Projekat iz predmeta Operaciona istraživanja

Tema: Linearni program za minimizaciju zagađenja zraka uz optimizaciju troškova s osvrtom na društveni aspekt

Ema Djedović

Broj indeksa: 6009/M

Smjer: Kompjuterske nauke

PMF Sarajevo

12/2023

UVOD

U današnjem svijetu, energetski sektor igra ključnu ulogu u ostvarivanju ravnoteže između zadovoljenja energetskih potreba i smanjenja negativnih uticaja na životnu sredinu. CO₂ je jedan od glavnih plinova s efektom staklenika koji zadržava toplotu u atmosferi, doprinoseći povećanju temperature na Zemlji. Ova povećana temperatura izaziva niz nepoželjnih posljedica:

- Rast nivoa mora: topljenje ledenih ploča, ugrožene obale i niske oblasti.
- Ekstremni vremenski događaji: suše, poplave, oluje i toplotni valovi.
- Gubitak biodiverziteta: ugrožene mnoge vrste.
- Promjene u poljoprivredi: smanjenje prinosa i ugrožavanje globalne sigurnosti hrane.

Smanjenjem emisija CO₂ doprinosimo globalnim naporima da se uspore ove štetne posljedice. Ovaj projekat ima za cilj razvoj linearnog programa koji se fokusira na minimizaciju zagađenja zraka u Bosni i Hercegovini uz istovremenu optimizaciju troškova, a s osvrtom na društveni aspekt.

Koristeći alate operacionih istraživanja, analiziramo optimalne godišnje količine različitih energenata, uzimajući u obzir emisione faktore i ograničenja dostupnih resursa. U drugom koraku uvođenjem alternativnih izvora energije istražujemo mogućnosti postizanja održivijeg energetskog bilansa.

U trećem koraku, uvodimo cijene klasičnih i alternativnih izvora energije, minimizirajući ukupne troškove uzimajući u obzir instalaciju i održavanje elemenata alternativnih izvora.

Kroz četvrti korak, projekt dodatno uzima u obzir društveni aspekt, maksimizirajući broj zaposlenih na godišnjem nivou na različitim proizvodnim i instalacionim pogonima.

KORAK I

a) Varijable odluke

Želimo pronaći optimalne godišnje količine energenata:

```
x_1 - količina uglja (u kilogramima)
```

 x_2 - količina prirodnog plina (u kubnim metrima)

 x_3 - količina ogrjevnog drveta (u kilogramima)

 x_4 - količina drvnog peleta (u tonama)

b) Funkcija cilja

Prema podacima Međunarodne agencije za energiju (IEA), možemo odrediti emisione faktore u vidu koeficijenata p_i . Emisioni faktor je kvantitivna mjera koja izražava količinu otpuštenog zagađivača u atmosferu. Za ugalj, taj faktor varira u rasponu od 1.7 do 3.6 kilograma CO_2 po kilogramu sagorenog uglja. Prema IEA, prosječni emisioni faktor uglja za Bosnu i Hercegovinu iznosi 2.4. Sa p_1, p_2, p_3 i p_4 označimo respektivno emisione faktore za ugalj, prirodni plin, ogrjevno drvo i drvni pelet. Imamo:

$$p_1 = 2.4$$
 (ugalj)
 $p_2 = 1.91$ (prirodni plin)
 $p_3 = 1.72$ (ogrjevno drvo)
 $p_4 = 1.5$ (drvni pelet)

Nivo zagađenja zraka je izražen u kilogramima otpuštenog CO_2 , a predstavljamo ga preko jednadžbe:

zagađenje =
$$p_1 \cdot x_1 + p_2 \cdot x_2 + p_3 \cdot x_3 + p_4 \cdot x_4$$

Naša funkcija cilja je:

$$min(zagađenje) = p_1 \cdot x_1 + p_2 \cdot x_2 + p_3 \cdot x_3 + p_4 \cdot x_4$$

c) Ograničenja

količina dostupnog uglja: $x_1 \leq 225,000,000 \text{ kg}$ količina dostupnog prirodnog plina: $x_2 \leq 254,790,000 \text{ m}^3$ količina dostupnog ogrjevnog drveta: $x_3 \leq 245,850 \text{ kg}$ količina dostupnog drvnog peleta: $x_4 \leq 300,000,000 \text{ kg}$

