

MEDICAL SCHOOL LIBRARY

Hooper Foundation Accession

HOOPER FOUNDATION

SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 71, NUMBER 1

SMITHSONIAN PHYSICAL TABLES

REPRINT OF SEVENTH REVISED EDITION

FREDERICK E. FOWLE

(PUBLICATION 2539)

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
1921

 QC61 F78 1921

ADVERTISEMENT.

In connection with the system of meteorological observations established by the Smithsonian Institution about 1850, a series of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and the first edition was published in 1852. Though primarily designed for meteorological observers reporting to the Smithsonian Institution, the tables were so widely used by physicists that it seemed desirable to recast the work entirely. It was decided to publish three sets of tables, each representative of the latest knowledge in its field, and independent of one another, but forming a homogeneous series. The first of the new series, Meteorological Tables, was published in 1893, the second, Geographical Tables, in 1894, and the third, Physical Tables, in 1896. In 1909 yet another volume was added, so that the series now comprises: Smithsonian Meteorological Tables, Smithsonian Geographical Tables, Smithsonian Physical Tables, and Smithsonian Mathematical Tables.

The fourteen years which had elapsed in 1910 since the publication of the first edition of the Physical Tables, prepared by Professor Thomas Gray, had brought such changes in the material upon which the tables must be based that it became necessary to make a radical revision for the fifth and sixth revised editions published in 1910 and 1914. The latter edition was reprinted thrice. For the present seventh revision extended changes have been made with the inclusion of new data on old and new topics.

CHARLES D. WALCOTT,
Secretary of the Smithsonian Institution.

June, 1919.

PREFACE TO 7TH REVISED EDITION.

The present edition of the Smithsonian Physical Tables entails a considerable enlargement. Besides the insertion of new data in the older tables, about 170 new tables have been added. The scope of the tables has been broadened to include tables on astrophysics, meteorology, geochemistry, atomic and molecular data, colloids, photography, etc. In the earlier revisions the insertion of new matter in a way to avoid renumbering the pages resulted in a somewhat illogical sequence of tables. This we have tried to remedy in the present edition by radically rearranging the tables; the sequence is now, — mathematical, mechanical, acoustical, thermal, optical, electrical, etc.

Many suggestions and data have been received: from the Bureau of Standards, — including the revision of the magnetic, mechanical, and X-ray tables, — from the Coast and Geodetic Survey (magnetic data), the Naval Observatory, the Geophysical Laboratory, Department of Terrestrial Magnetism, etc.; from Messrs. Adams of the Mount Wilson Observatory, Adams of the Geophysical Laboratory (compressibility tables), Anderson (mechanical tables), Dellinger, Hackh, Humphreys, Mees and Lovejoy of the Eastman Kodak Co. (photographic data), Miller (acoustical data), Van Orstrand, Russell of Princeton (astronomical tables), Saunders, Wherry and Lassen (crystal indices of refraction), White, Worthing and Forsythe and others of the Nela Research Laboratory, Zahm (aeronautical tables). To all these and others we are indebted for valuable criticisms and data. We will ever be grateful for further criticisms, the notification of errors, and new data.

FREDERICK E. FOWLE.

Astrophysical Observatory, Smithsonian Institution, May, 1919.

NOTE TO REPRINT OF 7TH REVISED EDITION.

Opportunity comes with this reprint to insert in the plates a number of corrections as well as some newer data. Gratitude is especially due to Messrs. Wherry and Smith of the Bureau of Chemistry, Department of Agriculture, for suggestions.

FREDERICK E. FOWLE.

ASTROPHYSICAL OBSERVATORY, SMITHSONIAN INSTITUTION, March, 1921.

TABLE OF CONTENTS.

standards:
standards:
version factors and dimensional formulae, xxv; Dimensional reason-
ing, xxv.
[1] - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Dimensional formulae:
Geometrical and mechanical units, xxvi; Heat units, xxviii; Electric and mag-
netic units, xxix; Electrostatic system, xxx; Electromagnetic system, xxxi.
Fundamental standards:
Standards of length, xxxiv; Standards of mass, xxxiv; Standards of time,
xxxiv; Standards of temperature, xxxiv.
Numerically different systems of units: xxxv
Proposed systems of units (table I), xxxv; Gaussian systems, xxxv; Practical
electromagnetic system, xxxvi; International electric units, xxxvi.
The standards of the International Electric Units: xxxviii
Resistance, xxxviii: Mercury standards, xxxviii; Secondary standards, xxxix;
Resistance standards in practice, xxxix; Absolute ohm, xxxix.
Current, xl: Silver voltameter, xl; Resistance standards used in current
measurements, xli; Absolute ampere, xli.
Electromotive force, xli: International volt, xli; Weston normal cell,
xli; Portable Weston cell, xliii; Absolute and semi-absolute volts, xliii.
Quantity of electricity, xliv: Standards, xliv.
Capacity, xliv.
Inductance, xliv: Inductance standards, xliv.
Power and energy, xlv: Watt, xlv; Standards and measurement, xlv.
Magnetic units, xlv: Table II. — The ordinary and ampere-turn units xlvi.
TABLE
1. Spelling and abbreviations of common units of weight and measure 2
2. Fundamental and derived units, conversion factors
(a) Fundamental units
(b) Derived units
3. Tables for converting U. S. weights and measures:
(1) Customary to metric
4. Miscellaneous equivalents U. S. and metric weights and measures
4. Miscenaneous equivalents 0.5. and metric weights and measures /

5.	Equivalents of metric and British imperial weights and measures:	
	(1) Metric to imperial	. 8
	/ / 3 / 1.1 1	. (
	(3) Imperial to metric	IC
	(4) Multiples, imperial to metric	11
	MATHEMATICAL TABLES	
	Derivatives and integrals	12
	Series	I
		I
	Reciprocals, squares, cubes and square roots of natural numbers	I
10.	Logarithms, 4-place, 1000-2000	24
II.	Logarithms, 4-place	. 20
12.	Antilogarithms, 4-place	28
13.	Antilogarithms, 4-place, 0.9000-1.0000	30
14.	Circular (trigonometric) functions, arguments (°, ')	3:
15.	" (radians)	31
16.	Logarithmic factorials, n!, n = 1 to 100	40
17.	Hyperbolic functions	4
18.	Factorials, I to 20	4
19.	Exponential functions	48
20.	Values of e^{x^2} and e^{-x^2} and their logarithms	54
21.	$u u \frac{\pi}{2} u = \frac{\pi}{4} u u u$	5.5
	Values of e^{-} and e^{-} and then logarithms """ $\frac{e^{-}}{4}x$ "" $e^{-}\frac{\pi}{4}x$ "" "" $e^{-}\frac{\pi}{4}x$ "" "" $e^{-}\frac{\pi}{4}x$ "" "" "" $e^{-}\frac{\pi}{4}x$ "" "" "" "" "" "" "" "" "" "" "" "" ""	
22.	$e^{\frac{\pi}{4}x}$ $e^{\frac{\pi}{4}x}$	5.5
23.	$e^x \cdot e^x \cdot e^{-x} \cdot \dots $, x fractional	56
24.	Least squares: probability integral, argument hx	50
25.	x/r	57
26.	values of $0.6745\sqrt{1/(n-1)}$	57
27.	" " $0.6745\sqrt{1/n(n-1)}$	58
28.	" " $0.8453\sqrt{1/n(n-1)}$	58
29.	" " $0.8453 \{1/n\sqrt{n-1}\}$	58
30.	formulae	
31.	Inverse probability integral, diffusion integral	59
32.	Logarithms of gamma function, n between 1 and 2	62
33.	Values for the first seven zonal harmonics, $\theta = 0^{\circ}$ to $\theta = 90^{\circ}$	
	Cylindrical harmonics, oth and 1st orders, $x = 0$ to $0 = 90$	64
34.		66
35.	x - 4 to 15, 4-place	68
30.	(a) 1st ten roots cylindrical harmonic of zeroth order = 0 (b) "fifteen" " "first " = 0	68
	Notes general formulas of Percella formati	68
	Notes, general formulae of Bessel's functions	68
37.	Values for $\int_{0}^{\frac{\pi}{2}} (1 - \sin^2\theta \sin^2\Phi)^{\pm \frac{1}{2}} d\Phi$; argument θ ; also logs	69
	Moments of inertia, radii of gyration, corresponding weights	70
39.	International atomic weights, valencies	71

	CONTENTS.	vii
40.	Volume of glass vessel from weight of its volume of H ₂ O or Hg	72
41.		73
	Reductions of densities in air to vacuo	73
		13
	Magy areas December	
	MECHANICAL PROPERTIES	
43.	Introduction and definitions	74
44.	Ferrous metals and alloys: Iron and iron alloys	75
45.	carbon steels	76
46.	neat treatments	76
47.	anoy steels	77
48.	steer wire, specification values	78
49.	experimental values	78
50.	Seini-Steel	78
51.	steel wife tope, specification values	79
52.	plow-steel rope,	79
53.	steel wife tope, experimental values	79
54.	Aluminum, miscellaneous	. 80
55.	Aluminum: (a) sheet, experimental values	80
	" (b) " specification values	81
56.	Aluminum alloys	81
57-	Copper: miscellaneous experimental values	82
58.	Toned, experimental values	82
59.	wire, specification values, flard-drawn	82
60.		83
61.	Soft of afficated	83
62.	" plates Copper alloys: nomenclature	83
63.	" copper-zinc alloys or brasses	83
64.	" copper-tin " bronzes	84
6=	" three or more metals	84
65. 66.	Miscellaneous alloys	8 ₅
67.	" metals: tungsten; zinc; white metal	89
68.		90
00.	" " (b) cement and cement mortars	90
	" (c) concrete	91
60	Stone and clay products: (a) American building stones	92
09.	" " (b) Bavarian building stones	92
	" " (c) American building bricks	93
	" " (d) brick piers, terra-cotta piers	93
	" " (e) various bricks	93
70.	(a) Sheet rubber	94
75.	(b) Leather belting	94
71.	Manilla rope	95
72.	Woods: hardwoods, metric units	96
73.	" conifers, metric units	97

viii CONTENTS.

74.	Woods: hardwoods, English units	9
75.	" conifers, English units ,	9
76.	Rigidity Modulus	IO
77.	Variation of moduli of rigidity with the temperature	100
78.	Interior friction, variation with the temperature	IO
79.	Hardness	IO
80.	Relative hardness of the elements	IO
81.	Poisson's ratio	10
82.	Elastic moduli of crystals, formulae	IO
83.	"" " " numerical results	10
		`
	Compressibility of Gases	
84.	Compressibility of O, air, N, H, different pressures and temperatures .	IO
85.	" " ethylene at " " " "	IO
86.	Relative gas volumes at various pressures, H, N, air, O, CO ₂	IO
87.	Compressibility of carbon dioxide, pressure-temperature variation	IO
88.	" gases, values of	IO
89.	" air and oxygen between 18° and 22° C	10
	Relation between pressure, temperature and volume of sulphur dioxide	100
91.	" " ammonia	100
92.	Compressibility of liquids	10
93.	" solids	108
	Densities	
94.		100
95.		IIC
96.	various woods	II
97.	solids	II3
98.	anoys	II
99.	natural and artificial inflictats	II
100.		II
101.		116
102.		116
103.		117
104.	·	118
105.		IIÇ
106.		120
107.		121
108.		122
109.	" " ethyl alcohol, temperature variation	124
110.	" " methyl alcohol, cane-sugar, sulphuric acid	126
III.		127
112.	Volume of gases, — values of $t + 0.00367 t$:	
	volume of gases, — values of 1 + 0.00307 i.	
	(a) for values of t between o° and 10° C by o. 1° steps (b) " " " " —90° and +1990° C by 10° steps	128

1	TM	ENT	rs

ix

	(c) logarithms for t between -49° and 399° C by 1° steps	130				
	(d) " " " +400° and 1990° C by 10° steps.	132				
113.	Density of moist air: $h/760$, h from 1 to 9	133				
114.	$\log n/700$, n from 80 to 800	133				
115.	" " o.378e in equation $h = B - 0.378e$	13				
	Maintenance of air at definite humidities	13				
117.	Pressure of mercury and water columns	130				
	BAROMETRIC TABLES					
тт8.	Reduction of barometer to standard temperature	13				
IIQ.	" " gravity, in. and mm, altitude term	138				
120.	" " latitude 45°, 0° to 45°, mm	130				
121.	" " " " " 45° to 90°, mm	140				
122.	" " " " o° to 45°, inches	14				
123.	" " " " 45° to 90°, inches	14:				
	Correction to barometer for capillarity, mm and inches	14				
	Volume of mercury meniscus in mm ³	14				
-	Barometric pressure corresponding to the boiling point of water:	·				
	(a) metric scale	14				
	(b) inch scale	14				
127.	Determination of heights by the barometer	14				
	Acoustics					
128.	Velocity of sound in solids	140				
129.	" " liquids and gases	14				
130.	Musical scales	148				
131.	« «	148				
132.	Fundamental tone, its harmonics and equal tempered scale	149				
133.	Relative strength of the partials of musical instruments	149				
134.	Characteristics of the vowels	149				
135.	Miscellaneous sound data	149				
	Aerodynamics					
6						
	Kinetics of bodies in resisting medium, Stokes law	150				
137.	Flow of gas through tubes					
	Air pressure, large square normal planes, various speeds					
	Correction factor for small square normal planes	151				
140.	Effect of aspect ratio	152				
141.	Skin friction	152				
	Variation of air resistance with aspect and angle	152				
143. 144.	" " shape and size	153				
144.	" " and speed	153				
-45.	and speed	153				
146.	Friction	154				

01		

X

	•						
	Lubricants	154					
148.	Lubricants for cutting tools	154					
	Viscosity						
140.	Viscosity of fluids and solids, general considerations	155					
150.	" water in centipoises, temperature variation	155					
151.	" " ethyl-alcohol-water mixtures, temperature variation	155					
152.	" and density of sucrose aqueous solutions, temp. variation .	156					
153.	" " " glycerol " " at 20° C	156					
154.	" " castor oil, temperature variation	156					
155.	" of miscellaneous liquids	157					
156.	" " organic liquids	158					
157.	Specific viscosity of solutions, density and temperature variation	159					
158.	" " atomic concentrations, 25° C	163					
159.	Viscosity of gases and vapors	164					
160.	" " " : temperature and pressure variation .	165					
100.	· · · · · · · · · · · · · · · · · · ·	103					
161.	Diffusion of an aqueous solution into pure water	166					
162.	" vapors	167					
163.	" " gases and vapors	168					
164.	" " metals into metals	168					
165.	Solubility of inorganic salts in water, temperature variation	169					
166.	" a few organic salts in water, temperature variation	170					
167.	" gases in water	170					
168.	" change of, produced by uniform pressure	171					
169.	Absorption of gases by liquids	172					
170.	Capillarity and surface tension, water and alcohol in air	173					
171.	" " miscellaneous liquids in air	173					
172.	" " aqueous solutions of salts	173					
173.	" " liquids-air, -water, -mercury	174					
174.	" " liquids at solidifying point	174					
175.	" " thickness of soap films	174					
1/5.	thekness of soap fills	1/4					
	Vapor Pressures						
176.	Vapor pressures of elements	175					
177.	" and rates of evaporation, Mo, W, Pt	175					
178.	" organic liquids	176					
179.	" of ethyl alcohol	178					
180.	" " methyl alcohol	178					
181.	" (a) carbon disulphide	179					
	(b) chlorobenzene	179					
	(c) bromobenzene	179					
	(d) aniline	179					
	(e) methyl salicylate	180					
	(f) bromonaphthalene $\dots \dots \dots$	180					
	(g) mercury	180					
	(8) Increase						

CONTENTS.	•	
-----------	---	--

xi

182.	Vapor pressure of solutions of salts in water	181
183.	Pressure of saturated water vapor over ice, low temperatures	183
184.	" " water, low temperatures	183
185.	" " " " ° to 374° C	183
186.	Weight in g per m ³ of saturated water vapor	185
187.	Weight in grains per ft ³ of saturated water vapor	185
188.	Pressure of aqueous vapor in atmosphere, various altitudes	185
189.	" " sea-level	186
190.	Relative humidity, arguments, vapor pressure and dry temperature.	187
	" " wet and dry thermometers	189
191.	wet and the information	109
	THERMOMETRY	
192.	Stem correction for thermometers, centigrade	190
193.	" " " Jena glass, o° to 360° C	190
194.		191
195.	" " " normal, o° to 100° C.	191
196.	Gas and mercury thermometers, formulae	192
197.	Comparison of hydrogen and 16 ^{III} thermometers, 0° to 100° C	192
198.	" " " 59 ^{III} " 0° " 100° C	192
199.	" " " 16 ^m and 59 ^m thermometers, -5° to	
	-35° C	192
200.	Comparison of air and 16 ^{III} thermometers, 0° to 300° C	193
201.	" " " 59 ^{III} " 100° to 200° C	193
202.	" hydrogen and various mercury thermometers	194
203.	" air and high temperature (59 ^{III}) mercury thermometer	194
204.	" H, toluol, alcohol, petrol ether, pentane thermometers	194
205.	Platinum resistance thermometry	195
206.	Thermodynamic scale; temperature of ice point, Kelvin scale	195
207.	Standard points for the calibration of thermometers	195
208.	Calibration of thermo-element, Pt-Pt·Rh	196
209.	" Cu-constantan	196
210.	Mechanical equivalent of heat, summary to 1900 (Ames)	197
211.	" " best value	197
212.		197
	English and American horse power, altitude and latitude variation	197
3.	angular data interiore portor, desirado data desirado de la constante de la co	- 71
	Melting and Boiling Points	
	· · · · · · · · · · · · · · · · · · ·	TO0
214.	Melting points of the chemical elements	198
215.	Boiling points of the chemical elements	199
216.	Melting points, effect of pressure	200
217.	Freezing point of water, effect of pressure	200
218.	Boiling point, effect of pressure	200 201
219.	Thorganic compounds, merting and boning points, densities	201

xii · CONTENTS.

220.	Organic compounds, melting and boiling points, densities:	203
	(a) Paraffin series	203
	(b) Olefine series	203
	(c) Acetylene series	204
	(d) Monatomic alcohols	204
	(e) Alcoholic ethers	204
	(f) Ethyl ethers	204
	(g) Miscellaneous	205
221.	Melting points of various mixtures of metals	206
222.	a a a a a a a	206
	Low-melting-point alloys	206
	Transformation and melting points, minerals and eutectics	
	Lowering of freezing points by salts in solution	207
_	Raising of boiling points by salts in solution	
		210
	Freezing mixtures	211
228.	Critical temperatures, pressures, volumes, densities of gases	212
	T Co	
	THERMAL CONDUCTIVITY	
229.	Thermal conductivity of metals and alloys	213
230.	" insulators, high temperatures	214
231.	" various substances	214
232.	" building materials	215
233.	" various insulators	216
234.	water and salt solutions	216
235.	" organic liquids	217
236.	" gases ·	217
237.	Diffusivities	217
•		·
	Expansion Coefficients	
228	Linear expansion of the elements	218
239.	" " miscellaneous substances	
		219
240.		220
241.	ilquius	
242.	" " gases	222
	Specific Heats	
	Specific heats of elements	223
244.	Heat capacities, true and mean specific heats, and latent heats of	
	fusion of the metallic elements, 0° to 1600° C	225
245.	Atomic heats, atomic volumes, specific heats at 50° K, elements	226
246.	Specific heats of various solids	227
247.	" " water and mercury	227
248.	" " various liquids	228
249.	" heat of saturated liquid ammonia, -50° to +50° C	228
250	Heat contents of saturated liquid ammonia50° to +50° C	228

	CONTENTS.	xii
251.	Specific heats of minerals and rocks	220
252.		229
	" of gases and vapors, also c_p/c_v	230
		-3-
	LATENT HEATS	
254.	Latent heats of vaporization	231
255.		232
256.		232
	"Latent heat of pressure variation" of liquid ammonia	232
258.	Latent and total heats of vaporization of elements, — theoretical	233
	Properties of saturated steam	234
260.	Latent heats of fusion	240
	Halma on Colemannay February and	
	HEATS OF COMBUSTION, FORMATION, ETC.	
	Heats of combustion of some carbon compounds	241
262.		241
203.	Heat values and analyses of various fuels: (a) coals and coke	242
	(b) peats and woods	242
	(c) liquid fuels	242
26.	(d) gases	242
	Chemical and physical properties of explosives	243
	Additional data on explosives	244
	Explosive decomposition, ignition temperatures	244
	Flame temperatures	244
	Thermochemical data: heats of formation from elements	244
270.	" " " of ions	²⁴⁵
271.	" " " neutralization	246
272.	" " dilution of sulphuric acid	246
- /		240
	RADIATION	
273.	Radiation formulae and constants for perfect (black-body) radiator .	247
274.	" in calories for perfect radiator, various temperatures	247
275.	" distribution in spectrum for various temperatures	247
276.	Black-body spectrum intensities, 50° to 20000° K	248
	Relative emissive powers of various bodies for total radiation	249
278.	Emissivities of metals and oxides	249
279.		249
280.	Temperature scale for tungsten, — color, black-body and true tem-	-
-9-	peratures	250
201.	Color minus brightness temperature for carbon	250
	Cooling by Radiation, Conduction, and Convection	
282.	Cooling by radiation and convection: ordinary pressures	251
282	. " " " different pressures	251

xiv CONTENTS.

284.	Cooling by radiation and convection: very small pressures	252
285.	" " temperature and pressure effect	252
	Conduction of heat across air spaces, ordinary temperatures	253
287.	Convection of heat in air at ordinary temperatures	253
288.	" and conduction of heat by gases at high temperatures: .	254
	(a) s as function of a/B	254
	(b) ϕ in watts per cm. as $f(T^{\circ}K)$	254
289.	Heat losses from incandescent filaments:	255
	(a) Wires of platinum sponge	255
	(b) " " bright platinum	255
	THE EYE AND RADIATION	
290.	Spectral variation of sensitiveness as function of intensity (Lumina-	
	tion intensities under various circumstances)	256
291.	Threshold sensibility as related to field brightness	256
202.	Heterochromatic threshold sensibility	257
	Contrast or photometric sensibility	257
294.		257
	Rate of adaptation of sensibility	257
	Apparent diameter of pupil and flux density at retina	258
-	Relative visibility of radiation of different wave-lengths	258
	Miscellaneous eye data: physiological; persistence of vision; sensi-	3 -
	bility to small differences of color; flicker	258
		3
	PHOTOMETRIC TABLES	
200.	Photometric definitions and units	259
300.		260
	Intrinsic brightness of various light sources	260
	Visibility of white lights	260
	Brightness, Crova wave-length, mechanical equivalent of light	261
	Luminous and total intensity and radiant luminous efficiency of a	
J - 1	black-body; minimum energy necessary for light sensation	261
305.	Color of light emitted by various sources	261
	Efficiency of various electric lights	262
500.	2 rational of the control against the control	
	Photographic Data	
207	Numerical constants characteristic of a photographic plate	263
	Relative speeds of various photographic materials	263
	Variation of resolving power with plate and developer	263
	Photographic efficiencies of various lights	264
	Relative intensification of various intensifiers	264
311.	Acceptation of various intensiners	204
	SPECTRUM WAVE-LENGTHS	
312.	Wave-lengths of the Fraunhofer lines	265
	Standards: Red cadmium line, 76 cm, 15° C, Angstroms	266

CONTENTS.

xv

314.	Standards: International secondary Fe arc standards, Angstroms 2	66
315.	" International secondary Fe arc standards, Angstroms 2	66
316.	" Neon wave-lengths	66
317.	" International tertiary Fe arc standards, Angstroms 2	67
318.	Reduction of wave-lengths in air to standard conditions:	68
	(a) $(d - d_0)/d_0 \times 1000$; B, 60 to 78 cm, t, 9° to 35° C	68
	(b) $\delta = \lambda_0 (n_0 - n_0')(d - d_0)/d_0 \dots \dots$	68
319.	Spectra of the elements	69
320.	Spectrum lines of the elements (Kayser)	70
321.	Standard solar wave-lengths (Rowland)	72
322.	Spectrum series, general discussion	75
323.		76
324.		76
	INDICES OF REFRACTION	
325.	Indices of refraction of glass (American)	77
326.	Dispersion of glasses of Table 325	77
327.	Indices of refraction of glasses made by Schott and Gen, Jena 2	78
328.	Dispersion of Jena glasses	78
329.	Changes of indices for 1° C change for some Jena glasses	78
330.		79
331.		79
332.		79
333-	" " " fluorite in air	80
334.		80
335.		80
336.		80
337-	the state of the s	81
338.		81
339.		82
340.	" " Miscellaneous isotropic solids	83
341.	" " Selected uniaxial minerals (positive) 2	84
		84
342.	" " Miscellaneous uniaxial crystals	85
343.	" " Selected biaxial minerals (a) positive	286
0.0	" " (b) negative 2	87
344.	" " Miscellaneous biaxial crystals	89
345.		89
346.	// // // T1 11 1 1 1 1 1 1 1 1 1 1 1 1 1	90
347.		91
348.	" " " 0	92
349.	" " Air, 15° C, 76 cm; also corrections for reduc-	,
317		93
350.	Media for microscopic determinations of refractive indices: liquids	70
	*11 (0)	94
		1 8

xvi	CONTENTS

351.	Media for microscopic determinations of refractive indices: resin-like	
	substances, $n_D(0.589\mu) = 1.88$ to 2.10	294
352.	Media for microscopic determinations of refractive indices: perma-	
	nent standard resinous media, $n_D = 1.546$ to 1.682	294
353-	Optical constants of metals	295
354.	_ " " " " " " " " " " " " " " " " " " "	296
	REFLECTING POWER	
355.	Reflecting power of metals (see Table 359)	296
356.	Light reflected when incident light is normal to transparent medium .	297
357.	" " is near unity or equals $i + dn$, $i = 0^{\circ}$ to 90° .	297
358.	" $n = 1.55$, $i = 0^{\circ}$ to 90°, polarization percentages.	297
359.	Reflecting power of metals (see Table 355)	298
360.	Percentage diffuse reflection from various substances	298
361.	Reflecting power of pigments, $\lambda = 0.44\mu$ to 0.70μ	299
362.	Infra-red diffuse reflecting power of dry pigments	299
363.	Reflecting power of powders (white light)	300
364.	Variation of reflecting power of matt and silvered surfaces with angle	300
365.	Infra-red reflectivity of tungsten, temperature variation	300
	Transmissive Powers	
	,	
366.	Transmissibility of radiation by dyes, $\lambda = 0.44\mu$ to 0.70μ	301
367.	Jena glasses, 0.375 to 3.1μ	302
368.	$0.200 \text{ to } 0.044 \mu$	302
369.	by Jena ultra-violet glasses, 0.200 to 0.397 μ	302
370.	of fadiation by glasses (American) 0.5 to 5.0 μ	303
371.	by same glasses for various lights of radiation by substances of Tables 330 to 338	304
372.	Color screens (Landolt)	305
373.	" " (Wood)	306
374· 375·	" (Jena glasses)	307
376.	Transmissibility of radiation by water, $\lambda = 0.186\mu$ to 0.945μ	307
377.	Transmission percentages of radiation by moist air, 0.75\mu to 20\mu .	308
378.	Long-wave absorption by gases, 23μ to 314μ	309
	Properties with wave-lengths $108 \pm \mu$:	0-9
017	(a) Percentage reflection	309
	(b) Percentage transparency	309
	(c) Transparency of black absorbers, 2μ to 108μ	309
380.	Rotation of plane of polarized light by solutions	310
381.	" " " " sodium chlorate and quartz .	310
382.	Electrical equivalents	311

	CONTENTS.	xvii
	Electromotive Powers	
282.	Data for voltaic cells: (a) double-fluid cells	212
303.	(b) single-fluid cells	312
	(c) standard cells	313
	(d) secondary cells	313
384.	the state of the s	313
304.	liquids in air	. 274
385.	Contact potential differences between metals in salt solutions	314
	Thermoelectric power of metals	316
386. 387.	" " alloys	317
388.	" " against platinum	318
389.	" " of platinum-rhodium alloys .	319
	" " pressure effect	319
390.	Peltier and Thomson heats, pressure effects	320
391.	Peltier effect	320
392.	" "Fe-constantan, Ni-Cu, o° to 560° C	321
393.	" electromotive force in millivolts	321
394.	The tribo-electric series	322
395.	The tribo-electric series	322
	Electrical Resistance	
396.	Auxiliary table for computing wire resistances	322
397.	Resistivity of metals and some alloys, temperature coefficients	323
398.	Resistance of metals under pressure, temperature coefficients	326
399.	Resistance of mercury and manganin under pressure	326
400.	Conductivity and resistivity of miscellaneous alloys	327
401.	Conducting power of alloys, temperature coefficients	328
402.	Allowable carrying capacity of rubber-covered copper wires	329
403.	Resistivities at high and low temperatures	330
404.	Volume and surface resistivity of solid dielectrics	331
405.	Variation of resistance of glass and porcelain with temperature	332
	(a) Temperature coefficients for glass, porcelain and quartz	332
	·	
	Wire Tables	
406.	Tabular comparison of wire gages	333
407.	Introduction; mass and volume resistivity of copper and aluminum.	334
408.	Temperature coefficients of copper	335
409.	Reduction to standard temperature, copper	335
410.	Annealed copper wire table, English units, B. & S. gage	336
411.	" " " Metric units, B. & S. gage	339
412.	Hard-drawn aluminum wire table, English units, B. & S. gage	342
413.	" " " Metric units, B. & S. gage	343
414.	Ratio of alternating to direct current resistances for copper wire	344
415.	Maximum diameter of wires for high-frequency-alternating-to-direct-	
	current ratio of 1.01	344

xviii CONTENTS.

	ELECTROLYSIS	
416.	Electrochemical equivalents	345
417.	Conductivity of a few dilute solutions	346
418.	Electrochemical equivalents and densities of nearly normal solutions	
419.	Specific molecular conductivity of solutions	347
420.	" " limiting values	
421.	" temperature coefficient .	
422.		
423.	" some additional salts in solution	351
424.	" conductance of separate ions	352
	Hydrolysis of ammonium acetate and ionization of water	352
	DIELECTRIC STRENGTH	
426.	Steady potential for spark in air, ball electrodes	353
427.		
428.	Steady and alternating potential for longer sparks in air	000
	Effect of pressure of the gas on the dielectric strength	354
	Dielectric strength of various materials	355
	Potential in volts for spark in kerosene	355
.0		
	DIELECTRIC CONSTANTS	
432.	Specific inductive capacity of gases, atmospheric pressure	356
433.	Variation of dielectric constant with the temperature (gases)	356
434.	" " pressure (gases)	357
435.	Dielectric constant of liquids	357
436.	" " liquids, temperature coefficients	359
437-	" " liquefied gases	359
438.	" standard solutions for calibration	360
439.	" " solids	360
440.	" " crystals ,	361
	Wireless Telegraphy	
44I.	Wave-lengths, frequencies and oscillation constants	. 362
442.		
443.	Dielectric properties of non-conductors	. 364
440		
	Magnetic Properties	
444.	Definitions and general discussion	365
	Composition and magnetic properties of iron and steel (old data)	
	Magnetic properties of iron and steel	
	Cast iron in intense fields	
	Corrections for ring specimens	368

	CONTENTS.	xix
449.	Magnetic properties of various types of iron and steel	369
450.	" a specimen of very pure iron (0.017% C)	369
451.	" " electrical sheets	369
452.	" " American magnet steel	370
453.	" " a ferro-cobalt alloy	370
454.	" a ring sample transformer steel, weak field	370
455.	" " iron in very weak fields	370
456.	Permeability of some specimens of Table 445	371
457-	Magnetic properties of soft iron at o° and 100° C	371
458.	" " steel at o° and 100° C	371
459.	Magnetism and temperature, critical temperature	372
460.	Temperature variation for paramagnetic substances	372
461.	" effect on susceptibility of diamagnetic elements	372
462.	" " paramagnetic elements	372
463.	Magnetic properties of cobalt at o° and 100° C	373
464.	" " nickel " " " " "	373
465.	" " magnetite	373
466.	" "Lowmoor wrought iron	373
467.	" " Vicker's tool steel	373
468.	" " Hadfield's manganese steel	373
469.	" saturation values for steels	373
470.	Demagnetizing factors for rods	374
471.	<i>u</i>	374
472.	Dissipation of energy in cyclic mangetization, Steinmetz constant .	375
473.		376
474.	Magnetic susceptibility	377
	Magneto-optic Rotation	
475.	Magneto-optic rotation, general discussion	378
476.	" solids, Verdet's constant	379
477-	" liquids, Verdet's constant	380
478.	" salt and acid water solutions	381
479.	" gases, Verdet's constant	382
480.	Verdet's and Kundt's constants	382
481.	Values of Kerr's constant	383
482.	Dispersion of Kerr effect	383
483.		383
	VARIOUS MAGNETIC EFFECTS	
484.	Resistance of metals, variation in transverse magnetic field (Bi)	384
485.	Increase of resistance in transverse magnetic field (Ni)	384
486.	Change of resistance of various metals in magnetic field	384
487.	Transverse galvanomagnetic and thermomagnetic effects	385
488.	Variation of Hall constant with temperature	385

	CATHODE AND CANAL RAYS			
489.	Cathode and canal rays	a	٥.	380
490.	Speed of cathode rays	۰		38
491.	Cathodic sputtering	,		. 38
	D." /37 \ D			
	RÖNTGEN (X-RAYS) RAYS			
492.	X-rays, general properties		٠.	38
493.	Röntgen secondary rays	0 -		38
494-	Corpuscular rays			38
495.	Intensity of X-rays; ionization			38
	Mass absorption coefficients, λ/d			38
	Absorption coefficients of characteristic radiations in gases			38
498.	X-ray spectra and atomic numbers			39
	(a) K-series			39
	(b) L-series		e	39
	(c) M-series			39
	(d) Tungsten X-ray spectrum	٠,		39
499.	X-ray absorption spectra and atomic numbers			39.
	The state of the s			
	RADIOACTIVITY			
500.	Relative phosphorescence excited by radium			39.
501.				39
502.	Heating effect of radium and its emanation			39
503.				39.
504.				39.
505.	" γ rays by various substances			39.
506.	* *			39
507.				398
508.				398
	Vapor pressure of the radium emanation in cm of Hg			398
510.	References to spectra of radioactive substances			398
	MOTTOTTAN ATTOTTO AND TONIC DATE			
	Molecular, Atomic and Ionic Data			
~	Molecular velocities			399
512.	" free paths, collision frequencies and diameters			399
	Cross sections and lengths of some organic molecules			400
	Size of diffracting units in crystals			400
	Electrons; Rutherford atom; Bohr atom; Magnetic field of atom		•	401
_	Electron emission from hot metals			403
	Photo-electric effect	•	•	403
	Ionizing potentials, resonance potentials, single line spectra			403
519.	Contact (Volta) potentials			404
	(a) Electron affinity of the elements		•	404
	(b) Voltage of electrolytic cells		•	404
520.	Ionic mobilities and diffusions, — ionic mobilities		•	405
FOX	Lutturgion coefficients			400

CONTENTS. 'XXI

COLLOIDS

522.	General properties of colloids	406
523.	Molecular weights of colloids	406
524.	Brownian movement	406
525.	Adsorption of gas by finely divided particles ,	407
	Heats of adsorption	407
527.	Molecular heats of adsorption and liquefaction	407
528.	Miscellaneous constants, atomic, molecular, etc.	408
529.	Radiation wave-length limits	408
	Periodic system of the elements (Mendelejeff)	409
531.	Atomic numbers	409
532.	Periodic system of the elements and radioactive isotopes (Hackh)	410
	ASTRONOMICAL DATA	·
533.	Stellar spectra and related characteristics	411
534.	The Harvard spectrum classification	411
535.	Apex and velocity of solar motion	411
536.	Motion of the stars	412
537.	Distances of the stars	412
538.	Brightness of the stars	413
539.	Masses and densities	413
540.	Miscellaneous astronomical data	414
541.	The first-magnitude stars	415
542.	Wolf's observed sun-spot numbers, 1750 to 1917	415
543.	Length of degrees on the earth's surface	416
544.	Equation of time	416
545-	Planetary data	416
546.	Numbers and equivalent light of the stars	417
547.	Albedos	417
548.	Duration of sunshine	417
549.	The solar constant	418
550.	Solar spectrum energy and its transmission through the atmosphere .	418
551.	Intensity of solar energy in various sections of spectrum	418
552.	Distribution of brightness (radiation) over the solar disk	418
5 53·	Transmission of radiation through moist and dry air (see Table 376).	419
554.	Brightness of sky at altitudes of 1730 m and sea-level	415
555.	Relative distribution in normal spectrum of sun and sky light	419
556.	Air masses	419
557-	Relative intensity of solar radiation for various months	420
	Meteorological Data	
# = O		4.5.
	Mean monthly and yearly temperatures for representative stations.	420
559.	The earth's atmosphere, variation with latitude, miscellaneous	421

possible of the complex relationships involving them. Further it seems desirable that the units should be extensive in nature. It has been found possible to express all measurable physical quantities in terms of five such units: 1st, geometrical considerations — length, surface, etc., — lead to the need of a length; 2nd, kinematical considerations — velocity, acceleration, etc., — introduce time; 3rd, mechanics — treating of masses instead of immaterial points — introduces matter with the need of a fundamental unit of mass; 4th, electrical, and 5th, thermal considerations require two more such quantities. The discovery of new classes of phenomena may require further additions.

As to the first three fundamental quantities, simplicity and good use sanction the choice of a length, L, a time interval, T, and a mass, M. For the measurement of electrical quantities, good use has sanctioned two fundamental quantities, — the dielectric constant, K, the basis of the "electrostatic" system and the magnetic permeability, μ , the basis of the "electromagnetic" system. Besides these two systems involving electrical considerations, there is in common use a third one called the "international" system which will be referred to later. For the fifth, or thermal fundamental unit, temperature is generally chosen.

Derived Units. — Having selected the fundamental or basic units, — namely, a measure of length, of time, of mass, of permeability or of the dielectric constant, and of temperature, - it remains to express all other units for physical quantities in terms of these. Units depending on powers greater than unity of the basic units are called "derived units." Thus, the unit volume is the volume of a cube having each edge a unit of length. Suppose that the capacity of some volume is expressed in terms of the foot as fundamental unit and the volume number is wished when the yard is taken as the unit. The yard is three times as long as the foot and therefore the volume of a cube whose edge is a yard is $3 \times 3 \times 3$ times as great as that whose edge is a foot. Thus the given volume will contain only 1/27 as many units of volume when the yard is the unit of length as it will contain when the foot is the unit. To transform from the foot as old unit to the yard as new unit, the old volume number must be multiplied by 1/27, or by the ratio of the magnitude of the old to that of the new unit of volume. This is the same rule as already given, but it is usually more convenient to express the transformations in terms of the fundamental units directly. In the present case, since, with the method of measurement here adopted, a volume number is the cube of a length-number, the ratio of two units of volume is the cube of the ratio of the intrinsic values of the two units of length. Hence, if l is the ratio of the magnitude of the old to that of the new unit of length, the ratio of the corresponding units of volume is l^3 . Similarly the ratio of two units of area would be l^2 , and so on for other quantities.

¹ Because of its greater psychological and physical simplicity, and the desirability that the unit chosen should have extensive magnitude, it has been proposed to choose as the fourth fundamental quantity, a quantity of electrical charge, e. The standard unit of electrical charge would then be the electronic charge. For thermal needs, entropy has been proposed. While not generally so psychologically easy to grasp as temperature, entropy is of fundamental importance in thermodynamics and has extensive magnitude. (R. C. Tolman, The Measurable Quantities of Physics, Physical Review, 9, p. 237, 1917.)

Conversion Factors and Dimensional Formulae. — For the ratios of length, mass, time, temperature, dielectric constant and permeability units the small bracketed letters, [l], [m], [t], $[\theta]$, [k], and $[\mu]$ will be adopted. These symbols will always represent simple numbers, but the magnitude of the number will depend on the relative magnitudes of the units the ratios of which they represent. When the values of the numbers represented by these small bracketed letters as well as the powers of them involved in any particular unit are known, the factor for the transformation is at once obtained. Thus, in the above example, the value of l was 1/3, and the power involved in the expression for volume was 3; hence the factor for transforming from cubic feet to cubic yards was l^3 or $1/3^3$ or 1/27. These factors will be called *conversion factors*.

To find the symbolic expression for the conversion factor for any physical quantity, it is sufficient to determine the degree to which the quantities length, mass, time, etc., are involved. Thus a velocity is expressed by the ratio of the number representing a length to that representing an interval of time, or $\lfloor L/T \rfloor$, and acceleration by a velocity number divided by an interval-of-time number, or $\lfloor L/T^2 \rfloor$, and so on, and the corresponding ratios of units must therefore enter in precisely the same degree. The factors would thus be for the just stated cases, $\lfloor l/t \rfloor$ and $\lfloor l/t^2 \rfloor$. Equations of the form above given for velocity and acceleration which show the dimensions of the quantity in terms of the fundamental units are called *dimensional equations*. Thus $\lfloor E \rfloor = \lfloor ML^2T^{-2} \rfloor$ will be found to be the dimensional equation for energy, and $\lfloor ML^2T^{-2} \rfloor$ the dimensional formula for it. These expressions will be distinguished from the conversion factors by the use of bracketed capital letters.

In general, if we have an equation for a physical quantity,

$$Q = C L^a M^b T^c,$$

where C is a constant and L, M, T represent length, mass, and time in terms of one set of units, and it is desired to transform to another set of units in terms of which the length, mass, and time are L_i , M_i , T_i , we have to find the value of L_i/L , M_i/M , T_i/T , which, in accordance with the convention adopted above, will be l, m, t, or the ratios of the magnitudes of the old to those of the new units.

Thus $L_i = Ll$, $M_i = Mm$, $T_i = Tt$, and if Q_i be the new quantity number,

$$Q_{\prime} = CL_{\prime}{}^{a}M_{\prime}{}^{b}T_{\prime}{}^{c},$$

= $CL^{a}l^{a}M^{b}m^{b}T^{c}t^{c} = Ql^{a}m^{b}t^{c},$

or the conversion factor is $[l^a m^b t^c]$, a quantity precisely of the same form as the dimension formula $[L^a M^b T^c]$.

Dimensional equations are useful for checking the validity of physical equations. Since physical equations must be homogeneous, each term appearing in them must be dimensionally equivalent. For example, the distance moved by a uniformly accelerated body is $s = v_0 t + \frac{1}{2} a t^2$. The corresponding dimensional equation is $[L] = [(L/T)T] + [(L/T^2)T^2]$, each term reducing to [L].

Dimensional considerations may often give insight into the laws regulating physical phenomena.¹ For instance Lord Rayleigh, in discussing the intensity

¹ See "On Physically Similar Systems; Illustrations of the Use of Dimensional Equations," E. Buckingham, Physical Review, (2) 4, p. 345, 1914.

Absolute Force of a Center of Attraction, or "Strength of a Center," is the intensity of force at unit distance from the center, and is the force per unit mass at any point multiplied by the square of the distance from the center. The dimensional formula is $[FL^2M^{-1}]$ or $[L^3T^{-2}]$.

Modulus of Elasticity is the ratio of stress intensity to percentage strain. The dimensional of percentage strain, a length divided by a length, is unity. Hence the dimensional formula of a modulus of elasticity is that of stress intensity $[ML^{-1}T^{-2}]$.

Work is done by a force when the point of application of the force, acting on a body, moves in the direction of the force. It is measured by the product of the force and the displacement. The dimensional formula is $\lceil FL \rceil$ or $\lceil ML^2T^{-2} \rceil$.

Energy. — The work done by the force produces either a change in the velocity of the body or a change of its shape or configuration, or both. In the first case it produces a change of kinetic energy, in the second, of potential energy. The dimensional formulae of energy and work, representing quantities of the same kind, are identical $[ML^2T^{-2}]$.

Resilience is the work done per unit volume of a body in distorting it to the elastic limit or in producing rupture. The dimensional formula is $[ML^2T^{-2}L^{-3}]$ or $[ML^{-1}T^{-2}]$.

*Power or Activity is the time rate of doing work, or if W represents work and P power, P = dw/dt. The dimensional formula is $[WT^{-1}]$ or $[ML^2T^{-3}]$, or for problems in gravitation units more conveniently $[FLT^{-1}]$, where F stands for the force factor.

Exs. — Find the number of gram-cms in one ft.-pd. Here the units of force are the attraction of the earth on the pound and the gram of matter. (In problems like this the terms "grams" and "pd." refer to force and not to mass.) The conversion factor is [fl], where f is 453.59 and l is 30.48. The answer is $453.59 \times 30.48 = 13825$.

Find the number of ft.-poundals in 1000000 cm-dynes. Here m = 1/453.59, l = 1/30.48, t = 1; $ml^2t^{-2} = 1/453.59 \times 30.48^2$, and $10^6ml^2t^{-2} = 10^6/453.59 \times 30.48^2 = 2.373$.

If gravity produces an acceleration of 32.2 ft./sec./sec., how many watts are required to make one horse-power? One horse-power is 550 ft.-pds. per sec., or $550 \times 32.2 = 17710$ ft.-poundals per second. One watt is 10^7 ergs per sec., that is, 10^7 dyne-cms per sec. The conversion factor is $[ml^2t^{-3}]$, where m is 453.59, l is 30.48, and t is 1, and the result has to be divided by 10^7 , the number of dyne-cms per sec. in the watt. $17710 \ ml^2t^{-3}/10^7 = 17710 \times 453.59 \times 30.48^2/10^7 = 746.3$.

HEAT UNITS.

Quantity of Heat, measured in dynamical units, has the same dimensions as energy $[ML^2T^{-2}]$. Ordinary measurements, however, are made in *thermal units*, that is, in terms of the amount of heat required to raise the temperature of a unit mass of water one degree of temperature at some stated temperature. This involves the unit of mass and some unit of temperature. If we denote temperature numbers by Θ , the dimensional formula for quantity of heat, H, will be $[M\Theta]$. Unit volume is sometimes used instead of unit mass in the measurement of heat, the units being called *thermometric units*. The dimensional formula now changed by the substitution of volume for mass is $[L^3\Theta]$.

Specific Heat is the relative amount of heat, compared with water as standard substance, required to raise unit mass of different substances one degree in temperature and is a simple number.

Coefficient of Thermal Expansion of a substance is the ratio of the change of length per unit length (linear), or change of volume per unit volume (voluminal), to the change of temperature. These ratios are simple numbers, and the change of temperature varies inversely as the magnitude of the unit of temperature. The dimensional formula is $[\Theta^{-1}]$.

Thermal Conductivity, or Specific Conductance, is the quantity of heat, H, transmitted per unit of time per unit of surface per unit of temperature gradient. The equation for conductivity is therefore $\bar{K} = H/L^2T\Theta/L$, and the dimensional formula $[H/\Theta LT] = [ML^{-1}T^{-1}]$ in thermal units. In thermometric units the formula becomes $[L^2T^{-1}]$, which properly represents diffusivity, and in dynamical units $[MLT^{-3}\Theta^{-1}]$.

Thermal Capacity is mass times the specific heat. The dimensional formula is [M].

Latent Heat is the quantity of heat required to change the state of a body divided by the quantity of matter. The dimensional formula is $[M\Theta/M]$ or $[\Theta]$; in dynamical units it is $[L^2T^{-2}]$.

Note. — When Θ is given the dimensional formula $[L^2T^{-2}]$, the formulae in thermal and dynamical units are identical.

Joule's Equivalent, J, is connected with the quantity of heat by the equation $ML^2T^{-2} = JH$ or $JM\Theta$. The dimensional formula of J is $[L^2T^{-2}\Theta^{-1}]$. In dynamical units J is a simple number.

Entropy of a body is directly proportional to the quantity of heat it contains and inversely proportional to its temperature. The dimensional formula is $[M\Theta/\Theta]$ or [M]. In dynamical units the formula is $[ML^2T^{-2}\Theta^{-1}]$.

Exs. — Find the relation between the British thermal unit, the large or kilogram-calorie and the small or gram-calorie, sometimes called the "therm." Referring all the units to the same temperature of the standard substance, the *British thermal unit* is the amount of heat required to warm one pound of water 1° C, the *large calorie*, 1 kilogram of water, 1° C, the *small calorie* or *therm*, 1 gram, 1° C. (1) To find the number of kg-cals. in one British thermal unit. m = .45359, $\theta = 5/9$; $m\theta = .45359 \times 5/9 = .25199$. (2) To find the number therms in one kg-cal. m = 1000, and $\theta = 1$; $m\theta = 1000$. (3) Hence the number of small calories or therms in one British thermal unit is $1000 \times .25199 = 251.99$.

ELECTRIC AND MAGNETIC UNITS.

A system of units of electric and magnetic quantities requires four fundamental quantities. A system in which length, mass, and time constitute three of the fundamental quantities is known as an "absolute" system. There are two absolute systems of electric and magnetic units. One is called the electrostatic, in which the fourth fundamental quantity is the dielectric constant, and one is called the electromagnetic, in which the fourth fundamental quantity is magnetic permeability. Besides these two systems there will be described a third in common use called the "international" system.

In the electrostatic system, unit quantity of electricity, Q, is the quantity which exerts unit mechanical force upon an equal quantity a unit distance from it in a vacuum. From this definition the dimensions and the units of all the other electric and magnetic quantities follow through the equations of the mathematical theory of electromagnetism. The mechanical force between two quantities of electricity in any medium is

 $F = \frac{QQ'}{Kr^2},$

where K is the dielectric constant, characteristic of the medium, and r the distance between the two points at which the quantities Q and Q' are located. K is the fourth quantity entering into dimensional expressions in the electrostatic system. Since the dimensional formula for force is $[MLT^{-2}]$, that for Q is $[M^{\frac{3}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{3}{2}}]$.

The electromagnetic system is based upon the unit of the magnetic pole strength. The dimensions and the units of the other quantities are built up from this in the same manner as for the electrostatic system. The mechanical force between two magnetic poles in any medium is

$$F=\frac{mm'}{\mu r^2},$$

in which μ is the permeability of the medium and r is the distance between two poles having the strengths m and m'. μ is the fourth quantity entering into dimensional expressions in the electromagnetic system. It follows that the dimensional expression for magnetic pole strength is $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}\mu^{\frac{1}{2}}]$.

The symbols K and μ are sometimes omitted in the dimensional formulae so that only three fundamental quantities appear. There are a number of objections to this. Such formulae give no information as to the relative magnitudes of the units in the two systems. The omission is equivalent to assuming some relation between mechanical and electrical quantities, or to a mechanical explanation of electricity. Such a relation or explanation is not known.

The properties K and μ are connected by the equation $1/\sqrt{K\mu} = v$, where v is the velocity of an electromagnetic wave. For empty space or for air, K and μ being measured in the same units, $1/\sqrt{K\mu} = c$, where c is the velocity of light in vacuo, 3×10^{10} cm per sec. It is sometimes forgotten that the omission of the dimensions of K or μ is merely conventional. For instance, magnetic field intensity and magnetic induction apparently have the same dimensions when μ is omitted. This results in confusion and difficulty in understanding the theory of magnetism. The suppression of μ has also led to the use of the "centimeter" as a unit of capacity and of inductance; neither is physically the same as length.

ELECTROSTATIC SYSTEM.

Quantity of Electricity has the dimensional formula $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}]$, as shown above.

Electric Surface Density of an electrical distribution at any point on a surface is measured by the quantity per unit area. The dimensional formula is the ratio of the formulae for quantity of electricity and for area or $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}K^{\frac{1}{2}}]$.

Electric Field Intensity is measured by the ratio of the force on a quantity of electricity at a point to the quantity of electricity. The dimensional formula is therefore the ratio of the formulae for force and electric quantity or $[MLT^{-2}/M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}]$ or $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}K^{-\frac{1}{2}}]$.

Electric Potential and Electromotive Force. — Change of potential is proportional to the work done per unit of electricity in producing the change. The dimensional formula is the ratio of the formulae for work and electrical quantity or $[ML^2T^{-2}/M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}]$ or $[M^{\frac{3}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{1}{2}}]$.

Capacity of an Insulated Conductor is proportional to the ratio of the quantity of electricity in a charge to the potential of the charge. The dimensional formula is the ratio of the two formulae for electric quantity and potential or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}]$ or [LK].

Specific Inductive Capacity is the ratio of the inductive capacity of the substance to that of a standard substance and therefore is a number.

Electric Current is quantity of electricity flowing past a point per unit of time. The dimensional formula is the ratio of the formulae for electric quantity and for time or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}/T]$ or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}K^{\frac{1}{2}}]$.

Electrical Conductivity, like the corresponding term for heat, is quantity per unit area per unit potential gradient per unit of time. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}/L^{\frac{3}{2}}T^{-1}K^{-\frac{1}{2}}/L)T]$ or $[T^{-1}K]$.

Resistivity is the reciprocal of conductivity. The dimensional formula is $[TK^{-1}]$.

Conductance of any part of an electric circuit, not containing a source of electromotive force, is the ratio of the current flowing through it to the difference of potential between its ends. The dimensional formula is the ratio of the formulae for current and potential or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}K^{\frac{1}{2}}/M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{1}{2}}]$ or $[LT^{-1}K]$.

Resistance is the reciprocal of conductance. The dimensional formula is $[L^{-1}TK^{-1}]$.

Exs. — Find the factor for converting quantity of electricity expressed in ft.-grain-sec. units to the same expressed in c.g.s. units. The formula is $[m^{\frac{1}{2}}l^{2}l^{-1}k^{\frac{1}{2}}]$, in which m=0.0648, l=30.48, l=1, k=1; the factor is $0.0648^{\frac{1}{2}} \times 30.48^{\frac{3}{2}}$, or 42.8.

Find the factor required to convert electric potential from mm-mg-sec. units to c.g.s. units. The formula is $\lfloor m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}k^{-\frac{1}{2}}\rfloor$, in which m=0.001, l=0.1, t=1, k=1; the factor is $0.001^{\frac{1}{2}} \times 0.1^{\frac{1}{2}}$, or 0.01.

Find the factor required to convert electrostatic capacity from ft.-grain-sec. and specific-inductive capacity 6 units to c.g.s. units. The formula is [lk] in which l = 30.48, k = 6; the factor is 30.48×6 , or 182.88.

ELECTROMAGNETIC SYSTEM.

Many of the magnetic quantities are analogues of certain electric quantities. The dimensions of such quantities in the electromagnetic system differ from those of the corresponding electrostatic quantities in the electrostatic system only in the substitution of permeability μ for K.

ence standards are accurately compared copies, not necessaruy duplicates, of the primaries for use in the work of standardizing laboratories and the production of working standards for everyday use.

Standard of Length. — The primary standard of length which now almost universally serves as the basis for physical measurements is the meter. It is defined as the distance between two lines at o° C on a platinum-iridium bar deposited at the International Bureau of Weights and Measures. This bar is known as the International Prototype Meter, and its length was derived from the "métre des Archives," which was made by Borda. Borda, Delambre, Laplace, and others, acting as a committee of the French Academy, recommended that the standard unit of length should be the ten-millionth part of the length, from the equator to the pole, of the meridian passing through Paris. In 1795 the French Republic passed a decree making this the legal standard of length, and an arc of the meridian extending from Dunkirk to Barcelona was measured by Delambre and Mechain for the purpose of realizing the standard. From the results of that measurement the meter bar was made by Borda. The meter is now defined as above and not in terms of the meridian length; hence subsequent measures of the length of the meridian have not affected the length of the meter.

Standard of Mass. — The primary standard of mass now almost universally used as the basis for physical measurements is the kilogram. It is defined as the mass of a certain piece of platinum-iridium deposited at the International Bureau of Weights and Measures. This standard is known as the International Prototype Kilogram. Its mass is equal to that of the older standard, the "kilogram des Archives," made by Borda and intended to have the same mass as a cubic decimeter of distilled water at the temperature of 4° C.

Copies of the International Prototype Meter and Kilogram are possessed by the various governments and are called National Prototypes.

Standard of Time. — The unit of time universally used is the second. It is the mean solar second, or the 86400th part of the mean solar day. It is founded on the average time required for the earth to make one rotation on its axis relatively to the sun as a fixed point of reference.

Standard of Temperature. — The standard scale of temperature as adopted by the International Committee of Weights and Measures (1887) depends on the constant-volume hydrogen thermometer. The hydrogen is taken at an initial pressure at o° C of one meter of mercury, o° C, sea-level at latitude 45°. The scale is defined by designating the temperature of melting ice as o° and of condensing steam as 100° under standard atmospheric pressure. This is known as the Centigrade scale (abbreviated C).

A scale independent of the properties of any particular substance, and called the thermodynamic, or absolute scale, was proposed in 1848 by Lord Kelvin. In it the temperature is proportional to the average kinetic energy per molecule of a perfect gas. The temperature of melting ice is taken as 273.13°, that of the boiling point, 373.13°. The scale of the hydrogen thermometer varies from it only in the sense that the behavior of hydrogen departs from that of a perfect gas. It is customary to refer to this scale as the Kelvin scale (abbreviated K).

NUMERICALLY DIFFERENT SYSTEMS OF UNITS.

The fundamental physical quantities which form the basis of a system for measurements have been chosen and the fundamental standards selected and made. Custom has not however generally used these standards for the measurement of the magnitudes of quantities but rather multiples or submultiples of them. For instance, for very small quantities the micron (μ) or one-millionth of a meter is often used. The following table ¹ gives some of the systems proposed, all built upon the fundamental standards already described. The centimeter-gram-second (cm-g-sec. or c.g.s.) system proposed by Kelvin is the only one generally accepted.

TABLE I.
PROPOSED SYSTEMS OF UNITS.

	Weber • and Gauss	Kelvin c.g.s.	Moon 1891	Giorgi MKS (Prim. Stds.)	France 1914	B. A. Com., 1863	Practical (B: A. Com., 1873)	Strout 1891
Length Mass Time	mm mg sec.	cm g sec.	dm Kg sec. 10	m Kg sec.	m 10 ⁶ g sec.	m g sec.	10 ⁹ cm 10 ⁻¹¹ g sec.	10 ⁹ cm 10 ⁻⁹ g sec.

Further the choice of a set of fundamental physical quantities to form the basis of a system does not necessarily determine how that system shall be used in measurements. In fact, upon any sufficient set of fundamental quantities, a great many different systems of units may be built. The electrostatic and electromagnetic systems are really systems of electric quantities rather than units. They were based upon the relationships $F = QQ'/Kr^2$ and $mm'/\mu r^2$, respectively. Systems of units built upon a chosen set of fundamental physical quantities may differ in two ways: (1) the units chosen for the fundamental quantities may be different; (2) the defining equations by which the system is built may be different.

The electrostatic system generally used is based on the centimeter, gram, second, and dielectric constant of a vacuum. Other systems have appeared, differing from this in the first way, — for instance using the foot, grain and second in place of the centimeter, gram and second. A system differing from it in the second way is that of Heaviside which introduces the factor 4π at different places than is usual in the equations. There are similarly several systems of electromagnetic units in use.

Gaussian Systems. — "The complexity of the interrelations of the units is increased by the fact that not one of the systems is used as a whole, consistently for all electromagnetic quantities. The 'systems' at present used are therefore combinations of certain of the systems of units.

¹ Circular 60 of the Bureau of Standards, Electric Units and Standards, 1916. The subsequent matter in this introduction is based upon this circular.

"Some writers 1 on the theory of electricity prefer to use what is called a Gaussian system, a combination of electrostatic units for purely electrical quantities and electromagnetic units for magnetic quantities. There are two such Gaussian systems in vogue, — one a combination of c.g.s. electrostatic and c.g.s electromagnetic systems, and the other a combination of the two corresponding Heaviside systems.

"When a Gaussian system is used, caution is necessary when an equation contains both electric and magnetic quantities. A factor expressing the ratio between the electrostatic and electromagnetic units of one of the quantities has to be introduced. This factor is the first or second power of c, the number of electrostatic units of electric charge in one electromagnetic unit of the same. There is sometimes a question as to whether electric current is to be expressed in electrostatic or electromagnetic units, since it has both electric and magnetic attributes. It is usually expressed in electrostatic units in the Gaussian system."

It may be observed from the dimensions of K given in Table 1 that $[1/K\mu] = [L^2/T^2]$ which has the dimensions of a square of a velocity. This velocity was found experimentally to be equal to that of light, when K and μ were expressed in the same system of units. Maxwell proved theoretically that $1/\sqrt{K\mu}$ is the velocity of any electromagnetic wave. This was subsequently proved experimentally. When a Gaussian system is used, this equation becomes $c/\sqrt{K\mu} = v$. For the ether K = 1 in electrostatic units and $\mu = 1$ in electromagnetic units. Hence c = v for the ether, or the velocity of an electromagnetic wave in the ether is equal to the ratio of the c.g.s. electromagnetic to the c.g.s. electrostatic unit of electric charge. This constant c is of primary importance in electrical theory. Its most probable value is 2.9986×10^{10} centimeters per second.

"Practical" Electromagnetic System. — This electromagnetic system is based upon the units of 10^9 cm, 10^{-11} gram, the sec. and μ of the ether. It is never used as a complete system of units but is of interest as the historical basis of the present International System. The principal quantities are the resistance unit, the ohm = 10^9 c.g.s. units; the current unit, the ampere = 10^{-1} c.g.s. units; and the electromotive force unit, the volt = 10^8 c.g.s. units.

The International Electric Units. — The units used in practical measurements, however, are the "International Units." They were derived from the "practical" system just described, or as the latter is sometimes called, the "absolute" system. These international units are based upon certain concrete standards presently to be defined and described. With such standards electrical comparisons can be more accurately and readily made than could absolute measurements in terms of the fundamental units. Two electric units, the international ohm and the international ampere, were chosen and made as nearly equal as possible to the ohm and ampere of the "practical" or "absolute" system.

¹ For example, A. G. Webster, "Theory of Electricity and Magnetism," 1897; J. H. Jeans, "Electricity and magnetism," 1911; H. A. Lorentz, "The Theory of Electrons," 1909; and O. W. Richardson, "The Electron Theory of Matter," 1914.

This system of units, sufficiently near to the "absolute" system for the purpose of electrical measurements and as a basis for legislation, was defined as follows:

- "1. The *International Ohm* is the resistance offered to an unvarying electric current by a column of mercury at the temperature of melting ice, 14.4521 grams in mass, of a constant cross-sectional area and of a length of 106.300 centimeters.
- "2. The *International Ampere* is the unvarying electric current which, when passed through a solution of nitrate of silver in water, in accordance with specification II attached to these Resolutions, deposits silver at the rate of 0.00111800 of a gram per second.
- "3. The *International Volt* is the electrical pressure which, when steadily applied to a conductor the resistance of which is one international ohm will produce a current of one international ampere.
- "4. The *International Watt* is the energy expended per second by an unvarying electric current of one international ampere under the pressure of one international volt."

In accordance with these definitions, a value was established for the electromotive force of the recognized standard of electromotive force, the Weston normal cell, as the result of international coöperative experiments in 1910. The value was 1.0183 international volts at 20° C.

The definitions by the 1908 International Conference supersede certain definitions adopted by the International Electrical Congress at Chicago in 1893. Certain of the units retain their Chicago definitions, however. They are as follows:

- "Coulomb. As a unit of quantity, the *International Coulomb*, which is the quantity of electricity transferred by a current of one international ampere in one second.
- "Farad. As a unit of capacity, the International Farad, which is the capacity of a condenser, charged to be a potential of one international volt by one international coulomb of electricity.
- "Joule. As a unit of work, the Joule, which is equal to 10⁷ units of work in the c.g.s. system, and which is represented sufficiently well for practical use by the energy expended in one second by an international ampere in an international ohm.
- "Henry. As the unit of induction, the Henry, which is the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampere per second."

"The choice of the ohm and ampere as fundamental was purely arbitrary. These are the two quantities directly measured in absolute electrical measurements. The ohm and volt have been urged as more suitable for definition in terms of arbitrary standards, because the primary standard of electromotive force (standard cell) has greater simplicity than the primary standard of current (silver voltameter). The standard cell is in fact used, together with resistance standards, for the actual maintenance of the units, rather than the silver voltameter and resistance standards. Again, the volt and ampere have some claim

for consideration for fundamental definition, both being units of quantities more fundamental in electrical theory than resistance."

For all practical purposes the "international" and the "practical" or "absolute" units are the same. Experimental determination of the ratios of the corresponding units in the two systems have been made and the mean results are given in Table 382. These ratios represent the accuracy with which it was possible to fix the values of the international ohm and ampere at the time they were defined (London Conference of 1908). It is unlikely that the definitions of the international units will be changed in the near future to make the agreement any closer. An act approved July 12, 1894, makes the International units as above defined the legal units in the United States of America.

THE STANDARDS OF THE INTERNATIONAL ELECTRICAL UNITS.

RESISTANCE

Resistance. — The definition of the international ohm adopted by the London Conference in 1908 is accepted practically everywhere.

Mercury Standards. — Mercury standards conforming to the definition were constructed in England, France, Germany, Japan, Russia and the United States. Their mean resistances agree to about two parts in 100,000. To attain this accuracy, elaborate and painstaking experiments were necessary. Tubes are never quite uniform in cross-section; the accurate measurement of the mass of mercury filling the tube is difficult, partly because of a surface film on the walls of the tube; the greatest refinements are necessary in determining the length of the tube. In the electrical comparison of the resistance with wire standards, the largest source of error is in the filling of the tube. These and other sources of error necessitated a certain uniformity in the setting up of mercury standards and at the London Conference the following specifications were drawn up:

SPECIFICATION RELATING TO MERCURY STANDARDS OF RESISTANCE.

The glass tubes used for mercury standards of resistance must be made of a glass such that the dimensions may remain as constant as possible. The tubes must be well annealed and straight. The bore must be as nearly as possible uniform and circular, and the area of cross-section of the bore must be approximately one square millimeter. The mercury must have a resistance of approximately one ohm.

Each of the tubes must be accurately calibrated. The correction to be applied to allow for the area of the cross-section of the bore not being exactly the same at all parts of the tube must not exceed 5 parts in 10,000.

The mercury filling the tube must be considered as bounded by plane surfaces placed in contact with the ends of the tube.

The length of the axis of the tube, the mass of mercury the tube contains, and the electrical resistance of the mercury are to be determined at a temperature as near to o° C as possible. The measurements are to be corrected to o° C.

For the purpose of the electrical measurements, end vessels carrying connections for the current and potential terminals are to be fitted on to the tube. These end vessels are to be spherical in shape (of a diameter of approximately four centimeters) and should have cylindrical pieces attached to make connections with the tubes. The outside edge of each end of the tube

is to be coincident with the inner surface of the corresponding end vessel. The leads which make contact with the mercury are to be of thin platinum wire fused into glass. The point of entry of the current lead and the end of the tube are to be at opposite ends of a diameter of the bulb; the potential lead is to be midway between these two points. All the leads must be so thin that no error in the resistance is introduced through conduction of heat to the mercury. The filling of the tube with mercury for the purpose of the resistance measurements must be carried out under the same conditions as the filling for the determination of the mass.

The resistance which has to be added to the resistance of the tube to allow for the effect of the end vessels is to be calculated by the formula

$$A = \frac{0.80}{1063\pi} \left(\frac{1}{r_1} + \frac{1}{r_2} \right) \text{ ohm,}$$

where r_1 and r_2 are the radii in millimeters of the end sections of the bore of the tube.

The mean of the calculated resistances of at least five tubes shall be taken to determine the value of the unit of resistance.

For the purpose of the comparison of resistances with a mercury tube the measurements shall be made with at least three separate fillings of the tube.

Secondary Standards. — Secondary standards, derived from the mercury standards and used to give values to working standards, are certain coils of manganin wire kept in the national laboratories. Their resistances are adjusted to correspond to the unit or its decimal multiples or submultiples. The values assigned to these coils are checked from time to time with the similar coils of the other countries. The value now in use is based on the comparison made at the U. S. Bureau of Standards in 1910 and may be called the "1910 ohm." Later measurements on various mercury standards checked the value then used within 2 parts in 100,000. Thus the basis of resistance measurement is maintained not by the mercury standards of a single laboratory, but by all the mercury standards of the various national laboratories; it is furthermore the same in all countries, except for very slight outstanding discrepancies due to the errors of measurement and variations of the standards with time.

Resistance Standards in Practice. — In ordinary measurements, working standards of resistance are usually coils of manganin wire (approximately 84 per cent Cu + 12 per cent Mn + 4 per cent Ni). They are generally used in oil which carries away the heat developed by the current and facilitates regulation and measurement of the temperature. The best type is inclosed in a sealed case for protection against atmospheric humidity. Varying humidity changes the resistance of open coils often to several parts in 10,000 higher in summer than in winter. While sealed 1 ohm and 0.1 ohm coils may remain constant to about 1 part in 100,000.

Absolute Ohm. — The absolute measurement of resistance involves the precise determination of a length and a time (usually an angular velocity) in a medium of unit permeability. Since the dimensional formula of resistance in the electromagnetic system is $\lfloor L\mu/T \rfloor$, such an absolute measurement gives R not in cm/sec. but in cm \times μ /sec. The definitions of the ohm, ampere and volt by the 1908 London conference tacitly assume a permeability equal to unity. The relation of the international ohm to the absolute ohm has been measured in different ways involving revolving coil, revolving disk, and alternate current methods. Probably the most accurate determination was made

in 1913 by F. E. Smith of the National Physical Laboratory of England, using a modification of the Lorentz revolving disk method. His result was

1 international ohm = 1.00052 ± 0.00004 absolute ohms,

or, in other words, while one international ohm is represented by a mercury column 106.300 cm long as specified above, one absolute ohm requires a similar column 106.245 cm long. Table 305 of the 6th revised edition of these tables contains data relative to the various determinations of the ohm.

CURRENT.

The Silver Voltameter. — The silver voltameter is a concrete means of measuring current in accordance with the definition of the international ampere. As used for the realization of the international ampere "it consists of a platinum cathode in the form of a cup holding the silver nitrate solution, a silver anode partly or wholly immersed in the solution, and some means to prevent anode slime and particles of silver mechanically detached from the anode from reaching the cathode. As a standard representing the international ampere, the silver voltameter includes also the chronometer used to measure time. The degree of purity and the mode of preparation of the various parts of the voltameter affect the mass of the deposit. There are numerous sources of error, and the suitability of the silver voltameter as a primary standard of current has been under investigation since 1893. Differences of as much as 0.1 per cent or more may be obtained by different procedures, the larger differences being mainly due to impurities produced in the electrolyte (by filter paper, for instance). Hence, in order that the definition of current be precise, it must be accompanied by specifications for using the voltameter."

The original specifications were recognized to be inadequate and an international committee on electrical units and standards was appointed to complete the specifications. It was also recognized that in practice standard cells would replace secondary current standards so that a value must be fixed for the electromotive force of the Weston normal cell. This was attempted in 1910 at the Bureau of Standards by representatives of that institution together with one delegate each from the Physikalische-Technische Reichanstalt, The National Physical Laboratory and the Laboratoire Central d'Electricité. Voltameters from all four institutions were put in series under a variety of experimental conditions. Standard Weston cells and resistance standards of the four laboratories were also intercompared. From the joint comparison of standard cells and silver voltameters particular values were assigned to the standard cells from each laboratory. The different countries thus have a common basis of measurement maintained by the aid of standard cells and resistance standards derived from the international voltameter investigation of 1910.

It was not found possible to draw up satisfactory and final specifications for the silver voltameter. Provisional specifications were submitted by the U. S. Bureau of Standards and more complete specifications have been proposed in correspondence between the national laboratories and members of the international committee since 1910, but no agreement upon final specifications has yet been reached.

Resistance Standards Used in Current Measurements. — Precise measurements of currents require a potentiometer, a standard cell and a resistance standard. The resistance must be so designed as to carry the maximum current without undue heating and consequent change of resistance. Accordingly the resistance metal must have a small temperature resistance coefficient and a sufficient area in contact with the air, oil, or other cooling fluid. It must have a small thermal electromotive force against copper. Manganin satisfies these conditions and is usually used. The terminals of the standard must have sufficient contact area so that there shall be no undue heating at contacts.¹ It must be so designed that the current distribution does not depend upon the mode of connection to the circuit.

Absolute Ampere. — The absolute ampere (10⁻¹c.g.s. electromagnetic units) differs by a negligible amount from the international ampere. Since the dimensional formula of the current in the electromagnetic system is $[L^{\frac{1}{2}}M^{\frac{1}{2}}/T\mu^{\frac{1}{2}}]$ which is equivalent to $[F^{\frac{1}{2}}/\mu^{\frac{1}{2}}]$, the absolute measurement of current involves fundamentally the measurement of a force in a medium of unit permeability. In most measurements of high precision an electrodynamometer has been used of the form known as a current balance. A summary of the various determinations will be found in Table 293 of the 6th Revised Edition of these tables.

The best value is probably the mean of the determinations made at the U. S. Bureau of Standards, the National Physical Laboratory and at the University of Gröningen, which gives

1 international ampere = 0.99991 absolute ampere.

The separate values were 0.99992, 0.99988 and 0.99994, respectively. "The result may also be expressed in terms of the electrochemical equivalent of silver, which, based on the '1910 mean voltameter,' thus equals 0.00111810 g per absolute coulomb. By the definition of the international ampere, the value is 0.00111800 g per international coulomb."

ELECTROMOTIVE FORCE.

International Volt. — "The international volt is derived from the international ohm and ampere by Ohm's law. Its value is maintained by the aid of the Weston normal cell. The national standardizing laboratories have groups of such cells, to which values in terms of the international ohm and ampere have been assigned by international experiments, and thus form a basis of reference for the standardization of the standard cells used in practical measurements."

Weston Normal Cell. — The Weston normal cell is the standard used to maintain the international volt and, in conjunction with resistance standards, to maintain the international ampere. The cell is a simple voltaic combination

¹ See "Report to the International Committee on Electrical Units and Standards," 1912, p. 199. For the Bureau of Standards investigations see Bull. Bureau of Standards, 9, pp. 209, 493; 10, p. 475, 1912-14; 13, p. 147, 1915; 9, p. 151, 1912: 13, pp. 447, 479, 1916.

difference which exists between the terminals of a resistance of one *international* ohm when the latter carries a current of one *absolute* ampere. The emf of the Weston normal cell may be taken as 1.01821 semi-absolute volts at 20° C.

QUANTITY OF ELECTRICITY.

The international unit of quantity of electricity is the coulomb. The faraday is the quantity of electricity necessary to liberate 1 gram equivalent in electrolysis. It is equivalent to 96,500 coulombs.

Standards. — There are no standards of electric quantity. The silver voltameter may be used for its measurement since under ideal conditions the mass of metal deposited is proportional to the amount of electricity which has flowed.

CAPACITY.

The unit generally used for capacity is the international microfarad or the one-millionth of the international farad. Capacities are commonly measured by comparison with standard capacities. The values of the standards are determined by measurement in terms of resistance and time. The standard is some form of condenser consisting of two sets of metal plates separated by a dielectric. The condenser should be surrounded by a metal shield connected to one set of plates rendering the capacity independent of the surroundings. An ideal condenser would have a constant capacity under all circumstances, with zero resistance in its leads and plates, and no absorption in the dielectric. Actual condensers vary with the temperature, atmospheric pressure, and the voltage, frequency, and time of charge and discharge. A well-constructed air condenser with heavy metal plates and suitable insulating supports is practically free from these effects and is used as a standard of capacity.

Practically air condenser plates must be separated by 1 mm or more and so cannot be of great capacity. The more the capacity is increased by approaching the plates, the less the mechanical stability and the less constant the capacity. Condensers of great capacity use solid dielectrics, preferably mica sheets with conducting plates of tinfoil. At constant temperature the best mica condensers are excellent standards. The dielectric absorption is small but not quite zero, so that the capacity of these standards with different methods of measurement must be carefully determined.

INDUCTANCE.

The henry, the unit of self-inductance, is also the unit of mutual inductance. The henry has been known as the "quadrant" and the "secohm." The length of a quadrant or quarter of the earth's circumference is approximately 109 cms. and a henry is 109 cms. of inductance. Secohm is a contraction of second and ohm; the dimensions of inductance are [TR] and this unit is based on the second and ohm.

Inductance Standards. — Inductance standards are measured in international units in terms of resistance and time or resistance and capacity by alternate-

current bridge methods. Inductances calculated from dimensions are in absolute electromagnetic units. The ratio of the international to the absolute henry is the same as the ratio of the corresponding ohms.

Since inductance is measured in terms of capacity and resistance by the bridge method about as simply and as conveniently as by comparison with standard inductances, it is not necessary to maintain standard inductances. They are however of value in magnetic, alternating-current, and absolute electrical measurements. A standard inductance is a circuit so wound that when used in a circuit it adds a definite amount of inductance. It must have either such a form or so great an inductance that the mutual inductance of the rest of the circuit upon it may be negligible. It usually is a wire coil wound all in the same direction to make self-induction a maximum. A standard, the inductance of which may be calculated from its dimensions, should be a single layer coil of very simple geometrical form. Standards of very small inductance, calculable from their dimensions, are of some simple device, such as a pair of parallel wires or a single turn of wire. With such standards great care must be used that the mutual inductance upon them of the leads and other parts of the circuit is negligible. Any inductance standard should be separated by long leads from the measuring bridge or other apparatus. It must be wound so that the distributed capacity between its turns is negligible; otherwise the apparent inductance will vary with the frequency.

POWER AND ENERGY.

Power and energy, although mechanical and not primarily electrical quantities, are measurable with greater precision by electrical methods than in any other way. The watt and the electric units were so chosen in terms of the c.g.s. units that the product of the current in amperes by the electromotive force in volts gives the power in watts (for continuous or instantaneous values). The international watt, defined as "the energy expended per second by an unvarying electric current of one international ampere under an electric pressure of one international volt," differs but little from the absolute watt.

Standards and Measurements. — No standard is maintained for power or energy. Measurements are always made in electrical practice in terms of some of the purely electrical quantities represented by standards.

MAGNETIC UNITS.

C.G.S. units are generally used for magnetic quantities. American practice is fairly uniform in names for these units: the c.g.s. unit of magnetomotive force is called the "gilbert," of reluctance, the "oersted," following the provisional definitions of the American Institute of Electrical Engineers (1894). The c.g.s. unit of flux is called the "maxwell" as defined by the 1900 Paris conference. The name "gauss" is used unfortunately both for the unit of induction (A.I.E.E. 1894) and for the unit of magnetic field intensity or magnetizing force. "This double usage, recently sanctioned by engineering societies, is based upon the mathematical convenience of defining both induction and magnetizing force

as the force on a unit magnetic pole in a narrow cavity in the material, the cavity being in one case perpendicular, in the other parallel, to the direction of the magnetization: this definition however applies only in the ordinary electromagnetic units. There are a number of reasons for considering induction and magnetizing force as two physically distinct quantities, just as electromotive force and current are physically different."

In the United States "gauss" has been used much more for the c.g.s. unit of induction than for the unit of magnetizing force. The longer name of "maxwell per cm²" is also sometimes used for this unit when it is desired to distinguish clearly between the two quantities. The c.g.s. unit of magnetizing force is usually called the "gilbert per cm."

A unit frequently used is the ampere-turn. It is a convenient unit since it eliminates 4π in certain calculations. It is derived from the "ampere turn per cm." The following table shows the relations between a system built on the ampere-turn and the ordinary magnetic units.¹

TABLE II.

THE ORDINARY AND THE AMPERE-TURN MAGNETIC UNITS.

Quantity		Ordinary magnetic units.	Ampere-turn units.	Ordinary units in 1 ampere- turn unit
Magnetomotive force	F	Gilbert	Ampere-turn	$4\pi/10$
Magnetizing force	H	Gilbert per	Ampere-turn per	$4\pi/10$
75 0		cm.	cm.	
Magnetic flux	Φ	Maxwell	Maxwell	I
Magnetic induction	В	Maxwell per cm. ² Gauss	Maxwell per cm. ² Gauss	I
Permeability	μ			I
Reluctance	R	Oersted	Ampere-turn per Maxwell	$4\pi/10$
Magnetization intensity	J		Maxwell per cm. ²	$1/4\pi$
Magnetic susceptibility	K		·	$I/4\pi$
Magnetic pole strength	m		Maxwell	$1/4\pi$

¹ Dellinger, International System of Electric and Magnetic Units, Bull. Bureau of Standards, 13, p. 599, 1916.

PHYSICAL TABLES

TABLE 1.

SPELLING AND ABBREVIATIONS OF THE COMMON UNITS OF WEIGHT AND MEASURE.

The spelling of the metric units is that adopted by the International Committee on Weights and Measures and given in the law legalizing the metric system in the United States (1866). The period is omitted after the metric abbreviations but not after those of the customary system. The exponents "2" and "3" are used to signify area and volume respectively in the metric units. The use of the same abbreviation for singular and plural is recommended. It is also suggested that only small letters be used for abbreviations except in the case of A. for acre, where the use of the capital letter is general. The following list is taken from circular 87 of the U. S. Bureau of Standards.

acre are a woirdupois av. barrel bbl. board foot bushel bushel bu. centigram centiliter centimeter chain cubic decimeter dm³ cubic foot cubic hectometer bm³ cubic mich cubic kilometer cubic mich cubic centimeter cubic kilometer cubic mich cubic kilometer km³ cubic mich cubic kilometer km³ cubic mich cubic kilometer km³ ounce, apothecaries' oz. ap. or cubic mich cubic mich cubic mish kilometer km² kilometer meter meter meter meter meter micron milligram micron milligram micron milligram milligram millimeter mil	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c cccc} cubic \ kilometer & km^3 & ounce, \ fluid & fl. \ oz. \\ cubic \ meter & m^3 & ounce, \ troy & oz. \ t. \\ \end{array} $	5
cubic meter m³ ounce, troy oz. t.	
cubic mile cu. mi. peck pk.	
cubic millimeter mm ³ pennyweight dwt.	
cubic yard cu. yd. pint pt.	
decigram dg pound lb. deciliter dl pound apothecaries' lb. ap.	
Francisco Franci	
decimeter dm pound, avoirdupois lb. av. decistere ds pound, troy lb. t.	
dekagram dkg quart qt.	
dekaliter dkl rod rd.	
dekameter dkm scruple, apothecaries' s. ap. or 3	•
dekastere dks square centimeter cm ²	
dram dr. square chain sq. ch.	
dram, apothecaries' dr. ap. or 3 square decimeter dm ²	
dram, avoirdupois dr. av. square dekameter dkm²	
dram, fluid fl. dr. square foot sq. ft.	
fathom fath. square hectometer hm ²	
foot ft. square inch sq. in.	
firkin fir. square kilometer km²	
furlong fur. square meter m ²	
gallon gal. square mile sq. mi. grain gr. square millimeter mm²	
gram g square rod sq. rd. hectare ha square yard sq. yd.	
hectogram hg stere s	
hectoliter hl ton tn.	
hectometer hm ton, metric t	
hogshead hhd. troy t.	
hundredweight cwt. yard yd.	
inch in.	

FUNDAMENTAL AND DERIVED UNITS.

Conversion Factors.

To change a quantity from one system of units to another: substitute in the corresponding conversion factor from the following table the ratios of the magnitudes of the old units to the new and multiply the old quantity by the resulting number. For example: to reduce velocity in miles per hour to feet per second, the conversion factor is li^{-1} ; l = 5280/1, t = 3600/1, and the factor is 5280/3600 or 1.467. Or we may proceed as follows: e. g., to find the equivalent of 1 c.g.s. unit of angular momentum in the pd.ft.m. unit, from the Table 1 g cm²/sec.=x lb. ft.²/min, where x is the factor sought. Solving, x = 1g/lb. $\times cm²/ft.² \times min./sec.=1 \times .002205 \times .0010^{-}6 \times 60=.0001425$.

The dimensional formulæ lack one quality which is needed for completeness, an indication of their vector characteristics; such characteristics distinguish plane and solid angle, torque and

energy, illumination and brightness.

(a) FUNDAMENTAL UNITS.

The fundamental units and conversion factors in the systems of units most commonly used are: Length [l]; Mass [m]; Time [i]; Temperature $[\theta]$; and for the electrostatic system, Dielectric Constant [k]; for the electromagnetic system, Permeability $[\mu]$. The formulae will also be given for the International System of electric and magnetic units based on the units length, resistance [r], current [i], and time.

(b) DERIVED UNITS.

Name of unit.		onversion factor.		Name of units. (Heat and light.)	Conversion factor. [mzluze]				
dynamical.)	x	у	z	(33.00)	x	ÿ	z	r	
Area, surface	0	2	0	Quantity of heat:					
Volume	0	3	0	thermal units	I	O	Ö	I	
Angle	0	0	0	thermometric units.	0	3	0	I	
				dynamical units	I	2	-2	0	
Solid angle	0	0	0						
Curvature	0	-1	0	Coefficient of thermal					
Angular velocity	0	0	-1	expansion	0	0	0	-1	
T:				Thomas conductivity					
Linear velocity	0	I	-I -2	Thermal conductivity:	I	-1	-1	0	
Angular acceleration	0	0	$-2 \\ -2$	thermal unitsthermometric units	1	-1	-1	0	
Linear acceleration	0	1	-2	or diffusivity	0	2	-т	0	
Density	1	-3	0	dynamical units	I	1	-3	-1	
Moment of inertia	I	2	0	dynamical units			3	-	
Intensity of attraction.	0	1	-2	Thermal capacity	1	8	0	0	
intensity of attraction.		-	-	Thermal capacity		_			
Momentum	I	x	-I	Latent heat:					
Moment of momentum.	I	2	-1	thermal units	Ø	0	0	1	
Angular momentum	1	2	-1	dynamical units	0	2	-2	0	
Force	I	I	-2	Joule's equivalent	0	2	-2	T	
Moment of couple,									
torque	I	2	-2	Entropy:					
Work, energy	1	2	-2	heat in thermal units	1	0	0	0	
				heat in dynamical					
Power, activity	I	2	-3	units	I	2	-2	I	
Intensity of stress	I	- I	-2	T					
Modulus of elasticity	I	-I	-2	Luminous intensity	0	0	0	I,	
Communication		-	2	Illumination	0	-2	0	1,	
Compressibility Resilience	-I	- I	-2	Visibility		-2	3	13	
Viscosity	I	-I	-1	Luminous efficiency		-2	3	13	
Viscosity	1	1	1				3	-	

^{*} For these formulæ the numbers in the last column are the exponents of F where F refers to the luminous flux. For definitions of these quantities see Table 299, page 259.

FUNDAMENTAL AND DERIVED UNITS.

Conversion Factors.

(b) DERIVED UNITS.

						Co	ONVE	RSIO	n Fac	CTOR.				
NAME OF UNIT. (Electric and magnetic.)]		rosta tem		1	ectro		netic	emu esu †]	sy	natio stem	
		x	у	=	v	00	y	Z	v		x	у	z	v
Quantity of electricity Electric displacement Electric surface density	Q D D	1 2 1 2 1 2	$-\frac{3}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$	-I -I	121212	121212	1 2 -3 2 -3 2	000	$-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$	c c	000	III	0 -2 -2	I I I
Electric field intensity Electric potential Electromotive force	E V E	121212	-12 12 12 12 12	-I -I	-12 -12 -12	121212	11(000)0000,00	-2 -2 -2	121212	1/c 1/c 1/c	I	III	0 0	0 0
Electrostatic capacity Dielectric constant Specific inductive capacity	C K	0 0 0	0 0	000	I	000	-I -2 0	2 2	-I -I 0	C ²	-I -I	000	0 -1	D I D
Current : : Electric conductivity	Ι γ ρ	1 2 0	82	-2 -1	1 I -I	0 0	$-\frac{1}{2}$ -2	-1 -1	$-\frac{1}{2}$ $-I$ I	C C ² I/C ²	0 -1	I 0 0	- I	0 0
Conductance	g R m	0 0 1/2	1 -1 \frac{1}{2}	- I O	I -I -½	0 1 2	-I I 8/2	1 -1 -1	-I I 1/2	c ² 1/c ² 1/c	-1 1 1	0 0 1	0 0 0	0 1
Quantity of magnetism Magnetic flux Magnetic field intensity	т Ф Н	121212	121212	0	$-\frac{1}{2}$ $-\frac{1}{2}$	1 2 1 2 1 2	322212	-1 -1	$-\frac{1}{2}$	1/c 1/c c	1 0	I I O	0 0 -I	I I
Magnetizing force	\mathcal{F}	121212	1/20/20/20/2	-2 -2 -2	121212	121212	-\frac{1}{2}\frac{1}{2}\frac{1}{2}	-1 -1	$-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$	c c c	0 0 0	o I I	-I 0	0 0
Magnetic moment Intensity magnetization Magnetic induction	J B	1 2 1 2 1 2	828282	000	$-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$	121212	521212 -1212	-1 -1	121212	1/c 1/c 1/c	I	I	1 -2 -2	1 1
Magnetic susceptibility Magnetic permeability Current density	κ μ —	O O 1/2	-2 -2 $-\frac{1}{2}$	2 2 -2	-I -I \frac{1}{2}	0 0 1/2	0 -\frac{3}{2}	0 0 -1	I I -1/2	1/c ² 1/c ² c	I	0 0 1	-I -I -2	I I O
Self-inductance	L M R	0 0	-I -I I	2 2 -2	-1 -1 I	0 0 0	1 -1	000	I I -I	1/C ² 1/C ² C ²	1 -1	000	000	I I - I
Thermoelectric power‡ Peltier coefficient‡	-	1 2 1 2	2	- I - I	$-\frac{1}{2}$	$\frac{1}{2}$	10/00/00/00	-2 -2	12+	1/c 1/c	1	1	0 0	o‡ o‡

^{*} As adopted by American Institute of Electrical Engineers, 1915. † c is the velocity of an electromagnetic wave in the ether = 3×10^{10} approximately. ‡ This conversion factor should include $[\theta^{-1}]$.

TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES.*

(1) CUSTOMARY TO METRIC.

-					III				
		LINE	AR.				CAPAC	ITY.	
	Inches to millimeters.	Feet to meters.	Yards to meters.	Miles to kilometers.		Fluid drams to milliliters or cubic centimeters.	Fluid ounces to milliliters.	Liquid quarts to liters.	Gallons to liters.
1 2 3 4 5 6 7 8	25.4001 50 8001 76.2002 101.6002 127.0003 152.4003 177.8004	0.304801 0.609601 0.914402 1.219202 1.524003 1.828804 2.133604	0.914402 1.828804 2.743205 3.657607 4.572009 5.486411 6.400813	1.60935 3.21869 4.82804 6.43739 8.04674 9.65608 11.26543	1 2 3 4 5 6 7 8	3.70 7.39 11.09 14.79 18.48 22.18 25.88	29.57 59.15 88.72 118.29 147.87 177.44 207.01	0.94633 1.89267 2.83900 3.78533 4.73167 5.67800 6.62433	3.78533 7.57066 11.35600 15.14133 18.92666 22.71199 26.49733
8 9	203.2004 228.6005	2.438405 2.743205	7.315215 8.229616	12.87478	9	29.57 33.27	236.58 266.16	7.57066 8.51700	30.28266
SQUARE.						WEIG	нт.		
	Square inches to square centimeters.	Square feet to square decimeters.	Square yards to square meters.	Acres to hectares.		Grains to milligrams.	Avoirdu- pois ounces to grams.	Avoirdu- pois pounds to kilo- grams.	Troy ounces to grams.
1 2 3 4 5 6 7 8 9	6.452 12.903 19.355 25.807 32.258 38.710 45.161 51.613 58.065	9.290 18.581 27.871 37.161 46.4 52 55.742 65.032 74.323 83.613	0.836 1.672 2.508 3.345 4.181 5.017 5.853 6.689 7.525	0.4047 0.8094 1.2141 1.6187 2.0234 2.4281 2.8328 3.2375 3.6422	1 2 3 4 5 6 7 8	64.7989 129.5978 194.3968 259.1957 323.9946 388.7935 453.5924 518.3913 583.1903	28.3495 56.6991 85.0486 113.3981 141.7476 170.0972 198.4467 226.7962 255.1457	0.45359 0.90718 1.36078 1.81437 2.26796 2.72155 3.17515 3.62874 4.08233	31.10348 62.20696 93.31044 124.41392 155.51740 186.62088 217.72437 248.82785 279.93133
		CUBI	C.						
	Cubic inches to cubic centimeters.	Cubic feet to cubic meters.	Cubic yards to cubic meters.	Bushels to hectoliters.		I Gunter's I sq. statu I fathom	ite mile =	20.1168 259.000 1.829	meters. hectares. meters.
1 2 3 4 5 6 7 8 9	16.387 32.774 49.161 65.549 81.936 98.323 114.710 131.097 147.484	0.02832 0.05663 0.08495 0.11327 0.14159 0.16990 0.19822 0.22654 0.25485	0.765 1.529 2.294 3.058 3.823 4.587 5.352 6.116 6.881	0.35239 0.70479 1.05718 1.40957 1.76196 2.11436 2.46675 2.81914 3.17154		1 nautical 1 foot 1 avoir. po 15432.35639	und =	1853.25 0.30480: 453.59242; 1.000 l	

According to an executive order dated April 15, 1893, the United States yard is defined as 3600/3937 meter, and

According to an executive order dated April 15, 1893, the United States yard is defined as 3000/3037 meter, and the avoirdupois pound as 1/2.2046 kilogram.

I meter (international prototype) = 1553164.13 times the wave-length of the red Cd. line. Benoit, Fabry and Perot. C. R. 144, 1007 differs only in the decimal portion from the measure of Michelson and Benoit 14 years earlier. The length of the nautical mile given above and adopted by the U. S. Coast and Geodetic Survey many years ago, is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spheroid of 945)

roid of 1866).

* Quoted from sheets issued by the United States Bureau of Standards.

TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES.

(2) METRIC TO CUSTOMARY.

	(2) METRIC TO COSTOMARY.											
		LINEA	AR.					CAPA	CITY	₹.		
	Meters to inches.	Meters to feet.	Meters to yards.	Kilometers to miles.		Millili- ters or cubic cen- timeters to fluid drams.	lite	rs to	iters to uarts.	Deca- liters to gallons.	Hecto- liters to bushels.	
1 2 3 4 5 6 7 8	39.3700 78.7400 118.1100 157.4800 196.8500 236.2200 275.5900 314.9600 354.3300	3.28083 6.56167 9.84250 13.12333 16.40417 19.68500 22.96583 26.24667 29.52750	1.093611 2.187222 3.280833 4.374444 5.468056 6.561667 7.655278 8.748889 9.842500	0.62137 1.24274 1.86411 2.48548 3.10685 3.72822 4.34959 4.97096 5.59233	1 2 3 4 5 6 7 8	0.27 0.54 0.81 1.08 1.35 1.62 1.89 2.16 2.43	0.6 1.6 1.6 1.6 2.6 2.7	576 2. 514 3. 553 4. 591 5. 529 6. 667 7. 705 8.	0.567 1134 1701 2268 2836 3403 3970 4537 5104	2.6418 5.2836 7.9253 10.5671 13.2089 15.8507 18.4924 21.1342 23.7760	5.6756 8.5135 11.3513 14.1891 17.0269 19.8647 22.7026	
		SQUAI	RE.	,				WEI	СНТ.			
	Square centimeters to square inches.	Square meters to square feet.	Square meters to square yards.	Hectares to acres.		Milli- grams to grains.		Kilo- grams to grains.	o gr	Hecto- rams to ounces ordupois.	Kilo- grams to pounds avoirdupois.	
1 2 3 4 5 6 7 8 9	0.1550 0.3100 0.4650 0.6200 0.7750 0.9300 1.0850 1.2400 1.3950	10.764 21.528 32.292 43.055 53.819 64.583 75.347 86.111 96.875	1.196 2.392 3.588 4.784 5.980 7.176 8.372 9.568 10.764	2.471 4.942 7.413 9.884 12.355 14.826 17.297 19.768 22.239	1 2 3 4 5 6 7 8 9	0.01543 0.03086 0.04630 0.06173 0.07716 0.09259 0.10803 0.12346		15432.3 30864.7 46297.0 61729.2 77161.7 92594.1 108026.2 123458.8	707 10 13 14 18 17 14 21 149 24 35 28	.5274 .0548 .5822 .1096 .6370 .1644 .6918 .2192 .7466	2.20462 4.40924 6.61387 8.81849 11.02311 13.22773 15.43236 17.63698 19.84160	
-		CUBI	C.	,	WEIGHT.							
	Cubic centimeters to cubic inches.	Cubic decimeters to cubic inches.	Cubic meters to cubic feet.	Cubic meters to cubic yards.		Quintals pounds		tonnes	liers or to pour av.		ilograms o ounces Troy.	
1 2 3 4 5 6 7 8 9	0.0610 0.1220 0.1831 0.2441 0.3051 0.3661 0.4272 0.4882 0.5492	61.023 122.047 183.070 244.094 305.117 366.140 427.164 488.187 549.210	35·314 70.269 105·943 141·258 176·572 211·887 247·201 282·516 317·830	1.308 2.616 3.924 5.232 6.540 7.848 9.156 10.464 11.771	1 2 3 4 5 6 7 8 9	220. 440. 661. 881. 1102. 1322. 1543. 1763.	92 39 85 31 77 24	13 15 17	204.6 409.2 613.9 818.5 023.1 227.7 432.4 637.0 841.6	10 10 20 2	32.1507 64.3015 96.4522 28.6030 60.7537 92.9045 25.0552 57.2059 89.3567	

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Committee, two ingots were cast of pure platinum-iridium in the proportion of 9 parts of the former to 1 of the latter metal. From one of these a certain number of kilograms were prepared, from the other a definite number of meter bars. These standards of weight and length were intercompared, without preference, and certain ones were selected as International prototype standards. The others were distributed by lot, in September, 1880, to the different governments, and are called National prototype standards. Those apportioned to the United States were received in 1890, and are kept at the Bureau of Standards in Washington, D. C.

The metric system was legalized in the United States in 1866.

The International Standard Meter is derived from the Mètre des Archives, and its length is defined by the distance between two lines at o^o Centigrade, on a platinum-iridium bar deposited at the International Bureau of Weights and Measures.

Weights and Measures.

The International Standard Kilogram is a mass of platinum-iridium deposited at the same place, and its weight in vacuo is the same as that of the Kilogram des Archives.

The liter is equal to the quantity of pure water at 4° C (760 mm. Hg. pressure) which weighs 1 kilogram and = 1.000027 cu. dm. (Trav. et Mem. Bureau Intern. des P. et M. 14, 1910, Benoit.)

MISCELLANEOUS EQUIVALENTS OF U. S. AND METRIC WEIGHTS AND MEASURES.*

(For other equivalents than those below, see Table 3.)

LINEAR MEASURES.

 $I \text{ mil } (.001 \text{ in.}) = 25.4001 \,\mu$ 1 in. = .000015783 mile 1 hand (4 in.) = 10.16002 cm 1 link (.66 ft.) = 20.11684 cmI span.(0 in.) = 22.86005 cmI = 1.828804 m1 rod (25 links) = 5.020210 m 1 chain (4 rods) = 20.11684 m 1 light year $(9.5 \times 10^{12} \text{ km}) = 5.9 \times 10^{12}$ miles I par sec $(31 \times 10^{12} \text{ km}) = 10 \times 10^{12} \text{ miles}$ $\frac{1}{32}$ in. = .794 mm $\frac{1}{64}$ in. = .397 mm $\frac{1}{6}$ in. = 1.588 mm $\frac{1}{8}$ in. = 3.175 mm $\frac{1}{2}$ in. = 12.700 mm in. = 6.350 mm I Ångström unit = .0000000001 m I micron $(\mu) = .000001 \text{ m} = .00003937 \text{ in.}$ I millimicron $(m\mu) = .000000001 \text{ m}$ 1 m = 4.970960 links = 1.093611 yds.

= .198838 rod = .0497096 chain SOUARE MEASURES.

I sq. link (62.7264 sq. in.) = 404.6873 cm²
I sq. rod (625 sq. links) = 25.29295 m²
I sq. chain (16 sq. rods) = 404.6873 m²
I acre (10 sq. chains) = 4046.873 m²
I sq. mile (640 acres) = 2.589998 km²
I km² = .3861006 sq. mile
I m² = 24.7104 sq. links = 10.76387 sq. ft.
= .039537 sq. rod. = .00247104 sq. chain

CUBIC MEASURES.

1 board foot (144 cu. in) = 2359.8 cm³ 1 cord (128 cu. ft.) = 3.625 m³

CAPACITY MEASURES.

I minim (M) = .0616102 ml
I fl. dram (60M) = 3.69661 ml
I fl. oz. (8 fl. dr.) = 1.80469 cu, in.
= 29.5729 ml
I gill (4 fl. oz.) = 7.21875 cu, in. = 118.292 ml
I liq. pt. (28.875 cu, in.) = .473167 l
I liq. qt. (57.75 cu, in.) = .946333 l
I gallon (4 qt., 231 cu, in.) = 3.785332 l
I dry pt. (33.6003125 cu, in.) = .550599 l
I dry qt. (67.200625 cu, in.) = 1.101198 l
I pk. (8 dry qt., 537.605 cu, in.) = 8.80958 l
I bu. (4 pk., 2150.42 cu, in.) = 35.2383 l
I firkin (9 gallons) = 34.06799 l
I liter = .264478 gal. = 1.05071 liq. qt.
= 33.8147 fl. oz. = 270.518 fl. dr.
I ml = 16.2311 minims.
I dkl = 18.620 dry pt. = 9.08102 dry qt.

= 1.13513 pk. = .28378 bu.

MASS MEASURES.

Avoirdupois weights.

1 grain = .064798918 g 1 dram av. (27.34375 gr.) = 1.771845 g 1 oz. av. (16 dr. av.) = 28.349527 g

1 pd. av. (16 oz. av. or 7000 gr.)

= 14.583333 oz. ap. (5) or oz. t. = 1.2152778 or 7000/5760 pd. ap or t.

= 453.5924277 g

I kg = 2.204622341 pd. av.

1 g = 15.432356 gr. = .5643833 av. dr. = .03527396 av. oz.

1 short hundred weight (100 pds.)

= 45.359243 kg

I long hundred weight (II2 pds.) = 50.802352 kg

1 short ton (2000 pds.) = 907.18486 kg

1 long ton (2240 pd.) = 1016.04704 kg

1 metric ton = 0.98420640 long ton = 1.1023112 short tons

Troy weights.

r pennyweight (dwt., 24 gr.) = 1.555174 g; gr., oz., pd. are same as apothecary

A pothecaries' weights.

I gr. = 64.798918 mg I scruple (Θ , 20 gr.) = 1.2959784 g I dram (\Im , 3 Θ) = 3.8879351 g I oz. (\Im , 8 \Im) = 31.103481 g I pd ($12\Im$, 5760 gr.) = 373.24177 g I g = 15.432356 gr. = 0.771618 Θ = 0.2572059 \Im = 0.3215074 \Im I kg = 32.150742 \Im = 2.6792285 pd.

- 1 metric carat = 200 mg = 3.0864712 gr.
- U. S. ½ dollar should weigh 12.5 g and the smaller silver coins in proportion.

^{*} Taken from Circular 47 of the U.S. Bureau of Standards, 1915, which see for more complete tables.

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES.*

(1) METRIC TO IMPERIAL.

(For U.S. Weights and Measures, see Table 3.)

LINEAR MEASURE.

```
I millimeter (mm.)
                             0.03937 in.
   (.001 m.)
I centimeter (.o. m.)
                                      44
                             0.39370
I decimeter (.I m)
                             3.93701
                          39.370113 "
3.280843 ft.
I METER (m.)
                             1.09361425 yds.
1 dekameter
                     . ==
                            10.93614
  (10 m.)
I hectometer
                   . = 109.361425
   (100 m.)
I kilometer
                             0.62137 mile.
   (1,000 m.)
1 myriameter
                            6.21372 miles.
   (10,000 m.)
I micron
                             0.001 mm.
```

SOUARE MEASURE.

```
1 sq. centimeter . . . = 0.1550 sq. in.
1 sq. decimeter
                      } = 15.500 sq. in.
   (100 sq. centm.)
                       = \ 10.7639 sq. ft.
I sq. meter or centi-
                          1.1960 sq. yds.
   are (100 sq. dcm.) §
I ARE (100 sq. m.)
                       == 119.60 sq. yds.
I hectare (100 ares
                            2.4711 acres.
   or 10,000 sq. m.)
```

CUBIC MEASURE.

```
I cub. centimeter
   (c.c.) (1,000 \text{ cubic}) = 0.0610 \text{ cub. in.}
   millimeters)
I cub. decimeter
   (c.d.) (1,000 cubic \} = 61.024
   centimeters)
I CUB. METER
                            35.3148 cub. ft.
   or stere
                             1.307954 cub. yds.
   (1,000 c.d.)
```

MEASURE OF CAPACITY.

```
I milliliter (ml.) (.001 )
                                                                                                                                                                              == 0.0610 cub. in.
                     liter)
                                                                                                                                                                              = { 0.61024 "
I centiliter (.o. liter)
                                                                                                                                                                                                             0.070 gill.
I deciliter (.I liter) .
                                                                                                                                                                              AND DESCRIPTION OF THE PERSON 
                                                                                                                                                                                                          0.176 pint.
I LITER (1,000 cub.
                     centimeters or I
                                                                                                                                                                              200
                                                                                                                                                                                                        1.75980 pints.
                     cub. decimeter)
I dekaliter (Ioliters)
                                                                                                                                                             . = 2.200 gallons.
r hectoliter (100 ")
                                                                                                                                                           . = 2.75 bushels.
I kiloliter (1,000 ")
                                                                                                                                                           \cdot = 3.437 quarters.
```

APOTHECARIES' MEASURE.

t cubic centimeter (1) e co.3520 fluid ounce.
gram w't) co.28157 fluid drachm.
15.43236 grains weight. I cub. millimeter = 0.01693 minim.

AVOIRDUPOIS WEIGHT.

```
1 milligram (mgr.) .
                        . = 0.01543 \text{ grain.}
1 centigram (.01 gram.) = 0.15432
                     " ) = 1.54324 grains.
I decigram (.I
                         \cdot = 15.43236
I GRAM .
1 \text{ dekagram (10 gram.)} = 5.64383 \text{ drams.}
I hectogram (100 ") = 3.52739 oz.
I KILOGRAM (1,000") = \begin{cases} 2.2046223 \text{ lb} \\ 15432.3564 \end{cases}
                                      grains.
1 myriagram (10 kilog.) =22.04622 lbs.
I quintal (100 "
                        ) = 1.96841 \text{ cwt.}
I millier or tonne
                        = 0.9842 \text{ ton.}
   (1,000 kilog.) (
```

TROY WEIGHT.

APOTHECARIES' WEIGHT.

Note.—The Meter is the length, at the temperature of oo C., of the platinum-iridium bar deposited at the International Bureau of Weights and Measures at Sevres, near Paris, France.

The present legal equivalent of the meter is 39,370113 inches, as above stated.
The KILOGRAM is the mass of a platinum-iridium weight deposited at the same place.
The LITER contains one kilogram weight of distilled water at its maximum density (4° C.), the barometer being

*In accordance with the schedule adopted under the Weights and Measures (metric system) Act, 1897.

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES.

(2) METRIC TO IMPERIAL.

(For U.S. Weights and Measures, see Table 3.)

	LII	NEAR MEA	SURE.			ME.	ASURE OF	CAPACITY	
	Millimeters to inches.	Meters to feet.	Meters to yards.	Kilo- meters to miles.		Liters to pints	Dekaliters to gallons	Hectoliters to busnels.	Kiloliters to quarters.
1 2 3 4 5 6 7 8 9	0.03937011 0.07874023 0.11811034 0.15748045 0.19685056 0.23622068 0.27559079 0 31496090 0.35433102	3,28084 6,56169 9,84253 13,12337 16,40421 19,68506 22,96590 26,24674 29,52758	1.09361 2.18723 3.28084 4.37446 5.46807 6.56169 7.65530 8.74891 9.84253	0.62137 1.24274 1.86412 2.48549 3.10686 3.72823 4.34960 4.97097 5.59235	1 2 3 4 5 6 7 8 9	1.75980 3.51961 5.27941 7.03921 8.79902 10.55882 12.31862 14.07842 15.83823	2.19975 4.39951 6.59926 8.79902 10.99877 13.19852 15.39828 17.59803 19.79778	2.74969 5.4993'8 8.24908 10.99877 13.74846 16.49815 19.24785 21.99754 24.74723	3.43712 6.87423 10.31135 13.74846 17.18558 20.62269 24.05981 27.49692 30.93404
SQUARE MEASURE.						w	EIGHT (Avo	oirdupois).	
	Square centimeters to square inches.	Square meters to square feet.	Square meters to square yards.	Hectares to acres.		Milli- grams to grains.	Kilograms to grains.	Kilo- grams to pounds,	Quintals to hundred- weights.
1 2 3 4 5 6 7 8	0.15500 0.31000 0.46500 0.62000 0.77500 0.93000 1.08500	10.76393 21.52786 32.29179 43.05572 53.81965 64.58357 75.34750	1.19599 2.39198 3.58798 4.78397 5.97996 7.17595 8.37194	2.4711 4 9421 7.4132 9.8842 12.3553 14.8263 17.2974	1 2 3 4 5 6 7 8	0.01543 0.03086 0.04630 0.06173 0.07716 0.09259 0.10803	15432.356 30864.713 46297.069 61729.426 77161.782 92594.138 108026.495	2.20462 4.40924 6.61387 8.81849 11.02311 13.22773 15.43236	1.96841 3.93683 5.90524 7.87365 9.84206 11.81048 13.77889
9	1.24000	86 11143 96.87536	9.56794 10.76393	19.7685	9	0.12346 0.13889	123458.851	17.63698	15.74730
	CUBIC	MEASURE		APOTHE- CARIES' MEASURE.	A	voirdupois (cont.)	TROY W	EIGHT.	APOTHE- CARIES' WRIGHT.
	Cubic decimeters to cubic inches.	Cubic meters to cubic feet.	Cubic meters to cubic yards.	Cub. cen- timeters to fluid drachms.		Milliers or tonnes to tons.	Grams to ounces Troy,	Grams to penny- weights.	Grams to scruples.
1 2 3 4 5	61.02390 122.04781 183.07171 244.09561 305.11952	35.31476 70.62952 105.94428 141.25904 176.57379	1.30795 2.61591 3.92386 5.23182 6.53977	0.28157 0.56314 0.84471 1.12627 1.40784 1.68941	1 2 3 4 5	0.98421 1.96841 2.95262 3.93683 4.92103	0.03215 0.06430 0.09645 0.12860 0.16075	0.64301 1.28603 1.92904 2.57206 3.21507	0.77162 1.54324 2.31485 3.08647 3.85809
7 8 9	366.14342 427.16732 488.19123 549.21513	211.86855 247.20331 282.51807 317.83283	7.84772 9.15568 10.46363 11.77159	1.08941 1.97098 2.25255 2.53412	7 8 9	5.90524 6.88944 7.87365 8.85786	0.19290 0.22506 0.25721 0.28936	3.85609 4.50110 5.14412 5.78713	5.40132 6.17294 6.94456

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES.

(3) IMPERIAL TO METRIC.

(For U.S. Weights and Measures, see Table 3.)

LINEAR MEASURE.

1 inch =	25.400 milli- meters.
1 foot (12 in.) =	0.30480 meter.
I YARD (3 ft.) = I pole ($5\frac{1}{2}$ yd.) =	0.914399 " 5.0292 meters.
I chain (22 yd. or }	20.1168 "
100 links) 1 1 furlong (220 yd.) =	201.168 "
1 mile (1,760 yd.) . ==	1.6093 kilo- meters.

SOUARE MEASURE.

1 square inch = 1 1 sq. ft. (144 sq. in.) = 1 1 sq. varp (0 sq. ft) = 1	6.4516 sq. centimeters. 9.2903 sq. decimeters. 0.836126 sq.
I SQ. YARD (9 sq. ft.) = I perch (30 $\frac{1}{4}$ sq. yd.) = I rood (40 perches) = I ACRE (4840 sq. yd.) =	meters. 25.293 sq. meters. 10.117 ares. 0.40468 hectare.
1 sq. mile (640 acres) =	259.00 hectares.

CUBIC MEASURE.

```
I cub. inch = 16.387 cub. centimeters.

I cub. foot (1728) = 0.028317 cub. meter, or 28.317 cub. decimeters.

I CUB. YARD (27) = 0.76455 cub. meter.

cub. ft.)
```

APOTHECARIES' MEASURE.

```
1 gallon (8 pints or 160 fluid ounces) = 4.5459631 liters, (60 minims) = {28.4123 cubic centimeters. (60 minims) = {28.515 cubic centimeters. (60 minim) (0.91146 grain weight) = {28.4123 cubic centimeters. (90.91146 centimeters.
```

Note. — The Apothecaries' gallon is of the same capacity as the Imperial gallon.

MEASURE OF CAPACITY.

```
I gill . . . . . . = 1.42 deciliters.
I pint (4 gills) . . . = 0.568 liter.
I quart (2 pints) . . = 1.136 liters.
I GALLON (4 quarts) = 4.5459631 "
I peck (2 galls.) . . = 9.092 "
I bushel (8 galls.) . . = 3.637 dekaliters.
I quarter (8 bushels) = 2.909 hectoliters.
```

AVOIRDUPOIS WEIGHT.

```
{64.8 milli-
r grain .
                           grams.
ı c'ram .
                   . ===
                          1.772 grams.
1 ounce (16 dr.). .=
                         28.350
1 POUND (16 oz. or ) =
                          0.45359243 kilogr.
   7,000 grains)
                                        66
I stone (14 lb.) .
                          6.350
                  . =
1 quarter (28 lb.) .=
                                        66
                         12.70
                                        66
                         50.80
I hundredweight !
   (112 lb.)
                          0.5080 quintal.
                         1.0160 tonnes
                          or 1016 kilo-
I ton (20 cwt.) . =
                          grams.
```

TROY WEIGHT.

```
1 Troy ounce (480 } = 31.1035 grams.
1 pennyweight (24 } = 1.5552 "
```

Note. — The Troy grain is of the same weight as the Avoirdupois grain.

APOTHECARIES' WEIGHT.

```
I ounce (8 drachms) = 31.1035 grams.
I drachm, 3 i (3 scru-
ples) { = 3.888 "
I scruple, 9 i (20 } = 1.296 "
```

Note. — The Apothecaries' ounce is of the same weight as the Troy ounce. The Apothecaries' grain is also of the same weight as the Avoirdupois grain.

Note. — The Yard is the length at 62° Fahr., marked on a bronze bar deposited with the Board of Trade.

The Pound is the weight of a piece of platinum weighed in vacuo at the temperature of 0° C., and which is also deposited with the Board of Trade.

The Gallon contains to lb. weight of distilled water at the temperature of 62° Fahr., the barometer being at inches.

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES.

(4) IMPERIAL TO METRIC.

(For U.S. Weights and Measures, see Table 3.)

	Li	NEAR ME	ASURE.			MEA	ASURE OF	CAPACITY	
	Inches to centimeters.	Feet to meters.	Yards to meters.	Miles to kilo- meters.		Quarts to liters.	Gallons to liters.	Bushels to dekaliters.	Quarters to hectoliters.
1 2 3 4 5 6 7 8 9	2.539998 5.079996 7.619993 10.159991 12.699989 15.239987 17.779984 20.319982 22.859980	0.30480 0.60960 0.91440 1.21920 1.52400 1.82880 2.13360 2.43840 2.74320	0.91440 1.82880 2.74320 3.65760 4.57200 5.48640 6.40080 7.31519 8.22959	1.60934 3.21869 4.82803 6.43737 8.04671 9.65606 11.26540 12.87474 14.48408	1 2 3 4 5 6 7 8 9	1.13649 2.27298 3.40947 4.54596 5.68245 6.81894 7.95544 9.09193 10.22842	4.54596 9.09193 13.63789 18.18385 22.72982 27.27578 31.82174 36.36770 40.91367	3.63677 7.27354 10.91031 14.54708 18.18385 21.82062 25.45739 29.09416 32.73093	2.90942 5.81883 8.72825 11.63767 14.54708 17.45650 20.36591 23.27533 26.18475
	SQ	UARE ME	ASURE.			W	EIGHT (Avo	irdupois).	
	Square inches to square centimeters.	Square feet to square decimeters.	Square yards to square meters.	Acres to hectares.		Grains to milli- grams.	Ounces to grams.	Pounds to kilo- grams.	Hundred- weights to quintals.
1 2 3 4 5 6 7 8 9	6.45159 12.90318 19.35477 25.80636 32.25794 38.70953 45.16112 51.61271 58.06430	9.29029 18.58058 27.87086 37.16115 46.45144 55.74173 65.03201 74.32230 83.61259	0.83613 1.67225 2.50838 3.34450 4.18063 5.01676 5.85288 6.68901 7.52513	0.40468 0.80937 1.21405 1.61874 2.02342 . 2.42811 2.83279 3.23748 3.64216	1 2 3 4 5 6 7 8 9	64.79892 129.59784 194.39675 259.19567 323.99459 388.79351 453.59243 518.39135 583.19026	28.34953 56.69905 85.04858 113.39811 141.74763 170.09716 198.44669 226.79621 255.14574	0.45359 0.90718 1.36678 1.81437 2.26796 2.72155 3.17515 3.62874 4.08233	0.50802 1.01605 1.52407 2.03209 2.54012 3.04814 3.55616 4.06419 4.57221
	CUBIC	MEASURI	Σ.	APOTHE- CARIES' MEASURE.	A	voirdupois (cont.).	TROY W	RIGHT .	APOTHE- CARIES' WEIGHT
	Cubic inches to cubic centimeters.	Cubic feet to cubic meters.	Cubic yards to cubic meters.	Fluid drachms to cubic centi- meters.		Tons to milliers or tonnes.	Ounces to grams.	Penny- weights to grams.	Scruples to grams.
1 2 3 4 5 6 7 8 9	16.38702 32.77404 49.16106 65.54808 81.93511 98.32213 114.70915 131.09617 147.48319	0.02832 0.05663 0.08495 0.11327 0.14158 0.16990 0.19822 0.22653 0.25485	0.76455 1.52911 2.29366 3.05821 3.82276 4.58732 5.35187 6.11642 6.88098	3.55153 7.10307 10.65460 14.20613 17.75767 21.30920 24.86074 28.41227 31.96380	1 2 3 4 5 6 7 8 9	1.01605 2.03209 3.04814 4.06419 5.08024 6.09628 7.11233 8.12838 9.14442	31.10348 62.20696 93.31044 124.41392 155.51740 186.62088 217.72437 248.82785 279.93133	1.55517 3.11035 4.66552 6.22070 7.77587 9.33104 10.88622 12.44139 13.99657	1.29598 2.59196 3.88794 5.18391 6.47989 7.77587 9.07185 10.36783 11.66381

DERIVATIVES AND INTECRALS.*

$\begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$			C m 7	x^{n+1}
$d \frac{u}{v} = \left(\frac{v du}{dx} - \frac{dv}{dx}\right) dx$ $d x^n = nx^{n-1} dx$ $d f(u) = d \frac{f(u)}{du} \frac{du}{dx} dx$ $d e^x = e^x dx$ $d \log_e x = \frac{1}{x} dx$ $d \sin x = \cos x dx$ $d \tan x = \sec^2 x dx$ $d \cot x = -\cos^2 x dx$ $d \sin x = \cos x dx$ $f(a^2 + x^2)^{-1} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} = \frac{1}{a} \sin^{-1} \frac{x}{a^{-1}} \cos^{-1} x$ $d \cos x = -\sin x dx$ $d \cot x = -\cos^2 x dx$ $d \sin x = (1 - x^2)^{-1} dx$ $d \cos^{-1} x = (1 + x^2)^{-1} dx$ $d \cos^{-1} x = -(1 + x^2)^{-1}$	d ax	= a dx	$\int x^n dx$	$=\frac{1}{n+1}$, unless $n=-1$
$d \frac{u}{v} = \left(\frac{v du - dv}{v^2}\right) dx$ $d x^n = nx^{n-1} dx$ $d f(u) = d \frac{f(u)}{du} \frac{du}{dx} dx$ $d e^x = e^x dx$ $d \log_e x = \frac{1}{x} dx$ $d \sin x = \cos x dx$ $d \tan x = \sec^2 x dx$ $d \cot x = -\cos^2 x dx$ $d \sin x = (1-x^2)^{-1} dx$ $d \cos^2 x = -(1-x^2)^{-1} dx$ $d \cos^2 x = -(1-x$	2	$-\left(u\frac{dv}{du}\right)\frac{du}{du}$	$\int dx$	— log #
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	auv	$-\left(u \frac{dx}{dx} + v \frac{dx}{dx} \right) ax$	$\int x$	- log x
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		du do		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	$\left(v\frac{d}{dx}-u\frac{d}{dx}\right)$		
	$d = \frac{\omega}{v}$	$=$ $\left(\frac{a}{g^2}\right)^{ax}$	$\int e^x dx$	$=e^x$
	d vn	$= nx^{n-1} dx$	Coaxda	= I cax
$d e^{2x} = e^{x} dx$ $d e^{2x} = a e^{2x} dx$ $d \log_{e} x = \frac{1}{x} dx$ $d \sin x = \cos x dx$ $\int \log_{e} x dx = x \log_{e} x - x$ $\int (a^{2} + x^{2})^{-1} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} = \frac{1}{a} \sin^{-1} \frac{x}{\sqrt{x^{2} + a^{2}}}$ $\int (a^{2} - x^{2})^{-1} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} = \frac{1}{a} \sin^{-1} \frac{x}{\sqrt{x^{2} + a^{2}}}$ $\int (a^{2} - x^{2})^{-1} dx = \frac{1}{a} \cos_{e} \frac{a + x}{a - x}$ $\int (a^{2} - x^{2})^{-1} dx = \sin_{e} \frac{1}{a} \sin^{-1} \frac{x}{\sqrt{x^{2} + a^{2}}}$ $\int (a^{2} - x^{2})^{-1} dx = \sin_{e} \frac{1}{a} \cos_{e} \frac{a + x}{a - x}$ $\int (a^{2} - x^{2})^{-1} dx = \sin_{e} \frac{1}{a} \cos_{e} \frac{a + x}{a - x}$ $\int (a^{2} - x^{2})^{-1} dx = \sin_{e} \frac{1}{a} \cos_{e} \frac{a + x}{a - x}$ $\int (a^{2} - x^{2})^{-1} dx = \sin_{e} \frac{1}{a} \cos_{e} \frac{a + x}{a - x}$ $\int (a^{2} - x^{2})^{-1} dx = \sin_{e} \frac{1}{a} \cos_{e} \frac{a + x}{a - x}$ $\int (a^{2} - x^{2})^{-1} dx = \sin_{e} \frac{1}{a} \cos_{e} \frac{a + x}{a - x}$ $\int (a^{2} - x^{2})^{-1} dx = \sin_{e} \frac{1}{a} \cos_{e} \frac{a + x}{a - x}$ $\int (a^{2} - x^{2})^{-1} dx = \sin_{e} \frac{1}{a} \cos_{e} \frac{a + x}{a - x}$ $\int (a^{2} - x^{2})^{-1} dx = \sin_{e} $		7000	J C WA	a
$d e^{2x} = e^{x} dx$ $d e^{2x} = a e^{2x} dx$ $d \log_{e} x = \frac{1}{x} dx$ $d \sin x = \cos x dx$ $\int \log_{e} x dx = x \log_{e} x - x$ $\int (a^{2} + x^{2})^{-1} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} = \frac{1}{a} \sin^{-1} \frac{x}{\sqrt{x^{2} + a^{2}}}$ $\int (a^{2} - x^{2})^{-1} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} = \frac{1}{a} \sin^{-1} \frac{x}{\sqrt{x^{2} + a^{2}}}$ $\int (a^{2} - x^{2})^{-1} dx = \frac{1}{a} \cos_{e} \frac{a + x}{a - x}$ $\int (a^{2} - x^{2})^{-1} dx = \sin_{e} \frac{1}{a} \sin^{-1} \frac{x}{\sqrt{x^{2} + a^{2}}}$ $\int (a^{2} - x^{2})^{-1} dx = \sin_{e} \frac{1}{a} \cos_{e} \frac{a + x}{a - x}$ $\int (a^{2} - x^{2})^{-1} dx = \sin_{e} \frac{1}{a} \cos_{e} \frac{a + x}{a - x}$ $\int (a^{2} - x^{2})^{-1} dx = \sin_{e} \frac{1}{a} \cos_{e} \frac{a + x}{a - x}$ $\int (a^{2} - x^{2})^{-1} dx = \sin_{e} \frac{1}{a} \cos_{e} \frac{a + x}{a - x}$ $\int (a^{2} - x^{2})^{-1} dx = \sin_{e} \frac{1}{a} \cos_{e} \frac{a + x}{a - x}$ $\int (a^{2} - x^{2})^{-1} dx = \sin_{e} \frac{1}{a} \cos_{e} \frac{a + x}{a - x}$ $\int (a^{2} - x^{2})^{-1} dx = \sin_{e} \frac{1}{a} \cos_{e} \frac{a + x}{a - x}$ $\int (a^{2} - x^{2})^{-1} dx = \sin_{e} \frac{1}{a} \cos_{e} \frac{a + x}{a - x}$ $\int (a^{2} - x^{2})^{-1} dx = \sin_{e} $	2 5 (01)	= d f(u) du dx	C 07 7	eax
	a j (u)	$-u - du \cdot dx \cdot dx$	$\int x e^{ax} dx$	$=\frac{1}{a^2}(ax-1)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$d e^x$	$=e^x dx$	$\int \log x dx$	$= r \log r - r$
	2 -07	— ar d		
	a eas	— a e ax	Ju av	
	$d \log_e x$	$=\frac{1}{x} dx$	$\int (a+bx)^n dx$	$= \underbrace{(a+bx)^{n+1}}$
		x	(0,00)	(n+1)b
	$\int dx^x$	$=x^x\left(1+\log_e x\right)$		
	d sin r	$=\cos x dx$	(1-2 -2\-1]	_ I tan=1 x _
		000 10 000) (a=+x=) - ax	a tan a
				I x
				$\frac{1}{a}\sin^{-1}\frac{1}{\sqrt{x^2+a^2}}$
	d cos m	$=$ $-\sin x dx$	C (2 2) 1 7	
	a cos 4	311 00	$\int (a^2-x^2)^{-1} dx$	$=\frac{1}{2a}\log\frac{1}{a-x}$
	d tan x	$= \sec^2 x dx$	[(a2 x2)-1 dr	$= \sin^{-1} \frac{x}{x}$ or $-\cos^{-1} \frac{x}{x}$
	a can a			
	$d \cot x$	$= -\csc^2 x dx$	$\int x(a^2 \pm x^2)^{-\frac{1}{2}} dx$	$=\pm(a^2\pm x^2)^{\frac{1}{2}}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$d \sec x$	$= \tan x \sec x dx$	$\int \sin^2 x dx$	$= -\frac{1}{2}\cos x \sin x + \frac{1}{2}x$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$d \csc x$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$d \sin^{-1} x$		$\int \sin x \cos x dx$	$=\frac{1}{2}\sin^2x$
	$d \cos^{-1} x$		$\int (\sin x \cos x)^{-1}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$d \tan^{-1} x$		$\int \tan x dx$	$= -\log \cos x$
	$d \cot^{-1} x$		$\int \tan^2 x dx$	$= \tan x - x$
				$= \log \sin x$
	$d \csc^{-1} x$	$= -x^{-1} (x^2 - 1)^{-\frac{1}{2}} dx$		
	$d \sinh x$			
	$d \cosh x$		$\int x \sin x dx$	$=\sin x - x\cos x$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	III .		$\int x \cos x dx$	$=\cos x + x \sin x$
				-
	$d \operatorname{csch} x$	$= -\operatorname{csch} x \cdot \operatorname{coth} x dx$	$\int \operatorname{sech} x dx$	$= 2 \tan^{-1} e^x = \operatorname{gd} u$
	$d \sinh^{-1} x$	$=(x^2+1)^{-\frac{1}{2}}dx$	$\int \operatorname{csch} x dx$	$= \log \tanh \frac{x}{a}$
	d cosh=1 m	$=(x^2-1)^{-\frac{1}{2}}dx$		4
$\int \sinh^2 x dx = \frac{1}{2} (\sinh x \cosh x - x)$	BT .	(/		
The second secon	4			2
$d \operatorname{csch}^{-1} x = -x^{-1} (x^2 + 1)^{-\frac{1}{2}} \qquad \int \sinh x \cosh x dx = \frac{1}{4} \cosh (2 x)$	1			
Sim wood way	u esen a	W (W 1)	J Shin w coon wa	

^{*} See also accompanying table of derivatives. For example: $f \cos x dx = \sin x + \text{constant}$.

$$(x+y)^{n} = x^{n} + \frac{n}{1} x^{n-1} y + \frac{n (n-1)}{2!} x^{n-2} y^{2} + \dots$$

$$\frac{n(n-1) \dots (n-m+1)}{m!} x^{n-m} y^{m} + \dots (y^{2} < x^{2})$$

$$(1 \pm x)^{n} = 1 \pm nx + \frac{n(n-1)x^{2}}{2!} \pm \frac{n(n-1)(n-2)x^{2}}{3!} + \dots + \frac{(\pm 1)^{k} n ! x^{k}}{(n-k)! k!} + \dots (x^{2} < 1)$$

$$(1 \pm x)^{-n} = 1 \mp nx + \frac{n (n+1)}{2!} x^{2} \mp \frac{n(n+1)(n+2)x^{2}}{3!} + \dots$$

$$(\mp 1)^{k} \frac{(n+k-1)x^{k}}{(n-1)! k!} + \dots (x^{2} < 1)$$

$$(1 \pm x)^{-1} = 1 \mp x + x^{2} \mp x^{3} + x^{4} \mp x^{5} + \dots$$

$$(x^{2} < 1)$$

$$(1 \pm x)^{-2} = 1 \mp 2x + 3x^{2} \mp 4x^{3} + 5x^{4} \mp 6x^{5} + \dots$$

$$(x^{2} < 1)$$

$$f(x+h) = f(x) + h f'(x) + \frac{h^{2}}{2!} f''(x) + \dots + \frac{h^{n}}{n!} f^{(n)}(x) + \dots$$

$$f(x) = f(x) + \frac{x}{1} f'(x) + \frac{x^{2}}{2!} f''(x) + \dots + \frac{x^{n}}{n!} f^{(n)}(x) + \dots$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$

$$e^{x} = 1 + x \log a + \frac{(x \log a)^{2}}{2!} + \frac{(x \log a)^{3}}{3!} + \dots$$

$$(x^{2} < \infty)$$

$$\log x = \frac{x-1}{x} + \frac{1}{2} \left(\frac{x-1}{x}\right)^{2} + \frac{1}{3} \left(\frac{x-1}{x}\right)^{3} + \dots$$

$$(x > \frac{1}{2})$$

$$= (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \dots$$
 (2>x>0)

$$= 2 \left[\frac{x-1}{x+1} + \frac{1}{3} \left(\frac{x-1}{x+1} \right)^3 + \frac{1}{5} \left(\frac{x-1}{x+1} \right)^5 + \dots \right]$$
 (x>0)

$$\log (t + x) = x - \frac{1}{2} x^2 + \frac{1}{3} x^3 - \frac{1}{4} x^4 + \dots$$
 (x²<1)

$$\sin x = \frac{1}{2i} \left(e^{ix} - e^{-ix} \right) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$
 (x²<\iii)

$$\cos x = \frac{1}{2} \left(e^{ix} + e^{-ix} \right) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = 1 - \text{versin } x$$
 (x²<\infty)

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62}{2835} x^9 + \dots$$
 $\left(x^2 < \frac{\pi^2}{4}\right)$

$$\sin^{-1} x = \frac{\pi}{2} - \cos^{-1} x = x + \frac{x^3}{6} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^5}{5} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{x^7}{7} + \dots$$
 (x²<1)

$$\tan^{-1} x = \frac{\pi}{2} - \cot^{-1} x = x - \frac{1}{3} x^3 + \frac{1}{5} x^5 - \frac{1}{7} x^7 + \dots$$
 (x2<1)

$$= \frac{\pi}{2} - \frac{1}{x} + \frac{1}{2x^3} - \frac{1}{5x^5} + \dots$$
 (x²>1)

$$\sinh x = \frac{1}{2} (e^x - e^{-x}) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$$
 (x²<\iii)

SERIES.

$$\cosh x = \frac{1}{2} (e^{x} + e^{-x}) = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \frac{x^{6}}{6!} + \dots \qquad (x^{2} < \infty)$$

$$\tanh x = x - \frac{1}{3} x^{3} + \frac{2}{15} x^{5} - \frac{17}{3!5} x^{7} + \dots \qquad (x^{2} < \frac{1}{4} \pi^{2})$$

$$\sinh^{-1} x = x - \frac{1}{2} \frac{x^{3}}{3} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^{5}}{5} - \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \frac{x^{7}}{7} + \dots \qquad (x^{2} < 1)$$

$$= \log 2x + \frac{1}{2} \frac{1}{2x^{2}} - \frac{1}{2} \frac{3}{4} \frac{1}{4x^{4}} + \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6x^{6}} - \dots \qquad (x^{2} > 1)$$

$$\cosh^{-1} x = \log 2x - \frac{1}{2} \frac{1}{2x^{2}} - \frac{1}{2} \frac{3}{4} \frac{1}{4x^{4}} + \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6x^{6}} - \dots \qquad (x^{2} > 1)$$

$$\tanh^{-1} x = x + \frac{1}{3} x^{3} + \frac{1}{5} x^{5} + \frac{1}{7} x^{7} + \dots \qquad (x^{2} < 1)$$

$$\gcd x = \phi = x - \frac{1}{6} x^{3} + \frac{1}{24} x^{6} - \frac{61}{5040} x^{7} + \dots \qquad (x \text{ small})$$

$$= \frac{\pi}{2} - \operatorname{sech} x - \frac{1}{2} \frac{\operatorname{sech}^{3} x}{3} - \frac{1}{2} \frac{3}{4} \frac{\operatorname{sech}^{5} x}{5} - \dots \qquad (x \text{ large})$$

$$x = \gcd^{-1} \phi = \phi + \frac{1}{6} \phi^{3} + \frac{1}{24} \phi^{5} + \frac{61}{5040} \phi^{7} + \dots \qquad (\phi < \frac{\pi}{2})$$

$$f(x) = \frac{1}{2} b_{0} + b_{1} \cos \frac{\pi x}{c} + b_{2} \cos \frac{2\pi x}{c} + \dots$$

$$+ a_{1} \sin \frac{\pi x}{c} + a_{2} \cos \frac{2\pi x}{c} + \dots (-c < x < c)$$

$$a_{m} = \frac{1}{c} \int_{-c}^{+c} f(x) \sin \frac{m \pi x}{c} dx$$

$$b_{m} = \frac{1}{c} \int_{-c}^{+c} f(x) \cos \frac{m \pi x}{c} dx$$

TABLE 8 .- MATHEMATICAL CONSTANTS.

$e = 2.71828 \ 18285$	Numbers. $\pi = 3.14159 26536$	Logarithms. 0.49714 98727
$e^{-1} = 0.36787 \ 94412$	$\pi^2 = 9.86960 44011$	0.99429 97454
$M = \log_{10}? = 0.43429 \ 44819$	$\frac{1}{\pi} = 0.31830 98862$	9.50285 01273
$(M)^{-1} = \log_e 10 = 2.30258 50930$	$\sqrt{\pi} = 1.77245 \ 38509$ $\frac{\sqrt{\pi}}{2} = 0.88622 \ 69255$	0.24857 49363
$\log_{10}\log_{10}e = 9.63778 \ 43113$	$\frac{\sqrt{"}}{2} = 0.88622 69255$	9-94754 49407
$\log_{10}2 = 0.3010299957$	$\frac{1}{\sqrt{\pi}} = 0.56418 \ 95835$	9.75142 50637
$\log_e 2 = 0.6931471806$	$\frac{2}{\sqrt{\pi}} = 1.12837 \ 91671$	0.05245 50593
$\log_{10} x = M.\log_e x$	$\sqrt{\frac{\pi}{2}} = 1.25331 \ 41373$	0.09805 99385
$\log_{B} x = \log_{e} x$. $\log_{B} e$	$\sqrt{\frac{2}{\pi}} = 0.79788 \ 45608$	9.90194 00615
$=\log_e x \div \log_e B$	$\frac{\pi}{4} = 0.78539 \text{ S}_{1}634$	9.89508 98814
$\log_e \pi = 1.14472 98858$	$\frac{\sqrt{\pi}}{4} = 0.44311 \ 34627$	9.64651 49450
$\rho = 0.47693 62762$	$\frac{4}{3}\pi = 4.18879 02048$	0.62208 86093
$\log \rho = 9.67846 \text{ o}3565$	$\frac{e}{\sqrt{2\pi}} = 1.08443 \ 75514$	0.03520 45477

TABLE 9.

n	1000.1	n^2	113	V 12	n	1000.1	n^2	n ⁸	V 22
10	100.000	100	1000	3.1623	65	15.3846	4225	274625	8.0623
II	90.9091	121	1331	3.3166	66	15.1515	4356	287496	8.1240
12	83.3333	144	1728	3.4641	67	14.9254	4489	300763	8.1854
13	76.9231	169	2197	3.6056	68	14.7059	4624	314432	8.2462
14	71.4286	196	2744	3.7417	69	14.4928	4761	328509	8.3066
15	66.6667	225 256	3375	3.8730	70	14.2857	4900 5041	343000 357911	8.3666 8.4261
17	58.8235	289	4913	4.1231	72	13.8889	5184	373248	8.4853
18	55.5556	324	5832	4.2426	73	13.6986	5329	389017	8.5440
19	52.6316	361	6859	4.3589	74	13.5135	5476	405224	8.6023
20	50.0000	400	8000	4.4721	75	13.3333	5625	421875	8.6603
21	47.6190	441	9261	4.5826	76	13.1579	5776 5929	438976 456533	8.7178
22 23	45.4545	529	12167	4.7958	77 78	12.8205	6084	474552	8.8318
24	41.6667	576	13824	4.8990	79	12.6582	6241	493039	8.8882
25	40.0000	625	15625	5.0000	80	12.5000	6400	51 2000	8.9443
26 27	38.4615	676 729	17576	5.0990	81 82	12.3457	6561	531441	9.0000
28	37.0370 35.7143	784	21952	5.2915	83	12.0482	6889	571787	9.1104
29	34.4828	841	24389	5.3852	84	11.9048	7056	592704	9.1652
30	33-3333	900	27000	5-4772	85	11.7647	7225	614125	9.2195
31	32.2581	961	29791	5.5678	86 87	11.6279	7396	636056 658503	9.2736
32	30.3030	1024	32768 35937	5.6569	88	11.4943	7569	681472	9.3274 9.3808
33 34	29.4118	1156	39304	5.8310	89	11.2360	7921	704969	9.4340
35	28.5714	1225	42875	5.9161	90	111.111	8100	729000	9.4868
36	27.7778	1296	46656	6.0000	91	10.9890	8281	753571 778688	9.5394
37 38	27.0270 26.3158	1369	50653 54872	6.1644	92 93	10.8696	8464	804357	9.5917
39	25.6410	1521	59319	6.2450	94	10.6383	8836	830584	9.6954
40	25.0000	1600	64000	6.3246	95	10.5263	9025	857375	9.7468
41	24.3902	1681	68921 74088	6.4807	96	10.4167	9216	884736 912673	9.7980 9.8489
42 43	23.8095 23.2558	1764		6.5574	97 9 8	10.3093	9409	9120/3	9.8995
44	22.7273	1936	79507 85184	6.6332	99	10.1010	9801	970299	9.9499
45	22.2222	2025	91125	6.7082	100	10.0000	10000	1000000	10.0000
46	21.7391	2116	97336	6.7823	101	9.90099	10201	1030301	10.0499
47 48	20.8333	2304	110592	6.9282	103	9.70874	10609	1001200	10.0995
49	20.4082	2401	117649	7.0000	104	9.61538	10816	1124864	10.1980
50	20.0000	2500	125000	7.0711	105	9.52381	11025	1157625	10.2470
51	19.6078	2601	132651	7.1414	106	9.43396	11236	1191016	10.2956
52	19.2308	2704 2809	140608	7.2111	107	9.34579	11449	1225043	10.3441
53 54	18.5185	2916	157464	7.3485	109	9.17431	11881	1295029	10.3923
55	18.1818	3025	166375	7.4162	110	9.09091	12100	1331000	10.4881
56	17.8571	3136	175616	7.4833	III	9.00901	12321		10.5357
57 58	17.5439	3249	185193	7.5498 7.6158	112	8.92857 8.84956	12544	1404928	10.5830
59	16.9492	3481	205379	7.6811	114	8.77193	12996	1481544	10.6771
60	16.6667	3600	216000	7.7460	115	8.69565	13225	1520875	10.7238
61	16.3934	3721	226981	7.8102	116	8.62069	13456	1 560896	10.7703
62	16.1290	3844	238328	7.8740	117	8.54701	13689	1601613	10.8167
64	15.6250	4096	262144	8.0000	119	8.40336	14161	1685159	10.9087
	1					1 33		1 33	

			OF F	NATURA					
72	1000.1	n^2	n ⁸	V 22	n	1000.1	n^2	n ³	V22
120	8.33333	14400	1728000	10.9545	175	5.71429	30625	5359375	13.2288
121	8.26446	14641	1771561	11.0000	176	5.68182	30976	5451776	13.2665
122	8.19672	14884	1815848	11.0454	177	5.64972	31329	5545233	13.3041
123	8.13008	15129	1860867	11.0905	178	5.61798	31684	5639752	13.3417
124	8.06452	15376	1906624	11.1355	179	5.58659	32041	5735339	13.3791
125	8.00000	15625	1953125	11.1803	180	5.55556	32400	5832000	13.4164
126	7.93651	15876	2000376	11.2250	181	5.52486	32761	5929741	13.4536
127	7.87402	16129	2048383	11.2694	182	5.49451	33124	6028568	13.4907
128	7.81250	16384	2097152	11.3137	183	5.46448	33489	6128487	13.5277
129	7.75194	16641	2146689	11.3578	184	5.43478	33856	6229504	13.5647
130	7.69231	16900	2197000	11.4018	185	5.40541	34225	6331625	13.6015
131	7.63359	17161	2248091	11.4455	186	5.37634	34596	6434856	13.6382
132	7.57576	17424	2299968	11.4891	187	5.34759	34969	6539203	13.6748
133	7.51880	17689	2352637	11.5326	188	5.31915	35344	6644672	13.7113
134	7.46269	17956	2406104	11.5758	189	5.29101	35721	67 512 69	13.7477
135	7.40741	18 225	2460375	11.6190	190	5.26316	36100	6859000	13.7840
136	7.35294	18496	2515456	11.6619	191	5.23560	36481	6967871	13.8203
137	7.29927	18769	2571353	11.7047	192	5.20833	36864	7077888	13.8564
138	7.24638	19044	2628072	11.7473	193	5.18135	37249	7189057	13.8924
139	7.19424	19321	2685619	11.7898	194	5.15464	37636	7301384	13.9284
140	7.14286	19600	2744000	11.8322	195	5.12821	38025	7414875	13.9642
141	7.09220	19881	280 3221	11.8743	196	5.10204	38416	7529536	14.0000
142	7.04225	20164	2863288	11.9164	197	5.07614	38809	7645373	14.0357
143	6.99301	20449	2924207	11.9583	198	5.05051	39204	7762392	14.0712
144	6.94444	20736	2985984	12.0000	199	5.02513	39601	7880599	14.1067
145	6.89655	21025	3048625	12.0416	200	5 00000	40000	8000000	14.1421
146	6.84932	21316	3112136	12.0830	201	4.97 51 2	40401	8120601	14.1774
147	6.80272	21609	3176523	12.1244	202	4.950 50	40804	8242408	14.2127
148	6.75676	21904	3241792	12.1655	203	4.9261 1	41209	8365427	14.2478
149	6.71141	22201	3307949	12.2066	204	4.90196	41616	8489664	14.2829
150	6.66667	22500	337 5000	12.2474	205	4.87805	42025	8615125	14.3178
151	6.62252	22801	3442951	12.2882	206	4.85437	42436	8741816	14.3527
152	6.57895	23104	351 1808	12.3288	207	4.83092	42849	8869743	14.3875
153	6.53595	23409	3581 577	12.3693	208	4.80769	43264	8998912	14.4222
154	6.49351	23716	3652264	12.4097	209	4.78469	43681	9129329	14.4568
155	6.45161	24025	3723875	12.4499	210	4.76190	44100	9261000	14.4914
156	6.41026	24336	3796416	12.4900	211	4.73934	44521	9393931	14.5258
157	6.36943	24649	3869893	12.5300	212	4.71698	44944	9528128	14.5602
158	6.32911	24964	3944312	12.5698	213	4.69484	45369	9663597	14.5945
159	6.28931	25281	4019679	12.6095	214	4.67290	45796	9800344	14.6287
160	6.25000	25600	4096000	12.6491	215	4.65116	46225	9938375	14.6629
161	6.21118	25921	4173281	12.6886	216	4.62963	46656	10077696	14.6969
162	6.17284	26244	4251528	12.7279	217	4.60829	47089	10218313	14.7309
163	6.13497	26569	4330747	12.7671	218	4.58716	47524	10360232	14.7648
164	6.09756	26896	4410944	12.8062	219	4.56621	47961	10503459	14.7986
165	6.06061	27225	4492125	12.8452	220	4.54545	48400	10648000	14.8324
166	6.02410	27556	4574296	12.8841	221	4.52489	48841	10793861	14.8661
167	5.98802	27889	46 57 463	12.9228	222	4.50450	49284	10941048	14.8997
168	5.95238	28224	4741632	12.9615	223	4.48430	49729	11089567	14.9332
169	5.91716	28561	48 26 809	13.0000	224	4.46429	50176	11239424	14.9666
170	5.88235	28900	4913000	13.0384	225	4.44444	50625	11390625	15.0000
171	5.84795	29241	5000211	13.0767	226	4 42478	51076	11543176	15.0333
172	5.81395	29584	5088448	13.1149	227	4.40529	51529	11697083	15.0665
173	5.78035	29929	5177717	13.1529	228	4.38596	51984	11852352	15.0997
174	5.74713	30276	5268024	13.1909	229	4.36681	52441	12008989	15.1327

12	1000.1	n^2	n^3	√n	72	1000.1	n ²	n ³	√n
230	4.34783	52900	12167000	15.1658	285	3.50877	81225	23149125	16.8819
231	4.32900	53361	12326391	15.1987	286	3.49650	81796	23393656	16.9115
232	4.31034	53824	12487168	15.2315	287	3.48432	82369	23639903	16.9411
233	4.29185	54289	12649337	15.2643	288	3.47222	82944	23887872	16.9706
234	4.27350	54756	12812904	15.2971	289	3.46021	83521	24137569	17.0000
235	4.25532	55225	12977875	15.3297	290	3.44828	84100	24389000	17.0294
236	4.23729	55696	13144256	15.3623	291	3.43643	84681	24642171	17.0587
237	4.21941	56169	13312053	15.3948	292	3.42466	85264	24897088	17.0880
238	4.20168	56644	13481272	15.4272	293	3.41297	85849	25153757	17.1172
239	4.18410	57121	13651919	15.4596	294	3.40136	86436	25412184	17.1464
240	4.16667	57600	13824000	15.4919	295	3.38983	87025	256 72375	17.1756
241	4.14938	58081	13997521	15.5242	296	3.37838	87616	25934336	17.2047
242	4.13223	58564	14172488	15.5563	297	3.36700	88209	26198073	17.2337
243	4.11523	59049	14348907	15.5885	298	3.35570	88804	26463592	17.2627
244	4.09836	59536	14526784	15.6205	299	3.34448	89401	26730899	17.2916
245	4.08163	60025	14706125	15.6525	300	3·33333	90000	27000000	17.3205
246	4.06504	60516	14886936	15.6844	301	3·32226	90601	27270901	17.3494
247	4.04858	61009	15069223	15.7162	302	3·31126	91204	27543608	17.3781
248	4.03226	61504	15252992	15.7480	303	3·30033	91809	27818127	17.4069
249	4.01606	62001	15438249	15.7797	304	3·28947	92416	28094464	17.4356
250	4.00000	62500	15625000	15.8114	305	3.27869	93025	28372625	17.4642
251	3.98406	63001	15813251	15.8430	306	3.26797	93636	28652616	17.4929
252	3.96825	63504	16003008	15.8745	307	3.25733	94249	28934443	17.5214
253	3.95257	64009	16194277	15.9060	308	3.24675	94864	29218112	17.5499
254	3.93701	64516	16387064	15.9374	309	3.23625	95481	29503629	17.5784
255 256 257 258 259	3.921 57 3.90625 3.89105 3.87 597 3.86100	6502 5 65536 66049 66564 67081	16581375 16777216 16974593 17173512 17373979	15.9687 16.0000 16.0312 16.0624 16.0935	310 311 312 313 314	3.22581 3.21543 3.20513 3.19489 3.18471	96100 96721 97344 97969 98 5 96	29791000 30080231 30371328 30664297 30959144	17.6068 17.63 5 2 17.6635 17.6918
260	3.84615	67600	17576000	16.1245	315	3.17460	99225	31255875	17.7482
261	3.83142	68121	17779581	16.1555	316	3.16456	99856	31554496	17.7764
262	3.81679	68644	17984728	16.1864	317	3.15457	100489	31855013	17.8045
263	3.80228	69169	18191447	16.2173	318	3.14465	101124	32157432	17.8326
264	3.78788	69696	18399744	16.2481	319	3.13480	101761	32461759	17.8606
265	3.77358	70225	18609625	16.2788	320	3.12500	102400	32768000	17.8885
266	3.75940	70756	18821096	16.3095	321	3.115 6	103041	33076161	17.9165
267	3.74532	71289	19034163	16.3401	322	3.10559	103684	33386248	17.9444
268	3.73134	71824	19248832	16 3707	323	3.09598	104329	33698267	17.9722
269	3.71747	72361	19465109	16.4012	324	3.08642	104976	34012224	18.0000
270	3.70370	72900	19683000	16.4317	325	3.07692	105625	34328125	18.0278
271	3.69004	7344I	19902511	16.4621	326	3.06748	106276	34645976	18.0555
272	3.67647	73984	20123648	16.4924	327	3.05810	106929	34965783	18.0831
273	3.66300	74529	20346417	16.5227	328	3.04878	107584	35287552	18.1108
274	3.64964	75076	20570824	16.5529	329	3.03951	108241	35611289	18.1384
275	3.63636	75625	20796875	16.5831	330	3.03030	108900	35937000	18.1659
276	3.62319	76176	21024576	16.6132	331	3.02115	109561	36264691	18.1934
277	3.61011	76729	21253933	16.6433	332	3.01205	110224	36594368	18.2209
278	3.59712	77284	21484952	16.6733	333	3.00300	110889	36926037	18.2483
279	3.58423	77841	21717639	16.7033	334	2.99401	111556	37259704	18.2757
280	3.57143	78400	21952000	16.7332	335	2.98507	112225	37595375	18.3030
281	3.55872	78961	22188041	16.7631	336	2.97619	112896	37933056	18.3303
282	3.54610	79524	22425768	16.7929	337	2.96736	113569	38272753	18.3576
283	3.53357	80089	22665187	16.8226	338	2.95858	114244	38614472	18.3848
284	3.52113	80656	22906304	16.8523	339	2.94985	114921	38958219	18.4120

72	1000.1	n^2	118	122	72	1000.1	n^2	n ³	Vn.
340	2.94118	115600	39304000	18.4391	395	2.53165	156025	61629875	19.8746
341	2.93255	116281	39651821	18.4662	396	2.52525	156816	62099136	19.8997
342	2.92398	116964	40001688	18.4932	397	2.51889	157609	62570773	19.9249
343	2.91545	117649	40353607	18.5203	398	2.51256	158404	63044792	19.9499
344	2.90698	118336	40707584	18.5472	399	2.50627	159201	63521199	19.9750
345	2.89855	119025	41063625	18.5742	400	2.50000	160000	64000000	20.0000
346	2.89017	119716	41421736	18.6011	401	2.49377	160801	64481201	20.0250
347	2.88184	120409	41781923	18.6279	402	2.48756	161604	64964808	20.0499
348	2.87356	121104	42144192	18.6548	403	2.48139	162409	65450827	20.0749
349 350 351 352 353 354	2.86533 2.85714 2.84900 2.84091 2.83286 2.82486	121801 122500 123201 123904 124609 125316	4287 5 000 43243551 43614208 43986977 44361864	18.6815 18.7083 18.7350 18.7617 18.7883 18.8149	404 405 406 407 408 409	2.47525 2.46914 2.46305 2.45700 2.45098 2.44499	163216 164025 164836 165649 166464 167281	65939264 66430125 66923416 67419143 67917312 68417929	20.0998 20.1246 20.1494 20.1742 20.1990 20.2237
355	2.81690	126025	44738875	18.8414	410	2.43902	168100	68921000	20.2485
356	2.80899	126736	45118016	18.8680	411	2.43309	168921	69426531	20.2731
357	2.80112	127449	45499293	18.8944	412	2.42718	169744	69934528	20.2978
358	2.79330	128164	45882712	18.9209	413	2.42131	170569	70444997	20.3224
359	2.78552	128881	46268279	18.9473	414	2.41546	171396	70957944	20.3470
360	2.77778	129600	46656000	18.9737	415	2.40964	172225	71473375	20.3715
361	2.77008	130321	47045881	19.0000	416	2.40385	173056	71991296	20.3961
362	2.76243	131044	47437928	19.0263	417	2.39808	173889	72511713	20.4206
363	2.75482	131769	47832147	19.0526	418	2.39234	174724	73034632	20.4450
364	2.74725	132496	48228544	19.0788	419	2.38663	175561	73560059	20.4695
365	2.73973	133225	48627125	19.1050	420	2.38095	176400	74088000	20.4939
366	2.73224	133956	49027896	19.1311	421	2.37530	177241	74618461	20.5183
367	2.72480	134689	49430863	19.1572	422	2.36967	178084	751 51 448	20.5426
368	2.71739	135424	49836032	19.1833	423	2.36407	178929	75 686967	20.5670
369	2.71003	136161	50243409	19.2094	424	2.35849	179776	7622 5 024	20.5913
370	2.70270	136900	50653000	19.2354	425 426 427 428 429	2.35294	180625	7676 5 62 5	20.6155
371	2.69542	137641	51064811	19.2614		2.34742	181476	77308776	20.6398
372	2.68817	138384	51478848	19.2873		2.34192	182329	77854483	20.6640
373	2.68097	139129	51895117	19.3132		2.33645	183184	784027 52	20.6882
374	2.67380	139876	52313624	19.3391		2.33100	184041	78953589	20.7123
375	2.66667	140625	52734375	19.3649	430	2.32558	184 9 00	79507000	20.7364
376	2.65957	141376	53157376	19.3907	431	2.32019	185761	80062991	20.7605
377	2.65252	142129	53582633	19.4165	432	2.31481	186624	80621568	20.7846
378	2.64550	142884	54010152	19.4422	433	2.30947	187489	81182737	20.8087
379	2.63852	143641	54439939	19.4679	434	2.30415	188356	81746504	20.8327
380 381 382 383 384	2.63158 2.62467 2.61780 2.61097 2.60417	144400 145161 145924 146689	54872000 55306341 55742968 56181887 56623104	19.4936 19.5192 19.5448 19.5704 19.5959	435 436 437 438 439	2.29885 2.29358 2.28833 2.28311 2.27790	189225 190096 190969 191844 192721	82312875 82881856 83453453 84027672 84604519	20.8567 20.8806 20.9045 20.9284 20.9523
385	2.59740	148225	57066625	19.6214	440	2.27273	193600	85184000	20.9762
386	2.59067	1489 9 6	57512456	19.6469	441	2.26757	194481	85766121	21.0000
387	2.58398	149769	57960603	19.6723	442	2.26244	195364	86350888	21.0238
388	2.57732	150544	58411072	19.6977	443	2.25734	196249	86938307	21.0476
389	2.57069	151321	58863869	19.7231	444	2.25225	197136	87528384	21.0713
390	2.56410	152100	59319000	19.7484	445	2.24719	198025	88121125	21.0950
391	2.55754	152881	59776471	19.7737	446	2.24215	198916	88716536	21.1187
392	2.55102	153664	60236288	19.7990	447	2.23714	199809	89314623	21.1424
393	2.54453	154449	60698457	19.8242	448	2.23214	200704	89915392	21.1660
394	2.53807	155236	61162984	19.8494	449	2.22717	201601	90518849	21.1896

n	1000. $\frac{1}{n}$	n^2	n ⁸	V nz	12	1000.1	n^2	n ⁸	V nz
450	2.22222	202500	91125000	21.2132	505	1.98020	255025	128787625	22.4722
451	2.21729	203401	91733851	21.2368	506	1.97628	256036	129554216	22.4944
452	2.21239	204304	92345408	21.2603	507	1.97239	257049	130323843	22.5167
453	2.20751	205209	92959677	21.2838	508	1.96850	258064	131096512	22.5389
454	2.20264	206116	93576664	21.3073	509	1.96464	259081	131872229	22.5610
455	2.19780	207025	94196375	21.3307	510	1.96078	260100	132651000	22.5832
456	2.19298	207936	94818816	21.3542	511	1.95695	261121	133432831	22.6053
457	2.18818	208849	95443993	21.3776	512	1.95312	262144	134217728	22.6274
458	2.18341	209764	96071912	21.4009	513	1.94932	263169	135005697	22.6495
459	2.17865	210681	96702579	21.4243	514	1.94553	264196	135796744	22.6716
460	2.17391	211600	97336000	21.4476	515	1.94175	265225	136590875	22.6936
461	2.16920	212521	97972181	21.4709	516	1.93798	266256	137388096	22.7156
462	2.16450	213444	98611128	21.4942	517	1.93424	267289	138188413	22.7376
463	2.15983	214369	99252847	21.5174	518	1.93050	268324	138991832	22.7596
464	2.15517	21 5296	99897344	21.5407	519	1.92678	269361	139798359	22.7816
465	2.15054	216225	100544625	21.5639	520	1.92308	270400	140608000	22.8035
466	2.14592	217156	101194696	21.5870	521	1.91939	271441	141420761	22.8254
467	2.14133	218089	101847563	21.6102	522	1.91571	272484	142236648	22.8473
468	2.13675	219024	102503232	21.6333	523	1.91205	273529	143055667	22.8692
469	2.13220	219961	103161709	21.6564	524	1.90840	274576	143877824	22.8910
470	2.12766	220900	103823000	21.6795	525	1.90476	275625	144703125	22.9129
471	2.12314	221841	104487111	21.7025	526	1.90114	276676	145531576	22.9347
472	2.11864	222784	105154048	21.7256	527	1.89753	277729	146363183	22.9565
473	2.11416	223729	105823817	21.7486	528	1.89394	278784	147197952	22.9783
474	2.10970	224676	106496424	21.7715	529	1.89036	279841	148035889	23.0000
475	2.10526	225625	107171875	21.7945	530	1.88679	280900	148877000	23.0217
476	2.10084	226576	107850176	21.8174	531	1.88324	281961	149721291	23.0434
477	2.09644	227529	108531333	21.8403	532	1.87970	283024	150568768	23.0651
478	2.09205	228484	109215352	21.8632	533	1.87617	284089	151419437	23.0868
479	2.08768	229441	109902239	21.8861	534	1.87266	285156	1 5227 3304	23.1084
480	2.08333	230400	110592000	21.9089	535	1.86916	286225	153130375	23.1301
481	2.07900	231361	111284641	21.9317	536	1.86567	287296	153990656	23.1517
482	2.07469	232324	111980168	21.9545	537	1.86220	288369	154854153	23.1733
483	2.07039	233289	112678587	21.9773	538	1.85874	289444	155720872	23.1948
484	2.06612	234256	113379904	22.0000	539	1.85529	290521	156590819	23.2164
485	2.06186	235225	114084125	22.0227	540	1.85185	291600	157464000	23.2379
486	2.05761	236196	114791256	22.0454	541	1.84843	292681	158340421	23.2594
487	2.05339	237169	115501303	22.0681	542	1.84502	293764	159220088	23.2809
488	2.04918	238144	116214272	22.0907	543	1.84162	294849	160103007	23.3024
489	2.04499	239121	116930169	22.1133	544		295936		23.3238
490	2.04082	240100	117649000	22.1359	545	1.83486	297025	161878625	23.3452
491	2.03666	241081	118370771	22.1585	546	1.83150	298116	162771336	23.3666
492	2.03252	242064	119095488	22.1811	547	1.82815	299209	163667323	23.3880
493	2.02840	243049	119823157	22.2036	548	1.82482	300304	164566592	23.4094
494	2.02429	244036	120553784	22.2261	549	1.82149	301401	165469149	23.4307
495	2.02020	245025	121287375	22.2486	550	1.81818	302500	166375000	23.4521
496	2.01613	246016	122023936	22.2711		1.81159		168196608	23.4734
497	2.01207	247009 248004	122763473	22.2935	552	1.80832	304704	169112377	23.4947
499	2.00401	249001	123505992	22.3383	554	1.80505	305916	170031464	23.5372
500	2.00000	250000	125000000	22.3607	555	1.80180	308025	170953875	23.5584
501	1.99601	251001	125751501	22.3830	556	1.79856	309136	171879616	23.5797
502	1.99203	252004	126506008	22.4054		1.79533	310249	172808693	23.6008
503	1.98807	253009	127263527	22.4277	557 558	1.79211	311364	173741112	23.6220
504	1.98413	254016	128024064	22.4499	559	1.78891	312481	174676879	23.6432
	, ,	J.							

72	$1000.\frac{1}{n}$	n ²	n ⁸	122	n	1000, 1/n	n^2	118	\n
560	1.78571	313600	175616000	23.6643	615	1.62602	378225	232608375	24.7992
561	1.78253	314721	176558481	23.6854	616	1.62338	379456	233744896	24.8193
562	1.77936	31 5844	177504328	23.7065	617	1.62075	380689	234885113	24.8395
563	1.77620	316969	178453547	23.7276	618	1.61812	381924	236029032	24.8596
564	1.77305	318096	179406144	23.7487	619	1.61551	383161	237176659	24.8797
	1.//303	310090		23.7407				23/1/0039	
565	1.76991	319225	180362125	23.7697	620	1.61290	384400	238328000	24.8998
566	1.76678	320356	181321496	23.7908	621	1.61031	385641	239483061	24.9199
567	1.76367	321489	182284263	23.8118	622	1.60772	386884	240641848	24.9399
568	1.76056	322624	183250432	23.8328	623	1.60514	388129	241804367	24.9600
569	1.75747	323761	184220009	23.8537	624	1.60256	389376	242970624	24.9800
570	1.75439	324900	185193000	23.8747	625	1.60000	390625	244140625	25.0000
571	1.75131	326041	186169411	23.8956	626	1.59744	391876	245314376	25.0200
572	1.74825	327184	187149248	23.9165	627	1.59490	393129	246491883	25.0400
573	1.74520	328329	188132517	23.9374	628	1.59236	394384	247673152	25.0599
574	1.74216	329476	189119224	23.9583	629	1.58983	395641	248858189	25.0799
575	1.73913	330625	190109375	23.9792	630	1.58730	396900	250047000	25.0998
576	1.73611	331776	191102976	24.0000	631	1.58479	398161	251239591	25.1197
577	1.73310	332929	192100033	24.0208	632	1.58228	399424	252435968	25.1396
578	1.73010	334084	193100552	24.0416	633	1.57978	400689	253636137	25.1595
579	1.72712	335241	194104539	24.0624	634	1.57729	401956	254840104	25.1794
580	1.72414	336400	195112000	24.0832	635	1.57480	403225	256047875	25.1992
581	1.72117	337 561	196122941	24.1039	636	1.57233	404496	257259456	25.2190
582	1.71821	338724	197137368	24.1247	637	1.56986	405769	258474853	25.2389
583	1.71527	339889	198155287	24.1454	638	1.56740	407044	259694072	25.2587
584	1.71233	341056	199176704	24.1661	639	1.56495	408321	260917119	25.2784
585					640				
	1.70940	342225	200201625	24.1868		1.56250	409600	262144000	25.2982
586	1.70648	343396	201230056	24.2074	641	1.56006	410881	263374721	25.3180
587	1.70358	344569	202262003	24.2281	642	1.55763	412164	264609288	25.3377
588	1.70068	345744	203297472	24.2487	643	1.55521	413449	2658477 0 7 267089984	25.3574
589	1.69779	346921	204336469	24.2693	644	1.55280	414736	20/009904	25.3772
590	1.69492	348100	205379000	24.2899	645	1.55039	416025	268336125	25.3969
591	1.69205	349281	206425071	24.3105	646	1.54799	417316	269586136	25.4165
592	1.68919	350464	207474688	24.3311	647	1.54560	418609	270840023	25.4362
593	1.68634	351649	208527857	24.3516	648	1.54321	419904	272097792	25.4558
594	1.68350	352836	209584584	24.3721	649	1.54083	421201	273359449	25-4755
595	1.68067	354025	210644875	24.3926	650	1.53846	422500	274625000	25.4951
596	1.67785	355216	211708736	24.4131	651	1.53610	423801	275894451	25.5147
597	1.67 504	356409	212776173	24.4336	652	1.53374	425104	277167808	25.5343
598	1.67224	357604	213847192	24.4540	653	1.53139	426409	278445077	25.5539
599	1.66945	358801	214921799	24.4745	654	1.52905	427716	279726264	25.5734
600	1.66667	360000	216000000	24.4949	655	1.52672	429025	281011375	25.5930
601	1.66389	361201	217081801	24.5153	656	1.52439	430336	282300416	25.6125
602	1.66113	362404	218167208	24.5357	657	1.52207	431649	283593393	25.6320
603	1.65837	363609	219256227	24.5561	658	1.51976	432964	284890312	25.6515
604	1.65563	364816	220348864	24.5764	659	1.51745	434281	286191179	25.6710
605	1.65289	366025	221445125	24.5967	660	1.51515	435600	287496000	25.6905
606	1.65017	367236	222545016	24.6171	661	1.51286	436921	288804781	25.7099
607	1.64745	368449	223648543	24.6374	662	1.51057	438244	290117528	25.7294
608	1.64474	369664	224755712	24.6577	663	1.50830	439569	291434247	25.7488
609	1.64204	370881	225866529	24.6779	664	1.50602	440896	292754944	25.7682
610	1.63934	372100	226981000	24.6982	665	1.50376	442225	294079625	25.7876
611	1.63666	373321	228099131	24.7184	666	1.50150		295408296	25.8070
612	1.63399	374544	229220928	24.7386	667	1.49925	443556	296740963	25.8263
613	1.63132	375769	230346397	24.7588	668	1.49701	446224	298077632	25.8457
614	1.62866	376996	231475544	24.7790	669	1.49477	447 561	299418309	25.8650
1	1								

			01 10	ATURA	_ 110	MBERS	•		
72	1000.1/n	n ²	n^3	√n	72	1000.1	n^2	n ⁸	\n
670	1.49254	448900	300763000	25.8844	725	1.37931	525625	381078125	26.9258
671	1.49031	450241	302111711	25.9037	726	1.37741	527076	382657176	26.9444
672	1.48810	451584	303464448	25.9230	727	1.37552	528529	384240583	26.9629
673	1.48588	452929	304821217	25.9422	728	1.37363	529984	385828352	26.9815
674	1.48368	454276	306182024	25.9615	729	1.37174	531441	387420489	27.0000
675	1.48148	455625	307546875	25.9808	730	1.36986	532900	389017000	27.0185
676	1.47929	456976	308915776	26.0000	731	1.36799	534361	390617891	27.0370
677	1.47710	458329	310288733	26.0192	732	1.36612	535824	392223168	27.0555
678	1.47493	459684	311665752	26.0384	733	1.36426	537289	393832837	27.0740
679	1.4 72 75	461041	313046839	26.0576	734	1.36240	538756	395446904	27.0924
680	1.47059	462400	314432000	26.0768	735	1.36054	540225	397065375	27.1109
681	1.46843	463761	315821241	26.0960	736	1.35870	541696	398688256	27.1293
682	1.46628	465124	317214568	26.1151	737	1.35685	543169	409315553	27.1477
683	1.46413	466489	318611987	26.1343	738	1.35501	544644	401947272	27.1662
684	1.46199	467856	320013504	26.1534	739	1.35318	546121	403583419	27.1846
685	1.45985	469225	321419125	26.1725	740	1.35135	547600	405224000	27.2029
686	1.45773	470596	322828856	26.1916	741	1.34953	549081	406869021	27.2213
687	1.45560	471969	324242 7 03	26.2107	742	1.34771	550564	408518488	27.2397
688	1.45349	473344	325660672	26.2298	743	1.34590	552049	410172407	27.2580
689	1.45138	474721	327082769	26.2488	744	1.34409	553536	411830784	27.2764
690	1.44928	476100	328509000	26.2679	745	1.34228	555025	413493625	27.2947
691	1.44718	477481	329939371	26.2869	746	1.34048	556516	415160936	27.3130
692	1.44509	478864	331373888	26.3059	747	1.33869	558009	416832723	27.3313
693	1.44300	480249	332812557	26.3249	748	1.33690	559504	418508992	27.3496
694	1.44092	481636	334255384	26.3439	749	1.33511	561001	420189749	27.3679
695	I.43885	483025	3357°2375	26.3629	750	1.33333	562500	421875000	27.3861
696	I.43678	484416	337°153536	26.3818	751	1.33156	564001	423564751	27.4044
697	I.43472	485809	338608873	26.4008	752	1.32979	565504	425259008	27.4226
698	I.43266	487204	34°368392	26.4197	753	1.32802	567009	426957777	27.4408
699	I.43062	488601	34°1532°099	26.4386	754	1.32626	568516	428661064	27.4591
700	1.42857	490000	343000000	26.4575	755	1.32450	570025	430368875	27.4773
701	1.42653	491401	344472101	26.4764	756	1.32275	571536	432081216	27.4955
702	1.42450	492804	345948408	26.4953	757	1.32100	573049	433798093	27.5136
703	1.42248	494209	347428927	26.5141	758	1.31926	574564	435519512	27.5318
704	1.42045	495616	348913664	26.5330	759	1.31752	576081	437245479	27.5500
705	1.41844	497025	350402625	26.5518	760	1.31579	577600	438976000	27.5681
706	1.41643	498436	351895816	26.5707	761	1.31406	579121	440711081	27.5862
707	1.41443	499849	353393243	26.5895	762	1.31234	580644	442450728	27.6043
708	1.41243	501264	354894912	26.6083	763	1.31062	582169	444194947	27.6225
709	1.41044	502 6 81	356400829	26.6271	764	1.30890	583696	445943744	27.6405.
710	1.40845	504100	357911000	26.6458	765 766 767 768 769	1.30719	585225	447697125	27.6586
711	1.40647	505521	359425431	26.6646		1.30548	586756	449455096	27.6767
712	1.40449	506944	360944128	26.6833		1.30378	588289	451217663	27.6948
713	1.40252	508369	362467097	26.7021		1.30208	589824	452984832	27.7128
714	1.40056	509796	363994344	26.7208		1.30039	591361	454756609	27.7308
715	1.39860	511225	365525875	26.7395	770	1.29870	592900	456533000	27.7489
716	1.39665	512656	367061696	26.7582	771	1.29702	594441	458314011	27.7669
717	1.39470	514089	368601813	26.7769	772	1.29534	595984	460099648	27.7849
718	1.39276	515524	370146232	26.7955	773	1.29366	597529	461889917	27.8029
719	1.39082	516961	371694959	26.8142	774	1.29199	599076	463684824	27.8209
720	1.38889	518400	373248000	26.8328	775	I.29032	600625	465484375	27.8388
721	1.38696	519841	374805361	26.8514	776	I.28866	602176	467288576	27.8568
722	1.38504	521284	376367048	26.8701	777	I.28700	603729	469097433	27.8747
723	1.38313	522729	377933067	26.8887	778	I.28535	605284	470910952	27.8927
724	1.38122	524176	379503424	26.9072	779	I.28370	606841	472729139	27.9106

n	1000.1	n^2	n^3	V 22	72	1000.1	n ²	n8	√n
780	1.28205	608400	474552000	27.9285	835	1.19760	697225	582182875	28.8964
781	1.28041	609961	476379541	27.9464	836	1.19617	698896	584277056	28.9137
782	1.27877	611524	478211768	27.9643	837	1.19474	700569	586376253	28.9310
783	1.27714	613089	480048687	27.9821	838	1.19332	702244	588480472	28.9482
784	1.27551	614656	481890304	28.0000	839	1.19190	703921	590589719	28.9655
785	1.27389	616225	483736625	28.0179	840	1.19048	705600	592704000	28.9828
786	1.27226	617796	485587656	28.0357	841	1.18906	707281	594823321	29.0000
787	1.27065	619369	487443403	28.0535	842	1.18765	708964	596947688	29.0000
788	1.26904	620944	489303872	28.0713	843	1.18624	710649	599077107	29.0345
789	1.26743	622521	491169069	28.0891	844	1.18483	712336	601211584	29.0517
790	1.26582	624100	402020000	28.1069	845	1.18343	714005	602251125	20.0680
791	1.26422	625681	493039000	28:1247	846	1.18203	714025	603351125	29.0689
792	1.26263	627264	496793088	28.1425	847	1.18064	717409	607645423	29.1033
793	1.26103	628849	498677257	28.1603	848	1.17925	719104	609800192	29.1204
794	1.25945	630436	500566184	28.1780	849	1.17786	720801	611960049	29.1376
795	1 25786	62202=	F024F08FF	28 1055	850	x 176.0	722500	614125000	
796	1.25786	632025	502459875	28.1957 28.2135	851	1.17647	722500	614125000	29.1548
797	1.25471	635209	506261573	28.2312	852	1.17371	725904	618470208	29.1719
798	1.25313	636804	508169592	28.2489	853	1.17233	727609	620650477	29.2062
799	1.25156	638401	510082399	28.2666	854	1.17096	729316	622835864	29.2233
			-						
800	1.25000	640000	512000000	28.2843	855	1.16959	731025	625026375	29.2404
801	1.24844	641601	513922401	28.3019	856	1.16822	732736	627222016	29.2575
803	1.24533	644809	517781627	28.3196	857 858	1.16550	734449 736164	629422793	29.2746
804	1.24378	646416	519718464	28.3549	859	1.16414	737881	633839779	29.3087
805	1.24224	648025	521660125	28.3725	860	1.16279	739600	636056000	29.3258
806	1.24069	649636	523606616	28.3901 28.4077	861	1.16144	741321	638277381	29.3428
808	1.23916	651249	525557943 527514112	28.4253	863	1.15875	743044	640503928	29.3598 29.3769
809	1.23609	654481	529475129	28.4429	864	1.15741	746496	644972544	29.3939
810	1.23457	656100	531441000	28.4605	865	1.15607	748225	647214625	29.4109
811	1.23305	657721	533411731	28.4781	866	1.15473	749956	649461896	29.4279
813	1.23153	659344	535387328	28.4956 28.5132	867	1.15340	751689	651714363	29.4449
814	1.23001	662596	537 3 67797 539353144	28.5307	869	1.15075	753424 755161	656234909	29.4788
			337333-44						
815	1.22699	664225	541343375	28.5482	870	1.14943	756900	658503000	29.4958
816	1.22549	665856	543338496	28.5657	871	1.14811	758641	663054848	29.5127
817	1.22399	660134	545338513	28.5832	872	1.14679	760384	665228617	29.5296
819	1.22249	669124	547343432	28.6007	873 874	1.14548	762129	665338617	29.5466
			549353259						
820	1.21951	672400	551368000	28.6356	875	1.14286	765625	669921875	29.5804
821	1.21803	674041	553387661	28.6531	876	1.14155	767376	672221376	29.5973
822	1.21655	675684	555412248	28.6705	877	1.14025	769129	674526133	29.6142
823	1.21359	677329	557441767 559476224	28.6880 28.7054	878 879	1.13895	770884 :	676836152	29.6311
	007						//2041		
825	1.21212	680625	561515625	28.7228	880	1.13636	774400	681472000	29.6648
826	1.21065	682276	563559976	28.7402	881	1.13507	776161	683797841 686128968	29.6816
828	1.20919	683929	565609283	28.7576	883	1.13379	777924 779689	688465387	29.0905
829	1.20627	687241	569722789	28.7924	884	1.13122	781456	690807104	29.7321
830 831	1.20482	688900	571787000	28.8097	885 886	1.12994	783225	693154125	29.7489
832	1.20337	690561	57 5930368	28.8271	887	1.12740	784996	695506456	29.7658
833	1.20048	693889	578009537	28.8617	888	1.12613	788544	700227072	29.7993
834	1.19904	695556	580093704	28.8791	889	1.12486	790321	702595369	29.8161
	,,,,	7555	75, 17				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. 3730 7	

_				VATURA		MBEK	-		
n	1000.1	n^2	n ³	V 22	n	1000.1	n^2	n ³	V2
890	1.12360	792100	704969000	29.8329	945	1.05820	893025	843908625	30.7409
891	1.12233	793881	707347971	29.8496	946	1.05708	894916	846590536	30.7571
892	1.12108	795664	709732288	29.8664	947	1.05597	896809	849278123	30.7734
893	1.11982	797449	712121957	29.8831	948	1.05485	898704	851971392	30.7896
894	1.11857	799236	714516984	29.8998	949	1.05374	900601	854670349	30.8058
895	1.11732	801025	716917375	29.9166	950	1.05263	902500	857375000	30.8221
896	1.11607	802816	719323136	29.9333	951	1.05152	904401	860085351	30.8383
897	1.11483	804609	721734273	29.9500	952	1.05042	906304	862801408	30.8545
898	1.11359	806404	724150792	29.9666	953	1.04932	908209	865523177	30.8707
899	1.11235	808201	726572699	29.9833	954	1.04822	910116	868250664	30.8869
900	1.11111	810000	729000000	30.0000	955	1.04712	912025	870983875	30.9031
901	1.10988	811801	731432701	30.0167	956	1.04603	913936	873722816	30.9192
902	1.10865	813604	733870808	30.0333	957	1.04493	915849	876467493	30.9354
903	1.10742	815409	736314327	30.0500	958	1.04384	917764	879217912	30.9516
904	1.10619	817216	738763264	30.0666	959	1.04275	919681	881974079	30.9677
905	1.10497	819 0 25	741217625	30.0832	960	1.04167	921600	884736000	30.9839
906	1.10375	820836	743677416	30.0998	961	1.04058	923521	887503681	31.0000
907	1.10254	822649	746142643	30.1164	962	1.03950	925444	890277128	31.0161
908	1.10132	824464	748613312	30.1330	963	1.03842	927369	893056347	31.0322
909	1.10011	826281	751089429	30.1496	964	1.03734	929296	895841344	31.0483
910	1.09890	828100	753571000	30.1662	965	1.03627	931225	898632125	31.0644
911	1.09769	829921	756058031	30.1828	966	1.03520	933156	901428696	31.0805
912	1.09649	831744	758550528	30.1993	967	1.03413	935089	904231063	31.0966
913	1.09529	833569	761048497	30.2159	968	1.03306	937024	907039232	31.1127
914	1.09409	835396	763551944	30.2324	969	1.03199	938961	909853209	31.1288
915	1.09290	837225	766060875	30.2490	970	1.03093	940900	912673000	31.1448
916	1.09170	839056	768575296	30.2655	971	1.02987	942841	915498611	31.1609
917	1.09051	840889	771095213	30.2820	972	1.02881	944784	918330048	31.1769
918	1.08932	842724	773620632	30.2985	973	1.02775	946729	921167317	31.1929
919	1.08814	84 45 61	776151559	30.3150	974	1.02669	948676	924010424	31.2090
920	1.08696	846400	778688000	30.3315	975	1.02564	950625	926859375	31.2250
921	1.08578	848241	781229961	30.3480	976	1.02459	952576	929714176	31.2410
922	1.08460	850084	783777448	30.3645	977	1.02354	954529	932574833	31.2570
923	1.08342	851929	786330467	30.3809	978	1.02249	956484	935441352	31.2730
924	1.08225	853776	788889024	30.3974	979	1.02145	958441	938313739	31.2890
925	1.08108	855625	791453125	30.4138	981	1.02041	960400	941192000	31.3050
926	1.07991	857476	794022776	30.4302	981	1.01937	962361	944076141	31.3209
927	1.07875	859329	796597983	30.4467	982	1.01833	964324	946966168	31.3369
928	1.07759	861184	799178752	30.4631	983	1.01729	966289	949862087	31.3528
929	1.07643	863041	801 7 65089	30.4795	984	1.01626	968256	952763904	31.3688
930	1.07527	864900	804357000	30.4959	985	1.01523	970 2 25	955671625	31.3847
931	1.07411	866761	806954491	30.5123	986	1.01420	972196	958585256	31.4006
932	1.07296	868624	809557568	30.5287	987	1.01317	9741 6 9	961504803	31.4166
933	1.07181	870489	812166237	30.5450	988	1.01215	976144	964430272	31.4325
934	1.07066	872356	814780504	30.5614	989	1.01112	978121	967361669	31.4484
935	I.06952	87 42 25	817400375	30.57 7 8	990	1.01010	980100	970299000	31.4643
936	I.06838	876096	820025856	30.5941	991	1.00908	982081	973242271	31.4802
937	I.06724	877969	822656953	30.6105	992	1.00806	984064	976191488	31.4960
938	I.06610	879844	825293672	30.6268	993	1.00705	986049	979146657	31.5119
939	I.06496	881 7 21	827936019	30.6431	994	1.00604	988036	982107784	31.5278
940	1.06383	883600	830584000	30.6594	995	I.00503	990025	985074875	31.5436
941	1.06270	885481	833237621	30.6757	996	I.00402	992016	988047936	31.5595
942	1.06157	887364	835896888	30.6920	997	I.0030I	994009	991026973	31.5753
943	1.06045	889249	838561807	30.7083	998	I.00200	996004	994011992	31.5911
944	1.05932	891136	841232384	30.7246	999	I.00100	998001	997002999	31.6070

TABLE 10.

								~			
N.	0	1	2	3	4	5	6	7	В	9	10
100	0000	0004	0009	0013	0017	0022	0026	0030	0035	0039	0043
101	0043	0048	0052	0056	0060	0065	0069	0073	0077	0082	0086
102	0086	0090	0095	0099	0103	0107	0111	0116	0120	0124	0128
103	0128	0133	0137	0141	0145	0149	0154	0158	0162	0166	0170
104	0170	0175	0179	0183	0187	0191	0195	0199	0204	0208	0212
105	0212	0216	0220	0224	0228	0233	0237	0241	0245	0249	0253
106	0253	0257	0261	0265	0269	0273	0278	0282	0286	0290	0294
107	0294	0298	0302	0306	0310	0314	0318	0322	0326	0330	0334
108	0334	0338	0342	0346	0350	0354	0358	0362	0366	0370	0374
109	0374	0378	0382	0386	0390	0394	0398	0402	0406	0410	0414
110	0414	0418	0422	0426	0430	0434	0438	0441	0445	0449	0453
111	0453	0457	0461	0465	0469	0473	0477	0481	0484	0488	0492
112	0492	0496	0500	0504	0508	0512	0515	0519	0523	0527	0531
113	0531	0535	0538	0542	0546	0550	0554	0558	0561	0565	0569
114	0569	0573	0577	0580	0584	0588	0592	0596	0599	0603	0607
115 116 117 118 119	0607 0645 0682 0719 0755	0611 0648 0686 0722 0759	0615 0652 0689 0726 0763	0618 0656 0693 0730 0766	0622 0660 0697 0734 0 7 70	0626 0663 0700 0737 0774	0630 0667 0704 0741	0633 0671 0708 0745 0781	0637 0674 0711 0748 0785	0641 0678 0715 0752 0788	0645 0682 0719 0755 0792
120 121 122 123 124	0792 0828 0864 0899 0934	0795 0831 0867 0903 0938	0799 0835 0871 0906 0941	0803 0839 0874 0910	0806 0842 0878 0913 0948	0810 0846 0881 0917 0952	0813 0849 0885 0920 0955	0817 0853 0888 0924 0959	0821 0856 0892 0927 0962	0824 0860 0896 0931 0966	0828 0864 0899 0934 0969
125	0969	0973	0976	0980	0983	0986	0990	0993	0997	1000	1004
126	1004	1007	1011	1014	1017	1021	1024	1028	1031	1035	1038
127	1038	1041	1045	1048	1052	1055	1059	1062	1065	1069	1072
128	1072	1075	1079	1082	1086	1089	1092	1096	1099	1103	1106
129	1106	1109	1113	1116	1119	1123	1126	1129	1133	1136	1139
130	1139	1143	1146	1149	1153	1156	11 5 9	1163	1166	1169	1173
131	1173	1176	1179	1183	1186	1189	1193	1196	1199	1202	1206
132	1206	1209	1212	1216	1219	1222	1225	1229	1232	1235	1239
133	1239	1242	1245	1248	1252	1255	1258	1261	1265	1268	1271
134	1271	1274	1278	1281	1284	1287	1290	1294	1297	1300	1303
135	1303	1307	1310	1313	1316	1319	1323	1326	1329	1332	1335
136	1335	1339	1342	1345	1348	1351	1355	1358	1361	1364	1367
137	1367	1370	1374	1377	1380	1383	1386	1389	1392	1396	1399
138	1399	1402	1405	1408	1411	1414	1418	1421	1424	1427	1430
139	1430	1433	1436	1440	1443	1446	1449	1452	1455	1458	1461
140	1461	1464	1467	1471	1474	1477	1480	1483	1486	1489	1492
141	1492	1495	1498	1501	1504	1508	1511	1514	1517	1520	1523
142	1523	1526	1529	1532	1535	1538	1541	1544	1547	1550	1553
143	1553	1556	1559	1562	1565	1569	1572	1575	1578	1581	1584
144	1584	1587	1590	1593	1596	1599	1602	1605	1608	1611	1614
145	1614	1617	1620	1623	1626	1629	163 2	1635	1638	1641	1644
146	1644	1647	1649	1652	1655	1658	1661	1664	1667	1670	1673
147	1673	1676	1679	1682	1685	1688	1691	1694	1697	1700	1703
148	1703	1706	1708	1711	1714	1717	1720	1723	1726	1729	1732
149	1732	1735	1738	1741	1744	1746	1749	1752	1755	1758	1761

N.	0	1	2	3	4	5	6	7	8	9	10
150	1761	1764	1767	1770	1772	1775	1778	1781	1784	1787	1700
151	1790	1793	1796	1798	1801	1804	1807	1810	1813	1816	1790
152	1818	1821	1824	1827	1830	1833	1836	1838	1841	1844	1847
154	1875	1878	1881	1884	1886	1889	1892	1895	1898	1901	1903
155	1903	1906	1909	1912	1915	1917	1920	1923	1926	1928	1931
156	1931	1934	1937	1940	1942	1945	1948	1951	1953	1956	1959
157	1959	1989	1992	1995	1998	2000	2003	2006	2009	2011	2014
159	2014	2017	2019	2022	2025	2028	2030	2033	2036	2038	2041
160	2041	2044	2047	2049	2052	2055	2057	2060	2063	2066	2068
162	2068	2071	2074	2076	2079	2109	2111	2087	2090	2092	2095
163	2122	2125	2127	2130	2133	2135	2138	2140	2143	2146	2148
164	2148	2151	2154	2156	21 59	2162	2164	2167	2170	2172	2175
165	2175	2177	2180	2183	2185	2188	2191	2193	2196	2198	220I 2227
167	2227	2230	2232	2235	2238	2240	2243	2245	2248	2225 225I	2253
168	2253	2256	2258	2261	2263 2289	2266	2269	2271	2274	2276	2279
	2279	2201	2204		2209		2294	2297	2299		2304
170 171	2304	2307	2310 2335	2312	2315	2317	2320	2322	2325	2327	2330
172	2355 2380	2333 2358 2383	2360	2363	2365	2343 2368	2370	2373	2375	2353 2378	2355 2380
173 174	2380	2383 2408	2385	2388	2390	2393 2418	2395 2420	2398 2423	2400	2403	2405
175	2430	2433 2458 2482	2435 2460	2438	2440	2443	2445	2448	2450	2453 2477	2455 2480
177	²⁴⁵⁵ ²⁴⁸⁰		2485	2487	2490	2492	2494	2497	2499	2502	2504
178	2504 2529	2507 2531	2509 2533	2512 2536	2514	2516 2541	2519 2543	2521	2524 2548	2526	2529 2553
180											
181	2553 2577	2555 2579	2558 2582	2560 2584	2562	2565	2567 2591	2570 2594	2572	2574 2598	2577 2601
182	2601	2603	2605	2608	2610	2613	2615	2617	2620	2622	2625 2648
184	2625 2648	2627 2651	2629 2653	2632 2655	2634 2658	2636 2660	2639 2662	2641 2665	2643 2667	2646 2669	2672
185	2672	2674	2676	2679	2681	2683	2686	2688	2690	2693	2695
186	2695 2718	2697	2700	2702	2704	2707	2709	2711	2714	2716	2695 2718
187 188	2710	272I 2744	2723 2746	2725	2728 2751	2730 2753	2732 2755	2735 2758	2737 2760	2739 2762	2742
189	2765	2767	2769	2772	2774	2776	2778	2781	2783	2785	2788
190	.2788	2790 2813	2792 2815	2794 2817	2797	2799	2801	2804	2806	2808	2810
191	2810	2813	2815	2817	2819	2822 2844	2824 2847	2826 2849	2828 2851	2831 2853	2833 2856
193	2856	2835 2858	2860	2862	2865	2867	2869	2871	2874	2870	2878
194	-2878	2880	2882	2885	2887	2889	2891	2894	2896	2898	2900
195	2900	2903	2905	2907	2909	2911	2914	2916	2918	2920	2923 2945
196	2923 2945	2925 2947	2927 2949	2929	29 3 1 2953	2934 2956	2936	2938 2960	2940	2942 2964	2967
198	2967	2969	2971	2973	2975	2978	2980	2982	2984	2986 3008	3010
199	2989	2991	2993	2995	2997	2999	3002	3004	3006	3000	3010

TABLE 11. LOGARITHMS.

			_				-					P. F	١.		
N	0	1	_ 2	3	4	5	6	7	8	9	1	2	3	4	5
10 11 12 13 14	0000 0414 0792 1139 1461	0043 0453 0828 1173 1492	0086 0492 0864 1206 1523	0128 0531 0899 1239 1553	0170 0569 0934 1271 1584	0212 0607 0969 1303 1614	0253 0645 1004 1335 1644	0294 0682 1038 1367 1673	0334 0719 1072 1399 1703	0374 0755 1106 1430 1732	4 4 3 3 3 3	8 8 766	12 11 10 10	17 15 14 13 12	21 19 17 16 15
15 16 17 18 19	1761 2041 2304 2553 2788	1790 2068 2330 2577 2810	1818 2095 2355 2601 2833	1847 2122 2380 2625 2856	1875 2148 2405 2648 2878	1903 2175 2430 2672 2900	1931 2201 2455 2695 2923	1959 2227 2480 2718 2945	1987 2253 2504 2742 2967	2014 2279 2529 2765 2989	3 3 2 2	6 5 5 4	8 8 7 7 7	11 10 9 9	14 13 12 12 11
20 21 22 23 24	3010 3222 3424 3617 3802	3032 3243 3444 3636 3820	3054 3263 3464 3655 3838	3075 3284 3483 3674 3856	3096 3304 3502 3692 3874	3118 3324 3522 3711 3892	3139 3345 3541 3729 3909	3160 3365 3560 3747 3927	3181 3385 3579 3766 3945	3201 3404 3598 3784 3962	2 2 2 2	4 4 4 4	6 6 6 5 5	8 8 7 7	10 10 9 9
25 26 27 28 29	3979 4150 4314 4472 4624	3997 4166 4330 4487 4639	4014 4183 4346 4502 4654	4031 4200 4362 4518 4669	4048 4216 4378 4533 4683.	4065 4232 4393 4548 4698	4082 4249 4409 4564 4713	4099 4265 4425 4579 4728	4116 4281 4440 4594 4742	4133 4298 4456 4609 4757	2 2 2 1	3 3 3 3	5 5 5 5 4	7 7 6 6 6	988887
30 31 32 33 34	4771 4914 5051 5185 5315	4786 4928 5065 5198 5328	4800 4942 5079 5211 5340	4814 4955 5092 5224 5353	4829 4969 5105 5237 5366	4843 4983 5119 5250 5378	4857 4997 5132 5263 5391	4871 5011 5145 5276 5403	4886 5024 5159 5289 5416	4900 5038 5172 5302 5428	I I I I	3 3 3 3 3	4 4 4 4 4	6 5 5 5	7 7 7 6 6
35 36 37 38 -39	5441 5563 5682 5798 5911	5453 5575 5694 5809 5922.	5465 5587 5705 5821 5933	5478 5599 5717 5832 5944	5490 5611 5729 5843 5955	5502 5623 5740 5855 5966	5514 5635 5752 5866 5977	5527 5647 5763 5877 5988	5539 5658 5775 5888 5999	5551 5670 5786 5899 6010	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	4 4 3 3 3 3	5 5 5 5 4	6 6 6 6
40 41 42 43 44	6021 6128 6232 6335 6435	6031 6138 6243 6345 6444	6042 6149 6253 6355 6454	6053 6160 6263 6365 6464	6064 6170 6274 6375 6474	6075 6180 6284 6385 6484	6085 6191 6294 6395 6493	6096 6201 6304 6405 6503	6107 6212 6314 6415 6513	6117 6222 6325 6425 6522	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2	33333	4 4 4 4	5 5 5 5 5
45 46 47 48 49	6532 6628 6721 6812 6902	6542 6637 6730 6821 6911	6551 6646 6739 6830 6920	6561 6656 6749 6839 6928	6571 6665 6758 6848 6937	6580 6675 6767 6857 6946	6590 6684 6776 6866 6955	6599 6693 6785 6875 6964	6609 6702 6794 6884 6972	6618 6712 6803 6893 6981	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2	3 3 3 3 3	4 4 4 4	5 5 4 4
50 51 52 53 54	6990 7076 7160 7243 7324	6998 7084 7168 7251 7332	7007 7093 7177 7259 7340	7016 7101 7185 7 267 7348	7024 7110 7193 7275 7356	7033 7118 7202 7284 7364	7042 7126 7210 7292 7372	7050 7135 7218 7300 7380	7059 7143 7226 7308 7388	7067 7152 7235 7316 7396	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2	3 2 2 2	3 3 3 3 3	4 4 4 4 4

LOGARITHMS.

													1	P. P		
N.	0	1	2	3		4	5	6	7	8	9	1	2	3	4	5
55 56 57 58 59	7404 7482 7559 7634 7709	7412 7490 7566 7642 7716	7419 7497 7574 7649 7723	7427 7505 7582 7657 7731	7 7 7	43 5 513 589 664 738	7443 7520 7597 7672 7745	7451 7528 7604 7679 7752	74 5 9 7536 7612 7686 7760	7466 7543 7619 7694 7767	7474 7551 7627 7701 7774	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 I I	2 2 2 2 2	3 3 3 3 3	4 4 4 4
60 61 62 63 64	7782 7853 7924 7993 8062	7789 7860 7931 8000 8069	7796 7868 7938 8007 8075	7803 7875 7945 8014 8082	7 7 8	810 882 952 021 089	7818 7889 7959 8028 8096	7825 7896 7966 8035 8102	7832 7903 7973 8041 8109	7839 7910 7980 8048 8116	7846 7917 7987 8055 8122	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	3 3 3 3 3	4 4 3 3 3 3
65 66 67 68 69	8129 8195 8261 8325 8388	81 36 8202 8267 8331 8395	8142 8209 8274 8338 8401	8149 8215 8280 8344 8407	8: 8: 8:	156 222 287 351 414	8162 8228 8293 8357 8420	8169 8235 8299 8363 8426	8176 8241 8306 8370 8432	8182 8248 8312 8376 8439	8189 8254 8319 8382 8445	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	3 3 3 3	3 3 3 3 3
70 71 72 73 74	8451 8513 8573 8633 8692	8457 8519 8579 8639 8698	8463 8525 8585 8645 8704	8470 8531 8591 8651 8710	8 8	476 537 597 657 716	8482 8543 8603 8663 8722	8488 8549 8609 8669 8727	8494 8555 8615 8675 8733	8500 8561 8621 8681 8739	8506 8567 8627 8686 8745	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	2 2 2 2	3 3 3 3 3
75 76 77 78 79	8751 8808 8865 8921 8976	8756 8814 8871 8927 8982	8762 8820 8876 8932 8987	8768 8825 8882 8938 8993	8 8 8	774 831 887 943 998	8779 8837 8893 8949 9004	878 5 8842 8899 8954 9009	8791 8848 8904 8960 9015	8797 8854 8910 8965 9020	8802 8859 8915 8971 9025	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2	2 2 2 2	3 3 3 3 3
80 81 82 83 84	9031 9085 9138 9191 9243	9036 .9090 9143 9196 9248	9042 9096 9149 9201 9253	9047 9101 9154 9206 9258	9 9	053 106 159 212 263	9058 9112 9165 9217 9269	9063 9117 9170 9222 9274	9069 9122 9175 9227 9279	9074 9128 9180 9232 9284	9079 9133 9186 9238 9289	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2	2 2 2 2	3 3 3 3 3
85 86 87 88 89	9294 934 5 9395 9445 9494	9299 9350 9400 9450 9499	9304 9355 9405 9455 9504	9309 9360 9410 9460 9509	9.	315 365 415 465 513	9320 9370 9420 9469 9518	93 ² 5 93 ⁷ 5 94 ² 5 94 ⁷ 4 95 ² 3	9330 9380 9430 9479 9528	9335 9385 9435 9484 9533	9340 9390 9440 9489 9538	I 0 0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 1 1	2 2 2 2	3 3 2 2 2
90 91 92 93 94	954 2 9590 9638 9685 9731	9547 9595 9643 9689 9736	9552 9600 9647 9694 9741	9557 9605 9652 9699 9745	90 90 91	562 609 657 703 750	9566 9614 9661 9708 9754	9571 9619 9666 9713 9759	9576 9624 9671 9717 9763	9581 9628 9675 9722 9768	9586 9633 9680 9727 9773	00000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	2 2 2 2
95 96 97 98 99	9777 98 23 9868 9912 9956	9782 9827 9872 9917 9961	9786 9832 9877 9921 9965	9791 9836 9881 9926 9969	98	795 841 886 930	9800 9845 9890 9934 9978	9805 9850 9894 9939 9983	9809 9854 9899 9943 9987	9814 9859 9903 9948 9991	9818 9863 9908 9952 9996	00000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	2 2 2 2

TABLE 12.
ANTILOGARITHMS.

	_	0 1 2 3 4 5 6 7 8							P. P.						
	0	1	2	3	4	5	6		8	9	1	2	3	4	5
.00	1000	1002	1005	1007	1009	1012	1014	1016	1010	1021	0	0	I	I	I
.01	1023	1026	1028	1030	1033	1035	1038	1040	-	1045	0	0	I	I	1
.02	1047	1050	1052	1054	1057	1059	1062	1064	,	1069	0	O	I	I	I
.03	1072	1074	1076	1079	1081		1086	1089		1094	0	0	I	I	I
.04	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0			Ĥ	
.05	1122	1125	1127	1130	1132	1135	1138	1140	1143	1146	0	I	I	I	I
.06	1148	1151	1153	1156	1159	1161	1104	1167	1169	1172	0	I	I	I	I
.08	1175	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	I	I	I	I
.09	1230	1233	1236	1239	1242		1247	1250	1253	1256	0	I	I	1	1
.10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	I	I	I	I
.II	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	0	I	I	I	2
.I2	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	0	I	I	I	2
.13	1349	1352	1355	1358	1361	1365	1368	1371	1374	1377	0	I	I	I	22
.14	1300	1304	130/	1390	1393	1390	1400	1403	1400	1409				Ľ	-
.15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	I	1	I	2
.16	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	0	I	I	I	2
.17	1479	1517	1521	1524	I 493	1531	1500	1503	1507	1510	0	I	I	I	2
.19	1549	1552	1556	1 560	1563	1567	1570	1574	1578	1581	0	1	1	I	22
.20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	I	I	I	2
.21	1622	1626	1629	1633	1637	1641	1644	1648		1656	0	I	I	2	2
.22	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	0	I	I	2	2
.23	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	I	I	2	2
.24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	0	I	I	2	2
.25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	I	I	2	2
.26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	0	I	I	2	2
.27	1862	1866	1871	1875	1879	1884	1932	1892	1897	1901	0	I	I	2	2
.29	1950	1954	1959	1963		1972	1977	1982	1986	1991	0	1	I	2	2
.30		-	2224	2000	2074	2018	2022	2028	2022	2027	0	,	I	2	2
.31	1995	2000 2046	2004	2009	2014	2065	2023	2028	2032	2037	0	ī	I	2	2
.32	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	0	1	I	2	2
.33	2138	2143	2148	2153	2158	2163.	2168	2173	2178	2183	0	I	I	2	2
.34	2188	2193	2198	2203	2208	2213	2218	2223	2228	2234	I	I	2	2	3
.35	2239	2244	2249	2254	2259	2265	2270	2275	2280	2286	I	1	2	2	3
.36	2291	2296	2301	2307	2312	2317	2323	2328	2333 2388	2339	I	I	2	2	3
·37 ·38	2344	2350	2355	2360	2366	2371	2377	2382	2388	2393 2449	I	I	2	2	3
.30	2399	2404 2460	2410	2415	242I 2477	2427	2432 2489	2438 249 5	2500	2506	I	I	2	12	3
.40	2512	2518 2576	2523 2582	2529 2588	2535	2541	2547 2606	2553 2612	2559 2618	2564	I	I	2	2	3
.42	2630	2636	2642	2649	2655	2661	2667	2673	2679	2685	I	I	2	2	3 3 3
.43	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	I	I	2	3	3
-44	2754	2761	2767	2773	2780	2786	2793	2799	2805	2812	I	I	2	3	3
.45	2818 .	2825	2831	2838	2844	2851	2858	2864	2871	2877	I	I	2	3	3
.46	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	I	I	2	3	3
·47	3020	2958 3027	2965 3034	2972 3041	2979 3048	2985 3055	2992 3062	2999 3069	3006 3076	3013	I	I	2 2	3	3 4
.49	3090	3027	3105	3112	3119	3126	3133	3141	3148	3155	ī	ī	2	3	4
1															

ANTILOGARITHMS.

	0 1		1 2 3		4	5	6	7	8	9		1	P. P.			
									٧)		1	2	3	4	5	
.50 .51 .52 .53 .54	3162 3236 3311 3388 3467	3170 3243 3319 3396 3475	3177 3251 3327 3404 3483	3184 3258 3334 3412 3491	3192 3266 3342 3420 3499	3199 3273 3350 3428 3508	3206 3281 3357 3436 3516	3214 3289 3365 3443 3524	3221 3296 3373 3451 3532	3228 3304 3381 3459 3540	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I 2 2 2 2	2 2 2 2 2	3 3 3 3 3	4 4 4 4 4	
.55 .56 .57 .58 .59	3548 3631 3715 3802° 3890	3556 3639 3724 3811 3899	3565 3648 3733 3819 3908	3573 3656 3741 3828 3917	3581 3664 3750 3837 3926	3589 3673 3758 3846 3936	3597 3681 376 7 3855 3945	3606 3690 3776 3864 3954	3614 3698 3784 3873 3963	3622 3707 3793 3882 3972	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	3 3 3 3	3 3 4 4	4 4 4 5	
.60 .61 .62 .63 .64	3981 4074 4169 4266 4365	3990 4083 4178 4276 437 5	3999 4093 4188 4285 4385	4009 4102 4198 4295 4395	4018 4111 4207 4305 4406	4027 4121 4217 4315 4416	4036 4130 4227 4325 4426	4046 4140 4236 4335 4436	4055 4150 4246 4345 4446	4064 4159 4256 4355 4457	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	3 3 3 3	4 4 4 4	5 5 5 5 5	
.65 .66 .67 .68 .69	4467 4571 4677 4786 4898	4477 4581 4688 4797 4909	44 ⁸ 7 459 ² 4699 4808 4920	4498 4603 4710 4819 4932	4508 4613 4721 4831 4943	4519 4624 4732 4842 4955	4529 4634 4742 4853 4966	4539 4645 4753 4864 4977	4550 4656 4764 4875 4989	4560 4667 4775 4887 5000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	3 3 3 3	4 4 4 5	5 5 5 6 6	
.70 .71 .72 .73 .74	5012 5129 5248 5370 5495	5023 5140 5260 5383 5508	5035 5152 5272 5395 5521	5047 5164 5284 5408 5534	5058 5176 5297 5420 5546	5070 5188 5309 5433 5559	5082 5200 5321 5445 5572	5093 5212 5333 5458 5585	5105 5224 5346 5470 5598	5117 5236 5358 5483 5610	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 3 3	4 4 4 4 4	5 5 5 5 5	6 6 6 6	
.75 .76 .77 .78 .79	5623 5754 5888 6026 6166	5636 5768 5902 6039 6180	5649 5781 5916 6053 6194	5662 5794 5929 6067 6209	5675 5808 5943 6081 6223	5689 5821 5957 6095 6237	5702 5834 5970 6109 6252	5715 5848 5984 6124 6266	5728 5861 5998 6138 6281	5741 5875 6012 6152 6295	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	3 3 3 3	4 4 4 4	5 5 5 6 6	7 7 7 7 7 7	
.80 .81 .82 .83 .84	6310 6457 6607 6761 6918	6324 6471 6622 6776 6934	6339 6486 6637 6792 6950	6353 6501 6653 6808 6966	6368 6516 6668 6823 6982	6383 6531 6683 6839 6998	6397 6546 6699 6855 7015	6412 6561 6714 6871 7031	6427 6577 6730 6887 7047	6442 6592 6745 6902 7063	I 2 2 2 2	3 3 3 3	4 5 5 5 5	6 6 6 6	7 8 8 8	
.85 .86 .87 .88 .89	7079 7244 7413 7586 7762	7096 7261 7430 7603 7780	7112 7278 7447 7621 7798	7129 7295 7464 7638 7816	7145 7311 7482 7656 7834	716 1 7328 7499 7674 7852	7178 7345 7516 7691 7870	7194 7362 7534 7709 7889	7211 7379 7551 7727 7907	7228 7396 7568 7745 7925	2 2 2 2	3 3 4 4	5 5 5 5	77777	8 8 9 9	
.90 .91 .92 .93 .94	7943 8128 8318 8511 8710	7962 8147 8337 8531 8730	7980 8166 8356 8551 8750	7998 8185 8375 8570 8770	8017 8204 8395 8590 8790	8035 8222 8414 8610 8810	8054 8241 8433 8630 8831	8072 8260 8453 8650 8851	8091 8279 8472 8670 8872	8110 8299 8492 8690 8892	2 2 2 2	4 4 4 4 4	6 6 6 6	7 8 8 8	9 9 10 10	
.95 .96 .97 .98 .99	8913 9120 9333 9550 9772	8933 9141 9354 9572 9795	8954 9162 9376 9594 981 7	8974 9183 9397 9616 9840	8995 9204 9419 9638 9863	9016 9226 9441 9661 9886	9036 9247 9462 9683 9908	9057 9268 9484 9705 9931	9078 9290 9506 9727 9954	9099 9311 9528 9750 9977	2 2 2 2	4 4 4 5	6 6 7 7 7	8 8 9 9 9	10 11 11 11	

TABLE 13.
ANTILOGARITHMS.

	0	1	2	3	4	5	6	7	8	9	10
.900	7943	7945	7947	7949	7951	7952	7954	7956	7958	7960	7962
.901	7962	7963	7965	7967	7969	7971	7973	7974	7976	7978	7980
.902	7980	7982	7984	7985	7987	7989	7991	7993	7995	7997	7998
.903	7998	8000	8002	8004	8006	8008	8009	8011	8013	8015	8017
.904	8017	8019	8020	8022	8024	8026	8028	8030	8032	8033	8035
.905	8035	8037	8039	8041	8043	8045	8046	8048	8050	8052	8054
.906	8054	8056	8057	8059	8061	8063	8065	8067	8069	8070	8072
.907	8072	8074	8076	8078	8080	8082	8084	8085	8087	8089	8091
.908	8091	8093	8095	8097	8098	8100	8102	8104	8106	8108	8110
.909	8110	8111	8113	8115	8117	8119	8121	8123	8125	8126	8128
.910	8128	8130	8132	8134	8136	8138	8140	8141	8143	8145	8147
.911	8147	8149	8151	8153	8155	8156	8158	8160	8162	8164	8166
.912	8166	8168	8170	8171	8173	8175	8177	8179	8181	8183	8185
.913	8185	8187	8188	8190	8192	8194	8196	8198	8200	8202	8204
.914	8204	8205	8207	8209	8211	8213	8215	8217	8219	8221	8222
.915	8222	8224	8226	8228	8230	8232	8234	8236	8238	8239	8241
.916	8241	8243	8245	8247	8249	8251	8253	8255	8257	8258	8260
.917	8260	8262	8264	8266	8268	8270	8272	8274	8276	8278	8279
.918	8279	8281	8283	8285	8287	8289	8291	8293	8295	8297	8299
.919	8299	8300	8302	8304	8306	8308	8310	8312	8314	8316	8318
.920	8318	8320	8321	8323	8325	8327	8329	8331	8333	8335	8337
.921	8337	8339	8341	8343	8344	8346	8348	8350	8352	8354	8356
.922	8356	8358	8360	8362	8364	8366	8368	8370	8371	8373	8375
.923	8375	8377	8379	8381	8383	8385	8387	8389	8391	8393	8395
.924	8395	8397	8398	8400	8402	8404	8406	8408	8410	8412	8414
.925	8414	8416	8418	8420	8422	8424	8426	8428	8429	8431	8433
.926	8433	8435	8437	8439	8441	8443	8445	8447	8449	8451	8453
.927	8453	8455	8457	8459	8461	8463	8464	8466	8468	8470	8472
.928	8472	8474	8476	8478	8480	8482	8484	8486	8488	8490	8492
.929	8492	8494	8496	8498	8500	8502	8504	8506	8507	8509	8511
.930	8511	8513	8515	8517	8519	8521	8523	8525	8527	8529	8531
.931	8531	8533	8535	8537	8539	8541	8543	8545	8547	8549	8551
.932	8551	8553	8555	8557	8559	8561	8562	8564	8566	8568	8570
.933	8570	8572	8574	8576	8578	8580	8582	8584	8586	8588	3590
.934	8590	8592	8594	8596	8598	8600	8602	8604	8606	8608	8610
.935	8610	8612	8614	8616	8618	8620	8622	8624	8626	8628	8630
.936	8630	8632	8634	8636	8638	8640	8642	8644	8646	8648	8650
.937	8650	8652	8654	8656	8658	8660	8662	8664	8666	8668	8670
.938	8670	8672	8674	8676	8678	8680	8682	8684	8686	8688	8690
.939	8690	8692	8694	8696	8698	8700	8702	8704	8706	8708	8710
.940	8710	8712	8714	8716	8718	8720	8722	8724	8726	8728	8730
.941	8730	8732	8734	8736	8738	8740	8742	8744	8746	8748	8750
.942	8750	8752	8754	8756	8758	8760	8762	8764	8766	8768	8770
.943	8770	8772	8774	8776	8778	8780	8782	8784	8786	8788	8790
.944	8790	8792	8794	8796	8798	8800	8802	8804	8806	8808	8810
.945	8810	8813	8815	8817	8819	8821	8823	8825	8827	8829	8831
.946	8831	8833	8835	8837	8839	8841	8843	8845	8847	8849	8851
.947	8851	8853	8855	8857	8859	8861	8863	8865	8867	8870	8872
.948	8872	8874	8876	8878	8880	8882	8884	8886	8888	8890	8892
.949	8892	8894	8896	8898	8900	8902	8904	8906	8908	8910	8913

	0	1	2	3	4	5	6	7	8	9	10
.950	8913	8915	8917	8919	8921	8923	8925	8927	8929	8931	8933
.951	8933	8935	8937	8939	8941	8943	8945	8947	8950	8952	8954
.952	8954	8956	8958	8960	8962	8964	8966	8968	8970	8972	8974
.953	8974	8976	8978	8980	8983	8985	8987	8989	8991	8993	8995
.954	8995	8997	8999	9001	9003	9005	9007	9009	9012	9014	9016
.955	9016	9018	9020	9022	9024	9026	9028	9030	9032	9034	9036
.956	9036	9039	9041	9043	9045	9047	9049	9051	9053	9055	9057
.957	9057	9059	9061	9064	9066	9068	9070	9072	9074	9076	9078
.958	9078	9080	9082	9084	9087	9089	9091	9093	9095	9097	9099
.959	9099	9101	9103	9105	9108	9110	9112	9114	9116	9118	9120
.960	9120	9122	9124	9126	9129	9131	9133	9135	9137	9139	9141
.961	9141	9143	9145	9147	9150	9152	9154	9156	9158	9160	9162
.962	9162	9164	9166	9169	9171	9173	9175	9177	9179	9181	9183
.963	9183	9185	9188	9190	9192	9194	9196	9198	9200	9202	9204
.964	9204	9207	9209	9211	9213	9215	9217	9219	9221	9224	9226
.965	9226	9228	9230	9232	9234	9236	9238	9241	9243	9245	9247
.966	9247	9249	9251	9253	9256	9258	9260	9262	9264	9266	9268
.967	9268	9270	9273	9275	9277	9279	9281	9283	9285	9288	9290
.968	9290	9292	9294	9296	9298	9300	9303	9305	9307	9309	9311
.969	9311	93 ¹ 3	9315	9318	9320	9322	9324	9326	9328	9330	9333
.970	9333	9335	9337	9339	9341	9343	9345 · 9367 9389 9410 9432	9348	9350	9352	9354
.971	9354	9356	9358	9361	9363	9365		9369	9371	9373	9376
.972	9376	9378	9380	9382	9384	9386		9391	9393	9395	9397
.973	9397	9399	9402	9404	9406	9408		9412	9415	9417	9419
.974	9419	9421	9423	9425	9428	9430		9434	9436	9438	9441
.975	9441	9443	9445	9447	9449	9451	9454	9456	9458	9460	9462
.976	9462	9465	9467	9469	9471	9473	9475	9478	9480	9482	9484
.977	9484	9486	9489	9491	9493	9495	9497	9499	9502	9504	9506
.978	9506	9508	9510	9513	9515	9517	9519	9521	9524	9526	9528
.979	9528	9530	9532	9535	9537	9539	9541	9543	9546	9548	9550
980	9550	9552	9554	9557	9559	9561	9563	9565	9568	9570	9572
.981	9572	9574	9576	9579	9581	9583	9585	9587	9590	9592	9594
.982	9594	9596	9598	9601	9603	9605	9607	9609	9612	9614	9616
.983	9616	9618	9621	9623	9625	9627	9629	9632	9634	9636	9638
.984	9638	9641	9643	9645	9647	9649	9652	9654	9656	9658	9661
.985	9661	9663	9665	9667	9669	9672	9674	9676	9678	9681	9683
.986	9683	9685	9687	9689	9692	9694	9696	9698	9701	9703	9705
.987	9705	9707	9710	9712	9714	9716	9719	9721	9723	9725	9727
.988	9727	9730	9732	9734	9736	9739	9741	9743	9745	9748	9750
.989	9750	9752	9754	9757	9759	9761	9763	9766	9768	9770	9772
.990	9772	9775	9777	9779	9781	9784	9786	9788	9790	9793	9795
.991	9795	9797	9799	9802	9804	9806	9808	9811	9813	9815	9817
.992	9817	9820	9822	9824	9827	9829	9831	9833	9836	9838	9840
.993	9840	9842	9845	9847	9849	9851	9854	9856	9858	9861	9863
.994	9863	9865	9867	9870	9872	9874	9876	9879	9881	9883	9886
. 995	9886	9888	9890	9892	9895	9897	9899	9901	9904	9906	9908
.996	9908	9911	9913	9915	9917	9920	9922	9924	9927	9929	9931
.997	9931	9933	9936	9938	9940	9943	9945	9947	9949	9952	9954
.998	9954	9956	9959	9961	9963	9966	9968	9970	9972	9975	9977
.999	9977	9979	9982	9984	9986	9988	9991	9993	9995	9998	0000

TABLE 14.

CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

(Taken from B. O. Peirce's "Short Table of Integrals," Ginn & Co.)

				1			-
RADI-	DE- GREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
R.A.	GR	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.0000 0.0029 0.0058 0.0087 0.0116 0.0145	0°00′ 10 20 30 40 50	.0000	1.0000 .0000	.0000	∞ ∞ 343.77 2.5363 171.89 .2352 114.59 .0591 85.940 1.9342 68.750 .8373	90°00′ 1.570 50 1.560 40 1.56 30 1.560 20 1.550 10 1.550	79 50 21 92
0.0175 0.0204 0.0233 0.0262 0.0291 0.0320 0.0349 0.0378 0.0407	1°00′ 10 20 30 40 50 2°00′ 10 20	.0175 8.2419 .0204 .3088 .0233 .3668 .0262 .4179 .0291 .4637 .0320 .5050 .0349 8.5428 .0378 .5776 .0407 .6097	.9998 .9999	.0175 8.2419 .0204 .3089 .0233 .3669 .0262 .4181 .0291 .4638 .0320 .5053 .0349 8.5431 .0378 .5779 .0407 .6101	57.290 1.7581 49.104 .6911 42.964 .6331 38.188 .5819 34.368 .5362 31.242 .4947 28.636 1.4569 26.432 .4221 24.542 .3899	88°00′ 1.53° 40 1.54° 30 1.54° 20 1.54° 10 1.53° 88°00′ 1.53° 50 1.53° 40 1.53°	75 46 17 88 59
0.0436 0.0465 0.0495	30 40 50 3°00'	.0436 .6397 .0465 .6677 .0494 .6940 .0523 8.7188	.9990 .9996 .9989 .9995 .9988 .9995 .9986 9.9994	.0437 .6401 .0466 .6682 .0495 .6945 .0524 8.7194	22.904 .3599 21.470 .3318 20.206 .3055 19.081 1.2806	30 1.527 20 1.524 10 1.521 87°00' 1.518	72 43 13
0.0553 0.0582 0.0611 0.0640 0.0669	10 20 30 40 50	.0552 .7423 .0581 .7645 .0610 .7857 .0640 .8059 .0669 .8251	.9985 .9993 .9983 .9993 .9981 .9992 .9980 .9991 .9978 .9990	.0553 .7429 .0582 .7652 .0612 .7865 .0641 .8067 .0670 .8261	18.075 .2571 17.169 .2348 16.350 .2135 , 15.605 .1933 14.924 .1739	50 1.515 40 1.512 30 1.506 20 1.506 10 1.503	55 26 97 68 39
0.0698 0.0727 0.0756 0.0785 0.0814 0.0844	4°00′ 10 20 30 40 50	.0698 8.8436 .0727 .8613 .0756 .8783 .0785 .8946 .0814 .9104 .0843 .9256	.9976 9.9989 .9974 .9989 .9971 .9988 .9969 .9987 .9967 .9986 .9964 .9985	.0699 8.8446 .0729 .8624 .0758 .8795 .0787 .8960 .0816 .9118 .0846 .9272	14.301 1.1554 13.727 .1376 13.197 .1205 12.706 .1040 12.251 .0882 11.826 .0728	86°00′ 1.501 50 1.498 40 1.495 30 1.492 20 1.486 10 1.486	81 52 23 93 64
0.0873 0.0902 0.0931 0.0960 0.0989 0.1018	5°00′ 10 20 30 40 50	-0872 8.9403 -0901 .9545 -0929 .9682 -0958 .9816 -0987 .9945 .1016 9.0070	.9962 9.9983 .9959 .9982 .9957 .9981 .9954 .9980 .9951 .9979 .9948 .9977	.0875 8.9420 .0904 .9563 .0934 .9701 .0963 .9836 .0992 .9966 .1022 9.0093	11.430 1.0580 11.059 .0437 10.712 .0299 10.385 .0164 10.078 .0034 9.7882 0.9907	85°00′ I.483 50 I.480 40 I.477 30 I.474 20 I.471 10 I.469	06 77 48 19
0.1047 0.1076 0.1105 0.1134 0.1164 0.1193	6°00 10 20 30 40 50	.1045 9.0192 .1074 .0311 .1103 .0426 .1132 .0539 .1161 .0648 .1190 .0755	.9945 9.9976 .9942 .9975 .9939 .9973 .9936 .9972 .9932 .9971 .9929 .9969	.1051 9.0216 .1080 .0336 .1110 .0453 .1139 .0567 .1169 .0678 .1198 .0786	9.5144 0.9784 9.2553 .9664 9.0098 .9547 8.7769 .9433 8.5555 .9322 8.3450 .9214	84°00′ 1.466 50 1.463 40 1.460 30 1.457 20 1.454 10 1.451	32 74 44 15
0.1222 0.1251 0.1280 0.1309 0.1338 0.1367	7°00′ 10 20 30 40 50	.1219 9.0859 .1248 .0961 .1276 .1060 .1305 .1157 .1334 .1252 .1363 .1345	.9925 9.9968 .9922 .9966 .9918 .9964 .9914 .9963 .9911 .9961 .9907 .9959	.1228 9.0891 .1257 .0995 .1287 .1096 .1317 .1194 .1346 .1291 .1376 .1385	8.1443 0.9109 7-9530 .9005 7.7704 .8904 7.5958 .8806 7.4287 .8709 7.2687 .8615	83°00′ 1.448 50 1.445 40 1.442 30 1.439 20 1.437 10 1.434	57 28 99 70 41
0.1396 0.1425 0.1454 0.1484 0.1513 0.1542	8°00′ 10 20 30 40 50	.1392 9.1436 .1421 .1525 .1449 .1612 .1478 .1697 .1507 .1781 .1536 .1863	.9903 9.9958 .9899 .9956 .9894 .9954 .9890 .9952 .9886 .9950 .9881 .9948	.1405 9.1478 .1435 .1569 .1465 .1658 .1495 .1745 .1524 .1831 .1554 .1915	7.1154 0.8522 6.9682 .8431 6.8269 .8342 6.6912 .8255 6.5606 .8169 6.4348 .8085	82°00′ 1.431 50 1.428 40 1.425 30 1.422 20 1.419 10 1.416	33 54 24 95 56
0.1571	9°00′	.1564 9.1943	.9877 9.9946	.1584 9.1997	6.3138 0.8003	81°00′ 1.413	
		Nat. Log.	Nat. Log.	COTAN- GENTS.	TANGENTS.	DE- GREES. RADI- ANS.	

TABLE 14 (continued). CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

RADI- ANS.	DE- GREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
NA.	GE	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.1571 0.1600 0.1629 0.1658 0.1687 0.1716	9°00′ 10 20 30 40	.1564 9.1943 .1593 .2022 .1622 .2100 .1650 .2176 .1679 .2251 .1708 .2324	.9877 9.9946 .9872 .9944 .9868 .9942 .9863 .9940 .9858 .9938 .9853 .9936	.1584 9.1997 .1614 .2078 .1644 .2158 .1673 .2236 .1703 .2313 .1733 .2389	6.3138 0.8003 6.1970 .7922 6.0844 .7842 5.9758 .7764 5.8708 .7687 5.7694 .7611	50 I.2 40 I.2 30 I.2 20 I.2	4137 4108 4079 4050 4021 3992
0.1745 0.1774 0.1804 0.1833 0.1862 0.1891	10°00′ 10 20 30 40 50	.1736 9.2397 .1765 .2468 .1794 .2538 .1822 .2606 .1851 .2674 .1880 .2740	.9848 9.9934 .9843 .9931 .9838 .9929 .9833 .9927 .9827 .9924 .9822 .9922	.1763 9.2463 .1793 .2536 .1823 .2609 .1853 .2680 .1883 .2750 .1914 .2819	5.6713 0.7537 5.5764 .7464 5.4845 .7391 5.3955 .7320 5.3093 .7250 5.2257 .7181	50 I. 40 I. 30 I. 20 I. 10 I.	3963 3934 3904 3875 3846 3817
0.1920 0.1949 0.1978 0.2007 0.2036 0.2065	11°00′ 10 20 30 40 50	.1908 9.2806 .1937 .2870 .1965 .2934 .1994 .2997 .2022 .3058 .2051 .3119	.9816 9.9919 .9811 .9917 .9805 .9914 .9799 .9912 .9793 .9909 .9787 .9907	.1944 9.2887 .1974 .2953 .2004 .3020 .2035 .3085 .2065 .3149 .2095 .3212	5.1446 0.7113 5.0658 .7047 4.9894 .6980 4.9152 .6915 4.8430 .6851 4.7729 .6788	50 I. 40 I. 30 I. 20 I. 10 I.	3788 3759 3730 3701 3672 3643
0.2094 0.2123 0.2153 0.2182 0.2211 0.2240	12°00′ 10 20 30 40 50	.2079 9.3179 .2108 .3238 .2136 .3296 .2164 .3353 .2193 .3410 .2221 .3466	.9781 9.9904 .9775 .9901 .9769 .9899 .9763 .9896 .9757 .9893 .9750 .9890	.2126 9.3275 .2156 .3336 .2186 .3397 .2217 .3458 .2247 .3517 .2278 .3576	4.7046 0.6725 4.6382 .6664 4.5736 .6603 4.5107 .6542 4.4494 .6483 4.3897 .6424	50 I. 40 I. 30 I. 20 I. 10 I.	3614 3584 3555 3526 3497 3468
0.2269 0.2298 0.2327 0.2356 0.2385 0.2414	13°00′ 10 20 30 40 50	.2250 9.3521 .2278 .3575 .2306 .3629 .2334 .3682 .2363 .3734 .2391 .3786	.9744 9.9887 .9737 .9884 .9730 .9881 .9724 .9878 .9717 .9875 .9710 .9872	.2309 9.3634 .2339 .3691 .2370 .3748 .2401 .3804 .2432 .3859 .2462 .3914	4.3315 0.6366 4.2747 .6309 4.2193 .6252 4.1653 .6196 4.1126 .6141 4.0611 .6086	50 I. 40 I. 30 I. 20 I.	3439 3410 3381 3352 3323 3294
0.2443 0.2473 0.2502 0.2531 0.2560 0.2589	14°00′ 10 20 30 40 50	.2419 9.3837 .2447 .3887 .2476 .3937 .2504 .3986 .2532 .4035 .2560 .4083	.9703 9.9869 .9696 .9866 .9689 .9863 .9681 .9859 .9674 .9856 .9667 .9853	.2493 9.3968 .2524 .4021 .2555 .4074 .2586 .4127 .2617 .4178 .2648 .4230	4.0108 0.6032 3.9617 .5979 3.9136 .5926 3.8667 .5873 3.8208 .5822 3.7760 .5770	50 I. 40 I. 30 I. 20 I.	3265 3235 3206 3177 3148 3119
0.2618 0.2647 0.2676 0.2705 0.2734 0.2763	15°00′ 10 20 30 40 50	.2588 9.4130 .2616 .4177 .2644 .4223 .2672 .4269 .2700 .4314 .2728 .4359	.9659 9.9849 .9652 .9846 .9644 .9843 .9636 .9839 .9628 .9836 .9621 .9832	.2679 9.4281 .2711 .4331 .2742 .4381 .2773 .4430 .2805 .4479 .2836 .4527	3.7321 0.5719 3.6891 .5669 3.6470 .5619 3.6059 .5570 3.5656 .5521 3.5261 .5473	50 I. 40 I. 30 I. 20 I.	3090 3061 3032 3003 2974 2945
0.2793 0.2822 0.2851 0.2880 0.2909 0.2938	16°00′ 10 20 30 40 50	.2756 9.4403 .2784 .4447 .2812 .4491 .2840 .4533 .2868 .4576 .2896 .4618	.9613 9.9828 .9605 .9825 .9596 .9821 .9588 .9817 .9580 .9814 .9572 .9810	.2867 9.4575 .2899 .4622 .2931 .4669 .2962 .4716 .2994 .4762 .3026 .4808	3.4874 0.5425 3.4495 .5378 3.4124 .5331 3.3759 .5284 3.3402 .5238 3.3052 .5192	50 I. 40 I. 30 I. 20 I. 10 I.	2915 2886 2857 2828 2799
0.2967 0.2996 0.3025 0.3054 0.3083 0.3113	17°00′ 10 20 30 40 50	.2924 9.4659 .2952 .4700 .2979 .4741 .3007 .4781 .3035 .4821 .3062 .4861	.9563 9.9806 .9555 .9802 .9546 .9798 .9537 .9794 .9528 .9790 .9520 .9786	.3057 9.4853 .3089 .4898 .3121 .4943 .3153 .4987 .3185 .5031 .3217 .5075	3.2709 0.5147 3.2371 .5102 3.2041 .5057 3.1716 .5013 3.1397 .4969 3.1084 .4925	50 I. 40 I. 30 I. 20 I. 10 I.	2741 2712 2683 2654 2625 2595
0.3142	18°00′	.3090 9.4900	.9511 9.9782	.3249 9.5118	3.0777 0.4882		2566
		Nat. Log.	Nat. Log.	Nat. Log. COTAN- GENTS.	Nat. Log. TANGENTS	DE-GREES.	ANS.

1 10	ES	SINES.	COSINES.	TANGENTS.	COTANGENTS	
RADI-	DE-GREES.	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.	
0.3142 0.3171 0.3200 0.3229 0.3258 0.3287	18°00′ 10 20 30 40 50	.3090 9.490 .3118 .493 .3145 .497 .3173 .501 .3201 .505 .3228 .509	9 .9502 .9778 7 .9492 .9774 5 .9483 .9770 2 .9474 .9765	.3249 9.5118 .3281 .5161 .3314 .5203 .3346 .5245 .3378 .5287 .3411 .5329	3.0777 · 0.4882 3.0475 · .4839 3.0178 · .4797 2.9887 · .4755 2.9600 · .4713 2.9319 · .4671	72°00′ 1.2566 50 1.2537 40 1.2508 30 1.2479 20 1.2450 10 1.2421
0.3316 0.3345 0.3374 0.3403 0.3432 0.3462	19°00′ 10 20 30 40 50	.3256 9.512 .3283 .516 .3311 .519 .3338 .523 .3365 .527 .3393 .530	3 .9446 .9752 9 .9436 .9748 5 .9426 .9743 9 .9417 .9739	-3443 9.5370 -3476 .5411 -3508 .5451 -3541 .5491 -3574 .5531 -3607 .5571	2.9042 0.4630 2.8770 .4589 2.8502 .4549 2.8239 .4509 2.7980 .4469 2.7725 .4429	71°00′ 1.2392 50 1.2363 40 1.2334 30 1.2305 20 1.2275 10 1.2246
0.3491 0.3520 0.3549 0.3578 0.3607 0.3636	20°00′ 10 20 30 40 50	.3420 9.534 .3448 .537 .3475 .540 .3502 .544 .3529 .547 .3557 .5510	9387 .9725 9 .9377 .9721 3 .9367 .9716 9 .9356 .9711	.3640 9.5611 .3673 .5650 .3706 .5689 .3739 .5727 .3772 .5766 .3805 .5804	2.7475 0.4389 2.7228 .4350 2.6985 .4311 2.6746 .4273 2.6511 .4234 2.6279 .4196	70°00′ 1.2217 50 1.2188 40 1.2159 30 1.2130 20 1.2101 10 1.2072
0.3665 0.3694 0.3723 0.3752 0.3782 0.3811	21°00′ 10 20 30 40 50	.3584 9.554 .3611 .557 .3638 .560 .3665 .564 .3692 .567 .3719 .570	9325 .9697 9 .9315 .9692 9304 .9687 9 .9293 .9682	.3839 9.5842 .3872 .5879 .3906 .5917 .3939 .5954 .3973 .5991 .4006 .6028	2.6051 0.4158 2.5826 .4121 2.5605 .4083 2.5386 .4046 2.5172 .4009 2.4960 .3972	69°00′ 1.2043 50 1.2014 40 1.1985 30 1.1956 20 1.1926 10 1.1897
0.3840 0.3869 0.3898 0.3927 0.3956 0.3985	22°00′ 10 20 30 40 50	.3746 9.5736 .3773 .5765 .3800 .5798 .3827 .5828 .3854 .5856 .3881 .5886	.9261 .9667 .9250 .9661 .9239 .9656	.4040 9.6064 .4074 .6100 .4108 .6136 .4142 .6172 .4176 .6208 .4210 .6243	2.4751 0.3936 2.4545 .3900 2.4342 .3864 2.4142 .3828 2.3945 .3792 2.3750 .3757	68°00′ 1.1868 50 1.1839 40 1.1810 30 1.1781 20 1.1752 10 1.1723
0.4014 0.4043 0.4072 0.4102 0.4131 0.4160	23°00′ 10 20 30 40 50	.3907 9.5919 .3934 .5948 .3961 .5978 .3987 .6009 .4014 .6038 .4041 .6069	.9194 .9635 .9182 .9629 .9171 .9624 .9159 .9618	.4245 9.6279 .4279 .6314 .4314 .6348 .4348 .6383 .4383 .6417 .4417 .6452	2.3559 0.3721 2.3369 .3686 2.3183 .3652 2.2998 .3617 2.2817 .3583 2.2637 .3548	67°00′ 1.1694 50 1.1665 40 1.1636 30 1.1606 20 1.1577 10 1.1548
0.4189 0.4218 0.4247 0.4276 0.4305 0.4334	24°00′ 10 20 30 40 50	.4067 9.6092 .4094 .612 .4120 .6149 .4147 .6177 .4173 .6209 .4200 .6232	.9124 .9602 .9112 .9596 .9100 .9590 .9088 .9584	.4452 9.6486 .4487 .6520 .4522 .6553 .4557 .6587 .4592 .6620 .4628 .6654	2.2460 0.3514 2.2286 .3480 2.2113 .3447 2.1943 .3413 2.1775 .3380 2.1609 .3346	66°00′ 1.1519 50 1.1490 40 1.1461 30 1.1432 20 1.1403 10 1.1374
0.4363 0.4392 0.4422 0.4451 0.4480 0.4509	25°00′ 10 20 30 40 50	.4226 9.6256 .4253 .6286 .4279 .6313 .4305 .6346 .4331 .6366 .4358 .6392	.9051 .9567 .9038 .9561 .9026 .9555 .9013 .9549	.4663 9.6687 .4699 .6720 .4734 .6752 .4770 .6785 .4866 .6817 .4841 .6850	2.1445 0.3313 2.1283 .3280 2.1123 .3248 2.0965 .3215 2.0809 .3183 2.0655 .3150	65°00′ 1.1345 50 1.1316 40 1.1286 30 1.1257 20 1.1228 10 1.1199
0.4538 0.4567 0.4596 0.4625 0.4654 0.4683	26°00′ 10 20 30 40 50	.4384 9.6418 .4410 .6444 .4436 .6470 .4462 .6499 .4488 .6521 .4514 .6546	.8975 .9530 .8962 .9524 .8949 .9518 .8936 .9512 .8923 .9505	.4877 9.6882 .4913 .6914 .4950 .6946 .4986 .6977 .5022 .7009 .5059 .7040	2.0503 0.3118 2.0353 .3086 2.0204 .3054 2.0057 .3023 1.9912 .2991 1.9768 .2960	64°00′ I.1170 50 I.1141 40 I.1112 30 I.1083 20 I.1054 10 I.1025
0.4712	27°00′	.4540 9.6570 Nat. Log.	Nat. Log.	.5095 9.7072 Nat. Log.	Nat. Log.	63°00′ 1.0996
		COSINES.	SINES.	COTAN- GENTS.	TANGENTS.	DE- GREES. RADI- ANS.

