PICO r statistics

Aditya Rotti

Case	Moments	Parame
cMILC00	$I_{ m CMB}$	1
cMILC01	$I_{ m CMB} \; ; \; I_{ m sync}$	2
cMILC02	$I_{ m CMB} \; ; \; I_{ m dust}$	2
cMILC03	$I_{ m CMB} \; ; I_{ m sync} \; ; I_{ m dust}$	3
cMILC04	$I_{ m CMB} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m dust}}{deta}$	3
cMILC05	$I_{ m CMB} \; ; \; I_{ m sync} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m dust}}{deta}$	4
cMILC06	$I_{ m CMB} \; ; \; I_{ m sync} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m sync}}{deta} \; ; \; rac{dI_{ m dust}}{deta} \; ({ m H})$	5
cMILC07	$I_{ m CMB} \; ; \; I_{ m sync} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m sync}}{deta} \; ; \; rac{dI_{ m dust}}{deta} \; ; \; rac{dI_{ m dust}}{dT}$	6
cMILC08	$I_{ m CMB} \; ; \; I_{ m sync} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m sync}}{deta} \; ; \; rac{dI_{ m dust}}{deta} \; ; \; rac{dI_{ m dust}}{dT} \; ; \; rac{d^2I_{ m dust}}{d^2T}$	7
cMILC09	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$ (H)	7
cMILC10	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$	8
cMILC11	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$ (H)	8
cMILC12	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$; $\frac{d^2I_{\mathrm{dust}}}{d\beta dT}$	9
cMILC13	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\text{sync}}}{d\beta}$; $\frac{dI_{\text{dust}}}{d\beta}$; $\frac{dI_{\text{dust}}}{dT}$; $\frac{d^2I_{\text{sync}}}{d^2\beta}$; $\frac{d^2I_{\text{dust}}}{d^2T}$; $\frac{d^2I_{\text{dust}}}{d\beta dT}$ (H)	9
cMILC14	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\text{sync}}}{d\beta}$; $\frac{dI_{\text{dust}}}{d\beta}$; $\frac{dI_{\text{dust}}}{dT}$; $\frac{d^2I_{\text{sync}}}{d^2\beta}$; $\frac{d^2I_{\text{dust}}}{d^2T}$; $\frac{d^2I_{\text{dust}}}{d\beta dT}$; $\frac{d^2I_{\text{dust}}}{d^2\beta}$	10

		$r_{ m bias}$	σ_r	r_{95}	SNR		
Case	Alens						
cMILC00	0.0	0.00045	0.00004	NaN	10.96101		
	0.3	0.00076	0.00014	NaN	5.52891		
	0.6	0.00106	0.00023	NaN	4.57118		
	0.9	0.00131	0.00030	NaN	4.34084		
cMILC01	0.0	0.00043	0.00004	NaN	10.48471		
	0.3	0.00074	0.00014	NaN	5.41133		
	0.6	0.00104	0.00023	NaN	4.52892		
	0.9	0.00128	0.00030	NaN	4.31253		
cMILC02	0.0	0.00038	0.00004	NaN	9.30189		
	0.3	0.00068	0.00014	NaN	4.91773		
	0.6	0.00100	0.00023	NaN	4.25387		
	0.9	0.00126	0.00030	NaN	4.15601		
cMILC03	0.0	0.00036	0.00004	NaN	8.80855		
	0.3	0.00066	0.00014	NaN	4.79240		
	0.6	0.00098	0.00023	NaN	4.20969		
	0.9	0.00124	0.00030	NaN	4.13041		
cMILC04	0.0	0.00036	0.00004	NaN	8.37016		
	0.3	0.00065	0.00014	NaN	4.55122		
	0.6	0.00100	0.00026	NaN	3.84057		
	0.9	0.00133	0.00035	NaN	3.76803		
cMILC05	0.0	0.00034	0.00004	NaN	7.77220		
	0.3	0.00064	0.00014	NaN	4.45425		
	0.6	0.00098	0.00025	NaN	3.85353		
	0.9	0.00130	0.00034	NaN	3.82056		
cMILC06	0.0	0.00021	0.00006	NaN	3.68799		
	0.3	0.00043	0.00014	NaN	2.99627		
	0.6	0.00077	0.00025	NaN	3.11780		
	0.9	0.00110	0.00032	NaN	3.39903		
cMILC07	0.0	0.00035	0.00007	NaN	4.93120		
	0.3	0.00056	0.00015	NaN	3.60305		
	0.6	0.00086	0.00027	NaN	3.20814		
	0.9	0.00120	0.00036	NaN	3.29592		
cMILC08	0.0	0.00038	0.00009	NaN	4.05566		
	0.3	0.00040	0.00010	NaN	3.83700		
	0.6	0.00042	0.00013	NaN	3.36847		
Continued on next page							

Continued on next page

		$r_{ m bias}$	σ_r	r_{95}	SNR
Case	Alens				
	0.9	0.00044	0.00021	NaN	2.13249
cMILC09	0.0	0.00032	0.00006	NaN	5.10452
	0.3	0.00039	0.00010	NaN	3.91669
	0.6	0.00042	0.00013	NaN	3.39883
	0.9	0.00044	0.00020	NaN	2.15525
cMILC10	0.0	0.00048	0.00014	NaN	3.56701
	0.3	0.00048	0.00014	NaN	3.44644
	0.6	0.00048	0.00024	NaN	2.02059
	0.9	0.00048	0.00026	0.00110	1.83891
cMILC11	0.0	0.00085	0.00024	NaN	3.60809
	0.3	0.00049	0.00014	NaN	3.46043
	0.6	0.00048	0.00024	NaN	2.03003
	0.9	0.00048	0.00026	0.00110	1.85032
cMILC12	0.0	0.00052	0.00331	0.00806	0.15758
	0.3	0.00052	0.00331	0.00806	0.15757
	0.6	0.00052	0.00331	0.00806	0.15681
	0.9	0.00052	0.00331	0.00807	0.15674
cMILC13	0.0	0.00340	0.00058	NaN	5.82329
	0.3	0.00159	0.00253	0.00698	0.62700
	0.6	0.00090	0.00301	0.00752	0.29741
	0.9	0.00071	0.00315	0.00773	0.22391
cMILC14	0.0	0.00075	NaN	NaN	NaN
	0.3	0.00075	NaN	NaN	NaN
	0.6	0.00075	NaN	NaN	NaN
	0.9	0.00075	NaN	NaN	NaN

- 1 Mask
- 2 Posterior plots

3 r constraints