# Matrices and Projections

Lecture 3c

CS3400 Machine Learning

#### Matrices

[1 3]5 79 11

- Matrices are an ordered collection of vectors
- Either column vectors
- Or row vectors
- Used to store and perform operations on groups of vectors (e.g., records) in one operation

#### Matrices

$$\begin{bmatrix} a_{1,1} & \cdots & a_{1,3} \\ \vdots & \ddots & \vdots \\ a_{1,5} & \cdots & a_{5,3} \end{bmatrix}$$

 Variable names are capital with an arrow

 $ar{A}$ 

- Matrices are described by:
  - The number of rows
  - The number of columns
  - The type of number (e.g., real or complex)

$$\vec{A} \in \mathbb{R}^{5 \times 3}$$

#### Matrices

$$\begin{bmatrix} a_{1,1} & \cdots & a_{1,3} \\ \vdots & \ddots & \vdots \\ a_{1,5} & \cdots & a_{5,3} \end{bmatrix}$$

Matrix elements can be described using indexing like so:  $\overrightarrow{A_{i,j}}$ . The variable i refers to the row, while the column j refers to the column.

 Variable names are capital with an arrow

 $ec{A}$ 

- Matrices are described by:
  - The number of rows
  - The number of columns
  - The type of number (real or complex)

$$\vec{A} \in \mathbb{R}^{5 \times 3}$$

#### Numpy

```
Get the dimensions
Create Matrix
A = np.array([[1, 3],
                            A.shape
               [5, 7],
               [9, 11]])
                             (3, 2)
A = np.ones((3, 2))
A = np.zeros((3, 2))
```

#### Operations on Matrices: Transpose

$$\begin{bmatrix} a_{1,1} & \cdots & a_{1,3} \\ \vdots & \ddots & \vdots \\ a_{1,5} & \cdots & a_{5,3} \end{bmatrix}^T =$$

$$\begin{bmatrix} a_{1,1} & \cdots & a_{1,5} \\ \vdots & \ddots & \vdots \\ a_{1,3} & \cdots & a_{3,5} \end{bmatrix}$$

- Transposing rotates the matrix around the diagonal
- so that the indices of the rows and columns are swapped

### Numpy

```
Matrix-Matrix Multiplication
Tranpose a Matrix
A = np.array([[1, 3],
                             B = A.T
                [5, 7],
                [9, 11]])
                             array([[ 1, 5, 9],
                                      [ 3, 7, 11]])
A.shape
                             B.shape
(3, 2)
                             (2, 3)
```

$$\vec{A} \cdot \vec{b} = \vec{c}$$

$$\begin{bmatrix} 1 & 3 \\ 5 & 7 \\ 9 & 11 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ -2 \end{bmatrix}$$

$$\vec{c}_1 = \begin{bmatrix} 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix} = -2$$

- Multiplying a matrix and a vector produces a new vector
- To multiple a matrix and a vector
- the vector is dotted with every row of the matrix
- to get each element of the new vector

$$\vec{A} \cdot \vec{b} = \vec{c}$$

$$\begin{bmatrix} 1 & 3 \\ 5 & 7 \\ 9 & 11 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ -2 \end{bmatrix}$$

$$\vec{c}_1 = \begin{bmatrix} 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix} = -2$$

- Multiplying a matrix and a vector produces a new vector
- To multiple a matrix and a vector
- the vector is dotted with every row of the matrix
- to get each element of the new vector

The length of the vector must match the number of columns in the matrix.

$$\vec{A} \cdot \vec{B} = \vec{C}$$

$$\begin{bmatrix} 1 & 3 \\ 5 & 7 \\ 9 & 11 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 2 \\ -2 & 2 \\ -2 & 2 \end{bmatrix}$$
 • We dot matrix

$$\vec{C}_{3,1} = \vec{A}_{,3} \cdot \vec{B}_{1,}$$

$$= \begin{bmatrix} 9 & 11 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$= -2$$

- We can also multiple two matrices
- We dot each row of the first matrix
- with every column of the second matrix
- to get every element in the output matrix

$$\vec{A} \cdot \vec{B} = \vec{C}$$

$$\begin{bmatrix} 1 & 3 \\ 5 & 7 \\ 9 & 11 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 2 \\ -2 & 2 \\ -2 & 2 \end{bmatrix}$$
 • We dot matrix • with every

$$\vec{C}_{3,1} = \vec{A}_{,3} \cdot \vec{B}_{1,}$$

$$= [9 \quad 11] \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$= -2$$

- We can also multiple two matrices
- We dot each row of the first matrix
- with every column of the second matrix
- to get every element in the output matrix

The number of columns in the first matrix must match the number of rows in the second matrix.

### Numpy

#### **Matrix-Vector Multiplication**

#### **Matrix-Matrix Multiplication**

```
A = np.array([[1, 3],
           [5, 7],
             [9, 11]])
B = np.array([[1, -1],
             [-1, 1]
C = np.dot(A, B)
array([[-2, 2],
      [-2, 2],
       [-2, 2]
```

### What is matrix multiplication?

- Conversion from one coordinate system to another
- Projection between spaces

# Interpreting our Matrix

[1 3] 5 7 9 11]



# Interpreting our Matrix



Each column is a coordinate (dimension).



### Interpreting our Matrix



Each row represent is a single vector or point.



# Identity Matrix

$$\begin{bmatrix} 1 & 3 \\ 5 & 7 \\ 9 & 11 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 5 & 7 \\ 9 & 11 \end{bmatrix}$$

- An identity matrix is a:
  - square matrix
  - with 1s on the diagonal
  - and 0s everywhere else
- Multiplication by an identity matrix doesn't change the matrix
- An identity matrix projects a space into itself

### Identity Matrix -- Negation

 We can reverse all of the coordinates by using a matrix with -1s on the diagonals

$$\begin{bmatrix} 1 & 3 \\ 5 & 7 \\ 9 & 11 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & -3 \\ -5 & -7 \\ -9 & -11 \end{bmatrix}$$

# Identity Matrix -- Negation

#### **Before**

# 

#### **After**



#### Permutation Matrix

$$\begin{bmatrix} 1 & 3 \\ 5 & 7 \\ 9 & 11 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 7 & 5 \\ 11 & 9 \end{bmatrix}$$

- A permutation matrix is an identity matrix with the columns swapped.
- In this case, we swapped the two coordinates

#### Permutation Matrix

#### **Before**



#### **After**



# Composing Operations

$$\begin{bmatrix} 1 & 3 \\ 5 & 7 \\ 9 & 11 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 3 \\ 5 & 7 \\ 9 & 11 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -3 & -1 \\ -7 & -5 \\ -11 & -9 \end{bmatrix}$$

- We can also combine operations by multiplying multiple matrices
- In this case, we use the negative identity to negate the coordinates and the permutation matrix to swap coordinates

# Composing Operations

#### **Before**



#### After



# Principle Component Analysis



### Principal Component Analysis



#### Discrete Fourier Transform

