LECTURE 4 SELF-REDUCIBILITY OF THE DECODING PROBLEM

Summer School: Introduction to Quantum-Safe Cryptography

Thomas Debris-Alazard

July 04, 2024

Inria, École Polytechnique

HAPPY INDEPENDENCE DAY!

BUT DON'T FORGET...

THE OBJECTIVE OF THE DAY

Aim of Any Code-Based Cryptosystem:

Security relies on the hardness of the Decoding Problem (DP)

How to trust DP hardness?

- ► Test of time (designing & studying algorithms solving the decoding problem)
- ▶ Reduction: prove that decoding is harder than another hard problem

→ We will focus on reductions

COURSE OUTLINE

- A Quick Recap: Decoding Random Codes, an Average Case
- Worst-to-Average-Case Reduction: Framework
- Smoothing Parameter
- Fourier Transform in the Hamming Cube

THE AVERAGE DECODING PROBLEM

Today: focus on binary codes (for the sake of simplicity)

Linear Codes: Primal Representation

A linear code C is a subspace of \mathbb{F}_2^n

Basis/Generator matrix representation: rows of $\mathbf{A} \in \mathbb{F}_2^{k \times n}$ form a basis,

$$\mathcal{C} = \left\{ \mathsf{sA}: \ \mathsf{s} \in \mathbb{F}_2^k
ight\}$$

The vector/matrix multiplication sA is the collection of inner-products

$$\langle s, a_1 \rangle, \ldots, \langle s, a_n \rangle$$
 where a_i column of A and $\langle x, y \rangle \stackrel{\text{def}}{=} \sum_{i=1}^n x_i y_i \in \mathbb{F}_2$

Hamming Weight:

$$\forall \mathbf{x} \in \mathbb{F}_2^n, \quad |\mathbf{x}| \stackrel{\text{def}}{=} \left\{ i \in [1, n] : x_i \neq 0 \right\}$$

BERNOULLI RANDOM VARIABLE

▶ **e** ← Ber(
$$p$$
) $^{\otimes n}$: the e_i 's are independent and $\mathbb{P}(e_i = x) = \begin{cases} 1-p & \text{if } x = 0 \\ p & \text{if } x = 1 \end{cases}$

Chernoff's Bound: $\mathrm{Ber}(p)^{\otimes n}$ concentrates over words of Hamming weight $\approx np$

Given $\mathbf{e} \leftarrow \mathrm{Ber}(p)^{\otimes n}$,

$$\mathbb{E}(|\mathbf{e}|) = np$$
 and $\mathbb{P}(||\mathbf{e}| - np| \ge \varepsilon n) \le 2 e^{-\varepsilon n^2}$

First approximation: $Ber(p)^{\otimes n}$ is a uniform vector of Hamming weight np

Some slight variation of the decoding problem

DP(n, k, t): Average Decoding Problem

- Input: (A, sA + t) where A $\in \mathbb{F}_2^{k \times n}$, s $\in \mathbb{F}_2^k$ are uniform and t $\leftarrow \operatorname{Ber}(t/n)^{\otimes n}$
- Output: recovering s

Algorithm ${\mathcal A}$ solving DP in time T and probability ${\varepsilon}$ means

- A runs in time T,
- Given A, s uniform and $t \leftarrow Ber(p)^{\otimes n}$,

$$\mathbb{P}_{\mathsf{A},\mathsf{s},\mathsf{t}}\left(\mathcal{A}\left(\mathsf{A},\mathsf{s}\mathsf{A}+\mathsf{t}\right)=\mathsf{s}\right)=\varepsilon$$

YOU SAID AVERAGE CASE?

