} = -h^2 \cdot x \\ m \dot{y} = -h^2 \cdot y \end{cases}$

The characteristic equation is:

$$\mu^2 + h^2 = 0$$
 = 0 $\mu_{1/2} = \pm ih$

=>
$$x(t) = c_1 \cosh t + c_2 \sinh h t$$

 $y(t) = c_3 \cosh t + c_4 \sinh h t$

$$f(t) = c_3 cosht + c_4 sin r$$

At $t=0$: $\chi(0) = 1 = 1$

$$y(0) = 0 = \sum_{k=0}^{\infty} \frac{c_3 = 0}{c_4 = 2}$$

We have
$$\chi = \cosh t$$
 => $\chi^2 + \frac{k^2}{4} y^2 = 1$ - eg. of an ellipse

ii)
$$X = -h^{2}x$$
; $Y = -h^{2}y$

$$\frac{\partial X}{\partial y} = \frac{\partial Y}{\partial x} = 0 \implies \exists U = U(x_{1}y) - \text{force function such that}$$

$$\overrightarrow{P} = \text{glad } U$$
Thus, $\frac{\partial U}{\partial x} = X = -h^{2}x$

$$= 0 \quad dU = -\frac{h^{2}}{2} d(x^{2} + y^{2}) = 0$$

$$= 0 \quad dU = -\frac{h^{2}}{2} d(x^{2} + y^{2}) = 0$$

$$= 0 \quad dU = -\frac{h^{2}}{2} d(x^{2} + y^{2}) = 0$$

$$= 0 \quad dU = -\frac{h^{2}}{2} d(x^{2} + y^{2}) = 0$$

$$= 0 \quad dU = -\frac{h^{2}}{2} d(x^{2} + y^{2}) = 0$$

$$= 0 \quad dU = -\frac{h^{2}}{2} d(x^{2} + y^{2}) = 0$$

$$= -\frac{h^{2}}{2} d(x^{2} + y^{2}) = 0$$

Central forces

Binet's equation:

$$-\frac{mc^{2}}{n^{2}}\left[\frac{d^{2}}{d\theta^{2}}\left(\frac{1}{n}\right) + \frac{1}{n}\right] = \pm F(n,\theta)$$

$$\frac{c = n_{o}v_{o} \text{ nim } \alpha = n^{2}\theta}{n^{2}(\theta_{o})} = n_{o}$$

$$\frac{d}{d\theta}(\frac{1}{n}) = -\frac{1}{n_{o}} \cdot dgd + repulsive$$

$$\frac{d}{d\theta}(\frac{1}{n}) = \frac{1}{n_{o}} \cdot dgd + repulsive$$

1) Find the trajectory of a particle M moving under the action of the attractive force $F = \frac{2}{12}$. At the initial moment (+=0), the particle was in Mo(1,0) and its initial speed to = 13. was perpendicular on To.

$$-\frac{3}{n^2}\left[\frac{d^2}{d\theta^2}\left(\frac{1}{\lambda}\right) + \frac{1}{n}\right] = -\frac{2}{n^2}$$

or $\frac{J^2}{d\theta^2} \left(\frac{1}{r} \right) + \frac{1}{r} = \frac{2}{3}$ (*) - nonhomogenous linear differential equation.

Initial conditions: t=0 => 120 =1

$$\frac{d}{d\theta}\left(\frac{1}{2}\right)_{t=0} = -\frac{1}{1} \cdot \frac{dg}{2} = 0$$

We have to solve eq (*). We attach the homogenous equation: $\frac{d^2}{d\theta^2}(\frac{1}{\lambda}) + \frac{1}{\lambda} = 0$ (**)

The characteristic equation of (**) is 82+1=0 => 81,2= ±i Thus, the homogenous solution is: 1 = C1 cos D + C2 min D (**) The right hand part of (x) is a constant and then roe consider a particular solution of the form: $\frac{1}{rp} = A \left(const. \right) \cdot \begin{pmatrix} * * \\ ** \end{pmatrix}$ In order to find A we use (**) in $(*) \Rightarrow A = \frac{2}{3}$. Thus the solution of (*) is $\frac{1}{r} = \frac{1}{r_p} + \frac{1}{r_o} = \frac{2}{3} + C_1 \cot + C_2 \sin \theta$ We use the imitial conditions to find G and C2: $r_0 = 1 \Rightarrow \frac{24}{3} + c_1 = 1 \Rightarrow c_1 = \frac{1}{3} = 0$

$$r_0 = 1 \implies \frac{24}{3} + c_1 = 1 \implies c_1 = \frac{1}{3} = 0$$

$$\frac{d}{d\theta} \left(\frac{1}{h} \right) \Big|_{t=0} = 0 \implies c_1 = 0$$

$$\Rightarrow \frac{1}{\lambda} = \frac{2}{3} + \frac{1}{3} \cos \theta = \frac{2 + \cos \theta}{3}$$

=>
$$r = \frac{3}{2 + \cos \theta}$$
 — the trajectory in polar coordinates.