Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

Level 2 Certificate in Further Mathematics June 2014

Further Mathematics

8360/2

Level 2

Paper 2 Calculator

Friday 20 June 2014 9.00 am to 11.00 am

For this paper you must have:

- a calculator
- mathematical instruments.

Time allowed

• 2 hours

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.
- The use of a calculator is expected but calculators with a facility for symbolic algebra must **not** be used.

Formulae Sheet

Volume of sphere
$$=\frac{4}{3}\pi r^3$$

Surface area of sphere
$$=4\pi r^2$$

Volume of cone
$$=\frac{1}{3}\pi r^2 h$$

Curved surface area of cone
$$=\pi rl$$

In any triangle ABC

Area of triangle =
$$\frac{1}{2}ab \sin C$$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$A \stackrel{C}{\longrightarrow} B$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Trigonometric Identities

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$
 $\sin^2 \theta + \cos^2 \theta \equiv 1$

Answer all questions in the spaces provided.

The graph of y = f(x) for the full domain is shown. The graph consists of a quadratic curve and a straight line.

Complete the boxes to describe $\mathbf{f}(x)$.

$$-2 \leqslant x \leqslant 2$$

$$2 < x \le \boxed{\zeta}$$

[3 marks]

Turn over for the next question

The equation of line AB is y = 12 - 2xThe area of triangle OCA is 24 square units.

The area of triangle OCA is 24 square units.

The area of triangle OCA is 24 square units.

Work out the coordinates of <i>C</i> .	25	[5 marks]
Answer ()	

R, S and T are on the circumference of a circle, centre O. 3

Not drawn accurately

[1 mark]

3 (a)	Give a reason why angle $OTS = 3$
-------	-----------------------------------

	7,	07=05	[1 mark]
		to issocially	
Work out the value of x .	7	5x=2(xc+)6	[3 marks]

Turn over for the next question

Turn over ▶

9

3 (b)

 $x^{2}(x-2)$ 4 (a) Expand

[2 marks]

 $y = x^2(x - 2)$ A curve has equation 4 (b)

Work out the gradient of the curve at the point (3). dy = 322 -9x

Answer

Line *L* is the tangent to the curve $y = x^2(x-2)$ at the point (3, 9). 4 (c)

$$y = x^2(x - 2)$$

Work out the equation of L. Give your answer in the form y = mx + c

$$y = mx + c$$

[2 marks]

n-15	y= 15x +c	
	9= 9516	
	د 36	

Answer $\int_{-\infty}^{\infty} (5 \times -34)$

5 Solve
$$\frac{4c+3}{2} + \frac{c-8}{5} = 1$$

[4 marks]

$$5(4c+3) + c-8 = 5$$

$$5(4c+3) + 2(c+3) = 10$$

$$20c+15+2c-16=10$$

$$22c = 11$$

$$c = 0.5$$

Turn over for the next question

6 Two circles, each with centre *O*, are shown. The equations of the circles are

Work out the perimeter of the shaded section <i>ABCD</i> . [5 marks]
56.0

7 (a) Simplify $\sqrt{x^5 \times x^9}$

Give your answer in the form x^p where p is an integer.

[2 marks]

$$= \int_{x}^{19} x^{19}$$

$$= (x^{19})^{1/2} = x^{19}$$

$$= x^{2}$$

$$= x^{2}$$

? X Answer

7 (b) Solve $y^{-3} = 125$

y =

Turn over for the next question

4 marks]

$$\mathbf{M} = \begin{pmatrix} -2 & -1 \\ 3 & 1 \end{pmatrix}$$

Show that $\mathbf{M}^3 = \mathbf{I}$

$$= \left(\frac{3}{3}\right)\left(\frac{3}{3}\right)\left(\frac{3}{3}\right)\left(\frac{3}{3}\right)$$

9

AB is parallel to CD.

Is *EF* parallel to *CD*? You **must** show your working.

 143+3	,2 = 175	7	180.	Not low	Wel.	
 					•••••	
 					•••••	

Turn over for the next question

Turn over ▶

10 The unit square *OABC* has vertices

$$O(0, 0)$$
 $A(1, 0)$ $B(1, 1)$ $C(0, 1)$

10 (a) OABC is mapped to OA'B'C' under transformation matrix **M**.

Work out matrix M.

[2 marks]

nswer

10 (b) OABC is mapped to OA''B''C'' under transformation matrix $\begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix}$

Draw **and** label OA''B''C'' on the diagram below.

y=-x pult by [3 marks]

Turn over for the next question

Turn over ▶

[3 marks]

$$-\frac{8c^{7}}{406} \times \frac{5d^{3}}{7}$$

$$= \frac{8c^{2} \times 5d^{3}}{(3)^{6} \times 6c^{2}}$$

$$= \frac{90c^{2}d^{3}}{90c^{2}d^{3}} = \frac{4c^{5}}{9d^{3}}$$

Write as a single fraction

11 (b)

$$\frac{5}{m+1} + \frac{6}{m-4}$$

Answer

Give your answer in its simplest form.

$$5(m-4)+6(m+1)$$

$$= \frac{5m-20+6m+6}{m^2-3m-4}$$

$$=\frac{11_{m}-19}{m^{2}-3m-9}$$

Work out the coordinates of D and E.

Do not use trial and improvement.

You **must** show your working.

