IT-Security 1

Chapter 4: Asymmetric Cryptography

Prof. Dr.-Ing. Ulrike Meyer WS 15/16

Chapter Overview

- Asymmetric Encryption
 - General Idea of Asymmetric Encryption
 - Modular Arithmetic
 - RSA
- Digital Signatures
 - General Idea of Digital Signatures
 - RSA-based signatures
 - Digital Signature Standard
- Diffie-Hellman Key-Agreement
- RSA Backdoors

General Idea of Asymmetric Encryption

Note: There needs to be a mechanisms that ensures that Alice gets into possession of Bob's public key

Modular Arithmetic (1)

- Let n be a positive integer ≠ 0, then for any integer k
 - k mod n is defined as the remainder of k divided by n
 - Example: 10 mod 7 = 3
- We define addition and multiplication of the numbers $\mathbf{Z}_n = \{0,..., n-1\}$ by
 - **a** + **b** := (**a**+**b**) mod **n**
 - **ab** := (**ab**) mod **n**
- Then
 - For all **a**, **b**, **c** \in **Z**_n : (**a**+**b**) + **c** = **a** + (**b** + **c**)
 - For all **a**, **b**, **c** \in **Z**_n: **a** + **b** = **b** + **a**
 - For all $\mathbf{a} \in \mathbf{Z}_n : \mathbf{a} + \mathbf{0} = \mathbf{a}$
 - For all $\mathbf{a} \in \mathbf{Z}_n$ there is an element $\mathbf{x} \in \mathbf{Z}_n$ with $\mathbf{a} + \mathbf{x} = \mathbf{0}$. This element \mathbf{x} is called the additive inverse of \mathbf{a} mod \mathbf{n} and is denoted as "- \mathbf{a} "
 - I.e. the set \mathbf{Z}_n together with the + operation forms a commutative group

Modular Arithmetic (2)

- And
 - For all **a**, **b** \in {1,...,n-1}: **ab** = **ba**
 - For all \mathbf{a} , \mathbf{b} , $\mathbf{c} \in \{1,...,n-1\}$: $(\mathbf{ab})\mathbf{c} = \mathbf{a}(\mathbf{bc})$
 - For all $\mathbf{a} \in \{1,...,n-1\}$: $\mathbf{a1} = \mathbf{a}$
- If for an $\mathbf{a} \in \{1,...,n-1\}$ there is an $\mathbf{x} \in \{1,...,n-1\}$ with
 - $\mathbf{a} \mathbf{x} = \mathbf{1} \mod \mathbf{n}$
- Then a is called invertible mod n and x is called the inverse of a and x is denoted as a⁻¹
- The set {0,..., n-1} together with the + and operations forms a commutative ring with 1

Example: Addition and Multiplication mod 6

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

*	1	2	3	4	5
1	1	2	3	4	5
2	2	4	0	2	4
3	3	0	3	0	3
4	4	2	0	4	2
5	5	4	3	2	1

1 and 5 are invertible mod 62, 3, and 4 are not

Example: Addition and Multiplication mod 5

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

*	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

$$2^{-1} = 3$$
, $3^{-1} = 2$, $1^{-1} = 1$, $4^{-1} = 4$

Modular Exponentiation

■ For all $\mathbf{a} \in \{0,...,n-1\}$ \mathbf{a}^k mod n is defined as

$$\mathbf{a}^k \mod \mathbf{n} = \mathbf{a} \cdots \mathbf{a} \mod \mathbf{n}$$
 $k \text{ times}$

Multiplicative Inverses in General

- An integer k has a multiplicative inverse mod n iff k and n are relatively prime
 - E.g. in mod 10: 1, 3, 7, and 9 are invertible while 2, 4, 5, 6, and 8 are not
- Relatively prime means that k and n do not share any prime divisors
- The number of integers relatively prime to \mathbf{n} is called $\phi(\mathbf{n})$
- If **n** is prime, then all integers \neq 0 are invertible mod **n**
 - $\varphi(n) = n-1$
- If n is the product of two different prime numbers p, q (n = pq)
 - Then: φ(n) = (p-1)(q-1)
- The set of integers that are invertible mod n are denoted Z_n*
 - E.g. $\mathbf{Z_5}^* = \{1, 2, 3, 4\}, \mathbf{Z_4}^* = \{1, 3\}, \mathbf{Z_{10}}^* = \{1, 3, 7, 9\}$

What Euclid's Algorithm Does and How

- Allows to compute the greatest common divisor (gcd) of two integers
- Two integers are relatively prime iff their gcd = 1
- With Euclid's algorithm one can therefore check if an integer
 k has an inverse mod n by checking if gcd(k,n) = 1
 - Example how Euclid's algorithm works for 408 and 595:
 - 595:408 = 1 remainder 187
 - 408:187 = 2 remainder 34
 - 187:34 = 5 remainder 17
 - 34:17 = 2 remainder 0
 - \triangleright gcd(408,595) = 17

Why does Euclid's Algorithm Work?

