«Подготовка к собеседованиям по ML» мфти

Муниров Султан Савинов Даниил

Зима 2025

Содержание

. Линейные модели	6
Опишите задачу машинного обучения. Дайте определение объекту, целевой переменной, признакам, модели, функционалу ошибки	. 6
Чем отличается функция потерь от функционала ошибки?	. 6
Какие функции потерь используются при решении задачи регрессии?	. 7
Запишите формулу для линейной модели регрессии	. 7
Чем отличаются функционалы MSE и MAE? В каких случаях лучше использовать MSE, а в каких MAE?	. 8
Чем отличается МАЕ от МАРЕ? Что более понятно заказчику продукта?	. 9
Что такое коэффициент детерминации? Как интерпретировать его значения?	. 9
Чем log-cosh лучше функции потерь Хубера? Опишите обе функции потерь	10
Что такое градиент? Какое его свойство используется при минимизации функций?	. 10
Что такое градиентный спуск? Опишите процесс алгоритма.	. 11
Почему не всегда можно использовать полный градиентный спуск? Какие способы оценивания градиента вы знаете? Почему в стохастическом градиентном спуске важно менять длину шага по мере итераций? Какие стратегии изменения шага вы знаете?	. 11
Что такое переобучение? Как можно отследить переобучение модели?	
Как построить итоговую модель после того, как по кросс-валидации подобраны оптимальные гиперпараметры?	. 14
Что такое регуляризация? Для чего используется?	. 14
Опишите, как работают L1- и L2-регуляризаторы	. 15
Почему L1-регуляризация отбирает признаки?	15
Почему плохо накладывать регуляризацию на свободный коэффициент?	16
Что такое ElasticNet?	16
Где используется метод максимального правдоподобия?	. 17
Расскажите про метрики, которые штрафуют за перепрогноз сильнее, чем за недопрогноз и наоборот (pinball loss)	. 17
Расскажите про виды скейлинга. Зачем они нужны?	
Как записываются аналитические решения? Какие у них проблемы?	

2. Классификация	19
Запишите формулу для линейной модели классификации. Что такое отступ?	19
Как обучаются линейные классификаторы и для чего нужны верхние оценки порогофункции потерь?	
Что такое точность, полнота и F-мера? Почему F-мера лучше арифметического средне минимума?	
Для чего нужен порог в линейном классификаторе? Из каких соображений он может выраться?	
Что такое AUC-ROC? Опишите алгоритм построения ROC-кривой	22
Что такое AUC-PRC? Опишите алгоритм построения PR-кривой	22
Что означает "модель оценивает вероятность положительного класса"? Как можно внедр это требование в процедуру обучения модели?	
Запишите функционал логистической регрессии. Как он связан с методом максимума предоподобия?	
Когда используется асcuracy?	24
Как бороться с дисбалансом классов?	25
3. Многоклассовая классификация	26
Как измеряется качество в задаче многоклассовой классификации?	26
Расскажите микро и макро-усреднение?	26
Что такое mean-target encoding?	27
Может ли mean-target encoding привести к переобучению? Как можно этого избежать?	28
Что такое решающее дерево?	28
	29
Опишите жадный алгоритм обучения решающего дерева	•
Опишите жадный алгоритм обучения решающего дерева	20
Почему с помощью бинарного решающего дерева можно достичь нулевой ошибки на	ней
Почему с помощью бинарного решающего дерева можно достичь нулевой ошибки на чающей выборке без повторяющихся объектов?	ней 30
Почему с помощью бинарного решающего дерева можно достичь нулевой ошибки на чающей выборке без повторяющихся объектов?	лней 30 30
Почему с помощью бинарного решающего дерева можно достичь нулевой ошибки на чающей выборке без повторяющихся объектов?	лей 30 31

	В чем заключается метод k-ближайших соседей?	33
	Нужно ли заниматься предобработкой данных в случае дерева?	33
	Как деревья работают с Nan?	34
	Как деревья работают с категориальными значениями?	34
	Как сделать многоклассовую классификацию через логрег?	35
4.	Леса	35
	Приведите пример семейства алгоритмов с низким смещением и большим разбросом	35
	Приведите пример семейства алгоритмов с большим смещением и низким разбросом	36
	Что такое бэггинг? Как его смещение и разброс связаны со смещением и разбросом базовых моделей?	36
	Что такое случайный лес? Чем он отличается от бэггинга над решающими деревьями?	37
	Перечислите основные плюсы решающего леса	37
	Назовите недостатки случайного леса.	38
	Как работает алгоритм градиентного бустинга	38
	Как обычно выглядят базовые модели в бустинге. Опишите почему?	39
	Что такое сдвиги в градиентном бустинге, зачем они нужны?	39
	Расскажите про виды бустинга (CatBoost, LightGBM, XGBoost), их особенности и различия.	40
	Почему дерево строится по MSE (идея, что связано с косинусным расстоянием)?	41
	Как работает OOB (Out-of-Bag)?	41
	Как работает feature importance?	42
5.	Кластеризация	42
	Опишите задачу кластеризации. Приведите примеры.	42
	Метрики качества кластеризации	43
	Расскажите про алгоритмы кластеризации, которые вы знаете (например, k-means, DBSCAN)	43
6.	Computer Vision (CV)	44
	Что такое свёрточные нейронные сети (CNN)?	44
	Как работает свёртка?	45
	Пример свёртки	45