A, B, C, D - količina proizvedene topline

1 kg uglja = 8 kWh toplotne energije (A = 8 kWh/kg)

 $1~\mathrm{m}^3$ prirodnog plina = 3.5 kWh toplotne energije (B = 3.5 kWh/m³)

1 kg ogrjevnog drveta = 3 kWh toplotne energije (C = 3 kWh/kg)

1 kg drvnog peleta = 4.85 kWh toplotne energije (D = 4.85 kWh/kg)

$$A \cdot x_1 + B \cdot x_2 + C \cdot x_3 + D \cdot x_4 \ge H$$

H - ukupna godišnja potreba za toplotnom energijom 6.000.000 kWh

$$x_1, x_2, x_3, x_4 \ge 0$$
 (nenegativnost)

Neke zemlje, regije i organizacije imaju regulative koje se odnose na specifične industrije i sektore u cilju rada na ublažavanju efekta globalnog zatopljenja, ali ne postoji zakonska gornja granica za emisiju zagađivača izraženu u kilogramima CO_2 .

KORAK II

Sada uvodimo pogone alternativnih izvora energije. Električnu energiju koju koristimo za zagrijavanje objekata a koju dobijemo u tim pogonima smatramo "čistom", odnosno smatramo da nemaju faktor zagađenja $(p_i = 0)$.

a) Varijable odluke

Varijable odluke za alternativne izvore bi bile optimalne količine objekata koje treba instalirati, odnosno broj vjetrenjača, broj solarnih panela i broj hidroelektrana.

```
x_5 = broj vjetrenjača za instalirati (p_5 = 0)
x_6 = broj solarnih panela za instalirati (p_6 = 0)
x_7 = broj hidroelektrana za instalirati (p_7 = 0)
```

b) Funkcija cilja

Kako pri minimizaciji funkcije nivoa zagađenja uzimamo da alternativni izvori energije imaju emisioni faktor p_i nula (ne zagađuju), tako funkcija cilja ostaje ista kao u koraku I:

$$min(zagađenje) = p_1 \cdot x_1 + p_2 \cdot x_2 + p_3 \cdot x_3 + p_4 \cdot x_4$$

c) Ograničenja

Od koristi je istražiti koja su to bosansko-hercegovačka područja koja imaju potencijal za postavljanje ovih objekata. Nakon toga, stvaraju se ograničenja koja bi se ticala količine objekata koje je moguće instalirati na jednu lokaciju, a ovise od raspoloživog prostora, zakonske regulative itd. To su jednostavna ograničenja oblika $x_i \leq n, i = 5, 6, 7, n \in \mathbb{N}$. Za svrhe modeliranja nama je dovoljno da ostavimo taj opći oblik nejednakosti.

Nadalje, konstante E, F i G će sada predstavljati količinu proizvedene energije vjetrenjača, solarnih panela i hidroelektrana (respektivno). Te konstante u ovom trenutku ne možemo vjerodostojno odrediti zbog nepredvidljivosti koje

su neminovne u radu s alternativnim izvorima. To su, naprimjer, brzina vjetra, potencijal vode i količina sunčeve svjetlosti. Količina energije koja će se proizvesti u tim pogonima također ovisi od snage i efikasnosti postrojenja (Najveća vjetrenjača na svijetu ima snagu 16 MW, dok je standard u prosjeku 2-3 MW po vjetrenjači.)

Ukupna godišnja potreba za toplotnom energijom (H) ostaje ista.

$$A \cdot x_1 + B \cdot x_2 + C \cdot x_3 + D \cdot x_4 + E \cdot x_5 + F \cdot x_6 + G \cdot x_7 \ge H$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \text{ (nenegativnost)}$$

KORAK III

Sada ćemo uzeti u obzir cijene klasičnih energenata te cijene alternativnih izvora na način da minimiziramo troškove za idućih pet godina. Za alternativne izvore (vjetrenjače, solarne panele i hidroelektrane) razmatramo:

