Multiplication

Multiplication = series of additions:

- 1. align first operand (*multiplicand*) with *i*th digit of second operand (*multiplier*)
- 2. add shifted multiplicand n times to result (n = value of the multiplier digit)
- 3. repeat 1. and 2. for all multiplier digits i
- 4. n-digit \times n-digit = 2n-digit result
- binary system \Rightarrow either 0 or 1
- problem is reduced to add/noadd

Example (decimal):

$$6 \times 13 = 78$$

$$\begin{array}{c}
 0 6 \\
 \times 1 3 \\
 \hline
 1 8 \\
 + 0 6 \\
 \hline
 0 0 7 8
\end{array}$$

Multiplicand
Multiplier
$$03 \times 06$$

 10×06
Product

Example (binary):

 $6 \times 13 = 78$

$$\begin{array}{c} & 0 & 1 & 1 & 0 \\ \times & 1 & 1 & 0 & 1 \\ \hline & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ + & 0 & 1 & 1 & 0 \\ \hline 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \end{array}$$

 $\begin{array}{c} \text{Multiplicand} \\ \text{Multiplier} \\ 0001 \times 0110 \\ 0000 \times 0110 \\ 0100 \times 0110 \\ 1000 \times 0110 \\ \text{(carry)} \\ \end{array}$

Multiplication Circuitry

- 1. Complete logical network:
 - direct and fast implementation
 - $\bullet \;$ large number $(n \! \times \! n)$ of full adders
 - potentially complex circuitry

Ripple-Carry: most intuitive realization

- \Rightarrow rippling per row
- \Rightarrow feed last carry to MSB of next row

Carry-Save: three rows at once

- \Rightarrow create separate Carry & Sum vectors
- \Rightarrow add up later
- ⇒ tree-like structure results

Figures 6.16-6.19 in the book

Multiplication Circuitry

- 2. Sequential shift/add multiplication:
 - involves less circuitry
 - uses single adder unit only
 - result is developed in a shift register
 - requires sequencing control ⇒ slow!
- 3. Software multiplication:
 - no extra circuitry
 - subroutine solving multiplication
 - loop with shift/rotate/add instructions
 - requires several instructions ⇒ *slowest!*

Multiplication Circuitry

Signed multiplicands?

- how to handle in partial products?
 - ⇒ sign extension

Optimization?

- reduce carry-over impacts
- reduce number of partial products
 - ⇒ Booth recoding
 - $\Rightarrow bit\ pairing$

next time...

Multiplication:

 $6 \times 13 = 78$

Sequential addition from row to row:

$\begin{pmatrix} 0 & 1 & 1 & 0 \\ \times & 1 & 1 & 0 & 1 \end{pmatrix}$	Sum:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00000110 00000110 00011110 01001110 Product

Sequential Shift/Add-Method

- Method to avoid adder arrays
- shift register for partial product and multiplier
- with each cycle,
 - 1. partial product increases by one digit
 - 2. multiplier is reduced by one digit
- MSBs of partial product and multiplicand are aligned in each cycle
- not the multiplicand is shifted
 ⇒ partial product and multiplier are shifted
 together

Example 1:

 $6 \times 13 = 78$

Example 2:

 $15 \times 13 = 195$

Sequential Shift/Add-Method

- 1. Load multiplier into *lower* half of shift register (the *upper* half is to be zeroed)
- 2. test LSB of the shift register
- 3. if LSB is set
 - then add multiplicand to the *upper* half of the shift register
 - else add nothing (make sure carrybit is cleared!)
- 4. perform right shift <u>including carry</u> on *full* shift register
- 5. repeat from 2. as long as multiplier part of shift register is not empty
- 6. after termination, the shift register (both halves!) contains the product
- Easy to implement in software