	1 10					
RADI- ANS.	DE- GREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.	
N.A	GR	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.	
0.4712	27°00′	.4540 9.6570	.8910 9.9499	.5095 9.7072	1.9626 0.2928	63°00′ 1.0996
0.4741	10	.4566 .6595	.8897 .9492	.5132 .7103	1.9486 .2897	50 1.0966
0.4771	20	.4592 .6620	.8884 .9486	.5169 .7134	1.9347 .2866	40 1.0937
0.4800	30	.4617 .6644	.8870 .9479	.5206 .7165	1.9210 .2835	30 1.0908
0.4829	40	.4643 .6668	.8857 .9473	.5243 .7196	1.9074 .2804	20 1.0879
0.4858	50	.4669 .6692	.8843 .9466	.5280 .7226	1.8940 .2774	10 1.0850
0.4887	28°00′	.4695 9.6716	.8829 9.9459	.5317 9.7257	1.8807 0.2743	62°00′ 1.0821
0.4916	10	.4720 .6740	.8816 .9453	.5354 .7287	1.8676 .2713	50 1.0792
0.4945	20	.4746 .6763	.8802 .9446	.5392 .7317	1.8546 .2683	40 1.0763
0.4974	30	.4772 .6787	.8788 .9439	.5430 .7348	1.8418 .2652	30 1.0734
0.5003	40	.4797 .6810	.8774 .9432	.5467 .7378	1.8291 .2622	20 1.0705
0.5032	50	.4823 .6833	.8760 .9425	.5505 .7408	1.8165 .2592	10 1.0676
0.5061	29°00′	.4848 9.6856	.8746 .9.9418	.5543 9.7438	1.8040 0.2562 1.7917 .2533 1.7796 .2503 1.7675 .2474 1.7556 .2444 1.7437 .2415	61°00′ 1.0647
0.5091	10	.4874 .6878	.8732 .9411	.5581 .7467		50 1.0617
0.5120	20	.4899 .6901	.8718 .9404	.5619 .7497		40 1.0588
0.5149	30	.4924 .6923	.8704 .9397	.5658 .7526		30 1.0559
0.5178	40	.4950 .6946	.8689 .9390	.5696 .7556		20 1.0530
0.5207	50	.4975 .6968	.8675 .9383	.5735 .7585		10 1.0501
0.5236	30°00′	.5000 9.6990	.8660 9.9375	.5774 9.7614	1.7321 0.2386 1.7205 .2356 1.7090 .2327 1.6977 .2299 1.6864 .2270 1.6753 .2241	60°00′ 1.0472
0.5265	10	.5025 .7012	.8646 .9368	.5812 .7644		50 1.0443
0.5294	20	.5050 .7033	.8631 .9361	.5851 .7673		40 1.0414
0.5323	30	.5075 .7055	.8616 .9353	.5890 .7701		30 1.0385
0.5352	40	.5100 .7076	.8601 .9346	.5930 .7730		20 1.0356
0.5381	50	.5125 .7097	.8587 .9338	.5969 .7759		10 1.0327
0.5411	31°00′	.5150 9.7118	.8572 9.9331	.6009 9.7788	1.6643 0.2212	59°00′ 1.0297
0.5440	10	.5175 .7139	.8557 .9323	.6048 .7816	1.6534 .2184	50 1.0268
0.5469	20	.5200 .7160	.8542 .9315	.6088 .7845	1.6426 .2155	40 1.0239
0.5498	30	.5225 .7181	.8526 .9308	.6128 .7873	1.6319 .2127	30 1.0210
0.5527	40	.5250 .7201	.8511 .9300	.6168 .7902	1.6212 .2098	20 1.0181
0.5556	50	.5275 .7222	.8496 .9292	.6208 .7930	1.6107 .2070	10 1.0152
0.5585	32°00′	.5299 9.7242	.8480 9.9284	.6249 9.7958	1.6003 0.2042	58°00′ 1.0123
0.5614	10	.5324 .7262	.8465 .9276	.6289 .7986	1.5900 .2014	50 1.0094
0.5643	20	.5348 .7282	.8450 .9268	.6330 .8014	1.5798 .1986	40 1.0065
0.5672	30	.5373 .7302	.8434 .9260	.6371 .8042	1.5697 .1958	30 1.0036
0.5701	40	.5398 .7322	.8418 .9252	.6412 .8070	1.5597 .1930	20 1.0007
0.5730	50	.5422 .7342	.8403 .9244	.6453 .8097	1.5497 .1903	10 0.9977
0.5760	33°00′	.5446 9.7361	.8387 9.9236	.6494 9.8125	1.5399 0.1875 1.5301 .1847 1.5204 .1820 1.5108 .1792 1.5013 .1765 1.4919 .1737	57°00′ 0.9948
0.5789	10	.5471 .7380	.8371 .9228	.6536 .8153		50 0.9919
0.5818	20	.5495 .7400	.8355 .9219	.6577 .8180		40 0.9890
0.5847	30	.5519 .7419	.8339 .9211	.6619 .8208		30 0.9861
0.5876	40	.5544 .7438	.8323 .9203	.6661 .8235		20 0.9832
0.5905	50	.5568 .7457	.8307 .9194	.6703 .8263		10 0.9803
0.5934	34°00′	.5592 9.7476	.8290 9.9186	.6745 9.8290	1.4826 0.1710	56°00′ 0.9774
0.5963	10	.5616 .7494	.8274 .9177	.6787 .8317	1.4733 .1683	50 0.9745
0.5992	20	.5640 .7513	.8258 .9169	.6830 .8344	1.4641 .1656	40 0.9716
0.6021	30	.5664 .7531	.8241 .9160	.6873 .8371	1.4550 .1629	30 0.9687
0.6050	40	.5688 .7550	.8225 .9151	.6916 .8398	1.4460 .1602	20 0.9657
0.6080	50	.5712 .7568	.8208 .9142	.6959 .8425	1.4370 .1575	10 0.9628
0.6109 0.6138 0.6167 0.6196 0.6225 0.6254	35°00′ 10 20 30 40 50	.5736 9.7586 .5760 .7604 .5783 .7622 .5807 .7640 .5831 .7657 .5854 .7675	.8192 9.9134 .8175 .9125 .8158 .9116 .8141 .9107 .8124 .9098 8107 .9089	.7002 9.8452 .7046 .8479 .7089 .8506 .7133 .8533 .7177 .8559 7221 .8586	1.4106 .1494 1.4019 .1467 1.3934 .1441 1.3848 .1414	40 0.9541 30 0.9512 20 0.9483 10 0.9454
0.6283	36°00′	.5878 9.7692	8090 9.9080	.7265 9.8613	1.3764 0.1387	54°00′ 0.9425
		Nat. Log. COSINES.	Nat. Log.	Nat. Log. COTAN- GENTS.	TANGENTS.	GREES GREES RADI-

DI- IS.	ES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.	
RADI- ANS.	DE- GREES.	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.	
0.6283	36°00′	.5878 9.7692	.8090 9.9080	.7265 9.8613	1.3764 0.1387	54°00′ 0.9425
0.6312	10	.5901 .7710	.8073 .9070	.7310 .8639	1.3680 .1361	50 0.9396
0.6341	20	.5925 .7727	.8056 .9061	.7355 .8666	1.3597 .1334	40 0.9367
0.6370	30	.5948 .7744	.8039 .9052	.7400 .8692	1.3514 .1308	30 0.9338
0.6400	40	.5972 .7761	.8021 .9042	.7445 .8718	1.3432 .1282	20 0.9308
0.6429	50	.5995 .7778	.8004 .9033	.7490 .8745	1.3351 .1255	10 0.9279
0.6458	37°00′	.6018 9.7795	.7986 9.9023	.7536 9.8771	1.3270 0.1229	53°00′ 0.9250
0.6487	10	.6041 .7811	.7969 .9014	.7581 .8797	1.3190 .1203	50 0.9221
0.6516	20	.6065 .7828	.7951 .9004	.7627 .8824	1.3111 .1176	40 0.9192
0.6545	30	.6088 .7844	.7934 .8995	.7673 .8850	1.3032 .1150	30 0.9163
0.6574	40	.6111 .7861	.7916 .8985	.7720 .8876	1.2954 .1124	20 0.9134
0.6603	50	.6134 .7877	.7898 .8975	.7766 .8902	1.2876 .1098	10 0.9105
0.6632	38°00′	.6157 9.7893	.7880 9.8965	.7813 9,8928	1.2799 0.1072	52°00′ 0.9076
0.6661	10	.6180 .7910	.7862 .8955	.7860 .8954	1.2723 .1046	50 0.9047
0.6690	20	.6202 .7926	.7844 .8945	.7907 .8980	1.2647 .1020	40 0.9018
0.6720	30	.6225 .7941	.7826 .8935	.7954 .9006	1.2572 .0994	30 0.8988
0.6749	40	.6248 .7957	.7808 .8925	.8002 .9032	1.2497 .0968	20 0.8959
0.6778	50	.6271 .7973	.7790 .8915	.8050 .9058	1.2423 .0942	10 0.8930
0.6807	39°00′	.6293 9.7989	.7771 9.8905	.8098 9.9084	1.2349 0.0916	51°00′ 0.8901
0.6836	10	.6316 .8004	.7753 .8895	.8146 .9110	1.2276 .0890	50 0.8872
0.6865	20	.6338 .8020	.7735 .8884	.8195 .9135	1.2203 .0865	40 0.8843
0.6894	30	.6361 .8035	.7716 .8874	.8243 .9161	1.2131 .0839	30 0.8814
0.6923	40	.6383 .8050	.7698 .8864	.8292 .9187	1.2059 .0813	20 0.8785
0.6952	50	.6406 .8066	.7679 .8853	.8342 .9212	1.1988 .0788	10 0.8756
0.6981	40°00′	.6428 9.8081	.7660 9.8843	.8391 9.9238	1.1918 0.0762	50°00′ 0.8727
0.7010	10	.6450 .8096	.7642 .8832	.8441 .9264	1.1847 .0736	50 0.8698
0.7039	20	.6472 .8111	.7623 .8821	.8491 .9289	1.1778 .0711	40 0.8668
0.7069	30	.6494 .8125	.7604 .8810	.8541 .9315	1.1708 .0685	30 0.8639
0.7098	40	.6517 .8140	.7585 .8800	.8591 .9341	1.1640 .0659	20 0.8610
0.7127	50	.6539 .8155	.7566 .8789	.8642 .9366	1.1571 .0634	10 0.8581
0.7156	41°00′	.6561 9.8169	.7547 9.8778	.8693 9.9392	1.1504 0.0608	49°00′ 0.8552
0.7185	10	.6583 .8184	.7528 .8767	.8744 .9417	1.1436 .0583	50 0.8523
0.7214	20	.6604 .8198	.7509 .8756	.8796 .9443	1.1369 .0557	40 0.8494
0.7243	30	.6626 .8213	.7490 .8745	.8847 .9468	1.1303 .0532	30 0.8465
0.7272	40	.6648 .8227	.7470 .8733	.8899 .9494	1.1237 .0506	20 0.8436
0.7301	50	.6670 .8241	.7451 .8722	.8952 .9519	1.1171 .0481	10 0.8407
0.7330	42°00′	.6691 9.8255	.7431 .9.8711 .7412 .8699 .7392 .8688 .7373 .8676 .7353 .8655 .7333 .8653	.9004 9.9544	1.1106 0.0456	48°00′ 0.8378
0.7359	10	.6713 .8269		.9057 .9570	1.1041 .0430	50 0.8348
0.7389	20	.6734 .8283		.9110 .9595	1.0977 .0405	40 0.8319
0.7418	30	.6756 .8297		.9163 .9621	1.0913 .0379	30 0.8290
0.7447	40	.6777 .8311		.9217 .9646	1.0850 .0354	20 0.8261
0.7476	50	.6799 .8324		.9271 .9671	1.0786 .0329	10 0.8232
0.7505	43°00′	.6820 9.8338	.7314 9.8641	.9325 9.9697	I.0724 0.0303	47°00′ 0.8203
0.7534	10	.6841 .8351	.7294 .8629	.9380 .9722	I.0661 .0278	50 0.8174
0.7563	20	.6862 .8365	.7274 .8618	.9435 .9747	I.0599 .0253	40 0.8145
0.7592	30	.6884 .8378	.7254 .8606	.9490 .9772	I.0538 .0228	30 0.8116
0.7621	40	.6905 .8391	.7234 .8594	.9545 .9798	I.0477 .0202	20 0.8087
0.7650	50	.6926 .8405	.7214 .8582	.9601 .9823	I.0416 .0177	10 0.8058
0.7679 0.7709 0.7738 0.7767 0.7796 0.7825	44°00′ 10 20 30 40 50	.6947 9.8418 .6967 .8431 .6988 .8444 .7009 .8457 .7030 .8469 .7050 .8482	.7193 9.8569 .7173 .8557 .7153 .8545 .7133 .8532 .7112 .8520 .7092 .8507	.9770 .9899 .9827 .9924 .9884 .9949 .9942 .9975	1.0355 0.0152 1.0295 .0126 1.0235 .0101 1.0176 .0076 1.0117 .0051 1.0058 .0025	46°00′ 0.8029 50 0.7999 40 0.7970 30 0.7941 20 0.7983
0.7854	45°00′	.7071 9.8495	.7071 9.8495	Nat Log	Nat. Log.	45°00′ 0.7854
		COSINES.	Nat Log. SINES.	Nat. Log. COTAN- GENTS.	TANGENTS.	DE- GREES. RADI- ANS.

RADIANS.	SIN	ES.	COSI	NES.	TANG	ENTS	COTAN	GENTS.	EGREES
RAD	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEG
0.00	0,00000	∞	1.00000	0.00000			00	00	00°00′
.01	.000010.	7.99999	0.99995	9.99998	0.01000	10000.8	99.997	1.99999	00 34
.02	.02000	8.30100	.99980	.99991	.02000	.30109	49.993	.69891	01 09
.03	.03000	.47706	.99955	.99980	.03001	.60229	33.323	·52275 ·39771	OI 43
.04	.03999								
0.05	0.04998	8.69879	0.99875	9.99946	.06007	8.69933	19.983	1.30067	02°52′ 03 26
.06	.05996	.77789	.997.55	.99922	.07011	.84581	14.262	.15419	04 01
.08	.07991	.90263	.99680	.99861	.08017	.90402	12.473	.09598	04 35
.09	.08988	.95366	.99595	.99824	.09024	-95542	11.081	.04458	05 09
0.10	0.09983	8.99928	0.99500	9.99782	0.10033	9.00145	9.9666	0.99855	05°44′
II.	.10978	9.04052	.99396	•99737	.11045	.04315	9.0542	.95685	06 18
.12	.11971	.07814	.99281	.99687	.12058	.08127	8.2933	.91873	06 53
.13	.12963	.11272	.991 56	.99632	.13074	.11640	7.6489	.88360	07 27
.14	.13954	.14471	.99022	· 9 9573	.14092	.14898	7.0961	.85102	10 80
0.15	0.14944	9.17446	0.98877	9.99510	0.15114	9.17937	6.6166	0.82063	08°36′
.16	.1 5932	.20227	.98723	.99442	.16138	.20785	6.1966	.79215	09 10
.17	.16918	.22836	.98558	.99369	.17166	.23466	5.8256	.76534	09 44
.18	.17903	.25292	.98384	.99293	.18197	.26000	5.4954 5.1997	.74000	10 19
119	~						3331		
0.20	0.19867	9.29813	0.98007	9.99126	0.20271	9.30688	4.9332	0.69312	11°28′
.21	.20846	.31902	.97803	.99035	.21314	.32867	4.6917	.65049	12 02
.22	.21823	.33891	.97590	.98940	.22362	.34951	4.4719	.63052	12 36
.24	.23770	.35789	.97134	.98737	.24472	.38866	4.0864	.61134	13 45
0.05				9.98628	0.25524	0.40710	20162		14°19′
0.25	0.24740	9.39341	.96639	.98515	0.25534	9.40712	3.9163	0.59288	14 54
.27	.26673	.42607	.96377	98397	.27676	.44210	3.6133	.55790	15 28
.28	.27636	.44147	.96106	.98275	.28755	.45872	3.4776	.54128	16 03
.29	.28595	.45629	.95824	.98148	.29841	.47482	3.3511	.52518	16 37
0.30	0.29552	9.47059	0.95534	9.98016	0.30934	9.49043	3.2327 .	0.50957	17011'
.31	.30506	.48438	.95233	.97879	.32033	.50559	3.1218	-49441	17 46
.32	.31457	·4977 I	.94924	-97737	.33139	.52034	3.0176	-47966	18 20
•33	.32404	.51060	.94604	.97591	.34252	.53469	2.9195	.46531	19 29
•34	-33349	.52308	.94275	.97440	.35374		2.02/0		
0.35	0.34290	9.53516	0.93937	9.97284	0.36503	9.56233	2.7395	0.43767	20°03′
.36	.35227	.54688	.93590	.97123	.37640	.57565	2.6567	.42435	20 38
-37	.36162	.55825	.93233	.96957	.38786	.58868	2.5782	.41132	21 12 21 46
.38	.38019	.58000	.92491	.96610	.41105	.61390	2.4328	.38610	22 21
	,								22°55′
0.40	0.38942	9.59042	0.92106	9.96429	0.42279	9.62613	2.3652 2.3008	0.37387	23 29
.41	.39861	.61041	.91712	.96051	.43403	.64989	2.3008	.35011	24 04
•43	.41687	.62000	.90897	.95855	.45862	.66145	2.1804		24 38
-44	.42594	.62935	.90475	.95653	.47078	.67282	2.1241	.33855	25 13
0.45	0.43497	9,63845	0.90045	9.95446	0.48306	9.68400	2.0702	0.31600	25°47′
.46	•44395	.64733	.89605	.95233	-49545	.69500	2.0184	.30500	26 21
.47	.45289	.65599	.89157	.95015	.50797	.70583	1.9686	.29417	26 56
.48	.46178	.66443	.88699	.94792 .94563	.52061	.71651	1.9208	.28349	27 30 28 04
0 50	0.47943	9.68072	0.87758	9.94329	0.54630	9.73743	1.8305	0.26257	28°39′

Zi Zi	SIN	NES.	COSI	NES.	TANG	ENTS	COTAN	GENTS.	ES.
RADIANS	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEGREES
-		060000	00		0 4 16 00		. 0		
0.50	.48818	9.68072	0.87758	9.94329	0.54630	9.73743	1.8305	0.26257	28°39′ 29 13
.52	.49688	.69625	.86782	.93843	.57256	.75782	.7465	.24218	29 13 29 48
.53	.50553	.70375	.86281	-93591	.58592	.76784	.7067	.23216	30 22
.54	.51414	.71108	.85771	-93334	.59943	•77774	.6683	.22226	30 56
0.55	0.52269	9.71824	0.85252	9.93071	0.61311	9.78754	1.6310	0.21246	31°31′
.56	.53119	.72525	.84726	.92801	.62695	.79723	.5950	.20277	32 0 5 32 40
.57	.53963	.73880	.83646	.92345	.65517	.81635	.5263	.19316	33 14
.59	.55636	.74536	.83094	.91957	.66956	.82579	-4935	.17421	33 48
0.60	0.56464	9.75177	0.82534	9.91663	0.68414	9.83514	1.4617	0.16486	34°23′
.61	.57287	.75805	.81965	.91363	.69892	.84443	.4308	.15557	34 57
.62	.58104	.76420	.81388	.91056	.71391	.85364	.4007	.14636	35 31
.63	.58914	.77022	.80803	.90743	.72911	.86280	.3715	.13720	36 06
.64	.59720	.77612	.80210	.90423	.74454	.87189	.3431	.12811	36 40
0.65	0.60519	9.78189	0.79608	9.90096	0.76020	9.88093	1.3154	0.11907	37°15′
.66	.61312	.78754	.78999	.89762	.77610	.88992	.2885	.11008	37 49 38 23
.67	.62099	.79308	.78382	.89422	.79225 .80866	.89886	.2622	.10114	38 23
.69	.63654	.79851	·77757	.88719	.82534	.90777	.2116	.08337	39 32
		00000		. 00		000716	0		
0.70 .7I	0.64422	9.80903	0.76484	9.88357	0.84229	9.92546	1.1872	.06574	40°06′
.72	.65938	.81914	.75181	.87611	.87707	.94303	.1402	.05697	41 15
.73	,66687	.82404	.74517	.87226	.89492	.95178	.1174	.04822	41 50
.74	.67429	.82885	.73847	.86833	.91309	.96051	.0952	.03949	42 24
0.75	0.68164	9.83355	0.73169	9.86433	0.93160	9.96923	1.0734	0.03077	42°58′
.76	.68892	.83817	.72484	.86024	.95045	.97793	.0521	.02207	43 33
·77	.69614	.84269	.71791	.85607	.96967	98662	.0313	.01338	44 07
.70	.70328	.84713	.71091	.85182 .84748	.98926	9.9953I 0.00400	0.99084	9.99600	44 41 45 16
0.80	0.71736	9.85573	0.69671	9.84305	1.0296	0.01268	0.97121	9.98732	45°50′ 46 25
.82	.72429	.86400	.68222	.83393	.0505	.03008	.95197	.96992	46 59
.83	.73793	.86802	.67488	.82922	.0934	.03879	.91455	.96121	
.84	.74464	.87195	.66746	.82443	.1156	.04752	.89635	.95248	47 33 48 08
0.85	0.75128	9.87580	0.65998	9.81953	1.1383	0.05627	0.87848	9.94373	48°42'
.86	.75784	.87958	.65244	.81454	.1616	.06504	.86091	.93496	49 16
.87	.76433	.88328	.64483	.80944	.1853	.07384	.84365	.92616	49 51
.88	.77074 .7770 7	.88691	.63715	.79894	.2097 .2346	.08266	.82668 .80998	.91734	50 25
				,,,,					
0.90	0.78333	9.89394	.61375	9.79352	1.2602	0.10043	0.79355 .77738	9.89957	51°34′ 52 08
.91	.79560	.89735	.60582	.78234	.3133	.10937	.76146	.88165	52 43
.93	.80162	.90397	.59783	.77658	.3409	.12739	.74578	.87261	53 17
.94	.80756	.90717	.58979	.77070	.3692	.13648	.73034	.86352	53 51
0.95	0.81342	9.91031	0.58168	9.76469	1.3984	0.14563	0.71511	9.85437	54°26′
.96	.81919	.91339	-57352	.75855	.4284	.15484	.70010	.84516	55 00
.97	.82489	.91639	.56530	.75228	-4592	.16412	.68531	.83588	55 35 56 09
.98	.83050 .83603	.91934	.55702	·74587 ·73933	.4910	.17347	.65631	.82653	56 43
1.00	0.84147	9.92504	0.54030	9.73264	1.5574	0.19240	0.64209	9.80760	57°18′

ANS.	SII	NES.	cos	INES.	TANG	ENTS.	COTAN	GENTS.	EES.
RADIANS.	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEGREES
1.00 .01 .02 .03	0.84147 .84683 .85211 .85730 .86240	9.92504 •92780 •93049 •93313 •93571	0.54030 .53186 .52337 .51482 .50622	9.73264 .72580 .71881 .71165 .70434	1.5574 .5922 .6281 .6652 .7036	0.19240 .20200 .21169 .22148 .23137	0.64209 .62806 .61420 .60051 .58699	9.80760 .79800 .78831 .77852 .76863	57°18′ 57 52 58 27 59 01 59 35
1.05 .06 .07 .08	0.86742 .87236 .87720 .88196 .88663	9.93823 .94069 .94310 .94545 .94774	0.49757 .48887 .48012 .47133 .46249	9.69686 .68920 .68135 .67332 .66510	1.7433 .7844 .8270 .8712 .9171	0.24138 .25150 .26175 .27212 .28264	0.57362 .56040 •54734 .53441 .52162	9.75862 .74850 .73825 .72788 .71736	60°10′ 60 44 61 18 61 53 62 27
1.10 .11 .12 .13	0.89121 .89570 .90010 .90441 .90863	9.94998 .95216 .95429 .95637 .95839	0.45360 .44466 .43568 .42666 .41759	9.65667 .64803 .63917 .63008 .62075	1.9648 2.0143 .0660 .1198 .1759	0.29331 .30413 .31512 .32628 .33763	0.50897 .49644 .48404 .47175 .45959	9.70669 .69587 .68488 .67372 .66237	63°02′ 63 36 64 10 64 45 65 19
1.15 .16 .17 .18	0.91276 .91680 .92075 .92461 .92837	9.96036 .96228 .96414 .96596 .96772	0.40849 ·39934 ·39015 ·38092 ·37166	9.61118 .60134 .59123 .58084 .57015	2.2345 .2958 .3600 .4273 .4979	0.34918 .36093 .37291 .38512 .39757	0.44753 .43558 .42373 .41199 .40034	9.65082 .63907 .62709 .61488 .60243	65°53′ 66 28 67 02 67 37 68 11
1.20 .21 .22 .23 .24	0.93204 .93562 .93910 .94249 .94578	9.96943 .97110 .97271 .97428 .97579	0.36236 ·35302 ·34365 ·33424 ·32480	9.55914 .54780 .53611 .52406 .51161	2.5722 .6503 .7328 .8198 .9119	0.41030 .42330 .43660 .45022 .46418	0.38878 ·37731 ·36593 ·35463 ·34341	9.58970 •57670 •56340 •54978 •53582	68°45′ 69 20 .69 54 70 28 71 03
1.25 .26 .27 .28 .29	0.94898 .95209 .95510 .95802 .96084	9.97726 .97868 .98005 .98137 .98265	0.31532 .30582 .29628 .28672 .27712	9.49875 .48546 .47170 .45745 .44267	3.0096 .1133 .2236 .3413 .4672	0.47850 •49322 •50835 •52392 •53998	0.33227 .32121 .31021 .29928 .28842	9.52150 .50678 .49165 .47608	71°37′ 72 12 72 46 73 20 73 55
1.30 .31 .32 .33 .34	0.96356 .96618 .96872 .97115 .97348	9.98388 .98506 .98620 .98729 .98833	0.26750 .25785 .24818 .23848 .22875	9.42732 .41137 .39476 .37744 .35937	3.6021 .7471 .9033 4.0723 .2556	0.55656 ·57369 ·59144 .60984 .62896	0.27762 .26687 .25619 .24556 .23498	9.44344 .42631 .40856 .39016 .37104	74°29′ 75 03 75 38 76 12 76 47
1.35 .36 .37 .38 .39	0.97572 .97786 .97991 .98185 .98370	9.98933 .99028 .99119 .99205 .99286	0.21901 .20924 .19945 .18964 .17981	9.34046 .32064 .29983 .27793 .25482	4.4552 .6734 .9131 5.1774 .4707	0.64887 .66964 .69135 .71411	0.22446 .21398 .20354 .19315 .18279	9.35113 .33036 .30865 .28589 .26196	77°21′ 77 55 78 30 79 04 79 38
1.40 .41 .42 .43 .44	0.98545 .98710 .98865 .99010	9.99363 .99436 .99504 .99568 .99627	0.16997 .16010 .15023 .14033 .13042	9.23036 .20440 .17674 .14716 .11536	5.7979 6.1654 6.5811 7.0555 7.6018	0.76327 .78996 .81830 .84853 .88092	0.17248 .16220 .15195 .14173 .13155	9.23673 .21004 .18170 .15147 .11908	80°13′ 80 47 81 22 ·81 56 82 30
1.45 .46 .47 .48 .49	0.99271 .99387 .99492 .99588 .99674	9.99682 .99733 .99779 .99821 .99858	0.12050 .11057 .10063 .09067 .08071	9.08100 .04364 .00271 8.95747 .90692	8.2381 8.9886 9.8874 10.983 12.350	0.91583 .95369 .99508 1.04074 .09166	0.12139 .11125 .10114 .09105 .08097	9.08417 .04631 .00492 8.95926 .90834	83°05′ 83 39 84 13 84 48 85 22
1.50	0.99749	9.99891	0.07074	8.84965	14.101	1.14926	0.07091	8.85074	85°57′

CIRCULAR FUNCTIONS AND FACTORIALS.

TABLE 15 (continued). - Circular (Trigonometric) Functions.

ANS.	SIN	VES.	COSI	NES.	TANGI	ENTS.	COTAN	GENTS.	EES.
RADI	Nat.	Log	Nat.	Log	Nat.	Log.	Nat.	Log.	DEGREES
1.50 .51 .52 .53 .54	0.99749 .99815 .99871 .99917 .99953	9.99891 •99920 •99944 •99964 •99979	0.07074 .06076 .05077 .04079 .03079	8.84965 .78361 .70565 .61050 .48843	14.101 16.428 19.670 24.498 32.461	1.14926 .21559 .29379 .38914 .51136	0.07091 .06087 .05084 .04082 .03081	8.85074 .78441 .70621 .61086 .48864	85°57′ 86 31 87 05 87 40 88 14
1.55 .56 .57 .58 .59	0.99978 0.99994 1.00000 0.99996 0.99982	9.99991 9.99997 0.00000 9.99998 9.99992	0.02079 .01080 .00080 00920 01920	8.31796 8.03327 6.90109 7.96396n 8.28336n	48.078 92.621 1255.8 108.65 52.067	1.68195 1.96671 3.09891 2.03603 1.71656	0.02080 .01080 .00080 00920 01921	8.31805 8.03 329 6.90 109 7.96397n 8.28344n	88°49′ 89 23 89 57 90 32 91 06
1.60	0.99957	9.99981	-0.02920	8.46538n	34.233	1.53444	-0.02921	8.46556n	91°40′

90°=1.570 7963 radians.

TABLE 16 .- Logarithmic Factorials.

Logarithms of the products 1.2.3.n, n from 1 to 100. See Table 18 for Factorials 1 to 20.

See Table 32 for log. Γ (n+1), values of n between 1 and 2.

n.	log (n!)	n.	log (n!)	n.	log (n!)	n.	log (n!)
1	0.000000	26	26.605619	51	66.190645	76	111.275425
2	0.301030	27	28.036983	52	67.906648	77	113.161916
3	0.778151	28	29.484141	53	69.630924	78	115.054011
4	1.380211	29	30.946539	54	71.363318	79	116.951638
5	2.079181	30	32.423660	55	73.103681	80	118.854728
6	2.857332	31	33.915022	56	74.851869	81	120.763213
7	3.702431	32	35.420172	57	76.607744	82	122.677027
8	4.605521	33	36.938686	58	78.371172	83	124.596105
9	5.559763	34	38.470165	59	80.142024	84	126.520384
10	6.559763	35	40.014233	60	81.920175	85	128.449803
11	7.601156	36	41.570535	61	83.705505	86	130.384301
12	8.680337	37	43.138737	62	85.497896	87	132.323821
13	9.794280	38	44.718520	63	87.297237	88	134.268303
14	10.940408	39	46.309585	64	89.103417	89	136.217693
15	12.116500	40	47.911645	65	90.916330	90	138.171936
16	13.320620	41	49.524429	66	92.735874	91	140.130977
17	14.551069	42	51.147678	67	94.561949	92	142.094765
18	15.806341	43	52.781147	68	96.394458	93	144.063248
19	17.085095	44	54.424599	69	98.233307	94	146.036376
20	18.386125	45	56.077812	70	100.078405	95	148.014099
21	19.708344	46	57-740570	71	101.929663	96	149.996371
22	21.050767	47	59.412668	72	103.786996	97	151.983142
23	22.412494	48	61.093909	73	105.650319	98	153.974368
24	23.792706	49	62.784105	74	107.519550	99	155.970004
25	25.190646	50	64.483075	75	109.394612	100	157.970004

TABLE 17.
HYPERBOLIC FUNCTIONS.

	sinh. u	cosh. u	tanh. u	coth. u	
u	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.	gd u
0.00 .01 .02 .03	0.00000 — 00 .01000 8.0000 .02000 .3010 .03000 .4771 .04001 .6021	.00005 .00002 .00020 .00009 .00045 .00020	.01000 7.99999 .02000 8.30097	00 00 00 100.0001 50.0001 1.69903 33.343 1.52301 25.013 1.39817	00°00′ 0 34 1 09 1 43 2 17
0.05 .06 .07 .08	0.05002 8.6991 .06004 .7784 .07006 .8454 .08009 .9035 .09012 .9548	.00180 .00078 5 .00245 .00106 5 .00320 .00139	0.04996 8.69861 .05993 .77763 .06989 .84439 .07983 .90216 .08976 .95307	20.017 1.30139 16.687 .22237 14.309 .15561 12.527 .09784 11.141 .04693	2 52 3 26 4 00 4 35 5 09
0.10 .11 .12 .13	0.10017 9.0007 .11022 .0422 .12029 .0802 .13037 .1151 .14046 .1475	7 .00606 .00262 2 .00721 .00312 7 .00846 .00366	0.09967 8.99856 .10956 9.03965 .11943 .07710 .12927 .11151 .13909 .14330	10.0333 1.00144 9.1275 0.96035 8.3733 .92290 7.7356 .88849 7.1895 .85670	5 43 6 17 6 52 7 26 8 00
0.15 .16 .17 .18	0.15056 9.1777 .16068 .2059 .17082 .2325 .18097 .2576 .19115 .2813	7 .01283 .00554 4 .01448 .00625 2 .01624 .00700	0.14889 9.17285 .15865 .20044 .16838 .22629 .17808 .25062 .18775 .27357	6.7166 0.82715 6.3032 .79956 5.9389 .77371 5.6154 .74938 5.3263 .72643	8 34 9 08 9 42 10 15 10 49
0.20 .21 .22 .23 .24	0.20134 9.3039 .21155 .3254 .22178 .3459 .23203 .3655 .24231 .3843	.02213 .00951 2 .02430 .01043 5 .02657 .01139	0.19738 9.29529 .20697 .31590 .21652 .33549 .22603 .35416 .23550 .37198	5.0665 0.70471 4.8317 .68410 4.6186 .66451 4.4242 .64584 4.2464 .62802	11 23 11 57 12 30 13 04 13 37
0.25 .26 .27 .28 .29	0.25261 9.4024 .26294 .4198 .27329 .4366 .28367 .4528 .29408 .4684	0.03399 .01452 0.03667 .01564 0.03946 .01681	0.24492 9.38902 .25430 .40534 .26362 .42099 .27291 .43601 .28213 .45046	4.0830 0.61098 3.9324 .59466 3.7933 .57901 3.6643 .56399 3.5444 .54954	14 11 14 44 15 17 15 50 16 23
0.30 .31 .32 .33 .34	0.30452 9.4836 .31499 .4983 .32549 .5125 .33602 .5263 .34659 .5398	0 .04844 .02054 1 .05164 .02187 7 .05495 .02323	0.29131 9.46436 .30044 .47775 .30951 .49067 .31852 .50314 .32748 .51518	3.4327 0.53564 .3285 .52225 .2309 .50933 .1395 .49686 .0536 .48482	16 56 17 29 18 02 18 34 19 07
0.35 .36 .37 .38 .39	0.35719 9.5529 .36783 .5656 .37850 .5780 .38921 .5901 .39996 .6020	.06550 .02755 .06923 .02907 .07307 .03063	0.33638 9.52682 .34521 .53809 .35399 .54899 .36271 .55956 .37136 .56980	2.9729 0.47318 .8968 .46191 .8249 .45101 .7570 .44044 .6928 .43020	19 39 20 12 20 44 21 16 21 48
0.40 .41 .42 .43 .44	0.41075 9.6135 .42158 .6248 .43246 .6359 .44337 .6467 .45434 .6573	3 .08523 .03552 .08950 .03723 .09388 .03897	0.37995 9.57973 .38847 .58936 .39693 .59871 .40532 .60780 .41364 .61663	2.6319 0.42027 ·5742 .41064 ·5193 .40129 ·4672 .39220 ·4175 .38337	22 20 22 52 23 23 23 55 24 26
0.45 .46 .47 .48 .49	0.46534 9.6677 .47640 .6779 .48750 .6879 .49865 .6977 .50984 .7074	.10768 .04441 .11250 .04630 .11743 .04822	0.42190 9.62521 .43008 .63355 .43820 .64167 .44624 .64957 .45422 .65726	2.3702 0.37479 .3251 .36645 .2821 .35833 .2409 .35043 .2016 .34274	24 57 25 28 25 59 26 30 27 01
0.50	0.52110 9.7169	1.12763 0.05217	0.46212 9.66475	2.1640 0.33525	27 31

HYBERBOLIC FUNCTIONS.

u	sinl	h. u	cos	h. u	tan	h. u	cot	h. u	gd u		
	Nat-	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.			
0.50	0.52110	9.71692	1.12763	0.05217	0.46212	9.66475	2.1640	0.33525	27°31′		
.51	.53240	.72624	.13289	.05419	.46995	.67205	.1279	-32795	28 02		
.52	.54375	.73540	.13827	.05625	.47770	.68608	.0934	.32084	28 32		
·53 ·54	.55516	·74442 ·75330	.14377	.05834	.48538	.69284	.0284	.31392	29 02 29 32		
0.55	0.57815	9.76204	1.15510	0.06262	0.50052	9.69942	1.9979	0.30058	30 02		
.56	.58973	.77065	.16094	.06481	.50798	.70584	.9686	.29416	30 32		
.57	.60137	.77914	.16690	.06703	.51536	.71211	.9404	.28789	31 01		
.58	.61307	.78751	.17297	.06929	.52267	.71822	.9133	.28178	31 31 32 00		
0.60							1.8620	0.26999			
.61	0.63665	9.80390	1.18547	0.07389	0.53705	9.73001	.8378	.26430	32 29 32 58		
.62	.66049	.81987	.19844	.07861	.55113	.74125	.8145	.25875	33 27		
63	.67251	.82770	.20510	.08102	.55805	.74667	.7919	.25333	33 55		
.64	.68459	.83543	.21189	.08346	.56490	.75197	.7702	.24803	34 24		
0.65	0.69675	9.84308	1.21879	0.08593	0.57167	9.75715	1.7493	0.24285	34 52		
.66	.70897	.85063	.22582	.08843	.57836	.76220	.7290	.23780	35 20		
.67	.72126	.85809	.23297	.09095	.58498	.76714	.7095	.23286	35 48		
.69	.73363	.86548	.24025	.09351	.59152	.77197	.6906	.22803	36 16 36 44		
0.70	0.75858	9.88000	1.25517	0.09870	0.60437	9.78130	1.6546	0.21870	37 11		
.71	.77117	.88715	.26282	.10134	.61068	.78581	.637.5	.21419			
.72	.78384	.89423	.27059	.10401	.61691	.79022	.6210	.20978	37 38 38 05		
.73	.79659	.90123	.27849	10670	.62307	.79453	.6050	.20547	38 32		
.74	.80941	.90817	.28652	.10942	.62915	.79875	.5895	.20125	38 59		
0.75	0.82232	9.91504	1.29468	0.11216	0.63515	9.80288	1.5744	0.19712	39 26		
.76	.83530	.92185	.30297	.11493	.64108	.80691	-5599	.19309	39 52		
.78	.86153	.93527	.31139	.12055	.65271		.5458	.18528	40 19		
.79	.87478	.94190	.32862	.12340	.65841		.5188	.18150	41 11		
0.80	0.88811	9.94846	1.33743	0.12627	0.66404	9.82219	1.5059	0.17781	41 37		
.81	.90152	.95498	.34638	.12917	.66959	.82581	-4935	.17419	42 02		
.82	.91503	.96144	-35547	.13209	.67 507	.82935	.4813	.17065	42 28		
.83	.92863	.96784	.36468	.13503	.68048	.83281	.4696	.16380	42 53 43 18		
	.94233		.37404								
0.85	0.95612	9.98051	1.38353	0.14099	0.69107	9.83952	1.4470	0.16048	43 43		
.80	.97000	.98677	.39316	.14400	.69626	.84277	.4362	.15723	44 08		
.88	.99806	.99299	.41284	.15009	.70642	.84906	.4156	.15094	44 57		
.89	1.01224	0.00528	.42289	.15317	.71139	.85211	.4057	.14789	45 21		
0.90	1.02652	0.01137	1.43309	0.1 5627	0.71630	9.85509	1.3961	0.14491	45 45		
.91	.04090	.01741	.44342	.15939	.72113	.85801	.3867	.14199	46 09		
.92	.05539	.02341	.45390	.16254	.72590	.86088	.3776	.13912	46 33		
.93	.06998	.02937	.46453	.16570	.73059 .73522	.86368 .86642	.3687 .3601	.13632	46 56		
0.95	1.09948	0.04119	1.48623	0.17208	0.73978	9.86910	1.3517	0.13090	47 43 48 06		
.96	.11440	.04704	.49729	.17531	.74428	.87431	.3436	.12569	48 29		
.98	.14457	.052864	.51988	.18181	.75307	.87683	.3279	.12317	48 51		
.99	.15983	.06439	.53141	.18509	.75736	.87930	.3204	.12070	49 14		
1.00	1.17520	0.07011	1.54308	0.18839	0.76159	9.88172	1.3130	0.11828	49 36		

TABLE 17 (continued). HYPERBOLIC FUNCTIONS.

HTPERBOLIC FUNCTIONS.											
		sin	h. u	cos	h. u	tan	ıh. u	со	th u	ad a	
	N	lat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd u	
1.0		7520	0.07011	1.54308	o.18839 .19171	0.76159	9.88172	1.3130	0.11828	49°36′	
.0		9630	.08146	.55491	.19504	.76987	.88642	.3059	.11358	49 58	
.0	_	2203	.08708	.57904	.19839	.77391	.88869	.2921	.11131	50 42	
.0.	4 .23	3788	.09268	.59134	.20176	.77789	.89092	.2855	.10908	51 04	
1.0		5386	0.09825	1.60379	0.20515	0.78181	9.89310	1.2791	0,10690	51 26	
.0		5996	.10379	.61641	.20855	.78566	.89524	.2728	.10476	51 47	
.0.		3619	.10930	.62919	.21197	.78946	.89733 .89938	.2667	.10267	52 08 52 29	
.00	, ,	1903	.11479	.65525	.21541	.79320	.90139	.2549	.09861	52 50	
1.10	0 1.33	3565	0.12569	1.66852	0.22233	0.80050	9.90336	1.2492	0.09664	53 11	
I.	I .35	5240	.13111	.68196	.22582	.80406	.90529	.2437	09471	53 31	
.I:		929	.13649	.69557	.22931	.807 57	.90718	.2383	.09282	53 52	
I.		3631	.14186	.70934 . 72 329	.23283	.81102 .81441	.90903	.2330	.09097	54 12 54 32	
1.1	5 1.42	2078	0.15253	1.73741	0.23990	0.81775	9.91262	1.2229	0.08738	54 52	
.10	1 1	3822	.15783	.75171	.24346	.82104	.91436	.2180	.08564	55 11	
, I	0 '	5581	.16311	.76618	.24703	.82427	.91607	.2132	.08393	55 31	
.10	1 17	7355	.16836	.78083	.25062	.82745	.91774	.2085	.08226	55 50 56 09	
1.20		946	0.17882	1.81066	0.25784	0.83365	9.92099	1.1995	0.07901	56 29	
.2		2764	.18402	.82584	.26146	.83668	.92256	.1952	.07744	56 47	
.23		1598	.18920	.84121	.26510	.83965	.92410	.1910	.07590	57 06	
.2		5447	.19437	.85676	.26876	.84258	.92561	.1868	.07439	57 25	
.24	4 .58	3311	.19951	.87250	.27242	.84546	.92709	.1828	.07291	57 43	
1.2		0192	0.20464	1.88842	0.27610	0.84828	9.92854	1.1789	0.07146	58 02	
.20		2088	.20975	.90454	.27979	.85106	.92996	.1750	.07004	58 20 58 38	
.28		5930	.21485	.92084	.28349	.85380 .85648	.93135	.1712	.06728	58 38 58 55	
.29		876	.22499	.95403	.29093	.85913	.93406	.1640	.06594	59 13	
1.30		9838	0.23004	1.97091	0.29467	0.86172	9.93537	1.1605	0.06463	59 31	
.31		818	.23507	.98800	.29842	.86428	.93665	.1570	.06335	59 48	
·3:	7.73	3814	.24509	2.00528	.30217	.86678	.93791	.1537	.06209	60 05	
.34		860	.25008	.04044	.30594	.87167	.93914	.1504	.05965	60 39	
1.3	5 1.79	9909	0.25505	2.05833	0.31352	0.87405	9.94154	1.1441	0.05846	60 56	
.30		977	.26002	.07643	.31732	.87639	.94270	.1410	.05730	61 13	
·37	3 84	1062 5166	.26496 .26990	.09473	.32113	.87869	.94384	.1381	.05616	61 29	
.39		3289	.27482	.11324	.32495	.88095	.94495	.1351	.05396	61 45 62 02	
1.40		0430	0.27974	2.15090	0.33262	0.88535	9.94712	1.1295	0.05288	62 18	
14		2591	.28464	.17005	.33647	.88749	.94817	.1268	.05183	62 34	
4:		1770 1970	.28952	.18942	.34033	.88960	.94919	.1241	.05081	62 49	
•43)188	.29440	.20900	.34420	.89167 .89370	.95020	.1189	.04980 .04881	63 05 63 20	
1.4		427	0.30412	2.24884	0.35196	0.89569	9.95216	1.1165	0.04784	63 36	
.40		3686	.30896	.26910	.35585	.89765	.95311	.1140	.04689	63 51	
.47	3 .05	3965 3265	.31379	.28958	.35976	.89958	.95404	.1116	.04596	64 06 64 21	
-49	.10	586	.32343	.31029	.36367	.90332	·95495 ·95584	.1093	.04505	64 36	
1.50	2.12	2928	0.32823	2.35241	0.37151	0.90515	9.95672	1.1048	0.04328	64 51	

TABLE 17 (continued).
HYPERBOLIC FUNCTIONS.

HYPERBOLIC FUNCTIONS.										
u	sin	h. u	cos	h. u	tan	h. u	co	th. u	gd.	u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.		
1.50 .51 .52 .53	2.12928 .15291 .17676 .20082	0.32823 ·33303 ·33781 ·34258	2.35241 .37382 .39547 .41736	0.37151 •37545 •37939 •38334	0.90515 .90694 .90870 .91042	9.95672 .95758 .95842 .95924	1.1048 .1026 .1005 .0984	0.04328 .04242 .04158 .04076	64° 65 65 65	05 20 34
1.55	2.24961	·34735 0.35211	·43949 2.46186	.38730	0.91379	9.96084	1.0943	0.03916	65	48
.56 .57 .58 .59	.27434 .29930 .32449 .34991	.35686 .36160 .36633 .37105	.48448 .50735 .53047 .55384	·39524 ·39921 ·40320 ·40719	.91542 .91703 .91860 .92015	.96162 .96238 .96313 .96386	.0924 .0905 .0886 .0868	.03838 .03762 .03687	66 66 66 66	16 30 43 57
1.60 .61 .62 .63	2.37557 40146 .42760 .45397 .48059	0.37577 .38048 .38518 .38987 .39456	2.57746 .60135 .62549 .64990 .67457	0.41119 .41520 .41921 .42323 .42725	0.92167 .92316 .92462 .92606 .92747	9.96457 .96528 .96597 .96664 .96730	1.0850 .0832 .0815 .0798	.0.03543 .03472 .03403 .03336 .03270	67 67 67 67 68	10 24 37 50 03
1.65 .66 .67 .68	2.50746 ·53459 ·56196 ·58959 ·61748	0.39923 .40391 .40857 .41323 .41788	2.69951 .72472 .75021 .77596 .80200	0.43129 •43532 •43937 •44341 •44747	0.92886 .93022 .93155 .93286 .93415	9.96795 .96858 .96921 .96982 .97042	1.0766 .0750 .0735 .0720 .0705	0.03205 .03142 .03079 .03018 .02958	68 68 68 68 69	15 28 41 53 05
1.70 .71 .72 .73 .74	2.64563 .67405 .70273 .73168 .76091	0.42253 .42717 .43180 .43643 .44105	2.82832 .85491 .88180 .90897 .93643	0.45153 ·45559 ·45966 ·46374 ·46782	0.93541 .93665 .93786 .93906 .94023	9.97100 .97158 .97214 .97269 .97323	1.0691 .0676 .0663 .0649 .0636	0.02900 .02842 .02786 .02731	69 69 69 69 70	18 30 42 54 05
1.75 .76 .77 .78	2.79041 .82020 .85026 .88061 .91125	0.44567 .45028 .45488 .45948 .46408	2.96419 .99224 3.02059 .04925 .07821	0.47191 .47600 .48009 .48419 .48830	0.94138 .94250 .94361 .94470 .94576	9.97376 .97428 .97479 .97529 .97578	1.0623 .0610 .0598 .0585	0.02624 .02572 .02521 .02471 .02422	70 70 70 70 71	17 29 40 51 03
1.80 .81 .82 .83	2.94217 .97340 3.00492 .03674 .06886	0.46867 .47325 .47783 .48241 .48698	3.10747 .13705 .16694 .19715 .22768	0.49241 •49652 •50064 •50476 •50889	0.94681 .94783 .94884 .94983 .95080	9.97626 .97673 .97719 .97764 .97809	1.0562 .0550 .0539 .0528 .0518	0.02374 .02327 .02281 .02236 .02191	71 71 71 71 71	14 25 36 46 57
1.85 .86 .87 .88	3.10129 .13403 .16709 .20046 .23415	0.49154 .49610 .50066 .50521 .50976	3.25853 .28970 .32121 .35305 .38522	0.51302 .51716 .52130 .52544 .52959	0.95175 .95268 ·95359 ·95449 ·95537	9.97852 .97895 .97936 .97977 .98017	1.0507 .0497 .0487 .0477 .0467	0.02148 .02105 .02064 .02023 .01983	72 72 72 72 72 72	08 18 29 39 49
1.90 .91 .92 .93 .94	3.26816 .30250 .33718 .37218 .40752	0.51430 .51884 .52338 .52791 .53244	3.41773 .45058 .48378 .51733 .55123	0.53374 .53789 .54205 .54621 .55038	0.95624 .95709 .95792 .95873 .95953	9.98057 .98095 .98133 .98170 .98206	1.0458 .0448 .0439 .0430 .0422	0.01943 .01905• .01867 .01830	72 73 73 73 73 73	59 09 19 29 39
1.95 .96 .97 .98	3.44321 .47923 .51561 .55234 .58942	0.53696 .54148 .54600 .55051 .55502	3.58548 .62009 .65507 .69041 .72611	0.55455 .55872 .56290 .56707 .57126	0.96032 .96109 .96185 .96259 .96331	9.98242 .98276 .98311 .98344 .98377	1.0413 .0405 .0397 .0389 .0381	0.01758 .01724 .01689 .01656 .01623	73 73 74 74 74	48 58 07 17 26
2.00	3.62686	0.55953	3.76220	0.57544	0.96403	9.98409	1.0373	0.01591	74	35

Nat. Log.												
Nat. Log. Nat. Log. Nat. Log. Nat. Log.		sin	h. u	cos	h. u	tan	ih. u	col	th. u.	ad a		
02	4	Nat.	Log.	Nat.	· Log.	Nat.	Log.	Nat.	Log.	ga. u		
202 7.0283 56853 8.3549 .58362 .96541 .98471 .9358 .01599 75 02 .0314 .01498 75 02 .0324 .01498 75 02 .0324 .01498 75 02 .0324 .01498 75 02 .0324 .01498 75 02 .0324 .01498 75 02 .0324 .01498 75 02 .0324 .01498 75 02 .0324 .01498 75 02 .0324 .01498 75 02 .00665 .05650 .05850 .05850 .0330 .01411 .05630 .05850 .05861 .0324 .01383 .05931 .03977 .05470 .05093 .06865 .98691 .0331 .01339 .75 37 .05470 .05093 .06962 .09664 .09317 .01350 .01411 .01329 .05850 .05865 .09686 .09671 .0311 .01329 .01530 .01411 .06336 .06850 .18474 .05167 .97153 .09872 .0088 .01277 .076 10 .076356 .06850 .18474 .05167 .97153 .09872 .0088 .01277 .076 10 .076356 .06853 .05865 .09687 .0988 .01277 .076 10 .076356 .06850 .18474 .05167 .97153 .09872 .0088 .01277 .076 10 .076356 .06850 .18474 .05167 .97153 .09872 .0088 .01277 .076 10 .076356 .05853 .03685 .059011 .97215 .09777 .09859 .0284 .01202 .076 10 .076356 .0775 .076 10 .076356 .0775 .07657 .07657 .04750 .07750 .07750 .09859 .0284 .01202 .076 10 .07657 .07657 .07750 .05125 .097477 .09859 .0284 .01202 .076 10 .0775				3.76220	0.57544							
0.00	1				.5/903	.904/3						
10	1				.58802	.96609	.98502					
06						.96675		.0344	.01469			
0.86 0.9307			0.58202							75 20		
0.8			2 2	1 / "								
2-10									.01356			
11	.09	.98061				.96986	.98671	.0311	.01329			
1.1	1											
.13		.00350										
1.14		.14801	.61784	.26685			.98773					
16							.98798	.0281	,	76 35		
18										76 43		
18	.16									76 51		
.19	18											
1.21					.65548							
1.22	2.20	4.45711				0.97574						
.23 .59617 .66240 .70370 .67244 .97714 .98996 .0229 .00984 77 44 .24 .64344 .66684 .74989 .67668 .97759 .99016 .0229 .00984 77 51 2.25 4.69117 0.67572 .84372 .68518 .97846 .99073 .0220 .00946 78 55 .27 .78804 .68016 .89136 .68943 .97884 .99073 .0216 .00927 78 12 .28 .83720 .68459 .93948 .69368 .97929 .99091 .0211 .00907 78 19 .29 .88684 .68903 .98810 .69794 .97970 .99109 .0207 .00891 78 26 2.30 4.93696 0.69346 5.03722 0.70219 .98049 .99127 1.0203 .00873 78 33 .31 .98758 .69789 .08684 .70645 .98049 .99144 .0199 .00856 78 40			.65350									
.24 .64344 .66684 .74989 .67668 .97759 .99016 .0229 .00984 77 51 2.25 4.69117 0.67128 4.79657 0.68093 0.97803 9.99035 1.0225 0.00965 77 58 .26 .73937 .67572 .84372 .68518 .97846 .99054 .0220 .00946 78 05 .27 .78804 .68616 .89136 .68943 .97888 .99073 .0216 .00927 78 12 .28 .83720 .68459 .93816 .69794 .97970 .99109 .0207 .0891 78 26 2.30 4.93696 .669346 5.03722 0.70219 .98049 .99127 1.0203 .00873 78 33 .31 .98758 .69789 .13697 .71071 .98049 .99144 .0199 .00856 78 40 .32 .503870 .70675 .18762 .71497 .98124 .99178 .0191 .00822 78 53 <td></td> <td></td> <td>.65795</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			.65795									
.26 .73937 .67572 .84372 .68518 .97846 .99054 .00216 .00946 78 05 .27 .78804 .68016 .89136 .68943 .97888 .99073 .00216 .00927 .78 12 .28 .83720 .68459 .93948 .69368 .97929 .99091 .0211 .00909 .78 19 .29 .88684 .68903 .98810 .69794 .97970 .99109 .0207 .00891 78 26 2.30 4.93696 .669346 5.03722 0.70219 0.98010 9.99127 1.0203 0.00873 78 33 .31 .98758 .69789 .08684 .70645 .98049 .99144 .0199 .00856 78 40 .32 5.03870 .70232 .13697 .71497 .98124 .99178 .0191 .00822 78 53 .34 .14245 .71117 .23878 .71923 .98161 .99194 .0187 .00822 78 53 .35 5.19510 0.71559 5.29047 0.72776 .98233												
.26 .73937 .67572 .84372 .68518 .97846 .99054 .00216 .00946 78 05 .27 .78804 .68016 .89136 .68943 .97888 .99073 .00216 .00927 .78 12 .28 .83720 .68459 .93948 .69368 .97929 .99091 .0211 .00909 .78 19 .29 .88684 .68903 .98810 .69794 .97970 .99109 .0207 .00891 78 26 2.30 4.93696 .669346 5.03722 0.70219 0.98010 9.99127 1.0203 0.00873 78 33 .31 .98758 .69789 .08684 .70645 .98049 .99144 .0199 .00856 78 40 .32 5.03870 .70232 .13697 .71497 .98124 .99178 .0191 .00822 78 53 .34 .14245 .71117 .23878 .71923 .98161 .99194 .0187 .00822 78 53 .35 5.19510 0.71559 5.29047 0.72776 .98233		4.69117			0.68093		9.99035			77 58		
.28 .87720 .68459 .93048 .69368 .97929 .99091 .0211 .00909 78 19 78 26 2.30 4.93696 0.69346 5.03722 0.70219 0.98010 9.99127 1.0203 0.00873 78 33 .31 .98758 .69789 .08684 .70645 .98049 .99144 .0199 .00856 78 40 .32 5.03870 .70232 .13697 .71071 .98087 .99161 .0195 .00839 78 40 .33 .09032 .70675 .18762 .71497 .98124 .99178 .0191 .00822 78 53 .34 .14245 .71117 .23878 .71923 .98161 .99194 .0187 .00806 79 00 2.35 5.19510 0.71559 5.29047 0.72349 0.98197 9.99210 .10184 0.00790 79 06 .36 .24827 .72002 .34269 .72776 .98233 .99226 .0180 .00774 79 13 .38 .35618 .72885 .44873 .73630 .98301		.73937	.67572		.68518	.97846				78 05		
.29 .88684 .68903 .98810 .69794 .97970 .99109 .0207 .00891 78 26 2.30 4.93696 0.66346 5.03722 0.70219 0.98010 9.99127 1.0203 0.00873 78 33 .31 .98758 .69789 .08684 .70645 .98049 .99144 .0199 .00856 78 40 .32 5.03870 .70675 .18762 .71497 .98087 .99161 .0195 .00839 78 46 .33 .09032 .70675 .18762 .71497 .98124 .99178 .0191 .00822 78 53 .34 .14245 .71117 .23878 .71923 .98161 .99194 .0191 .00822 78 53 .36 .24827 .72002 .34269 .72776 .98233 .99226 .0180 .00774 .79 13 .37 .30196 .72444 .39544 .73203 .98301 .99256 .0173 .00744 .79 25 .39 .41093 .73327 .50256 .74056 .98335 .9	.27									78 12		
.31 .98758 .69789 .08684 .70645 .98649 .99144 .0199 .00856 78 40 .32 5.03870 .70232 .13697 .71071 .98087 .99161 .09191 .00839 78 46 .33 .09032 .70675 .18762 .71497 .98124 .99178 .0191 .00822 78 53 .34 .14245 .71117 .23878 .71923 .98161 .99194 .0187 .00806 79 00 2.35 5.19510 0.71559 5.29047 0.72349 .98233 .992210 .0180 .00774 79 13 .36 .24827 .72002 .34269 .72776 .98233 .99226 .0180 .00774 79 13 .37 .30196 .72444 .39544 .73203 .98267 .99241 .0176 .00759 79 19 .38 .35618 .72885 .44873 .73630 .98301 .99256 .0173 .00744 79 25 .39 .41093 .73769 5.55695 0.74484 0.98367 9.9				.93940						78 26		
.31 .98758 .69789 .08684 .70645 .98649 .99144 .0199 .00856 78 40 .32 5.03870 .70232 .13697 .71071 .98087 .99161 .09191 .00839 78 46 .33 .09032 .70675 .18762 .71497 .98124 .99178 .0191 .00822 78 53 .34 .14245 .71117 .23878 .71923 .98161 .99194 .0187 .00806 79 00 2.35 5.19510 0.71559 5.29047 0.72349 .98233 .992210 .0180 .00774 79 13 .36 .24827 .72002 .34269 .72776 .98233 .99226 .0180 .00774 79 13 .37 .30196 .72444 .39544 .73203 .98267 .99241 .0176 .00759 79 19 .38 .35618 .72885 .44873 .73630 .98301 .99256 .0173 .00744 79 25 .39 .41093 .73769 5.55695 0.74484 0.98367 9.9	2.30	4.93696								78 33		
.33	.31									78 40		
.34 .14245 .71117 .23878 .71923 .98161 .99194 .0187 .00806 79 00 2.35 5.19510 0.71559 5.29047 0.72349 0.98197 9,99210 1.0184 0.00790 79 06 .36 .24827 .72002 .34269 .72776 .98233 .99226 .0180 .00774 79 13 .37 .30196 .72444 .39544 .73203 .98267 .99241 .0176 .00759 79 19 .38 .35618 .72885 .44873 .73630 .98301 .99256 .0173 .00744 79 25 .39 .41093 .73327 .50256 .74056 .98355 .99271 .0169 .00729 79 32 2.40 5.46623 0.73769 5.55695 0.74484 0.98367 9.99285 1.0166 0.00715 79 38 .41 .52207 .74210 .61739 .75338 .98400 .99299 .0163 .00701 79 44												
.36					, ,,,							
.36 .24827 .72002 .34269 .72776 .98233 .99226 .0180 .00774 79 13 .37 .30196 .72444 .39544 .73203 .98267 .99241 .0173 .00759 79 19 .38 .35618 .72885 .44873 .73630 .98301 .99256 .0173 .00744 79 25 .39 .41093 .73327 .50256 .74056 .98335 .99271 .0169 .00729 79 32 2.40 5.46623 0.73769 5.55695 0.74484 0.98367 9.99285 1.0166 0.00715 79 38 .41 .52207 .74210 .61189 .74511 .98400 .99299 .0163 .00701 79 44 .42 .57847 .74652 .66739 .75338 .98431 .99313 .0159 .00687 79 50 .43 .63542 .75093 .72346 .75766 .98462 .99327 .0156 .00673 .79 56 .44 .69294 .75534 .78010 .76194 .98492 .993	2.35						9.99210		0.00790	79 06		
.38	.36									79 13		
.39 .41093 .73327 .50250 .74050 .98335 .99271 .0109 .00729 79 32 2.40 5.46623 0.73769 5.55695 0.74484 0.98367 9.99285 1.0166 0.00715 79 38 .41 .52207 .74210 .61189 .74911 .98400 .99299 .0163 .00701 79 44 .42 .57847 .74652 .66739 .75338 .98431 .99313 .0159 .00687 79 50 .43 .63542 .75093 .72346 .75766 .98462 .99327 .0156 .00673 79 56 .44 .69294 .75534 .78010 .76194 .98492 .99340 .0153 .00660 80 02 2.45 5.75103 0.75975 5.83732 0.76621 0.98522 9.99353 1.0150 0.00647 80 08 .46 .80969 .76415 .89512 .77049 .98551 .99366 .0147 .00634 80 14 .47 .86893 .76856 .95352 .77477 .98579	•37	.30196		•39544								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•39					.98335						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.40		0.73769	5.55695	0.74484	0.98367	9.99285	1.0166	0.00715	79 38		
.43		.52207	.74210	.61189	.74911	.98400	1111		.00701	70 44		
.44 .69294 .75534 .78010 .76194 .98492 .99340 .0153 .00660 80 02 2.45 5.75103 0.75975 5.83732 0.76621 0.98522 9.99353 1.0150 0.0647 80 08 .46 .80969 .76415 .89512 .77049 .98551 .99366 .0147 .00634 80 14 .47 .86893 .76856 .95352 .77477 .98579 .99379 .0144 .00621 80 20 .48 .92876 .77296 6.01250 .77906 .98607 .99391 .0141 .00609 80 26 .49 .98918 .77737 .07209 .78334 .98635 .99403 .0138 .00597 80 31					.75338	.98431				79 50		
.46						.98492				80 02		
.46	2.45				0.76621	0.98522	9.99353	1.0150	0.00647	80 08		
.48 .92876 .77296 6.01250 .77906 .98607 .99391 .0141 .00609 80 26 .49 .98918 .77737 .07209 .78334 .98635 .99403 .0138 .00597 80 31		.80969				.98551	.99366	.0147				
.49 .98918 .77737 .07209 .78334 .98635 .99403 .0138 .00597 80 31	-47											
2.50 6.05020 0.78177 6.13229 0.78762 0.98661 9.99415 1.0136 0.00585 80 37		.98918			.78334							
	2.50	6.05020	0.78177	6.13229	0.78762	0.98661	9.99415	1.0136	0.00585	80 37		

TABLE 17 (continued).
HYPERBOLIC FUNCTIONS.

			HYP	ERBOLI	C FUNC	TIONS.				
	sin	h. u	cos	h. u	tar	ıh. u	cot	th. u		l. u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	80	. u
2.50	6.05020	0.78177	6.13229	0.78762	0.98661	9.99415	1.0136	0.00585	80°	01
.51	.17407	.79057	.25453	.79619	.98714	.99426 .99438	.0133	.00574	80	42 48
-53	.23692	•79497	.31658	.80048	.98739	.99449	.0128	.00551	80	53
-54	.30040	· 7 9937	-37927	.80477	.98764	.99460	.0125	.00540	80	59
2.55	6.36451	0.80377	6.44259	0.80906	0.98788	9.99470	1.0123	0.00530	81	04
.56	.42926	.80816 .81256	.50656	.81335	.98812	.99481	.0120	.00519	81	10
·57 ·58	.49464	.81695	.63646	.81764	.98858	.99491	.0118	.00509	81	20
.59	.62738	.82134	.70240	.82623	.98881	.99501	.0113	.00489	81	25
2.60	6.69473	0.82573	6.76901	0.83052	0.98903	9.99521	1.0111	0.00479	81	30
.61	.76276	.83012	.83629	.83482	.98924	-99530	.0109	.00470	81	35
.62	.83146	.83451	.90426	.83912	.98946	.99540	.0107	.00460	81	40
.63	.90085	.83890	.97292 7.04228	.84341	.98966	·99549 ·99558	.0104	.00451	81	45 50
2.65	7.04169	0.84768	7.11234	0.85201	0.99007	9.99566	1.0100	0.00434	81	55
.66	.11317	.85206	.18312	.85631	.99026	-99575	.0098	.00425	82	00
.67	.18536	.85645	.25461	.86061	.99045	.99583	.0096	.00417	82	05
.68	.25827	.86083	.32683	.86492	.99064	.99592	.0094	.00408	82	09
.69	.33190	.86522	.39978	.86922	.99083	.99600	.0093	.00400	82	14
2.70	7.40626	0.86960	7.47347	0.87352	0.99101	9.99608	1.0091	0.00392	82	19
.71	.48137	.87398 .87836	.54791	.87783	.99118	.99615	.0089	.00385	82	23 28
.73	.63383	.88274	.69905	.88644	.99153	.99631	.0085	.003//	82	32
.74	.71121	.88712	.77578	.89074	.99170	.99638	.0084	.00362	82	37
2.75	7.78935	0.89150	7.85328	0.89505	0.99186	9.99645	1.0082	0.00355	82	41
.76	.86828	.89588	.93157 8.0106 5	.89936	.99202	.99652	.0080	.00348	82	45
·77 .78	.94799 8.02849	.90026	.09053	.90367	.99218	.99659	.0079	.00341	82	50
.79	.10980	.90901	.17122	.91229	.99248	.99672	.0076	.00328	82	54 58
2.80	8.19192	0.91339	8.25273		0.99263	9.99679	1.0074	0.00321	83	02
.81	.27486	.91776	.33506	.92091	.99278	.99685.	.0073	.00315	83	07
.82	.35862	.92213	.41823	.92522	.99292	.99691	.0071	.00309	83	11
.84	.52867	.93088	.58710	.93385	.99320	.99704	.0069	.00296	83	19
2.85	8.61497	0.93525	8.67281	0.93816	0.99333	9.99709	1.0067	0.00291	83	23
.86	.70213	.93963	.75940	.94247	.99346	.99715	.0066	.00285	83	27
.87	.79016	.94400	.84686	.94679	-99359	.99721	.0063	.00279	83.	31
.89	.87907	.94837 .95274	.93520 9.02444	.95110	.99372	.99726	.0062	.002/4	83	34 38
2.90	9.05956	0.95711	9.11458	0.95974	0.99396	9.99737	1.0061	0.00263	83	42
.91	.15116	.96148	.20564	.96405	.99408	.99742	.0060	.00258	83	46
.92	.24368	.96584	.29761	.96837	.99420	•99747	.0058	.00253	83	50
·93 ·94	.43149	.97021	.39051	.97269	.99531	•99752 •99757	.0056	.00243	83	57
2.95	9.52681	0.97895	9.57915	0.98133	0.99454	9.99762	1.0055	0.00238	84	00
.96	.62308	.98331	.67490	.98565	.99464	.99767	.0054	.00233	84	04
.97	.72031	.98768	.77161	.98997	.99475	.99771	.0053	.00229	84	08
.98	.91770	.99205	.86930	.99429	.99485	.99776	.0052	.00224	84 84	15
3.00	10.01787	1.00078	10.06766	1.00293	0.99505	9.99785	1.0050	0.00215	84	18
L										

HYPERBOLIC FUNCTIONS.

	sin	ıh. u	cos	h. u ·	tan	h. u	cot	h.' u	
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd. u
3.0 .1 .2 .3 .4	10.0179 11.0765 12.2459 13.5379 14.9654	1.00078 .04440 .08799 .13155 .17509	10.0677 11.1215 12.2866 13.5748 14.9987	1.00293 .04616 .08943 .13273 .17605	0.99505 99595 .99668 .99728	9.99785 .99824 .99856 .99882 .99903	1.0050 .0041 .0033 .0027 .0022	0.00215 .00176 .00144 .00118	84°18′ 84 50 85 20 85 47 86 11
3.5 .6 .7 .8	16.5426 18.2855 20.2113 22.3394 24.6911	1.21860 .26211 .30559 .34907 .39254	16.5728 18.3128 20.2360 22.3618 24.7113	1.21940 .26275 .30612 .34951 .39290	0.99818 .99851 .99878 .99900 .99918	9.99921 •99935 •99947 •99957 •99964	1.0018 .0015 .0012 .0010	0.00079 .00065 .00053 .00043	86 32 86 52 87 10 87 26 87 41
4.0 .1 .2 .3	27.2899 30.1619 33.3357 36.8431 40.7193	1.43600 .47946 .52291 .56636 .60980	27.3082 30.1784 33.3507 36.8567 40.7316	1.43629 .47970 .52310 .56652 .60993	0.99933 ·99945 ·99955 ·99963 ·99970	9.99971 .99976 .99980 .99984 .99987	1.0007 .0005 .0004 .0004	0.00029 .00024 .00020 .00016	87 54 88 06 88 17 88 27 88 36
4.5 .6 .7 .8 .9	45.0030 49.7371 54.9690 60.7511 67.1412 74.2032	1.65324 .69668 .74012 .78355 .82699	45.0141 49.7472 54.9781 60.7593 67.1486 74.2099	1.65335 .69677 .74019 .78361 .82704	0.99975 .99980 .99983 .99986 .99989	9.99989 .99991 .99993 .99994 .99995	1.0002 .0002 .0002 .0001 .0001	0.00011 .00009 .00007 .00006 .00005	88 44 88 51 88 57 89 03 89 09

TABLE 18 .- Factorials.

See Table 16 for logarithms of the products 1.2.3... n from 1 to 100. See Table 32 for log. Γ (n+1) for values of n between 1.000 and 2.000.

n	$\frac{I}{n}$:	n:=1.2.3.4n	
1 2 3 4 5	1. 0.5 .16666 66666 66666 66666 66667 .04166 66666 66666 66666 66667 .00833 33333 33333 33333 33333	1 1 2 2 6 3 24 4 120 5	3
6 7 8 9	0,00138 88888 88888 88888 88889 .00019 84126 98412 69841 26984 .00002 48015 87301 58730 15873 .00000 27557 31922 39858 90653 .00000 02755 73192 23985 89065	720 6 5040 7 40320 8 3 62880 9 36 28800 10	3
11 12 13 14 15	0.00000 00250 52108 38544 17188 .00000 00020 87675 69878 68099 .00000 00001 60590 43836 82161 .00000 00000 11470 74559 77297 .00000 00000 00764 71637 31820	399 16800 11 4790 01600 12 62270 20800 13 8 71782 91200 14 130 76743 68000 15	3
16 17 18 19 20	0.00000 00000 00047 79477 33239 .00000 00000 00002 81145 72543 .00000 00000 00000 15619 20697 .00000 00000 00000 00822 06352 .00000 00000 00000 00041 10318	2092 27898 88000 16 35568 74280 96000 17 6 40237 37057 28000 18 121 64510 04088 32000 19 2432 90200 81766 40000 20	7

TABLE 19. EXPONENTIAL FUNCTION.

x	$\log_{10}(ex)$	ex	<i>-x</i>	x	$\log_{10}(ex)$	ex	e-x				
0,00	0.00000	1.0000	1.000000	0.50	0.21715	1.6487	0.606531				
.01	.00434	.0101	0.990050	.51	.22149	.6653	.600496				
.02	.00869	.0202	.980199	.52	.22583	.6820					
.03		.0305	.970446	•53	.23018	.6989	.594521 .588605				
	.01303	.0408	.960789		23450		.582748				
.04	.01737			.54	.23452	.7160					
0.05	0.02171	1.0513	0.951229	0.55	0.23886	1.7333	0.576950				
.06	.02606	.0618	.941765	.56	.24320	.7507	.571209				
.07	.03040	.0725	.932394	• 57	.24755	.7683	.565525				
.08	.03474	.0833	.923116	· 57 · 58	.24755	.7860	.559898				
.09	.03909	.0942	.913931	.59	.25623	.8040	-554327				
0.10	0.04343	1.1052	0.904837	0.60	0.26058	1.8221	0.548812				
II.	.04777	.1163	.895834	.61	.26492	.8404	·543351				
.12	.05212		.886920	.62	.26926	.8589	•537944				
.13	.05646	.1275	.878095	.63	.27361	.8776	.532592				
	.06080		.869358								
.14	.00000	.1 503		.64	.27795	.8965	.527292				
0.15	0.06514	1.1618	0.860708	0.65	0.28229	1.9155	0.522046				
.16	.06949		.852144	.66	.28663	.9348	.516851				
.17	.07383	.1735	.843665	.67	.29098	.9542	.511709				
.18	:07817	.1972	.835270	.68	.29532	9739	.506617				
.19	.08252	.2092	.826959	.69	.29966	•9739	.501576				
.19		.2092		.09	.29900	•9937	.5015/0				
0.20	0.08686	1.2214	0.818731	0.70	0.30401	. 2.0138	0.496585				
.21	.09120	.2337	.810584	.71	.30835	.0340	.491644				
.22	.09554	.2461	.802519	.72	.31269	.0544	.486752				
.23	.09989	.2586	•794534	.73	.31703	.0751	.481909				
.24	.10423	.2712	.786628	.74	.32138	.0959	.477114				
0.25	0.10857	1.2840	0.778801	0.75 .76	0.32572	2.1170	0.472367				
.26	.11292	.2969	.771052		.33006	.1383	.467666				
.27	.11726	.3100	.763379	-77	.3344I	.1 598	.463013				
.28	.12160	.3231	-755784	·77 ·78	.33875	.1598	.458406				
.29	.12595	.3364	.763379 .755784 .748264	-79	.34309	.2034	.453845				
0.30	0.13029	1.3499	0.740818	0.80	0.34744	2.2255	0.440220				
				.81		.2479	0. 449329 . 444858				
.31	.13463	.3634	·733447	.82	.35178						
.32	.13897	·377 I	.726149		.35612	.2705	.440432				
•33	.14332	.3910	.718924	.83	.36046	.2933	.436049				
•34	.14766	.4049	.711770	.84	.36481	.3164	.431711				
0.35	0.15200	1.4191	0.704688	0.85	0.36915	2.3396	0.427415				
.36	.15635	•4333	.697676	.86	•37349	.3632	.423162				
.37	.16069	•4333		.87	.37784	.3869	.418952				
.3/			.690734	.88	.38218	.4109	.414783				
.38	.16503	.4623		.89	.38652		.410656				
•39	.16937	-4770	.677057	.09	.30032	.4351	.410050				
0.40	0.17372	1.4918	0.670320	0.90	0.39087	2.4596	0.406570				
.41	.17806	.5068	.663650	.91	.39521	.4843	.402524				
.42	.18240	.5220	.657047	.92	-39955	.5093	.398519				
•43	.18675	•5373	.650509	.93	40380	•5345					
.44	.19109	.5527	.644036	.94	.40389 .40824	.5600	·394554 ·390628				
1	1,109										
0.45	0.19543	1.5683	0.637628	0.95	0.41258	2.5857	0.386741				
.46	.19978	.5841	.631284	.96	.41692	.6117	.382893				
.47	.20412	.6000	.625002	.97	.42127	.6379	.379083				
.48	.20846	.6161	.625002	.98	.42561	.6645	.37 53 1 1				
-49	.21280	.6323	.612626	.99	.42995	.6912	.37 1 577				
0.50	0.21715	1.6487	0.606531	1.00	0.43429	2.7183	0.367879				
0.50	0.21/15	1.0407	0.000531	1.00	0.43429	2.,103	0.30/0/9				
				11							

		E)	AL FUNC	11011.			
x	$\log_{10}\left(e^{x}\right)$	ex	e-x	x	$\log_{10}\left(e^{x}\right)$	ex	e-x
100	0.43429	2.7183 .7456	0.367879	1.50	0.65144	4.4817	0.223130
.02	.44298		.360595	.52	.66013		.218712
.03	.44732	.7732 .8011	.357007	.53	.66447	.5722	.216536
.04	.45167	.8292	-353455	•53	.66881	.6646	.214381
1.05	0.45601	2.8577 .8864	0.349938 .346456	1.55	0.67316	4.7115 .7588 .8066	0.212248
.07	.46470	.9154	.343009	.57	.67750 .68184	.8066	.208045
.08	.46904	.9447	.339596	.58	.68619	.8550	.205975
.09	.47338	.9743	.336216	•59	.69053	.9037	.203926
1.10	0.47772	3.0042	0.332871	1.60	0.69487	4.9530	0.201897
.II	.48207	.0344	*.329559	.61	.69921	5.0028	.199888
.12	.48641	.0649	.326280	.62	.70356	.0531	.197899
.13	.49075	.0957	•323033	.63	.70790	.1039	.195930
.14	.49510	.1268	.319819	.64	.71224	.1552	.193980
1.15	0.49944	3.1582	0.316637	1.65	0.71659	5.2070	0.192050
.16	.50378	.1899	.313486	.66	.72093	.2593	.190139
.17	.50812	.2220	.310367	.67	.72527	.3122	.188247
	.51247	.2544	.307279	.68	.72961	.3656	.186374
.19	.51681	.2871	.304221	.69	.73396	4195	.184520
1.20	0.52115	3.3201	0.301194	1.70	0.73830	5.4739	0.182684
.21	.52550	•3535	.298197	.71	.74264	.5290	.180866
.22	.52984	.3872	.295230	.72	.74699	.5845	.179066
.23	.53418	4212	.292293	.73	.75133	.6407	.177284
.24	.53853	.4556	.289384	•74	.75567	.6973	.175520
1.25 .26	0.54287	3.4903	0.286505	1.75 .76	0.76002	5.7546 .8124	0.173774
	.54721 .55155	.5254	.283654	./0	.76436		.172045
.27	.55155	.5966	.278037	.77 .78	.76870	.8709	.170333
.29	.56024	.6328	.275271	.79	.77304 ·77739	.9299	.166960
	0.56458	3.6693		1.80			
1.30	.56893	.7062	0.272532 .269820	.81	0.78173	6.0496	0.165299
.32	.57327		.267135	.82		.1719	.162026
.33	.57761	·7434 .7810	.264477	.83	.79042	.2339	.160414
.34	.57761 .58195	.8190	.261846	.84	.79910	.2965	.158817
1.35	0.58630	3.8574	0.259240	1.85	0.80344		0.157237
.36	.59064	.8962	.256661	.86	.80779	-4237	.155673
·37 ·38	.59498	.9354	.254107	.87	.81213	.4883	.154124
.30	•59933	.9749	.251579	.88	.81647	•5535	.152590
•39	.60367	4.0149	.249075	.89	.82082	.6194	.151072
1.40	0.60801	4.0552	0.246597	1.90	0.82516	6.6859	0.149569
.41	.61236	.0960	.244143	10.	.82950	.7531 .8210	.148080
.42	.61670 .62104	.1371	.241714	.92	.83385	.0210	.146607
•43 •44	.62538	.2207	.239309	.93	.83819 .84253	.8895	.145148
		,		-94			.143704
1.45	0.62973	4.2631	0.234570	1.95	0.84687	7.0287	0.142274
.46	.63407 .63841	.3060	.232236	.96	.85122	.0993	.140858
·47 .48	.64276	.3492	.229925	.97 .98	.85556	.1707	.139457 .138069
.49	.64710	.3929 .4371	.227638		.85990 .86425	.2427	.136695
				-99		.3155	
1.50	0.65144	4.4817	0.223130	2.00	0.86859	7.3891	0.135335
				1			

TABLE 19 (continued).

EXPONENTIAL FUNCTION.

x	$\log_{10}(e^x)$	ex	e-x	x	$\log_{10}(e^x)$	ex	e-x
2.00	0.86859	7.3891	0.135335	2.50	1.08574	12.182	0.082085
10.	.87293	.4633	.133989	-51	.09008	.305	.081268
.02	.87727	.5383	.132655	.52	.09442	.429	.080460
.03	.88162	.6141	.131336	.53	.09877	.554	.079659
.04	.88596	.6906	.130029	•54	.10311	·554 .680	.078866
2.05	0.89030	7.7679	0.128735	2.55	1.10745	12.807	0.078082
.06	.89465	.8460	.127454	.56	.11179	.936	.077305
.07	.89899	.9248	.126186	·57 ·58	.11614	13.066	.076536
.08	.90333	8.0045	.124930	.58	.12048	.197	.075774
.09	.90768	.0849	.123687	.59	.12482	.330	.07 5020
2.10	0.91202	8.1662	0.122456	2.60	1.12917	13.464	0.074274
II.	.91636	.2482	.121238	.61	.13351	.599	.073535
.12	.92070	.3311	.120032	.62	.13785	.736 .874	
.13	.92505	.4149	.118837	.63	.14219		.072078
.14	.92939	-4994	.117655	.64	.14654	14.013	.071361
2.15	0.93373	8.5849	0.116484	2.65	1.15088	14.154	0.070651
.16	.93808	.6711	.115325	.66	.15522	.296	.069948
.17	.94242	.7583	.114178	.67	.15957	.440	.069252
.18	.94676	.8463	.113042	.68	.16391	.585	.068563
-19	.95110	.9352	.111917	.69	.16825	.732	.067881
2.20	0.95545	9.0250	0.110803	2.70	1.17260	14.880	0.067206
,21	95979	.1157	.109701	.71	.17694	15.029	.066537
.22	.96413	.2073	.108600	.72	.18128	.180	.065875
.23	.96848	.2999	.107528	.73	.18562	•333	.065219
.24	.97282	•3933	.106459	.74	.18997	.487	.064570
2.25	0.97716	9.4877	0.105399	2.75	1.19431	15.643	0.063928
.26	.98151	.5831	.104350	.76	.19865	.800	.063292
.27	.98585	.6794	.103312	·77 ·78	.20300	.959	.062662
.28	.99019	.7767 .8749	.102284		.20734	16.119	.062039
.29	-99453	.0749	.101266	.79	.21168	.281	.061421
2.30	0.99888	9.9742	0.100259	2.80	1.21602	16.445	0.060810
.31	1.00322	10.074	.099261	.81	.22037	.610	.060205
.32	.00756	.176	.098274	.82	.2247 I	-777	.059606
•33	.01191	.278	.097296	.83	.22905	.945	.059013
•34	.01625	.381	.096328	.84	.23340	17.116	.058426
2.35	1.02059	10.486	0.095369	2.85	1.23774	17.288	0.057844
.36	.02493	.591	.094420	.86	.24208	.462	.057269
.37	.02928	.697	.093481	.87	.24643	.637	.056699
.38	.03362	.805	.092551	.88	.25077	.814	.056135
-39	.03796	.913	.091630	.89	.25511	•993	.055576
2.40	1.04231	11.023	0.090718	2.90	1.25945	18.174	0.055023
.41	.04665	.134	.089815	10.	.26380	-357	.054476
.42	.05099	.246	.088922	.92	.26814	.541	.053934
.43	.05534	-359	.088037	.93	.27248	.728	.053397
•44	.05968	•473	.087161	.94	.27683	.916	.052866
2.45	1.06402	11.588	0.086294	2.95	1.28117	19.106	0.052340
.46	.06836	.705	.085435	.96	.28551	.298	.051819
-47	.07271	.705 .822	.084585	.97	.28985	.492	051303
.48	.07705	.941	.083743	.98	.20420	.688	.050793
.49	.08139	12.061	.082910	.99	.29854	.886	.050287
2.50	1.08574	12.182	0.082085	3.00	1.30288	20.086	0.049787
2.50	1.003/4	2 411 0 21	0,002005	3.00	1.30200	20.000	0.049/0/

EXPONENTIAL FUNCTION.

x	$\log_{10}(ex)$	ex	e-x	x	$\log_{10}(ex)$	ex	e-x
3.00 .01 .02 .03 .04	1.30288 .30723 .31157 .31591 .32026	20.086 .287 .491 .697 .905	0.049787 .049292 .048801 .048316	3.50 .51 .52 .53	1.52003 ·52437 ·52872 ·53306 ·53740	33.115 .448 .784 34.124 .467	0.030197 .029897 .029599 .029305 .029013
3.05 .06 .07 .08 .09	1.32460 .32894 .33328 .33763 .34197	21.115 -328 -542 -758 -977	0.047359 .046888 .046421 .045959	3·55 .56 .57 .58 .59	1.54175 .54609 .55043 .55477 .55912	34.813 35.163 .517 .874 36.234	0.028725 .028439 .028156 .027876 .027598
3.10 .11 .12 .13	1.34631 .35066 .35500 .35934 .36368	22.198 .421 .646 .874 23.104	0.045049 .044601 .044157 .043718 .043283	3.60 .61 .62 .63 .64	1.56346 .56780 .57215 .57649 .58083	36.598 .966 37.338 .713 38.092	0.027324 .027052 .026783 .026516 .026252
3.15 .16 .17 .18	1.36803 •37237 •37671 •38106 •38540	23.336 .571 .807 24 .047 .288	0.042852 .042426 .042004 .041586	3.65 .66 .67 .68 .69	1.58517 .58952 .59386 .59820 .60255	38.475 .861 39.252 .646 40.045	0.025991 .025733 .025476 .025223 .024972
3.20 .21 .22 .23 .24	1.38974 .39409 .39843 .40277 .40711	24.533 .779 25.028 .280 .534	0.040762 .040357 .039955 .039557 .039164	3.70 .71 .72 .73 .74	1.60689 .61123 .61558 .61992 .62426	40.447 .854 41.264 .679 42.098	0.024724 .024478 .024234 .023993 .023754
3.25 .26 .27 .28 .29	1.41146 .41580 .42014 .42449 .42883	25.790 26.050 .311 .576 .843	0.038774 .038388 .038006 .037628	3.7 5 . 7 6 .77 .78 .79	1.62860 .63295 .63729 .64163 .64598	42.521 .948 43.380 .816 44.256	0.023518 .023284 .023052 .022823 .022596
3.30 .31 .32 .33 .34	1.43317 .43751 .44186 .44620 .45054	27.113 .385 .660 .938 28.219	0.036883 .036516 .036153 .035793	3.80 .81 .82 .83 .84	1.65032 .65466 .65900 .66335 .66769	44.701 45.150 .604 46.063 .525	0.022371 .022148 .021928 .021710 .021494
3·35 ·36 ·37 ·38 ·39	1.45489 .45923 .46357 .46792 .47226	28.503 .789 29.079 .371 .666	0.035084 .034735 .034390 .034047 .033709	3.85 .86 .87 .88	1.67203 .67638 .68072 .68506 .68941	46.993 47.465 .942 48.424 .911	0.021280 .021068 .020858 .020651 .020445
3.40 .41 .42 .43 .44	1.47660 .48094 .48529 .48963 .49397	29.964 30.265 .569 .877 31.187	0.033373 .033041 .032712 .032387 .032065	3.90 .91 .92 .93	1.69375 .69809 .70243 .70678 .71112	49.402 .899 50.400 .907 51.419	0.020242 .020041 .019841 .019644 .019448
3.45 .46 .47 .48 .49	1.49832 .50266 .50700 .51134 .51569	31.500 .817 32.137 .460 .786	0.031746 .031430 .031117 .030807 .030501	3.95 .96 .97 .98	1.71546 .71981 .72415 .72849 .73283	51.935 52.457 .985 53.517 54.055	0.019255 .019063 .018873 .018686 .018500
3.50	1.52003	33.115	0.030197	4.00	1.73718	54.598	0.018316

TABLE 19 (continued).

EXPONENTIAL FUNCTION.

x	$\log_{10}(e^x)$	ex	e-x	x	$\log_{10}(e^x)$	e ²²	e-x
4.00 .01 .02 .03	1.73718 .74152 .74586 .75021 .75455	54.598 55.147 .701 56.261 .826	0.018316 .018133 .017953 .017774 .017597	4.50 .51 .52 .53	1.95433 .95867 .96301 .96735 .97170	90.017 .922 91.836 92.759 93.691	0.011109 .010998 .010889 .010781
4.05 .06 .07 .08	1.75889 .76324 .76758 .77192 .77626	57·397 ·974 58·557 59·145 ·740	0.017422 .017249 .017077 .016907 .016739	4·55 •56 •57 •58 •59	1.97604 .98038 .98473 .98907 .99341	94.632 95.583 96.544 97.514 98.494	0.010567 .010462 .010358 .010255
4.10 .11 .12 .13 .14	1.78061 .78495 .78929 .79364 .79798	60.340 .947 61.559 62.178 .803	0.016573 .016408 .016245 .016083 .015923	4.60 .61 .62 .63 .64	1.99775 2.00210 .00644 .01078 .01513	99.484 100.48 101.49 102.51 103.54	0.010052 .009952 .009853 .009755 .009658
4.15 .16 .17 .18	1.80232 .80667 .81101 .81535 .81969	63.434 64.072 .715 65.366 66.023	0.015764 .015608 .015452 .015299 .015146	4.65 .66 .67 .68 .69	2.01947 .02381 .02816 .03250 .03684	104.58 105.64 106.70 107.77 108.85	0.009562 .009466 .009372 .009279 .009187
4.20 .21 .22 .23 .24	1.82404 .82838 .83272 .83707 .84141	66.686 67.357 68.033 .717 69.408	0.014996 .014846 .014699 .014552 .014408	4.70 .71 .72 .73 .74	2.04118 .04553 .04987 .05421 .05856	109.95 111.05 112.17 113.30 114.43	0.009095 .009005 .008915 .008826 .008739
4.25 .26 .27 .28 .29	1.84575 .85009 .85444 .85878 .86312	70.105 .810 71.522 72.240 .966	0.014264 .014122 .013982 .013843 .013705	4·75 ·76 ·77 ·78 •79	2.06290 .06724 .07158 .07593 .08027	115.58 116.75 117.92 119.10 120.30	0.008652 .008566 .008480 .008396 .008312
4.30 .31 .32 .33 .34	1.86747 .87181 .87615 .88050 .88484	73.700 74.440 75.189 .944 76.708	o.o13569 .o13434 .o13300 .o13168	4.80 .81 .82 .83 .84	2.08461 .08896 .09330 .09764 .10199	121.51 122.73 123.97 125.21 126.47	0.008230 .008148 .008067 .007987 .007907
4·35 .36 ·37 ·38 ·39	1.88918 .89352 .89787 .90221 .90655	77.478 78.257 79.044 79.838 80.640	0.012907 .012778 .012651 .012525 .012401	4.85 .86 .87 .88 .89	2.10633 .11067 .11501 .11936 .12370	127.74 129.02 130.32 131.63 132.95	0.007828 .007750 .007673 .007597 .007521
4.40 .41 .42 .43 .44	1.91090 .91524 .91958 .92392 .92827	81.451 82.269 83.096 .931 84.775	0.012277 .012155 .012034 .011914 .011796	4.90 .91 .92 .93 .94	2.12804 .13239 .13673 .14107 .14541	134.29 135.64 137.00 138.38 139.77	0.007447 .007372 .007299 .007227 .007155
4·45 •46 •47 •48 •49	1.93261 .93695 .94130 .94564 .94998	85.627 86.488 87.357 88.235 89.121	0.011679 .011562 .011447 .011333	4.95 .96 .97 .98	2.14976 .15410 .15844 .16279 .16713	141.17 142.59 144.03 145.47 146.94	0.007083 .007013 .006943 .006874 .006806
4.50	1.95433	90.017	0.011109	5.00	2.17147	148.41	0.006738

			CPONENTIA	AL FUNC			
x	$\log_{10}(e^x)$	ex	e-x	x	$\log_{10}(e^x)$	ex	e-x
5.00	2.17147	148.41	0.006738	5.0	2.17147	148.41	0.006738
.01	.17582	149.90	.006671	.I	.21490	164.02	.006097
.02	.18016	151.41	.006605	.2	.25833	181.27	.005517
.03	.18450	152.93	.006539	.3	.30176	200.34	.004992
.04	.18884	154.47	.006474	.4	.34519	221.41	.004517
5.05	2.19319	156.02	0.006409	5.5	2.38862	244.69	0.004087
.06		157.59	.006346	5.5	.43205	270.43	.003698
.07	.19753	159.17	.006282	·7 .8	.47548	298.87	.003346
:08	.20622	160.77	.006220	.8	.47548	330.30	.003028
.09	.21056	162.39	.006158	.9	.56234	365.04	.002739
5.10	2.21490	164.02	0.006097	6.0	2.60577	403.43	0.002479
.II	.21924	165.67	.006036	.x	.64920	445.86	.002243
.12	.22359	167.34	.005976	.2	.69263	492.75	.002029
.13	.22793	169.02	.005917	.3	.73606	544.57 601.85	.001836
.14	.23227	170.72	.005858	-4	.77948	001.85	.001662
5.15	2.23662	172.43	0.005799	6.5	2.82291	665.14	0.001503
.16	.24096	174.16	.005742	.6	.86634	735.10 812.41	.001360
.17	.24530	175.91	.005742 .005685 .005628	.7 .8	.90977	807 87	.001231
.10	.24965	177.68	.005028		.95320	897.85	.001114
	.25399	179.47	.005572	.9	.99663	992.27	8001008
5.20	2.25833	181427	0.005517	7.0	3.04006	1096.6	0.000912
.21	.26267	183.09	.005462	.I	.08349	1212.0	.000825
.22	.26702 .27136	184.93 186.79	.005407	.2	.12692	1339.4	.000747
.24	.27570	188.67	.005354	·3 ·4	.17035	1636.0	.000676
5.25	2.28005	190.57	0.005248	7.5	3.25721	1808.0	0.000553
.26	.28439	190.57 192.48	.005195	7·5 .6	.30064	1998.2	.000500
.27 .28	.28873	194.42	.005144	.7	-34407	2208.3	.000453
.28	.29307	196.37	.005092	.7 .8	.38750	2440.6	.000410
.29	.29742	198.34	.005042	.9	.43093	2697.3	.000371
5.30	2.30176	200.34	0.004992	8.0	3.47436	2981.0	0.000335
.31	.30610	202.35	.004942	.I	.51779	3294.5	.000304
.32	.31045	204.38	.004893	.2	.56121	3641.0	.000275
.33	.31479	206.44	.004844	•3	.60464	4023.9	.000249
•34	.31913	208.51	.004796	•4	.64807	4447.1	.000225
5.35	2.32348	210.61	0.004748	8.5	3.69150	4914.8	0.000203
.36	.32782	212.72	.004701	.6	.73493	5431.7	.000184
·37 .38	.33216	214.86	.004654	.7 .8	.7783 6 .82179	6002.9	.000167
.38	.33650	217.02	.004608		.82179	6634.2	.000151
-39	.34085	219.20	.004562	.9	.86522	7332.0	.000136
5.40	2.34519	221.41	0.004517	9.0	3.90865	8103.1.	0.000123
.41	.34953 .35388 .35822	223.63	.004472	I.	.95208	8955.3	.000112
.42	.35300	225.88	.004427	.2	.99551	9897.1	101000.
·43 ·44	.35022	230.44	.004383	·3 ·4	4.03894	10938.	.000091
5.45	2.36690	232.76	0.004296	9.5	4.12580	13360.	0.000075
.46	.37125	235.10	.004254	.6	.16923	14765.	.000068
.48	·37559	237.46	.004211	.7 .8	.21266	16318.	.000061
.49	·37993 ·38428	239.85 24 2 .26	.004109	.9	.25609	18034.	.000055
5.50	2.38862	244.69	0.004087	10.0		22026.	0.000045
3.30	2.30002	244.09	0.004007	10.0	4.34294	22020.	0.000045

TABLE 20.

EXPONENTIAL FUNCTIONS.

Value of e^{x^3} and e^{-x^2} and their logarithms.

	-			
x	e ^{x2}	log e ^{x²}	e-x2	log e-x2
0.1	1.0101	0.00434	0.99005	7.99566
2	1.0408	01737	96079	98263
3	1.0942	03909	91393	96091
4	1.1735	06949	85214	93051
5	1.2840	10857	77880	89143
0.6	1.4333	0.15635	0.69768	7.84365
7	1.6323	21280	61263	78720
8	1.8965	27795	52729	72205
9	2.2479	35178	44486	64822
1.0	2.7183	43429	36788	56571
1.1	3.3535	0.52550	0.29820	7.47450
2	4.2207	62538	23693	37462
3	5.4195	73396	18452	26604
4	7.0993	85122	14086	14878
5	9.4877	97716	10540	02284
1.6	1.2936 × 10	1.11179	0.77305 × 10 ⁻¹ 55576 " 39164 " 27052 " 18316 "	7.88821
7	1.7993 "	25511		74489
8	2.5534 "	40711		59289
9	3.6966 "	56780		43220
2.0	5.4598 "	73718		26282
2.1	8.2269 " 1.2647×10^{2} 1.9834 " 3.1735 " 5.1801 "	1.91524	0.12155 "	2.08476
2		2.10199	79071 × 10 ⁻²	3.89801
3		29742	50418 "	70258
4		50154	31511 "	49846
5		71434	19305 "	28566
2.6	8.6264 "	2.93583	0.11592 "	3.06417
7	1.4656 × 10 ⁸	3.16601	68233 × 10 ⁻⁸	4.83399
8	2.5402 "	40487	39367 "	59513
9	4.4918 "	65242	22263 "	34758
3.0	8.1031 "	90865	12341 "	09135
3.1 2 3 4 5	1.4913×10^{4} 2.8001 5.3637 1.0482×10^{5} 2.0898 "	4.17357 44718 72947 5.02044 32011	0.67055 × 10 ⁻⁴ 357 ¹ 3 " 18644 " 95402 × 10 ⁻⁵ 47851 "	• 5.82643 55282 27053 6.97956 67989
3.6 7 8 9 4.0	4.2507 " 8.8205 " 1.8673 × 10 ⁶ 4.0329 " 8.8861 "	5.62846 94549 6.27121 60562 94871	0.23526 " 11337 " 53553×10^{-6} 24796 " 11254 "	6.37154 05451 7.72879 39438 05129
4.1 2 3 4 5	1.9975×10^{7} 4.5809 1.0718×10^{8} 2.5582 6.2296 "	7.30049 66095 8.03010 40794 79446	0.50062×10^{-7} 21830 " 93303×10^{-8} 39089 " 16052 "	8.69951 33905 9.96990 59206 20554
4.6 7 8 9 5.0	1.5476×10^{9} $3.9^{22}5$ 1.0142×10^{10} 2.6755 7.2005	9.18967 59357 10.00614 42741 85736	0.64614×10^{-9} 25494 $^{98595} \times 10^{-10}$ 37376 $^{1}_{3888}$ $^{"}$	10.81033 40643 11.99386 57259 14264

TABLE 21.

EXPONENTIAL FUNCTIONS.

Values of $e^{\frac{\pi}{4}z}$ and $e^{-\frac{\pi}{4}z}$ and their logarithms.

æ	$e^{\frac{\pi}{4x}}$	$\log e^{\frac{\pi}{4^x}}$	$e^{-\frac{\pi}{4}x}$	$\log e^{-\frac{\pi}{4}x}$
1 2 3 4 5	2.1933 4.8105 1.0551 × 10 2.3141 " 5.0754 "	0.34109 .68219 1.02328 .36438 .70547	0.45594 .20788 .94780 × 10 ⁻¹ .43 ² 14 " .19703 "	ī.65891 31781 2.97672 .63562 .29453
6 7 8 9	1.1132 × 10 ² 2.4415 " 5.3549 " 1.1745 × 10 ⁸ 2.5760 "	2.04656 .38766 .72875 3.06985 .41094	0.89833×10^{-2} 0.40958 " 0.18674 " 0.85144×10^{-8} 0.38820 "	3.95344 .61234 .27125 4.93015 .58906
11 12 13 14 15	5.6498 " 1.2392×10^{4} 2.7178 " 5.9610 " 1.3074×10^{5}	3.7 52 03 4.09313 .43422 .77532 5.11641	0.17700 " .80 700 × 10 ⁻⁴ .36794 " .16776 " .76487 × 10 ⁻⁵	4.24797 5.90687 .56578 .22468 6.88359
16 17 18 19 20	2.8675 " 6.2893 " 1.3794×10^{6} $3.0^{2}54$ " 6.6356 "	5.45751 .79860 6.13969 .48079 .82188	0.34873 " .15900 " .72495 X 10 ⁻⁶ .33°53 " .15070 "	6.54249 .20140 7.86031 .51921 .17812

TABLE 22. EXPONENTIAL FUNCTIONS.

Values of $\ell^{\frac{\sqrt{\pi}}{4}x}$ and $\ell^{-\frac{\sqrt{\pi}}{4}x}$ and their logarithms.

æ	$e^{rac{\sqrt{\pi}}{4}x}$	$\log e^{\frac{\sqrt{\pi}}{4}z}$	$e^{-rac{\sqrt{\pi}}{4}x}$	$\log e^{-\frac{\sqrt{\pi}}{x}}$
1	1.5576	0.19244	0.64203	ī.80756
2	2.4260	.38488	-41221	.61512
3	3.7786	.57733	-26465	.42267
4	5.8853	.76977	-16992	.23023
5	9.1666	.96221	-10909	.03779
6 7 8 9	14.277 22.238 34.636 53.948 84.027	1.15465 ·34709 ·53953 ·73198 ·92442	0.070041 .044968 .028871 .018536 .011901	2.84535 .65291 .46047 .26802 .07558
11	130.88	2.11686	0.0076408	3.88314
12	203.8 5	.30930	.0049057	.69070
13	317.50	.50174	.0031496	.49826
14	494.5 2	.69418	.0020222	.30582
15	770.24	.88663	.0012983	.11337
16	1199.7	3.07907	0.00083355	4.92093
17	1868.6	.27151	.00053517	.72849
18	2910.4	.46395	.00034360	.53605
19	4533.1	.65639	.00022060	.34361
20	7060.5	.84883	.00014163	.15117

TABLES 23 AND 24.

EXPONENTIAL FUNCTIONS AND LEAST SQUARES.

TABLE 23 .- Exponential Functions.

Value of ex and ex and their logarithms.

x	e ^{az}	log e*	e-2	x	e ^x	log ez	e-z
1/64 1/32 1/16 1/10 1/9 1/8 1/7 1/6 1/5 1/4	I.0157 .0317 .0645 .1052 .1175 I.1331 .1536 .1814 .2214	0.00679 .01357 .02714 .04343 .04825 0.05429 .06204 .07238 .08686 .10857	0.98450 .96923 .93941 .90484 .89484 0.88250 .86688 .84648 .81873 .77880	1/3 1/2 3/4 1 5/4 3/2 7/4 2 9/4 5/2	1.3956 .6487 2.1170 .7183 3.4903 4.4817 5.7546 7.3891 9.4877 12.1825	0.14476 .21715 .32572 .43429 .54287 0.65144 .76002 .86859 .97716 1.08574	0.71653 .60653 .47237 .36788 .28650 0.22313 .17377 .13534 .10540 .08208

TABLE 24 .- Least Squares.

Values of
$$P = \frac{2}{\sqrt{\pi}} \int_0^h hx e^{-(hx)^2} d(hx)$$
.

This table gives the value of P, the probability of an observational error having a value positive or negative equal to or less than x when h is the measure of precision, $P = \frac{2}{\sqrt{\pi}} \int_{0}^{hx} e^{-(hx)^2} d(hx)$. For values of the inverse function see the table on Diffusion.

hx	0	1	2	3	4	5	6	7	8	9
0.0	.11246	.01128	.02256	.03384	.04511	.05637	.06762	.07886	.09008	.10128
.I .2	.22270	.23352	.24430	.14587	.26570	.27633	.28690	.18999	.30788	.31828
.3	.32863	.33891	.34913	.35928	.36936	37938	.38933	.39921	.40901	.41874
•4	.42839	.43797	.44747	.45689	.46623	.47548	.48466	•49375	-50275	.51167
0.5	.52050	.52924	.53790	.54646	-55494	.56332	.57162	.57982	.58792	.59594
.6	.60386	.68467	.61941	.62705	.63459	.64203	.64938	.65663	.66378	.67084
.7	.74210	.74800	.75381	.75952	.76514	.77067	.71754	.78144	.78669	.79184
.9	.79691	.80188	.80677	.81156	.81627	.82089	.82542	.82987	.83423	.83851
1.0	.84270	.84681	.85084	.85478	.85865	.86244	.86614	.86977	.87333	.87680
I.	.88021	.88353	.88679	.88997	.89308	.89612	.89910	.90200	.90484	.90761
.2	.91031	.91296	.91553	.91805	.92051	.92290	.92524	.92751	.92973	.93190
•3	.93401	.95385	.95538	.95686	.95830	.94376	.94556	.94731	.94902	.96490
1.5	.96611	.96728	.96841	.96952	.97059	.97162	.97263	-97360	-97455	.97546
.6	.97635	.97721	.97804	.97884	.97962	.98038	.98110	.98181	.98249	.98315
.7	.98379	.98441	.98500	.98558	.98613	.98667	.98719	.98769	.98817	.98864
.0	.98909	.98952	.98994	.99035	.99074	.99111	.99147	.99182	.99216	.99248
2.0	.99532	.99552	.99572	.99591	.99609	.99626	.99642	.99658	.99673	.99688
.I	.9933~	.99552	.99572	.99391	.99753	.99764	.99775	.99785	.99795	.99805
.2	.99814	.99822	.99831	.99839	.99846	.99854	.99861	.99867	.99874	.99880
-3	.99886	.99891	.99897	.99902	.99906	11000.	.99915	.99920	.99924	.99928
•4	.99931	.99935	.99938	.99941	.99944	-99947	.99950	.99952	-99955	.99957
2.5	.99959	.99961	.99963	.99965	.99967	.99969	.99971	.99972	.99974	.99975
	.99970	.99978	.99979	.99989	.99989	.99990	.99991	.99904	.99993	.99992
.7	.99992	-99993	.99993	-99994	.99994	.99994	.99995	.99995	.99995	.99996
.9	.99996	.99996	.99996	-99997	-99997	-99997	.99997	.99997	-99997	.99998
3.0	.99998	.99999	-99999	1.00000						

Taken from a paper by Dr. James Burgess 'on the Definite Integral $\frac{2}{\sqrt{\tau}} \int_{0}^{t} e^{-t^2} dt$, with Extended Tables of Values.' Trans. Roy. Soc. of Edinburgh, vol. xxxix, 1900, p. 257.

TABLE 25.

LEAST SQUARES.

This table gives the values of the probability P, as defined in last table, corresponding to different values of x/r where r is the "probable error." The probable error r is equal to 0.47694/h.

ac r	0	1	2	3	4	5	6	7	8	9
0.0	.00000	.00538	.01076	.01614	.02152	.02690	.03228	.03766	.04303	.04840
0.1	.05378	.05914	.06451	.06987	.07523	.08059	.08594	.09129	.09663	.10197
0.2	.10731	.11264	.11796	.12328	.12860	13391	.13921	.14451	.14980	.15508
0.3	.16035	.16562	.17088	.17614	.18138	.18662	.19185	.19707	.20229	.20749
0.4			.22304		.23336					.25898
0.5	.26407	.26915	.27421	.27927	.28431	.28934	.29436	.29936	.30435	.30933
0.7	.36317	.36798	.37277	.37755	.38231	.38705	.39178	.39649	.40118	.40586
0.8	.41052	.41517	.41979	.42440	.42899	•43357	.43813	.44267	-44719	.45169
0.9	.45618	.46064	.46509	.46952	.47393	.47832	.48270	.48705	.49139	-49570
1.0	.50000	.50428	.50853	.51277	.51699	.52119	.52537	.52952	.53366	.53778
I.I	.54188	.54595	.55001	.55404	.55806	.56205	.56602	.56998	.57391	.57782
1.2	.58171	.58558	.58942	.59325	.59705	.60083	.60460	.60833	.61205	.61575
1.4	.65498	.65841	.66182	.66521	.66858	.67193	.67 526	.67856	.68184	.68510
1.5	.68833	.69155	.69474	.69791	.70106	.70419	.70729	.71038	.71344	.71648
1.6	.71949	.72249	.72546	.72841	.73134	.73425	.73714	.74000	.74285	.74567
1.7	.74847	.75124	.75400	.75674	.75945	.76214	.76481	.76746	.77009	.77270
1.8	.77528	.77785	.78039	.78291	.78542	.78790	.79036	.79280	.79522	.79761
1.9	•79999	.80235	.80469	.80700	.80930	.81158	.81383		.81828	.82048
2.0 2.I	.82266	.82481	.82695 .84726	.82907	.83117	.83324	.83530 .85486	.83734	.83936	.84137 .86036
2.2	.86216	.86394	.86570	.86745	.86917	.87088	.87258	.87425	.87591	.87755
2.3	.87918	.88078	.88237	.88395	.88550	.88705	.88857	.89008	.891 57	.89304
2.4	.89450	.89595	.89738	.89879	.90019	.90157	.90293	.90428	.90562	.90694
2.5	.90825	.90954	.91082	.91208	.91332	.91456	.91578	.91698	.91817	.91935
2.6	.92051	.92166	.92280	.92392	.92503	.92613	.92721	.92828	.92934	.93038
2.7	.93141	.93243	.93344	•93443	.93541	.93638	·93734 ·94627	.93828	.93922	.94014
2.0	.94105	.94195	.94284	.94371	.95263	·94543 ·95338	.95412	.95484	·94793 ·95557	.95628
2.9	74734	-93-33	1	, ,	75-3					
	0	1	2	3	4	5	6	7	8	9
3	.95698	.96346	.96910	-97397	.97817	.98176	.98482	.98743	.98962	.99147
4	.99302	.99431	.99539	99627	.99700	.99760	.99808	.99848	.99879	.99905
5	.99926	-99943	.99956	.99966	-99974	.99980	.99905	199900	.99991	-99993
		-								

TABLE 26. LEAST SQUARES.

Values of the factor $0.6745\sqrt{\frac{1}{n-1}}$.

This factor occurs in the equation $r_6 = 0.6745 \sqrt{\frac{\sum v^3}{\nu - 1}}$ for the probable error of a single observation, and other similar equations.

n	0	1	2	3	4	5	6	7	8	9
00 10 20 30 40	0.2248 .1547 .1252 .1080	0.2133 .1508 .1231 .1066	0.6745 .20 34 .1472 .1211 .1053	0.4769 .1947 .1438 .1192 .1041	0.3894 .1871 .1406 .1174 .1029	0.3372 .1803 .1377 .1157	0.3016 .1742 .1349 .1140 .1005	0.2754 .1686 .1323 .1124 .0994	0.2549 .1636 .1298 .1109 .0984	0.2385 .1590 .1275 .1094
50 60 70 80 90	0.0964 .0878 .0812 .0759 .0715	0.0954 .0871 .0806 .0754 .0711	0.0944 .0864 .0800 .0749 .0707	0.0935 .0857 .0795 .0745 .0703	0.0926 .0850 .0789 .0740 .0699	0.0918 .0843 .0784 .0736 .0696	0.0909 .0837 .0779 .0732 .0692	0.0901 .0830 .0774 .0727 .0688	0.0893 .0824 .0769 .0723 .0685	0.0886 .0818 .0 764 .0719 .0681

Values of the factor 0.6745
$$\sqrt{\frac{1}{n(n-1)}}$$
.

This factor occurs in the equation $r_0 = 0.6745\sqrt{\frac{\sum_{n}v^2}{n(n-t)}}$ for the probable error of the arithmetic mean.

n	=	1	2	3	4	5	6	7	8	9
00 10 20 30 · 40	0.0711 .0346 .0229	0.0643 .0329 .0221 .0167	0.4769 .0587 .0314 .0214 .0163	0.2754 .0540 .0300 .0208 .0159	0.1947 .0500 .0287 .0201 .0155	0.1508 .0465 .0275 .0196	0.1231 .0435 .0265 .0190 .0148	0.1041 .0409 .0255 .0185	0.0901 .0386 .0245 .0180	0.0795 .0365 .0237 .0175 .0139
50 60 70 80 90	0.0136 .0113 .0097 .0085 .0075	0.0134 .0111 .0096 .0084 .0075	0.0131 .0110 .0094 .0083 .0074	0.0128 .0108 .0093 .0082 .0073	0.0126 .0106 .0092 .0081 .0072	0.0124 .0105 .0091 .0080 .0071	0.0122 .0103 .0089 .0079	0.0119 .0101 .0088 .0078	0.0117 .0100 .0087 .0077 .0069	0.0115 .0098 .0086 .0076 .0068

TABLE 28. - LEAST SQUARES.

Values of the factor 0.8463 $\sqrt{\frac{1}{n(n-1)}}$.

This factor occurs in the approximate equation $r = 0.8453 \sqrt{\frac{2v^2}{n(n-1)}}$ for the probable error of a single observation.

n	=	1	2	3	4	5	6	7	8	9
00 10 20 30 40	0.0891 .0434 .0287	0.0806 .0412 .0277 .0209	0.5978 .0736 .0393 .0268	0.3451 .0677 .0376 .0260 .0199	0.2440 .0627 .0360 .0252	0.1890 .0583 .0345 .0245	0.1543 .0546 .0332 .0238 .0186	0.1304 .0513 .0319 .0232	0.1130 .0483 .0307 .0225 .0178	0.0996 .0457 .0297 .0220
50 60 70 80 90	0.0171 .0142 .0122 .0106 .0094	0.0167 .0140 .0120 .0105 .0093	.0.0164 .0137 .0118 .0104 .0092	0.0161 .0135 .0117 .0102	0.0158 .0133 .0115 .0101	0.0155 .0131 .0113 .0100 .0089	0.0152 .0129 .0112 .0099 .0089	0.0150 .0127 .0111 .0098 .0088	0.0147 .0125 .0109 .0097 .0087	0.0145 .0123 .0108 .0096 .0086

TABLE 29. - LEAST SQUARES.

Values of $0.8453 \frac{1}{n\sqrt{n-1}}$

This factor occurs in the approximate equation $r_0 = 0.8453 \frac{\Sigma \nu}{n \sqrt{n-1}}$ for the probable error of the arithmetical mean.

n	=	1	2	3	4	5	6	7	8	9
00 10 20 30 40	0.0282 .0097 .0052 .0034	0.0243 .0090 .0050 .0033	0.4227 .0212 .0084 .0047 .0031	0.1993 .0188 .0078 .0045	0.1220 .0167 .0073 .0043 .0029	0.0845 .0151 .0069 .0041 .0028	0.0630 .0136 .0065 .0040	0.0493 .0124 .0061 .0038 .0027	0.0399 .0114 .0058 .0037 .0026	0.0332 .0105 .0055 .0035
50 60 70 80 90	0.0024 .0018 .0015 .0012	0.0023 .0018 .0014 .0012	0.0023 .0017 .0014 .0011	0.0022 .0017 .0014 .0011	0.0022 .0017 .0013 .0011	0.0021 ,0016 ,0013 ,0011	0.0020 .0016 .0013 .0011	0.0020 .0016 .0013 .0010	0.0019 .0015 .0012 .0010	0.0019 .0015 .0012 .0010

Observation equations:

Auxiliary equations:

Normal equations:

$$\begin{aligned} &[\operatorname{paa}]z_1 + [\operatorname{pab}]z_2 + \dots &[\operatorname{pal}]z_q = [\operatorname{paM}] \\ &[\operatorname{pab}]z_1 + [\operatorname{pbb}]z_2 + \dots &[\operatorname{pbl}]z_q = [\operatorname{pbM}] \end{aligned} \\ &[\operatorname{pla}]z_1 + [\operatorname{plb}]z_2 + \dots &[\operatorname{pll}]z_q = [\operatorname{plM}]. \end{aligned}$$

Solution of normal equations in the form,

$$\begin{aligned} z_1 &= A_1[paM] + B_1[pbM] + \dots L_1[plM] \\ z_2 &= A_2[paM] + B_2[pbM] + \dots L_2[plM] \end{aligned}$$

$$z_0 &= A_n[paM] + B_n[pbM] + \dots L_n[plM],$$

gives:

wherein

r = probable error of observation of weight unity
= 0.6745
$$\sqrt{\frac{2 pv^2}{n-q}}$$
. (q unknowns.)

Arithmetical mean, n observations:

$$r = 0.6745 \sqrt{\frac{\sum v^2}{n-1}} = \frac{0.8453 \sum v}{\sqrt{n(n-1)}}$$
. (approx.) = probable error of observation of weight unity.

$$r_0 = 0.6745 \sqrt{\frac{\sum v^2}{n \, (n-1)}} = \frac{0.8453 \, \Sigma \, v}{n \sqrt{n-1}} \cdot \quad (approx.) = \underset{\text{of mean.}}{\text{probable error}}$$

Weighted mean, n observations:

$$r = 0.6745 \sqrt{\frac{\sum p v^2}{n-1}}; r_0 = \frac{r}{\sqrt{\sum p}} = 0.6745 \sqrt{\frac{\sum p v^2}{(n-1) \sum p}}$$

Probable error (R) of a function (Z) of several observed quantities z_1, z_2, \ldots whose probable errors are respectively, r_1, r_2, \ldots $Z = f_1(z_1, z_2, \ldots)$

$$Z = f(z_1, z_2, \dots)$$

$$R^2 = \left(\frac{\partial Z}{\partial z_1}\right)^2 r_1^2 + \left(\frac{\partial Z}{\partial z_2}\right)^2 r_2^2 + \dots$$

Examples:

$$\begin{split} Z &= z_1 \,\pm\, z_2 + \ldots & R^2 &= r_1^2 + r_2^2 + \ldots \\ Z &= A z_1 \pm\, B z_2 \pm\, \ldots & R^2 &= A^2\, r_1^2 +\, B^2 r_2^2 +\, \ldots \\ Z &= z_1\, z_2 & R^2 &= z_1^2\, r_2^2 + z_2^2 r_1^2 . \end{split}$$

Inverse * values of $v/c = 1 - \frac{2}{\sqrt{\pi}} \int_0^q e^{-q^2} dq$

 $\log x = \log (2q) + \log \sqrt{kt}$. t expressed in seconds.

= $\log \delta + \log \sqrt{kt}$. t expressed in days.

 $= \log \gamma + \log \sqrt{kt}.$ " years.

 $k = \text{coefficient of diffusion.} \dagger$

c = initial concentration.

v = concentration at distance x, time t.

v/c	log 2q	29	log δ	δ.	logγ	γ
0.00 .01 .02	+∞ 0.56143 .51719	+∞ 3.6428 3.2900	+∞ 3.02970 2.98545	+∞ 1070.78 967.04	∞ 4.31098 .26674	∞ 20463. 18481.
.03 .04 0.05	.48699 .46366	3.0690 2.9044 2.7718	.95525 .93132 2.91102	902.90 853.73 814.74	.23654 .21261 4.19231	17240. 16316.
.06 .07 .08	.42486 .40865 .39372 .37979	2.6598 2.5624 2.4758 2.3977	.89311 .87691 .86198 .84804	781.83 753.20 727. 7 5 704.76	.17440 .15820 .14327 .12933	14942. 14395. 13908.
0.10 .11 .12 .13	0.36664 .35414 .34218 .33067	2.3262 2.2602 2.1988 2.1413	2.83490 .82240 .81044 .79893	683.75 664.36 646.31 629.40	4.11619 .10369 .09173 .08022	13067. 12697. 12352. 12029.
.14 0.15 .16 .17	.31954 0.30874 .29821 .28793 .27786	2.0871 2.0358 1.9871 1.9406 1.8961	.78780 2.77699 .76647 .75619	598.40 584.08 570.41	.06909 4.05828 .04776 .03748	11724. 11436. 11162. 10901. 10652.
0.20 0.21	.27780 .26798 0.25825 .24866 .23919	1.8534 1.8124 1.7728 1.7346	.74612 .73624 2.72651 .71692	557·34 544.80 532.73 521.10 509.86	.02741 .01753 4.00780 3.99821 .98874	10052. 10412. 10181. 9958.9 9744.1
.23 .24 0.25	.22983 .22055 0.21134	1.6976 1.6617 1.6268	.70745 .69808 .68880 2.67960	498.98 488.43 478.19	.97937 .97010 3.96089	9536.2 9334.6 9138.9
.26 .27 .28 .29	.20220 .19312 .18407 .17505	1.5930 1. 5 600 1.5278 1.4964	.67046 .66137 .65232 .64331	468.23 458.53 449.08 439.85	.95175 .94266 .93361 .92460	8948.5 8763.2 8582.5 8406.2
0.30 .31 .32 .33 .34	0.16606 .15708 .14810 .13912 .13014	1.4657 1.4357 1.4064 1.3776 1.3494	2.63431 .62533 .61636 .60738 .59840	430.84 422.02 413.39 404.93 396.64	3.91 560 .90662 .89765 .88867 .87969	8233.9 8065.4 7900.4 7738.8 7580.3
0.35 .36 .37 .38 .39	0.12114 .11211 .10305 .09396 .08482	1.3217 1.2945 1.2678 1.2415 1.2157	2.58939 .58037 .57131 .56222 .55308	388.50 380.51 372.66 364.93 357.34	3.87068 .86166 .85260 .84351 .83437	7424.8 7272.0 7122.0 6974.4 6829.2
0.40 .41 .42 .43	0.07563 .06639 .05708 .04770 .03824	1.1902 1.1652 1.1405 1.1161 1.0920	2.54389 .53464 .52533 .51595 .50650	349.86 342.49 335.22 328.06 320.99	3.82518 .81593 .80662 .79724 .78779	6686.2 6545.4 6406.6 6269.7 6134.6
.44 0.45 .46 .47 .48	0.02870 .01907 .00934 9.99951	1.0683 1.0449 1.0217 0.99886	2.49 6 96 .48733 .47760 .46776	314.02 307.13 300.33 293.60 286.96	3.77825 .76862 .75889 .74905	6001.3 5869.7 5739.7 5611.2 5484.1
0.50	.989 5 6 9.97949	0.97624	.45782 2.44775	280.38	3.72904	5358.4

[†] Kelvin, Mathematical and Physical Papers, vol. III. p. 428; Becker, Am. Jour. of Sci. vol. III. 1897, p. 280. *For direct values see table 24.

TABLE 31 (continued).

DIFFUSION.

v/c	log 2q	29	log δ	δ	log y	γ
0.50	9.97949	0.95387	2.44775	280.38	3.72904	5358.4
·51	.96929	.93174	.43755	273.87	.71884	5234.1
·52	.95896	.90983	.42722	267.43	.70851	5111.0
·53	.94848	.88813	.41674	261.06	.69803	4989.1
·54	.93784	.86665	.40610	254.74	.68739	4868.4
0.55	9.92704	0.84536	2.39530	248.48	3.67659	4748.9
.56	.91607	.82426	.38432	242.28	.66561	4630.3
.57	.90490	.80335	.37316	236.13	.65445	4512.8
.58	.89354	.78260	.36180	230.04	.64309	4396.3
.59	.88197	.76203	.35023	223.99	.63152	4280.7
0.60	9.87018	0.74161	2.33843	217.99	3.61973	4166.1
.61	.85815	.72135	.32640	212.03	.60770	4052.2
.62	.84587	.70124	.31412	206.12	.59541	3939.2
.63	.83332	.68126	.30157	200.25	.58286	3827.0
.64	.82048	.66143	.28874	194.42	.57003	3715.6
0.65	9.80734	0.64172	2.27560	188.63	3.55689	3604.9
.66	.79388	.62213	.26214	182.87	·54343	3494.9
.67	.78008	.60266	.24833	177.15	·52962	3385.4
.68	.76590	.58331	.23416	171.46	·51545	3276.8
.69	.75133	.56407	.21959	165.80	·50088	3168.7
0.70	9.73634	0.54493	2.20459	160.17	3.48588	3061.1
.71	.72089	.52588	.18915	154.58	.47044	2954.2
.72	.70495	.50694	.17321	149.01	.45450	2847.7
.73	.68849	.48808	.15675	143.47	.43804	2741.8
.74	.67146	.46931	.13972	137.95	.42101	2636.4
0.75 .76 .77 .78 .79	9.65381 .63550 .61646 .59662 .57590	0.45062 .43202 .41348 .39502 .37662	2.12207 .10376 .08471 .06487 .04416	132.46 126.99 121.54 116.11	3.40336 .38505 .36600 .34616 .32545	2531.4 2426.9 2322.7 2219.0 2115.7
0.80 .81 .82 .83 .84	9.55423 .53150 .50758 .48235 .45564	0.35829 .34001 .32180 .30363 .28552	2.02249 1.99975 .97584 .95061 .92389	99.943 94.589 89.250 83.926	3.30378 .28104 .25713 .23190 .20518	2012.7 1910.0 1807.7 1705.7 1603.9
0.85	9.42725	0.26745	1.89551	78.615	3.17680	1502.4
.86	•39695	.24943	.86521	73.317	.14650	1401.2
.87	•36445	.23145	.83271	68.032	.11400	1300.2
.88	•32940	.21350	.79766	62.757	.07895	1199.4
.89	•29135	.19559	.75961	57.492	3.04090	1098.7
0.90	9.24972	0.17771	1.71797	52.236	2.99926	998.31
.91	.20374	.15986	.67200	46.989	.95329	898.03
.92	.15239	.14203	.62065	41.750	.90194	797.89
.93	.09423	.12423	.56249	36.516	.84378	697.88
.94	9.02714	.10645	.49539	31.289	.77668	597.98
0.95	8.94783	0.08868	1.41609	26.067	2.69738	498.17
.96	.85082	.07093	.31907	20.848	.60036	398.44
.97	.72580	.05319	.19406	15.633	.47535	298.78
.98	.54965	.03545	.01791	10.421	.29920	199.16
.99	.24859	.01773	0.71684	5.21007	1.99813	99.571
1.00	∞	0.00000	∞	0.00000	-∞	0.000

TABLE 32.

CAMMA FUNCTION.*

Value of
$$\log \int_0^{\infty} e^{-x} x^{n-1} dx + 10$$
.

Values of the logarithms + 10 of the "Second Eulerian Integral" (Gamma function) $\int_{0}^{e^{-x}x^{n-1}dx} v \log \Gamma(n) + 10$ for values of n between 1 and 2. When n has values not lying between 1 and 2 the value of the function can be readily calculated from the equation $\Gamma(n+1) = n\Gamma(n) = n(n-1) \dots (n-r)\Gamma(n-r)$.

n	0	1	2	3	4	5	6	7	8	9	
1.00 1.01 1.02 1.03 1.04	9.99 7.528 51.27 2790 0533	79 48916	95001 70430 46561 23384 00889	92512 68011 44212 21104 98677	90030 65600 41870 18831 96471	87555 63196 39535 16564 94273	85087 60798 37207 14305 92080	82627 58408 34886 12052 89895	80173 56025 32572 09806 87716	77727 53648 30265 07567 85544	
1.05 1.06 1.07 1.08 1.09	9,988333 6208 414 2146 0212	39 59996 55 39428 59 19506	79068 57910 37407 17549 98329	76922 55830 35392 15599 96442	74783 53757 33384 13655 94561	72651 51690 31382 11717 92686	70525 49630 29387 09785 90818	68406 47577 27398 07860 88956	66294 45530 25415 05941 87100	64188 43489 23439 04029 85250	
1.10 1.11 1.12 1.13 1.14	9.978340 6531 4783 3096 1468	63538 34 46120 52 29308	79738 61768 44411 27659 11505	77914 60005 42709 26017 09922	76095 58248 41013 24381 08345	74283 56497 39323 22751 06774	72476 54753 37638 21126 05209	70676 53014 35960 19508 03650	68882 51281 34288 17896 02096	67095 49555 32622 16289 00549	
1.15 1.16 1.17 1.18 1.19	9.969900 8391 .6939 5544 4209	82432 67969 67969	95941 80960 66554 52718 39444	94417 79493 65145 51366 38147	92898 78033 63742 50019 36856	91 386 76578 62344 48677 35570	89879 75129 60952 47341 34290	88378 73686 59566 46011 33016	86883 72248 58185 44687 31747	85393 70816 56810 43368 30483	
1.20 1.21 1.22 1.23 1.24	9.962922 1694 0521 59401 8335	16 15748 2 04068 5 92925	26725 14556 02930 91840 81280	25484 13369 01796 90760 80253	24248 12188 00669 89685 79232	23017 11011 99546 88616 78215	21792 09841 98430 87553 77204	20573 08675 97318 86494 76198	19358 07515 96212 85441 75197	18150 06361 95111 84393 74201	
1.25 1.26 1.27 1.28 1.29	9.957321 6359 5448 4589 3779	62658 67 53604 61 45059	71246 61730 52727 44232 36239	70271 60806 51855 43410 35467	69301 59888 50988 42593 34700	68337 58975 50126 41782 33938	67377 58067 49268 40975 33181	66423 57165 48416 40173 32429	65474 56267 47570 39376 31682	64530 55374 46728 38585 30940	
1.30 1.31 1.32 1.33 1.34	9.953020 2310 1648 1035 0469	22417 5 15850 3 09766	28743 21739 15220 09184 03624	28021 21065 14595 08606 03094	27303 20396 13975 08034 02568	26590 19732 13359 07466 02048	25883 19073 12748 06903 01532	25180 18419 12142 06344 01021	24482 17770 1154 1 05791 00514	23789 17125 10944 05242 00012	
1.35 1.36 1.37 1.38 1.39	9.949951 9480 9054 8675 8341	94355 9 90149 6 86402	98535 93913 89754 86052 82803	98052 93477 89363 85707 82503	97573 93044 88977 85366 82208	97100 92617 88595 85030 81916	96630 92194 88218 84698 81630	96166 91776 87846 84371 81348	95706 91362 87478 84049 81070	95251 90953 87115 83731 80797	
1.40 1.41 1.42 1.43 1.44	9.948052 7808 7608 7451 7338	77864 75905 74382	80003 77648 75733 74254 73207	79748 77437 75565 74130 73125	79497 77230 75402 74010 73049	79250 77027 75243 73894 72976	79008 76829 75089 73783 72908	78770 76636 74939 73676 72844	78537 76446 74793 73574 72784	78308 76261 74652 73476 72728	

^{*} Legendre's "Exercises de Calcul Intégral," tome ii.

TABLE 32 (continued).

CAMMA FUNCTION.

<u></u>										
n	0	1	2	3	4	5	6	7	8	9
1.45	9.9472677	72630	72587	72549	72514	72484	72459	72437	72419	72406
1.46	72397	72393	72392	72396	72404	72416	72432	72452	72477	72506
1.47	72539	72576	72617	72662	72712	72766	72824	72886	72952	73022
1.48	73097	73175	73258	73345	73436	73531	73630	73734	73841	73953
1.49	74068	74188	74312	74440	74572	74708	74848	74992	75141	75293
1.50	9.9475449	75610	75774	75943	76116	76292	76473	76658	76847	77040
1.51	77237	77437	77642	77851	78064	78281	78502	78727	78956	79189
1.52	79426	79667	79912	80161	80414	80671	80932	81196	81465	81738
1.53	82015	82295	82580	82868	83161	83457	83758	84062	84370	84682
1.54	84998	85318	85642	85970	86302	86638	86977	87321	87668	88019
1.55	9.9488374	88733	89096	89463	89834	90208	90587	90969	91355	91745
1.56	92139	92537	92938	93344	93753	94166	94583	95004	95429	95857
1.57	96289	96725	97165	97609	98056	98508	98963	99422	99885	00351
1.58	500822	01296	01774	02255	02741	03230	03723	04220	04720	05225
1.59	05733	06245	06760	07280	07803	08330	08860	09395	09933	10475
1.60	9.9511020	11569	12122	12679	13240	13804	14372	14943	15519	16098
1.61	16680	17267	17857	18451	19048	19649	20254	20862	21475	22091
1.62	22710	23333	23960	24591	25225	25863	26504	27149	27798	28451
1.63	29107	29766	30430	31097	31767	32442	33120	33801	34486	35175
1.64	35867	36563	37263	37966	38673	39383	40097	40815	41536	42260
1.65	9.9542989	43721	44456	45195	45938	46684	47434	48187	48944	49704
1.66	50468	51236	52007	52782	53560	54342	55127	55916	56708	57504
1.67	58303	59106	59913	60723	61536	62353	63174	63998	648 2 5	65656
1.68	66491	67329	68170	69015	69864	70716	71571	72430	73 ² 93	74159
1.69	75028	75901	76777	77657	78540	79427	80317	81211	82108	83008
1.70	9.9583912	84820	85731	86645	87563	88484	89409	90337	91268	92203
1.71	93141	94083	95028	95977	96929	97884	98843	99805	00771	01740
1.72	602712	03688	04667	05650	06636	07625	08618	09614	10613	11616
1.73	12622	13632	14645	15661	16681	17704	18730	19760	20793	21830
1.74	22869	23912	24959	26009	27062	28118	29178	30241	31308	32377
1.75	9.9633451	34527	35607	36690	37776	38866	39959	41055	42155	43258
1.76	44364	45473	46586	47702	48821	49944	51070	52199	53331	54467
1.77	55606	56749	57894	59043	60195	61350	62509	63671	64836	66004
1.78	67176	68351	69529	70710	71895	73082	74274	75468	76665	77866
1.79	79070	80277	81488	82701	83918	85138	86361	87588	88818	90051
1.80	9.9691287	92526	93768	95014	96263	97515	98770	00029	01291	02555
1.81	703823	05095	06369	07646	08927	10211	11498	12788	14082	15378
1.82	16678	17981	19287	20596	21908	23224	24542	25864	27189	28517
1.83	29848	31182	32520	33860	35204	36551	37900	39254	40610	41969
1.84	43331	44697	46065	47437	48812	50190	51571	52955	54342	55733
1.85	9.9757126	58522	59922	61325	62730	641 3 9	65551	66966	68384	69805
1.86	71230	72657	74087	75521	76957	78397	79839	81285	82734	84186
1.87	85640	87098	88559	90023	91490	92960	94433	95909	97389	98871
1.88	800356	01844	93335	04830	06327	07827	09331	10837	12346	13859
1.89	15374	16893	18414	19939	21466	22996	24530	26066	27606	29148
1.90	9.9830693	32242	33793	35348	36905	38465	40028	41 595	43164	44736
1.91	46311	47890	49471	51055	52642	54232	55825	57421	59020	60621
1.92	62226	63834	65445	67058	68675	70294	71917	73542	75170	76802
1.93	78436	80073	81713	83356	85002	86651	88302	89957	91614	93275
1.94	94938	96605	98274	99946	01621	03299	04980	06663	08350	10039
1.95	9.9911732	13427	15125	16826	18530	20237	21947	23659	25375	27093
1.96	28815	30539	32266	33995	35728	37464	39202	40943	42688	44435
1.97	46185	47937	49693	51451	53213	54977	56744	58513	60286	62062
1.98	63840	65621	67405	69192	70982	72774	74570	76368	78169	79972
1.99	81779	83588	85401	87216	89034	90854	92678	94504	96333	98165

TABLE 33, ZONAL SPHERICAL HARMONICS.*

ZONAL SPHERICAL HARMONICS."										
Degrees	P ₁	P_2	P ₃	P ₄	P_{δ}	P ₆	P7			
0 1 2 3 4	+ 1.0000 .9998 .9994 .9986 .9976	+ 1.0000 .9995 .9982 .9959 .9927	+ 1.0000 .9991 .9963 .9918	+ 1.0000 .9985 .9939 .9863 .9758	+ 1.0000 .9977 .9909 .9795 .9638	+ 1.0000 .9968 .9872 .9714 .9495	+ 1.0000 .9957 .9830 .9620			
. 5	+ 0.9962	+ 0.9886	+ 0.9773	+ 0.9623	+ 0.9437	+ 0.9216	+ 0.8962			
6	-9945	.9836	.9674	.9459	.9194	.8881	.8522			
7	-9925	.9777	.9557	.9267	.8911	.8492	.8016			
8	-9903	.9709	.9423	.9048	.8589	.8054	.7449			
9	-9877	.9633	.9273	.8803	.8232	.7570	.6830			
10	+ 0.9848	+ 0.9548	+ 0.9106	+ 0.8532	+ 0.7840	+ 0.7045	+ 0.6164			
11	.9816	·9454	.8923	.8238	.7417	.6483	.5462			
12	.9781	·9352	.8724	.7920	.6966	.5891	.4731			
13	.9744	·9241	.8511	.7582	.6489	.5273	.3980			
14	.9703	·9122	.8283	.7224	.5990	.4635	.3218			
15 16 17 18	+ 0.9659 .9613 .9563 .9511 .9455	+ 0.8995 .8860 .8718 .8568 .8410	+ 0.8042 .7787 .7519 .7240 .6950	+ 0.6847 .6454 .6046 .5624 .5192	+ 0.5471 -4937 -4391 -3836 -3276	+ 0.3983 .3323 .2661 .2002 .1353	+ 0.2455 + .1700 + .0961 + .0248 0433			
20	+ 0.9397	+ 0.8245	+ 0.6649	+ 0.4750	+ 0.2715	+ 0.0719	- 0.1072			
21	.9336	.8074	.6338	.4300	.2156	+ .0106	.1664			
22	.9272	.7895	.6019	.3845	.1602	0481	.2202			
23	.9205	.7710	.5692	.3386	.1057	1038	.2680			
24	.9135	.7518	.5357	.2926	.0525	1558	.3094			
25	+ 0.9063	+ 0.7321	+ 0.5016	+ 0.2465	+ 0.0009	- 0.2040	- 0.3441			
26	.8988	.7117	.4670	.2007	0489	.2478	.3717			
27	.8910	.6908	.4319	.1553	0964	.2869	.3922			
28	.8829	.6694	.3964	.1105	1415	.3212	.4053			
29	.8746	.6474	.3607	.0665	1839	.3502	.4113			
30	+ 0.8660	+ 0.6250	+ 0.3248	+ 0.0234	- 0.2233	0.3740	- 0.4102			
31	.8572	.6021	.2887	0185	.2595	.3924	.4022			
32	.8480	.5788	.2527	0591	.2923	.4053	.3877			
33	.8387	.5551	.2167	0982	.3216	.4127	.3671			
34	.8290	.5310	.1809	1357	.3473	.4147	.3409			
35 36 37 38 39	+ 0.8192 .8090 .7986 .7880	+ 0.5065 .4818 .4567 .4314 .4059	+ 0.1454 .1102 .0755 .0413 .0077	- 0.1714 .2052 .2370 .2666 .2940	0.3691 .3871 .4011 .4112 .4174	-0.4114 .4031 .3898 .3719 .3497	0.3096 .2738 .2343 .1918 .1470			
40	+ 0.7660	+ 0.3802	0.0252	- 0.3190	0.4197	0.3236	- 0.1006			
41	.7547	·3544	.0574	.3416	.4181	.2939	0535			
42	.7431	·3284	.0887	.3616	.4128	.2610	0064			
43	.7314	·3023	.1191	.3791	.4038	.2255	+ .0398			
44	.7193	·2762	.1485	.3940	.3914	.1878	+ .0846			
45	+ 0.7071	+ 0.2500	- 0.1768	- 0.4063	0.3757	- 0.1484	+ 0.1271			
46	.6947	.2238	.2040	.4158	.3568	1078	.1667			
47	.6820	.1977	.2300	.4227	.3350	0665	.2028			
48	.6691	.1716	.2547	.4270	.3105	0251	.2350			
49	.6561	.1456	.2781	.4286	.2836	+ .0161	.2626			
50	+ 0.6428	+ 0.1198	- 0.3002	-0.4275	— 0.2545	+ 0.0564	+ 0.2854			

TABLE 33 (continued). ZONAL SPHERICAL HARMONICS.

Degrees	P ₁	P_2	P ₈	P ₄	P ₅	P ₆	P ₇
50 51 52	+ 0.6428 .6293 .6157 .6018	+ 0.1198 .0941 .0686	-0.3002 .3209 .3401	- 0.4275 .4239 .4178	-0.2545 .2235 .1910	+ 0.0564 .0954 .1326	+ 0.2854 .3031 .3154
53 54	.5878	.0433	·3578 ·3740	.4093	.1571	.1677	.3221
55 56 57 58 59	+ 0·5736 ·5592 ·5446 ·5299 ·5150	- 0.0065 .0310 .0551 .0788	-0.3886 .4016 .4131 .4229 .4310	- 0.3852 .3698 .3524 .3331 .3119	- 0.0868 0509 0150 + .0206 + .0557	+ 0.2297 .2560 .2787 .2976	+ 0.3191 .3095 .2947 .2752 .2512
60 61 62 63	+ 0.5000 .4848 .4695 .4540	0.1250 .1474 .1694 .1908	- 0.4375 .4423 .4455 .4471	- 0.2891 .2647 .2390 .2121	+ 0.0898 .1229 .1545 .1844	+ 0.3232 .3298 .3321 .3302	+ 0.2231 .1916 .1572 .1203
64 65 66 67 68	.43 ⁸ 4 + 0.4226 .4067 .3907 .3746	-0.2321 .2518 .2710 .2895	-0.4452 -4419 -4370 -4305	.1841 - 0.1552 .1256 .0955 .0651	+ 0.2381 -2615 .2824 .3005	-3240 + 0.3138 -2997 -2819 -2606	+ 0.0422 + .0022 0375 0763
69 70 71 72 73 74	.35 ⁸ 4 + 0.3420 .3256 .3090 .2924 .2756	-3074 -0.3245 -3410 -3568 -3718 -3860	.4225 0.4130 .4021 .3898 .3761	-0.0038 + .0267 .0568 .0864	-3158 + 0.3281 -3373 -3434 -3463 -3461	.2362 + 0.2089 .1791 .1472 .1136 .0788	1135 - 0.1485 .1808 .2099 .2352 .2563
75 76 77 78 79	+ 0.2588 .2419 .2250 .2079 .1908	- 0.3995 .4122 .4241 .4352 .4454	- 0.3449 .3275 .3090 .2894 .2688	+ 0.1434 .1705 .1964 .2211	+ 0.3427 .3362 .3267 .3143 .2990	+ 0.0431 + .0070 0290 0644 0990	0.2730 .2850 .2921 .2942 .2913
80 81 82 83 84	+ 0.1736 .1564 .1392 .1219 .1045	- 0.4548 .4633 .4709 .4777 .4836	- 0.2474 .2251 .2020 .1783 .1539	+ 0.2659 .2859 .3040 .3203 .3345	+ 0.2810 .2606 .2378 .2129 .1861	-0.1321 .1635 .1927 .2193 .2431	- 0.2835 .2708 .2536 .2321 .2067
85 86 87 88 89	+ 0.0872 .0698 .0523 .0349 .0175	-0.4886 .4927 .4959 .4982 .4995	- 0.1291 .1038 .0781 .0522 .0262	+ 0.3468 .3569 .3648 .3704 .3739	+ 0.1577 .1278 .0969 .0651 .0327	-0.2638 .2810 .2947 .3045 .3105	- 0.1778 .1460 .1117 .0755 .0381
90	+ 0.0000	- 0.5000	- 0.0000	+ 0.3750	+ 0.0000	-0.3125	- 0.0000
SMITHSON	IIAN TABLES.						

6	TABLE 34. CYLINDRICAL HARMONICS OF THE 0TH AND 1ST ORDERS												
Values when $n = 0$ and x of the Bessel function										:)			
			xm /	$I - \frac{1}{2^2}$	x2	x4		_ \	I. (r) =	- 14	$f(x) = \frac{dJ_0(x)}{dx}$	r).	
		2" I	(n+1)	22 ($\frac{1}{(n+1)}$ +	24 2!(n+:	1)(n+	2) } .	31(2)	30 (dx		
	x	$J_0(x)$	$J_1(x)$	35	$J_{\sigma}(x)$	$J_1(x)$	x	$J_0(x)$	$J_1(x)$	E	$J_0(x)$	$J_1(x)$	
	.00	unity	zero	.50	.038470	.242268	1.00	.765198	.440051	1 .50	.511828	.557937	ı
	.OI		.005000	.51	.936024	.246799	.01	.760781	.443286	.51			ı
	.02	.999900		.52	-933534	.251310	.02	.756332	.446488	.52	.500642	.560653	ı
	.03	-999775	.014998	-53			11	.751851	.449658	.53		.561951	ı
	.04	.999600	.019996	.54	.928418	.260277	.04	.747339	.452794	-54	.489403	.563208	ı
	OF			SPE		-6	1 05		0	1 55	0.6		ı
	.05	-999375	.024992	.55	-925793		1 .05	.742796	.455897	1.55	.483764	.564424	ı
ı	.06	11.	.029987	.56			1	.738221	.458966	.56		.565600	ı
	.07	.998775	.034979	.57	.920410		.07	.733616	.462001	.57		.566735	ı
ı	.08	.998401	.039968	.58			.08	1 / -	.465003	.58		.567830	ı
	.09	.997970	.044954	.59	.914850	.282349	.09	.724316	.467970	•59	.401090	.568883	ı
ı	.10	.997502	.049938	.60	.912005	.286701	1 .10	.719622	.470002	1 60	.455402	.569896	ı
ı	.II	.996977	.054917	.61	.909116	.201032	.II	.714898	.473800	.61	.449698		ı
ı	.12	.996403	0.2.1		.905184	.205341	.12	.710146	.476663	.62		.571798	ı
	.13	.995779			.903200	,00.		.705365	.479491	.63	1107.0	.572688	ı
	.14			.64		.303893	.14		.482284	.64			ı
		.993.20	,		.99-	3-3-93		.,55-			1432331	.313331	ı
ı	.15	.994383	.074789	.65	.807132	.308135	1 .15	.695720	.485041	1 .65	.426792	.574344	ı
ı	.16	.993610	.079744	.66	.894029		.16		.487763	.66		.575111	ı
ı	.17	.992788		.67	.890885	.316551	.17	.685965	.490449	.67		.575836	ı
I	.18	.991916		.68	.887698	.320723	.18		.493098	.68		.576520	ı
	.19	.990995	.094572	.69	.884470	.324871	.19	.676103	.495712	.69		.577163	ı
	.20	.000025	.099501	.70	.881201	.328996	1 .20	.671133	.498289	1 .70	.397985	.577765	ı
	.21	.989005	770	.71	.877890		.21	.666137	.500830	.71	.392204	0 6	ı
i	.22	.987937	.109336	.72	.874539	.337170	.22	.661116	.503334	.72	.386418		ı
	.23		.114241	.73		.341220	.23	.656071	.505801	.73	.380628		ı
	.24	.985652	.119138	-74	.867715	.345245	.24	.651000	.508231	.74	.374832	.579760	ı
	.25	.984436	.124026	.75	.864242	.349244	1 .25	.645906	.510623	1 .75	.360033	.580156	ı
	.26		.128905	.76	.860730	.353216	.26	.640788	.512979	.76	.363229		ı
	.27	.981858	.133774	.77	.857178	.357163	.27	.635647	.515296	.77	.357422	.580824	ı
ı	.28	.980496	.138632	.78	.853587	.361083	.28	.630482	.517577	.78	.351613	.581096	ı
	.29	.979085	.143481	.79	.849956	.364976	.29	.625295	.519819	.79	.345801	.581327	ı
	.30	.977626	.148319	.80	.846287	.368842	1 .30	.620086	.522023	1 .80	.339986	.581517	ı
	.31	.976119	.153146	.81	.842580	.372681	.31	.614855	.524189	.81		.581666	ı
	.32	.974563	.157961	.82	.838834	.376492	.32	.609602	.526317	.82	.328353	.581773	ı
ı	.33	.972960	.162764	.83	.835050	.380275	.33	.604329	.528407	.83	.322535	.581840	ı
	.34	.971308	.167555	.84	.831228	.384029	.34	.599034	.530458	.84	.316717	.581865	ı
	.35	.969600	.172334	.85	.827369	.387755	1 .35	.593720	.532470	1 .85	.310808	.581849	I
-	.36		.177100	.86	.823473	.391453	.36	.588385	.534444	.86		.581793	I
	.37		.181852	.87	.819541	.395121	.37	.583031	.536379	.87		.581695	ı
ı	.38		.186591	.88	.815571	.398760	.38	.577658	.538274	.88			ı
	.39		.191316	.89	.811565	.402370	-39	.572266	.540131	.89	.286631	.581377	I
	.40	.960398	.196027	.90	.807524	.405950	1 .40	.566855	.541948	1.90	.281819	.581157	١

.41 .958414 .200723

.42 .956384 .205403

.43 .954306 .210069

.44 .952183 .214719

.45 .950012 .219353

.46 .947796 .223970

.47 .945533 .228571

.48 .943224 .233154

.49 .940870 .237720

.91 .803447 .409499

.92 .799334 .413018

.93 .795186 .416507

.94 .791004 .419965

.96 .782536 .426787

.97 .778251 .430151

.98 .773933 .433483

.99 .769582 .436783

.50 .938470 .242268 1 .00 .765198 .440051 1 .50 .511828 .557937 2 .00 .223891 .576725

.41 .561427 .543726

.42 .555981 .545464

.43 .550518 .547162

.44 .545038 .548821

.95 .786787 .423392 1 .45 .539541 .550441 1 .95 .252799 .579446

.46 .534029 .552020

.47 .528501 .553559

.48 .522958 .555059

.49 .517400 .556518

.91 .276008 .580896

.92 .270201 .580595

.93 .264397 .580252

.94 .258596 .579870

.96 .247007 .578983

.97 .241220 .578478

.98 .235438 .577934

.99 .229661 .577349

TABLE 34 (continued). CYLINDRICAL HARMONICS OF THE 0TH AND 1ST ORDERS.

 $J_1(x)=-J_0'(x)$. Other orders may be obtained from the relation, $J_{n+1}(x)=\frac{2n}{x}J_n(x)-J_{n-1}(x)$, $J_{-n}(x)=(-1)^nJ_n(x).$

_					$J_{-n}(x) =$	(-1)	Jn(u).				
x	$J_0(x)$	$J_1(x)$	x	$J_0(x)$	$J_1(x)$	x	$J_0(x)$	$J_1(x)$	x	$J_0(x)$	$J_1(x)$
2.00	222022		0 50	210201	107001	2 00	060040		9 50	-00	
.01	0 /	.576725		048384 053342		3.00	263424	.339059		380128 381481	
.02		-575355		058276		.02	266758	.331563		382791	
.03	0,1	.574611		063184			270055			384060	
.04	.200878	.573827	.54	068066	.486953	.04	273314	.323998	-54	385287	.120601
2.05			0 55		.0	2 05			2 55	-06	- (0
.06	22 10	572139		072923 077753		3.00	276535 279718	.320191		386472 387615	
.07		.571236		082557		.07	282862	.310300	.57	388717	
.08		.570294		087333		.08	285968	.308675		389776	
.00		.569313	.59	092083	.473582	.09	289036	.304805		390793	
0 10	-666	460	0 00	60	0 0	2 10			0.00		
2.10	1	.568292		096805			292064			391769	
.12		.566134		101499 106165			295054 298005			392703 393595	
.13		.564997		110803			300916			394445	
.14		.563821		115412			303788			395253	
0.45	0		0.05								
2.15	0.00	.562607		119992			306621			396020	
.16	0 ,	.561354		124543 129065			309414			396745	
.18		.558735		133557			312168 314881		68	397429 398071	.066274
.19		.557368	.69	138018	.444648		317555			398671	.057975
											0,7,0
2.20		.555963		142449			320188		3.70	399230	.053834
.21		.554521		146850			322781			399748	
.22		.553041		151220			325335			400224	
.24		.549970		155559 159866			327847 330319			400659 401053	
		37997					.330319	.245104	./4	.401033	.03/330
2.25	13-	.548378		164141		3.25	332751	.241120	3.75	401406	.033229
.26		.546750		168385			335142			401718	
.28		.545085		172597			337492			401989	
.20		·543384 ·541646		176776 180922			339801 342069			402219 402408	
9	1000947	.341040	.19	1100922	.413011	129	.342009	.224//1	.79	402400	.010005
2.30		.539873	2.80	185036	.409709	3.30	344296	.220663	3.80	402556	.012821
.31	.050150			189117			346482			402664	
.32	.044779			193164			348627			402732	
·33		·534336 ·532419		197177 201157			350731			402759	
.34	.034092	-552419	.04	20115/	.390207	.34	352793	.204100	.04	402746	003337
2.35	.028778	.530467	2.85	205102	.392849	3.35	354814	.200018	3.85	402692	007350
.36	.023483	.528480	.86	209014	.389408	.36	356793	.195870	.86	402599	011352
.37		.526458		212890		.37	358731	.191716		402465	
.38		.524402		216733 220540			360628			402292	
.39	.00//20	.344311	.09	220540	.370955	.39	362482	.103394	.09	402079	023289
2.40	.002508	.520185	2.90	224312	.375427	3.40	364296	.179226	3.90	401826	027244
	002683	.518026	.91	228048	.371879	-41	366067	.175054		401534	
	007853		.92	231749	.368311		367797			401202	
	013000 018125		.93	235414	304722		369485			400832	
•44	.010125	.511340	.94	239043	.301113	•44	371131	.102510	.94	400422	042933
2.45	023227	.509052	2.95	242636	.357485	3.45	372735	.158331	3.95	300073	046821
	028306	.506726		246193			374297			399485	
.47	033361	.504366	.97	249713	.350170	.47	375818	.149954		398959	
	038393			253196			377296			398394	
•49	043401	.499550	.99	256643	.342781	.49	378733	.141571	.99	397791	002229
2.50	048384	.497904	3.00	260052	.330050	3.50	380128	.137378	4.00	307150	.066043
		191094		120032	-339-39		300120	-3/3/0	1.30	.39/130	.000043
			-								

CYLINDRICAL HARMONICS OF OTH AND 1ST ORDERS.

TABLE 35. — 4-place Values for x = 4.0 to 15.0.

_		to .			
x	$J_0(x)$	$J_1(x)$	æ	$J_0(x)$	J'(x)
	2072	2662		*****	1 7672
.1	3972 3887	- 1022		1939 2090	. 1395
. 2	3766		.7		.1166
.3	3610	1719	.8	2323	.0928
.4	3423	2028	.9	2403	.0684
4.5	3205 2961	2311	10.0	2459 2490	.0435 +.0184
.7	2693		. 2	2496	0066
.8	2404		.3	2477	0313
.9	2097		.4	2434	
	1776	3276	10.5		0789
. I	1443	3371	.6		1012
.2	1103	3432	.7		
	0758 0412		.8	00	1422
	0068		11.0	1712	
	+.0270		. I	1528	
.7		3241		1330	
.8	.0917	3110	.3	1121	2143
.9		2951	.4		2225
6.0	. 1506	2767	11.5		2284
. I	.1773	2559	.6	0446	
.3		2329 2081	.7	0213 +.0020	
.4		1816	.9		2290
6.5	. 2601	1538	12.0		2234
.6	. 2740	1250	r.	.0607	2157
.7	. 2851	0953	. 2	.0908	2060
.8	. 2931	0652	.3		1943
.9	. 2981	0349	.4		1807
7.0	. 3001	0047 +.0252	12.5		1655 - 1487
.2	.2951	.0543	.7	.1766	1487 1307
.3	. 2882	.0826	.8	. 1887	1114
.4	. 2786	.1096	.9	. 1988	0912
7.5	. 2663	.1352	13.0	. 2069	0703
.6	.2516	.1592	.I		0489
.7	. 2346	. 1813	.2		0271 0052
.9	.1944	.2192	.4	.2177	+.0166
8.0	.1717	. 2346	13.5	.2150	.0380
. I	.1475	. 2476	.6	.2101	.0590
. 2	.1222	. 2580	.7	. 2032	.0791
.3	.0960	. 2657	.8	.1943	.0984
.4	.0692	. 2708	.9	. 1836	.1165
8.5	.0419	. 2731	14.0	.1711	. 1334
.7	.0146 0125	. 2728	.2	.1570	.1626
.8	0392	. 2641	.3	.1245	.1747
.9	0653	. 2559	.4	. 1065	. 1850
9.0	, ,	. 2453	14.5	.0875	. 1934
. 1	1142	.2324	.6	.0679	.1999
. 2	1367	.2174	.7	.0476	. 2043
.4	1577 1768	. 2004	.9	.0064	, 2069
9.5		.1613			. 2051
1	939	1 3	3.0	1	-3.

TABLE 36. - Roots.

(a) 1st 10 roots of $J_0(x) = 0$

Higher roots may be calculated to better than 1 part in 10,000 by the approximate formula

$$R_m = R_{m-1} + \pi$$
 $R_1 = 2.404826$
 $R_2 = 5.520078$
 $R_3 = 8.653728$
 $R_4 = 11.791534$
 $R_6 = 14.930918$
 $R_6 = 18.071064$
 $R_7 = 21.211637$
 $R_8 = 24.352472$
 $R_9 = 27.493479$
 $R_{10} = 30.634606$

(b) 1st 15 roots of $J_1(x) = \frac{dJ_0(x)}{dx} = 0$ with corresponding values of maximum or

or minimum values of $J_0(x)$.

No. of root (n)	Root = x_n .	$J_0(x_n)$.
1	3.831706	402759
2	7.015587	+.300116
3	10.173468	249705
4	13.323692	+.218359
5	16.470630	196465
6	19.615859	+.180063
7	22.760084	167185
8	25.903672	+.156725
9	29.046829	148011
10	32.189680	+.140606
11	35.332308	134211
12	38.474766	+.128617
13	41.617094	123668
14	44.759319	+.119250
15	47.901461	115274

Higher roots may be obtained as under (a). Notes. $y = J_n(x)$ is a particular solution of Bessel's equation,

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + (x^{2} - n^{2})y = 0.$$

The general formula for $J_n(x)$ is

or
$$J_n(x) = \sum_{0}^{\infty} \frac{(-1)^s x^{n+2s}}{2^{n+2s} \pi s \pi (n+s)},$$
$$= \sum_{0}^{\infty} \frac{(-1)^s x^{n+2s}}{2^{n+2s} s! (n+s)!}$$

when n is an integer and

and

$$J_{n+1}(x) = \frac{2n}{x} J_n(x) - J_{n-1}(x),$$

$$J_1(x) = \frac{dJ_0(x)}{dx},$$

$$J_{-n}(x) = (-1)^n J_n(x).$$

Tables 35 to 36 are based upon Gray and Matthews' reprints from Dr. Meissel's tables. See also Reports of British Association, 1907–1916.

ELLIPTIC INTEGRALS.

Values of $\int_0^{\frac{\pi}{2}} (1-\sin^2\theta\sin^2\phi)^{\frac{1}{2}\frac{1}{d}} d\phi.$

This table gives the values of the integrals between o and $\pi/2$ of the function $(i-\sin^2\theta\sin^2\phi)^{\frac{1}{12}}d\phi$ for different values of the modulus corresponding to each degree of θ between o and 90.

	Ст		Ι (*π			Сп	**	CT	
Ð	$\int_0^{\frac{n}{2}} (1-t)^{n-1}$	$\frac{\mathrm{d}\phi}{\sin^2\theta\sin^2\phi^{)\frac{1}{2}}}$	$\int_0^{\frac{n}{2}(1-s)}$	$\sin^2\theta \sin^2\phi)^{\frac{1}{2}}d\phi$	θ	$\int_0^{\frac{\pi}{2}} \overline{(1-s)}$	$\frac{d\phi}{\sin^2\theta\sin^2\phi)^{\frac{1}{2}}}$	$\int_0^{\frac{\pi}{2}} (1-s)^{\frac{\pi}{2}}$	in²θsin²φ) ^½ dφ
	Number.	Log.	Number.	Log.		Number.	Log.	Number.	Log.
0°	1.5708	0.196120	1.5708	0.196120	45°	1.8541	0.268127	1.3506	0.130541
I	5709	196153 196252	5707	196087	6	8691 8848	271644	3418	127690 124788
2	5713	196418	57°3 5697	195900	7 8	9011	275267 279001	3329 3238	121836
3 4	5727	196649	5689	195591	9	9180	282848	3147	118836
5 °	1.5738	0.196947	1.5678 5665	0.195293	50°	1.9356	0.286811	1.3055	0.115790
	5751 5767	19/312	5649	194500	2	9539 9729	290895 295101	2963 2870	112698
7 8	5785	198241	5632	194004	3	9729	299435	2776	106386
9	5805	198806	5611	193442	4	2.0133	303901	2681	103169
10°	1.5828	0.199438	1.5589	0.192815	550	2.0347	0.308504	1.2587	0.099915
I 2	5854 5882	200137	5564	192121	6	0571	313247 318138	2492	096626
	5913	201740	5537 5507	191362	7 8	1047	323182	2397 2301	093303
3 4	5946	202643	5476	189646	9	1300	328384	2206	086569
15°	1.5981	0.203615	1.5442	0.188690	60°	2.1565	0.333753	1.2111	0.083164
6	6020	204657	5405	187668	1	1842	339295	2015	079738
7 8	6061	205768	5367	186581	2	2132	345020	1920	076293
	6105	206948	5326	185428	3	2435	350936	1826	072834
9	6151	208200	5283	184210	4	2754	357053	1732	069364
20°	1.6200	0.209522	1.5238	0.182928	65°	2.3088	0.363384	1.1638	0.065889
I	6252	210916	5191	181580	6	3439	369940	1545	062412
2	6307	212382	5141	180168	7 8	3809 4198	376736 383787	1453	058937
3 4	6426	21 55 33	5037	177150	9	4610	391112	1272	052020
25°	1.6490	0.217219	1.4981	0.175545	70°	2.5046	0.398730	1.1184	0.048589
6	6557	218981	4924	173876	I	5507	406665	1096	045183
7	6627	220818	4864	172144	2	5998	414943	1011	041812
7 8	6701	222732	4803	170348	3	6521	423596	0927	038481
9	6777	224723	4740	168489 -	4	7081	432660	0844	035200
30°	1.6858	0.226793	1.4675	0.166567	75°	2.7681	0.442176	1.0764	0.031976
I	6941	228943		164583	6	8327	452196	0686	028819
2	7028	231173	4539	162537	7 8	9026	462782	0611	025740
3	7119	233485	4469	160429	1	3.0617	474008	0538	022749
4		235880	4397		9		485967		
35°	1.7312	0.238359	1.4323	0.156031	80°	3.1534	0.498777	1.0401	0.017081
6	7415	240923	4248	153742	2	2553	512591	0338	014432 011927
7 8	7522	243575 246315	4171	151393	3	3699 5004	544120	0278	009584
9	7633 7748	249146	4013	146519	4	6519	562514	0172	007422
40°	1.7868	0.252068	1.3931	0.143995	850	3.8317	0.583396	1.0127	0.005465
1	7992 8122	255085 258197	3849	141414	6	4.0528	607751	0086	003740
2		258197	3765	138778	7 8	3387	637355	0053	002278
3	8256	261406	3680	136086		7427	676027	0026	001121
4	8396	264716	3594	133340	9	5-4349	735192		000320
45°	1.8541	0.268127	1.3506	0.130541	90°	00	00	1.0000	

MOMENTS OF INERTIA, RADII OF GYRATION, AND WEIGHTS.

In each case the axis is supposed to traverse the centre of gravity of the body. The axis is one of symmetry. The mass of a unit of volume is w.

Body.	Axis.	Weight.	Moment of Inertia Io.	Square of Radius of Gyration ρ ₀ ² .
Sphere of radius r	Diameter	$\frac{4\pi wr^8}{3}$	8πωr ⁵ 15	$\frac{2r^2}{5}$
Spheroid of revolution, polar axis 2a, equatorial diameter 2r	Polar axis	4πwar ² 3	8 mwar ⁴	2r ² 5
Ellipsoid, axes 2a, 2b, 2c	Axis 2a	<u>4πναδε</u> 3	$\frac{4\pi wabc(b^2+c^2)}{15}$	$\frac{b^2+c^2}{5}$
Spherical shell, external radius r, internal r'	Diameter	$\frac{4\pi\pi\upsilon(r^3-r'^3)}{3}$	$\frac{8\pi w(r^5-r^{\prime 5})}{15}$	$\frac{2(r^5-r'^5)}{5(r^3-r'^3)}$
Ditto, insensibly thin, radius r, thickness dr	Diameter	4 π wr²dr	$\frac{8\pi w r^4 dr}{3}$	$\frac{2r^2}{3}$
Circular cylinder, length 2a, radius r	Longitudinal axis 2a	2πwar ²	πwar⁴	2 2 z
Elliptic cylinder, length 2a, transverse axes 2b, 2c	Longitudinal axis 2a	2\pi wabc	$\frac{\pi wabc(b^2+c^2)}{2}$	$\frac{b^2+\epsilon^2}{4}$
Hollow circular cylinder, length 2a, external ra- dius r, internal r'	Longitudinal axis 2a	2πwa(r²—r'²)	πwa(γ ⁴ —γ' ⁴)	$\frac{r^2+r'^2}{2}$
Ditto, insensibly thin, thickness dr	Longitudinal axis 2a	4 mwardr	$4\pi war^8 dr$	y 2
Circular cylinder, length 2a, radius r	Transverse diameter	2πwar²	$\frac{\pi \pi var^2(3r^2+4a^2)}{6}$	$\frac{r^2}{4} + \frac{a^2}{3}$
Elliptic cylinder, length 2a, transverse axes 2a, 2b	Transverse axis 2b	2₩wabc	$\frac{\pi wabc(3c^2+4a^2)}{6}$	$\frac{c^2}{4} + \frac{a^2}{3}$
Hollow circular cylinder, length 2a, external radius r, internal r'	Transverse diameter	2πτυα(r ² —r' ²)	$\frac{\pi va}{6} \left\{ \frac{3(r^4-r'^4)}{+4a^2(r^2-r'^2)} \right\}$	$\frac{r^2+r'^2}{4}+\frac{a^2}{3}$
Ditto, insensibly thin, thickness dr	Transverse diameter	$4\pi wardr$	$\pi wa(2r^3 + \frac{4}{3}a^2r)dr$	$\frac{r^2}{2} + \frac{a^2}{3}$
Rectangular prism, dimensions 2a, 2b, 2c	Axis 2a	· Swabc	$\frac{8wabc(b^2+c^2)}{3}$	$\frac{b^2+c^2}{3}$
Rhombic prism, length 2a, diagonals 2b, 2c	Axis 2a	4wabc	$\frac{2wabc(b^2+c^2)}{3}$	$\frac{b^2+c^2}{6}$
Ditto ·	Diagonal 2b	4wabc	$\frac{2wabc(c^2+2a^2)}{3}$	$\frac{c^2}{6} + \frac{a^2}{3}$

(Taken from Rankine.)

For further mathematical data see Smithsonian Mathematical Tables, Becker and Van Orstrand (Hyperbolic, Circular and Exponential Functions); Functionentafeln, Jahnke und Emde (xtgx, x^{-1} tgx, Roots of Transcendental Equations, a + bi and $re^{\vartheta i}$, Exponentials, Hyperbolic Functions, $\int_{0}^{x} \frac{\sin u}{u} du, \int_{0}^{\infty} \frac{\cos u}{u} du, \int_{0}^{\infty} \frac{e^{-u}}{u} du, \text{ Fresnel Integral, Gamma Function, Gauss Integral}$

 $\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-x^2} dx$, Pearson Function $e^{-\frac{1}{2}\pi\nu} \int_{0}^{\pi} \sin^{\nu} e^{\nu x} dx$, Elliptic Integrals and Functions, Spherical and Cylindrical Functions, etc.). For further references see under Tables, Mathematical, in the Itth ed. Encyclopædia Britannica. See also Carr's Synopsis of Pure Mathematics and Mellor's Higher Mathematics for Students of Chemistry and Physics.

INTERNATIONAL ATOMIC WEIGHTS. VALENCIES.

The International Atomic Weights are quoted from the report of the International Committee on Atomic Weights (Journal American Chemical Society, 39, 42, p. 9, 1920).

		Ψ		errean Chemic		7, 03, 4-, 1	- ,, , ,
Substance.	Symbol.	Relative atomic wt. Oxygen=16.	Valency.	Substance.	Symbol.	Relative atomic wt. Oxygen = 16.	Valency.
Aluminum	Al			Mercury	Hg	200.6	I, 2.
Antimony	Sb	27.I I 20.2	3.	Molybdenum	Mo	96.0	4, 6.
Argon	A	39.9	3, 5.	Neodymium	Nd	144.3	3.
Arsenic	As	74.96	3, 5.	Neon	Ne	20.2	0.
Barium	Ba	137.37	2.	Nickel	Ni	58.68	2, 3.
				[ation)			
Bismuth	Bi	208.0	3, 5.	Niton (Raeman-	Nt.	222.4	-
Boron	В	10.9	3.	Nitrogen	N	14.008	3, 5. 6, 8.
Bromine Cadmium	Br	79.92	I.	Osmium	Os	190.9	
Cæsium	Cd Cs	112.40	2.	Oxygen Palladium	Pd	106.7	2.
Cæsium	Cs	132.81	I.	ranadium	ru	100.7	2, 4.
Calcium	Ca	40.07	2.	Phosphorus	P	31.04	3, 5.
Carbon	C	12.005	4.	Platinum	Pt	195.2	2, 4.
Cerium	Ce	140.25	3, 4.	Potassium	K	39.10	I.
Chlorine	Cl	35.46	I.	Praseodymium		140.9	3.
Chromium	Cr	52.0	2, 3, 6.	Radium	Ra	226.0	2.
Cobalt	Со	r8 or	2 2	Rhodium	Rh	7000	2
Columbium	Cb	58.97 93.I	2, 3.	Rubidium	Rb	102.9 85.45	3·
Copper	Cu	63.57	5. I, 2.	Ruthenium	Ru	101.7	6, 8.
Dysprosium	Dy	162.5	3.	Samarium	Sa	150.4	3.
Erbium	Er	167.7	3.	Scandium	Sc	45.1	3.
-							
Europium	Eu .	152.0	3.	Selenium	Se	79.2	2, 4, 6.
Fluorine Gadolinium	F	19.0	I.	Silicon	Si	28.3	4.
Gallium	Gd Ga	157.3	3.	Silver Sodium	Ag Na	107.88	I.
Germanium	Ge	70.I 72.5	3.	Strontium	Sr	23.00 87.63	2.
	ac	12.3	4.	Strontium	OI.	07.03	
Glucinum	Gl	9.1	2. 6	Sulphur	S	32.06	2, 4, 6.
Gold	Au	197.2	1, 3.	Tantalum	Ta	181.5	5.
Helium /	He	4.00	0.	Tellurium	Te	127.5	2, 4, 6.
Holmium	Но	163.5	3.	Terbium	Tb	159.2	3.
Hydrogen	Н	1.008	I.	Thallium	Tl Th	204.0	1, 3.
Indium	In	114.8	2	Thorium	In	232.15	4.
Iodine	I	126.92	3· 1.	Thulium	Tm	168.5	3.
Iridium	Îr	193.1	4.	Tin	Sn	118.7	2, 4.
Iron	Fe	55.84	2, 3.	Titanium	Ti	48.1	4.
Krypton	Kr	82.92	0.	Tungsten	W	184.0	6.
T 1	_			Uranium	U	238.2	4, 6.
Lanthanum Lead	La	139.0	3.	57 1	37		
Lithium	Pb Li	207.20	2, 4.	Vanadium Xenon	V Xe	51.0	3, 5.
Lutecium	Lu	6.94	I.	Ytterbium	Yb	130.2	o. 3·
Magnesium	Mg	24.32	3· 2.	Yttrium	Yt	173.5 89.33	3.
Manganese	Mn	54.93	2, 3, 7.	Zinc	Zn	65.37	2.
		3.73	3, 1	Zirconium	Zr	90.6	4.

VOLUME OF A CLASS VESSEL FROM THE WEIGHT OF ITS EQUIVALENT VOLUME OF MERCURY OR WATER.

If a glass vessel contains at &C, P grammes of mercury, weighed with brass weights in air at 760 mm. pressure, then its volume in c. cm.

at the same temperature,
$$t_1: V = PR = P \frac{p}{d}$$
, at another temperature, $t_1: V = PR_1 = P p/d \{1 + \gamma (t_1 - t)\}$

p = the weight, reduced to vacuum, of the mass of mercury or water which, weighed with brass weights, equals 1 gram;

d = the density of mercury or water at $t^{\circ}C$,

and $\gamma = 0.000$ 025, is the cubical expansion coefficient of glass.

Temper-		WATER.			MERCURY.	
t	R.	$R_1, t_1 = 10^{\circ}.$	$R_1, t_1 = 20^{\circ}.$	R.	$R_1, t_1 = 10^{\circ}.$	$R_1, t_1 = 20^{\circ}.$
0° 1 2 3 4	1.001192 1133 1092 1068 1060	1.001443 1358 1292 1243 1210	1.001693 1609 1542 1493 1460	0.0735499 5633 5766 5900 6033	0.0735683 5798 5914 6029 6144	0.0735867 5982 6098 6213 6328
5	1068	1193	1443	6167	6259	6443
6 7 8 9	1.001092 1131 1184 1252 1333	1.001192 1206 1234 1277 1333	1.001442 1456 1485 1527 1584	0.0736301 6434 6568 6702 6835	0.0736374 6490 6605 6720 6835	0.0736558 6674 6789 6904 7020
11 12 13 14	1.001428 1536 1657 1790 1935	1.001403 1486 1582 1690 1810	1.001653 1736 1832 1940 2060	0.0736969 7103 7236 7370 7504	0.0736951 7066 7181 7297 7412	0.0737135 7250 7365 7481 7596
16 17 18 19 20	1.002092 2261 2441 2633 2835	1.001942 2086 2241 2407 2584	1.002193 2337 2491 2658 2835	0.0737637 • 7771 7905 8039 8172	0.0737527 7642 7757 7872 7988	0.0737711 7826 7941 8057 8172
21 22 23 24 25	1.003048 3271 3504 3748 4001	1.002772 2970 3178 3396 3624	1.003023 3220 3429 3647 3875	0.0738306 8440 8573 8707 8841	0.0738103 8218 8333 8449 8564	0.0738288 8403 8518 8633 8748
26 27 28 29 30	1.004264 4537 4818 5110 5410	1.003862 4110 4366 4632 4908	1.004113 4361 4616 4884 5159	0.0738974 9108 9242 9376 9510	0.0738679 8794 8910 9025 9140	0.0738864 89 79 9094 9210 93 ² 5

Taken from Landolt, Börnstein, and Meyerhoffer's Physikalisch-Chemische Tabellen.

TABLES 41-42.

REDUCTIONS OF WEIGHINGS IN AIR TO VACUO.

When the weight M in grams of a body is determined in air, a correction is necessary for the buoyancy of the air equal to $M \delta (1/d-1/d_1)$ where $\delta =$ the density (wt. of 1 ccm in grams δ co.0012) of the air during the weighing, d the density of the body, d_1 that of the weights. δ for various barometric values and humidities may be determined from Tables 153 to 155. The following table is computed for $\delta = 0.0012$. The corrected weight = M + kM/1000.

Density	Co	errection factor	, k.	Density	Со	rrection factor	, k.
of body weighed d.	Pt. Ir. weights d ₁ =21.5.	Brass weights 8.4.	Quartz or Al. weights 2.65.	of body weighed d.	Pt. Ir. weights d ₁ =21.5.	Brass weights 8.4.	Quartz or Al. weights 2.65.
.5 .6 .7 .75 .80 .85 .90 .95 1.00 1.1 1.2 1.3 1.4	+ 2.34 + 1.94 + 1.66 + 1.55 + 1.44 + 1.36 + 1.28 + 1.21 + 1.14 + 1.04 + 0.94 + .87 + .80 + .75	+ 2.26 + 1.86 + 1.57 + 1.46 + 1.36 + 1.27 + 1.19 + 1.12 + 1.06 + 0.95 + .86 + .78 + .71 + .66	+ 1.95 + 1.55 + 1.26 + 1.15 + 1.05 + 0.96 + .88 + .81 + .75 + .64 + .55 + .47 + .40 + .35	1.6 1.7 1.8 1.9 2.0 2.5 3.0 4.0 6.0 8.0 10.0 15.0 20.0	+ 0.69 + .65 + .62 + .58 + .54 + .34 + .24 + .14 + .09 + .06 + .03 + .004	+ 0.61 + .56, + .52 + .49 + .46 + .34 + .26 + .16 06 + .01 02 06 08 09	+ 0.30 + .25 + .21 + .18 + .15 + .03 05 15 30 33 37 39 40

TABLE 42.- Reductions of Densities in Air to Vacuo.

(This correction may be accomplished through the use of the above table for each separate

If s is the density of the substance as calculated from the uncorrected weights, S its true density, and L the true density of the liquid used, then the vacuum correction to be applied to the uncorrected density, s, is 0.0012 (I - s/L).

Let W_s = uncorrected weight of substance, W₁ = uncorrected weight of the liquid displaced by the substance, then by definition, s = LW_s/W₁. Assuming D to be the density of the balance of weights, W_s {1 + 0.0012 (1/S - 1/D)} and W₁ {1 + 0.0012 (1/L - 1/D)} are the true weights of the substance and liquid respectively (assuming that the weighings are made under normal atmospheric corrections, so that the weight of 1 cc. of air is 0.0012 gram).

Then the true density
$$S\!=\!\frac{W_{\text{5}}\!\left\{\text{I}+\text{0.0012}\left(\text{I/S}-\text{I/D}\right)\right\}}{W\!\!\left\{\text{I}+\text{0.0012}\left(\text{I/L}-\text{I/D}\right)\right\}}L.$$

But from above $W_s/W_l = s/L$, and since L is always large compared with 0.0012, S-s = 0.0012 (1 -s/L).

The values of 0.0012 (1 — s/L) for densities up to 20 and for liquids of density I (water), 0.852 (xylene) and 13.55 (mercury) follow:

(See reference below for discussion of density determinations).

Density of		Corrections.		Density of	Corre	ctions.
substance s.	L=1 Water.			substance B	L= 1 Water.	L=13.55 Mercury.
0.8	+ 0.00024 + .00012	_	_	II. I2.	- 0.0120 0132	+ 0.0002
I. 2.	0.0000	- 0.0002 0016	+ 0.0011	13.	0144 0156	0.0000
3· 4·	0024 0036	0030 0044	+ .0009	1 5. 16.	0188 0180	0001 0002
5. 6.	0048 0060	0058 0073	+ .0008	17. 18.	0192 0204	0003 0004
7· 8.	0072 0084	0087	+ .0006	19. 20.	0216 0228	0005 0006
9.	— .0096 — .0108	0115 0129	+ .0004			

MECHANICAL PROPERTIES.*

* Compiled from various sources by Harvey A. Anderson, C.E., Assistant Engineer Physicist, U. S. Bureau of Standards.

The mechanical properties of most materials vary between wide limits; the following figures are given as being representative rather than what may be expected from an individual sample. Figures denoting such properties are commonly given either as specification or experimental values. Unless otherwise shown, the values below are experimental. Credit for information included is due the U. S. Bureau of Standards; the Am. Soc. for Testing Materials; the Soc. of Automotive Eng.; the Motor Transport Corps, U. S. War Dept.; the Inst. of Mech. Eng.; the Inst. of Metals; Forest Products Lab.; Dept. of Agriculture (Bull. 556); Moore's Materials of Engineering; Hatfield's Cast Iron; and various other American, English and French authorities.

The specified properties shown are indicated minimums as prescribed by the Am. Soc. for Testing Materials, U. S. Navy Dept., Panama Canal, Soc. of Automotive Eng., or Intern. Aircraft Standards Board. In the majority of cases, specifications show a range for chemical constituents and the average value only of this range is quoted. Corresponding average values are in general given for mechanical properties. In general, tensile test specimens were 12.8 mm (0.505 in.) diameter and 50.8 mm (2 in.) gage length. Sizes of compressive and transverse specimens are generally shown accompanying the data.

All data shown in these tables are as determined at ordinary room temperature, averaging 20° C (68° F.). The properties of most metals and alloys vary considerably from the values shown when the tests are conducted at higher or lower temperatures.

The following definitions govern the more commonly confused terms shown in the tables. In all cases the stress referred to in the definitions is equal to the total load at that stage of the test divided by the original cross-sectional area of the specimen (or the corresponding stress in the extreme fiber as computed from the flexure formula for transverse tests).

Proportional Limit (abbreviated P-limit). — Stress at which the deformation (or deflection) ceases to be proportional to the load (determined with extensometer for tension, compressometer for compression and deflectometer for transverse tests).

Elastic Limit. — Stress which produces a permanent elongation (or shortening) of o.oor per cent of the gage length, as shown by an instrument capable of this degree of precision (determined from set readings with extensometer or compressometer). In transverse tests the extreme fiber stress at an appreciable permanent deflection.

Yield Point. — Stress at which marked increase in deformation (or deflection) of specimen occurs without increase in load (determined usually by drop of beam or with dividers for tension, compression or transverse tests).

Ultimate Strength in Tension or Compression. — Maximum stress developed in the material during test.

Modulus of Rupture. — Maximum stress in the extreme fiber of a beam tested to rupture, as computed by the empirical application of the flexure formula to stresses above the transverse proportional limit.

Modulus of Elasticity (Young's Modulus). — Ratio of stress within the proportional limit to the corresponding strain, — as determined with an extensometer. Note: All moduli shown are obtained from tensile tests of materials, unless otherwise stated.

Brinell Hardness Numeral (abbreviated B. h. n.). — Ratio of pressure on a sphere used to indent the material to be tested to the area of the spherical indentation produced. The standard sphere used is a romm diameter hardened steel ball. The pressures used are 3000 kg for steel and 500 kg for softer metals, and the time of application of pressure is 30 seconds. Values shown in the tables are based on spherical areas computed in the main from measurements of the diameters of the spherical indentations, by the following formula:

B. h. n. = $P \div \pi t D = P \div \pi D (D/2 - \sqrt{D^2/4 - d^2/4})$.

P = pressure in kg, t = depth of indentation, D = diameter of ball, and d = diameter of indentation, --- all lengths being expressed in mm. Brinell hardness values have a direct relation to tensile strength, and hardness determinations may be used to define tensile strengths by employing the proper conversion factor for the material under consideration.

Shore Scleroscope Hardness. — Height of rebound of diamond pointed hammer falling by its own weight on the object. The hardness is measured on an empirical scale on which the average hardness of martensitic high carbon steel equals 100. On very soft metals a "magnifier" hammer is used in place of the commonly used "universal" hammer and values may be converted to the corresponding "universal" value by multiplying the reading by \$. The scleroscope hardness, when accurately determined, is an index of the tensile elastic limit of the metal tested.

Erichsen Value. — Index of forming quality of sheet metal. The test is conducted by supporting the sheet on a circular ring and deforming it at the center of the ring by a spherical pointed tool. The depth of impression (or cup) in mm required to obtain fracture is the Erichsen value for the metal. Erichsen standard values for trade qualities of soft metal sheets are furnished by the manufacturer of the machine corresponding to various sheet thicknesses, (See Proc. A. S. T. M. 17, part 2, p. 200, 1917.)

Alloy steels are commonly used in the heat treated condition, as strength increases are not commensurate with increases in production costs for annealed alloy steels. Corresponding strength values are accordingly shown for annealed alloy steels and for such steels after having been given certain recommended heat treatments of the Society of Automotive Engineers. The heat treatments followed in obtaining the properties shown are outlined on the pages immediately following the tables on steel. It will be noted that considerable latitude is allowed in the indicated drawing temperatures and corresponding wide variations in physical properties may be obtained with each heat treatment. The properties vary also with the size of the specimens heat treated. The drawing temperature is shown with the letter denoting the heat treatment, wherever the information is available.

TABLE 44. MECHANICAL PROPERTIES.

TABLE 44. - Ferrous Metals and Alloys - Iron and Iron Alloys.

Metal. Grade.	Yield point.	Ultimate strength.	Yield point.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct.	Hard	
1-19	Tension kg/mm²		Ten lb/	sion		cent.	at 3000 kg	Sclero- scope.
Iron:								
Electrolytic* (remelt): as forged	34.0	38.5	48,500	55,000	33.0	83.0	95 †	18
annealed 900° C.	12.5						75 T	
Gray cast‡(19 mm diam. bars)	indet.	117.5	indet.	\$ 25,000	negli	gible	100	524
	-	126.5	_	138,000		_	1150	140
Malleable cast, American (after	\$ 14.0	\$ 24.5	§ 20,000	135,000	15.0	15.0	-	-
Hatfield)	131.5	140.0	145,000		1 4.5		_	
European (after Am. Malleable	(19:0		(27,000		6.0			-
Castings Ass.)	{ 28.0	(10 0	(40,000	(65,000				
(run of 24 successive heats, 1919)§	-	40.8	_	58,000	21.6			_
Commercial wrought	[19.5]		3 '	{48,000	{40.0	1 10		{25
	122.5		132,000			00		130
Silicon alloys Si 0.01: as forged	29.5	31.5	41,800	107				_
(Melted in vacuo) ann. 970° C	11.0	24.5	16,000	34,900	53.0	81.5	_	-
(Note: C max. o.or per cent)						0		
Si 1.71: as forged	48.0	000	68,100		0.		_	
annealed 970° C	25.0	0	35,800	0 .,	50.0	1 - 1		_
Si 4.40: as forged	66.0	1.1	2 .,	105,000	6.0		_	
annealed 970° C	51.0		72,900				_	
Aluminum alloys Al 0.00: as forged	000	38.5	50,700		26.0	84.3		
(Melted in vacuo) ann. 1000° C (Note: C max. 0.01 per cent)	12.5	24.5	17,600	34,900	60.0	93.5		
Al 3.08: as forged	48.0	~ 4 ~	68,200	77,500	21.0	76.4		
annealed 1000° C	22.5	010	31,800	0 0 / 0	51.0			
Al 6.24: as forged	54.5	37·5 60.5	77,700	0.0	28.0			_
annealed 1000° C	37.5	49.0	53,400	60,800	27.0	55.5		_
umomed 1000 0	31.3	49.0	33,400	09,000	27.0	22.2		

Composition, approximate:

Composition, approximate:

Electrolytic, C 0.0125 per cent; other impurities less than 0.05 per cent.

Cast, gray: Graphitic, C 3.0, Si 1.3 to 2.0, Mn 0.6 to 0.9, S max. 0.1, P max. 1.2.

A. S. T. M. Spec. A48 to 18 allows S max. 0.10, except S max. 0.12 for heavy castings.

Malleable: American "Black Heart," C 2.8 to 3.5, Si 0.6 to 0.8, Mn max. 0.4, S max. 0.07, P max. 0.2.

European "Steely Fracture," C 2.8 to 3.5, Si 0.6 to 0.8, Mn 0.15, S max. 0.35, P max. 0.2.

Compressive Strengths [Specimens tested: 25.4 mm (r in.) diam. cylinders 76.2 mm (3 in.) long].

Electrolytic iron 56.5 kg/mm² or 80,000 lb/in².

Gray and malleable cast iron 56.5 to 84.5 kg/mm² or 80,000 to 120,000 lb/in².

Wrought iron, approximately equal to tensile yield point (slightly above P-limit).

Density

Thickness, soft annealed.	Depth.
m m	
Sheet metal hoop iron, polished	0.374
Charcoal iron tinned sheet	0.295
Second quality tinned sheet	7 0.264

Cast iron...... 10,500 Modulus of elasticity in shear:

Modulus of elasticity in tension and compression:

Electrolytic iron... 17,500 kg/mm² or 25,000,000 lb/in²
Cast iron.... 10,500 kg/mm² or 15,000,000 lb/in²
Wrought iron... 17,500 kg/mm² or 25,000,000 lb/in²
Wrought iron... 17,500 kg/mm² or 25,000,000 lb/in²

Strength in Shear:

Electrolytic (remelt)
P-limit....

Commercial wrought P-limit....

P-limit.......... 21.1 kg/mm² or 30,000 lb/in² Ultimate strength... 35.0 kg/mm² or 50,000 lb/in²

Gray cast from

Modulus of rupture, 33.0 kg/mm² or 47,000 lb/in²

"Arbitration Bar," 31.8 mm (1½ in.) diameter, or 304.8 mm (12 in.) span; minimum central load at rupture 1130 to 1500 kg (2500 to 3300 lb.); minimum central deflection at rupture 2.5 mm (0.1 in.), (A. S. T.

* Properties of Swedish iron (impurities less than 1 per cent) approximate those of electrolytic iron.

* Properties of Swedish iron (impurities less than 1 per cent) approximate those of electrolytic iron.

† These two values of B. h. n. only are as determined at 500 kg pressure.

† U. S. Navy specifies minimum tensile strength of 14.1 kg/mm² or 20,000 lb/in².

§ Averages for a U. S. foundry.

[From T. D. Yensen, University of Illinois, Engr. Exp. Station, Bulletin No. 83, 1915 (shows Si 4.40 as alloy of values of the state of the maximum strength).
¶ From T. D. Yensen, University of Illinois, Engr. Exp. Station, Bulletin No. 95, 1917.

TABLES 45-46.

MECHANICAL PROPERTIES OF MATERIALS.

TABLE 45. - Carbon Steels - Commercial Experimental Values.

S. A. E. (Soc. of Automotive Eng., U. S. A.) classification scheme used as basis for steel groupings. First two digits S. A. E. Spec. No. show steel group number, and last two (or three in case of five figures) show carbon content in hundredths of one per cent.

carbon content in hundredths of one per cent.

The first lines of proporties for each steel show values for the rolled or forged metal in the annealed or normalized condition. Comparative heat-treated values show properties after receiving modified S. A. E. heat treatment as shown below (Table 46). The P-limit and ductility of cast steel average slightly lower and the ultimate strength 10 to 15 per cent higher than the values shown for the same composition steel in the annealed condition. The properties of rolled steel (raw) are approximately equal to those shown for the annealed condition, which represents the normalized condition of the metal rather than the soft annealed state.

The data for heat-treated strengths are average values for specimens for heat treatment ranging in size from \(\frac{1}{2}\) to \(\frac{1}{2}\) in diameter. The final drawing or quenching temperature for the properties shown is indicated in degrees C with the heat treatment letter, wherever the information is available. In general, specimens

were drawn near the lower limit of the indicated temperature range.

Metal.	S. A. E. spec. no.	Nominal contents per cent.	S.A.E. heat treat- ment.	Tension kg/mm²		P-limit. Cultimate Strength, in.		Elong. in 50.8 mm (2 in.). Reduct. in area.		Brinell @ 3000 kg. Sclero-scope.	
Steel, carbon	1010 } 1010 } 1020 } 1020 } 1045 } 1045 } 1095 }	See Spec. No. (Mn 0.45) (Mn 0.65) (Mn 0.35)	Ann. H 260° C	24.0 27°.0 28.0 35.0 40.0 62.0 42.0 84.0	32.0 42.0 38.0 56.0 50.0 86.0 56.0	34,500 39,000 39,500 49,500 57,500 88,000 59,500 120,000	46,000 60,000 54,400 79,500 71,300 123,000 79,000 175,000	37.0 30.0 32.0 20.0 23.0 13.5 21.0 6.0	72.0 62.0 68.0 59.0 54.0 36.0 51.0 18.0	120 100 176 168 290 187 551	18 24 17 35 27 45 29 75

Specification values: Steel, castings, Ann. A.S.T.M. A27-16, Class B; * P max. 0.06; S max. 0.05.

	771 1 1 4	Ultimate ten	sile strength	Per cent	Per cent		
Grade.	Yield point.	kg/mm2	lb/in2	50.8 mm or 2 in.	reduct.		
Hard Medium	o.45 ultimate	56.2	80,000	15	20		
Soft	0.45 "	49.2	60,000	22	25 30		

Structural Steel: Rolled: S max. 0.05; P-Bess. max. 0.10; -O-H. max. 0.06.
Tension: Yield Point min. = 0.5 ultimate; ultimate = 38.7 to 45.7 kg/mm² or 55,000 to 65,000 lb/in² with 22% min. elongation in 50.8 mm (2 in.).

* Average carbon contents: steel castings, C o.30 to o.40; structural steel, C o.15 to o.30 (mild carbon or medium hard steel).

TABLE 46. — Explanation of Heat Treatment Letters used in Table of Steel Data.

Motor Transport Corps Modified S. A. E. Heat Treatments for Steels. (S. A. E. Handbook, Vol. 1, pp.

Heat Treatment A. — After forging or machining (1) carbonize at a temperature between 870 and 930° C. (1600 and 1700° F.); (2) cool slowly; (3) reheat to 760 to 820° C. (1400 to 1500° F.) and quench in oil.

Heat Treatment D. — After forging or machining: (1) heat to 820 to 840° C. (1500 to 1550° F.); (2) quench; (3) reheat to 790 to 820° C. (1450 to 1500° F.); (4) quench; (5) reheat to 320 to 650° C. (600 to 1200° F.)

Heat Treatment A. — After forging or machining: (1) heat to 820 to 840° C. (1500 to 1500° F.); (4) quench; (5) reheat to 320 to 650° C. (600 to 1200° F.)

and cool slowly.

Heat Treatment F. — After shaping or coiling: (1) heat to 775 to 800° C. (1425 to 1475° F.); (2) quench; (3) reheat to 200 to 480° C. (400 to 900° F.) in accordance with degree of temper required and cool slowly.

Heat Treatment H. — After forging or machining: (1) heat to 820 to 840° C. (1500 to 1550° F.); (2) quench; (3) reheat to 230 to 650° C. (450 to 1200° F.) and cool slowly.

Heat Treatment L. — After forging or machining: (1) carbonize at a temperature between 870 and 950° C. (1600 and 1750° F.), preferably between 900 and 930° C. (1650 and 1700 F.); (2) cool slowly in carbonizing material; (3) reheat to 790 to 820° C. (1450 to 1500° F.); (4) quench; (5) reheat to 700 to 760° C. (1300 to 1400° F.); (6) quench; (7) reheat to 120 to 260° C. (250 to 500° F.) and cool slowly.

Heat Treatment M. — After forging or machining: (1) heat to 790 to 820° C. (1450 to 1500° F.); (2) quench; (3) reheat to between 260 and 680° C. (500 and 1250° F.) and cool slowly.

Heat Treatment P. — After forging or machining: (1) heat to 790 to 820° C. (1450 to 1500° F.); (2) quench; (3) reheat to 750 to 770° C. (1375 to 1425° F.); (4) quench; (5) reheat to 260 to 650° C. (500 to 1200° F.) and cool slowly.

Heat Treatment T. — After forging or machining: (1) heat to 900 to 950° C. (1500 to 1750° F.); (2) quench; (3) reheat to 750 to 770° C. (1375 to 1425° F.); (4) quench; (5) reheat to 260 to 550° F.); (2) quench; (3) reheat to 260 to 700° C. (500 to 1300° F.) and cool slowly.

1200° F.) and cool slowly.

Heat Treatment T. — After forging or machining: (1) heat to 900 to 950° C. (1650 to 1750° F.); (2) quench;
(3) reheat to 260 to 700°, C. (500 to 1300° F.) and cool slowly.

Heat Treatment U. — After forging: (1) heat to 830 to 870° C. (1525 to 1600° F.), hold half an hour;
(2) cool slowly; (3) reheat to 900 to 930° C. (1650 to 1700° F.); (4) quench; (5) reheat to 180 to 290° C.
(350 to 550° F.) and cool slowly.

Heat Treatment V. — After forging or machining. (1) heat to 900 to 950° C. (1650 to 1750° F.);
(2) quench; (3) reheat to between 200 and 650° C. (400 and 1200° F.) and cool slowly.

Editorials Note: Oil quenching is recommended wherever the instructions specify "quench," inasmuch as the data in the table are taken from tests of automobile parts which must resist considerable vibration and which are usually small in section. The quenching medium must always be carefully considered.

MECHANICAL PROPERTIES.

TABLE 47. - Alloy Steels - Commercial Experimental Values.

Metal.	S. A. E. spec. no.	Nominal contents, per cent.	S. A. E. heat treat- ment.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct.	ne	Sclero- scope.
				Ten kg/1		Ten lb/	in ²	Per c	ent.	Br (@ 30	Sc
Steel, nickel	2315	_	Ann.	30.0					60.0	138	_
	2315	. —	H	53.0			107,500		55.0		43
	2335	Ni 3.50	Ann.		48.0				53.0		-
	2335	211 3.30	Н	1	-	1 -	186,000		51.0		
	2345	(Mn 0.65)	Ann.	44.0	00	,0	78,000		48.0	_	- 11
	2345		H	130.0	149.0	193,000	212,000	12.0	45.0	570	70
	Invar	Ni 36.0	Δ								
		C 0.40	Ann.	50.0	77.5	71,000	110,000	30.0	50.0		
nickel		(NT:	A				60.000				
chrome	3120	Ni 1.25	Ann.	34.0			62,000		53.0		
	3120 {	Cr 0.60	Ann.		82.0		116,000		48.0		
	3135	(Mn = 6=)	H or D		50.0		71,300		46.0		_
	3135	(Mn 0.65)	Ann.	1		0,	172,000		43.0		44
	3220	∫ Ni 1.75	H or D		49.0		69,000		50.0 48.0		
	3220	Cr 1.10	Ann.				78,000		42.0		50
	3250	(Mn 0.45)	M	44.0			260,000		32.0		64
	3250	(14111 0.43)	Ann.				59,500		50.0		-
	3320	∫ Ni 3.50	L				150,000		48.0		50
	3340	Cr 1.50	Ann.				74,000		45.0		50
	3340	(Mn 0.45)	P				232,000		42.0		64
chromium.	51120	Cr 1.00	Ann.				82,000		31.0		
	51120	(Mn 0.35)	M or P			205,000			26.0		66
	52120	Cr 1.20	Ann.			62,000			24.0		
	52120	(Mn 0.35)	M or P			200,000			25.0		70
chrome	6								_		
vanadium	6130	(Mn 0.65)	Ann.	43.0	59.0	61,500	84,500	23.0	51.0	152	
1	6130	Cr 0.95	T	84.0	115.0	120,000	163,000	16.0	43.0	432	59
		V 0.18									
	6195	(Mn 0.35)	Ann.	48.0	63.0	68,200	90,000	16.0	38.0		
	6195	(14111 0.33)	U	176.0	232.0	250,000	330,000	8.0	24.0	562	75
silico-	- 1										
manganese		Si 1.95	Ann.		54.0		9 9 7		28.0		- 1
	9250	Mn 0.70	V				174,000		24.0		59
	9×30	Si 0.85	Ann.				87,000		22.0		_
	9×30	Mn 1.75	V				211,000		21.0	470	03
tungsten	(C-73)	W 2.4	Ann.				84,200		31.5	-	_
	(C-70)	W 9.7	Ann.	03.0	89.0	90,000	126,000	14.0	22.I		
	(C-47)	W 15.6	Quench	0-		007 000	248 000	6.5	40.5	700	6.
			1065° Draw	150.5	175.0	225,000	248,000	0.0	43.0	520	04
			205° C								
			203 C			_					
							1	'			

GENERAL NOTE. - Table on steels after Motor Transport Corps, Metallurgical Branch of Engineering Division, Table No. 88.

Maximum allowable P 0.045 or less, maximum allowable S 0.05 or less.
Silicon contents were not determined by Motor Transport Corps in preparing table, except for silico-manganese steels.

Compressive strengths:
For all steels approx. equal to yield point in tension (slightly above P-limit).

Density

Density:

Steel weighs about 7.85 g/cm³ or 490 lb/ft³

Ductility, Erichsen values:

o.75 mm (o.029 in.) thick, low carbon soft annealed sheet (B. S.), depth of indentation 12.0 mm or 0.472 in.

1.30 mm (o.050 in.) thick, low carbon soft annealed sheet (B. S.), depth of indentation 12.5 mm or 0.492 in.

Modulus of elasticity in tension and compression:

For all steels approx. 21,000 kg/mm² = 30,000,000 lb/in².

Modulus of elasticity in shear:

For all steels approx. 8400 kg/mm² = 12,000,000 lb/in².

Scleroscope hardness values shown are as determined with the Shore Universal hammer.

Strength in shear:
P-limit and ultimate strength each about 70 per cent corresponding tensile values.

TABLES 48-50.

MECHANICAL PROPERTIES.

TABLE 48. - Steel Wire - Specification Values.

(After I. A. S. B. Specification 3S12, Sept., 1917, for High-strength Steel Wire.)
S. A. E. Carbon Steel, No. 1050 or higher number specified (see Carbon steels above). Steel used to be manufactured by acid open-hearth process, to be rolled, drawn, and then uniformly coated with pure tin to solder readily.

American	Diar	neter.	Req'd twists in	Weig	ght.	Req'd	Spec.	minimu	m tensile s	strength.
B. and S. wire gage.	mm	in.	203.2 mm or 8 in.	kg/100 m	lb/100 ft.	bends thru 90'	kg	lb.	kg/mm²	lb/in²
6	4.115	0.162	16	10.44	7.01	5	2040	4500	154	219,000
7	3.665	.144	19	8.28	5.56	6	1680	3700	161	229,000
8	3.264	.129	21	6.55	4.40	8	1360	3000	164	233,000
9	2.906	.114	23	5.21	3.50	9	1135	2500	172	244,000
10	2.588	.102	26	4.12	2.77	II	910	2000	172	244,000
II	2.305	.091	30	3.28	2.20	14	735	1620	179	254,000
12	2.053	.081	33	2.60	1.74	17	590	1300	177	252,000
13	1.828	.072	37	2.06	1.38	21	470	1040	179	255,000
14	1.628	.064	42	1.64	I.IO	25	375	830	181	258,000
15	1.450	.057	47	1.30	0.87	29	300	660	182	259,000
16	1.291	.051	53	1.03	0.69	34	245	540	186	264,000
17	1.150	.045	60	0.81	0.55	42	195	425	188	267,000
18	1.024	.040	67	0.65	0.43	52	155	340	190	270,000
19	0.912	.036	75	0.51	0.34	70	125	280	193	275,000
20	0.812	.032	85	0.41	0.27	85	100	225	197	280,000
21	0.723	.028	96	0.32	0.22	105	80	175	200	284,000

NOTE. Number of 90° bends specified above to be obtained by bending sample about 4.76 mm (0.188 in.) radius,

alternately, in opoosite directions.
(Above specification corresponds to U. S. Navy Department Specification 22W6, Nov. 1, 1916, for tinned, galvanized or bright aeroplane wire.)

TABLE 49. - Steel Wire - Experimental Values.

(Data from tests at General Electric Company laboratories.) "Commercial Steel Music Wire (Hardened)."

Diame	ter.	Ultimate	e strength.
mm	in.	kg/mm² t	ension lb/in²
12.95	0.051	226.0	321,500
11.70	.046	240.0	354,000
9.15	.036	253.0	360,000
7.60	.030	260.0	370,000
6.35	.025	262.0	372,500
4.55	.018	265.5	378,000
2.55*	,010	386.5	550,000
1.65*	.0065	527.0	750,000
4.55	.018	40.2	70,000

* For 4.55 mm wire drawn cold to indicated sizes. † For 4.55 mm (0.018 in.) wire annealed in H2 at 850° C.

TABLE 50. - Semi-steel.

Test results at Bureau of Standards on 155-mm shell, Jan. 1919.

Microstructure — matrix resembling pearlitic steel, embedded in which are flakes of graphite.

Composition-Comb. C 0.60 to 0.76, Mn 0.88, P 0.42 to 0.43, S 0.077 to 0.088, Si 1.22 to 1.23, graphitic C 2.84 to 2.94.

Metal.	Metal. Tension kg/mm²		P-limit.	St P		P-limit. Ultimate strength.		Ultimate strength.	Brinell	iness.
			Tension lb/in²		Compression kg/mm²		Compression lb/in ²		@3000 kg	scope.
Semi-steel: Graph. C 2.85 Comb. C 0.76	7.9	19.8	11,200	28,200	24.3	72.6	34,500	103,000	176	-
Graph. C 2.92 Comb. C 0.60	4.2	14.9	6,000	21,200	18.3	61.4	26,000	87,300	170	_

Tension specimens 12.7 mm (0.5 in.) diameter, 50.8 mm (2 in.) gage length; elongation and reduction of area negligible.

Compression specimens 20.3 mm (0.8 in.) diameter, 51.0 mm (2.4 in.) long; failure occurring in shear.

Tension set readings with extensometer showed elastic limit of 2.1 kg/mm² or 3000 lb/in².

Modulus of elasticity in tension — 9560 kg/mm² or 13,600,000 lb/in².

Cast steel wire to be of hard crucible steel with minimum tensile strength of 155 kg/mm2 or 220,000 lb/in2 and minimum elongation of 2 per cent in 254 mm (10 in.).

Plow steel wire to be of hard crucible steel with minimum tensile strength of 183 kg/mm² or 260,000 lb/in² and minimum elongation of 2 per cent in 254 mm (10 in.).

Annealed steel wire to be of crucible cast steel, annealed, with minimum tensile strength of 77 kg/mm² or

Annealed steel wire to be of crucible cast steel, annealed, with minimum tensile strength of 77 kg/mm² or 110,000 b/in² and minimum elongation of 7 per cent in 254 mm (to in.).

Type A: 6 strands with hemp core and 10 wires to a strand (= 6 × 10), or 6 strands with hemp core and 18 wires to a strand with jute, cotton or hemp center.

Type B: 6 strands with hemp core, and 12 wires to a strand with hemp center.

Type C: 6 strands with hemp core, and 14 wires to a strand with hemp or jute center.

Type AA: 6 strands with hemp core, and 37 wires to a strand (= 6 × 37) or 6 strands with hemp core and 36 wires to a strand with jute, cotton or hemp center.

Description.	Dian	neter.	Approx.	weight.	Minimum	strength.
Description.	mm	in.	kg/m	lb/ft	kg	lb.
Galv. cast steel, Type A	9·5 12·7 25·4 38·1 9·5 12·7 25·4 38·1 9·5 12·7 25·4 38·1 25·4 41·3 9·5	in	0.31 0.55 2.23 5.06 0.35 0.58 2.23 5.28 0.25 0.42 1.68 3.94 1.59 4.35 0.31	0.21 0.37 1.50 3.40 0.22 0.39 1.50 3.55 0.17 0.28 1.13 2.65 1.07 2.92 0.21	3,965 6,910 27,650 63,485 3,840 7,410 27,650 59,735 2,995 5,210 20,890 47,965 18,825 51,575 4,690	8,740 15,230 60,960 139,960 8,460 16,330 60,960 131,690 6,600 11,500 46,060 105,740 41,500 113,700 110,340
"" "" "" "" "" "" "" "" "" "" "" "" ""	12.7 25.4 36.5 9.5 12.7 25.4 41.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.55 2.23 4.66 0.33 0.58 2.35 6.18	0.37 1.50 3.13 0.22 0.39 1.58 4.15	8,165 32,675 69,140 4,540 8,750 32,250 83,010	18,000 72,040 152,430 10,000 19,300 71,100 183,000

TABLE 52. - Plow Steel Hoisting Rope (Bright).

(After Panama Canal Specification No. 302, 1912.)

Wire rope to be of best plow steel grade, and to be composed of 6 strands, 19 wires to the strand, with hemp center.

Wires entering into construction of rope to have an elongation in 203.2 mm or 8 in. of about 2½ per cent.

Diame	ter.	Spec. minim	um strength.	Diame	eter.	Spec. minim	um strength.
mm	in.	kg	lb.	mm	in.	kg	lb.
9·5 12·7 19·0 25·4	388 1223 14	5,215 9,070 20,860 34,470	11,500 20,000 46,000 76,000	38.1 50.8 63.5 69.9	$1\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{3}{4}$	74,390 127,000 207,740 249,350	164,000 280,000 458,000 550,000

TABLE 53. - Steel-wire Rope - Experimental Values.

(Wire rope purchased under Panama Canal Spec. 302 and tested by U. S. Bureau of Standards, Washington, D. C.)

Description and analysis.	Diam	eter.	Ultimate	strength.		te strength area).
	mm	in.	kg	lb.	kg/mm²	lb/in²
Plow Steel, 6 strands × 19 wires C 0.90, S 0.034, P 0.024, Mn 0.48, Si 0.172 Plow Steel, 6 strands × 25 wires C 0.77, S 0.036, P 0.027, Mn 0.46, Si 0.152. Plow Steel, 6 × 37 plus 6 × 19 C 0.58, S 0.032, P 0.033, Mn	69.9	2 2 ³ / ₄	137,900	304,000	129.5	184,200
o.41, Si o.160	82.6	31/4	392,800	866,000	132.2	187,900
6 × 19, C 0.82, S 0.025, P 0.019, Mn 0.23, Si 0.169	82.6	31/4	425,000	937,000	142.5	202,400

TABLE 54. - Aluminum.

Metal, approx.	Condition.		ensity veight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct.	8 20	dness.
per cent.		gm per cm ²	lb.per		sion, mm²		sion, /in²	Per	cent.	Brinell 500 kg	Sclero- scope.
ALUMINUM: Av. Al 99.3 Imp., Fe and Si	Cast, sand and heat treated Ann. 500° C, air cooled	2.57 2.69 2.70 2.70		7.0 - 6.0 6.0 14.0 15.0	8.0 to 9.8 8.9 to 9.6 9.0 9.0 21.0 23.0 28.0	10,000	12,000 to 14,000 12,600 to 13,600 13,500 30,000 33,000 40,000	15	22	26	5

Compressive strength: cast, yield point 13.0 kg/mm² or 18,000 lb/in²; ultimate strength 47.0 kg/mm² or 67,000 lb/in².

Modulus of elasticity: cast, 6900 kg/mm² or 9,810,000 lb/in² at 17° C.

TABLE 55. - Aluminum Sheet.

(a) Grade A (Al min. 99.0) Experimental Erichsen and Scleroscope Hardness Values. [From tests on No. 18 B. & S. Gage sheet rolled from 6.3 mm (0.25 in.) slab. Iron Age v. 101, page 950].

Heat treatment annealed.	Thickness, mm	Indentation, mm	Scleroscope hardness.
None (as rolled)	1.08	6.83	14.0
@ 300° C. 2 hours	1.07	10.17	4.5
@ 400° C, 2 hours @ 200° C, 30 min. @ 400° C, 30 min.	1.07	9.40 7.97 0.80	4·5 11.8 -

(b) Specification Values. — (1) Cast: U. S. Navy 49 Al, July 1, 1915; Al min. 94, Cu max. 6, Fe max. 0.5, Si max. 0.5, Mn max. 3.

Minimum tensile strength 12.5 kg/mm² or 18,000 lb/in² with minimum elongation of 8 per cent in 50.8 mm (2 in.).

(2) Sheet, Grade A: A. S. T. M. 25 to 18T; Al min. 99.0; minimum strengths and elongations.

Gage, sheet thic	knesses.	Temper, No.	Tensile	strength.	Elong. in 50.8 mm or 2 in.	1-
(B. & S.) mm 12 to 2.052 to 16 incl. 1.293 17 to 2.2 incl. 0.643 23 to 0.574 to 26 incl. 0.404	in. 0.0808 to .0509 .0453 to .0253 .0226 to .0159	f Soft. Ann. Half-hard Hard Hard Hard Soft, Ann. Hard Soft, Ann. Hard Soft, Ann. Hard Hard Hard Hard	8.8 12.5 15.5 8.8 12.5 17.5 8.8 12.5 21.0	12,500 18,000 22,000 12,500 18,000 25,000 12,500 18,000	30 7 4 20 5 2 10 5 2 2	Sheets of temper No. I to withstand being bent double in any di- rection and hammered flat; temper No. 2 to bend 180° about radius equal to thickness with- out cracking.

NOTE. — Tension test specimen to be taken parallel to the direction of cold rolling of the sheet.

SMITHSONIAN TABLES.

ALUMINUM ALLOY.

										_	
Alloy, approx.	Condition.		nsity eight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. of area.	Hard	iness.
composition	per cent			1	Date	Prid	D as	E S	40	0	
per cent.	reduction.	gm/ cm³	lb/ ft³		sion, mm²	Ten:	sion, in²	per	cent.	Brinell 6	Sclero- scope.
Aluminum — Copper.	Cast, chill		_	5.3	10.5	7,500	15,000	24.0	34.0		
Al 98 Cu 1 Imp. max. 1	Rolled, 70%		_	10.0	21.0	27,000	30,000	4.0	_	_	_
Al 96 Cu 3 Imp. max. 1	Cast, chill	_		8.1	13.7	11,500	19,500	12.0	21.0	-	
	Rolled, 70%		_	25.0	28.8	35,000 14,500	41,000	5.5	14.0		_
Al 94 Cu 5 Imp. max. 1	Rolled, 70%		_	23.0	27.0	33,000	38,000	6.0	_	_	_
Al 92 Cu 8: Alloy No.	Cast, sand	2.88	180	7.7 to		11,000 to					13 to
Al 90-92 Cu 7-8.5				10.5	16.2	15,000	23,000	None	None	65	18
Imp. max. 1.7	Cast*	2.0	181	_	12.7	_	18,000	1.0	_		
Copper, Magnesium.	Cast at 700° C.	-	_		9.6 to		13,600 to		0.5 to		
Al 9.52 Cu 4.2 Mg 0.6	Ann. 500° C	_		4.6	13.3	6,500	18,900	3.0	1.0	74 80	18
Duralumin or 17S	(Ann	2.8	174	25.0	42.0	35,100	50,500	2I.I	29.5	_	
Alloy Al 94 Cu 4 Mg	Rolled 70%	_	-	53.0	56.0	75,400	79,600	4.0	13.2	-	-
0.5	Rolled heat	-		23.4	30.0	33,400	55,300	25.5	26.0	-	
Copper, Manganese	Cast, chill	_		10.0	14.0	14,300	20,300	5.0	-	_	
Al 96 Cu 2 Mn 2	Rolled, 20 mm	-	-	19.0	27.0	27,100	38,200	16.0	28.0	_	-
Al 96 Cu 3 Mn I Naval Gun Factory	Cast, chill	2.8	175	11.3	19.0	16,200	27,000	14.0	_	=	_
Al 97 Cu 1.5 Mn 1	Forged		175	14.0	10.0	10,500	27,800	12.0	47.0		_
Al 94 Cu max. 6 Mn						7,0					
Copper, Nickel, Mg	Minimum ‡		_	-	12.7	_	18,000	8.0	_	_	
Mn	Cast at 700° C.		_	3.5 to	17.9 to	5.000 to	25,500 to	6.0 to	8.5 to	54 to	o to
Al 93.5 Cu 3.5 Ni 1.5											
Mg I Mn 0.5 Copper, Nickel Mn	Cast at 700° C.		-	9.8	23.2	14,000	33,000 20,600 to	1.5	1.0 11.0 to	86	25
Al 94.2 Cu 3 Ni 2 Mn	Castat 700 C.				14.5 to		20,000 0	0.0 10	11.0 (0	50 10	9 60
0.8					21.4		30,500	1.0	2.0	91	27
Magnesium: Magnalium Al 95 Mg 5	Cast, sand,	25	7.56	-6	777	8 000	00.000		8.5		
Al 77-08, Mg 23-2	Cast, chill		156 150 to	5.6	15.5 20.5 to	8,000	22,000 42,000 to	7.0	0.5	_	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2.57	160		45.0		64,000				
Nickel Al 97 Ni 2	Cast, chill			4.0	11.0	5,800	14,900	21.0	36.0		
1410ACI AI 97 141 2	Rolled, hot	_	_	8.0	13.0	19,700	18,200	13.0	52.0		
41 271	Cast, chill	-	-	6.0	15.0	9,000	21,700	9.0	11.0	-	- 1
Al 95 Ni 5	Rolled, hot		=	16.0	20.0	22,900	27,900	8.0	24.0	=	
Nickel Copper:	(Roned, not			9.0	16.0	13,500	22,300	22.0	36.0		
Al 93.5 Ni 5.5 Cu 1	Cast, chill	-	-	7.0	17.0	10,700	24,800	6.0	8.0	-	-
Al 91.5 Ni 4.5 Cu 4	Cast, chill	=	_	7.0	18.0	9,900	25,200 37,800	4.0 8.0	5.0	=	=
Al 92 Ni 5.5 Cu 2	Rolled, hot	_	_	13.0	22.0	18,200	31,500	16.0	24.0		_
Zinc, Copper:											
Al 88.6 Cu 3 Zn 8.4	Cast at 700° C. Ann. 500° C.	_	-	4.7	18.5	6,700	26,300	8.0	7.5	50	IO
Al 81.1 Cu 3 Zn 15.9.	Cast at 700° C.	3.I	103	0.8	24.7	14,000	35,100	2.0	7.5	74	15
	Ann. 500° C	-	-	9.8	29.0	14,000	41,200	4.0	4.0	70	15
		1					1		1	-	

^{*} Specification Values: Alloy "No. 12": A. S. T. M. B₂6-18T, tentative specified minimums for aluminum, copper.
† Quenched in water from 475° C. after heating in a salt bath. Modulus of elasticity for Duralumin averages
7000 kg/mm² or 10,000,000 lb/in².
‡ Specification values: Aluminum castings; U. S. Navy 49 Al, July 1, 1915 (Impurities: Fe max. 0.5, Si max. 0.5).

SMITHSONIAN TABLES.

TABLES 57-59 MECHANICAL PROPERTIES. TABLE 57. - Copper.

Metal and approx. composition.	Condition.	Den or we	sity eight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.)	Reduct.	Hard	
Per cent.		gm/ cm³			Tension, kg/mm ²		Tension, lb/in²		ent.	Brinell 500 kg	Sclero- scope.
Copper: 99.9: electrolytic Cu 99.6 Rolled Cu 99.6 Cu 99.9*	Ann. 200° C	8.89 8.85 8.89 8.90	555 552 555 556 —	6.0 7.0 14.0 indet. 26.0	27.0 18.0 35.0 25.0 35.0 47.3 21.9	8,500 10,000 20,000 indet. 37,000	38,000 25,000 50,000 35,000 50,000 67,400 31,200 46,800	50.0 20.0 5.0 50.0 9.0 0.8 24.5 4.3	50.0 60.0 8.0 60.0 - 64.5 76.0	80 94	7 8 6 18 -

*Wire drawn cold from 3.18 mm (0.125 in.) to 0.64 mm (0.025 in.) Bull. Am. Inst. Min. Eng., Feb., 1919.
†Wire drawn at 150° C from 0.79 mm (0.031 in.) to 0.64 mm (0.025 in.) (Jeffries, loc. cit.).
Compression, cast copper, Ann. 15.9 mm (0.625 in.) diam. by 50.8 mm (2 in.) long cylinders.

Shortened 5 per cent at 22.0 kg/mm² or 31,300 b/m² load.

"10" "29.0 kg/mm² "41,200 b/m² "50,400 b/m² "

Shearing strength, cast copper 21.0 kg/mm² or 30,000 lb/m²

Modulus of elasticity according to according to the complete of the com

Modulus of elasticity, electrolytic 12,200 kg/mm² or 17,400,000 lb/in²

" " cast 7,700 kg/mm² or 17,400,000 lb/in²

" " drawn, hard 12,400 kg/mm² or 17,600,000 lb/in²

TABLE 58. - Rolled Copper - Specification Value. Specification values: U. S. Navy Dept., 47C2, minimums for rolled copper, - Cu min. 99.5

	Tensi	ile strength.	Elong, in 50.8
Description, temper and thickness.	kg/mm²	lb/in²	or 2 in. — per cent.
Rods, bars, and shapes:			
Soft	21.0	30,000	25
Hard: to 9.5 mm (\frac{1}{2} in.) incl	35.0	50,000	10
Hard: 9.5 mm to 25.4 mm (1 in.)	31.5	45,000	12
Hard: 25.4 mm to 50.8 mm (2 in.)	28.0	40,000	15
Hard: over 50.8 mm (2 in.)	24.5	35,000	20
Soft	21.0 to 28.0	30,000 to 40,000	25 to 25
Hard	24.5	35,000	18

TABLE 59. - Copper Wire - Specification Values.

Specific Gravity 8.89 at 20° C (68° F).

Copper wire: Hard Drawn (and Hard-rolled flat copper of thicknesses corresponding to diameters of wire)

Specification values. (A. S. T. M. Bi-15, and U. S. Navy Dept., 22W3, Mar. 1, 1915.)

Diame	ter.	Minimum ten	sile strength.	Maximum elongation
mm	in.	kg/mm²	lb/in²	254 mm (10 in.).
11.68	.460	34.5	49,000	2.75
10.41	.410	35.9	51,000	3.25
0.27	.365	37.1	52,800	2.80
8.25	-325	38.3	54,500	2.40
7.34	. 280	39.4	56,100	2.17
6.55	.258	40.5	57,600	1.98
5.82	.229	41.5	59,000	1.79
	-			in 1524 mm (60 in.)
5.18	. 204	42.2	60,100	I.24
4.62	. 182	43.0	61,200	1.18
4.12	.162	43.7	62,100	1.14
3.66	.144	44.3	63,000	1.00
3.25	.128	44.8	63,700	1.06
2.90	.114	45.2	64,300	1.02
2.59	.102	45.7	64,900	1.00
2.31	.001	46.0	65,400	0.97
2.06	.081	46.2	65,700	0.95
1.83	.072	46.3	65,900	0.92
1.63	.064	46.5	66,200	0.90
1.45	.057	46.7	66,400	0.89
1.30	.051	46.8	66,600	0.87
1.14	.045	47.0	66,800	0.86
I.02	.040	47.I	67,000	0.85

P-limit of hard-drawn copper wire must average 55 per cent of ultimate tensile strength for four largest sized wires in table, and 60 per cent of tensile strength for smaller sizes.

TABLES 60-63. MECHANICAL PROPERTIES.

TABLE 60. - Copper Wire - Medium Hard-drawn.

(A. S. T. M. B2-15) Minimum and Maximum Strengths.

Diam	neter.		Tensile s	trength.		701
Dian	neter.	Min	imum.	Max	imum.	Elongation, minimum per cent
mm	in.	kg/mm²	lb/in²	kg/mm²	lb/in²	in 254 mm (10 in.).
11.70 6.55	0.460	29.5 33.0	42,000 47,000	34·5 38.0	49,000 54,000	3.75 2.50 in 1524 mm (60 in.)
4.12 2.59 1.02	.162 .102 .040	34·5 35·5 37·0	49,000 50,330 53,000	39·5 40·5 42·0	56,000 57,330 60,000	1.15 1.04 0.88

Representative values only from table in specifications are shown above P-limit of medium hard-drawn copper averages 50 per cent of ultimate strength.

TABLE 61. - Copper Wire - Soft or Annealed.

(A. S. T. M. B3-15) Minimum Values.

Dia	meter.		num tensile rength.	Elongation in 254 mm
mm	in.	kg/mm²	lb/in²	(10 in.), per cent.
11.70 to 7.37	0.460 to 0.290	25.5	36,000	35
7.34 to 2.62	0.289 to 0.103	26.0	37,000	30
2.59 to 0.53	0.102 to 0.021	27.0	38,500	25
0.51 to 0.08	0.020 to 0.003	28.0	40,000	20

Note. — Experimental results show tensile strength of concentric-lay copper cable to approximate 90 per cent of combined strengths of wires forming the cable.

TABLE 62. - Copper Plates.

(A. S. T. M. BII-18) for Locomotive Fire Boxes. Specification Values.

Minimum requirements.	Tensile	strength.	Elong. in 203.2 mm
	kg/mm²	lb/in²	(8 in.), per cent.
Copper, Arsenical, As 0.25-0.50			
Impurities, max. 0.12 Copper, Non-arsenical:	22.0	31,000	35
Impurities, max. 0.12	21.0	30,000	30

Note. - Copper to be fire-refined or electrolytic, hot-rolled from suitable cakes.

TABLE 63. - Copper Alloys.

The general system of nomenclature employed has been to denominate all simple copperzinc alloys as brasses, copper-tin alloys as bronzes, and three or more metals alloys composed zinc alloys as **brasses**, copper-tin alloys as **bronzes**, and three or more metals alloys composed primarily of either of these two combinations as alloy brasses or bronzes, e.g., "Zinc bronze" for U. S. Government composition "G" Cu 88 per cent, Sn 10 per cent, Zn 2 per cent. Alloys of the third type noted above, together with other alloys composed mainly of copper, have been called **copper alloys**, with the alloying elements other than minor impurities listed as modifying copper in the order of their relative percentages.

In some instances, the scientific name used to denote an alloy is based upon the deoxidizer used in its preparation, which may appear either as a minor element of its composition or not at all, e.g., phosphor bronze.

Commercial names are shown below the scientific names. Care should be taken to specify the chemical composition of a commercial alloy, as the same name frequently applies to

the chemical composition of a commercial alloy, as the same name frequently applies to widely varying compositions.

MECHANICAL PROPERTIES OF MATERIALS.

TABLE 64. - Copper-zinc Alloys or Brasses; Tin Alloys or Bronzes.

Metal and approx. composition, per cent.	Condition.	Den or we		P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 59.8 mm (2 in.).	Reduct.	br.	iness.
		gm cm³	lb ft³	Ten kg/1	sion, mm²	Ter	nsion, /in²	Per c	ent.	Brinell @ 500 kg	Sclero- scope.
Brass: Cu 90 Zn 10† Cu 80, Zn 20 ‡. Cu 70, Zn 30 Cu 66 Zn 34 Std. sheet	Sand cast Cold rolled, hard Cold rolled, soft. Sand cast Cold rolled, hard Cold rolled, soft. Sand cast (Cold rolled, soft. Sand cast (Cold rolled, hard Cold rolled, soft.	8.7	543 537 524 530 524		20.0 39.0 26.0 25.0 53.0 29.0 28.0 42.0 34.0		29,000 55,000 * 37,000 * 35,000 * 42,000 * 40,000 60,000 48,000 *	22 5 * 40 * 31 5 * 50 * 35 * 50 *	70 32 85 — 85		10
Cu 60, Zn 40 Muntz metal	Sand cast Cold rolled, hard	8.4	522	15.5	32.2	21,800 45,000	45,800	30	50	=	-
Bronze: Cu 97.7, Sn 2.3.	Cast	=	=	6.0 7.6	19.5	8,500	28,000 48,000	20 55	75	=	-
Cu 90, Sn 10 Cu 80, Sn 20 Cu 70, Sn 30	Cast or gun bronze or bell metal. Cast. Cast.	8.78 8.81 8.84	548 550 552	7.2 7.1 1.4	23.0	10,300	33,000 32,000 7,000	10 1.5 0.5	-		23

Compressive Strengths, Brasses:

Cu 90, Zn 10, cast 21.0 kg/mm² or 30,000 lb/in² Cu 80, Zn 20, cast 27.4 kg/mm² or 39,000 lb/in² Cu 70, Zn 30, cast 42.0 kg/mm² or 00,000 lb/in² Cu 60, Zn 40, cast 52.5 kg/mm² or 75,000 lb/in² Cu 50, Zn 50, cast 77.0 kg/mm² or 110,000 lb/in²

Modulus of elasticity, — cast brass, — average 9100 kg/mm² or 13,000,000 lb/in² Erichsen values: Soft slab, 1.3 mm (0.05 in.) thick, no rolling, depth of impression 13.8 mm (0.55 in.). Hard sheet, 1.3 mm, rolled 38% reduction, depth of impression 7.3 mm (0.29 in.). Hard sheet, 0.5 mm, rolled 60% reduction, depth of impression 3.7 mm (0.15 in.).

Compressive Ultimate Strengths, Cast Bronzes:

Cu 97.7, Sn 2.3 to 24.0 kg/mm² or 34,000 lb/in² Cu 90, Sn 10 to 39.0 kg/mm² or 56,000 lb/in² Cu 80, Sn 20 to 83.0 kg/mm² or 118,000 lb/in² Cu 70, Sn 30 to 105.0 kg/mm2 or 150,000 lb/in2

Specification value, A. S. T. M., B 22-18 T, for specimen = cylinder 645 sq. mm (1 sq. in.) area, 25.4 mm (1 in.)

long:
Cu 80, Sn 20: minimum compressive elastic limit = 17.0 kg/mm² or 24,000 lb/in²
Cu 80, Sn 20: minimum compressive elastic limit = 17.0 kg/mm² or 24,000 lb/in² to 10,000 kg/mm² or 15,500,000 Modulus of elasticity for bronzes varies from 7000 kg/mm² or 10,000,000 lb/in² to 10,000 kg/mm² or 15,500,000

* Values marked thus are S. A. E. Spec. values. (See S. A. E. Handbook, Vol. I, p. 13a, rev. December, 1913. † Red metal. † Red metal

§ A. S. T. M. Spec. B19-18T requires B.h.n. of 51-65 kg/mm² @ 5000 kg pressure for 70: 30 annealed sheet brass.

FOOT NOTES TO TABLE 65, PAGE 85.

- * Tensilite, Cu 67, Zn 24, Al 4.4, Mn 3.8, P 0.01 compressive P-limit: 42.2 kg/mm² or 60,000 lb/in² and 1.33 per cent set for 70.3 kg/mm² or 100,000 lb/in² load.

 † Compressive P-limit 20.0 to 28.2 kg/mm² or 28,500 to 40,000 lb/in²

 * Compressive Ultimate strength 54.5 kg/mm² or 77,500 lb/in²

 * Compressive P-limit 4.2 kg/mm² or 6000 lb/in² and 40 per cent set for 70.3 kg/mm² or 100,000 lb/in²

 * Modulus of elasticity 9840 kg/mm² or 14,000,000 lb/in²

 | Values are for yield point.

 ** Minimum values for ingots.
- The values are for yield point.

 The Rolled manganese bronze (U. S. N.) Cu 57 to 60, Zn 40 to 37, Fe max. 2.0, Sn 0.5 to 1.5; 2.9 per cent increase for thickness 25.4 mm (t in.) and under.

 Ni o per cent, B.h.n. = 130 as rolled; B.h.n. = 50 as annealed at 930° C.

 U. S. Navy Dept. Spec. 468 3a, June 1, 1917; German silver Cu 60 to 67, Zn 18 to 22, Ni min. 15, no mechanical
- requirements
- For list of 30 German silver alloys, see Braunt, "Metallic Alloys," p. 314, "best" (Hiorns), "hard Sheffield," Cu 46, Zn 20, Ni 34.

 §§ Platinoid Cu 60, Zn 24, Ni 14, W 1 to 2; high electric resistance alloy with mechanical properties as nickel brass. ||| Specification Values, Naval Brass Castings, U. S. Navy, 46B 10b, Dec. 1, 1917 for normal proportions Cu 62, Zn 37, Sn 1, min. tensile strength 17.5 kg/mm² or 25,000 lb/in² with 15 per cent elongation in 50.8 mm (2 in.).

TABLE 65. MECHANICAL PROPERTIES. TABLE 65.— Copper Alloys—Three (or more) Components.

Alloy and approx.	Condition.	Density	or weight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. of area.	Hard	ness.	
per cent.		gm per cm ³	lb. per it ³		nsion, mm²		nsion, /in²	Per	cent.	Brinell @ 500 kg	Sclero- scope.	
Brass, Aluminum Cu 57, Zn 42, Al 1 Cu 55, Zn 41, Al 4 Cu 62.9, Zn 33.3, Al Cu 70.5, Zn 26.4, Al	Cast	=	_	=	40.0 60.0 56.2	=	57,000 85,400 80,000	50.0	=	=	=	
Cu 64, Zn 29, Al 3.1, Mn 2.5, Fe 1.2 Alum., Vanadium.	Cast, tensilite*			21.1	68.8	30,000	98,000	16.0	17.0	130	_	
Cu 58.5, Zn 38.5, Al 1.5, V 0.03 Iron: Cu 56, Zn 41.5, Fe 1.	Cold drawn		_	35.6	57.0	50,600	81,400	12.0	14.0	-	-	
Aich's Metal Cu6o,Zn38.2,Fe1.8	Cast	8.42	526		50.7 to 59.2		72,000 to 84,000	22.0	25.0	119		
Delta Metal Cu 57, Zn 42, Fe 1	Cast, sand	_	_	=	31.7 42.2	=	57,300 45,000 60,000	10.0	=	=	=	
Cu 65, Zn 30, Fe 5 Iron, Tin: Cu 56.5, Zn 40, Fe 1.5,	Rolled hard	_	_	23.2 to	45.5 49.2 to	33,000 to	65,000	_	35.0 to	- 104 to	_	
Sn 1.0†	Cast	8.4	525	26.0	52.8	37,000	75,000 60,500	20.0	22.0	119	_	
1.8, Sn o.8 Lead or Yellow brass	Forged Hard drawn Cast		531	=	53.6 58.5 23.2 to	=	76,200 83,100 33,000 to	30.0 to		=	=	
Cu 60 to 63.5, Zn 35 to 33.5, Pb 5 to 3. Lead, Tin or	Sheet ann	=	_	_	27.5 25.5 42.9	1=	39,000 42,000 61,000	26.0 50.0 30.0	30.0	=	=	
Red brass	Cast	8.6	535	11.0	21.0	16,000	30,000	17.0	19.0	_	7.0	
Sn 2	Cast				18.6	12,000	26,500	22.0	24.9			
Manganese or Man- ganese bronze	Cast §		524		20.7	10,500	29,500	25.0	28.5	53.0	-	
Cu 58, Zn 39, Mn 0.05 (Sn, Fe, Al, Pb.)	Cast, sand ¶	-	-	21.1 to 24.6 22.5 to	52.7 52.7 to	35,000 to 35,000 32,000 to	70,000 to 75,000 75,000 to	22.0 32.0 to	25.0 34.0 to	119 119 to	19 18 to	
Cu 60, Zn 39 Mn, tr Specification values:	Rolled	8.3	520	26.0 31.5	56 3 52.5	37,000! 45,000	80,000		28.0 28.0	130 —	30	
U. S. Navy, 46 B 16a **	Rolled††	=	_	24.6	49.2	35,000	70,000	20.0	=	_	-	
Manganese Vanadium: Cu 58.6, Zn 38.5, Al 1.5 Mn 0.5, V 0.03.	Cold drawn	-	-	35.6	57.0	50,600	81,400	12.0	14.0	-	-	
Nickel: Nickel silver, Cu 60.4, Zn 31.8, Ni 7.7 German silver,	Cast	8.5	530	10.8	25.3	15,400	36,000	40.5	42.0	46	-	
Cu 61.6, Zn 17.2, Ni 21.1 Cu 60.6, Zn 11.8,			544	13.2	28.8	18,800	40,900	28.5	25.1	80	-	
Ni 27.3 Fine wire: Cu 58, Zn 24, Ni 18	Drawn hard		547 530		37.6	23,700	53,500	32.0	31.4	67	_	
Nickel silver ‡‡ Nickel Tungsten: §§ Tin:	Cost sand					77.500	10 600	20.6				
Cu 61, Zn 38, Sn 1 Naval brass, as above Tobin bronze: as be-	Cast, sand Ann. after roll- ing Cast	8 2	_	26.0 17.6	30.0 43.5 42.2	37,000 25,000	62,000 60,000		37.0	=	-	
low	Rolled			38.0	56.0	54,000	79,000	35.0	40.0		_	
Cu 55, Zn 43, Sn 2.	Cast			_	48.4	_	68,900		70.0	-	_	

TABLE 65 (continued). MECHANICAL PROPERTIES.

TABLE 65. — Copper Alloys — Three (or more) Components.

Alloy and approx.	Condition.	Density	or weight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct.	Hai has	SS.
per cent.		gm per cm³	per		sion, mm²		sion,	Per	cent.	Brinell (@. 500 kg.	Sclero
Brass, Tin — (continued):									1		
Rods:* o to 12.7 mm (1 in.)		=	_	19.0	42.2 40.8	25,000	58,000	35.0 40.0		abou abou us equ	it
over 25.4 mm (in.) diam		-	-	17.6	38.0	25,000	54,000	40.0		iamete	
Shapes, all		-	-	15.7	39.4	22,400	56,000	30.0		66	
Plates to 12.7 mm (1 in.)		-	-	19.3	38.7	27,500	55,000	32.0		46	
over 12.7 mm (1/2 in.) thick Tubing (wall thickness) o to		_	_	17.6	39.4	25,000	56,000	35.0			
3.2 mm († in.)		-		21.1	42.2	30,000	60,000	28.0	_	-	
3.2 to 6.4 mm (1 in.)		-	-	19.7	38.7	28,000	55,000	32.0		-	
over 6.4 mm († in.)		-	-	18.3	35.I	26,000	50,000	35.0	-	-	
Vanadium:		10									
Victor bronze, V 0.03, Cu 58.6, Zn 38.5,	Cold drawn			56.5	64.5	80,000	00 000	** "	29.0		
Al 1.5, Fe 1.0	Cold diawii			30.3	04.5	00,000	92,000	11.5	29.0		
U. S. Navy † 49 B 1b		-	-	15.8	38.7	22,500	55,000	25.0			
Bronze, Aluminum	See Cu. Al			1							
Lead:	0										
Cu 89, Sn 10, Pb 1	Cast \$			T2 4 to	15.5	TO 000 to	22,000 30,000 to	200 to	26 a to	60 40	-
Cu 88, Sh 10, FD 2	Cast g	-		16.2	24.6	23,000	35,000 10	15.0	18.0	70	
Cu 80, Sn 10, Pb 10	Cast, sand.	8.8	540	10.9	22.I	15,500	31,400	13.5	12.0	63	-
0200,0220,222000000	Cast, chill		-	12.8	24.7	18,200	35,200	4.5	3.5	85	-
Lead, Phosphor:											
Cu 80, Sn 10, Pb 10, P trace	Cast		570	11.0	21.0	16,000	30,000	6.0	3.5	65	12
Lead Zinc, Red brass:	Cast	-		13.8	18.8	19,600	26,800	IIO	11.5	ro to	8.0
Cu 81, Sn 7, Pb 9, Zn 3	Cast ¶	0.9	555	14.1	24.6	20,000	30,000 to	15.0	22.0	55	
Cu 88, Sn 8, Pb 2, Zn 2	Cast	-	_	-	21.8 to		31,000 to			57 to	
					26.0		37,000	16.0		59	
Lead, Zinc Phosphor:											
Cu 73.2, Sn 11.3, Pb 12.0,	Cast ***					7.5.000					
Zn 2.5, P 1	Cast +	-		10.5	21.4	15,000	30,400	4.0	3.3		II
Cu 88, Sn 10, Mn 2	Cast	-		9.0	19.1	12,800	27,200	25.0	-		
Nickel, Zinc:											
Cu 88, Sn 5, Ni 5, Zn 2 (1) Cu 89, Sn 4, Ni 4, Zn 3 (2)	Cast	-	-	9.2	28.6	13,100	40,700	32.0	28.0	-	-
Cu 89, Sn 4, Ni 4, Zn 3 (2)	Cast††		-	8.1	27.9	11,500	39,700	31.0	31.0		
Phosphor: Cu 95, Sn 4.9, P 0.1	Rolled	8.6	535	28.0	46.0	40,000	65,000	30.0	_		37
Cu 89, Sn 10.5, P 0.5	Cast		333				31,000 to			72 to	
Cu 80, Sn 20, P max. 1	Cast ‡‡			14.1	24.6	20,000	35,000	10.0		77	
Rods and bars §§ up to 12.7							3			,	
mm (} in.)		-		42.2	56.2	60,000	80,000	12.0	Requir	ed took	to
(minimum) over 12.7 mm to 25.4 mm (1 in.)		_		28.1	122	40,000	60.000	20.0	thro	ugh 12	000
over 25.4 mm (1 in.)		_	-	21.1		30,000		25.0	abou	t radi	-
Sheets and plates §§ spring					00.7	,(11)		-	us e	qual t	
temper		-	-		63.2		90,000	-	thick	ness.	
Medium temper			-	17.6	35.I	25,000	50,000	25.0		66	
		1	1	1			1		1		
Bronze, Phosphor: spring wir	e, hard-drawn	or h	ard-	rolled (U. S. 1	Vavy Spe	c. 22 W5,	Dec. I	, 1915)	. Cu	94.
Sn min. 4.5, Žn max 0.3, Fe m	ax. o.1, Pb ma	X. O.2	, P	0.05 to 0	0.50; m	ax. elong.	ın 203 mi	m (8 in.) = 4 [er cer	18.
		Min	. ten	sile	1	Diame		-	Min. te		
Diameter (many limits)		str	engt	h.		(group lin	nits).		streng	th.	

Diameter (group limits).		tensile	Dian (group		Min. tensile strength.		
	kg/mm²	lb/in²	mm	in.	kg/mm²	lb/in²	
Up to 1.59 mm or 0.0625 in Over 1.59 mm to 3.17 mm (0.125 in.)		135,000	to 6.35 to 9.52	to 0.250 to 0.375	77·5 74.0	110,000	

* Specification Values, Rolled Brass, Cu 62, Zn 37, Sn 1, min. properties after U. S. Navy Spec., 1918.
† Specification Values: Jan. 3, 1916, Vanadium Bronze Castings, Cu 61, Zn 38, Sn max. 1 (incl. V). Mimima.
‡ Compressive P-limit 10.5 kg/mm² or 12,000 lb/in²
§ Compressive P-limit 10.5 kg/mm² or 15,000 lb/in² and 28 per cent set for 70 kg/mm² or 100,000 lb/in²
§ Compressive P-limit 18.8 to 9.1 kg/mm² or 15,000 lb/in² (Cu 76, Sn 7, Pb 13, Zn 4).
¶ Compressive P-limit 8.8 to 9.1 kg/mm² or 12,500 to 13,000 lb/in², and 34 to 35 per cent set for 70 kg/mm²
† Compressive P-limit 8.8 to 9.1 kg/mm² or 12,500 to 15,000 lb/in², and 34 to 35 per cent set for 70 kg/mm²
† Compressive P-limit 17.6 to 28.1 kg/mm² or 17,300,000 lb/in²; (2) 10,500 kg/mm² or 14,900,000 lb/in²
† Compressive P-limit 17.6 to 28.1 kg/mm² or 25,000 to 40,000 lb/in² and 6 to 10 per cent set for 70 kg/mm²
or 100,000 lb/in² load.
Specification Values: U. S. Navy 46 B 5c, Mar. 1, 1917, Cu 85 to 90, Sn 6 to 11, Zn max. 4: Cast, Grade 1.— Impurities max. 0.8; min. tensile strength 31.6 kg/mm² or 45,000 lb/in² with 20 per cent elong. in 50.8 mm (2 in.).
¶ Grade 2.— Impurities max. 1.6; min. tensile strength 21.1 kg/mm² or 30,000 lb/in² with 15 per cent elong. in 50.8 mm (2 in.).

50.8 mm (2 in.).

§§ Specification Values: U. S. Navy 46B 14b, Mar. 1, 1916, Cu min. 94, Sn min. 3.5, P 0.50, rolled or drawn.

||| Minimum yield points specified: for P-limits assume 66 per cent of values shown.

MECHANICAL PROPERTIES.

TABLE 65. - Copper Alloys - Three (or more) Components.

