- a) Show that the Petersen graph [Fig. 11.52(a)] has no Hamilton cycle but that it has a Hamilton path.
- b) Show that if any vertex (and the edges incident to it) is removed from the Petersen graph, then the resulting subgraph has a Hamilton cycle.

a/hamilton path: a->b->c->d->e->j->g->i->f->h b/if we remove an inner point like f, we can have cycle a->b->g->i->d->c->h->j->e->a ,successfully if we remove a outer point like a, we can have cycle f->h->c->b->g->j->e->d->i->f, successfully

PROBLEM2

Take problem 1 for example, there exists a hamilton path, however, the sum of any two point'degree is 6, smaller than n-1 which is 9

PROBLEM 3

Let G=(V,E) be a loop-free undirected n-regular graph with $|V| \ge 2n+2$. Prove that \overline{G} (the complement of G) has a Hamilton cycle.

cause it is n-regular, and there are more than 2n+2 vertices, then for complement of G, the degree of every vertice will >= 2n+2-n=n+2 > (2n+2)/2=n+1, (collary 11.5) so it will the complement of G will have hamilton cycle.

Let $n \in \mathbb{Z}^+$ with $n \ge 4$, and let the vertex set V' for the complete graph K_{n-1} be $\{v_1, v_2, v_3, \ldots, v_{n-1}\}$. Now construct the loop-free undirected graph $G_n = (V, E)$ from K_{n-1} as follows: $V = V' \cup \{v\}$, and E consists of all the edges in K_{n-1} except for the edge $\{v_1, v_2\}$, which is replaced by the pair of edges $\{v_1, v\}$ and $\{v, v_2\}$.

- a) Determine deg(x) + deg(y) for all nonadjacent vertices x and y in V.
- **b)** Does G_n have a Hamilton cycle?
- c) How large is the edge set E?
- d) Do the results in parts (b) and (c) contradict Corollary 11.6?

so the change is add a new vertex ,and $\{v1\ v2\}$ is replaced by $\{v1v\}\{vv2\}$

a/ if x!=v, y!=v, then x and y must be v1 v2 if they want to be nonadjacent. Then deg(x)+deg(y)=deg(v1)+deg(v2)=2*(n-2)=2n-4 // though edge $\{v1,v2\}$ is lost, a new edge $\{v1v\}/\{v2v\}$ is added

if x=v, y can be any point except a/b , then deg(x)+deg(y)=2+n-2=n //2 is $\{v1v\},\{v2v\}$ b/

Yes, take any nonadjacent vertices, the sum of their degree >=n (theorem 11.9) c/ for K(n-1): n*(n-1)/2 ,then we remove one edge, add 2 edge, so the final answer is n*(n-1)/2+1

d/ no. E= n*(n-1)/2+1 and has hamilton cycle doesn't contradict corolary 11.6 (because 11.6 doesn't have if and only if)

If G is a loop-free undirected graph with at least one edge, prove that G is bipartite if an only if $\chi(G) = 2$.

part 1: if it is bipartite, and we divide the vertices to top side and bottom side, then just give top side one color, bottom side one color, $\chi(G) = 2$, true

part 2: if ${}^{1}\chi(G) = 2$, then we can only give vertices one color of two, if a vertice have first color, divide it to top side (set V1), if a vertice have second color, divide it to bottom side (set V2), cause there is no edge between vertices with same color, then it is bipartite.

Like this

Consider the complete graph K_n for $n \ge 3$. Color r of the vertices in K_n red and the remaining n - r (= g) vertices green. For any two vertices v, w in K_n color the edge $\{v, w\}$ (1) red if v, w are both red; (2) green if v, w are both green; or (3) blue if v, w have different colors. Assume that $r \ge g$.

