# Ling575 Summarization System

D3: Initial System

Rachel Hantz, Yi-Chien Lin, Yian Wang, Chenxi Li, Tashi Tsering

# **Overview**

System Architecture

System Implementation

- Method 1: Term Frequency Inverse Document Frequency (TF-IDF)
- Method 2: Integer Linear Programming (ILP)

Results

Demo

# WorkSplit

- TF-IDF Tashi & Chenxi
- ILP Rachel
- Evaluation & Pipeline Yi-Chien
- Report & Slides Everyone



# **System Architecture**



#### **Build TF-IDF model**

- tf(t, d) \* (log [ (1+n) / (1+df(t)) ] + 1)
  - Background: all documents in devtest directory
  - o Foreground: ten documents under one topic
- Exclude stop words and punctuation

#### **Sentence Selection**

- Store data (index, topic\_id, length) in a matrix
- Calculate sentence TF-IDF score
- Pick sentences
  - o Token number in a sentence
  - Cos\_similarity between sentences

#### **Utilize TfidfVectorizer to build the TF-IDF matrix**

- Token pattern defined as "r'\b[^\s]+\b'", to match one or more characters that are not white spaces, and are surrounded by word boundaries
- Create a dictionary to map the score to each token

```
vectorizer = TfidfVectorizer(stop_words = stop_word, token_pattern=r'\b[^\s]+\b') #, ngram_range=(2, 2))
tfidf_matrix = vectorizer.fit_transform(all_set)
feature_names = vectorizer.get_feature_names_out()
tfidf_dict1 = dict(zip(feature_names, tfidf_matrix.toarray().T))
```

#### Store information for each tokenized sentence into a Panda dataframe

- The DataFrame consists of 5 columns
- Sorted first by the document set, and then by the tf-idf scores within each document set.

```
df = pd.DataFrame({'Topic_ID':A, 'sentence': B, 'word_count_no_stop': C, 'word_count': D, 'tfidf_scores': E})
df = df.sort_values(by = ['Doc_set', 'tfidf_scores'], ascending = [True, False])
```

#### **Selecting sentences**

- $S_w = \Sigma(w_i) / n$
- Skip short sentences
  - Exclude stopwords
  - Tested w/o punctuation
- Skip similar sentences
  - Tested diff cos\_similarity
- No more than 100

```
v curr = vectorizer.transform([row[1]])
total_cos_simi = 0
for sent in my_tuple[1]:
   v_selected = vectorizer.transform([sent])
    total_cos_simi += cosine_similarity(v_curr, v_selected)
avg_cos_simi = total_cos_simi / len(my_tuple[1])
if avg_cos_simi > cosine_sim:
   continue
if row[3] < word_limit:
     pass
else:
     if len(my_tuple[1]) == 0:
          first_string = row[1].strip('\n')
          my_tuple[1].append(first_string)
          w c += row[3]
          continue
```

#### TF-IDF table

| Punct | WB | Cos_simi | R1-R    | R1-P    | R1-F    | R2-R    | R2-P    | R2-F    |
|-------|----|----------|---------|---------|---------|---------|---------|---------|
| YES   | 10 | NA       | 0.29292 | 0.34907 | 0.31728 | 0.06990 | 0.08310 | 0.07562 |
| YES   | 10 | 0.3      | 0.30895 | 0.36750 | 0.33475 | 0.07160 | 0.08529 | 0.07761 |
| NO    | 10 | 0.3      | 0.33809 | 0.35275 | 0.34346 | 0.07848 | 0.08122 | 0.07950 |
| YES   | 10 | 0.4      | 0.30130 | 0.35664 | 0.32573 | 0.07026 | 0.08243 | 0.07564 |
| YES   | 10 | 0.5      | 0.29866 | 0.35613 | 0.32383 | 0.07016 | 0.08355 | 0.07601 |
| YES   | 10 | 0.6      | 0.29705 | 0.35435 | 0.32207 | 0.07066 | 0.08403 | 0.07649 |

# **Method 2: Integer Linear Programming**

#### **Get Concepts**

- Stemmed bigrams
- No punctuation
- No stop-word only bigrams

```
# Stems all but stop words
stemmer = SnowballStemmer("english", ignore_stopwords=True)
# tokenizes and removes punctuation (does not remove _ )
tokenizer = RegexpTokenizer(r'\w+')
```

```
sent_stemmed = [stemmer.stem(word) for word in tokenizer.tokenize(sent)]
sent_concepts = {bigram for bigram in bigrams(sent_stemmed) if bigram[0] not in stop_words and bigram[1] not in stop_words}
```

• Weights = # of articles concept is found in.

```
return Counter({concept: weight for concept, weight in concepts.items() if weight >= 3})
```

#### **Build Occurrence Matrix** ——

```
occurence = {}
for i, concept_i in enumerate(concepts):
    for j, sentence_j in enumerate(sentences):
        if concept_i in sentence_j["concepts"]:
            occurence[(i, j)] = 1
        else:
            occurence[(i, j)] = 0
```

# **Method 2: Integer Linear Programming**

#### **Use Pulp with GLPK solver** - (tutorial)

• Define Model and Decision Variables

```
# Implement ILP model

model = LpProblem(name="content-selector", sense=LpMaximize)

# Define the decision variables

s = {j: LpVariable(name=f"s{j}", cat="Binary") for j in range(0, len(sentences))}
c = {i: LpVariable(name=f"c{i}", cat="Binary") for i in range(0, len(concepts))}
```

#### Add Objective Function

```
objective_function = []
for i, concept in enumerate(concepts):
    objective_function.append(concept_weights[concept] * c[i])
model += lpSum(objective_function)
```

#### **Constraints**

 Included Concept in at least 1 Included Sentence



 Included Sentences don't have not Included Concepts

$$s_j o_{ij} \leq c_i \forall i,j$$

 Length is no more than 100 tokens

```
# Length Constraint: All sentences chosen do not exceed 100 tokens
length_constraint = []
for j, sentence in enumerate(sentences):
    length_constraint.append(len(sentence["text"].strip().split()) * s[j])
model += (lpSum(length_constraint) <= max_length, "length_constraint")</pre>
```

# **Method 2: Integer Linear Programming**

#### **Solve and Export Summary!**

```
# Solve the model -- decide which s_j's should be included
status = model.solve(solver=GLPK(msg=False))

# Collect the index (j) of each s_j that should be included (i.e. s_j = 1 in optimal solution)
sentences_in_summary = []
for var in s.values():
    if var.value() == 1:
        sentences_in_summary.append(sentences[int(var.name[1:])]["text"])

# Print to file
export_summary.export_summary(sentences_in_summary, topic_id, "2", "../outputs/D3")
```

#### **Information Ordering**

For now:

Print in order of appearance in article + in order of article date

#### **Content Realization**

For now:

Leave sentences as they are

# Demo



# **Results**

- ROUGE evaluation metrics: ROUGE-N
  - Recall
  - o Precision
  - o F1-Score
- Metrics used for the current system:
  - ROUGE-1: Co-occurrence of <u>unigrams</u> in both system-generated summaries and human summaries
  - ROUGE-2: Co-occurrence of <u>bigrams</u> in both system-generated summaries and human summaries



# Results

- ROUGE python implementation:
  - o rouge\_score package
  - Allow stemming

# Results

| ROUGE-N | Metric    | TF-IDF  | ILP     |  |
|---------|-----------|---------|---------|--|
|         | Recall    | 0.30895 | 0.30750 |  |
| ROUGE-1 | Precision | 0.36750 | 0.35340 |  |
|         | F1-Score  | 0.33475 | 0.32734 |  |
|         | Recall    | 0.07160 | 0.07539 |  |
| ROUGE-2 | Precision | 0.08529 | 0.08723 |  |
|         | F1-Score  | 0.07761 | 0.08049 |  |

# **Issues and Successes**

#### Problem 1:

Description: Anaconda environment with multiple dependencies became tricky to export and re-install from others' branches

Solution: Create new environment file from scratch with clear dependencies

#### **Problem 2:**

Description: ROUGE implementation on patas was inaccessible due to missing perl file.

Solution: Use python rouge-score package instead

# **Related Reading**

#### TFIDF -

- sklearn.feature\_extraction.text.TfidfVectorizer
- <u>sklearn.metrics.pairwise.cosine\_similarity</u>
- NLP Text Summarization using NLTK: TF-IDF Algorithm

#### ILP -

- Hands-On Linear Programming: Optimization With Python
- Dan Gillick and Benoit Favre. (2009) <u>A Scalable Global Model for Summarization.</u>, in Proceedings of the Workshop on ILP for NLP 2009.