Introduction to Kähler geometry

Exercise sheet 1

Exercise 1.1. Let I be an almost-complex structure on a manifold M. Prove that I is integrable if and only if for any real vector fields $u, v \in TM$ we have [u, v] + I[u, v] + I[u, Iv] - [Iu, Iv] = 0.

Exercise 1.2. Let V be a complex vector space of dimension n and Gr(m, V) the set of m-dimensional subspaces of V for some m < n. Describe the natural structure of a complex manifold on Gr(m, V) and compute its dimension.

Exercise 1.3. Let E be a complex vector bundle over a complex curve C (that is a complex manifold of dimension one), and $\bar{\partial}_E \colon E \to \Lambda^{0,1}C \otimes E$ be such that $\bar{\partial}_E(fs) = \bar{\partial}f \otimes s + f\bar{\partial}_E s$ for any $f \in \mathcal{O}_C$ and $s \in E$. Prove that for every point $x \in C$ there exists an open neighbourhood U of x and a section x of x over x or x or x or x of x over x or x or x or x of x over x or x

Exercise 1.4. Let E be a holomorphic vector bundle of rank r over a complex manifold M and s a global holomorphic section of E. Assume that the zero locus $Z = \{x \in M \mid s(x) = 0\}$ is a smooth submanifold of codimension r in M. Prove the adjunction formula $K_Z \simeq (K_M \otimes \det(E))|_Z$.

Exercise 1.5. For the exact triple of vector bundles

$$0 \to L \to E \to Q \to 0$$
,

where rk(L) = 1, construct the exact triple

$$0 \to L \otimes \Lambda^{k-1}Q \to \Lambda^k E \to \Lambda^k Q \to 0.$$

Exercise 1.6.

- 1. Compute $\Gamma(\mathbb{C}P^n, \mathcal{O}(k))$;
- 2. Find the canonical bundle of $\mathbb{C}P^n$.

Exercise 1.7. A complex manifold is Stein if for some n it can be embedded into \mathbb{C}^n as a closed submanifold. Let M be an arbitrary complex manifold and $U, V \subset M$ two open subsets such that both U and V are Stein manifolds. Prove that $U \cap V$ is also Stein.