In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler
 import re
 from sklearn.datasets import load_digits
 from sklearn.model_selection import train_test_split

In [2]: a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\madrid_2002.csv
a

Out[2]:

· 		date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PXY	so
	0	2002- 04-01 01:00:00	NaN	1.39	NaN	NaN	NaN	145.100006	352.100006	NaN	6.54	41.990002	NaN	21.3200
	1	2002- 04-01 01:00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.85	20.980000	2.53	11.6600
	2	2002- 04-01 01:00:00	NaN	0.80	NaN	NaN	NaN	103.699997	134.000000	NaN	13.01	28.440001	NaN	13.6700
	3	2002- 04-01 01:00:00	NaN	1.61	NaN	NaN	NaN	97.599998	268.000000	NaN	5.12	42.180000	NaN	16.9900
	4	2002- 04-01 01:00:00	NaN	1.90	NaN	NaN	NaN	92.089996	237.199997	NaN	7.28	76.330002	NaN	15.2600
217:	291	2002- 11-01 00:00:00	4.16	1.14	NaN	NaN	NaN	81.080002	265.700012	NaN	7.21	36.750000	NaN	13.2100
217:	292	2002- 11-01 00:00:00	3.67	1.73	2.89	NaN	0.38	113.900002	373.100006	NaN	5.66	63.389999	NaN	15.6400
217	293	2002- 11-01 00:00:00	1.37	0.58	1.17	2.37	0.15	65.389999	107.699997	1.30	9.11	9.640000	0.94	5.6200
217	294	2002- 11-01 00:00:00	4.51	0.91	4.83	10.99	NaN	149.800003	202.199997	1.00	5.75	NaN	5.52	24.2199
217	295	2002- 11-01 00:00:00	3.11	1.17	3.00	7.77	0.26	80.110001	180.300003	2.25	7.38	29.240000	3.35	12.9100

217296 rows × 16 columns

In [3]: a.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 217296 entries, 0 to 217295
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype		
0	date	217296 non-null	object		
1	BEN	66747 non-null	float64		
2	CO	216637 non-null	float64		
3	EBE	58547 non-null	float64		
4	MXY	41255 non-null	float64		
5	NMHC	87045 non-null	float64		
6	NO_2	216439 non-null	float64		
7	NOx	216439 non-null	float64		
8	OXY	41314 non-null	float64		
9	0_3	216726 non-null	float64		
10	PM10	209113 non-null	float64		
11	PXY	41256 non-null	float64		
12	S0_2	216507 non-null	float64		
13	TCH	87115 non-null	float64		
14	TOL	66619 non-null	float64		
15	station	217296 non-null	int64		
dtype	es: float	54(14), int64(1),	object(1)		

In [7]: b=a.fillna(value=66)
b

Out[7]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PXY	
0	2002 - 04-01 01:00:00	66.00	1.39	66.00	66.00	66.00	145.100006	352.100006	66.00	6.54	41.990002	66.00	21.3
1	2002- 04-01 01:00:00	1.93	0.71	2,33	6.20	0.15	98.150002	153,399994	2.67	6.85	20.980000	2.53	11.6
2	2002- 04-01 01:00:00	66.00	0.80	66.00	66.00	66.00	103.699997	134.000000	66.00	13.01	28.440001	66.00	13.6
3	2002- 04-01 01:00:00	66.00	1.61	66.00	66.00	66.00	97.599998	268.000000	66.00	5.12	42.180000	66.00	16.9
4	2002- 04-01 01:00:00	66.00	1.90	66.00	66.00	66.00	92.089996	237.199997	66.00	7.28	76.330002	66.00	15.2
					•••				•••			•••	
217291	2002 - 11-01 00:00:00	4.16	1.14	66.00	66.00	66.00	81.080002	265.700012	66.00	7.21	36.750000	66.00	13.2
217292	2002- 11-01 00:00:00	3.67	1.73	2.89	66.00	0.38	113.900002	373.100006	66.00	5.66	63.389999	66.00	15.6
217293	2002- 11-01 00:00:00	1.37	0.58	1.17	2.37	0.15	65.389999	107.699997	1.30	9.11	9.640000	0.94	5.6
217294	2002- 11-01 00:00:00	4.51	0.91	4.83	10.99	66.00	149.800003	202.199997	1.00	5.75	66.000000	5.52	24.2
217295	2002- 11-01 00:00:00	3.11	1.17	3.00	7.77	0.26	80.110001	180.300003	2.25	7.38	29.240000	3.35	12.9

