1

Notes

目录

第一章	SDE		4	
1.1	随机分析基础			
	1.1.1	概率与概率空间	4	
	1.1.2	三种收敛性	4	
	1.1.3	条件期望	5	
	1.1.4	Brownian Motion	6	
1.2	Ito 积	分	7	
	1.2.1	Ito 积分的建立	7	
	1.2.2	Ito 积分的性质	9	
1.3	Ito 公	式和鞅表示定理	11	
	1.3.1	Ito 公式	11	
	1.3.2	鞅表示定理	12	
1.4	SDE		13	
	1.4.1	SDE 求解	13	
	1.4.2	解的存在唯一性定理	14	
	1.4.3	强解与弱解	14	
1.5	扩散过程			
	1.5.1	Ito 扩散与 Markov 性质	15	
	1.5.2	强 Markov 性质	16	
	1.5.3	无穷小生成元	17	
	1.5.4	Dynkin 公式	18	

目录			3
	1.5.5	特征算子	18
	1.5.6	Kolmogorov 向后方程	18
	1.5.7	半群与预解式	19
	1.5.8	Feynmann-Kac 公式	20
	1.5.9	鞅问题	21
	1.5.10	Ito 过程何时是 Ito 扩散	22
	1.5.11	随机时变	23
	1.5.12	Girsonov 定理	25
1.6	边界值	[问题	28
	1.6.1	组合 Dirichlet-Poisson 问题解的唯一性	28
	1.6.2	Dirichlet 问题	29
	1.6.3	Piosson 问题	32
	1.6.4	Green 测度	34
1.7	最优停	时方面的应用	36
	1.7.1	时齐情形	36
	1.7.2	非时齐情形	37
	1.7.3	带积分项情形	38
1.8	随机控		38
1.9	ملا		39

1.1 随机分析基础

1.1.1 概率与概率空间

概率空间 (Ω, \mathcal{F}, P) : 样本空间 Ω , σ -代数 \mathcal{F} (补和可列并封闭), 概率测度 P (可列可加)。

随机变量 $X:(\Omega,\mathcal{F},P)\to (E,\mathcal{E})$ 。

随机过程 $X_{\cdot}: (T \times \Omega, \mathcal{B}(T) \otimes \mathcal{F}, L \times P) \rightarrow (E, \mathcal{E})$ 。

生成 σ -代数 $\sigma(\mathcal{U})$,拉回 σ -代数 $\sigma(X) = X^{-1}(\mathcal{E})$,前推测度 $\mu_X = P \circ X^{-1}$ 。 期望 $E[X] = \int_{\Omega} X dP = \int_{\Omega} X(\omega) P(d\omega)$,随机过程的期望是一个随机变量。 概率分布 $F(x) = P(X \le x) = P \circ X^{-1}((-\infty, x]) = \mu_X((-\infty, x]) = \mu_X(A_x)$ 随机变量函数的期望(变量替换公式):

$$E[f(X)] = \int_{\Omega} f(X)dP = \int_{\Omega} f(X(\omega))P(d\omega)$$
$$= \int_{E} f(x)\mu_{X}(dx) = \int_{\mathbb{R}} ym_{X}(dy)$$

独立性的定义:事件的独立性,集合的独立性,随机变量的独立性。

独立性的使用: $P(A \cap B) = P(A)P(B), E(X1_B) = E(X)P(B), E(XY) =$

E(X)E(Y) \circ

1.1.2 三种收敛性

 L^p -收敛: $\lim \|X_n - X\|_p = \lim \|X_n - X\|_p^p = \lim E(X_n - X)^p = 0$

a.e.-收敛: $P(\omega, \lim |X_n(\omega) - X(\omega)| > \varepsilon) = 0$, 即不收敛的概率为 0

依概率收敛: $\lim P(\omega, |X_n(\omega) - X(\omega)| > \varepsilon) = 0$

 L^p -收敛 \Rightarrow 依概率收敛

a.e.-收敛 ⇒ 依概率收敛

依概率收敛 ⇒ 存在子列 a.e.-收敛

 L^p not a.e.: $f_n=1_{[\frac{n-2^k}{2^k},\frac{n-2^k}{2^k}+\frac{1}{2^k})}\stackrel{L^p}{\rightarrow}0,\stackrel{a.e.}{\not\rightarrow}0,1\leq p<\infty,L^\infty\Rightarrow \text{uniform a.e.}$

a.e. not L^p : $f_n = n^{\frac{1}{p}} 1_{[0,\frac{1}{n})} \stackrel{a.e.}{\to} 0, \stackrel{L^p}{\not\to} 0$

1.1.3 条件期望

—— 条件期望的定义性质 ——

给定 \mathcal{F} -可测的随机变量 X 以及 \mathcal{F} 的子 σ -代数 \mathcal{C} ,以下两条性质能够唯一决定一个新的随机变量 $E(X|\mathcal{C})$ s.t.

- 1. 关于 C 可测
- 2. $\int_{B} E(X|\mathcal{C})dP = \int_{B} XdP$, $\forall B \in \mathcal{C}$

称为条件期望。

—— 条件期望的投影性质 ——

 $E(X|\mathcal{C})$ 是 $X \in H = L^2(\Omega, \mathcal{F}, P)$ 在 $K = L^2(\Omega, \mathcal{C}, P)$ (前者的闭线性子空间)上的正交投影 s.t.

- 1. 若 X 是 \mathcal{C} 可测的,即 $X \in K$,则 $E(X|\mathcal{C}) = X$ 。(可测取自己)
- 2. 若 $\mathcal{C} \subset \mathcal{A} \subset \mathcal{F}$, 则 $E(E(X|\mathcal{C})|\mathcal{A}) = E(E(X|\mathcal{A})|\mathcal{C}) = E(X|\mathcal{C})$ 。

另外两条积分性质:

- 1. 若 X 与 $\mathcal C$ 独立,则 $E(X|\mathcal C)=E(X),P_{\mathcal C}$ a.e.。pf by def。(独立没关系)
- 2. 若 Y 是 \mathcal{C} 可测的,则 $E(YX|\mathcal{C}) = YE(X|\mathcal{C}), P_{\mathcal{C}}$ a.e.。(可测当常数)

pf: 几乎处处意义下的相等用积分相等来证明, 即证

$$E(\eta \text{ LHS}) = E(\eta \text{ RHS}), \forall \eta \in K$$

由积分的建立过程(示性,简单,非负可测,一般可测),只要对于示性函数 $\eta = 1_B, \forall B \in \mathcal{C}$ 成立即可

- 1. $E(1_B E(X|\mathcal{C})) = E(1_B X) = E(1_B E(X))$
- 2. $E(1_B E(1_C X | \mathcal{C})) = E(1_B 1_C X) = E(1_B 1_C E(X | \mathcal{C})), \quad \forall C \in \mathcal{C}$

条件期望的严格定义(Radon 导数)需要用到 Radon-Nikodym 定理(见严 士健 7.2 节)

Kolmogorov 存在性定理: 若 f.d.d. 族是对称的和相容的,则存在概率空间及其上的随机过程使得其 f.d.d. 由上给出。(说明随机过程的 f.d.d. 是随机过程概率特征的完整描述)

1.1.4 Brownian Motion

标准 BM:

- 0. $B_0 = 0$, a.e.
- 1. 正态增量, $B_t B_s \sim N(0, (t-s)I)$
- 2. 独立增量, $B_t B_s$ ind of $B_s B_0$
- 3. 轨道连续
- —— BM 的 f.d.d. ——

$$E^{x}[h(B_{1}, B_{2})] = E^{x}[h(W_{1} + x, W_{2} + W_{1} + x)]$$
(by def) =
$$\iint h(z_{1} + x, z_{2} + z_{1} + x) f_{W_{1},W_{2}}(z_{1}, z_{2}) dz_{1} dz_{2}$$
(ind) =
$$\iint h(z_{1} + x, z_{2} + z_{1} + x) f_{W_{1}}(z_{1}) f_{W_{2}}(z_{2}) dz_{1} dz_{2}$$
=
$$\iint h(y_{1}, y_{2}) p(t_{1}, x, y_{1}) p(t_{2} - t_{1}, y_{1}, y_{2}) dy_{1} dy_{2}$$

归纳可得 BM 的 f.d.d.。

— 轨道性质 —

两个相同状态空间的随机过程互为修正,若其轨道几乎处处相等。

Kolmogorov 连续性定理: 保证 BM 存在连续修正。

BM 增量的四阶矩: $E^{x}[|B_{t}-B_{s}|^{4}] = n(n+2)|t-s|^{2}$ 。

p 阶变差过程 $\langle X, X \rangle_t^{(p)}(\omega) = \lim_{\Delta t_k \to 0} \sum_{t_k \leqslant t} |X_{t_{k+1}}(\omega) - X_{t_k}(\omega)|^p$ 。(变差反应了充分小时间内的振动)

BM 的一阶变差 $\langle B, B \rangle_t^{(1)}(\omega) = \infty$,二阶变差 $\langle B, B \rangle_t^{(2)}(\omega) = t$, a.e.。

pf see ppt SDE_1-2 p30-31(二阶变差计算,先证 L^2 意义下收敛,用到随机变量独立则随机变量的函数形式独立,由此消去交叉项, L^2 -收敛则依概率收敛则存在子列 a.e.-收敛。一阶变差用反证法,用到 BM 在有界时间区间内一致连续,一阶变差有限推出二阶变差为零,矛盾)

— Gauss 过程 —

BM 是 Gauss 过程,即 $\forall 0 \leq t_1 \leq \cdots \leq t_k$,随机向量 (B_1, \ldots, B_k) 服从高维正态分布。

等价于(用于判断)线性组合 $\forall a_i, \sum_i a_i B_i$ 服从一维正态分布。

pf: 线性组合用增量 $W_i=B_i-B_{i-1}$ 的形式来写,则 $\sum_i a_i B_i=\sum_j b_j W_j+b_0 B_0$ 服从一维正态分布。

若 $B_t = (B_t^{(1)}, \dots, B_t^{(n)})$ 是 n 维 BM,则 $\{B_t^{(i)}\}$ 是相互独立的一维 BM。BM 是鞅和强马氏过程。

1.2 Ito 积分

1.2.1 Ito 积分的建立

能且只能用 BM 来表示"噪声"。

---- 流和适应 ----

可测空间 (Ω, \mathcal{F}) 上的流 \mathcal{F}_t 是一族递增的 \mathcal{F} 的子 σ -代数,随机过程 X_t 的自然流 $\mathcal{F}_t^0 := \sigma(X_t)$ 是由 X_t 拉回的一族递增 σ -代数。

随机过程 X_t 是 \mathcal{F}_t -适应的,若 $\forall t \in T$, $\sigma(X_t) \subset \mathcal{F}_t$ 。

—— Ito 积分的建立 ——

定义一个"好"的函数空间 $\mathcal{V} = \{f(t,\omega) : [0,\infty) \times \Omega \to \mathbb{R}\}, \ \text{其中 f s.t.}$

- 1. $f(t,\omega)$ 是 $\mathcal{B}([0,\infty)) \times \mathcal{F}$ -可测的
- 2. $f(t,\omega)$ 是 \mathcal{F}_t (BM 的自然流) -适应的
- 3. $E\left[\int_0^T f(t,\omega)^2 dt\right] < \infty$
- 2. 可弱化为关于某个 BM 适应的流适应。
- 3. 可弱化为二阶矩几乎处处有限,此时 Ito 积分是局部鞅。

