Package 'LWFBrook90R'

October 16, 2024

Title Simulate Evapotranspiration and Soil Moisture with the SVAT

Model LWF-Brook90

Version 0.6.1 **Description** Provides a flexible and easy-to use interface for the soil vegetation atmosphere transport (SVAT) model LWF-BROOK90, written in Fortran. The model simulates daily transpiration, interception, soil and snow evaporation, streamflow and soil water fluxes through a soil profile covered with vegetation, as described in Hammel & Kennel (2001, ISBN:978-3-933506-16-0) and Federer et al. (2003) <doi:10.1175/1525-7541(2003)004%3C1276:SOAETS%3E2.0.CO;2>. A set of highlevel functions for model set up, execution and parallelization provides easy access to plot-level SVAT simulations, as well as multi-run and large-scale applications. License GPL-3 **Encoding UTF-8** URL https://pschmidtwalter.github.io/LWFBrook90R/, https://github.com/pschmidtwalter/LWFBrook90R BugReports https://github.com/pschmidtwalter/LWFBrook90R/issues NeedsCompilation yes **Depends** R (>= 3.4.0) **Imports** methods, data.table (>= 1.10.4), vegperiod (>= 0.3.0), foreach (>= 1.5.0), iterators (>= 1.0.12), doFuture (>= 0.10.0), future (>= 1.19.0), parallelly (>= 1.30.0), progressr (>= 0.6.0)Suggests knitr, rmarkdown, roxygen2, testthat LazyData true RoxygenNote 7.3.2 VignetteBuilder knitr **Author** Paul Schmidt-Walter [aut, cre] (<https://orcid.org/0000-0003-2699-0893>), Volodymyr Trotsiuk [aut] (https://orcid.org/0000-0002-8363-656X), Klaus Hammel [aut], Martin Kennel [aut],

2 Contents

Anthony Federer [aut],
Tobias Hohenbrink [aut] (https://orcid.org/0000-0002-5227-0171),
Gisbert Hetkamp [aut],
Robert Nuske [ctb] (https://orcid.org/0000-0001-9773-2061),
Bavarian State Institute of Forestry (LWF) [cph, fnd],
Northwest German Forest Research Institute (NW-FVA) [cph, fnd]

Maintainer Paul Schmidt-Walter <paulsw@posteo.de>

Repository CRAN

Date/Publication 2024-10-16 10:20:03 UTC

Contents

Index

approx_standprop
calc_globrad
calc_vegperiod
correct_prec
extract_layer_output
make_rootden
make_seasLAI
make_standprop
param_to_rlwfbrook90
plant_b90
plant_coupmodel
plant_linear
process_outputs_LWFB90
ptfs
replace_vecelements
run_LWFB90
run_multisite_LWFB90
run_multi_LWFB90
r_lwfbrook90
set_optionsLWFB90
set_outputLWFB90
set_paramLWFB90
slb1_meteo
slb1_prec2013_hh
slb1_soil
slb1_standprop
soil_to_param
standprop_yearly_to_param

41

approx_standprop 3

approx_standprop		sequence of stand properties from parameters using
------------------	--	--

Description

Uses yearly values of inter-annual vegetation development values (e.g. sai, height, densef, age) and interpolates them to a daily sequence.

Usage

```
approx_standprop(
  x_yrs,
  y,
  y_ini = NULL,
  xout_yrs = x_yrs,
  use_growthperiod = FALSE,
  startdoy = 121,
  enddoy = 279,
  approx.method = "constant",
  return_xout = FALSE
)
```

Arguments

x_yrs	A sequence of years or a single year.	
у	Vector of the same length as x_yrs. If approx.method = 'linear', the values are interpreted to be valid at the end of the respective year in x_yrs	
y_ini	Initial value used as a starting point for linear interpolation. Interpreted to be valid at the 1st of January of the first year in x_yrs. Ignored if approx.method = 'constant'.	
xout_yrs	Vector of years for which output is generated. May be longer or shorter than x_yrs. For years outside x_yrs, the value of the closest data extrem is returned.	
use_growthperiod		
	Logical: Use startdoy and enddoy for linear interpolation? If TRUE, yearly changes take place between startdoy and enddoy, othe wise from end of year to end of the year after.	
startdoy	A single value or vector of the same length as x_yrs, with the day of year when growth begins.	
enddoy	A single value or vector of the same length as x_yrs, with the day of year when growth cessates.	
approx.method	Name of interpolation method ('constant' or 'linear').	
return_xout	Logical: If true, daily values of y and a date vector are returned in a data.frame.	

4 approx_standprop

Details

For approx.method = 'constant', the value of y is returned for the whole respective year in x_yrs, which results in a yearly changing step function. If approx.method = 'linear', the values of y are interpolated between the years in x_yrs, and interpreted to be reached at the 31st of December of the respective x_yrs. In this case, y_ini is required as an initial value, from which the sequence is interpolated to the first value of y. The linear changes are either accomplished between 31st to 31st of December of the years in x_yrs, or during the growing season only (use_growingperiod = TRUE).

Value

A vector of interpolated daily values

```
years <- 2002:2004
height_yearly <- c(20.2, 20.8, 21.3)
# constant 'interpolation'
height_c <- approx_standprop(x_yrs = years,
                              y = height_yearly)
# linear interpolation
height_ini <- 19.1
height_l <- approx_standprop(x_yrs=years,</pre>
                              y = height_yearly,
                              v_ini = height_ini,
                              approx.method = 'linear')
# use growthperiod
height_l_gp <- approx_standprop(x_yrs = years,</pre>
                                 y = height_yearly,
                                 y_ini = height_ini,
                                 use_growthperiod = TRUE,
                                 startdoy = 121,
                                 enddoy = 279,
                                 approx.method = 'linear')
dates <- seq.Date(from = as.Date(paste0(min(years), "-01-01")),</pre>
                  to = as.Date(paste0(max(years), "-12-31")),
                  by = "day")
plot(dates, height_c,
     type = "1", 1wd = 2, col = "black",
     ylim = c(19,22), ylab = "height [m]", xlab = "", xpd = TRUE)
lines(dates, height_1,
      col = "blue", lwd = 2)
lines(dates, height_l_gp,
      col = "green", lwd = 2)
legend("topleft", legend = c("'constant'", "'linear'",
                              "'linear', 'use_growthperiod'"),
       col = c("black", "blue", "green"), lwd = 2, pch = NULL,
```

calc_globrad 5

```
bty = "n")
```

Description

Uses functions taken from the 'sirad' package to determine astronomical daylength and extraterrestrial radiation, from which global radiation is calculated using the Angström-formula.

Usage

```
calc_globrad(dates, sunhours, lat, a0 = 0.25, b0 = 0.5, full_output = FALSE)
```

Arguments

dates	Date vector
sunhours	Vector of sunshine duration hours, same length as dates.
lat	Latitude in decimal degrees.
a0	Angström parameter a, defaults to 0.25.
b0	Angström parameter b, defaults to 0.5.
full_output	Return extraterrestrial radiation and daylength along with global radiation?

Value

A sequence of global radiation in $MJ/(m^2 d)$ with the length of dates, or (if full_output = TRUE) a data.frame holding day of year, dates, sunhours, daylength, and extraterrestrial and calculated global solar radiation. A warning is generated if some sunshine duration hours are higher than the expected daylength at the specified latitude.

```
dates <- seq.Date(as.Date("2002-01-01"), as.Date("2003-12-31"), by = 'day') calc_globrad(dates, sunhours = runif(365, 0, 7),lat = 52.8) calc_globrad(dates, sunhours = runif(365, 0, 7),lat = 52.8, full_output = TRUE)
```

6 calc_vegperiod

calc_vegperiod

Calculate the dates of budburst and beginning of leaf fall

Description

Wrapper for vegperiod

Usage

```
calc_vegperiod(
  budburst_method,
  leaffall_method,
  dates = NULL,
  tavg = NULL,
  out_yrs = NULL,
  budburstdoy.fixed = 121,
  leaffalldoy.fixed = 279,
  ...
)
```

Arguments

budburst_method

name of model for estimating budburst day of year. Either 'fixed' or one of the values accepted by the 'start.method'-argument of the function vegperiod.

leaffall_method

name of model for estimating day of year when leaffall begin. Either 'fixed' or one of the values accepted by the 'end.method'-argument of the function

vegperiod.

dates date vector passed to vegperiod, ignored if both leaffall_method and budburst_method

= 'fixed'

tavg vector of daily mean air temperature (deg C) passed to vegperiod, ignored if

leaffall_method = 'fixed' and budburst_method = 'fixed'.

out_yrs integer vector of the years to be returned. If not specified, values for the years

in dates will be returned.

budburstdoy.fixed

vector of values to be returned if budburst_method = 'fixed'.

leaffalldoy.fixed

vector of values to be returned if leaffall_method = 'fixed'.

