Содержание

Ι	Ин	нтеграл по мере	3
1	Инз	геграл ступенчатой функции	4
	1.1	Свойства	4
2	Инт	геграл неотрицательной измеримой функции	5
	2.1	Свойства	5
3	Cyn	ммируемая функция	6
	3.1	Свойство	6
4	Инт	геграл суммируемой функции	7
	4.1	Свойства	7
5 Простейшие свойства интеграла Лебега			8
	5.1	Доказательство	8
	5.2	Доказательство	8
	5.3	Доказательство	8
	5.4	Доказательство	9
	5.5	Доказательство	9
	5.6	Доказательство	9
6	Счє	етная аддитивность интеграла (по множеству)	10
	6.1	Лемма	10
		6.1.1. Поморожени отпо	10

	6.2	Теорема	10
		6.2.1 Доказательство	10
	6.3	Следствие	11
	6.4	Следствие 2	11
II	П	редельный переход под знаком интеграла	12
7	Teo	рема Леви	13
	7.1	Доказательство	13
8	Лин	нейность интеграла Лебега	14
	8.1	Доказательство	14
	8.2	Следствие	14
		8.2.1 Доказательство	14
9	Teo	рема об интегрировании положительных рядов	15
	9.1	Доказательство	15
	9.2	Следствие	15

Часть І

Интеграл по мере

1 Интеграл ступенчатой функции

 $f = \sum_{k=1}^{n} \lambda_k \cdot \chi_{E_k}, \ f \geqslant 0$, где $E_k \in \mathcal{A}$ — допустимое разбиение, тогда интеграл ступенчатой функции f на множестве X есть

$$\int_{X} f d\mu = \int_{X} f(x) d\mu(x) = \sum_{k=1}^{n} \lambda_{k} \mu E_{k}$$

Дополнительно будем считать, что $0 \cdot \infty = \infty \cdot 0 = 0$.

1.1 Свойства

• Интеграл не зависит от допустимого разбиения:

$$f=\sum lpha_j\chi_{F_j}=\sum_{k,\,j}\lambda_k\chi_{E_k\cap F_j},$$
 тогда $\int F=\sum \lambda_k\mu E_k=\sum_k\lambda_k\sum_j\mu(E_k\cap F_j)=\sum lpha_j\mu F_i=\int F;$

•
$$f \leqslant g$$
, to $\int\limits_X f d\mu \leqslant \int\limits_X g d\mu$.

2 Интеграл неотрицательной измеримой функции

 $f\geqslant 0,$ измерима, тогда интеграл неотрицательной измеримой функции fесть

$$\int\limits_X f d\mu = \sup_{\substack{g\text{ - cTyn.}\\0\leqslant g\leqslant f}} \left(\int\limits_X g d\mu\right).$$

2.1 Свойства

- Для ступенчатой функции f (при $f\geqslant 0$) это определение даёт тот же интеграл, что и для ступенчатой функции;
- $0 \leqslant \int_X f \leqslant +\infty;$
- $0\leqslant g\leqslant f,\,g$ ступенчатая, f измеримая, тогда $\int\limits_X g\leqslant \int\limits_X f.$

3 Суммируемая функция

f— измеримая, f_+ и f_- — срезки, тогда если $\int\limits_X f_+$ или $\int\limits_X f_-$ — конечен, тогда интеграл суммируемой функции есть

$$\int\limits_X f d\mu = \int\limits_X f_+ - \int\limits_X f_-.$$

Если
$$\int\limits_X f
eq \pm \infty$$
, то говорят, что $f c$ уммируемая, а также $\int |f|-$ конечен $(|f|=f_++f_-).$

3.1 Свойство

Если $f \geqslant 0$ — измерима, то это определение даёт тот же интеграл, что и интеграл измеримой неотрицательной функции.

