### Литвинов Юрий Викторович

# **Методы и средства разработки графических** предметно-ориентированных языков

Специальность 05.13.11 —

математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей

## Автореферат

диссертации на соискание учёной степени кандидата технических наук

Санкт-Петербург 2016 Работа выполнена на кафедре системного программирования федерального государственного бюджетного образовательного учреждения высшего образования "Санкт-Петербургский государственный университет".

Научный руководитель: Терехов Андрей Николаевич

доктор физико-математических наук, профессор

заведующий кафедрой системного программирования федерального государственного бюджетного образовательного учреждения высшего образования "Санкт-Петербургский государственный университет".

Официальные оппоненты: Штейнберг Борис Яковлевич,

доктор технических наук, старший научный сотрудник,

заведующий кафедрой алгебры и дискретной математики, федеральное государственное автономное образовательное учреждение высшего образовательное учреждение высшего образовательное

зования «Южный федеральный университет»,

Котляров Всеволод Павлович,

кандидат технических наук, доцент,

профессор кафедры «Информационные и управляющие системы», федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет

Петра Великого».

Ведущая организация: Федеральное государственное бюджетное учреждение науки Институт

систем информатики им. А.П. Ершова Сибирского отделения Российской

академии наук.

Защита состоится DD mmmmmmm YYYY г. в XX часов на заседании диссертационного совета Д212.232.51 на базе Санкт-Петербургского государственного университета по адресу: 198504, Санкт-Петербург, Старый Петергоф, Университетский пр., 28, математико-механический факультет, ауд. 405.

С диссертацией можно ознакомиться в Научной библиотеке им. М. Горького Санкт-Петербургского государственного университета по адресу: 199034, Санкт-Петербург, Университетская наб., 7/9 и на сайте http://spbu.ru/disser2/disser/.......Dissert.pdf.

Автореферат разослан DD mmmmmmmm YYYY года.

Ученый секретарь

диссертационного совета

Д212.232.51, д.ф.-м.н., проф.

Демьянович Юрий Казимирович

#### Общая характеристика работы

Актуальность темы. Визуальное моделирование — это подход к разработке программного обеспечения (ПО), в котором программа представляется в виде набора графических моделей, каждая из которых описывает её с разных точек зрения. Благодаря наличию стандартных широко распространённых графических языков, визуальное моделирование повышает продуктивность разработки ПО и качество результирующего продукта. При этом по набору визуальных моделей возможно автоматически генерировать программы целиком или их фрагменты, тем самым переиспользуя результаты анализа и проектирования.

Использование визуальных языков общего назначения, таких как UML, без заранее подготовленного набора библиотек и генераторов, делает задачу разработки программного обеспечения недостаточно эффективной в силу наличия семантического разрыва между кодом и моделями. Такие языки оперируют теми же терминами, что и традиционные текстовые языки (классы, объекты, компоненты и т.д.), поэтому, чтобы полностью специфицировать поведение системы и сделать возможной автоматическую генерацию, модель должна содержать в себе столько же информации, что и исходный код программы, но это противоречит самому понятию модели как некоего упрощения моделируемого объекта. На самом деле, визуальная модель в этом случае даже менее удобна, чем код программы — визуальные символы занимают на экране больше места, чем текст. Если же визуальная модель будет изображать только важные аспекты функционирования системы, опуская излишние подробности, то она будет обозрима и полезна для человека, но это сделает её бесполезной для исполнителя (например, для интерпретатора или генератора исходного кода). Поэтому UML в основном сейчас используется как средство для анализа и дизайна системы, а сама система программируется на текстовых языках. Большинство инструментов для создания UML-диаграмм позволяют генерировать заглушки, куда предполагается дописывать код вручную, но существенного выигрыша для разработчиков это не даёт. Наличие заранее подготовленных библиотек, шаблонов и генераторов кода может существенно улучшить ситуацию, но подобные технологии оказываются применимы только для той предметной области, для которой они создавались.

