

PAGEZY Tristan n°11568

avec JALLABERT Jason n°43455

Recherche de stratégies efficaces pour le jeu Hanamikoji

Plan

- I. Les règles
- II.L'algorithme utilisant des astuces
- III.L'exploration du graphe de jeu
- IV.L'algorithme regardant les états finaux

3/34

1. Les règles

Les cartes

- 21 cartes réparties en 7 couleurs
- A Valeur de la couleur = nb d'exemplaires de la carte

Les cartes

- Chaque joueur aura 8 cartes de chaque côté
- But : Avoir le + de majorités

Calculs du score

Joueur B

Joueur A

Score en fin de manche joueur A: 11

Score en fin de manche joueur B:8

△ valeur de la couleur = nb de points

Conditions de victoire

Victoire en fin de manche si :

- Somme des valeurs des couleurs ≥ 11
- 4 couleurs possédées

Sinon:

Nouvelle manche (max 3)

État initial

Déroulement d'un tour

1 tour Piocher une carte
Utiliser une action

10 / 34

Les actions

Valider une carte (face caché)

Défausser 2 cartes (face caché) 3 cartes présentées puis validées : 1 pour l'adversaire 2 pour soimême

Valider une carte (face caché)

Défausser 2 cartes (face caché) 3 cartes présentées puis validées : 1 pour l'adversaire 2 pour soimême 2 paquets de 2 cartes présentés puis validés : 1 paquet pour l'adversaire 1 pour soimême

- Unicité de l'action
- 1 manche: 4 tours par joueur
- À la fin du manche :
 - Attribution des majorités
 - Attribution des points
 - Vérification des conditions de victoire

15 / 34

2. L'algorithme utilisant des astuces

Valider une carte

Défausse rentable

Proposer des choix identiques 18 / 34

Proposer des choix identiques 19 / 34

20 / 34

Pour chaque coup :

- Le simuler
- Évaluer l'état obtenu
 - Maximiser son score
 - Minimiser le score adverse

Cartes en main du joueur A

Joueur A

21 / 34

Heuristique absolue

Score pour le joueur A : +3

Heuristique relative

Score pour le joueur A : -3

Avantages / Inconvénients

- Facilement implémentable
- Algorithme de référence
- Astuces humaines

- Peu de perspectives d'amélioration
- Heuristique difficile à choisir en fonction des cas et parfois peu pertinente

24 / 34

3. L'exploration du graphe de jeu

Motivations et modèle

- Jeu à information totale :
 - Cartes adverses et pioche visibles
- Trouver les stratégies gagnantes
- Analyser les stratégies

Composition d'un état

- Cartes du joueur A
- Cartes du joueur B
- Les actions disponibles pour A
- Les actions disponibles pour B
- L'état de la pioche
- (Les cartes validées et défaussées)

L'exploration

Résultats intermédiaires 28 / 34

Type de paquet de cartes	Simple (beaucoup de doublons)	Normal	Complexe (que des cartes simple)
Temps	160 s	Environ 6 heures	Environ 20 heures
Nombre d'états maximal estimé	430 millions	58 milliards	190 milliards

29 / 34

4. L'algorithme regardant les états finaux

Principe

États finaux

Le principe

- Simuler un coup
- Rassembler toutes les cartes non jouées
- Distribuer ces cartes :
 - Pour soi d'abord
 - Pour la défausse
- Vérification de la faisabilité de l'état final
- Calculer les points et prendre celui qui maximise

Énumération de p cartes parmi n sans 32 / 34 doublons

Le calcul du score

- Moyenne uniforme :
 - Chaque état final a autant de chance d'arriver
 - Pondération 1
- Moyenne statistique :
 - Pondération dépendant du nb de cartes en doublons, triplets... initiaux
 - On regarde après simulation le nb de :
 - Doublons, triplets...
 - Cartes qui étaient en doublons, triplets....

Les résultats

- Nb de matchs perdus
- Nb d'égalités
- Nb de matchs gagnés

Annexe

Mode du tournoi

La vérification

État du jeu

Situation impossible

La vérification

Actions				
Cartes validées par le joueur actuel	1	0	2	2
Cartes validées par l'adversaire	0	0	1	2

Maximum = Somme des cartes des actions non validés de mon côté Minimum = max(0,Maximum – nb de cartes à piocher)

Principe de l'algorithme 1

Actions	Stratégie
1	Valider la carte la plus haute
2	Défausse rentable
3	Choix identiques puis simulations
4	Choix identiques puis simulations
Répondre choix 3	Simulations des choix
Répondre choix 4	Simulations des choix

Fin d'une manche

- Fin d'une manche lorsque les joueurs n'ont plus d'actions
- → Plus de cartes dans les mains des joueurs
- Comparaison des cartes validés par couleurs:
 - Cartes validées par soi > Cartes validées par l'adversaire :
 - Gain de la couleur
- Vérification des conditions de victoire

Annexe CODE