4 Интеграл суммируемой функции

 $E\subset X$ — измеримо
е множество, f— измеримо на X,тогда интеграл
 f по множеству Eесть

$$\int\limits_E f d\mu := \int\limits_X f \chi_E d\mu.$$

f — суммируемая на E если $\int\limits_E f + -$ и $\int\limits_E f_-$ — конечны одновременно.

4.1 Свойства

•
$$f = \sum \lambda_k \chi_{E_k}$$
, to $\int_E f = \sum \lambda_k \mu(E_k \cap E)$;

$$ullet$$
 $f\geqslant 0$ — измерима, тогда $\int\limits_E fd\mu=\sup_{\begin{subarray}{c} g\ < g< f \end{subarray}} \left(\int\limits_{0\leqslant g\leqslant f} gd\mu
ight).$

 (X, A, μ) — произвольное пространство с мерой.

 $\mathcal{L}^0(X)$ — множество измеримых почти везде конечных функций.

5 Простейшие свойства интеграла Лебега

1. Монотонность:

$$f \leqslant g \Rightarrow \int_{E} f \leqslant \int_{E} g.$$

5.1 Доказательство

$$\bullet \sup_{\substack{\widetilde{f} \text{ - ctyn.} \\ 0 \leqslant \widetilde{f} \leqslant f}} \left(\int\limits_{X} \widetilde{f} d\mu \right) \leqslant \sup_{\substack{\widetilde{g} \text{ - ctyn.} \\ 0 \leqslant \widetilde{g} \leqslant g}} \left(\int\limits_{X} \widetilde{g} d\mu \right);$$

• f и g — произвольные, то работаем со срезками, и $f_+ \leqslant g_+$, а $f_- \geqslant g_-$, тогда очевидно и для интегралов.

$$2. \int_{E} 1 \cdot d\mu = \mu E, \int_{E} 0 \cdot d\mu = 0.$$

5.2 Доказательство

По определению.

3.
$$\mu E=0,\,f$$
 — измерима, тогда $\int\limits_{E}f=0.$

5.3 Доказательство

- \bullet f ступенчатая, то по определению интеграла для ступенчатых функций получаем 0;
- $f \geqslant 0$ измеримая, то по определению интеграла для измеримых неотрицательных функций также получаем 0;
- f любая, то разбиваем на срезки f_+ и f_- и снова получаем 0.

4. (a)
$$\int -f = -\int f;$$

(b)
$$\forall c > 0 : \int cf = c \int f$$
.

5.4 Доказательство

•
$$(-f)_+ = f_- \text{ if } (-f)_= f_+ \text{ if } \int -f = f_- - f_+ = -\int f.$$

•
$$f\geqslant 0$$
 — очевидно, $\sup_{\substack{g\text{ - ступ.}\\0\leqslant g\leqslant cf}}\left(\int g\right)=c\sup_{\substack{g\text{ - ступ.}\\0\leqslant g\leqslant f}}\left(\int g\right).$

5. Пусть существует
$$\int\limits_E f d\mu$$
, тогда $\left|\int\limits_E f\right| \leqslant \int\limits_E |f|.$

5.5 Доказательство

$$\begin{aligned} -|f| &\leqslant f \leqslant |f|, \\ -\int\limits_{E} |f| &\leqslant \int\limits_{E} f \leqslant \int\limits_{E} |f|. \end{aligned}$$

6.
$$f$$
 — измерима на $E,\,\mu E<+\infty,\,\forall x\in E:a\leqslant f(x)\leqslant b.$ Тогда
$$a\mu E\leqslant \int\limits_E f\leqslant b\mu E.$$

5.6 Доказательство

$$\int\limits_{E} a \leqslant \int\limits_{E} f \leqslant \int\limits_{E} b,$$

$$a\mu E \leqslant \int\limits_{E} f \leqslant b\mu E.$$

6 Счетная аддитивность интеграла (по множеству)