- $gcd(\mathbf{k},\mathbf{n}) = gcd(\mathbf{k}-\mathbf{n},\mathbf{n})$
 - Proof:
 - If d divides k and n, then k = jd, n = ld for some j, l, therefore k n = (j l)d, so any divisor of n and k divides n-k as well
 - Vice versa if d divides n and k n, then n = yd and k n = xd for some y, x, therefore k = k n + n = (x + y)d, so d divides k as well
 - So, any divisor of k and n divides k-n and n as well and vice versa, in particular the greatest common devisers are therefore the same
- Repeating this several times gives us
 - \blacksquare gcd(k,n) = gcd(k mod n, n)
- Repeating this with \mathbf{k} mod \mathbf{n} instead of \mathbf{n} and \mathbf{n} instead of \mathbf{k} now gives us
 - gcd($\mathbf{k} \mod \mathbf{n}$, \mathbf{n}) = gcd($\mathbf{k} \mod \mathbf{n}$, $\mathbf{n} \mod (\mathbf{k} \mod \mathbf{n})$)
- We continue doing this until the remainder is 0
- The remainder before the 0 is then the gcd

Euclid's Algorithm in Formulas

- Goal: compute gcd(k,n)
- Initial Setup
 - Let $r_0 = \mathbf{n}$, $r_1 = \mathbf{k}$, i = 0
- Step i
 - If $r_{i+1} = 0$, then $gcd(k,n) = r_i$
 - Else, divide r_i by r_{i+1} to get quotient q_{i+1} and remainder r_{i+2}
 - Set i = i+1 and repeat
- Note: if we additionally set
 - $u_0 = 1$, $u_1 = 0$, $v_0 = 0$, $v_1 = 1$ in the initial step
 - and then $u_{i+1} = u_{i-1} q_i u_i$ and $v_{i+1} = v_{i-1} q_i v_i$ for i > 0
- Then: if $r_{s+1} = 0$, then $r_s = gcd(k,n)$ and
 - gcd(k,n) = $u_s n + v_s k$

Compute the Inverse with Euclid

- If k and n are relatively prime, then Euclid's algorithm gives us u, v with
 - 1 = uk + vn
- As a consequence: u is the inverse of k mod n

RSA

- Invented by Rivest, Shamir, and Adleman
- In 1977 at MIT
- Was patented from 1983 to 2000
- First published public key cryptosystem
- Original idea goes back to Diffie and Hellman
 - Theory of how it could work
 - No mathematical function

RSA Cryptosystem: Some Facts

- Is an asymmetric encryption / decryption mechanism
- Can be defined for different key lengths
 - Today typically 1024 bit, some applications use 2048 bit modulus as default already
- Variable block size but smaller or equal to the key
- Cipher blocks are always as long as the key
- Rarely used for encryption of longer messages
- Often used to
 - Encrypt/decrypt symmetric keys when they are distributed
 - Encrypt authentication challenges
 - Construct digital signatures

RSA Key Generation

Public key:

- Choose two prime numbers p, q
- Compute n = pq
- Choose e invertible mod φ(n)
- Public key: (n,e)
- Private key:
 - Find d with ed = 1 mod $\varphi(n)$

- Select d as the private key
- Note: $de = 1 + \varphi(n)k$ for some integer $k \neq 0$

