Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Group Members

Md.Faisal Mahmud Abid (Id: 011 143 108)

Nopa Islam (Id: 011 151 062)

Nasir Uddin Ahmed (Id: 011 151 086)

Paper Introduction

- Author:
- a. Christian Ledig
- b. Lucas Theis
- c. Ferenc Huszar
- Number Of Citation: 1823
- Paper Presented On: Computer Vision and Pattern Recognition Conference (CVPR) 2017

Dataset

Name: MIRFLICKR-25000.

Consists of 25000 images.

Pre-trained neural network

Abstract

 Main problem; recovering finer texture details at large upscale factors.

• The paper proposes a generative adversarial network (GAN).

Proposing a perceptual loss function.

Introduction

• High upscale factor is a bigger issue.

Texture details typically absent in reconstructed image.

Minimizing the mean squared error (MSE).

Minimizing (MSE) maximizes peak signal to noise ratio (PSNR).

Basic Neural Network

Figure : Application Of CNN

Design Of Convolutional Neural Network

A toy ConvNet: X's and O's Says whether a picture is of an X or an O

For example

Trickier cases

Deciding is hard

What computers see

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	1	-1	-1	-1
-1	-1	1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	1	-1	-1
-1	-1	-1	1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

What computers see

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	Χ	-1	-1	-1	-1	Χ	Χ	-1
-1	Х	Χ	-1	-1	Χ	Χ	-1	-1
-1	-1	Х	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	Χ	-1	-1
-1	-1	Х	Х	-1	-1	Χ	Х	-1
-1	Χ	Χ	-1	-1	-1	-1	Χ	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

Computers are literal

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	1	-1	-1	-1
-1	-1	1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	1	-1	-1
-1	-1	-1	1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

ConvNets match pieces of the image

Features match pieces of the image

	,			

-1 | -1 |

-1

-1	-1	1
-1	1	-1
1	-1	-1

1 -1 -1 -1 1 -1 -1 -1 1

- 1. Line up the feature and the image patch.
- 2. Multiply each image pixel by the corresponding feature pixel.
- 3. Add them up.
- 4. Divide by the total number of pixels in the feature.

1	1	1
1		

1	1	1
1	1	1

1	1	1
1	1	1
1		

1	1	1
1	1	1
1	1	

1	1	1
1	1	1
1	1	1

$$\frac{1+1+1+1+1+1+1+1}{9} = 1$$

```
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      <td
```


1	-1	-1
-1	1	-1
-1	-1	1

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

1	1	-1
1	1	1
-1	1	1

1	1	-1
1	1	1
-1	1	1

$$\frac{1+1-1+1+1+1-1+1+1}{9} = .55$$

Convolution: Trying every possible match

1	-1	-1
-1	1	-1
-1	-1	1

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

Convolution: Trying every possible match

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

Convolution layer

One image becomes a stack of filtered images

Convolution layer

One image becomes a stack of filtered images

Pooling: Shrinking the image stack

- 1. Pick a window size (usually 2 or 3).
- 2. Pick a stride (usually 2).
- 3. Walk your window across your filtered images.
- 4. From each window, take the maximum value.

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

0.33

-0.11 0.11 0.33 0.55 0.33 0.77 -0.11 0.33 -0.11 0.11 -0.11 1.00 -0.11 1.00 -0.33 0.11 -0.11 -0.11 0.11 0.55 -0.33 0.55 -0.33 0.33 0.33 0.33 0.33 -0.33 -0.11 -0.11 0.11 0.55 0.11 1.00 -0.11 0.11 -0.11 0.33 -0.11 -0.11 1.00

0.33

0.55

-0.11

0.11

-0.11

0.77

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

1.00	0.33	0.55	

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33	
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11	
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55	
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33	
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11	
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11	
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77	

