Cyclic Characters of Symmetric Groups *

Armin Jöllenbeck and Manfred Schocker Mathematisches Seminar der Universitaet Ludewig-Meyn-Str. 4 D-24098 Kiel Germany

June 1998

Abstract

We consider characters of finite symmetric groups induced from linear characters of cyclic subgroups. A new approach to Stembridge's result on their decomposition into irreducible components is presented. In the special case of a subgroup generated by a cycle of longest possible length, this amounts to a short proof of the Kraśkiewicz-Weyman theorem.

In a remarkable paper of 1987, Kraśkiewicz and Weyman described the decomposition of certain characters of the symmetric group S_n into irreducible components [KW87]. Let C be a subgroup generated by a cycle σ of order n. Denote by ψ_i the character of C mapping σ onto the i-th power of a primitive n-th root of unity. Then the multiplicity $(\psi_i^{S_n}, \zeta^p)_{S_n}$ of the irreducible character ζ^p indexed by the partition p of n in $\psi_i^{S_n}$ equals the number of standard Young tableaux of shape p and major index congruent i modulo n. Another proof of this theorem has been given by Garsia [Gar90], see also Chapter 8 in [Reu93].

More generally, like Stembridge in [Ste89] we consider characters ψ^{S_n} over the field \mathbb{C} of complex numbers, where ψ is a linear character of an arbitrary

^{*}Dedicated to Dieter Blessenohl on the occasion of his sixtieth birthday

cyclic subgroup Z. We call them cyclic characters of S_n . In order to give a combinatorial description of the occurring multiplicities $(\psi^{S_n}, \zeta^p)_{S_n}$ we use the notion of a $multi\ major\ index$, which is a tuple of major indices defined in segments. For the special case Z=C we obtain exactly the result of Kraśkiewicz and Weyman, hence giving a new proof of it.

The method we use is different from that presented by Stembridge: Making use of a certain Lie idempotent introduced by Klyachko [Kly74], our proof is based on the noncommutative character theory of symmetric groups, contained in the first author's thesis [Jöl98] that is shortly summarized in the first section. The second section contains the theorem and its proof.

1 The frame algebra

Let \mathbb{N} (\mathbb{N}_0 , resp.) be the set of all positive (nonnegative, resp.) integers and \mathbb{N}^* a free monoid with alphabet \mathbb{N} . A word $q = q_1 \cdots q_k \in \mathbb{N}^*$ is called a composition of n iff $q_1 + \cdots + q_k = n$. We denote by C_q the conjugacy class containing all permutations $\pi \in S_n$ whose cycle partition is a rearrangement of q. Let ch_q be the class function of S_n such that $(\chi, \operatorname{ch}_q)_{S_n} = \chi(C_q)$ for all class functions χ of S_n , i.e., up to a scalar factor ch_q is the characteristic function of C_q in S_n . For the outer product \bullet in the algebra $\mathcal{C} := \bigoplus_{n \in \mathbb{N}} \mathcal{C}\ell_{\mathbb{C}}S_n$ of all class functions we then have the multiplication rule $\operatorname{ch}_q \bullet \operatorname{ch}_r = \operatorname{ch}_{qr}$ for all $q, r \in \mathbb{N}^*$. Using this algebra \mathcal{C} , the character theory of symmetric groups can be elegantly described. For details, including a coproduct and hence a bialgebra structure on \mathcal{C} , see [Gei77].

In the first author's thesis [Jöl98], a noncommutative analogue of this bialgebra \mathcal{C} of class functions is presented. The main idea behind it is to consider algebraic structures consisting of Young tableaux: Let \leq be the partial order on $\mathbb{Z} \times \mathbb{Z}$ (\mathbb{Z} the set of all integers) defined by: $(u,v) \leq (x,y)$ iff $u \leq x$ and $v \leq y$. A finite subset R of $\mathbb{Z} \times \mathbb{Z}$ is called a *frame* if it is convex with respect to \leq . E.g., $S = \{(1,2), (1,3), (2,1), (2,2)\}$ is a frame and may be illustrated by

The following version of a well known concept is convenient for our purposes. Let R be a frame. A standard Young tableau of shape R is a permutation π

with the following property: Filled into R row by row, starting from bottom left and ending at top right, π is increasing in rows (from left to right) and columns (downwards). The set of all these permutations is denoted by SYT^R . In the group ring $\mathbb{C}S_n$ of S_n (where n=|R|), we may then form the sum of all elements of SYT^R and set $\operatorname{Z}^R:=\sum \operatorname{SYT}^R$. For the frame S mentioned above we have the following standard Young tableaux:

	2	4		2	3		1	4		1	3		1	2
1	3		1	4		2	3		2	4		3	4	

Hence, $Z^S = 1324 + 1423 + 2314 + 2413 + 3412 \in \mathbb{C}S_4$.