.. additional argument passed to vegperiod.

Value

a data.frame with columns year, start, end. If budburst_method = 'fixed' or leaffall_method = 'fixed', start and end contain the values specified in budburstdoy.fixed and leaffalldoy.fixed respectively.

correct_prec 7

Examples

```
# fixed budburst and leaffall doy
calc_vegperiod(out_yrs = 2001:2010,
               budburst_method = "fixed",
               leaffall_method = "fixed",
               budburstdoy.fixed = floor(runif(10, 120,130)),
               leaffalldoy.fixed = floor(runif(2, 260,280)))
# dynamic budburst and leaffall using air temperature
data(slb1_meteo)
calc_vegperiod(budburst_method = "Menzel",
               leaffall_method = "fixed",
               leaffalldoy.fixed = 280,
               dates = slb1_meteo$dates,
               tavg = slb1_meteo$tmean,
               species = "Fagus sylvatica",
               est.prev = 3)
calc_vegperiod(budburst_method = "Menzel",
               leaffall_method = "ETCCDI",
               dates = slb1_meteo$dates,
               tavg = slb1_meteo$tmean,
               species = "Quercus robur",
               est.prev = 3)
```

correct_prec

Correct rain gauge precipitation data for wind and evaporation errors after Richter (1995)

Description

Correct rain gauge precipitation data for wind and evaporation errors after Richter (1995)

Usage

```
correct_prec(month, tavg, prec, station.exposure = "mg", full_output = FALSE)
```

Arguments

month Vector of months.

tavg Vector of air temperature values (deg C). Same length as month.

prec Vector of measured rainfall vales (mm). Same length as month.

station.exposure

Situation of the weather station where prec was measured: one of 'frei', 'lg', 'mg', 'sg' (corresponding to full exposure, low protected, moderate protected,

strong protected situation).

full_output Logical wether to return the full data set additionally including input data, cor-

rection coefficients.

8 extract_layer_output

Value

A vector of corrected rainfall data, or (if full_output == TRUE) a data.table containing the input objects, the month, the precipitation type ('N4So': liquid rain, summer; 'N4Wi' liquid rain, winter; 'N8' = sleet, 'N7' = snow), correction coefficients epsilon and b, and the corrected rainfall.

References

Richter, D. (1995) Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Messfehlers des Hellmann-Niederschlagsmessers. *Berichte des Deutschen Wetterdienstes*, **194**, 93 pp, Offenbach, Germany

Examples

```
clim <- slb1_meteo[as.integer(format(slb1_meteo$dates,"%Y")) %in% 2001:2005,]</pre>
clim$month <- as.integer(format(clim$dates, "%m"))</pre>
prec_meas <- clim$prec</pre>
correct_prec_frei <- with(clim,</pre>
                        correct_prec(month, tmean, prec, station.exposure = "frei"))
correct_prec_lg <- with(clim,</pre>
                      correct_prec(month, tmean, prec, station.exposure = "lg"))
correct_prec_mg <- with(clim,</pre>
                      correct_prec(month, tmean, prec, station.exposure = "mg"))
correct_prec_sg <- with(clim,</pre>
                      correct_prec(month, tmean, prec, station.exposure = "sg"))
plot(clim$dates, cumsum(correct_prec_frei),
type = "l", col = "violet", xlab = "dates", ylab = "cum. precipitation (mm)")
lines(clim$dates, cumsum(correct_prec_lg), col = "blue")
lines(clim$dates, cumsum(correct_prec_mg), col = "green")
lines(clim$dates, cumsum(correct_prec_sg), col = "red")
lines(clim$dates, cumsum(prec_meas))
legend('bottomright', c('frei', "lg", "mg", "sg"),
       col = c("violet", "blue", "green", "red", "black"),
       lty = 1, pch = NULL)
```

extract_layer_output Extracts values from layer data and organizes layer-wise variables in columns

Description

Convenience function to reorganize soil layer time series data from layer_output list entry produced with run_LWFB90. The data is tansformed to a wide format, by casting the variables with the layer number using data.table's dcast-function.

extract_layer_output 9

Usage

```
extract_layer_output(
    x,
    layers = NULL,
    value_vars = NULL,
    layer_index_name = "nl",
    sep = ""
)
```

Arguments

x Data.frame or data.table with layer data organized in rows and identified by a layer index column named layer_index_nm.

layers Integer vector to select a subset of layers. If not supplied, values from all layers will be returned.

value_vars Character vector containing names of value-variables to be extracted from x. If not supplied, value_vars will be guessed.

layer_index_name

Column containing layer index. Defaults to 'nl' as in layer_output.

sep Separation character for constructing names from variable name and layer index.

Value

A data.table with the layers' values of the variables organized in columns with the names being made up of the variable name and the layer index.

```
# create a data.frame with monthly values
# identifiers: layer number, yr and mo
df <- expand.grid(nl = 1:5,</pre>
                  yr = 2002,
                  mo = 1:12
df
#add a value variable
df$var <- runif(nrow(df), -1,0)</pre>
extract_layer_output(df)
# add more variables
df$var1 <- runif(nrow(df), 1,2)</pre>
df$var2 <- runif(nrow(df), 2,3)</pre>
# extract specific layers
extract_layer_output(df,layers = 2:4, sep = "_layer")
#extract specific variables
extract_layer_output(df, layers = 2:4, value_vars = c("var1", "var2"), sep = "_layer")
```

10 make_rootden

make_rootden

Generates a root density depth function for soil layers

Description

Generates a root density depth function for soil layers

Usage

```
make_rootden(
  soilnodes,
  maxrootdepth = min(soilnodes),
  method = "betamodel",
  beta = 0.97,
  rootdat = NULL
)
```

Arguments

soilnodes Vector of soil layer depth limits (including the top and the bottom of the profile)

for which the relative root distribution will be calculated (m, negative down-

wards).

maxrootdepth The maximum rooting depth (m, negative downwards) below which relative root

length density will be set to zero (not applying when method = 'table').

method Method name for the root depth distribution. Possible values are 'betamodel',

'table', 'linear', 'constant'. See details.

beta Parameter of the root distribution function.

rootdat data.frame with a given root depth density distribution. Columns are depth limits

('upper' and 'lower' in m, negative downwards) and relative root densities of fine or absorbing roots ('rootden') per unit stonefree volume. Only used when

method = 'table'.

Details

method = 'betamodel' calculates the relative root length densities of the soil layers from the cumulative proportion of roots derived by the model after Gale & Grigal (1987). method = 'table' distributes the relative root densities provided by rootdat to the soil layers, under preservation of total root mass. method = 'linear' returns linearly decreasing root densities with a value of 1 at the top of the soil profile to 0 at maxrootdepth. method = 'constant' returns a uniform root distribution with a relative root length density of 1 for all soil layers above 'maxrootdepth'.

Value

Vector of relative root length densities for the soil layers framed by soilnodes. Length is one less than length(soilnodes).

make_seasLAI 11

References

Gale, M.R. & Grigal D.F. (1987): "Vertical root distributions of northern tree species in relation to successional status." *Canadian Journal of Forest Research*, 17:829-834

```
depths <- c(max(slb1_soil$upper), slb1_soil$lower)</pre>
roots_beta <- make_rootden(soilnodes = depths,</pre>
                               maxrootdepth = -1,4,
                               beta = 0.97,
                               method = "betamodel")
rootden_table <- data.frame(</pre>
  upper = c(0.03,0,-0.02, -0.15, -0.35, -0.5, -0.65,-0.9,-1.1,-1.3),
  lower = c(0,-0.02, -0.15, -0.35, -0.5, -0.65, -0.9, -1.1, -1.3, -1.6),
  rootden = c(10,15, 35, 15, 7.5, 4, 12, 2, 2, 0)
roots_table <- make_rootden(soilnodes = depths,</pre>
                                method = "table",
                                rootdat = rootden_table)
roots_linear <- make_rootden(soilnodes = depths,</pre>
                                 maxrootdepth = -1.4,
                                 method = 'linear')
roots_constant <- make_rootden(soilnodes = depths,</pre>
                                   maxrootdepth = -1.4,
                                   method = 'const')
plot(roots_constant, slb1_soil$lower +runif(n=length(slb1_soil$lower), -0.02,0.02),
     type = 's', lwd = 1.5,ylab = "soil depth [m]",xlab = "relative root density",
     xlim = c(0,1), col = "red")
lines(roots_linear, slb1_soil$lower,
      type = 's', col = "blue", lwd = 1.5)
lines(roots_beta*10, slb1_soil$lower, type = 's', col = "brown", lwd = 1.5)
lines(roots_table/100, slb1_soil$lower,
      type = 's', col = "green", lwd = 1.5)
legend("bottomright", c("'betamodel'","'table'","'linear'", "'constant'"),seg.len = 1.5,
       pch = NULL, lwd =1.5, col = c("brown", "green", "blue", "red"), bty = "n")
```

make_seasLAI

Description

A daily sequence of leaf area index is derived from maximum and minimum values, dates and shape parameters using different methods.

