Importing the required libraries

In [1]:

```
import numpy as np
import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
```

Reading the dataset

In [3]:

```
data=pd.read_csv('diabetes_data_upload.csv')
data.head()
```

Out[3]:

	Age	Gender	Polyuria	Polydipsia	sudden weight loss	weakness	Polyphagia	Genital thrush	visual blurring	Itching
0	40	Male	No	Yes	No	Yes	No	No	No	Yes
1	58	Male	No	No	No	Yes	No	No	Yes	Nc
2	41	Male	Yes	No	No	Yes	Yes	No	No	Yes
3	45	Male	No	No	Yes	Yes	Yes	Yes	No	Yes
4	60	Male	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
4										•

Defining rows and columns

In [4]:

data

Out[4]:

	Age	Gender	Polyuria	Polydipsia	sudden weight loss	weakness	Polyphagia	Genital thrush	visual blurring	Itchi
0	40	Male	No	Yes	No	Yes	No	No	No)
1	58	Male	No	No	No	Yes	No	No	Yes	
2	41	Male	Yes	No	No	Yes	Yes	No	No	١
3	45	Male	No	No	Yes	Yes	Yes	Yes	No)
4	60	Male	Yes	Yes	Yes	Yes	Yes	No	Yes)
515	39	Female	Yes	Yes	Yes	No	Yes	No	No)
516	48	Female	Yes	Yes	Yes	Yes	Yes	No	No)
517	58	Female	Yes	Yes	Yes	Yes	Yes	No	Yes	
518	32	Female	No	No	No	Yes	No	No	Yes	١
519	42	Male	No	No	No	No	No	No	No	

520 rows × 17 columns

In [5]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 520 entries, 0 to 519
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	Age	520 non-null	int64
1	Gender	520 non-null	object
2	Polyuria	520 non-null	object
3	Polydipsia	520 non-null	object
4	sudden weight loss	520 non-null	object
5	weakness	520 non-null	object
6	Polyphagia	520 non-null	object
7	Genital thrush	520 non-null	object
8	visual blurring	520 non-null	object
9	Itching	520 non-null	object
10	Irritability	520 non-null	object
11	delayed healing	520 non-null	object
12	partial paresis	520 non-null	object
13	muscle stiffness	520 non-null	object
14	Alopecia	520 non-null	object
15	Obesity	520 non-null	object
16	class	520 non-null	object

dtypes: int64(1), object(16)
memory usage: 69.2+ KB

Defining null values

In [6]:

```
print("Number of null values :" , data.isnull().sum().sum())
data.describe(include='all')
```

Number of null values : 0

Out[6]:

	Age	Gender	Polyuria	Polydipsia	sudden weight loss	weakness	Polyphagia	Genital thrush	vi blur
count	520.000000	520	520	520	520	520	520	520	
unique	NaN	2	2	2	2	2	2	2	
top	NaN	Male	No	No	No	Yes	No	No	
freq	NaN	328	262	287	303	305	283	404	
mean	48.028846	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
std	12.151466	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
min	16.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
25%	39.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
50%	47.500000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
75%	57.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
max	90.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

Defining columns

```
In [7]:
```

```
{ column: len(data[column].unique())for column in data.columns}
Out[7]:
{'Age': 51,
 'Gender': 2,
 'Polyuria': 2,
 'Polydipsia': 2,
 'sudden weight loss': 2,
 'weakness': 2,
 'Polyphagia': 2,
 'Genital thrush': 2,
 'visual blurring': 2,
 'Itching': 2,
 'Irritability': 2,
 'delayed healing': 2,
 'partial paresis': 2,
 'muscle stiffness': 2,
 'Alopecia': 2,
 'Obesity': 2,
 'class': 2}
```

Data preprocessing

In [29]:

```
def preprocessing(df):
   df= df.copy()
   # Gender column Binary Encoding
   df['Gender'] = df ['Gender'].replace({'Female':0,'Male':1 })
   #Symptom Column Binary Encoding
   for column in df.columns.drop(['Age', 'Gender', 'class']):
     df[column]= df[column].replace({'No':0 , 'Yes': 1})
   #train
   y=df["class"]
   X=df.drop("class", axis=1)
   X_train, X_test,y_train,y_test = train_test_split(X,y
                        ,train size=0.7,shuffle=True,random state=1)
   scaler=StandardScaler()
   scaler.fit(X train)
   X_train=pd.DataFrame(scaler.transform(X_train)
                        ,index=X_train.index , columns=X_train.columns)
   X test=pd.DataFrame(scaler.transform(X test)
                        ,index=X test.index, columns=X test.columns)
   return X_train,X_test,y_train,y_test
```

```
In [17]:
```

```
X_train,X_test,y_train,y_test= preprocessing(data)
```

```
In [18]:
```

```
X_train
```

Out[18]:

	Age	Gender	Polyuria	Polydipsia	sudden weight loss	weakness	Polyphagia	Genital thrush	
122	-0.658902	0.740902	-0.994521	1.129159	-0.846747	0.841974	1.104315	-0.560428	-
168	-0.913060	0.740902	-0.994521	-0.885615	-0.846747	0.841974	-0.905539	-0.560428	-
23	0.018852	0.740902	-0.994521	1.129159	1.180990	0.841974	-0.905539	-0.560428	
13	1.120204	0.740902	1.005510	1.129159	1.180990	0.841974	1.104315	1.784351	
61	-1.082499	-1.349706	1.005510	1.129159	1.180990	0.841974	1.104315	-0.560428	
129	0.018852	0.740902	1.005510	1.129159	1.180990	0.841974	-0.905539	-0.560428	-
144	1.713239	0.740902	1.005510	1.129159	-0.846747	-1.187685	1.104315	-0.560428	
72	1.459081	-1.349706	-0.994521	-0.885615	-0.846747	-1.187685	-0.905539	1.784351	-
235	-1.844973	0.740902	-0.994521	-0.885615	-0.846747	-1.187685	-0.905539	-0.560428	-
37	1.289643	0.740902	1.005510	1.129159	1.180990	0.841974	1.104315	-0.560428	

364 rows × 16 columns

```
→
```

In [19]:

```
y_test
```

Out[19]:

```
273
       Negative
272
       Negative
329
       Negative
480
       Negative
173
       Positive
335
       Negative
407
       Negative
330
       Negative
257
       Positive
       Positive
```

Name: class, Length: 156, dtype: object

Decision tree algorithm

```
In [21]:
```

DecisionTree : trained

In [22]:

```
for name, model in models.items():
    print(name+ ": {:.2f}%".format(model.score(X_test,y_test) * 100))
```

DecisionTree : 96.15%

Random forest algortihm

```
In [23]:
```

```
models= {
    ' Randomforest ': RandomForestClassifier()

}
for name, model in models.items():
    model.fit(X_train,y_train)
    print(name+ ': trained')
```

Randomforest : trained

In [24]:

```
for name,model in models.items():
    print(name+ ": {:.2f}%".format(model.score(X_test,y_test) * 100))
```

Randomforest : 98.08%