

Very low drop voltage regulators with inhibit

Features

- Very low dropout voltage (0.45 V)
- Very low quiescent current (typ. 50 μA in OFF mode, 500 μA in ON mode)
- Output current up to 500 mA
- Logic-controlled electronic shutdown
- Output voltages of 1.5; 1.8; 2.5; 3.3; 4.7; 5; 6; 8; 8.5; 9; 12 V
- Automotive Grade product: 1.8 V, 2.5 V, 3.3 V, 5.0 V, 8.0 V, 8.5 V V_{OUT} in DPAK and PPAK packages
- Internal current and thermal limit
- Only 2.2 µF for stability
- Available in ± 1% (AB) or ± 2% (C) selection at 25 °C
- Supply voltage rejection: 80 db (typ.)
- Temperature range: -40 to 125 °C

Description

The LFxxAB/LFxxC are very low drop regulators available in PENTAWATT, TO-220, TO-220FP, DPAK and PPAK package and in a wide range of output voltages.

The very low drop voltage (0.45 V) and the very low quiescent current make them particularly suitable for low noise, low power applications and specially in battery powered systems. In the 5 pins configuration (PENTAWATT and PPAK) a shutdown logic control function is available (pin 2, TTL compatible). This means that when the device is used as a local regulator, it is possible to

put a part of the board in standby, decreasing the total power consumption. In the three terminal configuration the device has the same electrical performance, but is fixed in the ON state. It requires only a 2.2 µF capacitor for stability allowing space and cost saving. The LFxx is available as Automotive Grade in DPAK and PPAK packages, for the options of output voltages whose commercial Part Numbers are shown in the *Table 32* (order codes). These devices are qualified according to the specification AEC-Q100 of the Automotive market, in the temperature range -40 °C to 125 °C, and the statistical tests PAT, SYL, SBL are performed.

Table 1. Device summary

Part numbers										
LF15C	LF18AB	LF33C	LF50C	LF60AB	LF85C	LF90AB				
LF15AB	LF25C	LF33AB	LF50AB	LF80C	LF85AB	LF120C				
LF18C	LF25AB	LF47C	LF60C	LF80AB	LF90C	LF120AB				

July 2008 Rev 22 1/49

Contents LFxxAB - LFxxC

Contents

1	Diagram 5
2	Pin configuration 6
3	Maximum ratings
4	Electrical characteristics 8
5	Typical performance characteristics
6	Package mechanical data 40
7	Order codes
8	Revision history

LFxxAB - LFxxC List of figures

List of figures

Figure 1.	Block diagram	5
Figure 2.	Pin connections (top view)	6
Figure 3.	Test circuit	7
Figure 4.	Dropout voltage vs output current	. 36
Figure 5.	Dropout voltage vs temperature	. 36
Figure 6.	Supply current vs input voltage	. 36
Figure 7.	Supply current vs input voltage	. 36
Figure 8.	Short circuit current vs input voltage	. 36
Figure 9.	Supply current vs temperature	. 36
Figure 10.	Logic controlled precision 3.3/5.0 V selectable output	. 37
Figure 11.	Sequential multi-output supply	. 37
Figure 12.	Multiple supply with ON/OFF toggle switch	. 38
Figure 13.	Basic inhibit functions	. 38
Figure 14.	Delayed turn-on	. 39
Figure 15.	Low voltage bulb blinker	. 39

List of tables LFxxAB - LFxxC

List of tables

Table 1.	Device summary	. 1
Table 2.	Absolute maximum ratings	. 7
Table 3.	Thermal data	. 7
Table 4.	Electrical characteristics for LF15AB	
Table 5.	Electrical characteristics for LF15C	. 9
Table 6.	Electrical characteristics for LF18AB	10
Table 7.	Electrical characteristics for LF18C	
Table 8.	Electrical characteristics for LF18CDT-TRY (Automotive Grade)	
Table 9.	Electrical characteristics for LF25AB	13
Table 10.	Electrical characteristics for LF25ABDT-TRY (Automotive Grade)	14
Table 11.	Electrical characteristics for LF25C	
Table 12.	Electrical characteristics for LF25CDT-TRY (Automotive Grade)	16
Table 13.	Electrical characteristics for LF33AB	17
Table 14.	Electrical characteristics for LF33C	
Table 15.	Electrical characteristics for LF33CDT-TRY and LF33CPT-TRY (Automotive Grade)	
Table 16.	Electrical characteristics for LF50AB	
Table 17.	Electrical characteristics for LF50ABDT-TRY (Automotive Grade)	
Table 18.	Electrical characteristics for LF50C	
Table 19.	Electrical characteristics for LF50CDT-TRY and LF50CPT-TRY (Automotive Grade)	
Table 20.	Electrical characteristics for LF60AB	24
Table 21.	Electrical characteristics for LF60C	
Table 22.	Electrical characteristics for LF80AB	
Table 23.	Electrical characteristics for LF80C	
Table 24.	Electrical characteristics for LF80CDT-TRY (Automotive Grade)	
Table 25.	Electrical characteristics for LF85AB	
Table 26.	Electrical characteristics for LF85C	
Table 27.	Electrical characteristics for LF85CDT-TRY and LF85CPT-TRY (Automotive Grade)	
Table 28.	Electrical characteristics for LF90AB	
Table 29.	Electrical characteristics for LF90C	
Table 30.	Electrical characteristics for LF120AB	34
Table 31.	Electrical characteristics for LF120C	
Table 32.	Order codes	
Table 33.	Document revision history	48

LFxxAB - LFxxC Diagram

1 Diagram

Figure 1. Block diagram

Pin configuration LFxxAB - LFxxC

2 Pin configuration

Figure 2. Pin connections (top view)

LFxxAB - LFxxC Maximum ratings

3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
VI	DC input voltage	-0.5 to 40 ⁽¹⁾	V
Io	Output current	t Internally Limited	
P _{TOT}	Power dissipation	Internally Limited	
T _{STG}	Storage temperature range	-40 to 150	°C
T _{OP}	Operating junction temperature range	-40 to 125	°C

^{1.} For $18 < V_1 < 40$ the regulator is in shut-down

Table 3. Thermal data

Symbol	Parameter	PENTAWATT	TO-220	TO-220FP	DPAK/PPAK	Unit
R _{thJC}	Thermal resistance junction-case	3	3	5	8	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	50	60	100	°C/W

Figure 3. Test circuit

4 Electrical characteristics

Table 4. Electrical characteristics for LF15AB (refer to the test circuits, $T_J = 25$ °C, $C_I = 0.1$ μF, $C_O = 2.2$ μF unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output valtage	I _O = 50 mA, V _I = 3.5 V		1.485	1.5	1.515	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}, T_a =$	-25 to 85°C	1.470		1.530	V
VI	Operating input voltage	I _O = 500 mA		2.5		16	V
I _O	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_{I} = 2.5 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$			2	10	mV
ΔV_{O}	Load regulation	$V_I = 2.8 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$,		2	10	mV
		$V_{I} = 2.5 \text{ to } 16V, I_{O} = 0\text{mA}$	ON MODE		0.5	1	mA
I _d	Quiescent current	$V_{I} = 2.8 \text{ to } 16V, I_{O} = 500 \text{mA}$	ON WODE			12	IIIA
		V _I = 6 V OFF MODE			50	100	μΑ
			f = 120 Hz		82		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 3.5 \pm 1 \text{ V}$	f = 1 kHz		77		dB
			f = 10 kHz		65		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V _d	Dropout voltage	I _O = 200 mA			1		V
V _{IL}	Control input logic low	T _a = -40 to 125°C				0.8	٧
V _{IH}	Control input logic high	$T_a = -40 \text{ to } 125^{\circ}\text{C}$		2			٧
I _I	Control input current	V _I = 6 V, V _C = 6 V			10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_O = 0$ to	500 mA	2	10		μF