Corresponding to any partition $p = p_1 p_2 \cdots p_k \in \mathbb{N}^*$ $(p_1 \geq \cdots \geq p_k)$ there is the frame $R(p) = \{(i,j) \in \mathbb{Z} \times \mathbb{Z} \mid 1 \leq i \leq k, 1 \leq j \leq p_i\}$. We write SYT^p, \mathbb{Z}^p instead of SYT^{R(p)}, $\mathbb{Z}^{R(p)}$ resp. .

In [Jöl98] the linear subspace \mathcal{R} of $\mathbb{C}S := \bigoplus_{n \in \mathbb{N}} \mathbb{C}S_n$ is introduced as the \mathbb{C} -linear span of all elements \mathbb{Z}^R (R frame). Furthermore, a product \bullet on \mathcal{R} and an algebra epimorphism $c: (\mathcal{R}, \bullet) \to (\mathcal{C}, \bullet)$ are defined such that $(\phi, \psi) = (c(\phi), c(\psi))_S$ for all $\phi, \psi \in \mathcal{R}$, where the bilinear mapping on the left hand side is given by

$$(\sigma, \tau) := \begin{cases} 1 & \text{if } \sigma = \tau^{-1} \\ 0 & \text{if } \sigma \neq \tau^{-1} \end{cases} \quad \text{for all permutations } \sigma, \tau$$

on $\mathbb{C}S$ and the one on the right hand side is the canonical orthogonal extension $(\cdot, \cdot)_S$ of the scalar products $(\cdot, \cdot)_{S_n}$.

If $q = q_1q_2\cdots q_k$ is a composition of $n \in \mathbb{N}$ and R is the frame illustrated by

then the image of $\Xi^q := \mathbb{Z}^R$ under c is the permutation character $\xi^q = (1_Y)^{S_n}$ related to any Young subgroup Y of type q. Furthermore, $\Xi^q \cdot \Xi^r = \Xi^{qr}$ for all $q, r \in \mathbb{N}^*$. It should be mentioned that the so-called frame algebra \mathcal{R} contains the direct sum \mathcal{D} of all descent algebras $\mathcal{D}_n = \langle \Xi^q \mid q \text{ composition of } n \rangle_{\mathbb{C}}$ discovered by Solomon [Sol76].

The crucial point is the fact that c is an extension of Solomon's epimorphism [Sol76] and $c(\mathbf{Z}^p) = \zeta^p$ is the irreducible character of S_n corresponding to p for any partition p of n.

Now, let ω_n be the element of $\mathbb{C}S_n$ operating via Polya operation on any word $x_1x_2\cdots x_n$ of length n by $\omega_n x_1x_2\cdots x_n = [[\cdots [[x_1,x_2],x_3],\cdots],x_n]$, where [x,y]=xy-yx denotes the Lie commutator of x and y.

By the Dynkin-Specht-Wever theorem ([Dyn47], [Spe48], [Wev49]) ω_n is a Lie idempotent (up to the factor n), i.e., $\omega_n \omega_n = n \omega_n$. Furthermore, $\omega_n = \sum_{k=0}^{n-1} (-1)^k Z^{(n-k)1^k} \in \mathcal{R}$, and $c(\omega_n) = \operatorname{ch}_n$.

2 Cyclic characters of symmetric groups

First of all, we present a construction of inverse images of the elements $\operatorname{ch}_q \in \mathcal{C}$ $(q \in \mathbb{N}^*)$ under c based on Lie idempotents. Recall that $e \in \mathbb{C}S_n$ is a Lie idempotent up to the factor n iff $\omega_n e = ne$ and $e\omega_n = n\omega_n$.

1 PROPOSITION For all $n \in \mathbb{N}$, let $e_n \in \mathcal{D}_n$ such that $\frac{1}{n}e_n$ is a Lie idempotent. Then, we have $c(e_{q_1} \bullet \cdots \bullet e_{q_k}) = \operatorname{ch}_q$ for all $q = q_1 \cdots q_k \in \mathbb{N}^*$.