建立思路: 利用 BM 二阶变差有限,我们希望这个积分在 L^2 意义下能被基本函数(取左端点的阶梯函数)的积分逼近,于是由 L^2 空间的完备性可得 I[f](w)。

基本函数, 有界连续函数, 有界函数, 一般函数。

1. 对于基本函数 $\phi(t,\omega) = \sum_j e_j(\omega) \cdot 1_{[t_j,t_{j+1})}(t)$, $e_j(\omega) = \phi(t_j,\omega)$ 是 \mathcal{F}_{t_i} -可测的,Ito 积分即求和

$$\int_{S}^{T} \phi(t,\omega) dB_{t}(\omega) = \sum_{i} e_{j}(\omega) \left[B_{t_{j+1}} - B_{t_{j}} \right] (\omega)$$

Ito 等距公式: 若 $f \in \mathcal{V}$, 则有

$$E\left[\left(\int_{S}^{T} f(t,\omega)dB_{t}(\omega)\right)^{2}\right] = E\left[\int_{S}^{T} f(t,\omega)^{2}dt\right]$$

- 2. 有界连续函数由基本函数逼近,控制收敛定理。
- 3. 有界函数由有界连续函数(有界函数的磨光)逼近,控制收敛定理。(磨光算子的逼近性质,这里的精妙之处在于没有损失可测性)
- 4. 一般函数由有界函数逼近,控制收敛定理。

注:连续函数说的就是轨道连续,因为 Ito 积分是对时间积分,也就是在轨道上积分,另一方面样本空间上也没有拓扑,没法谈连续。

最后定义 Ito 积分 (在 L^2 意义下取极限)

$$\int_{S}^{T} f(t,\omega)dB_{t}(\omega) := \lim \int_{S}^{T} \phi_{n}(t,\omega)dB_{t}(\omega), \quad \forall f \in \mathcal{V}$$

推论一 (Ito 等距公式): Ito 积分 $I: \mathcal{V} \to I[\mathcal{V}]$ 是等距映射。

推论二: 若基本函数列 $\phi_n \stackrel{L^2}{\to} f$,则由 Ito 等距公式 $I[f] = \lim I[\phi_n]$ 。

Ito 积分是对时间积分(基本,有界连续,连续,一般),期望是对空间积分(示性,简单,非负可测,一般可测)。

Fubini 定理: 二元可测则积分可换序。

Stratonovich 积分由 Ito 积分表示:

$$\int_0^t \sigma(s, X_s) \circ dB_s = \frac{1}{2} \int_0^t \sigma'(s, X_s) \sigma(s, X_s) ds + \int_0^t \sigma(s, X_s) dB_s.$$

1.2.2 Ito 积分的性质

基本性质

- 0. 线性性,区间可加性
- 1. 零均值性: E(I[f]) = 0
- 2. 可测性: $I[f](w) = \int_S^T f(t,\omega) dB_t$ 是 \mathcal{F}_T -可测的

pf: 由 Ito 积分的建立过程(基本,有界连续,有界,一般),只要证对于基本函数成立,显然。

—— 鞅 ——

随机过程 M_t 关于流 \mathcal{M}_t 是鞅,若有

- 1. 适应性: M_t 是 \mathcal{M}_{t} -适应的
- 2. 可积性: $E|M_t| < \infty$, $\forall t \geq 0$
- 3. 公平性: $E(M_t | \mathcal{M}_s) = M_s$, $\forall 0 \leq s < t$

鞅的期望不变: $E(M_s) = E(E(M_t | \mathcal{M}_s)) = E(M_t) = E(M_0)$ 。

BM 关于 \mathcal{F}_t 是鞅。

pf: 1. 显然。2. $(E|B_t|)^2 \le E[|B_t|^2] = nt < \infty$. 3. $E[B_t|\mathcal{F}_s] = E[B_t - B_s|\mathcal{F}_s] + E[B_s|\mathcal{F}_s] = 0 + B_s = B_s$.

Chebyshev ineq: $1_{|x| \ge \lambda} \le \frac{|x|^p}{\lambda^p} \Rightarrow P(|x| \ge \lambda) \le \frac{1}{\lambda^p} E(|x|^p)$

Doob's ineq: 若 X_t 为右连续鞅,则有

$$P\left[\sup_{0 < t < T} |X_t| \ge \lambda\right] \le \frac{1}{\lambda^p} E\left[|X_T|^p\right]$$

Doob's ineq 用来证明 Ito 积分是鞅,具体来说是证 $I[\phi_n]$ 关于 ω 一致连续,从而 $I[f] = \lim I[\phi_n]$ 关于 t 连续。

之前建立的 Ito 积分是在固定时间区间上的,相当于定积分,出来之后是一个随机变量,之后我们讨论更一般的不定积分,即 $I[f](t,\omega)=\int_0^t f(s,\omega)dB_s$,出来之后还是一个随机过程。

定理: Ito 积分存在连续修正。

pf: 简单起见假设所有系数函数都是有界的,对于一般情形逼近即可。

S0. 设基本函数列 $\phi_n \stackrel{L^2}{\to} f$,则由 Ito 等距公式 $I_n := I[\phi_n] \stackrel{L^2}{\to} I[f]$ 。

S1. 证 I_n 是右连续鞅(为了用 Doob 鞅不等式),适应性由 Ito 积分的可测性,可积性由 Ito 等距公式,公平性由定义直接计算,连续性由基本函数的积分即求和。

S2. $I_n - I_m$ 也是右连续鞅,由 Doob 鞅不等式(p = 2)

$$P\left[\sup_{0 \le s \le t} |(I_n - I_m)(s, \omega)| \ge \lambda\right] \le \frac{1}{\lambda^2} E\left[|(I_n - I_m)(t, \omega)|^2\right] \to 0$$

则存在一个子列 n_k s.t.

$$P\left[\sup_{0\leq s\leq t}|(I_{n_{k+1}}-I_{n_k})(s,\omega)|\geq \lambda\right]<2^{-k}$$

Borel-Cantelli 引理:如果一堆事件的概率和有限,则无穷个事件发生的概率为零,或者如果一堆区域的面积和有限,则被无穷个区域覆盖的区域为零测集。

由 Borel-Cantelli 引理

$$P\left[\sup_{0 \le s \le t} |(I_{n_{k+1}} - I_{n_k})(s, \omega)| \ge \lambda, \text{i.o.}\right] = 0$$

于是对于几乎所有的 ω , $\exists n, \forall k > n, \sup_{0 \le s \le t} |(I_{n_{k+1}} - I_{n_k})(s, \omega)| < \lambda$,即 $I_{n_k}(t, \omega)$ 在 [0, t] 上对于几乎所有的 ω 一致收敛,其极限函数 $J(t, \omega)$ 连续。一致收敛: $f_n \Rightarrow f$,if $\forall \varepsilon > 0$, $\exists N$ s.t. $\forall n > N, |f_n(t) - f(t)| \le \varepsilon, \forall t$ 。一致收敛的连续函数列的极限函数连续。

Ito 积分是连续鞅, 由 I_n 是连续鞅, 取极限即可。

要证明 Ito 积分的性质只要对基本函数进行验证即可。

1.3 Ito 公式和鞅表示定理

1.3.1 Ito 公式

—— 一维 Ito 公式 ——

一维 Ito 过程: $dX_t = udt + vdB_t$, 其中 u 和 v 关于 t 分别 L^1 和 L^2 a.e. 可积。

一维 Ito 公式: 若 $Y_t = g(t, X_t)$,则有

$$dY_t = \frac{\partial g}{\partial t}(t, X_t)dt + \frac{\partial g}{\partial x}(t, X_t)dX_t + \frac{1}{2}\frac{\partial^2 g}{\partial x^2}(t, X_t)(dX_t)^2$$

在 L^2 意义下有 $dt \cdot dt = dt \cdot dB_t = dB_t \cdot dt = 0, dB_t \cdot dB_t = dt$ 。

—— 高维 Ito 公式 ——

高维 Ito 公式: 若 $\underline{Y}(t,\omega) = \underline{g}(t,\underline{X}(t,\omega))$, 则有

$$dY_k = \frac{\partial g_k}{\partial t}(t, X)dt + \sum_i \frac{\partial g_k}{\partial x_i}(t, X)dX_i + \frac{1}{2} \sum_{i,j} \frac{\partial^2 g_k}{\partial x_i \partial x_j}(t, X)dX_i dX_j$$

在 L^2 意义下有 $dB_t^{(i)} \cdot dB_t^{(j)} = \delta_i^i dt$ 。

—— 分部积分公式 ——

一般分部积分公式: 若 X_t, Y_t 为 Ito 过程,则有

$$d(X_t Y_t) = X_t dY_t + Y_t dX_t + dX_t \cdot dY_t$$

pf: 对 g(t, x, y) = xy 用二维 Ito 公式。

若 f_t 为连续有界变差过程,则有

$$d(f_t B_t) = f_t dB_t + B_t df_t$$

 dB_t 约等于 $d\sqrt{t}$ 。

1.3.2 鞅表示定理

Doob-Dynkin 引理: 设 $X, Y : \Omega \to \mathcal{E}$, 则 Y 是 $\sigma(X)$ -可测的 iff $\exists g : \mathcal{E} \to \mathcal{R}$ s.t. Y = g(X)。

鞅收敛定理: 1. 若鞅列 $\{X_n\}$ 一致有界 $(\sup_n E(X_n) < \infty)$,则极限 a.e. 存在 (对几乎所有 ω , $\lim_n X_n(\omega)$ 存在)。2. 进一步,若 $\{X_n\}$ 一致可积(= 一致有界 + 积分一致绝对连续),则极限在 L^1 意义下存在。(鞅收敛定理 可以看作是一致可积性的应用,鞅收敛定理见 ASPp61-61Thm2.2-2.3,一致可积性见 APTp221Thm8.3.18,或厄克森达尔 p268-270 附录 C)

鞅收敛定理的一个推论(见厄克森达尔 p270 推论 C.9)的应用如下:

引理 1: 固定 T > 0,则 $\{\phi(B_{t_1}, \dots, B_{t_n}); t_i \in [0, T], \phi \in C_0^{\infty}(\mathbb{R}^n), n \in \mathbb{N}\}$ 在 $L^2(\mathcal{F}_T, P)$ 中是稠密的。

注: 这里的 σ -代数 $\mathcal{H}_n = \sigma(B_1, \ldots, B_n)$, $\mathcal{F}_T = \mathcal{H}_\infty$,即包含所有 \mathcal{H}_n 的最小 σ -代数。

pf: 1. $\forall g \in L^2(\mathcal{F}_T, P)$,由鞅收敛定理的推论,可以由 $g = E[g|\mathcal{F}_T] = \lim_{n\to\infty} E[g|\mathcal{H}_n]$ 逼近。2. 由 Doob-Dynkin 引理,后者可以写成 $E[g|\mathcal{H}_n] = g_n(B_{t_1}, \dots, B_{t_n})$ 。3. g_n 能被紧支函数 ϕ_n 逼近。

引理 2: 指数鞅 $\exp\left\{\int_0^T h(t)dB_t(\omega) - \frac{1}{2}\int_0^T h^2(t)dt\right\}, h \in L^2[0,T]$ 的线性组合全体(构成的集合)在 $L^2(\mathcal{F}_T,P)$ 中是稠密的。

pf: 设 $g \in L^2(\mathcal{F}_T, P)$ 与上述集合正交,证 g 只能是 0。这里的 h 不妨取成阶梯函数的形式。另外需要用到 Fourier 变换,因此要先解析延拓到复数域上。

