(12) NACH DEM VERTRAGEER DIE INTERNATIONALE ZUSAMMENARB. AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 31. Dezember 2003 (31.12.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/001162 A1

(51) Internationale Patentklassifikation⁷: E04

E04H 15/20

(21) Internationales Aktenzeichen:

PCT/CH2003/000207

(22) Internationales Anmeldedatum:

31. März 2003 (31.03.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

1042/02

19. Juni 2002 (19.06.2002) CH

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): PROSPECTIVE CONCEPTS AG [CH/CH]; Flughofstrasse 41, CH-8152 Glattbrugg (CH).
- (72) Erfinder: und
- (75) Erfinder/Anmelder (nur für US): PEDRETTI, Mauro

[CH/CH]; Via Miravalle 17, CH-6900 Lugano Massagno (CH).

- (74) Anwalt: SALGO, Reinhold, C.; Rütistrasse 103, CH-8636 Wald (CH).
- (81) Bestimmungsstaaten (national): AU, BR, CA, CN, IL, IN, JP, KR, MX, NO, NZ, PL, SG, US, ZA.
- (84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: NODE ELEMENT FOR PNEUMATIC COMPONENTS
- (54) Bezeichnung: KNOTENELEMENT FÜR PNEUMATISCHE BAUELEMENTE

(57) abstract. The invention relates to a node element for a pneumatic component (1) consisting of a casing (2), a compression member (3) and two tractive elements (4), in addition to two swivel joints (5). Each node element is applied to the swivel joints (5) in such a way that an opening (10) accommodates the swivel joint (5). The node elements permit the introduction of tractive and compression forces into the pneumatic component (1) without a moment of flexion, the compression forces being absorbed by the compression member (3) and the tractive forces being absorbed by the tractive cables (4). The node element has holes (12) for fixing the compression member (3) with a screw (15) and holes (11) for receiving the tractive cables (4). The symmetrical arrangement of the holes (11, 12) guarantees that the load forces, in addition to the tractive and compression forces in the node element have a vectorial sum of zero and also that the moments of flexion occur symmetrically in relation to the compression members (3).

[Fortsetzung auf der nächsten Seite]

10/517787

(57) Zusammenfassung: Knotenelement für ein pneumatisches Bauelement (1) bestehend aus einer Hülle (2), einem Druckstab (3) und zwei Zugelementen (4) sowie zwei Kalotten (5). Je ein Knotenelement wird bei den Kalotten (5) so angebracht, dass eine Öffnung (10) die Kalotte (5) aufnimmt. Die Knotenelemente dienen zur biegemomentfreien Einleitung von Zug- und Druckkräften in das pneumatische Bauelement (1). Wobei die Druckkräfte von dem Druckstab (3) und die Zugkräfte von den Zugbändern (4) aufgenommen werden. Das Knotenelement verfügt über Löcher (12) zur Befestigung des Druckstabes (3) mit einer Schraube (15) einerseits und Löcher (11) zur Aufnahme der Zugbänder (4) andererseits. Die symmetrische Anordnung der Löcher (11, 12) gewährleistet, dass sich Auflagerkräfte sowie die Zug- und Druckkräfte im Knotenelement vektoriell zu Null addieren, und weiter die Biegemomente bezüglich der Druckstäbe (3) symmetrisch auftreten.

Knotenelement für pneumatische Bauelemente

Die vorliegende Erfindung betrifft ein Knotenelement für pneumatische Bauelemente und dazugehörige Verbindungselemente 5 nach dem Oberbegriff des Patentanspruches 1.

Knotenelemente für nicht pneumatische Bauelemente sind an sich bekannt, beispielsweise unter dem Namen MERO-System. Deren Aufgabe ist die biegemomentenfreie Einleitung von Zugund Druckkräften in Fachwerkkonstruktionen. Ein pneumatisches Bauelement ist bekannt beispielsweise aus der Europäischen

- Patentanmeldung 01 903 559.1 des gleichen Erfinders. Der Anschluss des dort beschriebenen Bauelementes an einen Knoten mit bekannten Mitteln ist jedoch nicht problemlos zu bewältigen, da aus der Auflagerreaktion entstehende Biegemomente
- 15 nicht restlos vermieden werden können ohne einen unverhältnismässigen Aufwand an konstruktiven Hilfsmitteln.

