Assignment 1 Dimensional Data Modeling (Solution)

Question 1: Discussed in Lab

Question 2: Discussed in Lab

Question 3. What will be your design decision:

i) If two departments of the same business use different attributes of the same dimension i.e. both the departments have different definition of the dimension.

Answer: We can create two tables for the same dimension, each table conforming to the requirements of the respective department i.e. each table will have attributes that are relevant to the respective department.

(ii) If a dimension is used only by one fact table, will you store it directly into the fact table or create a separate dimension table for it?

Answer: We will not store the dimension table directly into the fact table:

- (i) if the dimension has a lot of descriptive attributes or
- (ii) if the fact table is too large
- (iii) Otherwise, we can store the dimension table directly into the fact table to eliminate the cost of joining at run time.

Note: One of the above reasons or any other valid reason will result in full credit.

Question 4. Suppose there are 3000 products sold by the store, 4 brands and each brand has 500 products each, there are 10 store locations in the country, also assume there are at least one sale per product per store per week. Estimate the number of rows of fact table retrieved and summarized for following types of queries:

Answer:

of Rows retrieved = number of rows read after applying the given filter e.g. in Query 2, following ten rows will be retrieved after applying the given filter.

Product 1	Store 1	Week1
Product 1	Store 2	Week1
Product 1	Store 3	Week1
Product 1	Store 4	Week1
Product 1	Store 5	Week1
Product 1	Store 6	Week1
Product 1	Store 7	Week1
Product 1	Store 8	Week1
Product 1	Store 9	Week1
Product 1	Store 10	Week1

These rows will be aggregated to give product 1's sales across all the ten stores in 1^{st} week. So, the number of rows retrieved in this case is 10.

	Product	Store	Time	# of Rows retrieved
Query 1	1 product	1 store	1 week	1*1*1=1
Query 2	1 product	All stores	1 week	1*10*1=10
Query 3	1 brand	1 store	1 week	500*1*1=500
Query 4	1 brand	All stores	1 year	500*10*52(Weeks per Year)=2,60,000
Query 5	All brands	All stores	1 year	Solution1: With current Statement and assuming 1000 products have no brand 2000*10*52=10,40 ,000 Solution2:Products = 3000,

		Brands=6 3000*10*52=15,60 ,000 Solution3:Produc ts =2000, Brands=4 2,000*10*52= 10,40,000
--	--	---

Note: Depending upon the number of products and brands you have assumed, your solution will be marked correct. Please solve the questions in your exam according to the given statement only. These assumptions are only allowed for the sake of assignment.

For which of the above gueries Aggregate fact tables should be used and why?

Answer: Aggregate fact tables should be used for queries 3, 4 and 5. Otherwise, we need to retrieve a lot of rows and aggregate them at run time.

Also draw the appropriate dimensional model showing aggregate fact tables.

Dimensional Modeling discussed in detail in lab

Suppose you created an aggregate fact table for the third query... Then how many rows you need to retrieve for Queries 3, 4 and 5?

Query 3	1 brand	1 store	1 week	1*1*1=1
Query 4	1 brand	All stores	1 year	1*10*52=520
Query 5	All brands	All stores	1 year	Number of brands * Number of Stores * Number of weeks per year =4 * 10 * 52 =2080 Other Assumptions for number of products and brands will be marked accordingly.

Question 5. You are required to design a Dimensional Model in the way that it fulfills the requirement for the following system.

(Note: This Question and its solution is taken from a previous year assignment, the solution is not mine.

If you feel there are some discrepancies/mistakes in the solution, feel free to post at Piazza.

Grocery System (POS)

The following gueries shall be generated through your design:

- Total sales of a particular product from all stores in the last quarter
 Total sales by product by store by month
- 3. Yearly profit generated by stores in the north region
- 4. How customer deviates from store to store with particular products
- 5. When I promote one thing how does it affect the other
- 6. Check if more Products are sold on 1st 10 days and 20th to 25th date of the month than the whole month.
- 7. Average daily sales (in dollars) of product categories.
- 8. The total number of customers purchasing a particular product.
- 9. The total number of customers visiting a particular store in a month.
- 10. Count how many people buy with coupon.

Design Requirements

Here is the eight points of the complete dimensional modeling design:

- 1. The processes, and hence the identity of the fact tables
- 2. The grain of each fact table.

- 3. The dimensions of each fact table
- 4. The facts, including pre-calculated facts
- 5. The dimension attributes with complete descriptions and proper terminology
- 6. How to track slowly changing dimensions
- 7. The historical duration of the database
- 8. The urgency with which the data is extracted and loaded into the data warehouse.

