Exercícios de MOSFET

Professor

Jorge Leonid Aching Samatelo jlasam001@gmail.com

Análise de Circuitos em CC

Exercício

- \square Para o circuito da figura, determinar I_D , V_{GS} , V_{DS} e o modo de operação, considerando:
 - a) $R_D = 7K\Omega e R_S = 3K\Omega$
 - b) $R_D = 4K\Omega e R_S = 3K\Omega$

$$V_t = 1 \text{ V}$$

$$K_N = 2 \text{ mA/V}^2$$

$$L = 1 \text{ } \mu\text{m}$$

$$W = 1 \text{ } \mu\text{m}$$

$$\lambda = 0$$

Análise de Circuitos em CC

Exercício

0,5 PT

 \square Projetar o circuito da Figura, para obter um $I_D = 0.4$ mA.

$$V_t = 1 \text{ V}$$

$$K_N = 1 \text{ mA/V}^2$$

$$\mu_n C_{ox} = 20 \mu \text{A/V}^2$$

$$W = 40L$$

$$\lambda = 0$$

Análise de Circuitos em CC

Exercício

- ☐ Para o circuito da figura,
 - A. Calcule a corrente e a tensão de polarização I_D e V_{DS} .
 - B. Qual é a máxima excursão do sinal de saída?
 - C. Suponha que $V_t = 1$ calcule os novos valores para a corrente e a tensão de polarização I_D e V_{DS} . Depois calcule os porcentagens de variação de I_D e V_{DS} quando V_t variou de 2V a 1V, qual é sua conclusão?

Análise de Circuitos em CC

Exercício

- ☐ Para o circuito da figura,
 - A. Calcule a corrente e a tensão de polarização I_D , V_{GS} e V_{DS} .
 - B. Qual é a máxima excursão do sinal de saída?
 - C. Suponha que $V_t = 1$ calcule os novos valores para a corrente e a tensão de polarização I_D e V_{DS} . Depois calcule os porcentagens de variação de I_D e V_{DS} quando V_t variou de 2V a 1V, qual é sua conclusão?

$$\begin{array}{c|c}
 & & & & & & & & & & & & & & & & \\
\downarrow_{D} & & & & & & & & & & & & & & & \\
\downarrow_{D} & & & & & & & & & & & & & \\
+ & & & & & & & & & & & & & \\
V_{L} & = 2 \text{ V} \\
K_{N} & = 1 \text{ mA/V}^{2} \\
K_{N} & = 1 \text{ mA/V}^{2} \\
L & = 1 \text{ } \mu\text{m} \\
W & = 1 \text{ } \mu\text{m} \\
K_{S} & = 10 \text{K}\Omega
\end{array}$$

$$\begin{array}{c}
V_{t} = 2 \text{ V} \\
K_{N} & = 1 \text{ } \mu\text{m} \\
W & = 1 \text{ } \mu\text{m} \\
\lambda & = 0
\end{array}$$

Projetos de circuitos de Polarização

Exercício

- 0,5 PT
- \square No circuito da Figura, Q_1 e Q_2 são MOSFET de enriquecimento idênticos com $K_N=20\mu {\rm A/V^2},~V_t=2{\rm V},~L=10\mu {\rm m}$ e $W=100\mu {\rm m}$. Despreze o efeito de modulação do canal e considere $V_{DD}=10{\rm V}$.
 - a) Determine o valor de R_1 para que a corrente no dreno de Q_1 seja de 0,4 mA.
 - b) Determine o valor da tensão de dreno de Q_2 para $R_2 = 12 \mathrm{K}\Omega$.
 - c) Determine o valor de R_2 para colocar Q_2 no limite para saturação.

Projetos de circuitos de Polarização

Exercício

- \square Supondo que I_{DQ} = 1mA, V_{DQ} = 10V, V_{SQ} = 4V e I_{R1} = 0,02mA.
 - \triangleright Determinar V_{GS} e V_{DS} , e o modo de operação do MOSFET.
 - \triangleright Determinar os valores de R_1, R_2, R_D e R_S .
 - Qual é a máxima excursão do sinal de tensão no dreno?.