Die Aufgabe der vorliegenden Erfindung ist die Schaffung eines Knotenelementes, welches gestattet die Zug-, Druck- und Auflagerkräfte ohne das Auftreten von lokalen Biegemomenten zu susammen zu führen und welches ferner gestattet, die Aufla-

gerkräfte auch in bekannte und konventionelle Bauelemente einzuleiten.

sichtlich weiterer vorteilhafter Ausbildungen.

Die Lösung der gestellten Aufgabe ist wiedergegeben im kennzeichnenden Teil des Patentanspruches 1 hinsichtlich ihrer 25 wesentlichen Merkmale, in den folgenden Patentansprüchen hin-

Mit Hilfe der beigefügten Zeichnung wird der Erfindungsgedanke anhand mehrerer Ausführungsbeispielen näher erläutert. Es zeigen

30

35

- Fig. 1a den Stand der Technik in einer schematischen Seitenansicht,
- Fig. 1b den Stand der Technik in einem Querschnitt,

Fig. 2 ein erstes Ausführungsbeispiel eines Knotenelementes in einer Perspektive,

30

	Fig. 3	das erste Ausführungsbeispiel in einem ersten Längsschnitt,
5	Fig. 4	das erste Ausführungsbeispiel in einem zweiten Längsschnitt,
	Fig. 5	ein zweites Ausführungsbeispiel im Längsschnitt,
10	Fig. 6	ein drittes Ausführungsbeispiel in einer Perspektive,
	Fig. 7	ein viertes Ausführungsbeispiel im Längsschnitt,
15	Fig. 8	ein erstes erfindungsgemässes Verbindungselement in einer Perspektive,
	Fig. 9	ein zweites erfindungsgemässes Verbindungselement in einer Perspektive,
20	Fig. 10	ein drittes erfindungsgemässes Verbindungselement in einer Perspektive,
	Fig. 11	ein viertes erfindungsgemässes Verbindungselement in einer Perspektive,
25	Fig. 12	ein fünftes erfindungsgemässes Verbindungselement in einer Perspektive,
	Fig. 13	ein sechstes erfindungsgemässes Verbindungsele-

ein siebentes erfindungsgemässes Verbindungsele-Fig. 14 ment in einer Perspektive.

ment in einer Perspektive,

35 Fig. la ist eine schematische Seitenansicht eines pneumatischen Bauelementes 1 gemäss dem Stande der Technik. Es besteht aus einer Hülle 2, einem Druckstab 3 und zwei Zugelementen 4. Die Hülle 2 ist aus einem dehnungsarmen textilen Gewebe hergestellt, welches entweder gasdicht beschichtet ist oder im Inneren mit einem Gasschlauch aus elastischem Kunststoff versehen ist, welcher die Dichtungsfunktion übernimmt. Der Druckstab 3 ist, wie aus Fig. 1b ersichtlich, beispielsweise in eine längs der Hülle 2 verlaufende und an dieser durch Nähen und Abdichten, Schweissen oder Kleben befestigte Tasche 6 eingeschoben und erstreckt sich über die ganze im Wesentlichen zylindrische Länge der Hülle 2. An seinen Enden ist der Druckstab 3 mit den Enden der zwei Zugelemente 4 fest verbunden, welche in gegenläufigem Schraubungssinne um die Hülle 2 gelegt sind und dort straff anliegen. Sie können durch an der Hülle 2 befestigte Laschen 7 durchgezogen sein, damit ihre Lage auch bei schlaffer Hülle 2 definiert ist. Die Verbindungsstellen von Druckstab 3 und Zugelementen 4 sind 15 Knoten 8.

An ihren Enden ist die Hülle 2 durch zwei Kalotten 5, beispielsweise aus dem gleichen Material, wie die Hülle 2, verschlossen.

Fig. 2 ist die perspektivische Darstellung eines ersten Aus-20 führungsbeispiels des erfindungsgemässen Knotenelementes. Es besteht aus einer Platte 9 mit einer grossen Öffnung 10 für die Kalotte 5 des pneumatischen Bauelementes 1. Die Platte 9 ist hier beispielsweise quadratisch ausgeführt und trägt eine vierfache Vielzahl von Löchern 11, 12. Die vier Löcher 12 25 liegen jeweils in der Mitte einer Lochreihe. Im Loch 12 der in Fig. 2 oberen Lochreihe ist der Druckstab 3 beispielsweise mit einer Schraube 15 befestigt, wie aus Fig. 3 ersichtlich ist; Fig. 3 ist im Längsschnitt AA durch die Darstellung von Fig. 2; Fig. 4 ein solcher entlang der Schnittebene BB. Die 30 Bohrungen der Löcher 11 verlaufen beispielsweise schräg durch die Platte 9. Im Ausführungsbeispiel gemäss Fig. 3 sind je drei Löcher 11 links und rechts des Druckstabes 3 durch je ein Kabel 16 besetzt. Diese je drei Kabel 16 sind parallel zueinander geführt und bilden zusammen das zu Fig. 1 beschriebene Zugelement 4. Die Kabel 16 sind mit Muttern 17 in der Platte 9 gesichert, wie es aus der Technik der Vorspannkabel von Stahlbetonkonstruktionen bekannt ist. Die hier besetzten Löcher 11, 12 liegen auf einer Geraden. Da die Span-