Ito 表示定理(固定时间形式的鞅表示定理): 设 $F \in L^2(\mathcal{F}_T, P)$,则存在唯一的一个随机过程 $f(t,\omega) \in \mathcal{V}(0,T)$ 使得 $F(\omega) = E[F] + \int_0^T f(t,\omega) dB(t)$ 。

pf: 先证引理 2 中的指数鞅满足 Ito 表示定理,而任意 $F \in L^2(\mathcal{F}_T, P)$ 可以由其逼近(在 $L^2(\mathcal{F}_T, P)$ 意义下),再由 Ito 等距公式,可以在 $L^2(T \times \Omega)$ 下逼近。关键是证找到的 $f(t, \omega) \in \mathcal{V}(0, T)$ 收敛,需要用 Ito 积分的期望性质并再用一次 Ito 等距公式。最后证唯一性(在 $L^2(T \times \Omega)$ 意义下),还是用 Ito 等距公式。

注: 1. 过程 $f(t,\omega)$ 可看成 $F(\omega)$ 的 Frechét 导数。2. 上述定理可以推广到 P 是 n 维空间(\mathbb{R}^n)的情形。

鞅表示定理: 在 Ito 表示定理的基础上,若 M_t 还是 \mathcal{F}_t (BM 自然流) -鞅,则 $\exists ! g(s,\omega)$ s.t. $\forall t \geq 0, g \in \mathcal{V}^{(n)}(0,t)$,且有

$$M_t(\omega) = E[M_0] + \int_0^t g(s, \omega) dB(s)$$
, a.e., $\forall t \ge 0$.

pf: 先由 Ito 表示定理,对于每个固定的 t,可以找到对应的 f_t 。再由鞅的期望性质证不同时刻的 f_t 在几乎处处意义下其实是一样的。

1.4 SDE

1.4.1 SDE 求解

1. 人口增长模型: $dN_t = rN_t dt + \alpha N_t dB_t$

解: $N_t = N_0 \exp\left(\left(r - \frac{1}{2}\alpha^2\right)t + \alpha B_t\right)$ 。

若 N_0 与 B_t 独立,则 $EN_t = E[N_0]e^{rt}$ 。pf:直接计算即可。

比如你要算 Y_t 的期望,先用 Ito 公式算 Y_t 的微分,然后再积分会得到关于 Y_t 的积分方程,最后解这个方程就好了。

重对数律,判断收敛速度。

- 2. 电路电荷模型,引入随机向量,将高维问题转化为一维问题,跟 ODE 中处理方式相同。
- 3. 单位圆上的 BM (略)

1.4.2 解的存在唯一性定理

给定 SDE: $dX_t = b(t, X_t) dt + \sigma(t, X_t) dB_t, X_0 = Z$, 其中初值(是一个随机变量)Z 关于 \mathcal{F}_{∞} 独立,且二阶矩有限。

若线性增长条件: $|b(t,x)| + |\sigma(t,x)| \le C(1+|x|), \forall t \in [0,T]$ 以及 Lipschitz 条件: $|b(t,x)-b(t,y)| + |\sigma(t,x)-\sigma(t,y)| \le D|x-y|, \forall t \in [0,T]$ 关于 t 一致成立,则上述 SDE 的解存在唯一。

注: 1. 线性增长条件也称非爆炸条件,若不满足可能会出现爆炸(有限时间内函数值趋向无穷)导致解不存在。

- 2. Lipschitz 条件,若不满足解可能不唯一。上述 Lipschitz 条件蕴含对于 b 和 σ 的 Lipschitz 条件分别成立(用的时候用单个的)。
- 3. 解有很好的性质: 轨道连续, \mathcal{F}_t^Z 适应, $E\left[\int_0^T |X_t|^2 dt\right] < \infty$ 。 \mathcal{F}_t^Z 是由 Z 和 BM 生成的流。

唯一性证明: Ito 等距, Lipschitz 条件, Gronwall ineq。

存在性证明: Picard 迭代 $Y_t^{(k+1)} = X_0 + \int_0^t b\left(s, Y_s^{(k)}\right) ds + \int_0^t \sigma\left(s, Y_s^{(k)}\right) dB_s$,类似唯一性的计算可得 $Y_t^{(n)}$ 在 $L^2(T \times \Omega)$ 意义下为 Cauchy 列,故收敛,得到 X_t ,最后由 Ito 等距公式验证其满足原方程(就是说现在你有 $Y_t^{(n)}$ 收敛到 X_t 了,你想两边取极限,但是那两个积分是不是收敛到相应的 X_t 的形式呢,是证这个)。

可测性:每个 $Y_t^{(n)}$ 是 \mathcal{F}_t^Z 可测的,故其极限 X_t 也是 \mathcal{F}_t^Z 可测的。

连续性:确定部分的连续性由积分的绝对连续性保证,随机部分(Ito 积分)则存在连续修正。

1.4.3 强解与弱解

强解: X_t 是 \mathcal{F}_t^Z 适应的,(由 Doob-Dynkin 引理) X_t 由 B_t 唯一决定,即 X_t 可以写成 B_t 的泛函形式 $X_t = F(B_t, 0 \le t \le T)$ 。

于是上述存在唯一性定理说的是强解。

弱解: X_t 满足方程即可。

弱唯一性:弱解在概率分布相同意义下唯一。

轨道唯一性:弱解在轨道相同意义下唯一。

若 b 和 σ 满足线性增长条件和 Lipschitz 条件,则 SDE 的弱解唯一。 Tanaka 公式:

$$|B_t| = |B_0| + \int_0^t \operatorname{sign}(B_s) dB_s + L(t, 0),$$

其中 $L(t,x) = \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_0^t 1_{(x-\epsilon,x+\epsilon)} (B_s) ds$ 在 $L^2(\Omega,P)$ 中存在, 称为 B_t 在 点 x 处的局部时。

pf: 对
$$g_{\varepsilon}(x) = \begin{cases} |x|, & |x| \geq \varepsilon \\ \frac{1}{2} \left(\varepsilon + \frac{x^2}{\varepsilon} \right), & |x| < \varepsilon. \end{cases}$$
 , $X_t = B_t$ 使用 Ito 公式,再令 $\varepsilon \to 0$ 。

$$\varepsilon \to 0$$
。
Tanaka 方程:
$$\begin{cases} dX_t = \text{sign}(X_t) dB_t \\ X_0 = 0 \end{cases}$$
的弱解存在唯一,而强解不存在。

pf: BM 是方程的弱解,故存在唯一。由 Tanaka 公式,方程的解 X_t 的自然流比 BM 的自然流要大,故不可能是强解。(X_t 要想是 BM 的自然流可测的,其自然流肯定要小一点,因为自然流是说我至少需要这么多集合来让我可测。)

1.5 扩散过程

1.5.1 Ito 扩散与 Markov 性质

随机过程 X_t 是时齐的,若 $P(X_{s+h} \in B|X_s = x) = P(X_h \in B|X_0 = x)$,即 条件概率只和时间跨度有关,与具体时刻无关。

Ito 扩散 X_t 是一个随机过程,满足 SDE $dX_t = b(X_t) dt + \sigma(X_t) dB_t$,其中 b 称漂移系数, σ 称扩散系数,二者满足存在唯一性定理中的线性增长条件和 Lipschitz 条件。

用 $X_t^{s,x}$ 表示初始时刻为 s 且 $X_s = x$ 的上述扩散方程的解。

Ito 扩散是时齐的。pf by def。

注: Ito 积分的时间平移公式: $\int_s^{s+h} \sigma(X_u^{s,x}) dB_u = \int_0^h \sigma(X_{s+u}^{s,x}) d\widetilde{B}_u$, $\widetilde{B}_u = B_{s+u} - B_s$ 。 \widetilde{B}_u 仍为 BM,与 B_u 同分布。

由于时齐性质,初始时刻不妨为 0,上述记号变为 X_t^x ,另外 Q^x 表示 X_0^x 诱导的概率分布测度(所谓概率分布,就是随机变量推到状态空间的概率测度), $E^x\left[f_1\left(X_{t_1}\right)\cdots f_k\left(X_{t_k}\right)\right]=E\left[f_1\left(X_{t_1}^x\right)\cdots f_k\left(X_{t_k}^x\right)\right]$ 表示 Q^x 下的期望(也是一个变量替换公式,见 ASPp94Notes)。 \mathcal{F}_t 表示 BM 的自然流, \mathcal{M}_t 表示 Ito 扩散的自然流。

 Q^x 下的期望,说明 Q^x 是 Ω 上的测度,但是概率分布又是 \mathbb{R}^n 上的测度,其实是一个。那个等式应该可以理解为一个变量替换公式。

由于我们要求存在唯一性定理中的条件成立,Ito 扩散作为 SDE 的解是强解,所以是 \mathcal{F}_t 可测的,故 $\mathcal{M}_t \subset \mathcal{F}_t$ 。

Markov 性质 (关于流 \mathcal{F}_t):

$$E^{x}\left[f\left(X_{t+h}\right)|\mathcal{F}_{t}^{(m)}\right]\left(\omega\right)=E^{X_{t}\left(\omega\right)}\left[f\left(X_{h}\right)\right].$$

pf (Ito 扩散的 Markov 性质):

$$E^{x} [f (X_{t+h}) | \mathcal{F}_{t}] = E^{x} [f (F (X_{t}, B_{u} - B_{t}, t < u \le t + h)) | \mathcal{F}_{t}]$$

$$= E^{x} [f (F (X_{t}, B_{u} - B_{t}, t < u \le t + h)) | X_{t}]$$

$$= E^{x} [f (X_{t+h}) | X_{t}]$$

$$= E^{X_{t}(\omega)} [f (X_{h})]$$

第一和三个等号:由强解的定义, $X_{t+h} = F(X_t, B_u - B_t, t < u \le t + h)$ 。第二个等号: BM 的增量独立性质 X_t 是 \mathcal{F}_t 可测的。第四个等号: 时齐性质。

1.5.2 强 Markov 性质

随机变量 τ 是关于流 \mathcal{N}_t 的停时,若 $\{\omega, \tau(\omega) \leq t\} \in \mathcal{N}_t, \forall t \in T$ 。 开集 U 的首次逃离时(闭集的首次进入时) $\tau_U = \inf\{t > 0, X_t \notin U\}$ 。 σ -代数 $\mathcal{N}_\tau = \{A \in \mathcal{N}_\infty : A \cap \{\tau \leq t\} \in \mathcal{N}_t, \forall t \in T\}$ $\mathcal{N}_t = \mathcal{F}_t$ 时, \mathcal{F}_τ 即 $\{B_{s \wedge \tau}, s \geq 0\}$ 生成的 σ -代数。($B_{s \wedge \tau}$ 看成函数复合)

Conculsion 1 (Week 3-1) 存在唯一性定理的存在性证明, Picard 序列, 强解和弱解, Tanaka 公式, Tanaka 方程弱解存在唯一而强解不存在, Ito 扩散, 时齐性质, Markov 性质, 停时, 开集的首次逃离时。

BM 的强马氏性: 马氏性里面的固定时间可以换成随机时间, 即停时

$$E^{x}[f(X_{\tau+h})|\mathcal{F}_{\tau}](\omega) = E^{X_{\tau}(\omega)}[f(X_{h})], (0, \tau+h, \tau \Rightarrow 0, h)$$

