Chapter 1

1-1 Signal Amplification

- $v_i(t)$: input signal
- $v_o(t)$: output signal
- A: amplifier gain

Case 1: Signal Transmission

A small signal need to be transmitted from a sender to a receiver through a wired channel

It could be hard to be finished because the transmitting channels are noisy. Let $v_n(t)$ denote the noise voltage, then $v_r(t)=v_s(t)+v_n(t)$

If the signal is amplified before transmission

Then it could be easier to identify the receive voltage

Case 2: Digital Mobile Phone

The signal processing subsystem in a digital mobile phone

- · LNA: low noise amplifier
- A/D: analog to digital converter

Since the signal received by antenna is too weak, which is usually in μV range, while the A/D converter required the input signal with the range from 0 to 3.3 V.

The processing could be much easier if the signal magnitude is larger.

1-2 Amplifiers

The signal amplifier is a two-port network and only **dependent sources** could be used to realize amplifiers

ullet R_i : input resistance

• R_o : output resistance

• A_{vo} : open-circuit voltage gain

Different Amplifiers

Туре	Circuit Model	Gain Parameter	Ideal Characteristics
Voltage Amplifier		$A_{vo}=rac{v_o}{v_i}$	$R_i=\infty, R_o=0$
Current Amplifier		$A_{is}=rac{i_o}{i_i}$	$R_i=0, R_o=\infty$
Transconductance Amplifier		$G_m=rac{i_o}{v_i}$	$R_i=\infty, R_o=\infty$
Transresistance Amplifier		$R_m = rac{v_o}{i_i}$	$R_i=0,R_o=0$

Amplifier Power Efficiency

The DC power delivered to the amplifier is

$$P_{dc} = V_{CC}I_{CC} + V_{EE}I_{EE}$$

The power-balance equation over the circuit is

$$P_{dc} + P_I = P_L + P_{\text{dissipated}}$$

The amplifier power efficiency is

$$\eta = rac{P_L}{P_{dc}} imes 100\%$$

Characters of Amplifiers

There are several important parameter of amplifiers:

• A: Gain

• R_i : Input Resistance

• R_o : Output Resistance

Amplifier Gain

A voltage amplifier fed with a signal $v_i(t)$ and connected to a load resistance R_L

ullet Voltage Gain: $A_v=rac{v_o}{v_i}$

ullet Current Gain: $A_i=rac{i_o}{i_i}$

ullet Power Gain: $A_p=rac{v_o i_o}{v_i i_i}$

And there is relationship between power gain, voltage gain and current gain is

$$A_p = A_o A_i$$

And electronics engineers prefer to express amplifier gain with logarithmic measure

ullet Voltage Gain in decibels: $20\log\|A_v\|\ dB$

ullet Current Gain in decibels: $20\log\|A_i\|\ dB$

ullet Power Gain in decibels: $10\log\|A_p\|\ dB$

Input and Output Resistance

The input resistance R_i is an equivalent resistance that accounts for the fact that the amplifier draws an input current from the signal source

A **voltage amplifier** with *larger input resistance* draw less current from the signal source, and its v_i is closer to v_s

$$v_o = A_{vo} v_i \frac{R_L}{R_L + R_o}$$

A voltage amplifier with smaller output resistance has stronger ability to drive a heavy load

Determine Input and Output Resistance

• Determine R_i : by applying an **input voltage** v_i and calculating the **input current** i_i

$$R_i = rac{v_i}{i_i}$$

• Determine R_o : by finding ratio of the **open-circuit output voltage** to the **short-circuit output** current

Overall Gain

Voltage Gain

$$A_v = rac{v_o}{v_i} = A_{vo} \cdot rac{R_L}{R_L + R_o}$$

Overall Gain

$$\frac{v_o}{v_s} = A_{vo} \cdot \frac{R_i}{R_i + R_s} \frac{R_L}{R_L + R_o}$$

Characterizing Amplifiers

A perfect voltage amplifier should have

- · large input resistance
- small output resistance

a gain that is controllable ina wide range				