PROOF: Let $n \in \mathbb{N}$. Then,

$$c(e_n) = \frac{1}{n}c(\omega_n e_n) = \frac{1}{n}c(\omega_n)c(e_n) = \frac{1}{n}c(e_n)c(\omega_n) = \frac{1}{n}c(e_n\omega_n) = c(\omega_n) = ch_n$$

as c is an homomorphism with respect to the inner multiplication of \mathcal{D}_n and $\mathcal{C}\ell_{\mathbb{C}}S_n$ by Solomon [Sol76]. For any $q=q_1\cdots q_k\in\mathbb{N}^*$, it follows that

$$c(e_{q_1} \bullet \cdots \bullet e_{q_k}) = c(e_{q_1}) \bullet \cdots \bullet c(e_{q_k}) = \operatorname{ch}_{q_1} \bullet \cdots \bullet \operatorname{ch}_{q_k} = \operatorname{ch}_q$$
.

Let $n \in \mathbb{N}$. For all $\pi \in S_n$, we call

$$D(\pi) := \{ i \mid 1 \le i \le n-1 \text{ and } i\pi > (i+1)\pi \}$$

the descent set of π . If $q = q_1 \cdots q_k \in \mathbb{N}^*$ is a composition of n, the multi major index of π with respect to q is defined to be the word of length n the j-th letter of which is

$$(\text{maj}_q \pi)_j := \sum_{\substack{s_{j-1} < i < s_j \ i \in D(\pi)}} (i - s_{j-1}) \quad \text{for all } j \in \{1, \dots, k\},$$

where $s_j := q_1 + \cdots + q_j$ for all $j \in \{0, \dots, k\}$. In the special case of q = n, maj $\pi = \text{maj}_n \pi$ is the well known major index of π . For example, $\text{maj}_{322} \, 5 \, 6 \, 2 \, 1 \, 3 \, 7 \, 4 = 2 \, 0 \, 1$ and $\text{maj}_{43} \, 5 \, 6 \, 2 \, 1 \, 3 \, 7 \, 4 = 5 \, 2$. Let

$$\kappa_n(x) := \sum_{\pi \in S_n} x^{\text{maj }\pi} \pi$$
 (where x is a variable).

Then, for any primitive n-th root of unity ε , $\kappa_n(\varepsilon)$ is a Lie idempotent (up to the factor n) [Kly74]. Let $q = q_1 \cdots q_k$ be a composition of n and

$$\kappa_q(x_1, \dots, x_k) := \kappa_{q_1}(x_1) \cdot \dots \cdot \kappa_{q_k}(x_k)$$
 (where each x_i is a variable).

For any choice of primitive q_i -th roots of unity ε_i , we have $c(\kappa_q(\varepsilon_1, \ldots, \varepsilon_k)) = \operatorname{ch}_q$ by Proposition 1. We finally define, for all $j \in \mathbb{N}$,

$$q^{(j)} := \underbrace{\frac{q_1}{\gcd(q_1,j)} \cdots \frac{q_1}{\gcd(q_1,j)}}_{\gcd(q_1,j) \text{ times}} \cdots \underbrace{\frac{q_k}{\gcd(q_k,j)} \cdots \frac{q_k}{\gcd(q_k,j)}}_{\gcd(q_k,j) \text{ times}} \in \mathbb{N}^* .$$

Then, if $\sigma \in S_n$ has cycle type q, $C_{q^{(j)}}$ is the conjugacy class of σ^j .

The definitions given so far lead to the following surprising result:

2 PROPOSITION Let $j \in \mathbb{N}$, $q = q_1 \cdots q_k \in \mathbb{N}^*$ and ε_i be an arbitrary q_i -th root of unity for all $i \in \{1, \ldots, k\}$. Then,

$$\kappa_{q(j)}\left(\underbrace{\varepsilon_1^j,\ldots,\varepsilon_1^j}_{\gcd(q_1,j) \text{ times}},\ldots,\underbrace{\varepsilon_k^j,\ldots,\varepsilon_k^j}_{\gcd(q_k,j) \text{ times}}\right) = \kappa_q\left(\varepsilon_1^j,\ldots,\varepsilon_k^j\right).$$