- 1. Cijene instalacije elemenata (uzimaju se u obzir samo prve godine)
- 2. Cijene održavanja elemenata (konstantne za svaku godinu)

Posmatramo cijenu po jedinici mjere:

 $c_1 = \text{cijena uglja (po kilogramu)}$

 $c_2 = \text{cijena prirodnog plina (po metru kubnom)}$

 c_3 = cijena ogrjevnog drveta (po kilogramu)

 $c_4 = \text{cijena drvnog peleta (po toni)}$

 c_{51} = cijena instalacije jedne vjetrenjače

 c_{61} = cijena instalacije jednog solarnog panela

 c_{71} = cijena instalacije jedne hidroelektrane

 c_5 = cijena održavanja jedne vjetrenjače za jednu godinu

 $c_6=$ cijena održavanja jednog solarnog panela za jednu godinu

 $c_7=\mathrm{cijena}$ održavanja jedne hidroelektrane za jednu godinu

a) Varijable odluke

Ostaju iste kao u koraku II $(x_1 \cdots x_7)$.

b) Funkcija cilja

Sada je funkcija koju minimiziramo dvokomponentna. Uz minimizaciju funkcije zagađenje želimo minimizirati i funkciju troškovi:

$$minF = w_1 \cdot \text{zagađenje} + w_2 \cdot \text{troškovi}$$

$$\text{zagađenje} = p_1 \cdot x_1 + p_2 \cdot x_2 + p_3 \cdot x_3 + p_4 \cdot x_4$$

$$\text{troškovi} = 5 \cdot (c_1 \cdot x_1 + c_2 \cdot x_2 + c_3 \cdot x_3 + c_4 \cdot x_4 + c_5 \cdot x_5 + c_6 \cdot x_6 + c_7 \cdot x_7) + c_{51} \cdot x_5 + c_{61} \cdot x_6 + c_{71} \cdot x_7$$

Faktori težine w_1 i w_2 odražavaju važnost svakog cilja u problemu. Na primjer, možemo uzeti da je smanjenje zagađenja važnije od smanjenja troškova, pa će faktor težine w_1 biti veći od faktora težine w_2 . Ovo zavisi od naših prioriteta.

c) Ograničenja

Sasvim je prirodno uvesti ograničenja koja se tiču planiranog budžeta za određeni energetski sektor. To su uslovi koji se nameću od strane nadležnih, a podrazumijevaju količinu novca koji su spremni uložiti u koji pogon. Recimo, količina sagrađenih hidroelektrana (x_7) će dakako ovisiti od predviđenog budžeta za iste. Slično posmatramo sve komponente modela.

 $c_1 \cdot x_1 \leq \text{budzet_ugalj}$ $c_2 \cdot x_2 \leq \text{budzet_plin}$ $c_3 \cdot x_3 \leq \text{budzet_drvo}$ $c_4 \cdot x_4 \leq \text{budzet_pelet}$ $(c_{51} + c_5) \cdot x_5 \leq \text{budzet_vjetrenjace}$ $(c_{61} + c_6) \cdot x_6 \leq \text{budzet_panele}$ $(c_{71} + c_7) \cdot x_7 \leq \text{budzet_hidroelektrane}$

KORAK IV

Naposljetku, dotičemo se društvenog aspekta te uvodimo varijable broja zaposlenih radnika na jednom pogonu.

a) Varijable odluke

Neka su x_8 , x_9 , x_{10} , x_{11} , x_{12} , x_{13} i x_{14} varijable koje predstavljaju broj zaposlenih radnika na pogonima za proizvodnju, respektivno za ugalj, prirodni plin, ogrjevno drvo, drvni pelet, vjetrenjače, solarne panele i hidroelektrane.

