Структурное макроэкономическое моделирование для целей центрального банка

Александр Бородин, ЦБРФ

E-mail: <u>bad@cbr.ru</u>

Комплекс моделей для прогнозирования и анализа в ЦБ

• Анализ текущей ситуации (nowcasting)

• Модели среднесрочного прогнозирования

- Обычно одна основная модель и набор «сателлитов» для решения трех типов задач:
 - Уточнения/дополнения структуры и параметризации основной модели, уточнение экзогенных предпосылок прогноза
 - Использования результатов основной модели для более детальных прогнозов
 - Альтернативные оценки и прогнозы по отдельным показателям

• Модели долгосрочного равновесия

Структурное моделирование для целей ЦБ

- Агрегированная модель малой открытой экономики
- Можно отнести к классу DSGE, НО в очень широкой трактовке (уравнения по принципу ad-hoc)
- Модель в разрывах
 - => HE позволяет прогнозировать кризисы/качественные трансформации экономики в долгосрочном периоде.
- Параметризация путем калибровки

ad-hoc моделирование

- Используем закономерности, выведенные из простой новокейнсианской модели
- Дополним предположениями о факторах, про которые теория ничего не говорит
- Добавим шоков, которые не имеют очевидной интерпретации с точки зрения теории, но помогут адекватнее описать данные.
- Добавим ненаблюдаемых, но интуитивно объяснимых трендов (равновесные траектории).

На примере решения задачи потребителя (1/2)

$$MAX \left[E_{t} \sum_{i=0}^{\infty} \beta^{i} \left(\frac{C_{t+i}^{1-\sigma}}{1-\sigma} + \frac{\gamma}{\left(1-b\right)} \left(\frac{M_{t+i}}{P_{t+i}} \right)^{(1-b)} - \chi \frac{N_{t+i}^{1+\eta}}{1+\eta} \right) \right]$$

$$\text{S.t.} \quad C_{t} + \frac{M_{t}}{P_{t}} + \frac{B_{t}}{P_{t}} = \frac{W_{t}}{P_{t}} N_{t} + \frac{M_{t-1}}{P_{t}} + \left(1 + i_{t-1}\right) \left(\frac{B_{t-1}}{P_{t}}\right) + \Pi_{t}$$

$$= \sum C_t^{-\sigma} = \beta \frac{\left(1 + i_t\right)}{E_t\left(P_{t+1}/P_t\right)} E_t\left(C_{t+1}^{-\sigma}\right)$$

после логлинеаризации:
$$c_t = \ln \beta + E_t c_{t+1} - \left(\frac{1}{\sigma}\right) r_t$$

(пример из Walsh, C. Monetary policy and theory. MIT Press, 2003; Ch.5.4: A New Keynesian Model for Monetary Analysis (ctp.232-234,244)

На примере решения задачи потребителя (2/2)

Исходное уравнение

$$c_{t} = \ln \beta + E_{t}c_{t+1} - \left(\frac{1}{\sigma}\right)r_{t}$$

Равновесное состояние

$$\bar{c}_t = \ln \beta + \bar{c}_{t+1} - \left(\frac{1}{\sigma}\right)\bar{r}_t$$

Уравнение «в разрывах» $\hat{c}_t = E_t \hat{c}_{t+1} - \left(\frac{1}{\sigma}\right) (\hat{i}_t - E_t \pi_{t+1})$

Итоговое ad-hoc уравнение

$$\hat{y}_{t} = \beta^{1} * \hat{y}_{t-1} + \beta^{2} * \hat{y}_{t+1} - \beta^{3} (\hat{i}_{t} - E_{t} \pi_{t+1}) + \beta^{4} * t \hat{o} t_{t} + \beta^{5} * \hat{y}_{t}^{f} + \varepsilon_{t}$$

Стандартная структурная модель в разрывах

• IS (уравнение спроса)

$$y_t^{gap} = \beta_1 \cdot E_t y_{t+1}^{gap} + \beta_2 \cdot rmci_t + \beta_3 \cdot y_{t-1}^{gap for} + \varepsilon_t^{gap}$$

• РС (кривая Филлипса, динамика цен)

$$\pi_{t} = \alpha_{1} \cdot E_{t} \pi 4_{t+4} + (1 - \alpha_{1}) \cdot \pi_{t}^{imp} + \alpha_{2} \cdot y_{t-1}^{gap} + \varepsilon_{t}^{\pi}$$

UIP (динамика обменного курса)

$$ls_t = E_t ls_{t+1} \left(\left(i_t - i_t^{for} - \rho_t \right) / 4 \right) + \varepsilon_t^{IP}$$

• правило ДКП (рекомендации по ставке-ориентиру)

$$i_{t} = \gamma_{1} \cdot i_{t-1} + (1 - \gamma_{1}) \cdot \left(i_{t}^{neutral} + \gamma_{2} \cdot \left(E_{t} \pi 4_{t+4} - \pi_{t+4}^{TAR}\right) + \gamma_{3} \cdot y_{t}^{gap}\right) + \varepsilon_{t}^{MP}$$

