Problem Set 4: Math 454 Spring 2017 Due Thursday February 9

January 6, 2017

Do the problems below. Please write neatly, especially your name! Show all your work and justify all your steps. Write in complete, coherent sentences. I expect and openly encourage you to collaborate on this problem set. I will insist that you list your collaborators on the handed in solutions (list them on the top of your first page).

Problem 1. Prove that \mathbf{F}_p^{\times} is a cyclic group.

Problem 2. Let R, R' be commutative rings with identity and let $\psi: R \to R'$ be an isomorphism of rings.

(a) If $\mathfrak{a} \triangleleft R$ is an ideal with $\mathfrak{a}' = \psi(\mathfrak{a})$, prove that there exists a ring isomorphism $\overline{\psi} \colon R/\mathfrak{a} \to R'/\mathfrak{a}'$ such that the diagram

$$egin{array}{cccc} R & & & \psi & & R & & & \downarrow \psi_{\mathfrak{a}'} & &$$

- (b) Prove that if $\mathfrak{p} \triangleleft R$ is a prime ideal, then $\psi(\mathfrak{p})$ is a prime ideal in R'.
- (c) Prove that if $\mathfrak{m} \triangleleft R$ is a maximal ideal, then $\psi(\mathfrak{m})$ is a maximal ideal in R'.

Problem 3. Let F be a finite field. Prove that $|F| = p^{\ell}$ for some $\ell \in \mathbb{N}$ and prime p.

Problem 4. Prove that F[t] is an integral domain. Prove that if E is a field and $F \leq E$ is a subfield, then $F[t] \leq E[t]$ is a subring.

Problem 5. Find an example of a ring R with subring R_0 and a maximal ideal $\mathfrak{m} \triangleleft R$ such that $\mathfrak{m}_0 = \mathfrak{m} \cap R_0$ is not a maximal ideal of R_0 . Prove that \mathfrak{m}_0 is a prime ideal.

Problem 6. Prove that if R is a ring with char(R) = p and p is a prime, then $(r+s)^p = r^p + s^p$ for any $r, s \in R$.

Problem 7. Let *F* be a field and $R \subseteq F$ a subring of *F*. Prove that *R* is an integral domain.