▶ Given $(A, s) \in \mathbb{F}_2^{k \times n} \times \mathbb{F}_2^k$ uniform and $t \leftarrow \text{Ber}(p)^{\otimes n}$,

$$\mathbb{P}_{\mathsf{A},\mathsf{s},\mathsf{t}}\Big(\mathcal{A}\left(\mathsf{A},\mathsf{s}\mathsf{A}+\mathsf{t}\right)=\mathsf{s}\Big)=\pmb{arepsilon}$$

Law of Total Probability:

$$\underline{\varepsilon} = \tfrac{1}{2^{k \times n}} \sum_{s_0, A_0} \sum_{t} \sum_{t_0 \colon |t_0| = t} \mathbb{P}\left(\mathcal{A}\left(A_0, s_0 A + t_0\right) = s_0\right) \underbrace{\rho^t (1 - \rho)^{n - t}}_{\mathbb{P}_t(t = t_0)}$$

 $\longrightarrow \varepsilon$: average success probability of \mathcal{A} over all possible inputs

 ε small $\Longrightarrow \mathcal{A}$ fails for almost all instances

Assumption in Code-Based Cryptography:

DP is hard, i.e., for any algorithm, T/ε is large

TEST OF TIME, WHAT ELSE?

To Ensure Hardness of DP (Average Hardness):

- 1. Test of time (designing & studying algorithms solving DP)
- 2. Reductions: solving the decoding problem on average implies an algorithm which
 - (i) computes (quantumly) short vectors in the dual code
 - (ii) solves all instances of another decoding problem (worst-case)

TEST OF TIME, WHAT ELSE?

To Ensure Hardness of DP (Average Hardness):

- 1. Test of time (designing & studying algorithms solving DP)
- 2. Reductions: solving the decoding problem on average implies an algorithm which
 - (i) computes (quantumly) short vectors in the dual code
 - (ii) solves all instances of another decoding problem (worst-case)

Given a fixed instance

(G, xG + r) where Hamming weight of r is w

we want to recover r

But, we only have an algorithm ${\cal A}$ solving DP with probability ${arepsilon}$

$$\mathbb{P}_{A,s,t}\Big(\mathcal{A}(A,sA+t)=t\Big)=\varepsilon$$

THE APPROACH

Key-idea:

From (G, xG + r) build a "uniform decoding" instance being fed to A

- 1. $\mathbf{e}_i \leftarrow \mathcal{D}$ (distribution)
- 2. Compute,

$$\langle y, e_i \rangle = \langle xG, e_i \rangle + \langle r, e_i \rangle = \langle \underbrace{x}_{\text{secret}}, e_i G^\top \rangle + \underbrace{\langle r, e_i \rangle}_{\text{noise}}$$

Packing Instances Together:

- $\bullet~$ Build the matrix $A=(a_{i})$ whose columns are the $e_{i}G^{\top}$
- Try to decode $(A, (\langle y, e_i \rangle_i)) = (A, xA + t)$ where $t = (\langle r, e_i \rangle)_i$

From the fixed decoding instance G, xG + r, we build

$$\langle y, e_i \rangle = \langle xG, e \rangle + \langle r, e \rangle = \langle \underbrace{x}_{\text{secret}}, e_i G^\top \rangle + \underbrace{\langle r, e_i \rangle}_{\text{noise}}$$

Packing Instances Together:

- Build the matrix $A = (a_i)$ whose columns are the $e_i G^T$
- Try to decode $(A, (\langle y, e_i \rangle_i)) = (A, xA + t)$ where $t = (\langle r, e_i \rangle)_i$
 - \longrightarrow Feed $(A, (\langle y, e_i \rangle_i))$ to the average decoding algorithm \mathcal{A} . But what happens?
- ightharpoonup Columns of A, i.e., $\mathbf{e}_i \mathbf{G}^{\top}$, are not uniform
- \blacktriangleright Noise $\langle r,e_i\rangle$ and e_iG^\top are correlated
- ► How does $\langle \mathbf{r}, \mathbf{e}_i \rangle$ behave?

