CLAIMS

1	1.	A method of combining data to arrive at a composite graphical representation of a	
2	construction site comprising, the steps of:		
3		providing subsurface mapping data;	
4		creating a subsurface model of subsurface features from the subsurface mapping	
5	data;		
6		creating a wire frame model of an above surface feature;	
7		overlaying the wire frame model with a pictorial representation of the above	
8	surface feature; and		
9		combining the wire frame model with the subsurface model to produce the	
10	composite graphical representation.		
1	2.	The method of claim 1 wherein the subsurface mapping data is resistivity data.	
1	3.	The method of claim 2 wherein the resistivity data is taken from an AGI	
2	SuperSting program.		
-	o ap or o und p	g	
1	4.	The method of claim 2 further comprising the step of removing a statistical outlier	
2	2 from the resistivity data.		
1	5.	The method of claim 4 wherein a word processing program is used to remove the	
2	outlier.		

2

6. The method of claim 5 wherein the word processing program is WORDPAD. 1 7. The method of claim 2 further comprising the step of performing a least squares 1 2 data inversion analysis on the resistivity data. 1 8. The method of claim 7 wherein the least squares data inversion analysis is 2 preformed by a RES3DINV program. 9. 1 The method of claim 7 wherein the least squares data inversion analysis is 2 performed by a RES2DINV program. 1 10. The method of claim 2 further comprising the step of performing a kriging 2 analysis on the resistivity data. 1 11. The method of claim 10 wherein the analysis is preformed by SURFER software. 1 12. The method of claim 2 further comprising the step of performing a cokriging 2 analysis on the resistivity data. 1 13. The method of claim 1 wherein the subsurface mapping data is ground penetrating 2 radar data. 1 14. The method of claim 13 wherein the ground penetrating radar data is acquired

through a SIR-3000 ground penetrating radar system.

1	15.	The method of claim 13 wherein the data is enhanced.	
1	16.	The method of claim 15 wherein the program Radan is used to enhance the data.	
1	17.	The method of claim 1 wherein the subsurface mapping data is seismic data.	
1	18.	The method of claim 17 wherein the seismic data is acquired from a SmartSeis	
2	seismic imaging system.		
1	19.	The method of claim 17 wherein the data is enhanced.	
1	20.	The method of claim 19 wherein the program SizeImager is used to enhance the	
2	data.		
1	21.	The method of claim 1 wherein the wire frame model is created using	
2	AUTOCAD software.		
1	22.	The method of claim 1 wherein the wire frame model includes a model of	
2	vegetation.		
1	23.	The method of claim 1 wherein the wire frame model includes a model of a	
2	building.		

1 24. The method of claim 1 wherein the pictorial representation is an aerial 2 photograph. 1 25. The method of claim 24 wherein the aerial photograph is imported into 2 EVS software. 1 26. The method of claim 1 wherein the subsurface model comprises at least 2 one 2-dimensional graph. 1 27. The method of claim 1 wherein the subsurface model comprises at least 2 one 3-dimensional graph. 28. 1 The method of claim 1 wherein the composite graphical representation is 2 produced in Visual Reduction Modeling Language. 1 29. The method of claim 28 wherein the graphical representation is viewed as 2 a web page. 1 30. The method of claim 1 comprising the further step of displaying the 2 composite graphical representation. 1 31. The method of claim 1 wherein the composite graphical representation can 2 be rotated.

1 32. The method of claim 1 wherein the pictorial representation is a 2 representation of texture. 1 33. The method of claim 1 including the additional step of viewing a 2-2 dimensional slice of the composite graphical representation. 1 34. The method of claim 1 wherein the graphical representation is used in a 2 .AVI file. 1 35. The method of claim 1 wherein the wire frame model includes below 2 surface ground structures. 1 A 3-dimensional model of a construction site comprising: 36. 2 a graphical model of subsurface mapping data; 3 a spatial model of an above ground object; and 4 a 2-dimensional image of the above ground object superimposed on the 5 spatial model and spatially synchronized with the graphical model of resistivity data. The 3-dimensional model of claim 36 wherein the graphical model is 1 37. 2 prepared using kriging. 1 38. The 3-dimensional model of claim 36 wherein the spatial model is 2 prepared using AUTOCAD.

- 1 39. The 3-dimensional model of claim 36 wherein the 3-dimensional model is
- 2 rendered in Visual Reduction Modeling Language.
- 1 40. The 3-dimensional model of claim 36 wherein the subsurface mapping
- 2 data is resistivity data.
- 1 41. The 3-dimensional model of claim 40 wherein the resistivity data includes
- 2 data related to moisture content.
- 1 42. The 3-dimensional model of claim 40 wherein the resistivity data includes
- 2 data related to a void.
- 1 43. The 3-dimenstional model of claim 40 wherein the resistivity data includes
- 2 data related to a subsurface anomaly.
- 1 44. The 3-dimenstional model of claim 40 wherein the resistivity data is
- 2 derived through use of the equation:
- R = (V/I)K;
- 4 where K is an electrode geometric constant;
- 5 R is resistance;
- 6 V is voltage; and
- 7 I is current.

1	45.	The 3-dimensional model of claim 36 wherein the subsurface mapping
2	data is ground	penetrating radar data.
1	46.	The 3-dimensional model of claim 36 wherein the subsurface mapping
2	data is seismic	e data.
1	47.	A method of creating a graphical model comprising the steps of:
2		testing to determine subsurface mapping data;
3		enhancing the data;
4		constructing a wire frame model of an above ground structure;
5		providing a pictorial representation of a plan view of the above ground
6	structure;	
7		combining the pictorial representation with the wire frame model;
8		aligning the subsurface mapping data with the combined pictorial
9	representation	and wire frame model; and
10		merging the subsurface mapping data with the combined pictorial
11	representation	and wire frame model.
1	48.	The method of claim 47 wherein the subsurface mapping data is resistivity
2	data.	

1	49.	The method of claim 48 wherein the data is enhanced by performing a
2	least squares of	data inversion analysis on the subsurface mapping data.
1	50.	The method of claim 48 wherein the data is enhanced by performing a
2	kriging analys	sis on the subsurface mapping data.
1	51.	The method of claim 50 wherein the step of testing includes choosing a
2	placement for electrodes.	
1	52.	The method of claim 50 wherein the placement is the Wenner
2	arrangement.	
1	53.	The method of claim 51 wherein the placement is the Schlumberger
2	arrangement.	
1	54.	The method of claim 51 wherein the placement is the dipole dipole
2	arrangement.	
1	55.	The method of claim 47 wherein the step of combining is carried out with
2	AUTOCAD s	software.
1	56.	The method of claim 47 wherein the step of merging is carried out with
2	EVS software.	

1	57.	The method of claim 47 wherein the step of merging results in a VRML	
2	file.		
1	58.	The method of claim 47 further comprising the step of visually displaying	
2	the merged	subsurface mapping data, combined pictorial representation and wire frame	
3	model.		
1	59.	The method of claim 58 wherein the pictorial representation can be	
2	rotated.		
1	60.	The method of claim 47 wherein the step of merging results in an HTML	
2	file.		
1	61.	The method of claim 47 wherein the subsurface mapping data is ground	
2	penetrating	radar data.	
1	62.	The method of claim 61 wherein the program Radan is used to enhance	
2	the data.		
1	63.	The method of claim 47 wherein the subsurface mapping data is seismic	
2	data.		
1	64.	The method of claim 61 wherein the program SizeImager is used to	
2			
_	enhance the data.		

- 1 65. The method of claim 48 wherein the wire frame model includes below
- 2 ground structures.