a) \blacktriangleright Bestimmen der zweiten Ableitung von f_a und Zeigen der Gleichheit

(5BE)

Bestimme die zweite Ableitung von f_a durch zweimaliges Ableiten des Funktionsterms von f_a . Ermittle den Funktionsterm der ersten Ableitung f'_a mit Hilfe der Quotientenregel:

$$f_a(t) = \frac{a + \ln(t)}{t^2} \qquad | \text{ Anwenden der Quotientenregel}$$

$$f_a'(t) = \frac{\left(\frac{1}{t}\right) \cdot t^2 - (a + \ln(t)) \cdot 2 \cdot t}{(t^2)^2}$$

$$f_a'(t) = \frac{t - 2 \cdot t \cdot a - 2 \cdot t \cdot \ln(t)}{t^4}$$

Vereinfache nun den oben bestimmen Funktionsterm der ersten Ableitung f'_a von f_a , indem du t im Zähler des Funktionsterms ausklammerst und anschließend kürzt:

$$f_a'(t) = \frac{t \cdot (1 - 2 \cdot a - 2 \cdot \ln(t))}{t^4}$$

$$f_a'(t) = \frac{1 - 2 \cdot a - 2 \cdot \ln(t)}{t^3}$$

Ermittle den Funktionsterm der zweiten Ableitung von f''_a von f_a , indem du f'_a wie oben mit Hilfe der Quotientenregel ableitest:

$$f_a''(t) = \frac{1-2\cdot a - 2\cdot \ln(t)}{t^3} \qquad | \text{ Anwenden der Quotientenregel}$$

$$f_a'''(t) = \frac{\left(-\frac{2}{t}\right)\cdot t^3 - \left(1-2\cdot a - 2\cdot \ln(t)\right)\cdot 3\cdot t^2}{\left(t^3\right)^2}$$

$$f_a'''(t) = \frac{-2\cdot t^2 - 3\cdot t^2 + 6\cdot t^2\cdot a + 6\cdot t^2\cdot \ln(t)}{t^6}$$
 | Vereinfachen des Terms durch Ausklammern von t^2
$$f_a'''(t) = \frac{t^2\cdot \left(6\cdot a + 6\cdot \ln(t) - 5\right)}{t^6}$$
 | Vereinfachen des Terms durch Ausklammern von t^2
$$f_a'''(t) = \frac{t^2\cdot \left(6\cdot a + 6\cdot \ln(t) - 5\right)}{t^6}$$

Damit hast du den Funktionsterm der zweiten Ableitungsfunktion f_a'' von f_a bestimmt und gleichzeitig gezeigt, dass dieser sich wie in der Aufgabenstellung darstellen lässt.

b) Ermitteln einer Stammfunktion und Zeigen der Gleichheit

(5BE)

Bestimme eine Stammfunktion von f_a , indem du ein unbestimmtes Integral von f_a bildest. Das Integrieren machst du dir hier einfacher, indem du den Funktionsterm von f_a wie folgt separierst und anschließend die einzeln die unbestimmten Integrale bildest:

$$f_a(t) = \frac{a + \ln(t)}{t^2} = \frac{a}{t^2} + \frac{\ln(t)}{t^2}$$

(1) Unbestimmtes Integral von $g_a(t)$:

$$\int g_a(t)dt = \int \frac{a}{t^2} dt = \int a \cdot t^{-2} dt = -1 \cdot a \cdot t^{-1} = -\frac{a}{t}$$

(2) Unbestimmtes Integral von h(t):

Das unbestimmte Integral von h(t) bestimmst du über partielle Integration. Die Formel für partielle Integration ist hier:

$$\int h(t) dt = \int (u'(t) \cdot v(t)) dt = [u(t) \cdot v(t)] - \int u(t) \cdot v'(t) dt$$

