Assignment: Global environmental change - CO₂ fertilization

Mode

Partner work allowed: yes, maximum groups of three.

Create a text document of 3-5 pages (A4, 11 pt) that answers the content points listed below. You may structure the document along the given questions or as you like. Make sure that references in your text are correctly cited and that each statement is referenced. Ideally, your responses are complemented by a figure from original sources for each point. The document may be handed in as a Word, RMarkdown, or Quarto document that can be added to the repository of the LES textbook (https://geco-bern.github.io/les/).

Present this work in a presentation of 30 min.

Supervised by Laura Marqués.

Content points

- 1. How does increased atmospheric CO₂ affect carbon assimilation at the leaf scale?
 - (Walker et al., 2021) and Chapter 4 of LES book (https://geco-bern.github.io/les/gpp.html#sec-fvcb)
- 2. How does increased atmospheric CO₂ affect plant growth?
 - (Hubau et al., 2020; McMahon et al., 2010; Walker et al., 2021)
- 3. How do forests respond to rising CO₂ levels and which are the main processes involved?
 - o (Körner, 2017; Marqués et al., 2023; Walker et al., 2021)
- 4. What are the key processes influencing the CO₂ fertilization effect at the ecosystem scale?
 - (Walker et al., 2021)
- 5. What are processes influencing the CO₂ fertilization effect at the landscape scale?
 - (Walker et al., 2021)
- 6. What types of observations and data provide evidence for CO₂ effects across scales?
 - (Walker et al., 2021)

References

Hubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez, A., Daniels, A. K., Ewango, C. E. N., Fauset, S., Mukinzi, J. M., Sheil, D., Sonké, B., Sullivan, M. J. P., Sunderland, T. C. H., Taedoumg, H., Thomas, S. C., White, L. J. T., Abernethy, K. A., Adu-Bredu, S., Amani, C. A., Baker, T. R., Banin, L. F., Baya, F., Begne, S. K., Bennett, A. C., Benedet, F., Bitariho, R., Bocko, Y. E., Boeckx, P., Boundja, P., Brienen, R. J. W., Brncic, T., Chezeaux, E., Chuyong, G. B., Clark, C. J., Collins, M., Comiskey, J. A., Coomes, D. A., Dargie, G. C., de Haulleville, T., Kamdem, M. N. D., Doucet, J.-L., Esquivel-Muelbert, A., Feldpausch, T. R., Fofanah, A., Foli, E. G., Gilpin, M., Gloor, E., Gonmadje, C., Gourlet-Fleury, S., Hall, J. S., Hamilton, A. C., Harris, D. J., Hart, T. B., Hockemba, M.

B. N., Hladik, A., Ifo, S. A., Jeffery, K. J., Jucker, T., Yakusu, E. K., Kearsley, E., Kenfack, D., Koch, A., Leal, M. E., Levesley, A., Lindsell, J. A., Lisingo, J., Lopez-Gonzalez, G., Lovett, J. C., Makana, J.-R., Malhi, Y., Marshall, A. R., Martin, J., Martin, E. H., Mbayu, F. M., Medjibe, V. P., Mihindou, V., Mitchard, E. T. A., Moore, S., Munishi, P. K. T., Bengone, N. N., Ojo, L., Ondo, F. E., Peh, K. S.-H., Pickavance, G. C., Poulsen, A. D., Poulsen, J. R., Qie, L., Reitsma, J., Rovero, F., Swaine, M. D., Talbot, J., Taplin, J., Taylor, D. M., Thomas, D. W., Toirambe, B., Mukendi, J. T., Tuagben, D., Umunay, P. M., et al.: Asynchronous carbon sink saturation in African and Amazonian tropical forests, Nature, 579, 80–87, https://doi.org/10.1038/s41586-020-2035-0, 2020.

Körner, C.: A matter of tree longevity, Science, 355, 130–131, https://doi.org/10.1126/science.aal2449, 2017.

Marqués, L., Weng, E., Bugmann, H., Forrester, D. I., Rohner, B., Hobi, M. L., Trotsiuk, V., and Stocker, B. D.: Tree Growth Enhancement Drives a Persistent Biomass Gain in Unmanaged Temperate Forests, AGU Advances, 4, e2022AV000859, https://doi.org/10.1029/2022AV000859, 2023.

McMahon, S. M., Parker, G. G., and Miller, D. R.: Evidence for a recent increase in forest growth, Proc. Natl. Acad. Sci. U.S.A., 107, 3611–3615, https://doi.org/10.1073/pnas.0912376107, 2010.

Pongratz, J., Schwingshackl, C., Bultan, S., Obermeier, W., Havermann, F., and Guo, S.: Land Use Effects on Climate: Current State, Recent Progress, and Emerging Topics, Curr Clim Change Rep, 7, 99–120, https://doi.org/10.1007/s40641-021-00178-y, 2021.

Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R. F., McMahon, S. M., Medlyn, B. E., Moore, D. J. P., Norby, R. J., Zaehle, S., Anderson-Teixeira, K. J., Battipaglia, G., Brienen, R. J. W., Cabugao, K. G., Cailleret, M., Campbell, E., Canadell, J. G., Ciais, P., Craig, M. E., Ellsworth, D. S., Farquhar, G. D., Fatichi, S., Fisher, J. B., Frank, D. C., Graven, H., Gu, L., Haverd, V., Heilman, K., Heimann, M., Hungate, B. A., Iversen, C. M., Joos, F., Jiang, M., Keenan, T. F., Knauer, J., Körner, C., Leshyk, V. O., Leuzinger, S., Liu, Y., MacBean, N., Malhi, Y., McVicar, T. R., Penuelas, J., Pongratz, J., Powell, A. S., Riutta, T., Sabot, M. E. B., Schleucher, J., Sitch, S., Smith, W. K., Sulman, B., Taylor, B., Terrer, C., Torn, M. S., Treseder, K. K., Trugman, A. T., Trumbore, S. E., Van Mantgem, P. J., Voelker, S. L., Whelan, M. E., and Zuidema, P. A.: Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO ₂, New Phytologist, 229, 2413–2445, https://doi.org/10.1111/nph.16866, 2021.