Roll no:COBA020

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import datetime as dt
```

In [2]:

```
df = pd.read_csv("uber.csv")
df.head()
```

Out[2]:

Unnamed: key fare_amount pickup_datetime pickup_longitude pickup_la 0

			2015-05-07		2015-05-07	
0	24238194	7.5	-73.999817	40.7		
		19:5	52:06.0000003		19:52:06 UTC	
			2009-07-17		2009-07-17	
1	27835199	7.7	-73.994355	40.7		
		20:0	04:56.0000002		20:04:56 UTC	
			2009-08-24		2009-08-24	
2	44984355	12.9	-74.005043	40.74		
		21:45	5:00.00000061		21:45:00 UTC	
			2009-06-26		2009-06-26	
3	25894730	5.3	-73.976124	40.7		
		08:2	22:21.0000001		08:22:21 UTC	
			2014-08-28		2014-08-28	
4	17610152	16.0	-73.925023	40.74		
		17:47:	00.00000188		17:47:00 UTC	
						A

In [3]:

```
df.drop(columns=['Unnamed: 0','key'],inplace=True)
```

In [4]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200000 entries, 0 to 199999
Data columns (total 7 columns):
    # Column Non-Null Count Dtype
```

```
200000 non-null float64
fare_amount
 1
    pickup_datetime
                       200000 non-null object
                       200000 non-null float64
     pickup_longitude
 2
 3
    pickup_latitude
                       200000 non-null float64
     dropoff_longitude 199999 non-null float64
 4
                       199999 non-null float64
     dropoff_latitude
     passenger_count
                       200000 non-null int64 dtypes: float64(5), int64(1),
object(1) memory usage: 10.7+ MB
```

Dropping null rows

```
In [5]:
```

```
df.dropna(how='any',inplace=True)
```

In [6]:

```
df.isnull().sum()
```

Out[6]:

```
fare_amount 0
pickup_datetime 0
pickup_longitude 0
pickup_latitude 0
dropoff_longitude 0
dropoff_latitude 0
passenger_count 0
dtype: int64
```

Boxplots

```
In [7]:
```

```
for col in df.select_dtypes(exclude=['object']):
   plt.figure()
   sns.boxplot(data=df,x=col)
```



```
-90 < latitude < 90 -
180 < longitude < 180
fare > 0
0 < passenger_count < 50 In [8]:
df = df[</pre>
```

```
Roll no:COBA020

(df.pickup_latitude > -90) & (df.pickup_latitude < 90) &
  (df.dropoff_latitude > -90) & (df.dropoff_latitude < 90) &
  (df.pickup_longitude > -180) & (df.pickup_longitude < 180) &
  (df.dropoff_longitude > -180) & (df.dropoff_longitude < 180) &
  (df.fare_amount > 0) & (df.passenger_count > 0) & (df.passenger_count < 50)
]</pre>
```

Calculating Distance

In [9]:

```
from math import cos, asin, sqrt, pi
import numpy as np

def distance(lat_1,lon_1,lat_2,lon_2):
    # Lat1 = row.pickup_Latitude
    # Lon1 = row.pickup_Longitude
    # Lat2 = row.dropoff_Latitude
    # Lon2 = row.dropoff_Longitude
    # Lon2 = row.dropoff_Longitude
    lon_1, lon_2, lat_1, lat_2 = map(np.radians, [lon_1, lon_2, lat_1, lat_2]) #Degrees

diff_lon = lon_2 - lon_1
    diff_lat = lat_2 - lat_1

km = 2 * 6371 * np.arcsin(np.sqrt(np.sin(diff_lat/2.0)**2 + np.cos(lat_1) * np.cos(
    return km
```

In [10]:

```
temp = distance(df['pickup_latitude'],df['pickup_longitude'],df['dropoff_latitude'],df['
temp.head()
```

Out[10]:

```
0    1.683323
1    2.457590
2    5.036377
3    1.661683 4    4.475450 dtype: float64
```

```
In
```

```
[11]:
```

```
df_new = df.copy()
df_new['Distance'] = temp
df = df_new
df.head()
```

Out[11]:

fare_amount pickup_	datetime pic	:kup_longitude	pickup_latitude	dropoff_longitude	dropo
---------------------	--------------	----------------	-----------------	-------------------	-------

0	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	-73.999512	
1	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	-73.994710	
2	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	-73.962565	
3	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	-73.965316	
4	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	-73.973082	
1						

