

CURSO SUPERIOR DE ENGENHARIA DE CONTROLE E AUTOMAÇÃO

TRABALHO DE INTRODUÇÃO À ENGENHARIA DE CONTROLE E AUTOMAÇÃO

Lançador Oblíquo

Eduardo Páz Putti Gabriel Kleemann Duarte Emanuel Amaral da Veiga

> Chapecó, SC, Brasil. 1° SEMESTRE – 2023

RESUMO

Este trabalho tem a finalidade de projetar um lançador oblíquo que abranja de 0 a 90 graus, utilize mola como mecanismo de propulsão e explore o melhor possível o conteúdo lecionado em sala de aula. Para isso, foi dirigida com a metodologia apresentada no livro "Introdução à Engenharia: Uma abordagem baseada em projeto" (DYM, LITTLE, 2010), realizando pesquisas e buscando fontes acadêmicas sobre o assunto. Após a pesquisa, foram reunidas as informações e realizamos um brainstorming para definir os objetivos, bem como suas métricas e a concepção do projeto. Em sequência, foi construída a árvore de objetivos para a melhor compreensão do projeto. Após isso, foi criada uma matriz morfológica para analisar melhor as ideias e foi montada uma matriz conceitual, concluindo-se que seria melhor escolher um lançador que se parecesse com um canhão. As métricas e restrições foram definidas pelos específicos do projeto e posteriormente pelo grupo devido a limitações de ferramentas e de acessibilidade a acesso a certos materiais. Outrossim, nos materiais o foco foi utilizar aqueles que são acessíveis e resistentes, concomitantemente empregar os conhecimentos, as escolhas e usar as definições do projeto conceitual. Para o projeto, tem-se o fito de que ao todo o lançador custe menos de 100 reais, também que cumpra os objetivos definidos, pretendemos que o lançador resista a impactos de pequenas intensidades e seja durável. Portanto, o projeto terá como intuito fazer uso dos conceitos teóricos do livro para se desenvolver conhecimentos práticos, passando pelas escolhas e finalizando com a fabricação do modelo de lançador.

Palavras-chave: Lançador oblíquo. Desenvolvimento de projeto. Canhão.

Sumário

- 1. Introdução
- 2. Projeto Informacional
 - 2.1. Revisão bibliográfica
 - 2.2. Brainstorming
 - 2.3. Árvore de objetivos
- 3. Projeto Conceitual
 - 3.1. Funções e requisitos
 - 3.2. Gráfico morfológico
 - 3.3. Solução escolhida
- 4. Projeto preliminar
- 5. Conclusão

Referências

1. Introdução

O trabalho busca atender a demanda de um cliente que procura um lançador oblíquo, regulável de 0° a 90°, com 3 forças de lançamento, que use uma mola para propulsionar o projétil e possa ser usado em laboratório.

A pesquisa foi realizada em diferentes plataformas e *sites* para encontrar outros lançadores semelhantes e novas ideias para o projeto, com o fito de expandir as possíveis ideias para o projeto ao passo de encontrar os objetivos, as métricas e as funções, para, em seguida, construir as concepções e fazer a tomada de decisão do projeto com base na metodologia adotada.

Com base nisso, o problema de pesquisa consiste em: lançador para uso em laboratórios que seja regulável em ângulo e força. Dessa forma, a compreensão dos princípios envolvidos nesse processo de projetar e a exploração da metodologia de produção de projetos são fundamentais para o desenvolvimento do relatório.

Para a construção do lançador, foram utilizados os conceitos do livro de introdução à engenharia, indo da declaração do problema do cliente, definição do problema, problema conceitual, projeto preliminar, projeto detalhado até a comunicação de projeto.

2. Projeto Informacional

No projeto informacional, é definido como as outras fases do projeto devem ser executadas, objetivos gerais, como é baseado a sua metodologia com objetivo de entender os reais objetivos do cliente, definir métricas e informações importantes para o desenvolvimento do projeto.