Our Goal:

Estimate success probability of A being fed with the biased instance $(A, (\langle y, e_i \rangle_i))$

CLOSENESS: STATISTICAL DISTANCE

Statistical Distance:

Given two random variables X, Y,

$$\Delta(X,Y) = \Delta(f,g) = \frac{1}{2} \sum_{a} |\mathbb{P}(X=a) - \mathbb{P}(Y=a)|$$

→ It captures the differences between two random variables

• Data processing inequality: for any function/algorithm h

$$\Delta(h(X), h(Y)) \leq \Delta(X, Y)$$

• For any event \mathcal{E} ,

$$|\mathbb{P}(\mathsf{X} \in \mathcal{E}) - \mathbb{P}(\mathsf{Y} \in \mathcal{E})| \leq \Delta(\mathsf{X}, \mathsf{Y})$$

If an algorithm succeeds with inputs X and probability ε , then it succeeds given Y with probability $\varepsilon + \Delta(X,Y)$

True average decoding instance

1. We want the following to be small:

$$\alpha \stackrel{\text{def}}{=} \Delta \Big((e_i G^\top, \langle x, e_i G^\top \rangle + \langle r, e_i \rangle), (\underbrace{a}_{\text{uniform}}, \langle x, a \rangle + \underbrace{e}_{\text{same distrib as } \langle r, e_j \rangle}) \Big)$$

- 2. We feed $\left(e_iG^\top, \langle x, e_iG^\top \rangle + \langle r, e_i \rangle\right)$ to the decoding-solver $\mathcal A$ with success probability ε
- 3. If we give n samples to A, it will recover x with probability $\varepsilon + n\alpha$

Simplification:

Target:
$$\Delta \left(\mathbf{e}_i \mathbf{G}^{\mathsf{T}}, \underbrace{\mathbf{a}}_{\text{uniform}} \right)$$
 small when \mathbf{G} is fixed but \mathbf{e}_i random variable.

A GEOMETRICAL INTERPRETATION: PRIMAL REPRESENTATION

Aim:
$$\Delta \left(eG^{\top}, \underbrace{a}_{uniform} \right)$$
small

Which object is eG^{\top} ?

Take the code $\mathcal{C} \subseteq \mathbb{F}_2^n$ point of view

$$\mathcal{C} = \left\{ c: \ cG^\top = 0 \right\}$$

 $\longrightarrow eG^{\top}$ defines a coset of $\mathcal C$

Primal Representation:

 \mathbf{eG}^{\top} uniform \iff uniform in $\mathbb{F}_2^n/\mathcal{C}$, i.e. uniform modulo \mathcal{C}

 eG^{\top} uniform for $e \leftarrow \mathcal{D} \iff c + e$ uniform in \mathbb{F}_2^n where $c \xleftarrow{unif} \mathcal{C}$ and $e \leftarrow \mathcal{D}$

$$\mathbf{c} + \mathbf{e}$$
 uniform in \mathbb{F}_2^n where $\mathbf{c} \stackrel{unif}{\longleftarrow} \mathcal{C}$ and $\mathbf{e} \longleftarrow \mathcal{D}$

Starting from codewords and adding noise

after adding noise

$$\mathbf{c} + \mathbf{e}$$
 uniform in \mathbb{F}_2^n where $\mathbf{c} \xleftarrow{unif} \mathcal{C}$ and $\mathbf{e} \longleftarrow \mathcal{D}$

Starting from codewords and adding noise

 \longrightarrow To be uniform: necessary to cover the whole space after adding noise!

COMBINATORICS POINT OF VIEW: GILBERT-VARSHAMOV RADIUS

$$c+e \text{ uniform in } \mathbb{F}_2^n \text{ where } c \stackrel{\textit{unif}}{\longleftarrow} \mathcal{C} \text{ and } e \longleftarrow \mathcal{D}$$

If ${\bf e}$ concentrates over words of Hamming weight $\leq {\it t}$, it is necessary that

t is such that:
$$\sharp C \cdot \binom{n}{t} \geq 2^n$$

COMBINATORICS POINT OF VIEW: GILBERT-VARSHAMOV RADIUS

$$\mathbf{c} + \mathbf{e}$$
 uniform in \mathbb{F}_2^n where $\mathbf{c} \xleftarrow{\textit{unif}} \mathcal{C}$ and $\mathbf{e} \longleftarrow \mathcal{D}$