Table 5. Electrical characteristics for LF15C (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	S	Min.	Тур.	Max.	Unit
V	Output valtage	I _O = 50 mA, V _I = 3.5 V		1.47	1.5	1.53	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}, T_a =$	$I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}, T_a = -25 \text{ to } 85^{\circ}\text{C}$			1.56	V
VI	Operating input voltage	I _O = 500 mA		2.5		16	V
I _O	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_1 = 2.5 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$			2	10	mV
ΔV_{O}	Load regulation	$V_1 = 2.8 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$			2	10	mV
		$V_{I} = 2.5 \text{ to } 16V, I_{O} = 0\text{mA}$	ON MODE		0.5	1	mA
I _d	Quiescent current	$V_{I} = 2.8 \text{ to } 16V, I_{O} = 500 \text{mA}$	ON MODE			12	MA
		V _I = 6 V OFF MOI	OFF MODE		50	100	μΑ
			f = 120 Hz		82		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 3.5 \pm 1 \text{ V}$	f = 1 kHz		77		dB
			f = 10 kHz		65		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V _d	Dropout voltage	I _O = 200 mA			1		٧
V _{IL}	Control input logic low	T _a = -40 to 125°C				0.8	٧
V _{IH}	Control input logic high	T _a = -40 to 125°C		2			V
I _I	Control input current	V _I = 6 V, V _C = 6 V			10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_O = 0$ to	500 mA	2	10		μF

Table 6. Electrical characteristics for LF18AB (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Outrout valtage	$I_O = 50 \text{ mA}, V_I = 3.3 \text{ V}$		1.782	1.8	1.818	٧
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 3.3 \text{ V}, T_a =$	-25 to 85°C	1.764		1.836	V
VI	Operating input voltage	I _O = 500 mA		3		16	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_1 = 2.8 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$			2	12	mV
ΔV_{O}	Load regulation	$V_1 = 3.3 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$			2	10	mV
		$V_1 = 2.5 \text{ to } 16V, I_O = 0\text{mA}$	ONLMODE		0.5	1	^
I _d	Quiescent current	$V_I = 3.1 \text{ to } 16V, I_O = 500 \text{mA}$	ON MODE			12	mA
		V _I = 6 V OFF MODE		50	100	μA	
			f = 120 Hz		82		
SVR	Supply voltage rejection	$I_{O} = 5 \text{ mA}, V_{I} = 3.5 \pm 1 \text{ V}$	f = 1 kHz		77		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 kHz	•		50		μV
V _d	Dropout voltage	I _O = 200 mA			0.7		٧
V _{IL}	Control input logic low	$T_a = -40 \text{ to } 125^{\circ}\text{C}$				0.8	V
V _{IH}	Control input logic high	$T_a = -40 \text{ to } 125^{\circ}\text{C}$		2			٧
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω, I_0 = 0 to	500 mA	2	10		μF

Table 7. Electrical characteristics for LF18C (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	s	Min.	Тур.	Max.	Unit
V	Output valtage	$I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}$	$I_{O} = 50 \text{ mA}, V_{I} = 3.5 \text{ V}$		1.8	1.836	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}, T_a =$	-25 to 85°C	1.728		1.872	V
VI	Operating input voltage	I _O = 500 mA		3		16	V
I _O	Output current limit				1		Α
ΔV _O	Line regulation	$V_I = 2.8 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$			2	12	mV
ΔV_{O}	Load regulation	$V_I = 3.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$			2	10	mV
		$V_{I} = 2.5 \text{ to } 16V, I_{O} = 0\text{mA}$	ON MODE		0.5	1	mA
I _d	Quiescent current	$V_I = 3.1 \text{ to } 16V, I_O = 500 \text{mA}$	ONWODE			12	IIIA
		V _I = 6 V OFF MODE			50	100	μΑ
			f = 120 Hz		82		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 3.5 \pm 1 \text{ V}$	f = 1 kHz		77		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V _d	Dropout voltage	I _O = 200 mA			0.7		V
V _{IL}	Control input logic low	T _a = -40 to 125°C				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125°C		2			V
I _I	Control input current	V _I = 6 V, V _C = 6 V			10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_O = 0$ to	500 mA	2	10		μF

Table 8. Electrical characteristics for LF18CDT-TRY (Automotive Grade) (refer to the test circuits, $T_A = -40$ to 125° C, $C_I = 0.1 \ \mu\text{F}$, $C_O = 2.2 \ \mu\text{F}$ unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit	
V	Outrout valta as	$I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}, T_a =$	25°C	1.764	1.8	1.836	V	
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}$	I _O = 50 mA, V _I = 3.5 V			1.887	V	
V _I	Operating input voltage	I _O = 500 mA		3		16	V	
Io	Output current limit	T _a = 25°C			1		Α	
ΔV _O	Line regulation	$V_I = 2.8 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$			2	15	mV	
ΔV_{O}	Load regulation	$V_1 = 3.3 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$	i		2	15	mV	
		$V_I = 2.5 \text{ to } 16V, I_O = 0\text{mA}$	ONLMODE		0.5	2	Л	
I_{d}	Quiescent current	V _I = 3.1 to 16V, I _O =500mA	ON MODE	ON MODE			12	mA
		V _I = 6 V	V _I = 6 V OFF MODE		50	120	μΑ	
			f = 120 Hz		82			
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 3.5 \pm 1 \text{ V}$ $T_a = 25^{\circ}\text{C}$	f = 1 kHz		77		dB	
		1 a - 20 0	f = 10 kHz		60			
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _a =	25°C		50		μV	
V	Duanautualtana	I _O = 200 mA			0.2	1.3	V	
V_d	Dropout voltage	I _O = 500 mA			0.4	1.3	V	
V_{IL}	Control input logic low		-			0.8	V	
V _{IH}	Control input logic high			2			V	
I _I	Control input current	$V_I = 6 \text{ V}, V_C = 6 \text{ V}, T_a = 25^{\circ}$	С		10		μΑ	
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_O = 0$ to	500 mA	2	10		μF	

Table 9. Electrical characteristics for LF25AB (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit	
V	Output voltage	I _O = 50 mA, V _I = 4.5 V		2.475	2.5	2.525	V	
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}, T_a =$	-25 to 85°C	2.450		2.550	V	
VI	Operating input voltage	I _O = 500 mA				16	V	
I _O	Output current limit				1		Α	
ΔV_{O}	Line regulation	$V_1 = 3.5 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$			2	12	mV	
ΔV_{O}	Load regulation	$V_1 = 3.8 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$			2	12	mV	
		$V_{I} = 3.5 \text{ to } 16V, I_{O} = 0\text{mA}$	ON MODE		0.5	1	m A	
I _d	Quiescent current	$V_1 = 3.8 \text{ to } 16V, I_0 = 500 \text{mA}$	ON MODE	ON MODE			12	mA
		V _I = 6 V	OFF MODE		50	100	μΑ	
		$I_{O} = 5 \text{ mA}, V_{I} = 4.5 \pm 1 \text{ V}$ f = 1 kHz	f = 120 Hz		82			
SVR	Supply voltage rejection		f = 1 kHz		77		dB	
			f = 10 kHz		65			
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV	
V	Duanasticalitana	I _O = 200 mA			0.2	0.35	V	
V _d	Dropout voltage	I _O = 500 mA			0.4	0.7	V	
V _{IL}	Control input logic low	$T_a = -40 \text{ to } 125^{\circ}\text{C}$				0.8	V	
V _{IH}	Control input logic high	$T_a = -40 \text{ to } 125^{\circ}\text{C}$		2			V	
l _l	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μΑ	
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_O = 0$ to	500 mA	2	10		μF	

