Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение

высшего образования

Национальный исследовательский университет ИТМО

Факультет Систем Управления и Робототехники

Лабораторная работа №2 по курсу «Прикладная теория информации»

«Помехозащитное кодирование»

Выполнили: Московский К.А.

Алексеева Ю.В.

Группа: R34362.

Проверил: Краснов А.Ю.

1 Цель работы

- 1) Сформировать базовые параметры помехозащищенного кода (ПЗК) по исходным данным
- 2) Сформировать образующую и проверочную матрицы ПЗК с использованием аналитических проверочных равенств
- 3) Сформировать образующую и проверочную матрицы ПЗК с использованием аппарата нуль-пространств
- 4) Сформировать образующую и проверочную матрицы ПЗК с полной блоковой систематикой

2 Условие

- ullet Объем массива сообщений: $V_{\mathtt{n}}=100$
- Вероятности искажений в КС: $p_{01} = 9 \times 10^{-5}, p_{10} = 3 \times 10^{-4}$
- ullet Допустимая вероятность ложного приёма: $P_{\mathrm{доп}} = 10^{-10}$

3 Ход работы

3.1 Формирование базовых параметров ПЗК по исходным параметрам

• Вероятность искажений в КС:

$$p = max\{p_{01} = 9 \times 10^{-5}, p_{10} = 3 \times 10^{-4}\} = 3 \times 10^{-4}$$

• Число информационных разрядов:

$$k = \min_{k} arg\{2^k \ge 100\} = 7$$

ullet Число проверочных разрядов при s=1:

$$m = \min_{m} arg\{N_c = 2^m - 1 \ge N_{\xi} = \sum_{i=1}^{1} C_n^i = n = 7 + m\} = 4$$

Проверим выполнения условия для вероятности ошибки при передаче информации:

$$P_{\text{om}} = \sum_{i=s+1}^{n} \left(C_n^i \times p^i \times (1-p)^{n-i} \right) =$$

$$= \sum_{i=s+1}^{11} \left(C_{11}^2 \times (3 \times 10^{-4})^2 \times (1-3 \times 10^{-4})^9 \right) = \dots$$

$$\dots = 4.941 \times 10^{-6} > P_{\text{non}} = 10^{-10}$$

Так как вероятность ошибки превышает допустимую, увеличим s на единицу.

• Число проверочных разрядов при s=2:

$$m = \min_{m} \arg\{N_c = 2^m - 1 \ge N_{\xi} = \sum_{i=1}^{2} C_n^i =$$

$$= n + \frac{(n-1) \times n}{2} = m + 7 + \frac{(m+6) \times (m+7)}{2} \} = 7$$

$$P_{\text{om}} = \sum_{i=s+1}^{N} \left(C_n^i \times p^i \times (1-p)^{n-i} \right) =$$

$$= \sum_{i=s+1}^{14} \left(C_{14}^3 \times (3 \times 10^{-4})^3 \times (1-3 \times 10^{-4})^{11} \right) = \dots$$

$$\dots = 9.8 \times 10^{-9} > P_{\text{non}} = 10^{-10}$$

Так как вероятность ошибки превышает допустимую, увеличим s на единицу.

• Число проверочных разрядов при s=3:

$$m = \min_{m} \arg\{N_c = 2^m - 1 \ge N_{\xi} = \sum_{i=1}^{3} C_n^i =$$

$$= n + \frac{(n-1) \times n}{2} + \frac{(n-1) \times (n-2) \times n}{6} =$$

$$= m + 7 + \frac{(m+6) \times (m+7)}{2} + \frac{(m+6) \times (m+5) \times (m+7)}{6} \} = 10$$

$$P_{\text{ош}} = \sum_{i=s+1}^{n} \left(C_n^i \times p^i \times (1-p)^{n-i} \right) =$$

$$= \sum_{i=s+1}^{17} \left(C_{17}^4 \times (3 \times 10^{-4})^4 \times (1-3 \times 10^{-4})^{13} \right) = \dots$$

$$\dots = 1.92 \times 10^{-11} < P_{\text{доп}} = 10^{-10}$$

Так как вероятность ошибки ниже допустимой, искомы формат ПЗК имеет вид (17,7)

3.2 Формирование образующих и проверочных матриц ПЗК с использованием аналитических проверочных равенст

Составим таблицу кодировок векторов-строк однократных ошибок ξ_j векторамистроками синдромов E_j , начиная с ошибки в старшем разряде ξ_n и заканчивая ошибкой в младшем разряде ξ_1 (Таблица 1).