	Как работает архитектура ResNet?	45
	Зачем нужны skip-connections?	45
	Что такое пулинг (Pooling)?	46
	Виды пулинга	46
	Пример пулинга	46
7 .	Bias-Variance Decomposition	46
7.	Bias-Variance Decomposition Математическая формула	
7.	•	47
7.	Математическая формула	47 47

1. Линейные модели

Опишите задачу машинного обучения. Дайте определение объекту, целевой переменной, признакам, модели, функционалу ошибки.

Задача машинного обучения заключается в том, чтобы на основе данных научиться предсказывать или классифицировать значения целевой переменной, используя признаки объектов. Основные компоненты задачи машинного обучения:

- Объект это элемент данных, который описывается набором признаков. Например, объектом может быть клиент, описываемый возрастом, доходом и историей покупок.
- **Целевая переменная** это значение, которое мы хотим предсказать. Например, в задаче классификации это может быть класс объекта (спам/не спам), а в задаче регрессии числовое значение (цена дома).
- Признаки это характеристики объекта, которые используются для предсказания целевой переменной. Например, признаки клиента могут включать возраст, доход и историю покупок.
- Модель это математическая функция, которая на основе признаков объекта предсказывает значение целевой переменной. Например, линейная модель регрессии:

$$y = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b$$
,

где y — предсказанное значение, x_1, x_2, \ldots, x_n — признаки, w_1, w_2, \ldots, w_n — веса модели, b — свободный коэффициент.

• **Функционал ошибки** — это мера, которая оценивает, насколько предсказания модели отличаются от истинных значений целевой переменной. Например, среднеквадратичная ошибка (MSE):

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
,

где y_i — истинное значение, \hat{y}_i — предсказанное значение, N — количество объектов.

Чем отличается функция потерь от функционала ошибки?

Функция потерь — это мера ошибки для одного объекта, которая показывает, насколько предсказание модели отличается от истинного значения. Например, квадратичная функция потерь:

$$L(y, \hat{y}) = (y - \hat{y})^2.$$

Функционал ошибки — это среднее значение функции потерь по всей выборке. Например, среднеквадратичная ошибка (MSE):

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{y}_i).$$

Таким образом, функция потерь применяется к одному объекту, а функционал ошибки— ко всей выборке.

Какие функции потерь используются при решении задачи регрессии?

В задаче регрессии используются следующие функции потерь:

• Среднеквадратичная ошибка (МSE):

$$L(y, \hat{y}) = (y - \hat{y})^2.$$

Она штрафует большие отклонения сильнее, чем маленькие.

• Средняя абсолютная ошибка (МАЕ):

$$L(y, \hat{y}) = |y - \hat{y}|.$$

Она менее чувствительна к выбросам, чем MSE.

• Функция Хубера(HuberLoss):

$$L(y,\hat{y}) = \begin{cases} \frac{1}{2}(y-\hat{y})^2, & \text{если } |y-\hat{y}| \leq \delta, \\ \delta(|y-\hat{y}| - \frac{1}{2}\delta), & \text{иначе.} \end{cases}$$

Она сочетает свойства MSE и MAE, устойчива к выбросам.

• Log-Cosh:

$$L(y, \hat{y}) = \log(\cosh(y - \hat{y})).$$

Она гладкая и менее чувствительна к выбросам, чем MSE.

Запишите формулу для линейной модели регрессии.

Линейная модель регрессии предсказывает значение целевой переменной y на основе признаков x_1, x_2, \ldots, x_n и весов w_1, w_2, \ldots, w_n . Формула линейной модели:

$$y = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b$$
,

где:

- у предсказанное значение,
- x_1, x_2, \ldots, x_n признаки объекта,
- w_1, w_2, \dots, w_n веса модели,
- b свободный коэффициент (смещение).

Чем отличаются функционалы MSE и MAE? В каких случаях лучше использовать MSE, а в каких MAE?

MSE (Mean Squared Error) и MAE (Mean Absolute Error) — это два популярных функционала ошибки, используемых в задачах регрессии. Их основные отличия:

• MSE:

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
.

