Министерство науки и высшего образования Федеральное государтсвенное бюджетное образовательное учреждение высшего образования

Югорский государственный университет

Отчет о лабораторной работе \mathbb{N}^2 по дисциплине «Методы оптимизации»

Выполнил	
Студент группы	1162б Панчишин И. Р
«»	_ панчишин и. г _ 2019 г.
Принял	
Доцент ИЦЭ	
	_ Самарин В. А.
«»	_ 2019 г.

Цель

Изучить прямые методы минимизации.

Задачи

- 1. Реализовать следующие три метода минимизации: дихотомии, золотого сечения и Фибоначчи.
- 2. Изучить зависимость числа вычислений функции (скорости работы) от заданной точности.

Ход работы

Реализовал требуемые методы на языке программирования Octave (свободная реализация Matlab). Исходный код, представленный ниже, позволяет определить минимум функции (унимодальной), визуализировать изменение отрезка поиска на каждой итерации, а также построить зависимость скорости поиска от заданной точности.

```
set(0, defaultaxesfontsize, 12)
   set(0, defaulttextfontsize, 12)
    % вспомогательные функции
   % длина отрезка
   function res = len(a, b)
       res = b - a;
   end
9
10
   function res = fibonacci(n)
11
12
       if n < 0
            res = -1;
13
        elseif n == 0
14
           res = 0;
15
        elseif n == 1
16
           res = 1;
17
        else
18
            res = fibonacci(n - 1) + fibonacci(n - 2);
19
        end
20
   end
21
22
   % анимация изменения отрезка
23
   function shinkline(st, en, line)
        if isnan(line)
25
            return
26
27
        end
28
        X = get(line, XData);
29
30
        for d = st : len(st, en) / 30 : en
            if (st > en)
32
                X(2) = d;
33
                set(line, XData, X);
            else
35
                X(1) = d;
36
                set(line, XData, X);
37
38
            end
```

```
pause(0.01);
40
41
        end
42
        pause(0.5);
43
   end
44
45
46
   % метод дихотомии
47
   function [xm, ym, n] = dichotomy(f, a, b, e, line)
        %d = rand() * 2 * e;
        d = e;
50
        n = 0; % вычислений функции
51
52
        while (b - a) / 2 > e
53
            [x1 \ x2] = deal((a + b - d) / 2, (a + b + d) / 2);
54
55
            n = n + 2;
56
            if (f(x2) > f(x1))
                 shinkline(b, x2, line);
58
                 b = x2;
59
            else
                 shinkline(a, x1, line);
61
                 a = x1;
62
            end
63
        end
65
        xm = (a + b) / 2;
66
        ym = f(xm);
67
    end
69
    % метод золотого сечения
70
   function [xm, ym, n] = gold(f, a, b, e, line)
71
        g = (sqrt(5) - 1) / 2;
72
73
        right = @(a, b) a + g * len(a, b);
74
        left = Q(a, b) a + (1 - g) * len(a, b);
75
        [x1 x2] = deal(left(a, b), right(a, b));
77
        [y1 \ y2] = deal(f(x1), f(x2));
78
        n = 2;
79
80
        % точность для произвольной итерации
81
        %initLen = b - a;
82
        %1/2 * g^n * initLen
84
        while (b - a) / 2 > e
85
            ++n;
86
            if (y2 > y1)
                 shinkline(b, x2, line);
88
                 b = x2;
89
                 [x2 y2] = deal(x1, y1);
90
                 x1 = left(a, b);
                 y1 = f(x1);
92
            else
93
                 shinkline(a, x1, line);
94
                 a = x1;
95
                 [x1 y1] = deal(x2, y2);
96
                 x2 = right(a, b);
97
                 y2 = f(x2);
98
            end
```

```
end
100
101
         xm = (a + b) / 2;
102
         ym = f(xm);
103
     end
104
105
     % метод Фибоначчи
106
    function [xm, ym, n] = fib(f, a, b, e, line)
107
         minfib = (b - a) / e;
108
         k = 1;
109
         while minfib > fibonacci(k)
110
             ++k;
111
112
         end
113
         right = @(a, b, k) a + fibonacci(k + 1) / fibonacci(k + 2) * len(a, b);
114
         left = @(a, b, k) a + fibonacci(k) / fibonacci(k + 2) * len(a, b);
115
116
         [x1 x2] = deal(left(a, b, k), right(a, b, k));
117
         [y1 \ y2] = deal(f(x1), f(x2));
118
         n = 2;
119
120
         while k > 0
121
             ++n;
122
              if (y2 > y1)
123
                  shinkline(b, x2, line);
124
125
                  b = x2;
                  [x2 y2] = deal(x1, y1);
126
                  x1 = left(a, b, k);
127
                  y1 = f(x1);
              else
129
                  shinkline(a, x1, line);
130
                  a = x1;
131
                  [x1 y1] = deal(x2, y2);
132
                  x2 = right(a, b, k);
133
                  y2 = f(x2);
134
135
              end
              --k;
136
137
138
         xm = (a + b) / 2;
139
         ym = f(xm);
140
    end
141
142
    % исходные данные
144
    f = 0(X) X.^4 + exp(-X)
145
    X = -1:0.01:1;
146
    [a b] = deal(0, 1)
147
    e = 0.1
148
149
150
     % поиск минимума
    % построение
152
    plot(X, f(X), Color, b);
    xlabel(x);
154
    ylabel(y);
155
    hold on;
156
157
    xm = fminbnd(f, a, b);
158
    ym = f(xm);
```

```
plot(xm, ym, bo, LineWidth, 3);
160
161
    line = plot([a b], [0 0], Color, r, LineWidth, 3);
162
     %[xm \ ym] = dichotomy(f, a, b, e, line);
163
     [xm ym] = gold(f, a, b, e, line);
164
     %[xm \ ym] = fib(f, a, b, e, line);
165
    plot(xm, ym, ro, LineWidth, 3);
166
167
168
     % зависимость от точности
169
    figure;
170
    hold on;
171
172
    Fm = {@dichotomy, @gold, @fib};
173
    E = linspace(0.00001, 0.1, 20);
174
    for i = 1:length(Fm)
175
         N = [];
176
177
         for e = E
             [xm ym n] = Fm{i}(f, a, b, e, NaN);
178
             N = [N n];
179
180
         end
         plot(E, N);
181
    end
182
183
     legend(Дихотомии, Золотого сечения, Фибоначчи)
184
    xlabel(Погрешность)
185
    ylabel (Вычислений)
186
187
    pause
189
```

Результат нахождения минимума представлен на Рис. 1. Он близок к результату работы встроенной функции fminbnd.

Рис. 1: Минимум функции

Зависимость числа вычислений от точности представлена на Рис. 2. Наблюдается экспоненциальный рост количества вычислений с увеличением точности. Метод золотого сечения показал себя лучше остальных, рассматриваемых, методов.

Рис. 2: Зависимость скорости от точности

Вывод

Реализовал прямые методы минимизации: дихотомии, золотого сечения и Фибонач-чи. Сравнил их работу.