Check if **e** is invertible with the help of Euclid's Algorithm

Find d with the help of Euclid's Algorithm

RSA Encryption / Decryption

- Encryption
 - For each plaintext $\mathbf{m} \in Z_n$: $\mathbf{c} = \mathbf{m}^e \mod \mathbf{n}$
- Decryption
 - For each ciphertext $\mathbf{c} \in Z_n$: $\mathbf{m} = \mathbf{c}^d \mod \mathbf{n}$
- Why does this work?
 - For any $\mathbf{c} \in \mathbf{Z}_n$: $\mathbf{c}^d \mod \mathbf{n} = (\mathbf{m}^e)^d \mod \mathbf{n} = (\mathbf{m}^{ed}) \mod \mathbf{n}$
 - $= \mathbf{m}^{\phi(\mathbf{n})k+1} \mod \mathbf{n} = \mathbf{m} \mod \mathbf{n}$

Euler's Theorem

Euler's Theorem:

For any $\mathbf{a} \in \mathbf{Z}_{n}^{*}$: $\mathbf{a}^{\varphi(n)} = 1 \mod \mathbf{n}$

Reformulation:

For any $\mathbf{a} \in \mathbf{Z}^*_{n}$, and any integer $\mathbf{s} : \mathbf{a}^{\varphi(n)s+1} = \mathbf{a} \mod \mathbf{n}$

Proof:

Note: If **a**, **b** \in **Z**_n*, then **ab** \in **Z**_n*

Also note: Multiplying all elements of \mathbf{Z}_n^* with some \mathbf{a} in

 \mathbf{Z}_{n}^{*} just reorders them:

Assume **x** is the product of all different $\mathbf{x}_1,...,\mathbf{x}_{\omega(n)} \in \mathbf{Z}_n^*$. Then, for any

 $\mathbf{a} \in \mathbf{Z}_n^* : \mathbf{a} \mathbf{x}_1 \mathbf{a} \mathbf{x}_2 \cdots \mathbf{a} \mathbf{x}_{\phi(n)} = \mathbf{a}^{\phi(n)} \mathbf{x} = \mathbf{x} \text{ (otherwise } \mathbf{a} \mathbf{x}_i = \mathbf{a} \mathbf{x}_i \text{ for some } i \neq j)$

Multiplying the above equation with \mathbf{x}^{-1} on both sides yields $\mathbf{a}^{\varphi(n)} = 1 \mod \mathbf{n}$.

Generalization to Arbitrary a for n=pq

Generalization to arbitrary all $\mathbf{a} \in \mathbf{Z}_{\mathbf{n}}$ in case $\mathbf{n} = \mathbf{pq}$:

In case $\mathbf{n} = \mathbf{pq}$, $\mathbf{a}^{\phi(n)+1} = \mathbf{a} \mod \mathbf{n}$ holds for all $\mathbf{a} \in Z_n$ and not only for the ones relatively prime to \mathbf{n} .

Proof:

- For a = 0 the equation clearly holds.
- For a invertible mod n see proof on last slide.
- If **a** is not invertible, then **a** is not relatively prime to
- n=pq. Therefore **a** is divisible by either **p** or **q** (if by both, then **a** = 0).
 - So assume **a** is divisible by **q** but not by **p**, then $\mathbf{a}^{p-1} = 1 \mod \mathbf{p}$, and $\mathbf{a}^{q-1} = 0 \mod \mathbf{q}$.
 - As a consequence $\mathbf{a}^{\phi(n)+1} = \mathbf{a}^{(p-1)(q-1)+1} = \mathbf{a} \mod \mathbf{p}$ and $\mathbf{a}^{\phi(n)+1} = \mathbf{a}^{(p-1)(q-1)+1} = \mathbf{a} \mod \mathbf{q}$.
 - So there are integers k,s with $a^{\varphi(n)+1} = \mathbf{a} + k\mathbf{p}$ and $\mathbf{a}^{\varphi(n)+1} = \mathbf{a} + s\mathbf{q}$.
 - So sq = kp, such that q divides k.
 - So there is an integer I with k = lq and we have $a^{\varphi(n)+1} = a + kp = a + lqp = a \mod n$

Trivial RSA Example

Setup

```
Let p = 3, q = 5, then n = pq = 15

\phi(n) = (p - 1)(q - 1) = 2 \cdot 4 = 8

Choose e = 3 (prime to \phi(n))

Then d = 3 (ed = 1 \mod 8)
```

Encryption of $\mathbf{m} = 7$:

 $m^e \mod n = 7^3 \mod 15 = 343 \mod 15 = 13$

Decryption of $\mathbf{c} = 13$:

 $c^{d} \mod n = 13^{3} \mod 15 = 2197 \mod 15 = 7$

How Secure is RSA? (1)

Theorem: Let \mathbf{p} , \mathbf{q} prime numbers and $\mathbf{n} = \mathbf{pq}$. Then \mathbf{n} can efficiently be factorized iff $\phi(\mathbf{n})$ can be efficiently computed.

