Cloud Security Operations

Build or Buy

- Building a DC is an expensive proposition
- <u>But advantages are:</u>
 - Location of choice
 - Service offering
 - Design elements choice

Considerations when deciding DC

- Cost of the facility vs cost of the lease over time
- Efficiency in terms of power, utility, HVAC, staffing
- Regulations or control specifications
- Velocity of growth

Location

- First aspect to be decided when choosing a DC
 - Availability of inexpensive power
 - High-speed network connectivity
 - Natural disaster zone
 - Proximity to other DCs
 - Temperature cooling challenge
 - Vendor support
 - Legal and regulatory mandates

Power Resilience

- Ensuring power requirements are adequate and available continuously is one of the key considerations in DC design
 - Ability to acquire power from multiple grids
 - No single point of failures
 - Underlying infrastructure ready to support the load of the facility
 India
 - Brief outages should be handled by the UPS
 - Generators should handle longer power outages

Communication Resilience

- Identify the current and future bandwidth needs
- Ensure network connectivity from more than one ISP (<u>Multi vendor</u>)
 <u>Pathway communication</u>)
- Ensure different ISPs do not share the same upstream dependencies
- Assess connectivity paths for environmental dangers and single point of failures
- Design internal systems and networks to support redundant connectivity and resilience

Physical Security

- Vehicular traffic design to the facility
- Guest / Visitor access control
- CCTV monitoring
- Protected placement of hazardous resources away from human personnel
- Interior physical access controls
- Fire Detection and Suppression Systems
- Security controls redundancy during power interruptions

Data Centre Tiers

Tier	Description
Tier 1 DC	 Basic infrastructure required to run an IT operation No redundancy, downtime in the event of unplanned maintenance or interruption Uptime 99.671% Requirements: UPS for line conditioning and backup An area to house IT systems Dedicated cooling systems Power generator for extended power outage Redundancy for chillers, pumps, UPS and generators
Tier 2 DC	Provides more redundancy that Tier 1 DC Uptime 99.741% Requirements:
	• Fuel tanks

Data Centre Tiers

Tier	Description
Tier 3 DC	Design is known as "Concurrently maintainable Infrastructure" Provides N+1 redundancy Can have planned maintenance activities without disruptions Uptime 99.982% Requirements: • Tier 2 DC requirements + • Multiple distribution paths where only a sole path is needed to serve critical operations at any given point of time
Tier 4 DC	Highest Level DC proposed by Uptime Institute Provides 2N+1 redundancy Can withstand planned or unplanned interruptions Uptime 99.995% Requirements: • Independent and physically isolated systems • Provides resiliency at both the component and distribution path levels • Designed around Fault tolerance for components

Hardware Specific Security

Trusted Platform Module

- Microchip installed on the motherboard that is dedicated to carrying out security functions on the system. It is only a physical component and cannot be added later
- It is referred as Cryptographic coprocessor
- It is used to form roots of trust
- Two major functions of TPM are

Binding the hard disk drive

- Content of the Hard disk drive is encrypted, and the decryption key is stored away in the TPM chip
- If the TPM chip fails, the encrypted content in the HDD will be rendered useless

• Sealing a system configuration

- TPM generates hash values based on the systems configuration and stores them in TPM chips
- Only after TPM verifies the integrity of the system's configuration will it allow activation of the system

Trusted Platform Module (TPM)

- Services provided by TPM
 - Random number generators
 - Asymmetric key generation
 - Hash generators
 - Used for storage of highly secure limited data (cryptographic keys)
 - Used to form roots of trust

Hardware Security Module (HSM)

- Dedicated hardware designed to support and perform cryptographic functions
- Functions performed by HSM
 - Secure storage of cryptographic keys
 - Encryption and decryption function
 - Cryptographic based authentication
 - Generate data needed for cryptographic functions

KVM Security

- Key attributes for a secure Keyboard Video Mouse (KVM) switch are:
 - Isolated data ports
 - Tamper-resistant/evident design
 - Secure storage
 - Secure firmware
 - Physical disconnects button on the front of KVM to allow the user to switch between connected systems
 - USB Port and device restriction

TLS Security

- Transport Layer Security protocol is a set of cryptographic protocols that provide encryption for data in transit
- TLS can be used both for encryption and authentication
- TLS Communication steps:
 - Client initiates a request "ClientHello". Informs the list of cipher suites and TLS versions it supports
 - Server chooses the highest TLS Version from the list and communicates back along with its certificate
 - Client and server negotiate a session key
 - Session key is then used to encrypt all data that is shared

