When Good Experiments Go Bad

Chris Miller Applied Computational Genomics I BFX Workshop - Week 12 However improbable we regard this event, or any of the steps which it involves, given enough time it will almost certainly happen at least once.

--George Wald

Anything that can go wrong, will go wrong

--Murphy

Shit happens.

--Forrest Gump

• Exome sequencing – Glioblastoma Tumor/Normal pairs

Alignment, somatic variant calling, filtering

\$ wc -l H_RL-01-0*/snvs.indels.annotated

159 H RL-01-0203-1412449/snvs.indels.annotated

219 H RL-01-0216-1412454/snvs.indels.annotated

10583 H RL-01-0334-1412447/snvs.indels.annotated

```
$ wc -1 H_RL-01-0*/snvs.indels.annotated

159 H_RL-01-0203-1412449/snvs.indels.annotated

219 H_RL-01-0216-1412454/snvs.indels.annotated

10583 H_RL-01-0334-1412447/snvs.indels.annotated
```

\$ wc -l H_RL-01-0*/snvs.indels.annotated

159 H_RL-01-0203-1412449/snvs.indels.annotated 219 H RL-01-0216-1412454/snvs.indels.annotated

34-1412447/snvs.indels.annotated

10583

\$ wc -l H_RL-01-0*/snvs.indels.annotated

159 H_RL-01-0203-1412449/snvs.indels.annotated 219 H RL-01-0216-1412454/snvs.indels.annotated

34-1412447/snvs.indels.annotated

10583


```
$ wc -l H_RL-01-0*/snvs.indels.annotated

159 H_RL-01-0203-1412449/snvs.indels.annotated
219 H_RL-01-0216-1412454/snvs.indels.annotated
10583 H RL-01-0334-1412447/snvs.indels.annotated
```

- How many of these occur at known dbSNP sites?

\$ wc -l H_RL-01-0*/snvs.indels.annotated

159 H_RL-01-0203-1412449/snvs.indels.annotated
219 H_RL-01-0216-1412454/snvs.indels.annotated
10583 H RL-01-0334-1412447/snvs.indels.annotated

- How many of these occur at known dbSNP sites? ~85%

\$ wc -l H_RL-01-0*/snvs.indels.annotated

159 H_RL-01-0203-1412449/snvs.indels.annotated
219 H_RL-01-0216-1412454/snvs.indels.annotated
10583 H RL-01-0334-1412447/snvs.indels.annotated

- How many of these occur at known dbSNP sites?~85%
- What is their VAF?

\$ wc -l H_RL-01-0*/snvs.indels.annotated

159 H_RL-01-0203-1412449/snvs.indels.annotated
219 H_RL-01-0216-1412454/snvs.indels.annotated
10583 H RL-01-0334-1412447/snvs.indels.annotated

- How many of these occur at known dbSNP sites?~85%
- What is their VAF? ~50% or 100%

```
$ wc -l H_RL-01-0*/snvs.indels.annotated

159 H_RL-01-0203-1412449/snvs.indels.annotated
219 H_RL-01-0216-1412454/snvs.indels.annotated
10583 H RL-01-0334-1412447/snvs.indels.annotated
```

- How many of these occur at known dbSNP sites?~85%
- What is their VAF? ~50% or 100%

dx: SAMPLE SWAP

Damage Control

- Check other samples in the cohort
 - May not be resolvable!

```
S1 Tumor vs S1 Normal ######
S2 Tumor vs S2 Normal #####
S1 Tumor vs S2 Normal ###
S2 Tumor vs S1 Normal ###
are the tumors or normals swapped?
```

- Often need more information to resolve (RNAseq? Cytogenetics?)
- Check other lanes/indices on the same machine/batch
- Often, the resolution is to drop the samples

- 2 projects, 3 patients
 - Patient 1 Normal, CML, AML
 - Patient 2 Normal, CML, AML
 - Patient 3 Normal, Tumor
- Exome Sequencing
 - 1 lane of HiSeq2500 79-99X mean depth

Variant	Patient 1 CML	Patient 1 AML	Patient 2 CML	Patient 2 AML	
Tier 1 SNVs	14430	669	5276	87	
Tier 1 indels	255	115	55	17	

How many SNVs are population variants?

