Solving Capacitated Vehicle Routing Problem (CVRP) Using Tabu Search Algorithm (TSA)

Article in Ibn AL- Haitham Journal For Pure and Applied Science · September 2018 DOI: 10.30526/31.2.1949					
CITATIONS 2	;	READS 2,339			
1 author:					
	Omar Ibrahim Obaid AL-Iraqia University 31 PUBLICATIONS 370 CITATIONS SEE PROFILE				
Some of the authors of this publication are also working on these related projects:					
Solving Examination Timetabling Problem By Using Genetic Algorithm View project					
	Disease Prediction Paced on Medical Images View project				

Solving Capacitated Vehicle Routing Problem (CVRP) Using Tabu Search Algorithm (TSA)

Omar Ibrahim Obaid

Dept. of Computer Science / College of Education / AL-Iraqia University Alhamdanyomar23@gmail.com

Received in:16/November/2017, Accepted in:10/January/2018

Abstract

This paper investigates the capacitated vehicle routing problem (CVRP) as it is one of the numerous issues that have no impeccable solutions yet. Numerous scientists in the recent couple of decades have set up various explores and utilized numerous strategies with various methods to deal with it. However, for all researches, finding the least cost is exceptionally complicated. In any case, they have figured out how to think of rough solutions that vary in efficiencies relying upon the search space. Furthermore, tabu search (TS) is utilized to resolve this issue as it is fit for solving numerous complicated issues. The algorithm has been adjusted to resolve the exploration issue, where its methodology is not quite the same as the normal algorithm. The structure of the algorithm is planned with the goal that the program does not require a substantial database to store the data, which accelerates the usage of the program execution to acquire the solution. The algorithm has demonstrated its accomplishment in resolving the issue and finds a most limited route.

Keywords: Tabu Search algorithm, Capacitated Vehicle Routing Problem, Meta-Heuristic

Introduction

Vehicle routing problem turns into a region for exploring since it was examined by Dantzing and Ramser in 1959 [1]. An average vehicle routing problem can be portrayed as the issue of outlining minimum cost courses from one area to an arrangement of topographically scattered focuses (urban areas, stores, distribution centers, schools, colleges, clients and so forth) [2].

Traditional vehicle routing problem is outlined as follows: A set of vehicles (for conveyance of goods) begins from one area and visits a gathering of scattered urban communities or clients and come back to a similar area with less separation and expenses on the conditions [3]:

- Every city is gone by one vehicle just once inside an individual route.
- The limit of every vehicle is sufficient for all urban communities incorporated into the route.
- Routes start and end at a similar area.

The quantity of vehicles should be not as much as what can be proposed for routes and also the quantity of routes is to be not as much as what can be given to cover all urban communities. Static Vehicle Routing Problem (SVRP) implies that all the data on the route is known ahead of time before beginning and does not change after the route started. The issue will be dynamic if any limitation is forced, similar to time, vehicle limit or different factors [4].

Vehicle Routing Problem (VRP)

VRP gets a great deal of consideration and turns into a concentration of various researches, in light of the fact that it is fundamentally the same as the Traveling Salesman Problem (TSP), which is considered as the base of VRP. In any case, there is a major contrast between them, not at all like the Traveling Salesman Problem; VRP is a multi-constrained optimization issue.

Conventional VRP plans to decide the most minimal cost of a route for a vehicle beginning from focal warehouse to serve an arrangement of clients and return back to a similar focal warehouse. The VRP has numerous limitations, for example, vehicle limit, time window, multi-warehouses and others, which gives it more complicated settlement space [5]. Figure (1) clarifies the process.

Figure (1): VRP process [27]

CVRP is the fundamental adaptation of the VRP, where the vehicles have constrained capacity. In the traditional version of the CVRP, all data about client requests is known ahead of time. The vehicle fleet is identical and there is just a single depot and each request can't be isolated or served utilizing at least two vehicles. The goal is to reduce travel cost. The CVRP is the same as the VRP, yet on the condition that the aggregate of all client requests for each route does not surpass the vehicle capacity. The VRP is viewed as dynamic if the limit of every vehicle is not constrained to mull over any new request [6]

Objectives of VRP

The applications in VRP are produced by the demanded objectives. These objectives are to limit the conveyance, vehicle expenditure, to optimize the figure of vehicles and drivers, to optimize the invested energy amid the conveyance period, to reduce the aggregate traveled range. The applications might be created by one of these exhibited objectives or some of these introduced objectives by joining them and furthermore considering their inconsistencies. At that point the VRP problem transforms into a multi-target choice problem.

