Maximizando la Eficiencia

Optimización de Rutas para Promotoría Come Verde

Santiago Mora Cruz | A01369517 Adara Luisa Pulido Sánchez | A01642450 René Abraham Calzadilla Calderón | A01246501 María Fernanda Gamboa | A01741636

1	OBJETIVO DEL PROYECTO
2	PLANTEAMIENTO
3	FORMULACIÓN DEL MODELO
3	METODOLOGÍA SOLUCIÓN

5	SOLUCION FINAL
6	ANÁLISIS DE COSTOS
7	MODIFICACIONES AL MODELO
8	CONCLUSIONES

Objetivo del proyecto

Minimizar los costos totales de la promotoría de Come Verde en CDMX y Edo. Méx.

Objetivos:

Reducción de:

- Número de promotores
- Costo de los pasajes
- Distancia total recorrida

Planteamiento

El planteamiento de nuestro problema incluye algunos supuestos y simplificaciones de restricciones para hacerlo más manejable y fácil de resolver.

Sucursales de Farmacias Omitidas

Utilizamos el Costo Fijo de Microbuses y Vagonetas

Ajuste de Horarios en Clusters de Tiendas

Distancia Manhattan

Planificación de rutas por semana dependiendo de la demanda

Sucursales fuera de CDMX y Edo.Mex omitidas

Formulación del modelo

Formulación de un modelo que incluye variables de decisión, función objetivo y restricciones.

VARIABLES

Que ruta
 tomar para ir
 de una tienda
 a otra

FUNCIÓN OBJETIVO

Minimizar

 las
 distancias
 de las rutas
 de
 promotoría

RESTRICCIONES

- Punto inicial específico
- Solo se hace una visita por tienda cada día.
- Mínimo de 5
 visitas por día
- No está permitido quedarse en la misma tienda

Metodología de la solución

¿Qué pasos seguimos para llegar a la solución final?

Limpieza y tratamiento de datos

Direcciones de las sucursales que se deben visitar en la CDMX y el Estado de México.

Estrategias de solución

Método exacto vs método de barrido utilizando algoritmo de solución TSP.

Solución final

Método de barrido utilizando TSP

Solución final

¿Cómo resolvimos el problema?

Obtención de coordenadas

Utilizando API de GoogleMaps, además de buscar algunas coordenadas manualmente.

Resolución con Python

Limpieza de datos que se encuentran fuera del rango que estamos analizando.

Cálculo de costos por ruta

Utilizando el costo fijo de microbuses y vagonetas

¿Cómo se ve la solución final?

El modelo devuelve una lista de los recorridos que se tienen que hacer para satisfacer las necesidades de cada tienda; y una gráfica de cómo lucen estos recorridos en un plano cartesiano.

¿Qué nos dice el mapa?

- Los recorridos son cada uno de 6 sucursales, excepto por dos de 2 sucursales.
- Recorridos planeados con 6 promotores.

Análisis de costos

Utilizamos el costo fijo de microbuses y vagonetas, donde la tarifa varía según la distancia recorrida

Distancia Recorrida Tarifa (pesos) 0 - 5 km \$6.00 5 - 12 km \$6.50 \$6.50 > 12 km

Análisis de costos

Número de promotores necesarios para completar los recorridos: 6 promotores

Costo por promotor

\$200 por promotor

Costos aproximados de transporte por semana

\$1200 a la semana

Costos aproximados de transporte al mes

\$4800 al mes

Conclusiones

Ventajas

- Prioridad a sucursales de cadenas de autoservicio
- Agrupamiento de sucursales por proximidad
- Precio económico

Desventajas

- Limitaciones de Visitas Mensuales a Sucursales Nutrisas
- Reincorporación de Sucursales Tras Fuerza Mayor
- Solución con un Séptimo Promotor y Días Inactivos

¿Modificaciones al modelo? Escríbenos.

¡Estamos abiertos a escuchar sus sugerencias!

iGRACIAS!