217296 rows × 16 columns

In [8]: b.columns

In [6]: c=b.head(10) c

Out[6]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PXY	•
0	2002- 04-01 01:00:00	87.00	1.39	87.00	87.00	87.00	145.100006	352.100006	87.00	6.540000	41.990002	87.00	21.32
1	2002 - 04-01 01:00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.850000	20.980000	2,53	11.66
2	2002 - 04-01 01:00:00	87.00	0.80	87.00	87.00	87.00	103.699997	134.000000	87.00	13.010000	28.440001	87.00	13.67
3	2002- 04-01 01:00:00	87.00	1.61	87.00	87.00	87.00	97.599998	268.000000	87.00	5.120000	42.180000	87.00	16.99
4	2002- 04-01 01:00:00	87.00	1.90	87.00	87.00	87.00	92.089996	237.199997	87.00	7.280000	76.330002	87.00	15.26
5	2002- 04-01 01:00:00	3.19	0.72	3.23	7.65	0.11	113.699997	187.000000	3.53	12.370000	27.450001	2.98	14.78
6	2002- 04-01 01:00:00	87.00	0.78	87.00	87.00	0.09	101.000000	119.300003	87.00	20.549999	23.950001	87.00	13.63
7	2002- 04-01 01:00:00	87.00	1.06	87.00	87.00	87.00	127.300003	204.100006	87.00	3.150000	49.639999	87.00	21.38
8	2002- 04-01 01:00:00	87.00	1.21	87.00	87.00	87.00	106.300003	126.599998	87.00	22.389999	32.090000	87.00	17.01
9	2002- 04-01 01:00:00	87.00	0.61	87.00	87.00	0.14	95.540001	110.699997	87.00	27.770000	24.610001	87.00	19.44

Out[14]:

	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PXY	SO_2	тс
0	87.00	1.39	87.00	87.00	87.00	145.100006	352.100006	87.00	6.540000	41.990002	87.00	21.320000	87.0
1	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.850000	20.980000	2.53	11.660000	1.8
2	87.00	0.80	87.00	87.00	87.00	103.699997	134.000000	87.00	13.010000	28.440001	87.00	13.670000	87.0
3	87.00	1.61	87.00	87.00	87.00	97.599998	268.000000	87.00	5.120000	42.180000	87.00	16.990000	87.0
4	87.00	1.90	87.00	87.00	87.00	92.089996	237.199997	87.00	7.280000	76.330002	87.00	15.260000	87.0
5	3.19	0.72	3.23	7.65	0.11	113.699997	187.000000	3.53	12.370000	27.450001	2.98	14.780000	1.8
6	87.00	0.78	87.00	87.00	0.09	101.000000	119.300003	87.00	20.549999	23.950001	87.00	13.630000	1.7
7	87.00	1.06	87.00	87.00	87.00	127.300003	204.100006	87.00	3.150000	49.639999	87.00	21.389999	87.0
8	87.00	1.21	87.00	87.00	87.00	106.300003	126.599998	87.00	22.389999	32.090000	87.00	17.010000	87.0
9	87.00	0.61	87.00	87.00	0.14	95.540001	110.699997	87.00	27.770000	24.610001	87.00	19.440001	1.8

In [15]: sns.pairplot(d)

Out[15]: <seaborn.axisgrid.PairGrid at 0x1b61246d400>


```
In [16]: sns.distplot(a['NOx'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning:
 distplot` is a deprecated function and will be removed in a future version. Please adapt
your code to use either `displot` (a figure-level function with similar flexibility) or `
histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[16]: <AxesSubplot:xlabel='NOx', ylabel='Density'>

In [17]: sns.heatmap(d.corr())

Out[17]: <AxesSubplot:>


```
In [18]: x=d[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY']]
y=d['TCH']
```

```
In [19]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Out[20]: LinearRegression()

```
In [21]: print(lr.intercept_)
          1.4393744380194065
          coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
          coeff
Out[22]:
                 Co-efficient
            BEN
                   0.022490
             CO
                   -0.006324
            EBE
                   -0.039470
            MXY
                   0.065601
           NMHC
                   0.980551
           NO_2
                   -0.000039
            NOx
                   0.000036
            OXY
                   -0.045668
          prediction=lr.predict(x test)
In [23]:
          plt.scatter(y_test,prediction)
Out[23]: <matplotlib.collections.PathCollection at 0x1b62f55a4f0>
                 +8.7e1
            0.002
            0.001
            0.000
           -0.001
           -0.002
           -0.003
                         84
                                            88
                                                      90
In [24]:
          print(lr.score(x_test,y_test))
          0.0
In [25]: from sklearn.linear model import Ridge,Lasso
In [26]: rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
Out[26]: Ridge(alpha=10)
In [27]: rr.score(x_test,y_test)
Out[27]: 0.0
```

```
In [28]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[28]: Lasso(alpha=10)

In [29]: la.score(x_test,y_test)

Out[29]: 0.0

In [30]: a1=b.head(7000)

a1

Out[30]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PXY	
0	2002- 04-01 01:00:00	66.00	1.39	66.00	66.00	66.00	145.100006	352.100006	66.00	6.540000	41.990002	66.00	2.
1	2002- 04-01 01:00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.850000	20.980000	2.53	1′
2	2002- 04-01 01:00:00	66.00	0.80	66.00	66.00	66.00	103.699997	134.000000	66.00	13.010000	28.440001	66.00	10
3	2002- 04-01 01:00:00	66.00	1.61	66.00	66.00	66.00	97.599998	268.000000	66.00	5.120000	42.180000	66.00	16
4	2002- 04-01 01:00:00	66.00	1.90	66.00	66.00	66.00	92.089996	237.199997	66.00	7.280000	76.330002	66.00	1ŧ
6995	2002- 04-12 16:00:00	2.58	0.79	66.00	66.00	66.00	81.639999	146.500000	66.00	25.570000	28.570000	66.00	14
6996	2002- 04-12 16:00:00	1.73	0.71	1.31	66.00	0.13	59.470001	108.500000	66.00	32.320000	20.209999	66.00	7
6997	2002- 04-12 16:00:00	0.81	0.57	0.66	1.27	0.12	31.200001	36.630001	0.69	45.160000	8.810000	0.51	:
6998	2002- 04-12 16:00:00	1.62	0.58	1.62	3.69	66.00	64.000000	150.100006	1.13	26.110001	66.000000	1.36	29
6999	2002- 04-12 16:00:00	2.19	0.95	2,21	6.75	0.15	65.169998	117.099998	2.96	33.279999	22.540001	2.61	17

7000 rows × 16 columns