Alloy and approx.	Condition.	Density	or weight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.)	Reduct.	Hard	ness.
per cent.	·	gm per cm ³	lb. per in³		sion, mm²		nsion, /in²		cent.	Brinell @ 500 kg.	Sclero- scope.
Bronze: Silicon. Cu 7o, Zn 29,5, Si 0.5. Zinc * Comp. * G ''. Admiralty gun metal. Comm'c'l range. Spec. values. Cu 88, Sn 8, Zn 4. Cu 85, Sn 13, Zn 2.	Cast (mins.) Cast ‡	8.6 - 8.5	535	8.6 5.6 to 8.4 7.7	46.0 74.0 27.4 22.5 to 26.7 21.1 27.5 26.7	12,200 8,000 to 12,000	65,000 105,000 38,900 32,000 to 38,000 30,000 30,200 38,000	25.0 25.0 to 10.0 14.0 30.5 2.5	21.0 25.0 to 12.0 24.0 2.5	75 58	- 13 10 to 20 - 11 25
Zinc, Lead	Cast §			8.4 to 11.2 28.1		12,000 to 16,000 40,000			34.0 to	50 to 60 ed to	bend rough
over 25.4 mm (1 in.). Shapes, all thicknesses Sheets and plates, o to 12.7 mm (½ in.) over 12.7 mm (½ in.)		11 11		24.6 26.4 27.4 26.4	50.7 52.7 54.8 52.7	35,000 37,500 39,000¶ 37,500	72,000 75,000 78,000	30.0 30.0 30.0 30.0	dius	equa equa eness.	l to
AluminumTin: Cu 88.5, Al 10.4, Sn 1.2 Aluminum Titanium:	(Cast ***		_	26.0	48.0	36,700	68,000	4.5	5.5	189	32
Cu 90, Al 10	800° C	7.58	473	29.0 14.1 to 17.6	74.0 45.7 to 56.2	40,500 20,000 to 25,000	105,200 65,000 to 80,000	1.0 30.0 to	o.8 30.0 to	262 93 to	25 to
Lead: Cu 71.9, Pb 27.5, Sn 0.5 Nickel. Aluminum:	Cast	-	_	-	4.2 to 4.6	_	6,000 to 6,600			-	-
Cu 82.x, Ni 14.6, Al 2.5, Zn 0.7 ‡‡ Cu 85, Sn 5, Zn 5, Pb 5.	Forged Cast §§		=	13.4	23.2	63,300 15,000 to 19,000	33,000	16.0	12.0 20.0 to 15.0	62	
Cu 83,Sn 14, Zn 2, Pb 1 Zinc, Phosphor ("Non Gran")				13.4	19.0	15,000 to 19,000	27,000	0.5	4.0 to 0.5	=	20 24
Cu 86, Sn 11, Zn 3, Ptr. Vanadium, See Brass, Vanadium. Copper, Aluminum or	Cast			13.0	25.0	19,000	•35,000	9.0			
Aluminum Bronze: Cu 90, Al 10		7.45	468- 465	13.9 to 23.3 7.0	51.1 to 60.0 37.5	19,800 to 33,200 9,600	85,500	28.8 to 21.7 91.0	30.0 to 22.4 72.9	102 to 106 81	25 to 26 19
Aluminum, Iron or Sill- man bronze Cu 86.4, Al 9.7, Fe 3.9	Wrought		=	9.8 8.1 14.0	59-3 55-5 54-0	14,000 11,500 20,000	78,850	11.5 14.5 24.5	25.0		
Cu 88.5, Al 10.5, Fe 1.0.	drawn 700° C	-	-	28.0	65.0	40,000	92,000	14.0	18.5	140	-

^{*} Gov't. Bronze: Cu 88, Sn 10, Zn 2 (values shown are averages for 30 specimens from five foundries tested at the Bureau of Standards).

ted of Standards).

† Compressive P-limit 10.5 kg/mm² or 15,000 lb/in² with 20 per cent set for 70 kg/mm² or 100,000 lb/in² load.

† Values from same series of tests as first values for "88–10–2," averages for 26 specimens from five foundries tested at Bureau, of Standards.

at Bireau, of standards.

§ Compressive P-limit 9.1 kg/mm² or 13,000 lb/in² with 34 per cent set for 70 kg/mm² or 100,000 lb/in² load.

[Specification minimums: U. S. Navy 46B17, Dec. 2, 1918, for hot-rolled aluminum bronze, Cu 85 to 87, Al 7 to 9, Fe 2.5 to 4.5. Specification values under P-limit are for yield point.

[Two and six tenths per cent increase in strength up to 762 mm (30 in.) width.

**Compressive P-limit: cast, 14.1 kg/mm² or 20,000 lb/in² with 11.4 per cent set at 70 kg/mm² or 100,000 lb/in² load.

load

load.

† Compressive P-limit: cast, 12.7 to 14.1 kg/mm² or 18,000 to 20,000 lb/in² with 13 to 15 per cent set at 700 kg/mm² or 100,000 lb/in² load.

‡ Modulus of elasticity 14,800 kg/mm² or 21,150,000 lb/in² with 36 per cent set for 70.3 kg/mm², or 100,000 lb/in² load.

|| High values are after Jean Escard "L'Aluminum dans L'Industrie," Paris, 1918. Compressive P-limit 13.5 kg/mm² or 19,200 lb/in² with 13.5 per cent set for 70.3 kg/mm² or 100,000 lb/in² load.

TABLE 66.

MECHANICAL PROPERTIES.

TABLE 66. - Miscellaneous Metals and Alloys.

	1				_						
Metal or alloy. Approx. composition,	Condition.	Density	or weight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm	Reduct.	Hand	ard- ess.
per cent.		gm per cm³	lb. per ft.3	Tensi kg/n	ion, nm²	Tens lb/	sion, in ²	Per	ent.	Brinell (6 500 kg.	Sclero- scope.
* Cobalt, Co 99.7 } Gold, Au 100	Drawn hard	8.9	550 556 1203 — 1073	-	23.1 26.0 18.0 26.0 45.8	_	33,000 37,000 25,000 37,000 65,100	-		121 48 —	20
Lead, Pb† (Comm'c'l.) Antimony ‡Pb95.5,Sb4.5	Drawn hard Cast	11.40	=	=	102.0 1.3 2.3 1.7 2.2	=	145,000 1,780 3,300 2,420 3,130	=		8	3
Magnesium, Mg Nickel, Ni 98.5	Drawn hard	1.7 1.74 8.3	655 106 109 518	=	4.5 21.0 23.2 26.7		6,400 30,000 33,000 38,000	=	6.1	76	
Ni 99-95. Ni 98-5. Ni. Ni.	Wrought, ann Wrought, com. Rolled hard, " Rolled ann. " Drawn hard, D =	8.7	543		29.9 46.0 64.7 53.4		42,500 65,000 92,000 76,000	11.0		83	35
Copper, iron, manganese or Monel metal:	1.65 mm or 0.065 in	_		-	109.0	-	155,000		-	-	-
Ni 67, Cu 28, Fe 3, Mn 2. Ni 66, Cu 28, Fe 3.5, Mn 2.5	Rolled	8.9	555	21.2 55.1 28.3	73.8	30,100 78,400 40,300	70,000 104,900 92,200	31.3	20.0 61.7 70.2	_	2I 27
Ni 71, Cu 27, Fe 2 § 46 M12 46 M 7b	Drawn hard Cast, minimums, Rolled, min., rods and bars ¶	=		22.8 *** 28.1 ***	_	32,500 ** 40,000 **	160,000 65,000 80,000	25.0	=	=	_
Palladium, Pd	Rolled, mini- mum, sheets and plates	_	_	21.1	45.7	30,000	65,000		_	_	_
Platinum, Pt	Drawn hard Drawn hard Drawn ann Cast	21.5	755 1342 — 655	=	27.0 37.3 24.6 28.1	-	39,000 53,000 35,000 40,000		=	=	24 13
Copper, Ag 75, Cu 25 Tantalum, Ta	Drawn hard Drawn hard Drawn hard	16.6	1035	= -	36.0 77.0 91.0		51,200 109,500 130,000	Ξ	=	59	32
Tin, Sn 99.8††	Cast	7.3	456	I.I —	2.8 3.7 7.0	1,600	4,000 5,300 10,000	35.0	=	14	8
(Britannia Metal): Sn 81, Sb 16, Cu 2, Zn 1. Zinc, Aluminum, etc. (aluminum solder): Sn 63, Zn 18, Al 13, Cu											
3, Sb 2, Pb 1 Sn 62, Zn 15, Al 11, Pb 8, Cu 3, Sb 1	Cast	_	_	_	9.1	_	14,500		1.5	-	-
Zinc, aluminum: Sn 86, Zn 9, Al 5 Aluminum, zinc, cadmium:	Cast, chill	-	-	-	8.6		12,200	41.0	81.0	-	-
Sn 78, Al 9, Zn 8, Cd 5.	Cast, chill	-	-1	-	10.1	-	14,300	18.0	41.0	-	

Antimony: Modulus of Elasticity 7960 kg/mm² or 11,320,000 lb/in² (Bridgman).

*Compressive strength: cast and annealed, 86.0 kg/mm² or 712,000 lb/in².

Comm°c¹l. comp., C 0.06, cast, tensile, ultimate, 42.8 kg/mm² or 61,000 lb/in², with 20 per cent elongation in 50.8

or 2 in. Compression, ultimate 123.0 kg/mm² or 175,000 lb/in²

Stellite, C 0 50.5, Mo 22.5, C 10.8, Fe 3.1, Mn 2.0, C 0.0, Si 0.8. Brinell hardness 512 at 3000 kg.

† Modulus of elasticity, cast or rolled, 492 kg/mm² or 700,000 lb/in²; drawn hard 703 kg/mm² or 1,000,000 lb/in²

† For compressive test data on lead-base babbit metal, see table following zinc.

§ Modulus of elasticity 15,800 kg/mm² or 22,500,000 lb/in².

|| Specification values, U. S. Navy, Monel metal, Ni min. 60, Cu min. 23, Fe max. 3.5, Mn max. 3.5, C + Si max.

o.8, Al max. o.5.

¶ Values shown are subject to slight modifications dependent on shapes and thicknesses.

** Values are for yield point.

†† Compressive strength: cast, 4.5 kg/mm² or 6,400 lb/in²

Modulus of elasticity: cast av. 2,810 kg/mm² or 4,000,000 lb/in²; rolled av. 401.0 kg/mm² or 5,700,000 lb/in²

TABLE 67. MECHANICAL PROPERTIES.

TABLE 67. - Miscellaneous Metals and Alloys.

(a) TUNGSTEN AND ZINC.

Metal or alloy approx.	Condition.		nsity eight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.)	Reduct.	® ;	Iness.
per cent.		gm per cm ³	lb. per ft³		ension, g/mm²		ension, b/in²	Per	cent	Brinell 500 kg	Sclero- scope.
	Ingot sintered, D = 5.7 mm or 0.22 in. Swaged rod, D = 0.7 mm or 0.03 in. Drawn hard,	18.0	1124	_	12.7	_	18,000	0.0	0.0	_	_
Tungsten, W 99.2*	Drawn hard, D = 0.029 mm or 0.00114 in Swaged and drawn hot 97.5% reduction† Same as above and	_	-	_	415.0	_ ·	590,000	3.2	65.0	_	-
•	equiaxed at 2000°C in H ₂ ‡			-	118.0	_	168,000	0.0	0.0	-	_
Zinc, §Zn:	Cast	7.0	437 —	=	mpurities 2.8 to 8.4	=	4,000 to 12,000	=	=	42 to	8 to
Zinc, şZii:	direction of rolling). Rolled (across grain or direction of rolling). Drawn hard	7.1	— — 443	2.0 4.I —	19.0 25.3 7.0	5,800	27,000 36,000 10,000	=	=	_	_

*Commercial composition for incandescent electric lamp filaments containing thoria (ThO2) approx. 0.75 per cent after Z. Jeffries Am. Inst. Min. Eng. Bulletin 138, June, 1918.
† After Z. Jeffries Am. Inst. Min. Eng. Bulletin 149, May, 1919.
† Ordinary annealing treatment makes W brittle, and severe working, below recrystallization or equiaxing temperature, produces ductility W rods which have been worked and recrystallized are stronger than sintered rods. The equiaxing temperature of worked tungsten, with a 5-min. exposure, varies from 220° C for a work rod with 24 per cent reduction, to 135° C for a fine wire with 100 per cent reduction. Tungsten wire, D = 0.635 mm or 0.025 in.
§ Compression on cylinder 25.4 mm (1 in.) by 65.1 mm (2.6 in.), at 20 per cent deformation:
For spelter (cast zinc) free from Cd, av. 17.2 kg/mm² or 24,500 lb/in².
For spelter with Cd 0.26, av. 27.4 kg/mm² or 39,000 lb/in². (See Proc. A. S. T. M., Vol. 13, pl. 19.)
Modulus of rupture averages twice the corresponding tensile strength.
Shearing strength: rolled, averages 13.6 kg/mm² or 104,000 lb/in².

Shearing strength: rolled, averages 13.6 kg/mm² or 194,000 lb/in².

Modulus of elasticity: cast, 7,750 kg/mm² or 11,025,000 lb/in².

Modulus of elasticity: rolled, 8450 kg/mm² or 12,000 000 lb/in². (Moore, Bulletin 52, Eng. Exp. Sta. Univ. of Ill.)

(b) WHITE METAL BEARING ALLOYS (BABBITT METAL).
A. S. T. M. vol. xviii, I, p. 491.

Experimental permanent deformation values from compression tests on cylinders 31.8 mm (11/4 in.) diam. by 63.5 mm (21/4 in.) long, tested at 21° C (70° F.) (Set readings after removing loads.)

Al-	Formula, per cent.			ring	Wei	ght.	@ 45	Permane		rmation	@ 21°			lness.
loy	per cent.		CCI	np.				00 lb.		oo lb.		000 lb.	rinell 21°C	500 k
	Sn Sb Cu	Pb	С	F.	g/cm³	lb./ft³	mm	in.	mm	in.	mm	in.	Bri	83
	Tin Bas	e.						- 11			E			5_
1 2 *	91.0 4.5 4.5 89.0 7.5 3.5		440	824	7.34		0.000	0.0000		0.0010	0.380			
3	83.3 8.3 8.3	3 -	491	916	7.46		.025	.0000		.0045	.180			
4 5	75.0 12.0 3.0			680 661	7.52		.013	.0005	.064	.0025	.230	.0000	29.6	12.8
,			330	001	7.75	404	.025	.0010	.070	.0030	.230	.0090	29.0	11.0
	Lead Base			- 3										
6	20.0 15.0 1.5			638	9.33		.038	.0015	.127	.0050	-457	.0180	24.3	II.I
7 8	10.0 15.0 —	75.0		625	9.73		.025	.0010	.127	.0050	.583	.0230	24.I	11.7
0	5.0 15.0 —	80.0		625	10.04		.051	.0020	.305	.0090	2.130	.0620	20.9	8.6
10	2.0 15.0 —	83.0		625	10.07	620	.025	.0010	.254	.0100	3.010	.1540	17.0	8.0
II	- I5.0 -	85.0		625	10.28	642	.025	.0010	.254	.0100	3.020	.1190	17.0	9.9
12	- 10.0 -	90.0	334	634	10.67	666	0.064	0.0025	0.432	0.0170	7.240	0.2850	14.3	6.4
		-			-					1				

* U S. Navy Spec. 46M2b (Cu 3 to 4.5, Sn 88 to 89.5, Sb 7.0 to 8.0) covers manufacture of anti-friction-metal castings.

(Composition W.)
Note. — See also Brass, Lead (yellow brass), Brass, Lead-Tin (Red Brass); Bronze, Phosphor, etc., under Copper alloys

MECHANICAL PROPERTIES.

TABLE 68. - Cement and Concrete.

(a) CEMENT.

CEMENT: Specification Values (A. S. T. M. C9 to 17, C10 to 09, and C9 to 16T). Minimum strengths based on tests of 645 mm² (1 in²) cross section briquettes for tension, and cylinders 50.8 mm (2 in.) diameter by 101.6 mm (4 in.) length for compression. Mortar. composed of 1 part cement to 3 parts Ottawa sand by volume; specimens kept in damp closet for first 24 hours and in water from then on until tested.

Cement	Specific	Age,	Tens	ion.	Compression.		
(1: 3 mortar tested).	gravity.	days.	kg/mm²	lb/in²	kg/mm²	lb/in²	
Std. Portland	3.10	7	0.16	200	0.85	1,200	
White Portland	3.07	28	. 24	300	1.60	2,000	
Natural Av Natural	2.85	7 28	.03	50 125	=		

(b) CEMENT AND CEMENT MORTARS.

CEMENT AND CEMENT MORTARS. — Bureau of Standards Experimental Values. Compressive Strengths of Portland cement mortars of uniform plastic consistency. Data from tests on 50.8 mm (2 in.) cubes stored in water. Sand: Potomac River, representative concrete sand.

Cement	Sand.	Water,	Age,	Compressiv	ve strength.
Proportions	by volume.	per cent.	days.	kg/mm²	lb/in²
ı	0	30.0	7	4.20	5,970
ı	I	16.0	28 7	6.40 3.10	9,120 4,440
I ·	2	13.6	28 7 28	4.75 2.05 3.10	6,750 2,900 4,440
ı	3	13.9	7 28	1.25	1,780
I	9	15.1	7 28	0.10	120 200
		1			

Note. — (From Bureau of Standards Tech. Paper 58.) Neat cement briquettes mixed at plastic consistency (water 21 per cent) show 0.52 kg/mm² or 740 lb/in² tensile strength at 28 days' age;

r Cement: 3 Ottawa sand-mortar briquettes, mixed at plastic consistency (water 9 per cent) show 0.28 kg/mm² or 400 lb/in² tensile strength at 28 days' age.

TABLE 68 (continued). MECHANICAL PROPERTIES.

(c) CONCRETE.

CONCRETE: Compressive strengths. Experimental values for various mixtures. Results compiled by Joint Committee on Concrete and Reinforced Concrete. Final Report adopted by the Committee July 1, 1916. Data are based on tests of cylinders 203.2 mm (8 in.) diameter and 406.4 mm (16 in.) long at 28 days age.

American Standard Concrete Compressive Strengths.

Aggregate.	Units.			Mix.		
Asgregate.	Omes.	1:3	1:41/2	1:6	I: 7½	1:9
Granite, trap rock Gravel, hard limestone and	kg/mm² lb/in²	2.3 3300	2.0	1.5	1.3	1.0
hard sandstone	kg/mm² lb/in²	2.I 3000	1.8	I.4 2000	1.1	0.9
sandstone	kg/mm² lb/in²	1.5	1.3	1.1	0.8	0.7
Cinders	kg/mm ² lb/in ²	o.6 800	0.5 700	0.4	0.4 500	0.3

NOTE. - Mix shows ratio of cement (Portland) to combined volume of fine and coarse aggregate (latter as shown).

Committee recommends certain fractions of tabular values as safe working stresses in reinforced concrete design, which may be summarized as follows:

design, which may be stammarized as tolorous.

Bearing, 35 per cent of compressive strength;

Compression, extreme fiber, 32.5 per cent of compressive strength;

Vertical shearing stress 2 to 6 per cent of compressive strength, depending on reinforcing;

Bond stress, 4 and 5 per cent of compressive strength, for plain and deformed bars, respectively.

Modulus of Elasticity to be assumed as follows:

For concrete	with strength.	Assume mod	ulus of elasticity.
kg/mm²	lb/in²	kg/mm²	lb/in²
up to 0.6	up to 800	530	750,000
0.6 to 1.5	800 to 2200	1400	2,000,000
1.5 to 2.0	2200 to 2900	1750	2,500,000
over 2.0	over 2900	2100	3,000,000

(See Joint Committee Report, Proc. A. S. T. M. v. XVII, 1917, p. 201.)

EDITOR'S NOTE. — The values shown in the table above are probably fair values for the compressive strengths of concretes made with average commercial material, although higher results are usually obtained in laboratory tests of specimens with high grade aggregates. Observed values on 1:2:4 gravel concrete show moduli of elasticity up to 3700 kg/mm² or 4,500,000 lb/in² and compressive strengths to 4.2 kg/mm² or 6000 lb/in² Tensile strengths average 10 per cent of values shown from compressive strengths.

Shearing strengths average from 75 to 125 per cent of the compressive strengths; the larger percentage representing the shear of the leaner mixtures (for direct shear, Hatt gives 60 to 80 per cent of crushing strength). Compressive strengths of natural cement concrete average from 30 to 40 per cent of that of Portland

cement concrete of the same proportioned mix. Transverse strength: modulus of rupture of 1:2½:5 concrete at 1 and 2 months equal to one sixth crushing strength at same age (Hatt).

Weight of granite, gravel and limestone, 1:2:4 concretes averages about 2:33 g/cm³ or 145 lb/ft³; that of cinder concrete of same mix is about 1.85 g/cm³ or 115 lb/ft³

Concrete, 1:2:4 Mix, Compressive Strengths at Various Ages.

Experimental Values: one part cement, two parts Ohio River sand and four parts of coarse aggregate as shown. Compressive tests made on 203.2 mm (8 in.) diameter cylinders, 406.4 mm (16 in.) long. (After Pittsburgh Testing Laboratory Results. See Rwy Age, vol. 64, Jan. 18, 1918, pp. 165–166.)

Coarse aggregate.	Unit.		Aş	ge.	
Coarse aggregate.	Onit.	14 days.	30 days.	60 days.	180 days.
Gravel	kg/mm² lb/in²	1.35	1.61	2.06	2.67
Limestone	kg/mm² lb/in²	1.24	1.53	2.35	3.11
Trap rock	kg/mm² lb/in²	1.45	1.67	3343 2.36	4426 3·39
Granite	kg/mm ²	2063	2386 1.61	3360 2.14	4819
Slag No. 1	lb/in² kg/mm²	1.75	2292	3043 2.37	3.38
Slag No. 2.	lb/in² kg/mm²	2484 1.37	3075 1.78	3365	4803
l l	lb/in²	1941	2525	2930	3753

Note. - Maximum and minimum test results varied about 5 per cent above or below average values shown above. SMITHSONIAN TABLES.

TABLE 69.

MECHANICAL PROPERTIES.

TABLE 69. - Stone and Clay Products.

(a) STRENGTH AND STIFFNESS OF AMERICAN BUILDING STONES.*

-	Weight, average.			mpressio ate stren		Mo	Flexure. Modulus of rupture.			Shear. Ultimate strength.			Flexure, modulus of elasticity		
Stone.			Ave	rage.	nt.	Ave	rage.	e at.	Ave	erage.	ot.	A	verage.	e it.	
	g/cm³	lb/ft³	kg/mm²	lb/in²	Range per cent.	kg/mm ²	lb/in²	Range per cent.	kg/mm ²	Ib./in²	Range per cent.	kg/mm²	lb/in²	Range per cent.	
Granite Marble Limestone	2.6 2.7 2.6	165 170 160	8.8 ₅ 6.3 ₀		25 95	1.15 1.05 0.85	1500	50	0.90	2300 1300 1400	20 25 45	5750	7,500,000 8,200,000 8,400,000	25 50 65	
Sandstone.	2.2	135	8.80	12,500	50	1.05	1500	55	1.20	1700	45	2300	3,300,000	100	

^{*}Values based on tests of American building stones from upwards of twenty-five localities, made at Watertown (Mass.) Arsenal (Moore, p. 184). Each value shown under "Range" is one half the difference between maximum and minimum locality averages expressed as a percentage of the average for the stone.

(b) STRENGTH AND STIFFNESS OF BAVARIAN BUILDING STONE.*

	Weig			mpressio ate stre		M	lexure odulus upture	of		Shear. Ultimat Strength		Flexure. Modulus of elasticity.		
Stone.	4,020	-801	Ave	rage.	ot.	Ave	rage.	it.	Ave	rage.	e it	A	verage.	o lt.
	E/cm3	lb/ft³	kg/mm²	lb/in²	Range per cent.	kg/mm ²	lb/in²	Range per cent.	kg/mm²	lb/in²	Range per cent.	kg/mm²	lb/in²	Range per cent
Granite Marble ‡. Limestone Sandstone		165 135 155 145	5.60 8.10	19,500 8,000 11,500 11,500	15	0.90 0.30 1.10 0.45	450	5 45 55	1.00 0.45 0.60 0.50	620 870	o 50 20 35	3450 2350	2,300,000 4,900,000 3,350,000 3,550,000	30 90 35

^{*} Values based on careful tests by Bauschinger, "Communications," Vol. 10.

General Notes.— 1. Later transverse strength (flexure) tests on Wisconsin building stones (Johnson's "Materials of Construction," 1918 ed., p. 255) show moduli of rupture as follows: Granite, 1.90 to 2.75 kg/mm² or 2710 to 3910 lb/in²; limestone, o.80 to 3.30 kg/mm² or 1160 to 4660 lb/in²; sandstone, 0.25 to 0.95 kg/mm² or 360 to 1320 lb/in².

2. Good slate has a modulus of rupture of 4.90 kg/mm² or 7000 lb/in² (loc. cit., p. 257).

[†] Shearing strength determined perpendicular to bed of stone.

Values are for Jurassic limestone.

600

400

300

0.40

0.30

0.20

TABLE 69 (continued). MECHANICAL PROPERTIES. TABLE 69.—Stone and Clay Products.

(c) STRENGTHS OF AMERICAN BUILDING BRICKS.* Compression. Flexure. Absorption Min. ult. strength. Min. modulus rupture. Brick - description. per cent. kg/mm² lb/in² kg/mm² lb/in2 Class A (Vitrified)..... 3.50 5000 0.65 900 5

2.45

I.40

1.05

3500

2000

1500

* After A. S. T. M. Committee C-3, Report 1913, and University laboratories' tests for Committee C-3 (Johnson, p. 281).

12

18

(d) Strength in Compression of Brick Piers and of Terra-cotta Block Piers.

Tabular values are based on test data from Watertown Arsenal, Cornell University,
U. S. Bureau of Standards, and University of Ill. (Moore, p. 185).

Brick or block used.	Mortar.	Compression.* Av. ult. strength.		
		kg/mm²	lb/in²	
Vitrified brick. Pressed (face) brick. Pressed (face) brick. Common brick. Common brick. Terra-cotta brick.	part P.† cement: 3 parts sand part P. cement: 3 parts sand part lime: 3 parts sand part P. cement: 3 parts sand part lime: 3 parts sand part lime: 3 parts sand part P. cement: 3 parts sand	1.95 1.40 1.00 0.70 0.50	2800 2000 1400 1000 700 3000	

^{*}Building ordinances of American cities specify allowable working stresses in compression over bearing area of 12.5 per cent (vitrified brick) to 17.5 per cent (common brick) of corresponding ultimate compressive strength shown in table.

† P. denotes Portland.

Class B (Hard burned).....

Class C (Common firsts).....

Class D (Common)....

(e) STRENGTH OF COMPRESSION OF VARIOUS BRICKS.

Reasonable minimum average compressive strengths for other types of brick than building brick are noted by Johnson, "Materials of Construction," pp. 289 ff., as follows:

Brick.	kg/mm²	lb/in²
sand-lime	2.10 1.53 5.60 0.70 1.40	3000 2180 (av. 255 tests) 8000 1000 2000

The specific gravity of brick ranges from 1.9 to 2.6 (corresponding to 120 to 160 lb/ft³). Building tile: hollow clay blocks of good quality, — minimum compressive strength: 0.70 kg/mm² or 1000 lb/in². Tests made for A. S. T. M. Committee C-10 (A. S. T. M. Proc. XVII, I, p. 334) show compressive strengths ranging from 0.45 to 8.70 kg/mm² or 640 to 12,360 lb/in² of net section, corresponding to 0.05 to 4.20 kg/mm² or 95 to 6000 lb/in² of gross section. Recommended safe loads (Marks, "Mechanical Engineers' Handbook," p. 625) for effective bearing parts of hollow tile: hard fire-clay tiles 0.06 kg/mm² or 80 lb./in²; ordinary clay tiles 0.04 kg/mm² or 60 lb/in²; porous terracotta tiles 0.03 kg/mm² or 40 lb/in.² The specific gravity of tile ranges from 1.9 to 2.5 corresponding to a weight of 120 to 155 lb/ft³.

TABLE 70.

MECHANICAL PROPERTIES.

TABLE 70. - Rubber and Leather.

(a) RUBBER, - SHEET.*

		Ultimat	e strength.	Ult. elo	ngation.	Set.‡			
Grade.	Longitu	idinal.†	Trans	verse.	Longit.	Transv.	Longit.	Transv.	
	kg/mm²	/mm² lb/in²		lb/in²	lb/in² per co		per	per cent.	
ı	1.92	2730	1.81	2575	630	640	11.2	7.3	
2	1.45	2070	1.43	2030	640	670	6.0	5.0	
3	0.84	1200	0.89	1260	480	555	22.I	16.3	
4	1.30	1850	1.20	1700	410	460	34.0	24.0	
5	0.48	690	0.36	510	320	280	27.5	25.0	
6	0.62	880	0.48	690	315	315	34.3	25.9	

^{*} Data from Bureau of Standards Circular 38.

The specific gravity of rubber averages from 0.95 to 1.25, corresponding to an average weight of 60 to 80 lb/ft³.

Four-ply rubber belts show an average ultimate tensile strength of 0.63 to 0.65 kg/mm² or 890 to 930 lb./in² (Benjamin), and a working tensile stress of 0.07 to 0.11 kg/mm² or 100 to 150 lb./in² is recommended (Bach).

(b) LEATHER, - BELTING.

Oak tanned leather from the center or back of the hide:

Minimum tensile strengths of belts single 2.8 kg/mm² or 4000 lb./in² (Marks, p. 622) double 2.5 kg/mm² or 3600 lb./in²

Maximum elongation for one hour application of single 13.5 per cent 1.6 kg/mm² or 2250 lb./in² stress double 12.5 per cent.

Modulus of elasticity of leather varies from an average value of 12.5 kg/mm² or 17,800 lb/in² (new) to 22.5 kg/mm² or 32,000 lb/in² (old).

Chrome leather has a tensile strength of 6.0 to 9.1 kg/mm² or 8500 to 12,900 lb/in².

The specific gravity of leather varies from 0.86 to 1.02, corresponding to a weight of 53.6 to 63.6 lb./ft³.

[†] Longitudinal indicates direction of rolling through the calendar.

[‡] Set measured after 300 per cent elongation for 1 minute with 1 minute rest.

MECHANICAL PROPERTIES.

TABLE 71. - Manila Rope.

Manila Rope, Weight and Strength — Specification Values. From U. S. Government Standard Specifications adopted April 4, 1918.

Rope to be made of manila or Abaca fiber with no fiber of grade lower than U. S. Government Grade I, to be three-strand,* medium-laid, with maximum weights and minimum strengths shown in the table below, lubricant content to be not less than 8 nor more than 12 per cent of the weight of the rope as sold.

Approxi diamet	mate er.	Circum	ference.	Maximum	net weight.	Minimun	breaking ngth.
mm	in.	mm	in.	kg/m	lb/ft.	kg	lb.
6.3	14	19.1	34	0.029	0.0196	320	700
7.9	5 16	25.4	I	0.044	0.0286	540	1,200
9.5	3 8	28.6	1 1 8	0.061	0.0408	660	1,450
II.I	716	31.8	114	0.080	0.0539	790	1,750
11.9	15 32	34.9	13/8	0.095	0.0637	950	2,100
12.7	1/2	38.1	11/2	0.109	0.0735	1,110	2,450
14.3	16	44.5	$1\frac{3}{4}$	0.153	0.1029	1,430	3,150
15.9	<u>5</u>	50.8	2	0.195	0.1307	1,810	4,000
19.1	3	57.2	21/4	0.241	0.1617	2,220	4,900
20.6	13 16	63.5	21/2	0.284	0.1911	2,680	5,900
22.2	7 8	69.9	2 3/4	0.328	0.2205	3,170	7,000
25.4	I	76.2	3	0.394	0.2645	3,720	8,200
27.0	116	82.6	31/4	0.459	0.3087	4,310	9,500
28.6	I 1/8	88.9	31/2	0.525	0.3528	4,990	11,000
31.8	11/4	95.2	3 4	0.612	0.4115	5,670	12,500
33.3	I 5 6	101.6	4	0.700	0.4703	6,440	14,200
34.9	I 3/8	108.0	41/4	0.787	0.5290	7,260	16,000
38.1	11/2 .	114.3	41/2	0.875	0.5879	7,940	17,500
39.4	1 1 6	120.7	43/4	0.984	0.6615	8,840	19,500
41.2	I 5/8	127.0	5	1.094	0.7348	9,750	21,500
44.5	13/4	140.0	5½	1.312	0.8818	11,550	25,500
50.8	2	152.4	6	1.576	1.059	13,610	30,000
52.4	216	165.1	61	1.823	1.225	15,420	34,000
57.2	21/4	177.8	7	2.144	1.441	17,460	38,500
63.5	21	190.5	71/2	2.450	1.646	19,730	43,500
66.7	2 5 /8	203.2	8	2.799	1.881	22,220	49,000
73.0	2 7 8	215.9	81	3.136	2.107	24,940	55,000
76.2	3	228.6	9	3 · 543	2.381	27,670	61,000
79.4	31/8	241.3	91/2	3.936	2.645	30,390	67,000
82.5	31/4	254.0	10	4.375	2.940	33,110	73,000

^{*} Four-strand, medium-laid rope when ordered may run up to 7% heavier than three-strand rope of the same size, and must show 95% of the strength required for three-strand rope of the same size.

)O MECHANICAL	PRO	PERT	ES.	FABLE	E 72	2. — Hardwoods Grown in U. S. ((Metric Units).			
		cific vity,	Star	tic bend	ic bending. Impact bending. Compression.				Shear.	Ten- sion.	Haro	Hardness.			
Common and botanical name.	over	d on	, kg/mm²	Modulus of oture, kg/mm2	Modulus of elasticity, kg/mm²	, kg/mm²	.7 kg hammer for failure—m	to g	Parallel to grain. P- Ulti- limit mate. kg/ mm²		l to grain kg/mm²	Perpendicular to grain ult. st. kg/mm²	Los ir ir ir d.	ad to nbed mm ball	
	vol. when green.	vol. oven- dry.	P-limit,	Modu rupture,	Modelasticity	P-limit,	22.7 kg fall for fa	limit	mate.	Perpen grain kg/	Parallel ult. st. h	Perpen grain kg,	end kg	side kg	
1	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
Alder, red	0.37	0.43	2.65	4.55	830	5.60	0.56	1.85	2.10	0.22	0.54	0.27	250	200	
(Alnus oregona) Ash, black	0.46	0.53	1.85	4.20	720	5.10	0.81	1.15	1.60	0.31	0.61	0.35	270	250	
Ash, white (forest grown)	0.52	0.60	3.45	6.40	950	8.25	0.91	2.30	2.70	0.57	0.89	0.44	455	401	
(Fraxinus americana) Ash, white (second growth)	0.58	0.71	4.30	7.60	1150	9.70	1.19	2.70	2.90	0.56	1.13	0.56	515	490	
(Fraxinus americana) Aspen	0.36	0.42	2.05	3.75	590	4.85	0.71	1.10	1.50	0.14	0.44	0.13	120	145	
(Populus tremuloides) Basswood	0.33	0.40	1.90	3.50	725	4.35	0.43	1.20	1.55	0.15	0.43	0.20	125	115	
(Tilia americana) Beech	0.54	0.66	3.15	5.80	875	7.30	1.02	1.80	2.30	0.43	0.85	0.56	430	370	
(Fagus atropunicea) Birch, paper	0.47	0.60	2.05	4.10	710	5.50	1.14	1.20	1.55	0.21	0.56	0.27	180	220	
(Betula papyrifera) Birch, yellow	0.54	0.66	3.25	6.05	1080	8.25	1.02	1.90	2.40	0.32	0.78	0.34	370	340	
(Betula lutea) Butternut	0.36	0.40	2.05	3.80	680	130	0.61			0.19	0.53		185	175	
(Juglans cinerea) Cherry, black						5.15		1.40	1.70		0.80	0.30		300	
(Prunus serotina)	0.47	0.53	2.95	5.65	920	7.20	0.84	2,10	2.50	0.31		0.40	340	1	
Chestinut	0.40	0.46	2.20	3.95	655	5.55	0.61	1.45	1.75	0.27	0.56	0.30	240	190	
Cottonwood(Populus deltoides)	0.37	0.43	2.05	3.75	710	5.05	0.53	1.25	1.60	0.17	0.48	0.29	175	155	
Cucumber tree	0.44	0.52	2.95	5.20	1100	6.55	0.76	1.95	2.20	0.29	0.70	0.31	270	235	
Dogwood (flowering)	0.64	0.80	3.40	6.20	830	5.00	1.47	-	2.55	0.73	1.07	_	640	640	
Elm, cork(Ulmus racemosa)	0.58	0.66	3.25	6.70	840	7.75	1.27	2.00	2.70	0.53	0.89	0.47	445	450	
Elm, white	0.44	0.54	2.55	4.85	725	5.70	0.86	1.60	2.00	0.28	0.65	0.39	275	250	
Gum, blue	0.62	0.80	5.35	7.85	1430	10.00	1.02	3.40	3.70	0.72	1.09	0.45	595	610	
Gum, cotton	0.46	0.52	2.95	5.15	740	6.30	0.76	1.95	2.40	0.42	0.84	0.42	365	320	
Gum, red	0.44	0.53	2.60	4.80	810	7.05	0.84	1.70	1.95	0.32	0.75	0.36	285	235	
Hickory pecan	0.60	0.69	3.65	6.90	960	8.65	1.35	2.15	2.80	0.63	1.04	0.48	575	595	
(Hicoria pecan) Hickory, shagbark	0.64	-	4.15	7.75	1105	10.10	1.88	2.40	3.20	0.70	0.93	_	-		
(Hicoria ovata) Holly, American	0.50	0.61	2.40	4.55	630	6.25	1.30	1.40	1.85	0.43	0.80	0.43	390	360	
(Ilex opaca) Laurel, mountain	0.62	0.74	4.10	5.90	650	7.20	0.81	_	3.00	0.78	1.18	_	635	590	
(Kalmia latifolia) Locust, black	0.66	0.71	6.20	9.70	1300	12.90	1.12	4.40	4.85	1.01	1.24	0.54	740	715	
(Robinia pseudacacia) Locust, honey	0.65	0.67	3.95	7.20	910	8.30	I.20	2.35	3.10	1.00	1.17	0.66	655	630	
Magnolia (evergreen)	0.46	0.53	2.55	4.80	780	6.20	1.37	1.55	1.90	0.40	0.73	0.43	355	335	
(Magnolia foetida)	0.44	0.51	2.20	4.10	660	4.80	0.74	1.35	1.75	0.32	0.74	0.39	305	270	
Maple, silver		0.66	3.50	6.40	1040	8.50	0.91	2.20	2.80	0.53	0.97	0.54	455	415	
(Acer saccharum) Oak, canyon live	0.70	0.84	4.45	7.45	945	7.90	1.20	2.85	3.30	1.04	1.20	0.63	720	715	
(Quercus chrysolepsis)	0.56	0.65	2.60	5.40	945		1.04	1.65	2.25	0.51	0.79	0.52	465	430	
Oak, red(Quercus rubra)	0.60	-			880	7.30					0.79			480	
Oak, white		0.71	3.30	5.85		7.55	1.07	2.10	2.50	0.59		0.54	510		
Persimmon(Diospyros virginiana)	0.64	0.78	3.95	7.05	965	8.50	1.04	2.15	2.95	0.78	1.03	0.54	565	580	
Poplar, yellow	0.37	0.42	2.25	3.95	850	5.65	0.43	1.40	1.80	0.22	0.56	0.32	190	155	
Sycamore	0.46	0.54	2.30	4.60	745	6.20	0.84	1.70	2.00	0.32	0.71	0.44	320	275	
Walnut, black(Juglans nigra)	0.51	0.56	3.80	6.70	1000	8.40	0.94	2.55	3.05	0.42	0.86	0.43	435	410	
Willow, black	0.34	0.41	1.25	2.75	395	3.60	0.91	0.70	1.05	0.15	0.44	0.30	160	165	
(Sant nigra)												-	-		

Note. — Results of tests on sixty-eight species; test specimens, small clear pieces, 50.8 by 50.8 mm in section, 762 mm long for bending; others, shorter. Data taken from Bulletin 556, Forest Service, U. S. Dept. of Agriculture, containing data on 130,000 tests. See pages 87 and 99 for explanation of columns.

Common and botanical name: Specific gravity, based on Specific gravi															
Common and botanical name.				Sta	tic ben			ıg.	Co	mpressi	on.	Shear		Hard	iness.
Cedar, incense	Common and botanical	over base	ed on	t, kg/mm²	lus kg/	lus	t, kg/mm²	g hammer ailure — m.	to g	rain.	ndicular to P-limit,	el to grain , kg/mm²	ndicular to	1 ir	nbed
Cedar, incense	21	when	oven-	P-limi	Mo	Mo	P-limi	fall for f			Perper grain kg	Parall ult. st	Perper grain		
(Cetan, port Ortrod	1	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Cedar, Port Orford,	Cedar, incense	0.35	0.36	2.75	4.35	590	5.15	0.43	2.00	2.20	0.32	0.53	0.20	260	175
Cedar western red.	Cedar, Port Orford,	0.41	0.47	2.75	4.80	1055	6.55	0.64	2.10	2.30	0.27	0.62	0.17	255	220
(Thus a occidentalis) (Typress, bald	Cedar, western red	0.31	0.34	2.30	3.65	670	5.05	0.43	1.75	2.00	0.22	0.51	0.15	195	
(Tri, amabilis)	(Thuja occidentalis)														
Alexes amounts Alexes amo	(Taxodium distichum)														
Continue	(Abies amabilis)														
(Presidenting a laxifolia) (Presidenting a laxif	(Abies balsamea)			3.50					1100						
Fir. grand	(Pseudotsuga taxifolia) Fir, Douglas (2)	0.40	0.44	2.55	4.50	830	6.40	0.51	1.80	2.10	0.32	0.62	0.25	205	180
Fir. noble	(Pseudotsuga taxifolia) Fir, grand	0.37	0.42	2.55	4.30	915	5.70	0.56	1.90	2.10	0.24	0.53	0.16	190	165
Fir. white	Fir, noble	0.35	0.41	2.40	4.00	900	5.55	0.51	1.70	1.90	0.22	0.49	0.13	135	115
Hemlock, eastern	Fir, white	0.35	0.44	2.75	4.20	795	5.05	0.46	1.85	1.95	0.31	0.51	0.18	175	150
Company Comp	Hemlock, eastern (Tsuga canadensis)	0.38	0.44	2.95	4.70	790	5.55	0.51	1.90	2.30	0.35	0.62	0.18	230	185
Claric occidentalis	(Tsuga heterophylla)														
Pine, loblelly	(Larix occidentalis)														
Pine lodgepole	(Pinus heterophylla)														
Pine, longleaf	(Pinus taeda)					-									
Pine, Norway	(Pinus contorta)														
Pine, pitch	(Pinus palustris)														
CPinus rigida Pine, shortleal.	(Pinus resinosa)														
(Pinus echinala) Pine, sugar	(Pinus rigida)														
(Pinus lambertiana) Pine, western white (Pinus monificula) Pine, western yellow (Pinus monificula) Pine, western yellow (Pinus ponderosa) O.38 O.42 S.245 4.00 935 5.35 0.58 I.95 2.15 0.21 0.50 0.18 I50 I50 (Pinus monificula) Pine, western yellow (Pinus ponderosa) Pine, white O.36 O.30 2.40 3.75 750 4.55 0.46 I.65 I.90 0.22 0.45 0.18 I35 I35 (Pinus strobus) Spruce, red (Pica rubens) O.48 O.41 2.40 4.00 830 5.05 0.46 I.65 I.95 0.25 0.54 0.15 I90 I60	(Pinus echinata)														
(Pinus monticola) Pine, western yellow 0.38	(Pinus lambertiana) Pine, western white														
Pine, white	Pine, western yellow										0.24		0.20		
(Pica rubens) O.48 O.41 2.40 4.00 830 5.05 0.46 1.65 1.95 0.25 0.54 0.15 190 160 (Pica rubens)	(Pinus ponderosa)														
Spruce, red 0.48 0.41 2.40 4.00 830 5.05 0.46 1.65 1.95 0.25 0.54 0.15 190 160 (Pices rubens)		0.36	0.39	2.40	3.75	750	4.55	0.46	1.65	1.90	0.22	0.45	0.18	135	135
	Spruce, red	0.48	0.41	2.40	4.00	830	5.05	0.46	1.65	1.95	0.25	0.54	0.15	190	160
(Picea sitchensis)	Spruce, Sitka	0.34			3.85		5.05	0.74		1.85	0.23		-		
Tamarack	Tamarack(Larix laricina)														
Yew. western 0.60 0.67 4.55 7.10 695 9.20 0.97 2.40 3.25 0.73 1.14 0.32 610 520		0.60	0.67	4.55	7. 10	695	9.20	0.97	2.40	3.25	0.73	1.14	0.32	610	520

NOTE. — The data above are extracted from tests on one hundred and twenty-six species of wood made at the Forest Products Laboratory, Madison, Wisconsin. Bulletin 536 records results of tests on air-dry timber also, but only data on green timber are shown, as the latter are based on a larger number of tests and on tests which are not influenced by variations in moisture context. The strength of dry material usually exceeds that of green material, but allowable working stresses in design should be based on strengths of green timber, inasmuch as the increase of strength due to drying is a variable, uncertain factor and likely to be offset by defects. All test specimens were two inches square, by lengths as shown.

COLUMN NOTES. —2, Locality where grown, — see Tables 74 and 75; 3, Moisture includes all matter volatile at 100° C expressed as per cent of ordinary weight; 5, Weight, air dry is for wood with 12 per cent moisture; for density, see metric unit tables 72 and 73; 6-10, 762 mm (30 in.) long specimen on 711.2 mm (28 in.) span, with load at center.

		. t,	Wei	ight.	Sta	atic bend	ing.	Impact bending.	Compr	ession.	Shear.	Ten- sion.
Common and botanical name.	Locality where grown.	Moisture content, green, per cent.	Green.	Air-dry.	P-limit, lb/in²	Modulus of rupture, lb/in2	Modulus of elasticity 1000 × lb/in²	P-limit, lb/in²	Parallel to grain. P-limit. lb/in²		Parallel to grain, ult. st. lb/in²	Perpendicular to grain, ult. st. lb/in2
1	2	3	4	5	6	7	8	9	11	13	14	15
	Wash.	98	46	28	3800	6500	1170	8000	2650	310	770	390
	Mich. and	83	53	34	2600	6000	1020	7200	1620	430	870	490
(Fraxinus nigra) Ash, white (forest grown).		43	46	40	4900	9100	1350	11700	3230	800	1260	620
(Fraxinus americana) Ash, white (2d growth) (Fraxinus americana)	N. Y.	40	51	46	6100	10800	1640	13800	3820	790	1600	790
Aspen(Populus tremuloides)	Wis.	107	47	27	2900	5300	840	6900	1620	200	620	180
Basswood(Tilia americana)	Wis. and Pa.	103	41	26	2700	5000	1030	6200	1710	210	610	280
Beech(Fagus alropunicea)	Ind. and Pa.	62	55	44	4500	8200	1240	10400	2550	610	1210	760
Birch, paper (Betula papyrifera)	Wis. and Pa.	72	51	38	2900	5800	1010	7800	1650	300	790	380
Birch, yellow	Wis.	68	58	45	4600	8600	1540	11700	2760	450	1110	480
Butternut(Juglans cinerea)	Tenn. and Wis.	104	46	27	2900	5400	970	7300	1960	270	760	430
Cherry, black (Prunus serotina)	Pa.	55	46	36	4200	8000	1310	10200	2940	440	1130	570
Chestnut (Castanea dentata)	Md. and Tenn.	122	55	30	3100	5600	930	7900	2040	380	800	430
(Populus deltoides)	Mo.	III	49	29	2900	5300	1010	7200	1770	240	680	410
Cucumber tree (Magnolia acuminata)	Tenn.	80	50	33	4200	7400	1560	9300	2760	410	990	440
Dogwood (flowering)	Tenn.	62	65	54	4800	8800	1180	7100	-	1030	1520	
Elm, cork(Ulmus racemosa)	Wis.	50	54	45	4600	9500	1190	11000	2870	750	1270	660
Elm, white(Ulmus americana)	Wis. and Pa.	88	52	35	3600	6900	1030	8100	2290	390	920	560
Gum, blue(Eucalyptus globulus)	Cal.	79	70	54	7600	11200	2010	14200	4870	1020	1550	640
Gum, cotton(Nyssa aquatica)	La.	97	56	34	4200	7300	1050	9000	2760	590	1190	600
Gum, red (Liquidambar styraciflua)	Mo.	81	50	36	3700	6800	1150	10000	2360	460	1070	510
Hickory, pecan (Hicoria pecan)	Mo.	63	61	46	5200	9800	1370	12300	3040	960	1480	680
Hickory, shagbark (Hicoria ovata)	O., Miss., Pa. and W. Va.	60	64	51	5900	11000	1570	14400	3430	1000	1320	-
Holly, American	Tenn.	82	57	40	3400	6500	900	8900	1970	610	1130	610
Laurel, mountain (Kalmia latifolia)	Tenn.	62	62	49	5800	8400	920	10200	-	1110	1670	-
Locust, black (Robinia pseudacacia)	Tenn.	40	58	49	8800	13800	1850	18300	6280	1430	1760	770
Locust, honey	Mo. and Ind.	63	oı	47	5600	10200	1290	11800	3320	1420	1660	930
	La.	117	62	35	3600	6800	1110	8800	2200	570	1040	610
Maple, silver	Wis.	66	46	34	3100	5800	940	6800	1950	460	1050	560
Maple, sugar	Ind., Pa. and	60	56	44	5000	9100	1480	12100	3120	750	1380	770
Oak, canyon live (Quercus chrysolepsis)	Cal.	62	71	56	6300	10600	1340	11200	4050	1480	1700	970
Oak, red(Quercus rubra)	Ark., La., Ind. and Tenn.	84	64	45	3700	7700	1290	10400	2330	730	1120	740
Oak, white	Ark., La. and Ind.	68	62	47	4700	8300	1250	10700	2990	830	1250	770
Persimmon	Mo.	58	63	53	5600	10000	1370	12100	3030	1110	1470	770
Poplar, yellow	Tenn.	64	38	28	3200	5600	1210	8000	2000	310	790	460
Sycamore	Ind.and Tenn.	83	52	35	3300	6500	1060	8800	2390	450	1000	630
(Platanus occidentalis) Walnut, black	Ky.	8r	58	39	5400	9500	1420	11900	3600	600	1220	570
(Juglans nigra)										1	1	

Note. — Results of tests on sixty-eight species; test specimens, small clear pieces, 2 by 2 inches in section, 30 inches long tor bending; others, shorter. Tested in a green condition. Data taken from Bulletin 556, Forest Service, U. S. Dept. of Agriculture, containing data on 130,000 tests. See pages 97 and 99 for explanation of columns.

					Sto	tic bend	ina	Impact	Compr	accion	Shear.	Ten-
		cent.	Wei	ight.	- 56			bending.	_	-		sion.
Common and botanical	Locality	Moisture content, green, per cent.	-	Air-	/in³	Modulus of upture, lb/in²	of elas- × lb/in²	lb/in²	Parallel to grain	lar to	to grain, lb/in²	lb/dl
name.	where grown.	foistur green,	Green.	dry.	P-limit, lb/in²	Modulu rupture, l	ulus o	limit, l	P- limit.	in, P-l	lel to st. Il	ult. st
		M	lb/	ft³	P-lii	M	Modulus c	P- li	lb/in ²	Perpendicular to grain, P-limit lb/in²	Parallel to ult. st.	Perpendicula grain, ult. st.
1	2	3	4	5	6	7	8	9	11	13	14	15
Cedar, incense(Libocedrus decurrens)	Cal. and Ore.	108	45	24	3900	6200	840	7300	2870	460	830	280
Cedar, Port Orford (Chamaecyparis law-	Ore.	52	39	31	3900	6800	1500	9300	3970	380	880	240
soniana) Cedar, western red (Thuja plicata)	Wash. and Mont.	39	27	23	3300	5200	950	7100	2500	310	720	210
Cedar, white	Wis.	. 55	28	21	2600	4200	640	5300	1420	290	620	240
Cypress, bald (Taxodium distichum)	La. and Mo.	87	48	30	4000	6800	1190	8000	3100	470	820	280
Fir, amabilis(Abies amabilis)	Ore. and Wash. Wis.	102	47	27	3900	6300	1300	7800	2380	320	670	240
Fir, balsam	Wash. and	117	45	25	3000	4900	960	6900	2220	210	610	180
Fir, Douglas (1) (Pseudotsuga taxifolia) Fir, Douglas (2)	Ore. Mont. and	36 38	38	34	3600	7800 6400	1580	9400	3400	530	910	350
(Pseudotsuga taxifolia) Fir, grand	Wyo. Mont. and	94	44	27	3600	6100	1300	8100	2680	340	700	230
(Abies grandis) Fir, noble	Ore.	41	31	26	3400	5700	1280	7000	2370	310	700	180
(Abics nobilis) Fir, white	Cal.	156	56	26	3900	6000	1130	7200	2610	440	730	260
(Abies concolor) Hemlock (eastern)	Tenn. and	105	48	29	4200	6700	1120	7900	2710	500	880	265
(Tsuga canadensia) Hemlock (western)	Wis. Wash.	71	41	29	3400	6100	1190	7800	2290	350	810	265
(Tsuga heterophylla) Larch, western (Larix occidentalis)	Mont. and Wash.	58	48	37	4600	7500	1350	9400	3250	560	920	230
Pine, Cuban	Fla.	47	53	45	5600	8800	1630	11300	3950	590	1030	290
Pine, loblolly	Fla., N. and S. Car.	70	54	39	4400	7500	1380	9500	2870	550	900	285
Pine, lodgepole (Pinus contorta)	Col., Mont. and Wyo.	65	39	28	3000	5500	1080	7200	2100	310	690	220
Pine, longleaf	Fla., La. and Miss.	47	50	43	5400	8700	1630	10800	3840	600	1070	290
Pine, Norway (Pinus resinosa)	Wis.	54	42	34	3700	6400	1380	7500	2470	360	780	190
Pine, pitch	Tenn.	85	54	35	3700	6700	1120	9100	2100	510	950	350
Pine, shortleaf	Ark. and La.	64	50	37	4500	8000	1450	6700	3650	480	890	330
Pine, sugar(Pinus lambertiana) Pine, western white	Mont.	123 58	39	30	3500	5700	970	7600	2340	300	710	250
(Pinus monticola) Pine, western yellow	Col. Mont.	05	46	28	3100	5200	1010	6700	2080	340	680	280
(Pinus ponderosa)	Ariz., Wash.											
Pine, white	Wis.	74	39	27	3400	5300	1070	6500	2370	310	640	260
Spruce, red (Picea rubens)	N. H. and Tenn.	43	34	28	3400	5700	1180	7200	2360	350	770	220
Spruce, Sitka(Picea sitchensis)	Wash. Wis.	53	33	26	3000	5500	1180	7900	3010	330	860	230
Tamarack	Wis.	52	54	38	6500	7200	1240	13100	3010	1040	1620	450
(Taxus brevifolia)	Wash.	44	54	43	0300	10100	990	13100	3403	1		130

Column Notes (continued).— (7) recommended allowable working stress (interior construction): \(\frac{1}{2}\) tabular value; experimental results on tests of air-dry timber in small clear pieces average 50 per cent higher; kiln-dry, double tabular values; (10) repeated falls of 50-lb. hammer from increasing heights; 11-12, 203.2-mm (8 in.) long specimen loaded on ends with deformations measured in a \$\tau52.3-\text{mm}\$ (6 in.) gage length; (12) allowable working stress tabular crushing strength; (13) \$\tau52.2-\text{mm}\$ (6 in.) long block loaded on its side with a central bearing area of \$2580.6-mm^2 (4 in²) allowable working stress, \(\frac{1}{2}\) tabular value. (14) 50.8-mm by 50.8-mm (2 in.) projecting lip sheared from block; allowable working stress, \(\frac{1}{2}\) tabular value; (15) 63.5-mm (2\frac{1}{2}\) in.) specimen with \$\text{25.4-mm}\$ (\text{in.}) in.) free loaded length; allowable working stress, \(\frac{1}{2}\) tabular value. (16-17) for values in lbs. multiply values of metric tables by 2.2.

TABLES 76-77. ELASTIC MODULI.

TABLE 76 .- Rigidity Modulus.

If to the four consecutive faces of a cube a tangential stress is applied, opposite in direction on adjacent sides, the modulus of rigidity is obtained by dividing the numerical value of the tangential stress per unit area (kg. per sq. mm.) by the number representing the change of angles on the non-stressed faces, measured in radians.

Substance.	Rigidity Modulus.	Refer- ence.	Substance.	Rigidity Modulus.	Reference.
Aluminum cast Brass cast, 60 Cu + 12 Sn Bismuth, slowly cooled Bronze, cast, 88 Cu + 12 Sn Cadmium, cast Copper, cast Gold Iron, cast Magnesium, cast Nickel Phospbor bronze	3350 2580 3550 3715 3700 1240 4060 2450 4780 4213 4450 4664 2850 3950 5210 6706 7975 6940 8108 7505 1710 7820 4359	14 5 10 11 5 5 5 5 5 5 5 18 10 19 5 14 5 15 16 14 5 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Quartz fibre "" "" " hard-drawn Steel " cast, coarse gr. " silver- Tin, cast " Zinc " Platinum " Glass " Clay rock Granite Marble Slate	2888 2380 2960 2650 2650 2566 2816 8290 7458 8070 7872 1730 1543 3880 3820 6630 6220 2350 2730 1170 1280 1190 2290	20 21 5 10 16 11 16 15 5 11 5 19 16 22 23 23 23 23

References 1-16, see Table 48.

- 17 Gratz, Wied. Ann. 28, 1886.

- 18 Savart, Pogg. Ann. 16, 1829. 19 Kiewiet, Diss. Göttingen, 1886. 20 Threlfall, Philos. Mag. (5) 30, 1890.
- 21 Boys, Philos. Mag. (5) 30, 1890.
- 22 Thomson, Lord Kelvin.
- 23 Gray and Milne. 24 Adams-Coker, Carnegie Publ. No. 46, 1906.

TABLE 77. - Variation of the Rigidity Modulus with the Temperature.

 $n_t = n_o (1 - at - \beta t^2 - \gamma t^3)$, where t = temperature Centigrade.

Substanc	æ.	210	a10 ⁶	β108	y 1010	,	Authority.					
Copper		. 3200 . 3972 . 3900 . 8168 . 6940 . 6632 . 2566	2158 455 2716 572 206 483 111 387 187	36 -23 28 19 12 50	32 47 -11 -8 11 -9	Kohlrausch-Loomis, Pogg. Ann. 141. Pisati, loc. cit. K and L, loc. cit. Pisati, loc. cit. K and L, loc. cit. Fisati, loc. cit. Pisati, loc. cit. """" """" """"""""""""""""""""""""""						
	n,* ==	7/15 1	z (/ — 15	()]; Ho	rton, I	hilos. Trans	. 204 A, 190	5.				
Copper (com- mercial) Iron Steel	4.37° 3.80 8.26 8.45		Gold Silve 9 Alui		2.45	a = .00012 .00031 .00048 .00148	Lead Cadmium	1.50* 0.80 2.31 3.00	α = .00416 .00164 .0058 .00012			

^{*} Modulus of rigidity in 1011 dynes per sq. cm.

TABLE 78 .- Interior Friction at Low Temperatures.

C is the damping coefficient for infinitely small oscillations; T, the period of oscillation in seconds; N, the second modulus of elasticity. Guye and Schapper, C. R. 150, p. 963, 1910.

Substance	Cu	Ni	Au	Pd	Pt	Ag	Quartz
Length of wire in cm.	22.5	22.2	22.3	22.2	23.0	17.2	17.3
Diameter in mm	.643	.411	.609	.553	.812	.601	.612
$\begin{array}{c} \text{100° C } \overset{\text{C}}{\text{C}} \overset{}{\text{T}} \\ \text{0° C } \overset{\text{N} \times \text{10}^{-11}}{\text{C}} & \dots \\ \text{-195° C } \overset{\text{N} \times \text{10}^{-11}}{\text{C}} & \dots \\ \text{N} \times \text{10}^{-11} & \dots \end{array}$	2.381s 3.32 5.88 2.336s 3.45 3.64	7·54 ·417	2.55 4.82 2.969s 2.62 6.36	1.67 2.579 5.08 1.25 2.571s 5.12 .744 2.552s 5.19	2.98 1.143s 5.77 4.60 1.133s - 3.02 1.111s 6.10	55.8 1.808s 2.71 7.19 1.759s 2.87 1.64 1.694s 3.18	4.69 1.408s 2.26 1.02

TABLE 79 .- Hardness.

Asbestos 5. Garnet 7.6 Glass 4.5-6 Gold 2.5-3 Graphite 0.5-1 Beryl 7.8 Gypsum 1.6-2 Bell-metal 4. Hematite 6.6	Iron
--	------

From Landolt-Bornstein-Meyerhoffer Tables: Auerbachs, Winklemann, Handb. der Phys. 1891.

TABLE 80 .- Relative Hardness of the Elements.

C 10.0 R B 9.5 M Cr 9.0 F Os 7.0 F Si 7.0 F Ir 6.5	n 5.0 Sb 1 4.8 Al 4.5 Ag 4.3 Bi	3.0 Au 3.0 Te 2.9 Cd 2.7 S 2.5 Se 2.5 Mg	2.5 Sn 2.3 Sr 2.0 Ca 2.0 Ga 2.0 Pb 2.0 In	1.8 1.8 1.5 1.5	Li P K Na Rb Cs	0.6 0.5 0.5 0.4 0.3
---	--	---	--	--------------------------	--------------------------------	---------------------------------

Rydberg, Zeitschr. Phys. Chem 33, 1900

TABLE 81.—Ratio, p, of Transverse Contraction to Longitudinal Extension under Tensile Stress.

(Poisson's Ratio.)

Metal	Pb	Au	Pd	Pt	Ag	Cu	Al	Bi	Sn	Ni	Cd	Fe
ρ	0.45	0.42	0.39	0.39	0.38	0.35	0.34	0.33	0.33	0.31	0.30	0.28

From data from Physikalisch-Technischen Reichsanstalt, 1907. ρ for: marbles, 0.27; granites, 0.24; basic-intrusives, 0.26; glass, 0.23. Adams-Coker, 1906.

ELASTICITY OF CRYSTALS.*

The formulæ were deduced from experiments made on rectangular prismatic bars cut from the crystal. These bars were subjected to cross bending and twisting and the corresponding Elastic Moduli deduced. The symbols $\alpha \beta \gamma, \alpha_1 \beta_1 \gamma_1$ and $\alpha_2 \beta_2 \gamma_2$ represent the direction cosines of the length, the greater and the less transverse dimensions of the prism with reference to the principal axis of the crystal. E is the modulus for extension or compression, and T is the modulus for torsional rigidity. The moduli are in grams per square centimeter.

Barite.
$$\frac{10^{10}}{E} = 16.13a^4 + 18.51\beta^4 + 10.42\gamma^4 + 2(38.79\beta'\gamma^2 + 15.21\gamma^2a^2 + 8.88a^2\beta^2)$$

$$\frac{10^{10}}{T} = 69.52a^4 + 117.66\beta^4 + 116.46\gamma^4 + 2(20.16\beta'\gamma^2 + 85.29\gamma'a^2 + 127.35a^2\beta^2)$$
Beryl (Emerald).
$$\frac{10^{10}}{E} = 4.325 \sin^4\phi + 4.619 \cos^4\phi + 13.328 \sin^2\phi \cos^2\phi$$

$$\frac{10^{10}}{T} = 15.00 - 3.675 \cos^4\phi_2 - 17.536 \cos^2\phi \cos^2\phi_1$$
Where $\phi \phi_1 \phi_2$ are the angles which the length, breadth, and thickness of the specimen make with the principal axis of the crystal. Fluorite.
$$\frac{10^{10}}{E} = 13.05 - 6.26 (a^4 + \beta^1 + \gamma^1)$$

$$\frac{10^{10}}{T} = 58.04 - 50.08 (\beta'\gamma^2 + \gamma'a^2 + a^2\beta^2)$$
Pyrite.
$$\frac{10^{10}}{E} = 33.48 - 9.66 (a^4 + \beta^4 + \gamma^1)$$

$$\frac{10^{10}}{T} = 18.60 - 17.95 (\beta'\gamma^2 + \gamma'a^2 + a^2\beta^2)$$
Rock salt.
$$\frac{10^{10}}{E} = 33.48 - 9.66 (a^4 + \beta^4 + \gamma^4)$$

$$\frac{10^{10}}{T} = 154.58 - 77.28 (\beta'\gamma^2 + \gamma'a^2 + a^2\beta^2)$$
Sylvite.
$$\frac{10^{10}}{E} = 75.1 - 48.2 (a^4 + \beta^4 + \gamma^4)$$

$$\frac{10^{10}}{E} = 306.0 - 192.8 (\beta^2\gamma^2 + \gamma^2a^2 + a^2\beta^2)$$
Topaz.
$$\frac{10^{10}}{E} = 4.341a^4 + 3.460\beta^4 + 3.771\gamma^4 + 2 (3.879\beta^2\gamma^2 + 2.856\gamma^2a^2 + 2.39a^2\beta^2)$$

$$\frac{10^{10}}{T} = 14.88a^4 + 16.54\beta^4 + 16.45\gamma^4 + 30.89\beta^2\gamma^2 + 40.89\gamma^2a^2 + 43.51a^2\beta^2$$
Quartz.
$$\frac{10^{10}}{E} = 12.734 (1 - \gamma^2)^2 + 16.693 (1 - \gamma^2)\gamma^2 + 9.705\gamma^4 - 8.460\beta\gamma (3a^2 - \beta^2)$$

$$\frac{10^{10}}{T} = 19.665 + 9.060\gamma^2 + 22.984\gamma^3\gamma^2 - 16.920 [(\gamma \beta_1 + \beta \gamma_1) (3aa_1 - \beta \beta_1) - \beta_2\gamma_2)]$$

^{*} These formulæ are taken from Voigt's papers (Wied. Ann. vols. 31, 34, and 35).

ELASTICITY OF CRYSTALS.

Some particular values of the Elastic Moduli are here given. Under E are given moduli for extension or compression in the directions indicated by the subscripts and explained in the notes, and under T the moduli for torsional rigidities round the axes similarly indicated. Moduli in grams per sq. cm.

	(a)	ISOMETRIC	System.*		
Substance.	\mathbf{E}_a	E,	\mathbf{E}_c	Ta	Authority.
Fluorite Pyrite Rock salt Sylvite Sodium chlorate Potassium alum Chromium alum Iron alum	1473 × 10 ⁶ 3530 × 10 ⁶ 419 × 10 ⁶ 403 × 10 ⁶ 401 × 10 ⁶ 372 × 10 ⁶ 405 × 10 ⁶ 181 × 10 ⁶ 161 × 10 ⁶ 186 × 10 ⁶	1008 × 10 ⁶ 2530 × 10 ⁶ 349 × 10 ⁶ 339 × 10 ⁶ 209 × 10 ⁶ 196 × 10 ⁶ 319 × 10 ⁶ 177 × 10 ⁶	910 × 10 ⁶ 2310 × 10 ⁶ 303 × 10 ⁶ — — — — — — — —	345 × 10 ⁶ 1075 × 10 ⁶ 129 × 10 ⁶ 655 × 10 ⁹	Voigt.† "Koch.‡ Voigt. Koch. Beckenkamp.§

(b) ORTHORHOMBIC SYSTEM.

Substance.	E ₁	\mathbf{E}_2	\mathbf{E}_3	$\mathrm{E_4}$	\mathbf{E}_{5}	E_6	Authority.
Barite . Topaz .	620×10^{6} 2304×10^{6}	540 × 10 ⁶ 2890 × 10 ⁶	959×10^{6} 2652×10^{6}	376×10^{6} 2670×10^{6}	702×10^{6} 2893×10^{6}	740 × 10 ⁶ 3180 × 10 ⁶	Voigt.

Substance.	$T_{12} = T_{21}$	$T_{13} = T_{31}$	$T_{23} = T_{32}$	Authority.
Barite	283×10^{6} 1336×10^{6}	293 × 10 ⁶ 1353 × 10 ⁶	121 × 10 ⁶ 1104 × 10 ⁶	Voigt.

In the MONOCLINIC SYSTEM, Coromilas (Zeit. für Kryst. vol. 1) gives

$$\begin{aligned} & \text{Gypsum} \left\{ \begin{aligned} & E_{\text{max}} = 887 \times 10^6 \text{ at } 21.9^{\circ} \text{ to the principal axis.} \\ & E_{\text{min}} = 313 \times 10^6 \text{ at } 75.4^{\circ} \end{aligned} \right. \end{aligned} \\ & \text{Mica} \quad \left\{ \begin{aligned} & E_{\text{max}} = 2213 \times 10^6 \text{ in the principal axis.} \\ & E_{\text{min}} = 1554 \times 10^6 \text{ at } 45^{\circ} \text{ to the principal axis.} \end{aligned} \right. \end{aligned}$$

In the HEXAGONAL SYSTEM, Voigt gives measurements on a beryl crystal (emerald). The subscripts indicate inclination in degrees of the axis of stress to the principal axis of the crystal.

$$E_0 = 2165 \times 10^6$$
, $E_{45} = 1796 \times 10^6$, $E_{90} = 2312 \times 10^6$,

 $\begin{array}{lll} E_0 = 2165 \times 10^6, & E_{45} = 1796 \times 10^6, & E_{90} = 2312 \times 10^6, \\ T_0 = 667 \times 10^6, & T_{90} = 883 \times 10^6. & The smallest cross dimension of the \end{array}$ prism experimented on (see Table 82), was in the principal axis for this last case.

In the RHOMBOHEDRAL SYSTEM, Voigt has measured quartz. The subscripts have the same meaning as in the hexagonal system.

$$E_0 = 1030 \times 10^6$$
, $E_{-45} = 1305 \times 10^6$, $E_{+45} = 850 \times 10^6$, $E_{90} = 785 \times 10^6$,

 $T_0 = 508 \times 10^6$, $T_{90} = 348 \times 10^6$.

Baumgarten ¶ gives for calcite

$$E_0 = 501 \times 10^6$$
, $E_{-45} = 441 \times 10^6$, $E_{+45} = 772 \times 10^6$, $E_{90} = 790 \times 10^6$.

* In this system the subscript a indicates that compression or extension takes place along the crystalline axis, and distortion round the axis. The subscripts b and c correspond to directions equally inclined to two and normal to the third and equally inclined to all three axes respectively.

I Voigt, "Wied. Ann." 31, p. 474, p. 701, 1887; 34, p. 981, 1888; 36, p. 642, 1888.

Koch, "Wied. Ann." 18, p. 325, 1882.

Beckenkamp, "Zeit. für Kryst." vol. 10.

The subscripts 1, 2, 3 indicate that the three principal axes are the axes of stress; 4, 5, 6 that the axes of stress in the three principal planes at angles of 45° to the corresponding axes.

Baumgarten, "Pogg. Ann." 152, p. 369, 1879.

COMPRESSIBILITY OF GASES.

TABLE 84.—Relative Volumes at Various Pressures and Temperatures, the volumes at 0°C and at 1 atmosphere being taken as 1 000 000.

		Oxygen.			Air.			Nitrogen		I	Iydrogen	
Atm.	00	99°.5	1990.5	00	99 ⁰ .4	200°.4	00	99°-5	1990.6	00	99 ⁰ -3	2000.5
100 200 300 400 500 600 700 800 900 1000	9265 4570 3208 2629 2312 2115 1979 1879 1800 1735	7000 4843 3830 3244 2867 2610 2417 2268 2151	9095 6283 4900 4100 3570 3202 2929 2718	9730 5050 3658 3036 2680 2450 2288 2168 2070 1992	7360 5170 4170 3565 3180 2904 2699 2544 2415	9430 6622 5240 4422 3883 3502 3219 3000 2828	9910 5195 3786 3142 2780 2543 2374 2240 2149 2068	7445 5301 4265 3655 3258 2980 2775 2616	9532 6715 5331 4515 3973 3589 3300 3085	5690 4030 3207 2713 2387 2149 1972 1832 1720	7567 5286 4147 3462 3006 2680 2444 2244 2093	9420 6520 5975 4210 3627 3212 2900 2657

Amagat: C. R. 111, p. 871, 1890; Ann. chim. phys. (6) 29, pp. 68 and 505, 1893.

TABLE 85.-Ethylene.

pv at oo C and I atm. = I.

Atm.	00	100	20 ⁰	30°	40°	60°	80°	1000	137°-5	198°.5
46 48 50 52 54 56	0.176	0.562 0.508 0.420 0.240 0.229 0.227	0.684 0.629 0.598 0.561 0.524	0.731	0.814	0.954	1.077	1.192	1.374	1.652
100 150 200 300 500 1000	0.310 0.441 0.565 0.806 1.256 2.289	0.331 0.459 0.585 0.827 1.280 2.321	0.360 0.485 0.610 0.852 1.308 2.354	0.403 0.515 0.638 0.878 1.337 2.387	0.471 0.551 0.669 0.908 1.367 2.422	0.668 0.649 0.744 0.972 1.431 2.493	0.847 0.776 0.838 1.048 1.500 2.566	1.005 0.924 0.946 1.133 1.578 2.643	1.247 1.178 1.174 1.310 1.721 2.798	1.580 1.540 1.537 1.628 1.985

Amagat, C. R. 111, p. 871, 1890; 116, p. 946, 1893.

TABLE 86 .- Relative Gas Volumes at Various Pressures.

The following table, deduced by Mr. C. Cochrane, from the PV curves of Amagat and other observers, gives the relative volumes occupied by various gases when the pressure is reduced from the value given at the head of the column to 1 atmosphere:

Gas. (Temp. = 16°C.).	Relative		ich the gas			pressure
"Perfect" gas Hydrogen Nitrogen Air Oxygen Oxygen (at 0° C.) Carbon dioxide	I atm. I I I I I I I I I	50 atm. 50 48.5 50.5 50.9 - 52.3 69.0	100 atm. 100 93.6 100.6 101.8 105.2 107.9 477*	120 atm. 120 111.3 120.0 121.9 — 128.6 485*	150 atm. 150 136.3 147.6 150.3 161.9 498*	200 atm. 200 176.4 190.8 194.8 212.6 218.8 515*

^{*} Carbon dioxide is liquid at pressures greater than 90 atmospheres.

TABLES 87-89. COMPRESSIBILITY OF GASES.

TABLE 87 .- Carbon Dioxide.

Pressure in					Relativ	e values o	of pv at —				
meters of mercury.	180.2	35 ^c	.ı 4	00.2	500.0	60°.0	700.0	809	· · · ·	900.0	1000.0
30 50 80 110 140 170 200 230 260 290 320	liqui	17: 7. 9: 11: 13: 15: 16: 18: 20:	25 1 50 30 20 1 10 1 00 1 90 1	2460 900 825 980 175 360 550 7730 920 1100 280	2590 2145 1200 1090 1250 1430 1615 1800 1985 2170 2360	2730 2330 1650 1275 1360 1520 1705 1890 2070 2260 2440	2870 2521 1975 1550 1521 1645 1810 2160 2340 2525	5 26 5 22 6 18 7 17 19 20 20 22 24	85 225 45 15 80 30 30 65 40	31 20 2845 2440 2105 1950 1975 22075 2210 2375 2250 2725	3225 2980 2635 2325 2160 2135 2215 2340 2490 2655 2830
			R	elativ e v a	lues of pz	; pv at o	°C. and	ı atm. =	ı.		
Atm	00	100	200	30°	40°	60°	800	1000	137°	1980	258°
50 100 150 300 500 1000	0.105 0.202 0.295 0.559 0.891 1.656	0.114 0.213 0.309 0.578 0.913 1.685	0.680 0.229 0.326 0.599 0.938 1.716	0.775 0.255 0.346 0.623 0.963 1.748	0.750 0.309 0.377 0.649 0.990 1.780	0.984 0.661 0.485 0.710 1.054 1.848	1.096 0.873 0.681 0.790 1.124 1.921	1.206 1.030 0.878 0.890 1.201 1.999	1.380 1.259 1.159 1.108 1.362	1.582 1.530 1.493 1.678	1.847 1.818 1.820

Amagat, C. R. 111, p. 871, 1890; Ann. chim. phys. (5) 22, p. 353, 1881; (6) 29, pp. 68 and 405, 1893.

TABLE 88. - Compressibility of Gases.

Gas.	p.v. (½ atm.) povo (1 atm.).	$ \frac{1}{p.v.} \frac{d(p.v.)}{dp} = a. $	t	t = 0	Density. O = 32, 0°C P = 76°m	Density. Very small pressure.
$\begin{array}{c} O_2\\ H_2\\ N_2\\ CO\\ CO_2\\ N_2O\\ Air\\ NH_3 \end{array}$	1.00038 0.99974 1.00015 1.00026 1.00279 1.00327 1.00026 1.00632	00076 + .00052 00030 00052 00558 00654 00046	11.2° 10.7 14.9 13.8 15.0 11.0	00094 + .00053 00056 00081 00668 00747	32. 2.015 (16°) 28.005 28.000 44.268 44.285	32. 2.0173 28 016 28.003 44.014 43.996

Rayleigh, Zeitschr. Phys. Chem. 52, p. 705, 1905.

TABLE 89. — Compressibility of Air and Oxygen between 18° and 22° C.

Pressures in meters of mercury, pv, relative.

Air	p	24.07 26968	34.90 26908	45.24 26791	55.30 26789	64.00 26778	72.16 26792	84.22 26840	101.47 27041	214.54	304.04 32488
O_2	p	24.07 26843	34.89 26614	-	55.50 26185	64.07 26050	72.15 25858	84.19 25745	101.06 25639	214.52 26536	303.03 28756

Amagat, C. R. 1879.

RELATION BETWEEN PRESSURE, TEMPERATURE AND VOLUME OF SULPHUR DIOXIDE AND AMMONIA.*

TABLE 90.- Sulphur Dioxide.

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

essure in Atmos.	Correspon	ding Volunts at Tempe	ne for Ex-	Volume.	Pressure Experime	in Atmosph ents at Temp	heres for perature —
Pressure	58°.0	99°.6	183°.2	Volumes	58°.0	99°.6	183°.2
10 12 14 16 18 20 24 28 32 36 40 50 60 70 80 90 100 140 160	8560 6360 4040 	9440 7800 6420 5310 4405 4030 3345 2780 2305 1935 1450	3180 2640 2260 2040 1640 1375 1130 930 790 680 545 430 325	10000 9000 8000 7000 6000 5000 4000 3500 3000 2500 2000 1500 1000 500	9.60 10.40 11.55 12.30 13.15 14.00 14.40	9.60 10.35 11.85 13.05 14.70 16.70 20.15 23.00 26.40 30.15 35.20 39.60	- - - - - 29.10 33.25 40.95 55.20 76.00

TABLE 91. - Ammonia.

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

nos.	Correspon	nding Volun	ne for Ex-	Volume,	Pressure	in Atmosph at Tempe	eres for Experature —	periments
Pressure Atmos.	46°.6	99 ⁹ .6	183°.6	volume.	300.2	46°.6	99°.6	1830.0
10	9500 7245	7635	-	10000	8.85	9.50		-
15	5880	6305	-	9000 8000	9.60	10.45	12.00	-
20	_	4645 3560	4875 3835	7000	11.05	13.00	13.60	_
30	-	2875	3185	6000	11.80	14.75	15.55	-
35	-	2440	2680	5000	12.00	16.60	18.60	19.50
45	-	1795	2035	4000	-	18.35	22.70	24.00
50	-	1490	1775	3500	-	18.30	25.40	27.20
55 60	_	975	1590	3000	-	_	29.20	31.50
70 80	-	-	1245	2500	_		34.25	37.35
	-	-	1125	2000		_	41.45	45.50
90	_	-	950	1500		_	49.70	58.00
			950	1000	-	-	59.65	93.60

^{*} From the experiments of Roth, "Wied. Ann." vol. 11, 1880.

COMPRESSIBILITY OF LIQUIDS.

At the constant temperature t, the compressibility $\beta=(1/V_0)(dV/dP)$. In general as P increases, β decreases rapidly at first and then slowly; the change of β with t is large at low pressures but very small at pressures above 1000 to 2000 megabars. I megabar = 0.987 atmosphere = 10⁶ dyne/cm².

Substance. C Substance Substance Substance Substan
" 20 1,000 52 1 1
"" 20 400 75 16 "" " 20 200 77 "" " 20 400 67 "" " 10 10 10 10 "" " 10 20 500 67 "" " 10 10 10 10 10 10 10 10 10 10 10 10 10

For references, see page 108.

COMPRESSIBILITY OF SOLIDS.

If V is the volume of the material under a pressure P megabars and Vo is the volume at atmospheric pressure, then the compressibility $\beta = -(1/V_0) (dV/dP)$. Its unit is cm²/megadynes (reciprocal megabars). 10⁶/ β is the bulk modulus in absolute units (dynes/cm²). The following values of β , arranged in order of increasing compressibility, are for P = 0 and room temperature. I megabar = 100 dynes = 1.013 kg/cm² = 0.987 atmosphere.

Substance.	Compression per unit vol. per megabar × 106	Bulk modulus. dynes/cm ² × 10 ¹²	Reference.	Substance.	Compression per unit vol. per megabar × 108	Bulk modulus. dynes/cm² × 1012	Reference.
Tungsten Boron Silicon Platinum Nickel Molybdenum Tantalum Palladium Iron Gold Pyrite Copper Manganese Brass Chromium Silver Mg. silicate, crys. Aluminum Calcite Zinc Zinc School Silicon Zinc Zinc Zinc Silicon Silicon Zinc Zinc Zinc Zinc Zinc Zinc Zinc Zin	0.3 0.32 0.38 0.43 0.46 0.53 0.54 0.60 0.7 0.75 0.84 0.89 0.99	3.7 3.0 3.1 2.3 2.2 1.9 1.67 1.67 1.4 1.33 1.19 1.12 1.01 0.97 0.75 0.75	2 2 2 2 2 2 2 2 3 1,2 4 1 2 1 1,2 4 1-3 1	Plate glass Lead Thallium Antimony Quartz Magnesium Bismuth Graphite Silica glass Sodium chloride Arsenic Calcium Potassium chloride Lithium Phosphorus (red) Selenium Sulphur Lodine Sodium Phosphorus (white)	2.27 2.3 2.4 2.7 2.9 3.0 3.0 3.1 4.5 5.7 7.4 9.2 12.0 13.6 15.6 20.5	0.45 0.44 0.43 0.42 0.37 0.34 0.33 0.33 0.32 0.24 0.22 0.175 0.135 0.111 0.109 0.083 0.077 0.064	4 1, 2 2 1 2 1 2 1 1 2 2 6 2 2 2 2 2 2 2 2 2
Tin	1.89	0.53 0.48 0.46	1 5 1, 2	Potassium Rubidium Calcium	31.7	0.032 0.025 0.016	2 2 2

Note. — Winklemann, Schott, and Straulel (Wied Ann. 61, 63, 1897, 68, 1899) give the following coefficients (among others) for various Jena glasses in terms of the volume decrease divided by the increase of pressure expressed in kilograms per square millimeter:

No.	Glass.	Compressibility.	No.	Glass.	Compressibility.
665 1299 16 278	Barytborosilicat Natronkalkzinksilicat	7520 5800 4530 3790	2154 S 208 500 S 196	Kalibleisilicat Heaviest Bleisilicat Very Heavy Bleisilicat Tonerdborat with sodium, baryte	3510

The following values in cm²/kg of 10⁶ × Compressibility are given for the corresponding temperatures by Grüneisen, Ann. der Phys. 33, p. 65, 1910.

Al — 191° , 1.32; 17° , 1.46; 125° , 1.70. Cu — 191° , 0.72; 17° , 0.77; 165° , 0.83. Pt — 189° , 0.37; 17° , 0.39; 164° , 0.40.

Fe — 190°, 0.61; 18°, 0.63; 165°, 0.67. Ag — 191°, 0.71; 16°, 0.76; 166°, 0.86. Pb — 191°, (2.5); 14°, (3.2).

References to Table 92, p. 107:

(1) Bridgman, Pr. Am. Acad. 49, 1, 1913; (2) Roentgen, Ann. Phys. 44, 1, 1801; (3) Pagliani-Palazzo, Mem. Acad. Lin. 3, 18, 1883; (4) Bridgman, Pr. Am. Acad. 48, 341, 1912; (5) Adams, Williamson, J. Wash. Acad. Sc. 9, Jan. 19,

- (6) Richards, Boyer, Pr. Nat. Acad. Sc. 4, 389, 1918; (7) Richards, J. Am. Ch. Soc. 37, 1646, 1915; (8) Bridgman, Pr. Am. Acad. 47, 381, 1911;

(9) Amagat, C. R. 73, 143, 1872; (10) Amagat, C. R. 68, 1179, 1869; (11) Amagat, Ann. chim. phys. 29, 68, 505, 1893; (12) de Metz, Ann. Phys. 41, 663, 1890; (13) Adams, Williamson, Johnston, J. Am. Chem. Soc.

- 41, 27, 1919; (14) Colladon, Sturm, Ann. Phys. 12, 39, 1828; (15) Quincke, Ann. Phys. 19, 401, 1883; (16) Richards et al. J. Am. Ch. Soc. 34, 988, 1912.

References to Table 93, p. 108:

- (1) Adams, Williamson, Johnston, J. Am. Ch. Soc. 41, 39,
- 1919; (2) Richards, *ibid.* 37, 1646, 1915; (3) Bridgman, Pr. Am. Acad. 44, 279, 1909; 47, 366, 1911;

(4) Adams, Williamson, unpublished;
(5) Richards, Boyer, Pr. Nat. Acad. Sc. 4, 388, 1918;
(6) Voigt, Ann. Phys. 31, 1887; 36, 1888.

SPECIFIC GRAVITIES CORRESPONDING TO THE BAUMÉ SCALE.

The specific gravities are for 15.56°C (60° F) referred to water at the same temperature as unity For specific gravities less than unity the values are calculated from the formula:

Degrees Baumé =
$$\frac{140}{\text{Specific Gravity}} - 130$$
.

For specific gravities greater than unity from:

Degrees Baumé =
$$145 - \frac{145}{\text{Specific Gravity}}$$

Specific Gravities less than 1.											
Specific	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
Gravity.	Degrees Baumé.										
0.60 .70 .80 .90	103.33 70.00 45.00 25.56 10.00	99.51 67.18 42.84 23.85	95.81 64.44 40.73 22.17	92.22 61.78 38.68 20.54	88.75 59.19 36.67 18.94	85.38 56.67 34.71 17.37	82.12 54.21 32.79 15.83	78.95 51.82 30.92 14.33	75.88 49.49 29.09 12.86	72.90 47.22 27.30 11.41	
Specific Gravities greater than 1.											
Specific	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
Gravity.					Degrees]	Baumé.					
1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80	0.00 13.18 24.17 33.46 41.43 48.33 54.38 59.71 64.44	1.44 14.37 25.16 34.31 42.16 48.97 54.94 60.20 64.89	2.84 15.54 26.15 35.15 42.89 49.60 55.49 60.70 65.33	4.22 16.68 27.11 35.98 43.60 50.23 56.04 61.18 65.76	5.58 17.81 28.06 36.79 44.31 50.84 56.58 61.67 66.20	6.91 18.91 29.00 37.59 45.00 51.45 57.12 62.14 66.62	8.21 20.00 29.92 38.38 45.68 52.05 57.65 62.61	9.49 21.07 30.83 39.16 46.36 52.64 58.17 63.08	10.74 22.12 31.72 39.93 47.03 53.23 58.69 63.54	11.97 23.15 32.60 40.68 47.68 53.80 59.20 63.99	

DENSITY IN GRAMS PER CUBIC CENTIMETER OF THE ELEMENTS, LIQUID OR SOLID.

N. B. The density of a specimen may depend considerably on its state and previous treatment.

Element.	Physical State.	Grams per	Tempera- ture °C.†	Authority.
Aluminum	commercial h'd d'n wrought	2.70 2.65-2.80	20°	Wolf, Dellinger, 1910
Antimony	vacuo-distilled	6.618	20	Kahlbaum, 1902.
44	ditto-compressed	6.691	20	"
44	amorphous	6.22	-0-	Hérard.
Argon	liquid	1.3845	- 183	Baly-Donnan.
Aussain	crystallized	1.4233	- 189	
Arsenic	amorph. brblack	5.73 3.70	14	Geuther.
**	yellow	3.88		Linck.
Barium	yenow	3.78		Guntz.
Bismuth	solid	9.70-9.90		
44	electrolytic	9.747		Classen, 1890.
es	vacuo-distilled	9.781	20	Kahlbaum, 1902.
es	liquid	10.00	27 1	Vincentini-Omodei.
14	solid	9.67	27 I	46
Boron	crystal	2.535		Wigand.
46	amorph. pure	2.45		Moissan.
Bromine	liquid	3.12 8.54–8.57		Richards-Stull.
Cadmium	cast	8.54-8.57		
46	wrought	8.6 ₇ 8.6 ₄ 8		Vahlbaum 1002
66	vacuo-distilled solid		20	Kahlbaum, 1902. Vincentini-Omodei.
66	liquid	8.37 7.99	318	vincentini-Oniodei.
Cæsium	nquiu	1.873	20	Richards-Brink.
Calcium		1.54	20	Brink.
Carbon	diamond	3.52		Wigand.
.6	graphite	2.25		46
Cerium	electrolytic	6.79		Muthmann-Weiss.
66	pure	7.02		"
Chlorine	liquid	1.507	- 33.6	Drugman-Ramsay.
Chromium		6.52-6.73		
G 1 1	pure	6.92	20	Moissan.
Cobalt		8.71	21	Tilden, Ch. C. 1898.
Columbium		8.4	15	Muthmann-Weiss.
Copper	cast annealed	8.30 - 8.95 8.89		Dellinger, 1911
66	wrought	8.85-8.95	20	Denniger, 1911
46	hard drawn	8.89	20	66 66
44	vacuo-distilled	8.9326	20	Kahlbaum, 1902.
66	ditto-compressed	8.9376	20	
44	liquid	8.217		Roberts-Wrightson.
Erbium		4.77		St. Meyer, Z. Ph. Ch. 3
Fluorine	, liquid	1.14	- 200	Moissan-Dewar.
Gallium		5.93	23	de Boisbaudran.
Germanium Glucinum		5.46	20	Winkler.
Gold	cast	1.85		Humpidge.
Gold	wrought	19.3		
44	vacuo-distilled	19.33	20	Kahlbaum, 1902.
46	ditto-compressed	19.27	20	"
Helium	liquid	0.15	- 269	Onnes, 1908.
Hydrogen	liquid	0.070	- 252	Dewar, Ch. News, 1904
Indium		7.28	- 5"	Richards.

To reduce to pounds per cu. ft. multiply by 62.4.
 † Where the temperature is not given, ordinary atmospheric temperature is understood.

Compiled from Clarke's Constants of Nature, Landolt-Börnstein-Meyerhoffer's Tables, and other sources. Where no authority is stated, the values are mostly means from various sources.

DENSITY IN GRAMS PER CUBIC CENTIMETER OF THE ELEMENTS, LIQUID OR SOLID.

Element.	Physical State	Grams per cu. cm.*	Tempera- ture °C.†	Authority.
Iridium		22.42	17	Deville-Debray
Iodine		4.940	20	Richards-Stull
Iron	pure	7.85-7.88		Telemands-Stuff
"	gray cast	7.03-7.13		
44	white cast	7.58-7.73		
46	wrought	7.80-7.90		
61	liquid	6 88		Roberts-Austen
46	steel	7.60-7.80		
Krypton	liquid	2.16	-146	Ramsay-Travers
Lanthanum		6.15		Muthmann-Weiss
Lead	vacuo-distilled	11.342	20	Kahlbaum, 1902
	ditto-compressed	11.347	20	
1 "	solid	11.005	325	Vincentini-Omodei
66	liquid	10.645	325	Day Sosman Hostotter
66	46	10.597	400° 850°	Day, Sosman, Hostetter,
Lithium		0.534	20	Richards-Brink, '07
Magnesium		1.741		Voigt
Manganese		7.42		Prelinger
Mercury	liquid	13.596	0	Regnault, Volkmann
66	36	13.546	20	
1 "	66	13.690	-38.8	Vincentini-Omodei
- 66	solid	14.193	-38.8 -188	Mallet
. 46	• • •	14.383	-188	Dewar, 1902
Molybdenum		9.01		Moissan
Neodymium		6.96		Muthmann-Weiss
Nickel	1	8.60-8.90		71.5
Nitrogen	liquid	0.810	-195	Baly-Donnan, 1902
Camium	•	0.854	-205	Deville-Debray
Osmium Oxygen	liquid	22.5	-184	Devine-Debiay
Palladium	nquia	12.16	-104	Richards-Stull
Phosphorus ‡	white	1.83		Trichards-Stair
"	red	2.20		
66	metallic	2.34	15	Hittorf
Platinum		21.37	20	Richards-Stull
Potassium		0.870	20	Richards-Brink, '07
46	solid	0.851	62.1	Vincentini-Omodei
46	liquid	0.830	62.1	66 66
Præsodymium		6.475		Muthmann-Weiss
Rhodium		12.44		Holborn Henning
Rubidium		1.532	20	Richards-Brink, '07
Ruthenium Samarium		12.06	0	Toby Muthmann-Weiss
Selenium		7.7-7.8 4.3-4.8		Muthinanii- Weiss
Silicon	cryst.	2:42	20	Richards-Stull-Brink
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	amorph.	2.35	15	Vigoroux
Silver	cast	10.42-10.53	- 3	
66	wrought	10.6		
66	vacuo-distilled	10.492	20	Kahlbaum, 1902
66	ditto-compressed	10.503	20	"
"	liquid	9.51		Wrightson
Sodium	11.1	0.9712	20	Richards-Brink, '07
"	solid	0.9519	97.6	Vincentini-Omodei
"	liquid	0.9287	97.6 —188	
		1.0066	-100	Dewar Matthiessen
Sulphur		2.50-2.58 2.0-2.1		Matthiessen
Sulphur	liquid	1.811	113	Vincentini-Omodei
	nquid	1.011	113	· incentini-Oniodes

^{*}To reduce to pounds per cubic ft. multiply by 62.4.
† Where the temperature is not given, ordinary atmosphere temperature is understood.
‡ Black phosphorus, 2.69, Bridgman, 1918.

112 TABLES 95 (continued) AND 96. DENSITY OF VARIOUS SUBSTANCES.

TABLE 95 (continued). — Density in grams per cubic continueter and pounds per cubic foot of the elements, liquid or solid.

Element.	Physical State.	Grams per cu. cm.	Tempera- ture °C.	Authority.
Tantalum Tellurium Thallium Thorium Tin " " " " " Titanium Tungsten Uranium Vanadium	crystallized amorphous white, cast "wrought "crystallized "solid liquid gray	16.6 6.25 6.02 11.86 12.16 7.29 7.30 6.97–7.18 7.184 6.99 5.8 4.5 18.6–19.1 18.7	20 17 226 226 18	Beljankin. Richards-Stull. Bolton. Matthiessen. Vincentini-Omodei "See Table 65 Mixter. Zimmermann. Ruff-Martin.
Xenon Yttrium Zinc " " " Zirconium	liquid cast wrought vacuo-distilled ditto-compressed liquid	3,52 3,80 7.04-7.16 7.19 6.92 7.13 6.48 6.44	20 20	Ramsay-Travers. St. Meyer. Kahlbaum, 1902. "Roberts-Wrightson.

TABLE 96. — Density in grams per cubic centimeter and in pounds per cubic foot of different kinds of wood.

The wood is supposed to be seasoned and of average dryness.

Wood.	Grams per cubic centimeter.	Pounds per cubic foot.	Wood.	Grams per cubic centimeter.	Pounds per cubic foot.
Alder Apple Ash Bamboo Basswood. See Linden. Beech Blue gum Birch Box Bullet-tree Butternut Cedar Cherry Cork Dogwood Ebony Elm Fir or Pine, American White "Larch "Pitch "Red "Scotch "Spruce "Yellow Greenheart	0.42-0.68 0.66-0.84 0.65-0.85 0.31-0.40 0.70-0.90 1.00 0.51-0.77 0.95-1.16 1.05 0.38 0.49-0.57 0.70-0.90 1.11-1.33 0.54-0.60 0.35-0.50 0.50-0.56 0.83-0.85 0.48-0.70 0.33-0.53 0.48-0.70 0.37-0.60 0.93-1.04	26-42 41-52 40-53 19-25 43-56 62 32-48 59-72 65 24 30-35 43-56 14-16 47 69-83 34-37 22-31 31-35 52-53 30-44 27-33 30-44 23-37 58-65	Hazel Hickory Holly Iron-bark Juniper Laburnum Lancewood Lignum vitæ Linden or Lime-tree Locust Logwood Mahogany, Honduras "Spanish Maple Oak Pear-tree Plum-tree Ploplar Satinwood Sycamore Teak, Indian "African Walnut Water gum Willow	0.60-0.80 0.60-0.93 0.76 1.03 0.56 0.92 0.68-1.00 1.17-1.33 0.32-0.59 0.67-0.71 .91 0.66 0.85 0.62-0.75 0.60-0.90 0.61-0.73 0.66-0.78 0.35-0.5 0.95 0.40-0.60 0.66-0.88 0.98 0.98 0.64-0.70 1.00 0.40-0.60	37-49 37-58 47 64 35 57 42-62 73-83 20-37 42-44 57 41 53 39-47 37-56 38-45 41-49 22-31 59 24-37 41-55 61 40-43 62 24-37

^{*} Where the temperature is not given, ordinary atmospheric temperature is understood.

DENSITY IN GRAMS PER CUBIC CENTIMETER AND POUNDS PER CUBIC FOOT OF VARIOUS SOLIDS.

N. B. The density of a specimen depends considerably on its state and previous treatment; especially is this the case with porous materials.

Material.	Grams per	Pounds per	Material.	Grams per	Pounds per
	cu. cm.	cu. foot.		cu. cm.	cu. foot.
				-	
Agate	2.5-2.7	156–168	Gum arabic	1.3-1.4	80-85
Alabaster:	-69	168-173	Gypsum Hematite	2.31-2.33	144-145
Carbonate Sulphate	2.69-2.78 2.26-2.32	141-145	Hornblende	4.9-5.3 3.0	306-330 187
Albite	2.62-2.65	163-165	Ice	0.917	57.2
Amber	1.06-1.11	66- 69	Ilmenite	4.5-5.	280-310
Amphiboles	2.9-3.2	180-200	Ivory	1.83-1.92	114-120
Anorthite	2.74-2.76	171-172	Labradorite	2.7-2.72	168-170
Anthracite	2.0-2.8	87-112	Lava: basaltic trachytic	2.8-3.0	175-185
Asbestos Asphalt	1.1-1.5	125-175 69- 94	Leather: dry	0.86	125–168 54
Basalt	2.4-3.1	150-190	greased	1.02	64
Beeswax	0.96-0.97	60- 61	Lime: mortar	1.65-1.78	103-111
Beryl	2.69-2.7	168-168	slaked	1.3-1.4	81-87
Biotite	2.7-3.I	170-190	Limestone	2.68-2.76	167-171
Bone Brick	1.7-2.0	106-125 87-137	Litharge: Artificial	0.2-0.4	-80 -8-
Butter	0.86-0.87	53- 54	Natural	9·3 - 9·4 7.8-8.0	580-585 490-500
Calamine	4.1-4.5	255-280	Magnetite	4.9-5.2	306-324
Caoutchouc	0.92-0.99	57- 62	Malachite	3.7-4.I	231-256
Celluloid	1.4	87	Marble	2.6-2.84	160-177
Cement, set	2.7-3.0	170-190	Meerschaum	0.99-1.28	62- 80
Chalk Charcoal: oak	1.9-2.8	118-175	Mica Muscovite	2.6-3.2	165-200
pine	0.57 0.28–0.44	35 18- 28	Ochre	2.76–3.00 3.5	218
Chrome yellow	6.00	374	Oligoclase	2.65-2.67	165-167
Chromite	4.32-4.57	270-285	Olivine	3.27-3.37	204-210
Cinnabar	8.12	507	Opal	2.2	137
Clay	1.8-2.6	122-162	Orthoclase	2.58-2.61	161-163
Coal, soft Cocoa butter	0.89-0.91	75- 94 56- 57	Paper Paraffin	0.7-1.15	44- 72 54- 57
Coke	1.0-1.7	62-105	Peat	0.84	54 57
Copal	1.04-1.14	65- 71	Pitch	1.07	67
Corundum	3.9-4.0	245-250	Porcelain	2.3-2.5	143-156
Diamond:		704	Porphyry	2.6-2.9	162-181
Anthracitic Carbonado	1.66	188-203	Pyrite Ouartz	4.95-5.1 2.65	309-318 165
Diorite	3.0I-3.25 2.52	157	Quartzite	2.73	170
Dolomite	2.84	177	Resin	1.07	67
Ebonite	1.15	72	Rock salt	2.18	136
Emery	4.0	250	Rutile	6.00-6.5	374-406
Epidote	3.25-3.5	203-218 159-172	Sandstone Serpentine	2.14-2.36 2.50-2.65	134-147
Feldspar Flint	2.55-2.75 2.63	164	Slag, furnace	2.0-3.9	125-240
Fluorite	3.18	198	Slate		162-205
Gamboge	1.2	75	Soapstone	2.6-3.3 2.6-2.8	162-175
Garnet	3.15-4.3	197-268	Starch	1.53	95
Gas carbon	1.88	180	Sugar Talc	1.61 2.7-2.8	168-174
Gelatine Glass: common	2.4-2.8	150-175	Tallow	0.91-0.97	57- 60
flint	2.9-5.9	180-370	Topaz	3.5-3.6	219-223
Glue	1.27	80	Tourmaline	3.0-3.2	190-200
Granite	2.64-2.76	165-172	Zircon	4.68-4.70	292-293
Graphite	2.30-2.72	144-170			

DENSITY IN GRAMS PER CUBIC CENTIMETER AND POUNDS PER CUBIC FOOT OF VARIOUS ALLOYS.

Brasses: Yellow, 70Cu + 30Zn, cast. " rolled	Alloy.	Grams per cubic centimeter.	Pounds per cubic foot.
Magnalium: 70Al + 30Mg 2.0 125 Manganin: 84Cu + 12Mn + 4Ni 8.5 530	" " Red, 90Cu + 10Zn " White, 50Cu + 50Zn " White, 50Cu + 50Zn Bronzes: 90Cu + 10Sn " 85Cu + 12Sn " 80Cu + 20Sn " 75Cu + 25Sn " Berlin (1) 52Cu + 26Zn + 22Ni " " (2) 59Cu + 30Zn + 11Ni " " (3) 63Cu + 30Zn + 6Ni " Nickelin Lead and Tin: 87.5Pb + 12.5Sn " " 84Pb + 16Sn " " " 77.8Pb + 22.2Sn " " 63.7Pb + 36.3Sn " " " 64.7Pb + 53.3Sn " " " 30.5Pb + 69.5Sn Bismuth, Lead, and Tin: 53Bi + 40Pb + 7Cd Wood's Metal: 50Bi + 25Pb + 12.5Cd + 12.5Sn Cadmium and Tin: 32Cd + 68Sn Gold and Copper: 98Au + 2Cu " " " 96Au + 4Cu " " " 94Au + 6Cu " " " 94Au + 6Cu " " " 90Au + 10Cu " " " 88Au + 12Cu " " " " 88Au + 12Cu " " " " 88Au + 12Cu " " " " " 88Au + 12Cu	8.44 8.56 8.70 8.60 8.70 8.89 8.74 8.89 8.74 8.30 8.45 8.30 8.77 10.60 10.33 10.05 9.43 8.73 8.24 10.56 9.70 7.70 18.84 18.36 17.95 17.52 17.16 16.81 16.47 7.69 8.37 8.37 8.37 8.38 8.39 8.39 8.45 8.30 9.70 17.52 17.52 17.16 16.81 16.47 17.69 8.37 8.37 8.37 8.38 8.37 8.38 8.39 8.39 8.30 9.70 17.52 17.52 17.16 16.81 16.47 17.69 8.37 8.37 8.38 8.37 8.37 8.38 8.37 8.38 8.39 8.30 8.30 8.45 8.30 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.7	527 534 542 536 511 548 555 545 551 518 527 520 518 547 661 644 627 588 545 514 659 605 480 1176 1120 1093 1071 1027 480 522 542 175 1348 1348 1348 1348 1364 1396 554

TABLE 99. - DENSITIES OF VARIOUS NATURAL AND ARTIFICIAL MINERALS.

(See also Table 97.)

Name and Formula.	Density grams per cc.	Sp. Vol. cc. per gram.	Reference	Name and Formula.	Density grams per cc.	Sp. Vol. cc. per gram.	Reference.
Pure compounds, all at 25°C Magnesia, MgO Lime, CaO Forms of SiO ₂ : Quartz, natural "artificial Cristobalite, artificial Silica glass Forms of Al ₂ SiO ₅ : Sillimanite glass Sillimanite cryst. Forms of MgSiO ₃ : β Monoclinic pyroxene α' Orthorhombic pyroxene β' Monoclinic amphibole γ' Orthorhombic amphibole γ' Orthorhombic amphibole Glass Forms of CaSiO ₃ : α (Pseudo-wollastonite) β (Wollastonite) Glass Forms of Ca ₂ SiO ₄ : α — calcium-orthosilicate β — " γ — " β' — " Lime-alumina compounds: 3CaO·Al ₂ O ₃ CaO·Al ₂ O ₃ CaO·Al ₂ O ₃ 3CaO·5Al ₂ O ₃ 3CaO·5Al ₂ O ₃ 3CaO·SAl ₂ O ₃ 3CaO·SAl ₂ O ₃ CaO·Al ₂ O ₃	3.603 3.306 2.646 2.642 2.319 2.206 2.53 3.022 3.183 3.166 2.849 2.735 2.904 2.906 2.895 3.26 3.27 2.965 3.27 2.965	3779 3785 4312 4533 395 3309 3142 3159 3510 3656 3444 3441 3454 307 306 337 3301 3365	1 2	Feldspars: Albite glass, NaAlSi ₃ O ₈ , art. Albite cryst., NaAlSi ₃ O ₈ , art. Anorthite glass, CaAl ₂ Si ₂ O ₈ , art. Anorthite cryst., CaAl ₂ Si ₂ O ₈ , art. Soda anorthite, NaAlSiO ₄ , art. Borax, glass, Na ₂ B ₄ O ₇ " cryst. Fluorite, natural, CaF ₂ (20°) (NH ₄) ₂ SO ₄ (30°) K	2.375 2.597 2.692 2.757 2.563 2.36 2.27 3.180 1.765 2.657 1.984 4.090 4.087 4.820 8.176 7.58 3.03 3.005	gram. .4210 .3851 .3715 .3627 .3902 .423 .440 .3145 .5666 .3764 .5040 .2444 .2075 .1223 .132 .330 .3328 .3726 .1995 .2052	6 " " 8 9 " " " " " " " " " " " " " " " "

References: 1, Larsen 1909; 2, Day and Shepherd; 3, Shepherd and Rankin, 1909; 4, Allen and White, 1909; 5, Allen, Wright and Clement, 1906; 6, Day and Allen, 1905; 7, Washington and Wright, 1910; 8, Merwin, 1911; 9, Johnston and Adams, 1911; 10, Allen and Crenshaw, 1912; 11, Wright, 1908.

All the data of this table are from the Geophysical Laboratory, Washington.

TABLE 100. - DENSITIES OF MOLTEN TIN AND TIN-LEAD EUTECTIC.

Temperature Molten tin 37 pts. Pb, 63, Sn.* 250°C. 6.982 6.943 7.965	6.875 6.814 6	600° 900° 1200° 6.755 6.578 6.399 7.731 -	1400° 1600° 6.162
---	---------------	---	-----------------------

* Melts at 181. Day and Sosman, Geophysical Laboratory, unpublished.

For further densities inorganic substances see table 219.

TABLES 101-102. WEIGHT OF SHEET METAL.

TABLE 101.- Weight of Sheet Metal. (Metric Measure.)

This table gives the weight in grams of a plate one meter square and of the thickness stated in the first column.

Thickness in thou- sandths of a cm.	Iron.	Copper.	Brass.	Aluminum.	Platinum.	Gold.	Silver.
1 2 3 4 5	78.0 156.0 234.0 312.0 390.0	89.0 178.0 267.0 356.0 445.0	85.6 171.2 256.8 342.4 428.0	26.7 53.4 80.1 106.8 133.5	215.0 430.0 645.0 860.0	193.0 386.0 579.0 772.0 965.0	105.0 210.0 315.0 420.0 525.0
6 7 8 9	468.0 546.0 624.0 702.0 780.0	534.0 623.0 712.0 801.0 890.0	513.6 599.2 684.8 770.4 856.0	160.2 186.9 213.6 240.3 267.0	1290.0 1505.0 1720.0 1935.0 2150.0	1158.0 1351.0 1544.0 1737.0 1930.0	630.0 735.0 840.0 945.0 1050.0

TABLE 102. - Weight of Sheet Metal. (British Measure.)

771 1-1	Iron.	Copper.	Brass.	Alum	inum.	Platinum.		
Thickness	Pounds per	Pounds per	Pounds per	Pounds per	Ounces per	Pounds per	Ounces per	
in Mils.	Sq. Foot.	Sq. Foot.	Sq. Foot.	Sq. Foot.	Sq. Foot.	Sq. Foot.	Sq. Foot.	
1 2 3 4 5	.04058 .08116 .12173 .16231 .20289	.04630 .09260 .13890 .18520 .23150	.04454 .08908 .13363 .17817 .22271	.01389 .02778 .04167 .05556 .06945	.2222 .4445 .6667 .8890	.1119 .2237 .3356 .4474 .5593	1.790 3.579 5.369 7.158 8.948	
6	.24347	.27780	.26725	.08334	1.3335	.6711	10.738	
7	.28405	.32411	.31179	.09723	1.5557	.7830	12.527	
8	.32463	.37041	.35634	.11112	1.7780	.8948	14.317	
9	.36520	.41671	.40088	.12501	2.0002	1.0067	16.106	
10	.40578	.46301	.44542	.13890	2.2224	1.1185	17.896	

	Go	old.	Silver.			
Thickness in Mils.	Troy Ounces per Sq. Foot.	Grains per Sq. Foot.	Troy Ounces per Sq. Foot.	Grains per Sq. Foot.		
1	1.4642	702.8	0.7967	382.4		
2	2.9285	1405.7	1.5933	764.8		
3	4.3927	2108.5	2.3900	1147.2		
4	5.8570	2811.3	3.1867	1529.6		
5	7.3212	3514.2	3.9833	1912.0		
6	8.7854	4217.0	4.7800	2294.4		
7 8	10.2497	4919.8	5.5767	2676.8		
	11.7139	5622.7	6.3734	3059.2		
9	14.6424	6325.5	7.1700	3441.6		
	-4.0424	7020.3	7.9007	3024.0		

DENSITY OF LIQUIDS.

Density or mass in grams per cubic centimeter and in pounds per cubic foot of various liquids.

Liquid.	Grams per cubic centimeter.	Pounds per cubic foot.	Temp. C.
Acetone	0.792	49.4	20°
Alcohol, ethyl	0.807	50.4	0
" methyl	0.810	50.5	0
Aniline	1.035	64.5	0
Benzene	0.899	56.1	0
Bromine	3.187	199.0	0
Carbolic acid (crude)	0.950-0.965	59.2-60.2	15
Carbon disulphide	1.293	80.6	0
Chloroform	1.480	92.3	18
Cocoa-butter	0.857	53.5	100
Ether	0.736	45.9	0
Gasoline	0.66-0.69	41.0-43.0	_
Glycerine	1.260	78.6	0
Japan wax	0.875	54.6	100
Machtha (wood)	1.028-1.035 0.848-0.810	64.2-64.6	-
Naphtha (petroleum ether)	0.665	52.9-50.5	0
Oils: Amber	0.800	41.5	15
Anice cond	0.006	62.I	16
Camphor	0.910	56.8	10
Castor	0.969	60.5	15
Clove	1.04-1.06	6566.	25
Cocoanut	0.925	57.7	15
Cotton Seed	0.026	57.8	16
Creosote	1.040-1.100	64.9-68.6	15
Lard	0.920	57 · 4	15
Lavender	0.877	54.7	16
Lemon	0.844	52.7	16
Linseed (boiled)	0.942	58.8	15
Neat's foot.	0.913917	57.0-57.2	-
Olive	0.918	57.3	15
Palm	0.905	56.5	15
Pentane	0.650	40.6	0
	0.623	38.9	25
Peppermint Petroleum .	0.9092	56-57	25
(light)	0.878	54.8 49.6-50.2	15
Pine . (light)	0.795-0.805 0.850-0.860	53.0-54.0	15
Poppy	0.024	57.7	15
Rapeseed (crude)	0.915	57.1	15
" (refined)	0.913	57.0	15
Resin		59.6	15
Sperm	0.955 0.88	55.	25
Soya-bean	0.919	57.3	30
	0.906	56.5	90
Train or Whale	0.918-0.925	57 - 3 - 57 - 7	15
Turpentine	0.873	54.2	16
Valerian	0.965	60.2	16
Wintergreen	1.18	74.	25
Pyroligneous acid	0.800	49.9	0
Water	1.000	62.4	4

DENSITY OF PURE WATER FREE FROM AIR. 0° TO 41° C.

[Under standard pressure (76 cm), at every tenth part of a degree of the international hydrogen scale from 00 to 410 C, in grams per milliliter 1]

2				Ter	nths of D	02T008.					Mean
De- grees Centi- grade.	0	1	2	3	4	5	6	7	8	9	Differ- ences.
Riado.		•									
			00	00	0 (0			0.60	0016	1 50
0	0.999 8681	8747	8812	8875	8936	8996	9053	9109	9163	9216	+ 59
I	9267	9315	9363	9408	9452	9494	9534 9844	9573 9866	9887	9905	+ 24
2	9679	9711	9741	9962	9973	9981	9988	9994	9998	*0000	+ 8
3 4	1.000 0000	*9999	*9996	*9992	*9986	*9979	*9970	*9960	*9947	*9934	- 8
		"									
5	0.999 9919	9902	9884	9864	9842	9819	9795 9468	9769	9742	9713	- 24
6	9682	9650	9617	9582	9545	9507	9408	9427 8938	9385 8881	934I 8823	- 39
7 8	9296	9249	9201	9151	9100	9048	8994	8308	8237	8165	$\frac{-53}{-67}$
	8764 8091	8703	8641	8577 7863	8512 7784	7704	7622	7539	7455	7369	- 81
9	8091	001/	7940	7003	7704	1104	7022	1339	7433	1309	
10	7282	7194	7105	7014	6921	6826	6729	6632	6533	6432	- 95 -108
II	6331	6228	6124	6020	5913	5805	5696	5586	5474	5362	
12	5248	5132	5016	4898	4780	4660	4538	4415	4291	4166	I 2 I
13	4040	3912	3784	3654	3523	3391	3 ² 57 1858	3122	2986	2850	-133
14	2712	2572	2431	2289	2147	2003	1858	1711	1564	1416	-145
	1266	1114	0962	0809	0655	0499	0343	0185	0026	*9865	-156
15	0.998 9705			9214	9048	8881	8713	8544	8373	8202	-168
	8029	9542 7856	9378 7681	7505	7328	7150	6971	6791	6610	6427	-178
17	6244	6058	5873	5686	5498	5309	5119	4927	4735	4541	-190
19	4347	4152	3955	3757	3558	3358	3158	2955	2752	2549	200
								0.0			
20	2343	2137	1930	1722	1511	1301	1090	0878	0663	0449	-211
21	0233	0016	*9799	*9580	*9359	*9139	*8917	*8694	*8470	*8245	221
22	0.997 8019	7792 5466	7564	7335 4988	7104	6873	6641	6408	6173	5938	-232 -242
23	5702 3286	3039	5227	2541	4747 2291	2040	1788	1535	3777 1280	3531	-252
-4	3200	3039	2/90	234.	2291	2040	1/00	* 333	1200	1020	- 3-
25	0770	0513	0255	*9997	*9736	*9476	*9214	*8951	*8688	*8423	-261
25 26	0.996 8158	7892	7624	7356	7087	6817	6545	6273	6000	5726	-27 I
27	5451	5176	4898	4620	4342	4062	3782	3500	3218	2935	-280
28	2652	2366	2080	1793	1505	1217	0928	0637	0346	0053	-289
29	0.995 9761	9466	9171	8876	8579	8282	7983	7684	7383	7083	-298
20	6780	6478	6174	5869	5564	5258	4950	4642	1221	4024	-307
30	3714	3401	3089	2776	2462	2147	1832	1515	4334	0880	-315
32	0561	0241	*9920	*9599	*9276	*8954	*8630	*8304	*7979	*7653	-324
33	0.994 7325	6997	6668	6338	6007	5676	5345	5011	4678	4343	-332
34	4007	3671	3335	2997	2659	2318	1978	1638	1296	0953	-340
					ala						
35	0610	0267	*9922	*9576	*9230	*8883	*8534	*8186	*7837	*7486	-347
36	0.993 7136	6784	6432 2866	6078	5725	5369	5014	4658	4301	3943	-355
37	0.992 9960	3226	9227	2505 8859	8490	8120	1419	7380	7008	0326	-362
39	6263	9593 5890	5516	5140	4765	4389	7751	3634	3255	2876	$\frac{-370}{-377}$
3)	1	3-90	35-0	3-40	4,03	4329	4001	3-34		20,0	
40	2497	2116	1734	1352	0971	0587	0203	*9818	*9433	*9047	-384
41	0.991 8661								1.50		
1						1					

¹ According to P. Chappuis, Bureau international des Poids et Mesures, Travaux et Mémoires, 13; 1907.

SMITHSONIAN TABLES.

VOLUME IN CUBIC CENTIMETERS AT VARIOUS TEMPERATURES OF A CUBIC CENTIMETER OF WATER FREE FROM AIR AT THE TEMPERATURE OF MAXIMUM DENSITY. 0° TO 40° C.

Hydrogen Thermometer Scale.

Temp. C.	.0	.1	.2	•3	-4	-5	.6	-7	.8	.9
0 1 2 3 4	1.000132 073 032 008 000	125 069 029 006 000	118 064 026 005	059 023 004 001	106 055 020 003 001	100 051 018 002 002	095 047 016 001 003	089 043 013 001 004	084 039 011 000 005	079 035 009 000 007
5 6 7 8 9	008 032 070 124 191	010 035 075 130 198	012 039 080 137 206	014 042 085 142 214	016 046 090 149 222	018 050 095 156 230	021 054 101 162 238	023 058 106 169 246	026 062 112 176 254	029 066 118 184 263
10 11 12 13 14	272 367 476 596 729	281 377 487 609 743	290 388 499 623 757	299 398 511 636 772	308 409 522 649 786	317 420 534 661 800	327 430 547 675 815	337 441 559 688 830	347 453 571 702 844	357 464 584 715 859
15 16 17 18	873 1.001031 198 378 568	890 047 216 396 588	905 063 233 415 606	920 080 252 433 626	935 097 269 452 646	951 113 287 471 667	967 130 305 490 687	983 147 323 510 707	998 164 341 529 728	01 5* 182 358 548 748
20 21 22 23 24	769 981 1.002203 436 679	790 002* 226 459 704	811 024* 249 483 729	832 046* 271 507 754	853 068* 295 532 779	874 091* 319 556 804	895 113* 342 581 829	916 135* 364 605 854	938 158* 389 629 879	960 181* 412 654 905
25 26 27 28 29	932 1.003195 467 749 1.004041	958 221 495 776 069	983 248 523 806 100	010* 275 550 836 129	036* 302 579 865 160	061* 330 607 893 189	088* 357 635 922 220	384 663 951 250	141* 412 692 981 280	168* 439 720 011* 310
30 31 32 33 34	341 651 968 1.005296 631	371 682 001* 328 665	403 713 033* 361 698	43 ² 744 066* 395 73 ²	464 777 098* 427 768	494 808 132* 461 802	526 840 163* 496 836	557 872 197* 530 871	588 904 229* 562 904	619 936 263* 597 940
35	975	009*	044*	078*	115*	150*	185*	219*	255*	290*

Reciprocals of the preceding table.

DENSITY AND VOLUME OF WATER. -10° TO +250° C.

The mass of one cubic centimeter at 4° C. is taken as unity.

Temp. C.	Density.	Volume.	Temp. C.	Density.	Volume.
-10°	0.99815	1.00186	+35° 36 37 38 39	0.99406	1.00598
-9	. 843	157		371	633
-8	. 869	131		336	669
-7	. 892	108		3 0 0	706
-6	. 912	088		263	743
-5	0.99930	1.00070	40	0.99225	1.00782
-4	945	055	41	187	821
-3	958	042	42	147	861
-2	970	031	43	107	901
-1	979	021	44	066	943
+0	0.99987	1.00013	45	0.99025	1.00985
1	993	007	46	0.98982	1.01028
2	997	003	47	940	072
3	999	001	48	896	116
4	1.00000	1.00000	49	852	162
5 6 7 8 9	0.99999 997 993 988 981	003 007 012 019	50 51 52 53 54	0.98807 762 715 669 621	1.01207 254 301 349 398
10	0.99973	1.00027	55	0.98573	1.01448
11	963	037	60	324	705
12	952	048	65	059	979
13	940	060	70	0.97781	1.02270
14	927	073	75	489	576
15	0.99913	1.00087	80	0.97183	1.02899
16	897	-103	85	0.96865	1.03237
17	880	120	90	534	590
18	862	138	95	192	959
19	843	157	100	0.95838	1.04343
20	0.99823	1.00177	110	0.9510	1.0515
21	802	198	120	·9434	1.0601
22	780	220	130	·9352	1.0693
23	757	244	140	·9264	1.0794
24	733	268	150	·9173	1.0902
25 26 27 28 29	0.99708 682 655 627 598	320 347 375 404	160 170 180 190 200	0.9075 .8973 .8866 .8750 .8628	1.1019 1.1145 1.1279 1.1429 1.1590
30	0.99568	1.00434	210	0.850	1.177
31	537	465	220	.837	1.195
32	506	497	230	.823	1.215
33	473	530	240	.809	1.236
34	440	563	250	.794	1.259

^{*} From — 10° to 0° the values are due to means from Pierre, Weidner, and Rosetti; from 0° to 41°, to Chappuis, 42° to 100°, to Thiesen; 110° to 250°, to means from the works of Ramsey, Young, Waterston, and Hirn.

DENSITY OF MERCURY

Density or mass in grams per cubic centimeter, and the volume in cubic centimeters of one gram of mercury.

Temp. C.	Mass in grams per cu. cm.	Volume of r gram in cu. cms.	Temp. C	Massin grams per cu. cm.	Volume of I gram in cu. cms.
-10° -9 -8 -7 -6	13.6198	0.0734225	30°	13.5213	0.0739572
	6173	4358	31	5189	9705
	6148	4492	32	5164	9839
	6124	4626	33	5140	9973
	6099	4759	34	5116	40107
-5	13.6074	0.0734893	35	13.5091	0.0740241
-4	6050	5026	36	5066	0374
-3	6025	5160	37	5042	0508
-2	6000	5293	38	5018	0642
-1	5976	5427	39	4994	0776
O1234	13.5951	0.0735560	40	13.4969	0.0740910
	5926	5694	50	4725	2250
	5901	5828	60	4482	3592
	5877	5961	70	4240	4936
	5852	6095	80	3998	6282
5	13.5827	0.0736228	90	13.3723	0.0747631
6	5803	6362	100	3515	8981
7	5778	6496	110	3279	50305
8	5754	6629	120	3040	1653
9	5729	6763	130	2801	3002
10	13.5704	0.0736893	140	13.2563	0.0754 ⁻ 54
11	5680	7030	150	2326	5708
12	5655	7164	160	2090	7064
13	5630	7298	170	1853	8422
14	5606	7431	180	1617	9784
15	13.5581	0.0737565	190	13.1381	0.0761149
16	5557	7699	200	1145	2516
17	5532	7832	210	0910	3886
18	5507	7966	220	0677	5260
19	5483	8100	230	0440	6637
20	13.5458	0.0738233	240	13.0206	0.0768017
21	5434	8367	250	12.9972	9402
22	5409	8501	260	9738	7090
23	5385	8635	270	9504	2182
24	5360	8768	280	9270	3579
25 26 27 28 29	13.5336 5311 5287 5262 5238	0.0738902 9036 9170 9304 9437	300 310 320 330	12.9036 8803 8569 8336 8102	0.0774979 6385 7795 9210 80630
30	13.5213	0.0739571	340 350 360	12.7869 7635 7402	0.0782054 3485 4921

Based upon Thiesen und Scheel, Tätigkeitber. Phys.-Techn. Reichsanstalt, 1897-1898; Chappuis, Trav. Bur. Int. 13, 1903. Thiesen, Scheel, Sell; Wiss. Abh. Phys.-Techn. Reichsanstalt 2, p. 184, 1895, and 1 liter = 1.000027 cu. dm.

DENSITY OF AQUEOUS SOLUTIONS.*

The following table gives the density of solutions of various salts in water. The numbers give the weight in grams per cubic centimeter. For brevity the substance is indicated by formula only.

grams per cubic centimeter. For brevity the substance is indicated by formula only.											
Substance.	w	eight of	t of	ηρ. C.	Authority.						
	5	10	15	20	25	30	40	50	60	Temp.	
K ₂ O	1.073	1.098 1.082 1.144 1.114 0.9 5 9	1.218	1.176 1.284 1.224	1.229 1.354 1.279	1.286 1.421 1.331	1.410 1.557 1.436			15.	Schiff. " " Carius.
NH4Cl	1 00	1.065		1.135	1.147	1.181	- 1.255 1.402	- - - -		15. 15. 15. 15.	Gerlach.
CaCl ₂ + 6H ₂ O AlCl ₃ MgCl ₂ MgCl ₂ +6H ₂ O ZnCl ₂	1.030	1.040 1.072 1.085 1.032 1.089	1.111	1.083 1.153 1.177 1.067 1.184	1.196 1.226 1.085	1.241	1.176 1.340 - 1.141 1.417		_	18. 15. 15. 24. 19.5	Schiff. Gerlach. " Schiff. Kremers.
$\begin{array}{c} CdCl_2 \\ SrCl_2 \\ SrCl_2 + 6H_2O \\ BaCl_2 \\ BaCl_2 + 2H_2O \end{array}$	1.044	1.053	1.082	1.198 1.111 1.205	1.254 1.257 1.042 1.269 1.217	1.321	1.469	1.653	1.887	19.5 15. 15. 15.	Gerlach. " Schiff.
CuCl ₂	1.041	1.091 1.098 1.092 1.086 1.097	1.157	1.221 1.223 - 1.179 1.214	1.299	_	1.527 - - 1.413 1.546	- - - 1.545 1.785	1.668	17.5 17.5 20. 17.5	Franz. "Mendelejeff. Hager. Precht.
SnCl ₂ + 2H ₂ O SnCl ₄ + 5H ₂ O LiBr KBr	1.029 1.033 1.035	1.058	1.089	I.I 22 I.I 54 I.I 57	1.202	1.193	1.274	1.365	1.580 1.467 - -	15. 15. 19.5 19.5	Gerlach. Kremers.
Mg Br ₂		1.085 1.091 1.088 1.087 1.090	1.144	I.202 I.197 I.192	1.258	1.328 1.324	I.449 I.473 I.479 I.459 I.483	1.648	1.873	19.5 19.5 19.5 19.5	66 66 66 66
SrBr ₂ KI LiI NaI ZnI ₂	1.036	I.076 I.077 I.080	1.118 1.122 1.126	I.164 I.170 I.177	1.222	1.269	1.430	I.544 I.573	1.953 1.732 1.775 1.808 1.873	19.5 19.5 19.5 19.5	66 66 66 66
$\begin{array}{c} CdI_2 \ , \qquad \ldots \\ MgI_2 \ , \qquad \ldots \\ CaI_2 \ , \qquad \ldots \\ SrI_2 \ , \qquad \ldots \\ BaI_2 \ , \qquad \ldots \end{array}$	1.041 1.042 1.043 1.043	1.089	1.137 1.138 1.140 1.141	1.192 1.196 1.198 1.199	1.252 1.258 1.260 1.263	1.318 1.319 1.328 1.331	1.472 1.475 1.489 1.493	1.666	1.908	19.5	66 66 66 66
NaClO ₃ NaBrO ₃ KNO ₃ NaNO ₅ AgNO ₃	1.039	1.068 1.081 1.064 1.065 1.090	1.127	I.176 I.135 I.140	1.229	1.287	- 1.313	- 1.416 1.675	1.918	19.5 19.5 15. 20.2 15.	" Gerlach. Schiff. Kohlrausch.

^{*} Compiled from two papers on the subject by Gerlach in the "Zeit. für Anal. Chim.," vols. 8 and 27.

SMITHSONIAN TABLES.

DENSITY OF AQUEOUS SOLUTIONS.

Substance.	w	eight of	the diss		ubstanc e solutio		parts b	y weigh	of	. C.	Authority.
Substance.	5	10	15	20	25	30	40	50	60	Temp.	Additionty.
NH ₄ NO ₈ Zn(NO ₈) ₂	1.020	1.041		1.085	1.107	1.325	1.456	000	1.282	17.5	Gerlach. Franz.
$Zn(NO_3)_2 + 6H_2O$ $Ca(NO_3)_2$ $Cu(NO_3)_2$	1.037	1.054 1.075 1.093	1.118	1.113 1.162 1.203	1.211		1.250 1.367 1.471	1.329	1.604	14. 17.5 17.5	Oudemans. Gerlach. Franz.
$Sr(NO_3)_2 \cdot \cdot \cdot Pb(NO_3)_2 \cdot \cdot \cdot \cdot$	1.039	1.083	1.129	1.179	1.262		-	=	_	19.5	Kremers. Gerlach.
$Cd(NO_3)_2$ $Co(NO_3)_2$ $Ni(NO_3)_2$	1.052	I.097 I.090	I.150 I.137 I.137	I.212 I.192 I.192	I.283 I.252 I.252		1.536 1.465 1.465	1.759	-	17.5 17.5 17.5	Franz.
Fe ₂ (NO ₃) ₆ · · · · Mg(NO ₃) ₂ +6H ₂ O Mn(NO ₃) ₂ +6H ₂ O	1.039 1.018 1.025	1.076 1.038 1.052	1.117 1.060 1.079	1.160 1.082 1.108	1.210 1.105 1.138 1.245	1.129	I.373 I.179 I.235 I.417	1.496 1.232 1.307	1.657	17.5 21 8 15	Schiff. Oudemans. Gerlach.
K_2CO_3 $K_2CO_3 + 2H_2O$. $Na_2CO_3IoH_2O$.	1.037	1.092	1.141	1.192	1.191	1.233	1.320	1.543	1.511	15.	"
$(NH_4)_2SO_4$ $Fe_2(SO_4)_3$ $FeSO_4 + 7H_2O$.	1.027 1.045 1.025	1.038 1.055 1.096 1.053	1.057 1.084 1.150 1.081	I.077 I.113 I.207 I.111	I.142 I.270 I.141	1.170	1.226 1.489 1.238	1.287	-	19. 18. 17.2	Schiff. Hager. Schiff. Gerlach.
$MgSO_4 + 7H_2O$. $Na_2SO_4 + 10H_2O$	1.051	1.104	1.161	1.221 1.101 1.081	I.129 I.102	1.124	1.215	1.278		15. 15. 18.	Schiff.
$\begin{array}{c} \text{CuSO}_4 + 5\text{H}_2\text{O} \\ \text{MnSO}_4 + 4\text{H}_2\text{O} \\ \text{ZnSO}_4 + 7\text{H}_2\text{O} \end{array}$	1.031	1.064 1.057	1.098	I.I34 I.I35 I.I22	I.173 I.174 I.156	1.213	I.303 I.269	1.398	1.443	15.	Gerlach. Schiff.
$Fe_2(SO_4)_3 \cdot K_2SO_4 + 24H_2O \cdot \cdot Cr_2(SO_4)_3 \cdot K_2SO_4$	1.026	1.045	1.066	1.088	1.112	1.141	-	-	-	17.5	Franz.
+ 24 H2O $MgSO4 + K2SO4$	1.016		1.051	1.073	1.099	1.126	1.188	1.287	1.454	17.5	"Schiff.
$+6H_2O$ $(NH_4)_2SO_4 + FeSO_4 + 6H_2O$	1.032	1.058		1.138			_	_	_	15.	« «
K_2CrO_4 $K_2Cr_2O_7$ $F_2(C_7)$	1.039 1.035 1.028	1.082	1.127	-	1.225	1.279	1.397	_	-	19.5 19.5 15.	Kremers. Schiff.
$\begin{array}{c c} \operatorname{Fe}(\operatorname{Cy})_{6}\operatorname{K}_{4} & \cdot & \cdot \\ \operatorname{Fe}(\operatorname{Cy})_{6}\operatorname{K}_{3} & \cdot & \cdot \\ \operatorname{Pb}(\operatorname{C}_{2}\operatorname{H}_{3}\operatorname{O}_{2})_{2} & + & \cdot \end{array}$	1.025	1.053	1.092		-		_	-	-	13	66
$3H_2O$	1.031	1.064	1.100	1.137	1.177	1.220	1.315	1.426		15.	Gerlach. Schiff.
T 241120	5	1.042	1.000	20	30	40	60	80	ICO	-4-	
$SO_3 \dots \dots$	1.040	1.084	1.132	1.179	1.277	1.389	1.564	1.840	-	15.	Brineau. Schiff.
$N_2\bar{O}_5$ $C_4H_6O_6$	1.033	1.028	1.045	1.063 1.141 1.096 1.079	1.217	I.294 I.207	1.422	1.506	-	15. 15. 15.	Kolb. Gerlach.
C ₆ H ₈ O ₇	1.019	1.039	1.060	1.082	1.129	1.178	1.289	-	-	17.5	" Kolb.
HBr	1.035 1.037 1.032	1.073 1.077 1.069		1.165	I.257 I.271 I.223		1.501	- 1.732	1.838	14. 13. 15.	Topsöe. Kolb.
H_2SiF_6 P_2O_5 $P_2O_5+3H_2O$ HNO_3 $C_2H_4O_2$	1.040 1.035 1.027 1.028	1.082 1.077 1.057 1.056	1.119 1.086 1.088	1.174 1.167 1.119 1.119 1.028	1.271	1.250	1.676 1.438 1.373 1.068		- - 1.528 1.055		Stolba. Hager. Schiff. Kolb. Oudemans.

DENSITIES OF MIXTURES OF ETHYL ALCOHOL AND WATER IN CRAMS PER MILLILITER.

The densities in this table are numerically the same as specific gravities at the various temperatures in terms of water at 4° C. as unity. Based upon work done at U. S. Bureau of Standards. See Bulletin Bur. Stds. vol. 9, no. 3; contains extensive bibliography; also Circular 19, 1913.

Per cent C ₂ H ₅ OH				Temperatures.			
	10° C.	15° C.	20° C.	25° C.	30° C.	35° C.	40° C.
0	0.99973	0.99913	0.99823	0.99708	0.99568	0.99406	0.99225
1	785	725	636	520	379	217	034
2	602	542	453	336	194	031	.98846
3	426	365	275	157	014	.98849	663
4	258	195	103	.98984	.98839	672	485
5	098	032	.98938	817	670	501	311
6	.98946	.98877	780	656	507	335	142
7	801	729	627	500	347	172	•97975
8	660	584	478	346	189	009	808
9	524	442	331	193	031	.97846	641
10 11 12 13	393 267 145 026 .97911	304 171 041 .97914 790	187 047 •97910 775 643	043 .97897 753 611 472	.97875 723 573 424 278	685 527 371 216 063	475 312 150 .96989 829
15 16 17 18	800 692 583 473 363	669 552 433 313 191	514 387 259 129	334 199 062 .96923 782	133 .96990 844 697 547	.96911 760 607 452 294	670 512 352 - 189 023
20 21 22 23 24	252 139 024 .96907 787	068 .96944 818 689 558	864 729 592 453 312	639 495 348 199 048	395 242 087 •95929 769	·95973 809 643 476	.95856 687 516 343 168
25	665	424	168	.95895	607	306	.94991
26	539	287	020	738	442	133	810
27	406	144	.95867	576	272	•94955	625
28	268	.95996	710	410	098	7 7 4	438
29	125	844	548	241	.94922	590	248
30	.95977	686	382	067	741	403	055
31	823	524	212	.94890	557	214	.93860
32	665	357	038	709	370	021	662
33	502	186	.94860	525	180	.93825	461
34	334	011	679	337	.93986	626	257
35	162	.94832	494	146	790	425	051
36	.94986	650	306	•93952	591	221	.92843
37	805	464	114	756	390	016	634
38	620	273	.93919	556	186	.92808	422
39	431	079	720	353	.92979	597	208
40	238	.93882	518	148	770	385	.91992
41	042	682	314	.92940	558	170	774
42	.93842	478	107	729	344	.91952	554
43	639	271	.92897	516	128	733	332
44	433	062	685	301	.91910	513	108
45	226	.92852	472	085	692	291	.90884
46	017	640	257	.91868	472	069	660
47	.92806	426	041	649	250	.90845	434
48	593	211	.91823	429	028	621	207
49	379	.91995	604	208	.90805	396	.89979
50	162	776	384	.90985	580	168	750

DENSITY OF MIXTURES OF ETHYL ALCOHOL AND WATER IN CRAMS PER MILLILITER.

Per cent				Temperature.			
C ₂ H ₅ OH by weight	10° C.	15° C.	20° C.	25° C.	30° C.	35° C.	40° C.
50 51 52 53 54	0.92162 .91943 723 502 279	0.91776 555 333 110 .90885	0,91384 160 .90936 711 485	0,90985 760 534 307 079	0.90580 353 125 .89896 667	0.90168 .89940 710 479 248	0.89750 519 288 056 .88823
55 56 57 58 59	055 .90831 607 381 154	659 433 207 .89980 752	258 031 .89803 574 344	.89850 621 392 162 .88931	437 206 .88975 744 512	.88784 .552 319 .885	589 356 122 .87888 653
60 61 62 . 63 64	.89927 698 468 237 006	523 293 062 .88830 597	.88882 650 417 183	699 466 ² 33 .87998 763	278 044 .87809 574 337	.87851 615 379 142 .86905	417 180 .86943 705 466
65 66 67 68 69	.88774 . 541 308 074 .87839	364 130 .87895 660 424	.87948 713 477 241 004	527 291 054 .86817 579	.86863 625 387 148	667 429 190 .85950 710	.8 5 987 .747 .507 .266
70 71 72 73 74	602 365 127 .86888 648	187 .86949 710 470 229	.86766 527 287 047 .85806	340 100 .85859 618 376	.85908 667 426 184 .84941	470 228 .84986 743 500	025 .84783 .540 .297 053
75 76 77 78 79	408 168 .85927 685 442	.85988 747 505 262 018	564 322 079 .84835 590	.84891 647 403 158	698 455 211 .83966 720	257 013 .83768 523 277	.83809 564 319 074 .82827
80 81 82 83 84	197 .84950 702 453 203	.84772 525 277 028 .83777	344 096 .83848 599 348	.83911 664 415 164 .82913	473 224 .82974 724 473	029 .82780 530 279 027	578 329 079 .81828 576
85 86 87 88 89	.83951 697 441 181 .82919	525 271 014 .82754 492	095 .82840 583 323 062	660 405 148 ,81888 626	220 .81965 708 448 186	.81774 519 262 003 .80742	322 067 .80811 552 291
90 91 92 93 94	654 386 114 .81839 561	227 .81959 688 413 134	.81797 529 257 .80983 705	362 094 .80823 549 272	.80922 655 384 111 .79835	478 211 -79941 669 393	028 .79761 491 220 .78947
95 96 97 98 99	278 .So991 698 399 094	.80852 566 274 •79975 670	424 138 .79846 547 243	.79991 706 415 117 .78814	555 271 .78981 684 382	.78831 .542 247 .77946	670 388 100 .77806 507
100	.79784	360	.78934	506	075	641	203

DENSITIES OF AQUEOUS MIXTURES OF METHYL ALCOHOL, CANE SUGAR, OR SULPHURIC ACID.

Per cent	Methyl	Cane	Sulphuric	Per cent	Methyl	Cane	Sulphuric
by weight of substance.	Alcohol. D $\frac{15^{\circ}}{4^{\circ}}$ C.	Sugar.	Acid. $D \frac{20^{\circ}}{4^{\circ}} C.$	by weight of substance.	Alcohol. $D \frac{15^{\circ}}{4^{\circ}} C$.	Sugar.	Acid. D 20° C.
0	0.99913	0.998234	0.99823	50 51	0.91852	1.229567	1.39505
2 3	·99543 ·99370	1.006015	1.01178	52 53	.91451	1.246641	1.41481
4	.99198	1.013881	1.02500	54	.91044	1.257535	1.43503
5 6	.98864	1.021855	1.03843	55 56 57	.90631	1.263243	1.45568
7 8 9	.98547	1.029942	1.05216	58 59	.90210	1.274774	1.47673
IO	.98241	1.038143	1.06609	60 61	.89781 .89563	1.286456	1.49818
11 12 13	.97945 .97802	1.046462	1.08026	62 63	.89341	1.298291	1.51999
14	.97660	1.054900	1.09468	64	.88890 .88662	1.310282	1.54213
15	.97518	1.059165 1.063460 1.067789	1.10199 1.10936 1.11679	65 66 67	.88433	1.322425	1.55333 · · · · · · · · · · · · · · · · ·
17 18 19	.97237 .97096 .96955	1.072147	1.12428	68 69	.87971	1.334722	1.59890
20	.96814	1.080959	1.13943	70 71	.87507 .87271	1.347174	1.61048
21 22	.96673 .96533 .96392	1.085414 1.089900 1.094420	1.14709 1.15480 1.16258	72 73	.87033	1.359778	1.63384
23	.96251	1.098971	1.17041	74	.86546	1.372536	1.65738
25 26	.96108	1.103557	1.17830	75 76	.86300 .86051 .85801	1.378971 1.385446 1.391956	1.66917 1.68095 1.69268
27 28 29	.95817 .95668 .95518	1.117512	1.19423 1.20227 1.21036	77 78 79	.85551	1.398505	1.70433
30	.95366	1.126984	1.21850	80	.85048	1.411715	1.72717
31 32	.95213 .95056 .94896	1.131773	1.22669	82 83	.84794 .84536 .84274	1.425072	1.74904 1.75943
33 34	-94734	1.146345	1.24320	84	.84009	1.438579	1.76932
35 36	.94570	1.151275	1.25992	85 86	.83742	1.445388	1.77860
37 38	.94237 .94067 .93894	1.161236 1.166269 1.171340	1.27685 1.28543 1.29407	87 88 89	.83207 .82937 .82667	1.459114 1.466032 1.472986	1.79509 1.80223 1.80864
39	.93720	1.176447	1.30278	90	.82396	1.479976	1.81438
41 42	.93543	1.181592	1.31157	91 92	.82124 .81849 .81568	1.487002 1.494063 1.501158	1.81950 1.82401 1.82790
43	.93185	1.191993	1.32938	93 94	.81285	1.508289	1.83115
45 46	.92815	1.202540	1.34759	95 96	.80999	1.515455	1.83368 1.83548
47 48 49	.92436 .92242 .92048	1.213238 1.218643 1.224086	1.36625 1.37574 1.38533	97 98 99	.80428 .80143 .79859	1.529891 1.537161 1.544462	1.83637
50	.91852	1.229567	1.39505	100	·79539 ·79577	1.551800	

 Calculated from the specific gravity determinations of Doroschevski and Rozhdestvenski at 15°/15° C.; J. Russ., Phys. Chem. Soc., 41, p. 977, 1909.
 According to Dr. F. Plato; Wiss. Abh. der K. Normal-Eichungs-Kommission, 2, p. 153, 1900.
 Calculated from Dr. Domke's table; Wiss. Abh. der K. Normal-Eichungs-Kommission, 5, p. 131, 1900.

DENSITY OF GASES

The following table gives the density as the weight in grams of a liter (normal liter) of the gas at o° C, 76 cm pressure and standard gravity (sea-level, 45° latitude), the specific gravity referred to dry, carbon-dioxide-free air and to pure oxygen, and the weight in pounds per cubic foot. Dry, carbon-dioxide-free air is of remarkably uniform density; Guye, Kovacs and Wourtzel found maximum variations in the density of only 7 to 8 parts in 10,000. For highest accuracy pure oxygen should be used as the standard gas for specific gravities. Observed densities are closely proportional to the molecular weights.

. Gas.	Formula.	Weight of normal	Specific	gravity.	Pounds per	Refer.
		liter in grams.	Air = I	O ₂ = 1	cubic foot.	2000.
Air. Acetylene. Ammonia. Argon Bromine. Butane. Carbon dioxide. Carbon monoxide. Chlorine. Coal gas. Cyanogen. Ethane. Ethylene. Fluorine. Helium. Hydrobromic acid. Hydrofluoric acid. Hydrogen. Hydrogen sulphide. Krypton. Methane. Methyl chloride. Methyl chloride. Methyl ether. Neon.		1.2930 1.1791 0.7708 1.7809 7.14 2.594 1.9768 1.2504 3.221 { 0.41 to 0.96 2.323 1.3562 1.2609 1.70 0.1785 3.616 1.6398 0.922 0.08987 1.538 3.708 0.7168 2.304 2.110 0.9002	Air = 1 1.0000 0.9119 0.5961 1.3773 5.52 2.006 1.5289 0.9671 2.491 { 0.32 to 0.74 1.797 1.0489 0.9752 1.31 0.1381 2.797 1.2682 0.713 0.06950 1.189 2.868 0.5544 1.782 1.632 0.6962	O ₂ = 1 O.9048 O.8251 O.5394 I.2462 5.00 I.815 I.3833 O.8750 2.254 { O.29 to O.67 I.626 O.9490 O.8823 I.19 O.1249 2.530 I.1475 O.645 O.06289 I.076 2.595 O.5016 I.612 I.477 O.6200	0.08072 0.07361 0.04812 0.11118 0.446 0.1619 0.12341 0.07806 0.2011 \[\text{0.026 to} \\ 0.060 0.1450 0.08467 0.07872 0.106 0.01115 0.2257 0.10237 0.0576 0.005610 0.09602 0.2315 0.04475 0.1438 0.1317 0.05620	1 2 3 3 4 4 4 3 3 3 3 — 4 5 5 2 6 6 14 4 4 3 8 9 3 3 7 7 5 10 10 7
Nitrogen. Nitric oxide. Nitrous oxide. Oxygen. Propane. Steam at 100° C. Sulphur dioxide.	$egin{array}{c} N_2 \\ NO \\ N_2O \\ O_2 \\ C_3H_8 \\ H_2O \\ SO_2 \\ \end{array}$	1.2507 1.3402 1.9777 1.42905 2.0196 0.598 2.9266	0.9673 1.0365 1.5296 1.1052 1.5620 0.462 2.2634	0.8752 0.9378 1.3839 1.0000 1.4132 0.418 2.0479	0.07808 0.08367 0.12347 0.089214 0.12608 0.0373 0.18270	3 3 3 11 12 13 3
Xenon	X	5.851	4.525	4.094	0.3653	7

References: (1) Guye, Kovacs, Wourtzel, Jour. chim. phys., 10, p. 332, 1912; (2) Stahrfoss, Arch. Sc. phys. et nat., IV, 28, p. 384, 1909; (3) Guye, Jour. chim. phys., 5, p. 203, 1907 (contains review of best determinations and indicates most probable values); (4) Computed; (5) Baume and Perrot, Jour. chim. phys., 7, p. 369, 1909; (6) Moissan, C. R., 138, 1904; (7) Watson, Jour. Chem. Soc., 97, p. 833, 1910; (8) Thorpe, Hambley, Jour. Chem. Soc., 53, p. 765, 1888; (9) Morley, Smithsonian Contributions to Knowledge, 1895; (10) Baume, Jour. chim. phys., 6, p. 1, 1908; (11) Germann, Jour. of Phys. Chem., 19, p. 437, 1915; (12) Timmermans, C. R., 158, p. 789, 1914; (13) Peabody's Steam Tables, 1909; (14) Taylor, Phys. Rev., 10, p. 653, 1917.

TABLE 112.

VOLUME OF CASES.

Values of 1 + .00367 t.

The quantity 1 + .00367 t gives for a gas the volume at t^0 when the pressure is kept constant, or the pressure at t^0 when the volume is kept constant, in terms of the volume or the pressure at 0^0 .

(a) This part of the table gives the values of t + .00367t for values of t between o^o and to^o C. by tenths of a degree.

(b) This part gives the values of 1+.00367 t for values of t between -90° and +1990°.
C. by 10° steps.

These two parts serve to give any intermediate value to one tenth of a degree by a simple computation as follows:—In the (δ) table find the number corresponding to the nearest lower temperature, and tq_b this number add the decimal part of the number in the (a) table which corresponds to the difference between the nearest temperature in the (δ) table and the actual temperature. For example, let the temperature be $682^\circ.2:$

- (c) This part gives the logarithms of 1+.00367 t for values of t between -49° and +399° C. by degrees.
- (d) This part gives the logarithms of t + .00367t for values of t between 400° and 1990° C. by 10° steps.

(a) Values of $1+.00367\,t$ for Values of t between 0° and 10° C. by Tenths of a Degree.

	1				
t	0.0	0.1	0.2	0.3	0.4
0 1 2 3 4	1.00000 .00367 .00734 .01101	1.00037 .00404 .00771 .01138	1.00073 .00440 .00807 .01174	1.00110 .00477 .00844 .01211	1.00147 .00514 .00881 .01248 .01615
5 6 7 8 9	1.01835 .02202 .02569 .02936 .03303	1.01872 .02239 .02606 .02973 .03340	1.01908 .02275 .02642 .03009 .03376	1.01945 .02312 .02679 .03046	1.01982 .02349 .02716 .03083
t	0.5	0.6	0.7	0.8	0.9
0 1 2 3 4 5 6 7 8 9	1.00184 .00550 .00918 .01284 .01652 1.02018 .02386 .02752 .03120	1.00220 .00587 .00954 .01321 .01688 1.02055 .02422 .02789 .03156	1.00257 .00624 .00991 .01358 .01725 1.02092 .02459 .02826 .03193 .03560	1.00294 .00661 .01028 .01395 .01762 1.02129 .02496 .02863 .03290 .03597	1.00330 .00697 .01064 .01431 .01798 1.02165 .02532 .02899 .03266 .03633

(b) Values of $1+.00367\,t$ for Values of t between -90° and $+1990^\circ$ C. by 10° Steps.

	1				
ž.	00	10	20	30	40
000	1.00000	0.96330	0.92660	0.88990	0.85320
+000	1.00000	1.03670	1.07340	1.11010	1.14680
100	1.36700	1.40370	1.44040	1.47710	1.51380 1.88080
200	1.73400	1.77070	1.80740	1.84410	1.88080
300	2.10100	2.13770	2.17440	2.21110	2.24780
400	2.46800	2.50470	2.54140	2.57810	2.61480
500	2.83500	2.87170	2.90840	2.94510	2.98180
600	3.20200	3.23870	3.27540	3.31210	3.34880
700 800	3.56900	3.60570	3.64240	3.07910	3.71580
	3.93600	3.97270	4.00940	4.04610	4.08280
900	4.30300	4.33970	4.37640	4.41310	4.44980
1000	4.67000	4.70670	4.74340	4.78010	4.81680
1100	5.03700	5.07370	5.11040	5.14710	5.18380
1200	5.40400	5.44070	5.47740	5.51410 5.88110	5.55080
1300	5.77100	5.80770	5.84440	5.88110	5.91780
1400	6.13800	6.17470	6.21140	6.24810	6.28480
1500	6.50500	6.54170	6.57840	6.61510	6.65180
1600	6.87200	6.90870	6.94540	6.98210	7.01880
1700	7.23900	7.27570	7.31240	7.34910	7.38580
1800	7.00000	7.64270 8.00970	7.07940	7.71610 8.08310	7.75280 8.11980
1900	7.97300	8.00970	8.04640	8.08310	8.11980
2000	8.34000	8.37670	8.41340	8.45010	8.48680
t	50	60	70	80	90
-000	50 0.81650	0.77980	0.74310	80	0.66970
-000	0.81650	0.77980	0.74310	0.70640	0.66970
	0.81650	0.77980	0.74310		
-000 +000	0.81650 1.18350 1.55050	0.77980	0.74310	0.70640 1.29360 1.66060 2.02760	0.66970 1.33030 1.69730 2.06430
-000 +000 100 200 300	0.81650 1.18350 1.55050 1.91750 2.28450	0.77980 1.22020 1.58720 1.95420 2.32120	0.74310 1.25690 1.62390 1.99090 2.35790	0.70640 1.29360 1.66060 2.02760 2.39460	0.66970 1.33030 1.69730 2.06430 2.43130
-000 +000 100 200	0.81650 1.18350 1.55050 1.91750	0.77980 1.22020 1.58720 1.95420	0.74310 1.25690 1.62390 1.99090	0.70640 1.29360 1.66060 2.02760	0.66970 1.33030 1.69730 2.06430
-000 +000 100 200 300	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830
-000 +000 100 200 300 400	0.81650 1.18350 1.55050 1.91750 2.28450	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830
-000 +000 100 200 300 400 500 600 700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.78250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930
-000 +000 100 200 300 400 500 600 700 800	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630
-000 +000 100 200 300 400 500 600 700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.78250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930
-000 +000 100 200 300 400 500 600 700 800	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.22960 4.96360	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030
-000 +000 100 200 300 400 500 600 700 800 900 1000	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.29660 4.96360 5.33060	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730
-000 +000 100 200 300 400 500 600 700 800 900 1100 1100	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.86550 4.85350 5.22050 5.58750	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78020 4.15620 4.52320 4.89020 5.25720 5.62420	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.92690 5.29390 5.66090	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360 5.33060 5.69760	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.92690 5.29390 5.66090 6.02790	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130
-000 +000 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.32150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78020 4.15620 4.52320 4.89020 5.25720 5.62420	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.19290 4.92690 5.29390 5.66090 6.02790 6.39490	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.73430 6.10130 6.46830
-000 +000 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.32150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78020 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.92690 5.29390 5.66090 6.02790 6.39490	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.96360 5.33060 5.69760 6.06460 6.43160	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.32150 6.68850 7.05550	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.92690 5.29390 5.66090 6.02790 6.39490 6.76190 7.12890	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.79860 7.16560	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.595450 6.32150 6.68850 7.05550 7.42250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.45920	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.55990 4.92690 5.29390 6.02790 6.39490 6.76190 7.12890 7.49590	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.79860 7.16560	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230 7.56930
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700 1800	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.32150 6.68850 7.05550 7.482250 7.78050	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.45920 7.45920 7.82620	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.92690 5.29390 5.66090 6.02790 6.39490 6.76190 7.12890 7.49590 7.49590 7.86290	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.96360 5.33060 5.69760 6.06460 6.43160 6.79860 7.16560 7.53260 7.89960	0.66970 1.33030 1.09730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230 7.56930 7.93530
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.595450 6.32150 6.68850 7.05550 7.42250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.45920	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.55990 4.92690 5.29390 6.02790 6.39490 6.76190 7.12890 7.49590	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.79860 7.16560	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230 7.56930

VOLUME OF

(c) Logarithms of 1+.00367t for Values

t	0	1	2	3	4	Mean diff. per degree.
-40	1.931051	T.929179	Ī.927299	1.925410	1.923513	1884
- 30		.947546	945744	•943934	.942117	1805
- 20	.949341	.965169	.963438	.961701	959957	1733
-10	.983762	.982104	.980440	.978769	.977092	1667
-0	0.000000	.998403	.996801	.995192	-993577	1605
+0	0.000000	0.001591	0.003176	0.004755	0.006329	1582
10	.01 5653	.017188	.018717	.020241	.021760	1526
20	.030762	.032244	.033721	.035193	.036661	1474
30	.045362	.046796	.048224	.049648	.051068	1426
40	.059488	.060875	.062259	.063637	.065012	1381
50	0.073168	0.074513	0.075853	0.077190	0.078522	1335
60	.086431	.087735	.089036	.090332	.091624	1299
70 80	.099301	.100567	.101829	.103088	.104344	1259
	.111800	.113030	.114257	.115481	.116701	1226
90	.123950	.125146	.126339	.127529	.128716	1191
100	0.135768	0.136933	0.138094	0.139252	0.140408	1158
110	.147274	.248408	.149539	.1 50667	.151793	1129
I 20	.1 58483	.159588	.160691	.161790	.162887	1101
130	.169410	.170488	.171563	.172635	.173705	1074
140	.180068	.181120	.182169	.183216	.184260	1048
150	0.190472	0.191498	0.192523	0.193545	0.194564	1023
160	.200632	.201635	.202635	.203634	.204630	1000
170	.210559	.211540	.212518	.213494	.214468	976
180	.220265	.221224	.222180	.223135	.224087	956
190	.229759	.230697	.231633	.232567	-233499	935
200	0.239049	0.239967	0.240884	0.241798	0.242710	916
210	.248145	.249044	.249942	.250837	.251731	897
220	.257054	.257935	.258814	.250602	.260567	878
230	.265784	.266648	.267510	.268370	.269228	861
240	-274343	.275189	.276034	.276877	.277719	844
250	0.282735	0.283566	0.284395	0.285222	0.286048	828
260	.290969	.291784	.292597	.293409	.294219	813
270 280	.299049	.299849	.300648	.301445	.302240	798
290		.307768	.308552	.309334	.310115	.784
	.314773	-31 5544	.316314	.317083	.317850	769
300	0.322426	0.323184	0.323941	0.324696	0.325450	756
310	.329947	.330692	-331435	.332178	.332919	743
320	•337339	.338072	.338803	-339533	.340262	730
330	-344608	•345329	-346048	.346766	.347482	719
340	.351758	.352466	-353174	.353880	.354585	707
350	0.358791	0.359488	0.360184	0.360879	0.361573	696
360	.365713	.366399	.367084	.367768	.368451	684
370	-372525	.373201	-373875	•374549	.375221	674
380	•379233	.379898	.380562	.381225	.381887	664
390	.385439	.386494	.387148	.387801	.388453	654
1						

GASES.

of t between -49° and $+399^{\circ}$ C. by Degrees.

-						y
t	5	6	7	8	9	Mean diff.
						per degree.
-40	7.921608	7.919695	ī.917773	1.915843	1.913904	1926
- 30	.940292	.938460	.936619	·93477 I	.932915	1845
- 20	.958205	.956447	.954681	.952909	.951129	1771
-10	.975409	.973719	.972022	.970319	.968609	1699
-0	.991957	.990330	.988697	.987058	.985413	1636
	,39,337	.990330	.900097	.90/030	.903413	1030
+0	0.007897	0.009459	0.011016	0.012567	0.014113	1554
10	.023273	.024781	.026284	.027782	.029274	1 500
20	.038123	.039581	.041034	.042481	.043924	1450
30	.052482	.053893	.055298	.056699	.058096	1402
40	.066382	.067748	.069109	.070466	.071819	1359
50	0.079847	0.081174	0.082495	0.083811	0.085123	
60	.092914				.098031	1315
		.094198	.095486	.096765		
70 80	.105595	.106843	.108088	.109329	.110566	1243
	.117917	.119130	.120340	.121547	.122750	1210
90	.129899	.131079	.132256	.133430	.134601	1175
100	0.141559	0.142708	0.143854	0.144997	0.146137	1144
110	.152915	.1 54034	.155151	.156264	.1 57 37 5	1115
120	.163981	.164072	.166161	.167246	.168330	1087
130	.174772	.175836	.176898	.177958	.179014	1060
140	.185301	.186340	.187377	.188411	.189443	1035
140	1103301	1100340	.10/3//	1100411	1,09443	1033
150	0.195581	0.196596	0.197608	0.198619	0.199626	IOII
160	.205624	.206615	.207605	.208592	.209577	988
170	.215439	.216409	.217376	.218341	.219304	966
180	.225038	.225986	.226932	.227876	.228819	946
190	.234429	.235357	.236283	.237207	.238129	925
200	0.042607	0.044500	0245426	0.246247	0.247244	906
210	0.243621	0.244529	0.245436	0.246341	0.247244	887
	.252623	.253512	.254400	.255287		870
220	.261441	.262313	.263184	.264052	.264919	852
230	.270085	.270940	.271793	.272644	.273494	853 836
240	.278559	.279398	.280234	.281070	.281903	030
250	0.286872	0.287694	0.288515	0.289326	0.290153	820
260	.295028	.295835	.296640	.297445	.298248	805
270	.303034	.303827	.304618	.305407	.306196	790
280	.310895	.311673	.312450	.313226	.314000	776
290	.318616	.319381	.320144	.320906	.321667	763
300	0.006000	0.00604		0.228452	0.329201	750
	0.326203	0.326954	0.327704	0.328453	.336606	750
310	.333659	•334397	-335135	.335871	343887	737
320	.340989	.34!715	•342441	.343164	.343887	
330	.348198	.348912	.349624	.350337	.351048	713
340	.355289	.355991	.356693	•357394	.358093	701
350	0.362266	0.362957	0.363648	0.364337	0.365025	690
360	.360132	.369813	.370493	.371171	.371849	678
370	.37 5892	376562	377232	.377900	.378567	668
380	.382548	.383208	.383868	.384525	.385183	658
390	.389104	.389754	.390403	.391052	.391699	648
		0 7.0.				

VOLUME OF GASES.

(d) Logarithms of 1+.00367t for Values of t between 400° and 1990° C. by 10° Steps.

					1
t	00	10	20	30	40
400	0.392345	0.398756	0.405073	0.411300	0.417439
500	0.452553	0.458139	0.463654	0.469100	0.474479
600 700	.505421	.510371	.51 5264	.520103	.524889
800	·552547 ·595055	.599086	.603079	.607037	.610058
900	.633771	.637460	.641117	.644744	.648341
1000	0.669317	0.672717	0.676090	0.679437	0.682759
1100	.702172	.705325	.708455	.711563	.714648
I 200 I 300	.732715	·735655 ·764004	.738575 .766740	.741475 .769459	.744356
1400	.788027	.790616	.793190	.795748	.798292
1500	0.813247	0.81 5691	0.818120	0.820536	0.822939
1600	.837083	.839396	.841697	.843986	.846263
1800	.859679	.861875	.864060	.866234	.868398
1900	.901622	.903616	.885327	.907578	.889459
t	50	60	70	80	90
			70	80	90
400	0.423492	0.429462	0.435351	0.441161	0.446894
500	0.479791	0.485040	0.490225	0.495350	0.500415
600	.529623	-534305	.538938	-543522	.548058
700 800	.574321	.578548	.582734	.586880	.630051
900	.651908	.655446	.658955	.662437	.665890
1000	0.686055	0.689327	0.692574	0.602707	0.608006
	.717712	.720755	.723776	0.695797 .726776	0.698996
1100					- 20'.8-
1 200	.747218	.750061	.752886	.755692	.758480
I 200 I 300	.747218	.750061 .777514	.780166	.782802	.785422
1 200 1 300 1 400	.747218 .774845 .800820	.750061 .777514 .803334	.780166 .805834	.782802 .808319	.756480 .785422 .810790
1200 1300 1400	.747218 .774845 .800820	.750061 .777514 .803334	.780166 .805834 0.830069	.782802 .808319	.785422 .810790 0.834758
1 200 1 300 1 400	.747218 .774845 .800820 0.825329 .848528	.750061 .777514 .803334 0.827705 .850781	0.830069 0.853023	.782802 .808319 0.832420 .855253	.785422 .810790 0.834758 .857471
1200 1300 1400 1500 1600	.747218 .774845 .800820	.750061 .777514 .803334	.780166 .805834 0.830069	.782802 .808319	.785422 .810790 0.834758

RELATIVE DENSITY OF MOIST AIR FOR DIFFERENT PRESSURES AND HUMIDITIES.

TABLE 113.—Values of $\frac{h}{760}$, from h=1 to h=9, for the Computation of Different Values of the Ratio of Actual to Normal Barometric Pressure,

This gives the density of moist air at pressure h in terms of the same air at normal atmosphere pressure. When air contains moisture, as is usually the case with the atmosphere, we have the following equation for pressure term: h=B-0.378e, where e is the vapor pressure, and B the corrected barometric pressure. When the necessary psychrometric observations are made the value of e may be taken from Table 189 and then 0.378e from Table 115, or the dew-point may be found and the value of 0.378e taken from Table 115.

ħ	760
1	0.0013158
2	.0026316
3	.0039474
4	0.0052632
5	.0065789
6	.0078947
7	0.0092105
8	.0105263
9	.0118421

Examples of Use of the Table.

To find the value of
$$\frac{h}{760}$$
 when $h = 754.3$

$$h = 700 \text{ gives } .92105$$

$$50 "...065789$$

$$4 "...00395$$

$$-3 "...00395$$

$$-754.3 "...992497$$

To find the value of $\frac{h}{760}$ when $h = 5.73$

$$h = 5 \text{ gives } .0065789$$

$$-7 "...0009210$$

$$.03 "...000395$$

$$-7.3 "...000395$$

TABLE 114. — Values of the logarithms of $\frac{h}{760}$ for values of h between 80 and 340.

Values from 8 to 80 may be got by subtracting 1 from the characteristic, and from 0.8 to 8 by subtracting 2 from the

				Chara	cteristic, a	na so on.				
h					Values of	$\log \frac{h}{760}$				
	0	1	2	3	4	5	6	7	8	9
80	ī.02228	ī.02767	ī.03300	ī.03826	ī.04347	ī.04861	ī.05368	ī.05871	ī.06367	ī.06858
90	.07343	.07823	.08297	.08767	.09231	.09691	.10146	.10596	.11041	.11482
100 110 120 130 140	ī.11919 .16 05 8 .19837 .23313 .26531	1.12351 .16451 .20197 .23646 .26841	1.12779 .16840 .20555 .23976	ī.13202 .17226 .20909 .24304 .27452	1.13622 .17609 .21261 .24629	1.14038 .17988 .21611 .24952 .28055	7.14449 .18364 .21956 .25273 .28354	ī.14857 .18737 .22299 .25591 .28650	ī.15261 .19107 .22640 .25907 .28945	ī.15661 .19473 .22978 .26220 .29237
150	ī.29528	7.29816	ī.30103	7.30388	7.30671	ī.30952	ī.31231	ī.31509	ī.31784	ī.32058
160	.32331	.32601	.32870	·33137	·33403	.33667	.33929	.34190	·34450	·34707
170	.34964	.35218	.35471	·35723	·35974	.36222	.36470	.36716	·36961	·37204
180	.37446	.37686	.37926	·38164	·38400	.38636	.38870	.39128	·39334	·39565
190	.39794	.40022	.40249	·40474	·40699	.40922	.41144	.41365	·41585	·41804
200	7.42022	1.42238	1.42454	1.42668	ī.42882	1.43094	1.43305	ī.43516	1.43725	ī.43933
210	.44141	·44347	.44552	·44757	.44960	.45162	.45364	.45565	.45764	.45963
220	.46161	·46358	.46554	·46749	.46943	.47137	.47329	.47521	.47712	.47902
230	.48091	·48280	.48467	·48654	.48840	.49025	.49210	.49393	.49576	.49758
240	.49940	·50120	.50300	·50479	.50658	.50835	.51012	.51188	.51364	.51539
250	ī.51713	ī.51886	ī.52059	ī.52231	7.52402	ī.52573	ī.52743	7.52912	ī.53081	ī.53249
260	.53416	.53583	·53749	·53914	·54079	·54243	.54407	·54570	·54732	.54894
270	.55055	.55216	·55376	·55535	·55694	·55852	.56010	·56167	·56323	.56479
280	.56634	.56789	·56944	·57097	·57250	·57403	.57555	·57707	·57858	.58008
290	.58158	.58308	·58457	·58605	·58753	·58901	.59048	·59194	·59340	.59486
300	7.59631	ī.59775	7.59919	7.60063	7.60206	7.60349	7.60491	ī.60632	ī.60774	ī.60914
310	.61055	.61195	.61334	.61473	.61611	.61750	.61887	.62025	.62161	.62298
320	.62434	.62569	.62704	.62839	.62973	.63107	.63240	.63373	.63506	.63638
330	.63770	.63901	.64032	.64163	.64293	.64423	.64553	.64682	.64810	.64939
340	.65067	.65194	.65321	.65448	.65574	.65701	.65826	.65952	.66077	.66201

DENSITY OF AIR.

Values of logarithms of $\frac{h}{760}$ for values of h between 350 and 800.

					Values o	f log /h.				
h			1		7 41400 0	760				
	0	1	2	3	4	5	6	7	8	9
350	ī.66325	ī.66449	ī.66573	1.66696	7.66819	ī.66941	ī.67064	7.67185	1.67307	1.67428
360	.67 549	.67669	.67790	.67909	.68029	.68148	.68267	.68385	.68503	.68621
370	.68739	.688 56	.68973	.69090	.69206	.69322	.69437	.69553	.69668	.69783
380	.69897	.70011	.70125	.70239	.70352	.70465	.70577	.70690	.71907	.70914
390	./1025									
400	1.72125	1.72233	1.72341	1.72449	1.72557	1.72664	1.72771 .73828	1.72878	1.72985	1.73091
410	.73197	·73303 ·74347	.73408	·73514 ·74553	.73619	·73723 ·74758	.74860	·73932 ·74961	.74036	.74140
430	.75265	.75366	.7 5467	.75567	.75668	.75768	.75867	.75967	.76066	.76165
440	.76264	.76362	.76461	.76559	.76657	.76755	.76852	.76949	.77046	.77143
450	Ī.77240	ī.77336	Ī.77432	1.77528	T.77624	1.77720	1.77815	1.77910	T.78005	7.78100
460	.78194	.78289	ī.77432 .78383	.78477	.78570	78664	.78757	78850	.78943	.79036
470	.79128	.79221	.79313	.79405	.79496	.79588	.79679	.79770	.79861	.79952 .80850
480	.80043	.80133	.80223	.80313	.80403	.80493	.81467	.81554	.80761	.81729
500	7.81816	ī.81902	ī.81989	T.82075	1.82162	ī.82248	1.82334	7.82419	1.82505	ī.82590
510	.82676	.82761	.82846	.82930	.83015	.83099	.83184	.83268	.83352	.83435
520	.83519	.83602	.83686	.83769	.83852	.83935	.84017	.84100	.84182	.84264
530	.84346	.84428	.84510	.84591	.84673	.84754	.84835	.84916	.84997	.85076
540	.85158	.85238	.85319	.85399	.85479	.85558	.85638	.85717	.85797	.85876
550	7.85955	7.86034	7.86113	7.86191	7.86270	1.86348	1.86426	1.86504	1.86582	ī.86660
560	.86737	.86815	.86892	.86969	.87047	.87123	.87200	.87277 .88036	.87353	.87430
570	.87506	.88336	.88411	.87734	.88 560	.88634	.88708	.88782	.88856	.88930
590	.89004	.89077	.89151	.89224	.89297	.89370	.89443	.89516	.89589	.89661
600	ī.89734	ī.898o6	1.89878	7.89950	1.90022	1.90094	1.90166	1.90238	1.90309	1.90380
610	.90452	.90523	.90594	.90665	.90735	.90806	.90877	.90947	:91017	.91088
620	.91158	.91228	.91298	.91367	.91437	.91 507	.91576	.91645	.91715	.91784
630	.91853	.91922	.91990	.92059	.92128	.92196	.92264	.92333	.92401	.92469
	.92537	.92004	.920/2	.92740	.92007	.920/5	.92942	.93009	.930/0	.93143
650	1.93210	1.93277	1.93343	1.93410	1.93476	1.93543	1.93609	1.93675	1.93741	1.93807
660	.93873	·93939	.94004	.94070	.94135	.94201	.94266	.94331	.94396	.94461
680	.95170	.95233	.95297	.95361	.95424	.95488	.95551	.95614	.95677	.95741
690	.95804	.95866	.95929	.95992	.96055	.96117	.96180	.96242	.96304	.96366
700	T.96428	1.96490	ī.96552	T.96614	1.96676	1.96738	1.96799	ī.96861	1.96922	ī.96983
710	.97044	.97106	.97167	.97228	.97288	-97349	.97410	.97471	.97531	.97592
720	.97652	.97712	.97772	.97832	.97892	.97951	.98012	.98072		.98191
730	.98251	.98310	.98370	.98429	.98488	.98547	.98606	.98665	.98724	.98783
750	1.99425	7.99483	Ī.99540					7.99828	7.99886	-
760	0.00000	0.00057	0.00114	0.00171	0.00228	0.00285	0.00342	0.00398	0.00455	0.00511
770	.00568	.00624	.00680	.00737	.00793	.00849	.00905	.00961	.01017	.01072
780	.01128	.01184	.01239	.01295	.01350	.01406	.01461	.01516	.01571	.01626
790	.01681	.01736	.01791	.01846	.01901	.01955	.02010	.02064	.02119	.02173
1	l		J		L	L	l			1

TABLE 115. - Values of 0.378e.*

This table gives the humidity term 0.378e, which occurs in the equation $\delta = \delta_0 \frac{h}{760}$ = $\delta_0 \frac{B - 0.378e}{760}$ for the calculation of the density of air containing aqueous vapor at pressure e; δ_0 is the density of dry air at normal temperature and barometric pressure, B the observed barometric pressure, and h = B - 0.378e, the pressure corrected for humidity. For values of $\frac{760}{h}$, see Table 113. Temperatures are in degrees Centigrade, and pressures in millimeters of mercury.

Dew point.	Vapor pressure (ice).	0.378e	Dew point.	Vapor pressure (water).	0.378e	Dew point.	Vapor pressure (water).	0.378e
C	mm	min	C	mm	mm	C	mm	mm
-50°	0.029	0.01	0°	4.58	1.73	30°	31.86	12.0
-45	0.054	0.02	1	4.92	1.86	31	33 - 74	12.8
-40	0.096	0.04	2	5.29	2.00	32	35.70	13.5
-35	0.169	0.06	3	5.68	2.15	33	37.78	14.3
-30	0.288	0.11	4 5	6.10	2.31	34	39.95	15.1
-25	0.480	0.18		6.54	2.47	35	42.23	16.0
24	0.530	0.20	6	7.01	2.66	36	44.62	16.9
23	0.585	0.22	7 8	7.51	2.84	37	47.13	17.8
22	0.646	0.24		8.04	3.04	38	49.76	18.8
-21 - 20	0.712	0.27	10	8.61	3.25	39 40	52.51	19.8
	0.783	0.30	II	9.21	3.48		55.40	20.9
19	0.802	0.33	12		3.72	41	58.42	22. I
17	1.041	0.30	13	10.52 · II.24	3.98	42	61.58	23.3
16	1.142	0.43	14		4.25	43		24.5
-15	1.252	0.43	15	11.99	4.53 4.84	44	68.35	25.8
14	1.373	0.52	16	13.64	5.16	46	71.97	27.2
13	I.503	0.57	17	14.54	5.50	47	75·75 79·70	30. I
12	1.644	0.62	18	15.49	5.85	48	83.83	31.7
II	1.798	0.68	10	16.49	6.23	49	88.14	33.3
-10	1.964	0.74	20	17.55	6.63	50	92.6	35.0
	2.144	0.81	21	18.66	7.06	51	97.3	36.8
9 8	2.340	0.88	22	19.84	7.50	52	102.2	38.6
. 7	2.550	0.96	23	21.00	7.97	53	107.3	40.6
6	2.778	1.05	24	22.40	8.47	54	112.7	42.6
-5	3.025	1.14	25	23.78	8.99	55	118.2	44.7
4	3.291	1.24	26	25.24	9.54	56	124.0	46.9
3	3.578	1.35	27	26.77	10.12	57	130.0	49. I
2	3.887	1.47	28	28.38	10.73	58	136.3	51.5
1	4.220	1.60	29	30.08	11.37	59	142.8	54.0
0	4.580	I.73	30	31.86	12.04	60	149.6	56.5

^{*} Table quoted from Smithsonian Meteorological Tables.

TABLE 116. - Maintenance of Air at Definite Humidities.

Taken from Stevens, Phytopathology, 6, 428, 1916; see also Curtis, Bul. Bur. Standards, 11, 359, 1914; Dieterici, Ann. d. Phys. u. Chem., 50, 47, 1893. The relative humidity and vapor pressure of aqueous vapor of moist air in equilibrium conditions above aqueous solutions of sulphuric acid are given below.

	Relative	Vapor	pressure.	Density of	Relative	Vapor pressure.	
acid sol.	humidity.	20° C	30° C	acid sol.	humidity.	20° C	30° C
		mm	mm			mm	mm
1.00	100.0	17.4	31.6	1.30	58.3	IO.I	18.4
1.05	97.5	17.0	30.7	1.35	47.2	8.3	15.0
1.10	93.9	16.3	29.6	1.40	37.I	6.5	11.9
1.15	93.9	15.4	28.0	1.50	18.8	3.3	6.0
I.20	80.5	14.0	25.4	1.60	8.5	1.5	2.7
I.25	70.4	12.2	22.2	1.70	3.2	0.6	1.0

PRESSURE OF COLUMNS OF MERCURY AND WATER.

British and metric measures. Correct at 0° C. for mercury and at 4° C. for water.

			11		· · · · · · · · · · · · · · · · · · ·
	METRIC MEAS	SURE.		BRITISH MEAS	SURE.
Cms. of Hg.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.	Inches of Hg.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.
1	13.5956	0.193376	1	34.533	0.491174
2	27.1912	0.386752	2	69.066	0.982348
3	40.7868	0.580128	3	103.598	1.473522
4	54.3824	0.773504	4	138.131	1.964696
5	67.9780	0.966880	5	172.664	2.455870
6	81.5736	1.160256	6	207.197	2.947044
7	95.1692	1.353632	7	241.730	3.438218
8	108.7648	1.547008	8	276.262	3.929392
9	122.3604	1.740384	9	310.795	4.420566
10	135.9560	1.933760	10	345-328	4.911740
Cms. of H ₂ O.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.	Inches of H ₂ O.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.
1	1	0.0142234	1	2.54	0.036127
2	2	0.0284468	2	5.08	0.072255
3	3	0.0426702	3	7.62	0.108382
4	4	0.0568936	4	10.16	0.144510
5	5	0.0711170	5	12.70	0.180637
6	6	0.0853404	6	15.24	0.216764
7	7	0.0995638	7	17.78	0.252892
8	8	0.1137872	8	20.32	0.289019
9	9	0.1280106	9	22.86	0.325147
10	10	0.1422340	10	25.40	0.361274

REDUCTION OF BAROMETRIC HEIGHT TO STANDARD TEMPERATURE.

Corrections for brass scale and English measure.			brass scale and neasure.	Corrections for glass scale and metric measure.		
Height of barometer in inches.	in inches for temp. F.	Height of barometer in mm.	in mm. for temp. C.	Height of barometer in mm.	in mm. for temp. C.	
15.0	0.00135	400	0.0651	50	0.0086	
16.0	.00145	410	.0668	100	.0172	
17.0	.00154	420	.0684	150	.0258	
17.5	.00158	430	.0700	200	.0345	
18.0	.00163	440	.0716	250	.0431	
18.5	.00167	450	.0732	300	.0517	
19.0	.00172	460	.0749	350	.0603	
19.5	.00176	470	.0765			
20.0	0	480	.0781	400	0.0689	
20.0	0.00181	490	.0797	450	.0775	
20.5	.00185	500		500	.0861	
21.0	.00190	500	0.0813	520	.0895	
21.5	.00194	510	.0830	540	.0930	
22.0	.00199	520	.0846	560	.0965	
23.0	.00203	530	.0862	580	.0999	
23.5	.00212	540	:0878	600		
23.3	.00212	550 560	.0894	600	0.1034	
24.0	0.00217		1100.		.1051	
24.5	.00221	570	.0927	620	.1068 .	
25.0	.00226	590	.0943	640	.1085	
25.5	.00231	390	.0939	650	.1103	
26.0	.00236	600	0.0975	660		
26.5	.00240	610	.0992	000	.1137	
27.0	.00245	620	.1008	670	0.1154	
27.5	.00249	630	.1024	680	.1172	
	.,	640	.1040	690	.1189	
28.0	0.00254	650	.1056	700	.1206	
28.5	.00258	660	.1073	710	.1223	
29.0	.00263	670	.1089	720	.1240	
29.2	.00265	68o	.1105	730	.1258	
29.4	.00267	. 690	.1121			
29.6	.00268	1000		740	0.1275	
29.8	.00270	700	0.1137	750	.1292	
30.0	.00272	710	.1154	760	.1309	
30.2		720	.1170	770	.1327	
	0.00274	730	.1186	780	.1344	
30.4	.00276	740	.1202	790	.1361	
30.6	.00277	750	.1218	800	.1378	
31.0	.00279	760	.1235	850	0.1464	
31.2	.00283	770 780	.1251	900		
31.4	.00285	790	.1283	950	.1551	
31.6	.00287	800	.1299	1000	.1723	
3					/-3	

^{*}The height of the barometer is affected by the relative thermal expansion of the mercury and the glass, in the case of instruments graduated on the glass tube, and by the relative expansion of the mercury and the metallic inclosing case, usually of brass, in the case of instruments graduated on the brass case. This relative expansion is practically proportional to the first power of the temperature. The above tables of values of the coefficient of relative expansion will be found to give corrections almost identical with those given in the International Meteorological Tables. The numbers tabulated under a are the values of a in the equation $H_f = Hf' - a(l'' - l)$ where H_f is the height at the standard temperature, H/ the observed height at the temperature l', and a(l'' - l) the correction for temperature. The standard temperature is o° C. for the metric system and a° S. f. for the English system. The English barometer is correct for the temperature of melting ice at a temperature of approximately 28° S. f., because of the fact that the brass scale is graduated so as to be standard at 62° F., while mercury has the standard density at 32° F.

EXAMPLE.—A barometer having a brass scale gave H = 765 mm. at 25° C.; required, the corresponding reading at o° C. Here the value of a is the mean of .1235 and .125t, or .1243; · . a(l'-l) = .1243 × 25 = 3.11. Hence $H_0 = 765 - 3.11 = 761.89$.

N. B.—Although a is here given to three and sometimes to four significant figures, it is seldom worth while to use more than the nearest two-figure number. In fact, all barometers have not the same values for a, and when great accuracy is wanted the proper coefficients have to be determined by experiment.

mined by experiment.

REDUCTION OF BAROMETER TO STANDARD GRAVITY.

Free-air Altitude Term. Correction to be subtracted.

The correction to reduce the barometer to sea-level is $(g_1-g)/g \times B$ where B is the barometer reading and g and g_1 the value of gravity at sea-level and the place of observation respectively. The following values were computed for free-air values of gravity g_1 (Table 565). It has been customary to assume for mountain stations that the value of $g_1 = \text{say}$ about $\frac{a}{2}$ the free-air value, but a comparison of modern determinations of g_1 in this country shows that little reliance can be placed on such an assumption. Where g_1 is known its value should be used in the above correction term. (See Tables 566 and 567. Similarly for the latitude term, see succeeding tables, the true value of g should be used if known; the succeeding tables are based on the theoretical values, Table 565.)

Height	g1 — g	Observed height of barometer in millimeters.										
above sea-level.		400	450	500	550	600	650	700	750	800		
meters.												
100	0.031					subtract		.02	.02	.02	-	-
200	0.062					st colun	n and	.04	.05	.05	_	-
300	0.093	barom	eter rea	ding in	the top	line.		.07	.07	.07	_	-
400 500	0.123	_ :	-	-	I -	1 -	-	.09	.10	.10	=	-
600	0.185	-		-	_	-	.12	.13	.14	-3		-
700	0.216	_	-	_	-		.14	.15	.16	_		-
800	0.247	-	_	-	_	-	.16	.18	.19	-	-	-
1000	0.278	=		_	.18	70	. 18	. 20	.22	_		
1100	0.309				.10	.19	. 20	.22	. 24	_		
I 200	0.370	_	_	_	.21	.23	.24	. 26		_	-	_
1300	0.401	-	_	-	.22	.24	. 26	. 29	-	_	-	-
1400	0.432	_	-	-	.24	. 26	. 28	.31	-	_	-	-
1500	0.463	=		. 24	. 26	. 28	.30	.33				-
1700	0.494			.25	. 28	.30	.32					
1800	0.555		_	.28	.31	.34	.34	_		.020	.0463	15000
1900	0.586	_	-	.30	-33	.36	.39	_	-	.OIQ	.0447	14500
2000	0.617	_	. 28	.31	.34	.38	.41	_	.021	.019	.0432	14000
2100	0.648	_	.30	-33	.36	.40		_	.021	.018	.0416	13500
2200	0.679	_	.31	-35	.38	-41	_		.020	.017	.0401	13000
2300	0.710		.32	.36	.40	· 43 · 45		.021	.019	.017	.0386	12500
2500	0.771	.31	.35	.39	.43	.43		.020	.018	.015	.0355	11500
2600	0.802	-33	.37	.41	-		.021	.oro	.017	.015	.0339	11000
2700	0.833	.34	.38	.42	_	-	.020	.018	.016	.014 *	.0324	10500
2800	0.864	.35	.40	-44	_	_	.010	.017	.015	.013	.0308	10000
2900 3000	0.895	.36	.4I .42	.46		.020	.018	.016	.015	.013	.0293	9500
3100	0.957	.39	-44	-47		.019	.017	.015	.014 .013	.012	.0278	8500
3200	0.988	.40	.46	-	_	.017	.015	.014	.012	-	.0247	8000
3300	1.019	.42	- 47	_	.017	.016	.014	.013	_	_	.0231	7500
3400	1.049	-43	.48	_	.016	.015	.013	.OI2	_	-	.0216	7000
3500 3600	1.080	-44	- 49	=	.015	.014	.012	.OII		_	.0200	65,00
3700	1.111	.45		_	.014	.013	.OII		_	_	.0185	6000
3800	1.173	.48	_	.012	.013	.OII	.010	_	_		.0154	5500
3900	1.204	.49	_	.OII	.010	.oio	-	-	_		.0139	4500
4000	1.235	.50		.010	.009	.009	-	-	_	-	.0123	4000
=	=	.006	.008	.008	.007	.007		rections			.0092	3000
-	_	.003	.003	.005	.004	=		cted for el in las			.0062	2000 1000
				.003				eter rea			.0031	1000
							tom li					
									1			feet.
		30	28	26	24	22	20	18	16	14		
								10	10		$g_1 - g$	Height
			(Observe	d hainha	- 5 h						sea-leve

METRIC MEASURES.

From Latitude o° to 45°, the Correction is to be Subtracted.

Lati- tude.	520	540	560	580	600	620	640	660	680	700	720	740	760	780
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
0	-I.39	-I.45	—I.50	— I.55	—I.6I	—I.66	-I.7I	—I.77	—I.82	—I.87	—I.93	—I.98	-2.04	-2.09
5	-I.37	-I.42	-1.48	—1.53	-1.58	-I.64	-1.69	-1.74	-I.79	-I.85	-1.90	-1.95	-2.00	-2.06
6	1.36	I.42 I.40	I.47 I.46	I.52 I.51	I.57 I.56	1.63	1.68 1.66	I.73 I.72	1.78	1.83	1.89 1.87	I.94 I.92	1.99	2.04
8	1.34	1.39	1.44	1.49	1.55	1.60	1.65	1.70	1.75	1.80	1.85	1.91	1.96	2.01
9	1.33	1.38	1.43	1.48	1.53	1.58	1.63	1.68	1.73	1.78	1.84	1.89	1.94	1.99
10	-I.3I I.20	-1.36 1.34	-I.4I I.39	-1.46 1.44	-I.5I I.49	-1.56 1.54	-1.61 1.59	-1.66 1.64	-1.71 1.60	-1.76 1.74	-1.81 1.79	-1.86 1.84	-1.92 1.89	-I.97
12	I.27	1.32	1.37	1.42	1.47	1.52	1.57	1.62	1.67	1.72	1.76	1.81	1.86	1.94
13	I.25 I.23	1.30 1.28	I.35 I.33	I.40 I.38	I.45 I.42	I.50 I.47	I.54 I.52	1.59	1.64	1.69 1.66	1.74	I.78	1.83	1.88
									11.5					
15 16	-I.2I I.19	-I.26 I.23	-1.30 1.28	-I.35 I.32	-I.40 I.37	-I.44 I.4I	-J.49 I.46	-1.54 1.50	—I.58		-1.67 1.64	-1.72 1.60	-1.77 1.73	1.78
17	1.16	1.20	1.25	1.29	1.34	1.38	1.43	1.47	I.52	1.56	1.60	1.65	1.69	1.74
18	I.13 I.10	1.18	1.22	I.26 I.23	1.31	I.35 I.32	1.39	I.44 I.40	I.48 I.44	0	I.57	1.61	1.65	1.70
20	—I.07	-1.11	-1.16	—I.20	7 04	—I.28	T 22	—1.36				—I.53	—I.57	-1.61
21	1.04	1.08	1.12	1.16	-I.24 I.20	I.24	-I.32 I.28	1.32	1.36	-I.44 I.40	-I.49 I.44	1.48	1.52	1.56
22 23	0.08	1.05	I.09 I.05	1.13	1.16	I.20 I.16	I.24 I.20	I.28	I.32 I.28	1.36	I.40 I.35	I.44 I.39	I.48	1.51
24	0.94	0.98	1.01	1.05	1.08	1.12	1.16	1.19	1.23	1.27	1.30	1.34	1.37	1.41
25	-0.00	-0.94	-0.97	-I.OI	—I.04	-I.08	-I.II	-I.I5	— 1.18	-I.22	-I.25	—I.29	-I.32	-I.36
26	0.87	0.90	0.93	0.97	1.00	1.03	1.07	1.10	1.13	1.17	I.20	1.23	1.27	1.30
27 28	0.83	0.86	0.89	0.92	0.96	0.99	0.97	I.05	1.08	I.12 I.06	1.15	1.18	1.21	I.24 I.18
29	0.75	0.78	0.81	0.84	0.86	0.89	0.92	0.95	0.98	1.01	1.04	1.07	1.10	1.12
30	-0.71	-0.74	-0.76	-0.79	-0.82	-o.85	-0.87	-0.90	-0.93	-0.95	-0.98	-1.01	-1.04	—1.06
31 32	0.62	0.69	0.72	0.74	0.77	0.80	0.82	0.85	0.87	0.90	0.92	0.95	0.98	0.94
33	0.58	0.60	0.63	0.65	0.67	0.69	0.72	0.74	0.76	0.78	0.80	0.83	0.85	0.87
34	0.54	0.56	0.58	0.60	0.62	0.64	0.66	0.68	0.70	0.72	0.74	0.76	0.79	0.81
35	-0.49	-0.51	-0.53	-0.55	-0.57	-0.59	-0.61	-0.63	-0.64	-0.66 0.60	-0.68 0.62	0.70	0.72	0.74
36	0.45	0.46	0.48	0.50	0.52	0.53	0.55	0.57	0.58	0.54	0.56	0.57	0.59	0.60
38	0.36	0.37	0.38	0.40	0.41	0.42	0.44	0.45	0.46	0.48	0.49	0.51	0.52	0.53
39		0.32	0.33	0.34	0.36	0.37	1							
40	0.26	0.27	0.28	0.29	0.25	0.31	0.32	0.33	0.34	0.35	0.30	0.37	0.31	0.39
42	0.17	0.17	0.18	0.19	0.19	0.20	0.21	0.21	0.22	0.22	0.23	0.24	0.24	0.25
43 44	0.12	0.12	0.13	0.13	0.14	0.14	0.15	0.15	0.16	0.16	0.10	0.17	0.17	0.18
45	-0.02				-0.03		-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.04
	1					1	(1	-	1				

^{* &}quot;Smithsonian Meteorological Tables."

METRIC MEASURES.

From Latitude 46° to 90°, the Correction is to be Added.

Lati-	520	540	560	580	600	620	640	660	680	700	720	740	760	780
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
45	-0.02	-0.02	-0.03	-0.03	0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.04
46		. 0	. 0										+0.04	
47 48	0.07	0.08				-			-					0.11
49	0.17	0.17	0.18	0.19	0.19	0.20	0.21	0.21	0.22	0.23	0.23	0.24	0.25	0.25
50	0.22	0.22	0.23	0.24	0.25	0.26	0.26	0.27	0.28	0.29	0.30	0.31	0.31	0.32
51													+0.38	-
52 53	0.31	0.32				0.37	0.38							0.46
54	0.40	0.42	0.43	0.45	0.46	0.48	0.49	0.51	0.52	0.54	0.56	.057	0.59	0.60
55	0.45	0.46	0.48	0.50	0.52	0.53	0.55	0.57	0.58	0.60	0.62	0.64	0.65	0.67
56						+0.59	+0.60							+0.74
57 58	0.54					0.64)						0.80
59	0.62	0.65	0.67	0.69	0.72	0.74	0.77	0.79	0.81	0.84	0.86	0.89	0.91	0.93
60	0.66					0.79						-		1.00
61	+0.71	+0.73	+0.76	+0.79	+0.81	+0.84	+0.87							+1.06
62	0.74		0.80			0.88	0.91							
64	0.82	0.85	0.89	0.92	0.95	0.98	1.01	1.04	1.08	I.II	1.14	1.17	1.20	1.23
65	0.86													
66		+0.93	+0.97	+1.00	+1.04	+1.07	+1.10	+1.14		+1.21	+1.24			+1.35
67	0.93	0.97	I.00	-	1.08		-							I.40 I.45
69	I.00						1.23	1.27	1.31	1.34	1.38	1.42	1.46	1.50
70	1.03	1.07		1.15								1		
71	+1.06	+1.10	+1.14	+1.18 1.22	+1.22 1.26	+1.26	+1.31	+1.35	+1.39	+1.43	+1.47	+1.51	+1.55	+1.59
72 73	1.12	9		1.25	1.29	1.33								
74	I.14 I.17	I.19 I.21	-	I.28			1.41	1.45	1.50	1.54	1.58	1.63	1.67	1.72
75						1.39								
76	+I.19 I.21	1.24	+1.28	+1.33	+1.37	+1.42 1.45	HI.47	+1.51	+1.56	+1.60	+1.65	+1.70		+1.79
77 78	1.23	1.28	1.33	1.38	1.42		I.49 I.52		1.59	1.63				1.82
79 80	I.25 I.27	I.30 I.32	00	I.40 I.42	10	I.49 I.51					1.73	1.78	1.83	1.88
81	+1.29 1.30	+1.33	+1.38 1.40	+1.43	+1.48	+1.53	+1.58	+1.63	+1.68					+1.93
83	1.31	1.36	1.41	1.46	1.51	1.56	1.61	1.67	1.72	1.77	1.82	1.87	1.92	1.95
84 85	I.32 I.33	0										1	-	1.98
												-		2.00
90	于1.35	+1.41	+1.40	+1.51	+1.50	+1.61	+1.67	+1.72	+1.77	+1.82	+1.87	+1.93	+1.98	+2.03

ENGLISH MEASURES.

From Latitude o° to 45°, the Correction is to be Subtracted.

Taril						-						
Lati- tude.	19	20	21	22	23	24	25	26	27	28	29	30
	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Turk	
0	-0.051	-0.054			-			_	-0.072		Inch.	Inch.
	-0.051	-0.034	0.050	0.059	-0.002	-0.004	-0.00/	-0.070	-0.0/2	-0.075	-0.078	-0.080
5	-0.050	-0.053	-0.055	-0.058	-0.061	-0.063	-0.066	-0.060	-0.071	-0.074	-0.077	-0.079
6	0.050	0.052	0.055	0.058		0.063	0.066			0.073	0.076	0.079
7 8	0.049	0.052	0.055	0.057	0.060	0.062	0.065	0.068	0.070	0.073	0.075	0.078
8	0.049	0'052	0.054	0.057	0.059	0.062	0.064	0.067	0.070	0.072	0.075	0.077
9	0.048	0.051	0.054	0.056	0.059	0.061	0.064	0.066	0.069	0.071	0.074	0.076
10	0	0 0 1 0			0	6-	(-		- (0			
10	-0.048	-0.050	-0.053	-0.055	-0.058	-0.060	-0.063			-0.071	-0.073	-0.076
II I2	0.047	0.050	0.052	0.055	0.057	0.060	0.062		0.067	0.070	0.072	0.075
13	0.046	0.049	0.051	0.053	0.055	0.059	0.060			0.068	0.071	0.074
14	0.045	0.047	0.050	0.052	0.055	0.057	0.059			0.066	0.069	0.072
-4	43	7			0.033	0.03/	0,059	0,002	0.004	0,000	0,009	0.0/1
15	-0.044	-0.047	-0.049	-0.051	-0.053	-0.056	0.058	-0.060	-0.063	-0.065	-0.067	-0.070
16	0.043	0.046	0.048	0.050	0.052	0.055	0.057	0.059	0.062	0.064	0.066	0.068
17	0.042	0.045	0.047	0.049	0.051	0.053	0.056		0.060	0.062	0.065	0.067
18	0.041	0.044	0.046	0.048	0.050	0.052	0.054	0.057	0.059	0.061	0.063	0.065
19	0.040	0.042	0.045	0.047	0.049	0.051	0.053	0.055	0.057	0.059	0.062	0.064
										0	- (0	
20	-0.039	-0.041		-0.045								
21	0.038	0.040		0.044	0.046	0.048	0.050		0.054	0.050	0.058	0.060
22	0.037	0.039	0.041	0.043	0.045	0.047	0.049			0.054	0.056	0.058
23	0.034	0.036	0	0.040	0.043	0.045	0.047		0.051	0.053	0.054	0.056
24	0.034	0,030	0.030	0.040	0.042	0.043	0.045	0.04/	0.049	0.051	0.052	0.034
25	-0.033	-0.035	-0.037	-0.038	-0.040	-0.042	-0.043	-0.045	-0.047	-0.049	-0.050	-0.052
26	0.032	0.033		0.037	0.038		0.042			0.047	0.048	0.050
27	0.030	0.032	0.033	0.035	0.037	0.038	0.040			0.045	0.046	0.048
28	0.029	0.030	0.032	0.033	0.035	0.036	0.038	0.039	0.041	0.043	0.044	0.046
29	0.027	0.029	0.030	0.032	0.033	0.035	0.036	0.037	0.039	0.040	0.042	0.043
20	(0		
30	-0.026		-0.029	-0.030		-0.033	-0.034			-0.038	-0.040	
31	0.024	0.026	0.027	0.028	0.030	0.031	0.032		0.035	0.036	0.037	0.038
32	0.023	0.024	0.023	0.025	0.026	0.029	0.030		0.032	0.031	0.032	0.034
34	0.020		0.023	0.023		0.025	0.026		0.028	0.029	0.030	0.031
04				3		0,023	0.020					
35	-0.018	-0.019	-0.020	-0.021	-0.022	-0.023	-0.024	-0.025	-0.026	-0.027	-0.027	-0.028
36	0.016	0.017	0.018	0.019	0.020	0.021	0.022		0.023	0.024	0.025	0.026
37	0.015	0.015	0.016	0.017	0.018	0.019	0.019		0.021	0.022	0.022	0.023
38	0.013	0.014	0.014	0.015	0.016	0.016	0.017		0.018	0.019	0.020	0.020
39	0.011	0.012	0.012	0.013	0.014	0.014	0.015	0.015	0.016	0.017	0.017	0.018
40	-0.070	-0.070	0.07.	-0.077	_0 070	_0 070		-0.013	-0.014	-0.014	-0.015	-0.015
41	0.008	0.008		0.000	-0.012	0.012	0.013	-0.013 0.011	0.011	0.012	0.012	0.013
42	0.006	0.006	0.009	0.009	0.009	0.008	0.008	0	0.009	0.009	0.009	0.010
43	0.004	0.005	0.005	0.005	0.005	0.005	0.006	-	0.006	0.006	0.007	0.007
44	0.003	0.003	0.003	0.003	0.003	0.003	0.003		0.004	0.004	0.004	0.004
45	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001

* " Smithsonian Meteorological Tables."

ENGLISH MEASURES.

From Latitude 46° to 90° the Correction is to be Added.

Lati- tude.	19	20	21	22	23	24	25	26	27	28	29	30
	Inch.	Inch	Teach	Inch	Inch.							
45	-0.00I	Inch.	Inch.	Inch.	-0.00I			-0.001				
10	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
46	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001
47	0.003	0.003	0.003	0.003	0.003	0.003					0.004	0.004
48	0.004		-			_		_				,
49	0.000						}		-	-	-	
50	0.008	0.008	0.009	0.009	0.010	0.010	0.010	0.011	0.011	0.012	0.012	0.012
51	+0.010	+0 010	+0.011	+0 011	+0.012	+0.012	+0.013	+0.013	+0.014	+0.014	+0.015	+0.015
52	0.011	0.012							0.016			
53	0.013					3	-					
54	0.015	0.015	0.016			0.019			0.021	0.022	0.022	0.023
55	0.016	0.017	0.018	0.019	0.020	0.021	0.021	0.022	0.023	0.024	0.025	0.026
56												+0.028
57	0.020			0.023	0.024	0.025	0.026		0.028			
58	0.021	0.022	0.023	0.025	0.026							001
59	0.023			0.028		-	0.032	_	0.034		,	0
00	0.024	0.020	0.027	0.020	0.029	0.031	0.032	0.000	0.034	0.030	0.037	0.030
61	+0.026	+0.027	+0.028	+0.030	+0.031	+0.033	+0.034	+0.035	+0.037	+0.038	+0.039	+0.041
62	0.027	0.029		0.032		0.034			0.039	0.040		
63	0.029	0.030	0.032	0.033	0.035	0.036	0.038	0.039	0.041	0.042	0.044	
64	0.030	0.032	-	0.035					0.043	0.044		17
65	0.031	0.033	0.035	0.036	0.038	0.040	0.041	0.043	0.045	0.046	0.048	0.050
66	+0.023	+0 024	+0.026	±0.028	10 040	LO 041	10 042	+0.045	LO 047	±0.048	+0 050	+0.052
67	0.034					0.043			0.048			
68	0.035	-	0.039	0.041		0.045			0.050	-		0 11
69	0.036											
70	0.038					. 0						
71								+0.053				
72	0.040					-		- 1		0.059		-0
73	0.041	2 10		0.047	0.049	0.052	0.			0.060		
74 75	0.042			0.048		0.053				0.062		0.066
13	0.043	0.043	0.04/	0.049	0.052	0.054	0.050	0.036	0.001	0.003	0.005	0.00/
76	+0.044	+0.046	+0.048	+0.050	+0.053	+0.055	+0.057	+0.060	+0.062	+0.064	0.066	0.069
77	0.044	0.047	0.049			0.056			0.063	0.065	0.068	
77 78	0.045		0.050	0.052		0.057	0.059	- 1	0.064	0.066	0.069	0.071
79 80	0.046			0.053		0.058			0.065	0.067	0.070	0.072
80	0.046	0.049	0.051	0.054	0.056	0.059	0.061	0.063	0.066	0.068	0.071	0.073
81	+0 047	10 040	+0.000	10 054	10 000	10000	1006	1006	1006-	10060		10 071
82	0.047	0.050	0.052	0.055		0.060	0.062		0.067	0.070		+0.074
83	0.048	0.050		00	- 01	0.061			0.007	0.071	0.073	0.075
84	0.048		00		0-	0.061		0.066	0.069	0.071	0.074	0.076
85	0.049		-				0.064	- 1	0.069	0.072	0.074	0.077
90	+0.049	+0.052	+0.055	+0.057	+0.060	+0.062	+0.065	+0.068	+0.070	+0.073	+0.075	+0.078

^{* &}quot; Smithsonian Meteorological Tables."

TABLE 124. - Correction of the Barometer for Capillarity.*

			ı. Men	TRIC MEA	SURE.		۰						
			Нвіснт	of Menis	cus in Mili	LIMETERS.							
Diameter of tube in mm.	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8					
			Correc	tion to be a	dded in milli	meters.							
4 5 6 7 8 9 10 11 12 13	0.83												
			Нег	GHT OF ME	BNISCUS IN I	NCHES.							
Diameter of tube in inches.	.01	.02	.03	.04	.05	.06	07	.08					
		`	Cor	rection to b	e added in in	iches.							
.15 .20 .25 .30 .35 .40 .45 .50	0.024 0.047 0.069 0.092 0.116 -												

^{*} The first table is from Kohlrausch (Experimental Physics), and is based on the experiments of Mendelejeff and Gutkowski (Jour. de Phys. Chem. Geo. Petersburg, 1877, or Wied. Beib. 1877). The second table has been calculated from the same data by conversion into inches and graphic interpolation.

TABLE 125. - Volume of Mercury Meniscus in Cu. Mm.

Height of		Diameter of tube in mm.												
mm. 1.6 1.8 2.0	157 181 206	185 211 240	214 244 278	245 281 319 358	280 320 362	318 362 409	356 407 460	398 455 513	444 507 571 637	492 560 631 704	541 616 694 776			
2.2 2.4 2.6	233 262 291	303 338	313 350 388	358 400 444	406 454 503	459 511 565	51 5 57 3 63 3	574 639 706	708 782	781 862	859 948			

Scheel und Heuse, Annalen der Physik, 33, p. 291, 1910.

BAROMETRIC PRESSURES CORRESPONDING TO THE TEMPERATURE OF THE BOILING POINT OF WATER.

Useful when a boiling-point apparatus is used in the determination of heights. Copied from the Smithsonian Meteorological Tables, 4th revised edition.

(A) METRIC UNITS.

					221610					
Tem- perature.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
С	mm.	mm.	mm	mm.	mm.	mm.	mm.	mm.	mm.	mm.
80°	355.40	356.84	358.28	359.73	361.19	362.65	364.11	365.58	367.06	368.54
81	370.03	371.52	373.01	374.51	376.02			380.57	382.09	383.62
82	385.16	386.70	388.25	389.80	391.36	392.92		396.06	397.64	
83	400.81	402.40	404.00	405.61	407.22	408.83		412.08	413.71	415.35
84	416.99	418.64	420.29	421.95	423.61	425.28	426.95	428.64	430.32	432.01
85	433.71	435.41	437.12	438.83	440.55	442.28	444.01	445.75	447 - 49	449.24
86	450.99	452.75	454.51	456.28	458.06		461.63		465.22	
87	468.84			474.31	476.14	477.99		481.68	483.54	485.41
88	487.28	489.16		492.93		496.72		500.54	502.46	504.39
89	506.32	508.26	510.20	512.15	514.11	516.07	518.04	520.01	521.99	523.98
90	525.97	527.97	529.98	531.99	534.01	536.04	538.07	540.11	542.15	544.21
QI	546.26		550.40	552.48	554.56	556.65	558.75		562.96	565.08
92	567.20		571.47	573.61	575.76	577.92	580.08	582.25	584.43	586.61
93	588.80		593.20	595.41	597.63	599.86			606.57	608.82
94	611.08	613.35	615.62	617.90	620.19	622.48	624.79	627.09	629.41	631.73
95	634.06	636.40	638.74	641.00	643.45	645.82	648.19	650.57	652.96	655.35
96			662.58						677.23	
97 98	682.18	684.66	687.15	689.65	692.15	694.67		699.71	702.25	
			712.47					725.42	728.03	
99	733.28	635.92	738.56	741.21	743.87	740.54	749.22	751.90	754.59	757.29
100	760.00	762.72	765.44	768.17	770.01	773.66	776.42	779.18	781.05	784.73
	1		11		1				1	

				(B) EN	GLISH .	UNITS.				
Tem- perature	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
F.	Inches.									
185°	17.075	17.112	17.150	17.187	17.224	17.262	17.300	17.337	17.375	17.413
186	17.450	17.488	17.526	17.564	17.602	17.641	17.679		17.756	17.794
187	17.832		17.910	17.948	17.987		18.065			18.182
188	18.221	18.261	18.300		18.379		18.458		18.538	18.578
189	18.618	18.658	18.698	18.738	18.778	18.818	18.859	18.899	18.940	18.980
190	19.021	19.062	19.102	19.143	10.184	19.225	19.266	19.308	19.349	19.390
191	19.431		19.514	19.556		19.639		19.723	19.765	19.807
192	19.849	19.892	19.934	19.976	20.019	20.061	20.104	20.146	20.189	20.232
193	20.275		20.361	20.404		20.490	20.533	20.577	20.620	20.664
194	20.707	20.751	20.795	20.839	20.883	20.927	20.971	21.015	21.059	21.103
195	21.148	21.192	21.237	21.282	21.326	21.371	21.416	21.461	21.506	21.551
196	21.597	21.642	21.687	21.733	21.778		21.870	21.015	21.961	22.007
197	22.053		22.145	22.192		22.284	22.331	22.377	22.424	22.471
198	22.517		22.611	22.658			22.800	22.847	22.895	22.942
199	22.990	23.038	23.085	23.133	23.181	23.229	23.277	23.325	23.374	23.422
200	23.470	23.519	23.568	23.616	23.665	23.714	23.763	23.812	23.861	23,910
201	23.959	24.009	24.058	24.108	24.157	24.207	24.257	24.307	24.357	24.407
202	24.457		24.557	24.608	24.658	24.709	24.759	24.810	24.861	24.912
203	24.963		25.065	25.116	25.168	25.219	25.271			
204	25.478	25.530	25.582	25.634	25.686	25.738	25.791	25.843	25.896	25.948
205	26.001	26.054	26.107	26.160	26.213	26.266	26.310	26.373	26.426	26.480
206	26:534	26.587	26.641	26.695	26.749		26.857	26.912		27.021
207	27.075		27.184		27.294		27.404		27.515	27.570
208	27.626	27.681	27.737	27.793	27.848	27.904		28.016	28.073	28.129
209	28.185	28.242	28.298	28.355	28.412	28.469	28.526	28.583	28.640	28.697
210	28.754	28.812	28.869	28.927	28.985	29.042	29.100	29.158	29.216	29.275
211	29.333	29.391	29.450	29.508			29.685	29.744		20.862
212	29.921		30.040	30.100	30.159	30.210	30,270	30.330	30.300	30.450
213	30.519	30.580	30.640	30.701	30.761	30.822	30 883	30.044	31.005	21 066

DETERMINATION OF HEIGHTS BY THE BAROMETER.

Formula of Babinet:
$$Z = C \frac{B_0 - B}{B_0 + B}$$
.
 $C \text{ (in feet)} = 52494 \left[1 + \frac{t_0 + t - 64}{900} \right]$ English measures.
 $C \text{ (in meters)} = 16000 \left[1 + \frac{2(t_0 + t)}{1000} \right]$ metric measures.

In which Z = difference of height of two stations in feet or meters, B_0 , B = barometric readings at the lower and upper stations respectively, corrected for all

sources of instrumental error. $t_0, t =$ air temperatures at the lower and upper stations respectively.

Values of C.

Eng	LISH MEAS	URES.	ME	TRIC MEAS	URES.
$\frac{1}{2}(t_0+t).$	С	Log C	$\frac{1}{2}(t_0+t).$	С	Log C
Fahr. 10° 15 20 25 30 35 40 45 50 65 70 75 80 85 90 95	Feet. 49928 50511 51094 51677 52261 52844 53428 54011 54595 55178 55761 56344 56927 57511 58094 58677 59260 59844 60427	4.69834 .70339 4.70837 .71330 4.71818 .72300 4.72777 .73248 4.73715 .74177 4.74633 .75085 4.75532 .75975 4.76413 .76847 4.77276 .77702 4.78123	Cent10° -8 -6 -4 -2 0 + 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36	Meters. 15360 15488 15616 15744 15872 16000 16128 16256 16384 16512 16640 16768 16896 17024 17152 17280 17408 17536 17664 17792 17920 18048 18176 18304	4.18639 .19000 .19357 .19712 .20063 4.20412 .20758 .21101 .21442 .21780 4.22115 .22448 .22778 .23106 .23431 4.23754 .24075 .24393 .24709 .25022 4.25334 .25643 .25950 .26255

Values only approximate. Not good for great altitudes. A more accurate formula with corresponding tables may be found in Smithsonian Meteorological Tables.

VELOCITY OF SOUND IN SOLIDS.

The velocity of sounds in solids varies as $\sqrt{E/\rho}$, where E is Young's Modulus of elasticity and ρ the density. These constants for most of the materials given in this table vary through a somewhat wide range, and hence the numbers can only be taken as rough approximations to the velocity which may be obtained in any particular case. When temperatures are not marked, between 10° and 20° is to be understood.

Substance.	Temp. C.	Velocity in meters per second.	Velocity in feet per second.	Authority.
Metals: Aluminum	0	5104	16740	Masson.
Brass	_	3500	11480	Various.
Cadmium	_	2307	7570	Masson.
Cobalt	-	4724	15500	46
Copper	20	3560	11670	Wertheim.
"	100	3290	10800	46
"	200	2950	9690	66
Gold (soft)	20	1743	5717 6890	46
" (hard)	-	2100		Various.
Iron and soft steel	-	5000	16410	
Iron	20	5130	16820	Wertheim.
	100	5300	17390	46
	200	4720	15480	66
" cast steel	20	4990	16360	66
Lead	200	4790	15710	66
Magnesium	20	1227 4602	4026	Melde.
Nickel		4973	15100	Masson.
Palladium	_	3150	10320	Various.
Platinum	20	2690	8815	Wertheim.
46	100	2570	8437	66
44	200	2460	8079	66
Silver	20	2610	8553	66
	100	2640	8553 8658	66
Tin	-	2500	8200	Various.
Zinc	-	3700	12140	44
Various: Brick	-	3652	11980	Chladni.
Clay rock	-	3480	11420	Gray & Milne.
Cork	-	500	1640	Stefan.
Granite	-	3950	12960	Gray & Milne.
Marble	-	3810	12500	"
Paraffin	15	1304	4280	Warburg.
Tallow		4510	14800	Gray & Milne.
Tuff .	16	390	1280	Warburg.
(fram		2850	9350	Gray & Milne.
Glass { from to		5000	16410	Various.
Ivory	_	6000	19690 9886	Ciacana & Camana 11
Vulcanized rubber	0	3013	177	Ciccone & Campanile. Exner.
(black)	50	54	102	Exiler.
" (red)	0	31 69	226	44
" " "	70	34	111	46
Wax	17	880	2890	Stefan.
	28	441	1450	"
Woods: Ash, along the fibre	-	4670	15310	Wertheim.
" across the rings .	-	1390	4570	6.
" along the rings .	-	1260	4140	66
Beech, along the fibre .	-	3340	10960	66
" across the rings .	-	1840	6030	46
ationg the rings .	-	1415	4640	"
Elm, along the fibre .	-	4120	13516	46
" across the rings .	-	1420	4665	66
along the rings .	_	1013	3324	66
Fir, along the fibre Maple "		4640	15220	16
Oali "		4110	13470	44
Pine "		3850	12620	"
Poplar "	_	3320 4280	14050	"
Sycamore "	-	4460	14640	44
		4400	-4040	

VELOCITY OF SOUND IN LIQUIDS AND GASES.

For gases, the velocity of sound= $\sqrt{\gamma P/\rho}$, where P is the pressure, ρ the density, and γ the ratio of specific heat at constant pressure to that at constant volume (see Table 253). For moderate temperature changes $V_t = V_0(r + \alpha t)$ where $\alpha = 0.00367$. The velocity of sound in tubes increases with the diameter up to the free-air value as a limit. The values from ammonia to methane inclusive are for closed tubes.

		Velocity in	Velocity in	
Substance.	Temp. C.	meters per second.	feet per second.	Authority.
		second.	second.	
	0			
Liquids: Alcohol, 95%	12.5	1241.	4072.	Dorsing, 1908.
46	20.5	1213.	3980.	"
Ammonia, conc	16.	1663.	5456.	" 6
Benzol	17.	1166.	3826.	"
Carbon bisulphide.	15.	1161.	3809.	44
Chloroform	15.	983.	3225.	"
Ether	15.	1032.	3386.	"
NaCl, 10% sol.	15.	1470.	4823.	•6
" 15% "	15. 15.	1530.	5020.	**
Turpentine oil.	15.	1650.	5414.	4+
Water, air-free	13.	1441.	4351. 4728.	6.
66 66 66	10.	1461.	4720.	46
11 11 11 11 11 11 11 11 11 11 11 11 11	31.	1505.	4938.	"
" Lake Geneva	9.	1435.	4708.	Colladon-Sturm.
" Seine river .	15.	1437	4714.	Wertheim.
66 66	30.	1528.	5013.	(1
	60.	1724.	5657.	"
Explosive waves in water:				
Guncotton, 9 ounces		1732.	5680.	Threlfall, Adair,
" 10 "		1775.	5820.	1889, see Bar-
18		1942.	6372.	ton's Sound, p.
04		2013.	6600.	518.
Gases: Air, dry, CO ₂ -free .	0.	331.78	1088.5	Rowland.
" " CO2-free .	0.	331.36	1087.1	Violle, 1900. Thiesen, 1908.
" I atmosphere.	0.	331.92	1089.0	Mean.
25	0.	331.7	1080.	" (Witkowski).
" 50 "	0.	334.7	1009.	46 46
" 100 "	0.	350.6	1150.	
"	20.	344.	1129.	
"	100.	386.	1266.	Stevens.
	500.	553 -	1814.	46
	1000.	700.	2297.	"
Explosive waves in air:				
Charge of powder, 0:24 gms.		336.	1102.	Violle, Cong. In-
" " 3.80 " 17.40 "	1	500.	1640. 3060.	tern. Phys. I,
" " " 45.60 "		931.	4160.	243, 1900.
Ammonia	0.	415.	1361.	Masson.
Carbon monoxide	0.	337. I	1106.	Wullner.
" "	0.	337.4	1107.	Dulong.
" dioxide	0.	258.0	846.	Brockendahl, 1906.
" disulphide .	0.	189.	620.	Masson.
Chlorine	0.	206.4	677.	Martini.
n	0,	205.3	674.	Strecker.
Ethylene	0.	314.	1030.	Dulong.
Hydrogen	0.	1269.5	4165.	Zoch.
Illuminating gas	0.	1286.4	422I. 1600.	ZOCH.
Illuminating gas . Methane	0.	490.4	1417.	Masson.
Nitric oxide	0.	325.	1066.	6
Nitrous oxide	0.	261.8	859.	Dulong.
Oxygen	0.	317.2	1041.	"
Vapors: Alcohol	0.	230.6	756.	Masson.
Ether	0.	179.2	588.	66
Water	0.	401.	1315.	
66	100.	404.8	1328.	Treitz, 1903.
"	130.	424.4	1392.	

MUSICAL SCALES.

The pitch relations between two notes may be expressed precisely (1) by the ratio of their vibration frequencies; (2) by the number of equally-tempered semitones between them (E. S.); also, less conveniently, (3) by the common logarithm of the ratio in (1); (4) by the lengths of the two portions of the tense string which will furnish the notes; and (5) in terms of the octave as unity. The ratio in (4) is the reciprocal of that in (1); the number for (5) is 1/12 of that for (2); the number for is nearly 40 times that for (3).

(a) is nearly 40 times that for (3).

Table 130 gives data for the middle octave, including vibration frequencies for three standards of pitch: A₃=435 double vibrations per second, is the international standard and was adopted by the American Piano Manufacturers' Association. The "just-diatonic scale" of C-major is usually deduced, following Chladni, from the ratios of the three perfect major triads reduced to one

6 C 4 5 B 6 E 36 24 30 36 45 24 27 30 32 36 40 45 48

Other equivalent ratios and their values in E. S. are given in Table 131. By transferring D to the left and using the ratio 10: 12:15 the scale of A-minor is obtained, which agrees with that of C-major except that D=26 2/3. Nearly the same ratios are obtained from a series of harmonics beginning with the eighth; also by taking 12 successive perfect or Pythagorean fifths or fourths and reducing to one octave. Such calculations are most easily made by adding and subtracting intervals expressed in E. S. The notes needed to furnish a just major scale in other keys may be found by successive in E. S. The notes needed to furnish a just major scale in other keys may be found by successive transpositions by fifths or fourths as shown in Table 131. Disregarding the usually negligible difference of 0.02 E. S., the table gives the 24 notes to the octave required in the simplest enharmonic organ; the notes fall into pairs that differ by a comma, 0.22 E. S. The line "mean tone" is based on Dom Bedos' rule for tuning the organ (1746). The tables have been checked by the data in Ellis' Helmholtz's "Sensations of Tone."

TABLE 130.

	Inte	rval.	Ra	tios.	Logar	ithms.	Numb	erofo	louble \	/ibratio	ns per s	econd.
Note.	Just.	Tem- pered.	Just.	Tem- pered.	Just.	Tem- pered.	Just.	Just.	Just.	Tem- pered-	Tem- pered.	Tem- pered
C ₈	E. S.	E. S.	1.00	1.00000	•0000	.00000	256	264	258.7	258.7	261.6 277.2	271.1
D ₈	3.86	3	1.125	1.12246 1.18921 1.25992	.05115	.05017 .07526 .10034	288	297 330	291.0	290.3 307.6 325.9	293.7 311.1 329.6	304·3 322·4 341·6
E ₃ F ₃	4.98	56	1.33	1.33484 1.41421 1.49831	.12494	.12543 .15051 .17560	341.3	352 396	344.9	345.3 365.8 387.5	349.2 370.0 392.0	361.9 383.4 406.2
A ₃	8.84	7 8 9	1.67	1.58740 1.68179 1.78180	.22185	20069 .22577 .25086	426.7	440	431.1	410.6	415.3 440.0 446.2	430.4
B ₈	10.88	11 12	1.875	1.88775	.27300	.27594	480 512	495 528	485.0 517.3	488.3	493.9 523.2	483.1 511.8 542.3

TABLE 131.

Ke	y of	С		D		E	F		G		A		В	С
7 #s 6 " 5 " 4 " 3 " 1 # 1 b 2 bs 3 " 4 " 7 "	C# F# B E A D G C F B D G C F C C F B D C C F B D C C F B D C C F B D D C C F B D D C C F B D D C C F B D D D D D D D D D D D D D D D D D D	0.00° 0.00° 0.00° 0.0022 2222	1.14 0.92 1.14 0.92 1.14 0.92 0.70 0.92 0.70 0.92 0.70 0.92	2.04 1.82 2.04 2.04 1.82 1.82 1.82	3.18 2.96 2.96 2.74 2.96 2.74 2.96 2.74 2.94 2.94 2.94 2.94 2.72 2.72	4.08 3.86 4.08 3.86 4.08 3.86 4.08 3.86 3.86		6.12 5.90 6.12 5.90 6.12 5.90 5.68 5.90 5.90 5.88 5.88 5.88	7.02 7.02 7.02 7.02 6.80 6.80 6.80	8.16 7.94 8.16 7.94 7.72 7.94 7.72 7.94 7.72 7.92 7.92 7.92 7.92 7.92 7.92 7.92	9.06 8.84 9.06 8.84 9.06 9.06 8.84 8.84		11.10 10.88 11.10 10.88 11.10 10.88 11.10 10.88 10.88 10.88 10.88	12.00 12.00 12.00 12.00 12.00 11.78 11.78
Harmon Cycle of Cycle of Mean to Equal 7	fourths ne	8 0.0 0.0 0.0 0.0 0.0	(17) 1.05) 1.14 0.90 0.76	2.04 2.04 1.80 1.93 1.71	(2.98) 3.18 2.94 3.11 3.43	3.86 4.08 3.84 3.86	(21 (4.70) 5.22 4.98 5.03 5.14	5.51 6.12 5.88 5.79	7.02 7.02 6.78 6.97 6.86	(25 7.73) 8.16 7.92 7.72	9.06 8.82 8.90 8.57	14 9.69 10.20 9.96 10.07 10.29	15 10.88 11.10 10.86 10.83	16 12.00 12.24 11.76 12.00 12.00

MISCELLANEOUS SOUND DATA.

TABLE 132. — A Fundamental Tone, Its Harmonics (Overtones) and the Nearest Tone of the Equal-tempered Scale.

No. of partial	1 129 C 129	2 259 C 259	3 388 G 388	517 C 517	5 647 E 652	6 776 G 775	7 905 B5 922	8 1035 C 1035	9 1164 D 1164	10 1293 E 1293
No. of partial. Frequency Nearest tempered note. Corresponding frequency.	11 1423 Gb 1463	12 1552 G 1550	13 1681 G# 1642	14 1811 Bb 1843	15 1940 B 1953	16 2069 C 2069	17 2199 C# 2192	18 2328 D 2323	19 2457 D# 2461	2586 E 2607

Note. — Overtones of frequencies not exact multiples of the fundamental are sometimes called inharmonic partials.

TABLE 133. — Relative Strength of the Partials in Various Musical Instruments.

The values given are for tones of medium loudness. Individual tones vary greatly in quality and, therefore, in loudness

Testament	Strength of partials in per cent of total tone strength.												
Instrument.	I	2	3	4	5	6	7	8	9	10	II	12	
Tuning fork on box. Flute. Violin, A string Oboe. Clarinet. Horn. Trombone.	100 66 26 2 12 36 6	24 25 2 5 26 11	4 9 4 10 17 35	6 10 29 3 7	27 35 5 4 8	1 14 0 3 11	0 48 26		3 15 1 3	- 4 18 1 2			

TABLE 134. — Characteristics of the Vowels.

The larynx generates a fundamental tone of a *chosen* pitch with some 20 partials, usually of low intensity. The particular partial, or partials, most nearly in unison with the mouth cavity is greatly strengthened by resonance. Each vowel, for a given mouth, is characterized by a particular *fixed* pitch, or pitches, of resonance corresponding to that vowel's definite form of mouth cavity. These pitches may be judged by whispering the vowels. It is difficult to sing vowels true above the corresponding pitches. The greater part of the energy or loudness of a vowel of a *chosen* pitch is in those partials reinforced by resonance. The vowels may be divided into two classes, —the first having one characteristic resonance region, the second, two. The representative pitches of maximum resonance of a mouth cavity for selected vowels in each group are given in the following table. for selected vowels in each group are given in the following table.

Vowel indicated by italics in the words.	Pitch of maximum resonance.	Vowel indicated by italics in the words.	Pitch of maximum resonance.
father, far, guardraw, fall, haulno, rode, goolgloom, move, group	910 732 461 326	mat, add, cat	800 and 1840 691 and 1953 488 and 2461 308 and 3100

TABLE 135. - Miscellaneous Sound Data.

Koenig's temperature coefficient for the frequency (n) of forks is nearly the same for all pitches. $n_t =$

Koenig's temperature coefficient for the frequency (n) of forks is nearly the same for all picches. $n_l = n_0(1-\alpha)\cos(1/\alpha)$, Ann. d. Phys. 9, p. 408, 1380.

Vibration frequencies for continuous sound sensations are practically the same as for continuous light sensation, to or more per second. Helmholtz' value of 32 per sec. may be taken as the flicker value for the ear. Moving pictures use 16 or more per sec. For light the number varies with the intensity.

Pitch limits of voice: 60 to 1200 vibrations per second.

Piano pitch limits: 27.2 to 4138.4 v. per sec. (over 7 octaves).

Organ pitch limits: 16 (32 ft. pipe), sometimes 8 (64 ft.) to 4138 (1 $\frac{1}{4}$ in.) (9 octaves).

Ear can detect frequencies of 20,000 to 30,000 v. per sec. Koenig, by means of dust figures, measured sounds from steel forks with frequencies on 10 00.000.

steel forks with frequencies up to 90,000.

The quality of a musical tone depends solely on the number and relative strength of its partials (simple tones) and probably not at all on their phases.

The wave-lengths of sound issuing from a closed pipe of length L are 4L, 4L/3, 4L/5, etc., and from an open pipe, 2L, 2L/2, 2L/3, etc. The end correction for a pipe with a flange is such that the antinode is $0.82 \times \text{radius}$ of pipe beyond the end; with no flange the correction is $0.57 \times \text{radius}$ of pipe. The energy of a pure sine wave is proportional to n^2A^2 ; the energy per cm³ is on the average $2\rho\pi^2U^3A^2/\lambda^2$; the energy

passing per sec. through 1 cm² perpendicular to direction of propagation is $2\rho\pi^2U^3A^2/\lambda^2$; the pressure is $\frac{1}{2}(\gamma+1)$ (average energy per cm³); where n is the vibration number per sec., λ the wave-length, A the amplitude, V the velocity of sound, ρ the density of the medium, ρ the specific heat ratio. Altherg (Ann. d. Phys. 11, p. 405, 1903) measured sound-wave pressures of the order of 0.24 dynes/cm² = 0.00018 mm Hg.

TABLE 136. - Aerodynamics.

KINETICS OF BODIES IN RESISTING MEDIUM.

The differential equation of a body falling in a resisting medium is $du/dt = g - ku^2$. The velocity tends asymptotically to a certain terminal velocity, $V = \sqrt{g/k}$. Integration gives u =V. tanh (gt/V), $x = \frac{V^2}{\log \cosh (gt/V)}$ if u = x = t = 0.

When body is projected upwards, $du/dt = -g - ku^2$, and if u_0 is velocity of projection, then $\tan^{-1} u/V = \tan^{-1} (u_0/V) - gt/V$, $x = (V^2/2g) \log (V^2 + u_0^2) (V^2 + u^2)$. The particle comes to rest when $t = (V/g) \tan^{-1} (u_0/V)$ and $x = (V^2/2g) \log (v - u_0^2/V^2)$.

For small velocities the resistance is more nearly proportional to the velocity,

Stokes' Law for the rate of fall of a spherical drop of radius a under gravity g gives for the velocity, v,

$$v=\frac{2ga^2}{g\eta}(\sigma-\rho),$$

where σ and ρ are the densities of the drop and the medium, η the viscosity of the medium. This depends on five assumptions: (1) that the sphere is large compared to the inhomogeneities of the medium; (2) that it falls as in a medium of unlimited extent; (3) that it is smooth and rigid; (4) that there is no slipping of the medium over its surface; (5) that its velocity is so small that the resistance is all due to the viscosity of the medium and not to the inertia of the latter. Because of 5, the law does not hold unless the radius of the sphere is small compared with $\eta/v\rho$ (critical radius). Arnold showed that a must be less than 0.6 this radius.

If the medium is contained in a circular cylinder of radius R and length L, Ladenburg showed that the following formula is applicable (Ann. d. Phys. 22, 287, 1907, 23, 447, 1908):

$$V = \frac{2}{9} \frac{ga^2(\sigma - \rho)}{\eta(1 + 2.4a/R)} \frac{(1 + 3.1a/L)}{(1 + 3.1a/L)}$$

As the spheres diminish in size the medium behaves as if inhomogeneous because of its molecular structure, and the velocity becomes a function of l/a, where l is the mean free path of the molecules. Stokes' formula should then be modified by the addition of a factor, viz.:

$$v_1 = \frac{2}{9} \frac{ga^2}{\eta} (\sigma - \rho) \left\{ 1 + (0.864 + 0.29e^{-1.25} (a/l)) \frac{l}{a} \right\}$$

(See chapter V, Millikan, The Electron, 1917; also Physical Review 15, p. 545, 1920.)

TABLE 137. - Flow of Gases through Tubes.*

When the dimensions of a tube are comparable with the mean free path (L) of the molecules of a gas, Knudsen (Ann. der Phys. 28, 75, 199, 1908) derives the following equation correct to 5% even when D/L = 0.4: Q, the quantity of gas in terms of PV which flows in a second through a tube of diameter D, length L, connecting two vessels at low pressure, difference of pressure $P_2 - P_1$, equals $(P_2 - P_1)/W\sqrt{\rho}$ where ρ is the density of the gas at one bar (1 dyne/cm²) = (molecular weight)/(83.15 × 108 T) and W; which is of the nature of a resistance, = 2.3941 l/D^3 + 3.184/ D^2 . The following table gives the cm³ of air and H at 1 bar which would flow through different sized tubes, difference of pressure 1 bar, room temperature.

$$l=1 \text{ cm.}$$
 $D=1 \text{ cm.}$ $W=5.58$ $Q, \text{ cm}^8 \text{ of air, 5200.}$ $\text{cm}^8 \text{ of } H_2, 19700.}$ 10 1 27.1 1070. 4050. 10.1 24300. 10.7 40.5 3.60

Knudsen derives the following equation, equivalent to Poiseuille's at higher, and to the above at lower pressures:

 $Q = (P_2 - P_1) \{aP + b (1 + c_1P)/(1 + c_2P)\}$ where $a = \pi D^4/128\eta l$ (Poiseuille's constant); $b = \frac{1}{2} (P_1 - P_1) \{aP + b (1 + c_1P)/(1 + c_2P)\}$ $1/W\sqrt{\rho}$, (coefficient of molecular flow); $c_1 = \sqrt{\rho} D/\eta$; and $c_2 = 1.24 \sqrt{\rho} D/\eta$; $\eta = \text{viscosity coefficient}$. The following are the volumes in cm³ at 1 bar, 20°C, that flow through tube, D = 1 cm,

The following are the volumes in cm² at 1 bar, 20°C, that flow through tube,
$$D = 1$$
 l = 10cm, $P_2 - P_1 = 1$ bar, average pressure of P bars:

 $P = 10.6$ $Q = 13,000,000$. $P = 5$. $Q = 1026$. $P = 1$. $Q = 1044$. cm⁸
100. 2,227. 4. 1024. 0.1 1065.
10. 1,058. 3. 1025, 0.01 1070.

When the velocity of flow is below a critical value, F (density, viscosity, diameter of tube), the stream lines are parallel to the axis of the tube. Above this critical velocity, Vo, the flow is turbulent. $V_0 = k\eta$ pr for small pipes up to about 5 cm diameter, where K is a constant, and r the tube radius. When these are in cgs units, k is 10% in round numbers. Below V_c the pressure drop along the tube is proportional to the velocity of gas flow; above it to the square of the velocity.

^{*} See Dushman, The Production and Measurement of High Vacua, General Elec. Rev. 23, p. 493, 1920 SMITHSONIAN TABLES.

AERODYNAMICS.

TABLE 138. - Air Pressures upon Large Square Normal Planes at Different Speeds through the Air.

The resistance F of a body of fixed shape and presentation moving through a fluid may be written

$$F = \rho L^2 V^2 f(LV/\nu)$$

in which ρ denotes the fluid density, ν the kinematic viscosity, L a linear dimension of the body, V the speed of translation. In general f is not constant, even for constant conditions of the fluid, but is practically so for normal impact on a plane of fixed size. In the following, ρ is taken as 1.230 g/l (.0768 lbs./ft³).

The mean pressure on thin square plates of 1.1 m² (12 ft²), or over, moving normally through air of standard density at ordinary transportation speeds may be written $P = .00500^2$ for P in kg per m² and v in km per hour, or $P = .00320^2$ for P in lbs. per ft² and v in miles per hour. The following values are computed from this formula. For smaller areas the correction factors as given in the succeeding table (Table 139) derived from experiments made at the British National Physical Laboratory, may be applied.

Physical Laboratory, may be applied.

Units: the first of each group of three columns gives the velocity; the second, the corresponding pressure in kg/m² when the first column is taken as km per hour; the third in pds/ft² when in miles per hour.

Veloc-	Pres	sure.	Veloc-	Pres	ssure.	Veloc-	Pressure.		Veloc-	Pressure.		
ity.	Metric.	English.	ity.	Metric.	English.	ity.	Metric.	English.	ity.	Metric.	English.	
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	0.60 0.73 0.86 1.01 1.18 1.35 1.54 1.74 2.17 2.40 2.65 2.90 3.17 3.46 4.37 4.70 5.05 5.40 6.54 6.54 6.54 6.54 6.54 6.54 6.54 6.54	0.32 0.30 0.46 0.54 0.63 0.72 0.82 0.92 1.04 1.128 1.41 1.55 1.69 1.84 2.36 2.36 2.51 2.69 2.88 3.98	40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 60 61 62 65 66 66 66 66 66 66 66 66	9.60 10.09 10.58 11.09 11.6 12.1 13.3 13.8 14.4 15.0 15.6 16.2 17.5 18.8 19.5 20.2 20.9 21.6 22.3 23.0 23.8 24.6 25.4 26.9 27.7 28.6	5.12 5.38 5.04 6.20 6.20 6.20 6.77 7.37 7.68 8.00 8.32 8.65 9.33 9.68 10.04 10.40 10.76 11.14 11.52 11.91 12.3 12.7 13.1 13.5 13.9 14.8 15.2	70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	29.4 30.2 31.1 32.8 33.7 35.5 37.4 38.4 40.3 41.3 42.3 44.3 44.4 45.4 46.4 47.5 48.6 49.7 50.8 51.9 53.0 54.2 55.3 56.5 57.6 58.8	15.7 16.1 17.0 17.5 18.0 19.5 20.0 21.0 21.0 22.6 22.6 22.7 24.2 23.7 24.2 25.9 26.5 27.1 28.3 27.1 28.3 29.5 30.1 30.7 31.4	100 101 102 103 104 105 106 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129	60.0 61.2 62.4 63.7 64.9 66.1 77.0 71.3 72.6 78.0 78.0 78.0 78.3 80.8 82.1 83.5 84.9 85.4 92.2 93.7 95.3 96.4 98.7	32.0 32.6 33.3 33.9 34.6 35.3 36.0 36.6 37.2 38.0 38.7 39.4 40.1 40.1 40.1 44.6 45.3 44.6 45.3 46.1 46.8 47.6 48.4 49.2 50.0 88.7 88.7 88.7 88.7 88.7 88.7 88.7 8	

TABLE 139. - Correction Factor for Small Square Normal Planes.

The values of Table 138 are to be multiplied by the following factors when the area of the surface is less than about I m2 (12 ft2).

	Me	tric.	English.							
Area. m²	Factor.	Area. m²	Factor.	Area. ft ²	Factor.	Area. ft ²	Factor			
0.03	0.845	5.0	0.969	0.03	0.842	5.0	0.968			
0.10	0.859	6.0	0.975	0.10	0.857	6.0	0.973			
0.50	0.884	7.0	0.979	0.50	0.884	7.0	0.977			
0.75	0.890	8.0	0.984	0.75	0.889		0.981			
1.00	0.898	9.0	0.989	1.00	0.896	9.0	0.900			
2.00	0.919	10.0	0.993	3.00	0.917	11.0	0.994			
3.00	0.933	11.0	0.999	4.00	0.943	12.0	1.000			

TABLE 140. - Effect of Aspect Ratio upon Normal Plane Pressure (Eiffel).

The mean pressure on a rectangular plane varies with the "aspect ratio," a name introduced by Langley to denote the ratio of the length of the leading edge to the chord length. The effect of aspect ratio on normally moving rectangular plates is given in the following table, derived from Eiffel's experiments.

Aspect ratio

TABLE 141. - Ratio of Pressures on Inclined and Normal Planes.

The pressure on a slightly inclined plane is proportional to the angle of incidence a, and is given by the formula $P_a = c \cdot P_{90} \cdot a$. The value of ϵ , which is constant for incidences up to about 12°, is given for various aspect ratios. The angle of incidence is taken in degrees.

Aspect ratio

TABLE 142. - Skin Friction.

The skin friction on an even rectangular plate moving edgewise through ordinary air is given by Zahm's equation,

 $F(\text{kg/m}^2) = 0.00030 \{A(\text{m}^2)\}^{0.93} \{V(\text{km/hr.})\}^{1.86} \text{ in metric units}$ or $F(\text{pds./ft.}^2) = 0.0000082 \{A(\text{ft.}^2)\}^{0.93} \{V(\text{ft./sec.})\}^{1.86}_{1.96},$

where A is the surface area and V the speed of the plane. The following table gives the friction per unit area on one side of a plate.