1.00	0.33	0.55	0.33

-0.11 0.33 0.33 0.11 -0.11 0.55 0.77 1.00 -0.11 0.33 -0.11 0.11 -0.11 -0.11 0.11 -0.11 1.08 -0.33 0.11 -0.11 0.55 0.33 -0.33 0.55 -0.33 0.33 0.33 0.33 -0.33 -0.11 -0.11 0.55 0.11 1.00 0.11 -0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11 0.11 0.55 0.33 -0.11 0.33 -0.11 0.77

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

max pooling

1.00	0.33	0.55	0.33
0.33	1.00	0.33	0.55
0.55	0.33	1.00	0.11
0.33	0.55	0.11	0.77

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.11	0.33	-0.77	1.00	-0.77	0.33	-0.11
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.77	-0.11	0.11	0.33	0.55	-0.11	0.33

1.00	0.33	0.55	0.33
0.33	1.00	0.33	0.55
0.55	0.33	1.00	0.11
0.33	0.55	0.11	0.77
0.55	0.33	0.55	0.33
0.33	1.00	0.55	0.11
0.55	0.55	0.55	0.11
0.33	0.11	0.11	0.33

0.33	0.55	1.00	0.77
0.55	0.55	1.00	0.33
1.00	1.00	0.11	0.55
0.77	0.33	0.55	0.33

Pooling layer

A stack of images becomes a stack of smaller images.

1.00	0.33	0.55	0.33
0.33	1.00	0.33	0.55
0.55	0.33	1.00	0.11
0.33	0.55	0.11	0.77
0.55	0.33	0.55	0.33
0.33	1.00	0.55	0.11
0.55	0.55	0.55	0.11
0.33	0.11	0.11	0.33
0.33	0.55	1.00	0.77
0.55	0.55	1.00	0.33
1.00	1.00	0.11	0.55
0.77	0.33	0.55	0.33

Normalization

- Keep the math from breaking by tweaking each of the values just a bit.
- Change everything negative to zero.
- Using activation function.

Activation Function

Defines the output of a node.

 Produce a non-linear decision boundary via linear combinations.

Different Types Of Activation Function

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

0.77	0	0.11	0.33	0.55	0	0.33

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

0.77	0	0.11	0.33	0.55	0	0.33
0	1.00	0	0.33	0	0.11	0
0.11	0	1.00	0	0.11	0	0.55
0.33	0.33	0	0.55	0	0.33	0.33
0.55	0	0.11	0	1.00	0	0.11
0	0.11	0	0.33	0	1.00	0
0.33	0	0.55	0.33	0.11	0	0.77

ReLU layer

A stack of images becomes a stack of images with no negative values.

0.77	0	0.11	0.33	0.55		0.33
	1.00		0.33		0.11	
0.11	0	1.00		0.11		0.55
0.33	0.33	0	0.55	0	0.33	0.33
0.55	0	0.11	0	1.00	0	0.11
	0.11		0.33		1.00	
0.33		0.55	0.33	0.11		0.77
0.33	0	0.11	0	0.11	0	0.33
	0.55		0.33		0.55	
0.11	0	0.55		0.55	0	0.11
	0.33		1.00		0.33	
0.11	0	0.55		0.55	0	0.11
0	0.55		0.33		0.55	0
0.33	0	0.11	0	0.11	0	0.33
0.33	0	0.55	0.33	0.11	0	0.77
0	0.11	0	0.33	0	1.00	0
0.55	0	0.11	0	1.00	0	0.11
0.33	0.33	0	0.55	0	0.33	0.33
0.11	0	1.00	0	0.11	0	0.55
0	1.00	0	0.33	0	0.11	0
0.77	0	0.11	0.33	0.55	0	0.33

Layers get stacked

The output of one becomes the input of the next.

Deep stacking

Layers can be repeated several (or many) times.

Fully connected layer Every value gets a vote

Fully connected layer

Vote depends on how strongly a value predicts X or

O

Fully connected layer

Vote depends on how strongly a value predicts X or O

Fully connected layer Future values vote on X or O

Fully connected layer Future values vote on X or O

Fully connected layer

Future values vote on X or O

Fully connected layer

Future values vote on X or O

Future values vote on X or O

Future values vote on X or O

A list of feature values becomes a list of votes.

