

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

THIS PAGE BLANK (USPTO)

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Offenlegungsschrift

(11) DE 4008560 A1

(51) Int. Cl. 5:

G07C 3/08

DE 4008560 A1

- (21) Aktenzeichen: P 40 08 560.0
(22) Anmeldetag: 16. 3. 90
(43) Offenlegungstag: 20. 9. 90

(30) Unionspriorität: (32) (33) (31)

17.03.89 JP 01-063852

(71) Anmelder:

Hitachi, Ltd., Tokio/Tokyo, JP

(74) Vertreter:

Beetz sen., R., Dipl.-Ing.; Beetz jun., R., Dipl.-Ing.
Dr.-Ing.; Timpe, W., Dr.-Ing.; Siegfried, J., Dipl.-Ing.;
Schmitt-Fumian, W., Prof. Dipl.-Chem. Dr.rer.nat.;
Mayr, C., Dipl.-Phys.Dr.rer.nat., Pat.-Anwälte, 8000
München

(72) Erfinder:

Ohtsuka, Hisao; Utamura, Motoaki, Hitachi, JP

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Verfahren zum Bestimmen einer Restlebensdauer, Vorrichtung zum Bestimmen einer Restlebensdauer, Verfahren zum Anzeigen der Restlebensdauerdaten, Anzeigevorrichtung und Expertensystem

In einem Verfahren zum Bestimmen der Restlebensdauer eines aus einer Mehrzahl von Bauteilen aufgebauten und wenigstens eine Funktion besitzenden Aggregats und in einer Vorrichtung für dieses Verfahren wird auf der Grundlage von experimentellen Alterungsverschlechterungsdaten (12) bezüglich einer Eigenschaft wenigstens eines Bauteils des Aggregats eine erste Restlebensdauer (L_1) des Aggregats erfaßt. Weiterhin wird auf der Grundlage von experimentellen Alterungsdaten bezüglich wenigstens einer Funktion des Aggregats eine zweite Restlebensdauer (L_2) des Aggregats erfaßt. Schließlich wird auf der Grundlage sowohl der experimentellen Alterungsverschlechterungsdaten (12) bezüglich der einen Eigenschaft wenigstens des einen Bauteils des Aggregats als auch der experimentellen Alterungsdaten (10) wenigstens der einen Funktion des Aggregats eine dritte Restlebensdauer (L_3) erfaßt. Die kürzeste dieser ersten bis dritten Lebensdauern wird als Restlebensdauer (L) des Aggregats ausgegeben.

FIG. 1

DE 4008560 A1

daß es sich in dem in Fig. 1 gezeigten Aufbau um ein Expertensystem zum Bestimmen einer Restlebensdauer eines Teileaggregats beispielsweise eines Stromkraftwerks (zum Beispiel eines Kernkraftwerks) handelt. Dieses Expertensystem 1 umfaßt eine Informationserfassungsunterstützungsvorrichtung 2, eine Schlußfolgerungsvorrichtung, eine Benutzerschnittstelle 4, eine externe Systemschnittstelle 5 und eine Informationsbank 6. Die Benutzerschnittstelle 4 ist mit einem Datenbanksystem 7, mit dem die Anlagedaten verwaltet werden, und mit einem Endgerätesystem 8, das eine Eingabe-/Ausgabevorrichtung wie etwa die Tastatur, eine Dauerkopievorrichtung und ähnliches enthält, verbunden. Mit dem Endgerätesystem 8 ist eine Anzeigevorrichtung, zum Beispiel eine CRT (Kathodenstrahlröhre) 20 verbunden.

Die unten erwähnten drei verschiedenen Daten 10, 12 und 14 werden mittels der (nicht gezeigten) Tastatur oder ähnlichem in das Endgerätesystem 8 eingegeben. Die Funktionstestdaten 10, die den Funktionstestdaten einer konstruktiven Vorrichtung (Teileaggregat) der Anlage während der periodischen Routineprüfung entsprechen, werden jedesmal, wenn die periodische Prüfung ausgeführt wird, eingegeben. Die Daten 12 entsprechen einerseits den Teileverschlechterungscharakteristik-Daten von Teilen der konstruktiven Vorrichtung, die in einem Kurzzeitlebensdauertest erfaßt worden sind, und andererseits den Teileverschlechterungscharakteristik-Daten, die im voraus und beliebig eingegeben worden sind.

Die Informationsdaten 14 entsprechen denjenigen Informationsdaten (Spezifikationen der konstruktiven Vorrichtungen und der Teile, Betriebsverhalten, Grenzwerte, Betriebsstörungs- und Unregelmäßigkeitsinformation, Wartungsinformation usw.), die die von Experten anhand von in der Vergangenheit gewonnener Erfahrung geleistete vorbeugende Wartungsarbeit betreffen und im voraus eingegeben werden.

Die Daten der im Betrieb befindlichen Anlage (zum Beispiel die Daten über die Umgebung der konstruktiven Vorrichtungen, also etwa die Temperaturen (T)) werden als Stammdaten 16 in einem On-Line-Modus von (nicht gezeigten) externen Sensoren in die externe Systemschnittstelle 5 eingegeben.

Die Daten 10 und 12 werden über das Endgerätesystem 8 und die Benutzerschnittstelle 4 in Dateien 70 bzw. 72 eines Datenbanksystems 7 als Datenbanken gespeichert, während die Stammdaten 16 über die externe Systemschnittstelle 5 und die Benutzerschnittstelle 4 in einer weiteren Datei 76 des Datenbanksystems 7 gespeichert werden. Die Informationsdaten 14 werden über das Endgerätesystem 8, die Benutzerschnittstelle 4 und die Informationserfassungsunterstützungsvorrichtung 2 in eine Informationsdatendatei 64 der Informationsbank 6 in einer Form gespeichert, daß sie abgerufen werden können.

Die Informationserfassungsunterstützungsvorrichtung 2 führt die Eingabe/Ausgabe, die Abwandlung und die Fehlerbereinigung der Informationsdaten aus.

Über die Benutzerschnittstelle 4 werden leicht die von den Fachleuten und aufgrund der Wartung erhaltenen Informationsdaten eingegeben oder leicht Antworten an Benutzer gegeben.

Die Schlußfolgerungsvorrichtung 3 führt verschiedene Steuerungen aus, um unter Verwendung der Informationsdaten, die in der Informationsbank 6 gespeichert worden sind, Schlußfolgerungen auszuführen.

Die Schlußfolgerungsvorrichtung 3 arbeitet eine Software zum Bestimmen der Restlebensdauer der konstruktiven Geräte im Stromkraftwerk ab; sie besitzt die folgenden Merkmale:

- (1) Die Information kann in einer Informationsmischform dargestellt werden, mit der sowohl eine Regelinformation, die in einer wenn/dann-Regelproduktionsform dargestellt wird, als auch eine Wahrheitsinformation, das heißt eine Frame-Information, in der die Wahrheit oder Falschheit einer Darstellung definiert wird, gehandhabt werden kann
- (2) Es kann ein flexibles Schlußfolgerungsverfahren ablaufen, in dem sowohl eine Vorwärtsschlußfolgerung als auch eine Rückwärtsschlußfolgerung ausgeführt werden kann. Es sind eine Mehrzahl von Strategien zur Auswahl einer geeigneten Regel unter mehreren vorgegebenen Regeln vorgesehen, ferner wird frei auf eine Regelbedingungseinheit, auf eine methodisierte Regel und auf ein Fehlersuchprogramm zugegriffen.
- (3) Die Ablaufgeschwindigkeit der Schlußfolgerungsverarbeitung wird dadurch erhöht, daß die in der Informationsbank gespeicherten Informationsdaten in eine Form umgewandelt werden, in der sie mit hoher Geschwindigkeit verarbeitet werden können, bevor die Schlußfolgerungsverarbeitung ausgeführt wird, wobei die Erkennung einer für die Schlußfolgerung nicht notwendigen Regel unterlassen wird. Weiterhin wird die Anzahl der Regelgruppen, die beim Einsatz der methodisierten Regel verwendet werden, verringert, um so die Hochgeschwindigkeitsverarbeitungsoperation zu verbessern.

Die Schlußfolgerungsvorrichtung 3 enthält eine Teileverschlechterungs-Analyseeinheit 36, eine Gerätewirkungsfunktionstüchtigkeits-Analyseeinheit 32, eine Verhältnis-Analyseeinheit 34 und eine Restlebensdauer-Auswertungseinheit 38.

Wenn die Restlebensdauer eines konstruktiven Gerätes bestimmt wird, wird von der Restlebensdauer-Auswertungseinheit 38 auf der Grundlage einer Restlebensdauer " L_1 ", die mittels der Teileverschlechterungs-Analyseeinheit 36 gewonnen wird, einer Restlebensdauer " L_2 ", die in der Gerätewirkungsfunktionstüchtigkeits-Analyseeinheit 32 erfaßt wird, und einer Restlebensdauer " L_3 ", die in der Verhältnis-Analyseeinheit 34 berechnet wird, eine optimale Restlebensdauer " L " berechnet. In der Teileverschlechterungs-Analyseeinheit wird der Verschlechterungscharakteristikwert der konstruktiven Teile des Gerätes berechnet, anschließend wird daraus die Restlebensdauer L_1 erhalten. In der Gerätewirkungsfunktionstüchtigkeits-Analyseeinheit wird auf der Grundlage der Funktionstestdaten des aus den entsprechenden Teilen aufgebauten Gerätes ein Zeitpunkt berechnet, zu dem das Gerät seinen Grenzwert erreicht; der sich daraus ergebende Zeitpunkt stellt die Restlebensdauer L_2 dar. In der Verhältnis-Analyseeinheit wird aus der relativen Beziehung des Verschlechterungscharakteristikwertes der konstruktiven Teile zu den Funktionstestdaten des Gerätes die Restlebensdauer L_3 erhalten. Dann wird in der Restlebensdauer-Auswertungseinheit der kleinste Wert dieser Restlebensdauern L_1 , L_2 und L_3 gleich der optimalen Restlebensdauer " L " gesetzt.

In Fig. 2 ist ein Flußdiagramm gezeigt, in dem eine Bestimmungsprozeßabfolge für die Restlebensdauer eines Geräts (d. h. eines Teileaggregats) gemäß einer bevorzugten Ausführungsform der Erfahrung erläutert wird.

Zunächst wird beispielsweise ein Menübildschirm, wie er in Fig. 3 dargestellt ist, auf einem Anzeigeschirm der CRT 20 von Fig. 1 angezeigt (Schritt 200).

Danach wird ein zu untersuchendes Gerät, zum Beispiel ein im Menü angezeigter Regelstabantriebsmechanismus (RSA) markiert (Schritt 202).

Daher wird bezüglich des RSA zunächst eine Teileverschlechterungs-Analyseverarbeitung abgearbeitet (Schritt 204), anschließend werden der Reihe nach eine Gerätefunktionstüchtigkeits-Analyseverarbeitung (Schritt 206), eine Verhältnis-Analyseverarbeitung (Schritt 208) und eine Restlebensdauer-Auswertung (Schritt 210) ausgeführt.

