The University of Texas at Austin Optimization Homework 3

Patrick Brown EID: pbb468

1 Problem 1: Computing the Dual of a Linear Program

1.1 Question

Consider the following LP. Compute its dual.

$$\begin{aligned} & \text{min}: & x_1 - x_2 \\ & \text{s.t.}: & 2x_1 + 3x_2 - x_3 + x_4 \leq 0 \\ & & 3x_1 + x_2 + 4x_3 - 2x_4 \geq 3 \\ & & - x_1 - x_2 + 2x_3 + x_4 = 6 \\ & & x_1 \leq 0 \\ & & x_2, x_3 \geq 0. \end{aligned}$$

1.2 Solution

To compute the dual of the given linear program (LP), we need to follow systematic steps to transform the primal LP into its dual form.

1.2.1 Step 1: Convert Primal LP to Standard Form

First, we need to express the primal LP in a standard form where all variables are non-negative, and all constraints are equalities.

- For $x_1 \leq 0$, let $x_1' = -x_1$ so that $x_1' \geq 0$ and $x_1 = -x_1'$
- x_4 is unrestricted, so let $x_4 = x_4' x_4''$ where $x_4', x_4'' \ge 0$
- Convert inequalities to equalities by introducing slack variables $s_1 \geq 0$ and $s_2 \geq 0$

The standard form of the primal LP becomes:

Minimize:
$$-x'_1 - x_2$$

Subject to: $-2x'_1 + 3x_2 - x_3 + (x'_4 - x''_4) + s_1 = 0$
 $-3x'_1 + x_2 + 4x_3 - 2(x'_4 - x''_4) - s_2 = 3$
 $x'_1 - x_2 + 2x_3 + (x'_4 - x''_4) = 6$
 $x'_1, x_2, x_3, x'_4, x''_4, s_1, s_2 \ge 0$

1.2.2 Step 2: Set Up the Dual LP

For each constraint in the primal, we introduce a dual variable:

- y_1 for the first constraint
- y_2 for the second constraint
- y_3 for the third constraint

1.2.3 Step 3: Formulate the Dual Objective Function

The dual objective function is formed from the right-hand side of the primal constraints:

Maximize:
$$0y_1 + 3y_2 + 6y_3$$

1.2.4 Step 4: Formulate the Dual Constraints

For each variable in the primal, we create a constraint in the dual:

$$x'_{1}: -2y_{1} - 3y_{2} + y_{3} \leq -1$$

$$x_{2}: 3y_{1} + y_{2} - y_{3} \leq -1$$

$$x_{3}: -y_{1} + 4y_{2} + 2y_{3} \leq 0$$

$$x'_{4}: y_{1} - 2y_{2} + y_{3} \leq 0$$

$$x''_{4}: -y_{1} + 2y_{2} - y_{3} \leq 0$$

$$s_{1}: y_{1} \leq 0$$

$$s_{2}: -y_{2} \leq 0$$

1.2.5 Step 5: Simplify the Dual LP

Combining the constraints for x'_4 and x''_4 , we get:

$$y_1 - 2y_2 + y_3 = 0$$

The final dual LP is:

Maximize:
$$3y_2 + 6y_3$$

Subject to: $2y_1 + 3y_2 - y_3 \ge 1$
 $3y_1 + y_2 - y_3 \le -1$
 $-y_1 + 4y_2 + 2y_3 \le 0$
 $y_1 - 2y_2 + y_3 = 0$
 $y_1 \le 0, \quad y_2 \ge 0, \quad y_3 \text{ unrestricted}$

This is the dual of the given linear program.

2 Problem 2: Matrix Equivalence Statements

2.1 Question

For a given matrix A, show that the following two statements are equivalent:

- (i) $Ax \ge 0$ and $x \ge 0$ implies that $x_1 = 0$.
- (ii) There exists some vector p > 0 such that $p^{\top}A \leq 0$, and $p^{\top}A_1 < 0$ (strict inequality), where A_1 denotes the first column of A.

2.2 Solution

Proof of Equivalence:

To show that statements (i) and (ii) are equivalent, we will prove two implications:

- 1. (i) \Rightarrow (ii): Assuming (i) holds, we will show that (ii) must also hold.
- 2. (ii) \Rightarrow (i): Assuming (ii) holds, we will demonstrate that (i) must be true.

Proof of (i) \Rightarrow (ii):

Assumption (i): For all $x \ge 0$, if $Ax \ge 0$, then $x_1 = 0$.

Goal: Show that there exists a vector p > 0 such that $p^{\top}A \leq 0$ and $p^{\top}A_1 < 0$.

Proof:

1. **Define the Set** S: Let $S = \{x \in \mathbb{R}^n \mid x \ge 0, x_1 = 1, Ax \ge 0\}.$

From assumption (i), there is no $x \ge 0$ with $x_1 = 1$ satisfying $Ax \ge 0$. Therefore, S is empty.

2. Apply the Separating Hyperplane Theorem: Since S is an empty convex set, there exists a non-zero vector $p \in \mathbb{R}^n$ such that:

$$p^{\top} x \le 0$$
 for all $x \ge 0$, $x_1 = 1$, $Ax \ge 0$.