- Квадратично штрафует большие ошибки, что делает её чувствительной к выбросам.
- Подходит для случаев, когда большие ошибки недопустимы (например, в финансовых прогнозах).
- MAE:

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|.$$

- Линейно штрафует ошибки, что делает её устойчивой к выбросам.
- Подходит для случаев, когда выбросы не должны сильно влиять на модель (например, в задачах с зашумлёнными данными).

Когда использовать МSE:

- Когда большие ошибки критичны.
- Когда данные содержат мало выбросов.

Когда использовать МАЕ:

- Когда данные содержат выбросы.
- Когда важна устойчивость к зашумлённым данным.

Чем отличается МАЕ от МАРЕ? Что более понятно заказчику продукта?

MAE (Mean Absolute Error) и MAPE (Mean Absolute Percentage Error) — это метрики ошибки, используемые в задачах регрессии. Их основные отличия:

• MAE:

MAE =
$$\frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$
.

- Измеряет абсолютную ошибку в единицах целевой переменной.
- Не зависит от масштаба данных.
- MAPE:

MAPE =
$$\frac{1}{N} \sum_{i=1}^{N} \left| \frac{y_i - \hat{y}_i}{y_i} \right| \times 100\%.$$

- Измеряет ошибку в процентах от истинного значения.
- Зависит от масштаба данных: если y_i близко к нулю, MAPE может быть нестабильным.

Что более понятно заказчику:

- МАРЕ более понятен заказчику, так как выражает ошибку в процентах, что интуитивно понятно.
- Однако МАЕ предпочтительнее, если данные содержат нулевые или близкие к нулю значения.

Что такое коэффициент детерминации? Как интерпретировать его значения?

Коэффициент детерминации (R^2) — это метрика, которая показывает, насколько хорошо модель объясняет вариацию целевой переменной. Формула:

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}},$$

где:

- y_i истинное значение,
- \hat{y}_i предсказанное значение,
- ullet $ar{y}$ среднее значение целевой переменной.

Интерпретация:

- $R^2 = 1$: модель идеально объясняет данные.
- $R^2 = 0$: модель не лучше, чем предсказание средним значением.
- \bullet $R^2 < 0$: модель работает хуже, чем предсказание средним значением.

Чем log-cosh лучше функции потерь Хубера? Опишите обе функции потерь.

Log-Cosh и функция **Хубера** — это функции потерь, используемые в задачах регрессии для устойчивости к выбросам.

• Функция Хубера:

$$L(y,\hat{y}) = \begin{cases} \frac{1}{2}(y-\hat{y})^2, & \text{если } |y-\hat{y}| \leq \delta, \\ \delta(|y-\hat{y}| - \frac{1}{2}\delta), & \text{иначе.} \end{cases}$$

- Сочетает свойства MSE и MAE: квадратична для малых ошибок и линейна для больших.
- Требует выбора параметра δ .
- Log-Cosh:

$$L(y, \hat{y}) = \log(\cosh(y - \hat{y})).$$

- Аппроксимирует функцию Хубера, но не требует выбора параметра δ .
- Гладкая и дифференцируемая, что упрощает оптимизацию.
- Менее чувствительна к выбросам, чем MSE.

Преимущества Log-Cosh:

- Не требует настройки параметров.
- Более гладкая, что упрощает градиентные методы оптимизации.
- Устойчива к выбросам.

Что такое градиент? Какое его свойство используется при минимизации функций?

Градиент — это вектор, состоящий из частных производных функции по всем её аргументам. Для функции $f(x_1, x_2, ..., x_n)$ градиент обозначается как:

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right).$$

Свойство градиента, используемое при минимизации:

- Градиент указывает направление наискорейшего роста функции. Следовательно, антиградиент $(-\nabla f)$ указывает направление наискорейшего убывания функции.
- Это свойство используется в градиентных методах оптимизации, таких как градиентный спуск, для нахождения минимума функции.

Что такое градиентный спуск? Опишите процесс алгоритма.

Градиентный спуск — это итерационный метод оптимизации, используемый для минимизации функции. Основная идея заключается в том, чтобы двигаться в направлении, противоположном градиенту функции, чтобы достичь её минимума.

Процесс алгоритма:

- Инициализация: Выбирается начальная точка x_0 и learning rate (скорость обучения) η .
- Итерации: На каждом шаге k обновляется текущая точка:

$$x_{k+1} = x_k - \eta \nabla f(x_k),$$

где $\nabla f(x_k)$ — градиент функции в точке x_k .

• Остановка: Алгоритм останавливается, когда градиент становится достаточно малым или достигнуто максимальное число итераций.

Почему не всегда можно использовать полный градиентный спуск? Какие способы оценивания градиента вы знаете? Почему в стохастическом градиентном спуске важно менять длину шага по мере итераций? Какие стратегии изменения шага вы знаете?

