- Effectiveness of the SAT coaching
 - students had made pre-tests PSAT-M and PSAT-V
 - · part of students were coached
 - linear regression was used to estimate the coaching effect y_j for the school j (could be denoted with $\bar{y}_{.j}$, too) and variances σ_i^2
 - y_j approximately normally distributed, with variances assumed to be known based on about 30 students per school
 - data is group means and variances (not personal results)

Data:	School	Α	В	С	D	Ε	F	G	Н
	y_i	28	8	-3	7	-1	1	18	12
• Data:	σ_j	15	10	16	11	9	22	20	28

Hierarchical normal model for group means

$$\bar{y}_{.j}|\theta_j \sim \mathsf{N}(\theta_j, \sigma_j^2)$$

The necessary conditional and marginal posteriors are presented in section 5.4 of BDA. Let

$$\overline{y}_{,j} = \frac{1}{n_j} \sum_{i=1}^{n_j} y_{ij}$$
 and $\sigma_j^2 = \sigma^2/n_j$

Then

$$\begin{split} \rho(\tau|y) &\propto \rho(\tau) V_{\mu}^{1/2} \prod_{j=1}^{J} (\sigma_{j}^{2} + \tau^{2})^{-1/2} \exp(-\frac{(\overline{y}_{.j} - \hat{\mu})^{2}}{2(\sigma_{j}^{2} + \tau^{2})}) \\ & \mu|\tau, y \sim N(\hat{\mu}, V_{\mu}) \\ & \theta_{j}|\mu, \tau, y \sim N(\hat{\theta}_{j}, V_{j}) \\ V_{\mu}^{-1} &= \sum_{j=1}^{J} \frac{1}{s_{j}^{2} + \tau^{2}} \quad \hat{\mu} = V_{\mu}(\sum_{j=1}^{J} \frac{\overline{y}_{.j}}{s_{i}^{2} + \tau^{2}}) \\ V_{j}^{-1} &= \frac{1}{s_{i}^{2}} + \frac{1}{\tau^{2}} \quad \hat{\theta}_{j} = V_{j}(\frac{\overline{y}_{.i}}{s_{i}^{2}} + \frac{\mu}{\tau^{2}}) \end{split}$$

Hierarchical normal model: Computation strategy

- 1. $\tau^{(k)} \sim p(\tau|y)$
- **2.** $\mu^{(k)} \sim p(\mu | \tau^{(k)}, y)$
- 3. $\theta_j^{(k)} \sim p(\theta|\mu^{(k)}, \tau^{(k)}, y)$ for $j = 1, \dots, J$.

Separate model

Pooled model

Hierarchical model

Summary - hierarchical examples

- Allow the data to inform us about similarities across groups
- Provide data driven shrinkage toward a grand mean
 - · lots of shrinkage when means are similar
 - little shrinkage when means are different

Decomposition used in computation

$$p(\theta, \mu, \tau | y) = p(\theta | \mu, \tau, y) p(\mu | \tau, y) p(\tau | y)$$

which allowed for simulation from τ then μ and then θ to obtain samples from the posterior.

Summary - extension to more levels

Three-level hierarchical model:

$$y \sim p(y|\theta)$$
 $\theta \sim p(\theta|\phi)$ $\phi \sim p(\phi|\psi)$ $\psi \sim p(\psi)$

When deriving posteriors, remember the conditional independence structure, e.g.

$$p(\theta, \phi, \psi|y) \propto p(y|\theta)p(\theta|\phi)p(\phi|\psi)p(\psi)$$

Theoretical justification for hierarchical models

- Exchangeability
 - · Justifies why we can use
 - a joint model for data
 - · a joint prior for a set of parameters
 - Less strict than independence
- de Finetti's theorem
- Application to hierarchical models

Exchangeability

Definition

The set $Y_1, Y_2, ..., Y_n$ is exchangeable if the joint probability $p(y_1, ..., y_n)$ is invariant to permutation of the indices. That is, for any permutation π ,

$$p(y_1,\ldots,y_n)=p(y_{\pi_1},\ldots,y_{\pi_n}).$$

Some examples:

- 1. A box has one black ball and one white ball. We pick a ball y1 at random, put it back, and pick another ball y2 at random.
- 2. A box has one black ball and one white ball. We pick a ball y1 at random, we do not put it back, then we pick ball y2.
- A box has a million black balls and a million white balls. We pick a ball y1 at random, we do not put it back, then we pick ball y2 at random.

Exchangeability

Definition

The set $Y_1, Y_2, ..., Y_n$ is exchangeable if the joint probability $p(y_1, ..., y_n)$ is invariant to permutation of the indices. That is, for any permutation π ,

$$p(y_1,\ldots,y_n)=p(y_{\pi_1},\ldots,y_{\pi_n}).$$

An exchangeable but not iid example:

- Consider an box with one black ball and one white ball with probability 1/2 of drawing either.
- Draw without replacement from the urn.
- Let $Y_i = 1$ if the *i*th ball is black and otherwise $Y_i = 0$.
- Since $1/2 = P(Y_1 = 1, Y_2 = 0) = P(Y_1 = 0, Y_2 = 1) = 1/2, Y_1$ and Y_2 are exchangeable.
- But $0 = P(Y_2 = 1 | Y_1 = 1) \neq P(Y_2 = 1) = 1/2$ and thus Y_1 and Y_2 are not independent.

