Instituto Politécnico Nacional

Centro de Estudios Científicos y Tecnológicos #3

"Estanislao Ramírez Ruiz"

Página Web

Trigonometría y geometría

Primer parcial

Integrantes:

Contreras Eustaquio Uriel

Contreras Romero Dylan Enrique

Escudero Velázquez Joa Kaleb- Representante

Vargas Figueroa Christian Jesús

Índice

Frigonometría:	3
¿Qué es una función?	3
Función	4
Función Exponencial	4
Función logarítmica	5
Relación entre funciones exponenciales y logarítmicas	5
Propiedades de funciones exponenciales y logarítmicas	6
Leyes de los exponentes	6
Propiedades de los logaritmos	6
Leyes de los logaritmos	7
Ecuaciones exponenciales y logarítmicas	7
Modelos de crecimiento y decaimiento exponencial	8

Trigonometría:

¿Qué es una función?

Observamos que elemento del conjunto "A" le corresponde un elemento del conjunto "B".

Al conjunto "A" se le llama DOMINIO y al conjunto "B" se le llama IMAGEN o CONTRADICTORIO.

El **dominio** es el conjunto de valores que entran en una función.

El **contradictorio** es lo que posiblemente podría salir de una función.

El rango es el conjunto de valores que van saliendo

Ahora analicemos el ejemplo siguiente:

Si el conjunto de A contiene los cuatro primeros números naturales, y el conjunto B contiene los duplos de dichos números, esto es:

A la relación de correspondencia en la cual se señala un criterio para saber que A es igual a B, lo cual se llama función y se simboliza:

$$f: A \to B$$
 o bien $A \to B$

Ejemplo: Una simple función como $f(x) = x^2$ puede tener el dominio de sólo los números naturales (1,2, 3...), y el rango será el conjunto (1, 4, 9...)

Función

Una función es una regla de correspondencia o relación entre dos conjuntos:

Ejemplo de la expresión $y = x^2$

Función Exponencial

Una función exponencial f(x) con base "a" se expresa por $f(x) = a^x$ donde "a" > 0, "a" \neq 1 y x es cualquier número real.

La besa "a" = 1 se excluye, produce $f(x) = 1^x$ que es una función constante, no una función exponencial.

Una función exponencial natural es la función $f(x) = e^x$ con base " e^x " donde " e^x " es cualquier número real y " e^x " es el número aproximadamente 2,718281828.

Ejemplo gráfico de una función exponencial:

Función logarítmica

Usamos el concepto de logaritmo para introducir una nueva función cuyo dominio es el conjunto de los números reales positivos.

La función f definida como:

$$f(x) = \log_a x$$

Para todo número real positivo "x" se llama función LOGARÍTMICA de base "a".

Ejemplo grafico de una función logarítmica:

Relación entre funciones exponenciales y logarítmicas

Las ecuaciones $y=\log_a x$ y $x=a^y$ son equivalentes. La primera se llama forma logarítmica y la segunda—exponencial.

Ahora nos familiarizaremos más con los logaritmos

Retomando la función: $f(x) = b^L$ si b > L

Tenemos que, al darle valores positivos a "L" siempre obtenemos un número real tan que:

$$b^L = N$$

Si "N" es cualquier número real positivo, entonces e exponente (único) "L" tal que:

$$L = \log_b N$$

Es conveniente mostrar la relación que existe entre las formas:

$$b^L = N$$
 $y \log_b N = L$

Como ya saben a la primera $b^L=N\,$ se le denomina FORMA EXPONENCIAL

Y la segunda $\log_b N = L$ se le llama FORMA LOGARITMICA

Propiedades de funciones exponenciales y logarítmicas

Leyes de los exponentes

$$a^x a^y = a^{x+y}$$

$$(ab)^x = a^x b^x$$

$$\frac{a^x}{a^y} = a^{x-y}$$

$$(a^x)^y = a^{xy}$$

$$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$

Propiedades de los logaritmos

Cambio de Base

La mayoría de las calculadoras tienen sólo dos tipos de claves iniciales, una para logaritmos comunes (base 10) y una para logaritmos naturales (base e). Aunque los logaritmos comunes y los logaritmos naturales son los más frecuentemente usados, a veces puedes evaluar logaritmos con otras bases.

Fórmula

Deja que "a", "b" y "x" sean números reales positivos de tal manera que $a \neq 1$ y $b \neq 1$. Entonces, $\log_a x$ puede ser convertida a una base diferente del siguiente modo:

Base b

Base 10

Base e

$$\log_a x = \frac{\log_b x}{\log_b a}$$

$$\log_a x = \frac{\log x}{\log a}$$

$$\log_a x = \frac{\ln x}{\ln a}$$

Leyes de los logaritmos

- $\log_a(uw) = \log_a u + \log_a w$
- II. $\log_a(\frac{u}{w}) = \log_a u + \log_a w$
- III. $\log_a(u)^c = c \log_a u$, para todo número real "c"

Estas propiedades también son válidas para los logaritmos naturales (In)

$$In_a(uw) = In_a u + In_a w$$

$$\ln_a(\frac{u}{w}) = \ln_a u + \ln_a w$$

$$In_a(u)^c = c In_a u$$

Ecuaciones exponenciales y logarítmicas

En ciertas ecuaciones, las variables aparecen como exponentes o como logaritmos, éstas son las ecuaciones exponenciales o logarítmicas.

Existen varias estrategias básicas para la resolución básicas para la resolución entre los logaritmos y las exponentes: $\log_a x = b$ entonces $a^b = x$. Otra en las propiedades uno a uno que se muestran a la izquierda y se utiliza para resolver simples ecuaciones exponenciales y logarítmicas.

Otra estrategia se basas en las propiedades inversas que se muestran a la izquierda que para a > 0 y $a \ne 1$ son ciertas para toda la "x" y para las cuales $\log_a x$ y $\log_a y$ son definidas.

Ejemplo: Resuelve la ecuación $3^x = 21$

Tomemos el logaritmo de ambos lados de la igualdad

$$\log 3^x = \log 21$$

Apliquemos la propiedad de los logaritmos

$$x \log 3 = \log 21$$

Despejamos la incógnita

$$x = \frac{\log 21}{\log 3}$$

$$x = \frac{1.3222}{0.4777}$$

$$x = 2.77$$

Modelos de crecimiento y decaimiento exponencial

Fórmulas de:

Crecimiento en donde:

 $A(t) = A_2 e^{kt}$ **t**: tiempo

Decaimiento A(t): Cantidad final

 $A(t) = A_0 e^{kt}$ Ao: Cantidad inicial

K: La taza