2.1. Revisão bibliográfica

A Revisão bibliográfica começou por uma pesquisa sobre projetos parecidos em instituições de ensino como o Instituto Federal de Santa Catarina (IFSC), Universidade Federal Fluminense (UFF) e *Universiti Malaysia Pahang*, considerando-se pesquisas variadas a respeito do desenvolvimento de lançadores oblíquos.

Na pesquisa sobre um protótipo lançador de bolas de tênis de mesa, o autor trata sobre o desenvolvimento do projeto de lançador de bolas de tênis em CAD, conforme a figura 01,

levando em conta seus custos, e dificuldades construtivas. Por fim, o autor realizou uma simulação no *software Solidworks* que resultou na trajetória do projétil e concluiu que seria imprescindível o uso do processo de manufatura aditiva para fabricar as peças, visto que são de geometria complexa e com baixa solicitação mecânica.

PARAFUSO ALLEM M3 X 15MM

FIXADOR U

MOTOR DC ALTA ROTAÇÃO

CABEÇOTE LANÇADOR

1

RODÍZIO DE LANÇAMENTO

Figura 01: Montagem final do protótipo de lançador de bolas de tênis em CAD

Fonte: Gustavo Fernandes Costa (2021)

Na pesquisa *Development of Projectile Launcher for Learning Purpose* da universidade de Malaysia Pahang, a autora trata de construir um protótipo de lançador didático e derivar dele várias equações matemáticas para calcular a força do lançamento, e esquematizaram uma maneira de construir o mesmo.

No site KitsLabs, foi encontrado um Lançador de projéteis, conforme a figura 02, o qual analisamos e avaliamos as características construtivas.

Figura 02: Lançador de Projéteis da marca KitsLabs

Fonte: KitsLabs (2017)

Na dissertação de Sebastião Luis De Oliveira sobre a alfabetização científica em alunos do ensino médio pela estimulação da aprendizagem através da construção de um lançador de projéteis, o autor utiliza a metodologia ativa para promover a autonomia dos alunos para fabricar um lançador de projétil. Os lançadores confeccionados pelos alunos, como mostram as figuras 03 e 04, foram documentados e analisados pelo autor, os quais foram usados como inspiração para decidir as concepções.

Figura 03: Lançador de projétil – turma A – equipe 5.

Fonte: Sebastião Luis De Oliveira (2019)

Figura 04: Lançador de projétil - turma A - equipe 3.

Fonte: Sebastião Luis De Oliveira (2019)

2.2. Brainstorming

Brainstorming é uma expressão que significa "tempestade de ideias", sendo usada quando precisa-se encontrar diferentes formas de ver uma mesma ideia, com o fito de explorar o máximo das possibilidades disponíveis. Neste trabalho, tal técnica foi utilizada para gerar possíveis ideias de projetos e derivar os objetivos dessas ideias, assim sendo, usada em uma etapa em que cada membro do grupo apresenta suas ideias.

2.3. Árvore de objetivos

A árvore de objetivos como mostra a figura 05, serve para identificar as ramificações dos objetivos gerais, em que se procura encontrar novos objetivos que estavam subentendidos no projeto.

Angulo

Regulável

Força

Controlável e ajustável

Preciso

Padronizado

Barato

Materiais acessíveis

Ser potente

Estável

Robusto

Didático

Fácil de usar

Figura 05 – Árvore de objetivos

As métricas definidas no quadro 01 são usadas para saber aonde se pretende chegar, para realizar e gerenciar o projeto e avaliar o grau de proximidade dos objetivos estabelecidos.