Patient 1 AML - < 5% dbSNP

Patient 1 CML - > 90% dbSNP

Patient 2 AML - < 5% dbSNP

Patient 2 CML - > 90% dbSNP

Patient 3 AML - < 5% dbSNP

Coding variants with an rsID (dbSNP)

IGV inspection of variants/reads

IGV inspection of variants/reads

How many of these occur at known dbSNP sites?

- What is their VAF? NOT ~50% or 100%

dx: SAMPLE CONTAMINATION

Damage Control

- Check other samples in the cohort to figure out source
 - May not be resolvable! (what if it's from someone else's samples?)
- If it's low-level enough, could apply filters
 - Only keep VAFs >30%
 - Downside: you may miss real events!

 Best solution is to make new libraries from the original source tissue

Single-cell RNA sequencing data

- Transcriptome alignment
 - we expect high level: 90%+

Our data had ~10% alignment

This example is good, ours was not!

Mapping ③	
Reads Mapped to Genome	100.0%
Reads Mapped Confidently to Genome	21.4%
Reads Mapped Confidently to Intergenic Regions	2.6%
Reads Mapped Confidently to Intronic Regions	12.5%
Reads Mapped Confidently to Exonic Regions	6.3%
Reads Mapped Confidently to Transcriptome	16.3%
Reads Mapped Antisense to Gene	2.0%

• Checked the kit - 3' vs 5' (matched)

• Checked the data – blatted a read at random

https://genome.ucsc.edu/cgi-bin/hgBlat

• Checked the kit - 3' vs 5' (matched)

 Checked the data – blatted a read at random (matched to human)

 Checked 10x indices – do they appear in the whitelist (yes)

Pulled our hair out, contacted production

Retraced our steps double checking all of our work

- Blatted a few more reads
 - They all matched poorly to the human genome
 - They all matched well to the mouse genome

Retraced our steps double checking all of our work

- Blatted a few more reads
 - They all matched poorly to the human genome
 - They all matched well to the mouse genome

dx: SPECIES MIXUP

 Just by chance, the first read we checked was from a very highly conserved gene!

Damage Control

- Realign to the correct species
 - Gave expected high alignment rate
- Still have to resolve what happened with the sample naming
 - Was the species designation just wrong?
 - Is the entire sample named wrong? (swap)

Xenograft contamination

- Related topic is dealing with Xenograft data
 - e.g. human tumors implanted in a mouse

Mouse reads with homology to human genome

- One solution is Xenosplit alignment-based read filtering
 - Human, mouse, ambiguous

Global alignment/mismatch issues

- Sample swaps
 - check SNP concordance
 - Somalier is a tool for rapid sample identity checking
- Contamination
 - VAFs, IGV inspection are your friends

- Species swaps
 - Check a few reads, some concordance is expected!

Mutations from a single AML sample, sorted by the number of times a single gene is hit

- 43 DNMT3A
- 2 WT1
- 2 SLC35F3
- 1 UNC93B5
- 1 TSLP
- 1 TRPS1
- 1 TARDBP
- 1 SUN3
- 1 SREBF1
- 1 SPTBN2
- 1 SPAST
- 1 SNX1
- 1 SNRNP40
- 1 SLC17A3
- 1 SELK
- 1 RUNX1
- 1 RCC1
- 1 PTPN11

