Note del corso di Calcolabilità e Linguaggi Formali - Lezione 12

Alberto Carraro 14 dicembre 2016

IIS Bruno-Franchetti, Mestre (VE) http://www.dsi.unive.it/~acarraro

1 Nondeterministic tree automata

Definition 1. A nondeterministic parity tree automaton (NPTA) for Σ -labelled full binary trees is a tuple $A = (Q, \Sigma, q_I, \delta, \Omega)$ where Q is a finite set of states, $q_I \in Q$ is the initial state, $\delta : Q \times \Sigma \to \mathcal{P}(Q^2)$ is the transition function and $\Omega : Q \to \{1, \ldots, k\}$ is the priority function.

A run-tree of an automaton A over a tree t is a map $\rho:\{0,1\}^* \to Q$ such that

```
1. \rho(\varepsilon) = q_I and
2. for all u \in \{0, 1\}^* we have (\rho(u0), \rho(u1)) \in \delta(\rho(u), t(u)).
```

A run-tree ρ of A over t is accepting iff in every path π of ρ the least priority that occurs infinitely often is even. An automaton A accepts a tree t just if there exists an accepting run-tree of A over t.

Definition 2. Given an NPTA $A = (Q, \Sigma, q_I, \delta, \Omega)$ and a tree t the acceptance parity game $\mathcal{G}_{A,t} = (V_V, V_R, E, v_I, \Omega')$ where

```
 \begin{aligned} &-V_{V} = \{0,1\}^{*} \times Q \\ &-V_{R} = \{0,1\}^{*} \times Q^{2} \\ &-v_{I} = (\varepsilon,q_{I}) \\ &-E \subseteq (V_{V} \times V_{R}) \cup (V_{R} \times V_{V}) \text{ is the smallest relation such that} \\ &\bullet \text{ if } (v,q) \in V_{V} \text{ and } (q_{0},q_{1}) \in \delta(q,a) \text{ and } t(v) = a, \text{ then } ((v,q),(v,(q_{0},q_{1}))) \in E \\ &\bullet \text{ if } (v,(q_{0},q_{1})) \in V_{R}, \text{ then } ((v,(q_{0},q_{1})),(v_{0},q_{0})) \in E \text{ and } ((v,(q_{0},q_{1})),(v_{0},q_{1})) \in E \end{aligned}
```

The acceptance parity game of Definition 2 can be read as follows:

 $-\Omega'(v,q) = \Omega(q) \text{ and } \Omega'(v,(q_0,q_1)) = \max\{\Omega(q_0),\Omega(q_1)\}$

- Verifier can exploit the nondeterminism of A by choosing the run-tree
- Refuter chooses the path

Their combined action is headed towards checking that there exists (\exists) a run-tree all (\forall) of whose paths are accepting. Again Verifier represents (\exists) and Refuter represents (\forall) .

Lemma 1. Verifier has a winning strategy in $\mathcal{G}_{A,t}$ from vertex v_I iff $t \in L(A)$.

Proof. (\Rightarrow) Suppose Verifier has a winning strategy σ in $\mathcal{G}_{A,t}$ from v_I . Define the map $\rho: \{0,1\}^* \to Q$ inductively as

```
 \begin{aligned} & - \rho(\varepsilon) = q_I ; \\ & - \rho(v0) = q_0 \text{ if } \rho(v) = q \text{ and } \sigma(v,q) = (v,(q_0,q_1)) ; \\ & - \rho(v1) = q_1 \text{ if } \rho(v) = q \text{ and } \sigma(v,q) = (v,(q_0,q_1)) . \end{aligned}
```

Clearly ρ is a run-tree of A over t. A path π of ρ has vertices $\ldots, (v, q), (v, (q_0, q_1)), (v0, q_0), (v0, (q'_0, q'_1)), (v01, q'_1), \ldots$ and therefore has priorities

```
\ldots, \Omega(q), \max{\Omega(q_0), \Omega(q_1)}, \Omega(q_0), \max{\Omega(q'_0), \Omega(q'_1)}, \Omega(q'_1), \ldots
```

The least priority occurring infinitely often is even but since each priority appearing at an even position is \geq than its immediate successor, the subsequence obtained by removing all priorities at even positions is such that the least priority occurring infinitely often is still even. Such a subsequence witnesses an accepting path of ρ and all paths of ρ are obtained this way. Hence ρ is accepting.