Grocery System (POS):

1. The processes, and hence the identity of the fact tables

Following are the major processes in the Grocery System Data ware:

Sales, inventories, Cost, revenue, Buyer (Customer) etc

Identities of Fact Tables:

Base Fact Table:

- i) time key
- ii) Product key
- iii) Store key

Quarterly Agg Fact Table:

- i) Product key
- ii) Quarter key
- iii) Store_key

Monthly Aggregate Fact Table:

- i) Month_key
- ii) Product key
- iii) Store_key

Yearly Agg Fact Table:

- i) Product Key
- ii) Store Key
- iii) Yearly key
- iv) Region_key

Customer Fact Table:

- i) Customer key
- ii) Product key
- iii) Store key
- iv) Promo key
- v) Time key

2. The grain of each fact table:

The grain of a fact table is the least level of each dimension.

Base Fact Table:

The grain level is the fact measurements by Day by Store and By Product Wise

Quarterly Agg Fact Table:

The grain level is the sales by product by quarter by All store wise.

Monthly Aggregate Fact Table:

The grain of this table is Total sales by product by store by month

Yearly Agg Fact Table:

The gain level of this fact table is sales by year by product by Region wise.

Customer Fact Table:

The grain level of this fact table is by day ,by store by customer by promotion wise.

3. The dimensions of each fact table:

Base Fact Table:

Time, Product, Store

Quarterly Agg Fact Table:

Quarter, Product, Store

Yearly Agg Fact Table:

Year, Product, Region

Customer Fact Table:

Time, Product, Store, Promotion, Customer

4. The facts, including pre-calculated facts:

The major facts and pre calculated facts are

- i) Quantity_sold
- ii) Dollar profit
- iii) Cost
- iv) Average_sales
- v) Quartely_qauntiy_sold
- vi) Quartely_cost
- vii) Yearly_profit
- viii) Customer Count
- ix) Product Count
- x) Product Quantity_per Customer

5. The dimension attributes with complete descriptions and proper terminology:

i) Time Dimension

Time_key It is the primary key of the time Dimension

Day Is keeps the day info

Week_key It stores the primary key of the week dimension

Day_one_to_ten It keeps dates from 1st to 10th

Day_twenty_to_twentyfive It keeps dates from 20 to 25

ii) Product Dimension

Product_key it is the primary key of the product dimension SKU_number It is the SKU number of the production SKU_Desc It is the Description of the SKU Package_size It keeps the size of package of the product. Brand It stores the Brand of the product Subcategory IT stores the subcategory of the product. Category Department Diet It keeps the diet info of the product. Weight type It is the weight of the product

iii) Store Dimension

Cases per pallet It keeps cases per pallet.

Store_number it stores the store number of the store
Store_key It is the primary key of the store dimension
Store_address it keeps the address of the Store
City

Country

State

Zip

Manager

Phone

Fax

Floor_plan_type It stores the current floor plan type of the store

Region_key It stores the Region key of the Region level dimension

iv) Customer Dimension:

Customer key It is the primary key of the customer dimension

Customer SSN It keeps the SSN no of the customer for tracking

Customer_name It keeps the name of the customer

Customer phone no

Customer_region

v) Promotions Dimension

Promotion key It is the primary key of the promotion Dimension

Promotion_name It is the name of the promotion

Price_reduction_type

Ad type It stores the advertisement type of the promotion

Display type It stores the display type of the promotion

Cupon_type It stores the coupon types offered in the promotion

Ad_media_name It stores the media name of the advertisement

Display provider It stores the provider of the displayer.

Prmo_cost It keeps the cost of the promotion

Promo_begin_date It keeps the start date of promotion

Promo end date It keeps the end date of promotion

vi) Quarter Dimension:

Quarter key it is the key of the Quarter Dimension

Quarter

Year_key

vii) Year Dimension

Year_key

Year

viii) Region Dimension

Region_key

Region

ix) Week Dimension

Week_key

Week

Month key

x) Month Dimension

Month_key

Month

Quarter_key

6. How to track slowly changing dimensions:

We will track slowly changing Dimensions by Type TWO approach where we generate a new account record every time a meaniningful account attribute changes.

7. The historical duration of the database:

The historical duration of database is 7 to 8 years approximately however it varies according to the type of Database and under certain requirements and constraints.

8. The urgency with which the data is extracted and loaded into the data warehouse:

The urgency with which the data is extracted and loaded depends upon your assumptions, your answer will be marked correct given your reason is right.