Составленные синдромы ошибок построчно составляют проверочную матрицу Н, которая в транспонированном виде имеет вид:

Таблица 1: Таблица кодировок однократных ошибок

	Вектор - строка ошибок		Be	ктор	стро	ка си	тндро	Вектор строка синдрома ошибки	шибк	И	
		E_{i10}	E_{i9}	\mathbb{E}_{i8}	\mathbb{E}_{i7}	\mathbf{E}_{i6}	\mathbf{E}_{i5}	E_{i4}	E_{i3}	\mathbb{E}_{i2}	\mathbf{E}_{i1}
<i>§</i> 17	$\xi_{17} \mid [1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\$	\vdash		0		0	0	0	0	0	0
\$16	$[0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\$	0	0	0	0	0	0	0	0	\vdash	0
\$15	$[0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]$	0	0	0	0	0	0	0	-	0	0
ξ ₁₄		0	0	0	0	0	0	\vdash	0	0	0
ξ_{13}	1	0	0	0	0	0	-	0	0	0	0
ξ12	$[0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]$	0	0	0	0	\leftarrow	0	0	0	0	0
ξ ₁₁	$[0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]$	0	0	0	\vdash	0	0	0	0	0	0
ξ_{10}	$[0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]$	0	0	\vdash	0	0	0	0	0	0	0
ξ_9	$[0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0]$	0	\vdash	0	0	0	0	0	0	0	0
ξ_8	$[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0]$	\vdash	0	0	0	0	0	0	0	0	0
ξ2	$[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0]$	0	0	0	0	0	0	0	0	0	\vdash
ξ_{6}	$[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0]$	0	0	0	0	0	0	\vdash	Н	0	0
ξ_2	$[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0]$	0	0	0	0	0		\vdash	0	\vdash	0
ξ_4	$[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0$	0	1	0	0	1	1	0	0	0	0
ξ3	$[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0$	0	0	1	1	П	0	0	0	0	0
ξ_2	$[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0$	0	0	0	\vdash	0	0	0	0	0	\vdash
ξ_1	ξ_1 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	П	1	1	0	0	0	0	\vdash	П	П

Составим теперь аналитические выражения для вычисления каждого разряда синдрома ошибки:

$$E_{10} = f_{17} + f_8 + f_1$$

$$E_9 = f_9 + f_4 + f_1$$

$$E_8 = f_{10} + f_3 + f_1$$

$$E_7 = f_{11} + f_3 + f_2$$

$$E_6 = f_{12} + f_4 + f_3$$

$$E_5 = f_{13} + f_5 + f_4$$

$$E_4 = f_{14} + f_6 + f_5$$

$$E_3 = f_{15} + f_6 + f_1$$

$$E_2 = f_{16} + f_5 + f_1$$

$$E_1 = f_7 + f_2 + f_1$$

Далее сформируем аналитические выражения для помехозащитного кодирования, характеризующемся выполнением условий $\xi=0, f=y, E=0$:

$$0 = y_{17} + y_8 + y_1$$

$$0 = y_9 + y_4 + y_1$$

$$0 = y_{10} + y_3 + y_1$$

$$0 = y_{11} + y_3 + y_2$$

$$0 = y_{12} + y_4 + y_3$$

$$0 = y_{13} + y_5 + y_4$$

$$0 = y_{14} + y_6 + y_5$$

$$0 = y_{15} + y_6 + y_1$$

$$0 = y_{16} + y_5 + y_1$$

$$0 = y_7 + y_2 + y_1$$

Предположим, что $y_1 = a_1, y_2 = a_2, y_3 = a_3, y_4 = a_4, y_5 = a_5, y_6 = a_6, y_8 = a_7.$

Тогда:

$$y_7 = a_2 + a_1$$

$$y_9 = a_4 + a_1$$

$$y_{10} = a_3 + a_1$$

$$y_{11} = a_3 + a_2$$

$$y_{12} = a_4 + a_3$$

$$y_{13} = a_5 + a_4$$

$$y_{14} = a_6 + a_5$$

$$y_{15} = a_6 + a_1$$

$$y_{16} = a_5 + a_1$$

$$y_{17} = a_7 + a_1$$

Наконец, на основании y = aG сформируем образующую матрицу G:

Путем проверки выполнения условия GH=0 можно убедиться, что образующая и проверочная матрицы сформированного (17, 7)-ПЗК составлены корректно.