Расширение модели: компоненты инфляции

$$\pi_{t} = \alpha_{1} * \pi 4_{t-1} + (1 - \alpha_{1}) * \pi 4_{t+4} + \alpha_{2} * \hat{y}_{t-1} + \alpha_{3} * (\hat{z}_{t} - \hat{z}_{t-1}) + \varepsilon_{t}^{\pi}$$

$$\begin{split} \pi_{t}^{p} &= \alpha_{1}^{p} * \pi 4_{t-1}^{p} + \left(1 - \alpha_{1}^{p}\right) * \pi 4_{t+4}^{p} + \alpha_{2}^{p} * \hat{y}_{t-1} + \alpha_{3}^{p} * \left(\hat{z}_{t} - \hat{z}_{t-1}\right) + \alpha_{4}^{p} * L\hat{R}P_{t}^{p} + \varepsilon_{t}^{\pi_{p}} \\ \pi_{t}^{np} &= \alpha_{1}^{np} * \pi 4_{t-1}^{np} + \left(1 - \alpha_{1}^{np}\right) * \pi 4_{t+4}^{np} + \alpha_{2}^{np} * \hat{y}_{t-1} + \alpha_{3}^{np} * \left(\hat{z}_{t} - \hat{z}_{t-1}\right) + \alpha_{4}^{np} * L\hat{R}P_{t}^{np} + \varepsilon_{t}^{\pi_{np}} \\ \pi_{t}^{s} &= \alpha_{1}^{s} * \pi 4_{t-1}^{s} + \left(1 - \alpha_{1}^{s}\right) * \pi 4_{t+4}^{s} + \alpha_{2}^{s} * \hat{y}_{t-1} + \alpha_{3}^{s} * \left(\hat{z}_{t}^{s} - \hat{z}_{t-1}^{s}\right) + \alpha_{4}^{s} * L\hat{R}P_{t}^{s} + \varepsilon_{t}^{\pi_{s}} \end{split}$$

Расширение модели: цены на нефть, инфляция и выпуск

$$BAL_SAM_{t} = \pi_{t}^{NP} / \pi_{t}^{S}$$

$$BAL_SAM_{t} = \theta * BAL_SAM_{t-1} + (1 - \theta) * \Delta \overline{z}_{t} + \varepsilon_{t}^{BS}$$

$$\Delta \overline{z}_{t} = \zeta^{1} * \Delta \overline{z}_{t-1} + (1 - \zeta^{1}) * (\omega^{TOT} * \Delta t \overline{o} t_{t}) + \varepsilon_{t}^{z}$$

$$\Delta t \overline{o} t_{t} = \zeta^{2} * \Delta t \overline{o} t_{t-1} + (1 - \zeta^{2}) * \Delta t \overline{o} t^{SS} + \varepsilon_{t}^{TOT}$$

Влияние цен на нефть на темпы роста цен различных групп товаров формализовано в модели с использованием эффекта Баласса-Самуэльсона в терминах модельных компонентов инфляции.

$$\hat{y}_{t} = \beta_{1} * \hat{y}_{t+1} + \beta_{2} * \hat{y}_{t-1} - \beta_{3} * \hat{r}_{t-1} + \beta_{4} * \hat{z}_{t-1} + \beta_{5} * \hat{y}_{t-1}^{f} + \beta_{6} * t \hat{o} t_{t} + \varepsilon_{t}^{y}$$

Влияние цен на нефть на темпы роста выпуска формализовано в модели через расширение кривой Инвестиции-Сбережения.

Калибровка модели

Как можно получить представление о параметрах модели?

- Экспертные суждения
- Эконометрические модели
 - Отклики на импульсы из VAR-моделей, оценки ненаблюдаемых переменных
- Результаты фильтрации
 - отклики на импульсы, ретроспективный анализ, сценарное прогнозирование.

Эконометрические оценки

Оценки VAR-модели: процентный канал

Изменение процентной ставки не оказывает статистически значимого воздействия на выпуск и инфляцию в экономике (значения откликов слабо отличаются от нуля).

Эконометрические оценки

Оценки VAR-модели: валютный канал

Шок ослабления курса оказывает ускоряющее воздействие на инфляцию и этот эффект длится в течение примерно полутора лет.

Модельные отклики на импульс (шок обменного курса)

Альтернативные оценки ненаблюдаемых переменных

Анализ результатов фильтрации

Факторная декомпозиция инфляции (QoQ @ar)

Анализ качества калибровки – условные прогнозы (1/2)

Существуют два компонента модельного прогноза: структура модели и экзогенные суждения.

Пример структурного суждения: Мы считаем, что на инфляцию услуг колебания обменного курса влияют в гораздо меньшей степени, чем на инфляцию непродовольственных товаров.

Такое суждение находит отражение в калибровке параметров и структуре уравнений модели.

Пример экзогенного суждения: мы считаем, что разрыв выпуска за рубежом будет постепенно закрываться.

