Week 1

Review and Intro to NMR

1.1 Introduction and Review

- 1/11: We're skipping alcohols and ethers and coming back later because that's what third quarter really focuses on.
 - What you need to worry about is class content if he doesn't mention it, even if it's in the book, we won't be responsible for it on exams.
 - Natural products inspire new drugs.
 - Salicylic acid mediates pain, but it will erode the lining of your stomach.
 - Hoffmann functionalizes the alcohol to an ester, removing the negative effects and creating aspirin.
 - Sucrose (table sugar) is glucose plus fructose. Glucose tastes slightly less sweet, and fructose tastes a whole lot sweeter.
 - We now consume 120 pounds of sugar per person per year, different from 20 pounds per person per year in 1976 and 1 pound per person per year in older times.
 - So we have developed artificial sweeteners that cut calories, such as saccharin, aspartame, and sucralose.
 - Sucralose is thermally stable (you can bake with it), has no chloric content, and is made from sugar by protecting some alcohols and replacing others with chlorines.
 - Capsaicin (spiciness) evolved to prevent bugs from biting their host plants.
 - Both capsaicin and resiniferatoxin have the same vanillin group; thus, this group is probably important for reacting with pain receptors.
 - Compactin from mushrooms lowers cholesterol.
 - Zocor and lipitol are derived from it!
 - Taxol (breast cancer treatment) accumulates slowly in rare trees.
 - We can derive from the needles (a renewable resource), however, a compound that is easily functionalized to taxol.
 - It is essential to understand the mechanisms in this course!
 - We won't have to worry much about competing reactivity, but we do need to know how reactivity can change in different situations.
 - Quinine treats malaria.

- Quinine is what makes fizzy water taste bitter.
- In trying to fabricate Quinine, Perkin discovers a compound that dyes fabric purple. Never gets his PhD but makes millions off of this invention. Before, only royals could wear purple (the sole source was mediterranean sea slugs).
- Identify S_N1 by the fact that all chiral information in the reactant will be lost.
- Identify $S_N 2$ by the inversion of stereochemistry.
- We won't worry much about E1 this quarter.
- We'll see a lot of E2 this quarter.
- We'll look into radical and pericyclic (Diels-Alder) reactions this quarter.
- Molecules that may look similar can actually be quite different.
- Color is related to the number of double bonds in a molecule.
- Blue lobsters are blue because they have enough of an enzyme to sequester all of the colorant in the shells of the lobsters.
 - Would you pay more for it because of its rare color? Probably shouldn't because cooking it will still make it red. It won't taste any better.
- Fleming and penicillin.
 - Initially we have no idea what its structure is.
 - It's hard to synthesize something if we have no idea what it is.
 - During WWII, American and Britain embark on a campaign to synthesize penicillin equal in scope to the Manhatten project, but it wasn't successful.
 - Eventually, Dorthy Crowfoot Hodgkin gets its structure with x-ray crystallography, after wrong attempts from R. B. Woodward and Sir Robert Robinson (future Nobel laureates who hated each other).
 - The moldy cantaloupe.
 - In 1955, John Sheehan at MIT comes up with the first chemical reagent capable of synthesizing penicillin's 4-membered ring.
 - But we made too many antibiotics and antibiotic resistance developed.
 - MRSA is only killed by vancomycin, but they're even developing resistance to that.
 - Thinking chemically to get off the pesticide treadmill.
 - We need the sophistication of nature to build molecules more complex than we can build en masse pharmaceutically.
 - As species go extinct, though, we are losing potential weapons.
- X-ray crystallography pinpoints the location of all atoms other than hydrogen in a molecule.
- Line-angle is gonna be big this quarter.
- We will not be tested on IUPAC nomenclature, but we should know it just to be able to communicate.
- Talks about resonance and induction.
- The IR spectroscopic signal of a carbonyl is 1700 cm⁻¹.
- Resonance affects acidity and IR spectroscopy bonds that resonate (have less double bond character) will have lower IR frequencies.
- A lot of reactions are quenched by an H_3O^+ workup just enough to quench, not enough to react.

1.2 Chapter 9: Nuclear Magnetic Resonance and Mass Spectroscopy

From Solomons et al. (2016).

- Nuclear magnetic resonance spectrum: A graph that shows the characteristic energy absorption frequencies and intensities for a sample in a magnetic field. Also known as NMR spectrum.
- The chemical shift of a signal gives important clues about molecular structure.