(⇐) Suppose ρ is an accepting run-tree fo A over t. Then define the map σ : $(V_V \times V_R^*)V_V \to V_R$ as

```
-\sigma(\alpha(v,q)) = (v,(q_0,q_1)) \text{ iff } \rho(v_0) = q_0 \text{ and } \rho(v_1) = q_1.
```

Clearly σ is a strategy for Verifier in $\mathcal{G}_{A,t}$ from v_0 . A play π respecting σ has vertices

```
..., (v, q), (v, (q_0, q_1)), (v0, q_0), (v0, (q'_0, q'_1)), (v01, q'_1), ... and therefore has priorities
```

 $\ldots, \Omega(q), \max{\lbrace \Omega(q_0), \Omega(q_1) \rbrace}, \Omega(q_0), \max{\lbrace \Omega(q'_0), \Omega(q'_1) \rbrace}, \Omega(q'_1), \ldots$

The subsequence obtained by removing all priorities at even positions is the runtree ρ and the least priority occurring infinitely often in it is even. Since each priority appearing at an even position is \geq than its immediate successor, the least priority occurring infinitely often in π is still even. Such a play is winning for Verifier.

Definition 3. Given an NPTA $A = (Q, \Sigma, q_I, \delta, \Omega)$ the non-emptiness parity game $\mathcal{G}_A = (V_V, V_R, E, v_I, \Omega')$ where

```
 \begin{split} &-V_{V} = Q \\ &-V_{R} = \{((q,a),(q_{0},q_{1})): (q_{0},q_{1}) \in \delta(q,a)\}. \\ &-v_{I} = q_{I} \\ &-E \subseteq (V_{V} \times V_{R}) \cup (V_{R} \times V_{V}) \text{ is the smallest relation such that} \\ &\bullet \text{ if } q \in V_{V} \text{ and } (q_{0},q_{1}) \in \delta(q,a), \text{ then } (q,((q,a),(q_{0},q_{1}))) \in E \\ &\bullet \text{ if } v = ((q,a),(q_{0},q_{1})) \in V_{R}, \text{ then } (v,q_{0}) \in E \text{ and } (v,q_{1}) \in E \\ &-\Omega'(q) = \Omega(q) \text{ and } \Omega'((q,a),(q_{0},q_{1})) = \Omega(q) \end{split}
```

Lemma 2. Verifier has a winning strategy in \mathcal{G}_A from vertex v_I iff $L(A) \neq \emptyset$.

Proof. (\Rightarrow) Suppose Verifier has a winning strategy σ in \mathcal{G}_A from v_I . Then $\delta(q,a) \neq \emptyset$ for every pair $(q,a) \in Q \times \Sigma$. The map σ induces a function $\hat{\sigma} : Q \to \Sigma \times Q^2$ given by $\hat{\sigma}(q) = (a,q_0,q_1)$ iff $\sigma(q) = ((q,a),(q_0,q_1))$. Therefore

```
the solution to the fixpoint equation \tau(q)=(a,\tau(q_0),\tau(q_1)) with constraints \hat{\sigma}(q)=(a,q_0,q_1) is a tree whose first coordinates define a tree t\in L(A). (\Leftarrow) Suppose t\in L(A) is an input tree and let \rho be the associated run-tree. Let \bar{t}(\varepsilon)=t(\varepsilon) and \bar{t}(uj)=\bar{t}(u)t(uj) for u\in\{0,1\}^* and j\in\{0,1\}. Let also \bar{\rho}(\varepsilon)=\rho(\varepsilon) and \bar{\rho}(uj)=\bar{\rho}(u)\rho(uj) for u\in\{0,1\}^* and j\in\{0,1\}. Similarly Then the map \sigma:(V_VV_R)^*V_V\to V_R given by \sigma(\alpha q)=((q,a),(q_0,q_1)) if \alpha "contains" the string u=i_1\dots i_n and t(i_1)\dots t(i_1\dots i_n)=a and \rho(i_1)\dots \rho(i_1\dots i_n)=q.
```