Proof:

" \Rightarrow ": If **n** can be efficiently factorized then **p** and **q** can efficiently be computed from **n** and therefore $\phi(n) = (p-1)(q-1)$ is efficiently computable " \Leftarrow ": If $\phi(n)$ is known, then one can compute **p** and **q** from the two equations $\mathbf{n} = \mathbf{pq}$ und $\phi(n) = (\mathbf{p} - 1)(\mathbf{q} - 1)$

So factorizing \mathbf{n} is equivalent to computing $\phi(\mathbf{n})$

How Secure is RSA? (2)

Theorem: Let **p**, **q** prime, **n** = **pq** and (**e**,**n**) a public RSA key and **d** the corresponding private RSA key. Then **d** can be efficiently computed from (**n**,**e**) iff **n** can be factorized efficiently.

Proof Outline:

"←" clear!

"⇒" There is a probabilistic polynomial-time algorithm that computes **p** and **q** from **d**, **e**, and **n**

So, computing **d** is equivalent to factorizing **n**

How Secure is RSA? (3)

- Putting it together we have
 - Being able to compute a private RSA key d from (e, n) is equivalent to being able to factorize n
 - Which in turn is equivalent to being able to efficiently compute $\varphi(n)$
- However: it is unclear if there is a way to decrypt RSAencrypted messages without knowledge of the private key d.

How Hard is Factorization?

- There is currently no polynomial time algorithm for factorization
- There are algorithms with sub-exponential run time.
 - Pollard's Rho Method
 - Quadratic Sieve
 - Number Sieve
 - ...
- Currently, RSA modules of 1024 bit still often in use but some applications moved to 2048 bit as default already
- The prime numbers p and q are required to be of 512 bit or 1024 bit length respectively

Modular Exponentiation

- RSA Encryption and Decryption are based on modular exponentiation: x^k mod n
- "Naïve" modular exponentiation requires k modular multiplications
- Problem: the size of the exponent is of the same order as the size of the modulus n
 - E.g. 1024 bit or 2048 bit
- "Naïve" modular exponentiation is not efficient

Efficient Modular Exponentiation

Idea: Use the binary representation of the exponent

$$k = \sum k_i 2^i = k_0 + 2(k_1 + 2(k_2 + \cdots)) \cdots$$
, where $k_0, k_1, k_2 \in \{0,1\}$

Then we get:

$$\mathbf{x}^{k} = \prod \mathbf{x}^{k_i \, 2^i}$$

So all we have to do is multiply by x or square

Example for efficient Exponentiation

$$37 = 1 * 2^{0} + 0 * 2^{1} + 1 * 2^{2} + 0 * 2^{3} + 0 * 2^{4} + 1 * 2^{5}$$

$$\mathbf{x}^{37} = \mathbf{x} * \mathbf{x}^{2^2} * \mathbf{x}^{2^5} = ((((\mathbf{x}^2)^2)^2)\mathbf{x})^2)\mathbf{x}$$

PKCS#1v.2.1

- PKCS = Public Key Cryptography Standard
 - By RSA Laboratories
- Defines two encoding methods for RSA Encryption
 - RSAES-PKCS1-v1_5
 - RSAES-OAEP
- For new applications RSAES-OAEP should be used
 - RSAES-PKCS1-v1_5 is vulnerable to chosen ciphertext attacks
- Both methods describe how to pad bit string messages and how to convert them to large integers
- OAEP = Optimal Asymmetric Encryption Padding
- RSAES = RSA Encryption Scheme

RSAES-OAEP Encryption

RSAES-OAEP-ENCRYPT ((n, e), M, L)

Options:

- Hash function (hLen: length of hash in octets)
- MGF: mask generation function
 - May be based on the hash function
 - Main difference: can generate output of arbitrary length

Input:

- (n, e) recipient's RSA public key (k: length of n in octets)
- M message to be encrypted, an octet string of length mLen, where mLen = k 2hLen 2
- L optional label to be associated with the message; the default value for L, if L is not provided, is the empty string

Output:

C ciphertext, an octet string of length k

RSAES-OAEP Overview

- Octet string message M is padded to an encoded message
 EM of k octets
- EM is converted to an integer
- The integer representation of EM is encrypted with (n,e) to an integer c
- The integer c is converted to the k-octet string ciphertext C

Encoding of M to EM

- Padding with zeros: k mLen 2hLen 2 zeros
- M message
- Seed = random octet string of length hLen
- The leading octet of zeros in EM is used to detect decryption errors
- How does decoding work?

