Fonctions Usuelles Fonctions Logarithme MPSI 2

1 Logarithme Neperien

Définition 1.0.1

Le logarithme neperien est l'unique primitive de $x \mapsto \frac{1}{x}$ qui s'annule en 0:

$$ln: \mathbb{R}^{+*} \longrightarrow \mathbb{R}$$
$$x \longmapsto \int_{1}^{x} \frac{1}{x} dx$$

Propriété 1.0.1

 $\forall (x;y) \in \mathbb{R}^{+*}, \ ln(xy) = ln(x) + ln(y)$

On considere l'application $h: \mathbb{R}^{+*^2} \longrightarrow \mathbb{R}$ $(x; y) \longmapsto ln(xy)$

Soit $y \in \mathbb{R}^{+*}$ fixe.

Soit h_y l'application dfinie par $h_y \colon \mathbb{R}^{+*} \longrightarrow \mathbb{R}$

$$X \longmapsto ln(xy)$$

 h_y et derivable car ln est derivable, $\forall x \in \mathbb{R}^{+*}$, $h'_y = \frac{y}{xy} = \frac{1}{x} ln$ et h_y sont des primitives de $x \longmapsto \frac{1}{x}$, donc elles different d'une constante.

$$\exists K \in \mathbb{R}, \ \forall x \in \mathbb{R}^{+*}, \ h_y(x) = ln(x) + K$$

$$\iff h_y(x) - ln(x) = K$$

$$\iff h_y(1) - ln(1) = K$$

$$\iff ln(y) = K$$

Conclusion: $\forall x \in \mathbb{R}^{+*}, \ h_y(x) = ln(x) + ln(y)$

Or, ce raisonnement est valable pout tout y de \mathbb{R}^{+*} , donc:

Conclusion Generale: $\forall x \in \mathbb{R}^{+*^2}, \ ln(xy) = ln(x) + ln(y)$

Corollaire 1.0.1

- $\forall x \in \mathbb{R}^{+*}, \ ln\left(\frac{1}{x}\right) = -ln(x)$
- $\forall (x;y) \in \mathbb{R}^{+*^2}$, $ln\left(\frac{x}{y}\right) = ln(x) ln(y)$
- $\forall n \in \mathbb{N}, \ ln(x^n) = n \ ln(x)$

Propriété 1.0.2

- $\bullet \lim_{x \to +\infty} ln(x) = +\infty$ $\bullet \lim_{x \to 0} ln(x) = -\infty$
- - 1/ Pour $n \in \mathbb{N}$, on note $U_n = 2^n$.

$$ln(U_n) = n \ ln(2)$$

Donc: $\forall A \in \mathbb{R}, \exists n_0 \in \mathbb{N}, n \geq n_0 \Longrightarrow ln(U_n) > A$

2/ De plus, ln est croissante, donc si $x \geq U_{n_0}$, alors:

$$ln(x) \ge ln(U_n) > A$$

Posons $x_0 = U_{n_0}$

Donc: $\forall A \in \mathbb{R}, \ \exists x_0 \in \mathbb{R}, \ x \ge x_0 \Longrightarrow \ ln(x) > A$

Donc: $\lim_{x \to +\infty} ln(x) = +\infty$

 $3/ \operatorname{En} -\infty$:

$$\begin{cases} ln(x) = -ln\left(\frac{1}{x}\right) \\ x > 0 \end{cases}$$

 $\lim_{x\to 0} \frac{1}{x} = +\infty$, donc par composition de limites:

$$\lim_{x \to 0} \ln(x) = -\infty$$

Propriété 1.0.3

- In realise une bijection de \mathbb{R}^{+*} sur \mathbb{R} . (Th de la bijection)
- $\forall x \in \mathbb{R}^{+*}$, $ln'(x) = \frac{1}{x}$, par definition.
- $ln \ est \ de \ classe \ \mathscr{C}^{\infty} \ sur \ \mathbb{R}^{+*} \ (Par \ recurrence)$

2 Logatithme en base a

Définition 2.0.2

Soit $a \in \mathbb{R}^{+*} \setminus \{1\}$

Le logarithme en base a est l'application definie par:

$$log_a : \mathbb{R}^{+*} \longrightarrow \mathbb{R}$$

 $x \longmapsto \frac{ln(x)}{ln(a)}$

- $Si\ a = 10$, $log_a\ est\ note\ log$
- On note e l'unique reel tel que $log_e = ln$

Propriété 2.0.4

- $log_a(1) = 0$
- $log_a(a) = 1$
- $\forall (x; y) \in \mathbb{R}^{+*^2}$, $\ln(xy) = \ln(x) + \ln(y)$ $\forall x \in \mathbb{R}^{+*}$, $\log'_a(x) = \frac{1}{x \ln(a)}$
- $Si \ a > 1$,
 - $log_a \ est \ croissante \ sur \ \mathbb{R}^{+*}$
 - $-\lim_{x \to +\infty} log_a(x) = +\infty$
- $-\lim_{x \to 0} \log_a(x) = -\infty$ $Si \ 0 < a < 1$,
- - $log_a \ est \ decroissante \ sur \mathbb{R}^{+*}$
 - $-\lim_{x \to +\infty} log_a(x) = -\infty$ $-\lim_{x \to 0} log_a(x) = +\infty$
- log_a realise une bijection de \mathbb{R}^{+*} sur \mathbb{R}