

Machine Learning Model Healthcare - Persistency of a drug

Name	Specialization	Country	Email
Ms. Larisa Popa	Data Science	Romania	Larisapopa4@gmail.com
Ms. Afshan Hashmi	Data Science	Kingdom of Saudi Arabia	afshanhashmi786@gmail.com
Mr. Omar Safwat	Data Science	Egypt	omarksafwat@gmail.com
Mr. Roger Burek- Bors	Data Science	Poland	roger.burek- bors@hotmail.com

Team: DG_team_project_PL-RO-KSA-EGY

Date: May 10, 2021

Executive Summary

- This report highlights the machine learning building phase and selection.
- ML models experimented:
 - Support Vector Machine
 - Logistic Regression
 - KNN
 - Random Forest
- The highest model accuracy and precision were attained using the logistic regression statistical model.

Random Forest Model

Model Trade-offs:

- Advantages:
 - Insensitive to Outliers.
 - Insensitive to Null values.
 - Less Prone to overfitting.
- Disadvantages:
 - Losing Interpretability.
 - Difficult to diagnose and improve.
- Results obtained:
 - Accuracy: 79 81 %

Random Forest Model

- 0.7

- 0.6

- 0.5

-0.4

-0.3

-0.2

- 0.0 correlates to "Persistent" flag.
- 1.0 correlates to "Non-Persistent" flag.

Support Vector Machine Model

Model Trade-offs:

- Advantages:
 - Can successfully handle high dimensional data
 - Can successfully handle imbalanced classes
- Disadvantages:
 - Difficult to diagnose and improve
 - Quite sensitive to outliers training on dataset with outliers decreased model accuracy
 - Not suitable for large datasets since the training time will be higher
- Results obtained:
 - Accuracy: 84 %

Techniques applied for improving worsened the model performance:

- Upsampling
- Downsampling
- PCA dimension reduction

Support Vector Machine Model Results

Support Vector Machine Model Results

Classification report								
		precision	recall	f1-score	support			
0.	.0	0.85	0.96	0.90	312			
1.	.0	0.77	0.40	0.53	89			
accurac	су			0.84	401			
macro av	vg	0.81	0.68	0.72	401			
weighted a	vg	0.83	0.84	0.82	401			

- Precision gives the percentage of the correct prediction from all values predicted positive. P= TP/(TP+FP)
- Recall measure the percentage of the correct prediction from all values that were actually positive. R= TP/(TP+FN)
- F1 score weighted harmonic mean of precision and recall such that the best score is 1.0 and the worst is 0.0. F1 score= 2(RP)/(R+P)
- Support is the number of actual occurrences of the class in the specified dataset.

KNN Model Results

KNN Model Results

Advantages of KNN Algorithm:

- It is simple to implement.
- It is robust to the noisy training data
- It can be more effective if the training data is large.

Disadvantages of KNN Algorithm:

- Always needs to determine the value of K which may be complex some time.
- The computation cost is high because of calculating the distance between the data points for all the training samples.

Imbalanced class were balanced using SMOTE

y['Persistency_Flag'].value_counts()

0 2135 1 1289

Name: Persistency_Flag, dtype: int64

SMOTE-Synthetic minority oversampling Technique

• Increases the number of low incidence examples in a dataset using synthetic minority oversampling.

• SMOTE takes the entire dataset as an input, but it increases the percentage of only the minority cases.

• **SMOTE** reduces the bias towards the classification ..

Logistic Regression Model Results

	precision	recall	f1-score	support
0	0.86	0.88	0.87	422
1	0.80	0.76	0.78	263
accuracy			0.84	685
macro avg	0.83	0.82	0.82	685
weighted avg	0.83	0.84	0.83	685

Overall Precision: 0.8

Overall Recall: 0.7604562737642585

AUC: 0.8993116248896257

Thank You

