Name: SINU S MARIAM

Designation: Data Science Intern

Organization: OASIS INFOBYTE

#importing necessary libraries

#Task 5 - SALES PREDICTION USING PYTHON

Problem Statement:

import numpy as np
import pandas as pd

In [29]:

- As a Data Scientist in a product / Service based company, Try to predict the future sales of the product considering the budget the company spent on different Advertisement Tools
- Use Machine Learning Techniques for Sales Prediction using Python Programming

```
import warnings
         warnings.filterwarnings('ignore')
         #importing libraries for visualisation
         import matplotlib.pyplot as plt
         from matplotlib import style
         import seaborn as sns
In [2]:
         #importing Data
         data_frame = pd.read_csv('C:/Users/sinun/OneDrive/Documents/oasis infobyte/Advertisi
        Performing descriptive analysis. Understand the variables and their
        corresponding values.
In [3]:
         # Understanding the dimensions of data
         data frame.shape
Out[3]: (200, 4)
In [4]:
         # Understanding the Data Variables
         data frame.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 200 entries, 1 to 200
        Data columns (total 4 columns):
             Column Non-Null Count Dtype
         #
             TV 200 non-null Radio 200 non-null
                                        float64
         0
         1
                                       float64
         2
            Newspaper 200 non-null
                                        float64
             Sales
                        200 non-null
                                        float64
        dtypes: float64(4)
        memory usage: 7.8 KB
In [5]:
         data_frame.columns
Out[5]: Index(['TV', 'Radio', 'Newspaper', 'Sales'], dtype='object')
```

* The company spent their budget for differnt products on 3 advertising medias such as TV, Radio, Newspaper and the corresponding sales for each product

```
In [6]:
# Show the top 5 Rows of data
data_frame.head()
```

Out[6]:		TV	Radio	Newspaper	Sales
	1	230.1	37.8	69.2	22.1
	2	44.5	39.3	45.1	10.4
	3	17.2	45.9	69.3	9.3
	4	151.5	41.3	58.5	18.5
	5	180.8	10.8	58.4	12.9

```
In [7]: # Performing Descriptive Analysis
data_frame.describe().T
```

Out[7]:		count	mean	std	min	25%	50%	75%	max
	TV	200.0	147.0425	85.854236	0.7	74.375	149.75	218.825	296.4
	Radio	200.0	23.2640	14.846809	0.0	9.975	22.90	36.525	49.6
	Newspaper	200.0	30.5540	21.778621	0.3	12.750	25.75	45.100	114.0
	Sales	200.0	14.0225	5.217457	1.6	10.375	12.90	17.400	27.0

```
In [8]: # Check for Duplicated Entries
   data_frame.duplicated().sum()
```

Out[8]: 0

Outlier Analysis

```
In [9]: fig,axs=plt.subplots(1,1)
    plt1=sns.boxplot(data_frame['TV'],ax=axs)
```



```
In [10]: fig,axs=plt.subplots(1,1)
   plt1=sns.boxplot(data_frame['Radio'],ax=axs)
```


fig,axs=plt.subplots(1,1)
plt1=sns.boxplot(data_frame['Newspaper'],ax=axs)

fig,axs=plt.subplots(1,1)
plt1=sns.boxplot(data_frame['Sales'],ax=axs)

Data Visualization

* Data Visualization helps to show how the budget spent on each advertising media affect the sales of products

```
In [13]:
#Scatter plot is used find the distribution of effects of each advertising media aga
plt.figure(figsize=(6,4))
sns.scatterplot(data=data_frame,x=data_frame['TV'],y=data_frame['Sales'])
```

```
Out[13]: <AxesSubplot:xlabel='TV', ylabel='Sales'>
```



```
plt.figure(figsize=(6,4))
sns.scatterplot(data=data_frame,x=data_frame['Radio'],y=data_frame['Sales'])
```

Out[14]: <AxesSubplot:xlabel='Radio', ylabel='Sales'>


```
plt.figure(figsize=(6,4))
sns.scatterplot(data=data_frame,x=data_frame['Newspaper'],y=data_frame['Sales'])
```

Out[15]: <AxesSubplot:xlabel='Newspaper', ylabel='Sales'>

* It is seen that TV data set is more linear as compared to other 2 variables .

Heat Map

^{*} We can see that TV variable has highest correlation value with the target Sales variable

Building the Forecasting Model

```
In [18]: from sklearn.model_selection import train_test_split
In [19]: #First step in building the forecasting model is to identify the Feature(Input) vari features = data_frame[['TV', 'Radio', 'Newspaper']] target = data_frame[['Sales']]
```

* Splitting data for training and testing the model

[11.91575511],

```
In [20]:
          # Splitting data for training the model and testing the model
          # train size taken as 0.8
          X_train, X_test, y_train, y_test = train_test_split(features, target, train_size = .
          # Dimensions of Train and Test Data sets
          print('Train set of features: ', X_train.shape)
          print('Test set of features: ', X_test.shape)
          print('Target for train: ', y_train.shape)
print('Target for test: ', y_test.shape)
          Train set of features: (160, 3)
          Test set of features: (40, 3)
          Target for train: (160, 1)
          Target for test: (40, 1)
         Learn the model on train data
In [21]:
          from sklearn.linear_model import LinearRegression
In [22]:
          # Linear Regression Model ( a Supervised Machine Learning Algorithm)
           # LR models impose a linear function between predictor and response variables
          my_model = LinearRegression()
In [23]:
          # Fitting the model in train data set ie the Linear Regression Model Learned from th
          my_model.fit(X_train, y_train)
Out[23]: LinearRegression()
         Predicting the Sales
In [24]:
          # Predicting the sales from Feature Test values
          y pred = my model.predict(X test)
          y_pred
Out[24]: array([[11.58310885],
                 [17.93587708],
                 [21.01084252],
                 [14.83055643],
                 [ 4.44748623],
                 [22.66459738],
                 [13.32231326],
                 [20.90987386],
                 [ 9.61644771],
                 [15.60268276],
                 [13.99517498],
                 [23.92820759],
                 [ 8.06853038],
                 [ 3.63975544],
                 [15.10225533],
                 [ 6.52337431],
                 [22.9798927],
                 [12.98092833],
                 [19.07905645],
                 [17.95713955],
                 [ 9.93706319],
                 [ 8.3044354 ],
```

```
[24.51383377],
[ 4.39627089],
[17.0716927],
[ 9.66437931],
[17.09224071],
[13.91558757],
[21.05423316],
[18.19180844],
[ 9.02162474],
[12.16559185],
[ 8.79231074],
[15.34609319],
[21.93046173],
[ 7.42286054],
[17.60122685],
[17.11894979],
[20.07699477]])
```

Test the model

```
In [25]: from sklearn.metrics import mean_squared_error
```

Mean Squared Error

```
In [26]: # Compare the predicted values with the true values
mean_squared_error(y_pred, y_test)
```

Out[26]: 2.4729855051485083

Coefficient of Determination or R Squared Value (r2)

```
In [27]: from sklearn.metrics import r2_score
```

In [28]: # find Coefficient of Determination or R Squared Value (r2)
 r2_score(y_test,y_pred)

Out[28]: 0.9290521316359344