Projetos de circuitos de Polarização

Exercício

Projete o circuito da figura, tal que, o MOSFET opere com $I_D = 1$ mA e permita uma excursão da tensão de dreno v_D de +-2V. O amplificador deve apresentar uma resistência de entrada 1M Ω considerando um sinal de entrada acoplada capacitivamente.

$$V_t = 2 \text{ V}$$

$$K_N = 0.5 \text{ mA/V}^2$$

$$L = 1 \text{ } \mu\text{m}$$

$$W = 1 \text{ } \mu\text{m}$$

$$\lambda = 0$$

Projetos de circuitos de Polarização

Exercício

Determine os valores dos resistores R_1 , R_2 , R_D , R_S do seguinte circuito, de modo que, a corrente de dreno seja $I_D = 2$ mA.

$$V_t = 1.2 \text{ V}$$
 $K_N = 80 \text{ } \mu\text{A/V}^2$
 $L = 6 \text{ } \mu\text{m}$
 $W = 240 \text{ } \mu\text{m}$
 $\lambda = 0$

Caracterização de amplificadores MOSFET

Exercício

- Para a configuração Fonte Comum mostrada na Figura, onde, $g_m = 1$ mA/V e $r_0 = 100$ KΩ, deduzir a expressão para A_v , e calcular o valor de A_v quando:
 - $> R_s = 0\Omega.$
 - $ightharpoonup R_{\rm s} = 1 {\rm K}\Omega.$
 - $> R_s = 3,76 \text{K}\Omega.$

Caracterização de amplificadores MOSFET

Exercício

- ☐ Para o circuito da figura,
 - a) Determine a corrente de dreno I_D e a tensão V_{GS} .
 - b) Calcule os parâmetros g_m e r_o do modelo π e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - c) Analise o circuito resultante do passo (b) e determine:

Caracterização de amplificadores MOSFET

Exercício

- ☐ Para o circuito da figura,
 - a) Determine a corrente de dreno I_D e a tensão V_{GS} .
 - b) Calcule o parâmetro g_m do modelo π e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - c) Analise o circuito resultante do passo (b) e determine:

$$V_t = 2 \text{ V}$$
 $K_N = 0.2 \text{ mA/V}^2$
 $L = 1 \text{ } \mu\text{m}$
 $W = 1 \text{ } \mu\text{m}$
 $\lambda = 0$

Caracterização de amplificadores MOSFET

Exercício

- ☐ Para o circuito da figura,
 - a) Determine a corrente de dreno I_D e a tensão V_{GS} .
 - b) Calcule o parâmetros g_m do modelo π e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - c) Analise o circuito resultante do passo (b) e determine:

$$V_t = 1.8 \text{ V}$$
 $K_N = 0.3 \text{ mA/V}^2$
 $L = 1 \text{ } \mu\text{m}$
 $W = 1 \text{ } \mu\text{m}$
 $\lambda = 0$

Caracterização de amplificadores MOSFET

Exercício

- ☐ Para o circuito da figura,
 - a) Determine a corrente de dreno I_D e a tensão V_{GS} .
 - b) Calcule os parâmetros g_m e r_o do modelo π e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - c) Analise o circuito resultante do passo (b) e determine:

$$V_t = 1 \text{ V}$$

$$K_N = 2 \text{ mA/V}^2$$

$$L = 1 \text{ } \mu\text{m}$$

$$W = 1 \text{ } \mu\text{m}$$

$$V_A = 100 \text{ V}$$

Caracterização de amplificadores MOSFET

Exercício

- ☐ Para o circuito da figura,
 - a) Determine a corrente de dreno I_D e as tensões V_{GS} e V_{DS} .
 - b) Calcule os parâmetros r_o e g_m do modelo T e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - c) Analise o circuito resultante do passo (b) é determine as expressões para as seguintes grandezas como os valores numéricos respectivos:

Caracterização de amplificadores MOSFET

Exercício

- ☐ Para o circuito da figura,
 - a) Determine a corrente de dreno I_D e as tensões V_{GS} e V_{DS} .
 - b) Calcule os parâmetros g_m e r_o do modelo π e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - c) Analise o circuito resultante do passo (b) é determine as expressões para as seguintes grandezas como os valores numéricos respectivos:

$$V_t = 1,5 \text{ V}$$

$$K_N = 0,25 \text{ mA/V}^2$$

$$L = 1 \text{ } \mu\text{m}$$

$$W = 1 \text{ } \mu\text{m}$$

$$V_A = 75 \text{ V}$$

Caracterização de amplificadores MOSFET

Exercício

- ☐ Para o circuito da Figura,
 - Determine a corrente de dreno I_D e as tensões V_{GS} e V_{DS} .
 - Calcule os parâmetros g_m e r_o do modelo π e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - Analise o circuito resultante do passo (b) é determine as expressões para as seguintes grandezas:
 - \bullet R_{in} , R_{out} , A_{v}
 - d) Considerando os seguintes casos, determinar os valores de R_{in} e A_{v} .
 - $R_L = R_F$.

 - $R_L = r_o.$ $R_L = R_{in}.$

Caracterização de amplificadores MOSFET

Exercício

0,5 PT

Considere o amplificador Fonte Comum da Figura, para o qual $g_m = 2\text{mA/V}$, $r_o = 50\text{K}\Omega$, $R_D = 10\text{K}\Omega$ e $R_G = 10\text{M}\Omega$. O amplificador é alimentado a partir de uma fonte de sinal com resistência de Thévenin de $0.5\text{M}\Omega$ e a saída do amplificador está acoplada a uma resistência de carga de $R_L = 20\text{K}\Omega$. Calcular: R_{in} , R_{out} , A_v , $G_v = v_o/v_{sig}$.

Caracterização de amplificadores MOSFET

Exercício

- ☐ Para o circuito da figura,
 - a) Determine a corrente de dreno I_D e as tensões V_{GS} e V_{DS} .
 - b) Calcule os parâmetros r_o e g_m do modelo π e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - c) Analise o circuito resultante do passo (b) é determine as expressões para as seguintes grandezas como os valores numéricos respectivos:

Caracterização de amplificadores MOSFET

Exercício

- ☐ Para o circuito da figura,
 - a) Determine a corrente de dreno I_D e as tensões V_{GS} e V_{DS} .
 - b) Calcule os parâmetros g_m e r_o do modelo π e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - c) Analise o circuito resultante do passo (b) e determine:
 - R_{in} , R_{out} , A_v (a amplitude de v_i é 48 mV(rms)).

$$V_t = 5 \text{ V}$$

$$K_N = 1,6 \text{ mA/V}^2$$

$$L = 1 \text{ } \mu\text{m}$$

$$W = 1 \text{ } \mu\text{m}$$

$$V_A = 50 \text{ V}$$

Caracterização de amplificadores MOSFET

Exercício

- ☐ Para o circuito da figura,
 - a) Determine a corrente de dreno I_D e as tensões V_{GS} e V_{DS} .
 - b) Calcule os parâmetros g_m e r_o do modelo π e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - c) Analise o circuito resultante do passo (b) e determine:

$$R_{in}$$
, R_{out} , A_{v} .

$$V_t = 0.8 \text{ V}$$
 $K_N = 0.4 \text{ mA/V}^2$
 $L = 1 \text{ } \mu\text{m}$
 $W = 1 \text{ } \mu\text{m}$
 $\lambda = 0$

Caracterização de amplificadores MOSFET

Exercício

- ☐ Para o circuito da figura, supondo que:
 - > o ponto de operação Q esta no centro da região de saturação;
 - $R_1 || R_2 = 200 \text{K}\Omega \text{ e } I_{DO} = 0.5 \text{mA};$
- ☐ Determine:
 - a) R_1 , R_2 , R_D .
 - b) A_{v} .

$$V_t = 0.8 \text{ V}$$
 $K_N = 0.4 \text{ mA/V}^2$
 $L = 1 \text{ } \mu\text{m}$
 $W = 1 \text{ } \mu\text{m}$
 $\lambda = 0$

Caracterização de amplificadores MOSFET

Exercício

- ☐ Para o circuito da figura,
 - a) Determine a corrente de dreno I_D e as tensões V_{GS} e V_{DS} .
 - b) Calcule os parâmetros g_m e r_o do modelo π e desenhe o circuito equivalente de pequenos sinais do amplificador.
 - c) Analise o circuito resultante do passo (b) é determine as expressões para as seguintes grandezas como os valores numéricos respectivos:

$$R_{in}$$
, R_{out} , A_{v}

Bom Trabalho!!!

