1. Sucesiones en \mathbb{R}

Definición 1 (Sucesión en \mathbb{R}). Una sucesión en \mathbb{R} es una función $a: \mathbb{N} \to \mathbb{R}$. Para cada $k \in \mathbb{N}$, el valor de a en k, se llama k-ésimo término de la sucesión.

Identificamos cada término de la sucesión con un subíndice:

$$a(k) \coloneqq a_k$$
.

Denotaremos a toda la sucesión por $(a_k)_{k\in\mathbb{N}}$.

Denotaremos al conjunto de sucesiones en \mathbb{R} por $\mathbb{R}^{\mathbb{N}}$.

Definición 2. Sea $(a_k)_{k\in\mathbb{N}}$ una sucesión en \mathbb{R} . Decimos que $(a_k)_{k\in\mathbb{N}}$ es acotada si existe M>0 tal que para cada $k\in\mathbb{N}$,

$$|a_k| < M$$
.

Es decir, la sucesión es acotada si los valores absolutos de sus términos forman un conjunto acotado.

Ejemplo 3. Sea $(x_k)_{k\in\mathbb{N}}$ la sucesión en \mathbb{R} tal que para cada $k\in\mathbb{N}$, $x_k\coloneqq\frac{k^2}{k+1}$. En este caso, los primeros 4 términos de la sucesión son

$$a_1 = \frac{1}{2},$$
 $a_2 = \frac{4}{3},$ $a_3 = \frac{9}{4},$ $a_4 = \frac{16}{5}.$

Ejemplo 4. Sea $(x_k)_{k \in \mathbb{N}}$ la sucesión en \mathbb{R} tal que para cada $k \in \mathbb{N}$, $x_k \coloneqq \frac{1}{k+1}$. Esta sucesión es acotada, pues para cada $k \in \mathbb{N}$, $1 \le k < k+1$. Por lo tanto,

$$|x_k| = \left| \frac{1}{k+1} \right| = \frac{1}{k+1} < 1.$$

Definición 5. Sean $(a_k)_{k\in\mathbb{N}}$, $(b_k)_{k\in\mathbb{N}}$ succesiones en \mathbb{R} $y \lambda \in \mathbb{R}$.

i) Se define la sucesión suma $((a+b)^k)_{k\in\mathbb{N}}$, donde para cada $k\in\mathbb{N}$,

$$(a+b)_k := a_k + b_k.$$

ii) Se define la sucesión producto $((ab)_k)_{k\in\mathbb{N}}$, donde para cada $k\in\mathbb{N}$,

$$(ab)_k \coloneqq a_k b_k.$$

iii) Se define la sucesión producto por escalar $(\lambda a_k)_{k\in\mathbb{N}}$, donde para cada $k\in\mathbb{N}$,

$$(\lambda a)_k \coloneqq \lambda a_k.$$

Proposición 6. Con las operaciones definidas en la definición 5, $\mathbb{R}^{\mathbb{N}}$ es un espacio vectorial.

Demostración. Ejercicio.

2. Sucesiones convergentes

Definición 7 (Sucesión convergente). Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión en \mathbb{R} . Decimos que $(x_k)_{k\in\mathbb{N}}$ es una sucesión convergente si existe $l\in\mathbb{R}$ tal que para cada $\varepsilon>0$ existe $N\in\mathbb{N}$ tal que para todo n>N,

$$|x_n - l| < \varepsilon$$
.

En ese caso, decimos que l es el límite de la sucesión o que la sucesión converge a l y escribimos

$$\lim_{k \to \infty} x_k = l.$$

Definición 8 (Sucesión divergente). Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión en \mathbb{R} . Decimos que $(x_k)_{k\in\mathbb{N}}$ es una sucesión divergente si existe $l\in\mathbb{R}$ tal que para cada $M\in\mathbb{N}$ existe $N\in\mathbb{N}$ tal que para todo n>N,

$$x_n > M$$
.

En este caso, decimos que la sucesión diverge o que converge a infinito y escribimos

$$\lim_{k \to \infty} x_k = +\infty.$$

Observación 9. La definición anterior no es la negación de la definición 2. Consideramos la sucesión $(x_k)_{k\in\mathbb{N}}$ tal que para cada $k\in\mathbb{N}$, $x_k\coloneqq (-1)^k k$. Esta sucesión no satisface ninguna de las dos definiciones.

