Electronics and Communication Systems

Electronics Systems

Luca Fanucci

Dipartimento di Ingegneria dell'Informazione

Via Caruso 16 - I-56122 - Pisa - Italy

Phone: +39 050 2217 668

Fax: +39 050 2217 522

Mobile: +39 347 5013837

Email: luca.fanucci@unipi.it

Outline

- **♦ CMOS Logic**
 - Static Logic (hard node)
 - Dynamic Logic (soft node)
- ♦ Example: NAND4 Area-Speed trade-off

Hard-Node (Static Logic)

- Have positive feedback (regeneration) with an internal connection between the output and the input. Storage is performed through circuit topology
- ♦ Preserve state as long as the power is on
- ♦ Useful when updates are infrequent

Soft Node (Dynamic Logic)

- ♦ Store state on parasitic capacitors
- ♦ Only hold state for short periods of time
- ♦ Require periodic refresh
- Usually simpler, so higher speed and lower power

NAND

Truth Table

A	В	U
0	0	1
0	1	1
1	0	1
1	1	0

Logic Symbol

CMOS Implementation

♦ Electric Circuit

Dynamic A $t_{pHL} \propto \frac{KC}{\beta_n} \frac{1}{\mathrm{V_{DD}} - V_{Tn}}$

Dynamic Analysis

Dynamic Analysis

$$t_{pLH} \propto \frac{KC}{\beta_{eqp}} = \frac{KC}{\beta_{p}}$$

$$t_{pHL} \propto \frac{KC}{\beta_{eqn}} = \frac{2KC}{\beta_n}$$

Dynamic Analysis

$$t_{pLH} \propto \frac{KC}{\beta_{eqp}} = \frac{KC}{\beta_{p}}$$

$$t_{pHL} \propto \frac{KC}{\beta_{eqn}} = \frac{2KC}{\beta_n}$$

 \Rightarrow tp_{HL} = tp_{LH} in the worst case

$$\beta_p = \frac{\beta_n}{2} \to \beta_n = 2\beta_p \to \mu_n \frac{W_n}{L_n} = 2\mu_p \frac{W_p}{L_p}$$

$$\mu_p = \frac{\mu_n}{2} \qquad L_n = L_p = L_{\min} \qquad \longrightarrow \qquad W_n = W_p$$

Stick Diagram

♦ Different topological solutions

Complementary CMOS

- **♦ Static Logic**
- ♦ No Threshold Drop
- ♦ Maximum Noise Margin
- ♦ No Static Power Cons. (VDD-GND)
- ♦ Possible TR sizing for tp_{HL}=tp_{LH}
- ♦ Flexible Layout
- → Transistor Complexity for a logic function with N input: 2 N MOS

PDN and PUN are dual

Dynamic Logic

Dynamic Logic

Dynamic Logic

PRO N MOS + 2

Reduced C_{in}

CONTRA
Output is valid only for
CK=1 (fraction of)
input have to be stable
when CK=1

Cascaded of Dynamic Logic

♦ Descharge problem CK X PDN₁ PDN₂ CK

Forme d'Onda

♦ Y state is not defined

Domino Logic

♦ Note

-Descharge is due to the precharge to "1"

♦ Solution

-precharge to "0"

Domino Logic Scheme

Note on Domino Logic

- ♦ The name of Domino Logic derived from the fact that output "fall" one after the other as in the "DOMINO" game !!
- ♦ Negative Function cannot be implemented

Domino P-N

Domino P-N

♦A DOMINO N gate can drive:

NAND 4 comparison

- **♦ Complementary CMOS**
- ♦ Dynamic Logic

NAND 4 - Complementary CMOS

NAND 4 - Dynamic Logic

NAND 4 - Comparison

Style	# Transistor	Area (µm²)	Propagation Delay (ns)
Complementary	8	533	0.61
Dynamic	6	212	0.37

NAND 4 - Comparison

$$t_{pHL} \propto \frac{KC}{\beta_n} \frac{1}{V_{DD} - V_{Tn}}$$