PROOF: For q = n, $\kappa_{d^n/d}(\varepsilon_1^j, \ldots, \varepsilon_1^j) = \kappa_n(\varepsilon_1^j)$ is a special case of [LST96], Proposition 4.1, where $d = q_1/\gcd(q_1, j)$ is the order of ε_1^j . For arbitrary q, let d_i be the order of ε_i^j for all $i \in \{1, \ldots, k\}$. Then, using the result of the special case in each factor, we obtain

$$\kappa_{q^{(j)}}(\varepsilon_{1}^{j}, \ldots, \varepsilon_{1}^{j}, \ldots, \varepsilon_{k}^{j}, \ldots, \varepsilon_{k}^{j})
= \kappa_{d_{1}^{q_{1}/d_{1}}}(\varepsilon_{1}^{j}, \ldots, \varepsilon_{1}^{j}) \cdot \ldots \cdot \kappa_{d_{k}^{q_{k}/d_{k}}}(\varepsilon_{k}^{j}, \ldots, \varepsilon_{k}^{j})
= \kappa_{q_{1}}(\varepsilon_{1}^{j}) \cdot \ldots \cdot \kappa_{q_{k}}(\varepsilon_{k}^{j})
= \kappa_{q}(\varepsilon_{1}^{j}, \ldots, \varepsilon_{k}^{j}) .$$

We are now in a position to state and prove the main result about cyclic characters of symmetric groups:

3 Theorem

Let $n \in \mathbb{N}$, $q = q_1 \cdots q_k$ be a composition of $n, v := \operatorname{lcm}(q_1, \ldots, q_k)$, η a primitive v-th root of unity and $e_1, \ldots, e_k \in \mathbb{N}_0$ such that η^{e_j} is a primitive q_j -th root of unity for all $j \in \{1, \ldots, k\}$. Let $\sigma \in C_q$, Z be the subgroup of S_n generated by σ , $i \in \{0, \ldots, v-1\}$ and $\psi_i : Z \longrightarrow K$, $\sigma^j \longmapsto \eta^{ij}$. Then,

$$\mathbf{M}_{(i)}^q := \sum \{ \pi \in S_n \mid \sum_{j=1}^k e_j(\mathrm{maj}_q \pi)_j \equiv i \mod v \}$$

is an element of \mathcal{D} , and we have

$$c(\mathbf{M}_{(i)}^q) = \psi_i^{S_n} \quad .$$

In particular, for any partition p of n,

$$(\psi_i^{S_n}, \zeta^p)_{S_n} = (\mathbf{M}_{(i)}^q, \mathbf{Z}^p)$$
$$= |\{ \pi \in \operatorname{SYT}^p \mid \sum_{j=1}^k e_j (\operatorname{maj}_q \pi^{-1})_j \equiv i \mod v \}|$$

PROOF: Note first that $\sum a_{\pi}\pi \in \mathbb{C}S_n$ is an element of \mathcal{D}_n iff $a_{\pi} = a_{\sigma}$ for all $\pi, \sigma \in S_n$ such that $D(\pi) = D(\sigma)$. This implies $M_{(i)}^q \in \mathcal{D}_n$. Furthermore, for an arbitrary v-th root of unity φ it is easy to see that

$$\kappa_{q}(\varphi^{e_{1}}, \dots, \varphi^{e_{k}}) = \sum_{\pi_{1} \in S_{q_{1}}} \dots \sum_{\pi_{k} \in S_{q_{k}}} \varphi^{e_{1} \operatorname{maj} \pi_{1} + \dots + e_{k} \operatorname{maj} \pi_{k}} \pi_{1} \bullet \dots \bullet \pi_{k}$$

$$= \sum_{l=0}^{v-1} \varphi^{l} \mathbf{M}_{(l)}^{q}$$

as

$$\sum_{\pi_1 \in S_{q_1}} \cdots \sum_{\pi_k \in S_{q_k}} \pi_1 \bullet \ldots \bullet \pi_k = \Xi^{1^{q_1}} \bullet \ldots \bullet \Xi^{1^{q_k}} = \Xi^{1^n} = \sum_{\pi \in S_n} \pi .$$

Hence, by Frobenius' reciprocity law, the two propositions and the preliminary remarks in Section 1, for any partition p of n,

$$(\psi_i^{S_n}, \zeta^p)_{S_n}$$

$$= \frac{1}{v} \sum_{j=0}^{v-1} \psi_i(\sigma^{-j}) \zeta^p(\sigma^j)$$

$$= \frac{1}{v} \sum_{j=0}^{v-1} \eta^{-ij} \left(\operatorname{ch}_{q^{(j)}}, \zeta^{p} \right)_{S_{n}}
= \frac{1}{v} \sum_{j=0}^{v-1} \eta^{-ij} \left(\kappa_{q^{(j)}} \left((\eta^{e_{1}})^{j}, \dots, (\eta^{e_{1}})^{j}, \dots, (\eta^{e_{k}})^{j}, \dots, (\eta^{e_{k}})^{j} \right), Z^{p} \right)
= \frac{1}{v} \sum_{j=0}^{v-1} \eta^{-ij} \left(\kappa_{q} \left((\eta^{e_{1}})^{j}, \dots, (\eta^{e_{k}})^{j} \right), Z^{p} \right)
= \left(\frac{1}{v} \sum_{l=0}^{v-1} \sum_{j=0}^{v-1} \eta^{-ij} \eta^{jl} M_{(l)}^{q}, Z^{p} \right)
= \left(M_{(i)}^{q}, Z^{p} \right)
= \left(c(M_{(i)}^{q}), \zeta^{p} \right)_{S_{n}} ,$$

and the theorem is proved.