Intuitively: Why PKCS#1?

- The encoding methods in PKCS1 help to detect if a message
 M is a valid plaintext
 - "Recognizable" plaintext
- In particular the encodings protect against someone exchanging a cipher text c = m^e mod n with a cipher text cs^e

Without the encoding: **cs**^e mod **n** is the cipher text of **ms**With the encoding, **ms** will not have the correct structure

This property is called multiplicative homomorphic

Why OAEP?

- Turns a deterministic public key encryption system such as RSA into a probabilistic one
- I.e. if the same plaintext is encrypted twice using OAEP, the resulting ciphertexts will be different due to the random seed

Symmetric vs. Asymmetric Encryption

- Advantage of asymmetric encryption schemes
 - Do not require a secret (but still an authentic) channel for key exchange
 - Less keys required to be kept secret
- Advantages of symmetric encryption schemes
 - Can be implemented more efficiently
- Goal: Leverage on the advantages of both
 - Use hybrid schemes in which the secret key for symmetric encryption is exchanged using asymmetric primitives

Backdoors in the RSA Key Generation

- RSA is quite secure due to the hardness of the factorization problem
- It is, nevertheless, possible to attack RSA by manipulating the key generation function
- Whenever RSA is used, keys have to be generated with the help of the key generation operations
- Whoever implements these operations can try to integrate a backdoor into the generated public/private key pair
- This backdoor can then later on allow him to retrieve the private key corresponding to a public key

Entities Involved

- Manufacturer (Attacker)
 - Designer of the backdoor
 - Integrates the backdoor in the key generation code
- User (Victim)
 - In possession of a device or piece of code for key generation e.g. for RSA manipulated by the manufacturer
 - Can observe public and private keys generated by his device
- External attacker
 - Can observe public keys used by the user

Naïve RSA Backdoor

- Change the RSA key generation process, such that one fixed prime is used always
 - Fix a prime p
 - Choose a second prime q at random
 - Set n = pq
 - Select e relatively prime to $\varphi(\mathbf{n})$ and d such that ed = 1 mod $\varphi(\mathbf{n})$
- Now the manufacturer of the backdoor can use p to find d:
 - Compute q = p⁻¹n
 - Compute d as the inverse of e mod $\varphi(n) = (p-1)(q-1)$

Disadvantages of Naïve RSA

- Assume an external attacker knows that the manufacturer has integrated the naïve backdoor in the key generation code
- Assume the external attacker is able to obtain two keys (n,e),
 (n',e') generated with the naïve backdoor
- Then the attacker can compute
 - gcd (n,n') = p
- Now he can reconstruct the secret keys d and d' just in the same way as the manufacturer can
- I.e. anyone can break RSA keys generated with this backdoor
- Can the manufacturer do better?

Better RSA Backdoor

- Assume the manufacturer is in possession of a public RSA key
 (E,N) and a private key D
- Manipulate the key generation process as follows
 - Pick prime numbers p and q at random and set n = pq
 - Compute e = p^E mod N
 - Check if e is invertible mod φ(n)
 - If yes, compute the inverse d and output (e,n), d
 - If no, pick a new prime number p and start again
- If the attacker now observes a public key (e,n), he can
 - Compute e^D mod N = p and can use this to compute d

Advantage of the "Better RSA Backdoor"

 Using the backdoor requires knowledge of the private key of the manufacturer

Basic Idea of Digital Signatures

- Given:
 - Everybody knows Bob's public key
 - Only Bob knows the corresponding private key
- Goal: Bob can digitally sign a message such that anyone can verify his signature
 - To compute a signature, one must know the private key
 - To verify a signature it is enough to know the public key

Definition of a Digital Signature Scheme

- A digital signatures scheme consists of a
 - Key generation algorithm
 - A signature generation algorithm
 - A signature verification algorithm
- Key generation algorithm specifies
 - Generation of the public key for signature verification
 - Generation of the private key for signature generation
- Signature generation algorithm
 - Takes a message M and the private key as input and outputs the signature
- Signature verification algorithm
 - Takes the message M, the public key, and the signature as input and returns success or failure of signature verification

