Mathematical Statistics I

Chapter 3: Joint Distributions

Jesse Wheeler

Contents

1	Introduction	1
2	Discrete Random Variables	2
3	Continuous Random Variables	4

1 Introduction

Introduction

- This material is based on the textbook by Rice (2007, Chapter 3).
- Our goal is to better understand the joint probability structure of more than one random variable, defined on the same sample space.
- One reason that studying joint probabilities is an important topic is that it enables us to use what we know about one variable to study another.

Joint cdf

• Just like the univariate case, the joint behavior of two random variables, X and Y, is determined by the cumulative distribution function

$$F(x,y) = P(X \le x, Y \le y).$$

- This is true for both discrete and continuous random variables.
- The any set $A \subset \mathbb{R}^2$, the joint cdf can give $P((X,Y) \in A)$.
- For example, let A be the rectangle defined by $x_1 < X < x_2$, and $y_1 < Y < y_2$. (It helps to draw a picture...)
- $F(x_2, y_2)$ gives $P(X < x_2, Y < y_2)$, an area that is too big, so we subtract off pieces
 - $-F(x_2,y_1) = P(X < x_2,Y < y_1)$ (we already have the area $X < x_2$, but now subtract away the area $Y < y_1$).
 - $F(x_1, y_2) = P(X < x_1, Y < y_2)$ (Now subtracting the area $X < x_1$)
 - We have "double subtracted" the area $\{X < x_1, Y < y_1\}$, so we add it back.

	y			
\boldsymbol{x}	0	1	2	3
0	$\frac{1}{8}$	$\frac{2}{8}$	1/8	0
1	Ŏ	$\frac{1}{8}$	8 2 8	$\frac{1}{8}$

Table 1: Frequency table for X and Y, flipping a fair coin three times.

$$P((X,Y) \in A) = F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1).$$

- The definition also applies to more than two random variables.
- Let X_1, \ldots, X_n be jointly distributed random variables defined on the same sample space. Then

$$F(x_1, x_2, \dots, x_n) = P(X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n).$$

• Like the univariate case, we can also define the pmf and pdf of jointly distributed random variables as well.

2 Discrete Random Variables

Discrete Random Variables

Definition: Joint pmf

Let X and Y be discrete random variables define on the same sample space, and take on values x_1, x_2, \ldots and y_1, y_2, \ldots , respectively. The *joint pmf* (or joint frequency function), is

$$p(x_i, y_i) = P(X = x_i, Y = y_i).$$

- For discrete RVs, it's often useful to describe the joint pmf as a frequency table.
- Suppose a fair coin is tossed 3 times. Let X denote the number of heads on the first toss, and Y the total number of heads.
- The sample space is

$$\Omega = \{hhh, hht, hth, thh, htt, tht, tth, ttt\}.$$

- The joint pmf can be expressed as the frequency table below (Table 1).
- Note that the probabilities in Table 1 sum to one.
- Using the probability laws we have already learned, we can calculate marginal probabilities.

$$p_Y(0) = P(Y = 0)$$

$$= P(Y = 0, X = 0) + P(Y = 0, X = 1)$$

$$= \frac{1}{8} + 0 = \frac{1}{8}$$

$$p_Y(1) = P(Y = 1)$$

$$= P(Y = 1, X = 0) + P(Y = 1, X = 1)$$

$$= \frac{2}{8} + \frac{1}{8} = \frac{3}{8}.$$

- \bullet In general, to find the frequency function for Y and X, we just need to sum the appropriate columns or rows, respectively.
- $p_X(x) = \sum_i P(x, y_i)$ and $p_Y(y) = \sum_j P(x_j, y)$.
- The case with multiple random variables is similar:

$$p_{X_i}(x_i) = \sum_{x_j: j \neq i} p(x_1, x_2, \dots, x_n).$$

• We can also get marginal frequencies for more than one variable:

$$p_{X_i X_j}(x_i, x_j) = \sum_{x_k : k \notin \{i, j\}} p(x_1, x_2, \dots, x_n).$$

Example: Multinomial Distribution

- The *multinomial* distribution is a generalization of the binomial distribution.
- Suppose there are n independent trials, each with r possible outcomes, with probabilities p_1, p_2, \ldots, p_r , respectively.
- Let N_i be the total number of outcomes of type i in the n trials, with $i \in \{1, 2, \dots, r\}$.
- The probability of any particular sequence $(N_1, N_2, \dots, N_r) = (n_1, n_2, \dots, n_r)$ is

$$p_1^{n_1}p_2^{n_2}\cdots p_r^{n_r}$$

• The total number of ways to do this was an identity from Chapter 1 (Proposition 1.3):

$$\binom{n}{n_1 \cdots n_r}$$
.

