Test 1 MAT344 - Spring 2019

PROF. ALEX RENNET

NAME:				
STUDENT ID:				
SIGNATURE:				
Instructions				
There are 6 questions on this test, some with multiple parts.				

This test has 8 pages, including this one.

There are 20 points available.

No aids allowed. (i.e. no calculators, cheat sheets, devices etc.)

TUTORIAL SECTION (Leave blank if you can't remember)						
WEDNESDAY						
3pm	□ TUT101 - Arash					
5pm	□ TUT102 - Osaid					
6pm	□ TUT103 - Osaid					

	FOR MARKING (Leave This Blank)							
l								
	/2	/3	/3	/3	/3	/6	/20	

1

(2 points each \Rightarrow 4 points total)

Put your answers in this question in terms of terminology or notation that we've used in this course, like $\binom{n}{k}$ or S(n,k), etc.

You do not need to justify your answers in this question.

In a science experiment gone wrong, a portal is created which connects our world to an unlimited number of *alternate realities*.

1.1 The scientists (in our world) that created the portal have already identified 5 alternate realities of special interest to investigate. You and nineteen others have been chosen to go on a mission to explore these realities.

How many ways can these 20 people be divided up amongst the 5 realities so that each world has at least one person going?

1.2 Suppose you end up on a team with 5 other people on it. In the alternate reality you visit, you each have a **duplicate**: someone who for all purposes is *identical* to you. After you and your teammates find your duplicates, all of you end up at a ceremony together to meet the Queen; all of you, along with 50 other people from their reality, will wait in line to shake hands with the Queen.

How many ways are there to form this line?

For the remainder of the test, you must justify your answers.

² (3 points)

For integers $1 \leqslant n \leqslant m$, how many functions $f:[n] \to [m]$ are there for which f(1) < f(2) < ... < f(n)?

(3 points) What is the coefficient on x^{2019} in the power series form of $f(x) = \sqrt[5]{2-x}$? (Simplify your answer here as much as you can.)

4 (3 points)

How many arrangements are there of the letters in the word

ARITHMOPHELIA

so that the arrangements have the M *immediately beside* at least one A (i.e. either as ...MA... or as ...AM... or as ...AMA...)?

⁵ (3 points)

Prove the following identity using the **Binomial Theorem**:

$$\sum_{0\leqslant k \text{ even}}^n \binom{n}{k} 2^k = \frac{3^n + (-1)^n}{2}$$

6

(3 points each \Rightarrow 6 points total)

Prove each of the equations below using a **combinatorial proof**.

(Recall that in a **combinatorial proof** you must explain in words why the two sides of the equation count the same thing in two different ways.)

You will receive 0 points for an algebraic argument (for instance, don't rewrite $\binom{n}{k}$ in terms of n! and k! etc), or for attempting to use induction or a proof by contradiction, applying a theorem, etc.

6.1 **(3 points)**

$$\binom{2n}{2} = 2\binom{n}{2} + n^2$$

Hint: rewrite n *as* $\binom{n}{1}$.

6.2 **(4 points)**

$$S(n+1,k+1) = \sum_{i=k}^{n} \binom{n}{i} S(i,k)$$