

Semester: January 2023 - May 2023 **Examination: In-Semester Examination**

Duration: 1 hour & 15 mins Maximum Marks: 30

Programme code: 1

Course Code:

116h54C601

Semester: VI (SVU 2020) Class: TY Programme: B.Tech Computer Engineering

Name of the Course: Advanced Data Mining

Name of the Constituent College: Name of the department: COMP - Honours (DSA) K. J. Somaiya College of Engineering

Quest ion No.	b). Cave any 5 examples of data min or task too a year sports distinct.	Max. Marks	CO Mapped	BT Level
Q1	Big Basket saw the following transactions from its customers and based on it they wish to identify the possible cases of bundle pricing: Transaction Itemset ID			
	1 Apple, Banana, Basil, Kiwi, Watermelon, Orange 2 Grapes, Banana, Basil, Kiwi, Watermelon, Orange 3 Apple, Jackfruit, Orange, Kiwi 4 Apple, Tiramisu, Pears, Orange, Watermelon 5 Pears, Banana, Orange, Kiwi Use Apriori algorithm Given the minimum support of 3, apply Apriori algorithm for generating all frequent itemsets. Identify 2 valid association rules given minimum confidence = 90%	10	CO1 & CO2	Applyi ng & analyzi ng
Q2	 Employ the DGIM algorithm. Shown below is a data stream with N=24 and current bucket configuration. New elements enter the window at the right. Thus the oldest bit of the window is the leftmost bit shown 101011000101110110010110 a) Show how the initial stream will be divided into buckets b) What is the estimate of number of 1's in the latest k=14 bits of this window c) The following bits enter the window, one at a time: 10101011. What is the bucket configuration in the window after this sequence of bits has been processed by DGIM? 	10	CO2	Applying, analyzing & understanding

Q2	What is Frequer	nt pattern r	nining over o	lata streams?	Explain	10		
Q3	Compact Pattern Stream tree Algorithm with example. Answer any Two:						CO1 & CO4	Applyi
	a) Term frequence are given belonguery is (0, 0) between query	for the milarity	Barrer F		underst			
	Term	SaS	PaP	WH				
Comm	Affection	115	58	20	N Lang			
*	Jealous	10	7	11				
	Gossip	2	0	6				

quie. I saise here there Welche