Correlation Measures

Pedro Giraldi

Covariance

• Discrete variables: $Cov(x,y) = \sigma_{12} = \frac{\sum_i (x_{i1} - \overline{x_1})(x_{i2} - \overline{x_2})}{N}$

Continuous variables:

$$Cov(x,y) = \sigma_{12} = \int_{1}^{1} \int_{2}^{1} [x_1 - E(X_1)][x_2 - E(X_2)] f_{12}(x_1, x_2) dx_2 dx_1$$

given:
$$f_{12}(x_1, x_2) = f_1(x_1) * f_2(x_2) * c_{12}$$

Covariance between a discrete random variable and itself

$$Cov(x,x) = \sigma_{11} = \frac{\sum_{i}(x_{i1} - \overline{x_1})(x_{i1} - \overline{x_1})}{N} = \frac{\sum_{i}(x_{i1} - \overline{x_1})^2}{N} = \sigma_1^2$$

Correlation: normalized covariance:

$$\rho_{12} = \frac{Cov(x_1, x_2)}{\sigma_1 \sigma_2} \mid \rho \in [-1, 1]$$

S&P500 and IBOV correlation + S&P500 return

Defining a portfolio variance formula

$$W = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix}, COV = \begin{bmatrix} \sigma_1^2 & \cdots & \sigma_{1n} \\ \vdots & \ddots & \vdots \\ \sigma_{n1} & \cdots & \sigma_n^2 \end{bmatrix}$$
$$\sigma_p^2 = WT * COV * W$$

For a portfolio with two assets:

$$\sigma_p^2 = \begin{bmatrix} w_1 & w_2 \end{bmatrix} * \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix} * \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

$$\sigma_p^2 = w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \sigma_{12}$$

Analyzing the portfolio variance formula

$$\sigma_p = \sqrt{w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \rho_{12} \sigma_1 \sigma_2}$$

Let $\rho_{12} = 1$:

$$\sigma_p = \sqrt{w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \sigma_1 \sigma_2}$$

$$\sigma_p = \sqrt{(w_1\sigma_1 + w_2\sigma_2)^2} = w_1\sigma_1 + w_2\sigma_2$$

Analyzing the portfolio variance formula

$$\sigma_p = \sqrt{w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \rho_{12} \sigma_1 \sigma_2}$$

Now let $\rho_{12} < 1$:

$$\sigma_p = \sqrt{w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \rho_{12} \sigma_1 \sigma_2} < \sqrt{w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \sigma_1 \sigma_2}$$

$$\sigma_p < w_1 \sigma_1 + w_2 \sigma_2$$

Effect on portfolio variance of increasing the number of assets

$$\sigma_p^2 = \sum_{i=1}^{N} w_i^2 \sigma_i^2 + \sum_{i,j,i \neq j}^{N} w_i w_j Cov(i,j) = \sum_{i,j}^{N} w_i w_j Cov(i,j)$$

For large N, correlation becomes the main determinant of portfolio variance

$$\sigma_p^2 = \frac{\bar{\sigma}^2}{N} + \frac{(N-1)}{N} \overline{Cov} = \frac{\bar{\sigma}^2}{N} + \frac{(N-1)}{N} \bar{\rho} \bar{\sigma}^2 \cong \bar{\rho} \bar{\sigma}^2$$

Beta

Beta is a measure of an asset's sensitiveness to a benchmark, and corresponds to the slope of the regression between returns.

There are different ways to estimate it, but all derive from the same method:

- 1. Perform a regression between the benchmark (independent, x) and the asset (y)
- 2. Use the unbiased OLS beta estimator
- 3. Use an alternative version of the OLS beta estimator

#1: regression

There are many Python packages to calculate regressions, but statsmodels is the most intuitive.