Na prvi pogled nema potrebe za korištenjem sedam različitih varijabli ukoliko ravnopravno tretiramo radno mjesto na pogonu za ugalj i onog na nekom drugom pogonu. Međutim, ukoliko svaku varijablu posmatramo individualno, onda nam ostaje sloboda da naknadno uvedemo koeficijente koji će predstavljati plate na svakoj od pozicija, a koje se međusobno razlikuju. U kombinaciji s korakom III, mogla bi se postaviti nova ograničenja vezana za budžet, nadograditi komponentu "troškovi" u funkciji cilja koja će imati za cilj da minimizira plate radnika, postaviti ograničenja minimalne plate itd.

b) Funkcija cilja

Za sada, želimo samo maksimizirati broj radnih mjesta, odnosno

$$max(\text{zaposleni}) = x_8 + x_9 + x_{10} + x_{11} + x_{12} + x_{13} + x_{14}$$

Ažurirana funkcija cilja s težinskim faktorima w_1, w_2 i w_3 izgleda ovako:

$$minF = w_1 \cdot \text{zagađenje} + w_2 \cdot \text{troškovi} - w_3 \cdot \text{zaposleni}$$

c) Ograničenja

S društvenog aspekta želimo postaviti ograničenja koja se tiču minimalnog broja zaposlenih. Osim toga, imamo ograničenja koja nam govore koliko je radne snage potrebno na kojem pogonu.

$$x_8 + x_9 + x_{10} + x_{11} + x_{12} + x_{13} + x_{14} \ge \text{minimalni_broj_zaposlenih}$$

Imamo informacije da održavanje 20 vjetrenjača u prosjeku podrazumijeva dva do tri radna mjesta, za održavanje 60 solarnih panela jedno ili dva radna mjesta, dok jedna hidroelektrana zapošljava između 75 i 196 radnika. Možemo formirati odgovarajuće jednadžbe:

$$2 \cdot \frac{x_5}{20} \le x_{12} \le 3 \cdot \frac{x_5}{20}$$
$$\frac{x_6}{60} \le x_{13} \le 2 \cdot \frac{x_6}{60}$$
$$75 \cdot x_7 \le x_{14} \le 196 \cdot x_7$$

 x_5 - broj vjetrenjača

 x_6 - broj solarnih panela

 x_7 - broj hidroelektrana

 x_{12} - broj zaposlenih po jednoj vjetrenjači

 x_{13} - broj zaposlenih po jednoj solarnoj paneli

 x_{14} - broj zaposlenih po jednoj hidroelektrani

$$x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14} \ge 0$$
 (nenegativnost)

ZAKLJUČAK

Konačno možemo predstaviti linearni program. Sumiramo sve do sad rečeno i predstavljamo varijable odluke, funkciju cilja i ograničenja.

Varijable odluke

 x_1 : količina uglja (kg)

 x_2 : količina prirodnog plina (m³)

 x_3 : količina ogrjevnog drveta (kg)

 x_4 : količina drvnog peleta (t)

 x_5 : broj vjetrenjača za instalirati

 x_6 : broj solarnih panela za instalirati

 x_7 : broj hidroelektrana za instalirati

 x_8 : broj zaposlenih na pogonu za proizvodnju uglja

 x_9 : broj zaposlenih na pogonu za proizvodnju prirodnog plina

 x_{10} : broj zaposlenih na pogonu za proizvodnju ogrjevnog drveta

 x_{11} : broj zaposlenih na pogonu za proizvodnju drvnog peleta

 x_{12} : broj zaposlenih po jednoj vjetrenjači

 x_{13} : broj zaposlenih po jednom solarnom panelu

 x_{14} : broj zaposlenih po jednoj hidroelektrani

Funkcija cilja

$$\begin{split} \min F &= w_1 \cdot \text{zagađenje} + w_2 \cdot \text{troškovi} - w_3 \cdot \text{zaposleni} \\ \text{zagađenje} &= p_1 \cdot x_1 + p_2 \cdot x_2 + p_3 \cdot x_3 + p_4 \cdot x_4 \\ \text{troškovi} &= 5 \cdot (c_1 \cdot x_1 + c_2 \cdot x_2 + c_3 \cdot x_3 + c_4 \cdot x_4 \\ &\quad + c_5 \cdot x_5 + c_6 \cdot x_6 + c_7 \cdot x_7) + c_{51} \cdot x_5 + c_{61} \cdot x_6 + c_{71} \cdot x_7 \\ \text{zaposleni} &= x_8 + x_9 + x_{10} + x_{11} + x_{12} + x_{13} + x_{14} \end{split}$$

