

Gefördert durch:

Time Series Forecasting

1.3 Exploring Time Series Data

Mario Tormo Romero

Design IT. Create Knowledge.

What we'll cover in this video

- Basic Visualization with Line Plots
- Identifying Trends
- Detecting Seasonality
- Recognizing Cycles
- Exploring Autocorrelation

Basic visualization

НРІ

Line plots

- The foundational tool for exploring time series data
- Connects data points in chronological order, revealing how values evolve over time
- Helps quickly identify:
 - Trends
 - Seasonality and cycles
 - Anomalies
- Easy to create and interpret, making it an essential first step before deeper analysis
- Provides context for applying more advanced visualization techniques

Identifying Trends

Rolling Mean & Confidence Intervals

- Trends show the long-term direction in the data (upward, downward, or stable)
- Raw data can be noisy, making trends hard to spot
- A Rolling Mean (or Moving Average) smooths the series by averaging data points over a sliding window
- Helps highlight the underlying trend by reducing shortterm fluctuations
- Adding Confidence Intervals shows the range where the true trend likely lies, indicating uncertainty

Visualizing seasonality

Seasonal plot lines, Box and Violin lines

- Seasonal Line Plots:
 - Plot data grouped by time period (e.g., all Januaries, all Mondays)
 - Helps detect repeating patterns across periods
- Box Plots:
 - Show the distribution of values within each season or period
 - Easily spot medians, variability, and outliers
- Violin Plots:
 - Similar to box plots but add a density estimate
 - Reveal the full shape of the data distribution per season

Visualizing seasonality

Polar plots and heatmaps

- Polar Plots:
 - Circular visualization of time-based data (e.g., months or hours)
 - Ideal for highlighting cyclical patterns like annual or daily seasonality
 - Makes repeating cycles visually intuitive
- Heatmaps:
 - Displays data values using color intensity over time dimensions (e.g., years vs months)
 - Excellent for spotting patterns, anomalies, and shifts in seasonality across years
 - Useful for long time series with multiple seasonal layers

Seasonal Data Heatmap

HPI

Recognizing cycles

Autocorrelation & Lag Plots

Visual inspection and autocorrelation methods can help identify cycles

Lags:

- Lag 1 compares each point with the immediately preceding point, lag 2 compares points two steps apart, and so on
- Seasonality often appears as spikes at multiples of a base lag (e.g., 12 for monthly data with yearly seasonality)

Autocorrelation:

- Measures how current values relate to past values at different lags
- Helps identify repeating patterns and cycles in the data

Recognizing cycles

Autocorrelation & Lag Plots

- Autocorrelation Function (ACF):
 - Measures correlation between the series and its lagged values
 - Each lag represents the number of time steps between observations
 - Significant spikes at specific lags indicate correlation at those intervals
 - Useful to detect seasonality and persistence
- Partial Autocorrelation Function (PACF):
 - Measures direct correlation between the series and a given lag, controlling for correlations at shorter lags
 - Helps isolate the influence of each lag independently
 - Sharp spikes at particular lags show where the strongest direct relationships occur

What we've learnt

Visualization is essential to understand trends, seasonality, and cycles

- Use:
 - Line plots and rolling means for trends
 - Seasonal plots, box plots, and violin plots for seasonality
 - Polar plots and heatmaps to visualize seasonal patterns across cycles
- Lag plots and ACF/PACF reveal correlations and repeating patterns
- These insights guide the choice of models and preprocessing steps