Wavelet Convolutional Neural Networks for Texture Classification

Урьев Максим

Texture

- Преимущественная ориентация элементов, составляющих материал
- Нет информации о форме объекта

Classification approaches

- Conventional Texture Descriptors
- Convolutional Neural Networks
- Spectral Approaches

Haar Wavelets

The Haar scaling function is defined as

$$\phi(x) = \begin{cases} 1, & \text{if } 0 \le x < 1 \\ 0, & \text{otherwise.} \end{cases}$$

The Haar Wavelet's mother function is defined as $\psi(x) = \phi(2x) - \phi(2x-1)$

$$\psi(x) = \begin{cases} 1, & 0 \le x < 1/2, \\ -1, & 1/2 \le x < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Haar Wavelet's properties:

- (1) Any function can be the linear combination of
 - $\phi(x), \phi(2x), \phi(2^2x), \cdots \phi(2^kx), \cdots$ and their shifting functions
- (2) Any function can be the linear combination of constant function, $\psi(x), \psi(2x), \psi(2^2x), \cdots, \psi(2^kx), \cdots$ and their shifting functions
- (3) The set of functions $\{2^{j/2}\phi(2^jx-k); k \in Z\}$ is an orthonormal basis.

Haar Wavelets

How to do Haar transform:

Assumption: 1D signal f of the length $N = 2^n$

1-level Haar-Transform for $f = (x_1, x_2, ..., x_N)$

$$f \xrightarrow{H_1} (a^1 \mid d^1)$$

where

$$a^{1} = (\frac{x_{1} + x_{2}}{\sqrt{2}}, \frac{x_{3} + x_{4}}{\sqrt{2}}, \dots, \frac{x_{N-1} + x_{N}}{\sqrt{2}})$$

$$d^{1} = (\frac{x_{1} - x_{2}}{\sqrt{2}}, \frac{x_{3} - x_{4}}{\sqrt{2}}, \dots, \frac{x_{N-1} - x_{N}}{\sqrt{2}})$$

Wavelet CNN

$$\mathbf{y} = (\mathbf{x} * \mathbf{k}) \downarrow p$$

$$\mathbf{x}_{\text{low}} = (\mathbf{x} * \mathbf{k}_l) \downarrow 2$$
$$\mathbf{x}_{\text{high}} = (\mathbf{x} * \mathbf{k}_h) \downarrow 2$$

$$\mathbf{x}_{\text{low},l+1} = (\mathbf{x}_{\text{low},l} * \mathbf{k}_l) \downarrow 2$$
$$\mathbf{x}_{\text{high},l+1} = (\mathbf{x}_{\text{low},l} * \mathbf{k}_h) \downarrow 2$$

Wavelet CNN

Wavelet CNN

Figure 4. Classification results of (a) kth-tips2-b and (b) DTD for networks trained from scratch. We compared our models (blue) with AlexNet and T-CNN.

Figure 5. Classification results of (a) kth-tips2-b and (b) DTD for networks pre-trained with ImageNet 2012 dataset. We compared our model (wavelet CNN with 4-level decomposition) with shearlet transform, VGG-M, T-CNN, and FC+FV-CNN.

Conclusion

- Совмещение спектрального подхода с CNN.
- Существенный прирост качества при меньшем числе настраиваемых параметров.
- Архитектура подходит не только для классификации текстур.
- Уровень декомпозиции ограничен глубиной сети

References

- Shin Fujieda, Kohei Takayama, Toshiya Hachisuka, Wavelet Convolutional Neural Networks for Texture Classification. https://arxiv.org/pdf/1707.07394.pdf
- Н. Смоленцев, Основы теории вейвлетов. Вейвлеты в Matlab