- 3. Characterize p:
 - Positivity of p: Since $x \ge 0$ and $x_1 = 1$, p must satisfy $p_i \ge 0$ for $i \ge 2$, and $p_1 \le 0$.
 - Non-Zero p: p cannot be the zero vector because it must separate S from the origin.
 - Strict Inequality for p_1 : p_1 must be strictly negative; otherwise, $p^{\top}x$ could be positive for some $x \in S$.
- 4. **Derive** $p^{\top}A \leq 0$: For any $x \geq 0$ with $Ax \geq 0$, we have $p^{\top}x \leq 0$. This implies $p^{\top}A \leq 0$.

4

5. Show $p^{\top}A_1 < 0$: Since $p_1 < 0$ and all other components of p are non-negative, $p^{\top}A_1 < 0$.

Proof of (ii) \Rightarrow (i):

Assumption (ii): There exists p > 0 such that $p^{\top}A \leq 0$ and $p^{\top}A_1 < 0$.

Goal: Show that for all $x \ge 0$, if $Ax \ge 0$, then $x_1 = 0$.

Proof:

Suppose there exists $x \ge 0$ with $x_1 > 0$ and $Ax \ge 0$. Then:

$$p^{\top}Ax \geq 0$$
 (since both p and Ax are non-negative) $p^{\top}Ax = (p^{\top}A)x \leq 0$ (since $p^{\top}A \leq 0$)

This implies $p^{\top}Ax = 0$. However, we can write:

$$p^{\top} A x = p^{\top} A_1 x_1 + p^{\top} A_{2:n} x_{2:n}$$

Since $p^{T}A_{1} < 0$, $x_{1} > 0$, and $p^{T}A_{2:n}x_{2:n} \geq 0$, we have:

$$p^{\mathsf{T}}Ax < 0$$

This contradicts our earlier conclusion that $p^{\top}Ax = 0$. Therefore, our assumption must be false, and x_1 must be zero whenever $x \ge 0$ and $Ax \ge 0$.

Conclusion: We have shown that (i) \Rightarrow (ii) and (ii) \Rightarrow (i). Therefore, statements (i) and (ii) are equivalent.

3 Problem 3: Infeasibility in Linear Systems

3.1 Question

Consider a set of 500 equations in 100 variables:

$$Ax < b$$
,

given by

$$a_i^{\top} x \leq b_i$$
.

3.2 Solution

To prove this, we will use linear programming duality and exploit the properties of the dual problem to demonstrate the existence of such a subset.

Step 1: Formulate an Auxiliary Linear Program

Since the original system $Ax \leq b$ is infeasible, let's consider an auxiliary linear program that seeks the minimal amount by which we need to relax the constraints to make the system feasible.

Primal Problem:

Minimize
$$t$$

Subject to $Ax \leq b + t\mathbf{1}$
 $t \geq 0$
 $x \in \mathbb{R}^n$

Here, t represents the minimal slack we need to add to the right-hand side to achieve feasibility. Since $Ax \leq b$ is infeasible, the optimal value $t^* > 0$.

Step 2: Derive the Dual Problem

To utilize duality, we formulate the dual of the above primal problem.

Dual Problem:

Let $y \in \mathbb{R}^m$ be the dual variables corresponding to the inequalities $Ax \leq b + t\mathbf{1}$.

Maximize
$$b^{\top}y$$

Subject to $A^{\top}y = 0$
 $\mathbf{1}^{\top}y = 1$
 $y \ge 0$

Explanation:

- The constraint $A^{\top}y = 0$ comes from the fact that the variables x in the primal problem are unrestricted in sign.
- The constraint $\mathbf{1}^{\top}y = 1$ corresponds to the slack variable t in the primal problem.
- The dual objective function $b^{\top}y$ reflects the primal objective t.

Step 3: Analyze the Dual Problem

Since the primal problem has an optimal value $t^* > 0$, by strong duality, the dual problem also has an optimal value $b^{\top}y^* = t^* > 0$.

The constraints $A^{\top}y^* = 0$ and $y^* \ge 0$ imply that y^* lies in the null space of A^{\top} and is a non-negative vector. Additionally, $\mathbf{1}^{\top}y^* = 1$ means that the sum of the components of y^* is 1.

Since $A^{\top}y^* = 0$, the positive components of y^* correspond to a set of at most n + 1 = 101 inequalities (due to the rank-nullity theorem and the fact that the null space can be spanned by $m - \text{rank}(A^{\top})$ vectors). Let's denote this set as I.

Assume, for contradiction, that the inequalities corresponding to I are feasible. Then there exists an x such that $a_i^{\top}x \leq b_i$ for all $i \in I$. Multiplying each inequality by $y_i^* > 0$ and summing, we get:

$$\sum_{i \in I} y_i^* a_i^\top x \le \sum_{i \in I} y_i^* b_i$$

But since $A^{\top}y^* = 0$, the left side equals zero, leading to:

$$0 \le b^{\top} y^* = t^* > 0$$

This is a contradiction. Therefore, the subset I of at most 101 inequalities is itself infeasible.

Conclusion: By using duality and complementary slackness, we have shown that there exists a subset of at most 101 inequalities from the original set that is infeasible.