Da eine Stammfunktion von $\ln(t)$ schwer zu bestimmen ist, ist es sinnvoll diesen Teil des Funktionsterms von h(t) zu "eliminieren". Wähle demnach die Belegung von u und v wie folgt:

$$h(t) = \frac{1}{t^2} \cdot \ln(t) = t^{-2} \cdot \ln(t) = u'(t) \cdot v(t).$$

Das unbestimmte Integral von h(t) bestimmst du nun wie folgt:

$$\begin{split} &\int h(t) \ dt = \int \left(u'(t) \cdot v(t) \right) \ dt = \left[u(t) \cdot v(t) \right] - \int u(t) \cdot v'(t) \ dt \\ &= \left[-t^{-1} \cdot \ln(t) \right] - \int \left(-t^{-1} \cdot \frac{1}{t} \right) \ dt \\ &= -\frac{\ln(t)}{t} - \int \left(-\frac{1}{t} \cdot \frac{1}{t} \right) \ dt \\ &= -\frac{\ln(t)}{t} + \int \left(\frac{1}{t^2} \right) \ dt \\ &= -\frac{\ln(t)}{t} + -\frac{1}{t} \\ &= \frac{-\ln(t) - 1}{t} \ \text{mit} \ c \in \mathbb{R} \end{split}$$

Bestimme jetzt durch Zusammenfassen von $g_a(t)$ und h(t) eine Stammfunktion F_a von f_a :

$$F_a(t) = \int f_a(t) dt = \int g_a(t) dt + \int h(t) dt$$

$$= -\frac{a}{t} + \frac{-\ln(t) - 1}{t} + c$$

$$= \frac{-a - 1 - \ln(t)}{t} + c$$

Damit hast du eine Stammfunktion von f_a bestimmt und gleichzeitig gezeigt, dass diese sich wie in der Aufgabenstellung darstellen lässt.

c) (1) \blacktriangleright Angeben des Definitionsbereiches von f_a

(15BE)

Untersuche zuerst Nenner und Zähler des Funktionsterms von f_a separat auf Definitionslücken, um den gesuchten Definitionsintervall \mathbb{D} von f_a zu bestimmen:

Zähler $a + \ln(t)$: $\ln(t)$ ist nur für t > 0 definiert.

Nenner t^2 : t^2 verläuft stetig und besitzt bei t = 0 eine Nullstelle.

Betrachtest du nun wieder den gesamten Funktionsterm, so kannst du erkennen, dass f_a nur für t > 0 definiert ist.

 \Longrightarrow Definitions intervall $\mathbb{D} = \{t \in \mathbb{R} | t > 0\}$ oder $\mathbb{D} =]0; \infty[$.

(2) ► Bestimmen des Grenzwertes und Begründen des Verhaltens

Grenzwert von f_a für $t \to \infty$:

$$\lim_{t \to \infty} f_a(t) = \lim_{t \to \infty} \frac{a + \ln(t)}{\frac{1}{2}} = 0$$

 t^2 besitzt für $t \to \infty$ ein stärkeres Wachstum als $\ln(t)$. Dadurch wird der Betrag von t^2 im Nenner des Quotienten für $t \to \infty$ immer größer, wodurch sich der Graph der Funktion f_a langfristig der x - Achse in positiver Richtung annähert.

(3) ► Untersuchen der Funktion auf Nullstellen

Untersuche, durch Nullsetzen des Funktionsterms von f_a , die Funktion auf Nullstellen:

$$f_a(t)=0$$

$$\frac{a+\ln(t)}{t^2}=0 \qquad | \cdot t^2 \text{ (,,ein Bruch ist null, wenn sein Z\"{a}hler null wird")}$$

$$a+\ln(t)=0 \qquad | -a \qquad | \text{Anwenden der Umkehrfunktion}$$

$$e^{\ln(t)}=e^{-a} \qquad | t=e^{-a}$$

 f_a besitzt bei $t = e^{-a}$ eine Nullstelle.

(4) ► Untersuchen des Graphen der Funktion auf Extrempunkte

1. Schritt: Nullstellen der ersten Ableitung

Die Extrempunkte des Graphen von f_a befinden sich da, wo deren erste Ableitungsfunktion f'_a Nullstellen besitzt, diese Ableitungsfunktions hast du bereits im Aufgabenteil a bestimmt. Ermittle nun durch Nullsetzten des Funktionsterms der ersten Ableitung f'_a von f_a die gesuchten Extremstellen:

$$f_a' = 0$$

$$0 = \frac{1 - 2 \cdot a - 2 \cdot \ln(t)}{t^3} \qquad | \cdot t^3 \text{ (,,ein Bruch ist null, wenn sein Z\"{a}hler null wird")}$$

