## 

Mathematical Methods 3/4 Trial Exam 2 Solutions 2007 Free download and print from www.itute.com Do not photocopy ©Copyright 2007 itute.com

## **SECTION 1**

|   |   |   |   | 4 |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|
| D | - | C | D | Е | A | В | В | В | D | Е | Е |

| 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|----|----|----|----|----|----|----|----|----|----|----|
| В  | С  | Α  | D  | D  | Е  | A  | D  | С  | С  | С  |

Q1 (2,0), 
$$0 = \sqrt{2a+b}$$
,  $\therefore 2a+b=0$ .....(1)

$$(4,4), 4 = \sqrt{4a+b}, :: 4a+b=16....(2)$$

Solve (1) and (2) simultaneously, a = 8 and b = -16.

Q2 
$$\log_5 10 = \frac{\log_{10} 10}{\log_{10} 5} = \frac{1}{\log_{10} 5} = 1.431$$
.

Q3 Use graphics calc to sketch  $y = |\cos(3x)|$  and y = 0.15. The number of intersections in  $-\pi \le x \le \pi$  is 12.

Q4 g(x) is the result of f(x) undergoing reflection in the y-axis, horizontal dilation by a factor of  $\frac{1}{2}$  and downward translation.

Q5 Domain of f(x) is  $(-1, \infty)$ . For f[g(x)] to be defined,  $g(x) \in (-1, \infty)$  and hence  $x \in (1, \infty)$ .

Q6 Use graphics calc to sketch  $y = \frac{x^2 e^x}{(2\pi x)}$  and y = 1. The x-coordinate of the intersection is 1.46

Q7 The repeated factors  $(2x+a)^3$  and  $(x-2b)^2$  indicate that f(x) has a stationary inflection point on the x-axis at  $x=-\frac{a}{2}$  and a turning point on the x-axis at x=2b.  $\therefore f'(x)=0$  at  $x=-\frac{a}{2}$  and x=2b.

Q8 The range of f is  $(-\infty,1] \cup (2,\infty)$ . This becomes the domain of  $f^{-1}$ .

Equation of f is 
$$y = \frac{1}{x+1} + 2$$
, : equation of  $f^{-1}$  is

$$x = \frac{1}{y+1} + 2$$
. Express y as the subject,  $y = \frac{1}{x-2} - 1$ ,

$$f^{-1}(x) = \frac{1}{x-2} - 1$$
.

O9 Remainder theorem:

$$R = P\left(-\frac{1}{2}\right) = 32\left(-\frac{1}{2}\right)^5 + 8\left(-\frac{1}{2}\right)^3 + 2\left(-\frac{1}{2}\right) + 1 = -2$$

Q10  $y = \sin\left(\frac{\pi x}{2}\right) - \frac{\pi x}{2}$ ,  $-2\pi \le x \le 2\pi$ . The tangent is parallel

to the x-axis when  $\frac{dy}{dx} = \frac{\pi}{2} \cos\left(\frac{\pi x}{2}\right) - \frac{\pi}{2} = 0$ , i.e.  $\cos\left(\frac{\pi x}{2}\right) = 1$ .

Hence  $\frac{\pi x}{2} = -2\pi, 0, 2\pi$ ,  $\therefore x = -4, 0, 4$ .

Q11 Let 
$$y = e^{\sqrt{1+x^2}}$$
 and  $u = \sqrt{1+x^2}$ .

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = e^{\sqrt{1+x^2}} \times \frac{x}{\sqrt{1+x^2}} = \frac{xe^{\sqrt{1+x^2}}}{\sqrt{1+x^2}}.$$

Q12 Rate of change = gradient of  $y = \frac{\log_e |x^3 + 3|}{x^3 + 3}$ .

Use graphics calc to find  $\frac{dy}{dx}$  at x = -2.

$$\frac{dy}{dx} = -0.29$$
, : rate of decrease = 0.29.

Q13 Use rectangles (left or right) to estimate.