3.3 Формирование образующих и проверочных матриц ПЗК с использованием аппарата нуль-пространств

Этот способ формирования матриц G и H опирается утверждение о том, что столбцы транспонированной образующей матрицы G^T принадлежат ядру транспонированной проверочной матрицы H^T кода, при этом выполняется соотношение:

$$G_j^T \in kerH^T \vee H^TG_j^T = 0$$

Составим таблицу кодировок векторов-строк однократных ошибок ξ_j векторамистроками синдромов E_j , начиная с ошибки в старшем разряде ξ_n и заканчивая ошибкой в младшем разряде ξ_1 (Таблица 1).

Данные синдромы ошибок построчно составляют проверочную матрицу H, транспонируя которую получим:

Сформируем транспонированную образующую матрицу:

Построим образующую матрицу ПЗК, транспонировав матрицу полученную на предыдушем шаге:

Примем полученную матрицу G за базовую с тем, чтобы суммированием и перестановкой строк получить структуру образующей матрицы ПЗК с желаемыми пользовательскими свойствами.

3.4 Формирование образующих и проверочных матрицы ПЗК с полной блоковой систематикой

Для того, чтобы ПЗК, порождаемый образующей матрицей G, с проверочной матрицей H обладал полной блоковой систематикой, его матрицы должны быть сформированы в виде:

$$G = \begin{bmatrix} I_k & \widetilde{G} \end{bmatrix}, H = \begin{bmatrix} \widetilde{G} \\ I_m \end{bmatrix}$$

Таблица 2: Таблица кодировок однократных ошибок

	Вектор - строка ошибок		Be	ктор	стро	ка си	тндрс	Ma 0]	Вектор строка синдрома ошибки	И	
		\mathbf{E}_{i10}	\mathbf{E}_{i9}	E_{i8}	\mathbb{E}_{i7}	\mathbf{E}_{i6}	\mathbf{E}_{i5}	E_{i4}	\mathbf{E}_{i3}	\mathbf{E}_{i2}	\mathbf{E}_{i1}
ξ17	$\xi_{17} \mid [1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\$	0	0	0	0	0	0	0	-	0	
ξ_{16}		0	0	0	0	0	0	\leftarrow	0	0	→
ξ_{15}	1	0	0	0	0	0		0	0	0	-
ξ_{14}	l	0	0	0	0	-	0	0	0	0	\vdash
ξ_{13}		0	0	0	1	0	0	0	0	0	\vdash
ξ_{12}		0	0	\leftarrow	0	0	0	0	0	0	\leftarrow
ξ11	$[0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]$	0	\vdash	0	0	0	0	0	0	0	\vdash
ξ_{10}	$[0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]$	\leftarrow	0	0	0	0	0	0	0	0	0
ξ_9		0	\vdash	0	0	0	0	0	0	0	0
ξ_8		0	0	\vdash	0	0	0	0	0	0	0
ξ2		0	0	0	1	0	0	0	0	0	0
ξ_6	$[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0]$	0	0	0	0	Τ	0	0	0	0	0
ξ_5	$[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0]$	0	0	0	0	0	1	0	0	0	0
ξ_4	$[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0]$	0	0	0	0	0	0	1	0	0	0
ξ3		0	0	0	0	0	0	0	1	0	0
ξ_2		0	0	0	0	0	0	0	0	П	0
ξ_1	$[0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$	0	0	0	0	0	0	0	0	0	\Box

Сформируем теперь для полученного сформированного (17, 10)-ПЗК матрицы, придающие ему полную блоковую систематику. Образующая матрица ПЗК с полной блоковой систематикой примет вид:

Точно так же получим проверочную матрицу ПЗК с полной блоковой систематикой:

4 Вывод по работе

В ходе выполнения данной лабораторной работы были сформированы базовые параметры помехозащищенного кода по исходным данным. Код имеет вид (17, 7). Так же были рассмотрены 3 способа фомирования образующей и проверочной матрицы. Во всех случаях необходимое условие для образования ПЗК выполнялось.