Diskrete Mathematik

Prof. Stefan Wolf HS 2010

Michal Sudwoj

Geschrieben in X∃I£TEX

Inhaltsverzeichnis

Michal Sudwoj Stand: 27. Mai 2011

Teil I Vorlesungsnotizen

0.1 Inhalt der Vorlesung

- Logik: Aussagenlogik, Beweise
- Mengenlehre: Alle Objekte
- Kombinatorik
- Graphentheorie
- Zahlentheorie, Algebra
 - Anwendungen: Kommunikation, Kryptologie, Fehlerkorrektur

Kapitel 1

Motivation

Worum geht es in dieser Vorlesung?

Bsp.1: Modellierung:

Fazit:

- Wegschälen vom Umweltlichen hat das Problem einfach gemacht \implies **Abbstraktion**
- Viele diskrete Probleme führen auf Graphen

Bsp.2: Zahlentheorie:

$$N = \{0, 1, 2, 3, \ldots\}$$

Michal Sudwoj Stand: 27. Mai 2011

$$a\mid b$$
 "a teil b" $a,b\in\mathbb{N}$ $a\mid b:\leftrightarrow\exists n\in\mathbb{N}:a\cdot n=b$ Bsp.: $2\mid 6$

$$3 \nmid 6$$

$$2 \equiv 5 \pmod{3}$$

$$3 \not\equiv 5 \pmod{3}$$

p Primzahl :
$$\leftrightarrow (a \mid p \rightarrow (a = 1 \lor a = p) \land p \neq 1)$$

Intuition ↔ **Beweis**

Jede Zahl hat eine **eindeutige** Primzahlzerlegung (nämlich:

$$p \mid (a \cdot b) \rightarrow p \mid a \lor p \mid b$$
 ;

wir haben's noch nicht bewiesen)

Satz:

Es gibt unendlich viele Primzahlen

6

Bsp.3: Kombinatorik ("systematisches Zählen"):

Kette mit p Perlen in a verschiedene Farben

Anzahl mögliche Ketten? a^n

Anzahl Muster?

Wie oft kommt jedes Muster vor?

Gegeben: p ist prim

⇒ einfärbig: 1 mal

⇒ mehrfärbig: p mal

$$\implies \frac{a^p - a}{p} + a = a \cdot \left(1 + \frac{a^{p-1} - 1}{p}\right)$$

 $a \ \mathsf{beliebig}, p \ \mathsf{Primzahl}$

$$p \mid (a^p - a)$$

Michal Sudwoj Stand: 27. Mai 2011

```
a^p \equiv a \pmod{p} (p \nmid a) \to (a^{p-1} \equiv 1 \pmod{p}) Kleines Satz von Fermat
```

Bsp.4: Geometrie:

Rechteckige Terrase $a \cdot b \mid a, b \in \mathbb{N}$

Was sind die grösstmöglichen Quadratplatten, mit denen mann sie exakt belegen kann?

 $a \geq b$ Quardat aufteilen in $b \cdot b$ und $(a-b) \cdot b$ Beobachtungen:

- Jede Belegung des ganzen führt auf separate Belegungen von $[b \cdot b] \text{ und } [(a-b) \cdot b]$
- Es reicht, $[(a-b) \cdot b]$ zu berechnen.

$$R_{a-b}(b) = b \bmod (a-b)$$

Fortfahren, bis wir ein Quadrat erhalten. Warum wird das sicher passieren?

Spätestens bei $1 \cdot 1$

Algorithmus (Euklid):

$$a, b$$

$$r_1 = R_b(a)$$

$$r_2 = R_{r_1}(b)$$

$$\vdots$$

$$r_n = R_{r_{n-1}}(r_{n-2})$$

$$\vdots$$

$$r_k = ggT(a, b)$$

Bsp.5:

2 Sanuhren: 21 min und 15 min. Wir wollen 3 min abmessen.

Euklid: 21, 15, 6, 3, 0 21 min: 1 0 1 -2 15 min: 0 1 -1 3

Bsp.6: Verbindungen ohne Überkreuzen:

3 Häuser mit 3 Werke verbinden → geht nicht!

der Graph ist nicht **planar**.

Kapitel 2

Logik

2.1 Was ist Logik?

"Septem artes liberalen", 7 freie Künste Fächerkanon:

- Trivium
 - Grammatik
 - Rhetorik
 - Logik
- Quadrivium
 - Arithmetik
 - Geometrie
 - Musik
 - Astronomie

"logos": argumentierende, begründende Rede, vernünftiges Sprechen Logik: Lehre des Begründens, Argumentierens, Schliessens

1918: Frege:
$$\frac{\text{sch\"{o}n}}{\text{\"{A}sthetik}} = \frac{\text{gut}}{\text{Ethik}} = \frac{\text{wahr}}{\text{Logik}}$$

1970: Patzig: Logik = Theorie der Aussagen, die aufgrund **ihrer Form** wahr sind.