Usage

```
make_seasLAI(
  method = "b90",
  year,
  maxlai,
  winlaifrac = 0,
  budburst_doy = 121,
  leaffall_doy = 279,
  emerge_dur = 28,
  leaffall_dur = 58,
  shp_optdoy = 220,
  shp_budburst = 0.5,
  shp_leaffall = 10,
  lai_doy = c(1, 121, 150, 280, 320, 365),
  lai_frac = c(0, 0, 0.5, 1, 0.5, 0)
)
```

Arguments

method	Name of method for generating the sequence. Must be one of "b90", "linear", "Coupmodel".
year	Vector of years to be returned.
maxlai	Maximum leaf are index.
winlaifrac	Fraction of maxlai during winter (ignored when method = 'linear').
budburst_doy	Budburst day of year (ignored when method = 'linear').
leaffall_doy	Day of year when leaf fall begins (ignored when method = 'linear').
emerge_dur	Number of days from budburst until maximum leaf area index is reached.
leaffall_dur	Number of days until minimum leaf are index is reached.
shp_optdoy	Day of year when optimum value is reached (required when method = "Coupmodel").
shp_budburst	Shape parameter for the growth phase (required when method = "Coupmodel").
shp_leaffall	Shape parameter growth cessation (required when method = "Coupmodel").
lai_doy	Integer vector of days of years.
lai_frac	Vector of values of fractional leaf area index corresponding to lai_doy (required when method = "linear").

Value

A vector of daily lai values covering the years specified.

make_standprop 13

```
# Intraannual courses of leaf area index
lai_b90 <- make_seasLAI(method = "b90",</pre>
                        year = 2001,
                        maxlai = 5,
                        winlaifrac = 0,
                        budburst_doy = 121,
                        leaffall_doy = 280,
                        emerge_dur = 15,
                        leaffall_dur = 30)
lai_doy <- c(1,110,117,135,175,220,250,290,365)
lai_frac \leftarrow c(0.1, 0.1, 0.5, 0.7, 1.2, 1.2, 1.0, 0.1, 0.1)
lai_linear <- make_seasLAI(method = "linear",</pre>
                           year = 2001,
                           maxlai = 5,
                           lai_doy = lai_doy,
                           lai_frac = lai_frac)
lai_coupmodel <- make_seasLAI(method = "Coupmodel",</pre>
                              year = 2001,
                              maxlai = 5,
                              winlaifrac = 0.1,
                              budburst_doy = 110,
                              leaffall_doy = 280,
                              shp\_optdoy = 180,
                              shp\_budburst = 0.5,
                              shp_leaffall = 5)
plot(lai_b90, type = "n", xlab = "doy", ylab = "lai [m^2/m^2]", ylim = c(0,6))
lines(lai_b90, col ="green",lwd = 2,)
lines(lai_linear, col ="red",lwd = 2)
lines(lai_coupmodel, col ="blue",lwd = 2)
# incorparating between-year variability
years <- 2001:2003
lai <- make_seasLAI(method = "Coupmodel",</pre>
                    year = years,
                    maxlai = c(4,6,5),
                    budburst_doy = c(100, 135, 121),
                    leaffall_doy = 280,
                    shp\_budburst = c(3,1,0.3),
                    shp_leaffall = 3,
                    shp_optdoy = c(210, 180, 240))
dates <- seq.Date(as.Date("2001-01-01"), as.Date("2003-12-31"), by = "day")
plot(dates,lai, col = "green", ylab = "lai [m²/m²]",
     type ="1", xlab = "", lwd = 2)
```

Description

Creates daily sequences of 'age', 'height', 'sai', 'densef', and 'lai' from parameters and options using approx_standprop and make_seasLAI.

Usage

```
make_standprop(options_b90, param_b90, out_yrs)
```

Arguments

options_b90 A list of model control options.

param_b90 A parameter list-object.

out_yrs Years for which values are returned.

Value

A data.frame containing daily sequences of 'age', 'height', 'sai', 'densef', and 'lai'.

Examples

Description

The param vector for r_lwfbrook90 is created from model parameters.

Usage

```
param_to_rlwfbrook90(param_b90, imodel)
```

Arguments

param_b90 A named list of model parameters.

imodel Name of hydraulic model ('MvG' or 'CH')

Value

A numerical vector with the parameters in the right order for r_1 wfbrook90.

plant_b90 15

plant_b90	Interpolate plant properties using the 'b90' method.

Description

Creates a daily sequence for one year from parameters

Usage

```
plant_b90(minval, maxval, doy.incr, incr.dur, doy.decr, decr.dur, maxdoy)
```

Arguments

minval	Minimum value.
maxval	Maximum value.
doy.incr	Day of year when increasing from minval to maxval begins.
incr.dur	Duration (number of days) since doy.incr until maxval is reached.
doy.decr	Day of year when decreasing to minval begins.
decr.dur	Duration (number of days) since doy.incr until minval is reached.
maxdoy	Length of the year, 366 for leap years, 365 for normal years.

Value

A numeric vector of length maxdoy.

Examples

```
plot(plant_b90(minval = 0,maxval=1,
doy.incr = 121,incr.dur = 28,
doy.decr = 280, decr.dur = 50,
maxdoy = 365))
```

plant_coupmodel

Interpolate plant properties using the 'Coupmodel' method.

Description

Creates a daily sequence for one year from parameters

plant_linear

Usage

```
plant_coupmodel(
   minval,
   maxval,
   doy.incr,
   doy.max,
   doy.min,
   shape.incr,
   shape.decr,
   maxdoy
)
```

Arguments

minval	Minimum value.
maxval	Maximum value.
doy.incr	Day of year when increasing from minval to maxval begins.
doy.max	Day of year when maxval is reached.
doy.min	Day of year when minval is reached again.
shape.incr	Shape parameter of the increasing phase.
shape.decr	Shape parameter of the decreasing phase.
maxdoy	Length of the year, 366 for leap years, 365 for normal years.

Value

A numeric vector of length maxdoy.

References

Jansson, P.-E. & Karlberg, L. (2004): "Coupled heat and mass transfer model for soil-plant-atmosphere systems." *Royal Institute of Technolgy, Dept of Civil and Environmental Engineering Stockholm*

Examples

```
plot(plant_coupmodel(0,5, 121, 200, 280, 0.3, 3, 365))
```

plant_linear	he 'linear' method.
--------------	---------------------

Description

Creates a daily sequence for one year from doy/value pairs.

Usage

```
plant_linear(doys, values, maxdoy)
```

Arguments

doys Integer vector of dates (days of year).

values Numeric vector of values.

maxdoy Integer length of the year, 366 for leap years, 365 for normal years.

Value

A numeric vector of length maxdoy.

Examples

```
doys <- c(110,200,250,280)
values <- c(0,0.8,1,0)
maxdoy <- 365
plot(plant_linear(doys = doys, values = values, maxdoy = 365))</pre>
```

process_outputs_LWFB90

Aggregate and group model outputs similar to ancient LWFB90 textfile outputs (.ASC-files)

Description

Returns selected groups of variables in the chosen temporal aggregation

Usage

```
process_outputs_LWFB90(x, selection = set_outputLWFB90(), prec_interval = NULL)
```

Arguments

x Named list with items x\$output and/or x\$layer_output (e.g. as returned by

run_LWFB90)

selection A [7,5]-matrix with row and column names, flagging the desired groups of vari-

ables at specified time intervals (see set_outputLWFB90).

prec_interval The precipitation interval of the simulation that produced x. If available, the

value x\$model_input\$options_b90\$prec_interval is used.

Value

A named list containing the selected groups of variables in the desired temporal resolution. The names are constructed from selection's row names and column names, suffixed by '.ASC' as a reminiscence to the former text file output of LWF-Brook90.