Speed.	Kg pe	riction. r sq. m. ane.	Sı	peed.	Skin friction. Lbs. per sq. ft. Plane.				
km/hr.	r m long.	32 m long.	miles/hr.	ft./sec.	r ft. long.	32 ft. long.			
5 10 15 20 25 30 40 50 60 70 80 90 100 110 120 125 130 135	0.0059 0.0217 0.0464 0.079 0.122 0.169 0.288 0.439 0.616 0.82 1.06 1.31 1.58 1.89 2.20 2.39 2.56 2.68 2.94	0.0047 0.9171 0.0364 0.062 0.095 0.133 0.225 0.346 0.482 0.64 0.83 1.03 1.24 1.49 1.73 1.87 2.01 2.10	5 10 15 20 25 30 40 50 60 70 80 90 100 110 120	7.3 14.7 22.0 29.3 36.7 44.0 58.7 73.3 88.0 102.7 117.3 132.0 146.7 161.2 175.8 183.4 190.5 197.8	0.00033 0.00121 0.00258 0.00439 0.0068 0.0094 0.0160 0.0244 0.0342 0.0455 0.0587 0.073 0.088 0.105 0.122	0.00026 0.00095 0.00202 0.00345 0.00530 0.0074 0.0125 0.0192 0.0268 0.0357 0.0461 0.0572 0.069 0.083 0.096			
145	3.15	2.47	145 150	205.4 212.5 220.0	0.164 0.175 0.188	0.128 0.137 0.147			

The following tables, based on Eiffel, show the variation of the resistance coefficient K, with the angle of impact i, the aspect (ratio of leading edge to chord length), shape and velocity V in the formula

 $R(kg/m^2) = KS(m^2) \{V(m/sec.)\}^2$

The value of K for km/hour would be 0.77 times greater.

TABLE 143. - Variation of Air Resistance with Aspect and Angle.

					Val	lues of i.				Max. r	atio.
Size of plane.	Aspect.	6°	10°	20°	30°	40°	45°	60°	75°	Value.	
			value.	i.							
15 x 90 cm	16	.07	.13	.40	0.67	0.92	1.08	1.07	1.03	1.07	60
15 x 45 cm	3	.11	. 21	.51	0.89	I.20 I.17	1.22	1.06	I.02	I.22	45 38
30 x 15 cm	2	. 26	. 43	.91	0.72	0.79	0.82	0.90	0.97	0.91	20
45 x 15 cm	3	.31	.50	.77	0.77	0.84	0.88	0.94	0.99	0.77	20
90 x 10 cm	9	.45	.62	.73	0.80	0.85	0.88	0.93	0.90	0.69	15

TABLE 144. - Variation of Air Resistance with Shape and Size.

Cylinder, base \perp to wind: Length. o cm 1R* 2R* 4R* 6R* 8R* 14R*
Diameter of base, 30 cm $K = .0675 .068 .055 .050$
Diameter of base, 15 cm $K = .066 .066 .055 .051 .051 .0515 .059$
Cylinder, base [] to wind: diameter base, 15 cm, length, 60 cm $K = .040$
Cylinder, base \parallel to wind: diameter base, 3 cm, length, 100 cm $K=$.060
Cone, angle 60°, diam. base, 40 cm, point to wind, solid $K = .032$
Cone, angle 30°, diam. base, 40 cm, point to wind, solid $K = .021$
Sphere, 25 cm diam. $K = .011$
Hemisphere, same diam., convex to wind $K = .021$
Hemisphere, same diam., concave to wind $K = .083$
Sphero-conic body, diam., 20 cm, cone 20°, point forward $K = .010$
Sphero-conic body, diam., 20 cm, cone 20°, point to rear K = .0055
Cylinder, 120 cm long, spherical ends to wind $K = .012$

The wind velocity for the values of this table was 10 m/sec.

Tables 143 and 144 were taken from "The Resistance of the Air and Aviation," Eiffel, translated by Hunsaker, 1913.

TABLE 145. - Variation of Air Resistance with Shape, Size and Speed.

This table shows the peculiar drop in air resistance for speeds greater than 4 to 12 meters per second. Another change occurs when the velocity approaches that of sound.

Chana	Shape.					Values of K.										
Snape.	Speed	, m/sec.	4	6	8	10	12	14	16	20	32					
Sphere, 16.2 cm diameter.		/	.033	.030	.028	.027	.024	.009	.0095	.010	.OII					
Sphere, 24.4 cm diameter.			.025	.025	.021	.013	.010	OIC.	.010	.010						
Sphere, 33 cm diameter			.023	.017	.012	.010	.010	.OIO	.OII	.OI2						
Concave cup, 25 cm diamet	er		.000	.090	.089	.087	.087	.088	.089	.095						
Convex cup, 25 cm diamete										.019						
Disk, 25 cm diameter			.071	.070	.070	.070	.070	.070	.070	.070	.068					
Cylinder		cm														
element \perp to wind, $d =$	15 cm, l	= 15.0	.043	.042	.037	.030	.025	.022	.02I	.022	.022					
1 . 1	30						.024			.025	.023					
1 . 1	15						.031			.030	.030					
	15						.030			.025	.025					
1 1 . 1 . 1	15						.031			.022	.020					
	15	105.0								.051	.050					
0111	15	120.0								.016	.015					

Taken from "Nouvelles Recherches sur la résistance de l'air et l'aviation," Eiffel, 1914.

^{*} In the case of these cylinders the percentages due to skin friction are 2, 3, 6, 8, 11 and 16 per cent respectively, excluding the disk.

TABLE 146. - Priction.

The required force F necessary to just move an object along a horizontal plane =fN where N is the normal pressure on the plane and f the "coefficient of friction." The angle of repose Φ (tan $\Phi = F/N$) is the angle at which the plane must be tilted before the object will move from its own weight. The following table of coefficients was compiled by Rankine from the results of General Morin and other authorities and is sufficient for ordinary purposes.

Material.	f	1/f	φ
Wood on wood, dry	.2550	4.00-2.00	14.0-26.5
soapy	.20	5.00	11.5
Metals on oak, dry	.5060	2.00-1.67	26.5-31.0
" " wet	.2426	4.17-3.85	13.5-14.5
" " soapy	.20	5.00	11.5
" " elm, dry	.2025	5.00-4.00	11.5-14.0
Hemp on oak, dry	-53	1.89	28.0
" " wet	-33	3.00	18.5
Leather on oak	.2738	3.70-2.86	15.0-19.5
metals, dry	.56	1.79	29.5
Wet	.36	2.78	20.0
greasy	.23	4.35	13.0
Olly	.15	6.67	8.5
Metals on metals, dry	.1520	6.67-5.00	8.5-11.5
Wel	.3	3.33	16.5
Smooth surfaces, occasionally greased	.0708	14.3-12.50	4.0-4.5
" continually greased best results	.05	20.00	3.0
Dest results	.03036	33.3-27.6	1.75-2.0
Steel on agate, dry *	.20	5.00	11.5
Oned	.107	9.35	6.1
Wood on stone	.3070	3.33-1.43	16.7-35.0
Masonry and brick work, dry	About .40	2.50	22.0
" damp mortar	.6070	1.67-1.43	33.0-35.0
" on dry clay	.74	1.35	36.5
44 44	.51	1.96	27.0
Earth on earth	•33	3.00	18.25
" " dry sand, clay, and mixed earth .	.25-1.00	4.00-1.00	14.0-45.0
ff ff ff dawn alam	·3875	2.63-1.33	21.0-37.0
" " wet clay			45.0
" " shingle and gravel	.31	3.23	17.0
Simigic and graver	.01-1.11	1.23-0.9	39.0-48.0

^{*} Quoted from a paper by Jenkin and Ewing, "Phil. Trans. R. S." vol. 167. In this paper it is shown that in cases where "static friction" exceeds "kinetic friction" there is a gradual increase of the coefficient of friction as the speed is reduced towards zero.

TABLE 147. - Lubricants.

The best lubricants are in general the following: Low temperatures, light mineral lubricating oils. Very great pressures, slow speeds, graphite, soapstone and other solid lubricants. Heavy pressures, slow speeds, ditto and lard, tallow and other greases. Heavy pressures and high speeds, sperm oil, castor oil, heavy mineral oils. Light pressures, high speeds, sperm, refined petroleum olive, rape, cottonseed. Ordinary machinery, lard oil, tallow oil, heavy mineral oils and the heavier vegetable oils. Steam cylinders, heavy mineral oils, lard, tallow. Watches and delicate mechanisms, clarified sperm, neat's foot, porpoise, clive and light mineral lubricating oils. mechanisms, clarified sperm, neat's-foot, porpoise, olive and light mineral lubricating oils.

TABLE 148. - Lubricants For Cutting Tools.

Material.	Turning.	Chucking.	Drilling.	Tapping Milling.	Reaming.
Soft Steel, dr Wrought iron dr Cast iron, brass dr Copper dr	,	oil or s. w. soda water soda water dry dry	oil oil or s. w. oil or s. w. dry dry	oil oil oil dry dry	lard oil lard oil lard oil dry mixture

Mixture = 1/2 crude petroleum, 1/2 lard oil. Oil = sperm or lard.

Tables 147 and 148 quoted from "Friction and Lost Work in Machinery and Mill Work," Thurston, Wiley and Sons.

TABLES 149-151. VISCOSITY.

TABLE 149. - Viscosity of Fluids and Solids.

The coefficient of viscosity of a substance is the tangential force required to move a unit area of a plane surface with unit speed relative to another parallel plane surface from which it is separated by a layer a unit thick of the substance. Viscosity measures the temporary rigidity it gives to the substance. The viscosity of fluids is generally measured by the rate of flow of the fluid through a capillary tube the length of which is great in comparison with its diameter. The equation generally used is

$$\mu$$
, the viscosity, $=\frac{\gamma\pi gd^4t}{128Q(l+\lambda)}\left(h-\frac{mv^2}{g}\right)$,

where γ is the density (g/cm^3) , d and l are the diameter and length in cm of the tube, Q the volume in cm³ discharged in l sec., λ the Couette correction which corrects the measured to the effective length of the tube, h the average head in cm, m the coefficient of kinetic energy correction, mv^2/g , necessary for the loss of energy due to turbulent in distinction from viscous flow, g being the acceleration of gravity (cm/sec/sec), v the mean velocity in cm per sec. (See Technologic Paper of the Bureau of Standards, 100 and 112, Herschel, 1017–1018, for discussion of this correction and λ .)

The fluidity is the reciprocal of the absolute viscosity. The kinetic viscosity is the absolute viscosity divided by the density. Specific viscosity is the viscosity relative to that of some standard substance, generally water, at some definite temperature. The dimensions of viscosity are $ML^{-1}T^{-1}$. It is generally expressed in cgs units as dyne-seconds preserved to the contraction of the correction of the correction

per cm² or poises.

The viscosity of solids may be measured in relative terms by the damping of the oscillations of suspended wires (see Table 78). Ladenburg (1906) gives the viscosity of Venice turpentine at 18.3° as 1300 poises; Trouton and Andrews (1904) of pitch at 0°, 51 × 10°, at 15°, 1.3 × 10°; of shoemakers' wax at 8°, 4.7 × 10°; of soda glass at 575°, 11 × 10°; Deeley (1908) of glacier ice as 12 × 10°.

TABLE 150. - Viscosity of Water in Centipoises. Temperature Variation.

Bingham and Jackson, Bulletin Bureau of Standards, 14, 75, 1917.

°C.	Vis- cosity.	°C.	Vis- cosity.	°C.	Vis- cosity.	°C.	Vis- cosity.	°C.	Vis- cosity.	°C.	Vis- cosity.	° C.	Vis- cosity.
0 1 2 3 4	1.7921 1.7313 1.6728 1.6191 1.5674	10 11 12 13 14	1.3077 1.2713 1.2363 1.2028 1.1709	20 21 22 23 24	1.0050 0.9810 0.9579 0.9358 0.9142	30 31 32 33 34	0.8007 0.7840 0.7679 0.7523 0.7371	40 41 42 43 44	0.6560 0.6439 0.6321 0.6207 0.6097	50 51 52 53 54	0.5494 0.5404 0.5315 0.5229 0.5146	60 65 70 75 80	0.4688 0.4355 0.4061 0.3799* 0.3565
5 6 7 8 9	1.5188 1.4728 1.4284 1.3860 1.3462	15 16 17 18	1.1404 1.1111 1.0828 1.0559 1.0299	25 26 27 28 29	0.8937 0.8737 0.8545 0.8360 0.8180	35 36 37 38 39	0.7225 0.7085 0.6947 0.6814 0.6685	45 46 47 48 49	0.5988 0.5883 0.5782 0.5683 0.5588	55 56 57 58 59	0.5064 0.4985 0.4907 0.4832 0.4759	85 90 95 100 153.	0.3355 0.3165 0.2994 0.2838 0.181 *

* de Haas, 1894. Undercooled water: -2.10°, 1.33 cp; -4.70°, 2.12 cp; -6.20°, 2.25 cp; -8.48°, 2.46 cp; -9.30°, 2.55 cp; White, Twining, J. Amer. Ch. Soc., 50, 380, 1913.

TABLE 151. - Viscosity of Alcohol-water Mixtures in Centipoises. Temperature Variation.

		Percentage by weight of ethyl alcohol.												
° C.	o	IO	20	30	39	40	45	50	60	70	80	90	100	
5 10 15 20	1.792 1.519 1.308 1.140 1.005	3.311 2.577 2.179 1.792 1.538	5.319 4.065 3.165 2.618 2.183	6.94 5.29 4.05 3.26 2.71	7.25 5.62 4.39 3.52 2.88	7.14 5.59 4.39 3.53 2.91	6.94 5.50 4.35 3.51 2.88	6.58 5.26 4.18 3.44 2.87	5.75 4.63 3.77 3.14 2.67	4.762 3.906 3.268 2.770 2.370	3.690 3.125 2.710 2.309 2.008	2.732 2.309 2.101 1.802 1.610	1.773 1.623 1.466 1.332 1.200	
25 30 35 40 45 50	0.894 0.801 0.722 0.656 0.599 0.549	1.323 1.160 1.006 0.907 0.812 0.734	1.815 1.553 1.332 1.160 1.015 0.907	2.18 1.87 1.58 1.368 1.189 1.050	2.35 2.00 1.71 1.473 1.284 1.124	2.35 2.02 1.72 1.482 1.289 1.132	2.39 2.02 1.73 1.495 1.307 1.148	2.40 2.02 1.72 1.499 1.294 1.155	2.24 1.93 1.66 1.447 1.271 1.127	2.037 1.767 1.529 1.344 1.189 1.062	1.748 1.531 1.355 1.203 1.081 0.968	1.424 1.279 1.147 1.035 0.939 0.848	1.096 1.003 0.914 0.834 0.764 0.702	
60 70 80	0.469 0.406 0.356	0.609 0.514 0.430	0.736 0.608 0.505	o.834 o.683 o.567	o.885 o.725 o.598	0.893 0.727 0.601	0.907 0.740 0.609	0.913 0.740 0.612	0.902 0.729 0.604	0.856 0.695	0.789	0.704	0.592	

TABLE 152. - Viscosity and Density of Sucrose in Aqueous Solution.

See Scientific Paper 298, Bingham and Jackson, Bureau of Standards, 1917, and Technologic Paper 100, Herschel, Bureau of Standards, 1917.

		Viscosity in	centipoises	- 1-4		Densit	y dst.				
Tempera- ture.	Pe	er cent suci	rose by weig	ht.	Per cent sucrose by weight.						
	Ø	20	40	60	D	20	40	60			
o° C 5 10 15 20	1.7921 1.5188 1.3077 1.1404 1.0050	3.804 3.154 2.652 2.267 1.960	14.77 11.56 9.794 7.468 6.200	238. 156. 109.8 74.6 56.5	0.99987 · 0.99999 0.99973 0.99913 0.99823	1.08546 1.08460 1.08353 1.08233 1.08094	1.18349 1.18192 1.18020 1.17837 1.17648	1.29560 1.29341 1.29117 1.28884 1.28644			
30 40 50 60 70 80	0.8007 0.6560 0.5494 0.4688 0.4061 0.3565	1.504 1.193 0.970 0.808 0.685 0.590	4.382 3.249 2.497 1.982 1.608	33.78 21.28 14.01 9.83 7.15 5.40	o.99568 o.99225 o.98807 o.98330	1.07767 1.07366 1.06898 1.06358	1.17214 1.16759 1.16248 1.15693	1.28144 1.27615 1.27058 1.26468			

TABLE 153. — Viscosity and Density of Glycerol in Aqueous Solution (20° C).

% Glycerol.	Den- sity. g/cm ³	Viscosity in centipoises.	Kine- matic viscos- ity.	% Glyc- erol.	Den- sity. g/cm ³	Viscos- ity in centi- poises.	IOO X Kine- matic viscos- ity.	% Glyc-erol.	Den- sity. g/cm³	Viscos- ity in centi- poises.	Kine- matic viscos- ity.
5	1.0098	1.181	1.170	35	1.0855	3.115	2.870	65	1.1662	14.51	12.44
10	1.0217	1.364	1.335	40	1.0989	3.791	3.450	70	1.1797	21.49	18.22
15	1.0337			45	1.1124	4.692	4.218	75	1.1932	33.71	28.25
20	1.0461	1.846	1.765	50	1.1258	5.908	5.248	80	1.2066	55.34	45.86
25	1.0590	2.176	2.055	55	1.1393	7.664	6.727	85	1.2201	102.5	84.01
30	1.0720	2.585	2.411	60	1.1528	10.31	8.943	90	1.2335	207.6	168.3
		-1		l							

The kinematic viscosity is the ordinary viscosity in cgs units (poises) divided by the density.

TABLE 154. - Viscosity and Density of Castor Oil (Temperature Variation).

Density,	Viscosity in poises. Kinematic viscosity.	°C	Density, g/cm³ Viscosity in poises.	Kinematic viscosity.	°C	Density, g/cm³	Viscosity in poises.	Kinematic viscosity.	°C	Density, g/cm ³	Viscosity in poises.	Kinematic viscosity.
5 .9707 6 .9700 7 .9693 8 .9686 9 .9679 10 .9672 11 .9665 12 .9659	34.535.5 31.632.6 28.929.8 26.427.3 24.225.0 22.122.8 20.120.8	15 16 17 18 19 20	9645 16.61 9638 15.14 9631 13.86 9624 12.65 9617 11.62 9610 10.71 9603 9.86 9596 9.66 9589 8.34	15.71 14.33 13.14 12.09 11.15 10.27 9.44	23 24 25 26 27 28 29 30 31	.9583 .9576 .9569 .9562 .9555 .9548 .9541 .9534	7.06 6.51 6.04 5.61 5.21 4.85 4.51	6.80 6.32 5.87 5.46 5.08 4.73	32 33 34 35 36 37 38 39 40	.9520 .9513 .9506 .9499 .9492 .9485 .9478 .9471	3.65 3.40 3.16 2.94 2.74 2.58 2.44	3.84 3.58 3.33 3.10 2.89 2.72 2.58

Tables 153 and 154, taken from Technologic Paper 112, Bureau of Standards, 1918. Glycerol data due to Archbutt, Deeley and Gerlach; Castor Oil to Kahlbaum and Räber. See preceding table for definition of kinematic viscosity. Archbutt and Deeley give for the density and viscosity of castor oil at 65.6° C, 0.9284 and 0.605, respectively; at 100° C, 0.9050 and 0.169.

VISCOSITY OF LIQUIDS.

Viscosities are given in cgs units, dyne-seconds per cm2, or poises.

	I	1					-
			Refer-				Refer-
Liquid.	° C	Viscosity.	ence.	Liquid.	° C	Viscosity.	ence
Acetaldehyde	0.	0.00275	I	* Dark cylinder	37.8	7.324	IO
46	10.	0.00252	I	* " Extra L. L. "	100.0	0.341	IO
Air	20. -102.3	0.00231	I 2	Extra L. L.	37.8	11.156	IO
Aniline	20.	0.04467	3	Linseed .925 ‡	30.	0.451	10
46	60.	0.0156	3	" .022	50.	0.176	9
Bismuth	285.	0.0161	4	" .914	90.	0.071	9
	365.	0.0146	4	Olive .9195	IO.	1.38	II
Copal lac	22.	4.80	5	"	15.	1.075	II
Glycerine	2.8	42.2 13.87	6	" .9130 " .9065	20.	0.840	II
. 46	20.3	8.30	6	" .0000	30. 40.	0.540	II
	26.5	4.04	6	" .8035	50.	0.258	II
" 80.31% H ₂ O	8.5	1.021	6	" .8800	70.	0.124	II
" 80.31% H ₂ O " 64.05% H ₂ O " 49.79% H ₂ O	8.5	0.222	6	† Rape	15.6	1.118	IO
Hydrogen, liquid	8.5	0.092	6	66	37.8	0.422	10
Menthol, solid	74.0	0.000II 2 × 10 ¹²	7	" (another)	100.0	0.080	10
" liquid	14.9 34.9	0.060	7	" (another)	100.0	0.085	IO
Mercury	-20.	0.0184	7 8	Soya bean . 919 ‡	30.0	0.406	9
	0.	0.01661	4	" " .915	50.0	0.206	0
	20.	0.01547	4	" " .906	90.0	0.078	0
	34.	0.01476	4	† Sperm	15.6	0.420	IO
	98.	0.01263	4	"	37.8	0.185	IO
	193. 299.	0.00075	4	Paraffins:	100.0	0.040	10
Oils:	299.	0.00973	- 4	Pentane	21.0	0.0026	12
Dogfish-liver .923 ‡	30.	0.414	9	Hexane	23.7	0.0033	12
" " .918	50.	0.211	9	Heptane	24.0	0.0045	12
"	90.	0.080	9	Octane	22.2	0.0053	12
Linseed .925	30. 50.	0.331	9	Nonane Decane	22.3	0.0062	12
	90.	0.071	9	Undecane	22.7	0.0005	12
* Spindle oil .885	15.6	0.453	10	Dodecane	23.3	0.0126	12
	37.8	0.162	10	Tridecane	23.3	0.0155	12
	100.0	0.033	IO	Tetradecane	21.9	0.0213	12
* Light machinery	** 4	= ==0		Pentadecane	22.0	0.0281	12
* Light machinery	15.6 37.8	0.342	IO	Hexadecane	22.2 18.3	0.0359	12
" " "	100.0	0.342	10	"	00.0	0.0126	13
* "Solar red" engine.	15.6	1.915	IO	Sulphur	170.	320.0	14
46 46 46	37.8	0.496	10	24	180.	550.0	14
	100.0	0.058	10		187.	560.0	14
*" Bayonne" engine	15.6	2.172	10		250.	500.0	14
* "	37.8	0.572	IO	"	300.	104.0	14
*" Queen's red" engine	15.6	2.995	10	"	340.	6.2	14
	37.8	0.711	IO	44	380.	2.5	14
	100.0	0.070	10	"	420.	1.13	14
* " Galena " axle oil	15.6	4.366	10		448.	0.80	14
* Heavy machinery	37.8	6,606	IO	† Tallow	66.	0.176	IO
" Heavy machinery	37.8	I.274	IO	Zinc	280.	0.0168	4
* Filtered cylinder	37.8	2.406	10	44	357-	0.0142	4
46 44	100.0	0.187	IO	"	389.	0.0131	4
* Dark cylinder	37.8	4.224	10				-
	100.0	0.240	10	IL.	- 1		

^{*}American mineral oils; based on water as .01028 at 20° C. † Based on water as per 1st footnote. ‡ Densities. References: (1) Thorpe and Rodger, 1894-7; (2) Verschaffelt, Sc. Ab. 1917; (3) Wijkander, 1879; (4) Plüss. Z. An. Ch. 93, 1915; (5) Metz, C. R. 1903; (6) Schöttner, Wien. Ber. 77, 1878, 79, 1879; (7) Heydweiller, W. Ann. 63, 1897; (8) Koch, W. Ann. 14, 1881; (9) White, Bul. Bur. Fish. 32, 1912; (10) Archbutt-Deeley, Lubrication and Lubricants, 1912; (11) Higgins, Nat. Phys. Lab. 11, 1914; (12) Bartolli, Stracciati, 1885-6; (13) Scarpa, 1903-4; (14) Rotinganz, Z. Ph. Ch. 62, 1908.

VISCOSITY OF LIQUIDS.

Compiled from Landolt and Börnstein, 1912. Based principally on work of Thorpe and Rogers, 1894–97. Viscosity given in centipoises. One centipoise = 0.01 dyne-second per cm².

Tie II			Vis	cosity in	centipo	ises.			
Liquid.	Formula.	l o° C	10°C	20° C	30° C	40° C	50° C	70° C	100° C
						-			
Acids: Formic	CH ₂ O ₂	solid	2.247	1.784	1.460	1.210	1.036	. 780	. 540
Acetic	C2H4O2	solid			1.040				
Propionic	C ₃ H ₆ O ₂	1.521	1.280	I. 102	0.060	0.845	0.752	.607	.450
Butyric	$C_4H_8O_2$	2.286	1.851	1.540	1.304	1.120	0.975	. 760	.551
i-Butyric	$C_4H_8O_2$	1.887	1.568	1.318	1.129	0.980	0.862	. 683	.501
Alcohols: Methyl	CH ₄ O	0.817	0.690	0.596	0.520	0.456	0.403	_	-
Ethyl *		1.772	1.466	1.200	1.003	0.834	0.702	.510	
AllylPropyl	C_3H_6O C_3H_8O		1.705						
i-Propyl	C_3H_8O		3.246						
Butyric	$C_4H_{10}O$	E 186	2 872	2 018	2 267	T 782	T. ATT	020	. 540
i-Butyric	C4H10O	8.038	5.548	3.907	2.864	2.122	1.611	_	.527
Amyl, op. act	$C_5H_{12}O$	11.129	7.425	5.092	3.594	2.007	1.937		.610
Amyl, op. inact		8.532	6.000	4.342	3.207	2.415	1.851	-	.632
Aromatics: Benzene	C ₆ H ₆		0.763						
Toluene Ethylbenzole	C ₇ H ₈ C ₈ H ₁₀		0.671						
Orthoxylene	C ₈ H ₁₀		0.937						
Metaxylene	C_8H_{10}		0.702						
Paraxylene	C ₈ H ₁₀	solid	0.738	0.648	0.574	0.513	0.463	. 383	.300
Bromides: Ethyl	C_2H_5Br	0.487	0.441	0.402	0.368	-	-		_
Propyl	C ₈ H ₇ Br	0.651	0.582	0.524	0.475	0.433	0.397	.338	_
i-Propyl	C ₃ H ₇ Br	0.611	0.545	0.489	0.443	0.403	0.368	-	_
Allyl Ethylene	C ₃ H ₅ Br		0.560						
Bromine	C ₂ H ₄ Br Br		2.039 I.I20						.678
Chlorides: Propyl	C ₃ H ₇ Cl		0.396						_
Allyl	C ₃ H ₅ Cl		0.372					-	-
Ethylene	C ₂ H ₄ Cl		0.966					.479	-
Chloroform	CHCl ₃	0.706	0.633	0.571	0.519	0.474	0.435	-	
Carbon-tetra	CCL ₄		1.138				0.662	. 534	-
Ethers: Diethyl	$C_4H_{10}O$ $C_4H_{10}O$		0.268						
Ethyl-propyl	$C_{5}H_{12}O$		0.285				0 245		
_ Dipropyl	C ₆ H ₁₄ O		0.479					_	-
Esters: Methylformate	$C_2H_4O_2$	0.436	0.391	0.355	0.325		_		_
Ethylformate	C ₃ H ₆ O	0.510	0.454	0.408	0.369	0.336	0.308		-
Methylacetate	C ₃ H ₆ O ₂	0.484	0.431	0.388	0.352	0.320	0.293	-	
Ethylacetate Iodides: Methyl	CH I		0.512					. 279	
Ethyl	CH_3I C_2H_5I		0.548					207	
Propyl	C_3H_7I		0.654						271
Allyl	C_3H_5I		0.826						
AllylParaffines: Pentane	C ₅ H ₁₂		0.262				- 344		-
i-Pentane	C_5H_{12}		0.256		-	-	_	-	_
Hexane	C ₆ H ₁₄	0.401	0.360	0.326					
i-Hexane	C ₆ H ₁₄		0.338						
Heptanei-Heptane	C ₇ H ₁₆	0.524	0.465	0.416	0.375	0.341	0.310	. 262	-
Octane	$C_7H_{16} \\ C_8H_{18}$	0.481	0.428	0.384	0.347	0.315	0.288	. 243	252
Sulphides: Carbon di	CS_2		0.616				0.391	. 324	. 252
[Ethyl	C4H10S		0.501				0.338	. 287	_
Turpentine†			1.783						

^{*} Bureau of Standards, see special table. † Glaser.

This table is intended to show the effect of change of concentration and change of temperature on the viscosity of solutions of salts in water. The specific viscosity × 100 is given for two or more densities and for several temperatures in the case of each solution. μ stands for specific viscosity, and t for temperature Centigrade.

-											
Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	ŧ	μ	ŧ	μ	t	Authority.
BaCl ₂	7.60 15.40 24.34	-	77.9 86.4 100.7	10 "	44.0 56.0 66.2	30	35.2 39.6 47.7	50 "	Ξ		Sprung.
Ba(NO ₃) ₂	2.98 5.24	1.027	62.0 68.1	15	51.1 54.2	25	42.4 44.1	3,5	34.8 36.9	45	Wagner.
CaCl ₂ " "	15.17 31.60 39.75 44.09		110.9 272.5 670.0	10 " "	71.3 177.0 379.0 593.1	30 "	50.3 124.0 245.5 363.2	50 "	- 1 - 1 - 1		Sprung.
Ca(NO ₃) ₂ "	17.55 30.10 40.13	1.171 1.274 1.386	93.8 144.1 242.6	15	74.6 112.7 217.1	25 "	60.0 90.7 156.5	35	49.9 75.1 128.1	45	Wagner.
CdCl ₂	11.09 16.30 24.79	1.109 1.181 1.320	77.5 88.9 104.0	15 "	60.5 70.5 80.4	25 "	49.1 57.5 64.6	35	40.7 47.2 53.6	45	66 66
Cd(NO ₃) ₂ "	7.81 15.71 22.36	1.074 1.159 1.241	61.9 71.8 85.1	15	50.1 58.7 69.0	25 "	41.1 48.8 57.3	3,5	34.0 41.3 47.5	45	66 66
CdSO ₄	7.14 14.66 22.01	1.068 1.159 1.268	78.9 96.2 120.8	15	61.8 72.4 91.8	25	49.9 58.1 73.5	3.5	41.3 48.8 60.1	45	66 66 66
CoCl ₂	7.97 14.86 22.27	1.081 1.161 1.264	83.0 111.6 161.6	15	65.1 85.1 126.6	25 "	53.6 73.7 101.6	35	44.9 58.8 85.6	45	66 66
Co(NO ₃) ₂	8.28 15.96 24.53	1.073 1.144 1.229	74·7 87.0 110.4	15 "	57.9 69.2 88.0	25 "	48.7 55.4 71.5	35	39.8 44.9 59.1	45	66 66
CoSO ₄	7.24 14.16 21.17	1.086 1.159 1.240	86.7 117.8 193.6	15 "	68.7 95.5 146.2	25 "	55.0 76.0 113.0	3.5	45.1 61.7 89.9	45	66
CuCl ₂	12.01 21.35 33.03	1.104 1.215 1.331	87.2 121.5 178.4	15	67.8 95.8 137.2	25 "	55.1 77.0 107.6	35	45.6 63.2 87.1	45	66
Cu(NO ₈) ₂ "	18.99 26.68 46.71	1.177 1.264 1.536	97·3 126.2 382.9	15	76.0 98.8 283.8	25	61.5 80.9 215.3	35	51.3 68.6 172.2	45	"
CuSO ₄	6.79 12.57 17.49	1.055 1.115 1.163	79.6 98.2 124.5	15	61.8 74.0 96.8	25	49.8 59.7 75.9	3.5	41.4 52.0 61.8	45	"
HC1 "	8.14 16.12 23.04	1.037 1.084 1.114	71.0 80.0 91.8	15	57.9 66.5 79.9	25	48.3 56.4 65.9	35	40.1 48.1 56.4	45	66 66
HgCl ₂	0.23 3·55	1.002	- 76.75	- 10	58.5 59.2	20 "	46.8 46.6	30 "	38.3 38.3	40	66

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	t	Authority.
HNO ₃	8.37 12.20 28.31	1.067 1.116 1.178	66.4 69.5 80.3	15	54.8 57.3 65.5	25	45·4 47·9 54·9	35	37.6 40.7 46.2	66	Wagner.
H ₂ SO ₄	7.87 15.50 23.43	1.065 1.130 1.200	77.8 95.1 122.7	15	61.0 75.0 95.5	25	50.0 60.5 77.5	35	41.7 49.8 64.3	45	66 66 46
KCI "	10.23	-	70.0	10	46.1 48.6	30	33.1 36.4	50	_	-	Sprung.
KBr "	14.02 23.16 34.64	- 5	67.6 66.2 66.6	10	44.8 44.7 47.0	30	32.I 33.2 35.7	50 "	-		66
KI	8.42 17.01 33.03 45.98 54.00		69.5 65.3 61.8 63.0 68.8	10	44.0 42.9 42.9 45.2 48.5	30 "	31.3 31.4 32.4 35.3 37.6	50 "		-	66 66 66 66
KClO ₃	3.51 5.69	-	71.7	10	44.7 45.0	30	31.5 31.4	50	_	-	66
KNO ₈	6.32 12.19 17.60	= 1	70.8 68.7 68.8	10 "	44.6 44.8 46.0	30 "	31.8 32.3 33.4	50 "	- -		66 66 66
K ₂ SO ₄	5.17 9.77	-	77·4 81.0	10	48.6 52.0	30	34·3 36.9	50	_	-	66
K ₂ CrO ₄ "	11.93 19.61 24.26 32.78	- 1.233	75.8 85.3 97.8 109.5	10	62.5 68.7 74.5 88.9	30 "	41.0 47.9 54.5 62.6	40 "	-		" Slotte. Sprung.
K ₂ Cr ₂ O ₇	4.71 6.97	1.032	72.6 73.1	10	55.9 56.4	20	45·3 45·5	30	37·5 37·7	40	Slotte.
LiCl "	7.76 13.91 26.93		96.1 121.3 229.4	10	59.7 75.9 142.1	30	41.2 52.6 98.0	50	-	1111	Sprung.
Mg(NO ₃) ₂	18.62 34.19 39.77	I.102 I.200 I.430	99.8 213.3 317.0	15	81.3 164.4 250.0	25	66.5 132.4 191.4	35	56.2 109.9 158.1	45	Wagner.
MgSO ₄	4.98 9.50 19.32	- 7 -	96.2 1 30.9 302.2	10	59.0 77.7 166.4	30 "	40.9 53.0 106.0	50	- - -	111	Sprung.
MgCrO ₄	12.31 21.86 27.71	1.089 1.164 1.217	111.3 167.1 232.2	10	84.8 125.3 172.6	20	67.4 99.0 133.9	30 "	55.0 79.4 106.6	40 "	Slotte.
MnCl ₂ " " "	8.01 15.65 30.33 40.13	1.096 1.196 1.337 1.453	92.8 1 30.9 256.3 537.3	15	71.1 104.2 193.2 393.4	25	57.5 84.0 155.0 300.4	35	48.1 68.7 123.7 246.5	45	Wagner.

					1						
Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	ť	Authority.
Mn(NO ₃) ₂	18.31 29.60 49.31	1.148 1.323 1.506	96.0 167.5 396.8	15	76.4 126.0 301.1	25 "	64.5 104.6 221.0	3.5	55.6 88.6 188.8	45	Wagner.
MnSO ₄	11.45 18.80 22.08	1.147 1.251 1.306	129.4 228.6 661.8	15	98.6 172.2 474·3	25	78.3 137.1 347.9	35	63.4 107.4 266.8	45	66 66
NaCl "	7.95 14.31 23.22	-	82.4 94.8 1 28.3	10 "	52.0 60.1 79.4	30 "	31.8 36.9 47.4	50	-		Sprung.
NaBr "	9.77 18.58 27.27	1	75.6 82.6 95.9	10 "	48.7 53.5 61.7	30 "	34·4 38·2 43·8	50	-		66 66
NaI "	8.83 17.15 35.69 55.47		73.1 73.8 86.0 157.2	10	46.0 47.4 55.7 96.4	30 "	32.4 33.7 40.6 66.9	50 "	-		66 66 66
NaClO ₃	11.50 20.59 33.54	1 1 7	78.7 88.9 121.0	10 "	50.0 56.8 75.7	30 "	35·3 40·4 53·0	50	-		"
NaNO ₈ "	7.25 12.35 18.20 31.55		75.6 81.2 87.0 121.2	10 "	47.9 51.0 55.9 76.2	30 "	33.8 36.1 39.3 53.4	50		1111	66 66 66
Na ₂ SO ₄ " "	4.98 9.50 14.03 19.32		96.2 130.9 187.9 302.2	10 "	59.0 77.7 107.4 166.4	30 "	40.9 53.0 71.1 106.0	50	- - -	1111	66 66 66
Na ₂ CrO ₄ "	5.76 10.62 14.81	1.058 1.112 1.164	85.8 103.3 127.5	10 "	66.6 79.3 97.1	20 "	53.4 63.5 77.3	30	43.8 52.3 63.0	40 "	Slotte.
NH ₄ Cl " "	3.67 8.67 15.68 23.37	11-11	71.5 69.1 67.3 67.4	10 "	45.0 45.3 46.2 47.7	30 "	31.9 32.6 34.0 36.1	50 "		1111	Sprung.
NH ₄ Br "	1 5.97 2 5.33 36.88		65.2 62.6 62.4	10	43.2 43.3 44.6	30 "	31.5 32.2 34.3	50 "	-	111	66 81 66
NH ₄ NO ₃ " " " "	5.97 12.19 27.08 37.22 49.83	11111	69.6 66.8 67.0 71.7 81.1	10 " " "	44·3 44·3 47·7 51·2 63·3	30 "	31.6 31.9 34.9 38.8 48.9	50 ""		1111	66 66 66 66
(NH ₄) ₂ SO ₄	8.10 15.94 25.51		107.9 120.2 148.4	10	52.3 60.4 74.8	30	37.0 43.2 54.1	50	-		66 E8

Salt.	Percentage by weight of salt in solution.	Density.	щ	t	μ.	t	μ.	ŧ	μ	2	Authority.
(NH ₄) ₂ CrO ₄	10.52 19.75 28.04	1.063 1.120 1.173	79.3 88.2 101.1	10	62.4 70.0 80.7	20	57.8 60.8	30	42.4 48.4 56.4	40	Slotte.
(NH ₄) ₂ Cr ₂ O ₇	6.85 13.00 19.93	1.039 1.078 1.126	72.5 72.6 77.6	10 "	56.3 57.2 58.8	20 "	45.8 46.8 48.7	30 "	38.0 39.1 40.9	40 "	66 66
NiCl ₂	11.45 22.69 30.40	1.109 1.226 1.337	90.4 140.2 229.5	15	70.0 109.7 171.8	25 "	57·5 87.8 139.2	35	48.2 72.7 111.9	45	Wagner.
Ni(NO ₈) ₂	16.49 30.01 40.95	1.136 1.278 1.388	90.7 135.6 222.6	15	70.1 105.9 169.7	25 "	57.4 85.5 128.2	35	48.9 70.7 152.4	45 "	66 66
NiSO ₄	10.62 18.19 25.35	1.092 1.198 1.314	94.6 154.9 298.5	15	73·5 119.9 224.9	25 "	60.1 99.5 173.0	35	49.8 75.7 152.4	45 "	66
Pb(NO ₈) ₂	17.93 32.22	1.179	74.0 91.8	15	59.1 72.5	25	48.5 59.6	3,5	40.3 50.6	45	66
Sr(NO ₃) ₂	10.29 21.19 32.61	1.088 1.124 1.307	69.3 87.3 116.9	15	56.0 69.2 93.3	25 "	45.9 57.8 76.7	35	39.1 48.1 62.3	45	66
ZnCl ₂	15.33 23.49 33.78	1.146 1.229 1.343	93.6 111.5 151.7	15	72.7 86.6 117.9	25	57.8 69.8 90.0	35	48.2 57.5 72.6	45	66
Zn(NO ₃) ₂	15.95 30.23 44.50	1.115 1.229 1.437	80.7 104.7 167.9	15	64.3 85.7 130.6	25	52.6 69.5 105.4	35	43.8 57.7 87.9	45	66
ZnSO ₄	7.12 16.64 23.09	1.106 1.195 1.281	97.1 156.0 232.8	15	79.3 118.6 177.4	25	62.7 94.2 135.2	35 "	51.5 73.5 108.1	45	66 66

TABLE 158.
SPECIFIC VISCOSITY.*

	Normal s	solution.	½ nor	mal.	1 nor	mal.	l nor	mal.	
Dissolved salt.	Density.	Specific viscosity.	Density.	Specific viscosity.	Density.	Specifie viscosity.	Density.	Specific viscosity.	Authority.
$A \text{cids}: Cl_2O_3 \dots HC1 \dots$	1.0562	1.012	1.0283	1.003	1.0143	I.000 I.017	1.0074	0.999	Reyher.
HClO ₈	1.0485	1.052	1.0244	1.025	1.0126	1.014	1.0064	1.006	66
$\begin{array}{c} \text{HNO}_3 \ \dots \\ \text{H}_2 \text{SO}_4 \ \dots \end{array}$	1.0332	1.027	1.0168	1.011	1.0086	1.005	1.0044	1.003	Wagner.
Aluminium sulphate Barium chloride	1.0550	1.406	1.0278	1.178	1.0138	1.082	1.0068	1.038	66
" nitrate	1.0004	-	1.0518	1.044	1.0259	1.021	1.0114	1.008	66
Calcium chloride .	1.0446	1.156	1.0218	1.076	1.0105	1.036	1.0050	1.017	66
" nitrate .	1.0596	1.117	1.0300	1.053	1.0151	1.022	1.0076	1.008	
Cadmium chloride .	1.0779	1.134	1.0394	1.063	1.0197	1.031	1.0098	1.020	66
" nitrate . " sulphate.	1.0954	1.165	1.0479	1.074	I.0249 I.0244	1.038	1.0119	1.018	"
Cobalt chloride	1.0571	1.204	1.0286	1.097	1.0144	1.048		1.023	66
" nitrate sulphate	1.0728	1.166	1.0369	1.075	1.0184	1.032	1.0094	1.018	66
" sulphate	1.0750	1.354	1.0383	1.100	1.0193	1.077	1.01,0	1.040	
Copper chloride	1.0624	1.205	1.0313	1.098	1.0158	1.047	1.0077	1.027	66
" nitrate sulphate .	1.0755	1.179	1.0372	1.080	1.0185	1.040	1.0092	1.038	66
Lead nitrate	1.1380	I.IOI	0.0699	1.042	1.0351	1.017	1.0175	1.007	66
Lithium chloride . sulphate .	1.0243	I.142 I.290	1.0129	1.066	1.0062	1.031	1.0030	I.012 I.032	66
*									"
Magnesium chloride nitrate.	1.1375	1.201	1.0188	1.094	1.0091	I.044 I.040	1.0043	1.021	"
" sulphate		1.367	1.0297	1.164	1.0152	1.078	1.0076	1.032	66
Manganese chloride	1.0513	1.209	1.0259	1.098	1.0125	1.048	1.0063	I.023	66
" nitrate . " sulphate	1.0690	1.183	1.0349	1.087	1.0174	1.043	1.0093	1.037	66
•							1 006-	1.021	66
Nickel chloride	1.0591	1.205	1.0308	1.097	1.0144	I.044 I.042	1.0067	1.021	66
" sulphate	1.0773	1.361	1.0391	1.161	1.0198	1.075	1.0017	1.032	66
Potassium chloride . " chromate	1.0466	0.987	1.0235	0.987	1.0117	0.990	1.0059	0.993	66
" nitrate .	1.0605	0.975	1.0305	0.982	1.0161	0.987	1.0075	0.992	. 66
" sulphate	1.0664	1.105	1.0338	1.049	1.0170	1.021	1.0084	1.008	
Sodium chloride	1.0401	1.097	1.0208	1.047	1.0107	1.024	1.0056	1.013	Reyher.
" bromide	1.0786	1.064	1.0396	1.030	1.0190	1.015	1.0100	1.008	66
" nitrate	1.0710	1.090	1.0359	1.042	1.0141	1.012	1.0092	1.007	66
Silver nitrate	1.1386	1.058	1.0692	1.020	1.0348	1.006	1.0173	1.000	Wagner.
Strontium chloride .	1.0676	1.141	1.0336	1.067	1.0171	1.034	1.0084	1.014	66
" nitrate .	1.0822	1.115	1.0419	1.049	1.0208	1.024	1.0104	1.011	6.6
Zinc chloride	1.0590	1.189	1.0302	1.096	1.0152	1.053	1.0096	1.019	46
" sulphate	1.0792	1.367	1.0402	1.173	1.0198	1.082	1.0094	1.036	66
								-	

^{*} In the case of solutions of salts it has been found (vide Arrhennius, Zeits. für Phys. Chem. vol. 1, p. 285) that the specific viscosity can, in many cases, be nearly expressed by the equation $\mu = \mu_1 n$, where μ_1 is the specific viscosity for a normal solution referred to the solvent at the same temperature, and n the number of gramme molecules in the solution under consideration. The same rule may of course be applied to solutions stated in percentages instead of gramme molecules. The table here given has been compiled from the results of Reyher (Zeits. für Phys. Chem. vol. 2, p. 749) and of Wagner (Zeits. für Phys. Chem. vol. 5, p. 31) and illustrates this rule. The numbers are all for 25° C

VISCOSITY OF GASES AND VAPORS.

The values of μ given in the table are 10⁶ times the coefficients of viscosity in C. G. S. units.

Substance.	Temp.	μ		Refer- ence.	Substance.	Temp.		Reference.
Acetone	18.0	78.	ľ	I	Ether	16.1	73.2	I
Air *	-21.4	163.9		2		36.5	79.3	X
**	0.0	173.3	153	2	Ethyl chloride	0.	93.5	4
	15.0	180.7	ю	2	Ethyl iodide	72.3	216.0	3
	99.I	220.3		2	Ethylene	0.0	96.I	2
	182.4	255.9	п	2	Helium	0.0	189.1	5
	302.0	299.3	в	2	66	15.3	196.9	5
Alcohol, Methyl	66.8	135.	П	3		66.6	234.8	5
Alcohol, Ethyl	78.4	142.	и	3	*******	184.6	269.9	5
Alcohol, Propyl,				No.	Hydrogen	-20.6	81.9	2
norm	97.4	142.		3		0.0	86.7	10
Alcohol, Isopropyl	82.8	162.		3		15.	88.9	2
Alcohol, Butyl, norm.		143.		3		99.2	105.9	2
Alcohol, Isobutyl	108.4	144.		3		182.4	121.5	2
Alcohol, Tert. butyl.	82.9	160.		3	W	302.0	139.2	2
Ammonia	0.0	96.		4	Krypton	15.0	246.	11
	20.0	108.	п	4	Mercury	270.0	489.†	8
Argon	0.0	210.4		5		300.0	532.† 582.†	8
"	14.7	220.8		5	"	330.0		8
"	17.9	224.I		5	"	360.0	627.†	8
44	99.7	273.3		5	Mathama	390.0	671.†	-
	183.7	322.1		5	Methane Methyl chloride	20.0	98.8	4
Benzene	0.	70.		10	11 " 11	0.0	-	2
	19.0	79.		6	"	15.0	105.2	2
Colon biolobida	100.0	118.		_	Methyl iodide	302.0	213.9	
Carbon bisulphide	16.9	92.4		I		44.0	232.	3
Carbon dioxide	-20.7	129.4		2	Nitrogen	-21.5	156.3	7
66 66	0.	142.		10	"	10.0	170.7	7
"	15.0	145.7		2	"	1	189.4	7
66 66	182.4	222.I		2	Nitric oxide	53.5	179.	IO
" "	302.0	268.2		2	Nitrous oxide	0.	138.	10
Carbon monoxide	0.0	163.0		IO	Oxygen	0.	180.	10
Carbon monoxide	20.0	184.0		4	Oxygen	15.4	195.7	7
Chlorine	0.0	128.7		4	"	53.5	215.0	7
"	20.0	147.0		4	Water Vapor	0.0	90.4	í
Chloroform	0.0	95.9		I	" " " · · · · · · · · · · · · · · · · ·	16.7	96.7	I
(4	17.4	102.0		I	"	100.0	132.0	9
66	61.2	180.0		3	Xenon	15.	222.	111
Ether	0.0	68.0		1		-3.		

- 1 Puluj, Wien. Ber. 69 (2), 1874.
- 2 Breitenbach, Ann. Phys. 5, 1901.

- 3 Steudel, Wied. Ann. 16, 1882. 4 Graham, Philos. Trans. Lond. 1846, III. 5 Schultze, Ann. Phys. (4), 5, 6, 1901.
- 6 Schumann, Wied. Ann. 23, 1884.
- 7 Obermayer, Wien. Ber. 71 (2a), 1875. 8 Koch, Wied. Ann. 14, 1881, 19, 1883.
- 9 Meyer-Schumann, Wied. Ann. 13, 1881.
- 10 Jeans, assumed mean, 1916.
- 11 Rankine, 1910.
- 12 Vogel (Eucken, Phys. Z. 14, 1913). For summaries see: Fisher, Phys. Rev. 24, 1904; Chapman, Phil. Tr. A. 211, 1911; Gilchrist, Phys. Rev. 1, 1913. Schmidt, Ann. d. Phys. 30, 1909.

† The values here given were calculated from Koch's table (Wied. Ann. 19, p. 869, 1883) by the formula $\mu = 489 [1 + 746(t - 270)]$.

^{*} Gilchrist's value of the viscosity of air may be taken as the most accurate at present available. His value at 20.2° C is 1.812 × 10-4. The temperature variation given by Holman (Phil. Mag. 1886) gives $\mu = 1715.50 \times 10^{-7} (1 + .00275t - .0000034l^2)$. See Phys. Rev. 1, 1913. Millikan (Ann. Phys. 41, 759, 1913) gives for the most accurate value $\mu_t = 0.00018240 - 0.00000493(23 - t)$ when (23 > t > 12) whence $\mu_{20} = 0.0001809 = 0.1\%$. For μ_0 he gives 0.0001711.

TABLE 160.

VISCOSITY OF GASES.

Variation of Viscosity with Pressure and Temperature.

According to the kinetic theory of gases the coefficient of viscosity $\mu = \frac{1}{4}(\rho \bar{c}l)$, ρ being the density, \bar{c} the average velocity of the molecules, l the average path. Since l varies inversely as the number of molecules per unit volume, ρl is a constant and μ should be independent of the density and pressure of a gas (Maxwell's law). This has been found true for ordinary pressures; below $\frac{1}{60}$ atmosphere it may fail, and for certain gases it has been proved untrue for high pressures, e.g., CO_2 at 33° and above 50 atm. See Jeans, "Dynamical Theory of Gases."

 \bar{c} depends only on the temperature and the molecular weight; viscosity should, therefore, increase with the pressures for gases. \bar{c} varies as the \sqrt{T} , but μ has been found to increase much more rapidly. Meyer's formula, $\mu_t = \mu_0(1 + at)$, where a is a constant and μ_0 the viscosity at o° C, is a convenient approximate relation. Sutherland's formula (Phil. Mag. 31, 1893).

$$\mu_t = \mu_o \, \frac{273 + C}{T + C} \left(\frac{T}{273} \right)^{\frac{3}{2}},$$

is the most accurate formula in use, taking in account the effect of molecular forces. It holds for temperatures above the critical and for pressures following approximately Boyle's law. It may be thrown into the form $T = KT^{\frac{3}{2}}/\mu - C$ which is linear in terms of T and $T^{\frac{3}{2}}/\mu$, with a slope equal to K and the ordinate intercept equal to K. See Fisher, Phys. Rev. 24, 1907, from which most of the following table is taken. Onnes (see Jeans) shows that this formula does not represent Helium at low temperatures with anything like the accuracy of the simpler formula $K = \mu_0 (T/273.1)^n$.

The following table contains the constants for the above three formulae, T being always the absolute temperature, Centigrade scale.

Gas.	С	<i>K</i> × 10 ⁷	a	n*	Gas.	С	·K × 10 ⁷	a	n *
Air		150 206 135 158 159 106 148	.00269	·754 ·819 ·74 ·98 — .683 .647	Hydrogen Krypton Neon Nitrogen Nitrous oxide, N ₂ O Oxygen Xenon	72 188 252 110 313 131 252	66 — 143 172 176 —	.00269	.69 — - .74 .93 .79

^{*} The authorities for n are: Air, Rayleigh; Ar, Mean, Rayleigh, Schultze; CO, CO₂, N₂, N₂O, von Obermayer; Helium, Mean, Rayleigh, Schultze; 2d value, low temperature work of Onnes; H₂, O₂, Mean, Rayleigh, von Obermayer.

DIFFUSION OF AN AQUEOUS SOLUTION INTO PURE WATER.

If k is the coefficient of diffusion, dS the amount of the substance which passes in the time dt, at the place x, through q sq. cm. of a diffusion cylinder under the influence of a drop of concentration dc/dx, then

 $dS = -kq \frac{dc}{dx} dt.$

k depends on the temperature and the concentration. c gives the gram-molecules per liter. The unit of time is a day.

Substance.	c	t°	k	Refer- ence	Substance.		с	t°	k	Refer- ence.
Bromine	0.1	12.	0.8	I	Calcium chloride		0.864	8.5	0.70	1
Chlorine	0.1	12.	1.22	66	16 16		1.22	9.	0.72	4
Copper sulphate .	66	17.	0.39	2	16 16		0.060	9.	0.64	66
Glycerine	66	10.14	0.357	3	66 66		0.047	9.	0.68	6.6
Hydrochloric acid .	66	19.2	2.21	2	Copper sulphate		1.95	17.	0.23	2
Iodine	66	12.	(0.5)	ī	" "		0.95	17.	0.26	66
Nitric acid	66	19.5	2.07	2	66 66		0.30	17.	0.33	66
Potassium chloride .	66	17.5	1.38	2	66 66		0.005	17.	0.47	66
" hydroxide .	66	13.5	1.72	2	Glycerine .		2/8	10.14	0.354	2
Silver nitrate	66	12.	0.985	2	66		6/8	10.14	0.345	3
Sodium chloride .	66	15.0	0.94	2	44		10/8	10.14	0.329	66
Urea	66	14.8	0.97	3	66		14/8	10.14	0.300	66
Acetic acid	0.2	13.5	0.77	4	Hydrochloric acid	-1	4.52	11.5	2.93	1
Barium chloride .	66	8.	0.66	4	11 11 11 11 11 11 11		3.16	11.	2.67	4 "
Glycerine	66	10.1	3.55		66 66		0.945	II.	2.12	66
Sodium actetate .	66	12.	0.67	3 5	66 66	,	0.387	II.	2.02	66
" chloride .	46	15.0	0.94	2	66 46		0.250	11.	1.84	66
Urea	66	14.8	0.969		Magnesium sulph	ate	2.18	5.5	0.28	4
Acetic acid	1.0	12.	0.74	3	Magnesium surph	acc	0.541		0.32	4
Ammonia	66				66 66			5.5	0.32	66
Formic acid	66	15.23	1.54	7	66 66		3.23	10.	0.34	66
Glycerine	66	10.14	0.97	7	Potassium hydrox	ide	0.75	12.	1.72	6
Hydrochloric acid .	66	10.14	2.00	3	rotassium nydrox	ilue	0.75	12.	1.70	6.
Magnesium sulphate	66	7.	0.30		66 66	•	0.375	12.	1.70	66
Potassium bromide.	66	10.	1.13	4 8	" nitrate	1.		17.6	0.89	2
" hydroxide.	66	12.	1.72	6	ii iii ate	. 4	3.9	17.6	1.10	66
Sodium chloride	66		,	2	66 66			17.6	1.26	61
sodium emoride .	66	15.0	0.94		46 46		0.3	17.6	1.28	66
" hydroxide .	66	14.3	1.11	3	" sulpha	+0	0.02	19.6	0.79	66
" iodide .	66	10.	0.80	8	suipita		0.95	19.6	0.86	66
Sugar	66	12.		6	66 66		0.05	19.6	0.97	66
Sulphuric acid .	66	12.	0.254	6	66 66	•	0.03	19.6	1.01	46
Zinc sulphate	66	14.8	0.236		Silver nitrate .	•		12.	0.535	66
Acetic acid	2.0	12.	0.230	9	silver intrate .		3.9	12.	0.88	66
Calcium chloride .	66	10.	0.68	8	66 66	•	0.02	12.	1.035	66
Cadmium sulphate.	66	19.04	0.246		Sodium chloride	•	2/8		1.013	1 2
Hydrochloric acid .	66	19.04	2.21	9 6	Soulum emoriae		4/8	14.33	0.996	3
Sodium iodide .	66	10.	0.90	8	66 66		6/8	14.33	0.980	2
Sulphuric acid .	66	12.	1.16	6	66 66		10/8	14.33	0.948	"
Zinc acetate	66	18.05	0.210	9	ss ss	•	14/8	14.33	0.948	66
66 66	66	0.04	0.120	9	Sulphuric acid		9.85	14.33	2.36	2
Acetic acid	3.0	12.	0.120	9	Surphuric acid		4.85	18.	1.90	66
Potassium carbonate	3.0	10.	0.60	8	66 66		2.85	18.	1.60	66
" hydroxide	66	12.	1.80	6	"		0.85	18.	1.34	64
Acetic acid	4.0	12.	0.66	6	66 66		0.35	18.	1.34	66
Potassium chloride	66	10.	1.27	8	66 66		0.005	18.	1.30	66
1		-0.	1.27			•	0.005	10.	1.30	
	-			-		-				

Euler, Wied. Ann. 63, 1897.
 Thovert, C. R. 133, 1901; 134, 1902.
 Heimbrodt, Diss. Leipzig, 1903.
 Scheffer, Chem. Ber. 15, 1882; 16, 1883; Zeitschr. Phys. Chem. 2, 1888.

⁵ Kawalki, Wied. Ann. 52, 1894; 59, 1896. 6 Arrhenius, Zeitschr. Phys. Chem. 10, 1892.

⁷ Abegg, Zeitschr. Phys. Chem. 11, 1893.

⁸ Schuhmeister, Wien. Ber. 79 (2), 1879. 9 Seitz, Wied. Ann. 64, 1898.

DIFFUSION OF VAPORS.

Coefficients of diffusion of vapors in C. G. S. units. The coefficients are for the temperatures given in the table and a pressure of 76 centimeters of mercury.*

Vapor.	Temp. C.	kt for vapor diffusing into hydrogen.	kt for vapor diffusing into air.	ke for vapor diffusing into carbon dioxide.
Acids: Formic	0.0	0.5101		- 0
46 ·	65.4	0.5131	0.1315	0.0879
44	84.9	0.8830	0.2035	0.1343
Acetic	0.0	0.4040	0.2244	0.1519
"	65.5	0.6211	0.1578	0.0713
"	98.5	0.7481	0.1965	0.1048
Isovaleric	0.0	0.2118	0.0555	0.0375
	98.0	0.3934	0.1031	0.0696
Alcohols: Methyl	0.0	0.5001	0.1325	0.0880
"	25.6	0.6015	0.1620	0.1046
	49.6	0.6738	0.1809	0.1234
Ethyl	0.0	0.3806	0.0994	0.0693
"	40.4	0.5030	0.1372	0.0898
"	66.9	0.5430.	0.1475	0.1026
Propyl	0.0	0.3153	0.0803	0.0577
66	66.9	0.4832	0.1237	0.0901
	83.5	0.5434	0.1379	0.0976
Butyl	0.0	0.2716	0.0681	0.0476
.",	99.0	0.5045	0.1265	0.0884
Amyl	0.0	0.2351	0.0589	0.0422
	99.1	0.4362	0.1094	0.0784
Hexyl	0.0	0.1998	0.0499	0.0351
	99.0	0.3712	0.0927	0.0651
Benzene	0.0	0.2940	0.0751	0.0527
	19.9	0.3409	0.0877	0.0609
"	45.0	0.3993	0.1011	0.0715
Carbon disulphide	0.0	0.3690	0.0883	0.0629
"	19.9	0.4255	0.1015	0.0726
" "	32.8	0.4626	0.1120	0.0789
Esters: Methyl acetate	0.0	0.3277	0.0840	0.0557
66 66	20.3	0.3928	0.1013	0.0679
Ethyl "	0.0	0.2373	0.0630	0.0450
" "	46.1	0.3729	0.0970	0.0666
Methyl butyrate	0.0	0.2422	0.0640	0.0438
	92.1	0.4308	0.1139	0.0809
Ethyl "	0.0	0.2238	0.0573	0.0406
	96.5	0.4112	0.1064	0.0756
" valerate	0.0	0.2050	0.0505	0.0366
	97.6	0.3784	0.0932	0.0676
Ether	0.0 .	0.2960	0.0775	0.0552
	19.9	0.3410	0.0893	0.0636
Water	0.0	0.6870	0.1980	0.1310
44	49.5	1.0000	0.2827	0.1811
66	92.4	1.1794	0.3451	0.2384
			0.0	

DIFFUSION OF GASES, VAPORS, AND METALS.

TABLE 163. — Coefficients of Diffusion for Various Gases and Vapors.*

Gas or Vapor diffusing.	Gas or Vapor diffused into.	Temp.	Coefficient of Diffusion.	Authority.
Air	Hydrogen	0	0.661	Schulze.
AIF	Oxygen	0	0.1775	Obermayer.
Carbon dioxide	Air	0	0.1423	Loschmidt.
Carbon Gloxide	44	0	0.1360	Waitz.
64 66	Carbon monoxide	0	0.1405	Loschmidt.
66 66	" "	0	0.1314	Obermayer.
46 46	Hydrogen	0	0.5437	"
66 66	Methane	0	0.1465	66
66 66	Nitrous oxide	0	0.0983	Loschmidt.
66 66	Oxygen	0	0.1802	66
Carbon disulphide	Air	0	0.0995	Stefan.
Carbon monoxide	Carbon dioxide	0	0.1314	Obermayer.
66 16	Ethylene	0	0.101	"
66 66	Hydrogen	0	0.6422	Loschmidt.
66 66	Oxygen	0	0.1802	66
66 66	"	0	0.1872	Obermayer.
Ether	Air	0	0.0827	Stefan.
66	Hydrogen	0	0.3054	46
Hydrogen	Air	0	0.6340	Obermayer.
"	Carbon dioxide	0	0.5384	"
66	". monoxide	O	0.6488	46
46	Ethane	0	0.4593	66
66	Ethylene	0	0.4863.	66
46	Methane	0	0.6254	66
66	Nitrous oxide	0	0.5347	66
и	Oxygen	0	0.6788	46
Nitrogen		0	0.1787	66
Oxygen	Carbon dioxide	0	0.1357	66
	Hydrogen	0	0.7217	Loschmidt.
66	Nitrogen	0	0.1710	Obermayer.
Sulphur dioxide	Hydrogen	0	0.4828	Loschmidt.
Water	Air	8	0.2390	Guglilemo.
	66	18	0.2475	"
	Hydrogen	18	0.8710	46

^{*} Compiled for the most part from a similar table in Landolt & Börnstein's Phys. Chem. Tab.

TABLE 164,- Diffusion of Metals into Metals.

 $\frac{dv}{dt} = k \frac{d^2v}{dx^2}$; where x is the distance in direction of diffusion; v, the degree of concentration of the diffusing metal; t, the time; k, the diffusion constant = the quantity of metal in grams diffusing through a sq. cm. in a day when unit difference of concentration (gr. per cu. cm.) is maintained between two sides of a layer one cm. thick.

Diffusing Metal.	Dissolving Metal.	Tempera- ture ° C.	k.	Diffusing Metal.	Dissolving Metal.	Tempera- ture ° C.	k.
Gold	Lead . " . " . " . Bismuth	555 492 251 200 165 100 555 555 555	3.19 3.00 0.03 0.008 0.004 0.00002 4.52 4.65 4.14	Platinum . Lead . Rhodium . Tin . Lead Zinc . Sodium . Potassium Gold	Lead . Tin Lead . Mercury	492 555 550 15 15 15 15 15	1.69 3.18 3.04 1.22* 1.0* 1.0* 0.45* 0.40* 0.72*

From Roberts-Austen, Philosophical Transactions, 187A, p. 383, 1896.

^{*} These values are from Guthrie.

SOLUBILITY OF INORCANIC SALTS IN WATER; VARIATION WITH THE TEMPERATURE.

The numbers give the number of grams of the anhydrous salt soluble in 1000 grams of water at the given temperatures.

					Temper	rature Co	entigrade				
Salt.							1	1			
	oo	100	200	300	40°	50°	60 ⁰	70°	80°	900	100°
A-NO		1600	27.50	2700	2250	4000			6	-6	
$AgNO_3$ $Al_2(SO_4)_3$	1150		21 50 362	404	3350	4000 521	4700 591	5500	6500	7600	891
$Al_2(SO_4)_3$ $Al_2K_2(SO_4)_4$	313	335	302	84	457	521	248	- 002	731	-	1540
Al ₂ (NH ₄) ₂ (SO ₄) ₄ .	26	45	66	91	124	159	211	270	352	_	1340
B_2O_3	11	15	22	-	40	-	62		95	-	157
BaCl ₂	316	333	357	382	408	436	464	494	524	556	1 57 588
$Ba(NO_3)_2 \dots$	50	70	92	116	142	171	203	236	270	306	342
CaCl ₂	595	650	745	1010	1153		1368	1417	1470	1527	1 590
$CoCl_2 \dots \dots$	405	450	500	565	650	935	940	950	960		1030
CsCl	1614	1747	1865	1973	2080	2185	2290	2395	2500	2601	2705
$CsNO_3$	93	149	230	339 1841	472 1899	644	838	1070	1340	1630	1970
$Cs_2SO_4 \dots Cu(NO_3)_2 \dots$	818	1731	1250	1041	1598	1949	1791	2050	2078	2149	-
CuSO ₄	149	-11	-	255	295	336	390	457	535	627	735
FeCl ₂	- 49	-	685	-	-	820	-	-	1040	1050	1060
Fe ₂ Cl ₆	744	819	918	-	-	3151	-	-	5258	-	5357
FeSQ ₄	156	208	264	330 84	402	486	550	560	506	430	-
HgCl ₂	43	66	74		96	113	139	173	243	371	540
KBr	540	-	650	-	760	-	860		955	-	1050
K_2CO_8	1050	-	-	1140	1170	1210	1270	1330	1400	1470	1 560 566
KCl	285	312	343	373	401	429 197	455	483	510 396	538	560
K ₂ CrO ₄	33 589	609	71 629	650	670	690	710	730	751	771	791
K ₂ Cr ₂ O ₇	50	85	131	-	292	-	505	- 730	730	-	1020
KHCO ₃	225	277	332	390	453	522	600	-	-	_	-
KI	1279	1361	1442	1523	1600	1680	1760	1840	1920	2010	2090
KNO ₈	133	209	316	458	639	855	1099	1380	1690	2040	2460
КОН	970	1030	1120	1260	1360	1400	1460	1510	1 590	1680	1780
K_2 PtCl ₆	7	9	II	14	18	22	26	32	38	45	52
$K_2SO_4 \dots \dots$	74	92	III	130	148	165	182	198	214	228	241
LiOH	127	127	128	129	130	133	138	144	153 660	_	775
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	528 260	535	545	409	57.5 456	_	- 010		-	-	730
$MgSO_4$ $(7aq)$	408	309	356 439	453	450	504	550	596	642	689	738
NH ₄ Cl	297	333	372	414	458	504	552	602	656	713	773
NH ₄ HCO ₈	119	159	210	270	-	-		-	-	-	- 1
NH ₄ NO ₈	1183	-	-	2418	2970	3540?	4300?	5130?	5800	7400	8710
$(NH_4)_2SO_4.$	706	730	754	780	810	844	880	916	953	992	1033
NaBr	795	845	903	-	1058	1160	1170	-	1185	408	1205
Na ₂ B ₄ O ₇	-	16	-	39	_	105	200	244	314	400	523
Na_2CO_8 . (10aq)	7 I 204	126 263	214	409	(Iaq)	475	464	458	452	452	452
NaCl	356	357	335 358	435 360	363	367	37 I	37.5	380	385	391
NaClO ₈	820	890	990	-	1235	-	1470	-	1750	-	2040
Na ₂ CrO ₄	317	502	900	- 1	960	1050	1150	-	1240	- (1260
$Na_2Cr_2O_7$	1630	1700	1800	1970	2200	2480	2830	3230	3860	-	4330
NaHCO ₃	69	82	96	III	127	145	164	-	_		988
Na ₂ HPO ₄	25	39	93	241	639	2280	2570	949	2950		3020
NaI	1590	1690	1790 880	1900	2050	1140	1246	1360	1480	1610	1755
NaNO ₈	730	305	000	902	1049	1140	1240	2300	. 400		, 55

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

SOLUBILITY OF SALTS AND CASES IN WATER.

TABLE 165 (concluded) - Solubility of Inorganic Saits in Water; Variation with the Temperature.

The numbers give the number of grams of the anhydrous salt soluble in 1000 grams of water at the given temperatures.

				-	Гетрега	ture Ce	ntigrade				
Salt.	00	100	200	300	40°	50°	60°	700	80°	90°	100°
NaOH Na4P2O7 Na2SO3 Na2SO4 (10aq) (7aq) Na2S2O3 NiCl2 NiSO4 PbBr2 Pb(NO3)2 RbCl RbNO3 Rb2SO4 SrCl2 SnI2 Sr(NO3)2 Th(SO4)2 (4aq) TICl TlNO3 Tl2SO4 Yb2(SO4)3 Zn(NO3)2 ZnSO4	420 32 141 50 196 525 - 272 5 365 770 195 364 442 - 395 7 - 2 39 27 442 948	515 399 - 90 305 6100 6600 - 6444 844 330 426 483 - 549 10 - 2 62 37 -	1090 62 287 194 447 700 640 - 8 523 911 5333 482 539 10 708 14 - 3 96 49	1190 99 -400 -847 680 425 12 607 976 813 535 600 12 876 20 -5 143 62 	1290 135 495 482 1026 720 - 15 694 1035 1167 585 667 14 913 30 40 6 209 76 2069 700	1450 174 - 468 1697 760 502 20 787 1093 1556 631 744 17 926 51 25 8 304 92 - 768	1740 220 - 455 2067 810 548 24 880 01155 2000 674 831 21 940 - 16 10 462 109 104	-255 -445 -594 28 977 1214 2510 714 896 -11 13 695 127 72 -890	3130 300 - 437 2488 - 632 33 1076 1272 3090 750 924 30 972 - 16 1110 146 69 - 860		

TABLE 166. - Solubility of a Few Organic Salts in Water; Variation with the Temperature.

Salt.	00	100	20°	30°	40 ⁰	50°	60°	70°	80°	900	1000
$\begin{array}{cccc} H_2(CO_2)_2 & . & . & . \\ H_2(CH_2,CO_2)_2 & . & . \\ Tartaric acid & . & . \\ Racemic & & . \\ K(HCO_2) & . & . \\ KH(C_4H_4O_6) & . & . \end{array}$	36 28 1150 92 2900 3	53 45 1260 140 - 4	102 69 1390 206 3350 6	159 106 1560 291	228 162 1760 433 3810	321 244 1950 595 -	445 358 2180 783 4550 24	635 511 2440 999 - 32	978 708 2730 1250 5750 45	1200 - 3070 1530 - 57	- 1209 3430 1850 7900 69

TABLE 167.- Solubility of Gases in Water; Variation with the Temperature.

The table gives the weight in grams of the gas which will be absorbed in 1000 grams of water when the partial pressure of the gas plus the vapor pressure of the liquid at the given temperature equals 760 mm.

Gas.	00	100	200	30°	40°	50°	60°	70°	80°
O ₂ H ₂ N ₂ Br ₂ Cl ₂ CO ₂ H ₂ S NH ₃ SO ₂	.0705 .00192 .0293 431. - 3.35 7.10 987. 228.	.0551 .00174 .0230 248. 9.97 2.32 5.30 689. 162.	.0443 .00160 .0189 148. 7.29 1.69 3.98 535- 113.	.0368 .00147 .0161 94. 5.72 1.26 - 422. 78.	.0311 .00138 .0139 62. 4.59 0.97	.0263 .00129 .0121 40. 3.93 0.76	.0221 .00118 .0105 28. 3.30 0.58	.0181 .00102 .0089 18. 2.79	.0135 .00079 .0069 11. 2.23

CHANCE OF SOLUBILITY PRODUCED BY UNIFORM PRESSURE.*

CdSO ₄ 8/3H ₂ O at 25			ZnSO _{4.7}	H ₂ O at 25°	Mannite	at 24.05°	NaCl at 24.05°		
Pressure in atmos- pheres.	Conc. of satd. soln. gs. CdSO ₄ per 100 gs. H ₂ O	Percentage change.	Conc. of satd. solu. gs. ZnSO ₄ per roo gs. H ₂ O.	Percentage change.	Conc. of satd. soln. gs. mounite per roo gs. H ₂ O.	Percentage change.	Conc. of satd. soln. gs. NaCl. per 100 gs. H ₂ O.	Percentage change.	
T	76.80	- "	57.95	- 1	20.66	_	35.90		
500	78.01	+ 1.57	57.87	-0.14	21.14	+ 2.32	36.55	+ 1.81	
1000	78.84	+ 2.68	57.65	-0.52	21.40	+ 3.57	37.02	+ 3.12	
1500	_	_	_	_	21.64	+ 4.72	37.36	+ 4.07	

^{*} E. Cohen and L. R. Sinnige, Z. physik. Chem. 67, p. 432, 1909; 69, p. 102, 1909. E. Cohen, K. Inouye and C. Euwen, ibid. 75, p. 257, 1911. These authors give a critical résumé of earlier work along this line.

ABSORPTION OF CASES BY LIQUIDS.*

				ABSOR	PTION COBFF	icients, α _ε ,	FOR GASI	ES IN	WATE	r.	
Temperatur Centigrade.				Carbon noxide. CO	Hydrogen.	Nitrogen.	Nitt oxid N	de.	0	trous xide. V ₂ O	Oxygen.
5 10 15 20 25 30 40 50		1.797 1.450 1.185 1.002 0.901 0.772 0.506		0354 0315 0282 0254 0232 0214 0200 0177 0161	0.02110 .02022 .01944 .01875 .01809 .01745 .01690 .01644 .01608 .01600	0.02399 .02134 .01918 .01742 .01599 .01481 .01370 .01195	0.07 .06 .05 .05 .04 .04 .04 .03 .03	46 71 15 71 32 00 51	0.	048 8778 7377 6294 5443 - - -	0.04925 .04335 .03852 .03456 .03137 .02874 .02646 .02316 .02080 .01690
Temperature Centigrade.		Air.		nmonia. N H ₃	Chlorine.	Ethylene. C ₂ H ₄	Meth CH		sulp	lrogen bhide. I ₂ S	Sulphur dioxide. SO ₂
10 .0195		.02471 .02179 .01953 .01794	3 8 7 7 4	74.6 071.5 0340.2 756.0 083.1	3.036 2.808 2.585 2.388 2.156 1.950	0.2563 .2153 .1837 .1615 .1488	0.054 .048 .043 .039 .034	889 867 903	3· 3· 2·	37 I 965 586 -233 905 604	79·79 67·48 56.65 47·28 39·37 32·79
Temperature			ABSOR	PTION C	OBFFICIENTS,	at, for GA	SES IN A	ССОНО	L, C ₂	H₅OH.	
Centigrade.	Carbo dioxio CO	de.	thylene. C ₂ H ₄	Methane CH ₄	Hydrogen. H	Nitrogen.	Nitric oxide. NO	Nitr oxio N ₂	ie.	Hydroge sulphid H ₂ S	Sulphur dioxide.
5 10 15 20 25	5 3.891 3.323 .508 10 3.514 3.086 .491 15 3.199 2.882 .482 20 2.946 2.713 .471		0.5226 .5086 .4953 .4828 .4710 .4598	0.0692 .0685 .0679 .0673 .0667	0.1263 .1241 .1228 .1214 .1204 .1196	0.3161 .2998 .2861 .2748 .2659 .2595	4.1 3.8 3.5 3.2 3.0 2.8	38 25 15	17.89 14.78 11.99 9.54 7.41 5.62	251.7	

^{*} This table contains the volumes of different gases, supposed measured at o° C. and 76 centimeters' pressure, which unit volume of the liquid named will absorb at atmospheric pressure and the temperature stated in the first column. The numbers tabulated are commonly called the absorption coefficients for the gases in water, or in alcohol, at the temperature t and under one atmosphere of pressure. The table has been compiled from data published by Bohr & Bock, Bunsen, Carius, Dittmar, Hamberg, Henrick, Pagliano & Emo, Raoult, Schönfeld, Setschenow, and Winkler. The numbers are in many cases averages from several of these authorities.

Note. — The effect of increase of pressure is generally to increase the absorption coefficient. The following is approximately the magnitude of the effect in the case of ammonia in alcohol at a temperature of 23° C.:

$$\begin{cases} P = 45 \text{ cms.} & 50 \text{ cms.} & 55 \text{ cms.} & 60 \text{ cms.} & 65 \text{ cms.} \\ a_{23} = 69 & 74 & 79 & 84 & 88 \end{cases}$$

According to Setschenow the effect of varying the pressure from 45 to 85 centimeters in the case of carbonic acid in water is very small.

CAPILLARITY. - SURFACE TENSION OF LIQUIDS.*

TABLE 170. - Water and Alcohol in Contact with Air.

TABLE 172. —Solutions of Salts in Water. †

Temp. C.	in dy	e tension mes per neter.	Temp.	in dy	e tension mes per meter.	Temp.	Surface tension in dynes per cen- timeter.
	Water.	Ethyl alcohol.	C.	Water.	Ethyl alcohol.	С,	Water.
0° 5 10 15 20 25 30 35	75.6 74.9 74.2 73.5 72.8 72.1 71.4 70.7	23.5 23.1 22.6 22.2 21.7 21.3 20.8 20.4	40° 45 50 55 60 65 70 75	70.0 69.3 68.6 67.8 67.1 66.4 65.7 65.0	20.0 19.5 19.1 18.6 18.2 17.8 17.3 16.9	80° 85 90 95 100 - -	64.3 63.6 62.9 62.2 61.5

Salt in solution.	Density.	Temp.	Tension in dynes per cm.
BaCl ₂ "CaCl ₂ "HCl " "KCl " "MgCl ₂ " NaCl " " NH ₄ Cl " " " K ₂ CO ₃ " " Na ₂ CO ₃ " " K ₂ CO ₃ " " Ma ₂ CO ₃ " " " " Ma ₂ CO ₃ " " " Ma ₂ CO ₃ " " " " " Ma ₂ CO ₃ " " " " " " " " " " " " " " " " " " "	1.2820 1.0497 1.3511 1.2773 1.1190 1.0887 1.0242 1.1699 1.1011 1.0463 1.2338 1.1694 1.0360 1.0758 1.0535 1.0281 1.3114 1.1204 1.1576 1.0567 1.3575 1.1576 1.0400 1.1329 1.0605 1.1263 1.1263 1.1263 1.1263 1.1263 1.12636 1.2744 1.0360 1.2744 1.0360 1.1119	15-16 15-16 19 20 20 15-16	81.8 77.5 95.0 90.2 73.6 74.5 75.3 82.8 80.1 78.2 90.1 78.0 85.8 80.5 77.6 84.3 81.7 78.8 90.9 81.8 77.5 79.4 77.8 90.9 81.8 77.5 79.3 77.6 83.5 80.0 77.7 79.9
ZnSO ₄	1.0329 1.3981 1.2830 1.1039	15-16 15-16 15-16 15-16	77·3 83·3 80·7 77.8

TABLE 171. - Miscellaneous Liquids in Contact with Air.

Liquid.	Temp.	Surface tension in dynes per cen- timeter.	Authority.
Aceton	16.8 17.0 15.0 15.0 20.0 20.0 20.0 17.0 0.0 68.0	23.3 30.2 24.8 28.8 28.7 30.5 28.3 18.4 63.14 21.2 14.2	Ramsay-Shields. Average of various. " Quincke. Average of various. Hall. Schiff. "
Mercury Methyl alcohol . Olive oil Petroleum Propyl alcohol	18.0 15.0 20.0 20.0 5.8 97.1 15.0 109.8 21.0	520.0 24.7 34.7 25.9 25.9 18.0 29.1 18.9 28.5	Average of various. " Magie. Schiff. " " " Average of various.

^{*} This determination of the capillary constants of liquids has been the subject of many careful experiments, but the * This determination of the capillary constants of liquids has been the subject of many careful experiments, but the results of the different experimenters, and even of the same observer when the method of measurement is changed, do not agree well together. The values here quoted can only be taken as approximations to the actual values for the liquids in a state of purity in contact with pure air. In the case of water the values given by Lord Rayleigh from the wave length of ripples (Phil. Mag. 1890) and by Hall from direct measurement of the tension of a flat film (Phil. Mag. 1893) have been preferred, and the temperature correction has been taken as 0.141 dyne per degree centigrade. The values for alcohol were derived from the experiments of Hall above referred to and the experiments on the effect of temperature made by Timberg (Wied. Ann. vol. 30).

The authority for a few of the other values given is quoted, but they are for the most part average values derived from a large number of results published by different experimenters.

From Volkmann (Wied. Ann. vol. 17, p. 353).

For more recent data see especially Harkins, J. Am. Ch. Soc., 39, p. 55, 1917 (336 liquids). and 42, p. 702, 2543, 1920.

TENSION OF LIQUIDS.

TABLE 173. - Surface Tension of Liquids.*

Li	Specific gravity.	Surface tension in dynes per centimeter of liquid in contact with —						
		Air.	Water.	Mercury.				
Water Mercury Bisulphide of carbon Chloroform Ethyl alcohol Olive oil Turpentine Petroleum Hydrochloric acid Hyposulphite of soda s	olution				1.0 13-543 1.2687 1.4878 0.7906 0.9136 0.8867 -7977 1.10 1.1248	75.0 513.0 30.5 (31.8) (24.1) 34.6 28.8 29.7 (72.9) 69.9	0.0 392.0 41.7 26.8 - 18.6 11.5 (28.9)	(392) 0 (387) (415) 364 317 241 271 (392) 429

TABLE 174. - Surface Tension of Liquids at Solidifying Point. †

Substance.	Temperature of solidification.	Surface tension in dynes per centimeter.	Substance.	Temperature of solidification.	Surface tension in dynes per centimeter.
Platinum Gold Zinc Tin Mercury Lead Silver Bismuth Potassium Sodium	2000 1200 360 230 —40 330 1000 265 58	1691 1003 877 599 588 457 427 1390 371 258	Antimony Borax Carbonate of soda Chloride of sodium Water Selenium Sulphur Phosphorus Wax	432 1000 1000 - 0 217 111 43 68	249 216 210 116 87.9‡ 71.8 42.1 42.0 34.1

TABLE 175. - Tension of Soap Films.

Elaborate measurements of the thickness of soap films have been made by Reinold and Rucker. They find that a film of oleate of soda solution containing I of soap to 70 of water, and having 3 per cent of KNO3 added to increase electrical conductivity, breaks at a thickness varying between 7.2 and 14.5 micro-millimeters, the average being 12.1 micromillimeters. The film becomes black and apparently of nearly uniform thickness round the point where fracture begins. Outside the black patch there is the usual display of colors, and the thickness at these parts may be estimated from the colors of thin plates and the refractive index of the solution.

When the percentage of KNO3 is diminished, the thickness of the black patch increases. KNO3 For example,

= 3 I 0.5 0.0

Thickness = 12.4 13.5 14.5 22.1 micro-mm.

A similar variation was found in the other soaps.

It was also found that diminishing the proportion of soap in the solution, there being no KNO3 dissolved, increased the thickness of the film.

- I part soap to 30 of water gave thickness 21.6 micro-mm.
- I part soap to 40 of water gave thickness 22.1 micro-mm.
- I part soap to 60 of water gave thickness 27.7 micro-mm.
- I part soap to 80 of water gave thickness 29.3 micro-mm,

about 20° C.

† Quincke, "Pogg. Ann." vol. 135, p. 661.

‡ It will be observed that the value here given on the authority of Quincke is much higher than his subsequent measurements, as quoted above, give.

"Proc. Roy. Soc." 1877, and "Phil. Trans. Roy. Soc." 1881, 1883, and 1893.

Note. — Quincke points out that substances may be divided into groups in each of which the ratio of the surface tension to the density is nearly constant. Thus, if this ratio for mercury be taken as unit, the ratio for the bromides and iodides is about a half: that of the nitrates, chlorides, sugars, and fats, as well as the metals, lead, bismuth, and antimony, about 1: that of water, the carbonates, sulphates, and probably phosphates, and the metals platinum, gold, silver, cadmium, tin, and copper, 2; that of zinc, iron, and palladium, 3; and that of sodium, 6.

^{*} This table of tensions at the surface separating the liquid named in the first column and air, water or mercury as stated at the head of the last three columns, is from Quincke's experiments (Pogg. Ann. vol. 139, and Phil. Mag. 1897). The numbers given are the equivalent in dynes per centimeter of those obtained by Worthington from Quincke's results (Phil. Mag. vol. 20, 1885) with the exception of those in brackets, which were not corrected by Worthington; they are probably somewhat too high, for the reason stated by Worthington. The temperature was about 20°C.

Hydrog	en.	Oxyge	en.	Nitro	gen.	Ar	gon.	Xe	non.	Kr	ypton.
H scale.	mm	H scale.	mm	T	mm	° K	mm	° K	mm	° K	mm
20.41° K 20.22 19.93 19.41 18.82 18.15 17.36 16.37 14.93 Travers, Jarod, 190		90.60° K 90.10 89.33 87.91 86.29 84.39 82.09 79.07 Travers, ter,]	760 700 600 500 400 300 200	77.33° K 76.83 76.65 75.44 74.03 72.39 70.42 67.80 63.65 Fische:	714.5 700. 600. 500. 400. 300. 200. 100.	139.0 137.8 136.8 123.1 87.8 86.5 85.5 83.8 82.6 81.7 77.3	10313. 821.2 704.5 633.4 524.3 465.0 410.1	273 · 3 255 · 6 254 · 0 252 · 6 248 · 7 244 · 2 239 · 7 237 · 4 231 · 4 183 · 2	31501 21967 21512 19984 18153 15868 13971 13505 11134 2020	206.4 204.1 201.5 201.6 197.6 170.6 112.2 88.6 84.2	9.
Cl	olorine.	1	Bro	omine.	Iod	line.	C	opper.		Sil	ver.
° C	Pr	essure.	° C	mm	°C	mm	°C	Atm	ie.	°C	Atme.
+146. +100. +50. +20.	4I. 14.	50 atm. 70 atm. 70 atm. 62 atm.	+58.7 56.3 51.0 46.8	700	+55 50 45 40	3.084 2.154 1.498 1.025	2310 2180 1980	1.0 0.33 0.13	8	1955 1780 1660 Bism	1.0 0.346 0.1355 uth.
0. -20.		66 atm. 84 atm.	33.0		35	0.699	° C	Atm	ie.	°C	Atme.
-2033.6 -40506070808588. Knietsch, VCu to Sn, (Roy. So Zs. ph. Co	760. 560. 350. 210. 118. 62. 45. 37. W. An	mm mm mm 5 mm 5 mm wood, Pr. A, 1910;	23.2 16.0 8.2 -5.0 -7.0 -8.4 -12.0 -16.6	45 200 95 150 100 95 50 45 4 40 30 95 20 y, Young	Baxter, ey, F J. A.	0.305 0.131 0.030 Hick- Iolmes, m. Ch		11.7 6.3 1.0 0.3 0.1 	255 2257 II	° C	16.5 11.7 6.3 1.0 0.338 0.134 n. Atme. 1.0 0.345 0.133

TABLE 177. - Vapor Pressure and Rate of Evaporization.

° K	Mo mm	W		tion rate. 12/sec.	Platinum.				
	111111	mm	Мо	W	° K	mm	g/cm ² /sec.		
1800 2000 2200 2400 2600 2800 3000 3200 3500	0.0 ₈ 643 0.0 ₆ 789 0.0 ₄ 396 0.0 ₂ 1027 0.0160 0.1679 3890° 760 mm	0.0 ₁₁ 645 0.0 ₉ 849 0.0 ₇ 492 0.0 ₆ 151 0.0 ₄ 286 0.0 ₃ 362 0.0 ₂ 333 0.0572	0.0 ₁₀ 863 0.0 ₇ 100 0.0 ₆ 480 0.0 ₄ 120 0.0 ₃ 179 0.0 ₂ 181	O. O ₁₂ II4 O. O ₁₀ I44 O. O ₉ 798 O. O ₇ 236 O. O ₆ 429 O. O ₅ 523 O. O ₄ 467 O. O ₃ 769	Rev.	O. O17324 O. O12111 O. O9188 O. O7484 O. O5350 O. O8107 760 mm muir, Mack 2, 1913; 4, of vacuum,	1914.		

 $\begin{array}{lll} p = \overline{K.T^{-1}}e^{-\lambda_0/RT} \; dynes/cm^2. & Egerton, Phil. \, Mag. \, 33, \, p. \, 33, \, 1917. \\ Zn, \, \lambda_0 = 3.28 \times 10^4; \; K = 1.17 \times 10^{14} & Cd, \, \lambda_0 = 2.77 \times 10^4; \; K = 5.27 \times 10^{13} \\ Hg, \, \lambda_0 = 1.60 \times 10^4; & = 3.72 \times 10^{13} \; (Knudsen) \end{array}$

VAPOR PRESSURES.

The vapor pressures here tabulated have been taken, with one exception, from Regnault's results The vapor pressure of Pictet's fluid is given on his own authority. The pressures are in centimeters of mercury.

Tem- pera- ture Cent.	Acetone. C ₈ H ₆ O	Benzol. C ₆ H ₆	Carbon bisul- phide. CS ₂	Carbon tetra- chloride. CCl ₄	Chloro- form. CHCl ₈	Ethyl alcohol. C ₂ H ₆ O	Ethyl ether. C ₄ H ₁₀ O	Ethyl bromide. C ₂ H ₅ Br	Methyl alcohol. CH ₄ O	Turpen- tine. C ₁₀ H ₆
-25° -20 -15 -10 -5	111111	- .58 .88 1.29 1.83	- 4.73 6.16 7.94 10.13	- .98 1.35 1.85 2.48		- ·33 ·51 ·65 ·91	6.89 8.93 11.47 14.61	4.41 5.92 7.81 10.15 13.06	.41 .63 .93 1.35	
0 5 10 15 20	- - - 17.96	2.53 3.42 4.52 5.89 7.56	12.79 16.00 19.85 24.41 29.80	3.29 4.32 5.60 7.17 9.10	5.97 10.05 16.05	1.27 1.76 2.42 3.30 4.45	18.44 23.09 28.68 35.36 43.28	16.56 20.72 25.74 31.69 38.70	2.68 3.69 5.01 6.71 8.87	- .21 - .29 - .44
25 30 35 40 45	22.63 28.10 34.52 42.01 50.75	9.59 12.02 14.93 18.36 22.41	36.11 43.46 51.97 61.75 72.95	11.43 14.23 17.55 21.48 26.08	20.02 24.75 30.35 36.93 44.60	5.94 7.85 10.29 13.37 17.22	52.59 63.48 76.12 90.70 107.42	46.91 56.45 67.49 80.19 94.73	11.60 15.00 19.20 24.35 30.61	- .69 - 1.08
50 55 60 65 70	62.29 72.59 86.05 101.43 118.94	27.14 32.64 39.01 46.34 54.74	85.71 100.16 116.45 134.75 155.21	31.44 37.63 44.74 52.87 62.11	53.50 63.77 75.54 88.97 104.21	21.99 27.86 35.02 43.69 54.11	126.48 148.11 172.50 199.89 230.49	111.28 130.03 151.19 174.95 201.51	38.17 47.22 57.99 70.73 85.71	2.65 - 4.06
75 80 85 90 95	138.76 161.10 186.18 214.17 245.28	64.32 75.19 87.46 101.27 116.75	177.99 203.25 231.17 261.91 296.63	72.57 84.33 97.51 112.23 128.69	121.42 140.76 162.41 186.52 213.28	66.55 81.29 98.64 118.93 142.51	264.54 302.28 343.95 389.83 440.18	231.07 263.86 300.06 339.89 383.55	103.21 123.85 147.09 174.17 205.17	6.13 9.06
100 105 110 115 120	279.73 317.70 359.40 405.00 454.69	134.01 153.18 174.44 197.82 223.54	332.51 372.72 416.41 463.74 514.88	146.71 166.72 188.74 212.91 239.37	242.85 275.40 311.10 350.10 392.57	169.75 201.04 236.76 277.34 323.17	495·33 555.62 621·46 693.33 771.92	431.23 483.12 539.40 600.24 665.80	240.51 280.63 325.96 376.98 434.18	13.11 - 18.60 - 25.70
125 130 135 140 145	508.62 566.97 629.87 697.44	251.71 282.43 315.85 352.07 391.21	569.97 629.16 692.59 760.40 832.69	268.24 299.69 333.86 370.90 411.00	438.66 488.51 542.25 600.02 661.92	374.69 432.30 496.42 567.46 645.80		736.22 811.65 892.19 977.96	498.05 569.13 647.93 733.71 830.89	34.90 46.40
150 155 160 165 170	-	433·37 478.65 527·14 568.30 634.07	909.59	454.31 501.02 551.31 605.38 663.44	728.06 798.53 873.42 952.78	731.84 825.92 - -			936.13	60.50 68.60 77.50 -

VAPOR PRESSURES.

Temperature, Centigrade.	Ammonia. NH ₃	Carbon dioxide. CO ₂	Ethyl chloride. C ₂ H ₅ Cl	Ethyl iodide. C ₂ H ₅ I	Methyl chloride. CH ₃ Cl	Methylic ether. C ₂ H ₆ O	Nitrous oxide. N ₂ O	Pictet's fluid. 64SO ₂ + 44CO ₂ by weight	Sulphur dioxide. SO ₂	Hydrogen sulphide. H ₂ S
_30°	86.61	-	11.02	-	57.90	57.65	-	58.52	28.75	-
-25 -20 -15 -10 -5	110.43 139.21 173.65 214.46 264.42	1300.70 1514.24 1758.25 2034.02 2344.13	14.50 18.75 23.96 30.21 37.67		71.78 88.32 107.92 130.96 157.87	71.61 88.20 107.77 130.66 157.25	1569.49 1758.66 1968.43 2200.80 2457.92	67.64 74.48 89.68 101.84 121.60	37.38 47.95 60.79 76.25 94.69	374-93 443.85 519.65 608.46 706.60
5 10 15 20	318.33 383.03 457.40 543.34 638.78	2690.66 3075.38 3499.86 3964.69 4471.66	46.52 56.93 69.11 83.26 99.62	4.19 5.41 6.92 8.76 11.00	189.10 225.11 266.38 313.41 366.69	187.90 222.90 262.90 307.98 358.60	2742.10 3055.86 3401.91 3783.17 4202.79	139.08 167.20 193.80 226.48 258.40	116.51 142.11 171.95 206.49 246.20	820.63 949.08 1089.63 1244.79 1415.15
25 30 35 40 45	747.70 870.10 1007.02 1159.53 1328.73	5020.73 5611.90 6244.73 6918.44 7631.46	118.42 139.90 164.32 191.96 223.07	13.69 16.91 20.71 25.17 30.38	426.74 494.05 569.11 -	415.10 477.80 - - -	4664·14 5170.85 6335.98	297.92 338.20 383.80 434.72 478.80	291.60 343.18 401.48 467.02 540.35	1601.24 1803.53 2002.43 2258.25 2495.43
50 55 60 65 70	1515.83 1721.98 1948.21 2196.51 2467.55	11111	257.94 266.84 340.05 387.85 440.50	36.40 43.32 51.22	11111			521.36 - - - -	622.00 712.50 812.38 922.14	2781.48 3069.07 3374.02 3696.15 4035.32
75 80 85 90 95	2763.00 3084.31 3433.09 3810.92 4219.57	-	498.27 561.41 630.16 704.75 785.39		11111	11111	11111	11111		11111
100	4660.82	-	872.28	-		-	- /	-	-	-

VAPOR PRESSURE.

TABLE 179. - Vapor Pressure of Ethyl Alcohol.*

Ü	00	1°	2°	3 °	40	5 °	6 °	7 °	8°	9°
Temp.			Va	por pressur	e in millim	eters of me	ercury at o	° C.		
0° 10 20 30 40 50 60 70	12.24 23.78 44.00 78.06 133.70 220.00 350.30 541.20	13.18 25.31 46.66 82.50 140.75 230.80 366.40 564.35	14.15 27.94 49.47 87.17 148.10 242.50 383.10 588.35	15.16 28.67 52.44 92.07 155.80 253.80 400.40 613.20	16.21 30.50 55.56 97.21 163.80 265.90 418.35 638.95	17.31 32.44 58.86 102.60 172.20 278.60 437.00 665.55	18.46 34.49 62.33 108.24 181.00 291.85 456.35 693.10	19.68 36.67 65.97 114.15 190.10 305.65 476.45 721.55	20.98 38.97 69.80 120.35 199.65 319.95 497.25 751.00	22.34 41.40 73.83 126.86 209.60 334.85 518.85 781.45
From	the forr	nula log į	b=a+a	$ba^t + c\beta^t$	Ramsay	and You	ng obtair	the foll	owing nu	mbers.†
·	0°	10°	20 °	30°	40 °	50°	60°	70°	80°	90°
Temp.			Va	por pressur	e in millim	eters of me	rcury at o	C.		
0° 100 200	12.24 1692.3, 22182.	23.73 2359.8 26825.	43.97 3223.0 32196.	78.11 4318.7 38389.	133.42 5686.6 45 5 19.	219.82 7368.7		540.91 11858.	811.81 14764.	1186.5 18185.

TABLE 180. - Vapor Pressure of Methyl Alcohol.

·C	0°	1°	2°	3°	4°	5 °	6 °	7 °	8°	9°				
Тетр.		Vapor pressure in millimeters of mercury at o° C.												
0° 10 20	29.97 53.8 94.0	31.6 57.0 99.2	33.6 60.3 104.7	35.6 63.8 110.4	37.8 67.5 116.5	40.2 71.4 122.7	42.6 75.5 129.3	45.2 79.8 136.2	47.9 84.3 143.4	50.8 89.0 151.0				
30 40 50 60	1 58.9 259.4 409.4 624.3	167.1 271.9 427.7 650.0	175.7 285.0 446.6 676.5	184.7 298.5 466.3 703.8	194.1 312.6 486.6 732.0	203.9 327.3 507.7 761.1	214.1 342.5 529.5 791.1	224.7 358.3 552.0 822.0	235.8 374.7 575.3	247.4 391.7 599.4				

This table has been compiled from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47, and Phil. Trans. Roy. Soc., 1886).

[†] In this formula a = 5.0720301; $\log b = \overline{2}.6406131$; $\log c = 0.6050854$; $\log a = 0.003377538$; $\log \beta = \overline{1}.99682424$ (c is negative).

[‡] Taken from a paper by Dittmar and Fawsitt (Trans. Roy. Soc. Edin. vol. 33).

SMITHSONIAN TABLES.

TABLE 181.

VAPOR PRESSURE.*

Carbon Disulphide, Chlorobenzene, Bromobenzene, and Aniline.

Temp.	0°	1°	2°	3°	4°	5°	6°	7 °	8°	9° .
		,		(a) CAR	BON DI	SULPHID	Е.			-
0° 10 20 30 40	127.90 198.45 298.05 434.60 617.50	133.85 207.00 309.90 450.65 638.70	140.05 215.80 322.10 467.15 660.50	146.45 224.95 334.70 484.15 682.90	153.10 234.40 347.70 501.65 705.90	160.00 244.15 361.10 519.65 729.50	167.15 254.25 374.95 538.15 753.75	174.60 264.65 389.20 557.15 778.60	182.25 275.40 403.90 576.75 804.10	190.20 286.55 419.00 596.85 830.25
				(b) C	HLOROB	ENZENE.				
20° 3° 4°	8.6 ₅ 14.9 ₅ 25.10	9.14 15.77 26.38	9.66 16.63 27.72	10.21 17.53 29.12	10.79 18.47 30.58	11.40 19.45 32.10	12.04 20.48 33.69	12.71 21.56 35.35	1 3.42 22.69 37.08	14.17 23.87 38.88
50 60 70 80 90	40.75 64.20 97.90 144.80 208.35	42.69 67.06 101.95 150.30 215.80	44.72 70.03 106.10 156.05 223.45	46.84 73.11 110.41 161.95 231.30	49.05 76.30 114.85 168.00 239.35	51.35 79.60 119.45 174.25 247.70	53.74 83.02 124.20 181.70 256.20	56.22 86.56 129.10 187.30 265.00	58.79 90.22 134.15 194.10 274.00	61.45 -94.00 139.40 201.15 283.25
100 110 120 130	292.75 402.55 542.80 718.95	302.50 415.10 558.70 738.65	312.50 427.95 575.05 758.80	322.80 441.15 591.70	333·35 454.65 608.75	344.15 468.50 626.15	355.25 482.65 643.95	366.65 497.20 662.15	378.30 512.05 680.75	390.25 527.25 699.65
				(c)]	Вкомові	ENZENE.				
40°	-	-	-	_	-	12.40	13.06	13.75	14.47	15.22
50 60 70 80 90	16.00 26.10 41.40 63.90 96.00	16.82 27.36 43.28 66.64 99.84	17.68 28.68 45.24 69.48 103.80	18.58 30.06 47.28 72 42 107.88	19.52 31.50 49.40 75.46 112.08	20.50 33.00 51.60 78.60 116.40	21.52 34.56 53.88 81.84 120.86	22.59 36.18 56.25 85.20 125.46	23.71 37.86 58.71 88.68 130.20	24.88 39.60 61.26 92.28 135.08
100 110 120 130 140	140.10 198.70 274.90 372.65 495.80	145.26 205.48 283.65 383.75 509.70	150.57 212.44 292.60 395.10 523.90	156.03 219.58 301.75 406.70 538.40	161.64 226.90 311.15 418.60 553.20	167.40 234.40 320.80 430.75 568.35	173.32 242.10 330.70 443.20 583.85	179.41 250.00 340.80 455.90 599.65	185.67 258.10 351.15 468.90 615.75	192.10 266.40 361.80 482.20 632.25
150	649.05	666.25	683.80	701.65	719.95	738.55	757-55	776.95	796.70	816.90
				(ć	A) ANIL	INE.		1		
80 ° 90	18.80	19.78 31.44	20.79 32.83	21.83 34.27	22.90 35.76	24.00 37.30	25.14 38.90	26.32 40.56	27.54 42.28	28.80 44.06
100 110 120 130 140	45.90 68.50 100.40 144.70 204.60	47.80 71.22 104.22 149.94 211.58	49.78 74.04 108.17 155.34 218.76	51.84 76.96 112.25 160.90 226.14	53.98 79.98 116.46 166.62 233.72	56.20 83.10 120.80 172.50 241.50	58.50 86.32 125.28 178.56 249.50	60.88 89.66 129.91 184.80 257.72	63.34 93.12 134.69 191.22 266.16	65.88 96.70 139.62 197.82 274.82
150 160 170 180	283.70 386.00 515.60 677.15	292.80 397.65 530.20 695.30	302.15 409.60 545.20 713.75	311.75 421.80 560.45 732.65	321.60 434.30 576.10 751.90	331.70 447.10 592.05 771.50	342.05 460.20 608.35	352.65 473.60 625.05	363.50 487.25 642.05	374.60 501.25 659.45

^{*} These tables of vapor pressures are quoted from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47). The tables are intended to give a series suitable for hot-jacket purposes.

TABLE 181 (continued).

VAPOR PRESSURE.

Methyl Salicylate, Bromonaphthalene, and Mercury.

1			Methyl Sa	meyiate,	1	1				1
Temp.	0°	1°	2°	3°	4°	59	6°	7 °	8°	9°
			-	(e) ME	THYL SA	LICYLAT	E.			
-	(1		1	1	I	1	1		1
70°	2.40	2.58	2.77	2.97	3.18	3.40	3.62	3.85	4.09	4.34
80	4.60	4.87	5.15	5.44	5.74	6.05	6.37		7.05	7.42
90	7.80	8.20	8.62	9.06	9.52	9.95	10.44	10.95	11.45	12.03
100	12.60	13.20	13.82	14.47	15.15	15.85	16.58	17.34	18.13	18.95
110	19.80	20.68	32.84	22.55 34.21	23.53	37.10	25.61	26.71	27.85	29.03
130	45.30	47.12	49.01	50.96	52.97	55.05	57.20	59.43	61.73	64.10
140	66.55	69.08	71.69	74.38	77.15	80.00	82.94	85.97	89.09	92.30
150	95.60	99.00	102.50	106.10	109.80	113.60	117.51	121.53	125.66	129.90
160	134.25	138.72	143.31	148.03	152.88	157.85	162.95	168.19	173.56	179.06
180	184.70	190.48	196.41	202.49 271.90	208.72	215.10 287.80	221.65	228.30 304.48	235.15	321.85
190	330.85	340.05	349-45	359.05	279.75 368.85	378.90	389.15	399.60	410.30	421.20
200	432-35	443.75	455-35	467.25	479-35	491.70	504.35	517.25	530.40	543.80
210	557.50	571.45	585.70	600.25	615.05	630.15	645.55	661.25	677.25	693.60
220	710.10	727.05	744-35	761.90	779.85	798.10				
				(E) T)						
		1	1	(I) BRO	MONAPH	THALEN	E.			1
110°	3.60	3.74	3.89	4.05	4.22	4.40	4.59	4.79	5.00	5.22
120	5.45 8.50	5.70 8.89	5.96	6.23	6.51	6.80	7.10	7.42	7.76	5.22 8.12
130	13.15	13.72	9.29	9.71	15.55	16.20	11.07	17.56	12.07	12.60
150 160	19.80	20.59	30.98	22.25 32.09	23.11	24.00 34.40	24.92 35.60	25.86 36.83	26.83 38.10	27.83 39.41
170	. 40.75	42.12	43.53	44.99	46.50	48.05	49.64	51.28	52.96	54.68
180	56.45	58.27 79·54	60.14	62.04 84. 5 I	64.06 87.10	89.75	68.19	70.34	72.55 98.12	74.82
				04.51		09.73		95.26		101.03
200	104.05	107.12	146.29	113.50	116.81	120.20	123.67	127.22	130.86	134.59
220	181.75	186.65	191.65	196.75	1 54.57	207.35	163.25	218.40	172.30	176.95
230	235.95	242.05	248.30	254.65	261.20	267.85	274.65	281.60	288.70	295.95
240	303.35	310.90	318.65	326.50	334.55	342.75	351.10	359.65	368.40	377-30
250	386.35	395.60	405.05	414.65	424.45	434-45	444.65	455.00	465.60	476.35
260	487.35 608.75	498.55	509.90	521.50	533·35 663.55	545·35 677.85	557.60 692.40	570.05 70 7 .15	582.70 722.15	595.60 737.45
			33,	175	3-33	-//3	-340	7-7-3	/	737-43
				(g) MERCI	JRY.				
2500		6								
270°	123.92	126.97	130.08	133.26	136.50	139.81	143.18	146.61	150.12	153.70
290	198.04	202.53	207.10	211.76	216.50	221.33	226.25	231.25	236.34	241.53
300	246.81	252.18	257.65	263.21	268.87	274.63	280.48	286.43	292.49	298.66
310	304.93	311.30	317.78	324-37	331.08	337.89	344.81	351.85	359.00	366.28
320	373.67 454.41	381.18	388.81	396.56	404.43	412.44	420.58	428.83	437.22	445·75 538.56
340	548.64	558.87	569.25	481.19	490.40 590.48	499·74 601.33	509.22	518.85	528.63 634.85	646.36
350	658.03	669.86	681.86							
360	784.31	309.00	001.00	694.04	706.40	718.94	731.65	744-54	757.61	770.87

TABLE 182.

VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.*

The first column gives the chemical formula of the salt. The headings of the other columns give the number of gram-molecules of the salt in a liter of water. The numbers in these columns give the lowering of the vapor pressure produced by the salt at the temperature of boiling water under 76 centimeters barometric pressure.

Substance.	0.5	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
Al ₂ (SO ₄) ₈ AlCl ₃ BaS ₂ O ₆ Ba(OH) ₂ Ba(NO ₃) ₂	. 12.8 . 22.5 . 6.6 . 12.3 . 13.5	36.5 61.0 15.4 22.5 27.0	179.0 34.4 39.0	318.0					
Ba(ClO ₃) ₂ BaCl ₂	. 15.8 . 16.4 . 16.8 . 9.9 . 16.4	33·3 36·7 38·8 23.0 34·8	70.5 77.6 91.4 56.0 74.6	150.0 106.0 139.3	204.7	205.4			
CaCl ₂	. 17.0 . 17.7 . 4.1 . 7.6 . 8.6	39.8 44.2 8.9 14.8 17.8	95.3 135.8 18.1 33.5 36.7	166.6 191.0 52.7 55.7	241.5 283.3	319.5 368.5			
CdCl ₂	9.6 15.9 17.5 5.5	18.8 36.1	36.7 78.0	57.0 122.2 45.5 136.0	77.3	99.0			
CoCl ₂	. 15.0 . 17.3 . 5.8 . 6.0 . 6.6	34.8 39.2 10.7 12.3 14.0	83.0 89.0 24.0 25.1 28.6 30.2	152.0 42.4 38.0 45.2 46.4	218.7 51.0 62.0 64.9	282.0	332.0	146.9	189.5
H ₂ SO ₄	. 12.9 . 10.2 . 10.3 . 10.6	26.5 19.5 21.1 21.6 22.4	62.8 33.3 40.1 42.8 45.0	104.0 47.8 57.6 62.1	148.0 60.5 74.5 80.0	198.4 73.1 88.2	247.0 85.2 102.1	343.2	148.0
KHSO ₄	. 10.9 . 11.1 . 11.5	21.9 22.8 22.3 24.4	43·3 44.8 48.8	65.3 67.0	85.5 90.0	107.8	129.2 130.7	170.0	198.8
KHCO ₂	. 11.6	23.6 25.3 28.3	59.0 52.2 59.8	77.6 82.6 94.2	104.2 112.2 131.0	132.0 141.5 226.4	160.0	210.0	255.0
K ₂ WO ₄	· 13.9 · 14.4 · 15.0	33.0 31.0 29.5	75.0 68.3 64.0	123.8	175.4 152.0 140.0	200.4	258.5 223.0	350.0 309.5	387.8
LiNO ₈ LiCl LiBr Li ₂ SO ₄	. I2.2 . I2.1 . I2.2 . I3.3	25.5 25.5 26.2 28.1	55.7 57.1 60.0 56.8	88.9 95.0 97.0 89.0	122.2 132.5 140.0	155.1 175.5 186.3	188.0 219.5 241.5	253.4 311.5 341.5	309.2 393.5 438.0
$\begin{array}{cccc} LiHSO_4 & . & . \\ LiI & . & . \\ Li_2SiFl_6 & . & . \\ LiOH & . & . \\ Li_2CrO_4 & . & . \\ \end{array}$. 12.8 . 13.6 . 15.4 . 15.9	27.0 28.6 34.0 37.4 32.6	57.0 64.7 70.0 78.1 74.0	93.0 105.2 106.0	130.0 154.5	168.0 206.0	264.0	357.0	445.0

^{*} Compiled from a table by Tammann, "Mém. Ac. St. Petersb." 35, No. 9, 1887. See also Referate, "Zeit. f. Phys." ch. 2, 42, 1886.

SMITHSONIAN TABLES.

VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.

Substance.	0.5	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
MgSO ₄	6.5 16.8 17.6 17.9 18.3	12.0 39.0 42.0 44.0 46.0	24.5 100.5 101.0 115.8 116.0	47·5 183·3 174·8 205·3	277.0 298.5	377.0			
MnSO ₄	6.0 15.0 10.5 10.9 10.6	10.5 34.0 20.0 22.1 22.5	21.0 76.0 36.5 47.3 46.2	122.3 51.7 75.0 68.1	167.0 66.8 100.2 90.3	209.0 82.0 126.1 111.5	96.5 148.5 131.7	126.7 189.7 167.8	157.1 231.4 198.8
NaClO ₈	10.5	23.0	48.4	73.5	98.5	123.3	147.5	196.5	223.5
(NaPO ₈) ₆	11.8 11.6 12.1	22.8 24.4 23.5	48.2 50.0 43.0	77·3 75.0 60.0	98.2 78.7	139.1 122.5 99.8	172.5 146.5 122.1	243.3 189.0	314.0 226.2
NaHCO8	12.9	24.I	48.2	77.6	102.2	127.8	152.0	198.0	239.4
Na ₂ SO ₄	12.3 12.1 12.6	25.0 25.2 25.0 25.9	52.1 54.1 57.0	74.2 80.0 81.3 89.2	111.0 108.8 124.2	143.0 136.0 159.5	176.5	268.0	
NaI	12.1	25.6	60.2	99.5	136.7	177.5	221.0	301.5	370.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.2 14.3 14.5 14.8	22.0 27.3 30.0 33.6	53.5 65.8 71.6	80.2 105.8 115.7	111.0 146.0 162.6				
Na ₃ PO ₄	16.5 17.1 12.8 11.5 12.0	30.0 36.5 22.0 25.0 23.7	52.5 42.1 44.5 45.1	62. 7	82.9	103.8	121.0	152.2	180.0
NH ₄ HSO ₄	11.5 11.0 11.9 12.9 5.0	22.0 24.0 23.9 25.1 10.2	46.8 46.5 48.8 49.8 21.5	71.0 69.5 74.1 78.5	94.5 93.0 99.4 104.5	118. 117.0 121.5 132.3	139.0 141.8 145.5 156.0	181.2 190.2 200.0	218.0 228.5 243.5
NiCl ₂	16.1 16.1 12.3 7.2 15.8	37.0 37.3 23.5 20.3 31.0	86.7 91.3 45.0 47.0 64.0	147.0 156.2 63.0	212.8 235.0				
SrCl ₂	16.8 17.8 4.9 9.2 16.6	38.8 42.0 10.4 18.7 39.0	91.4 101.1 21.5 46.2 93.5	156.8 179.0 42.1 75.0 157.5	223.3 267.0 66.2 107.0 223.8	281.5	195.0		

TABLES 183-185.

PRESSURE OF SATURATED AQUEOUS VAPOR.

The following tables for the pressure of saturated aqueous vapor are taken principally from the Fourth Revised Edition (1918) of the Smithsonian Meteorological Tables.

TABLE 183. — At Low Temperatures, -69° to 0° C over Ice.

Temp.	0	ī	2	3	4	5	6	7	8	9
	mm									
-60	0,008	0.007	0.006	0.005	0.004	0.004	0.003	0.003	0.003	0.002
-50	0.020	0.026	0.023	0.020	0.017	0.015	0.013	0.012	0.010	0.000
-40	0.096	0.086	0.076	0.068	0.060	0.054	0.048	0.042	0.037	0.033
-30	0.288	0.259	0.233	0.209	0.188	0.169	0.151	0.135	0.121	0.108
-20	0.783	0.712	0.646	0.585	0.530	0.480	0.434	0.392	0.354	0.319
-10	1.964	1.798	1.644	1.503	1.373	1.252	I.142	1.041	0.947	0.861
- 0	4.580	4.220	3.887	3.578	3.291	3.025	2.778	2.550	2.340	2.144

TABLE 184. — At Low Temperatures, -16° to 0° C over Water.

Temp.	0	I	2	3	4	5	6	7	8	9
- o°	mm 2.144 4.579	mm 1.979 4.255	mm 1.826 3.952	mm 1.684 3.669	mm 1.551 3.404	mm 1.429 3.158	mm 1.315 2.928	mm — 2.712	mm — 2.509	mm

TABLE 185. - For Temperatures 0° to 374° C over Water.

Temp.	.0	. 1	. 2	.3	.4	.5	.6	.7	.8	.9
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
o°	4.580	4.614	4.647	4.681	4.715	4.750	4.784	4.810	4.854	4.889
I	4.924	4.960	4.996	5.032	5.068	5.105	5.142	5.179	5.216	5.254
2	5.291	5.329	5.368	5.406	5 . 445	5.484	5 - 5 2 3	5.562	5.602	5.642
3	5.682	5.723	5.763	5.804	5.846	5.887	5.929	5.971	6.013	6.056
4	6.098	6.141	6.185	6.228	6.272	6.316	6.361	6.406	6.450	6.496
2	6.541	6.587	6.633	6.680	6.726	6.773	6.820	6.868	6.016	6.064
5 6	7.012	7.061	7.110	7.159	7.209	7.259	7.309	7.360	7.410	7.462
7 8	7.513	7.565	7.617	7.669	7.722	7.775	7.828	7.882	7.936	7.991
8	8.045	8.100	8.156	8.211	8.267	8.324	8.380	8.437	8.494	8.552
9	8.610	8.669	8.727	8.786	8.846	8.906	8.966	9.026	9.087	9.148
10	Q. 2I	9.27	9.33	0.40	9.46	0.52	9.50	0.65	9.72	9.78
II	9.85	9.91	9.98	10.04	10.11	10.18	10.25	10.31	10.38	10.45
12	10.52	10.59	10.66	10.73	10.80	10.87	10.94	11.02	11.09	11.16
13	11.24	11.31	11.38	11.46	11.53	11.61	11.68	11.76	11.84	11.92
14	11.99	12.07	12.15	12.23	12.31	12.39	12.47	12.55	12.63	12.71
15	12.70	12.88	12.96	13.04	13.13	13.21	13.30	13.38	13.47	13.56
16	13.64	13.73	13.82	13.91	14.00	14.08	14.17	14.26	14.36	14.45
17	14.54	14.63	14.73	14.82	14.91	15.01	15.10	15.20	15.29	15.39
18	15.49	15.58	15.68	15.78	15.88	15.98	16.08	16.18	16.28	16.39
19	16.49	16.59	16.70	16.80	16.91	17.01	17.12	17.22	17.33	17.44
20	17.55	17.66	17.77	17.88	17.99	18.10	18.21	18.32	18.44	18.55
21	18.66	18.78	18.90	19.01	19.13	19.25	19.36	19.48	19.60	19.72
22	19.84	19.96	20.09	20.21	20.33	20.46	20.58	20.71	20.83	20.96
23	21.09	21.22	21.34	21.47	21.60	21.73	21.87	22.00	22.13	22.26
24	22.40	22.53	22.67	22.80	22.94	23.08	23.22	23.36	23.50	23.64
25	23.78	23.92	24.06	24.21	24.35	24.50	24.64	24.79	24.94	25.09

PRESSURE OF SATURATED AQUEOUS VAPOR.

TABLE 185. — For Temperatures 0° to 374° C over Water.

Tempera-						. 5	.6	.7	.8	.9
ture.	.0	. I	. 2	.3	.4	. 5	.0	.,	.0	.9
									-	
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
25° 26	23.78	23.92 25.38	24.06 25.54	24.2I 25.69	24.35 25.84	24.50	24.64 26.14	24.79 26.30	24.94 26.46	25.09
27	25.24 26.77	26.92	27.08	27 24	27.40	27.56	27.72	27.89	28.05	28.22
28	28.38 30.08	28.55 30.25	28.71 30.43	28.88	29.05 30.78	30.96	29.39 31.14	29.56 31.32	29.73 31.50	29.90
30	31.86	32.04	32.23	32.41	32.60	32.79	32.97	33.16	33.35	33.54
31	33.74	33.93	34.12	34.32	34.51	34.7I	34.91	35.10	35.30	35.50
32 33	35.70 37.78	35.9I 37.99	36.11	36.32 38.42	36.52 38.63	36.73 38.85	36.94 39.06	37.14	37.35	37.56 39.72
34	39.95	40.17	40.39	40.62	40.85	41.07	41.30	41.53	41.76	41.99
35	42.23	42.46	42.70 45.11	42.93 45.36	43.17	43.41 45.86 48.43	43.65	43.89 46.36	44.13 46.62	44·37 46.87
36 37 38	41.62 47.13	47.38	47.64	47.90	45.61	48.43	48.69	48.95	49.22	49.49
38	49.76 52.51	50.02	50.30	50.57	50.84	51.12	51.39 54.23	51.67 54.52	51.95 54.81	52.23 55.10
40		55.69	55.99	56.29	56.50	56.89	57.19	57.50	57.80	58.11
41	55.40 58.42	58.73	59.04	59.35	59.66 62.89	59.98	60.30	60.62	60.94	61.26
42 43	61.58	61.90	62.23	62.56	66.26	63.22	63.55	67.30	64.22	64.55
44	68.35	68.70	69.06	69.42	69.78	70.14	70.50		71.23	71.60
45 46	71.97 75.75	72.34 76.14	72.7I 76.53	73.09	73.46	73.84	74.22	74.60	74.98 78.90	75.36 79.30
47 48	79.70	80.1i	80.51	80.92	77.31 81.33	77.70	78.10 82.16	78.50 82.57 86.83	82.99	83.41
48	88.14	84.25 88.58	84.68	85.10	85.53 89.92	85.96 90.36	86.39 90.82	91.27	87.26 91.72	87.70 92.18
	0.	I.	2.	3.	4.	5.	6.	7.	8.	9.
50	92.6	97.3	102.2	107.3	112.7	118.2	124.0	130.0	136.3	142.8
60	149.6	156.6	164.0	107.3 171.6 266.0	179.5 277.4	187.8	196.3 301.6	205.2	214.4 327.6	224.0 34I.2
80	355.4	370.0	385.2	400.8	417.0	433.7	451.0	314.4	487.3	506.3
90	526.0	546.3	567.2	588.8	611.1	634.1	657.8	682.2	707.4	733 · 3
110	760.0	787.5	815.9	845.0	875.1	906.0	937.8	970.5	1397	1038.8
120	1489	1536	1585	1636 2214	1687	1740	1794 2416	1850 2487	1907 2559	1965 2633
140	2709	2786	2866	2947	3030	2347 3115	3201	3290	3381	3473
150	3568	3665	3763	3864	3967	4072	4180	4290	4402	4516
160	4632 5936	4751 6080	4873 6228	4997 6378	5123 6532	5252 6688	5383 6847	5518	5654	5794 7342
180	7513	7688	7865	8046	8230	8417	8608	7000 8802	8999	9200
190	9404	9612	9823	10040	10260	10480	10700	10940	11170	11410
210	11650	11890	12140	12400	12650	12920 15770	13180	13450	13730	14010
220	17370	17710	18050	18390	18740	19100	19450	19820	20190	20560
240	25060	21330 25500	25950	26410	26870	22930	23350	23770 28290	24190 28780	24620
250	29770	30280	30790	31310	31830	32360	32900	33450	34000	34560
260	35130	35700	36280	36870	37470 43840	38070 44520	38680 45200	39300 45900	39920 46600	40560
280	48040	48760 56530	49500	50250	51000	51770	52540 60750	53320	54110	54910 63400
			57360							
300	64300 73870 84500	65210 74880 85630	66130 75910 86760	67060 76940 87910	68000 77990 89070	68960 79050	69920 80120	70890	71870 82290	72860 83390
320	84500 96290	85630 97530	86760 98790	87910	89070	90250	91430	92630	93840	95060
340	109300	110700	112100	113500	114900	116300	117800	119200	120700	122200
350	123700	125200	1 26800	128300	120000	131400	133000	134600	136300	137900
360 370	139600	141200	142900	144600	146300	148100	149800	151600	153400	155200

TABLE 186. - Weight in Grams of a Cubic Meter of Saturated Aqueous Vapor.

Temp.	o°	1°	2°	3°	4°	5°	6°	7°	8°	9°
	0.894	0.816	0.743	0.677	0.615	0.559	0.508	0.461	0.418	0.378
	2.158	1.983	1.820	1.671	1.531	1.403	1.284	1.174	1.073	0.980
	4.847	4.482	4.144	3.828	3.534	3.261	3.006	2.770	2.551	2.347
	4.847	5.192	5.559	5.947	6.36c	6.797	7.261	7.751	8.271	8.821
	9.401	10.015	10.664	11.348	12.070	12.832	13.635	14.482	15.373	16.311
	17.300	18.338	19.430	20.578	21.783	23.049	24.378	25.771	27.234	28.765
	30.371	32.052	33.812	35.656	37.583	39.599	41.706	43.908	46.208	48.609

TABLE 187. - Weight in Grains of a Cubic Foot of Saturated Aqueous Vapor.

Temp.	o°	10	2°	3°	4°	5°	6°	7°	8°	9°
-20° -10 -0 +0° +10 +20 +30 +40 +50 +60 +70 +80 +90	0.167 0.286 0.479 0.780 1.244 1.942 2.863 4.108 5.800 8.066 11.056 14.951 19.966 26.343	0.158 0.272 0.455 0.503 0.818 1.301 2.028 2.970 4.255 5.999 8.329 11.401 15.400 20.538 27.066	0. 150 0. 258 0. 433 0. 529 0. 858 1. 362 2. 118 3. 082 4. 407 6. 203 8. 600 11. 756 15. 858	0.141 0.244 0.411 0.556 0.900 1.425 2.200 3.196 4.564 6.413 8.879 12.121 16.328 21.723 28.563	0. 134 0. 232 0. 391 0. 584 0. 943 1. 490 2. 286 3. 315 4. 725 6. 630 9. 165 12. 494 16. 810 22. 337 29. 338	0. 126 0. 220 0. 371 0. 613 0. 988 1. 558 2. 375 3. 436 4. 891 6. 852 9. 460 12. 878 17. 305 22. 966 30. 130	0.119 0.208 0.353 0.644 1.035 1.629 2.466 3.563 5.062 9.761 13.272 17.812 23.611	0.112 0.197 0.335 0.676 1.084 1.703 2.503 5.238 7.317 10.072 13.676 18.330 24.271 31.768	0.106 0.187 0.318 0.709 1.135 1.779 2.658 3.828 5.420 7.560 10.392 14.090 18.863	0.100 0.176 0.302 0.744 1.189 1.859 2.759 3.965 5.607 7.809 10.720 14.515 19.407 25.636 33.482

Tables are abridged from Smithsonian Meteorological Tables, fourth revised edition.

TABLE 188. - Pressure of Aqueous Vapor in the Atmosphere.

For various altitudes (barometric readings).

The first column gives the depression of the wet-bulb temperature t_1 below the air temperature t_2 . The value corresponding to the barometric height at the altitude of observation is to be subtracted from the vapor pressure corresponding to the wet-bulb temperature taken from Table 185. The temperature corresponding to this vapor pressure taken from Table 185 is the dew point. The wet bulb should be ventilated about 3 meters per second. For sea-level use Table 180. Example: $t = 35^\circ$, $t_1 = 30^\circ$, barometer 74 cm. Then 31.83 - 2.46 = 29.37 mm = aqueous vapor pressure; the dew point is 28.6° C.

Abridged from Smithsonian Meteorological Tables, 1907.

					Ba	rometri	c pressu	re in ce	ntimete	ers.				
$t - t_1$	74	72	70	68	66	64	62	60	58	56	54	- 52	50	48
ı°	mm	mm 0.48	mm	mm	mm	mm	mm 0.42	mm 0.40	mm 0.30	mm 0.38	mm 0.36	mm 0.35	mm 0.34	mm 0.32
2	0.50	0.40	0.47	0.46	0.44	0.43	0.42	0.80	0.77	0.75	0.72	0.60	0.67	0.64
3	I.47	1.43	1.39	1.35	I.32	1.28	1.24	1.20	1.15	I.I2	1.08	I.04	1.00	0.96
4	1.97	1.91	1.86	1.81	1.75	1.70	1.65	1.60	1.54	1.49	I.44	1.38	I.33	1.28
5	2.46	2.39	2.32	2.26	2.19	2.13	2.06	1.99	1.93	1.86	1.80	1.73	1.66	1.60
5 6	2.95	2.87	2.79	2.71	2.63	2.55	2.47	2.39	2.32	2.24	2.16	2.08	2.00	1.92
7 8	3.45	3.36	3.26	3.17	3.08	2.99	2.89 3.31	2.80	2.7I 3.IO	2.61	2.52	2.43	2.33	2.24
0	3.95	3.84	3.73 4.21	3.63	3.53	3.42	3.73	3.61	3.49	3.37	3.25	3.13	3.00	2.88
	41.44			4.09	0.31						,			
IO	4.94	4.81	4.68	4.54	4.41	4.28	4.14	4.01	3.88	3.74	3.61	3.48	3.34	3.21
II	5.44	5.30	5.15	5.00	4.86	5.14	4.56	4.42	4.27	4.12	3.97	3.83	4.02	3.53
12	5.94	6.27	6.10	5.40	5.75	5.57	5.40	5.23	5.05	4.88	4.70	4.53	4.36	4.18
14	6.95	6.76	6.58	6.39	6.20	6.01	5.83	5.64	5.45	5.26	5.07	4.88	4.70	4.51
						,	,	,	. 0 .					
15	7.46	7.26	7.06	6.85	6.65	6.45	6.25	6.05	5.85	5.64	5.44 5.81	5.24	5.04	4.84
16	7.96	7.75	7 · 54 8 · 02	7.32	7.11	7.33	7.10	6.87	6.64	6.41	6.18	5.95	5.72	5.17
1	0.4/	0.24	0.02	1.19	7.30	7.33	,			-		3.93	3.70	3.30

PRESSURE OF AQUEOUS VAPOR IN THE ATMOSPHERE.

This table gives the vapor pressure corresponding to various values of the difference $t-t_1$ between the readings of dry and wet bulb thermometers and the temperature t_1 of the wet bulb thermometer. The difference $t-t_1$ is given by two-degree steps in the top line, and t_1 by degrees in the first column. Temperatures in Centigrade degrees, vapor pressures in millimeters of mercury are used throughout the table. The table was calculated for barometric pressure B equal to 76 centimeters. A correction is given for each centimeter at the top of the columns. Ventilating velocity of wet thermometer about 3 meters per second.

_			_	_		_	_					_
t ₁	$\begin{vmatrix} t - t_1 \\ = 0^{\circ} \end{vmatrix}$	2°	4°	6°	8°	10°	12°	14°	16°	18°	20°	Differ- ence for
Correct for B p		.013	.026	.040	.053	.066	.079	.092	.106	.119	.132	0.1° in t -t1
-10 - 9 - 8 - 7 - 6	1.96 2.14 2.34 2.55 2.78	0.97 1.15 1.35 1.56 1.78	0.16 0.35 0.66 0.79		=======================================	Fro For	$-t_1 = 7$ m table: B, 1.5 >	= 10.0; .2 6.17 —		50 = 5	27	0.050 0.050 0.050 0.050 0.050
- 5 - 4 - 3 - 2 - 1	3.02 3.29 3.58 3.89 4.22	2.03 2.29 2.58 2.89 3.22	1.03 1.29 1.58 1.89 2.22	0.03 0.29 0.58 0.88 1.21	0.21	— —		=	=	= 5.	_	0.050 0.050 0.050 0.050 0.050
0 1 2 3 4	4.58 4.92 5.29 5.68 6.10	3.58 3.92 4.29 4.68 5.09	2.57 2.92 3.28 3.67 4.08	1.57 1.91 2.27 2.66 3.07	0.57 0.91 1.27 1.66 2.07	0.26 0.65 1.06	- - - 0.05	=		E		0.050 0.050 0.050 0.050
5 6 7 8 9	6.54 7.01 7.51 8.04 8.61	5.53 6.00 6.50 7.03 7.60	4.52 4.99 5.49 6.02 6.58	3.51 3.98 4.48 5.01 5.57	2.51 2.97 3.47 4.00 4.56	1.50 1.96 2.46 2.98 3.54	0.49 0.95 1.45 1.97 2.53	0.43 0.96 1.52	- - - 0.50			0.050 0.050 0.050 0.050 0.050
10 11 12 13	9.21 9.85 10.52 11.24 11.99	8.20 8.83 9.50 10.22 10.97	7.18 7.81 8.49 9.20 9.95	6.17 6.80 7.47 8.18 8.93	5.15 5.78 6.45 7.16 7.91	4.14 4.77 5.44 6.14 6.90	3.12 3.75 4.42 5.13 5.88	2.11 2.73 3.40 4.11 4.86	1.09 1.72 2.38 3.09 3.84	0.08 0.70 1.37 2.07 2.82	- 0.35 1.05 1.80	0.050 0.051 0.051 0.051
15 16 17 18	12.79 13.64 14.54 15.49 16.49	11.77 12.62 13.52 14.46 15.46	10.75 11.60 12.49 13.44 14.44	9.73 10.58 11.47 12.42 13.41	8.71 9.96 10.45 11.39 12.39	7.69 8.53 9.42 10.37 11.36	6.67 7.51 8.40 9.34 10.34	5.65 6.49 7.38 8.32 9.31	4.63 5.47 6.36 7.30 8.29	3.61 4.45 5.33 6.27 7.26	2.59 . 3.43 4.31 5.25 6.24	0.051 0.051 0.051 0.051
21 22 23 24	17.55 18.66 19.84 21.09 22.40	16.52 17.64 18.82 20.06 21.37	15.50 16.61 17.79 19.03 20.34	14.47 15.58 16.76 18.00 19.31	13.44 14.56 15.73 16.97 18.27	12.42 13.53 14.70 15.94 17.24	11.39 12.50 13.67 14.91 16.21	10.36 11.47 12.64 13.88 15.18	9.34 10.45 11.62 12.85 14.15	8.31 9.42 10.59 11.82 13.12	7.29 8.39 10.57 10.79 12.09	0.051 0.051 0.051 0.051
25 26 27 28 29	23.78 25.24 26.77 28.38 30.08	22.75 24.20 25.73 27.34 .29.04	21.71 23.17 24.70 26.31 28.00	20.68 22.14 23.66 25.27 26.97	19.65 21.10 22.63 24.24 25.93	18.62 20.07 21.60 23.20 24.89	17.59 19.04 20.56 22.17 23.86	16.56 18.00 19.53 21.13 22.82	15.52 16.97 18.49 20.10 21.78	14.49 15.94 17.46 19.06 20.75	13.46 14.90 16.42 18.02 19.71	0.052 0.052 0.052 0.052 0.052
30 31 32 33 34	31.86 33.74 35.70 37.78 39.95	30.82 32.70 34.66 36.73 38.90	29.78 31.66 33.62 35.69 37.86	28.75 30.62 32.58 34.65 36.82	27.71 29.58 31.54 33.61 35.78	26.67 28.54 30.50 32.57 34.73	25.63 27.50 29.46 31.53 33.69	24.60 26.46 28.42 30.49 32.65	23.56 25.42 27.38 29.44 31.61	22.52 24.38 26.34 28.40 30.57	21.48 23.34 25.30 27.36 29.52	0.052 0.052 0.052 0.052 0.052
35 36 37 38 39	42.23 44.62 47.13 49.76 52.51	41.18 43.57 46.08 48.71 51.46	40.14 42.53 45.04 47.66 50.41	39.10 41.48 43.99 46.61 49.37	38.05 40.44 42.94 45.57 48.32	37.01 39.40 41.90 44.52 47.27	35.97 38.35 40.85 43.47 46.22	34.92 37.31 39.81 42.43 45.17	33.88 36.26 38.76 41.38 44.12	32.83 35.22 37.71 40.33 43.08	31.79 34.17 36.67 39.29 42.03	0.052 0.052 0.052 0.052 0.052
40	55.40	54.35	53.30	52.25	51.20	50.15	49.10	48.05	47.00	45.95	44.00	0.052

RELATIVE HUMIDITY.

Vertical argument is the observed vapor pressure which may be computed from the wet and drybulb readings through Table 188 or 189. The horizontal argument is the observed air temperature (dry-bulb reading). Based upon Table 43, p. 142, Smithsonian Meteorological Tables, 3d Revised Edition, 1907.

			-		_		A :	Т			dry b	.11. 0	Com	41	٦.	_	-	_	-		
Vapor Pressure. mm.	0	0 -	-1°	_2°	-3 °	_40			-6°		-8°					_12°	-13	-14	1º]	50 -	-200
			_	_							-							-			
0.25 0.50	11	I	6	6	7 14	8	17	7	9	10 20	11 21	12 23	13	2		30	17 34	18 37	40	0	32 64
0.75	17	I	8	19	21	23	2		27	30	32	35	38			46	50	55	60		96
1.00	22 27	3	4	26 32	28 35	30	33	2 .	36 45	49	42 54	47 58	51 64	7	0	61 76	67 84	74 92	10		
1.50 1.75	33 38		6	39 45	49	53	58	3	54 63	59 69	64 75	70 82	76 89		8	92	100				
2.00	44		.8	52 58	56	61 69	66		7 2 81	79 89	86 96	93			m	m.	00	-1	· _	20	-80
2.50 2.75	49 55 60	5	9	65	63	76 84	7.5 8.5 9.1	3	90	99	-	=			3.5		77 82	83	9		98
3.00 3.25	66	7	I	71 78 84	77 84 91	92 99	10			-	_	-			4.0	00	88 93	95		_	_
3.50	77	8		90	98	99			-	-	-	-			4.		99	-		-	-
Vapor							Air	Ten	pera	tures,	dry b	ulb,	Cer	ntigra	ıde.						
Pressure.	00	10	20	3°	40	50	60	70	80	90	10°	110	120	13°	140	150	160	170	180	19°	20°
0.5	II	10	9	9	8	8	7	7	6	6	5	5	5	4	4	4	4	3	3	3	3
1.0 1.5	22 33	20 31	19 28	18 27	16 25	15 23	14	13	13	12 18	11	10	10	9	8 13	4 8 12	7	3 7 10	7	3 6 9	3 6 9
2.0 2.5	44 55	41	38 47	35 44	33	3 ¹ 38	29 36	27 33	25 31	23 29	22 27	20 26	19	18	17 21	16	18	14	13 16	12	12 14
3.0	66	61	57.	53 62	49	46	43	40	38	35	33	31	29	27	25	24	22	21	20	18	17
3.5 4.0	77 88	71 81	66 76	71	58	54 61	50	47 54	44 50	4I 47	38	36	34 38	31 36	34	28 32	26 30	24 28	23 26	21 25 28	23
4.5 5.0	99	92	8 ₅	80 88	74 83	69 77	65 72	60	56 63	53 58	49 55	46 51	43 48	40 45	38 42	36	33 37	31 35	33	31	26 29
5.5	-	-	-	97	91	85	79 86	74 80	69	64 70	60 66	56 61	53 58	49 54	46 51	43 47	4I 44	38 42	36 39	34 37	3 ² 34
6.0 6.5 7.0	_	_	_	-	99	92	93	87	75 81 85	76 82	71	67	62	58	55 59	51 55	48	45	42 46	40	
7.5	_	_	_	-	-	_	-	94	94	88	77 82	77	72	67	63	59	55	52	49	46	43
8.0 8.5	-	_	-	-	-	-	_	-	100	94 99	88 93	8 ₂ 8 ₇	77 82	72 76	67 72	63 67	59 63	56 59	52 55	49 52	46 49
9.0 9.5	-	-	-	-	-	-	-	-	_	-	98	92	86 91	81 85	76 80	71 75	67	62	59	55 58	52
10.0	-	-	-	-	-	-	-		-	-	-	-	96	90	84	79	74	69	65	61	57
11.0 12.0	-	-	_	-	_	_	-	_	_	-	_	-	-	94	93	8 ₇ 94	81	76 83	72 78	6 ₇	63 69
13.0 14.0	_	-	-	-	-	-	_	_	_	_	_	-	-	-	-	-	96	90	8 ₅	80 86	75 80
15.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	97	92	86
16.0 17.0	-	-	-	-	_	_	-	-	_	-	_	-	_	_	-	-	_	_	_	98	92 98

Vapor							Air	Ten	pera	tures,	dry b	ulb,	° Cer	tigra	de.						
Pressure.	200	210	220	230	240	250	260	270	250	290	30°	31°	520	33°	340	35°	36°	870	38°	39°	40°
1 2 3 4	6 12 17 23	5 11 16 22	5 10 15 20	5 10 14 19	5 9 14 18	4 8 13 17	4 8 12 16	4 8 11 15	4 7 11 14	3 7 10 13	3 6 10 13	3 6 9 12	3 6 9	3 5 8	3 5 8 10	3 5 7 10	2 5 7 9	2 4 6 9	2 4 6 8	2 4 6 8	2 4 5 7
5 6 7 8 9	29 34 40 46 52	27 32 38 43 49	25 31 36 41 46	24 29 34 38 43	23 27 32 36 41	21 26 30 34 38	20 24 28 32 36	19 23 26 30 34	18 21 25 29 32	17 20 24 27 30	16 19 22 25 29	15 18 21 24 27	14 17 20 23 25	13 16 19 21 24	13 15 18 20 23	12 14 17 19 22	11 14 16 18 20	11 13 15 17	10 12 14 16 18	10 12 13 15 17	9 11 13 15 16
10 11 12 13 14	57 63 69 75 80	54 60 65 70 76	51 56 61 66 71	48 53 58 62 67	45 50 54 59 63	43 47 51 55 60	40 44 48 52 56	38 42 45 49 53	36 39 43 46 50	34 37 40 44 47	3 ² 35 38 41 44	30 33 36 39 42	28 31 34 37 40	27 29 32 35 37	25 28 30 33 35	24 26 29 31 33	23 25 27 29 32	21 24 26 28 30	20 22 24 26 28	19 21 23 25 27	18 20 22 24 26
15 16 17 18 19	86 92 98 -	81 87 92 97	76 82 87 92 97	72 77 81 86 91	68 72 77 81 86	64 68 72 77 81	60 64 68 72 76	57 60 64 68 72	53 57 61 64 68	50 54 57 60 64	48 51 54 57 60	45 48 51 54 57	42 45 48 51 54	40 43 45 48 51	38 41 43 46 48	36 38 41 43 45	34 36 38 41 43	32 34 36 39 41	30 32 34 37 39	29 31 33 35 36	27 29 31 33 35
20 21 22 23 24				96 - - -	90 95 100 -	85 89 94 98	80 84 88 92 96	76 79 83 87 91	71 75 78 82 85	67 71 74 77 81	63 67 70 73 76	60 63 66 69 72	57 59 62 65 68	53 56 59 62 64	51 53 56 58 61	48 50 53 55 57	45 48 50 52 54	43 45 47 49 51	41 43 45 47 49	38 40 42 44 46	36 38 40 42 44
25 26 27 28 29	11111	1111					100	94 98 - -	89 93 96 100	84 87 91 94 97	79 83 86 89 92	75 78 81 84 87	71 74 76 79 82	67 70 72 75 78	63 66 68 71 73	60 62 65 67 69	56 59 61 63 65	54 56 58 60 62	51 53 55 57 59	48 50 52 54 56	46 47 49 51 53
30 31 32 33 34	11111		-					1111			95 98 - -	90 93 96 99	85 88 91 93 96	80 83 86 88 91	76 78 81 84 86	72 74 77 79 81	68 70 72 75 77	64 66 69 71 73	61 63 65 67 69	58 60 62 63 65	55 56 58 60 62
35 36 37 38 39		-		11111					-	11111			99	94 96 99 -	89 91 94 96 99	84 86 89 91 93	79 81 84 86 88	75 77 79 81 83	71 73 75 77 79	67 69 71 73 75	64 66 67 69 71
40 41 42 43 44	11111			11113			11111		11111	11111	11111					96 98 100 -	90 93 95 97 99	86 88 90 92 94	81 83 85 87 89	77 79 81 83 84	73 75 77 78 80
45 46 47 48 49					11111	1111	111111						1111			11111		96 99 - -	91 93 95 97 99	86 88 90 92 94	82 84 86 87 89
50 51 52 53 54	11111		11111	11111		11111	11111	11111	11111	11111						-				96 98 100 -	91 93 95 97 98
55	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	100

TABLES 190 (concluded), 191. TABLE 190 (concluded).—Relative Humidity. (Data from 20° to 60° C. based upon Table 185).

Vapor							Air	Ten	npera	tures	, dry	bulb,	° Ce	entigr	ade.						
Pressure.	400	410	420	439	440	45 °	460	470	480	49 °	50°	51 °	520	53°	540	550	560	570	580	590	60°
5 10 15 20 25	9 18 27 36 45	9 17 26 34 43	8 16 24 33 41	8 15 23 31 39	7 15 22 29 37	7 14 21 28 35	7 13 20 26 33	6 13 19 25 31	6 12 18 24 30	6 11 17 23 28	5 11 16 22 27	5 10 15 21 26	5 10 15 20 24	5 9 14 19 23	4 9 13 18 22	4 8 13 17 21	. 4 8 12 16 20	4 8 12 15	4 7 11 15 18	4 7 10 14 18	3 7 10 13 17
30 35 40 45 50	54 63 72 81 90	51 60 68 77 86	49 57 65 73 81	46 54 62 69 77	44 51 59 66 73	42 49 56 63 70	40 46 53 59 66	38 44 50 57 63	36 42 48 54 60	34 40 45 51 57	32 38 43 49 54	31 36 41 46 51	29 34 39 44 49	28 33 37 42 47	27 31 36 40 44	25 30 34 38 42	24 28 32 36 40	23 27 31 35 38	22 26 29 33 37	21 25 28 32 35	20 23 27 30 33
55 60 65 70 75	99 -	94 -	89 98 - -	85 93 100 -	81 88 95 -	76 83 90 97	73 79 86 92 99	69 75 82 88 94	66 72 78 84 90	62 68 74 80 85	59 65 70 76 81	57 62 67 72 77	54 60 64 68 74	51 56 61 65 70	49 53 58 62 67	46 51 55 59 64	44 48 52 56 60	42 46 50 54 58	40 44 48 51 55	39 42 46 49 53	37 40 43 47 50
80 85 90 95 100	11111	_	- - m. 25	- 57° 96	- 59 ²	- 59° 88	- 60° 84	100	96	91 97 - -	86 92 97 -	82 87 93 98	78 84 88 94 98	75 79 84 89 93	71 75 80 84 89	68 72 76 80 .85	64 69 73 77 81	62 65 69 73 77	59 62 66 70 73	56 60 63 67 70	54 57 60 64 67
105 110 115 120 125	11111	1 1	30 35 40 45 50	100	95 99 - - -	91 95 98 -	87 90 94 97 100					11111		98 -	93 98 - - -	89 93 97 -	85 89 93 97	81 85 88 92 96	77 81 84 88 92	74 77 81 84 88	70 74 77 80 84

TABLE 191. - Relative Humidity.

This table gives the relative humidity direct from the difference between the reading of the dry (t° C.) and the wet (t_{1}° C.) thermometer. It is computed for a barometer reading of 76 cm. The wet thermometer should be ventilated about 3 meters per second. From manuscript tables computed at the U.S. Weather Bureau.

t ^o						Depre	ssion	of wet	-bulb	thermo	meter,	to-t10.					
t°	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.5
-15	90	91	72	62	53	44	35	25	16	7	-	-	-	-	-	-	_
-12	92	85	77	69	62	54	47	39	32	25	7	-	-	-	-	-	-
-9 -6	94	88	81	75 80	70	62	56	50	44	39	23 36	9 25	-	- 2	_	-	-
-3	95	89	8 ₅	82	74 78	69 74	64 69	5 9	54 61	49 57	46	36	13 26	17	7	_	_
0	96	92	89	85	81	78	74	71	67	64	55	46	38	29	21	13	6
+3	97	94	91	87	84	Ś1	78	75	72	69	62	54	46	40	32	25	18
	0.50	1.00	1.50	2.00	2.5°	3.00	3.5°	4.00	4.50	5.00	6.00	7.00	8.00	9.00	10.0	11.0	12.0
+3	92	84	76	69	62	54	46	40	32	25	12			_	_	_	-
+6	94	87	80	73	66	60	54	47	41	35	23	11	-	-	-	-	-
+9	94	88	82	76	70	65	59	53	48	42	32	22	12	3	-	-	-
+12	94	89	84	78	73	68	63	58	53	48	38	30	21	12	14	-	-
+15	95	90	85	80	76	71	66	62	58	53	44	36	28	20	13	4	Ser.
+18	95	90	86	82	78	73	69	65	61	57	49	42	35	27	20	13	6
+21	96	91	87	83	79	75	71	67	64	60	53	46	39	32	26	19	13
+24	96	92	88	85	81	77	74	70	66	63	56	49	43	37	31	26	21
+27	96	93	90	86	82	79	76	72	68	65	59	53	47	41	36	31	26
+30	96	93	90	86	82	79	76	73	70	67	61	55	50	44	39	35	30
+33	96	93	90	86	83	80	77 78	74	71	68	63	57	52	47	42	37	33
+36 +39	97	93	90	8 ₇	8 ₄ 8 ₅	81 82	78 79	75 76	72 74	70	64	57 61	54 56	50 52	45 47	41	36 39

CORRECTION FOR TEMPERATURE OF EMERGENT MERCURIAL THERMOMETER THREAD.

When the temperature of a portion of a thermometer stem with its mercury thread differs much from that of the bulb, a correction is necessary to the observed temperature unless the instrument has been calibrated for the experimental conditions. This stem correction is proportional to $n\beta(T-t)$, where n is the number of degrees in the exposed stem, β the apparent coefficient of expansion of mercury in the glass, T the measured temperature, and t the mean temperature of the exposed stem. For temperatures up to 100° C, the value of β is for Jena 16¹¹¹ or Greiner and Friedrich resistance glass, 0.000159, for Jena 59¹¹⁷, 0.000164, and when of unknown composition it is best to use a value of about 0.000155. The formula requires a knowledge of the temperature of the emergent stem. This may be approximated in one of three ways: (1) by a "fadenthermometer" (see Buckingham, Bulletin Bureau of Standards, 8, p. 239, 1912); (2) by exploring the temperature distribution of the stem and calculating its mean temperature; and (3) by suspending along the side of, or attaching to the stem, a single thermometer. Table 192 is taken from the Smithsonian Meteorological Tables, Tables 193–195 from Rimbach, Z. f. Instrumentenkunde, 10, p. 153, 1890, and apply to thermometers of Jena or resistance glass.

TABLE 192. - Stem Correction for Centigrade Thermometers.

Val	ues	of	0.000155	n(T-i	£).

	1			(T-	-t).			
n	10°	20°	30°	40°	50°	60°	70°	80°
10° C 20 30 40	0.02 0.03 0.05 0.06 0.08	0.03 0.06 0.09 0.12 0.16	0.05 0.09 0.14 0.19 0.23	0.06 0.12 0.19 0.25 0.31	0.08 0.16 0.23 0.31 0.39	0.09 0.19 0.28 0.37 0.46	0.11 0.22 0.33 0.43 0.54	0.12 0.25 0.37 0.50 0.62
50 60 70 80 90	0.09 0.11 0.12 0.14 0.16	0.19 0.22 0.25 0.28 0.31	0.28 0.33 0.37 0.42 0.46	0.37 0.43 0.50 0.56 0.62	0.46 0.54 0.62 0.70 0.78	0.56 0.65 0.74 0.84 0.93	0.65 0.76 0.87 0.98 1.08	0.74 0.87 0.99 1.12 1.24

TABLE 193. - Stem Correction for Thermometer of Jena Glass (0° to 360° C).

Degree length 0.9 to 1.1 mm; t = the observed temperature; t' = that of the surrounding air 1 dm. away; n = the length of the exposed thread.

			Corre	ction to be	added to	the readin	ig t.					
	t – t'											
n	70°	80°	90°	100°	120°	140°	160°	180°	200°	220		
10	0.01	0.01	0.03	0.04	0.07	0.10	0.13	0.17	0.19	0.2		
20	0.08	0.12	0.14	0.19	0.25	0.28	0.32	0.40	0.49	0.5		
30	0.25	0.28	0.32	0.36	0.42	0.48	0.54	0.66	0.78	0.8		
40	0.30	0.35	0.41	0.48	0.60	0.67	0.77	0.92	1.08	I.2		
50	0.41	0.46	0.52	0.59	0.79	0.89	0.98	1.16	1.38	1.5		
60	0.52	0.60	0.68	0.79	0.99	I.II	1.23	1.46	1.70	1.8		
70	0.63	0.74	0.85	0.98	I.20	1.32	1.45	1.70	1.99	2.2		
80	0.75	0.87	1.01	1.15	1.38	1.53	1.70	1.98	2.29	2.5		
90	0.87	0.99	1.13	1.28	1.62	1.82	1.94	2.25	2.60	2.8		
100	0.98	1.12	1.29	1.47	1.82	2.03	2.20	2.55	2.92	3.2		
120		_	_	1.88	2.28	2.49	2.68	3.13	3.59	3.9		
140		_			2.75	2.97	3.22	3.75	4.24	4.6		
160				-		3.35	3.80	4.35	4.92	5.4		
200							4.37	4.99	5.63	6:2		
220								5.68	7.05	7.8		

CORRECTION FOR TEMPERATURE OF MERCURY IN THERMOMETER STEM (continued).

TABLE 194. - Stem Correction for Thermometer of Jena Glass (0°-360° C).

Degree length 1 to 1.6 mm.; t = the observed temperature; t' = that of the surrounding air one dm. away; n = the length of the exposed thread.

Correction to be added to Thermometer Reading.*												
		t-t'										
n	220°	200 °	180°	160°	140°	120°	100°	90°	80 °	70 °	n ,	
10	0.38	0.33	0.27	0.21	0.17	0.11	0.07	0.05	0.03	0.02	10°	
20	0.67	0.61	0.53	0.46	0.38	0.29	0.22	0.18	0.15	0.13	20	
30	0.97	0.88	0.78	0.70	0.59	0.48	0.39	0.33	0.28	0.24	30	
40	1.20	1.10	1.04	0.94	0.02	0.00	0.50	0.40	0.41	0.35	40	
50	1.59	1.44	1.31	1.17	1.03	0.88	0.72	0.62	0.53	0.47	50	
60	1.90	1.74	1.58	1.42	1.25	1.09	0.89	0.77	0.66	0.57	60	
70	2.23	2.04	1.86	1.67	1.47	1.30	1.06	0.92	0.79	0.69	70 80	
80	2.55	2.33	2.15	1.94	1.71	1.52	1.21	1.05	0.91	0.80	80	
90	2.89	2.64	2.42	2.20	1.96	1.73	1.38	1.19	1.04	0.91	90	
100	3.23	2.94	2.70	2.45	2.18	1.97	1.56	1.35	1.18	1.02	100	
IIO	3.57	3.26	2.98	2.70	2.43	2.19	1.78	-	-	-	110	
120	3.92	3.58	3.26	2.95	2.69	2.43	1.98	-	-	-	120	
130	4.28	3.89	3.56	3.20	2.94	2.68	_	12	_	_	130	
140	4.64	4.22	3.86	3.47	3.22	2.92	-	-	-	-	140	
150	5.01	4.56	4.15	3.74	-	-	-	1 -	- 1	-	150	
160	5.39	4.90	4.46	4.00	-	-	-	-	_	_	160	
170	5.77	5.24	4.76	4.27	_	_	_ 1	_			170	
180	6.15	5.59	5.07	4.54	-	-	-	-	-	-	180	
190	6.54	5.95	5.38	-	-	-	-	-	- 1	_	190	
200	6.94	6.30	5.70	-	-	-	-	-	-	-	200	
210	7.35	6.68	// _	_	_		_	1	_	_	210	
220	7.75	7.04	-	-	-	_	-	-	_	_	220	

^{*} See Hovestadt's "Jena Glass" (translated by J. D. and A. Everett) for data on changes of thermometer zeros.

TABLE 195. — Stem Correction for a so-called Normal Thermometer of Jena Glass (0°-100° 0).

Divided into tenth degrees; degree length about 4 mm.

	Correction to be added to the Reading $oldsymbol{t}$.											
n	t-t'											
n	30°	35°	40 °	45 °	50 °	55°	60°	65 °	70°	75°	80°	85°
10	0.04	0.04	0.05	0.05	0.05	0.06	0.06	0.07	0.08	0.09	0.10	0.10
20	0.12	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20	0.22	0.23
30	0.21	0.22	0.23	0.24	0.25	0.25	0.27	0.29	0.31	0.33	0.35	0.37
40	0.28	0.29	0.31	0.33	0.35	0.37	0.39	0.41	0.43	0.45	0.48	0.51
50 60	0.36	0.38	0.40	0.42	0.44	0.40	0.60	0.50	0.53	0.57	0.73	0.78
	0.45	0.40	0.51	0.53	0.55	0.66	0.69	0.71	0.75	0.81	0.87	0.92
70 80	-	_	_	-	-	_	0.76	0.81	0.87	0.93	1.00	1.06
90	-	-	-	-	-	-	- 1	0.92	0.99	1.06	1.13	1.20
100	-	-	-	-	-	-	-	-	1.10	1.18	1.26	1.34
	1	İ								1		

THERMOMETERS.

TABLE 196. - Gas and Mercury Thermometers.

If $t_{\rm H}$, $t_{\rm N}$, $t_{\rm C02}$, $t_{\rm 16}$, $t_{\rm 59}$, $t_{\rm 7}$, are temperatures measured with the hydrogen, nitrogen, carbonic acid, $16^{\rm III}$, $59^{\rm III}$, and "verre dur" (Tonnelot), respectively, then

$$t_{\rm H} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[-0.61859 + 0.0047351.t - 0.000011577.t^2 \right] *$$

$$t_{\rm N} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[-0.55541 + 0.0048240.t - 0.000024807.t^2 \right] *$$

$$t_{\rm 002} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[-0.33386 + 0.0039910.t - 0.000016678.t^2 \right] *$$

$$t_{\rm H} - t_{18} = \frac{(100 - t)t}{100^2} \left[-0.67039 + 0.0047351.t - 0.000011577.t^2 \right] †$$

$$t_{\rm H} - t_{59} = \frac{(100 - t)t}{100^2} \left[-0.31089 + 0.0047351.t - 0.000011577.t^2 \right] †$$

TABLE 197. $t_H - t_{16}$ (Hydrogen - 16^{III}).

	00	10	20	3°	40	5°	60	7°	80	90
0° 10 20 30 40 50 60 70 80 90 100	.000°056093113120116103083058030	007°061096114120115101081056027	013°065098115120114099078053024	019°069101116120113097076050021	025°073103117119111096074048018	031°077105118119110094071045015	036°080107119118109092069042012	042°084109119118107090066039009	047°087110119117106087064036096	051°090112120116104085061033003

TABLE 198. $t_H - t_{59}$ (Hydrogen - 59^{III}).

	00	10	20	3°	40	5°	60	70	80	90
0° 10 20 30 40 50 60 70 80 90	.000°024035038034026016008001 +.002	003°025036037033025015007001 +.002	006°027036037032024015006 .000 +.002	009°028037037032032014005000	011°030037037031022013005 +.001 +.002	014°031037036030021012004 +.001 +.002	016° 032 038 036 029 020 011 003 +.001	018°033038035028019010003 +.002 +.001	020°034038035028018009002 +.002	022°035038034027017008001 +.002

TABLE 199. (Hydrogen - 16III), (Hydrogen - 59III).

	-5°	-10°	-15°	-20°	—2 5°	-30°	-35°
t _H — t ₁₆ t _H — t ₅₉	+0.04°	+0.08°	+0.13°	+0.19°	+0.25°	+0.32°	+0.40°
	+0.02°	+0.04°	+0.07°	+0.10°	+0.14°	+0.18°	+0.23°

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

^{*} Chappuis; Trav. et Mém. du Bur. internat. des Poids et Mes. 6, 1883.
† Thiesen, Scheel, Sell; Wiss. Abh. d. Phys. Techn. Reichanstalt, 2, 1895; Scheel; Wied. Ann. 58, 1896; D. Mech. Zig. 1897.

AIR AND MERCURY THERMOMETERS.

TABLE 200. tAIR-t16. (Air-1611.)

OC.	00	10	20	30.	40	50	60	70	80	90
	0-	1	2	3	4	5	0-	7	80	90
	000	006	070	075	000	007	000			
10	049	053	012 057	017 061	022 065	027 068	032 071	037 074	04I 077	045 080
20	083	086	089	100.—	093	095	097	099	101	102
30	103	104	105	106	107	108	109	110	110	110
40	110	110	111	111	110	110	110	109	109	108
50	107	107	106	105	104	103	102	101	100	098
60 70	096 078	095 076	093 074	092 072	090	088 067	086 065	084 062	082 060	080
80	054	0 ₅₂	049	0/2	044	007 041	039	036	034	057 031
90	028	025	023	020	017	014	011	009	006	003
		3	3		1	-				
100	.000	+.003	+.006	+.008	+.011	+.014	+.017	+.019	+.022	+.025
IIO	+.028	+.030	+.033	+.035	+.038	+.041	+.043	+.046	+.048	+.050
120	+'053	+.055	+.057	+.060	+.062 +.081	+.064	+.066	+.068 +.086	+.070	+.072
130	+.074	+.076 +.091	+.078 +.092	+.000	+.001	+.083	+.004	+.096	+.087	+.089 +.097
150	+.098	+.098	+.098	+.099	+.099	+.099	+.098	+.098	+.098	+.097
160	+.097	+.096	+.095	+.094	+.093	+.092	+.090	+.089	+.088	+.086
170	+.084	+.082	+.080	+.078	+.076	+.073	+.071	+.068	+.065	+.062
180	+.059	+.055	+.052	+.048	+.045	+.041	+.037	+.033	+.028	+.023
190	+.019	+.014	+.009	+.004	001	007	013	019	025	031
200	038	045	o51	058	066	073	080	088	096	105
210	113	122	130	139	148	158	168	177	187	198
220	208	219	230	241	252	264	275	287	300	312
230	325	338	351	365	378	392	407	421	436	450
240	466	481	497	513	529	546	562	579	597	614
250	632 825	650	668	687	706	725	745	765	785	805
270	-1.048	846 -1.072	867 -1.096	889 -1.121	911 -1.146	933 1.171	955 -1.196	978 -1.222	-1.001 -1.248	-I.025 -I.274
280	-1.301	-1.328	-1.356	-1.384	-1.412	-1.440	—I.469	-1.498	-1.528	-1.558
290	-1.588	-1.618	-1.649	-1.680	-1.711	-1.743	-1.776	-1.808	-1.841	-1.874
300	-1.908									
					1					

Note: See Circular 8, Bureau of Standards relative to use of thermometers and the various precautions and corrections.

TABLE 201. tAIR-t59. (Air-5911.)

°C.	00	10	20	3°	40	50	60	7°	80	90
100 110 120 130 140 150 160 170 180 190 200	.000 .000 002 004 008 013 019 028 039 052 067	.000 .000 002 004 008 013 020 029 040 053	.000 .000 —.002 —.005 —.014 —.021 —.030 —.041 —.055	.000001002005009015021031043056	.000 001 002 006 010 016 022 032 044 057	.000001003006010016023033045059	.000 001 003 006 011 016 024 034 046 060	.000001003007011017025035048062	.000 002 004 007 012 018 026 037 049 064	.000 002 004 008 012 019 027 038 051 066

GAS, MERCURY, ALCOHOL, TOLUOL, PETROLETHER, PENTANE, THERMOMETERS.

TABLE 202. - tH-tM (Hydrogen-Mercury).

Temperature, C.	Thuringer Glass.	Verre dur. Tonnelot.†	Resistance Glass.*	English Crystal Glass.*	Choisy-le- Roi.*	122111.*	Nitrogen Thermometer. T _H —T _N .†	CO ₂ Thermometer. T _H —T _{CO₂} .†
15	0	ю	20	io .	ø	0	o	0
Ö	.000	.000	.000	.000	.000	.000	.000	000
10	075	052	066	008	007	005	006	025
20	125	085	108	001	004	006	010	043
30	756	102	131	+.017	+.004	002	011	054
40	168	107	140	+.037	+.014	+.001	011	059
50	166	103	135	十.057	+.025	+.004	009	059
60	150	090	119	+.073	+.033	+.008	005	053
70	124	072	095	+.079	+.037	+.009	100.—	044
80	088	050	068	+.070	+.032	+.007	+.002	031
90	047	026	034	+.046	+.022	+.006	+.003	016
100	.000	.000	.000	.000	.000	.000	.000	.000

^{*} Schlösser, Zt. Instrkde. 21, 1901.

TABLE 203. - Comparison of Air and High Temperature Mercury Thermometers.

Comparison of the air thermometer with the high temperature mercury thermometer, filled under pressure and made of 59^{III} glass.

Air.	59 ¹¹¹ .	Air.	59 ^{III} .
О	ō	6	. 0
O	0.	375	385.4 412.3
100	100.	375 400	412.3
200	200.4	425	440.7
300	304.1	425 450	469.1
325	330.9	475	498.0
300 325 350	304.1 330.9 358.1	500	527.8

Mahlke, Wied. Ann. 1894.

TABLE 204. - Comparison of Hydrogen and Other Thermometers.

Comparison of the hydrogen thermometer with the toluol, alcohol, petrolether, and pentane thermometers (verre dur).

Hydrogen.	Toluol.*	Alcohol I.*	Alcohol II.*	Petrolether.†	Pentane.‡
-10 -20 -30 -40 -50 -60 -70 -100 -150 -200	0.00 -8.54 -16.90 -25.10 -33.15 -41.08 -48.90 -56.63	0,000 -9.31 -18.45 -27.44 -36.30 -45.05 -53.71 -62.31	0.00 -9.44 -18.71 -27.84 -36.84 -45.74 -54.55 -63.31		0.00 -9.03 -17.87 -26.55 -35.04 -43.36 -51.50 -59.46 -82.28 -116.87 -146.84

^{*} Chappuis, Arch. sc. phys. (3) 18, 1892. † Holborn, Ann. d. Phys. (4) 6, 1901. ‡ Rothe, unpublished.

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

[†] Chappuis, Trav. et mém. du Bur. Intern. des Poids et Mes. 6, 1888.

TABLE 205 .- Platinum Resistance Thermometers.

Callendar has shown that if we define the platinum temperature, pt, by pt = 100 { $(R-R_0)/(R_{100}-R_0)$ }, where R is the observed resistance at t° C., R_0 that at 0°, R_{100} at 100°, then the relation between the platinum temperature and the temperature t on the scale of the gas thermometer is represented by $t - pt = \delta \{ t/100 - 1 \} t/100$ where δ is a constant for any given sample of platinum and about 1.50 for pure platinum (impure platinum having higher values). This holds good between - 23° and 450° when 8 has been determined by the boiling point of sulphur (445°.) See Waidner and Burgess, Bul. Bureau Standards, 6, p. 149, 1909. Also Bureau reprints 124. 143 and 149.

TABLE 206 .- Thermodynamic Temperature of the Ice Point, and Reduction to Thermodynamic Scale.

Mean = 273.13° C. (ice point).

For a discussion of the various values and for the corrections of the various gas thermometers to the thermodynamic scale see Buckingham, Bull. Bureau Standards, 3, p. 237, 1907. Scale Corrections for Gas Thermometers.

Temp.	Const	ant pressure = 1	oo cm.	Constant vol	., p ₀ = 100 cm,	$t_0 = 0^{\circ}C$
Co.	He	Н	N	He	Н	N
- 240° - 200 - 100 - 50 + 25 + 50 + 75 + 150 + 200 + 450 + 1500		+1.0 + .26 + .03 + .02 003 003 003 + .01 + .02 +0.04		+0.02 + .01 .000 .000 .000 .000 -000 + .000 .000	+0.18 + .06 + .010 + .004 .000 .000 .000 + .001 + .002 +0.01	

See also Appendix, p. 438.

TABLE 207,-Standard Points for the Calibration of Thermometers.

	D	Atmos-	Crucible.	Tempe	ratures.
Substance.	Point.	phere.	Crucible.	Nitrogen Scale.	Thermodynamic.
Water Naphthalene Benzophenone Cadmium Zinc Sulphur Antimony Aluminum Silver Gold Copper Li ₂ SiO ₃ Diopside, pure Nickel Cobalt Palladium Anorthite, pure Platinum	boiling, 760 mm. """ melting or solidify. """ boiling, 760 mm. melting or solidify. solidification melting or solidify. """ melting or solidify. """ melting melting melting melting melting melting """ """ melting """ """ """ """ melting """ """ """ """ """ """ """	air air CO2 air air H and N air u air u air u u u u u u u u u u u	graphite graphite " graphite " platinum magnesia and Mg. aluminate magnesia platinum	°C. 100.00 218.0 305.85 = 0.1 320.8 = 0.2 419.3 = 0.3 444.45 = 0.1 629.8 = 0.5 658.5 = 0.6 960.0 = 0.7 1062.4 = 0.8 1201.0 = 1.0 1391.2 = 1.5 1452.3 = 2.0 1549.2 = 2.0 1549.5 = 2.0 1752. = 5.* 1755. = 5.†	°C. 100.00 218.0 305.9 320.9 419.4 444.55 630.0 658.7

* Thermoelectric extrapolation. † Optical extrapolation.

(Day and Sosman, Journal de Physique, 1912. Mesure des témperatures élevées.) A few additional points are: H, boils—252.6°; O, boils—182.7°; CO₂, sublimes—78.5°; Hg. freezes—38.87°; Alumina melts 2000°; Tungsten melts 3400°.

TABLE 208.—Standard Calibration Curve for Pt. - Pt. Rh. (10% Rh.) Thermo-Element.

Giving the temperature for every 100 microvolts. For use in conjunction with a deviation curve determined by cali-bration of the particular element at some of the following fixed points:

Tin Benzophenone Cadmium	boiling-pt. melting-pt. boiling-pt. melting-pt.	100.0 217.95 231.9 305.9 320.0	643mv. 1585 1706 2365 2503	Silver Gold Copper Li ₂ SiO ₃ Diopside	melting-pt.	960.2 1062.6 1082.8 1201. 1391.5	9111mv. 10296 10534 11941 14230
Zinc Sulphur	boiling-pt.	419.4 444.55	3430 3672	Nickel	46 46	1452.6	14973
Antimony Aluminum	melting-pt.	630.0	5530 5827	Palladium Platinum	46 46	1549.5 1755.	16144 18608

E micro-volts.	D	1000.	2000.	3000.	4000.	5000. URES, 0	6000. C.	7000.	8000.	9000.	E micro- volts.
0. 100. 200. 300. 400. 500. 600. 700. 800. 900.	0.0 17.8 34.5 50.3 65.4 80.0 94.1 107.8 121.2 134.3 147.1	147.1 159.7 172.1 184.3 196.3 208.1 219.7 231.2 242.7 254.1 265.4	265.4 276.6 287.7 298.7 309.7 320.6 331.5 342.3 353.0 363.7 374.3	374-3 384-9 395-4 405-9 416-3 426-7 437-1 447-4 457-7 467-9 478.1	478.1 488.3 498.4 508.5 518.6 528.6 538.6 548.6 558.5 568.4 578.3	578.3 588.1 597.9 607.7 617.4 627.1 636.8 646.5 656.1 665.7 675.3	675.3 684.8 694.3 703.8 713.3 722.7 732.1 741.5 750.9 760.2 769.5	778.8 788.0 797.2 806.4 815.6 824.7 833.8 842.9 852.0	861.1 870.1 879.1 888.1 897.1 906.1 915.0 923.9 932.8 941.6	950.4 959.2 968.0 976.7 985.4 994.1 1002.8 1011.5 1020.1 1028.7	0. 100. 200. 300. 400. 500. 600. 700. 800. 900.
E micro-	10000.	11000.	12000			1	5000.	16000.	17000.	18000.	E micro-
volts. 0. 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000.	1037.3 1045.9 1054.4 1062.9 1071.4 1079.9 1088.4 1096.9 1105.4 1113.8 1122.2	1122.2 1130.6 1139.0 1147.4 1155.8 1164.2 1172.5 1180.9 1189.2 1197.6	1214. 1222. 1230. 1239. 1247. 1255. 1264. 1272.	9 128 2 129 6 130 9 131 3 132 6 133 9 133 134 6 135 0 136	7.7 13 6.0 13 4.3 13 2.6 14 0.9 14 9.2 14 7.5 14 5.8 14	72.4 80.7 89.0 97.3 05.6 13.8 22,0 30.2 38.4	1454.8 1463.0 1471.2 1479.4 1487.7 1496.0 1504.3 1512.6 1520.9 1529.2	1537-5 1545-8 1554-1 1562-4 1570-8 1579-1 1587-5 1595-8 1604-2 1612-5 1620-9	1620.9 1629.2 1637.6 1645.9 1654.3 1662.6 1670.9 1679.3 1687.6 1696.0 1704.3	1704.3 1712.6 1721.0 1729.3 1737.7 1746.0 1754.3	volts. o. 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000.

TABLE 209 .- Standard Calibration Curve for Copper - Constantan Thermo-Element.

For use in conjunction with a deviation curve determined by the calibration of the particular element at some of the following fixed points:

Water, boiling-point, 1009, 4276 microvolts; Naphthalene, boiling-point, 217.95, 10248 mv.; Tin, melting-point, 231.9, 11009 mv.; Benzophenone, boiling-point, 305.9, 15203 mv.; Cadmium, melting-point, 320.9, 16083 mv.

E. micro-volts.	0	1000.	2000.	3000.	4000. TEMPE	5000.	6000.	7000.	8000.	9000.	E micro- volts.
0. 100. 203. 300. 400. 500. 600. 700. 800. 900.	2.60 2.60 5.17 7.73 10.28 12.81 15.33 17.83 20.32 22.80 25.27	27.72 30.15 32.57 34.98 37.38 39.77 42.15 44.51 46.86	49.20 51.53 53.85 56.16 58.46 60.76 63.04 65.31 67.58 69.83 72.08	72.08 74.31 76.54 78.76 80.97 83.17 85.37 87.56 89.74 91.91	94.07 96.23 98.38 100.52 102.66 104.79 106.91 109.02 111.12 113.22 115.31	115.31 117.40 119.48 121.56 123.63 125.69 127.75 129.80 131.84 133.88	135.91 137.94 139.96 141.98 143.99 146.00 148.00 150.00 151.99 153.97	155.95 157.92 159.89 161.86 163.82 165.78 167.73 169.68 171.62 173.56	175.50 177.43 179.36 181.28 183.20 185.11 187.02 188.93 190.83 192.73	194.62 196.51 198.40 200.28 202.16 204.04 205.91 207.78 209.64 211.50 213.36	0. 100. 200. 300. 400. 500. 600. 700. 800. 900.
E micro- volts.	10000.	D. 11000. 12000. 13000. 14000. 15000. 16000. 17000. 18000. Temperatures, oc.						18000.	E micro-volts.		
0. 100. 200. 300. 400. 500. 600. 700. 800. 900.	213.36 215.21 217.06 218.91 220.75 222.50 224.43 226.26 228.09 220.92 231.74	231.74 233.56 235.38 237.20 239.01 240.82 242.63 244.43 246.23 248.03 249.82	25 25 25 25 25 25 26 26 26 36 26 37 26 37 26 37 26 37 26 37 26 37 26 37 37 37 37 37 37 37 37 37 37 37 37 37	1.61 3.40 5.18 6.96 8.74 0.52 2.29	267.60 269.36 271.12 272.88 274.64 276.40 278.15 279.90 281.65 283.39 285.13	285.13 286.87 288.61 290.35 292.08 293.81 295.54 297.26 298.98 300.70 302.42	302.42 304.14 305.85 307.56 309.27 310.98 312.69 314.39 316.09 317.79 319.49	319.49 321.19 322.88 324.57 326.26 327.95 329.64 331.32 333.00 334.68 336.36	336.36 338.04 339.72 341.40 343.07 344.74 346.41 348.08 349.75 351.42 353.09	353.09	0. 100. 200. 300. 400. 500. 600. 700. 800. 900.

Cf. Day and Sosman, Am. Jour. Sci. 29, p. 93, 32, p. 51; ; ibid. R. B. Sosman, 30, p. 1.

MECHANICAL EQUIVALENT OF HEAT.

TABLE 210 .- Summary of Older Work.

Taken from J. S. Ames, L'équivalent mécanique de la chaleur, Rapports présentés au congrès international du physique, Paris, 1900. Reduced to Gram-calorie at 20° C. (Nitrogen thermometer).

Joule	4.169 × 10 ⁷ ergs. 4.181 " " 4.192 " " 4.189 " " 4.186 " "	* 4.169 × 10 ⁷ ergs. 4.181 " " 4.184 " " 4.181 " " 4.178 " "
-------	---	---

^{*} Admitting an error of 1 part per 1000 in the electrical scale. The mean of the last four then gives

1 gram (20° C) calorie = 4.181 × 107 ergs. See next table.

1 gram (15° C.) calorie = 4.185 × 107 ergs assuming sp. ht. of water at 20° = 0.0990.

TABLE 211 .- (1915.) Best Value, Electrical and Mechanical Equivalents of Heat.

Since the preparation of Dr. Ames' Paris report, considerable work has been done on the mechanical equivalent of heat, including recomputations from the older measurements using better values for some of the electrical relations, etc. Taking all the available material into account the U.S. Bureau of Standards has adopted, provisionally, the relation

1 (20° C.) gram-calorie = 4.183 international electric joules.

No exact comparison between the results of electrical equivalent and mechanical equivalent of heat measurements can be made without exact knowledge of the relations between the international and absolute electrical units. A recent absolute measurement of absolute resistance by F. E. Smith of the National Physical Laboratory of England indicates a difference of one part in 2000 between the international and absolute ohms. Pending the general acceptance of some definite figure for this relation it is useless to fix upon a single value to use for "J" better than about one part in a thousand. The value

4.183 international joules = probably 4.184 mechanical joules.

This value is made the basis of the following table.

sion Engions for Units of Work

	Joules.	Foot-pounds.	Kilogram- meters.	20 ⁰ Calories.	British ther- mal units.	Kilowatt-hours.
I Joule = I Foot-pound . = I Kilogram-meter = I 20° Calorie = I British thermal unit = I Kilowatt-hour . =	1 1.356* 9.807* 4.184 1055. 3 600 000.	3.086t 778.3t		2.344* I	0.001285*	0.2778×10 ⁻⁶ 0.3766×10 ^{-6*} 2.724×10 ^{-6*} 1.162×10 ⁻⁶ 0.0002931

The value used for g is the standard value, 980.665 cm. per sec. per sec.=32.174 feet per sec. *The values thus marked vary directly with "g." For values of "g" see Tables 565-567.

TABLE 213 .- Value of the English and American Horsepower (746 watts) in Local Foot-pounds and Kilogram-meters per Second at Various Altitudes and Latitudes.

	K	ilogram-	meters p	er second	1.	Foot-pounds per second.					
Altitude,		Latitude.					Latitude.				
	o°	30°	45°	60°	90°	0°	30°	45°	60°	90°	
o km. 1.5 " 3.0 "	76.275 76.297 76.320	76.175 76.197 76.220	76.074 76.095 76.119	75.973 75.995 76.018	75.873 75.895 75.918	551.70 551.86 552.03	550.97 551.13 551.30	550.24 550.41 550.57	549.52 549.68 549.85	548.79 548.95 549.12	

The metals in heavier type are often used as standards.

The melting points are reduced as far as possible to a common (thermodynamic) temperature scale. This scale is defined in terms of Wien's law, with C₂ taken as 14,350, and on which the melting point of platinum is 1755° C (Nernst and Wartenburg, 1751; Waidner and Burgess, 1753; Day and Sosman, 1755; Holborn and Valentiner, 1770; see C. R. 148, p. 1177, 1909). Above 1100° C, the temperatures are expressed to the nearest 5° C. Temperatures above the platinum point may be uncertain by over 50° C.

		Melting			Melting	
	Element.	point.	Remarks.	Element.	point.	Remarks.
A	Aluminum.	658.7	Most samples	Manganese	1230	Burgess-Waltenberg.
			give 657 or less	Mercury	-38.87	M 1 1 11 7 .1
A	Antimony .	630.0	(Burgess).	Molybdenum Neodymium.		Mendenhall-Forsythe (Muthmann-Weiss.)
11				Neon	-253?	
A	Argon	-188	Ramsay-Travers.	Nickel	1452	Day, Sosman, Bur-
	Arsenic Barium	850 850	(Guntz.)	Niobium	1700?	gess, Waltenberg.
	Beryllium		(Guitz.)	Nitrogen		(Fischer-Alt.)
F	Bismuth	271	Adjusted.	Osmium	About 2700	(Waidner-Burgess,
						unpublished.)
		2200-2500?		Oxygen	-218	/TY7 11 TO
	Bromine		Damme	Palladium	1549 ± 5	(Waidner-Burgess,
	Cadmium	320.9	Range: 320.7-			Nernst-Wartenburg, Day and Sosman.)
1	Cæsium	26	Range: 26.37-			Day and Dosman.)
			25.3	Phosphorus	44.2	
	Calcium		Adjusted.	Platinum	1755 = 5	See Note.
	Carbon Cerium	(>3500) 640	Sublimes.	Potassium	62.3	(Muthmann-Weiss.)
1	Chlorine	-101.5	(Olszewski.)	Radium	940 700	(Muchinalin-weiss.)
			(Older Holder)	Rhodium	1950	(Mendenhall-Inger-
	Chromium.	1615	Burgess-Walten-			soll.)
1	Cobalt :	7.00	berg.	Rubidium	38	
	Jobatt	1480	Burgess-Walten- berg.	Ruthenium	2450? 1300-1400	(Muthmann-Weiss.)
			beig.	Scandium	?	(Muchinami-weiss.)
C	Copper	1083 = 3	Mean, Holborn-	Selenium	217-220	
			Day, Day-	Silicon	1420	Adjusted.
F	Erbium		Clement.	Silver Sodium	960.5	Adjusted.
	luorine	-223	(Moissan-Dew-	Strontium	97.5	Between Ca and Ba?
			ar.)			Various Forms. See
				Sulphur		Landolt-Börnstein.
10	Gallium	30.1			Siii 106.8	
G	Germanium	958		Tantalum	2000	Adjusted from Waid-
G	old	1063.0	Adjusted.	2.00100101111	2900	ner-Burgess = 2010.
H	Helium	<-271			-	
I	Hydrogen	-259 155	(Thiel.)	Tellurium	452	Adjusted.
I	odine	113.5	Range: 112-115.	Thallium Thorium	302 >1700	v. Wartenburg.
			21,3.		<mo< th=""><th></th></mo<>	
11	ridium	2350?		Tin		Burgess-Waltenberg.
L	ron	1530	Burgess-Walten-	Titanium Tungsten	1795 3400	Adjusted.
			berg.	- difficult	3400	130041
K	rypton		(Ramsay.)			
L	anthanum	810?	(Muthmann- Weiss.)	Uranium	<1850	Moissan. Burgess-Waltenberg.
L	ead	327 ± 0.5	11 (133.)	Vanadium Xenon	1720 -140	Ramsay.
		, ,		Ytterbium	140	
T	i+ h :	-06	(77 111	Yttrium	1490	
	ithium Iagnesium		(Kahlbaum.) (Grube) in clay	Zinc	419.4	Troopt
-	griesiuili	031	crucibles, 635.	Zirconium	1700?	Troost.
L-						

BOILING-POINTS OF THE CHEMICAL ELEMENTS.

		Boiling-	
Element.	Range.	point.	Observer; Remarks.
		- °C	
	10	0	
Aluminum	-	1800.	Greenwood, Ch. News, 100, 1909.
Antimony	-	1440.	" " " " "
Argon	_	-186.I	Ramsay-Travers, Z. Phys. Ch. 38, 1901.
Arsenic	449-450	-	Gray, sublimes, Conechy.
16	779 75	>360.	Black, sublimes, Engel, C. R. 96. 1883.
66	280-310		Yellow, sublimes,
Barium	_	_	Boils in vacuo, Guntz, 1903.
Bismuth	1420-1435	1430.	Barus, 1894; Greenwood, I. c.
Boron	1420 1433	1430.	Volatilizes without melting in electric arc.
Bromine	59-63	61.1	Thomas 1880 1 men der Dieste 1886
Cadmium	39-03	778.	Thorpe, 1880; van der Plaats, 1886. Berthelot, 1902.
Cæsium		670.	Ruff-lohannsen.
Carbon		3600.	
Carbon		3000.	Conputed, Violle, C. R. 120, 1895.
			Volatilizes without melting in electric oven.
Chlanina		00.6	Moisson.
Chlorine		-33.6	Regnault, 1863.
Chromium	-	2200.	Greenwood, Ch. News, 100, 1909.
Copper	2100-2310	2310.	" l. c.
Fluorine		—187.	Moisson-Dewar, C. R. 136, 1903.
Helium	010 1 110	-267.	Computed, Tracers Ch. News, 86, 1902.
Hydrogen	-252.5-252.8		Mean.
Iodine	-	>200.	C > 1
Iron		2450.	Greenwood, I. c.
Krypton Lead		-151.7	Ramsay, Ch. News, 87, 1903.
Lead Lithium		1525.	Greenwood, I. c.
Magnesium		1400.	Ruff-Johannsen, Ch. Ber. 38, 1905.
Manganese Manganese			Greenwood, 1 c.
Mercury		1900.	Crafta Pagnasilt
Molybdenum		357 ·	Crafts; Regnault.
Neon		3620.	Langmuir, Mackay, Phys. Rev. 1914.
	107 7 101 1	-239.	Dewar, 1901.
Nitrogen	-195.7-194.4	—I95.	Mean.
Oxygen Ozone	-182.5-182.9	-182.7 $-110.$	Troopt C D 106 1909
Phosphorus	287-290	-119. 288.	Troost. C. R. 126, 1898.
Platinum	20/-290		Langmuir, Mackay, Phys. Rev. 1914.
Potassium	667 777	3910.	Perman; Ruff-Johannsen.
Rubidium	667-757	712.	
Selenium	664 604	696.	Ruff-Johannsen.
Silver	664-694	690.	Crosswood 1 a
Sodium	740 555	1955.	Greenwood, l. c.
Sulphur	742-757	750.	Perman; Ruff-Johannsen. Mean
Tellurium	444.7-445	444.7	Deville-Troost, C. R. 91, 1880.
Thallium		1390.	v. Wartenberg, 25 Anorg. Ch. 56, 1908
Tin		2270.	Greenwood, l. c.
Tungsten		5830.	Langmuir. Phys. Rev. 1913.
Xenon		_100.1	Ramsay, Z. Phys. Ch. 44, 1903.
Zinc	916-942	-	Kamsay, 2. 1 mys, Cm. 44, 1903.
Zilic	910-942	930.	

TABLES 216-218. TABLE 216. - Effect of Pressure on Melting Point.

Substance.	Melting point at 1 kg/sq. cm	Highest experimental pressure: kg/sq. cm	dt/dp at 1 kg/sq. cm.	Δt (observed) for 1000 kg/sq. cm	Reference	
Hg	-38.85 59.7 97.62 271.0 231.9 270.9 320.9 327.4	12,000 2,800 12,000 12,000 2,000 2,000 2,000	0.00511 0.0136 0.00860 -0.00342 0.00317 -0.00344 0.00609 0.00777	5.1* 13.8 +12.3† -3.5† 3.17 -3.44 6.09 7.77	1 2 4 4 3 3 3 3	

* Δt (observed) for 10,000 kg/sq. cm is 50.8°. † Na melts at 177.5° at 12,000 kg/cm²; K at 179.6°; Bi at 218.3°; Pb at 644°. Luckey obtains melting point for tungsten as follows: 1 atme, 3623° K; 8, 3594; 18, 3572; 28, 3564. Phys. Rev. 1917.

References: (1) P. W. Bridgman, Proc. Am. Acad. 47, pp. 391-96, 416-19, 1911; (2) G. Tammann, Kristallisieren und Schmelzen, Leipzig, 1903, pp. 98-99; (3) J. Johnston and L. H. Adams, Am. J. Sci. 31, p. 516, 1911; (4) P. W. Bridgman, Phys. Rev. 6, 1, 1915.

A large number of organic substances, selected on account of their low melting points, have

also been investigated: by Tammann, loc. cit.; G. A. Hulett, Z. physik. Chem. 28, p. 629, 1899; F. Körber, ibid., 82, p. 45, 1913; E. A. Block, ibid., 82, p. 403, 1913; Bridgman, Phys. Rev. 3, 126, 1914; Pr. Am. Acad. 51, 55, 1915; 51, 581, 1916; 52, 57, 1916; 52, 91, 1916. The results for water are given in the following table.

TABLE 217. - Effect of Pressure on the Freezing Point of Water (Bridgman*).

Pressure: † kg/sq. cm	Freezing point.	Phases in Equilibrium.
1 1,000 2,000 2,115 3,000 3,530 4,000 6,000 6,380 8,000 12,000 16,000 20,000	0.0 -8.8 -20.15 -22.0 -18.40 -17.0 -13.7 - 1.6 + 0.16 12.8 37.9 57.2 73.6	Ice I — liquid. Ice I — liquid. Ice I — liquid. Ice I — ice III — liquid (triple point). Ice III — liquid. Ice III — liquid. Ice III — ice V — liquid (triple point). Ice V — liquid. Ice V — ice VI — liquid (triple point). Ice VI — liquid.

* P. W. Bridgman, Proc. Am. Acad. 47, pp. 441-558, 1912. \dagger 1 atm. = 1.033 kg/sq. cm.

TABLE 218. - Effect of Pressure on Boiling Point. *

Metal.	Pressure.	°C	Metal.	Pressure.	° C	Metal.	Pressure.	° C
Bi	10.2 cm Hg.	1200	Ag	26.3 cm Hg.	1780	Pb	20.6 cm Hg.	1410
Bi	25.7 cm Hg.	1310	Cu	10.0 cm Hg.	1980	Pb	6.3 atme.	1870
Bi	6.3 atme.	1740	Cu	25.7 cm Hg.	2180	Pb	11.7 atme.	2100
Bi	11.7 atme.	1950	Sn	10.1 cm Hg.	1970	Zn	11.7 atme.	1230
Bi	16.5 atme.	2060	Sn	26.2 cm Hg.	2100	Zn	21.5 atme.	1280
Ag	10.3 cm Hg.	1660	Pb	10.5 cm Hg.	1315	Zn	53.0 atme.	1510

* Greenwood, Pr. Roy. Soc., p. 483, 1910.

DENSITIES AND MEL	TING AND BUILING	FOINT	3 OF INO	RUAI	NIC COMP	OUND	3.
Substance.	Chemical formula.	Density, about 20° C	Melting point C	Authority.	Boiling point C	Pres- sure	Authority.
Aluminum chloride	AlCl ₃	_	190.	I	183.°	752	I
" nitrate	$Al(NO_3)_3 + 9H_2O$	_	72.8	8	134.*		_
" oxide	Al ₂ O ₃	4.00	2050.	28	-54	_	_
Ammonia	NH_3	-	-75.	3	-33.5	760	7
Ammonium nitrate	NH ₄ NO ₃	I.72	165.	_	210.*	_	
" sulphate	$(NH_4)_2SO_4$	1.77	140.	4	_	-	
" phosphite	$NH_4H_2PO_3$	-	123.	5	150.*	_	
Antimony trichloride	SbCl ₃	3.06	73.	-	223.	760	
" pentachloride	SbCl ₅	2.35	3.	II	102.	68	14
Arsenic trichloride		2.20	-18.	8	130.2	760	23
Arsenic hydride	AsH ₃		-113.5	6	-54.8	760	6
Barium chloride	BaCl ₂	3.86	960.	II	_		-
" nitrate	$ \begin{array}{c} \operatorname{Ba(NO_3)_2} \\ \operatorname{Ba(ClO_4)_2} \end{array} $	3.24	575 -	24	_	_	-
" perchlorate Bismuth trichloride	BiCl ₃	1 =6	505.	10		760	_
Boric acid	H_3BO_3	1.46	232.5 185.	_	440.	760	
" anhydride	B_2O_3	1.40	577.				
Borax (sodium borate)	Na ₂ B ₄ O ₇	2.36	741.	27	_		_
Cadmium chloride	CdCl ₂	4.05	560.	25	000 ±	_	9
" nitrate	$Cd(NO_3)_2 + 4H_2O$	2.45	59.5	2	132.	760	4
Calcium chloride	CaCl ₂	2.26	774.0	_	_	-	
" chloride	$CaCl_2 + 6H_2O$	1.68	29.6				1
" nitrate	$Ca(NO_3)_2$	2.36	499.	24		-	
" nitrate	$Ca(NO_3)_2 + 4H_2O$	1.82	42.3	26	132.*	-	
" oxide	CaO	3.3	2570.	28	_	-	
Carbon tetrachloride	CCl ₄	1.59	-24.	22	76.7	760	23
trichloride	C_2Cl_6	1.63	184.	_	_	_	_
monoxide	CO		-207.	6	-190.	760	6
dioxide	CO ₂ CS ₂	1.56	-57.	3	-80.	subl.	_
distribute	$HClO_4 + H_2O$	1.26	-110.	13	46.2	760	
Chloric (per) acid Chlorine dioxide	ClO_2	1.01	50. -76.	15		721	21
Chrome alum	$KCr(SO_4)_2 + 12H_2O$	1.83	89.	3.	9.9	731	
" nitrate	$Cr_2(NO_3)_6 + 18H_2O$	1.03	37.	2	170.	760	2
Chromium oxide	Cr_2O_3	5.04	1990.	28		_	
Cobalt sulphate	CoSO ₄	3.53	97.	16	880.*		-
Cupric chloride	CuCl ₂	3.05	498.	9	*	_	
Cuprous chloride	Cu ₂ Cl ₂	3.7	421.	_	1000 ±	760	9
Cupric nitrate		2.05	114.5	2	170.*	760	2
Hydrobromic acid	HBr	_	-86.7	3	-68.7	760	- 1
Hydrochloric acid	HCl	-	-111.3	17	-83.I	755	17
Hydrofluoric acid	HFl	0.99	-92.3	6	-36.7	755	17
Hydriodic acid	HI		-51.3	17	-35·7 80.2	760	20
Hydrogen peroxide "phosphide	$ m H_2O_2 \\ m PH_3$	1.5	-2. -132.5	6	30.2	47	20
" sulphide		_	-132.5 -86.	3	-62.		_
Iron chloride	FeCl ₃	2.80	301.			_	_
" nitrate		1.68	47-2	2	_	_	
" sulphate	$FeSO_4 + 7H_2O$	1.00	64.	16	_	-	
Lead chloride	PbCl ₂	5.8	500.	9	900 =	760	-
" metaphosphate	$Pb(PO_3)_2$	-	800.	9	-	-	-
Magnesium chloride	$MgCl_2$	2.18	708.	9	-	_	-
oxide	MgO	3.4	2800.	28	-	-	-
mtrate	$Mg(NO_3)_2 + 6H_2O$	1.46	90.	2	143.	760	2
suipnate	$MgSO_4 + 5H_2O$	1.68	150.	16	706	760	70
Manganese chloride	$MnCl_2 + 4H_2O$ $Mn(NO) + 6H_1O$	2.01	87.5	19	106.	760	19
" nitrate	$Mn(NO_3)_2 + 6H_2O$	1.82	26.	16	129.	700	
" sulphate Mercurous chloride	$\begin{array}{c} MnSO_4 + 5H_2O \\ Hg_2Cl_2 \end{array}$	7.10	54· 450 ±		_		
Mercuric chloride	HgCl ₂	5.42	282.	_	305.	1-1	_
	1	3.42					

⁽¹⁾ Friedel and Crafts; (2) Ordway; (3) Faraday; (4) Marchand; (5) Amat; (6) Olszweski; (7) Gibbs; (8) Baskerville; (9) Carnelly; (10) Carnelly and O'Shea; (11) Ruff; (13) Wroblewski and Olszewski; (14) Anschütz; (15) Roscoe; (16) Tilden; (17) Ladenburg; (18) Staedel; (19) Clarke, Const. of Nature; (20) Bruhl; (21) Schacherl; (22) Tammann; (23) Thorpe; (24) Ramsay; (25) Lorenz; (26) Morgan; (27) Day; (28) Kanolt.

TABLE 219 (continued). DENSITIES AND MELTING AND BOILING POINTS OF INORGANIC COMPOUNDS.

DENSITIES AND MEL	THE POIL INC		0 01 1110				
Substance.	Chemical formula.	Density, about 20° C	Melting point C	Authority.	Boiling point C	Pres- sure mm	Authority.
Nickel carbonyl	NiC ₄ O ₄	1.32	-25.	T	43.0	760	
" nitrate	$Ni(NO_3)_2 + 6H_2O$	2.05	56.7	12	136.7	760	2
" oxide	NiO	6.69	30.7			_	_
" sulphate	$NiSO_4 + 7H_2O$	1.98	99.	3			
Nitric acid	HNO ₈	1.52	-42.	4	86.	760	16
" anhydride	N_2O_5	1.64	30.	5	48.	760	9
" oxide *	NO	1.27	-167.	_	-153.	760	6
peroxide	N_2O_4	1.49	-9.6	8	21.6	760	
Nitrous anhydride	N_2O_3	1.45	-111.	7 8	3.5	760	
" oxide	N_2O		-102.4	8	-89.8	760	8
Phosphoric acid (ortho).	H_3PO_4	1.88	40 ±		_	_	
Phosphorous acid		1.65	72.				
Phosphorus trichloride	PCl ₃	1.61	-111.8	10	76.	760	19
" oxychloride	POCl ₃	1.68	+1.3	-	108.	760	-
disulphide	P ₃ S ₆	-	297.	12		760	
pentasuipnide	P_2S_5		275.	13	522.	760	-
sesquisulphide trisulphide	P_4S_3 P_2S_3	2.00	168.		400.	760	
Potassium carbonate	K_2CO_3		290 ±	14	490.	760	25
chlorate	KClO ₃	2.29	909.				
" chromate	K ₂ CrO ₄	2.34	357.	15			
" cyanide	KCN	1.52	975. red h't	17			
" perchlorate	KClO ₄	2.52	610.	15	410.†	760	
" chloride	KCl	1.99	772.		1500.	760	
" nitrate	KNO ₃	2.10	341.		400.†	700	
" acid phosphate		2.34	96.	3	-		_
" acid sulphate	KHSO ₄	2.35	205.		dec.		
Silver chloride	AgCl	5.56	451.	15	_	_	
" nitrate	AgNO ₃	4.35	218.	_	dec.	-	
perchiorate	AgClO ₄	_	486.	18	-	-	-
phosphate	Ag ₃ PO ₄	6.37	849.	15	-	-	- 11
metaphosphate	$AgPO_3$	-	482.	15	_	-	-
" sulphate Sodium chloride	Ag ₂ SO ₄	5.45	655 ±		1085.†	_	-
" hydroxide	NaCl	2.17	800.	II	1490.	760	
" nitrate	NaOH NaNO ₃	2.I	318.	27			
" chlorate	NaClO ₃	2.26	315.		380.†		
" perchlorate	NaClO ₄	2.48	248.	28	†	_	_
" carbonate	Na ₂ CO ₃	2.48	482.	18	+		
" carbonate	$Na_2CO_3 + 10H_2O$	1.46	852. 34.	2			
" phosphate	$Na_2HPO_4 + 12H_2O$	1.54	38.	3	L		
" metaphosphate.	NaPO ₃	2.48	617.	15	_	_	
" pyrophosphate.	Na ₄ P ₂ O ₇	2.45	970.	30			
phosphite	$(H_2NaPO_3)_2 + 5H_2O$		42.	20			_
sulphate	Na ₂ SO ₄	2.67	884.	II	_	-	-
suiphate	$Na_2SO_4 + 10H_2O$	1.46	32.38	17	-		-
nyposuipnite	$Na_2S_2O_3 + 5H_2O$	1.73	48.16	-	Ť		-
Sulphur dioxide	SO ₂	_	-76.	-	-10.	760	-
Sulphuric acid	H ₂ SO ₄	1.83	10.4	21	338.	760	22
" acid	$H_2SO_4 + H_2O$ $H_2SO_4 + H_2O$		-0.5	22			-
" acid (pyro)	$H_2S_0 + H_2O$ $H_2S_2O_7$	- 0	8.5		_	-	
Sulphur trioxide	SO_3	1.89	35.	22	†	-	_
Tin, stannic chloride	SnCl ₄	1.91	16.8		44.9	760	TO
" stannous chloride	SnCl ₂	2.28	-33. 250.	23	114.	760	19
Zinc chloride	ZnCl ₂	2.91	365.	24	605. 710.	760	_
" chloride	$ZnCl_2 + 3H_2O$	2.91	6.5	26	710.	700	_
nitrate	$Zn(NO_3)_2 + 6H_2O$	2.06	36.4	3	131.	760	2
" sulphate	$ZnSO_4 + 7H_2O$	2.02	50.	3		_	_
	,		30.	3			

References: (1) Mond. Langer, Quincke; (2) Ordway; (3) Tilden; (4) Erdmann; (5) R. Weber; (6) Olszewski; (7) Birhaus; (8) Ramsay; (9) Deville; (10) Wroblewski; (11) Day, Sosman. White; (12) Ramme; (13) Meyer; (14) Lemoine; (15) Carnelly; (16) Mischerlich; (17) LeChatelier; (18) Carnelly, O'Shea; (19) Thorpe; (20) Amat; (21) Mendelejeff; (22) Marignac; (23) Besson; (24) Clarke, Const. of Nature; (25) Isambert; (26) Mylius; (27) Hevesy; (28) Retgers; (29) Grdnauer; (30) Richards and others.

DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

N.B. — The data in this table refer only to normal compounds.

Substance.	Formula	Temp. ◦ C.	Den- sity.	Melting- point	Boiling-point.	Authority.
		(a) Para	ffin Series	$: C_n H_{2n+2}$	
Methane*	CH ₄	— 164.	0.415	—ı84.	-165.	Olszewski, Young.
Ethanet	C_2H_6	0	.446	-171.4	 93.	Ladenburg, "
Propane	C_3H_8	0	.536	-195.	-45.	Young, Hainlen.
Butane	C ₄ H ₁₀	0	.60	—135.	I.	Butlerow, Young.
Pentane	C ₅ H ₁₂	0	.647	—I31.	36.3	Thorpe, Young.
Hexane	C ₆ H ₁₄	17.	.663	-94.	69.	Schorlemmer.
Heptane	C7H16	0	.701	-97.	98.4	Thorpe, Young.
Octane	C ₈ H ₁₈	0	.719	-56.6	125.5	TZ CC4
Nonane	$C_9H_{20} \\ C_{10}H_{22}$	0	.733	-51.	150.	Krafft.
Undecane	$C_{10}H_{24}$	0	·745	-31. -26.	173.	66
Dodecane	$C_{12}H_{26}$	0	.765	—12.	195. 214.	46
Tridecane	C ₁₃ H ₂₈	0	.771	-6.	234.	46
Tetradecane	C ₁₄ H ₃₀	4.	.775	5.	252.	66
Pentadecane	C ₁₅ H ₃₂	10.	.776	10.	270.	66
Hexadecane	$C_{16}H_{34}$	18.	-775	18.	287.	66
Heptadecane	$C_{17}H_{36}$	22.	.777	22.	303.	66
Octadecane	C ₁₈ H ₃₈	28.	-777	28.	317.	66
Nonadecane	C ₁₉ H ₄₀	32.	.777	32.	330.	44
Eicosane	C ₂₀ H ₄₂	37.	.778	37.	121.§	66
Heneicosane	$C_{21}H_{44}$ $C_{22}H_{46}$	40.	.778	40.	129.§ 136.5§	46
Docosane	$C_{23}H_{48}$	44. 48.	.778	44.	142.58	66
Tetracosane	$C_{24}H_{50}$	51.		51.	243.1	66
Heptacosane	C27H56	60.	·779	60.	172.\$	46
Pentriacontane .	C ₈₁ H ₆₄	68.	.781	68.	199.§	44
Dicetyl	$C_{32}H_{66}$	70.	.781	70.	205.§	46
Penta-tria-contane	C ₈₅ H ₇₂	75-	.782	75.	331.‡	66
	· (b)	Olefines	, or the	Ethylene	e Series : C _n I	I _{2n} .
Ethylene	C_2H_4	-	0.610	169.	-103.	Wroblewski or Olszewski.
Propylene	C ₃ H ₆	-	-	—r8o.	-50.2	Ladenburg, Krügel.
Butylene	C ₄ H ₈	-13.5	.635	-	I.	Sieben.
Amylene	$ \begin{array}{c} C_5H_{10} \\ C_6H_{12} \end{array} $	0	.76		36. 69.	Wagner or Saytzeff. Wreden or Znatowicz.
Heptylene	C ₇ H ₁₄	19.5	.703		96.–99.	Morgan or Schorlemmer.
Octylene	C ₈ H ₁₆	17.	.722	_	122123.	Möslinger.
Nonylene	C ₉ H ₁₈	20.	.767	-	140142.	Beilstein, "Org. Chem."
Decylene	$C_{10}H_{20}$	-	-	-	175.	" " "
Undecylene	$C_{11}H_{22}$	20.	.773	-	196197.	66 46 66
Dodecylene	C ₁₂ H ₂₄	<u>—31.</u>	.795	—31.	212214.	" " "
Tridecylene	C ₁₃ H ₂₆	15.	-774	-	233.	Bernthsen.
Tetradecylene Pentadecylene	C ₁₄ H ₂₈ C ₁₅ H ₃₀	—I2.	.794	-12.	127.1	Krafft. Bernthsen.
Pentadecylene	$C_{16}H_{30}$ $C_{16}H_{32}$	-	.792	_	247. 155.‡	Krafft, Mendelejeff, etc.
Octadecylene	C ₁₈ H ₃₆	18.	.791	18.	179.‡	Krafft.
Eicosylene	C ₂₀ H ₄₀	0	.871	_	390400.	Beilstein, "Org. Chem."
Cerotene	C ₂₇ H ₅₄	-	-	58.	-	Bernthsen.
Melene	C ₈₀ H ₆₀	. –	-	62.	-	66
			1			

^{*} Liquid at—11.° C. and 180 atmospheres' pressure (Cailletet).

† " + 4.° " 46

Boiling-point under 15 mm. pressure.

In vacuo.

DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

-												
	Substance.	Chemical formula.	Temp.	Specific gravity.	Melting- point.	Boiling- point.	Authority.					
		(c) A	cetylene	Series:	C_nH_{2n}	-2.						
	Acetylene	C ₂ H ₂	-80.	.613	-8r.	—85.	Villard.					
Ш	Allylene	C ₃ H ₄	_	-	-110. -130.	-23.5 +8.	Druglanta Vutacha					
Ш	Ethylacetylene	C ₄ H ₆			3		Bruylants, Kutscheroff, and others.					
П	Propylacetylene	C ₅ H ₈	-	-	-	4850.	Bruylants, Taworski.					
ı	Butylacetylene	C ₆ H ₁₀	-	-	_	6870.	Taworski. Beilstein, and oth-					
н	Oenanthylidene	C ₇ H ₁₂	_	=		100,-101.	ers.					
1	Caprylidene	C ₈ H ₁₄	0.	0.771	-	133134.	Behal.					
П	Undecylidene	C ₁₁ H ₂₀		.810	-	210215.	Bruylants. Krafft.					
	Dodecylidene	C ₁₂ H ₂₂ C ₁₄ H ₂₆	-9. +6.5	.806	-9. $+6.5$	134.*	66					
П	Hexadecylidene	C ₁₆ H ₃₀	20.	.804	20.	160.*	"					
	Octadecylidene	C ₁₈ H ₃₄	30.	.802	30.	184.*						
		(d) Monat	tomic ale	cohols:	C_nH_{2n}	HOH.						
1	Methyl alcohol CH ₈ OH 0. 0.812 -97. 66.											
н	Ethyl alcohol	C ₂ H ₅ OH	0.	.806	—114. —127	78.	E 7 1 "T11					
Н	Propyl alcohol Butyl alcohol	C_8H_7OH C_4H_9OH	0.	.817	—127. —	97.	From Zander, "Lieb.					
Н	Amyl alcohol	$C_5H_{11}OH$	0.	.829	-	138.	Ann." vol. 224, p. 85, and Krafft, "Ber."					
ı	Hexyl alcohol	C ₆ H ₁₃ OH	0.	.833	-	157.	vol. 16, 1714,					
П	Heptyl alcohol Octyl alcohol	C ₇ H ₁₅ OH C ₈ H ₁₇ OH	0.	.836	-36. -18.	176.	" 19, 2221, " 23, 2360,					
Н	Nonyl alcohol	C ₉ H ₁₉ OH	0.	.842	- 5.	213.	and also Wroblew-					
Ш	Decyl alcohol	C ₁₀ H ₂₁ OH	+7.	.839	+7.	231.	ski and Olszewski,					
Ш	Dodecyl alcohol Tetradecyl alcohol		38.	.831	38.	143.*	"Monatshefte," vol. 4, p. 338.					
П	Hexadecyl alcohol	C ₁₆ H ₃₈ OH	50.	.818	50.	190.*	101. 4, p. 550.					
Ш	Octadecyl alcohol	$C_{18}H_{87}OH$	59.	.813	59.	211.*						
		(e) Alc	coholic e	thers:	C_nH_{2n+1}	₂ O.						
	Dimethyl ether	C ₂ H ₆ O	-	-	_	- 23.6	Erlenmeyer, Kreich-					
П	District off on	CILO				16	baumer.					
И	Diethyl ether Dipropyl ether	$C_4H_{10}O$ $C_6H_{14}O$	4.	0.731	<u> </u>	+ 34.6	Regnault, Olszewski. Zander and others.					
Ш	Di-iso-propyl ether	C ₆ H ₁₄ O	0.	.743	-	69.	46					
	Di-n-butyl ether	C ₈ H ₁₈ O	0.	.784	_	141.	Lieben, Rossi, and others.					
	Di-sec-butyl ether	C ₈ H ₁₈ O	21.	.756	-11	121.	Kessel. Reboul.					
	Di-iso-butyl " Di-iso-amyl "	$C_8H_{18}O \\ C_{10}H_{22}O$	15.	.762	_	122.	Wurtz.					
	Di-sec-hexyl "	C ₁₂ H ₂₆ O	-	-	-	203208.	Erlenmeyer and Wanklyn.					
1	Di-norm-octyl "	C ₁₆ H ₃₄ O	17.	.805	-	280282.						
		(f) E	thyl eth	ers: C _n	$H_{2n+2}O$).						
	Ethyl-methyl ether	C ₈ H ₈ O	0.	0.725	-	II.	Wurtz, Williamson.					
	" propyl "	C ₅ H ₁₂ O	20.	0.739	-	63.–64.	Chancel, Brühl.					
	" iso-propyl ether." " norm-butyl ether	$C_5H_{12}O \\ C_6H_{14}O$	0.	·745 ·769		54· 92.	Markownikow. Lieben, Rossi.					
	" iso-butyl ether .	C6H14O	-	.751	-	7880.	Wurtz.					
1	" iso-amyl ether .	C ₇ H ₁₆ ()	18.	.764		112.	Williamson and others.					
	" norm-hexyl ether	C ₈ H ₁₈ O	-	-	_	134137.	Lieben, Janeczek.					
	" norm-heptyl ether	C9H20O	16.	.790	-	165.	Cross.					
	" norm-octyl ether	C ₁₀ H ₂₂ O	17.	•794	-	182184.	Moslinger.					

^{*} Boiling-point under 15 mm. pressure. † Liquid at —11.° C. and 180 atmospheres' pressure (Cailletet).

DENSITIES AND MELTING AND BOILING POINTS OF SOME ORGANIC COMPOUNDS.

(g) MISCELLANEOUS.

Substance	Chemical formula.	Density tempera		Melting point C	Boiling point C	Authority.
Acetic acid	CH₃COOH	1.115	o°	16.7	118.5	Young, '09
Acetone	CH ₃ COCH ₃	0.812	0	-94.6	56.1	roung, og
Aldehyde	C_2H_4O	0.806	0	-120.	+20.8	
Aniline	$C_6H_5NH_2$	1.038	0	-120. -8.	183.9	
Beeswax	C61151V112	0.96 ±	0	62.	103.9	
Benzoic acid	$C_7H_6O_2$			121.	0.10	
Benzene	C_6H_6	1.293	4		249.	Richards
Benzophenone		0.879	20	5.48	80.2	Holborn-
benzopnenone	$(C_6H_5)_2CO$	1.090	50	48.	305.9	
Destton		- 06 -				Henning
Butter	CHO	0.86-7		30 ±		
Camphor	$C_{10}H_{16}O$	0.99	10	176.	209.	
Carbolic acid	C ₆ H ₅ OH	1.060	21	43.	182.	
Carbon bisulphide	CS_2	1.292	0	-110.	46.2	
" tetrachlor-	CCI	0				Vanna
ide	CCl ₄	1.582	21	-30.	76.7	Young
Chlorbenzene	C ₆ H ₅ Cl	I.III	15	-40.	132.	
Chloroform	CHCl ₃	1.257	0	-65.	61.2	
Cyanogen	C_2N_2	_	-	-35.	-21.	
Ethyl bromide	C_2H_5Br	1.45	15	-117.	38.4	
" chloride	C_2H_5Cl	0.918	8	-141.6	14.	
" ether	$C_4H_{10}O$	0.736	0	-118.	34.6	
" iodide	C_2H_5I	1.944	14		72.	
Formic acid	НСООН	I.242	0	8.6	100.8	
Gasolene		0.68 ±			70-90	
Glucose		1.56		146.	-	
Glycerine	$C_3H_8O_3$	1.269	0	20.	290.	
Iodoform	$\mathrm{CHI_3}$	4.01	25	119.	_	
Lard				29 ±	_	
Methyl chloride	CH₃Cl	0.992	-24	-103.6	-24.I	
Methyl iodide	$\mathrm{CH_{3}I}$	2.285	15	-64.	42.3	
Naphthalene	$C_6H_4 \cdot C_4H_4$	1.152	15	80.	218.	Holborn-
						Henning
Nitrobenzene	$C_6H_5O_2N$	1.212	7.5	5.	211.	
Nitroglycerine	$C_3H_5N_3O_9$	1.60		-	-	
Olive oil		0.92		20 ±	300 ±	
Oxalic acid	$C_2H_2O_4 \cdot _2H_2O$	1.68		190.	-	
Paraffin wax, soft.		_		38-52	350-390	
" " hard		-		52-56	390-430	
Pyrogallol	$C_6H_3(OH)_3$	1.46	40	133.	293.	
Spermaceti		0.95	15	45 ±	_	
Starch	$C_6H_{10}O_5$	1.56		none	_	
Sugar, cane	$C_{12}H_{22}O_{11}$	1.588	20	160.		
Stearine	$(C_{18}H_{35}O_2)_3C_3H_5$	0.925	65	71.		
Tallow, beef		0.94	15	27-38	_	
" mutton		0.94	15	32-41	_	
Tartaric acid	$C_4H_6O_6$	1.754		170.		D: 1. 1
Toluene	$C_6H_5CH_3$	0.882	00	-92.	110.31	Richards
Xylene (o)	$C_6H_4(CH_3)_2$	0.863	20	-28.	142.	
" (m)	$C_6H_4(CH_3)_2$	0.864	20	54.	140.	
" (p)	$C_6H_4(CH_3)_2$	0.861	20	15.	138.	

TABLE 221. - Melting-point of Mixtures.

					Meltin	ng-point	s, Co.					oce.
Metals.				Percen	tage of r	netal in	second o	column.				Reference.
	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100 %	Re
Pb. Sn.	326	295	276	262	240	220	190	185	2.00	215	232	1
Bı.	322	290		-	179	145	126	168	205	-	268	7 8
Te.	322	710	790	880	917	760	600	480	-410	425	446	
Ag.	328	460	545	590	620	650	705	775	840	905	959	9
Na.	-	360	420	400	370	330	290	250	200	130	96	13
Cu.	326	870	920	925	945	950	955	985	1005	1020	1084	2
Sb.	326	250	275	330	395	440	490	525	560	600	632	16
Al. Sb.	650	750	840	925	945	950	970	1000	1040	1010	632	17
Cu.	650	630	600	560	540	580	610	755	930	1055	1084	18
Au.	655	675	740	800	855	915	970	1025	1055	675	1062	10
Ag.	650	625	615	600	590	580	575	570	650	750	954	17
Zn.	654	640	620	600	580	560	530	510	475	425	419	II
Fe.	653	860	1015	1110	1145	1145	1220	1315	1425	1500	1515	3
Sn.	650	645	635	625	620	605	590	570	560	540	232	17
Sb. Bi.	632	610	590	575	555	540	520	470	405	330	268	16
Ag.	630	595	570	545	520	500	505	545	680	850	959	9
Sn.	622	600	570	525	480	430	395	350	310	255	232	19
Zn.	632	555	510	540	570	565	540	525	510	470	419	17
Ni. Sn.	1455	1380	1290	1200	1235	1290	1305	1230	1000	800	232	17
Na. Bi.	96	425	520	590	645	690	720	730	715	570	268	13
Cd.	96	125	185	245	285	325	330	340	360	390	322	13
Ed. Ag.	322	420	520	610	700	760	805	850	895	940	954	17
Tl.	321	300	285	270	262	258	245	230	210	235	302	14
Zn.	322	280	270	295	313	327	340	355	370	390	419	11
Au. Cu.	1063	910	890	895	905	925	975	1000	1025	1060	1084	4
Ag.	1064	1062	1901	1058	1054	1049	1039	1025	1006	982	963	5
Pt.	1075	1125	1190	1250	1320	1380	1455	1530	1610	1685	1775	20
K. Na.	62	17.5	-10	-3.5	5	II	26	41	58	77	97.5	15
Hg.	-	-	-	-	-	90	IIO	135	162	265	-	13
Tl.	62.5	133	165	188	205	215	220	240	280	305	301	14
Cu. Ni.	1080	1180	1240	1290	1320	1335	1380	1410	1430	1440	1455	17
Ag.	1082	1035	990	945	910	870	830	788	814	875	960	9
Sn.	1084	1005	890	755	725	680	630	580	530	440	232	12
Zn.	1084	1040	995	930	900	880	820	780	700	580	419	6
Ag. Zn.	959	850	755	705	690	660	630	610	570	505	419	11
Sn.	959	870	750	630	550	495	450	420	375	300	232	9
Na. Hg.	96.5	90	80	70	60	45	22	55	95	215	-	13

- 1 Means, Landolt-Börnstein-Roth Tabellen.

- 1 Means, Landolt-Börnstein-Roth Tabellen.
 2 Friedrich-Leroux, Metal. 4, 1907.
 3 Gwyer, Zs. Anorg. Ch. 57, 1908.
 4 Means, L.-B.-R. Tabellen.
 5 Roberts-Austen Chem. News, 87, 2, 1903.
 6 Shepherd J. ph. ch. 8, 1904.
 7 Kapp, Diss., Königsberg, 1901.
 8 Fay and Gilson, Trans. Am. Inst. Min. Eng. Nov. 1901.
- 9 Heycock and Neville, Phil. Trans. 189A, 1897. 194A, 201, 1900.
- 11 Heycock and Neville, J. Chem. Soc. 71, 1897.
 12 " Phil. Trans. 202A, 1, 1903.
- 13 Kurnakow, Z. Anorg. Chem. 23, 439, 1900.
 14 " " " 30, 86, 1902.
 15 " " " 30, 100, 1002.
- 14 " " 30, 109, 1902.
 15 Roland-Gosselin, Bul. Soc. d'Encour. (5) 1, 1896.
 17 Gautier, " " (5) 1, "
 18 Le Chatelier, " " (4) 10, 573,
- 1895.
- 19 Reinders, Z. Anorg. Chem. 25, 113, 1896. 20 Erhard and Schertel, Jahrb. Berg-u. Hüttenw. Sachsen. 1879, 17.

TABLE 222. - Alloy of Lead, Tin, and Bismuth.

		Per cent.									
Lead Tin	32.0 15.5 52.5	25.8 19.8 54-4	25.0 15.0 60.0	43.0 14.0 43.0	33·3 33·3 33·3	10.7 23.1 66.2	50.0 33.0 17.0	35.8 52.1 12.1	20.0 60.0 20.0	70.9 9.1 20.0	
Solidification at	960	1010	1250	1280	145°	1480	1610	1810	1820	234°	

Charpy, Soc. d'Encours, Paris, 1901.

TABLE 223. - Low Melting-point Alloy.

			F	er cent			
Cadmium	10.8 14.2 24.9 50.1	10.2 14.3 25.1 50.4	14.8 7.0 26.0 52.2	13.1 13.8 24.3 48.8	6.2 9.4 34.4 50.0	7.1 - 39.7 53.2	6.7 43.4 49.9
Solidification at	65.50	67.50	68.50	68.5°	76.5°	89.50	95°

Drewitz, Diss. Rostock, 1902.

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TRANSFORMATION AND MELTING TEMPERATURES OF LIME-ALUMINA-SILICA COMPOUNDS AND EUTECTIC MIXTURES.

The majority of these determinations are by G. A. Rankin. (Part unpublished.)

Substance.	% Ca() Al ₂	O ₈	SiO ₃	Transformation. Temp.
CaSiO ₃	48.2 48.2 48.2 65. 65. 65. 58.2 73.6 62.2 47.8 35.4 24.8 — 20.1 40.8 50.9	37.8 52.2 64.6 75.2 62.8 36.6 37.2 30.9	- 5 - 3 - 3 - 4 - 2 - 2 - 3 - 4 - 4 - 2	(1.8 1.8 5.5 5.5 1.8 6.4 	Melting
E	UTECTIO	s.		1	EUTECTICS.
Crystalline Phases.	% CaO	Al ₂ O ₃	SiO ₂	Melting Temp.	Crystalline Phases. % CaO Al ₂ O ₃ SiO ₂ Melting Temp.
CaSiO ₃ ,SiO ₂ Ca,SiO ₃ 3CaO,2SiO ₂ Ca,SiO ₄ CaO. Al ₂ SiO ₅ ,SiO ₂ Al ₂ SiO ₅ ,Al ₂ O ₃ CaAl ₂ Si ₂ O ₈ CaSiO ₃ CaAl ₂ Si ₂ O ₈ CaAl ₂ Si ₂ O ₈	_ (- - 13. 54.	63. 45·5 32·5 87. 36. 47·3	1436° 1455± 2065± 1610 1810 1299	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
SiO ₂ { CaAl ₂ Si ₂ O ₈ } CaAl ₂ Si ₂ O ₈ } SiO ₂ ,CaSiO ₈ }		19.5	70. 62.	1359	QUINTUPLE POINTS.
Ca ₂ Al ₂ SiO ₇ { Ca ₂ SiO ₄ { Al ₂ O ₃ { CaAl ₂ Si ₂ O ₈ { CaAl ₂ Si ₂ O ₈ } }	19.3	23.7 39.3	26.7 41.4 70.4	1545 1547 1345	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Al_2SiO_5,SiO_2 { $Ca_2Al_2SiO_7$ } Ca ₈ Al ₁₀ O ₁₈ }		50.8	14.2	1552	Ca ₂ SiO ₄
$\begin{bmatrix} Ca_2Al_2SiO_7 \\ CaAl_2O_4 \\ Ca_2Al_2SiO_7 \\ CaAl_2O_4 \end{bmatrix}$		52.9	9.3	1512	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ca ₃ Al ₁₀ O ₁₈) CaAl ₂ Si ₂ O ₈ (Ca ₂ Al ₂ SiO ₇ (Ca ₂ Al ₂ SiO ₇)		36.8	33.	1385	Al ₂ O ₃)
Ca ₈ Si ₂ O ₇	.,	13.2	41.1	1316	3CaO.2SiO ₂ } 55.5 — 44.5 1475

The accuracy of the melting-points is 5 to 10 units. Geophysical Laboratory. See also Day and Sosman, Am. J. of Sc. xxxi, p. 341, 1911.

LOWERING OF FREEZING-POINTS BY SALTS IN SOLUTION.

In the first column is given the number of gram-molecules (anhydrous) dissolved in 1000 grams of water; the second contains the molecular lowering of the freezing-point; the freezing-point is therefore the product of these two columns. After the chemical formula is given the molecular weight, then a reference number.

weight, then a		oc mannoon					
g. mol.	Molecular Lowering.	g. mol. 1000 g. H ₂ O	Molecular Lowering.	g. mol.	Molecular Lowering.	g. mol. 1000 g. H ₂ O	Molecular Lowering.
		0.0500	2 400	0.4078	2.02°	M-C1 06 . 6	
Pb(NO ₃) ₂ , 331.0:	I, 2.	0.0500	3.47°	0.4978			5.10
0.000362	5.5°	.1000	3.42	.8112	2.01	0.0100	5.1
.001204	5.30	.2000	3.32	1.5233	2.28	.0500	4.98
.002805	5.17	.500	3.26	BaCl2, 208.3: 3,6	, 13.	.1500	4.96
.005570	4.97	1.000	3.14	0.00200	5.5°	.3000	5.186
.01737	4.69	Lino3, 69.07: 9.		.00498	5.2	.6099	5.69
.5015	2.99	0.0398	3.4°	.0100	5.0	KC1, 74.60: 9, 17-	19.
Ba(NO ₃) ₂ , 261.5:	I.	.1671	3.35	.0200	4.95	0.02910	3.54°
0.000383	5.6°	.4728	3-35	.04805	4.80	.05845	3.40
.001259	5.28	1.0164	3.49	.100	4.69	.112	3.43
.002681	5.23	Al ₂ (SO ₄) ₈ , 342.4:	10.	.200	4.66	.3139	3.41
.005422	5.13	0.0131	5.6°	.500	4.82	.476	3.37
.008352	5.04	.0261	4.9	.586	5.03	1.000	3.286
Cd(NO ₃) ₂ , 236.5:	3.	.0543	4.5	.750	5.21	1.989	3.25
0.00298	5.4°	.1086	4.03	CdCl2, 183.3: 3, 1.	4.	3.269	3.25
.00689	5.25	.217	3.83	0.00299	5.0°	NaCl, 58.50: 3, 20	, 12, 16.
.01997	5.18	CdSO ₄ , 208.5: 1, 1	II.	.00690	4.8	0.00399	3.7°
.04873	5.15	0.000704	3.35°	.0200	4.64	.01000	3.67
AgNO3, 167.0: 4,	5.	.002685	3.05	.0541	4.11	.0221	3.55
0.1506	3.32°	.01151	2.69	.0818	3.93	.04949	3.51
.5001	2.96	.03120	2.42	.214	3.39	.1081	3.48
.8645	2.87	.1473	2.13	.429	3.03	.2325	3.42
1.749	2.27	.4129	1.80	.858	2.71	.4293	3.37
2.953	1.85	.7501	1.76	1.072	2.75	.700	3.43
3.856	1.64	1.253	1.86		2.73		1
0.0560	3.82	K2SO4, 174.4: 3, 5,	6, 10, 12.	CuCl ₂ , 134.5: 9.		NH ₄ Cl, 53.52: 6,	3.60
.1401	3.58	0.00200	5.4°	0.0350	4.9°	.0200	
.3490	3.28	.00398	5.3	.1337	4.81		3.56
KNO3, 101.9: 6, 7		.00865	4.9	.3380	4.92	.0350	3.50
0.0100	3.5	.0200	4.76	.7149	5.32	.1000 ·	3.43
.0200	3.5	.0500	4.60	CoCl2, 129.9: 9.		.2000	3.396
.0500	3.41	.1000	4.32	0.0276	5.0°	.4000	3.393
.100	3.31	.200	4.07	.1094	4.9	.7000	3.41
.200	3.19	-454	3.87	.2369	5.03	LiCl, 42.48: 9, 15	0
.250	3.08	CuSO ₄ , 159.7: 1, 4	a. II.	.4399	5.30	0.00992	3.7°
.500	2.94	0.000286	3.3°	.538	5.5	.0455	3.5
.750	2.81	,000843	3.15	CaCl2, 111.0: 5, 1	3-16.	.09952	3.53
1.000	2.66	.002279	3.03	0.0100	5.10	.2474	3.50
NaNO3, 85.09: 2,	6, 7.	.006670	2.79	.05028	4.85	.5012	3.61
0.0100	3.60	.01463	2.59	.1006	4.79	•7939	3.71
.0250	3.46	.1051	2.28	.5077	5.33	BaBr2, 297.3: 14.	
.0500	3.44	.2074	1.95	.946		0.100	5.1°
.2000	3.345	.4043	1.84	2.432	5·3 8.2	.150	4.9
.500	3.24	.8898	1.76	3.469	11.5	.200	5.00
.5015	3.30	MgSO4, 120.4: 1,		3.829	14.4	.500	5.18
1.000	3.15	0.000675	3.29	0.0478	5.2	AlBr3, 267.0: 9.	
1.0030	3.03	.002381	3.10	.153	4.91	0.0078	1.4°
NH4NO3, 80.11:	6. 8	.01263	2.72	.331	5.15	.0559	1.2
0.0100	3.60	.0580	2.65	.612	5.47	.1971	1.07
.0250	3.50	.2104	2.23	.998	6.34	·4355	1.07
					0.		
				Kahlanhawa 1			

¹ Hausrath, Ann. Phys. 9, 1902.
2 Leblanc-Noyes, Z. Phys. Ch. 6, 1890.
3 Jones, Z. Phys. Ch. 11, 1893.
4 Raoult, Z. Phys. Ch. 2, 1888.
5 Arrhenius, Z. Phys. Ch. 2, 1888.
6 Loomis, Wied. Ann. 57, 1896.
7 Jones, Am. Chem. J. 27, 1902.
7 Jones, Am. Chem. J. 27, 1902.
8 Jones-Caldwell, Am. Chem. J. 25, 1901.
9 Biltz, Z. Phys. Ch. 40, 1902.
10 Jones-Mackay, Am. Chem. J. 19, 1897.
Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

LOWERING OF FREEZING-POINTS BY SALTS IN SOLUTION (continued).

	Molecular Lowering.		Molecular Lowering.		Molecular Lowering.		Se ar
g. mol.	con	g. mol.	ecu	g. mol	cul	g. mol.	Molecular Lowering.
1000 g. H ₂ O	olo	1000 g. H ₂ O	Colowo	1000 g. H ₂ O	ole	1000 g. H ₂ O	ole
	ZJ		ZJ		LZ		LE
					1		-
CdBr2, 272.3: 3,	14.	KOH, 56.16: 1,	15. 22.	Na2SiO3, 122.5:	re.	0.472	2.200
0.00324	5.10	0.00352	3.60°	0.01052	6.4°	.944	2.27
.00718	4.6	.00770	3.59	.05239	5.86	1.620	2.60
.03627	3.84	.02002	3.44	.1048	5.28		
.0719	3.39	.05006	3.43	.2099	4.66	(COOH) ₂ , 90.02: 0.01002	4, 15.
,1122 .	3.18	1001.	3.42	.5233	3.99	0.01002	3.3
.220	2.96	.2003	3.424	HCl, 36.46:	3.33	.02005	3.19
.440	2.76	.230	3.50	1-3, 6, 13	, 18, 22.	.05019	2.83
.800	2.59	.465	3.57	0.00305	3.68°	.2022	2.64
CuBr ₂ , 223.5: 9.	37		24. 25.	.00695	3.66	.366	- 1
0.0242	5.1°	CH ₃ OH, 32.03: 0.0100	1.80	.0100	3.6	.648	2.56
.0817	5.1	.0301	1.82	.01703	3.59		2.3
.2255	5.27	.2018	1.811	.0500	3.59	C ₃ H ₅ (OH) ₃ , 92.06	: 24, 25.
.6003	5.89	1.046	1.86	.1025	3.56	0.0200	1.86°
		3.41	1.88	.2000	3-57	.1008	1.86
CaBr ₂ , 200.0: 14.	5.1°	6.200	1.944	.3000	3.612	.2031	1.85
.1742	5.18	C2H5OH, 46.04:	717	.464	3.68	·535	1.91
.3484			7, 24-27	.516	3.79	2.40	1.98
	5.30	0.000402	1.67°	1.003	3.95	5.24	2.13
.5226	5.64	.004993	1.67	1.032	4.10	$(C_2H_5)_2O$, 74.08:	24
MgBr ₂ , 184.28:		.0100	1.81	1.500	4.42	0.0100	1.60
0.0517	5.4°	.02892	1.707	2.000	4.97	.0201	1.67
.103	5.16	.0705	1.85	2.115	4.52	.1011	1.72
.207	5.26	.1292	1.829	3.000	6.03	.2038	1.702
.517	5.85	.2024	1.832	3.053	4.90	Dextrose, 180.1:	24, 30.
KBr, 119.1: 9, 21		.5252	1.834	4.065	5.67	0.0198	1.84°
0.0305	3.61°	1.0891	1.826	4.657	6.19	.0470	1.85
.1850	3.49	1.760	1.83	HNO ₃ , 63.05: 3, 1	3. 15.	.1326	1.87
.6801	3.30	3.901	1.92	0.02004	3.55°	.4076 .	1.894
.250	3.78	7.91	2.02	.05015	3.50	1.102	1.921
.500	3.56	11.11	2.12	.0510	3.71	Levulose, 180.1:	24, 25.
CdI2, 366.1: 3, 5,	22.	18.76	1.81	.1004	3.48	0.0201	1.87°
0.00210	4.5°	0.0173	1.80	.1059	3.53	.2050	1.871
.00626	4.0	.0778	1.79	.2015	3.45		2.01
.02062	3.52	K2CO3, 138.30: 6	- 17	.250	3.50	·554 1.384	2.32
.04857	2.70	0.0100	5.1°	.500	3.62	2.77	3.04
.1360	2.35	.0200	4.93	1.000	3.80	C12H22O11, 342.2: 1	
·333 .684	2.13	.0500	4.71	2.000	4.17	0.000332	1.900
	2.23	.100	4.54	3.000	4.64	.001410	1.87
.888	2.51	.200	4.39	H ₃ PO ₂ , 66.0: 29.		.009978	1.86
KI, 166.0: 9, 2.		Na ₂ CO ₃ , 106.10:	6.	0.1260	2.90°	.0201	1.88
0.0651	3.5°	0.0100	5.10	.2542	2.75	.1305	1.88
.2782	3.50	.0200	4.93	.5171	2.59	H ₂ SO ₄ , 98.08:	
.6030	3.42	.0500	4.64	1.071	2.45		31-22
1.003	3.37	.1000	4.42	H ₃ PO ₃ , 82.0: 4, 5		0.00461	31-33. 4.8°
SrI ₂ , 341.3: 22.		.2000	4.17	0.0745	3.0°	.0100	4.49
0.054	5.1°	Na ₂ SO ₃ , 126.2: 2	8.	.1241	2.8	.0200	4.32
.108	5.2	0.1044	4.51°	.2482	2.6	.0461	4.10
.216	5.35	·3397	3.74	1.00	2.39	.100	3.96
.327	5.52	.7080	3.38	H ₃ PO ₄ , 98.0: 6, 2:	2.	.200	3.85
NaOH, 40.06: 15		Na2HPO4, 142.1	22, 20.	0.0100	2.8°	.400	3.98
0.02002	3.45°	0.01001	5.0°	.0200	2.68	1.000	4.19
.05005	3.45	.02003	4.84	.0500	2.49	1.500	4.96
.1001	3.41	.05008	4.60	.1000	2.36	2.000	5.65
.2000	3.407	.1002	4.34	.2000	2.25	2.500	6.53
							_

¹⁻²⁰ See page 217.
21 Sherrill, Z. Phys. Ch. 43, 1903.
22 Chambers-Frazer, Am. Ch. J. 23, 1900.
23 Noyes-Whitney, Z. Phys. Ch. 15, 1894.
24 Loomis, Z. Phys. Ch. 32, 1900.
25 Abegg, Z. Phys. Ch. 15, 1894.
26 Nernst-Abegg, Z. Phys. Ch. 15, 1894.

²⁷ Pictet-Altschul, Z. Phys. Ch. 16, 1895. 28 Barth, Z. Phys. Ch. 9, 1892. 29 Petersen, Z. Phys. Ch. 11, 1893. 30 Roth, Z. Phys. Ch. 43, 1903. 31 Wildermann, Z. Phys. Ch. 15, 1894. 32 Jones-Carroll, Am. Ch. J. 28, 1902.

RISE OF BOILING-POINT PRODUCED BY SALTS DISSOLVED IN WATER.*

This table gives the number of grams of the salt which, when dissolved in 100 grams of water, will raise the boiling-point by the amount stated in the headings of the different columns. The pressure is supposed to be 76 centimeters.

Salt.	1 ° C.	2°	3°	4 °	5 °	7°	10°	15°	20°	25°
$BaCl_2 + 2H_2O$	15.0	31.1	47.3	63.5	(7160	ves 40	r rise	of temp		
CaCl ₂	6.0	11.5	16.5	21.0	25.0			55.5	69.0	84.5
$Ca(NO_3)_2 + 2H_2O$.	12.0	25.5	39.5	53.5	68.5		152.5	240.0	331.5	443.5
KOH	4.7	9.3	13.6	17.4	20.5	26.4	34.5	47.0	57.5	67.3
$KC_2H_3O_2$	6.0	12.0	18.0	24.5	31.0	44.0	63.5	98.0	134.0	171.5
KC1	9.2	16.7	23.4	29.9	36.2	48.4	(57.4	gives a	rise of 8	3°.5)
K ₂ CO ₃	11.5	22.5	32.0	40.0	47.5	60.5	78.5	103.5	127.5	152.5
KClO ₈	13.2	27.8	44.6	62.2				-0	/	
KI	15.0	30.0	45.0	60.0	74.0	99.5	134.	338.5	(220 giv	res 18°.5)
121103	15.2	31.0	47.5	04.5	02.0	120.5	100.5	330.5		
$K_2C_4H_4O_6 + \frac{1}{2}H_2O$.	18.0	36.0	54.0	72.0	90.0	126.5	182.0	284.0		
KNaC ₄ H ₄ O ₆	17.3	34.5	51.3	68.1	84.8	119.0	171.0	272.5	390.0	510.0
KNaC ₄ H ₄ O ₆ + ₄ H ₂ O LiCl	25.0	53.5	84.0	118.0	157.0	266.0	554.0	5510.0	10 -	50.0
LiCl + 2H ₂ O	3·5 6·5	7.0	10.0	26.0	32.0	20.0	62.0	35.0	123.0	50.0
13101 - 21120	0.5	13.0	19.5	20.0	32.0	44.0	02.0	92.0	123.0	100.5
$MgCl_2 + 6H_2O$.	11.0	22.0	33.0	44.0	55.0	77.0	110.0	170.0	241.0	334-5
$MgSO_4 + 7H_2O$. NaOH	41.5	87.5	138.0	196.0	262.0	00.4	20.0	47.0	# T T O	60 -
NaOH	4·3 6.6	8.0	11.3	14.3	17.0 25.5	22.4	30.0	41.0 gives 8°		60.1
NaNO ₃	9.0	18.5	28.0	38.0	48.0	33·5 68.0	99.5	156.0		
		5			4	-	22.2		.1	
$NaC_2H_3O_2 + 3H_2O.$	14.9	30.0	46.1	62.5	79.7	118.1	194.0	480.0	6250.0	
Na ₂ S ₂ O ₃ · · · ·	14.0	27.0	39.0	49.5	59.0 85.3	77.0	104.0	152.0	214.5	311.0
Na_2HPO_4 $Na_2C_4H_4O_6 + 2H_2O$.	17.2	34.4	51.4	68.4	121.3	183.0	1227 2	rives 8	o.4 rise)	
$Na_2S_2O_8 + 5H_2O$.	23.8	50.0	78.6	93.9	139.3	216.0		1765.0	.4 1150)	
					-39.3		400.0	-/03.0		
$Na_2CO_3 + 10H_2O$.	34.1	86.7	177.6	369.4	1052.9			,		
$Na_2B_4O_7 + 10H_2O$. NH_4Cl	39.	93.2	254.2	898.5	(5555-5		4 .5 ris	(e)		
NH ₄ Cl	10.0	20.0	30.0	24.7	29.7 52.0	39.6	56.2	88.5	248.0	337.0
(NH ₄) ₂ SO ₄	15.4	30.1	44.2	58.0	71.8	99.1		gives		337.0
									,	4
$SrCl_2 + 6H_2O$ $Sr(NO_3)_2$	20.0	40.0	60.0	81.0	103.0	1 50.0	234.0	524.0		
C ₄ H ₆ O ₆	17.0	45.0	63.6	70.0	97.6 87.0	123.0	177.0	2720	2740	484.0
$C_2H_2O_4 + 2H_2O$.	19.0	40.0	62.0	86.0	112.0	169.0	177.0	272.0 540.0	374.0	50000.0
$C_6H_8O_7 + H_2O$.	29.0	58.0	87.0	116.0	145.0	208.0	320.0	553.0	952.0	33000.0
			1							
Salt. 40	6	0°	80°	100°	120°	140°	160	180	200	240°
		-			-	-				
CaCl ₂ 137		22.0	314.0							
KOH 92 NaOH 93	0	21.7	152.6	185.0						
NaUH 93 NH ₄ NO ₈ 682		70.0	230.0	345.0	526.3		1333.	0 2353	0 6452.	0 -
C ₄ H ₆ () ₆ 980	1 01			y gives		00				
, , ,	3/1		,	8.103	101					

^{*} Compiled from a paper by Gerlach, "Zeit. f. Anal. Chem." vol. 26.

