Reinforcement learning

CE-477: Machine Learning - CS-828: Theory of Machine Learning Sharif University of Technology Fall 2024

Fatemeh Seyyedsalehi

Reinforcement Learning (RL)

- Learning as a result of interaction with an environment
 - to improve the agent's ability to behave optimally in the future to achieve the goal.
- ▶ The first idea when we think about the nature of learning
- Examples:
 - Baby movements
 - Learning to drive car
 - ▶ Environment's response affects our subsequent actions
 - We find out the effects of our actions later

Paradigms of learning

- Supervised learning
 - Training data: features and labels for N samples $\{(x^{(n)}, y^{(n)})\}_{n=1}^{N}$
- Unsupervised learning
 - Training data: only features for N samples $\left\{ {{m{x}}^{(n)}} \right\}_{n = 1}^N$
- Reinforcement learning
 - Training data: a sequence of (s, a, r)
 - (state, some action, reward)
 - Agent acts on its environment, it receives some evaluation of its action via reinforcement signal
 - it is not told of which action is the correct one to achieve its goal

Reinforcement Learning (RL)

▶ S: Set of states

▶ *A*: Set of actions

- Goal: Learning an optimal policy (mapping from states to actions) in order to maximize its long-term reward
 - The agent's objective is to maximize amount of reward it receives over time.

Main characteristics and applications of RL

- Main characteristics of RL
 - Agent must learn from interactions with environment
 - Agent must be able to learn from its own experience
 - Not entirely supervised, but interactive
 - □ by trial-and-error
 - Opportunity for active exploration
 - □ Needs trade-off between exploration and exploitation
 - ☐ Exploration: you have to try unknown actions to get information
 - ☐ Exploitation: eventually, you have to use what you know
- Goal: map states to actions, so as to maximize reward over time (optimal policy)

Main elements of RL

- A reward function
 - It maps each state (or, state-action pair) to a real number, called reward.

- ▶ Policy: A map from state space to action space.
 - May be stochastic.
- A value function
 - Value of a state (or state-action) is the total expected reward, starting from that state (or state-action).

RL problem: deterministic environment

- Deterministic
 - Transition and reward functions
- At time *t*:
 - ▶ Agent observes state $s_t \in S$
 - ▶ Then chooses action $a_t \in A$
 - Then receives reward r_t , and state changes to s_{t+1}

Learn to choose action a_t in state s_t that maximizes the discounted return:

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k}, \qquad 0 < \gamma \le 1$$

Upon visiting the sequence of states s_t, s_{t+1}, \dots with actions a_t, a_{t+1}, \dots it shows the total payoff

RL problem: stochastic environment

- Stochastic environment
 - Stochastic transition and/or reward

Learn to choose a policy that maximizes the expected discounted **return**:

$$E[R_t] = E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots]$$

starting from state S_t

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k}$$

RL: Autonomous Agent

- Execute actions in environment, observe results, and learn
 - Learn (perhaps stochastic) policy that maximizes $E\left[\sum_{k=0}^{\infty} \gamma^k r_{t+k} \mid s_t = s, \pi\right]$ for every state $s \in S$
- Function to be learned is the policy π : $S \times A \rightarrow [0,1]$ (when the policy is deterministic π : $S \rightarrow A$)
 - Training examples in supervised learning: $\langle s, a \rangle$ pairs
 - RL training data shows the amount of reward for a pair $\langle s, a \rangle$.
 - training data are of the form $\langle \langle s, a \rangle, r \rangle$

Markov Decision Process (RL Setting)

Markov assumption:

$$P(s_{t+1}, r_t | s_t, a_t, r_{t-1}, s_{t-1}, a_{t-1}, r_{t-2}, \dots) = P(s_{t+1}, r_t | s_t, a_t)$$

- Markov property: Transition probabilities depend on state only, not on the path to the state.
- ▶ Goal: for every possible state $s \in S$ learn a policy π for choosing actions that maximizes (infinite-horizon sum of discounted reward):

$$E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots | s_t = s, \pi], \quad 0 < \gamma \le 1$$

Markov Decision Process

 MDPs provide a way to think about how we can act optimally under uncertainty

Components:

- states
- actions
- state transition probabilities
- reward function
- discount factor

MDP: Definition

- A Markov decision process is composed:
 - \triangleright S:a finite set of states
 - A: a finite set of actions
 - Transition probabilities

- Immediate rewards:
 - $\mathcal{R}_{ss'}^a = E\{r_t | s_t = s, a_t = a, s_{t+1} = s'\}$ as the immediate reward received after transition to state s' from state s with action a
- ▶ $\gamma \in [0,1]$: discount factor
 - represents the difference in importance between future rewards and present rewards.

