SMART INDIA HACKATHON 2024

- Problem Statement ID 1680
- Problem Statement Title- Few Shot Language
 Agnostic Keyword Spotting System
- Theme- System Automation
- PS Category- Software
- Team ID-
- Team Name (Registered on portal)- Neural Nexus
- Team Mentor- Mr. H.S. Pannu

FEW SHOT TRANSFER LEARNING AUTOMATION

WHAT OUR SOLUTION DOES AND HOW:

Provides a framework to train a keyword spotting model with very few audio samples

- Uses Large Multilingual Embedding Model.
- Keyword Databank to spot known, unknown or cross-language keywords.
- Audio samples are spliced, pre-processed and individually analysed.
- Penultimate layer is used as feature vector.
- Databank trained on target and non-target keywords.

HOW IT TACKLES THE PROBLEM:

- Pertaining on large corpus allows embedding to learn from audio samples.
- This will help us ensure that words that haven't been known can also be trained in relatively low resources

HOW IT DIFFERS FROM OTHER SOLUTIONS:

• Other approaches uses thousands of keyword samples while ours will only need a handful.

TECHNOLOGIES TO BE USED

Programming Languages

Python: Will be used for implementing ML models because it has a rich set of ML libraries and frameworks like **TensorFlow** and PyTorch.

Machine Learning Frameworks

TensorFlow: Will be used for **developing and training** ML models required for keyword spotting.

Keras: Will be used as a **high-level API** for TensorFlow to simplify the process of building and prototyping neural networks.

Audio Processing Libraries

FFmpeg: Will be used to convert audio files to a common bitrate and to perform batch audio manipulation tasks like trimming, merging and **normalizing** audio files.

Librosa: Will be used for audio analysis and manipulation like resampling audio to a uniform sample rate and trimming silence from the start and end of audio clips. It is used to convert an audio file to **spectrogram**.

Hardware

GPUs (Graphics Processing Units): Will be used for training ML models on Google Colab or an Al lab machine as they can handle high parallel processing workloads.

METHODOLOGY AND PROCESS

FLOW DIAGRAM

Dataset Preparation

1) Open-source dataset utilization (like Common Voice) 2) Preprocessing

Model

1)Conversion of audio files into spectrograms

2) Input fed into a **CNN**

Trained Model

Few Shot training

Fine-tune the model in a few-shot learning setup

Few shot language agnostic keyword spotting system

Testing

Evaluate using metrics like accuracy, precision, recall, and F1-score

Technological stack

FEASIBILITY AND VIABILITY

Feasibility Analysis

- **Scalability**: The system can efficiently handle **multiple languages**, whether they were trained on the model or not.
- **Performance**: Previous iterations have obtained an **F1 score of as high as 0.75**.
- **Real-time Application**: Well-suited for real-time applications, such as **voice-activated assistants** or automated transcription services.
- Market Viability: Given the increasing demand for multilingual AI solutions, this system has strong potential for commercial success.

?	Problems	!	Solutions
•	Limited Data Representation O		Use data augmentation techniques such as pitch shifting, noise
•	False Acceptance and Rejection Rates O————————————————————————————————————	-	injection, and time-stretching. Implement adaptive thresholding mechanisms that dynamically adjust the acceptance criteria based on the confidence level.
•	Streaming and Real-time Processing ————————————————————————————————————	-	Use lightweight and efficient architectures to ensure real-time processing capabilities without sacrificing accuracy.
•	Cultural and Contextual Variability O		Develop context-aware models that take into account surrounding words or phrases.
•	Bias and Fairness O		Implement bias detection and mitigation techniques, such as fairness-aware training algorithms or re-weighting methods.
•	Integration with Existing Systems O		Design the system with flexible APIs and modular components that can easily integrate with existing platforms.

IMPACT AND BENEFITS

IMPACT

- Improved transcription technology by focusing on relevant sections.
- Generalization to new languages beyond the ones used in training.
- Repurposes general speech recognition datasets through forced alignment highlighting value of crowd-sourced data.
- Enhances logistics clustering by identifying key terms and helps in locating and integrating value-added services.

BENEFITS

- Keyword spotting recognizes user commands and enables seamless interactions.
- Bridges language barriers enabling smoother and faster communication.
- Reduces the need for extensive data collection unlike traditional keyword spotting models, potentially lowering costs.
- Avoids retraining, so, less energy intensive model updates: a more sustainable approach.

RESEARCH AND REFERENCES

References and Citation:

- Mazumder, M., Colby, B., Meyer, J., Warden, P., & Reddi, V.J. (2021). Few-Shot Keyword Spotting in Any Language. *Neural Information Processing Systems*. https://browse.arxiv.org/pdf/2104.01454v4
- Mazumder, M., Chitlangia, S., Banbury, C., Kang, Y., Ciro, J. M., Achorn, K., Galvez, D., Sabini, M., Mattson, P., Kanter, D., Diamos, G., Warden, P., Meyer, J., & Reddi, V. J. (2021). Multilingual Spoken Words corpus. *Neural Information Processing Systems*. https://openreview.net/pdf?id=c20jiJ5K2H
- TensorFlow, "TinyConv," https://github.com/tensorflow/ tensorflow/blob/master/tensorflow/examples/speech commands/models.py, 2024
- Keras, "EfficientNet B0 to B7", https://keras.io/api/applications/efficientnet/, 2024
- HuggingFace, "google/speech_commands", https://huggingface.co/datasets/google/speech_commands
- TensorFlow, "Simple audio recognition: Recognizing keywords", https://www.tensorflow.org/tutorials/audio/simple_audio
- TensorFlow, "tensorflow/examples/speech_commands/test_streaming_accuracy.cc", https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/speech_commands/test_streaming_accuracy.cc
- TensorFlow, "Audio recognition using transfer learning", https://codelabs.developers.google.com/codelabs/tensorflowjs-audio-codelab/index.html#0

