Week 3: Stream (1)

Instructor: Daejin Choi (djchoi@inu.ac.kr)

Static vs. Stream Data

 REMIND: Big data means not only "size", but "velocity"

Characteristics of Stream Data

- Infinite, Burst, Non-stationary
 - We do not know the entire data set in advance

only INSTANTLY accessible

- Stream Management is important when the einput rate is controlled externally:
 - Google queries
 - Twitter or Facebook status updates

Applications

Mining query streams

Google wants to know what queries are more frequent today than ye sterday

Mining click streams

 Yahoo wants to know which of its pages are getting an unusual numb er of hits in the past hour

Mining social network news feeds

E.g., look for trending topics on Twitter, Facebook

Sensor Networks

Many sensors feeding into a central controller

IP packets monitored at a switch

- Gather information for optimal routing
- Detect denial-of-service attacks

The Stream Model

- Input elements enter at a rapid rate, at one or more input ports (i.e., streams)
 - We call elements of the stream tuples

The system cannot store the entire stream

• Q: How do you make critical calculations about the stream using a limited amount of (s econdary) memory?

General Stream Processing Model

Side note: Streaming Alg. in Machine Learning?

- Online Learning enables a machine learning model to continuously learn from the recent data stream
 - An algorithm to learn from it and slowly adapt to the changes in data
- Example: Stochastic Gradient Descent (SGD)
- Idea: Do slow updates to the model
 - **SGD** (SVM, Perceptron) makes small updates
 - So: First train the classifier on training data.
 - Then: For every example from the stream, we slightly update the model (using small learning rate)

Operations on Data Streams

 In conclusion, we have to choose a subset of input streams

- Sampling data from a stream
 - Construct a random sample
- Queries over sliding windows
 - Number of items of type x in the last k elements of the stream
- Filtering a data stream
 - Select elements with property x from the stream
- Counting distinct elements
 - Number of distinct elements in the last k elements of the stream
- Estimating moments
 - Estimate avg./std. dev. of last k elements

• ...

Week 3

Week 4

Let's start from sampling!

- Sample a fixed proportion of elements in the stream (say 1 in 10)
- Maintain a random sample of fixed size over a potentially infinite stream
 - At any "time" k we would like a random sample of s elements
 - What is the property of the sample we want to maintain?
 - : For all time steps **k**, each element seen so far has equal prob. of being sampled

Sampling from a Data Stream: Sampling a fixed proportion

Sampling a Fixed Proportion

- Scenario: Search engine query stream
 - Stream of tuples: (user, query, time)
 - Answer questions such as: How often did a user run the same query in a single day
 - Have space to store 1/10th of query stream

Naïve solution:

- Generate a random integer in [0..9] for each query
- Store the query if the integer is 0, otherwise discard

Problem with Naïve Approach

- Simple question: What fraction of queries by an user are duplicates?
 - Suppose each user issues x queries once and d queries twice (total of x+2d queries)
 - Correct answer: d/(x+d)
 - Proposed solution: We keep 10% of the queries
 - Sample will contain x/10 of the singleton queries and
 2d/10 of the duplicate queries at least once
 - But only d/100 pairs of duplicates
 - $d/100 = 1/10 \cdot 1/10 \cdot d$
 - Of d"duplicates" 18d/100 appear exactly once
 - $18d/100 = ((1/10 \cdot 9/10) + (9/10 \cdot 1/10)) \cdot d$
 - So the sample-based answer is $\frac{\frac{d}{100}}{\frac{x}{10} + \frac{d}{100} + \frac{18d}{100}} = \frac{d}{10x + 19d}$

How to solve?

Where the error comes from? → "Probability of selection"

- A possible solution? → Sampling user, not query
 - Pick 1/10th of users and take all their searches in the sample
 - Use a hash function that hashes the user name or user id uniformly into 10 buckets

Generalized Solution

Stream of tuples with keys:

- Key is a subset of each tuple's components
 - e.g., tuple is (user, search, time); key is user
- Choice of key depends on application

To get a sample of a/b fraction of the stream:

- Hash each tuple's key uniformly into b buckets
- Pick the tuple if its hash value is at most a

Hash table with **b** buckets, pick the tuple if its **hash** value is at most **a**.