Obwohl in der im folgenden beschriebenen bevorzugten Ausführungsform die in der Restlebensdauer-Auswertungsverarbeitung erhaltene Restlebensdauer "L" zur Anzeige ausgegeben wird, wird an dieser Stelle bemerkt, daß eine andere Restlebensdauer, die entweder aus der Teileverschlechterungsanalyse, der Gerätefunktionstüchtigkeitsanalyse oder der Verhältnisanalyse erhalten wird, zur Anzeige ausgegeben werden kann.

Fig. 4 ist ein Querschnitt eines RSA, der als Beispiel eines konstruktiven Gerätes eines Kernkraftwerks dient und der mittels der vorliegenden bevorzugten Ausführungsform untersucht werden soll.

Wie in Fig. 4 gezeigt, umfaßt der Regelstabantriebsmechanismus (RSA) eine Kohlenstoffdichtung 42, einen Haltestab 44, einen Zylinder 48, einen Antriebskolben 52, eine Spannfeder 54, einen Spannkolben 56, einen Haltekolben 58, eine Spannröhre 60, eine Teirlötre 62, ein Einlaßrohr 66 für das Antriebwasser, ein Auslaßrohr 67 für das Antriebwasser und ein Kugelrückschlagventil 68; ferner sind in Fig. 4 ein Reaktordruckgefäßboden 46 und ein Gehäuse 50 gezeigt. Die in Fig. 4 gezeigten Pfeile stellen die Strömungsrichtungen des Antriebwassers dar, wenn der Regelstab herausgezogen ist.

Zunächst wird mit Bezug auf das in Fig. 5 gezeigte Flußdiagramm die Prozeßabfolge der Teileverschlechterungsanalyse beschrieben. Unter der Annahme, daß die Restlebensdauer des RSA, die aus den Teileverschlechterungscharakteristikdaten der den RSA aufbauenden Bauteile, beispielsweise aus den Kurzzeitlebensdauertestdaten, berechnet werden, um Wert L_1' entspricht und daß eine weitere Restlebensdauer des RSA, die aus den Zuverlässigkeitsschätzungen der entsprechenden Bauteile auf der Grundlage der Ausfalldaten oder der Teileverschlechterungscharakteristikdaten, etwa die Kurzzeitlebensdauertestdaten der jeweiligen konstruktiven Bauteile, gewonnen wird, dem Wert L_1'' entspricht, wird gemäß der Teileverschlechterungsanalyseverarbeitung der bevorzugten Ausführungsform die kürzere dieser beiden Restlebensdauern als Restlebensdauer L_1 bestimmt. Es ist selbstverständlich möglich, daß entweder die erstgenannte Restlebensdauer L_1' oder die zweitgenannte Restlebensdauer L_1'' gleich dem Wert L_1 ist.

In diesem Fall kann die Restlebensdauer der Vorrichtung (RSA) durch Auswertung vorübergehender Änderungen der Verschlechterungsparameter der entsprechenden konstruktiven Bauteile der Vorrichtung, beispielsweise der Biegefesteitk, der Härte, der Stoßfestigkeit und ähnliches, bei bestimmten Betriebsbedingungen vorhergesagt werden. Das bedeutet, daß festgestellt wurde, daß in der Vorrichtung bei einer Erhöhung der Betriebstemperatur als einer der Arbeitsumgebungsbedingungen (zum Beispiel Temperaturen, Drücke, Zahl der Verwendung usw.) die starke Neigung besteht, daß die Biegefesteitk als einer der Verschlechterungsparameter der ein konstruktive Bauteil des RSA bildenden Kohlenstoffdichtung (die in Fig. 4 mit dem Bezugszeichen 42 bezeichnet ist) abgesenkt wird. Folglich kann die Verschlechterungscharakteristik der Kohlenstoffdichtung leicht ermittelt und vorhergesagt werden, indem der vergangene Änderungsverlauf der Biegefesteitk in bezug auf die Betriebstemperatur untersucht wird. In einem ersten Schritt 500 werden entweder die Fehlerinformation des RSA (zum Beispiel ein außergewöhnliches Ansteigen der Temperatur des RSA, eine Deformierung der Verbindung zwischen dem RSA und dem RS (Regelstab) und ähnliches), die in der Datei 72 des Datenbanksystems gespeichert ist, oder die Kurzzeitlebensdauertestdaten der entsprechenden konstruktiven Teile (Kohlenstoffdichtung usw.) des RSA gelesen. Die Fehlerinformation wird beliebig vom Endgerätesystem 8 an das Datenbanksystem 7 geliefert, um dort bei der Auswertung der Restlebensdauer benutzt zu werden.

In einem nächsten Schritt 502 wird die Zuverlässigkeitsschätzung wie etwa die Weibull-Verteilungsanalyse unter Verwendung der gelesenen Daten, zum Beispiel der Kurzzeitlebensdauertestdaten ausgeführt.

Obwohl es als Zuverlässigkeitsschätzung verfahren selbstverständlich auch andere Verfahren wie etwa solche auf die Normalverteilung; die logarithmische Normalverteilung, die Exponentialverteilung und ähnliches gestützte Analyseverfahren gibt, wird die folgende Beschreibung für die Weibull-Verteilungsanalyse gegeben.

Zuerst werden Daten über die Kohlenstoffdichtung, etwa die Kurzzeitlebensdauertestdaten, analysiert.

In Fig. 9 ist ein Beispiel von Kurzzeitlebensdauertestdaten der Kohlenstoffdichtung gezeigt.

Die Weibull-Verteilungsfunktion ist durch folgende Gleichung gegeben:

$$f_i(t) = m_i t^{m_i-1} / \eta_i^{m_i} \exp \left\{ - \left(\frac{t}{\eta_i} \right)^{m_i} \right\} (t \geq 0, \eta_i^{m_i} > 0, m_i > 0) \quad (1)$$

Die Unzuverlässigkeit $F_i(t)$ und die Zuverlässigkeit $R_i(t)$ sind durch die folgenden beiden Gleichungen gegeben:

5

10

15

20

25

30

35

40

45

50

55

60

65

$$F_i(t) = 1 - \exp \left\{ - \left(\frac{t}{\eta_i} \right)^m \right\} \quad (2)$$

$$5 \quad R_i(t) = \exp \left\{ - \left(\frac{t}{\eta_i} \right)^m \right\} \quad (3)$$

Hierbei bezeichnet "m" den Weibullischen Formparameter, der die Ausfallbedingung dieses Bauteils (der Teile) anzeigt (bei einem Anfangsausfall ist $m_i < 1$, bei einem zufälligen Ausfall ist $m_i = 1$ und bei einem Verschleißausfall ist $m_i > 1$), ferner bezeichnet " η_i " einen Skalenparameter, der die charakteristische Lebensdauer angibt.

Auf der Grundlage der in Fig. 9 gezeigten Kurzzeitlebensdauertestdaten der Kohlenstoffdichtung werden aus der Verteilungsfunktionsgleichung (1) der Formparameter m_i und der Skalenparameter η_i bei einer vorhergesagten Temperatur nach dem momentanen Zeitpunkt gewonnen.

15 Im nachfolgenden Schritt 504 wird die Zuverlässigkeit R_i dieses Bauteils bei der Vorhersagetemperatur über die Gleichung (3) auf der Grundlage sowohl der oben beschriebenen Parameter als auch der vergangenen Betriebszeit "t" des zu untersuchenden Bauteils (Kohlenstoffdichtung) erhalten.

Fig. 10 ist ein Kennliniendiagramm der Nichtzuverlässigkeit $f(T)$ der Kohlenstoffdichtung bei verschiedenen Temperaturen ($50^\circ, 100^\circ, 200^\circ, 285^\circ$ und 300°C), das aus dem in Fig. 9 gezeigten Verschlechterungscharakteristikdiagramm erhalten wird. In Fig. 10 werden die Formparameter m_i bei den entsprechenden Temperaturen aus den Gradienten der geraden Linien der Charakteristik bei verschiedenen Temperaturen berechnet, die charakteristische Lebensdauer η_i wird für einen Zeitpunkt erhalten, zu dem diese geraden Linien die Nichtzuverlässigkeit von 63,2% erreichen. Das "E" in der Abszisse des Diagramms bedeutet eine Exponentendarstellung. Zum Beispiel bedeutet $1 E - 1 = 10^{-1} = 0,1, 1 E + 0 = 10^0 = 1$ und $1 E + 1 = 10^1 = 10$.

25 In einem nächsten Schritt 506 werden sowohl die Kurzzeitlebensdauertestdaten der Kohlenstoffdichtung als auch die auf die Vergangenheit bezogenen Daten der Betriebsumgebungsbedingungen der Dichtung (zum Beispiel die Betriebstemperatur) bis zum jetzigen Zeitpunkt aus der Datei 76 ausgelesen.

In einem Schritt 508 wird der Verschlechterungstrend der Kohlenstoffdichtung auf der Grundlage dieser Daten analysiert, um den Verschlechterungscharakteristikwert der Kohlenstoffdichtung zu erhalten.

30 Wie aus Fig. 9 ersichtlich ist, besteht die Neigung, daß die Verschlechterungsgeschwindigkeit der Biegefestigkeit σ aufgrund einer Erhöhung der Betriebstemperatur erhöht wird. Es konnte ermittelt werden, daß die Biegefestigkeit durch eine Exponentialfunktion zwischen der Zeit und der Betriebstemperatur gemäß der folgenden Gleichung (4) ausgedrückt werden kann:

$$35 \quad \sigma = \sigma_0 \exp \{-f(T) \times t^\alpha\} \quad (4)$$

$$f(T) = aT^n + bT^{n-1} \dots + xT^2 + yT + z \approx xT^2 + yT + z \quad (5)$$

wobei gilt:

40 σ_0 : Anfangswert (experimenteller Wert) des Verschlechterungscharakteristikwertes

T : Prozeßgröße zur Steigerung der Verschlechterung (in der bevorzugten Ausführungsform: die Betriebstemperatur)

α : Experimentelle Konstante

$f(T)$: Näherungsausdruck der Lebensdauerdaten (a, b, \dots, x, y, z : experimentelle Konstanten).

45 Im allgemeinen ist α gleich 1. Folglich werden die Konstanten x, y und z beispielsweise mit dem Verfahren der kleinsten Quadrate auf der Grundlage der vergangenen Temperaturdaten und der Kurzzeitlebensdauertestdaten bestimmt.

50 Wenn daher das Vorhersagemuster der Betriebstemperatur T aus den Gleichungen (4) und (5) erhalten wird, kann der Vorhersageverschlechterungscharakteristikwert $\sigma(t)$ als Funktion der Zeit "t" berechnet werden.

Es wird festgestellt, daß die Anwendung der obigen Gleichungen (4) und (5) nicht auf eine Kohlenstoffdichtung beschränkt ist, sondern auch für andere Teile möglich ist. So kann zum Beispiel die Größe des Torsionsverschleißes $\sigma(t)$ aus der Zahl der Verwendungen "T" und als Funktion der Zeit "t" erhalten werden. Es wird weiterhin festgestellt, daß die experimentellen Konstanten Werte darstellen, die von den oben genannten Werten verschieden sind.