18 ptfs

Examples

```
data("slb1_soil")
data("slb1_meteo")
opts <- set_optionsLWFB90(startdate = as.Date("2002-06-01"), enddate = as.Date("2002-06-05"))
parms <- set_paramLWFB90()</pre>
soil <- cbind(slb1_soil, hydpar_wessolek_tab(texture = slb1_soil$texture))</pre>
outsel <- set_outputLWFB90()</pre>
outsel[,] <- 1L
res <- run_LWFB90(options_b90 = opts,
           param_b90 = parms,
           climate = slb1_meteo,
           soil = soil)
# Calculate output-aggregations using the returned object
process_outputs_LWFB90(res, selection = outsel)
# or calculate aggregations at run time by passing the function via output_fun-arg
run_LWFB90(options_b90 = opts,
           param_b90 = parms,
           climate = slb1_meteo,
           soil = soil,
           rtrn_input = FALSE,
           output_fun = process_outputs_LWFB90,
           selection = outsel)$output_fun
```

ptfs

Functions to derive soil hydraulic properties from soil properties

Description

A set of pedotransfer functions for deriving Mualem - van Genuchten parameters from soil physical properties of soil horizons, such as soil texture, bulk density and carbon content.

Usage

```
hydpar_puh2(clay, silt, sand, bd, oc.pct = 0.5)
hydpar_hypres(clay, silt, bd, oc.pct = 0.1, topsoil = TRUE, humconv = 1.72)
hydpar_hypres_tab(texture, topsoil)
hydpar_wessolek_tab(texture)
hydpar_ff_b90(n = 1)
```

ptfs 19

Arguments

clay, silt, sand Numeric vectors of clay, silt, sand in mass %. Particle size ranges for clay, silt

and sand correspond to <2, 2-63, and 63-2000 μm . For hydpar_hypres, the

particle size limit between silt and sand should be 50 μm .

bd Numeric vector of bulk density in g cm-3.

oc.pct Numeric vector of organic carbon content in mass %.

topsoil Logical: Is the sample from the topsoil? Used in hydpar_hypres_tab.

humconv Conversion factor from oc.pct to organic matter percent. Default: 1.72. Only

for hydpar_hypres_tab.

texture Character vector of soil texture classes. For hydpar_wessolek_tab classes ac-

cording to KA5 (AG Boden 2005) have to be provided. When using hydpar_hypres_tab,

texture classes according to FAO (1990) have to provided.

n An integer value specifying the number of rows of the returned data.frame (i.e.

the number of repetitions of the MvG-Parameter set, only for hydpar_ff_hamken).

Details

Function hydpar_puh2 derives Mualem - van Genuchten (MvG) parameters using the regression functions developed by Puhlmann & von Wilpert (2011). The equations of Wösten et al. (1999) are available via hydpar_hypres, and their tabulated values for soil texture classes can be derived using the function hydpar_hypres_tab. The table of MvG parameters from Wesselok et al. (2009; Tab. 10) is accessible by hydpar_wessolek_tab. For this function, soil texture classes after the German texture classification system (KA5, AG Boden 2005) have to be provided. To derive hydraulic parameters of forest floor horizons, the function hydpar_ff_b90 can be used. It returns the single MvG parameter set for forest floor horizons reported by Hammel & Kennel (2001) in their original LWF-Brook90 publication.

Value

A data frame with the following variables:

ths Saturation water content fraction

thr Residual water content fraction

npar N parameter of the van Genuchten water retention function

mpar M parameter of the van Genuchten water retention function

alpha Alpha parameter of the van Genuchten water retention function (1/m)

ksat Saturated hyraulic conductivity parameter of Mualem hydraulic conductivity function (mm/d)

tort Tortuosity parameter of Mualem hydraulic conductivity function

References

AG Boden (2005) Bodenkundliche Kartieranleitung Schweizerbart'sche Verlagsbuchhandlung, Stuttgart Food and Agriculture Organisation (FAO) (1990) Guidelines for soil description FAO/ISRIC, Rome, 3rd edition

20 replace_vecelements

Hammel K & Kennel M (2001) Charakterisierung und Analyse der Wasserverfügbarkeit und des Wasserhaushalts von Waldstandorten in Bayern mit dem Simulationsmodell BROOK90. *Forstliche Forschungsberichte München* 185

Puhlmann H, von Wilpert K (2011) Testing and development of pedotransfer functions for water retention and hydraulic conductivity of forest soils. *Waldökologie, Landschaftsforschung und Naturschutz* 12, pp. 61-71

Wessolek G, Kaupenjohann M and Renger H (2009) Bodenphysikalische Kennwerte und Berechnungsverfahren für die Praxis. *Bodenökologie und Bodengenese* 40, Berlin, Germany

Woesten JHM, Lilly A, Nemes A, Le Bas C (1999) Development and use of a database of hydraulic properties of European soils. *Geoderma* 90, pp. 169-185

Examples

```
\label{eq:hydram_puh2} $$ hydpar_puh2(clay = c(10,20), silt = c(40,20), sand = c(50,60), bd = c(1.6, 1.4))$$ $$ hydpar_hypres(20,20,1.5,2)$$ $$ hydpar_hypres_tab(texture = c("C","MF"), topsoil = c(TRUE,FALSE))$$ $$ hydpar_wessolek_tab(c("Us", "Ls2", "mSfS"))$$ $$ hydpar_ff_b90(n = 5)$$
```

replace_vecelements

Replace elements in a data.frame or vector of length > 1 by name

Description

Replace elements in a data.frame or vector of length > 1 by name

Usage

```
replace_vecelements(x, varnms, vals)
```

Arguments

x A vector or data.frame.

varnms Variable names to match: Specify position by name and index.

vals Vector of values to insert at the specified positions.

Value

The vector or data.frame in x with the elements 'varnms' replaced by vals.

21 run_LWFB90

Examples

```
soil_materials <- data.frame(ths = rep(0.4,3), alpha = rep(23.1, 3))
varnms = c("soil_materials.ths3", "soil_materials.ths1", "soil_materials.alpha2")
vals = c(0.999, 0.001, 99)
soil_materials
replace_vecelements(soil_materials, varnms, vals)
x <- set_paramLWFB90()[["pdur"]]</pre>
varnms <- c("pdur2", "pdur12")</pre>
vals <- c(0,10)
replace_vecelements(x, varnms, vals)
```

run_LWFB90

Run the LWF-Brook90 hydrologic model

Description

Sets up the input objects for the LWF-Brook90 hydrologic model, starts the model, and returns the selected results.

Usage

```
run_LWFB90(
  options_b90,
  param_b90,
  climate,
  precip = NULL,
  soil = NULL,
  output_fun = NULL,
  rtrn_input = TRUE,
  rtrn_output = TRUE,
  chk_input = TRUE,
  run = TRUE,
  timelimit = Inf,
  verbose = FALSE,
)
```

Arguments

options_b90 Named list of model control options. Use set_optionsLWFB90 to generate a list with default model control options.

param_b90 Named list of model input parameters. Use set_paramLWFB90 to generate a list

with default model parameters.

22 run_LWFB90

climate	Data.frame with daily climatic data, or a function that returns a suitable data.frame. See details for the required variables.
precip	Data.frame with columns 'dates' and 'prec' to supply precipitation data separately from climate data. Can be used to provide sub-day resolution precipitation data to LWFBrook90. For each day in dates, 1 (daily resolution) to 240 values of precipitation can be provided, with the number of values per day defined in options_b90\$prec_interval.
soil	Data.frame containing the hydraulic properties of the soil layers. See section 'Soil parameters'
output_fun	A function or a list of functions of the form f(x,), where x is the object regularly returned by run_LWFB90. During function evaluation, x contains model input and selected output objects, irrespective of rtrn_input and rtrn_output. Can be used to aggregate output on-the-fly, and is especially useful if the function is evaluated within a large multi-run application, for which the output might overload the memory. (see run_multi_LWFB90 and run_multisite_LWFB90).
rtrn_input	Logical: append param_b90, options_b90, and daily plant properties (standprop_daily, as derived from parameters) to the result?
rtrn_output	Logical: return the simulation results select via output?
chk_input	Logical wether to check param_b90, options_b90, climate, precip, and soil for completeness and consistency.
run	Logical: run LWF-Brook90 or only return model input objects? Useful to inspect the effects of options and parameters on model input. Default is TRUE.
timelimit	Integer to set elapsed time limits (seconds) for running LWF-Brook90.
verbose	Logical: print messages to the console? Default is FALSE.
• • •	Additional arguments passed to output_fun and/or climate, if the latter is a function.