Type of Proton	Chemical Shift (δ, ppm)	Type of Proton	Chemical Shift (δ, ppm)
1° Alkyl, RCH₃	0.8 – 1.2	Alkyl bromide, RCH ₂ Br	3.4-3.6
2° Alkyl, RCH₂R	1.2 – 1.5	Alkyl chloride, RCH ₂ Cl	3.6-3.8
3° Alkyl, R₃CH	1.4 – 1.8	Vinylic, $R_2C=CH_2$	4.6-5.0
Allylic, $R_2C=CR-CH_3$	1.6 – 1.9	Vinylic, $R_2C=CRH$	5.2-5.7
Ketone, RCOCH₃	2.1 – 2.6	Aromatic, ArH	6.0-8.5
Benzylic, ArCH ₃	2.2 – 2.5	Aldehyde, RCOH	9.5–10.5
Acetylenic, RC≡CH	2.5 – 3.1	Alcohol hydroxyl, ROH	0.5 – 6.0*
Alkyl iodide, RCH ₂ I	3.1 – 3.3	Amino, R-NH ₂	1.0 – 5.0*
Ether, ROCH ₂ R	3.3 – 3.9	Phenolic, ArOH	$4.5 – 7.7^*$
Alcohol, HOCH ₂ R	3.3-4.0	Carboxylic, RCOOH	10–13*

^{*}The chemical shifts of these protons vary in different solvents and with temperature and concentration.

Table 1.1: Approximate proton chemical shifts.

- "In ¹³C NMR spectroscopy, signal area is not relevant in routine analyses" (Solomons et al., 2016, p. 396).
- Coupling: The magnetic effect of nonequivalent hydrogen atoms that are within 2 or 3 bonds of the hydrogens producing the signal that splits individual signals into multiple peaks. Also known as signal splitting, signal multiplicity.
- Vicinal (hydrogens): Hydrogens on adjacent carbons.
- Geminal (hydrogens): Hydrogens bonded to the same carbon.
 - Coupling occurs between geminal hydrogens in chiral/conformationally restricted molecules, specifically diastereotopic hydrogens.
- Interpreting NMR spectra:
 - 1. Count the number of signals in the spectrum to determine how many distinct proton environments there are in the molecule.
 - 2. Use chemical shift tables (such as Table 1.1) to correlate the chemical shifts of the signals with possible structural environments.
 - 3. Determine the relative area of each signal, as compared with the area of other signals, as an indication of the relative number of protons producing the signal.
 - 4. Interpret the splitting pattern for each signal to determine how many hydrogen atoms are present on carbon atoms adjacent to those producing the signal and sketch possible molecular fragments.
 - 5. Join the fragments to make a molecule in a fashion that is consistent with the data.

- The external magnetic field causes the σ (and π , if applicable) electrons in the viscinity of each proton to circulate, producing a small local magnetic field that can serve to either increase or decrease the external magnetic field experienced by the proton.
 - Increasing the effective field causes a larger chemical shift (it takes a higher energy photon/less magnetic field to induce a spin flip).
 - Decreasing the effective field causes a smaller chemical shift (it takes less energy/more magnetic field to induce a spin flip).
- **Shielded** (proton): A proton for which the induced local magnetic field opposes the external magnetic field to a relatively large degree.
- **Deshielded** (proton): A proton for which the induced local magnetic field opposes the external magnetic field to a relatively small degree (or even reinforces the external magnetic field).
 - For example, the π electrons of benzene circulate in such a way that the external magnetic field at the aromatic hydrogens is *augmented*.
- "Chemically equivalent protons are chemical shift equivalent in ¹H NMR spectra" (Solomons et al., 2016, p. 403).
- **Homotopic** (atoms): A set of atoms on some molecule such that replacing different ones with the same group gives the same compound.
 - For example, the six hydrogens of ethane are homotopic since replacing any of them with chlorine (for instance) gives the same compound: chloroethane.
 - Homotopic hydrogens are chemical shift equivalent.
- **Heterotopic** (atoms): A set of atoms on some molecule such that replacing different ones with the same group gives different compounds.
 - For example, in chloroethane, the CH₂ hydrogens are heterotopic to the CH₃ hydrogens since replacing the former yields 1,1-dichloroethane and replacing the latter yields 1,2-dichloroethane.
 - Heterotopic atoms are *not* chemical shift equivalent.
- **Enantiotopic** (atoms): Two atoms on some molecule such that replacing different atoms with the same group gives enantiomers.
 - Example: The CH₂ hydrogens of bromoethane.
 - Enantiotopic atoms are chemical shift equivalent, except possibly when the compound in question is dissolved in a chiral solvent.
- **Diastereotopic** (atoms): Two atoms on some molecule such that replacing different atoms with the same group gives diastereomers.
 - Example: The CH₂ hydrogens of 2-butanol.
 - Diastereotopic atoms are *not* chemical shift equivalent (the asymmetry of the chirality center ensures this), except possibly by coincidence.
- \bullet Coupling constant: The separation in hertz between each peak of a signal. Denoted by J.
 - On the order of 6 8 Hz.
- The reciprocity of coupling constants: The coupling constants of coupled atoms are the same.
 - In more complicated molecules, noting that two signals have the same coupling constant means the protons to which they correspond are likely coupled.

