Pág. 1/10

(Confidencial)

Ref.: S51996-RT-5801-IAS-665

PARA: COPIA:
Mariana Duarte Flávia Costa

Mariana Duarte Rodrigo Cavalli

	HISTÓRICO DAS REVISÕES							
REV.	DATA ELABORADO VERIFICADO APROVADO							
	30/01/2024	PGS	NSI	CFS				
1	PRINCIPAIS MUDANÇAS							
	Primeira Emissão							

TÍTULO: ESTUDO DE CVD DE 1ª EXTREMIDADE DA LINHA GL NO POÇO 3-RJS-688 (P-MOD5-4) AO FPSO ALMIRANTE BARROSO

ÍNDICE

1	INTRO	DDUÇÃO
	1.1	Objetivo
	1.2	Objetivo
	1.3	Referências
2	PRFM	IISSAS DE CÁLCULO
_	2.1	Hipóteses e Metodologia
		Critério de Aceitação
3		LTADOS
Ŭ	3.1	Instalação do MCV
	·	Alinhamento e verticalização do MCV
	312	Heave up
		Toque da linha no solo após conexão
4	CONC	CLUSÕES.
5		0
6		

Todas as informações contidas neste documento devem ser tratadas como PRIVILEGIADAS E CONFIDENCIAIS e não podem ser divulgadas a nenhum terceiro.

(Confidencial)

Ref.: S51996-RT-5801-IAS-665

1 INTRODUÇÃO

1.1 Objetivo

O presente documento tem por objetivo realizar um estudo de CVD de primeira extremidade no poço 3-RJS-688 (P-MOD5-4) em uma lâmina d'água de 1861m, a ser realizada pela embarcação Skandi 300t no campo Búzios V, para avaliar a necessidade do uso de boias e/ou peso morto durante o procedimento de modo a verticalizar o MCV e cumprir o critério de heave up.

As análises são realizadas utilizando o programa de elementos finitos para análises de instalação, ORCAFLEX versão 11.2b.

1.2 Abreviações

CVD : Conexão Vertical Direta

MCV : Módulo de Conexão Vertical

TDP : Touch Down Point

MBR : Minimum Bending Radius

te : Toneladas

Skandi 300t : Skandi Olinda ou Skandi Recife

1.3 Referências

Ref	Documento	Rev	Título
[1]	RL-3A36.05-1500-94G-R1N-006	0	DUTO DE GAS LIFT DO POÇO 3-RJS-688 AO FPSO ALMIRANTE BARROSO
[2]	RT-2604	0	CVD de 1ª GL 3-RJS-688 FPSO Almirante Barroso

Pág. 2/10

Pág. 3/10

(Confidencial)

Ref.: S51996-RT-5801-IAS-665

2 PREMISSAS DE CÁLCULO

2.1 Hipóteses e Metodologia

A metodologia utilizada no estudo visa dispor o cabo ligado à manilha do MCV e o flexível de maneira que o MCV e o hub estejam alinhados, com o desvio do MCV em relação à vertical dentro da tolerância especificada, que é condição necessária para a conexão vertical.

Após o MCV ser assentado, o ponto de conexão do flexível com o navio é suspenso, inicialmente 2,5 metros em 2,15 segundos, para assegurar que não há travamento da vértebra. Caso necessário, esse deslocamento pode ser reduzido. Nesse caso o comprimento de flexível usado para verticalizar o MCV é mantido. Essa etapa é para simular um deslocamento vertical do navio logo após o MCV ser assentado no hub.

As seguintes hipóteses foram assumidas:

- A análise realizada é dinâmica, porém não são considerados efeitos de corrente, ondas e vento:
- Apenas boias encontradas a bordo são consideradas como remediação para possíveis problemas na configuração da instalação;
- A distância horizontal entre o ponto de conexão do cabo de sustentação do MCV e o ponto de conexão do flexível com o tensionador foi assumida em 25m;
- O centro de empuxo é considerado na mesma posição do centro de gravidade do MCV;
- A linha é considerada cheia de água;
- Foi considerada a rigidez à flexão nas condições de temperatura e pressão da instalação e anular alagado.

2.2 Dados de Referência

Item	Descrição	
Estrutura	WSI 101.2511-RD-4042-X Rev. 1	
Vértebra	CB-BR1012509-00-01 Rev. 5	
Conector	CB-EF1012511-00-01 Rev. 5	
MCV	SK-130685-27 / OneSubsea	
Lâmina d'água	1861 m	

2.3 Critério de Aceitação

Nas configurações estudadas os parâmetros da Tabela 2.1 são avaliados em relação aos limites informados.