Variants called in DNMT3A

2	25457242	С	Т	DNMT3A	missense	р.R882H
2	25458572	G	А	DNMT3A	splice_region	e21+4
2	25463169	A	G	DNMT3A	splice_site	e18+2
2	25463170	С	А	DNMT3A	splice_site	e18+1
2	25463321	T	G	DNMT3A	splice_site	e18-2
2	25463322	G	Т	DNMT3A	splice_region	e18-3
2	25463507	AC	_	DNMT3A	splice_site_del	e17+1
2	25463600	С	A	DNMT3A	splice_site	e17-1
2	25464428	T	G	DNMT3A	splice_region	e16+3
2	25464430	С	Т	DNMT3A	splice_site	e16+1
2	25467021	С	G	DNMT3A	splice_region	e14+3
2	25467022	A	Т	DNMT3A	splice_site	e14+2
2	25467211	G	С	DNMT3A	splice_region	e14-4
2	25467213	A	G	DNMT3A	splice_region	e14-6
2	25467403	CCT	_	DNMT3A	splice_region_del	e13+4
2	25467524	A	Т	DNMT3A	splice_region	e13-3
2	25467526	A	С	DNMT3A	splice_region	e13-5
2	25469028	С	Т	DNMT3A	splice_site	e10+1
2	25469181	G	Τ	DNMT3A	splice_region	e10-3

dx: cDNA contamination

Damage Control

- If it is limited to a single gene (as in this case), could remove all splice-site adjacent mutations in that gene
 - If it's many genes/widespread, you might miss a lot of real events!
- Remake the libraries, resequence the sample

```
$ wc -l AML30_final_filtered_clean_b20_q10.hq.txt
10114 AML30_final_filtered_clean_b20_q10.hq.txt
```

```
$ wc -l AML30_final_filtered_clean_b20_q10.hq.txt
10114 AML30_final_filtered_clean_b20_q10.hq.txt
```

Max from TCGA AML cohort: 1298

```
$ wc -l AML30_final_filtered_clean_b20_q10.hq.txt
10114 AML30_final_filtered_clean_b20_q10.hq.txt
```

Max from TCGA AML cohort: 1298

Primary tumor from this sample: 573

\$ wc -l AML30_final_filtered_clean_b20_q10.hq.txt
10114 AML30_final_filtered_clean_b20_q10.hq.txt

Max from TCGA AML cohort: 1298

Primary tumor from this sample: 573

Sample swap?

Mismatch repair?

Mutagenic therapy?

- Normal sequenced in Aug 2009
 - Mix of 75bp and 100bp PE reads
- Tumor sequenced in Nov 2015
 - 125bp PE reads

dx: poorly matched controls

Damage Control

Resequence the normal with matching read lengths

- Match your data as closely as possible!
 - Read lengths
 - Capture kits
 - Sample preparation

General Tips

- Visualize your data
 - A picture is worth a thousand p-values

- Hone, and then trust your instincts
 - If something seems unusual, it's often either a big problem or a big finding

- Be relentless
 - don't stop digging until you convince yourself that nothing is wrong

Expertise

An expert is a man who has made all the mistakes which can be made, in a narrow field.

--Niels Bohr

Spring 2025

Spring presenters and topics are still tentative

Date	Topic	Presenter
01/13/25	10:00am	Intro/prereqs, Genomic Intervals and Bedtools
01/20/25		NO SEMINAR - MLK DAY
01/27/25	10:00am	Epigenomics, ChIP/ATAC/WGBS
02/03/25	10:00am	Genome Assembly, Pangenome
02/10/25	10:00am	Data visualization with R and ggplot2 - part 1
02/17/25	10:00am	Data visualization with R and ggplot2 - part 2
02/24/25	10:00am	Single-cell RNAseq part 1
03/03/25	10:00am	Single-cell RNAseq part 2
03/10/25		NO SEMINAR - SPRING BREAK
03/17/25	10:00am	Genomic Workflows/Cloud Computing
03/24/25	10:00am	Microbial Genomics
03/31/25	10:00am	Machine Learning/AI in Genomics
04/07/25		NO SEMINAR
04/14/25	10:00am	Long Read Sequencing
04/21/25	10:00am	Genomic Medicine, course wrap-up