FREEZING MIXTURES.*

Column 1 gives the name of the principal refrigerating substance, A the proportion of that substance, B the proportion of a second substance named in the column, C the proportion of a third substance, D the temperature of the substances before mixture, E the temperature of the mixture, F the lowering of temperature, G the temperature when all snow is melted, when snow is used, and F the amount of heat absorbed in heat units (small calories when F is grams). Temperatures are in Centigrade degrees.

	1	1		†	1			
Substance.	A	В	С	D	E	F	G	Н
NaC ₂ H ₃ O ₂ (cryst.)	85	H ₂ O-100	_	10.7	-4-7	15.4	_	-
NH ₄ Cl	30	66 66	-	13.3	- 5.1	18.4	-	-
NaNO ₈	75	66 66	_	13.2	- 5.3	18.5	~	-
$Na_2S_2O_3$ (cryst.) . KI	110	66 66		10.7	- 8.0 - 11.7	18.7	-	
CaCl ₂ (cryst.)	250	66 66	_	10.8	-12.4	23.2	-	_
NH ₄ NO ₃	60	"	-	13.6	- 13.6	27.2	-	-
$(NH_4)_2SO_4$	25	" 50	NH4NO3-25	-	-	26.0	-	-
NH ₄ Cl	25	66 66	66 66	_	_	22.0	-	-
KNO ₃	25	66 66	NH ₄ Cl-25	_		20.0	_	
Na ₂ SO ₄	25	66 66	86 66	-	-	19.0	-	-
NaNO ₃	25	"	66 46	-	-	17.0	-	-
K ₂ SO ₄	10	Snow 100	-	— ī	- 1.9	0.9	-	
Na_2CO_3 (cryst.) . KNO_3	13	" "		— I	- 2.0 - 2.85	1.85		
CaCl ₂	30	66 66	_	_ i	- 10.9	9.9	_	-
NH ₄ Cl	25		-	- 1	- 15.4	14.4	-	-
NH ₄ NO ₈	45	66 66	-	— I	— 16.75	15.75	-	- 1
NaNO ₃	50	"		— I	- 17.75 - 21.3	16.75	_	
11401	33	" 1.097	_	— i	- 37.0	36.0	-37.0	0.0
	I	" 1.26	- 0	— I	- 36.0	35.0	- 30.2	17.0
$H_2SO_4 + H_2O$	I	" 1.38	-	— I	- 35.0	34.0	- 25.0	27.0
(66.1 % H ₂ SO ₄)	I	2.52	-	— I	- 30.0	29.0	- 12.4	133.0
	I	" 4.32 " 7.92		— I	- 25.0 - 20.0	24.0	$\frac{-7.0}{-3.1}$	553.0
	I	" 13.08	-	-1	16.0	15.0	- 2.I	967.0
	I	" 0.35	-	0	-	-	0.0	52.1
	I	" .49	-	0	-	-	- 19.7	49.5
	I	" .61 " .70	_	0		_	- 39.0 - 54.9†	30.0
$CaCl_2 + 6H_2O$	ī	" .81	_	0	_ 1		- 40.3	46.8
	1	" 1.23	-	0	-	-	- 21.5	88.5
	I	" 2.46	-	0	-	-	- 9.0	192.3
}	I	4.92		0	- 20.0		4.0	392.3
Alcohol at 4°	77	" 73 CO ₂ solid	_ = 11	-	- 30.0 - 72.0	_	-	-
Chloroform	-	66 66	-	-	-77.0	-	-	-
Ether	- 1	66 66	-	-	-77.0	-	-	-
Liquid SO ₂	_ I	H ₂ O75	T 1	20	-82.0		-	220
1	I	"·94	_	20	- 4.0	_	_	33.0
	I	46 66	-	IO	-4.0	7-	-	34.0
	I	6 (6	-	5	-4.0	-	-	40.5
NH ₄ NO ₃ .	I	Snow " H ₂ O-1.20		0	- 4.0 - 14.0		-	122.2
11141103	I	Snow "	_	IO	- 14.0 - 14.0	_		17.9
	I	H ₂ O-1.31	-	10	- 17.5	-	_	10.6
	I	Snow "	-	0	- I7.5†	-	-	131.9
	I	H ₂ O-3.61	-	10	-8.0	-	-	0.4
	I	Snow "		0	- 8.0	-	_	327.0
						1		

^{*} Compiled from the results of Cailletet and Colardeau, Hammerl, Hanamann, Moritz, Pfanndler, Rudorf, and Tollinger.

[†] Lowest temperature obtained.

CRITICAL TEMPERATURES, PRESSURES, VOLUMES, AND DENSITIES OF GASES.*

 θ = Critical temperature.

P = Critical pressure in atmospheres.

 ϕ = Critical volume referred to volume at 0° and 76 centimeters pressure.

d = Critical density in grams per cubic centimeter.

a, b, Van der Waals constants in

Substance.	0	P	4	ď	a × 10 ⁸	b × 106	Observer
Substance							
Air	****	20.0			250	1.60	
	-140.0	39.0	0.00713	0.288	257 2407	1560	2
Alcohol (C ₂ H ₆ O) , (CH ₄ O) ,	243.6	62.76 78.5	0.00/13	0.200	1898	3769	
Ammonia	239.95				798	2992 1606	3
	130.0 —117.4	115.0	COLUMN 1		259	1348	4
Argon Benzene	288.5	52.9		0.305	3726	5370	5 3 6
Bromine	302.2	47.9	0.00605	1.18	1434	2020	2
Carbon dioxide .	31.2		0.0044	0.46	717	1908	-
" monoxide.	-141.1	73-	0.0044	0.40	275	1683	7
" disulphide	273.	35.9 72.9	0,0090		2316	3430	7 8
Chloroform	260.0	54.9	0.0090	_	2930	4450	9
Chlorine	141.0	83.9	_	-	1157	2259	4
"	146.0	93.5	_	_	1063	2050	IO
Ether	197.0	35.77	0.01584	0.208	3496	6016	II
46	194.4	35.61	0.01344	0.262	3464	6002	3
Ethane	32.1	49.0	- 344	-	1074	2848	12
Ethylene	9.9	51.1	-	_	886	2533	_
Helium	<-268.0	2.3	_	-	5	700	13
Hydrogen	-240.8	14.	_	-	42	880	14
" chloride .	51.25	86.0	_	_	692	1726	15
46 66	52.3	86.0	-	0.61	697	1731	4
" sulphide.	100.0	88.7	_	_	888	1926	I
Krypton	-62.5	54.3	_	-	462	1776	5
Methane	-81.8	54.9	_	-	376	1557	I
"	-95.5	50.0	-	_	357	1625	4
Neon	<205.0	29.	_	_	-		5,13
Nitric oxide (NO).	-93.5	71.2	_	-	257	1160	I
Nitrogen	-146.0	35.0	_	0.44	259	1650	I
" monoxide		00			-		
(N ₂ O)	35.4	75.0	0.0048	0.41	720	1888	4,17
Oxygen	35·4 —118.0	50.0	-	0.6044	273	1420	I
Sulphur dioxide .	155.4	78.9	0.00587	0.49	1316	2486	9,17
Water	358.1	-	0.001874	0.429	-	-	6
"	374.	217.5	- 0.01		1089	1362	16

- (1) Olszewski, C. R. 98, 1884; 99, 1884; 100, 1885; Beibl. 14, 1890; Z. Phys. Ch. 16, 1893.

- (2) Ramsay-Young, Tr. Roy. Soc. 177, 1886.
 (3) Young, Phil. Mag. 1900.
 (4) Dewar, Phil. Mag. 18, 1884; Ch. News, 84, 1901.
- (5) Ramsay, Travers, Phil. Trans. 16, 17, 1901.

(6) Nadejdine, Beibl. 9, 1885.

Wroblewski, Wied. Ann. 20, 1883; Stz. Wien. Ak. 91, 1885.

(8) Batelli, 1890.

- (9) Sajotschewsky, Beibl. 3, 1879. (10) Knietsch, Lieb. Ann. 259, 1890. (11) Batelli, Mem. Torino (2), 41, 1890.
- (12) Cardozo, Arch. sc. phys. 30, 1910. (13) Kamerlingh-Onnes, Comno. Phys. tab.
- Leiden, 1908, 1909, Proc. Amst. 11, 1908, C. R. 147, 1908. (14) Olszewski, Ann. Phys. 17, 1905.
- (15) Ansdell, Chem. News, 41, 1880.
- (16) Holborn, Baumann Ann. Phys. 31, 1910.

(17) Cailletet, C. R. 102, 1886; 104, 1887.

^{*}Abridged for the most part from Landolt and Börnstein's "Phys. Chem. Tab."

CONDUCTIVITY FOR HEAT. METALS AND ALLOYS.

The coefficient k is the quantity of heat in small calories which is transmitted per second through a plate one centimeter thick per square centimeter of its surface when the difference of temperature between the two faces of the plate is one degree Centigrade. The coefficient k is found to vary with the absolute temperature of the plate, and is expressed approximately by the equation $k_t = k_0 [\mathbf{1} + \mathbf{a}(t-t_0)]$. k_0 is the conductivity at t_0 , the lower temperature of the bracketed pairs in the table, k_t that at temperature t, and a is a constant. k_t in g-cal. per degree C per sec. across cm cube $= \mathbf{0.239} \times k_t$ in watts per degree C per sec. across cm cube.

				_					
Substance	ℓ°C	k _t	α	Refer- ence.	Substance.	t°C	k _t	α	Refer- ence.
Substance Aluminum	-160 18 100 200 400 500 600 600 18 100 -160 17 0 18 100 -160 18 100 -17 17 17 18 100 -160 -160 -160 -160 -160 -17 -17 -18	0.514 0.480 0.492 0.545 0.760 0.885 1.01 1.025 0.0194 0.0194 0.246 0.204 0.225 0.0540 1.079 0.918 0.908 0.070 0.705 0.037 0.141 0.151 0.151	+.0030 +.0020 +.0014 00104 0021 0024 +.0025 0003 +.00227 00013 +.0027 0007 +.0003 0005 0008	1 2 3 3 4 5 2 1 1 4 4 1 2 2 1 2 4 6 6 6 8 8 2 1	Mercury "" Molybdenum Nickel. "" "" Palladium. Platinum. Pt 10% Ir Pt 10% Rh Platinoid Potassium. Rhodium. Silver, pure. "" Sodium. "" Tantalum. "" Tin.	0 0 50 17 -160 188 0 1000 2000 12000 18 1000 17 17 18 5.0 57.4 17 -160 18 1000 17 17 18 1000 17 17 17 18 1000 17 17 17 18 1000 17 17 17 17 17 17 17 17 17 17 17 17 17	0.0148 0.0189 0.346 0.129 0.1425 0.1325 0.064 0.058 0.1683 0.1683 0.1664 0.1733 0.074 0.072 0.060 0.216 0.216 0.998 1.006 0.998 1.006 0.321 0.321 0.321 0.188 0.188 0.198 0	+.0055 0001 00032 00047 +.0010 +.00051 +.0002 +.0002 0013 0010 00017 0012 00014	7 6 1 2 3 3 3 2 2 6 6 6 1 8 6 7 9 9 4
Graphite Iridium Iron,† pure	17 17 18 100 -160 18	0.037 0.141 0.161 0.151	+.0003	6 8 2	" "	17 1700 1900 2100 0	0.130 0.174 0.186 0.198	000I +.00032	6 9 9
" steel, 1 % C Lead, pure " " Magnesium Manganin	100 -160 18 100 0 to 1 100 -160	0.108 0.107 0.092 0.083 0.081 0.376	000I 000I 	1 1 4 1	Tungsten Tungsten " " " Wood's alloy	1600 2000 2400 2800	0.476 0.249 0.272 0.294 0.313 0.319	0001 +.00023 +.00016	6 10 10 7
" (84 CU+4 Ni 12 Mn)		0.0519	+.0026	2	Zinc, pure	18	o. 278 o. 2653 o. 2619	00016	2

References: (1) Lees, Phil. Trans. 1908; (2) Jaeger and Diesselhorst, Wiss. Abh. Phys. Tech. Reich. 3, 1900; (3) Angell, Phys. Rev. 1911; (4) Lorenz; (5) Macchia, 1907; (6) Barratt, Pr. Phys. Soc. 1914; (7) H. F. Weber, 1879; (8) Hornbeck, Phys. Rev. 1913; (9) Worthing, Phys. Rev. 1914; (10) Worthing, Phys. Rev. 1917.

^{*} Copper: 100-107° C, $k_t = 1.043$; 100-268°, 0.969; 100-370°, 0.931; 100-541°, 0.902 (Hering: for reference see next page)

ing; for reference see next page). † Iron: 100-727° C, $k_t = 0.202$; 100-912°, 0.184; 100-1245°, 0.191 (Hering).

SMITHSONIAN TABLES.

CONDUCTIVITY FOR HEAT.

TABLE 230. - Thermal Conductivity at High Temperatures.

(See also Table 229 for metals; k in gram-calories per degree centigrade per second across a centimeter cube.)

Material.	Tempera- ture, °C	Ĭ.	Reference.	Material.	Tempera- ture, ° C	ħ	Reference.
Amorphous carbon Graphite (artificial)	37-163 170-330 240-523 283-597 100-360 100-751 100-842 100-390 100-546 100-720 100-914 30-2830 2800-3200 90-110 180-120 500-700	.028003 .027004 .020003 .011004 .089 .124 .129 .338 .324 .306 .291 .162 .002 .5545 .4434	1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1	Brick: Carborundum Building Terra-cotta Fire-clay Gas-retort Graphite Magnesia Silica Granite Limestone Porcelain (Sèvres) Stoneware mixtures	150-1200 15-1100 125-1220 100-1125 300-700 50-1130 100-1000 100 200 500 40 100 350 165-1055 70-1000	.0032027 .00180038 .00320054 .0038 .0224 .00270072 .0020033 .00450050 .00430097 .00400057 .00320035 .00320035 .00390049	3 3 3 3 3 3 4 4 4 4 4 4 4 4 3 3 3

References: (1) Hansen, Tr. Am. Electrochem. Soc. 16, 329, 1909; (2) Hering, Tr. Am. Inst. Elect. Eng. 1910; (3) Bul. Soc. Encouragement, 111, 879, 1909; Electroch. and Met. Ind. 7, 383, 433, 1909; (4) Poole, Phil. Mag. 24, 45, 1912; see also Clement, Egy, Eng. Exp. Univers. Ill. Bull. 36, 1909; Dewey, Progressive Age, 27, 772, 1909; Woolson, Eng. News, 58, 166, 1907, heat transmission by concretes; Richards, Met. and Chem. Eng. 11, 575, 1913. The ranges in values under 1 do not depend on variability in material but on possible errors in method; reduced from values expressed in other units.

TABLE 231. - Thermal Conductivity of Various Substances.

Substance, temperature.	kı	Refer- ence.	Substance, temperature.	kı	Refer- ence.
Aniline BP 183° C., -160	.000112	I	Naphthalene MP 70° C., -160	.0013	I
Carbon, gas	.010	-	Naphthalene MP 79° C., o	.00081	I
Carbon, graphite	.012	-	Naphthol - B. MP 122° C., -160.	,00068	I
Carborundum	.00050	2	Naphthol, o	.00062	I
Concrete, cinder	.00081	-	Nitrophenol, MP 114° C., -160	.00106	I
stone	.0022	3	Nitrophenol, o	.00065	1
Diatomaceous earth	.00013	4	Paraffin MP 54° C., -160	.00062	I
Earth's crust	.004		Paraffin, o	.00059	I
Fire-brick	.00028	4	Porcelain	.0025	-
Fluorite, -190	.093	5	Quartz \(\perp \) to axis, -190	.0586	5
Fluorite, o	.025	5	, 0	.0173	5
Glass: window	.0025		" , Ioo	.0133	5
crown, 03572, -190	.00118	5	Quartz to axis, o	.0325	5
Crown, Oa572, O	.00280	5	Rock salt, o	.0167	5
crown, 03572, 100	.00324	5	Rock salt, 30	.0150	5
h'vy flint oiss, 0	.00001	5 3	Rubber, vulcanized, -160 Rubber, o	.00033	5 5
h'vy flint 0166, 100	.00170	5	Rubber, para	.00037	3
Glycerine, -160	.00077	3	Sand, white, dry	.00043	6
Granite.	.0053	6	Sandstone, dry	.0055	6
Ice160	.0066	T	Sawdust	.00012	_
Ice, o	.0050	I	Slate \(\preceq\) to cleavage	.0034	6
Iceland spar, -190	.038	5	Slate to cleavage	.0060	6
Iceland spar, o	.0103	5	Snow, fresh, dens. = o.II	.00026	7
Lime	.00029	4	Snow, old	.0012	7
Limestones, calcite \	.0047 to	6	Soil, average, sl't moist	.0037	-
Marbles, dolomite	.0056	5	Soil, very dry	.0037	-
Mica	.0018	-	Sulphur, rhombic, o	.00070	5 8
Flagstone to cleavage	.0063	6	Vaseline, 20	.00022	
Micaceous to cleavage	.0044	6	Vulcanite	.00087	9

References: (1) Lees, Tr. R. S. 1905; (2) Lorenz; (3) Norton; (4) Hutton, Blard; (5) Eucken, Ann. d. Phys., 1911; (6) Herschel, Lebour, Dunn, B. A. Committee, 1879; (7) Jansson, 1904; (8) Melmer, 1911; (9) Stefan.

THERMAL CONDUCTIVITIES OF INSULATING MATERIALS.

Conductivity in g-cal. flowing in 1 sec. through plate 1 cm thick per cm² for 1° C difference of temperature.

Material.	Conduc- tivity.	Density. g/cm³	Remarks.
Air	0.00006	_	Horizontal layer, heated from above.
Calorox	0.000076	0.064	Fluffy, finely divided mineral matter.
Hair felt	0.000085	0.27	
Keystone hair	0.000093	0.30	Felt between layers of bldg. paper.
Pure wool	0.000084	0.107	Firmly packed.
" "	0.000084	0.102	
"	0.000090	0.061	Loosely packed.
	0.000101	0.039	Very loosely packed.
Cotton wool	0.00010		Firmly packed.
Insulite	0.000102	1.9	Pressed wood-pulp—rigid, fairly strong.
Linofelt	0.000103	0.18	Vegetable fibers between layers of paper — soft and flexible.
Corkboard (pure)	0.000106	0.18	
Eel grass	0.00011	0.25	Inclosed in burlap.
Flaxlinum	0.000113	0.18	Vegetable fibers — firm and flexible.
Fibrofelt	0.000113	0.18	D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Rock cork	0.000119	0.33	Rock wool pressed with binder, rigid.
Balsa wood	0.00012	0.12	Very light and soft.
Waterproof lith	0.00014	0.27	Rock wool, vegetable fiber and binder, not flexible.
Dula hand		- 1	Stiff pasteboard.
Pulp board	0.00015		
Air cell 1 in. thick	0.000154	0.14	Corr. asbestos paper with air space.
Asbestos paper	0.000165	0.14	Fairly firm, but easily broken.
Infusorial earth, block	0.00017	0.50	ranty min, but easily broken.
Fire-felt, sheet	0.00020	0.42	Asbestos sheet coated with cement, rigid.
Fire-felt, roll	0.000205	0.42	Soft, flexible asbestos.
Three-ply regal roofing	0.00022	0.88	Flexible tar roofing.
Asbestos mill board	0.00024	0.00	Pressed asbestos, firm, easily broken.
Woods, kiln dried:	0.00029	3.97	a control in the control of the cont
Cypress	0.00023	0.46	
White pine	0.00027	0.50	
Mahogany	0.00031	0.55	
Virginia pine	0.00033	0.55	
Oak	0.00035	0.61	
Hard maple	0.00038	0.71	
Asbestos wood, sanded	0.00093	1.97	Asbestos and cement, very hard, rigid.

Dickinson and van Dusen, Am. Soc. Refrigerating Eng. J. 3, Sept. 1916.

TABLES 233-234.

CONDUCTIVITY FOR HEAT.

TABLE 233. - Various Substances.

kt is the heat in gram-calories flowing in 1 sec. through a plate 1 cm. thick per sq. cm. for 1°C drop in temperature.

Substance.	Density.	°C.	k,	Substance.	k _t	Authority.
Asbestos fiber 85% magnesia asbestos Cotton Eiderdown Lampblack, Cabot number 5 Quartz, mesh 200 Poplox, popped Na ₂ SiO ₃ Wool fibers """ "" "" "" "" "" "" "" ""	0.201 .216 .021 .101 .0021 .109 .193 1.05 0.093 .015 .054	500 100 500 1100 11 150 1100 500 5	.00019 .00016 .00017 .000111 .000071 .000015 .000046 .000074 .000160 .000160 .00018 .000168	Asbestos paper Blotting paper Portland cement Cork, 1,0°C Chalk Ebonite, 1,49° Glass, mean Ice Leather, cow-hide "chamois Linen Silk Caen stone, limestone Free stone, sandstone	0.00043 .00015 .00071 .0007? .0020 .00037 .002 .0057 .00042 .00015 .00021	Lees-Chorl- ton. Forbes. H, L, D, see p. 205. Various. Neumann. Lees-Chorl- ton. H, L, D.

Left-hand half of table from Randolph, Tr. Am. Electroch. Soc. XXI., p. 550, 1912; k_t (Randolph's values) is mean conductivity between given temperature and about 10°C. Note effect of compression (density). The following are from Barratt Proc. Phys. Soc., London, 27, 81, 1914.

Substance	Donaity	1	£ .	Substance.	Density.		k _t
Brick, fire Carbon, gas Ebonite Fiber, red	1.73 1.42 1.19 1.29 2.59 2.17	at 20°C. .00110 .0085 .00014 .00112 .00172 .00237	at 100°C. .00109 .0095 .00013 .00119 .00182	Boxwood	0.90 1.08 1.16 0.55 0.65	at 20°C. .00036 .00112 .00060 .00051 .00058	at 100°C00041 .00110 .00072 .00060 .00061

The following values are from unpublished data furnished by C. E. Skinner of the Westinghouse Co., Pittsburgh, Penn. They give the mean conductivity in gram-calories per sec. per cm. cube per °C. when the mean temperature of the cube is that stated in the table. Resistance in thermal ohms (watts/inch²/inch/°C.) = $\frac{r}{10.6}$ conductivity.

Substance.	Grams.		Safe				
Jubstance	per cm ³ .	100° C.	200° C.	300° C.	400° C.	500° C.	temp.
Air-cell asbestos	0.232 .168 .326 .506 .321 .450 .362	0.00034 .00015 .00028 .00034 .00030 .00023	0.00043 .00019 .00032 .00032 .00029 .00025	0.00050 .00037 .00040 .00033 .00025		0.00046 - - - .00102	320 180 600 400 300 600

TABLE 234 .- Water and Salt Solutions.

Substance.	°C.	k _t	Authority.	Solution in water.	Density.	°C.	k,	Authority.
Water	0 11 25 20	0.00150 .00147 .00136 .00143	Goldschmidt, '11. { Lees, '98. Milner, Chattock, '98	CuSO ₄ KCl NaCl '' H ₂ SO ₄ ZnSO ₄	1.160 1.026 1.178 	4.4 13. 4.4 26.3 20.5 21. 4.5	0.00118 .00116 .00115 .00135 .00126 .00130 .00118	H. F. Weber. Graetz. H. F. Weber. Chree. H. F. Weber.

TABLE 235. - Thermal Conductivity of Organic Liquids.

Substance.	°C	kt	Refer.	Substance.	°C	kt	Refer.	Substance.	°C	kı	Refer.
Alcohols: methyl "ethyl "amyl Aniline	II	.03472 .0352 .0346 .03345 .03434	3 -	Ether	9-15 9-15 25 13	.03303	1 2 5	WW 1		.03395 .03425 .03349 .0344 .03343	4 4 3 2 3
References: (1) H. F. Weber; (2) Lees; (3) Goldschmidt; (4) Wachsmuth; (5) Graetz.											

TABLE 236. — Thermal Conductivity of Gases.

The conductivity of gases, $k_t = \frac{1}{2}(9\gamma - 5)\mu C_v$, where γ is the ratio of the specific heats, C_p/C_v , and μ is the viscosity coefficient (Jeans, Dynamical Theory of Gases, 1916). Theoretically k_t should be independent of the density and has been found to be so by Kundt and Warburg and others within a wide range of pressure below one atm. It increases with the temperature.

Gas.	t° C	kt	Ref.	Gas.	t° C	kt	Ref.	Gas.	t° C	kε	Ref.
Air* Ar CO CO ₂	-191 100 -183 100 -78	0.0000180 0.0000566 0.0000719 0.0000142 0.0000388 0.0000509 0.0000542 0.0000219 0.0000332	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CO ₂ C ₂ H ₄ He " " H ₂ " CH ₄	100 D -193 D 100 -192 D 100	0.0000496 0.000395 0.000146 0.000344 0.000398 0.000133 0.000416 0.000499 0.0000720	1 2 1 4 1 1 4 1	Hg N2	203 -191 0 100 -191 0 100 8	0.0000185 0.000183 0.0000568 0.0000718 0.0000172 0.0000570 0.0000570 0.000046 0.0000353	3 1 1 1 1 1 1 2 4

References: (1) Eucken, Phys. Z. 12, 1911; (2) Winkelmann, 1875; (3) Schwarze, 1903; (4) Weber, 1917.

TABLE 237. - Diffusivities.

The diffusivity of a substance $=k^2=k/c\rho$, where k is the conductivity for heat, c the specific heat and ρ the density (Kelvin). The values are mostly for room temperatures, about 18° C.

Material.	Diffusivity.	Material.	Diffusivity
Aluminum Antimony. Bismuth Brass (yellow) Cadmium Copper Gold Iron (wrought, also mild steel) Iron (cast, also 1% carbon steel) Lead Magnesium Mercury Nickel Palladium Platinum Silver Tin Zinc Air Asbestos (loose) Brick (average fire) Brick (average building)	0.139 0.0678 0.339 0.467 1.133 1.182 0.173 0.121 0.237 0.883 0.0327 0.152 0.240 0.243 1.737 0.407 0.402 0.179 0.0035 0.0074	Coal Concrete (cinder) Concrete (stone) Concrete (light slag) Cork (ground) Ebonite Glass (ordinary) Granite Lice Limestone Marble (white) Paraffin Rock material (earth aver.) Rock material (crustal rocks) Sandstone Snow (fresh) Soil (clay or sand, slightly damp) Soil (very dry) Water Wood (pine, cross grain) Wood (pine with grain)	0.002 0.0032 0.0058 0.006 0.0017 0.0010 0.0057 0.0155 0.0112 0.0092 0.0098 0.0118 0.0064 0.0133 0.0057 0.0033 0.005 0.0034 0.0004

Taken from An Introduction to the Mathematical Theory of Heat Conduction, Ingersoll and Zobel, 1913.

^{*} Air: $k_0 = 5.22$ (10°5) cal. cm ⁻¹ sec. ⁻¹ deg. C⁻¹; 5.74 at 22°; temp. coef. = .0029; Hercus-Laby, Pr. R. Soc. A95, 190, 1919.

TABLE 238.

LINEAR EXPANSION OF THE ELEMENTS.

In the heading of the columns t is the temperature or range of temperature; C is the coefficient of linear expansion; A_1 is the authority for C; M is the mean coefficient of expansion between o" and 100° C; α and β are the coefficients in the equation $l_1 = l_0(1 + \alpha_1 + \beta_1 t^2)$, where l_0 is the length at 0° C and l_1 the length at l° C; A_2 is the authority for a, \$, and M. See footnote for Molybdenum and Tungsten.

Substance.	1	C × 104	A1	M × 104	a × 104	β×10 ⁸	A2
Aluminum	40	0.2313	x	0.2220	_	_	0
44	600	0.3150	3	-		_	_
66	-191 to +16	0.1835	4	_	. 23536	.00707	5
Antimony: to axis		0.1692	I	_	-	_	-
to axis	40	0.0882	I				6
Arsenic	40 40	0.1152	1	0.1056	.0923	.0132	1 -0
	40						
Bismuth: to axis	40	0.1621	1	-	M1-		_
to axis	40	0.1208	1	-			6
Mean	40	0.1346	I	0.1316	. 1167	.0149	6
Cadmium	40	0.3069	1	0.3159	. 2093	.0400	
Carbon: Diamond	40	0.0118	I			-	
Gas carbon	40	0.0540	1		-		-
Graphite	40	0.0786	I	_	.0055	.0016	13
Anthracite	40	0.2078	1	_			
Cobalt	40	0.1236	1	0.1666	.1481	.0185	6
Copper	-101 to +16	0.1070	4	0.1000	.16070	.00403	
Gold	40	0.1443	I	0.1470	.1358	.0112	5
44	-170	0.117	15	-		-	-
Indium	40	0.4170	I	_	_		_
Iridium	18	0.088	16	0.000	_	-	16
Iron: Soft	40	0.1210	I	_	-	-	-
Cast	40	0.1061	I		_	-	-
Cast		0.0850	4				
Wrought	-18 to 100	0.1140	7 I	_	.11705	.005254	8
Steel	40 40	0.1322	I	0.1080	.1038	.0052	
Lead	40	0.2024	ī	0.2700	. 273	.0074	6
Lead (cast)	-170	0.24	15	-			_
Magnesium	40	0.2694	I	0.261	-		16
Nickel	40	0.1279	I	-	.13460	.003315	8
		0.1012	4	0.102	_	-	16
Osmium	40	0.0657	I	-			8
Palladium	40 0-40	0.1176	I		.11670	.002187	8
Platinum	40	0.0800	10		.08868	.001324	8
Potassium	0-50	0.8300	II	_			
Rhodium	40	0.0850	I	111_		_	_
Ruthenium	40	0.0963	I	-	-		-
Selenium	40	0.3680	I	0.6604		-	12
Silicon	40	0.0763	I				-
Silver	-191 to +16	0.1921	I		.18270	.004793	16
Sodium	o to 90	0.1704	4	0.189		-	10
Sulphur: Cryst. mean	40	0.6413	14	1.180	_	_	12
Tellurium	40	0.1675	ī	0.3687	_		12
Thallium	40	0.3021	I	_	_	_	-
Tin	40	0.2234	I	0.2296	. 2033	.0263	6
Zinc	40	0.2918	I	0.2976	.274I	.0234	6
Zinc (cast)	-170	0.190	15	_		_	-
			-				

References: (1) Fizeau; (2) Calvert, Johnson and Lowe; (3) Chatelier; (4) Henning; (5) Dittenberger; (6) Matthiessen; (7) Andrews; (8) Holborn-Day; (9) Benoit; (10) Pisati and De Franchis; (11) Hagen; (12) Spring; (13) Day and Sosman; (14) Griffiths; (15) Dorsey; (16) Gritniesen.

Tungsten: $(L-L_0)/L_0 = 4.44 \times 10^{-6}(T-3\infty) + 45 \times 10^{-11}(T-3\infty)^2 + 2.20 \times 10^{-13}(T-3\infty)^3$. $L_0 = \text{length}$ at 300° K. Coefficient at 300° K = 4.44 × 10⁻⁶; 1300° K, 5.19 × 10⁻⁶; 2300° K, 7.26 × 10⁻⁶. Worthing, Phys. Rev.

Molybdenum: $L_t = L_0(\mathbf{1} + 5.15t \times \mathbf{10}^{-6} + 0.00570^0 \times \mathbf{10}^{-6})$, for 19° to -142° C; $= L_0(\mathbf{1} + 5.01t \times \mathbf{10}^{-6} + 0.00138^0 \times \mathbf{10}^{-6})$, for 19° to $+305^\circ$ C; Schad and Hidnert, Phys. Rev. 1919. The Holborn-Day and Sosman data are for temperatures from 20° to 1000° C. The Dittenberger, 0° to 600° C.

LINEAR EXPANSION OF MISCELLANEOUS SUBSTANCES.

The coefficient of cubical expansion may be taken as three times the linear coefficient. t is the temperature or range of temperature, C the coefficient of expansion, and A, the authority.

Person			-				_			
Substance.	ŧ	C × 104	A.	Substance.	1	C × 104	A.			
Brass:										
Cast	0-100	0.1875	I	Platinum -silver:						
Wire	4.6	0.1930	I	_ I Pt + 2Ag	0-100	0.1523	4			
"	66	. 1783 193	2	Porcelain	20-790	0.0413	19			
71.5 Cu + 27.7 Zn + 0.3 Sn + 0.5 Pb 71 Cu + 29 Zn		0		Ouartz: Bayeux	1000-1400	0.0553	20			
0.3 Sn + 0.5 Pb	40 0~100	o. 1859 o. 1906	3	Parallel to axis	0-80		6			
Bronze:	0-100	0.1900	4	Parada to axis	-190 to + 16	0.0797	21			
3 Cu + 1 Sn	16.6-100	0.1844	5	Perpend. to axis	0-80	0.1337	6			
3 00 , 000			-	Quartz glass	-190 to +16	-0.0026	13			
	100			44 44 44 44 44 44 44 44 44 44 44 44 44	16 to 500	0.0057	26			
	16.6-350	0.2116	5		16-1000	0.0058	26			
				Rock salt	40 0°	0.4040	3			
	16.6-057	0.1737	5	Rubber, hard	-160	0.691	27			
86.3 Cu + 9.7 Sn +	10.0 937	0.1/3/	3	Speculum metal	0-100	0.300	I			
4 Zn	40	0.1782	3	Topaz:		0.1933	- 1			
97.6 Cu + 2.2 Sn + 0.2 P { hard soft	0-80	0.1713	6	Parallel to lesser						
2.2 Sn + soft	0-00	0.1713	6	horizontal axis	46	0.0832	8			
Country Cont				Parallel to greater	**	0 . 1				
Caoutchouc	16.7-25.3	0.657-0.686	2	horizontal axis Parallel to vertical		0.0836	8			
Constantan	4-29	0.770 0.1523	7	avis	66	0.0472	8			
Ebonite	25.3-35.4	0.1523	7	axis		0.04/2				
Fluor spar: CaF2	0-100	0.1050	7 8	Parallel to longi- tudinal axis						
German silver	66	0.1836	8	tudinal axis	46	0.0937	8			
Gold-platinum:	66			Parallel to horizon-	**		- 1			
2 Au + 1 Pt		0.1523	4	tal axis		0.0773	8			
Gold-copper: 2 Au + I Cu	66	0.7550		Type metal Vulcanite	16.6-254 0-18	0.1952	5 22			
Glass:		0.1552	4	Wedgwood ware	0-100	0.0300	5			
Tube	66	0.0833	I	Wood:	- 100	0.0090	3			
66	66	0.0828	9	Parallel to fiber:						
Plate	44	0.0891	IO	Ash	66	0.0951	23			
Crown (mean)		0.0897	IO.	Beech	2.34	0.0257	24			
Flint	50-60	0.0954	II	Chestnut	66	0.0649	24			
Flint				Mahogany	66	0.0361	24			
mometer normal	0-100	0.081	12	Maple	66	0.0638	24			
				Oak	44	0.0492	24			
1" 59 ^{III}	**	0.058	12	Pine	66	0.0541	24			
	- 191 to + 16	0.424	13	Walnut		0.0658	24			
Gutta percha	20 - 20 to - I	1.983	14	Beech	44	0.614	24			
Ice	20 10 - 1	0.51	15	Chestnut	66	0.325	24			
Parallel to axis	0-80	0.2631	6	Elm	66	0.443	24			
Perpendicular to axis	64	0.0544	6	Mahogany	66	0.404	24			
Lead-tin (solder)				Maple	44	0.484	24			
2 Pb + 1 Sn	0-100	0.2508	I 76	Oak	46	0.544	24			
Magnalium Manganin	12-39	0.238	16	Pine	66	0.341	24			
Marble	15-100	0.117	17	Wax: White	10-26	2.300	25			
Paraffin	0-16	1.0662	18	66 66	26-31	3.120	25			
"	16-38	1.3030	18	66 66	31-43	4.860	25			
	38-49	4.7707	18		43-57	15.227	25			
Platinum-iridium	40	0.0884								
10 Pt + 1 Ir	40	0.0004	3							
References:										
(1) Smeaton.	(8) Pfaff.			(15) Mean.		(22) Mayer				
(1) Smeaton. (2) Various.	(9) Deluc			(16) Stadthagen		(23) Glatze				
(3) Fizeau.										
(4) Matthiessen.	(11) Pulfri	ch.		(18) Rodwell.		(25) Kopp.	10			
(5) Daniell. (6) Benoit.	(12) Schot	t.		(19) Braun.	Tenast	(26) Randa				
(b) Benoit.	(13) Henni (14) Russn	ing.		(20) Deville and (21) Scheel.	1100st.	(27) Dorse	у.			
(7) Kohlrausch.	(14) Kussi	tot s		(21) Scheel.			-			

CUBICAL EXPANSION OF SOLIDS.

If v_2 and v_1 are the volumes at t_2 and t_1 respectively, then $v_2 = v_1$ ($\mathbf{1} + C\Delta t$), C being the coefficient of cubical expansion and Δt the temperature interval. Where only a single temperature is stated C represents the true coefficient of cubical expansion at that temperature.*

Substance.	t or Δt	C × 104	Authority.
Antimony	0-100	0.3167	Matthiessen
Beryl	0-100	0.0105	Pfaff
Bismuth	0-100	0.3948	Matthiessen
Copper	0-100	0.4998	46
Diamond	40	0.0354	Fizeau
Emerald	40	0.0168	"
Galena	0-100	0.558	Pfaff
Glass, common tube	0-100	0.276	Regnault
" hard	0-100	0.214	44
" Jena, borosilicate	_		
59 III	20-100	0.156	Scheel
" pure silica	0–80	0.0129	Chappuis
Gold	0-100	0.4411	Matthiessen
Ice	20I	1.1250	Brunner
Iron	0-100	0.3550	Dulong and Petit
Lead	0-100	0.8399	Matthiessen
Paraffin	20	5.88	Russner
Platinum	0-100	0.265	Dulong and Petit
Porcelain, Berlin	20	0.0814	Chappuis and Harker
Potassium chloride	0-100	1.094	Playfair and Joule
" nitrate	0-100	1.967	
" sulphate	20	1.0754	Tutton
Quartz	0-100	0.3840	Pfaff
Rock salt	50-60	1.2120	Pulfrich
Rubber	20	4.87	Russner
Silver	0-100	0.5831	Matthiessen
Sodium	20	2.1364	E. Hazen
Stearic acid	33.8-45.5	8.1	Корр
Sulphur, native	13.2-50.3	2.23	"
Tin	0-100	0.6889	Matthiessen
Zinc	0-100	0.8928	46

^{*} For tables of cubical expansion complete to 1876, see Clark's Constants of Nature, Smithsonian Collections, 289.

SMITHSONIAN TABLES.

CUBICAL EXPANSION OF LIQUIDS.

If V_0 is the volume at 0° then at t° the expansion formula is $V_t = V_0 (1 + \alpha t + \beta t^2 + \gamma t^3)$. The table gives values of α , β and γ and of C, the true coefficient of cubical expansion, at 20° for some liquids and solutions. Δt is the temperature range of the observation and A the authority.

Liquid.	Δŧ	a 10 ³	β 10 ⁶	y 10 ⁸	C 10 ³ at 20 ⁰	A
Acetic acid	16-107	1.0630	0.12636	1.0876	1.071	3
Acetone Alcohol:	0-54	1.3240	3.8090	-0.87983	1.487	3
Amyl	15-80	0.9001	0.6573	1.18458	0.002	42
Ethyl, 30% by vol.	18-39	0.2928	10.790	-11.87	0.902	4a
" 50% "	0-39	0.7450	1.85	0.730	_	6
" 99.3% "	27-46	1.012	2.20	- 75	1.12	6
" 500 atmo. press	0-40	0.866			-	I
" 3000 " " .	0-40	0.524	-	-	-	I
Methyl	0-61	1.1342	1.3635	0.8741	1.199	5a
Benzene ,	11-81	1.17626	1.27776	0.80648	1.237	5a
Bromine	0-59	1.06218	1.87714	-0.30854	1.132	2
5.8% solution	18-25	0.07878	4.07.40	1	0.250	
40.9% "	17-24	0.42383	4.2742 0.8571	_	0.250	7 7
Carbon disulphide	-34-60	1.13980	1.37065	1.91225	1.218	4a
500 atmos, pressure .	0-50	0.940	- 5/ 003	-	0.00 =	I
3000 " " " .	0-50	0.581	-			I
Carbon tetrachloride	0-76	1.18384	0.89881	1.35135	1.236	4b
Chloroform	0-63	1.10715	4.66473	-1.74328	1.273	4b
Ether	-15-38	1.51324	2.35918	4.00512	1.656	4a
Glycerine	-	0.4853	0.4895	-	0.505	. 8
Hydrochloric acid: 33.2% solution	0.22	0.4460	0.015		0.455	
Mercury	0-33	0.18182	0.215	_	0.455	9
Olive oil	0-100	0.6821	1.1405	-0.539	0.721	10
Pentane	0-33	1.4646	3.09319	1.6084	1.608	14
Potassium chloride:	33		3 73 7	100		
24.3% solution	16-25	0.2695	2.080	-	0.353	7
Phenol	36-1.57	0.8340	0.10732	0.4446	1.090	II
Petroleum:		. 900	6	11	0044	1
Density 0.8467 Sodium chloride:	24-120	0.8994	1.396		0.955	12
20.6% solution	0-29	0.3640	1.237		0.414	9
Sodium sulphate:	0-29	0.3040	1.23/		0.4.4	9
24% solution	11-40	0.3599	1.258	-	0.410	9
Sulphuric acid:		3377	3			
10.9% solution	0-30	0.2835	2.580		0.387	9
100.0%	0-30	0.5758	-0.432	- 0	0.558	9,
Turpentine	-9-106	0.9003	1.9595	-0.44998	0.973	5b
Water	0-33	-0.06427	8.5053	-6.7900	0.207	13
	1				1	

AUTHORITIES.

- Amagat: C. R. 105, p. 1120; 1887.
 Thorpe: Proc. Roy. Soc. 24, p. 283; 1876.
- 3. Zander: Lieb. Ann. 225, p. 109; 1884.
- 4. Pierre: a. Lieb. Ann. 56, p. 139; 1845. b. Lieb. Ann. 80, p. 125; 1851.
- 5. Kopp: a. Lieb. Ann. 94, p. 257; 1855. b. Lieb. Ann. 93, p. 129; 1855. 6. Recknagel: Sitzber. bayr. Ak. p. 327, 2
- Abt.; 1866.
- Drecker: Wied. Ann. 34, p. 952; 1888.
- 8. Emo: Ber. Chem. Ges. 16, 1857; 1883.

- 9. Marignac: Lieb. Ann., Supp. VIII, p. 335; 1872.
- 10. Spring: Bull. Brux. (3) 3, p. 331; 1882.
- 11. Pinette: Lieb. Ann. 243, p. 32; 1888. 12. Frankenheim: Pogg. Ann. 72, p. 422;
- 1847. 13. Scheel: Wiss. Abh. Reichsanstalt, 4, p. 1;
- 14. Thorpe and Jones: J. Chem. Soc. 63, p. 273; 1893.

TABLE 242.

COEFFICIENTS OF THERMAL EXPANSION.

Coefficients of Expansion of Gases.

Pressures are given in centimeters of mercury.

Coefficient a	t Constant Vol	ume.		Coefficient	at Constant Pres	ssure.				
Substance.	Pressure cm.	Coefficient × 100.	Reference.	Substance.	Pressure cm.	Coefficient X	Reference.			
Air " " " " " " " " " " " " " " " " " "	.6 1.3 10.0 25.4 75.2 100.1 76.0 200.0 2000. 10000. 51.7 76.0 1.8 5.6 74.9 51.8 51.8 51.8 99.8 99.8 100.0 76. 56.7 .0077 .025 .47 .93 11.2 76.4	.37666 .37172 .36630 .36580 .36580 .36660 .36923 .38866 .4100 .3668 .36856 .36753 .3641 .37264 .36985 .36985 .37248 .36975 .37262 .37267 .3665 .3328 .3665 .3328 .3656 .3656 .37002 .36548	1 "" " " " " " " " " " " " " " " " " "	Air " 0°-100° Hydrogen 0°-100° " " 0°-20° " " 0°-40° " " 0°-100° " " 0°-100° " " 0°-100° " " 0°-7-5° " " 64°-100° Carbon monoxide Nitrous oxide Sulphur dioxide " " 0°-110° Vapor (°-110° O'-110° O'-110° O'-110° O'-100° O'-7-5° " (64°-100° Carbon monoxide Nitrous oxide Sulphur dioxide " " 0°-141° O'-162° O'-200° O'-247°	200 Atm. 400 " 600 " 800 " 76. 51.8 51.8 51.8 99.8 99.8 137.7 137.7 2621. 2621. 76. 76. 76. 76. 76. 76. 76.	.3671 .3693 .36728 .36600 .332 .295 .261 .242 .37100 .37973 .37602 .37410 .37972 .37703 .1097 .6574 .3669 .3719 .3993 .3980 .4187 .4189 .4071 .3938 .4071 .4	3 " 2 " " " " " " " " " " " " " " " " "			
" 0°-100° Nitrogen 13°-132° " 9°-133° " 0°-20° " 0°-100° " Oxygen 11°-132° " 9°-132°	100.0 .06 .53 100.2 100.2 76. .007	.36626 .3021 .3290 .36754 .36744 .36682 .4161	2 6 2 7 6	Thomson has given, Encyc. Brit. "Heat," the following for the calculation of the expansion, E, between o'and 100° C. Expansion is to be taken as the change of volume under constant pressure: Hydrogen, $E = .3662(10049 V/v)$, Air, $E = .3662(10026 V/v)$,						
" 11°-132° .	.51 1.9 18.5	.3831 .36683 .36690	8	Nitrogen, E =	.3662(100) $.3662(100)$ $.3662(101)$	31 V/v)	,			

1 Meleander, Wied. Beibl. 14, 1890; Wied.

.36681

.3676

.3845

66

3

75.9 76.

76.

Ann. 47, 1892. 2 Chappuis, Trav. Mem. Bur. Intern. Wts.

Meas. 13, 1903. 3 Regnault, Ann. chim. phys. (3)5, 1842. 4 Keunen-Randall, Proc. R. Soc. 59, 1896.

5 Chappuis, Arch. sc. phys. (3), 18, 1892. 6 Baly-Ramsay, Phil. Mag. (5), 38, 1894.

V/v is the ratio of the actual density of the

gas at oo C to what it would have at oo C and

Andrews, Proc. Roy. Soc. 24, 1876.

7 Andrews, Proc. Roy. Soc. 24, 1876. 8 Meleander, Acta Soc. Fenn. 19, 1891. 9 Amagat. C. R. 111, 1890.

I Atm. pressure.

10 Hirn, Théorie méc. chaleur, 1862.

Nitrous oxide

Sulph'r dioxide SO2

SPECIFIC HEAT OF THE CHEMICAL ELEMENTS.

Element.	Range * of temperature, ° C	Specific heat.	Reference.	Element.	Range * of temperature, ° C	Specific heat.	Refer- ence.
Aluminum	-240.6	.0002	45	Cobalt	500	.1452	18
44	-190.0	.0880		66	1000	.204	18
66	-73.0	.190	45 46		-182 to +15	.0822	IQ
	-190 to -82	.1466	47		15-100	. 1030	19
"	-76 to -1	.1962	47	Copper †	-249.5	.0035	45
"	+16 to +100 +16 to +304	.2122	48	66	-223 -185	.0208	46
44	-250	. 2250	40 I	46	-63	.0865	45
44	0	. 2080	I	66	+25	.0017	44
66	100	.2226	I		76	.0937	SI
"	250	. 2382	I	"	84	.0938	51
,,	500	. 2739	I	"	100	.0942	2
Antimony	16-100	.2122	43		362	.0997	51
44	15	.0489	2 2	4	900 15-238	.1259	20
46	200	.0520	2	46	-181 to 13	.0868	43
Arsenic, gray	0-100	.0822	3	"	23-100	.0040	21
Arsenic, black	0-100	.0861	3	Gallium, liquid	12 to 113	.080	22
Barium	-185 to $+20$.068	4	" solid	12-23	.079	22
Bismuth	-186	.0284	5	Germanium	0-100	.0737	23
"	75	.0301	6	Gold	-185 to +20	.033	4
	20-100	0300		Indium	0-100	.0316	13
" fluid	280-380	.0363	7 8	Iodine	-90 to +17	.0485	49
Boron	0-100	.307	0	44	-191 to -80	.0454	49
"	-191 to -78	.0707	47	"	9-98	.0541	25
	-76 to -0	.1677	47	Iridium	-186 to +18	.0282	26
Bromine, solid	-78 to -20	.0843	10		18-100	.0323	26
" solid	-192 to -80	.0702	49 11	Iron	-223 -163	.0176	46
Cadmium	13-45 223	.0308	46	16	-63	.0022	46
66	-173	.0478	46	16	+37	.1002	46
66	-73	.0533	46	" cast	20-100	.1180	27
	21	.0551	2	" wrought	15-100	.1152	28
	100	.0570	2	wrought	1000-1200	.1989	28
"	300	.0594	2	wrought	500 0-18	.176	28
Cæsium	0-26	.0482	12	" hard-drawn	20-100	.1146	29
Calcium	-185 to +20	.157	4	" Hard-drawn	-185 to +20	.0058	4
**	0-181	.170	13	46	o to +200	.1175	53
Carbon, graphite	-191 to -79	.0573	47	66	o to +300	.1233	53
" " "	-76 to -0	.1255	47		o to +400	.1282	53
" " "	-50 +11	.114	14		o to +500 o to +600	.1338	53
" " …	977	. 160	14	66	o to +700	.1396	53
" " …	1730	.50	52		o to +800	.1597	53
	-244	.005	50	66	o to +900	.1644	53
Acheson	1 -186	.027	50	66	0 to +1000	.1557	53
Carbon, diamond	-50	.0635	47		o to +1100	.1534	53
44 44	+11	.113	47	Lanthanum	0-100 -250	.0448	15
Cerium	985	.459	47	Lead	-250 -236	.0143	46
Chlorine, liquid	0-24	. 2262	16	46	-103	.0276	46
Chromium	-200	.0666	17	"	-73	.0295	46
44	0	. 1039	17	44	15	.0299	2
	100	.II2I	17	"	100	.0311	2
	600	.1872	17		300	.0338	2
	-185 to +20	.086	4	" fluid	310	.0356	30

^{*}When one temperature is given, the "true" specific heat is indicated, otherwise the "mean" specific heat. \dagger 0.3834 \pm 0.00020(t-25) intern. j per g degree = 0.0917 \pm 0.000048(t-25) calso per g degree. (Griffith, 1913.)

SPECIFIC HEAT OF THE CHEMICAL ELEMENTS.

Element.	Range * of temperature,	Specific heat.	Reference.	Element.	Range * of temperature,	Specific heat.	Refer- ence.
Lend				Potassium	-191 to -80	60	
Lead	90	0.0312	51	41	-78 to o	0.1568	47
"	18-100	0.0334	51 43	44	-185 to +20	0.1000	47
	16-256	0.0310	43	Rhodium	10-07	0.0580	4 25
Lithium	-101 to -80	0.521	47	Rubidium	20 97	0.0802	23
	- 78 to o	0.595	47	Ruthenium	0-100	0.0611	13
"	-75 to +10	0.629	47	Selenium	-188 to +18	0.068	36
66	-100	0.5997	31	Silicon	-185 to +20	0.123	4
66	0	0.7951	31	44	-39 8	0.1360	14
46	50	0.9063	31		+57.I	0.1833	14
44	100	1.0407	31		232	0.2029	14
********	190	I.3745	31	Silver	-238	0.0146	46
Magnesium	-185 to +20	0.222	4		-213	0.0307	46
	60	0.2492	7		-173	0.0447	46
64	325 625	0.3235	7	"	-73 +27	0.0540	46
44	20-100	0.4352	7 7	44	0-100	0.0550	13
Manganese	-188 to -79	0.0820	40	64	23	0.05498	23
	-79 to +15	0.0020	49	66	100	0.05663	2
44	60	0.1211	49	44	500	0.0581	34
66	325	0.1783	40	44	17-507	0.05087	
44	20-100	0.1211	49	46	800	0.076	43 18
86	-100	0.0079	31	" fluid	907-1100	0.0748	18
44	O	0.1072	31	Sodium	-185 to +20	0.253	4
	100	0.1143	31	46	-191 to -83	0.243	47
Mercury, sol	-77 to -42	0.0329	47		-77 to o	0.276	47
liq	-36 to -3	0.0334	47		-223	0.152	46
	-185 to +20	0.032	4		-183 $-188 to +18$	0.219	46
***********	85	0.03346		Sulphur	0-54	0.137	36
44	100	0.03284	32	" monoclin.	0-54	0.1728	33
44	250	0.03204	2	" liquid	119-147	0.1309	33
Molybdenum	-185 to +20	0.062	4	Tantalum	-185 to +20	0.033	4
4.6	60	0.0647	7	44	1400	0.043	-
4.6	475	0.0750	7	Tellurium	-188 to +18	0.047	36
"	20 to 100	0.0647	7	" crys	15-100	0.0483	37
Nickel	-185 to +20	0.092	18	Thallium	-185 to $+20$	0.038	4
44	100	0.1128	18	· · · · · · · · · · · · · · · · · · ·	20-100	0.0326	27
	300	0.1403	18	Thorium	0-100	0.0276	38
"	500	0.1299	18	Tin	-196 to -79	0.0486	26
44	18-100	0.1008	26	" cast	-76 to +18	0.0518	30
Osmium	10-08	0.0311	10	" fluid	250	0.05799	18
Palladium	-186 to $+18$	0.0528	26	" fluid	1100	0.03799	18
46	0-100	0.0592	24	Titanium	-185 to +20	0.082	4
44	0-1265	0.0714	24	44	0-100	0.1125	39
Phosphorus, red	0-51	0.1829	33	Tungsten	-185 to +20	0.036	4
" yellow.	13-36	0.202	33		0-100	0.0336	40
yellow.	-186 to +20	0.178	4 26	46	1000	0.0337	52
Platinum	-186 to +18	0.0293		44	2000	0.042	52
44	100	0.0275	34		2400	0.045	52
44	200 500	0.0330	35	Uranium	0-100	0.028	41
66	750	0.0349	35	Vanadium Zinc	-243	0.1153	40
44	1000	0.0381	35	44	-243 -103	0.0144	46
66	1300	0.0400	35	66	-153	0.0023	46
46	20-100	0.0319	35	46	20-100	0.0031	27
44	20-500	0.0333	35	"	100	0.0051	2
44	20-1000	0.0346	35	46	300	0.1040	2
46	20-1300	0.0359	35	Zirconium	0-100	0.0660	42

^{*} When one temperature is given, the "true" specific heat is indicated, otherwise the "mean" specific heat. See page 226 for references.

HEAT CAPACITIES, TRUE AND MEAN SPECIFIC HEATS, AND

LATENT HEATS AT FUSION.

The following data are taken from a research and discussion entitled "Die Temperatur-Wärmeinhaltskurven der technisch wichtigen Metalle," Wüst, Meuthen und Durrer, Forschungsarbeiten herausgegeben vom Verein Deutscher Ingenieure, Springer, Heft 204, 1918.

schungsarbeiten herausgegeben vom Verein Deutscher Ingenieure, Springer, Heft 204, 1018.

(a) There follow the constants of the equation for the heat capacity: $W = a + bt + cl^2$; for the mean specific heat: $s = at^{-1} + b + ct$; and for the true specific heat: s' = b + 2ct; also the latent heats at fusion. (See also Table 243, pp. 223-224.)

Ele-	npera- ure inge.	ь	c × 106	La- tent heat. cal./g	Ele- ment.	Tempera- ture range.	a	ð	c×108	La- tent heat cal./g,
Mo W Pt Sn 232 Bi 270 Cd 321 Pb 327 Cn 419 Sb 630 Al	-1000 10.31 -321 -1000 6.30 -327 -1000 6.00 -410 -1000 14.32 -630 -1000 39.42	0.03141 0.03107 0.05550 0.06952 0.03591 0.02920 0.08777 0.13340 0.05179	10.99 1.07 3.54 -18.30 5.22 5.41 6.28 6.37 -11.47 3.30 43.48 -16.10 3.00 2.96 38.57	13.8. 10.2 10.8 - 5.47 23.0 38.9	Au Cu Mn Ni Co	0-961 961-1300 0-1064 1064-1300 0-1084 1084-1300 2 0-1070 1130-1210 1230-1250 0-320 330-1451 1451-1520 0-950 1100-1478 1478-1600 0-725 785-919 919-1404 1405-1528 1528-1600	53.17 26.35 130.74 -7.41 3.83 0.41 50.21 22.00 57.72 -1.63 18.31 -77.18	0.03171 0.01420 0.10079 -0.04150 0.12037 0.17700 0.19800 0.12931 0.13380 0.09119 0.11043 0.14720 0.10542 0.1592	28.30 1.30 8.52 3.05 65.6 25.41 	15.9 41.0 36.6 24.14* 1.33* 58.2 14.70* 49.4 6.56*

^{*}Allotropic heat of transformation: Mn, 1070-1130°; Ni, 320-330°; Co, 950-1100°; Fe, 725-785°; 919° = 1; 1404.5° = 0.5.

(b) TRUE SPECIFIC HEATS.

° C	Pb	Zn Al	Ag	Au	Cu	Ni	Fe	Co	Quartz.
0° C 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500	0.0336 0.0 0.0313 0.0 0.0290 0.0 0.0250 0.0 0.0252 0.0 0.0252 0.0 0.0233 0.0		o. o583 o. o594 o. o605 o. o616 o. o627 o. o638 o. o649 o. o660 o. o671 o. o637 o. o694 o. o750	0.0320 0.0322 0.0325 0.0328 0.0330 0.0333 0.0335 0.0341 0.0343 0.0329	0. 1014 0. 1020 0. 1026 0. 1032 0. 1038 0. 1045 0. 1057 0. 1063 0. 1069 0. 1028 0. 1159	0.1200 0.1305 0.1400 0.1294 0.1294 0.1295 0.1295 0.1295 0.1295 0.1295 0.1296 0.1296 0.1296 0.1296 0.1296	5. 1168 5. 1282 5. 1396 5. 1509 5. 1623 5. 1737 5. 1850 5. 1592 5. 1592 5. 1448 5. 1448 5. 1448 6. 1449 6.	0.0993 0.1073 0.1154 0.1235 0.1316 0.1396 0.1477 0.1558 0.1639 0.1424 0.1454 0.1454 0.1483	0.2372 0.2416 0.2460 0.2504 0.2548 0.2592 0.2680 0.2724 0.2724 0.2726 0.2812 0.2812 0.2856

For more elaborate tables and for all the elements in upper table, see original reference.

SMITHSONIAN TABLES.

ATOMIC HEATS (50° K), SPECIFIC HEATS (50° K), ATOMIC VOLUMES OF THE ELEMENTS.

The atomic and specific heats are due to Dewar, Pr. Roy. Soc. 89A, 168, 1913.

Ele- ment.	Specific heat -223° C.	Atomic heat -223°C.	Atomic volume.		Specific heat -223° C.	Atomic heat -223°C.	Atomic volume.	Ele- ment.	Specific heat - 223° C.	Atomic heat -223°C.	Atomic volume.
Li Gl B C * C † Na Mg All Si ‡ Si § P yel. P red S Cl K Ca	0. 1924 0.0137 0.0212 0.0137 0.0028 0.1519 0.0713 0.0413 0.0303 0.0303 0.0774 0.0431 0.0546 0.0967 0.1280 0.0714	1.35 0.125 0.24 0.16 0.03 3.50 1.71 1.12 0.86 0.77 2.40 1.34 1.75 3.43 5.01 2.86	13.0 4.9 4.5 5.1 3.4 23.6 14.1 10.0 14.2 11.4 17.0	Cr Mn Fe Ni Co Cu Zn As Se Br Rb Sr¶ Zr Mo Ru Rh Pd	0.0142 0.0229 0.0175 0.0208 0.0207 0.0245 0.0384 0.0258 0.0361 0.0453 0.0711 0.0550 0.0262 0.0141 0.0109 0.0134 0.0190	0.70 1.26 0.98 1.22 1.22 1.56 2.52 1.94 2.86 3.62 6.05 4.82 2:38 1.36 1.11 1.38 2.03 2.62	7.6 7.4 7.1 6.7 6.8 7.1 9.2 15.9 18.5 24.9 55.8 34.5 21.8 9.3 9.0 8.5 9.2	Sn Sb I Te Cs Ba¶ La Ce W Os Ir Pt Au Hg Tl Pb Bi Th	0.0286 0.0240 0.0361 0.0288 0.0513 0.0350 0.0322 0.0330 0.0095 0.0099 0.0135 0.0135 0.0135 0.0240 0.0232 0.0235 0.0240	3.41 2.89 4.59 3.68 6.82 4.80 4.64 1.75 1.49 1.92 2.63 3.16 4.65 4.80 4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96	20.3 18.2 25.7 21.2 71.0 36.6 22.6 20.3 9.8 8.5 8.6 9.2 10.2 14.8 17.2 18.3 21.3
Ti	0.0205	0.99	10.7	Cå	0.0308	3.46	13.0	U	0.0138	3.30	12.8

* Graphite. † Diamond. ‡ Fused. § Crystallized. ¶ Impure.

References to Table 243:

- (1) Bontschew.
- (2) Naccari, Atti Torino, 23, 1887-88.
- (3) Wigand, Ann. d. Phys. (4) 22, 1907. (4) Nordmeyer-Bernouli, Verh. d. phys.
- Ges. 9, 1907; 10, 1908. (5) Giebe, Verh. d. phys. Ges. 5, 1903.
- (6) Lorenz, Wied. Ann. 13, 1881.
- (7) Stücker, Wien. Ber. 114, 1905.
- (8) Person, C. R. 23, 1846; Ann. d. chim. (3) 21, 1847; 24, 1848.
- (9) Moisson-Gautier, Ann. chim. phys. (7) 17, 1896.
- (10) Regnault, Ann. d. chim. (3) 26, 1849; 63, 1861.
- (11) Andrews, Pog. Ann. 75, 1848.
- (12) Eckardt-Graefe, Z. Anorg. Ch. 23, 1900. (13) Bunsen, Pogg. Ann. 141, 1870; Wied. Ann. 31, 1887.
- (14) Weber, Phil. Mag. (4) 49, 1875.
- (15) Hillebrand, Pog. Ann. 158, 1876.
- (16) Knietsch.
- (17) Adler, Beibl. 27, 1903.
 (18) Pionchon, C. R. 102-103, 1886.
 (19) Tilden, Phil. Trans. (A) 201, 1903.
- (20) Richards, Ch. News, 68, 1893.
- (21) Trowbridge, Science, 8, 1898.
- (22) Berthelot, Ann. d. chim. (5) 15, 1878. (23) Pettersson-Hedellius, J. Pract. Ch. 24,
- (24) Violle, C. R. 85, 1877; 87, 1878.
- (25) Regnault, Ann. d. chim (2) 73, 1840;
- (3) 63, 1861. (26) Behn, Wied. Ann. 66, 1898; Ann. d. Phys. (4) 1, 1900.

- (27) Schmitz, Pr. Roy. Soc. 72, 1903.
- (28) Nichol, Phil. Mag. (5) 12, 1881. (29) Hill, Verh. d. phys. Ges. 3, 1901.
- (30) Spring, Bull. de Belg. (3) 11, 1886; 29, 1895.
- (31) Laemmel, Ann. d. Phys. (4) 16, 1905.
- (32) Barnes-Cooke, Phys. Rev. 16, 1903. (33) Wiegand, Fort. d. Phys. 1906.
- (34) Tilden, Pr. Roy. Soc. 66, 1900; 71, 1903; Phil. Trans. (A) 194, 1900; 201, 1903.
- (35) White, Phys. Rev. 12, 436, 1918. (36) Dewar, Ch. News, 92, 1905.
- (37) Kopp, Phil. Trans. London, 155, 1865. (38) Nilson, C. R. 96, 1883.
- (39) Nilson-Pettersson, Zt. phys. Ch. 1, 1887.
- (40) Mache, Wien, Ber. 106, 1807
- (41) Blümcke, Wied. Ann. 24, 1885.
- (42) Mixter-Dana, Lieb Ann. 169, 1873. (43) Magnus, Ann. d. Phys. 31, 1910.
- (44) Harper, Bull. Bureau of Stds. 11, p. 259, 1914.
- (45) Nernst, Lindemann, 1910, 1911.
- (46) Nernst, Dewar.
- (47) Kosef, Ann. d. Phys. 36, 1911. (48) Magnus, Ann. d. Phys. 31, 1910.
- (49) Estreicher, Straniewski, 1912.
- (50) Nernst, Ann. d. Phys. 36, 395, 1911.
- (51) King, Phys. Rev. 11, 1918.
- (52) Worthing, Phys. Rev. 12, 1918.
 (53) Harker, Pr. Phys. Soc. London, 19, 703, 1905; Fe oi; C .02; Si .03; S .04; P, Mn trace.

TABLE 246 .- Specific Heat of Various Solids.

TABLE 247 .- Specific Heat of Water and of Mercury.

		Specif	ic Heat of	Water.			Specific Heat of Mercury.				
Temper- ature, °C.	Barnes.	Rowland.	Barnes- Regnault.	Temper- ature, °C.	Barnes.	Barnes- Regnault.	Temper- ature, °C.	Specific Heat.	Temper- ature, °C.	Specific Heat.	
-5	1.0155	-	- 1	60	0.0088	0.0004	D	0.03346	90	0.03277	
0	1.0001	1.0070	1.0094	65	.9994	1.0004	5	.03340	100	.03269	
+5	1.0050	1.0039	1.0053	70	1.0001	1.0015	10	.03335	110	.03262	
IO	1.0020	1.0016	1.0023	80	1.0014	1.0042	15	.03330	120	.03255	
15	1.0000	1.0000	1.0003	90	1.0028	1.0070	20	.03325	130	.03248	
20	0.9987	.9991	0.9990	100	1.0043	I.OIOI	25	.03320	140	.03241	
25	.9978	.9989	.9981	120	-	1.0162	30	.03316	150	.0324	
30	.9973	.9990	.9976	140	-	1.0223	35	.03312	170	.0322	
35	.9971	.9997	.9974	160	-	1.0285	40	.03308	190	.0320	
40	.997I	1.0006	-9974	180	-	1.0348	50	.03300	210	.0319	
45	.9973	1.0018	.9976	200	-	1.0410	60	.03294	-	-	
50	.9977	1.0031	.9980	220	~~	1.0476	70	.03289	-	-	
55	.9982	1.0045	.9985	-	-	-	80	.03284	-	-	

Barnes's results: Phil. Trans. (A) 199, 1902; Phys. Rev. 15, 1902; 16, 1903. (H thermometer.)
Bousfield, Phil. Trans. A 211, p. 199, 1911. Barnes-Regnault's as revised by Peabody; Steam Tables.

The mercury data from 0° C to 80, Barnes-Cooke (H thermometer); from 90° to 140, mean of Winklemann, Naccari and Milthaler (air thermometer); above 140°, mean of Naccari and Milthaler.

TABLE 248. - Specific Heat of Various Liquids.

Liquid.	Temp. ° C.	Spec. heat.	Au- thority.	Liquid.	Temp.	Spec. heat.	Au- thority.
Alcohol, ethyl. """ Alcohol, methyl. Anilin. "Benzole, C ₆ H ₆ . "C ₆ H ₆ . "C ₆ H ₆ . """ """ """ """ """ """ """	50 40 5-10 15-20 15 30 50 10 65 -15 0 +20 -20 0 +20 12-15 12-14 13-17 53	0.601 0.514 0.529 0.340 0.423 0.482 0.764 0.775 0.787 0.695 0.712 0.725 0.651 0.663 0.676 0.848 0.951	R	Ethyl ether. Glycerine. KOH + 30H ₂ O. " + 100" NaOH + 50H ₂ O. " + 200" Naphthalene, C ₁₀ H ₈ . Nitrobenzole. Oils: castor. citron. olive. sesame. turpentine. Petroleum. Sea water, sp. gr. 1.0043. " " " " 1.0235. " " " " 1.0463. Toluol, C ₆ H ₈ . " ZnSO ₄ + 50 H ₂ O. " + 200"	15-50 18 18 18 18 18 18 90-95 14 28 	o. 876 o. 975 o. 942 o. 983 o. 791 o. 978 o. 396 o. 409 o. 350 o. 362 o. 434 o. 438 o. 471 o. 511 o. 988 o. 903 o. 364 o. 490 o. 490 o. 842	ETH " " " " " " " " W HW " " " " " " " " "

References: (A) Abbot; (B) Batelli; (E) Emo; (G) Griffiths; (DMG) Dickinson, Mueller, and George; (H-D) de Heen and Deruyts; (Ma) Marignac; (Pa) Pagliani; (R) Regnault; (Th) Thomsen; (W) Wachsmuth; (Z) Zouloff; (HW) H. F. Weber.

TABLE 249. — Specific Heat of Liquid Ammonia under Saturation Conditions. Expressed in Calories₂₀ per Gram per Degree C. Osborne and van Dusen, Bul. Bureau of Standards, 1918.

Temp.	o	I	2	3	4	5	б	7	8	9
-40 -30 -20 -10 - 0 + 10 +20 +30 +40	I.062 I.070 I.078 I.088 I.099 I.112 I.126 I.142 I.162	1.061 1.069 1.077 1.087 1.098 1.100 1.113 1.128 1.144 1.164	1.060 1.068 1.076 1.086 1.097 1.101 1.114 1.129 1.146 1.166	1.059 1.067 1.075 1.085 1.096 1.103 1.116 1.131 1.148	1.058 1.066 1.074 1.084 1.104 1.117 1.132 1.150	1.058 1.065 1.074 1.083 1.093 1.105 1.118 1.134 1.152	1.057 1.064 1.073 1.082 1.092 1.106 1.120 1.136 1.154	1.056 1.064 1.072 1.081 1.109 1.108 1.122 1.137 1.156 1.178	1.055 1.063 1.071 1.080 1.109 1.123 1.139 1.158 1.181	1.055 1.062 1.070 1.079 1.089 1.110 1.125 1.141 1.160

TABLE 250. — Heat Content of Saturated Liquid Ammonia.

Heat content = $H = \epsilon + pv$, where ϵ is the internal or intrinsic energy. Osborne and van Dusen, Bul. Bureau of Standards, 1918.

Temperature $H = \epsilon + pv \dots$	-50°	-40°	-30°	-20°	-10°	o°	+10°	+20°	+30°	+40°	+50°
$H = \epsilon + pv$	-53.8	-43.3	-32.6	-21.8	-11.0	0.0	+11.1	+22.4	-33.9	-45.5	-57.4

SPECIFIC HEATS OF MINERALS AND ROCKS.

TABLE 251.-Specific Heat of Minerals and Rocks.

Substance.	Tempera- ture ° C.	Specific Heat.	Refer- ence.	Substance.	Tempera- ture ° C.	Specific Heat.	Reference.
Andalusite Anhydrite, CaSO ₄ Apatite Asbestos Augite Barite, BaSO ₄ Beryl Borax, Na ₂ B ₄ O ₇ fused Calcite, CaCO ₃ " " Cassiterite SnO ₂ Chalcopyrite Corundum Cryolite, Al ₂ F ₆ .6NaF Fluorite, CaF ₂ Galena, PbS Garnet Hematite, Fe ₂ O ₃ Hornblende Hypersthene Labradorite Magnetite Malachite, Cu ₂ CO ₄ H ₂ O Mica (Mg) " (K) Oligoclase				Rock-salt Serpentine Siderite Spinel Talc Topaz Wollastonite Zinc blende, ZnS Zircon Rocks: Basalt, fine, black """ """ Granite Kaolin Lava, Aetna "" "Kilauea Limestone Marble Quartz sand Sandstone	Temperature ° C. 13-45 16-98 9-98 15-47 20-98 0-100 19-51 0-100 21-51 12-100 20-470 470-750 750-880 880-1190 20-98 17-99 17-213 12-100 20-98 23-100 31-776 25-100 15-100 0-100 20-98		
Orthoclase Pyrolusite, MnO ₂ . Quartz, SiO ₂	15-99 17-48 12-100 0 350 400-1200	.1877 .159 .188 .1737 .2786 .305	6 7 8 8 8	1 Lindner. 6 K 2 Oeberg. 7 Jo 3 Ulrich. 8 Pi 4 Regnault. 9 R		1 Barto 2 Mora	no.

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TABLE 252.—Specific Heats of Silicates.

		o° C	to hear	ts.	True specific heats.					
	100°	500°	900°	1400°	o°C	100°	500°	1000°	1300°	
Amphibole, Mg. silicate glass	.1948 .1977 .2037 .2040 .1925 .1934 .1991 .1883 .1924 .1939 .1871 .1919 .2039 .1868 .1845	.2363 .2410 .2461 .2474 .2330 -2296 .2305 .2426 .2314 .2332 .2262 .2321 .2484 .2379 .2302	-2525 .2615 .2615 .2481 .2568 .2500 -2450 .2514 -2596 .2512 .2596	.2731* - .2674 - .2680 .2604† - .2598* .2640*	.171	.211 219 205 207 201 .206 204 .202 197	.269 279 265 260 262 258 .264 294 .266	.294 -304 -286 -286 -284 -279 -299 -285 -29 -262	.318	

*o°-1100°; †o°-1250°;

Taken from White, Am. J. Sc. 47, 1, 1919.

SPECIFIC HEATS OF GASES AND VAPORS.

Substance. Range of temp. Constant constant constant part of temp. Colored temp. Col							
Air	Substance.	Range of temp. ° C	constant pres-	Authority.	of temp.	ratio of specific heats.	Authority.
Air	Agetone CHO	06 220	0.69	Wiedemann			
					20	T AOTT	Moody
	44			Kegnaure.			
20-630 0.2429 Austin. 0 1.828 500 1.309 Fürstenau. Jagegr. Stockhol, C.H.sOH. 108-220 0.4534 Stockhol, C.H.sOH. 108-220 0.4536 Regnault. 53 1.33 Stevens. 1.30 Stevens.	1 11			Holborn and			
Alcohol, C2H40H	11						
Alcohol, C ₂ H ₂ OH 108-220 0.4534 Regnault 100 1.343 Stevens 1.246 Niemper Niemper	1 66			66			Fürstenau.
" CH ₃ OH 101-223 0.4580 Ammonia 23-100 0.5356 Charmonia 27-200 0.5356 Charmonia 27-200 0.1233 Charmonia 20-90 0.1235 Charmonia 20-90 0.1235 Charmonia 20-100 0.1300 Charmonia 20-100 0.1300 Charmonia 20-100 Charmonia 2	Alcohol, C ₂ H ₅ OH			Regnault.	-		Jaeger.
Ammonia		_		-	100	1.134	Stevens.
Argon							*******
Argon	11						
Benzene, Cell		,					
" " 35-180 0.3325 16-218 0.3754 Bromine 83-228 0.0755 0.1843 0.1843 0.2025 " 0.1843 0.2025 " 0.1843 0.2025 " 0.2025 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 " 0.2025 "		,					Niemeyer.
	16 16			wiedemann.			ragnam.
Romine	4 4			Remault			Stevens
Carbon dioxide, CO ₂							
" " " " " 15-100 0.2025 " " 0 1.3003 Moody, 1912. " monoxide, CO. 23-90 0.2425 0.2169 0.2425 0.2169 0.1596				66			
"" "" "" "" "" "" "" "" "" "" "" "" ""	" " "				4 11	2993	
" monoxide, CO. 23-99	46 46 46			66	0	I.3003	
" disulphide, CS2	monoxide, CO		-	Wiedemann.		0 0	
Chlorine	11			66	100		66
Chloroform, CHCl ₃ 27–118	disulphide, CS ₂ .	86-190	0.1596		3-67		
Ether, C ₄ H ₁₀ O					0	1.336	
Ether, C4H ₁₀ O	11 11 11			Wiedemann.	22-78	1	
Helium				70 11			
Helium	Ether, C4H10U					1	
Hydrochloric acid, HCl.	Halium	25-111	0.4280	wiedemann.			
Hydrogen		12-100	- TO40	Strecker			
Hydrogen	" " " "						Strecker.
" 12-198 3.4000 3.4100	Hydrogen			16			Lummer and
"sulphide, H ₂ S 21-100 3.4100 Wiedemann. — 1.419 Hartmann. Krypton. — — — 1.9 1.324 Hartmann. Methane, CH4. 18-208 0.5929 Regnault. — 1.9 1.666 Kundt and Warburg. Methane, CH4. 18-208 0.5929 Regnault. 11-30 1.316 Müller. Ramsay, '12 Nitrogen. 0-200 0.2438 Regnault. — 1.41 Ramsay, '12 Wasson. 20-440 0.2449 Holborn and — 1.405 Masson. Nitric oxide, NO. 13-172 0.2497 Regnault. — 1.394 Natanson. """"""""""""""""""""""""""""""""""""	"			"	4	114000	
Sulphide, H ₂ S ZO-206 O. 2451 Regnault.	66			Wiedemann.	_	1.410	
Mercury — — — 310 1.666 Kundt and Warburg. Methane, CH4 18-208 0.5929 Regnault. 11-30 1.316 Müller. Ramsay, '12 Ramsay, '12<	suipinde, 1125	20-206	0.2451	Regnault.			Capstick.
Methane, CH4. 18-208 0.5929 Regnault. 11-30 I.316 Warburg. Nitrogen 0-200 0.2438 Regnault. — I.41 Ramsay, '12 """"""""""""""""""""""""""""""""""""		_	_	_	19		
Neon Nitrogen O-200 O-2438 Regnault Holborn and O-201 O-2419 O-241	Mercury	_	_	-	310	1.666	
Neon		18-208	0.5929	Regnault.	11-30	1.316	Müller.
""" 20-440 0.2419 Holborn and Austin. """ 1.405 Masson. """ 20-630 0.2464 Austin. """ """ """ """ Nitric oxide, NO 13-172 0.2437 Regnault. —"" 1.31 Natanson. """ """ 27-150 1.115 Olger. —"" Natanson. """ 27-280 0.65 Regnault. Olger. """ Wüllner. """ 26-103 0.2126 Wiedemann. 100 1.272 """ """ 27-206 0.2241 Regnault. —"" 1.324 Leduc, '98. Oxygen. 13-207 0.2175 Regnault. 5-14 1.3077 Lummer and Pringsheim. """ 20-440 0.2240 Austin. """ Holborn and Austin. """ Lummer and Pringsheim. """ 100 0.451 Thiesen. 78 1.274 Beyme. """" """ 0.4451 """ 94 1.33 Jaeger.		_	-		19	1.642	
" " " " " " " " " " " " " " " " " " "					-		
Nitric oxide, NO	11				_	1.405	Masson.
Nitric oxide, NO Nitrogen tetroxide, NO ₂ . "" " 27-150 1.115 27-280 0.65 Nitrous oxide, N ₂ O 16-207 0.2242 0.2241 0.2240 0.2240 Oxygen	11			Austin.			
Nitrogen tetroxide, NO ₂ . 27-67				Regnault		T 204	66
" " " " " " " " " " " " " " " " " " "							Natanson
"""" (""""""""""""""""""""""""""""""""	" " "					1.31	1 (acaisoii.
Nitrous oxide, N ₂ O 16-207 0.2262 Regnault. Wiedemann. 100 1.311 Wüllner. Wiedemann. 100 1.324 Leduc, '98. 1.3207 Consideration 1.324 Consideration 1.327 Consideration 1.324 Consideration 1.327 Consideration 1.324 Consideration 1.327 Consider							
Oxygen	Nitrous oxide, N2O			Regnault.	0	1.311	Wüllner.
Oxygen			0.2126		100	I. 272	44
20-440 0.2240 Holborn and O.2300 Austin. Sulphur dioxide, SO ₂ 16-202 0.1544 Regnault. 16-34 1.256 Müller. Water vapor, H ₂ O 0.4655 Thiesen. 78 1.274 Beyme. """ 94 1.33 Jaeger.					-	1.324	
Sulphur dioxide, SO ₂ 16-202 0.2300 Austin. Water vapor, H ₂ O 0.4655 Thiesen. 78 1.274 Beyme. """ 100 0.421 "" 94 1.33 Jaeger.					5-14	1.3977	
Sulphur dioxide, SO2 16-202 0.1544 Regnault. 16-34 1.256 Müller. Water vapor, H ₂ O 0.4655 Thiesen. 78 1.274 Beyme. """ """ 94 1.33 Jaeger.	66						Pringsheim.
Water vapor, H ₂ O D 0.4655 Thiesen. 78 1.274 Beyme. """ 100 0.421 "" 94 1.33 Jaeger.	Sulphur dioxide SO.				-6		Millon
" " " 100 0.421 " 94 1.33 Jaeger.							
" " " " 94 1.33 Jungar.	6 6 6				1		
	66 66 66	180	0.51	66	100	1.33	Makower.
Xenon			-	_	1		
					7		,

LATENT HEAT OF VAPORIZATION.

The temperature of vaporization in degrees Centigrade is indicated by t, the latent heat in large calories per kilogram or in small calories or therms per gram by r; the total heat from \circ° C, in the same units by H. The pressure is that due to the vapor at the temperature t.

Substance.	Formula.	t° C	7	Н	Authority.
Acetic acid	C ₂ H ₄ O ₂	118°	84.9		Ogier.
Air	C2114O2	110	50.97		Fenner-Richtmyer.
Alcohol: Amyl	C5H12O	131	120		Schall.
Ethyl	C_2H_6O	78.1	205	255	Wirtz.
"	C21160 .	0	236	236	Regnault.
66	66	50		264	11
66	66	100		267	66
66	66	150		285	66
Methyl	CH ₄ O	64.5	267	307	Wirtz.
"	66	0	289	289	Ramsay and Young.
66	"	50	_	274	" " "
66	66	100	*******	246	66 66 66
46	66	150	_	206	66 66 66
"	66	200	-	152	66 66 66
		238.5		44.2	
Aniline	C_6H_7N	184	110		Mean. Wirtz.
BenzeneBromine.	$ m C_6H_6 m Br$	80.1 61	92.9	127.9	Andrews.
Carbon dioxide, solid	CO ₂	01	45.6	138.7	Favre.
" liquid	"	-25	72.23	130.7	Cailletet and Mathias.
" " "	46	0	57.48		" " "
" " "	66	12.35	44.97		Mathias.
" "	66	22.04	31.8	_	66
66 66 66	66	29.85	14.4	-	"
" " "	66	30.82	3.72	-	66
" disulphide	CS ₂	46.1	83.8	94.8	Wirtz.
· · · · · · · · · · · · · · · · · · ·	66	Ö	90	90	Regnault.
66 66	66	100		100.5	66
		140	_	102.4	
Chloroform	CHCl ₃	60.9	58.5	72.8	Wirtz.
Ether	$C_4H_{10}O$	34.5	88.4	107	Andrews.
"	66	34.9	90.5	-	Regnault.
"	66	50	94	94	regilatit.
4	66	120		140	66
Ethyl bromide	C ₂ H ₅ Br	38.2	60.4	_	Wirtz.
" chloride	C ₂ H ₅ Cl	12.5	_	98	Regnault.
" iodide	C_2H_5I	71	47	_	Mean.
Heptane	C7H16	90	77.8		Young.
Hexane	$C_{6}H_{14}$	70	79.2		- "
Iodine	I	_	23.95	-	Favre and Silbermann.
Mercury	Hg	357.	65		Mean.
Nitrogen	N_2	-195.6	47.65	_	Alt.
Octane	C_8H_{18}	130	70.0		Young. Alt.
Oxygen	$\mathrm{C_{\tilde{5}H_{12}}}$	-182.9 30	50.97 85.8		Young.
Sulphur	S S	316	362.0		Person.
Sulphur dioxide	SO ₂	310	QI.2	_	Cailletet and Mathias.
*"	66	30	80.5	_	66 66 66
66 66	66	65	68.4	_	
Toluene	C7H8	111	86.0	_	Mean.
Turpentine	$C_{10}H_{10}$	159.3	74.04	_	Brix.

LATENT HEAT OF VAPORIZATION.

TABLE 255. - Formulae for Latent and Total Heats of Vapors.

r= latent heat of vaporization at ℓ° C; H= total heat from fluid at o° to vapor at ℓ° C. T° refers to Kelvin scale. Same units as preceding table.

Acetone, C ₄ H ₆ O Benzene C ₆ H ₆ Carbon dioxide Carbon bisulphide, CS ₂ Carbon tetrachloride, CCl ₄ . Chloroform, CHCl ₄	$\begin{array}{lll} H = 140.5 + 0.36644t - 0.000516t^2 \\ = 139.9 + 0.23356t + 0.00055358t^2 \\ r = 139.9 - 0.27387t + 0.00055358t^2 \\ H = 109.0 + 0.24420t - 0.0001315t^2 \\ t^2 = 118.485(31 - t) - 0.4707(31 - t)^2 \\ H = 90.0 + 0.14601t - 0.0004123t^2 \\ T = 80.5 + 0.16993t - 0.0010161t + 0.05342t^3 \\ T = 80.5 - 0.06530t - 0.001070t^2 + 0.06342t^3 \\ H = 52.0 + 0.14623t - 0.00070t^2 + 0.063733t^3 \\ H = 51.9 + 0.17807t - 0.0009590^2 + 0.063733t^3 \\ T = 51.9 - 0.01931t - 0.001505t^2 + 0.063733t^3 \\ H = 67.0 + 0.1375t \\ H = 67.0 + 0.14716t - 0.000937t^2 \end{array}$	-3° to 147° -3 147 -3 147 -3 147 -25 31 -6 143 -6 143 -6 143 -6 143 -7 153 -7 153 -7 159 -7 159	R W W R C R W W R W W R W W R W
Ether, C ₄ H _W O Molybdenum Nitrogen, Ns. Nitrous oxide, N ₂ O. Oxygen, Oa. Platinum Sulphur dioxide. Tungsten Water, H ₂ O.	$\begin{array}{lll} H = 97.5 + 0.14710, & 0.0003377 \\ r = 67.5 - 0.08519 i - 0.0001444^p \\ H = 94.0 + 0.45000 i - 0.0005550^p \\ r = 94.0 - 0.07000 i - 0.0005147^p \\ r = 177000 - 2.5T (cal/g-atom) \\ r = 68.85 - 0.2736T \\ r = 131.75(36.4 - i) - 0.928(36.4 - i)^2 \\ r = 136000 - 2.5T (cal/g-atom) \\ r = 128000 - 2.5T (cal/g-atom) \\ r = 217800 - 1.8T (cal/g-atom) \\ H = 638.9 + 0.3745 (i - 100) - 0.0009 (i - 100)^2 \\ r = 94.210(365 - i)^{0.01249} & (See Table 259) \end{array}$	-5 159 -4 121 -4 121 -20 36 	R R R L A C A L M L D H
R, Regnault; W, Winkelma	nn; C, Cailletet and Mathias; A, Alt.; D, Davis; H, He	enning; L, Langn	nuir.

TABLE 256.—Latent Heat of Vaporization of Ammonia.

CALORIES PER GRAM.

°C	D	x	2	3	4	5	6	7	8	9
-40	331.7	332·3	333.0	333.6	334·3	334.9	335·5	336.2	336.8	337·5
-30	324.8	325·5	326.2	326.9	327.6	328.3	329.0	329.7	330.3	331.0
-20	317.6	318·3	319.1	319.8	320.6	321.3	322.0	322.7	323.4	324.1
-10	309.9	310·7	311.5	312.2	313.0	313.8	314.6	315.3	316.1	316.8
- 0	301.8	302·6	303.4	304.3	305.1	305.9	306.7	307.5	308.3	309.1
+ 0	301.8	300.9	300. I	299. 2	298.4	297.5	296.6	295.7	294.9	294.0
+10	293.1	292.2	29I. 3	290. 4	289.5	288.6	287.6	286.7	285.7	284.8
+20	283.8	282.8	28I. 8	280. 9	279.9	278.9	277.9	276.9	275.9	274.9
+30	273.9	272.8	27I. 8	270. 7	269.7	268.6	267.5	266.4	265.3	264.2
+40	263.1	262.0	260. 8	259. 7	258.5	257.4	256.2	255.0	253.8	252.6

Osborne and van Dusen, Bul. Bureau Standards, 14, p. 439, 1918.

TABLE 257. - "Latent Heat of Pressure Variation" of Liquid Ammonia.

When a fluid undergoes a change of pressure, there occurs a transformation of energy into heat or vice versa, which results in a change of temperature of the substance unless a like amount of heat is abstracted or added. This change expressed as the heat so transformed per unit change of pressure is the "latent heat of pressure variation." It is expressed below as Joules per gram per kg/cm². Osborne and van Dusen, loc. cit., p. 433, 1918.

Latent heat055057068088107123140150	Temperature ° C								
-------------------------------------	-----------------	--	--	--	--	--	--	--	--

LATENT AND TOTAL HEATS OF VAPORIZATION OF THE ELEMENTS.

The following table of theoretical values is taken from J. W. Richards, Tr. Amer. Electroch. Soc. 13, p. 447, 1908. They are computed as follows: $8T_m$ (8 = mean value atomic specific heat, Dulong-Petit constant, o° to T° K, T_m = melting point, Kelvin scale) plus $2T_m$ (latent heat of fusion is approximately $2T_m$, J. Franklin Inst. 1897) plus $10(T_b - T_m)$ (specific heat of liquid metals is nearly constant and equal to that of the solid at T_m , T_b = boiling point, Kelvin scale) plus $23T_b$ (23 = Trouton constant; latent heat of vaporization of molecular weight in grams is approximately 23 times T_b) = $33T_b$. Total heat of vapor when raised from 273° K (o° C) equals $33T_b - 1700$ (mean value of Dulong-Petit constant between o° and 273° K is 1700). Heats given in small calories per gram.

Ele- ment.	$^{T_b}_{ m ^{\circ}K}$	23 <i>T</i> b	Latent heat of vapori- zation.	33 <i>Tb</i> — 1700	Total heat vapor from 273° K	Ele- ment.	$^{T_b}_{ m ^{\circ}K}$	23Tb	Latent heat of vapori- zation.	33 <i>T</i> _b — 1700	Total heat of vapor from 273° K
Hg K	630	14,500	72	19,100	96 800	Rh Ru	2773	63,800	620	90,000	870
Cd	993	22,800	230	31,100	310	Au	2790	64,500	330	91,000	460
Na	1170	27,000	1170	37,000	1610	Pd	2810	64,600	610	91,000	850
Zn	1200	27,700	430	38,000	580	Ir	2820	64,800	340	91,300	470
In	1270	29,300	-	40,300	_	Os	2870	66,000	350	93,000	490
Mg	1370	31,600	1320	43,600	1820	U	3170	73,000	305	103,000	430
Te	1660	38,200	300	54,900	430	Mo	3470	80,000		113,000	1180
Bi	1710	39,300	190	56,400	270	W	3970	91,400	500	129,000	700
Sb	1870	43,100	360	60,000	510	H_2	20	460		- 1	_
Tl	1970	45,400	220	63,400	310	N ₂	77	1,770	63	_	_
Pb	2070	47,700	230	66,700	320	O ₂	85	1,960		_	_
Ag	2310	53,000	490	74,600	690	Cl ₂	251	5,780		_	
Cu	2370	54,500	860	76,600	1210	Br ₂	331	7,600	48		
Sn	2440	56,100	480	78,800	670	P ₈	447 560	10,300	138	_	_
Mn Ni	2470	56,500	1030	79,500	1440	As ₃	723	16,600	74		_
Cr	2640	60,700	1170	85,400	1640	Se ₈	963	22,100	94	_	_
Fe	2690	62,000	1110	87,200	1560	B ₂	3970	91,000		_	_
Pt	2720	62,600	320	88,000	450	C ₂	3970	91,000		_	_
Ti	2750	63,200	1320	89,000	1850						
		1	1								

PROPERTIES OF SATURATED STEAM.

Metric and Common Units.

Reprinted by permission of the author and publishers from "Tables of the Properties of Steam," Cecil H. Peabody, 8th edition, rewritten in 1909. Calorie used is heat required to raise 1 Kg. water from 15° to 16° C. B. T. U. is heat required to raise 1 pd. water from 62° to 63° F. Mechanical Equiv. of heat used, 778 ft. pds. or 427 m. Kg. Specific heats, see Barnes-Regnault-Peabody results, p. 227. Heat of Liquid, q. heat required to raise 1 Kg. (1 lb.) to corresponding temperature from 6° C. Heat of vaporization, r. heat required to vaporize 1 Kg. (1 lb.) at corresponding temperature to dry saturated vapor against corresponding pressure; see Henning, Ann. der Phys., 21, p. 849, 1906. Total Heat, H=r+q, see Davis, Tr. Am. Soc. Mech. Eng., 1908.

Temperature Degrees Centigrade.		Pressure.		Heat o Liqu	of the		at of ization.		quivalent of al Work.	Temperature Degrees Fahrenheit.
Temp	Mm. of Mercury, p.	Kg. per sq. cm. p.	Pds. per sq. in. p.	Calories.	B. T. U.	Calories.	B. T. U.	Calories.	B. T. U. ρ.	Tem T
0	4.579	0.00623	0.0886	0.00	0.0	595.4	1071.7	565.3	1017.5	32.0
5	6.541	.00889	.1265	5.04	9.1	592.8	1067.1	562.2	1011.9	41.0
10	9.205	.01252	.1780	10.06	18.1	590.2	1062.3	559.0	1006.2	50.
15	12.779	.01737	.3386	1 5.06 20.06	27.I 36.I	587.6 584.9	1057.6	555.9 552.7	994.8	59. 68.
25	23.69	.03221	.4581	25.05	45.1	582.3	1048.1	549.5	989.1	77.
30	31.71	.04311	.8132 .8126	30.04	54.1	579.6	1043.3	546.3	983.4	95
35	42.02 55.13	.05713	1.0661	35.03	63.1	576.9 574.2	1033.5	543.I 539.9	971.7	104
45	71.66	.09743	1.3858	45.00	81.0	571.3	1028.4	536.5	965.7	113
50	92.30	.12549	1.7849	49.99	90.0	568.4 565.6	1023.2	533.0	959.6	122
55 60	117.85	.16023	2.885	54.98 59.97	99.0	562.8	1013.1	526.4	953·5 947·5	140
65	187.36	.2547	3.623	64.98	117.0	559.9	1007.8	523.0	941.3	149
70	233.53	.3175	4.516	69.98	126.0	556.9	1002.5	519.5	935.0	158
75 80	289.0	.3929	5.589 6.867	74.99 80.01	135.0	554.0	997.3	516.0	928.8	167
80	355.1	.4828	6.867	80.01	144.0	551.1	991.9	512.6	922.6	176
85 90	433.5 525.8	.5894 .7149	8.383	85.04 90.07	153.1	548.1 544.9	980.9	505.4	909.9	194
91	546.1	7425	10.560	91.08	163.9	544.3	979.8	504.7	908.5	195
92	567.1 588.7	.7710 .8004	10.966	92.08	165.7	543.7 543.1	978.7 977.6	504.0	907.2	197
94	611.0	.8307	11.815	94.10	169.3	542.5	976.5	502.6	904.7	201
95	634.0	.8620	12.260	95.11	171.2	541.9	975.4	501.9	903.4	203
96	657.7 682.1	.8942	12.718	96.12	173.0	541.2	974.2 973.1	500.4	902.1	204
98	707.3	.9616	13.678	98.13	176.6	539.9	971.9	499.6	899.4	208
99	733-3	.9970	14.180	99.14	178.5	539.3	970.8	498.9	898.2	210
100	760.0	1.0333	14.697	100.2	180.3	538.7	969.7	498.2	896.9	212
101	787.5 815.9	1.0707	15.229	101.2	182.1	538.I 537.4	968.5	497.5	895.5	213
103	845.1	1.1490	16.342	103.2	185.7	536.8	966.2	496.1	892.9	217
104	875.1	1.1898	16.923	104.2	187.6	536.2	965.1	495.4	891.6	219
105	906.1	1.2319	17.522	105.2	189.4	535.6	964.0	494.7	890.3	221
106	937.9 970.6	1.2752	18.137	106.2	191.2	534.9	962.8	493.9	889.0	222
108	1004.3	1.3196	18.769	107.2	193.0	534.2 533.6	961.6	493.I 492.4	887.6	224
109	1004.3	1.4123	20.089	109.3	196.7	532.9	959.3	491.6	885.0	228
111	1074.5	1.4608	20.777	110.3	198.5	532.3	958.1	490.9	883.6	230
111	1148.7	1.5106	21.486	111.3	200.3	531.6	956.9	490.2	882.3 880.9	231
113	1187.4	1.6144	22.962	113.3	203.9	530.9	955·7 954·5	488.7	879.5	233
114	1227.1	1.6684	23.729	114.3	205.8	529.6	953.3	487.9	878.2	237
115	1267.9	1.7238	24.518	115.3	207.6	528.9	952.1	487.1	876.8	239
116	1309.8	1.7808	25.328	116.4	209.4	528.2	950.8	486.3	875.4	240
117	1352.8	1.8393	27.015	117.4	211.2	527.5 526.9	949.5	485.5	873.9 872.6	242
119	1442.4	1.9611	27.893	119.4	214.9	526.2	945.4	484.0	871.3	244

PROPERTIES OF SATURATED STEAM.

Metric and Common Units.

If a is the reciprocal of the Mechanical Equivalent of Heat, p the pressure, s and σ the specific volumes of the liquid and the saturated vapor, s $-\sigma$, the change of volume, then the heat equivalent of the external work is Apu = Ap(s $-\sigma$). Heat equivalent of internal work, $\rho = r - A$ pu. For experimental sp. vols. see Knoblauch, Linde and Klebe, Mitt. über Forschungarbeiten, 21, p. 33, 1905. Entropy = S dQ/ Γ , where dQ = amount of heat added at absolute temperature T. For pressures of saturated steam see Holborn and Henning, Ann. der Phys. 26, p. 833, 1908; for temperatures above 205° C. corrected from Regnault.

-			0.00	d from Reg	1				
Temperature Degrees Centigrade.	of Ex	quivalent ternal ork.	Entropy of the	Entropy of Evapo-	Specific '	Volume.	Der	nsity.	Temperature Degrees Fahrenheit.
Temp De Cent	Calories.	B.T.U.	Liquid.	ration.	Cubic Meters per Kilo- gram.	Cubic Feet per Pound.	Kilograms per Cubic Meter.	Pounds per Cubic Foot.	Temp Deg Fahre
t	Apu.	Apu.	θ	T	8	S	1 8	1 8	t
0 5 10 15 20	30.1 30.6 31.2 31.7 32.2	54.2 55.2 56.1 57.1 58.0	0.0000 .0183 .0361 .0537	2.1804 2.1320 2.0850 2.0396 1.9959	206.3 147.1 106.3 77.9 57.8	3304. 2356. 1703. 1248. 926.	0.00485 .00680 .00941 .01283 .01730	0.000303 .000424 .000587 .000801	32.0 41.0 50.0 59.0 68.0
25 30 35 40 45	32.8 33.3 33.8 34.3 34.8	59.0 59.9 60.9 61.8 62.7	.0878 .1044 .1207 .1368 .1526	1.9536 1.9126 1.8728 1.8341 1.7963	43.40 32.95 25.25 19.57 15.25	695. 528. 404.7 313.5 244.4	.02304 .03035 .03960 .0511 .0656	.001439 .001894 .002471 .003190 .004092	77.0 86.0 95.0 104.0
50 55 60 65 70	35·4 35·9 36·4 36·9 37·4	63.6 64.6 65.6 66.5 67.4	.1682 .1835 .1986 .2135 .2282	1.7597 1.7242 1.6899 1.6563 1.6235	12.02 9.56 7.66 6.19 5.04	192.6 153.2 122.8 99.2 80.7	.0832 .1046 .1305 .1615 .1984	.00519 .00653 .00814 .01008	122.0 131.0 140.0 149.0 158.0
75 80 85 90	38.0 38.5 39.0 39.5	68.5 69.3 70.2 71.0	.2427 .2570 .2711 .2851	1.5918 1.5609 1.5307 1.5010	4.130 3.404 2.824 2.358	66.2 54.5 45.23 37.77	.2421 .2938 .3541 .4241	.01510 .01835 .02211 .02648	167.0 176.0 185.0 194.0
91 92 93 94	39.6 39.7 39.8 39.9	71.3 71.5 71.6 71.8	.2879 .2906 .2934 .2961	1.4952 1.4894 1.4836 1.4779	2.275 2.197 2.122 2.050	36.45 35.19 34.00 32.86	·4395 ·4552 ·4713 ·4878	.02743 .02842 .02941 .03043	195.8 197.6 199.4 201.2
95 96 97 98 99	40.0 40.1 40.2 40.3 40.4	72.0 72.1 72.3 72.5 72.6	.2989 .3016 .3043 .3070 .3097	1.4723 1.4666 1.4609 1.4552 1.4496	1.980 1.913 1.849 1.787 1.728	31.75 30.67 29.63 28.64 27.69	.505 .523 .541 .560 .579	.03149 .03260 .03375 .03492 .03611	203.0 204.8 206.6 208.4 210.2
100 101 102 103 104	40.5 40.6 40.6 40.7 40.8	72.8 73.0 73.2 73.3 73.5	.3125 .3152 .3179 .3205 .3232	I.444I I.4386 I.4330 I.4275 I.4220	1.671 1.617 1.564 1.514 1.465	26.78 25.90 25.06 24.25 23.47	.598 .618 .639 .661 .683	.03734 .03861 .03990 .04124 .04261	212.0 213.8 215.6 217.4 219.2
105 106 107 108 109	40.9 41.0 41.1 41.2 41.3	73.7 73.8 74.0 74.2 74.3	·3259 ·3286 ·3312 ·3339 ·3365	1.4165 1.4111 1.4057 1.4003 1.3949	1.419 1.374 1.331 1.289 1.248	22.73 22.01 21.31 20.64 19.99	.70 5 .728 .751 .776 .801	.04400 .04543 .04692 .04845	221.0 222.8 224.6 226.4 228.2
110 111 112 113 114	41.4 41.4 41.5 41.6 41.7	74.5 74.6 74.8 75.0 75.1	·3392 ·3418 ·3445 ·3471 ·3498	1.3895 1.3842 1.3789 1.3736 1.3683	1.209 1.172 1.136 1.101 1.068	19.37 18.77 18.20 17.64 17.10	.827 .853 .880 .908 .936	.0516 .0533 .0550 .0567 .0585	230.0 231.8 233.6 235.4 237.2
115 116 117 118 119	41.8 41.9 42.0 42.1 42.2	75.3 75.4 75.6 75.8 75.9	·3524 ·3550 ·3576 ·3602 ·3628	1.3631 1.3579 1.3527 1.3475 1.3423	1.036 1.005 0.9746 0.9460 0.9183	16.59 16.09 15.61 15.16 14.72	.965 .995 1.026 1.057 1.089	.0603 .0622 .0641 .0659 .0679	239.0 240.8 242.6 244.4 246.2

TABLE 259 (continued).

PROPERTIES OF SATURATED STEAM.

Metric and Common Units.

	ature ees rade.		Pressure		Hea the L	t of iquid.	Hea Vapori	t of zation.	Heat Equ Interna	walent of Work.	rature rees nheit.
ı	Temperature Degrees Centigrade.	Mm. of Mercury.	Kg. per sq. cm.	Pds. per sq. in.	Calories.	B. T. U.	Calories.	B. T. U.	Calories	B. T. U.	Temperature Degrees Fahrenheit.
ı	t.	p.	p.	p.	q.	Я	r	r.	ρ.	ρ.	t. 1
	120	1489	2.024	28.79	120.4	216.7	525.6	946.0	483.4	870.0	248.0
	121	1537	2.089	29.72	121.4	218.5	524.9	944.8	482.6	868.6	249.8
	122	1586	2.156	30.66	122.5	220.4	524.2	943.5	481.8	867.1	251.6
	123	1636	2.224	31.64	123.5	222.2	523.5	942.3	481.0	865.8	253.4
	124	1688	2.294	32.64	124.5	224.1	522.8	941.0	480.2	864.3	255.2
	125	1740	2.366	33.66	125.5	225.9	522.1	939.9	479.4	863.0	257.0
	126	1795	2.440	34.71	126.5	227.7	521.4	938.6	478.6	861.6	258.8
	127	1850	2.516	35.78	127.5	229.5	520.7	937.3	477.8	860.2	260.6
	128	1907	2.593	36.88	128.6	231.4	520.0	936.1	477.0	858.8	262.4
	129	1966	2.673	38.01	129.6	233.3	519.3	934.8	476.3	857.4	264.2
	130	2026	2.754	39.17	130.6	235.1	518.6	933.6	475.5	856.0	266.0
	131	2087	2.837	40.36	131.6	236.9	517.9	932.3	474.7	854.6	267.8
	132	2150	2.923	41.57	132.6	238.7	517.3	931.1	474.0	853.2	269.6
	133	2214	3.010	42.81	133.7	240.6	516.6	• 929.8	473.3	851.8	271.4
	134	2280	3.100	44.09	134.7	242.4	515.9	928.5	472.5	850.4	273.2
	135	2348	3.192	45.39	135.7	244.2	515.1	927.2	471.6	848.9	275.0
	136	2416	3.285	46.73	136.7	246.0	514.4	925.9	470.8	847.5	276.8
	137	2487	3.382	48.10	137.7	247.9	513.7	924.6	470.1	846.1	278.6
	138	2560	3.480	49.50	138.8	249.7	513.0	923.3	469.3	844.6	280.4
	139	2634	3.581	50.93	139.8	251.6	512.3	922.1	468.5	843.3	282.2
	140	2710	3.684	52.39	140.8	253.4	511.5	920. 7	467.6	841.8	284.0
	141	2787	3.789	53.89	141.8	255.3	510.7	919.3	466.8	840.2	285.8
	142	2866	3.897	55.43	142.8	257.1	510.1	918.1	466.1	838.9	287.6
	143	2948	4.008	57.00	143.9	259.0	509.3	916.7	465.3	837.4	289.4
	144	3030	4.121	58.60	144.9	260.8	508.6	915.4	464.4	835.9	291.2
	145	3115	4.236	60.24	145.9	262.7	507.8	914.1	463.6	834·5	293.0
	146	3202	4.354	61.92	146.9	264.5	507.1	912.8	462.8	833·1	294.8
	147	3291	4.474	63.64	148.0	266.4	506.4	911.5	462.0	831·6	296.6
	148	3381	4.597	65.39	149.0	268.2	505.6	910.1	461.2	830·1	298.4
	149	3474	4.723	67.18	150.0	270.1	504.9	908.8	460.4	828·7	300.2
•	150	3569	4.852	69.01	151.0	271.9	504.1	907.4	459.5	827.2	302.0
	151	3665	4.984	70.88	152.1	273.8	503.4	906.1	458.7	825.7	303.8
	152	3764	5.118	72.79	153.1	275.6	502.6	904.7	457.9	824.2	305.6
	153	3865	5.255	74.74	154.1	277.4	501.9	903.3	457.1	822.7	307.4
	154	3968	5.395	76.73	155.1	279.2	501.1	901.9	456.3	821.2	309.2
	155	4073	5.538	78.76	156.2	281.1	500.3	900.5	455.4	819.6	311.0
	156	4181	5.684	80.84	157.2	283.0	499.6	899.2	454.6	818.2	312.8
	157	4290	5.833	82.96	158.2	284.8	498.8	897.8	453.8	816.7	314.6
	158	4402	5.985	85.12	159.3	286.7	498.1	896.5	453.0	815.3	316.4
	159	4517	6.141	87.33	160.3	288.5	497.3	895.1	452.1	813.7	318.2
	160	4633	6.300	89.59	161.3	290.4	496.5	893.7	451.2	812.2	320.0
	161	4752	6.462	91.89	162.3	292.2	495.7	892.3	450.4	810.7	321.8
	162	4874	6.628	94.25	163.4	294.1	494.9	890.9	449.5	809.2	323.6
	163	4998	6.796	96.65	164.4	295.9	494.2	889.5	448.7	807.7	325.4
	164	5124	6.967	99.09	165.4	297.7	493.4	888.1	447.9	806.2	327.2
	165	5253	7.142	101.6	166.5	299.6	492.6	886.7	447.0	804.7	329.0
	166	5384	7.320	104.1	167.5	301.5	491.9	885.4	446.3	803.3	330.8
	167	5518	7.502	106.7	168.5	303.3	491.1	883.9	445.4	801.7	332.6
	168	5655	7.688	109.4	169.5	305.1	490.3	882.5	444.6	800.1	334.4
	169	5794	7.877	112.0	170.6	307.0	489.5	881.0	443.7	798.5	336.2

PROPERTIES OF SATURATED STEAM.

Metric and Common Units.

metric and common onits.												
	ature ces ade.	Heat Ed	quivalent nal Work.	Entropy	Entropy	Specific	Volume.	Der	osity.	ature ees heit.		
ı	Temperature Degrees Centigrade.	Calories.	B. T. U.	of the Liquid.	of Evapo- ration.	Cubic Meters per Kilogram.	Cubic Feet per Pound.	Kilograms per Cubic Meter.	Pounds per Cubic Foot.	Temperature Degrees Fahrenheit.		
ı	t.	Apu.	Apu.	θ.	r T	8.	S.	1.	1. II	t.		
	120 121 122 123 124	42.2 42.3 42.4 42.5 42.6	76.0 76.2 76.4 76.5 76.7	0,3654 .3680 .3705 .3731 .3756	1.3372 1.3321 1.3269 1.3218 1.3167	0.8914 .8653 .8401 .8158 .7924	14.28 13.86 13.46 13.07 12.69	1.122 1.156 1.190 1.226 1.262	0.0700 .0721 .0743 .0765 .0788	248.0 249.8 251.6 253.4 255.2		
	125 126 127 128 129	42.7 42.8 42.9 43.0 43.0	76.8 77.0 77.1 77.3 77.4	•3782 •3807 •3833 •3858 •3884	1.3117 1.3067 1.3017 1.2967 1.2917	.7698 .7479 .7267 .7063 .6867	12.33 11.98 11.64 11.32 11.00	1.299 1.337 1.376 1.416 1.456	.0811 .0835 .0859 .0883	257.0 258.8 260.6 262.4 264.2		
	130 131 132 133 134	43.1 43.2 43.3 43.3 43.4	77.6 77.7 77.9 78.0 78.1	.3909 .3934 .3959 .3985 .4010	1.2868 1.2818 1.2769 1.2720 1.2672	.6677 .6493 .6315 .6142 .5974	10.70 10.40 10.12 9.839 9.569	1.498 1.540 1.583 1.628 1.674	.0935 .0961 .0988 .1016	266.0 267.8 269.6 271.4 273.2		
	135 136 137 138 139	43.5 43.6 43.6 43.7 43.8	78.3 78.4 78.5 78.7 78.8	.4035 .4060 .4085 .4110	1.2623 1.2574 1.2526 1.2479 1.2431	.5812 .5656 .5506 .5361 .5219	9.309 9.060 8.820 8.587 8.360	1.721 1.768 1.816 1.865 1.916	.1074 .1104 .1134 .1165	275.0 276.8 278.6 280.4 282.2		
	140 141 142 143 144	43·9 43·9 44·0 44·0 44·2	78.9 79.1 79.2 79.3 79.5	.4160 .4185 .4209 .4234 .4259	1.2383 1.2335 1.2288 1.2241 1.2194	.5081 .4948 .4819 .4694 .4574	8.140 7.926 7.719 7.519 7.326	1.968 2.021 2.075 2.130 2.186	.1229 .1262 .1296 .1330 .1365	284.0 285.8 287.6 289.4 291.2		
	145 146 147 148 149	44.2 44.3 44.4 44.4 44.5	79.6 79.7 79.9 80.0 80.1	.4283 .4307 .4332 .4356 .4380	1.2147 1.2100 1.2054 1.2008 1.1962	.4457 .4343 .4232 .4125 .4022	7.139 6.957 6.780 6.609 6.443	2.244 2.303 2.363 2.424 2.486	.1401 .1437 .1475 .1513 .1552	293.0 294.8 296.6 298.4 300.2		
	150 151 152 153 154	44.6 44.6 44.7 44.8 44.8	80.2 80.4 80.5 80.6 80.7	.4405 .4429 .4453 .4477 .4501	1.1916 1.1870 1.1824 1.1778 1.1733	.3921 .3824 .3729 .3637 .3548	6.282 6.126 5.974 5.826 5.683	2.550 2.615 2.682 2.750 2.818	.1592 .1632 .1674 .1716	302.0 303.8 305.6 307.4 309.2		
	155 156 157 158 159	44.9 45.0 45.0 45.1 45.2	80.9 81.0 81.1 81.2 81.4	•4525 •4549 •4573 •4596 •4620	1.1688 1.1644 1.1599 1.1554 1.1509	.3463 .3380 .3298 .3218 .3140	5.546 5.413 5.282 5.154 5.029	2.888 2.959 3.032 3.108 3.185	.1803 .1847 .1893 .1940 .1988	311.0 312.8 314.6 316.4 318.2		
	160 161 162 163 164	45·3 45·3 45·4 45·5 45·5	81.5 81.6 81.7 81.8 81.9	.4644 .4668 .4692 .4715 .4739	1.1465 1.1421 1.1377 1.1333 1.1289	.3063 .2989 .2920 .2855 .2792	4.906 4.789 4.677 4.571 4.469	3.265 3.345 3.425 3.503 3.582	.2038 .2088 .2138 .2188 .2238	320.0 321.8 323.6 325.4 327.2		
	165 166 167 168 169	45.6 45.6 45.7 45.7 45.8	82.0 82.1 82.2 82.4 82.5	.4763 .4786 .4810 .4833 .4857	1.1245 1.1202 1.1159 1.1115 1.1072	.2729 .2666 .2603 .2540 .2480	4.368 4.268 4.168 4.070 3.975	3.664 3.751 3.842 3.937 4.032	.2289 .2343 .2399 .2457 .2516	329.0 330.8 332.6 334.4 336.2		

TABLE 259 (continued).

PROPERTIES OF SATURATED STEAM.

Metric and Common Units.

	Metric and Common Units.												
	ature ses ade.		Pressure.			it of iquid.	Hea Vapori		Heat Eq		Temperature Degrees Fahrenheit.		
l	Temperature Degrees Centigrade.	Mm. of Mercury.	Kg. per sq. cm.	Pds. per sq. in.	Calories.	B. T. U.	Calories.	B. T. U.	Calories.	B. T. U.	Tempe Deg Fahre		
ı	t.	p.	p.	p.	q.	q.	r.	r.	ρ.	ρ.	t.		
	170	5937	8.071	114.8	171.6	308.9	488.7	879.6	442.8	797.0	338.0		
	171	6081	8.268	117.6	172.6	310.7	487.9	878.3	441.9	795.6	339.8		
	172	6229	8.469	120.4	173.7	312.6	487.1	876.9	441.1	794.1	341.6		
	173	6379	8.673	123.4	174.7	314.5	486.3	875.4	440.2	792.5	343.4		
	174	6533	8.882	126.3	175.7	316.3	485.5	873.9	439.4	790.9	345.2		
	175	6689	9.094	129.4	176.8	318.2	484.7	872.4	438.5	789.3	347.0		
	176	6848	9.310	132.4	177.8	320.0	483.9	871.0	437.7	787.8	348.8		
	177	7010	9.531	135.6	178.8	321.8	483.1	869.5	436.8	786.2	350.6		
	178	7175	9.755	138.8	179.9	323.7	482.3	868.1	436.0	784.7	352.4		
	179	7343	9.983	142.0	180.9	325.6	481.4	866.6	435.0	783.1	354.2		
	180	7514	10.216	145.3	181.9	327.5	480.6	865.1	434.2	781.5	356.0		
	181	7688	10.453	148.7	183.0	329.3	479.8	863.6	433.3	779.9	357.8		
	182	7866	10.695	152.1	184.0	331.2	479.0	862.2	432.5	778.4	359.6		
	183	8046	10.940	155.6	185.0	333.0	478.2	860.7	431.6	776.9	361.4		
	184	8230	11.189	159.2	186.1	334.9	477.4	859.2	430.8	775.3	363.2		
	185 186 187 188 189	8417 8608 8802 8999 9200	11.44 11.70 11.97 12.24 12.51	162.8 166.5 170.2 174.0 177.9	187.1 188.1 189.2 190.2	336.8 338.6 340.5 342.4 344.2	476.6 475.7 474.8 474.0 473.2	857.7 856.3 854.7 853.2 851.7	429.9 429.0 428.0 427.2 426.3	773.7 772.2 770.5 768.9 767.4	365.0 366.8 368.6 370.4 372.2		
	190	9404	12.79	181.8	192.3	346.1	472.3	850.2	425.4	765.8	374.0		
	191	9612	13.07	185.9	193.3	347.9	471.5	848.7	424.5	764.2	375.8		
	192	9823	13.36	190.0	194.4	349.8	470.6	847.1	423.6	762.5	377.6		
	193	10038	13.65	194.1	195.4	351.7	469.8	845.6	422.8	761.0	379.4		
	194	10256	13.94	198.3	196.4	353.5	468.9	844.1	421.9	759.4	381.2		
	195	10480	14.25	202.6	197.5	355·4	468.1	842.5	421.0	757.7	383.0		
	196	10700	14.55	207.0	198.5	357·3	467.2	841.0	420.1	756.1	384.8		
	197	10930	14.87	211.4	199.5	359·2	466.4	839.5	419.2	754.6	386.6		
	198	11170	15.18	216.0	200.6	361·1	465.6	838.0	418.4	753.0	388.4		
	199	11410	15.51	220.6	201.6	362·9	464.7	836.4	417.4	751.3	390.2		
	200	11650	15.84	225.2	202.7	364.8	463.8	834.8	416.5	749.7	392.0		
	201	11890	16.17	223.0	203.7	366.7	462.9	833.3	415.6	748.1	393.8		
	202	12140	16.51	234.8	204.7	368.5	462.1	831.8	414.8	746.6	395.6		
	203	12400	16.85	239.7	205.8	370.4	461.2	830.2	413.8	744.9	397.4		
	204	12650	17.20	244.7	206.8	372.3	460.3	828.6	412.9	743.3	399.2		
	205	12920	17.56	249.8	207.9	374.1	459.4	827.0	412.0	741.6	401.0		
	206	13180	17.92	254.9	208.9	376.0	458.6	825.4	411.1	740.0	402.8		
	207	13450	18.29	260.1	210.0	377.9	457.7	823.8	410.2	738.3	404.6		
	208	13730	18.66	265.4	211.0	379.8	456.8	822.2	409.3	736.7	406.4		
	209	14010	19.04	270.8	212.0	381.6	455.9	820.6	408.4	735.1	408.2		
	210	14290	19.43	276.3	213.1	383.5	455.0	819.1	407.5	733.6	410.0		
	211	14580	19.82	281.9	214.1	385.4	454.1	817.4	406.6	731.9	411.8		
	212	14870	20.22	287.6	215.2	387.3	453.2	815.8	405.7	730.2	413.6		
	213	15170	20.62	293.3	216.2	389.2	452.4	814.3	404.9	728.7	415.4		
	214	15470	21.03	299.2	217.3	391.1	451.5	812.7	404.0	727.1	417.2		
	215	15780	21.45	305.1	218.3	392.9	450.6	811.0	403.I	725.4	419.0		
	216	16090	21.88	311.1	219.3	394.8	449.6	809.3	402.I	723.7	420.8		
	217	16410	22.31	317.3	220.4	396.7	448.7	807.7	401.2	722.1	422.6		
	218	16730	22.74	323.5	221.4	398.5	447.8	806.1	400.3	720.5	424.4		
	219	17060	23.19	329.8	222.5	400.4	446.9	804.5	399.4	718.9	426 2		
	220	17390	23.64	336.2	223.5	402.3	446.0	802.9	398.5	717.3	428.0		

PROPERTIES OF SATURATED STEAM.

Metric and Common Units.

Metric and Common Units.										
iture es ade.	Heat Ec	uivalent al Work.	Entropy	Entropy	Specific V	Volume.	Den	sity.	ture es reit.	
Temperature Degrees Centigrade.	Calories.	B. T. U.	of the Liquid.	of Evapo- ration.	Cubic Meters per Kilogram.	Cubic Feet per Pound.	Kilograms per Cubic Meter.	Pounds per Cubic Foot.	Temperature Degrees Fahrenheit.	
t.	Apu.	Apu.	θ.	T.	5.	s.	1.	I ~	t.	
170 171 172 173 174	45.9 46.0 46.0 46.1 46.1	82.6 82.7 82.8 82.9 83.0	0.4880 .4903 .4926 .4949 .4972	1.1029 1.0987 1.0944 1.0901 1.0859	0.2423 .2368 .2314 .2262 .2212	3.883 3.794 3.709 3.626 3.545	4.127 4.223 4.322 4.421 4.521	0.2575 .2636 .2696 .2758 .2821	338.0 339.8 341.6 343.4 345.2	
175 176 177 178 179	46.2 46.2 46.3 46.3 46.4	83.1 83.2 83.3 83.4 83.5	.4995 .5018 .5041 .5064 .5087	1.0817 1.0775 1.0733 1.0691 1.0649	.2164 .2117 .2072 .2027 .1983	3.467 3.391 3.318 3.247 3.177	4.621 4.724 4.826 4.933 5.04	.2884 .2949 .3014 .3080 .3148	347.0 348.8 350.6 352.4 354.2	
180 181 182 183 184	46.4 46.5 46.5 46.6 46.6	83.6 83.7 83.8 83.8 83.9	.5110 .5133 .5156 .5178 .5201	1.0608 1.0567 1.0525 1.0484 1.0443	.1941 .1899 .1857 .1817	3.109 3.041 2.974 2.911 2.849	5.15 5.27 5.38 5.50 5.62	.3217 .3288 .3362 .3435 .3510	356.0 357.8 359.6 361.4 363.2	
185 186 187 188 189	46.7 46.7 46.8 46.8 46.9	84.0 84.1 84.2 84.3 84.3	.5224 .5246 .5269 .5291 .5314	1.0403 1.0362 1.0321 1.0280 1.0240	.1740 .1702 .1666 .1632 .1598	2.787 2.727 2.669 2.614 2.560	5.75 5.88 6.00 6.13 6.26	.3588 .3667 .3746 .3826 .3906	365.0 366.8 368.6 370.4 372.2	
190 191 192 193 194	46.9 47.0 47.0 47.0 47.0	84.4 84.5 84.6 84.6 84.7	.5336 .5358 .5381 .5403 .5426	1.0200 1.0160 1.0120 1.0080 1.0040	.1565 .1533 .1501 .1470	2.507 2.456 2.405 2.355 2.306	6.39 6.52 6.66 6.80 6.94	.3989 .4072 .4158 .4246 .4336	374 0 375.8 377.6 379.4 381.2	
195 196 197 198 199	47.I 47.I 47.2 47.2 47.3	84.8 84.9 84.9 85.0 85.1	.5448 .5470 .5492 .5514 .5536	1,0000 0,9961 .9922 .9882 .9843	.1411 .1382 .1354 .1327 .1300	2.259 2.214 2.169 2.126 2.083	7.09 7.23 7.38 7.53 7.69	.4,126 .4516 .4610 .4704 .4801	383.0 384.8 386.6 388.4 390.2	
200 201 202 203 204	47·3 47·3 47·3 47·4 47·4	85.1 85.2 85.2 85.3 85.3	•5558 •5580 •5602 •5624 •5646	.9804 .9765 .9727 .9688 .9650	.1274 .1249 .1225 .1201 .1177	2.041 2.001 1.962 1.923 1.885	7.84 8.00 8.16 8.33 8.50	.4900 .4998 .510 .520 .531	392.0 393.8 395.6 397.4 399.2	
205 206 207 208 209	47.4 47.5 47.5 47.5 47.5 47.5	85.4 85.4 85.5 85.5 85.5	.5668 .5690 .5712 .5733 .5755	.9611 .9572 .9534 .9496 .9458	.1153 .1130 .1108 .1086	1.847 1.810 1.774 1.739 1.705	8.67 8.85 9.03 9.21 9.39	.541 .552 .564 .575 .587	401.0 402.8 404.6 406.4 408.2	
210 211 212 213 214	47·5 47·5 47·5 47·5 47·5	85.5 85.5 85.6 85.6 85.6	•5777 •5799 •5820 •5842 •5863	.9420 .9382 .9344 .9307 .9269	.1044 .1024 .1004 .0984 .0965	1.673 1.640 1.608 1.577 1.546	9.58 9.77 9.96 10.16 10.36	.598 .610 .622 .634 .647	410.0 411.8 413.6 415.4 417.2	
215 216 217 218 219	47·5 47·5 47·5 47·5 47·5	85.6 85.6 85.6 85.6 85.6	.5885 .5906 .5927 .5948 .5969	.9232 .9195 .9157 .9120 .9084	.0947 .0928 .0910 .0893 .0876	1.516 1.486 1.458 1.430 1.403	10.56 10.78 10.99 11.20 11.41	.660 .673 .686 .699	419.0 420.8 422.6 424.4 426.2	
220	47.5	85.6	.5991	.9047	.0860	1.376	11.62	.727	428.0	

LATENT HEAT OF FUSION.

This table contains the latent heat of fusion of a number of solid substances in large calories per kilogram or small calories or therms per gram. It has been compiled principally from Landolt and Börnstein's tables. C indicates the composition, T the temperature Centigrade, and H the latent heat.

Substance.	С	T	Н	Authority.
Allows as all 1 60 ass	PbSn ₄	183	17.	Spring.
Alloys: 30.5Pb + 69.5Sn	PbSn ₈	179	15.5	Spring.
63.7 Pb + 36.3 Sn	PbSn	177.5	11.6	46
77.8Pb $+ 22.2$ Sn	Pb ₂ Sn	176.5	9.54	66
Britannia metal, 9Sn + 1Pb .	-	236	28.0*	Ledebur.
Rose's alloy,				
24Pb + 27.3Sn + 48.7Bi	-	98.8	6.85	Mazzotto.
Wood's alloy $\begin{cases} 25.8\text{Pb} + 14.7\text{Sn} \\ + 52.4\text{Bi} + 7\text{Cd} \end{cases}$	-	75.5	8.40	66
Aluminum	Al	658.	76.8	Glaser.
Ammonia	NH ₈	-75.	108.	Massol.
Benzene	C ₆ H ₆	5.4	30.6	Mean.
Bromine	Br	-7.3	16.2	Regnault.
Bismuth	Bi	268	12.64	Person.
Cadmium	CoClota	320.7	13.66	"
Calcium chloride	CaCl ₂ +6H ₂ O	28.5	40.7	Mean.
Copper	Cu	1083	42. 23.	Gruner.
" White "	-	-	33.	"
" Slag	-	-	50.	66
Iodine	I	-	11.71	Favre and Silbermann.
Ice	H ₂ O	0	79.63	Dickinson, Harper,
46	66	0	1.,	Osborne.†
" (from sea-water)	1 H2O + 3.535 L		79.59	
(Hom sca-water).	ot solids	-8.7	54.0	Petterson.
Lead	Pb	327	5.36	Mean.
Mercury	Hg . C ₁₀ H ₈	-39	2.82	Person.
Nickel	Ni	79.87	35.62 4.64	Pickering. Pionchon.
Palladium .	Pd	1545	36.3	Violle.
Phosphorus	P	44.2	4.97	Petterson.
Platinum	Pt	1755	27.2	Violle.
Potassium	K	62	15.7	Joannis.
Potassium nitrate	KNO ₈	333.5	48.9	Person.
Phenol	C_6H_6O	25.37	24.93	Petterson. Batelli.
Silver	Ag	52.40 961	35.10	Person.
Sodium	Na Na	901	31.7	Toannis.
" nitrate	NaNO ₈	305.8	64.87	"
" phosphate	Na ₂ HPO ₄	36.1	66.8	66
Spermaceti	1 + 12H ₂ O 5	0	36.98	Batelli.
Sulphur	S	43.9	9.37	Person.
Tin	Sn	232	14.0	Mean.
Wax (bees)	-	61.8	42.3	46
Zinc	Zn	419	28.13	66

^{*} Total heat from 0° C.
† U. S. Bureau of Standards, 1913, in terms of 15° calorie.

† 1903, based on electrical measurements, assuming mechanical equivalent = 4.187, and in terms of the value of the international volt in use after 1911.

TABLE 261. - Heat of Combustion of Some Carbon Compounds.

Compound.	Formula.	Kg. cal. per g- mol.	Kg. cal.	Compound.	Formula.	Kg. cal. per g- mol.	Kg. cal. per g
Paraffins: Methane, g. Ethane, g. Propane, g. i-Butane, g. n-Hexane, l. n-Heptane, l. n-Octane, l. Dekane, l. Olefines: Ethylene, g. Propylene, g. i-Butylene, g. Amylene, l. Hexylene, l. Acetylene, g. Trimethylene, g. Benzene, l. Benzene, g. Naphthalene, l. Toluene, l. Chloroform, v. Carbon disulphide, l. Methyl-chloride, g. Ethyl-chloride, g. Ethyl-chloride, g.	C ₄ H ₈	214p 371p 528p 087p 995p 1131p 1626p 343p 651p 804p 962p 313p 781p 788p 1235p 937p 70 253p 1692p 332p 781p 782p 332p 781p 782p 332p 781p 332p 782p 342p 342p 342p 342p 342p 342p 342p 34	13.30 12.40 11.80 11.60 11.50 11.40 11.50 11.40 11.50 11.40 11.50 11.60 11.50 11.60 11.50	Alcohols: Methyl, 1 Ethyl, 1 n-propyl, 1 n-propyl, 1 n-butyl, 1 Amyl, 1 Ethers: Dimethyl, v Ethyl-methyl, v Acids: Formic, 1 Acetic, 1 Propionic, 1 n-butyric, 1 Lactic, 1 Cellulose, s. Dextrine, s Glycerine, 1 Phenol, 1 Sugar, cane, 5 Starch, s Thymol, 1 Urea, 1	CH40 C2H60 C2H60 C3H80 C4H100 C4H100 C4H100 C4H100 C2H60 C2H602 C2H602 C3H602 C3H602 C3H602 C4H1003 C4H1003 C4H1003 C4H1003 C4H1005 C12H2011 C4H1005 C10H11005 C10H11005 C10H11005 C10H11005	170p 327p 483p 644p 788p 346p 660p 506p 210p 368p 330p 680 414 397 735 1353 1353 1353 152	5.31¢ 7.10¢ 8.00¢ 8.00¢ 8.06¢ 7.60¢ 8.92¢ 8.43¢ 1.357¢ 3.40¢ 4.96¢ 4.180 4.32 7.8x 4.95 4.23 9.02¢

 v, ρ , following the heats of combustion, signify at constant volume and pressure respectively. When referred to constant pressure, the values are 0.58 Kg-cal. greater (at about 18°C) for each condensed gaseous molecule. The values are means from various observers. The combustion products are gaseous CO₂, liquid water, etc.

TABLE 262. - Heat of Combustion - Miscellaneous.

Substance.	Small calories per g substance.	Reference.	Substance.	Small calories per g substance.	Reference.
Asphalt Butter Carbon: amorphous charcoal diamond graphite Copper (to CuO) Dynamite, 75% Egg, white of Egg, yolk of Fats, animal Hemoglobin Hydrogen Iron (to FesO ₃) Magnesium (to MgO) Oils: cotton-seed lard lard olive	9200 8080 8100 7860 7900 590 1290 5700 8100 9500 5900	1 - 2 - 3 3 3 5 4 2	Oils: petroleum: crude light heavy rape sperm Paraffin (to CO2, H2O I) Paraffin (to CO3, H2O I)		2 2 11 6 7 6 15 2 5 6 15 15 15 15 15 15

References: (1) Slossen, Colburn; (2) Mean; (3) Berthellot; (4) Roux, Sarran; (5) Thomsen; (6) Stohmann; (7) Gibson; (8) Gottlieb.

HEAT VALUES AND ANALYSES OF VARIOUS TYPES OF FUEL.

				(a) C	DALS.						
Coal.	Moisture.	Volatile matter.	Fixed Carbon.	∀	TOTAL TOTAL	Sulphur.	Hydrogen.	Carbon.	Nitrogen.	Oxygen.	Calories per gram.	B. T. U.'s per pound.
Lignite	38.81 33.38 22.71 15.54 11.44 3.42 2.7 3.26 2.07 2.76 3.33 1.92 1.14	25.4 27.4 34.7 33.0 33.9 34.3 14.5 9.8 2.4 3.2 1.5 0.0	4 29.6 36.6 3 46.6 3 43.9 6 58.8 7 78.2 1 78.2 8 84.2 8 84.2	9. 5. 6. 5. 10. 3. 3. 7. 6. 3. 9. 12. 8. 9. 8. 8. 8.	39 3 97 30 69 12	0.97 0.94 0.29 0.58 4.94 0:58 0.99 0.54 1.74 0.60 1.18 0.69	7.09 6.77 6.14 5.89 5.39 5.25 4.58 4.76 3.62 2.23 3.08	41.31 52.54 60.08 60.06 77.98 80.65 84.62	1 0.67 1 1.03 3 1.05 5 1.02 8 1.29 1 1.82 1 1.02 1 1.47 2 0.68	45 · 57 40 · 75 34 · 09 27 · 03 17 · 88 11 · 51 4 · 66 5 · 09 4 · 64 5 · 06	3994 5115 5865 6088 7852 7845 8166 7612 6987	6347 7189 9207 10557 10958 14134 14121 14699 13702 12577 13351 14300 14410
(b) Peats and Wood (air dried).												
Vol. hydro-carbon. Fixed carbon. Ash. Sul-phur. Hydro-gen. Carbon. Nitro-gen. Oxygen. Calories B.T.U.'s per per pound.												
Woods: Oak, dry Birch, dry	Franklin Co., N. Y 67.10 28.99 Sawyer Co., Wis 56.54 27.92					3.91 0.15 5.93 15.54 0.29 4.71 0.37 — 6.02 0.37 — 6.06 0.37 — 6.06			1.48 1.92 0.09 0.10 0.04	31.36 26.54 43.36 44.67 43.08	5726 4867 4620 4771 5085	10307 8761 8316 8588 9153
				(c) L1	QUID	Fu	ELS.					
Fu	iel.			Spe	cific g	gravit; C.	у	Calories	per gran	n. Brit	ish thern per pou	nal units.
Petroleum ether Gasoline . Kerosene . Fuel oils, heavy petro Alcohol, fuel or dena cent water and de	to o per		684 710 790 960	. 730 . 800 . 970		11100 11000 10200	-12220 -11400 -11200 -10500		21978-21 19980-20 19800-20 18360-18	0520 0160 0900		
				(d)	GAS	SES.						
Gas.		H ₂	СН	C ₂ H ₂		ımi- nts.	CO ₂	СО	O ₂	N ₂	Cal. per m³	B.T.U. per cu. ft.
Natural gas, Cal Natural gas, Pa Natural gas, France. Coal gas, low grade. Coal gas, high grade. Water gas, low grade. Water gas, high grade.	34	 4.80 7.2 2.88 5.4	88.0 53.3 98.81 28.80 18.8 2.16 23.2	45.8* 9.50	1 0 3	.70 .8 .47 .05	11.10 0.58 0.20 2.00 -	10.40 3.20 36.8 19.1	- 0.1 0.40 - 1.15	0.90 0.90 0.48 14.20 18.0 4.69 3.08	8339 12635 9364 6151 3736 2642 6140	937 1420 1052 657 399 283 657

^{*}C₂H₆. Data from the Geological Survey, Poole's The Calorific Power of Fuels, and for natural gas from Snelling (Van Nostrand's Chemical Annual).

CHEMICAL AND PHYSICAL PROPERTIES OF FIVE DIFFERENT CLASSES OF EXPLOSIVES.

			0.1								
Explosive.	Specific gravity.	Number of large calories developed by 1 kilogram of the explosive.	Pressure developed in own volume after elimination of surface influence.	Unit disruptive charge by ballistic	Rate of detonation. Cartridges 14 in. diam.	Duration of flame from 100 grams of explosive.	Length of flame from 100 grams.	Cartridge 14 in. transmitted explosion at a distance of	Products of combustion from 200 grams; gaseous, solid, and liquid, respectively.	Ignition occurred in 4% firedamp & coal dust mixture with	
			Kg. per sq. cm.	Grams.	Meters per second.	Millisec- onds.	Inches.	Inches.	Grams.	Grams.	
(A) Forty-per-cent nitro- glycerin dynamite	1.22	1221.4	8235	227*	4688	.358	24.63	12	88.4 79.7 14.5	25	
(B) FFF black blasting powder	1.25	789.4	4817	374 [†] 458*	469.41	925.	54.32	-	154.4 126.9 4.1	25	
(C) Permissible explo- sive; nitroglycerin class	1.10	760.5	5912	301*	3008	.471	27.79	4	103.9 65.1 15.4	1000	
(D) Permissible explo- sive; ammonium nitrate class	0.97	992.8	7300	279*	3438§	.483	25.68	I	89.8 27.5 75.5	800	
(E) Permissible explo- sive; hydrated class	1.54	610.6	6597	434*	2479	.338	17.49	3	86.1 56.0 33.0	Over 1000	
		(Chemical	Analyse	8.		, -				
(A) Moisture Nitroglycerin Sodium nitrate Wood pulp Calcium carbonate .	Nitroglycerin 83. Sodium nitrate										
(B) Moisture			0.80 70.57 17.74 10.89	(E)	Mangan Sand Moisture Nitrogly		roxide			2.64 6.53 2.34 30.85	
grains Starch	Nitroglycerin						Ammonium nitrate 9 Sand 1 Coal 11 Clay 7 Ammonium sulphate 8 Zinc sulphate (7HO) 6				
Calcium carbonate. Magnesium "	: :		0.97 0.36		Potassiu	m sul	phate	• •		19.65	

^{*} One pound of clay tamping used. § Cartridges 13 in. diam.

[‡] Rate of burning.

One pound of clay tamping used. † Two pounds of clay tamping used. ‡ Rate of burning a Cartridges 13 in. diam. † For 300 grammes.

Compiled from U. S. Geological Survey Results,—"Investigation of Explosives for use in Coal Mines, 1909."

TABLE 265. - Additional Data on Explosives.

Explosive. (Ref. Young, Nature, 102, 216, 1918.)	Vol. gas per g in cc = V	Calories per g = Q	Coefficient = QV + 1000	Coefficient $GP = \mathbf{I}$	Calculated Temperature Q/C C, sp. ht. gases = 0.24
Gunpowder Nitroglycerine Nitrocellulose, 13% Ns Cordite, Mk. I. (NG, 57; NC, 38; Vaseline, 5) Cordite, MD (NG, 30; NC, 65; Vaseline, 5). Ballistite (NG, 50; NC, 50; Stabilizer, 5) Picric acid (Lyddite)	280	738	207	1	2240° C
	741	1652	1224	6	6880
	923	931	859	4·3	3876
	871	1242	1082	5·2	5175
	888	1031	915	4·4	4225
	817	1349	1102	5·3	5021
	877	810	710	3·4	3375

Shattering power of explosive = vol. gas per g \times cals./g \times $V_d \times$ density where V_d is the velocity of detonation. Trinitrotoluene: $V_d = 7000$ m/sec. Shattering effect = .87 picric acid.

Amatol (Ammonium nitrate + trinitrotoluene, TNT): $V_d = 4500$ m/sec.

Ammonal (Ammonium nitrate, TNT, Al): 1578 cal/g; 682 cc gas; $V_d = 4000$ m/sec.

Sabulite (Ammonium nitrate, 78, TNT 3, Ca silicide 14): about same as ammonal.

TABLE 266. - Ignition Temperatures Gaseous Mixtures.

Ignition temperature taken as temperatures necessary for hot body immersed in gas to cause ignition; slow combination may take place at lower temperatures. McDavid, J. Ch. Soc. Trans. 111, 1003, 1917. Gases were mixed with air. Practically same temperatures as with O₂ (Dixon, Contad, *loc. cit.* 95, 1909).

Benzene and air 1062° C Coal gas and air 878 CO and air 931	Ether and air Ethylene and air. Hydrogen and air.	1000
---	---	------

TABLE 267. — Time of Heating for Explosive Decomposition.

Temperature ° C.	170	180	190	200	220	Ignition ten	perature.
Time.	sec.	sec.	sec.	sec.	sec.	°C†	°C‡
Black powder Smokeless powder A Smokeless powder B Celluloid Pyroxylin. Collodion cotton Celluloid ** Safety matches. Parlor matches. Cotton wool	870	n 195 130 60 165 100 340 n	# 130 	# 45 90 21 56 50 150 590	# 23 25 9 18 30 60 480	440 { 300 	450 —

n, failure to explode in twenty minutes. *The decomposition of nitrocellulose in celluloid commences at about 100° C; above that the heat of decomposition may raise the mass to the ignition point if loss of heat is prevented. Above 170°, decomposition occurs with explosive violence as with nitrocellulose. Rate of combustion is 5 to 10 times that of poplar, pine, or paper of the same size and conditions.

† Measured by contact with porcelain tube of given temperature. Average.

† Measured by contact with molten lead. Average.

Taken from Technologic Paper of Bureau of Standards, No. 98, 1917.

TABLE 268. - Flame Temperatures.

Measures made with optical pyrometer by Féry, J. de Phys. (4) 6, 1907.

Alcohol, with NaCl. Bunsen flame, no air Bunsen flame, † air. Bunsen flame, full air. Illuminating gas-oxygen.	1705° C 1712 1812 1871 2200	Hydrogen flame. Hydrogen-oxygen. Acetylene burner. Acetylene-oxygen. Cooper-Hewlit Hg.	1900° C 2420 2458 3000 3500
--	---	--	---

THERMO-CHEMISTRY. CHEMICAL ENERGY DATA.

The total heat generated in a chemical reaction is independent of the steps from initial to final state. Heats of formation may therefore be calculated from steps chemically impracticable. Chemical symbols now represent the chemical energy in a gram-molecule or $\operatorname{mol}(\epsilon)$; treat reaction equations like algebraic equations: $\operatorname{CO} + \operatorname{O} = \operatorname{CO}_2 + \operatorname{68} \, \operatorname{Kg-cal}$; subtract $\operatorname{C} + 2 \operatorname{O} = \operatorname{CO}_2 + \operatorname{97} \, \operatorname{Kg-cal}$, then $\operatorname{C} + \operatorname{O} = \operatorname{CO} + \operatorname{29} \, \operatorname{Kg-cal}$. We may substitute the negative values of the formation heats in an energy equation and solve $\operatorname{MgCl}_2 + 2 \operatorname{Na} = 2 \operatorname{NaCl} + \operatorname{Mg} + x \operatorname{Kg-cal}$; -151 = -196 + x; $x = 45 \, \operatorname{Kg-cal}$. Heats of formation of organic compounds can be found from the heats of combustion since burned to $\operatorname{H_2O}$ and CO_2 . When changes are at constant volume, energy of external work is negligible; also generally for solid or liquid changes in volume. When a gas forms a solid or liquid at constant pressure, or vice versa, it must be allowed for. For N mols of gas formed (disappearing) at T_K° the energy of the substance is decreased (increased) by $\operatorname{0.002} \cdot \operatorname{N} \cdot \operatorname{T}_K \operatorname{Kg-cal}$. $\operatorname{H}_2 + \operatorname{O} = \operatorname{H}_2\operatorname{O} + \operatorname{67.5} \operatorname{Kg-cal}$. at $\operatorname{18}^\circ\operatorname{C}$. at constant volume; $\frac{1}{2}(2 + \operatorname{H}_2 + \operatorname{O}_2 - 2 \, \operatorname{H}_2\operatorname{O} = 135.\circ + \operatorname{0.002} \times 3 \times 2\operatorname{91} = 136.7) = 68.4 \, \operatorname{Kg-cal}$.

The heat of solution is the heat, + or -, liberated by the solution of 1 mol of substance in so much water that the addition of more water will produce no additional heat effects. Aq. signifies this amount of water; H_2O , one mol.; $NH_3 + Aq = NH_4OH \cdot Aq. + 8$ Kg-cal.

TABLE 269. (a). Heats of Formation from Elements in Kilogram Calories.

At ordinary temperatures.

							-
Compound.	Heat of Forma- tion.	Compound.	Heat of Forma- tion.	Compound.	Heat of Forma- tion.	Compound.	Heat of Forma- tion.
Al ₂ O ₃ Ag ₂ O BaO BaO ₂ Bi ₂ O ₃ CO am CO di CO ₂ am CO ₂ gr CO ₂ di CaO CeO ₂ Cl ₂ O g CoO am CoO cr Co ₃ O ₄ CrO ₃ Cs ₂ O Cu ₂ O Cu ₂ O Cu ₂ O Cu ₂ O Gu ₂ O	380. 6.5 126. 142. 138. 29.0 26.1 97.0 94.8 94.3 152. 22510.5 57.5 193.4 140. 91.3 42.3 37.2 65.7 196.5 270.8 68.4 46.8 22.2 21.4 91. 447. 141.6 143.6 90.8 123. 325. 143. 17418.2 -21.6 - 8.1 - 2.6	HgO Na ₂ O Nd ₂ O ₃ NiO P ₂ O ₅ sgs PbO PbO ₂ Pr ₂ O ₃ Rb ₂ O SO ₂ rh sgg SiO ₂ SnO SnO ₂ cr SrO ₂ ThO ₂ TiO ₂ am TiO ₂ cr TiO ₂ cr TiO ₂ cr TiO ₃ AgCl AgCl AlCl ₃ AuCl y AuCl ₃ y BaCl ₂ BiCl ₃ CCl ₄ am CaCl ₂ CdCl ₂ CdCl ₂ CuCl FeCl ₂ FeCl ₃ GGCl ₂ HCl ggl HgCl HgCl ₂	21.4 100. 435. 57.9 370. 50.3 62.4 412. 89.2 70. 191.0 66.9 137.5 135. 326. 215.6 218.6 218.6 218.6 219.6 29.2 29.5 161.8 192.8 197. 90.6 21.0 187. 93.2 76.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 5	KCI LiCI MgCl ₂ MnCl ₂ NaCl NdCl ₃ NH ₄ CI NiCl ₂ PbCl ₂ PdCl ₂ PtCl ₄ SnCl ₂ SnCl ₄ SrCl ₂ ThCl ₄ TICI RbCl ZnCl ₂ HBr glg NH ₄ Br HI ggg Ag ₂ S CS ₂ sgg CaS (NH ₄) ₂ S Cu ₂ S CuS H ₂ S gsg K ₂ S MgS Na ₂ S PbS CaSO ₄ CuSO ₄ H ₂ SO ₄ Hg ₂ SO ₄	105.7 93.8 151.0 112.3 97.8 250. 76.3 74.5 83.4 40.5 60.4 80.8 128. 185. 300. 48.6 105.9 997.3 8.6 66. -6.2 38. 3.3 -26.0 90.8 66.2 18.3 11.5 103.4 103.4 103.4 103.4 103.6 10	Li ₂ SO ₄ (NH ₄) ₂ SO ₄ Na ₂ SO ₄ MgSO ₄ PbSO ₄ Tl ₂ SO ₄ ZnSO ₄ CaCO ₃ CuCO ₃ FeCO ₃ K ₂ CO ₃ MgCO ₃ Xa ₂ CO ₃ ZnCO ₅ AgNO ₅ Ca(NO ₃) ₂ Cu(NO ₃) ₂ 6 H ₂ O HNO ₈ gggI KNO ₃ LiNO ₃ LiNO ₃ TiNO ₃ CH ₄ sgg C ₂ H ₄ sgg C ₂ H ₄ sgg C ₂ H ₄ sgg C ₄ H ₅ Sgg C ₄ H ₅ Sgg C ₄ H ₅ OH NaOH NaOH NaOH NaOH NaOH NaOH NaOH K·H ₂ O·Aq-H ½(2 Na·O·H ₂ O) ¾(Na ₂ O·H ₂ O·Aq) KOH K·H ₂ O·Aq-H ½(2 K·O·H ₂ O) ¾(K ₂ O·H ₂ O·Aq)	334.2 283.3 301.6 216.2 221.0 229.6 270. 143. 179. 280. 267. 272. 194. 28.7 209. 92.9 91.6 119.2 112. 88.3 111.0 58.2 20. 25. 120. 230. 88.8 102. 44.* 68.* 30.* 103.5 45.* 69.* 35.5*

am = amorphous; di = diamond; gr = graphite; cr = crystal; g = gas; l = liquid; s = solid; y = yellow (gold); rh = rhombic (sulphur).

* Heats of formation not from elements but as indicated.

HEATS OF FORMATION OF IONS IN KILOGRAM-CALORIES.

+ and - signs indicate signs of ions and the number of these signs the valency. For the ionisation of each gram-molecule of an element divide the numbers in the table by the valency, e. g., 9.03 gr. Al = 9.03 gr. Al + + 40.3 Kg. cal. When a solution is of such dilution that further dilution does not increase its conductivity, then the heats of formation of substances in such solutions may be found as follows: $FeCl_2Aq = +22.2 + 2 \times 39.1 = 100.4$ Kg. cal. $CuSO_4Aq = -15.8 + 214.0 = 198.2$ Kg. cal.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
--	---	---

TABLE 271 .- Heats of Neutralization in Kilogram-Calories.

The heat generated by the neutralization of an acid by a base is equal, for each gram-molecule of water formed, to 13.7 Kg. cal. plus the heat produced by the amount of un-ionized salt formed, plus the sum of the heats produced in the completion of the ionizations of the acid and the base. (See also p. 209).

Base.	HCl∙aq	HNO3-aq	H ₂ SO ₄ ·aq	HCN-aq	CH ₃ COOH•aq	H ₂ ·CO ₃ ·aq
KOH · aq NaOH · aq NH ₄ OH · aq ½ Ca(OH) ₂ · aq ½ Zn(OH) ₂ · aq ½ Cu(OH) ₂ · aq	13.7 13.7 12.4 14.0 9.9 7.5	13.8 13.7 12.5 13.9 9.9 7.5	15.7 15.7 14.5 15.6 11.7 9.2	2.9 2.9 1.3 3.2 8.1	13.3 13.3 12.0 13.4 8.9 6.2	10.1 10.2 8. 9.5 5.5

TABLE 272.—Heat of Dilution, H2SO4.

In Kilogram-calories by the dilution of one gram-molecule of sulphuric acid by m gram-molecules of water.

	m	I 6.38	2	3	5	19	49	99	199	399	1599
ı	ng. Cai	0.30	9.42	11.14	13.11	10.26	16.68	16.86	17.06	17.31	17.86

RADIATION CONSTANTS.

TABLE 273 .- Radiation Formulæ and Constants for Perfect Radiator.

The radiation per sq. cm. from a "black body" (exclusive of convection losses) at the temperature T° (absolute, C) to one at t° is equal to

$$J = \sigma (T^4 - t^4)$$
 (Stefan-Boltzmann);
Where $\sigma = 1.374 \times 10^{-12}$ gram-calories per second per sq. centimeter.
 $= 8.26 \times 10^{-11}$ " " minute " " " = 5.75 $\times 10^{-12}$ watts per sq. centimeter.

The distribution of this energy in the spectrum is represented by Planck's formula:

$$J_{\lambda} = C_{1} \lambda^{-5} \left[e^{\frac{C_{2}}{\lambda T}} - 1 \right]^{-1}$$

where f_{λ} is the intensity of the energy at the wave-length λ (λ expressed in microns, μ) and ϵ is the base of the Napierian logarithms.

$$C_1 = 9.226 \times 10^3 \text{ for } J \text{ in } \frac{gram. \ cal.}{sec. \ cm.^2} = 3.86 \times 10^4 \text{ for } J \text{ in } \frac{watts}{cm.^2}$$
 $C_2 = 14350 \text{ for } \lambda \text{ in } \mu$
 $J_{\text{max}} = 3.11 \times 10^{-16} \ T^5 \text{ for } J \text{ in } \frac{gram. \ cal.}{see. \ cm.^2} = 1.30 \times 10^{-15} \ T^5 \text{ for } J \text{ in } \frac{watts}{cm.^2}$
 $\lambda_{\text{max}} T = 2910 \text{ for } \lambda \text{ in } \mu$

h=Planck's unit=elementary "Wirkungs quantum"= 6.83×10^{-27} ergs. sec. k=constant of entropy equation= 1.42×10^{-16} ergs./degrees.

TABLE 274.—Radiation in Gram-Calories per 24 Hours per sq. cm. from a Perfect Radiator at t° C to an absolutely Cold Space (-273° C).

Computed from the Stefan-Boltzmann formula.

		J 0 1 2 3 5 9 13 19 27 38	-120 -110 -100 -90 -80 -70 -60 -50 -40 -30	65 84 107 134 105 201 245 294 350 416	-10 -8 -6 -4 -2 0 +2 +4 +6 +8	571 588 606 625 643 662 682 701 722 744	+12 +14 +16 +18 +20 +22 +24 +26 +28 +30	787 808 831 855 879 903 928 953 979 1005	+34 +36 +38 +40 +42 +44 +46 +48 +50 +52	1145 1174 1204 1234 1265 1298 1330		1400 1430 1470 1650 1850 2070 2310 5060 313×10 ⁸ 318×10 ⁴
--	--	---	---	--	-------------------------------	--	--	---	--	--	--	--

TABLE 275. — Values of J_{λ} for Various Temperatures Centigrade.

Ekholm, Met. Z. 1902, used $C_1 = 8346$ and $C_2 = 14349$, and for the unit of time the day. For 100°, the values for J λ have been multiplied by 10, for the other temperatures by 100.

λ	<i>T</i> = 100° C	30° C	15° C	o°C	−30° C	—80° C	λ	100° C	30° C	15° C	00 C	-30° C	-80° C
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1 80 469 1047 1526 1768 1810 1724 1573 1398 1225 1063 918 792 683 590	0 41 508 1777 3464 4954 5928 6386 6386 6127 5712 5712 5712 4713 4220 3759 3340	0 18 272 1085 2296 3481 4352 4834 4979 4833 4633 4300 3930 3556 3198 2862	138 628 1454 2353 3088 3646 3781 3798 3676 3467 3215 2944 2417	1 27 172 493 931 1372 1730 1971 2098 2114 2090 2004 1889 1760 1626	8 39 105 203 316 426 520 640 666 673 663 649	# 18 19 20 21 22 23 24 25 26 28 30 40 50 60 80 100	511 443 386 337 295 259 228 202 179 142 114 44 20 10 4	2961 2626 2329 2068 1840 1639 1462 1307 1170 947 771 311 146 77 27	2557 2281 2034 1816 1622 1448 1298 1165 1047 850 696 285 135 72 25 11	2175 1954 1754 1574 1413 1270 1141 1028 926 757 623 259 124 66 24 10	1491 1363 1242 1129 1026 931 846 768 698 579 482 209 102 55 20	623 594 561 527 494 460 428 398 369 317 272 130 67 38 14

BLACK-BODY SPECTRUM INTENSITIES (JA).

Values of $J\lambda$ using for C_1 , 9.23×10^3 , C_3 , $14350...\lambda$ in μ . If the figures given for $J\lambda$ are plotted in cms as ordinates to a scale of abscissae of 1 cm to 1 μ , then the area in cm² between the smooth curve through the resulting points and the axis of abscissae is equivalent to the radiation in calories per sec. from 1 cm² of a black body at the corresponding temperature, radiating to absolute zero. The intensities when radiating to a body at a lower temperature may be obtained by subtracting the intensities corresponding to the lower temperature from those of the higher. The nature of the black-body formula is such that when λT is small, a small change in C_2 produces a great change in J_λ ; e.g., when $C_2/\lambda T$ is 100 or 10, the change is 100 and 10 fold respectively; as λT increases, the change becomes proportional; e.g., when $C_2/\lambda T$ is less than 0.05, the change in $J\lambda$ is proportional to the change in C_2 .

λ	50° K.	100° K.	150° K.	200° K.	250° K.	273° K.	300° K.	373° K.	400° K.	500° K.	600° K.
μ											0
1.0	_	. 0583	. 0372	. 0276	. O20 I	.0181	. O16I	.0122	.01124	.0831	.0638
1.5	_	. 0383	. 0242	.0172	. 0183	. 0127	.0102		.0749	.0558	.03143
2.0	. Ose I	. O282	. 0185	. 0137	. O9 I	. OgII	.0712	.0513	.0546	.03168	.00184
2.5	. O47I	. O22I	.0142	. 0103	.0710	. 077	.0646	.0419	.0450	.0397	.0066
3.0	.0009	.0196	. 0135	.082	.0618	. 069	.0545	.03102	.03242	.00265	.OI3I
3.5	. 0844	. 0163	. 0102	.072	.0513	. 055	.0420	.0329	.03620	.00482	.0189
					0.70	.0418	0.55	.0360	.00115	.00600	.0220
4.0	.0006	. 0142	. 094	.0614	.0552		.0457		.00226		
5.0	. 0243	. O11I	.0714	.0517	.0430	.048	.032I	.00134		.00052	.0249
6.0	. 02019	. 0105	.0614	.058	.048	.0318	.0341	.00195	.00301		.0186
7.0	.01883	.096	.066	.0419	.0815	.0330	.0359	.00225		.00925	
8.0	.01672	.085	.0518	.0436	.0322	.0839	.037I	.00232	.00321		.0149
9.0	.01422	.0718	.0538	.0454	.0327	.0345	.0377	.00220	.00295	.00672	.0118
TO 0	007	0754	.0565	.047I	. 0330	.0348	.0378	.00201	.00262	.00554	.00020
10.0	.01331	.0754	.0413	.0404	.0331	.0347	.0370	.00157	.00106	.00374	.00585
	.01115	. 0624 . 0661	.0418	.04102	.0820	.0341	.0858	.00137	.00144	.00254	.00380
14.0	. O102I	.0601	.0422	.04100	.0825	.0334	.0846	.0387	.00105	.00176	.00254
18.0	.0914	.0617	.0424	.0402	.0321	.0328	.03368	.03653	.03760	.00124	.00176
20.0	.0816	.0522	.0424	.0482	.0317	.03224	.03200	.03493	.03575	.03002	.00125
20.0	.0810	.0522	.0424	.0402	.081/	.03224	.03290	.00493	.003/3	.03902	.0011
25.0	. 0807	. 0530	.0421	.0457	.03122	.03131	.03164	.02258	.03205	.08439	.03589
30.0	.0726	.0632	.0416	.0438	.0466	.0479	.0407	.03146	.03164	.08237	.03311
40.0	.0760	.0526	. 050	W. 0418	.04282	.0433	.043QI	.04558	.04620	.04858	.03110
50.0	.0705	.0518	.0551	.0502	.04150	.04158	.04184	.04255	.04281	.04381	.04482
75.0	.0787	.0667	.0515	.0524	.05338	.05383	.05436	.05580	.08634	.05834	.04103
100.0	.0755	.0620	. 0657	.0688	.OSIIQ	.05134	.05150	.05197	.05214	.05277	.05342

λ	800° K.	1000° K.	1500° K.	2000° K.	3000° K.	4000° K.	5000° K.	6000° K.	8000° K.	10000° K.	20000° K.
μ 0.:		=	_	0.0226	0.011I5 0.00I2	0.0624	0.0331	0.038	15. 3660.	540.	710000. 820000.
0.		-	_	0.0315	0.44	24.2	263.	1310.	9640.	31000.	3820000.
0.4		_		0.0145	5.75	115.	690.	2280.	10300. 8400.	25600. 17800.	180000.
0.		.0548	0.014	0.757	40.8	301.	1000.	2240.	6200.	11950.	51460.
0.			0.064	1.93	59.2	328.	925.	1860.	4590.	8110.	30700.
0.		.00045		3.58	71.5	321.	800.	1490.	3350.	5620.	19400.
0.9	0 .0434	.00103	0.370	5.35	77.3	295.	671.	1177.	2470.	.3900.	12020.
1.0				7.06	77.8	262.	554-	928.	1842.	2880.	8800.
I.			2.07	10.25	52.2	122.	210.	309.	527.	758.	1980.
2.0		. 221	2.43	8.19 5.68	29.0 16.4	57.6	90.2	125. 58.0	198.	275. 121.0	668.
3.0		.320	1.64	3.82	9.66	16.4	23.7	31.1	46.4	61.9	
3	5 . 1050	. 296	1.22	2.60	6.02	9.84	13.8	17.9	26.3	34.7	77.3
4.0	. 1027	.256	0.007	1.80	3.00	6.20	8.50	II.O	15.0	20.0	45.9
5.0	0.0839	.178	0.511	0.923	1.84	2.81	3.81	4.81	6.84	8.89	19.15
6.		.119	0.302	0.514	0.973	1.45	1.935	2.42	3.40	4.39	9.34
8.		.0811	0.188	0.307	0.560	0.820	0.653	0.808	1.88	2.4I I.43	3.00
9.0		.0398	0.0824	0.128	0.223	0.310	0.416	0.513	0.700	0.00	1.87
		00		00							
10.0			0.0575	0.0880	0.151	0.214	0.278	0.342	0.470	0.598	0.602
14.	0 .00660	.0096	0.0175	0.0256	0.0421	0.0587	0.0754	0.0021	0.125	0.150	0.326
16.		.00606		0.0155	0.0253	0.0350	0.0448	0.0546	0.0742	0.0938	0.192
18.			0.00697	0.00997	0.0160	0.0221	0.0282	0.0344	0.0466	0.0585	0.120
20.1	.00196	.002/5	0.00470	0.00008	0.01008	0.0147	0.01868	0.0227	0.0307	0.0388	0.0789
25.0			0.00203				0.00777	0.00941	0.0127	0.0160	0.0325
30.			0.00101	0.00141	0.00220		0.00378	0.00455	0.00616		0.0157
50.0			0.03334	0.03459	0.02710	0.03960	0.00121	0.00146	0.00197	0.00247	0.00498
75.0			0.04286	0.04387	0.04501	0.04794	0.04007	0.03120	0.03161	0.03201	0.03496
100.	0 .05470	.01598	0.05919	0.04124	0.04188	0.04252	0.04317	0.04381	0.04510	0.04639	0.03128
-		1			1	1	!				

See Forsythe, J. Opt. Soc., 4,331, 1920, relative values, 0.4 to 0.76 μ (steps 0.01 μ), 12 temperatures, 1000 to 5000° K.

RADIATION EMISSIVITIES.

TABLE 277. - Relative Emissive Powers for Total Radiation.

Emissive power of black body = 1. Receiving surface platinum black at 25°C; oxidized surfaces oxidized at 600 + °C. Randolph and Overholzer, Phys. Review, 2, p. 144, 1913.

	Temperature, Deg. C.					
	200	400	600			
	0.020	0.030	0.038			
num (1)	0.060	0.086	0.110			
zinc	_	O.TIO	-			
d aluminum	0.113	0.153	0.102			
copper, oxidized	0.180	0.185	0.100			
	0.210	_	-			
ckel	0.369	0.424	0.478			
nonel	0.411	0.430	0.463			
d steel, oxidized	0.521	0.547	0.570			
copper	0.568	0.568	0.568			
rass	0.610	0.600	0.589			
ad	0.631		-			
ast iron	0.643	0.710	0.777			
eel	0.790	0.788	0.787			
	1.00	I.00	1.00			

Remark: For radiation properties of bodies at temperatures so low that the radiations of wave-length greater than 20 μ or thereabouts are important, doubt must exist because of the possible and perhaps probable lack of blackness of the receiving body to radiations of those wave-lengths or greater. For instance, see Table 379 for the transparency of soot.

TABLE 278. - Emissivities of Metals and Oxides.

Emissivities for radiation of wave-length 0.55 and 0.65 µ. Burgess and Waltenberg, Bul. Bureau of Standards,

II, 591, 1914. In the solid state practically all the metals examined appear to have a negligible or very small temperature coefficient of emission for $\lambda = 0.55$ and $0.65~\mu$ within the temperature range 20° C to melting point. Nickel oxide has a well-defined negative coefficient, at least to the melting point. There is a discontinuity in emissivity, for $\lambda = 0.65 \mu$ at the melting point for some but not all the metals and oxides. This effect is most marked for gold, copper, and silver, and is appreciable for platinum and palladium. Palladium, in addition, possesses for radiation a property analogous to suffusion, in that the value of emissivity ($\lambda = 0.65 \mu$) natural to the liquid state may persist for a time after solidification of the metal. The Violle unit of light does not appear to define a constant standard. Article contains bibliography.

Metals.	Cu	Ag	Au	Pd	Pt	Ir	Rh	Ni	Со	Fe	Mn	Ti
eλ, 0.55 μ solid 0.55 μ liquid	0.38	0.35	0.38	0.38	0.38	=	0.29	0.44	=	=	=	0.75
o.65 μ solid liquid	0.10	0.04	0.14	0.33	0.33	0.30	0.29	0.36	0.36	0.37	0.59	0.63
Metals	Zr	Th	Y	Er	Be	Cb	v	Cr	Мо	W	U	
eλ, 0.55 μ solid liquid		0.36	=	0.30	0.61	0.61	0.29	0.53	=	=	0.77	
ο.65 μ solid liquid	0.32	0.36	0.35	0.55	0.61	0.49	0.35	0.39	0.43	0.39	0.54	
Oxides: 0.65 μ	NiO	C03O4	Fe ₃ O ₄	 Mn ₃ O ₄	TiO ₂	ThO ₂	Y ₂ O ₃	BeO	CbOx	 V ₂ O ₃	Cr ₂ O ₃	U ₃ O ₈
eλ, solid	0.89	0.77	0.63	_	0.52	0.57	0.61	0.37	0.71	0.69	0.60	0.30
liquid	0.68	0.63	0.53	0.47	0.51	0.69				_		0.31

RADIATION EMISSIVITIES.

TABLE 279. - Relative Emissivities of Metals and Oxides.

Emissivity of black body taken as 100.

True temperature	C.	500°	600°	700°	800°	9)00°	1000°	1100	12	00°	Ref.
60 FeO.40 Fe ₂ O ₃ = Fe heated in airλ =	Total = 0.65 μ		85	86	87 98		87 97	88 95	93		89	1
NiOλ =	Total = 0.65 μ		54	62 98	68 96		72 94	75 92	81 88		36 37	2
Platinum: True temp. C App.* temp. C Total emiss. Pt			00 300	-	500	750	1000 486 12.4	630	1400 780 15.5	1600 930 16.9	1700 1005 17.5	3 3 3
Tungsten: True temp. K (abs.) λ = 0.467		200 51.8 48.2	50.8	49.8	1400 48.9 45.3	1800 47.9 44.3	2200 47.0 43.3	46.0	3000 45.0 41.4	3400 44.I 40.4	3800	4 4 4

TABLE 280. — Temperature Scale for Tungsten.

Hyde, Cady, Forsythe, J. Franklin Inst. 181, 418, 1916. See also Phys. Rev. 10, 395, 1917. The color temperature = temperature of black body at which its color matches the given radiation.

Lumens/watt	Color temperature.	Black-body temperature.	True temperature.	True temperature.	True - color.	True — brightness.
1 2 3 4 5 6 7 8	1763° K. 1917 2025 2109 2179 2237 2290 2338 2383 2425	1627° K. 1753 1840 1909 1967 2017 2062 2102 2140 2174	1729° K. 1875 1976 2056 2125 2184 2238 2286 2332 2373	1700° 1800 1900 2000 2100 2200 2300 2400	12° 20 26 31 36 39 41 43	100° 115 128 142 158 175 191 208

TABLE 281. - Color minus Brightness Temperatures for Carbon.

Hyde, Cady, Forsythe, Phys. Rev. 10, 395, 1917.

Brightness temp. ° K

^{*} As observed with total radiation pyrometer sighted on the platinum.

References: (1) Burgess and Foote, Bul. Bureau of Standards, 12, 83, 1915; (2) Burgess and Foote, loc. cit.

11, 41, 1914; (3) Foote, loc. cit. 11, 607, 1914; (4) Worthing, Phys. Rev. 10, 377, 1917.

COOLING BY RADIATION AND CONVECTION.

TABLE 282. - At Ordinary Pressures.

According to McFarlane* the rate of loss of heat by a sphere placed in the centre of a spherical enclosure which has a blackened surface, and is kept at a constant temperature of about x₄° C, can be expressed by the equations

$$e = .000238 + 3.06 \times 10^{-6}t - 2.6 \times 10^{-8}t^{2}$$

when the surface of the sphere is blackened, or

$$e = .000168 + 1.98 \times 10^{-6}t - 1.7 \times 10^{-3}t^{2}$$

when the surface is that of polished copper. In these equations, ε is the amount of heat lost in c. g. s. units, that is, the quantity of heat, small calories, radiated per second per square centimeter of surface of the sphere, per degree difference of temperature t, and t is the difference of temperature between the sphere and the enclosure. The medium through which the heat passed was moist air. The following table gives the results.

Differ- ence of tempera-	Valu	e of e.	Ratio.
ture t	Polished surface.	Blackened surface.	Ratio.
5	.000178	.000252	.707
10	.000186	.000266	.699
15	.000193	.000279	.692
20	.000201	.000289	.695
25	.000207	.000298	.694
30	.000212	.000306	.693
35	.000217	.000313	.693
40	.000220	.000319	.693
45	.000223	.000323	.690
50	.000225	.000326	.690
55	.000226	.000328	.690
60	.000226	.000328	.690

TABLE 283. - At Different Pressures.

Experiments made by J. P. Nicol in Tait's Laboratory abow the effect of pressure of the enclosed air on the rate of loss of heat. In this case the air was dry and the enclosure kept at about 8° C.

Polishe	ed surface.	Blacken	ed surface.
t	et	t	et
Pri	SSURE 76 CM	s. of Mer	CURY.
63.8 57.1 50.5 44.8 40.5 34.2 29.6 23.3 18.6	.00987 .00862 .00736 .00628 .00562 .00438 .00378 .00278	61.2 50.2 41.6 34.4 27.3 20.5	.01746 .01360 .01078 .00860 .00640 .00455
Pres	SURE 10.2 CM	s. of Me	RCURY.
67.8 61.1 55 49.7 44.9 40.8	.00492 .00433 .00383 .00340 .00302 .00268	62.5 57.5 53.2 47.5 43.0 28.5	.01298 .01158 .01048 .00898 .00791
PR	ESSURE I CM	of Merc	URY.
65 60 50 40 30 23.5	.00388 .00355 .00286 .00219 .00157 .00124	62.5 57.5 54.2 41.7 37.5 34.0 27.5 24.2	.01182 .01074 .01003 .00726 .00639 .00569 .00446

^{* &}quot;Proc. Roy. Soc." 1872. † "Proc. Roy. Soc." Edinb. 1869. See also Compan, Annal. de chi. et phys. 26, p. 526.

COOLING BY RADIATION AND CONVECTION.

TABLE 284. - Cooling of Platinum Wire in Copper Envelope.

Bottomley gives for the radiation of a bright platinum wire to a copper envelope when the space between is at the highest vacuum attainable the following numbers:—

$$t=408^{\circ}$$
 C., $et=378.8 \times 10^{-4}$, temperature of enclosure 16° C. $t=505^{\circ}$ C., $et=726.1 \times 10^{-4}$, " 17° C.

It was found at this degree of exhaustion that considerable relative change of the vacuum produced very small change of the radiating power. The curve of relation between degree of vacuum and radiation becomes asymptotic for high exhaustions. The following table illustrates the variation of radiation with pressure of air in enclosure.

Temp. of enclosur	re 16° C., t=408° C.	Temp. of enclosure	17° C., t=505° C.
Pressure in mm.	et	Pressure in mm.	et
740. 440. 140. 42. 4. 0.444 .070 .034 .012 .0051 .00007	8137.0 × 10 ⁻⁴ 7971.0 " 7875.0 " 7591.0 " 6036.0 " 2683.0 " 1045.0 " 727.3 " 539.2 " 436.4 " 378.8 "	0.094 .053 .034 .013 .0046 .00052 .00019 Lowest reached but not measured }	1688.0 × 10 ⁻⁴ 1255.0 " 1126.0 " 920.4 " 831.4 " 767.4 " 746.4 "

TABLE 285.—Effect of Pressure on Loss of Heat at Different Temperatures.

The temperature of the enclosure was about 15° C. The numbers give the total radiation in therms per square centimeter per second.

Temp. of						
Temp. of wire in C°.	10.0	1.0	0.25	0.025	About o. 1 M.	
100°	0.14	0.11	0.05	0.01	0.005	
200	.31	.24	II.	.02	.0055	
300	-50	.38	.18	.04	.0105	
400	-75	·53 .69	.25	.07	.025	
500		.69	.33	.13	.055	
600	-	.85	-45	.23	.13	
700	-	-	-	-37	.24	
800	-	-	-	.56	.40	,
900	-	-	-	-	.61	

Note. — An interesting example (because of its practical importance in electric lighting) of the effect of difference of surface condition on the radiation of heat is given on the authority of Mr. Evans and himself in Bottomley's paper. The energy required to keep up a certain degree of incandescence in a lamp when the filament is dull black and when it is "flashed" with coating of hard bright carbon, was found to be as follows:—

Dull black filament, 57.9 watts. Bright " " 39.8 watts.

TABLE 286. - Conduction of Heat across Air Spaces (Ordinary Temperatures).

Loss of heat by air from surfaces takes place by radiation (dependent upon radiating power of surface; for small temperature differences proportional to temperature difference; follows Stefan-Boltzmann formula, see p. 2471, conduction, and convection. The two latter are generally inextricably mixed. For horizontal air spaces, upper surface warm, the loss is all radiation and conduction; with warm lower surface the loss is greater than for similar vertical space.

Vertical spaces: The following table shows that for spaces of less than 1 cm width the loss is nearly proportional to the space width, when the radiation is allowed for; for greater widths the increase is less rapid, then reaches a maximum, and for yet greater widths is slightly less. The following table is from Dickinson and van Dusen, A. S. Refrigerating Engineers J. 3, 1916.

HEAT CONDUCTION AND THERMAL RESISTANCES, RADIATION ELIMINATED, AIR SPACE 20 CM HIGH.

Air			nduction. r/cm²/° C.	Thermal resistance. Same units.						
space, cm.		Temperature	e difference.		Temperature difference.					
	10°	15°	20°	25°	100	15°	20°	25°		
0.5	0.46	0.46	0.46	0.46	2.17	2.17	2.17	2.17		
1.0	0.24	0.24	0.24	0.24	4.25	4.20	4.15	4.10		
1.5	0.160	0.172	0.182	0.192	6.25	5.80	5.50	5.20		
3.0	0.101	0.178	0.200	0.217	5.80	5.60	5.00 4.80	4.60		

Variation with height of air space: Max. thermal resistance = 4.0 at 1.4 cm air space, 10 cm high; 6.0 at 1.6 cm, 20 cm high; 8.0 at 2.5 cm, 60 cm high.

TABLE 287. - Heat Convection in Air at Ordinary Temperatures.

In very narrow layers of air between vertical surfaces at different temperatures the convection currents, in the main, flow up one side and down the other, with eddyless (stream-line) motion. It follows that these currents transport heat to or from the surfaces only when they turn and flow horizontally, from which fact it follows, in turn, that the convective heat transfer is independent of the height of the surface. It is, according to the laws of eddyless flow, proportional to the square of the temperature difference, and to the cube of the distance between the surfaces. As the flow becomes more rapid (e.g., for a 20° difference and a distance of 1.2 cm) turbulence enters, and the above relations begin to change. For the dimensions tested, convection in horizontal layers was a little over twice that in vertical.

Taken from White, Physical Review, 10, 743, 1917.

Heat Transfer, in the Usual C.G.S. Unit, i.e., Calories per Second per Degree of Thermal Head per Square Cm of Flat Surface, at 22.8° Mean Temperature.

Where two values are given, they show the range among determinations with different methods of getting the temperature of the outer plate. It will be seen that the value of the convection is practically unaffected by this difference of method.

Thermal	8 mm	gap.	12 mm	n gap.	24 1	mm gap.
head.	Total.	Convection.	Total.	Convection.	Total.	Convection.
0.99°	_		.000 083 9 }	_	.000 065	-
1.989	{ .000 IO9	_	.000 084 0	.000 000 I 000 4	-	-
4.95°	.000 111	.000 001	{ .000 086 6 88 I	.000 002 8	.000 090	over .000 025
9.89°	{ .000 II2 II3	.000 003	.000 093 7	.000 010	.000 106	over .000 040
19.76°	.000 116	.000 007	{ .000 107 7 109 4	026	.000 126	over .000 060

CONVECTION AND CONDUCTION OF HEAT BY GASES AT HIGH TEMPERATURES.*

The loss of heat from wires at high temperatures occurs as if by conduction across a thin film of stationary gas adhering to the wire (vertical and horizontal losses very similar). Thickness of film is apparently independent of temperature of wire, but probably increases with the temperature of the gas and varies with the diameter of the wire according to the formula $b \cdot \log b/a = 2B$, where B = constant for any gas, b = diameter of film, a, of wire. The rate of convection (conduction) of heat is the product of two factors, one the shape factor, s, involving only a and B, the other a function ϕ of the heat conductivity of the gas. If W = the energy loss in watts/cm, then $W = s(\phi_2 - \phi_1)$. s may be found from the relation

$$\frac{s}{\pi}e^{-\frac{2\pi}{s}} = \frac{a}{B}; \quad \phi = 4.19 \int_0^{\tau} kdt.$$

where k is the heat conductivity of the gas at temperature T in calories/cm $^{\circ}$ C. ϕ_2 is taken at the temperature T_2 of the wire, ϕ_1 at that of the atmosphere. The following may be taken as the conductivities of the corresponding gases at high temperatures:

For hydrogen.
$$k = 28 \times 10^{-6} \sqrt{T} \{ (1 + .0002T)/(1 + 77T^{-1}) \}$$
air.
$$k = 4.6 \times 10^{-6} \sqrt{T} \{ (1 + .0002T)/(1 + 124T^{-1}) \}$$
mercury vapor.
$$k = 2.4 \times 10^{-6} \sqrt{T} \{ (1 + .0002T)/(1 + 124T^{-1}) \}$$

To obtain the heat loss: B may be assumed proportional to the viscosity of the gas and inversely proportional to the density. For air (see Table 289(b)) B may be taken as 0.43 cm; for Hz, 3.05 cm; for Hg vapor as 0.078. Obtain s from section (a) below from a/B; then from section (b) obtain ϕ_2 and ϕ_1 for the proper temperatures; the loss will be $s(\phi_2 - \phi_1)$ in watts/cm.

(a) s as Function of a/B.

R	a/B	S	a/B	s .	a/B	s	a/B
0.0	0.0	5.0	0.453	10	1.696	30	7.738
0.5	0.735 X 10-6	5.5	0.558	12	2.263	32	8.370
I.0	0.504 X 10-8	6.0	0.671	14	2.844	34	8.995
1.5	0.725 X 10-2	6.5	0.788	16	3.438	36 38	9.622
2.0	2.75 × 10-2	7.0	0.908		4.040	38	10.25
2.5	0.0644	7.5	1.032	20	4.645	40	10.87
3.0	0.1176	7.5 8.0 8.5	1.160	22	5.263	42	11.50
3.5	0.185	8.5	1.291	24	5.877	44	12.14
4.0	0.265	9.0	I.424	26	6.505	46	12.77
4.5	0.354	9.5	1.561	26 28	7.122	48	13.14
5.0	0.453	10.0	1.696	30	7.738	50	14.03

(b) Table of ϕ in Watts per Cm as Function of Absolute Temp. (°K.).

T° K.	H ₂	Air	Hg	T° K.	H_2	Air	Hg
o°	0.0000	0.0000		1500°	4.787	0.744	0.1783
100	0.0320	0.0041	_	1700	5.945	0.031	0.228
200	0.1204	0.0168	_	1000	7.255	1.138	0.284
300	0.278	0.0387	_	2100	8.655	1.363	0.345
400	0.470	0.0669	_	2300	10.18	1.608	0.411
500	0.700	0.1017	0.0165	2500	11.82	1.871	0.481
700	1.261	0.189	0.0356	2700	13.56		0,556
900	1.961	0.297	0.0621	2000	15.54	_	0.636
1100	2.787	0.426	0.0041	3100	17.42	_	0.710
1300	3.726	0.576	0.1333	3300	19.50	_	0.807
1500	4.787	0.744	0.1783	3500	21.70	_	0.808

^{*} Langmuir Physical Review, 34, p. 401, 1912.

TABLE 289. HEAT LOSSES FROM INCANDESCENT FILAMENTS.

(a) Wires of Platinum Sponge Served as Radiators (to Room-temperature Surroundings). Hartman, Physical Review, 7, p. 431, 1916.

Diameter				(A)		ved heat			per cm.			
wire, cm.	900°	1000°	1100°	1200°	1300°	1400°	1500°	1600°	1700°	1800°	1900°	2000°
0.0690 0.0420 0.0275 0.0194	1.70 1.35 1.12 0.92	2.26 1.75 1.40 1.15	3.01 2.26 1.76 1.39	3.88 2.84 2.23 1.74	4.92 3.53 2.73 2.12	6.18 4.29 3.23 2.54	7.70 5.33 3.91 3.04	9.63 6.60 4.67 3.64	12.15 8.25 5.72 4.32	15.33 10.20 7.00 5.10	19.25 12.45 8.64 6.10	23.75 14.75 10.45 7.35
		(B) H	eat losse	es correc	ted for	radiatio	n, watt	s per cn	n (A-C).			
0.0690 0.0420 0.0275 0.0194	0.01 0.87 0.80 0.70	1.05 1.02 0.02 0.81	1.23 1.17 1.05 0.89	1.36 1.31 1.22 1.03	1.45 1.42 1.35 1.15	I.51 I.45 I.37 I.23	I.54 I.57 I.46 I.31	1.66 1.76 1.50 1.40	2.00 2.08 1.67 1.47	2.56 2.43 1.91 1.51	3.40 2.80 2.32 1.64	4.30 3.26 2.70 1.88
(C) Computed radiation, watts per cm, $\sigma = 5.61 \times 10^{-12}.*$												
0.0690 0.0420 0.0275 0.0195	0.79 0.48 0.32 0:22	1.21 0.73 0.48 0.34	1.78 1.09 0.71 0.50	2.52 1.53 1.01 0.71	3·47 2.11 1.38 0.97	4.67 2.84 1.86 1.31	6.16 3.74 2.45 1.73	7.97 4.84 3.17 2.24	10.15 6.17 4.05 2.85	12.77 7.77 5.09 3.59	15.85 9.65 6.32 4.46	19.45 11.85 7.75 5.47
		(]	O) Con	duction	loss by	silver le	eads, wa	tts per	cm.			
0.0420 0.0275 0.0195	0.42 0.18 0.06	0.46	0.49 0.28 0.08	0.61 0.35 0.09	0.75 0.43 0.11	0.88 0.48 0.12	1.00 0.55 0.14	1.07 0.57 0.15	1.13 0.60 0.22	1.22 0.67 0.23	=	_
			(E) (Convect	ion loss	by air,	watts p	er cm.				
0.0420 0.0275 0.0195	0.45 0.62 0.64	0.56 0.71 0.73	o.68 o.77 o.81	0.70 0.87 0.94	0.67 0.92 1.04	0.57 0.89 1.11	0.59 0.91 1.17	0.69 0.93 1.25	0.95 1.07 1.29	1.21 1.24 1.30	=	=
	* T)	is valu	e is lowe	er than	the pres	sently (1	1919) ac	cepted	value of	5.72.		

(b) Wires of Bright Platinum 40-50 Cm Long Served as Radiators to Surroundings at 300° K. Langmuir, Physical Review, 34, p. 401, 1912.

	1			Observed e	nergy loss	es in watts	per cm.		- 1				
Diameter wire,				Ab	solute tem	peratures.							
cm.	500°	70	o° g	oo°	1100°	1300°	1500°	1700°	1900°				
0.0510	0.22	0.		.90	1.42	2.03	2.89	4.10	5.65				
0.02508	0.17	0.	39 0	. 68	I.02	1.45	2.00	2.68	3.55				
0.01262	0.13	0.		. 53	0.79	I.II	1.46	1.95	2.71				
0.00691	0.12	0.		.48	0.72	0.99	1.33	1.79	2.48				
0.00404	0.11	0.	24 0	.41	0.61	0.84	1.14	1.54	2.13				
		Energy radiated in watts per cm.*											
0.0510	0.002	0.0	13 0	049	0.137	0.323	0.67	1.25	2.15				
0.02508	0.001	0.0	07 0	024	0.067	0.159	0.33	0.62	1.06				
0.01262	0.001	0.0	03 0.	OI2	0.034	0.080	0.17	0.31	0.53				
0.00691	0.000				0.019	0.044	0.09	0.17	0.29				
0.00404	0.000	0.0	0.	004	0.011	0.026	0.05	0.10	0.17				
			"Conve	ction" loss	es in watt	s per cm.							
0.0510	0.22	0.	51 0	.85	1.28	1.71	2.22	2.85	3.50				
0.02508	0.17	0.,	38 0	. 66	0.95	1.29	1.67	2.06	2.49				
0.01262	0.13	0.	31 0	. 52	0.75	1.03	1.29	1.64	2.18				
0.00691	0.12	0.:	29 0	. 47	0.70	0.95	I.24	1.62	2.10				
0.00404	0.11	0.	24 0	.41	0.60	0.81	1.00	1.44	1.96				
			Thickness	of theoretic	al conduct	ting air film							
-	- 1				1	1	1	1	Means				
0.0510	0.28	0.30	0.33	0.33	0.36	0.37	0.35	0.36	0.34				
0.02508	0.30	0.37	0.37	0.41	0.45	0.45	0.51	0.56	0.43				
0.01262	0.42	0.42	0.44	0.49	0.56	0.69	0.69	0.47	0.54				
0.00691	0.31	0.32	0.38	0.40	0.43	0.47	0.38	0.26	0.37				
0.00404	0.27	0.43	0.43	0.47	0.56	0.47	0.40	0.25	0.41				
Means.	0.31	0.37	0.39	0.42	0.40	0.49	0.47	0.38	10.43				

* Computed with $\sigma=5.32$, black-body efficiency of platinum as follows (Lummer and Kurlbaum): 492° K. 0.339; 654° , 0.060; 795° , 0.075; 1108° , 0.172; 1481° , 0.154; 1761° K., 0.180. For significance of last group of data, see next page.

THE EYE AND RADIATION

Definitions: A meter-candle is the intensity of illumination due to a standard candle at a meter distance. The milliambert (0.001 lambert) measures the brightness of a perfectly diffusing (according to Lambert's cosine law) surface diffusing r lumen per cm². A brightness of 10 meter-candles equals 1 milliambert. 0.001 ml corresponds roughly to night exteriors, 0.1, to night interiors, 10 ml to daylight interiors and 1000, to daylight exteriors. A brightness of 100,000 meter-candles is about that of a horizontal plane for summer day with sun in zenith, 500, on a cloudy day, 4, 1st magnitude stars just visible, 0.2, full moon in zenith, .001, by starlight; in winter the intensity at noon may drop about \(\frac{1}{2} \).

TABLE 290. - Spectral Variation of Sensitiveness as a Function of Intensity.

Radiation is easily visible to most eyes from 0.330 μ (violet) to 0.770 μ (red). At low intensities near threshold values (gray, rod vision) the maximum of spectral sensibility lies near 0.503 μ (green) for 90% of all persons. At higher intensities, after the establishment of cone vision, the max, shifts as far as 0.500 μ . See Table 207 for more accurate values of sensitiveness after this shift has been accomplished. The ratio of optical sensation to the intensity of energy increases with increasing energy more rapidly for the red than for the shorter wave-lengths (Purkinje phenomenon); i.e., a red light of equal intensity to the eye with a green one will appear darker as the intensities are equally lowered. This phenomenon disappears above a certain intensity (above 10 millilamberts). Table due to Nutting, Bulletin Bureau of Standards.

The intensity is given for the spectrum at 0.535μ (green).

Intensity (meter-candles) = Ratio to preceding step =	.00024	.00225	.0360	· 575	2.30	9.22	36.9 4	147.6	590.4			
Wave-length, λ.		Sensitiveness.										
0.430 µ 0.450 0.470 0.490 0.505 0.520 0.535 0.575 0.575 0.590 0.605 0.625 0.650 0.670 \(\), maximum sensitiveness	0.081 0.33 0.63 0.96 1.00 0.88 0.61 0.26 0.074 0.025 0.008 0.000 0.503	0.093 0.30 0.50 (0.89) 1.00 0.86 0.62 0.30 0.102 0.034 0.012 0.004 0.000 0.504	0.127 0.29 0.54 (0.76) 1.00 0.86 0.63 0.34 0.122 0.054 0.024 0.011 0.003 0.001	0.128 0.31 0.58 (0.89) 1.00 0.94 0.72 0.41 0.168 0.091 0.056 0.027 0.002 0.508	0.114 0.23 0.51 (0.83) 0.99 0.99 0.91 0.62 (0.39) 0.27 0.173 0.098 0.025 0.007	0.114 0.175 0.29 0.50 (0.76) (0.85) (0.08) 0.84 (0.63) 0.49 0.35 0.20 0.060 0.017 0.530						

TABLE 291. - Threshold Sensibility as Related to Field Brightness.

The eye perceives with ease and comfort a billion-fold range of intensities. The following data were obtained with the eye fully adapted to the sensitizing field, B_1 , the field flashed off, and immediately the intensity, T_1 , of a test spot (angular size at eye about 5°) adjusted to be just visible. This table gives a measure of the brightness, T_2 , necessary to just pick up objects when the eye is adapted to a brightness, B_2 . Intensities are indicated log intensities in millilamberts. Blanchard, Physical Review, 11, p. 81, 1918.

Log B	-7.0	-6.0	-5.0	-4.0	-3.0	-2.0	-1.0	0.0	+1.0	+2.0	+3.0
$\left\{ egin{array}{ll} \operatorname{Log}\ T, \ \operatorname{white} \\ T/B \end{array} \right.$	_	-5.81 1.5	-5.42 0.38	-4.87 .13	-4.17 .068	-3.30 .050	-2.59 .026	-2.02 .0096	-1.42 .0038	-0.75	+0.28
Log T, blue	-6.70	-6.38	-5.82	-5.12	-4.23	-3.46	-2.70	-2.18	-I.62	-	_
Log T, green	-6.42	-6.20	-5.62	-5.00	-4.23	-3.39	-2.60	-2.08	-I.62	-0.90	-
Log T, yellow	-	-5.47	-5.17	-4.61	-4.03	-3.33	-2.57	-I.97	-1.62	_	_
Log <i>T</i> , red	-	-	-4.27	-4.00	-3.47	-2.96	-2.43	-1.92	-1.37	-0.90	-

THE EYE AND RADIATION.

TABLE 292. - Heterochromatic Threshold Sensibility.

The following table shows the decrease in sensitiveness of the eye for comparing intensities of different colors. The numbers in the body of the table correspond to the line marked T/B of Table 291. The intensity of the field was probably between 10 and 100 milliamberts (25 photons).

Comparison color.		ο.693 μ	ο.640 μ	ο. 575 μ	0.505 μ	ο.475 μ	ο. 430 μ
Standard color: redyellowgreenblue.	0.693 µ	0.044	0.088	0.165	0.180	0.197	0.150
	0.575 µ	0.174	0.160	0.032	0.166	0.174	0.134
	0.505 µ	0.211	0.180	0.138	0.030	0.116	0.126
	0.475 µ	0.168	0.180	0.130	0.130	0.068	0.142

TABLE 293. - Contrast or Photometric Sensibility.

For the following table the eye was adapted to a field of o.r millilambert and the sensitizing field flashed off. A neutral gray test spot (angular size at eye, 5 × 2.5°) the two halves of which had the contrast indicated (\(\frac{1}{2}\) transparent, \(\frac{1}{2}\) covered with neutral screen of transparency = contrast indicated) was then observed and the brightness of the transparent part measured necessary to just perceive the contrast after the lapse of the various times. One eye only used, natural pupil. Blanchard, Physical Review, 11, p. 88, 1918. Values are log brightness of brighter field in millilamberts.

Time in seconds.	p	I	2	5	10	30	40	60
Contrast: 0.00	-2.80 -2.63 -2.40 -2.10 -1.20	-3.47 -3.36 -3.00 -2.46 -1.57	-3.13	-3.74 -3.22	-3.2I -2.55	-3.33	-4.89 -4.06 -3.46 -2.67 -1.73	-5.03 -4.23 -3.48 -2.73 -1.78

TABLE 294. - Glare Sensibility.

When an eye is adapted to a certain brightness and is then exposed suddenly to a much greater brightness, the latter may be called glaring if uncomfortable and instinctively avoided. Observers naturally differ widely. The data are the means of three observers, and are log brightnesses in millilamberts. The glare intensity may be taken as roughly 1700 times the cube root of the field intensity in millilamberts. Angle of glare spot, 4°. Blanchard, Physical Review, loc. cit.

4								
Log. field	6.0 1.35 -4.0 1.90	-2.0 2.60	-1.0 2.90	o.o 3.28	+1.0	2.0 3.90	3.0	4.0

TABLE 295. - Rate of Adaptation of Sensibility.

This table furnishes a measure of the rate of increase of sensibility after going from light into darkness, and the values were obtained immediately from the instant of turning off the sensitizing field. Both eyes were used, natural pupil, angular size of test spot, 4.9°, viewed at 35 cm. Blanchard, loc. cit. Retinal light persists only 10 to 20 m when one has been recently in darkness, then in a dimly lighted room; it persists fully an hour when a subject has been in bright sunlight for some time. A person who has worked much in the dark "gets his eyes" quicker than one who has not, but his final sensitiveness may be no greater.

Sensitizing field.	Logarithmic thresholds in millilamberts after										
	o sec.	ı sec.	2 sec.	5 sec.	10 sec.	20 Sec.	40 sec.	60 sec.	5 min.	30min.	60 min.
White, 0. 1 ml. 1.0 ml. 10.0 ml. 10.0 ml. Blue 0.1 ml. Green 0.1 ml. Yellow 0.1 ml. Red 0.1 ml.	-2.20 -1.60 -0.90 -2.82 -2.69 -2.61	-2.99 -2.30 -1.66 -3.92 -4.08 -3.84	-3.27 -2.53 -2.00 -4.36 -4.39 -4.17	-3.79 -3.08 -2.46 -4.91 -4.82 -4.41	-4.15 -3.54 -2.64 -5.27 -5.11 -4.65	-4.51 -3.94 -2.88 -5.53 -5.26 -4.78	-4.82 -4.31 -3.20 -5.68 -5.43 -5.02	-5.06 -4.61 -3.84 -5.81 -5.56 -5.09	-5.52 -5.22 -4.76 -6.23 -5.80	-5.86 -5.83 -5.77	-6.04 -6.01

THE EYE AND RADIATION.

TABLE 296. — Apparent Diameter of Pupil and Flux Density at Retina.

Flashlight measures of the pupil (both eyes open) viewed through the eye lens and adapted to various field intensities. For eye accommodated to 25 cm, ratio apparent to true pupil, 1.02, for the unaccommodated eye, 1.14. The pupil size varies considerably with the individual. It is greater with one eye closed; e.g., it was found to be for 0.01 milliambert, 6.7 and 7.2 mm; for 0.6 ml, 5.3 and 6.5; for 6.3 ml, 4.1 and 5.7; for 12.6 ml, 4.1 and 5.7 mm for both and one eye open respectively for a certain individual. At the extreme intensities the two values approach each other. The ratio of the extreme pupil openings is about \(\frac{1}{26}\), whereas the light intensities investigated vary over 1,000,000-fold. (Blanchard and Reeves, partly unpublished data.)

Field	Diamet	er, mm	Flux at retina.		
millilamberts.	Field sillilamberts. Observed.		Effective area, mm ²	lumens per mm²	
0.0000I 0.00I 0.1 10 .	7.6 6.5 4.0 2.07	8.96 8.51 7.28 4.48 2.35	64 57 42 16 4.3	8.4 × 10 ⁻¹⁸ 7.6 × 10 ⁻¹⁰ 5.6 × 10 ⁻⁸ 2.1 × 10 ⁻⁶ 5.8 × 10 ⁻⁵	

TABLE 297. - Relative Visibility of Radiation.

This table gives the relation between luminous sensation (light) and radiant energy. The results of two methods are given: one from measures of the direct equality of brightness, which some consider the true method, as more direct, but criticized because of the difficulty of judging heterochromatic light (Hyde, Forsythe, Cady, A. J. 48, 87, 1918, 29 observers); the other (Coblentz, Emerson, Bul. Bureau of Standards, 14, 219, 1917, 130 observers) depends on the disappearance of flicker when two lights of different color and intensity are alternated rapidly. Color has a lower critical frequency than brightness and disappears first. Data determined for intensities above Purkinje effect. See Table 290. Ratio of light unit (lumen) to energy unit (watt) at 0.55\mu, 0.00162 (Ives, Coblentz, Kingsbury).

λ	Visib	ility.	λ	Visi	bility.	λ	Visit	oility.	λ	Visibility.		λ	Visil	bility.
μ	HFC	CE	μ	HFC	CE	μ	HFC	CE	μ	HFC	CE	μ	HFC	CE
.40 .41 .42 .43 .44 .45 .46 .47	.049 .0362 .0041 .0115 .022 .036 .055	.010 .017 .024 .029 .033 .041 .056	.48 .49 .50 .51 .52 .53 .54 .55	.138 .216 .328 .515 .698 .847 .968	.125 .194 .316 .503 .710 .862 .954	.56 .57 .58 .59 .60 .61 .62 .63	.995 .944 .855 .735 .600 .464 .341 .238	.998 .968 .898 .800 .687 .557 .427 .302	.64 .65 .66 .67 .68 .69 .70	.154 .094 .051 .026 .0125 .0062 .0031	.194 .115 .0645 .0338 .0178 .0085 .0040	.72 .73 .74 .75 .76	.0274 .0236 .0318 .049 .045	.0397 .0348 .0328 .0320

TABLE 298. - Miscellaneous Eye Data.

Light passing to the retina traverses in succession (a) front surface of the cornea (curvature, 7.9 mm); (b) cornea (equivalent water path for energy absorption, .06 cm); (c.) back surface cornea[(curv., 7.9 mm); (d) aqueous humour (equiv. H₂O, .34 cm, n = 1.337); (e) front surface lens (c, x0 mm); (f) lens (equiv. H₂O, .42 cm, n = 1.445); (g) back surface lens (c, 6 mm); (h) vitreous humour (equiv. H₂O, 1.46 cm, n = 1.337). An equivalent simple lens has its principal point 2.34 mm behind (a), nodal point 0.43 mm in front of (g), posterior principal focus 22.73 mm behind (a), anterior principal focus 12.83 mm. in front of (a), curvature, 5.125 mm. At the rear surface of the retina (.15 mm thick) are the rods (30 × 2 \mu) and cones (10 (6) outside fovea) \mu long). Rods are more numerous, 2 to 3 between 2 cones, over 3.000,000 cones in eye. Macula lutea, yellow spot, on temporal side, 4 mm from center of retina, long axis 2 mm. Central depression, fovea centralis, 3 mm diameter, 7000 cones alone present, 6 × 2 or 3\mu. In region of distinct vision (fovea centralis) smallest angle at which two objects are seen separate is 50° to 70° = 5.65 to 5.14\mu at retina; 50 cones in 100\mu here; 4\mu between centers, 3\mu to cone, 1\mu to interval. Distance apart for separation greater as depart from fovea. No vision in blind spot, nasal side, 2.5 mm from center of eye, 15 mm in diam.

Persistence of vision as related to color (Allen, Phys. Rev. 11, 257, 1500) and intensity (Porter, Pr. Roy. Soc. 70, 313, 1912) is measured by increasing speed of rotating sector until flicker disappears: for color, 44\mu, 031 sec.; 45\mu, 020 sec.; 5 mc, 015 sec.; 57\mu, 012 sec.; 68\mu, 014 sec.; 76\mu, 018 sec.; for intensity, .06 meter-candle, .028 sec.; 1 mc, .020 sec.; 5 mc, .014 sec.; 100 mc, .010 sec; 142 mc, .007 sec.

Sensibility to small differences in color has two pronounced maxima (in yellow and green) and two slight ones (extreme blue, extreme red). The sensibility to small differences in intensity is nearly independent

I/I_0	1,000,000	100,000	10,000	1000	100	50	10	5	1	0.1	Io in mc
dI/I, white .6ο μ .5ο μ .43 μ	.036	.019	.018	.018 .020 .018	.030 .028 .024 .025	.032 .038 .025 .027	.048 .061 .036 .040	.059 .103 .049	.123 .212 .080	.133	.00072 .0056 .00017

PHOTOMETRIC DEFINITIONS AND UNITS.

Luminous flux, F = radiant power according to visibility, i.e., capacity to produce sensation of light. Unit, the lumen = flux emitted in a unit solid angle (steradian) by point source of one candle power.

Visibility, K_{λ} , of radiation of wave-length λ = ratio luminous flux to radiant power (energy) producing it. Mean visibility, K_m , over any range of λ or for whole visible spectrum of any source = ratio total flux (lumens) to total radiant power (erg/sec. or watts).

Luminous intensity, I, of (approximate) point source = solid angle density of luminous flux in direction considered = $dF/d\omega$ or F/ω if intensity is uniform. ω is the solid angle. Unit, the candle.

Illumination on surface is the flux density on the surface = dF/dS or F/S when uniform. S is the area of the surface. Units, meter-candle, foot-candle, phot, lux.

(Lux = one lumen per m²; phot = one lumen per cm².)

Brightness, b, of element of surface from a given point $= dI/dS \cos \theta$, where θ is the angle between normal to surface and line of sight. Unit, candles per cm². Normal brightness, $b_0 = dI/dS$ = brightness in direction normal to surface. Unit, the lambert.

Specific luminous radiation, E' = luminous flux density emitted by a surface, or the flux emitted per unit of emissive area, expressed in lumens per cm². For surfaces obeying Lambert's cosine law, $E' = \pi b_0$.

The lambert, the cgs unit of brightness, is the brightness of a perfectly diffusing surface radiating or reflecting one lumen per cm². Equivalent to a perfectly diffusing surface with illumination of one phot. A perfectly diffusing surface emitting one lumen per ft^2 has a brightness of 1.076 millilamberts. Brightness in candles per cm² is reduced to lamberts by multiplying by π .

A uniform point source of one candle emits 4π lumens.

One lumen is emitted by .07958 spherical candle power.

One lumen emitted per ft² = 1.076 millilamberts (perfect diffusion).

One spherical candle power emits 12.57 lumens.

One lux = 1 lumen incident per m² = .0001 phot = .1 milliphot.

One phot = 1 lumen incident per cm² = 10,000 lux = 1000 milliphots.

One milliphot = .001 phot = .929 foot-candle.

One foot-candle = 1 lumen incident per ft² = 1.076 milliphots = 10.76 lux.

One lambert = 1 lumen emitted per cm² of a perfectly diffusing surface.

One millilambert = .929 lumen emitted per ft² (perfect diffusion).

One lambert = .3183 candle per cm² = 2.054 candles per in².

One candle per cm² = 3.1416 lamberts.

One candle per $in^2 = .4968$ lambert = 486.8 millilamberts.

Adapted from 1916 Report of Committee on Nomenclature and Standards of Illuminating Engineering Society. See Tr., Vol. 11, 1916.

TABLE 300. - Photometric Standards.

No primary photometric standard has been generally adopted by the various governments. In Germany the Herner lamp is most used; in England the Pentane lamp and sperm candles are used; in France the Carcel lamp is preferred; in America the Pentane and Hefner lamps are used to some extent, but candles are more largely employed in gas photometry. For the photometry of electric lamps, and generally in accurate photometric work, electric lamps, standardized at a national standardizing institution, are commonly employed.

The "International candle" is the name recently employed to designate the value of the candle as maintained by coöperative effort between the national laboratories of England, France, and America; and the value of various photometric units in terms of this international candle is given in the following table (taken from Circular No. 15 of the Bureau of Standards).

- I International Candle = I Pentane Candle.
- 1 International Candle = 1 Bougie Decimale.
- I International Candle = I American Candle.
- I International Candle = 1.11 Hefner Unit.
- I International Candle = 0.104 Carcel Unit.

Therefore I Hefner Unit = 0.90 International Candle.

The values of the flame standards most commonly used are as follows:

- 1. Standard Pentane Lamp, burning pentane 10.0 candles.
- 2. Standard Hefner Lamp, burning amyl acetate 0.9 candles.
- 3. Standard Carcel Lamp, burning colza oil 9.6 candles.
- 4. Standard English Sperm Candle, approximately 1.0 candles.

TABLE 301. - Intrinsic Brightness of Various Light Sources.

	Barrows.	Ives & Luckies	h	National Electric Lamp Association.
	C. P. per Sq. In. of surface of light.	C. P. per Sq. In. of surface of light.	C. P. per Sq. Mm. of sur- face of light.	C. P. per Sq. In. of surface of light.
Sun at Zenith	600,000	_	_	600,000
Crater, carbon arc	200,000	84,000	130.	200,000
Open carbon arc	10,000-50,000	_	-3	10,000-50,000
Flaming arc	5,000	_	_	5,000
Magnetite arc	-	4,000	6.2	_
Nernst Glower	800-1,000	(115v.6 amp. d.c.) 3,010	. 4.7	(1.5 W.p.c.) 2,200
Tungsten incandescent, 1.15 w. p. c.	-	-	-	1,000
Tungsten incandescent, 1.25 w. p. c.	1,000	1,000	1.64	875
Tantalum incandescent, 2.0 w. p. c.	750	580	0.9	750
Graphitized carbon filament, 2.5				, ,
W. p. c	625	750	1.2	625
Carbon incandescent, 3.1 w. p. c.	480	485	0.75	480
Carbon incandescent, 3.5 w. p. c.	375	400	0.63	375
Carbon incandescent, 4.0 w. p. c	300	325	0.50	-
Inclosed carbon arc (d. c.)	100-500	-		100-500
Inclosed carbon arc (a. c.)	-	-	-	75-200
Acetylene flame (1 ft. burner)	75-100	53.0	0.082	75-100
Acetylene flame (1/4 ft. burner) .	-	33.0	0.057	-
Welsbach mantle	20-25	31.9	0.048	20-50
Welsbach (mesh)	-	56.0	0.067	-
Cooper Hewitt mercury vapor lamp	16.7	14.9	0.023	17
Kerosene flame	4-8	9.0	0.014	3-8
Candle flame	3-4	-	-	3-4
Gas flame (fish tail)	3-8	2.7	0.004	3-8
Frosted incandescent lamp	4-8	-	-	2-5
Moore carbon-dioxide tube lamp .	0.6		-	0.3-1.75

Taken from Data, 1911.

TABLE 302. - Visibility of White Lights.

Panga	Range.			Candle	Candle Power.		
Kange.			.	1	8		
sea-mile = 1855 meters .				0.47	0.41		
46 66				1.9	1.6		
64 66				11.8	10.		

¹ Paterson and Dudding. ² Deutsche Seewarte.

1 micro-calorie through 1 cm. at 1 m. =0.034 sperm candle =0.0385 Hefner unit (no diaphragm) =0.043 Hefner unit (diap. 14 × 50 mm.). Coblentz Bul. B. of S., 11, p. 87, 1914.

BRIGHTNESS OF BLACK BODY, CROVA WAVE-LENGTH, MECHANICAL EQUIVALENT OF LIGHT, LUMINOUS INTENSITY AND EFFICIENCY OF BLACK BODY.

The values of L, the luminous intensity, are given in light watts/steroradian/cm2 of radiating surface = $(1/\pi)$ $\int_0^\infty V_{\lambda} E_{\lambda} d\lambda$, where V_{λ} is the visibility of radiation function.

Mechanical equivalent. The unit of power is the watt; of lumininous flux, the lumen. The ratio of these two quantities for light of maximum visibility, $\lambda = 0.556~\mu$, is the stimulus coefficient Vm; its reciprocal is the (least) mechanical equivalent of light, i.e., least since applicable to radiation of maximum visibility. A better term is "luminous equivalent of radiation of maximum visibility" One lumen =0.001496 watts (Hyde, Forsythe, Cady); or 1 watt of radiation of maximum visibility ($\lambda = 0.556~\mu$) = 668 lumens. White light has sometimes been defined as that emitted by a black body at 6000° K. The Crova wave-length for a black body is that wave-length, λ , at which the luminous intensity varies by the same fractional part that the total luminous intensity varies for the same change in temperature.

TABLE 303. — Brightness, Crova Wavelength of Black Body, Mechanical Equivalent of Light.*

Bright-Crova Mech. Temp. wave equiv. ness candles length, watts per cm² per l. M 1700° 5.I 7.6 0.584 0.001478 1750 0.583 II.3 0.001491 1850 16.3 0.581 1000 23.I 0.001498 1950 32.2 0.579 2000 44.3 0.001408 2050 0.577 80.I 2100 0.001497 2150 105.7 0.576 2200 0.575 0.001406 2250 177. 0.574 2300 0.574 0.001497 284. 2350 0.573 354. 2400 0.572 0.001407 2450 0.572 2500 537. 651. 0.571 0.001502 2550 0.570 785. 0.570 0.001511 2650 0.569 939. Mean.... 0.001496

TABLE 304. - Luminous, Total Intensity and Radiant Luminous Efficiency of Black Body.*

T, degrees absolute.	Luminous intensity L watt/cm²	Total intensity σ_0 T ⁴ watt/cm ²	Radiant luminous efficiency.
1,200 1,600 1,700 1,800 1,900 2,000 2,100 2,200 2,300 2,400 2,500 2,500 3,000 4,000 5,000 6,000 7,000 8,000	2.34 × 10 ⁻⁶ 3.45 × 10 ⁻³ 8.46 × 10 ⁻³ 8.46 × 10 ⁻³ 1.88 × 10 ⁻² 3.85 × 10 ⁻² 1.32 × 10 ⁻¹ 2.26 × 10 ⁻¹ 2.70 × 10 ⁻¹ 5.70 × 10 ⁻¹ 1.20 4.66 3.85 × 10 1.36 × 10 ³ 3.85 × 10 1.36 × 10 ³ 3.65 × 10 1.36 × 10 ³ 3.16 ×	3.762 1.189 1.515 × 10 1.905 × 10 2.365 × 10 2.903 × 10 3.529 × 10 4.250 × 10 5.077 × 10 6.020 × 10 7.087 × 10 8.291 × 10 1.470 × 10 ² 4.645 × 10 ² 1.334 × 10 ³ 2.351 × 10 ³ 4.356 × 10 ³ 1.814 × 10 ⁴	.000006 .000290 .000558 .000987 .00163 .00253 .00374 .00532 .00727 .00962 .0124 .0156 .0317 .0829 .1201 .1386 .1385 .1290 .1014

^{*} Hyde, Forsythe, Cady, Phys. Rev. 13, p. 45, IQIQ.

Note. — Minimum energy necessary to produce the sensation of light: Ives, 38 × 10⁻¹⁰; Russell, 7.7 × 10⁻¹⁰; Reeves, 19.5 × 10⁻¹⁰; Buisson, 12.6 × 10⁻¹⁰ erg. sec. (Buisson, J. de Phys. 7, 68, 1917.)

TABLE 305. - Color of Light Emitted by Various Sources.*

Source.	Color, per cent white.	Hue.	Source.	Color, per cent white.	Hue.
Sunlight Average clear sky Standard candle. Hefiner lamp Pentane lamp. Tungsten glow lamp, 1.25 wpc. Carbon Llow lamp, 3.8 wpc. Nernst glower, 1.50 wpc. N-filled tungsten, 1.00 wpc.	60 13 14 15 35 25 31	472 593 593 592 588 592 587 586	N-filled tungsten, o. 50 wpc	70 32 6	584 584 490 598 605 585 585 583 586

^{*} Jones, L. A., Trans. Ill. Eng. Soc., Vol. 9 (1914).

^{*} Coblentz, Emerson, Bul. Bureau of Standards, 14, p. 255, 1017.

EFFICIENCY OF VARIOUS ELECTRIC LIGHTS.

Bryant and Hake, Eng. Exp. Station, Univ. of Ill.	Amperes.	Terminal Watts.	Lumens.	Kw-hours for 100,000 Lumen- hours.	Total cost per 100,000 Lumen-hours at 10 cts. per Kw-hour.
Regenerative dc., series arc Regenerative dc., multiple arc Magnetite dc., series arc Flame arc, dc., inclined electrodes Mercury arc, dc., multiple Flame arc, dc., inclined electrodes Flame arc, dc., vertical electrodes Luminous arc, dc., series Magnetite arc, dc., series Flame arc, ac., vertical electrodes Flame arc, ac., vertical electrodes Flame arc, ac., inclined electrodes Open arc, dc., series Tungsten series Flame arc, ac., inclined electrodes Inclosed arc, dc., series Luminous arc, dc., multiple Tungsten, multiple Nernst, ac., 3-glower Nernst, dc., 3-glower Inclosed arc, ac., series Inclosed arc, ac., series Tantalum, dc., multiple Tantalum, ac., multiple Carbon, 3.1 w. p. c., multiple Carbon, 3.5 w. p. c., series Carbon, 3.5 w. p. c., series Carbon, 3.5 w. p. c., multiple Inclosed arc, dc., multiple Inclosed arc, dc., multiple Inclosed arc, dc., multiple Inclosed arc, ac., multiple	5.55 6.66 10.00 3.55 8.00 6.66 9.66 4.00 10.00 10.00 6.66 8.00 6.66 4.00 0.545 1.87 7.55 6.66 ————————————————————————————————	385 605 528 550 385 440 440 726 480 320 467 467 325 75 374 447 60 414 480 425 40 49.6 210 56 550 385 430 285	11,670 11,670 11,670 7,370 8,640 4,400 6,140 6,140 7,370 5,025 2,870 626 3,910 3,315 2,870 475 2,160 2,160 2,160 2,410 2,020 199 166 626 626 626 61,535 1,030 1,124 688	3.3 5.18 7.16 6.37 15.92 7.16 7.16 9.85 9.55 11.15 8.75 8.75 11.15 12.0 9.55 14.32 15.32 12.6 19.2 19.9 21.1 21.1 29.9 33.6 33.7 35.8 37.4 38.3 41.4	0.339 0.527 0.729 0.837 0.89 0.966 0.966 0.988 1.079 1.13 1.275 1.305 1.384 1.405 1.459 1.547 1.555 1.88 1.90 2.05 2.193 2.31 2.504 3.24 3.47 3.50 3.66 3.84 3.94 4.265

Ives, Phys. Rev., V, p. 390, 1915 (see also VI, p. 332, 1915); computed assuming t lumen = 0.00159 watt.	Commercial Rating	Lumens per Watt.	Luminous Watts Flux - Watts In- put or True Efficiency.
Open flame gas burner Petroleum lamp Acetylene Incandescent gas (low pressure) Incandescent gas (high pressure) Nernst lamp Moore nitrogen vacuum tube Carbon incandescent (treated filament) Tungsten incandescent (vacuum) Carbon arc, open arc Mazda, type C Mazda, type C Magnetite arc, series Glass mercury arc Quartz mercury arc Enclosed white flame carbon arc """ Open arc """ inclined """ Copen arc, """, inclined """ Open arc, """, inclined	Bray 6' high pressure 1.0 liters per hour .350 lumens per B. t. u. per hr578 lumens per B. t. u. per hr. 220-v. 60-cycle, 113 ft. 4-watts per mean hor. C. P. 1.25 watts per hor. C. P. 9.6 amp. clear globe 500-watt multiple .7 w. p. c. 600 C. P20 amp5 w. p. c. 606 amp. direct current 40-70 volt; 3.5 amperes 174-197 volt; 4.2 amperes 10 ampere, A. C. 10 ampere, A. C. 10 ampere, A. C. 10 ampere, D. C. 10 ampere, D. C. 10 ampere, A. C. 10 ampere, A. C. 10 ampere, A. C.	0.22 .26 .67 1.2 2.0 4.8 5.21 2.6 8. 11.8 15. 19.6 21.6 23. 42. 26.7 35.5 29. 27.7 31.4 34.2 41.5 44.7	0.00035 .0004 .0011 .0019 .0031 .0076 .0083 .0041 .013 .019 .024 .031 .036 .067 .042 .057 .042 .057

PHOTOGRAPHIC DATA.

TABLE 307. - Numerical Constants Characteristic of Photographic Plates.

Abscissae on T_{ab} candles-seconds); Ordinates are densities, $D = \tau/T$; $T_{ab} = 0$ or bscissae of figure are $\log E = \log It$ (meter-

dles) $\times t$ seconds; D, the density of deposit = τ/T , where T is the ratio of the transmitted to incident intensity on de-

veloped plate.

i = inertia = intercept straight line portion of curve on log E axis. $S = \text{speed} = (\text{some constant})/i; \quad \gamma = \text{gamma} =$

tangent of angle a. L =latitude = projected straight line portion of characteristic curve on log E axis, expressed in exposure units = Anti log (b-a).

The curve illustrates the characteristic curve of a photographic plate.

TYPICAL CHARACTERISTIC CURVE OF PHOTOGRAPHIC PLATE.

TABLE 308. — Relative Speeds of Photographic Materials.

The approximate exposure may be obtained when the intensity of the image on the plate is known. Let L be the intensity in meter-candles; E, the exposure in seconds; P, the speed number from the following table; then $E = 1,350,000/(L \times P)$ approximately.

Plate.	Relative speed.	Paper.	Relative speed.
Extremely high speed High speed Medium speed Rapid high contrast Medium speed high contrast Process, slow contrast Lantern plate	75,000 60,000 50,000 25,000	Fast bromide. Slow enlarging. Rapid gas-light, soft grade. Rapid gas-light, medium contrasty. Rapid gas-light, contrasty. Professiona.	1000.0 60.0 6.5 3.5 1.0 1.25

TABLE 309. - Variation of Resolving Power with Plate and Developer.

The resolving power is expressed as the number of lines per millimeter which is just resolvable, the lines being opaque and separated by spaces of the same width. The developer used for the comparison of plates was Pyro-soda; the plate for the comparison of developers, Seed Lantern. The numbers are all in the same units. Huse, J. Opt. Soc. America, July, 1917.

Plate. Resolving power	Albumen.	Resolution.	Process.	Lantern.	Medium speed. 35	High speed.
------------------------	----------	-------------	----------	----------	------------------------	-------------

Developer.	Resolving power.	Developer.	Resolving power.	Developer.	Resolving power.
Pyro-caustic	69 64 64 64	Pyrocatechin Pyro-metol Eikonhydroquinone Ferrous oxalate Caustic hydroquinone. Eikonogen Kachin	62 62 61 61 57 57 57 54	Amidol Process hydroquinone. Ortol Rodinal X-ray powders. Edinol	51 50 49 40 49 47

TABLES 310-311.

PHOTOGRAPHIC DATA.

TABLE 310. — Photographic Efficiencies of Various Lights.

]	Photographi	ic efficiency	7.		
Source.	Visual efficiency.		(a)		(b)			
Source.	per watt.	Ordinary plate.	Ortho- chromatic plate.	Pan- chromatic plate.	Ordinary plate.	Ortho- chromatic plate.	Pan- chromatic plate.	
Sun	150	100	100	100	100	TOO	IDO	
Sky	_	181	155	130	-	-	_	
Acetylene	0.7	30	44	52	0.14	0.21	0.24	
(screened)	0.07	81	85	89	0.037	0.040	0.042	
Pentane	0.045	600	500	42 367	0.053	132	0.13	
Mercury arc, quartz	40	218	195	165	50	46	99	
Nuitra giass	35	324	275	240	79	68	39 62	
" crown glass Carbon arc, ordinary	37	126	112	104	10	IO	8.5	
" " white flame	20	257	234	215	52	45	2.0	
" enclosed	0	175	177	165	II	11	IO	
Carbon arc, "Artisto"	12	796	1070	744	62	86	60	
Magnetite arc	18	106	115	82	12	14	IO	
Carbon glow-lamp	2.44	23	32	42	0.37	0.52	0.68	
Carbon glow-lamp	3.16	25	35	45	0.51	0.74	0.95	
Tungsten vacuum lamp	8	33	41	50	I.74	2.2	2.7	
" vacuum lamp	9.9	37	45	53	2.41	3.0	3.5	
" nitrogen lamp	16.6	56	62	70	6. I	6.8	7.7	
" nitrogen lamp	21.6	64	68	76	8.9	9.8	II.O	
Diue Duid	8.9	_	-	_	5.5	5.2	5.6	
Diue Duib	II	108	99	106	7.8	7.3	7.9	
Mercury arc (Cooper Hewitt)	23	316	354	273	47	54.2	42	

(a) Relative efficiencies based on equal illumination.
(b) Relative efficiencies based on equal energy density.
Taken from Jones, Hodgson, Huse, Tr. Ill. Eng. Soc. 10, p. 963, 1915.

TABLE 311. - Relative Intensification of Various Intensifiers.

Bleaching solution.	Blackening solution.	Reference	Intens
Mercuric bromide	Amidol developer	HgBr ₂ solution (Monckhoven sol. A).*	1.15
Mercuric chloride Potassium bichromate + hydro-	Ammonia	Bleach according to Ben- nett; blackener.*	1.15
chloric acid	Amidol developer Schlippe's salt	Piper.* Debenham, B. J., † p. 186, '17.	1.45
Lead ferricyanide	Sodium sulphide	B. J. Almanac.* B. J. Almanac.*	2.28 3.50
chloric acid	Sodium stannate Sodium stannate	Desalme, B. J., p. 215, '12.	2.05
Potassium ferricyanide + potassium bromide Mercuric iodide	Sodium sulphide Paraminophenol developer	Ordinary sepia developer. HgI ₂ according to Bennett.	1.33

See Nietz and Huse, J. Franklin Inst. March 3, 1918.

* B. J. Almanac, see annual Almanac of British Journal of Photography.

† B. J. refers to British Journal of Photography.

WAVE-LENGTHS OF FRAUNHOFER LINES.

For convenience of reference the values of the wave-lengths corresponding to the Fraunhofer lines usually designated by the letters in the column headed "index letters," are here tabulated separately. The values are in ten millionths of a millimeter, on the supposition that the D line of the value of the line of the value is 5896.155. The table is for the most part taken from Rowland's table of standard wavelengths.

Index Letter.	Line due to —	Wave-length in centimeters X 108.	Index Letter.	Line due to-	Wave-length in centimeters × 108.
A	{°	7621.28* 7594.06*	G	Fe Ca	4308.081
п		7164.725	g	Ca	4226.904
В	0	6870.182†	h or H _δ	Н	4102.000
C or Ha	Н	6563.045	Н	Ca	3968.625
a	0	6278.303 ‡	K	Ca	3933.825
D_1	Na	5896.155	L	Fe	3820.586
D_2	Na	5890.186	M	Fe	3727.778
D_8	He	587 5.985	N	Fe	3581.349
E ₁	(Fe	5270.558	0	Fe	3441.155
101	Ca	5270.438	P	Fe	3361.327
E_2	Fe	5269.723	Q	Fe	3286.898
b ₁	Mg	5183.791	R	∫ Ca	3181.387
b_2	Mg	5172.856		(Ca	3179.453
b ₈	∫ Fe	5169.220	S ₁)	[Fe	3100.787
	(Fe	5169.069	S_2	{ Fe	3100.430
b ₄	{ Fe	5167.678	-2,	Fe	3100.046
	(Mg	5167.497	8	Fe	3047.725
F or H _β	Н	4861.527	Т	Fe	3020.76
d	Fe	4383.721	t	Fe	2994-53
G' or H _y	Н	4340.634	U	Fe	2947.99
f	Fe	4325.939			

[•] The two lines here given for A are stated by Rowland to be: the first, a line "beginning at the head of A, outside edge"; the second, a "single line beginning at the tail of A."
† The principal line in the head of B.
‡ Chief line in the agroup.
See Table 321, Rowland's Solar Wave-lengths (foot of page) for correction to reduce these values to standard system of wave-lengths, Table 314.

STANDARD WAVE-LENGTHS.

TABLE 313 .- Absolute Wave-length * of Red Cadmium Line in Air, 760 mm. Pressure, 15° C.

6438.4722 Michelson, Travaux et Mém. du Bur. intern. des Poids et Mesures, 11, 1895. 6438.4700 Michelson, corrected by Benoit, Fabry, Perot, C. R. 144, 1082, 1907. 6438.4596 (accepted primary standard) Benoit, Fabry, Perot, C. R. 144, 1082, 1907.

* In Ångströms. 10 Ångströms = 1 $\mu\mu$ = 10-6 mm.

TABLE 314.-International Secondary Standards. Iron Arc Lines in Angströms.

Adopted as secondary standards at the International Union for Coöperation in Solar Research (transactions, 1910). Means of measures of Fabry-Buisson (1), Pfund (2), and Eversheim (3). Referred to primary standard = Cd. line, $\lambda = 6438.4696$ Ångströms (serving to define an Ångström, 760 mm., 15° C. Iron rods, 7 mm. diam. length of arc, 6 mm.; 6 amp. for λ greater than 4000 Ångströms, 4 amp. for lesser wave-lengths; continuous current, + pole above the -, 220 volts; source of light, 2 mm. at arc's center. Lines adopted in 1910.

Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length
4282.408	4547.853	4789.657	5083.344	5405.780	561 5.661	6230.734
4315.089	4592.658	4878.225	5110.415	5434.527	5658.836	6265.145
4375.934	4602.947	4903.325	5167.492	5455.614	5763.013	6318.028
4427.314	4647.439	4919.007	5192.363	5497.522	6027.059	6335.341
4466.556	4691.417	5001.881	5232.957	5506.784	6065.492	6393.612
4494.572	4707.288	5012.073	5266.569	5569.633	6137.701	6430.859
4531.155	4736.786	5049.827	5371.495	5586.772	6191.568	6494.993

TABLE 315.—International Secondary Standards. Iron Arc Lines in Angströms.

Adopted in 1913. (4) Means of measures of Fabry-Buisson, Pfund, Burns and Eversheim.

Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.
337 0. 789 3399.337 3485.345 3513.821 3556.881	3606.682 3640.392 3676.313 3677.629 3724.380	37.53.615 3805.346 3843.261 3850.820 3865.527	3906.482 3907.937 3935.818 3977.746 4021.872	4076.642 4118.552 4134.685 4147.676 4191.443	4233.615 5709.396 6546.250 6592.928 6678.004	67 50.250 5857.759 Ni 5892.882 Ni

(1) Astrophysical Journal, 28, p. 169, 1908; (2) Ditto, 28, p. 197, 1908; (3) Annalen der Physik, 30, p. 815, 1909. See also Eversheim, *ibid.* 36, p. 1071, 1911; Buisson et Fabry, *ibid.* 38, p. 245, 1912; (4) Astrophysical Journal, 39, p. 93, 1914.

TABLE 316 .- Neon Wave-Lengths.

In-	Wave	In-	Wave	In-	Wave	In-	Wave	In-	Wave
tensity.	length.	tensity.	length.	tensity.	length.	tensity.	length.	tensity.	length.
5	3369.904	5	3515.192	2	5820.155	4	6217.280	5	6717.043
6	3417.906	8	3520.474	10	5852.488	7	6266.495	8	6929.468
6	3447.705	4	3593.526	6	5881.895	4	6304.789	3	7024.049
6	3454.197	4	3593.634	8	5944.834	8	6334.428	9	7032.413
5	3460.526	5	3600.170	4	5975.534	8	6382.991	3	7059.111
4	3464.340	5	3633.664	4	6529.997	10	6402.245	5	7173.939
5	3466.581	8	5330.779	7	6574.338	9	6506.528	8	7245.167
6	3472.578	7	5341.096	8	6696.163	4	6532.883	6	7438.902
4	3498.067	6	5400.562	9	6143.062	5	6598.953	5	7488.885
4	3501.218	4	5764.419	5	6163.594	8	6678.276	5	7535.784

International Units (Ångströms). Burns, Meggers, Merrill, Bull. Bur. Stds. 14, 765, 1918.

TERTIARY STANDARD WAVE-LENGTHS. IRON ARC LINES.

For arc conditions see Table 314, p. 266. For lines of group c class 5 for best results the slit should be at right angles to the arc at its middle point and the current should be reversed several times during the exposure.

Wave-lengths.	Class.	Intensity.	Wave-lengths.	Class.	Inten- sity.	Wave-lengths.	Class.	Inten-
*2781.840 *2806.985 *2831.559 *2858.341		4 7 3	4337.052 4369.777 4415.128	b3 b3 b1 b3	5 3 8r	53 32 .909 5341.032 5365.404	a4 a4 a1	5 2
*2901.382 *2926.584 *2986.460 *3000.453		3 3 4 5 3 4	4443,198 4461.658 4489.746 4528.620 4619.297	a3 a3 c4	3 4 3 7	5405.780 5434.528 5473.913 5497.521 5501.471	a a a	6 6 4 4
*3053.070 *3100.838 *3154.202 *3217.389		4 4 4	4786.811 4871.331 4890.769 4924.773	c4 c5 c5	4 3 8 7 3	5506.784 \$5535.419 5563.612 5975.352	a a b b	3 2 3 4 5 4
*3257.603 *3307.238 *3347.932 *3389.748		4 4	4939.685 4973.113 4994.133 5041.076	a a a	3 3 2 3 3	6027.059 6065.495 6136.624 6157.734	b b b	3 4 5
*3476.705 *3506.502 *3553.741 *3617.789		4 3 5 5 5 6	5041.760 5051.641 5079.227 5079.743	a a a	3 4 3 3	6165.370 6173.345 6200.323 6213.441	b b b	3 4 4 5 5 6
*3659.521 *3705.567 *3749.487 *3820.430		5 6R 8R 8R	5098.702 5123.729 5127.366 5150.846	a a a	3 4 3 4	6219.290 6252.567 6254.269 6265.145	b 5 b	
*3859.913 *3922.917 *3956.682 *4009.718		7R 6R 6	5151.917 5194.950 5202.341 5216.279	a a	35558 38	6297.802 6335.342 6430.859	b b b	4 5 4 6 5
*4062.451 †4132.063 †4175.639	bı b	5 4 7 4	5227.191 5242.495 5270.356	a a4 a a4		6494.992		
†4202.031 †4250.791	b2	7r 7	5328.043 5328.537	aI a4	7 4			

For class and pressure shifts see Gale and Adams, Astrophysical Journal, 35, p. 10, 1912. Class a: "This involves the well-known flame lines (de Watteville, Phil. Trans. A 204, p. 139. 1904), i.e. the lines relatively strengthened in low-temperature sources, such as the flame of the arc, the low-current arc, and the electric furnace. (Astrophysical Journal, 24, p. 185, 1906, 30, p. 86, 1909, 34, p. 37, 1911, 35, p. 185, 1912.) The lines of this group in the yellow-green show small but definite pressure displacements, the mean being 0.0036 Angström per atmosphere in the arc." Class b: "To this group many lines belong; in fact all the lines of moderate displacement under pressure are assigned to it for the present. These are bright and symmetrically widened under pressure, and show mean pressure displacements of 0.009 Angström per atmosphere for the lines in the region A roots of a group of the lines of the lines showing much in the region a 5975-6678 according to Gale and Adams. Group c contains lines showing much larger displacements. The numbers in the class column have the following meaning: I, symmetrically reversed; 2, unsymmetrically reversed; 3, remain bright and fairly narrow under pressure; 4, remain bright and symmetrical under pressure but become wide and diffuse; 5, remain

bright and are widened very unsymmetrically toward the red under pressure."

For further measures in International units see Kayser, Bericht über den gegenwärtigen Stand der Wellenlängenmessungen, International Union for Cooperation in Solar Research, 1913. For further spectroscopic data see Kayser's Handbuch der Spectroscopie.

^{*} Measures of Burns. \dagger Means of St. John and Burns. \dagger Means of St. John and Goos. Others are means of measures by all three. References: St. John and Ware, Astrophysical Journal, 36, 1912; 38, 1913; Burns, Z. f. wissen. Photog. 12, p. 207, 1913, J. de Phys. 1913, and unpublished data; Goos, Astrophysical Journal, 35, 1912; 37, 1913. The lines in the table have been selected from the many given in these references with a view to equal distribution and where possible of classes α and δ .

REDUCTION OF WAVE-LENGTH MEASURES TO STANDARD CONDITIONS.

The international wave-length standards are measured in dry air at 15° C, 76 cm pressure. Density variations of the air appreciably affect the absolute wave-lengths when obtained at other temperatures and pressures. The following tables give the corrections for reducing measures to standard conditions, viz.: $\delta = \lambda_0 (n_0 - n_0^6) (d - d_0)/d_0$ in ten-thousandths of an Angstrom, when the temperature t^0 C, the pressure B in cm of Hg, and the wave-length λ in Angstroms are given; n and d are the indices of refraction and densities, respectively; the subscript $_0$ refers to standard conditions, none, to the observed; the prime ' to the standard wave-length, none, to the new wave-length. The tables were constructed for the correction of wave-length measures in terms of the fundamental standard δ_{43} 8.466 A of the cadmium red radiation in dry air, $_15^{\circ}$ C, $_76$ cm pressure. The density factor is, therefore, zero for $_15^{\circ}$ C and $_76$ cm, and the correction always zero for $\lambda = 6438$ A. As an example, find the correction required for λ when measured as $_3000.0000$ A in air at $_25^{\circ}$ C and $_72$ cm. Section (a) of table gives ($d - d_0$)/ $d_0 = -.08$ 5 and for this value of the density factor section (b) gives the correction to λ of $_700.038$ A. Again (i. λ) under the same atmospheric conditions, is measured as $_8000.0000$ A in terms of a standard λ' of wave-length $_900.0000$ A, say, the measurement will require a correction of $_900.0000$ A. Taken from Meggers and Peters, Bulletin Bureau of Standards, $_1500.0000$ A. $_1500.0000$ A. Taken from Meggers and Peters, Bulletin Bureau of Standards, $_1500.0000$ A. $_1500$

TABLE 318 (a). - 1000 $\times (d - d_0)/d_0$.

B cm	60.0	62.5	65.0	67.5	70	71	72	73	74	75	76	77	78
9° C 11 13 15	-192 -200 -206 -211 -216	-160 -167 -172 -178 -184	-126 -133 -139 -145 -151	-92 -100 -106 -112 -118	-59 -67 -73 -79 -86	-46 -53 -60 -66 -73	-32 -40 -46 -53 -60	-19 -27 -33 -39 -47	-5 -13 -20 -26 -34	+8 o -7 -13 -21	+22 +13 +6 0 -8	+35 +27 +20 +13 +5	+48 +40 +33 +26 +19
19	-222	-189	-156	-124	-92	-79	-66	-53	-40	-27	-14	-1	+12
21	-227	-195	-163	-130	-98	-85	-72	-59	-46	-33	-21	-8	+5
23	-232	-200	-168	-136	-104	-91	-78	-65	-52	-40	-27	-14	-1
25	-238	-206	-174	-143	-111	-98	-85	-72	-60	-47	-34	-22	-9
27	-243	-211	-179	-148	-116	-104	-91	-78	-66	-53	-40	-28	-15
29	-248	-216	-185	-154	-122	-109	-97	-84	-72	-59	-46	-34	-21
31	-253	-222	-190	-159	-128	-116	-103	-91	-78	-66	-54	-41	-29
33	-258	-227	-196	-165	-134	-121	-109	-97	-84	-72	-59	-47	-34
35	-262	-231	-200	-170	-139	-127	-114	-102	-90	-77	-65	-53	-41

TABLE 318 (b). — $\delta = \lambda_0 (n_0 - n_0) (d - d_0) / d_0$, in Ten-thousandth Angstroms.

						Wave	-lengths	in An	gstron	ns.					
$\frac{d - d_0}{d_0}$	2000	2500	3000	3500	4000	4500	5000	5500	6000	6500	7000	7500	8000	9000	10000
		Corrections in ten-thousandth Angstroms.													
-260 -240 -220 -200	-259 -239 -219 -199	-166 -154 -141 -128	-107 -98	7 - 78 $3 - 71$	3 -57 -52	-44 -41 -37 -34	-28 -26	-18 -17 -15 -14	-7 -7	+r +r +r +r	+9 +9 +8 +7	+17 +16 +14 +13	+24 +22 +20 +19	+37 +35 +32 +29	+50 +46 +42 +38
-180 -160 -140 -120 -100	-179 -159 -139 -119 -100	-115 -102 -90 -77 -64	-71 -62 -52	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} $	-24 -20	-19 -16 -14	-13 -11 -10 -8 -7	-6 -5 -4 -4 -3	+I +I +o +o	+6 +6 +5 +4 +4	+12 +10 +9 +8 +7	+17 +15 +13 +11 +9	+26 +23 +20 +17 +14	+34 +31 +27 +23 +19
-80 -60 -40 -00	-80 -60 -40 -20	-51 -38 -26 -13	-27 -18	$\frac{7}{3} - \frac{10}{-13}$	9 -14 3 -9 5 -5	-10	-7	-6 -4 -3 -1	-2 -1 -1	+0+0	+3 +2 +1 +1	+5 +4 +3 +1	+7 +6 +4 +2	+12 +9 +6 +3	+15 +11 +8 +4
+20 +40	+20 +40	+13 +26		+63 +13		+3 +7	+2 +5	+1 +3	+1	-o -o	-r -r	-2 -3	-2 -4	-3 -6	-4 -8

SPECTRA OF THE ELEMENTS.

The following figure gives graphically the positions of some of the more prominent lines in the spectra of some of the elements. Flame spectra are indicated by lines in the lower parts of the panels, are spectra in the upper parts, and spark spectra by dotted lines.

The following wave-lengths are in Angstroms.

Na	5889.965	Rb	4202 4216	Cu	4023 4063	Mg	5168 5173
K ·	5895.932 4044		5648		5105.543*		5184
	4047 5802		5724 6207		5153.251* 5218.202*	Sn	5529 4525
	7668	TI	6299 5351		5700 5782.000*		5563 5589
Li	4132	In	4102		5782.159*		5799
	4602 6104	Hg	4511	Ag	4055 4212	H	6453 3970
Cs	6707.846*		4078.I		4669 5209.081*		4102
CS	4555 4593		4358.3		5465.489*		4340 4861
	5664 5945		4959·7 5460.742*		5472 5623	He	6563 3187.743†
	6011	-	5769.598*	Zn	4680.138*	-10	3888.646†
	6213		5790.659* 6152		4722.164* 4810.535*		4026.189† 4471.477†
	6974		6232		4912		4713.143† 4021.020†
					4925		5015.675†
	other elements,	, see Kay	ser's Handbuc	h der	6362.345*		5875.618† 6678.149†
	bry and Perot.	† Me	rrill.				7065.188†

TABLE 320.