Proposición 10. Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión convergente en \mathbb{R} . Entonces, su límite es único.

Demostración. Supongamos que existen $l_1, l_2 \in \mathbb{R}$ tales que

$$\lim_{k \to \infty} x_k = l_1, \quad \lim_{k \to \infty} x_k = l_2.$$

Probaremos que $l_1 = l_2$ mostrando que $|l_1 - l_2| = 0$. Como el valor absoluto es una función no negativa, tenemos la desigualdad $0 \le |l_1 - l_2|$.

Por otro lado, sea $\varepsilon > 0$. Por la definición 7 existen $N_1, N_2 \in \mathbb{N}$ tales que si $j > N_1$ y $k > N_2$, entonces

$$|x_j - l_1| < \frac{\varepsilon}{2}, \quad |x_k - l_2| < \frac{\varepsilon}{2}.$$

Sea $N := \max\{N_1, N_2\}$. Entonces,

$$|l_1 - l_2| = |l_1 - x_{N+1} + x_{N+1} - l_2| \le |l_1 - x_{N+1}| + |l_2 - x_{N+1}| < \varepsilon.$$

Como ε fue arbitrario, se satisface que para cualquier $\varepsilon > 0$, $|l_1 - l_2| < \varepsilon$. Por lo tanto, $|l_1 - l_2| \le 0$.

Así, concluimos que $|l_1 - l_2| = 0$ y por lo tanto, $l_1 = l_2$.

Proposición 11. Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión convergente en \mathbb{R} . Entonces, la sucesión es acotada.

Demostración. Ejercicio.

Proposición 12 (Propiedades de los límites). Sean $(a_k)_{k\in\mathbb{N}}$, $(b_k)_{k\in\mathbb{N}}$ sucesiones convergentes en \mathbb{R} . Entonces,

- $i) \lim_{k\to\infty} (a+b)_k = \lim_{k\to\infty} a_k + \lim_{k\to\infty} b_k.$
- ii) Sea $\gamma \in \mathbb{R}$. Entonces, $\lim_{k \to \infty} (\gamma a)_k = \gamma \lim_{k \to \infty} a_k$.
- iii) $\lim_{k\to\infty} (ab)_k = \lim_{k\to\infty} a_k \lim_{k\to\infty} b_k$.
- iv) Supongamos que $\lim_{k\to\infty} b_k \neq 0$. Entonces, $\lim_{k\to\infty} \left(\frac{a}{b}\right)_k = \frac{\lim_{k\to\infty} a_k}{\lim_{k\to\infty} b_k}$.

Demostraci'on. Hacemos $l_1 \coloneqq \lim_{k \to \infty} a_k$ y $l_2 \coloneqq \lim_{k \to \infty} b_k$.

i) Sea $\varepsilon > 0$. Entonces, existen $N_1, N_2 \in \mathbb{N}$ tales que si $n > N_1$ y $j > N_2$, entonces

$$|a_k - l_1| < \frac{\varepsilon}{2}, \qquad |b_j - l_2| < \frac{\varepsilon}{2}.$$

Sea $N := \max\{N_1, N_2\}$. Entonces, si $m \ge N$,

$$|a+b-l_1-l_2| \le |a-l_1| + |b-l_2| < \varepsilon.$$

ii) Sea $\varepsilon > 0$. Si $\gamma = 0$, se tiene el resultado. Supongamos que $\gamma \neq 0$. Entonces, existe $N \in \mathbb{N}$ tal que si n > N,

$$|a_n - l_1| \le \frac{\varepsilon}{|\gamma|}.$$

Luego, para cada n > N,

$$|\gamma a_n - \gamma l_1| = |\gamma| |a_n - l_1| < \varepsilon.$$

iii) Ejercicio.

Lema 13. Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión convergente en \mathbb{R} y sea $p\in\mathbb{N}$. Definimos la sucesión $(y_k)_{k\in\mathbb{N}}$ de modo que para cada $k\in\mathbb{N}$, $y_k:=x^{p+k}$. Entonces, $\lim_{k\to\infty}y_k=\lim_{k\to\infty}x_k$.

Demostración. Ejercicio.