Существует принципиально другой подход к использованию визуального моделирования, называемый предметно-ориентированным моделированием. Он основан на том наблюдении, что часто создать новый язык для узкой предметной области или даже для конкретной задачи и решить задачу на нём оказывается быстрее и эффективнее, чем решать эту задачу на языке общего назначения. В таком случае наличие знаний о предметной области позволяет добиться полной автоматической

генерации программ по визуальным моделям. Ряд исследований (проводимых, в частности, S. Kelly, R. Kieburtz) показывает, что продуктивность труда программистов при использовании предметно-ориентированных языков вырастает в 3-10 раз по сравнению с использованием языков общего назначения, поэтому такой подход представляется весьма перспективным.

Разумеется, создавать новый предметно-ориентированный визуальный язык и инструментальные средства его поддержки «с нуля» для каждой узкой предметной области или конкретной задачи было бы неоправданно трудозатратно. Поэтому существуют специальные средства для автоматизации этой задачи, называемые DSM-платформами или MetaCASE-средствами. Такие средства позволяют задать синтаксис визуального языка, используя какой-либо формализм (как правило, это метамодели), и автоматически сгенерировать редактор для этого языка и другие средства инструментальной поддержки (мы будем называть результат генерации DSM-решением). Это позволяет реализовывать технологии программирования, использующие новые предметно-ориентированные языки, в рамках приемлемых трудозатрат, что позволяет применять предметно-ориентированное моделирование даже для небольших проектов. Существуют зрелые исследовательские и промышленные DSM-платформы, такие как Eclipse Modeling Project, MetaEdit+ и другие. Однако несмотря на преимущества предметно-ориентированного моделирования, применяется оно довольно редко. Во многих случаях для создания предметноориентированного решения требуется привлекать экспертов в разработке языков моделирования, которыми зачастую оказываются авторы выбранной для реализации этого решения DSM-платформы, что могут позволить себе лишь крупные компании. Такая ситуация указывает на необходимость продолжения исследований в этой области с целью упростить процесс создания предметно-ориентированных решений и снизить требования к квалификации специалистов, которые могли бы этим заниматься.

Степень разработанности темы. Методические вопросы создания предметноориентированных языков хорошо проработаны в случае, если языки текстовые (заслуживают упоминания работы А. Van Deursen, М. Mernik), для визуальных языков сейчас существует лишь набор слабо структурированных рекомендаций и наблюдений (наиболее обстоятельно этим вопросом занималась исследовательская группа во главе со S. Kelly и J.-P. Tolvanen, заслуживают упоминания работы М. Voelter). Тем не менее, существует довольно много DSM-платформ, многие из которых хорошо описаны в литературе (MetaEdit+, Eclipse Modeling Project, Generic Modeling Environment, PSL/PSA, AToM<sup>3</sup>, Microsoft Modeling SDK, Pounamu, DOME, MetaLanguage). Подавляющее большинство научных работ, связанных с этими DSM-платформами, сфокусировано на технических подробностях их реализации и обходят стороной вопросы методической поддержки, при этом часто внимание уделяется только самой реализации визуального языка.

Исследования в области графических языков также ведутся на кафедре системного программирования Санкт-Петербургского государственного университета под руководством проф. А.Н. Терехова. Кафедра имеет более чем двадцатилетний опыт в создании инструментов и методик графического программирования (технологии RTST, RTST++, REAL, работы Д.В. Кознова). Данная работа выполнялась в рамках проекта по разработке DSM-платформы QReal, являющегося продолжением работ кафедры по этой теме. Проект QReal имеет открытый исходный код<sup>1</sup>, разрабатывается на языке C++ с использованием библиотеки Qt силами студентов и преподавателей кафедры, автор данной диссертации — один из руководителей проекта.

**Целью** диссертационной работы является уменьшение трудозатрат и требований к квалификации при создании визуальных предметно-ориентированных языков и инструментальных средств для их поддержки (редакторов диаграмм, генераторов кода, средств проверки ограничений на диаграммы, интерпретаторов диаграмм) до уровня, при котором их было бы возможно создать даже без специальной подготовки и опыта.

