§4. ПОНЯТИЕ ОТНОШЕНИЯ МЕЖДУ ЭЛЕМЕНТАМИ ДАННЫХ МНОЖЕСТВ

n°1. Понятие отношения между элементами данного множества

Определение 1. Пусть X и Y — некоторые непустые множества, G — непустое подмножество декартова произведение $X \times Y$. Тогда упорядоченная тройка $\varphi = (G, X, Y)$ называется (бинарным) отношением между элементами множеств X и Y.

При этом множества G, X, Y называются соответственно *графиком*, областью отправления u областью прибытия отношения φ . Множество $D(\varphi)$ ($E(\varphi)$) всех первых (вторых) координат всевозможных упорядоченных пар из G называются областью определения (областью значений) отношения φ .

Если $(a, e) \in G$, то пишут: $a \varphi e$ и говорят, что «объекты e и e находятся в отношении e или «при отношении e объекту e сопоставляется объект e».

Если X, Y – числовые множества, то отношение φ называется *числовым*.

В случае, когда X=Y=M, отношение $\varphi = (G, M, M)$ называется (бинарным) отношением между элементами множества M.

Итак, по определению
$$D(\varphi) = \{x \in X \mid \exists y \in Y ((x,y) \in G)\},$$

 $E(\varphi) = \{y \in Y \mid \exists x \in X ((x,y) \in G)\}.$

В случае, когда $\varphi = (G, X, Y)$ — числовое отношение, *графиком* отношения φ наряду с G называют так же и изображение множества G на координатной плоскости (Oxy), то есть множество:

$$\Gamma_{\varphi}^{df} = \{ M(x, y) \mid (x, y) \in G \}.$$

Пример 1. Пусть $X=\{a; e; c; d\}$, $Y=\{+; \nabla; \Box; o; *\}$, $G=\{(a; +), (a; \nabla), (a; o), (c; \nabla), (d; \Box)\}$ и $\varphi=(G, X, Y)$ – отношение между элементами множеств X и Y.

Граф отношения ф

XYТак И как множества *φ* можно конечные, TO отношение его графом. Область задать определения $D(\varphi)=\{a;c;d\}$ (область $E(\varphi) = \{+; \nabla; \Box; o\}$ значений онжом рассматривать как множество всех тех элементов множества X(Y), которые изображаются точками, являющимися началами (концами) стрелок

построенного графа. Заметим, что при отношении ϕ элементу a сопоставляются три элемента +, ∇ и о из Y и элементу e не сопоставляется ни одного элемента из Y.

Пример 2. Пусть X=Y=R, $G=\{(x; y)\in R^2 \mid x=y^2\}$, $\varphi=(G, X, Y)=(G, R, R)$ —

бинарное отношение между элементами множества R. Так как φ — числовое отношение, то можно говорить о графике Γ_{φ} на координатной плоскости (Oxy). График Γ_{φ} представляет собой параболу, и область определения $D(\varphi)$ (область значений $E(\varphi)$) можно рассматривать как проекцию построенного графика на ось (Ox) ((Oy)). $D(\varphi)=[0;+\infty)$, $E(\varphi)=R$.

Пример 3. Пусть $X = \pi$ — некоторая плоскость, Y — семейство всех прямых плоскости π , $G = \{(M, l) \mid M \in l \land l \in Y\}$, тогда $\varphi = (G, X, Y)$ — бинарное отношение между элементами множеств X и Y, называемое *отношением принадлежности* для точек и прямых плоскость π .

Введенное понятие отношения между элементами двух множеств можно обобщить на случай n множеств, где $n \ge 2$.

Определение 2. Пусть X_1, X_2, \ldots, X_n , где $n \ge 2$, — некоторые непустые множества, G — непустое подмножество декартова произведения $X_1 \times X_2 \times \ldots \times X_n$. Тогда картеж φ =(G, X_1, X_2, \ldots, X_n) называется n-местным или n-арным отношением между элементами множеств X_1, X_2, \ldots, X_n (при n=2 и n=3 отношение φ называется соответственно бинарным и тернарным).

Если $X_1=X_2=...=X_n=X$, то φ называется еще n-арным или n-местным отношением между элементами множества X.

Про элементы $a_1, a_2, ...a_n$, для которых $(a_1, a_2, ...a_n) \in G$ говорят, что они находятся в отношении $\varphi, \varphi = (G, X_1, X_2, ..., X_n)$.