- **Dihedral angle** (between vicinal groups): The angle between viscinal groups as seen on the Newman projection through the bond connecting their parent atoms. Denoted by ϕ .
- Karplus correlation: The dependence of the coupling constant on dihedral angles.
 - Discovered by Martin Karplus of Harvard.
 - Useful for identifying cyclohexane conformations, and thus for determining which conformation is lower energy.
- An NMR spectrometer is a camera with a relatively slow shutter speed, in that it blurs pictures of rapidly occurring molecular processes.
- Examples of rapid processes that occur in organic molecules.
 - Chemical exchanges cause spin decoupling.
 - Consider ethanol.
 - Based on its structure, we'd predict that the signal corresponding to the hydroxyl proton would be a triplet.
 - However, it only appears as a triplet in very pure ethanol, where **chemical exchange** is slower due to the reduction in impurity-assisted chemical exchange catalysis common in normal ethanol.
 - Rapid chemical exchange means that neighboring protons don't have enough time to couple; thus, the hydroxyl proton appears as a singlet in relatively impure ethanol.
 - Occurs in the ¹H NMR spectra of alcohols, amines, and carboxylic acids; the signals of OH and NH protons are normally unsplit and broad.
 - "Protons that undergo rapid chemical exchange...can be easily detected by placing the compound in D₂O. The protons are rapidly replaced by deuterons, and the proton signal disappears from the spectrum" (Solomons et al., 2016, p. 413).
 - Conformational changes.
 - If, for example, we could isolate staggered bromoethane, the CH₃ hydrogens would be split into two signals, as the one anti-periplanar hydrogen is in a different chemical environment from its two geminal neighbors.
 - But we can't, so all three CH₃ hydrogens contribute to one peak.
- Chemical exchange: The swapping of identical atoms between molecules.
- Exchangeable proton: A proton that can engage in rapid chemical exchange.
- We now switch gears to ¹³C NMR spectroscopy.
- Although ¹³C does not occur naturally with nearly the same frequency as ¹²C, it is important for its application to NMR spectroscopy.
- Simplifications from ¹H NMR spectroscopy.
 - Each distinct carbon produces one signal in a ¹³C NMR spectrum.
 - Splitting of ¹³C signals into multiple peaks is not observed in routine ¹³C NMR spectra.
- No (technically just very little) carbon-carbon coupling since coupling only occurs for adjacent carbons and only 1 in 100 carbon atoms is 13 C (1.1% natural abundance).
- Carbon-proton coupling can occur, however, splitting ¹³C signals into multiplets.
- **Broadband proton decoupled** (spectrum): A ¹³C NMR spectrum in which ¹H-¹³C coupling is eliminated by choosing instrumental parameters to decouple the proton-carbon interactions. *Also known as* **BB proton decoupled**.

Type of Proton	Chemical Shift (δ, ppm)
1° Alkyl, RCH₃	0-40
2° Alkyl, RCH₂R	10-50
3° Alkyl, RCHR₂	15–50
Alkyl halide or amine, R_3CX (X = Cl, Br, NR' ₂)	10-65
Alcohol or ether, R_3COR'	50-90
Alkyne, RC≡R′	60-90
Alkene, $R_2C=R'$	100 – 170
Aryl, $C - R$	100-170
Nitrile, RC≡N	120 – 130
Amide, RCONR'2	150 – 180
Carboxylic acid or ester, RCOOR'	160 – 185
Aldehyde or ketone, RCOR'	182 – 215

Table 1.2: Approximate carbon-13 chemical shifts.

- Shielding and deshielding works the same way.
- In addition to the TMS peak, 13 C spectra have a CDCl₃ solvent peak at δ 77.
- **DEPT** ¹³C **NMR spectrum**: A ¹³C NMR spectrum that indicates how many hydrogen atoms are bonded to each carbon, while also providing the chemical shift information contained in a broadband proton-decoupled ¹³C NMR spectrum. *Also known as* **distortionless enhancement by polarization transfer**.