Для достижения поставленной цели достаточно решить следующие задачи.

- 1. Разработать методику создания предметно-ориентированных визуальных языков и инструментальных средств для них, использующую визуальные языки для их спецификации.
- 2. Разработать метод прототипирования визуального языка, позволяющий специфицировать его прямо в процессе создания на нём диаграммы.
- 3. Реализовать в рамках DSM-платформы QReal простую в использовании технологию для создания предметно-ориентированных языков, реализующую разработанные методики.
- 4. Провести апробацию технологии путём создания нескольких DSM-решений с её помошью.

Цель и задачи диссертационной работы соответствуют области исследований паспорта специальности 05.13.11 — «Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей»: пунктам 1 (Модели, методы и алгоритмы проектирования и анализа программ и программных систем,

<sup>&</sup>lt;sup>1</sup>Страница проекта и репозиторий с исходным кодом на GitHub, URL: https://github.com/qreal/qreal

их эквивалентных преобразований, верификации и тестирования) и 2 (Языки программирования и системы программирования, семантика программ).

**Объектом исследования** являются визуальные языки, **предметом исследования** являются методы их создания и технологии для разработки инструментальных средств визуальных языков.

В качестве методологии используется методология, типичная для исследований в области программной инженерии: исследование существующей литературы, формулирование задачи и поиск её возможного решения, реализация решения в виде набора инструментов, апробация и анализ результатов. При этом в качестве методов исследования используются методы теории формальных языков и теории графов, методы объектно-ориентированного программирования, эмпирические методы (методы анализа литературы и постановки эксперимента).

Научная новизна данной работы заключается в следующем.

- 1. Разработанная методика для создания предметно-ориентированных языков с помощью графического языка метамоделирования и сопутствующих визуальных языков превосходит известные аналоги по объёму функциональных возможностей инструментальных средств, которые можно специфицировать с помощью визуальных языков.
- 2. Предложенный метод создания предметно-ориентированного языка («метамоделирование на лету») является оригинальным.
- 3. Разработанные с использованием предложенных методик визуальный язык программирования роботов и среда QReal:Robots, предоставляющая для него средства инструментальной поддержки, превосходит известные аналоги по функциональным возможностям.

**Теоретическая и практическая значимость** данной работы определяется разработанными методами создания визуальных предметно-ориентированных языков и использованием полученных результатов при разработке DSM-платформы QReal, а также при создании ряда DSM-решений, самым зрелым из которых стала среда программирования роботов QReal:Robots, предназначенная для обучения школьников основам информатики и кибернетики с использованием робототехнических конструкторов ТРИК, Lego Mindstorms NXT, Lego Mindstorms EV3.

Система QReal, куда интегрированы созданные в диссертационной работе средства, разрабатывается как среда визуального моделирования, поддерживающая ряд широкоизвестных визуальных языков (UML 2.0, BPMN, блок-схемы), и одновременно как DSM-платформа, позволяющая быстро и без специальных знаний создавать свои собственные визуальные языки и DSM-решения на их основе. DSM-

платформа QReal использовалась для реализации ряда предметно-ориентированных решений, использовавшихся в проектах компании «ЛАНИТ-Терком», связанных с разработкой информационных систем и систем компьютерного зрения.

Среда программирования роботов QReal:Robots — наиболее зрелая предметноориентированная технология, созданная с помощью среды QReal. Среда QReal:Robots демонстрировалась на Открытых состязаниях Санкт-Петербурга по робототехнике в 2012 году и на робототехническом фестивале «Робофест 2012» в Москве. На данный момент эта среда получила дальнейшее развитие в виде продукта TRIK Studio и используется как основное средство программирования кибернетического конструктора ТРИК, а также в нескольких робототехнических кружках в России и на мастер-классах по робототехнике, проводимых компанией «Кибернетические технологии».

