# Lecture 22 Backtracking, Branch and Bound Algorithms



EECS 281: Data Structures & Algorithms

#### Outline

- Review
  - Constraint Satisfaction
  - Optimization
- Backtracking
  - General Form
  - n Queens
- Branch and Bound
  - Traveling salesperson problem

#### Backtracking

Data Structures & Algorithms

- Constraint satisfaction problems
  - Can we satisfy all given constraints?
  - If yes, how do we satisfy them?
    - Need a specific solution
  - May have more than one solution
  - Examples: sorting, puzzles, GRE/analytical
- Optimization problems
  - Must satisfy all constraints (can we?) and
  - Must minimize an objective function subject to those constraints

- Constraint satisfaction problems
  - Go over all possible solutions
  - Does a given input combination satisfy all constraints?
  - Can stop when a satisfying solution is found
- Optimization problems
  - Similar, except we also need to compute the objective function every time
  - Stopping early = possible non-optimal solution

- Constraint satisfaction problems
  - Can rely on Backtracking algorithms
- Optimization problems
  - Can rely on Branch and Bound algorithms

For particular problems, there may be much more efficient approaches, but think of these as a fallback to a more sophisticated version of a brute-force approach.

### General Form: Backtracking

```
Algorithm checknode(node v)
   if (promising(v))
      if (solution(v))
       write solution*
    else
      for each node u adjacent to v
      checknode(u)
```

<sup>\*</sup> Can exit here if only the existence of a solution is needed

### General Form: Backtracking

#### solution(v)

Check 'depth' of solution (constraint satisfaction)

#### promising(v)

Different for each application

#### checknode (v)

 Called only if partial solution is both promising and not a solution

#### An Alternate Form: Backtracking

```
Algorithm checknode(node v)
   if (solution(v))
      write solution*
   else
      for each node u adjacent to v
        if (promising(u))
            checknode(u)
```

<sup>\*</sup> Can exit here if only the existence of a solution is needed

### Backtracking Example: n Queens

- n = 1: Can 1 queen be placed on a 1x1 board so that it doesn't threaten another?
- n = 2
- n = 3
- n = 4
- n = 5
- ...

#### 4 Queens Branches



#### Branches searched

- **1.**  $A \rightarrow E = \text{vert. threat}$
- 2.  $A \rightarrow F = diag. threat$
- 3. A->G->I = vert. threat
- 4.  $A \rightarrow G \rightarrow J = diag. threat$
- 5.  $A \rightarrow G \rightarrow K = 2$  threats
- 6.  $A \rightarrow G \rightarrow L = diag. threat$

- 7.  $A \rightarrow H \rightarrow I = \text{vert. threat}$
- **8. A->H->J->**M = 2 threats
- 9. A -> H -> J -> N = 2 threats
- 10.  $A \rightarrow H \rightarrow J \rightarrow O = diag.$  threat
- 11. A->H->J->P=2 threats
- 12. A -> H -> K = 2 threats
- 13.  $A \rightarrow H \rightarrow L = \text{vert. threat}$
- **14.**  $B \rightarrow E = diag. threat$
- 15.  $B \rightarrow F = \text{vert. threat}$
- 16.  $B \rightarrow G = diag. threat$
- **17.** B->H->I->M = vert. threat
- 18. B->H->I->N=3 threats
- 19. B->H->I->O = **SOLUTION**

#### Search Tree: n Queens



### 4 Queens Recap

#### For 4 Queens

- Entire search tree has 256 leaves
- Backtracking enables searching of 19 branches before finding first solution
- Promising:
  - May lead to solution
- Not promising:
  - Will never lead to solution
  - Therefore should be pruned

### Backtracking Elements: n Queens

#### solution(v)

- Check 'depth' of solution (constraint satisfaction)
- Placed queen on each row
- That is, depth = N

#### checknode (v)

- Called only if promising and not solution
- Recursive call to all positions (columns) of queen within row

### Backtracking Elements: n Queens

```
promising(row, col)
```

- Called for each node of the search tree
- Assume data structures that can tell you if:
  - column[col] // is column 'col' available
  - leftDiagonal[x] // is upper-left to lowerright diagonal available
  - rightDiagonal[y] // is upper-right to lower-left diagonal available
- <u>NOT</u> promising if any of these are unavailable
  - We'll see what 'x' and 'y' are soon...

#### 8 Queens: Search Space

- Brute force checks about 4.43x10<sup>9</sup>
  possibilities, including many ridiculous
  board configurations
- Even with sensible choices (1 queen per row), the search space is still fairly large:
  - 16,772,216 possibilities
  - 92 solutions
- How can the search space be further reduced?