SPECTRUM LINES OF THE ELEMENTS.

Table of brighter lines only abridged from more extensive table compiled from Kayser and containing 10,000 lines (Kayser's Handbuch der Spectroscopie, Vol. 6, 1912).

Wave- lengths, inter-	Ele-	Ir	ntensitie	es.	Wave- lengths, inter-	Ele-	I	ntensitie	es.	Wave- lengths, inter-	Ele-]	Intensit	ies
Ang- stroms.	ment.	Arc.	Spark.	Tube.	national Ang- stroms.	ment.	Arc.	Spark.	Tube.	national Ang- stroms.	ment.	Arc.	Spark.	Tube.
3802.98 08.21 10.73 14.45 19.65 22.15 28.47 29.35 32.30 36.83 38.29 38.29 45.45 47.65 51.02 56.50 58.29 60.86 64.11 71.65 73.07 74.16 688.64 691.01 94.09 94.22 96.36 97.63 3900.53 02.95 05.34 07.14 07.52 11.26 14.94 22.52 25.43 30.51 31.10 33.67 74.4.68 45.33 49.10 50.35 40.07 40.47 44.68 45.33 49.10 50.35	Nh Rau Rhh Mg Mg Zr S Mg Com Tho Cl Chan Nh Cod La Carb La Car	15	## ## ## ## ## ## ## ## ## ## ## ## ##	10	3968. 48 72. 01 74. 71 76. 85 80. 43 81. 68 81. 80 82. 60 88. 50 88. 50 91. 13 08. 96 4000. 47 05. 50 05. 73 08. 73 19. 62 22. 70 23. 35 23. 71 25. 1 30. 80 31. 70 33. 03 33. 06 34. 48 35. 62 41. 43 42. 92 44. 15 45. 45. 82 46. 60 47. 21 48. 73 55. 53 57. 84 76. 77 77. 78 77 77. 78 77 77. 78 77 77 78 79 92. 68 99. 80 4100. 74 00. 97 01. 82 02. 40 03. 4 09. 78 11. 80	Ca Eur The Em TY Ny La Zr Dyb V Pr Cu V Se F Mn V Mn La K Nh Fe DSe K Mn Agg DY Sr DY X Nb Ra La V V Pr Nb I Y F V V Os	30 20 20 15 10 8 8 15 12 12 15 12 12 15 12 12 13 14 15 15 12 12 13 14 15 16 17 18 18 18 18 19 10 10 10 10 10 10 10 10 10 10	40 20 5 10 12 20 8 8 15 10 10 20 8 8 15 10 10 15 4 4 10 6 6 6 20 10 10 15 5 5 5 5 5 11 6 6 12 8 10 10 15 6 12 8 10 10 15 6 12 8 10 10 15 6 12 8 10 10 15 6 12 8 10 10 15 6 12 8 10 10 15 6 12 8 10 10 15 6 12 8 10 10 15 6 12 8 10 10 15 6 12 8 10 10 15 6 12 8 10 10 10 10 10 10 10 10 10 10 10 10 10	10 15	4116. 50 18. 48 23. 24 28: 3 28. 70 28. 91 29. 75 30. 42 35. 29 35. 80 37. 13 39. 74 42. 86 43. 14 44. 25 52. 63 53. 11 58. 62 67. 63 66 66. 43 68. 14 69. 0 72. 05 77. 05 370. 04 70. 43 80. 04 70. 43 80. 04 81. 25 90. 91 420. 65 01. 82 03. 23 06. 72 08. 96 11. 14 11. 50 11. 15 17. 95 17.	VPLAYIRhuGdh Connby Process Archive Months and Connby Process Archive Months Arch	15 15 15 15 15 15 15 15 15 15 15 15 15 1	15 8 10 50 10 10 10 10 10 10 10 10 10 10 10 10 10	10

SPECTRUM LINES OF THE ELEMENTS.

Wave- lengths, inter-	Ele-	1	ntensity	7.	Wave- lengths, inter-	Ele-	In	tensity.		Wave- lengths, inter-	Ele-	I	ntensity	у.
national Ang- stroms.	ment.	Arc.	Spark.	Tube.	national Ang- stroms.	ment.	Arc	Spark.	Tube.	Ang.	ment.	Arc.	Spark.	Tube.
4253.61 54.34 54.42 59.69 60.84 73.96 74.80 86.97 4301.11 02.28 03.61 19.60 05.78 26.38 10.57 26.38 30.47 33.77 40.67 43.69 48.01 49.65 55.47 70.5.58 68.30 74.51 74.81 74.81 74.81 75.78 82.85 84.73 84.73 85.76 86.30 82.85 84.73 86.30 87.75 87.75 88.30 88.31 89.31 99.57 98.03 89.08 93.17 95.24 95.74 95.74 96.75 96.83 97.77 97.77 98.03 98.	YV Zro Moo See VP VX YNi Fe VPr I Moo Ssm Pr ENb Pt FX	12 15 10 10 10 15 15 10 10 15 15 10 10 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10	12 8 20 5 10 12 20 10 15 15 15 15 15 15 15 15 15 15 15 15 15	10	4477.77 81.17 96.43 08.76 4510.15 22.50 24.74 55.52 72.74 73.00 74.26 85.47 73.00 74.26 85.47 70.34 00.22 24.28 25.40 27.20 27.98 33.86 24.42 44.11 45.16 48.66 61.92 44.11 45.16 48.66 61.92 44.11 45.16 48.66 61.92 44.11 45.16 48.66 61.92 72.12 75.36 80.13 80.74 82.18 87.80 470.49 30.80 61.44 22.16 32.86 63.81 38.10 3	Em Ra Zr Br I Ni Zn Bi Se Tl Br Cl I		10 10 10 10 10 10 10 10	10	4994. I3 S035. 36 53. 30 5135. 08 55. 20 11. 10 63. 78 72. 68 83. 66 64. 51 5206. 05 68. 42 90. 08 24. 70 56. 95 92. 23 95. 62 53. 20 32. 8 35. 14 50. 49 76. 69 60. 59 96. 85 74. 08 97. 69 80. 95 96. 78 550. 49 76. 91 80. 95 96. 78 550. 49 76. 91 80. 95 96. 78 550. 49 76. 91 80. 95 96. 78 550. 49 76. 91 80. 95 96. 78 550. 49 62. 56 80. 2 560. 94 57. 68 62. 56 80. 2 560. 94 57. 70. 46 80. 2 560. 94 57. 70. 46 80. 2 560. 94 57. 70. 67 58. 27 77. 56 80. 2 50. 88 50. 99 99. 4 5813. 63 52. 93 59. 93 59. 93 59. 93 59. 93 59. 93 59. 93 59. 93 59. 93 59. 93 59. 93 59. 93 59. 93 59. 93 59. 93 59. 93 59. 93 59. 93 59. 93	Lu Ni W Lu ST Pd g Mg C C C C C Ag W Sr X Pd O B Sn Ny TI Nyo Se Se Pd X I Ag Lu Li Sr I Sr Mo W Sr Mo Pd Sa Rae R Ag P Pd Sa R Ag P Pd Mo Ni Mo	120 15 15 15 15 15 15 15 1	10 12 15 20 10 10 10 10 10 10 10 10 10 10 10 10 10	

Note. — This table, somewhat unsatisfactory in its abridged form, is included with the hope to occupy its space later with a better table; e.g., no mercury lines appear since the scale of intensity used in the original table results in the intensity of all mercury lines falling below the critical value used in this table.

STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-lengths are in Angström units (10⁻⁷ mm.), in air at 20° C and 76 cm. of mercury pressure. The intensities run from 1, just clearly visible on the map, to 1000 for the H and K lines; below 1 in order of faintness to 0000 as the lines are more and more difficult to see. This table contains

only the lines above 5.

N indicates a line not clearly defined, probably an undissolved multiple line; s, a faded appearing line; d, a double. In the "substance" column, where two or more elements are given, the line is compound; the order in which they are given indicates the portion of the line due to each element; when the solar line is too strong to be due wholly to the element given, it is represented, -Fe, for example; when commas separate the elements instead of a dash, the metallic lines coincide with the same part of the solar line, Fe, Cr, for example.

Capital letters next the wave-length numbers are the ordinary designations of the lines. A indi-

cates atmospheric lines, (wv), due to water vapor, (O), due to Oxygen.

Wave- length.	Substance.	Inten- sity.	Wave-length.	Substance.	Inten- sity.	Wave- length.	Sub- stance.	Inten- sity.
3037.510s	Fe	10 N	3372.947	Ti-Pd	rod?	3533-345	Fe	6
3047.7258	Fe	20 N	3380.722	Ni	6 N	3536.709	Fe	7
3053.530s	-	7 d?	3414.911	Ni	15	3541.237	Fe	7 6
3054.429	Mn, Ni	10	3423.848	Ni	7	3542.232	Fe	
3057.5528	Ti, Fe	20	3433.715	Ni, Cr	8d?	3555.079	Fe	9
3059.2128	Fe	20	3440.7628 O	Fe	20	3558.672s	Fe	_
3067.369s	Fe	8	3441.155s)	Fe	15	3565.535s	Fe	20
3073.091	Ti, -	6 Nd?	3442.118	Mn	8 N	3566.522	Ni	10
3078.769s	Ti, -	8 d?	3444.020s	Fe Ni		3570.273s	Fe Ni	20 6
3088.1458		7 d?	3446.406	Co	15 6d?	3572.014	Se	6
31 34.230s	Ni, Fe	6d?	3449.583	Ni Ni	6d?	3572.712 3578.832	Cr	10
3188.656	-, Fe Ti	7 N	3453.039	Ni	8	35/0.032 3581.349s	Fe	
3236.703s	Ti		3458.601 3461.801	Ni	8	3584.800	Fe *	30
3239.170 3242.125	Ti, -	7 8	3462.950	Co	6	3585.105	Fe	6
3243.189	-, Ni	. 6	3466.015s	Fe	6	3585.479	Fe	
3247.688s	Cu	10	3475.594s	Fe	10	3585.859	Fe	7 6
3256.021	Fe?	6	3476.849 s	Fe	8	3587.130	Fe	8
3267.834s	V	6	3483.923	Ni	6d?	3587.370	Co	
3271.129	Fe	6	3485.493	Fe Co	6	3588.084	Ni	7 6
3271.791	Ti, Fe	6d?	3490.733s	Fe	ION	3593.636	Cr	9
3274.096s	Cu	10	3493.114	Ni	IO N	3594.784	Fe	9
3277.482	Co-Fe	7 d?	3497.982s	Fe	8	3597.854	Ni	8
3286.898	Fe	7 N	3500.996s	Ni	6d?	3605.479s	Cr	7
3295.9518	Fe, Mn	6	3510.466	Ni	8	3606.838s	Fe	
3302.510s	Na	6	3512.785	Co	6	3609.008s	Fe	20
3315.807	Ni	7 d?	3513.965s	Fe	7	3612.882	Ni	6d?
3318.16os	Ti	6	3515.206	Ni	12	3617.934s	Fe	6
3320.391	Ni	8 N	3519.904	N	7 8	3618.919s	Fe	20
3336.820	Mg		3521.410s	Fe	- 1	3619.539	Ni	8
3349.597	Ti Ti	7 8	3524.677	Ni	20	3621.612s	Fe Fe	6
3361.327	Ni Ni	6	3526.183	Fe	6	3622.1478	Fe Fe	
3365.908 3366.311	Ti, Ni	6d?	3526.988	Co Fe-Co	6	3631.605s	Cr-Fe	15
3369.713	Fe, Ni	6	3529.964	Fe-Co	6	3640.535s 3642.820	Ti	7
3309./13	1.6, 141	0	3533.156	1.6	0	3042.020	11	1

Corrections to reduce Rowland's wave-lengths to standards of Table 314 (the accepted standards, 1913). Temperature 15° C, pressure 760 mm.

The differences "(Fabry-Buisson-arc-iron)—(Rowland-solar-iron)" lines were plotted, a smooth curve drawn, and the following values obtained:

Wave-length 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, Correction -. 106 -. 115 -. 124 -. 137 -. 148 -. 154 -. 155 -. 140

H. A. Rowland, "A preliminary table of solar-spectrum wave-lengths," Astrophysical Journal, 1-6, 1895-1897.

SMITHSONIAN TABLES.

STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-length.	Substance.	Inten- sity.	Wave-length.	Substance.	Inten- sity.	Wave-length.	Substance.	Inten- sity.
3647.988s	Fe	12	3826.0278	Fe	20	4045.975s	Fe	30
3651.247	Fe,-	6	3827.980	Fe	8	4055.7018	Mn	6
3651.614	Fe	7	3829.50IS	Mg	10	4057.668	-	7
3676.457	Fe, Cr	7	3831.837	Ni	6	4063.759s	Fe	20
3680.069s	Fe	9	3832.450s	Mg	15	4068.137	Fe-Mn	6
3684.258s	Fe	7d?	3834.364	Fe	10	4071.908s	Fe	15
3685.339	Ti	rod?	3838.435s	Mg-C	25	4077.885s	Sr	8
3686.141	Ti-Fe	6	3840.580s	Fe-C	8	4102.000H8	H, In	40N
3687.610s	Fe	6	3841.195	Fe-Mn	10	4121.4778	Cr-Co	6d?
3689.614	Fe	6	3845.606	C-Co	8d?	4128.251	Ce-V,-	6d
3701.234	Fe	8	3850.118	Fe-Cr	IO	4132.235	Fe-Co	10
3705.708s	Fe	9	3856.5248	Fe	8	4137.156	Fe	6
3706.175	Ca, Mn	6d?	3857.805	Cr-C	6d?	4140.089	Fe	6
3709.389s	Fe	8	3858.442	Ni	7	4144.038	Fe	15
3716.591s	Fe	7	3860.055s	Fe-C	20	4167.438	-	
3720.084s	Fe	. 40	3865.674	Fe-C	7 6	4187.204	Fe	6
3722.6928	Ni	10	3872.639	Fe		4191.595	Fe	6
3724.526	Fe	6	3878.152	Fe-C	8	4202.198s	Fe	8
3732.545s	Co-Fe	6	3878.720	Fe	7Nd?	4226.904sg	Ca	20 d?
3733.469s	Fe-	7d?	3886.434s	Fe	15	4233.772	Fe	6
3735.0148	Fe	40	3887.196	Fe	7 8d	4236.112	Fe	8
3737.28IS	Fe	30	3894.211	-		4250.2878	Fe	8
3738.466		6	3895.803	Fe	7 8	4250.945s	Fe	8
3743.508	Fe-Ti	6	3899.850	Fe	1	4254.505S	Cr	8
3745.717S	Fe	8	3903.090	Cr, Fe, Mo	10	4260.640s	Fe	10
3746.058s	Fe	6	3904.023		8d	4271.9348	Fe	15
3748.408s	Fe	IO	3905.660s	Si	12	4274.958s	Cr	7d?
3749.631s	Fe	20	3906.628	Fe	10	4308.081sG	Fe	6
3753.732	Fe-Ti	6d?	3920.410	Fe	10	4325.939s	Fe	8
3758.375s	Fe	15	3923.054	Fe	12d?	4340.634Hy	H	20N
3759-447	Ti	12d?	3928.075s	Fe	8	4376.1078	Fe	6
3760.196	Fe	5	3930.450	Fe	8	4383.720s	Fe	15
3761.464	Ti	7	3933.523	-	8N	4404.9278	Fe	10
3763.945s	Fe	10	3933.825sK	Ca	1000	4415.293s	Fe	8
3765.689	Fe.	6	3934.108	Co, V-Cr	8N	4442.510	Fe Fe	6
3767.341s	Fe	8	3944.160s	Al Fe	15	4447.892s	Fe	6
3775.717	Ni	7 6	3956.819	Fe-Ca	7d?	4494.738s	Fe	8
3783.674s	Ni Fe		3957.1778	Al	20	4528.798	Ti-Co	6
3788.046s	Fe	9	3961.674s	-, Zr	6N	4534.139 4549.808	Ti-Co	6d?
3795.147s	Fe Fe	6	3968.350	Ca	700	4549.000 4554.211s	Ba	8
3798.655s	Fe		3968.625sH 3968.886	Ca -	6N	4572.156s	Ti-	6
3799.693 s 3805.486s	Fe	7 6		Fe	IO	4603.126	Fe	6
	Mn-Fe	8d?	3969.413	Co-Fe	6d?	4629.5218	Ti-Co	6
3806.865	Ni-re	6	3974.904 3977.891s	Fe	6	4679.0278	Fe	6
3807.681	V-Fe	6	3986.903s	-	6	4703.1778	Mg	10
3814.698	V-1.0	8	4005.408	Fe	7	4714.599s	Ni	6
3815.987s	Fe	15	4030.918s	Mn	rod?	4736.963	Fe	6
3820.586sL	Fe-C	25	4033.2248	Mn	8d?	4754.225s	Mn	
3824.591	Fe	6	4034.6448	Mn	6d	4783.613s	Mn	7 6

Corrections to reduce Rowland's wave-lengths to standards of Table 314 (the accepted standards, 1913). Temperature 15° C, pressure 760 mm.:

Wave-length 3600, 3700, 3800, 3900, 4000, 4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, Correction -.155 -.140 -.141 -.144 -.148 -.152 -.156 -.161 -.167 -.172 -.176 -.179 -.179

STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-length.	Substance.	Inten- sity.	Wave-length.	Substance.	Inten- sity.	Wave-length.	Sub- stance.	Inten- sity.
Wave-length. 4861. 527s F 4890.948s 4891.683 4919.174s 4920.685 4957.785s 5050.008s 5167.497sb4 5171.778s 5172.856sb2 5183.791sb1 5233.122s 5266.738s 5269.723s E 5283.802s 5324.373s 5328.236 5340.121 5341.213 5341.213 5347.669s 5370.166s 5383.578s 5397.344s 5405.989s 5424.290s 5429.911 5447.130s 5528.641s 5569.848 5573.075 5586.991 5588.985s 5615.877s 5688.436s 5711.313s 5763.218s 5857.674s 5862.582s 5890.186s D2 5896.155 D1 5901.682s 5914.430s 5919.860s 5930.406s	H Fe		5948.765s 5985.040s 6003.239s 6008.785s 6013.715s 6016.861s 6022.2016s 6022.239s 6102.392s 6102.392s 6102.937s 6108.334s 6122.434s 6136.829s 6137.915 6141.938s 6155.350 6162.390s 6169.249s 6169.778s 6170.730 6191.393s 62191.779s 6213.644s 6222.773s 6256.572s 6213.644s 6230.943s 6246.535s 6252.773s 6256.572s 6317.718 6318.239 6335.554 6337.048	Si Fe		6563.045sC 6593.161s 6867.457sB 6868.336 6868.478 6869.142s 6869.333 6870.116 6870.249 6871.180s 6871.532s 6872.486s 6873.080s 6874.037s 6874.037s 6874.037s 6874.037s 6874.037s 6876.958s 6877.082s 6879.288s 6880.172s 6886.000s 6886.900s 6886.90s 6890.151s 6893.560s 6890.151s 690.199s 6901.117s 6904.362s 6905.271s 6908.783s 6919.250s 6913.448s 6914.337s 6919.250s 6923.553s 6924.427s 7191.755 7206.692		

Corrections to reduce Rowland's wave-lengths to standards of Table 314 (the accepted standards, 1913). Temperature 15° C, pressure 760 mm.:

Wave-length	4800.	4900.	5000.	5100.	5200.	5300.	5400.	5500.	5600.	5700.	5800.
Correction	— .179		— .173	—.170	— ,166	— .172	212	217	218	213	209
Wave-length Correction	5800.	5900.	6000.	6100.	6200.	6300.		6500.	6600.	6700.	6800.

SPECTRUM SERIES

In the spectra of many elements and compounds certain lines or groups of lines (doublets, triplets, etc.) occur in orderly sequence, each series with definite order of intensity (generally decreasing with decreasing wave-length), pressure effect, Zeeman effect, etc. Such series generally obey approximately a law of the form

$$\nu = \frac{\mathbf{I}}{\lambda} = L - \frac{N}{(m+R)^2},$$

where ν is the wave-number in vacuo (reciprocal of the wave-length λ) generally expressed in waves per c.n; m is a variable integer, each integer giving a line of the series; L is the wave number of the limit of the series $(m=\infty)$; N, the "Universal Series Constant"; and R is a function of m, or a constant in some simple cases.

Balmer's formula (1885) results if $L=N/n^2$, where n is another variable integer and R=0. Rydberg's formula (1880) makes R a constant, and L is not known to be connected with N. Other formulae have been used with more success. Mogendorff (1906) requires R=0 constant/m, while Ritz (1903) has R=0 constant/ m^2 . Often no simple formula fits the case; either R must be a more complex function of m, or the shape of the formula is incorrect.

Bohr's theory (see also Table 515) gives for Hydrogen

$$N = \{2\pi^2 m e^4 (M + m)\}/Mh^3,$$

where e and m are the charge and mass of an electron, M the atomic weight, and h, Planck's constant. The best value for N is 109678.7 international units (Curtis, Birge, Astrophys. J. 32, 1910). The theory has been elaborated by Sommerfeld (Ann. der Phys. 1916), and the present indications are that N is a complex function varying somewhat from element to element.

element to element.

Among the series (of singles, doublets, etc.), there is apt to be one more prominent, its lines easily reversible, called the principal series, P(m). With certain relationships to this there may be two subordinate series, the first generally diffuse, D(m), and another, S(m). Related to these there is at times another, the Bergmann series B(m). m is the variable integer first used above and indicates the order of the line.

The following laws are in general true among these series: (1) In the P(m) the components of the lines, if double, triple, etc., are closer with increasing order; in the subordinate series the distance of the components (in vibration number) remains constant. (2) Further, in two related D(m) and S(m), $\Delta \nu$ (vibration number difference) remains the same. (3) The limits (L) of the subordinate series, D(m) and S(m), $\Delta \nu$ (vibration number difference) remains the same $\Delta \nu$ as for the first pair of the corresponding P(m). (5) The limits (L) of the components of the doublets (triplets, etc.) of the P(m) are the same. (6) The difference between the vibration numbers of the end of the P(m) and of the two corresponding subordinate series gives the vibration number of the first term of the P(m). The first line of the S(m) coincides with the first line of the P(m) (Rydberg-Schuster law).

In the spectrum of an element several of these families of series P(m), D(m), S(m), B(m) may be found. For further information see Baly's Spectroscopy and Konen's Das Leuchten der Gasen, 10

it becomes a constant term, viz. VS(1).

Then a single line system is represented as follows:

$$P'(m) = VS'(x) - VP'(m);$$
 $D'(m) = VP'(x) - VD'(m);$ $S'(m) = VP'(x) - VS'(m);$ $\{B'(m) = VD'(x) - VB'(m)\}.$

A system of double lines would be represented as follows:

$$\begin{array}{lll} P_1''(m) &= VS''(1) - VP_1''(m); & D_1''(m) &= VP''(1) - VD''(m); \\ P_2''(m) &= VS''(1) - VP_2''(m); & D_2''(m) &= VP''(1) - VD''(m); \\ S_2''(m) &= VP_1''(1) - VS''(m); & \{B_1''(m) &= VD''(1) - VB''(m)\}; \\ S_2''(m) &= VP_2''(1) - VS''(m); & \{B_2''(m) &= VD''(1) - VB''(m)\}; \end{array}$$

And similarly for a series of triplets, etc.

Series Spectra of the Elements. — The ordinary spectrum of H contains 3 series of the same kind: one in the; Schumann region, $\nu = N(1/2^2 - 1/n^2)$, n, 2, 3, ...; one in the visible, $\nu = N(1/2^2 - 1/n^2)$, n, 3, 4, 5, ...; and one in the infrared, $\nu = N(1/3^2 - 1/n^2)$, n, 4, 5, 6, ... He has three systems of series, one rehanced, "including the Pickering series formerly supposed to be due to H. The next two tables give some of the data for other elements.

SERIES SYSTEM OF POTASSIUM.

TABLE 323. - Limits of Some of the Series.

	$P_1(\infty)$	$D_1(\infty) = S_1(\infty)$	$B_1(\infty)$	$P_3(\infty)$	$D_2(\infty) = S_2(\infty)$	$B_2(\infty)$	$P_3(\infty)$	$D_{3}(\infty) = S_{3}(\infty)$	$B_3(\infty)$	R(∞)
H He Li Na K Rb Cs Cu Ag Mg Ca Sr	48,764 32,031 ————————————————————————————————————	27,429 27,173 — — — — — — 26,613 27,510	12,186 12,204	48,764 38,453 43,484 *41,445 35,006 33,685 31,407 62,306 61,093 ?	27,419 (29,221 29,222 28,581 (24,472 24,489 21,963 22,020 20,868 21,106 19,674 20,228 31,523 31,771 30,621 31,523 31,771 30,621 31,542 P 60,423 60,646 55,029 55,830 (49,926 51,616	12,186 12,208 12,202 12,274 13,471 14,330 16,809 16,907 12,372 12,366 12,351 ?	48,744 — — — — — — — — — — — — — — — — — —	27,429 ————————————————————————————————————	12,186	

For the series of Zn, Cd, Hg, Al, Sn, Tl, O, S, Sn, see original reference. *48 lines have been measured in this series from 16,956 to 41,417.

TABLE 324. — First Terms of Some of the Series. Vibration Number Differences of Pairs $\Delta \nu$, and Triplets $\Delta \nu_1$, $\Delta \nu_2$.

For the P(m) and the S(m) is given only the first or second term, since the term with index 0 may be omitted as coinciding with the first term of the S(m) or P(m) respectively. Consequently the numbers always proceed from greater to smaller wave-lengths. Which is the common line can always be recognized from the vibration numbers. See figure on the preceding page. The vibration differences can be obtained from Table 323.

	P(I)	D(I)	S(1)	B(I)		P(1)	D(1)	S(I)	B(1)		Δν	$\Delta \nu_1$	$\Delta \nu_2$
H He Li Na K Rb Cs Cu Ag	21,334 4,857 9,231 14,903 (16,973 16,956 13,043 12,985 12,817 12,579 11,733 11,178 30,783 30,535 30,472 30,551 35,760 35,668	15,233 13,070 {17,114 17,118 16,379 12,215 12,108 8,552 8,493 6,776 6,538 3,321 2,767 19,153 19,151 19,191 18,271 11,352 35,831 35,739	9,871 13,729 14,149 14,149 14,148 12,301 7,782 7,766 8,040 7,983 7,552 7,357 7,357 7,357 6,803 12,601 12,352 13,003 12,083	5351 5347 5416 6592 7437 9972 9875 5495	Mg Ca Sr	\begin{cases} 6654 \\ 6650 \\ 6650 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	26,106 26,086 26,045 20,405 11,763 11,541 5,019 5,125 5,177 19,390 9,959 3,842 3,055 3,260 12,176 10,493	19,346 19,326 19,285 19,828 25,414 25,701 16,381 16,329 16,223	6,720 22,153 21,834 21,820 21,799 20,591 20,533 20,435 13,804 13,523 12,645	He Na K Rb Cs Cu Ag Mg Ca Sr Ba Zn Cd Hg Al In Tl O S Se	11 177 58 237 552 249 921 91 223 801 1690 872? 2484? ———————————————————————————————————		

TABLE 325. - Index of Refraction of Glass.

Indices of refraction of optical glass made at the Bureau of Standards. Correct probably to 0.00001. The composition given refers to the raw material which went into the melts and does not therefore refer to the composition of the finished glass.

			1					
Melt.	123	241	135	116	188	151	163	76
Wave-length.	Ordinary crown.	Borosili- cate crown.	Barium flint.	Light barium crown.	Light flint.	Dense barium crown.	Medium flint.	Dense flint.
Hg 4046.8 Hg 4078.1 H 4340.7	1.53189 1.53147 1.52818	1.53817 1.53775 1.53468	1.58851 1.58791 1.58327	1.59137 1.59084 1.58698	1.60507 1.60430 1.59860	1.63675 1.63619 1.63189	1.65788 1.65692 1.64973	1.69005 1.68894 1.68079
Hg 4358.6 H 4861.5 Hg 4916.4	1.52798 1.52326 1.52283	1.53450 1.53008 1.52967	1.58299 1.57646 1.57587	1.58674 1.58121 1.58071	1.59826 1.59029 1.58958	1.63163 1.62548 1.62492	1.64931 1.63941 1.63854	1.68030 1.66911 1.66814
Hg 5461.0 Hg 5769.6 Hg 5790.5	1.51929 1.51771 1.51760	I.52633 I.52484 I.52475	1.57105 1.56894 1.56881	1.57657 1.57473 1.57460	1.58380 1.58128 1.58112	1.62033 1.61829 1.61817	1.63143 1.62834 1.62815	1.66016 1.65671 1.65650
Na 5893.2 Hg 6234.6 H 6563.0	1.51714 1.51573 1.51458	I.52430 I.52297 I.52188	1.56819 1.56634 1.56482	1.574 0 6 1.57242 1.57107	1.58038 1.57818 1.57638	1.61756 1.61576 1.61427	1.62725 1.62458 1.62241	1.65548 1.65250 1.65007
Li 6708.2 K 7682.0	1.51412	1.52145	1.56423	1.57054 1.56762	1.57567 1.57183	1.61369	1.62157 1.61701	1.64913
			(Percenta	ge compositi	on)			
SiO ₂ Na ₂ O K ₂ O B ₂ O ₃ BaO ZnO As ₂ O ₃ CaO PbO Sb ₂ O ₃	67.0 12.0 5.0 3.5 10.6 1.5 0.4	64.2 9.4 8.3 11.0 6.1 	53.7 1.7 8.3 2.7 14.3 2.5 — 16.7	48.0 2.0 6.1 4.0 29.5 10.0 1.4	53.9 1.0 7.6 — — 0.3 2.0 35.2	37.0 2.7 5.0 47.0 7.7 —	45.6 3.4 4.1 — — 3.0 44.0	39.0 3.0 4.0 —————————————————————————————————

TABLE 326. - Dispersion of Glasses of Table 325.

Melt.	123	241	135	116	188	151	163	76
n_D $n_F - n_C$	0.00868	0.00820	0.01164	1.57406	1.58038	1.61756	1.62725	1.65548
$\frac{n_D - \mathbf{I}}{n_F - n_C} = v$	59.6	63.9	48.8	56.6	41.7	55.1	36.9	34.4
$n_D - n_F$ $n_F - n_{G'}$	0.00612	0.00578	0.00827	0.00715	0.00991	0.00792	0.01216	0.01363
$n_D - n_C$	0.00256	0.00242	0.00337	0.00299	0.00400	0.00329	0.00484	0.00541

TABLE 327. - Glasses Made by Schott and Gen, Jena.

The following constants are for glasses made by Schott and Gen, Jena: n_A , n_0 , n_D , n_B , n_0 , are the indices of refraction in air for $A=0.7682\mu$, $C=0.6563\mu$, D=0.5893, F=0.4861, G'=0.4341. $v=(n_D-1)/(n_F-n_0)$. Ultra-violet indices: Simon, Wied. Ann. 53, 1894. Infra-red: Rubens, Wied. Ann. 45, 1892. Table is revised from Landolt, Börnstein and Meyerhoffer, Kayser, Handbuch der Spectroscopie, and Schott and Gen's list No. 751, 1909. See also Hovestadt's "Jena

Catalogue Type = Designation = Melting Number= v =	O 546 Zinc-Crown. 1092 60.7	O 381 Higher Dis- persion Crown. 1151 51.8	O 184 Light Silicate Flint. 451 41.1	O 102 Heavy Silicate Flint. 469 33.7	O 165 Heavy Silicate Flint. 500 27.6	S 57 Heaviest Silicate Flint. 163
Cd 0.2763# Cd .2837 Cd .2980 Cd .3980 Cd .3980 Cd .3610 M H .4340# D H .4861 Na .5893 H .5563 M K .7682 8.800# 1.200 1.600 2.000 2.400	1.56759 1.56372 1.55723 1.54369 1.53897 1.52788 1.52299 1.51698 1.51446 1.51143 1.5048 1.5068 1.5068	1.57093 1.55262 1.54664 1.53312 1.52715 1.52002 1.51712 1.51368 1.5131 1.5069 1.5024 1.4973	- 1.65397 1.63320 1.61388 1.50355 1.5%515 1.57524 1.57119 1.56669 1.5585 1.5535 1.5535 1.5487	1.71968 1.70536 1.67561 1.66367 1.64340 1.63820 1.6373 1.6277 1.6217 1.6131	- 1.85487 1.83263 1.78800 1.77091 1.75130 1.74368 1.73530 1.73530 1.7215 1.7151	1.94493 1.91890 1.88995 1.87893 1.86702 1.8650 1.8481 1.8396 1.8316

Percentage composition of the above glasses:

O 546, SiO2, 65.4; K2O, 15.0; Na2O, 5.0; BaO, 9.6; ZnO, 2.0; Mn2O3, 0.1; As2O3, 0.4;

 $\begin{array}{l} S_2O_3, \, S_2A_1; \, K_2O_1, \, S_2O_2, \, S_2O_3, \,$

TABLE 328. - Jena Glasses.

No. and Type of Jena Glass.	n _D for D	$n_{\mathrm{F}}-n_{\mathrm{C}}$	$v = \frac{n_{\rm D} - 1}{n_{\rm F} - n_{\rm C}}$	$n_{\mathrm{D}}-n_{\mathrm{A}}$	$n_{\rm F}-n_{\rm D}$	$n_{\mathrm{G}}, -n_{\mathrm{F}}$	Specific Weight.
O 225 Light phosphate crown	1.5159	.00737	70.0	.00485	.00515	.00407	2.58
O 802 Boro-silicate crown	1.4967	0765	64.9	0504	0534	0423	2.38
UV 3199 Ultra-violet crown	1.5035	0781	64.4	0514	0546	0432	2.41
O 227 Barium-silicate crown	1.5399	0909	59.4	0582	0639	0514	2.73
O 114 Soft-silicate crown	1.5151	0910	56.6	0577	0642	0521	2.55
O 608 High-dispersion crown	1.5149	0943	54.6	0595	0666	0543	2.60
UV 3248 Ultra-violet flint	1.5332	0964	55.4	0611	0680	0553	2.75
O 381 High-dispersion crown	1.5262	1026	51.3	0644	0727	0596	2.70
O 602 Baryt light flint	1.5676	1072	53.0	0675	0759	0618	3.12
S 389 Borate flint	1.5686	1102	51.6	0712	0775	0629	2.83
O 726 Extra light flint	1.5398	1142	47.3	0711	0810	0669	2.87
O 154 Ordinary light flint	1.5710	1327	43.0	0819	0943	0791	3.16
0 184 " " "	1.5900	1438	41.1	0882	1022	0861	3.28
O 748 Baryt flint	1.6235	1599	39.1	9965	1142	0965	3.67
O 102 Heavy flint	1.6489	1919	33.8	1152	1372	1180	3.87
041 " "	1.7174	2434	29.5	1439	1749	1521	4.49
0 165 " "	1.7541	2743	27.5	1607	1974	1730	4.78
S 386 Heavy flint	1.9170	4289	21.4	2451	3109	2808	6.01
S 57 Heaviest flint	1.9626	4882	19.7	2767	3547	3252	6.33

TABLE 329. - Change of Indices of Refraction for 1° C in Units of the Fifth Decimal Place.

No. and Designation.	Mean Temp.	С	D	F	G/	<u>-Δπ</u> 100
S 57 Heavy silicate flint O 154 Light silicate flint O 327 Barvt flint light O 225 Light phosphate crown	58.8°	1.204	1.447	2,090	2.810	0.0166
	58.4	0.225	0.261	0.334	0.407	0.0078
	58.3	0.008	0.014	0.080	0.137	0.0079
	58.1	0.202	—0.190	—0.168	0.142	0.0049

TABLE 330, - Index of Refraction of Rock Salt in Air.

λ(μ).	n.	Obser- ver.	λ(μ).	n.	Obser- ver.	λ(μ).	ж.	Obser- ver.
0.185409 .204470 .291368 .358702 .441587 .486149 .58902 .58932 .656304 .706548 .766529 .76824 .78576 .88396	1.89348 1.76964 1.61325 1.57932 1.55962 1.55338 1.553406 1.553399 1.544340 1.544313 1.540672 1.538633 1.536712 1.53666 1.536138 1.534011	M " " " L P L P P L P P P P P P P P P P P P P P	0.88396 .972298 .98220 1.036758 1.1786 1.555137 1.7680 2.073516 2.35728 2.9466 3.5359 4.1252 5.0092	1.534011 1.532532 1.532435 1.531762 1.530374 1.528211 1.527440 1.526554 1.525863 1.525849 1.524534 1.523173 1.521648 1.521625 1.518978	L P L P L P L P L P L P L P L P L P P L P	5.8932 6.4825 7.0718 7.6611 7.9558 8.8398 10.0184 11.7864 12.9650 14.1436 14.7330 15.3223 15.9116 20.57 22.3	1.516014 1.515553 1.513628 1.513467 1.511062 1.506804 1.502035 1.494722 1.481816 1.471720 1.460547 1.454404 1.447494 1.441032 1.3735 1.340	P L P L P "

$$n^{2} = a^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} - k\lambda^{2} - h\lambda^{4} \text{ or } = b^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} - \frac{M_{3}}{\lambda_{3}^{2} - \lambda^{2}}$$
where $a^{2} = 2.330165$ $\lambda_{2}^{2} = 0.02547414$ $b^{2} = 5.680137$ $M_{1} = 0.01278685$ $k = 0.0009285837$ $M_{3} = 12059.95$ $\lambda_{1}^{2} = 0.0148500$ $k = 0.00000286086$ $\lambda_{3}^{2} = 3600$. (P) $M_{2} = 0.005343924$

TABLE 331. - Change of Index of Refraction for 1° C in Units of the 5th Decimal Place.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
---	---

L Annals of the Astrophysical Observatory of the Smithsonian Institution, Vol. I, 1900.
M Martens, Ann. d. Phys. 6, 1901, 8, 1902.
P Paschen, Wied. Ann. 26, 1908.
Pulfrich, Wied. Ann. 45, 1892.
RN Rubens and Nichols, Wied. Ann. 60, 1897.

Mi Micheli, Ann. d. Phys. 7, 1902.

TABLE 332. - Index of Refraction of Svivite (Potassium Chloride) in Air.

λ(μ).	н	Obser- ver.	λ(μ).	n.	Observer.	λ(μ).	n.	Observer.
0.185409 .200090 .21946 .257317 .281640 .308227 .358702 .394415 .467832 .508606 .58933 .67082 .78576 .88398 .98220	1.82710 1.71870 1.64745 1.58125 1.55836 1.54136 1.52115 1.51219 1.50044 1.49620 1.48669 1.483282 1.481422 1.48084	M	1.1786 1.7680 2.35728 2.9466 3.5359 4.7146 5.3039 5.8932	I.478311 I.47824 I.475890 I.47589 I.474751 I.473834 I.473949 I.473049 I.471122 I.471129 I.470011 I.470011 I.468804 I.46880	P W P W P W P W P W P	8.2505 8.8398 10.0184 11.786 12.965 14.144 15.912 17.680 20.60 22.5	1.462726 1.46276 1.460858 1.46092 1.45672 1.45673 1.44941 1.44346 1.44345 1.43722 1.42617 1.41403 1.3882 1.369	P W P W P W P W P W RN

W Weller, see Paschen's article. Other references as under Table 331, above.

TABLES 333-336. INDEX OF REFRACTION.

TABLE 333. - Index of Refraction of Fluorite in Air.

λ (μ)	н	Obser- ver	λ (μ)	п	Obser- ver	λ (μ)	n	Obser- ver.
0.1856 .19881 .21441 .22645 .25713 .32525 .34555 .39681 .48607 .58930 .65618 .68671 .71836 .76040 .8840 1.1786 1.3756	1.50940 1.49629 1.48462 1.47762 1.46476 1.44987 1.44697 1.44214 1.43713 1.43393 1.43257 1.43200 1.43157 1.43101 1.42982 1.42787 1.42690 1.42641	S. " " " " " " " " " " " " " " " " " " "	1.4733 1.5715 1.6206 1.7680 1.9153 1.9644 2.0626 2.1608 2.2100 2.3573 2.5537 2.6519 2.7502 2.9466 3.1430 3.2413 3.5359 3.8306	I.4264I I.42596 I.42582 I.42507 I.42437 I.42433 I.42359 I.42288 I.42199 I.42088 I.42016 I.41971 I.41826 I.41707 I.41612 I.41379 I.41120	P	4.1252 4.4199 4.7146 5.0092 5.3036 5.5985 5.8932 6.4825 7.0718 7.6612 8.2505 8.8398 9.4291 51.2 61.1	1.40855 1.40559 1.40238 1.39898 1.39529 1.39142 1.38719 1.36805 1.35680 1.34444 1.33079 1.31612 3.47 2.66 2.63	P

$$n^{2} = a^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} - \epsilon \lambda^{2} - f \lambda^{4} \text{ or } = b^{2} + \frac{M_{2}}{\lambda^{2} - \lambda^{2}} + \frac{M_{3}}{\lambda^{2} - \lambda_{r}^{2}}$$
where $a^{2} = 2.03882$ $f = 0.00002916$ $M_{3} = 5114.65$
 $M_{1} = 0.0062183$ $b^{2} = 6.09651$ $\lambda_{r}^{2} = 1260.56$
 $\lambda_{1}^{2} = 0.007706$ $M_{2} = 0.0061386$ $\lambda_{v} = 0.0940\mu$
 $\epsilon = 0.0031999$ $\lambda_{v}^{2} = 0.00884$ $\lambda_{r} = 35.5\mu$ (P)

TABLE 334. - Change of Index of Refraction for 1°C in Units of the 5th Decimal Place. C line, -1.220; D, -1.206; F, -1.170; G, -1.142. (Pl)

TABLE 335. - Index of Refraction of Iceland Spar (CaCO3) in Air.

λ (μ)	no	n_{θ}	Observer.	λ (μ)	n_0	n_{θ}	Observer.	λ (μ)	20	228	Observer.
0.198 .200 .208 .226 .298 .340 .361 .410 .434	1.9028 1.8673 1.8130 1.7230 1.7008 1.6932 1.6802 1.6755 1.6678	1.5780 1.5765 1.5664 1.5492 1.5151 1.5056 1.5022 1.4964 1.4943 1.4907	M " " — — — — — — — — — — — — — — — — — —	0.508 ·533 ·589 ·643 ·656 ·670 ·760 ·768 ·801 ·905	1.6653 1.6628 1.6584 1.6550 1.6544 1.6537 1.6500 1.6497 1.6487 1.6458	1.4896 1.4884 1.4864 1.4849 1.4846 1.4843 1.4826 1.4826 1.4822 1.4810	M " " " — M C	0.991 1.229 1.307 1.497 1.682 1.749 1.849 1.908 2.172 2.324	1.6438 1.6393 1.6379 1.6346 1.6313 - 1.6280	I.4802 I.4787 I.4783 I.4774 	C

C Carvallo, J. de Phys. (3), 9, 1900.

M Martens, Ann. der Phys. (4) 6, 1901, 8, 1902.

P Paschen, Wied. Ann. 56, 1895.

Pl Pulfrich, Wied. Ann 45, 1892. RA Rubens-Aschkinass, Wied. Ann. 67, 1899. S Starke, Wied. Ann. 60, 1897.

TABLE 336. - Index of Refraction of Nitroso-dimethyl-aniline. (Wood.)

λ	72 A	n	λ	22	λ	72	λ	22
.500 2. .506 2. .508 2.	0.525 114 .536 074 .546 025 .557 985 .569	1.945 1.909 1.879 1.857 1.834	0.584 .602 .611 .620 .627	1.815 1.796 1.783 1.778 1.769	o .636 .647 .659 .669	1.647 1.758 1.750 1.743 1.723	0.713 .730 .749 .763	1.718 1.713 1.709 1.697

Nitroso-dimethyl-aniline has enormous dispersion in yellow and green, metallic absorption in violet. See Wood. Phil. Mag. 1903.

TABLES 337-338. INDEX OF REFRACTION.

TABLE 337. - Index of Refraction of Quartz (SiO2).

Wave- length.	Index Ordinary Ray.	Index Extraordinary Ray.	Tempera- ture ° C.	Wave- length.	Index Ordinary Ray.	Index Extraordinary Ray.	Tempera- ture ° C.
μ 0.185 .193 .198 .206 .214 .219 .231 .257 .274 .340 .396 .410 .486 0.589	1.67 582 .65997 .65999 .64038 .63041 .62494 .61399 .59622 .587 52 .56748 .55815 .55650 .54968	1.68999 .67343 .66397 .65300 .64264 .63698 .62560 .60712 .59811 .57738 .56771 .56600 .55896	18	μ 0.656 .686 .760 1.160 .969 2.327 .84 3.18 .63 .96 4.20 5.0 6.45	1.54189 .54099 .53917 .5329 .5216 .5156 .5039 .4944 .4799 .4679 .4569 .417	1.55091 .54998 .54811 }Rubens.	18 " " " " " " " " " " " " " " " " " " "

Except Rubens' values, - means from various authorities.

TABLE 338. - Indices of Refraction for various Alums.*

		0	1							
R	sity.	p. C.º		I	ndex of rei	raction for	the Fraun	hofer lines		
	Density.	Temp.	a	В	О	D	E	b	F	G
			Alu	minium Al	ums. RA	(SO ₄) ₂ +12	H ₂ O.†			
Na NH ₃ (CH ₃) K Rb Cs NH ₄ Tl	1.667 1.568 1.735 1.852 1.961 1.631 2.329	17-28 7-17 14-15 7-21 15-25 15-20 10-23	1.43492 .45013 .45226 .45232 .45437 .45509 .49226	1.43563 .45062 .453°3 .45328 .45517 .45599 .49317	1.43653 .45177 .45398 .45417 .45618 .45693 .49443	I.43884 .45410 .45645 .45660 .45856 .45939 .49748	1.44185 .45691 .45934 .45955 .46141 .46234 .50128	I.4423I .45749 .45996 .45999 .46203 .46288 .50209	1.44412 .45941 .46181 .46192 .46386 .46481	1.44804 .46363 .46609 .46618 .46821 .46923 .51076
			Ch	rome Alun	ns. RCr(S	6O ₄) ₂ +12H	20.†			
Cs K Rb NH ₄ Tl	2.043 1.817 1.946 1.719 2.386	6-12 6-17 12-17 7-18 9-25	1.47627 .47642 .47660 .47911 .51692	1.47732 .47738 .47756 .48014 .51798	1.47836 .47865 .47868 .48125 .51923	1.48100 .48137 .48151 .48418 .52280	1.48434 .48459 .48486 .48744 .52704	1.48491 .48513 .48522 .48794 .52787	1.48723 .48753 .48775 .49040 .53082	1.49280 .49309 .49323 .49594 .53808
	Iron Alums. RFe(SO ₄) ₂ +12H ₂ O.†									
K Rb Cs NH ₄ Tl	1.806 1.916 2.061 1.713 2.385	7-11 7-20 20-24 7-20 15-17	1.47639 .47700 .47825 .47927 .51674	1.47706 .47770 .47921 .48029 .51790	1.47837 .47894 .48042 .48150 .51943	1.48169 .48234 .48378 .48482 .52365	1.48580 .48654 .48797 .48921 .52859	1.48670 .48712 .48867 .48993 .52946	1.48939 .49003 .49136 .49286 .53284	1.49605 .49700 .49838 .49980 .54112

^{*} According to the experiments of Soret (Arch. d. Sc. Phys. Nat. Genève, 1884, 1888, and Comptes Rendus, 1885). † R stands for the different bases given in the first column.

For other alums see reference on Landolt-Börnstein-Roth Tabellen.

INDEX OF REFRACTION.

Selected Monorefringent or Isotropic Minerals.

The values are for the sodium D line unless otherwise stated and are arranged in the order of increasing indices. Selected by Dr. Edgar T. Wherry from a private compilation of Dr. E. S. Larsen of the U. S. Geological Survey.

Mineral.	Formula.	Index of refraction, $\lambda = 0.589\mu$.
Villiaumite	NaF	1.328
Cryolithionite	2NaF 2LiF 2AlFs	1.339
Onal	3NaF.3LiF.2AlF8 SiO2.nH2O	1.406-1.440
Opal	CaF ₂	I.434
Alum	KaO AlaOa ASOa AAHaO	1.456
Sodalite	3Na ₂ O.3Al ₂ O ₃ .6SiO ₂ .2NaCl	1.483
Cristobalite	3Na ₂ O. ₃ Al ₂ O ₃ .6SiO ₂ .2NaCl SiO ₂	1.486
Analcite	Na ₂ O.Al ₂ O _{3.4} S ₁ O _{2.2} H ₂ O	1.487
Sylvite	KCl	1.490
Noselite	5 Na ₂ O.3 Al ₂ O ₃ .6SiO ₂ .2SO ₈	1.495
Hauynite	Like preceding + CaO	1.496
Lazurite	4 Na ₂ O.3 Al ₂ O ₃ .65 IO ₂ . Na ₂ S ₆	1.500 ± 1.500
Pollucite	4Na ₂ O. ₃ Al ₂ O ₃ .6SiO ₂ .Na ₂ S ₆ K ₂ O.Al ₂ O ₃ .4SiO ₂ 2Cs ₂ O.2Al ₂ O ₃ .9SiO ₂ .H ₂ O	1.525
Halite	NaCl	1.544
Bauxite	Al ₂ O ₃ .nH ₂ O	I.570 =
Bauxite Pharmacosiderite	3Fe ₂ O _{8.2} As ₂ O _{5.3} K ₂ O.5H ₂ O	1.676
Spinel	3Fe ₂ O _{3.2} As ₂ O _{5.3} K ₂ O.5H ₂ O MgO.Al ₂ O ₃	I.723 =
Berzeliite	3(Ca, Mg, Mn)O.As ₂ O ₅ MgO	1.727
Periclasite		1.736
Grossularite	3CaO.Al ₂ O ₃ .3SiO ₂	1.736
Helvite	3(Mn, Fe)O. ₃ BeO. ₃ SiO ₂ .MnS 3MgO.Al ₂ O ₃ . ₃ SiO ₂ As ₂ O ₃	1.739
Pyrope	3MgO.Al2O3.35102	1.745
Arsenolite	3CaO.(Al, Fe) ₂ O ₃ .3SiO ₂	1.755 1.763
Pleonaste	(Mg Fe)O AloO	1.770 ±
Almandite	(Mg, Fe)O.Al ₂ O ₈ 3FeO.Al ₂ O ₈ .3SiO ₂	1.778
Hercynite	FeO.Al ₂ O ₃	1.800 ±
Gahnite	ZnO.Al ₂ O ₃	1.800 ±
Spessartite	3MnO.Al ₂ O _{3.3} SiO ₂	1.811
Lime	CaO	1.830
Uvarovite	3CaO.Cr2O3.3SiO2	1.838
Andradite	3CaO.Fe ₂ O _{8.3} SiO ₂	1.857
Microlite	6CaO.3Ta ₂ O ₅ .CbOF ₃	1.925
Nantokite Pyrochlore	CuCl Contains CaO, Ce ₂ O ₃ , TiO ₂ , etc.	1.930
Schorlomite	3CaO.(Fe, Ti)2O3.3(Si, Ti)O2	1.980
Percylite	PbO.CuCl ₂ .H ₂ O	2.050
Picotite	(Mg, Fe)O.(Al, Cr) ₂ O ₃	2.050 =
Eulytite	(Mg, Fe)O.(Al, Cr) ₂ O ₃ ₂ Bi ₂ O ₃ . ₃ SiO ₂	2.050
Cerargyrite	AgCl	2.061
Mosesite	Contains Hg, NH4, Cl, etc.	2.065
Chromite	FeO.Cr ₂ O ₃	2.070
Senarmontite	Sb ₂ O ₃	2.087
Embolite	Ag(Br, Cl) MnO	2.150 ± 2.160
Bunsenite	NiO	2.18 (Li light)
Lewisite		2.200
Miersite	5CaO.2TiO2.3Sb2O5 CuI.4AgI	2,200
Bromyrite	AgBr	2.253
Dysanalite	Contains CaO, FeO, TiO2, etc.	2.330
Marshite	CuI	2.346
Franklinite	(Zn, Fe, Mn)O.(Fe, Mn) ₂ O ₃	2.360 (Li light)
Sphalerite	(Zn, Fe)S	2.370-2.470
Perovskite	CaO.TiO ₂	2.380
Diamond Eglestonite	HgO.2HgCl	2.419 2.400 (Li light)
Hauerite	MnS ₂	2.600 (Li light)
Alabandite	MnS	2.490 (Li light) 2.690 (Li light) 2.700 (Li light)
Cuprite	Cu ₂ O	2.849

INDEX OF REFRACTION.

Miscellaneous Monorefringent or Isotropic Solids.

Substance.	Spectrum line.	Index of refraction.	Authority.
Albite glass Amber Ammonium chloride Anorthite glass Asphalt Bell metal Boric Acid, melted """ Camphor. Canada balsam Ebonite Fuchsin """ Gelatin, Nelson no. 1 "various. Gum Arabic "" Obsidian Phosphorus. Pitch Potassium bromide "chlorstannate iodide Resins: Aloes. Canada balsam Colophony Copal Mastic. Peru balsam Selenium Sodium chlorate. Strontium nitrate.	DD	1.4890 1.546 1.6422 1.5755 1.625 1.625 1.052 1.4623 1.4623 1.4624 1.4630 1.4702 1.532 1.5462 1.530 1.06 2.03 2.19 2.33 1.97 1.32 1.530 1.516 1.530 1.514 1.482-1.496 2.1442 1.531 1.5593 1.6574 1.6666 1.619 1.528 1.528 1.528 1.535 1.593 2.61 2.68 2.73 2.93 2.93 1.5150 1.51667	Larsen, 1900 Mühlheim Grailich Larsen, 1900 E. L. Nichols Beer Bedson and Williams """" """" """"" Kohlrausch Mühlheim Mean Ayrton, Perry Mean """ Jones, 1911 Jamin Wollaston Various Gladstone, Dale Wollaston Topsče, Christiansen """ Jamin Wollaston Jamin Wollaston Jamin Wollaston Jamin Wollaston Jamin Wollaston Jamin Wollaston Baden Powell Wood "" Dussaud Fock

TABLE 341.

INDEX OF REFRACTION.

Selected Uniaxial Minerals.

The values are arranged in the order of increasing indices for the ordinary ray and are for the sodium D line unless otherwise indicated. Selected by Dr. Edgar T. Wherry from a private compilation of Dr. Esper S. Larsen of the U. S. Geological Survey.

		Index	of refraction.
Mineral.	Formula.	Ordinary ray.	Extraordinary ray.
	(a) Uniaxial Positive Minerals.		
Ice	H ₂ O	1.300	1.313
Sellaite	MgF ₂ CuO.SiO _{2.2} H ₂ O	1.378 1.460 ±	1.390
Chrysocolla	2CaO AleOs sSiOs 6HeO	1.475	1.570 ==
Chabazite	2CaO. Al ₂ O ₃ .5SiO ₂ .6H ₂ O (Ca, Na ₂)O. Al ₂ O ₃ .4SiO ₂ .6H ₂ O 2KCl.FeCl ₂ .2H ₂ O	1.480 ±	1.482 ±
Douglasite	2KCl.FeCl _{2.2} H ₂ O	1.488	1.500
Hydronephelite	2Na ₂ O. ₃ Al ₂ O ₃ .6SiO ₂ .7H ₂ O	I.490	1.502
Apophyllite	K ₂ O.8CaO.16SiO ₂ .16H ₂ O SiO ₂	I.535 =	1.537 =
QuartzCoquimbite	Fe ₂ O ₃ . 3SO ₃ . 9H ₂ O	I.544 I.550	1.553
Brucite	MgO.H ₂ O	1.550	1.580
Alunite	K ₂ O. ₃ Al ₂ O ₃ . ₄ SO ₃ . ₆ H ₂ O	1.572	1.592
Penninite	5(Mg, Fe)O.Al ₂ O ₃ .3SiO ₂ .4H ₂ O	1.576	1.579
Cacoxenite	2Fe ₂ O ₃ .P ₂ O ₅ .12H ₂ O	1.582	1.645
Eudialite	6Na ₂ O.6(Ca, Fe)O. ₂ o(Si, Zr)O ₂ .NaCl CuO.SiO ₂ .H ₂ O	1.666	1.611
Phenacite	2BeO.SiO ₂ .H ₂ O	1.654	1.707
Parisite	2CeOF.CaO.3CO2	1.676	1.757
Willemite	2ZnO.SiO ₂	1.694	1.723
Vesuvianite	2(Ca, Mn, Fe)O.(Al, Fe)(OH, F)O.2SiO2	1.716 ±	1.718 =
Xenotime	Y ₂ O ₃ .P ₂ O ₅	1.721	1.816
Connellite	20CuO.SO ₃ .2CuCl ₂ .20H ₂ O BaO.TiO ₂ .3SiO ₂	1.724	1.746
Benitoite	6PbO.4(Ca, Mn)O.6SiO ₂ .H ₂ O	I.757 I.QIO	1.804
Scheelite	CaO.WO ₃	1.018	I. 934
Zircon	ZrO ₂ .SiO ₂	I.923 ±	I.068 ±
Powellite	CaO.MoO ₃	1.967	1.978
Calomel	HgCl	I.973	2.650
Cassiterite		1.997	2.093
Zincite		2.008	2.029
Penfieldite	PbO.2PbCl2	2.130	2.140
Iodyrite	AgI	2.210	2.220
Tapiolite	FeO.(Ta, Cb) ₂ O ₅	2.270	2.420 (Li light)
Wurtzite	ZnS	2.356	2.378
Derbylite	6FeO.Sb ₂ O ₃ .5TiO ₂ CdS	2.450	2.510 (Li light)
Greenockite		2.506	2.529
Moissanite		2.654	2.903
Cinnabarite	HgS	2.854	3.201
	(b) Uniaxial Negative Minerals.		
Chiolite	2NaF.AlF3	1.349	1.342
Hanksite	11Na ₂ O. ₉ SO ₃ . ₂ CO ₂ .KCl	1.481	1.461
Thaumasite	3CaO.CO ₂ .SiO ₂ .SO ₃ .15H ₂ O 6MgO.Al ₂ O ₃ .CO ₂ .15H ₂ O	1.507	1.468
Hydrotalcite	6MgO.Al ₂ O ₃ .CO ₂ .15H ₂ O 4Na ₂ O.CaO.4Al ₂ O ₃ .2CO ₂ .0SiO ₂ .3H ₂ O	1.512	1.498
Milarite	4Na ₂ O.CaO. ₄ Al ₂ O ₃ .2CO ₂ .9SlO ₂ .3H ₂ O K ₂ O. ₄ CaO. ₂ Al ₂ O ₃ . ₂₄ SiO ₂ .H ₂ O	I.524 I.532	1.496
Kaliophilite	K2O, Al2O3, 2SiO2	1.532	1.529
Mellite	Al ₂ O ₃ .C ₁₂ O ₉ .18H ₂ O	1.539	1.511
Marialite	$Al_2O_3.C_{12}O_9.18H_2O$ "Ma" = $_3Na_2O3Al_2O_3.18SiO_22NaCl$	1.539	1.537
Nephelite	Na ₂ O.Al ₂ O _{3.2} SiO ₂	I.542	1.538

TABLES 341-342.

INDEX OF REFRACTION.

TABLE 341 (Continued). - Selected Uniaxial Minerals.

Mineral.	77	Index of refraction.						
winerai.	Formula.	Ordinary ray.	Extraordinary ray.					
(b) Uniaxial Negative Minerals (continued).								
Wernerite. Beryl. Torbernite Meionite. Meilite. Apatite Calcite Gehlenite Tourmaline Dolomite Magnesite. Pyrochroite Corundum Smithsonite Rhodochrosite Jarosite. Siderite. Pyromorphite Barysilite. Mimetite Matlockite Stolzite Geikielite Vanadinite Wulfenite Octahedrite Massicotite Tourmaline Dolomite Mimetite Matlockite Stolzite Geikielite Vanadinite Wulfenite Octahedrite Massicotite Proustite Prynargyrite Hematite Hematite	Me ₁ Ma ₁ ± 3BeO. Al ₂ O ₃ .6SiO ₂ CuO. 2UO ₃ .P ₂ O ₅ .8H ₂ O "Me" = 4CaO.;3Al ₂ O ₃ .6SiO ₂ Contains Na ₂ O, CaO. Al ₂ O ₃ , SiO ₂ , etc. 9CaO.;3P ₂ O ₅ .Ca(F, Cl) ₂ CaO. CO ₂ CaO. Al ₂ O ₃ .SiO ₂ Contains Na ₂ O, FeO, Al ₂ O ₃ , B ₂ O ₃ , SiO ₂ , etc. CaO.MgO.2CO ₂ MgO.CO ₂ MgO.CO ₂ MnO.HgO Al ₂ O ₃ ZnO.CO ₂ K ₂ O.;3Fe ₂ O ₃ .4SO ₃ .6H ₂ O FeO.CO ₂ 9PbO.;3P ₂ O ₅ .PbCl ₂ 3PbO.2SiO ₂ 9PbO.;3P ₂ O ₅ .PbCl ₂ 9PbO.;PbCl ₂ PbO.WO ₃ (Mg, Fe)O.TiO ₂ 9PbO.3√3O ₅ .PbCl ₂ PbO.WO ₃ Cg.PbO.MoO ₂ TiO ₂ PbO MoO ₃ TiO ₂ PbO 3Ag ₂ S.As ₂ S ₃ 3Ag ₂ S.As ₂ S ₃ 3Ag ₂ S.S.Sp ₂ S ₃ Fe ₂ O ₃	1.578 ± 1.581 ± 1.592 1.597 1.634 1.658 1.669 ± 1.682 1.700 1.723 1.768 1.818 1.820 1.875 2.050 2.070 2.135 2.150 2.269 2.310 2.354 2.402 2.554 2.079 3.084 3.220	1.551 1.575 ± 1.575 ± 1.580 1.629 1.631 1.486 1.638 ± 1.503 1.509 1.681 1.760 1.760 1.715 1.635 2.042 2.050 2.118 2.040 2.182 2.050 2.118 2.040 2.182 2.050 2.118 2.040 2.188 2.040					

TABLE 342. - Miscellaneous Uniaxial Crystals.

	Spectrum	Index of			
Crystal.	line.	Ordinary ray.	Extraordinary ray.	Authority.	
Ammonium arseniate NH4H2ASO4. Benzil (C6H5CO)2. Corundum, AlsO3, sapphire, ruby. Lice at -8° C. Ivory. Potassium arseniate KH2As2O4. """ Sodium arseniate NasASO4.12H2O "nitrate NANO3. "phosphate NasPO4.12H2O Nickel sulphate NiSO4.6H2O. """ Strychnine sulphate.		1.5766 1.0588 1.769 1.308 1.297 1.5762 1.5674 1.5632 1.457 1.586 1.447 1.5173 1.5109 1.5078	I. 5217 I. 6784 I. 760 I. 313 I. 304 I. 541 I. 5252 I. 5179 I. 5146 I. 466 I. 453 I. 4930 I. 4930 I. 4873 I. 4873 I. 4844 I. 599	T. and C.* Mean Osann Meyer Kohlrausch T. and C. "" Mean " T. and C. "" Mean " Martin	

^{*} Topsöe and Christiansen.

TABLE 343.

INDEX OF REFRACTION.

Selected Biaxial Minerals.

The values are arranged in the order of increasing β index of refraction and are for the sodium D line except where noted. Selected by Dr. Edgar T. Wherry from private compilation of Dr. Esper S. Larsen of the U. S. Geological Survey.

	Formula.	Index	of refracti	on.						
Mineral.	rormuia.	n_{α}	$n\beta$	n_{γ}						
(a) BIAXIAL POSITIVE MINERALS.										
Stercorite	Na ₂ O. (NH ₄) ₂ O. P ₂ O ₅ . 9H ₂ O	1.439	1.441	1.460						
Aluminite	Al ₂ O ₃ .SO ₃ .9H ₂ O	1.459	1.464	1.470						
Tridymite	SiO ₂	1.469	I.470	I.473						
Thenardite	Na ₂ O.SO ₈	1.464	I.474	1.485						
Carnallite	KCl.MgCl ₂ .6H ₂ O	1.466	I.475	1.494						
Alunogenite	Al ₂ O ₃ .3SO ₃ .16H ₂ O	1.474	1.476	1.483						
Melanterite	FeO.SO _{3.7} H ₂ O	1.471	1.478	1.486						
Natrolite	Na ₂ O.Al ₂ O _{3.3} SiO _{2.2} H ₂ O	1.480	1.482	1.493						
Arcanite	K ₂ O.SO ₃ (NH ₄) ₂ O. ₂ MgO.P ₂ O ₅ , ₁₂ H ₂ O	1.494	I.495 I.406	1.497						
Struvite	CaO.Al ₂ O ₃ .6SiO ₂ .3H ₂ O	1.495	1.490	1.50						
Heulandite	(Na ₂ , Ca)O, Al ₂ O ₃ , 2SiO ₂ , 3H ₂ O	1.490	1.499	1.50						
Harmotomite	(K ₂ , Ba)O.Al ₂ O ₃ .5SiO ₂ .5H ₂ O	1.503	1.505	I.50						
Petalite	Li ₂ O.Al ₂ O ₃ .8SiO ₂	1.504	1.510	1.51						
Monetite	2CaO.P2O5.H2O	1.515	1.518	I.52						
Newbervite	2MgO.P2O5.7H2O	1.514	1.510	I.53						
Gypsum	CaO.SO _{3.2} H ₂ O	1.520	1.523	I.530						
Mascagnite	(NH ₄) ₂ O.SO ₃	1.521	I.523	I.53						
Albite	"Ab" = Na2O.Al2O3.6SiO2	1.525	1.529	I.53						
Hydromagnesite	4MgO.3CO _{2.4} H ₂ O	1.527	1.530	I.54						
Wavellite	3Al ₂ O ₃ . 2P ₂ O ₅ . 12(H ₂ O, 2HF)	1.525	I.534	I.55						
Kieserite	MgO.SO ₃ .H ₂ O	1.523	I.535	1.58						
Copiapite	2Fe ₂ O ₃ .5SO ₃ .18H ₂ O	I.530	I.543	1.59						
Whewellite	CaO. C ₂ O ₃ . H ₂ O	1.491	1.555	1.65						
Variscite	Al ₂ O ₃ .P ₂ O ₆ .4H ₂ O Ab ₂ An ₃	1.551	1.558	1.58						
Labradorite	Al ₂ O ₃ .3H ₂ O	1.559	1.563 1.566	1.56						
Gibbsite	3MgO.P ₂ O ₅ .MgF ₂	1.560	1.570	1.58						
Wagnerite	CaO.SO ₃	1.571	1.576	1.61						
Colemanite	2CaO.3B ₂ O ₃ .5H ₂ O	1.586	1.502	1.61						
Fremontite	Na ₂ O.Al ₂ O ₃ .P ₂ O ₅ .(H ₂ O, ₂ HF)	1.504	1.603	1.61						
Vivianite	3FeO.P ₂ O ₅ .8H ₂ O	1.570	1.603	1.63						
Pectolite	Na ₂ O. ₄ CaO. ₆ SiO ₂ .H ₂ O	1.505	1.606	1.63						
Calamine	2ZnO.SiO ₂ .H ₂ O	1.614	1.617	1.63						
Chondrodite	4MgO.2SiO2.Mg(F, OH)2	1.600	1.619	1.63						
Turquois	CuO.3Al ₂ O ₃ .2P ₂ O ₅ .9H ₂ O	1.610	1.620	1.65						
Topaz	2AlOF.SiO2	1.619	1.620	1.62						
Celestite	SrO.SO ₃	1.622	1.624	1.63						
Prehnite	2CaO.Al ₂ O ₃ .3SiO ₂ .H ₂ O	1.616	1.626	1.64						
Barite	BaO.SO ₃	1.636	1.637	1.64						
Anthophyllite	MgO.SiO ₂	1.633	1.642	1.65						
Sillimanite	Al ₂ O ₃ .SiO ₂	1.638	1.642	1.65						
Forsterite	2MgO.SiO2 MgO.SiO2	1.635	1.651	1.65						
Enstatite	2BeO.Al ₂ O ₃ .2SiO ₂ .H ₂ O	1.050	1.653	1.05						
Triplite	2 MnO PoO: MnFa	1.052	1.055	1.67						
Spodumenite	3MnO.P ₂ O ₅ .MnF ₂ Li ₂ O.Al ₂ O ₃ .4SiO ₂	1.660	T. 666	1.67						
Diopside	CaO.MgO.2SiO2	1.664	1.671	1.60						
Olivine	2(Mg, Fe)O.SiO ₂	1.662	1.680	1.600						
Triphylite	Li ₂ O. ₂ (Fe, Mn)O.P ₂ O ₅	1.688	1.688	1.602						

Selected Biaxial Minerals.

Mineral.	Formula.	I	ndex of refr	action.
mineral.	Toma.	na	n _β	ny
(a) I	BIAXIAL POSITIVE MINERALS (continu	ued).		
Zoisite	4CaO.3Al ₂ O ₃ .6SiO ₂ .H ₂ O	I.700	1.702	1.706
Strengite	Fe ₂ O ₃ .P ₂ O _{5.4} H ₂ O	1.710	1.710	1.745
Diasporite	Al ₂ O ₃ . H ₂ O	1.702	I.722	1.750
Staurolite	2FeO.5Al ₂ O _{3.4} SiO ₂ .H ₂ O	1.736	1.741	1.746
Chrysoberyl	BeO.Al ₂ O ₃	1.747	1.748	1.757
Azurite	3CuO.2CO2.H2O Fe ₂ O ₃ .As ₂ O ₅ .4H ₂ O	1.730	1.758	1.838
Scorodite	Fe ₂ O ₃ .As ₂ O ₅ .4H ₂ O	1.765	1.774	1.797
Olivenite	4CuO.As ₂ O ₅ .H ₂ O	1.772	1.810	1.863
Anglesite	PbO.SO ₃	1.877	1.882	1.894
Titanite	CaO.TiO ₂ .SiO ₂	1.900	1.907	2.034
Claudetite	AS2O2	1.871	1.920	2.010
Sulfur	DLCI	1.950	2.043	2.240
Cotunnite	PbCl ₂	2.200	2.217	2.260
Huebnerite	MnO.WO ₃ Mn ₂ O ₃ .H ₂ O	2.170	2.220	2.320
Manganite	Mn ₂ O ₃ .H ₂ O PbO.WO ₃	2.240	2.240	2.530 (Li)
Raspite	2PbO.PbCl ₂	2.270	2.270	2.300
Tantalite	(Fe, Mn)O.Ta ₂ O ₅	2.240	2.270	2.310
Wolframite	(Fe, Mn)O.1 a205	2.310	2.320	2.430 (Li) 2.460 (Li)
Crocoite	(Fe, Mn)O.WO ₃ PbO.CrO ₃	2.310	2.370	2.400 (Li)
Pseudobrookite	2Fe ₂ O ₃ .3TiO ₂	2.380	2.370	2.420 (Li)
Stibiotantalite		2.374	2.404	2.420 (L1)
Montroydite	HgO	2.370	2.404	2.457 2.650 (Li)
Brookite	TiO ₂	2.583	2.586	2.74I
Lithargite		2.510	2.610	2.710
	1 200	4.520	2.010	2.720
	(b) BIAXIAL NEGATIVE MINERALS.	3.325	3.010	2.720
Mirabilita	(b) Biaxial Negative Minerals.			
Mirabilite	(b) BIAXIAL NEGATIVE MINERALS. Na ₂ O.SO ₃ .ToH ₂ O	1.394	1.396	1.398
Thomsenolite	(b) BIAXIAL NEGATIVE MINERALS. Na ₂ O.SO ₃ .10H ₂ O NaF.CaF ₂ .AlF ₃ .H ₂ O	I.394 I.407	1.396	1.398
Thomsenolite	(b) BIAXIAL NEGATIVE MINERALS. Na ₂ O.SO ₃ .10H ₂ O NaF.CaF ₂ .AlF ₃ .H ₂ O Na ₂ O.CO ₂ .10H ₂ O	1.394 1.407 1.405	1.396 1.414 1.425	1.398 1.415 1.440
Thomsenolite	(b) BIAXIAL NEGATIVE MINERALS. Na ₂ O.SO ₃ .10H ₂ O NaF.CaF ₂ .AlF ₃ .H ₂ O	I.394 I.407	1.396	1.398
Thomsenolite	(b) BIAXIAL NEGATIVE MINERALS. Na ₂ O.SO ₃ .ToH ₂ O Na ₄ F.CaF ₂ .AlF ₃ .H ₂ O Na ₂ O.CO ₂ .1oH ₂ O K ₂ O.Al ₂ O ₃ .4SO ₃ .24H ₂ O	I.394 I.407 I.405 I.430	1.396 1.414 1.425 1.452	1.398 1.415 1.440 1.458
Thomsenolite	(b) BIAXIAL NEGATIVE MINERALS. Na2O.SO _{3-TOH2O} NaF.CaF ₂₋ AlF ₃ .H _{2O} Na2O.CO _{2-TOH2O} KaO.Al ₂ O ₃₋₂ Al ₂ O ₃₋₂ Al ₂ O MgO.SO _{3-T} H ₂ O B ₂ O _{3-H2} O Na ₂ O ₋ 2B ₂ O _{3-TOH2} O	1.394 1.407 1.405 1.430 1.433	1.396 1.414 1.425 1.452 1.455	1.398 1.415 1.440 1.458 1.461
Thomsenolite. Natron Kalinite Epsomite. Sassolite Borax Goslarite.	(b) BIAXIAL NEGATIVE MINERALS. Na ₂ O.SO ₃ .10H ₂ O NaF.CaF ₂ .AlF ₃ .H ₂ O Na ₂ O.CO ₂ .10H ₂ O K ₂ O.Al ₂ O ₃ .4SO ₃ .24H ₂ O MgO.SO ₃ .7H ₂ O B ₂ O ₃ .H ₂ O Na ₂ O ₃ .2B ₂ O ₃ .10H ₂ O ZnO.SO ₃ .7H ₂ O	1.394 1.407 1.405 1.430 1.433 1.340 1.447	1.396 1.414 1.425 1.452 1.455 1.456 1.470	1.398 1.415 1.445 1.458 1.461 1.459 1.472 1.484
Thomsenolite. Natron Kalinite Epsomite Sassolite. Borax	(b) BIAXIAL NEGATIVE MINERALS. Na ₂ O.SO ₃ .ToH ₂ O Na ₄ F.CaF ₂ .AlF ₃ .H ₂ O Na ₂ O.CO ₂ .ToH ₂ O K ₂ O.Al ₂ O ₃ .4SO ₃ .24H ₃ O MgO.SO ₃ .7H ₂ O B ₂ O ₃ .H ₂ O Na ₂ O.2B ₂ O ₃ .ToH ₂ O ZnO.SO ₃ .7H ₂ O MgO.Al ₂ O ₃ .25O ₃ .22H ₂ O	1.394 1.407 1.405 1.430 1.433 1.340 1.447 1.457	1.396 1.414 1.425 1.452 1.455 1.456 1.470 1.480 1.480	1.398 1.415 1.440 1.458 1.461 1.459 1.472 1.484 1.483
Thomsenolite. Natron Kalinite Epsomite Sassolite Borax Goslarite. Pickeringite Bloedite	(b) BIAXIAL NEGATIVE MINERALS. Na ₂ O.SO ₃ .10H ₂ O NaF.CaF ₂ .AlF ₃ .H ₂ O Na ₂ O.CO ₂ .10H ₂ O K ₃ O.Al ₂ O ₃ .45O ₃ .24H ₂ O MgO.SO ₃ .7H ₂ O B ₂ O ₃ .H ₂ O D ₃ O ₃ .H ₂ O ₃ .10H ₂ O ZnO.SO ₃ .7H ₂ O MgO.Al ₂ O ₃ .4SO ₃ .22H ₂ O Na ₂ O.MgO.Al ₂ O ₃ .4D ₃ O ₃ .4H ₃ O	1.394 1.407 1.405 1.430 1.433 1.340 1.447 1.457 1.476	1.396 1.414 1.425 1.452 1.455 1.456 1.470 1.480 1.488	1.398 1.415 1.440 1.458 1.461 1.459 1.472 1.484 1.483
Thomsenolite. Natron Kalinite Epsomite Sassolite Borax Goslarite. Pickeringite Bloedite Trona.	(b) BIAXIAL NEGATIVE MINERALS. Na ₂ O.SO ₃ .10H ₂ O NaF.CaF ₂ .AlF ₃ .H ₂ O Na ₂ O.CO ₂ .10H ₂ O K ₃ O.Al ₂ O ₃ .45O ₃ .24H ₂ O MgO.SO ₃ .7H ₂ O B ₂ O ₃ .H ₂ O D ₃ O ₃ .H ₂ O ₃ .10H ₂ O ZnO.SO ₃ .7H ₂ O MgO.Al ₂ O ₃ .4SO ₃ .22H ₂ O Na ₂ O.MgO.Al ₂ O ₃ .4D ₃ O ₃ .4H ₃ O	1.394 1.407 1.405 1.430 1.433 1.340 1.447 1.457 1.456 1.410	1.396 1.414 1.425 1.455 1.455 1.470 1.480 1.488 1.492	1.398 1.415 1.440 1.458 1.461 1.459 1.472 1.483 1.489
Thomsenolite. Natron Kalinite Epsomite Sassolite Borax Goslarite Pickeringite Bloedite Trona Thermonatrite	(b) BIAXIAL NEGATIVE MINERALS. Na ₂ O.SO ₃ .10H ₂ O NaF.CaF ₂ .AlF ₃ .H ₂ O Na ₂ O.CO ₂ .10H ₂ O K ₃ O.Al ₂ O ₃ .4SO ₃ .24H ₂ O MgO.SO ₃ .7H ₂ O B ₂ O ₃ .10H ₂ O ZnO.SO ₃ .7H ₂ O MgO.Al ₂ O ₃ .4SO ₃ .22H ₂ O Na ₂ O.MgO.ASO ₃ .7H ₂ O MgO.Al ₂ O ₃ .4SO ₃ .22H ₂ O Na ₂ O.MgO.ASO ₃ .4H ₂ O 3Na ₂ O.MgO.ASO ₃ .4H ₂ O 3Na ₂ O.MgO.ASO ₃ .4H ₂ O 3Na ₂ O.ACO ₂ .5H ₂ O	1.394 1.407 1.405 1.430 1.433 1.340 1.447 1.457 1.476 1.486 1.410	1.396 1.414 1.425 1.452 1.455 1.456 1.470 1.480 1.488 1.492 1.492	1.398 1.415 1.440 1.458 1.461 1.459 1.472 1.484 1.483 1.489 1.542
Thomsenolite. Natron Kalinite Epsomite Sassolite Borax Goslarite Pickeringite Bloedite Trona. Thermonatrite. Stilbite	(b) BIAXIAL NEGATIVE MINERALS. Na ₂ O.SO ₃ .10H ₂ O NaF.CaF ₂ .AlF ₃ .H ₂ O Na ₂ O.CO ₂ .10H ₂ O K ₃ O.Al ₂ O ₃ .4SO ₃ .24H ₂ O MgO.SO ₃ .7H ₂ O B ₂ O ₃ .10H ₂ O ZnO.SO ₃ .7H ₂ O MgO.Al ₂ O ₃ .4SO ₃ .22H ₂ O Na ₂ O.MgO.ASO ₃ .7H ₂ O MgO.Al ₂ O ₃ .4SO ₃ .22H ₂ O Na ₂ O.MgO.ASO ₃ .4H ₂ O 3Na ₂ O.MgO.ASO ₃ .4H ₂ O 3Na ₂ O.MgO.ASO ₃ .4H ₂ O 3Na ₂ O.ACO ₂ .5H ₂ O	1.394 1.407 1.405 1.435 1.433 1.340 1.447 1.457 1.476 1.486 1.410	1.396 1.414 1.425 1.455 1.455 1.470 1.480 1.480 1.488 1.492 1.495 1.495	1.398 1.415 1.440 1.458 1.461 1.459 1.472 1.483 1.483 1.489 1.518 1.518
Thomsenolite. Natron Kalinite Epsomite Sassolite Borax Goslarite Pickeringite Bloedite Trona Thermonatrite. Stilbite Niter.	(b) BIAXIAL NEGATIVE MINERALS. Na ₂ O.SO ₃ .toH ₂ O Na ₄ F.CaF ₂ .AlF ₃ .H ₂ O Na ₂ O.CO ₂ .toH ₂ O Ka ₂ O.Al ₂ O ₃ .42O ₃ .24H ₂ O MgO.SO ₃ .7H ₂ O B ₂ O ₃ .H ₂ O D ₃ O ₃ .7H ₂ O MgO.SO ₃ .7H ₂ O MgO.Al ₂ O ₃ .aSO ₃ .22H ₂ O Na ₂ O.Al ₂ O ₃ .aSO ₃ .22H ₂ O Na ₂ O.Al ₂ O ₃ .ASO ₃ .22H ₂ O Na ₂ O.Al ₂ O ₃ .ASO ₃ .22H ₂ O Na ₂ O.Al ₂ O ₃ .ASO ₃ .22H ₂ O Na ₂ O.Al ₂ O ₃ .ASO ₃ .22H ₂ O Na ₂ O.Al ₂ O ₃ .ASO ₃ .22H ₂ O Ca, Na ₂ O.Al ₂ O ₃ .Al ₂ O ₃ .6SiO ₂ .5H ₂ O K ₂ O.N ₃ O ₃ O	1.394 1.407 1.405 1.433 1.340 1.447 1.457 1.476 1.486 1.410 1.420 1.494 1.334	1.396 1.414 1.425 1.452 1.455 1.456 1.470 1.480 1.488 1.492 1.495 1.505	1.398 1.415 1.440 1.458 1.401 1.459 1.472 1.484 1.483 1.489 1.542 1.500 1.500
Thomsenolite. Natron Kalinite Epsomite Sassolite Borax Goslarite Pickeringite Bloedite Trona Thermonatrite Stilbite Niter. Kainite.	(b) BIAXIAL NEGATIVE MINERALS. Na2O.SO3.10H2O NaF.CaF2.AlF3.H2O Na2O.CO2.10H2O K2O.Al2O3.45O3.24H2O MgO.SO3.7H2O B2O3.H2O D3O3.7H2O MgO.SO3.7H2O MgO.SO3.7H2O MgO.Al2O3.4SO3.22H2O Na2O.MgO.SO3.4H4O 3Na2O.4CO2.5H2O Na2O.MgO.SO3.4H4O 3Na2O.CO2.H2O Ca, Na2OAl2O3.6SiO2.5H2O K2O.N2O5 MgO.SO3.6Cl.3H2O MgO.SO3.KCl.3H2O	1.394 1.407 1.405 1.435 1.433 1.340 1.447 1.457 1.457 1.420 1.410 1.420 1.494 1.334 1.494	1.396 1.414 1.425 1.455 1.455 1.456 1.470 1.480 1.480 1.480 1.492 1.492 1.505	1.308 1.415 1.440 1.458 1.461 1.450 1.472 1.484 1.483 1.542 1.518 1.500 1.506
Thomsenolite. Natron Kalinite Epsomite Sassolite Borax Goslarite. Pickeringite Bloedite Trona Thermonatrite Stilbite Niter. Kainite. Gaylussite	(b) BIAXIAL NEGATIVE MINERALS. Na ₂ O.SO ₃ .ToH ₂ O Na ₄ F.CaF ₂ .AlF ₃ .H ₂ O Na ₂ O.CO ₂ .ToH ₂ O K ₂ O.Al ₂ O ₃ .A ₂ O ₃ .2 ₄ H ₂ O MgO.SO ₃ .7H ₂ O B ₂ O ₃ .H ₂ O Na ₂ O.2B ₂ O ₃ .ToH ₂ O ZnO.SO ₃ .7H ₂ O MgO.Al ₂ O ₃ .a ₂ O ₃ .2 ₂ H ₂ O Na ₂ O.MgO.2SO ₃ .4H ₂ O Na ₂ O.MgO.2SO ₃ .4H ₂ O Na ₂ O.CO ₂ .H ₂ O C(a, Na ₂ O.Al ₂ O ₃ .6SiO ₂ .5H ₂ O K ₂ O.NO ₃ MgO.SO ₃ .H ₂ O C(a, Na ₂ O.Al ₂ O ₃ .6SiO ₂ .5H ₂ O Na ₂ O.CO ₃ .H ₂ O Na ₂ O.CO ₃ .Co ₃ O ₃ .SO ₃ .SH ₂ O Na ₃ O.CaO.2.CO ₃ .SH ₂ O Na ₃ O.CaO.2.CO ₃ .SH ₃ O	1.394 1.407 1.405 1.430 1.433 1.340 1.447 1.457 1.476 1.486 1.410 1.420 1.420 1.420 1.420 1.420 1.420	1.396 1.414 1.425 1.452 1.455 1.456 1.470 1.480 1.488 1.492 1.495 1.505 1.505	1.398 1.415 1.440 1.458 1.461 1.459 1.472 1.484 1.483 1.483 1.516 1.516 1.516 1.516
Thomsenolite. Natron Kalinite Epsomite Sassolite Borax Goslarite Pickeringite Bloedite Trona Thermonatrite. Stilbite Niter. Kainite. Gaylussite Gaylussite Scolecite	(b) BIAXIAL NEGATIVE MINERALS. Na2O.SO ₃ .ToH ₂ O NaF.CaF ₂ .AlF ₃ .H ₂ O Na2O.CO ₂ .ToH ₂ O K ₃ O.Al ₂ O ₃ .4SO ₃ .24H ₃ O MgO.SO ₃ .7H ₂ O B ₂ O ₃ .H ₂ O D ₃ O ₃ O ₃ .H ₃ O D ₃ O D ₃ O D ₃ O D ₃ O D ₃ O D ₃ O D ₃ O D ₃ O D ₃ O D ₃ O D ₃ O D ₃ O	1.394 1.407 1.405 1.435 1.433 1.340 1.447 1.457 1.476 1.410 1.420 1.420 1.420 1.420 1.420 1.421	1.396 1.414 1.425 1.452 1.455 1.456 1.480 1.480 1.488 1.492 1.495 1.505 1.505	1.308 1.415 1.440 1.458 1.461 1.459 1.472 1.484 1.483 1.489 1.542 1.518 1.500 1.506 1.523 1.519
Thomsenolite. Natron Kalinite Epsomite Sassolite Borax Goslarite. Pickeringite Bloedite Trona Thermonatrite Stilbite Niter Kainite. Gaylussite Scolecite Laumontite	(b) BIAXIAL NEGATIVE MINERALS. Na ₂ O.SO _{3.1} OH ₂ O NaF.CaF _{2.4} AF _{3.4} H ₂ O Na ₂ O.CO _{2.1} OH ₂ O K ₃ O.Al ₂ O _{3.4} SO _{3.2} 4H ₂ O M ₃ O.SO _{3.7} H ₂ O M ₃ O _{3.7} H ₂ O N ₃ O _{3.7} H ₂ O N ₃ O _{3.7} H ₂ O N ₃ O _{3.7} H ₃ O N ₃ O _{3.7} H ₃ O N ₃ O _{3.7} N ₃ O ₃ M ₃ O _{3.7} N ₃ O ₃ M ₃ O _{3.7} N ₃ O ₃ M ₃ O _{3.7} N ₃ N ₃ O _{3.7} N ₃ O _{3.7} N ₃ N ₃ O _{3.7} N ₃ N ₃ O _{3.7} N ₃	1.394 1.407 1.405 1.433 1.433 1.340 1.447 1.457 1.476 1.486 1.410 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.433 1.433 1.430 1.447 1.420 1.420 1.430 1.447 1.450	1.396 1.414 1.425 1.452 1.455 1.450 1.470 1.480 1.488 1.492 1.495 1.505 1.505 1.516	1.398 1.415 1.440 1.458 1.461 1.459 1.472 1.483 1.483 1.586 1.500 1.516 1.523 1.519
Thomsenolite. Natron Kalinite Epsomite Sassolite Borax Goslarite. Pickeringite Bloedite Trona. Thermonatrite. Stibite Niter Kainite. Gaylussite Scolecite Laumontite Orthoclase	(b) BIAXIAL NEGATIVE MINERALS. Na2O.SO ₂ .toH ₂ O NaF.CaF ₂ .AlF ₂ .H ₂ O Na ₂ O.CO ₂ .toH ₂ O KaO.Al ₂ O ₃ .24H ₂ O MgO.SO ₃ .7H ₂ O B ₂ O ₃ .H ₂ O D ₃ O ₃ .Pl ₂ O B ₂ O ₃ .H ₂ O D ₃ O ₃ O ₃ O ₃ O ₃ O ₃ O ₄ O D ₃ O D ₃ O D ₃ O D ₃ O D ₃ O D ₃ O	1.394 1.407 1.405 1.435 1.433 1.340 1.447 1.457 1.476 1.486 1.410 1.420 1.494 1.334 1.404 1.410 1.512 1.513	1.396 1.414 1.425 1.455 1.455 1.450 1.480 1.488 1.492 1.495 1.505 1.505 1.505 1.516	1.398 1.415 1.440 1.458 1.401 1.459 1.472 1.484 1.483 1.489 1.542 1.518 1.500 1.516 1.523 1.523 1.525 1.525 1.525
Thomsenolite. Natron Kalinite Epsomite Sassolite Borax Goslarite Pickeringite Bloedite Trona Thermonatrite Stilbite Niter Kainite. Gaylussite Scolecite Laumontite Orthoclase Microcline	(b) BIAXIAL NEGATIVE MINERALS. Na ₂ O.SO ₃ .ToH ₂ O NaF.CaF ₂ .AlF ₃ .H ₂ O Na ₂ O.CO ₂ .ToH ₂ O K ₃ O.Al ₂ O ₃ .4SO ₃ .24H ₂ O MgO.SO ₃ .7H ₂ O B ₂ O ₃ .H ₂ O DN ₂ O ₃ O ₃ O ₃ O ₃ O ₄ O ₄ O DN ₂ O ₃ O ₃ O ₃ O ₄ O DN ₂ O ₃ O ₃ O ₄ O DN ₂ O ₄ O DN ₂ O ₅ O ₅ O ₅ D DN ₂ O DN ₂ O ₅ O ₅ D DN ₂ O DN ₂ O ₅ O ₅ D DN ₂ O	1.394 1.407 1.405 1.433 1.340 1.447 1.457 1.457 1.456 1.410 1.420 1.334 1.494 1.354 1.494 1.512 1.513 1.518	1.396 1.414 1.425 1.452 1.455 1.456 1.470 1.480 1.480 1.492 1.498 1.505 1.505 1.510 1.524 1.524	1.398 1.415 1.440 1.458 1.461 1.459 1.472 1.483 1.489 1.542 1.518 1.500 1.500 1.523 1.519 1.525 1.520 1.525
Thomsenolite. Natron Kalinite Epsomite Sassolite Borax Goslarite. Pickeringite Bloedite Trona Thermonatrite Stilbite Niter Kainite. Gaylussite Scolecite Laumontite Orthoclase Microcline Anorthoclase	(b) BIAXIAL NEGATIVE MINERALS. Na2O.SO ₃ .ToH ₂ O NaF.CaF ₂ .AlF ₃ .H ₂ O Na ₂ O.CO ₂ .ToH ₂ O KaO.Al ₂ O ₃ .4SO ₃ .24H ₂ O MgO.SO ₃ .7H ₂ O B ₂ O ₃ .H ₂ O D ₃ O ₃ .7H ₂ O D ₃ O ₃ .7H ₂ O MgO.Al ₂ O ₃ .ASO ₃ .22H ₂ O Na ₂ O.Al ₂ O ₃ .ASO ₃ .22H ₂ O Na ₂ O.Al ₂ O ₃ .ASO ₃ .22H ₂ O Na ₂ O.Al ₂ O ₃ .ASO ₃ .22H ₂ O Na ₂ O.Co ₃ .H ₂ O Na ₂ O.Co ₃ .H ₂ O Ca, Na ₂ O.Al ₂ O ₃ .SiO ₂ .5H ₂ O KaO.Na ₂ O.Co ₃ .H ₂ O CaO.Al ₂ O ₃ .SiO ₃ .H ₂ O Na ₂ O.CaO.2CO ₃ .SH ₃ O Na ₂ O.CaO.2CO ₃ .SH ₃ O CaO.Al ₂ O ₃ .SiO ₃ .H ₂ O CaO.Al ₂ O ₃ .SiO ₃ .H ₂ O CaO.Al ₂ O ₃ .SiO ₂ .SH ₂ O CaO.Al ₂ O ₃ .SiO ₃ .SiO ₂ .Sh ₂ O CaO.Al ₂ O ₃ .SiO ₃ .SiO ₂ .Sh ₂ O CaO.Al ₂ O ₃ .SiO ₃ O ₃ .SiO ₃ .Sh ₂ O CaO.Al ₂ O ₃ .SiO ₃ .SiO ₃ .Sh ₂ O CaO.Al ₂ O ₃ .SiO ₃ .Sh ₂ O CaO.Al ₂ O ₃ .SiO ₃ .Sh ₂ O CaO.Al ₂ O ₃ .SiO ₃ .Sh ₂ O CaO.Al ₂ O ₃ .SiO ₃ .Sh ₂ O CaO.Al ₂ O ₃ .SiO ₃ .Sh ₂ O CaO.Al ₂ O ₃ .SiO ₃ .Sh ₂ O CaO.Al ₂ O ₃ .SiO ₃ .Sh ₂ O CaO.Al ₂ O ₃	1.394 1.407 1.405 1.433 1.340 1.447 1.457 1.476 1.486 1.410 1.420 1.494 1.334 1.494 1.512 1.513 1.518 1.522	1.396 1.414 1.425 1.452 1.455 1.456 1.470 1.480 1.488 1.495 1.495 1.505 1.505 1.516 1.510 1.524 1.524 1.524	1.398 1.415 1.440 1.458 1.401 1.459 1.472 1.484 1.483 1.500 1.516 1.506 1.516 1.523 1.526 1.526 1.526 1.530 1.530
Thomsenolite. Natron Kalinite Epsomite Sassolite. Borax Goslarite. Pickeringite Bloedite Trona. Thermonatrite. Stilbite Niter. Kainite. Gaylussite Scolecite Laumontite Orthoclase Microcline Anorthoclase Glauberite	(b) BIAXIAL NEGATIVE MINERALS. Na2O.SO3.10H2O NaF.CaF2.AlF3.H2O Na2O.CO2.10H2O K3O.Al2O3.4SO3.24H2O MgO.SO3.7H2O B2O3.H2O D3O3.7H2O MgO.SO3.7H2O MgO.SO3.7H2O MgO.Al2O3.4SO3.22H2O Na2O.MgO.SO3.4H4O 3Na2O.CaCO3.H2O Na2O.MgO.SO3.4H4O 3Na2O.CO2.H2O (Ca, Na2)O.Al2O3.6SiO2.5H2O K3O.N2O5 MgO.SO3.KCl.3H2O Na2O.CaO.2.CO2.5H3O CaO.Al2O3.4SiO2.3H4O CaO.Al2O3.4SiO2.3H4O CaO.Al2O3.4SiO2.4H2O K2O.Al2O3.6SiO2 Same as preceding (Na, K)2O.Al2O3.6SiO2 Na2O.CaO.2O3.	1.394 1.407 1.405 1.435 1.433 1.340 1.447 1.457 1.476 1.486 1.410 1.420 1.404 1.334 1.494 1.512 1.513 1.513 1.513	1.396 1.414 1.425 1.452 1.455 1.456 1.480 1.480 1.488 1.492 1.495 1.505 1.516 1.519 1.524 1.526 1.529	1.308 1.415 1.440 1.458 1.461 1.459 1.472 1.484 1.489 1.542 1.518 1.500 1.516 1.523 1.526 1.526 1.531 1.531 1.531
Thomsenolite. Natron Kalinite Epsomite Sassolite Borax Goslarite. Pickeringite Bloedite Trona Thermonatrite Stilbite Niter. Kainite. Gaylussite Scolecite Laumontite Orthoclase Microcline Anorthoclase Glauberite Cordierite	(b) BIAXIAL NEGATIVE MINERALS. Na2O.SO3.10H2O NaF.CaF2.AlF3.H2O Na2O.CO2.10H2O K3O.Al2O3.4SO3.24H2O MgO.SO3.7H2O B2O3.H2O D3O3.7H2O MgO.SO3.7H2O MgO.SO3.7H2O MgO.Al2O3.4SO3.22H2O Na2O.MgO.SO3.4H4O 3Na2O.CaCO3.H2O Na2O.MgO.SO3.4H4O 3Na2O.CO2.H2O (Ca, Na2)O.Al2O3.6SiO2.5H2O K3O.N2O5 MgO.SO3.KCl.3H2O Na2O.CaO.2.CO2.5H3O CaO.Al2O3.4SiO2.3H4O CaO.Al2O3.4SiO2.3H4O CaO.Al2O3.4SiO2.4H2O K2O.Al2O3.6SiO2 Same as preceding (Na, K)2O.Al2O3.6SiO2 Na2O.CaO.2O3.	1.394 1.407 1.405 1.433 1.349 1.447 1.457 1.476 1.486 1.410 1.420 1.494 1.334 1.494 1.512 1.513 1.512 1.523 1.515	1.396 1.414 1.425 1.452 1.455 1.450 1.470 1.480 1.488 1.492 1.495 1.505 1.505 1.510 1.519 1.524 1.524 1.524 1.532 1.532	1.308 1.415 1.440 1.458 1.401 1.459 1.472 1.484 1.483 1.483 1.500 1.516 1.516 1.523 1.510 1.525 1.530 1.530 1.530 1.530 1.530 1.530 1.530 1.530 1.530 1.540
Thomsenolite. Natron Kalinite Epsomite Sassolite. Borax Goslarite. Pickeringite Bloedite Trona. Thermonatrite. Stilbite Niter. Kainite. Gaylussite Scolecite Laumontite Orthoclase Microcline Anorthoclase Glauberite	(b) BIAXIAL NEGATIVE MINERALS. Na2O.SO ₃ .ToH ₂ O NaF.CaF ₂ .AlF ₃ .H ₂ O Na ₂ O.CO ₂ .ToH ₂ O KaO.Al ₂ O ₃ .4SO ₃ .24H ₂ O MgO.SO ₃ .7H ₂ O B ₂ O ₃ .H ₂ O D ₃ O ₃ .7H ₂ O D ₃ O ₃ .7H ₂ O MgO.Al ₂ O ₃ .ASO ₃ .22H ₂ O Na ₂ O.Al ₂ O ₃ .ASO ₃ .22H ₂ O Na ₂ O.Al ₂ O ₃ .ASO ₃ .22H ₂ O Na ₂ O.Al ₂ O ₃ .ASO ₃ .22H ₂ O Na ₂ O.Co ₃ .H ₂ O Na ₂ O.Co ₃ .H ₂ O Ca, Na ₂ O.Al ₂ O ₃ .SiO ₂ .5H ₂ O KaO.Na ₂ O.Co ₃ .H ₂ O CaO.Al ₂ O ₃ .SiO ₃ .H ₂ O Na ₂ O.CaO.2CO ₃ .SH ₃ O Na ₂ O.CaO.2CO ₃ .SH ₃ O CaO.Al ₂ O ₃ .SiO ₃ .H ₂ O CaO.Al ₂ O ₃ .SiO ₃ .H ₂ O CaO.Al ₂ O ₃ .SiO ₂ .SH ₂ O CaO.Al ₂ O ₃ .SiO ₃ .SiO ₂ .Sh ₂ O CaO.Al ₂ O ₃ .SiO ₃ .SiO ₂ .Sh ₂ O CaO.Al ₂ O ₃ .SiO ₃ O ₃ .SiO ₃ .Sh ₂ O CaO.Al ₂ O ₃ .SiO ₃ .SiO ₃ .Sh ₂ O CaO.Al ₂ O ₃ .SiO ₃ .Sh ₂ O CaO.Al ₂ O ₃ .SiO ₃ .Sh ₂ O CaO.Al ₂ O ₃ .SiO ₃ .Sh ₂ O CaO.Al ₂ O ₃ .SiO ₃ .Sh ₂ O CaO.Al ₂ O ₃ .SiO ₃ .Sh ₂ O CaO.Al ₂ O ₃ .SiO ₃ .Sh ₂ O CaO.Al ₂ O ₃ .SiO ₃ .Sh ₂ O CaO.Al ₂ O ₃	1.394 1.407 1.405 1.435 1.433 1.340 1.447 1.457 1.476 1.486 1.410 1.420 1.404 1.334 1.494 1.512 1.513 1.513 1.513	1.396 1.414 1.425 1.452 1.455 1.456 1.480 1.480 1.488 1.492 1.495 1.505 1.516 1.519 1.524 1.526 1.529	1.308 1.415 1.440 1.458 1.461 1.459 1.472 1.484 1.489 1.542 1.518 1.500 1.516 1.523 1.526 1.526 1.531 1.531 1.531

INDEX OF REFRACTION-

Selected Biaxial Minerals.

200	7	1	ndex of refra	ction.
Mineral.	Formula.	na	nβ	n_{γ}
	(b) BIAXIAL NEGATIVE CRYSTALS (contin	nued).		
Beryllonite	Na ₂ O. ₂ BeO.P ₂ O ₅	1.552	1.558	1.561
Kaolinite	Al ₂ O _{3.2} SiO _{2.2} H ₂ O	1.561	1.563	1.565
Biotite	K ₂ O. ₄ (Mg, Fe)O. ₂ Al ₂ O ₃ .6SiO ₂ .H ₂ O	1.541	1.574	I.574
Autunite	CaO. 2UO ₃ , P ₂ O ₅ , 8H ₂ O	1.553	I.575	1.577
Anorthite	$\text{"An"} = \text{CaO.Al}_2\text{O}_3.2\text{SiO}_2$	1.576	1.584	1.588
Lanthanite	La ₂ O ₃ .3CO ₂ .9H ₂ O	I.520	1.587	1.613
Pyrophyllite	Al ₂ O ₃ .4SiO ₂ .H ₂ O	1.552	1.588	1.600
Talc	3MgO.4SiO ₂ .H ₂ O	1.539	1.589	1.589
Hopeite	3ZnO.P ₂ O _{5.4} H ₂ O K ₂ O. ₃ Al ₂ O ₃ .6SiO ₂ . ₂ H ₂ O	1.572	1.590	1.590
Muscovite	Al ₂ O ₃ .P ₂ O ₅ .oSiO ₂ .2H ₂ O	1.561	1.590	1.594
Lepidolite	Al ₂ O ₃ . 3SiO ₂ . 2(K, Li)F	1.579	1.593	1.597
Phlogopite	K ₂ O.6MgO.Al ₂ O ₃ .6SiO ₂ .2H ₂ O	1.500	1.598	I.605 I.606
Tremolite	CaO.3MgO.4SiO ₂	1.502	1.623	1.635
Actinolite	CaO 3 (Mg. Fe)O 4SiO	1.611	1.627	1.636
Wollastonite	CaO. ₃ (Mg, Fe)O. ₄ SiO ₂ CaO.SiO ₂	1.616	1.620	1.631
Lazulite	(Fe, Mg)O, Al ₂ O ₃ , P ₂ O ₅ , H ₂ O	1.603	1.632	1.630
Danburite	CaO.B ₂ O ₃ . 2SiO ₂	1.632	1.634	1.636
Glaucophanite	Na ₂ O. ₂ FeO.Al ₂ O ₃ .6SiO ₂	1.621	1.638	1.638
Andalusite	Al ₂ O ₃ .SiO ₂	1.632	1.638	1.643
Hornblende	Contains Na ₂ O, MgO, FeO, SiO ₂ , etc.	1.629	1.642	1.653
Datolite	2CaO.2SiO2.B2O3.H2O	1.625	1.653	1.669
Erythrite	3CoO.As ₂ O ₅ ,8H ₂ O	1.626	1.661	1.699
Monticellite	CaO.MgO.SiO ₂	1.651	1.662	1.668
Strontianite	SrO.CO ₂	1.520	1.667	1.667
Witherite	BaO.CO ₂	1.529	1.676	1.677
Aragonite	CaO.CO ₂	1.531	1.682	1.686
Axinite	6(Ca, Mn)O.2Al ₂ O ₃ .B ₂ O ₃ .8SiO ₂ .H ₂ O	1.678	1.685	1.688
Dumortierite	8Al ₂ O ₃ .B ₂ O ₃ .6SiO ₂ .H ₂ O	1.678	1.686	1.689
Cyanite Epidote	Al ₂ O ₃ .SiO ₂ 4CaO. ₃ (Al, Fe) ₂ O ₃ .6SiO ₂ .H ₂ O	1.712	1.720	1.728
Atacamite		1.729	1.754	1.768
Fayalite		1.831	1.864	1.880
Caledonite	2(Pb, Cu)O.SO ₃ .H ₂ O	1.818	1.866	1.874
Malachite	2CuO.CO ₂ .H ₂ O	1.655	1.875	I.909 I.000
Lanarkite	2PbO.SO ₃	1.035	1.000	2.020
Leadhillite	4PbO.SO _{3.2} CO ₂ .H ₂ O	1.870	2.000	2.010
Cerussite	PbO.CO ₂	1.804	2.076	2.078
Laurionite	PbCl ₂ .PbO,H ₂ O	2.077	2.116	2.158
Matlockite		2.040	2.150	2.150
Baddeleyite	ZrO ₂	2.130	2.100	2.200
Lepidocrocite	Fe ₂ O ₃ .H ₂ O	1.030	2.210	2.510
Limonite	2Fe ₂ O _{3.3} H ₂ O in part	2.170	2.290	2.310
Goethite	Fe ₂ O ₃ .H ₂ O	2.210	2.350	2.350 (L
Valentinite	Sb ₂ O ₃	2.180	2.350	2.350
Turgite	2Fe ₂ O ₃ .H ₂ O in part	2.450	2.550	2.550 (L
Realgar	AsS	2.460	2.590	2.610 (L
Terlinguaite	Hg ₂ OCl	2.350	2.640	2.670 (L
Hutchinsonite	(Tl, Ag) ₂ S.PbS. ₂ As ₂ S ₃	3.078	3.176	3.188
Stibnite	Sb ₂ S ₃	3.194	4.303	4.460

INDEX OF REFRACTION.

TABLE 344. - Miscellaneous Biaxial Crystals.

Crystal.	Spectrum	Ind	ex of refract	ion.	Authority.
	line.	na	nβ	ny	Authority.
Ammonium oxalate, (NH4)2C204.H2O Ammonium acid tartrate, (NH4)H(C4H4O6). Ammonium tartrate, (NH4)2C4H4O8 Antipyrin, C1H12NO2 Citric acid, C4H8O7.H2O. Codein, C18H2NO2.H2O Magnesium carbonate, MgCO2.3H2O "sulphate, MgSO4.7H2O "" Potassium bichromate, K2C72O7 "chromate, K2C704 "" Racemic acid, C4H6O6.H2O Resorcin, C6H6O2 Sodium bichromate, N22C72O7.2H2O "acid tartrate, NAH(C4H4O6).2H2O Sugar (cane), C12H22On "" Tartaric acid, C4H6O6 (right-) Zinc sulphate, ZnSO4.7H2O "" Tartaric acid, C4H6O6 (right-) Zinc sulphate, ZnSO4.7H2O "" "" Tartaric acid, C4H6O6 (right-) Zinc sulphate, ZnSO4.7H2O "" "" "" "" "" "" "" "" ""	D D D D D D D D D D D D Cd, 0. 226µ H, 0.656µ D D red D C C yellow D D Ted Ti D D Li	1.4381 1.5188 1.5697 1.4932 1.5390 1.495 1.432 1.4990 1.4307 1.7202 1.6873 1.3346 1.4976 1.4932 1.4911 1.6610 1.5422 1.5397 1.5379 1.4953 1.4958 1.4544	I. 5475 I. 5614 I. 581 I. 6935 I. 4977 I. 5435 I. 501 I. 455 I. 5266 I. 4532 I. 7380 I. 7254 I. 722 I. 5056 I. 4992 I. 4946 I. 555 I. 6994 I. 5332 I. 5685 I. 5667 I. 5639 I. 5533 I. 4860 I. 4801 I. 4776	I.5950 I.5910 I.7324 I.5089 I.526 I.461 I.5326 I.4584 I.8197 I.7305 I.5064 I.5029 I.4980 I.4959 I.7510 I.5734 I.5716 I.5693 I.6046 I.4836 I.4836 I.4812	Brio T. and C.* Cloisaux Liweh Schrauf Grailich Genth Means Borel "I and C. Mallard Schrauf T. and C. Mallard Schrauf T. and C. """ Groth "" Dufet Brio Calderon "" Means T. and C. "" "" "" "" "" "" "" "" "" "" "" "" ""
**	Fopsöe and Chris	stiansen.			

TABLE 345. — Miscellaneous Liquids (see also Table 346), Liquefied Gases, Oils, Fats and Waxes.

Substance.	Temp.	Index for D o. 589 μ .	Reference.	Substance.	Temp.	Index for D 0.589µ.	Refer- ence.
Liquefied gases: B12 Cl2 Cl2 C2N2 C2N4 H2S N9 NH4 NO N2O O2 SO2 HCI HBr HI Oils: Almond Castor. Citronella. Clove. Cocoanut. Cod liver. Cod liver. Cotton seed Croton. Eucalyptus Lard.	15 14 15 18.5 -190 16.5 -90 15.5 16.5 10 16.5 10 16.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5	1.659 1.367 1.195 1.325 1.325 1.384 1.205 1.382 1.330 1.104 1.221 1.350 1.252 1.325 1.466 1.4728-1.4753 1.4799-1.4803 1.4771-48 1.5301-1.5360 1.4587 1.4790-1.4833 1.4737-1.4757 1.4757-1.4768	mbbbbbcbcbcbbbbdeedededededed	Oils: Lavendar Linseed Maize. Mustard seed Neat's foot Olive Palm Peanut. Peppermint Poppy Porpoise Rape (Colza) Seal Sesame Soja bean Sperm Sunflower Tung Whale Fats and Waxes: Beef tallow Beeswax. Carnauba wax. Cocoa butter. Lard. Mutton tallow	15.5 15.5 15.5 60 15.5 15.5 25 15.5 25 15.5	I.464-I.466 I.4820-I.4852 I.4757-I.4768 I.4750-I.4768 I.4750-I.4768 I.4750-I.4768 I.4703-I.4718 I.4510 I.4720 I.4677 I.4748-I.4752 I.4742 I.4744 I.4742 I.4744	e eddeddad edededae e e e e e

References: (a) Martens; (b) Bleekrode, Pr. Roy. Soc. 37, 330, 1884; (c) Liveing, Dewar, Phil. Mag., 1892-3; (d) Tolman, Munson, Bul. 77, B. of C., Dept. Agriculture, 1905; (e) Seeker, Van Nostrand's Chemical Annual. For the oils of reference d, the average temperature coefficient is 0.000365 per ° C.

TABLE 346.

INDEX OF REFRACTION.

Indices of Refraction of Liquids Relative to Air.

				Indi	ces of refrac	ction.		44h
Substance.	Den- sity.	Temp.	ο. 397μ Η	0.434µ G	ο. 486μ F	ο. 589μ D	0.656µ C	Author- ity.
Acetaldehyde, CH3CHO. Acetone, CH3COCHs. Aniline, C6H3.NH3. Alicohol, methyl, CH3.OH. "thyl C4H3.OH" "thyl C4H3.OH" "an-propyl C4H7.OH Benzene, C6H3." "C6H3.an/dt. Bromnaphthalene, C16H7.Br. Carbon disulphide, CS2. "tetrachloride, CCl4. Chinolin, C6H7.N Chloral, CCl5.CHO. Chloral, CCl5.CHO. Chloroform, CHCl5. Decane, C16H2. Ethyl nitrate, C3H3.O.NO2. Formic acid, H.CO2H. Glycerine, C3H3.O.NO2. Hexane, CH3.(CH2).CH3. Hexape, CH4.(CH2).CH3. Maphthalene, C16H3. Nicotine, C36H3.O.NO2. Octane, CH3(CH2).CH3. Nicotine, C36H3.O.NO3. Octane, CH3(CH2).CH3. Oil, almond. anise seed bitter almond cassia. "cinnamon. olive. rock. turpentine. Pentane, CH3.(CH2).CH3. Phenol, C3H3.OH. Styrene, C3H3.CH. CH3.(CH2).CH3. Phenol, C3H3.OH. Styrene, C3H4.CH.CH3. Thymol, C30H4.OH.	0.780 0.791 1.022 0.794 0.808 0.800 	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1.3399 1.7289 1.7289 1.7775 1.6994 1.463 1.463 1.7039 1.6985 1.4939 1.4913	0.434µ G 1.3394 1.3678 1.0204 1.3362 1.3773 1.3700 -0004 1.9938 1.5236 -0007 1.7041 1.6920 1.6079 1.4079 1.4679 1.458 1.4200 1.3607 -0006 1.3804 1.4828 1.3836 1.4959	1.3359 1.3639 1.3639 1.3639 1.3639 1.36660004 1.3901 1.51320006 1.688 1.6523 1.4076 1.4530 1.4160 1.3576 1.41450 1.4784 1.4784 1.3799 1.4007 1.76920007 1.6031 1.5047 1.7692 1.3764 1.4847 1.5643 1.5647 1.5623 1.4046 1.4847 1.5743 1.5647 1.5623 1.6389 1.6314 1.6508 1.4825 1.4644 1.4817 1.4793 1.3610 1.5558	1.3316 1.3316 1.3316 1.3503 1.3503 1.3503 1.3605 1.36180004 1.3854 1.50120006 1.3854 1.5012 1.4007 1.4108 1.3538 1.3714 1.4730 1.3754 1.74170007 1.5823 1.5239 1.4007 1.4782 1.5572 1.5475	1.3298 1.3773 1.3777 1.36050004 1.3834 1.49650006 1.6495 1.6336 1.44530 1.44530 1.44530 1.44530 1.44530 1.44530 1.4443 1.4088 1.35150006 1.3833 1.4706 1.3734 1.4088 1.3515 1.5508 1.3518 1.3515 1.5508 1.3518 1.3	Ity. Ia Means Ib Means I Means I Means I Means I Means Id IC IC Means Ie Means If Ic
Toluene, CH ₅ .C ₆ H ₅ . Water, H ₂ O. "	0.86	20 20 5 40 80	1.3435 1.3444 1.3411 1.3332	1.5170 1.3404 1.3413 1.3380 1.3302	I.5070 I.3372 I.3380 I.3349 I.3270	1.4955 1.3330 1.3337 1.3230	1.4911 1.3312 1.3319 1.3290 1.3313	Means

References: 1, Landolt and Börnstein (a, Landolt; b, Korten; c, Brühl; d, Haagen; e, Landolt, Jahn; f, Nasini, Bernheimer; g, Eisenlohr; h, Eykman; i, Auwers, Eisenlohr); 2, Korten; 3, Walter; 4, Ketteler; 5, Landolt; 6, Olds; 7, Baden Powell; 8, Willigen; 9, Fraunhofer; 10, Brühl.

INDEX OF REFRACTION.

Indices of Refraction relative to Air for Solutions of Salts and Acids.

					Indi	ces of ref	raction fo	r spectrur	n lines.	
	Substanc	ce.	Density.	Temp. C.	0	D	P	Ну	н	Authority.
				(a) S	Solutions	IN WAT	ER.			
	Ammonium chloride Calcium chloride " " " "		1.067 .025 .398 .215	27°.05 29.75 25.65 22.9 25.8	1.37703 .34850 .44000 .39411 .37152	.44279	.3551 .4493 .4020	5 -	1.39330 .3624; .4600 .41078	66
Nitric Potasi	acid .		double	20.75 18.75 11.0 solution normal normal	1.40817 .39893 .40052 .34087 .34982 .35831	.40181	.4085 .4080 .3471 .3564	7 - 8 - 9 1.3504 5 ·3599	4 -	64
	caustic m chlor "		1.376 .189 .109	21.6 18.07 18.07 18.07	1.41071 .37562 .35751 .34000	1.41334 •37789 •35959 •34191	.38322	1.3874	6 -	Willigen. Schutt.
	n nitrat uric acie " "		1.358 .811 .632 .221 .028	22.8 18.3 18.3 18.3 18.3	1.38283 .43444 .42227 .36793 .33663	1.38535 .43669 .42466 .37009 .33862	.44168 – .42967 – .37468 –		1.40121 .44883 .43694 .38158	66
Zinc cl	hloride "		1.359	26.6 26.4	1.39977 .372 9 2	1.40222	1.40797		1.41738	
				(b) Solut	rions in]	ETHYL A	LCOHOL.			
Fuchsi urate		rly sat-	0.789	25.5 27.6 16.0	1.35791 ·35372 .3918 ·3831	1.35971 .35556 .398	1.36399 .35986 .361 .3705		1.37094 .36662 .3759 .3821	Willigen. Kundt.
No a 4.5	OTE. —	Cyanin nt. soluti	on $\mu_A =$ olution l	oform als	so acts and $a_B = 1.46$ $a_A = 1.49$	95, μ _F (g	usly; for green) = green) =	= 1.4514	ple, Siebe, μ_G (blue	en gives for e) = 1.4554. e) = 1.4597.
Wave- length in cms. X 10 ⁶ .	Spec- trum line.	Index for 1 % sol.	Index for 2 % sol.	Index for 3 % sol.	for	n cme t	rum	for	for	for for sol. 4 % sol.
68.7 65.6 61.7 59.4 58.9 56.8 55.3 52.7 52.2	B C - D - E -	1.3328 ·3335 ·3343 ·3354 ·3353 ·3362 ·3366 ·3363 ·3363	1.3342 .3348 .3365 .3373 .3372 .3387 .3387 .3395 -	1.3365 .3381 .3393 -3412 .3417 .3388	.3426 .3426 .3445 .3438	51.6 50.0 48.6 48.0 46.4 44.7 43.4 42.3	F	3374 3377 3381 3397 3407	3395 3402 3421	3386 1.3404 3408 3398 .3413 1414 .3423 3452 3452 3468 3468

^{*} According to Christiansen.

TABLE 348.

INDEX OF REFRACTION.

Indices of Refraction of Gases and Vapors.

A formula was given by Biot and Arago expressing the dependence of the index of refraction of a gas on pressure and temperature. More recent experiments confirm their conclusions. The formula is $n_t - i = \frac{n_0 - i}{1 + a_t^2} \frac{p_0}{p_0}$, where n_t is the index of refraction for temperature l, n_0 for temperature zero, a the coefficient of expansion of the gas with temperature, and p the pressure of the gas in millimeters of mercury. For air see Table 349.

	(a) Indices of refraction.											
Spectrum	Wave-		(n-1) 103.								
line.	10 ³ (n-1) Air.	Spectrum line.	10 ³ (n-1) Air.	length.	Air.	0.	N.	H.				
A B C D E F G H K L	.2905 .2911 .2914 .2922 .2933 .2943 .2962 .2978 .2980 .2987	M N O P Q R S T U	.2993 .3003 .3015 .3023 .3031 .3043 .3053 .3064 .3075	.4861 .5461 .5790 .6563 .4360 .5462 .6709 6.709 8.678	.2951 .2936 .2930 .2919 .2971 .2937 .2918 .2881 .2888 Cuthbert	.2734 .2717 .2710 .2698 .2743 .2704 .2683 .2643 .2650 sons; the	.3012 .2998 .2982 co ₂ .4506 .4471 .4804 .4579	.1406 .1397 .1393 .1387 .1418 .1397 .1385 .1361 .1361				

(b) The following are compiled mostly from a table published by Brühl (Zeits. für Phys. Chem. vol. 7, pp. 25-27). The numbers are from the results of experiments by Biot and Arago, Dulong, Jamin, Ketteler, Lorenz, Mascart, Chappius, Rayleigh, and Rivière and Prytz. When the number given rests on the authority of one observer the name of that observer is given. The values are for o° Centigrade and 760 mm. pressure.

Substance.	Kind of light.	Indices of refraction and authority.	Substance.	Kind of light.	Indices of refraction and authority.
Acetone	D white D D white D white D white	I.001079-I.001100 I.000381-I.000385 I.000373-I.000379 I.000281 Rayleigh. I.001700-I.001823 I.001132 Mascart. I.000449-I.000450 I.000449-I.000450 I.001500 Dulong. I.001478-I.001485	Hydrogen sul- phide	D D white D	I.000138-I.000143 I.000132 Burton. I.000644 Dulong. I.000623 Mascart. I.000443 Dulong. I.000549-I.000623 I.000891 Mascart. I.000303 Dulong. I.000297 Mascart.
oxide	white white D	1.000340 Dulong. 1.000335 Mascart. 1.000772 Dulong. 1.000773 Mascart. 1.001436-1.001464	Nitrogen Nitrous oxide	white D white D white	I.000295-I.000300 I.000296-I.000298 I.000503-I.000507 I.000516 Mascart. I.000272-I.000280
Cyanogen Ethyl alcohol . Ethyl ether Helium	white D D D D	1.000834 Dulong. 1.000784-1.000825 1.000871-1.000885 1.001521-1.001544 1.000036 Ramsay.	Pentane	D D white D white	I.000271-I.000272 I.001711 Mascart. I.000665 Dulong. I.000686 Ketteler. I.000261 Jamin.
Hydrochloric { acid }	white D	1.000449 Mascart. 1.000447 "	66	D	1.000249-1.000259

INDEX OF REFRACTION.

TABLE 349. - Index of Refraction of Air (15°C, 76 cm).

Corrections for reducing wave-lengths and frequencies in air (15° C, 76 cm) to vacuo.

The indices were computed from the Cauchy formula $(n-1)10^7=2726.43+12.288/(\lambda^2\times 10^{-8})+0.3555/(\lambda^4\times 10^{-16})$. For o° C and 76 cm the constants of the equation become 2875.66, 13.412 and 0.3777 respectively, and for 30° C and 76 cm, 2589.72, 12.259 and 0.2576. Selfmeier's formula for but one absorption band closely fits the observations: $n^2=1+0.00057378\lambda^2/(\lambda^2-595260)$. If n-1 were strictly proportional to the density, then (n-1)a/(n-1)a/(n-1) would equal 1+at where a should be 0.00367. The following values of a were found to hold: a = 0.003672 a = 0.003672 a = 0.003674 a = 0.003672 a = 0.003674 a = 0.003672 a = 0.003674 a =1918.

Wave- length, \(\lambda\) Ang- stroms.	Dry air (n - 1) × 10 ⁷ 15° C 76 cm	Vacuo correction for λ in air $(n\lambda - \lambda)$. Add.	Frequency waves per cm in air.	Vacuo correction for $\frac{1}{\lambda}$ in air $\left(\frac{1}{n\lambda} - \frac{1}{\lambda}\right)$. Subtract.	Wave- length, \(\lambda\) Ang- stroms.	Dry air (n - 1) × 10 ⁷ 15° C 76 cm	Vacuo correction for λ in air $(n\lambda - \lambda)$ Add.	Frequency waves per cm I \(\lambda\) in air.	Vacuo correction for $\frac{1}{\lambda}$ in ai $\left(\frac{1}{n\lambda} - \frac{1}{\lambda}\right)$. Subtract.
2000	3256	0.651	50,000	16.27	5500	2771	1.524	18,181	5.04
2100	3188	0.670	47,619	15.18	5600	2769	1.551	17,857	4.94
2200	3132	0.689	45,454	14.23	5700	2768	1.578	17,543	4.85
2300	3086	0.710	43,478	13.41	5800	2766	1.604	17,241	4.77
2400	3047	0.731	41,666	12.69	5900	2765	1.631	16,949	4.08
2500	3014	0.754	40,000	12.05	6000	2763	1.658	16,666	4.60
2600	2986	0.776	38,461	11.48	6100	2762	1.685	16,393	4.53
2700	2962	0.800	37,037	10.97	6200	2761	1.712	16,129	4.45
2800	2941	0.824	35,714	10.50	6300	2760	1.739	15,873	4.38
2900	2923	0.848	34,482	10.08	6400	2759	1.766	15,625	4.3I
3000	2007	0.872	33,333	9.69	6500	2758	1.792	15,384	4.24
3100	2893	0.897	32,258	9.33	6600	2757	1.819	15,151	4.18
3200	2880	0.922	31,250	9.00	6700	2756	1.846	14,925	4.11
3300	2869	0.947	30,303	8.69	6800	2755	1.873	14,705	4.05
3400	2859	0.972	29,411	8.41	6900	2754	1.900	14,492	3.99
3500	2850	0.998	28,571	8.14	7000	2753	1.927	14,285	3.93
3600	2842	1.023	27,777	7.89	7100	2752	1.954	14,084	3.88
3700	2835	1.049	27,027	7.66	7200	2751	1.981	13,888	3.82
3800	2829	1.075	26,315	7.44	7300	2751	2.008	13,698	3.77
3900	2823	I.IOI	25,641	7.24	7400	2750	2.035	13,513	3.72
4000	2817	1.127	25,000	7.04	7500	2749	2.062	13,333	3.66
4100	2812	1.153	24,390	6.86	7600	2749	2.089	13,157	3.62
4200	2808	1.179	23,809	6.68	7700	2748	2.116	12,987	3.57
4300	2803	1.205	23,255	6.52	7800	2748	2.143	12,658	3.52
4400	2799	1.232	22,727	0.30	7900	2747	2.170	12,000	3.40
4500	2796	1.258	22,222	6.21	8000	2746	2.197	12,500	3.43
4600	2702	1.284	21,739	6.07	8100	2746	2.224	12,345	3.39
4700	2789	1.311	21,276	5.93	0		0.065	12,121	2 22
4800	2786	1.338	20,833	5.80	8250	2745	2.265	11,764	3.33
4900	2784	1.364	20,406	5.68	8500	2744	2.332	11,428	3.13
	2781	7 207	20,000	5.56	9000	2743	2.468	II,III	3.05
5000	2701	1.391	10,607	5.45	9250	2741	2.536	10,810	2.96
5200	2779	I.444	19,007	5.34	9500	2740	2.604	10,526	2.88
5300	2775	1.471	18,867	5.23	9750	2740	2.671	10,256	2.81
5400	2773	1.497	18,518	5.13	10000	2739	2.739	10,000	2.74

MEDIA FOR DETERMINATIONS OF REFRACTIVE INDICES WITH THE MICROSCOPE.

TABLE 350. — Liquids, $n_D (0.589\mu) = 1.74$ to 1.87.

In 100 parts of methylene iodide at 20° C. the number of parts of the various substances indicated in the following table can be dissolved, forming saturated solutions having the permanent refractive indices specified. When ready for use the liquids can be mixed by means of a dropper to give intermediate refractions. Commercial iodoform (CHI₃) powder is not suitable, but crystals from a solution of the powder in ether may be used, or the crystalized product may be bought. A fragment of tin in the liquids containing the SnI_4 will prevent discoloration.

CHI ₃ .	SnI ₄ .	AsI ₃ .	SbI ₃ .	S.	n _a at 20°.
40 35	25 25 30 27 27 27 31 31	13 16 14 16	12 12 7 8 8	6 10 10	1.764 1.783 1.806 1.820 1.826 1.842 1.853 1.868

TABLE 351. — Resin-like Substances, n_D (0.589 μ) = 1.68 to 2.10.

Piperine, one of the least expensive of the alkaloids, can be obtained very pure in straw-colored crystals. When melted it dissolves the tri-iodides of arsenic and antimony very freely. The solutions are fluid at slightly above 100° and when cold, resin-like. A solution containing 3 parts antimony iodide to one part of arsenic iodide with varying proportions of piperine is easier to manipulate than one containing either iodide alone. The following table gives the necessary data concerning the composition and refractive indices for sodium light. In preparing, the constituents, in powder of about 1 mm. grain, should be weighed out and then fused over, not in, a low flame. Three-inch test tubes are suitable.

Per cent Iodides.	00.	10.	20.	30.	40.	50.	60.	70.	80.
Index of refraction	1.683	1.700	1.725	1.756	1.794	1.840	1.897	1.968	2.050

TABLE 352. — Permanent Standard Resinous Media, n_D (0.589 μ) = 1.546 to 1.682.

Any proportions of piperine and rosin form a homogeneous fusion which cools to a transparent resinous mass. The following table shows the refractive indices of various mixtures. On account of the strong dispersion of piperine the refractive indices of minerals apparently matched with those of mixtures rich in this constituent are 0.005 to 0.01 too low. To correct this error a screen made of a thin film of 7 per cent antimony iodide and 93 per cent piperine should be used over the eye-piece. Any amber-colored rosin in lumps is suitable.

Per cent Rosin.	100.	10.	20.	30.	40.	50.	60.	70.	80.	90.	100.
Index of refraction	1.683	1.670	1.657	1.643	1.631	1.618	1.604	1.590	1.575	1.560	1.544

All taken from Merwin, Jour. Wash. Acad. of Sc. 3, p. 35, 1913.

TABLE 353. OPTICAL CONSTANTS OF METALS.

TABLE 353.

Two constants are required to characterize a metal optically, the refractive index, n, and the absorption index, k, the latter of which has the following significance: the amplitude of a wave after travelling one wave-length, λ^1 measured in the metal, is reduced in the ratio $1:e^{-2\pi k}$ or for any distance d, $1:e^{-\frac{2\pi d n k}{\lambda^1}}$, for the same wave-length measured in air this ratio becomes $1:e^{-\frac{2\pi d n k}{\lambda^1}}$ where is sometimes called the extinction coefficient. Plane polarized light reflected from a polished metal surface is in general elliptically polarized because of the relative change in phase between the two rectangular components vibrating in and perpendicular to the plane of incidence. For a certain angle, ϕ (principal incidence) the change is 90° and if the plane polarized incident beam has a certain azimuth $\overline{\psi}$ (Principal azimuth) circularly polarized light results. Approximately, (Drude, Annalen der Physik, 36, p, 546, 1889),

$$k = \tan 2 \overline{\psi} \; (\mathbf{1} - \cot^2 \overline{\phi}) \text{ and } n = \frac{\sin \overline{\phi} \; \tan \overline{\phi}}{(\mathbf{1} + \mathbf{k}^2)^{\frac{1}{\theta}}} \; (\mathbf{1} + \frac{1}{2} \cot^2 \overline{\phi}).$$

For rougher approximations the factor in parentheses may be omitted. R = computed percentage reflection.

(The points have been so selected that a smooth curve drawn through them very closely indicates the characteristics of the metal.)

	37.1		7	-		Comp	ited.		
	Metal.	λ	$\overline{\phi}$	Ψ	n	k	nk	R	Authority.
П		μ						90	
Ш	Cobalt	0.231	640311	29°39	1.10	1.30	1.43	32.	Minor.
		.275	70 22	29 59	1.41	1.52	2.14	46.	4.6
		.500	77 5	31 53	1.93	1.93	3.72	66.	46
		.650	79 0 81 45	31 25 29 6	2.35	1.87	4.40	69.	Ingersoll.
Н		1.50	83 21	29 6	3.63	1.58	5.73 6.73	73.	66
J'		2.25	83 48	26 5	5.65	1.27	7.18	76.	66
П	Copper	.231	65 57	26 14	1.39	1.05	1.45	29.	Minor.
н		-347	65 6	28 16	1.19	1.23	1.47	32.	66
		.500	70 44	33 46	1.10	2.13	2.34	56.	
Ш		.650	74 16 78 40	41 30	0.44	7.4	3.26	86.	Ingersoll.
Ш		1.75	78 40 84 4	42 30 42 30	0.35	11.0	9.46	91.	66
Н		2.25	85 13	42 30	1.03	11.4	11.7	97.	
		4.00	87 20	42 30	1.87	11.4	21.3	1	FörstFréed.
и		5.50	88 00	41 50	3.16	9.0	28.4		66 66
H	Gold	1.00	81 45	44 00	0.24	28.0	6.7		66 66
ш		3.00	85 30 87 05	43 56	0.47	26.7	12.5		66 66
Н		5.00	88 15	43 50	1.81	24.5	33.		66 66
Ш	Iridium	1.00	82 10	29 15	3.85	1.60	6.2		66 68
Н		2.00	83 10	29 40	4.30	1.66	7.1		66 66
н		3.00	81 40	30 40	3.33	1.79	6.0		66 66
Ш	371 1 1	5.00	79 00	32 20	2 27	2.03	4.6		
ш	Nickel	0.420	72 20 76 I	31 42	1.41	1.79	2.53	54. 62.	Tool. Drude.
ш		0.750	78 45	31 41	2.19	00.1	3.33 4.36	70.	Ingersoll.
ш		1.00	80 33	32 2	2.63	2.00	5.26	74.	"
К		2.25	84 21	33 30	3.95	2.33	9.20	85.	
Ш	Platinum	1.00	75 30	37 00	1.14	3.25	3.7		FörstFréed.
Ш		2.00	74 30	39 50	0.70	5.06	3.5		46 66
Ш		3.00 5.00	73 50	41 00 42 10	0.52	0.52	3.4 3.1		66 66
Ш	Silver	0.226	62 41	22 16	1.41	0.75	1.11	18.	Minor.
Ш		.293	63 14	18 56	1.57	0.62	0.97	17.	66
Ш		.316	52 28	15 38	1.13	0.38	0.43	4-	66
		.332	52 I	37 2	0.41	1.61	0.65	32.	66
		•395	66 36	43 6	0.16	12.32	1.91	87.	**
		.500	72 31 75 35	43 29 43 47	0.17	20.6	3.64	93.	6.6
		.750	79 26	44 6	0.17	30.7	5.16	97.	Ingersoll.
		1.00	82 0	44 2	0.24	29.0	6.96	98.	
		1.50	84 42	43 48	0.45	23.7	10.7	98.	4
		2.25	86 18	43 34	0.77	19.9	15.4	99.	FörstFréed.
	3	3.00 4.50	88 20	42 40 41 10	4.49	7.42	33.3		1015111004.
	Steel	0.226	66 51	28 17	1.30	1.26	1.64	35.	Minor.
		.257	68 35	28 45	1.38	1.35	1.86	40.	66
		.325	69 57	30 9	1.37	1.53	2.09	45.	66
		.500	75 47	29 2	2.09	1.50	3.14	57.	Ingersoll.
		1.50	77 48 81 48	27 9 28 51	3.71	1.33	3·59 5·75	59.	44
		2.25	83 22	30 36	4.14	1.79	7.41	73· 80.	66
L									

Drude, Annalen der Physik und Chemie, 39, p. 481, 1890; 42, p. 186, 1891; 64, p. 159, 1898. Minor, Annalen der Physik, 10, p. 581, 1993. Tool, Physical Review, 31, p. 1, 1910. Ingersoll, Astrophysical Journal, 32, p. 265, 1910; Försterling and Fréedericksz, Annalen der Physik, 40, p. 201, 1913.

OPTICAL CONSTANTS OF METALS.

TABLE 354.

Metal.	λ,	n.	k.	R.	Ref.	Metal.	λ.	n.	k.	R.	Ref.
Al.* Sb.* Bi.†‡ Cd.* Cr.* Cb.* Au.† I. crys. Ir.* Fe.§ Pb.* Mg.* Mn.* Hg. (liq.)	μ 0.589 .589 white .579 .579 .257 .441 .589 .589 .589 .589 .589 .589 .589	I.44 3.04 2.26 I.13 2.97 1.80 0.92 I.18 0.47 3.34 2.13 I.01 I.28 I.51 2.01 0.37 2.49 0.68	5.32 4.94 	83 70 - 85 70 41 28 42 82 30 75 16 28 33 62 93 64 66	1 2 1 3 3 4 4 4 4 4 4 4 1 1 3 3 4	Rh.* Se.‡ Si.* Na. (liq.) Ta.* Sn.* W.* V.* Zn.*	μ 0.579 .490 .589 .760 .589 1.25 2.25 .589 .579 .579 .257 .441 .589 .668	1.54 2.94 3.12 2.93 2.60 4.18 3.67 3.53 .004 2.05 1.48 2.76 3.03 0.55 0.93 1.93 2.62	4.67 2.31 1.49 0.45 0.06 0.09 0.08 0.08 2.61 2.31 5.25 2.71 3.51 0.61 3.19 4.66 5.08	78 44 35 25 20 38 33 31 99 44 82 49 58 20 73 74 73	3 5 5 5 5 6 6 6 1 3 1 3 3 4 4 4 4 4 4 4
Pd.* Pt.† Ni.*	.44I .589 .668 .579 .257 .44I .589 .668 .275 .44I .589	1.01 1.62 1.72 1.62 1.17 1.94 2.63 2.91 1.09 1.16 1.30	3.42 4.41 4.70 3.41 1.65 3.16 3.54 3.66 1.16 1.23 1.97	74 75 77 65 37 58 59 59 24 25 43	4 4 4 3 4 4 4 4 4 4 4	λ = wave k = absor (1) Drude used, Ann. c. 36, p. 824, deutsch. Pr Meier, Ann (5) Wood, Ingersoll, se * solid, † as film in va	rption ir s, see Ta der Phys 1889; (nysik. G ales der Phil. M e Table electrol	dex, R ble 205 sik und 3) v. V es. 12, Physi ag. (6) 205.	= refl; (2) K Chemi Warten p. 10 k, 10, p	ection. Lundt, p e, 34, p berg, V 5, 1910 o. 581, 1 7, 1902	orism 477, Verh. ; (4) 5903; ; (6)

TABLE 355 .- Reflecting Power of Metals. (See page 298.)

Wave- length	Al.	Sb.	Cd.	Co.	Graph-	Ir.	Mg.	Mo.	Pd.	Rh.	Si.	Ta.	Te.	Sn.	W	Va.	Zn.
μ								Pe	er cen	ts.							
.5 .6 .8 I.0 2.0 4.0 7.0 IO.0 I2.0	71 82 92 96 98 98	53 54 55 60 68 71 72	72 87 96 98 98 99	67 72 81 93 97 97	22 24 25 27 35 48 54 59	- - 78 87 94 95 96 96	72 73 74 74 77 84 91 —	46 48 52 58 82 90 93 94 95	72 81 88 94 97 97	76 77 81 84 91 92 94 95	34 32 29 28 28 28 28 28	38 45 64 78 90 93 94 -	- 49 48 50 52 57 68 -	- 54 61 72 81 84 85	49 51 56 62 85 93 95 96 96	57 58 60 61 69 79 88 -	- - 80 92 97 98 98 99

Coblentz, Bulletin Bureau of Standards, 2, p. 457, 1906, 7, p. 107, 1911. The surfaces of some of the samples were not perfect so that the corresponding values have less weight. The methods for polishing the various metals are described in the original articles. The following more recent values are given by Coblentz and Emerson, Bul. Bur. Stds. 14, p. 207, 1917; Stellite, an exceedingly hard and untarnishable alloy of Co, Cr, Mo, Mn, and Fe (C, S1, S, P) was obtained from the Haynes Stellite Co, Kokomo, Indiana.

Wave-length, μ , .15 .20 .30 .50 .75 1.00 2.00 3.00 4.00 5.00 9.00 Tungsten, $\frac{-}{32}$.42 .50 .64 .67 .689 .747 .792 .825 .848 .880

According to Fresnel the amount of light reflected by the surface of a transparent medium $= \frac{1}{2} \left\{ \frac{\sin^2{(i-r)}}{\sin^2{(i+r)}} + \frac{\tan^2{(i-r)}}{\tan^2{(i+r)}} \right\}; A \text{ is the amount polarized in the plane of incidence; } B \text{ is that polarized perpendicular to this; } i \text{ and } r \text{ are the angles of incidence and refraction.}$

TABLE 356. —Light reflected when $i=0^\circ$ or Incident Light is Normal to Surface.

H.	$\frac{1}{2}(A+B)$.	n.	$\frac{1}{2}(A+B)$.	n.	$\frac{1}{2}(A+B)$.	22,	$\frac{1}{2}(A+B)$.
I.00 I.02 I.05 I.I I.2 I.3	0.00 0.01 0.06 0.23 0.83 1.70	1.4 1.5 1.6 1.7 1.8 1.9	2.78 4.00 5.33 6.72 8.16 9.63	2.0 2.25 2.5 2.75 3. 4.	11.11 14.06 18.37 22.89 25.00 36.00	5.83 10. 100.	44.44 50.00 66.67 96.08 100.00

TABLE 357.—Light reflected when n is near Unity or equals 1+dn.

ż.	А.	В.	$\frac{1}{2}(A+B).$	$\frac{A-B}{A+B}$.*
0° 5 10 15 20 25 30 35 40 45 50 65 70 75 88 5 90	1.000 1.015 1.063 1.149 1.282 1.482 1.778 2.221 2.904 4.000 5.857 9.239 16.000 31.346 73.079 222.85 1099.85 17330.64	1.000 .985 .939 .862 .752 .612 .444 .260 .088 .000 .176 1.081 4.000 12.952 42.884 167.16 971.21 16808.08	1.000 1.000 1.001 1.005 1.017 1.047 1.111 1.240 1.496 2.000 3.016 5.160 10.000 22.149 57.981 195.00 1035.53 17069.36	0.0 1.5 6.2 14.3 26.0 41.5 60.0 79.1 94.5 100.0 94.5 79.1 60.0 41.5 26.0 41.5 0.0

TABLE 388.- Light reflected when n = 1.55.

ž.	r.	A.	В.	dA.t	dB.†	$\frac{1}{2}(A+B)$.	$\frac{A-B}{A+B}$ *
5 10 15 20 25 30 35 40 45 55 60 65 70 75 82 30 85 0 87 0 88 9	0	4.65 4.70 4.84 5.09 5.43 5.05 6.64 7.55 8.77 10.38 12.54 15.43 19.35 24.69 31.99 42.00 55.74 64.41 74.52 79.02 83.80 88.88 94.28 100.00	4.65 4.61 4.47 4.24 3.92 3.50 3.00 2.40 1.75 1.08 0.46 0.05 0.12 1.13 4.00 10.38 23.34 49.03 56.62 65.32 75.31 86.79	0.130 .131 .135 .141 .150 .161 .175 .191 .210 .233 .263 .303 .342 .375 .400 .410 .370 .320 .250 .250 .250 .250 .250 .250 .250 .2	0.130 .129 .126 .121 .114 .105 .094 .081 .066 .049 .027 .007 -013 -032 -060 -069 -067 -061 -055 -046 -036 -036 -036 -036	4.65 4.65 4.66 4.66 4.68 4.73 4.82 4.98 5.26 5.73 6.50 7.74 9.73 12.91 18.00 26.19 39 54 49.22 61.77 67.82 74.56 82.10 90.54	0.0 1.0 4.0 9.1 16.4 25.9 37.8 51.7 66.7 81.2 92.9 99.3 98.8 91.2 77.7 61.8 41.0 20.6 16.5 12.4 8.3 4.1

Angle of total polarization = 57° 10'.3, A = 16.99.

^{*} This column gives the degree of polarization.

† Columns 5 and 6 furnish a means of determining A and B for other values of n. They represent the change in these quantities for a change of n of o.o.

Taken from E. C. Pickering's "Applications of Fresnel's Formula for the Reflection of Light."

TABLES 359-360.

REFLECTING POWER OF METALS.

TABLE 359. - Perpendicular Incidence and Reflection. (See also Tables 352-355.)

The numbers give the per cents of the incident radiation reflected.

Wave-length, µ.	Silver-backed Glass,	Mercury-backed Glass.	Mach's Magnalium.	Brandes-Schünemann Alloy. 32Cu+34Sn+29Ni+5Fe.	Ross' Speculum Metal. 68.2Cu+31.8Sn.	Nickel, Electrolytically Deposited.	Copper. Electrolytically Deposited.	Steel. Untempered.	Commercially Pure,	Platinum, Electrolytically Deposited,	Gold, Electrolytically Deposited.	Brass. (Troubridge),	Silver. Chemically Deposited,
.251 .288 .305 .316 .326 .338 .357 .385			67.0 70.6 72.2 - 75.5 81.2 83.9	35.8 37.1 37.2 39.3 43.3 44.3	29.9 37.7 41.7 - - 51.0 53.1	37.8 42.7 44.2 - 45.2 46.5 48.8 49.6		32.9 35.0 37.2 40.3 45.0 47.8	25.9 24.3 25.3 24.9 27.3 28.6	33.8 38.8 39.8 - 41.4 - 43.4 45.4	38.8 34.0 31.8 - 28.6 - 27.9 27.1		34.1 21.2 9.1 4.2 14.6 55.5 74.5 81.4
.420 .450 .500 .550 .600 .650	85.7 86.6 88.2 88.1 89.1 89.6	72.8 70.9 71.2 69.9 71.5 72.8	83.3 83.4 83.3 82.7 83.0 82.7 83.3	47.2 49.2 49.3 48.3 47.5 51.5 54.9	56.4 60.0 63.2 64.0 64.3 65.4 66.8	56.6 59.4 60.8 62.6 64.9 66.6 68.8	48.8 53.3 59.5 83.5 89.0 90.7	51.9 54.4 54.8 54.9 55.4 56.4 57.6	32.7 37.0 43.7 47.7 71.8 80.0 83.1	5i.8 54.7 58.4 61.1 64.2 66.5 69.0	29.3 33.1 47.0 74.0 84.4 88.9 92.3		86.6 90.5 91.3 92.7 92.6 94.7 95.4
.800 1.0 1.5 2.0 3.0 4.0 5.0 7.0 9.0 11.0		11111111111	84.3 84.1 85.1 86.7 87.4 88.7 89.0 90.0 90.6 90.7 92.2	63.1 69.8 79.1 82.3 85.4 87.1 87.3 88.6 90.3 90.2 90.3	70.5 75.0 80.4 86.2 88.5 89.1 90.1 92.2 92.9 93.6	69.6 72.0 78.6 83.5 88.7 91.1 94.4 94.3 95.6 95.9 97.2		58.0 63.1 70.8 76.7 83.0 87.8 89.0 92.9 92.9 94.0 96.0	88.6 90.1 93.8 95.5 97.1 97.3 97.9 98.3 98.4 98.4	70.3 72.9 77.7 80.6 88.8 91.5 93.5 95.5 95.4 95.6 96.4	94.9 97.3 96.8 96.9 97.0 98.3 98.0 98.3 97.9	91.0 93.7 95.7 95.9 97.0 97.8 96.6	96.8 97.0 98.2 97.8 98.1 98.5 98.1 98.5 98.7 98.8 98.3

Based upon the work of Hagen and Rubens, Ann. der Phys. (1) 352, 1900; (8) 1, 1902; (11) 873, 1903. Taken partly from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TABLE 360. — Percentage Diffuse Reflection from Miscellaneous Substances.

		La	mp-bla				leaves.	ė		di	Paper.	d)		velvet.		
Wave- length	Paint.	Rosin.	Sperm candle.	Acetylene	Camphor.	Pt. black electrol.	Green leav	Lead oxide.	Al. oxide.	Zinc oxide.	White Pa	Lead carbonate.	Asphalt.	Black vel	Black felt.	Red brick.
*.60 *.95 4.4 8.8 24.0	3.2 3.4 3.2 3.8 4.4	1.3	1.1 .9 1.3 4.0	0.6 .8 I.2 2.I	1.3 1.2 1.6 5.7	I.I I.4 2.I 4.2	25.	52. 51. 26. 10.	84. 88. 21. 2. 6.	82. 86. 8. 3. 5.	75. 18. 5.	89. 93. 29. 11. 7.	15.	3.7 2.7	14.	30.

^{*}Not monochromatic (max.) means from Coblentz, J. Franklin Inst. 1912. Bulletin Bureau of Standards, 9, p. 283, 1912, contains many other materials.

REFLECTING POWER OF PIGMENTS.

TABLE 361. - Percentage Reflecting Power of Dry Powdered Pigments.

Taken from "The Physical Basis of Color Technology," Luckiesh, J. Franklin Inst., 1917. The total reflecting power depends on the distribution of energy in the illuminant and is given in the last three columns for noon sun, blue sky, and for a 7.9 lumens/watt tungsten filament.

Spectrum color.	Vio- let.	Bl	ue.		Green	l.	Yell	low.	(range	e.		Red.	1	Sun.	light.	Tungsten. lamp.
Wave-length in μ	0.44	0.46	0.48	0.50	0.52	0.54	0.56	0.58	0.60	0.62	0.64	0.66	0.68	0.70	Noon	Sky	Tung
American vermilion Venetian red Tuscan red Indian red Burnt sienna	8 5 7 8 4	6 5 7 7 4	5 7 7 4	5 5 8 7 4	6 5 8 7 5	6 6 8 7 6	9 7 8 7 9	11 12 12 11 14	24 19 16 15 18	39 24 18 18	53 28 20 20 21	61 30 22 22 23	66 32 23 23 24	65 32 24 24 25	14 11 10 11	12 10 10	12 13 12 11 13
Raw sienna	12 22 8 20 5	13 22 9 20 5	13 23 7 21 6	13 27 7 24 8	18 40 10 32 18	26 53 19 42 48	35 63 30 53 66	43 71 46 63 75	46 75 60 64 78	46 74 62 61 79	45 73 66 6a 81	44 73 82 59 81	45 73 81 59 81	43 72 80 59 81	33 58 33 49 54	30 55 29 46 50	37 63 40 53 63
Chrome yellow light Chrome green light Chrome green medium Cobalt blue Ultramarine blue	13 10 7 59 67	13 10 7 58 54	18 14 10 49 38	30 23 21 35 21	56 26 21 23 10	82 23 17 15 6	88 20 13 11 4	89 17 11 10	90 14 9 10 3	89 11 7 10 4	88 9 6 11 5	87 8 6 15 7	85 7 6 20 10	84 6 5 25 17	76 19 14 16 7	70 19 14 18 10	82 18 12 13 6

TABLE 362. - Infra-red Diffuse Percentage Reflecting Powers of Dry Pigments.

Wave- length in μ	Co2O3	CuO	Cr ₂ O ₃	PbO	Fe ₂ O ₃	Y2O3	PbCr04	Al ₂ O ₃	ThO2	OuZ	MgO	CaO	ZrO ₂	PbCOs	MgCOs	White lead paint.	Zn oxide paint.
0.60* 0.95* 4.4 8.8 24.0	3 4 14 13 6	24 15 4	27 45 33 5 8	52 51 26 10	26 41 30 4	74 34 11 10	70 41 5 7	84 88 21 20 6	86 47 7 10	82 86 8 3 5	86 16 2	85 	86 84 23 5 5	88 93 29 10 7	85 89 11 4 9	76 79 —	68 72 — —

*Non-monochromatic means from Coblentz, Bul. Bureau Standards 9, p. 283, 1912.

For the Reflecting (and transmissive) power of ROUGHENED SURFACES at various angles of incidence, see Gorton, Physical Review, 7, p. 66, 1916. A surface of plate glass, ground uniformly with the finest emery and then silvered, used at an angle of 75°, reflected 90 per cent at 4\mu, approached 100 for longer waves, only 10 at 1\mu, less than 5 in the visible red and approached o for shorter waves. Similar results were obtained with a plate of rock salt for transmitted energy when roughened merely by breathing on it. In both cases the finer the surface, the more suddenly it cuts off the short waves.

REFLECTING POWER.

TABLE 363. - Reflecting Power of Powders (White Light).

Various pure chemicals, very finely powdered and surface formed by pressing down with glass plate. White (noon sunlight) light. Reflection in per cent. Nutting, Jones, Elliott, Tr. Ill. Eng. Soc. 9, 593, 1914.

TABLE 364. - Variation of Reflecting Power of Surfaces with Angle.

Illumination at normal incidence, 14 watt tungsten lamp, reflection at angles indicated with normal. Ill. Eng. Soc., Glare Committee, Tr. Ill. Eng. Soc. 11, p. 92, 1916.

Angle of observation.	o°	ı°	3°	5°	10°	15°	30°	45°	60°
Magnesium carbonate block Magnesium oxide Matt photographic paper	0.80	=	_	o.88 o.80 o.78	o.88 o.80 o.78	0.87 0.80 0.78	o.83 o.77 o.78	0.72 0.75 0.76	0.6
White blotter	0.76 0.69 II.3	0.69	0.69	0.76 0.69 0.31	0.76	0.76 0.69 0.21	0.73 0.68 0.20	0.70	0.6
Glass, fine ground	0:23	0.29	0.29	0.29 0.20 0.72 4.55	0.27 0.19 0.62 3.86	0.20 0.16 0.49 3.03	0.14 0.11 0.28 0.78	0. I3 0. II 0. 2I 0. 42	0.1

The following figures, taken from Fowle, Smithsonian Misc. Col. 58, No. 8, indicate the amount of energy scattered on each side of the directly reflected beam from a silvered mirror; the energy at the center of the reflected beam was taken as 100,000, and the angle of incidence was about 3°.

Angle of reflection, 3° ±	100,000	8′ 600	10' 244	15' 146	20' 107	30' 66	45' 33	60' 22	100'
---------------------------	---------	-----------	------------	------------	------------	-----------	-----------	-----------	------

Wave-length of max. energy of Nernst lamp used as source about 2µ.

TABLE 365. - Infra-red Reflectivity of Tungsten (Temperature Variation).

Three tungsten mirrors were used, — a polished Coolidge X-ray target and two polished flattened wires mounted in evacuated soft-glass bulbs with terminals for heating electrically. Weniger and Pfund, J. Franklin Inst.

Wave- length	Absolute reflec- tivity at room temperature			e in reflectiv m temperatu	
in μ.	in per cent.	1377° K	1628° K	1853° K	2056° K
0.67 0.80 1.27 1.90 2.00 2.90 4.00	51 55 70 83 85 92 93	+6.0 -0.0 -6.6 -7.5 -7.7	+7·4 -0.0 -8.2 -9.3 -9.4	+8.7 0.0 -9.6 -10.9 -11.1	+9.8 +8.2 0.0 -II.0 -I2.3 -I2.5 -I2.5

See also Weniger and Pfund, Phys. Rev. 15, p. 427, 1919.

TRANSMISSIBILITY OF RADIATION BY DYES.

Percentage transmissions of aqueous solutions taken from The Physical Basis of Color-Technology, Luckiesh, J. Franklin Inst. 184, 1917.

Spectrum color →	Violet.	Blu	e.	(Green.		Yelle	ow.	C	range).		Red.	
Wave-length in μo	. 44	.46	.48	. 50	. 52	.54	. 56	. 58	.60	.62	.64	. 66	.68	.70
Carmen ruby opt Amido naphthol red Coccinine. Erythrosine. Hematoxyline. Alizarinered. Acid rosolic (pure). Rapid filter red. Aniline red fast extra A Pinatype red fast. Eosine Rose bengal Cobalt nitrate.	6 1 4 	3 1 3 - - 70 51	7 2 1 — — 34 40	- - 13 3 - - - 6 31		- - 12 6 - 1 2 - - 48			4 56 90 44 39 78 86 55 11 87 96 87	4 38 96 95 54 54 88 95 72 35 93 97	18 75 98 96 63 65 90 96 84 55 92 98	37 92 98 96 73 72 91 96 88 65 92 98	49 96 98 96 78 77 92 96 90 68 92 98 90	60 96 98 96 82 79 92 96 92 69 92 98 90
Tartrazine Chrysoidin Aurantia Aniline yellow phosphine Fluorescein Aniline yellow fast S Methyl orange indicator. Uranine Uranine Uranine naphthaline Orange B naphthol Safranine. Martius gelb. Naphthol yellow. Potassium bichromate, sat. Cobalt chromate	15		I	7 1 4 - 1 18 82	7 	3 20 91 84 96 77 1 84 91 10	75 23 43 97 96 1 97 82 43 91 96 60 92	86 53 60 98 96 31 97 83 88 94 97 84 93	91 2 82 67 98 96 70 97 84 95 3 95 98 88 95	95 23 92 75 98 96 79 97 85 96 27 98 89 96	96 50 96 81 98 96 80 97 86 97 64 95 98 89	97 71 96 85 98 96 81 97 86 97 85 98 89 96	98 79 96 86 98 96 81 97 87 97 93 95 98 89 96	98 79 96 87 98 96 81 97 87 93 95 98 88
Naphthol green Brilliant green Filter blue green. Malachite green. Saurgrün Methylengrün Aniline green naphthol B. Neptune green. Cupric chloride.	35 35 28 27	4 39 49 12 29 31 6 40 84	7 69 64 20 57 32 14 63 89	21 52 70 8 57 26 24 41 92	30 23 60 1 39 17 34 13 92	36 4 37 19 7 40 1 89	29 13 4 2 32 80	16 -2 -1 1 14 -67	7 - - - 4 52	2 36	I	- - - - - 6		50 30 28 5
Turnbull's blue. Victoria blau. Prussian blue (soluble) Wasser blau Resorcine blue Toluidin blau Patent blue. Dianil blue Filter blue Aniline blue, methyl.	58 52 66 89 • 25 • 66 83 77 84 • 92	60 23 71 75 18 31 91 69 79 88	56 9 76 51 6 13 84 59 66 78	51 69 26 2 3 76 48 44 52	38 60 7 1 65 35 27 27	28 46 1 	18 32 — — 24 15 14 3	9 20 - 8 9 19 2	5 12 1 1 - 2 5 36 2	3 1 7 2 2 2 - 5 5 4	1 4 5 6 14 1 7 74 8	21 3 18 41 4 6 14 81 16	49 3 37 64 16 42 29 88 25	73 60 72 40 78 53 92 45
Magenta Gentiana violet Rosazeine Iodine (dense) Rhodamine B Acid violet Cyonine in alcohol Xylene red Methyl violet B	21 89 50 	8 83 28 71 76 1 23 4	2 64 2 - 45 68 - I	1 44 — 13 50 —	26 - 2 33 - -	19 - - 26 - -	1 15 — 27 —	22 10 6 -23 34 - 1	73 13 55 83 49 27	93 42 90 	97 75 98 1 96 84 97 3	97 92 98 93 96 96 1 97 26	97 93 98 11 95 96 13 97 63	97 94 98 23 94 96 23 96 89

For the infra-red transmission (to 12μ) and reflection powers of a number of aniline dyes, see Johnson and Spence, Phys. Rev. 5, p. 349, 1915.

TABLES 367-369.

TRANSMISSIBILITY OF RADIATION BY JENA GLASSES.

TABLE 367.

Coefficients, a_t in the formula $I_t = I_0 a^t$, where I_0 is the Intensity before, and I_t after, transmission through the thickness t. Deduced from observations by Müller, Vogel, and Rubens as quoted in Hovestadt's Jena Glass (English translation).

				Coe	fficient	of tr	ransı	missio	n, a.				
Unit t=1 dm.	·375 µ	390 µ	.400 /	.434	μ .43	6 μ	-45	5 μ	177 µ	.50	ο3 μ	.58ο μ	.677 µ
O 340, Ord. light flint O 102, H'vy silicate flint O 93, Ord. "" O 203, "" crown O 598, (Crown)	.388	.456	025 .463		02 .5 7 67 .8	.680 .566 .714 .806 .797		63 . 07 . 22 .	880 700 899 860 77 I	.7	380 82 371 372 76	.878 .828 .903 .872 .818	.939 .794 .943 .903 .860
Unit t=1 cm.	0.7 μ	0.95 μ	1.1 μ	1.4 μ	1.7 µ	2.0	ρμ	2.3 μ	2.5	μ	2.7 µ	2.9 μ	3.1 μ
S 204, Borate crown S 179, Med. phosp. cr. O 1143, Dense, bor. sil. cr. O 1092, Crown O 1151, " O 451, Light flint O 469, Heavy " O 500, " " S 163, " "	1.00 - .98 .99 .98 1.00 1.00	.99 .98 - .96 - -	·94 ·95 ·97 ·95 ·99 ·99 ·98 I.oo	.90 .90 - .99 .99 - -	.85 .84 .95 .99 .98 .98 .99	.0	81 67 93 91 94 95 98 -	.69 .49 .90 .82 .90 .92 .98 1.00	.8	7 4 1 9 4	.29 .18 .71 .60 .75 .78 .90 .92	.48 .45 .54 .66	- .27 .29 .32 .34 .50 .53 .60

TABLE 368.

Note: With the following data, t must be expressed in millimeters; i. e. the figures as given give the transmissions for thickness of 1 mm.

	Wave-length in μ.													
No. and Type of Glass.			Visibl	e Spec	trum.				Ultr	a-viole	t Spect	rum.		
	.644 µ	.578 µ	.546 µ	.509 µ	.480 μ	.436 μ	.405 μ	.384 μ	.361 µ	.340 μ	.332 µ	.309 µ	.28ο μ	
F 3815 Dark neutral F 4512 Red filter F 2745 Copper ruby F 4313 Dark yellow F 4937 Bright yellow F 4930 Green filter F 3873 Blue filter F 3654 Cobalt glass,	·35 ·94 ·72 ·98 ·98 I.0	·35 .05 ·39 ·97 ·97 I.0	·37 ·47 ·93 ·96 I.0 ·64	·35 ·47 .83 ·93 ·99 .62 .18	·34 ·45 .09 ·44 ·74 ·44 ·50	.30 .43 .15 .40	.15	.06	.22	.18	.14	.06		
transparent for outer red F 3653 Blue, ultraviolet F 3728 Didymium, str'g bands	99	- - -72		.15	·44 .11			1.0	1.0	1.0	1.0 1.0	.58	.18	

This and the following table are taken from Jenaer Glas für die Optik, Liste 751, 1909

TABLE 369. — Transmissibility by Jena Ultra-violet Glasses.

No. and Type of Glass.	Thickness,	0.397 μ	ο.383 μ	0.361 μ	0.346 μ	0.325 μ	0.309 μ	0.280 μ
UV 3199 Ultra-violet " " " " " " " " " " " " " " " " "	I mm. 2 mm. 1 dm. 1 mm. 2 mm. 1 dm.	1.00 0.99 0.95 1.00 0.98 0.96	1.00 0.99 0.95 1.00 0.98 0.87	1.00 0.99 0.89 1.00 0.98 0.79	1.00 0.97 0.70 1.00 0.92 0.45	1.00 0.90 0.36 0.98 0.78 0.08	0.95 0.57 0.91 0.38	0.56

TRANSMISSIBILITY OF RADIATION BY GLASSES.

The following data giving the percentage transmission of radiation of various substances, mostly glasses, are selected from Spectroradiometric Investigation of the Transmission of Various substances, Coblentz, Emerson and Long, Bul. Bureau Standards, 14, p. 653, 1918.

	Thick-					mission					
Glass or substance, manufacturer.	ness, mm				Wa	ve-leng	gths in	μ.			
		0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
Purple fluorite	4.98	-	_		47	48	48	57	60	62	62
Gold film on Crooke's glass	-	22	3	2	I	I	I	0	O	O	0
" " crown glass Molybdenite	-	34	8	3	2	I	I .6	0	48	48	48
Cr ₂ (SO ₄) ₃ ,18 H ₂ O	.007	0	83	63	37	46	46	47	40	40	40
Chrome alum, 10 g to 100 g H ₂ O		_	73	0	0		_	_	_		_
CoCl ₂ , 10 g to 100 g H ₂ O GLASSES:		-	50	0	0	_		-	-	-	-
Copper ruby, flashed	1.95	-	50	64	72	76	40	33	36	7	0
G24, Corning, red	5.90	-	60	70	72	65	12	I	0	0	0
Schott's red, No. 2745	3.18	-	83	89	89	75	IO	IO	0	0	0
G34, Corning, orange	3.55		50	62	67	68	15	3	I	0	0
Pyrex, Corning	1.55	80	90	60	9I 82	87	35	13	7	2	0
Novieweld3, Corning, dk-yellow	2.2	12	75	2	6	75	23	7	7	1	0
Schott's 43111, green	3.43	50	4	53	79	83	25	9	0	0	0
GI710N, green, Corning	5.11		I	23	53	68	20	9	8	0	0
G174J, Corning, heat abs'b'g	2.6		2	4	12	19	II	4	6	0	0
G124JA, Corning	1.5	52	0	I	5	IO	3	5	6	0	0
Cobalt blue	2.43		74	43	63	79	36	27	28	0	0
Schott's F3086, blue	2.58	-	0	I	2	31	II	5	4	0	0
G4013, Corning, blue	6.36	_	0	15	50	61	II	1 20	20	0	0
G1711Z, Corning, blue	3.70	_	23	60	74	75 78	45	13	12	1	0
Amethyst, C, Corning	2.11	55	01	OI	QI	88	45	20	25	7	0
G172BW5, Corning, red-purple	4.43	33	0	0	2	5	6	8	12	2	0
Crookes' A, A. O. Co	1.96	90	92	91	90	83	38	23	27	5	0
" sage green 30, A. O. Co	1.98	50	0	0	4	II	8	8	II	3	0
Lab. 58, A. O. Co	2.04	72	86	91	91	89	51	35	38	7	0
Fieurzal B, A. O. Co	2.04	59	76	80	82	81	30	20	25	2	0
Akopos green, J. K. O. Co	1.58	76	91	91	91	90	70	52	51	IO	0
						-				1	

Manufacturers: Corning Glass Works, Corning, N. Y.; A. O. Co., American Optical Co., Southbridge, Mass.; J. K. O. Co., Julius King Optical Co., New York City. For other glasses see original reference. See also succeeding table, which contains data for many of the same glasses.

TABLE 371. — Transmission of the Radiations from a Gas-filled Tungsten Lamp, the Sun, a Magnetite Arc, and from a Quartz Mercury Vapor Lamp (no Globe) through Various Substances, especially Colored Glasses.

			Thick-	7	Transmissio	n, per cen	t.
Color.	Trade name.	Source.*	ness in mm	Gas- filled tung- sten.	Quartz mercury vapor.†	Mag- netite arc.†	Solar radia- tion.
Greenish-yellow. """ """ Smoky green Yellow-green """ Amber. Orange Yellow-green Blue-green	Fieuzal, 64 Euphos, B Akopos green Hallauer, 65 Hallauer, 65 Hallauer, 64 Roviweld, 30% Noviweld, shade 3 Noviweld, shade 6 Noviweld, shade 6 Noviweld, shade 7 Saniweld, dark G 34	A. O. C. F. H. E. F. H. E. B. S. B. & L. L. B. S. F. G. W. C. G. W. Schotts B. S. B. S	2. 04 1. 80 1. 60 1. 60 1. 3. 27 3. 12 1. 58 2. 36 1. 35 2. 81 2. 14 2. 20 2. 20 2. 17 2. 17 3. 12 2. 50 2. 88 2. 00 2. 19 2. 195 2. 195 3. 195	71.6 75.5 50.7 78.9 78.8 84.6 70.3 58.7 0.4 1.0 0.8 51.3 41.0 0.8 51.6 78.1 5.3 82.7 3.7 5.3 65.3 65.3 75.7 2.6 83.3 82.8 36.6 17.4 37.6 37.9 46.6 24.9 46.6 24.9 46.6 24.9 46.6 24.9 34.2	26.9 34.3 22.0 24.7 29.5 24.7 29.5 27.8 4.2 17.7 25.9 21.5 22.1 26.6 17.3 21.5 31.2 16.0 46.1 32.0 7.2 17.3 40.0 20.7 21.3 40.0 20.7 21.3 40.0 20.7 21.3 40.0 20.7 21.3 40.0 20.7 21.3 40.0 20.7 21.3 40.0 20.7 21.3 40.0 20.7 21.3 40.0 20.7 21.3 21.3 21.3 21.3 21.3 21.3 21.3 21.3	46.0 55.0 	63 72 — 64 74 55 9 — 0.9 — 50 47 72 17 72 17 72 19 60 43 89 69 12 88 79 11 16 — 41 48 46 82 92 — — 41

^{*}A. O. C., Amer. Optical Co., Southbridge, Mass.; C. G. W., Corning Glass Works, Corning, N. Y.; B. & L., Bausch & Lomb, Rochester, N. Y.; J. K., Julius King Optical Co., New York City; F. H. E., F. H. Edmonds, optician, Washington, D. C.; B. S., Bureau of Standards; scrap material, source unknown.

† Infra-red radiation absorbed by quartz cell containing r cm layer of water. Taken from Coblentz-Emerson & Long, Bul. Bureau Standards, 14, 653, 1918.

‡ Transmission of r cm cell having glass windows.

TRANSMISSIBILITY OF RADIATION.

Transmissibility of the Various Substances of Tables 330 to 338.

Alum: Ordinary alum (crystal) absorbs the infra-red.

Metallic reflection at 9.05 \mu and 30 to 40 \mu.

Rock-salt: Rubens and Trowbridge (Wied. Ann. 65, 1898) give the following transparencies for a 1 cm. thick plate in %:

	9											
%	99.5	99.5	99.3	97.6	93.1	84.6	66.1	51.6	27.5	9.6	0.6	0.

Pflüger (Phys. Zt. 5. 1904) gives the following for the ultra-violet, same thickness: $280\mu\mu$, 95.5%; 231, 86%; 210, 77%; 186, 70%.

Metallic reflection at 0.110 µ, 0.156, 51.2, and 87 µ.

Sylvite: Transparency of a 1 cm. thick plate (Trowbridge, Wied. Ann. 60, 1897).

λ	9	10	11	12	13	14	15	16	17	18	19	20.7	23.7µ
%	100.	98.8	99.0	99.5	99.5	97.5	95.4	93.6	92.	86.	76.	58.	15.

Metallic reflection at 0.114\mu, 0.161, 61.1, 100.

Fluorite: Very transparent for the ultra-violet nearly to 0.1 µ.

Rubens and Trowbridge give the following for a 1 cm. plate (Wied. Ann. 60, 1897):

λ	8μ	9	10	11	12μ
%	84.4	54.3	16.4	1.0	0

Metallic reflection at 24 µ, 31.6, 40 µ.

Iceland Spar: Merritt (Wied. Ann. 55, 1895) gives the following values of k in the formula $i = i_0 e^{-kd}$ (d in cm.):

For the ordinary ray:

λ	1.02	1.45	1.72	2.07	2.11	2.30	2.44	2.53	2.60	2.65	2.74µ
k	0.0	0.0	0.03	0.13	0.74	1.92	3.00	1.92	1.21	1.74	2.36

λ	2.83	2.90	2.95	3.04	3.30	3.47	3.62	3.80	3.98	4.35	4.52	4.83µ 6.1
k	1.32	0.70	1.80	4.71	22.7	19.4	9.6	18.6	90	6.6	14.3	6.1

For the extraordinary ray:

λ	2.49	2.87	3.00	3.28	3.38	3.59	3.76	3.90	4.02	4.41	4.67µ
k	0.14	0.08	0.43	1.32	0.89	1.79	2.04	1.17	0.89	1.07	2.40

λ	4.91	5.04	5.34	5.50µ
k	1.25	2.13	4.41	12.8

Quartz: Very transparent to the ultra-violet; Pflüger gets the following transmission values for a plate 1 cm. thick: at 0.222\mu, 94.2\%; 0.214, 92; 0.203, 83.6; 0.186, 67.2\%.

Merritt (Wied. Ann. 55, 1895) gives the following values for k (see formula under Iceland Spar):
For the ordinary ray:

	2.72										
k	0.20	0.47	0.57	0.31	0.20	0.15	1.26	1.61	2.04	3.41	7.30

For the extraordinary ray:

λ	2.74	2.89	3.00	3.08	3.26	3-43	3.52	3.59	3.64	3.74	3.91	4.19	4.36μ
k	0.0	0.11	0.33	0.26	0.11	0.51	0.76	1.88	1.83	1.62	2.22	3.35	8.0

For λ>7 μ, becomes opaque, metallic reflection at 8.50μ, 9.02, 20.75-24.4μ, then transparent again.

The above are taken from Kayser's "Handbuch der Spectroscopie," vol. iii.

TABLES 373-374.

TRANSMISSIBILITY OF RADIATION.

TABLE 373. - Color Screens.

The following light-filters are quoted from Landolt's "Das optische Drehungsvermögen, etc." 1808. Although only the potassium salt does not keep well it is perhaps safer to use freshly prepared

Color.	Thick- ness. mm.	Water solutions of	Grammes of substance in 100 c.cm.	Optical centre of band,	Transmission.
Red " Yellow " Green " Bright { blue { Dark } blue {	20 20 20 15 15 20 20 20 20 20 20	Crystal-violet, 5BO Potassium monochromate Nickel-sulphate, NiSO ₄ -7aq. Potassium monochromate Potassium permanganate Copper chloride, CuCl ₂ .2aq. Potassium monochromate Double-green, SF Copper-sulphate, CuSO ₄ .5aq. Crystal-violet, 5BO Copper sulphate, CuSO ₄ .5aq.	0.005 10. 30. 10. 0.025 60. 10. 0.02	o.66 59 o.5919 o.5330 o.4885 o.4482	{ begins about 0.718μ. } ends sharp at 0.639μ. 0.614–0.574μ, 0.540–0.505μ } 0.526–0.494 and { 0.494–0.458μ 0.478–0.410μ

TABLE 374. - Color Screens.

The following list is condensed from Wood's Physical Optics:

Methyl violet, 4R (Berlin Anilin Fabrik) very dilute, and nitroso-dimethyl-aniline transmits 0.365μ. Methyl violet + chinin-sulphate (separate solutions), the violet solution made strong enough to blot out 0.4359 µ, transmits 0.4047 and 0.4048, also faintly 0.3984.

Cobalt glass + aesculin solution transmits 0.4359µ.

Guinea green B extra (Berlin) + chinin sulphate transmits 0.4916 μ .
Neptune green (Bayer, Elberfeld) + chrysoidine. Dilute the latter enough to just transmit 0.5790 and 0.5461; then add the Neptune green until the yellow lines disappear.

Chrysoidine + eosine transmits 0.5790µ. The former should be dilute and the eosine added until

the green line disappears. Silver chemically deposited on a quartz plate is practically opaque except to the ultra-violet region 0.3160-0.3260 where 90% of the energy passes through. The film should be of such thickness

that a window backed by a brilliantly lighted sky is barely visible.

In the following those marked with a * are transparent to a more or less degree to the ultra-violet: *Cobalt chloride: solution in water, — absorbs 0.50-.53\mu; addition of CaCl2 widens the band to 0.47-.50. It is exceedingly transparent to the ultra-violet down to 0.20. If dissolved in methyl alcohol + water, absorbs 0.50-.53 and everything below 0.35. In methyl alcohol alone 0.485-0.555 and below 0.40 µ.

Copper chloride: in ethyl alcohol absorbs above 0.585 and below 0.535; in alcohol + 50% water,

above 0.595 and below 0.37 µ.

Neodymium salts are useful combined with other media, sharpening the edges of the absorption bands. In solution with bichromate of potash, transmits 0.535-.565 and above 0.60μ, the bands very sharp (a useful screen for photographing with a visually corrected objective).

Praseodymium salts: three strong bands at 0.482, .468, .444. In strong solutions they fuse into a

sharp band at 0.435-.485µ. Absorption below 0.34.

Picric acid absorbs 0.36-.42µ, depending on the concentration. Potassium chromate absorbs 0.40-.35, 0.30-.24, transmits 0.23\mu.

* Potassium permanganate: absorbs 0.555-.50, transmits all the ultra-violet.

Chromium chloride: absorbs above 0.57, between 0.50 and .39, and below 0.33 ... These limits vary with the concentration.

Aesculin: absorbs below 0.363μ, very useful for removing the ultra-violet.

* Nitroso-dimethyl-aniline: very dilute aqueous solution absorbs 0.49-.37 and transmits all the ultra-violet.

Very dense cobalt glass + dense ruby glass or a strong potassium bichromate solution cuts off everything below 0.70 and transmits freely the red.

Iodine: saturated solution in CS2 is opaque to the visible and transparent to the infra-red.

TRANSMISSIBILITY OF RADIATION.

TABLE 375. - Color Screens. Jena Glasses.

	Kind of Glass.	Maker's No	Color.	Region Transmitted.	Thick- ness. mm.
II	Copper-ruby	459 ^{III} 454 ^{III} 455 ^{III} 440 ^{III} 414 ^{III} 433 ^{III} 432 ^{III} 432 ^{III}	Red Bright yellow Bright yellow, fluo- resces. Bright yellow-brown Yellow-green Greenish-yellow Green Yellow-green Grass-green Dark green Blue, as CuSO4 Blue, as cobalt glass " " Blue Dark violet " "	Only red to 0.6µ. { Red, yellow; in thin layers also blue and violet. { Red, yellow, green to Eb; in } thin layer also blue } Red, yellow, green (weakened), blue (very weakened) Yellowish-green Red, green; from 0.65-50µ. Green, yellow, some red and blue. Yellowish-green, some red. Green (in thin sheets some blue). Green (green, blue, violet. Blue, violet. Blue, violet, blue-green (weak-lend), no red Blue, violet, extreme red. Violet (G-H), extreme red. Violet (G-H), some weakened. All parts of the spectrum weakened	1.7 16.

See "Über Farbgläser für wissenschaftliche und technische Zwecke," by Zsigmondy, Z. für Instrumentenkunde, 21, 1901 (from which the above table is taken), and "Uber Jenenser Lichtfilter," by Grebe, same volume.

(The following notes are quoted from Everett's translation of the above in the English edition of Hovestadt's "Jena Glass.")

Division of the spectrum into complementary colors:

Ist by 2728 (deep red) and 2742 (blue, like copper sulphate).

2nd by 454^{III} (bright yellow) and 447^{III} (blue, like cobalt glass).

3rd by 433^{III} (greenish-yellow) and 424^{III} (blue).

Thicknesses necessary in above: 2728, I.6–I.7 mm.; 2742, 5; 454^{III}, I6; 447^{III}, I.5–2.0; 433^{III},

2:5–3.5; 424^{III}, 3 mm.

Three-fold division into red, green and blue (with violet):

2728, 1.7 mm.; 414^{III}, 10 mm.; 447^{III}, 1.5 mm., or by 2728, 1.7 mm.; 436^{III}, 2.6 mm.; 447^{III}, 1.8 mm.

Grebe found the three following glasses specially suited for the additive methods of three-color projection:

2745, red; 438^{III}, green; 447^{III}, blue violet; corresponding closely to Young's three elementary color sensations.

Most of the Jena glasses can be supplied to order, but the absorption bands vary somewhat in different meltings.

See also "Atlas of Absorption Spectra," Uhler and Wood, Carnegie Institution Publications, 1907.

TABLE 376 .- Water.

Values of a in $I = I_0 e^{ad}$, d in c. m. I_0 ; I, intensity before and after transmission.

Wave-length μ,	.186	.193	.200	.210	.220	.230	.240	.260	.300	.415
а	.0688	.0165	.009	.0061	.0057	.0034	.0032	.0025	.0015	.00035
Wave-length μ,	.430	.450	.487	.500	.550	.600	.650	.779	.865	.945
a	.00023	.0002	1000.	.0002	.0003	.0016	.0025	.272	.296	.538

First 9; Kreusler, Drud. Ann. 6, 1901; next Ewan, Proc. R. Soc. 57, 1894, Aschkinass, Wied Ann.

55, 1895; last 3, Nichols, Phys. Rev. 1, 1. See Rubens, Ladenburg, Verh. D. Phys. Ges., p. 19, 1909, for extinction coefs., reflective power and index of refraction, 1 4 to 18 4.

TRANSMISSION PERCENTAGES OF RADIATION THROUGH MOIST AIR.

(For bodies at laboratory temperatures; for transmission of shorter-wave energy, see Table 553.)

The values of this table will be of use for finding the transmission of energy through air containing a known amount of water vapor. An approximate value for the transmission may be had if the amount of energy from the source between the wave-lengths of the first column is multiplied by the corresponding transmission coefficients of the subsequent columns. The values for the wave-lengths greater than 18µ are tentative and doubtful. Fowle, Water-vapor Transparency, Smithsonian Misc. Collections, 68, No. 8, 1917; Fowle, The Transparency of Aqueous Vapor, Astrophysical Lag Press, Varyer and Press, 1918. physical J. 42, p. 394, 1915.

Range of wave-lengths.					Precip	oitable w	rater in	centime	eters.		- 11		
μ μ	.001	.003	.006	.01	.03	.06	.10	. 25	. 50	1.0	2.0	6.0	10.0
0.75 to 1.0 1.0 1.25 1.25 1.5 1.5 2.0 *2 3 3 4 4 5 6 7 7 8 8 9 19 10 †10 11 11 12 12 13 *14 15 *15 16 16 17 17 18 18 0	100 100 100 100 100	100	87 84 76 75 50 76 100 100 100 100 100 100	100 99 96 98 84 78 71 68 31 68 31 68 99 100 100 100 100	99 99 92 97 77 77 72 65 56 24 57 98 100 100 100 99 97 80 70	99 98 84 94 70 66 66 60 51 8 46 100 100 100 199 99 94 7.5 5.5 5.5 5.5 6.2 5.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	98 97 80 88 64 63 53 47 4 4 35 94 100 100 100 98 97 90 20	97 95 66 79 — 35 3 16 65 100 100 100 100 0 0	95 92 57 73 —————————————————————————————————	93 89 51 70 — — — 100 100 93 —	90 85 44 66 ————————————————————————————————	83 74 31 60 ———————————————————————————————————	78 69 28 57

^{*}These places require multiplication by the following factors to allow for losses in CO₂ gas. Under average sea-level outdoor conditions the CO₂ (partial pressure = 0.0003 atmos.) amounts to about 0.6 gram per cu. m. Paschen gives 3 times as much for indoor conditions.

2 to 3 \mu, for 2 grams in m2 path (95); for 140 grams in m2 path (93); " (93); (70); more CO2 no further effect;

4 " 5 " " " " " " (93); 13 " 14, slight allowance to be made;

13

15 "16,"

These places require multiplication by 0.90 and 0.70 respectively for one air mass and 0.85 and 0.65 for two air masses to allow for ozone absorption when the radiation comes from a celestial body.

In the above table italicized figures indicate extrapolated values, F. Paschen gives (Annalen d. Physik u. Chemie, 51, p. 14, 1894) the absorption of the radiation from a blackened strip at 500° C by a layer 33 centimeters thick of water vapor at 100° C and atmospheric pressure as follows:

5.33-7.67µ 7.67-10(?) µ Wave-length..... 2.20-3.10μ Percentage absorption..... 94-13

The following table, due to Rubens and Aschkinass (Annalen d. Physik u. Chemie, 64, p. 598, 1898), gives the absorption of radiation from a zircon burner by a layer 75 centimeters thick of water vapor saturated at 100° C. This amount of vapor is about equivalent to a layer of water 0.45 millimeter thick or to 1.5% of the water in a total vertical atmospheric column whose dew point at sea-level is 10° C. The region of spectrum examined includes most of the region of terrestrial radiation.

Wave-length Percentage absorption	7.0µ 75	8.0µ 40	9.0-12.0μ 6	12.4µ 20	12.8µ	13.4µ 28	14.0µ
Wave-length Percentage absorption	14.3µ 43	15.0µ 35	15.7µ 65	16.ομ 52	17.5µ 88	18.3µ 80	20.0µ

REFLECTION AND ABSORPTION OF LONG-WAVE RADIATIONS.

TABLE 378. - Long-wave Absorption by Gases.

Unless otherwise noted, gases were contained in a 20 cm long tube. Rubens, Wartenberg, Verh. d. Phys. Ges. 13, p. 796, 1911.

	CFI		Percen	tage abs	orption.			СШ		Percen	tage abso	orption.	
Gas.				Lon Hg	gλ, lamp.	amp.						gλ. lamp.	
Gas.	Press	23μ	52µ	110µ		Fil- tered, 314µ	Gas.	Pressure	23μ	52μ	πομ		Fil- tered, 314µ
H ₂ Cl ₂ Br ₂ SO ₂ CO ₂ CO H ₂ S N ₂ O NO (CN) ₂	76 76 76 76 76 76 76 76 76 76	100 100 100 22.6 100 100 99.6 100	100 99.6 100 76.9 100 111.6 96.8 94 97.8	99.5 100 12.7 100, 94.1 5.4 98.4 99	100 98.5 100 6 100 92.1 10.3 93.3 87.3 99.3	97.6 100 4.8 100 91.6 21.4 90.8 85.5	NH ₃ CH ₄ C2H ₄ C2H ₂ C2H ₄ CS ₂ C ₂ H ₆ O C ₄ H ₁₀ O C ₅ H ₁₂ CH ₃ Cl H ₂ O *	76 76 76 76 26 6 51 46 14 76	83.1 91 99.5 99.8 85.4 26.8 66† 98	0.5 94.3 87.4 96.4 100 5.4 46 44.5 100 0.7	99.2 99.2 97.3 92.8 100 58 34 88.8 100	43·3 IDO 97·9 IDO 99·5 52·4 21.8 87 95·4 33.6	66.7 100 100 100 100 49.9 10.7 84.2 94.7 49.2

^{*} Tube 40 cm long.

TABLE 379. — Properties with Wave-lengths $108 \pm \mu$.

Rubens and Woods, Verh. d. Phys. Ges. 13, p. 88, 1911.

With quartz, 1.7 cm thick: 60 to 80µ, absorption very great; 63µ, 99%; 82µ, 97.5; 97µ, 83.

With quartz, 1.7 cm thick. 60 to 50μ, absorption very great; 63μ, 99%; 62μ, 97.5; 97μ, 83.											
			(a)	PERCENT	AGE REF	LECTION.		*******			
Wave-length.	Iceland spar.	Marble.	Rock salt.	Sylvite	KBr	K1	Flue		SS. 1	Water.	Alcohol.
$\lambda = 82\mu *$ $\lambda = 108\mu \dagger$	47.I	43.8	25.8 20.3	36.0 19.3	82.6 31.1	29.6 35.5	19.		. 2	9.6	1.6
*		† Isolated	with c	quartz len	s.						
(b) Percentage Transparency. Uncorrected for reflections.											
Solid. Thickness. Transparency. Liquid. Thickness. precipitable liquid. Transparency.											
Mica Hard rubber Quartz axis Quartz, amorp	Paraffin 3.03 57.0 Mica 0.055 16.6 Hard rubber 0.40 39.0 Quartz axis 2.00 62.6 Quartz, amorph 3.85 0 Rock salt 0.21 21.5			16.6 39.0 62.6	Ethy Ethy Wate Wate	ene l alcohol l ether		1.00 0.158 0.158 0.029 0.044	-		56.8 7.9 37.1 25.8 13.6
Diamond Quartz \(\triangle axis \) " " " " " "		2.0 4.0 7.2 II.7	26 23 26	45.3 81.3 66.4 49.8 35.5 29.0	Ald Eti Be Wa	cohol hernzene		2.00 2.00 2.00 4.00 2.00	0.	023 350 063 21	88 33-5 100 19.6
		((c) TRAN	SPARENCY	OF BLAC	K ABSORB	ers.		,		
Method and wave-length, Black silk paper, paper, o.11 mm thick.							Black boar 0.4 mm	d,	IO CI	dle lamp- lack, n² = 1.8 mg	
Spectrometer Fluorite "restr Rock salt "res Quartz lens iso	7 d 4 0 6 1 1 2 8 8 1 2 2 4 6 2 4 6 6 2 4 6 6 6 2 4 6 6 6 6 6			0.0 1.7 8.2 4.2 6.0	0 1.4 3.2 15.1 33.5		0 0 0 0 0 1.6	5		0.5 8.6 16.0 37.6 76.7 91.3	

[†] Pentane vapor, pressure 36 cm.

310 Tables 380, 381.-ROTATION OF PLANE OF POLARIZED LIGHT.

TABLE 380.—Tartaric Acid; Camphor; Santonin; Santonic Acid; Cane Sugar.

A few examples are here given showing the effect of wave-length on the rotation of the plane of polarization. The rotations are for a thickness of one decimeter of the solution. The examples are quoted from Landolt & Börnstein's "Phys. Chem. Tab." The following symbols are used:—

#= number grams of the active substance in 100 grams of the solution. solvent " cubic centimeter " 9= active

Right-handed rotation is marked +, left-handed -..

Line of spectrum.	Wave-length according to Angström in cms. × 106.	Tartaric acid, $^{\circ}$ C ₄ H ₆ O ₆₇ dissolved in water. $q = 50 \text{ to } 95$, $\text{temp.} = 24^{\circ}$ C.	Camphor,* dissolved in q = 50 temp. = 2	n alcohol. to 95,	Santonin,† (dissolved in c	hloroform.
B C D E b ₁ b ₂ F	68.67 65.62 58.92 52.69 51.83 51.72 48.61 43.83	$+ 2^{\circ}.748 + 0.09446 q$ + 1.950 + 0.13030 q + 0.153 + 0.17514 q - 0.832 + 0.19147 q - 3.598 + 0.23977 q - 9.657 + 0.31437 q	38°.549 — 51.945 — 74.331 — 79.348 — 99.601 — 149.696 —	0.0964 q 0.1343 q - 0.1451 q 0.1912 q	- 140°.1 + - 149.3 + - 202.7 + - 285.6 + - 302.38 + - 365.55 + - 534.98 +	0.1555 q 0.3086 q 0.5820 q 0.6557 q
		Santonin,† $C_{15}H_{18}O_{3}$, a dissolved in alcohol. $c=1.782$. temp. = 20° C.	Santonin,† dissolved in alcohol. c = 4.046. temp. = 20° C.	dissolved in chloroform $c = 3.1-30.5$. temp. = 20° C.	Santonic acid,† $C_{15}H_{20}O_4$, dissolved in chloroform. $c=27.192$. temp. = 20° C.	Cane sugar,‡ C ₁₂ H ₂₂ O ₁₁ , dissolved in water. p = 10 to 30.
B C D E b ₁ b ₂ F e G	68.67 65.62 58.92 52.69 51.83 51.72 48.61 43.83 43.97 42.26	110.4° 118.8 161.0 222.6 237.1 261.7 380.0	442° 504 693 991 1053 - 1323 2011 - 2381	484° 549 754 1088 1148 - 1444 2201 - 2610	- 49° - 57 - 74 - 105 - 112 - 137 - 197 - 230	47°.56 52:70 60:41 84:56 - 87.88 101:18 - 131:96
		* Arndtsen, "Ann. Ch † Narini, "R. Acc. de	nim. Phys." (3)	54, 1858.		

[‡] Stefan, "Sitzb. d. Wien. Akad." 52, 1865.

TABLE 381. - Sodium Chlorate; Quartz.

Sodium	chlorate (G	uye, C. R.	108, 1889).	Quarta	z (Soret & S	arasin, Arch.	de Gen.	1882, or C. R	95, 1882).*
Spec- trum line.	Wave- length.	Temp. C.	Rotation per mm.	Spec- trum line.	Wave- length.	Rotation per mm.	Spec- trum line.	Wave- length.	Rotation per mm.
B C D E F G G H L M N P Q R T Cd ₁₇ Cd ₁₈	71.769 67.889 65.073 59.085 53.233 48.912 45.532 42.834 40.714 38.412 37.352 35.818 33.931 32.341 30.645 29.918 28.270 25.038	15°.0 17.4 20.6 18.3 16.0 11.9 10.1 14.5 13.3 14.0 10.7 12.9 12.1 11.9 13.1 12.8 12.2 11.6	2°.068 2.318 2.599 3.104 3.841 4.587 5.331 6.005 6.754 8.100 8.861 9.801 10.787 11.921 12.424 13.426 14.965	A a B C D 1 D 2 E F G h H K	76.04 71.836 68.671 65 621 58.991 52.691 48.607 43.072 41.012 39.681 39.333 38.196 37.262	12°.668 14.304 15.746 17.318 21.684 21.727 27.543 32.773 42.604 47.481 51.193 52.155 55.625 58.894	Cd ₉ N Cd ₁₀ O Cd ₁₁ P Q Cd ₁₂ R Cd ₁₇ Cd ₁₈ Cd ₂₃ Cd ₂₄ Cd ₂₅ Cd ₂₆	36.090 35.818 34.655 34.406 34.015 33.600 32.858 32.470 31.798 27.467 25.713 23.125 22.645 21.935 21.431	63°.628 64.459 69.454 70.587 72.448 74.571 78.579 80.459 84.972 121.052 143.266 190.426 201.824 220.731 235.972

^{*} The paper is quoted from a paper by Ketteler in "Wied. Ann." vol. 21, p. 444. The wave-lengths are for the Fraunhofer lines, Angström's values for the ultra violet sun, and Cornu's values for the cadmium lines.

Abbreviations: int'n'l, international; emu, electromagnetic units; esu, electrostatic units; cgs, centimeter-gram-second units. (Taken from Circular 60 of U.S. Bureau of Standards, 1916, Electric Units and Standards.)

RESISTANCE:

- international ohm =
 - 1.00052 absolute ohms
 - 1.0001 int'n'l ohms (France, before 1911)
 - 1.00016 Board of Trade units (England, 1903)
 - 1.01358 B. A. units
 - 1.00283 "legal ohms" of 1884
 - 1.06300 Siemens units
- I absolute ohm =
 - o. 99948 int'n'l ohms
 - 1 "practical" emu
 - 109 cgs emu
 - 1.1124 × 10⁻¹² cgs esu

CURRENT:

- I international ampere =
 - o. 99991 absolute ampere
 - 1.00084 int'n'l amperes (U.S. before 1911)
 - 1.00130 int'n'l amperes (England, before 1906)
 - 1.00106 int'n'l amperes (England, 1906-
 - 1.00010 int'n'l amperes (England, 1909-
 - 1.00032 int'n'l amperes (Germany, before
 - 1.0002int'n'lamperes (France, before 1911)
- I absolute ampere =
 - I 00009 int'n'l amperes
 - I "practical" emu
 - o. I cgs emu
 - 2.9982 × 109 cgs esu

ELECTROMOTIVE FORCE:

- international volt =
 - 1.00043 absolute volts 1.00084 int'n'l volts (U. S. before 1911)
 - 1.00130 int'n'l volts (England, before 1906)
 - 1.00106 int'n'l volts (England, 1006-08)
 - 1.00010 int'n'l volts (England, 1909-10)
 - 1.00032 int'n'l volts (Germany, before 1911)
 - 1.00032 int'n'l volts (France, before 1911)
- I absolute volt =
 - o. 99957 int'n'l volt
 - r "practical" emu
 - 108 cgs emu
 - o. 0033353 cgs esu

QUANTITY OF ELECTRICITY:

- (Same as current equivalents.)
- 1 international coulomb =
 - 1/3600 ampere-hour
 - 1/96500 faraday

CAPACITY:

- r international farad = o. 99948 absolute farad
- I absolute farad =
 - 1.00052 int'n'l farads
 - i "practical" emu 10⁻⁹ cgs emu

 - 8. 9892 × 1011 cgs esu

INDUCTANCE:

- I international henry = 1.00052 absolute henries
- I absolute henry =
- o. 99948 int'n'l henry
- practical" emu
- 109 emu
- 1.1124 × 10-12 cgs esu

ENERGY AND POWER:

(standard gravity = 980.665 cm/sec/sec.)

- I international joule =
 - 1.00034 absolute joules
- r absolute joule =
 - o. 99966 int'n'l joule
 - 107 ergs
 - o. 737560 standard foot-pound
 - o. 101972 standard kilogram-meter
 - o. 277778 × 10-6 kilowatt-hour

RESISTIVITY:

- 1 ohm-cm = 0.393700 ohm-inch
 - = 10,000 ohm (meter, mm²)
 - = 12,732.4 ohm (meter, mm)
 - = 393,700 microhm-inch
 - = 1,000,000 microhm-cm
 - = 6,015,290 ohm (mil, foot)
- 1 ohm (meter, gram) = 5710.0 ohm (mile, pound)

MAGNETIC QUANTITIES:

- ı int'n'l gilbert = 0.99991 absolute gilbert
- I absolute gilbert = I. 00009 int'n'l gilberts
- 1 int'n'l maxwell = 1.00043 absolute maxwells
- 1 absolute maxwell = 0. 99957 int'n'l maxwell = 0.7958 ampere-turn
 - I gilbert 1 gilbert per cm =0. 7958 ampere-turn per
 - - = 2.021 ampere-turns per
 - inch I line I maxwell
 - = 10-8 volt-second
 - 1 maxwell per cm2 = 6.452 maxwells per in2

COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS.

The electromotive forces given in this table approximately represent what may be expected from a cell in good working order, but with the exception of the standard cells all of them are subject to considerable variation.

(a) Dougla Frum Carra											
		(a) Double Fluid Ci	BLLS.								
Name of cell.	Negative pole.	Solution.	Positive pole.	Solution.	E.M.F.						
Bunsen	Amalgamated zinc	{ 1 part H ₂ SO ₄ to } 12 parts H ₂ O . }	Carbon	Fuming HNO ₈ .	1.94						
"	" "	и	66	HNO ₃ , density 1.38	1.86						
Chromate .	66 66	$ \left\{ \begin{array}{l} \text{12 parts } K_2Cr_2O_7 \\ \text{to 25 parts of} \\ H_2SO_4 \text{ and 100} \\ \text{parts } H_2O \ . \ . \end{array} \right\} $	66	{ 1 part H ₂ SO ₄ to } 12 parts H ₂ O . }	2.00						
46	66 66	{ I part H ₂ SO ₄ to } 12 parts H ₂ O . }	. 46	{ 12 parts K ₂ Cr ₂ O ₇ } to 100 parts H ₂ O }	2.03						
Daniell* .	66 66	{ 1 part H ₂ SO ₄ to } 4 parts H ₂ O . }	Copper	Saturated solution of CuSO ₄ +5H ₂ O	1.06						
66 .	" "	{ 1 part H ₂ SO ₄ to } 12 parts H ₂ O . }	46	46	1.09						
66	" "	$ \begin{cases} 5\% & \text{solution of } \\ ZnSO_4 + 6H_2O \end{cases} $	п	и	1.08						
"	66 66	{ 1 part NaCl to } 4 parts H ₂ O . }	66	66	1.05						
Grove	66 . 66	{ 1 part H ₂ SO ₄ to } { 12 parts H ₂ O . }	Platinum	Fuming HNO ₃	1.93						
66	68 66	Solution of ZnSO ₄	44	HNO ₈ , density 1.33	1.66						
"	46 66	{ H ₂ SO ₄ solution, } density 1.136 . }	"	Concentrated HNO ₈	1.93						
<i>a</i>	66 66	{ H ₂ SO ₄ solution, } density 1.136 . }	"	HNO ₈ , density 1.33	1.79						
"	66 66	{ H ₂ SO ₄ solution, } density 1.06 . }	66	"	1.71						
66	66 86	{ H ₂ SO ₄ solution, } density 1.14 . }	66	HNO3, density 1.19	1.66						
66	66 66	{ H ₂ SO ₄ solution, } density 1.06 . }	66	66 66 66	1.61						
"	66 66	NaCl solution	"	" density 1.33	1.88						
Marié Davy	66 66	{ 1 part H ₂ SO ₄ to } { 12 parts H ₂ O }	Carbon	Paste of protosulphate of mercury and water	1.50						
Partz .	, 66 66	Solution of MgSO ₄	46	Solution of K ₂ Cr ₂ O ₇	2.06						

^{*} The Minotto or Sawdust, the Meidinger, the Callaud, and the Lockwood cells are modifications of the Daniell, and hence have about the same electromotive force.

COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS.

Name of cell.	Negative pole.	Solution.	Positive pole.	E. M. F. in volts.
		(b) Single Fluid Cells.		
Leclanche	Amal. zinc	(mac)	Carbon. Depolari- zer: manganese peroxide with powdered carbon	1.46
Chaperon Edison-Lelande .	"	Solution of caustic potash	Copper. Depolar-	0.98
Chloride of silver	Zinc	23 % solution of sal-	Silver. Depolari-	0.70
Law	"	15% " [1 pt. ZnO, 1 pt. NH ₄ Cl,] 3 pts. plaster of paris,]	Carbon	1.37
Dry cell (Gassner)	"	2 pts. ZnCl ₂ , and water to make a paste	44	1.3
Poggendorff	Amal.zinc	Solution of chromate of of potash		1.08
<i>ii</i>	66 66	$\left\{\begin{array}{c} 25 \text{ parts } H_2SO_4 + \\ 100 \text{ parts } H_2O \end{array}\right.$	44	2.01
J. Regnault	" "	$ \left\{ \begin{array}{l} \text{I part } H_2SO_4 + \\ \text{I2 parts } H_2O + \\ \text{I part } CaSO_4 \end{array} \right. $	Cadmium	0.34
Volta couple	Zinc	H ₂ O	Copper	0.98
		(c) STANDARD CELLS.		
Weston normal .	{Cadmi'm} {am'lgam}	{ Saturated solution of CdSO4 }	$ \begin{cases} & Mercury. \\ Depolarizer: paste \\ of & Hg_2SO_4 and \\ CdSO_4 . . \end{cases} $	1.0183* at 20° C
Clark standard .	{ Zinc } am'lgam	{ Saturated solution of } ZnSO ₄ }	$\begin{cases} & \text{Mercury.} \\ & \text{Depolarizer: paste} \\ & \text{of } & \text{Hg}_2 \text{SO}_4 \text{and} \\ & \text{ZnSO}_4 . . . \end{cases}$	1.434 [‡] at 15°C
		(d) SECONDARY CELLS.		
Lead accumulator	Lead	{ H ₂ SO ₄ solution of density I.I }	PbO ₂	2.2†
Regnier (1)	Copper .	$CuSO_4 + H_2SO_4$	<i>a</i>	1.68 to 0.85, av- erage 1.3.
" (2) Main	Amal. zinc Amal. zinc	ZnSO ₄ solution H ₂ SO ₄ density ab't 1.1	" in H ₂ SO ₄ .	2.36 2.50 (1.1, mean
Edison	Iron	KOH 20 % solution .	A nickel oxide	of full discharge.

s the following value of the temperature variation
$$\frac{1}{dt}$$
 at different stages of charge $E.\ M.\ F.$ 1.9223 1.9828 2.0031 2.0084 2.0105 2.0779 2.2070 $dE/dt \times 10^6$ 140 228 335 285 255 130 73

^{*} The temperature formula is $E_t = E_{20} - 0.0000406 \ (t-20) - 0.0000005 \ (t-20)^3 + 0.0000001 \ (t-20)^3$. ‡ The value given for the Clark cell is the old one adopted by the Chicago International Electrical Congress in 1893. The temperature formula is $E_t = E_{15} - 0.00119 \ (t-15) - 0.000007 \ (t-15)^3$.

 $[\]dagger$ F. Streintz gives the following value of the temperature variation $\frac{dE}{dt}$ at different stages of charge:

CONTACT DIFFERENCE OF

Solids with Liquids and

Temperature of substances

	Carbon.	Copper.	Iron.	Lead.	Platinum.	Tin.	. Zinc.
Distilled water	(.oi to .i7	.269 to .100	.148	.171	(.285) to .345)	.177	{105 to +.156
at 16° 5 C	-	.103	053	139	_	225	—.536 —
saturated at 15° C	_	.070 475	605	_	— .856	334	—.565
saturated at 15°.5 C	_	—.396 —	—.652 —	189	.059	 364	6 ₃₇ 2 ₃ 8
saturated at 15°.3 C One part distilled water + . 3 parts saturated zinc		-	-	Ī	_	Second .	430 444
sulphate solution) Strong sulphuric acid in distilled water: 1 to 20 by weight		_	_	100	_//	-	- ∙344
I to 10 by volume I to 5 by weight	{ about } .035 }		-	-	-	-	-
5 to 1 by weight	to { 3.0 } { .55 } to }	1.113		120	1.3)	—.25 _	
Concentrated nitric acid . Mercurous sulphate paste .	-	-	= '	1.252	to 1.6 } .672	-111	-
Distilled water containing trace of sulphuric acid	-	-	7/11	-	-	-	241

^{*} Everett's "Units and Physical Constants: "Table of

POTENTIAL IN VOLTS.

Liquids with Liquids in Air.*

during experiment about 16° C.

	Amalgamated zinc.	Brass.	Mercury.	Distilled water.	Alum solution: saturated at 16°.5 C.	Copper sulphate solution: saturated at 15° C.	Zinc sulphate solution: sp. gr. 1.25 at 16°.9 C.	Zinc sulphate solution: saturated at 15°.3 C.	One part distilled water + 3 pts. zinc sulphate.	Strong nitric acid.
Distilled water	.100	.231	-	-	-	043		.164	-	-
Alum solution: saturated } at 16°.5 C }	-	014	-	-	-	-	-	-	-	-
Copper sulphate solution: (sp. gr. 1.087 at 16°.6 C.)	- 1	-	-	-	0-	-	.090	-	-	-
Copper sulphate solution: { saturated at 15° C }	-	-	-	043	-	-	-	.095	.102	-
Sea salt solution: sp. gr. {	-	435	-	-	-	-	-	-	-	-
Sal-ammoniac solution: saturated at 15°.5 C.	-	348	-	-	-	-	-	-	-	-
Zinc sulphate solution: 1 sp. gr. 1.125 at 16°.9 C.	-	-	-	-	-	-	-	-	-	-
Zinc sulphate solution: { saturated at 15°.3 C.	284	-	-	200	-	095	-	-	-	-
One part distilled water + 3 parts saturated zinc sulphate solution Strong sulphuric acid in	-	-	-	-	-	102	-	-	-	-
distilled water: 1 to 20 by weight	_	_	_	_	_	_	_	_	_	_
I to 10 by volume	358	-	-	-	-	-	-	-	-	-
1 to 5 by weight	.429	-	-	-	-	-	-	-	-	-
5 to 1 by weight	-	016	-	-	-	-	-	-	-	-
Concentrated sulphuric acid	.848	-	-	1.298	1.456	1.269	-	1.699	-	-
Concentrated nitric acid . Mercurous sulphate paste .	_	_	-475	-	-	-	-	-	_	-
Distilled water containing trace of sulphuric acid.	-	-	-		-	-	-	-	-	.078

Ayrton and Perry's results, prepared by Ayrton.

DIFFERENCE OF POTENTIAL BETWEEN METALS IN SOLUTIONS OF SALTS.

The following numbers are given by G. Magnanini* for the difference of potential in hundredths of a volt between zinc in a normal solution of sulphuric acid and the metals named at the head of the different columns when placed in the solution named in the first column. The solutions were contained in a U-tube, and the sign of the difference of potential is such that the current will flow from the more positive to the less positive through the external circuit.

Strengtl	n of the solution in molecules per liter.	Zinc.†	Cadmium.†	Lead.	Tin.	Copper.	Silver.
No. of molecules.	Salt.		Differe	nce of poter	ntial in centiv	olts.	
0.5 1.0 1.0 0.5 1.0	H ₂ SO ₄ NaOH KOH Na ₂ SO ₄ Na ₂ S ₂ O ₈ KNO ₃ NaNO ₃ K ₂ CrO ₄	0.0 -32.1 -42.5 1.4 -5.9 11.8‡ 11.5 23.9‡	36.6 19.5 15.5 35.6 24.1 31.9 32.3 42.8	51.3 31.8 32.0 50.8 45.3 42.6 51.0 41.2	51.3 0.2 —1.2 51.4 45.7 31.1 40.9 40.9	100.7 80.2 77.0 101.3 38.8 81.2 95.7 94.6	121.3 95.8 104.0 120.9 64.8 105.7 114.8 121.0
0.5 0.5 0.25 0.167 . 1.0	K ₂ Cr ₂ O ₇ K ₂ SO ₄ (NH ₄) ₂ SO ₄ K ₄ FeC ₆ N ₆ K ₆ Fe ₂ (CN) ₁₂ KCNS NaNO ₈	72.8 1.8 0.5 6.1 41.0§ 1.2 4.5	61.1 34.7 37.1 33.6 80.8 32.5 35.2	78.4 51.0 53.2 50.7 81.2 52.8 50.2	68.1 40.9 57.6‡ 41.2 130.9 52.7 49.0	123.6 95.7 101.5 — ‡ 110.7 52.5 103.6	132.4 114.8 125.7 87.8 124.9 72.5 104.6?
0.5 0.12 5 1.0 0.2 0.167	Sr(NO ₃) ₂ Ba(NO ₃) ₂ KNO ₃ KClO ₃ KBrO ₃	14.8 21.9 	38.3 39.3 35.6 39.9 40.7	50.6 51.7 47.5 53.8 51.3	48.7 52.8 49.9 57.7 50.9	103.0 109.6 104.8 105.3 111.3	119.3 121.5 115.0 120.9 120.8
1.0 1.0 1.0 1.0	KF NaCl KBr KCl Na ₂ SO ₃	2.8 - 2.3 - - 8.2	22.5 31.9 31.7 32.1 28.7	41.1 51.2 47.2 51.6	50.8 50.3 52.5 52-6	61.3 80.9 73.6 81.6	61.5 101.3 82.4 107.6
- 1.0 0.5 0.5	NaOBr C ₄ H ₆ O ₆ C ₄ H ₆ O ₆ C ₄ H ₄ KNaO ₆	18.4 5.5 4.1 —7.9	41.6 39.7 41.3 31.5	73.1 61.3 61.6 51.5	70.6 ‡ 54.4\$ 57.6 42-47	89.9 104.6 110.9 100.8	99.7 123.4 125.7 119.7

^{* &}quot;Rend. della R. Acc. di Roma," 1890.

[†] Amalgamated.

[‡] Not constant.

[§] After some time.

[#] A quantity of bromine was used corresponding to NaOH = 1.

THERMOELECTRIC POWER.

The thermoelectric power of a circuit of two metals is the electromotive force produced by one degree C difference of temperature between the junctions. The thermoelectric power varies with the temperature, thus: thermoelectric power varies with the temperature, thus: thermoelectric power at o' C, B is a constant, and I is the mean temperature of the junctions. The neutral point is the temperature at which dE/dt = 0, and its value is -A/B. When a current is caused to flow in a circuit of two metals originally at a uniform temperature, heat is liberated at one of the junctions and absorbed at the other. The rate of production or liberation of heat at each junction, or Peltier effect, is given in calories per second, by multiplying the current by the coefficient of the Peltier effect. This coefficient in calories per coulomb = QT/\mathcal{F} , in which Q is in volts per degree C, T is the absolute temperature of the junction, and $\mathcal{F}=4.10$. Heat is also liberated or absorbed in each of the metals as the current flows through portions of varying temperature. The rate of production or liberation of heat in each metal, or the Thomson effect, is given in calories per second by multiplying the current by the coefficient of the Thomson effect, in calories per coulomb $BT\theta/\mathcal{F}$, in which B is in volts per degree C, T is the mean absolute temperature of the junctions, and θ is the difference of temperature of the junctions. (BT) is Sir W. Thomson's "Specific Heat of Electricity." The algebraic signs are so chosen in the following table that when A is positive, the current flows in the metal considered from the hot junction to the cold. When B is positive, Q increases (algebraically) with the temperature. The values of A, B, and thermoelectric power in the following table are with respect to lead as the other metal of the thermoelectric circuit. The thermoelectric power of a couple composed of two metals, I and 2, is given by subtracting the value for 2 from that for I; when this difference is positive, the current fl

are given by Becquerel in the reference given below.

Substance.	A Microvolts.	B Microvolts.	Thermoelec at mean junctions (n	temp. of	Neutral point	Author-
		-	20° C	50° C	\overline{B}	
Aluminum Antimony, comm'l pressed wire. " axial " equatorial Argentan " hyre " " " " crystal, axial . " equatorial Cadmium. Cobalt. Constantan. Copper. " commercial. " galvanoplastic. Gallium Gold. Iron. " pianoforte wire. " commercial. " cadmium. " by a commercial. " callium Gold. Iron. " pianoforte wire. " commercial. " commercial. " commercial. " pianoforte wire. " commercial. " commercial. " commercial. " in commercial. " commercial. " commercial. " commercial. " commercial. " in commercial. " commercial. " in commercia	+2.63 -1 +1.34 -1 +2.80 +17.15 -1 -2.22 -21.8 -83.57	+0.0039 -0.0506 -0.0506 -0.0094 -0.0004 -0.0006 -0.0006 -0.0006 -0.0506 -0.0506	-0.68 +6.0 +22.6 +22.6 +26.4 -12.95 -13.56 -97.0 -85.0 -65.0 -45.0 +3.4822 -1.52 +0.10 +3.8 -0.2 +3.0 +10.2 +17.50.00 +2.03 +5.9 -0.41322.822.8	-0.56 -14.47 -12.7 -14.47 -12.7 -19.3 +1.81 -19.3 +1.81 -19.10 -19.3 +1.75 -19.30 -14.74	+195 -236236	TM""TBM"""TBS'M TM"STTMB: TSMBT""

TABLE 386.—Thermoelectric Power (continued).

Substance.	A Microvolts.	A B Gicrovolts. Microvolts.		etric power temp. of nicrovolts).	Neutral point $-\frac{A}{B}$.	Au- thority.
Palladium Phosphorus (red) Platinum " (hardened) " (malleable) " wire " another specimen Platinum-iridium alloys: 85% Pt + 15% Ir 90% Pt + 10% Ir 95% Pt + 5% Ir Selenium Silver " (pure hard) " wire Steel Tantalum Tellurium β " a Thallium Tin (commercial) " " Tungsten Zinc	+5.90 +6.15 +2.12 - +11.27 - - - - - - - - - - - - - -	- -0.0074	-6.9 +29.9 +0.9 +2.42 818 - - - +8.03 +5.63 +6.26 +807. +2.41 +3.00 +10.62 -2.6 +500. +160. +0.1 -0.33 -2.0 +2.79	-7.96 - +2.20	-174 - 347 -55 - [-1274] 444 [-1118]144	T M " T " B " " M T M B T - H H M T - T
" pure pressed	-	-	+3.7	-	-	M

Ed. Becquerel, "Ann. de Chim. et de Phys." [4] vol. 8. S. Bureau of Standards.

M Matthiesen, "Pogg. Ann." vol. 103, reduced by Fleming Jenkin.

T Tait, "Trans. R. S. E." vol. 27, reduced by Mascart.

H Haken, Ann. der Phys. 32, p. 291, 1910. (Electrical conductivity of Teβ=0.04, Tea 1.7 e. m. units.) Swisher, 191/.

TABLE 387 .- Thermoelectric Power of Alloys.

The thermoelectric powers of a number of alloys are given in this table, the authority being Ed. Becquerel. They are relative to lead, and for a mean temperature of 50° C. In reducing the results from copper as, a reference metal, the thermoelectric power of lead to copper was taken as—1.9.

Substance.	Relative quantity.	Thermoelec- tric power in microvolts.	Substance.	Relative quantity.	Thermoelec- tric power in microvolts.	Substance.	Relative quantity.	Thermoelec- tric power in microvolts.
Antimony Cadmium	806 }	227	Antimony Zinc	2 }	43	Bismuth Antimony	4 }	-51.4
Cadmium Antimony Cadmium Zinc Antimony Cadmium Bismuth Antimony Zinc Bismuth Antimony Cadmium Lead Zinc Antimony Cadmium Lead Zinc Antimony Cadmium Zinc	806 696 121 806 406 806 406 121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	146 137 95 8.1 76	Zinc Tin Antimony Cadmium Zinc Antimony Tellurium Antimony Bismuth Antimony Iron Antimony Magnesium Antimony Lead Bismuth Bismuth Antimony	1 1 1 2 1 3 3 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	43 35 10.2 8.3 2.5 1.4 -0.4 -43.8 -33.4	Antimony Bismuth Antimony Bismuth Antimony Bismuth Antimony Bismuth Tin Bismuth Selenium Bismuth Zinc Bismuth Arsenic Bismuth Bismuth Bismuth Bismuth	1	-63.2 -68.2 -66.9 60 -24.5 -31.1 -46.0 68.1

TABLE 388. - Thermoelectric Power against Platinum.

One junction is supposed to be at o°C; + indicates that the current flows from the o° junction into the platinum. The rhodium and iridium were rolled, the other metals drawn.*

Tempera- ture, ° C.	Au.	Ag.	90%Pt+ 10%Pd.	10%Pt+ 90%Pd.	Pd.	90%Pt+ 10%Rh.	90%Pt+ 10%Ru.	Ir.	Rh.
-185 -80 +100 +200 +300 +400 +500 +600 +700 +800 +1100 +(1300) +(1500)	-0.15 -0.31 +0.74 +1.8 +3.0 +4.5 +6.1 +7.9 +12.0 +14.3 +16.8	-0.16 -0.30 +0.72 +1.7 +3.0 +4.5 +6.2 +10.6 +13.2 +16.0	-0.11 -0.09 +0.26 +0.62 +1.0 +1.5 +1.9 +2.4 +2.9 +3.4 +4.3 +4.8	+0.24 +0.15 -0.19 -0.31 -0.37 -0.18 +0.12 +0.61 +1.2 +2.1 +3.1 +4.2	+0.77 +0.39 -0.56 -1.20 -2.8 -3.8 -4.9 -6.3 -7.9 -9.6 -11.5	+2.3 +3.2 +4.1 +5.1 +6.2 +7.2 +8.3 +9.5 +10.6 +13.1 +15.6	-0.53 -0.39 +0.73 +1.6 +2.6 +3.6 +4.6 +5.7 +6.9 +8.0 +9.2 +10.4 +11.6 +14.2 +16.9	-0.28 -0.32 +0.65 +1.5 +2.5 +3.6 +4.8 +6.1 +7.6 +9.1 +10.8 +12.6 +14.5 +18.6 +23.1	-0.24 -0.31 +0.65 +1.5 +2.6 +3.7 +5.1 +6.5 +8.1 +9.9 +11.7 +13.7 +15.8 +20.4 +25.6

^{*} Holborn and Day.

TABLE 389. - Thermal E. M. F. of Platinum-Rhodium Alloys Against Pure Platinum, in Millivolts.*

				10 p. ct.						
t	ı p. ct.	5 p. ct.	Low.	High.	Stan- dard.	15 p. ct.	20 p. ct.	30 p. ct.†	40 p. ct.†	100 p. ct.‡
1000	0.21	0.55	0.63	0.64	0.64	0.65				0.65
200	0.42	1.18	1.41	1.43	1.43	1.50				1.51
300	0.63	1.85	2.28	2.32	2.32	2.41		2.34	2.45	2.57
400	0.84	2.53	3.21	3.26	3.25	3.45	3.50	3.50	3.64	3.76
500	1.05	3.22	4.17	4.23	4.23	4.55	4.60	4.74	4.93	5.08
600	1.25	3.92	5.16	5.24	5.23	5.71	5.83	6.06	6.31	6.55
700	1.45	4.62	6.19	6.28	6.27	6.94	7.18	7.49	7.80	8.14
800	1.65	5.33	7.25	7.35	7.33	8.23	8.60	9.01	9.37	9.87
900	1.85	6.05	8.35	8.46	8.43	9.57	10.09	10.67	11.09	11.74
1000	2.05	6.79	9.47	9.60	9.57	10.96	11.65	12.42	12.94	13.74
1100	2.25	7·53 8.29	11.82	10.77	10.74	13.87	14.96	16.39	17.13	18.10
1300	2.45	9.06	13.02	13.18	13.13	15.38	16.65	18.51	19.51	20.46
1400	2.86	9.82	14.22	14.39	14.34	16.98	18.39	20.67	21.73	
1500	3.06	10.56	15.43	15.61	15.55	18.41	20.15			
1600	3.26	11.31	16.63	16.82	16.75	19.94	21.90			
1700	3.46	12.05	17.83	18.03	17.95	21.47	23.65			
1755	3.56	12.44	18.49	18.70	18.61	22.31	24.55			

^{*} Carnegie Institution, Pub. 157, 1911.

[‡] Holborn and Day, mean value, 1899.

[†] Holborn and Wien, 1892.

THERMOELECTRIC PROPERTIES: PRESSURE EFFECTS. TABLE 390. - Thermoelectric Power; Pressure Effects.

The following values of the thermoelectric powers under various pressures are taken from Bridgman, Pr. Am. Acad. Arts and Sc. 53, p. 269, 1018. A positive emf means that the current at the hot junction flows from the uncompressed to the compressed metal. The cold junction is always at o° C. The last two columns give the constants in the equation $E = \text{thermoelectric force against lead } (o^{\circ} \text{ to } 10^{\circ} \text{ C}) = (At + B/B) \times 10^{-6} \text{ volts, at atmospheric pressure, a positive emf meaning that the current flows from lead to the metal under consideration at the hot junction.$

			The	rmo-ele	ctric for	ce, volts	× 109				
				Pre	essure, k	g/cm²					mula
Metal.	20	2000 4000 8000 12,000									
				Te	mperatu	re, ° C				0	
	50°	100°	50°	100°	50°	100°	20°	50°	100°	A	В
Bi †	53.000	85,000	110.000	185,000	255,000	425,000	185,000	452,000	710.000	-74.42	+.0160
Zn †	6,200	14,100				58,100	14,400	38,500			00495
TI t		10,870	9,380						52,460	+1.659	00134
Cd †	2,040		4,620					19,180		+12.002	
Constantan‡	2,850		5,800	8,800				17,200		-34.76	0397
Pt *	2,190		3,600	7,310	8,630 7,370	14,350		12,970		-5.496 - 3.002	
Wt	1,190		2,360	4,990	4,600	10,120	2,700	7,050			+.01705
Ni *	700		1,500	3,400	3,230	7,100	1,880	5,140		-17.61	0178
Ag *	840		1,720	3,720	3,350	7,190		4,050	10,560		+.00432
§ Fe †	390		590	3,250	5,300	5,820	-990	220	7,680	+16.18	0089
Pb ‡	460		920	2,120	1,860	4,210	+880	281	6,330		-
Au *	456	1,052	905	2,051	1,791	3,974	+990	2,627	5,760		+.00467
Cu †	+292		+580	1,216	1,124	2,420	+596	1,616	3,546		+.00483
& Mo İ	-70		-91	294	32	929	-68	312	1,962		+.00008
Sn t.	+93 +38	140 +87	+187 +58	+165	375 +70	+202	+146	562 +10	833 +390		+.02167
Manganin †	-I23	-232	T50	T105	-489		-308	-710			00067+.00041
Mg †	-84		-181	-362	-305	-701	-250	-648			+.00004
Co †	-156			-602	-630	-1,360		-937		-17.32	0300

* Identical wire of Table 308. † Another wire of same sample. ‡ Different sample. § Results too irregular for interpolation for values at other temperature and pressures; see original article. —.08568; (2) —.04868, annealed ingot iron; (3) —.081668; (4) —.0418; (5) —.04258; (6) —.041128.

TABLE 391. - Peltier and Thomson Heats; Pressure Effects.

The following data indicate the magnitude of the effect of pressure on the Peltier and Thomson heats. They refer to the same samples as for the last table. The Peltier heat is considered positive if heat is absorbed by the positive current from the surroundings on flowing from uncompressed to compressed metal. A positive d^2E/d^2 means a larger Thomson heat in the compressed metal, and the Thomson heat is itself considered positive if heat is absorbed by the positive current in flowing from cold to hot metal. Same reference and notes as for preceding table.

			Peltier	heat,	mb.			108 X	Thoms Joules,	on hea	it, mb/° C	;
Metal.		P	ressure	kg/cm ²	:			P	ressur	e kg/c	m²	
metal.		6000			12,000		(0000			12,000	
		T	empera	ature ° C		Tempera			ture °	C		
	o°	50°	100°	o°	50°	100°	o°	50°	100°	o°	50°	100°
\$ Bi †	+1070 +08 +66 +19 +46 +35 +23 +17 +11 +13 -11 +7 +6 +4 -2 +1 -1 -2 -16 -23	+95 +71 +57 +43	+190 +124 +118 +70 +52 +35 +32 +23 +23 +15 +16	+112 +81 +90 +68 +45	+278 +171 +148 +114	+412 +229 +221 +140 +103	+38 +109 +5 +43 +48 +79 +4 +79 +4 +66 +11 +66 +11	+650 +48 +28 +74 +6 +7 +7 +7 +7 +58 +6 +4 +1 +9 -05 +0 +1	+56 +26 +63	+63 +79 +105 +13 +96 +96 +16 +7	+92 +14 +9 +17 +14	+220 +50 +93 +17 +8 +59 +20 +10 +10 +10 +20 +7 +8 +20 +20 +7 +8 +20 +7 +8 +20 +7 +8 +20 +10 +10 +10 +10 +10 +10 +10 +10 +10 +1

* † ‡ § Same significance as in preceding table.

TABLE 392. - Peltier Effect.

The coefficient of Peltier effect may be calculated from the constants A and B of Table 386, as there shown. With Q (see Table 386) in microvolts per $^{\circ}$ C. and T= absolute temperature (K), the coefficient of Peltier effect= $\frac{QT}{C}$ cal. per coulomb=0.00086 QT cal. per ampere-hour= $\frac{QT}{1000}$ millivolts (=millijoules per coulomb). Experimental results, expressed in slightly different units, are here given. The figures are for the heat production at a junction of copper and the metal named, in calories per ampere-hour. The current flowing from copper to the metal named, a positive sign indicates a warming of the junction. The temperature not being stated by either author, and Le Roux not giving the algebraic signs, these results are not of great value.

				Calorie	s per amp	ere-hou	r.				
	Sb. #	Sb. com- mercial.	Bi. pure.	Bi. §	Cd.	German Silver.		Ni.	Pt.	Ag.	Zn.
Jahn*	-	-	-	-	62	-	-3.61	4.36	0.32	41	58
Le Roux† .	13.02	4.8	19.1	25.8	0.46	2.47	2.5	-	-	-	•39

* "Wied. Ann." vol. 34, p. 767.
† "Ann. de Chim. et de Phys." (4) vol. 10, p. 201.
‡ Becquerel's antimony is 806 parts Sb + 406 parts Zn + 121 parts Bi.
§ Becquerel's bismuth is 10 parts Bi + 1 part Sb.

TABLE 393. - Peltier Effect, Fe-Constantan, Ni-On, 0 - 560° C.

Temperature.	00	200	130 ⁰	240 ⁰	3200	560°	
Fe-Constantan	3.1	3.6	4.5	6.2	8.2	12.5	in Gram. Cal. X-108
Ni-Cu	1.92	2.15	2.45	2.06	1.91	2.38	per coulomb.

TABLE 394. - Peltier Electromotive Force in Millivolts.

Metal against Copper.	Sb.	Fe.	Cd.	Zn.	Ag.	An.	Pb.	Sn.	Al.	Pt.	Pd.	Ŋ.	Bi.
Le Roux .	-5.64	-2.93	53	45	-	-	-	-	-	-	-	-	+22.3
Jahn	-	-3.68	72	68	48	-	-	-	-	+.37	-	+5.07	-
Edlund	-	-2.96	16	01	+.03	+.33	+.50	+.56	+.70	+1.02	+2.17	-	+17.7
Caswell	-	-	-	-	+.03	-	-	-	+.70	+.85	-	+6.0	+16.1

Le Roux, 1867; Jahn, 1888; Edlund, 1870-71; Caswell, Phys. Rev. 33, p. 381, 1911.

I ABLES 395-396.

TABLE 395.

THE TRIBO-ELECTRIC SERIES.

In the following table it is so arranged that any material in the list becomes positively electrified when rubbed by one lower in the list. The phenomenon depends upon surface conditions and circumstances may alter the felative positions in the list.

1 Asbestos (sheet). 2 Rabbit's fur, hair, (Hg). 3 Glass (combn. tubing). 4 Vitreous silica, opossum's fur. 5 Glass (fusn.). 6 Mica. 7 Wool. 8 Glass (pol.), quartz (pol.), glazed porcelain. 9 Glass (broken edge), ivory. 10 Calcite. 11 Cat's fur. 12 Ca, Mg, Pb, fluor spar, borax.	13 Silk. 14 Al, Mn, Zn, Cd, Cr, felt, hand, wash-leather. 15 Filter paper. 16 Vulcanized fiber. 17 Cotton. 18 Magnalium. 19 K-alum, rock-salt, satin spar. 20 Woods, Fe. 21 Unglazed porcelain, salammoniac. 22 K-bichromate, paraffin, tinned-Fe. 23 Cork, ebony.	24 Amber. 25 Slate, chrome-alum. 26 Shellac, resin, sealing-wax. 27 Ebonite. 28 Co, Ni, Sn, Cu, As, Bi, Sh, Ag, Pd, C, Te, Eureka, straw, copper sulphate, brass. 29 Para rubber, iron alum. 30 Guttapercha. 31 Sulphur. 32 Pt, Ag, Au. 33 Celluloid. 34 Indiarubber.
--	--	---

Shaw, Pr. Roy. Soc. 94, p. 16, 1917; the original article shows the alterations in the series sequence due to varied conditions.

TABLE 396

AUXILIARY TABLE FOR COMPUTING WIRE RESISTANCES.

For computing resistance in ohms per meter from resistivity, ρ , in michroms per cm. cube (see Table 397, etc.). e.g. to compute for No. 23 copper wire when $\rho = 1.724$: I meter = 0.0387 + .0271 + .0008 + .0002 = 0.0668 ohms; for No. 11 lead wire when $\rho = 20.4$; I meter = 0.0479 + .0010 = 0.0489 ohms. The following relation allows computation for wires of other gage numbers: resistance in ohms per meter of No. N = 2(n-3) within 1%: e.g. resistance of meter of No. 18 = $2 \times No$. 15.

						ρir	micro-o	hms per ci	m. cube.			
Gage. No.	Diam.	Section mm 2.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
	******					Resistan	ce of wir	e 1 meter	long in oh	ms.		
0000	11.7	107.2	.04933	.03187	.03280	.03373	.03466	.03560	.03653	.03746	.03840	.03933
100	9.27	67.43	.03148	.03297	.03445	.03593	.03742	.03890	.02104	.02119	.02133	.02148
1	7.35	42.41	.03236	.03472	.03707	.03943	.02118	.02141	.02165	.02189	.02212	.0223
3	5.83	26.67	.03375	.03750	.02112	.02150	.02187	.02225	.02262	.02300	•02337	.0237
5	4.62	16.77	.03596	.02119	.02179	.02239	.02298	.02358	.02417	.02477	.02537	.0259
7	3.66	10.55	.03948	.02190	.02284	.02379	.02474	.o ₂ 569	.02664	.02758	.02853	.0294
10	2.91	6.634	.02151	.02301	.02452	.02603	.02754	.02904	.0106	.0121	.0136	.0151
II	2.30	4.172	.02240	.02479	.02719	.02959	.0120	.0144	.0168	.0192	.0216	.0240
13	1.83	2.624	.02381	.02762	.0114	.0152	1010.	.0229	.0267	.0305	.0343	.0381
15	1.45	1.650	.02606	.0121	.0182	.0242	.0303	.0364	.0424	.0485	.0545	.0006
17	1.15	1.038	.02963	.0193	.0289	.0385	.0482	.0578	.0674	.0771	.0867	.0963
19	.912	.6527	.0153	.0306	.0460	.0613	.0766	.0919	.1072	.1226	•1379	.1532
21	.723	.4105	.0244	.0487	.0731	.0974	.1218	.1462	.1705	.1949	.2192	.2436 .3873
23	•573	.2582		.0775	.1847	.1549	.1936	.2324	.2711	.3098	.3486	.6158
25	-455	.1624	.0616	.1232	.2938	.3918	.3079	•3695 •5877	.6856	.4926 •7835	.8815	
27	.361	.0642	-0979	.1959	.4671	.6228	.7786		1.000	1.246	1.401	•9794
29	.227	.0404	.1557	.4952	.7428	.9904	1.238	•9343 1.486		1.981	2.228	2.476
31	.180	.0404	-3937	.7874	1.181	1.575	1.968	2.362	2.756	3.150	3.543	3.937
33	.143	.0160	.6262	1.252	1.879	2.505	3.131	3.757	4.383	5.000	5.636	6.262
35	.113	.0100	.0050	1.990	2.985	3.980	4.975	5.970	6.965	7.960	8.955	9.950
39	.090	.0063	1.583	3,166	4.748	6.331	7.914	9.497	11.08	12.66	14.25	15.83
40	.080	.0050	1.996	3.992	5.988	7.984	9.980	11.98	13.97	15.97	17.96	19.96

RESISTIVITY OF METALS AND SOME ALLOYS.

The resistivities are the values of ρ in the equation $R=\rho l/s$, where R is the resistance in microhms of a length l cm of uniform cross section s cm². The temperature coefficient is a_t in the formula $R_t=R_t[x+a_s(t-t_b)]$. The information of column z does not necessarily apply to the temperature coefficient. See also next table for temperature coefficients of to roo C.

		Tempera-	Microhm-	D - 6	Temperatu	re coefficient	
Substance.	Remarks.	ture,	em	ence.	t _a	as	Reference.
Advance	see constantan		_		_	_	-
Aluminum	see p. 334	20.	2.828	1	18°	+.0039	9
"	c. p.	-189.	0.64	3	25	+.0034	4
	46	-100. 0.	1.53	3	100 500	+.0040	14
"	**	+100.	3.86	3	500	+.0050	4
46	46	400.	8.0	3	_		-
Antimony		20.	41.7	5	20	+.0036	5
***************************************	—	-190.	10.5	6	-	-	-
*******	liquid	+860.	120.	7 8		_	_
Arsenic	_	0.	35.	0	20	+.004	5
Dismuch	_	100.	160.2	0	_	_	
Brass	_	20.	7.	5	20	+.002	5
Cadmium	drawn	-160.	2.72	IO	20	+.0038	5
**	66	18.	7.54	0		_	
44	liquid	318.	9.82 34.1	II		_	
Caesium	nquiu	-187.	5.25	12	_	_	-
44		0.	19.	II		-	-
46	solid)	27.	22.2	13	-	_	-
	liquid /	30.	36.6	13	-	1	-
Calcium	99.57 pure see constantan	20.	4.6	14		+.0036	14
Chromium	See Constantan	0.	2.6	15	_	_	
Climax	_	20.	87.	5	20	+.0007	5
Cobalt	99.8 pure	20.	9.7	16	-		-
Constantan	60% Cu, 40% Ni	20.	49.	5	12	+.000008	3
"	-	_	=		25	+.000002 000033	4
"	_				200	000020	4
44			-	-	500	+.000027	4
Copper	annealed	20.	I.724	I	20 see col. 2	+.00393	5
46	hard-drawn	20.	I.77	I	44 46 46 66	+.00382	5
,,	electrolytic	-206. +205.	2.02	17	100	+.0038 +.0042	4 4
46	pure	400.	4.10		1000	+.0062	4
66	very pure, ann'ld	20.	1.692	3 18	-	_	-
Eureka	see constantan	-	-	-	-		-
Excello	_	20.	92.	5	20	+.00016	5
Gallium	18% Ni	20.	53.	12	20	+.0004	5
Gold	99.9 pure	-183.	0.68	17	20	+.0034	2 16
"	99.9 pare	0.	2.22	11	100 ann'ld	+.0025	4
"	pure, drawn	20.	2.44	. 5	500 "	+.0035	4
#	99.9 pure	194.5	3.77	17	1000 "	+.0049	4
Ia IaIdeal	see constantan			_		_	-
Indium	_	0.	8.37	10	_	-	-
Iridium		-186.	1.92	20	-	-	-
44	-	0.	6.10	20	_	-	-
"	_	+100.	8.3	20	_	_	-

RESISTIVITY OF METALS AND SOME ALLOYS.

		Tempera-	Minnel	Dafan	Remarks. Tempera- ture. Microhm- Refer-			
Substance.	Remarks.	ture,	cm cm	ence,	t _s	a_s	Reference	
Iron	99.98% pure	20.	10.	5	20	+.0050	5	
. 44	pure, soft	-205.3	0.652	17	0	+.0062	21	
***************************************	46 46	-78.	5.32 8.85	17	25	+.0052	4	
46	46 66	+08.5	17.8	17	500	+.0068 +.0147	4	
66	66 66	106.1	21.5	17	1000	+.0050	4	
"	46 46	400.	43.3	3	-		-	
steel	E. B. B. B. B.	20.	10.4	5	20 see col. 2	+.005	5 5 5	
66	Siemens-Martin	20.	11.9	5	66 66 66 66	+.004 +.003	5	
66	manganese	20.	70.	-5	66 66 66	+.001	5	
44	35% Ni, "invar."	20.	81.	22	-	_	_	
************	piano wire	0.	11.8	23	o see col. 2	+.0032	23	
"	temp. glass, hard	0.	45.7	23 23		+.0016	23	
46	" , yellow " , blue	0.	20.5	23	o see col. 2	+.0033	23	
T	" , soft	0.	15.9	23	-	-	-	
Lead	cold pressed	20.	22.	5	20	+.0039	5	
"	cold pressed	-183. -78.	6.02 14.1	17	18	+.0043	2	
44	44 44	0.	20.4	17	-	_	_	
66	66 66	+90.4	28.0	17	-	_	-	
		196.1	36.9	17	_	_	-	
Lithium	solid	318. -187.	94. 1.34	24 12		_		
46	44	0.	8.55	12		_	-	
"	"	99.3	12.7	12		_	_	
	liquid	230.	45.2	25				
Magnesium	free from Zn	20. -183.	4.6	5	20	+.004 +.0038	5	
46	66 66 66	-78.	2.97	17	25	+.0050	24	
44	66 66 66	0.	4.35	17	100	+.0045	4 4	
	pure	+98.5	5.99	17	500	+.0036	4	
Manganese	pute —	400.	11.9 5.0±	3 15	600	+.0100	4	
Manganin	84 Cu, 12 Mn, 4 Ni	20.	44.	5	12	+.000006	4	
46		_	-		25	.000000	4 4 4 4 4 5 26	
"	_		-	_	100	000042	4	
	_	_			250 475	000052 000000	4	
46		_		_	500	00011	4	
Mercury		20.	95.783	5	20	+.00089	5	
66	solid	-183.5	6.97	17	0	十.00088	26	
66	44	-102.9 -50.3	15.04	17	$Rt = \overline{R_0}(1 +$	_ ′	_	
66	44	-30.3	25.5	17	.000891+		_	
66	liquid	-36.x	80.6	17	.0000012)			
66	46	0.0	94.07	17	-		-	
46	44	50.	98.50	27 24	-	-	_	
66	44	200.	114.27	24		_	_	
36 1 1 1	1	350.	135.5	24	-		_	
Molybdenum	drawn	20.	5.7	5	25	+.0033	4	
44				_	100	+.0034 +.0048	4	
Monel metal		20.	42.	3	20	+.0020	4 4 5 5 5	
Nichrome	-	20.	100.	5	20	+.0004	5	
Nickel		20.	7.8	5 28	20	+.006	5	
66	pure	-182.5 -78.2	1.44	28	25	+.0062 +.0043	24	
44	44	0.	4.3I 6.93	28	100	+.0043 +.0043	4	
66	44	94.9	II.I	28	500	+.0030	4 4	
***************************************	_	400.	60.2	3	1000	+.0037	4	

RESISTIVITY OF METALS AND SOME ALLOYS.