#### Степень достоверности и апробация результатов подтверждается следующим.

- Результаты данной работы были представлены на второй научно-технической конференции молодых специалистов «Старт в будущее» [12]. Доклад был отмечен наградой.
- Результаты работы были представлены на международной конференции «8th International Conference on Evaluation of Novel Approaches to Software Engineering» (ENASE-2013) [4].
- Результаты, связанные с применением разработанной технологии при создании среды QReal:Robots, были доложены на VII Международной научно-практической конференции «Современные информационные технологии и ИТобразование» [14] и на конференции «Central & Eastern European Software Engineering Conference in Russia 2013» (CEE-SECR'13) [7].
- Результаты, связанные с применением разработанной технологии для разработки предметно-ориентированного языка для платформы Ubiq, были доложены на международной конференции «10th Conference of Open Innovations Association FRUCT» [5].
- Результаты, связанные с использованием предлагаемой технологии, представлялись сообществу в виде научных публикаций [1–3], [8, 15] и докладов на конференциях [6, 9–11, 13, 16].
- Проект поддержан грантом Санкт-Петербургского государственного университета №6.39.1054.2012.

**Публикации**. Результаты диссертации отражены в пяти научных работах и одиннадцати тезисах докладов, основные результаты изложены в журналах, входящих в

перечень ведущих рецензируемых научных журналов и изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук, утвержденный решением Президиума Высшей аттестационной комиссии Минобрнауки России [1–3], а также [8, 15] — в журнале, входящем в РИНЦ. Работы в сборниках из перечня ВАК [2] и [3] написаны в соавторстве. В работе [2] автору данной диссертации принадлежит проектирование и разработка средств метамоделирования, Т.А. Брыксину — архитектура и реализация основных компонент платформы, А.С. Кузенковой — реализация некоторых частей метаредактора, А.О. Дерипаска — реализация редактора форм фигур системы QReal, А.В. Подкопаеву — реализация средств задания правил генерации кода, К.С. Тарану — реализация средств эволюции визуальных языков. В работе [3] автору данной диссертации принадлежит идея и реализация средств метамоделирования, А.Н. Терехову принадлежит постановка задачи, Т.А. Брыксину — разработка архитектуры и реализация основных модулей платформы QReal.

**Личный вклад автора.** Результаты, представленные в диссертационной работе, получены соискателем либо самостоятельно, либо при его непосредственном участии.

Проект QReal в силу своей трудоёмкости разрабатывается большой группой студентов, аспирантов и преподавателей кафедры системного программирования СПбГУ, соискатель претендует лишь на результаты, явно перечисленные в списке положений, выносимых на защиту. Особо следует отметить, что соискатель заявляет как свой результат среду QReal:Robots, её дальнейшее развитие TRIK Studio приводится здесь лишь как апробация и внедрение предлагаемых результатов.

Структура и объём работы. Диссертация состоит из введения, четырёх глав, заключения, списка сокращений и условных обозначений, списка литературы (130 наименований) и двух приложений. Объем основной части работы — 133 страницы с 20 рисунками и 2 таблицами, общий объём работы составляет 198 страниц.

#### Положения, выносимые на защиту

- 1. Разработана методика для создания предметно-ориентированных визуальных языков с помощью графического языка метамоделирования и сопутствующих визуальных языков.
- 2. Предложен новый метод метамоделирования: «метамоделирование на лету», позволяющий создавать визуальный язык в процессе его использования.
- 3. Предложенные методики реализованы в виде технологии на базе системы QReal.

4. Проведена апробация разработанных методик и технологии при создании редактора, генератора, средств проверки ограничений среды QReal:Robots и других предметно-ориентированных решений.

#### Содержание работы

Во введении обосновывается актуальность исследований, проводимых в рамках данной диссертационной работы, формулируется цель работы, научная новизна и практическая значимость, приводятся сведения об апробации работы.