nung der Kabel 16 gleich gemacht wird, entsteht das einzige Biegemoment in der Platte 9 selbst; jedoch wird keines auf das pneumatische Bauelement abgeleitet.

-4-

In den Fig. 2 und 3 sind Kraftpfeile mit F_A bezeichnet. Diese stehen für die Auflagerkräfte. Die vom Druckstab 3 ausgeübten Druckkräfte, die von den Kabeln 16 bewirkten Zugkräfte und die Auflagerkräfte können sich in der Platte 9 vektoriell auf Null summieren, ohne im Druckstab 3 Biegemomente zu erzeugen. Als Material für die Platte 9 kommen in Frage beispielsweise 10 Aluminium, GFK, CFK oder Mehrschicht-Sperrholz.

In Fig. 5 ist als zweites Ausführungsbeispiel eine weitere Ausbildung des ersten Ausführungsbeispiels dargestellt. Die Platte 9 weist wiederum die grosse Öffnung 10 auf, die jedoch besonders ausgebildet ist: In einem ersten Abschnitt 18 ist die Öffnung 10 zylindrisch ausgeführt und trägt eine erste O-Ring Nut 19 mit einem ersten O-Ring 20. Dieser dichtet gegen die Aussenseite des zylindrischen Teils der Hülle 2. An den ersten zylindrischen Abschnitt 19 schliesst ein zweiter Abschnitt 21 an, welcher im Wesentlichen die in der Öffnung 10 liegende Form der Kalotte 5 aufweist. Anstelle der Kalotte 5 tritt hier ein beispielsweise der Kalotte 5 nachgebildeter Deckel 22. Dieser kann - je nach Zweckmässigkeit - auch anders geformt sein; erfindungswesentlich ist nur sein im Wesentlichen konischer oder kalottenförmiger Verlauf innerhalb des zweiten Abschnitts 21.

Noch innerhalb des zylindrischen Teils des ersten Abschnittes 18 weist der Deckel 22 ebenfalls zylindrische Form auf und trägt dort eine O-Ring-Nut 23 mit einem zweiten O-Ring 24, welcher gegen die Innenseite des zylindrischen Teiles der 30 Hülle 2 dichtet. Die Hülle 2 wird durch den Deckel 22 im konischen oder kalottenförmigen Teil 21 der Öffnung zwischen der Platte 9 und dem Deckel 22 eingeklemmt, und der Deckel 22 durch den in der Hülle 2 herrschenden Überdruck gegen die Platte 9 gedrückt. Die Dichtungsfunktion übernehmen, wie beschrieben, die zwei O-Ringe 20, 24. Die übrige Ausgestaltung der Platte 9 kann gemäss Fig. 2, 3, 4 vorgenommen werden. Der Deckel 22 kann selbstverständlich anstatt kalottenförmig gestaltet zu sein, auch eine andere Form, beispielsweise eine

ebene, aufweisen, einhergehend mit entsprechender Verstärkung der Wandung.

