را بدست آورید که در $X(t) = 3\cos(2t + \varphi_1) - 2\cos(7t + \varphi_2) + 5d(t)$ را بدست آورید که در $X(t) = 3\cos(2t + \varphi_1) - 2\cos(7t + \varphi_2) + 5d(t)$ را بدست آورید که در آری که در آری و تابع همبستگی و چگالی طیف توان فرآیند با تابع همبستگی و مستقل از هم بوده و Q_1, φ_2 است.

 $R_x[m] = rac{6}{1+m^2}$ و X[n] با متوسط صفر و تابع همبستگی X[n] و X[n] و X[n] و مستقل از هم X[n] و مستقل او مستقل او مستقل او واریانس واحد و X[n] با متوسط صفر و واریانس واحد و مستقل از دو فرآیند تصادفی X[n] و X[n] و X[n] و X[n] با متوسط صفر و تابع همبستگل از دو فرآیند تصادفی X[n] و X[n] با متوسط صفر و تابع همبستگل از دو فرآیند تصادفی X[n] و X[n] با متوسط صفر و تابع همبستگل از دو فرآیند تصادفی X[n] و X[n] با متوسط صفر و تابع همبستگل از دو فرآیند تصادفی X[n] و X[n] با متوسط صفر و تابع همبستگل از دو فرآیند تصادفی X[n] و X[n] با متوسط صفر و تابع همبستگل از دو فرآیند تصادفی X[n] و X[n]

الف) با محاسبه تابع متوسط و تابع همبستگی فرآیند Z[n]، ایستایی آن را بررسی کنید.

ب) آیا فرآیند Z[n] نرمال است؟ چرا؟

را $n_2=2$ و $n_1=1$ نیز نرمال است. توابع چگالی احتمال کناری و توام دو نمونه ازاین فرآیند درلحظات Z[n] و Z[n] بدست آورید. بدست آورید. سپس تابع چگالی احتمال شرطی فرآیند در لحظه $n_2=2$ به شرط داشتن مقدار فرآیند در لحظه $n_1=1$ را بدست آورید. تخمین خطی با معیار MMSE و یک بار تخمین آفین با معیار Y[n] در لحظه $n_1=1$ برابر ۵۰ باشد، یک بار تخمین خطی با معیار Y[n] و یک بار تخمین آفین با معیار MMSE برای مقدار فرآیند در لحظه $n_2=2$ و خطای آن را حساب کنید. آیا تخمین آفین بهترین تخمین است؟

ث) تابع همبستگی متقابل دو فرآیند [n] و [n] (یعنی $[n_1,n_2]$ را بد ست آورده و در صورت تواما ایستا بودن، آن را رسم کنید.

S[n] خروجی سیستمی با تابع تبدیل $S[n] = \frac{1}{1 - 0.5z^{-1}}$ و ورودی S[n] ا ست. فرآیند S[n] خروجی سیستمی با تابع تبدیل S[n] با ورودی نویز سفید با متوسط صفر و واریانس واحد است.

الف) این سیستم را به صورت اتصال cascade دو سیستم که یکی تکقطب و دیگری تکصفر است رسم کنید.

ب) تابع همبستگی فرآیند S[n] را بدست آورید.

 ψ) واریانس فرآیند X[n] را بدست آورید.

ت) چگالی طیف توان فرآیندهای S[n] و S[n] و تورت عبارتی حقیقی بدست آورید.

Y[n] به X[n] به X[n

الف) آیا X[n] و Y[n] هریک ایستا هستند؟

ب) آیا توآما ایستا هستند؟

U[n] و V[n] نویزهای $V[n] \cdot X[n] - 0.5X[n-1] = U[n] \cdot V[n]$ که در آن $V[n] \cdot X[n] - 0.5X[n-1] = U[n]$ نویزهای سفید با متوسط صفر و واریانس ۲ و ۵ و مستقل از هم هستند.

الف) فرض کنید : f(n) = 1 . موارد زیر را بدست آورید:

Y[n] و X[n] و X[n] و چگالی طیف توان و متوسط و واریانس فرآیندهای $R_{
m xy}[m]$ و $R_{
m xy}[m]$

ب) فرض کنید : $f(n) = \begin{cases} 0 & n < 0 \\ 1 & n \ge 0 \end{cases}$ موارد زیر را بدست آورید:

X[n] تابع همبستگی $R_{x}[n_{1},n_{2}]$ و متوسط و واریانس فرآیند

ج- فرآیند تصادفی $(\varphi)=\cos(\omega_0 n+\varphi)$ را در نظر بگیرید که $(\varphi)=\cos(\omega_0 n+\varphi)$ یک عدد ثابت مثبت است و $(\varphi)=\cos(\omega_0 n+\varphi)$ با تابع متوسط و همبستگی این فرآیند را بدست آورید. آیا فرآیند ایستا است؟

حقیقی S[n] به صـــورت مجموع این $S_s(\omega)=rac{9}{41-40{
m cos}\omega}$ به صـــورت مجموع این V

فرآیند و یک نویز سفید V[n] با متوسط صفر و واریانس واحد و متعامد با S[n] است.

الف) تابع همبستگی X[n] را محاسبه کنید و به ساده ترین صورت درآورید.

ب) پاسخ ضربه فیلتر سفید کننده و فیلتر ابداع فرآیند X[n] را بدست آورید.

 Λ فرض کنید سکهای را بی نهایت بار و با فواصل زمانی T پرتاب می کنیم. یک تابع نمونه از فرآیند X(t) به صورت زیر تعریف می شود (فرآیند برابر ۱ است اگر پرتاب nام شیر باشد و ۱ – است اگر پرتاب nام خط باشد):

$$X(t) = \begin{cases} 1 & (n-1)T \le t \le nT \\ -1 & (n-1)T \le t \le nT \end{cases}$$

الف) آیا این فرآیند WSS است؟ تابع همبستگی آن را محاسبه کنید.

ب) اگر θ یک متغیر تصادفی با توزیع یکنواخت در فاصله [0,T] و مستقل از X(t) باشد، آیا فرآیند $Y(t)=X(t-\theta)$ یک فرآیند WSS است؟ تابع همبستگی آن را محاسبه کنید.