Table 10. Electrical characteristics for LF25ABDT-TRY (Automotive Grade) (refer to the test circuits, $T_A = -40$ to $125^{\circ}C$, $C_I = 0.1~\mu\text{F}$, $C_O = 2.2~\mu\text{F}$ unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}, T_a =$	25°C	2.475	2.5	2.525	٧
Vo	Output voitage	$I_0 = 50 \text{ mA}, V_1 = 4.5 \text{ V}$		2.435		2.565	V
V _I	Operating input voltage	I _O = 500 mA				16	V
Io	Output current limit	T _a = 25°C			1		Α
ΔV_{O}	Line regulation	$V_1 = 3.5 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$			2	15	mV
ΔV_{O}	Load regulation	$V_1 = 3.8 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$	ı		2	15	mV
		$V_I = 3.5 \text{ to } 16V, I_O = 0\text{mA}$	ONLMODE		0.5	2	А
I_d	Quiescent current	$V_I = 3.8 \text{ to } 16V, I_O = 500 \text{mA}$	ON MODE			12	mA
		V _I = 6 V OFF MODE			50	120	μA
			f = 120 Hz		82		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 4.5 \pm 1 \text{ V}$ $T_a = 25^{\circ}\text{C}$	f = 1 kHz		77		dB
		1 a - 20 0	f = 10 kHz		65		
eN	Output noise voltage	$B = 10 \text{ Hz to } 100 \text{ kHz}, T_a =$	25°C		50		μV
M	Dunantualtana	I _O = 200 mA			0.2	1.3	
V_d	Dropout voltage	I _O = 500 mA			0.4	1.3	V
V_{IL}	Control input logic low					0.8	٧
V _{IH}	Control input logic high						V
I _I	Control input current	$V_I = 6 \text{ V}, V_C = 6 \text{ V}, T_a = 25^{\circ}$	С		10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ to	500 mA	2	10		μF

Table 11. Electrical characteristics for LF25C (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}$		2.45	2.5	2.55	V
V _O	Output voltage	$I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}, T_a =$	-25 to 85°C	2.4		2.6	V
VI	Operating input voltage	I _O = 500 mA				16	٧
I _O	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_{I} = 3.5 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$			2	12	mV
ΔV_{O}	Load regulation	$V_I = 3.8 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$			2	12	mV
		$V_I = 3.5 \text{ to } 16V, I_O = 0\text{mA}$	ON MODE		0.5	1	A
I _d	Quiescent current	V _I = 3.8 to 16V, I _O =500mA ON MODE	- ON MODE			12	mA
		V _I = 6 V	OFF MODE		50	100	μΑ
			f = 120 Hz		82		
SVR	Supply voltage rejection	$I_{O} = 5 \text{ mA}, V_{I} = 4.5 \pm 1 \text{ V}$	f = 1 kHz		77		dB
			f = 10 kHz		65		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V	Dranguitualtaga	I _O = 200 mA			0.2	0.35	V
V_d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	$T_a = -40 \text{ to } 125^{\circ}\text{C}$				0.8	٧
V _{IH}	Control input logic high	$T_a = -40 \text{ to } 125^{\circ}\text{C}$					V
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_O = 0$ to	500 mA	2	10		μF

Table 12. Electrical characteristics for LF25CDT-TRY (Automotive Grade) (refer to the test circuits, $T_A = -40$ to $125^{\circ}C$, $C_I = 0.1 \ \mu\text{F}$, $C_O = 2.2 \ \mu\text{F}$ unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}, T_a =$	25°C	2.45	2.5	2.55	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}$		2.385		2.615	V
VI	Operating input voltage	I _O = 500 mA				16	V
Ιο	Output current limit	T _a = 25°C			1		Α
ΔV_{O}	Line regulation	$V_1 = 3.5 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$			2	15	mV
ΔV_{O}	Load regulation	$V_I = 3.8 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$	i		2	15	mV
		$V_I = 3.5 \text{ to } 16V, I_O = 0\text{mA}$	ON MODE		0.5	2	Л
I_{d}	Quiescent current	$V_I = 3.8 \text{ to } 16V, I_O = 500 \text{mA}$	ON MODE			12	mA
		V _I = 6 V OFF MODE			50	120	μΑ
			f = 120 Hz		82		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 4.5 \pm 1 \text{ V}$ $T_a = 25^{\circ}\text{C}$	f = 1 kHz		77		dB
		la 15 G	f = 10 kHz		65		
eN	Output noise voltage	$B = 10 \text{ Hz to } 100 \text{ kHz}, T_a =$	25°C		50		μV
M	Dranguitualtaga	I _O = 200 mA			0.2	1.3	V
V_d	Dropout voltage	I _O = 500 mA			0.4	1.3	V
V_{IL}	Control input logic low					0.8	٧
V _{IH}	Control input logic high						V
I _I	Control input current	$V_I = 6 \text{ V}, V_C = 6 \text{ V}, T_a = 25^{\circ}$	С		10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω, I_0 = 0 to	500 mA	2	10		μF

Table 13. Electrical characteristics for LF33AB (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 5.3 \text{ V}$		3.267	3.3	3.333	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 5.3 \text{ V}, T_a =$	-25 to 85°C	3.234		3.366	V
VI	Operating input voltage	I _O = 500 mA				16	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_1 = 4.3 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$			3	16	mV
ΔV_{O}	Load regulation	$V_1 = 4.6 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$	1		3	16	mV
		$V_1 = 4.3 \text{ to } 16V, I_O = 0\text{mA}$	ON MODE		0.5	1	А
I _d	Quiescent current	$V_1 = 4.6 \text{ to } 16V, I_0 = 500 \text{mA}$	ON MODE			12	mA
		V _I = 6 V	OFF MODE		50	100	μA
			f = 120 Hz		80		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 5.3 \pm 1 \text{ V}$	f = 1 kHz		75		dB
			f = 10 kHz		65		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
.,		I _O = 200 mA			0.2	0.35	.,
V _d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	$T_a = -40 \text{ to } 125^{\circ}\text{C}$				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125°C		2			V
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω, I_0 = 0 to	500 mA	2	10		μF

Table 14. Electrical characteristics for LF33C (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 5.3 \text{ V}$		3.234	3.3	3.366	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 5.3 \text{ V}, T_a =$	-25 to 85°C	3.168		3.432	V
V _I	Operating input voltage	I _O = 500 mA				16	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_1 = 4.3 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$			3	16	mV
ΔV_{O}	Load regulation	$V_1 = 4.6 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$			3	16	mV
		$V_{I} = 4.3 \text{ to } 16V, I_{O} = 0\text{mA}$	ON MODE		0.5	1	4
I _d	Quiescent current	$V_1 = 4.6 \text{ to } 16V, I_O = 500 \text{mA}$	ON MODE			12	mA
		V _I = 6 V	OFF MODE		50	100	μA
			f = 120 Hz		80		
SVR	Supply voltage rejection	$I_{O} = 5 \text{ mA}, V_{I} = 5.3 \pm 1 \text{ V}$	f = 1 kHz		75		dB
			f = 10 kHz		65		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
.,		I _O = 200 mA			0.2	0.35	.,
V_d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	T _a = -40 to 125°C				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125°C					V
l _l	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_O = 0$ to	500 mA	2	10		μF