Такое суждение находит отражение в фиксации траекторий некоторых переменных модели на всем протяжении прогнозного периода.

Важно разделять влияние на прогноз суждений первого (качество модели) и второго (качество внемодельных экспертных оценок) типа.

Анализ качества калибровки – условные прогнозы (2/2)

Нас прежде всего интересует, насколько хороша модель.

Для этого следует максимально «очистить» модельный прогноз от неопределенности, связанной с неточностью экспертных суждений.

Один из способов этого добиться – фиксация прогнозных траекторий некоторых переменных: экзогенные прогнозы наблюдаемых переменных можно сделать «идеально точными»; экзогенные оценки ненаблюдаемых переменных – зафиксировать на уровне оценок, полученных с использованием данных за весь период наблюдения.

При анализе ретропрогнозов мы выделяем несколько подгрупп переменных:

Внешний сектор; Параметры условий торговли; Прочие тренды ненаблюдаемых переменных; Параметры ДКП.

Условные прогнозы - чистый out of sample

Условные прогнозы - фиксация внешнего сектора и трендов

Условные прогнозы - фиксация внешнего сектора, трендов и параметров ДКП

Анализ прогнозных свойств модели

RMSE comparison to RW

	19	2q	3q	49	5q	b9	, t	8q
Nominal interest rate	0.953	0.855	0.848	0.775	0.690	0.565	0.491	0.469
Nominal exchange rate	1.061	0.979	0.928	0.909	0.855	0.797	0.793	0.811
CPI inflation, (QoQ)	0.933	0.912	0.810	0.724	0.739	0.742	0.748	0.639
Expectations of overall inflation 4Q ahead	1.209	0.969	0.845	0.754	0.687	0.638	0.589	0.540
GDP Growth (YoY)	0.000	0.000	0.000	0.404	0.409	0.422	0.419	0.406
RER trend depreciation (QoQ)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Foreign CPI inflation (QoQ)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Output gap	1.128	0.760	0.633	0.590	0.579	0.593	0.604	0.597
RER Depreciation (QoQ)	0.792	0.786	0.760	0.797	0.707	0.758	0.877	0.803
Food CPI inflation, (QoQ)	0.909	0.865	0.729	0.660	0.676	0.700	0.737	0.676
Non-Food CPI inflation, (QoQ)	0.929	0.883	0.884	0.915	0.999	0.926	0.912	0.877
Services CPI inflation, (QoQ)	0.788	0.770	0.742	0.685	0.657	0.674	0.662	0.600
Country risk premium	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Root mean squared error

	19	2q	39	4q	59	ъ9	7q	89
Nominal interest rate	1.866	2.127	2.102	2.147	2.091	1.652	1.457	1.372
Nominal exchange rate	4.594	6.028	6.808	7.293	7.397	7.106	7.146	7.622
CPI inflation, (QoQ)	3.098	3.333	3.485	3.440	3.317	3.303	3.169	3.071
Expectations of overall inflation 4Q ahead	0.839	1.146	1.337	1.388	1.372	1.326	1.261	1.168
GDP Growth (YoY)	0.000	0.000	0.000	2.728	2.896	3.001	2.978	2.890
RER trend depreciation (QoQ)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Foreign CPI inflation (QoQ)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Output gap	1.866	2.223	2.481	2.728	2.965	3.247	3.478	3.571
RER Depreciation (QoQ)	17.754	18.625	17.979	17.062	16.757	17.132	17.391	17.509
Food CPI inflation, (QoQ)	5.987	6.343	6.507	6.349	6.059	6.058	5.955	5.883
Non-Food CPI inflation, (QoQ)	2.262	2.494	2.633	2.800	2.853	2.853	2.835	2.820
Services CPI inflation, (QoQ)	4.075	3.938	3.745	3.785	3.657	3.526	3.493	3.455
Country risk premium	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Опыт структурного моделирования для целей ЦБ

- **A. Berg, P. Karam, D. Laxton.** A Practical Model-Based Approach to Monetary Policy Analysis—Overview. *IMF*, WP/06/80
- **A. Berg, P. Karam, D. Laxton.** A Practical Model-Based Approach to Monetary Policy Analysis—A how-to guide. *IMF*, *WP/06/81*.
- W. Coats, D.Laxton, D. Rose (editors) The Czech National Bank 's Forecasting and policy analysis system.
- **Петрик А., Николайчук С.** Структурная модель трансмиссионного механизма монетарной политики в Украине // *Вестник НБУ №3-2006, с. 12-20*
- **Harvey, A C** (1989), Forecasting, Structural Time Series Models and the Kalman Filter, *Cambridge University Press*.
- Бородин А., Горбова Е., Плотников С., Плущевская Ю. Оценка потенциального выпуска и других ненаблюдаемых переменных в рамках модели трансмиссионного механизма монетарной политики (на примере России) // Сборник докладов ІІ Международной научно-практической конференции «Проблемы выбора эффективной денежно-кредитной политики в условиях переходной экономики», Национальный банк Республики Беларусь, 2008.