 $c_1 = \text{cijena uglja (po kilogramu)}$

 $c_2 = \text{cijena prirodnog plina (po metru kubnom)}$

 $c_3 = \text{cijena ogrjevnog drveta (po kilogramu)}$

 $c_4 = \text{cijena drvnog peleta (po toni)}$

 $c_{51} = \text{cijena instalacije jedne vjetrenjače}$

 c_{61} = cijena instalacije jednog solarnog panela

 c_{71} = cijena instalacije jedne hidroelektrane

 c_5 = cijena održavanja jedne vjetrenjače za jednu godinu

 c_6 = cijena održavanja jednog solarnog panela za jednu godinu

 c_7 = cijena održavanja jedne hidroelektrane za jednu godinu

Ograničenja

1. Ograničenja za dostupnost energenata:

 $x_1 \le 225.000.000 \text{ kg}$ (količina dostupnog uglja) $x_2 \le 254.790.000 \text{ m}^3$ (količina dostupnog prirodnog plina) $x_3 \le 245.850 \text{ kg}$ (količina dostupnog ogrjevnog drveta)

 $x_4 \le 300.000.000 \text{ kg}$ (količina dostupnog drvnog peleta)

2. Količina proizvedene toplotne energije mora zadovoljiti ukupnu godišnju potrebu od H=6.000.000 kWh:

$$A \cdot x_1 + B \cdot x_2 + C \cdot x_3 + D \cdot x_4 + E \cdot x_5 + F \cdot x_6 + G \cdot x_7 > H$$

3. Broj objekata alternativnih izvora koje je moguće instalirati:

$$x_5 \le n$$
, $x_6 \le m$, $x_7 \le q$, $n, m, q \in \mathbb{N}$

4. Budžetska ograničenja za svaki energetski izvor:

$$c_1 \cdot x_1 \leq \text{budzet_ugalj}$$
 $c_2 \cdot x_2 \leq \text{budzet_plin}$
 $c_3 \cdot x_3 \leq \text{budzet_drvo}$
 $c_4 \cdot x_4 \leq \text{budzet_pelet}$
 $(c_{51} + c_5) \cdot x_5 \leq \text{budzet_vjetrenjace}$
 $(c_{61} + c_6) \cdot x_6 \leq \text{budzet_panele}$
 $(c_{71} + c_7) \cdot x_7 \leq \text{budzet_hidroelektrane}$

5. Ograničenja za broj zaposlenih na alternativnim izvorima:

$$2 \cdot \frac{x_5}{20} \le x_{12} \le 3 \cdot \frac{x_5}{20}$$
$$\frac{x_6}{60} \le x_{13} \le 2 \cdot \frac{x_6}{60}$$
$$75 \cdot x_7 \le x_{14} \le 196 \cdot x_7$$

6. Društveni aspekt minimalnog broja zaposlenih:

$$x_8+x_9+x_{10}+x_{11}+x_{12}+x_{13}+x_{14}\geq$$
minimalni_broj_zaposlenih

7. Uslov nenegativnosti varijabli:

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14} \ge 0$$

IZVORI

 www.worlddata.info/europe/bosnia-and-herzegovina/ energy-consumption.php

- usitfbih.ba/sumarstvo/
- bhas.gov.ba/data/Publikacije/Saopstenja/2022/ENE_03_2021_ Y1_1_HR.pdf
- mycovenant.eumayors.eu/storage/web/mc_covenant/documents/ 31/gDfNSINefuY8ow-sw1-pA372PsaPZUpE.pdf
- www.quality.unze.ba/zbornici/QUALITY%202005/073-Q05-042.
 pdf
- vladausk.ba/v4/files/media/pdf/5e3d6631637062.36085396_ Plan%20zastite%20kvalitete%20zraka%20USK-a%202017-2022.
 .pdf
- fmeri.gov.ba/media/1564/prilog-1-komponenta-2_ metodologija-za-izracun-usteda-energije-smiv.pdf
- www.msb.gov.ba/dokumenti/AB38713.pdf
- bhas.gov.ba/data/Publikacije/Saopstenja/2022/ENE_01_2022_ 07_1_BS.pdf
- transparentno.ba
- repozitorij.efzg.unizg.hr/islandora/object/efzg%3A6274/ datastream/PDF/view