55 In Fig. 11 stellt die durch eine durchgezogene Linie bezeichnete Kurve die Verschlechterungscharakteristikdaten einer Kohlenstoffdichtung dar, die aus den vergangenen Temperaturen T_1 und T_2 auf der Grundlage der oben angegebenen Gleichungen (4) und (5) bis zum momentanen Zeitpunkt " t_1 " berechnet wurden. Der Anfangswert σ_0 der Biegefestigkeit ist im voraus in der Datei 72 gespeichert worden, während ein Grenzwert σ_c im voraus in der Datei 64 als Informationsdaten gespeichert worden ist.

Eine Prozeßgröße T zum momentanen Zeitpunkt t_1 , nämlich die Temperatur, ist gleich T_3 ($^\circ\text{C}$). Wenn nun angenommen wird, daß die Temperatur im momentanen Zeitpunkt in der Zukunft gleich bleibt, wird ein Vorhersagebild des Verschlechterungscharakteristikwertes, wie es durch die gestrichelte Linie angegeben ist, erhalten.

60 Im allgemeinen wird die Prozeßgröße, das heißt das vorhergesagte zeitliche Verkaufsmuster der Umgebungstemperatur, aus den drei folgenden Elementen ausgewählt:

(i) Konstanter Fortgang der Temperatur: der Wert der Temperatur bleibt gleich demjenigen im momenta-

nen Zeitpunkt:

- (ii) Konstanter Fortgang der gewichteten mittleren Temperatur: der Wert der bis zum momentanen Zeitpunkt gemessenen gewichteten mittleren Temperatur wird in der Zukunft beibehalten;
- (iii) Temperaturänderungsmuster: die Temperatur wird nach dem bis zum momentanen Zeitpunkt gemessenen Temperaturänderungsmuster geändert.

Unter der Annahme, daß das Betriebszeitintervall, während dem ein Vorhersagewert eines momentanen charakteristischen Wertes den Grenzwert σ_c erreicht, einer Restlebensdauer entspricht, wird folglich die Restlebensdauer "L₁" mittels der folgenden Gleichung (6) berechnet (Schritt 512 und 514):

$$L_{1j} = \log(\sigma_0/\sigma_c)/f(T) - t_1 \quad (6)$$

Es sei angemerkt, daß "T" einem der ausgewählten drei verschiedenen Vorhersagemuster entspricht und daß der Parameter der weiter oben angegebenen Gleichung (5) auf der Grundlage des ausgewählten Vorhersagemusters bestimmt wird.

Die oben beschriebenen Prozesse 502 bis 514 werden so lange wiederholt, bis sämtliche den RSA aufbauenden Teile, also n Teile analysiert worden sind (Schritt 516); dann werden die im folgenden beschriebenen Schritte abgearbeitet, wobei sowohl die Zuverlässigkeit R_i als auch die aus den entsprechenden Teilen berechnete Restlebensdauer L_{1i} verwendet werden.

Zunächst wird aus den Restlebensdauern L_{1i} (L_{11} bis L_{1n}) der entsprechenden Bauteile die kürzeste Restlebensdauer ausgewählt und zu L_{1j} definiert (Schritt 518). Da das Bauteil der kürzesten Restlebensdauer unter den Bauteilen des RSA der Kohlenstoffdichtung entspricht, wird mit hoher Wahrscheinlichkeit die Restlebensdauer der Kohlenstoffdichtung als L_{1j} gewählt.

Danach wird aus den Zuverlässigkeiten R_i der entsprechenden konstruktiven Bauteile, die im vorausgehenden Schritt 504 erhalten worden sind, die Zuverlässigkeit R_e der Vorrichtung (RSA) über die folgende Gleichung (7) berechnet:

$$R_e = \prod_{i=1}^n R_i = R_1 \cdot R_2 \cdot \dots \cdot R_n = \exp \left\{ - \sum_{i=1}^n (t/\eta_i)^m \right\} \quad (7)$$

Dann wird auf der Informationsdatei 64 der Grenzwert R_{ec} der Zuverlässigkeit des RSA ausgelesen (Schritt 522) und $R_e - R_{ec}$ in die obige Gleichung (7) eingesetzt, wobei "t" unter Verwendung eines sequentiellen Näherungsausdrucks wie etwa dem Newton-Raphson-Verfahren berechnet wird.

Fig. 12 ist ein Kennliniendiagramm der Zuverlässigkeit R_e des RSA. Der Wert der Zuverlässigkeit R_e bis zum jetzigen Zeitpunkt t_1 wird aus den obigen Gleichungen (3) und (7) in Abhängigkeit von der vorhergesagten Betriebstemperatur T berechnet. Wenn nun die vorhergesagte Betriebstemperatur T bei dem momentanen Wert T_3 gehalten wird, kann das Vorhersagemuster der künftigen Zuverlässigkeit R_e aufgrund der Gleichungen (3) und (7) so vorhergesagt werden, wie es durch die gestrichelte Linie angegeben ist; der Zeitpunkt "t_c", zu dem $R_e = R_{ec}$ wird, kann mittels des oben angegebenen sequentiellen Näherungsausdrucks berechnet werden. Folglich wird als Restlebensdauer L_{1j} des RSA der Wert $L_{1j} = t_c - t_1$ erhalten (Schritt 526).

Schließlich werden die Restlebensdauern L_{1j} und L_{1j}'' miteinander verglichen und die kürzere dieser beiden Restlebensdauern als "L₁" definiert (Schritt 528).

Fig. 6 ist ein Flußdiagramm zur Darstellung eines Prozeßschrittes der Gerätefunktionstüchtigkeits-Analyseeinheit 32. In der bevorzugten Ausführungsform wird die Restlebensdauer L_2 des RSA durch eine Analyse der Funktionstestdaten der Vorrichtung (RSA) berechnet. Fig. 13 ist ein Kennliniendiagramm der Funktionstestdaten zur Berechnung einer Restlebensdauer L_2 des RSA.

Zunächst werden in einem Schritt 600 die Funktionstestdaten aus der Datei 70 ausgelesen.

Im Falle beispielsweise des RSA werden als Funktionstestdaten die vergangenen Daten über die Antriebwasserabflussmenge während der periodischen Prüfung ausgelesen.

Wie in Fig. 4 dargestellt, wird das Antriebwasser dazu benutzt, die Regelstäbe hochzuschieben und niederzudrücken. Das Antriebwasser fließt in einer durch einen Pfeil angezeigten Richtung, wobei der Regelstab niedergedrückt wird. Zwischen der Kohlenstoffdichtung und der Zylindereinheit und zwischen der Kolbenröhre 62 und der Dichtung beim Kolben 52 kann jedoch Leckwasser fließen, wie durch einen Pfeil 40 angezeigt ist. Wenn die Menge dieses Leckwassers zunimmt, wird eine größere Strömungsrate des Antriebwassers erforderlich, um den Regelstab hochzuschieben. Folglich kann die Strömungsrate des Antriebwassers als eine Größe zur Anzeige der Verschlechterung der RSA-Funktion verwendet werden.

Somit wird zur Ermittlung des temporären Änderungstrends der Daten auf die Strömungsrate (Liter/Min.) des Antriebwassers aus der vergangenen Routineprüfung eine rekursive Analysis (Methode des kleinsten Mittelwertes oder ähnliches) angewendet, wie durch die Pfeile in Fig. 13 angezeigt ist, wobei ein Näherungsausdruck (8) (das heißt, die durch die gestrichelte Linie der Fig. 9 dargestellte Gleichung) erhalten wird (Schritt 602):

$$F = p^2 + qt + r \quad (8)$$

wobei p , q und r Konstanten sind, die durch experimentelle Daten definiert werden.

Danach wird der Grenzwert F_c der Strömungsrate des Antriebwassers F aus der Datei 64 ausgelesen (Schritt 604). Auf der Grundlage des Näherungsausdrucks wird ein Zeitpunkt t_c berechnet, zu dem die Strömungsrate F den Grenzwert F_c erreicht, dann wird aus $(t_c - t_1)$ die Restlebensdauer L_2 berechnet (Schritte 606 und 608).

Es wird festgestellt, daß dann, wenn mehrere Arten von Funktionsdaten über den Regelstabtriebsmechanismus (RSA) vorliegen, die Restlebensdauer unter Verwendung der entsprechenden Funktionstestdaten berechnet werden kann, um die kürzeste Lebensdauer auszuwählen. Ferner kann die optimale Restlebensdauer L_2 auf der Grundlage der folgenden Gleichung (9) erhalten werden, wobei gewichtete Lebensdauern betrachtet werden, die aus den entsprechenden Funktionstestdaten berechnet worden sind:

$$L_2 = (\sum \alpha_j L_{2j}) / \sum \alpha_j \quad (9)$$

wobei "j" die Elementnummer des Funktionstests und "α" einen Gewichtungskoeffizienten darstellen.

Fig. 7 ist ein Flußdiagramm, in dem ein Prozeßschritt der Verhältnis-Analyseeinheit 34 dargestellt wird. Die Fig. 14 und 15 sind Diagramme zur Erläuterung der Verhältnis-Analyse. Das heißt, daß zum Beispiel sowohl die Daten über die Strömungsrate des Antriebwassers des RSA (Fig. 13) als auch die Daten über die Biegefestigkeit der Kohlenstoffdichtung (Fig. 9) aus den entsprechenden Dateien 70 und 72 ausgelesen werden. Fig. 14 stellt eine relative Beziehung zwischen diesen Daten dar.

Durch Anwendung des Verfahrens des kleinsten Mittelwertes und der Rekursionsanalyse für ein lineares Rekursionsmodell und ähnliches wird eine Näherungsdarstellung (10) (das heißt eine durch die gestrichelte Linie in Fig. 14 angegebene Gleichung) berechnet (Schritt 702):

$$\sigma = -SF + S_0 \quad (10)$$

wobei S und S_0 Konstanten sind, die durch die oben angegebenen Daten bestimmt werden.

Danach wird mit diesem Näherungsausdruck in Abhängigkeit von den Funktionstestdaten " F_i " ein Verschlechterungscharakteristikwert " σ_i " eines Bauteils zum momentanen Zeitpunkt " t_i ", also $\sigma_i = -SF_i + S_0$ erhalten (Schritt 704).

Dann wird auf der Grundlage sowohl der Betriebsverlaufsdaten der als Prozeßgröße fungierenden Betriebstemperatur als auch der Kurzzeitlebensdauertestdaten bezüglich der Biegefestigkeit der Kohlenstoffdichtung (Fig. 9), die in der Datei 74 gespeichert sind, das Vorhersagemuster der Verschlechterungscharakteristik der Kohlenstoffdichtung ähnlich wie in Fig. 11 erhalten; dieses Muster ist durch die Kurve, die durch die gestrichelte Linie in Fig. 15 bezeichnet wird, wiedergegeben. Das heißt, daß die in den obigen Gleichungen (4) und (5) vorkommenden experimentellen Konstanten x, y und z bestimmt werden.

Als nächstes wird auf der Grundlage der oben angegebenen Gleichung (4) in Abhängigkeit vom Verschlechterungscharakteristikwert σ_i ein vom momentanen Zeitpunkt an gerechnetes virtuelles Zeitintervall t' aus dem oben angegebenen Teileverschlechterungscharakteristikwert σ_i gemäß dem folgenden Ausdruck erhalten:

$$t' = \log(\sigma_0/\sigma_i)/f(T)$$

Ferner wird aus dem Vorhersagemuster der Verschlechterungscharakteristik und dem Grenzwert σ_c des Bauteils ein Zielzeitpunkt für den Grenzwert t_c gemäß dem folgenden Ausdruck erhalten:

$$t_c = \log(\sigma_0/\sigma_c)/f(T)$$

Aus der Differenz ($t_c - t'$) wird die Restlebensdauer L_3 erhalten (Schritt 708).

