МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. Шухова» (БГТУ им. В. Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №19.7

по дисциплине: «Побитовые операции»

Выполнил/а: ст. группы ВТ-231 Кисиль Николай Владимирович

Проверили: Черников Сергей Викторович Новожен Никита Викторович

Цель работы: получение навыков работы с побитовыми операциями
Содержание работы
Задача 1: Вывести восьмеричное представление записи числа х 4
Задача 2: Напишите функцию deleteOctNumber, которая удаляет цифру
digit в записи данного восьмеричного числа x . Вывод результата можно
произвести в любой системе счисления
Задача 3: Напишите функцию swapP airBites, которая меняет местами
соседние цифры пар в двоичной записи данного натурального числа. Обмен
начинается с младших разрядов. Непарная старшая цифра остается без
изменения
Задача 4: Напишите функцию $invertHex$, которая преобразует число x ,
переставляя в обратном порядке цифры в шестнадцатеричном представлении
данного натурального числа
Задача 5: Напишите функцию isBinPoly, которая возвращает значение
'истина', если число x является палиндромом в двоичном представлении,
иначе - 'ложь'
Задача 6: Даны два двухбайтовых целых $sh1$ и $sh2$. Получить целое
число, последовательность четных битов которого представляет собой
значение $sh1$, а последовательность нечетных — значение $sh2$
Задача 7: Определить максимальную длину последовательности подряд
идущих битов, равных единице в двоичном представлении данного целого
числа
Задача 8: ** Выполнить циклический сдвиг в двоичном представлении
данного натурального числа x на k битов влево
Задача 9: ** Дано длинное целое неотрицательное число. Получить
число, удалив каждую вторую цифру в двоичной записи данного числа,

Задача 10: ** Дано целое неотрицательное число. Получить число	
перестановкой битов каждого байта данного числа в обратном порядке 13	
Задача 11: ** Пакеты с монетами (1037А)	

Задача 1: Вывести восьмеричное представление записи числа х

Пример тестовых данных:

No	Входные данных	Выходные данные
1	12	14
2	166	246
3	0	0

Спецификация функции countOctDigits:

- 1. Заголовок int countOctDigits (unsigned x).
- 2. Назначение: возвращает число цифр в восьмеричное записи х

Спецификация функции printOct:

- 1. Заголовок void printOct (const unsigned x)
- 2. Назначение: выводит восьмеричное представление записи числа х

```
int countOctDigits(unsigned x) {
   int digits = 1;

while (x > 7) {
      digits++;
      x >>= 3;
   }
   return digits;
}

void printOct(const unsigned x) {
   int digits = countOctDigits(x);
   for (size_t i = digits; i > 0; i--) {
      int digit = x >> BITS_IN_OCT_DIGIT * (i - 1) & 7;
      printf("%d", digit);
   }
}
```

Задача 2: Напишите функцию deleteOctNumber, которая удаляет цифру digit в записи данного восьмеричного числа x. Вывод результата можно произвести в любой системе счисления

Пример тестовых данных:

№	Входные данных	Выходные данные
1	3179	653
	1	
2	9	0
	1	
3	37	45
	1	

Спецификация функции deleteOctNumber:

- 1. Заголовок deleteOctNumber(const unsigned x, const int d)
- 2. Назначение: удаляет цифру digit в записи данного восьмеричного числа x.

```
void deleteOctNumber(const unsigned x, const int d) {
   int digits = countOctDigits(x);
   for (size_t i = digits; i > 0; i--) {
      int digit = x >> BITS_IN_OCT_DIGIT * (i - 1) & 7;
      if(digit != d) {
          printf("%d", digit);
      }
   }
}
```

Задача 3: Напишите функцию swapP airBites, которая меняет местами соседние цифры пар в двоичной записи данного натурального числа. Обмен начинается с младших разрядов. Непарная старшая цифра остается без изменения.

Пример тестовых данных:

No	Входные данных	Выходные данные
1	6	5
2	5	6
3	77	78

Спецификация функции swapPairBites:

- 1. Заголовок unsigned int swapPairBites(int x)
- 2. Назначение: меняет местами соседние цифры пар в двоичной записи данного натурального числа

```
unsigned int swapPairBites(int x) {
   int length = 0;
   int copy_number = x;
   while (copy_number > 0) {
      copy_number >>= 1;
      length++;
   }
   unsigned result;
   if (length % 2 == 0) {
      result = ((x & ODD_BIN_MASK) << 1) | ((x & EVEN_BIN_MASK) >> 1);
   }
   else{
      x = x - (1 << (length - 1));
      result = (((x & ODD_BIN_MASK) << 1) | ((x & EVEN_BIN_MASK) >> 1)) +
   (1 << (length - 1));
   }
   return result;
}</pre>
```

Задача 4: Напишите функцию *invertHex*, которая преобразует число *x*, переставляя в обратном порядке цифры в шестнадцатеричном представлении данного натурального числа.

Пример тестовых данных:

No	Входные данных	Выходные данные
1	77	212
2	2732	3242

Спецификация функции invertHex:

- 1. Заголовок long long invertHex(int n)
- 2. Назначение: преобразует число x, переставляя в обратном порядке цифры в шестнадцатеричном представлении данного натурального числа.

```
long long invertHex(int n) {
    long long res = 0;
    while (n) {
        res <<= 4;
        res |= n & 0xF;
        n >>= 4;
    }
    return res;
}
```

Задача 5: Напишите функцию isBinPoly, которая возвращает значение 'истина', если число x является палиндромом в двоичном представлении, иначе - 'ложь'.