• Combining this gives us the pmf of the multinomial distribution:

Multinomial Distribution

Let N_1, N_2, \ldots, N_r be random variables that follow a multinomial distribution with parameters N and (p_1, \ldots, p_r) . The joint pmf is

$$p(n_1, n_2, \dots, n_r) = \binom{n}{n_1 \cdots n_r} p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$$

- The marginal distribution for any N_i can be found by summing the joint frequency function over the other n_j .
- While possible, this is a non-trivial algebraic exercise.
- The simple alternative is to reframe the problem: Let N_i be the number of successes in n trials, and $\tilde{N}_i = \sum_{j \neq i} N_j$ be the number of failures. The probability of success is still p_i , leaving the probability of failure to be $1 p_i$.
- Thus, we see that the marginal distribution for N_i must follow a binomial distribution:

$$p_{N_i}(n_i) = \sum_{n_j: j \neq i} \binom{n}{n_1 \cdots n_r} p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$$
$$= \binom{n}{n_i} p_i^{n_i} (1 - p_i)^{n - n_i}$$

3 Continuous Random Variables

Continuous Random Variables

- Let X, Y be continuous random variables with joint cdf F(x, y).
- Their joint density function is a piecewise continuous function of two variables, f(x,y).
- A few properties:
 - $-f(x,y) \ge 0$ for all $(x,y) \in \mathbb{R}$ (or the support).
 - $-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1.$
 - For any "measureable set" $A \subset \mathbb{R}^2$, $P((X,Y) \in A) = \int \int_A f(x,y) dx dy$
 - In particular, $F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$.
- From the fundamental theorem of multivariable calculus, it follows that

$$f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y),$$

wherever the derivative is defined.

Finding joint probabilities

Let X, Y be jointly defined RVs with pdf

$$f(x,y) = \frac{12}{7}(x^2 + xy), \quad 0 \le x \le 1, \quad 0 \le y \le 1.$$

Find P(X > y).

$$P(X > Y) = \frac{12}{7} \int_0^1 \int_0^x (x^2 + xy) dy dx$$
$$= \frac{9}{14}.$$

Marginal cdf

The marginal cdf of X, denoted F_X , is

$$F_X(x) = P(X \le x)$$

$$= P(X \le x \cap Y \in \mathbb{R}) = P(X \le x \cap Y < \infty)$$

$$= \lim_{y \to \infty} F(x, y)$$

$$= \int_{-\infty}^x \int_{-\infty}^\infty f(u, y) dy du.$$

By taking the derivative of both sides of the equation, we get the marginal density of X:

$$f_X(x) = F'_X(x) = \int_{-\infty}^{\infty} f(x, y) dy.$$

Calculating Marginal Densities

Using the same joint distribution as the previous example, find the marginal density of X:

$$f_X(x) = \int_Y f(x, y) dy$$

$$= \frac{12}{7} \int_0^1 (x^2 + xy) dy$$

$$= \frac{12}{7} \left(x^2 y + \frac{x}{2} y^2 \right) \Big|_0^1$$

$$= \frac{12}{7} \left(x^2 + \frac{x}{2} \right)$$

Acknowledgments

- Compiled on August 17, 2025 using R version 4.5.1.
- Licensed under the Creative Commons Attribution-NonCommercial license. © © S Please share and remix non-commercially, mentioning its origin.
- We acknowledge students and instructors for previous versions of this course / slides.

References

Rice JA (2007). Mathematical statistics and data analysis, volume 371. 3 edition. Thomson/Brooks/Cole Belmont, CA. 1