DHCP

- Runs over UDP
- Utilizing ports:
 - 67 connections to server
 - 68 connections to client
- Extension of BOOTP (protocol used for simple interaction)
- All interactions are initiated by a client
- Server only replies
- Uses client–server model

DNS

- The mechanism by which Internet software translates names to attributes such as addresses
- A globally distributed, scalable, reliable database
- Comprised of three components
 - A "name space"
 - Servers making that name space available
 - Resolvers (clients) which query the servers about the name space
- The name space is the structure of the DNS database
 - An inverted tree with the root node at the top
- Each node has a label
 - The root node has a null label, written as ""
- A domain name is the sequence of labels from a node to the root, separated by dots ("."), read left to right
 - The name space has a maximum depth of 127 levels
 - Domain names are limited to 255 characters in length
- A node's domain name identifies its position in the name space

DNS attacks

DNS cache poisoning

• These attacks capture and divert queries to another website unknown to users

Denial of service (DoS)

Attempts to make a given service impossible or very hard to access.

Distributed denial of service (DDoS)

 An elaborate form of DoS that involve thousands of computers generally as part of a botnet or robot network

Reflected attacks

 Send thousands of requests with the victim's name as the source address. When recipients answer, all replies converge on the official sender, whose infrastructures are then affected

DNS attacks

Reflective amplification DoS:

• The same technique as reflected attacks is used, except that the difference in weight between the answer and question amplifies the extent of the attack. A variant can exploit the protective measures in place, which need time to decode the long replies; this may slow down query resolution

Cybersquatting

• Involves registering a domain name with the deliberate intent of undermining and profiting from a third party's rights or in some way harming that third party.

"Name-jacking" or theft

• Appropriating the domain name (updating the holder's field and/or contacts) or taking control by technical means to divert traffic, such as by modifying the name servers hosting the site

DNSSEC

- It is set of extensions focused on providing Integrity of DNS
- Provides cryptographic authentication of DNS data using digital signatures
- It provides proof of origin and makes cache poisoning / spoofing attacks more difficult
- It does not provide confidentiality

Software-Defined Perimeter (SDP)

- Operating Model
- SDP controllers are created and are connected to an authentication service to enforce access control
- "Accepting" SDP hosts authenticate to the SDP controllers. These hosts do not accept any new connection by default
- "Initiating" SDP hosts connect to SDP controllers for authentication and can request access to resources of an accepting host.
- The SDP controllers makes authorization decisions and provides details to both the "accepting" and "initiating" SDP hosts
- A mutual VPN is established between the "Initiating" and "Accepting" host and the user is able to interact with the resource.

Distributed Resource Scheduling (DRS)

- A utility that <u>balances computing workloads</u> with available resources in a virtualized environment
- If the workload on one or more virtual machines drastically changes, DRS <u>redistributes the virtual</u> <u>machines among the physical servers</u>
- If the overall workload decreases, some of the physical servers can be temporarily powered-down and the workload consolidated
- DRS <u>intelligently allocates resources and can be configured to automatically take care of workload</u>
 <u>Migration</u>
- DRS enables optimal workload distribution on virtual machines based on business needs and changing priorities.
- DRS migrates VMs based on the availability and utilization of CPU and memory resources

Dynamic Optimization

- Dynamic Optimization (DO) is a feature that initiates live migration of VMs that are on a cluster, to improve load balancing among cluster nodes and to correct any placement constraint violations
- Dynamic Optimization settings can be configured for the CPU, memory, disk I/O, and network I/O
- It relies on real-time data and defined goals to determine configuration and resource changes

Maintenance Mode

- When DRS maintenance mode is invoked, DRS is used to evacuate all virtual machines from one host to another, without incurring any downtime.
- This is especially useful for performing maintenance, updating an ESXi host, installing additional memory, or upgrading firmware, and so on
- In order to use maintenance mode in the Virtualized architecture, a cluster needs to be created and DRS must be enabled

Containerization

- Containerization places an application, along with all the libraries and components it needs
- It does not virtualize an entire operating system, just the application environment alone
- Keeping containers secures, requires the images to be secured
- Security of container registers, signing containers, managing secrets and validating signatures are important

Ephemeral Computing

- Leverages the ability to quickly standup virtual machines
- Allows for efficient horizontal scaling