These can also be stacked.

How neural networks work

A four pixel camera

solid

vertical

diagonal

diagonal

diagonal

vertical

diagonal

Simple rules can't do it

diagonal

Simple rules can't do it

solid

Input neurons

Pixel brightness

Input vector

Receptive fields

A neuron

Sum all the inputs

Weights

Weights

Weights

Squash the result

No matter what you start with, the answer stays between -1 and 1.

Squash the result

Weighted sum-and-squash neuron

Make lots of neurons, identical except for weights

To keep our picture clear, weights will either be 1.0 (white) -1.0 (black) or 0.0 (missing)

Receptive fields get more complex

Repeat for additional layers

Receptive fields get still more complex

Rectified linear units (ReLUs)

Generative Adversarial Network(GAN) Architecture

What Is GAN

 System of two neural networks competing against each other in a zero-sum game framework.

• Can learn to draw samples from a model that is similar to data that we give them.

Overview Of GAN

Discriminative Models

 A discriminative model learns a function that maps the input data (x) to some desired output class label (y).

• In probabilistic terms, they directly learn the conditional distribution P(y|x).

Generative Models

• A **generative** model tries to learn the joint probability of the input data and labels simultaneously i.e. P(x,y).

 Potential to understand and explain the underlying structure of the input data even when there are no labels

Training GAN

- Objective of generative network increase the error rate of the discriminative network.
- Objective of discriminative network decrease binary classification loss.
- Discriminator training backprop from a binary classification loss.
- Generator training backprop the negation of the binary classification loss of the discriminator.

Loss Function

$$\mathcal{L}(\hat{x}) = \min_{x \in data} (x - \hat{x})^2$$

$$D_G^*(x) = rac{p_{data}(x)}{p_{data}(x) + p_g(x)}$$

Generator Discriminator

Alternate view of GANs

$$\min_{G} \max_{D} V(D,G)$$

$$V(D,G) = \mathbb{E}_{x \sim p(x)} [\log D(x)] + \mathbb{E}_{z \sim q(z)} [\log (1 - D(G(z)))]$$

$$D^* = \arg\max_{D} V(D,G)$$

$$G^* = \arg\min_{G} V(D,G)$$

- In this formulation, Discriminator's strategy was $D(x) \to 1$, $D(G(z)) \to 0$
- Alternatively, we can flip the binary classification labels i.e. Fake = 1, Real = 0

$$V(D,G) = \mathbb{E}_{x \sim p(x)} \left[\log \left(1 - D(x) \right) \right] + \mathbb{E}_{z \sim q(z)} \left[\log \left(D(G(z)) \right) \right]$$

• In this new formulation, Discriminator's strategy will be $D(x) \to 0$, $D(G(z)) \to 1$

Alternate view of GANs (Contd.)

• If all we want to encode is $D(x) \to 0$, $D(G(z)) \to 1$

$$D^* = argmax_D \mathbb{E}_{x \sim p(x)} \left[\log \left(1 - D(x) \right) \right] + \mathbb{E}_{z \sim q(z)} \left[\log \left(D(G(z)) \right) \right]$$

We can use this

$$D^* = argmin_D \mathbb{E}_{x \sim p(x)} \log(D(x)) + \mathbb{E}_{z \sim q(z)} \left[\log \left(1 - D(G(z)) \right) \right]$$

Now, we can replace cross-entropy with any loss function (Hinge Loss)

$$D^* = argmin_D \mathbb{E}_{x \sim p(x)} D(x) + \mathbb{E}_{z \sim q(z)} \max \left(0, m - D(G(z))\right)$$

- And thus, instead of outputting probabilities, Discriminator just has to output:-
 - High values for fake samples
 - Low values for real samples

Generator Network Architecture

Figure: Architecture of Generator and Discriminator Network with corresponding kernel size (k), number of feature maps (n) and stride (s) indicated for each convolutional layer.