```
In [32]: f=e.iloc[:,0:14]
g=e.iloc[:,-1]
```

In [33]: h=StandardScaler().fit_transform(f)

```
In [34]: logr=LogisticRegression(max_iter=10000)
         logr.fit(h,g)
Out[34]: LogisticRegression(max iter=10000)
In [35]: from sklearn.model selection import train test split
         h_train,h_test,g_train,g_test=train_test_split(h,g,test_size=0.3)
In [36]: i=[[10,20,30,40,50,60,15,26,37,47,58,58,29,78]]
In [37]: | prediction=logr.predict(i)
         print(prediction)
         [28079038]
In [38]: logr.classes_
Out[38]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079009,
                28079011, 28079012, 28079014, 28079015, 28079016, 28079017,
                28079018, 28079019, 28079021, 28079022, 28079023, 28079024,
                28079025, 28079035, 28079036, 28079038, 28079039, 28079040,
                28079099], dtype=int64)
In [39]: logr.predict proba(i)[0][0]
Out[39]: 6.805698515856327e-40
In [40]: logr.predict proba(i)[0][1]
Out[40]: 1.2906478801938545e-06
In [41]: logr.score(h_test,g_test)
Out[41]: 0.5819047619047619
In [47]: | from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x train,y train)
Out[47]: ElasticNet()
In [48]: print(en.coef_)
         [2.42956152e-06 0.00000000e+00 5.16727183e-05 0.00000000e+00
          9.79815938e-01 0.00000000e+00 2.06109883e-04 0.00000000e+00]
In [49]: |print(en.intercept )
         1.6830868582140894
In [50]: prediction=en.predict(x_test)
         print(en.score(x_test,y_test))
         0.0
```

```
In [51]: | from sklearn.ensemble import RandomForestClassifier
         rfc=RandomForestClassifier()
         rfc.fit(h train,g train)
Out[51]: RandomForestClassifier()
In [52]: parameters={'max depth':[1,2,3,4,5],
          'min_samples_leaf':[5,10,15,20,25],
          'n_estimators':[10,20,30,40,50]
          }
In [53]: from sklearn.model selection import GridSearchCV
         grid search=GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring="accuracy")
         grid_search.fit(h_train,g_train)
Out[53]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
In [54]: grid_search.best_score_
Out[54]: 0.556734693877551
In [55]: rfc_best=grid_search.best_estimator_
In [56]: from sklearn.tree import plot tree
         plt.figure(figsize=(80,50))
         plot_tree(rfc_best.estimators_[2],filled=True)
          Text(4159.6363636364, 1132.5, X[8] <= -1.559 ngini = 0.919 nsamples = 1406 nvalue =
         [207, 197, 163, 1, 0, 195, 0, 188, 182, 0, 194 \land 194, 0, 128, 181, 7, 0, 0, 0, 0, 191, 19]
         6, 124\n8, 0]'),
          Text(4058.181818181818, 679.5, 'gini = 0.0\nsamples = 15\nvalue = [0, 0, 0, 0, 0, 30,
         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
          Text(4261.09090909090, 679.5, 'X[8] <= 0.614\ngini = 0.919\nsamples = 1391\nvalue =
         [207, 197, 163, 1, 0, 165, 0, 188, 182, 0, 194\n45, 0, 128, 181, 7, 0, 0, 0, 0, 191, 19
         6, 124\n8, 0]'),
          Text(4159.6363636364, 226.5, 'gini = 0.916\nsamples = 1015\nvalue = [167, 135, 138,
         1, 0, 140, 0, 186, 104, 0, 94, 43 \setminus 0, 93, 136, 7, 0, 0, 0, 0, 163, 116, 59, 6, 0]'),
          Text(4362.545454545454, 226.5, 'gini = 0.892\nsamples = 376\nvalue = [40, 62, 25, 0,
         0, 25, 0, 2, 78, 0, 100, 2, 0 \setminus 35, 45, 0, 0, 0, 0, 0, 28, 80, 65, 2, 0]')
```

Conclusion: from this data set i observed that the linear rwegression has the highest accuracy of 1.4393744380194065

```
In [ ]:
```