Introduction Model Current Result Future

Particle Net Application for B Quark Decay

T.K.Hsu Prof. K.F.Chen

National Taiwan University

April 23, 2024

Outline

- Introduction
- 2 Model
 - Points and Features
 - Loss Function And Short Review of Particle Net
- 3 Current Result
 - Upon Mass Prediction and Loss Rate
- 4 Future

Introduction

- We use EvtGen package to generator our simulated B-decaying data.
- Simulate 100000 events and further selected wanted events.
- Pick original B quark(PDG = 521) data and its full-decayed particles.
- We take 4-momentum and its mass of particles as data.
- Our goal is to rebuild the mass of B quark from the information of fully-decayed particles.

Points and Features

Particle Net needs points and features to build the neural network. Here we choose 3-vector momentum (p_x, p_y, p_z) as **points** and energy¹, mass, 3-momentum, and charge as **features**.

¹Precisely, we take individual's, that is, part_engy and so on.

Loss Function

We use **MSE** as loss function for regression.

Figure 2: Particle Net Architecture

Loss Decay Rate

We train the model in 20,30,and 40 epochs and plot the corresponding change in vac_loss.

Figure 3: Loss Decay Rate: Loss converges after 30 epochs

Mass Prediction for 30 Epochs

Below are predictions of mass for 30 epochs and 40 epochs, and the true mass is 5.27933GeV. Statistic parameters: mean $\mu=5.27369$ GeV standard deviation $\sigma=0.06745615009664585$

Mass Prediction for 40 Epochs

Statistic parameters: mean $\mu = 5.28434$ GeV standard deviation $\sigma = 0.05832376890127553$

Figure 5: Mass Prediction for 40 epochs

Introduction Model Current Result Future

Future

- Modification on Model.
- Recover 4-momentum of B quark.
- Take out some particles that are difficult to be detected.