$$0 = 1 - 2 \cdot a - 2 \cdot \ln(t) \qquad | +2 \cdot \ln(t)$$

$$2 \cdot \ln(t) = 1 - 2 \cdot a$$

$$\ln(t) = \frac{1}{2} - a \qquad | \text{Anwenden der Umkehrfunktion}$$

$$e^{\ln(t)} = e^{\frac{1}{2} - a}$$

$$t = e^{\frac{1}{2}} \cdot e^{-a}$$

$$t = \sqrt{e} \cdot \frac{1}{e^a}$$

$$t = \frac{\sqrt{e}}{e^a}$$

 f_a besitzt eine Extremstelle bei $t_{\rm E} = \frac{\sqrt{\rm e}}{{
m e}^a}.$

2. Schritt: Bestimmen der Art der Extremstelle

Die Art der Extremstelle $t_{\rm E}$ bestimmst du, indem du $t_{\rm E}$ für t in den Funktionsterm der zweiten Ableitungsfunktion f_a'' von f_a einsetzt. Nimmt f_a'' für $t_{\rm E}$ einen Wert kleiner null an, so befindet sich ein lokales Maximum bei $t_{\rm E}$. Nimmt diese hingegen für $t_{\rm E}$ einen Wert größer null an, so befindet sich ein lokales Minimum bei $t_{\rm E}$. Die zweite Ableitungsfunktion f_a'' von f_a hast du ebenfalls im Aufgabenteil a bestimmt.

Einsetzten von $t_{\rm E}$ in f_a'' :

$$f_a''(t) = \frac{6 \cdot \ln(t) + 6 \cdot a - 5}{t^4}$$

$$f_a''(t_{\rm E}) = \frac{6 \cdot \ln(\frac{\sqrt{e}}{e^a}) + 6 \cdot a - 5}{\left(\frac{\sqrt{e}}{e^a}\right)^4}$$

$$f_a''(t_{\rm E}) = \frac{6 \cdot \left(\frac{1}{2} - a\right) + 6 \cdot a - 5}{\frac{e^2}{e^{4 \cdot a}}}$$

$$f_a''(t_{\rm E}) = \frac{3 - 6 \cdot a + 6 \cdot a - 5}{\frac{e^2}{e^{4 \cdot a}}}$$
$$-2 \cdot e^{4 \cdot a}$$

$$f_a''(t_{\rm E}) = \frac{-2 \cdot e^{4 \cdot a}}{e^2} = -2 \cdot e^{4 \cdot a - 2}$$

Da $f''(t_{\rm E})$ für alle Werte von $a \in \mathbb{R}$ einen Wert kleiner null ist, befindet sich ein lokales Maximum bei $t_{\rm E}$.

3. Schritt: Berechnen der y - Koordinate des lokalen Maximums

Die y - Koordinaten der Hochpunkts des Graphen von f_a bei $t_{\rm E}$ bestimmst du jetzt, indem du $t_{\rm E}$ in den Funktionsterm von f_a einsetzt:

$$f_a(t_{\rm E}) = \frac{a + \ln(\frac{\sqrt{e}}{e^a})}{\left(\frac{\sqrt{e}}{e^a}\right)^2}$$

$$f_a(t_{\rm E}) = \frac{a + \left(\frac{1}{2} - a\right)}{\frac{(\sqrt{\rm e})^2}{{\rm e}^{2 \cdot a}}}$$

$$f_a(t_{\rm E}) = \frac{\frac{1}{2}}{\frac{e^{2 \cdot a}}{e^{2 \cdot a}}}$$

$$f_a(t_{\rm E}) = \frac{{\rm e}^{2\cdot a}}{2\cdot {\rm e}}$$

$$f_a(t_{\rm E}) = \frac{1}{2} \cdot e^{2 \cdot a - 1}$$

Die Koordinaten des Hochpunkts H des Graphen von f_a sind: $H\left(\frac{\sqrt{e}}{e^a} \mid \frac{1}{2} \cdot e^{2 \cdot a - 1}\right)$.

(5) ► Untersuchen der Funktion auf mögliche Wendestellen

Die notwendige Bedingung für Wendepunkte ist hier: $f_a''(t) = 0$.