Table 15. Electrical characteristics for LF33CDT-TRY and LF33CPT-TRY (Automotive Grade) (refer to the test circuits, T_A = -40 to 125°C, C_I = 0.1 μ F, C_O = 2.2 μ F unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output valtage	$I_0 = 50 \text{ mA}, V_1 = 5.3 \text{ V}, T_a =$	25°C	3.234	3.3	3.366	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 5.3 \text{ V},$		3.153		3.447	V
V _I	Operating input voltage	I _O = 500 mA				16	V
Io	Output current limit	T _a = 25°C	T _a = 25°C		1		Α
ΔV_{O}	Line regulation	$V_1 = 4.3 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$			3	19	mV
ΔV_{O}	Load regulation	$V_I = 4.6 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$			3	19	mV
		$V_I = 4.3 \text{ to } 16V, I_O = 0\text{mA}$	ONLMODE		0.5	2	А
I _d	Quiescent current	$V_I = 4.6 \text{ to } 16V, I_O = 500 \text{mA}$	ON MODE			12	mA
		V _I = 6 V OFF MODE			50	120	μA
		f = 1	f = 120 Hz		80		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 5.3 \pm 1 \text{ V}$ $T_a = 25^{\circ}\text{C}$	f = 1 kHz		75		dB
		1 _a - 20 0	f = 10 kHz		65		
eN	Output noise voltage	$B = 10 \text{ Hz to } 100 \text{ KHz}, T_a =$	25°C		50		μV
\ /	Duranturaltana	I _O = 200 mA			0.2	1.3	
V_d	Dropout voltage	I _O = 500 mA			0.4	1.3	V
V _{IL}	Control input logic low					0.8	٧
V _{IH}	Control input logic high						V
I _I	Control input current	$V_I = 6 \text{ V}, V_C = 6 \text{ V}, T_a = 25^{\circ}$	0		10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ to	500 mA	2	10		μF

Table 16. Electrical characteristics for LF50AB (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output voltage	$I_{O} = 50 \text{ mA}, V_{I} = 7 \text{ V}$		4.95	5	5.05	V
Vo	Output voltage	$I_0 = 50 \text{ mA}, V_1 = 7 \text{ V}, T_a = -60 \text{ mA}$	25 to 85°C	4.9		5.1	V
V _I	Operating input voltage	I _O = 500 mA				16	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_1 = 6 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$			5	25	mV
ΔV_{O}	Load regulation	$V_1 = 6.3 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$	ı		5	25	mV
		V _I = 6 to 16V, I _O = 0mA	ONLMODE		0.5	1	Л
I_d	Quiescent current	$V_1 = 6.3 \text{ to } 16V, I_O = 500 \text{mA}$	ON MODE			12	mA
		V _I = 6 V	OFF MODE		50	100	μA
			f = 120 Hz		76		
SVR	Supply voltage rejection	$I_{O} = 5 \text{ mA}, V_{I} = 7 \pm 1 \text{ V}$	f = 1 kHz		71		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
\ /	Dunantualtana	I _O = 200 mA			0.2	0.35	
V_d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V_{IL}	Control input logic low	T _a = -40 to 125°C				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125°C	-				V
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ to	500 mA	2	10		μF

Table 17. Electrical characteristics for LF50ABDT-TRY (Automotive Grade) (refer to the test circuits, $T_A = -40$ to $125^{\circ}C$, $C_I = 0.1 \mu F$, $C_O = 2.2 \mu F$ unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 7 \text{ V}, T_a = 2$	5°C	4.95	5	5.05	V
Vo	Output voltage	I _O = 50 mA, V _I = 7 V		4.885		5.115	V
VI	Operating input voltage	I _O = 500 mA				16	٧
Io	Output current limit	T _a = 25°C	_a = 25°C		1		Α
ΔV_{O}	Line regulation	$V_{I} = 6 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$			5	28	mV
ΔV_{O}	Load regulation	$V_I = 6.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$			5	28	mV
		$V_{I} = 6 \text{ to } 16V, I_{O} = 0\text{mA}$	ONLMODE		0.5	2	Л
I _d	Quiescent current	$V_1 = 6.3 \text{ to } 16V, I_0 = 500 \text{mA}$	ON MODE			12	mA
		V _I = 6 V	= 6 V OFF MODE		50	120	μΑ
		f =	f = 120 Hz		76		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 7 \pm 1 \text{ V}$ $T_a = 25^{\circ}\text{C}$	f = 1 kHz		71		dB
		Ta = 13 3	f = 10 kHz		60		
eN	Output noise voltage	$B = 10 \text{ Hz to } 100 \text{ kHz}, T_a =$	25°C		50		μV
	Drangustualtana	I _O = 200 mA			0.2	1.3	V
V _d	Dropout voltage	I _O = 500 mA			0.4	1.3	V
V _{IL}	Control input logic low					0.8	٧
V _{IH}	Control input logic high						V
I ₁	Control input current	$V_1 = 6 \text{ V}, V_C = 6 \text{ V}, T_a = 25^{\circ}$	0		10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_O = 0$ to	500 mA	2	10		μF

Table 18. Electrical characteristics for LF50C (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V.	Output voltage	$I_{O} = 50 \text{ mA}, V_{I} = 7 \text{ V}$		4.9	5	5.1	V
V _O	Output voltage	$I_0 = 50 \text{ mA}, V_1 = 7 \text{ V}, T_a = -20 \text{ mA}$	25 to 85°C	4.8		5.2	V
V _I	Operating input voltage	I _O = 500 mA				16	V
Ιο	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_1 = 6 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$			5	25	mV
ΔV_{O}	Load regulation	$V_1 = 6.3 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$	i		5	25	mV
		V _I = 6 to 16V, I _O = 0mA	ONLMODE		0.5	1	Л
I _d	Quiescent current	$V_{I} = 6.3 \text{ to } 16\text{V}, I_{O} = 500\text{mA}$	ON MODE			12	mA
		V _I = 6 V	OFF MODE		50	100	μΑ
			f = 120 Hz		76		
SVR	Supply voltage rejection	$I_{O} = 5 \text{ mA}, V_{I} = 7 \pm 1 \text{ V}$	f = 1 kHz		71		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V	Duanaut valtaria	I _O = 200 mA			0.2	0.35	
V_d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V_{IL}	Control input logic low	$T_a = -40 \text{ to } 125^{\circ}\text{C}$				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125°C	-				V
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μΑ
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ to	500 mA	2	10		μF

Table 19. Electrical characteristics for LF50CDT-TRY and LF50CPT-TRY (Automotive Grade) (refer to the test circuits, T_A = -40 to 125°C, C_I = 0.1 μ F, C_O = 2.2 μ F unless otherwise specified.)

