

# **Cryptography Basics**

#### Prof.dr. Ferucio Laurențiu Țiplea

Fall 2021

Department of Computer Science "Alexandru Ioan Cuza" University of Iași Iași 700506, Romania

e-mail: ferucio.tiplea@uaic.ro

## Cryptography

Cryptography is a handy tool in information security, being the basis of many security mechanisms that offer services such as:

- 1. confidentiality
- 2. integrity
- 3. authentication
- 4. non-repudiation

#### However:

- Cryptography is not the solution to all security problems!
- If not properly implemented, cryptographic tools may leak information very subtly without you realizing it!

# Cryptographic technologies

There are two main cryptographic technologies:

- 1. Symmetric key (also called secret key, single key, conventional)
  - Rough meaning: uses the same secret key to encrypt and also decrypt
- 2. Asymmetric key (also called public key)

Rough meaning: uses a public key to encrypt and a private key to decrypt

Symmetric key technology usually requires a key distribution mechanism!

## Proving security in cryptography

Two main approaches to security:

- Try to exhibit an attack, such as: brute-force, man-in-the-middle, meet-in-the-middle, frequency analysis, replay, birthday, dictionary etc. attack. Then:
  - attack found ⇒ system insecure
  - attack not found ⇒ ???
- 2. Try to prove security (provable security). Two milestones:
  - 2.1 Perfect security (Shannon (1949))
  - 2.2 Computational security (Goldwasser and Micali (1984))

#### Perfect security



Claude Shannon: "The father of Information Theory"

C. Shannon. Communication Theory of Secrecy Systems, Bell System Technical J., vol. 28, no. 4, 1949, pp. 656-715.

Perfect security or unconditional security or information-theoretic security means that the ciphertext reveals no information about the plaintext to an adversary with unlimited power.

## Computational security



Shafrira Goldwasser: Gödel Prize (1993, 2001), Turing Award (2012)



Silvio Micali: Gödel Prize (1993), Turing Award (2012)

Semantic security: an adaptation of Shannon's perfect security to the computational setting, considering only adversaries having bounded computational resources.

#### Provable security

Provable security also known as reductionist security: security can be proven by reduction to well-studied (hard) problems.

#### Provable security entails:

- ullet A security model  ${\mathcal S}$  for the cryptographic scheme
  - 1. Security goal, such as semantic security (SS), indistinguishability (IND), non-maleability (NM), collision resistance, non-forgery etc.
  - Attack model, such as chosen plaintext attack (CPA) or chosen ciphertext attack (CCA1 and CCA2)
- ullet A problem together with a hardness assumption  ${\cal H}$  about it
- A reductionist proof:  $\mathcal{H} \leq \mathcal{S}$

Many of the ciphers used today in practice are not proven secure nor known attack methods against them!

#### References

# References

Goldwasser, S. and Micali, S. (1984). Probabilistic encryption. Journal of Computer and System Sciences, 28:270–299.

Shannon, C. E. (1949). Communication theory of secrecy systems. The Bell System Technical Journal, 28(4):656–715.