(Confidencial)

Ref.: S51996-RT-5801-IAS-665

Pág. 4/10

Tabela 2.1 - Parâmetros de aceitação da configuração

Parâmetros	Ref	Valor Limite	Unidade
Inclinação do MCV em relação à vertical	[-]	±0,50	graus
Distância mínima do flexível ao solo	[-]	0,50	m
Distância do flange do MCV ao leito marinho	[1]	4,50	m
Raio de travamento da vértebra	[1]	2,35	m
Raio de curvatura mínimo da linha	[1]	1,10	m
Momento fletor máximo na vértebra	[1]	27,00	kN.m
Força cortante máxima na vértebra	[1]	23,80	kN

De acordo com o documento ET-3000.00-1500-951-PMU-001 - revisão F, algumas observações se aplicam:

- (1) No caso de estudos para MCVs de umbilicais, a aprovação da análise depende apenas dos parâmetros descritos acima, não incluindo os esforços (momento/tração/cortante) como critérios de aceitação;
- (2) No caso de linhas de fluxo, os carregamentos devem ser gerados obedecendo o mesmo sistema de referência do relatório de cargas e comparados individualmente em módulo (i.e. tração com tração, cortante com cortante e momento com momento).

Ref.: S51996-RT-5801-IAS-665

3 RESULTADOS

3.1 Instalação do MCV

Para a instalação do MCV com as boias mostradas na Tabela 3.1, os resultados da análise de alinhamento e verticalização do MCV são mostrados no item 3.1.1 e o do heave up no item 3.1.2.

Tabela 3.1 - Posicionamento das boias

Empuxo	Posição em relação ao flange do MCV		
[kg]	[m]		
1594 (1213 + 381)	3		
381	7,5		

3.1.1 Alinhamento e verticalização do MCV

Os resultados da configuração que mantém o MCV verticalizado e alinhado são mostrados na Tabela 3.2. A Figura 3.1 apresenta a configuração do CVD de 1ª extremidade.

Tabela 3.2 - Resultados estáticos para alinhamento e verticalização

Distância do flange do MCV ao solo	Distância mínima da linha ao solo	Inclinação do MCV	MBR Linha	MBR Vértebra	Momento Fletor Max. na Vértebra	Força Cortante Máx na Vértebra
[m]	[m]	[graus]	[m]	[m]	[kN.m]	[kN]
4,50	0,51	-0,39	2,34	2,35*	7,56	9,00

*Vértebra travada

Figura 3.1 – Configuração da CVD de 1ª extremidade. Comprimento do ponto no seio da configuração até ao flange do goose neck e comprimento do ponto na altura do flange do goose neck até o seio.

(Confidencial)

Pág. 6/10

Ref.: S51996-RT-5801-IAS-665

3.1.2 Heave up

Nesse caso o MCV é fixado no hub e o ponto de conexão do flexível com o navio é suspenso 1,8 metros em 2,15 segundos, mantendo o comprimento de flexível utilizado para verticalizar e alinhar o MCV. Os resultados são apresentados na Tabela 3.3 e na Tabela 3.4.

Tabela 3.3 - Resultados para análise de heave up

Heave up	MBR Linha	Linha MBR Vértebra Máx na Vértebra		Força Cortante Max. na Vértebra	
[m]	[m]	[m]	[kN.m]	[kN]	
1,80	2,28	2,35*	11,14	11,14	

*Vértebra travada

Tabela 3.4 - Esforços no flange do goose neck do MCV da análise do heave up

Momento	Momento Fletor	Tração	Força Cortante
Fletor	[kN.m]	[kN]	[kN]
Máximo	20,99	1,74	0,24
Mínimo	7,81	-2,41	-4,81

3.1.3 Toque da linha no solo após conexão

Nesse caso o MCV é fixado no hub e o ponto de conexão do flexível com o navio é pago até que a linha toque no solo, mantendo o comprimento de flexível utilizado para verticalizar e alinhar o MCV. Os resultados dos esforços da interface do MCV com o duto são apresentados na

Tabela 3.5.

Tabela 3.5 - Esforços no MCV no momento em que a linha toca no solo

Momento Fletor	Tração	Força Cortante	
[kN.m]	[kN]	[kN]	
15,53	0,95	-1,56	

Ref.: S51996-RT-5801-IAS-665

4 CONCLUSÕES

A Tabela 4.1 sumariza os resultados da operação de conexão vertical direta de 1ª extremidade.