Hypervisor Security

- Common Security mandates are:
 - Restricting access to superuser accounts
 - Requiring MFA
 - Using logging and alerting
 - Limit access to authorized users only
 - Encrypting VMs
 - Using secure boot for the underlying hardware
 - Performing regular audits of configurations and systems

Virtualization Management tool best practices

- Vendor recommended hardening installations to be followed
- Redundancy ~ HA and duplicate architecture
- Scheduled downtime and maintenance
- Isolated network and robust access control
- Configuration and Change management
- Logging and Monitoring

Storage Operations

Storage Clusters

- Storage devices are grouped in clusters to provide for
 - Performance
 - Flexibility and
 - Reliability
 - Two Cluster Architectures:
 - Tightly coupled
 - Loosely coupled

Storage cluster Architecture

Tightly Coupled Architecture

- All storage devices are directly connected to the physical device backplane
- Each component of the cluster is aware of the other devices
- All components subscribe to the same policies and rulesets
- All devices must need to be from the same vendor
- They are confined to more restrictive design parameters
- This architecture enhances performance due to division of data into deterministic blocks

Storage cluster Architecture

Loosely Coupled Architecture

- Each component of the cluster is independent of the others
- Nodes can be added using any off-the-shelf parts
- Uses file-level storage system
- New nodes can be added as needed
- Nodes are only logically connected and do not share physical framework
- Performance does not necessarily scaleup
- This architecture provides flexibility

Data Resiliency

- Two ways of providing Data protection in Cloud storage clusters:
 - RAID
 - Data Dispersion

Data Resiliency – RAID

 Redundant Array of Independent Disks is a technology used for redundancy and/or performance improvement

RAID	Activity	Name
0	Data <u>stripped</u> over serval drives, no redundancy or parity. If one volume fails entire volume may become unusable, primarily used for <u>performance</u> <u>improvement</u>	Stripping
1	Data is written to two drives at the same time. If one fails, the other drive has the same data	Mirroring
2	Data stripping over all drives at the bit level , Parity data is created with Hamming code. Not used in Production today	Hamming code Parity
3	Data stripping over all drives, parity code in in one drive . If one drive fails it can be reconstructed using parity code	Byte-level parity
4	Same as RAID 3, parity is created at block level instead of byte level	Block-level parity
5	Data is <u>written in disk sector</u> units to all drives. <u>Parity is also written to all drives</u> . Ensure no single point of failure	Interleave parity
6	Similar to RAID 5 with added Fault tolerance, second set of parity added to all drives	Double parity
10	Data is mirrored and stripped simultaneously across several drives and can support multiple drive failure	Stripping and Mirroring

Data Resiliency – Data Dispersion

- Concept of separating data into unrecognizable "slices" that are distributed via network connections to storage nodes locally or across the world.
- Transforms data into slices by using equations such that a subset of the slices can be used to re-create the original data
- Dispersed storage systems are well-suited for storing unstructured data like digital media of all types
- Dispersal is not optimized for transaction-oriented primary storage for databases and similar high IOP workloads
- Uses Erasure Codes to create redundancy for transferring and storing data
 - An Erasure Code is a Forward Error Correction (FEC) code that transforms a message of k symbols into a longer message with n symbols such that the original message can be recovered from a subset of the n symbols (k symbols)

IT Service Management Functions

IT Service Management Functions

- There are 3 Important IT Service Management Functions
 - Service-level Management:
 - Ensures the IT organization is fulfilling the commitments to internal and external customers
 - Availability Management:
 - Improves the resiliency of the IT Services to meet the customer needs
 - Capacity Management:
 - Ensures IT resources are sufficient to meet the current and future business needs.

Physical and Environmental Protection

- Technical Committee 9.9 of the American Society for Heating, Refrigiration and Air-conditioning Engineers (ASHRAE) has created target metrics for performance monitoring of Environmental projection in DC
- Recommendations are:
 - Temperature: 18 C to 27 C
 - Humidity: dew point of -9C to 15C, relative humidity at 60%
- High humidity will cause corrosion
- Low humidity will cause static electricity

Device Maintenance Concepts

- When a device is put into maintenance mode, the follows tasks should be completed:
 - All operational instances are removed from the system before it enters into Maintenance mode
 - Prevent all new logins
 - Begin enhanced logging

Updates

Due care – adhering to vendor specifications for

device updates

Due diligence – adherence to documented

vendor instructions

Updates Process

- Move the machines to maintenance mode
- Apply the update and annotate the asset inventory
- Verify the update coverage in all machines
- Validate the intended modifications post update
- Return to normal operations

