2014 TALWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-2 tasks

friend

Language: en-BGR

Приятел

Социална мрежа ще обединява n потребители, номерирани от 0 до n-1. Някои двойки потребители на мрежата ще станат приятели. Ако потребителят x стане приятел с потребителя y също ще бъде приятел с потребителя x.

Потребителите ще бъдат включени в мрежата в n стъпки, също номерирани от 0 до n-1. Потребителят i ще бъде включен в мрежата на i-тата стъпка. На нулевата стъпка потребителят 0 ще бъде включен като единствен потребител на мрежата. На всяка от следващите n-1 стъпки, поредният потребител бива включен от мрежата от някой от вече включените в мрежата потребители, наричан ∂o макин на стъпката. На стъпка i (0 < i < n) домакинът на стъпката може да добави потребителя i, следвайки един от възможните три протокола:

- \blacksquare Iam Your Friend включва потребителя i като приятел само на домакина.
- MyFriends Are Your Friends включва потребителя \boldsymbol{i} като приятел на всички приятели на домакина. Забележете, че този протокол не прави потребителя \boldsymbol{i} приятел на домакина.
- WeAreYourFriends включва потребителя i като приятел на домакина и на всички приятели на домакина.

След създаването на мрежата, бихме искали да направим извадка за някакво изследване, т.е. да изберем група от потребители на мрежата за участие в изследването. Тъй като приятелите обикновено имат сходни интереси, в групата не бива да има двойки потребители, които са приятели. С всеки потребител е свързано положително цяло число, което наричаме значимост на потребителя за изследването. Бихме искали да изберем групата така, че сборът на значимостите на избраните потребители да е максимален.

Пример

стъпка	домакин	протокол	добавени двойки
1	0	IamYourFriend	(1, 0)
2	0	MyFriendsAreYourFriends	(2, 1)
3	1	WeAreYourFriends	(3, 1), (3, 0), (3, 2)
4	2	MyFriendsAreYourFriends	(4, 1), (4, 3)
5	0	IamYourFriend	(5,0)

В началото в групата е само потребителят 0. Бидейки домакин на стъпка 1, той включва потребителя 1 с протокола IamYourFriend и двамата стават приятели. Домакин на стъпка 2 е отново потребителят 0 и той добавя потребител 2 с протокола MyFriendsAreYourFriends. Така потребителят 1, който е единствен приятел на 0, става единствен приятел на 2. Домакинът на стъпка три е 1 и той добавя потребител 3 с протокола WeAreYourFriends при което потребител

три става приятел на домакина 1 и на неговите двама приятели 0 и 2. Стъпки 4 и 5, показани също в таблицата по-горе, довеждат мрежата до вида показан на Фигурата, където числата в кръгчетата са номерата на потребителите, а числото в близост до всяко кръгче задава значимостта на съответния потребител за изследването. Извадката от потребител 3 и потребител 5 е с обща значимост от 20 + 15 = 35 и това е извадката с максимална значимост.

Task

По зададени описание на стъпките и значимостите на потребителите, трябва да се намери допустимата извадка с максимална значимост. Напишете функция findSample:

- findSample(n, confidence, host, protocol)
 - п: брой на потребителите.
 - confidence: масив с n елемента; confidence[i] съдържа значимостта на i-тия потребител.
 - host: масив с n елемента; host[i] съдържа домакина на i-тата стъпка.
 - **•** protocol: масив с n елемента; в protocol[i] е зададен номерът на протокола използван при i-тата стъпка, 0 < i < n: 0 за IamYourFriend, 1 за MyFriendsAreYourFriends или 2 за WeAreYourFriends.
 - Тъй като на стъпка 0 няма домакин и протокол, стойностите host[0] и protocol[0] са неопределени и не бива да се използват.
 - Функцията трябва да връща максималната значимост на допустима извадка.

Подзадачи

Някои подзадачи използват подмножество от протоколи, както е показано в таблицата по-долу.

подзад.	точки	\boldsymbol{n}	значимост	протоколи
1	11	$2 \le n \le 10$	$1 \leq$ значимост ≤ 1000000	Всеки от трите
2	8	$2 \le n \le 1000$	$1 \leq$ значимост ≤ 1000000	Само MyFriendsAreYourFriends
3	8	$2 \le n \le 1000$	$1 \leq$ значимост ≤ 1000000	Само WeAreYourFriends
4	19	$2 \le n \le 1000$	$1 \leq$ значимост ≤ 1000000	Само IamYourFriend
5	23	$2 \le n \le 1000$	Всички значимости са 1	MyFriendsAreYourFriends и IamYourFriend
6	31	$2 \le n \le 100000$	$1 \leq$ значимост ≤ 10000	Всеки от трите

Детайли на имлементацията за С/С++

Трябва да изпратите само един файл с име friend.c или friend.cpp. Той трябва да съдържа имплементация на функцията findSample такава, каквато е описана по-горе, със следната спецификация:

```
int findSample(int n, int confidence[], int host[], int protocol[]);
```

като не забравите да включите файла friends.h.

Примерен грейдър

Примерният грейдър чете вход във формат:

- line 1: n
- line 2: confidence[0], ..., confidence[n-1]
- line 3: host[1], protocol[1], host[2], protocol[2], ..., host[n-1], protocol[n-1]

Примерният грейдър извежда резултата от извикването на функцията findSample.