If ${f e}$ concentrates over words of Hamming weight $\leq {\it t}$, it is necessary that

t is such that:
$$\sharp \mathcal{C} \cdot \binom{n}{t} \geq 2^n$$

Gilbert-Varshamov Radius of C:

 t_{GV} : smallest radius t_0 such that $\sharp \mathcal{C} \cdot \binom{n}{t_0} \geq 2^n$

If one targets c+e uniform with e concentrating over words of Hamming weight t, $\label{eq:theorem} \text{then one wants } t \text{ as small as possible which is } t_{GV}$

But why?

THE REDUCTION IN A NUTSHELL

An algorithm solving the average decoding problem with noise

$$e_i = \langle \mathbf{r}, \mathbf{e}_i \rangle$$
 where $\mathbf{e}_i \longleftarrow \mathcal{D}$

implies an algorithm solving the fixed decoding problem (G,xG+r)

THE REDUCTION IN A NUTSHELL

The average decoding problem with noise

$$e_i = \langle \mathbf{r}, \mathbf{e}_i \rangle$$
 where $\mathbf{e}_i \longleftarrow \mathcal{D}$

is harder than solving the fixed decoding problem (G,xG+r)

THE REDUCTION IN A NUTSHELL

The average decoding problem with noise

$$e_i = \langle \mathbf{r}, \mathbf{e}_i \rangle$$
 where $\mathbf{e}_i \longleftarrow \mathcal{D}$

is harder than solving the fixed decoding problem (G, xG + r)

Ideal Situation:

The reduction works with $\mathbb{P}(\langle \mathbf{r}, \mathbf{e}_i \rangle = 1)$ is small

Because in cryptography we use the assumption that average decoding is hard for a noise e with $\mathbb{P}(e=1)$ small

 \longrightarrow To ensure $\mathbb{P}\left(\langle r,e_i\rangle=1\right)$ is small we need to choose e_i concentrating over words of small Hamming weight

THE NOISE: OUR BEST FRIEND TO UNIFORMIZE

Our Aim:

To find $e \longleftarrow \mathcal{D}$ such that c + e is close (statistical distance) to uniform when $c \stackrel{\textit{unif}}{\longleftarrow} \mathcal{C}$

A First Approach:

Choose each bit of ${\bf e}$ with probability 1/2, then ${\bf c}+{\bf e}$ is uniform

But, doing this is useless: $\langle r, e \rangle$ will be a uniform noise...

Therefore, impossible to solve (eG
$$^{\top}$$
, $\langle x, eG^{\top} \rangle + \underbrace{\langle r, e \rangle}_{\text{noise}}$

 \longrightarrow We need to carefully choose ${f e}!$

Given a Linear Code $C \subseteq \mathbb{F}_2^n$: we want

c + e to be uniform where $c \stackrel{unif}{\longleftarrow} \mathcal{C}$ and $e \leftarrow \mathcal{D}$ (free choice in the reduction)

 \mathcal{S}_t be the Hamming-sphere with radius t

If \mathcal{D} concentrates over \mathcal{S}_t ,

$$\sharp \mathcal{C} \cdot \binom{n}{t} \ge 2^n \iff t \ge t_{GV}$$

A Lower-Bound on the Amount of Noise:

If noise concentrates on sphere with radius t: necessarily $t \geq t_{\text{GV}}$

SOME NOTATION

Notation:

- unif: uniform distribution of \mathbb{F}_2^n
- 1_C: indicator function of C
- Convolution, $f \star g(\mathbf{x}) \stackrel{\text{def}}{=} \sum_{\mathbf{y} \in \mathbb{F}_2^n} f(\mathbf{y}) g(\mathbf{x} \mathbf{y})$