Ein drittes Ausführungsbeispiel des erfindungsgemässen Knotenelementes ist in Fig. 6 dargestellt. Es ist vorgesehen für 5 ein pneumatisches Bauelement 1 mit mehreren - hier acht -Druckstäben 3 und, im Sinne eines Beispiels, zwei Zugelementen 4 pro Druckstab 3. Die Platte 9 ist hier als runder Flansch 27 ausgebildet mit einer grossen Öffnung 10 für die Kalotte 5 des pneumatischen Bauelementes 1. Der Flansch 27 10 trägt entsprechend der Zahl der Druckstäbe 3 Löcher 12 für die Schrauben 15 zur Befestigung der Druckstäbe 3. Entsprechend der Anzahl Zugelemente 4 pro Druckstab 3 trägt der Flansch 27 Löcher 11 für die Befestigung der Zugelemente 4. Im Ausführungsbeispiel gemäss Fig. 6 trägt der Flansch 27 15 keine weiteren Löcher. Für die Befestigung an weiteren statischen Strukturen und die Einleitung von Stützkräften kann der Flansch 27 oder, generell eine runde Platte 9, in eine Platte 28 eingespannt werden, wie in Fig. 7 im Schnitt dargestellt. Die Platte 28 trägt hier beispielsweise eine kreisrunde Öff-20 nung 31 zur Aufnahme des Flansches 27. Eine weitere, beispielsweise kreisrunde Platte 29 trägt eine Öffnung 32. Beide Platten 28, 29 sind mit einem kreisrunden Absatz 33 versehen, welcher mit der erforderlichen Genauigkeit über den Flansch 27 passt und diesen aufnimmt. Mittels Schrauben 30 können die 25 beiden Platten 28, 29 aneinander kraft- und formschlüssig befestigt werden. Die äussere Form der Platte 28 kann rund, viereckig oder polygonal sein, je nach den baulichen und gestalterischen Anforderungen. Sie kann ferner eine Vielzahl von Löchern 34 tragen zur Befestigung des pneumatischen Bau-30 elementes 1 an weiteren statischen Strukturen und zur Einleitung von Stütz- und Auflagerkräften. Selbstverständlich kann auch die Platte 9 gemäss Fig. 2, 3, 4, 5 kreisrund ausgeführt werden und mittels den zu Fig. 7

35 Zum erfindungsgemässen Knotenelement gehörig sind die möglichen Ausformungen entweder der Platte 9 selbst - wie bereits in Fig. 2 dargestellt - oder der Platte 28 gemäss Fig. 7.

beschriebenen Platten 28, 29 gefasst werden.

Viereckige, allenfalls quadratische Platten 9, 28 sind einsetzbar bei Verbindungselementen gemäss Fig. 8, 9, 10, 11, wie nachfolgend gezeigt. Sollen ein oder maximal vier pneumatische Bauelemente 1 beispielsweise auf eine Säule 40 aufgesetzt werden, wie in Fig. 8 dargestellt, so kann ein beispielsweise kubisch ausgebildetes Verbindungselement 41 eingesetzt werden. Die Platten 9, 28 werden auf das geeignet ausgebildete Verbindungselement 41 aufgeschraubt. Die pneumatischen Bauelemente sind nur schematisch dargestellt; damit ist keinerlei Einschränkung hinsichtlich deren Ausbildung verbunden.

Eine Variante hierzu zeigt Fig. 9. Hier ist ein Verbindungselement 42 mit dreieckigen Querschnitt eingesetzt für den Anschluss von höchstens drei pneumatischen Bauelementen 1.

- Für den Anschluss von höchstens sechs pneumatischen Bauelementen 1 ist das Ausführungsbeispiel von Fig. 10 gedacht. Ein Verbindungselement 43 hat demgemäss sechseckigen Grundriss mit vorzugsweise quadratischen Seitenflächen. Die Ausbildung der Seitenflächen als Quadrat hat den Vorteil, dass, falls die pneumatischen Bauelemente 1 mit vier, acht oder zwölf Druckstäben 3 ausgerüstet sind, auf eine Orientierung nicht geachtet werden muss. Soll eine bestimmte Orientierung jedoch eingehalten werden, so kann dies durch Anbringen eines Nokkens 44, wie in Fig. 9 dargestellt, erzwungen werden. Als Zusammenfassung der Ausgestaltung der Verbindungselemente 41, 42, 43 kann deren Grundriss als polygonal definiert werden, wobei die Grund- und Deckflächen der Verbindungselemente 41, 42, 43 gleich gross sind und die daran befestigten pneumatischen Bauelemente 1 alle in der gleichen Ebene liegen.
- 30 Ein weiteres Ausführungsbeispiel einer ebenen Anordnung von pneumatischen Bauelementen 1 zeigt Fig. 11. Hier sind die beispielsweise quadratischen Platten 9, 28 nebeneinander an einem nicht dargestellten Tragelement angeschraubt. Solche Tragelemente sind als an sich bekannte Konstruktionen nicht Bestandteil der Erfindung. Mit dieser Anordnung kann beispielsweise eine Dachfläche hergestellt werden.
 - Fig. 12, 13, 14 sind Darstellungen von Anordnungen, welche aus der Ebene heraustreten. Fig. 12 zeigt ein Verbindungsele-