4 COROLLARY (Kraśkiewicz, Weyman [KW87]) Let τ be a cycle of order n in S_n and ε be a primitive n-th root of unity. Let $i \in \{0, \ldots, n-1\}$ and write ψ_i for the character of the cyclic subgroup generated by τ such that $\psi_i(\tau) = \varepsilon^i$. Then the multiplicity of the irreducible character of S_n indexed by the partition p is given by

$$(\psi_i^{S_n}, \zeta^p)_{S_n} = |\{ \pi \in \operatorname{SYT}^p | \operatorname{maj} \pi^{-1} \equiv i \mod n \}|$$
.

5 REMARK We consider the special case of the theorem where $e_i = v/q_i$ for all $i \in \{1, ..., k\}$. As the proof of the theorem shows, we then have, with the correct powers of η used for $\kappa_{q^{(j)}}$, for all $j \in \mathbb{N}$:

$$\zeta^p(\sigma^j) = (\kappa_{q^{(j)}}(\ldots), \mathbf{Z}^p) = \sum_{l=0}^{v-1} \eta^{jl}(\mathbf{M}_{(l)}^q, \mathbf{Z}^p) = \sum_{\pi \in SYT^p} (\eta^j)^{\sum \frac{v}{q_i}(\mathbf{maj}_q \pi^{-1})_i} .$$

Taking into account that $\operatorname{ind}_q \pi = \sum \frac{v}{q_i} (\operatorname{maj}_q \pi^{-1})_i$ for the q-index of the tableau π defined by Stembridge, we obtain a new proof of Theorem 3.3 in [Ste89] by means of Proposition 1.1 in the same paper.

Note that j is a descent of π^{-1} iff j stands strictly above of j+1 for $\pi \in \operatorname{SYT}^p$ filled into the frame R(p). This is the link to the original version of the theorem.

References

- [Dyn47] E. B. Dynkin. Calculation of the coefficients of the Campbell–Hausdorff formula. *Docl. Akad. Nauk SSSR (N. S.)*, 57:323–326, 1947.
- [Gar90] A. M. Garsia. Combinatorics of the free Lie algebra and the symmetric group, pages 309–382. Academic Press, New York, 1990.
- [Gei77] L. Geissinger. Hopf algebras of symmetric functions and class functions. In Comb. Represent. Groupe symetr., Actes Table Ronde C.N.R.S. Strasbourg 1976, volume 579 of Lecture Notes of Mathematics, pages 168–181, 1977.
- [Jöl98] A. Jöllenbeck. Nichtkommutative Charaktertheorie der symmetrischen Gruppen. Dissertation, Mathematisches Seminar der Christian-Albrechts-Universität zu Kiel, 1998.
- [Kly74] A. A. Klyachko. Lie elements in the tensor algebra. Siberian Mathematical Journal, 15:914–920, 1974.
- [KW87] W. Kraśkiewiz and J. Weyman. Algebra of invariants and the action of a Coxeter element. Preprint, 1987. Math. Inst. Univ. Copernic, Torún, Poland.
- [LST96] B. Leclerc, T. Scharf, and J.-Y. Thibon. Noncommutative cyclic characters of symmetric groups. *Journal of Combinatorial Theory*, *Series A*, 75(1):55–69, 1996.
- [Reu93] C. Reutenauer. Free Lie algebras, volume 7 of London Mathematical Society monographs, new series. Oxford University Press, 1993.
- [Sol76] L. Solomon. A Mackey formula in the group ring of a Coxeter group. Journal of Algebra, 41:255–268, 1976.
- [Spe48] W. Specht. Die linearen Beziehungen zwischen höheren Kommutatoren. Mathematische Zeitschrift, 51:367–376, 1948.
- [Ste89] J. R. Stembridge. On the eigenvalues of representations of reflection groups and wreath products. *Pacific Journal of Mathematics*, 140(2):353–396, 1989.

[Wev49] F. Wever. Über Invarianten in Lieschen Ringen. Mathematische Annalen, 120:563–580, 1949.