1985: Menne: Logik = Lehre von der **Folgerichtigkeit**

^{¬ &}quot;trivial"

Gibt es
$$r_1, r_2 \notin \mathbb{Q}$$
 mit $r_1^{r_2} \in \mathbb{Q}$? Ja.
$$\sqrt{2} \notin \mathbb{Q} \qquad \left[l \implies \text{Bruch nicht gekürzt.} \right]$$

$$\sqrt{2}^{\sqrt{2}} \in \mathbb{Q} \vee \sqrt{2}^{\sqrt{2}} \notin \mathbb{Q} \qquad \sqrt{2}^{\sqrt{2}^{\sqrt{2}}} = 2$$

2.2 Aussagenlogik

2.2.1 Definitionen

Def.: Aussage:

Eine Aussage ist ein sprachlicher Ausdruck, der wahr oder falsch ist.

Bsp.:

- Wenn es regnet, dann sind die Strassen nass.
- Wenn der Hahn kräht auf dem Mist, ändert das Wetter oder es bleibt wie es ist. (Tautologie)
- Dies ist keine Aussage. (Aussage, falsch)
- Diese Aussage ist falsch.
- Wale sind Fische und Fische sind Tiere.

Atomare Aussagen mit **Junktoren** verbunden \rightarrow Zusammengesetzte Aussagen.

Junktoren als Wahrheitsfunktionen

 $\verb|http://en.wikipedia.org/wiki/Logical_connective|$

AND (konjunktion)

	-	-
A	B	$A \wedge B$
W	W	W
W	F	F
F	W	F
F	F	F

NOT

A	$\neg A$
W	F
W	F

NAND (universell)

A	B	$A \mid B$
W	W	F
W	F	W
F	W	W
F	F	W

OR (disjunktion)

		,
A	B	$A \lor B$
W	W	W
W	F	W
F	W	W
F	F	F

XOR (ausschliessendes Oder)

A	B	$A \oplus B$
W	W	F
W	F	W
F	W	W
F	F	F

XNOR (Äquivalenz)

	•	,
A	B	$A \leftrightarrow B$
W	W	W
W	F	F
F	W	F
F	F	W

$$A \leftrightarrow B \equiv \neg (A \oplus B)$$

Implikation

A	B	$A \rightarrow B$
W	W	W
W	F	F
F	W	W
F	F	W
$\overline{A \to B \equiv (\neg A) \lor B}$		

Michal Sudwoj Stand: 27. Mai 2011 16

$A \to B$ ist nicht gleich $B \to A$ oder $\neg A \to \neg B$

$$A \to B \equiv \neg B \to \neg A$$
 (indirekter Beweis) $B \to A \equiv \neg A \to \neg B$

$\textbf{Syntax} \leftrightarrow \textbf{Semantik}$

Syntax: Welche Zeichenketten sind korrekte Formeln? Semantik: Für korrekte Formeln: wahr oder falsch?

2.2.2 Syntax der Aussagenlogik

Bsp.:

- A
- (¬A)

- $(\neg(\neg A))$
- B
- $(A \wedge B)$
- $(A \wedge A)$
- $(((A \land B) \lor (\neg C)) \land (A \lor B))$

Teilformel = Teilstring, der selbst eine Formel ist.

Bsp.:

- A
- B
- C
- $(A \wedge B)$
- (¬C)
- $((A \land B) \lor (\neg C))$
- $(A \vee B)$
- F

2.2.3 Semantik der Aussagenlogik

Wahrheitswerte der Atomformeln \rightarrow Wahrheitswerte der zusammengesetzten Formeln

Vollständige Wahrheitstabelle

$$(((A \land B) \lor (\neg C)) \land (A \lor B))$$

$$(((A \land B) \lor (\neg C)) \land (A \lor B))$$

$$(((A \land B) \lor (\neg C)) \land (A \lor B))$$

$$((A \land B) \lor (\neg C)) \land (A \lor B))$$

$$((A \lor B) \lor (A \lor B)$$

$$((A \lor B) \lor (A \lor B))$$

$$((A \lor B) \lor (A \lor B))$$

$$((A \lor B) \lor (A \lor B)$$

$$((A \lor B) \lor (A \lor$$

```
\begin{array}{ll} \textbf{Def.: Belegung:} \\ \textbf{D} \ , \varepsilon_D \ \text{wie oben.} \end{array} \begin{array}{ll} \mathcal{A} : D \to \{0,1\} & \text{Belegung} \\ \hat{\mathcal{A}} : \varepsilon_D \to \{0,1\} & \text{Fortsetzung von } \mathcal{A} \end{array} \begin{array}{ll} \boldsymbol{\cdot} \ \hat{\mathcal{A}}(D) \coloneqq \mathcal{A}(D) & \text{für Atomformel D} \end{array} \begin{array}{ll} \boldsymbol{\cdot} \ \hat{\mathcal{A}}((F \land G)) \coloneqq \hat{\mathcal{A}}(F) \land \hat{\mathcal{A}}(G) \\ \\ \boldsymbol{\cdot} \ \hat{\mathcal{A}}((F \lor G)) \coloneqq \hat{\mathcal{A}}(F) \lor \hat{\mathcal{A}}(G) \\ \\ \boldsymbol{\cdot} \ \hat{\mathcal{A}}((\neg F)) \coloneqq 1 - \hat{\mathcal{A}}(F) \end{array}
```

Vereinfachungen:

Weglassen von Klammern