MDP: Recycling Robot example

- \triangleright $S = \{high, low\}$
- $A = \{search, wait, recharge\}$
 - $\mathcal{A}(high) = \{search, wait\} \longrightarrow Available actions in the 'high' state'$
 - \rightarrow $A(low) = \{search, wait, recharge\}$
- $ightharpoonup \mathcal{R}_{search} > \mathcal{R}_{wait}$

State-value function for policy π

• Given a policy π , define <u>value function</u>

$$V^{\pi}(s) = E\{\sum_{k=0}^{\infty} \gamma^k r_{t+k} | s_t = s, \pi\}$$

- $V^{\pi}(s)$: How good for the agent to be in the state s when its policy is π
 - It is simply the expected sum of discounted rewards upon starting in state s and taking actions according to π

Recursive definition for $V^{\pi}(S)$

$$V^{\pi}(s) = E\{\sum_{k=0}^{\infty} \gamma^{k} r_{t+k} \mid s_{t} = s, \pi\}$$

$$= E\{r_{t} + \gamma \sum_{k=1}^{\infty} \gamma^{k-1} r_{t+k} \mid s_{t} = s, \pi\}$$

$$= E\{r_{t} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t} = s, \pi\}$$

$$= \sum_{s'} \mathcal{P}_{ss'}^{\pi(s)} \left(\mathcal{R}_{ss'}^{\pi(s)} + \gamma E\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \, \middle| \, s_{t+1} = s', \pi \} \right)$$

$$\mathcal{P}_{ss'}^a = P(s_{t+1} = s' | s_t = s, a_t = a)$$

$$V^{\pi}(s')$$

$$\mathcal{R}_{ss'}^a = E\{r_t | s_t = s, a_t = a, s_{t+1} = s'\}$$

Bellman Equations

$$V^{\pi}(s) = \sum_{s'} \mathcal{P}_{ss'}^{\pi(s)} \left(\mathcal{R}_{ss'}^{\pi(s)} + \gamma V^{\pi}(s') \right)$$

Base equation for dynamic programming approaches

State-action value function for policy π

$$Q^{\pi}(s, a) = E\left\{\sum_{k=0}^{\infty} \gamma^{k} r_{t+k} \mid s_{t} = s, a_{t} = a, \pi\right\}$$

$$= \sum_{s'} \mathcal{P}_{ss'}^{a} \left(\mathcal{R}_{ss'}^{a} + \gamma E\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} | s_{t+1} = s', \pi \} \right)$$

$$V^{\pi}(s')$$

$$Q^{\pi}(s,a) = \sum_{s'} \mathcal{P}^{a}_{ss'} \left(\mathcal{R}^{a}_{ss'} + \gamma V^{\pi}(s') \right)$$

Optimal policy

- Policy π is better than (or equal to) π' (i.e. $\pi \ge \pi'$) iff $V^{\pi}(s) \ge V^{\pi'}(s)$, $\forall s \in S$
- Optimal policy π^* is better than (or equal to) all other policies $(\forall \pi, \pi^* \geq \pi)$
- **Optimal policy** π^* :

$$\pi^*(s) = \operatorname*{argmax} V^{\pi}(s), \quad \forall s \in S$$

MDP: Optimal policy state-value and action-value functions

• Optimal policies share the same optimal state-value function $(V^{\pi^*}(s))$ will be abbreviated as $V^*(s)$:

$$V^*(s) = \max_{\pi} V^{\pi}(s), \quad \forall s \in S$$

And the same optimal action-value function:

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a), \quad \forall s \in S, a \in \mathcal{A}(s)$$

For any MDP, a deterministic optimal policy exists!

Bellman optimality equation

- For optimal policy, the Bellman equation can be written as follows,
- Remember these equations until the end of the lecture !!

$$V^*(s) = \max_{a \in \mathcal{A}(s)} \sum_{s'} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma V^*(s') \right)$$
$$Q^*(s, a) = \sum_{s'} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma \max_{a'} Q^*(s', a') \right)$$

$$V^*(s) = \max_{a \in \mathcal{A}(s)} Q^*(s, a)$$
$$Q^*(s, a) = \sum_{s'} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma V^*(s') \right)$$

Optimal policy

If we have $V^*(s)$ and $P(s_{t+1}|s_t,a_t)$ we can compute $\pi^*(s)$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \left\{ \sum_{s'} P(s'|s,a) \left(R(s,a,s') + \gamma V^*(s') \right) \right\}$$

It can also be computed as:

$$\pi^*(s) = \operatorname*{argmax}_{a \in \mathcal{A}(s)} Q^*(s, a)$$

It is not dependent on the initial state.

Known Environments

- We first assume that the MDP is known although in RL problems, we do not know it
 - $\mathcal{P}^a_{ss'}$ and $\mathcal{R}^a_{ss'}$ is known
- Dynamic programming methods are used for solving the problems when MDP is known
 - ▶ Value iteration and Policy iteration are two more classic approaches to this problem.

Value Iteration

Bellman equations characterize the optimal values:

$$V^{*}(s) = \max_{a} \sum_{s'} P(s'|s,a) \left(R(s,a,s') + \gamma V^{*}(s') \right)$$

Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) \left(R(s,a,s') + \gamma V_k(s') \right)$$

Value Iteration algorithm

Consider only MDPs with finite state and action spaces:

- I) Initialize all V(s) to zero
- 2) Repeat until convergence for $s \in S$

$$V^{new}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) \left(R(s,a,s') + \gamma V(s') \right)$$

$$V = V^{new}$$

3) for $s \in S$ $\pi(s) \leftarrow \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) \left(R(s,a,s') + \gamma V(s') \right)$

V(s) converges to $V^*(s)$

k=12

k = 100

Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) \left(R(s,a,s') + \gamma V_k(s') \right)$$

- ▶ Problem 1: It's slow O(S²A) per iteration
- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

Convergence: Example

[Russel, AIMA, 2010]

Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!
- We need to do (one step)

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma V^*(s') \right)$$

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

Important lesson: actions are easier to select from q-values than values!

