Britta Nestl

Lösen von Gleichungen Bisektion Newton-Verfahren

Regula falsi

Lösen von Gleichungen

Lösen von Gleichungen

Bisektion

Newton-Verfahren

Regula falsi

Gesucht ist eine Lösung der Gleichung f(x) = 0.

Das Bisektionsverfahren ist eine numerische Methode zur Bestimmung einer Nullstelle. Es basiert auf dem Zwischenwertsatz:

Satz 9

Zwischenwertsatz: Sei $f:[a,b]\to\mathbb{R}$ stetig mit f(a)<0 und f(b)>0. Dann existiert eine Zwischenstelle $\xi\in(a,b)$ mit $f(\xi)=0$.

ritta Nestle

Lösen von Gleichungen Bisektion

Regula falsi

Darstellung des Zwischenwertsatzes

Sei $f:[a,b]\to\mathbb{R}$ stetig mit f(a)<0 und f(b)>0. Dann existiert eine Zwischenstelle $\xi\in(a,b)$ mit $f(\xi)=0$.

Lösen von Gleichungen

Newton-Verfahren Regula falsi

Initialisierung:

$$x_1 = a, x_2 = b, f_1 = f(x_1), f_2 = f(x_2), \delta = 10^{-5}$$

- 2 Iteration:
 - Bestimme Intervallmitte: $x_3 = \frac{1}{2}(x_1 + x_2)$
 - b) Bestimme Funktionswert: $f_3 = f(x_3)$
 - c) Festlegung des neuen Intervalls:
 - i) falls $f_3 \cdot f_2 \leq 0$ (Nullstelle zwischen x_2 und x_3), dann $x_1 := x_3$ und $f_1 := f_3$
 - ii) falls $f_3 \cdot f_2 > 0$ (Nullstelle zwischen x_1 und x_3), $\mathsf{dann}\ x_2 := x_3\ \mathsf{und}\ f_2 := f_3$
 - d) Abbruchbedingungen
 - i) falls $|x_2 x_1| \leq \delta$, dann Lösung:= x_3 Stop
 - ii) falls $|x_2 x_1| > \delta$, dann weiter mit a)

Bemerkungen zum Bisektionsverfahren

- \bullet Das Bisektionsverfahren liefert nur eine Nullstelle im Intervall I=[a,b].
- ullet ist Abbruchskriterium und sollte nicht kleiner als die Rechengenauigkeit sein.

Beispiel

Gegeben ist die Funktion $f(x) = x^3 - \sqrt{x^2 + 1}$ im Intervall I = [1, 2]

Da f(1) = -0.4142 und f(2) = 5.7639 liegt nach dem Zwischenwertsatz eine Nullstelle im Intervall I = [1, 2].

1. Schritt des Algorithmus:

$$x_3 = 1.5 \Rightarrow f(1.5) = 1.5722$$
 usw.

Nach 13 Iterationen ergibt sich als Nullstelle: $\xi = 1.1509$.

Beispiel

Es soll die n-ten Wurzel $x=\sqrt[n]{a}$ für $a\geq 0, a\neq 1$ berechnet werden.

Diese Aufgabe ist äquivalent mit dem folgenden Nullstellenproblem: $x = \sqrt[n]{a} \Rightarrow f(x) = x^n - a = 0$

z.B.
$$x = \sqrt[5]{8} \Rightarrow f(x) = x^5 - 8 = 0$$
.

Newton-Verfahren

Lösen von Gleichungen ^{Bisektion}

Bisektion Newton-Verfahre Regula falsi Das Newton-Verfahren ist die am häufigsten eingesetzte Methode zur numerischen Bestimmung einer Nullstelle von f(x) im Intervall I=[a,b], da es eine schnelle Konvergenz bestitzt.

