

Advanced Topics in Deep Reinforcement Learning

Architectures

Which DL Architectures Are Common in RL?

- Default: (small) MLPs
- For image-based environments: CNNs
 - Size varies drastically from env to env
 - ProcGen and Atari can use decently sized ResNets, e.g. ResNet15
- RNNs have been used especially in generalization tasks
- Example overview for one environment: <u>Crafter</u>
- Recently: sequence modelling is becoming popular

Algorithm	Score (%)	Reward	Open Source
Curious Replay	19.4±1.6	-	AutonomousAgentsLab/cr-dv3
PPO (ResNet)	15.6±1.6	10.3±0.5	snu-mllab/Achievement-Distillation
DreamerV3	14.5±1.6	11.7±1.9	danijar/dreamerv3
LSTM-SPCNN	12.1±0.8	_	astanic/crafter-ood
EDE	11.7±1.0	-	yidingjiang/ede
OC-SA	11.1±0.7	_	astanic/crafter-ood
DreamerV2	10.0±1.2	9.0±1.7	danijar/dreamerv2
PPO	4.6±0.3	4.2±1.2	DLR-RM/stable-baselines3
Rainbow	4.3±0.2	6.0±1.3	Kaixhin/Rainbow

Scaling Laws in RL? [Hilton et al. 2023]

(a) Using the usual metric of mean episode return.

(b) Using intrinsic performance instead.

Figure 1: Learning curves as a function of total training compute for StarPilot, an environment from Procgen Benchmark, using CNNs of different widths. Mean ± 1 sample standard deviation over three seeds shown.

Representations are an important factor for model architecture.

- Complex observation shapes require processing
- Information-dense observations need more complex representations
- Distractors need to be filtered out
- The agent needs to learn feature importances for different points in time

Broadly two options:

- 1. Add additional loss term for representations
- 2. Build representation learning into architectures

Representations: IDAAC [Raileanu & Fergus 2021]

Intuition: value prediction needs more complex representations than policy.

From Point To Sequence Prediction

Doesn't work well without Markov assumption

State to Action Mapping

From Point To Sequence Prediction

State to Action Mapping

Trajectory to Action Mapping

Sequence Models As Policies

- We can use the whole trajectory to make predictions
- Markov assumption becomes less relevant
- We can detect environment changes during the episode
- In principle, we can even input the full training sequence
- More flexibility than single state predictions

The Causal Transformer [Melnychuk et al. 2022]

Agentic Transformer [Liu & Abeel 2023]

Causal Transformer Model

Sort by achieved return $\sum_{t=0}^T r_t < \sum_{t=0}^T r_t < \sum_{t=0}^T r_t$

Relabel target return-to-go as $\widehat{\mathbf{R}}_0$ $\widehat{\mathbf{R}}_0 = \widehat{\mathbf{R}}_0 = \widehat{\mathbf{R}}_0$

SSMs for RL [Lu et al. 2023]

Figure from Smith et al. 2023

Adaption & Generalization in Sequences

Bauer et al. 2023

Adaption & Generalization in Sequences

Rapharty et al. 2023

Pros And Cons Of Sequence Models

Pros:

- Flexibility
- Few-shot learning
- Dealing with PoMDPs

Pros:

- Flexibility
- Few-shot learning
- Dealing with PoMDPs

Cons:

- Data Hungry
- Training Time
- Compute Overhead
- Harder to Train

Architecture Search for RL

- NAS looks for architecture in an automated way
- Usually, this requires many evaluations and is thus expensive
- Hyperparameters may need to be tuned for each architecture separately
- Search spaces can be very diverse, e.g.:
 - n_layers, n_neurons
 - DARTS (searching for a single CNN cell that can be duplicated)
 - In theory: full space of all connections

The Classic: DARTS [Miao et al. 2023]

Dynamically: BG-PBT [Wan et al. 2022]

My Understanding of Architectures in RL

- I can name common RLarchitectures
- I understand the difference between point and sequence predictions

- I have an intuition of how sequence prediction in RL works
- I can suggest an rough architecture for a given usecase
- I know how
 architectures in RL
 have been searched for
 I understand how
 architecture interacts
 with representation