Symbol	Parameter	Test condition	s	Min.	Тур.	Max.	Unit
V	Output valtage	$I_0 = 50 \text{ mA}, V_1 = 7 \text{ V}, T_a = 2$	5°C	4.9	5	5.1	V
V _O	Output voltage	$I_0 = 50 \text{ mA}, V_1 = 7 \text{ V}$		4.785		5.215	V
V _I	Operating input voltage	I _O = 500 mA				16	V
Io	Output current limit	T _a = 25°C	T _a = 25°C		1		Α
ΔV_{O}	Line regulation	$V_{I} = 6 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$			5	28	mV
ΔV_{O}	Load regulation	$V_{I} = 6.3 \text{ V}, I_{O} = 5 \text{ to } 500 \text{ mA}$			5	28	mV
		$V_{I} = 6 \text{ to } 16V, I_{O} = 0mA$	ON MODE		0.5	2	A
I _d	Quiescent current	$V_{I} = 6.3 \text{ to } 16V, I_{O} = 500 \text{mA}$	ON MODE			12	mA
		V _I = 6 V OFF MODE			50	120	μΑ
			f = 120 Hz		76		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 7 \pm 1 \text{ V}$ $T_a = 25^{\circ}\text{C}$	f = 1 kHz		71		dB
		1a - 20 0	f = 10 kHz		60		
eN	Output noise voltage	$B = 10 \text{ Hz to } 100 \text{ kHz}, T_a =$	25°C		50		μV
M	Duonoutualtono	I _O = 200 mA			0.2	1.3	٧
V_d	Dropout voltage	I _O = 500 mA			0.4	1.3	V
V _{IL}	Control input logic low					0.8	٧
V _{IH}	Control input logic high						V
I _I	Control input current	$V_I = 6 \text{ V}, V_C = 6 \text{ V}, T_a = 25^{\circ}$	0		10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω, I_0 = 0 to	500 mA	2	10		μF

Table 20. Electrical characteristics for LF60AB (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output voltage	I _O = 50 mA, V _I = 8 V		5.94	6	6.06	V
Vo	Output voltage	$I_0 = 50 \text{ mA}, V_1 = 8 \text{ V}, T_a = -6$	25 to 85°C	5.88		6.12	V
V _I	Operating input voltage	I _O = 500 mA				16	V
Io	Output current limit				1		Α
ΔV _O	Line regulation	$V_1 = 7 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$			6	30	mV
ΔV _O	Load regulation	$V_1 = 7.3 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$			6	30	mV
		V _I = 7 to 16V, I _O = 0mA	ONLMODE		0.7	1.5	4
I _d	Quiescent current	$V_1 = 7.3 \text{ to } 16V, I_0 = 500 \text{mA}$	ON MODE			12	mA
		V _I = 9 V	OFF MODE		70	140	μA
		f = 12			75		
SVR	Supply voltage rejection	$I_{O} = 5 \text{ mA}, V_{I} = 8 \pm 1 \text{ V}$	f = 1 kHz		70		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
.,		I _O = 200 mA			0.2	0.35	.,
V_d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	$T_a = -40 \text{ to } 125^{\circ}\text{C}$				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125°C	-				V
l _l	Control input current	V _I = 9 V, V _C = 6 V			10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_O = 0$ to	500 mA	2	10		μF

Table 21. Electrical characteristics for LF60C (refer to the test circuits, $T_J = 25$ °C, $C_I = 0.1$ μF, $C_O = 2.2$ μF unless otherwise specified.)

Symbol	Parameter	Test condition	s	Min.	Тур.	Max.	Unit
V	Output voltage	I _O = 50 mA, V _I = 8 V		5.88	6	6.12	V
V _O	Output voltage	$I_O = 50 \text{ mA}, V_I = 8 \text{ V}, T_a = -20 \text{ mA}$	25 to 85°C	5.76		6.24	v
VI	Operating input voltage	I _O = 500 mA				16	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_1 = 7 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$			6	30	mV
ΔV_{O}	Load regulation	$V_1 = 7.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$			6	30	mV
		$V_I = 7$ to 16V, $I_O = 0$ mA	ON MODE		0.7	1.5	A
I _d	Quiescent current	$V_1 = 7.3 \text{ to } 16V, I_0 = 500 \text{mA}$	ON MODE			12	mA
		V _I = 9 V	OFF MODE		70	140	μA
			f = 120 Hz		75		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 8 \pm 1 \text{ V}$	f = 1 kHz		70		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 kHz	•		50		μV
.,	B	I _O = 200 mA			0.2	0.35	.,
V_d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	$T_a = -40 \text{ to } 125^{\circ}\text{C}$				0.8	٧
V _{IH}	Control input logic high	$T_a = -40 \text{ to } 125^{\circ}\text{C}$					V
I _I	Control input current	V _I = 9 V, V _C = 6 V			10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_O = 0$ to	500 mA	2	10		μF

5//

Table 22. Electrical characteristics for LF80AB (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V.	Output voltage	I _O = 50 mA, V _I = 10 V		7.92	8	8.08	V
V _O	Output voltage	$I_0 = 50 \text{ mA}, V_1 = 10 \text{ V}, T_a =$	-25 to 85°C	7.84		8.16	V
V _I	Operating input voltage	I _O = 500 mA				16	V
Ιο	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_1 = 9 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$	V _I = 9 to 16 V, I _O = 5 mA		8	40	mV
ΔV_{O}	Load regulation	$V_1 = 9.3 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$	i		8	40	mV
		$V_{I} = 9 \text{ to } 16V, I_{O} = 0\text{mA}$	ONLMODE		0.7	1.5	Л
I_{d}	Quiescent current	$V_{I} = 9.3 \text{ to } 16V, I_{O} = 500 \text{mA}$	ON MODE			12	mA
		V _I = 9 V	OFF MODE		70	140	μΑ
		upply voltage rejection $I_O = 5 \text{ mA}, V_I = 10 \pm 1 \text{ V}$ $f = 1 \text{ kHz}$	f = 120 Hz		72		
SVR	Supply voltage rejection		f = 1 kHz		67		dB
			f = 10 kHz		57		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V	Duanaut valtaria	I _O = 200 mA			0.2	0.35	
V_d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V_{IL}	Control input logic low	T _a = -40 to 125°C				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125°C		2			V
I _I	Control input current	$V_{I} = 9 V, V_{C} = 6 V$			10		μΑ
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ to	500 mA	2	10		μF

Table 23. Electrical characteristics for LF80C (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V.	Output voltage	I _O = 50 mA, V _I = 10 V		7.84	8	8.16	V
V _O	Output voltage	$I_O = 50 \text{ mA}, V_I = 10 \text{ V}, T_a =$	-25 to 85°C	7.68		8.32	v
VI	Operating input voltage	I _O = 500 mA				16	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_1 = 9 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$			8	40	mV
ΔV_{O}	Load regulation	$V_I = 9.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$			8	40	mV
		$V_I = 9$ to 16V, $I_O = 0$ mA	ON MODE		0.7	1.5	Л
I _d	Quiescent current $V_I = 9.3 \text{ to } 16\text{V}, I_O = 500\text{mA}$ $V_I = 9 \text{ V}$ OFF MODE	$V_{I} = 9.3 \text{ to } 16V, I_{O} = 500 \text{mA}$	ON MODE			12	- mA
			70	140	μΑ		
	Supply voltage rejection	pply voltage rejection $I_O = 5$ mA, $V_I = 10 \pm 1$ V $f = 120$ Hz $f = 1$ kHz $f = 10$ kHz	f = 120 Hz		72		
SVR			f = 1 kHz		67		dB
			f = 10 kHz		57		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
	Duranturaltana	I _O = 200 mA			0.2	0.35	.,
V_d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	$T_a = -40 \text{ to } 125^{\circ}\text{C}$				0.8	V
V _{IH}	Control input logic high	$T_a = -40 \text{ to } 125^{\circ}\text{C}$		2			V
I _I	Control input current	$V_1 = 9 V, V_C = 6 V$			10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_O = 0$ to	500 mA	2	10		μF