6.1 Лемма

 $A= ig| A_i$, где $A,\,A_i$ — измеримы, $g\geqslant 0$ — ступенчатые. Тогда

$$\int_{A} g d\mu = \sum_{i=1}^{+\infty} \int_{A_{i}} g d\mu.$$

6.1.1 Доказательство

$$g = \sum \lambda_k \chi_{E_k}.$$

$$\int_A g d\mu = \sum \lambda_k \mu(A \cap E_k) = \sum_k \lambda_k \sum_i \mu(A_i \cap E_k) = \sum_i \left(\sum_k \lambda_k \mu(A_i \cap E_k)\right) = \sum_i \int_{A_i} g d\mu.$$

6.2 Теорема

 $f:C \to \overline{R},\, f\geqslant 0$ — измеримая на $A,\, A$ — измерима, $A=\bigsqcup A_i,\,$ все A_i — измеримы. Тогда

$$\int\limits_A f d\mu = \sum\limits_i \int\limits_{A_i} f d\mu$$

6.2.1 Доказательство

- $A = A_1 \sqcup A_2, \sum_{A_1} \lambda_k \chi_{E_k} = g_1 \leqslant f \chi_{A_1}, \ g_2 \leqslant f \cdot \chi_{A_2} = \sum_{A_2} \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2}$ $\int_{A_1} g_1 + \int_{A_2} g_2 = \int_{A_2} g_1 + g_2.$

переходим к $\sup g_1$ и g_2

$$\int\limits_{A_1} f + \int\limits_{A_2} f \leqslant \int\limits_{A} f$$

по индукции разобьём для $A=A_1\sqcup A_2\sqcup\ldots\sqcup A_n,\ A=\bigsqcup_{i=1}^{+\infty}A_i$ и $A=A_1\sqcup A_2\sqcup\ldots\sqcup A_n\sqcup B_n,$ где $B_n=\bigsqcup_{i\geqslant n+1}A_i,$ тогда

$$\int\limits_{A}\geqslant\sum_{i=1}^{n}\int\limits_{A_{i}}f+\int\limits_{B}f\geqslant\sum_{i=1}^{n}\int\limits_{A_{i}}f\Rightarrow\int\limits_{A}f\geqslant\sum_{i=1}^{+\infty}\int\limits_{A_{i}}f$$

6.3 Следствие

$$f\geqslant 0$$
 — измеримая, $u:\mathcal{A} o\overline{\mathbb{R}}_+,\,
u E=\int\limits_E f d\mu.$ Тогда u — мера.

6.4 Следствие 2

$$A = \bigsqcup_{i=1}^{+\infty} A_i, \, f$$
 — суммируемая на A , тогда

$$\int\limits_A f = \sum\limits_i \int\limits_{A_i} f.$$

Часть II

Предельный переход под знаком интеграла

7 Теорема Леви

 $(X, \mathcal{A}, \mu), f_n$ — измерима, $\forall n : 0 \leqslant f_n(x) \leqslant f_{n+1}(x)$ при почти всех x.

 $f(x) = \lim_{n \to +\infty} f_n(x)$ при почти всех x. Тогда

$$\lim_{n \to +\infty} \int_{X} f_n(x) d\mu = \int_{X} f d\mu.$$

7.1 Доказательство

f — измерима как предел измеримых функций.

•

 $f_n(x) \leqslant f(x)$ почти везде, тогда $\forall n: \int\limits_X f_n(x) d\mu \leqslant \int\limits_X f d\mu$, откуда следует, что и предел интегралов не превосходит интеграл предела.