If
$$\mathbf{X} \leftarrow f$$
 and $\mathbf{Y} \leftarrow g$ are independent, then $\mathbf{X} + \mathbf{Y} \leftarrow f \star g$

Smoothing Parameter:

If f_t concentrates over words of weight t. Smoothing parameter is the smallest t such that,

$$\Delta\left(\tfrac{1_{\mathcal{C}}}{\sharp\mathcal{C}}\star f_{t},\mathsf{unif}\right) = \tfrac{1}{2}\sum_{\mathbf{x}\in\mathbb{F}_{2}^{n}}\left|\tfrac{1_{\mathcal{C}}}{\sharp\mathcal{C}}\star f_{t}(\mathbf{x}) - \mathsf{unif}(\mathbf{x})\right| \quad \text{is negligible}$$

Our Dream:

$$\Delta\left(\frac{1}{\sharp C}\star f_t, \text{unif}\right)$$
 is negligible as soon as $t=t_{\text{GV}}(1+o(1)),$

CAUCHY-SCHWHARZ: PARSEVAL'S WORLD

We want:
$$\frac{1_{\mathcal{C}}}{\sharp_{\mathcal{C}}} \star f_t$$
 close to uniform

So,
$$x \mapsto \left| \frac{1_C}{\sharp C} \star f_t(x) - \text{unif}(x) \right|$$
 will be roughly constant!

Any idea to upper-bound tightly
$$\sum_{\mathbf{x} \in \mathbb{F}_2^n} \left| \frac{1_C}{\mathbb{E}^C} \star f_t(\mathbf{x}) - \mathrm{unif}(\mathbf{x}) \right|$$
?

CAUCHY-SCHWHARZ: PARSEVAL'S WORLD

We want: $\frac{1_{\mathcal{C}}}{\sharp_{\mathcal{C}}} \star f_t$ close to uniform

So,
$$x \mapsto \left| \frac{1_C}{\sharp C} \star f_t(x) - \text{unif}(x) \right|$$
 will be roughly constant!

Any idea to upper-bound tightly
$$\sum_{\mathbf{x} \in \mathbb{F}_2^n} \left| \frac{1_{\mathcal{C}}}{\sharp \mathcal{C}} \star f_t(\mathbf{x}) - \text{unif}(\mathbf{x}) \right|$$
?

A Good Idea: Cauchy-Schwarz

$$\sum_{\mathbf{x} \in \mathbb{F}_2^n} \left| \frac{1_{\mathcal{C}}}{\sharp \mathcal{C}} \star f_t(\mathbf{x}) - \mathsf{unif}(\mathbf{x}) \right| \leq \sqrt{2^n} \, \sqrt{\sum_{\mathbf{x} \in \mathbb{F}_2^n}} \left(\frac{1_{\mathcal{C}}}{\sharp \mathcal{C}} \star f_t(\mathbf{x}) - \mathsf{unif}(\mathbf{x}) \right)^2$$

 \longrightarrow The upper-bound: L_2 -distance!

A natural approach: Parseval's identity via Fourier Theory

FOURIER TRANSFORM (INFORMAL)

Fourier Transform (informal):

It decomposes a function in the Fourier basis

But how is defined the Fourier basis?

FOURIER TRANSFORM (INFORMAL)

Fourier Transform (informal):

It decomposes a function in the Fourier basis

But how is defined the Fourier basis?

→ Basis that diagonalizes (per-block in non-abelian case) translation operators!

