《线性代数》作业 13

截止时间: NA。答案会在 12 月 24 日上传到网络学堂。

- 1. 给定一个 $m \times n$ 阶实矩阵 A, 定义实矩阵 $S = \begin{bmatrix} O & A \\ A^{T} & O \end{bmatrix}$.
 - (a) 证明: $Sx = \lambda x$, 当且仅当向量 $x = \begin{bmatrix} y \\ z \end{bmatrix}$ 满足 $Az = \lambda y$, $A^{T}y = \lambda z$.
 - (b) 证明: 如果 λ 是 S 的特征值,则 $-\lambda$ 也是 S 的特征值。
 - (c) 证明: 如果 $\lambda \neq 0$ 是 S 的特征值,则 λ^2 同时是 AA^T 和 A^TA 的特征值。
 - (d) 证明: AA^{T} 和 $A^{T}A$ 的非零特征值相同,且有相同的代数和几何重数。
 - (e) 取 $A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, 求对应 S 的谱分解。
- 2. 在所有正实数构成的集合 ℝ+ 上,定义加法和数乘运算:

$$a \oplus b := ab, \qquad k \odot a := a^k \qquad \forall a, b \in \mathbb{R}^+, \ k \in \mathbb{R}.$$

判断 ℝ+ 对这两个运算是否构成 ℝ 上的线性空间。

- 3. 给定一个数域 \mathbb{F} , 设 $\mathbb{F}_0^{n\times n}$ 是矩阵空间 $\mathbb{F}^{n\times n}$ 中所有迹为零的矩阵构成的子集。
 - (a) 证明: $\mathbb{F}_0^{n\times n}$ 是 $\mathbb{F}^{n\times n}$ 在 \mathbb{F} 上的子空间。
 - (b) 求子空间 $\mathbb{F}_0^{n\times n}$ 和 $\mathrm{span}(I_n)$ 的交与和。
 - (c) 证明: $\mathbb{F}^{n\times n} = \mathbb{F}_0^{n\times n} \oplus \operatorname{span}(I_n)$.
- 4. 对 n 阶方阵 A, 令 $P(A) = \{f(A)|f(x) \in \mathbb{F}(x)\}$, 其中 $\mathbb{F}[x]$ 为系数在数域 \mathbb{F} 中的多项式构成的集合。
 - (a) 证明: P(A) 关于矩阵的加法和数乘构成 \mathbb{F} 上的线性空间。
 - (b) 判断 P(A) 的维数是否有限。
 - (c) 令 $A = \operatorname{diag}(1, \omega, \omega^2)$, 其中 $\omega = \frac{-1+\sqrt{3}i}{2}$, 求 P(A) 的维数和一组基。

- 5. 判断数域 \mathbb{R} 上的线性空间 $C([-\pi,\pi])$ 中的下列向量组是否线性相关,并求其秩。
 - (a) $\cos^2 x$, $\sin^2 x$, 1.
 - (b) $1, \sin x, \ldots, \sin nx$.
- 6. 给定 $A = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$ 和 $\mathbb{R}^{3\times3}$ 上的线性变换 $f: X \mapsto AX$, 分别求 $\mathcal{N}(f)$ 和 $\mathcal{R}(f)$ 的维数和一组基。
- 7. 定义 $\mathbb{F}[x]$ 上的变换: $\mathbf{A}(f(x)) = xf(x) \quad \forall f(x) \in \mathbb{F}[x]$.
 - (1) 证明: \mathbf{A} 是 $\mathbb{F}[x]$ 上的一个线性变换。
 - (2) 设 D 是求导算子,证明: DA AD = I.
- 8. 考虑函数空间的子空间 $\operatorname{span}(\sin^2 x, \cos^2 x)$.
 - (1) 证明: $\{\sin^2 x, \cos^2 x\}$ 和 $\{1, \cos 2x\}$ 分别是子空间的一组基。
 - (2) 分别求从 $\{\sin^2 x, \cos^2 x\}$ 到 $\{1, \cos 2x\}$,和从 $\{1, \cos 2x\}$ 到 $\{\sin^2 x, \cos^2 x\}$ 的过渡矩阵。
 - (3) 分别求 1 和 $\sin^2 x$ 在两组基下的坐标。
- 9. 设 $\mathcal{V} = \operatorname{span}(f_1, f_2)$ 是函数空间的子空间,其中 $f_1(x) = e^{ax} \cos bx$, $f_2(x) = e^{ax} \sin bx$. 证明: 求导 算子 \mathbf{D} 是 \mathcal{V} 上的线性变换,并求其在基 f_1, f_2 下的矩阵。
- 10. 设 \mathcal{V} 是所有 2 阶对称矩阵构成的线性空间,f 是其上的线性变换: $f(X) = A^{\mathrm{T}}XA$, 其中 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. 求 f 在基 $E_{11}, E_{22}, E_{12} + E_{21}$ 下的矩阵。
- 11. 设 $B = \begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}$, 在 $\mathbb{F}^{2\times 2}$ 中定义如下变换:

$$f(X) = B^{-1}XB \qquad \forall X \in \mathbb{F}^{2 \times 2}.$$

- (a) 证明: *f* 是线性变换。
- (b) $\vec{x} f$ 的全部特征值和特征向量。