Q14 
$$\int_{0}^{2} \frac{1}{2x - 5} dx = \left[ \frac{\log_{e} |2x - 5|}{2} \right]_{0}^{2}$$

$$= \frac{\log_e |-1|}{2} - \frac{\log_e |-5|}{2} = -\frac{1}{2} \log_e 5 = -\log_e \sqrt{5}.$$

Q15 
$$\int_{1}^{2} [2f(x) - 3] dx = 2 \int_{1}^{2} f(x) dx - \int_{1}^{2} 3 dx$$

$$=2[F(x)]_1^2-[3x]_1^2=2(F(2)-F(1))-(6-3)=2(4)-3=5.$$

Q16

$$\int_{0}^{\frac{\sqrt{\pi}}{2}} x \sin(2x^{2}) dx = \left[ \frac{1}{2} \sin^{2}(x^{2}) \right]_{0}^{\frac{\sqrt{\pi}}{2}} = \frac{1}{2} \sin^{2}(\frac{\pi}{4}) = \frac{1}{2} \left( \frac{1}{\sqrt{2}} \right)^{2} = \frac{1}{4}.$$

Q17 
$$f'(x) = -\frac{x-p}{2\sqrt{2-(x-p)^2}}, f'(p+1) = -\frac{1}{2}.$$

Q18 The difference of the results can be 0, 1, 2, 3, 4 or 5. It is a random variable.

Q19 Mode = 2,

mean =  $1 \times 0.1 + 2 \times 0.3 + 3 \times 0.2 + 4 \times 0.1 + 5 \times 0.2 + 6 \times 0.1 = 3.3$ , median = 3.

Q20  $X < 2 \Rightarrow X = 0,1$ , i.e. one success or none.  $\therefore p = 0.1$  and n = 1 + 5 = 6.

Q21 Area under p(x) = 1,  $\therefore \frac{1}{2}(3+7)(b-a) = 1$ ,  $\therefore b-a = 0.2$ .

Q22  $\Pr(a \le X < 2) = 0.8$ ,  $\therefore \Pr(X < 2) - \Pr(X < a) = 0.8$ ,  $\therefore \Pr(X < a) = \Pr(X < 2) - 0.8 = 0.977 - 0.8 = 0.177$  $\therefore a = -0.93$ .

## **SECTION 2**

Q1a Use graphics calc, find x-intercepts at x = -3.12, 0, 2, 5.12



Q1b g(x) = f(x) + p has exactly two x-intercepts when p = 64 or p < -17, i.e. f(x) is translated upwards by 64 units or downwards by more than 17 units.

Q1c 
$$h(x) = \frac{1}{4} [f(x) - x^4 + 4x^3] = \frac{1}{4} (-12x^2 + 32x) = -3x^2 + 8x$$
  
 $k(x) = -h(1-x) + 2 = -[-3(1-x)^2 + 8(1-x)] + 2 = 3x^2 + 2x - 3$ .

Q1di Use graphics calc to find the area of the three regions. Area =  $123.3485 \times 2 + 22.4 = 269.10 \text{ unit}^2$ .

Q1dii The regions are dilated vertically by a factor of  $\frac{1}{2}$  and horizontally by a factor of 2. The area remains the same, i.e. 269.10 unit<sup>2</sup>. Reflection and horizontal translation do not change the area.

Q2a (0,6) gives p + q = 6

$$(\log_e 25,1.6)$$
 gives  $pe^{\frac{-\log_e 25}{2}} + q = 1.6$ .

Q2b 
$$e^{\frac{-\log_e 25}{2}} = \left(e^{\log_e 25}\right)^{\frac{-1}{2}} = \left(25\right)^{\frac{-1}{2}} = \frac{1}{\sqrt{25}} = 0.2$$
.

Solve p + q = 6 and 0.2 p + q = 1.6 simultaneously to obtain p = 5.5 and q = 0.5

Q2c As 
$$x \to \infty$$
,  $e^{\frac{-x}{2}} \to 0$ ,  $\therefore y \to 0.5$ ,  $\therefore$  asymptote is  $y = 0.5$ 

Q2d When 
$$x = 0$$
,  $y = 6$ . When  $x = 5$ ,  $y = 5.5e^{-2.5} + 0.5$ .

Average gradient = 
$$\frac{5.5e^{-2.5} + 0.5 - 6}{5 - 0} = -1.01$$

Q2e 
$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$
,  $\frac{dy}{dt} = -2.75e^{\frac{-x}{2}} \times \frac{dx}{dt}$ .

Q2fi 
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-1.1}{0.8} = -1.375$$
  
Q2fii  $\frac{dy}{dx} = -2.75e^{\frac{-x}{2}}$ ,  $-1.375 = -2.75e^{\frac{-x}{2}}$ ,  $\therefore e^{\frac{-x}{2}} = \frac{1}{2}$ ,  $e^{\frac{x}{2}} = 2$ ,  $\frac{x}{2} = \log_e 2$ ,  $x = 2\log_e 2$ .  
 $y = 5.5e^{\frac{-x}{2}} + 0.5 = 5.5 \times \frac{1}{2} + 0.5 = 3.25$ 

Coordinates  $(2\log_e 2, 3.25)$ .