推广到 k 个时刻

$$E^{x} [f_{1}(X_{\tau+h_{1}}) \cdots f_{k}(X_{\tau+h_{k}}) | \mathcal{F}_{\tau}] = E^{X_{\tau}} [f_{1}(X_{h_{1}}) \cdots f_{k}(X_{h_{k}})].$$

BM 的增量里面的固定时间换成随机时间 $\widetilde{B}_v = B_{\tau+v} - B_{\tau}$ (BM 与停时的复合的增量) 仍是高斯增量,且与 \mathcal{F}_{τ} 独立。

推移算子 $\theta_t, \theta_t(g(X_s)) = g(X_{s+t})$ 。

强 Markov 性质用平移算子可以表述为 $E^x [\theta_\tau \eta | \mathcal{F}_\tau] = E^{X_\tau} [\eta]$ 。

首中分布,调和测度和平均值性质

调和测度:由 Dicichlet 边界的调和方程确定的测度,见 Wiki。

1.5.3 无穷小生成元

设 $\{X_t\}$ 是一个 \mathbb{R}^n 上的时齐的 Ito 扩散(b 和 σ 没有 t), X_t 的无穷小生成元 $A:D(A)\to C_0$ 定义为

$$Af(x) = \lim_{t \to 0} \frac{E^x \left[f(X_t) \right] - f(x)}{t}, \quad x \in \mathbb{R}^n$$

由 SDE 的解 X_t^x 可以确定一个转移半群 $P_t(f) = E^x[f(X_t)]$,这样就可以和 Revuz 那本书联系起来了。

计算公式: 设 Ito 扩散 $dX_t = b(X_t)dt + \sigma(X_t)dB_t$, $f \in C_0^2$, 则

$$Af(x) = \sum_{i} b_{i}(x) \frac{\partial f}{\partial x_{i}} + \frac{1}{2} \sum_{i,j} (\sigma \sigma^{T})_{ij}(x) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}.$$

1.5.4 Dynkin 公式

Thm 1 (Dynkin 公式) 设 $f \in C_0^2(\mathbb{R}^n)$, τ 是停时 s.t. $E^x \tau < \infty$, 则

$$E^{x} f(X_{\tau}) = f(x) + E^{x} \left[\int_{0}^{\tau} Af(X_{s}) ds \right].$$

两个例题,具体的就不写了,主要是怎么选这个试验函数 f,如果是方程里是 Laplace 算子,对应的过程就是 BM,这时候一般选 $\Delta f = c/n$ 或 $\Delta f = 0$ (调和函数),感觉就是为了用 Dynkin 公式的时候让那个积分好算。那找 f 的过程是不是就是一个解确定方程的过程?

1.5.5 特征算子

时齐的 Ito 扩散 X_t 的特征算子 A 定义为

$$\mathcal{A}f(x) = \lim_{U \to 0} \frac{E^x \left[f\left(X_{\tau_U} \right) \right] - f(x)}{E^x \tau_U}, \quad x \in \mathbb{R}^n$$

其中极限表示一族收缩到点 x 的一族开集 U_k 。

特征算子比生成元算子更加广泛,即 $D(A) \subset D(A)$,可以看成是生成元算子的推广。一般来说生成元算子作用对象要求有一定的光滑性,特征算子则不需要,甚至可以不连续。(见厄克森达尔 p108 例 7.5.6)

而且在 D(A) 上, $\mathcal{A}f(x) = Af(x)$, 即有

$$\mathcal{A}f(x) = \sum_{i} b_{i}(x) \frac{\partial f}{\partial x_{i}} + \frac{1}{2} \sum_{i,j} (\sigma \sigma^{T})_{ij}(x) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}.$$

证明用到 Dynkin 公式。

1.5.6 Kolmogorov 向后方程

Thm 2 (Kolmogorov 向后方程)

1. (PDE 的概率解) 设 $f \in C_0^2(\mathbb{R}^n)$, 令

$$u(t,x) = E^x \left[f\left(X_t\right) \right],$$

则对每个 t, $u(t,\cdot) \in D_A$, 且 u 是以下 PDE 的解

$$\frac{\partial u}{\partial t} = Au, \quad t > 0, x \in \mathbb{R}^n$$
$$u(0, x) = f(x), \quad x \in \mathbb{R}^n$$

2. (唯一性) 若 $w(t,x) \in C^{1,2}(\mathbb{R} \times \mathbb{R}^n)$ 是满足上述两个等式的有界函数,则 $w(t,x) = u(t,x) = E^x[f(X_t)]$.

pf: 1. 用定义式计算即可,应该是在逐点意义下。2. 注意到,若时间延拓 $Y_t = (t, X_t)$,则 $A_Y f = \frac{\partial f}{\partial t} + A_X f$ 。之后对时间延拓后的随机过程使用 Dynkin 公式,可得唯一性,即概率解的形式唯一。

技术上由于 Dynkin 公式中要求有限停时,因此用的时候先用 $k \wedge \tau$,完了 之后让 $k \to \infty$ 即可,效果是一样的。

这个定理主要建立了 PDE 和随机过程之间的联系,于是可以用概率方法研究方程。主要的桥梁就是生成元算子(特征算子),有了过程,算生成元算子就可以得到对应的方程,反过来有了方程,就要去找这个生成元算子对应的过程,然后找的话就是用生成元算子那个计算公式找系数,大概是这样。

1.5.7 半群与预解式

之前提到,由 SDE 的解 X_t^x 可以确定一个转移半群 $P_t f(x) = E^x [f(X_t)] = \int_E P_t(x, dy) f(y) = \int_\Omega f(X_t(\omega)) dQ^x(\omega)$ 。 Revuz 书上预解算子定义为 $U_p f = \int_0^\infty e^{-pt} P_t f(x) dt$ 。

半群性质 $P_{s+t} = P_s P_t \Rightarrow \int P_{s+t}(x,dz) f(z) = \int P_s(x,dy) \int P_t(y,dz) f(z)$, 即 $P_s P_t f(x) = E^x [(P_t f)(X_s)] = E^x [E^{X_s} f(X_t)] = E^x [E(f(X_{t+s})|\mathcal{F}_s)] = E^x [f(X_{s+t})]$ 。(注意马氏性有个推移算子在里面)

对 $\alpha > 0, f \in C_b(\mathbb{R}^n)$,定义预解算子 $R_{\alpha}g(x) = E^x \left[\int_0^{\infty} e^{-\alpha t} g\left(X_t \right) dt \right] = \int_0^{\infty} e^{-\alpha t} E^x [g(X_t)] dt = \int_0^{\infty} e^{-\alpha t} P_t g(x) dt$,所以两个是一样的。

预解算子可以看成半群的 Laplace 变换,也可以看成生成元算子的预解式,即 $R_{\lambda} = (\lambda I - A)^{-1}$ 。

 $R_{\alpha}g$ 有界连续。

pf is omitted.(下半连续,Fatou 引理) 预解算子的性质

- 1. 若 $f \in C_0^2(\mathbb{R}^n)$, 则 $\forall \alpha > 0, R_{\alpha}(\alpha A)f = f$ 。
- 2. 若 $g \in C_b(\mathbb{R}^n)$, 则 $\forall \alpha > 0, R_{\alpha}g \in D_A$ 且 $(\alpha A)R_{\alpha}g = g$ 。

pf is omitted. (主要用之前讲的各种公式计算, Dynkin 公式, 马氏性, 半群性质)

与几何中的无穷小生成元:转移半群是 E 上函数空间 $\mathcal{F}(E)$ 上的"流",打引号是因为这里是这个流不可逆,所以叫半群,几何里面是单参数变换群,总之是一个意思。那生成元算子就是 $\mathcal{F}(E)$ 上的向量场 $A \in \mathfrak{X}(\mathcal{F}(E)), Af \in T_f\mathcal{F}(E)$ 。随机过程在哪?

1.5.8 Feynmann-Kac 公式

Thm 3 (Feynman-Kac 公式, Kolmogorov 向后方程的推广)

1. (PDE 的概率解) 设 $f \in C_0^2(\mathbb{R}^n), q \in C(\mathbb{R}^n), q$ 下有界。令

$$v(t,x) = E^{x} \left[Z_{t} f(X_{t}) \right] = E^{x} \left[\exp \left(-\int_{0}^{t} q(X_{s}) ds \right) f(X_{t}) \right]$$

则 v 是以下 PDE 的解

$$\frac{\partial v}{\partial t} = Av - qv$$
$$v(0, x) = f(x)$$

2. (唯一性) 若 $w(t,x) \in C^{1,2}(\mathbb{R} \times \mathbb{R}^n)$ 对每个紧集 $K \subset \mathbb{R}$, 在 $K \times \mathbb{R}^n$ 上有界,且 w(t,x) 是上述方程的解,则 w(t,x) = v(t,x)。

证明思路和 Kolomogrov 向后方程一致。

Ito 公式计算(最后那个 Z_t 不是随机积分,不用 Ito 公式,就是一般微分)

$$dX_{t} = bdt + \sigma dB_{t}$$

$$(dX_{t})^{2} = \sigma^{2}dt$$

$$dY_{t} = d(f(X_{t}))$$

$$= \partial_{x}fdX_{t} + \frac{1}{2}\partial_{xx}f(dX_{t})^{2}$$

$$= \partial_{x}fbdt + \partial_{x}f\sigma dB_{t} + \frac{1}{2}\partial_{xx}f\sigma^{2}dt$$

$$= Afdt + \partial_{x}f\sigma dB_{t}$$

$$dZ_{t} = d\left(\exp\left(-\int_{0}^{t}q(X_{s})ds\right)\right)$$

$$= Z_{t}\left(-q(X_{t})\right)dt$$

消灭与消灭过程

1.5.9 鞅问题

上述计算中 $d(f(X_t)) = Afdt + \partial_x f\sigma dB_t$ 的积分形式为

$$f(X_t) = f(x) + \int_0^t Af(X_s)ds + \int_0^t \partial_x f(X_s)\sigma(X_s)dB_s,$$

这启示我们

$$M_t = f(X_t) - f(x) - \int_0^t Af(X_s)ds$$

是 Ito 积分,故为鞅,且是 \mathcal{M}_t (Ito 扩散自然流)适应的。使用坐标过程的看法在无穷乘积空间上看, $\omega \in \Omega = E^T, \omega: T \to E, \omega(t) = X_t(\omega), (\Omega, \mathcal{F}, P) \xrightarrow{X_0} (E, \mathcal{E}, Q^x) \xrightarrow{X_0 \circ \phi^{-1}} (E^T, \mathcal{E}^T, \widetilde{Q}^x),$

$$M_t = f(\omega_t) - f(\omega_0) - \int_0^t Af(\omega_s)ds$$

是 E^T 上关于 \mathcal{E}^T 的 \widetilde{Q}^x 鞅。

上面的处理没有新的东西,就是对于 Ito 扩散(SDE 的解),可以定义生成元算子 A(是一个椭圆算子)和无穷乘积空间上的鞅 M_t ,换句话说,由随机过程(一般是 Markov 过程)可以找到对应的算子。那么反过来,很多时候我们想由方程找对应的随机过程,那么自然想问是不是所有的椭圆算子 L(其系数是局部有界和 \mathcal{E}^T 可测的)都能找到随机过程 X_t 与之对应,答案是,如果能找到 E^T 上的测度 \tilde{P}^x 使得

$$M_t = f(\omega_t) - f(\omega_0) - \int_0^t Lf(\omega_s)ds$$

是鞅(此时称 \tilde{P}^x 解决了算子 L 的鞅问题),那么能够找到 X_t 是 SDE 的 弱解,进一步如果 \tilde{P}^x 是唯一的(此时称鞅问题是好处理的),那么 X_t 就能升级成 Markov 过程。