		Tempera-	Michrom-	Refer-	Temp	perature coeff	icient.
Substance	Remarks.	ature, °C	cm	ence.	t _a	a _s	Refer- ence.
Osmium. Palladium. "" Platinum. "" Potassium. "" Rhodium. "" Silicium. Silver. "" "" Sodium. "" "" Strontium. Tantalum. Thallium. Thallium. Thallium. "" "" Titanium. Tungsten. "" "" Zinc. "" "" "" Zinc. "" "" "" "" "" "" Zinc. "" "" "" "" "" "" "" "" "" "	very pure "" "" "" "" "" "" "" "" "" "" "" "" "	20. 20. 20. 218378. 0. 98.5 20. 203.1 -97.5 0. 100. 4007518678.3 0. 100190. 0. 35. 400. 20. 18378. 0. 98.15 192.1 40018075. 0. 20. 20. 18078. 0. 98.5 20. 2018478. 0. 98.5 20. 2018378. 0. 98.5 20. 2018478. 0. 91.45 -78. 0. 91.45 -78. 0. 91.45	60.2 11. 2.78 7.17 10.21 13.79 10. 2.44 6.87 10.06 14.85 26. 4.0 6.1 8.4 0.70 3.09 4.69 6.60 2.5 11.6 13.4 10.6 58. = 1.629 0.390 1.021 1.468 2.062 2.608 3.77 1.0 2.8 4.3 5.4 10.2 2.4.8 15.5 200,000 4.08 11.8 13.0 13.0 13.2 24.8 15.5 3.40 8.8 17.60 24.7 47. 11.5 3.40 8.8 13.0 18.2 3.2 5.51 25.3 41.4 98.9 118.6 23.34 5.75 8.00 10.37 37.2	3 5 17 17 17 17 17 17 17 17 17 13 13 13 13 13 13 13 13 13 13 13 13 13	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+.0033 +.0035 	5 21

References to Table 397: (1) See page 334; (2) Jäger, Diesselhorst, Wiss. Abh. D. Phys. Tech. Reich. 3, p. 269, 1900; (3) Nicolai, 1907; (4) Somerville, Phys. Rev. 31, p. 261, 1910; 33, p. 77, 1911; (5) Circular 74 of Bureau of Standards, 1918; (6) Eucken, Gelhoff; (7) de la Rive; (8) Matthiessen; (9) Jäger, Diesselhorst; (10) Lees, 1908; (11) Mean; (12) Guntz, Broniewski; (13) Hackspill; (14) Weisher, 1917; (15) Shukow; (16) Reichardt, 1901; (17) Dewar, Fleming, Dickson, 1808; (18) Wolff, Dellinger, 1910; (10) Erhardt, 1881; (20) Broniewski, Hackspill, 1911; (21) Dewar, Fleming, 1893; 1806; (22) Circular 58, Bureau of Standards, 1916; (23) Strouhal, Barus, 1883; (24) Vincentini, Omodei, 1800; (25) Bernini, 1905; (26) Glazebrook, Phil. Mag. 20, p. 343, 1885; (27) Grimaldi, 1888; (28) Fleming, 1900; (20) Langmuir, Gen. Elec. Rev. 19, 1916.

TABLE 398. - Resistance of Metals under Pressure.

The average temperature coefficients are per °C between o° and 100° C. The instantaneous pressure coefficients are the values of the derivative $(1/r)\{dr/dp\}_t$, where r is the observed resistance at the pressure p and temperature t. The average coefficient is the total change of resistance between 0 and 12,000 kg/cm² divided by 12,000 and the resistance at atmospheric pressure and the temperature in question. Table taken from Proc. Nat. Acad. 3, p. 11, 1917. For coefficients at intermediate temperatures and pressures, see more detailed account in Proc. Amer. Acad. 52, p. 573, 1917. Sn, Cd, Zn, Kahlbaum's "K" grade; Tl, Bi, electrolytic, high purity; Pb, Ag, Au, Cu, Fe, Pt, of exceptional purity. Al better than ordinary, others only of high grade commercial purity.

					Pressure	coefficients.			
	Average te coeffi	cient	I	nstantaneo	us coefficien	t.	Average coefficient o to 12,000 kg/cm²		
			At	o° C	At I	oo° C			
	At o kg	At 12,000 kg	o kg	12,000 kg	o kg	12,000 kg	At o°	At 100°	
In	+.00406	+.00383		041016	041510‡	041072‡	041021	04II3I ‡	
Sn	.00447	.00441	.041044		.041062	.040973	.040920	.040951	
Tl	.00517	.00499	.041319		.041456	.041200	.041151	.041226	
Cd	.00424	.00418	.041063		.041100	.040887	.040894	.040927	
Zn	.00421	.00412	.041442		.041403	.041237	.040470	.041253	
Al	.00410	.00435	.040416		.040307	.040373	.040382	.040454	
Ag	.004074	.004060			.040355	.040331	. 040333	.040336	
Au	.003068	.003064	.040312	.040286	.040304	.040292	.040287	.040202	
Cu	.004293	.004303	.040201	.040179	.040184	.040175	.040183	.040177	
Ni	.004873	.004855	.040158		.040163	.040156	.040147	.040158	
Co	.003657	.003676	.040094	.040081	.040076	.040070	.040087	.040073	
Fe	.006206	.006184	.040241	.040218	.040247	.040230	.040226	.040235	
	.003178	.003185	.040198		.040189	.040187	.040190	.040186	
Pt	.003808	.003873			.040130	.040102	.040107	.040104	
Ta	.002073	.004340	.04013.3		.040130	.040125	040143	.040120	
W	.003210	.003216	.040128	.040121	.040130	.040123	.040123	.040126	
Mg	.00300 *		.04055	-	_	_	.04055		
Sb	.00473	.00403		+.041064	+.040768	+.040723	+.041220	+.040768	
Bi	+.00438	+.00395	+.04154	+.040213	+.04152 8	+.0418958	+.042228	+.041980	
Te	0063 †	-	03129			-	-	-	

* 0° to 20°. † 0° to 24°. ‡ Extrapolated from 50°. § Extrapolated from 75°.

Additional data from P. Nat. Acad. Sc., 6, 505, 1920. Data are 10,000 \times mean pressure coefficient, 0 - 12,000 kg, and 10,000 \times instantaneous pressure coefficient at 0 kg. l = liquid; s = solid.

Li, s, o°	+.0772	+ .068	Ca, oo	+.106	+.129	Ti, oo	生.001?		
Li, 1, 240°	十.093	÷ .093	Sr, 00	+ .680	502	Zr, o°	0040		.004
Na, s, 00	345	663	Hg, s, oo	236b		Bi, 1, 275°	1010	-	.123
Na, 1, 2000	436	922	Hg, 1, 250	210	334	W, 00	0135	_	.014
K, 8, 25°	604	I.86	Ga, s, oo	0247	22.4	La, oo	0331	-	.039
K, 1, 165°	— .809a	- 1.68	Ga, 1, 30°	0531	064	P, black, oo	81		2.00

a, 0 - 9,000 kg; b, 7,640 - 12,000 kg; c, 0 - 7,000 kg. The Ga, Na, K, Mg, Hg, Bi, W, P, of exceptional purity.

TABLE 399. - Resistance of Mercury and Manganin under Pressure.

Mercury, pure and free from air and with proper precautions, makes a reliable secondary electric-resistance pressure gage. For construction and manipulation see "The Measurement of High Hydrostatic Pressure; a Secondary Mercury Resistance Gauge," Pr. Am. Acad. 44, p. 221, 1919.

Pressure, kg/cm ²	_	500	1000	1500	2000	2500	3000	4000	5000	6000	6500
$R(p, -75^{\circ})$ $R(p, 25^{\circ})$	0.9186	0.9055	0.8930	0.8818	0.8714	0.8582	0.8478	0.8268	0.8076	0.7896	0.7807
* R(\$\psi, 125\cdot)	I.0000	0.9854	0.9716	0.9588	0.9462	0.9342	0.9228	0.0010	0.8806	0.8616	0.8527

*This line gives the Specific Mass Resistance at 25°, the other lines the specific volume resistance. The use of mercury as above has the advantage of being perfectly reproducible so that at any time a pressure can be measured without recourse to a fundamental standard. However, at o° C mercury freezes at 7500 kg/cm². Manganin is suitable over a much wider range. Over a temperature range o to 50° C the pressure resistance relation is linear within 1/10 per cent of the change of resistance up to 13,000 kg/cm². The coefficient varies slightly with the sample. Bridgman's samples (German) had values of $(\Delta R/\rho R_0) \times$ 1.0° from 2205 to 2325. These are + instead of -, as with most of the above metals. See "The Measurement of Hydrostatic Pressure up to 20,000 Kilograms per Square Centimeter," Bridgman, Pr. Am. Acad. 47, p. 321, 1911.

CONDUCTIVITY AND RESISTIVITY OF MISCELLANEOUS ALLOYS.

TEMPERATURE COEFFICIENTS.

Conductivity in mhos or $\frac{1}{\text{ohms per cm}^3} = \gamma_t = \gamma_0 (1 - at + bt^2)$ and resistivity in microhms-cm $=\rho_t=\rho_0(1+at-bt^2).$

Metals and alloys.	Composition by weight.	70 104	a×10 ⁶	Po	Authority.
Gold-copper-silver .	58.3 Au + 26.5 Cu + 15.2 Ag 66.5 Au + 15.4 Cu + 18.1 Ag 7.4 Au + 78.3 Cu + 14.3 Ag	7.58 6.83 28.c6	574* 529† 1830‡	13.2 14.6 3.6	I
Nickel-copper-zinc .	12.84 Ni + 30.59 Cu + 6.57 Zn by volume	4.92	444\$	20.3	I
Brass	Various	12.2-15.6 12.16 14.35	1-2×10 ³	6.4-8.4 8.2 7.0	3 3
German silver	Various	3-5	-	2033.	2
66 66	60.16 Cu + 25.37 Zn + 14.03 Ni + .30 Fe with trace of cobalt and manganese.	3.33	360	30.	4
Aluminum bronze .		7.5-8.5	5-7×10°	12-13	2
Phosphor bronze .		10-20	-	5-10	2
Silicium bronze		41	-	2.4	5
Manganese-copper,	30 Mn + 70 Cu	1.00	40	100.	4
Nickel-manganese- copper	3 Ni + 24 Mn + 73 Cu	2.10	-30	48.	4
Nickelin	18.46 Ni + 61.63 Cu + 19.67 Zn + 0.24 Fe + 0.19 Co + 0.18 Mn	3101	300	33.	4
Patent nickel	$ \left\{ \begin{array}{l} 25.1 \text{ Ni} + 74.41 \text{ Cu} + \\ 0.42 \text{ Fe} + 0.23 \text{ Zn} + \\ 0.13 \text{ Mn} + \text{trace of cobalt} \end{array} \right\} $	2.92	190	34.	4
Rheotan	53.28 Cu + 25.31 Ni + 16.89 Zn + 4.46 Fe + 0.37 Mn	1.90	410	53 -	4
Copper-manganese-	91 Cu + 7.1 Mn + 1.9 Fe .	4.98	120	20.	5
Copper-manganese-	70.6 Cu + 23.2 Mn + 6.2 Fe.	1.30	22	77 -	6
Copper-manganese- iron	69.7 Cu + 29.9 Ni + 0.3 Fe.	2.60	120	38.	7
Manganin	84 Cu + 12 Mn + 4 Ni 60 Cu + 40 Ni	2.3	6 8		8

¹ Matthiessen. ² W. Siemens. ⁵ Van der Ven. ⁶ Peussner and Lindeck. ⁶ Blood.

⁷ Feussner. ⁸ Jaeger-Diesselhorst.

^{*, †, ‡, §,} b × 10°=924, 93, 7280, 51, respectively.

CONDUCTING POWER OF ALLOYS.

This table shows the conducting power of alloys and the variation of the conducting power with temperature.* The values of C_o were obtained from the original results by assuming silver $=\frac{ro^6}{1.585}$ mhos. The conductivity is taken as $C_t = C_0 (t-at+bt^2)$, and the range of temperature was from 0° to 100° C.

The table is arranged in three groups to show (1) that certain metals when melted together produce a solution which has a conductivity equal to the mean of the conductivities of the components, (2) the behavior of those metals alloyed with others, and (3) the behavior of the other metals alloyed together.

It is pointed out that, with a few exceptions, the percentage variation between 0° and 100° can be calculated from the formula $P = P_0 \frac{l}{l!}$, where l is the observed and l the calculated conducting power of the mixture at 100° C., and P_e is the calculated mean variation of the metals mixed.

	Weight %	Volume %	<u>C</u> o		è× 109	Variation	per 100° C.
. Alloys.	of first	named.	104	a × 10 ⁶	0 X 10°	Observed.	Calculated.
	11 6	Gi	ROUP I.	li li			
Sn ₆ Pb	77.04	83.96	7.57	3890	8670	30.18	29.67
	82.41	83.10	9.18	4080	11870	28.89	30.03
	78.06	77.71	10.56	3880	8720	30.12	30.16
	64.13	53.41	6.40	3780	8420	29.41	29.10
	24.76	26.06	16.16	3780	8000	29.86	29.67
	23.05	23.50	13.67	3850	9410	29.08	30.25
	7.37	10.57	5.78	3500	7270	27.74	27.60
		G	ROUP 2.				
Lead-silver (Pb ₂₀ Ag) .	95.05	94.64	5.60	3630	7960	28.24	19.96
Lead-silver (PbAg) .	48.97	46.90	8.03	1960	3100	16.53	7.73
Lead-silver (PbAg ₂) .	32.44	30.64	13.80	1990	2600	17.36	10.42
Tin-gold (Sn ₁₂ Au) (Sn ₅ Au)	77·94	90.32	5.20	3080	6640	24.20	14.83
	59·54	79·54	3.03	2920	6300	22.90	5.95
Tin-copper	92.24	93.57	7.59	3680	8130	28.71	19.76
	80.58	83.60	8.05	3330	6840	26.24	14.57
	12.49	14.91	5.57	547	294	5.18	3.99
	10.30	12.35	6.41	666	1185	5.48	4.46
	9.67	11.61	7.64	691	304	6.60	5.22
	4.96	6.02	12.44	995	705	9.25	7.83
	1.15	1.41	39.41	2670	5070	21.74	20.53
Tin-silver	91.30	96. 5 2 75.51	7.81 8.65	3820 3770	8190 8550	30.00 29.18	23. 3 1 11.89
Zinc-copper †	36.70	42.06	13.75	1370	1340	12.40	11.29
	25.00	29.45	13.70	1270	1240	11.49	10.08
	16.53	23.61	13.44	1880	1800	12.80	12.30
	8.89	10.88	29.61	2040	3030	17.41	17.42
	4.06	5.03	38.09	2470	4100	20.61	20.62

NOTE. - Barus, in the "Am. Jour. of Sci." vol. 36, has pointed out that the temperature variation of platinum alloys containing less than 10% of the other metal can be nearly expressed by an equation $y = \frac{n}{x} - m$, where y is the temperature coefficient and x the specific resistance, m and n being constants. If a be the temperature coefficient at a o a c. and a the corresponding specific resistance, a (a + m) = n.

For platinum alloys Barus's experiments gave m = -.000194 and n = .0378. For steel m = -.000303 and n = .0620.

Matthiessen's experiments reduced by Barus gave for

Gold alloys m = -.000045, n = .00721. Silver " m = -.000112, n = .00538. Copper " m = -.000386, n = .00055.

^{*} From the experiments of Matthiessen and Vogt, "Phil. Trans. R. S." v. 154. † Hard-drawn.

TABLE 401, - Conducting Power of Alloys.

		Gı	ROUP 3.				
	Weight %	Volume %	Co			Variation	per 100° C.
Alloys.	of first	named.	<u>C</u> ₀	a × 106	b × 109	Observed.	Calculated.
Gold-copper †	99.23 90.55	98.36 81.66	35.42 10.16	2650 749	4650 81	21.87	23.22 7·53
Gold-silver †	87.95 87.95	79.86 79.86	13.46	1090	793 1160	10.09	9.65
66 66 †	64.80 64.80	52.08 52.08	9.48 9.51	673	246 495	6.49 . 6.71	9.59 6.58 6.42
66 66 #	31.33	19.86	13.69	885 908	531 641	8.23	8.62
Gold-copper †	34.83	0.71	12.94 53.02	864 3320	570 7300	8.07 25.90	8.18 25.86
Platinum-silver †	33·33 9.81 5.00	19.65 5.05 2.51	4.22 11.38 19.96	330 774 1240	208 656 1150	3.10 7.08 11.29	3.21 7.25 11.88
Palladium-silver †	25.00	23.28	5.38	324	154	3.40	4.21
Copper-silver†	98.08 94.40	98.35 95.17	56.49 51.93	3450 3250	7990 6940	26.50 25.57	27.30 25.41
" " †	76.74 42.75 7.14	77.64 46.67 8.25	44.06 47.29 50.65	3030 2870 2750	6070 5280 4360	24.29 22.75 23.17	21.92 24.00 25.57
Iron-gold †	1.31	27.93	50.30	3490	8740	26.51	14.70
« « †	9.80 4.76	21.18 10.96	1.26 1.46	2970 487	1220	17.55 3.84	13.40
Iron-copper †	2.50	0.46	24.51 4.62	1550	2090	13.44	14.03
· · · · · · · · · · · · · · · · · · ·	0.95	-	14.91	1320	1640	-	-
Arsenic-copper †	5.40 2.80 trace	-	3.97 8.12 38.52	516 736 2640	989 446 4830	=	-

* Annealed.

† Hard-drawn.

TABLE 402. — Allowable Carrying Capacity of Rubber-covered Copper Wires.

(For inside wiring - Nat. Board Fire Underwriters' Rules.)

B+S Gage	18	16	14	12	10	S	6	5	4	3	2	I	D	1001	MODIO
Amperes	3	6	12	17	24	33	46	54	65	76	90	107	127	150	210

500,000 circ. mills, 390 amp.; 1,000,000 c. m., 650 amp.; 2,000,000 c. m., 1,050 amp. For insulated al. wire, capacity =84% of cu. Preece gives as formula for fusion of bare wires $I=ad^{\frac{3}{2}}$, where d=diam. in inches, a for cu. is 10,244; al., 7585; pt., 5172; German silver, 5230; platinoid, 4750; Fe, 3148; Pb., 1379; alloy 2 pts. Pb., 1 of Sn., 1318.

RESISTIVITIES AT HIGH AND LOW TEMPERATURES.

The electrical resistivity (ρ , ohms per cm. cube) of good conductors depends greatly on chemical purity. Slight contamination even with metals of lower ρ may greatly increase ρ . Solid solutions of good conductors generally have higher ρ than components. Reverse is true of bad conductors. In solid state allotropic and crystalline forms greatly modified by ρ . For liquid metals this last cause of variability disappears. The + temperature coefficients of pure metals is of the same order as the coefficients of expansion of gases. For temperature resistance (t, ρ) plot at low temperatures the graph is convex towards the axis of t and probably approaches tangency to it. However for extremely low temperatures Olmes finds very sudden and great drops in ρ . e.g. for Mercury, $\rho_{3.6}$ K <4x10⁻¹⁰ ρ_0 and for Sn., $\rho_{3.8}$ K $<10^{-1}$ ρ_0 . The t, ρ graph for an alloy may be nearly parallel to the taxis, cf. constantan; for poor conductors ρ may decrease with increasing t. At the melting-points there are three types of behavior of good conductors: those about doubling ρ and then possessing nearly linear t, ρ graphs (Al., Cu., Sn., Au., Ag., Pb.); those where ρ suddenly increases and then the +temp. coefficient is only approximately constant; (Hg., Na., K.); those about doubling ρ then having a -, slowly changing to a + temp. coef. (Zn., Cd.); those where ρ suddenly decreases and thereafter steadily increases (Sb., Bi.). The values from different authorities do not necessarily fit because of different samples of metals. The Shimank values (given to tenths of θ) are for material of theoretical purity and are determined by the α rule (see his paper, also Nernst, Aun. d Phys. 36, p. 403, 1911 for temperature resistance thermometry). The Shimank and Pirrani values are originally given as ratios to ρ_0 . (Ann. d. Phys. 45, p. 706, 1914, 46, p. 176, 1915.) Resistivities are in ohms per cm. cube unless stated. Italicized figures indicate liquid state.

	Gold.			Copper.			Silver.			Zinc.		
°C.	Ρt	$\frac{\dot{\rho}_{t}}{\rho_{o}}$	°C.	Pt	$\frac{\rho_t}{\rho_o}$	° C.	Ρt	$\frac{\rho_{\mathbf{t}}}{\rho_{\mathbf{o}}}$	°C.	Pt	Pt Po	
-252.8 -200192.5 -15010077.6 -50. 0. 100. 200. 750. 1003. 1003. 1003. 1200. 1400.	0.018 .601 .520 .997 1.400 1.564 1.813 2.247 2.97 3.83 6.62 9.35 12.54 13.50 30.82 32.8 35.6 37.0	.0081 .267 .231 .444 .623 .696 1.00 1.32 1.70 2.94 4.16 5.58 6.58 6.59 1.3.7 14.6	-258.6 -252.8 -251.1 -205.6 -192.9 -150. -100. 200. 500. 200. 750. 1000. 1000. 1000. 1400. 1400.	0.014 .016 .028 .163 .249 .567 .904 1.240 1.578 2.28 7.03 9.42 10.20 21.30 22.30 23.86 24.62	.0091 .0103 .0178 .1035 .1580 .359 .573 .786 1.00 1.44 1.88 3.22 4.46 5.97 6.47 13.5 14.1 15.1	-258.6 -252.8 -180.5 -200. -150. -76.8 -50. 0. 100. 200. 400. 750. 960. 1000. 1200. 1400.	0.009 .014 .334 .357 .638 .916 1.040 1.212 1.505 2.15 2.80 6.65 8.4 16.6 17.01 19.36 21.72 23.0	.0057 .0090 .222 .237 .424 .6090 .805 1.00 1.43 1.83 2.30 4.42 5.58 17.0 11.3 12.9 14.4 15.3	-252.9 -200. -191.1 -150. -100. 300. 300. 415. 427. 450. 500. 600. 700. 850.	.05111 1.39 1.23 2.00 2.90 2.90 4.04 5.75 7.95 13.25 17.20 37.30 37.30 35.60 35.60 35.60 35.74	.0089 .242 .214 .348 .504 .691 .703 1.38 2.30 6.49 6.49 6.36 6.25 0.19 6.21	
	Mercury.			Potassium.			Sodium.			Iron.		
°C.	Pt	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$	°C	Pt	$\frac{\rho_t}{\rho_o}$	°C.	- Pt	$\frac{\rho_{t}}{\rho_{o}}$	°C.	ρt	$\frac{\rho_t}{\rho_0}$	
-200. -150. -100. -50. -30. 0. 50. 100. 200.	5.38 10.30 15.42 21.4 91.7 94.1 98.3 103.1 114.0 127.0	.057 .109 .164 .227 .975 1.000 1.045 1.096 1.212 1.350	-200. -150. -100. -50. 0. 20. 60. 65. 100.	1.720 2.654 3.724 5.124 7.000 7.116 8.790 13.40 15.31 16.70	.246 .379 .532 .732 1.00 1.016 1.256 1.914 2.187 2.386	-200. -150. -100. -50. 0. 20. 93.5 100. 120.	0.605 1.455 2.380 3.365 4.40 4.873 6.290 9.220 9.724 10.34	.:37 .330 .541 .764 1.000 1.107 1.429 2.005 2.209 2.349	-252.7 -200. -192.5 -100. - 75.1 - 50. - 0. 100. 200. 400.	0.011 2.27 .844 5.92 6.43 8.15 10.68 16.61 24.50 43.29	.0010 .212 .079 .554 .602 .763 1.00 1.554 2.293 4.052	
	Manganin	1.	G	erman Sil	ver.		Constanta	n.	90 %	Pt. 10	% Rh.	
°C.	ρt	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$	°C.	ρt	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$	°C.	Pt	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$	°C.	Ρt	Pt Po	
-200. -150. -100. -50. 0, 100. 400.	37.8 38.2 38.5 38.7 38.8 38.9 38.3	.974 .985 .992 .997 1.000 1.003 .987	-200, -150, -100, -50, 0, 100,	27.9 28.7 29.3 29.7 30.0 33.1	.930 .957 .977 .990 1.000	-200, -150, -100, -50, 0, 100, 400.	42.4 43.0 43.5 43.9 44.1 44.6 44.8	.961 .975 .986 .995 1.000 1.012	-200. -150. -100. -50. 0.	14.49 16.29 18.05 19.66 21.14 24.20	.685 .770 .854 .930 1.000	

Au. below o°, Niccolai, Lincei Rend. (5), 16, p. 757, 906, 1907; above, Northrup, Jour. Franklin Inst. 177, p. 85, 1914. Cu. below, Niccolai, l. c. above, Northrup, ditto, 177, p. 1, 1914. Ag. below, Niccolai, l. c. above Northrup, ditto, 178, p. 85, 1914. Zn. below, Dewar, Fleming, Phil. Mag. 36, p. 271, 1893; above, Northrup, 175, p. 153, 1913. Hg. below Dewar, Fleming, Proc. Roy. Soc. 66, p. 76, 1900; above, Northrup, see Cd. K. below Guntz, Broniewski, C. R. 147, p. 1474, 1908, 148, p. 204, 1909. Above, Northrup, Tr. Am. Electroch. Soc. p. 185, 1911. Na, below, means, above, see K. Fee, Mauganin, Constantan. Niccolai, l.c. German Silver, 90% Pt. 90% Rh., Dewar and Fleming — Phil. Mag. 36, p. 271, 1893.

TABLE 403 (continued).

RESISTIVITIES AT HIGH AND LOW TEMPERATURES.

(Ohms per cm. cube unless stated otherwise.)

	Platinun	١.		Lead.			Bismuth.			Cadmiu	m.
°C.	Pt	$\frac{\rho_t}{\rho_o}$	°C.	Pt	<u>ρ</u> t .ρο	°C.	Pt	Pt Po	°C.	Pt	Po
-265, -253, -233, -153, - 73, 0, 100, 200, 400, 800, 1000, 1200, 1400,	0.10 .15 .54 4.18 7.82 11.05 14.1 17.9 25 44 40.3 47.0 52.7 58.0 63.0	.0092 .014 .049 .378 .708 1.00 1.28 1.62 2.30 3.65 4.25 4.77 5.25 5.70	-252.9 -203. -192.8 -103. - 75.8 - 53. 0. 100. 200. 319. 333. 400. 600. 800.	0.59 4.42 5.22 11.8 13.95 15.7 19.8 27.8 38.0 50.0 95.0 98.3 107.2 116.2	.0298 .223 .264 .598 .705 .792 I.00 I.403 I.919 2.52 4.80 4.90 5.41 5.86	-200. -150. -100. - 50. 0. 17. 100. 200. 259. 263. 300. 500. 700.	34.8 55.3 75.6 94.3 110.7 120.0 156.5 214.5 267.0 127.5 128.9 139.9 150.8	.314 .499 .683 .852 1.00 1.083 1.413 1.937 2.411 1.150 1.164 1.263 1.361	-252.9 -200. -190.2 -183.1 -139.2 -100. 300. 325. 350. 400. 500.	0.17 1.66 2.00 2.22 3.60 4.80 7.75 16.50 33.70 33.90 33.70 35.12 35.78	.214 .258 .286 .464 .619 1.00 2.113 4.35 4.33 4.35 4.40
10	Tin.		Ca	rbon, Grap	hite.*	Fused silica.				Alundum	cement.
°C.	ρt	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$	°C.	ρ in ohms	, cm. cube.	°C.	ρ=m	egohms c	m.		in ohms
-200, -100. 0. 200. 225. 235. 750.	2.60 7·57 13.05 20.30 22.00 47.60 61.22	.199 .580 1.00 1.55 1 69 3.65 4.69	0. 500. 1000. 1500. 2000.	Carbon 0.0035 .0027 .0021 .0015 .0011	Graphite 0.00080 .00083 .00087 .00090 .00100	15, 230, 300, 350, 450, 700, 850,		30,000,000 200,000 30,000 800 30 about 20	. I	36. 800. 900. 900. 100. 200.	>9×10 6 30800. 13600. 7600. 6500. 2300.

Pt. low, Nernst, l. c. high, Pirrani, Ber. Deutsch. Phys. Ges. 12, p. 305, Pb. low, Schimank, Nernst, l. c. high. Northrup, see Zn. Bi. low, means, high, Northrup, see Zn. Cd. low, Euchen, Gehlhoff, Verh. Deutsch. Phys. Ges. 14, p. 169, 1912, high, Northrup, see Zn. Sn. low, Dewar, Fleming, high, Northrup, see Zn. Carbon, graphite, Metallurg. Ch. Eng. 13, p. 23, 1915. Silica, Campbell, Nat. Phys. Lab. 11, p. 207, 1914. Alundum, Metallurg. Ch. Eng. 12, p. 125, 1914.

* Diamond 1030° C, ρ > 107; 1380°, 7.5 × 105, v. Wartenberg, 1912.

TABLE 404.- Volume and Surface Resistivity of Solid Dielectrics.

The resistance between two conductors insulated by a solid dielectric depends both upon the surface resistance and the volume resistance of the insulator. The volume resistivity, ρ , is the resistance between two opposite faces of a centimeter cube. The surface resistivity, σ , is the resistance between two opposite edges of a centimeter square of the surface. The surface resistivity usually varies through a wide range with the unitiality. (Curtis, Bul. Bur. Standards, 11, 359, 1915, which see for discussion and data for many additional materials.)

Material.	σ; megolims 50% humidity.	σ; megohms 70% humidity.	σ; megohms 90% humidity.	Megohms-cms.
Amber Beeswax, yellow Celluloid Fiber, red Glass, plate "Kavalier Hard rubber, new Ivory Khotinsky cement Marble, Italian Mica, colorless Paraffin (parowax) Porcelain, unglazed Quartz, fused Rosin Sealing wax Shellac Slate Sulphur Wood, parafined mahogany	6 × 108 6 × 108 6 × 108 5 × 104 2 × 104 5 × 106 3 × 109 5 × 108 7 × 108 2 × 107 9 × 109 6 × 105 3 × 106 6 × 105 2 × 107 9 × 109 6 × 106 7 × 109 4 × 106	2 × 10 ⁸ 6 × 10 ⁸ 2 × 10 ⁴ 3 × 10 ³ 6 × 10 4 × 10 ⁸ 1 × 10 ⁸ 1 × 10 ⁸ 1 × 10 ⁸ 2 × 10 ² 4 × 10 ⁵ 7 × 10 ⁹ 7 × 10 ⁸ 3 × 10 ⁸ 3 × 10 ⁸ 3 × 10 ⁸ 3 × 10 ⁸ 3 × 10 ⁸ 5 × 10 ⁹ 5 × 10 ⁵	1 × 10 ⁵ 5 × 10 ⁸ 2 × 10 ⁸ 2 × 10 ⁸ 2 × 10 ² 2 × 10 1 × 10 ⁸ 3 × 10 5 × 10 ⁵ 2 × 10 8 × 10 ⁸ 6 × 10 ⁹ 5 × 10 2 × 10 ² 2 × 10 ⁸ 9 × 10 ⁷ 7 × 10 ⁸ 1 × 10 1 × 10 ⁸ 7 × 10 ⁸	5 × 10 ¹⁰ 2 × 10 ⁹ 2 × 10 ⁴ 5 × 10 ⁸ 2 × 10 ⁷ 8 × 10 ⁹ 1 × 10 ¹² 2 × 10 ⁹ 1 × 10 ¹² 2 × 10 ⁹ 1 × 10 ¹⁶ 3 × 10 ⁹ 1 × 10 ¹⁰ 3 × 10 ⁸ 5 × 10 ¹² 5 × 10 ¹⁰ 8 × 10 ⁹ 1 × 10 ¹⁰ 1 × 10 ¹¹ 4 × 10 ⁷

TABLE 405 .- Variation of Electrical Resistance of Glass and Porcelain with Temperature.

The following table gives the values of a, b, and c in the equation

 $\log R = a + bt + ct^2,$

where R is the specific resistance expressed in ohms, that is, the resistance in ohms per centimeter of a rod one square centimeter in cross section.

No.	Kind of glass.		Density.	12	3		5	Range of temp. Centigrade.	
I	Test-tube glass		-	13.86	044	.00	0065	00-2500	
2	66 66 66		2.458	14.24	055	.00	10	37-131	
3	Bohemian glass		2.43	16.21	043	.000	00394	60-174	
4	Lime glass (Japanese manu	ıfacture) .	2.55	13.14	031	000	0021	10-85	
5	ec ec ec	" .	2.499	14.002	025	00	006	35-95	
6	Soda-lime glass (French fla	ask) .	2.533	14.58	049	.000	0075	45-120	
7	Potash-soda lime glass .		2.58	16.34	0425	.000	00364	66-193	
8	Arsenic enamel flint glass		3.07	18.17	055	.000	0088	105-135	
9	Flint glass (Thomson's ele jar)	ctrometer	3.172	18.021	036	000	16000	100-200	
10	Porcelain (white evaporation	ng dish) .	-	15.65	042	.000	005	68-290	
Composition of some of the above Specimens of Glass.									
	Number of specimen =	3	4		5	7	8	9	
Sil	ica	61.3	57.2	70	0.05	5.65	54.2	55.18	
Po	tash	22.9	21.1	1	1.44	7.92	10.5	13.28	

Number of specimen =	3	4	5	7	8	9
Silica	61.3	57.2	70.05	75.65	54.2	55.18
Potash	22.9	21.1	1.44	7.92	10.5	13.28
Soda	Lime, etc.	Lime, etc.	14.32	6.92	7.0	-
Lead oxide	by diff.	by diff.	2.70	-	23.9	31.01
Lime	15.8	16.7	10.33	8.48	0.3	0.35
Magnesia	-		-	0.36	0.2	0.06
Arsenic oxide	-)	-	-	3.5	-
Alumina, iron oxide, etc	-	-	1.45	0.70	0.4	0.67

^{*} T. Gray, "Phil. Mag." 1880, and "Proc. Roy. Soc." 1882.

TABLE 405a. - Temperature Resistance Coefficients of Glass, Porcelain and Quartz dr/dt.

Temperature.	450°	500°	575°	600 ⁰	700°	750°	800°	9000	10000
Glass Porcelain Quartz	-32. -	<u>-</u> 6.	-1.5 -16.	8 -9.8	-0.17 -2.8	1	-0.06 70 -6.40	- -0.30 -2.60	- -0.12 -1.00

Somerville, Physical Review, 31, p. 261, 1910.

TABULAR COMPARISON OF WIRE GAGES.

Gage No.	American wire gage (B. & S.) mils.†	American wire gage (B. & S.) mm.†	Steel wire gage * mils.	Steel wire gage* mm.	Stubs' steel wire gage mils.	(British) standard wire gage mils.	Birming- ham wire gage (Stubs') mils.	Gage No.
7-0 6-0			490.0 461.5	12.4		500. 464.		7-0 6-0
5-0			430.5	10.9		432.		5-0
4-0 3-0	460.	11.7	393.8 362.5	10.0		400.	454-	4-0
2-0	365.	9.3	331.0	9.2 8.4		372. 348.	425. 380.	3-0
0	325.	8.3	306.5	7.8		324.	340.	ō
1 2	289. 258.	7·3 6·5	283.0 262.5	7.2 6.7	227.	300. 276.	300. 284.	1 2
3	229.	5.8	243.7	6.2	212.	252.	259.	3
4 5	204. 182.	5.2 4.6	225.3 207.0	5.7	207.	232.	238.	- 4
6	162.	4.1	192.0	5·3 4.0	204.	212.	220.	5
7 8	144.	3.7	177.0	4.5	199.	176.	180.	7 8
	128.	3.3	162.0	4.1	197.	160.	165.	
9 10	114.	2.91	148.3	3.77 3.43	194.	144.	148.	9
II	91.	2.30	120.5	3.06	188.	116.	120.	11
12	81. 72.	2.05 1.83	105.5 91.5	2.68	185.	104.	109.	12
14	64.	1.63	80.0	2.03	180.	92. 80.	95. 83.	13
15	57.	1.45	72.0	1.83	178.	72.	72.	15
16	51. 45.	1.29 1.15	62.5 54.0	1.59	175.	64. 56.	65.	16
18	40.	1,02	47.5	1.21	168.	48.	49.	18
19	36.	0.91	41.0	0.88	164.	40.	42.	19
21	32. 28.5	.81	34.8	.81	161.	36. 32.	35.	20
22	25.3	.62	28.6	·73	155.	28.	28.	22
23	22.6	•57	25.8		153.	24.	25.	23
24 25	20.1	.51 .45	23.0	.58	151.	22.	22.	24 25
26	15.9	.40	18.1	.46	146.	18.	18.	26
27	14.2	.36	17.3	•439 •411	143.	16.4	16.	27
29	11.3	.29	15.0	381	134.	13.6	14.	28
30	10.0	.25	14.0	.356	127.	12.4	12.	30
31	8.9	.227	13.2	-335 -325	120.	11.6	10.	31
33	7.1	.180	11.8	.300	112.	10.0	8.	33
34 35	6.3 5.6	.160	9.5	.264	110.	9.2 8.4	7.	34
35	5.0	.143	0.0	,229	106.		5.	35 36
37 38	4.5	.113	8.5	.216	103.	7.6 6.8	4.	37 38
	4.0	.101	8.0	.203	101.	6.0		
39 40	3.5 3.1	.090	7.5 7.0 6.6	.191	99. 97.	5.2 4.8		. 39
41				.108	95.	4.4	"	41
42 43			6.2	.157	92. 88.	4.0 3.6		42
44			5.8	.147	85.	3.2		44
45 46			5.5	.140	81.	2.8		45
40			5.2	.132	79· 77·	2.4		46
48			4.8	.122	75.	1.6		48
49 50			4.6	.117	72. 69.	I.2 I.0		49
30			7.4		og.	*.0		50

The Steel Wire Gage is the same gage which has been known by the various names: "Washburn and Moen," "Roebling," "American Steel and Wire Co.'s." Its abbreviation should be written "Stl. W. G.," to distinguish it from "S. W. G.," the usual abbreviation for the (British) Standard Wire Gage.

† The American Wire Gage sizes have been rounded off to the usual limits of commercial accuracy. They are given to four significant figures in Tables 410 to 413. They can be calculated with any desired accuracy, being based upon a simple mathematical law. The diameter of No. 0000 is defined as 0.4600 inch and of No. 36 as 0.0050 inch. The

ratio of any diameter to the diameter of the next greater number $\sqrt[39]{.4600}_{.0050} = 1.1229322$.

Taken from Circular No. 31. Copper Wire Tables, U.S. Bureau of Standards which contains more complete tables.

TABLES 407-413. WIRE TABLES.

TABLE 407. - Introduction. Mass and Volume Resistivity of Copper and Aluminum.

The following wire tables are abridged from those prepared by the Bureau of Standards at the request and with the cooperation of the Standards Committee of the American Institute of Electrical Engineers (Circular No. 31 of the Bureau of Standards). The standard of copper resistance used is "The International Annealed Copper Standard" as adopted Sept. 5, 1913, by the International Electrotechnical Commission and represents the average commercial high-conductivity copper for the purpose of electric conductors. This standard corresponds to a conductivity of 58. ×10⁻⁶ cgs. units, and a density of 8.89, at 20° C.

In the various units of mass resistivity and volume resistivity this may be stated as

0.15328 ohm (meter, gram) at 20° C. 875.20 ohms (mile, pound) at 20° C. 1.7241 microhm-cm. at 20° C. 0.67879 microhm-inch at 20° C. 10.371 ohms (mil, foot) at 20° C.

The temperature coefficient for this particular resistivity is $a_{20} = 0.00393$ or $a_0 = 0.00427$. The temperature coefficient of copper is proportional to the conductivity, so that where the conductivity is known the temperature coefficient may be calculated, and vice-versa. Thus the next table shows the temperature coefficients of copper having various percentages of the standard conductivity. A consequence of this relation is that the change of resistivity per degree is constant, independent of the sample of copper and independent of the temperature of reference. This resistivity-temperature constant, for volume resistivity and Centigrade degrees, is 0.00681 michromcm., and for mass resistivity is 5.000597 ohm (meter, gram).

The density of 8.89 grams per cubic centimeter at 20° C., is equivalent to 0.32117 pounds per

The values in the following tables are for annealed copper of standard resistivity. The user of the tables must apply the proper correction for copper of other resistivity. Hard-drawn copper may be taken as about 2.7 per cent higher resistivity than annealed copper.

The following is a fair average of the chemical content of commercial high conductivity copper:

Copper	99.91%	Sulphur	0.002%
Silver	.03	Iron	.002
Oxygen		Nickel	Trace
Arsenic	.002	Lead	6.6
Antimony	.002	Zinc	66

The following values are consistent with the data above:

Conductivity at oo C., in c.g.s. electromagnetic units	62.969×10^{-5}
Resistivity at o° C., in michroms-cms	1.5881
Density at o° C	
Coefficient of linear expansion per degree C	
"Constant mass" temperature coefficient of resistance at o° C	0.00427

0.14

The aluminum tables are based on a figure for the conductivity published by the U.S. Bureau of Standards, which is the result of many thousands of determinations by the Aluminum Company of America. A volume resistivity of 2.828 michrom-cm., and a density of 2.70 may be considered to be good average values for commercial hard-drawn aluminum. These values give:

Mass resistivity, in ohms (meter, gram) at 20° C	0.0764
" " (mile, pound) at 20° C	436.
Mass per cent conductivity	200.7%
Volume resistivity, in michrom-cm. at 20° C	
" in microhm-inch at 20° C	1.113
Volume per cent conductivity	61.0%
Density, in grams per cubic centimeter	2.70
Density, in pounds per cubic inch	
e average chemical content of commercial aluminum wire is	
Aluminum	99.57%
Silicon	0 30

SMITHSONIAN TABLES

The

TABLES 408, 409. COPPER WIRE TABLES.

TABLE 408. - Temperature Coefficients of Copper for Different Initial Temperatures (Centigrade) and Different Conductivities.

Ohms (meter. gram) at 20° C.	Per cent conductivity.	ao	a 15	a ₂₀	a ₂₅	a 30	a 50
0.161 34 .159 66	95 % 96 %	0.004 03	0.003 80	0.003 73	0.003 67	0.003 60	0.003 36
.158 o2 .157 53	97% 97·3%	.004 13	.003 89	.003 81	.003 74	.003 67	.003 42
.156 40 .154 82	98% 99%	.004 17	.003 93	.003 85	.003 78	.003 71	.003 45
.153 28 .151 76	100%	.004 27	.004 01	.003 93	.003 85	.003 78	.003 52

Note. — The fundamental relation between resistance and temperature is the following:

$$R_t = R_{t_1}(1 + a_{t_1}[t - t_1]),$$

where a_{t_1} is the "temperature coefficient," and t_1 is the "initial temperature" or "temperature of reference."

The values of a in the above table exhibit the fact that the temperature coefficient of copper is proportional to the conductivity. The table was calculated by means of the following formula, which holds for any per cent conductivity, n, within commercial ranges, and for centigrade temperatures. (n is considered to be expressed decimally: e.g., if per cent conductivity = 99 per cent, n = 0.99.)

$$a_{t_1} = \frac{1}{\frac{1}{n(0.00393)} + (t_1 - 20)}.$$

TABLE 409. - Reduction of Observations to Standard Temperature. (Copper.)

	Correcti	ons to reduce	Resistivity t	00 20° C.	Factors to re	educe Resista	nce to 20° C.	
Temperature C.	Ohm (meter, gram).	Microhm-cm.	Ohm (mile, pound).	Microhm—inch.	For 96 per cent con- ductivity.	For 98 per cent con- ductivity.	For 100 per cent con- ductivity.	Temper- ature C.
5 10	+0.011 94 + .008 96 + .005 97	+0.1361 + .1021 + .0681	+ 68.20 + 51.15 + 34.10	+0.053 58 + .040 18 + .026 79	1.0816 1.0600 1.0392	1.0834 1.0613 1.0401	1.0853 1.0626 1.0409	o 5 10
11 12 13	+ .005 37 + .004 78 + .004 18	+ .0612 + .0544 + .0476	+ 30.69 + 27.28 + 23.87	+ .024 II + .021 43 + .018 75	1.0352 1.0311 1.0271	1.0359 1.0318 1.0277	1.0367 1.0325 1.0283	11 12 13
14 15 16	+ .003 58 + .002 99 + .002 39	+ .0408 + .0340 + .0272	+ 20.46 + 17.05 + 13.64	+ .016 c7 + .013 40 + .010 72	1.0232 1.0192 1.0153	1.0237 1.0196 1.0156	I.0242 I.0200 I.0160	14 15 16
17 18 19	+ .001 79 + .001 19 + .000 60	+ .0204 + .0136 + .0068	+ 10.23 + 6.82 + 3.41	+ .008 04 + .005 36 + .002 68	1.0114 1.0076 1.0038	1.0117 1.0078 1.0039	1.0119 1.0079 1.0039	17 18 19
21 22	000 60 001 19	0068 0136	- 3.41 - 6.82	002 68 005 36	1.0000 0.9962 .9925	0.000 0.0062 0.0024	0.9961 .9922	21 21
23 24 25	001 79 002 39 002 99	0204 0272 0340	- 10.23 - 13.64 - 17.05	008 04 010 72 013 40	.9888 .9851 .9815	.9848 .9811	.9803 .9845 .9807	23 24 25
26 27 28	003 58 004 18 004 78	0408 0476 0544 0612	- 20.46 - 23.87 - 27.28 - 30.60	016 07 018 75 021 43	.9779 .9743 .9707	.9774 .9737 .9701	.9732 .9695	27 28
30 35	005 37 005 97 008 96	0681 1021 1361	- 34.10 - 51.15 - 68.20	026 79 040 18 053 58	.9636 .9464	.9629 -9454	.9622 .9443	30 35
40 45 50 55	011 94 014 93 017 92 020 90	1301 1701 2042 2382	- 85.25 -102.30	066 98 080 37 093 76	.9138 .8983	.9122 .8964	.9105 .8945	45 50 55
65 65	023 89 026 87 029 86	2722 3062 3403	-136.40 -153.45 -170.50	107 16 120 56 133 95	.8689 .8549	.8665 .8523	.8642 .8497 .8358	60 65 70
75	032 85	3743	-187.55	147 34	.8281	.8252	.8223	75

WIRE TABLE, STANDARD ANNEALED COPPER.

American Wire Gage (B. & S.). English Units.

Gage	Diameter	Cross-Sec	tion at 20° C.		Ohms per	roco Feet.*	
No.	in Mils. at 20° C.	Circular Mils.	Square Inches.	°° C (=32° F)	20° C (=68° F)	50° C (= 122° F)	75° C (= 167° F)
0000	460.0	211 600.	0.1662	0.045 16	0.049 01	0.054 79	0.059 61
	409.6	167 800.	.1318	.056 95	.061 80	.069 09	.075 16
	364.8	133 100.	.1045	.071 81	.077 93	.087 12	.094 78
0	324.9	105 500.	.082 89	.090 55	.098 27	.1099	.1195
I	289.3	83 690.	.065 73	.1142	.1239	.1385	.1507
2	257.6	66 370.	.052 13	.1440	.1563	.1747	.1900
3 4 5	229.4	52 640.	.041 34	.1816	.1970	.2203	.2396
	204.3	41 740.	.032 78	.2289	.2485	.2778	.3022
	181.9	33 100.	.026 00	.2887	.3133	.3502	.3810
6	162.0	26 250.	.020 62	.3640	.3951	.4416	.4805
7	144.3	20 820.	.016 35	.4590	.4982	.5569	.6059
8	128.5	16 510.	.012 97	.5788	.6282	.7023	.7640
9 10	114.4	13 090.	.010 28	.7299	.7921	.8855	.9633
	101.9	10 380.	.008 155	.9203	.9989	1.117	1.215
	90.74	8234.	.006 467	1.161	1.260	1.408	1.532
12	80.81	6530.	.005 129	1.463	1.588	1.775	1.931
13	71.96	5178.	.004 067	1.845	2.003	2.239	2.436
14	64.08	4107.	.003 225	2.327	2.525	2.823	3.071
15	57.07	3257·	.002 558	2.934	3.184	3.560	3.873
16	50.82	2583.	.002 028	3.700	4.016	4.489	4.884
17	45.26	2048.	.001 609	4.666	5.064	5.660	6.158
18	40.30	1624.	.001 276	5.883	6.385	7.138	7.765
19	35.89	1288.	.001 012	7.418	8.051	9.001	9.792
20	31.96	1022.	.000 802 3	9.355	10.15	11.35	12.35
2I	28.45	810.1	.000 636 3	11.80	12.80	14.31	15.57
22	25.35	642.4		14.87	16.14	18.05	19.63
23	22.57	509.5		18.76	20.36	22.76	24.76
24	20.10	404.0	.000 317 3	23.65	25.67	28.70	31.22
25	17.90	320.4		29.82	32.37	36.18	39.36
26	15.94	254.1		37.61	40.81	45.63	49.64
27	14.20	201.5	.000 158 3	47·42	51.47	57·53	62.59
28	12.64	159.8		59.80	64.90	72·55	78.93
29	11.26	126.7		75·40	81.83	91.48	99.52
30 31 32	10.03 8.928 7.950	79.70 63.21	.000 078 94 .000 062 60 .000 049 64	95.08 119.9 151.2	103.2 130.1 164.1	115.4 145.5 183.4	125.5 158.2 199.5
33	7.080	50.13	.000 039 37	190.6	206.9	231.3	251.6
34	6.305	39.75	.000 031 22	240.4	260.9	291.7	317.3
35	5.615	31.52	.000 024 76	303.1	329.0	36 7. 8	400.1
36	5.000	25.00	.000 019 64	382.2	414.8	463.7	504.5
37	4.453	19.83	.000 015 57	482.0	523.1	584.8	636.2
38	3.965	15.72	.000 012 35	607.8·	659.6	737.4	802.2
39	3.531	12.47 9.888	.000 009 793	766.4 966.5	831.8 1049.	929.8 11 7 3.	1012. 1276.

^{*} Resistance at the stated temperatures of a wire whose length is 1000 feet at 20° C.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.). English Units (continued).

				T	Foot	r Ohm. •	
Gage	Diameter	Pounds	Feet		reet per	r Onm.	
No.	in Mils. at 20° C.	per 1000 Feet.	Pound.	0° C (=32° F)	20° C (=68° F)	50° C (=122° F)	(=167° F)
0000	460.0	640.5	1.561	22 140.	20 400.	18 250.	16 780.
	409.6	507.9	1.968	17 560.	16 180.	14 470.	13 300.
	364.8	402.8	2.482	13 930.	12 830.	11 480.	10 550.
0	324.9	319.5	3.130	11 040.	10 180.	9103.	8367.
I	289.3	253.3	3.947	87 58.	8070.	7219.	6636.
2	257.6	200.9	4.977	6946.	6400.	5725.	5262.
3	229.4	159.3	6.276	5508.	5075.	4540.	4173.
4	204.3	126.4	7.914	4368.	4025.	3600.	3309.
5	181.9	100.2	9.980	3464.	3192.	2855.	2625.
6	162.0	79.46	12.58	2747.	2531.	2264.	2081.
7	144.3	63.02	15.87	2179.	2007.	1796.	1651.
8	128.5	49.98	20.01	1728.	1592.	1424.	1309.
9 10 11	114.4 101.9 90.74	39.63 31.43 24.92	25.23 31.82 40.12	1370. 1087. 861.7	1262. 1001. 794.0	895.6 710.2	1038. 823.2 652.8
12	80.81	19.77	50.59	683.3	629.6	563.2	517.7
13	71.96	15.68	63.80	541.9	499.3	446.7	410.6
14	64.08	12.43	80.44	429.8	396.0	354.2	325.6
15	57.07	9.858	101.4	340.8	314.0	280.9	258.2
16	50.82	7.818	127.9	270.3	249.0	222.8	204.8
17	45.26	6.200	161.3	214.3	197.5	176.7	162.4
18	40.30	4.917	203.4	170.0	1 56.6	140.1	128.8
19	35.89	3.899	256.5	134.8	1 24.2	111.1	102.1
20	31.96	3.092	323.4	106.9	98.50	88.11	80.99
21	28.46	2.452	407.8	84.78	78.11	69.87	64.23
22	25.35	1.945	514.2	67.23	61.95	55.41	50.94
23	22.57	1.542	648.4	53.32	49.13	43.94	40.39
24	20.10	1.223	817.7	42.28	38.96	34.85	32.03
25	17.90	0.9699	1031.	33.53	30.90	27.64	25.40
26	15.94	.7692	1300.	26.59	24.50	21.92	20.15
27	14.20	.6100	1639.	21.09	19.43	17.38	15.98
28	12.64	.4837	2067.	16.72	15.41	13.78	12.67
29	11.26	.3836	2607.	13.26	12.22	10.93	10.05
30	10.03	·3042	3287.	10.52	9.691	8.669	7.968
31	8.928	·2413	4145.	8.341	7.685	6.875	6.319
32	7.950	·1913	5227.	6.614	6.095	5.452	5.011
33	7.080	.1 517	6591.	5.245	4.833	4.323	3.974
34	6.305	.1 203	8310.	4.160	3.833	3.429	3.152
35	5.615	.095 42	10 480.	3.299	3.040	2.719	2.499
36	5.000	.075 68	13 210.	2.616	2.411	2.156	1.982
37	4.453	.060 01	16 660.	2.075	1.912	1.710	1.572
38	3.965	.047 59	21 010.	1.645	1.516	1.356	1.247
39 40	3.531 3.145	.037 74	26 500. 33 410.	1.305	0.9534	0.8529	0.9886

^{*} Length at 20° C. of a wire whose resistance is 1 ohm at the stated temperatures.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.). English Units (continued).

	Diameter		Ohms per Pound.		Pounds per Ohm.
Gage No.	in Mils	(=32° F.)	20° C. (=68° F.)	50° C. (= 122° F.)	20° C. (=68° F.)
0000	460.0	0.000 070 51	0.000 076 52	0.000 085 54	13 070.
	409.6	.000 1121	.000 1217	.000 1360	8219.
	364.8	.000 1783	.000 1935	.000 2163	5169.
0	324.9	.000 2835	.000 3076	.000 3439	3251.
I	289.3	.000 4507	.000 4891	.000 5468	2044.
2	257.6	.000 7166	.000 7778	.000 8695	1286,
3 4 5	229.4	.001 140	.001 237	.001 383	808.6
	204.3	.001 812	.001 966	.002 198	508.5
	181.9	.002 881	.003 127	.003 495	319.8
6 7 8	162.0	.004 581	.004 972	.005 558	201.1
	144.3	.007 284	.007 905	.008 838	126.5
	128.5	.011 58	.012 57	.014 05	79.55
9	114.4	.018 42	.019 99	.022 34	50.03
10	101.9	.029 28	.031 78	.035 53	31.47
11	90.74	.046 56	.050 53	.056 49	19.79
12	80.81	.074 04	.080 35	.089 83	12.45
13	71.96	.1177	.1278	.1428	7.827
14	64.08	.1872	.2032	.227 I	4.922
15	57.07	.2976	.3230	.3611	3.096
16	50.82	.4733	.5136	.5742	1.947
17	4 5 .26	.7525	.8167	.9130	1.224
18	40.30	1.197	1.299	1.452	0.7700
19	35.89	1.903	2.065	2.308	.4843
20	31.96	3.025	3.283	3.670	.3046
21	28.46	4.810	5.221	5.836	.1915
22	25.35	7.649	8.301	9.280	.1205
23	22.57	12.16	13.20	14.76	.075 76
24	20.10	19.34	20.99	23.46	.047 65
25	17.90	30.75	33·37	37.31	.029 97
26	15.94	48.89	53.06	59.32	.018 85
27	14.20	77·74	84.37	94.32	.011 85
28	12.64	123.6	134.2	1 50.0	.007 454
29	11.26	196.6	213.3	238.5	.004 688
30	10.03	312.5	339.2	379.2	.002 948
31	8.928	497.0	539.3	602.9	.001 854
32	7.950	790.2	857.6	958.7	.001 166
33	7.080	1256.	1364.	1 524.	.000 7333
34	6.305	1998.	2168.	2424.	.000 4612
35	5.615	3177.	3448.	3854.	.000 2901
36	5.000	5051.	5482.	6128,	.000 1824
37	4.453	8032.	8717.	9744.	.000 1147
38	3.965	12 770.	13 860.	15 490.	.000 072 15
39	3.531	20 310.	22 040.	24 640.	.000 045 38
40	3.145	32 290.	35 040.	39 170.	.000 028 54

WIRE TABLE, STANDARD ANNEALED COPPER.

American Wire Gage (B. & S.) Metric Units.

	Diameter	Cross Section		Ohms per 1	Cilometer.*	
Gage No.	in mm. at 20° C.	in mm. ² at 20° C.	о° С.	20° C.	50° C.	75° C.
0000	11.68	107.2	0.1482	0.1608	0.1798	0.1956
	10.40	85.03	.1868	.2028	.2267	.2466
	9.266	67.43	.2356	.2557	.2858	.3110
0	8.252	53.48	.297 I	.3224	.3604	.3921
1	7.348	42.41	.3746	.4066	.4545	.4944
2	6.544	33.63	.4724	.5127	.5731	.6235
3	5.827	26.67	.5956	.6465	.7227	.7862
4	5.189	21.15	.7511	.8152	.9113	.9914
5	4.621	16.77	.9471	1.028	1.149	1.250
6	4.115	13.30	1.194	1.296	1.449	1.576
7	3.665	10.55	1.506	1.634	1.827	1.988
8	3.264	8.366	1.899	2.061	2.304	2.506
10 11	2.906 2.588 2.305	6.634 5.261 4.172	2.395 3.020 3.807	2.599 3.277 4.132	2.905 3.663 4.619	3.161 3.985 5.025
12	2.053	3.309	4.801	5.211	5.825	6.337
13	1.828	2.624	6.054	6.571	7·345	7.991
14	1.628	2.081	7.634	8.285	9.262	10.08
15	1.450	1.65c	9.627	10.45	11.68	12.71
16	1.291	1.309	12.14	13.17	14.73	16.02
17	1.150	1.038	15.31	16.61	18.57	20.20
18	1.024	0.8231	19.30	20.95	23.4 2	25.48
19	0.9116	.6527	24.34	26.42	29.53	32.12
20	.8118	.5176	30.69	33.31	37.24	40.51
2I	.7230	.4105	38.70	42.00	46.95	51.08
22	.6438	•3255	48.80	52.96	59.21	64.41
23	·5733	.2582	61.54	66.79	74.66	81.22
24	.5106	.2047	77.60	84.21	94.14	102.4
25	•4547	.1624	97.85	106.2	118.7	129.1
26	•4049	.1288	123.4	133.9	149.7	162.9
27	.3606	.1021	155.6	168.9	188.8	205.4
28	.3211	.080 98	196.2	212.9	238.0	258.9
29	.2859	.064 22	247.4	268.5	300.1	326.5
30	.2546	.050 93	311.9	338.6	378.5	411.7
31	.2268	.040 39	393.4	426.9	477.2	519.2
32	.2019	.032 03	496.0	538.3	601.8	654.7
33	.1798	.025 40	625.5	678.8	7 58.8	825.5
34	.1601	.020 14	788.7	856.0	956.9	1041.
35	.1426	.015 97	994.5	1079.	1 207.	1313.
36	.1270	.012.67	1254.	1361.	1522.	1655.
37	.1131	.010 05	1581.	1716.	1919.	2087.
38	.1007	.007 967	1994.	2164.	2419.	2632.
39	.089 69	.006 318	2514.	2729.	3051.	3319.
40	.079 87		3171.	3441.	3847.	4185.

^{*}Resistance at the stated temperatures of a wire whose length is 1 kilometer at 20° C.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.) Metric Units (continued).

	Diameter	Kilograms	Meters		Meters p	er Ohm.*	
Gage No.	in mm. at 20° C.	per Kilometer.	per Gram.	о° С.	20° C.	50° C.	75° C.
0000	11.68	953.2	0.001 049	6749.	6219.	5563.	5113.
	10.40	755.9	.001 323	5352.	4932.	4412.	4055.
	9.266	599.5	.001 668	4245.	3911.	3499.	3216.
0	8.252	475-4	.002 103	3366.	3102.	2774.	2550.
I	7.348	377.0	.002 652	2669.	2460.	2200.	2022.
2	6.544	299.0	.003 345	2117.	1951.	1745.	1604.
3	5.827	237.1	.004 217	1679.	1547.	1384.	1272.
4	5.189	188.0	.005 318	1331.	1227.	1097.	1009.
5	4.621	149.1	.006 706	1056.	972.9	870.2	799.9
6	4.115	118.2	.008 457	837.3	771.5	690.1	634.4
7	3.665	93.78	.010 66	664.0	611.8	547·3	503.1
8	3.264	74.37	.013 45	526.6	485.2	434.0	399.0
9 10	2.906	58.98	.016 96	417.6	384.8	344.2	316.4
	2.588	46.77	.021 38	331.2	305.1	273.0	250.9
	2.305	37.09	.026 96	262.6	242.0	216.5	199.0
12	2.053	29.42	.034 00	208.3	191.9	171.7	157.8
13	1.828	23.33	.042 87	165.2	152.2	136.1	125.1
14	1.628	18.50	.054 06	131.0	120.7	108.0	99.24
15	1.450	14.67	.068 16	103.9	95. 7 1	85.62	78.70
16	1.291	11.63	.085 95	82.38	75.90	67.90	62.41
17	1.150	9.226	.1084	65.33	60.20	53.85	49.50
18	1.024	7.317	.1367	51.81	47·74	42.70	39.25
19	0.9116	5.803	.1723	41.09	37.86	33.86	31.13
20	.8118	4.602	.2173	32.58	30.02	26.86	24.69
21	.7230	3.649	.2740	25.84	23.81	21.30	19.58
22	.6438	2.894	·3455	20.49	18.88	16.89	15.53
23	.5733	2.295	·4357	16.25	14.97	13.39	12.31
24	.5106	1.820	.5494	12.89	11.87	10.62	9.764
25	·4547	1.443	.6928	10.22	9.417	8.424	7.743
26	.4049	1.145	.8736	8.105	7.468	6.680	6.141
27	.3606	0.9078	1.102	6.428	5.922	5.298	4.870
28	.3211	.7199	1.389	5.097	4.697	4.201	3.862
29	.2859	•5709	1.752	4.042	3.725	3.332	3.063
30	.2546	.4527	2.209	3.206	2.954	2.642	2.429
31	.2268	.3590	2.785	2.542	2.342	2.095	1.926
32	.2019	.2847	3.512	2.016	1.858	1.662	1.527
33	.1798	.2258	4.429	1.599	1.473	1.318	1.211
34	.1601	.1791	5.584	1.268	1.168	1.045	0.9606
35	.1426	.1420	7.042	1.006	0.9265	0.8288	.7618
36	.1270	.1126	8.879	0.7974	.7347	.6572	.6041
37	.1131	.089 31	11.20	.6324	.5827	.5212	•4791
38	.1007	.070 83	14.12	.5015	.4621	.4133	•3799
39 40	.089 69	.056 17 .044 54	17.80 22.45	·3977 ·3154	.3664 .2906	.3278	.3013

*Length at 200 C. of a wire whose resistance is 1 ohm at the stated temperatures.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.). Metric Units (continued).

			ge (B. & S.). Medit	,	
Gage	Diameter in mm.		Ohms per Kilogram.		Grams per Ohm.
No.	at 20° C.	∘° C.	20° C.	50° C.	20° C.
0000	11.68	0.000 155 4	0.000 168 7	0.000 188 6	5 928 000.
	10.40	.000 247 2	.000 268 2	.000 299 9	3 728 000.
	9.266	.000 393 0	.000 426 5	.000 476 8	2 344 000.
0	8.252	.000 624 9	.000 678 2	.000 758 2	1 474 000.
I	7.348	.000 993 6	.001 078	.001 206	927 300.
2	6.544	.001 580	.001 715	.001 917	583 200.
3	5.827	.002 512	.002 726	.003 048	366 800.
4	5.189	.003 995	.004 335	.004 846	230 700.
5	4.621	.006 352	.006 893	.007 706	145 100.
6	4.115	.010 10	.010 96	.012 25	91 230.
7	3.665	.016 06	.017 43	.019 48	57 380.
8	3.264	.025 53	.027 71	.030 98	36 080.
9	2.906	.040 60	.044 06	.049 26	22 690.
10	2.588	.064 56	.070 07	.078 33	14 270.
11	2.305	.1026	.1114	.1245	8976.
12	2.053	.1632	.1771	.1980	56.45
13	1.828	.2595	.2817	.3149	3550.
14	1.628	.4127	.4479	.5007	2233.
15	1.450	.6562	.7122	.7961	140 4.
16	1.291	1.043	1.132	1.266	883.1
17	1.150	1.659	1.801	2.013	555.4
18	1.024	2.638	2.863	3.201	349.3
19	0.9116	4.194	4.552	5.089	219.7
20	.8118	6.670	7.238	8.092	138.2
21	.7230	10.60	11.51	12.87	86.88
22	.6438	16.86	18.30	20.46	54.64
23	·5733	2 6.81	29.10	32.53	34.36
24	.5106	42.63	46.27	51.73	21.61
25	·4547	67.79	73.57	82.25	13.59
26	·4049	107.8	117.0	130.8	8.548
27	.3606	171.4	186.0	207.9	5.376
28	.3211	272.5	295.8	330.6	3.381
29	.2859	433.3	470.3	525.7	2.126
30	.2546	689.0	747.8	836.0	1.337
31	.2268	1096.	1189.	1329.	0.8410
32	.2019	1742.	1891.	2114.	.5289
33	.1798	2770.	3006.	3361.	.3326
34	.1661	4404.	4780.	5344.	.2092
35	.1426	7003.	7601.	8497.	.1316
36	.1270	11140.	12090.	13510.	.082 74
37	.1131	17710.	19220.	21480.	.052 04
38	.1007	28150.	30560.	34160.	.032 73
39	.089 69	44770.	48590.	54310.	.020 58
40	.079 87	71180.	77260.	86360.	.012 94

Hard-Drawn Aluminum Wire at 20° C. (or, 68° F.).

American Wire Gage (B. & S.). English Units.

		Cross	Section.	Ohma	Pounds		
Gage No.	Diameter in Mils.	Circular Mils.	Square Inches.	Ohms per 1000 Feet.	per 1000 Feet.	Pounds per Ohm.	Feet per Ohm.
0000	460. 410. 365.	212 000. 168 000. 133 000.	0.166 .132 .105	0.0804	195. 154. 122.	2420. 1 520. 957·	12 400. 9860. 7820.
0	325.	106 000.	.0829	.161	97.0	60 2.	6200.
I	289.	83 700.	.0657	.203	76.9	379.	4920.
2	258.	66 400.	.0521	.256	61.0	238.	3900.
3	229.	52 600.	.0413	.323	48.4	150.	3090.
4	204.	41 700.	.0328	.408	38.4	94. 2	2450.
5	182.	33 100.	.0260	.514	30.4	59.2	1950.
6 7 8	162.	26 300.	.0206	.648	24.1	37·2	1 540.
	144.	20 800.	.0164	.817	19.1	23·4	1 220.
	128.	16 500.	.0130	1.03	15.2	14·7	970.
9 10	114. 102. 91.	13 100. 10 400. 8230.	.0103 .008 15 .006 47	1.30 1.64 2.07	9.55 7.57	9.26 5.83 3.66	770. 610. 484.
12	81.	6530.	.005 13	2.61	6.00	2.30	384.
13	72.	5180.	.004 07	3.29	4.76	1.45	304.
14	64.	4110.	.003 23	4.14	3.78	0.911	241.
15	57·	3260.	.002 56	5.22	2.99	·573	191.
16	51.	2580.	.002 03	6.59	2.37	.360	152.
17	45·	2050.	.001 61	8.31	1.88	.227	120.
18	40.	1620.	.001 28	10.5	1.49	.143	95·5
19	36.	1290.	.001 01	13.2	1.18	.0897	75·7
20	32.	1020.	.000 802	16.7	0.939	.0564	60.0
21	28.5	810.	.000 636	21.0	•745	.0355	47.6
22	25.3	642.	.000 505	26.5	•591	.0223	37.8
23	22.6	509.	.000 400	33.4	•468	.0140	29.9
24	20.1	404.	.000 317	42.1	.371	.008 82	23.7
25	17.9	320.	.000 252	53.1	.295	.005 55	18.8
26	15.9	254.	.000 200	67.0	.234	.003 49	14.9
27	14.2	202.	.000 158	84.4	.185	.002 19	11.8
28	12.6	160.	.000 126	106.	.147	.001 38	9.39
29	11.3	127.	.000 099 5	134.	.117	.000 868	7.45
30	10.0	101.	.000 078 9	169.	.0924	.000 546	5.91
31	8.9	79.7	.000 062 6	213.	.0733	.000 343	4.68
32	8.0	63.2	.000 049 6	269.	.0581	.000 216	3.72
33	7.1	50.1	.000 039 4	339·	.0461	.000 136	2.95
34	6.3	39.8	.000 031 2	428.	.0365	.000 085 4	2.34
35	5.6	31.5	.000 024 8	540.	.0290	.000 053 7	1.85
36 37 38	5.0 4.5 4.0	25.0 19.8 15.7	.000 019 6	681. 858. 1080.	.0230 .0182 .0145	.000 033 8	1.47 1.17 0.924
39	3.5 3.1	12.5 9.9.	.000 009 79	1360. 1720.	.0091	.000 008 40	·733 ·581

Hard-Drawn Aluminum Wire at 20° C.

American Wire Gage (B. & S.) Metric Units.

-				1		
Gage No.	Diameter in mm.	Cross Section in mm. ²	Ohms per Kilometer.	Kilograms per Kilometer.	Grams per Ohm.	Meters per Ohm.
0000	11.7	107.	0.264	289.	I 100 000.	3790.
000	10.4	85.0	•333	230.	690 000.	3010.
00	9.3	67.4	.419	182.	434 000.	2380.
0	8.3	53·5 42·4	.529 . 6 67	I44. II4.	273 000. 172 000.	1890. 1500.
2	7·3 6.5	33.6	.841	90.8	108 000,	1190.
3	5.8	26.7	1.06	72.0	67 900.	943. 748.
4 5	5.2 4.6	16.8	1.34	57.I 45.3	42 700. 2 6 900.	593.
	4.0	20.0	1.09	73.3	20 900.	393.
6	4.1	13.3	2.13 2.68	35.9	16 900.	470.
7 8	3.7	10.5		28.5	10 600. 6680.	373.
0	3.3	8.37	3.38	22.6	0000.	296.
9	2.91	6.63	4.26	17.9	4200.	235. 186.
10	2.59	5.26	5.38 6.78	14.2	2640.	186.
II	2.30	4.17	0.78	11.3	1660.	148.
12	2.05	3.31	8.55	8.93	1050.	117.
13	1.83	3.31 2.62	8.55	8.93 7.08	657.	92.8
14	1.63	2.08	13.6	5.62	413.	73.6
15	1.45	1.65	17.1	4.46	260.	58.4
16	1.29	1.31	21.6	3·53 2.80	164.	46.3
17	1.15	1.04	27.3	2.80	103.	36.7
18	1.02	0.823	34.4	2.22	64.7	29.1
19	0.91	.653	43.3	1.76	40.7	23.I 18.3
20	.81	.653	54.6	1.40	25.6	18.3
21	50	ATT	68.9	1.11	16.1	14.5
22	.72 .64	.326	86.9	0.879	10.1	11.5
23	-57	.258	110.	.697	6.36	9.13
		20.5	138.	552	4.00	7.24
24	.51	.205	136.	·553 .438	2.52	5.74
25 26	.40	.129	220.	.348	1.58	4.55
				.276	0.005	3.61
27 28	.36	.0810	277· 349·	.270	0.995	2.86
29	.32	.0642	440.	.173	.394	2.27
				128	.248	1.80
30	.25	.0509	555.	.138	.156	1.43
31 32	.227	.0320	700. 883.	.0865	.0979	1.13
3-				-696	.0616	0.899
33	.180	.0254	1110.	.0686	.0387	.712
34 35	.160	.0201	1770.	.0431	.0244	.565
					0.150	.448
36	.127	.0127	2230. 2820.	.0342	.01 53	.355
37 38	.113	.0100	3550.	.0271	.006 06	·355 .282
30	.101				0-	000
39	.090	.0063	4480.	.0171	.003 81	.177
40	.080	.0050	5640.	.0135		

TABLE 414. - Ratio of Alternating to Direct Current Resistances for Copper Wires.

This table gives the ratio of the resistance of straight copper wires with alternating currents of different frequencies to the value of the resistance with direct currents.

Diameter of wire in			Freque	ncy f =				
millimeters.	60	100	1000	10,000	100,000	*I,000,000 *I.001 I.008 I.247 2.240 4.19 8.10 I2.0 I7.4 I9.7 29.7 39.I		
0.05 0.1 0.25 0.5 1.0 2.0 3. 4. 5. 7.5 10. 15. 20. 25. 40.	1.001 1.003 1.016 1.044 1.105 1.474 3.31	*I.ooI I.oo2 I.oo8 I.o38 I.120 I.247 I.842 4.19	I.ooi I.oo6 I.o21 I.o47 I.210 I.503 2.136 2.736 3.38 5.24 I3.7	*I.00I I.008 I.120 I.437 I.842 2.240 3.22 4.10 6.14 8.10 IO.1 I7.4 39.1	*I.001 I.003 I.047 I.503 2.756 4.00 5.24 6.49 7.50 I2.7 I8.8 25.2 28.3	1.008 1.247 2.240 4.19 8.10 12.0 17.4 19.7 29.7 39.1		

Values between 1.000 and 1.001 are indicated by *1.001.
The values are for wires having an assumed conductivity of 1.60 microhm-cms; for copper wires at room temperatures the values are slightly less than as given in table.
The change of resistance of wire other than copper (iron wires excepted) may be calculated from the above table

by taking it as proportional to $d\sqrt{f/\rho}$ where d= diameter, f the frequency and ρ the resistivity.

If a given wire be wound into a solenoid, its resistance, at a given frequency, will be greater than the values in the table, which apply to straight wires only. The resistance in this case is a complicated function of the pitch and radius of the winding, the frequency, and the diameter of the wire, and is found by experiment to be sometimes as much as twice the value for a straight wire.

TABLE 415. — Maximum Diameter of Wires for High-frequency Alternating-to-direct-current Resistance Ratio of 1.01.

Frequency ÷ 106	0.1	0.2	0.4	0.6	0.8	1.0	1.2	1.5	2.0	3.0
Wave-length, meters	3000	1500	750	500	375	300	250	200	150	100
Material.				D	iameter i	n centim	eters.			
Copper	0.0345 0.0420 0.1120 0.264 0.1784 0.1892 0.1942 0.765 1.60 0.00263 0.00373	0.0244 0.0297 0.0793 0.187 0.1261 0.1337 0.541 1.13 0.00186	0.132 0.0892 0.0946 0.0970 0.383 0.801	0.054	0.566	0.00118	0.0099 0.0121 0.0323 0.0763 0.0515 0.0540 0.0560 0.221 0.462	o. oo89 o. o108 o. o290 o. o683 o. o461 o. o488 o. o500 o. 197 o. 414	0.00084	0.0065 0.0063 0.0077 0.0205 0.0483 0.0325 0.0354 0.140 0.292 0.00048 0.00068

Bureau of Standards Circular 74, Radio Instruments and Measurements, 1918.

ELECTROCHEMICAL EQUIVALENTS.

Every gram-ion involved in an electrolytic change requires the same number of coulombs or ampere-hours of electricity per unit change of valency. This constant is 96.494 coulombs or 26.894 ampere-hours per gram-hour (a Faraday) corresponding to an electrochemical equivalent for silver of 0.00111800 gram sec⁻¹ amp⁻¹. It is to be noted that the change of valence of the element from its state before to that after the electrolytic action should be considered. The valence of a free, uncombined element is to be considered as 0. The same current will electrolyze "chemically equivalent" quantities per unit time. The valence is then included in the "chemically equivalent" quantity. The following table is based on the atomic weights of 1917.

Element.	Change of valency.	Mg per coulomb.	Coulombs per mg	Grams per amp hour.	Element.	Change of valency.	Mg per coulomb.	Coulombs per mg	Grams per amp hour.
Aluminum. Chlorine " Copper Gold Hydrogen. Lead " Mercury	3 1 3 5 7 1 2 1 3 1 1 2 4 1 2	0.0936 0.3675 0.1225 0.0735 0.0735 0.0525 0.6588 0.3294 2.044 0.6812 0.010459 2.1473 1.0736 0.5368 2.0789 1.0394	10.682 2.721 8.164 13.606 19.05 1.518 3.036 0.4893 1.468 5.728 0.4657 0.9314 1.8628 0.4810 0.9620	0.3370 1.3229 0.4410 0.2646 0.1890 2.3717 1.1858 7.357 2.452 0.37607 7.7302 3.8651 1.9326 7.484 3.742	Nickel	3 3 4 4 2 4 6 1 H 1 2 4 2 4 2	0.6081 0.3041 0.2027 0.08291 0.04145 1.0115 0.5057 0.3372 0.4052 1.1180 0.2384 0.6151 0.3075 0.3387	1.6444 3.289 4.933 12.062 24.123 0.9887 1.9773 2.966 2.468 0.89445 4.195 1.626 3.252 2.952	2.1892 1.0946 0.7298 0.2985 0.1492 3.641 1.821 1.214 1.459 4.0248 0.8581 2.214 1.107 1.2194

The electrochemical equivalent for silver is 0.00111800 g sec⁻¹ amp⁻¹. (See p. xxxvii.)

For other elements the electrochemical equivalent = (atomic weight divided by change of valency) times 1/96404
g/sec/amp. or g/coulomb. The equivalent for iodine has been determined at the Bureau of Standards as 0.0013150 (1913).

For a unit change of valency for the diatomic gases Br2, Cl2, F2, H2, N2 and O2 there are required

8.619 coulombs/cm³ o° C, 76 cm (0.1160 cm³/coulomb) 2.394 ampere-hours/l, o° C, 76 cm (0.4177 l/ampere-hour).

Note. - The change of valency for O2 is usually 2, etc.

CONDUCTIVITY OF ELECTROLYTIC SOLUTIONS.

This subject has occupied the attention of a considerable number of eminent workers in molecular physics, and a few results are here tabulated. It has seemed better to confine the examples to the work of one experimenter, and the tables are quoted from a paper by F. Kohlrausch,* who has been one of the most reliable and successful workers in this field.

The study of electrolytic conductivity, especially in the case of very dilute solutions, has furnished material for generalizations, which may to some extent help in the formation of a sound theory of the mechanism of such conduction. If the solutions are made such that per unit volume of the solvent medium there are contained amounts of the salt proportional to its electrochemical equivalent, some simple relations become apparent. The solutions used by Kohlrausch were therefore made by taking numbers of grams of the pure salts proportional to their electrochemical equivalent, and using a liter of water as the standard of quantity of the solvent. Taking the electrochemical equivalent number as the chemical equivalent or atomic weight divided by the valence, and using this number of grams to the liter of water, we get what is called the normal or gram molecule per liter solution. In the table, m is used to represent the number of gram molecules to the liter of water in the solution for which the conductivities are tabulated. The conductivities were obtained by measuring the resistance of a cell filled with the solution by means of a Wheatstone bridge alternating current and telephone arrangement. The results are for 18° C., and relative to mercury at o° C., the cell having been standardized by filling with mercury and measuring the resistance. They are supposed to be accurate to within one per cent of the true value.

The tabular numbers were obtained from the measurements in the following manner:

Let K_{18} = conductivity of the solution at 18° C. relative to mercury at 0° C.

 $K_{1s}^{bs} = \text{conductivity}$ of the solvent water at 18° C. relative to mercury at 0° C. Then $K_{1s} - K_{1s}^{bs} = k_{1s} = \text{conductivity}$ of the electrolyte in the solution measured.

 $\frac{k_{10}}{m} = \mu = \text{conductivity of the electrolyte in the solution per molecule, or the "specific molecular conductivity."$

TABLE 417. — Value of k_{18} for a few Electrolytes.

This short table illustrates the apparent law that the conductivity in very dilute solutions is proportional to the amount of salt dissolved.

m	KCl	NaCl	AgNO ₃	KC ₂ H ₃ O ₂	K ₂ SO ₄	MgSO ₄
0.00001	1.216	1.024	1.080	0.939	1.275	1.056
0.00002	2.434	2.056	2.146	1.886	2.532	2.104
0.00006	7.272	6.162	6.462	5.610	7.524	6.216
0.0001	12.09	10.29	10.78	9.34	12.49	10.34

TABLE 418. - Electro-Chemical Equivalents and Normal Solutions.

The following table of the electro-chemical equivalent numbers and the densities of approximately normal solutions of the salts quoted in Table 419 may be convenient. They represent grams per cubic centimeter of the solution at the temperature given.

Salt dissolved.	Grams per liter.	· m	Temp.	Density.	Salt dissolved.	Grams per liter.	m	Temp. C.	Density.
KCl	74-59 53-55 58-50 42-48 104-0 68-0 165-9 101-17 85-08 169-9 65-28 61-29 98.18	I.0 I.0009 I.0 I.0 I.0 I.0 I.0 I.0 I.0 I.0 I.0 I.0	15.2 18.6 18.4 18.4 18.6 15.0 18.6 18.7	I.0457 I.0152 I.0391 I.0227 I.0888 I.0592 I.1183 I.0601 I.0542	Li ₂ SO ₄ Li ₂ SO ₄ Li ₂ SO ₄ MgSO ₄ ZNSO ₄ CuSO ₄ K ₂ CO ₈ Na ₂ CO ₈ Na ₂ CO ₈ HCl HNO ₈ Li ₂ H ₂ SO ₄	87.16 71.09 55.09 60.17 80.58 79.9 69.17 53.04 56.27 36.51 63.13 49.06	1.0 1.0003 1.0007 1.0023 1.0 1.001 1.0006 1.0 1.0025 1.0041 1.0014	18.9 18.6 18.6 18.6 5.3 18.2 18.3 17.9 18.8 18.6 18.6	1.0658 1.0602 1.0445 1.0573 1.0794 1.0576 1.0576 1.0517 1.0477 1.0161 1.0318 1.0300

SPECIFIC MOLECULAR CONDUCTIVITY \(\mu : MERCURY=10^{\(\mu \)}.

Salt dissolved.	m= 10	5	3	1	0.5	0.1	.05	.03	10,
½K ₂ SO ₄		770 752	827 900 825 572	919 968 907 752	672 958 997 948 839	736 1047 1069 1035 983	897 1083 1102 1078 1037	959 1107 1123 1101 1067	1098 1147 1161 1142 1122
½BaCl ₂		- - - 351	487 - - 150 448	658 - - 241 635	725 799 531 288 728	861 927 755 424 886	904 (976) 828 479 936	939 1006 (870) 537 (966)	1006 1053 951 675 1017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60	82 82 - 180 398	146 151 - 280 528	249 270 475 514 695	302 330 559 601 757	431 474 734 768 865	500 532 784 817 897	556 587 828 851 (920)	685 715 906 915 962
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 30 - 660 0.5	- 240 - 1270 2.6	430 381 254 1560 5.2	617 594 427 1820	694 671 510 1899	817 784 682 2084 43	855 820 751 2343 62	877 841 799 2515 79	907 879 899 2855 132
HCl	600 610 148 423 0.5	1420 1470 160 990 2.4	2010 2070 170 1314 3.3	2780 2770 200 1718 8.4	3017 2991 250 1841 12	3244 3225 430 1986 31	3330 3289 540 2045 43	3369 3328 620 2078 50	3416 3395 790 2124 92
Salt dissolved.	.006	.002	100.	.0006	.0002	1000.	.00006	,00002	10000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1130 1162 1176 1157 1140	1181 1185 1197 1180	1207 1193 1203 1190 1180	1220 1199 1209 1197 1190	1241 1209 1214 1204 1199	1249 1209 1216 1209 1207	1254 1212 1216 1215 1220	1266 1217 1216 1209 1198	1275 1216 1207 1205 1215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1031 1068 982 740 1033	1074 1091 1033 873 1057	1092 1101 1054 950 1068	1102 1109 1066 987 1069	1118 1119 1084 1039 1077	1126 1122 1096 1062 1078	1133 1126 1100 1074 1077	1144 1135 1114 1084 1073	1142 1141 1114 1086 1080
$\frac{1}{2}$ ZnSO ₄	744 773 933 939 976	861 881 980 979 998	91 9 935 998 994 1008	953 967 1009 1004 1014	1001 1015 1026 1020 1018	1023 1034 1034 1029 1029	1032 1036 1038 1031 1027	1047 1052 1056 1035 1028	1060 1056 1054 1036 1024
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	921 891 956 3001 170	942 913 1010 3240 283	952 919 1037 3316 380	956 923 1046 3342 470	966 933 988 3280 796	975 934 874 3118 995	970 935 790 2927 1133	972 943 715 2077 1328	975 939 697* 1413* 1304*
HCl	3438 3421 858 2141 116	3455 3448 945 2140 190	3455 3427 968 2110 260	3440 3408 977 2074 330	3340 3285 920 1892 500	3170 3088 837 1689 610	2968 2863 746 1474 690	2057 1904 497 845 700	1254* 1144* 402* 747* 560*

^{*} Acids and alkaline salts show peculiar irregularities.

LIMITING VALUES OF μ . TEMPERATURE COEFFICIENTS.

TABLE 420.- Limiting Values of µ.

This table shows limiting values of $\mu = \frac{k}{m}$. 108 for infinite dilution for neutral salts, calculated from Table 271.

Salt.	μ	Salt.	μ	Salt.	μ	Salt.	μ
⅓K2SO4 .	1280	⅓BaCl₂ .	1150	½MgSO ₄ .	1080	½H ₂ SO ₄ .	3700
KCl	1220	₹KClO ₈ .	1150	⅓Na ₂ SO ₄ .	1060	HCl	3500
KI	1220	½BaN₂O6 .	1120	½ZnCl	1040	HNO ₈	3500
NH4Cl	1210	₹CuSO4 .	1100	NaCl	1030	⅓H ₈ PO ₄ .	1100
KNO8	1210	AgNO ₃ .	1090	NaNO ₈ .	980	кон	2200
-	-	½ZnSO ₄ .	1080	$K_2C_2H_3O_2$	940	½Na₂CO ₈ .	1400

If the quantities in Table 420 be represented by curves, it appears that the values of the specific molecular conductivities tend toward a limiting value as the solution is made more and more dilute. Although these values are of the same order of magnitude, they are not equal, but depend on the nature of both the ions forming the electrolyte.

When the numbers in Table 421 are multiplied by Hittorf's constant, or 0.00011, quantities ranging between 0.14 and 0.10 are obtained which represent the velocities in millimetres per second of the ions when the electromotive force gradient is one volt per millimetre.

Specific molecular conductivities in general become less as the concentration is increased, which may be due to mutual interference. The decrease is not the same for different salts, but becomes much more rapid in salts of high valence.

Salts having acid or alkaline reactions show marked differences. They have small specific molecular conductivity in very dilute solutions, but as the concentration is increased the conductivity rises, reaches a maximum and again falls off. Kohlrausch does not believe that this can be explained by impurities. H_3PO_4 in dilute solution seems to approach a monobasic acid, while H_2SO_4 shows two maxima, and like H_3PO_4 approaches in very weak solution to a monobasic acid.

Kohlrausch concludes that the law of independent migration of the ions in media like water is sustained.

TABLE 421. - Temperature Coefficients.

The temperature coefficient in general diminishes with dilution, and for very dilute solutions appears to approach a common value. The following table gives the temperature coefficient for solutions containing o.o. gram molecule of the salt.

Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.
KCl	0.0221	кі	0.0219	½K2SO4 .	0.0223	½K₂CO8	0.0249
NH4Cl	0.0226	KNO8	0.0216	₹Na ₂ SO ₄ .	0.0240	½Na ₂ CO ₈	0.0265
NaCl	0.0238	NaNO ₈	0.0226	½Li ₂ SO ₄ .	0.0242	WOW	
LiCl	0.0232	AgNO ₃	0.0221	⅓MgSO₄ .	0.0236		0.0194
∄BaCl₂	0.0234	½Ba(NO ₈) ₂	0.0224	½ZnSO ₈ .	0.0234	HNO_8 $\frac{1}{2}H_2SO_4$	0.0162
½ZnCl ₂	0.0239	KClO ₈	0.0219	½CuSO4 .	0.0229		
⅓MgCl₂ .	0.0241	KC ₂ H ₈ O ₂ .	0.0229	-	-	$ \begin{cases} \frac{1}{2} \text{H}_2 \text{SO}_4 \\ \text{for } m = .001 \end{cases} $	0.01 59

THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS.

In the following table the equivalent conductance is expressed in reciprocal ohms. The concentration is expressed in milli-equivalents of solute per litre of solution at the temperature to which the conductance refers. (In the cases of potassium hydrogen sulphate and phosphoric acid the concentration is expressed in milli-formula-weights of solute, KHSO₄ or $\rm H_3PO_4$, per liter of solution, and the values are correspondingly the modal, or "formal," conductances.) Except in the cases of the strong acids the conductance of the water was subtracted, and for sodium acetate, ammonium acetate and ammonium chloride the values have been corrected for the hydrolysis of the salts. The atomic weights used were those of the International Commission for 1905, referred to oxygen as 16.00. Temperatures are on the hydrogen gas scale.

Concentration in gram equivalents.

Equivalent conductance in reciprocal ohms per centimeter cube gram equivalents per cubic centimeter

Substance.	Concentration.		Equiv	alent con	nductance	e at the	follow	ing ° C	tempera	tures.	
Substance.	Con	180	250	500	75°	1000	1280	1560	2180	281°	306°
Potassium chloride .	o	130.1	(152.1)	(232.5)	(321.5)	414	(519)	625	825	1005	1120
66 .	2	126.3	146.4	-	-	393	-	588	779	930	1008
66 66 .	10	122.4	141.5	215.2	295.2	377	470	560	741	874	910
	80	113.5	-	-	-	342	-	498	638	723	720
" " .	100	112.0	129.0	194.5	264.6	336	415	490			
Sodium chloride	0	109.0	-	-	-	362	-	555	760	970	1080
" "	2	105.6	-	-	-	349	-	534	722	895	955 860
66 66	IO	102.0	- I	-	-	336	-	511	685	820	
" "	80	93.5	-	-	-	301	-	450	500	674	680
" "	100	92.0	7 -	-	_	296	-	442	. 0 .		
Silver nitrate	0	115.8	-	-	-	367	-	570	780	965	1065
" "	2	112.2	-	-	_	353	-	539	727	877	935
66 66	IO	108.0	_		-	337	-	507	673	790	818
" "	20	105.1	-	-	_	326	-	488	639	680	680
" "	40	101.3	-	-	-	312	-	462	599		
" "	80	96.5	-	-	-	294	-	432	552	614	604
	100	94.6	_	-	-	289		140	660		024
Sodium acetate	0	78.1	-	-	-	285		450	578		924 801
66 66	2	74.5	_		_			421			702
	10	71.2	_	_	_	253	-	396	542		102
	80	63.4	-	-	-	22I 426		340 690	452 1080		
Magnesium sulphate	0	114.1	-	_	-				260		
" "	2	94.3			_	302	-	377 241	143		
" "	10	76.1				234	_	195	110		
	20	67.5				160	_	158	88		
" "	80	59.3				136		133	75		
	1	52.0				130	_	126	13		
	100	49.8	_	_	_	110	-	100			
Ammonium chloride	200	43.1	152.0	-	_	(415)	-	(628)	(841)	-	(1176)
Ammonium chioride	2	126.5	146.5		_	399	-	601	801	-	1031
	IO	120.5	141.7	_	_	382	-	573	758	-	925
	30	118.1		-	-	_	-	-	-	-	828
Ammonium acetate	30	(99.8)	_	_	_	(338)	-	(523)			
Ammonium acetate.	10	91.7	_	_ 11	_	300	_	456			
66 66	25	88.2	-	-	-	286	-	426			
1	-3	00.2									

From the investigations of Noyes, Melcher, Cooper, Eastman and Kato; Journal of the American Chemical Society, 30, p. 335, 1908.

THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS.

Substance.	Concen- tration.		Equiv	alent co	nductano	e at th	e follow	ving ° C	tempera	atures.	
Substance.	Con	180	25°	500	75°	1000	1280	1560	2180	2810	3060
Barium nitrate	0	116.9	-	-	-	385	-	600	840	1120	1300
65 . 66	2	109.7	1-	-	-	352	-	536	715	828	824
66 66	10	101.0	-	-	-	322 280	-	481	618	658	615
	40 80	88.7	_			258		412 372	507	503	448
46 46	100	79.1		1 _ 1	_	249		3/2	449	430	
Potassium sulphate .	0	132.8	-	-	-	455	-	715	1065	1460	1725
"	2	124.8	-	-	-	402	-	605	806	893	867
66 66	IO	115.7	-	-	-	365	-	537	672	687	637
44 66	40 80	104.2	-	- 1	-	320	-	455	545	519	466
66 66	100	97.2	_	-	_	294 286	_	415	482	448	396
Hydrochloric acid .	0	379.0	_	-	-	850	-	1085	1265	1380	1424
11 11	2	373.6	-	-	-	826	-	1048	1217	1332	1337
66 66	10	368.1	-	II - 1	-	807	-	1016	1168	1226	1162
66 66	80	353.0	-	-	-	762	-	946	1044	1046	862
Nitric acid	100	350.6	421.0	-	706	754 826	-	929	(1230)		(1380)
" "	2	377.0 371.2	413.7	570 559	690	806	945	1047	1166		1156
"	10	365.0	406.0	548	676	786	893	978	1100		1130
65 66	50	353.7	393.3	528	649	750	845	917			
" "	100	346.4	385.0	516	632	728	817	880	-	-	454*
Sulphuric acid	0	383.0	(429)	(591)	(746)	891	(1041)		1505	- 1	(2030)
" "	10	353.9	390.8	501	561	571	551	536 481	563	-	637
66 66	50	309:0	337.0 273.0	406 323	435 356	384	460	448	533		
" "	100	233.3	251.2	300	336	369	404	435	483		474*
Potassium hydrogen (2	455.3	506.0	661.0	754	784	773	754			.,.
sulphate	50	295.5	318.3	374.4	403	422	446	477			
- (100	263.7	283.1	329.1	354	375	402	435			
Phosphoric acid	0 2	338.3 283.1	376	510	631	730	839 508	930			
66	· IO	203.0	222.0	273	300	308	298	274			
66 66	50	122.7	132.6	157.8	168.6	168	158	142			
66 66	100	96.5	104.0	122.7	129.9	128	120	108			
Acetic acid	0	(347.0)	-	-	-	(773)	-		(1165)	-	(1268)
66 66	10	14.50		-		25.1		22.2	14.7		
" "	30	8.50 5.22	=			9.05	_	13.0	8.65		
" "	100	4.67	_	_	_	8.10		-	5.34	-	1.57
Sodium hydroxide .	0	216.5	-	-	-	594	-	835	1060		31
66 66	2	212.1	-	- 1	-	582	-	814			
" "	20	205.8	-	-	-	559	-	771	930		
Barium hydroxide	50	200.6	256	389	(530)	540 645	(760)	738 847	873		
Barium nydroxide .	2	215	256	359	(520)	591	(700)	04/			
66 66	IO	207	235	342	449	548	664	722			
66 66	50	191.1	215.1	308	399	478	549	593			
" "	100	180.1	204.2	291	373	443	503	531	,		, ,
Ammonium budger	0	(238)	(271)	(404)	(526)	(647)	(764)	(908)	(1141)	-	(1406)
Ammonium hydrox-	30	9.66 5.66	_		_	13.6	-	13.0	15.6		
100	100	3.10	3.62	5-35	6.70.	7.47	_	7.17	4.82	_	1.33
			3	3 33	, ,	, 4,			1		-,55

^{*} These values are at the concentration 80.0.

THE EQUIVALENT CONDUCTIVITY OF SOME ADDITIONAL SALTS IN AQUEOUS SOLUTION.

Conditions similar to those of the preceding table except that the atomic weights for 1908 were used.

Substance.	Concen-		Equivalen	t conduc	tance at t	he follow	ring ° C	temperatu	ire.
Substance.	tration.	00	180	250	500	75°	1000	128°	1560
Potassium nitrate	o	80.8	126.3	145.1	219	299	384	485	580
" "	2	78.6	122.5	140.7	212.7	289.9	370.3	460.7	551
	12.5	75.3	117.2	134.9	202.9	276.4	351.5	435.4	520.4
" "	50	70.7	109.7	126.3	189.5	257.4	326.1	402.9	476.1
	100	67.2	104.5	120.3	180.2	244.I	308.5	379.5	447.3
Potassium oxalate	0	79.4	127.6	147.5	230	322	419	538	653
" "	2	74.9	119.9	139.2	215.9	300.2	389.3	489.1	587
" "	12.5	69.3	III.I	129.2	199.1	275.1	354.1	438.8	524.3
4 4	50	63	IOI	116.5	178.6	244.9	312.2	383.8	449.5
" "	100	59.3	94.6	109.5	167	227.5	288.9	353.2	409.7
	200	55.8	88.4	102.3	155	210.9	265.1	321.9	372.1
Calcium nitrate	0	70.4	112.7	130.6	202	282	369	474	575
" "	2	66.5	107.1	123.7	191.9	266.7	346.5	438.4	529.8
" "	12.5	61.6	98.6	114.5	176.2	244	314.6	394.5	473-7
" "	50	55.6	88.6	102.6	157.2	216.2	276.8	343	405.1
" "	100	51.9	82.6	95.8	146.1	199.9	255.5	315.1	369.1
	200	48.3	76.7	88.8	135.4	184.7	234-4	288	334-7
Potassium ferrocyanide.	0	98.4	159.6	185.5	288	403	527		
" "	0.5	91.6	-	171.1	0				
" "	2.	84.8	137	158.9	243.8	335.2	427.6		
" "	12.5	71	113.4	131.6	200.3	27 I	340		
" "	50	58.2	93.7	108.6	163.3	219.5	272.4		
66 66	100	53 48.8	84.9	98.4	148.1	198.1	245	10.7	
"	200		77.8	90.1	135.7	180.6	222.3		
	400	45.4	72.I	83.3	124.8	165.7	203.1		
Barium ferrocyanide	0	91	150	176	277	393 166.2	521		
" "	2	46.9	75 48.8	86.2	127.5		202.3		
	12.5	30.4		56.5	83.1	107	129.8		
Calcium ferrocyanide .	0	88 •	146	171	271	386	512		
" "	2	47.I	75.5	86.2	130				
44 44	12.5	31.2	49.9	57.4	6.6	0			
" "	50	24.1	38.5	44.4	64.6	81.9	0		-
" "	100	21.9	35.1	40.2	58.4	73.7 68.7	84.3		
" "		20.6	32.9	37.8	55		77.5		
Determine situate	400	76.4	32.2	37.1	54	67.5	76.2		
rotassium citrate	0.5	70.4	124.6	144.5	220	320	420		
66 66	2	71		139.4	210.1	2028	381.2		
" "	5	67.6	115.4	134.5	198.7	293.8			
66 66	12.5	62.9	101.8	118.7	183.6	276.5	357.2		
66 66	50	54.4	87.8	102.1	157.5	215.5			
66 46	100	50.2	80.8			196.5	273		
"	300	43.5	69.8	93.9	143.7	167	247.5		
Lanthanum nitrate	300		122.7	142.6	223	313	413	534	651
" "	2	75.4 68.9	110.8	128.9	200.5	279.8	363.5		549
" "	12.5	61.4	98.5	114.4	176.7	243.4	311.2	457·5 383.4	447.8
" "	50	54	86.1	99-7	152.5	207.6	261.4	315.8	357-7
" "	100	49.9	79.4	91.8	139.5	189.1	236.7	282.5	316.3
" "	200	46	79.4 72.I	83.5	126.4	170.2	210.8	249.6	276.2
		40	/	3.3	1204	1/5.2	2.0.0	-43.0	, , , ,

From the investigations of Noyes and Johnston, Journal of the American Chemical Society, 31, p. 287, 1909.

CONDUCTANCE OF IONS. - HYDROLYSIS OF AMMONIUM ACETATE.

TABLE 424. - The Equivalent Conductance of the Separate Ions.

Ion.	00	180	250	500	75°	1000	1280	156°
K	40.4	64.6	74.5	115	159	206	263	317
	26	43.5	50.9	82	116	155	203	249
	40.2	64.5	74.5	115	159	207	264	319
	32.9	54.3	63.5	101	143	188	245	299
	33	55 ²	65	104	149	200	262	322
	30	51 ²	60	98	142	191	252	312
	35	61	72	119	173	235	312	388
Cl NO ₃	41.1 40.4 20.3 41 39 36 58	65.5 61.7 34.6 68 ² 63 ² 60 95	75.5 70.6 40.8 79 73 70	116 104 67 125 115 113 173	160 140 96 177 163 161 244	207 178 130 234 213 214 321	264 222 171 303 275	318 263 211 370 336
Н	240	314	350	465	565	644	722	777
	105	172	192	284	360	439	525	592

From Johnson, Journ. Amer. Chem. Soc., 31, p. 1010, 1909.

TABLE 425. — Hydrolysis of Ammonium Acetate and Ionization of Water.

Temperature.	Percentage hydrolysis.	Ionization constant of water.	Hydrogen-ion concentration in pure water. Equivalents per liter.
ž	100h	K _W ×10 ¹⁴	C _H ×10 ⁷
0	-	0.089	0.30
18	(0.35)	0.46	0.68
25	-	0.82	0.91
100	4.8	48.	6.9
156	18.6	223.	14.9
218	52.7	461.	21.5
306	91.5	168.	13.0

Noyes, Kato, Kanolt, Sosman, No. 63 Publ. Carnegie Inst., Washington.

TABLES 426, 427. DIELECTRIC STRENGTH.

TABLE 426, - Steady Potential Difference in Volts required to produce a Spark in Air with Ball Electrodes.

Spark length. cm.	R = 0. Points.	R = 0.25 cm.	R = 0.5 cm.	R = 1 cm.	R = 2 cm.	R = 3 cm.	$R = \infty$. Plates.
0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.5 2.0 3.0 4.0	- - 3720 4680 5310 5970 6300 6840 8070 8670 9960 10140 11250 12210 13050		1560 2460 3300 4050 4740 8490 11460 14310 16950 19740 23790 26190 29970 33060	1530 2430 3240 3990 4560 8490 11340 14340 17220 20070 24780 27810 37260 45480	2340 3060 3810 4560 8370 11190 14250 16650 20070 25830 29850	4500 77770 10560 13140 16470 19380 26220 32760	4350 7590 10650 13560 16320 19110 24960 30840

Based on the results of Baille, Bichat-Blondot, Freyburg, Liebig, Macfarlane, Orgler, Paschen, Quincke, de la Rue, Wolff. For spark lengths from 1 to 200 wave-lengths of sodium light, see Earhart, Phys. Rev. 15, p. 163; Hobbs, Phil. Mag. 10, p. 607, 1905.

TABLE 427. — Alternating Current Potentials required to produce a Spark in Air with various Ball Electrodes.

The potentials given are the maxima of the alternating waves used. Frequency, 33 cycles per second.

.15 5990 5940 5850 5790 5800 5780 .20 7510 7440 7340 7250 7320 7330 .25 9045 8970 8850 8710 8760 8760 0.30 10480 10400 10270 10130 10180 10150 .35 11980 11890 11670 11570 11610 11590 .40 13360 13300 13100 12930 12980 12970	cm.	ength. $R = 1$ cm.	R=1.92	R=5	R = 7.5	R = 10	R=15
.45 14770 14700 14400 14290 14330 14332 .50 16140 16070 15890 15640 15690 15690 0.6 18700 18730 18550 18300 18350 18400 .7 21350 21380 21140 20980 20990 21000 .8 23820 24070 23740 23490 23540 23550 0.9 26190 26640 26400 26130 26110 26000 1.0 28380 29170 28950 28770 28680 28610 1.2 22400 34100 23700 33660 33640 33620	.10 .15 .20 .25 0.30 .35 .40 .45 .50 0.6 .7 .8 0.9 1.0	4400 55 5990 7510 25 9045 30 10480 35 11980 13360 14770 16140 5 18700 21350 23820 26190 28380 32400 4 35850 38750	5940 7440 8970 10400 11890 13300 14700 16070 18730 21380 24070 26640 29170 34100 38850	5830 7340 8850 10270 11670 13100 14400 15890 18550 21140 23740 26400 28950 33790 38850 43570	5790 7250 8710 10130 11570 12930 14290 15640 18300 20980 23490 26130 28770 33660 38580 43250	5800 7320 8760 10180 11610 12980 14330 15690 18350 20990 23540 26110 28680 33640 38620	4230 5780 7330 8760 10150 11590 12970 14320 15690 18400 21000 23550 26090 28610

Based upon the results of Kawalski, Phil. Mag. 18, p. 699, 1909.

DIELECTRIC STRENGTH.

TABLE 428. - Potential Necessary to produce a Spark in Air between more widely Separated Electrodes.

CEE.	Alter- nt.		Steady po	tentials.		E.	Alter- nt.	Steady potentials.		
Spark length,	Dull points. Alter nating current.	Ball ele	ctrodes.	trodes. Cup electrodes.			points. All	Ball ele	ectrodes.	
park	all po	R=1 cm.	R=2.5 cm.		ction.	Spark length,	Dull po	R=1 cm.	R=2.5 cm.	
00	Ď,	K-1 cm.	K-2.5 cm.	4.5 mm.	1.5 mm.		Ā	K-1 cm.	K—2.5 cm.	
0.3	-1	_	-	-	11280	6.0	61000	_	86830	
0.5	- 1	17610	17620	-	17420	7.0	_	52000	-	
0.7	-	-	23050	-	22950	8.0	67000	52400	90200	
1.0	12000	30240	31390	31400	31260	10.0	73000	74300	91930	
1.2	-	33800	36810	-	36700	12.0	82600	-	93300	
1.5		37930	44310	=6=00	44510	14.0	92000	-	94400	
2.0	29200	42320	56000	56500	56530 68720	15.0	101000	_	94700	
3.0	40000	45000	71200	80400	81140	20.0	119000	_	101000	
3.5	40000	40/10	75300	-	92400	25.0	140600			
4.0	48500	49100	78600	101700	103800	30.0	165700			
4.5	40300	49100	81540	-	114600	35.0	190900			
5.0	56500	50310	83800	-	126500	33.0	- 7-900			
5.5	-	-	-	-	135700					

This table for longer spark lengths contains the results of Voege, Ann. der Phys. 14, 1904, using alternating current and "dull point" electrodes, and the results with steady potential found in the recent very careful work of C. Müller, Ann. d. Phys. 28, p. 585, 1909.

The specially constructed electrodes for the columns headed "cup electrodes" had the form of a projecting knob 3 cm. in diameter and having a height of 4-5 mm. and 1.5 mm. respectively, attached to the plane face of the electrodes. These electrodes give a very satisfactory linear relation between the spark lengths and the voltage throughout the range studied.

TABLE 429. - Effect of the Pressure of the Gas on the Dielectric Strength.

Voltages are given for different spark lengths 1.

Pressure. cm. Hg.	l=0.04	l=0.06	l=0.08	<i>l</i> =0.10	l=0.20	<i>l</i> =0 30	<i>l</i> =0.40	<i>l</i> =0.50
2 4 6 10		- 483 582 771	567 690 933	- 648 795 1090	744 1015 1290 1840	939 1350 1740 2450	1110 1645 2140 3015	1266 1915 2505 3580
15	-	1060	1280	1490	2460	3300	4080	4850
25	1110	1420	1725	2040	3500	4800	6000	7120
35	1375	1820	2220	2615	4505	6270	7870	9340
45	1640	2150	2660	3120	5475	7650	9620	11420
55	1820	2420	3025	3610	6375	8950	11290	13455
65	2040	2720	3400	4060	7245	10210	12950	15470
75	2255	3035	3805	4565	8200	11570	14650	17450

This table is based upon the results of Orgler, 1899. See this paper for work on other gases (or Landolt-Börnstein-Meyerhoffer).

Meyerhoffer).

For long spark lengths in various gases see Voege, Electrotechn. Z. 28, 1907. For dielectric strength of air and CO2 in cylindrical air condensers, see Wien, Ann. d. Phys. 29, p. 679, 1909.

DIELECTRIC STRENGTH.

TABLE 430. - Dielectric Strength of Materials.

Potential necessary for puncture expressed in kilovolts per centimeter thickness of the dielectric.

Substance,	Kilovolts per cm.				Substance.	Kilovolts per cm.
Ebonite Empire cloth paper Fibre Fuller board Glass Granite (fused) Guttapercha Impregnated jute Leatheroid Linen, varnished Liquid air Mica: Thickness Madras o.i mm. Io " Bengal o.i " " I.o " Canada o.i " " I.o " Canada o.i " " South America Micanite	300-1100 80-300 450 20 200-300 300-1500 90 80-200 20 30-60 100-200 40-90 1600 300 2200 700 1500 500 1500	Oils: Castor Cottonseed Lard " Linseed, raw " boiled " Lubricating Neatsfoot " Olive Paraffin " Sperm, mineral " " natural " Turpentine	0.2 " I.0 " 0.2 " I.0 " 0.2 " I.0 " 0.2 " I.0 " 0.2 " I.0 " 0.2 " I.0 " 0.2 " I.0 " 0.2 " I.0 "	190 130 70 140 185 90 190 80 90 170 200 90 170 180 85 195 90 160 110	Blotting Manilla	350 400 230 450 45-75 160-500 90-130

TABLE 431. - Potentials in Volts to Produce a Spark in Kerosene.

Spark length.	Electrodes Balls of Diam. d.								
mm.	0.5 cm.	ı cm.	2 cm.	3 cm.					
0,1	3800	3400	2750	2200					
.2	7500	6450	4800	3500					
-3	10250	9450	7450	4600					
.4	11750	10750	9100	5600					
-5	13050	12400	11000	6900					
.6	14000	13550	12250	8250					
.5 .6 .8	15500	15100	13850	10450					
1.0	16750	16400	15250	12350					

Determinations of the dielectric strength of the same substance by different observers do not agree well. For a discussion of the sources of error see Mościcki, Electrotechn. Z. 25, 1904.

For more detailed information on the dependence of the sparking distance in oils as a function of the nature of the electrodes, see Edmondson, Phys. Review 6, p. 65, 1898.

DIELECTRIC CONSTANTS.

TABLE 432. — Dielectric Constant (Specific Inductive Capacity) of Gases. Atmospheric Pressure.

Wave-lengths of the measuring current greater than 10000 cm.

Gas.		Temp.		c constant red to	Authority.
Gas.		° C:	Vacuum=1	Air=1	Aumority.
Air		0 -	1.000590	1.000000	Boltzmann, 1875. Klemenčič, 1885.
Ammonia		20	1.00718	1.00659	Bädeker, 1901.
Carbon bisulphide		100	1.00290	1.00231	Klemenčič. Bädeker.
Carbon dioxide		0	1.000946	1.000356	Boltzmann. Klemenčič.
Carbon monoxide.		0	1.000690	1.000100	Boltzmann. Klemenčič.
Ethylene		0 0	1.00131	1.00072	Boltzmann. Klemenčič.
Hydrochloric acid		100	1.00258	1.00199	Bädeker.
Hydrogen		0 0	1.000264 1.000264	o.999674 o.999678	Boltzmann. Klemenčič.
Methane		0 0	1.000944	1.000354	Boltzmann, Klemenčič.
Nitrous oxide (N2O		0	1.00116	1.00057	Boltzmann. Klemenčič,
Sulphur dioxide . "	:::	0 0	1.00993	1.00934	Bädeker. Klemenčič.
Water vapor, 4 atmos	spheres	145	1.00705	1.00646	Bädeker.

TABLE 433. - Variation of the Dielectric Constant with the Temperature.

For variation with the pressure see next table.

If D_{θ} = the dielectric constant at the temperature θ° C., D_{t} at the temperature t° C., and α and β are quantities given in the following table, then

$$D_{\theta} = D_t \left[\mathbf{I} - \mathbf{a}(t - \theta) + \mathbf{\beta}(t - \theta)^2 \right].$$

The temperature coefficients are due to Bädeker.

Gas.	а	β	Range of temp. ° C.
Ammonia	5.45 × 10 ⁻⁶	2.59 × 10 ⁻⁷	10-110
Sulphur dioxide	6.19 × 10 ⁻⁶	1.86 × 10 ⁻⁷	0-110
Water vapor .	1.4×10 ⁻⁴	-	145

The dielectric constant of air at atmospheric pressure but with varying temperature may also be calculated from the fact that D-1 is approximately proportional to the density.

Tables 434, 435. DIELECTRIC CONSTANTS (continued).

TABLE 434. - Change of the Dielectric Constant of Gases with the Pressure,

Gas.	Temper- ature, ° C.	Pressure atmos.	Dielectric constant.	Authority.
Air	19 - - - 11	20 40 60 80 100 20 40	1.0108 1.0218 1.0330 1.0439 1.0548 1.0101	Tangl, 1907. """ """ """ Occhialini, 1905.
Carbon dioxide	15	60 80 100 120 140 160 180 10 20 40 10 20 40	1.0294 1.0387 1.0482 1.0579 1.0674 1.0760 1.0845 1.020 1.060 1.010 1.025 1.070	" " " " " " " " " " " " " " " " " " "

TABLE 435. - Dielectric Constants of Liquids.

A wave-length greater than 10000 centimeters is denoted by ∞.

Substance.	Temp.	Wave- length, cm.	Dielectric constant.	Author-	Substance.	Temp. ° C.	Wave- length, cm.	Dielectric constant.	Author-
Alcohol: Amyl " " " " " Ethyl " " " " " " " " " " " " " " " " "	frozen —100 —50 0 +20 18 18 frozen —120 —80 —40 0 +20 17 " " " frozen —100	200 73 200 75 53 4 0.4	2.4 30.1 23.0 17.4 16.0 10.8 4.7 2.7 54.6 44.3 35.3 28.4 25.8 24.4 23.0 20.6 8.8 5.0 3.07 58.0	I I I I I I I I I I I I I I I I I I I	Alcohol: Methyl " " Propyl " " Acetone " " Acetic acid " " Amyl acetate Amylene	-50 0 +20 17 -120 -60 0 +20 15 -80 0 15 17 18 15 17 19 16	75 00 "" 1200 73 00 1200 75 00 ""	45.3 35.0 31.2 33.2 46.2 12.3 33.7 24.8 22.2 12.3 33.8 26.6 21.5 20.7 9.7 10.3 7.07 6.29 4.81 2.20	1 1 1 2 1 1 1 1 2 5 5 6 6 2 2 9

References on page 358.

DIELECTRIC CONSTANTS OF LIQUIDS.

A wave-length greater than 10000 centimeters is designated by ∞.

Substance.	Temp.	Wave- length cm.	Diel.	Author-	Substance.	Temp.	Wave- length cm.	Diel. const.	Author- ity.
Aniline Benzol (benzene) "" Bromine Carbon bisulphide "" Chloroform Decane Decylene Ethyl ether "" "" "" "" "" "" "" "" ""	18 18 19 23 20 17 18 17 14 17 —80 —40 0 180 Crit. temp. 192 18 +2 (frozen)		7-316 2.288 2.26 3.18 2.626 2.64 5.2 4.95 1.97 2.24 4.95 5.67 4.68 4.30 3.05 3.12 2.66 2.12	111 2 12 13 2 10 5	Nitrobenzol	(frozen) —10 —10 —5 0 +15 30 18 17 17 20 11 20 14 21 13 — 20 11.4 — 20 16 13.4 20 20	cm.	9.9 42.0 41.0 37.8 35.1 36.45 34.0 1.949 2.83 4.67 3.11 3.10 2.25 3.35 3.02 3.11 3.03 2.13 1.92 2.85 3.02 3.17	1 " " " " " " " " " " " " " " " " " " "
Glycerine " " Hexane Hydrogen perox- ide 46% in H ₂ O {	15 16 15 15 15 - - 17	73 1200 200 75 8.5 0.4 \$\infty\$	62.0 58.5 56.2 39.1 25.4 4.4 2.6 1.880 84.7	6 2 6 2 " 15 4 16 17	Water for temp. coeff. see Table 344.	18 17 18 17 17	73 ∞ " 73 ∞ 73 ∞ 73 ∞ 73	9.68 2.51 2.33 2.31 2.37 ⁶ 2.37 81.07 80.6 81.7 83.6	25 2 5 11 2 11 2
1 Abegg-Seitz, 18 2 Drude, 1896. 3 Marx, 1898. 4 Lampa, 1896. 5 Abegg, 1897. 6 Thwing, 1894. 7 Drude, 1898. 8 Francke, 1893. 9 Löwe, 1898.	18 Hasenöhrl, 1896. 19 Arons-Rubens, 1892. 20 Hopkinson, 1881. 21 Salvioni, 1888. 22 Tomaszewski, 1888. 23 Heinke, 1896. 24 Marx. 25 Fuchs.								

Addenda to Table 440, p. 361, Dielectric Constant of Rochelle Salt:

The polarization of the Rochelle salt dielectric in an electric field is somewhat analogous to the behavior of the magnetization of iron in a magnetic field, showing both saturation and hysteresis. The dielectric constant D depends on the initial and final fields and the hysteresis.

Initial field, 765 v/cm.; Final field, 690 v/cm.; Average D (23
$$^{\circ}$$
 C), 40 765 $-$ 153 $-$ 765 $-$ 765 $-$ 765 880 86

The last value may be fair value for ordinary purposes. The electrodes were tinfoil attached with shellac. The field was applied perpendicular to the a axis. Like piezoelectric properties, the dielectric constant varies with different crystals. It depends on the temperature as follows: (field o to 880 v/cm)

 -70° C, D = 12; -40° , 14; -20° , 48; 0° , 174; $+20^{\circ}$, 88; $+30^{\circ}$, 52.

(Data from Valesek, University of Minnesots, 1921.)

DIELECTRIC CONSTANTS OF LIQUIDS (continued).

TABLE 436. - Temperature Coefficients of the Pormula:

 $D_{\theta} = D_{t}[1-\alpha(t-\theta)+\beta(t-\theta)^{2}].$

Substance.	a	β	Temp.	Authority.
Amyl acetate	0.0024 0.00351 0.00106 0.000966 0.000922 0.00410 0.00459 0.0057 0.00163 0.01067 0.00364 0.000921 0.000921 0.00436 0.00436 0.00436	0.0000087 0.0000060 0.000015 	0-13 20-181 22-181 	Löwe. Ratz. Hasenöhrl. Ratz. Tangl. "Ratz. Drude. Hasenöhrl. Heinke, 1896. "" Hasenöhrl. Ratz. Tangl. Heerwagen. Drude. Coolidge. Tangl.

(See Table 433 for the signification of the letters.)

TABLE 437 .- Dielectric Constants of Liquefied Gases.

A wave-length greater than 10000 centimeters is designated by ∞.

Substance.	Temp.	Wave- length cm.	Dial. constant.	Authority.	Substance.	Temp. ° C.	Wave- length cm.	Dial. constant.	Authority.
Air " Ammonia Carbon dioxide " " " Chlorine " " Cyanogen Hydrocyanic acid Hydrogen sulph. " " " " " " " " " " " " " " " " " "	-191 " -34 14 -5 0 +10 +15 -60 0 +10 0 +10 0 +10 0 90	∞ 75 75 130	1.432 1.47-1.50 21-23 16.2 1.608 1.583 1.540 1.526 2.150 2.030 1.970 1.940 2.08 1.88 2.52 about 95 5.93 4.92 3.76	1 2 3 4 5 	Nitrous oxide """ Oxygen Sulphur dioxide """ """ """ Critical	-88 -5 +5 +15 -182 " 14.5 20 40 60 80 100 120 140 154.2	00 66 66 66 66 66 66 66 66 66 66 66 66 6	1.938 1.630 1.578 1.520 1.491 1.465 13.75 14.0 12.5 10.8 9.2 7.8 6.4 4.8 2.1	8 5 98 46
ı v. Pirani, 190				dge, 1899. 7	Schlu				

² Bahn-Kiebitz, 1904. 5 Linde, 1895. 8 Hasenohrl, 1900. 3 Goodwin-Thompson, 1899. 6 Eversheim, 1904. 9 Fleming-Dewar, 1896.

TABLE 438. — Standard Solutions for the Calibration of Apparatus for the Measuring of Dielectric Constants.

Turner.			Dru	ide.		Nernst.	
Substance.	Diel. const. at 18°. $\lambda = \infty$	Aceto	Ethyl alcohol in water at 19.5°. $\lambda = \infty$.				
Benzene	2,288	Per cent by weight.	Density 16°.	Dielectric constant.	Temp. coefficient.	Per cent	Dielectric
Meta-xylene Ethyl ether Ethyl chloride	2.376 4.36 ⁷ 7.29 ⁸ 10.90 27.71 36.45 81.07	20 40 60 80	0.885 0.866 0.847 0.830 0.813 0.797	2.26 5.10 8.43 12.1 16.2 20.5	0.1% 0.3 0.4 0.5 0.5	100 90 80 70 60	26.0 29.3 33.5 38.0 43.1
		Wat	er in acetone a				
		20 40 60 80 100	0.797 0.856 0.903 0.940 0.973 0.999	20.5 31.5 43.5 57.0 70.6 80.9	0.6% 0.5 0.5 0.5 0.5 0.4		

TABLE 439, - Dielectric Constants of Solids.

Substance.	Condi- tion.	Wave- length, cm.	Dielectric constant.	Author-	Substance.	Condi- tion.	Wave- length, cm.	Dielectric constant.	Author-			
Asphalt	_	00	2.68	I		Temp.						
Barium sul-			2,00		Iodine (cryst.) .	23	75	4.00	2			
phate	-	75	10.2	2	Lead chloride .							
Caoutchouc .	-	00	2.22	3	(powder)	-	66	42	2			
Diamond	-	66	16.5	I	" nitrate .	-	46	16	2			
	-	75	5.50	2	" sulphate .	- 1	66	28	2			
Ebonite	-	66	2.72	4	morybue-		66					
	_		2.86	5	nate	-	**	24	2			
Glass *	Density.	1000	2.55	0	Marble (Carrara)		- 66	9.0				
Flint (extra	Density.		(1)		36'	=	00	8.3 5.66-5.97	2			
heavy) .	4.5	00	9.90	7	Mica		"	5.80-6.62	5			
Flint (very	. 4.0		9.90	/	Madras, brown		66	2.5-3.4	16			
light)	2.87	66	6.61	7	" green	_	66	3.9-5.5	16			
Hard crown	2.48	66	6.96	7	" ruby .	M - 1	44	4.4	16			
Mirror	-	66	6.44-7.46		Bengal, yellow	- (66	2.8	16			
"	-	66	5.37-5.90	5	" white .		66	4.2	16			
"		600	5.42-6.20	8	" ruby .	-	66	4.2-4.7	16			
Lead (Pow-					Canadian am-							
ell)	3.0-3.5	00	5.4-8.0	9	ber	-	66	3.0	16			
Jena Boron		66	0 -		South America	-	46	5.9	16			
Barium .		66	5.5–8.1 7.8–8.5	IO	Ozokerite (raw)	-		2.21	I			
Borosili-			7.0-0.5	10	Paper (tele- phone)	_	66	2,0	17			
cate .	_	66	6.4-7.7	1	" (cable) .		66	2.0-2.5	1/			
Gutta percha.	-	_	3.3-4.9	II	Paraffine	25.20	66	2.46	18			
	Temp.		3.3 4.9		"	Melting point.	66	2.32	19			
Ice	5	1200	2.85	12	"	44-46	66	2.10	20			
6	-18	5000	3.16	13	"	54-56	66	2.14	20			
	-190	75	1.76-1.88	14	"	74-76	66	2.16	20			
	1	1	1					1				

References on p. 361.

* For the effect of temperature, see Gray-Dobbie, Pr. Roy. Soc. 63, 1898; 67, 1900.

" " wave-length, see K. F. Löwe, Wied. Ann. 66, 1898.

361

TABLES 439, 440.

DIELECTRIC CONSTANTS (continued).

TABLE 439. - Dielectric Constants of Solids (continued).

Substance.	Condi- tion.	Wave- length, cm.	Diel. constant.	Author-	Substance.	Condi- tion.	Wave- length, cm.	Diel. constant.	Author-
Paraffine "Phosphorus: Yellow Solid Liquid Porcelain: Hard (Royal B'l'n) Seger " Figure " Selenium " " Shellac " " Amber	47.06 56.02	61 61 75 80 80 80 80	2.16 2.25 3.60 4.1 3.85 5.73 6.61 6.84 7.44 6.60 6.13 6.14 3.10 2.95-3.73 3.67 2.86	21 21 22 22 22 22 23 15 15 16 2 23 23 4 24 25 18	Sulphur Amorphous Cast, fresh " " Cast, old . Liquid . Strontium sulphate Thallium carbonate " nitrate Wood Red beech . " " Oak "		∞ 75 ∞ 75 ∞ 75 ∞ 75 ∞ 75 ∞ 75 ∞ 76 ∞ ″ ″ ″	3.98 3.80 4.22 4.05 3.95 3.60 3.90 3.42 11.3 17 16.5 dried 4.83-2.51 7.73-3.63 4.22-2.46 6.84-3.64	1 2 1 8 2 18 2 18 2 1
1 v. Pirani, 1903. 2 Schmidt, 1903. 3 Gordon, 1879. 4 Winklemann, 1889. 5 Elsas, 1891. 6 Ferry, 1897. 7 Hopkinson, 1891. 8 Arons-Rubens, 1891.			12 Thw 13 Abe	marii ving, gg, 18 n-Kie ke, 18 Vilson	ne-data). 1894. 897. ebitz, 1904. 897.	18 Fallinger, 1902. 19 Boltzmann, 1875. 20 Zietkowski, 1900. 21 Hormell, 1902. 22 Schlundt, 1904. 23 Vonwiller-Mason, 1907. 24 Wüllner, 1887. 25 Donle.			

TABLE 440. - Dielectric Constants of Crystals.

 $D\alpha$, $D\beta$, $D\gamma$ are the dielectric constants along the brachy, macro and vertical axes respectively.

Substance.	Wave- length,	Diel.		uthor- ity.	Substance.	Wave- length, cm.	Da	iel. cons	Dy	Author- ity.
	cm.	Axis.	AXIS.	Aı						- V
UNIAXIAL: Apatite	75	9.50	7.40	I	RHOMBIC: Aragonite	80	9.14	-	7.13	4
Beryl	66	7.85	7.44 6.05	3	Barite	75	9.80	10.09	6.55	4
Calcite	75	8.49	5.52 7.56	1 4	Celestite	75 75	7.65	18.5	7.70 8.30	I
Dolomite	75	8.78 7.80	6.80	5	Cerussite MgSO ₄ +7H ₂ O .	75 ∞ "	5.26 6.09	6.05 5.08	19 2 8.28 4.48	7 7
Iceland spar	75	8.50	5.06	1 4 6	K ₂ SO ₄ Rochelle salt* .	66	6.70	6.92	8.89	7 8
66	1000	4.38	4.46	6	Sulphur	**	3.65	385	4.66	7
Ruby (Siam) Rutile (TiO ₂)	75	13.3	1.73	4	Topaz	75 75	6.65	6.70	6.30	I
Tourmaline	∞ 75	7.13 6.75 12.8	5.65	4 I			0.23	0.34		
Zircon	75	12.0	12.0	1	* See page 358.					
1 Schmidt, 2 Starke, 1 3 Curie, 18	897.		5 v.	Pira	ger, 1902, 1919. ni, 1903. 1897.	7 H 8 H	orel, olztm	1893. ann, 18	375.	

WIRELESS TELECRAPHY.

Wave-Longth in Meters, Frequency in periods per second, and Oscillation Constant LC in Microhenries and Microfarads.

The relation between the free wave-length in meters, the frequency in cycles per second, and the capacity-inductance product in microfarads and microhenries are given for circuits between 1000 and 10,000 meters. For values between 100 and 1000 meters, multiply the columns for n by 10 and move the decimal point of the corresponding LC column two places to the left (dividing by 100); for values between 10,000 and 100,000, divide the n column by 10 and multiply the LC column by 100. The relation between wave-length and capacity-inductance may be relied upon throughout the table to within one part in 200.

Example 1: What is the natural wave-length of a circuit containing a capacity of 0.001 microfarad, and an inductance of 454 microhenries? The product of the inductance and capacity is 454 × 0.001 = 0.454. Find 0.454 under LC; opposite under meters is 1270 meters, the natural

wave-length of the circuit.

Example 2: What capacity must be associated with an inductance of 880 microhenries in order to tune the circuit to 3500 meters? Find opposite 3500 meters the LC value 3.45; divide this by

880, and the quotient, 0.00307, is the desired capacity in microfarads.

Example 3: A condenser has the capacity of 0.004 microfarad. What inductance must be placed in series with this condenser in order that the circuit shall have a wave-length of 600 meters? From the table, the LC value corresponding to 600 meters is 0.101. Divide this by 0.004, the capacity of the condenser, and the desired inductance is 25.2 microhenries.

Meters.	n	LC	Meters.	n	LC	Meters.	n	LC
1000 1010 1020 1030 1040 1050 1060 1070 1080	300,000 297,000 294,100 291,300 288,400 285,700 283,600 280,400 277,800 275,200	0.281 0.287 0.293 0.299 0.305 0.310 0.316 0.322 0.328 0.335	1300 1310 1320 1330 1340 1350 1360 1370 1380 1390	230,800 229,000 227,300 225,600 223,900 222,200 220,600 218,900 217,400 215,800	0.476 0.483 0.490 0.498 0.505 0.513 0.521 0.529 0.536	1600 1610 1620 1630 1640 1650 1660 1670 1680 1690	187,500 186,300 185,200 184,100 182,900 181,800 180,700 179,600 178,600 177,500	0.721 0.730 0.739 0.748 0.757 0.766 0.776 0.785 0.794 0.804
1100 1110 1120 1130 1140 1150 1160 1170 1180	272,700 270,300 267,900 265,500 263,100 258,600 258,400 254,200 252,100	0.341 0.347 0.353 0.359 0.366 0.372 0.379 0.385 0.392 0.399	1400 1410 1420 1430 1440 1450 1460 1470 1480 1490	214,300 212,800 211,300 209,800 208,300 206,900 205,500 204,100 202,700 201,300	0.552 0.559 0.567 0.576 0.584 0.592 0.600 0.608 0.617 0.625	1700 1710 1720 1730 1740 1750 1760 1770 1780 1790	176,500 175,400 174,400 173,400 172,400 171,400 170,500 169,400 168,500 167,600	0.813 0.823 0.833 0.842 0.852 0.862 0.872 0.882 0.892 0.902
1200 1210 1220 1230 1240 1250 1260 1270 1280 1290	250,000 247,900 245,900 243,900 241,900 240,000 238,100 236,200 234,400 232,600	0.405 0.412 0.419 0.426 0.433 0.440 0.447 0.454 0.461	1500 1510 1520 1530 1540 1550 1560 1570 1580 1590	200,000 198,700 197,400 196,100 194,800 193,600 192,300 191,100 189,900 188,700	0.633 0.642 0.650 0.659 0.668 0.676 0.685 0.694 0.703 0.712	1800 1810 1820 1830 1840 1850 1860 1870 1880 1890	166,700 165,700 164,800 163,900 163,900 162,200 161,300 160,400 159,600 158,700	0.912 0.923 0.933 0.943 0.953 0.963 0.974 0.985 0.995 1.006

Adapted from table prepared by Greenleaf W. Picard; copyright by Wireless Specialty Apparatus Company, New York. Computed on basis of 300,000 kilometers per second for the velocity of propagation of electromagnetic waves.

TABLE 441 (concluded).

WIRELESS TELECRAPHY.

Wave-Length, Frequency and Oscillation Constant.

		-						
Meters.	n	LC	Meters.	n	LC	Meters.	Б	LC
1900	1 57,900	1.016	2800	107,100	2.21	7000	42,860	13.8
1910	157,100	1.026	2820	106,400	2.24	7100	42,250	14.2
1920	156,300	1.037	2840	105,600	2.27	7200	41,670	14.6
1930	155,400	1.048	2860	104,900	2.30	7300	41,100	15.0
1940	154,600	1.059	2880	104,200	2.33	7400	40,540	15.4
1950	153,800	1.070	2900	103,400	2.37	7500	40,000	15.8
1960	153,100	1.081	2920	102,700	2.40	7600	39,470	16.3
1970	152,300	1.092	2940	102,000	2.43	7700	38,960	16.7
1980	151,500	1.103	2960	101,300	2.47	7800	38,460	17.1
1990	150,800	1.114	2980	100,700	2.50	7900	37,980	17.6
2000	150,000	1.126	3000	100,000	2.53	8000	37,500	18.0
2020	148,500	1.148	3100	96,770	2.70	8100	37,040	18.5
2040	147,100	1.171	3200	93,750	2.88	8200	36,590	18.9
2060	145,600	1.194	3300	90,910	3.07	8300	36,140	19.4
2080	144,200	1.218	3400	88,240	3.26	8400	35,710	19.9
2100	141,500	1.265	3500 3600	85,910	3.45	8600	35,290 34,880	20.3
2140	140,200	1.289	3700	83,330 81,080	3.85	8700	34,480	21.3
2160	138,900	1.313	3800	78,950	4.06	8800	34,090	21.8
2180	137,600	1.338	3900	76,920	4.28	8900	33,710	22.3
2200	136,400	1.362	4000	75,000	4.50	9000	33,330	22.8
2220	135,100	1.387	4100	73,170	4.73	9100	32,970	
2240	133,900	1.412	4200	71,430	4.96	9200	32,610	23.3
2260	132,700	1.438	4300	69,770	5.20	9300	32,260	24.3
2280	131,600	1.463	4400	68,180	5-45	9400	31,910	24.9
2300	130,400	1.489	4500	66,670	5.70	9500	31,590	25.4
2320	129,300	1.515	4600	65,220	5.96 6.22	9600	31,250	25.9
2340	128,200	1.541	4700	63,830		9700	30,930	26.5
2360	127,100	1.568	4800	62,500	6.49	9800	30,610	27.0
2380	126,000	1.594	4900	61,220	6.76	9900	30,310	27.6
2400	125,000	1.621	5000	60,000	7.04	10000	30,000	28.1
2420	124,000	1.648	5100	58,820	7.32			1 3
2440	129,000	1.676	5200	57,690	7.61			
2460	121,900	1.703	5300	56,600	7.9I 8.2I		-	
2480	121,000	1.731	5400	55,560	8.51			
2500	120,000	1.759 1.787	5500 5600	54,550	8.83			
2520	119,000	1.707	5700	53,570 52,630	9.15			
2540 2560	117,200	1.845	5600	51,720	9.47			
2580	116,300	1.874	5900	50,850	9.81			1
2600	115,400	1.903	6000	50,000	10.1			
2620	114,500	1.932	6100	49,180	10.5			
2640	113,600	1.962	6200	48,550				
2660	112,800	1.991	6300	47,620	11.1			
2680	111,900	2.02	6400	46,870	11.5			
2700	111,100	2.05	6500	46,150	11.9			
2720	110,300	2.08	6600	45,450	12.3			
2740	109,500	2.11	6800	44,780	12.6			
2760	108,700	2.14	6800	44,120	13.0			
2780	107,900	2.18	6900		13.4			-
2800	107,100	2.21	7000	42,860	13.8			
1		1		1		ili.	1	

TABLE 442.

WIRELESS TELEGRAPHY.

Radiation Resistances for Various Wave-Lengths and Antenna Heights.

The radiation theory of Hertz shows that the radiated energy of an oscillator may be represented by $E=\text{constant}~(h^2/\lambda^2)~I^2$, where h is the length of the oscillator, λ , the wave-length and I the current at its center. For a flat-top antenna $E=1600~(h^2/\lambda^2)~I^2$ watts; 1600 h^2/λ^2 is called the radiation resistance.

(h = height to center of capacity of conducting system.)

h= Wave- Length A	40 Ft.	60 Ft.	80 Ft.	100 Ft.	120 Ft.	160 Ft.	200 Ft.	300 Ft.	450 Ft.	600 Ft.	1200 Ft.
# 200 300 400 600 800 1000 1200 1500 2000	0hm 6.0 2.7 1.5 0.66 0.37 0.24 0.17	ohm 13.4 6.0 3.4 1.5 0.84 0.54 0.37 0.24 0.13	0 hm 24.0 10.6 6.0 2.7 1.5 0.95 0.66 0.42 0.24	ohm 37.0 16.5 9.3 4.1 2.3 1.5 1.03 0.66 0.37	ohm 54.0 23.8 13.4 6.0 3.4 2.1 1.5 0.95 0.54	ohm 95.0 42.4 23.8 10.6 6.0 3.8 2.6 1.7 0.95	ohm 16.4 9.2 6.0 4.1 2.6 1.5	37.4 21.0 13.5 9.3 6.0 3.4	84.0 47.0 30.0 21.0 13.4 7.5	0hm 149.0 84.0 54.0 37.0 24.0	215.0 149.0 95.0 54.0
2500 3000 4000 5000 6000 7000			0.15 0.11 0.06	0.24 0.17 0.09	0.34 0.24 0.13	0.61 0.42 0.24	0.95 0.66 0.37 0.24 0.16 0.12	2.2 1.5 0.84 0.53 0.37 0.27	4.8 3.4 1.9 1.20 0.84 0.61	8.6 6.0 3.4 2.2 1.5 1.1	34.0 24.0 13.4 8.6 6.0 4-4

Austin, Jour. Wash. Acad. of Sci. 1, p. 190, 1911.

TABLE 443.

THE DIELECTRIC PROPERTIES OF NON-CONDUCTORS.

Phillips Thomas, J. Franklin Inst. 176, 283, 1913.

Results of tests at unit area a	and unit thic	kness of die	electric.	
At 1000 cycles.	Mica.	Paper.	Celluloid.	Ice.
Equiv. resistance ohms/cm ³ ×10 ¹¹ . Conductivity per cm. cube×10 ⁻¹⁰ . Percent change in cap. per cycle×10 ⁴ .	4.00	4.90 0.108 2° 10' 9.84	1.05×10 ⁶ 13.26 0.640 3° 40' 48.3 0.207 30.7 0.106	.011×10 ⁶ 86.40 .00040 13° 39' 1400 .00722 70.0 0.127
At 15 cycles. Specific inductive capacity	0.203	5.77 0.126 0.306	18.60 0.90 1.74 71.5×10 ⁻¹⁴	429.0 0.002 1.59

MAGNETIC PROPERTIES.

Unit pole is a quantity of magnetism repelling another unit pole with a force of one dyne: 4π lines of force radiate from it. M, pole strength; $4\pi M$ lines of force radiate from pole of strength M.

H, field strength, = no. of lines of force crossing unit area in normal direction; unit = gauss =

one line per unit area.

M, magnetic moment, = Ml, where l is length between poles of magnet.

I, intensity of magnetization or pole strength per unit area, = M/V = M/A where A is cross section of uniformly magnetized pole face, and V is the volume of the magnet. $4\pi M/A = 4\pi I =$ no. lines of force leaving unit area of pole.

J, specific intensity of magnetism, = I/ρ where ρ = density, g/cm⁸.

 ϕ , magnetic flux, = $4\pi M + HA$ for magnet placed in field of strength H (axis parallel to field).

Unit, the maxwell.

B, flux density (magnetic) induction, = $\phi/A = 4\pi I + H$; unit the gauss, maxwell per cm. μ , magnetic permeability, = B/H. Strength of field in air-filled solenoid = $H = (4\pi/10)$ ni in gausses, i in amperes, n, number of turns per cm length. If iron filled, induction increased, i.e., no. of lines of force per unit area, B, passing through coil is greater than H; $\mu = B/H$.

κ, susceptibility; permeability relates to effect of iron core on magnetic field strength of coil: if effect be considered on iron core, which becomes a magnet of pole strength M and intensity of magnetism I, then the ratio $I/H = (\mu - 1)/4 \pi$ is the magnetic susceptibility per unit volume and is a measure of the magnetizing effect of a magnetic field on the material placed in the field.

 $\mu = 4\pi\kappa + 1$.

 χ , specific susceptibility (per unit mass) = $\kappa/\rho = J/H$.

 χ_A , atomic susceptibility, = $\chi \times (\text{atomic weight})$; $\chi_M = \text{molecular susceptibility}$.

 J_A , J_M , similarly atomic and molecular intensity of magnetization.

Hysteresis is work done in taking a cm³ of the magnetic material through a magnetic cycle = $\int H dI = (1/4\pi) \int H dB$. Steinmetz's empirical formula gives a close approximation to the hysteresis loss; it is $aB^{1\cdot6}$ where B is the max. induction and a is a constant (see Table 472). The retentivity (B_r) is the value of B when the magnetizing force is reduced to zero. The reversed field necessary to reduce the magnetism to zero is called the coercive force (H_c) .

Ferromagnetic substances, μ very large, κ very large: Fe, Ni, Co, Heusler's alloy (Cu 62.5, Mn 23.5, Al 14. See Stephenson, Phys. Rev. 1910), magnetite and a few alloys of Mn. μ for Heusler's alloy, 90 to 100 for B=2200; for Si sheet steel 350 to 5300.

Paramagnetic substances, $\mu > 1$, very small but positive, $\kappa = 10^{-3}$ to 10^{-6} : oxygen, especially at low temperatures, salts of Fe, Ni, Mn, many metallic elements. (See Table 474.)

Diamagnetic substances, $\mu < 1$, κ negative. Most diamagnetic substance known is Bi, -14

× 10-6. (See Table 474.)

Paramagnetic substances show no retentivity or hysteresis effect. Susceptibility independent of field strength. The specific susceptibility for both para- and diamagnetic substances is independent of field strength.

For Hall effect (galvanomagnetic difference of potential), Ettinghausen effect (galvanomagnetic difference of temperature), Nernst effect (thermomagnetic difference of potential) and the Leduc

effect (thermomagnetic difference of temperature), see Tables 487 and 488.

Magneto-strictive phenomena:

Toule effect: Mechanical change in length when specimen is subjected to a magnetic field. With increasing field strength, iron and some iron alloys show first a small increment $\Delta l/l =$ (7 to 35) \times 10⁻⁷, then a decrement, and for H = 1600, $\Delta l/l$ may amount to -(6 to $8) \times$ 10⁻⁶. Cast cobalt with increasing field first decreases, $\Delta l/l = -8 \times 10^{-6}$, H = 150, then increases in length, $\Delta l/l = +5 \times 10^{-6}$, H = 2000; annealed cobalt steadily contracts, $\Delta l/l = -25 \times 10^{-6}$, H = 2000. Ni rapidly then slowly contracts, $\Delta l/l = -30 \times 10^{-6}$, H = 100; -35×10^{-6} , H = 300; -36×10^{-6} , H = 2000 (Williams, Phys. Rev. 34, 44, 1912). A transverse field generally gives a reciprocal effect.

Wiedemann effect: The lower end of a vertical wire, magnetized longitudinally, when a current is passed through it, if free, twists in a certain direction, depending upon circumstances (see Williams, Phys. Rev. 32, 281, 1911). A reciprocal effect is observed in that when a rod of soft

iron, exposed to longitudinal magnetizing force, is twisted, its magnetism is reduced.

Villari effect; really a reciprocal Joule effect. The susceptibility of an iron wire is increased by stretching when the magnetism is below a certain value, but diminished when above that

COMPOSITION AND MACNETIC

This table and Table 456 below are taken from a paper by Dr. Hopkinson * on the magnetic properties of iron and steel, which is stated in the paper to have been 240. The maximum magnetization is not tabulated; but as stated in the by 4π . "Coercive force "s is the magnetizing force required to reduce the magnetization to zero. The "demagnetization in the opposite direction to the "maximum induction" stated in the table. The "energy which, however, was only found to agree roughly with the results of experiment.

No.					Chemic	cal analys	sis.	
of Test.	Description of specimen.	Temper.	Total Carbon.	Manga- nese.	Sulphur.	Silicon.	Phos-	Other substances.
1	Wrought iron Malleable cast iron	Annealed	_	-	_	-	-	-
3	Gray cast iron			_				
4	Bessemer steel	_	0.045	0.200	0.030	None.	0.040	_
5	Whitworth mild steel .	Annealed	0.090	0.153	0.016	66	0.042	-
6	66 66	"	0.320	0.438	0.017	0.042	0.035	-
7	66 66	Oil-hard-	66	46	66	66	66	_
8	46 46	Annealed	0.890	0.165	0.005	0.081	0.019	
		(Oil-hard-	0.090	0.105	0.005		0.019	_
9		ened		**	**	66	**	-
10	Hadfield's manganese }	- ,	1.005	12.360	0.038	0.204	0.070	-
II	Manganese steel	Asforged	0.674	4.730	0.023	0.608	0.078	1
12		Annealed			**		**	-
13		Oil-hard-	66	66	66	66	- 66	-
14	" "	As forged Annealed	1.298	8 740	0.024	0.094	0.072	0 -
16	"	S Oil-hard-	"	66	46	66	66	_
17	Silicon steel	As forged	0.685	0.694	"	2 428	0.722	
18	Sincon steel	Annealed	4.003	0.094	66	3.438	0.123	_
	66 66	(Oil-hard-	46	66	46	"	66	
19		ened						-
20	Chrome steel	As forged	0.532	0.393	0.020	0.220	0.041	0.621 Cr.
21		Annealed (Oil-hard-					**	44
22	"	ened	66	66	66	66	66	66
23	" "	As forged	0.687	0.028	66	0.134	0.043	1.195 Cr.
24	66 66	Annealed	66	66	66	"	""	,,
25	66 66	Oil-hard- ened	66	66	"	46	66	"
26	Tungsten steel	As forged	1.357	0.036	None.	0.043	0.047	4.649 W.
27	66 66	Annealed	"	"	66	"	"	"
-0	44 44	(Hardened	66	44	"	"	66	
28		in cold	"			**	**	66
		(water (Hardened		1				
29	66 66	in tepid	66	66	66	66	66	46
		(water						
30	" (French) .	Oil-hard-	0.511	0.625	None.	0.021	0.028	3.444 W.
31	66 66	Very hard	0.855	0.312	_	0.151	0.089	2.353 W.
32	Gray cast iron	-	3-455	0.173	0.042	2.044	0.151	2.064 C.†
33	Mottled cast iron	-	2.581	0.610	0.105	1.476	0.435	1.477 C.†
34	White " "	-	2.036	0.386	0.467	0.764	0.458	-
35	Spiegeleisen		4.510	7.970	Trace.	0.502	0.128	-

^{*} Phil. Trans. Roy. Soc. vol. 176.

PROPERTIES OF IRON AND STEEL.

The numbers in the columns headed "magnetic properties" give the results for the highest magnetizing force used, paper, it may be obtained by subtracting the magnetizing force (240) from the maximum induction and then dividing netizing force" is the magnetizing force which had to be applied in order to leave no residual magnetization after dissipated "was calculated from the formula:—Energy dissipated = coercive force \times maximum induction \div π

No.			Specific	1	Magnetic p	ropertie	s.	F 1'-
of Test.	Description of specimen.	Temper.	electri- cal resis-	Maxi-	Residual	Coer-	Demag-	Energy dis- sipated per
I cst.			tance.	mum in-	induc- tion.	cive force.	netizive force.	cycle.
-					tion.	Torce.	Torce.	
1	Wrought iron	Annealed	.01378	18251	7248	2.30	_	13356
2	Malleable cast iron	66	.03254	12408	7479	8.80	-	34742
3 4	Gray cast iron Bessemer steel			10783	3928 7860	3.80	-	13037
5	Whitworth mild steel .	Annealed		19840	7080	1.63	-	17137
6	• • • • • • • • • • • • • • • • • • • •	(011-1	.01446	18736	9840	6.73	-	40120
7		Oil-hard-	.01390	18796	11040	11.00	-	65786
8	66 66	Annealed	.01559	16120	10740	8.26	- 1	42366
9	66 66	Oil-hard-	.01695	16120	8736	19.38	-	99401
10	Hadfield's manganese ((ened .				-		
10	steel		.06554	310	_	_		-
11 12	Manganese steel	As forged Annealed	.05368		2202 5848	23.50 33.86	37.13	34567
	66 66	6 Oil-hard-						113963
13		ened	.05556		2158	27.64	40.29	41941
14	"	As forged Annealed	.06993		540	24.50	50.39	15474
16	66 66	6 Oil-hard-	.07066		340	-4.30	30.39	- 37/7
17	Silicon steel	As forged		15148	11073	9.49	12.60	45740
18	"	Annealed		14701	8149	7.80	10.74	36485
19	ii ii	Oil-hard-	.06195	14696	8084	12.75	17.14	59619
20	Chrome steel	As forged		15778	9318	12.24	13.87	61439
21		Annealed		14848	7570	8.98	12.24	42425
22		Oil-hard-	.02708	13960	8595	38.15	48.45	169455
23	66 66	As forged	.01791	14680	7568	18.40	22.03	85944
24	" "	Annealed Oil-hard-		13233	6489	15.40	19.79	64842
25	" "	ened	.03035	12868	7891	40.80	56.70	167050
26	Tungsten steel	As forged		15718	10144	15.71	17.75	78568
27		Annealed (Hardened	.02250	16498	11008	15.30	16.93	80315
28	66 66	in cold	.02274	-	-	-	-	- 1
-		(water (Hardened						
29	" "	in tepid	.02249	15610	9482	30.10	34.70	149500
		water						
30	" (French) .	Oil hard-	.03604	14480	8643	47.07	64.46	216864
31		Very hard		12133	6818	51.20	70.69	197660
32	Gray cast iron	_	.11400	9148	3161	13.67	17.03	39789
33	White " "	-	.05661	9342	5554	12.24	20.40	36383
35	Spiegeleisen	-	.10520	385	77	- 1	-	-

TABLE 446. - Magnetic Properties of Iron and Steel.

	Electro-	Good	Poor	Steel.	Cast	Electrica	d Sheets.
	lytic Iron.	Cast Steel.	Steel.	Steel.	Iron.	Ordinary.	Silicon Steel.
Chemical composition in per cent SMP S	0.024 0.004 0.008 0.008 0.001	0.044 0.004 0.40 0.044 0.027	0.56 0.18 0.29 0.076 0.035	0.99 0.10 0.40 0.04 0.07	3.11 3.27 0.56 1.05 0.06	0.036 0.330 0.260 0.040 0.068	0.036 3.90 0.090 0.009 0.006
Coercive force	{ [0.36]	[0.37]	7.I (44.3)	16.7 (52.4)	[4.6]	[1.30]	[0.77]
Residual B	} [11400 [10800]	10000	10500	13000 (7500)	5100 [5350]	[9400]	[9850]
Maximum permeability	{ [14400]	3550 [14800]	700 (170)	375 (110)	240 [600]	[3270]	[6130]
B for H=150	{ [19200 [18900]	18800	17400 (15400)	16700 (11700)	10400 [11000]	[18200]	[17550]
4πI for saturation .	{ 21620 [21630]	21420 [21420]	20600 (20200)	19800 (18000)	16400 [16800]	[20500]	[19260]

E. Gumlich, Zs. für Electrochemie, 15, p. 599; 1909.

Brackets indicate annealing at 800° C in vacuum. Parentheses in

Parentheses indicate hardening by quenching from cherry-red.

TABLE 447 .- Cast Iron in Intense Pields.

	Soft Cast	Iron.		Hard Cast Iron						
H	В	I	μ	Н	В	1	μ			
114	9950	782	87.3 62.8	142	7860	614	55.4			
172	10800	846	62.8	254	9700	752	55.4 38.2			
433	13900	1070	32.1	339	10850	836	30.6			
744	1 57 50	I 200	21.2	684	13050	983	19.1			
1234	17300	1280	14.0	915	14050	1044	15.4			
1820	18170	1300	10.0	1570	15900	1138	10.1			
12700	31100	1465	2.5	2020	16800	1176	8.3			
13550	32100	1475	2.4	10900	26540	1245	2.4			
13800	32500	1488	2.4	13200	28600	1226	2.2			
15100	33650	1472	2.2	14800	30200	1226	2.0			

B. O. Peirce, Proc. Am. Acad. 44, 1909.

TABLE 448. - Corrections for Ring Specimens.

In the case of ring specimens, the average magnetizing force is not the value at the mean radius, the ratio of the two being given in the table. The flux density consequently is not uniform, and the measured hysteresis is less than it would be for a uniform distribution. This ratio is also given for the case of constant permeability, the values being applicable for magnetizations in the neighborhood of the maximum permeability. For higher magnetizations the flux density is more uniform, for lower it is less, and the correction greater.

Ratio of Radial Width to	Ratio of Ave H at Mean	erage H to	Ratio of Hysteresis for Uniform Distribution to Actual Hysteresis.				
Diameter of Ring.	Rectangular Cross-section.	Circular Cross-section.	Rectangular Cross-section.	Circular Cross-section.			
1/2	1.0986	1.0718	1.112	1.084			
1/3	1.0397	1.0294	1.045	1.033			
1/4	1.0216	1.0162	1.024	1.018			
1/5	1.0137	1.0102	1.015	1.011			
1/6	1.0094	1.0070	1.010	1.008			
1/7	1.0069	1.0052	1.008	1.006			
1/8	1.0052	1.0040	1.006	1.004			
1/10	1.0033	1.0025	1.003	1.002			
1/19	1.0009	1.0007	1.001	1.001			

M. G. Lloyd, Bull. Bur. Standards, 5, p. 435; 1908.

MAGNETIC PROPERTIES OF IRONS AND STEELS.

TABLE 449. - Magnetic Properties of Various Types of Iron and Steel.

From tests made at the Bureau of Standards. B and H are measured in cgs units.

Values of B.		2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
Annealed Norway iron	Η μ							7.25			=
Cast semi-steel	Η μ		2.90 1380					24.9 563		135 . 133	325 . 62.
Machinery steel	$_{\mu}^{\mathrm{H}}$	5.0	8.8 455			25 .8 390		50 .5 280		142. 127	=

TABLE 450. - Magnetic Properties of a Specimen of Very Pure Iron (.017% C).

From tests at the Bureau of Standards. B and H are measured in cgs units.

Values of B		2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
Very pure iron as received	Η μ	3.30 606					18.9 635	28.8 486	47.0 340	103. 175	240 . 83
Annealed in vacuo from 900° C	Η μ	. 46 4350	. 60 6670					3.20 4380			194.

As received: H_{max} 150 B_{max} 18,900 B_r 7,650 H_σ 2.8 After annealing: H_{max} 150 B_{max} 19,500 H_{c} 0.53

TABLE 451. - Magnetic Properties of Electrical Sheets.

From tests at the Bureau of Standards. B and H are measured in cgs units.

Values of B		2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
Dynamo steel	Η μ							9.20 1520		114 .	=
Ordinary trans- former steel	Η μ	.60 3340	.87 4600	1.10 5450				10.9 1280		149.	=
High silicon trans- former steel	Η μ	. 50	. 70 5720					9.80		165 .	_

MAGNETIC PROPERTIES OF IRONS AND STEELS.

TABLE 452. - Magnetic Properties of Two Types of American Magnet Steel.

From tests at the Bureau of Standards. B and H are measured in cgs units.

Values of B		2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
Tungsten steel.	$\frac{H}{\mu}$	35.0	53 · 3 75	63.3	72.0 III	83.4	100	200 70	=	=	=
Chrome steel	$\frac{H}{\mu}$	34.5	49.0	63.5	88.4 91	143 70	270 45	=	=	=	=

TABLE 453. - Magnetic Properties of a Ferro-Cobalt Alloy, Fe2Co (35% Cobalt).

From tests at the Bureau of Standards. B and H are measured in cgs units.

Values of B		2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
As received	H	3.10 645	4.28	5.50	7.17	9.65	13.4	19.1 730	27.3 590	40.0 450	65.0 310
Annealed at }	$\frac{H}{\mu}$	3.00	4.11	5.05	6.45	8.40	11.3	15.4 910	21.9 730	31.7 570	50.6 400
Quenched from 1000° C	$\frac{H}{\mu}$	10.8	13.8	19.1 314	28.7	43 · 4 230	65.8	104	163 98	262 69	=

As received Annealed at 1000° C B_{max} $\begin{cases} 15,000 \\ 15,000 \end{cases}$ H_{max} $\begin{cases} 22.9 \\ 18.3 \end{cases}$ B_{r} $\begin{cases} 7750 \\ 7460 \end{cases}$ H_{c} $\begin{cases} 3.79 \\ 3.69 \end{cases}$ Quenched from 1000° C $\begin{cases} 15,000 \\ 15,000 \end{cases}$

TABLE 454. — Magnetic Properties of a Ring Sample of Transformer Steel in Very Weak Fields.

From tests made at the Bureau of Standards. B and H are measured in cgs units.

Values of H 0.00 Values of B 0.4 Values of μ 45	0.91 1.85	2.87 3.94	5.05 6.30	7.51 10.10	11.64
---	-----------	-----------	-----------	------------	-------

TABLE 455. - Magnetic Properties of Iron in Very Weak Fields.

The effect of very small magnetizing forces has been studied by C. Baur and by Lord Rayleigh. The following short table is taken from Baur's paper, and is taken by him to indicate that the susceptibility is finite for zero values of H and for a finite range increases in simple proportion to H. He gives the formula k = 15 + 100H, or $I = 15H + 100H^2$ The experiments were made on an annealed ring of round bar 1.013 cms radius, the ring having a radius of 9.432 cms. Lord Rayleigh's results for an iron wire not annealed give k = 6.4 + 5.1H, or $I = 6.4H + 5.1H^2$. The forces were reduced as low as 0.00004 cgs, the relation of k to H remaining constant.

F	irst experiment.	Second experiment.			
H	Ä.	I	П	k	
.01580	16.46	2.63 5·47	.0130	15.50	
.07083	23.00 28.90 30.81	5.47 16.33 38.15 91.56	.0946	20.49 25.07 32.40	
. 38422	58.56	224.87	.3397	35.20	

PERMEABILITY OF SOME OF THE SPECIMENS IN TABLE 445

TABLE 456.

This table gives the induction and the permeability for different values of the magnetizing force of some of the specimens in Table 445. The specimen numbers refer to the same table. The numbers in this table have been taken from the curves given by Dr. Hopkinson, and may therefore be slightly in error; they are the mean values for rising and falling magnetizations.

Magnetiz- ing force.	ing force.		Specim (annealed		Specimen of 8 temper		Specimen 3 (cast iron).	
H	В	μ	В	μ	В	μ	В	μ
1 2 3 5 10 20 30 40 50 70 100 150 200	- 200 - 10050 12550 14550 15200 15800 16000 16360 16800 17400 17950	-000 -2010 1255 727 507 395 320 234 168 116 90	1525 9000 11500 12650 13300 13800 14350 14900 15700 16100	- - 300 900 575 422 332 276 205 149 105 80	750 1650 5875 9875 11600 12000 13400 14500 15800 16100	- 150 165 294 329 290 240 191 145 105 80	265 700 1625 3000 5000 6500 7100 7350 7900 8500 9500 10190	265 350 542 600 500 300 217 177 149 113 85 63 51

Tables.487-8, 463-5 give the results of some experiments by Du Bois,* on the magnetic properties of iron, nickel, and cobalt under strong magnetizing forces. The experiments were made on ovoids of the metals 18 centimeters long and 0.6 centimeters diameter. The specimens were as follows: (1) Soft Swedish iron carefully annealed and having a density 7.82. (2) Hard English cast steel yellow tempered at 230° C.; density 7.78. (3) Hard drawn best nickel containing 99 % Ni with some SiO₂ and traces of Fe and Cu; density 8.82. (4) Cast cobalt giving the following composition on analysis: Co=93.1, Ni=5.8, Fe=0.8, Cu=0.2, Si=0.1, and C=0.3. The specimen was very brittle and broke in the lathe, and hence contained a surfaced joint held together by clamps during the experiment. Referring to the columns, H, B, and μ have the same meaning as in the other tables, S is the magnetic moment per gram, and I the magnetic moment per cubic centimeter. H and S are taken from the curves published by Du Bois; the others have been calculated using the densities given.

MAGNETIC PROPERTIES OF SOFT IRON AT 0° AND 100° C. TABLE 457.

	Soft iron at o° C.					Soft iron at 100° C.					
Н	5	I	В	μ	Н	S	I	В	μ.		
100 200 400 700 1000 1200	180.0 194.5 208.0 215.5 218.0 218.5	1408 1521 1627 1685 1705 1709	17790 19310 20830 21870 22420 22670	177.9 96.5 52.1 31.2 22.4 18.9	100 200 400 700 1000 1200	180.0 194.0 207.0 213.4 215.0 215.5	1402 1511 1613 1663 1674 1679	17720 19190 20660 21590 22040 22300	177.2 96.0 51.6 29.8 21.0 18.6		

MAGNETIC PROPERTIES OF STEEL AT 0° AND 100° C.

TABLE 458.

	Steel at o° C.					Steel at 100° C.					
H	S	I	В	μ	Н	S	I	B	μ		
100 200 400 700 1000 1200 3750†	165.0 181.0 193.0 199.5 203.5 205.0 212.0	1283 1408 1500 1552 1583 1595 1650	16240 17900 19250 20210 20900 21240 24470	162.4 89.5 48.1 28.9 20.9 17.7 6.5	100 200 400 700 1000 1500 3000 5000	165.0 180.0 191.0 197.0 199.0 203.0 205.5 208.0	1278 1395 1480 1527 1543 1573 1593 1612	16170 17730 19000 19890 20380 21270 23020 25260	161.7 88.6 47.5 28.4 20.4 14.2 7.7 5.1		

* "Phil. Mag," 5 series, vol. xxix.

† The results in this and the other tables for forces above 1200 were not obtained from the ovoids above referred
to, but from a small piece of the metal provided with a polished mirror surface and placed, with its polished face normal to the lines of force, between the poles of a powerful electromagnet. The induction was then inferred from
the rotation of the plane of a polarized ray of red light reflected normally from the surface. (See Kerr's "Constants," D. 331.)

MAGNETISM AND TEMPERATURE.

TABLE 459. - Magnetism and Temperature, Critical Temperature.

The magnetic moment of a magnet diminishes with increasing temperature. Different specimens vary widely. In the formula $M t/M_0 = (x - at)$ the value of a may range from .0003 to .001 (see Tables 457-458). The effect on the permeability with weak fields may at first be an increase. There is a critical temperature (Curie point) above which the permeability is very small (paramagnetic?). Diamagnetic susceptibility does not change with the temperature. Paramagnetic susceptibility decreases with increase in temperature. This and the succeeding two tables are taken from Dushman, "Theories of Magnetism," General Electric Review, 1916.

Substance.	Critical temperature, Curie point.	Reference.	Substance.	Critical temperature, Curie point.	Reference.
Iron, α form " β form " γ form. Magnetite (Fe ₃ O ₄). " Cobalt-ferrite (Fe ₃ Co)	756° C 920 1280 536 589 555 520	I I I I 2 3 3	MnBi. MnSb. MnAs. MnP Heusler alloy Nickel	360 to 380° C 310 " 320 45 " 50 18 " 25 310 340 376 1075	4 4 4 5 1 6 5

References: (1) P. Curie; (2) see Williams, Electron Theory of Magnetism, quoted from Weiss; (3) du Bois, Tr. Far. Soc. 8, 211, 1912; (4) Hilpert, Tr. Far. Soc. 8, 207, 1912; (5) Gumaer; (6) Stifler, Phys. Rev. 33, 268, 1911.

TABLE 460. - Temperature Variation for Paramagnetic Substances.

The relation deduced by Curie that $\chi = C/T$, where C is a constant and T the absolute temperature, holds for some paramagnetic substances over the ranges given in the following table. Many paramagnetic substances do not obey the law (Honda and Owen, Ann. d. Phys. 32, 1027, 1910; 37, 657, 1912). See the following table.

Substance.	C × 108	Range ° C	Reference.	Substance.	C × 106	Range ° C	Refer- ence.
Oxygen	33,700 7,830 1,520 28,000 38,500	20° to 450° C 20 to 1370 850 " 1360 850 " 1267	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Gadolinium sulphate. Ferrous sulphate Ferric sulphate Manganese chloride.	21,000 11,000 17,000 30,000	-259° to 17 -259 " 17 -208 " 17 -258 " 17	3 3

References: (1) P. Curie, London Electrician, 66, 500, 1912; see also Du Bois, Rap. du Cong. 2, 460, 1900; (2) Perrier, Onnes, Tables annuelles, 3, 288, 1914; (3) Oosterhuis, Onnes, Lc. 2, 389, 1913.

TABLE 461. — Temperature Effect on Susceptibility of Diamagnetic Elements.

No effect:

B Cryst. 400 to 1200° C Diamond, +170 to 200° C "Sugar" carbon P white S Cryst.; ppt. Zn -170 to 300° Sb -170 to 50° Br -170 to 18° Zr Cryst. -170 to 500° Cd -170 to 300° Cs and Au Hg -39 to +350° Pb 327 to 600° Si Cryst.

Increase with rise in Temperature:

C Diamond, 200 to 1200° -170 to 114° B Cryst. +170 to 400° Hg -170 to -30°

Decrease with rise in Temperature:

Gd -179 to 30° Ge -170 to 900° Zr 500 to 1200° Cd 300 to 700° C Amorphous C Ceylon graphite In -170 to 150° Sb +50 to +631° Te -Pb -170 to 327° Bi -170 to 268° Cu Zn +300 to 700°. I +114 to +200°

TABLE 462. - Temperature Effects on Susceptibility of Paramagnetic Elements.

No effect:

K -170 to 150° Ca -170 to 18° V -170 to 500° Cr -170 to 500° Mn -170 to 250° Rb -Na -170 to 97° Al 657 to 1100°

Increase with rise in Temperature:

Ti -40 to 1100° V 500 to 1100° Cr 500 to 1100° Mo -170 to 1200° Ru +550 to 1200° Ba -170 to 18° Ir and Th

Decrease with rise in Temperature:

As -170 to 657° Tî -180 to -40° Mn 250 to 1015° (Fe) -Ni 350 to 800° Co above 1150° Pd and Ta Pt and U Cb -170 to 400° Rare earth metals

Tables 461 and 462 are due to Honda and Owen; for reference, see preceding table.

MACNETIC PROPERTIES OF METALS.

TABLE 463. - Cobalt at 100° C.

Н	S	I	В	μ
200	106	848	10850	54.2
300	116	928	11960	39.9
500	127	1016	13260	26.5
700	131	1048	13870	19.8
1000	134	1076	14520	14.5
1500	138	1104	15380	10.3
2500	143	1144	16870	6.7
4000	145	1164	18630	4.7
6000	147	1176	20780	3.5
9000	149	1192	23980	2.6
At oo	C. this	specime	n gave th	e fol-
,	lov	wing resu		
7900	154	1232	23380	3.0
			1 00	

TABLE 464. - Nickel at 100° C.

200 4 300 4 500 5 700 5	35.0 13.0 16.0 50.0	309 380 406 441	3980 4966 5399 6043	39.8 24.8 18.0
300 4 500 5 700 5	50.0	406	5399	
500 700 1000	50.0			18.0
700	,	441	6012	
1000			0043	12.1
	51.5	454	6409	9.1
	53.0	468	6875	6.9
1 500	56.0	494	7707	5.1
2500	58.4	515	8973	3.6
	59.0	520	10540	2.6
6000	59.2	522	12561	2.I
9000	59.4	524	15585	1.7
	59.6	526	18606	1.5
At oo C. t		ecimen		e fol-
		ng resu		
12300 6	7.5	595	19782	1.6

TABLE 465. - Magnetite.

The following results are given by Du Bois * for a specimen of magnetite.

Н	I	В	μ
500	325	8361	16.7
1000	345	9041	9.0
2000	350	10084	5.0
I 2000	350	20084	1.7

Professor Ewing has investigated the effects of very intense fields on the induction in iron and other metals.† The results show that the intensity of magnetization does not increase much in iron after the field has reached an intensity of 1000 c. g. s. units, the increase of induction above this being almost the same as if the iron were not there, that is to say, dB/dH is practically unity. For hard steels, and particularly manganese steels, much higher forces are required to produce saturation. Hadfield's manganese steel seems to have nearly constant susceptibility up to a magnetizing force of 10,000. The following tables, taken from Ewing's papers, illustrate the effects of strong fields on iron and steel. The results for nickel and cobalt do not differ greatly from those given above.

TABLE 466. — Lowmoor Wrought Iron.

Н	H I		μ
3080 6450 10450 13600 16390 18760 18980	1680 1740 1730 1720 1630 1680 1730	24130 28300 32250 35200 36810 39900 40730	7.83 4.39 3.09 2.59 2.25 2.13 2.15

TABLE 467. — Vicker's Tool Steel.

H	I	В	μ		
6210 9970 12120 14660 15530	1530 1570 1550 1580 1610	25480 29650 31620 34550 35820	4.10 2.97 2.60 2.36 2.31		

TABLE 468. — Hadfield's Manganese Steel.

H	I	В	μ
1930 2380 3350 5920 6620 7890 8390 9810	55 84 84 111 187 191 263	2620 3430 4400 7310 8970 10290 11690 14790	1.36 1.44 1.31 1.24 1.35 1.30 1.39 1.51

TABLE 469. - Saturation Values for Steels of Different Kinds.

	H	I	В	μ
Bessemer steel containing about 0.4 per cent carbon. Siemens-Marten steel containing about 0.5 per cent carbon. Crucible steel for making chisels, containing about 0.6 per cent carbon. Finer quality of 3 containing about 0.8 per cent carbon. Crucible steel containing 1 per cent carbon. Whitworth's fluid-compressed steel.	19470	1660	39880 38860 38010 38190 37690 38710	2.27 2.16 1.95 2.08 1.92 2.07

DEMAGNETIZING FACTORS FOR RODS.

TABLE 470.

H= true intensity of magnetizing field, H' = intensity of applied field, I=in-

tensity of magnetization, H = H' - NI. Shuddemagnet says: The demagnetizing factor is not a constant, falling for highest values of I to about I/I the value when unsaturated; for values of I ($= H + 4\pi I$) less than 10000, I is approximately constant; using a solenoid wound on an insulating tube, or a tube of split brass, the reversal method gives values for I which are considerably lower than those given by the step-by-step method; if the solenoid is wound on a thick brass tube, the two methods practically agrees. tically agree.

			Values	of N× 104.					
		Cylinder,							
Ratio				1	Ballistic Step	Method.			
Length to Diameter.	Ellipsoid.	Uniform Magneti-	Magneto- metric	Dubois.	Shudden Pract	nagen for I	Range of ancy.		
		zation. Method (Mann).			Diameter.				
				0.158 cm.	0.3175 cm.	1.111 cm.	1.905 cm.		
5 10 15 20 30 40 50 60 70 80 90 100 150 200 300 400	7015 2549 1350 848 432 266 181 132 101 80 65 54 26 16 7.5 4.5	630 280 160 70 39 25 18 13 9.8 6.3 2.8 1.57 0.70 0.39	6800 2550 1400 898 460 274 131 99 78 63 51.8 25.1 15.2 7.5	2160 1206 775 393 238 162 118 89 69 55 45 20 11 5.0 2.8	- - 388 234 160 116 88 69 56 46 23 12.5	350 212 145 106 66 41 21	1960 1075 671 343 209 149 106 63 41 21		

TABLE 471.

Shuddemagen also gives the following, where B is determined by the step method and H = H' - KB.

Ratio of Length	Values of K×104.					
to Diameter.	Diameter 0.3175 cm.	Diameter 1,1 to 2.0 cm.				
15 20 25 30 40 50 60 80 100 150	- 30.9 18.6 12.7 9.25 5.5 3.66 1.83	85.2 53.3 36.6 27.3 16.6 11.6 8.45 5.05 3.26 1.67				

<sup>C. R. Mann, Physical Review, 3, p. 359; 1896.
H. DuBois, Wied. Ann. 7, p. 942; 1902.
C. L. B. Shuddemagen, Proc. Am. Acad. Arts and Sci. 43, p. 185, 1907 (Bibliography).</sup>

DISSIPATION OF ENERGY IN THE CYCLIC MAGNETIZATION OF VARIOUS SUBSTANCES.

C. P. Steinmetz concludes from his experiments * that the dissipation of energy due to hysteresis in magnetic metals can be expressed by the formula $e=aB^{1.6}$, where e is the energy dissipated and a a constant. He also concludes that the dissipation is the same for the same range of induction, no matter what the absolute value of the terminal inductions may be. His experiments show this to be nearly true when the induction does not exceed \pm 15000 c. g. s. units per sq. cm. It is possible that, if metallic induction only be taken, this may be true up to saturation; but it is not likely to be found to hold for total inductions much above the saturation value of the metal. The law of variation of dissipation with induction range in the cycle, stated in the above formula, is also subject to verification.†

Values of Constant a.

The following table gives the values of the constant a as found by Steinmetz for a number of different specimens.

The data are taken from his second paper.

Iron

^{* &}quot;Trans. Am. Inst. Elect. Eng." January and September, 1892. † See T. Gray, "Proc. Roy. Soc." vol. lvi.

ENERGY LOSSES IN TRANSFORMER STEELS.

Determined by the wattmeter method.

Loss per cycle per $cc = AB^2 + buB^3$, where B = flux density in gausses and n = frequency in cycles per second. x shows the variation of hysteresis with B between 5000 and 10000 gausses, and y the same for eddy currents.

		Ergs p	er Gran	nme per	Cycle.				Watts p	er Pound d 10000 G	at 60 Cy-
Designation.	Thick- ness. cm.	10000 G		5000 Ga		ж	y	22	Gage		
	Cin.	Hyste- resis.	Eddy Currents at	Hyste- resis.	Eddy Currents at				Eddy Current Loss for Gage No. 29. ‡	Hyste- resis.	Total.
Unannealed A B C D	0.0399 .0326 .0422 .0381	1599 1156 1032 1009	186 134 242 184	562 384 356 353	46 36 70 48	1.51 1.59 1.51 1.52	2.02 1.89 1.79 1.94	0.00490 .00358 .00319	0.41 0.44 0.47 0.44	4·35 3·14 2.81 2·74	4.76 3.58 3.28 3.18
Annealed E F G H* I K* L B M N .	.0476 .0280 .0394 .0307 .0318 .0282 .0346 .0338 .0335 .0340	735 666 563 412 341 394 381 354 372 321 334	236 100 210 146 202 124 184 200 178 210	246 220 193 138.5 111.5 130 125 116 127 105	58 27 54 39 55 32 50 57 46 56 50	1.58 1.60 1.54 1.58 1.62 1.61 1.61 1.61 1.55 1.62	2.02 1.88 1.96 1.90 1.88 1.90 1.88 1.81 1.95 1.90	.00227 .00206 .00174 .00127 .00105 .00112 .00118 .00110 .00115	0.36 0.44 0.47 0.54 0.70 0.54 0.535 0.61 0.55 0.63	2.00 1.81 1.53 1.12 0.93 1.07 1.035 0.96 1.01 0.87 0.91	2.36 2.25 2.00 1.66 1.63 1.61 1.57 1.57 1.56 1.50
Silicon steels Q† R S T U V* W* X	.0361 .0315 .0452 .0338 .0346 .0310 .0305	303 288 278 250 270 251.5 197 200	54 42 72 60 42 47 43 65	98 93 90 78 86 79 62.3 64.2	15 11 18 18 12 13 12.4 16.6	1.63 1.64 1.63 1.68 1.66 1.68 1.67		.00094 .00089 .00086 .00077 .00084 .00078	0.14 0.15 0.12 0.18 0.12 0.17 0.16 0.12	0.825 0.78 0.755 0.68 0.735 0.685 0.535	0.965 0.93 0.875 0.86 0.855 0.855 0.695

† English.

‡ In order to make a fair comparison, the eddy current loss has been computed for a thickness of 0.0357 cm. (Gage No. 20), assuming the loss proportional to the thickness.

Lloyd and Fisher, Bull. Bur. Standards, 5, p. 453; 1909.

Note. - For formulæ and tables for the calculation of mutual and self inductance see Bulletin Bureau of Standards, vol. 8, p. 1-237, 1912.

MAGNETIC SUSCEPTIBILITY.

If $\mathbb T$ is the intensity of magnetization produced in a substance by a field strength $\mathbb D$, then the magnetic susceptibility $H=\mathbb T/\mathbb D$. This is generally referred to the unit mass; italicized figures refer to the unit volume. The susceptibility depends greatly upon the purity of the substance, especially its freedom from iron. The mass susceptibility of a solution containing p per cent by weight of a water-free substance is, if H_0 is the susceptibility of water, (p/100) H + (1-p/100) H_0 .

		16		li .			
Substance.	H×106	Temp.	Remarks	Substance.	H × 10 ⁶	Lemp.	Remarks
Ag	-0.19	180		K ₂ CO ₈	-0.50	200	Sol'n
AgCl	-0.28			Li	+0.38		
Air, I Atm	+0.024	15		Mb	+0.04	18	
Al K (CO) - II O	+0.65	18	0	Mg	+0.55	18	
$Al_2K_2(SO_4)_{424}H_2O$ A, I Atm	-1.0		Crys.	MgSO ₄	-0.40		
As	-0.10	-0		Mn	+11.	18	
Au	-0.3 -0.15	18		MnCl ₂	+122.	18	Sol'n
В	-0.15	18		MnSO ₄	+100.	18	66
BaCl ₂	-0.36	20		N ₂ , I Atm	0.001	16	
Be	+0.79		Powd.	Na	—I.I	18	
Bi	-1.4	15	10114.	NaCl	+0.51	20	
Br	-0.38	18		Na ₂ CO ₈	-0.19	17	Powd.
C, arc-carbon	-2.0	18		Na ₂ CO ₃ . 10 H ₂ O .	-0.46	17	1 OWU.
C, diamond	-0.49	18		Nb	+1.3	18	
CH ₄ , I Atm	+0.001	16		NiCl ₂	+40.	18	Sol'n
CO ₂ , I Atm	+0.002	16		NiSO4	+30.	20	46
CS_2	-0.77	18		O ₂ , 1 Atm	+0.120	20	
CaO	-0.27	16	Powd.	Os	+0.04	20	
CaCl ₂	-0.40	19	6.6	P, white	-0.90	20	- 4
CaCO ₈ , marble Cd	-0.7	-0		P, red	-0.50	20	
CeBr ₈	-0.17	18		Pb	-0.12	20	
Cl ₂ , I Atm.	+6.3	18		PbCl ₂	-0.25	15	Powd.
CoCl ₂	-0.59 +90.	18	Sol'n	PrCl ₈	+5.8		C-12.
CoBr ₂	+47.	18	46	Pt.	+13.	18	Sol'n
CoI ₂	+33.	18	66	PtCl ₄	+1.1	22	Sol'n
CoSO ₄	+ 57.	19	66	Rh	+1.1	18	30111
$Co(N\hat{O}_3)_2$	+57.	18	66	S	-0.48	18	}
Cr	+3.7	18		SO ₂ , I Atm	-0.30	16	1
CsCl	-0.28	17	Powd.	Sb	-0.94	18	
Cu	0.09	18		Se	-0.32	18	
CuCl ₂	+12.	20	Sol'n	Si	-0.12	18	Crys.
CuSO ₄	+10.	20	Sol'n	SiO2, Quartz	-0.44	20	
CuS	+0.16	17	Powd.	-Glass	-0.5±		
FeCl ₃	+90.		Sol'n	Sn	+0.03	20	0 11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+90. +82.	18	66	SrCl ₂	-0.42	20	Sol'n
Fe ₂ (NO ₃) ₆		18	66	Te	+0.93	18	
FeCn ₆ K ₄	+50. -0.44	10	Powd.	Th	-0.32 +0.18	18	
FeCn ₆ K ₈	+9.1		10Wu.	Ti	+3.1	18	
He, 1 Atm	-0.002	0		Va	+1.5	18	
H ₂ , 1 Atm	0.000	16		Wo	+0.33	20	
H ₂ , 40 Atm	0.000	16		Zn	-0.15	18	- 1
H_2O	-0.79	20		ZnSO ₄	-0.40		
HCl	-0.80	20		Zr	-0.45	18	
H_2SO_4	+0.78	20	1	CH ₃ OH	-0.73		
HNO ₈ · · · ·	-0.70	20		C_2H_5OH	0.80 0.80		
Hg	-0.19	20		C_8H_7OH	-0.60	20	
In	-0.4 0.1+	18		$C_2H_5OC_2H_5$ CHCl ₈	_0.58	20	
Ir.	+0.15	18		C_6H_6	-0.78		
K	+0.40	20		Ebonite	+1.1		
KCl	-0.50	20		Glycerine	-0.64	22	
KBr	-0.40	20		Sugar	-0.57		11
KI	-0.38	20		Paraffin	-0.58		
KOH	-0.35	22	Sol'n	Petroleum	-0.91		
K_2SO_4	-0.42	20		Toluene	-0.77		
KMnO ₄	+2.0	00		Wood	-0.2-5		
KNO ₃	-0.33	20		Xylene	-0.81		
						-	

Values are mostly means taken of values given in Landolt-Börnstein's Physikalisch-chemische Tabellen. See especially Honda, Annalen der Physik (4), 32, 1910.

MAGNETO-OPTIC ROTATION.

Faraday discovered that, when a piece of heavy glass is placed in magnetic field and a beam of plane polarized light passed through it in a direction parallel to the lines of magnetic force, the plane of polarization of the beam is rotated. This was subsequently found to be the case with a large number of substances, but the amount of the rotation was found to depend on the kind of matter and its physical condition, and on the strength of the magnetic field and the wave-length of the polarized light. Verdet's experiments agree fairly well with the formula—

$$\theta = clH\left(r - \lambda \frac{dr}{d\lambda}\right) \frac{r^2}{\lambda^2},$$

where c is a constant depending on the substance used, I the length of the path through the substance, H the intensity of the component of the magnetic field in the direction of the path of the beam, r the index of refraction, and λ the wave-length of the light in air. If H be different, at different parts of the path, /H is to be taken as the integral of the variation of magnetic potential between the two ends of the medium. Calling this difference of potential 2, we may write $\theta = Av$, where A is constant for the same substance, kept under the same physical conditions, when the one kind of light is used. The constant A has been called "Verdet's constant," * and a number of values of it are given in Tables 476-480. For variation with temperature the following formula is given by Bichat:—

$$R = R_0 (1 - 0.00104t - 0.000014t^2),$$

which has been used to reduce some of the results given in the table to the temperature corresponding to a given measured density. For change of wave-length the following approximate formula, given by Verdet and Becquerel, may be used :-

$$\frac{\theta_1}{\theta_2} = \frac{\mu_1^2(\mu_1^2 - 1)\lambda_2^2}{\mu_2^2(\mu_2^2 - 1)\lambda_1^2},$$

where μ is index of refraction and λ wave-length of light.

A large number of measurements of what has been called molecular rotation have been made. particularly for organic substances. These numbers are not given in the table, but numbers proportional to molecular rotation may be derived from Verdet's constant by multiplying in the ratio of the molecular weight to the density. The densities and chemical formulæ are given in the table. In the case of solutions, it has been usual to assume that the total rotation is simply the algebraic sum of the rotations which would be given by the solvent and dissolved substance, or substances, separately; and hence that determinations of the rotary power of the solvent medium and of the solution enable the rotary power of the dissolved substance to be calculated. Experiments by Quincke and others do not support this view, as very different results are obtained from different degrees of saturation and from different solvent media. No results thus calculated have been given in the table, but the qualitative result, as to the sign of the rotation produced by a salt, may be inferred from the table. For example, if a solution of a salt in water gives Verdet's constant less than 0.01 30 at 20° C., Verdet's constant for the salt is negative.

The table has been for the most part compiled from the experiments of Verdet, H. Becquerel, Quincke, Koepsel, Arons, Kundt, Jahn, Schönrock, Gordon, Rayleigh and Sidgewick, Perkin, Gordon, Schönrock, Bichat.

As a basis for calculation, Verdet's constant for carbon disulphide and the sodium line D has been taken as 0.0420 and for water as 0.0130 at 20° C.

* The constancy of this quantity has been verified through a wide range of variation of magnetic field by H. E. J. G. Du Bois (Wied. Ann. vol. 35), p. 137, 1888.

† "Ann. de Chim. et de Phys." [3] vol. 52, p. 129, 1858.

2 "Ann. de Chim. et de Phys." [5] vol. 12; "C. R." vols. 90, p. 1407, 1880, and 100, p. 1374, 1885.

§ "Wied. Ann." vol. 24, p. 606, 1885.

¶ "Wied. Ann." vol. 25, p. 456, 1885.

¶ "Wied. Ann." vol. 23, p. 26, 1884, and 27, p. 191, 1886.

† "Wied. Ann." vol. 23, p. 280, 1891.

2 "Zeits. für Phys. Chem." vol. 11, p. 753, 1893.

§ "Proc. Roy. Soc." 36, p. 4, 1883.

¶ "Phil. Trans. R. S." 176, p. 343, 1885.

¶ "Jour. Chem. Soc."

** "Jour. Chem. Soc."

** "Jour. de Phys." vols. 8, p. 204, 1879, and 9, p. 204 and p. 275, 1880.

MAGNETO-OPTIC ROTATION.

Solids.

Substance.	Formula.	Wave- length.	Verdet's Constant. Minutes.	Temp. C.	Authority.
Amber		μ 0.589	0.000.4	*00	Onivel
Blende	ZnS	0.509	0.0095	18-20°	Quincke. Becquerel.
Diamond	C	66	0.0127	15	becquerer,
Lead borate	PbB ₂ O ₄	66	0.0600	15	66
Selenium	Se N- P O	0.687	0.4625	15	6; 66
Ziqueline (Cuprite)	Na ₂ B ₄ O ₇ Cu ₂ O	0.589	0.0170	15	66
	Cu2O	0.687	0.5908	15	
Fluorite	CaFl ₂	0.2534	0.05989	20	Meyer, Ann. der
		.3655	.02526	66	Physik, 30, 1909.
		.4358	.01717	66	
		.4916	.01329	66	
		1.00	.00897	66	
		2.50	.00049	66	
		3.00	.00030	66	
Glass, Jena: Medium ph	osphate crn.	0.589	0.0161	18	DuBois, Wied, Ann.
Heavy crov		66	0.0220	46	51, 1894.
Light flint, Heavy flint	0451 .	66	0.0317	66	
" "	O500 . S163	66	0.0608	66	
Zeiss, Ultraviolet		0.313	0.0674	16	Landau, Phys. ZS.
46		0.405	.0369	66	9, 1908.
44		0.436	.0311	66	
Quartz, along axis, i.e.,	SiO ₂	0.2194	0.1587	20	Borel, Arch. sc. phys.
plate cut 1 to axis		.2573	.1079	66	16, 1903.
•		.3609	.04617	66	
		.5892	.02574	46	
		.6439	.01368	66	to the same of
Rock salt	NaCl	0.2599	0.2708	20	Meyer, as above.
		.3100	.1561	44	
		.4046	.0775	66	
		.6708	.0483	66	
	1	1.00	.01050	66	
		2.00	.00262	66	
C	CILO	4.00	.00069	66	Wint Dlan 70
Sugar, cane: along axis IIA	$C_{12}H_{22}O_{11}$	0.451	.0122	20	Voigt, Phys. ZS. 9,
axis IIA		.626	.0076	66	1908.
axis IIA1	_	0.451	0.0129	66	
		.540	.0084	66	
Calaita	W.Cl	.626	.0075	66	16
Sylvite	KC1	0.4358	0.0534	20	Meyer, as above.
		.5461	.0316	66	
		.90	.01051	66	
		1.20	.00608	66	
	-	2.00	.00207	66	
		4.00	.00054	"	
				- 1	

TABLE 477.

MAGNETO-OPTIC ROTATION.

Liquids: Verdet's Constant for $\lambda = 0.589\mu$.

	Substance.	Chemical formula.	Density in grams per c. c.	Verdet's constant in minutes.	Temp. C.	Authority.
	Acatoma	CHO	0.0010	0.0113	20°	Jahn.
	Acetone Acids: Acetic	C ₈ H ₆ O	0.7947	.0105	21	Perkin.
-	" Butyric	$C_2H_4O_2 \\ C_4H_8O_2$	0.9663	.0116	15	·I OIKIII.
	" Formic	CH_2O_2	1.2273	.0105	"	. 66
	" Hydrochloric	HCI	1.2072	.0224	66	66
	" Hydrobromic	HBr	1.7859	.0343	66	"
	" Hydroiodic	HI	1.9473	.0515	66	66
	" Nitric	HNO ₈	1.5190	.0070	-13	66
	" Sulphuric	H ₂ SO ₄		.0121	15	Becquerel.
A	Alcohols: Amyl	C ₅ H ₁₁ OH	0.8107	.0128	20	Jahn.
	" Butyl	C ₄ H ₉ OH	0.8021	.0124	66	"
	" Ethyl	C_2H_5OH	0.7900	.0112	66	66
	" Methyl	CH ₈ OH	0.7920	.0093	66	66
11 7	" Propyl	C ₈ H ₇ OH	0.8042	.0120	"	66
	enzene	C_6H_6	0.8786	.0297	66	
В	Bromoform	CHBr ₃ .	2.9021	.0317	15	Perkin.
1	" Ethyl	C ₂ H ₅ Br	1.4486	.0183	66	46
	Ethylene	C ₂ H ₄ Br ₂	2.1871	.0268		46
	Mennyi	CH ₃ Br	1.7331	.0205	0	44
	Methylene	CH ₂ Br ₂	2.497 I	.0276	15	
	arbon bisulphide	CS ₂		.0433	0	Gordon.
	hlanidas Annal	CHCl	0 8= 10	.0420	18	Rayleigh.
	hlorides : Amyl "Arsenic	AsCla	0.8740	.0140	20	Jahn.
	" Carbon	CCl ₄		.0422	15	Becquerel.
1	" Chloroform	CHCI ₈	1.4823	.0321	20	Jahn.
	" Ethyl	C_2H_5Cl	0.9169	0.0138	6	Perkin.
	" Ethylene	$C_2H_4Cl_2$	1.2589	.0166	-	i cikili.
	" Methyl	CH ₈ Cl	1.2309	.0170	15	Becquerel.
	" Methylene	CH ₂ Cl ₂	1.3361	.0162	66	Perkin.
	" Sulphur bi-	S ₂ Cl ₂		.0393	66	Becquerel.
	" Tin tetra	SnCl ₄	_	.0151	46	"
	" Zinc bi-	ZnCl ₂	_	.0437		. 66
Id	odides: Ethyl	C ₂ H ₅ I	1.9417	.0296	"	Perkin.
	" Methyl	CH ₈ I	2.2832	.0336	66	"
	" Propyl	C ₃ H ₇ I	1.7658	.0271	66	46
N	itrates: Ethyl	C2H5O.NO2	1.1149	.0091	66	66
	" Methyl	CH ₃ O.NO ₂	1.2157	.0078	66	66
1 -	" Propyl	C ₃ H ₇ O.NO ₂	1.0622	.0100	66	"
P	araffins: Heptane	C ₇ H ₁₆	0.6880	.0125	66	66
1	riexane	C ₆ H ₁₄	0.6743	.0125	"	"
D	1 chitane	C ₅ H ₁₂	0.6332	.0118		
	hosphorus, melted ulphur, melted	S	_	.1316	33	Becquerel.
	oluene	C ₇ H ₈	08587	.0803	114	Schönrock.
	Vater, $\lambda = 0.2496 \mu$	H ₂ O	0.8581	.0269	20	See Meyer,
	ο.275	1120		.0776	11	Ann. der
	0.3609			.0384		Physik, 30,
	0.4046			.0293		1909. Meas-
	0.500			.0184		ures by
	0.589			.0131		Landau,
	0.700			1000.		Siertsema,
	1.000			.00410		Ingers'oll.
1	1.300		-	.00264		0
X	ylene	C ₈ H ₁₀	0.8746	.0263	27	Schönrock.

MAGNETO-OPTIC ROTATION.

Solutions of acids and salts in water. Verdet's constant for $\lambda = 0.589 \mu$.

Chemical formula.	Density, grams per c. c.	Verdet's constant in minutes.	Temp.	*	Chemical formula.	Density, grams per c. c.	Verdet's constant in minutes.	Temp.	W
C ₈ H ₆ O HBr	0.9715	0.0129	20°	J	LiC1	1.0619	0.0145	20°	J
46	1.3775	0.0244	66	66		1.0316	0.0143	66	
HC1	1.1163		66	66	MnCl ₂	1.1966	0.0167	15	B
1101	1.1573	0.0204	66	66		1.0876	0.0150	66	66
66	1.0762		66	T	HgCl ₂	1.0381	0.0137	16	S
HI	1.0158	0.0140	66	P	NiCl ₂	1.0349	0.0137	66	4.6
46	1.4495	0.0323	66	66	1V1C12	1.4685	0.0270	15	B
66	1.1760	0.0205	66	66	46	1.2432	0.0196	66	66
HNO ₈	1.3560	0.0105	66	66	KC1	1.1233	0.0162	66	66
NH ₈	0.8918	0.0153	15	66	1 C1	1.6000	0.0163		, ,
NH ₄ Br	1.2805	0.0226	15	66	NaCl	1.0732	0.0148	20	J I
"	1.1576	0.0186	66	46	11461	1.2051	0.0180	15	B
BaBr ₂	1.5399	0.0215	20	J	46	1.0546	0.0144	66	
66	1.2855	0.0176	46	66	SrCl ₂	1.0418	0.0144	66	J _"
CdBr ₂	1.3291	0.0192	66	66	61 612	1.1921	0.0162	66	66
66	1.1608	0.0162	66	66	SnCl ₂	1.3280	0.0146		V
CaBr ₂	1.2491	0.0189	66	46	66	1.1112		15	66
66	1.1337	0.0164	66	66	ZnCl ₂	1.2851	0.0175	66	66
KBr	I.1424	0.0163	66	66	66	1.1595	0.0161	66	66
66	1.0876	0.0151	66	66	K ₂ CrO ₄	1.3598	0.0008		66
NaBr	1.1351	0.0165	66	66	K ₂ Cr ₂ O ₇	1.0786	0.0098	66	66
66	1.0824	0.0152	66	66	Hg(CN) ₂	1.0638	0.0136	16	S
SrBr ₂	1.2901	0.0186	66	66	118(011)2	1.0605	0.0135	10	44
66	1.1416	0.0159	66	66	NH ₄ I	1.5948	0.0396	10	P
K ₂ CO ₈	1.1906	0.0140	20	66	46	1.5100	0.0358	15	66
Na ₂ CO ₈	1.1006	0.0140	66	66	66	1.2341	0.0235	46	46
44	1.0564	0.0137	46	66	CdI	1.5156	0.0291	20	T
NH ₄ Cl	1.0718	0.0178	15	V	66	1.1521	0.0177	66	J
BaCl ₂	1.2897	0.0168	20	J	KI	1.6743	0.0338	15	В
66	1.1338	0.0149	46	66	66	1.3398	0.0237	15	66
CdCl ₂	1.3179	0.0185	66	66	66	1.1705	0.0182	66	66
66	1.2755	0.0179	66	66	NaI	1.1939	0.0200	66	I
46	1.1732	0.0160	66	66	66	1.1191	0.0175	66	46
66	1.1531	0.0157	66	46	NH ₄ NO ₈	1.2803	0.0121	15	P
CaCl ₂	1.1504	0.0165	66	66	KNO ₈	1.0634	0.0130	20	J
"	1.0832	0.0152	66	66	NaNO ₈	1.1112	0.0131	- 66	46
CuCl ₂	1.5158	0.0221	15	В	$U_2O_3N_2O_5$	2.0267	0.0053	66	B
"	1.1330	0.0156	46	66	"	1.1963	0.0115	46	66
FeCl ₂	1.4331	0.0025	15	66	(NH ₄) ₂ SO ₄	1.2286	0.0140	15	P
66	1.2141	0.0099	46	66	NH4.HSO4	1.4417	0.0085	66	66
"	1.1093	0.0118	"	66	BaSO ₄	1.1788	0.0134	20	J
Fe ₂ Cl ₆	1.6933	-0.2026	66	66	66	1.0938	0.0133	46	66
46	1.5315	-0.1140	66	66	CdSO ₄	1.1762	0.0139	66	46
66	1.3230	-0.0348	66	66		1.0890	0.0136	66	66
66	1.1681	-0.0015	66	66	Li ₂ SO ₄	1.1762	0.0137	66	66
46	1.0864	0.0081	66	66	MnSO ₄	1.2441	0.0138	66	111
"	1.0445	0.0113	66	66	K ₂ SO ₄	1.0475	0.0133	66	66
	1.0232	0.0122			Na ₂ SO ₄	1.0661	0.0135		

^{*} J, Jahn, P, Perkin, V, Verdet, B, Becquerel, S, Schönrock; see p. 878 for references.

TABLE 479. - Magneto-Optic Rotation.

Gases.

Substance.	Substance.					Verdet's constant in minutes.	Authority.
Atmospheric air Carbon dioxide Carbon disulphide Ethylene Nitrogen Nitrous oxide Oxygen Sulphur dioxide				Atmospheric 74 cms. Atmospheric " " " 246 cms.	Ordinary "Ordinary Too C. Ordinary " " " 20° C.	6.83 × 10 ⁻⁶ 13.00 " 23.49 " 34.48 " 6.92 " 16.90 " 6.28 " 31.39 " 38.40 "	Becquerel. Bichat. Becquerel. " " " Bichat.

See also Siertsema, Ziting. Kon. Akad. Watt., Amsterdam, 7, 1899; 8, 1900.

Du Bois shows that in the case of substances like iron, nickel, and cobalt which have a variable magnetic susceptibility the expression in Verdet's equation, which is constant for substances of constant susceptibility, requires to be divided by the susceptibility to obtain a constant. For this expression he proposes the name "Kundt's constant." These experiments of Kundt and Du Bois show that it is not the difference of magnetic potential between the two ends of the medium, but the product of the length of the medium and the induction per unit area, which controls the amount of rotation of the beam.

TABLE 480. - Verdet's and Kundt's Constants.

The following short table is quoted from Du Bois' paper. The quantities are stated in c. g. s. measure, circular measure (radians) being used in the expression of "Verdet's constant" and "Kundt's constant."

Name of substance.	Magnetic	Verdet's co	nstant.	Wave-length	Kundt's
Name of substance.	susceptibility.	Number. Authority.		of light in cms.	constant.
Cobalt Nickel Iron Oxygen: I atmo. Sulphur dioxide Water Nitric acid Alcohol Ether Arsenic chloride Carbon disulphide Faraday's glass	+ 0.0126 × 10 ⁻⁵ - 0.0751 " - 0.0694 " - 0.0633 " - 0.0566 " - 0.0541 " - 0.0876 " - 0.0716 " - 0.0982 "	0.000179 × 10 ⁻⁵ 0.302	Becquerel. Arons Becquerel. De la Rive. Becquerel. Rayleigh. Becquerel.	6.44×10 ⁻⁵ 6.56 ' 5.89 " " " " "	3.99 3.15 2.63 0.014 -4.00 -5.4 -5.6 -5.8 -14.9 -17.1 -17.7

TABLES 481-483.

TABLE 481. - Values of Kerr's Constant.*

Du Bois has shown that the rotation of the major axis of vibration of radiations normally reflected from a magnet is algebraically equal to the normal component of magnetization multiplied into a constant K. He calls this constant K, Kerr's constant for the magnetized substance forming the magnet.

Color of light.	Spectrum	Wave- length	ength							
Color of right.	line.	in cms.	Cobalt.	Nickel.	Iron.	Magnetite.				
Red	Li a	67.7	-0.0208	-0.0173	-0.0154	+0.0096				
Red	_	62.0	-0.0198	-0.0160	0.0138	+0.0120				
Yellow	D	58.9	-0.0193	-0.0154	-0.0130	+0.0133				
Green	В	51.7	-0.0179	0.0159	-0.0111	+0.0072				
Blue	F	48.6	-0.0180	-0.0163	-0.0101	+0.0026				
Violet	G	43.1	0.0182	-0.0175	0.0089	-				

^{*} H. E. J. G. Du Bois, " Phil. Mag." vol. 29.

TABLE 482. - Dispersion of Kerr Effect.

Wave-length.	0.5µ	1.0μ	1.5μ	2.0μ	2.5μ
Steel	—II'.	—ı6'.	-14'.	—II'.	-9 ′.0
Cobalt	— 9.5	-11.5	- 9.5	-11.	-6.5
Nickel	— 5·5	- 4.0	ō	+1.75	+3.0

Field Intensity = 10,000 C. G. S. units. (Intensity of Magnetization = about 800 in steel, 700 to 800 in cobalt, about 400 in nickel). Ingersoll, Phil. Mag. 11, p. 41, 1906.

TABLE 483. - Dispersion of Kerr Effect.

Mirror.	Field (C. G. S.)	.41µ	.44μ	.48µ	.52μ	.56μ	.60µ	.64μ	.66µ
Iron	21,500	25	26	28	31	36	42	44	45
Cobalt	20,000	36	35	34	35	35	35	35	36
Nickel	19,000	16	15	13	13	14	14	14	14
Steel	19,200	27	28	31	35	38	40	44	45
Invar	19,800	22	23	24	23	23	22	23	23
Magnetite	16,400	07	02	+.04	+.06	+.08	+.06	+.04	+.03

Foote, Phys. Rev. 34, p. 96, 1912.

See also Ingersoll, Phys. Rev. 35, p. 312, 1912, for "The Kerr Rotation for Transverse Magnetic Fields," and Snow, l. c. 2, p. 29, 1913, "Magneto-optical Parameters of Iron and Nickel."

RESISTANCE OF METALS. MAGNETIC EFFECTS.

TABLE 484.—Variation of Resistance of Bismuth, with Temperature, in a Transverse Magnetic Field.

Proportional Values of Resistance.											
H	-192°	-135°	-100°	-37°	o°	+18°	+600	+1000	+1830		
0	0.40	0.60	0.70	0.88	1.00	1.08	1.25	1.42	1.79		
2000	1.16	0.87	0.86	0.96	1.08	I.II	1.26	1.43	1.80		
4000	2.32	1.35	1.20	1.10	1.18	1.21	1.31	1.46	1.82		
6000	4.00	2.06	1.60	1.29	1.30	1.32	1.39	1.51	1.85		
8000	5.90	2.88	2.00	1.50	1.43	1.42	1.46	1.57	1.87		
10000	8.60	3.80	2.43	1.72	1.57	1.54	1.54	1.62	1.89		
12000	10.8	4.76	2.93	1.94	1.71	1.67	1.62	1.67	1.92		
14000	12.9	5.82	3.50	2.16	1.87	1.80	1.70	1.73	1.94		
16000	15.2	6.95	4.11	2.38	2.02	1.93	1.79	1.80	1.96		
18000	17.5	8.15	4.76	2.60	2.18	2.06	1.88		1.99		
20000	19.8	9.50	5.40	2.81	2.33	2.20	1.97	1.95	2.03		
25000	25.5	13.3	7.30	3.50	2.73	2.52	2.22	2.10	2.09		
30000	30.7	18.2	9.8	4.20	3.17		2.46		2.17		
35000	35.5	20.35	12.2	4.95	3.62	3.25	2.69	2.45	2.25		

TABLE 485. — Increase of Resistance of Nickel due to a Transverse Magnetic Field, expressed as % of Resistance at 0° and H=0.

Н	-190°	-75°	00	+180	+1000	+1820
0 1000 2000 3000 4000 6000 8000 10000 12000 14000 16000 20000 25000 35000	+0 +0.20 +0.17 -0.00 -0.17 -0.19 -0.18 -0.18 -0.17 -0.17 -0.16 -0.14 -0.12 -0.10	0 +0.23 +0.16 -0.05 -0.15 -0.20 -0.23 -0.27 -0.32 -0.35 -0.38 -0.41 -0.49 -0.56 -0.63	0 +0.07 +0.03 -0.34 -0.60 -0.76 -0.82 -0.87 -0.91 -0.94 -0.98 -1.03 -1.12 -1.22 -1.32	0 +0.07 +0.03 -0.36 -0.72 -0.83 -0.99 -0.95 -1.00 -1.04 -1.13 -1.17 -1.29 -1.40 -1.50	0 +0.96 +0.72 -0.14 -0.70 -1.02 -1.15 -1.23 -1.30 -1.37 -1.44 -1.51 -1.76 -1.76 -1.95 -2.13	0 +0.04 -0.07 -0.60 -1.15 -1.53 -1.06 -1.76 -1.85 -1.95 -2.05 -2.15 -2.25 -2.50 -2.73 -2.98

F. C. Blake, Ann. der Physik, 28, p. 449; 1909.

TABLE 486.—Change of Resistance of Various Metals in a Transverse Magnetic Field.

Room Temperature.

Metal.	Field Strength in Gausses.	Per cent Increase.	Authority.
Nickel " Cobalt Cadmium Zinc Copper Silver Gold Tin Palladium Platinum Lead Tantalum Magnesium Manganin Tellurium Antimony Iron Nickel steel	diverse results, crease in weak f in strong.	-1.2 -1.4 -1.0 -1.4 -0.53 +0.03 +0.01 +0.004 +0.003 +0.001 +0.005 +0.0003 +0.0003 +0.001 +0.002 to 0.34 +0.02 to 0.16 mens show very usually an in- fields, a decrease similarly to iron.	Williams, Phil. Mag. 9, 1905. Barlow, Pr. Roy. Soc. 71, 1903. Dagostino, Atti Ac. Linc. 17, 1908. Grummach, Ann. der Phys. 22, 1906. " " " " " " " " " " " " " " " " " "

TABLE 487. - Transverse Galvanomagnetic and Thermomagnetic Effects.

Effects are considered positive when, the magnetic field being directed away from the observer, and the primary current of heat or electricity directed from left to right, the upper edge of the specimen has the higher potential or higher temperature. E = difference of potential produced; T = difference of temperature produced; I = primary

current; $\frac{dt}{dx}$ = primary temperature gradient; B = breadth, and D = thickness, of specimen H=intensity of field. C. G. S. units.

Hall effect (Galvanomagnetic difference of Potential),
$$E = R \frac{HI}{D}$$

Ettingshausen effect (""Temperature), $T = P \frac{HI}{D}$
Nernst effect (Thermomagnetic "Potential), $E = QHB \frac{dt}{dx}$
Leduc effect (""Temperature), $T = SHB \frac{dt}{dx}$

Substance.	Values of R.	P×106.	Q×106.	S× 108.
Tellurium	+400 to 800	+200	+360000	+400
Antimony	+ 0.9 " 0.22	+2	+9000 to 18000	+200
Steel	+.012 " 0.033	0.07	—700 " I700	+69
Heusler alloy	+.010 " 0.026		+1600 " 7000	
Iron	+.007 " 0.011	-0.06	-1000 " 1500	+39
Cobalt	+.0016 " 0.0046	+0.01	+1800 " 2240	+13
Zinc	-	-	-54 " 240	+13
Cadmium	+.00055			
Iridium	+.00040	-	up to —5.0	+5
Lead	+.00009	-	-5.0 (?)	
Tin	00003	-	-4.0 (?)	
Platinum	0002	-	-	-2
Copper	00052	-	-90 to 270	-18
German silver	00054	-		
Gold	00057 to .00071			
Constantine	0009			
Manganese	00093			- 1
Palladium	0007 to .0012	-	+50 to 130	-3
Silver	0008 " .0015	-	-46 " 430	-41
Sodium	0023			
Magnesium	00094 to .0035			
Aluminum	00036 " .0037			
Nickel	0045 " .024	+0.04 to 0.19	+2000 " 9000	-45
Carbon	017	+5.	+100	
Bismuth	— up to 16.	+3 to 40	+ up to 132000	-200

TABLE 488. - Variation of Hall Constant with the Temperature.

		Bisn	nuth.1		Antimony.2					
Н	-1820	-90°	-230	+11.50	+1000	Н	—186°	-79°	+21.5°	+58°
1000 2000 3000 4000 5000 6000	62.2 55.0 49.7 45.8 42.6 40.1	28.0 25.0 22.9 21.5 20.2 18.9	17.0 16.0 15.1 14.3 13.6 12.9	13.3 12.7 12.1 11.5 11.0 10.6	7.28 7.17 7.06 6.95 6.84 6.72	1750 3960 6160	0.263 0.252 0.245	0.249 0.243 02.35	0.217 0.211 0.209	0.203
					Bismuth	.8				
Н	+14.50	+104	12	5° 1	1890	2120	2390	2590	269°	2700
890	5.28	2.57	2.1	2 1	.42	1.24	1.11	0.97	0.83	0.77*

¹ Barlow, Ann. der Phys. 12, 1903.
2 Everdingen, Comm. Phys. Lato. Letter, 50.
3 Traubenberg, Ann. der Phys. 17, 1905.
8 Melting-point.
Both tables taken from Jahn, Jahrbuch der Radioactivität und Electronik, 5, p. 166; 1908, who has collected data of all observers and gives extensive bibliography.

RÖNTGEN (X-RAYS) RAYS.

TABLE 489. - Cathode and Canal Rays.

Cathode (negative) rays consist of negatively charged particles (charge 4.77×10^{-10} esu, 1.591×10^{-20} emu, mass, 9×10^{-28} g or 1/1800 H atom, diam. 4×10^{-18} cm) emitted at low pressures in an electric discharge tube perpendicularly to the cathode (\therefore can be focused) with velocities (10^{10} cm/sec.) depending on the acting potential difference. When stopped by suitable body they produce heat, ionization (inversely proportional to velocity squared), photographic action, X-rays, phosphorescence, pressure. The bulk of energy is transformed into heat (Pt, Ta, W may be fused). In an ordinary X-ray tube carrying 10^{-8} ampere the energy given up may be of the order of 100 cal/m. Maximum thickness of glass or Al for appreciable transmission of high speed particles is .0015 cm. Maximum velocity V_d with which a cathode ray of velocity V_0 may pass through a material of thickness d is given by $V_0^4 - V_d^4 = ad \times 10^{40}$; a = 2 for air, 732 for Al and 2540 for Au, cm-sec. units (Whiddington, 1912). Cathode rays have a range of only a few millimeters in air.

Canal (positive) rays move from the anode with velocities about 108 cm/sec. in opposite direction to the cathode rays, carry a positive charge, a mass of the order of magnitude of the H molecule, cause strong ionization, fluorescence (LiCl fluoresces blue under cathode, red under canal ray bombardment), photographic action, strong pulverizing or disintegrating power and

by bombardment of the cathode liberate the cathode rays.

TABLE 490. - Speed of Cathode Rays.

The speed of the cathode particles in cm/sec. as dependent upon the drop of potential to which they owe the speed, is given by the formula $v = 5.95 \sqrt{E} \cdot 10^7$. The following table gives values of $5.95 \sqrt{E}$.

Voltage Velocity × 10 ⁻⁷	10 18.8	20 26.6	30 32.6	40 37.6	50 42. I	60 46.1	70 49.8	80 53·3	90 56.5	100 59·5
Voltage Velocity × 10 ⁻⁷	100 59·5	200 84.2	300	400 119.1	500 133.1	600	700 157.5	800 168.3	900 178.6	1000

For voltages 1000 to 10,000 multiply 2d line by 10, etc.

TABLE 491. — Cathodic Sputtering.

The disintegration of the cathode in an electric discharge tube is not a simple phenomenon. The particles taking part in the sputtering must be either large or of high speed or both (2000+gauss field required for their deviation). It depends upon the nature of the residual gas. H, N, CO₂ are not generally favorable; Ar is especially favorable, also He, Ne, Kr and Xe. Raised temperature favors it. The relative sputtering from various metals is shown in the following table (Crookes, Pr. R. S. 1891); the residual gas was air, pressure about .05 mm Hg.

Metal	n Pt Cu Cd Ni 2 40 37 31 10	Ir Fe Al Mg Brass 10 5 0 0 47
-------	--------------------------------	---

For further data on cathode, canal and X-rays, see X-rays by G. W. C. Kaye, Longmans, 1917, upon which much of the above and the following data for X-rays is based. See also J. J. Thomson, Positive Rays, Longmans, 1913.

TABLES 492-493. RÖNTGEN (X-RAYS) RAYS.

TABLE 492. - X-rays, General Properties.

X-rays are produced whenever and wherever a cathode ray hits matter. They are invisible. of the same nature as, and travel with the velocity of light, affect photographic plates, excite phosphorescence, ionize gases and suffer deviation neither by magnetic nor electric fields as do cathode rays. In an ordinary X-ray tube (vacuum order o.oo1 to o.o1 mm Hg) the cathode (concave for focusing, generally of aluminum) rays are focused on an anticathode of high atomic weight (W, Pt, high atomic weight, high melting point, low vapor pressure, to avoid sputtering, high thermal conductivity to avoid heating). Depth to which cathode rays penetrate, order of 0.2 \times 10⁻⁵ cm in Pb, 90,000 volts (Ham, 1910), 24 \times 10⁻⁶ cm in Al, 22,000 volts (Warburg, 1915). Note: High speed H and He molecules (2 \times 10⁸ cm/sec.) can penetrate 0.001 to 0.006 mm mica; He α particles (2 \times 10⁹ cm/sec.), 0.04 mm glass.

The X-rays from an ordinary bulb consist of two main classes: Heterogeneous ("general," "independent") radiation, which depends solely on the speed of the parent cathode rays. It is always present and its range of hardness (wave-lengths) depends on the range of speeds of the cathode rays. Its energy is proportional to the 4th power of these

Homogeneous ("characteristic," "monochromatic") radiation (K, L, M, etc. radiations, see Table 498 for wave-lengths), characteristic of the metal of the anticathode. Generated only when cathode rays are sufficiently fast. There is a critical velocity for each characteristic radiation from each material, proportional to the atomic weight of the anticathode. The critical velocity for the K radiation is $V_K = A \times 10^8$, when A is the atomic weight of the radiator (e.g. anticathode); $V_L = 1/2(A - 48)10^8$.

The following relation has been found to hold experimentally between the voltage V through which the cathode particles fall and the maximum frequency ν of the X-rays produced: $eV = h\nu$, where e is the electronic charge and h, Planck's constant. Blake and Duane (Phys. Rev. 10, 624, 1917) found for h, 6.555×10^{-21} erg second.

As the speed of the cathode rays is increased, shorter and shorter wave-lengthed "independent" X-rays are produced until the critical speed is reached for the "characteristic" rays; with faster speeds, the cathode rays become at first increasingly effective for the characteristic radiation,

then less so as the independent radiation again predominates.

When cathode rays hit the anticathode some 75 per cent are reflected, the more the heavier its atomic weight. The chances of the remainder hitting an atom so as to generate an X-ray are slight; only 1/1000 or 1/2000 of the original energy goes into X-rays. If E_x and E_c are the energies of the X and the parent cathode rays, A the atomic weight of the anticathode, β the velocity of the cathode rays as fraction of the light value (3×10^{10} cm/sec.), Beatty showed (Pr. R. S. 1913) that $E_x = E_a$ (.51 × 10⁴ $A\beta^2$); this refers only to the independent radiations; when characteristic radiations are excited their energy must be added and the tube becomes considerably more efficient. No quantitative expression for the latter has been developed.

When an X-ray strikes a substance three types of radiation result: scattered (sometimes called secondary) X-rays, characteristic X-rays and corpuscular rays (negatively charged particles). The proportions of the rays depend on the substance and the quality of the primary rays. When the substance is of low atomic weight, by far the greater portion of the X-rays, if of a penetrating type, are scattered. With elements of the Cr-Zn group most of the resulting radiation is "characteristic." With the Cu group the scattered radiation (1/200) is negligible. Heavier elements, both scattered and characteristic X-rays. Corpuscular radiation greater, mass for mass, for elements of high atomic weight and may mask and swamp the characteristic radiation. Hence an X-ray tube beam, heterogeneous in quality, allowed to fall on different metals, — Cu, Ag, Fe, Pt, etc., — excites characteristic X-rays of wide range of qualities. Exciting ray must be harder than the characteristic radiation wished. The higher the atomic weight of the material struck (radiator), the more penetrating the quality of the resulting radiation as shown by the following table, which gives λ , the reciprocal of the distance in cm in Al, through which the rays must pass in order that their intensity will be reduced to 1/2.7 of their original intensity.

TABLE 493. - Röntgen Secondary Rays.

Radiator.	Cr	Fe	Со	Ni	Cu	Zn	As	Se	Sr	Ag	Sn
Atomic weight	52. 367.	55.8 239.	59.0 193.	58.7 160.	63.6	65.4 106.	75.0 61.	79.2 51.	87.6 35.2	108.	119. 4-33

With the radiator at 45° to the primary X-rays at most only about 50 per cent of the energy goes to characteristic rays and only about 1/10 of the latter escape the surface of the radiator. The β radiations of radioactive elements may possibly be regarded (Rutherford) as a characteristic radiation produced by the expulsion of the a particles. The hardness of some corresponds to the

For more complete data on X-rays, see X-rays, G. W. C. Kaye, Longmans, 1917, upon which these X-ray tables are greatly based.

RÖNTGEN (X-RAYS) RAYS.

TABLE 494. - Corpuscular Rays.

Corpuscular rays are given off in greatest abundance when radiator emits its characteristic radiation. Intensity increases with atomic weight (4th power, Moore, Pr. Phys. Soc.). Greater number emitted at right angles to incident rays. Velocity range (6 to 8.5)109 cm/sec. v_0 = velocity when leaving radiator = v_0 6/4 = Atomic weight) = critical velocity necessary to excite characteristic radiation, therefore corpuscular rays have practically the same velocity as the original generating cathode rays. Are of uniform quality when excited by characteristic rays and follow exponential law of absorption in gases. If λ is the absorption coefficient and λ 6 the atomic weight, λ 6/4 = λ 70/4 = λ 70/4 where λ 71/4 are the intensities after and before absorption and λ 71/4 the thickness of the absorptive layer in cm. The following values for λ 7 in air for characteristic radiations from various substances are due to Sadler. (At 0° C and 76 cm Hg.)

Metal emitting	Exciting characteristic radiation from											
corpuscles. Ni	Cu	Zn	As	Se	Sr	Мо	Rh	Ag	Sn			
Al Fe Cu	38.9	37.0	35.8 36.2	29.6 30.2 30.4	26.4 —	20.0 21.5 20.8	15.2 15.5 15.2	 10.9 10.8	8.90 8.84 8.81	6.54 6.41 6.67		

TABLE 495. - Intensity of X-Rays. Ionization.

The intensity of the radiation from an X-ray bulb is proportional to the current. Except at low voltages it equals $Ki(i^3-v^3)$ where i is the current, v the applied voltage, v_0 the break-down voltage and K a constant for the tube (Krönke). The intensity of X-rays is most accurately measured by the ionization they produce. This may be referred to the International Radium Standard (see Table 568). It is proportional to the 4th power of the speed of the parent cathode rays (Thomson), (true only of independent rays, Beatty, 1913). The saturation current due to X-ray ionization is usually of the order of 10^{-10} to 10^{-15} ampere. When X-rays pass through a substance, only once in a while is an atom struck, only perhaps v in a billion, and ionized. The ionization is probably an indirect process through the mediation of corpuscular rays. In the absence of secondary radiations the ionization is proportional to the mass of the gas (that is, its pressure at constant temperature). It depends on the nature of the gas, but is little affected by the quality of the rays. The following results are due to Crowther, 1908.

	Ionization relative to air = 1.							
Gas or vapor.	Density, air = 1.	Soft X-rays 6 mm spark.	Hard X-rays 27 mm spark.					
Hydrogen H ₂ . Carbon dioxide CO ₂ Ethyl chloride C ₂ H ₃ Cl. Carbon tetrachloride CCl ₄ . Ethyl bromide C ₂ H ₃ Br. Methyl iodide CH ₃ I. Mercury methyl Hg(CH ₃) ₂ .	0.07 1.53 2.24 5.35 3.78 4.96 7.93	0.01 1.57 18.0 67. 72. 145. 425.	0.18 1.49 17.3 71. 118.					

BÖNTGEN (X-RAYS) RAYS.

TABLE 496. — Mass Absorption Coefficients, λ/d .

The quality by which X-rays have been generally classified is their "hardness" or penetrating power. It is greater the greater the exhaustion of the tube, but for a given tube depends solely upon the potential difference of the electrodes. With extreme exhaustion the X-rays have an appreciable effect after passing through several millimeters of brass or Al. The penetrability of the characteristic radiation is in general proportional to the 5th power of the atomic weight of the radiator. The absorption of any substance is equal to the sum of the absorptions of the individual atoms and is independent of the chemical combination, its physical state and probably of the temperature. Most of the following table is from the work of Barkla and Sadler, Phil. Mag. 17, 739, 1909. For starred radiators, L radiations used; for others the K.

If I_0 be the intensity of a parallel beam of homogeneous radiation incident normally on a plate of absorbing material of thickness I, then $I = I_0 e^{-\lambda x}$ gives the intensity I at the depth x. Because of the greater homogeneity of the secondary X-rays they were used in the determination of the following coefficients. The coefficients λ have been divided by the

density d.

	Absorber.										
Radiator.	С	Mg	Al	Fe	Ni	Cu	Zn	Ag	Sn	Pt	Au
Cr. Fe. Co. Ni. Cu. Zn. As. Se. Ag. Sn. Sh. L. Ba W* Pt * Pt * Pt * Bi * Th * U *	10.1 8.0 6.6 5.2 4.3 2.5 2.5 46 35 31 20 26	126. 80. 64. 52. 41. 35. 19. 16. 2.2	136. 88. 72. 59. 48. 39. 2.5 1.6 1.6 .8 30. 22. 17. 16. 8. 7.	_	129. 84. 67. 56. 63. 265. 166. 141. 23.	143. 95. 75. 62. 53. 56. 176. 150. 24. — 127. 139. 127. 70.	170. 112. 92. 74. 61. 50. 204. 175. 27.	580. 381. 262. 214. 175. 105. 88. 13. 16. 56. 46. 35. 140. 106. 78. 73. 42.	714. 472. 392. 392. 328. 272. 132. 112. 16. —	(517.) 340. 281. 281. 236. 194. 162. 166. 47. — 133. 113. 1128. 128. 125. 134.	(507. 367. 306. 253. 210. 178. 106. 100. 61. 52.

TABLE 497. - Absorption Coefficients of Characteristic Radiations in Gases.

The penetrating power of X-rays ranges in normal air from 1 to 10,000 cm or more. The absorptive power of 1 cm air = 1/820 that of water. λ (see preceding table for definition) for air for soft bulb (1.5 to 5 cm spark gap, 4 to 10 m air) ranges from .0016 to .0018; for hard bulb (30 cm spark gap, 4 to 10 m air), .00020. (Eve and Day, Phil. Mag. 1912.) The absorption coefficient for gases for characteristic or monochromatic radiations varies directly with the pressure. For different characteristic radiations it is proportional to the coefficients in air. It varies with the 5th power of the atomic weight of the radiator. The following table is taken from Kaye's X-rays and is based on the work of Barkla and Collier (Phil. Mag. 1912) and Owen. All are for the gas at 0° C and 76 cm Hg.

	Air		CO ₂		SO ₂		C ₂ H ₅ Br		CH ₃ I	
Fe Co Ni Cu Zn As Se Br Sr Mo Ag	λ .0202 .0165 .0136 .0109 .0090 .0053 .0044 .0039 .0023 .00127	15.6 12.7 10.5 8.43 6.96 4.10 3.40 3.02 1.78 0.98 0.59	λ .0456 .0319 .0227 .0184 .00988 .00782 .00420 .00281	23.1 16.1 11.5 9.31 5.00 3.96 	λ -24 -20 -166 -134 -112 -066 -0546 -050 -0281 -0160 -0079	83.3 69.4 57.6 46.5 38.9 22.9 19.1 17.4 9.76 5.56 2.75	λ .512 .407 .325 .260 .215 .128 .110 .096 .325 .210 .108	105. 83.2 66.3 53.1 43.9 26.1 22.4 19.6 66.3 42.9 22.0	2.16 	339. 282. 241. 198. 116. 97. 86.5 53.0 30.9 17.7

TABLE 498.

X-RAY SPECTRA AND ATOMIC NUMBERS.

Kaye has shown that an element excited by sufficiently rapid cathode rays emits Röntgen rays characteristic of that substance. These were analyzed and the wave-lengths determined by Moseley (Phil. Mag. 27, 793, 1914), using a crystal of potassium ferrocyanide as a grating. He noted the K series, showing two lines, and the L series with several. He found that every element from Al to Au was characterized by integer N, which determines its X-ray spectrum; N is identified with the number of positive units associated with its atomic nucleus. The order of these atomic numbers (N) is that of the atomic weights, except where the latter disagrees with the order of the chemical properties. Known elements now correspond with all the numbers between 1 and 92 except 6. There are here six possible elements still to be discovered (atomic nos. 43, 61, 72, 75, 85).

The frequency of any line in an X-ray spectrum is approximately proportional to $A(N-b)^2$, where A and b are constants. All X-ray spectra of each series are similar in structure, differing only in wave-lengths. $Q_K = (9/2b)^2$, $Q_K = (9/2b)^2$, $Q_K = (9/2b)^2$, $Q_K = (9/2b)^2$.

 $Q_L = (v/\sqrt{5}v)$ where v is the frequency of the a line and vo the fundamental Rydberg frequency. The atomic number

for the K series = $Q_K + I$ and for the L series, $Q_L + 7.4$ approximately. $v_0 = 3.29 \times IO^{15}$ Moseley's work has been extended, and the following tables indicate the present (1919) knowledge of the X-ray

(a) K SPRIES (WAVE-LENGTHS, X X 108 CM).

		(0	7 22 1021211	CS (WAVE-L					
Element, atomic number.	β2	β_1	a.4	a3a4 (not separable)	as	a ₁	(not separable)		a ₂
11 Na 12 Mg 13 Al 14 Si 15 P 16 S 17 Cl 18 Ar 10 K 20 Ca 21 Sc 22 Ti 23 Va	3.074	9.477 7.986 6.759 5.808 5.018 4.394 3.449 3.086 2.778 2.509 2.281	9.845 8.300 7.080 6.122 5.314	4.692 3.724 3.328 3.011 2.729	9.856 8.310 7.088 6.129 5.317	3.735 3.355 3.028 2.742 2.498	11.951 9.915 8.360 7.131 6.168 5.360 4.712		3.738 3.359 3.359 2.746 2.502
Element, atomic number.	β2	$oldsymbol{eta}_1$	a ₁	a2	Element, atomic number.	$oldsymbol{eta_2}$	$oldsymbol{eta_1}$	a 1	az
24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr 37 Rb 38 Sr 39 Y 40 Zr 41 Mb	2.069 1.892 1.736 1.602 1.488 1.379 1.281 1.121 1.038 0.914 	2.079 1.902 1.748 1.613 1.497 1.391 1.294 1.204 1.131 1.052 0.993 -299 -779 746 669 633	2. 284 2. 993 1. 928 1. 781 1. 653 1. 539 1. 433 1. 257 1. 170 1. 104 1. 035 	2.288 2.097 1.932 1.785 1.657 1.543 1.437 1.342 1.251 1.174 1.109 1.040 0.926 .876 .840 .793 .754 .714	43 Ru 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 X 55 Cs 56 Ba 57 La 56 Ba 57 La 58 Ce 59 Pr 60 Nd 74 W		0.574 .547 .501 .501 .479 .453 .432 .416 .404 .388 — .343 .329 .314 .301 .292 .177	0.645 .615 .562 .532 .538 .510 .487 .468 .456 .437 .398 .388 .372 .355 .342 .330 .203	

X-RAY SPECTRA AND ATOMIC NUMBERS.

(b) L Series (Wave-Lengths, $\lambda \times 10^8$ cm).

			_	_					
Element, atomic number.	ı	a ₂	aı	a ₃	Element atomic number.	1	a2	a ₁	η
30 Zn 33 As 35 Br 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 55 Cs 56 Ba 57 La 58 Ce 59 Pr	ппппппппппппппппппппппппппппппппппппппп	5.731 5.410 4.853 	12.346 0.701 8.391 7.335 6.879 6.464 5.403 4.845 4.5403 4.845 4.365 4.146 3.766 3.594 3.766 3.594 3.290 2.765 2.663 2.663	8.360 7.395 6.440 6.057 5.709 5.381 4.823 4.572 4.133	60 No. 62 Sa. 63 Eu. 64 Gd 65 Tb 66 Dy 67 Ho 68 Er. 70 Au 71 Cp. 73 Ta 74 W 76 Os 777 Ir. 78 Pt. 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 88 Ra 99 Th 99 U	1.892 1.834 1.672 1.840 1.499 1.457 1.385 1.348	2.379 2.210 2.131 2.054 1.983 1.916 1.854 1.794 1.681 1.620 1.528 1.481 1.398 1.360 1.323 1.283 1.251 1.215 1.186 1.153	2.369 2.200 2.121 2.043 1.973 1.973 1.783 1.783 1.679 1.519 1.318 1.359 1.313 1.240 1.205 1.144 1.100 1.000 1.000 1.000 1.000 1.144 1.100 1.000	I.935 I.725 I.618 I.435 I.242 I.197 I.124 I.091 I.059 II.059
Element, atomic number.	βι	$oldsymbol{eta_1}$	eta_2	β_3	eta_5	γ1	γ2	γз	74
33 As 35 Br 37 Rb 38 Y Y 40 Zr 41 Rh 42 Mo 44 Ru 45 Pd 46 Ag 48 Cd 49 In 50 Sn 51 Cs 52 Te 53 I Cs 56 Ba 57 Ce 58 Pr 60 Sa 64 Tb	4.071 3.861 3.676 3.337 3.184 3.044 2.911 2.668 2.558 2.357 2.167 1.923 1.851 1.784	9. 449 8. 141 7. 091 6. 639 6. 227 5. 851 5. 493 5. 175 4. 630 4. 372 4. 144 3. 928 3. 733 3. 381 3. 550 3. 381 2. 22 3. 074 2. 684 2. 569 2. 461 2. 461 2. 461 2. 167 2. 107 2.	5.317 	4.030 3.823 3.639 3.149 3.07 2.873 2.629 2.520 2.521 2.414 2.307 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.1		5.386 	2.903 2.76 2.903 2.77 2.23 2.23 1.803 1.599 (1.562)	2.889 82 —————————————————————————————————	2.831

X-RAY SPECTRA AND ATOMIC NUMBERS.

		(b)	L SERIES	(WAVE-LEN	igtes, λ >	(10 ⁸ CM).			
Element, atomic number.	β4	β_1	β2	β₃	βε	γι	γ2	γ3	74
66 Dy 67 Ho 68 Er 70 Ad 71 Cp 73 Ta 74 W 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Ti 82 Pb 83 Bi 84 Po 88 Ra 90 Th 92 U	1. 721 1. 657 1. 599 1. 490 1. 437 1. 343 1. 296 1. 214 1. 176 1. 142 1. 102 1. 036 1. 036 1. 036	1.700 1.646 1.546 1.474 1.421 1.323 1.278 1.104 1.150 1.040 1.012 0.983 0.950 0.920	1.622 1.568 1.514 1.414 1.368 1.280 1.241 1.167 1.101 1.065 1.042 1.060 0.983 0.954	1.683 1.620 1.560 1.451 1.399 1.303 1.258 1.176 1.138 1.098 1.059 0.968 0.968 0.937	I. 422 I. 1. 101 I. 072 I. 035 O. 977 O. 923	1. 470 1. 445 1. 367 1. 224 1. 135 1. 105 1. 021 0. 989 0. 922 0. 896 0. 864 0. 842 0. 810		1.365 1.316 1.223 1.183 1.097 1.058 	
		(c)	M SERIES	(WAVE-LE	NGTHS, λ	< 108 CM).			
Element, atomic number.		α	β	γ1	γ_2		51	δ2.	E
81 T 82 Pl 83 B	82 Pb 5.303 83 Bi 5.117 90 Th 4.139		5.623 5.256 5.095 4.903 3.941 3.715	5.348 4.910 4.726 3.812	5.284 — — 3.678 3.480	4-:	561 363	5. 102 4. 826 4. 695 4. 532 3. 324	4.735 4.456

Reference: Jahrbuch der Radioaktivität und Elektronik, 13, 296, 1916.

(d) TUNGSTEN X-RAY SPECTRUM (WAVE-LENGTHS, λ × 108 cm).

The wave-lengths of the tungsten X-ray spectrum have been measured more frequently than those of any other element. The following values are perhaps the most accurate that have hitherto been published. Compton, Physical Review, 7, 646, 1916 (errata, 8, 753, 1916).

Line.	. λ	Line.	λ	Line.	λ
а b c' c''	1.0249 1.0399 1.0582 1.0652 1.0959	e f g h	1.2185 1.2420 1.2601 1.2787 1.2985	j k l	1.3363 1.4735 1.4844

Other references on the X-ray spectrum of tungsten: Gorton, Physical Review, 7, 203, 1916; Hull, Proc. Nat. Acad. Sci. 2, 265, 1916; Dershem, Physical Review, 11, 461, 1918; Overn, Physical Review, 14, 137, 1919.

The following values for tungsten are from Duane and Patterson, Phys. Rev. 16, p. 526, 1920:

Critic	al Absorption		e-lengths X		1.0726	La_3	1.024		
Κα ₂ I.l I.β ₄	sion wave-len .21341 1.6756 1.2985 1.09608	Ka ₁ La ₂ Lβ ₁	10 ⁸ cm. .20860 1.4 ⁸ 39 1.27 ⁸ 92 1.0655	$L\beta_3$. 18420 1.47306 1.2601 1.0596	$egin{array}{c} \mathbf{K} \lambda \ \mathbf{L} \eta \ \mathbf{L} oldsymbol{eta}_2 \ \mathbf{L} oldsymbol{\gamma_4} \end{array}$.17901 1.4176 1.24193 1.0261	Lβ ₅	1.2040

X-RAY ABSORPTION SPECTRA AND ATOMIC NUMBERS.

A marked increase in the absorption of X-rays by a chemical element occurs at frequencies close to those of the X-rays characteristic of that element. The absorption coefficient is much greater on the short wave-length side. In the K series the α lines are much stronger than the corresponding β and γ lines, but the wave-lengths of the α lines are greater. There is a marked increase in the absorption at wave-lengths considerably shorter than the a lines and near the B lines. Bragg came to the conclusion that the critical absorption frequency lay at or above the \gamma of the K series. The \gamma line has a frequency about 1 per cent higher than the corresponding B line. For the L series there are 3 characteristic marked absorption changes (de Broglie).

The critical absorption wave-lengths of the following table are due to Blake and Duane, Phys. Rev. 10, 697, 1917. The equation $\nu = \nu_0(N-3.5)^2$ where ν is Rydberg's fundamental frequency (109,675 × the velocity of light) and N the atomic number, represents the data with considerable accuracy. The nuclear charge is obtained by Q = 2e(N-3.5).

Element.	Atomic number.	ÅU	Element.	Atomic number.	ÅU	Element.	Atomic number.	ÅU
Bromine Krypton Rubidium Strontium Yttrium Zirconium Columbium Molybdenum.	35 36 37 38 39 40 41 42	.9179 .8143 .7696 .7255 .6872 .6503 .6180	Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony.	44 45 46 47 48 49 50 51	.5584 .5324 .5075 .4850 .4632 .4434 .4242 .4065	Tellurium Iodine Xenon Caesium Barium Lanthanum Cerium	52 53 54 55 56 57 58	. 3896 . 3727

Radioactivity is a property of certain elements of high atomic weight. It is an additive property of the atom, dependent only on it and not on the chemical compound formed nor affected by physical conditions controlling ordinary reactions, viz: temperature, whether solid or

liquid or gaseous, etc.

With the exception of actinium, radioactive bodies emit α , β , or γ rays. α rays are easily absorbed by thin metal foil or a few cms. of air and are positively charged atoms of helium emitted with about 1/15 the velocity of light. They are deflected but very slightly by intense electric or magnetic fields. The β rays are on the average more penetrating, are negatively charged particles projected with nearly the velocity of light, easily deflected by electric or magnetic fields and identical in type with the cathode rays of a vacuum tube. The γ rays are extremely penetrating and non-deviable, analogous in many respects to the very penetrating Röntgen rays. These rays produce ionization of gases, act on the photographic plate, excite phosphorescence, produce certain chemical reactions such as the formation of ozone or the decomposition of water. All radioactive compounds are luminous even at the temperature of liquid air.

Table 506 is based very greatly on Rutherford's Radioactive Substances and their radiations (Oct. 1912). To this and to Landolt-Börnstein Physikalisch-chemische Tabellen the reader is referred for references. In the three radioactive series each successive product (except Ur. Y, and Ra. C_2) results from the transformation of the preceding product and in turn produces the following. When the change is accompanied by the ejection of an a particle (helium, atomic weight =4.0) the atomic weight decreases by 4. The italicized atomic weights are thus computed. Each product with its radiation decays by an exponential law; the product and its radiation consequently depend on the same law. $I = I_0 e^{-\lambda t}$ where $I_0 =$ radioactivity when t = 0, I that at the time t, and λ the transformation constant. Radioactive equilibrium of a body with its products exists when that body is of such long period that its radiation may be considered constant and the decay and growth of its products are balanced.

International radium standard: As many radioactivity measures depend upon the purity of the radium used, in 1912 a committee appointed by the Congress of Radioactivity and Electricity, Brussels, 1910, compared a standard of 21.99 mg. of pure Ra. chloride sealed in a thin glass tube and prepared by Mme. Curie with similar standards by Hönigschmid and belonging to The Academy of Sciences of Vienna. The comparison showed an agreement of 1 in 300. Mme. Curie's standard was accepted and is preserved in the Bureau international des poids et mesures at Sèvres, near Paris. Arrangements have been made for the preparation of duplicate standards

for governments requiring them.

TABLE 500. — Relative Phosphorescence Excited by Radium.
(Becquerel, C. R. 129, p. 912, 1899.)

			 		1		 	
Withou	t screen,	Hexagonal zinc blende .		13.36	With screen			.04
4.6	66	Pt. cyanide of barium .		1.99	66 66			.05
66	66	Diamond		1.14	66 66			.OI
66	6.6	Double sulphate Ur and K		1.00	66 66			.31
66	6.6	Calcium fluoride		30	66 66			.02

The screen of black paper absorbed most of the a rays to which the phosphorescence was greatly due. For the last column the intensity without screen was taken as unity. The γ rays have very little effect.

TABLE 501.—The Production of α Particles (Helium). (Geiger and Rutherford, Philosophical Magazine, 20, p. 601, 1010.)

Radioactive substance (1 gram.)			particles per sec.	Helium per year.
Uranium Uranium in equilibrium with products Thorium " Radium Radium in equilibrium with products	•	9.	37 × 10 ⁴ 7 × 10 ⁴ 7 × 10 ⁴ 4 × 10 ¹⁰ 6 × 10 ¹⁰	2.75 × 10 ⁻⁸ cu. mm. 11.0 × 10 ⁻⁵ ··· ·· ·· · 3.1 × 10 ⁻⁵ ··· ·· · 39 ··· ·· ·

TABLE 502. — Heating Effect of Radium and its Emanation. (Rutherford and Robinson, Philosophical Magazine, 25, p. 312, 1913.)

	H	eating effect in gram-	calories per hour per	gram radium.	
		a rays.	β rays.	γ rays.	Total.
Radium		25.1	-	-	25.1 28.6
Emanation .		25.1	-	-	
Radium A .		30.5	-	-	30.5
Radium B + C		39.4	4.7	6.4	50.5
Totals		123.6	4.7	6.4	134.7

Other determinations: Hess, Wien. Ber. 121, p. 1, 1912, Radium (alone) 25.2 cal. per hour per gram. Meyer and Hess, Wien. Ber. 121, p. 603, 1912, Radium in equilibrium, 132.3 gram. cal. per hour per gram. See also, Callendar, Phys. Soc. Proceed. 23, p. 1, 1910; Schweidler and Hess, Ion. 1, p. 161, 1909; Angström, Phys. ZS. 6, 685, 1905, etc.

TABLES 503-505.

TABLE 503. - Stopping Powers of Various Substances for a Rays.

s, the stopping power of a substance for the α rays is approximately proportional to the square root of the atomic weight, w.

Substance s	H ₂ .24 .26	Air 1.0 1.0	O ₂ 1.05 1.05	C ₂ H ₂ 1.11 1.17	C ₂ H ₄ 1.35 1.44	Al 1.45 1.37	N ₂ O 1.46 1.52	CO ₂ 1.47 1.51	CH ₃ Br 2.09 2.03	CS ₂ 2.18 1.95	Fe 2.26 1.97
Substance	Cu	Ni	Ag	Sn	C ₆ H ₆ 3·37 3·53	C ₅ H ₁₂	C ₂ H ₅ I	CC1 ₄	Pt	Au	Pb
s	2.43	2.46	3.17	3·37		3·59	3.13	4.02	4.16	4-45	4.27
√ w	2.10	2.20	2.74	2.88		3.86	3.06	3.59	3.68	3.70	3.78

Bragg, Philosophical Magazine, 11, p. 617, 1906.