Discriminator Network Architecture

Figure : Architecture of Generator and Discriminator Network with corresponding kernel size (k), number of feature maps

(n) and stride (s) indicated for each convolutional layer.

Perceptual Loss Function

Content Loss

$$l_{MSE}^{SR} = \frac{1}{r^2 W H} \sum_{x=1}^{rW} \sum_{y=1}^{rH} (I_{x,y}^{HR} - G_{\theta_G}(I^{LR})_{x,y})^2$$

$$l_{VGG/i,j}^{SR} = \frac{1}{W_{i,j}H_{i,j}} \sum_{x=1}^{W_{i,j}} \sum_{y=1}^{H_{i,j}} (\phi_{i,j}(I^{HR})_{x,y} - \phi_{i,j}(G_{\theta_G}(I^{LR}))_{x,y})^2$$

VGG19

Pretrained VGG-19 convolutional neural network

 Trained on more than a million images from the ImageNet database.

 The network is 19 layers deep and can classify images into 1000 object categories

VGG19 Model

Adversarial Loss

$$l_{Gen}^{SR} = \sum_{n=1}^{N} -\log D_{\theta_D}(G_{\theta_G}(I^{LR}))$$

Peak Signal To Noise Ratio

 The ratio between the maximum possible power of an image and a power of corrupting noise.

 Compare image to an "ideal" clean image with the maximum possible power

Peak Signal To Noise Ratio

$$PSNR = 10\log_{10}\left(\frac{(L-1)^2}{MSE}\right) = 20\log_{10}\left(\frac{L-1}{RMSE}\right)$$

Mean Squared Error

$$MSE = \frac{1}{NM} \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} (A(i,j) - B(i,j))$$

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{NM} \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} (A(i,j) - B(i,j))^2}$$

Peak Signal To Noise Ratio

- PSNR <30.0 (this corresponds to RMSE>11) is commonly considered low. This means the presence of clearly visible noise or smoothing of many edges
- PSNR > 30.0 (this corresponds to RMSE <8.6) is commonly considered as acceptable (some noise is still visible or small details are still smoothed)
- PSNR > 33.0 (this corresponds to RMSE <5.6) is commonly considered as good
- PSNR > 35.0 (this correspond to RMSE <4.5) is commonly considered as excellent (it is usually not possible to find any visual distinction from the "ideal" image)

Related Work

Image resampling.

Applying linear interpolation in two directions.

Different from bi-linear interpolation.

10	10	20	20
10	10	20	20
30	30	40	40
30	30	40	40

Neighborhood embedding approach

Uses reconstruction methods.

Upsample lower resolution image patch

• Uses kernel ridge regression.

SRResNet

Based on ResNet architecture.

Series of resblocks.

• For upsampling, pixel shuffle operator is used.

SRResNet

Concept of SISR

Results

Comparison Table

Set5	nearest	bicubic	SRCNN	SelfExSR	DRCN	ESPCN	SRResNet	SRGAN	HR
PSNR	26.26	28.43	30.07	30.33	31.52	30.76	32.05	29.40	∞
SSIM	0.7552	0.8211	0.8627	0.872	0.8938	0.8784	0.9019	0.8472	1
MOS	1.28	1.97	2.57	2.65	3.26	2.89	3.37	3.58	4.32
Set14									
PSNR	24.64	25.99	27.18	27.45	28.02	27.66	28.49	26.02	∞
SSIM	0.7100	0.7486	0.7861	0.7972	0.8074	0.8004	0.8184	0.7397	1
MOS	1.20	1.80	2.26	2.34	2.84	2.52	2.98	3.72	4.32
BSD100									
PSNR	25.02	25.94	26.68	26.83	27.21	27.02	27.58	25.16	∞
SSIM	0.6606	0.6935	0.7291	0.7387	0.7493	0.7442	0.7620	0.6688	1
MOS	1.11	1.47	1.87	1.89	2.12	2.01	2.29	3.56	4.46