Пример 4. Пусть X_1 и X_3 — множества всевозможных окружностей плоскости π , X_2 — семейство всевозможных квадратов той же плоскости, $G = \{(x_1, x_2, x_3) \in (X_1 \times X_2 \times X_3) \mid \text{ окружность } x_3 \text{ вписана в квадрат } x_2, \text{ который в свою очередь вписан в окружность } x_1 \}. Тогда <math>\varphi = (G, X_1, X_2, X_3)$ — тернарное отношение между элементами множеств X_1, X_2, X_3 .

n°2. Некоторые разновидности бинарных отношений между элементами данного множества

В результате сравнения различных отношений между элементами данного множества ($onpedenenue\ l\ us\ 54$) выделяются ряд разновидностей таких отношений.

Определение 1. Пусть φ бинарное отношение между элементами множества M. Это отношение называют:

- 1) рефлексивным, если истинно высказывание $\forall x \in M \ (x \ \varphi x)$, то есть $x \in M \Rightarrow x \ \varphi x$;
- 2) симметричным, если истинно высказывание $\forall x, y \in M (x \varphi y \to y \varphi x)$, то есть $x, y \in M \land x \varphi y \Rightarrow y \varphi x$;
- 3) *транзитивным*, если истинно высказывание $\forall x, y, z \in M \ (x \varphi y \land y \varphi z \rightarrow x \varphi z)$, то есть $x, y, z \in M \land x \varphi y \land y \varphi z \Rightarrow x \varphi z$;
- 4) антирефлексивным, если истинно высказывание $\forall x \in M \mid (x \varphi x)$, то есть $x \in M \Rightarrow \exists (x \varphi x)$;
- 5) антисимметричным, если истинно высказывание $\forall x, y \in M (x \varphi y \land x \varphi x \rightarrow x = y)$, то есть $x, y \in M \land x \varphi y \land y \varphi x \Rightarrow x = y$;
- 6) связным, если истинно высказывание $\forall x, y \in M (x \neq y \rightarrow x \varphi y \lor y \varphi x)$, то есть $x, y \in M \land x \neq y \Rightarrow x \varphi y \lor y \varphi x$;
- 7) *отношением эквивалентности*, если φ является одновременно рефлексивным, симметричным и транзитивным;
- 8) отношением порядка (частичного порядка), если φ является одновременно рефлексивным, антисимметричным и транзитивным;
- 9) *отношением линейного порядка*, если φ является рефлексивным, антисимметричным, транзитивным и связным, то есть является связным отношением порядка.

Если заданно некоторое отношение порядка (линейного порядка) между элементами множества M, то множество M называется упорядоченным (линейно упорядоченным).

Если φ — отношение эквивалентности между элементами множества M, то вместо записи x φy использую записи x \sim y или x \sim y (чтение последней записи «x эквивалентно y»).

Пример 1. Пусть M — семейство всех числовых множеств; φ — отношение между элементами множества M, задаваемое условием: $X\varphi Y \Leftrightarrow X \subset Y$.

Это отношение является рефлексивным, антисимметричным и транзитивным, так как:

$$X \in M \Rightarrow X \subset X \Rightarrow X \circ X;$$

$$X, Y \in M \land X \varphi Y \land Y \varphi X \stackrel{df}{\Rightarrow} X \subset Y \land Y \subset X \stackrel{df}{\Rightarrow} X = Y;$$

$$X, Y, Z \in M \land X \varphi Y \land Y \varphi Z \Rightarrow X \subset Y \land Y \subset Z \Rightarrow X \subset Z \stackrel{df}{\Rightarrow} X \varphi Z.$$

Следовательно, отношение ϕ является отношением порядка, а M – упорядоченным множеством.

Отношение φ не является симметричным. Действительно, для множеств $X_0 = [2, 5]$ и $Y_0 = (0; +\infty)$ импликация $X_0 \subset Y_0 \to Y_0 \subset X_0$ ложна, поэтому высказывание $\forall X, Y \in M \ (X \subset Y \to Y \subset X)$ ложно. Но тогда согласно определению $I \varphi$ не является и отношением эквивалентности.

Так как для числовых множеств $X_1 = [0; 2]$ и $Y_1 = [5; 10)$ импликация $X_1 \neq Y_1 \to X_1 \varphi Y_1 \vee Y_1 \varphi X_1$ ложна, то φ не является связным, а следовательно, и не является отношением линейного порядка.

n°3. Классы эквивалентности и их основные свойства

Определение 2. Если φ — отношение эквивалентности между элементами множества M, и a — какой-либо элемент множества M, то множество $K_a = \{x \in M \mid a \ \varphi x\}$ называется классом эквивалентности множества M по отношению φ , порожденным элементом a. Семейство всевозможных классов эквивалентности множества M по отношению φ обозначают символом $M/_{\varphi}$ и называется φ актор-множеством множества M по отношению φ .

Для отношения φ сонаправленности лучей данной плоскости π , рассмотренного в *примере* 2 , класс эквивалентности K_a , порожденный лучом a, $a \subset \pi$, представляет семейство всех лучей плоскости, которым сонаправлен луч a, называемое направлением плоскости π .

