0.1. ベクトルの測り方

0.1 ベクトルの測り方

2つのベクトルがどれくらい似ているかを議論するために、内積という尺度を導入する。

0.1.1 内積:ベクトルの「近さ」を返す関数

内積は、2つのベクトルを引数にとり、その「近さ」を表すスカラー値を返す関数として定義する。

具体的な定義式を知る前に、「近さ」を測る道具として、どのような性質を持っていてほしいかを 整理しておこう。

具体的な定義式は、その性質を満たすように「作る」ことにする。

内和	責の)公	理																							
100	La	、少白 ·	化点	→ BB	17.	≻ - 1 ⁄				_	* 7	_	m 1		7											
\mathbb{R}					_			- 1	-							17.	. 1 7		מוו	レー	7	\/T.	י תו	小 后	· *	
満									・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	と女人	と又	<u>×</u> 9	判	x (·	·):	V	× V	\rightarrow	11% (_ (٠,	1/\	ינטי	性質	· ~	
++1	ᄯ	- ((
対和																										
双約	線形	性	1.	スナ	ラ	一任	<u> </u>	:u, \	ı) =	(u	, c v)) =	c(u	ν)												
双約	線形	性	2 . 7	和((u +	w,	ν) :	= (ı	ι, ν)	+ (w,	ν),	(u	ι, ν	+ w) =	(u ,	ν) ·	+ (<i>t</i>	ı, w)					
正定	定值	性	(u.	п)	> ()_	(u.	u.) :	= 0	—	\Rightarrow	ш =	0													
	_ _	- ,	(00	,,	_ `	,	(30,	,																		

対称性

u がv にどれくらい近いか?という視点で測っても、v がu にどれくらい近いか?という視点で測っても、得られる「近さ」は同じであってほしい、という性質。

双線形性

どちらかのベクトルをスカラー倍してから「近さ」を測りたいとき、元のベクトルとの近さを測っておいて、それを定数倍することでも目的の「近さ」を求められる、という性質。

また、ほかのベクトルを足してから「近さ」を測りたいとき、足し合わせたいベクトルそれぞれについて近さを測っておいて、それを合計することでも目的の「近さ」を求められる、という性質。

これらは、近さを測るという「操作」と「演算」が入れ替え可能であるという、線形性と呼ばれる 性質である。

2つの引数 u,ν のどちらに関しても線形性があるということで、「双」がついている。

正定值性

ベクトルの「近さ」とは、向きがどれくらい近いか、という尺度でもある。 同じ方向なら正の数、逆の方向なら負の数をとるのが自然だと考えられる。

自分自身との「近さ」を測るとき、自分と自分は完全に同じ向きであるから、その「近さ」は正の数であるはずだ。

自分自身との「近さ」が0になるようなベクトルは、零ベクトル0だけである。

0.1.2 内積で表したい「関係の強さ」

内積の公理には含めないが、内積とはどんな量にしたいか?を事前に設計しておくと、後々のイメージにも役立つ。

さて、内積とは、2つのベクトルがどれくらい同じ方向を向いているか?という尺度にしたい。 そこで、2つのベクトルの向きに関する視点で、内積のイメージを膨らませてみる。

平行の度合いを内積に反映させる

2 つのベクトルが完全に平行なら、それらのベクトルは互いにスカラー倍で表すことができるので、互いに依存し合っている。

2 つのベクトルが平行に近ければ近いほど、これらは互いに似ていて「関係性の強い」ベクトルだといえる。

同方向・逆方向を内積の符号で表す

2つのベクトルが完全に平行で、さらに同じ方向を向いているなら、それらのベクトルは互いに正 の数のスカラー倍で表すことができる。

一方、2つのベクトルが完全に平行で、逆の方向を向いているなら、片方のベクトルはもう片方のベクトルを負の数を使ってスカラー倍したものになる。

逆向きのベクトルどうしは、近い方向どころかむしろ「かけ離れた方向を向いている」といえる。

内積が「向きの似ている度合い」なら、「近い方向を向いている」度合いを正の数で、「かけ離れた方向を向いている」度合いを負の数で表すのが自然だろう。

直交するベクトルの内積はゼロとする

「同じ向きに近い」場合と「逆向きに近い」場合が切り替わるのは、2 つのベクトルどうしが垂直なときである。

ならば、内積の正と負が切り替わる境界、すなわち内積が 0 になる場合とは、2 つのベクトルが直 交する場合にするのが自然といえるのではないだろうか。

実際、完全に垂直な2つのベクトルは、互いに全く影響を与えない方向を向いている。 2つのベクトルが直交している場合、2つのベクトルは互いに全く関係がないものとして、関係の 強さを表す内積の値は0にしたい。