Die zweite Ableitung f_a'' hast du bereits in einem vorhergegangen Aufgabenteil bestimmt, setzte diese gleich Null, um den Graphen von f_a auf mögliche Wendepunkte zu untersuchen:

$$f_a''(t) = \frac{6 \cdot \ln(t) + 6 \cdot a - 5}{t^4}$$

$$f_a''(t) = 0$$

$$0 = \frac{6 \cdot \ln(t) + 6 \cdot a - 5}{t^4}$$

$$0 = \frac{6 \cdot \ln(t) + 6 \cdot a - 5}{t^4} \qquad | \cdot t^4 \text{ (,,ein Bruch ist null, wenn sein Z\"{a}hler null wird")}$$

$$0 = 6 \cdot \ln(t) + 6 \cdot a - 5 \qquad | -6 \cdot \ln(t)$$

$$-6 \cdot \ln(t) = 6 \cdot a - 5 \qquad | : (-6)$$

$$\ln(t) = -a + \frac{5}{6} \qquad | \text{Anwenden der Umkehrfunktion}$$

$$t = e^{-a + \frac{5}{6}}$$

Der Wendepunkt des Graphen von f_a befindet sich bei $t_W = e^{-a+\frac{5}{6}}$. Bestimme die zugehörige y - Koordinate durch Einsetzten von t_W in den Funktionsterm von f_a :

$$f_a(t) = \frac{a + \ln(t)}{t^2}$$

$$f_a(t_W) = \frac{a + \ln(e^{-a + \frac{5}{6}})}{(e^{-a + \frac{5}{6}})^2}$$

$$f_a(t_W) = \frac{a + (-a + \frac{5}{6})}{e^{-2 \cdot a + \frac{10}{6}}}$$

$$f_a(t_W) = \frac{\frac{5}{6}}{e^{-2 \cdot a + \frac{5}{3}}}$$

$$f_a(t_W) = \frac{5}{6 \cdot e^{-2 \cdot a + \frac{5}{3}}} = \frac{5}{6} \cdot e^{2 \cdot a - \frac{5}{3}}$$

Die Koordinaten des Wendepunkts W des Graphen von f_a sind: $W(e^{-a+\frac{5}{6}} \mid \frac{5}{6} \cdot e^{2\cdot a-\frac{5}{3}})$.

d1) ▶ Beschreiben des Verlaufs der Ausatmung

(15BE)

Beschreibe den Verlauf der Ausatmung des Patienten abschnittsweise:

Bis zum Hochpunkt bei $t \approx 0,2$ steigt der Graph, das heißt die Luftmenge, in Litern pro Sekunde, welche der Patient ausatmet steigt auf diesem Intervall. Beim Hochpunkt stößt der Patient die maximale Luftmenge, in Litern pro Sekunde, aus.

Nach dem Hochpunkt bei $t \approx 0,2$ bis zum Ende der Ausatmung bei t = 2,4 verringert sich die ausgeatmete Luftmenge stetig. Die stärkste Abnahme erfährt diese bei $t \approx 0,3$.

d2) > Bestimmen des Zeitpunkts der stärksten Flussabnahme

Der Zeitpunkt, zu dem der Fluss bei diesem Patienten am stärksten abnahm, entspricht der Wendestelle von g. In der Aufgabenstellung wird gefordert, die Koordinaten dieses Wendepunkts W_g unter Zuhilfenahme der Tatsache, dass es sich bei Graph g um einen verschobenen Graphen der Funktion f_a handelt, zu bestimmen. Die Koordinaten des Wendepunkts des Graphen von f_a hast du bereits im Aufgabenteil c bestimmt, diese waren: $W(e^{-a+\frac{5}{6}} \mid \frac{5}{6} \cdot e^{2\cdot a-\frac{5}{3}})$

Bevor du nun den Wendepunkt des Graphen von g bestimmen kannst, ermittelst du, wie dieser aus dem Graphen der Funktion f_a hervorgeht:

- 1. Der Parameter a muss beim Graphen der Funktion g offensichtlich den Wert a=2 besitzen.
- 2. Jedes im Funktionsterm von g auftretende t wurde um den Faktor e^{-2} vergrößert, das heißt, Graph g ist aus einer Linksverschiebung des Graphen der Funktion f_a entstanden.

