定理. 定理??: 如果函数 $\mathbf{f}: \mathbb{R}^n \supseteq D \to \mathbb{R}^m$ 在 $\mathbf{x}_0 \in D$ 处可微分; 函数 $\mathbf{g}: \mathbb{R}^n \supset E \to \mathbb{R}^p$ 在 $\mathbf{f}(\mathbf{x}_0) \in E \cap D$ 处可微分,则复合函数 $\mathbf{g} \circ \mathbf{f}$ 在 \mathbf{x}_0 处可微分,且其导数

$$D\mathbf{g} \circ \mathbf{f}(\mathbf{x}_0) = D\mathbf{g}(\mathbf{f}(\mathbf{x}_0)) D\mathbf{f}(\mathbf{x}_0)$$

证明. 首先证明 \mathbf{x}_0 处于复合函数 $\mathbf{g} \circ \mathbf{f}$ 的定义域内。由于 $\mathbf{f}(\mathbf{x}_0) \in \text{domg}$ 且 \mathbf{g} 在 $\mathbf{f}(\mathbf{x}_0)$ 处可微分,故总存在正实数 δ' 使得只要 $\|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)\| < \delta'$ 就有 $\mathbf{f}(\mathbf{x}) \in \text{domg}$ 。又因为 $\mathbf{x}_0 \in \text{domf}$ 且 \mathbf{f} 在 \mathbf{x}_0 处可微分,故总存在正实数 δ 使得只要 $\|\mathbf{x} - \mathbf{x}_0\| < \delta$ 则 $\mathbf{x} \in \text{domf}$,同时还必存在 $\delta' > 0$ 使得这一 δ 选择下的 \mathbf{x} 满足 $\|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)\| < \delta'$ 。所以任一满足 $\|\mathbf{x} - \mathbf{x}_0\| < \delta$ 的 \mathbf{x} 均在 复合函数 $\mathbf{g} \circ \mathbf{f}$ 的定义域内。

按照全微分和全导数的定义,由于函数 \mathbf{f} 和 \mathbf{g} 分别在 \mathbf{x}_0 和 $\mathbf{f}(\mathbf{x}_0)$ 可导,故存在函数 \mathbf{z}_1 、 \mathbf{z}_2 满足 $\lim_{\mathbf{x}\to\mathbf{x}_0}\mathbf{z}_1(\mathbf{x}-\mathbf{x}_0)=\mathbf{0}$ 、 $\lim_{\mathbf{f}(\mathbf{x})\to\mathbf{f}(\mathbf{x}_0)}\mathbf{z}_2(\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{x}_0))=\mathbf{0}$,且

$$\begin{split} \mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0) - \mathrm{D}\mathbf{f}(\mathbf{x}_0) \left(\mathbf{x} - \mathbf{x}_0\right) &= \left\|\mathbf{x} - \mathbf{x}_0\right\| \mathbf{z}_1 \left(\mathbf{x} - \mathbf{x}_0\right) \\ \mathbf{g}\left(\mathbf{f}(\mathbf{x})\right) - \mathbf{g}\left(\mathbf{f}(\mathbf{x}_0)\right) - \mathrm{D}\mathbf{g}\left(\mathbf{f}(\mathbf{x}_0)\right) \left(\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)\right) &= \left\|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)\right\| \mathbf{z}_2 \left(\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)\right) \end{split}$$

把 g(f(x)) 记为 $g \circ f(x)$, 并把上面的第一条式子代入第二条, 得

$$\begin{split} \mathbf{g} &\circ \mathbf{f}(\mathbf{x}) - \mathbf{g} \circ \mathbf{f}(\mathbf{x}_0) - \mathrm{D}\mathbf{g}\left(\mathbf{f}(\mathbf{x}_0)\right) \left[\mathrm{D}\mathbf{f}(\mathbf{x}_0) \left(\mathbf{x} - \mathbf{x}_0\right) + \|\mathbf{x} - \mathbf{x}_0\| \mathbf{z}_1 \left(\mathbf{x} - \mathbf{x}_0\right)\right] \\ &= \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)\| \mathbf{z}_2 \left(\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)\right) \\ \Leftrightarrow &\mathbf{g} &\circ \mathbf{f}(\mathbf{x}) - \mathbf{g} \circ \mathbf{f}(\mathbf{x}_0) - \mathrm{D}\mathbf{g} \left(\mathbf{f}(\mathbf{x}_0)\right) \mathrm{D}\mathbf{f}(\mathbf{x}_0) \left(\mathbf{x} - \mathbf{x}_0\right) \\ &= \|\mathbf{x} - \mathbf{x}_0\| \mathrm{D}\mathbf{g} \left(\mathbf{f}(\mathbf{x}_0)\right) \mathbf{z}_1 \left(\mathbf{x} - \mathbf{x}_0\right) + \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)\| \mathbf{z}_2 \left(\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)\right) \end{split}$$

由三角不等式,又有*

$$\|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)\| = \|\mathrm{D}\mathbf{f}(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + \|\mathbf{x} - \mathbf{x}_0\| \mathbf{z}_1 (\mathbf{x} - \mathbf{x}_0)\|$$

$$\leq \|\mathrm{D}\mathbf{f}(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0)\| + \|\mathbf{x} - \mathbf{x}_0\| \|\mathbf{z}_1 (\mathbf{x} - \mathbf{x}_0)\|$$

$$\leq k \|\mathbf{x} - \mathbf{x}_0\| + \|\mathbf{x} - \mathbf{x}_0\| \|\mathbf{z}_1 (\mathbf{x} - \mathbf{x}_0)\|$$

故

$$\begin{split} &\mathbf{g} \circ \mathbf{f}(\mathbf{x}) - \mathbf{g} \circ \mathbf{f}(\mathbf{x}_0) - \mathrm{D}\mathbf{g}\left(\mathbf{f}(\mathbf{x}_0)\right) \mathrm{D}\mathbf{f}\left(\mathbf{x}_0\right) \left(\mathbf{x} - \mathbf{x}_0\right) \\ &\leq \left\|\mathbf{x} - \mathbf{x}_0\right\| \mathrm{D}\mathbf{g}\left(\mathbf{f}(\mathbf{x}_0)\right) \mathbf{z}_1 \left(\mathbf{x} - \mathbf{x}_0\right) + \left(k \left\|\mathbf{x} - \mathbf{x}_0\right\right\| + \left\|\mathbf{x} - \mathbf{x}_0\right\| \left\|\mathbf{z}_1 \left(\mathbf{x} - \mathbf{x}_0\right)\right\| \right) \mathbf{z}_2 \left(\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)\right) \\ &\leq \left\|\mathbf{x} - \mathbf{x}_0\right\| \left\{ \left\|\mathrm{D}\mathbf{g}\left(\mathbf{f}(\mathbf{x}_0)\right) \mathbf{z}_1 \left(\mathbf{x} - \mathbf{x}_0\right)\right\| + \left(k + \left\|\mathbf{z}_1 \left(\mathbf{x} - \mathbf{x}_0\right)\right\|\right) \mathbf{z}_2 \left(\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)\right) \right\} \end{split}$$

由于函数 \mathbf{f} 在 \mathbf{x}_0 处连续,即极限 $\lim_{\mathbf{x}\to\mathbf{x}_0}\mathbf{f}(\mathbf{x})=\mathbf{f}(\mathbf{x}_0)$,故上式最后的大括号在 $\mathbf{x}\to\mathbf{x}_0$ 时趋于 $\mathbf{0}$ 。按照全微分和全导数的定义,命题得证。

更新至 2024-11-17 1

^{*}此处用到定理??。