Example: Naïve RSA Signatures (Insecure Version)

- Key generation (as in RSA Encryption)
 - Choose two large primes p,q randomly
 - Choose an exponent $\mathbf{e} \in \mathsf{Z}^*_{\varphi(n)}$
 - Compute $\mathbf{n} = \mathbf{pq}$ and $\mathbf{d} \in Z^*_{\phi(n)}$ with $\mathbf{ed} = 1 \mod \phi(\mathbf{n})$
 - The public key is then (n,e), the private key is d

- Signature s on m is s = m^d mod n
- Signature verification: uses public key e
 - On receipt of (m,s) the verifier computes m' = se mod n and verifies that m = m'

Example for RSA Signature

Assume Alice chooses **p** = 11, **q** = 23, **e** = 147

- Then $\mathbf{n} = 253$, $\mathbf{d} = 3$
- The public key is (147, 253), the private key is 3
- If Alice wants to sign the message m = 111, she computes
 - $s = 111^3 \mod 253 = 166$
- On receipt of (m,s) Bob verifies the signature by computing
 - **m'** = 166¹⁴⁷ mod 253 = 111
- As m' = m, Bob knows that Alice has generated the signature
 s

Why is the Naïve RSA Signature Scheme Insecure?

- Naïve RSA is vulnerable to existential forgery:
 - An attacker can choose $\mathbf{s} \in \mathbf{Z}_n$ randomly and claim that \mathbf{s} is a signature generated by Alice on the message $\mathbf{m} := \mathbf{s}^e \mod \mathbf{n}$
 - I.e. it is easy to generate pairs of (m,s) such that s is a valid signature on m
 - Note: it is not easy to generate a valid s for a given meaningful m
- RSA is multiplicative homomorphic:
 - If \mathbf{m}_1 , \mathbf{m}_2 are two messages and \mathbf{s}_1 , \mathbf{s}_2 the corresponding signatures of \mathbf{m}_1 and \mathbf{m}_2 , then
 - $s := s_1 s_2 = m_1 dm_2 d = (m_1 m_2) d \mod n$
 - I.e. s is a valid signature on m₁m₂

RSA Signature Scheme (Secure Version)

- RSA scheme can be protected against existential forgery and the multiplicatively problem with the help of a hash function
- Key generation as in Naïve RSA Signature Scheme
- Signing a message m: uses private key d and a publically known cryptographic hash function h
 - Signature s on m is $s = h(m)^d \mod n$
- Signature verification: uses public key e
 - On receipt of (m,s) the verifier computes h(m) and h' = se mod n and verifies that h(m) = h'

Applying the Hash Function Helps

- Signing the hash instead of the message directly
 - Signature s on m is s = h(m)^d mod n
- Protects against
 - Existential forgery
 - Existential forgery would now require Eve to chose some s and find a message m such that $s^e = h(m)$. If h is pre-image resistant, this is hard
 - Forging signatures due to RSAs multiplicativity
 - The fact that RSA is multiplicative is not a problem any more as it is hard to find a message m such that $h(\mathbf{m}) = h(\mathbf{m}_1)h(\mathbf{m}_2)$ due to the pre-image resistance of h

Signing the Hash Instead of the Message

- Hashing messages before signing is generally applied, not only in case of RSA
 - I.e., instead of signing a message \mathbf{m} of arbitrary length a hash function h: $\{0,1\}^* \rightarrow \{0,1\}^n$ is used and h(\mathbf{m}) is signed
- The advantages are
 - Signatures are computed on smaller values
 - Security advantages for some signature schemes
 - See e.g. above for RSA
 - Larger messages do not have to be split in blocks small enough for the signature scheme
 - If messages are split receiver of the signed blocks is not able to recognize if all the blocks are present and in the appropriate order

PKCS#1v.2.1

- Defines two encoding schemes for RSA signature schemes
 - RSASSA-PSS
 - Recommended for new applications
 - RSASSA-PKCS1-v1_5
- Both encoding schemes specify how to
 - hash an octet string message
 - encode the hash to a padded octet string
 - convert the encoded hash to an integer
 - generate the signature