Hamming Cube Case:

Given the translation operator $R(\mathbf{t})$ for functions $f: \mathbb{F}_2^n \longrightarrow \mathbb{C}$,

$$R(\mathbf{t}): f \longmapsto (g: \mathbf{x} \in \mathbb{F}_2^n \longmapsto g(\mathbf{x} + \mathbf{t}))$$

It is diagonal in the character basis $\left(\chi_{\mathbf{y}}:\mathbf{x}\longmapsto(-1)^{\langle\mathbf{x},\mathbf{y}\rangle}\right)$,

$$R(t)(\chi_y) = (-1)^{\langle y,t \rangle} \cdot \chi_y$$

FOURIER TRANSFORM IN THE HAMMING CUBE

Scalar product and associated norms:

$$\langle f, g \rangle \stackrel{\text{def}}{=} \frac{1}{2^n} \sum_{\mathbf{y} \in \mathbb{F}_2^n} f(\mathbf{y}) g(\mathbf{y}) \text{ and } ||f||_2 \stackrel{\text{def}}{=} \sqrt{\langle f, f \rangle}$$

• An orthonormal basis, characters:

$$\chi_{\mathbf{x}}(\mathbf{y}) \stackrel{\text{def}}{=} (-1)^{\langle \mathbf{x}, \mathbf{y} \rangle}$$

Fourier Transform:

Given $f: \mathbb{F}_2 \to \mathbb{C}$,

$$\widehat{f}(\mathbf{x}) = \frac{1}{\sqrt{2^n}} \sum_{\mathbf{y} \in \mathbb{F}_2^n} f(\mathbf{y}) \chi_{\mathbf{x}}(\mathbf{y}) = \sqrt{2^n} \langle f, \chi_{\mathbf{x}} \rangle$$

· Convolution:

$$\widehat{f \star g} = \sqrt{2^n} \ \widehat{f} \cdot \widehat{g}$$

PARSEVAL'S IDENTITY

Parseval Identity: Fourier Transform Isometry for L_2

$$||f - g||_2 = ||\widehat{f} - \widehat{g}||_2$$

Proof.

Given any function $h: \mathbb{F}_2^n \longrightarrow \mathbb{C}$, as $(\chi_{\mathsf{x}})_{\mathsf{x} \in \mathbb{F}_2^n}$ is an orthonormal basis,

$$h = \sum_{\mathbf{x} \in \mathbb{F}_2^n} \langle h, \chi_{\mathbf{x}} \rangle \cdot \chi_{\mathbf{x}} \quad \text{and} \quad \|h\|_2^2 = \sum_{\mathbf{x} \in \mathbb{F}_2^n} \left| \langle h, \chi_{\mathbf{x}} \rangle \right|^2 = \frac{1}{2^n} \sum_{\mathbf{x} \in \mathbb{F}_2^n} \left| \widehat{h}(\mathbf{x}) \right|^2 = \|\widehat{h}\|_2^2$$

 \longrightarrow For our purpose: we need to compute $\widehat{1_{\mathcal{C}}}$

Dual Code:

Given $\mathcal{C} \subseteq \mathbb{F}_2^n$,

$$\mathcal{C}^{\perp} \stackrel{\text{def}}{=} \left\{ \mathbf{x} \in \mathbb{F}_2^n : \ \forall \mathbf{y} \in \mathbb{F}_2^n, \ \sum_{i=1}^n x_i y_i = 0 \right\} = \left\{ \mathbf{x} \in \mathbb{F}_2^n : \ \forall \mathbf{y} \in \mathcal{C}, \ \chi_{\mathbf{x}}(\mathbf{y}) = 1 \right\}$$

Fourier Transform of the Code Indicator:

$$\widehat{1}_{\mathcal{C}} = \frac{\sharp \mathcal{C}}{\sqrt{2^n}} \, \mathbf{1}_{\mathcal{C}^{\perp}}$$

→ This result is known as "Poisson summation" formula!

