

Esempio Caso O· (+∞)  $a_{\text{u}} \rightarrow 0$   $b_{\text{m}} \rightarrow +\infty$  $a_m \cdot b_m = m \rightarrow +\infty$  $au = \frac{1}{m}$ ,  $bm = m^2$ an. bu = 1 >0  $au = \frac{1}{m^2}$ ,  $bm = \infty$  $au = \frac{1}{m}$ , bn = 15 mau-bn = 15 -> 15  $au = -\frac{1}{n}$ ,  $bn = m^2$  $an \cdot by = -n \rightarrow -\infty$  $a_{n} = \frac{(-1)^{n}}{n}$ ,  $b_{n} = n$ an. bu = (-1) NON HA LIMITE Dimostrarione di qualdre caso del teo. algebrico  $a_m \rightarrow Q_1 \in \mathbb{R}$ ,  $b_m \rightarrow Q_2 \in \mathbb{R}$  Allora  $a_m + b_m \rightarrow Q_1 + Q_2$ Bruta copia Fisso E >0 e vovei de (l,+lz) - (an+bn) | ≤ ε definitivamente 1x+y 1 < 1x1+1y1  $\frac{|l_1-a_1+l_2-b_1|}{\times} \leq |l_1-a_1|+|l_2-b_1|$ YXER YYER  $\leq \frac{1}{2} \varepsilon + \frac{1}{2} \varepsilon = \varepsilon$ Bella copia: Fisso E>O. Uso le def. di Dimite con E  $\exists n_a \in \mathbb{N}$  t.c.  $|Q_1 - \alpha u| \leq \frac{\varepsilon}{2}$   $\forall n \geq n_a$ poious an-l. Inben t.c. | l2-bu | 5 = 4 m = mi ~ bm >lz Allora Vm z max {ma, mb} si awa che