Q2gi Horizontal dilation is required, so change parameter r.

Q2gii Increase the dilation factor r.

Q3a 
$$x = 0$$
,  $y = \frac{3\pi}{4} + \frac{\pi}{\sqrt{2}}\cos\left(\frac{3\pi}{4}\right) = \frac{3\pi}{4} - \frac{\pi}{2} = \frac{\pi}{4}$ .  $\left(0, \frac{\pi}{4}\right)$   
 $x = 2\pi$ ,  $y = 2\pi + \frac{3\pi}{4} + \frac{\pi}{\sqrt{2}}\cos\left(2\pi + \frac{3\pi}{4}\right) = \frac{9\pi}{4}$ .  $\left(2\pi, \frac{9\pi}{4}\right)$   
 $\left(0, 0\right)$ ,  $\left(2\pi, 0\right)$ .



Q3ci 
$$\int_{0}^{2\pi} \left[ x + \frac{3\pi}{4} + \frac{\pi}{\sqrt{2}} \cos\left(x + \frac{3\pi}{4}\right) \right] dx$$

Q3cii = 
$$\left[ \frac{x^2}{2} + \frac{3\pi x}{4} + \frac{\pi}{\sqrt{2}} \sin\left(x + \frac{3\pi}{4}\right) \right]_0^{2\pi}$$
  
=  $\left[ 2\pi^2 + \frac{3\pi^2}{2} + \frac{\pi}{2} \right] - \left[ \frac{\pi}{2} \right] = \frac{7\pi^2}{2}$ .

Land area =  $\frac{7\pi^2}{2} \times 100^2 \,\text{m}^2 = 35000\pi^2 \,\text{m}^2$ .

Q3d Using graphics calc, the local minimum in  $[0,2\pi]$  is (0.3185, 0.6910).

: the shortest distance between the north and the south boundaries is  $0.6910 \times 100 = 69.10$  m. Take off 15 m clearance from each boundary. The floor area =  $(69.10 - 15 \times 2)^2 = 1529 \text{ m}^2$ .

Q4a 
$$Pr(fail) = Pr(X \le 49) = normalcdf(-E99,49,50,4) = 0.401$$

Q4bi 
$$\int_{0}^{a} ke^{-kx} dx = \left[ -e^{-kx} \right]_{0}^{a} = -e^{-ka} + 1$$
.

As 
$$a \to \infty$$
,  $e^{-ka} \to 0$ ,  $\therefore \int_{0}^{a} ke^{-kx} dx \to 1$ .

Q4bii 
$$\Pr(0 \le X \le 50) = \int_{0}^{50} ke^{-kx} dx = \left[ -e^{-kx} \right]_{0}^{50} = -e^{-k50} + 1 = 0.5,$$
  
 $e^{-50k} = 0.5, -50k = \log_{e} 0.5, \therefore k = 0.0139.$ 

Q4biii Since  $Pr(0 \le X \le 50) = 0.5$ , the median of X is 50.

Q4c 
$$Pr(fail) = Pr(0 \le X \le 49) = \int_{0}^{49} 0.0139e^{-0.0139x} dx = 0.494$$
.

Q4di Let X be the random variable – number of broken rods repaired with superglue A.  $p = \frac{4}{10} = 0.4$ ,  $\therefore q = 0.6$ .

Pr (more with A than with B) = Pr(X = 3) + Pr(X = 4) $={}^{5}C_{3}(0.4)^{3}(0.6)^{2}+{}^{5}C_{4}(0.4)^{4}(0.6)^{1}=0.31$ .

Or = binompdf(5,0.4,3) + binompdf(5,0.4,4) = 0.31.

Q4dii 
$$Pr(X = 2 | X = 0, 1 \text{ or } 2) = \frac{Pr(X = 2 \cap X = 0, 1, 2)}{Pr(X = 0, 1, 2)}$$
  
=  $\frac{Pr(X = 2)}{Pr(X = 0, 1, 2)} = \frac{binompdf(5, 0.4, 2)}{binomcdf(5, 0.4, 2)} = 0.51$ .

Q4e  $Pr(fail) = 0.401 \times 0.4 + 0.494 \times 0.6 = 0.46$ .

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors