Übungsblatt 2

zur Vorlesung Mannigfaltigkeiten

Sommersemester 2016

Aufgabe 1. Sei (M, \mathcal{T}) ein Hausdorffraum, $p \in M$ und $K \subset M$ kompakt mit $p \notin K$. Zeigen Sie, dass offene Mengen $U, V \subset M$ existieren mit $p \in U, K \subset V$ und $U \cap V = \emptyset$. Folgern Sie, dass kompakte Teilmengen von Hausdorffräumen abgeschlossen sind.

Aufgabe 2. Betrachten Sie folgende Äquivalenzrelation auf $\mathbb{R}^2 \setminus \{0\}$:

$$(x^0, x^1) \sim (y^0, y^1) \Leftrightarrow \exists \lambda \in \mathbb{R}^{\times} \colon (x^0, x^1) = (\lambda y^0, \lambda^{-1} y^1).$$

Sei nun $M = \{[(x^0, x^1)] \mid (x^0, x^1) \in \mathbb{R}^2 \setminus \{0\}\} = \mathbb{R}^2/_{\sim}$ die Menge der Äquivalenzklassen.

a) Sei für $\alpha = 0, 1$ $U_{\alpha} = \{[(x^0, x^1)] \in M \mid x^{\alpha} \neq 0\}$ und

$$\phi_{\alpha} \colon U_{\alpha} \to \mathbb{R}, \quad \phi_{\alpha}(x^0, x^1) = x^0 x^1.$$

Zeigen Sie, dass $\mathcal{A} = \{(U_{\alpha}, \phi_{\alpha}) \mid \alpha = 0, 1\}$ einen glatten Atlas auf M definiert.

b) Zeigen Sie, dass die Mannigfaltigkeitstopologie auf $(M, [\mathcal{A}])$ nicht Hausdorff ist. (Hinweis: Betrachten Sie die Punkte [(1,0)] und [(0,1)] und benutzen Sie, dass die Kartenabbildungen $\phi_{\alpha}: U_{\alpha} \to \mathbb{R}$ Homöomorphismen sind.)

Aufgabe 3. a) Zeigen Sie, dass das Differential der Abbildung det : $GL(n, \mathbb{R}) \to \mathbb{R}$ an der Stelle $A \in GL(n, \mathbb{R})$ gegeben ist durch

$$d(\det)_A \colon \operatorname{End}(\mathbb{R}^n) \to \mathbb{R}, \qquad d(\det)_A(B) = \det(A)\operatorname{tr}(A^{-1}B).$$

(Hinweis: Betrachten Sie zunächst den Fall $A=1_n$ und bestimmen Sie $d(\det)_{1_n}(B)=\frac{d}{dt}|_{t=0}\det(1_n+tB)$, wobei 1_n die Einheitsmatrix bezeichnet. Benutzen Sie dann $\det(AC)=\det(A)\det(C)$.)

b) Sei $SL(n,\mathbb{R}) = \{A \in End(\mathbb{R}^n) \mid \det A = 1\}$ die Menge der Matrizen mit Determinante 1. Zeigen Sie, dass $SL(n,\mathbb{R})$ eine glatte Mannigfaltigkeit ist.

Aufgabe 4. Seien $(N, [\mathcal{B}])$ und $(M_i, [\mathcal{A}_i])$ für i = 1, 2 differenzierbare Mannigfaltigkeiten. Zeigen Sie:

- a) $M_1 \times M_2$ trägt die Struktur einer differenzierbaren Mannigfaltigkeit.
- b) Eine Abbildung $F: N \to M_1 \times M_2$ ist genau dann glatt, wenn für i = 1, 2 die Abbildungen $F_i := \pi_i \circ F \colon N \to M_i$ glatt sind. Hier bezeichnet $\pi_i \colon M_1 \times M_2 \to M_i$ die Projektion, i = 1, 2.

Abgabe Donnerstag, 21.04.2016 in der Vorlesung.