Es wird festgestellt, daß dann, wenn mehrere Arten wenigstens entweder der Teileverschlechterungsdaten oder der Funktionstestdaten vorliegen, die Restlebensdauern bezüglich sämtlicher Kombinationen zwischen den Funktionsdaten und den Teileverschlechterungsdaten erhalten werden können, wobei anschließend die kürzeste dieser Restlebensdauern als Restlebensdauer L_3 ausgewählt wird. Obwohl das virtuelle Zeitintervall t' aus der Strömungsmenge des Antriebwassers F_i berechnet wurde, kann dieses virtuelle Zeitintervall t' alternativ zuerst aus der momentanen Biegefestigkeit σ_i berechnet werden, um daraus die Restlebensdauer L_3 zu erhalten.

Auf der Grundlage der oben beschriebenen Prozeßergebnisse, die von den jeweiligen Analyseeinheiten 32 bis 36 erhalten werden, kann die Auswertung und ähnliches der Restlebensdauern in der Restlebensdauer-Auswertungseinheit 38 ausgeführt werden.

Fig. 8 ist ein Flußdiagramm zur Darstellung eines Prozeßschrittes der Restlebensdauer-Auswertungseinheit 38. In diesem Prozeßschritt wird die Restlebensdauer "L" mit der höchsten Zuverlässigkeit aus den Restlebensdauern L_1, L_2 und L_3 , die wie oben beschrieben erhalten worden sind, ausgewählt, ferner wird eine auf der Grundlage dieses Bestimmungsergebnisses zu prüfende Vorrichtung (RSA) ausgewählt, wobei das Prüfergebnis angezeigt wird.

Zuerst wird in einem Schritt 800 die kürzeste Restlebensdauer von allen berechneten Restlebensdauern L_1, L_2 und L_3 als Restlebensdauer L der Vorrichtung (RSA) aufgefaßt.

Wenn eine Mehrzahl von zu diagnostizierenden Vorrichtungen (mehrere Regelstabtriebsmechanismen) vorhanden sind, wird die oben beschriebene Analyse für sämtliche RSA ausgeführt, um die Restlebensdauer L zu erhalten.

Dann wird beurteilt, ob die berechnete Restlebensdauer "L" der entsprechenden RSA kürzer als ein vorgegebenes Zeitintervall, beispielsweise kürzer als ein Jahr (das beispielsweise gleich dem periodischen Prüfintervall ist) ist (Schritt 802). Wenn die geprüfte Restlebensdauer des RSA kürzer als ein Jahr ist, entspricht dieser RSA einer im Verlauf der momentanen periodischen Prüfung zu prüfenden Vorrichtung. Wenn die Restlebensdauer des RSA nicht kürzer als ein Jahr ist, wird weiterhin beurteilt, ob während des Zeitintervalls seit der vorangegangenen Prüfung und der jetzigen Prüfung Unregelmäßigkeiten aufgetreten sind (Schritt 804). Mit "momentanem periodischem Prüfzeitpunkt" ist dann, wenn die momentane Prüfung einer Routineprüfung entspricht, der

nächste Prüfzeitpunkt und dann, wenn die momentane Prüfung einer normalen Prüfung entspricht, der späteste periodische Prüfzeitpunkt gemeint. Ferner ist mit "Unregelmäßigkeit" zum Beispiel eine schnelle Änderung der Betriebstemperatur des RSA und/oder eine Verformung der Verbindung zwischen dem RSA und dem RS gemeint; sie können durch Prüfung der in der Datei 76 gespeicherten Verlaufsdaten ermittelt werden.

Wenn im RSA eine Unregelmäßigkeit festgestellt worden ist, sollte dieser RSA während der momentanen periodischen Prüfung geprüft werden. Wenn im Gegensatz dazu keine Unregelmäßigkeit im RSA festgestellt worden ist, wird weiterhin beurteilt, ob die Funktionstestdaten den Grenzwert bis zur nächsten periodischen Prüfung übersteigen werden (Schritt 806). Das bedeutet, daß geprüft wird, ob die Restlebensdauer L_2 des RSA, die bei der Gerätekontrollanalyse erhalten worden ist, kürzer als die Zeitperiode bis zur nächsten periodischen Prüfung ist. Wenn dem so ist, entspricht dieser RSA einem zu prüfenden Objekt.

Ebenso wird für die anderen RSA festgestellt, daß für sie während der momentanen periodischen Prüfung keine Prüfung oder Wartung erforderlich ist (Schritt 808), so daß auf der Grundlage ihrer Restlebensdauern das nächste Prüfintervall bestimmt wird (Schritt 810). Wenn beispielsweise die Restlebensdauer 2 Jahre beträgt, wird die nächste periodische Prüfung vom momentanen Zeitpunkt ab gerechnet ein Jahr später ausgeführt werden. Wenn die Restlebensdauer 3 Jahre beträgt, wird die nächste Routineprüfung vom jetzigen Zeitpunkt an gerechnet 2 Jahre später stattfinden.

Andererseits wird für diejenigen RSA, für die festgestellt worden ist, daß eine Prüfung erforderlich ist, eine Prüfung ausgeführt. Dann wird weiterhin beurteilt, ob die Anzahl dieser RSA eine vorgegebene Anzahl von prüfbaren Objekten übersteigt. Wenn die Anzahl größer als die vorgegebene Anzahl ist, werden zum Beispiel diejenigen RSA aus der Mehrzahl der RSA ausgewählt, die die kürzesten Restlebensdauern besitzen, bis die Anzahl der so ausgewählten RSA die vorgegebene Anzahl erreicht.

Wenn die Anzahl derjenigen RSA, für die festgestellt worden ist, daß eine Prüfung zum jetzigen Zeitpunkt erforderlich ist, klein ist, werden die RSA mit kurzen Restlebensdauern der Reihe nach für die Prüfung ausgewählt, bis die Anzahl der ausgewählten RSA eine im voraus gewählte Zahl erreicht, bei der die momentane Prüfung ausgeführt wird.

Die oben beschriebenen Diagnoseergebnisse werden an das Endgerätesystem 8 übertragen, außerdem werden die Informationen über diejenigen RSA, von denen festgestellt worden ist, daß für sie Prüfungen erforderlich sind, als Prüfverlaufsdaten in der Datei 70 des Datenbanksystems 7 gespeichert.

Wenn die oben beschriebenen Prozesse, insbesondere die Restlebensdauer-Auswertungsfunktion, abgearbeitet werden (zum Beispiel die Schritte 802 bis 806, 810 usw.), kommt die Schlußfolgerungsfunktion zum Einsatz. Die folgende Erzeugungsregel, die zum Beispiel auf dem wenn/dann-Schema basiert, wird in der Informationsbank 6 gespeichert:

Wenn (die Restlebensdauer des RSA kürzer als ein Jahr ist), dann (wird dieser RSA durch einen neuen ersetzt).

Wenn (der RSA keine Unregelmäßigkeit oder eine Unregelmäßigkeit, die unterhalb eines Grenzwertes liegt, aufweist und dessen Restlebensdauer 1 Jahr übersteigt), dann (ist die Notwendigkeit einer momentanen Prüfung dieses RSA gering).

Wenn (die Restlebensdauer des RSA 3 Jahre beträgt), dann (wird eine Wartung dieses RSA nach 2 Jahren ausgeführt).

Wenn (die Strömungsrate des Antriebwassers größer als 13 Liter/Minuten ist), dann (wird dieser RSA durch einen neuen ersetzt).

In der Folge wird in einem Schritt 816 ein Ausgabeauswahl-Menübildschirm auf der CRT 20 angezeigt, indem die Tastatur oder ähnliches des Endgerätesystems 8 bestätigt wird, wobei eine diagnostizierte Ergebnisausgabe ausgewählt wird.

Für dieses Diagnoseergebnismenü kommen beispielsweise eine "Restlebensdauer-Karte", eine "RSA-Auswahl-Karte", "Auswahlgründe" und ähnliches in Betracht.

Hierbei enthält das Endgerätesystem 8 einen Speicher 82 zum Speichern der Diagnoseergebnisse der berechneten Restlebensdauern, die von der Schlußfolgerungsvorrichtung 3 übertragen worden sind, und eine Anzeigesteuerschaltung 84 zum wahlweisen Anzeigen der im Speicher 82 gespeicherten Information auf einer Anzeigeeinheit, beispielsweise einer CRT 20. Die von der Schlußfolgerungsvorrichtung 3 übertragenen Diagnoseergebnisse des RSA werden in Verbindung mit einem Identifikationscode dieses RSA (zum Beispiel einer in Fig. 17 dargestellten Identifikationszahl) übertragen.

Die Information über die Anordnungsposition sämtlicher RSA des Stromkraftwerks ist im voraus im Speicher 82 gemäß den Identifikationszahlen der RSA gesetzt worden. Eine Restlebensdauer, die Auswahlinformation, ein Auswahlgrund und ähnliches für die entsprechenden RSA, die von der Schlußfolgerungsvorrichtung 3 geliefert worden sind, werden mit Bezug auf die entsprechende Identifikationszahl der entsprechenden RSA im Speicher 82 gespeichert.

Wenn folglich eine "Restlebensdauer-Karte" als Menü gewählt wird, werden sowohl die Information über die Anordnungspositionen als auch die Restlebensdauern sämtlicher RSA aus dem Speicher 82 ausgelesen; diese Anordnungspositionsinformationen werden dann als den jeweiligen Anordnungspositionen der RSA entsprechende Muster auf der Kathodenstrahleröhre (CRT) angezeigt, schließlich wird die Restlebensdauer eines jeden der RSA aufgrund dieser Musteranzeige angezeigt. Hierbei können die Restlebensdauern auf der Grundlage der Intervalle der Restlebensdauern zu Anzeigezwecken in verschiedene Farben unterteilt werden. Eine derartige Farbinformation für die Restlebensdauer kann an die Anzeigesteuerschaltung 4 im voraus geliefert werden.

Wenn daher die "Restlebensdauer-Karte" ausgewählt wird, können sowohl der Vergleich der Restlebensdauern für die jeweiligen RSA als auch der Gesamtrend aller RSA leicht erfaßt werden, sofern die Anordnungspositionen sämtlicher RSA und deren Restlebensdauern vorzugsweise so angezeigt werden, wie in Fig. 16 dargestellt ist. Ein Trend der Restlebensdauern kann mit einem Blick erfaßt werden, indem die RSA aufgrund der Länge ihrer jeweiligen Restlebensdauern in mehrere verschiedene Farben unterteilt und in diesen verschiede-

nen Farben angezeigt werden. Es wird darauf hingewiesen, daß sowohl die Abszisse als auch die Ordinate von Fig. 16 eine Koordinatenposition der einzelnen RSA angibt.

