BIBMT1114 Discrete Mathematics

Weekly Exercise 2

- 1. Compute $A \vee B$, $A \wedge B$, $A \odot B$ for the given matrices A and B.
 - a) $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
 - b) $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$
- 2. Tell whether the structure has the closure property with respect to the operation.
 - a) $(sets, \cup, \cap, \overline{})$

complement

b) (integers, +, -, \times , \div)

division

- 3. Give the identity element, if one exists, for each binary operation in the given structure
 - a) (real numbers, +, *, $\sqrt{}$)
 - b) (sets, \cup , \cap , $\bar{}$)
- 4. Let $R = (2 \times 1 \text{ matrices }, \nabla)$, where

$$\begin{bmatrix} x \\ y \end{bmatrix} \nabla \begin{bmatrix} w \\ z \end{bmatrix} = \begin{bmatrix} x+w \\ y+z+1 \end{bmatrix}$$

Determine which of the following properties hold for this structure

- a) Closure
- b) Commutative
- c) Associative
- d) An identity element
- e) An inverse for every element