ment 45, welches beispielsweise bogenförmig ausgeführt ist. Es ist ferner so ausgeführt, dass es die Funktion der Platte 28 übernehmen kann. Das heisst, das Verbindungselement 45 weist hier fünf kreisrunde Öffnungen 31 auf und pro Öffnung 31 beispielsweise sechs Löcher für Schrauben 30. Mit diesen ist die zu jedem pneumatischen Bauelement 1 gehörende weitere Platte 29 - in Fig. 12 nicht dargestellt - mit dem Verbindungselement 45 verschraubt.

-7-

Im Ausführungsbeispiel gemäss Fig. 13 sind mehrere pneumatische Bauelemente an einem Verbindungselement 46 angeschlossen, welches als Polyeder - hier ein Oktaeder - ausgeführt
ist. Der Anbau der pneumatischen Bauelemente an das Verbindungselement 46 geschieht in gleicher Weise, wie zu Fig. 12
ausgeführt. Alternativ hiezu, kann auch jede Platte 9, 28 die
15 Form der entsprechenden Polyederseite aufweisen, wobei das
Polyeder dann im Wesentlichen aus Stäben ausgeführt ist, welche seine Kanten bilden.

In Fig. 14 sind mehrere, beispielsweise sechs, ebene Platten 47 zu einem nach oben geöffneten pyramidenförmigen Verbindungselement 48 zusammengefügt durch Schweissen oder mittels nicht dargestellter Schraubverbindungen. Jede Platte 47 hat beispielsweise die Funktion einer Platte 28 gemäss Fig. 7.

Als Variante hiezu ist es ebenfalls möglich, die Platten 9 gemäss Fig. 2 formlich so auszuführen, dass sie den Platten 47 gemäss Fig. 14 entsprechen. Das Verbindungselement 48 besteht dann beispielsweise, wie bereits analog zu Fig. 13 ausgeführt ist, aus Stäben, welche die Kanten des Verbindungs-

elementes 48 bilden, an welchen die Platten 47 beispielsweise

angeschraubt sind.

Patentansprüche

- 1. Knotenelement zur biegemomentfreien Einleitung von Zugund Druckkräften in pneumatische Bauelemente (1), welche aus einer Hülle (2), mindestens einem Druckstab (3), mindestens zwei Zugbändern (4) und zwei Kalotten (5) bestehen, dadurch gekennzeichnet, dass
 - Mittel zur Befestigung der Zugbänder (4) und des Druckstabes (3) vorhanden sind,
- 10 die Form so gewählt ist, dass
 - die Kräfte der mindestens zwei Zugbänder (4), des mindestens einen Druckstabes (3) sowie die Auflagerkräfte im Knotenelement vektoriell zu Null addiert werden,
- 15 keine Drehmomente von aussen ein- oder nach aussen abgeleitet werden,
 - die Biegemomente innerhalb des Knotenelementes bezüglich des mindestens einen Druckstabes (3) symmetrisch auftreten.

20

5

- 2. Knotenelement nach Patentanspruch 1, dadurch gekennzeichnet, dass es die Form einer Platte (9) hat und eine grosse Öffnung (10) für die Kalotte (5) haben kann.
- 25 3. Knotenelement nach Patentanspruch 2, dadurch gekennzeichnet, dass die Platte (9) rund ist.
 - 4. Knotenelement nach Patentanspruch 2, dadurch gekennzeichnet, dass die Platte (9) polygonförmig ist.

30

35

hen.

5. Knotenelement nach Patentanspruch 3 oder 4, dadurch gekennzeichnet, dass die Mittel zur Befestigung des mindestens einen Druckstabes aus einem Loch (12) mit einer Schraube (15), und die Mittel zur Befestigung der mindestens zwei Zugbänder (4) aus Löchern (11) zur Einführung und Befestigung der Zugbänder (4) mit Muttern (17) beste-