Value

A list containing the selected model output (if rtrn_output == TRUE), the model input (if rtrn_input == TRUE, except for climate), and the return values of output_fun if specified.

Climate input data

The climate data.frame (or function) must contain (return) the following variables in columns named 'dates' (Date), 'tmax' (deg C), 'tmin' (deg C), 'tmean' (deg C), 'windspeed' (m/s), 'prec' (mm), 'vappres' (kPa), and either 'globrad' ($MJ/(m^2d)$) or 'sunhours' (h). When using sunhours, please set options_b90\$fornetrad = 'sunhours'.

Soil input parameters

Each row of soil represents one layer, containing the layers' boundaries and soil hydraulic parameters. The column names for the upper and lower layer boundaries are 'upper' and 'lower' (m, negative downwards). When using options_b90\$imodel = 'MvG', the hydraulic parameters are 'ths', 'thr', 'alpha' (1/m), 'npar', 'ksat' (mm/d) and 'tort'. With options_b90\$imodel = 'CH', the

run_LWFB90 23

parameters are 'thsat', 'thetaf', 'psif' (kPa), 'bexp', 'kf' (mm/d), and 'wetinf'. For both parameterizations, the volume fraction of stones has to be named 'gravel'. If the soil argument is not provided, list items soil_nodes and soil_materials of param_b90 are used for the simulation. These have to be set up in advance, see soil_to_param.

Outputs

Name	Description	Unit
yr	year	-
mo	month	-
da	day of month	-
doy	day of year	-
aa	average available energy above canopy	W/m2
adef	available water deficit in root zone	mm
asubs	average available energy below canopy	W/m2
awat	total available soil water in layers with roots between -6.18 kPa and param_b90\$psicr	mm
balerr	error in water balance (daily value, output at the day's last precipitation interval)	mm
byfl	total bypass flow	mm/d
сс	cold content of snowpack (positive)	MJ m-2
dsfl	downslope flow	mm/d
evap	evapotranspiration	mm/d
flow	total streamflow	mm/d
gwat	groundwater storage below soil layers	mm
gwfl	groundwater flow	mm/d
intr	intercepted rain	mm
ints	intercepted snow	mm
irvp	evaporation of intercepted rain	mm/d
isvp	evaporation of intercepted snow	mm/d
Ingnet	net longwave radiation	W/m2
nits	total number of iterations	-
pint	potential interception for a canopy always wet	mm/d
pslvp	potential soil evaporation	mm/d
ptran	potential transpiration	mm/d
relawat	relative available soil water in layers with roots	-
rfal	rainfall	mm/d
rint	rain interception catch rate	mm/d
rnet	rainfall to soil surface	mm/d
rsno	rain on snow	mm/d
rthr	rain throughfall rate	mm/d
sthr	snow throughfall rate	mm/d
safrac	source area fraction	-
seep	seepage loss	mm/d
sfal	snowfall	mm/d
sint	snow interception catch rate	mm/d
slfl	input to soil surface	mm/d
slvp	evaporation rate from soil	mm/d
slrad	average solar radiation on slope over daytime	W/m2
solnet	net solar radiation on slope over daytime	W/m2

24 run_LWFB90

smlt	snowmelt	mm/d
snow	snowpack water equivalent	mm
snowlq	liquid water content of snow on the ground	mm
snvp	evaporation from snowpack	mm/d
srfl	source area flow	mm/d
stres	tran / ptran (daily value, output at the day's last precipitation interval)	-
swat	total soil water in all layers	mm
tran	transpiration	mm/d
vrfln	vertical matrix drainage from lowest layer	mm/d

Layer outputs

Name	Description	Unit
yr	year	-
mo	month	-
da	day of month	-
doy	day of year	-
nl	index of soil layer	
swati	soil water volume in layer	mm
theta	water content of soil layer, mm water / mm soil matrix	-
wetnes	wetness of soil layer, fraction of saturation	-
psimi	matric soil water potential for soil layer	kPa
infl	infiltration to soil water in soil layer	mm/d
byfl	bypass flow from soil layer	mm/d
tran	transpiration from soil layer	mm/d
vrfl	vertical matrix drainage from soil layer	mm/d
dsfl	downslope drainage from layer	mm/d
ntfl	net flow into soil layer	mm/d

```
# Set up lists containing model control options and model parameters:
param_b90 <- set_paramLWFB90()
options_b90 <- set_optionsLWFB90()

# Set start and end Dates for the simulation
options_b90$startdate <- as.Date("2003-06-01")
options_b90$enddate <- as.Date("2003-06-30")

# Derive soil hydraulic properties from soil physical properties
# using pedotransfer functions
soil <- cbind(slb1_soil, hydpar_wessolek_tab(slb1_soil$texture))</pre>
```

```
# Run LWF-Brook90
b90.result <- run_LWFB90(options_b90 = options_b90,</pre>
                         param_b90 = param_b90,
                         climate = slb1_meteo,
                         soil = soil)
# use a function to be performed on the output:
# aggregate soil water storage down to a specific layer
agg_swat <- function(x, layer) {</pre>
  out <- aggregate(swati~yr+doy,</pre>
                    x$SWATDAY.ASC,
                    FUN = sum,
                    subset = nl <= layer)</pre>
  out[order(out$yr, out$doy),]}
# run model without returning the selected output.
b90.aggswat <- run_LWFB90(options_b90 = options_b90,</pre>
                          param_b90 = param_b90,
                          climate = slb1_meteo,
                          soil = soil,
                          output_fun = list(swat = agg_swat),
                          rtrn_output = FALSE,
                          layer = 10) # passed to output_fun
str(b90.aggswat$output_fun$swat)
```

Description

Wrapper function for run_LWFB90 to make multiple parallel simulations of one or several parameter sets, for a series of sites with individual climate and soil, or individual parameter sets for each climate/soil combinations.

Usage

```
run_multisite_LWFB90(
   options_b90,
   param_b90,
   soil = NULL,
   climate,
   climate_args = NULL,
   all_combinations = FALSE,
   cores = 2,
   show_progress = TRUE,
   ...
)
```

Arguments

options_b90 Named list of model control options to be used in all simulations

param_b90 Named list of parameters to be used in all simulations, or a list of multiple

parameter sets.

soil Data.frame with soil properties to be used in all simulations, or a list of data.frames

with different soil profiles.

climate Data.frame with climate data, or a list of climate data.frames. Alternatively, a

function can be supplied that returns a data.frame. Arguments to the function

can be passed via climate_args.

climate_args List of named lists of arguments passed to climate, if this is a function.

all_combinations

Logical: Set up and run all possible combinations of individual param_b90, climate and soil objects? Default is FALSE, running one object or the list of

param_b90 objects for a series of climate/soil combinations.

cores Number of cores to use for parallel processing.

show_progress Logical: Show progress bar? Default is TRUE. See also section Progress bar

below.

... Further arguments passed to run_LWFB90.

Value

Data management

The returned list of single run results can become very large, if many simulations are performed and the selected output contains daily resolution data sets, especially daily layer-wise soil moisture data. To not overload memory, it is advised to reduce the returned simulation results to a minimum, by carefully selecting the output, and make use of the option to pass a list of functions to run_LWFB90 via argument output_fun. These functions perform directly on the output of a single run simulation, and can be used for aggregating model output on-the-fly, or for writing results to a file or database. The regular output of run_LWFB90 can be suppressed by setting rtrn.output = FALSE, for exclusively returning the output of such functions. To provide full flexibility, the names of the current soil, param_b90, and climate are automatically passed as additional arguments (soil_nm, param_nm,clim_nm) to run_LWFB90 and in this way become available to functions passed via output_fun. In order to not overload the memory with climate input data, it is advised to provide a function instead of a list of climate data.frames, and specify its arguments for individual sites in climate_args, in case many sites with individual climates will be simulated.