Use of Digital Signatures

- Authentication of messages
 - Can also be provided by a MAC
 - However, not to the general public
- Message integrity
 - Can also be provided by a MAC
- Non-repudiation
 - Can not be provided by a MAC: a MAC can be generated by the "signer" and the "verifier"
 - A signature can only be computed by the entity that is in possession of the private key. The signer can therefore not repudiate having signed the message
- Authentication Protocols

Types of Attacks on Digital Signatures

- Key-Only Attack: The attacker tries to generate valid signatures while only in possession of the public verification key
- Known-Message Attack: The attacker knows some message/signature pairs and tries to generate another valid signature on some message
- Chosen-Message Attack: The attacker can choose messages, can make the signer sign them and tries to generate another valid signature on some other message
- Power of attacker highest in chosen-message attack

Hierarchy of Attack Results

- Total break: attack results in recovery of the signature key
- Universal forgery: attack results in the ability to forge signatures for any message
- Selective forgery: attack results in a signature on a message of the adversary's choice
- Existential forgery: merely results in some valid message/signature pair not already known to the adversary
- The strongest notion of security for a signature scheme is to be secure against existential forgery in a chosen message attack

DSS

- The Digital Signature Standard (DSS) was adopted by NIST in 1994
- Is standardized in FIPS 186
 - Updated in FIPS 186-2, 186-3
- Uses the Digital Signature Algorithm (DSA)
- Uses SHA-1 (160 bit) as hash function h
- Is based on the discrete logarithm problem
 - Given a prime number p and g, $x \in Z^*_p$, and $Y = g^x \mod p$ then it is hard to compute the "discrete logarithm" x of Y from Y, g, and p
 - Is closely related to a Signature Scheme by Schnorr

Key Generation for DSS

- Signer generates two prime numbers p, q with
 - p of 512 bit
 - **q** of 160 bit
 - **q**|(p-1)
- Signer chooses $\mathbf{x} \in \mathbf{Z}_p^*$ such that $\mathbf{x}^{(\mathbf{p}-1)/\mathbf{q}} \mod \mathbf{p} \neq 1$ and sets \mathbf{g} : = $\mathbf{x}^{(\mathbf{p}-1)/\mathbf{q}} \mod \mathbf{p}$
 - Then the smallest integer i for which $g^i = 1 \mod p$ is i = q
- Signer chooses **a** € {1,...,q-1} and computes
 - \blacksquare A = $g^a \mod p$
- The public key of the signer is then (p,q,g,A) and the private key is a

Signature Generation in DSS

Signature Generation on message m:

- Signer randomly chooses **k** € {1,...,q-1} and computes
 - $\mathbf{r} = (\mathbf{g}^k \mod \mathbf{p}) \mod \mathbf{q}$
 - $\mathbf{s} = (\mathbf{k}^{-1}(h(\mathbf{m}) + \mathbf{ar})) \mod \mathbf{q}$, where \mathbf{k}^{-1} is the inverse of \mathbf{k} mod \mathbf{q}
- The signature on m then is the pair (r,s)
- Note: all exponents used in the signature generation are 160 bit max -> efficiency
- Note: a different k has to be chosen for each message

Why different "k" for different m?

- Assume \mathbf{k} is used to sign two known messages $\mathbf{m_1}$ and once for $\mathbf{m_2}$, then
 - $\mathbf{r} = (\mathbf{g^k} \bmod \mathbf{p}) \bmod \mathbf{q}$
 - $s_1 = (k^{-1}(h(m_1) + ar)) \mod q$
- Then $s_1 s_2 = k^{-1} (h(m_1) h(m_2)) \mod q$
- So $\mathbf{k} = (\mathbf{s_1} \mathbf{s_2})^{-1} (h(\mathbf{m_1}) h(\mathbf{m_2})) \mod \mathbf{q}$
- And thus: $\mathbf{a} = \mathbf{r}^{-1}(\mathbf{s_1k} \mathbf{h}(\mathbf{m_1})) \mod \mathbf{q}$, i.e. the private key can be computed

Signature Verification in DSS

- Upon receipt of m, s, r the verifier
 - Checks if r ∈ {1,...,q-1} and s ∈ {1,...,q-1}
 - Computes $\mathbf{u}_1 = h(\mathbf{m})\mathbf{s}^{-1} \mod \mathbf{q}$, $\mathbf{u}_2 = \mathbf{r}\mathbf{s}^{-1} \mod \mathbf{q}$
 - Computes $\mathbf{v} = (\mathbf{g}^{\mathbf{u}_1} \mathbf{A}^{\mathbf{u}_2} \mod \mathbf{p}) \mod \mathbf{q}$
 - Accepts the message if $\mathbf{v} = \mathbf{r}$ and rejects the message otherwise