FOURIER TRANSFORM UNIFORM FUNCTION

 \longrightarrow We also need to compute $\widehat{\text{unif}}$ where $\text{unif}(\mathbf{x})=\frac{1}{2^n}$ for any $\mathbf{x}\in\mathbb{F}_2^n$

Fourier Transform of the Uniform Function:

$$\widehat{\text{unif}} = \frac{1}{\sqrt{2^n}} \cdot \delta_0$$
 where $\delta_0(x) = 0$ if $x \neq 0$ and 1 otherwise (Kronecker delta)

Proof.

$$\sqrt{2^n} \cdot \widehat{\text{unif}}(\mathbf{x}) = \sum_{\mathbf{y} \in \mathbb{F}_2^n} \text{unif}(\mathbf{y}) \chi_{\mathbf{x}}(\mathbf{y}) = \sum_{\mathbf{y} \in \mathbb{F}_2^n} \frac{(-1)^{\langle \mathbf{x}, \mathbf{y} \rangle}}{2^n}$$

But,

$$\sum\limits_{\textbf{y}\in\mathbb{F}_2^{\Pi}}(-1)^{\langle \textbf{x},\textbf{y}\rangle}=0$$
 when $\textbf{x}\neq\textbf{0}.$

Indeed, when $\mathbf{x} \neq \mathbf{0}$, it exists $\mathbf{z} \neq \mathbf{0}$ such that $\langle \mathbf{x}, \mathbf{z} \rangle \neq \mathbf{0} \mod 2$ and

$$\textstyle\sum_{y\in\mathbb{F}_2^n}(-1)^{\langle x,y\rangle}=\sum_{y\in\mathbb{F}_2^n}(-1)^{\langle x,(y+z)\rangle}=(-1)^{\langle x,z\rangle}\sum_{y\in\mathbb{F}_2^n}(-1)^{\langle x,y\rangle}$$

As $(-1)^{\langle x,z\rangle} \neq$ 1, the above equality is only possible if $\sum\limits_{y\in\mathbb{F}_2^n} (-1)^{\langle x,y\rangle}=0.$

$$\begin{split} \Delta \left(\frac{1_{\mathcal{C}}}{\sharp \mathcal{C}} \star f_t, \mathsf{unif} \right) &\leq \sqrt{2^n} \ \left\| \frac{1_{\mathcal{C}}}{\sharp \mathcal{C}} \star f_t - \mathsf{unif} \right\|_2 = \sqrt{2^n} \ \left\| \frac{\sqrt{2^n}}{\sharp \mathcal{C}} \ \widehat{\mathsf{1}}_{\widehat{\mathcal{C}}} \cdot \widehat{\mathsf{f}}_{\widehat{\mathsf{t}}} - \widehat{\mathsf{unif}} \right\|_2 \\ &= \sqrt{2^n} \ \left\| \frac{\sqrt{2^n}}{\sqrt{2^n} \cdot \sharp \mathcal{C}} \cdot \sharp \mathcal{C} \cdot 1_{\mathcal{C}^\perp} \cdot \widehat{\mathsf{f}}_{\widehat{\mathsf{t}}} - \frac{1}{\sqrt{2^n}} \delta_0 \right\|_2 \\ &= \sqrt{2^n} \ \sqrt{\sum_{c^\perp \in \mathcal{C}^\perp \setminus \{0\}} |\widehat{f_t}(\mathbf{X})|^2} \end{split}$$

Upper-Bound:

$$\Delta\left(\tfrac{1_{\mathcal{C}}}{\sharp\mathcal{C}}\star f_t, \mathsf{unif}\right) \leq \sqrt{2^n} \; \sqrt{\sum\limits_{\mathtt{c}^\perp \in \mathcal{C}^\perp \setminus \{\mathbf{0}\}} |\widehat{f_t}(\mathbf{X})|^2}$$

If $f_t(x)$ depends only on |x| (radial),

$$\Delta\left(\frac{1_{\mathcal{C}}}{\sharp\mathcal{C}}\star f_t, \mathsf{unif}
ight) \leq \sqrt{2^n} \ \sqrt{\sum\limits_{a>0} N_a(\mathcal{C}^\perp) \ |\widehat{f_t}(a)|^2}$$

where.

$$N_a(\mathcal{C}^{\perp}) \stackrel{\text{def}}{=} \sharp \left\{ \mathbf{c}^{\perp} \in \mathcal{C}^{\perp} : |\mathbf{c}^{\perp}| = a \right\}$$

AN OPTIMAL UPPER-BOUND: THE RANDOM CASE

We need to upper-bound $N_{\alpha}\left(\mathcal{C}^{\perp}\right)\!,$ but how?