3. Sucesiones monótonas

Definición 14. Sea $(x_n)_{n\in\mathbb{N}}$ una sucesión en \mathbb{R} . Decimos que $(x_k)_{k\in\mathbb{N}}$ es monótona creciente o creciente si para cada $k\in\mathbb{N}$,

$$x_k < x_{k+1}$$
.

Decimos que la sucesión es monótona decreciente o decreciente si para cada $k \in \mathbb{N}$,

$$x_{k+1} < x_k$$
.

Ejemplo 15. Sea $(F_n)_{n\in\mathbb{N}}$ la sucesión definida de manera recursiva como $F_1=1$, $F_2=1$ y para cada $k\geq 2$, $F_{k+1}=F_k+F_{k-1}$. Como cada término es no negativo, se puede verificar por inducción que la sucesión es creciente. También, por inducción se puede demostrar que para cada $k\in\mathbb{N}$, $F_k\geq k$. Por lo tanto, la sucesión no es acotada.

Proposición 16. Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión en \mathbb{R} creciente y acotada. Entonces, $(x_k)_{k\in\mathbb{N}}$ es convergente y

$$\lim_{k \to \infty} x_k = \sup_{j \in \mathbb{N}} x_j.$$

Demostración. Como la sucesión es acotada, $\sup_{k\in\mathbb{N}} x_n$ está bien definido. Sea $\varepsilon > 0$ y hacemos $a := \sup_{k\in\mathbb{N}} x_n$. Entonces, existe $m \in \mathbb{N}$ tal que,

$$a - \varepsilon < x_m \le a < a + \varepsilon$$
.

Como la sucesión es creciente, para todo $n \geq m$ se satisface

$$a - \varepsilon < x_n < a + \varepsilon$$
.

Es decir, para todo $n \ge m$, $|x_n - a| < \varepsilon$. Luego,

$$\lim_{k \to \infty} x_k = \sup_{j \in \mathbb{N}} x_j.$$

Ejemplo 17. Sea $a \in (0,1)$. Consideramos la sucesión $(x_k)_{k \in \mathbb{N}}$ tal que para cada $k \in \mathbb{N}$, $x_k := a^k$. Verificaremos que la sucesión converge y hallaremos su límite.

Por inducción, veamos que la sucesión es decreciente:

k=2 Se tiene inmediatamente $x_1=a>a^2=x_2$.

k+1 Suponemos que $x_{k-1} > a_k$. Notamos que

$$x_{k+1} = a^{k+1} = aa^k = ax_k < x_k.$$

Por lo tanto, para cada $k \in \mathbb{N}$, $x_k > x_{k+1}$. Es decir, $(x_k)_{k \in \mathbb{N}}$ es decreciente.

Observamos que para cada $k \in \mathbb{N}$, $a^k > 0$. Es decir, 0 es una cota inferior de la sucesión. Por la proposición 16, la sucesión converge. Sea $w := \lim_{k \to \infty} a^k$. Sabemos que para cada $k \in \mathbb{N}$, $x_{k+1} = ax_k$ Tomando el límite de ambos lados de la igualdad, la ecuación

$$w = aw$$

Como 0 < a < 1, w = 0. Es decir,

$$\lim_{k \to \infty} a^k = 0.$$

Ejemplo 18. Sea $(x_n)_{n\in\mathbb{N}}$ la sucesión definida de manera recursiva como $x_1=1$, y para cada $k\geq 1$, $x_{k+1}=\frac{3x_k+4}{2x_k+3}$. Verificaremos que la sucesión converge y hallaremos su límite. Por inducción verificamos las siguientes propiedades:

- a) Los términos de la sucesión son positivos. Es decir, para cada $k \in \mathbb{N}$, $x_k > 0$.
- b) La sucesión es acotada. En particular, 2 es una cota de la sucesión. Es decir, para cada $k \in \mathbb{N}$, $2 \ge x_k$.
- c) La sucesión es creciente. Es decir, para cada $k \in \mathbb{N}$, $x_{k+1} > x_k$.

Demostración. a) Para k = 1, se tiene inmediatamente $x_1 = 1 > 0$.

Suponemos que para algún $k \in \mathbb{N}$, $x_k > 0$ y demostraremos que $x_{k+1} > 0$. Sin embargo, esto también es inmediato, pues $3x_k + 4 > 0$ y $2x_k + 3 > 0$. Luego,

$$x_{k+1} = \frac{3x_k + 4}{2x_k + 3} > 0.$$

b) Para k = 1, se tiene la desigualdad $x_1 = 1 < 2$.