另外鞅问题解的存在唯一性与之前一般 SDE 解的存在唯一性结论有所不同,比如 Lipschitz 连续不再是必要的。

证明思路是找一列"好"的椭圆算子 $L_n \to L$,得到一列测度 \tilde{P}_n^x ,然后在某个拓扑下收敛到我们想要的 L 对应的那个测度。

随机过程和测度的对偶关系:本来是要找 SDE 的解,是一个随机过程,现在等价于找一个怎么怎么样的测度。

鞅问题的解与原方程的弱解相互确定。

过程的概率分布可以诱导轨道空间的测度(测度拉回)。

1.5.10 Ito 过程何时是 Ito 扩散

Thm 4 (Ito 过程何时是 Ito 扩散) 设 X_t 为 Ito 扩散,即

$$dX_t = b(X_t)dt + \sigma(X_t)dB_t,$$

 Y_t 为 Ito 过程, 即

$$dY_t = u(t, Y_t)dt + v(t, Y_t)dB_t.$$

则 X_t 与 Y_t 拥有相同的概率分布 iff 对几乎所有的 (t,ω)

$$E^{x}\left[u(t,\cdot)|\mathcal{N}_{t}\right] = b\left(Y_{t}^{x}\right), \quad vv^{T}(t,\omega) = \sigma\sigma^{T}\left(Y_{t}^{x}\right),$$

其中 \mathcal{N}_t 是 Y_t 的自然流。

pf: \leftarrow 设 A 是 X_t 的生成元算子,对于 Ito 过程 Y_t 可以定义 $M_t = f(Y_t) - \int_0^t Af(Y_s)ds$,证 M_t 关于 \mathcal{N}_t 是鞅,然后由鞅问题的唯一性可得 X_t 与 Y_t 概率分布相同(因为 E^T 上测度一样,用 f 推到 \mathbb{R} 上还是一样)。

 \Rightarrow Ito 扩散是 Markov 过程,但是 Ito 过程不一定是,而生成元算子是对于 半群说的,所以 Ito 过程不一定有这个东西。现在 X_t 和 Y_t 概率分布相同,前者是 Markov 过程,那后者也应该是,所以从两种不同算法算形式上的 生成元,让他俩相等,得到那两个式子。

可测性部分 $vv^T(t,\cdot)$ 是 \mathcal{N}_t 可测的,意思是说存在一个 \mathcal{N}_t 适应过程 $W(t,\omega)$,使得对几乎所有的 (t,ω) , $vv^T(t,\omega)=W(t,\omega)$ 。

pf is omitted. (见厄克森达尔 p127 引理 8.4.4)

特别地, 一个 Ito 过程 $dY_t = u(t,\omega)dt + v(t,\omega)dB_t$ 是 BM iff

$$E^x[u(t,\cdot)|\mathcal{N}_t] = 0, \quad vv^T(t,\omega) = I_n.$$

更特别地,一个 Ito 过程 $dY_t = v(t, Y_t)dB_t$ 是 BM iff $vv^T = I$ 。 "是 BM"应该理解为在概率分布相同。

最后三节内容主要关注的问题就是,随机积分(BM的积分),即 Ito 过程,和 BM的关系。这一节的结论就是,当 Ito 过程的系数满足某些条件时,其在概率分布相同的意义下就是 BM。

1.5.11 随机时变

给定随机过程 $c(t,\omega) \geq 0$ 是 \mathcal{F}_t 适应的。定义随机时变(是一个随机过程) $\beta(t,\omega) = \int_0^t c(s,\omega)ds$,其也是 \mathcal{F}_t 适应的。 $\beta(t,\omega)$ 的右逆过程 $\alpha_t = \inf\{s: \beta_s > t\}$,其关于 \mathcal{F}_t 是一族停时,这是因为 $\{\omega: \alpha(t,\omega) < s\} = \{\omega: t < \beta(s,\omega)\} \in \mathcal{F}_s$ 。

Thm 5 (BM 的 Levy 特征)

 X_t 相对于测度 Q 是 BM iff X_t 相对于测度 Q 是鞅,且二阶变差(是一个随机过程) $\langle X_i, X_j \rangle = \delta_{ij}t$ a.e. (一维情形即 $\langle X \rangle_t = t$),最后一句话可以换成 $\langle X_i, X_j \rangle - \delta_{ij}t$ 相对于测度 Q 是鞅。

直接按照定义验证 BM 不好弄,转化为证明鞅的问题就容易许多。

设 Ito 过程 $dY_t = v(t,\omega)dB_t, Y(0) = 0$,假定对某个过程 $c(t,\omega) \geq 0$ 有 $vv^T(t,\omega) = c(t,\omega)I_n$,则停止过程 Y_{α_t} 是 BM。

这里 Y_{α_t} 应该理解为函数复合,即 $Y_{\alpha_t}(t,\omega) = Y_{\alpha_t(\omega)}(\omega)$,是一个随机过程。pf: $Y_t = \int_0^t v(s,\omega)dB_s$, $Y_{\alpha_t} = \int_0^{\alpha_t} v(s,\omega)dB_s$. 现在验证 BM 的 Levy 特征。 $E[Y_{\alpha_t}|\mathcal{F}_{\alpha_s}] = E\left[\int_0^{\alpha_t} v(s,\omega)dB_s|\mathcal{F}_{\alpha_s}\right] = Y_{\alpha_s}$. (可测取自己,独立没关系) $\langle Y_{\alpha_t} \rangle = \int_0^{\alpha_t} vv^T(s,\omega)ds = \int_0^{\alpha_t} c(s,\omega)I_nds = \beta(\alpha_t,\omega)I_n = tI_n$.

Ito 过程 $dY_t = u(t, Y_t)dt + v(t, Y_t)dB_t, Y_0 = 0$,即 $Y_t = \int_0^t u(s, Y_s)ds + \int_0^t v(s, Y_s) = A_t + M_t$ 的变差过程 $\langle Y \rangle_t = \langle A \rangle_t + 2\langle A, M \rangle_t + \langle M \rangle_t = 0 + 0 + \int_0^t vv^T(s, \omega)ds = \int_0^t vv^T(s, \omega)ds$ 。(证明见 Stackexchange: 'Calculation of the quadratic variation of an Itô process.')

或者由 Ito 公式 $d\langle Y \rangle_t = dY_t^2 = 2Y_t dY_t + (dY_t)^2 = 2Y_t u dt + 2Y_t v dB_t + v v^T dt$

Thm 6 (*Ito* 过程的时变何时是 *Ito* 扩散)

设 X_t 和 Y_t 分别是初值相同的 Ito 扩散和 Ito 过程, $\beta_t = \int_0^t c(s,\omega)ds$ 是一个时变,且有右逆 α_t 。假定对几乎所有的 (t,ω) ,有

$$u(t,\omega) = c(t,\omega)b(Y_t), \quad vv^T(t,\omega) = c(t,\omega) \cdot \sigma\sigma^T(Y_t),$$

则 X_t 和 Y_{α_t} 的概率分布相同。(注意不是充要)

pf: 利用鞅解的唯一性, X_t 是生成元算子 A 的鞅解,只要证 Y_t 也是就行了。鞅问题是找测度,但其实测度已经有了,就是使得 X_t 是鞅的那个,所以只要证 Y_t 是鞅。这个计算和之前的区别主要在于时间是随机的,课上说是因为强马氏性可以把随机时间当成固定时间处理,但是你 Ito 过程哪来强马氏性啊。感觉这里处理随机时间应该是用 Ito 积分的时变公式。

Ito 积分的时变公式,见厄克森达尔 p131 定理 8.5.7。

两个推论: 1. 设 $dY_t = \sum_{i=1}^n v_i(t,\omega) dB_i(t,\omega), Y_0 = 0$, 其中 B_t 是 n 维 BM, $\beta_s = \int_0^s \sum_{i=1}^n v_i^2(r,\omega) dr$, α_t 是其右逆, 则 $\hat{B}_t := Y_{\alpha_t}$ 是一维 BM。

2. 给定 $c(t,\omega) \geq 0$, 则 $Y_t = \int_0^t \sqrt{c(s,\omega)} dB_s$ 是 n 维 BM。(这个形式出处

见 Ito 积分的时变公式)

1.5.12 Girsonov 定理

Lemma 1 (Bayes 公式)

设 μ 和 ν 是可测空间 (Ω, \mathcal{G}) 上的两个概率测度,且存在某个 $f \in L^1(\mu), f$: $\Omega \to \mathbb{R}$ 使得 $d\nu = f(\omega)d\mu$,X 是一个随机变量,满足

$$E_{\nu}[|X|] = \int_{\Omega} |X(\omega)| f(\omega) d\mu(\omega) < \infty,$$

则对任意 σ -代数 $\mathcal{H} \subset \mathcal{G}$, 有

$$E_{\nu}[X|\mathcal{H}] \cdot E_{\mu}[f|\mathcal{H}] = E_{\mu}[f \cdot X|\mathcal{H}].$$

f 应该也是个随机变量,不知道为啥用 f。

pf by def. (条件期望的两条定义式,可测性和期望性质)

测度的(绝对)连续: P 和 Q 是 $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0})$ 上的两个概率测度,则对任意固定时间 T, $Q \ll P$ 若 $P(A) = 0 \Rightarrow Q(A) = 0, \forall A \in \mathcal{F}_T$ 。即 P 这个测度测出来要大一点。由 Radon-Nikodym 定理,其等价于存在一个 \mathcal{F}_T 可测的随机变量 Z_T 在 \mathcal{F}_T 上有 $dQ = Z_T(\omega)dP$,记作 $\frac{dQ}{dP} = Z_T$ (小的对大的导),称 Z_T 是 Q 相对于 P 的 Radon-Nikodym 导数。

定义绝对连续和 Radon-Nikodym 导数不依赖流, 只需要 σ -代数。

Lemma 2 设 $Q \ll P|_{\mathcal{F}_T}$,在 $\mathcal{F}_T \perp \frac{dQ}{dP} = Z_T$,则 $\forall t \in [0,T]$, $Q|_{\mathcal{F}_t} \ll P|_{\mathcal{F}_t}$,令

$$Z_t := \frac{dQ|_{\mathcal{F}_t}}{dP|_{\mathcal{F}_t}}$$

则 Z_t 相对于 F_t 和 P 是鞅。

Proof 1 因为在 \mathcal{F}_T 上 $Q \ll P, \mathcal{F}_t \subset \mathcal{F}_T$, 显然在 \mathcal{F}_t 上 $Q \ll P$, 选择 $F \in \mathcal{F}_t$, 则

$$E_P [1_F \cdot E_P [Z_T | \mathcal{F}_t]] = E_P [E_P [1_F \cdot Z_T | \mathcal{F}_t]]$$

= $E_P [1_F \cdot Z_T] = E_Q [1_F] = E_P [1_F \cdot Z_t],$

故 $E_P[Z_T|\mathcal{F}_t] = Z_t, \ a.e.P_\circ$

这种证明方法还挺常见,相当于用内积证弱意义下的相等。其实之前说过, 这里的等号都应该看成是几乎处处意义下的相等,只是一直没有注意。

Thm 7 (Girsonov 定理 I)