Quadro 01: Métricas gerais do projeto

Objetivo	Métrica
Ângulo	De 0° a 90°
Força	Medida em Newtons, ainda não calculada o período
Barato	60 a 100 reais
Fácil de usar Conseguir ser usado por leigos	
Didático	Mecanismo aberto, de forma a facilitar a sua explicação
Íntegro	Permanecer inteiro após algum lançamento

Preciso	A máxima diferença de distância entre disparos de mesmo ângulo e força é de 20% em centímetros.
Estável	Ser fixo e se manter funcionando
Potente	Lançar o projétil a pelo menos 2 metros
Controlável e Ajustável	Seguir padronização proposta nos itens anteriores
Robusto	Apto a Resistir impactos de quedas de até 1 metro

3. Projeto Conceitual

Para o projeto conceitual, foi criada uma planilha, e foram adicionados os objetivos, qual peso eles teriam para definir os tipos de projetos que seriam aceitos, qual seria as pontuações dadas as suas notas nos objetivos definidos. Ainda mais, cada objetivo teve seu peso definido entre um a cinco, o número dos objetivos foram definidos por sua importância na construção e na satisfação do cliente.

3.1. Funções e requisitos

As funções do projeto foram definidas por um método de seleção dos objetivos no brainstorming, e, após isso, deu-se a consulta aos requisitos e limitações que o cliente desejava e então foi criada a tabela conforme mostra o quadro 02.

Quadro 02: Tabela de funções do projeto

Funções	Requisitos Quantitativos	Requisitos Qualitativos
Sustentar a mola		Aguentar a força produzida pela mola sem apresentar fadiga de material, ou trincos.
Estruturar (layout)		Aguentar a força produzida pela mola mantendo todo o projeto inteiro
Estruturar base(material)	Poder resistir a pequenos impactos de até 5 newtons sem	

	sofrer danos significativos.	
Gerar a Fpel	Demorar menos que 10 segundos entre colocar o projétil e terminar de engatilhar	
Armazenar a força potencial elástica		Não liberar sem acionamento de gatilho, sem perder energia potencial cinética
Liberar a força potencial elástica	Ter tempo de acionamento inferior a 0.5s	
Regular ângulo	Regular o ângulo tal que não difira da medição de ângulo.	
Indicar ângulo	Medir ângulos de 0 a 90 graus com precisão de 1mm.	
Regular as forças possíveis	Ter 3 forças diferentes que variem entre si no máximo em 50% da força de uma para outra.	
Sustentar o projétil(layout)		Oferecer o projétil uma consistência nos disparos, e não oferecer resistência ao movimento do projétil
Sustentar o projétil(material)	Poder resistir a pequenos impactos de até 5 newtons sem sofrer danos significativos.	
Indicar força	f= m*a V=D/T	Ter três forças possíveis
Projétil	Ter menos de 50 gramas e mais de 25	Encaixar no suporte de projétil, ter aerodinâmica boa
Fixar as peças	5-15 furações para parafuso	Manter as peças inteiras antes, durante e depois do lançamento. Ser de fácil acesso para a compra.

3.2. Gráfico morfológico

O gráfico morfológico auxilia no processo de tomada de decisão no que será usado para atender cada função. Para o projetista, se faz necessário para obter meios distintos e não

se prender a uma ideia fixa de projeto, de tal maneira que se encontra escolhas mais apropriadas para o projeto, como mostra o quadro 03.

Quadro 03: Quadro da matriz morfológica

Funções	Meio 1	Meio 2	Meio 3	Meio 4
Sustentar a mola	Prender a mola na base de lançamento por cola	Prender o gancho da mola na base por meio de furação	Prender a mola com linhas nas extremidades	-
Estruturar base (layout)	Retangular	Apoio para a mão	Cilíndrico	-
Estruturar base(material)	Madeira	Alumínio	Plástico	Aço
Gerar a Fpel	Comprimir a mola usando a mão	Tracionando a mola puxando a com um barbante extensor para puxar para trás		Tracionar usando Pino para puxar
Armazenar a Fpel	Trava feita com o gatilho	Sulcos para prender a corda presa à mola	· · ·	
Liberar a Fpel	Gatilho para Acionar uma alavanca	Gatilho lateral com Acionamento por botão	Gatilho usando Imã	Gancho inferior Com trilho para acionar
Regular ângulo	Alavanca com rotação 90 graus	Regulação por eletroímã	Furação lateral com porca	-
Indicar o ângulo	Transferidor com fio e porca na ponta	Ângulos regulados previamente escritos	Nível	-
Regular as forças possíveis	Nível de compressão da mola	3 sulcos para níveis de compressão diferente	-	-
Sustentar o projétil (Layout)	Tubo	Trilho de uma besta	Tubo para projétil	-
Sustentar o projétil(materi al)	PVC	Madeira	Plástico	PVC