Table 24. Electrical characteristics for LF80CDT-TRY (Automotive Grade) (refer to the test circuits, $T_A = -40$ to 125°C, $C_I = 0.1$ μ F, $C_O = 2.2$ μ F unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 10 \text{ V}, T_a =$	25°C	7.84	8	8.16	V
Vo	Output voltage	I _O = 50 mA, V _I = 10 V		7.665		8.335	V
VI	Operating input voltage	I _O = 500 mA				16	٧
Io	Output current limit	T _a = 25°C			1		Α
ΔV_{O}	Line regulation	$V_{I} = 9 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$			8	44	mV
ΔV_{O}	Load regulation	$V_I = 9.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$	V _I = 9.3 V, I _O = 5 to 500 mA		8	44	mV
		$V_I = 9$ to 16V, $I_O = 0$ mA	ON MODE		0.7	2.5	Л
I _d	Quiescent current	$V_I = 9.3 \text{ to } 16V, I_O = 500 \text{mA}$	ON MODE			12	mA
		V _I = 9 V	OFF MODE		70	160	μA
		upply voltage rejection		72			
SVR	Supply voltage rejection		f = 1 kHz		67		dB
			f = 10 kHz		57		
eN	Output noise voltage	$B = 10 \text{ Hz to } 100 \text{ kHz}, T_a =$	25°C		50		μV
M	Duranturaltana	I _O = 200 mA			0.2	1.3	W
V_d	Dropout voltage	I _O = 500 mA			0.4	1.3	V
V_{IL}	Control input logic low					0.8	٧
V _{IH}	Control input logic high			2			V
I _I	Control input current	$V_I = 9 \text{ V}, V_C = 6 \text{ V}, T_a = 25^{\circ}$	0		10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω, I_0 = 0 to	500 mA	2	10		μF

Table 25. Electrical characteristics for LF85AB (refer to the test circuits, $T_J = 25$ °C, $C_I = 0.1$ μF, $C_O = 2.2$ μF unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 10.5 \text{ V}$		8.415	8.5	8.585	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 10.5 \text{ V}, T_a$	= -25 to 85°C	8.33		8.67	V
VI	Operating input voltage	I _O = 500 mA				16	V
I _O	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_1 = 9.5 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$			8	42	mV
ΔV_{O}	Load regulation	V _I = 9.8 V, I _O = 5 to 500 mA			8	42	mV
		$V_1 = 9.5 \text{ to } 16V, I_O = 0mA$	ONLMODE		0.7	1.5	mA
I_{d}	I_d Quiescent current $V_1 = 9.8 \text{ to } 16\text{V}, I_O = V_1 = 9 \text{ V}$	$V_1 = 9.8 \text{ to } 16V, I_0 = 500 \text{mA}$	ON MODE			12	IIIA
		V _I = 9 V	OFF MODE		70	140	μA
	Supply voltage rejection	voltage rejection $I_O = 5$ mA, $V_I = 10.5 \pm 1$ V $f = 120$ Hz $f = 1$ kHz $f = 10$ kHz		72			
SVR			f = 1 kHz		67		dB
			f = 10 kHz		57		
eN	Output noise voltage	B = 10 Hz to 100 kHz	1		50		μV
.,	D	I _O = 200 mA			0.2	0.35	.,
V _d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	$T_a = -40 \text{ to } 125^{\circ}\text{C}$				0.8	V
V _{IH}	Control input logic high	$T_a = -40 \text{ to } 125^{\circ}\text{C}$					V
I _I	Control input current	$V_1 = 9 \text{ V}, V_C = 6 \text{ V}$			10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω, I_0 = 0 to	500 mA	2	10		μF

Table 26. Electrical characteristics for LF85C (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	ns	Min.	Тур.	Max.	Unit
V.	Output voltage	I _O = 50 mA, V _I = 10.5 V		8.33	8.5	8.67	V
V _O	Output voltage	$I_O = 50 \text{ mA}, V_I = 10.5 \text{ V}, T_a$	= -25 to 85°C	8.16		8.84	V
V _I	Operating input voltage	I _O = 500 mA				16	V
Ιο	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_{I} = 9.5 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$	V _I = 9.5 to 16 V, I _O = 5 mA		8	42	mV
ΔV_{O}	Load regulation	$V_1 = 9.8 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$	1		8	42	mV
		$V_I = 9.5 \text{ to } 16V, I_O = 0\text{mA}$	ON MODE		0.7	1.5	Л
I _d	Quiescent current	$V_I = 9.8 \text{ to } 16V, I_O = 500 \text{mA}$	ON MODE			12	mA
		V _I = 9 V	OFF MODE		70	140	μΑ
		pply voltage rejection $I_O = 5 \text{ mA}, V_I = 10.5 \pm 1 \text{ V}$ $f = 1 \text{ k}$	f = 120 Hz		72		
SVR	Supply voltage rejection		f = 1 kHz		67		dB
			f = 10 kHz		57		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V	Duanautualtana	I _O = 200 mA			0.2	0.35	
V_d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V_{IL}	Control input logic low	T _a = -40 to 125°C				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125°C		2			V
I _I	Control input current	$V_{I} = 9 V, V_{C} = 6 V$			10		μΑ
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ to	500 mA	2	10		μF

Table 27. Electrical characteristics for LF85CDT-TRY and LF85CPT-TRY (Automotive Grade) (refer to the test circuits, T_A = -40 to 25°C, C_I = 0.1 μ F, C_O = 2.2 μ F unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 10.5 \text{ V}, T_a$	= 25°C	8.33	8.5	8.67	V
V _O	Output voltage	I _O = 50 mA, V _I = 10.5 V		8.145		8.855	V
VI	Operating input voltage	I _O = 500 mA				16	٧
Io	Output current limit	$T_a = 25^{\circ}C$			1		Α
ΔV_{O}	Line regulation	$V_1 = 9.5 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$	V _I = 9.5 to 16 V, I _O = 5 mA		8	44	mV
ΔV_{O}	Load regulation	$V_1 = 9.8 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$	V _I = 9.8 V, I _O = 5 to 500 mA		8	44	mV
		$V_1 = 9.5 \text{ to } 16V, I_O = 0\text{mA}$	ONLMODE		0.7	2.5	mA
I _d	V _I = 9 V	$V_1 = 9.8 \text{ to } 16V, I_0 = 500 \text{mA}$	ON MODE			12	шА
		OFF MODE		70	160	μΑ	
	Supply voltage rejection $I_O = 5 \text{ mA}, V_I = 10.5 \pm 1 \text{ V}$ $T_a = 25^{\circ}\text{C}$		f = 120 Hz		72		
SVR		f = 1 kHz		67		dB	
			f = 10 kHz		57		
eN	Output noise voltage	B = 10 Hz to 100 kHz, $T_a =$	25°C		50		μV
W	Dranguitualtana	I _O = 200 mA			0.2	1.3	V
V_d	Dropout voltage	I _O = 500 mA			0.4	1.3	V
V _{IL}	Control input logic low					0.8	٧
V _{IH}	Control input logic high			2			V
I _I	Control input current	$V_1 = 9 \text{ V}, V_C = 6 \text{ V}, T_a = 25^{\circ}$	С		10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , I_{O} = 0 to	500 mA	2	10		μF