How to generate a 30% sample?

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets (Assumption: Hash distributes users "uniformly")

Sampling from a Data Stream: Sampling a fixed-size tuples

Maintaining a fixed-size sample

- Suppose we need to maintain a random sample S of size exactly s tuples
 - E.g., main memory size constraint

Why? Don't know length of stream in advance

- Suppose at time n we have seen s items
 - Goal: Each item is in the sample S with equal prob. s/n

Illustration (s=2)

• Stream: axcyzkcdeg...

- At n= 5, each of the first 5 tuples is included in the sample S with equal prob.
- At n= 7, each of the first 7 tuples is included in the sample S with equal prob.
- Impractical solution would be to store all the n tuples seen so far and out of them pick s at random

Solution: Reservoir Sampling

Algorithm

- Store all the first s elements of the stream to s
- Suppose we have seen *n-1* elements, and now the *nth* element arrives (*n > s*)
 - With probability s/n, keep the nth element, else discard it
 - If we picked the nth element, then it replaces one of the selements in the sample S, picked uniformly at random

- Claim: This algorithm maintains a sample S
 with the desired property:
 - After *n* elements, the sample contains each element seen so far with probability *s/n*

Proof of Reservoir Sampling By Induction

- Assume that after *n* elements, the sample contains each element seen so far with probability *s/n*
- We need to show that after seeing element n
 +1 the sample maintains the property
 - Sample contains each element seen so far with probability s/(n+1)

Base case:

- After we see n=s elements the sample S has the desired property
 - Each out of n=s elements is in the sample with probability s/s = 1

Proof (cont'd)

- Inductive hypothesis: After n elements, the sample S contains each element seen so far with prob. s/n
- Now element n+1 arrives
- Inductive step: For elements already in S, probability that the algorithm keeps it in S is:

$$\left(1 - \frac{S}{n+1}\right) + \left(\frac{S}{n+1}\right) \left(\frac{S-1}{S}\right) = \frac{n}{n+1}$$
Element n+1 discarded not discarded sample not picked

- So, at time n, tuples in S were there with prob. s/n
- Time $n \rightarrow n+1$, tuple stayed in **S** with prob. n/(n+1)
- So prob. tuple is in **S** at time $n+1=\frac{s}{n}\cdot\frac{n}{n+1}=\frac{s}{n+1}$

Queries over a (long) Sliding Window

Sliding Windows

 A useful model of stream processing is that queries are about a window of length N, the N most recent elements received

- Interesting case: N is so large that the data cannot be stored in memory, or even on disk
 - Or, there are so many streams that windows for all cannot be stored
 - The estimation is required. We will finally cover later!

Sliding Window: 1 Stream

Sliding window on a single stream:

N = 6

Example Problem: Counting Bits (1)

Problem:

- Given a stream of **0**s and **1**s
- Be prepared to answer queries of the form
 How many 1s are in the last k bits? where k
 ≤ N

Obvious solution:

Store the most recent **N** bits

• When new bit comes in, discard the N+1st bit

Example Problem: Counting Bits (2)

 You CANNOT get an exact answer without storing the entire window

- Real Problem:
 What if we cannot afford to store N bits?
 - E.g., we're processing 1 billion streams and
 N = 1 billion

 But we are happy with an approximate answ er inferred from the summarized results

An attempt: Simple solution

- Q: How many 1s are in the last N bits?
- A simple solution that does not really solve our problem: Uniformity assumption

- Maintain 2 counters:
 - **S**: number of 1s from the beginning of the stream
 - **Z**: number of 0s from the beginning of the stream
- How many 1s are in the last N bits? $N \cdot \frac{S}{S+Z}$
- But, what if stream is non-uniform?
 - What if distribution changes over time?

DGIM solution that does <u>not</u> assume uniformity

• We store $O(\log^2 N)$ bits per stream

- Solution gives approximate answer, nev er off by more than 50%
 - Error factor can be reduced to any fraction > 0, w ith more complicated algorithm and proportionally more stored bits

Beginning Idea: Exponential Windows

- Summarize exponentially increasing regions of the stream, looking backward
- Drop small regions if they begin at the same point a s a larger region

We can reconstruct the count of the last **N** bits, except we are not sure how many of the last **6** 1s are included in the **N**

What's Good?

