Resilient Distributed Datasets: A Fault Tolerant Abstraction for In-Memory Cluster Computing

By Matei Zahariz, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, Ion Stoica University of California, Berkeley

Best Paper award @ NSDI 2012

PRESENTED BY CAROLYN LIANG
CMPT843

Motivation

•MapReduce greatly simplified "big data" analysis on large, unreliable clusters.

- •But as soon as it got popular, users wanted more:
 - More complex, multi-stage applications (e.g. iterative machine learning & graph processing)
 - More interactive ad-hoc queries

Hadoop MapReduce

Want: in-memory data sharing

Challenge

How to design a distributed memory abstraction that is both **fault-tolerant** and **efficient**?

Challenge

- •Existing storage abstractions have interfaces based on fine-grained updates to mutable state
 - RAMCloud, databases, distributed mem, Piccolo

- •Fault Tolerance:
 - Requires replicating data
 - logs across nodes

Solution: Resilient Distributed Datasets (RDDs)

- •Restricted form of distributed shared memory.
 - Immutable, partitioned collections of records
 - Can only be built through coarse-grained deterministic transformations (map, filter, join, ...)
- •Efficient fault recovery using lineage.
 - Log one operation to apply to many elements
 - Recomputed lost partitions on failure
 - No cost if nothing fails

RDDs – Fault tolerant

Outline

- •Spark Programming Interface
 - Example: Log Mining
 - Example: PageRank

Implementation

Conclusion

Spark Programming Interface

Provides:

- Resilient distributed datasets (RDDs)
- Operations on RDDs:
 - transformations (build new RDDs)
 - actions (compute and output results)
- Control of each RDD's partitioning (layout across nodes) and persistence (storage in RAM, on disk, etc)

RDD on Spark

	$map(f: T \Rightarrow U)$:	$D[T] \Rightarrow RDD[U]$	
	$filter(f: T \Rightarrow Bool)$:	$D[T] \Rightarrow RDD[T]$	
	$flatMap(f: T \Rightarrow Seq[U])$:	$D[T] \Rightarrow RDD[U]$	
	sample(fraction : Float) :	$D[T] \Rightarrow RDD[T]$ (Deterministic same	ipling)
	groupByKey():	$D[(K, V)] \Rightarrow RDD[(K, Seq[V])]$	
	$reduceByKey(f:(V,V) \Rightarrow V)$:	$D[(K, V)] \Rightarrow RDD[(K, V)]$	
Transformations	union():	$D[T], RDD[T]) \Rightarrow RDD[T]$	
	join() :	$D[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, W)]$	(K, (V, W))]
	cogroup() :	$D[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, V)]$	(K, (Seq[V], Seq[W]))]
	crossProduct():	$D[T], RDD[U]) \Rightarrow RDD[(T, U)]$	
	$mapValues(f : V \Rightarrow W)$:	$D[(K, V)] \Rightarrow RDD[(K, W)]$ (Preserv	es partitioning)
	sort(c : Comparator[K]):	$D[(K, V)] \Rightarrow RDD[(K, V)]$	
	partitionBy(p : Partitioner[K]):	$D[(K, V)] \Rightarrow RDD[(K, V)]$	
	count() :	$T] \Rightarrow Long$	
	collect() :	$T] \Rightarrow Seq[T]$	
Actions	$reduce(f:(T,T)\Rightarrow T)$:	$T] \Rightarrow T$	
	lookup(k: K):	(K, V)] \Rightarrow Seq[V] (On hash/range p	partitioned RDDs)
	save(path: String) :	ts RDD to a storage system, e.g., HI	OFS
			

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

Example: Log Mining

Result: full-text search of Wikipedia in <1

sec (vs 20 sec for on-disk data)

Load error messages from a log into memory, then interactively search for various patterns.

```
lines = spark.textFile("hdfs://...")

errors = lines.filter(_.startsWith("ERROR"))

Msg = error.map(_.split("\t')(2))

Msg.persist()

Msg.filter(_.contains("foo")) .count()

Msg.filter(_.contains("foo")) .count()

Foo Msg

lines

lines

lines

lines

filter(_.startsWith("ERROR"))

map(_.split("\t')(2))

Msg

filter(_.contains("foo"))

Foo Msg
```

Reference NSDI 2012

Lineage graph for 3rd query

Fault Recovery

RDDs track the graph of transformations that built them (their lineage) to rebuild lost data

Fault Recovery Results

Example: PageRank

- 1. Start each page with a rank of 1
- 2. On each iteration, update each page's rank to

```
\Sigma_{i \in neighbors} rank_i / |neighbors_i|
```

Optimizing Placement

links & ranks repeatedly joined

-Can co-partition them (e.g. hash both on URL) to avoid shuffles.

-Can also use app knowledge, e.g., hash on DNS name

```
links = links.partitionBy(
          new URLPartitioner()
          )
```

PageRank Performance

Implementation- Job scheduler

- Each stage contains as many narrow dependencies as possible
- boundaries of the stages are the shuffle operations required for wide dependence

Implementation- Memory Management

- -Three ways for storage of persistent RDDs:
 - In-memory storage as desterilized Java Objects
 - In-memory storage as serialized data
 - On-disk storage

- Use LRU eviction policy

Conclusion

•RDDs offer a simple and efficient programming model for a broad range of applications

•Leverage the coarse-grained nature of many parallel algorithms for low-overhead recovery

Questions?

