Modèles Linéaires Appliqués

Arthur Charpentier

Automne 2020

OLS #3 (régression sur une variable continue - 2)

Assume that $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, where ε_i 's are i.i.d. random variables, with $\mathbb{E}[\varepsilon] = 0$ and $\text{Var}[\varepsilon] = \sigma^2$. $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are unbiased estimators of β_0 and β_1 respectively,

$$\mathbb{E}[\widehat{eta}_0] = eta_0$$
 and $\mathbb{E}[\widehat{eta}_1] = eta_1$

Variances are respectively

$$\operatorname{\mathsf{Var}}[\widehat{eta}_0] = \sigma^2 \Big(rac{1}{n} + rac{\overline{x}^2}{s_{\mathsf{x}}^2} \Big) \ , \ \operatorname{\mathsf{Var}}[\widehat{eta}_1] = rac{\sigma^2}{n s_{\mathsf{x}}^2}$$

but since σ is unknown, those variances are estimated by

$$\widehat{\operatorname{Var}}[\widehat{\beta}_0] = \widehat{\sigma}^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{s_v^2} \right) \text{ and } \widehat{\operatorname{Var}}[\widehat{\beta}_1] = \frac{\widehat{\sigma}^2}{ns_v^2}$$

Si ε suit une loi normale, et en supposant l'indépendance des résidus, on obtient la normalité de $\widehat{\beta}_0$ et $\widehat{\beta}_1$.

Aussi, une statistique naturelle de test de $H_0: \beta_1 = 0$ contre $H_1: \beta_0 \neq 0$ est basé sur

$$T = \frac{\widehat{\beta}_1 - 0}{\sqrt{\widehat{\mathsf{Var}}[\widehat{\beta}_1]}}$$

qui suit, sous H_0 , une loi de Student Std(n-2).

Comme c'est un test bi-latéral, on utilise alors une des deux méthodes

- ▶ région critique: si $t_{n-2}^{-1}(1-\alpha)$ désigne le quantile de niveau $1-\alpha$ de la loi Std(n-2), on rejette H_0 si $|T| > t_{1}^{-1} {}_{n-2}(1-\alpha/2)$,
- ▶ *p*-value: on rejette H_0 si $p = \mathbb{P}[|Y| > |T||Y \sim Std(n-2)] < \alpha$.

Considerons le test $H_0: \beta_1 = 0$ contre $H_1: \beta_0 \neq 0$. La statistique de Fisher (analyse de la variance) vise à comparer les résidus de deux modèles : (0) $y_i = \beta_0 + \varepsilon_i$ et (0) $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, i.e.

$$F = \frac{(TSS - RSS)/1}{RSS/(n-2)} = \frac{ESS}{RSS/(n-2)}$$

qui suit, sous H_0 une loi de Fisher $\mathcal{F}_{1,n-2}$.

On utilise alors une des deux méthodes

- région critique: si $F_{1,n-2}^{-1}(1-\alpha)$ désigne le quantile de niveau $1-\alpha$ de la loi $\mathcal{F}_{\infty,\backslash-\epsilon}$, on rejette H_0 si $F>F_{1,n-2}^{-1}(1-\alpha)$,
- ▶ p-value: on rejette H_0 si $p = \mathbb{P}[Y > F | Y \sim \mathcal{F}_{\infty, \setminus -\epsilon}] < \alpha$.

On peut noter que

$$F = (n-2)\frac{R^2}{1 - R^2}$$

Dans le cas de la significativité de la pente, i.e. $H_0: \beta_1 = 0$, notons que

$$T^{2} = \frac{\widehat{\beta}_{1}^{2}}{\widehat{\sigma}^{2}/s_{x}^{2}} = W = \frac{\widehat{\beta}_{1}^{2}s_{x}^{2}}{\widehat{\sigma}^{2}} = \frac{ESS}{RSS/(n-2)} = F.$$

La prévision associée à x_i est

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$$

et si on considere une nouvelle observation x, on aurait

$$\widehat{y}_{\mathsf{x}} = \widehat{\beta}_0 + \widehat{\beta}_1 \mathbf{x}$$

et on aura comme observation

$$y_{x} = \beta_{0} + \beta_{1}x + \varepsilon$$

où ε est un bruit imprévisible.

Notons que

$$y_{x} - \widehat{y}_{x} = (\beta_{0} + \beta_{1}x + \varepsilon) - (\widehat{\beta}_{0} + \widehat{\beta}_{1}x)$$

soit

$$y_{\mathsf{x}} - \widehat{y}_{\mathsf{x}} = \varepsilon + (\beta_0 - \widehat{\beta}_0) + (\beta_1 - \widehat{\beta}_1)_{\mathsf{x}}$$

de telle sorte que

$$\mathbb{E}[v_{\mathsf{x}} - \widehat{v}_{\mathsf{x}}] = 0$$

Aussi, \widehat{y}_x est un estimateur dans biais de y_x . Si on continue,

$$\mathsf{Var}[y_{\mathsf{x}} - \widehat{y}_{\mathsf{x}}] = \mathsf{Var}[\varepsilon] + \mathsf{Var}(\widehat{\beta}_0 + \widehat{\beta}_{1} x)$$

qui se réécrit

$$Var[y_x - \widehat{y}_x] = \sigma^2 + \left(\frac{\sigma^2}{n} + \frac{\sigma^2(x - \overline{x})^2}{s_x^2}\right)$$

Frees (2014) appelle "standard error of prediction" la racine carrée de l'estimateur de cette grandeur

$$\sqrt{\widehat{\mathsf{Var}}[y_{\mathsf{X}} - \widehat{y}_{\mathsf{X}}]} = \widehat{\sigma} \cdot \sqrt{1 + \frac{1}{n} + \frac{(\mathsf{X} - \overline{\mathsf{X}})^2}{s_{\mathsf{X}}^2}}$$

En notant que si les residus sont supposes Gaussien, on peut alors construire un intervalle de confiance de prédiction pour y_x :

$$\underbrace{\widehat{\beta_0} + \widehat{\beta_1} \times}_{\widehat{\mathcal{Y}_{\mathsf{x}}}} \pm t_{n-2,1-\alpha/2} \cdot \widehat{\sigma} \cdot \sqrt{1 + \frac{1}{n} + \frac{(\mathsf{x} - \overline{\mathsf{x}})^2}{s_{\mathsf{x}}^2}}$$

On retrouve dans l'expression précédante deux sources d'erreur - l'erreur de modèle, venant du fait que la réalisation y est $\beta_0 + \beta_1 x$ auquel s'ajoute un bruit ε - l'erreur d'estimation, venant du fait que $\beta_0 + \beta_1 x$ est incertain

Pour l'erreur d'estimation, notons que

$$\mathsf{Var}[\widehat{y}_{\mathsf{x}}] = \left(\frac{\sigma^2}{n} + \frac{\sigma^2(\mathsf{x} - \overline{\mathsf{x}})^2}{s_{\mathsf{x}}^2}\right)$$

d'où un intervalle de confiance pour \widehat{y}_x de la forme

$$\widehat{\underline{\beta_0}} + \widehat{\underline{\beta_1}} \underbrace{\times}_{v_x} \pm t_{n-2,1-\alpha/2} \cdot \widehat{\sigma} \cdot \sqrt{\frac{1}{n} + \frac{(x-\overline{x})^2}{s_x^2}}$$

