Centroid-based Clustering

- 1. Initialize: select k random points out of the n data points as the medoids.
- 2. Associate each data point to the closest medoid by using any common distance metric methods.

$$c = \sum_{Ci} \sum_{Pi \in Ci} |Pi - Ci|$$

3. While the cost decreases:

For each medoid m, for each data point d which is not a medoid:

- a. Swap m and d, associate each data point to the closest medoid, recompute the cost.
- b. If the total cost is more than that in the previous step, undo the swap.
- Consider the following 2D points and find 3 cluster centroids for those

X	1	-3	0	-7	0	6	2	-1	0	10
Y	2	6	3	-4	7	9	3	-1	-100	10

$$C1 = (1,2), (-1,-1), (0,-100), (10,10)(2,3)$$

 $C2 = (-3,6), (0,7), (6,9)$
 $C3 = (0,3), (-7,-4)$

$$c = (c1's cost) + (c2's cost) + (c3's cost)$$

$$c = \sum_{Ci} \sum_{Pi \in Ci} |Pi - Ci|$$

$$c = 124 + 16 + 14 = 154$$

X	1	-3	0	-7	0	6	2	-1	0	10
Y	2	6	3	-4	7	9	3	-1	-100	10
	C1	C2	C3	C3	C2	C2	C1	C1	C1	C1

$$C1 = (0, 7), (-7, -4), (6,9), (2, 3)$$

 $C2 = (-3,6), (1, 2), (-1, -1)$
 $C3 = (0,3), (0, -100), (10, 10)$

$$c = \sum_{Ci} \sum_{Pi \in Ci} |Pi - Ci|$$

$$c = (c1's cost) + (c2's cost) + (c3's cost)$$

$$c = 124 + 16 + 14 = 154$$

X	1	-3	0	-7	0	6	2	-1	0	10
Y	2	6	3	-4	7	9	3	-1	-100	10
	C1	C2	C3	C1	C2	C1	C1	C2	СЗ	СЗ

X	1	-3	0	-7	0	6	2	-1	0	10	
Y	2	6	3	-4	7	9	3	-1	-100	10	
Cluster											
Distance (C1)											
Distance (C2)											
Distance (C3)											

C1	(1,2)
C2	(-3,6)
С3	(0,3)

For simplicity, we will use squared distances

$$(e_dist(x_1 y_1)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

X	1	-3	0	-7	0	6	2	-1	0	10
Y	2	6	3	-4	7	9	3	-1	-100	10
Cluster										
Distance (C1) <1,2>	0	5.66	1.41	10	5	8.6	1.41	3.6	102.005	12.04
Distance (C2) <-3, 6>	5.66	0	4.24	10.77	3.16	3.46	5.83	7.28	106.04	13.60
Distance (C3) <0, 3>	1.41	4.24	0	9.9	4	8.45	2	4.12	103	12.21

$$c = \sum_{Ci} \sum_{Pi \in Ci} |Pi - Ci|$$

5	C1	(1,2), (-1, -1), (0, -100), (10, 10)	Cost = 0+ 3.6 + 102.005 + 12.04 = 117.645	(-1, -1)
	C2	(-3,6), (0, 7), (6, 9)	Cost = 0+ 3.16 + 3.46 = 6.62	(-3, 6)
	С3	(0,3), (-7, -4), (2, 3)	Cost = 0+ 9.9 + 2 = 11.9	(0, 3)

How to Find a Proper k value?

A number of analysis are used:

- Elbow Method
- Average Silhouette Method
- Gap Statistic Method

Elbow Method

- Compute clustering algorithm for different values of k
- For each k, calculate the sum of intra-cluster squared error (sse)
- Plot the curve of **sse vs k**
- The location of a bend (knee) in the plot is generally considered as an indicator of the appropriate number (k) of clusters

Elbow Method

Average Silhouette Method

- Compute clustering algorithm for different values of k
- For each k, calculate the average silhouette of observations (avg.sil)
- Plot the curve of avg.sil vs k
- The location of the maximum is considered as the appropriate number (k) of clusters
- Silhouette Coefficient is calculated as:

$$silCof = rac{eta - lpha}{\max(eta, lpha)} \ lpha = average\,intra - cluster\,distance \ eta = minimum\,average\,inter - cluster\,distance$$

Average Silhouette Method

0.0

Eruption time in mins

Silhouette coefficient values

Drawbacks of K-Means

- Works poor with complex geometric shapes of clusters
- Can't handle outlier
- Can't guarantee to find the global optimum clusters
- Can't handle non-numerical data

• ..

Drawbacks of K-Means

Assignment

Find the optimum number of cluster for the given dataset using Elbow Method.

Dataset Preparation: If your student id is ABCD-E-FG-HIJ

X	-1	7	2	0	9	-3	5	8	-6	4
Y	Α	В	С	D	Е	F	G	Н	I	J

Thank You