Suponemos que para algún $k \in \mathbb{N}, x_k < 2$ y demostraremos que $x_{k+1} < 2$. Calculamos la diferencia

$$2 - x_{k+1} = 2 - \frac{3x_k + 4}{2x_k + 3} = \frac{4x_k + 6 - 3x_k - 4}{2x_k + 3} = \frac{2x_k + 2}{2x_k + 3}.$$

Por el inciso a), $x_k > 0$. Entonces, $4x_k - 2 > 0$ y $2x_k + 3 > 0$. Así, $2 - x_{k+1} > 0$. Esto es, $2 > x_{k+1}$.

c) Para k = 1, veamos directamente

$$x_2 = \frac{3+4}{2+3} = \frac{7}{5} > 1 = x_1.$$

Supongamos que $x_k > x_{k-1}$ y demostraremos que $x_{k+1} > x_k$. Como en los incisos anteriores, calculamos

$$x_{k+1} - x_k = \frac{3x_k + 4}{2x_k + 3} - \frac{3x_{k-1} + 4}{2x_{k-1} + 3} = \frac{x_k - x_{k-1}}{(2x_k + 3)(2x_{k-1} + 3)}.$$

Por la hipótesis de inducción, $x_k - x_{k-1} > 0$ y por el paso anterior, para cada $k \in \mathbb{N}$, $x_k > 0$. Así $x_{k+1} > x_k$.

Por la proposición 16, $(x_k)_{k\in\mathbb{N}}$ converge. Sea $l=\lim_{k\to\infty}x_k$. Por la proposición 12,

$$\lim_{k \to \infty} x_{k+1} = \lim_{k \to \infty} \frac{3x_k + 4}{2x_k + 3} = \frac{3\lim_{k \to \infty} x_k + 4}{2\lim_{k \to \infty} x_k + 3}$$

Es decir,

$$l = \frac{3l+4}{2l+3}$$

Para hallar el valor de l, resolvemos la ecuación $2l^2 - 4 = 0$. Como los términos de la sucesión son positivos, tomamos la solución positiva. Por lo tanto, $l = \sqrt{2}$.

4. Sucesiones de Cauchy y Teorema de Bolzano-Weierstrass

Definición 19. Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión en \mathbb{R} y $\alpha \colon \mathbb{N} \to \mathbb{N}$ una función creciente. Diremos que la sucesión $(x_{\alpha(k)})_{k\in\mathbb{N}}$ es una subsucesión de $(x_k)_{k\in\mathbb{N}}$.

Proposición 20. Sean $(x_k)_{k\in\mathbb{N}}$ una sucesión y $(x_{\alpha(k)})_{k\in\mathbb{N}}$ una subsucesión. Sea $a\in\mathbb{R}$ y sopongamos que $\lim_{k\to\infty} x_k = a$. Entonces,

$$\lim_{k \to \infty} x_{\alpha(k)} = a.$$

Demostración. Ejercicio.

Proposición 21. Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión. Entonces, existe una subsuseción de $(x_k)_{k\in\mathbb{N}}$ que es decreciente no estrictamente o creciente no estrictamente.

Demostración. Vamos a demostrar que la sucesión tiene una subsucesión creceinte. El otro caso se hace de manera similar.

Sea $n \in \mathbb{N}$. Diremos que x_n es un punto valle de la sucesión si para cada m > n, $x_n \leq x_m$.

Entonces, $(x_n)_{n\in\mathbb{N}}$ tiene una cantidad finita de puntos valle o una cantidad infinita. Si tiene una cantidad infinita, entonces existen $n_1, \ldots, n_k, \ldots \in \mathbb{N}$ tales que $n_1 < n_2 < \cdots$ y

$$x_{n_1} \le x_{n_2} \le \dots \le x_{n_k} \le \dots$$

Haciendo $\alpha \colon \mathbb{N} \to \mathbb{N}$ mediante $\alpha(j) \coloneqq x_{n_j}$, tenemos que $(x_{\alpha(j)})_{j \in \mathbb{N}}$ es una subsucesión con las características requeridas.