Table 28. Electrical characteristics for LF90AB (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test conditio	ns	Min.	Тур.	Max.	Unit
V	Output voltage	I _O = 50 mA, V _I = 11 V		8.91	9	9.09	V
Vo	Output voltage	$I_0 = 50 \text{ mA}, V_1 = 11 \text{ V}, T_a = 10 \text{ mA}$	-25 to 85°C	8.82		9.18	v
VI	Operating input voltage	I _O = 500 mA				16	V
I _O	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_{I} = 10 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$			9	45	mV
ΔV_{O}	Load regulation	V _I = 10.3 V, I _O = 5 to 500 n	V _I = 10.3 V, I _O = 5 to 500 mA		9	45	mV
		V _I = 10 to 16V, I _O = 0mA			0.7	1.5	
l _d	Quiescent current	V _I = 10.3 to 16V, I _O = 500mA	ON MODE			12	mA
		V _I = 10 V	OFF MODE		70	140	μΑ
			f = 120 Hz		71		
SVR	Supply voltage rejection	on $I_0 = 5 \text{ mA}, V_1 = 11 \pm 1 \text{ V}$	f = 1 kHz		66		dB
			f = 10 kHz		56		
eN	Output noise voltage	B = 10 Hz to 100 kHz	1		50		μV
V	Dranaut voltage	I _O = 200 mA			0.2	0.35	V
V _d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	T _a = -40 to 125°C				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125°C	T _a = -40 to 125°C				V
I _I	Control input current	V _I = 10 V, V _C = 6 V			10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_O = 0$ t	o 500 mA	2	10		μF

Table 29. Electrical characteristics for LF90C (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	ns	Min.	Тур.	Max.	Unit
V.	Output voltage	I _O = 50 mA, V _I = 11 V		8.82	9	9.18	V
V _O	Output voltage	$I_O = 50 \text{ mA}, V_I = 11 \text{ V}, T_a =$	-25 to 85°C	8.64		9.36	V
VI	Operating input voltage	I _O = 500 mA				16	V
I _O	Output current limit				1		Α
ΔV _O	Line regulation	$V_I = 10 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$			9	45	mV
ΔV _O	Load regulation	$V_I = 10.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ m}$	nA		9	45	mV
		$V_I = 10 \text{ to } 16V, I_O = 0\text{mA}$			0.7	1.5	
l _d	Quiescent current	V _I = 10.3 to 16V, I _O = 500mA	ON MODE			12	mA
		V _I = 10 V	OFF MODE		70	140	μΑ
			f = 120 Hz		71		
SVR	Supply voltage rejection	-	f = 1 kHz		66		dB
			f = 10 kHz		56		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V	Dropout voltage	I _O = 200 mA			0.2	0.35	V
V _d	Dropout voltage	I _O = 500 mA			0.4	0.7	, v
V _{IL}	Control input logic low	$T_a = -40 \text{ to } 125^{\circ}\text{C}$				0.8	V
V _{IH}	Control input logic high	$T_a = -40 \text{ to } 125^{\circ}\text{C}$		2			V
I _I	Control input current	V _I = 10 V, V _C = 6 V			10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , I_0 = 0 to	o 500 mA	2	10		μF

57

Table 30. Electrical characteristics for LF120AB (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test conditio	ns	Min.	Тур.	Max.	Unit
V	Output voltage	I _O = 50 mA, V _I = 15 V		11.88	12	12.12	٧
Vo	Output voltage	$I_0 = 50 \text{ mA}, V_1 = 15 \text{ V}, T_a = 10 \text{ V}$	-25 to 85°C	11.76		12.24	V
VI	Operating input voltage	I _O = 500 mA				16	V
I _O	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_{I} = 13 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$			12	60	mV
ΔV_{O}	Load regulation	V _I = 13.3 V, I _O = 5 to 500 n	V _I = 13.3 V, I _O = 5 to 500 mA		12	60	mV
		$V_{I} = 13 \text{ to } 16V, I_{O} = 0\text{mA}$			0.7	1.5	
I _d	Quiescent current	V _I = 13.3 to 16V, I _O = 500mA	ON MODE	IODE		12	mA
		V _I = 13 V	OFF MODE		70	140	μA
			f = 120 Hz		69		
SVR	Supply voltage rejection	$I_{O} = 5 \text{ mA}, V_{I} = 14 \pm 1 \text{ V}$	f = 1 kHz		64		dB
			f = 10 kHz		54		
eN	Output noise voltage	B = 10 Hz to 100 kHz	1		50		μV
W	Duanaut valtaria	I _O = 200 mA			0.2	0.35	V
V _d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	T _a = -40 to 125°C				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125°C	T _a = -40 to 125°C				V
I _I	Control input current	V _I = 13 V, V _C = 6 V			10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ t	o 500 mA	2	10		μF

Table 31. Electrical characteristics for LF120C (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified).

Symbol	Parameter	Test condition	ns	Min.	Тур.	Max.	Unit
V	Output voltage	I _O = 50 mA, V _I = 14 V		11.76	12	12.24	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 14 \text{ V}, T_a = -25 \text{ to } 85^{\circ}\text{C}$		11.52		12.48	V
VI	Operating input voltage	I _O = 500 mA				16	V
I _O	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_I = 13 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$			12	60	mV
ΔV _O	Load regulation	V _I = 13.3 V, I _O = 5 to 500 mA			12	60	mV
		$V_I = 13 \text{ to } 16V, I_O = 0\text{mA}$			0.7	1.5	
I _d	Quiescent current	V _I = 13.3 to 16V, I _O = 500mA	ON MODE		12	mA	
		V _I = 13 V	OFF MODE		70	140	μΑ
			f = 120 Hz		69		
SVR	Supply voltage rejection		f = 1 kHz		64		dB
			f = 10 kHz		54		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V	Dropout voltage	I _O = 200 mA			0.2	0.35	V
V _d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	$T_a = -40 \text{ to } 125^{\circ}\text{C}$				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125°C		2			٧
I _I	Control input current	V _I = 13 V, V _C = 6 V			10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_O = 0$ to	o 500 mA	2	10		μF

57

5 Typical performance characteristics

(unless otherwise specified $V_{O(NOM)} = 3.3 \text{ V}$)

Figure 4. Dropout voltage vs output current Figure 5. Dropout voltage vs temperature

Figure 6. Supply current vs input voltage

| Control | Cont

Figure 7. Supply current vs input voltage

Figure 8. Short circuit current vs input voltage

477

36/49

Figure 10. Logic controlled precision 3.3/5.0 V selectable output

Figure 12. Multiple supply with ON/OFF toggle switch

Figure 13. Basic inhibit functions

Figure 14. Delayed turn-on

Figure 15. Low voltage bulb blinker

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

PENTAWATT (Vertical) mechanical data

Dim		mm.		inch.			
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			4.8			0.189	
С			1.37			0.054	
D	2.4		2.8	0.094		0.110	
D1	1.2		1.35	0.047		0.053	
Е	0.35		0.55	0.014		0.022	
F	0.8		1.05	0.031		0.041	
F1	1		1.4	0.039		0.055	
G	3.2	3.4	3.6	0.126	0.134	0.142	
G1	6.6	6.8	7	0.260	0.268	0.276	
H2			10.4			0.409	
H3	10.05		10.4	0.396		0.409	
L		17.85			0.703		
L1		15.75			0.620		
L2		21.4			0.843		
L3		22.5			0.886		
L5	2.6		3	0.102		0.118	
L6	15.1		15.8	0.594		0.622	
L7	6		6.6	0.236		0.260	
М		4.5			0.177		
M1		4			0.157		
Dia1	3.65		3.85	0.144		0.152	