Wenn die "RSA-Auswahl-Karte" gewählt wird, werden sämtliche RSA vorzugsweise so angezeigt, wie dies in Fig. 17 gezeigt ist, anschließend wird im Schritt 814 der ausgewählte RSA als ein zu prüfendes Objekt in verschiedenen Farben angezeigt. Das bedeutet, daß zum Beispiel die Identifikationsnummern den RSA der Reihe nach zugeordnet werden, wie dies in der Zeichnung dargestellt ist, und daß die ausgewählten RSA nach den folgenden Fehlerkriterien in verschiedenen Farben angezeigt werden:

- 5 Rot: bei dem RSA wird eine Unregelmäßigkeit festgestellt,
- 10 Purpur: die Restlebensdauer RSA ist kürzer als ein Jahr,
- 15 Gelb: die Funktionstestdaten des RSA werden bis zur nächsten periodischen Wartung den Grenzwert übersteigen.

In der oben beschriebenen Restlebensdauer-Karte und der RSA-Auswahl-Karte wird der RSA durch die Tastatur oder ähnliches bezeichnet, woraufhin die Restlebensdauer für nur diesen bezeichneten RSA oder der Grund, warum nur dieser bezeichnete RSA ausgewählt worden ist, angezeigt werden kann.

Wenn die "Auswahlgründe" gewählt werden und die Nummer des ausgewählten RSA markiert wird, wird der "Auswahlgrund" so wie in Fig. 18 dargestellt, angezeigt.

Als weitere Anzeigen können die vergangenen Betriebstemperaturen der entsprechenden RSA aus der Datei 74, die Funktionstestdaten aus der Datei 70 oder die Teileverschlechterungsdaten aus der Datei 72 ausgelesen und angezeigt werden.

Da die Information über den zu prüfenden RSA in der Datei 70 gespeichert worden ist, kann diese Information für die Anzeige in jedem beliebigen Zeitpunkt ausgelesen werden.

In der oben beschriebenen bevorzugten Ausführungsform ist die kürzeste Restlebensdauer der Restlebensdauern L_1 , L_2 und L_3 als Restlebensdauer L ausgewählt worden. Alternativ kann die Restlebensdauer L_1' , die im Schritt 518 erhalten worden ist, als Restlebensdauer L verwendet werden. Genauso kann die Restlebensdauer L_1'' , die im Schritt 526 erhalten worden ist, die Restlebensdauer L_1 , die im Schritt 528 erfaßt worden ist, die Restlebensdauer L_2 , die im Schritt 608 erhalten worden ist oder die Restlebensdauer L_3 , die im Schritt 708 erhalten worden ist, als Restlebensdauer L verwendet werden. Darüber hinaus kann die kürzere oder beiden Restlebensdauern L_1' und L_3 als Restlebensdauer L verwendet werden.

Eine derartige Auswahl des Restlebensdaueranalyseverfahrens wird im in Fig. 2 gezeigten Menüauswahlschritt 202 ausgeführt.

Genauso können im Schritt 202 als Funktionstestelemente entweder die Schnellabschaltzeit, die Strömungsrate des Antriebwassers oder ähnliches ausgewählt werden.

35 Eine in der Teileverschlechterungsanalyse zum Einsatz kommende Artenauswahl der Teile (zum Beispiel Kohlenstoffdichtung und Spannfeder usw.), eine Auswahl der Verschlechterungsparameter (zum Beispiel Biegefestigkeit, Härte usw.) und eine Festlegung von deren Grenzwerten kann im Schritt 202 ausgeführt werden.

40 Zusätzlich können im Schritt 202 eine Kennzeichnung der in der Teileverschlechterungsanalyse verwendeten Prozeßgröße (z. B. die Betriebstemperatur usw.) zur Steigerung der Verschlechterung und eine weitere Auswahl eines Vorhersagemusters des Verlaufs der benannten Prozeßgröße ausgeführt werden.

Als Vorhersagemuster dienen beispielsweise die folgenden drei Arten:

- 45 i) konstanter Fortgang einer Prozeßgröße: der Wert der Prozeßgröße zum momentanen Zeitpunkt wird weiterhin beibehalten.
 - ii) konstanter Fortgang einer Prozeßgröße mit gewichtetem Mittelwert: die Prozeßgröße mit einem bis zum momentanen Zeitpunkt gewichteten Mittelwert wird weiter beibehalten.
 - iii) Änderungsmuster einer Prozeßgröße: die Prozeßgröße wird nach dem gleichen Muster wie bis zum momentanen Zeitpunkt weiterhin periodisch variiert.
- 50 55 Es wird festgestellt, daß die oben beschriebenen bevorzugten Ausführungsformen solchen Fällen entsprechen, in denen das Expertensystem auf den RSA angewendet worden ist. In Fig. 19 ist eine schematische Darstellung eines Bestimmungsprozesses für den Fall gezeigt, in dem das Expertensystem auf ein elektrisch betriebenes Ventil eines Stromkraftwerks angewendet wird. In Fig. 19 entsprechen diejenigen Blöcke, die mit in Fig. 1 vorkommenden Bezeichnungen versehen sind, den entsprechenden Blöcken von Fig. 1, ferner bezeichnen die Zahlen in Klammern die Prozeßschritte in den Fig. 5 bis 8.

Bei einem elektrisch betriebenen Ventil entsprechen die mechanischen Festigkeiten einer Stopfbuchsenpackung und einer Ventilschaftnut den Verschlechterungscharakteristikwerten der konstruktiven Bauteile, während die zur Verschlechterung beitragenden Prozeßgrößen der Umgebungstemperatur und dem Flüssigkeitsdruck entsprechen. Die Leckmenge der Flüssigkeit und die Verschleißgröße der Spindel des Ventilschafts stellen die Gerätefunktionstüchtigkeitsdaten dar. Aufgrund dieser Daten werden die Restlebensdauern einer großen Anzahl von elektrisch betätigten Ventilen vorhergesagt, wobei diese vorhergesagten Restlebensdauern angezeigt werden und dasjenige elektrisch betätigtes Ventil, das bei der momentanen periodischen Prüfung oder der nachfolgenden Routinewartung geprüft wird, zu Anzeigezwecken ausgewählt wird.

60 65 Gemäß den oben beschriebenen bevorzugten Ausführungsformen wird die Prozeßgröße wie etwa der Betriebstemperaturverlauf für die Verschlechterung der Eigenschaften der zu prüfenden Vorrichtung verwendet, so daß der Verschlechterungstrend der Teile in einem nichtzerstörenden Verfahren vorhergesagt werden kann und die Restlebensdauern der entsprechenden RSA und der elektrisch betätigten Ventile aufgrund dieser Daten vorhergesagt werden kann. Da die Ausfallraten, die Zuverlässigkeit und die Perioden der Routinewartung dieser

RSA oder der elektrisch betätigten Ventile schnell und mit hoher Genauigkeit vorhergesagt werden können, kann folglich die für die Erstellung von vorbeugenden Wartungsplänen erforderliche Zeit abgekürzt werden. Weiterhin können sowohl die Zuverlässigkeit als auch die Rentabilität des Stromkraftwerks verbessert werden.

Es wird festgestellt, daß die vorliegende Erfindung nicht auf die oben beschriebenen, auf ein Kraftwerk Bezug nehmenden bevorzugten Ausführungsformen beschränkt ist. Die Erfindung kann selbstverständlich auf alle zu diagnostizierenden Objekte angewendet werden, die jeweils aus einer Mehrzahl von Bauteilen aufgebaut sind, deren Lebensdauern in einer Beziehung zur Gesamtlebensdauer stehen.

Patentansprüche

1. Verfahren zur Bestimmung der Restlebensdauer eines aus einer Mehrzahl von Bauteilen aufgebauten und wenigstens eine Funktion besitzenden Aggregats, gekennzeichnet durch die Schritte
des Erfassens einer ersten Restlebensdauer (L_1 ; 36) des Aggregats auf der Grundlage von experimentellen Alterungsverschlechterungsdaten (12) bezüglich einer Eigenschaft wenigstens eines Bauteils des Aggregats; des Erfassens einer zweiten Restlebensdauer (L_2 ; 32) des Aggregats auf der Grundlage von experimentellen Alterungsdaten (10) bezüglich wenigstens einer Funktion des Aggregats;
des Erfassens einer dritten Restlebensdauer (L_3 ; 34) des Aggregats auf der Grundlage sowohl der experimentellen Alterungsverschlechterungsdaten (12) bezüglich einer Eigenschaft wenigstens eines Bauteils des Aggregats als auch der experimentellen Alterungsdaten (10) wenigstens einer Funktion des Aggregats; und des Auswählens einer kürzesten Restlebensdauer aus den ersten bis dritten Restlebensdauern und des Ausgebens der ausgewählten Lebensdauer als Restlebensdauer (L ; 8) des Aggregats. 10
2. Verfahren zur Bestimmung der Restlebensdauer eines aus einer Mehrzahl von Bauteilen aufgebauten und wenigstens eine Funktion besitzenden Aggregats, gekennzeichnet durch die Schritte
des Erfassens eines ersten Zeitintervalls (t') auf der Grundlage der experimentellen Alterungsverschlechterungsdaten (12) bezüglich einer Eigenschaft wenigstens eines Bauteils des Aggregats und der experimentellen Alterungsdaten (10) wenigstens der einen Funktion des Bauteils, wobei das Zeitintervall (t') vom Beginn der Alterungsverschlechterung einer Eigenschaft oder wenigstens der einen Funktion bis zum momentanen Zeitpunkt gemessen wird;
des Vorhersagens der einen Eigenschaft oder einer künftigen Alterungsverschlechterungseigenschaft bezüglich eines Wertes wenigstens der einen Funktion auf der Grundlage der experimentellen Alterungsverschlechterungsdaten (12) bezüglich der einen Eigenschaft oder der experimentellen Alterungsdaten (10) bezüglich wenigstens der einen Funktion;
des Erfassens eines zweiten Zeitintervalls (t_c) auf der Grundlage der vorhergesagten Alterungsverschlechterungscharakteristik, wobei das zweite Zeitintervall (t_c) vom Beginn der Alterungsverschlechterung an solange gemessen wird, bis die eine Eigenschaft oder der Wert wenigstens der einen Funktion einen Grenzwert erreicht; und
des Erfassens einer Differenz zwischen den ersten (t') und zweiten (t_c) Zeitintervallen und des Ausgebens dieser Differenz als Restlebensdauer (L_3) des Aggregats. 20
3. Restlebensdauerbestimmungsverfahren gemäß Anspruch 2, dadurch gekennzeichnet, daß der Schritt des Erfassens des ersten Zeitintervalls (t') die folgenden Schritte umfaßt:
Erfassen eines ersten die experimentellen Alterungsdaten (12) der einen Eigenschaft in Abhängigkeit von den experimentellen Daten (10) der Funktion angebenden Näherungsausdrucks mittels einer auf den experimentellen Alterungsverschlechterungsdaten (12) bezüglich der einen Eigenschaft und der experimentellen Alterungsdaten (10) bezüglich wenigstens der einen Funktion basierenden rekursiven Analysis;
Erfassen eines zweiten Näherungsausdrucks für die Alterungsverschlechterungsdaten mittels der auf den experimentellen Alterungsverschlechterungsdaten (12) der einen Eigenschaft basierenden rekursiven Analysis; und
Erfassen eines virtuellen Zeitintervalls (t') auf der Grundlage des zweiten Näherungsausdrucks, wobei das virtuelle Zeitintervall (t') einem Wert (σ_t) der Verschlechterungsdaten der einen Eigenschaft im erhaltenen momentanen Zeitpunkt entspricht, um dieses virtuelle Zeitintervall (t') als das erste Zeitintervall zu setzen. 30
4. Restlebensdauerbestimmungsverfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß die eine Eigenschaft wenigstens des einen Bauteils einer Funktion zwischen einer Prozeßgröße (T) zur Steigerung der Verschlechterung des Bauteils und einem mit dem Einsetzen der Alterungsverschlechterung beginnenden Zeitintervall entspricht; und
der Schritt zur Vorhersage der künftigen Alterungsverschlechterungscharakteristik die folgenden Schritte umfaßt:
Vorhersage einer künftigen Prozeßgröße auf der Grundlage der Verlaufsdaten der Prozeßgröße zur Steigerung der Verschlechterung wenigstens des einen Bauteils; und
Erfassen eines Vorhersagemusters der künftigen Alterungsverschlechterungseigenschaft durch Einsetzen der vorhergesagten Prozeßgröße in den zweiten Näherungsausdruck, wobei ferner der Schritt zum Erfassen des zweiten Zeitintervalls (t_c) den Schritt des Erfassens eines Zeitintervalls, das beginnend beim Einsetzen der Alterungsverschlechterung so lange gemessen wird, bis der vorhergesagte Wert der einen Eigenschaft den Grenzwert erreicht, umfaßt. 40
5. Restlebensdauerbestimmungsverfahren gemäß Anspruch 2, dadurch gekennzeichnet, daß jeder der Schritte für alle Kombinationen zwischen dieser einen Eigenschaft eines jeden der Mehrzahl der Bauteile und allen experimentellen Daten über die Mehrzahl der Funktionen des Aggregats ausgeführt wird und die kürzeste Restlebensdauer aller erfaßten Restlebensdauern die Restlebensdauer des Aggregats darstellt. 50
6. Verfahren zur Bestimmung der Restlebensdauer eines aus einer Mehrzahl von Bauteilen aufgebauten und