- a) Show that for r = 6 and g = 3 (and n = 9) the total number of red and green edges in K_9 equals the number of blue edges in K_9 .
- **b)** Show that the total number of red and green edges in K_n equals the number of blue edges in K_n if and only if n = r + g, where g, r are consecutive triangular numbers. [The triangular numbers are defined recursively by $t_1 = 1$, $t_{n+1} = t_n + (n+1)$, $n \ge 1$; so $t_n = n(n+1)/2$. Hence $t_1 = 1$, $t_2 = 3$, $t_3 = 6$,]

```
a/ red: 6*5/2=15 //one vertex of 6* other 5 red vertex/ repeat green: 3*2/2=3 // one green vertex of 3* other 3 green vertex/repeat blue: 3*6=18 // one green vertex of 3* one red vertex of 6 (no repeat) 3+15=18 b/ blue= r*g red = r*(r-1)/2 green= g*(g-1)/2 cause we want blue=red+green r*g=r*(r-1)/2+g*(g-1)/2 r^2-r+g^2-g-2gr=0 (r-g)^2-r-g=0 cause r always >g ,assume r=g+k k^2-2g-k=0 g=(k^2-k)/2=(k-1)k/2 which is triangular number r=g+k=(k^2+k)/2=k(k+1)/2 which is next triangular number
```

```
Let G be a loop-free undirected graph, where \Delta = \max_{v \in V} \{\deg(v)\}. (a) Prove that \chi(G) \leq \Delta + 1. (b) Find two types of graphs G, where \chi(G) = \Delta + 1.
```

a/pick a vertex from the graph, we can there are most Δ vertices adjacent to it. Even all of them are different color, we can still pick the rest 1 from Δ +1 color. It is true for all vertices in G.

b/ K4/K5

PROBLEM 8

- a) If a tree has four vertices of degree 2, one vertex of degree 3, two of degree 4, and one of degree 5, how many pendant vertices does it have?
- b) If a tree T = (V, E) has v_2 vertices of degree 2, v_3 vertices of degree 3, . . . , and v_m vertices of degree m, what are |V| and |E|?

PROBLEM 9

The connected undirected graph G = (V, E) has 30 edges. What is the maximum value that |V| can have?

31 (tree is the critical point between connected and disconnected)

Let
$$G = (V, E)$$
 be a loop-free connected undirected graph where $V = \{v_1, v_2, v_3, \dots, v_n\}, n \ge 2, \deg(v_1) = 1, \text{ and } \deg(v_i) \ge 2 \text{ for } 2 \le i \le n.$ Prove that G must have a cycle.

if G is connected undirected graph and also have no cycle, then G is a tree, then B must have at least two vertices whose degree is one, while contradiction

Problem 11

Does there exist a graph on 5 vertices with the vertex degrees 4, 4, 3, 2, 2?

No, degV=2E, however 4+4+3+2+2 is not even

Problem 12

Prove that in any tree there are two vertices of the same degree.

a tree has at least 2 leaves(pendant vertex) which degree both 1

Problem 13

Prove that any undirected, loop-free graph on n vertices with at least (n-1)(n-2)/2 + 1 edges is connected. Also, give an example of a disconnected n-vertex graph with one fewer edge.

A/if G is not connected, then G has at least 2 subgraphs, one have k vertices, then the rest one have n-k vertices.

Then the edge will be at most k(k-1)/2 + (n-k)(n-k-1)/2 //COMPLETE GRAPH $= k^2 - k + n^2 + k^2 - 2nk - n + k$ /2 $= 2k^2 + n^2 - 2nk - n/2$ $= n^2 - n \text{ is constant.}$ $2k^2 - 2nk < 0$

so to maximum edge, we need to maximum $2k^2-2nk$ $b^2-4ac=0$, k should be -b/2a=0.5n

(1)then at most $1.5n^2-n^2-n/2=0.5n^2-n/2=0.25n^2-0.5n$

(2) $\frac{(n-1)(n-2)/2 + 1}{=} = 0.5 \text{ n}^2 - 1.5 \text{ n} + 2$

use (2) minus (1) = $0.25n^2 -n+2$, $b^2-4ac=1-2<1$, which means (2)minus (1) always >0

which means G is must connected because even the most of disconnected edges still cannot

satisfy at least (n-1)(n-2)/2 + , contradiction

B/based on question 1,

use (2) minus (1)=1

 $n^2-4n+4=0$

n=2

so the answer is , the original graph is 2 vertices with one edge, the disconnected graph is 2 disconnected vertices

Problem 14.

Which complete bipartite graphs $K_{m,n}$ have Hamilton cycles? Which have Hamilton paths?

in this

a/ when m=n, way

b/ m=n+-1 or m=n