Si $(x_n)_{n\in\mathbb{N}}$ tiene una cantidad finita de puntos valle, entonces existe $k\in\mathbb{N}$ y $n_1,\ldots,n_k\in\mathbb{N}$ tales que $n_1<\cdots< n_k$ y

$$x_{n_1} \le x_{n_2} \le \dots \le x_{n_k}.$$

Hacemos $\alpha \colon \mathbb{N} \to \mathbb{N}$ mediante

$$\alpha(j) := \begin{cases} n_j, & j \in \{1, \dots, k\}; \\ n_k, & j \ge k. \end{cases}$$

Entonces, $(x_{\alpha(j)})_{j\in\mathbb{N}}$ es una subsucesión con las características requeridas.

Teorema 22 (Bolzano-Weierstrass). Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión acotada en \mathbb{R} . Entonces, $(x^k)_{k\in\mathbb{N}}$ tiene una subsucesión convergente.

Demostración. Por la proposición 21, $(x_k)_{k\in\mathbb{N}}$ tiene una subsucesión monótona, digamos $(x_{\alpha(k)})_{k\in\mathbb{N}}$. Como $(x_k)_{k\in\mathbb{N}}$ es acotada, también lo es $(x_{\alpha(k)})_{k\in\mathbb{N}}$. Por la proposición 16, $(x_{\alpha(k)})_{k\in\mathbb{N}}$ es convergente.

Definición 23 (Sucesiones de Cauchy). Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión en \mathbb{R} . Decimos que la sucesión $(x_k)_{k\in\mathbb{N}}$ es de Cauchy, si para cada $\varepsilon > 0$ existe $N \in \mathbb{N}$ tal que si n, m > N, entonces

$$|x_n - x_m| < \varepsilon.$$

Proposición 24. Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión de Cauchy en \mathbb{R} . Entonces, $(x_k)_{k\in\mathbb{N}}$ es acotada.

Demostración. Como la sucesión es de Cauchy, existe $N \in \mathbb{N}$ tal que si n, m > N, entonces

$$|x_n - x_m| < \frac{1}{2}.$$

Luego, para cada p > N, utilizando la desigualdad del triángulo, $|x_p| < \frac{1}{2} + |x_{N+1}|$. Haciendo $M := \max\{|x_1|, \dots, |x_N|, \frac{1}{2} + |x_{N+1}|\}$, tenemos el resultado.

Proposición 25. Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión en \mathbb{R} . Entonces, $(x_k)_{k\in\mathbb{N}}$ es de Cauchy si y solo si $(x_k)_{k\in\mathbb{N}}$ es convergente.

 $Demostración. \Longrightarrow)$ Supongamos que $(x_k)_{k\in\mathbb{N}}$ es de Cauchy. Por la proposición 24 y por el teorema 22, $(x_k)_{k\in\mathbb{N}}$ tiene una subsuseción convergente. Es decir, existen $\alpha \colon \mathbb{N} \to \mathbb{N}$ creciente y $a \in \mathbb{R}$ tales que $\lim_{k\to\infty} x_{\alpha(k)} = a$.

Veamos que la sucesión original $(x_k)_{k\in\mathbb{N}}$ converge a a. Sea $\varepsilon > 0$. Como $(x_k)_{k\in\mathbb{N}}$ es de Cauchy, existe $N_1 \in \mathbb{N}$ tal que si $n, m > N_1$, entonces

$$|x_n - x_m| < \frac{\varepsilon}{2}.$$

Por otro lado, $\lim_{k\to\mathbb{N}} x_{\alpha(k)} = a$. Entonces, existe $N_2 \in \mathbb{N}$ tal que si p > N, entonces

$$|x_{\alpha(p)} - a| < \frac{\varepsilon}{2}.$$

Haciendo $N := \max\{N_1, N_2\}$, si n > N, tenemos

$$|x_n - a| \le |x_n - x_{\alpha(N+1)}| + |x_{\alpha(N+1)} - a| < \varepsilon.$$

 \iff Ahora, suponemos que $(x_k)_{k\in\mathbb{N}}$ es convergente. Entonces, existe $a\in\mathbb{R}$ tal que $\lim_{k\to\infty}x_k=a$. Sea $\varepsilon>0$. Existe $N\in\mathbb{N}$ tal que si n>N,