Iteratives Verfahren:

Man startet mit einem Startwert x_0 , berechnet die Tangente an die Funktion f(x) in x_0 und bestimmt den Schnittpunkt mit der x-Achse. Dieser Schnittpunkt wird der neue Punkt x_1 , an dem die nächste Tangente berechnet wird und wieder der Schnittpunkt mit der x-Achse usw.

itta Nestlo

Lösen von Gleichungen Bisektion

Name Vandalana

Regula fals

Darstellung des Newton-Verfahrens

Tangentengleichung in x_0 :

$$y = f(x_0) + f'(x_0)(x - x_0)$$

Schnittpunkt x_1 mit der x-Achse, d.h. für y = 0:

$$0 = f(x_0) + f'(x_0)(x_1 - x_0)$$

$$\Rightarrow x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Newton: Algorithmus

- Initialisierung: wähle x_0 und $\delta := 10^{-5}$
- ② Iteration:
 - a) Newton-Formel:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \qquad n = 0, 1, 2, 3, \dots$$

- b) Abbruchbedingung:
 - i) falls $|x_{n+1} x_n| < \delta$, dann Lösung:= x_{n+1} ; Stop
 - ii) falls $|x_{n+1} x_n| \ge \delta$, dann weiter mit a).

Eigenschaften des Newton-Verfahrens

- schnelle Konvergenz (wenige Iterationsschritte)
- bei einem schlechten Startwert kann das Verfahren divergieren.
 - Ausweg: Finde über das Bisektionsverfahren zunächst einen guten Startwert.
- die Ableitung f'(x) muss existieren
- das Verfahren ist erweiterbar auf Funktionen mehrerer Veränderlicher $f(x, y, \ldots)$

Beispiel

Gegeben ist die Funktion $f(x)=x^3-\sqrt{x^2+1}$, im Intervall I=[1,2].

Die Ableitung lautet: $f'(x) = 3x^2 - \frac{x}{\sqrt{x^2+1}}$.

Die Newton-Iteration ergibt:

n	x_n	$f(x_n)$
0	1.5	1.5722
1	1.2343	0.2920
2	1.1573	0.0207
3	1.1510	0.0001
4	1.1509	$0.6 \cdot 10^{-8}$

d.h. nach 4 Iterationen hat man die Nullstelle bis auf 8 Dezimalstellen genau bestimmt.

itta Nestl

Lösen von Gleichungen Bisektion Newton-Verfahren Regula falsi

Regula falsi

Das Newton-Verfahren benötigt die Berechung der ersten Ableitung von f(x). Falls dies nicht möglich ist, ist das Regula falsi Verfahren eine alternative Methode zur Lösung der Gleichung f(x)=0. Hierzu werden zwei Startwerte x_0 und x_1 benötigt.

Geometrisch: Statt einer Tangente wird eine Sekante zwischen den Punkten $(x_0,f(x_0))$ und $(x_1,f(x_1))$ bestimmt und dann der Schnittpunkt x_2 der Sekanten mit der x-Achse berechnet. Daraus ergibt sich ein neuer Punkt $(x_2,f(x_2))$, der zusammen mit $(x_1,f(x_1))$ den nächsten Iterationsschritt bildet, usw..

tta Nestle

Lösen von Gleichungen Bisektion Newton-Verfahren

Darstellung des Regula fals Verfahrens

Sekantengleichung in x_0 und x_1 :

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{y - f(x_0)}{x - x_0}$$

Schnittpunkt x_2 mit der x-Achse, d.h. für y = 0:

$$x_2 = x_0 - f(x_0) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

Konstruktion der Sekanten

Lösen von Gleichungen Bisektion Newton-Verfahren

- Initialisierung: wähle x_0 , x_1 und $\delta := 10^{-5}$
- ② Iteration:
 - a) Sekanten-Formel:

$$x_{n+1} = x_{n-1} - f(x_{n-1}) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

- b) Abbruchbedingung:
 - i) falls $|x_{n+1} x_n| < \delta$, dann Lösung:= x_{n+1} ; Stop
 - ii) falls $|x_{n+1} x_n| \ge \delta$, dann weiter mit a).

Bemerkungen

- die Konvergenz des Regula falsi Verfahrens ist langsamer als die des Newton-Verfahrens
- Bei Nullstellen von Polynomausdrücken ist das Horner-Schema zur Auswertung der Funktionswerte $f(x_1)$ sehr geeignet. Es kann außerdem zur Berechnung der Ableitung $f'(x_1)$ an einem Punkt x_1 angewendet werden.
- Bei dem Newton-Verfahren muss in jedem Iterationsschritt $f(x_n)$ und $f'(x_n)$ berechnet werden.