TABLE 504_t — Absorption of β Rays by Various Substances.

 μ , the coefficient of absorption for β rays is approximately proportional to the density, D. See Table 50 δ for μ for Al.

Substance	-	C 4.4 12	Na 4.95 23	Mg 5.1 24.4	Al 5.26 27	Si 5.5 28	P 6.1 31	S 6.6 32	K 6.53 39	Ca 6.47 40
Substance	Ti	Cr	Fe	Co	Cu	Zn	Ar	Se	Sr	Zr
	6.2	6.25	6.4	6.48	6.8	6.95	8.2	8.65	8.5	8.3
	48	52	56	59	63.3	65.5	75	79	87.5	90.7
Substance	Pd	Ag	Sn	Sb	I	Ba	Pt	Au	Pb	U
	8.0	8.3	9.46	9.8	10.8	8.8	9.4	9.5	10.8	10.1
	106	108	118	120	126	137	195	197	207	240

For the above data the \$\beta\$ rays from Uranium were used. Crowther, Philosophical Magazine, 12, p. 379, 1906.

TABLE 505 - Absorption of γ Rays by Various Substances.

		Radiu	m rays.	Uraniu	m rays.	Th. D.	Meso. Tha	Range of thickness
Substance.	Density.	μ (cm)-1	100µ/D	μ(cm) ⁻¹	100µ/D	μ(cm)-1	μ(cm)-1	čm.
Hg Pb	13.59	.642	4.72 4.34	.832	6.12 6.36	.462	.620	.3 to 3.5
Cu Brass . Fe Sn Zn Slate Al	8.81 8.35 7.62 7.24 7.07 2.85 2.77	.351 .325 .304 .281 .228 .118	3.98 3.89 3.99 3.88 3.93 4.14 4.06	.416 .392 .360 .341 .329 .134	4.72 4.70 4.72 4.70 4.65 4.69 4.69	.294 .271 .250 .236 .233 .096	·373 ·355 ·316 ·305 ·300	.0 " 7.6 .0 " 5.86 .0 " 7.6 .0 " 5.5 .0 " 6.0 .0 " 9.4 .0 " 11.2
Glass . S Paraffin .	2.52 1.79 .86	.105 .078 .042	4.16 4.38 4.64	.122 .092 .043	4.84 5.16 5.02	.089 .066 .031	.083	.0 " 11.3 .0 " 11.6 .0 " 11.4

In determining the above values the rays were first passed through one cm. of lead.

Russell and Soddy, Philosophical Magazine, 21, p. 130, 1911.

RADIOACTIVITY.

P=1/2 period = time when body is one half transformed. A = transformation constant (see previous page). The initial velocity of the α particle is deduced from the formula of Geiger $V^3=aR$, where R= range and assuming the velocity for RaC of range 7.06 cm. at 20° is 2.06 \times 109 cm per sec., i.e., $v=1.077R^{\frac{3}{2}}$.

			Uranium-	Uranium-radium Group.												
			Transforma-				z rays.									
	Atomic weights.	1/2 period;	tion constants. $\lambda = \frac{.6931}{P}$	Rays.	Range. 760mm, 15° C	Initial velocity.	Kinetic energy.	Whole no. of ions produced.								
			P		cm	cm per s	Ergs.	By an a particle.								
Uranium 1 Uranium X1 Uranium X2 Uranium 2	234.2 234.2 231.2	5 × 10 ⁹ y. 24.6 d. 1.15 m. 10 ⁶ yr.	1.4 × 10 ⁻¹⁰ y. .0282 d. .01 sec. 7 × 10 ⁻⁷ y. .46 d.	$\beta + \gamma$ β β	2.50	1.45 × 109 — 1.53 × 109	.65 × 10 ⁻⁸ — .72 × 10 ⁻⁵	1.26 × 10 ⁵ — 1.37 × 10 ⁵								
Uranium Y Ionium Radium Ra Emanation. Radium A	230.2 226 222 218	1.5 d. 10 ⁵ yr. 1730 y. 3.85 d. 3.0 m.	7.0 X 106 y. .00040 y. .180 d. .231 m.	$a + \beta$	3.11 3.30 4.16 4.75	1.56 × 109 1.61 " 1.73 " 1.82 "	.75 × 10 ⁻⁵ .79 " .92 " 1.01 "	1.40 × 10 ⁵ 1.50 " 1.74 " 1.88 "								
Radium B Radium C1 Ra C2 Radium C' Ra D, radio-	214 210?	26.8 m. 19.5 m. 1.4 m. 10 ⁻⁶ s.?	.0258 m. .0355 m. .495 m. 700000 s.	$\beta + \gamma$ $\alpha + \beta$ β	6.94			2.37 × 10 ⁵								
Ra ERa F. Polonium	210 210 210	15.8 y. 4.85 d. 136 d.	$\beta + \gamma$	3.84	_ 1.68 × 109	.87 × 10 ⁻⁵										
ACTINIUM GROUP.																
Actinium	A - 4 A - 8 A - 12	? 19.5 d. 10.2 d. 3.9 s. .002 s.	.0355 d. .068 d. .178 s. .350 s.	α? α + β α α α	4.2	1.76 "	.82 × 10 ⁻⁵ .9 " .94 " 1.12 " 1.21 "	1.55 × 10 ⁵ 1.8 " 1.79 " 2.04 " 2.20 "								
Actinium B Actinium C1 Actinium D Actinium C'	A - 16	36 m. 2.1 m. 4.7 m.	.0193 m. .33 m. .147	slow β $\beta + \gamma$ α	5.15	_	1.05 × 10 ⁻⁶	1.94 × 10 ⁵								
			THORIU	M GROUP.												
Thorium	228 224 220 216 212 212	1.3 × 10 ¹⁰ y. 5.5 y. 6.2 hr. 2 yr. 3.65 d. 54 sec. 0.14 sec. 10.6 h. 60 m.	. 126 yr. . 112 h. . 347 y. . 190 d. . 0128 s. 4.95 s. . 0654 h.	a none $\beta + \gamma$ $\alpha + \beta$ α $\alpha + \beta$ $\alpha + \beta$ $\alpha + \beta$ $\beta + \gamma$	3.87 4.30 5.00 5.70	1.85 "	.69 × 10 ⁻⁵ 89 × 10 ⁻⁵ .94 " 1.04 " 1.15 "95 × 10 ⁻⁵	1.66 × 108 1.8 " 1.9 " 2.2 "								
Thorium D Thorium C'	213	3.1 m. 10 ⁻¹¹ sec.	. 224 m. 7 × 10 ¹⁰ sec.		8.6	2.22 × 109	1.53 × 10 ⁻⁵	2.9 × 10 ⁵								
Potassium Rubidium	39.I 85.5	5	5	$\beta \beta$	=	-	-	=								

See The Constants of Radioactivity, Wendt, Phys. Rev. 7, p. 389, 1916.

RADIOACTIVITY.

 $\mu=$ coefficient of absorption for β rays in terms of cms. of aluminum; μ_1 , of the γ rays in cms of Al, so that if J_0 is the incident intensity, J that after passage through d cms, $J=J_{00}$ – $d\mu$.

		URA	NIUM-RADIUM GRO	UP.
	β	rays.	γ rays.	
	Absorption coefficient = μ	Velocity light = 1	Absorption coefficient = μ_1	Remarks.
Ur 1	_	_	_	1 gram U emits 2.37 × 10 ⁴ a particles per
Ur X ₁		Wide range	24, .70, .140	β rays show no groups of definite velocities. Chemically allied to Th.
Ur X ₂ Ur ₂ Ur Y	300	Ξ	=	Not separable from Ur z. Probably branch product. Exists in small
Io	-	-	****	quantity. Chemical properties of and non-separable from Thorium.
Ra	200	.52, .65	354, 16, .27	Chemical properties of Ba, 1 gr emits per sec. in equilib. 13.6 × 10 ¹⁰ a par-
Ra Em	-	-	-	Inert are density and II halls 6.00
Ra A	_	_	-	density solid 5-6, condenses low pressure -150° C. Like solid, has + charge, volatile in H, 400°, in O about 550°. Volatile about 400° C in H. Separated pure by recoil from Ra A. Volatile in H about 430°, in O about 1000°. Probably branch product. Seconted by
Ra B	13, 80, 890	.36 to .74	230, 40, .51	Volatile about 400° C in H. Separated pure by recoil from Ra A.
Ra C ₁	13, 53 —	.80 to .98	.115	Volatile in H about 430°, in O about 1000°. Probably branch product. Separated by recoil from Ra C. Separated with Pb, not yet separable from
Ra D	130	Wide	45, .99	Separated with Pb, not yet separable from it. Volatile below 1000°.
Ra E	43	Wide range	Like Ra D 585	Separated with Bi. Probably changes to Pb. Volatile about 1000°.
			ACTINIUM GROUP.	-
Act	_	_		Probably branch product Ur series.
Rad. Act	170	_	25, .190	Chemically allied to Lanthanum.
Act Em	=	=	=	Chemical properties analogous to Ra. Inert gas, condenses between -120° and -150°.
Act B Act C1	Very soft	Ξ	120, 31, .45	Analogous to Ra A. Volatile above 400°. "Ra B. "700°. "Ra C.
Act D	28.5	_	. 198	(Obtained by recoil.)
			THORIUM GROUP.	
Th	-	-	-	Volatile in electric arc. Colorless salts not spontaneously phosphorescent.
Mes. Th. 1		.37 to .66		Chemical properties analogous to Ra from which non-separable.
Mes. Th. 2 Rad. Th	20 to 38.5	=	26, .116	Chemically allied to Th, non-separable from it.
Th. X Th. Em	About 330	·47 — ·51	=	Chemically analogous to Ra. Inert gas, condenses at low pressure between -120° and -150°.
Th. A Th. B	110	.63 .72	160, 32, .36	Chemically analogous to Ra. Inert gas, condenses at low pressure between -120° and -150°. + charged, collected on - electrode. Chemically analogous to Ra B. Volatile above 630° C.
Th. C1	15.6	-	Weak	Chemically analogous to Ra C. Volatile above 730°. Th. Cand Th.D are probably respectively
Th. C'	24.8	.3, .4, .93-5	.096	 Th. C and Th. D are probably respectively β and a ray products from Th. C. Got by recoil from Th. C. Probably transforms to Bi.
K	38, 102 380, 1020	=	=	Activity = 1/1000 of Ur. " = 1/500 of Ur.

RADIOACTIVITY.

TABLE 507. — Total Number of Ions produced by the α , β , and γ Rays.

The total number of ions per second due to the complete absorption in air of the β rays due to I gram of radium is 9 × 1014, to the γ rays, 13×1014.

The total number of ions due to the a rays from I gram of radium in equilibrium is 2.56×1016. If it be assumed that the ionization is proportional to the energy of the radiation, then the total energy emitted by radium in equilibrium is divided as follows: 92.1 parts to the a, 3.2 to the B, 47 to the y rays. (Rutherford, Moseley, Robinson.)

TABLE 508 .- Amount of Radium Emanation. Curie.

At the Radiology Congress in Brussels in 1910, it was decided to call the amount of emanation in equilibrium with 1 gram of pure radium one Curie. [More convenient units are the millicurie (10-8Curie) and the microcurie (10-6Curie)]. The rate of production of this emanation is 1.24×10-9 cu. cm. per second. The volume in equilibrium is 0.59 cu. mm. (760 cm., O°C.) assuming the emanation mon-atomic.

The Mache unit is the quantity of Radium emanation without disintegration products which produces a saturation current of 10⁻⁸ unit in a chamber of large dimensions. I curie = 2.5×10⁹ Mache units.

The amount of the radium emanation in the air varies from place to place; the amount per cubic centimeter of air expressed in terms of the number of grams of radium with which it would be in equilibrium varies from 24×10-12 to 350×10-12.

TABLE 509. - Vapor Pressure of the Radium Emanation in cms. of Mercury.

(Rutherford and Ramsay, Phil. Mag. 17, p. 723, 1909, Gray and Ramsay, Trans. Chem. Soc. 95, p. 1073, 1909.)

Temperature C°. -127° -101° -65° -56° -10° $+17^{\circ}$ $+49^{\circ}$ $+73^{\circ}$ $+100^{\circ}$ $+104^{\circ}$ (crit) 76 100 500 1000 2000 3000 4500 4745 Vapor Pressure. 0.9

TABLE 510, - References to Spectra of Radioactive Substances.

Radium spectrum:

Demarçay, C. R. 131, p. 258, 1900.

Radium emanation spectrum:

Rutherford and Royds, Phil. Mag. 16, p. 313, 1908; Watson, Proc.

Polonium spectrum:

Roy. Soc. A 83, p. 50, 1909. Curie and Debierne, Rad. 7, p. 38, 1910, C. R. 150, p. 386, 1910.

TABLE 511. - Molecular Velocities.

The probability of a molecular velocity x is $(4/\sqrt{\pi})x^2e^{-x^2}$, the most probable velocity being taken as unity. The number of molecules at any instant of speed greater than e is $2N(hm/\pi)^{\frac{1}{2}}$ $e^{-hm/\pi c}de + ce^{-hm/\epsilon}$ (see table), where N is the total number of molecules. The mean velocity G (sq. rt. of mean sq.) is proportional to the mean kinetic energy and the pressure which the molecules exert on the walls of the vessel and is equal to 15.800 $\sqrt{T/m}$ cm/sec, where T is the absolute temperature and m the molecular weight. The most probable velocity is denoted by W, the average arithmetical velocity by Ω .

$$G = W \sqrt{3/2} = 1.225W;$$
 $\Omega = W \sqrt{4/\pi} = 1.128W;$ $G = \Omega \sqrt{3\pi/8} = 1.086\Omega.$

The number of molecules striking unit area of inclosing wall is $(1/4)N\Omega$ (Meyer's equation), where N is the number of molecules per unit volume; the mass of gas striking is $(1/4)\rho\Omega$ where ρ is the density of the gas. For air at normal pressure and room temperature (20° C) this is about 14 g/cm²/sec. See Langmuir, Phys. Rev. 2, 1013 (vapor pressure of W) and J. Amer. Ch. Soc. 37, 1015 (Chemical Reactions at Low Pressures), for fertile applications of these latter equations. The following table is based on Kinetic Theory of Gases, Dushman, Gen. Elec. Rev. 18, 1915, and Jeans, Dynamical Theory of Gases, 1916.

Gas	Gas. Molec-			Sq. rt. mean sq. $G \times 10^{-2}$ cm/sec.			Arithmetical average velocity, $\Omega \times 10^{-2} \ \mathrm{cm/sec}.$						
	weight.	273°	293°	373°	223°	273°	293°	373°	1000°	1500°	2000°	6000°	
Air Ammonia. Argon. Carbon monoxide. Carbon dioxide. Helium. Hydrogen. Krypton. Mercury. Molybdenum. Neon. Nitrogen. Oxygen. Tungsten. Water vapor.	28.96 17.02 39.88 28.00 44.00 2.01 82.92 200.6 96.0 20.2 28.02 32.00 184.0 18.02	485 633 413 493 393 1311 1838 286 184 ———————————————————————————————————	502 055 428 511 408 1358 1904 296 191 605 511 478 637 236	567 740 483 576 459 1533 2149 335 215 683 577 539 720 267	404 527 344 410 327 1092 1534 238 154 486 410 384 512 190	447 583 381 454 362 1208 1606 263 170 — 538 454 425 — 566 210	463 604 395 471 376 1252 1755 272 176 	522 681 445 531 434 1412 1980 308 199 629 531 497 662 246	855 1115 729 870 694 2300 3241 502 325 469 1030 869 813 339 1084	1047 1367 892 1065 850 2840 3970 618 398 575 1260 1064 996 416 1317 493	1209 1577 1030 981 3270 4583 712 459 664 1460 1229 1150 480 1533 570	2094 2734 1784 2130 1700 5680 1236 7940 1236 796 1150 2520 2128 1092 832 2634 986	

Free electron, molecular weight = 1/1835 when H= 1; G= 1.114 \times 10 7 at 0 $^\circ$ C and $\Omega=$ 1.026 \times 10 7 at 0 $^\circ$ C.

TABLE 512. - Molecular Free Paths, Collision Frequencies and Diameters.

The following table gives the average free path L derived from Boltzmann's formula μ (.350 $z\rho\Omega$), μ being the viscosity, ρ the density, and from Meyer's formula μ (.300 $z\rho\Omega$). Experimental values (Verh. d. Phys. Ges. 14, 596, 1912; 15, 373, 1913) agree better with Meyer's values, although many prefer Boltzmann's formula. As the pressure decreases, the free path increases, at one bar (ordinary incandescent lamp) becoming 5 to 10 cm. The diameters may be determined from L by Sutherland's equation $\{1.402/\sqrt{2\pi}NL(1+C/T)\}^{\frac{1}{2}}$, N being the number of molecules per unit vol. and C Sutherland's constant; from van der Waal's b. $\{3b/2NV\pi\}^{\frac{1}{2}}$; from the heat conductivity k, the specific heat at constant volume v_0 , $\{1.46\rho Gev/Nk\}^{\frac{1}{2}}$ (Laby and Kaye); a superior limit from the maximum density in solid and liquid states (Jeans, Sutherland, 1916) and an inferior limit from the dielectric constant D, $\{(D-1)2/\pi N\}^{\frac{1}{2}}$, or the index of refraction n, $\{(n^2-1)2/\pi N\}^{\frac{1}{2}}$. The table is derived principally from Dushman, l.e.

		× 10 ⁶ (cm		Collision	I	o ⁸ × Mole	cular dian	neters (cm):
Gas.		mann.	Meyer.	frequency. Ω/L	From L	From van der	From heat		iting
	o° C	20° C	20° C	X 10 ⁻⁶	cosity)	Waal's	conduc- tivity k	Max. density	Min. D or n
Ammonia. Argon. Carbon monoxide. dioxide. dioxide. Helium. Hydrogen. Krypton. Mercury. Nitrogen. Oxygen. Xenon.	5.92 8.98 8.46 5.56 25.25 16.00 9.5 8.50 9.05 5.6	6.60 9.88 9.23 6.15 27.45 17.44 (14.70) 9.29 9.93	5.83 8.73 8.16 5.44 33.10 15.40 (13.0) 8.21 8.78	9150 4000 5100 6120 4540 10060 — 5070 4430	2.97 2.88 3.19 3.34 1.90 2.40 — 3.15 2.98	3.08 2.94 3.12 3.23 2.65 2.34 (3.69) 3.01 3.15 2.92 4.02	2.86 3.40 2.30 2.32 3.14 3.53 3.42	2.87 3.27 3.35 1.98 2.40 3.35 3.23 2.99 3.55	2.66 2.74 2.90 1.92 2.17 (2.70)

^{*} Pressure = 106 bars = 106 dynes + cm2 = 75 cm Hg.

TABLE 513. - Cross Sections and Lengths of Some Organic Molecules.

According to Langmuir (J. Am. Ch. Soc. 38, 2221, 1016) in solids and liquids every atom is chemically combined to adjacent atoms. In most inorganic substances the identity of the molecule is generally lost, but in organic compounds a more permanent existence of the molecule probably occurs. When oil spreads over water evidence points to a layer a molecule thick and that the molecules are not spheres. Were they spheres and an attraction existed between them and the water, they would be dissolved instead of spreading over the surface. The presence of the -COOH, -CO or -OH groups generally renders an organic substance soluble in water, whereas the hydrocarbon chain decreases the solubility. When an oil is placed on water the -COOH groups are intracted to the water and the hydrocarbon chains repelled but attracted to each other. The process leads the oil over the surface antil all the -COOH groups are in contact if possible. Pure hydrocarbon oils will not spread over water. Benzene will not mix with water. When a limited amount of oil is present the spreading ceases when all the water-attracted groups are in contact with water. If weight w of oil spreads over water surface A, the area covered by each molecule is AM/wN where M is the molecular weight of the oil O=16, N, Avogadro's constant. The vertical length of a molecule l=M/apN=W/pA where ρ is the oil density and a the horizontal area of the molecule.

Substance.	Cross section in cm ² × 10 ¹⁶	l in cm (length) × 108	Substance.	Cross section in cm ² × 10 ¹⁶	l in cm (length) × 108
Palmitic acid C ₁₅ H ₃₁ COOH. Stearic acid C ₁₇ H ₃₅ COOH. Cerotic acid C ₂₈ H ₃₁ COOH Oleic acid C ₁₇ H ₃₅ COOH Linoleic acid C ₁₇ H ₃₁ COOH. Linoleic acid C ₁₇ H ₃₁ COOH. Ricinoleic acid C ₁₇ H ₃₂ COOH.	24 24 25 48 47 66 90	19.6 21.8 29.0 10.8 10.7 7.6 5.8	Cetyl alcohol C16H3sOH	21 29 21 69 137 145 280 143	21.9 35.2 44.0 23.7 11.9 11.2 5.7 11.0

TABLE 514. - Size of Diffracting Units in Crystals. T

The use of crystals for the analysis of X-rays leads to estimates of the relative sizes of molecular magnitudes. The diffraction phenomenon is here not a surface one, as with gratings, but one of interference of radiations reflected from the regularly spaced atomic units in the crystals, the units fitting into the lattice framework of the crystal. In cubical crystals {100} this framework is built of three mutually perpendicular equidistant planes whose distance apart in crystallographic parlance is d₁₀₀. This method of analysis from the nature of the diffraction pattern leads also to a knowledge of the structure of the various atoms of the crystal. See Bragg and Bragg, X-rays and Crystal Structure, 1018.

Crystal.	Elementary diffracting element.	Side of cube.	Molecules or atoms in unit cube.
KCl NaCl ZnS CaF ₂ FeS ₂	Face-centered cube *	cm 6.30 × 10 ⁻⁸ 5.56 × 10 ⁻⁸ 5.46 × 10 ⁻⁸ 5.40 × 10 ⁻⁸ 5.26 × 10 ⁻⁸	4 molecules
Fe	Body-centered cube Face-centered cube Body-centered cube "" Face-centered cube	2.86 × 10 ⁻⁸ 4.05 × 10 ⁻⁸ 4.30 × 10 ⁻⁸ 2.76 × 10 ⁻⁸ 3.52 × 10 ⁻⁸	2 atoms 4 " 2 " 4 " 4 "

^{*} Each atom is so nearly equal in diffracting power (atomic weight) in KCl that the apparent unit diffracting element is a cube (simple) of \(\frac{1}{4}\) this size. Elementary body-centered cube, — atom at each corner, one in center; e.g., Fe, Ni (in part), Na, Li? Elementary face-centered cube, — atom at each corner, one in center of each face; e.g., Cu, Ag, Au, Pb, Al, Ni (in part), etc. Simple cubic lattice, — atom in each corner. Double face-centered cubic or diamond lattice — C (diamond); Si, Sb, Bi, As?, Te?.

† Diamond lattice. † Cubic-holohedral. \$ Cubic-pyritohedral.

Metals taken from Hull, Phys. Rev. 10, p. 661, 1917

¶ See Table 528 for best values of calcite and rock-salt grating spaces.

Note: — (Hull, Science 52, 227, 1920). Ca, face-centered cube, side 5.56 Å, each atom 12 neighbors 3.93 Å distant. Ti, centered cube, cf. Fe, side 3.14 Å, 8 neighbors 2.72 Å. Zn, 6 nearest neighbors in own plane. 2.67 Å, 3 above, 3 below, 2.92 Å. Cd, cf. Zn, 2.98 Å, 3.30 Å. In, face-centered tetragonal, 4 nearest 3.24 Å, 4 above, 4 below, 3.33 Å. Ru, cf. Zn, 2.69 Å, 2.64 Å. Pd, face-centered cube, side 3.02 Å, 12 neighbors 2.77 Å. Ta, centered cube, side 3.02 Å, 12 neighbors 2.83 Å. If, face-centered cube, side 3.80 Å, 12 neighbors, 2.69 Å (A = 10-8 cm).

Note: — (Bragg, Phil. Mag. 40, 166, 1920). Crystals empirically consider as tangent spheres of diameter in table, atom at center of sphere. When lattice known allows estimation of dimensions of crystal unit. Table foot of next page

(atomic numbers, elements, diameter in Angstroms, 10-8 cm).

ELECTRONS, RUTHERFORD ATOM, BOHR ATOM, MAGNETIC FIELD OF ATOM

References: Millikan, The Electron, 1917; Science, 45, 421. 1917; Humphreys, Science, 46, 273, 1917; Lodge, Nature, 104, 15 and 82. 1919; Thomson, Conduction of Electricity through Gases; Campbell, Modern Electrical Theory; Lorentz, The Theory of Electrons; Richardson, The Electron Theory of Matter, 1914.

Electron: an elementary + or - unit of electricity.

Free negative electron: (corpuscle, J. J. Thomson); mass = 9.01 × 10⁻²⁸g = 1/1845 H atom, probably all of electrical origin due to inertia of self-induction.

Theory shows that when speed of electron = 1/10 velocity of light its mass should be appreciably dependent upon that speed. If mo be mass for small velocity v, m be the transverse mass for a new velocity of light. If mo be mass for small velocity v, m be the transverse mass for v, v/(velocity) of light $= \beta$, then m $m_0(1-\beta^2)^{\frac{1}{6}}$, Lorentz, Einstein;

for
$$\beta = 0.01$$
 0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 $m/m_0 = 1.0005$ 1.005 1.02 1.048 1.091 1.155 1.250 1.400 1.667 2.294

(Confirmed by Bucherer, Ann. d. Phys. 1909, Wolz, Ann. d. Phys. Radium ejects electrons with 3/10 to 98/100 velocity of light.) m, due to charge $= 2E^2/3a$, E = charge, a = radius, whence radius of electron $= 2 \times 10^{-13}$ cm = 1/50,000 atomic radius. Cf. (radius of earth)/(radius of Neptune's orbit) = 1/360,000.

Positive electron: heavy, extraordinarily small, never found associated with mass less than that of H atom. If mass all electrical (?) radius must be 1/2000 that of the — electron. No experimental evidence as with — electron, since high enough speeds not available. Penetrability of atom by β particle (may penetrate 10,000 atomic systems before it happens to detach an electron) and a particles (8000 times more massive than — electron, pass through soo,000 atoms without apparent deflection by nucleus more than 2 or 3 times) shows extreme minuteness. Upper limit: not larger than 10⁻¹² cm for Au (heavy atom) or 10⁻¹³, H (light atom), (Rutherford). Cf. (radius sun)/(radius Neptune's orbit) = 1/3000, but sun is larger than planets. (Hg atoms by billions may pass through thin-walled highly-evacuated glass tubes without impairing vacuum, therefore massive parts of atoms must be extremely small compared to volume of atom.)

Rutherford atom: number of free + charges on atomic nuclei of different elements = approximately ½ atomic weight (Rutherford, Phil. Mag. 21, 1911, deflection of α particles); Barkla concluded free — electrons outside nucleus same in number (Phil. Mag. 21, 1911, X-ray scattering). If mass is electromagnetic, then lack of exact equivalence may be due to overlapping fields in heavy crowded atoms, a sort of pacing effect; the charge on U = 22, at. wt. = 238.5. Moseley (Phil. Mag. 26, 1912; 27, 1914) photographed and analyzed X-ray spectra, showing their exact similarity in structure from element to element, differing only in frequencies, the square roots of these frequencies forming an arithmetical progression from element to element. Moseley's series of increasing X-ray frequencies is with one or two exceptions that of increasing atomic weights, and these exceptions are less anomalous for the X-ray series than for the atomic-weight series. It seems plausible then that there are 92 elements (from H to U) built up by the addition of some electrical element. Moseley assigned successive integers to this series (see Table 531) known now as atomic numbers.

Moseley's discovery may be expressed in the form

$$\frac{n_1}{n_2} = \frac{E_1}{E_2}$$
 or $\frac{\Lambda_2}{\lambda_1} = \frac{E_1^2}{E_2^2}$

Bohr atom: (Phil. Mag. 26, 1, 476, 857, 1913; 29, 332, 1915; 30, 394, 1915). The experimental facts and the law of circular electronic orbits limit the electrons to orbits of particular radii. When an electron is disturbed from its orbit, e.g., struck out by a cathode ray, or returns from space to a particular orbit, energy must be radiated. It is suggestive that the emission of a β ray requires a series of γ ray radiations. H does not radiate unless ionized and then gives out a spectrum represented by Balmer's formula $\nu = N(1/n!^2 - 1/n^2)$ where ν is the frequency, N, a constant, and n_1 for all the lines in the visible spectrum has the value 2, n, the successive integers, 3, 4, 5, . . . ; if $n_1 = 1$ and n, 2, 3, 4, Lyman's ultra-violet series results; if $n_1 = 3$, n, 4, 5, 6, . . . , Paschen's infra-red series. These considerations led Bohr to his atom and he assumed: (a) a series of circular non-radiating orbits governed as above; (b) radiation taking place only when an electron jumps from one to another of these orbits, the amount radiated and its frequency

SMITHSONIAN TABLES.

(This Table supplements Table \$14).

					(T 1110	T HONG DO	Prot		3.47					
3	Li	3.00		Al	2.70	25	Mn	2.95†	36	Kr	2.35*	54 2	Ke	2.70° 4.75
4	Gl	2.30	14	Si	2.35	26	Fe	2.80	37	Rb	4.50	55	~B	
				S	2.05	27	Co	2.75	18	Sr	3.90	56 1	5a	4.20
6		1.54							3-	3		81 "	T?	4.50
7	N	1.30	17	Cl	2.10	28	Ni	2.70	47	Ag	3.55			
8	0	1.30		A	2.05*		Cu	2.75		Cd	3.20	82 I 83 I		3.80
9	F	1.35	10	K	4.15	30	Zn	2.65		Sn	2.80	03	DI	2.90
10	Ne	1.30*	1 20	Ca	3.40	33	As	2.52		Sb	2.80			
TT	Na	3.55	22	Ti	2.80	34	Se	2.35	52	Te	2.65			
					2.801	25	Br	2.38	. 53	T	2.80			
12	Mg	2.85	24	Cr	2.00	35	DI	2.30	, 33		2100			

* Outer electron shell.

† Cr, "electronegative," 2.35; Mn, ditto, 2.35.

Broughall (Phil. Mag. 41, p. 872, 1921) computes in the same units from Van der Waal's constant "b" the diameters of He, N, A, Kr, and X as 2.3, 2.6, 2.9, 3.1, and 3.4. These inert elements correspond to Langmuir's completely filled successive electron shells. The corresponding atomic numbers are 2, 10, 18, 36 and 54. For Langmuir's theory see J. Am. Ch. Soc., p. 868, 1919, Science 54, p. 59, 1921.

BOHR ATOM. MAGNETIC FIELD OF ATOM.

being determined by $hv = A_1$, h being Planck's constant and A_1 and A_2 the energies in the two orbits; (c) the various possible circular orbits, for the case of a single electron rotating around a single positive nucleus, to be determined by T = (1/2)rhn, in which τ is a whole number, n is the orbital frequency, and T is the kinetic energy of rotation. The remarkable test of this theory is not its agreement with the H series, which it was constructed to fit, but in the value found for N. From (a), (b), and (c) it follows that $N = (2\pi^2e^3E^3m)/h^2 = 3.294 \times 10^{13}$, within 1/10 per cent of the observed value (Science, 45, p. 327).

The radii of the stable orbits $= 7^2h^2/4\pi^3mc^4$, or the radii bear the ratios 1, 4, 9, 16, 25. If normal H be assumed to be with its electron in the immost orbit, then $2a = 1.1 \times 10^{-8}$; best determination gives 2.2×10^{-8} . The fact that H emits its characteristic radiations only when ionized favors the theory that the emission process is a settling down to normal condition through a series of possible intermediate states, i.e., a change of orbit is necessary for radiation. That in the stars there are 33 lines in the Balmer series, while in the laboratory we never get more than 12, is easily explicable from the Bohr theory.

Bohr's theory leads to the relationship $\nu_K = \nu_L = \nu$

Magnetic field of atom: From the Zeeman effect due to the action of a magnetic field on the radiating electron the strength of the atomic magnetic field comes out about 10⁸ gauss, 2000 times the most intense field yet obtained by an electromagnet. A similar result is given by the rotation of a number of electrons, A10⁸, where A is the atomic weight; for Fe this gives 10⁸ gauss. For other determinations, see Weiss (J. de Phys. 6, p. 661, 1907; 7, p. 249, 1908), Ritz (Ann. d. phys. 25, p. 660, 1908), Oxley (change of magnetic susceptibility on crystallization, Phil. Tr. Roy. Soc. 215, p. 95, 1915) and Merritt (fluorescence, 1915); Humphreys, "The Magnetic Field of an Atom," Science, 46, p. 276, IQI7.

TABLES 516-518.

Note: The phenomena of Electron Emission, Photo-electric Effect and Contact (Volta) Potential treated in the subsequent tables are extremely sensitive to surface conditions of the metal. The most consistent observations have been made in high vacua with freshly cut metal surfaces.

TABLE 516. Electron Emission from Hot Metals.

Among the free electrons within a metal some may have velocities great enough to escape the surface attraction.

The number n reaching the surface with velocities above this critical velocity = $N(RT/2\pi M)^{\frac{1}{2}}e^{-\frac{t}{RT}}$ where N= number of electrons in each cm³ of metal, R the gas constant (83.15 × 10³ erg-dyne), T the absolute temperature, M the atomic weight of electron (.000546, O = 16), w the work done when a "gram-molecule" of electrons (6.06 × 10³ electrons or 96,500 coulombs) escape. It seems very probable that this work is done against the attraction of the electron's own induced image in the surface of the conductor. When a sufficiently high + field is applied to escaping electrons so that none return to the conductor, then the saturation current has been found to follow the equation

$$i = a\sqrt{Te^{-b/T}}$$

assuming N and w constant with the temperature; this is equivalent to the equation for n just given and is known as Richardson's equation. In the following table due to Langmuir (Tr. Am. Electroch. Soc. 29, 125, 1916) $i_{2000} = saturation$ current per cm² for T = 2000 K°; $\phi = w/F = Rb/F$ = work done when electrons escape from metal in terms of equivalent potential difference in volts; F = Faraday constant = 96,500 coulombs.

Metal.	amp/cm²	ь	i2000 amp/cm ²	φ (volts).
Tungsten * Thorium Tantalum Molybdenum Carbon (untreated) Titanium Iron. Platinum † BaO-SrO, Pt-6 % Ir core	2.36 × 10 ⁷ 2.0 × 10 ⁸ 1.12 × 10 ⁷ 2.1 × 10 ⁷ 1300? 2400? 1.25 × 10 ⁷ 1.6 × 10 ⁴	52500 39000 50000 50000 48000 28000? 37000? 51060 20000	0.0042 30.0 0.007 .013 	4.52 3.36 4.31 4.31 4.14 2.4? 3.2? 4.4

^{*} Best determined value of table, pressure less than 10-7 mm Hg. † Schlichter, 1915.

TABLE 517. Photo-electric Effect.

TABLE 518. Ionizing Potentials and Single-line Spectra.

When electrons are accelerated through gases or vapors, especially those with small electron affinity (inert gases, metallic vapors) at well-defined potentials a large transfer of energy takes place between the moving electrons and the gas atoms. There appear to be two types of inelastic encounters under such circumstances: the first accompanied by the emission of a radiation of a single line at a potential called the resonance potential and satisfying the relation $h\nu = eV$ where V is the potential fall, ν the frequency and h Planck's constant; the second ionizes the gas (ionization potential), exciting the radiation of a composite spectrum. The latter potential satisfies a relation $h\nu = eV$ except that ν is now the limiting frequency of a series of lines. The following table was communicated by Tate and Foote (see Phil. Mag. 36, 64, 1018). (see Phil. Mag. 36, 64, 1918).

Metal.	λ	Ioniza poten		$\frac{h}{x} + \frac{10^{27}}{10^{27}}$	λ	Resor	tial.*	$\frac{h}{x}$ 1027	Observers.
Na Rb Cs Mg Zn Cd Hg T1 Ca Ca As Pb	2856.65‡ 2968.40‡ 3184.28‡ 1621.7\$ 1319.95\$ 1378.69\$ 1187.96\$	Obs. 5.13 4.1 4.1 3.9 7.75 9.5 8.92 10.35 7.3 6.04 11.5 8.0	5.11 4.32 4.15 3.87 7.61 9.34 8.95 10.38	6.57 6.22 6.46 6.59 6.66 6.53 6.53	5889.97 7604.94 7800.29 8521.12 4571.38 3075.99 3260.17 2536.72 11513.22 6717.69 4226.73 ***	Obs. 2.12 1.55 1.6 1.48 2.65 4.1 3.88 4.9 1.07 1.93 3.0 4.7 1.26	2.09 1.61 1.58 1.45 2.70 4.01 3.78 4.86 1.07 1.84 2.92	6.63 6.31 6.62 6.69 6.43 6.70 6.71 6.60	Tate and Foote Foote, Rognley, Mohler Foote and Mohler Tate and Foote Tate, Davis, Goucher, others Tate and Mohler Mohler and Foote Foote, Rognley, Mohler Mohler and Foote
	Mean of Computed $h = 6.55 \times 10^{-47}$ erg. sec.								

Computed from relation $Ve = h\nu$ or $V = 12334/\lambda$ volts; \(\lambda\) in Angstrom units.

[†] Computed from $h = 0.5308\lambda V 10^{-30}$ Limit of principal series of single lines, 1.5S. ¶ Combination series line 1.5S $- 2p_2$ t Limit of principal series.

| Short wave-length line of first doublet of principal series. First line principal series single lines 1.55 - 2P

CONTACT (VOLTA) POTENTIALS.

There has been considerable controversy over the reality and nature of the contact differences of potential between two metals. At present, due to the studies of Langmuir, there is a decided tendency to believe that this Volta difference of potential is an intrinsic property of metals closely allied to the phenomena just given in Tables 516 to 518 and that the discrepancies among different observers have been caused by the same disturbing surface conditions. The following values of the contact potentials with silver and the relative photo-sensitiveness of a few of the metals are from Henning, Phys. Rev. 4, 228, 1914. The values are for freshly cut surfaces in vacuo. Freshly cut surfaces are more electro-positive and grow more electro-negative with age. That the observed initial velocities of emission of electrons from freshly cut surfaces are nearly the same for all metals suggests that the more electro-positive a metal is the greater the actual velocity of emission of electrons from its surface.

Contact potential with Ag	Contact potential with Ag	Ag o	Cu .05 60	Fe .19 65	Brass	Sn .27 70	Zn .59 80	Al .99 500	Mg 1.42 1000
---------------------------	---------------------------	------	-----------------	-----------	-------	-----------------	-----------------	------------------	--------------------

From the equation $w = RT \log(N_A/N_B)$, where w is the work necessary per gram-molecule when electrons pass through a surface barrier separating concentrations N_A and N_B of electrons, it can be shown (Langmuir, Tr. Am. Eletroch. Soc. 29, 142, 1916, et seq.) that the Volta potential difference between two metals should be

$$v_1 - v_2 = \frac{1}{F} \{ w_2 - w_1 + RT \log(N_A/N_B) \} = \frac{w_2 - w_1}{F} = \phi_2 - \phi_1$$

(see Table 517 for significance of symbols), since the number of free electrons in different metals per unit volume is so nearly the same that $RT \log (N_A/N_B)$ may be neglected. The contact potentials may thus be calculated from photoelectric phenomena (see Table 517 for references). They are independent of the temperature. The following table gives a summary of values of ϕ in volts obtained from the various phenomena where an electron is torn from the attraction of some surface. In the case of ionization potentials the work necessary to take an electron from an atom of metal vapor is only approximately equal to that needed to separate it from a solid metal surface.

(a) THE ELECTRON AFFINITY OF THE ELEMENTS, IN VOLTS.

Metal.		Thermionic. (Langmuir.)	Photo- electric and contact. (Millikan.)	Photo- electric. (Richardson)	Miscel- laneous.	Single- line spectra.	Adjusted mean.
Tungsten. Platinum. Tantalum. Molybdenum. Carbon. Silver. Copper. Bismuth. Tin. Iron. Zinc. Thorium. Aluminum Magnesium. Titanium. Lithium. Sodium.	4.05 (4.0) 3.78 3.86 3.46 -3.06 2.63	4.52 4.31 4.31 4.14 — — 3.2? 3.36 — 2.4?		4.3 	4.45	4.04 	4.52 4.47 4.3 4.3 4.1 4.1 4.0 3.7 3.8 3.7 3.4 3.0 2.7 2.4 2.35 1.82

(b) It should not be assumed that all the emf of an electrolytic cell is contact emf. Its emf varies with the electrolyte, whereas the contact emf is an intrinsic property of a metal. There must be an emf between the two electrodes of such a cell dependent upon the concentration of the electrolyte used. The following table gives in its first line the electrode potential e_h of the corresponding metals (in solutions of their salts containing normal ion concentration) on assumption of no contact emf at the junction of the metals. The second line, $\phi - e_h - 3.7$ volts, gives an idea of the electrode potentials (arbitrary zero) exclusive of contact emf.

Metal	Ag	Cu	Bi	Sn	Fe	Zn	Mg	Li	Na
$ \begin{array}{c} e_h \dots \\ \phi - e_h - 3.7 \dots \dots \end{array} $	+0.80	+0.34	+0.20	-0.10	-0.43	-0.76	-1.55	-3.03	-2.73
	-0.40	+0.04	+0.20	-0.20	-0.43	-0.46	-0.55	-1.65	-0.85

TABLES 520-521. IONIC MOBILITIES AND DIFFUSIONS.

The process of ionization is the removal of an electron from a neutral molecule, the molecule thus acquiring a resultant + charge and becoming a+ ion. The negative carriers in all gases at high pressures, except inert gases, consist for the most part of carriers with approximately the same mobilities as the + ions. The negative electrons must, therefore, change initially to ions by union with neutral molecules.

The mobility, U, of an ion is its velocity in cm/sec, for an electrical field of one volt per cm. The rates of diffusion, D, are given in cm³/sec. U = DP/Ne, where P is the pressure, N, the number of molecules per unit volume of a gas and e the electronic charge.

Nature of the gas and the mobilities: (1) The mobilities are approximately proportional to the inverse sq. rts. of the molecular weights of the permanent gases; better yet when the proportionality is divided by the 4th root of the dielectric constant minus unity; (2) The ratio U+/U—seems to be greater than unity in all the more electronegative gases.

Mobilities of Gaseous Mixtures: Three types: (1) Inert gases have high mobilities; small traces of electronegative gases make values normal. (2) Mixed gases: lowering of mobilities is greater than would be expected from simple law of mixture. (3) Abnormal changes produced by addition of small quantities of electro-negative gases:

e.g.: normal mobility	U + = 1.37	U - 1.80	Wellisch, Pr.
6 mm C₂H₅Br gave	1.37	1.80	Roy. Soc. 82A,
6 mm C ₂ H ₃ I "	1.37	1.80	p. 500, 1909.
to mm C2H5OH "	0.91	1.10	
9 mm C₃H ₆ O "	1.15	1.37	

Temperature Coefficient of Mobility: There is no decided change with the temperature.

Pressure Coefficient of Mobility: Mobility varies inversely with the pressure in air from 100 to 1/10 atmosphere for — ion, to 1/1000, for + ion; below 1/10 atmosphere all observers agree that the negative ion in air increases abnormally rapidly.

Free Electrons: In pure He, Ar, and N, the negative carriers have a high mobility and are, in part at any rate, free electrons; electrons become appreciable in air at 10 cm pressure.

TABLE 520. - Ionic Mobilities.

Dry gas.	Mobi	lities.	K - I Observer		Dry gas.	Mobi	lities.	К — т	Observer.
H	+ 6.70 5.09 1.37 1.27 1.36 0.81 0.74 1.40	7.95 6.31 	.000273 .000074 .000100 .000590 .000540 .000960 .00770 .000590	Zeleny Franck " Zeleny Wellisch Mean	Nitrous oxide		0.90 0.27 0.31 0.31 0.31 0.28 0.31 0.16	.00107 .00940 .00426 .01550 .00742 .01460 .00870	Wellisch

Franck, Jahr. d. Rad. u. Elek. 9, p. 2, 1912; Wellisch, Pr. Roy. Soc. 82A, p. 500, 1909. The following values are from Yen, Pr. Nat. Acad. 4, 19 8.

	H ₂	N ₂	Air.	SO ₂	C5H12	C ₂ H ₆ O	C ₂ H ₄ O	C ₂ H ₅ Cl	CH ₃ I	C ₂ H ₅ I
$U + \dots U - U + \dots U - U + \dots$	5.54 8.45 1.53	1.30 1.80 1.38	1.37 1.81 1.34	.412 .414 1.00	.385 .451 1.17	.363 .373 1.03	.307 .331 1.07	.304 .317 1.04	. 216 . 220 1.05	1.81

TABLE 521. - Diffusion Coefficients.

The following table gives the observed and computed (D=300UP/Ne) every nearly 0.0236U) values of the diffusion coefficients. The diffusion coefficients are given for some neutral molecules as actually determined for some gases into gases of nearly equal molecular weight. Table taken from Loeb, "The Nature of the Gaseous Ion," J. Franklin Inst. 184, p. 775, 1017.

0 10	Gas diffused	D	U +	D + fc	or ions.
Gas, diffusing.	into	molecules.		Computed.	Observed.
Ar. H ₂ . Air. O ₂ . CO ₂ . CO ₂ . C ₂ H ₂ OH Air. H ₂ O NH ₃ .	He N2 O2 N2 N2 N2O CO CO2 Ethyl acetate Air NH3	0.706 .739 .178 .171 1.5-1.0 1.31 0.0693 .093 .246 .190 ‡	5.09 6.02 1.35 1.27 .82 .81 .34 1.35 0.74	1.20 0.143 0.0319 .0299 .0193 .0193 .00805 .0071 .0319	0.123 0.028 .025 .023*

COLLOIDS.

TABLE 522. - General Properties of Colloids.

For methods of preparing colloids, see The Physical Properties of Colloidal Solutions, Burton, 1916; for general properties, see Outlines of Colloidal Chemistry, J. Franklin Inst. 185, p. 1, 1918 (contains bibliography).

The colloidal phase is conditioned by sufficiently fine division (1 × 10⁻⁴ to 10⁻⁷ cm). Colloids are suspensions (in gas, liquid, solid) of masses of small size capable of indefinite suspension; suspensions in water, alcohol, benzole, glycerine, are called hydrosols, alcosols, benzosols, glycerosols, respectively. The suspended mass is called the disperse phase, the medium the dispersion medium.

Collouds tall into 3 quite definite classes: 1st, those consisting of extremely finely divided particles (Cu, Au, Ag, etc.) capable of more or less indefinite suspension against gravity, in equilibrium of somewhat the same aspect as the gases of the atmosphere, depending as in the Brownian movement upon the bombardment of the molecules of the medium: 2nd, those resisting precipitation (hæmoglobin, etc.) probably because of charged nuclei and which may be coagulated and precipitated by the neutralization of the charges; 3rd, colloidal as distinguished from the crystalloidal condition, the colloid being very slowly diffusible and incapable unlike crystalloids of penetrating membranes (gelatine, silicic acid, caramel, glue, white of egg, gum, etc.).

Smallest	partic	le of Au	10	bserved by Zsigmody (ultramicroscope)	1.7	× 10-7 cm.
66	- 66	visible	in	ordinary microscope about	2.5	X 10-5 cm.
66	66	4.6	56	ultramicroscope, with electric arc	15	X 10-7 cm.
66	66	6.6	6.6	" with direct sunlight		X 10-7 cm.

TABLE 523. - Molecular Weights of Colloids.

Determined from diffusion.		Determined from freezing point	
Gum arabic	7420	Glycogen (162)* Tungstic acid (250)*. Gum. Albumose Ferric hydrate (107)* Egg albumen Starch (162)*	1625 1750 1800 2400 6000 14000 25000

^{*} Formula weight.

TABLE 524. - Brownian Movement.

The Brownian movement is a microscopically observed agitation of colloidal particles. It is caused by the bombardment of them by the molecules of the medium and may be used to determine the value of Avogadro's number. Perrin, Chaudesaignes. Ehrenhaft and De Broglie found, respectively, 70, 64, 63 and 64 \times 10²² as the value of this constant. The following table indicates the size and the dependence of this movement on the magnitude of the particles.

Material.	Diameter × 10 ⁵ cm	Medium.	Temp.	Velocity × 10 ⁵ cm/sec.	Observer.
Dust particles	2.0 0.35 0.1 0.06 .4 to .5 10. 10. 4.5 2.13	Water "Acetone Water "" "" "" "" "" "" "" "" ""	20? "" "18 20 17 20? 20?	none 200. 280. 700. 3900. 3200. 124. 1.55 2.4	Zsigmody " Svedberg, 1906–9 Henri, 1908 Perrin, Dabrowski, 1909. Chaudesaignes, 1908.

The movement varies inversely as the size of the particles; in water, particles of diameter greater than 4μ show no perceptible movement; when smaller than 4μ lively movement begins, while at 10 $m\mu$ the trajectories amount up to

COLLOIDS.

TABLE 525. — Adsorption of Gas by Finely Divided Particles. See also p. 439

Fine division means great surface per unit weight. All substances tend to adsorb gas at surface, the more the higher the pressure and the lower the temperature. Since different gases vary in this adsorption, fractional separation is possible. Pt black can absorb 100 vols. H₂, 800 vols. O₂, Pd 3000 vols. H₂. In gas analysis Pd, heated to 100°, is used to remove H₂ (higher temperature used for faster adsorption, will take more at lower temperature). Pt can dissolve several vols. of H₂, Pd, nearly 100 at ordinary temperatures; but it seems probable that the bulk of the 100 vols, of H₂ taken by Pt and the 3000 by Pd must be adsorbed. In 1848 Rose found the density 21 to 22 for Pt foil, but 26 for precipitated Pt.

The film of adsorbed air entirely changes the behavior of very small particles. They flow like a liquid (cf. fog). With substances like carbon black as little as 5 per cent of the bulk is C; a liter of C black may contain 2.5 liters of air. Mitscherlich calculated that when CO₂ at atmospheric pressure, 12° C, is adsorbed by boxwood charcoal, it occupies 1/56 original vol. Apparent densities of gases adsorbed at low temperatures by cocoanut charcoal are of the same order (sometimes greater) as liquids.

°C H2 AT N2 O2 CO CO2 NO NO											
° C	H ₂	Ar	N ₂	O ₂	СО	CO ₂	NO	N _z O			
+20° -78 -185	7·3 19·5 284·7	12.6	21.0 107.4 632.2	25.4 122.4	26.8 139.4 697.0	83.8 568.4	103.6	109.4			
	CH₄	C ₂ H ₆	C ₂ H ₄	C ₂ H ₂	NH ₃	H ₂ S	Cl2	SO ₂			
+20° -78	41.7 174.3	119.1 275.5	139.2 360.7	135.8	197.0	213.0	304.5	337.8			
Cm ³	of Gas Adso	rbed by a C	m³ of Cocoa	nut Charcoal	(corrected	to o° C, 76	cm) (Dewar	·).			
°C	°C He		H ₂	N ₂	Oz		СО	Ar			
o° -185		2 5	4	15	18		2I 100	12			

See Langmuir, J. Am. Ch. Soc. 40, 1361, 1918; Richardson, 39, 1829, 1916.

TABLE 526. - Heats of Adsorption.

Adsorber.	Amylene.	Water.	Acetone.	Methyl alcohol.	Ethyl alcohol.	Aniline.	Amyl alcohol.	Ethyl ether.	Chloro- form.	Benzene.	Carbon disulphide.	Carbon tetra- chloride.	Hexane.
Fuller's earth * Bone charcoal * Kaolin * Fuller's earth †	57.1 - 78.8 -	30.2 18.5 - .683	27.3 19.3 - .684	21.8 17.6 27.6 .679	17.2 16.5 24.5	13.4	10.0	10.5	8.4 14.0 15.7 .611	4.6 11.1 9.9 .610	4.6 8.4 9.9 .621	4.2 13.0 9.4 .625	3.9 8.9 7-2

^{*} Small calories liberated when I g of the adsorbent is added to a relatively large quantity of the liquid. † Volume adsorped from saturated vapor by I g of fuller's earth. Gurvich, J. Russ. Phys. Ch. Soc. 47, 805, 1915.

TABLE 527. — Molecular Heats of Adsorption and Liquefaction (Favre).

Adsorber. Gas		Molecular h	neats of			Molecular heats of		
	Gas.	adsorption.	lique- faction.	Adsorber.	Gas.	adsorption.	lique- faction.	
Platinum Palladium	H ₂ H ₂ NH ₃ CO ₂ N ₂ O	46200 18000 5900-8500 6800-7800 7100-10900	(5000) 6250 4400	Charcoal	SOz HCl HBr HI	10000-10000 0200-10200 15200-15800 21000-23000	5600 (3600) (4000) (4400)	

TABLE 528. — Miscellaneous Constants (Atomic, Molecular, etc.).

Elementary electrical charge, charge on electron, ½ charge on a particle	$e = 4.774 \times 10^{-10} \text{ esu (M)}$ = 1.591 × 10 ⁻²⁰ emu = 1.591 × 10 ⁻¹⁹ coulomb $m = 0.01 \times 10^{-28} \text{ g}$
Radius of an electron. Ratio e/m , small velocities.	about 2 × 10 ⁻¹³ cm
Number of molecules per gram molecule or per gram molecular weight (Avogadro constant). Number of gas molecules per cm³, 76 cm, o° C (Loschmidt's number). Number of gas molecules per cm³, o° C at r × 10° bars. Kinetic energy of translation of a molecule at o° C. Constant of molecular energy, E ₀ /T = change of translational energy per ° C. Mass of hydrogen atom. Radius of hydrogen molecule about. Mean free path, ditto, 76 cm, o° C, about. Sq. rt. mean sq. velocity, ditto, 76 cm, o° C. Arithmetical average velocity, ditto, 76 cm, o° C. Average distance apart of molecules, 76 cm, o° C. Boltzmann gas constant = constant of entropy equation = R/N = p ₀ V ₀ /TN = (³ / ₄)e. Volume per mol(e) or gram-molecular weight of ideal gas, 76 cm, o° C (1.01323 ×	$= 1.662 \times 10^{-24} \text{ g (M)}$ 10^{-3} cm
Volume per mol(e) or gram-molecular weight of ideal gas, 76 cm, \circ° C (1.01323 \times 10 ⁶ bars). Ditto, 1×10^6 bars, \circ° C (75 cm Hg). Gas constant: $PV_m = RT$, $V_m = \text{vol. molec. wt. in g when } P$ in g/cm^2 , V_m in cm ³ when P in dynes, V_m in cm ⁸ .	= 22.412 liters = 22.708 liters R = 84.780 g-cm/° C R = 0.08204 l-atm/° C R = 8.315 × 10 ⁷ ergs/° C
Absolute zero = 0° Kelvin. 1 Megabar (= Meteorological "bar") = 106 dynes/cm² = 1.013 kg/cm². Mechanical equivalent of heat, 1 g (20° C) cal. Faraday constant. Velocity of light in vacuo. Planck's element of action. Rydberg's fundamental frequency. Rydberg's constant / Vo/c. Wien's constant of spectral radiation. Stefan-Boltzmann constant of total radiation. Grating space in calcite. Grating space in rock-salt (Uhler, Cooksey) Potential difference in volts for X-rays of wave-length λ in cm = Vλ = hc/e. Reference: (M) Millikan, Phil. Mag. 34, 1, 1917.	= -273.13° C = 0.987 atmosphere = 4.184×10^{7} ergs = 4.184×10^{7} ergs = 4.184×10^{7} ergs = 4.184×10^{10} cm/sec. $h = 6.547 \times 10^{-27}$ erg. sec. (M) $V_0 = 3.28880 \times 10^{10}$ sec. (M) V = 10.0078.7 $c_2 = 1.4312$ for λ in cm (M) $\sigma = 5.72 \times 10^{-12}$ watt/cm ² (M) $d = 3.030 \Lambda$ = 2.814×10^{-8} cm = 1.241×10^{-4} volt. cm

TABLE 529. - Radiation Wave-length Limits.

Hertzen waves, longest 2 000 c	000.0 cm
" shortest	O. 2 CM
Infra-red, longest, reststrahlung, focal-isolation.	0.03 cm
Infra-red, spectroscopically studied	0.002 CM
Visible, longest	0.000 08 cm
" shortest	0.000 04 cm
Ultra-violet, Lyman, shortest*	0.000 006 cm
X-rays, longest	0.000 000 12 cm
" shortest	0.000 000 001 cm
	0.000 000 013 cm
" shortest	0.000 000 000 7 cm

* 0.000 0020 cm (Millikan-Sawyer, 1920)

TABLE 530. - Periodic System of the Elements.

0	1	11	111	IV	v	VI	VII	
	R ₂ O	RO	R ₂ O ₈	RO ₂	R ₂ O ₅	RO ₃	R ₂ O ₇	RO4 Oxides.
	-	-	-	RH4	RH3	RH	RH	- An Hydrides.
He 4	Li 7	GI 0	B	C 12	N 14	0	F 19	=
Ne 20	Na 23	Mg 24	Al 27	Si 28	P 31	S 32	Cl 35	=
A 40	K 39	Ca 40	Sc 44	Ti 48	V	Cr 52	Mn 55	Fe Ni Co 56 59 59
=	Cu 64	Zn ú5	Ga 70	Ge 72	As 75	Se 79	Br 80	=
Kr 82	Rb 85	Sr 88	Yt 89	Zr 91	Cb 94	Mo 96	=	Ru Rh Pd 102 103 107
=	Ag 108	Cd 112	In 115	Sn 119	Sb 120	Te 128	I 127	=
X 128	Cs 133	Ba 137	La 139	Ce 140	Pr 141	Nd 144	=	=
	Sa 150	Eu 152	Gd 157	Tb 159	Ds 162	Er 168	_	=
	Tm 168	Yb 174	Lu 175	=	Ta 181	W 184	=	Os Ir Pt 191 193 195
=	Au 197	Hg 201	Tl 204	Pb 207	Bi 208	Po 210	=	=
Em (222)	_	Ra 226	Ac (227)	Th 232	UrX: 234	U 238	-	=

TABLE 531. - Atomic Numbers.*

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Hydrogen Helium Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon Sodium Magnesium Aluminum Silicon Phosphorus Sulphur Chlorine Argon	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton Rubidium Strontium	40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	Yttrium Zirconium Xiobium ‡ Molybdenum Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon Cassium Barium Lanthanum	59 60 61 62 63 64 65 66 67 68 69 70 71 72	Cerium Praseodymium Neodymium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutecium Tantalum Tungsten	777 78 80 81 82 83 84 85 86 87 88 89 90	Osmium Iridium Platinum Gold Mercury Thalium Lead Bismuth Polonium Emanation Radium Actinium Thorium Uranium X2 Uranium
	* Quoted from	m Millikan'	s The Electron	1, 1917.		† Glucinium.		‡ Col	umbium.

PERODIC SYSTEM AND THE RADIOACTIVE ISOTOPES.*

	4	5A	6A	7A	0	ıA :	2A 3A	4	
Vb IVb IIIb IIb	82 Pb 50 Sn 32 Ge 14 Si 6 C	83 Bi 51 Sb 33 As 15 P	Non-meta 84 Po 52 Te 34 Se 16 S 8 O 1	85 	Inert-gases. 86 Nt 54 Xe 36 Kr 18 Ar 10 Ne 2 He	87 55 Cs 37 Rb 19 K	-metals. 88 80 Ra Ac 56 57 Ba La 38 39 Sr Y 20 21 Ca Sc 12 13 Mg Al 4 5 Be B	90 Th 58 Ce 40 Zr 22 Ti 14 Si 6	VI Va IVa IIIa IIa
					Heavy metals.				
III' IV'	22 Ti 40 Zr	23 V 41 Cb	24 Cr 42 Mo	25 Mn 43	26 27 28 Fe Co Ni 44 45 46 Ru Rh Pd		0 31 In Ga 8 49 Id In	32 Ge 50 Sn	III'
V"	58 5 Ce I	o 60 Pr Nd	61 62 — Sa	63 Eu	64 65 66 66 Gd Tb Dy H	7 68 Io Er	69 70 71 Ad Cp Yb	72 Lu	V"
V' VI	72 Lu 90 Th	73 Ta 91 Bv	74 W 92 U	75 — —	76 77 78 Os Ir Pt	79 Au	80 SI Hg Tl	82 Pb	v' vi
	4	5B	6B	7B		īВ	2B 3B	4	
				Ra	dioactive isotopes.				
(TI) 81	(Pb) 82 {	(Bi) 83 ← 3 = \	(Po) 84 { } RaF }	() 85		Ra) (Ac 88 89			(U) 92
{ ThI Acc Rac	PbTh PbAc RaD ThB AcB RaB		ThC' AcC' RaC' ThA AcA RaA	- 1	AcEm } ← { Ac RaEm }	Ms7 Ac		← Uz / Ux" ← U	

← Indicates the loss of an alpha particle (producing He); the element becomes more electro-positive and the atomic weight decreases by 4, position changing 2 columns to the left.

✓ Indicates beta radiation (loss of electron); the element becomes more electro-negative, atomic weight remains

the same, position changes one column to the right and up.

the same, position changes one column to the right and up.

Isotopes of an element have the same valency and the same chemical properties (solubility, reactivity, etc.), although their atomic weights may differ. The isotopes of Bi are, e.g., RaE, ThC, AcC, RaC.

In the upper half of the table are the elements possessing high electro-potential, simple spectra, colorless ions. The properties are analogous in the vertical direction (groups). In the lower half are the elements with low electro-potential, complex spectra, colored ions and tending to form complex double salts, the general properties of the elements being more pronounced in the horizontal direction (periods).

On the left side of the table are the electro-negative elements, those of the upper half forming strong acids, those of the lawer half weak ovascide.

On the left side of the table are the electro-negative elements, those of the lower half weak oxyacids.

On the right side of the table are the electro-positive elements, forming bases, oxysalts, sulfides, etc.

The center of the lower half is occupied by the amphotoeric elements forming weak acids and bases, many complex compounds and double salts, many insoluble and mostly colored compounds.

A very striking point, however, is, as already mentioned, that the similarity among the elements in the upper half is in the vertical-direction, and in the lower half in the horizontal direction. This justifies the use of the expressions group-relation and period-relation.

* Table adapted from Hackh, J. Am. Chem. Soc. 40, 1023, 1918, Phys. Rev. 13, 169, 1919.

The following isotopes have been determined by means of mass-spectra. Aston, Phil. Mag. 40, 633, 1920; Nature, 106, 468, 1920. The columns give symbol, min. number of isotopes, masses in order of intensity. Numbers in brackets are provisional.

H	I	1.008	F	X	19	A	2	40, 36
He	1	4	Ne	2	20, 22, (21)	As	1	75
В	2	11, 10	Si	2	28, 29, (30)	Br	2	79. 81
C	1	12	P	I	31	Kr	6	84, 86, 82, 83, 80, 78
N	I	14	S	I	32	X	5, (7)	129, 132, 131, 134, 136, (128, 130?)
0	I	16	Cl	2	35, 37, (39)	Hg	(6)	(197-200), 202, 204

TABLE 533. - Stellar Spectra and Related Characteristics.

The spectra of almost all the stars can be arranged in a continuous sequence, the various types connected in a series of imperceptible gradations. With one unimportant exception, the sequence is linear, the transition between two given types always involving the same intermediate steps. According to the now generally adopted Harvard system of classification, certain principal types of spectrum are designated by letters, — O. B., A. F. G., K., M., R. and N. — and the intermediate types by suffixed numbers. A spectrum halfway between classes B and A is denoted B5, while those differing slightly from Class A in the direction of Class B are called B8 or B9. In Classes M and O the notation Ma, Mb. Mc, etc., is employed. Classes R and N apparently form a side chain branching from the main series near Class K. The colors of the stars, the degree to which they are concentrated into the region of the sky, including the Milky Way, and the average magnitudes of their peculiar velocities in space, referred to the center of gravity of the naked-eye stars as a whole, all show important correlations with the spectral type. In the case of colors, the correlation is so close as to indicate that both spectrum and color depend almost entirely on the surface temperature of the stars. The correlation in the other two cases, though statistically important, is by no means as close. Examples of all classes from O to M are found among the bright stars. The brightest star of Class N is of magnitude 5.3; the brightest of Class R, 7.0.

TABLE 534. - The Harvard Spectral Classification.

Class.	Principal spectral lines (dark unless otherwise stated).	Example.	Number brighter than 6.25, mag.	Per cent in galactic region.	Color index.	Effective surface temperature, K	Mean peculiar velocity, km/sec.
B O	Bright H lines, bright spark lines of He, N,O,C H, He, spark lines of N	γ Velorum	30	100	-0.3	-	
	and O, a few spark lines of metals	€ Orionis	696	82	-0.30	20,000°	6
A	H series very strong, spark lines of metals	Sirius	1885	66	0.00	11,000°	10
F	H lines fainter. Spark and arc lines of metals	Canopus	720	57	+0.33	7,500°	14
G	Arc lines of metals, spark lines very faint	The sun	609	58	+0.70	5,000°	15
K	Arc lines of metals, spec- trum faint in violet	Arcturus	1719	56	+1.12	4,200°	17
M	Bands of TiO2, flame and arc lines of metals	Antares	457	54	+1.00	3,100°	17
R	Bands of carbon, flame and arc lines of metals Bands of carbon, bright	B. D. -10° 5057	0	63	+1.7	3,000°	15
-1	lines, very little violet light	19 Piscium	8	87	+2.5	2,300°	13

Compiled mainly from the Harvard Annals. Temperatures based on the work of Wilsing and Scheiner. Radial velocities from Campbell. Data for classes R and N from Curtis and Rufus. The color indices are the differences of the visual and photographic magnitudes. Negative values indicate bluish white stars; large positive values, red stars. The peculiar velocities are in the radial direction (towards or from the sun). The average velocities in space should

The "galactic region" here means the zone between galactic latitudes = 30°, and including half the area of the

96% of the stars of known spectra belong to classes A, F, G, K, 99.7% including B and M (Innes, 1919).

TABLE 535. - Apex and Velocity of Solar Motion.

R. A. 1900.	Dec. Velocity, km/sec.		Method.	No. of stars.	Authority.
18 ^h 02 ^m 17 54 18 00	+34.3 25.1 29.2	19.5	Proper motions Radial velocities	5413 1193 1405	Boss, Astron. J. 614, 1910 Campbell, Lick Bull. 196, 1911 Strömberg, Astrophys. J. 1918.

TABLE 536. - Motions of the Stars.

The individual stars are moving in all directions, but, for the average of considerable groups, there is evidence of a drift away from the point in the heavens towards which the sun is moving (solar apex). The best determinations of the solar motion, relative to the stars as a whole, are given in Table 535. In round numbers this motion of the sun may be taken as 20 km/sec, towards the point R. A. 18 h. om., Dec +30.0°.

After allowance is made for the solar motion, the motions of the stars in space, relative to the general mean, present marked peculiarities. If from an arbitrary origin a series of vectors are drawn, representing the velocities of the various stars, the ends of these vectors do not form a spherical cluster (as would occur if the motions of the stars were at random), but a decidedly elongated cluster, whose form can be approximately represented either by the superposition of two intermingling spherical clusters with different centers (Kapteyn's two-stream hypothesis) or by a single ellipsoidal cluster (Schwarzschild), the actual form, however, being more complicated than is indicated by either of these hypotheses. The direction of the longest axis of the cluster is known as that of preferential motion. The two opposite points in the heavens at the extremities of this axis are called the vertices. The components of velocity of the stars parallel to this axis average considerably larger than those parallel to any axis perpendicular to it.

The preferential motion varies greatly with 'spectral type, being practically absent in Class B, very strong in Class A, and somewhat less conspicuous in Classes F to M, on account of the greater mean velocities of these stars in all directions. The positions of the vertices are nearly the same for all.

Numerous investigators, from the more distant naked-eye stars, find substantially the same position for the

Numerous investigators, from the more distant naked-eye stars, find substantially the same position for the vertex, the mean being R. A. 6 h, 6 m., Dec. +9°. The nearer stars, of large proper motion, give a mean of 6 h. 12m., +25°. (See Strömberg's discussion, cited above.)

+25°. (See Strömberg's discussion, cited above.)

In addition to these general phenomena, there are numerous clusters of stars whose members possess almost exactly equal and parallel motions. — for example, the Pleiades, the Hyades, and certain large groups in Ursa Major. Scorpius, and Orion. The vertices, and the directions toward which these clusters are moving, are all in the plane of the galaxy. Several faint stars are known which have radial velocities between 300 and 350 km/sec. (e.g. A. G. Berlin 1366 R.A. 1900 = 4h 8m 6, Dec. 1000 = +22.7°, mag. 8.0 velocity of recession 330 km/sec.), and it is probable that the actual velocity in space exceeds 500 km/sec. for some of these.

The 9th magnitude star A. G. Berlin 1366 has a radial velocity of 404 km/sec.

The greatest known proper motion is that of Barnard's star of the ninth magnitude in Ophiuchus, 10.3" per year, Position angle 356°. The parallax of this star is 0.52°, and its radial velocity about —100 km/sec.

The average radial velocity of the globular clusters is 100 km/sec. and that of the spiral nebulae 400 km. The greatest individual values are approaching the sun. The spiral nebulae, with a few exceptions, are receding. The greatest individual values are —410 km for the cluster N. G. C. 6934 and +1800 km for the nebula N. G. C. 884.

Average velocities with regard to center of gravity of the stellar system, according to Campbell (Stellar Motion, 1913):

Type G Stars: 15.0 km. per sec.
" K " 16.8 " " " "
" M " 17.1 " " " Type B Stars: 6.6 km per sec. 10.9 " " " "

For radial velocities of 119 stars see Astrophysical Journal, 48, p. 261, 1918.

TABLE 537. - Distances of the Stars.

Distances.	Parsecs.*	Light years.
Alpha Centauri (nearest star) Barnard's Star. Sirius. Arcturus. The Hyades. Nebula of Orion (Kapteyn) Globular Clusters (Shapley): omega Centauri (nearest) N. G. C. 7006 (farthest).	1.32 1.9 2.7 13.0 40. 185. 6,500. 67,000.	4.3 6.3 8.7 43.0 130. 600.

^{*} Parsec = 206,265 astronomical units = 3.08 × 1013 km = 3.26 light years. 1 astronomical unit = distance sun

Practically all the stars visible to the naked eye lie within 1000 parsecs of the sun, and most of them are more than 100 parsecs distant. In the vicinity of the sun, the majority of the stars lie within two or three hundred parsecs of the galactic plane; but along this plane the star-filled region extends far beyond 1000 parsecs in all directions, and may reach 30,000 parsecs in the great southern star clouds (Shapley).

Average parallax 6 planetary nebulae, 0.018" (van Maanen, Pr. Nat. Acad. 4, p. 394, 1918).

TABLE 538.—Brightness of the Stars.

Stellar magnitudes give the apparent brightness of the stars on a logarithmic scale, — a numerical increase of one magnitude corresponding to a decrease of the common logarithm of the light by 0.400, and a change of five magnitudes to a factor of 100. The brightest objects have negative stellar magnitudes. The visual magnitude of the Sun is -26.75 of the mean full Moon, -12.55 of Venus at her brightest, -4.35 of Jupiter, apposition, -2.3; of Sirius, -1.6; of Vega, +0.2; of Polaris, +2.1. (The stellar magnitude of a standard candle 1 m distant is -14.18.) The faintest stars visible with the naked eye on a clear dark night are of about the sixth magnitude (though a single luminous point as faint as the eighth magnitude can be seen on a perfectly black background). The faintest stars visible with a telescope of aperture A in. are approximately of magnitude 9 + 5 logio A. The faintest sphotographed with the 60-inch reflector at Mt. Wilson are of about the 21st magnitude. A standard candle, of the same color as the stars, would appear of magnitude +0.8 at a distance of one kilometer.

The actual luminosity of a star is experiesced by means of its absolute magnitude, which (Kanteure's definition) is

magnitude +0.8 at a distance of one kilometer.

The actual luminosity of a star is expressed by means of its absolute magnitude, which (Kapteyn's definition) is the stellar magnitude which the star would appear to have if placed at a distance of ten parsees. The absolute magnitude of the sun is +4.8 (equal to that of α2 Centauri); of Sirius is +1.3; of Arcturus, -0.4. The faintest star at present known (Innes), a distant companion to α Centauri, has the (visual) absolute magnitude +15.4, and a luminosity 0.0000 that of the sun. The brightest so far definitely measured, β Orionis, has (Kapteyn) the abs. mag. -5.5 and a luminosity 13,000 times the sun's. Canopus, and some other stars, may be still brighter.

Intrinsic brightness of sun's surface = 57,000 candles per cm² of surface. (Abbot-Fowle, 1920)

The absolute magnitudes of 6 planetary nebulae average 9.1; average diameter, 4000 astronomical units (Solar system to Neptune = 60 astr. units), van Maanen, Pr. Nat. Acad. 4, p. 394, 1918.

Giant and Dwarf Stars.

The stars of Class B are all bright, and nearly all above the absolute magnitude zero. Stars of comparable brightness occur in all the other spectral classes, but the inferior limit of brightness diminishes steadily for the "later" or redder types. The distribution of absolute magnitudes conforms to the superposition of two series, in each of which the individual stars of each spectral class range through one or two magnitudes on each side of the mean absolute magnitude. In one, — the "giant stars," — this mean brightness is nearly the same for all spectral classes, and not far from absolute magnitude zero. In the other, — the "dwarf stars," — it diminishes steadily from about abs. mag. — 2 for Class Bo to + 1 of or Class M. The two series overlap in Classes A and F are fairly well separated in Class K, and sharply so in Class M. Two very faint stars of Classes A and F fall into neither series.

The majority of the stars visible to the naked eye are giants, since these, long brighter, can be seen at much greater distances. The greatest percentage of dwarf stars among those visible to the eye is found in Classes F and G. The dwarf stars of Classes K and M are actually much more numerous per unit of volume, but are so faint that few of the former, and none of the latter, are visible to the naked eye.

Adams and Stromberg have shown that the mean peculiar velocities of the giant stars are much greater, increasing within each spectral class by about 1.5 km per unit of absolute magnitude, and reaching fully 30 km for stars of Class M and abs. mag. 10. Both giant and dwarf stars show the phenomenon of preferential motion.

TABLE 539. - Masses and Densities.

The stars differ much less in mass than in any other characteristic. The greatest definitely determined mass is that of the brighter component of the spectroscopic binary β Scorpii, which is of 13 times the sun's mass, 400 times its luminosity, and spectrum B1. The smallest known mass is that of the faint component of the visual binary Krueger 60, whose mass is 0.15, and luminosity 0.0004 of the sun's, and spectrum M. The giant stars are in general more massive than the dwarfs. According to Russell (Publ. Astron. Soc. America, 3, 327, 1917) the mean values are:

Spectrum.	Mass of a Binary System.	Spectrum.	Mass.
B ₂	12 X Sun	F2 dwarf	3.0 X Sun
B2 Ao	6.5 "	G2 "	I. 2
F5 giant	8 " .	K8 "	0.9
W - 16	66		

The densities of stars can be determined only if they are eclipsing variables. It appears that the stars of Classes B and A have densities averaging about one tenth that of the sun and showing a relatively small range about this value, while those of Classes F to K show a wide range in density, from 1.8 times that of the sun (W Urs. Maj.) to 0.000002

while those of Classes F to K show a wide range in density, from 1.8 times that of the sun (W Urs. Maj.) to 0.000002 (W Crucis).

The surface brightness of the stars probably diminishes by at least one magnitude for each step along the Harvard scale from B to M. It follows that the dwarf stars are, in general, closely comparable with the s.n in diameter, while the stars of Classes B and A, though larger, rarely exceed ten times the sun's diameter. The red.ler giant stars, however, must be much larger, and a few, such as Antares, may have diameters exceeding that of the earth's orbit. The densities of these stars must be exceedingly low.

If arranged in order of increasing density, the giant and dwarf stars form a single sequence starting with the giant stars of Class M, proceeding up that series to Class B, and then down the dwarf series to Class M. It is believed by Russell and others that this sequence indicates the order of stellar evolution,—a star at first rising in temperature as it contracts and then cooling off again. The older theory, however, regards the evolutionary sequence as proceeding in all cases from Class B to Class M.

MISCELLANEOUS ASTRONOMICAL DATA.

```
Tropical (ordinary) year
                                  = \{365.24219879 - 0.0000000614 (t - 1900)\} days
Sidereal year
                                  = \{365.25636042 + 0.0000000011 (t - 1900)\} days
Anomalistic year
                                  = \{365.25964134 + 0.000000304 (t - 1900)\}  days
Eclipse year
                                  = \{346.620000 + 0.00000036 (t - 1000)\} days
Synodical (ordinary) month = \{29.530588102 - 0.0000000294 (t - 1900)\} days
                                  = \{27.321660890 - 0.00000000252 (t - 1900)\} days
Sidereal month
Sidereal day (ordinary, two successive transits
of vernal equinox, might be called equinoctial
day)
                                                           = 86164.00054 mean solar seconds
                                                           = 23 h. 56 m. 4.00054 mean solar time
Sidereal day (two successive transits of same
fixed star)
                                                           = 86164,00066 mean solar seconds
1020, Julian Period = 6633
January 1, 1920, Julian-day number = 2422325
Solar parallax = 8.7958'' \pm 0.002'' (Weinberg)

8.807 \pm 0.0027 (Hincks, Eros)

8.799 (Sampson, Jupiter satellites; Harvard observations)
                     8.80 Paris conference
Lunar parallax = 3422.63" = 57' 2.63" (Newcomb)
Mean distance earth to sun = 149500000 kilometers = 92900000 miles
Mean distance earth to moon = 60.2678 terrestrial radii
                                    = 384411 kilometers = 238862 miles
Light traverses mean radius of earth's orbit in 498.580 seconds
Velocity of light (mean value) in vacuo, 200860 kilometers/sec. (Michelson-Newcomb)
= 186324 statute miles/sec.
Constant of aberration
                                    = 20.4874'' \pm 0.005''
                                       20.47 Paris conference (work of Doolittle and others
                                         indicates value not less than 20.51)
Light year = 9.5 \times 10^{12} kilometers = 5.9 \times 10^{12} miles

Parsec, distance star whose parallax is 1 sec. = 31 \times 10^{12} km = 19.2 \times 10^{12} m

General precession = 50.2564'' + 0.000222 (t - 1900)'' (Newcomb)

Obliquity of ecliptic = 23^{\circ} 27' \cdot 8.26'' - 0.4684 (t - 1900)'' (Newcomb)

Constant of nutation = 9.21'' (Paris conference)
                                    = 666.07 \times 10^{-10} \text{ cm}^3/\text{g sec}^2 \pm 0.16 \times 10^{-10}
Gravitation constant
Eccentricity earth's orbit
                                    = e = 0.01675104 - 0.0000004180 (t - 1900) -
                                           0.000000000126 (t - 1900)^2
                                    = e_2 = 0.05490056 \text{ (Brown)}
= I = 5^{\circ} 8' 43.5'' \text{ (Brown)}
= 0.04488716 (Brown)
Eccentricity moon's orbit
Inclination moon's orbit
Delaunay's \gamma = \sin \frac{1}{2}I
Lunar inequality of earth
                                    =L=6.454''
                                    = Q = 124.785'' (Brown)
Parallactic inequality moon
Mean sidereal motion of = -19^{\circ} 21' 19.3838'' + 0.001294 (t - 1900)''
                                    = R. A., 12 h. 48 m.; Dec., +27°
Pole of Milky Way
```

TABLE 541. - The First-magnitude Stars.

No. Star.	Mag. Spo		Dec. 1900.	Annual proper motion,	P.A. of	Parallax.	Abs.	Radial velocity km.
Achernar Achernar Aldebaran † Altares †	-0.9 F -1.6 A 0.5 F5 1.2 K 1.3 B8 1.1 B1 1.5 B2 0.9 B1 0.2 K 0.3 G 1.2 M	5 4 30.2 5 9.3 5 9.8 6 21.7 6 40.7 7 34.1 7 39.2 8 12 21.0 112 41.9 113 56.8 14 11.1 14 32.8 18 33.6 18 33.6 19 35.0	-57° 45′ +16 18 +45 54 -8 19 +7 23 -52 38 -16 35 +5 29 +28 16 +12 27 -62 33 -59 9 -10 38 -59 53 +19 42 -60 25 -26 13 +38 41 +8 36 +44 55 -30 9	0.094" 0.203 0.437 0.001 0.020 0.018 1.316 1.242 0.625 0.247 0.048 0.056 0.055 0.041 2.282 3.680 0.346 0.345 0.055 0.001 0.365	108° 160 168 135 74 56 204 214 269 240 229 219 209 281 192 36 54 180 117	+0.051" +0.056 +0.075 +0.007 +0.019 +0.007 +0.376 +0.033 +0.047 +0.033 +0.075 +0.075 +0.075 +0.091 +0.091 +0.091 +0.091 +0.091 +0.091 +0.091 +0.091 +0.091 +0.091	-0.9 -0.2 -0.5 -5.5 -2.7 -6.7 +1.2 +3.0 +0.2 -1.1 -0.5 -4.0 -1.3 -0.5 +4.7 -1.5 -0.1 +2.5 -7.2 +2.0	+55.1 +50.2 +22.6 +21.3 +20.8 -7.4 -3.5 +3.0 -9.1 +7. -3.9 -21.6 -3.1 -13.8 -3.3 -4. +6.7

*Visual binary. † Spectroscopic binary. ‡ Pair with common proper motion.

§ Wide pair probably optical.

Mass relative to sun of (7) is 3.1; of (8), 1.5; of (16), 2.0. For description of types, see Table 534 or Annals of Harvard College Observatory, 28, p. 146, or more concisely 56, p. 66, and 91, p. 5. The light ratio between successive stellar magnitudes is \$\sqrt{100}\$ to or the number whose logarithm is 0.4000, viz., 2.512. The absolute magnitude of a star is its magnitude reduced to a distance corresponding to 0.1" parallax.

TABLE 542. - Wolf's Observed Sun-spot Numbers. Annual Means.

Sun-spot number = $k(10 \times \text{number of groups})$ and single spots observed + total number of spots in groups and single spots). k depends on condition of observation and telescope, equaling unity for Wolf with 3-in. telescope and power of 64. Wolf's numbers are closely proportional to spotted area on sun. 100 corresponds to about 1/500 of visible disk covered (umbras and penumbras). Periodicity: mean, 11.13, extremes, 7.3 and 17.1 years. Monthly Weather Review, 30, p. 171, 1902; monthly means, revised, 1749–1901; see A. Wolfer in Astronomische Mitteilungen and Zeitschrift für Meteorologie, daily and monthly values.

Year.	D	1	9	3	4	5	6	7	8	ŋ
1750 1760 1770 1780 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1990 1900	83 63 101 85 90 14 11 63 66 96 139 32 7 7	48 86 82 68 67 34 1 7 48 37 64 77 77 111 54 36	48 61 66 38 60 45 5 4 28 24 54 59 102 60 73 5	31 45 35 23 47 43 12 2 8 11 39 44 66 64 85 24	12 36 31 10 41 48 14 8 13 15 21 47 45 64 78 42 10	10 21 7 24 21 42 35 17 57 40 7 30 17 52 64 63 46	10 11 20 83 16 28 46 36 122 62 4 16 11 25 42 54 55	32 38 92 132 6 10 41 50 138 98 23 7 12 13 26 62	48 70 154 131 4 8 30 62 103 124 55 37 7 27 48 78	54 106 126 118 7 2 24 67 86 96 94 74 6 6 6 6

Note: The sun's apparent magnitude is -26.5, sending the earth 90,000,000,000 times as much light as the star Aldebaran. Its absolute magnitude is +4.8.

Ratio of total radiation of sun to that of moon about 100,000 to 1

"" light "" to the control of the contr

GEODETICAL AND ASTRONOMICAL TABLES.

TABLE 543 .- Length of Degrees on the Earth's Surface.

At	Miles per degree		Km. per degree		At	Miles per degree		Km. per degree	
Lat.	of Long.	of Lat.	of Long.	of Lat.	Lat.	of Long.	of Lat.	of Long.	of Lat.
0° 10 20 30 40 45 50	69.17 68.13 65.03 59.96 53.06 49.00 44.55	68.70 68.72 68.79 68.88 68.99 69.05 69.11	111.32 109.64 104.65 96.49 85.40 78.85 71.70	110.57 110.60 110.70 110.85 111.03 111.13	55° 60 65 70 75 80 90	39.77 34.67 29.32 23.73 17.96 12.05	69.17 69.23 69.28 69.32 69.36 69.39	64.00 55.80 47.18 38.19 28.90 19.39 0.00	111.33 111.42 111.50 111.57 111.62 111.67

For more complete table see " Smithsonian Geographical Tables."

TABLE 544 .- Equation of Time.

The equation of time when \pm is to be added to the apparent solar time to give mean time. When the place is not on a standard meridian (75 th, etc.) its difference in longitude in time from that meridian must be subtracted when east, added when west to get standard time (75 th meridian time, etc.). The equation varies from year to year cyclically, and the figure following the \pm sign gives a rough idea of this variation.

M. S	0.	M. S.		M. S.	•	M. S.
Jan. 1 + 3 26 15 + 9 25 Feb. 1 + 13 42 15 + 14 20 Mar. 1 + 12 34 15 + 9 9	9 May 1 2 15 4 June 1	-254 ± 3 -349 ± 1	Aug. I Sept. I	+3 3I±5 +5 42±3 +6 9±3 +4 24±5 +0 2±7 -4 4I±9	Oct. 1 15 Nov. 1 15 Dec. 1	-10 12 ± 8 -14 5 ± 6 -16 19 ± 2 -15 22 ± 4 -10 58 ± 8 - 4 53 ± 10

TABLE 545 .- Planetary Data.

Body.	Reciprocals of masses.	Mean distance from the sun. Km.	Sidereal period. Mean days.	Equatorial diameter. Km.	Inclination of orbit.	Mean density. H ₂ O=1	Gravity at surface.
Sun Mercury Venus Earth* Mars Jupiter Saturn Uranus Neptune Moon	I. 6000000. 408000. 329390. 3093500. 1047.35 3501.6 22869. 19700. †81.45	58 x 10 ⁶ 108 " 149 " 228 " 778 " 1426 " 2869 " 4495 " 38 x 10 ⁴	87.97 244.70 365.26 686.98 4332.59 10759.20 30685.93 60187.64 27.32	1391107 4842 12191 12757 6784 142745 120798 49693 52999 3476	7°.003 3.393 1.850 1.308 2.492 0.773 1.778 5.145	1.42 5.61 5.16 5.52 3.95 1.34 .69 1.36 1.30 3.36	28.0 0.4 0.9 1.00 0.4 2.7 1.2 1.0 1.0

^{*}Earth and moon. † Relative to earth. Inclination of axes: Sun 7°.25; Earth 23°.45; Mars 24°.6; Jupiter 2°.1; Saturn 26°.8; Neptune 27°.2. Others doubtful. Approximate rates of rotation: Sun 25½d; Moon 27½d; Mercury 88d; Venus 225d; Mars 24h 37m; Jupiter 9h 55m; Saturn 10h 14m.

TABLE 546. - Numbers and Equivalent Light of the Stars.

The total of starlight is a sensible but very small amount. This table, taken from a paper by Chapman, shows that up to the 20th magnitude the total light emitted is equivalent to 687 1st-magnitude stars, equal to about the hundredth part of full moonlight. If all the remaining stars are included, following the formula, the equivalent addition would be only three more 1st-magnitude stars. The summation leaves off at a point where each additional magnitude is adding more stars than the last. But, according to the formula, between the 23d and 24th magnitudes there is a turning point, after which each new magnitude adds less than before. The actual counts have been carried so near this turning point that there is no reasonable doubt of its existence. Given its existence, the number of stars is probably finite, a conclusion open to very little doubt. All the indications of the earlier terms must be misleading if the margin between 1 and 2 thousand millions is not enough to cover the whole. (Census of the Sky, Sampson, Observatory, 1015) atory, 1915.)

Magnitude,	Number.	Equivalent number of 1st- magnitude stars.	Totals to magnitude,	Magnitude,	Number.	Equivalent number of 1st- magnitude stars.	Totals to magnitude,
	a Carinæ a Centauri 8 27 73 189 650 2,200 6,600 22,550	11 6 2 14 17 18 19 26 35 42 56 65		9.0-10.0. 10.0-11.0. 11.0-12.0. 12.0-13.0. 13.0-14.0. 14.0-15.0. 15.0-16.0. 16.0-17.0. 17.0-18.0. 18.0-19.0. 19.0-20.0. All stars fainter than 20.0	7,820,000 14,040,000 25,400,000 38,400,000 54,600,000 76,000,000	69 68 60 51 40 31 23 16 10 5	380 448 508 559 599 630 652 668 678 684 687 690

TABLE 547. - Albedos.

The albedo, according to Bond, is defined as follows: "Let a sphere S be exposed to parallel light. Then its Albedo is the ratio of the whole amount reflected from S to the whole amount of light incident on it." In the following table, m = the stellar magnitude at mean opposition; g = magnitude it would have at full phase and unit distance from earth and sun; $\sigma =$ assumed mean semi-diameter at unit distance; $\rho =$ ratio of observed brightness at full phase to that of a flat disk of same size and same position, illuminated and viewed normally and reflecting all the incident light according to Lambert's law; g depends on law of variation of light with phase; albedo = pq. Russell, Astrophysical Lournal $4\pi = p_1/n_2$ ($2\pi = p_1/n_2$).

Albedo of the earth: A reduction of Very's observations by Russell gives 0.45 in close agreement with the recent value of Aldrich of 0.43 (see Aldrich, Smithsonian Misc. Collections, 69, 1919).

Object.	271	g	σ	Þ	ą	Visual albedo.	Color index.	Photo- graphic albedo.
Moon Mercury Venus Mars Jupiter Saturn Uranus Neptune	-2.94 -2.12 -4.77 -1.85 -2.29 +0.89	+0.40 -0.88 -0.06 -4.06 -1.36 -8.99 -8.67 -6.98 -7.06	2.40" 3.45 3.45 8.55 4.67 95.23 77.95 36.0 34.5	0.105 .164 .077 .492 .139 .375 .420 .42	0.694 0.42 0.72 1.20 1.11 1.5: 1.5: 1.5:	0.073 .069 .055 .59 .154 .56: .63: .63:	+1.18 - +0.78 +1.38 +0.50 +1.12	0.051 - .60 .090 .73: 0.47: -

TABLE 548. - Duration of Sunshine.

Declination of sun: approx. date:	-23° 27′ Dec. 22.	Feb o	-10° Feb. 23 Oct. 19.	-5° Mar. 8 Oct. 6.	o° Mar. 21 Sept. 23.	+5° Sept. 10 Apr. 3.	+10° Apr. 16 Aug. 28.	+15° May 1 Aug. 13.	+20° May 20 Jan. 24.	+23° 27' June 21
Latitude. 0° 10° 20° 30° 40° 50° 65° 70° 75° 80°	h m 12 07 11 32 10 55 10 13 9 19 8 04 7 09 5 52 3 34	h m 12 07 11 45 11 22 10 57 10 25 9 43 0 12 8 34 7 39 6 10 2 37	h m 12 07 11 53 11 38 11 21 11 01 10 34 10 15 9 52 9 19 8 31 7 04 3 10	h m 12 07 12 00 11 53 11 44 11 35 11 23 11 14 10 50 10 29 9 55 8 46	h m 12 07 12 07 12 07 12 08 12 09 12 10 12 12 12 13 12 16 12 19 12 26 12 38	h m 12 07 12 14 12 22 12 31 12 43 12 58 13 09 13 23 13 43 14 11 15 00 16 44	h m 12 07 12 21 12 37 12 55 13 17 13 48 14 09 14 36 15 15 16 15 18 05	h m 12 07 12 29 12 52 13 19 13 53 14 40 15 13 15 57 17 01 18 50	h m 12 07 12 36 13 08 13 46 14 32 15 38 16 26 17 31 19 19	h m 12 07 12 43 13 20 14 05 15 01 16 23 17 23 18 52 22 03

For more extensive table, see Smithsonian Meteorological Tables.

TABLES 549-552 .- SOLAR ENERCY.

TABLE 549. - The Solar Constant.

Solar constant (amount of energy falling at normal incidence on one square centimeter per minute on body at earth's mean distance) = 1.932 calories = mean 696 determinations 1902—12. Apparently subject to variations, usually within the range of 7 per cent, and occurring irregularly in periods of a week or ten days.

Computed effective temperature of the sun: from form of black-body curves, 6000° to 7000° Absolute; from λ max. = 2930 and max. = 0.470 μ , 6230°; from total radiation, $J = 76.8 \times 10^{-12} \times T^4$,

5830°.

TABLE 550. - Solar spectrum energy (arbitrary units) and its transmission by the earth's atmosphere.

Values computed from $e_m = e_0 a^m$, where e_m is the intensity of solar energy after transmission through a mass of air m; m is unity when the sun is in the zenith, and approximately = sec. zenith distance for other positions (see table 556); e_0 = the energy which would have been observed had there been no absorbing atmosphere; a is the fractional amount observed when the sun is in the zenith.

th.	Т	ransmis	sion co	ef-				Intens	sity Sola	ar Ene		rbitrary Units.	7		
Wave-length μ	Wash- ington.	Mount Wilson.	Mount Whitney.	nearer earth.		Mount Whitney.		Mount	Wilson			W	ashingt	on.	
	Wa	Mo	Mo	One	m = o	m = r	m = 1	2	4	6	m = 1	2	3	4	6
0.30 .32 .34 .36 .38 .40 .46 .50 .60 .70 .80 1.50 2.00		(.460) .520 .580 .635 .676 .729 .832 .900 .950 .970 .980 .976* .970*	(.550) .615 .692 .741 .784 .809 .887 .919 .940 .964 .976 .975 .965	.562 .768 .829 .850 .866 .903 .915 .941	54 111 232 302 354 414 618 606 504 266 166 63 25	30 68 160 224 278 335 548 557 474 351 260 162 61 23	25 58 135 192 239 302 514 522 454 346 258 163 61* 24*	11 30 78 122 162 220 428 450 409 329 250 160 60* 23*	2 8 26 49 74 117 296 334 331 297 235 154 57* 21*	1 2 9 20 34 62 205 248 268 268 221 147 55* 19*	134 232 426 441 393 312 236 153 59 23	51 130 294 323 306 268 209 141 55 21	19 73 203 237 238 230 185 130 52 19	7 41 140 174 185 197 164 120 49	3 13 67 94 112 145 102 43 14

Transmission coefficients are for period when there was apparently no volcanic dust in the air.

*Possibly too high because of increased humidity towards noon.

TABLE 551. — The intensity of Solar Radiation in different sections of the spectrum, ultra-violet, visual infra-red. Calories.

Wave-length		Mou	int Whi	tney.			Mount	Wilson		1	Washin	gton.	
μ μ	m=o	m=1	2	3	4	m = 1	2	3	4	m=1	2	3	4
0.00 to 0.45 0.45 to 0.70 0.70 to 00 0.00 to 00	.3t .71 .91	.25 .67 .87 1.78	.19 .62 .85 1.66	.16 .58 .82 1.56	.13 .54 .80	.23 .65 .69	.16 .57 .68	.12 .51 .66	.09 .45 .63	.13 .53 .69	.06 .40 .62 1.08	.04 .30 .57	.02 .24 .53

TABLE 552. — Distribution of brightness (Radiation) over the Solar Disk. (These observations extend over only a small portion of a sun-spot cycle.)

Wave- length.	μ 0 323	μ 0.386	μ 0.433	μ 0.456	μ 0.481	μ 0.501	μ 0.534	μ 0.604	μ 0.670	μ 0.699	μ 0.866	μ 1.031	μ 1.225	μ 1.655	μ 2.097
Fraction Radius. 0.00 50.00 40 60.00 55 60.00 60 60.00 60 60.	144 128 120 112 99 86 76 64 49	338 312 289 267 240 214 188 163 141	456 423 395 368 333 296 266 233 205	515 486 455 428 390 351 317 277 242	511 483 456 430 394 358 324 290 255	489 463 437 414 380 347 323 286 254	463 440 417 396 366 337 312 281 254	399 382 365 348 326 304 284 259 237	333 320 308 295 281 262 247 227 210	307 295 284 273 258 243 229 212 195	174 169 163 159 152 145 138 130	111 108 105.5 103 99 94.5 90.5 86 81	77.6 75.7 73.8 72.2 69.8 67.1 64.7 61.6 58.7	39.5 38.9 38.2 37.6 36.7 35.7 34.7 33.6 32.3	14.0 13.8 13.6 13.4 13.1 12.8 12.5 12.2

Taken from vols. II and III and unpublished data of the Astrophysical Observatory of the Smithsonian Institution. Schwartzchild and Villiger: Astrophysical Journal, 23, 1906.

ATMOSPHERIC TRANSPARENCY AND SOLAR RADIATION.

TABLE 553. - Transmission of Radiation Through Moist and Dry Air.

This table gives the wave-length, λ ; a the transmission of radiation by dry air above Mount Wilson (altitude = 1730 m. barometer, 620 mm.) for a body in the zenith; finally a correction factor, a_w , due to such a quantity of aqueous vapor in the air that if condensed it would form a layer f cm. thick. Except in the bands of selective absorption due to the air, a agrees very closely with what would be expected from purely molecular scattering. a_w is very much smaller than would be correspondingly expected, due possibly to the formation of ions by the ultra-violet light from the sun. The transmission varies from day to day. However, values for clear days computed as follows agree within a per cent or two of those observed when the altitude of the place is such that the effect due to dust may be neglected, e.g. for altitudes greater than 1000 meters. If B

the barometric pressure in mm., w, the amount of precipitable water in cm., then $a_B=a^{620}$ a_w^W . w is best determined spectroscopically (Astrophysical Journal, 35, p. 149, 1912, 37, p. 359, 1913) other-

wise by formula derived from Hann, $w = 2.3e_w 10^{-22000}$, e_w being the vapor pressure in cm. at the station, h, the altitude in meters. See Table 377 for long-wave transmission.

λ (μ) .360 a (.660) a _W .950	.384 .413 .45 .713 .783 .84 .960 .965 .96	.503 .885 .977 .980	.574 .624 .653 .905 .929 .938 .974 .978 .985	.720 .986 1.74 .970 .986 .990 .988 .990 .990
---	---	------------------------------	--	--

Fowle, Astrophysical Journal, 38, 1913.

TABLE 554. - Brightness of (radiation from) Sky at Mt. Wilson (1730 m.) and Flint Island (sea level).

Zenith dist. of zone . 108 × mean ratio sky/sun Mt. Wilson . Ditto × area of zone Mt. Wilson . Hint Island . Flint Island .	:	0-15 ⁰ 1500* 115 51.0 3.9	15-35° 400 122 58.8 17.9	35-50° 520 128 91.5 22.5	50-60° 610 150 87.2 21.4	60-70 ⁰ 660 185 104.3 29.2	70-80° 700 210 117.6 35.3	80-90 ⁰ 720 460 125.3 80.0		Sun. - 636 210
Altitude of sun . Sun's brightness, cal. per cm.² per min. Ditto on horizontal surface Mean brightness on normal surface sky × x Total sky radiation on horizontal cal. per c per m. Total sun + sky, ditto	o ⁸ /sun			5° .533 .046 423 .056 .102	15° .900 .233 403 .110 .343	25° 1.233 .524 .385 .162 .686	35° 1.358 .78° 365 .189	346	65° 1.496 1.355 326 1.225 1.581	82±0 1.521 1.507 310 -240 1.747

^{*} Includes allowance for bright region near sun. For the dates upon which the observation of the upper portion of table were taken, the mean ratios of total radiation sky/sun, for equal angular areas, at normal incidence, at the island and on the mountain, respectively, were 636×10^{-8} and 210×10^{-8} , on a horizontal surface, 305×10^{-8} and 77×10^{-8} ; for the whole sky, at normal incidence, 6.57 and 6.20; on a horizontal surface 6.27 and 6.77×10^{-8} ; hope sky, at normal incidence, 6.57 and 6.20; on a horizontal surface 6.27 and 6.77×10^{-8} ; hope sky, at normal incidence, 6.57 and 6.20; on a horizontal surface 6.27 and 6.77×10^{-8} ; hope sky, at normal incidence, 6.57 and 6.20; on a horizontal surface 6.27 and 6.77×10^{-8} ; hope sky, at normal incidence, 6.57×10^{-8} and 6.77×10^{-8} ; hope sky, at 6.77×10^{-8} ; here is a sky, at 6.77×10^{-8

TABLE 555. —Relative Distribution in Normal Spectrum of Sunlight and Sky-light at Mount Wilson.

Zenith distance about 50°.

	μ	μ	μ	μ	μ	μ	С	D	b	F
Place in Spectrum	0.422	0.457	0.491	0.566	0.614	0.660				
Intensity Sunlight	186	232	227	211	191	166				
Intensity Sky-light	1194	986	701	395	231	174				
Ratio at Mt. Wilson	642	425	309	187	121	105	102	143	246	310
Ratio computed by Rayleigh	-	-	-	-	-	-	102	164	258	328
Ratio observed by Rayleigh		-	-	-	-	-	102	168	291	360

TABLE 556. - Air Masses.

See Table 174 for definition. Besides values derived from the pure secant formula, the table contains those derived from various other more complex formula, taking into account the curvature of the earth, refraction, etc. The most recent is that of Bemporad.

Zenith Dist.	00	200	400	60°	700	75°	800	850	880
Secant Forbes Bouguer Laplace Bemporad	I.00 I.00 I.00 I.00	1.064 1.065 1.064	1.305 1.306 1.305	2.000 1.995 1.990 1.993 1.995	2.924 2.902 2.900 2.899 2.904	3.864 3.809 3.805	5.76 5.57 5.56 5.56 5.60	11.47 10.22 10.20 10.20 10.39	28.7 18.9 19.0 18.8 19.8

The Laplace and Bemporad values, Lindholm, Nova Acta R. Soc. Upsal. 3, 1913; the others, Radau's Actinometric, 1877.

TABLES 557-558.

RELATIVE INTENSITY OF SOLAR RADIATION.

TABLE 557.— Mean intensity J for 24 hours of solar radiation on a horizontal surface at the top of the atmosphere and the solar radiation A, in terms of the solar radiation, A_{\odot} , at earth's mean distance from the sun.

Date.	Motion of the sun in longi-			RELATI		-	E NORT	TENSITY	$\left(\frac{J}{A_{0}}\right)$	•		$\frac{A}{A_0}$
	tude.	00	100	200	30°	400	50 °	600	70°	80°	900	
Jan. I Feb. I Mar. I Apr. I May I June I July I Aug. I Sept. I Oct. I	0.99 31.54 59.14 89.70 119.29 149.82 179.39 209.94 240.50 270.07 300.63 330.19	0.303 .312 .320 .317 .303 .287 .283 .294 .310 .317 .312 .304	0.265 .282 .303 .319 .318 .315 .312 .316 .318 .308 .286	0.220 .244 .279 .312 .330 .334 .333 .330 .316 .289 .251	0.169 .200 .245 .295 .329 .345 .347 .334 .305 .261 .211	0.117 .150 .204 .269 .320 .349 .352 .330 .285 .225 .164	0.066 .100 .158 .235 .302 .345 .351 .318 .256 .183 .114	0.018 .048 .108 .195 .278 .337 .345 .300 .220 .135 .063	0.006 .056 .148 .253 .344 .356 .282 .180 .084	0.013 .101 .255 .360 .373 .295 .139	0.082 .259 .366 .379 .300 .140	I.0335 I.0288 I.0173 I.0009 0.984I 0.9714 0.9666 0.9709 0.9828 0.9995 I.0164 I.0288
Year		0.305	0.301	0.289	0.268	0.241	0.209	0.173	0.144	0.133	0.126	

TABLE 558, - Mean Monthly and Yearly Temperatures.

Mean temperatures of a few selected American stations, also of a station of very high, two of very low temperature, and one of very great and one of very small range of temperature.

	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
3 Montreal 4 Boston 5 Chicago 6 Denver 7 Washington 8 Pikes Peak 9 St. Louis 10 San Francisco 11 Yuma 12 New Orleans 13 Massaua 14 Ft. Conger (Greenl'd) 15 Werchojansk	-21.6 -10.9 - 2.8 - 4.8 - 2.1 + 0.7 -16.4 - 0.8 +10.1 +12.3 +12.1 +25.6	-18.8 - 9.1 - 2.2 - 2.9 + 0.1 + 2.1 - 15.6 + 1.7 + 10.9 + 14.5 + 26.0 - 40.1 - 45.3	-11.0 - 4.3 + 1.2 + 1.2 + 3.8 + 5.2 - 13.4 + 6.2 + 12.0 - 18.1 - 16.7 + 27.1 - 33.5 - 32.5	+ 1.9 + 4.8 + 7.3 + 7.9 + 8.3 + 11.7 - 10.4 + 13.4 + 12.6 + 21.0 - 25.3 - 13.7	+10.0 +12.6 +13.6 +13.4 +13.6 +17.7 -5.3 +18.8 +13.7 +25.1 +23.7 +31.1 -10.0 + 2.0	+17.1 +18.3 +19.1 +19.7 +19.1 +22.9 +0.4 +24.0 +14.7 +29.4 +26.8 +33.5 +0.4 +12.3	+18.9 +20.5 +21.8 +22.2 +22.1 +24.9 + 4.5 +26.0 +33.1 +27.9 +34.8 + 2.8 +15.5	+17.6 +19.3 +20.6 +21.6 +21.2 +23.7 +3.6 +24.9 +14.8 +32.6 +27.5 +34.7 +1.0 +10.1	+11.6 +14.7 +16.9 +17.9 +16.6 +19.9 +20.8 +15.8 +29.1 +25.7 +33.3 -9.0 +2.5	+ 4.1 + 7.8 + 11.1 + 10.3 + 13.4 - 5.8 + 14.2 + 15.2 + 22.8 + 21.0 - 31.7 - 22.7 - 150	- 7.6 - 0.2 + 4.8 + 3.6 + 3.3 + 6.9 - 11.8 + 13.5 + 16.6 + 15.9 + 29.0 - 30.9 - 37.8	-15.7 -7.1 -0.5 -1.5 0.0 +2.3 -14.4 +2.0 +10.8 +13.3 +13.1 +27.0 -33.4 -47.0	+ 0.6 + 5.5 + 9.2 + 9.1 + 9.7 + 12.6 - 7.1 + 13.1 + 13.2 + 22.3 + 20.4 + 30.3 - 20.0 - 16.7

Lat., Long., Alt. respectively: (1) $+58^{\circ}.5, 63^{\circ}.0$ W, -; (2) +49.9, 97.1 W, 233m.; (3) +45.5, 73.6 W, 57m.; (4) +42.3, 71.1 W, 38m.; (5) +44.9, 87.6 W, 251m.; (6) +39.7, 105.0 W, 1613m.; (7) +38.9, 77.0 W, 34m.; (8) +38.8, 105.0 W, 4308m.; (9) +38.6, 90.2 W, 173m.; (10) +37.8, 122.5 W, 47m.; (11) +32.7, 114.6 W, 43m.; (12) +30.0, 90.1 W, 16m.; (13) +15.6, 37.5 E, 9m.; (14) +81.7, 64.7 W., -; (15) +67.6, 133.8 E, 140m.; (16) -6.2, 106.8 E, 7m.

Taken from Hann's Lehrbuch der Meteorologie, 2'nd edition, which see for further data.

Note: Highest recorded temperature in world = 57° C in Death Valley, California, July 10, 1913.

Lowest recorded temperature in world = -68° C at Verkhoyansk, Feb. 1892.

THE EARTH'S ATMOSPHERE.

TABLE 559. - Miscellaneous Data. Variation with Latitude.

Optical ev, lence of atmosphere's extent: twilight 63 km, luminous clouds 83, meteors 200, aurora 44–360. Jeans computes a density at 170 km of 2 × 10¹⁵ molecules per cm³, nearly all H (5% He); at 810 km, 3 × 10¹⁶ molecules per cm³ almost all H. When in equilibrium, each gas forms an atmosphere whose density decrease with altitude is independent of the other components (Dalton's law, HaO vapor does not). The lighter the gas, the smaller the decrease rate. A homogeneous atmosphere, 76 cm pressure at sea-level, of sea-level density, would be 7991 m high. Average sea-level barometer is 74 cm; corresponding homogeneous atmosphere (truncated cone) 7790 m, weighs (base. m²) 10,120 kg; this times earth's area is 52 × 10¹⁴ metric tons or 10⁻⁶ of earth's mass. The percentage by vol. and the partial pressures of the dry-air components at sea-level are: N2, 78.03, 593.02 mm; O2, 20.99, 159.52; Å, 0.94, 7.144; (CO₂, 0.03, 0.228; H₂, 0.07, 0.075; Ne, 0.0012, 0.009; He, 0.0004, 0.003 (Hann). The following table gives the variation of the mean composition of moist air with the latitude (Hann).

Equator. N ₂ 75 50 N	32 20.80	A, 0.92 0.94 0.94	H ₂ O 2.63 0.92 0.22	CO ₂ 0.02 0.02 0.03
---------------------------------	----------	-------------------------	---------------------------------------	--------------------------------------

TABLE 560. - Variation of Percentage Composition with Altitude (Humphreys).

Computed on assumptions: sea-level temperature 11°C; temperature uniformly decreasing 6° per km up to 11 km, from there constant with elevation at -55° . J. Franklin Inst. 184, p. 388, 1917.

Height, km	Argon.	Nitrogen.	Water vapor.	Oxygen.	Carbon dioxide.	Hydrogen.	Helium.	Total pressure, mm
140	_	0.01	_	_	_	99.15	0.84	0.0040
120		0.10		_		98.74	1.07	0.0052
100	_	2.95	0.05	0.11	name.	95.58	1.31	0.0067
80	_	32.18	0.17	1.85	-	64.70	I.IO	0.0123
60	0.03	81.22	0.15	7.69		10.68	0.23	0.0935
50	0.12	86.78	0.10	10.17	_	2.76	0.07	0.403
40	0.22	86.42	0.06	12.61	-	0.67	0.02	1.84
30	0.35	84.26	0.03	15.18	0.01	0.16	0.01	8.63
000	0.59	81.24	0.02	18.10	0.01	0.04	-	40.99
15	0.77	79.52	O.OI	19.66	0.02	0.02		89.66
II	0.94	78.02	0.01	20.99	0.03	0.01		168.00
5	0.94	77.89	0.18	20.95	0.03	0.01	_	405.
10	0.93	77.08	I.20	20.75	0.03	0.01		760.

TABLE 561. -- Variation of Temperature, Pressure and Density with Altitude.

Average data from sounding balloon flights (65 for summer, 52 for winter data) made at Trappes (near Paris), Uccle (near Brussels), Strassburg and Munich. Compiled by Humphreys, 16 to 20 m chiefly extrapolated.

		Summer.			Winter.	
Elevation, km	Temp. ° C	Pressure, mm of Hg.	Density, dry air, g/cm³	Temp. ° C	Pressure, mm of Hg.	Density, dry air, g/cm ³
20.0	-51.0	44.I	0.000092	-57.0	39.5	0.000085
10.0	-51.0	51.5	801000.	-57.0	46.3	.000100
18.0	-51.0	60.0	.000126	-57.0	54.2	.000117
17.0	-51.0	70.0	.000146	-57.0	63.5	.000137
16.0	-51.0	81.7	.000171	-57.0	74.0	.000160
15.0	-51.0	95.3	.000199	-57.0	87.1	.000187
14.0	-51.0	III.I	.000232	-57.0	102.I	.000220
13.0	-51.0	129.6	.000270	-57.0	119.5	.000257
12.0	-51.0	151.2	.000316	-57.0	140.0	.000301
II.O	-49.5	176.2	. 000366	-57.0	164.0	.000353
10.0	-45.5	205.I	.000419	-54.5	192.0	801000
9.0	-37.8	237.8	.000470	-49.5	224. I 260. 6	.000466
8.0	-29.7	274.3	.000524	-43.0		.000526
7.0	-22.I	314.9	.000583	-35.4 -28.1	301.6	.00050
6.0	-15.1	360.2 410.6	.000649	-20.1 -21.2	347·5 398·7	.000735
5.0	-8.9 -3.0	466.6	.000722	-15.0	455.9	.000821
3.0	+2.4	528.9	.000892	-0.3	510.7	.000015
2.5	+5.0	562.5	.000042	-6.7	554.3	.000067
2.0	+7.5	598.0	.000000	-4.7	590.8	.001023
1.5	+10.0	635.4	.001013	-3.0	629.6	,001083
1.0	+12.0	674.8	.001100	-1.3	670.6	.001146
0.5	+14.5	716.3	.001157	0.0	714.0	.001215
0.0	+15.7	760.0	,001223	+0.7	760.0	.001200

760 mm = 29.921 in. = 1013.3 millibars. I mm = 1.33322387 millibars. I bar = 1.000,000 dynes; this value, sanctioned by International Meteorological Conferences, is 1,000,000 times that sometimes used by physicists.

SMITHSONIAN TABLES.

TERRESTRIAL TEMPERATURES.

TABLE 562. - Temperature Variation over Earth's Surface (Hann).

Total and In		Temperatures ° C							
Latitude.	Jan.	Apr.	July.	Oct.	Year.	Range.	ocean temp.	surface	
North pole +80° 70 60 50 40 30 20 +10 Equator -10 20 30 40 50 60 70 80 South pole	-41.0 -32.2 -26.3 -16.1 -7.2 +5.5 14.7 21.0 25.8 26.5 26.4 25.3 21.0 15.4 8.4 3.2 -1.2 (-4.3) (-6.0)	-28.0 -22.7 -14.0 -2.8 +5.2 13.1 20.1 25.2 27.2 26.6 25.9 24.0 18.7 12.5 5.4	-1.0 +2.0 7.3 14.1 17.9 24.0 27.3 28.0 27.0 25.7 23.0 10.8 14.5 8.8 3.0 -0.3 -21.0 (-28.7) (-33.0)	-24.0 -19.1 -9.3 +0.3 6.9 15.7 21.8 26.4 26.9 26.5 25.7 22.8 18.0 11.7 4.8	-22.7 -17.1 -10.7 -1.1 +5.8 14.1 20.4 25.3 26.8 26.3 25.5 23.0 18.4 11.9 5.4 -3.2 -12.0 (-20.6) (-25.0)	40.0 34.2 33.6 30.2 25.1 18.5 12.6 6.1 1.4 0.9 3.4 5.5 7.1 6.6 5.4 12.5 19.8 (24.4) (27.0)	-1.7 -1.7 +0.7 4.8 7.9 14.1 21.3 25.4 27.2 27.1 25.8 24.0 19.5 13.3 +6.4 0.0 -1.3	20 53 61 58 45 43.5 31.5 24 22 20 4 2 2 10 (100)	

TABLE 563. - Temperature Variation with Depth (Land and Ocean),

Table illustrates temperature changes underground at moderate depths due to surface warming (read from plot for Tiflis, Lehrbuch der Meteorologie, Hann and Süring, 1915). Below 20–30 m (nearer the surface in tropics) there is no annual variation. Increase downwards at greater depths, 0.03 = °C per m (r° per 35 m) l.c. At Pittsburgh, 1524 m, 49.4°, .0294 per m; Oberschlesien, 2003 m, 70°, .0294 per m; or W. Virginia, 2200 m, 70°, .034° per m (Van Orstrand). Mean value outflow heat from earth's center, 0.0000172 g-cal/cm²/sec. or 54 g-cal/cm²/year (39 Laby). Open ocean temperatures: Greatest mean annual range (Schott) 40° N, 4.2° C; 30° S, 5.1°; but 10° N, only 2.2° os S, 2.9°. Mean surface temp. whole ocean (Krümmel) 17.4°; all depths, 3.9°. Below 1 km nearly isothermal with depth. In tropics, surface 28°; at 183 m, 11°, 80% all water less than 4.4°. Deep-sea (bottom) temps. range —0.5° to +2.6°. Soundings in S. Atlantic: 0 km, 18.9°; .25 km, 15°; .5 km, 8.3°; 1 km, 3.3°; 3 km, 1.7°; 4.5 km, 0.6°.

Depth,		Temperature, centigrade.										
m	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
0.5 1.0 1.5 2.0 3.0 4.0 5.0	1 4 6 D 11 14 15 15	4 6 8 10 12 13 14 14	10 9 8 9 10 12 12 13 14	14 13 12 11 11 11 12 13	21 18 15 14 13 13 12 13	29 23 20 18 16 14 13 13	32 26 24 21 10 16 14 14	32 28 26 23 21 17 16 14	24 24 23 22 21 18 16 15	16 18 18 18 18 18 17 16	12 14 15 16 17 17 16	4 6 10 12 14 15 16 16

TABLE 564.

GEOCHEMICAL DATA.

Eighty-three chemical elements (86 including Po, Ac and UrX₂) are found on the earth. Besides the eight occurring uncombined as gases, 23 may be found native, Sb, As, Bi, C, Cu, Au, Ir, Fe, Pb?, Hg, Ni, Os, Pd, Pt, Rh, Ru, Se, Ag, S, Ta?, Te, Sn?, Zn?. Combined the elements form about 1000 known mineral species. Rocks are in general aggregates of these species. Some few (e. g., quartritte, limestone, etc.) consist of one specie. We have some knowledge of the earth to a depth of 10 miles. This portion may be divided into three parts: the innermost of crystalline or plutonic rocks, the middle, of sedimentary or fragmentary rocks, the outer of clays, gravels, etc. 93% of it is solid matter, 7% liquid, and the atmosphere amounts by weight to 0.03% of it. Besides the 9 major constituents of igneous rock (see 7th col. of table) 3 are notable by their almost universal occurrence, TiO₂, P₂O₆, and MnO. Bo, Gl, and Sc are also widely distributed. widely distributed.

The density of the earth as a whole is 5.52 (Burgess); continental surface, 2.67 and outer 10 miles of crust, 2.40 (Harkness). Computed from average chemical composition: outer ten miles as a whole, 2.77; northern continents 2.73; southern, 2.76; Atlantic basin, 2.83; Pacific basin, 2.88.

Data of Geochemistry, Clarke, Bul. 616, U. S. Geological Survey, 1916; Washington, J. Franklin. Inst. 190,

p. 757, 1920.

AVERAGE COMPOSITION OF KNOWN TERRESTRIAL MATTER.

	Avera	age compo	sition.		Ave	erage com	position (of lithosp	here.	
Atomic number and element.	Litho- sphere, 93%	Hydro- sphere, 7%	Average including atmosphere.	Igneous rocks.	Compound.	Igneous rocks, 95%	Shale,	Sand- stone, 0.75%	Lime- stone, 0.25%	Weighted average.
8 O 14 Si 13 Al 26 Fe 20 Ca 12 Mg 11 Na 19 K 1 H 22 Ti 6 C 17 Cl 35 P 16 S 56 Ba 25 Mn 38 Sr 7 N 9 Fl etc.	47-33 27-74 7-85 4-50 3-47 2-24 6-2-46 0-22 0-46 10 0-06 	85.79	46.43 27.77 8.14 5.12 3.63 2.09 0.127 .029 .027 .055 -130 .052 .048 .096 .018	47. 29 28. 02 7. 96 4. 56 3. 47 2. 29 2. 50 2. 50 2. 47 0. 16 13 .063 	SiO ₂ AlaO ₃ FesO ₃ FesO ₃ FesO ₃ FesO ₃ FesO ₃ FesO ₄ MgO CaO MgO CaO MayO TiOc. ZrO ₂ CO ₂ PsO ₅ SO ₃ CC FesO ₃ FesO ₄ MnO NiO CroO ₃ VsO ₅ Coros LizO Coc. LizO Cc.	59-09 15-35 3-80 3-80 3-49 5-08 3-84 3-13 1-14 1-02 30 -053 -055 -022 1-25 -022 1-25 -026 -032 -032 -032	58. 10 15. 40 4.02 2. 45 2. 44 3. 11 1. 30 .65 2. 63 .17 .64 	78.33 4.77 1.07 1.16 5.50 1.16 5.50 1.31 1.63 225 5.03 .08 .07 	5.19 0.81 .54 7.89 42.57 .05 .33 .77 .06 .04 .09 .05 .02	59. 77 14. 89 2. 69 3. 39 3. 74 4. 86 3. 25 2. 98 2. 02 77 02 70 28 10 03 06 09 09 09 09 025 05 001

AVERAGE COMPOSITION OF METEORITES: The following figures give in succession the element, atomic number (bracketed), and the percentage amount in stony meteorites (Merrill, Mem. Nat. Acad. Sc. 14, p. 28, 1916). The "iron" meteorites contain a much larger percentage of iron and nickel, but there is a tendency to believe that with such meteorites the composition is altered by the volatilization or burning up of the other material in passing through the air. Note the greater abundance of elements of even atomic number (97.2 per cent).

S (16) 1.80 (18) Na (11) 1.64 (18) C (6) 0.15 (18) H (19) 0.09 (18)	Fe (26) 23.32 Si (14) Ca (20) 1.72 Cr (24) 0.32 Mn (25) Co (27) 0.12 Cu (29) 0.01 Pd (46) tr. Pt (78)	18.03 Mg (12) 13.60 1.53 Ni (28) 1.52 0.23 K (19) 0.17 0.11 P (15) 0.11 0.09 V (23) tr. tr. Ir (77) tr.
---	---	---

TABLE 565.

ACCELERATION OF GRAVITY.

For Sea Level and Different Altitudes.

Calculated from U. S. Coast and Geodetic Survey formula, p. 134 of Special Publication No. 40 of that Bureau. $g = 9.78039 \; (1 + 0.005204 \; sin^2 \; \phi - 0.00007 \; sin^2 \; 2\phi) \; m \\ g = 32.08783 \; (1 + 0.005294 \; sin^2 ; \phi - 0.00007 \; sin^2 \; 2\phi) \; ft.$

Latitude ϕ	cm/sec²	log g	ft./sec²	Latitude ϕ	cm/sec²	log g	ft./sec²
o°	078.030	2.0003562	32.0878	50°	981.071	2.9917004	32.1873
5	.078	. 9903735	.0891	51	.159	.9917394	. 1902
10	. 195	. 9904254	.0929	52	. 247	.9917784	. 1931
12	. 262	. 9904552	.0951	53	.336	.9918177	. 1960
14	.340	. 9904898	.0977	54	.422	.9918558	. 1988
15	978.384	2.9905094	32.0991	55	981.507	2.9918934	32.2016
16	. 430	. 9905298	.1007	56	. 592	.9919310	. 2044
17	. 480	. 9905520	. 1023	57 58	.675	.9919677.	. 2071
18	-532	.9905750	.1040		.757	.9920040	. 2098
19	. 585	,9905985	.1057	59	.039	.9920403	.2125
20	978 641	2.9906234	32.1076	60	981.918	2.9920752	32.2151
21	.701	. 9906500	.1095	61	.995	.9921073	.2176
22	. 763	.9906775	.1116	62	982.070	.9921424	.2201
23	.825	. 9907050	.1136	63	.145	.9921756	. 2225
24	. 892	. 9907348	.1158	64	.218	.9922079	. 2249
25	978.960	2.0007640	32.1180	65	982.288	2.9922388	32.2272
26	979.030	. 9907960	. 1203	66	.356	.9922689	. 2295
27	. IOI	.9908275	.1227	67	.422	.9922981	. 2316
28	.175	.9908603	.1251	68	. 487	.9923268	. 2338
29	. 251	.9908940	.1276	69	- 549	.9923542	. 2358
30	979.329	2.9909286	32.1302	70	982.608	2.9923803	32.2377
31	.407	. 9909632	.1327	71	.665	. 9924055	. 2396
32	. 487	. 9909987	.1353	72	.720	.9924298	. 2414
33	. 569	.9910350	.1380	73	-772	.9924528	. 2431
34	.652	.9910718	.1407	74	.822	.9924749	. 2448
35	979 - 737	2.9911095	32.1435	75	982.868	2.9924952	32.2463
36	.822	.9911472	. 1463	76	.912	.9925147	. 2477
37	. 908	.9911853	.1491	77	.954	.9925332	. 2491
38	.995	.9912238	.1520	78	.992	.9925500	. 2503
39	980.083	.9912628	.1549	79	983.027	.9925655	. 2515
40	980.171	2.9913018	32.1578	80	983.059	2.9925796	32.2525
41	. 261	.9913417	.1607	81	.089	.9925929	- 2535
42	.350	.9913812	.1636	82	.115	.9926043	- 2544
43	. 440	.9914210	.1666	8 ₃ 8 ₄	.139	.9926149	. 2552
44	.531	.9914613	. 1696	04		.9926242	. 2558
45	980.621	2.9915011	32.1725	8 ₅ 86	983.178	2.9926321	32.2564
46	.711	.9915410	.1755	80	.191	.9926379	. 2569
47 48	.802	.9915814	.1785	88	. 203	. 9926432	. 2572
40	. 092	.9916212	. 1844	00	983.217	. 9920407	.2575

To reduce log g (cm. per sec.) to log g (ft. per sec.) add log 0.03280833 = 8.5159842 — 10.

The standard value of gravity, used in barometer reductions, etc., is 980.665. It was adopted by the International Committee on Weights and Measures in 1901. It corresponds nearly to latitude 45° and sea-level.

FREE-AIR CORRECTION FOR ALTITUDE.

-0.0003086 cm/sec²/m when altitude is in meters. -0.000003086 ft/sec²/ft when altitude is in feet.

Altitude.	Correction.	Altitude.	Correction.
200 m.	-0.0617 cm/sec ²	200 ft.	-0.000617 ft./sec ²
300	.0026	300	.000026
400	.1234	. 400	.001234
500	. 1543	500	.001543
600	. 1852	600	.001852
700	. 2160	700	.002160
800	. 2469	800	.002469
900	. 2777	900	.002777

GRAVITY.

The following more recent gravity determinations (Potsdam System) serve to show the accuracy which may be assumed for the values in Table 565, except for the three stations in the Arctic Ocean. The error in the observed gravity is probably not greater than 0.010 cm/sec², as the observations were made with the half-second invariable pendulum, using modern methods.

using modern methods.

In recent years the Coast and Geodetic Survey has corrected the computed value of gravity for the effect of material above sea-level, the deficiency of matter in the oceans, the deficiency of density in the material below sea-level under the continents and the excess of density in the earth's crust under the ocean, in addition to the reduction for elevation. Such corrections make the computed values agree more closely with those observed. See special publication No. 40 of the U. S. Coast and Geodetic Survey entitled, "Investigations of Gravity and Isostasy," by William Bowie, 1917; also Special Publication No. 10 of same bureau entitled, "Effect of Topography and Isostatic Compensation upon the Intensity of Gravity," by J. F. Hayford and William Bowie, 1912.

		Elevation.	Gravity	, cm/sec²	Refer-
Name.	Latitude.	meters.	Observed.	Reduced to sea-level.	ence.
Kodaikanal, India	10° 14′	2336	977.645	978.366	I
Ootacamund, India	II 25	2254	977 - 735	978.427	2
Madras, India	13 4	6	978.279	978.281	2 2
Cuttack, India	-15 55 20 20	28	978.712	978.668	2
Amraoti, India	20 56	342	978.609	978.714	2
Jubbulpur, India	23 0	447	978.719	978.856	2
Gaya, İndia	24 48	IIO	978.884	978.918	2
Siliguri, India	26 42	118	978.887	978.923	2
Kuhrja, India	28 14	198	979.082	979.143	2
Galveston, Texas	29 18	3	979.272	979.273	2
Rajpur, India	30 24	1012	979.002	979.313	2 2
Alexandria, La	31 IQ 32 2I	2.1	979.429	979.436	2
McCormick, S. C	33 55	163	979.624	979.674	2
Shamrock, Texas	35 13	708	979 - 577	979.795	2
Cloudland, Tenn	36 6	1890	979.383	979.966	2
Mount Hamilton, Cal	37 20	1282	979.660	980.056	2
Kala-i-Chumb, Turkestan	38 27	1345	979.462	979.877	2
Denver, Col	39 41	1638	979.609	980.114	2
Hachinohe, Japan	40 31	21	980.359	980.365	2
Chicago, Ill	41 47	182	980.278 980.344	980.334 980.363	2 2
Florence, Italy	42 39 43 45	184	980.344	980.548	2 2
Minneapolis, Minn.	43 43	256	980.597	980.548	2
Simplon Hospice, Switzerland	46 15	1008	080.202	080.810	2
Fort Kent, Me	47 15	160	980.765	080.814	2
Sandpoint, Idaho	48 16	637	980.680	980.877	. 2
Medicine Hat, Canada	50 2	664	980.865	981.070	2
Field, Canada	5I 24	1239	980.745	981.127	2
Magleby, Denmark	54 47	14	981.502	981.506	I
Copenhagen, Denmark	55 41	14	981.559 981.726	981.563 981.729	1 2
Fredericksvarn, Norway	57 7 50 0	10	081.874	981.877	2 T
Christiania, Norway	59 55	28	081.027	981.936	1
Ashe Inlet, Hudson Strait.	62 33	15	982.105	082.110	3
St. Michael, Alaska	63 28	- S	982.192	982.192	2
Hatnarfjordr, Iceland	64 3	4	982.266	982.267	I
Niantilik, Cumberland Sound	64 54	7	982.273	982.275	3
Glaesibaer, Iceland	65 46	10	982.342	982.345	I
Sorvagen, Norway	67 54	19	982.622	982.628	2
Umanak, Greenland Danes Island, Spitzbergen	70 40 70 46	10	982.590 983.078	982.593 983.079	3
Arctic Sea	79 46 84 12	3	983.100	983.079	I
Arctic Sea	84 52	0	083.174	983.174	I
Arctic Sea	85 55	a	083.155	083.155	I I
	-5 55		3-0-03	y =0,=33	

References: (1) Report 16th General Conference International Geodetic Association, London and Cambridge, 1909, 3d Vol. by Dr. E. Borráss, 1911; (2) U. S. Coast and Geodetic Survey, Special Publ. No. 40; * (3) U. S. Coast and Geodetic Survey, Report for 1897, Appendix 6.*

^{*}For references (2) and (3), values were derived from comparative experiments with invariable pendulums, the value for Washington being taken as 980.112. For the latter, Appendix 5 of the Coast and Geodetic Survey Report for 1901, and pages 25 and 244 of the 3d vol. by Dr. E. Borráss in 1911 of the Report of the 16th General Conference of the Intern. Geodetic Association, London and Cambridge, 1909. As a result of the adjustment of the net of gravity base stations throughout the world by the Central Bureau of the Intern. Geodetic Association, the value of the Washington base station was changed to 980.112.

ACCELERATION OF GRAVITY (g) IN THE UNITED STATES.

The following table is abridged from one for 210 stations given on pp. 50 to 52, Special Publication No. 40, U. S. Coast and Geodetic Survey. The observed values depend on relative determinations and on adopted value of 980.112 for Washington (Coast and Geodetic Survey Office, see footnote, Table 566). There are also given terms necessary in reducing the theoretical value (Table 565) to the proper elevation (free-air) and to allow for topography and isostatic compensation by the Hayford method (see introductory note to Table 566).

To a certain extent, the greater the bulk of material below any station, the less its average density. This phenomenon is known as isostatic compensation. The depth below sea-level to which this compensation extends is about 96 km. Below this depth any mass element is subject to equal (fluid) pressure from all directions.

	_				Corr	ection.
Station.	Latitude.	Longitude.	Eleva- tion, meters.	Observed g cm/sec²	Elevation, cm/sec ²	Topography and com- pensation, cm/sec ²
Key West, Fla. New Orleans, La. Austin, Tex. university El Paso, Tex. Yuma, Ariz. Charleston, S. C. Birmingham, Ala. Arkansas City, Ark. Atlanta, Ga. capitol. Beaufort, N. C. Little Rock, Ark. Memphis, Tenn. Charlotte, N. C. Las Vegas, N. Mex. Knoxville, Tenn. Grand Canyon, Ariz. Cloudland, Tenn. Mount Hamilton, Cal., Obs'y. Richmond, Va. San Francisco, Cal. St. Louis, Mo., university. Pike's Peak, Col. Colorado Springs, Col. Washington, D. C., Bur. St'ds. Wallace, Kans. Green River, Utah. Cincinnati, Ohio, obs'y. Baltimore, Md., university Terre Haute, Ind. Denver, Col., university Wheeling, W. Va. Princeton, N. J. Pittsburg, Pa. Salt Lake City, Utah. New York, N. Y., university. Winemucca, New. Cleveland, Ohio Chicago, Ill., university. Worcester, Mass. Cambridge, Mass. observatory Ithaca, N. Y., university. Boise, Idaho. Mitchell, S. Dak. university. Boise, Idaho. Mitchell, S. Dak. university. Boise, Idaho. Minneapolis, Minn. Calais, Me. Miles City, Mont. Seattle, Wash. university. Pembina, N. Dak.	29 57.0 30 17.2 31 46.3 32 47.2 33 30.8 32 47.2 33 30.5 33 45.0 33 45.0 34 43.1 35 13.8 35 13.8 35 13.8 35 13.8 35 13.8 35 13.8 35 13.8 35 13.8 35 13.8 35 13.8 35 13.8 35 13.8 35 13.8 36 5.3 37 47.5 38 50.3 38 50.7 38 50.3 38 50.7 38 50.3 38 50.7 38 50.3 39 17.8 30 28.7 30 28.7 30 40.6 40 27.4 40 46.1 40 47.4 42 16.5 43 37.2 43 41.8 44 29.5 44 49.9 43 37.2	81° 48.4′ 90 4.2 97 44.2 97 44.2 97 44.2 97 60.0 114 37.0 79 56.0 86 48.8 91 12.2 84 23.3 76 39.8 92 16.4 90 3.3 80 50.8 105 12.1 83 55.1 112 6.8 82 7.9 121 38.6 77 26.1 122 25.7 90 12.2 105 2.0 104 49.0 77 4.0 101 35.4 110 9.9 84 25.3 87 23.8 104 56.9 75 11.7 80 43.4 110 9.9 84 25.3 87 23.8 104 56.9 75 11.7 80 43.4 110 53.8 76 37.3 87 36.1 71 48.5 71 7.8 72 29.0 73 11.4 85 40.8 76 29.0 76 11.4 85 40.8 76 29.0 76 11.4 85 40.8 76 29.0 76 11.4 85 40.8 76 29.0 76 11.4 85 40.8 76 29.0 76 11.4 85 40.8 76 29.0 76 11.5 71 48.5 71 7.8 71 7.8 72 29.0 73 11.4 74 39 13.9 75 11.4	1 2 189 1146 54 6 6 6 179 444 1 1 89 80 228 1960 280 1154 4293 1841 103 1005 1243 245 30 151 1638 166 205 64 235 1322 170 182 170 142 236 270 821 408 261 2386 256 258 718 58 243	978. 970 979. 324 979. 283 979. 124 979. 529 979. 536 979. 536 979. 536 979. 536 979. 720 979. 721 979. 727 979. 204 979. 727 979. 204 979. 712 979. 463 979. 383 979. 660 979. 965 979. 965 979. 755 980. 001 978. 954 980. 097 980. 097 980. 097 980. 097 980. 097 980. 097 980. 097 980. 097 980. 097 980. 097 980. 097 980. 097 980. 097 980. 097 980. 097 980. 118 980. 128 980. 385 980. 372 979. 844 980. 241 980. 375 980. 375 980. 375 980. 375 980. 375 980. 375 980. 375 980. 537	0.0000010583540170020250141000270250700862625833960350481.325568032310070052063048076099047505063063099047505063099047065063099073404065052094076052073083083253126081073081079012222018075	+0.035 +0.035 -0.011 -0.010 +0.016 +0.014 +0.020 +0.015 +0.017 -0.010 +0.020 +0.012 -0.000 +0.012 -0.001 +0.012 -0.001 +0.012 -0.001 +0.012 -0.001 +0.012 -0.001 +0.012 -0.001 +0.012 -0.001 +0.012 -0.001 +0.012 -0.001 +0.012 -0.001 +0.012 -0.001 +0.012 -0.001 +0.012 -0.001 +0.012 -0.001 -0.013 +0.012 -0.001 -0.013 +0.001 -0.014 +0.015 +0.015 +0.015 +0.015 +0.012 -0.001 -0.015 +0.015 +0.015 +0.015 +0.015 +0.012 -0.001 -0.015 +0

TABLE 568. - Length of Seconds Pendulum at Sea Level and for Different Latitudes.

	Length in cm	Log.	Length in inches.	Log.		Length in cm	Log.	Length in inches.	Log.
5 10 15 25 30 35 40 45	99.0961 .1000 .1119 .1310 .1571 99.1894 .2268 .2681 .3121 .3577	1.996056 .996074 .996126 .996210 .996324 1.996465 .996629 .996810 .997002	39.0141 .0157 .0204 .0279 .0382 39.0509 .0656 .0819 .0992 .1171	1.591222 .591239 .591292 .591375 .591490 1.591631 .591794 .591976 .592168 .592367	50 55 60 65 70 75 80 85 90	99.4033 .4475 .4891 .5266 .5590 99.5854 .6047 .6168 .6207	I.997401 .997594 .997776 .997939 .998081 I.998196 .998280 .998332 .998350	39.1351 .1525 .1689 .1836 .1964 39.2068 .2144 .2191 .2207	1.592566 .592760 .592941 .593104 .593246 1.593361 .5933446 .593498 .593515

TABLE 569. - Miscellaneous Geodetic Data.

6378388 ± 18 meters; Equatorial radius = a = 6378206 meters; 3963.339 miles. 6356909 meters; $= b = \frac{3963.225 \text{ miles.}}{6356584 \text{ meters;}}$ Polar semi-diameter Survey. 3949.992 miles. 3949.790 miles. Reciprocal of flattening = $\frac{a}{a-b}$ = 295.0 297.0 ± 0.5 Square of eccentricity $= e^2 = \frac{a^2 - b^2}{a^2} = 0.006768658$ 0.0067237 ± 0.0000120

Difference between geographical and geocentric latitude $= \phi - \phi' = 688.2242'' \sin 2\phi - 1.1482'' \sin 4\phi + 0.0026'' \sin 6\phi$.

Mean density of the earth = 5.5247 ± 0.0013 (Burgess Phys. Rev. 1902).

Continental surface density of the earth = 2.67 Mean density outer ten miles of earth's crust = 2.40 Harkness. See also page 423.

Constant of gravity, 6.66 × 10-8 c.g.s. units.

Rigidity = $n = 8.6 \times 10^{11}$ c.g.s. units. Viscosity = $e = 10.9 \times 10^{16}$ c.g.s. units (comparable to steel).

Moments of inertia of the earth; the principal moments being taken as A, B, and C, and C the greatest:

$$\frac{C-A}{C}=0.00326521=\frac{1}{306.259};$$

$$C-A=0.001064767 Ea^2;$$

$$A=B=0.325029 Ea^2;$$

$$C=0.326004 Ea^4;$$
 where E is the mass of the earth and a its equatorial semi-diameter.

TABLE 570.

TERRESTRIAL MAGNETISM.

Secular Change of Declination.

Changes in the magnetic declination between 1810, the date of the earliest available observations, and 1920. Based on tables in "Distribution of the Magnetic Declination in Alaska and Adjacent Regions in 1910" and "Distribution of the Magnetic Declination in the United States for January 1, 1915," published by the United States Coast and Geodetic Survey. For a somewhat different set of stations, see 6th Revised Edition of the Smithsonian Physical Tables.

						_							
State.	Station.	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900	1910	1920
		0	0	0	0	0	0		0	0	0	0	0
Ala.	Ashland		6.2E		5.9 E	= 6 E			_		_	_	
7	Tuscaloosa			7.3 E		6.QE	6.6E	4.7E 6.1E	5.5E	4.8 E	4.4E	4.4E	4.6E
Alas.	Sitka	_	-	-	_	_	28.7 E	20.0 E	20.3 E	20.5 E	20.7 E	30.2 E	30.4E
	Kodiak	-	-	-	_	-	26.2 E	25.7 E	25.2 E	24.8 E	24.5 E	24.2 E	24.2 E
	Unalaska St. Michael		_	_	_		20.4 E	20. I E					
Ariz.	Holbrook							13.8E	13.6E	23.IE	13.5 E	14. I E	14.5 E
	Prescott	_	=	_	_	13.3E	13.6E	13.7 E	13.7 E	13.6E	13.7 E	IA.AE	IA.OE
Ark.	Augusta Danville	7.7 E	7.9 E	8.0E	8.0E	7.8E	7.5 E	7. I E	6.5E	5.9E	5.5 E	5.6E	5.8E
Cal.	Danville Bagdad	-	=	9.3 E	9.3E	9.2E	9.0E	8.6E	8. I E	7.0 E	7.2 E	7.4E	7.7E
Call.	Mojave	T2 AF	T2 OF	13.1 E	13.5 E	13.9E	14.1E	14.3 E	14.4E	14.4E	14.0E	15.3E	16 2 E
	Modesto	13.8 E	14.2 E	14.7 E	15.1 E	15.5E	15.8E	16.1 E	16.1E	16.2E	16.6 E	17.3E	17.7E
	Redding	15.6 E	16.1 E										
Colo.	Pueblo Ouray		_	_	_	13.7E	13.8E	13.7 E	13.5 E	13.0E	12.8E	13.3E	13.7E
Conn.	Hartford	C TW	c cw	6 rw	6 8w	7 5W	8 TW	15.2E	15.0E	0.8W	10 AW	15.1E	12.5E
Del.	Dover	I.OW	I.OW	2.3W	2.8W	3.4W	4.0W	4.7W	5.3W	5.9W	6.5W	7.2W	8.ow
D. C.	Washington Miami	0.5E	0.3E					2.4W					
Fla.	Bartow	5.8E	5.7 E					3.3 E					
	Jacksonville	5.5E	5.4 E 5.0 E			4.4E		3.2E 3.0E					
	Tallahassee	5.8E	5.8 E					4.2E					
Ga.	Millen	4.9E	4.8 E	4.6E	4.3 E	3.9E	3.4E	2.7 E	2. I E	1.5 E	O.QE	0.7 E	0.5E
Haw.	Americus	5.9 E	0.0E	5.9 E		5.2 E	4.7 E	4. I E	3.5 E	2.9E	2.4E	2.2E	2.2E
Idaho	Pocatello			_		9.4E	9.4E	9.5E 18.0E	9.8E	10.1 E	10.4E	10.7E	18 8 E
	Boise	_	_	=				18.8E					
711	Pierce				20.2 E	20.6 E	21.0E	21.2 E	21.1 E	21.2E	21.4E	22.0E	22.2E
III.	Kankakee Rushville	0.6 E	6.8E		6.6E	6.3E	5.8E	5.3 E	4.8E	4. I E	3.5 E	3.3E	3.1E
Ind.	Indianapolis	SOE	O.O.E	O.IE	0.0E	7.0E	7.4E	7.0E	0.4E	5.7 E	5.2E	5.IE	S.IE
Iowa	Walker	-	8.9E	Q. I E	Q. I E	8. Q E	8.6 E	3.3E 8.2E	7.5E	6.8E	6.2E	6.2E	6.2E
V	Sac City		10.4 E	10.7 E	10.8 E	10.8E	10.5 E	10.2 E	O. OE	8.8 E	8.4 E	8.6 E	8.6E
Kans.	Emporia Ness City	_	=	_	_	11.5 E	II.4E	II.2E I2.2E	10.8E	10.2 E	9.9E	IO. I E	10.3E
Ky.	Manchester	3.5 E	3.6E	3.4E	3. T.E.	2.4E	2 2 E	12.2E	I OE	0 3 E	0 3W	0 6W	0.8W
	Louisville	4.8E	4.0 E	4.8 E	1.0 E	1 3 E	2 8 E	2 2 E	2 5 E	TOE	TSE	T 3 E	T. 2 E
1 7-	Princeton	6.8E	6.9E	6.9E	6.8E	6.5E	6.0E	5.5 E	4.8E	4.2 E	3.9 E	3.7 E	3.8E
La. Me.	Princeton Winfield Eastport	3.0 E	0.9E	9.0E	9.0E	8.9 E	8.6E	8.2E	7.0E	7. I E	0.8E	7.0E	7.4E
	Dangor	II.SW	12.4W	13.2W	13.0W	14.7W	15.4W	15.0W	16.4W	16.7W	17. IW	17.8W	18.8w
24.1	Portland	0.3W	9.9W	10.6W	II.2W	II. OW	12.6W	13. IW	13.6W	14. IW	14.5W	15.3W	16.3W
Md. Mass.	Baltimore		I.IW	I.4W	I.QW	2.4W	3. IW	3.8w	4.4W	5.OW	5.6W	6.3W	7.0W
Mass.	Boston Pittsfield	7.3W 5.7W	7.8W	6.4W	9. IW	9.8W	10.5W	II.OW	11.5W	I2.OW	12.0W	13.4W	14.4W
Mich.	Marquette		6.7E	6.7E	6.5 E	6. I E	5.5 E	9.3W 4.7E	3.8 E	3.0 E	2.4 E	2. I E	1.7 E
	Lapeer	-	2.6 E	2.4 E	2. I E	1.6E	I.OE	0.3E	0.5W	I. 2W	1.8w	2.3W	2.8W
Minn.	Grand Haven. St. Paul	_	5. I E	5.0E	4.8E	4.4 E	3.8E	3. I E	2.4E	1.6E	I.IE	0 7 E	0.3E
AND LISTS.	Marshall	_	II.OE	11.8 E	II.OE	II.7E	II.4E	10.9E	10.3 E	9.5E	8.9E	8.8E	8.7E
	Hibbing	_		10.7 E	10.8E	10.6E	10.3 E	9.7E	0.0E	8.2 E	7.6 E	7.7E	7.5E
Nr.	Bagley	_	-	T3 OE	T2 TE	TOTE	T2 8 E	T2 2 E	TT TE	TROF	TO A E	TO GE	TOFE
Miss.	Meridian Vicksburg	7.3E	7.4E	7.5E	7.4E	7.2 E	6.9E	6.5E	5.9E	5.2 E	4.8E	4.9E	5.1 E
	racksburg	0.2E	0.4 E	0.5 E	0.4E	8.2 E	O.OE	7.0 E	7.1 E	0.4E	0.0E	O. I E	0.4 E
							- 1						

Secular Change of Declination (concluded).

State.	Station.	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900	1910	1920
Mo.	Hermann	_	Q. 2 E	0.3 E	Q. 2 E	Q.OE	8.7E	8.3 E	7.7 E	7.0E	6.5E	6.5E	6.6E
	Sedalia	-	9.9E	10.0 E	10.0 E	9.9E	9.6E	9.3E	8.7E	8.0E	7.6E	7.8 E	6.6E 8.0E
Mont.	Miles City Lewistown		_	_	10.5 E	17.0E	17.8 E	17.7 E	17.4E	10.9E	10.9E	17.3 E	17.6E
	Ovando	-		-	20.4 E	20.8 E	21.1 E	21.2 E	21.1E	20.9 E	21.1 E	21.6 E	22.0E
Nebr.	Albion Valentine		12.4 E	12.7 E	12.9 E								11.5E 13.1E
	Alliance			_		15.4E	15.4 E	15.3 E	14.8 E	14.3 E	14.2E	14.5 E	14.8E
Nev.	Elko			_		17.3 E	17.0 E	17.7E	17.7E	17.0E	17.8 E	18.4E	18.9E 18.4E
N. H.	Hanover	7.IW	7.5W	8.2W		9.7W	10.5W	II.IW	II.6W	I2.OW	12.6W	13.2W	14.2W
N. J. N. M.	Trenton	2.8W	3. IW	3.5W	4. IW	4.7W	5.4W 12.8E	0.0W	0.7W	7.2W	7.8W	8.0W	9.4W 12.9E
	Laguna			-	_	13.4E	13.6 E	13.6 E	13.4E	13.0E	13.0E	13.6 E	14.1E
N. Y	Albany	5.7W 2.2W	5.9W 2.4W	6.4W 2.8W	7.0W 3.3W	7.8W 4.0W			6.3W				12.5W 9.0W
NT 0	Buffalo	I.OW	I.IW	1.4W	I.9W	2.4W	3.2W	3.8w	4.7W	5.4W	5.9W	6.5W	7.2W
N. C.	Newbern Greensboro	1.7E	1.6E	1.3 E 3.1 E					1.7W 0.3E	2.3W	2.9W 0.8W		
N. D.	Asheville	4.2E	4.2E	4.0E	3.6E	3.1 E	2.6 E	2.0 E	1.3E	0.7E	0.2E	0.2W	0.5W
N. D.	Jamestown Bismarck		_	14.0 E	14.2 E								12.5 E 15.2 E
02:-	Dickinson	-		_	-	17.7 E	17.7E	17.5 E	17.1E	16.5E	16.3E	16.7 E	16.9E
Ohio	Canton Urbana	2.3 E 4.4 E	2.2 E 4.4 E	2.0 E 4.3 E			0.6E			I.3W			
Okla.	Okmulgee	-		-		10.2 E	IO. IE	9.8E	9.5E	9.IE	8.7E	8.9E	9.2E
Ore.	Enid Sumpter	_			=								10.5E 21.4E
Pa.	Detroit Wilkes-Barre		17.4E 2.5W										
ra.	Lockhaven	2.3W I.4W	1.5W	2.9W I.9W	3.4W 2.4W	4.0W 3.0W			6.ow 5.ow			7.0W	
P. R.	Indiana San Juan	0.6E	0.5E	0.3 E	O. IW	0.7W	1.3W	2.OW	2.6W	3.3W	3.9W 1.0W		5.2W 3.4W
R. I.	Newport	6.6w	7. IW	7.7W	8.4W	9. IW	1	10.3W	10.8w				
S. C.	Marion	3.4E 4.8E	3.3E 4.7E	3.0E 4.5E			1.6E		0.3 E				
S. D.	Huron	4.0 E	4.7 1	4.3 5		13.2 E	13.0E	12.7 E	12.3 E	11.7 E	11.2E	11.5E	II.7E
	Murdo Rapid City					15.0E	14.9 E	14.7E	14:3E	13.7E	13.4E	13.7 E	13.9E
Tenn.	Knoxville	3.8E	3.8E		3.3 E	2.9 E	2.4E	1.8E	I.IE	0.5 E	0.0	0.3W	15.7E 0.5W
	Shelbyville Huntingdon	6.4E	6.5E 7.4E	6.4E 7.4E		5.9 E 7.0 E	5.5E	4.9E	4.3E	3.7E	3.2E	3.0E	2.9 E 4.4 E
Tex.	Houston	-	9.0E	9.2E	9.4E	9.4E	9.3 E	8.9E	5.5E 8.4E	7.9E	7.7E	8.1E	8.6E
	San Antonio Pecos		_	9.5E	9.7E		9.7E						9.7E
. 337 1	Wytheville	2.9 E	2.9 E	2.7E	2.4E	2.0 E	I.4E	0.8E	O.IE	0.5W	I.IW	1.5W	I.QW
Wash.	Wilson Creek Seattle	18.0E	TO SE	20. T.E.	20.7 E	21.2E	21.6 E	21.8E	21.9E	22. I E	22:4E	23.0 E	23.3E 23.8E
W. Va.	Sutton	1.9E	1.8E	1.6E	1.2E	0.8E	0.2E	0.4W	I.IW	1.8w	2.4W	2.9W	3.4W
Wis.	Shawamo	_	7.4 E	7.4E	7.3 E		6.5E						3.IE II.IE
Utah	Manti			_	-	16.4E	16.7 E	16.8E	16.7 E	16.4E	16.5 E	17.1E	17.5E
Vt. Va.	Rutland	6.6w	7.IW 0.6E	7.6W 0.3E	O. IW	0.6W	I. 2W	1.8w	2.5W	3. IW	3.7W	4.2W	13.8W 4.9W
	Lynchburg	1.6E	1.5E	1.3E	0.9E	0.5E	O.IW	0.7W	1.4W	2.0W	2.6W	3. IW	3.7W
Wyo.	Stanley Douglas		8.9E	9.0E	9.0E		8.4E 16.0E						5.4E 16.0E
	Green River	-	_		-	16.8 E	17.0E	17.0E	16.8 E	16.5 E	16.6E	17.2 E	17.5E
									•			L	

TABLE 571. - Dip or Inclination.

This table gives for the epoch January 1, 1915, the values of the magnetic dip, I, corresponding to the longitudes west of Greenwich in the heading and the north latitudes in the first column.

λ	0	0	0	0	0	0	0	0	0	0	0	0	0
φ	65	70	75	80	85	90	95	100	105	110	115	120	125
	0	0	0	0	0	0	0	0	0	0	0	0	0
19	_	-	50.4	49.4	48.5	47.2 50.1	46.I 48.9	45.I 47.9	44.I 46.0	=	_	=	_
23	2000-010	_	55.I	54.2	53.7	52.8	51.7	50.4	49.7	48.7	_		-
25 27	=	_	57.6 59.8	56.8	56.1	55.2	54.2	53.1	52.2 54.6	51.2	50. I 52. 4	=	_
29	-	-	61.9	61.3	60.5	59.7 62.0	58.9	57.9 60.1	56.8	55.8 58.1	54.6	53.8 55.8	
3I 33	=	63.6	63.8	63.4	64.7	64.0	63.1	62.4	61.2	60.2	57.0 59.1	58.0	
35 37	=	67.2 69.1	67.3	67.2 69.0	66.6	66.1 68.1	65.3	64.3	63.2	62.2	63.1	60. I 62. I	_
39	-	70.6	70.8	70.6	70.6	70.0	69.2	68.3	67.3	66.2	64.9	63.9	62.5
4I 43		72.2	72.3	72.5 74.1	72.2	71.7	71.0	70. I 71.8	69.0	63.0	66.6	65.5	64.3
45	74.3	74.9	75.4	75.5	75.5	75.2	74.5	73.5	72.4	71.3	70.2	69.0	67.8
47	75.6	76.3	76.8	76.9	76.9	77.0	76.1	75.I	74.2	72.9	71.7	70.5	69.5
49	76.5	77.4	78.2	78.5	78.5	78.3	77.7	76.7	75.7	74.5	73.2	72.I	71.2

TABLE 572. - Secular Change of Dip.

Values of the magnetic dip for places designated by the north latitudes and longitudes west of Greenwich in the first two columns for January 1 of the years in the heading. The degrees are given in the third column and the minutes in the succeding columns.

Latitude.	Long- itude.		1855	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910	1915
0	0	٥	,	,	,	,	,	,	,	,	,	,	,	,	,
25 25	80	55+ 49+	32 14	32	31 36	29	26 52	23 61	18	18	82	3I Q2	43	73 116	108
30	83	60+	66	70	73	45	73	67	57	51	53	63	78	IOI	132
30	100	57+	41	46	55	64	67	62	57	58	65	74	87	103	120
30	115	54+	47	56	63	65	64	66	69	73	79	85	90	96	IO2
35	80	66+	67	68	67	64	55	45	36	31	30	32	40	55	72
35 35	90	65+ 62+	67	61	53	46	39	34	28 39	39	43	49	38	51 65 66	66
35	120	59+	56 82	59	61	61	60	59	61	64	66	66	57 66	66	66
40	75	71+	82	82	78	73	65	55	43	33	27	24	24	29	36
40	gio	70+	30	31	34	37	36	32	29	26	25	26	30	38 63	48
40	105	67+	_	-	-	56	53	51	51	51	52	56	60		66
40 45	65	64+ 74+	118	II2	103	51	52 82	54	57	58	58	54	50	45	42
45	75	75+	91	87	83	78	73	61	50	41	31	26	24	24	24
45	00	74+	86	86	86	84	82	80	72	68	66	64	65	68	72
45	105	72+	-	_	-	-	_	30	73 28	27	26	26	25	25	2.4
45	122.5	68+	45	44	47	50	50	49	47	44	40	37	33	27	21
49	92 120	77+	80	79	78	76	74	74	69	66	65	63	60	58	60

TABLE 573. - Horizontal Intensity.

This table gives for the epoch January 1, 1915, the horizontal intensity, H, expressed in cgs units, corresponding to the longitudes in the heading and the latitudes in the first column.

λφ	65°	70°	75°	80°	85°	90°	95°	100°	105°	110°	115°	120°	125°
21 23 25 27 29 31 33 35 37 39 41 43 45 47	.159	.237 .225 .213 .202 .101 .178 .166 .154	. 297 . 290 . 283 . 273 . 264 . 253 . 242 . 230 . 217 . 205 . 193 . 178 . 153 . 139	.303 .296 .288 .281 .271 .258 .247 .236 .223 .210 .196 .182 .165 .153	.311 .303 .294 .286 .276 .265 .254 .242 .232 .213 .200 .185 .171 .155	.316 .310 .301 .292 .281 .272 .260 .248 .235 .222 .206 .191 .174 .160	.321 .315 .307 .298 .288 .277 .266 .255 .241 .227 .197 .182	.325 .320 .311 .302 .292 .283 .272 .259 .249 .234 .204 .189	.325 .320 .311 .303 .295 .286 .276 .264 .251 .240 .212 .198 .185 .168			. 288 . 280 . 272 . 263 . 253 . 242 . 232 . 221 . 210	
49	.135	.130	.126	.123	.123	.129	.136	.144	.153	.164	.174	.182	. 189

TABLE 574. - Secular Change of Horizontal Intensity.

Values of horizontal intensity, H, in cgs units for the places designated by the latitude and longitude in the first two columns for January τ of the years in the heading.

Lat.	Long.	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910	1915
25 25 30 30 30 35 35 35 35 40 40 40 45 45 45 45 45 49	80 110 83 100 115 80 90 105 120 75 90 105 120 65 75 90 105 122 5	.3086 .3216 .2775 .2996 .2367 .1876 .2080 .1504 .1487 .2183 .1336 .1346	.3073 .3202 .2768 .2978 .2981 .2362 .1884 .2076 .1515 .1490 .1646 .2175 .1334	.3057 .3187 .2760 .2959 .2966 .2357 .2460 .2727 .1895 .2073 .2269 .2439 .1527 .1497 .1644 .1895 .2166 .1330	.3042 .3168 .2752 .2949 .2355 .2400 .2619 .2714 .1904 .2070 .2263 .2430 .1543 .1508	. 3025 . 3153 . 2743 . 2924 . 2934 . 2351 . 2459 . 2607 . 2702 . 1912 . 2669 . 2258 . 2422 . 1557 . 1518 . 1639 . 1893 . 2148 . 2158 . 2158	.3008 .3141 .2732 .2908 .2922 .2347 .2456 .2598 .2690 .1918 .2068 .2254 .2416 .1568 .1529 .1637 .1891 .2140 .1324 .1831	.2990 .3128 .2720 .2894 .2910 .2340 .2453 .2589 .2079 .1923 .2666 .2250 .2409 .1579 .1636 .1888 .2134 .1826	.2970 .3115 .2705 .2882 .2899 .2335 .2445 .2582 .2070 .1924 .2062 .2245 .2402 .1598 .1637 .1885 .2130 .1327 .1824	. 2949 .3102 .2686 .2867 .2890 .2325 .2435 .2572 .2663 .1921 .2054 .2337 .2396 .1552 .1636 .1881 .2128 .1330 .1825	. 2017 . 3088 . 2058 . 2058 . 2880 . 23306 . 2418 . 2559 . 2057 . 1011 . 2042 . 2227 . 2390 . 1552 . 1633 . 1875 . 2128 . 1336 . 1825	. 2870 . 3063 . 2014 . 2817 . 2863 . 2272 . 2387 . 2045 . 1889 . 2019 . 2210 . 2381 . 1596 . 1543 . 1620 . 1864 . 2125 . 1330 . 1823	. 2810 . 3030 . 2560 . 2780 . 2840 . 2230 . 2350 . 2510 . 2630 . 1860 . 2190 . 2370 . 1530 . 1600 . 1850 . 2120 . 1320

TABLE 575. - Total Intensity.

This table gives for the epoch January 1, 1915, the values of the total intensity, F, expressed in cgs units corresponding to the longitudes in the heading and the latitudes in the first column.

λφ	65°	70°	75°	80°	85°	90°	95°	100°	105°	110°	115°	120°	125°
33 25 27 29 31 33 35 37 39 41 43 45 47		.533 .549 .536 .575 .582 .588 .591 .604	.406 .478 .495 .509 .525 .537 .548 .557 .502 .577 .585 .602 .609	.466 .480 .492 .513 .531 .537 .552 .565 .576 .586 .590 .605 .602 .611	.469 .482 .497 .513 .525 .538 .556 .566 .584 .592 .602 .605 .620 .617	.465 .483 .498 .512 .524 .539 .554 .566 .580 .595 .602 .608 .613 .626 .631	.463 .479 .495 .510 .523 .536 .550 .564 .577 .588 .597 .605 .609 .625 .624	.461 .477 .488 .503 .517 .533 .546 .559 .574 .585 .599 .605 .613 .618	.453 .468 .481 .494 .509 .522 .536 .548 .557 .572 .586 .592 .592 .592 .617			. 488 . 498 . 513 . 528 . 541 . 550 . 570 . 586 . 584	.531 .544 .556 .572 .577

TABLE 576. - Secular Change of Total Intensity.

Values of total intensity, F_i in cgs units for places designated by the latitudes and longitudes in the first two columns for January \mathbf{r} of the years in the heading.

Lat.	Long.	1855	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910	1915
0	0													
25	No	. 5476	- 5453	. 5427	. 5396	. 5363	.5324	. 5285	. 5253	. 5227	.5208	.5178	. 5160	. 5131
25	110	.4941	.4946	.4941	.4933	.4914	.4906	.4900	.4889	. 4884	.4879	.4876	.4861	. 4836
30	83	. 5758	- 5755	.5749	- 5735	.5716	.5678	.5625	.5584	.5559	. 5549	.5534	. 5510	. 5471
30	100	.5210	.5216	. 5608	.5595	.5567	.5523	.5479	• 5455	. 5450	.5444	.5086	. 5426	. 5399
30	223	. 3219	. 3210	. 3203	. 5102	. 5149	.5129	.5114	.5101	. 5094	. 5092	. 3000	. 3000	. 304.
35	86	.6101	.6000	.6075	.6048	. 6008	- 5955	. 5010	. 5873	. 5856	. 5838	. 5823	. 5796	. 575
35	90		-	-	. 5993	. 5966	. 5946	.5914	. 5904	. 5885	. 5868	.5861	. 5834	. 580
35	105			-	-	.5720	. 5675	. 5656	. 5636	. 5634	. 5630	.5627	. 5604	. 556
35	120	6.00			- 5457	.5428	. 5401	. 5383	. 5369	. 5356	. 5342	.5330	.5300	. 527
40	75	.6183	.6193	.6196	.6204	.6190	.6160	.6115	.6077	.6047	.6022	.5991	. 5948	. 589:
40	90	_	.6236	.6240	.6246	.6233	.6200	.6190	.6160	.6151	.6133	.6118	.6080	.605
40	105		-		.6040	.6011	.5988	.5978	.5967	. 5958	. 5955	. 5944	.5912	. 587
40	120	-	- 1	-	-5739	. 5720	. 5700	. 5707	.5602	.5676	. 5647	.5621	.5581	. 554
45	65	.6161	.6159	.6140	.6126	.6107	.6082	.6052	.6022	. 5994	. 5980	.5962	. 5923	. 587
45	75	.6369	.6347	.6330	.6320	.6329	.6281	.6247	.6228	.6189	.6171	.6157	.6121	.607
45	50	_	.6552	.6544	.6522	.6495	.6474	.6415	.6377	.6366	.6349	.6344	.6315	,626.
45	105		-	- 0344		- 0495	.6296	.6276	.6261	.6245	.6232	.6206	.6170	.611
45	122.5	.6037	.6019	.6010	.6000	.5978	. 5944	.5013	. 5883	. 5855	. 5837	. 5820	. 5784	. 574.
49	92	.6616	.6597	.6578	.6540	.6508	.6498	.6448	.6421	.6427	.6424	.6426	.6380	. 634
49	120		.6121	.6107	.6098	.6083	.6061	.6039	.6017	.6010	.6008	. 5997	. 5963	. 592

TABLE 577. - Agonic Line.

The line of no declination appears to be still moving westward in the United States, but, as the line of no annual change is only a short distance to the west of it, it is probable that the extreme westerly position will soon be reached.

Lat.	Lo	ngitudes	of the ago	nic line fo	or the year	ırs
N.	1800	1850	1875	1890	1905	1915
25	_	-	-	75·5 78.6	76.1 79.7	77.4 80.0
35 6 7 8	75.2 76.3 76.7 76.9	76.7 77.3 77.7 78.3 78.7	79.0 79.7 80.6 81.3 81.6	79.9 80.5 82.2 82.6 82.2	81.7 82.8 83.5 83.6 83.6	82.7 84.4 84.0 84.1 83.9
40 1 2 3 4	77.0 77.9 79.1 79.4 79.8	79.3 80.4 81.0 81.2	81.6 81.8 82.6 83.1 83.3	82.7 82.8 83.7 84.3 84.9	84.0 84.6 84.8 85.0 85.5	84.3 85.1 85.3 85.4 85.8
45 6 7 8 9		11111	83.6 84.2 85.1 86.0 86.5	85.2 84.8 85.4 85.9 86.3	86.0 86.4 86.4 86.5 87.2	86.2 86.3 86.6 87.2 88.0

TABLE 578. - Mean Magnetic Character of Each Month in the Years 1906 to 1917.*

Means derived from daily magnetic characters based upon the following scale: o, no disturbance; τ , moderate disturbance, and 2, large disturbance.

Year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year Mean
1906	0.45	0.00	0.68	0.63	0.58	0.56	0.60	0.63	0.70	0.50	0.55	0.71	0.65
1007	0.60	0.83	0.58	0.55	0.72	0.67	0.67	0.66	0.68	0.71	0.61	0.53	0.66
1908	0.64	0.71	0.87	0.68	0.82	0.66	0.49	0.77	0.80	0.53	0.60	0.47	0.68
1909	0.76	0.63	0.79	0.49	0.59	0.54	0.53	0.65	0.70	0.69	0.49	0.58	0.62
1910	0.58	0.71	0.81	0.68	0.72	0.53	0.55	0.81	0.80	0.96	0.77	0.76	0.72
1911	0.78	0.89	0.78	0.76	0.70	0.53	0.61	0.53	0.50	0.59	0.49	0.45	0.63
1912	0.42	0.49	0.45	0.45	0.47	0.47	0.41	0.49	0.47	0.46	0.45	0.43	0.46
1913	0.51	0.53	0.53	0.54	0.45	0.45	0.42	0.46	0.58	0.57	0.42	0.36	0.48
1914	0.46	0.50	0.62	0.50	0.37	0.52	0.01	0.61	0.53	0.64	0.60	0.46	0.54
1915	0.53	0.64	0.68	0.61	0.58	0.61	0.47	0.60	0.59	0.77	0.82	0.54	0.62
1010	0.61	0.56	0.86	0.68	0.75	0.67	0.62	0.75	0.75	0.76	0.83	0.65	0.71
1917	0.81	0.69	0.59	0.63	0.66	0.55	0.61	0.85	0.61	0.74	0.53	0.72	0.67

^{*} Compiled from annual reviews of the "Caractère magnétique de chaque jour" prepared by the Royal Meteorological Institute of the Netherlands for the International Commission for Terrestrial Magnetism. The number of stations supplying complete data for the above years were respectively, 30, 32, 36, 38, 34, 39, 43, 42, 37, 35, 35, 55. Data from Sitka, Ekaterinburg, Stonyhurst, Wilhelmshaven, Potsdam-Seddin, De Bilt, Greenwich, Kew, Val Joyeux, Pola, Cheltenham, Honolulu, Bombay, Porto Rico, and Buitenzorg were employed for all of the years.

RECENT VALUES OF THE MAGNETIC ELEMENTS AT MAGNETIC OBSERVATORIES.

(Compiled by the Department of Terrestrial Magnetism, Carnegie Institution of Washington.)

					Magnetic	elements	3.	
Place.	Latitude.	Longitude.	Middle of			Inter	nsity (cg:	units).
			year.	Declination.	Inclination.	Hor'l.	Ver'l.	Total.
	0 /	0 ,		0 /	0 ,	1101 1.	Vei i.	Total.
Pavlovsk	59 41 N	30 20 E	1907	1 09.9 E	70 37.7 N	. 1650	.4604	.4975
Sitka Katharinenburg	57 03 N 56 50 N	135 20 W 60 38 E	1916	30 24.0 E 10 35.5 E	74 26.0 N 70 52.2 N	.1558	· 5592 · 5081	.5805
Rude Skov	55 51 N	12 27 E 49 08 E	1915	8 44.3 W 8 09.1 E	68 50.6 N 69 17.3 N	.1726	.4459	.4781
Eskdalemuir	55 10 N	3 12 W	1913	17 54.9 W	69 37.3 N	.1682	.4765	. 5094
Stonyhurst	53 32 N	2 28 W 8 09 E	1915	16 38.0 W	68 41.4 N 67 30.7 N	.1734	.4446	· 4772 · 4735
Potsdam	52 17 N	13 04 E 13 01 E	1916	8 07.6 W 8 08.9 W	66 27.1 N 66 24.1 N	.1870	.4290	· 4735 · 4680 · 4680
Irkutsk	52 16 N	104 16 E 5 11 E	1905	I 58.I E	70 25.0 N 66 46.5 N	. 2001	.5625	.5970
Valencia Clausthal	51 56 N	10 15 W	1913	20 19.6 W 10 40.3 W	68 og. 2 N	.1789	.4463	.4808
Bochum	51 20 N	7 14 E	1912	II 39.4 W	66 -6 (37	-	=	=
Greenwich	51 28 N 51 28 N	0 19 W	1915	15 18.4 W 14 46.9 W	66 56.6 N 66 52.8 N	. 1846	.4338	.4714
Hermsdorf	50 48 N 50 46 N	4 21 E 16 14 E	1911	13 13.9 W 6 58.2 W	66 00.1 N	.1902	.4273	.4677
		18 55 E 5 05 W	1908	6 12.3 W 17 24.2 W	66 26.6 N	. 1830	.4312	-
Falmouth Prague Cracow	50 05 N	14 25 E 19 58 E	1912	7 50.3 W	64 18.4 N	_	-4312	-4704
Val Joyeux Munich Krememijnster	48 49 N 48 00 N	2 OI E	1913	13 50.2 W	64 38.9 N	.1974	.4167	.46rr
Kremsmünster	48 03 N	11 37 E 14 08 E	1911	9 23.8 W 9 02.4 W	63 06.2 N	. 2063	. 4068	4561
Kremsmünster. O'Gyalla (Pesth) Odessa.	47 53 N 46 26 N	18 12 E 30 46 E	1912	6 17.5 W 3 35.9 W	62 26.9 N	.2106	.4161	.4603
Agincourt (Toronto)	44 52 N	13 51 E 79 16 W	1915	7 39.0 W 6 33.4 W 12 44.8 W	60 05.1 N 74 43.5 N	.2217	. 3853	· 4445 . 6068
Tiflis	42 42 N	2 53 E 44 48 E	1910	12 44.8 W 3 09.1 E	56 51.1 N			-
Capodimonte	40 52 N	14 15 E 0 31 E	1911	12 51.6 W	56 II.7 N	.2522	.3761	-4528
Coimbra	40 12 N	8 25 W	1914	15 57.5 W	57 47.5 N 58 34.7 N	. 2330	.3698	· 437I · 4422
L neitenham	2% 44 N	95 10 W 76 50 W	1909	8 34.0 E 6 07.6 W	68 50.2 N 70 49.9 N	.1934	.5596	.6001
San Fernando		6 12 W 139 45 E	1913	14 51.7 W 5 03.4 W	54 26 6 N 48 53.7 N	.3000	.3489	.4289
Tucson Lukiapang ***. Dehra Dun.	32 15 N 31 10 N	110 50 W	1916	13 44.4 E 2 59.6 W	59 26.1 N 45 34.9 N	. 2706	.4582	.5322
Dehra Dun	30 19 N	78 03 E 31 20 E	1914	2 18.8 E 2 17.0 W	44 22.9 N	.3323	.3391	·4747 ·4641
Barrackpore † Hongkong.	22 46 N	88 22 E	1914	0 32.2 E	40 47.6 N 30 58.9 N	.3003	.2592	.3967
i Honolulu	21 10	158 04 W	1916	0 13.8 W 9 43.8 E	30 51.8 N 39 29.2 N	.3716	. 2220	.4328
Toungoo	TR 28 N 1	96 27 E 72 52 E	1914	0 02.6 E 0 40.6 E	23 06.I N 24 2I.I N	.3898	.1663	.4238
	14 30 N	65 26 W 121 10 E	1011	3 19.4 W 0 40.9 E	50 56.7 N 16 18.2 N	.2315	.3470	. 4047
Batavia-Buitenzorg	10 14 N 6 11 S	77 28 E 106 40 E	1914	1 17.1 W 0 47.3 E	4 II.2 N	·3757 ·3668	.0275	.3981
St. Paul de Loanda	8 48 S 13 48 S	13 13 E 171 46 W	1910	16 12.3 W	31 19.4 S 35 32.2 S	.2012	.2232 .1437	.4229
Tananarive	18 55 S 20 06 S	47 32 E	1916	9 59.9 E 9 29.7 W	29 54.5 S 54 05.7 S	.2533	. 2034	.4080
Pilar	31 40 S	57 33 E 63 53 W	1916	9 47.6 W 8 40.4 E	52 54.6 S 25 4I.5 S	.2320	.3069	.3847
Santiago	12 22 5	70 42 W 172 37 E	1909	13 57.9 E 16 44.8 E	29 57.2 S 67 59.8 S	. 2241	.5546	.5982
New Year's Island Orcadas	54 45 S 1	64 03 W‡ 42 32 W	1906	15 41.6 E 4 46.5 E	50 03.6 S 54 26.0 S	.2717	.3244	.423I
1			9	4 40.5 13	34 20.0 3	.2534	.3544	-4357

^{*} Baldwin Obs'y replaced by Tucson Obs'y, Oct. 1909; mean given for Jan.-Oct. '09.

** Replaced Zi-ka-wei Obs'y, 1908. † Observations discontinued Apr. 26, 1915.

† Provisional values taken for position of Port Cork, p. 298, American Practical Navigator, 1914 edition.

APPENDIX.

DEFINITIONS OF UNITS.

ACTIVITY. Power or rate of doing work; unit, the watt.

AMPERE. Unit of electrical current. The international ampere, "which is one-tenth of the unit of current of the C. G. S. system of electro-magnetic units, and which is represented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, and in accordance with accompanying specifications, deposits silver at the rate of 0.00111800 of a gram per second.

The ampere = 1 coulomb per second = 1 volt through 1 ohm = 10^{-1} E. M. U. = 3 × 10^{9} E. S. U.*

Amperes = volts/ohms = watts/volts = $(watts/ohms)^{\frac{1}{2}}$.

Amperes \times volts = amperes $^2 \times$ ohms = watts.

ANGSTROM. Unit of wave-length = 10-10 meter.

ATMOSPHERE. Unit of pressure.

English normal = 14.7 pounds per sq. in. = 29.929 in. = 760.18 mm Hg. 32° F. = 760 mm of Hg. 0° C = 29.922 in. = 14.70 lbs. per sq. in. BAR. A pressure of one dyne per cm. Meteorological "bar" = 106 dynes/cm².

BRITISH THERMAL UNIT. Heat required to raise one pound of water at its tem-

perature of maximum density, 1° F. = 252 gram-calories. CALORIE. Small calorie = gram-calorie = therm = quantity of heat required to

raise one gram of water at its maximum density, one degree Centigrade.

Large calorie = kilogram-calorie = 1000 small calories = one kilogram of water raised one degree Centigrade at the temperature of maximum density.

For conversion factors see page 197.

CANDLE, INTERNATIONAL. The international unit of candlepower maintained jointly by national laboratories of England, France and United States of America. CARAT. The diamond carat standard in U. S. = 200 milligrams. Old standard

= 205.3 milligrams = 3.168 grains.

The gold carat: pure gold is 24 carats; a carat is 1/24 part. CIRCULAR AREA. The square of the diameter = 1.2733 × true area.

True area = 0.785398 × circular area.

COULOMB. Unit of quantity. The international coulomb is the quantity of electricity transferred by a current of one international ampere in one second. $= 10^{-1}$ E. M. U. $= 3 \times 10^{9}$ E. S. U.

Coulombs = $(volts-seconds)/ohms = amperes \times seconds$.

CUBIT = 18 inches.

DAY. Mean solar day = 1440 minutes = 86400 seconds = 1.0027379 sidereal day. Sidereal day = 86164.10 mean solar seconds.

DIGIT. 3/4 inch; 1/12 the apparent diameter of the sun or moon. DIOPTER. Unit of "power" of a lens. The number of diopters = the reciprocal of the focal length in meters.

DYNE. C. G. S. unit of force = that force which acting for one second on one gram produces a velocity of one cm per sec. = Ig ÷ gravity acceleration in cm/sec./sec.

Dynes = wt. in g × acceleration of gravity in cm/sec./sec.

ELECTROCHEMICAL EQUIVALENT is the ratio of the mass in grams deposited in an electrolytic cell by an electrical current to the quantity of electricity.

ENERGY. See Erg.

ERG. C. G. S. unit of work and energy = one dyne acting through one centimeter.

For conversion factors see page 197.

FARAD. Unit of electrical capacity. The international farad is the capacity of a condenser charged to a potential of one international volt by one international coulomb of electricity = 10-9 E. M. U. = 9 × 10¹¹ E. S. U.

The one-millionth part of a farad (microfarad) is more commonly used.

Farads = coulombs/volts.

^{*} E. M. U.=C. G. S. electromagnetic units. E. S. U.=C. G. S. electrostatic units.

FOOT-POUND. The work which will raise one pound one foot high. For conversion factors see page 197.

FOOT-POUNDALS. The English unit of work = foot-pounds/g.

For conversion factors see page 197.
g. The acceleration produced by gravity.
GAUSS. A unit of intensity of magnetic field = 1 E. M. U. = \frac{1}{3} \times 10^{-10} E. S. U.
GRAM. See page 6.

GRAM-CENTIMETER. The gravitation unit of work = g. ergs.

GRAM-MOLECULE = x grams where x = molecular weight of substance.

GRAVITATION CONSTANT = G in formula $G = \frac{m_1 m_2}{r^2} = 666.07 \times 10^{-10} \text{ cm.}^3/\text{gr. sec.}^2$

HEAT OF THE ELECTRIC CURRENT generated in a metallic circuit without selfinduction is proportional to the quantity of electricity which has passed in coulombs multiplied by the fall of potential in volts, or is equal to (coulombs X volts)/4.181 in

The heat in small or gram-calories per second = (amperes² × ohms)/4.181 = volts²/

(ohms × 4.181) = (volts × amperes)/4.181 = watts/4.181. HEAT. Absolute zero of heat = -273.13° C., -459.6° Fahrenheit, -218.5° Reaumur. HEFNER UNIT. Photometric standard; see page 260.

HENRY. Unit of induction. It is "the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampere per second." = 10° E. M. $U = 1/9 \times 10^{-11}$ E. S. U.

HORSEPOWER. The English and American horsepower is defined by some authorities as 746 watts and by others as 550 foot-pounds per second. The continental horsepower is defined by some authorities as 736 watts and by others as 75 kilogrammeters per second. See page 197.

IOULE. Unit of work = 107 ergs. For electrical Joule see p. xxxvii.

 $loules = (volts^2 \times seconds) / ohms = watts \times seconds = amperes^2 \times ohms \times sec.$

For conversion factors see page 197.

JOULE'S EQUIVALENT. The mechanical equivalent of heat = 4.185 × 10' ergs. See page 197.

KILODYNE. 1000 dynes. About 1 gram.

KINETIC ENERGY in ergs = grams × (cm./sec.)2/2.

LITER. See page 6. LUMEN. Unit of flux of light-candles divided by solid angles.

MEGABAR. Unit of pressure = 1 000 000 bars = 0.987 atmospheres.

MEGADYNE. One million dynes. About one kilogram.

METER. See page 6.

METER CANDLE. The intensity of lumination due to standard candle distant one meter.

MHO. The unit of electrical conductivity. It is the reciprocal of the ohm.

MICRO. A prefix indicating the millionth part.

MICROFARAD. One-millionth of a farad, the ordinary measure of electrostatic capacity.

MICRON. (μ) = one-millionth of a meter.

MIL. One-thousandth of an inch.

MILE. See pages 5, 6.

MILE, NAUTICAL or GEOGRAPHICAL = 6080.204 feet.

MILLI. A prefix denoting the thousandth part.

MONTH. The anomalistic month = time of revolution of the moon from one perigee to another = 27.55460 days.

The nodical month = draconitic month = time of revolution from a node to the same

node again = 27.21222 days.

The sidereal month = the time of revolution referred to the stars = 27.32166 days (mean value), but varies by about three hours on account of the eccentricity of the orbit and "perturbations."

The synodic month = the revolution from one new moon to another = 29.5306 days (mean value) = the ordinary month. It varies by about 13 hours.

OHM. Unit of electrical resistance. The international ohm is based upon the ohm equal to 10° units of resistance of the C. G. S. system of electromagnetic units, and is represented by the resistance offered to an unvarying electric current by a column of mercury, at the temperature of melting ice, 14.4521 grams in mass, of a constant cross section and of the length of 106.3 centimeters." = 10° E. M. U. = $1/9 \times 10^{-11}$ E. S. U.

International ohm = 1.01367 B. A. ohms = 1.06292 Siemens' ohms.

B. A. ohm = 0.98651 international ohms. Siemens' ohm = 0.94080 international ohms.

PENTANE CANDLE. Photometric standard. See page 260.

 $PI = \pi = \text{ratio of the circumference of a circle to the diameter} = 3.14150265350.$

POUNDAL. The British unit of force. The force which will in one second impart a velocity of one foot per second to a mass of one pound.

RADIAN = $180^{\circ}/\pi = 57.29578^{\circ} = 57^{\circ}$ 17' 45'' = 206265''. SECOHM. A unit of self-induction = 1 second × 1 ohm. THERM = small calorie = (obsolete).

THERMAL UNIT, BRITISH = the quantity of heat required to warm one pound of water at its temperature of maximum density one degree Fahrenheit = 252 gramcalories.

VOLT. The unit of electromotive force (E. M. F.). The international volt is "the electromotive force that, steadily applied to a conductor whose resistance is one of the E. M. F. of the Weston Normal cell is taken as 1.0183 international volts at 20° C. = 108 E. M. U. = 1/300 E. S. U. See page 197.

VOLT-AMPERE. Equivalent to Watt/Power factor.

WATT. The unit of electrical power = 107 units of power in the C. G. S. system. It is represented sufficiently well for practical use by the work done at the rate of one Joule per second.

Watts = volts × amperes = amperes × ohms = volts /ohms (direct current or alternating current with no phase difference).

For conversion factors see page 197.

Watts \times seconds = Joules.

WEBER. A name formerly given to the coulomb.

WORK in ergs = dynes × cm. Kinetic energy in ergs = grams × (cm./sec.) 1/2.

YEAR. See page 414.

Anomalistic year = 365 days, 6 hours, 13 minutes, 48 seconds. Sidereal "= 365 " 6 " 9 " 9.314 ".

Ordinary "= 365 " 5 " 48 " 46 + "

" same as the ordinary year. Tropical .

TABLE 580.

TEMPERATURE MEASUREMENTS.

The ideal standard temperature scale (Kelvin's thermodynamic scale, see introduction, p. xxxiv) is independent of the properties of any substance, and would be indicated by a gas thermometer using a perfect gas. The scale indicated by any actual gas can be corrected if the departure of that gas from a perfect gas be known (see Table 206, p. 195, — also Buckingham, Bull. Bur. Standards, 3, 237). The thermodynamic correction of the constant-pressure scale at any temperature is very nearly proportional to the constant pressure at which the gas is kept and that for the constant-volume scale is approximately proportional to the initial pressure at the ice-point. The gas thermometer has been carried up to the melting point of palladium, 1822° K (1549° C) (Day and Sosman, Am. J. Sc., 29, p. 93, 1910).

A proposed international agreement divides the temperature scale into three intervals. The first interval, -40° to 450° C, uses the platinum resistance thermometer calibrated at the melting point of ice, o° C, at saturated steam, 100° C, and sulphur vapor, 444.6° C, all under standard atmospheric pressure. Points

on the temperature scale are interpolated by the Callendar formulæ:

$$Pt = \frac{R_t - R_0}{R_{100} - R_0} \text{ ioo} \quad \text{or} \quad t - Pt = \delta \left\{ \frac{t}{\text{ioo}} - 1 \right\} \frac{t}{\text{ioo}}$$

where t is the temperature, R, the resistance, Pt, the platinum temperature, and δ , a constant.

Temperatures in the second interval are measured by a standard platinum-platinum-rhodium couple calibrated say at the freezing points of zinc, 449.4° C, cadmium, 320.9° C, antimony, 630° C, and copper free from oxide, 1083° C. These points furnish constants for the formula, $e = a + bt + ct^2$ (see Sosman, Am. J. Sc., 30, p. 1, 1910).

For the region above 1100° C most experimenters base their results upon certain radiation laws. These laws all apply to a black body and the temperature of a non-black body cannot be determined directly without correction for its emissive power. For standard points the melting points of gold, 1336° K and palladium 1822° K, are convenient,

Above 1336° K the optical pyrometer is generally used with a calibration based upon Wien's equation

$$J_{\lambda} = c_1 \lambda^{-5} e^{-\frac{C_2}{\lambda T}}$$

By comparing the brightness of a black body at two temperatures and applying this equation, the following formula results:

$$\log R = \frac{c_2 \log e}{\lambda} \left\{ \frac{I}{T_2} - \frac{I}{T_1} \right\}$$

where R is the ratio of the brightnesses, λ , the wave-length used, T_1 and T_2 , the two temperatures, and $c_2 = 14.250 \ \mu$ deg. Thus if R is measured and one temperature known, the other can be calculated.

A table of the standard fixed points is given in Table 207, p. 195. With these determined there comes the difficulty of maintaining this temperature scale both from the standpoint of the standardizing laboratory and the man using the temperature scale in the practical field. In the region of the platinum-resistance thermometer and the thermocouple, standards of either can be obtained from the standardizing laboratories and used in checking up the secondary instruments. It is not very difficult to actually check up a resistance thermometer at any one of the standard points in the region -40° C to $+450^{\circ}$ C. It is a little more difficult to check the thermocouple in the region 450° C to 1100° C. Most of the standard fixed points in this region are given by melting points of metals that must be melted so as to avoid oxidation. This requires a neutral atmosphere, or that the sample be covered with some flux that will protect it.

Both the gold and the palladium, used to calibrate the scale above 1300° K, can be successfully melted in a platinum wound black-body furnace. The whole operation can be carried out in the open air, requiring neither a vacuum nor neutral atmosphere within the furnace. But because of the trouble necessitated by a black-body comparison, much time can be saved if a tungsten lamp with filament of suitable size is standardized so as to have the same brightness for a particular part of the filament, when observed with the optical pyrometer, as the standard black-body furnace for one or more definite temperatures. With such lamps properly calibrated, any one may maintain his own temperature scale for years, if the calibration does not extend higher than that of the palladium point and the standard lamp is not accidentally heated to a higher temperature.

(See 1919 Report of Standards Committee on Pyrometry, Forsythe, J. Opt. Soc. of America, 4, p. 205, 1920; The Measurement of High Temperatures, Burgess, Le Chatelier, 1912, The Disappearing Filament Type of Optical Pyrometer, Forsythe, Tr. Faraday Soc., 1919.)

The following additional adsorption tables (see page 407, Table 525) may be of use in the "cleaning-up of vacua." See Dushman, General Electric Review, 24, 58, 1921, Methods for the Production and Measurement of High Vacua.

TABLE 581. - Adsorption of H and He by Cocoanut Charcoal at the temperature of liquid air.

For the preparation of activated charcoal see Dushman, l. c. 5 g of charcoal at the temperature of liquid air will clean up the residual gases in a volume of 3000 cm⁸ from an initial pressure of 1 bar (bar = 1 dyne/cm²) to less than 0.0005 bars at the temperature of liquid air. 5 grams cleaned up 3000 cm⁸ of H from an initial pressure at room temperature of 0.01 bar to a final pressure at liquid air temperature of less than 0.0004 bar. The clean-up is rapid at first but then slower taking about an hour to reach equilibrium. The figures of the following table are from Firth, Z. Phys. Ch. 74, 129, 1910; 86, 294, 1913. p is in mm of Hg; v = volume adsorbed per g of charcoal reduced to 0° C and 76 cm Hg.

Hydrogen			Helium		
9 17 30 51 59	21.5 32.1 46.5 53.3 56.0	90 126 186 245	59.3 63.1 69.2 76.0	120 171 235 428 705	0.337 .465 .81 1.17 1.84

TABLE 582. — Adsorption by Ch rcoal at Low Pressures and temperatures.

Extrapolated by Dushman from Claude, see l. c., and C.R. 158, 861, 1914. Amounts occluded in terms of volume measured at I bar, 0° C. e.g. at a pressure of 0.01 bar, I g charcoal would clean up 130 cm⁸ hydrogen or 18,000 cm⁸ nitrogen from a pressure of I bar down to 0.01 bar.

Н, Т	= 77.6° K	N, T = 90.6° K		
p = 8. i. o.i o.oi o.ooi	v = 106,000.	p = 5.3	v = 9,500,000.	
	13,250	1.	1,800,000	
	1,325	0.0	180,000	
	133	0.01	18,000	
	13	0.001	1,800	

TABLE 583. — Adsorption of Hydrogen by Palladium Black.

Palladium, heated, allows hydrogen to pass through it freely; the gas is first adsorbed and then diffuses through. For the preparation of palladium black, see reference at top of page for Dushman. The following data are from Valentiner, Verh. Deutsch. Phys. Ges., 3, 1003, 1911. Different samples vary greatly. P gives the pressure in mm of Hg, and V the volume at standard pressure and temperature per g of palladium black.

-190° C : P =	.0005	.001	.002	.005	.012	.025
V =		3.06	33.0	40.0	47.2	63.0
+20° C: P = V =	100.	.005 0.26	.037 0.40	.110 0.52	.315	.76 0.92

INDEX.

PAGE	PAUD
a particles energy of	Atomic heats, elements at 50° K
holium 204	magnetic field 401
terra madaged	magnitudes 407, 408
ions produced 4	numbers
production of	volumes elements 226
range	numbers
* particles: energy of	weights, international 71 β-rays, absorption coefficients 395 absorption of 397 ions produced by 398 velocity 397 Balmer series spectrum formula 275 Bar, definition 435 Barometer, altitude, variation with 421 heights, determination of by 145 reduction for capillarity 143 to std. gravity 138-143 to std. gravity 138-143 Batteries, composition, voltages 312-318 Baume scale, conversion to densities 109 Bessel functions, 1st, 2d orders, roots 66-68 Biaxial crystals, formulae, +-refractive indices 286 methods 109 Black absorbers, long-λ transparencies 309 Black absorbers, long-λ transparencies 309 Control 100 100 100
	B-rays, absorption coefficients
Abbreviations	absorption of 397
Aberration constant 414	ions produced by
Absolute units	valority 207
Absolute zero of temperature	Dalman corios apostrum formula
Absoration coefficients con transmission coef	Darmer series spectrum formula
Absorption coefficients, see transmission coeff. β -rays \cdot \cdot \cdot \cdot 395	Bar, deminion
p-lays 395	Barometer, attitude, variation with 421
γ-rays 395	neights, determination of by 145
7-rays 395 X-rays 389 X-rays 389 Acceleration of gravity 424-426 Accumulators, voltage 313 Actinium group of radioactive substances 396	reduction for capillarity 143
Acceleration of gravity 424-420	to std. gravity 138-143
Accumulators, voltage 313	to std. temperature 137
Actinium group of radioactive substances 396	Batteries, composition, voltages 312-313
Activity, definition 435	Baumé scale, conversion to densities 109
Adaptation, rate of eye	Bessel functions, 1st, 2d orders, roots 66-68
Adsorption, by charcoal 407	Biaxial crystals, formulae, + refractive indices 286
by fine particles 407	-refractive indices 287
heat of	Black absorbers, long-λ transparencies
Aerodynamical tables	Black-body: brightness (photometric) of
Agenie line	luminosity of
Airs composition of veriation with alt and lat	luminous efficiency of
Activity, definition	Black absorbers, long-\(^1\) transparencies \(^1\) 309 Black-body: brightness (photometric) of \(^1\) 261 luminosity of \(^1\) 261 luminous efficiency of \(^1\) 261 Planck's constant \(^1\) various temp. 247 radiation, total, for various temp. 247 by wave-lenths var temp. 248
density of moist	radiation total for various term
densities in air, reduction to vacuo	radiation, total, for various temp 247
dielectric strength	by wave-lenths, var. temp 248
humidity relative, via v. p. and dry 187	Steran-Boltzmann constant 247
via wet and dry , 189	-temperature for C, Pt and W 250
	Bonr atom
masses 419	Boiling points: elements 199
moist, transparency, short λ 419	pressure effect 200
long λ 308	Stefan-Boltzmann constant
transmission coefficients 308, 418, 419	organic compounds 203
resistance, fluid	rise of, salts in H_2O 210
masses 292	Inorganic compounds 201
thermal conductivity, high temperatures 254	Boltzman gas-constant (entropy) 408
thermometer, comparison with 59111 193	Bougle decimale
vapor pressure of water in 185-186	Break-down voltage, dielectrics 304, 355
viscosity	Brightness of sky 419
thermometer, comparison with 59 ¹¹¹ . 193 vapor pressure of water in . 185–186 viscosity . 164 wave-lengths in air, reduction to vacuo . 293	of stars 413
Albedos	of sun
Albedos 417 Altitudes by barometer 145 by boiling points of water 144 Alternating current resistances 344	Brightness of sky
by boiling points of water	of various illuminations 256
Alternating current resistances	of various light sources 260-262
Aluminum: mechanical properties 79–80 resistivity constants 334 wire-tables, English units 342 Metric units 343 Ammonia, latent and specific heats 228, 232	Brinell hardness
resistivity constants	British thermal unit
wire-tables, English units	isritish weights and measures 8-11
Metric units	Brownian movement 406
Ammonia, latent and specific heats	Buoyancy correction: of densities
Ampere equivalents 311	weighings
Arinoro turno	γ -function 62
Angetrom grave length smit	γ-rays: absorption coefficients 395
Antennae registerees	absorption of
Autilogosithos at 1	ions produced by 398
Arathogaritanis, std. 4-place, p. 28; .9 to 1.0 30	Cadmium line, red, λ of intern. prim. std 266
Apothecaries weights	Calcite grating space 408
Angstrom, wave-length unit	Calcite grating space
Astronomical data	
Atmosphere: composition, alt. and lat. var 421	Calorie, definition 435
density, altitude variation	Calorie, definition
height of	Candle, energy from
height of	international standard
pressure altitude variation 427	meter-candle, foot-candle
"Atmosphere": value of pressure unit 421, 435	Capacity of wires for electrical current
	Capacity, specific inductive: crystals 361
Atom: Rohr	gases, f(t, p) 356-357
Atom hydrogen; mass mass free moth	liquids 357
radius many relegitive	liq. gases 359
Atom: Bohr	solids 360
numerioru 401 l	Capacity of wires for electrical current

442

PAGE	PAGE
Cartillantes	
Capillarity	Crystals: diffracting units, X-rays 400 elasticity 102-103
Cornel unit	elasticity
Cathode rays:	fluorite spar 280
energy of	rock-salt, silvine
penetration depths	fluorite, spar 280 rock-salt, silvine 279 refr. indices: minerals, isotropic 282
Carcel unit	uniaxial
Cathodic sputtering	(+-) . 284, 285
Cells: standard, voltages	biax al
Weston normal xli	(+-) . 286, 287 miscel. uniaxial 285
Weston portable xliii	miscel. uniaxial 285
torust, composition, toringes	Cubes of numbers
Centipolae	Cubes of numbers
Charcoal, adsorption by	liquids 221
Charge, elementary electrical 408	SOHOS
Chemical energy data	Current measures: absolute units xli
Coals, heats of combustion	
Collision frequencies, molecules	Curie, radium standard . 398 point and constant, magnetic . 372 Cutting-tool lubricants
Color: eye sensitiveness to	point and constant, magnetic
Color: eye sensitiveness to	Culting-tool lubricants
indices of various stars	Cymhalical narmonics (Bessel) 1st and 2nd deg 66
lights, of various	general formulæ 68 roots
complimentary colors	
temperature of C. Pt and W	Day, length of sidereal
temperature of C, Pt and W	Declination, magnetic: secular change 428
explosives 243-244	Demagnetizing factors for rods
explosives 243-244 fuels 242-245 Compressibility: gases 104, 128-132 liquids 107 solids 74 seq resistivity 322-332 allow 322-332 allow 322-332 conductivity, electrical: see resistivity 322-332 conductivity Densities: air moist, vames of D/7bo regret	
Compressibility: gases	alcohol ethyl aqueous
nquids 107	methyl aqueous
Conductivity electrical can recictivity	alloys
alloys	alloys aqueous solutions
electrolytic:	
electrolytic:	cane sugar, aqueous
ionic	
sp. molecular 347	earth
ionic 352 sp. molecular 347 limiting values 348 temp. coefs. 348	gases
Conductivity, thermal: alloys, metals 213	gases 110 gases 127 glycerol, aqueous 156 inorganie compounds 201 insulators, thermal 215, 216
building materials 213	inorganic compounds 201
earth	insulators, thermal 215, 216
gases	liquids 10° to +360° C. 121 mercury, -10° to +360° C. 121 minerals 115 organic compounds 203 nlanets 203
high temp	minerals
insulators	organic compounds
nigh temp 214	planets
liquids 217 metals, high temp 213	solids various
salt solutions 213	stars 413
woton	sucrose, aqueous
Cones, number and distance apart in eye 258 Constants: mathematical 14 miscellaneous, atomic, etc. 408 radiation, σ , C_1 , C_2 247	tin liquid: tin-lead outsetie
Constants: mathematical	Water, 0° to 41° C 10° to 250° C 118 120
miscellaneous, atomic, etc 408	Woods
radiation, σ , C_1 , C_2	Developers and resolving power of photo, plate 263
	Diamagnetic properties
	Stars 413
Convection, cooling by 251-255 pressure effect251-252 Conversion factors: conver	Diameter molecules
Conversion factors: general formulae, see introduction.	Dielectric constant: (sp. inductive capacity) . 356–360
Baumé to densities 109	crystals
norse-power	crystals
Cooling of hodies	nqueneu gases
Cooling of hodies	solids 360
wire, alternating current resistance 344	Dielegtrie strength standard solutions 360
	Dielectric strength (see sparking potentials) 353–355 Dielectrics, volume and surface resistances 331 Differentials, formulae
	Differentials formulae
	Diffusion: aqueous solutions into water
Cosines, circular, natural (° ')	gases
(radiana)	integral
Corpuscular radiation (X-rays) 387-388 Cosines, circular, natural, (°) 32-36 (radians) 37-40 logarithmic, (°) 32-36	Differentials, formulae
	vanore vanore
hyperbolic, natural logarithmic 41-47	Diffusivities thermal
, thethal, (1)	Digit
(radians)	Dilution, heat of (H-SO.)
(radians) 37-40 logarithmic, (° ') 32-36	To mulae
hypothelia (radians) 37-40	
hyperbolic, natural, logarithmic	Diorter Dip, magnetic, 1915 value, secular variation
Critical data for games	Disk, distribution of brightness area contain 430
Crova wave-length	Distance earth to moon
	Distance caren to moon 414

PAGE	PAGE
Distance of the stars, nebulae and clusters 412	Elements: evaporation rate, Mo, W, Pt 175
Dyes transparency of	expansion cubical (gaseous) 222
Dyes, transparency of	linear (solid) 218
	hardness
e (base of natural logarithms)	latent heat of eventuation 222
e (elementary electrical charge)	molting points
e/m	meteorites occurrence in
e^x , e^{-x} , and their logarithms $x=0$ to 10 48	Peltier effect
x fractional 50	periodic system 409-410
e^{x^2} , e^{-x^2} $x=0.1$ to 5.0 54	resistance, electrical 323-326
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	specific heats
e4", e 4"	spectra
	evenue on a conductivities
$e^{\sqrt{\pi}} \frac{e}{x}, e^{-\sqrt{\pi}} \frac{x}{x}$ $e^{-\sqrt{\pi}} \frac{x}{x} = 1 \text{ to } 20 \dots 55$	thermo-electric nowers 217 210
07 + p-x px - e-x	Thomson effect
$e^{\frac{\sqrt{n}}{4}}x$, $e^{-\frac{\sqrt{n}}{4}}x$ $x=1$ to 20 55 $e^{x}+e^{-x}$, $e^{x}-e^{-x}$ and their logarithms 41 Figure 4 transpheric data	Ilinear (solid) 218
Earth: atmospheric data 421	vapor pressures
conductivity, thermal	Elementary electric charge 408
elements, percentage composition 423	Filintia integrals
geochemical data 423	Elliptic integrals
geodetical	Emissivities, radiation
moments of inertia 427	Energy kinetic, definition 428
moon, distance of 414	of molecule 408
rigidity 427	Energy, minimum visible to eye
size of, shape of 427	solar, data relating to 418-420
spheroid constants 427	of sound waves
temperatures 420, 422	Entropy constant (Roltzmann)
viscosity	Entropy of steam
geochemical data	Emissivities, radiation 249, 250 Energy kinetic, definition 428 of molecule 408 Energy, minimum visible to eye 261 solar, data relating to 418-420 of candle radiation 260 of sound waves 149 Entropy constant (Boltzmann) 408 Entropy of steam 234-240 Equilibrium radioactive 304 Equivalent, electrochemical 345-346 mechanical, of heat 197 Erg 433
Elastic limit (see mechanical properties) 74	Equilibrium radioactive 394
Elastic modulus of rigidity, — temp. variation 100	Equivalent, electrochemical 345-346
Elasticity (see mechanical data)	mechanical, of heat 197
crystals 102, 103 Young's modulus (see mechanical prop.) 74	Erg
Electrical charge, elementary	Errors, probable
Electrical equivalents 311	Ettingshausen effect
Electrical charge, elementary	Erichson values 73 Errors, probable 57–55 Ettingshausen effect 38 Eutectic mixtures, melting but 206, 207 Erroception with Man Put W
standards xxxviii	Evaporation rate or, Mo, Ft, W
practical xxxvi Electric lights, efficiency of	Expansion, cubical: gases
Electric tribo- series (frictional)	solids
Electrochemical equivalents	solids
silver	Explosives: decomposition, ignition temp. 244 miscellaneous 243 Exponential functions: see index under e. 243 Exponential functions: see index under e. 243
Electrolytic conduction: ammonium acetate 352	Explosives: decomposition, ignition temp 244
equivalent conductance 345-346 hydrolysis	Exponential functions: see index under e
ionic	diffusion integral Ot
ionic	gudermanians 41 hyperbolic functions (nat) . 41 hyperbolic functions (logs) . 41
solutions 345-346	hyperbolic functions (nat) . 41
spec. molecular 347	hyperbolic functions (logs) . 41
limiting value μ 348 temp. coef 348	probability integral 56-57
Floatro-motive force: eccumulators 313	color sensitiveness
Electro-motive force: accumulators	Eye: adaptation rate 25, color sensitiveness 256-258 contrast sensibility 25, Fechner's law 25, glare sensibility 25, beterochromatic sensibility 25, minimum energy visible 26,
Peltier 321	Fechner's law
standard cells 313	glare sensibility
thermo-electric 317–320	minimum energy rigible
voltaie cells 272-272	miscellaneous data
Weston normal	persistence of vision
Weston portable xliii	pupil size for various intensities
Electromagnetic system of units xxxi	Purkinje phenomenon
Electromagnetic/electrostatic units=v xxx, xxxvi	sensitiveness to light
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	heterochromatic sensibility 255, minimum energy visible 266 miscellaneous data 258 persistence of vision 258 pupul size for various intensities 258 Purkinje phenomenon 256 sensitiveness to light 256-258 small dif. of color, sensitiveness to 258 threshold sensitiveness 256 visibility of radiation, relative 258
e/m	visibility of radiation relative
elementary charge 404	
emission from hot bodies 403	Factorials: γ function, $n=1$ to $2 \dots 62$
ionization potentials 403	n!, n=r to 20 47
mass	logs, n=1 to 100
radius 403	Farad
resonance potentials 403	Faraday Xliv, 311, 345
work required to remove 403	Faraday constant 408
Elements: atomic heats at 50° K	Fechner's law
atomic numbers 409	Ferromagnetism
atomic volumes	metals, behavior of in 365-377
hoiling points	resistance of metals in
compressibility	rotation of plane of polarization . 378
conductivity electrical , 323-326	thermo-galvanometric effects 385
thermal 213	Filaments, heat losses from
densities	Flame temperatures

PAGE	PAG
Foot pound	Hardness: (see mechanical properties)
Fork, tuning, temperature coefficient 149	Brinell test
Fermation, heat of, for elements 245, 246	elements
Formulæ: conversion	Harmonies evlindrical (Rassal) 66-6
least squares	Harmonics: cylindrical (Bessel)
least squares 59 Fraunhofer lines, solar, wave-lengths 265 Free path of molecules 399 Freezing mixtures 211 point, lowering of for salt solutions 208	zonal 6
Free path of molecules	Heat: adsorption heats 40
Freezing mixtures	atomic heats of elements
point, lowering of for sait solutions 208	combination
Frequencies corresponding to wave-lengths	fuels
in air, reduction to vacuo	gases
Friction, mechanical	organic compounds 24
point of water, pressure effect	conductivity: metals (also high temp.) 21
	gases 217, 25, liquids
Frictional electricity series	ilquids
cylindrical harmonics (10018, 00) 00-00	diffusivities
ellintic	formation 245-24
elliptic	formation
gamma . 62	vaporization, elements 23;
hyperbolic 41 probability 56–58 trigonometric, circular (°') 32 trigonometric, circular (radians) 37 zonal harmonics 64 Fundamental frequency (Paythers) 498	NH3 23:
probability 50-58	steam
trigonometric circular (radians)	
zonal harmonics	losses from incandescent wires
Fundamental frequency (Rydberg) 408	mechanical equivalent of
Fundamental standards xxxiii	neutralization, H ₂ SO ₄
units xxiii Fusion current for wires	Solution
Fusion current for wires	losses from incandescent wires 25: mechanical equivalent of 19 neutralization, H ₂ SO ₄ 24 solution 24 specific alloys 22: ammonia, liq. 22:
Fusion, latent heat of	electricity
	electricity
Gages, wire	gases
Gamme function	liquids
Gas constant	mercury
Liss Thermometry	minerals, rocks
Gases: absorption of by liquids	solids
Gases: absorption of by liquids	
absorption coef; long-wave radiation 300	vapors
X-rays 389	true elements, f(t) 222 vapors 233 water 227 total elements, f(t) 222 treatment of steels 76 Heating effect, radium and emanation 394 Hefner unit 260 Heights, barometric determination of 144 Helium, production, relation to radium 304 Helium, production, relation to relation to radium 304 Helium, production, relation to radium 304 Helium, production, relation to relation to radium 304 Helium, production, relation to relation to radium 304 Helium, production, relation to rela
compressibility	treatment of steels
Continuativity Cont	Heating effect, radium and emanation
densities	Hefner unit
dielectric constants	Heights, barometric determination of 145
strength	Bolling point of water determination of 144
diffusion	Henry
expansion enefficients	Heterochromatic sensibility of eve
expansion of	Helium, production, relation to radium
flow in tubes	High-frequency electric resistance of wires 344
ignition temperatures of mixtures 244	- 1915 431
magnetic susceptibility	Horse power
refractive indices	Humidity, relative: vapor-pressure and dry 187 Hydrogen: atomic data, mass, radius, etc. 408
resistance (aerodynamical)	wet and dry
solubility in water	Hydrogen: atomic data. mass, radius, etc 408
sound, velocity of, in	series spectra
specific neats (also c_p/c_v)	Hydrolysis of ammonium acceptate
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	series spectra
f(t), 1+0.00367, logs 128-132	Hyperbolic functions, natural and logarithmic 41
Gauss xlv, 365 Gaussian system of units	Hysteresis
Gaussian system of units	Ice, allotropic modifications
Clevietic data	freezing point, pressure effects 200 Ice-point, thermodynamic scale 195
Geodetic data	Ice-point, thermodynamic scale
Gilbert 311 Glare sensibility of eye	ignition temperatures gaseous mixtures
Glare sensibility of eye	Incandescent filaments, heat losses
	Secular var 420
resistance electric, temp, var.	Index of refraction: air
	alums
Glass vessels, volume of	crystals, see minerals, etc., 282-280
	fats
Gravitation constant 427 Gravity, acceleration of, altitude variation 424	gases and vanors
Gravity, acceleration of, altitude variation	glass American
latitude variation	glass American
UDSERVED VILLIES	Iceland spar
GRAVILY Specific, see densities	liquened gases 289
Gudermanians	liquids
	minerals, isotropic
Hall effect, temperature variation	uniaxial 284
	biaxial 286

PAGE	PAGE
Index of refraction: miscellaneous, isotropic 283	Length, standards of xxxiv,
uniaxial 285	Length, standards of
biaxial 289	flux, definition
nitroso-dimthyl-aniline 280	intensities on various days 250
quartz 280	lambert, definition
rock-salt, $f(t)$	least visible to eye
salt solutions 291	mechanical equivalent
silvine	photometric standards
SOHOS, DIAXIAL 200, 209	nolarized reflection 205-205
isotropic 282, 283 uniaxial 284, 285	rotation of plane by substances 310
standard media for microscope. 294	rotation of plane, magnetic . 378-38;
vapors 292	reflection of: formulæ
waxes	function of "n" 29
Induction, self	reflection of: formulæ
Inductive capacity, specific: crystals 361	pigments
	powders 300
liquids	rough surfaces 299 scattered light 300
ilq. gases 359	scattered light 300
liquids	temperature variation 300 sensitiveness of eye to
Inertia moments of	transparency to: crystals
Inorganic compounds: boiling points	transparency to: crystals 30 dyes 30 glasses, American . 303–30
densities 201	glasses, American 303-30
melting points 201	Jena 30
soluibilities 169	water 30
Insulators: break-down potentials	velocity of
dielectric properties	wave-lengths: cadmium std. line 26
Inertia, moments of	Framhofor lines
Integral diffusion	solar Rowland
ellintie	Jena 303-30 Jena 303-30 Jena 303-30 velocity of 408,41 wave-lengths: cadmium std. line 26 elements 269-27 Fraunhofer lines 269-27 solar, Rowland 27 Std. iron lines 266-26 Lights, brightness of various
formulæ 12 gamma function 62 probability 56-57, 60 Intensity, horizontal, earth field, 1915 431	Lights, brightness of various
gamma function 62	color of various
probability	efficiency of various electric
Intensity, horizontal, earth field, 1915 431	photographic efficiency of
Intensity, total, earth field, 1915	visibility of white lights
secular var	Light-year
secular var	Linear expansion coefficients
electric units	Liquids: absorption of gases by 17
standards xxxviii	Baumé density scale 10
Candle standard 260	Light-year
standard wave-lengths 266-267	combustion heat, fuels
Intrinsic originaless of various lights	compressionities
diffusion 405	contact emf
mobilities	densities
Ionization potentials	mercury, f(t)
	water, f(t) 118-12
work required to detach 403-404	dielectric constant
Ions, conductance of	strength
Two magnetic properties (steels)	expansion coefficients
standard wave-lengths international 266-267	expansion coefficients
Isostacy	expansion coefficients
Isotopes	magnetic optic rotation
Joule	magnetic susceptibility
Joule magnetic effect	potential dif. with substances 314-31
	retractive indices
K X-ray spectrum series	specific heats
Kerr's constant, magneto-optic	surface tensions
Kinetic energy 436 molecular 408	thermal conductivity
Kundt's constant, magneto-optic	expansion, cubical
	vapor pressures 175-18
L X-ray series	viscosity, absolute 157-15
Latent heat of fusion	fuels, combustion heats
Lambert, definition	Logarithms: standard 4-place
Latent heat of vaporization: ammonia	1000 to 2000
formulæ 232 steam tables 234	.9000 to 1.0000 3
steam tables 234	Logarithmic functions
Various	Longitudes of a few stations 420, 43
Latitude correction to barometer	Long-wave transmissions
of a few stations	Loschmidt's number
Least squares: formulæ	Lowering of freezing points by salts 20
x/r 57	Lubricants for cutting tools
inverse 60	Lumen
$0.6745\sqrt{1/(n-1)}$ 57	Lunar parallax
$0.6745\sqrt{1/n(n-1)} \dots 58$	Lux
$0.8453\sqrt{1/n(n-1)}$	
$0.8453[1/n\sqrt{n-1}] \dots 58$	M X-ray spectrum
Leduc thermomagnetic effect	Mache Padioactivity unit
Legal electrical units xxxvli	Maclauren's theorem

PAGE	PAGE
Magnetic field: atomic	Mechanical properties: definitions: modulus of rupture 74
bismuth, resistance in	proportional limit. 74
Ettinghausen effect	scleroscope 74
Hall effect	ultimate strength,
Joule effect	compr. 74
Leduc effect	yield point 74
Nernst effect	alloys: aluminum
optical rotation polarization . 378-383	brasses 83-85
resistance of metals in	bronzes 83-85
thermo-magnetic effects 385	copper 83-85
Villari effect	iron 75-70
Magnetic observatories magnetic elements	miscel 88–86
Villari effect	steel
Curie constant 372	white metal 80 aluminum: 80 80
Curie point	alloys 81
demagnetizing factor for rods	brick and brick piers 93
diamagnetism, f(t) 365, 372	cement
ferro-cobalt alloy 370	cement mortars
Ierromagnetism	ciay products
hystersis	concrete
iron:	copper:
pure	wire 82-83
pure	heat treatment for steels 76
very weak fields 270	iron:
magnetite, o°, 100° C. 373 magnetite, o°, 100° C. 373 magnetstrictive effects 365 magnet steel 370	alloys 75
magnetic, 0, 100 C. , . 373	leather belting
magnet steel	o-ratio extension/contraction. 101
maxwell	rigidity moduli f(t) 100
nickel, 0°, 100° C 373	rope, manila 9 steel-wire
paramagnetism, f(t) 365, 372 permeability 365, 371	rubber, sheet 94
saturation values for steels 373	steel:
energy losses 376	alloys
energy losses	semi
manganese steet 373	wire
	wire-rope
tool steel 373 transformer steel . 371, 376	terra-cotta piers 93
transformer steel . 371, 376	tungsten
weak fields 370 Steinmetz constant 375	white metal 89
susceptibility 365, 372, 377	woods: conifers: English unit 99
susceptibility 365, 372, 377 temperature effects 371-373	metric unit . 9;
magnetism terrestrial: agonic line	hard: English unit . 98 metric unit 96
declination 420	Melting points: alloys
dip	elements
intensity, horizontal 423	eutectics 207
1013	inorganic compounds 201
magnetic character yearly 425	inorganic compounds 201 lime-alumina-silica compounds 207
Observatories, elements at 426 Magneto-optic rotation, gases	organic compounds 203
Kerr constant 383	paraffins 203
Kundt constant	pressure enect 200
liquids 380	pressure effect 200 water-iee, pressure effect 200 Meniscus, volume of mercury
solids	Mercury; density and volume, -10° to 360° C 121
Verdet's constant 378-383	conductivity thermal, high temp 254
Magnitudes, absolute stellar 415, 412	electric resistance standard xxxviii
Magnitudes, absolute stellar	meniscus, volume of
Mass: electronic, f(velocity)	pressure hydrostatic of columns
fundamental standard	thermometer 190-194
hydrogen atom	vapor pressure
and a sour peron coefficient for A-rays	vapor pressure
Mathematical constants	diffusion
physical	potential differences, Volta 316, 404
Maxwell	refraction indices
Masses, stellar 404 Mathematical constants 14 14	optical constants
welocity H molecule	resistivity, temperature coefficient 323
	pressure effect 326
Mechanical equivalent of neat	Volta emf 316, 404
light ,	pressure effect 326 Volta emf 316, 404 weight sheet metal 116 Metallic reflection 295-296, 298
Mechanical properties: definitions	Meteors chamical composition
elastic limit 74 Erichson value 74	Meteors, chemical composition
Dardness	Metric weights and measures, equivalents 5-10
moduli 74	Mho

PAGE	PAG
Migron # 7, 436	Pendulum, second: formula; latitude variation
Milky way, pole of 414	Penetration cathode rays
Micron, µ	high speed molecules
refractive indices: biaxial 286	Pentane candle
isotropic	Desirable queterns Teach
uniaxial 284	Mandalaieff
Minerals: densities	high speed molecules
Minimum energy for fight sensation	Persistence of vision
Mobilities ionic	Petrol-ether thermometer
Mixtures freezing	Phosphorescence (radio-active excitation) 39
Mogendorf series formula	Phot
Moist air, density of	Photoelectricity
maintenance of	Photographic data: Intensincation
transparency to radiation, .36 to 1.7\mu. 411	plate characteristics 26
to 20µ 308	resolving power
Molecular collision frequencies	speeds various materials
Modul,see mechanical properties	Photometric definitions, units
erystal units 400	standards 26
diameters	Physiological constants of the eye 25
free paths 399	Pi (π)
heats of adsorption 407	Pigments, renecting powers I(A)
liquefaction 407	Pitch:
kinetic energy 408	organ pipes
magnitudes	voice, limits
number in cm°, 70 cm, 0° C 408	Planck's " h " 40
erystal units	radiation formulæ, C1 C2 24
weights of colloids	Plane, air resistance to 150-15
Moments of inertia: earth	Platinum registance thermometer
Weights of technis 426	Photometric definitions, units standards 26 Standards 26 Physiological constants of the eye 25 Pl (π) 14, 43 Pigments, reflecting powers $f(\lambda)$ 29 Pipes, organ: pitch 14 Pitch: 14 Organ pipes 14 Voice, limits 14 Planck's "h" 40 radiation formulæ, C_1 22 Plane, air resistance to 150–15 Planetary data 41 Platinum resistance thermometer 19 thermoelectric thermometer 19 thermoelectric powers against 31 Poisson's ratio
Month 414, 436	thermoelectric nowers against
Moon: albedo 417	Poisson's ratio
distance from earth, parallax 414	Polonium radioactive series
radiation compared with sun's 407	Polarized light: reflection by 295-296, 29
Musical scale	rotation of plane 31
Musical scale	Poisson's ratio
ratual induction	Porcelain, resistance, f(t)
Nernst thermomagnetic potential difference 385	Positive rays
Neutral points, thermoelectric	colle voltaie
Neutralization, heat of	magnetic
Nickel, Kerr's constants for	ionizing
magnetic properties, o to 100°° 373	Peltier
resistance in magnetic field 384	sparking, kerosene
Nitrogen thermometer 192	various 353-35
Nitroso-dimethyl-aniline, refractive index 280	resonance 40
Nuclear charge, atomic 393, 401	standard cells
Number of stars 417	nressure effect 22
Number of stars	Weston normal
X-ray spectra and 390-393	various 353-35
Numbers: magnetic character 433	Poundal 43
sun-spot	Precession 41
144	Pressure: air, on moving surfaces 150-15
Observatories, magnetic elements at 434	parometric, reductions, capillarity 14
Ohm: xxxvii, xxxviii, 311	temperature 130-14
Ohm:	boiling water
Dersted	critical, gases 21
Olls, viscosity of	mercury columns
Optical constants of metals	volume relations, gases 10
Optical rotation magnetic	Dolling water
Optical thermometry	rressure enect on boiling points
Organ pipes, pitch	resistance electrical
Organic compounds: boiling points 203	thermoelectric nowers
densities	Pressure vapor: alcohol, methyl and ethyl 17
Organic salts, solubilities	aqueous (steam tables 234) . 183-18
Oscillation constants wireless telegraphy	elements
times of wires, temperature variation 101	elements
Overtones	Salt solutions
	water vapor (steam tables 234) 183-18
P-limit (proportional limit)	various
P-limit (proportional limit) 74 et seq.	Prebability integral
Parsec 414	Probability integral
Parallax, solar, lunar	Proportional limit (P-limit) 74 et seq
stellar 412, 415 Paramagnetism 365 Partials (sound) 149 Particle, smallest visible 406 Pattice, smallest visible 406	Pupil diameter
Partials (sound)	Purkinje pnenomenon 25
Particle, smallest visible	Quality, tone
Peltier effect:	Quality, tone
nressure effect	transmission of radiation by

PAGE	, PAG
R. gas constant	Refraction index: air, f(\lambda) 29
R, gaz constant	alum
Radian	crystals, see minerals 279-28
circular functions in terms of 37	fats
Radiation: black-body, formulæ	gaces 20
f(λ,T) 247, 248	gases 29 glasses, American, $f(\lambda)$ 27 Jena, $f(\lambda, t)$ 27 Iceland-spar 28 liquids 29 liquefied gases 28 microscopic determination media
total, f(t)	Jena, $f(\lambda, t)$
candle Constants, σ , C_1 , C_2	Iceland-spar
cooling by, across airspaces 253	liquids 20
high temperatures 254	liquefied gases
ordinary temperatures 253	microscopic determination media . 29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	minerals, blaxial, positive 28
emissivities	negative 28
eve sensitiveness to	isotropic 28
f(λ) 256, 258	uniaxial, positive 28
moon's compared to sun's 415	negative 28
Planck's formula	miscellaneous, biaxial 28
σ, Stefan's formula	miscellaneous, biaxiai 28 isotropic 28 uniaxiai 28 uniaxiai 28 nitroso-dimethyl aniline 28 oils 28 quartz 28 rock-salt, f(t) 27 salt solutions 29 silvine 27
solar constant of 410	nitrore dimethyl apiline
variation with latitude 420	oils 28
Otalan's formula 247	quartz
gum's to earth 418	rock-salt f(t)
sun's compared to moon 415	salt solutions
temperature as function of 250	silvine
σ, Stefan's formula 247 solar constant of . 418 variation with latitude . 420 month 420 Stefan's formula . 247 sum's to earth . 418 stun's compared to moon . 415 temperature as function of . 250 transmissibility of by air, moist . 308, 419	vapors
alum 305	waxes
transmissibility of by air, moist . 308, 419	Relative humidity, vapor pressure and dry 18
erystals, $f(\lambda)$ 305 dyes, $f(\lambda)$ 301 fluorite, $f(\lambda)$ 305	wet and dry 18
dyes, I() 301	Resistance, air (aerodynamical) 151-15
nuorite, $I(\lambda)$ 305	planes
glass, $f(\lambda)$. 302-304 ice-land spar 305	angle factor
lamp-black 309	aspect factor
long-wave $f(\lambda)$. 300	shape factor
long-wave, $f(\lambda)$. 309 quartz, $f(\lambda)$. 305	size factor
rock-salt, f(λ) . 305	speed factor
rock-salt, $f(\lambda)$. 305 water, $f(\lambda)$. 307	Resistance, resistivity electrical (see conductivity).
visibility of by eye	snape factor
Radii of gyration	aluminum
Radii of gyration	aluminum
a rays: nellum	alternating current values 34
kinetic energy 206	antennæ (wireless)
number produced 206	copper, I(t)
production of 394	reduction to standard temperature 333
range 396	wire-tables, English units 336 metric units 339
stopping powers for 395	dielectrics volume surface
velocity, initial 396	dielectrics, volume, surface
actinium group 390	equivalents
β rays: absorption coefficients . 395, 397	equivalents
ions produced 398	high frequency values 344
velocities 397 γ rays: absorption coefficients 395, 397	high temperature values 330
ions produced 398	low temperature values
constants, various 396-397	magnetic field, effect of
Curie unit	mercury resistance standards xxxvii
emanation	metals, f(t)
general characteristics 394	porcelain, $f(t)$
heating effects	pressure effect
ions produced by a 8 and a rays	standards, mercury xxxviii
ions produced by a, \(\beta \) and \(\gamma \) rays 398 isotopes 410 Mache unit 398 phosphorescence 394 radium group 396 spectra 398 standard, international 394 thorium group 396 transformations 396, 410 transformation constants 396 vapor pressure of emanation 398	surface, of dielectrics
Mache unit	volume of dielectries
phosphorescence	volume, of dielectries
radium group 396	wire tables, aluminum, common units . 342
spectra 398	metric 242
standard, international 394	metric 343 copper, common units
thorium group	metric
transformations	Resolving power photographic plate
vapor pressure of emanation	Resonance potentials (spectra)
Radium emanation, vapor-pressure	Retina, physiological data
RECOUD	sensitiveness to light and colors
group	Rigidity of earth
Radius hydrogen atom	regionly moduli, I(t) 100
Reciprocals	KILZ Spectrum series formula
Reciprocals 15 Reflection of light: formulæ 297	Rocks, specific heats of
rong-wave 300	Rocks, specific heats of
metals	Rous in retina of eye
miscellaneous	Röntgen rays:
f(n,i) 297 pigments dry, f(\(\hat{n}\)) 299 polysignation by	absorption coefficients (mass) 389
	atomic numbers and spectra 300-303
rough surfaces	cathode efficiencies
Stellite	characteristic radiations
variation with angle 300	energy relations
temperature 200	30/

PAGE	PAG .
Röntgen rays: heterogeneous radiations 387	Solutions: refractive indices
homogeneous radiations 387	specific heats
independent radiations 387	surface tensions
intensity 388	vapor pressures
ionization	surface tensions
L series of radiations	Sound, velocity of: gases
L series of radiations	liquids 14
monochromatic radiations 387	solids
secondary radiations 387	waves, energy of
spectra: absorption	waves, energy of
K series	
M series 391	dielectrics
monochromatic radiations 387	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
wave-length and cathode fall 387	Specific heat of electricity
Roots of Bessel functions, 1st and 2nd orders 68	Specific heats: ammonia, sat. liq
Roots square	elements
Rope, manifia, mechanical properties	liquide 22
Retation of nolarized light.	mercury '
magnetic 378-382	minerals and rocks
Rough surfaces, reflecting power 299	rocks
Rowland solar wave-lengths	silicates
Rupture, moduli of 74 et seq	solids
Ruthernord atom 401	water 22
Rutherford atom 401 Rydberg constant	vapors
	Specific gravities (see densities)
σ, Stefan-Boltzmann	Specific inductive capacities: crystals 36
Salt solutions: boiling point raising 210	gases, f(t,p) 356-35
	riquius, 1(t) . 357–35
vapor pressure	std. solutions 36
Scales, musical	Specific molecular conductivity 347-34
Scleroscope (hardness test) 74	Specific resistance, see resistivity 323-32
Screens, color 306-307	Specific viscosity:
Scales, musical 148	Specific molecular conductivity
Secondary Sea-level values, $\Gamma(\phi)$ 419	ove concitiveness (1)
Secondary batteries	iron standards, international units . 266, 26
Second	radium
Self induction	radium
Sensation, Minimum energy of light for	solar: intensities of energy 41
Series methometical 1250-258	Rowland wave-lengths 27 cor. to intern. scale 27
Series, mathematical	standard wave-lengths, intern. units. 266-26
first terms	stellar 40
limits of	stellar
Morgendorff formula	reduction to std. pressure. 26
Dydberg formula	X-ray: absorption
vibration differences	K series 39
Sheet metal, weight of	L series 39
Rvdberg formula	M series 39
Silver voltameter . xl Silvine, refractive index . 279 Silves, natural and logarithmic, circular . 32 hyperbolic . 41	tungsten
Silvine, retractive index	Speed of corpuscies
hyperbolic 47	Sputtering cathodic
19 19 19 19 19 19 19 19	K series 39 L series 39 M series 39 M series 39 M series 39 Speed of corpuseles 40 Spherical harmonics 6 Sputtering, cathodic 38 Squares of numbers 1 Squares of numbers 5 Squares, least, — formulæ and tables 56—5 Standard celis, emf of 31 radium, international 39 refractive media for microscope 29 resistance, mercury xxxvii
Skin friction, air resistance	Square roots of numbers
Soap films	Squares, least, — formulæ and tables 56-59
Solids: compressibility	Standard cells, emi of
densities 314, 310, 404	refractive media for microscope
dielectric constants	resistance, mercury
expansion coefficients, cubical	resistance, mercury
linear 218-220	wave-lengths: primary (international) . 26
hardness	secondary (international) . 260
magneto-optic rotation	tertiary (international) 26 reduction to std. pressure . 26
contact potentials 314, 314, 304, 404 densities 113 dielectric constants 360 expansion coefficients, cubical 227 linear 218-220 hardness 74 et seq, 101 magneto-optic rotation 379 refractive indices 277-289 resistance, electrical 323-344 velocity of sound 146	Standards: electrical, international
velocity of sound	fundamental
Verdet's constant	nhatamatria afr
Solubility: gases in water 170	Stars: brightness 41
pressure effect 171	densities 41;
Vendety of sound	Stars: brightness
Solutions: boiling point raise by salts in	first magnitude data (nositions, etc.) 41
conductivity electrolytic 346–352	Harvard classification 411
thermal	light, total
densities of aqueous	magnitudes, apparent and absolute 413
	masses 413
freezing points lowering by salts in 208	number of 412
magneto-ontic rotation by	napallay

PAGE	PAGE
Stars: size	Thermal conductivity: insulators
spectra	liquide high temp. 214
temperatures, surface 411	metals, high temper-
Steem tebles	ature
Steam tables	salt solutions 216 water 216
Steel: magnetic properties	water 216
Stefan-Boltzmann constant, and formula 247	Thermal diffusivities
Steinmetz magnetic constant	Thermat expansion: cubicat: gases
Stellite, reflecting powers	liquids
Stem correction for thermometers	linear; elements
Stone, mechanical properties 92	Thermal unit: British
Stokes law for falling bodies	Thermal unit: British
Strengths—see mechanical properties 74-99	calorie
Sucrose, viscosities of solutions, f(t) 156 Sugar cane, densities aqueous solutions 126	Thermo-chemistry: heat of combustion: carbon cpds . 241
Quinhurie said densities squenus solutions 120	coals 242
Sun; apex of solar motion 411	cokes 242
Sun: apex of solar motion	gases 24. liquid fuels 24. miscellaneous . 24.
disk brightness distribution 418	miscallaneous 242
Fraunhofer lines	nests . 24
magnitude, stellar	heat of dilution, H_2SO_4
magnitude, stellar	formation 24
numbers, Wolf's sun-spot 415	ions 24
parallax	neutralization
constant (solar constant)	Thermoelectrical properties: (emf) alloys 318
variation with month and latitude 420	platinum 319
spectrum: energy intensities 418	elements 31
Fraunhofer lines 265	Peltier 317, 32:
Rowland's wave-lengths : 272	pressure effects . 320
spot numbers, Wolf's 415 temperature 418	Thermoelements, calibration of
velocity	
wave-lengths: Fraunhofer lines 265	Thermomagnetic effects
wave-lengths: Fraunhofer lines	Thermometry: absolute zero
Sunshine, duration of f (month, latitude) 417	alf—16111 o to 300° C 193
Surface resistivities, solid dielectrics	Thermometric enect 38
Surface tensions	calibration points, standard 19
elements, etc 377	
Manager almost and law (10 /)	hydrogen - 16111, 0° to 100° C . 192 16111, 59 — 5° to -35° C 192 -35° C
Tangents circular, nat. and log., $f(°, ')$ 32 f(radians) 37	16 ¹¹¹ , 59 -5° to
	various
Taylor's series	ice point
Taylor's series	Kelvin scale
brightness black body as function of. 261	mercury of with gas 190-194
brightness scale for C	platinum resistance
color scale for W 250	stem corrections
critical gas constants 212	thermodynamic scale, ice-point 19
earth: f(altitude) 421	thermo-electric, Cu-Constantan 19
f (latitude) 422	
monthly and yearly means 420 variation below surface 422	Thomson thermo-electric effect 317, 32: Thorium radio-active group, constants of 396
flame temperatures	Threshold sensitiveness of eye
ignition, gaseous mixtures 244	Timber, strength of
standards xxxiv	Timbre (sound)
stellar 411	Timbre (sound)
sun's 418	Time, solar, sidereal 412
thermodynamic	Time standards
Tensile strengths, see mechanical properties	Transformation points of minerals
Tension, surface	Transformation points of minerals
Tensions, vapor, see vapor pressures 175-186 Terrestrial magnetism: agonic line 425 declination 420	atmospheric 418
Terrestrial magnetism: agonic line 425	crystals, various 300
declination 420	uyes 30
dip	glass, American . 303, 304
inclination	Jena 30:
total 424	water 30/ water-vapor 308, 41/ Trlgonometric functions: circular, (°') nat., log 3: (radians), log 3/ hyperbolic, nat., log 4/
magnetic character, yearly . 425	Trigonometric functions: circular, (° ') nat., log 3:
Observatories, elements at . 426	(radians), log 3'
Thermal unit, British	hyperbolic, nat., log 4
standard calorie	Tribo-electric series
building materials . 215	Tuning forks, temperature coefficients
earth 422	
gases 217	Ultimate strengths of materials, see Mechanical.
high temperature 254	properties 74-99

	PAGE	PAGE
Units of measurements, see Introduction	xxiii	Voltaic cells; comp., emf: double fluid 312
electrical, absolute.	XXXVI	secondary 313 single fluid 313
internationa	xxxvii	etopdord era
electrical, absolute internationa legal practical	xxxvi	storage
fundamental photometric	xxiii	Voltameter, silver xl
photometric	200	Standard 313
radioactive work, transformation fa	ectors 197	Volume atomic, 50° K
Uranium group of radio-active substances	396	critical for gases
v, ratio electro-magnetic to -static units	xxx. xxxvi	glass vessels, determination of
Vacuo, reduction of densities to Valencies of the elements Van der Waal's constants Vaporization, latent heat of: ammonia elements, theoret	73	gases, f(p)
weighings to	73	mercury, -10° to +360° C 121
Valencies of the elements	71	resistance of dielectrics
Van der waars constants	231	specific of elements
ammonia	232	-10° to 250° C 120
elements, theoret	ical . 233	water, o° to 40° C
formulæ steam tables .		Waal's (van der) constants 212
Vapor pressure: alcohol ethyl methyl	178	Water: boiling point, f(p)
methyl	178	Water: boiling point, f(p)
aqueous (see water below)	183, 234	solutions, ethyl alcohol 124
alamanta	775	glycerol 156 methyl alcohol 126
mercury	180	sucrose 156 sugar (cane) 126 sulphuric acld 126
radium emanation , ,	, , . 398	sugar (cane) 126
radium emanation salt solutions various water: atmospheric via wet at	179-180	various 122, 159–163
water: atmospheric via wet ar	d dry	freezing point, f(pressure) 200
sea-level	100	ionization of
other altitu	182	melting point, f(p)
steam tables	234	solutions: boiling points
Vapor, water; weight per m ³ and ft ³	185	densities, see water, density solu-
Vapors: densities	167, 234	tions 118–126, 156, 159–163
other altitutes a sturated steam tables stea	231-239	diffusion 100
heats specific	230	freezing points 208
pressures, see vapor pressures	. 175-186	viscosities 156, 159-163
refractive indices	230	specific heat
specific heats	164	transparency to radiation
water, transparency to radiation	308, 419	diffusion
Velocity of light	400, 414	
sound, in gases	147	viscosity, f(t)
liquids	147	Water-vapor, determination in atmosphere, via wet
Solids	411 412	and dry sea-level 186
sun	411	and dry sea-level 186 various altitudes 185 relative humidity via wet and dry 189
Velocity of light molecules sound, in gases liquids solids stars sum verdet's constant (magneto-optic) gases liquids solids solids solids solids solids solutions, aqueous vessels, volume of glass, via Hg villari magnetic effect	. 378-382	dry and v.p 187
gases	382	in atmosphere, f(altitude) 421 transparency 308, 419 weight saturated per m³ and ft³ 185
solids	379	transparency 308, 419
solutions, aqueous	381	Watt
Vessels, volume of glass, via Hg	365	Watt
Viscosity: alr	164	cadmium red line 200
alcohol ethyl, f(t, dilution)	155	Crova
Villari magnetic effect Viscosity: air alcohol ethyl, f(t, dilution) eastor oil, f(t) continuise definition	156	Fraunhofer solar lines
centipoise, definition definition	155	Fraunhofer solar lines
earth	427	neon, international scale
gases, temperature and pressure var		limits, Hertz, X, visible, etc 408
glycerol, dilution variation liquids, f(t)	. 157-158	Röntgen 390-393
liquids, f(t) specific: solutions, f(dens., t) atom. conc. 25° sucrose solutions, f(t, dilution)	159	Rowland solar
atom. conc. 25°	C 163	solar, Fraunhofer lines 265
vapors, f(n, t)	. 164-165	Rowland
water, f(t)	155	Rowland
vapors, f(p, t)	. 256-258	standards: international primary 266 secondary 266–267
white lights	250-258	tertiary 267
Vision, distinct persistence of	258	vacuo, reduction to 293
persistence of	258	wireless
Voice, pitch limits of	149	X-ray
Voltages: accumulators	4, 316, 404	Weighings, reduction to vacuo 73
Peltier standard cells	321	Weight sheet metal
thermoelectric	317-330	Weights, atomic
thermoelectric pressure effect voltaic cells Weston normal Weston vorteble	320	metric to customary 6
voltaic cells	. 312-313	metric to imperial 8
Weston portable	· · · XII	imperial to metric 10 miscellaneous 7
tropost poromito	· · · Allia	miscendicus /

PAGE	PAG
Weston normal cell xli	X-rays:
Weston portable cell xliii	absorption coefficients (mass) 38
Wiedemann magnetic effect	atomic numbers and spectra 390-39
	calcite grating space 40
Wind pressures	cathode efficiencies
Wire gages, comparison	characteristic radiations
Wire, mechanical properties: copper 82-83	corpuscular radiation 387-38
steel	erystals, diffraction with 40
steel rope and cable . 79	energy relations
Wire resistance, auxiliary table for computing 322	general radiations
Wire tables: aluminum, English measures 342	heterogeneous radiations
metric measures 343	homogeneous radiations
see also	independent radiations
copper, English measures 336	intensity
metric measures 339	
see also 334	K series of radiations
temperature coefficients .334, 335	L series of radiations
reduc. to std 335	M series of radiations
Wires, alternating-current resistance 344	secondary radiations
carrying capacity of	spectra: absorption
high-frequency resistance 344	K series
Wires, heat losses from incandescent, bright Pt 255	L series
Pt sponge . 255	M series
Wireless telegraphy: antennæ resistances 364	tungsten
wave-lengths, frequencies, oscil-	wave-lengths 390-393
	wave-lengths and cathode fall 38;
lation constants 362	
Wolf sun-spot numbers, 1750 to 1917 415	Years 414, 43
Woods: densities	Yearly temperature means
mechanical properties: conifers, Eng. units. 99	Young's modulus, definition
metric units 97	Vield point (machanical property)
hard wds, Eng. units 98	Yield point (mechanical property) 74-103
metric units 96	Zero, absolute, thermodynamic scale 195
Work, conversion factors 197	Zonal harmonics

Che Riverside Press

CAMBRIDGE . MASSACHUSETTS

U . S . A

DATE DUE SLIP

UNIVERSITY OF CALIFORNIA MEDICAL SCHOOL LIBRARY

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

JUN 1 1949

NOV 7 1958

06T 22 1953 NOV 6 - 1953

1m-7,'25

17380

Library of the University of California Medical School