### Summary: Backtracking

- Backtracking allows pruning of branches that are not promising
- All backtracking algorithms have a similar form
- Often, most difficult part is determining nature of promising()

#### Backtracking

Data Structures & Algorithms

#### **Branch and Bound**

Data Structures & Algorithms

- Constraint satisfaction problems
  - Can we satisfy all given constraints?
  - If yes, how do we satisfy them?
    - Need a specific solution
  - May have more than one solution
  - Examples: sorting, puzzles, GRE/analytical
- Optimization problems
  - Must satisfy all constraints (can we?) and
  - Must minimize an objective function subject to those constraints

- Constraint satisfaction problems
  - Go over all possible solutions
  - Does a given input combination satisfy all constraints?
  - Can stop when a satisfying solution is found
- Optimization problems
  - Similar, except we also need to compute the objective function every time
  - Stopping early = possible non-optimal solution

- Constraint satisfaction problems
  - Can rely on Backtracking algorithms
- Optimization problems
  - Can rely on Branch and Bound algorithms

For particular problems, there may be much more efficient approaches, but think of these as a fallback to a more sophisticated version of a brute-force approach.

#### Branch-and-Bound, a.k.a. B&B

- The idea of backtracking extended to optimization problems
- You are minimizing a function with this useful property:
  - A partial solution is pruned if its cost ≥ cost of best known complete solution
  - e.g., the length of a path or tour
- If the cost of a partial solution is too big drop this partial solution

#### General Form: Branch & Bound

```
Algorithm checknode (Node v, Best currBest)
   Node u
   if (promising(v, currBest))
      if (solution(v)) then
         update(currBest)
      else
         for each child u of v
            checknode(u, currBest)
   return currBest
```

#### General Form: Branch & Bound

#### solution()

Check 'depth' of solution (constraint satisfaction)

#### update()

 If new solution better than current solution, then update (optimization)

#### checknode()

Called only if promising and not solution

#### General Form: Branch & Bound

#### lowerbound()

- Estimate of solution based upon
  - Cost so far, plus
  - *Under* estimate of cost remaining (aka bound)

#### promising()

- Different for each application, but must return true when lowerbound() < currBest</li>
- A return of false is what causes pruning (≥)

#### The Key to B&B is the Bound

- The efficiency of B&B is based on "bounding away" (aka "pruning") unpromising partial solutions
- The earlier you know a solution is not promising, the less time you spend on it
- The more accurately you can compute partial costs, the earlier you can prune
- Sometimes it's worth spending extra effort to compute better bounds

### Minimizing With B&B

- Start with an "infinity" bound
- Find first complete solution use its cost as an upper bound to prune the rest of the search
- Measure each partial solution and calculate a lower bound estimate needed to complete the solution
- Prune partial solutions whose lower bounds exceed the current upper bound
- If another complete solution yields a lower cost that will be the new upper bound
- When search is done, the current upper bound will be a minimal solution

### Maximizing With B&B

- Start with a "zero" bound
- Find first complete solution use its cost as a lower bound to prune the rest of the search
- Measure each partial solution and calculate an upper bound estimate needed to complete the solution
- Prune partial solutions whose upper bounds are less than the current lower bound
- If another complete solution yields a larger value that will be the new lower bound
- When search is done, the current lower bound will be a maximal solution

### Summary Branch and Bound

- Method to prune search space for optimization problems
- Need to keep current best solution
- Measure partial solutions and combine with optimistic estimates of their completions
- If estimate is not an improvement, actual cannot be either, so prune

#### **Branch and Bound**

Data Structures & Algorithms

## Traveling Salesperson Problem (TSP)

Data Structures & Algorithms

#### TSP Defined

- Hamiltonian Cycle
  - Definition: Given a graph G = (V, E), find a cycle that traverses each node exactly once
  - No vertex may appear twice, except the first/last
  - Constraint satisfaction problem
- Traveling Salesperson Problem
  - Definition: Hamiltonian cycle with least weight
  - Optimization problem

#### TSP Illustrated

Find tour of minimum length starting and ending in same city and visiting every city exactly once



### TSP: (NP) Hard Problem!



1954: n = 49



2004: n = 24978

http://www.math.uwaterloo.ca/tsp/sweden/index.html

#### TSP with Backtracking





Dead end in the graph = unpromising partial solution (all adjacent vertices are already visited)



Best solution so far

Min cost if we complete a cycle from this partial solution.

If > 27 → unpromising partial solution

# **Bounding Function**

- Estimate must be ≤ reality
- The bounding function must have complexity better than just continuing TSP for the k vertices not yet visited:
  - For instance, O(k²) is better than O(k!) for most values of k
- What method can we use to find the lowest cost way to connect k vertices together in O(k²) time?