Die Koordinaten des Wendepunkts W_g des Graphen von g bestimmst du nun, in dem du a=2 in die von a - abhängigen Koordinaten des Wendepunkts von f_a einsetzt. Hast du die Koordinaten des Wendepunkts für a=2 bestimmt, so verschiebst du den Wendepunkt um e^{-2} Einheiten in negativer x - Richtung, damit dieser zum Wendepunkt W_g des Graphen von g wird:

- 1. Koordinaten des Wendepunkts für a = 2: $W(e^{-2 + \frac{5}{6}} \mid \frac{5}{6} \cdot e^{2 \cdot 2 \frac{5}{3}}) \to W(e^{-\frac{7}{6}} \mid \frac{5}{6} \cdot e^{\frac{7}{3}})$.
- 2. Verschieben des Wendepunkts um e^{-2} Einheiten in negativer x Richtung: $W_g(e^{-\frac{7}{6}}-e^{-2}|\frac{5}{6}\cdot e^{\frac{7}{3}}) \Leftrightarrow W_g(0,176|8,594).$

Der sogenannte Fluss des Patienten nahm zum Zeitpunkt $t_{\rm W}=0$, 176 am stärksten ab.

d3) > Bestimmen des Volumenverhältnisses und Überprüfen ob die Aussage zutrifft

Das Luftvolumen, welches der Patient innerhalb des Betrachtungszeitraums einatmet, berechnest du über ein Integral. Die Tatsache, dass es sich bei g um einen verschobenen Graphen der Funktion f_a kann dir beim Bestimmen einer Stammfunktion von g behilflich sein. Wie oben bereits beschrieben, entsteht g aus einer Verschiebung des Graphen von f_a in negativer g0 Richtung, darüberhinaus nimmt der Parameter g1 den Wert g2 an.

Eine Stammfunktion von g bestimmst du nun, indem du die Stammfunktion von f_a (siehe Aufgabenteil b), auf die Gegebenheiten der Funktion g anpasst. Das heißt, für a muss a=2 eingesetzt werden, außerdem muss der Graph der Stammfunktion f_a um e^{-2} - Einheiten in negativer x - Richtung verschoben werden. Demnach entsteht diese Stammfunktion G:

$$G(t) = \frac{-2 - 1 - \ln(t + e^{-2})}{t + e^{-2}} = \frac{-3 - \ln(t + e^{-2})}{t + e^{-2}}.$$

Das gesuchte Verhältnis, zwischen dem Luftvolumen, welches vom Patienten in der ersten Sekunde der Betrachtung eingeatmet wird, und dem Volumen, welches im gesamten Betrachtungszeitraum eingeatmet wird, bestimmst du über einen Quotienten. Das Volumen V_1 , welches in der ersten Sekunde vom Patienten eingeatmet wird, berechnet sich über das Integral über die Funktion g in den Grenzen $t_1=0$ und $t_2=1$. Das Volumen $V_{\rm ges.}$, welches im gesamten Betrachtungszeitraum von Patienten eingeatmet wird, berechnet sich über das Integral über g in den Grenzen $t_1=0$ und $t_3=2,4$. Zu Berechnen ist also dieser Quotient d:

$$d = \frac{V_1}{V_{\text{ges.}}} = \frac{\int_{t_1}^{t_2} g(t)dt}{\int_{t_1}^{t_3} g(t)dt} = \frac{[G(t)]_0^1}{[G(t)]_0^{2,4}} = \frac{G(1) - G(0)}{G(2,4) - G(0)}$$

$$= \frac{\frac{-3 - \ln(1 + e^{-2})}{1 + e^{-2}} - \frac{-3 - \ln(0 + e^{-2})}{0 + e^{-2}}}{\frac{-3 - \ln(2, 4 + e^{-2})}{2, 4 + e^{-2}} - \frac{-3 - \ln(0 + e^{-2})}{0 + e^{-2}}}$$

$$= \frac{-2,754 - (-e^2)}{-1,55 - (-e^2)}$$

$$= \frac{-2,754 + 7,389}{-1,55 + 7,389}$$

$$= \frac{4,635}{5,839}$$

$$= 0,794$$

Bei diesem Patienten beträgt das Verhältnis, zwischen ausgeatmeter Luft in der ersten Sekunde und insgesamt ausgeatmeter Luft, 79,4 %. Das heißt, dass dieser Patient mit diesem Wert über den in der Aufgabenstellung beschriebenen 75 % liegt.