Пример тестовых данных:

No	Входные данных	Выходные данные
1	27	1
2	454	0

Спецификация функции isBinPoly:

- 1. Заголовок int isBinPoly(unsigned int x)
- 2. Назначение: возвращает значение 'истина', если число x является палиндромом в двоичном представлении, иначе 'ложь'

```
int isBinPoly(unsigned int x) {
    unsigned int bin_x = x;
    unsigned int reversed_bin_x = 0;
    while (bin_x != 0) {
        unsigned int last_digit = bin_x & 1;
        reversed_bin_x <<= 1;
        reversed_bin_x |= last_digit;
        bin_x >>= 1;
    }
    return x == reversed_bin_x;
}
```

Задача 6: Даны два двухбайтовых целых sh1 и sh2. Получить целое число, последовательность четных битов которого представляет собой значение sh1, а последовательность нечетных — значение sh2.

Пример тестовых данных:

№	Входные данных	Выходные данные
1	12 18	420
2	32512 0	715784192

Спецификация функции createNum:

- 1. Заголовок int createNum(int sh1, int sh2)
- 2. Назначение: возвращает целое число, последовательность четных битов которого представляет собой значение sh1, а последовательность нечетных значение sh2.

```
int createNum(int sh1, int sh2) {
   int new_num = 0;
   int index = 0;
   while (sh1 > 0 || sh2 > 0) {
        new_num += (sh2 & 1) << index++;
        sh2 >>= 1;
        new_num += (sh1 & 1) << index++;
        sh1 >>= 1;
   }
   return new_num;
}
```

Задача 7: Определить максимальную длину последовательности подряд идущих битов, равных единице в двоичном представлении данного целого числа.

Пример тестовых данных:

№	Входные данных	Выходные данные
1	61454	4
2	11	2

Спецификация функции getMaxLengthBits:

- 1. Заголовок unsigned int getMaxLength(unsigned int x)
- 2. Назначение: возвращает максимальную длину последовательности подряд идущих битов, равных единице в двоичном представлении данного целого числа

Задача 8: ** Выполнить циклический сдвиг в двоичном представлении данного натурального числа x на k битов влево.

Пример тестовых данных:

No	Входные данных	Выходные данные
1	27 1	23
2	27 2	15
3	42 1	21

Спецификация функции shift:

- 1. 3аголовок unsigned int shift(unsigned int x, unsigned int k).
- 2. Назначение: циклический сдвиг в двоичном представлении данного натурального числа x на k битов влево

```
unsigned int shift(unsigned int x, unsigned int k) {
   int digitsCounter = ceil(log2(x + 1));

   for (; k > 0; k--) {
        x = (x << 1) | (x >> (digitsCounter - 1));
        x &= ~(1 << digitsCounter);
   }
   return x;
}</pre>
```

Задача 9: ** Дано длинное целое неотрицательное число. Получить число, удалив каждую вторую цифру в двоичной записи данного числа, начиная со старших цифр

Пример тестовых данных:

No	Входные данных	Выходные данные
1	3	1
2	10	3
3	40	6

Спецификация функции deleteEverySecondDigit:

- 1. Заголовок unsigned long long deleteEverySecondDigit(unsigned long long x)
- 2. Назначение: возвращает число, удалив каждую вторую цифру в двоичной записи данного числа, начиная со старших цифр

```
unsigned long long deleteEverySecondDigit(unsigned long long x) {
   unsigned long long result;
   if (x == 1 || x == 2)
   result = x >> (x - 1);
   else {
      int digits_count = ceil(log2(x + 1));
      result = x >> (digits_count - 1);
      for (int i = digits_count - 3; i >= 0; i -= 2) {
          result <<= 1;
          result |= ((x >> i) & 1);
      }
   }
   return result;
}
```

Задача 10: ** Дано целое неотрицательное число. Получить число перестановкой битов каждого байта данного числа в обратном порядке.

Пример тестовых данных:

No	Входные данных	Выходные данные
1	61455	4080
2	43605	21930

Спецификация функции numberWithPermutation:

- 1. Заголовок unsigned long long numberWithPermutation(unsigned long long x)
- 2. Назначение: возвращает число перестановкой битов каждого байта данного числа в обратном порядке

```
unsigned long long numberWithPermutation(unsigned long long x) {
    x = (x >> 8) | (x << 8);
    for (int i = 23; i >= 16; i--) {
        x &= ~(1 << i);
    }
    return x;
}</pre>
```

Задача 11: ** Пакеты с монетами (1037А)

Код:

```
#include <stdio.h>
int main() {
    long long n;
    scanf("%lld", &n);
    int min_packages = 0;
    while (n > 0) {
        n >>= 1;
        min_packages++;
    }
    printf("%d", min_packages);
    return 0;
}
```

Результат тестирующей программы:

Статус соревнования ≣							
Nō	Когда	Кто	Задача	Язык	Вердикт	Время	Память
233423415	19.11.2023 16:21	n1kuso	1037А - Пакеты с монетами	GNU C11	Полное решение	15 мс	0 КБ

Вывод: почили навыки написания функций с побитовыми операциями.