Policy Iteration Algorithm

- I) Initialize $\pi(s)$ arbitrarily
- 2) Repeat until convergence
 - (policy evaluation step) Compute the value function for the current policy π (i.e. V^{π})

$$V \leftarrow V^{\pi}$$

- For $s \in S$

$$\pi(s) \leftarrow \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) \left(R(s,a,s') + \gamma V(s') \right)$$

updates the policy (greedily) using the current value function.

- $-\pi(s)$ converges to $\pi^*(s)$
- -Policy evaluation step = using a linear equation we can compute the value function in each iteration

When to stop iterations:

Figure 17.6 (a) The RMS (root mean square) error of the utility estimates compared to the correct values, as a function of iteration number during value iteration. (b) The expected policy loss compared to the optimal policy.

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:

- Every iteration updates both the values and (implicitly) the policy
- We don't track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

- We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
- After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
- The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Unknown transition model

- > So far: learning optimal policy when we know $\mathcal{P}^a_{ss'}$ and $\mathcal{R}^a_{ss'}$
 - it requires prior knowledge of the environment's dynamics
- Now, we assume we don't know the environment's dynamics. Two types of algorithms:
 - Model-based (passive)
 - Learn model of environment (transition and reward probabilities)
 - ▶ Then, value iteration or policy iteration algorithms
 - Model-free (active)

Model-Based Learning

- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct
- Step I: Learn empirical MDP model
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\hat{P}(s'|s,a)$
 - ▶ Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')
- Step 2: Solve the learned MDP
 - For example, use value iteration, as before

Model free approaches to solve RL problems

- These methods can be categorized into:
 - Monte Carlo methods
 - Temporal-difference learning
 - Q-learning is a more recent approaches to this problem.

Monte Carlo methods

- ▶ Require only experience
 - Sample sequences of states, actions, and rewards from on-line or simulated interaction with an environment

- Are based on averaging sample returns
 - are defined for episodic tasks

Policy evaluation using samples

- Before discussing about Monte Carlo approach for finding optimal policy, first we solve a simpler problem "policy evaluation" by Monte Carlo
- Goal: Compute values for each state under π
- Idea: average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples

Example: Direct Policy Evaluation

Input Policy π

Assume: $\gamma = 1$

Observed Episodes

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

cived Episodes

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Output Values

	-10 A	
+8 B	C +4	+10 D
	-2 E	

Monte Carlo RL algorithm

- I) Initialize Q and π arbitrarily and Returns to empty lists
- Policy evaluation step Generate an episode using π and exploring starts

for each pair of s and a appearing in the episode $R \leftarrow$ return following the first occurrence of s, a Append R to Returns(s, a) $Q(s, a) \leftarrow average(Returns(s, a))$

for each s in the episode $\pi(s) \leftarrow \underset{a}{\operatorname{argmax}} Q(s, a)$

Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of P, R
 - It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

	-10 A	
+8 B	c ⁺⁴	+10 D
	-2 E	

If B and E both go to C under this policy, how can their values be different?

Temporal Difference Methods

- TD learning is a combination of MC and DP (i.e. Bellman equations) ideas.
 - Like MC methods, can learn directly from raw experience without a model of the environment's dynamics.
 - Like DP, update estimates based in part on other learned estimates, without waiting for a final outcome.

Model-Free Learning

- Model-free (temporal difference) learning
 - Experience world through episodes

$$(s, a, r, s', a', r', s'', a'', r'', s'''' \dots)$$

• Update estimates each transition (s, a, r, s')

Q-Learning

- We'd like to do Q-value updates to each Q-state:
 - ▶ The Bellman equation for optimal state-action values

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} P(s'|s,a) \left(R(s,a,s') + \gamma \max_{a'} Q_k(s',a) \right)$$

- But can't compute this update without knowing P, R
- Instead, compute average as we go
 - Receive a sample transition (s,a,r,s')
 - This sample suggests

$$Q(s, a) \approx r + \gamma \max_{a'} Q(s', a')$$

- But we want to average over results from (s,a) (Why?)
- So keep a running average

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a') \right]$$

Q-Learning

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - ▶ Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$

Q-learning Algorithm

Initialize $\hat{Q}(s, a)$ arbitrarily

Repeat (for each episode):

Initialize s

Repeat (for each step of episode):

Choose a from s using a policy derived from \hat{Q}

Take action a_r , receive reward r, observe new state s'

$$\hat{Q}(s,a) \leftarrow \hat{Q}(s,a) + \alpha \left[r + \gamma \max_{a'} \hat{Q}(s',a') - \hat{Q}(s,a) \right]$$

$$s \leftarrow s'$$

until s is terminal