Mandatory excercises for week 45

Mads Petersen S17

05-11-2013

1

a)
$$T_2(x)$$
 in $x_0 = 0$ for $f(x) = e^{-x}$: $T_2(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 = 1 - 1x + \frac{1}{2}x^2$ b) $T_2(1) = 1 - 1 \cdot (1) + \frac{1}{2} \cdot 1^2 = \frac{1}{2}$

The error made using $T_k(x)$ instead of $f(x) = R_k(x) = \frac{f^{(k+1)}(c)}{k+1!}(x-a)^{k+1}$ where c is a point between x and 0, which means that the bounds for the error $f(1) - T_2(1) = R_2(0)$ and $R_2(1)$ $R_2(x) = \frac{f'''(c)}{(2+1)!}x^3 = \frac{f'$ $\frac{-e^{-c}}{6}x^3$, $R_2(0) = \frac{-e^0}{6} = -\frac{1}{6}$, $R_2(1) = \frac{-e^{-1}}{6} = -\frac{1}{6e}$ thus the error is bounded by: $-\frac{1}{6} \le R_2(1) \le -\frac{1}{6e}$

$\mathbf{2}$

Difference quotient with respect to $x = \frac{f(x+h,y)-f(x,y)}{h}$ at point $(1,2) = \frac{f(1+h,2)-f(1,2)}{h}$ $f(1,2) = 1 \cdot 2^2 + e^{1+2} = 4 + e^3 \approx 24,0855, f(1+h,2) = (1+h)2^2 + e^{(1+h)+2} = 4 + 4h + e^{3+h}$ inserting we get: $\frac{4+4h+e^{3+h}-24,0855}{h}$

Difference quotient with respect to $y = \frac{f(x,y+k) - f(x,y)}{k}$ at point $(1,2) = \frac{f(1,2+k) - f(1,2)}{k}$ $f(1,2+k) = 1(2+k)^2 + e^{1+(2+k)} = k^2 + 4k + 4 + e^{3+k}$ inserting we get: $\frac{k^2 + 4k + 4 + e^{3+k} - 24,0855}{k}$

b)

There are 2 partial derivatives of our function f(x,y) because it has 2 variables, $\frac{\partial f(x,y)}{\partial x}$ and $\frac{\partial f(x,y)}{\partial y}$

 $\frac{\partial f(x,y)}{\partial x} \text{ means we differentiate } f(x,y) \text{ with respect to } x \text{ and treat } y \text{ as a constant, this gives:}$ $\frac{\partial f(x,y)}{\partial x} = y^2 + e^{x+y}$ $\frac{\partial f(x,y)}{\partial x} = y^2 + e^{x+y}$ $\frac{\partial f(x,y)}{\partial y} \text{ is the same but with respect to } y \text{ and treating } x \text{ as a constant and gives:}$ $\frac{\partial f(x,y)}{\partial y} = 2xy + e^{x+y}$ $\text{at } f(1,2) \text{ this gives us } \frac{\partial f(x,y)}{\partial y} = 2 \cdot 1 \cdot 2 + e^{1+2} = 4 + e^3 \approx 24,0855, \frac{\partial f(x,y)}{\partial x} = 2^2 + e^{1+2} = 4 + e^3 \approx 24,0855$