- wenigstens eine Funktion besitzenden Aggregats, gekennzeichnet durch die Schritte
 des Erfassens eines Vorhersagemusters der Zuverlässigkeit der Bauteile als Funktion der Zeit mittels Ausführung einer Weibull-Verteilungs-Zuverlässigkeitsanalyse für experimentelle Alterungsverschlechterungsdaten (12) bezüglich einer Eigenschaft wenigstens eines Bauteils des Aggregats;
- 5 des Erfassens einer ersten Zielzeit (L_1'') auf der Grundlage des erfaßten Vorhersagemusters der Zuverlässigkeit, wobei diese erste Zielzeit beginnend vom momentanen Zeitpunkt so lange gemessen wird, bis die Zuverlässigkeit einen ersten vorgegebenen Grenzwert erreicht;
- 10 des Erfassens eines Vorhersagemusters einer Alterungsverschlechterungscharakteristik der Bauteile auf der Grundlage der experimentellen Alterungsverschlechterungsdaten (12);
- 15 des Erfassens einer zweiten Zielzeit auf der Grundlage des vorhergesagten Alterungsverschlechterungsmusters, wobei diese zweite Zielzeit beginnend vom momentanen Zeitpunkt so lange gemessen wird, bis die eine Eigenschaft einen zweiten vorgegebenen Grenzwert erreicht; und
- der Auswahl der kürzeren Zielzeit aus den ersten und zweiten Zielzeiten und des Ausgebens der gewählten Zeit als Restlebensdauer (L_1) des Aggregats.
- 20 7. Restlebensdauerbestimmungsverfahren gemäß Anspruch 6, dadurch gekennzeichnet, daß die ersten und zweiten Zielzeiten bezüglich jedes der Mehrzahl der das Aggregat aufbauenden Bauteile gewonnen werden und sowohl eine erste kürzeste Annäherungszeit aus der Mehrzahl der erfaßten ersten Annäherungszeiten als auch eine zweite kürzeste Annäherungszeit aus der Mehrzahl der erfaßten zweiten Annäherungszeiten als Restlebensdauer des Aggregats verwendet werden.
- 25 8. Restlebensdauerbestimmungsverfahren gemäß Anspruch 6, dadurch gekennzeichnet, daß die Zuverlässigkeit des Bauteils eine erste Funktion zwischen einer die Betriebsumgebung des Bauteils angebenden ersten Prozeßgröße und dem vom Einsetzen der Alterungsverschlechterung an gemessenen Zeitintervall ist:
- der Schritt zum Erfassen eines Vorhersagemusters der Zuverlässigkeit die folgenden Schritte umfaßt:
- 30 Vorhersage einer ersten künftigen Prozeßgröße auf der Grundlage der vergangenen Verlaufsdaten der Prozeßgröße; und
- Erfassung eines Vorhersagemusters der Zuverlässigkeit durch Einsetzen der ersten vorhergesagten Prozeßgröße in die erste Funktion;
- 35 die eine Eigenschaft wenigstens des einen Bauteils eine zweite Funktion zwischen einer zweiten Prozeßgröße (T) zur Steigerung der Alterungsverschlechterung des Bauteils und dem vom Einsetzen der Alterungsverschlechterung an gemessenen Zeitintervall ist; und
- 40 der Schritt zum Erfassen des Vorhersagemusters der Alterungsverschlechterungseigenschaft die folgenden Schritte umfaßt:
- Vorhersage einer künftigen Prozeßgröße auf der Grundlage der vergangenen Verlaufsdaten der zweiten Prozeßgröße (T) zur Steigerung der Alterungsverschlechterung wenigstens des einen Bauteils; und
- 45 Erfassen eines Vorhersagemusters der künftigen Alterungsverschlechterungscharakteristik durch Einsetzen der vorhergesagten Prozeßgröße in die zweite Funktion.
9. Verfahren zur Bestimmung einer Restlebensdauer eines aus einer Mehrzahl von Bauteilen aufgebauten und wenigstens eine Funktion besitzenden Aggregats, gekennzeichnet durch die Schritte
- 50 des Erfassens eines die experimentellen Alterungsverschlechterungsdaten (12) der einen Eigenschaft angebenden Näherungsausdrucks, der einer Funktion zwischen einer Prozeßgröße zur Steigerung der Altersverschlechterung des Bauteils und einem Zeitintervall, das vom Einsetzen der Alterungsverschlechterung an gemessen wird, entspricht, indem für die experimentellen Alterungsverschlechterungsdaten (12) bezüglich der einen Eigenschaft wenigstens des einen Bauteils des Aggregats eine rekursive Analyse ausgeführt wird;
- 55 des Vorhersagens einer künftigen Prozeßgröße auf der Grundlage der vergangenen Verlaufsdaten der Prozeßgröße zur Steigerung der Altersverschlechterung;
- 60 des Erfassens eines Vorhersagemusters der Alterungsverschlechterungscharakteristik durch Einsetzen der vorhergesagten Prozeßgröße in den Näherungsausdruck;
- 65 des Erfassens eines Zeitintervalls auf der Grundlage des Vorhersagemusters, wobei das Zeitintervall beginnend beim Einsetzen der Alterungsverschlechterung so lange gemessen wird, bis der Charakteristikwert einen vorgegebenen Grenzwert erreicht; und
- 70 des Erfassens der Differenz zwischen dem erfaßten Zeitintervall und einem vom Einsetzen der Alterungsverschlechterung an bis zum momentanen Zeitpunkt gemessenen Zeitintervall und des Ausgebens dieser Differenz als Restlebensdauer des Aggregats.
- 75 10. Restlebensdauerbestimmungsverfahren gemäß Anspruch 9, dadurch gekennzeichnet, daß der Näherungsausdruck durch
- $\sigma(t) = \sigma_0 \exp \{-f(T) \times t^2\}$
- gegeben ist, wobei " σ_0 " eine Eigenschaft beim Beginn der Alterungsverschlechterung, " T " eine Prozeßgröße zur Steigerung der Alterungsverschlechterung, " t " die Zeit ist und die Funktion $f(T)$ durch
- $f(T) = xT^2 + yT + z$
- gegeben ist, wobei α, x, y, z experimentelle Konstanten sind.
- 85 11. Restlebensdauerbestimmungsverfahren gemäß Anspruch 9, dadurch gekennzeichnet, daß die Restlebensdauer für jedes der Mehrzahl der Bauteile des Aggregats erfaßt wird und die kürzeste Restlebensdauer

aus den erfaßten Restlebensdauern des Aggregats ausgewählt wird.

12. Restlebensdauerbestimmungsverfahren gemäß Anspruch 9, dadurch gekennzeichnet, daß das Aggregat ein Regelstab'antriebsmechanismus eines Stromkraftwerks, das Bauteil eine Kohlenstoffdichtung und die Prozeßgröße die Betriebstemperatur des Regelstab'antriebsmechanismus ist.

13. Vorrichtung zur Bestimmung der Restlebensdauer eines aus einer Mehrzahl von Bauteilen aufgebauten und wenigstens eine Funktion besitzenden Aggregats, gekennzeichnet durch eine Einrichtung zum Erfassen einer ersten Restlebensdauer (L_1 ; 36) des Aggregats auf der Grundlage von experimentellen Alterungsverschlechterungsdaten (12) einer Eigenschaft wenigstens eines Bauteils des Aggregats;

eine Einrichtung zum Erfassen einer zweiten Restlebensdauer (L_2 ; 32) des Aggregats auf der Grundlage von experimentellen Alterungsdaten (10) bezüglich wenigstens einer Funktion des Aggregats;

eine Einrichtung zum Erfassen einer dritten Restlebensdauer (L_3 ; 34) des Aggregats auf der Grundlage sowohl der experimentellen Alterungsverschlechterungsdaten (12) bezüglich der einen Eigenschaft wenigstens des einen Bauteils des Aggregats als auch der experimentellen Alterungsdaten (10) bezüglich wenigstens einer Funktion des Aggregats; und

eine Einrichtung zum Auswählen der kürzesten Restlebensdauer aus den ersten bis dritten Restlebensdauern und zum Ausgeben der gewählten Restlebensdauer (L ; 8) des Aggregats.

