Candidate Screening Test

Sr. Algorithm Engineer

Screening content

- Linux/Bash
- C/C++
- Python
- ML Questionnaire

Linux/Bash

- 1. Build Bash script to extract system info and output into text file,
 - CPU number
 - Available hard drive space
 - Current memory usage
- 2. Build Bash script to do following processes and output summary into text file
 - Count how many lines in your resume file
 - Extract 2nd word of each line of your resume file
 - Extract first and last line of your resume file

C/C++

- 1. Write C/C++ program to,
 - Generate numerical array of 0-9, and print it on screen
 - Then print it in the format of

```
1 2
3 4 5
6 7 8 9
```

- Log CPU and Elapse time
- Log Memory usage
- 2. Profile your C/C++ program and output summary file to show
 - Which function is called the most, for how many times
 - Which function costs the most, for how much time

Python

- 1. Build Python script to process image
 - Extract X, Y direction pixel number of the image
 - Extract pixel size (in nm) of the image
 - Plot grayscale histogram
 - Plot X direction average grayscale
 - Plot Y direction average grayscale
 - Extract all structures in the image like red circled on and create a new image
 - Generate one new image which only contains the structure like red circled and whose grayscale is significantly lower

ML Questionnaire

- 1. Please share your understanding of supervised learning, semi-supervised learning, and unsupervised learning, as well as their application scenarios.
- 2. Discuss your understanding of deep learning and how it differs from traditional machine learning methods.
- 3. Please explain the problem of "overfitting" in machine learning, and how you avoid or address it. Please explain from the perspectives of both traditional machine learning and deep learning.
- 4. How do you evaluate the performance of a machine learning model? Please explain some commonly used performance metrics.
- 5. How do you handle imbalanced datasets? Would the approach differ when the imbalance ratio is 1:10 versus 1:10000?