(5 marks]

$$x^{2}+y^{2}=20 \qquad 4x^{2}=20-3c^{2}$$

$$2^{2}+4^{2}=416=20 \qquad 5x^{2}-20=0$$

$$-2^{2}+-4^{2}=416=20 \qquad (5x+10)(3c-2)=0$$

x= 2 -2
پوکر پروم - ۶
<i>J</i> , , , , , , , , , , , , , , , , , , ,

13 Here are five graphs.

For each of the following statements, decide which graph is being described. Circle your answer each time.

13 (a) The rate of change of y with respect to x is always negative.

A

В

D

E

13 (b) The rate of change of y with respect to x is always zero.

A

В

C

E

13 (c) As x increases, the rate of change of y with respect to x decreases.

В

C

D

E

Turn over for the next question

Turn over ▶

14 Rearrange

$$x = \frac{2w + 1}{5 - 3w}$$

to make \boldsymbol{w} the subject.

[4 marks]

Answer

15 (a) The *n*th term of a sequence is $n^2 + 12n + 27$

By factorising, or otherwise, show that the 20th term can be written as the product of two prime numbers.

n=20 ≥ 20+ 12×20×27 = 667 -23×29

2 marks

15 (b) The *n*th term of a different sequence is $n^2 - 6n + 14$

By completing the square, or otherwise, show that every term is positive.

[3 marks]

ly z 2n-6 MIN ⇒ 2n-6=0 dx 2n=3

12-61+14, 1=3 => 5

Min Point is possitive so all tony positive.

+ is partire quadratie.

Turn over for the next question

16 (a) Simplify

$$\frac{(a-2)^2}{a-2}$$

Answer

16 (b) Here is a sketch of the curve $y = (x-2)^2$

- The curve touches the *x*-axis at *B* and intersects the *y*-axis at *C*.
- Angle ABC is 90°.
- The curve passes through $A(a, (a-2)^2)$

$$BA = y^{2} = \frac{\alpha}{2} - 1$$

$$(\alpha - 2)^{2} = \frac{\alpha}{2} - 1$$

$$a^{2} - 9a + 9 = \frac{\alpha}{2} - 1$$

$$2a^{2} - 8a + 8 = a - 2$$

$$2a^{2} - 7a + 10 = 0$$

$$(2a - 5)(a - 2)$$

Work out the value of a .	T [5 marks]
Answer	

Turn over for the next question

17 (a)	Factorise fully $12c^2d - 9d^2$ $3d(7^2 - 3d)$ [2' marks]
	Answer
17 (b)	Factorise fully $(w+4)^3 - (w+4)^2(w+1)$ =\\[\begin{align*} 3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Answer

18 ABCDEFGH is a cuboid.

Work out the angle between EC and ABCD.

 $\sin \theta = \frac{Q}{H}$ $\theta = \sin^{-1}\left(\frac{7}{5\log q}\right)$

[3 marks]

=23.86°

23.5

Answer......degrees

Turn over ▶

On this diagram all lengths are given in centimetres. 19 A cylinder and cone are joined together to make a solid.

The cylinder has radius r and height (r + 5)

The cone has radius r and slant height $\frac{9r}{2}$

19 (a)

Show that the **total** surface area of the solid, in cm², is $\frac{5\pi r}{2}(3r+4)$ $CSA_{C_0} = \pi \Gamma \left(-\frac{q_{\Gamma}}{2} \Gamma \pi \right) = \frac{q_{\Gamma}^2 \pi}{2}$ $CSA_{C_0} = \pi dI = q_{\Gamma}(r_45)\pi \cdot (q_{\Gamma} + q_5)\pi \Gamma$

Pr + (9r,48) ar

= 92T+ 1813+ 90M

[4 marks]

19 (h)	The total surface area of the solid i	$s.1200\pi \text{ cm}^2$
ו פו	N)	The total surface area of the solid i	3 120011 0111

[5 marks]

2

 $r = 158\frac{2}{3}$ cm N0! - 12

Answer

Turn over for the next question

Turn over ▶

The diagram shows a right-angled triangle.

Not drawn accurately

Prove algebraically the $\left(8_{x-4}\right)^2 = \left(6_{x-4}\right)^2$	$\begin{cases} x : y = 2 : 3 \\ x : y = 2 : 3 \end{cases}$
69x - 16xy + y 27x2 - 18x4 = 0	= 36x2 + x21/2y+y2

[6 marks]

27x	2_	18	хy

2	7 _x	-	18 0
	 3⊁=	 }	<i>ا</i> ر

•					•		•	×	۔		·				:		
•	•	•	•	•	•								•	•		•	

•••••	

21

Solve $16 \sin^2 x = 1$

for

 $0^{\circ} \leqslant x \leqslant 270^{\circ}$

[5 marks]

ذ ز ز

27

Answer

Turn over for the next question

22	The curve	y = f(x)	has	$\frac{\mathrm{d}y}{\mathrm{d}x} = kx(x-3)^3$	where k is a negative
	constant			uλ	

There is a stationary point at x = 3

Determine the <u>nature</u> of this stationary point.

You must show your working.

$$\lim_{x \to \infty} \frac{3}{x} = 9x^2 + 27x - 27$$

$$\lim_{x \to \infty} \frac{3}{x} = 9x^3 + 27kx^2 - 27kx$$
[3 marks]

d29-4Kx3 - 27K	x2 59xx -27k		
doc			
all t=-1	k = -100	/	

	7	•
χ)	,

COC 1		
\mathcal{L}	0	

MN

END OF QUESTIONS

Copyright © 2014 AQA and its licensors. All rights reserved.