47/

TO-220 mechanical data

Dim.		mm.		inch.			
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	4.40		4.60	0.173		0.181	
С	1.23		1.32	0.048		0.051	
D	2.40		2.72	0.094		0.107	
D1		1.27			0.050		
E	0.49		0.70	0.019		0.027	
F	0.61		0.88	0.024		0.034	
F1	1.14		1.70	0.044		0.067	
F2	1.14		1.70	0.044		0.067	
G	4.95		5.15	0.194		0.203	
G1	2.4		2.7	0.094		0.106	
H2	10.0		10.40	0.393		0.409	
L2		16.4			0.645		
L4	13.0		14.0	0.511		0.551	
L5	2.65		2.95	0.104		0.116	
L6	15.25		15.75	0.600		0.620	
L7	6.2		6.6	0.244		0.260	
L9	3.5		3.93	0.137		0.154	
DIA.	3.75		3.85	0.147		0.151	

TO-220FP mechanical data

Dim		mm.		inch.			
Dim.	Min.	Тур	Max.	Min.	Тур.	Max.	
Α	4.40		4.60	0.173		0.181	
В	2.5		2.7	0.098		0.106	
D	2.5		2.75	0.098		0.108	
E	0.45		0.70	0.017		0.027	
F	0.75		1	0.030		0.039	
F1	1.15		1.50	0.045		0.059	
F2	1.15		1.50	0.045		0.059	
G	4.95		5.2	0.194		0.204	
G1	2.4		2.7	0.094		0.106	
Н	10.0		10.40	0.393		0.409	
L2		16			0.630		
L3	28.6		30.6	1.126		1.204	
L4	9.8		10.6	0.385		0.417	
L5	2.9		3.6	0.114		0.142	
L6	15.9		16.4	0.626		0.645	
L7	9		9.3	0.354		0.366	
DIA.	3		3.2	0.118		0.126	

DPAK mechanical data

Dim		mm.		inch.			
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	2.2		2.4	0.086		0.094	
A1	0.9		1.1	0.035		0.043	
A2	0.03		0.23	0.001		0.009	
В	0.64		0.9	0.025		0.035	
b4	5.2		5.4	0.204		0.212	
С	0.45		0.6	0.017		0.023	
C2	0.48		0.6	0.019		0.023	
D	6		6.2	0.236		0.244	
D1		5.1			0.200		
E	6.4		6.6	0.252		0.260	
E1		4.7			0.185		
е		2.28			0.090		
e1	4.4		4.6	0.173		0.181	
Н	9.35		10.1	0.368		0.397	
L	1			0.039			
(L1)		2.8			0.110		
L2		0.8			0.031		
L4	0.6		1	0.023		0.039	
R		0.2			0.008		
V2	0°		8°	0°		8°	

PPAK mechanical data

Dim		mm.		inch.			
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	2.2		2.4	0.086		0.094	
A1	0.9		1.1	0.035		0.043	
A2	0.03		0.23	0.001		0.009	
В	0.4		0.6	0.015		0.023	
B2	5.2		5.4	0.204		0.212	
С	0.45		0.6	0.017		0.023	
C2	0.48		0.6	0.019		0.023	
D	6		6.2	0.236		0.244	
D1		5.1			0.201		
Е	6.4		6.6	0.252		0.260	
E1		4.7			0.185		
е		1.27			0.050		
G	4.9		5.25	0.193		0.206	
G1	2.38		2.7	0.093		0.106	
Н	9.35		10.1	0.368		0.397	
L2		0.8	1		0.031	0.039	
L4	0.6		1	0.023		0.039	
L5	1			0.039			
L6		2.8			0.110		

	_	_					_
Tane	ጼ	reel	DΡΔ	K-PPA	K mec	hanical	data
IUNC	u		ν			ııaıııcaı	uutu

Dim.		mm.		inch.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.80	6.90	7.00	0.268	0.272	0.2.76
Во	10.40	10.50	10.60	0.409	0.413	0.417
Ko	2.55	2.65	2.75	0.100	0.104	0.105
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	7.9	8.0	8.1	0.311	0.315	0.319

LFxxAB - LFxxC Order codes

7 Order codes

Table 32. Order codes

			Packages			Output voltage
TO-220	TO-220FP	DPAK	DPAK (T&R)	PPAK	PPAK (T&R)	
LF15CV ⁽¹⁾	LF15CP ⁽¹⁾			LF15CPT ⁽¹⁾	LF15CPT-TR ⁽¹⁾	1.5 V
LF15ABV ⁽¹⁾	LF15ABP ⁽¹⁾		LF15ABDT-TR	LF15ABPT ⁽¹⁾		1.5 V
	LF18CP ⁽¹⁾		LF18CDT-TR		LF18CPT-TR	1.8 V
			LF18CDT-TRY ⁽²⁾			1.8 V
	LF18ABP ⁽¹⁾		LF18ABDT-TR		LF18ABPT-TR	1.8 V
	LF25CP ⁽¹⁾		LF25CDT-TR		LF25CPT-TR	2.5 V
			LF25CDT-TRY ⁽²⁾			2.5 V
	LF25ABP ⁽¹⁾		LF25ABDT-TR	LF25ABPT ⁽¹⁾		2.5 V
			LF25ABDT-TRY ⁽²⁾			2.5 V
LF33CV			LF33CDT-TR		LF33CPT-TR	3.3 V
			LF33CDT-TRY ⁽²⁾		LF33CPT-TRY ⁽²⁾	3.3 V
LF33ABV			LF33ABDT-TR			3.3 V
LF47CV						4.7 V
LF50CV	LF50CP		LF50CDT-TR		LF50CPT-TR	5 V
			LF50CDT-TRY ⁽²⁾		LF50CPT-TRY ⁽²⁾	5 V
LF50ABV	LF50ABP		LF50ABDT-TR		LF50ABPT-TR	5 V
			LF50ABDT-TRY ⁽²⁾			5 V
LF60CV	LF60CP ⁽¹⁾		LF60CDT-TR		LF60CPT-TR ⁽¹⁾	6 V
LF60ABV	LF60ABP ⁽¹⁾		LF60ABDT-TR	LF60ABPT ⁽¹⁾	LF60ABPT-TR ⁽¹⁾	6 V
LF80CV	LF80CP ⁽¹⁾		LF80CDT-TR		LF80CPT-TR	8 V
			LF80CDT-TRY ⁽²⁾			8 V
LF80ABV	LF80ABP ⁽¹⁾		LF80ABDT-TR			8 V
			LF85CDT-TR		LF85CPT-TR	8.5 V
			LF85CDT-TRY ⁽²⁾		LF85CPT-TRY ⁽²⁾	8.5 V
				LF85ABPT ⁽¹⁾	LF85ABPT-TR	8.5 V
LF90CV	LF90CP ⁽¹⁾		LF90CDT-TR		LF90CPT-TR	9 V
	LF90ABP ⁽¹⁾	LF90ABDT ⁽¹⁾	LF90ABDT-TR		LF90ABPT-TR	9 V
	LF120CP ⁽¹⁾		LF120CDT-TR			12 V
LF120ABV			LF120ABDT-TR	LF120ABPT ⁽¹⁾		12 V

^{1.} Available on request.

^{2.} Automotive Grade products.

Revision history LFxxAB - LFxxC

8 Revision history

Table 33. Document revision history

Date	Revision	Changes
21-Jun-2004	14	Document updating.
24-May-2006	15	Order codes updated.
02-Apr-2007	16	Order codes updated.
14-May-2007	17	Order codes updated.
26-Jul-2007	18	Add <i>Table 1</i> in cover page.
26-Nov-2007	19	Modified: <i>Table 32</i> .
16-Jan-2008	20	Added new order codes for Automotive grade products see <i>Table 32 on page 47</i> .
12-Feb-2008	21	Modified: Table 32 on page 47.
10-Jul-2008	22	Modified: Table 32 on page 47.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

