UNIVERSIDAD POLITÉCNICA DE MADRID

Tarjeta XDECA

Manual de usuario

Documento: Tarjeta XDECA_2.1 Autor: José Antonio Herrera Camacho Fecha: 16 de marzo de 2021

<u>Índice</u>

1.	Descripción de la tarjeta XDECA	3
2.	Recursos	
3.	Displays de 4 dígitos	
4.	Barra de LEDs	
5.	Microinterruptores	
6. 7.	LED para medidas de parámetros tecnológicos	
7. 8.	Display LCD Teclado hexadecimal	
9.		
	Anexo: Esquemas de la tarjeta XDECA	
ĺnd	lice de Tablas	
Tal	ola 1: Señales de los displays	5
Tak	ola 2: Pines de los LEDs	6
Tak	ola 3: Pines microinterruptores	7
	ola 4: Pines del LCD	
	ola 5: Pines teclado hexadecimal	
Tak	ola 6: Pines analógicos	10
Índ	lice de Figuras	
Fig	ura 1: Conexión correcta de las tarjetas	3
Fig	ura 2: Localización de los recursos de la tarjeta XDECA	4
Fig	ura 3: Diagrama de conexión interna de un display de 4 dígitos de cáto común	
Fig	ura 4: Detalle de la conexión de los displays 0 a 3 de 7 segmentos	6
Fig	ura 5: Detalle de la conexión de las barras de LEDS	7
Fig	ura 6: Detalle de la conexión de los microinterruptores	8
Fig	ura 7: Circuito para medidas de parámetros tecnológicos	8
Fig	ura 8: Detalle de la conexión del display LCD	9
Fig	ura 9: Puerto de conexión del teclado hexadecimal	10
Fig	ura 10: Zona de experimentación analógica	10

1. Descripción de la tarjeta XDECA

En este documento se describe la tarjeta XDECA, que es una tarjeta de expansión para la tarjeta DECA.

La tarjeta XDECA tiene una colección variada de elementos para poder ser usados como interfaces de entrada y de salida. Además, tiene una zona destinada a medir distintos parámetros eléctricos estudiados en algunas de las asignaturas del área de digital.

La tarjeta XDECA tiene en su parte inferior dos conectores de 46 pines, J1 y J2, que permiten su conexión con la tarjeta DECA. Conecte la tarjeta según se muestra en la fotografía de la Figura 1. En caso de conexión incorrecta se encenderá el LED5 de la XDECA. En este caso, desconecte la alimentación **inmediatamente** y conéctela en la forma correcta.

Figura 1: Conexión correcta de las tarjetas

2. Recursos

Los recursos disponibles en la tarjeta XDECA permiten utilizar diversos tipos de interfaces para interactuar con la tarjeta DECA. Estas interfaces acceden a la FPGA a través de los conectores J1 y J2.

Los recursos disponibles son:

- 2 displays de 4 dígitos de segmentos multiplexados
- Tres barras luminosas (roja, naranja y verde) de 3 LEDs cada una
- Ocho microinterruptores
- Un display LCD de 128×64 pixeles (no conectado)
- Un conector (ubicado en la parte inferior izquierda) para conectar un teclado hexadecimal de 16 teclas
- Un LED para hacer medidas de parámetros tecnológicos (no conectado)
- Una referencia de tensión a partir de la cual se generan dos tensiones analógicas con niveles ajustables conectadas a dos de las entradas ADC de la tarjeta DECA

Figura 2: Localización de los recursos de la tarjeta XDECA

En los siguientes apartados se describen con detalle las características de estos recursos. En el anexo se encuentra el esquemático de la tarjeta.

3. Displays de 4 dígitos

La tarjeta tiene 2 displays de 4 dígitos de 7 segmentos (indicados como **U2** y **U3** en la serigrafía de la tarjeta). Los displays son de cátodo común y los dígitos están multiplexados. En la Figura 3 se puede observar el conexionado interno.