Why the Verification Works

• If m, s, and r were received correctly by the verifier, then:

```
v = (g<sup>u<sub>1</sub></sup> A<sup>u<sub>2</sub></sup> mod p) mod q
= (g<sup>h(m)s<sup>-1</sup></sup> g<sup>ars<sup>-1</sup></sup> mod p) mod q
= (g<sup>(h(m)+ar)s<sup>-1</sup></sup> mod p) mod q
= (g<sup>kss<sup>-1</sup></sup> mod p) mod q
= (g<sup>k</sup> mod p) mod q
```

Remember: $g^q = 1 \mod p$ such that we can compute all exponents mod q without changing the result mod p: $g^k \mod p = g^{k \mod q} \mod p$

Trivial Example for DSS

Key generation

- Let p = 11, q = 5, (5 divides 10)
- Choose e.g. x = 2 and therefore g = 4
- Choose a = 3 and $A = g^a \mod p = 4^3 = 9 \mod 11$

Signature generation

- Signing h(m) = 4 works as follows:
 - Choose **k** \in {1,..4}, e.g. **k** = 3
 - Compute $r = g^3 \mod p \mod q = 4^3 \mod 11 \mod 5 = 9 \mod 5 = 4$
 - Compute $\mathbf{s} = \mathbf{k}^{-1} (h(\mathbf{m}) + \mathbf{ar}) \mod \mathbf{q} = 2 (4 + 3 \bullet 4) \mod 5 = 2$
- I.e. the signature on h(m) = 4 is (4,2)

Note

- Note that if r = 0 mod p mod q or if s = 0 mod q the signature verification will not work
 - Intuitively this is due to the fact that the private key is not used in the generation of s any more if r = 0
- The DSS standard states on this problem
 - "As an option, one may wish to check if r=0 or s=0, a new value of k should be generated and the signature should be recalculated"

Security of DSS

- The same k should not be used twice
- If no hash function is used or the conditions for the length of the r and s are not checked by the signer, existential forgery is possible
- If the discrete logarithm problem is efficiently solvable, then an attacker can totally break DSS signatures (as he can compute the secret key a from the public key (p,q,g,A))

Diffie-Hellman Key Exchange(1)

- Oldest public key mechanism
 - Invented in 1976
- Is a key establishment protocol by which two parties can
 - Establish a symmetric secret key K
 - Based on publicly exchanged values
- The security of the key exchange is based on the discrete logarithm problem
 - As already discussed in context of DSS

Diffie-Hellman Key Exchange(2)

Public information known to both parties

Prime number p and a generator g of Z*_p

Private / Public Diffie-Hellman values

- Alice
 - Selects a private DH value **a** € {1,...,p-2} randomly
 - Computes the corresponding public DH value $h_A = g^a \mod p$
- Bob
 - Selects a private DH value **b** € {1,...,p-2} randomly
 - Computes its public DH value h_B = g^b mod p

Key exchange

Alice sends h_A to Bob, Bob sends h_B to Alice

Diffie-Hellman Key Exchange(2)

- With Alice's public value and his private value Bob can compute K = h_A^{b =} g^{ab} mod p
- With Bob's public value and his private value Alice can compute K = h_R^{a =} g^{ba} mod p

Example

- Let p = 17, g = 3
- Assume Alice chooses a = 7, then $h_A = 3^7 = 11 \mod 17$
- Assume Bob chooses b = 4, then $h_B = 3^4 = 13$
- Alice receives B = 13 from bob and computes K = 13⁷ mod 17
 = 4
- Bob receives A = 11 from Alice and computes K = 11⁴ mod 17
 = 4
- ➤ Alice and Bob share the key **K** = 4

Man-in-the-Middle Attack

- Eve has a key with each Alice and Bob
- Alice and Bob do not share a key
- Works because Bob and Alice have no proof that the public values are authentic -> see Chapter 5 on certificates

References and Further Reading

- Kaufmann et al., Network Security
 - Chapter 6 and 7

- PKCS#1, v.2.1
 - ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
- DSS specification: FIPS 186-2
 - http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf