Álgebra lineal II, Grado en Matemáticas Reserva

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora. Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (1) Producto escalar.
- (2) Transformación ortogonal o isometría.
- (3) Signatura de una forma cuadrática.
- (4) Criterio de Sylvester.

Ejercicio 1: (2 puntos)

Sea V un \mathbb{K} -espacio vectorial, donde $\mathbb{K} = \mathbb{R}$ o \mathbb{C} . Demuestre que una forma bilineal $f: V \times V \to \mathbb{K}$ es antisimétrica si y sólo si f(v, v) = 0 para todo $v \in V$.

Ejercicio 2: (3 puntos)

Obténganse las posibles matrices de Jordan de un endomorfismo f de un espacio vectorial V real de dimensión 4 que satisface las siguientes condiciones:

- (1) f no es diagonalizable
- (2) dim Ker(f-2id) = 2, dim Ker(f+id) = 1.

Ejercicio 3: (3 puntos)

Clasifique la siguiente familia de formas cuadráticas de \mathbb{R}^3 según los valores del parámetro real λ . Para $\lambda=1$ obtenga una base de vectores conjugados.

$$f_{\lambda}(x, y, z) = x^2 + y^2 + (\lambda + 1)z^2 + 2\lambda yz + 2zx$$