В главе 1 приводятся основные понятия, используемые в предметно-ориентированном визуальном моделировании. Обсуждается структура визуального языка: синтаксис (абстрактный, конкретный и синтаксис сериализации), уровни абстракции (предметная область, модель, метамодель, метамодель), вводится классификация формальных языков по важным для дальнейшего изложения свойствам.

По форме представления информации языки делятся на следующие группы: *текстовые* языки — используют в основном текст для представления информации, *графические* или *визуальные* языки, использующие визуальные символы, и *текстографические* языки, активно использующие и текст, и графику для представления программы. Графические языки, в свою очередь, делятся на графовые (в которых диаграмма представляет собой помеченный мультиграф, либо сводится к нему) и неграфовые (не сводящиеся к помеченному мультиграфу).

По используемой модели вычислений языки делятся на *статические* (задающие структуру разрабатываемой системы) и *динамические* (описывающие поведение), которые, в свою очередь, делятся на языки, модель вычислений которых основана на сетях Петри (с простыми токенами — ориентированные на поток управления, или с токенами, содержащими в себе существенную информацию — ориентированные на поток данных), и языки, в основе которых лежат диаграммы конечных автоматов.

В качестве математического формализма для визуальных языков были выбраны помеченные ориентированные мультиграфы: G=(V,A,e,L,M), где V- конечное множество вершин, A- конечное множество дуг,  $e:A\to V\times V-$  функция, ставящая в соответствие дуге из множества A пару вершин (v,w), где v- начало дуги, w- конец дуги. U- это множество меток, U- U- функция разметки, ставящая в соответствие вершинам и дугам мультиграфа их метки из U- Метамодель и модель рассматриваются как два помеченных мультиграфа, соответствие модели метамодели определяется как отображение над метками мультиграфа модели.

Глава 2 содержит обзор существующих подходов к созданию DSMрешений. Рассматриваются существующие методики разработки предметноориентированных языков, обсуждаются возможности, достоинства и недостатки существующих DSM-платформ, включая зрелые системы и академические разработки. Результаты анализа существующих DSM-платформ сведены в таблицу 1.

Таблица 1: Основные возможности существующих DSM-платформ

| Название                     | Метаязык                             | Метаредактор                                      | Конкретный синтаксис                                                | Ограничения                                  |
|------------------------------|--------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|
| MetaEdit+                    | GOPPRR                               | Визуальный или диалоговые окна                    | Визуально                                                           | Только<br>средствами<br>метаязыка            |
| Eclipse Modeling Project     | Есоге (аналог<br>МОF)                | Визуальный,<br>текстовый,<br>импорт<br>метамодели | Визуально или вручную поверх библиотек                              | Текстовые (OCL)                              |
| Generic Modeling Environment | Свой, довольно развитый              | Визуальный                                        | Настройкой<br>существующих<br>фигур                                 | Текстовые (OCL)                              |
| PSL/PSA                      | Сущность-связь                       | Текстовый                                         | Нет                                                                 | Нет                                          |
| AToM3                        | Сущность-связь                       | Визуальный                                        | Визуально                                                           | Вручную, на<br>Python                        |
| Microsoft Modeling SDK       | Свой (диаграммы классов)             | Визуальный                                        | Настройкой<br>существующих<br>фигур или<br>кодированием на<br>С#    | Вручную поверх<br>библиотеки                 |
| Pounamu                      | Сущность-связь                       | Визуальный                                        | Визуально                                                           | Визуальным языком общего назначения или Java |
| DOME                         | Свой (DSTL),<br>довольно<br>развитый | Визуальный                                        | Настройкой<br>существующих<br>фигур или<br>кодированием на<br>Alter | Вручную, на Alter                            |
| MetaLanguage                 | Сущность-связь                       | Визуальный                                        | Неизвестно                                                          | Да                                           |

Делаются выводы о том, что существующие среды не автоматизируют весь жизненный цикл создания предметно-ориентированного решения, особенно его начальные этапы — если автор DSM-решения уже «знает, что писать» (то есть имеет ясное представление о предметной области и даже метамодель создаваемого языка), то к его услугам множество существующих инструментов. Но если требуется вести разработку предметно-ориентированного решения «с нуля» (начиная с оценки осуществимости и анализа предметной области), очень многое придётся делать без какой-либо инструментальной поддержки и методических рекомендаций. Таким образом, имеется пробел в существующих исследованиях, который данная работа призвана помочь заполнить.