$$|x_n - a| < \frac{\varepsilon}{2}.$$

Por lo tanto, si n, m > N, se satisface

$$|x_n - x_m| < |x_n - a| + |x_m - a| < \varepsilon.$$

Ejercicios

- 1. Demuestre la proposición 6.
- 2. Determine si las siguientes son sucesiones convergentes. De ser así, proponga el límite y demuestre que la sucesión converge a este punto.
 - Sea $(x_k)_{k\in\mathbb{N}}$ la sucesión en \mathbb{R} tal que para cada $k\in\mathbb{N}, x_k\coloneqq\frac{k}{k+1}$.
 - Sea $(x_k)_{k\in\mathbb{N}}$ la sucesión en \mathbb{R} tal que para cada $k\in\mathbb{N}, x_k\coloneqq \frac{2k^2}{3k^2+1}$
 - Sea $(x_k)_{k\in\mathbb{N}}$ la sucesión en \mathbb{R} tal que para cada $k\in\mathbb{N}, x_k\coloneqq\frac{1-k}{2k}$.
 - Sea $(x_k)_{k\in\mathbb{N}}$ la sucesión en \mathbb{R} tal que para cada $k\in\mathbb{N}, x_k\coloneqq\frac{2k}{3k^2+1}$.
- 3. Demuestre el lema 13.
- 4. Demuestre la proposición 10.
- 5. Demuestre la proposición 11.

- 6. Sean $(x_k)_{k\in\mathbb{N}}$ y $(z_k)_{k\in\mathbb{N}}$ sucesiones tales que $(x_k)_{k\in\mathbb{N}}$ converge a 0 y $(z_k)_{k\in\mathbb{N}}$ es acotada. Demostrar que la sucesión $((xz)_k)_{k\in\mathbb{N}}$ converge a 0.
- 7. Sean $L \in \mathbb{R}$, y $(a_k)_{k \in \mathbb{N}}$, $(b_k)_{k \in \mathbb{N}}$, $(c_k)_{k \in \mathbb{N}}$ succesiones tales que para cada $k \in \mathbb{N}$, $a_k \leq c_k \leq b_k$ y

$$\lim_{k \to \infty} a_k = \lim_{k \to \infty} b_k = L.$$

Demostrar que $\lim_{k\to\infty} c_k = L$.

- 8. En los siguientes ejercicios, mostrar que las sucesiones son monótonas y acotadas. Además, encontrar sus límites:
 - a) $x_1 := 2$ y para cada $k \ge 1$, $x_{k+1} := \frac{x_k + 3}{4}$.
 - b) $x_1 := 1$ y para cada $k \ge 1$, $x_{k+1} = \frac{5x_k}{3+x_k}$.
 - c) $x_1 := 1$ y para cada $k \ge 1$, $x_{k+1} := \sqrt{2 + x_k}$.
- 9. Sean $a, b \in \mathbb{R}$ no negativos. Sean $(a_n)_{n \in \mathbb{N}}$ y $(b_n)_{n \in \mathbb{N}}$ tales que $a_1 = a$, $b_1 = b$ y para cada $n \in \mathbb{N}$,

$$a_{n+1} \coloneqq \sqrt{a_n b_n}, \qquad b_{n+1} \coloneqq \frac{a_n + b_n}{2}.$$

Demostrar que $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$.

- 10. Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión de Cauchy en \mathbb{R} y sea $(x_{\alpha(k)})_{k\in\mathbb{N}}$ una subsucesión. Demuestre que $(x_{\alpha(k)})_{k\in\mathbb{N}}$ es de Cauchy.
- 11. Demuestre que la sucesión $\left(\frac{1}{k^2}\right)_{k\in\mathbb{N}}$ es de Cauchy.
- 12. Sea $(x^k)_{k\in\mathbb{N}}$ una sucesión en \mathbb{R} tal que para toda $k\in\mathbb{N}, |x^k-x^{k+1}|\leq \frac{1}{(k+1)!}$. Demuestre que $(x^k)_{k\in\mathbb{N}}$ es de Cauchy.
- 13. Sean $(x_k)_{k\in\mathbb{N}}$ y $(y_k)_{k\in\mathbb{N}}$ sucesiones de Cauchy en \mathbb{R} . Utilizando la definición 23, demuestre que $(x_k + y_k)_{k\in\mathbb{N}}$ es de Cauchy.