Regular Expression

Beulah A.

AP/CSE

Introduction

- Regular expressions describe regular languages
- ie the language accepted by a finite automata are easily described by regular expression.
- Many programming languages provide regular expression capabilities,
 - Built-in → Perl, JavaScript, Ruby, AWK, Tcl,
 - Standard library \rightarrow .NET, Java, Python C++
- REs are widely supported in programming languages, text processing programs (particular lexers, lex, yacc), advanced text editors

Introduction

- Let Σ be a finite set of symbols.
- Let L_1 , L_2 be set of strings in Σ^* .
- The concatenation of L_1 and L_2 denoted by L_1 L_2 is the set of all strings of the form xy, where $x \in L_1$ and $y \in L_2$.
- $L_0 = \{ \epsilon \}$
- $L^i = LL^{i-1}$ for $i \ge 1$.

Introduction

• Kleene Closure

$$L^* = \bigcup_{i=0}^{\infty} L^i = L^0 U L^1 U L^2 U \dots$$

Positive Closure

$$L^{+} = \bigcup_{i=1}^{\infty} L^{i} = L^{1} U L^{2} U \dots$$

Example

```
Let L_1 = \{10, 01\}, L_2 = \{11, 00\}

Then L_1L_2 = \{1011, 1000, 0111, 0100\}

Let L = \{10, 11\}

Then L^* = L_0 \cup L_1 \cup L_2 \cup .....

= \{\epsilon\} \cup \{10, 11\} \cup \{1011, 1010, 1110, 1111\} \cup ....

= \{\epsilon, 10, 11, 1011, 1010, 1110, 1111, .....\}
```

Operators of RE

*
$$\rightarrow$$
 L*

. \rightarrow L₁. L₂, L₁L₂
/ \rightarrow L₁U L₂

Definition of Regular Expression

- Let Σ be an alphabet. The regular expressions over Σ and the sets that they denote are defined recursively as follows:
- 1. φ is a regular expression and denotes the empty set $\{\}$.
- 2. ϵ is a regular expression and denotes the set $\{\epsilon\}$
- 3. For each $a \in \Sigma$, 'a' is a regular expression and denotes the set $\{a\}$.
- 4. If r and s are regular expressions denoting the languages R and S respectively then (r + s), (rs), (r)* are regular expressions that denotes the sets RUS, RS and R*

respectively.

Precedence of RE operators

```
* → higher precedence.
```

/ → Lower precedence

Example

- $(0/1)^* = \{\epsilon, 0, 1, 00, 01, 10, 11....\} = (0+1)^*$ (i.e.) all strings of 0 and 1
- $01* = \{0, 01, 011, 0111, \dots \}$
- $0* = \{\epsilon, 0, 00, 000, \dots\}$
- $1(1)^* = \{1, 11, 111, 1111, \dots \} = 1^+$

Identities for Regular Expressions

I1
$$\varphi + R = R$$
 I7 $RR^* = R^*R$
I2 $\varphi R = R\varphi = \varphi$ I8 $(R^*)^* = R^*$
I3 $\lambda R = R\lambda = R$ I9 $\lambda + RR^* = R^* = \lambda + R^*R$
I4 $\lambda^* = \lambda$ I10 $(PQ)^*P = P(QP)^*$
I4 $\lambda^* = \lambda$ I11 $(P + Q)^* = (P^*Q^*)^* = (P^* + R^*)^*$
I5 $R + R = R$ $Q^*)^*$
I6 $R^*R^* = R^*$ I12 $(P + Q)R = PR + QR$ and $R(P + Q) = RP + RQ$

Road map

Thompson's Construction

Basis

R=a
$$\longrightarrow$$
 \longrightarrow \bigcirc R= φ \longrightarrow \bigcirc \bigcirc

Thompson's Construction

Thompson's Construction

Theorem

For every regular expression r there exists a NFA with ε -transitions that accepts L(r)

- Proof
 - Basis step (Zero operators)

Suppose r is ε , φ or a for some $a \in \Sigma$.