Ниже устанавливается ряд важнейших свойств классов эквивалентности и фактор множества.

Теорема 1. Пусть φ — отношение эквивалентности между элементами множества M. Тогда любые два класса эквивалентности множества M по отношению φ совпадают или не пересекаются, а именно, $a, \ e \in M \land \alpha \ \varphi \ e \Rightarrow K_a = K_e; \ a, \ e \in M \land \alpha \ \varphi \ e \Rightarrow K_a = K_e; \ a, \ e \in M \land \alpha \ \varphi \ e \Rightarrow K_a = K_e$.

Доказательство. Пусть φ — отношение эквивалентности между элементами множества M, то есть φ является одновременно рефлексивным

(реф.), симметричным (сим.) и транзитивным (тр.) отношением.

1) Рассмотрим случай, когда $a, e \in M \land a \varphi e$.

В этом случае $x \in K_a \Rightarrow a \varphi \otimes \wedge a \varphi x \Rightarrow e \varphi a \wedge a \varphi x \Rightarrow e \varphi x \Rightarrow x \in K_s$. Но тогда $K_a \subset K_s$.

Меняя ролями a и b в проведенных выше рассуждениях, убеждаемся, что $K_b \subset K_a$.

Из включений $K_a \subset K_e$ и $K_e \subset K_a$ следует равенство $K_a = K_e$.

Итак, истинно высказывание $\forall a, \ e \in M \ (a \ \varphi \ e \to K_a = K_e)$, что и требовалось доказать.

2) Рассмотрим случай, когда $a, e \in M \land (a \varphi e)$. Докажем, что в этом случае $K_a \cap K_e = \emptyset$, воспользовавшись методом «от противного» (n ? \$4 глава 2). Итак, требуется доказать теорему

$$\forall a, b \in M(P(a, b) \rightarrow Q(a, b))$$
, где

 $P(a, b) = (a \varphi s)$ и $Q(a, b) = K_a \cap K_s = \emptyset$. Доказательство этой теоремы можно заменить доказательством следующей теоремы

$$\forall a, b \in M (P(a, b) \land Q(a, b) \rightarrow P(a, b))$$
, то есть $\forall a, b \in M (A \varphi) \land K_a \land K_e \neq \emptyset \rightarrow a \varphi$ в).

$$a, e \in M \land K_a \cap K_e \neq \varnothing \xrightarrow{df} \exists x_0 \in M (x_0 \in K_a \land x_0 \in K_e) \xrightarrow{df} \exists x_0 \in M (a \varphi x_0 \land \varphi_{-mp})$$

 $\wedge \ \theta \ \varphi x_0) \stackrel{\varphi \ mp}{\Rightarrow} \exists x_0 \in M (a \ \varphi x_0 \wedge x_0 \ \varphi \ \theta) \stackrel{\varphi \ mp}{\Rightarrow} a \ \varphi \ \theta$, что и требовалось доказать. Теорема доказана. \blacksquare

Теорема 2. Пусть φ — отношение эквивалентности между элементами множества M. Тогда фактор-множество $M/_{\varphi}$ является разбиением множества M.

 \mathcal{L} оказательство. Итак, φ — отношение эквивалентности между элементами множества M, то есть φ является рефлексивным, симметричным и транзитивным.

Убедимся, что семейство M/φ является разбиением множества M, то есть элементы этого семейства не пусты, попарно не пересекаются, а их объединение совпадает с M.

- 1) $a \in M \stackrel{\varphi pe\phi.}{\Rightarrow} a \varphi a \Rightarrow a \in \{x \in M \mid a \varphi x\} \stackrel{df}{\Rightarrow} a \in K_a \Rightarrow K_a \neq \emptyset$. Следовательно, все элементы семейства M/φ не пусты.
- 2) По *теореме 1* различные классы эквивалентности множества M по отношению φ не пересекаются, то есть элементы семейства M/φ попарно не пересекаются.
- 3) Пусть K объединение всех классов эквивалентности множества M по отношению φ . Тогда $K_a \in (M/\varphi) \Rightarrow K_a = \{x \in M \mid a \ \varphi \ x\} \subset M$, а поэтому согласно определениям объединения и включения для множеств имеем $K \subset M$.

С другой стороны, $x \in M \stackrel{1)}{\Rightarrow} x \in K_x \subset K \Rightarrow x \in K$, а поэтому $M \subset K$. Из включений $K \subset M$ и $M \subset K$ следует равенство K = M.

Тогда из 1) — 3) и определения разбиения данного множества следует, что M/φ — разбиение множества M, что и требовалось доказать. Теорема доказана. \blacksquare

Теорема 3. (обратная для теоремы 2). Любое разбиение множества M можно рассматривать как фактор-множество множества M по некоторому отношению φ .