Los dígitos están numerados del Display 0 hasta el Display 7, siendo el Display 0 el de más a la derecha. Para iluminar los segmentos de un determinado display hay que poner un '0' en su correspondiente cátodo (señales Display0 a Display7) y un '1' en los segmentos que han de iluminarse, señales A, B, C, D, F y G.

El LED que representa el punto decimal (uno por cada dígito) también está multiplexado y para que se ilumine se procederá de igual forma que con los segmentos, colocando un '1' en la señal DP.

Además, este display dispone de LEDs adicionales para otro tipo de señalización, son los LEDs L1 y L2 (están en paralelo), y L3, y no están multiplexados. Se iluminan con un '1' en las señales A_L1_U2 y A_L3_U2 para los LEDs del display de la derecha y las señales A_L1_U3 y A_L3_U3 para los LEDs del display de la izquierda.

Figura 3: Diagrama de conexión interna de un display de 4 dígitos de cátodo común

En la Tabla1 se establece la relación entre las señales que controlan los displays y los pines de la FPGA.

Tabla 1. Schales de 105 displays					
Señal	Pin DECA	Pin FPGA	Señal	Pin DECA	Pin
Display0	GPIO1_D0	PIN_Y5	Α	GPIO0_D25	PIN_AA13
Display1	GPIO1_D2	PIN_W6	В	GPIO0_D34	PIN_W12
Display2	GPIO1_D4	PIN_W8	С	GPIO0_D21	PIN_AA15
Display3	GPIO1_D6	PIN_AB8	D	GPIO0_D38	PIN_AB10
Display4	GPIO1_D8	PIN_R11	E	GPIO0_D19	PIN_W15
Display5	GPIO1_D10	PIN_AB6	F	GPIO0_D28	PIN_AB11
Display6	GPIO1_D12	PIN_AA6	G	GPIO0_D17	PIN_W16
Display7	GPIO1_D14	PIN_V10	DP	GPIO0_D26	PIN_AB12
A_L1_U2	GPIO0_D23	PIN_AA14	A_L1_U3	GPIO0_D15	PIN_AA16
A_L3_U2	GPIO0_D32	PIN_Y11	A_L3_U3	GPIO0_D16	PIN_AB16

Tabla 1: Señales de los displays

Figura 4: Detalle de la conexión de los displays 0 a 3 de 7 segmentos

4. Barra de LEDs

La tarjeta está dotada con 3 barras luminosas de LEDs: roja, naranja y verde; en la serigrafía aparecen como LED1, LED2 y LED3 respectivamente.

La conexión que se ha realizado entre las tres barras hacen que los LEDs funcionen de forma multiplexada. Es decir, se emplean tres señales para seleccionar qué barra se va a iluminar (señales BARRA_ROJA, BARRA_AMAR y BARRA_VERD), activas a nivel bajo y otras tres señales (LED0, LED1 y LED2) para determinar qué LEDs de la barra seleccionada se van a iluminar, activas a nivel alto. Las señales internas (procedentes de la salida del buffer U5 en el esquemático) BR, BA y BV están conectadas a los cátodos de los LEDs y LA0, LA1 y LA2 (procedentes de las resistencias de polarización R1 en el esquemático) a los ánodos, de forma que para que se ilumine un LED hay que poner un '0' en las señales de selección de barra y un '1' en las señales de selección de LED.

Los LEDs conectados a la señal LED0 son los que están a la derecha de las barras.

Señales Barras de LEDs	Pin DECA	Pin FPGA
BARRA_ROJA	GPIO0_D13	PIN_W17
BARRA_AMAR	GPIO0_D11	PIN_AB18
BARRA_VERD	GPIO0_D9	PIN_Y16
LED0	GPIO0_D22	PIN_AB14
LED1	GPIO0_D20	PIN_Y14
LED2	GPIO0_D18	PIN_AB15

Tabla 2: Pines de los LEDs

Figura 5: Detalle de la conexión de las barras de LEDS

5. Microinterruptores

La tarjeta incluye 8 microinterruptores en el componente **INT1**. El módulo contiene la numeración serigrafiada de cada uno de los microinterruptores.