Change and Configuration Management

Baselines:

- Configuration and Change management begins with defining the baseline, which is a way of setting the desired standard state
- Baseline is a general-purpose map of the network and systems, based on the required functionality and security
- Security controls should be included in the baseline
- While creating a baseline all stakeholders should be consulted
- Baseline should be an excellent reflection of the risk appetite of the organization
- Baseline should suit the largest population of systems in the organization
 - There can also be multiple baselines customized to specific groups or departments
- If there are multiple exceptions to a defined baseline, the baseline parameters should be changed

Change and Configuration Management Policy

- The CM Policy should include:
 - Composition of the CM Board (CMB)
 - The process in detail
 - Exception management
 - Assignment of CM tasks
 - Procedure for addressing deviations, upon detection
 - Enforcement and responsibilities
- CMB should be composed of all stakeholders in the organization
- CMB shall meet often enough to ensure there are no delays

Release and Deployment Management

- Process responsible for arranging all elements to successfully, repeatably and verifiably deploy new software versions
- It includes Planning, scheduling and deploying new software, it encompasses all environments ~ Dev, QA/Testing and staging.
- Once the software moves into Production, it enters active maintenance phase

Business Continuity and DR

BC / DR

- Business continuity is focused on maintaining critical business operations during a disaster
- Disaster recovery is focused on the resumption of operations after an interruption
- Prioritizing health and safety is paramount in any BC/DR planning and efforts

BC / DR Plan

- The BC / DR plan should include
 - Critical Asset Inventory
 - Disaster Criteria
 - Disaster declaration process
 - Essential Points of Contact
 - Detailed Actions, Tasks and Activities

BC / DR Toolkit

- Toolkit that holds all necessary documentation and tools to conduct a BC/DR response action
- It should be secure, durable and compact
- It can be virtual or physical container
- The kit should have duplicate in at least one additional location

BC / DR Toolkit

- The kit should contain the following:
 - Current copy of the BC / DR plan
 - Emergency and backup communication equipment
 - Network and Infra diagrams and architecture
 - Copies of all software
 - Emergency contact information

BC / DR Terminology

RTO – Recovery Time Objective

- The maximum time within which a business process must be restored to an acceptable service level after a disaster
- RTO value should be lesser than MTD
- RTO deals with getting the infrastructure and systems back up and running
- MTD represents the time after which the business cannot recover
- Work Recovery Time (WRT)
 - Remainder of the overall MTD value after RTO has passed
 - WRT deals with restoring data, testing process, and then making the production process live

BC / DR Terminology

RPO – Recovery Point Objective

- It is the acceptable amount of data loss measured in time.
- Represents the earliest point in time to which data must be recovered
- The higher the value of data, the lower the RPO value
- The actual RTO, MTD, RPO values are derived from the Business impact assessment (BIA)

RSL – Recovery Service Level

• The proportion of the service, expressed in %, that is necessary for continued operations during a disaster

BCP Testing

- BCP maintenance should be incorporated into change management procedure
- Tests and DR drills should be conducted atleast once a year
- The first exercise should not include all employees rather a small representative sample of the organization
- People conducting the drills should expect to encounter problems and mistakes

BCP Testing

Checklist Test

- Copies of BCP/DR plan distributed to the different departments for review
- This ensures nothing is taken for granted or omitted
- Planning team integrates all changes to the master plan
- It is also called desktop or table top test

Structured walk-through

- Representatives from each department come together and go over the plan
- The group reviews the objective, scope, assumptions of the plan
- The group walksthrough different scenarios of the plan from beginning to end to make sure nothing is left out

Simulation Test

- This test takes a lot of planning and resources
- All employees participating in operational and support functions come together to practice a specific scenario
- It raises the awareness level of the people involved
- The drill shall include only those materials that will be available in an actual disaster.
- The test continues upto the point where physical migration to new facility gets initiated

Parallel Test

- Some systems are moved to alternate site and processing takes place
- The results are compared with the regular processing done at original site
- Ensures specific systems can function adequately at alternate site during disaster

Full-Interruption Test

- Most intrusive to regular operations
- The original site is shut down and processing takes place at the alternate site
- Recovery team fulfills its obligations in preparing the systems and environments for the alternate site
- All processing is done at alternate site
- It should be performed only after all other tests are completed satisfactorily
- Senior mgmt. approval is needed before performing this test

All the best