Progress bar

This function provides a progress bar via the package **progressr** if show_progress=TRUE. The parallel computation is then wrapped with progressr::with_progress() to enable progress re-

porting from distributed calculations. The appearance of the progress bar (including audible notification) can be customized by the user for the entire session using progressr::handlers() (see vignette('progressr-intro')).

```
data("slb1_meteo")
data("slb1_soil")
opts <- set_optionsLWFB90(budburst_method = "Menzel", enddate = as.Date("2002-12-31"))
# define parameter sets
param_1 <- list(spruce = set_paramLWFB90(maxlai = 5,</pre>
                                           budburst_species = "Picea abies (frueh)",
                                           winlaifrac = 0.8),
                beech = set_paramLWFB90(maxlai = 6,
                                          budburst_species = "Fagus sylvatica",
                                          winlaifrac = 0))
soil <- cbind(slb1_soil, hydpar_wessolek_tab(slb1_soil$texture))</pre>
# define list of soil objects
soils <- list(soil1 = soil, soil2 = soil)</pre>
# define list of climate objects
climates <- list(clim1 = slb1_meteo, clim2 = slb1_meteo)</pre>
# run two parameter sets on a series of climate and soil-objects
res <- run_multisite_LWFB90(param_b90 = param_l,
                       options_b90 = opts,
                       soil = soils,
                       climate = climates)
names(res)
# set up and run individual parameter sets for individual locations
# set up location parameters
loc_parm <- data.frame(loc_id = names(climates),</pre>
                        coords_y = c(48.0, 54.0),
                        eslope = c(30,0),
                        aspect = c(180,0)
# create input list of multiple param_b90 list objects
param_l <- lapply(names(climates), function(x, loc_parms) {</pre>
 parms <- set_paramLWFB90()</pre>
 parms[match(names(loc_parm), names(parms), nomatch = 0)] <-</pre>
    loc_parm[loc_parm$loc_id == x, which(names(loc_parm) %in% names(parms))]
}, loc_parm = loc_parm)
names(param_l) <- c("locpar1", "locpar2")</pre>
res <- run_multisite_LWFB90(param_b90 = param_l,</pre>
```

28 run_multi_LWFB90

```
options_b90 = opts,
soil = soils,
climate = climates)
names(res)
```

run_multi_LWFB90

Make a multirun simulation using a set of variable input parameters.

Description

Wrapper function for run_LWFB90 to make multiple simulations parallel, with varying input parameters.

Usage

```
run_multi_LWFB90(
  paramvar,
  param_b90,
  paramvar_nms = names(paramvar),
  cores = 2,
  show_progress = TRUE,
  ...
)
```

Arguments

paramvar	Data.frame of variable input parameters. For each row, a simulation is performed, with the elements in param_b90 being replaced by the respective column of paramvar. All parameter names (column names) in paramvar must be found in param_b90. See section Parameter updating.
param_b90	Named list of parameters, in which the parameters defined in paramvar will be replaced.
paramvar_nms	Names of the parameters in paramvar to be replaced in param_b90.
cores	Number of CPUs to use for parallel processing. Default is 2.
show_progress	Logical: Show progress bar? Default is TRUE. See also section Progress bar below.
	Additional arguments passed to run_LWFB90: provide at least the arguments that have no defaults such as options_b90 and climate).

Value

A named list with the results of the single runs as returned by run_LWFB90. Simulation or processing errors are passed on.

run_multi_LWFB90 29

Parameter updating

The transfer of values from a row in paramvar to param_b90 before each single run simulation is done by matching names from paramvar and param_b90. In order to address data.frame or vector elements in param_b90 by a column name in paramvar, the respective column name has to be set up from its name and index in param_b90. To replace, e.g., the 2nd value of ths in the soil_materials data.frame, the respective column name in paramvar has to be called 'soil_materials.ths2'. In order to replace the 3rd value of maxlai vector in param_b90, the column has to be named 'maxlai3'.

Data management

The returned list of single run results can become very large, if many simulations are performed and the selected output contains daily resolution data sets, especially daily layer-wise soil moisture data. To not overload memory, it is advised to reduce the returned simulation results to a minimum, by carefully selecting the output, and make use of the option to pass a list of functions to run_LWFB90 via argument output_fun. These functions perform directly on the output of a single run simulation, and can be used for aggregating model output on-the-fly, or for writing results to a file or database. The regular output of run_LWFB90 can be suppressed by setting rtrn.output = FALSE, for exclusively returning the output of such functions.

Progress bar

This function provides a progress bar via the package **progressr** if show_progress=TRUE. The parallel computation is then wrapped with progressr::with_progress() to enable progress reporting from distributed calculations. The appearance of the progress bar (including audible notification) can be customized by the user for the entire session using progressr::handlers() (see vignette('progressr-intro')).

```
data("slb1_meteo")
data("slb1_soil")
# Set up lists containing model control options and model parameters:
parms <- set_paramLWFB90()</pre>
# choose the 'Coupmodel' shape option for the annual lai dynamic,
# with fixed budburst and leaf fall dates:
opts <- set_optionsLWFB90(startdate = as.Date("2003-06-01"),
                                  enddate = as.Date("2003-06-30"),
                                  lai_method = 'Coupmodel',
                                  budburst_method = 'fixed',
                                  leaffall_method = 'fixed')
# Derive soil hydraulic properties from soil physical properties using pedotransfer functions
soil <- cbind(slb1_soil, hydpar_wessolek_tab(slb1_soil$texture))</pre>
#set up data.frame with variable parameters
n <- 10
set.seed(2021)
vary_parms <- data.frame(shp_optdoy = runif(n,180,240),</pre>
```

 r_{l} r_{l

```
shp_budburst = runif(n, 0.1,1),
                          winlaifrac = runif(n, 0,0.5),
                          budburstdoy = runif(n, 100, 150),
                          soil_materials.ths3 = runif(n, 0.3, 0.5), # ths of material 3
                          \maxlai = runif(n,2,7))
# add the soil as soil_nodes and soil materials to param_b90, so ths3 can be looked up
parms[c("soil_nodes", "soil_materials")] <- soil_to_param(soil)</pre>
# Make a Multirun-Simulation
b90.multi <- run_multi_LWFB90(paramvar = vary_parms,</pre>
                        param_b90 = parms,
                         options_b90 = opts,
                         climate = slb1_meteo)
names(b90.multi)
# extract results
evapday <- data.table::rbindlist(</pre>
 lapply(b90.multi, FUN = function(x) { x$output[,c("yr", "doy", "evap")] }),
 idcol = "srun")
evapday$dates <- as.Date(paste(evapday$yr, evapday$doy),"%Y %j")</pre>
srun_nms <- unique(evapday$srun)</pre>
with(evapday[evapday$srun == srun_nms[1], ],
     plot(dates, cumsum(evap), type = "n",
          ylim = c(0,100)
for (i in 1:length(b90.multi)){
 with(evapday[evapday$srun == srun_nms[i], ],
       lines(dates, cumsum(evap)))
}
```

r_lwfbrook90

Interface function to the LWF-Brook90 model

Description

Passes input data matrices to the Fortran model code and returns the results

Usage

```
r_lwfbrook90(
    siteparam,
    climveg,
    param,
    pdur,
```

31 set_optionsLWFB90

```
soil_materials,
  soil_nodes,
  precdat = NULL,
  output_log = TRUE,
  chk_input = TRUE,
  timelimit = Inf
)
```

Arguments

A [1,9] matrix with site level information: start year, start doy, latitude, initial siteparam

snow, initial groundwater, precipitation interval, a snow cover's liquid water

(SNOWLQ) and cold content (CC).

climveg A matrix with 15 columns of climatic and vegetation data: year, month, day,

> global radiation in MJ/(m² d), tmax (deg C), tmin (deg C), vappres (kPa), wind (m/s), prec (mm), mesfl (mm), densef (-), stand height (m), lai (m²/m²), sai

(m²/m²), stand age (years).

param A numeric vector of model input parameters (for the right order see param_to_rlwfbrook90).

pdur a [1,12]-matrix of precipitation durations (hours) for each month.

soil_materials A matrix of the 8 soil materials parameters. When imodel = 1 (Mualem-van

Genuchten), these refer to: mat, ths, thr, alpha (1/m), npar, ksat (mm/d), tort (-), stonef (-). When imodel = 2 (Clapp-Hornberger): mat, thsat, thetaf, psif (kPa),

bexp, kf (mm/d), wetinf (-), stonef (-).

soil_nodes A matrix of the soil model layers with columns nl (layer number), layer midpoint

(m), thickness (mm), mat, psiini (kPa), rootden (-).

precdat A matrix of precipitation interval data with 6 columns: year, month, day, interval-

number (1:precint), prec, mesflp.

Logical whether to print runtime output to console. output_log chk_input Logical whether to check for NaNs in model inputs. timelimit

Integer to set elapsed time limits for running the model.

Value

A list containing the daily and soil layer model outputs, along with an error code of the simulation (see run_LWFB90.

set_optionsLWFB90

Create a list of model control options

Description

Create a list of model control options

Usage

```
set_optionsLWFB90(...)
```

32 set_optionsLWFB90

Arguments

... Named values to be included in return value.