Cada uno de los microinterruptores se encuentra conectado a un pin de la FPGA y pone un nivel bajo cuando se sitúa en la posición **ON**, y en la posición opuesta pone un nivel alto. Las interconexiones entre el PLD y los microinterruptores se muestran en la Tabla 3.

Tabla 3: Pines microinterruptores

Microinterruptor	Pin DECA	Pin FPGA
SW1	GPIO0_D14	PIN_AB17
SW2	GPIO0_D12	PIN_V15
SW3	GPIO0_D10	PIN_V16
SW4	GPIO0_D8	PIN_AB19
SW5	GPIO1_D1	PIN_Y6
SW6	GPIO1_D3	PIN_W7
SW7	GPIO1_D5	PIN_V8
SW8	GPIO1_D7	PIN_V7

Figura 6: Detalle de la conexión de los microinterruptores

6. LED para medidas de parámetros tecnológicos

La tarjeta está provista de un LED (**LED4** en el esquemático) con el propósito de estudiar los parámetros eléctricos de la salida de un circuito digital. El LED está polarizado con una resistencia, R7, que no está colocada y deberá ser calculada por el alumno. El LED4 se enciende con un...? Analice usted el circuito y trate de averiguarlo. El LED4 está conectado a la señal LED-EII, que está conectada al pin PIN AB13 de la FPGA.

Figura 7: Circuito para medidas de parámetros tecnológicos

7. Display LCD

La tarjeta XDECA también dispone de una interfaz de salida más compleja que los sistemas basado en LEDs vistos anteriormente. Se trata del display LCD de 128×64 pixeles, modelo EA DOGM128B-6 del fabricante ELECTRONIC ASSEMBLY. Tiene 5 señales de control que son: SI, SCL, A0, nRESET y nCS. En el manual de usuario del LCD se encuentran todos los detalles necesarios para poder utilizarlo.

Tabla 4: Pines del LCD

Señales LCD	Pin DECA	PIN FPGA
SI	GPIO0_D27	PIN_AA12
SCL	GPIO0_D29	PIN_AA11
A0	GPIO0_D31	PIN_Y13
nRESET	GPIO0_D33	PIN_W13
nCS	GPIO0_D35	PIN_W11

Figura 8: Detalle de la conexión del display LCD

8. Teclado hexadecimal

La tarjeta XDECA también dispone de un conector de 8 pines para poder utilizar un teclado hexadecimal. Para poder usar el teclado, los pines de la FPGA correspondientes a las columnas deben configurarse con una resistencia de pull-up interna.

Los pines p0...p3 se corresponden con los pines Y4...Y1 en el conector del teclado. Los pines p4...p7 se corresponden con los pines X4...X1.

En la Tabla 5 puede encontrar la asignación de pines para poder utilizar el teclado.

Tabla 5: Pines teclado hexadecimal

Pines Teclado	Pin DECA	Pin FPGA
P0	GPIO0_D7	PIN_AB20
P1	GPIO0_D5	PIN_AA19
P2	GPIO0_D3	PIN_AA17
P3	GPIO0_D1	PIN_Y18
P4	GPIO0_D6	PIN_AB21
P5	GPIO0_D4	PIN_AA20
P6	GPIO0_D2	PIN_Y19

Figura 9: Puerto de conexión del teclado hexadecimal

9. Conversores analógico-digitales

La tarjeta XDECA incorpora un circuito basado en un dispositivo que proporciona una tensión de referencia de 1.24 V, y 2 potenciómetros conectados mediante las señales ADC0 y ADC1 a dos entradas de conversores analógico digitales de la FPGA.

Tabla 6: Pines analógicos

Entradas ADCs	Pin DECA	Pin FPGA
ADC0	AIN0	PIN_F5
ADC1	AIN1	PIN_F4

Figura 10: Conversores analógico-digitales

10. Anexo: Esquemas de la tarjeta XDECA

