Chapter I. Fundamental Concepts

1.1 Hilbert space and State Vector

Hilbert space a generalization (26.30)

(an have any finite dia.

(infinite)

· Hilbert space dimension in QM: an examples.

 $\begin{pmatrix} \uparrow \\ on \\ \psi \end{pmatrix} \begin{pmatrix} \uparrow \\ om \\ \psi \end{pmatrix}$ are available? (accessible)

of possible configurations
= 2N A dim. of H-space.

= a free pantizle

" (this just flying in any direction)

I "position": can be anything!

- H-spru donension: Infinite!

ct. What about "momentum"?

It's conserved.

-D H-space is just a point it p is known.

reduced with

· What does " a generalization" mean?
- H-space: a vector space. LD works just like in 20 or 30 Euclideanspace
- In 3D E-space.
$\vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \chi \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \chi \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \chi \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
" bas B"
- o men products are nell-defined! - o leigth, angla.
- In H-space. - ex. $apm-1$ chains
and, the inner products are also defined! But, it's a linear compination!
(T L T) L (L L T) No overlaps! onthogonal
Maths - formulation of a "state vector"
La Booket notation (Dinac)

1.2 Kets, Bras, Operators.

- · H space : a complex vector space -
- (1) a state vector = a "ket" vector [07]
 works like a "vector".
 - addition: 177 = 107 + 1B>
 - addition is commutative: 10/+167=187+107
 for all 107 and 187
 - there exists a "null" vector $|Q\rangle$. $|\alpha\rangle + |Q\rangle = |Q\rangle + |Q\rangle = |Q\rangle$
 - multiplication by any c-number: la' ? = cla?.
 - distributine law: a (12) + (3) = a(2) + a(5)
- (2) an observable, an operator, an eigenfect

" an observable car be represented by an operator "

an operator

- Eigenfet = Eigenvector B'eigen"

 A 10,7 = 0,10,7, A10,2? = 0,2 [0,2]

 a number (eigenvalue)
- . Eigenetate: a physical state corresponding to an eigenbet.

ex. $S_{z} | S_{z}; + \gamma = \frac{t}{2} | S_{z}; + \gamma$, $S_{z} | S_{z}; - \gamma = -\frac{t}{2} | S_{z}; - \gamma$

=D N-dim. H-space of A.

$$\pm$$
 spanned by N eigenkets of A.
 $|d\rangle = \sum_{\alpha} C_{\alpha'}|\alpha'\rangle$

(3) Bra space and Inner Products

: B dud to the bet space

ket a Dual Correspondence
vee a Dual Correspondence

Tf 177 = Cald7 + CB1 B7,

Ca (a) + CB (B) complex conj.

- Inner product: < \\\ \(\(\) \(\) \(\) \(\) \(\) \(\) \(\)

€ a generalization of XT. X

property 1. $\langle \beta | d \rangle = \langle d | \beta \rangle^* : complex conj.$

property 2.

: positive definite metriz unless 1d2 = 1&7

- this is exential to the probabilistic interpretation of Q.M.

· Id? and (\$7 are onthogonal if Id 1 B7 = 0.

nonmalization: $|\chi\rangle = \frac{1}{|\chi|} |\alpha\rangle$ $= D \langle \alpha|\alpha\rangle = 1$ $\sim \text{length of avector.}$

(4) Openators.

- liquel operators $X = Y \cdot 7 \times 147 = Y \cdot 147$ for an anb. Keet.

- null operation: XId? = O.

- Cummulatine and occociative addition $X+Y=Y+X \ , \quad X+(Y+Z)=(x+Y)+Z$

- Linear operation: X (Caldz + CelB?) = Ca X(d) + Cp X(B)

(most ops in Q.M.)

- duelity:

X127 CD.C. XXIX+

Hermitian adjoint.

- Hammitran op: X = Xt

(5) Multiplication ~ matrix multiplication.

- Noncommutative in general.

XY \neq YX

- associative: X(42)=(XY)7=X47

 $-(XY)^{+}=Y^{+}X^{+}$

became . X (4/47) \(\int \) (\(\dagger(x^+) x^+) \)

- Outen product :of 182, 181 · 187/d1 < This is also an operator. (cit. 40/8) = number) = 9 llegel products: XKal (X)

(Nonsepise"

(A) X (X)

(A) (A) (A)

(A) (B)

(A) (B)

(A) (A)

(A) (B)

(B) (B) (6) Associative Axiom. · (1/2><01) · 177 = 1/3> · (<0177) means. · Hermition = (x/X/B) broof. (BIXIA) = (BI. (XIA)) $= \left[\left(\left\langle \alpha \mid X^{+} \right) \cdot \left(\right\vert ^{2} \right) \right]^{*}$ = (a|x+1B) = (a|X|B) 1.3 Base Kets and Matrix (1) Eigenfets of an observable Tepresentation Theorem, Expensalues of a Hemitra op : Real Ergenvectors corrs. diff. eigenvalues are " orthogonal"!

proof.

Eigenfect of A: $\frac{1}{2}|a_{i}\rangle$, Eigenvalues: $\frac{1}{2}a_{i}$?

-D $A|a_{i}\rangle = a_{i}|a_{i}\rangle$, $\langle a_{j}|A = \Omega_{j}*\langle a_{j}|$ (A: Henritzen)

Then, $(a_{i}-a_{j}*)\langle a_{j}|a_{i}\rangle = 0$.

if $a_i = a_j$, $a_i = a_j^*$ (since $\langle a_i | a_i \rangle \neq 0$)

(eignvalues are real)

A orthogonal eighbets) Gince $a_{i}-a_{j}^{*}=a_{i}-a_{j}^{*}+a_{i}^{*}$

Espendets are normalized: Lajlani? = Sij

(2) Eigenbets as Base Foto.

recoll: an orbitrary best (d) in H-space of A

-D expansion with the eigenbets of A. (3/073)

lar = Z Caelar.

how, we know (a by $|a| \times |a| \times |a| = |a|$

Now, one can repurite $|a\rangle$ as $|a\rangle = \left[\frac{2}{a}|a\rangle\langle a|a\rangle\right] \cdot |a\rangle$

= I (identity op.

completeness relation Z | a7{a| = 1 ; (closure)

very important

ex. Lala? = 1 - D condition for Ca? (α(α) = (α)· α · (α) = \[\langle | \langle a | \la

Another expression with a projection operator

- projection operator def. \(\sigma = \larka\)

meaning: /a/27 = La/d7, la7

A Selects the portra of the (at 1d) parallel to 1a)

(a7)

 $\sum_{\alpha} A_{\alpha} = I$ Completness:

Swamny up all proj. s

The has to be

a complete a

ton a continuous parameter a,

(da (a)(a) = 1