设 Ito 过程 $dY(t) = a(t,\omega)dt + dB(t), t \leq T, Y_0 = 0$ (这里 $T \leq \infty$ 是固定的),指数鞅(参数就是漂移系数)

$$M(t) = \exp\left(-\int_0^t a(s,\omega)dB_s - \frac{1}{2}\int_0^t a^2(s,\omega)ds\right), \quad 0 \le t \le T.$$

设 M_t 关于 F_t 和P是鞅,定义 F_T 上的测度Q如下

$$dQ = M_T dP$$
, (其称为 Girsonov 变换)

则 $Q \neq F_T$ 上的概率测度,且对 $0 \leq t \leq T$, Y(t) 相对于 Q 是布朗运动。

指数鞅的 Ito 公式,令 $f(x) = e^{-x}$, $dX_t = -a(t, X_t)dB_t - \frac{1}{2}a^2(t, X_t)dt$,则

$$dM(t) = df(X_t) = -M(t)dX_t + \frac{1}{2}M(t)(dX_t)^2$$

$$= -M(t)(-a(t, X_t)dB_t - \frac{1}{2}a^2(t, X_t)dt) + \frac{1}{2}M(t)a^2(t, X_t)dt$$

$$= M(t)a(t)dB_t$$

Novikov 条件能够保证 M_t 关于 \mathcal{F}_t 是鞅

$$E_P\left[\exp\left(\frac{1}{2}\int_0^T a^2(s,\omega)ds\right)\right] < \infty.$$

鞅的期望不变,更一般地,对任意有界可测函数 f, $E[fM_T] = E[fM_t]$ 。 pf: 证 Y_t 相对于 Q 是 BM,用 BM 的 Levy 特征验证两个鞅。先证 $K_t = M_t Y_t$ 相对于 P 是鞅,然后用 Bayes 公式。

仍然是关于随机积分和 BM 之间的关系,之前是说系数怎么怎么样,这里则是说可以通过改测度达到同样的效果,有点活动标架的意思在里面。 得到的这个概率测度 Q 是在 \mathcal{F}_T 这个 σ -代数上的,那也就是在整个流上都能测,因为能测大的就能测小的。

Thm 8 (Girsonov 定理 II)

若 Ito 过程变为 $dY(t) = \beta(t,\omega)dt + \theta(t,\omega)dB(t), t \leq T$,即扩散系数 σ 不为常数,可以凑一个 I 中的形式 $dY(t) = \alpha(t,\omega)dt + \theta(t,\omega)(u(t,\omega)dt + dB(t))$,然后做 Girsonov 变换(指数鞅以 $u(t,\omega)$ 为系数),可得 \mathcal{F}_T 上的概率测度 Q,则 \widehat{B}_t s.t. $d\widehat{B}_t = u(t,\omega)dt + dB(t)$ 在 Q 下是 BM, $dY(t) = \alpha(t,\omega)dt + \theta(t,\omega)d\widehat{B}(t)$ 。

好像你这意思就得是常系数,不然只能做到这个份上,因为其实这个定理没有告诉什么新的东西。

Thm 9 (Girsonov 定理 III)

设 $X(t) = X^{x}(t), Y(t) = Y^{x}(t)$ 分别为如下形式的 Ito 扩散和 Ito 过程:

$$dX(t) = b(X_t) dt + \sigma(X_t) dB_t, \quad t \le T,$$

$$dY(t) = [\gamma(t, \omega) + b(Y_t)] dt + \sigma(Y_t) dB_t, \quad t \le T,$$

其中这里 b 和 σ 满足线性增长条件和 Lipschitz 条件。还是凑形式 $dY(t) = [\gamma(t,\omega) + b(Y_t)] dt + \sigma(Y_t) dB_t = b(Y_t) dt + \sigma(Y_t) (u(t,\omega) dt + dB(t))$,然后做 Girsonov 变换 (指数鞅以 $u(t,\omega)$ 为系数),可得 F_T 上的概率测度 Q,则 \hat{B}_t s.t. $d\hat{B}_t = u(t,\omega) dt + dB(t)$ 在 Q 下是 BM, $dY(t) = b(Y_t) dt + \sigma(Y_t) d\hat{B}(t)$,即 Y_t 在 Q 下的分布律和 X_t 在 P 下的分布律相同。

Girsonov 定理 III 可被用于产生 SDE 的弱解

Example 1 考虑 $SDEdX_t = a(X_t)dt + dB_t$, $X_0 = x$, 其中 $a: \mathbb{R}^n \to \mathbb{R}^n$ 是有界可测函数。这里并没有给出 a 的连续性条件,注意第五章的存在 唯一性是说满足一定光滑性和那两个增长条件则强解存在唯一,这里使用 Girsonov 定理来产生上述 SDE 的弱解。

令 $Y_t = B_t$,则 $dY_t = a(Y_t)dt - a(Y_t)dt + dB_t$,由 Girsonov 定理可以找到概率测度 Q s.t. $d\hat{B}_t = -a(\omega)dt + dB(t)$ 在 Q 下是 BM, $dY_t = a(Y_t)dt + d\hat{B}_t$,故 (Y_t, \hat{B}_t) 在 Q 下是上述 SDE 的弱解。

那个作业题 8.15,现在只是说形式上可以那么算,具体该怎么写还不知道。 最后三节的中心议题就是随机积分和 BM 的关系。

第一节就是随机积分的系数满足什么样条件的时候是一个 BM。

第二节就是通过一个时间变换可以变成 BM。

第三节就是漂移项可以通过测度变换变成 BM。

1.6 边界值问题

D 是 \mathbb{R}^n 中连通开集,

$$L = \sum_{i=1}^{n} b_i(x) \frac{\partial}{\partial x_i} + \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j}$$

是 $C^2(\mathbb{R}^n)$ 中的(半)椭圆算子,即 a_{ij} (半)正定。

1.6.1 组合 Dirichlet-Poisson 问题解的唯一性

设 $\phi \in C(\partial D), g \in C(D)$ 是给定的函数,求 $w \in C^2(D)$ 使得

- 1. Lw = -q, in D.
- 2. $\lim_{x \to y, x \in D} w(x) = \phi(y), \quad y \in \partial D.$

求解思想: 一开始的思路跟之前 Feymann-Kac 公式的思路差不多, 由 PDE 得到生成元算子,构造对应 SDE,然后找到随机过程 X_t ,用这个过程可以写出上述问题的概率解。(X_t 的生成元算子 A 与 L 在 $C_0^2(\mathbb{R}^n)$ 上相同,简言之 $\frac{1}{2}\sigma(x)\sigma^T(x) = [a_{ij}(x)]$)

Thm 10 (唯一性定理 1) 设 ϕ 有界,g 满足 $E^{x}\left[\int_{0}^{\tau_{D}}|g\left(X_{t}\right)|dt\right]<\infty$ (控制收敛定理)。 $w\in C^{2}(D)$ 是有界解且满足

1. Lw = -g, in D.

2'. $\lim_{t\to\tau_D} w\left(X_t\right) = \phi\left(X_{\tau_D}\right) 1_{\tau_D<\infty}, \quad y\in\partial D.$

则

$$w(x) = E^{x} \left[\phi\left(X_{\tau_{D}}\right) \cdot 1_{\tau_{D} < \infty} \right] + E^{x} \left[\int_{0}^{\tau_{D}} g\left(X_{t}\right) dt \right].$$

pf: Dynkin 公式,条件 2',控制收敛定理。

条件 2' 实际上比条件 2 要弱,因此原问题的有界解也可以写成上形式。如果我们考虑有限停时,即 $\tau_D < \infty$,则有界解的形式为

$$w(x) = E^{x} \left[\phi \left(X_{\tau_{D}} \right) \right] + E^{x} \left[\int_{0}^{\tau_{D}} g \left(X_{t} \right) dt \right].$$

形式上,第一部分代表击中边界项,第二部分代表区域内部积分项。

1.6.2 Dirichlet 问题

Def 1 (Dirichlet 问题)

设 $\phi \in C(\partial D)$, 求 $u \in C^2(D)$ s.t.

- (1) Lu = 0, in D.
- (2) $\lim_{x \to y, x \in D} u(x) = \phi(y), \quad y \in \partial D.$

Def 2 (Poisson 问题)

设 $g \in C(\partial D)$, 求 $v \in C^2(D)$ s.t.

- (1) Lv = -q in D.
- (2) $\lim_{x \to y, x \in D} v(x) = 0$, $y \in \partial D$.

Example 2 (Dirichlet 问题)

1. (经典 Dirichlet 问题)
$$L = \frac{1}{2}\Delta, X_t^x = B_t^x, w(x) = E^x [\phi(B_{\tau_D})].$$

2. (经典热传导方程) $L = \frac{\partial}{\partial s} + \frac{1}{2} \frac{\partial^2}{\partial x^2}, D = (0, T) \times \mathbb{R}, X_t^{s,x} = (s + t, B_t^x),$ $w(s,x) = E^{s,x} \phi(X_{\tau_D}) = E^{s,x} \phi(X_{T-s}) = E\left[\phi\left(T, B_{T-s}^x\right)\right].$ (这里 τ_D 可以写出表达式,作业题中也有)

解决唯一性问题之后我们自然要问存在性是否成立,其结果和分析中是一致的,即要想得到存在性需要边界上"足够好"(反例略)。这时候一般有两条路,一条就是加条件去证强意义下的存在性,比如 PDE 中的正则性定理。还有一条路就是放宽标准去证弱意义下的存在性。具体来说,边界值条件弱化为随机边界条件,生成元算子变为特征算子。

这里的弱应该理解为弱导数的弱,即对于光滑性不再提出太高的要求,只 要几乎处处就可以了。

Def 3 (X 调和)

设 f 在 D 上是一个局部有界且可测的函数。若 $\forall x \in D$ 和任意有界开集 $U \subset\subset D$,有

$$f(x) = E^x \left[f\left(X_{\tau_U} \right) \right],$$

则称 f 在 D 内为 X 调和的。

Lemma 3 (f 关于 X 调和 iff $\mathcal{A}f = 0$)

- 1. 设 f 在 D 内是 X 调和的,则在 D 内,Af = 0。(就是特征算子定义 式分子上的两项)
- 2. 相反的, 若 $f \in C^2(D)$ 且在 D 内 Af = 0 (或更强地, 关于 L 调和), 则 f 是 X 调和的。(由 Dynkin 公式可得, 注意特征算子的证明就是 用 Dynkin 公式, 然后算的时候还要用停时截断那个技巧)

分析上的调和更强, 即 f 关于 L 调和 \Rightarrow f 关于 A 调和 \Leftrightarrow f 关于 X 调和。

Lemma 4 (之前定义的 *Dirichlet* 问题的概率解是 X 调和的) 设 ϕ 是 ∂D 上的有界可测函数,记

$$u(x) = E^{x} \left[\phi \left(X_{\tau_{D}} \right) \right], \quad x \in D$$

则其是X调和的。

pf: 用强马氏性倒。

Def 4 (随机 *Dirichlet* 问题) 给定 ∂D 上的有界可测函数 ϕ , 求定义于 D 上的函数 u (不再要求光滑性) 使得

- (1) u 是 X 调和的。
- (2) $\lim_{t\to\tau_D} u(X_t) = \phi(X_{\tau_D}).$

事实上, u 在弱导数意义下关于 L 调和等价于 u 关于 X 调和。

Thm 11 (随机 Dirichlet 问题解的存在唯一性定理)