Then the equivalent NFA's are:

$$R=\epsilon$$

$$R=a$$

$$R=\phi$$

$$R=\phi$$

Induction Case i

- $r = r_1 + r_2$
- $M_1 = (Q_1, \sum_1, \delta_1, q_1, \{f_1\}) L(M_1) = L(r_1)$
- $M_2 = (Q_2, \sum_2, \delta_2, q_2\{f_2\}) L(M_2) = L(r_2).$
- Assume Q_1 and Q_2 are disjoint.
- Let q_0 , f_0 be a new initial and final state respectively.

Case i

• M = (Q₁ UQ₂ U{ q_0,f_0 }, \sum_1 U \sum_2 , $\delta,q_0,\{f_0\}$) where δ is defined by

$$\begin{split} \delta(q_0, \varepsilon) &= \{q_1, q_2\} \\ \delta(q, a) &= \delta_1(q, a) & \text{if } q \in \mathcal{Q}_1 - \{f_1\}, \ a \in \sum_1 \cup \{\varepsilon\} \\ \delta(q, a) &= \delta_2(q, a) & \text{if } q \in \mathcal{Q}_2 - \{f_2\}, \ a \in \sum_2 \cup \{\varepsilon\} \\ \delta_1(f_1, \varepsilon) &= \delta_2(f_2, \varepsilon) = \{f_0\} \\ &\longrightarrow q_0 & & & & & & & & & & & & & \\ \bullet & L(M) &= L(M_1) \ \cup \ L(M_2) & & & & & & & & & & & & \\ \end{split}$$

Case ii

- $r = r_1 . r_2$
- $M_1 = (Q_1, \sum_1, \delta_1, q_1, \{f_1\}) L(M_1) = L(r_1)$
- $M_2 = (Q_2, \sum_2, \delta_2, q_2\{f_2\}) L(M_2) = L(r_2)$
- M = $(Q_1 \cup Q_2, \sum_1 \cup \sum_2, \delta, \{q_1\}, \{f_2\})$, where δ is given by:

$$\delta(q,a) = \delta_1(q,a)$$
 for q in $Q_1 - \{f_1\}$ and a in $\sum_1 U\{\epsilon\}$

$$\delta(f_1, \varepsilon) = \{q_2\}$$

$$\delta(q,a) = \delta_2(q,a)$$
 for q in Q_2 and a in $\sum_2 U\{\epsilon\}$

Case ii

- $L(M) = \{xy \mid x \text{ is in } L(M_1) \text{ and } y \text{ is in } L(M_2)\}$
- $L(M) = L(M_1) \cdot L(M_2)$.

Case iii

- $r = r_1^*$
- $M_1 = (Q_1, \sum_1, \delta_1, q_1, \{f_1\}) L(M_1) = r_1$
- M = $(Q_1 \cup \{q_0, f_0\}, \sum_1, \delta, q_0, \{f_0\})$, where δ is given by:

$$\delta(q, \varepsilon) = \delta(f_1, \varepsilon) = \{q_1, f_0\}$$

 $\delta(q, a) = \delta_1(q, a)$ for q in $Q_1 - \{f_1\}$ and a in $\sum_1 U\{\epsilon\}$

3

Road map

Conversion of ε-NFA to DFA

1. Find the ε -CLOSURE of the state q_0 from the constructed ε -NFA (i.e) from state q_0 , ε transition to other states are identified as well as ε transitions from other states are also identified and combined as one set (new state).

Conversion of ε-NFA to DFA

- 2. Perform the following steps until there are no more new states as been constructed.
 - Find the transition of the given regular expression symbols over ∑ from the new state (i.e) move (new state, symbol)
 - ii. Find the ε-CLOSURE of move (new state, symbol).

Example

Summary

- Definition of RE
- Precedence, identities, properties of RE.
- Thomson's construction to convert RE to NFA and then to DFA

2 July 2013 Beulah A.

Test Your Knowledge

 Which of the following does not represents the given language?

Language: {0,01}

- a) 0+01
- b) {0} U {01}
- c) $\{0\}$ U $\{0\}\{1\}$
- d) {0} ^ {01}

2 July 2013 Beulah A.

Test Your Knowledge

- Regular Expression R and the language it describes can be represented as:
 - a) R, R(L)
 - b) L(R), R(L)
 - c) R, L(R)
 - d) All of the mentioned

Reference

Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008

2 July 2013 Beulah A.