Aufgabe 1:c

Sind eine Implikation $A\Rightarrow B$ und ihre Prämisse A wahr, so folgt das Konklusion B wahr ist; kann man etwas über den Wahrheitsgehalt der Prämisse A aussagen, wenn Implikation und Konklusion wahr sind?

Logische Schlussfolgerung

Wenn die Implikation $A\Rightarrow B$ und die Konklusion B wahr sind, kann man über den Wahrheitsgehalt der Prämisse A keine eindeutige Aussage treffen.

- Die Schlussfolgerung, dass A wahr sein muss, ist der logische Fehlschluss der Bejahung des Konsequens (Affirming the Consequent).
- Die Implikation ist wahr, wenn A und B beide wahr sind $(W \Rightarrow W)$, aber auch, wenn A falsch und B wahr ist $(F \Rightarrow W)$.

Analyse der Ungleichungen und Beweise

- (i) Ungleichung vom arithmetischen und geometrischen Mittel (AGM) A bezeichne die Aussage $\forall x, y \in \mathbb{R} : x, y > 0 \Rightarrow \frac{x+y}{2} \geq \sqrt{xy}$.
 - (a) Entscheiden Sie, ob diese Aussage wahr oder falsch ist und begründen Sie Ihre Entscheidung. Beweisen Sie!

Die Aussage A ist wahr.

Beweis: Wir beweisen die Ungleichung $\frac{x+y}{2} \ge \sqrt{xy}$ durch eine Kette von Äquivalenzen (\iff) zur trivial wahren Aussage.

Da x, y > 0 gelten, sind \sqrt{x} und \sqrt{y} reelle Zahlen.

$$\frac{x+y}{2} \ge \sqrt{xy} \qquad \iff \\ x+y \ge 2\sqrt{xy} \qquad \iff \\ x-2\sqrt{xy}+y \ge 0 \qquad \iff \\ (\sqrt{x}-\sqrt{y})^2 \ge 0$$

Da die letzte Aussage, $(\sqrt{x} - \sqrt{y})^2 \ge 0$, als Quadrat einer reellen Zahl **stets wahr** ist, und alle Schritte Äquivalenzen sind, ist die Aussage A ebenfalls wahr.

- (b) Analyse des Beweises: Der im Text gezeigte "Beweisist richtig.
 - Lokalisierung des Fehlers: Es gibt keinen Fehler.
 - (ii) Ungleichung $x + 1 \le 2x$ A bezeichne die Aussage $\forall x > 0 : x + 1 \le 2x$.

(a) Entscheiden Sie, ob diese Aussage wahr oder falsch ist und begründen Sie Ihre Entscheidung. Woher das $x \geq 1$ sein muss? Unterscheiden Sie nach dem Definitionsbereich.

Die Aussage A ist falsch für den Definitionsbereich $\mathbf{x} \in \mathbb{R}, \mathbf{x} > \mathbf{0}$.

Herleitung der Bedingung $x \ge 1$: Wir formen die Ungleichung $x + 1 \le 2x$ elementar um:

$$x+1 \leq 2x \iff 1 \leq x$$

Die Ungleichung ist also nur für Werte $\mathbf{x} \geq \mathbf{1}$ erfüllt.

Fallunterscheidung nach dem Definitionsbereich:

- Fall 1: Reelle Zahlen $(\mathbf{x} \in \mathbb{R}, \mathbf{x} > \mathbf{0})$ Die Aussage A ist falsch, da sie für alle x im Intervall (0,1) nicht erfüllt ist.
- Fall 2: Natürliche Zahlen ($\mathbf{x} \in \mathbb{N}$)
 Da alle natürlichen Zahlen x die Bedingung $x \geq 1$ erfüllen, ist die Aussage A für den Definitionsbereich der natürlichen Zahlen wahr.
- (b) Analyse des Beweises: Der folgende "Beweisist falsch.
 - Lokalisierung des Fehlers: Der Fehler liegt in der Schlussrichtung (logische Implikation). Der "Beweis" geht von der Behauptung (A) aus und leitet eine wahre Aussage $(B:0 \le (x-1)^2)$ ab.
 - Fehlertyp: Die Schlussfolgerung $A\Rightarrow B$ beweist nicht A. Man müsste die Kette als Äquivalenzen (\iff) oder in umgekehrter Richtung ($B\Rightarrow A$) führen, um die Behauptung zu beweisen. Da A für $x\in (0,1)$ falsch ist, kann der Beweis auch durch Umkehrung nur für $x\geq 1$ funktionieren.
 - Modifikation des Beweises: Der Beweis kann nicht modifiziert werden, um die Aussage A als universell wahr zu beweisen, da A für reelle Zahlen $\mathbf{x} \in (\mathbf{0},\mathbf{1})$ falsch ist.