- 6. Knotenelement nach Patentanspruch 6, dadurch gekennzeichnet, dass die Platte (9) als Flansch (27) ausgebildet ist.
- 5 7. Knotenelement nach Patentanspruch 2, dadurch gekennzeichnet, dass ein Deckel (22) vorhanden ist und die grosse Öffnung (10) derart geformt ist, dass der Deckel (22), der von einer Hülle (2) des pneumatischen Bauelementes (1) umgeben ist, bündig in die Öffnung (10) eingebracht werden kann, und Hilfsmittel zur Abdichtung vorhanden sind, die den Deckel (22) und die Hülle (2) nach aussen gasdicht abschliessen.
- 8. Knotenelement nach Patentanspruch 7, dadurch gekennzeichnet, dass der Deckel (22) und die grosse Öffnung (10) einen zylindrischen Teil (18) sowie einen konischen oder kalottenförmigen Teil (21) aufweisen und im zylindrischen Teil (18) des Deckels (22) mindestens ein O-Ring (23) in einer O-Ring-Nut (24) als auch im zylindrischen Teil der Öffnung (10) ein O-Ring (19) in einer O-Ring-Nut (20) vorhanden ist.
- 9. Verbindungselement zur Verbindung von pneumatischen Bauelementen (1), welche aus einer Hülle (2), mindestens einem Druckstab (3), mindestens zwei Zugbändern (4) und
 zwei Kalotten (5) bestehen, mit statischen Strukturen,
 dadurch gekennzeichnet, dass
 - Mittel zur Befestigung von mindestens einem Knotenelement vorhanden sind,
- die Form derart gewählt ist, dass die Auflagerkräfte in die Knotenelemente eingeleitet werden können.
- 10. Verbindungselement nach Patentanspruch 9, dadurch gekennzeichnet, dass es aus mindestens einer Platte (28) mit je mindestens einem Absatz (33) aufgebaut ist, in welchen die Platte (9, 27) hineingelegt werden kann, und zu jeder Platte (28) je eine aus mindestens einem Teilstück bestehende Platte (29) vorhanden ist, in die ebenfalls ein Ab-

20

- satz (33) eingelassen ist, und die mit der Platte (28) fest verschraubt werden kann, so dass die Platte (9, 27) von den Platten (28) und (29) aufgenommen wird.
- 5 11. Verbindungselement nach Patentanspruch 10, dadurch gekennzeichnet, dass es ein mindestens teilweise aus Platten (28) zusammengesetzter dreidimensionaler Körper ist.

-10-

- 12. Verbindungselement nach Patentanspruch 9, dadurch gekennzeichnet, dass das Verbindungselement eine Rahmenkonstruktion ist, an welcher das mindestens eine Knotenelement befestigt werden kann und so mindestens einen Teil
 einer Seitenfläche der Rahmenkonstruktion bildet.
- 13. Verbindungselement nach Patentanspruch 11 oder 12, dadurch gekennzeichnet, dass es im Grundriss von polygonaler Form ist und an mindestens einer der Seitenwände des so gebildeten polygonalen Körpers mindestens ein Knotenelement befestigt werden kann.
- 14. Verbindungselement nach Patentanspruch 13, dadurch gekennzeichnet, dass an mehreren Seiten des polygonalen Körpers Knotenelemente befestigt werden können, so dass die pneumatischen Bauelemente (1) speichenartig um das Verbindungselement angeordnet sind.
- 15. Verbindungselement nach Patentanspruch 10 oder 12, dadurch gekennzeichnet, dass es von rechteckiger Form ist und mehrere Knotenelemente daran befestigt werden können so dass die pneumatischen Bauelemente parallel zueinander verlaufen.
- 16. Verbindungselement nach Patentanspruch 10 oder 12, dadurch gekennzeichnet, dass es bogenförmig ist und mehrere
 35 Knotenelemente daran befestigt werden können, so dass die pneumatischen Bauelemente parallel zueinander verlaufen.

17. Verbindungselement nach Patentanspruch 11 oder 12, dadurch gekennzeichnet, dass es die äussere Form eines Tetraeders hat, und mindestens ein Knotenelement pro Seite des Tetraeders befestigt werden kann.

5

18. Verbindungselement nach Patentanspruch 11 oder 12, dadurch gekennzeichnet, dass es die äussere Form eines Würfels hat und mindestens ein Knotenelement pro Seite des Würfels befestigt werden kann.

10

19. Verbindungselement nach Patentanspruch 11 oder 12, dadurch gekennzeichnet, dass es die äussere Form eines Pyramidenstumpfes hat und mindestens ein Knotenelement pro Seite des Pyramidenstumpfes befestigt werden kann.

15

20. Verbindungselement nach Patentanspruch 12, dadurch gekennzeichnet, dass das mindestens eine Knotenelement festgeschraubt wird.

b)

Fig. 14