Exchangeability

Theorem

All independent and identically distributed random variables are exchangeable.

Proof.

Let $y_i \stackrel{iid}{\sim} p(y)$, then

$$p(y_1,\ldots,y_n) = \prod_{i=1}^n p(y_i) = \prod_{i=1}^n p(y_{\pi_i}) = p(y_{\pi_1},\ldots,y_{\pi_n})$$

Definition

The sequence $Y_1, Y_2,...$ is infinitely exchangeable if, for any n, $Y_1, Y_2,..., Y_n$ are exchangeable.

de Finetti's theorem

Theorem

A sequence of random variables $(y_1, y_2,...)$ is infinitely exchangeable iff, for all n,

$$p(y_1, y_2, \ldots, y_n) = \int \prod_{i=1}^n p(y_i|\theta) P(d\theta),$$

for some measure P on θ .

If the distribution on θ has a density, we can replace $P(d\theta)$ with $p(\theta)d\theta$.

This means that there must exist

- a parameter θ ,
- a likelihood $p(y|\theta)$ such that $y_i \stackrel{ind}{\sim} p(y|\theta)$, and
- a distribution P on θ .

Application to hierarchical models

Assume $(y_1, y_2, ...)$ are infinitely exchangeable, then by de Finetti's theorem for the $(y_1, ..., y_n)$ that you actually observed, there exists

- a parameter θ ,
- a distribution $p(y|\theta)$ such that $y_i \stackrel{ind}{\sim} p(y|\theta)$, and
- a distribution P on θ .

Assume $\theta = (\theta_1, \theta_2, ...)$ with θ_i infinitely exchangeable. By de Finetti's theorem for $(\theta_1, ..., \theta_n)$, there exists

- a parameter ϕ ,
- a distribution $p(\theta|\phi)$ such that $\theta_i \stackrel{ind}{\sim} p(\theta|\phi)$, and
- a distribution P on ϕ .

Assume $\phi = \phi$ with $\phi \sim p(\phi)$.

Hierarchical exchangeability

- Example: hierarchical rats example
 - all rats not exchangeable
 - in a single laboratory rats exchangeable
 - · laboratories exchangeable
 - → hierarchical model

Exchangeability and additional information

- Example: bioassay
 - y_i number of dead animals are not exchangeable alone
 - x_i dose is additional information
 - (x_i, y_i) exchangeable and logistic regression was used

$$p(\alpha, \beta|y, n, x) \propto \prod_{i=1}^{n} p(y_i|\alpha, \beta, n_i, x_i) p(\alpha, \beta)$$

Partial or conditional exchangeability

- Conditional exchangeability
 - if y_i is connected to an additional information x_i , so that y_i are not exchangeable, but (y_i, x_i) exchangeable use joint model or conditional model $(y_i|x_i)$.
- Partial exchangeability
 - if the observations can be grouped (a priori), then use hierarchical model

Exchangeability with covariates

Suppose we observe y_i observations and x_i covariates for each unit i. Now we assume $(y_1, y_2, ...)$ are infinitely exchangeable given x_i , then by de Finetti's theorem for the $(y_1, ..., y_n)$, there exists

- a parameter θ ,
- a distribution $p(y|\theta, x)$ such that $y_i \stackrel{ind}{\sim} p(y|\theta, x_i)$, and
- a distribution P on θ given x.

Assume $\theta = (\theta_1, \theta_2, ...)$ with θ_i infinitely exchangeable given x. By de Finetti's theorem for $(\theta_1, ..., \theta_n)$, there exists

- a parameter φ,
- a distribution $p(\theta|\phi, \mathbf{x})$ such that $\theta_i \stackrel{ind}{\sim} p(\theta|\phi, \mathbf{x}_i)$, and
- a distribution P on ϕ given x.

Assume $\phi = \phi$ with $\phi \sim p(\phi|\mathbf{x})$.

Summary

Hierarchical model:

$$y_i \stackrel{ind}{\sim} p(y|\theta_i), \qquad \theta_i \stackrel{ind}{\sim} p(\theta|\phi), \qquad \phi \sim p(\phi)$$

Hierarchical (linear) model:

$$y_i \stackrel{\text{ind}}{\sim} p(y|\theta_i, x_i), \qquad \theta_i \stackrel{\text{ind}}{\sim} p(\theta|\phi, x_i), \qquad \phi \sim p(\phi|x)$$

Although hierarchical models are typically written using the conditional independence notation above, the assumptions underlying the model are exchangeability and functional forms for the priors.