Enrutamiento

Enrutamiento

- Uno de los aspectos mas complejos y fundamentales en las redes de datos es todo lo relacionado con el enrutamiento.
- En términos generales, el objetivo principal de una red basada en conmutación de paquetes es aceptar paquetes que vienen de un host y enviarlos a la red destino.
 - 1. Recordar que el objetivo principal de la capa de red es proporcionar comunicar extremo a extremo entre sistemas finales (hosts).
 - 2. Así, en términos simples, el objetivo de la capa de red es mover un paquete de un host fuente a uno destino.
- Para este fin, se hace necesario determinar una ruta para que el paquete alcance su destino.

Aspectos importantes en el proceso de Enrutamiento.

- A continuación se listan los aspectos mas importantes a considerar para el enrutamiento en las redes:
 - Red destino.
 - Routers vecinos.
 - Posibles rutas hacia todas las redes destinos.
 - La mejor ruta para alcanzar redes remotas.
 - Como mantener actualizada y verificada las información de las rutas.
- El enrutamiento lo entendemos como el proceso de seleccionar la mejor ruta para que un paquete que sale de una fuente alcance un destino.
 - Host.
 - Routers.

Aspectos importantes en el proceso

- Con el fin de mover un paquete de la fuente al destino, dos aspectos importantes a nivel de la capa de red deben ocurrir:
 - Forwarding: Esto se da cuando un paquete llega a una interface de un router. Lo que debe suceder es que el router mueve el paquete de la interface de entrada a una de salida.
 - Routing: El router debe determinar la ruta o camino que debe tomar el paquete para que alcance su destino.
- De esta forma el paquete va viajando de un router a otro hasta que alcance su destino.
- Cada router en el camino selecciona el "próximo salto" (próximo router) a donde debe ser enviado el paquete.
- Para esto se hace necesario que cada router construya y utilce una tabla de enrutamiento.
- La tabla de enrutamiento se puede construir de dos formas: estático o dinámicamente

Estático vs Dinámico

- El enrutamiento puede clasificarse de dos formas:
 - Estático
 - Dinámico

Proceso de Enrutamiento de un Paquete IP

Enrutamiento Estático

- Es implementado de forma manual por el administrador de la red.
- Esto quiere decir que el administrador de la red es el responsible de determinar las rutas entre los hosts.
- Implica que en cada router que pertenece a la topología de red se deben introducir las rutas estáticas.
- Cuando se habla de enrutamiento estático no existe comunicación entre routers para intercambiar información de enrutamiento.
- Cuando la red es pequeña, el proceso es relativamente simple.
- Aspectos a considerar:
 - Las rutas estáticas no se anuncian a los demas routers.
 - El enrutamiento estático usa menor ancho de banda en comparación con el enrutamiento dinámico.
 - Dado que es manual, su configuración es propensa al error.
 - Requiere la intervención del administrador de la red si hay que realizar un cambio en alguna ruta.
 - No escala bien a medida que la red crece.
 - Requiere un conocimiento amplio de la topología de red.

Enrutamiento Dinámico

- El enrutamiento dinámico permite a los routers descubrir de manera automática los caminos entre las redes.
- Para esto utiliza los protocolos de enrutamiento.
- Los protocolos de enrutamiento se pueden clasificar como Interior Gateway Protocol (IGP) o Exterior Gateway Protocol (EGP).
- Esta clasificación se da si se ejecutan al interior o al exterior de un sistema autonómo.
- Un sitema autónomo (dominio de enrutamiento) se define como una colección de redes o routers que se encuentran bajo una misma administración de red.

Clasificación de Protocolos de Enrutamiento

- IGP:
 - Routing Information Protocol (RIP vI, RIP v2)
 - Open Shortest Path First (OSPF).
 - Enhanced Interior Gateway Protocol (EIGRP)
- EGP:
 - Border Gateway Protocol

Características del Enrutamiento Dinámico

- Se acomoda bien para cualquier tipo de topología en la cual intervienen múltiples enrutadores.
- Se utiliza independiente del tamaño de la red.
- Se adapta de manera automática a los cambios en la topología de red.
- Es mucho mas complejo de implementar que el enrutamiento estático.
- Menos seguro. Se envian actualizaciones.
- Consume memoria, CPU y ancho de banda.

Protocolos de Enrutamiento

- Son utilizados para facilitar el intercambio de información de enrutamiento entre los routers.
- Inlcuye:
 - Procesos, algoritmos, mensajes.
- Permiten:
 - Descubrir redes remotas.
 - Mantener actualizada la información de enrutamiento.
 - Escoger el mejor camino hacia la red destino.
 - Encontrar un mejor camino o ruta ante la falla de una ruta actual.

Clasificación acorde al tipo de algoritmo que utilizan

- IGP:
 - Distance Vector:
 - RIP vI, RIP v2, EIGRP
 - Link State:
 - OSPF
- EGP:
 - Path Vector: BGP

Tabla de Enrutamiento