0.1.3 標準基底の内積とクロネッカーのデルタ

内積の公理から一般的な内積の定義式を考える前に、まずは単純なベクトルの内積がどのように 振る舞うべきかを考えてみよう。

ここで取り上げる単純なベクトルとは、標準基底である。

標準基底の定義と直交性

標準基底は、座標軸の1目盛というイメージで捉えられる。数式としては、次のように定義される。

実際に座標軸の1目盛というイメージで描いてみるとわかるように、標準基底どうしは互いに<u>直</u> **交**している。

[Topo 1: 2次元平面の場合の標準基底の図と数式を横並びで描く]

標準基底の内積

標準基底のうち、異なる2つのベクトルどうし(たとえば e_1 と e_2)は直交していることから、その内積は0として定義しよう。

一方で、標準基底の1つである同じベクトルどうし(たとえば e_1 と e_1)の内積は、1と定義してしまうことにする。

1つの標準基底ベクトルは進む長さの1単位(座標軸上の1目盛)なのだから、同じ1つの標準基 底ベクトルどうしの内積も、近さの1単位としておくと都合がいい。

クロネッカーのデルタを使った表現

ここまで議論した標準基底の内積の定義は、次のように整理できる。

$$(\mathbf{e}_i, \mathbf{e}_j) = \begin{cases} 1 & (i = j) \\ 0 & (i \neq j) \end{cases}$$

ここで、クロネッカーのデルタという記号を、次のように定義しよう。

クロネッカーのデルタ記号を使うと、標準基底の内積の定義は、次のように簡潔に表現できる。

0.1.4 数ベクトルの内積の定義式

内積の公理と、標準基底の内積をもとに、一般的なベクトルの内積の定義式を導き出すことができる。

0.1. ベクトルの測り方

まず、任意のベクトル $a,b \in \mathbb{R}^n$ を、標準基底の一次結合として表そう。

$$\mathbf{a} = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + \dots + a_n \mathbf{e}_n = \sum_{i=1}^n a_i \mathbf{e}_i$$
$$\mathbf{b} = b_1 \mathbf{e}_1 + b_2 \mathbf{e}_2 + \dots + b_n \mathbf{e}_n = \sum_{j=1}^n b_j \mathbf{e}_j$$

これらの内積を、双線形性を使って展開していく。

まず、和に関する双線形性より、「足してから内積を計算」と「内積を計算してから足す」は同じ 結果になるので、シグマ記号 ∑ を内積の外に出すことができる。

また、スカラー倍に関する双線形性より、定数 a_i, b_i も内積の外に出すことができる。

$$(\boldsymbol{a}, \boldsymbol{b}) = \left(\sum_{i=1}^{n} a_i \boldsymbol{e}_i, \sum_{j=1}^{n} b_j \boldsymbol{e}_j\right)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j (\boldsymbol{e}_i, \boldsymbol{e}_j)$$

標準基底の内積 $(\mathbf{e}_i, \mathbf{e}_i)$ はクロネッカーのデルタ δ_{ij} で表せるので、次のように書き換えられる。

$$(\boldsymbol{a}, \boldsymbol{b}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j (\boldsymbol{e}_i, \boldsymbol{e}_j)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j \delta_{ij}$$

ここで、 δ_{ij} は $i \neq j$ のとき0になるので、i = jの項しか残らない。

$$(\boldsymbol{a}, \boldsymbol{b}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j \delta_{ij}$$
$$= \sum_{i=1}^{n} a_i b_i \delta_{ii}$$

 δ_{ii} は常に1なので、最終的に次のような式が得られる。

$$(\boldsymbol{a},\boldsymbol{b}) = \sum_{i=1}^{n} a_i b_i$$

数ベクトルの同じ位置にある数どうしをかけ算して、それらを足し合わせる、という形になって いる。

0.1.5 内積のさまざまな表記

内積の記法はいくつかあり、それぞれ異なる見方を表現したものになっている。

- (a₁, a₂):2つのベクトルを引数にとる関数
- $a_1^{\mathsf{T}}a_2$: 行列の積の定義を使った記法
- $\langle a_1 | a_2 \rangle$: ブラケット記法

 $m{a}_1^{\mathsf{T}}m{a}_2$ という表記については、のちに行列の積を定義する際にまた述べるとする。 $\langle m{a}_1|m{a}_2\rangle$ というブラケット記法は、抽象的な対象をベクトルとして考える上で便利である。次章で、この表記の解釈を見ていこう。

0.1.6 ブラケット記法

- 1. ブラとケット
- 2. 状態と観測装置
- 0.1.7 ノルム:自分自身の大きさ
- 0.1.8 ノルムを使った距離の表現
- 0.1.9 描けない角度の定義
- 0.1.10 射影:ベクトルの「影」

.......

0.1. ベクトルの測り方

Zebra Notes

Туре	Number
todo	1