Глава 3 содержит описание предлагаемого подхода к разработке DSM-решений. Приводятся этапы жизненного цикла DSM-решения, обсуждается возможная степень автоматизации каждого этапа, формулируются требования к средствам автоматизации, приводится описание предлагаемой технологии. Предлагается два варианта методик разработки — «Классическая» методика и методика «Метамоделирования на лету», которая является вариантом классической и служит для упрощения первых этапов жизненного цикла DSM-решения. Схематически «Классическая» методика изображена на рисунке 1.

Фаза разработки и внедрения состоит из нескольких итераций, порядок действий для каждой из которых представлен на рисунке 2.

Такая методика называется классической, поскольку примерно такой схемы придерживается большинство существующих DSM-платформ и большинство авторов, описывающих процесс создания предметно-ориентированных языков и дающих рекомендации по этому процессу. Вклад данного исследования состоит в структуризации этапов жизненного цикла, описании действий на каждом этапе жизненного цикла и предложения технологии автоматизации каждого этапа. Основная идея, предлагаемая



Рис. 1: «Классическая» методика разработки.

здесь — использование визуальных языков на каждом этапе жизненного цикла, вплоть до описания генераторов.

С методологической точки зрения научную новизну имеет предлагаемый здесь подход «Метамоделирования на лету». Ключевой принцип данной методики состоит в том, что создание визуального языка проходит непосредственно в процессе рисования диаграммы, без использования метаредактора.



Рис. 2: Итерация проектирования и разработки языка.

Основной этап предлагаемой методики — прототипирование языка — начинается сразу после этапа анализа применимости. Разработчик языка и будущий пользователь работают за одним рабочим местом. При запуске DSM-платформы они видят канву для рисования и пустую палитру. Пользователь объясняет, что он примерно хотел бы нарисовать, разработчик языка добавляет на палитру новые элементы, определяет для них графическое представление, пользователь рисует. Пользователь может сказать, что такой-то элемент должен содержать такую-то дополнительную информацию, тогда разработчик добавляет элементу новое свойство, задаёт его тип и значение по умолчанию, и пользователь продолжает рисовать диаграмму, используя новое свойство. Через некоторое время пользователь может сам добавлять и редактировать типы элементов, и работа полностью передаётся ему, разработчик языка лишь следит за процессом и консультирует при необходимости пользователя. Работа заканчивается, когда модельное приложение полностью нарисовано, после

чего текущая интерпретируемая метамодель сохраняется в виде, пригодном для дальнейшего редактирования в метаредакторе. После этой фазы идут итерации «классической» методики по доработке созданного прототипа, дополнению его ограничениями, рефакторингами, интерпретатором и генератором, подготовке инсталляционного пакета, развертыванию и сбору обратной связи. На этих этапах пользователи, как и в «классической» модели, непосредственно в разработке не участвуют, поскольку этапы гораздо более продолжительны во времени и прямо при пользователе выполнены быть не могут.

Модель жизненного цикла языка, использующая «метамоделирование на лету», представлена на рисунке 3.

В главе 4 анализируются результаты реализации инструментальных средств поддержки предлагаемой технологии в проекте QReal. Описываются возможности системы QReal, связанные с поддержкой техник метамоделирования, включая метамоделирование на лету, принятые архитектурные решения. Также описывается эксперимент по сравнению трудозатрат на разработку инструментальных средств поддержки визуального языка в QReal и в ведущих DSM-платформах. Эксперимент показал, что разработка в QReal требует меньших трудозатрат, это подтверждает достижение цели работы.