• >

Достаточно доказать, что для любой ступенчатой функции $g:0\leqslant g\leqslant f$ верно $\lim_{t\to\infty}\int_{\mathbb{R}^n}f_n\geqslant\int_{\mathbb{R}^n}g.$

Достаточно доказать, что $\forall c \in (0,1)$ верно $\lim_X \int_X f_n \geqslant c \int_X g.$

$$E_n := X (f_n \geqslant cg), E_n \subset E_{n+1} \subset \dots$$

 $\bigcup E_n = X$, т.к. c < 1, то $cg(x) < f(x), \, f_n(x) o f(x) \Rightarrow f_n$ попадёт в "зазор" cg(x) < f(x).

$$\int\limits_X f_n \geqslant \int\limits_{E_n} f_n \geqslant \int\limits_{E_n} cg = c \int\limits_{E_n} g,$$

 $\lim_{n\to +\infty}\int\limits_X f_n\geqslant \lim_{n\to +\infty}c\int\limits_{E_n}g=c\int\limits_X g, \text{ потому что это непрерывность снизу меры }A\mapsto \int\limits_A g.$

8 Линейность интеграла Лебега

Пусть
$$f,\,g$$
 — измеримы на $E,\,f\geqslant 0,\,g\geqslant 0.$ Тогда $\int\limits_E f+g=\int\limits_E f+\int\limits_E g.$

8.1 Доказательство

Если f, g — ступенчатые, то очевидно.

Разберём общий случай. Существуют ступенчатые функции $f_n: 0 \leqslant f_n \leqslant f_{n+1} \leqslant \ldots \leqslant f$, и $g_n: 0 \leqslant g_n \leqslant g_{n+1} \leqslant \ldots \leqslant g$, и $f_n(x) \to f(x)$ и $g_n(x) \to g(x)$. Тогда

$$\int\limits_E f_n+g_n=\int\limits_E f_n+\int\limits_E g_n,$$
 сделаем предельный переход, значит при $n\to +\infty$
$$\int\limits_E f+g=\int\limits_E f+\int\limits_E g$$

8.2 Следствие

Пусть f, g — суммируемые на множестве E, тогда f+g тоже суммируема и $\int\limits_E f+g=\int\limits_E f+\int\limits_E g.$

8.2.1 Доказательство

$$\begin{split} &(f+g)_{\pm}\leqslant |f+g|\leqslant |f|+|g|.\\ &h:=f+g,\\ &h_{+}-h_{-}=f_{+}-f_{-}+g_{+}-g_{-},\\ &h_{+}+f_{-}+g_{-}=h_{-}+f_{+}+g_{+},\\ &\int h_{+}+\int f_{-}+\int g_{-}=\int h_{-}+\int f_{+}\int g_{+},\\ &\int h_{+}-\int h_{-}=\int f_{+}-\int f_{-}+\int g_{+}-\int g_{-},\text{ тогда}\\ &\int h=\int f+\int g. \end{split}$$

9 Теорема об интегрировании положительных рядов

 $u_n \geqslant 0$ почти везде, измеримы на E. Тогда

$$\int_{E} \left(\sum_{i=1}^{+\infty} u_n \right) d\mu = \sum_{i \int = 1}^{+\infty} \int_{E} u_n d\mu.$$

9.1 Доказательство

Очевидно по теореме Леви.

$$S(x) = \sum_{n=1}^{+\infty} u_n(x)$$
 и $p \leqslant S_N \leqslant S_{N+1} \leqslant \dots$ и $S_N \to S(X)$.

$$\lim_{n \to +\infty} \int_{E} S_{N} = \int_{E} S$$

$$\lim \sum_{k=1}^{n} \int_{E} u_k(x) = \int_{E} S(x) d\mu.$$

9.2 Следствие

$$u_n$$
 — измеримая функция, $\sum_{n=1}^{+\infty}\int\limits_E|u_n|<+\infty.$ Тогда

$$\sum u_n$$
 — абсолютно сходится почти везде на E .

Доказательство

$$S(x) = \sum_{n=1}^{+\infty} |u_n(x)|$$

$$\int\limits_{\Gamma} S(x) = \sum_{n=1}^{+\infty} \int |u_n(x)| < +\infty, \text{ значит } S(x) \text{ конечна почти всюду}.$$

$$S(x)=+\infty$$
 при $x\in B,\, \mu B>0,\, S(x)\geqslant n\cdot \chi_{B}\int\limits_{E}S(x)\geqslant n\cdot \mu B.$