Details

startdate start date of the simulation.

enddate end date of the simulation.

fornetrad use global solar radiation (='globrad') or sunshine duration hours (='sunhours') for net radiation calculation?

prec_interval number of precipitation intervals per day (default is 1). If prec_interval > 1, the precip-argument has to be provided to run_LWFB90

correct_prec correct precipitation data for wind and evaporation losses using **correct_prec**?

- budburst_method name of method for budburst calculation. If 'constant' or 'fixed', budburst day of year from parameters is used. All other methods calculate budburst day of year dynamically from airtemperatures, and the method name is passed to the start.method-argument of vegperiod.
- **leaffall_method** name of method for leaffall calculation. If 'constant' or 'fixed', beginning of leaffall (day of year) from parameters is used. All other methods calculate budburst day of year dynamically from temperatures, and the method name is passed to the end.method-argument of vegperiod.
- **standprop_interp** interpolation method for aboveground stand properties. 'linear' or 'constant', see approx.method-argument of approx_standprop.
- **use_growthperiod** Should yearly changes of stand properties (growth) only take place during the growth period? If TRUE, linear interpolation of height, sai, densef and age are made from budburst until leaffall. During winter values are constant. Beginning and end of the growth period are taken from parameters budburstdoy and leaffalldoy. See use_growthperiod-argument of approx_standprop.
- **lai_method** name of method for constructing seasonal course leaf area index development from parameters. Passed to method-argument of make_seasLAI.
- **imodel** name of retention & conductivity model: "CH" for Clapp/Hornberger, "MvG" for Mualem/van Genuchten
- root_method method name of the root length density depth distribution function. Any of the names accepted by make_rootden are allowed. Additionally, 'soilvar' can be used if the root length density depth distribution is specified in column 'rootden' in the soil-data.frame

Value

A list of model control options for use as options_b90-argument in run_LWFB90.

set_outputLWFB90 33

Examples

```
# Default options
options_b90 <- set_optionsLWFB90()
# Include specific options
options_b90_dynamic_phenology <- set_optionsLWFB90(budburst_method = 'Menzel',
leaffall_method = 'vonWilpert')</pre>
```

set_outputLWFB90

Select output for LWF-Brook90

Description

Returns a [7,5] matrix with a default selection of LWF-Brook90 output data sets for the use as 'output'-argument run_LWFB90.

Usage

```
set_outputLWFB90(output = NULL, edit = FALSE)
```

Arguments

output

optional [7,5]-matrix, which is opened on R's data-editor if edit = TRUE. If no

matrix is passed, a default selection of output values is returned opened in R's

data-editor.

edit

open R's data-editor?

Value

```
a [7,5]-matrix containing 0 and 1 for use as output-argument in run_LWFB90
```

```
# create matrix with default selection
output <- set_outputLWFB90()
output

# modify
output[,] <- 0L
output[,3] <- 1L
output["Evap", c("Ann","Mon")] <- 1L
output</pre>
```

34 set_paramLWFB90

set_paramLWFB90	Create the list of model parameters	

Description

Create the list of model parameters

Usage

```
set_paramLWFB90(...)
```

Arguments

. . . Named arguments to be included in return value.

Description

Value

Name

czr

A list with model parameters for use as param_b90-argument in run_LWFB90.

List of input parameters

czs	Ratio of roughness length to mean height for smooth closed canopies for heights less than HS when LAD
hr	Smallest height to which CZR applies. Default: 10
hs	Largest height to which CZS applies. Default: 1
lpc	Minimum leaf area index defining a closed canopy. Default: 4
lwidth	Average leaf width. Default: 0.1
nn	Eddy diffusivity extinction coefficient within canopy. Default: 2.5
rhotp	Ratio of total leaf area to projected area. Default: 2
zminh	Reference height for weather data above the canopy top height. Default: 2
dslope	Slope for downslope-flow. Default: 0
bypar	Switch to allow (1) or prevent (0) bypass flow in deeper layers. Default: 0
drain	Switch for lower boundary condition to be free drainage (1) or no flow (0). Default: 1
slopelen	Slope length for downslope-flow. Default: 200
gsc	Rate constant for ground water discharge (remember that a first order groundwater reservoir is placed bel
gsp	Seepage fraction of groundwater discharge. Default:
ilayer	Number of layers from top to which infiltration is distributed. Default: 0
imperv	Fraction of area which has an impermeable surface (like roads). Default: 0
infexp	Shape parameter for distribution of infiltration in first ILayer, for value 0 infiltration is in top layer only.
qffc	Quickflow fraction of infiltrating water at field capacity, for value 0 there is no quickflow (bypass or surfa
qfpar	Quickflow shape parameter. Default: 1
qlayer	Number of layers which are considered for generation of surface or source area flow. Default: 0
water_table_depth	Depth of the water table for a constant head boundary9999 means gravitational flow boundary. Default
gwatini	Initial value of groundwater storage. Default: 0
snowini	Initial value of water content of snow pack. Default: 0
snowlqini	Initial value of liquid water content of snow pack. Default: 0

Ratio of roughness length to mean height for smooth closed canopies for heights greater than HR when I

set_paramLWFB90 35

snowccini Initial value of cold content of snow pack (positive). Default: 0

intrainini Initial value of intercepted rain. Default: 0 intsnowini Initial value of intercepted snow. Default: 0

psiini Initial pressure head of soil layers. May have the same length as row.names(soil). Default: -6.3

cintrl Maximum interception storage of rain per unit LAI. Default: 0.15 cintrs Maximum interception storage of rain per unit SAI. Default: 0.15 cintsl Maximum interception storage of snow per unit LAI. Default: 0.6 cintss Maximum interception storage of snow per unit SAI. Default: 0.6

frintlai Intercepted fraction of rain per unit LAI. Default: 0.06 frintsai Intercepted fraction of rain per unit SAI. Default: 0.06 fsintlai Intercepted fraction of snow per unit LAI. Default: 0.04 fsintsai Intercepted fraction of snow per unit SAI. Default: 0.04

pdur Average duration of precipitation events for each month of the year. Default: rep(4,12)

alb Albedo of soil/vegetation surface without snow. Default: 0.2 albsn Albedo of soil/vegetation surface with snow. Default: 0.5

c1 Intercept of relation of solar radiation to sunshine duration. Default: 0.25 c2 Intercept of relation of solar radiation to sunshine duration. Default: 0.5

c3 Constant between 0 and 1 that determines the cloud correction to net longwave radiation from sunshine c

fetch Fetch upwind of the weather station at which wind speed was measured. Default: 5000

ksnvp Correction factor for snow evaporation. Default: 0.3

wndrat Average ratio of nighttime to daytime wind speed. Default: 0.3

z0s Surface roughness of snow cover. Default: 0.001

z0w Roughness length at the weather station at which wind speed was measured. Default: 0.005 (Grass) coords_x Longitude value (decimal degrees) of the simulation location (has no effect on simulation results). Defau

coords_y Latitude value (decimal degrees) of the simulation location. Default: 51.54

zw Height at which wind speed was measured. Default: 2

eslope Slope for evapotranspiration and snowmelt calculation. Default: 0

aspect Mean exposition of soil surface at soil profile (north: 0, east: 90, south: 180, west: 270). Default: 0 obsheight Mean height of obstacles on soil surface (grass, furrows etc.), used to calculate soil surface roughness. D

prec_corr_statexp Station exposure situation of prec measurements (passed to correct_prec Default: 'mg'

dpsimax Maximum potential difference considered equal. Default: 5e-04

dswmax Maximum change allowed in SWATI. Default: 0.05

dtimax Maximum iteration time step. Default: 0.5

budburst_species Name of tree species for estimating budburst doy using Menzel-model (passed to vegperiod) Default: 'I

budburstdoy Budburst day of year - passed to make_seasLAI. Default: 121 Leaf growth duration until maxlai is reached.. Default: 28

height Plant height. Default: 25

leaffalldoy Day of year when leaf fall begins - passed to make_seasLAI Default: 279

leaffalldur Number of days until minimum lai is reached - passed to make_seasLAI Default: 58

sai Steam area index. Default: 1

sai_ini Initial stem area index at the beginning of the simulation. Used when options_b90\$standprop_interp

shp_leaffall Shape parameter for leaf fall phase - passed to make_seasLAI Default: 0.3
shp_budburst Shape parameter for leaf growth phase - passed to make_seasLAI Default: 3
shp_optdoy Day of year when optimum value is reached - passed to make_seasLAI Default: 210

lai_doy Day of year values for lai-interpolation - passed to make_seasLAI

lai_frac Fractional lai values for lai interpolation, corresponding to lai_doy - passed to make_seasLAI Default: 2

winlaifrac Minimum LAI as a fraction of maxlai. Default: 0

36 set_paramLWFB90

standprop_table Data.frame with yearly values of vegetation properties with columns 'year', 'age', 'height', 'maxlai', 'sai'