Using the .summary() method, the regression's R-squared and the Beta's p-value help checking for statistical significance

OLS Regression Results							
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals:	Least Squares Tue, 20 Dec 2022	R-squared (uncenter Adj. R-squared (uncenter F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:	centered):		0.894 0.894 8394. 0.00 3697.8 -7394.		
Df Model:	1 nonrobust	DIC.			-7305.		
cc	oef std err	t P> t	[0.025	0.975]			
S&P500 1.20	0.013 91	.621 0.000	1.176	1.228			
Omnibus: Prob(Omnibus): Skew: Kurtosis:	0.000 0.028	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		1.970 95.384 1.94e-21 1.00			
Notes: [1] R ² is computed without centering (uncentered) since the model does not contain a constant. [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.							

XLK's beta with S&P500: 1.202

#2: unbiased Beta estimator

$$\beta_{i,m} = \frac{cov(R_i, R_m)}{\sigma_m^2}$$

Given:

 R_i : asset returns

 R_m : market/benchmark returns

 σ_m^2 : market/benchmark variance

#3: modifying the unbiased Beta estimator

$$\beta_{i,m} = \frac{cov(R_i, R_m)}{\sigma_m^2} = \frac{\rho_{i,m}\sigma_i\sigma_m}{\sigma_m^2} = \frac{\rho_{i,m}\sigma_i}{\sigma_m}$$

Note that this formula divides the Beta coefficient in two parts: the correlation between the asset and the market and their volatility ratio.

Converting a Covariance Matrix into a Beta Matrix

Given:

$$COV = \begin{bmatrix} \sigma_1^2 & \cdots & \sigma_{1n} \\ \vdots & \ddots & \vdots \\ \sigma_{n1} & \cdots & \sigma_n^2 \end{bmatrix}$$

en:
$$COV = \begin{bmatrix} \sigma_1^2 & \cdots & \sigma_{1n} \\ \vdots & \ddots & \vdots \\ \sigma_{n1} & \cdots & \sigma_n^2 \end{bmatrix} \qquad A = \begin{bmatrix} \frac{1}{\sigma_1^2} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{1}{\sigma_n^2} \end{bmatrix}$$

Then:

$$COV * A = \begin{bmatrix} \sigma_1^2 & \cdots & \sigma_{1n} \\ \vdots & \ddots & \vdots \\ \sigma_{n1} & \cdots & \sigma_n^2 \end{bmatrix} * \begin{bmatrix} \frac{1}{\sigma_1^2} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{1}{\sigma_n^2} \end{bmatrix} = \begin{bmatrix} \frac{\sigma_1^2}{\sigma_1^2} & \cdots & \frac{\sigma_{1n}}{\sigma_n^2} \\ \vdots & \ddots & \vdots \\ \frac{\sigma_{n1}}{\sigma_1^2} & \cdots & \frac{\sigma_n^2}{\sigma_n^2} \end{bmatrix} = \begin{bmatrix} 1 & \cdots & \beta_{1,n} \\ \vdots & \ddots & \vdots \\ \beta_{n,1} & \cdots & 1 \end{bmatrix}$$

Interpreting a Beta Matrix

\downarrow Assets / Benchmarks $ ightarrow$	XLK	S&P 500	
XLK	1	1.201	
S&P 500	0.744	1	

The Beta coefficient of XLK in relation to the S&P 500 is 1.2, which means for each 1bp. move in the S&P, we can expect a 1.2bp. move in the XLK in the same direction.

Note that
$$\beta_{1,2} \neq \frac{1}{\beta_{2,1}}$$
, why?

Condition for β Invertibility

$$\beta_{x,y} = \frac{1}{\beta_{y,x}} \to \frac{cov(x,y)}{\sigma_y^2} = \frac{\sigma_x^2}{cov(x,y)}$$
$$cov^2(x,y) = \sigma_x^2 \sigma_y^2$$

$$\frac{cov^{2}(x,y)}{\sigma_{x}^{2}\sigma_{y}^{2}} = 1$$

$$\rho_{1,2}^{2} = 1$$

$$\rho_{1,2} = \pm 1$$