# **Bounding Function**

- Some vertices are connected so far, some vertices are not
- For ONLY the unvisited vertices, connect them together with lowest possible cost
- Then connect the visited vertices to the unvisited
- Yes, this function considers solutions that violate constraints, but it's a LOWER bound so it's OK

### Partial TSP Example



Current path: A - B - C



What's the best way to connect D, E, F, and G to each other?

Unvisited vertices: D, E, F, and G

# Connect Unvisited Nodes Together



Current path: A - B - C



How many edges are we missing? A full TSP tour would have V edges (7), currently we have 5...

Unvisited vertices: D, E, F, and G

# Connect Partial Tour to Unvisited



Current path: A - B - C

Connect from A-B-C to D-E-F-G in the best, cheapest, fastest way possible

Unvisited vertices: D, E, F, and G

# Generating Permutations

```
template <class T>
   void genPerms(vector<T> &path, size_t permLength) {
     if (permLength == path.size()) {
       // Do something with the path
       return;
   } // if
     if (!promising(path, permLength))
       return;
8
     for (size_t i = permLength; i < path.size(); ++i) {</pre>
       swap(path[permLength], path[i]);
10
       genPerms(path, permLength + 1);
11
       swap(path[permLength], path[i]);
12
13 } // for
14 } // genPerms()
```

### Optimal TSP With B&B

- Given n vertices, need to find best path out of (n-1)! options, use genPerms()
- Start with upper bound that is "infinity", or better yet a fast calculation of a path that is guaranteed not shorter than optimal
- Use the upper bound to prune the rest of the search, lowering it every time a shorter, complete path is found
- Measure each partial solution, the path length of the first  $1 \le k$  points and estimate the cheapest cost to connect the remaining n k points, this is the lower bound
- Prune a partial solution if its lower bound exceeds the current upper bound
- If another complete path is shorter than the upper bound, save the path and replace the upper bound
- When the search is done, the current upper bound will be a shortest path

# Traveling Salesperson Problem (TSP)

Data Structures & Algorithms

# Branch and Bound & Traveling Salesperson Problem







http://xkcd.com/399

#### n Queens Demo

Data Structures & Algorithms

# NQueens Implementation

- We know that:
  - Each row will have exactly one queen
  - Each column will have exactly one queen
  - Each diagonal will have at most one queen
- Don't model the chessboard as 2D array!
  - Instead, use 1D arrays of row position, column availability and diagonal availabilities
- To simplify the presentation, we will study for size 4x4

# Implementing the Chessboard

First: We need to define an array to store the location of queens placed so far

#### positionInRow



### Implementing the Chessboard (cont.)

We need an array to keep track of the availability status of the column when we assign queens

Suppose that we have placed two queens



### Implementing the Chessboard (cont.)

We have 7 left diagonals (2 \* N - 1); we want to keep track of available diagonals after queens are placed (start indexing at upper left)



Diagonal Index = row + col

### Implementing the Chessboard (cont.)

We also have 7 right diagonals (start indexing at upper right)



Diagonal Index = (row - col) + (n - 1)

### The promising() Function

```
bool NQueens::promising(uint32_t row, uint32_t col) {
   return    column[col] == AVAILABLE
        && leftDiagonal[row + col] == AVAILABLE
        && rightDiagonal[row - col + (n - 1)] == AVAILABLE;
} // promising()
```

### The Recursive putQueen() Function

```
void NQueens::putQueen(uint32_t row) {
     // Check for solution
     if (row == n) {
       cout << "solution found" << endl;</pre>
       return;
     } // if
     // Check every column in this row
     for (uint32_t col = 0; col < n; ++col)</pre>
       if (promising(row, col)) {
9
         // Make the move, and a recursive call to next move
10
         positionInRow[row] = col;
11
                                                                         Place a
         column[col] = !AVAILABLE;
12
         leftDiagonal[row + col] = !AVAILABLE;
13
                                                                         @(row,col)
         rightDiagonal[row - col + (n - 1)] = !AVAILABLE;
14
         putQueen(row + 1);
15
16
         // Undo this move and thus backtrack
17
                                                                         Remove
         column[col] = AVAILABLE;
18
                                                                         piece
         leftDiagonal[row + col] = AVAILABLE;
19
         rightDiagonal[row - col + (n - 1)] = AVAILABLE;
                                                                         @(row,col)
20
       } // if
21
      // putQueen()
```





From a web browser:

bit.ly/eecs281-nqueens-demo

From a terminal:

wget bit.ly/eecs281-nqueens-demo -0 nqdemo.tgz

#### At the command line:

tar xvzf nqdemo.tgz
g++ -std=c++1z -03 \*.cpp -o nqueens
./nqueens

#### n Queens Demo

Data Structures & Algorithms