Oblig 3 inf1080

Elsie Mestl

September 1, 2015

Oppgave 4.8:

En tautologi er et utrykk som allid er sann uavhengig av hva inputen er. En kontradiksjon er et utrykk som alltid er usannt uavhengig av input

 \mathbf{d}

P	Q	$P \rightarrow Q$	$(P \to Q) \land \neg Q$	$((P \to Q) \land \neg Q) \to \neg P$
\overline{T}	Т	Т	F	T
${ m T}$	$\dot{\mathrm{F}}$	F	\mathbf{F}	${ m T}$
\mathbf{F}	Τ	T	\mathbf{F}	${f T}$
\mathbf{F}	\mathbf{F}	T	${ m T}$	${f T}$

Ser at hele kolonnen til høyre alltid er sann, har dermed at utrykket er en tautologi.

 \mathbf{e}

$$\neg (P \lor Q) \land (\neg Q \lor R) \land (\neg R \lor P) = \neg P \land \neg Q \land (\neg Q \lor R) \land (\neg R \lor P)$$

Utrykket er hverken en kontradiksjon eller en tautologi da avhengig av hva P og R er så er utrykket enten sant eller usant

 \mathbf{f}

$$(\neg(P \lor Q)) \land P = \neg P \land \neg Q \land P$$

En kontradiksjon siden P kan ikke være både sann og usann til samme tid

Oppgave 5.5:

Bevis:

$$(P \to Q) \land (Q \to R) \to (P \to R)$$

a Direktebevis:

Proof. Setter dermed inn i en sannhetsverditabell og ser at:

P	Q	R	$A = P \rightarrow Q$	$B=Q\to R$	$A \wedge B$	$P \to R$	$A \wedge B \to (P \to R)$
Т	Τ	T	T	Τ	Τ	Τ	T
Τ	\mathbf{T}	F	T	\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$
Τ	F	Τ	F	${ m T}$	F	${ m T}$	${ m T}$
T	\mathbf{F}	F	F	${ m T}$	F	\mathbf{F}	${ m T}$
\mathbf{F}	\mathbf{T}	T	T	${ m T}$	${ m T}$	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{T}	F	T	\mathbf{F}	F	${ m T}$	${ m T}$
\mathbf{F}	F	Τ	T	${ m T}$	${ m T}$	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{F}	F	T	${ m T}$	${ m T}$	${ m T}$	${ m T}$

Siden den siste kollonnen allitd er sann har vi at utsagnet vårt alltid vil stemme

c Motsigelsesbevis:

Proof. Anta at utrykket $(P \to Q) \land (Q \to R)$ er usant. Da har vi at både $P \to Q$ og $Q \to R$ er usanne. $P \to Q$ er kun usann når P er sann og Q er usann. Mens $Q \to R$ er kun usann når Q er sann og R er usann. Får her en motsigelse, for vi ser at for at begge utrykkene skal være usanne samtidig må Q både være sann og usann. Dette går ikke og vi har en motsigelse. Altså må antagelsen vår i begynnelsen være feil og utrykket stemmer.