

AMERICAN INTERNATIONAL UNIVERSITY-BANGLADESH (AIUB)

FACULTY OF ENGINEERING

Course name: Data Communication

Course code: COE 3201

Section: H

Semester: Spring 2023-24

Group-04

NAME	ID
EFFAT ARA	22-46090-1
MD. ABDULLAH SHISHIR	22-46410-1
FARJANA YESMIN OPI	22-47018-1
MD. ABU TOWSIF	22-47019-1
MOST. SAYMA KHATUN	22-47035-1

Experiment No: 06

Experiment name: Study of Digital to Analog Conversion using

MATLAB

Submission date: April 26th, 2024

Performance Task for Lab Report:

1. For bit steam $x = [1\ 0\ 1\ 0\ 1\ 1\ 1\ 0]$; write a MATLAB code to generate ASK, BFSK, and BPSK modulated signal following the table 1-3. Then, Plot the modulated signals using subplot.

Table-1

Sine wave amplitude for ASK:

Bit	Amplitude (volts)
0	10
1	0

Table-2

Sine wave frequency for BFSK:

Bit	Frequency (Hz)
0	4
1	8

Table-3

Sine wave phase shift for BPKS

Bit	Phase shift (degree)
0	180
1	0

ANSWER OF QUESTION 1:


```
plot(t,psk);
hold on;
grid on;
axis([1 10 -1 1]);
title('Phase Shift Key')

i=i+1;
end
```

1. For bit steam x= [00 10 01 11]; write a MATLAB code to generate QPSK modulated signal using two different BPSK following table 4-5. Then, plot the modulated signal using subplot.

Table-4: For BPSK-1 (in odd position of bit stream x)

Bit	Phase shift (degree)
0	180
1	0

Table-5: For BPSK-2 (in even position of bit stream x)

Bit	Phase shift (degree)
0	270
1	90

MATLAB Code Output Figure f=5; $x=[00 \ 10 \ 01 \ 11] \% input signal;$ $x1=[0 \ 1 \ 0 \ 1];$ % first bit stream $x2=[0\ 0\ 1\ 1];$ % second bit stream %nx=size(x1,2);nx=length(x1);i=1; % array element Figure 1 <u>F</u>ile <u>E</u>dit <u>V</u>iew <u>I</u>nsert <u>T</u>ools <u>D</u>esktop <u>W</u>indow <u>H</u>elp while i<nx+1 % while loop condition t = i:0.001:i+1; % define thedomain t for each sin waveform if x1(i) ==1 % checking if array element bit is 1 in x1 signal psk1=sin(2*pi*f*t); % 0 degree PSK2 phase shift if bit is 1 in x1 else psk1=sin(2*pi*f*t+pi); % 180 degree phase shift if bit is 0 in x1 end if x2(i) == 1psk2=sin(2*pi*f*t+pi/2); % 90 degree phase shift if bit is 1 in x2 else psk2=sin(2*pi*f*t+pi+pi/2); % 270 degree phase shift if bit is 0 in x2 end **OUTPUT SCREENSHOT OF QUESTION 2** QPSK = psk1+psk2; % addition of psk1 and psk2 to obtain QPSK signal subplot(3,1,1);plot(t,psk1); hold on; grid on; axis([1 4 -1 1]);title('PSK1') subplot(3,1,2);plot(t,psk2); hold on; grid on; axis([1 4 -1 1]);title('PSK2') subplot(3,1,3);plot(t,QPSK); hold on; grid on; axis([1 4 -2 2]);

title('QPSK')	
i=i+1; end	