14. Vorrichtung zur Bestimmung der Restlebensdauer eines aus einer Mehrzahl von Bauteilen aufgebauten und wenigstens eine Funktion besitzenden Aggregats, gekennzeichnet durch

eine Einrichtung zum Erfassen eines ersten Zeitintervalls (t') auf der Grundlage der experimentellen Alterungsverschlechterungsdaten (12) bezüglich der einen Eigenschaft wenigstens des einen Bauteils des Aggregats und von experimentellen Alterungsdaten (10) bezüglich wenigstens einer Funktion des Aggregats, wobei das erste Zeitintervall (t') beginnend beim Einsetzen der Alterungsverschlechterung bezüglich einer Eigenschaft oder wenigstens einer Funktion bis zum momentanen Zeitpunkt gemessen wird;

eine Einrichtung zur Vorhersage der einen Eigenschaft oder einer künftigen Alterungsverschlechterungscharakteristik für einen Wert für wenigstens eine Funktion auf der Grundlage der experimentellen Alterungsverschlechterungsdaten (12) bezüglich der einen Eigenschaft oder der experimentellen Alterungsdaten (10) wenigstens bezüglich der einen Funktion;

eine Einrichtung zum Erfassen eines zweiten Zeitintervalls (t_c) auf der Grundlage der vorhergesagten Alterungsverschlechterungscharakteristik, wobei das zweite Zeitintervall (t_c) beginnend beim Einsetzen der Alterungsverschlechterung so lange gemessen wird, bis die eine Eigenschaft oder der Wert wenigstens der einen Funktion einen Grenzwert erreicht; und

eine Einrichtung zum Erfassen der Differenz zwischen den ersten und zweiten Zeitintervallen und zum Ausgeben dieser Differenz als Restlebensdauer (L_3) des Aggregats.

15. Restlebensdauerbestimmungsvorrichtung gemäß Anspruch 14, dadurch gekennzeichnet, daß die Einrichtung zum Erfassen des ersten Zeitintervalls folgende Einrichtungen umfaßt:

eine Einrichtung zum Erfassen eines experimentellen Alterungsdaten der einen Eigenschaft in Abhängigkeit von den experimentellen Daten der Funktion angegebenen ersten Näherungsausdrucks mittels einer rekursiven Analyse auf der Grundlage der experimentellen Alterungsverschlechterungsdaten (12) bezüglich der Eigenschaft und auf der Grundlage der experimentellen Alterungsdaten (10) wenigstens bezüglich der einen Funktion;

eine Einrichtung zum Erfassen eines zweiten Näherungsausdrucks für die Alterungsverschlechterungsdaten mittels der rekursiven Analyse auf der Grundlage der experimentellen Alterungsverschlechterungsdaten (12) der einen Eigenschaft; und

eine Einrichtung zum Erfassen eines einem Verschlechterungsdatenwert (σ_t) der einen Eigenschaft zum momentanen Zeitpunkt entsprechenden virtuellen Zeitintervalls (t') auf der Grundlage des zweiten Näherungsausdrucks und zum Setzen des virtuellen Zeitintervalls als erstes Zeitintervall.

16. Restlebensdauerbestimmungsvorrichtung gemäß Anspruch 15, dadurch gekennzeichnet, daß die eine Eigenschaft wenigstens des einen Bauteils eine Funktion zwischen einer Prozeßgröße (T) zur Steigerung der Verschlechterung des Bauteils und einem Zeitintervall seit dem Einsetzen der Alterungsverschlechterung ist;

die Einrichtung zur Vorhersage der künftigen Alterungsverschlechterungscharakteristik folgende Einrichtungen umfaßt:

eine Einrichtung zur Vorhersage einer künftigen Prozeßgröße auf der Grundlage der vergangenen Verlaufsdaten der Prozeßgröße zur Steigerung der Verschlechterung wenigstens des einen Bauteils; und eine Einrichtung zur Erfassung eines Vorhersagemusters der künftigen Alterungsverschlechterungscharakteristik durch Einsetzen der vorhergesagten Prozeßgröße in den zweiten Näherungsausdruck; und die Einrichtung zum Erfassen des zweiten Zeitintervalls eine Einrichtung umfaßt, mit der ein Zeitintervall erfaßt wird, das beginnend beim Einsetzen der Alterungsverschlechterung so lange gemessen wird, bis der vorhergesagte Wert der einen Eigenschaft den Grenzwert erreicht.

17. Restlebensdauerbestimmungsvorrichtung gemäß Anspruch 14, dadurch gekennzeichnet, daß für die Restlebensdauererfassung eine Kombination zwischen der einen Eigenschaft eines jeden der Mehrzahl der Bauteile und der experimentellen Daten der Mehrzahl der Aggregate ausgeführt wird und aus den erfaßten Restlebensdauern die kürzeste Restlebensdauer als Restlebensdauer des Aggregats ausgewählt wird.

18. Vorrichtung zur Bestimmung der Restlebensdauer eines aus einer Mehrzahl von Bauteilen aufgebauten und wenigstens eine Funktion besitzenden Aggregats, gekennzeichnet durch

eine Einrichtung zum Erfassen eines Vorhersagemusters der Zuverlässigkeit der Bauteile als Funktion der Zeit durch Ausführung einer Weibull-Verteilungs-Zuverlässigkeitsanalyse für die experimentellen Alte-

rungsvorschlechterungsdaten (12) bezüglich der einen Eigenschaft wenigstens eines Bauteils des Aggregats; eine Einrichtung zum Erfassen einer ersten Zielzeit (L_1) auf der Grundlage des erfaßten Vorhersagemusters der Zuverlässigkeit, wobei die erste Zielzeit von einem momentanen Zeitpunkt an so lange gemessen wird, bis die Zuverlässigkeit einen ersten vorgegebenen Grenzwert erreicht;

5 eine Einrichtung zum Erfassen eines Vorhersagemusters einer Alterungsvorschlechterungscharakteristik der Bauteile auf der Grundlage der experimentellen Alterungsvorschlechterungsdaten (12);

10 eine Einrichtung zum Erfassen einer zweiten Zielzeit auf der Grundlage des vorhergesagten Alterungsvorschlechterungsmusters, wobei die zweite Zielzeit von einem momentanen Zeitpunkt an so lange gemessen wird, bis die eine Eigenschaft einen zweiten vorgegebenen Grenzwert erreicht; und

15 eine Einrichtung zum Auswählen der kürzeren der ersten und zweiten Zielzeiten und zum Ausgeben der ausgewählten Zeit als Restlebensdauer (L_1) des Aggregats.

19. Restlebensdauerbestimmungsvorrichtung gemäß Anspruch 18, dadurch gekennzeichnet, daß die ersten und zweiten Zielzeiten bezüglich eines jeden der Mehrzahl der das Aggregat aufbauenden Bauteile gewonnen werden und sowohl eine erste kürzeste Annäherungszeit unter der Mehrzahl der erfaßten Annäherungszeiten als auch eine zweite kürzeste Annäherungszeit unter der Mehrzahl der erfaßten zweiten Annäherungszeiten als Restlebensdauer des Aggregats verwendet wird.

20. Restlebensdauerbestimmungsvorrichtung gemäß Anspruch 18, dadurch gekennzeichnet, daß die Zuverlässigkeit des Bauteils eine erste Funktion zwischen einer ersten, die Betriebsumgebung des Bauteils angebenden Prozeßgröße und einem vom Einsetzen der Alterungsvorschlechterung an gemessenen Zeitintervall ist;

25 die Einrichtung zur Erfassung eines Vorhersagemusters der Zuverlässigkeit folgende Einrichtungen umfaßt: eine Einrichtung zur Vorhersage einer ersten künftigen Prozeßgröße auf der Grundlage der vergangenen Verlaufsdaten der Prozeßgröße; und

30 eine Einrichtung zur Erfassung eines Vorhersagemusters der Zuverlässigkeit durch Einsetzen der ersten vorhergesagten Prozeßgröße in die erste Funktion; die eine Eigenschaft wenigstens des einen Bauteils eine zweite Funktion zwischen einer zweiten Prozeßgröße (T) zur Steigerung der Alterungsvorschlechterung des Bauteils und dem vom Einsetzen der Alterungsvorschlechterung an gemessenen Zeitintervall ist; und

35 die Einrichtung zur Erfassung des Vorhersagemusters der Alterungsvorschlechterungscharakteristik folgende Einrichtungen enthält:

40 eine Einrichtung zur Vorhersage einer künftigen Prozeßgröße auf der Grundlage der vergangenen Verlaufsdaten der zweiten Prozeßgröße (T) zur Steigerung der Altersverschlechterung wenigstens des einen Bauteils; und

45 eine Einrichtung zur Erfassung eines Vorhersagemusters der künftigen Alterungsvorschlechterungscharakteristik durch Einsetzen der vorhergesagten Prozeßgröße in die zweite Funktion.

50 21. Vorrichtung zur Bestimmung der Restlebensdauer eines aus einer Mehrzahl von Bauteilen aufgebauten und wenigstens eine Funktion besitzenden Aggregats, gekennzeichnet durch

55 eine Einrichtung zur Erfassung eines Näherungsausdrucks, der die einer Funktion zwischen einer Prozeßgröße zur Steigerung der Alterungsvorschlechterung des Bauteils und einem vom Beginn der Alterungsvorschlechterung an gemessenen Zeitintervall entsprechenden experimentellen Alterungsvorschlechterungsdaten der einen Eigenschaft angibt, indem für die experimentellen Alterungsvorschlechterungsdaten bezüglich der einen Eigenschaft wenigstens des einen Bauteils des Aggregats eine rekursive Analyse ausgeführt wird; als Informationsdaten;

60 eine Einrichtung zur Vorhersage einer künftigen Prozeßgröße auf der Grundlage der vergangenen Verlaufsdaten einer Prozeßgröße zur Steigerung der Alterungsvorschlechterung;

65 eine Einrichtung zur Erfassung eines Vorhersagemusters der Alterungsvorschlechterungscharakteristik durch Einsetzen der vorhergesagten Prozeßgröße in den Näherungsausdruck;

70 eine Einrichtung zur Erfassung eines Zeitintervalls auf der Grundlage des Vorhersagemusters, wobei dieses Zeitintervall beginnend beim Einsetzen der Alterungsvorschlechterung so lange gemessen wird, bis der Wert der einen Eigenschaft einen vorgegebenen Grenzwert erreicht; und

75 eine Einrichtung zur Erfassung der Differenz zwischen dem erfaßten Zeitintervall und einem vom Einsetzen der Alterungsvorschlechterung an bis zu einem momentanen Zeitpunkt gemessenen Zeitintervall und zur Ausgabe dieser Differenz als Restlebensdauer des Aggregats.

22. Restlebensdauerbestimmungsvorrichtung gemäß Anspruch 21, dadurch gekennzeichnet, daß der Näherungsausdruck durch

$$\sigma(t) = \sigma_0 \exp \{-f(T) \times t\}$$

gegeben ist, wobei " σ_0 " eine Eigenschaft beim Einsetzen der Alterungsvorschlechterung, " T " eine Prozeßgröße zur Steigerung der Altersverschlechterung und "t" die Zeit ist und $f(T)$ durch

$$f(T) = xT^2 + yT + z$$

gegeben ist, wobei α, x, y und z experimentelle Konstanten sind.

23. Restlebensdauerbestimmungsvorrichtung gemäß Anspruch 21, dadurch gekennzeichnet, daß die Restlebensdauer für jedes der Mehrzahl der Bauteile des Aggregats erfaßt wird und aus den erfaßten Restlebensdauern die kürzeste Restlebensdauer als Restlebensdauer des Aggregats ausgewählt wird.

24. Restlebensdauerbestimmungsvorrichtung gemäß Anspruch 21, dadurch gekennzeichnet, daß das Aggre-

gat ein Regelstabtriebsmechanismus eines Stromkraftwerks, das Bauteil eine Kohlenstoffdichtung und die Prozeßgröße die Umgebungstemperatur des Regelstabtriebsmechanismus ist.