Ratio of projected stem area index to canopy height. Default: 0.035

densef Density factor for MaxLAI, CS, RtLen, RPlant, not <.001, 1 for typical stand. Default: 1

maxlai Maximum projected leaf area index - passed to make_seasLAI Default: 5

radex Extinction coefficient for solar radiation and net radiation in the canopy. Default: 0.5

cvpd Vapour pressure deficit at which leaf conductance is halved. Default: 2

glmax Maximum leaf vapour conductance when stomata are fully open. Default: 0.0053 glmin Minimum leaf vapour conductance when stomata are closed. Default: 0.0003

r5 Solar radiation level at which leaf conductance is half of its value at RM. Default: 100

rm Nominal maximum solar shortwave radiation possible on a leaf (to reach glmax). Default: 1000 to Lower suboptimal temperature threshold for stomata opening - temperature relation. Default: 10 to Upper suboptimal temperature threshold for stomata opening - temperature relation. Default: 30 to 200 to 2

th Upper temperature threshold for stomata closure. Default: 40 tl Lower temperature threshold for stomata closure. Default: 0

betaroot Shape parameter for rootlength density depth distribution. Default: 0.97

maxrootdepth maxrootdepth (positive downward) - passed to make_rootden. Default: -1.5

Data.frame of relative root density depth distribution with columns 'depth' and 'rootden'

rstemp Base temperature for snow-rain transition. Default: -0.5

ccfac Cold content factor. Default: 0.3

grdmlt Rate of groundmelt of snowpack. Default: 0.35

laimlt Parameter for snowmelt dependence on LAI. Default: 0.2 maxlqf Maximum liquid water fraction of Snow. Default: 0.05

melfac Degree day melt factor for open. Default: 1.5

saimlt Parameter for snowmelt dependence on SAI. Default: 0.5

snoden Snow density. Default: 0.3

rssa Soil evaporation resistance at field capacity. Default: 100 rssb Exponent in relation of RSS to water potential. Default: 1

soil_nodes Data.frame with soil nodes discretization passed to LWF-Brook90

soil_materials Data.frame with soil materials (hydrualic parameters) passed to LWF-Brook90

age_ini Age of stand (for root development). Default: 100

initrdep Initial root depth. Default: 0.25

initrlen Initial water-absorbing root length per unit area. Default: 12

rgroper Period of net root growth. A value of 0 prevents root growth. Default: 0

rgrorate Vertical root growth rate. Default: 0.03

fxylem Fraction of internal plant resistance to water flow that is in the Xylem. Default: 0.5

maxrlen Total length of fine roots per unit ground area. Default: 3000

mxkpl Maximum internal conductivity for water flow through the plants. Default: 8
nooutf Switch that prevents outflow from the root to the soil when the soil is dry. Default: 1

psicr Critical leaf water potential at which stomates close. Default: -2 rrad Average radius of the fine or water-absorbing roots. Default: 0.35

Examples

Default parameter
parms <- set_paramLWFB90()</pre>

Include specific parameters

slb1_meteo 37

```
parms_maxlai <- set_paramLWFB90(maxlai = c(4,6,5), height =20)</pre>
```

slb1_meteo

Meteorological Data from the Solling Beech and Spruce experimental site

Description

A dataset containing daily weather variables for the period 1960-2013

Usage

slb1_meteo

Format

A data frame with 19724 rows and 9 variables

dates date

tmin daily minimum temperature, deg C

tmax daily maximum temperature, deg C

tmean daily mean temperature, deg C

prec daily sum of precipitation, mm

relhum relative Humidity, %

globrad daily sum of global radiation, MJ/m²

windspeed daily mean wind speed measured at 10 m above ground, m/s

vappres daily vapour pressure, kPa

slb1_prec2013_hh

Hourly precipitation data from Solling Beech experimental site 'SLB1' for year 2013

Description

Hourly precipitation data from Solling Beech experimental site 'SLB1' for year 2013

Usage

```
slb1_prec2013_hh
```

Format

A data.frame with 8760 rows and 2 variables

dates date

prec hourly sum of precipitation, mm

38 slb1_standprop

slb1_soil

Soil profile data from the Solling Beech experimental site 'SLB1'

Description

A dataset containing the soil horizons' physical properties

Usage

slb1_soil

Format

A data.frame with 21 rows and 10 variables

horizon horizon symbol

upper upper layer boundary, m

lower layer boundary, m

texture soil texture according to German soil texture classification system

bd bulk density of the fine earth, g/cm³

gravel fraction of coarse material

sand sand content, mass-%

silt silt content, mass-%

clay clay content, mass-%

c_org organic carbon content, mass-%

slb1_standprop

Annual stand properties of the Solling Beech experimental site 'SLB1'

Description

A dataset containing the forests's stand properties

Usage

slb1_standprop

soil_to_param 39

Format

```
A data.frame with 49 rows and 7 variables
```

```
year Year of observation
species Tree species
age age of the main stand
height average height of the trees, m
maxlai maximum leaf area index, m²/m²
sai stem area index, m²/m²
densef stand density
```

soil_to_param

Split up soil into materials and soil nodes.

Description

Split up soil into materials and soil nodes.

Usage

```
soil_to_param(soil, imodel = "MvG")
```

Arguments

soil Data.frame with soil layer boundaries ('upper', 'lower') and hydraulic param-

eters. When imodel = 'MvG', columns of soil have to be named 'ths', 'thr', 'alpha', 'npar', 'ksat', 'tort', 'gravel'. When imodel = 'CH', columns have to be

named thsat, 'thetaf', 'psif', 'bexp', 'kf', 'wetinf', 'gravel'.

imodel Name of the hydraulic model ('MvG' or 'CH')

Value

```
a list with data.frames 'soil_nodes' and 'soil_materials'
```

```
data(slb1_soil)
soil <- slb1_soil
soil <- cbind(soil, hydpar_wessolek_tab(soil$texture))
str(soil)

soil_layers_materials <- soil_to_param(soil)
soil_layers_materials</pre>
```

```
standprop_yearly_to_param
```

Transfer standproperties height, maxlai, sai, densef, age to parameter list obeject

Description

Takes a data.frame of yearly stand properties, trims/extends the columns height, maxlai, sai, densef, and age for the years in out_yrs, and updates the provided parameter list.

Usage

```
standprop_yearly_to_param(standprop_yearly, param_b90, out_yrs)
```

Arguments

out_yrs

```
standprop_yearly

A data.frame or data.table with columns 'year', 'height', 'maxlai', 'sai', 'densef', 'age'.

param_b90 A list object to update.
```

Vector of years for which parameters should be updated.

Value

The param_b90 list-object with updated items maxlai, height, height_ini, sai, sai_ini, densef, densef_ini, age, age_ini.

Index

```
* datasets
                                                 set_outputLWFB90, 17, 33
    slb1_meteo, 37
                                                 set_paramLWFB90, 21, 34
    slb1_prec2013_hh, 37
                                                 slb1_meteo, 37
    slb1_soil, 38
                                                 slb1_prec2013_hh, 37
    slb1_standprop, 38
                                                 slb1_soil, 38
                                                 slb1_standprop, 38
approx_standprop, 3, 14, 32, 35, 36
                                                 soil_to_param, 23, 39
                                                 standprop_yearly_to_param, 40
calc_globrad, 5
calc_vegperiod, 6
                                                 vegperiod, 6, 32, 35
correct_prec, 7, 32, 35
dcast, 8
extract_layer_output, 8
hydpar_ff_b90 (ptfs), 18
hydpar_hypres, 19
hydpar_hypres (ptfs), 18
hydpar_hypres_tab, 19
hydpar_hypres_tab (ptfs), 18
hydpar_puh2 (ptfs), 18
hydpar_wessolek_tab(ptfs), 18
make_rootden, 10, 32
make_seasLAI, 11, 14, 32, 35, 36
make_standprop, 13
param_to_rlwfbrook90, 14, 31
plant_b90, 15
plant_coupmodel, 15
plant_linear, 16
process_outputs_LWFB90, 17
ptfs, 18
r_lwfbrook90, 14, 30
replace_vecelements, 20
run_LWFB90, 8, 17, 21, 25, 26, 28, 29, 31–34
run_multi_LWFB90, 22, 28
run_multisite_LWFB90, 22, 25
set_optionsLWFB90, 21, 31
```