Conclui-se que é necessário instalar 1594kg de empuxo a 3m, 381kg de empuxo a 7,5m, do flange, conforme Tabela 3.1, de forma a verticalizar o MCV e cumprir o critério de heave up que deverá nesse caso ser reduzido para 1,8m.

O estudo apresenta travamento da vértebra, porém o momento fletor máximo na mesma não ultrapassa o admissível.

Os esforços calculados deste estudo estão aprovados a partir do ábaco (Figura 4.1)

	Poço		3-RJS-688 (P-MOD5-4)
∷ PETROBRAS	Tipo de MCV		MCVA
	RL de referência	RL-	-3A36.05-1500-94G-R1N-006
	Data		22-jan-24
	TAG		
	Execução		PGS
	Verificação		NSI
	Aprovação		
Caso de carregamento	Esforço	Valor	Status
CVD 2a - Topo	Tração (Fx) [kN]		APROVADO
CVD 1a - MCV no Hub com	Tração (Fx)	1,74	
linha suspensa (Caso 3i -	Força Cortante (Fz)	0,24	APROVADO
Flutuadores) A	Momento Fletor (My)	20,99	
CVD 1a - MCV no Hub com	Tração (Fx)	-2,41	
linha suspensa (Caso 3i -	Força Cortante (Fz)	-4,81	APROVADO
Flutuadores) B Momento Fletor (My)		7,81	
CVD 1ª -MCV no Hub Tração (Fx)		0,95	
(Caso 3ii - Flutuadores) A	Força Cortante (Fz)	-1,56	APROVADO
			1
	Momento Fletor (My)	15,53	

Figura 4.1 - Resultados do ábaco / Resultados do momento equivalente

Tabela 4.1 – Tabela de comparação entre os valores encontrados e os limites

Seção	Parâmetros	Valor encontrado	Valor Limite	Unidade
3.1.1	Inclinação em relação à vertical	-0,39	±0,50	graus
3.1.1	Distância mínima do flexível ao solo	0,51	0,50	m
3.1.1	Distância do flange do MCV ao leito marinho	4,50	4,50	m
3.1.2	Raio de curvatura mínimo da linha/vértebra	2,28 / 2,35*	1,10 / 2,35	m
3.1.2	Momento fletor máximo na vértebra	11,14	27,00	kN.m
3.1.2	Força cortante máxima na vértebra	11,14	23,80	kN

^{*}Vértebra travada

Ref.: S51996-RT-5801-IAS-665

5 ANEXO

Esse anexo apresenta uma contingência para o caso em que o MCV se encontra acoplado no hub, porém não está travado. A ideia é, com o MCV fixo no modelo, pagar linha até que esteja um comprimento lançado no solo e então adicionar boias para a verticalização do MCV sem ação da catenária.

A primeira opção seria acrescentar até 100kg de empuxo, afastado 4m do flange do MCV para que o valor do momento fletor máximo admissível no flange não seja atingido. O raio mínimo na vértebra nessa condição é de 2,35m e o da linha é de 2,34m. O momento fletor obtido nessa condição é de 18,68kN.m no flange e 10,36kN.m na vértebra. A força cortante é de 10,76kN na vértebra. A Figura 5.1 apresenta essa configuração.

Figura 5.1 - Configuração do caso de contingência - 1ª opção

A segunda opção seria acrescentar até 200kg de empuxo, afastado 9m do flange do MCV para que o valor do momento fletor máximo admissível no flange não seja atingido. O raio mínimo na vértebra nessa condição é de 2,35m e o da linha é de 1,99m. O momento fletor obtido nessa condição é de 20,77kN.m no flange e 12,43kN.m na vértebra. A força cortante é de 11,31kN na vértebra. A Figura 5.2 apresenta essa configuração.

Figura 5.2 - Configuração do caso de contingência - 2ª opção

Ref.: S51996-RT-5801-IAS-665

6 RESUMO

CVD de primeira extremidade no poço 3-RJS-688 (P-MOD5-4) em uma lâmina d'água de 1861m.

Figura 6.1 - Configuração de Verticalização

Tabela 6.2 - Configurações de Contingência

Contingência	Empuxo limite	Distância ao flange
	[kg]	[m]
1	100	4,0
2	200	9,0

(Confidencial)

Ref.: S51996-RT-5801-IAS-665

Pág. 10/10

FIM DO DOCUMENTO