(存在性) $u(x) = E^x[\phi(X_{\tau D})]$ 是上述随机 Dirichlet 问题的解。

(唯一性) 若 g 满足上述随机 Dirichlet 问题,则 $g(x) = E^x[\phi(X_{\tau_D})]$ 。

反正想到我就说一下,等号在几乎处处意义下成立。

pf: 存在性: 强马氏性,证明是鞅(一番周折: 用定义,强马氏性三连倒), 鞅收敛定理, Doob 鞅不等式。

唯一性: 由条件二, 控制收敛定理,

在边界值问题中条件二,即边界上的收敛性不是一件容易的事情,如上就需要借助很多鞅的东西。

Lemma 5 (0-1 律) 设 $H \in \cap_{t>0} \mathcal{M}_t = \mathcal{M}_{0+}$,则要么 $P^x(H) = 0$ 要么 $P^x(H) = 1$ 。

pf: (Revuz 书 p95 定理 2.15)

$$P^{x}(H) = \int_{E^{T}} 1_{H}(\omega) P_{\varepsilon_{x}}(d\omega) = \int_{E} 1_{H} \circ X_{0}^{-1}(y) \varepsilon_{x}(dy)$$
$$= 1_{H} \circ X_{0}^{-1}(x) = \begin{cases} 1, & X_{0}^{-1}(x) \in H \\ 0, & X_{0}^{-1}(x) \notin H \end{cases}$$

特别地,设 $y \in \partial E = \mathbb{R}^n$,则有

$$P^{y}\left[\tau_{D}=0\right]=0 \quad \text{ $\overrightarrow{\mathbb{P}}$ } \quad P^{y}\left[\tau_{D}=0\right]=1.$$

即以 y 为起点的随机过程,要么所有轨道都直接离开 D,要么所有轨道都 在 D 内停留某个正时间之后再离开 D,就是说不会出现有的轨道直接离开,有的轨道停留一会。我们将第一种情况的边界点记为相对这个随机过程的正则点。

注意有的时候竖轴是时间轴,那就只能向前流,有的时候就只有空间轴。 正方形区域上的 BM 边界点都是正则点,这是因为如果不是正则点,所有 轨道都会在区域内部停留一会,但由高斯分布的对称性,将有轨道直接离 开,矛盾。

BM 的正则点: 若满足外部圆锥条件。

Def 5 (广义 Dirichlet 问题)

给定区域 $D \subset \mathbb{R}^n$, L 和 ϕ 如前, 求函数 $u \in C^2(D)$ 使得

- (1) Lu = 0 in D.
- (2) $\lim_{x\to y, x\in D} u(x) = \phi(y)$ 对任意的正则点 $y\in\partial D$ 。

Thm 12 设 L 在 D 内是一致椭圆,即 (a_{ij}) 正定。(应该按照 FEM 中的一致椭圆定义,即 CT 中的严格正算子)设 ϕ 是 ∂D 上的有界连续函数,则 $u(x) = E^x [\phi(X_{\tau_D})]$ 是广义 Dirichlet 问题的解。

证明是对于 L 为 Laplace 算子,即随机过程是 BM 的情形给出的,需要用到以下引理,具体不要求掌握。

Lemma 6 设边界点 $y \in \partial D$ 是正则点, 若 $x_n \in D$ 且 $x_n \to y$, 则对于任 给 t > 0,

$$\lim_{n \to \infty} \mathbb{P}^{x_n} \left(\tau_D \le t \right) = 0.$$

在随机分析中,为了满足边界条件,边界的正则性已经是达到最优了。

1.6.3 Piosson 问题

广义 Poisson 问题, 广义说的是边界条件限制在边界的正则点上成立。

Def 6 (广义 Poisson 问题)

给定区域 $D \subset \mathbb{R}^n$ 上的连续函数 g, 求函数 $v \in C^2(D)$ 使得

- (1) Lv = -g in D.
- (2) $\lim_{x\to y,x\in D}v(x)=0$ 对任意的正则点 $y\in\partial D$ 。

将椭圆算子弱化为特征算子, 称为随机 Poisson 问题。

Thm 13 (随机 Poisson 问题解的存在性定理)

设对于任给的 $x\in D, E^{x}\left[\int_{0}^{ au_{D}}\left|g\left(X_{s}\right)\right|ds\right]<\infty$ 。 定义

$$v(x) = E^{x} \left[\int_{0}^{\tau_{D}} g(X_{s}) ds \right],$$

则 $\mathcal{A}v = -g$ 且 $\lim_{t \to \tau_D} v\left(X_t\right) = 0$ 。

pf: 第一个条件我只会强马氏性的形式计算, 技术上在算那个推移算子的时候需要用到值域划分, 最后再取极限, 跟那个有停时截断的技术感觉差不多。第二个条件就需要停时截断, 还有强马氏性和鞅收敛定理。

注: 对任意随机过程 η , $\xi_k = E[\eta | \mathcal{F}_{\tau_k}]$ 关于 \mathcal{F}_{τ_k} 是鞅。由鞅收敛定理,若 $\tau_k \to \tau_D$,则 $\xi_k \to E[\eta | \mathcal{F}_{\tau_D}]$ 。

Thm 14 (随机 Poisson 问题解的唯一性定理)

设 D 是正则区域, 若存在一个函数 $v \in C^2(D)$ 及常数 C 使得

$$|v(x)| \le C \left(1 + E^x \int_0^{\tau_D} |g(X_s)| ds\right), \quad x \in D$$

并且 Lv=-g in D, $\lim_{x\to y,x\in D}v(x)=0$, 其中 $y\in\partial D$ 为正则点,则 $v(x)=E^x[\int_0^{\tau_D}g\left(X_s\right)ds]$ 。

pf: Dynkin 公式和控制收敛定理。

Thm 15 (组合随机 Dirichlet 和 Poisson 问题解的存在唯一性定理)

设 $\tau_D < \infty$, $\phi \in C(\partial D)$ 有界可测, $g \in C(D)$ 满足

$$E^{x} \int_{0}^{\tau_{D}} |g(X_{s})| ds < \infty, \quad x \in D.$$

定义

$$w(x) = E^x \left[\phi\left(X_{\tau_D}\right)\right] + E^x \int_0^{\tau_D} g\left(X_s\right) ds, \quad x \in D.$$

则 w 满足 Aw=-g in D,以及 $\lim_{t\to\tau_D}w\left(X_t\right)=\phi\left(X_{\tau_D}\right)$ 。而且若存在一个函数 $w_1\in C^2(D)$ 使得

$$|w_1(x)| \le C \left(1 + E^x \int_0^{\tau_D} |g(X_s)| ds\right), \quad x \in D$$

同时 w_1 是组合问题的解,则 $w_1 = w$ 。

Thm 16 (什么时候随机问题的解是经典问题的解)

若 L 在 D 内一致椭圆, $g \in C^{\alpha}(D)$ 有界,区域边界是正则的,则随机问题的解是经典问题的解,即可以把特征算子变回椭圆算子。

1.6.4 Green 测度

Def 7 (区域上的预解算子)

$$\mathcal{R}_{\alpha}g(x) = E^{x} \left[\int_{0}^{\tau_{D}} e^{-\alpha s} g(X_{s}) ds \right]$$
$$\mathcal{R}g(x) = E^{x} \left[\int_{0}^{\tau_{D}} g(X_{s}) ds \right]$$

有

$$(\alpha I - \mathcal{A})\mathcal{R}_{\alpha}g = g$$
$$-\mathcal{A}\mathcal{R}g = g.$$

上述性质表明区域上的预解算子是特征算子的右逆,事实上也是左逆。

$$X_{t} = bdt + \sigma dB_{t}, \quad Y_{t} = e^{-\alpha t} f(X_{t})$$

$$dY_{t} = -\alpha Y_{t} dt + e^{-\alpha t} f'(X_{t}) dX_{t} + \frac{1}{2} e^{-\alpha t} f''(X_{t}) (dX_{t})^{2}$$

$$= -\alpha Y_{t} dt + e^{-\alpha t} f'(X_{t}) b dt + \frac{1}{2} e^{-\alpha t} f''(X_{t}) \sigma^{2} dt + \dots dB_{t}$$

$$= -\alpha Y_{t} dt + e^{-\alpha t} L f(X_{t}) dt + \dots dB_{t}$$

$$E^{x}[Y_{t}] = f(x) + E^{x} \left[\int_{0}^{t} -\alpha Y_{s} + e^{-\alpha t} L f(X_{s}) ds \right]$$

$$f(x) = E^{x} \left[e^{-\alpha t} f(X_{t}) \right] - E^{x} \left[\int_{0}^{t} -\alpha e^{-\alpha s} f(X_{s}) + e^{-\alpha t} L f(X_{s}) ds \right]$$

$$= 0 + \mathcal{R}_{\alpha}(\alpha I - L) f(x)$$

故也为左逆,注意那个零是因为 $f \in C_0^2(D)$ 。于是对于算子方程来说,有 $u(x) = -L^{-1}g(x) = \mathcal{R}g(x) = E^x \left[\int_0^{\tau_D} g(X_s) ds \right]$ 。

Def 8 (Green 测度) $G(x,\cdot)$ 定义为

$$G(x,H) = E^{x} \left[\int_{0}^{\tau_{D}} 1_{H}(X_{s}) ds \right], \quad H \subset \mathbb{R}^{n}$$

即跑出去之前的平均停留时间。或对有界连续函数f

$$\int f(y)G(x,dy) = E^x \left[\int_0^{\tau_D} f(X_s) \, ds \right] = \mathcal{R}f(x).$$

G 即转移核, Green 测度就是转移测度。

Corollary 1 设 $E^x \tau_D < \infty$, $f \in C_0^2(\mathbb{R}^n)$ 则

$$f(x) = E^x f(X_{\tau_D}) - \int_D Lf(y)G(x, dy).$$

特别地, 若 $f \in C_0^2(D)$, 则第一项为零。

证明由 Dynkin 公式即可。

1.7 最优停时方面的应用

1.7.1 时齐情形

报酬函数 $g(x) = E^x[g(X_\tau)]$ 是 \mathbb{R}^n 上的正函数,最优停时问题是任给 x,看成关于 τ 的最值问题。时齐情形是说 g 与时间 t 无关,非时齐就是 g 也是 t 的函数,还有一种情形包含利率函数的积分项。

超均值函数: 若可测函数 f 满足对任意停时 τ 以及 x,有 $f(x) \ge E^x[f(X_\tau)]$ (Dynkin 公式前两项),则 f 关于 X_t 是超均值函数。

下半连续: 若 $\lim_{x_n \to y} \inf f(x_n) \ge f(y)$ 。

上调和 = 超均值 + 下半连续。

上调和 iff $Af \leq 0$ 。(若 $f \in C^2$,则 Lf = Af)

引理: 1. 上调和函数的线性组合是上调和的。

- 2. 超均值函数列的下极限函数,若可测,则也是超均值函数。pf by def.
- 3. 若上调和函数列 $f_i \uparrow f$,则 f 上调和。(控制收敛定理)
- 4. (上鞅性质) 若 f 是超均值的且 $\sigma \leq \tau$ 是停时,则 $E^x f(X_{\sigma}) \geq E^x f(X_{\tau})$ 。 先由强马氏性证 $f(X_t)$ 相对于 \mathcal{F}_t 是上鞅,然后用 Doob 停止定理,把固定 时间变成停时。上鞅的期望下降。
- 5. 若 f 是超均值的,H 是一个 Borel 集,则 $\tilde{f}(x) := E^x f(X_{\tau_H})$ 是超均值的。证明用强马氏性和引理 4.。