Indicar força	Adesivo indicativo	Colocar no manual	-	-
Projétil	Esfera de metal	Palito de churrasco	Prego	Cilindro liso
Fixar as peças	Parafusos, porcas, pregos	Fita	Super cola e bicarbonato	Solda

3.3. Solução escolhida

Devido aos pesos atributos e pelos resultados obtidos no projeto conceitual, conforme a tabela 01, foi decidido pela primeira concepção de projeto, como resultado de sua nota elevada. Ademais, devido a essa concepção, os materiais utilizados foram um cano de pvc, uma barra roscada, porcas e parafusos, além de uma corda, um transferidor, duas molas de tração, dois caps, um para encaixar no final do cano e outro menor para base do projétil.

Tabela 01: Matriz de avaliação das concepções

	Métricas - Pesos do		Canhão		Besta (mola de compressão)		Catapulta		Besta (mola de tração)	
Objetivos	parâmetros quantitativos	parâmetros Objetivos	Parâmetros normalizados de 1 a 5	Valor considerado para os objetivos						
Facilidade de construção		5	4	20	2	10	3	15	3	15
Ser resistente	Resistir a 5N de força	3	5	15	5	15	3	9	3	9
Ser potente	Acima de 5 N de força	2	4	8	4	8	5	10	3	6
Ser barato	50-150 R\$	5	2	10	2	10	4	20	4	20
Ser confiável		2	3	6	4	8	2	4	2	4
ser desmontável	X encaixes	1	1	1	4	4	3	3	3	3
Ser estável		2	2	4	4	8	5	10	4	8
Ser didático	Pessoas compreender em como funciona	2	3	6	3	6	3	6	3	6
Ser robusto		2	4	8	4	8	3	6	2	4
Ser de fácil de usar	3 passos de uso	4	2	8	3	12	3	12	3	12
Ser conduzível	< 3kg	2	4	8	4	8	3	6	4	8
Ser controlável	3 ângulos de ajuste	4	5	20	4	16	3	12	4	16
Ser ajustável	Ter várias opções de regulagem	2	4	8	5	10	3	6	5	10
Ser de fácil acesso a compras	Ser comprável em Chapecó	5	3	15	2	10	3	15	3	15
Valor da fun	ção utilidade			137		133		134		136
Ordenação da	Ordenação das concepções									

Essas concepções são definidas no quadro 04, com as características de cada concepção de acordo com as funções.

Quadro 04: Matriz de concepções

Funções	Concepção 1 (Canhão)	Concepção 2 (Besta compressão)	Concepção 3 (Catapulta)	Concepção 4 (Besta tração)
Sustentar a mola	Prender a mola tubo com parafuso	Prender o gancho da mola na base por meio de furação	Prender a mola com linhas nas extremidades	Prender o gancho da mola na base por meio de furação
Estruturar base (layout)	Tubo	Apoiada na mão	Retangular	Apoiada na mão
Estruturar base (material)	PVC	Alumínio	Madeira	Madeira
Gerar FPE	Tracionar a mola usando um extensor para puxar para trás	Tracionar usando Pino de madeira puxar	Tracionando a mola puxando a com um barbante	Tracionando a mola puxando a com um barbante
Armazenar FPE	Trava lateral no tubo com engates	Trava feita com o gatilho	Trava de pontos	Trava lateral com cilindro de madeira e sulcos
Liberar FPE	Acionamento por corda	gatilho para acionar uma alavanca	Gatilho lateral com acionamento por botão	Palito que entre nos sulcos reguladores.
Regular ângulo	Apoiado no chão		Furação lateral com porca	
Indicar o ângulo	Ângulos regulados previamente escritos	Transferidor com fio e porca na ponta	Transferidor	Transferidor com fio e porca na ponta
Regular as forças possíveis	3 vincos para diferentes níveis de tração	3 sulcos para níveis de compressão diferente	Usando uma trava de 3 pontos	3 pontos para níveis de compressão diferente
Sustentar o projétil(layout)	Сар	Trilho	Concha	Trilho
Sustentar o projétil(mater iais)	PVC	Alumínio	Madeira	Madeira
Indicar a força	Manual	Manual	Adesivo Ilustrativo	Adesivo ilustrativo
Projétil	Esfera	Flecha	Esfera de madeira	Palito de churrasco
Fixar as	Parafusos, porcas	Parafusos,	Parafusos, Parafusos, po	

peças	porcas, pregos	porcas, pregos	pregos

4. Projeto preliminar

O lançador foi construído de forma que as duas molas de tração fiquem nas paralelas entre si e ao tubo. As suas extremidades foram fixadas no topo do tubo e na barra roscada, para que seja possível puxar a barra e assim tracionar as duas molas, como mostrado na figura 08. Para posicionar o projétil no interior do tubo, a barra roscada é atravessada no meio do cap menor com a rotação travada por arruelas soldadas ao lado do cap, conforme a figura 06.

Para os engates das forças, os trilhos foram cortados nas paredes do tubo, com os vincos feitos por furações tangentes ao trilho com 1 cm de espaçamento entre eles. Por fim, para ajustar a angulação do lançamento, foi utilizado um transferidor com uma linha fixa em seu centro e um pequeno peso na extremidade solta da linha, como mostra a figura 07.

Figura 06 – Visão interior do lançador

Fonte: Autoria própria (2023)

Figura 07 – Visão geral do lançador

Figura 08 – Visão frontal do lançador

Fonte: Autoria própria (2023)

5. Conclusão

O método escolhido foi utilizar um lançador em formato de canhão com o fito de atender o melhor possível os objetivos e requisitos definidos no projeto conceitual. Durante a construção da concepção escolhida, nos deparamos com dificuldades em relação à rigidez da mola, isso acarretou dificuldade de engatilhar a barra roscada nos vincos do tubo, além do desgaste prematuro dos vincos.

Referente à viabilidade da construção, a maioria dos equipamentos são de fácil acesso e utilização, com exceção a mola, que foi o mais difícil de se adquirir. Ademais, através dos recursos oferecidos pelo campus, o processo de montagem contou com apoio de professores e técnicos de laboratório, bem como de uma estrutura que atendeu as demandas para a confecção do projeto.

Referências

DYM, C. L. et al. **Introdução à engenharia:** uma abordagem baseada em projeto. 3. ed. Porto Alegre (RS): Bookman, 2010.

FERNANDES COSTA,GUSTAVO. **Proposta conceitual de um protótipo lançador de bolas de tênis de mesa**. Disponível em: https://repositorio.ifsc.edu.br/bitstream/handle/123456789/2030/TCC%20Gustavo%20Fern andes V1.0.11.pdf?sequence=1>. Acesso em: 10 mai. 2023.

AZWA BT A. ITALIM, AIDA. A project report submitted in partial fulfillment of the requirements for the award of the Diploma of Mechanical Engineering. Core, 2007. Disponível em: https://core.ac.uk/download/pdf/159178489.pdf>. Acesso em: 10 mai. 2023.

LUIS DE OLIVEIRA, SEBASTIAN. Lançamento de projéteis e aprendizagem baseada em projetos como elementos estimuladores da alfabetização científica em alunos do ensino médio. App UFF, 2019. Disponível em: https://app.uff.br/riuff/bitstream/handle/1/10420/DISSERTA%c3%87%c3%83O%20FINAL%20-%20SLO.pdf?sequence=1&isAllowed=y. Acesso em: 10 mai. 2023.

Kit de Física - Lançador de Projéteis. Disponível em: https://www.kitslab.com.br/kit-de-fisica-lancador-de-projeteis>. Acesso em: 10 mai. 2023