Radiation Oncology HPC Cluster

User Guide

- How to access:
 - SSH
 - host: rohpc.swmed.org
 - port:22
 - VNC
 - SSH to rohpc.swmed.org
 - Configure xstartup
 - Vncserver –geometry 1280x768
 - Connect to vnc session using free tightvnc or turbovnc
 - Web
 - https://rohpc.swmed.org:8081/userportal/#/login
 - Cluster overview, workload etc...
- Computing resources:
 - o "sinfo" to see the partitions(queue) and compute nodes available
 - defq: default queue, 1 compute node: rohpc100: 24C/128GB
 - dgxq: v100 queue: 3 V100 GPU nodes: rodgx101, rodgx102: 8GPU/32GB, 80C/500GB
 - k80q: k80 queue: 1 K80 GPU node: rok8001: 16GPU/16GB
 - titansq: titans queue: 2 Titans nodes: rotitans[009-010]: 4GPU/6GB
 - mem192: 3 compute nodes : rohpc101, rohpc102, rohpc103: 24C/192GB
 - mem384: 2 compute nodes : rohpc301, rohpc302: 24C/384GB
 - *future GPU nodes: titans1-8 (16GPU/16GB)
 - o scontol show nodes to see further details
- Data storage:
 - Avoid storing any data in:
 - /home
 - 2 TB capacity, daily snapshot, no backup
 - When storing data you can use
 - /data, /apps
 - 46 TB capacity, daily snapshot, no backup
 - (NOT READY YET) /archive
 - TBD capacity, mount from Research Storage >400TB
 - When running GPU jobs, can temporarily use the storage available below to save models
 - /rodgx101fs
 - 7 TB capacity, no snapshot, no backup
 - /rodgx102fs
 - 7 TB capacity, no snapshot, no backup
 - o In the /data, /archive, /rodgx101fs, and /rodgx101fs, there is a folder hierarchy, so please make your user folder inside the "maia" folder.
- Using slurm:
 - o slurm is the scheduler used on the hpc
 - o https://slurm.schedmd.com/documentation.html
 - Submit jobs with slurm:
 - Examples in /apps/slurm-test: defq-test, dgxq-test, mem192q-test, mem384q-test

- cat test-jobs.sh
- ./test-jobs.sh
- GPU run example:
 - You have a "helloworld.py" python file you want to run. Let's say it requires CUDA 10.1 and cudnn 7.6. You make a .sh file (let's call it "helloworld.sh"), with the following lines:

```
#!/bin/bash
#
#SBATCH --job-name=helloworld
#SBATCH --output=helloworld.txt
#
#SBATCH --partition=dgxq
#SBATCH --partition=dgxq
#SBATCH --gres=gpu:dgx:1
#
#SBATCH --ntasks=1
#SBATCH --time=20:00:00
#SBATCH --mem-per-cpu=64

module load cudal0.1/profiler/10.1.243
module load cudal0.1/toolkit/10.1.243
module load cudal0.1/fft/10.1.243
module load cudal0.1/fft/10.1.243
module load cudal0.1/fft/10.1.243
module load cudal0.1/nsight/10.1.243
module load cudal0.1/nsight/10.1.243

module load cudan7.6-cudal0.1/7.6.5.32

srun python helloworld.py
```

- This particular setup is asking for 1 GPU on the dgx partition. The maximum runtime here is 20 hours, with 64 GB max memory per cpu.
 - o Note: the higher resources you request, the lower your priority
 - "module load" allows you to customize your environment as needed. You can run "module avail" to see what is available to use.
- You can then gueue the slurm scheduler with
 - sbatch helloworld.sh
 - Note: you need to be in a python/conda environment when you queue for it to recognize the .py file properly
- SBGRID : Mount from BioHPC
 - https://portal.biohpc.swmed.edu/content/cloud-services/sbgrid/
 - o SBGrid Software Suite contains 400+ scientific software applications
 - o https://sbgrid.org
 - o add . /programs/sbgrid.shrc
 - o require VNC session
 - o example application tested: ccp4i, maestro
- Docker:
 - o Docker is installed on all the CPU nodes: rohpc100-rohpc103, rohpc301-302
 - o If you plan to run docker on these nodes, your id must be added to the docker group
 - o Example:
 - ssh myid@rohpc.swmed.org
 - >ssh myid@rohpc301
 - >module load docker
 - >docker pull hello-world
 - >docker run hello-world