LLM Classification Finetuning

第87組 李宥萱 吳定霖 吳宗樺

Presentation Video Link:
https://drive.google.com/file/d/1A8whU4EYb9
M39sdzyfvjDEdaSVYHQbLy/view?usp=sharing

目錄

任務介紹	03
資料集介紹	05
EDA	06
參考研究	12
研究方法	16

任務介紹

此任務目的是預測使用 者更偏好哪一個大型語 言模型所回答的答案, 幫助縮短 LLM 能力與人 類偏好之間的差距。

與Reinforcement
Learning from Human
Feedback的概念密切相
關,將有助於改善聊天機
器人與人類的互動。

Reinforcement Learning from Human Feedback

- Reinforcement Learning
 - 透過設定要演算法達成的目標,然後「獎勵模型」 會根據演算法嘗試的結果給予回饋值,以取得最 大化的預期利益
- Human Feedback
 - 根據人類回饋訓練「獎勵模型」
 - 不僅是根據固定的規則學習,也通過人類的指導來理解更複雜的部分,使得機器能夠更貼近人類的期望和行為方式。

資料集介紹

- 資料集由 ChatBot Arena 的使用者互動資料組成。在每次使用者互動中,會向兩個不同的大型語 言模型提供一個或多個prompt,然後指出哪個模型給出的回應更令人滿意。
- 訓練資料包含 55,000 筆資料, 而測試集約為 25,000 筆。

欄位	描述
id	A unique identifier for the row.
model_[a/b]	The identity of model_[a/b]. Included in train.csv but not test.csv.
prompt	The prompt that was given as an input (to both models).
response_[a/b]	The response from model_[a/b] to the given prompt.
winner_model_[a/b/tie]	Binary columns marking the judge's selection. The ground truth target column.

- 輸入: prompt, response_[a/b]
- 輸出: a 模型回應較好的機率、b 模型回應較好的機率、兩模型回應一樣好的機率 (三個機率值總和為1)
- 評估方式: 三個預測機率值與正確答案的 Log Loss

• 平手的情形共出現17761次

- 共64種模型
- 最常被做比較的模型前三名分別為gpt-4-1106-preview, claude-2.1, claude-1

最常被兩兩比較的模型:

- 1. gpt-4-1106-preview V.S. claude-2.1
- 2. gpt-4-1106-preview V.S. gpt-4-0613
- 3. claude-1 V.S. claude-2.1

Battle Count of Each Combination of Models

模型贏的次數最多的前三名:

- 1.gpt-4-1106-preview
- 2.gpt-4-0613
- 3.gpt-3.5-turbo-0613

模型win-loss比率最高的前五名:

- 1.gpt-4-1106-preview
- 2.gpt-4-0125-preview
- 3.gpt-3.5-turbo-0314
- 4.gpt-4-0314
- 5. claude-1

模型win-loss比率最低的前五名:

- 1.chatglm2-6b
- 2. dolly-v2-12b
- 3.llama-13b
- 4.chatglm3-6b
- 5. stablelm-tuned-alpha-7b

參考研究(1)-Decision Tree

- Difference bucket mean prediction with 250 quantiles
- Log loss of 1.0511

参考研究(2)-LLM fine-tune Gemma2-9B-IT

- Backbone: Gemma2-9B-IT
- LoRA/QLoRA fine-tune
- Three head sperately predict
- Leaderboard: Gold medal 16th place,

Private score: 0.98532

参考研究(3)-Combine Gemma-2 9b & Llama-3 8b

- Backbone: LlaMa3 8b & Gemma2-9B-IT
- Seperately train both LlaMa3 8b & Gemma2-9B-IT
- Lora fine-tune
- Combine two models results: (gemma_results + llama_results) / 2
- Leaderboard : Silver medal, Private score : 1.01955

https://www.kaggle.com/code/jaejohn/lmsys-combine-gemma-2-9b-llama-3-8b

参考研究(4)-Gemma2 9b + Post Processing

- Backbone: Gemma2-9B
- Lora fine-tune
- Qunatization
- Post Processing : 如果 predict 的值超過 某個 threshhold 就乘上 multiplier
- Leaderboard : Silver medal 21th place,
 Private score : 0.98614

```
if POSTPROCESS:
    print("Postprocess applied ...")
    def adjust_probabilities(row, thresholds, multipliers):
        for col in thresholds.keys():
            if row[col] > thresholds[col]:
                row[col] *= multipliers[col]
        return row
    thresholds_075 = {
        'winner_model_a': 0.75,
        'winner_model_b': 0.75,
        'winner_tie': 0.75
    multipliers_075 = {
        'winner_model_a': 1.125,
        'winner_model_b': 1.125,
        'winner_tie': 1.325
```

研究方法

1.數據準備與差異化處理

- 使用 Difference bucket mean prediction with 250 quantiles方法進行特徵分割。
- 訓練模型學習不同bucket之間的分佈差異,提升模型對異質數據的泛化能力。

2.輕量化模型訓練

- 因訓練資源有限,將使用兩個較小型的backbone model (例如: Gemma2-2B 和 LLaMA-2 3B),並分別進行 LoRA 或 QLoRA微調。
- 使用 3 個seperate head分別訓練,提升專項預測能力。

3.模型融合

- 將 Gemma2-2B 和 LLaMA-2 3B 的輸出結果進行融合。
- 融合結果能有效綜合兩個模型的優勢,減少單一模型的偏誤。

4.後處理與校正

○ 設定閾值和 multiplier,進一步增強高置信度預測。

研究方法

方法		性能提升點	資源需求
参考研究 (1)		Bucket 處理提升泛化能力	中等
参考研究 (2)	單模型微調,準確率提升明顯	中等
參考研究 (3)	大型模型集成,顯著提升準確率	高
參考研究 (4)	後處理進一步提升模型表現	低
我們的研究	方法	輕量化訓練 + 差異學習 + 集成模型 + 後處理,平衡準確率與資源	中低

優勢

- 資源友好: 使用較小型的 Gemma2-2B 和 LLaMA-2 3B, 避免高顯存需求。
- 準確率提升: 結合多模型融合與差異學習,有效提升泛化能力。
- 高效後處理: 透過簡單的閾值調整和加權校正,在推理後進一步優化結果。
- 易於擴展:未來資源充裕時,可替換更大 backbone 或擴展更多模型參與集成。

Thanks for Listening