The SCRAM

- · memory 16 x 8 6it "RAM"
- · instruction or data
- · two more registus
 - · AC accumulator 8-bit
 - o PC Program Counter address of the next instruction

Instructions:

LDA address: load accumulator AC = M [addr]

JMP address: sets program counter-PC address

Address	Instruction		In Memory
0	LDA	Ч	0001 0100
1	AAA	≤	0101 0101
J	STA	4	0011 0100
2	JMP	ò	0111 0000
4	DAT	O	0000 0000
5	DAT	1	0000 0001
			-A
Δ54	4.40-		
۲۰	instruction		

Instruction Format

operand address

Build a curent to make this run &

xs: read /write numby X4: load MAR

X13: PC++ X1: Loud IR X6: time control

X19: Sower FOR MAR X2: LOUD MBR X7: SOWER FOR MBR Xz: Lood PC

XIL: Load AC X11: Source AC

R/W

MBR

Fetch - Execute Cycle

MAR -- PC X10=00 , X4=1

MBR←MEM , PL←PC+1

X7=0 X4=1 , X13=1 IR MBR + - XI

x,=1 LDA mistrution

instruction Fetch

MAR = IR (10W)

 $Q_1 + Q_2 : MBR \leftarrow MEM$ $X_7 = O \quad X_8 = 1$

 $Q_1 + S$: $AC \leftarrow MBR$ $Q_1 + S$ $X_{11} = 0$, $X_{18} = 1$ $Y_{18} = 1$

ADD Instruction AC - AC + MCX]

95+3 MAR E-IR (low)

95 ty MBR - MEM

1s +s AD = MBR 15 Xq

1st RS AC+AD 45 - X15

9s+7 $AC \leftarrow RS$ $x_{11}=1, x_{11}=1$

JMP Instruction PC= IR (low)

 $\frac{DMP \quad 1n_0.}{q_7 + q_3 \quad PC \leftarrow IR(low)} \quad q_7 - x_3$ $x_3 = 1 \quad +q_3 - x_3$

SUB ----JMZ - - .

,S→".Z"→ . Scram kxt bits instruction