- Stores only O(log²N) bits
 - O(log N) counts of log₂ N bits each
 Mindow counts

 Window size
- Easy update as more bits enter

Error in count no greater than the number of 1s in the "unknown" area

What's Not So Good?

- As long as the 1s are fairly evenly distributed, the e rror due to the unknown region is small no more than 50%
- But it could be that all the 1s are in the unknown ar ea at the end
- In that case, the error changes w.r.t. N!

Fixup: DGIM method

Intuition: We do not have to count both 0s and 1s

- Idea: Instead of summarizing fixed-length blocks, s ummarize blocks with specific number of 1s:
 - Let the block sizes (number of 1s) increase exponentially

 When there are few 1s in the window, block s izes stay small, so errors are small

DGIM: Timestamps

Each bit in the stream has a timestamp, starting 1, 2, ...

- Record timestamps modulo N (the window size), so we can represent any relevant timestamp in $O(log_2N)$ bits
 - Store N = 4 using 2 bits

DGIM: Buckets

- A bucket in the DGIM method is a record c onsisting of:
 - (A) The timestamp of its end [O(log N) bits]
 - (B) The number of 1s between its beginnin g and end [O(log log N) bits]

- Constraint on buckets:
 Number of 1s must be a power of 2
 - That explains the O(log log N) in (B) above

More Constraints

 Either one or two buckets with the same power-of-2 number of 1s

Buckets do not overlap in timestamps

- Buckets are sorted by size
 - Earlier buckets are not smaller than later buckets

 Buckets disappear when their end-time is > N time units in the past

Example: Representing a Stream by Buckets

Three properties of buckets that are maintained:

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size

Updating Buckets (1)

 When a new bit comes in, drop the last (olde st) bucket if its end-time is prior to N time u nits before the current time

2 cases: Current bit is 0 or 1

 If the current bit is 0: no other changes are needed

Updating Buckets (2)

If the current bit is 1:

- (1) Create a new bucket of size 1, for just this bit
 - End timestamp = current time
- (2) If there are now three buckets of size 1, combine the oldest two into a bucket of size 2
- (3) If there are now three buckets of size 2, combine the oldest two into a bucket of size 4
- (4) And so on ...

Example: Updating Buckets

Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged...

State of the buckets after merging

<u>010110001011</u>0<u>10101010101010101010101111</u>0<u>10101011110101</u>000<u>1011001</u>0<u>11</u>01

Return to Our Original Question

- To estimate the number of 1s in the most re cent N bits:
 - Sum the sizes of all buckets but the last (note "size" means the number of 1s in the bucket)
 - 2. Add half the size of the last bucket

Remember: We do not know how many 1s of the last bucket are still within the wanted window

Example: Bucketized Stream

How can the error be bounded?

Why is error 50%? Let's prove it!

- Suppose the last bucket has size 2^r
- Then by assuming 2^{r-1} (i.e., half) of its 1s are still within the window, we make an error of at most 2^{r-1}
- Since there is at least one bucket of each of the sizes less than 2^r, the true sum is at least

$$1 + 2 + 4 + ... + 2^{r-1} = 2^r - 1$$

Thus, error at most 50%

Further Reducing the Error

- Instead of maintaining 1 or 2 of each size bucket, w e allow either r-1 or r buckets (r > 2)
 - Except for the largest size buckets; we can have any num ber between 1 and r of those

Error is at most *O(1/r)*

 By picking r appropriately, we can tradeoff between number of bits we store and the error

Extensions

- Can we use the same trick to answer queries How many 1's in the last k? where k < N?
 - A: Find earliest bucket B that at overlaps with k.
 Number of 1s is the sum of sizes of more recent buck ets + ½ size of B

Summary

- Sampling a fixed proportion of a stream
 - Sample size grows as the stream grows
- Sampling a fixed-size sample
 - Reservoir sampling
- Counting the number of 1s in the last N elements
 - Exponentially increasing windows → DGIM method

Thank you!

Instructor: Daejin Choi (djchoi@inu.ac.kr)