**Приложение А** содержит примеры применения результатов, описанных в данной диссертации, для разработки DSM-решений. Описывается среда QReal:Robots, то, какие преимущества были получены от использования DSM-платформы QReal при её разработке, то, чем QReal помочь не смог, и почему. Также приводится описание среды разработки сервисов для мобильных телефонов QReal:Ubiq и



Рис. 3: Методика «метамоделирования на лету».

среды разработки аппаратуры QReal:HaSCoL, описываются их визуальные языки, достоинства и недостатки принятых при их создании подходов.

В **приложении В** описывается визуальный метаязык системы QReal.

В приложении С приводятся копии актов о внедрении результатов диссертационного исследования.

В заключении приведены итоги выполненного исследования, рекомендации и перспективы дальнейшего развития.

## Заключение

Итоги диссертационной работы таковы.

- 1. Разработана методика для создания предметно-ориентированных визуальных языков с помощью визуального языка метамоделирования и других визуальных языков.
- 2. Предложен новый способ метамоделирования: «метамоделирование на лету», позволяющий доопределять и изменять визуальный язык в процессе его использования.
- 3. Предложенные методики реализованы в виде технологии на базе системы QReal.
- 4. Проведена апробация разработанных методик и технологии при создании инструментальных средств среды программирования роботов QReal:Robots и других предметно-ориентированных решений.

Были сформулированы следующие рекомендации по применению полученных результатов.

- 1. Предложенные методики подходят для реализации небольших и средних по размерам предметно-ориентированных языков.
- 2. Наиболее эффективны предлагаемые методики в ситуации, когда нет чёткого представления о языке, который должен быть создан, но есть эксперт предметной области, участвующий в создании языка

Также были сформулированы **перспективы** дальнейшей работы: реализация интеграции созданных инструментальных средств с существующими средствами других коллективов, проведение экспериментов по количественной оценке эффективности предложенных методик и средств в промышленных условиях и сравнению с существующими DSM-платформами, исследование применимости и возможных расширений предлагаемых методик для работы с большими предметноориентированными языками.

#### Публикации автора по теме диссертации

В изданиях из перечня российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук

- 1. Литвинов, Ю.В. Реализация визуальных средств программирования роботов для изучения информатики в школах [Текст] / Ю.В. Литвинов // Компьютерные инструменты в образовании. 2013. № 1. С. 36–45.
- 2. Средства быстрой разработки предметно-ориентированных решений в metaCASE-средстве QReal [Текст] / А.С. Кузенкова, А.О. Дерипаска, К.С. Таран, А.В. Подкопаев, Ю.В. Литвинов, Т.А. Брыксин // Научно-технические ведомости СПбГПУ. Информатика. Телекоммуникации. Управление. 2011. № 4 (128). С. 142–145.
- 3. Терехов, А.Н. QReal: платформа визуального предметно-ориентированного моделирования [Текст] / А.Н. Терехов, Т.А. Брыксин, Ю.В. Литвинов // Программная инженерия. 2013. № 6. С. 11–19.

#### В изданиях, индексируемых в реферативных базах Scopus и Web Of Science

4. Kuzenkova, A. QReal DSM platform-An Environment for Creation of Specific Visual IDEs [Text] / A. Kuzenkova, A. Deripaska, T. Bryksin, Y. Litvinov, V. Polyakov // ENASE 2013 — Proceedings of the 8th International Conference on Evaluation of Novel Approaches to Software Engineering. — Setubal, Portugal: SciTePress, 2013. — P. 205–211.

#### В других изданиях

- 5. Bryksin, T. Ubiq Mobile + QReal: a Technology for Development of Distributed Mobile Services [Text] / T. Bryksin, Y. Litvinov, V. Onossovski, A.N. Terekhov // 10th Conference of Open Innovations Association FRUCT and the 2nd Finnish-Russian Mobile Linux Summit: Proceedings. Saint-Petersburg: State University of Aerospace Instrumentation (SUAI), 2011. P. 27–35.
- 6. Osechkina, M. Multistroke Mouse Gestures Recognition in QReal metaCASE Technology [Text] / M. Osechkina, Y. Litvinov, T. Bryksin // SYRCoSE 2012: Proceedings of the 6th Spring/Summer Young Researchers' Colloquium on Software Engineering. Perm: ISPRAS, 2012. P. 194–200.