VRP considers giving advantageous administration dispersion for client requests between the characterized focuses on the outline. Application regions create as indicated by the requests of clients. Essential application fields are fuel and diesel conveyance, the course of action of the officers in a combat zone, flights of planes, conveyance of nourishment and refreshment to the restaurant, conveyance of cash to the bank ATMs and money machines, understudy and laborer administrations, conveyance of parcels that are acquired by shopping over web, trash gathering, and transporting [7].

CVRP Model

Capacitated Vehicle Routing Problem (CVRP) was realized by [8] and [9] as a set of n clients served from the normal station or distribution center, for a non negative qi client request by N number of vehicles of having capacity of Q and separation or cost of Cij between two nodes of i and j by vehicle k. The goal of CVRP is to decide ideal route plan which minimizes the distance or cost with the accompanying requirements:

- Each client is served precisely once by precisely one vehicle
- Each vehicle begins and finishes its route at the depot
- The aggregate length of each route should not surpass the limitation
- The aggregate request of any route should not surpass the capacity of the vehicle

Literature Review

There were two methods of research in order to tackle the VRP. One included accurate strategies of finding the ideal solution by registering every single conceivable solution and the other was heuristic or meta-heuristic methodologies, which played out a generally constrained investigation of the search space and ordinarily created great quality solutions with unassuming processing times. Accurate techniques can be ordered into the accompanying classes: dynamic programming, set apportioning, branch-and-bound, and branch-and-cut. As of not long ago, accurate strategies for the CVRP have been overwhelmed by branch-and-cut. Truly outstanding branch-and-cut algorithms were created by Lysgaard et al. [9].

Late research came about demonstrated that branch-and-cut-and-value algorithms were additionally encouraging approaches for the CVRP as Fukasawa et al. [10] appeared. Heuristic strategies can be extensively grouped into two primary classes: established heuristics grew for the most part in the vicinity of 1960 and 1990, and meta-heuristics effectively investigated from the 1990's. The Clarke and Wright sparing algorithm [11] was a delegate traditional heuristic approach connected to issues where the quantity of vehicles was not settled.

A few improvements to the Clarke and Wright algorithm were proposed [12, 13], which went for decreasing calculation time and memory requirements. Addition heuristic was another notable established strategy; Mole, and Jameson [14] extended one route at once and Christofides et al. [15] connected, in turn, a successive and a parallel route development system.

Tabu Search Algorithm

Tabu search algorithm has a place with meta-heuristic technique under heuristic strategies. Tabu search is produced by [16] for proposing an improved solution for VRP. The fundamental thought of tabu search algorithm is keeping from redundancies and disallowing or rebuffing the redundancy in the following stage. The tabu technique was halfway spurred by the perception that human conduct seems to work with an irregular component that prompts conflicting conduct given comparative conditions.

The tabu technique works thusly with the exemption that new courses are not picked arbitrarily. Rather the tabu search continues as indicated by the supposition that there is no reason for tolerating another (poor) solutions unless it is bypass a route already explored [17]. This guarantees new areas of problems solutions space will be researched in with the aim of avoiding local minima and at last finding the coveted solution. For this situation, tabu search encourages to use memory utilization to bypass an endless loop.

The tabu search starts by progress to local minima. To abstain from remembering the means utilized the strategy records later moves in at least one tabu lists [18]. The first plan of the list was not to keep a past move from being rehashed, but instead to safeguard it was not turned around [19]. The tabu lists are verifiable in nature and shape the tabu search memory. The part of the memory can change as the algorithm continues [20]. The following figure shows the flowchart of standard tabu search algorithm [21].

Figure (2): Flowchart of standard tabu search algorithm [21