We need to upper-bound $N_a\left(\mathcal{C}^\perp\right)$, but how?

→ To understand first if our approach is meaningful, use random codes of fixed size!

$$\begin{split} \mathbb{E}_{\mathcal{C}^{\perp}} \left(\Delta \left(\frac{1_{\mathcal{C}}}{\sharp \mathcal{C}} \star f_t, \mathsf{unif} \right) \right) &\leq \mathbb{E}_{\mathcal{C}^{\perp}} \left(\sqrt{2^n} \, \sqrt{\sum_{a>0} N_a(\mathcal{C}^{\perp}) \, |\widehat{f}_t(a)|^2} \right) \\ &\leq \sqrt{2^n} \, \sqrt{\sum_{a>0} \mathbb{E}_{\mathcal{C}^{\perp}} \left(N_a(\mathcal{C}^{\perp}) \, |\widehat{f}_t(a)|^2 \right)} \quad \left(\mathsf{Jensen's Inequality} \right) \\ &= \sqrt{2^n} \, \sqrt{\sum_{a>0} \frac{\binom{n}{2}}{\sharp \mathcal{C}} \, |\widehat{f}(t)|^2} \end{split}$$

Bernoulli: our dream comes false

Choosing $f(\mathbf{x}) = p^{|\mathbf{x}|} (1 - p)^{n-|\mathbf{x}|}$ concentrating over words of Hamming weight pn with random codes C of dimension k leads to:

$$np \ge \frac{n}{2} \left(1 - \sqrt{2^{k/n} - 1}\right)$$

To ensure $\mathbb{E}_{\mathcal{C}^{\perp}}\left(\Delta\left(\frac{1_{\mathcal{C}}}{\sharp\mathcal{C}}\star f, \mathrm{unif}\right)\right)$ negligible while

$$\frac{n}{2}\left(1-\sqrt{2^{k/n}-1}\right)\gg t_{GV}$$

UNIFORM DISTRIBUTION OVER A SPHERE

Using Bernoulli seems to be non-optimal. Which other distribution concentrating over \mathcal{S}_{pn} could be chosen?

UNIFORM DISTRIBUTION OVER A SPHERE

Using Bernoulli seems to be non-optimal. Which other distribution concentrating over \mathcal{S}_{pn} could be chosen?

 \longrightarrow 1_{S_t} / $\binom{n}{t}$ be the uniform distribution over S_t

Using
$$f = \frac{\mathbf{1}_{\mathcal{S}_t}}{\binom{n}{t}}$$
,
$$\mathbb{E}_{\mathcal{C}^\perp} \left(\Delta \left(\frac{2^n}{\sharp \mathcal{C}} \mathbf{1}_{\mathcal{C}} \star f, \mathrm{unif} \right) \right) \leq \sqrt{\frac{2^n}{\sharp \mathcal{C} \cdot \binom{n}{t}}}$$

 \longrightarrow Our dream comes true: $t \geq t_{\text{GV}}$ to ensure a negligible statistical distance

But our bound only holds on average, not for a fixed code $\mathcal{C}\dots$

NON-RANDOM CASE

To get our upper-bound we used:
$$\mathbb{E}_{\mathcal{C}^{\perp}}\left(\sharp\left\{\mathbf{c}^{\perp}\in\mathcal{C}^{\perp}:\;|\mathbf{c}^{\perp}|=a\right\}\right)=\frac{\binom{n}{2}}{\sharp\mathcal{C}}$$

→ What happens for a fixed code, as aimed in the reduction?

We use

Linear Programming Bounds from Delsarte's Theory (Association Schemes, \dots):

$$N_a\left(\mathcal{C}^\perp\right) \leq F(d,a)$$

where d minimum distance of \mathcal{C}^\perp