25. Verfahren zur Erfassung der Restlebensdauer eines konstruktiven Bauteils eines Aggregats, um die erfaßte Restlebensdauer auf einer Anzeigevorrichtung anzuzeigen, gekennzeichnet durch die Schritte des Anzeigens eines jeden der konstruktiven Bauteile des Aggregats als ein den tatsächlichen Anordnungspositionen entsprechendes Bild; und

des Anzeigens der Restlebensdauer eines jeden der konstruktiven Bauteile in Übereinstimmung mit dem angezeigten Bild der jeweiligen konstruktiven Bauteile.

26. Verfahren zum Erfassen der Restlebensdauer eines konstruktiven Bauteils eines Aggregats, um die erfaßte Restlebensdauer auf einer Anzeigevorrichtung anzuzeigen, gekennzeichnet durch die Schritte des Anzeigens der Restlebensdauer eines jeden der erfaßten konstruktiven Bauteile in Übereinstimmung mit den konstruktiven Bauteilen; und

des Unterteilens der erfaßten Restlebensdauern in verschiedene Farben in Übereinstimmung mit den Zeitintervallen der Restlebensdauern.

27. Vorrichtung zur Erfassung der Restlebensdauer eines konstruktiven Bauteils eines Aggregats, um die erfaßte Restlebensdauer auf einer Anzeigevorrichtung anzuzeigen, gekennzeichnet durch eine Einrichtung zum Anzeigen eines jeden der konstruktiven Bauteile des Aggregats in einem die tatsächlichen Anordnungspositionen wiedergebenden Bild; und

eine Einrichtung zum Anzeigen der Restlebensdauer eines jeden der konstruktiven Bauteile in Übereinstimmung mit dem angezeigten Bild der jeweiligen konstruktiven Bauteile.

28. Vorrichtung zur Erfassung der Restlebensdauer eines konstruktiven Bauteils eines Aggregats, um die erfaßte Restlebensdauer auf einer Anzeigevorrichtung anzuzeigen, gekennzeichnet durch eine Einrichtung zum Anzeigen der Restlebensdauer eines jeden der erfaßten konstruktiven Bauteile in Übereinstimmung mit den konstruktiven Bauteilen; und

eine Einrichtung zum Unterteilen der erfaßten Restlebensdauern in verschiedene Farben in Übereinstimmung mit den Zeitintervallen der Restlebensdauern.

29. Vorrichtung zur Bestimmung der Restlebensdauern einer Mehrzahl von jeweils aus einer Mehrzahl von Bauteilen aufgebauten und jeweils wenigstens eine Funktion besitzenden Aggregaten, um die Restlebensdauern anzuzeigen, gekennzeichnet durch

eine Restlebensdauerbestimmungsvorrichtung (2, 3, 6, 7) gemäß Anspruch 13 zum Erfassen der Restlebensdauer eines jeden der Aggregate auf der Grundlage sowohl der experimentellen Alterungsverschlechterungsdaten bezüglich einer Eigenschaft wenigstens eines Bauteils des Aggregats und der experimentellen Alterungsdaten bezüglich wenigstens einer Funktion des Aggregats;

eine Speichereinrichtung (82) zum Speichern der von der Restlebensdauerbestimmungsvorrichtung (2, 3, 6, 7) erfaßten Restlebensdauer eines jeden der Aggregate;

eine Sichtanzeigeeinrichtung (20) zum Anzeigen der in der Speichereinrichtung (82) gespeicherten Daten; und

eine Anzeigesteuereinrichtung (84) zum Auslesen der in der Speichereinrichtung (82) gespeicherten Restlebensdauern, um die ausgelesenen Restlebensdauern auf der Sichtanzeigeeinrichtung (20) anzuzeigen.

30. Diagnoseanzeigevorrichtung gemäß Anspruch 29, dadurch gekennzeichnet, daß die Speichereinrichtung (82) Information über die Anordnungspositionen der Mehrzahl der Aggregate besitzt und die Restlebensdauern der jeweiligen Aggregate in Beziehung zu den entsprechenden Anordnungspositionen speichert; und

die Anzeigesteuervorrichtung (84) die Mehrzahl der Aggregate als mit den Anordnungspositionen übereinstimmende Bilder auf der Grundlage der Anordnungspositionsinformation anzeigt und außerdem die Restlebensdauern der jeweiligen Aggregate in Übereinstimmung mit den angezeigten Bildern anzeigt.

31. Diagnoseanzeigevorrichtung gemäß Anspruch 29, dadurch gekennzeichnet, daß die Speichereinrichtung (82) eine Identifikationsinformation für die Mehrzahl der Aggregate in Beziehung zu deren Restlebensdauern speichert; und

die Anzeigesteuervorrichtung (84) die Restlebensdauern der jeweiligen Aggregate zusammen mit deren Identifikationsinformation anzeigt und außerdem die Restlebensdauern auf der Grundlage der Längen der Restlebensdauern zu Anzeigezwecken unterteilt.

32. Expertensystem zur Bestimmung der Restlebensdauer eines aus einer Mehrzahl von Bauteilen aufgebauten und wenigstens eine Funktion besitzenden Aggregats, gekennzeichnet durch eine Einrichtung (8) zum Empfangen sowohl der experimentellen Alterungsverschlechterungsdaten (12) bezüglich einer Eigenschaft wenigstens eines Bauteils des Aggregats als auch von experimentellen Alterungsdaten (10) bezüglich wenigstens einer Funktion des Aggregats;

eine Datenbank (7) zum Speichern sowohl der experimentellen Alterungsverschlechterungsdaten (12) bezüglich der einen Eigenschaft wenigstens des einen Bauteils als auch der experimentellen Alterungsdaten (10) bezüglich wenigstens der einen Funktion von der Empfangseinrichtung (8);

die Restlebensdauerbestimmungsvorrichtung (3) gemäß Anspruch 13 zum Erfassen der Restlebensdauer des Aggregats durch Lesen der in der Datenbank (7) gespeicherten Daten;

eine Informationsbank (6) zum Speichern von Information über wenigstens eine Wartung des Aggregats in Abhängigkeit des Restlebensdauerwertes;

eine Schlußfolgerungseinrichtung (3) zum Ausführen von Schlußfolgerungen auf der Grundlage des Wertes der erfaßten Restlebensdauer und der Informationsdaten, um ein Schlußfolgerungsergebnis zu erhalten; und

eine Einrichtung zum Ausgeben des Schlußfolgerungsresultates.

5

10

15

20

25

30

35

40

45

50

55

60

65

33. Expertensystem gemäß Anspruch 32, dadurch gekennzeichnet, daß die Informationsdaten eine Information enthalten, die angibt, daß für das Aggregat eine Wartung erforderlich ist, falls die Restlebensdauer innerhalb eines vorgegebenen Zeitintervalls liegt.

5 34. Expertensystem gemäß Anspruch 32, dadurch gekennzeichnet, daß die Informationsdaten eine Information enthalten, die angibt, daß für das Aggregat eine Wartung erforderlich ist, falls der Wert der experimentellen Alterungsverschlechterungsdaten (12) für die eine Funktion außerhalb eines vorgegebenen Bereichs liegt.

10 35. Expertensystem zum Bestimmen der Restlebensdauer eines aus einer Mehrzahl von Bauteilen aufgebauten und wenigstens eine Funktion besitzenden Aggregats, gekennzeichnet durch eine Einrichtung (8) zum Empfang sowohl der experimentellen Alterungsverschlechterungsdaten (12) bezüglich einer Eigenschaft wenigstens eines Bauteils des Aggregats als auch der experimentellen Alterungsdaten (10) bezüglich wenigstens einer Funktion des Aggregats; eine Datenbank (7) zum Speichern sowohl der experimentellen Alterungsverschlechterungsdaten (12) bezüglich der einen Eigenschaft wenigstens des einen Bauteils als auch der experimentellen Alterungsdaten (10) bezüglich wenigstens einer Funktion von der Empfangseinrichtung (8); und die Restlebensdauerbestimmungsvorrichtung (3) gemäß Anspruch 13 zum Erfassen der Restlebensdauer des Aggregats durch Lesen der in der Datenbank (7) gespeicherten Daten und zum Ausgeben der erfaßten Restlebensdauer.

20

Hierzu 14 Seite(n) Zeichnungen

25

30

35

40

45

50

55

60

65

FIG. I

FIG. 2

FIG. 3

10

- 1: Beginn der Restlebensdauerbestimmung
 2: Wähle zu untersuchende Vorrichtung und
 gebe deren Nummern ein
 3:
 4: [1] Regelstabantriebsmechanismus {RSA}
 [2] Umlaufpumpe {U-Pumpe}
 5: [3] elektrisch betätigtes Ventil {MOV}
 6: [4] Wärmetauscher {RCW}
 7: [5] Ende
 8: 1

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. II

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 18

Auswahlgrund

RSA - Koordinate 38 - 07

RSA - Nr. 129

Ausgewählt aus folgendem Grund:

Restlebensdauer kürzer als 1 Jahr

40 } Zu prüfende Vorrichtung

{ 36(500~528)

{ 34(700~708)

{ 38(814)

FIG. 19

{ (202)

{ 32(600~608)

{ 36(500~528)

{ 34(700~708)

{ 38(814)

{ 38(814)

{ 32(600~608)

{ 38(810,816,818)

16

RSA - Restlebensdauerdaten

02 06 10 14 18 22 26 30 34 38 42 46 50

Das Diagramm zeigt die Farbzuordnung der Restlebensdauer. Die vertikale Achse auf der linken Seite ist mit 'Farbzuordnung der Restlebensdauer' beschriftet. Die horizontale Achse oben ist mit '0 ~ 0.5', '0.6 ~ 1.0', '1.1 ~ 2.0', '2.1 ~ 5.0' und '5.1 ~ (Jahre)' beschriftet. Ein Kästchen unter der Legende ist schraffiert.

Restlebens-
dauer (Jahre)

5. | ~(Jahre)

JOURNAL OF CLIMATE

100

FIG. 17

RSA - Auswahlkarte

59	41	56	71	86	101	116	152								
55	28	42	57	72	87	102	117	132	146						
51	17	29	43	58	73	88	103	118	133	147	159				
47	8	18	30	44	59	74	89	104	119	134	148	160	170		
43	1	9	19	31	45	60	75	90	105	120	135	149	161	171	179
39	2	10	20	32	46	61	79	94	108	123	138	166	93	172	180
35	3	11	21	33	47	62	80	95	110	124	139	153	77	173	181
31	4	12	22	34	48	63	66	76	109	125	140	137	151	174	182
27	5	13	23	35	49	64	64	150	91	126	122	131	154	175	183
23	6	14	24	36	50	65	162	78	92	106	121	136	165	176	184
19	7	15	25	37	51	66	81	96	111	107	141	155	167	177	185
15	16	26	38	52	67	82	97	112	127	142	156	168	178		
11	27	39	53	68	83	98	113	128	143	157	169				
07	40	54	69	84	99	114	129	144	158						
03	55	70	85	100	115	130	145								

Auswahlgründe	
Unregelmäßigkeit	
Restlebensdauer	
geringer als 1 Jahr	
Grenzwertüberschreitung b.z. nächsten Routinewartung	

02 06 10 14 18 22 26 30 34 38 42 46 50 54 58