In [12]:

```
sns.boxplot(data=df,x='Distance')
```

Out[12]: <AxesSubplot:</pre>

xlabel='Distance'>

In [13]:

```
df = df[(df['Distance'] < 200) & (df['Distance'] > 0)]
```

Date and Time features extract

```
In [14]:
```

```
df['pickup_datetime'] = pd.to_datetime(df['pickup_datetime'])

<ipython-input-14-834f97bbe4ec>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)
    df['pickup_datetime'] = pd.to_datetime(df['pickup_datetime'])
```

```
In
    [15]:

df['week_day'] = df['pickup_datetime'].dt.day_name()

df['Year'] = df['pickup_datetime'].dt.year

df['Month'] = df['pickup_datetime'].dt.month

df['Hour'] = df['pickup_datetime'].dt.hour

<ipython-input-15-b91c1da9c026>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy) dffi'week_day'] =
```

cs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (http s://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returni ng-a-view-versus-a-copy) df['week_day'] = df['pickup_datetime'].dt.day_name() <ipython-input-15-b91c1da9c026>:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy) df['Year'] = df['pickup_datetime'].dt.year
cipython-input-15-b91c1da9c026>:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy) df['Month'] = df['pickup_datetime'].dt.month
cipython-input-15-b91c1da9c026>:4: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy) df['Hour'] = df['pickup_datetime'].dt.hour

In [16]:

```
df.drop(columns=['pickup_datetime','pickup_latitude','pickup_longitude','dropoff_latitud
```

```
<ipython-input-16-a7c1789815f4>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.drop(columns=['pickup_datetime','pickup_latitude','pickup_longitud
e','dropoff_latitude','dropoff_longitude'],inplace=True)

In

[17]:

df.head()

Out[17]:

	fare_amount	passenger_co	unt	Distance	week_day	Year	Month	Hour
0	7.5 1	1	1.68	3323	Thursday		2015	5
1	7.7 1	l 2.457590 Frida	y 200	09 7 20 2 12	2.9 1 5.03637	7 Mond	day 2009	8 21
3	5.3		3	1.661683	Friday	2009	6	8
4	16.0		5	4.475450	Thursday	2014	8	17

```
In
```

[18]:

```
temp = df.copy()
def convert_week_day(day):
    if day in ['Monday','Tuesday','Wednesday','Thursday']:
        return 0 # Weekday
    return 1 # Weekend
def convert_hour(hour):
    if 5 <= hour <= 12:</pre>
        return 1
    elif 12 < hour <= 17:
        return 2
    elif 17 < hour < 24:
        return 3
    return 0
df['week_day'] = temp['week_day'].apply(convert_week_day)
df['Hour'] = temp['Hour'].apply(convert hour)
df.head()
```

<ipython-input-18-655f90749f34>:17: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy) df['week_day'] = temp['week_day'].apply(convert_week_day) <ipython-input-18-655f90749f34>:18: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy) df['Hour'] = temp['Hour'].apply(convert_hour)Out[18]:

	fare_amount	passenger	_count Dis	stance weel	k_day Year	Month	1 Hour
0	7.5	1	1.68332	3 0	2015	5	3
1	7.7	1	2.45759	0 1	2009	7	3 2
	1	2.9 1	5.03637	7 0	2009	8	3
3	5.3		3 1.6	61683	1 2009	(3 1

4 16.0 5 4.475450 0 2014 8 2

Correlation Matrix

```
In [19]:
```

```
df.corr()
```

Out[19]:

	fare_amount	passenger_count	Distance	week_day	Year	Month
fare_amount	1.000000	0.011884	0.778667	0.002305	0.120430	0.024120
passenger_count	0.011884	1.000000	0.005112	0.035882	0.005339	0.008818
Distance	0.778667	0.005112	1.000000	0.014518	0.018617	0.007373
week_day	0.002305	0.035882	0.014518	1.000000	0.006910	-0.007328
Year	0.120430	0.005339	0.018617	0.006910	1.000000	-0.115182
Month	0.024120	0.008818	0.007373	-0.007328	-0.115182	1.000000
Hour	-0.021078	0.013572	-0.022691	-0.078129	0.001131	-0.005410
4						

In [20]:

```
sns.scatterplot(y=df['fare_amount'],x=df['Distance'])
```

```
Out[20]: <AxesSubplot: xlabel='Distance',
ylabel='fare_amount'>
```


In [21]:

```
from sklearn.preprocessing import StandardScaler
x = df[['Distance']].values
y = df['fare_amount'].values.reshape(-1,1)
```

```
Independent Variable: Distance Dependent Variable: fare_amount
```

```
[31]:
```

```
from sklearn.model_selection import train_test_split x_train, x_test,
y_train,y_test = train_test_split(x,y,random_state=10) In [32]:
```

```
std_x = StandardScaler()
x_train = std_x.fit_transform(x_train)
```

```
In [33]:
```

```
x_test = std_x.transform(x_test)
```

```
In [34]:
```

```
std_y = StandardScaler()
y_train = std_y.fit_transform(y_train)
```

```
In [35]:
```

```
y_test = std_y.transform(y_test)
```

In [36]:

In [38]:

```
fit_predict(LinearRegression())
```

R-squared: 0.604116792084117 RMSE: 0.6290054895695945 MAE: 0.27552329590959823 In [39]: from sklearn.ensemble import RandomForestRegressor
fit_predict(RandomForestRegressor())

R-squared: 0.652350257870196

RMSE: 0.589443049630681 MAE: 0.2921068537600526

Tn	
TH	