- 7. Terekhov, A. QReal:Robots an environment for teaching computer science and robotics in schools [electronic resource] / A. Terekhov, Y. Litvinov, T. Bryksin // CEE-SECR '13 Proceedings of the 9th Central & Eastern European Software Engineering Conference in Russia. New York, NY, USA: ACM, 2013. URL: http://dl.acm.org/citation.cfm?id=2556610.2596543 (online; accessed: 2015-11-30).
- 8. Архитектура среды визуального моделирования QReal [Текст] / А.Н. Терехов, Т.А. Брыксин, Ю.В. Литвинов, К.К. Смирнов, Г.А. Никандров [и др.] // Системное программирование. 2009. № 4. С. 171–196.
- 9. Брыксин, Т.А. Среда визуального программирования роботов QReal:Robots [Текст] / Т.А. Брыксин, Ю.В. Литвинов // Материалы международной конференции «Информационные технологии в образовании и науке». Самара : Самарский филиал МГПУ, МГПУ, 2011. С. 332–334.
- 10. Брыксин, Т.А. Технология визуального предметно-ориентированного проектирования и разработки ПО QReal [Текст] / Т.А. Брыксин, Ю.В. Литвинов // Материалы второй научно-технической конференции молодых специалистов «Старт в будущее», посвященной 50-летию полета Ю.А. Гагарина в космос. СПб. : ОАО «КБСМ», 2011. С. 222–225.
- 11. Кузенкова, А.С. Метамоделирование: современный подход к созданию средств визуального проектирования [Текст] / А.С. Кузенкова, Т.А. Брыксин, Ю.В. Литвинов // Материалы второй научно-технической конференции молодых специалистов «Старт в будущее», посвященной 50-летию полета Ю.А. Гагарина в космос. СПб.: ОАО «КБСМ», 2011. С. 228–231.
- 12. Кузенкова, А.С. Поддержка метамоделирования в среде визуального программирования QReal [Текст] / А.С. Кузенкова, А.О. Дерипаска, Ю.В. Литвинов // Материалы межвузовского конкурса-конференции студентов, аспирантов и молодых ученых Северо-Запада «Технологии Microsoft в теории и практике программирования». СПб. : Изд-во СПбГПУ, 2011. С. 100–101.
- 13. Кузенкова, А.С. Поддержка механизма рефакторингов в DSM-платформе QReal [Текст] / А.С. Кузенкова, Ю.В. Литвинов // Материалы межвузовского конкурсаконференции студентов, аспирантов и молодых ученых Северо-Запада «Технологии Microsoft в теории и практике программирования». СПб. : Изд-во СПбГПУ, 2013. С. 71–72.
- 14. Литвинов, Ю.В. Визуальные средства программирования роботов и их использование в школах [Текст] / Ю.В. Литвинов // Современные информационные

- технологии и ИТ-образование, сборник избранных трудов VII Международной научно-практической конференции. М.: ИНТУИТ.РУ, 2012. С. 858–868.
- 15. Осечкина, М.С. Поддержка жестов мышью в мета-CASE-системах [Текст] / М.С. Осечкина, Т.А. Брыксин, Ю.В. Литвинов, Я.А. Кириленко // Системное программирование. 2010. № 5. С. 52–75.
- 16. Терехов, А.Н. Среда визуального программирования роботов QReal:Robots [Текст] / А.Н. Терехов, Т.А. Брыксин, Ю.В. Литвинов // III Всероссийская конференция «Современное технологическое обучение: от компьютера к роботу» (сборник тезисов). СПб. : [б. и.], 2013. С. 2–5.

выходные данные выходные данные выходные данные выходные данные выходные данные выходные данные