控制函数,最小超均值控制函数 \bar{h} ,最小上调和控制函数 \hat{h} 。

过分函数:一个下半连续函数 f 若满足

$$f(x) \ge E^x f(X_s), \quad s \ge 0, x \in \mathbb{R}^n$$

则称相对 X_t 的过分函数。

即把上调和函数定义中的停时变成固定时间了,但事实上这两个是等价的。证明是用 Dynkin 公式和用停时截断逼近停时。

(最小上调和控制函数的构造) 设 $g=g_0$ 是 \mathbb{R}^n 上非负的下半连续函数,归 纳定义

$$g_n(x) = \sup_{t \in S_n} E^x \left[g_{n-1} \left(X_t \right) \right]$$

这里 $S_n = \{k2^{-n} : 0 \le k \le 4^n\}$ (时间变长,分割变细),则 $g_n \uparrow \hat{g}$,且 \hat{g} 是 g 的最小上调和控制函数,以及 $\hat{g} = \bar{g}$ 。

pf: 首先由单调性可得在离散时间是"过分"的,然后由下半连续和 Fatou 引理得在任意时间都是"过分"的,因此是过分函数,进而是上调和函数,最后其他的控制函数都能够控制他,所以是最小的。

最优停时存在性定理: Omitted。

最优停时唯一性定理: Omitted。

总之就是存在唯一,自己看 ppt 去。

最优停时可以写成是某个区域的首次逃离时,下面考虑如何构造这样的区域 D。

设 $A \in X_t$ 的特征算子, $g \in C^2(\mathbb{R}^n)$ 。定义

$$U = \{x : Ag(x) > 0\}, \quad D = \{x : g(x) < g^*(x)\}.$$

则 $U \subset D$ 。

证明由 Dynkin 公式。

这个 D 很重要,因为最后就是 $g^*(x) = E^x g X_{\tau_D}$ 。

 \mathbb{R}^2 上 BM 的上调和函数是常数。

1.7.2 非时齐情形

定义 $Y_t^{s,x} = (s+t, X_t^x)$

其特征算子 $\hat{\mathcal{A}}\phi(s,x) = \frac{\partial \phi}{\partial s}(s,x) + \mathcal{A}\phi(s,x), \quad \phi \in C^2(\mathbb{R} \times \mathbb{R}^n)$,算特征算子就用(高维)Ito 公式。

设报酬函数 $g(t,\xi)=e^{-\alpha t+\beta \xi}$,则 Y_t 的特征算子为 $\hat{A}g(s,x)=\frac{\partial g}{\partial s}+\frac{1}{2}\frac{\partial^2 f}{\partial x^2}=(-\alpha+\beta^2/2)\,g$ 。若 $\beta^2\leq 2\alpha$, $\hat{A}g\leq 0$,则 $g^*=g$ 。若 $\beta^2>2\alpha$, $\hat{A}g>0$ 恒成立,于是 $D=\mathbb{R}^2$, τ^* 不存在,即股票稳赚不用抛。此时由 Dynkin 公式计算或者指数鞅的性质可证 $g^*=\infty$ 。

1.7.3 带积分项情形

最优停时问题

$$\Phi(y) = \sup_{\tau} \mathbb{E}^{y} \left[\int_{0}^{\tau} f(Y_{t}) dt + g(Y_{\tau}) \right] = \mathbb{E}^{y} \left[\int_{0}^{\tau^{*}} f(Y_{t}) dt + g(Y_{\tau^{*}}) \right]$$

定义 Ito 扩散
$$dZ_t = \begin{pmatrix} dY_t \\ dW_t \end{pmatrix} = \begin{pmatrix} b(Y_t) \\ f(Y_t) \end{pmatrix} dt + \begin{pmatrix} \sigma(Y_t) \\ 0 \end{pmatrix} dB_t$$
。

其特征算子 $\mathcal{A}_Z\phi(z) = \mathcal{A}_Z\phi(y,w) = \mathcal{A}_Y\phi(y,w) + f(y)\frac{\partial\phi}{\partial w}, \quad \phi\in C^2\left(\mathbb{R}^{k+1}\right).$

一个例子: $\Phi(x) = \sup_{\tau} \mathbb{E}^x \left[\int_0^{\tau} \theta e^{-\rho t} X_t dt + e^{-\rho \tau} X_{\tau} \right]$, 这里 $dX_t = \alpha X_t dt + \beta X_t dB_t$, $X_0 = x > 0$ 。

(基本设置) 令 $Y_t^{(s,x)} = (s+t, X_t^x), W_t = \int_0^t \theta e^{-\rho u} X_u du, Z_t = (Y_t, W_t),$ 以及 $f(y) = f(s,x) = \theta e^{-\rho s} x, g(y) = g(s,x) = e^{-\rho s} x, \tilde{g}(s,x,w) = g(s,x) + w = e^{-\rho s} x + w.$

(分类讨论)略

这个生成元算子是怎么算的?

这里
$$dZ_t = \begin{pmatrix} dt \\ dX_t \\ dW_t \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ f(t) \end{pmatrix} dt + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} dX_t = \begin{pmatrix} 1 \\ \alpha X_t \\ f(t) \end{pmatrix} dt + \begin{pmatrix} 0 \\ 1 \\ \alpha X_t \\ f(t$$

$$\begin{pmatrix} 0 \\ \beta X_t \\ 0 \end{pmatrix} dB_t$$
。于是由生成元算子定义 $\mathcal{A}_Z \phi(z) = 1 \cdot \frac{\partial \phi}{\partial t} + \alpha x \frac{\partial \phi}{\partial x} + f(t) \frac{\partial \phi}{\partial w} + \frac{1}{2} (\beta x)^2 \frac{\partial^2 \phi}{\partial x^2} = \frac{\partial \phi}{\partial t} + \mathcal{A}_X f + f(t) \frac{\partial \phi}{\partial w}$ 。

1.8 随机控制方面的应用

随机问题化成确定性问题。

Omitted.

1.9 一些

一些映射:

- (1). 随机变量 $X: (\Omega, \mathcal{F}, P) \to (E, \mathcal{E}, \mu_X)$, 变量替换公式: $E(X) = \int_{\Omega} X dP = \int_{\mathcal{F}} x d\mu_X$ 。
- (2). 可测函数 $f:(E,\mathcal{E},\mu_X)\to (\mathbb{R},\mathcal{B}(\mathbb{R}),m_X)$, 变量替换公式: $E[f(X)]=\int_{\mathbb{R}}f(X)dP=\int_{\mathbb{R}}f(x)d\mu_X=\int_{\mathbb{R}}ydm_X$ 。
- (3). 随机过程 $X_{\cdot}: (T \times \Omega, \mathcal{B}(T) \otimes \mathcal{F}, L \times P) \to (E, \mathcal{E})_{\circ}$
- (4). 轨道 $X_{\cdot}(\omega): T \to E_{\cdot}$
- (5). 可测映射 $\phi: (\Omega, \mathcal{F}, P) \to (E^T, \mathcal{E}^T), \phi(\omega) = X.(\omega)$ 。
- (6). 坐标过程 $Y_t: (E^T, \mathcal{E}^T, P_x/P_\nu) \to (E, \mathcal{E}, \varepsilon_x/\nu), Y_t \circ \phi(\omega) = X_t(\omega)$ 。
- (7). 停时 $\tau:(\Omega,\mathcal{F})\to (T,\mathcal{B}(T))$ 。
- (8). 停止过程 (是一个随机变量) $X_{\tau}:(\Omega,\mathcal{F})\to (E,\mathcal{E}), X_{\tau}(\omega)=X_{\tau(\omega)}(\omega)$ 。
- (9). 推移算子 $\theta_h: (E^T, \mathcal{F}_{t+h}) \to (E^T, \mathcal{F}_t)$ 。
- (10). 初值函数 $i: E \to \mathbb{R}, x \mapsto E^x[X]$.
- (11). 转移半群 $P_t: E \times \mathcal{E} \to \mathbb{R}_+$ 或 $P_t: \mathcal{F}(E) \to \mathcal{F}(E)$
- (12). 生成元算子 $A: D(A) \subset \mathcal{F}(E) \to C_0 \subset \mathcal{F}(E)$
- (13). 特征算子 $\mathcal{A}: D(\mathcal{A}) \subset \mathcal{F}(E) \to \mathcal{F}(E)$

一些公式:

1. 一维 Ito 公式: 若 $Y_t = g(t, X_t)$, 则 $dY_t = \frac{\partial g}{\partial t}(t, X_t) dt + \frac{\partial g}{\partial x}(t, X_t) dX_t + \frac{1}{2} \frac{\partial^2 g}{\partial x^2}(t, X_t) (dX_t)^2,$

2. 一般分部积分公式: 若 X_t, Y_t 为 Ito 过程,则

$$d(X_tY_t) = X_t dY_t + Y_t dX_t + dX_t \cdot dY_t.$$

- 3. 马氏性: $E^{x}[f(X_{t+h})|\mathcal{F}_{t}](\omega) = E^{X_{t}(\omega)}[f(X_{h})]$., 强马氏性 (用推移算子来写): $E^{x}[\theta_{\tau}\eta|\mathcal{F}_{\tau}] = E^{X_{\tau}}[\eta]$ 。(强)马氏性 (用转移半群来写):
- 4. X_t 的无穷小生成元 $A:D(A)\to C_0$ 定义为

$$Af(x) = \lim_{t \to 0} \frac{E^x [f(X_t)] - f(x)}{t}, \quad x \in E = \mathbb{R}^n$$

5. 生成元算子计算公式: 设 Ito 扩散 $X_t = b(X_t)dt + \sigma(X_t)dB_t$, $f \in C_0^2$, 则

$$Af(x) = \sum_{i} b_{i}(x) \frac{\partial f}{\partial x_{i}} + \frac{1}{2} \sum_{i,j} \left(\sigma \sigma^{T} \right)_{ij}(x) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}.$$

另一种解释: 对 $f(X_t)$ 用 Ito 公式

$$df(X_t) = \frac{\partial f}{\partial x} dX_t + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} (dX_t)^2$$
$$= \frac{\partial f}{\partial x} b dt + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} \sigma^2 dt + \frac{\partial f}{\partial x} \sigma dB_t$$
$$= Af(X_t) dt + \frac{\partial f}{\partial x} \sigma dB_t$$

积分取期望可得

$$E^{x}[f(X_t)] = f(x) + E^{x} \left[\int_0^t Af(X_s) ds \right]$$

6. Dynkin 公式: 设 $f \in C_0^2(\mathbb{R}^n)$, τ 是停时 s.t. $E^x \tau < \infty$, 则

$$E^{x}f(X_{\tau}) = f(x) + E^{x} \left[\int_{0}^{\tau} Af(X_{s}) ds \right].$$

7. 特征算子: 设时齐的 Ito 扩散 X_t , 则

$$\mathcal{A}f(x) = \lim_{U \to 0} \frac{E^x \left[f\left(X_{\tau_U} \right) \right] - f(x)}{E^x \tau_U}, \quad x \in \mathbb{R}^n$$