Проблемы полного градиентного спуска:

- Вычислительная сложность: на каждой итерации требуется вычисление градиента по всей выборке, что может быть дорого для больших данных.
- Медленная сходимость: в некоторых случаях градиентный спуск может сходиться медленно, особенно если функция имеет "овраги"или "плато".

Способы оценивания градиента:

- Стохастический градиентный спуск (SGD): Градиент вычисляется на основе одного случайного объекта из выборки.
- Мини-батч градиентный спуск: Градиент вычисляется на основе небольшой подвыборки (мини-батча).

Важность изменения длины шага в SGD:

• Если длина шага слишком большая, алгоритм может "перепрыгнуть" минимум.

- Если длина шага слишком маленькая, сходимость будет медленной.
- Поэтому важно адаптивно изменять длину шага по мере итераций.

Стратегии изменения шага:

- **Постоянный шаг:** η остаётся неизменным на всех итерациях.
- Уменьшение шага: η уменьшается по мере итераций, например, $\eta_k = \frac{\eta_0}{\sqrt{k}}$.
- Адаптивные методы:
 - Adagrad позволяет сбавить темп при быстром спуске и наоборот
 - RMSProp усредняет историю градиентов; лучше чем Adagrad, так как градиент уменьшается не слишком сильно

Улучшения градиентного спуска:

- Метод наискорейшего спуска: выбираем размер шага так, чтобы как можно сильнее уменьшить функцию; $\alpha_k = \arg\min_{\alpha \geq 0} f(x_k \alpha \nabla f(x_k))$
- mini-batch SGD: случайно выбираем подвыборку и считаем на ней градиент; $\nabla f(x) = \frac{1}{B} \sum_{i=1}^{B} \nabla L(x, \xi_i)$
- Метод инерции (Momentum): физическая аналогия с шариком, катящимся с горы; $v_{k+1} := \beta_k v_k \alpha_k \nabla f(x_k), \quad x_{k+1} := x_k + v_{k+1}$
- Nesterov Momentum: считаем градиент не в текущей точке, а в точке, в которую мы бы пошли, следуя импульсу; $v_{k+1} := \beta_k v_k \alpha_k \nabla f(x_k + \beta_k v_k), \quad x_{k+1} := x_k + v_{k+1}$

SoTA градиентные спуски:

- Adam объединяет в себе Nesterov Momentum и RMSProp
- AdamW добавим l_2 -регуляризацию

Что такое переобучение? Как можно отследить переобучение модели?

Переобучение — это ситуация, когда модель слишком хорошо обучается на тренировочных данных, но плохо обобщается на новые данные. Это происходит, когда модель "запоминает" шум и выбросы в данных вместо того, чтобы выучить общие закономерности.

Как отследить переобучение:

- **Разделение данных:** Данные делятся на тренировочную и тестовую выборки. Если модель показывает высокую точность на тренировочных данных, но низкую на тестовых, это признак переобучения.
- **Кросс-валидация:** Используется для оценки обобщающей способности модели. Если модель показывает высокую точность на тренировочных фолдах, но низкую на валидационных, это также признак переобучения.
- Графики обучения: Строятся графики ошибки на тренировочной и валидационной выборках. Если ошибка на тренировочной выборке продолжает уменьшаться, а на валидационной увеличивается, это признак переобучения.

Что такое кросс-валидация? На что влияет количество блоков в кросс-валидации?

Кросс-валидация — это метод оценки обобщающей способности модели, при котором данные разбиваются на несколько частей (блоков), и модель обучается и тестируется на разных комбинациях этих блоков.

Процесс кросс-валидации:

- Данные разбиваются на k блоков (обычно k=5 или 10).
- Модель обучается на k-1 блоках и тестируется на оставшемся блоке.
- Процесс повторяется k раз, каждый раз используя разные блоки для тестирования.
- ullet Итоговая оценка модели это среднее значение метрики качества по всем k итерациям.

Влияние количества блоков:

- Больше блоков (например, k = 10):
 - Оценка модели становится более точной, так как используется больше данных для обучения.
 - Вычислительная сложность увеличивается, так как требуется больше итераций.
- Меньше блоков (например, k = 5):
 - Оценка модели может быть менее точной, так как для обучения используется меньше данных.
 - Вычислительная сложность снижается.

Виды кросс-валидации:

• **k-Fold Кросс-валидация** — описано выше;

- Stratified k-Fold Kpocc-валидация как и прошлая, но в каждом фолде семплы сбалансированы по классам;
- LOO Кросс-валидация обучаемся на всём датасете, один семпл оставляем для теста. Так повторяем для всех семплов (очень времязатратно);
- Time series Кросс-валидация применяется при работе с данными, зависящими от времени. Данный тип кросс-валидации помогает избежать утечки данных из будущего в прошлое, что предоставляет возможность корректной оценки модели на данных с временными метками.

Как построить итоговую модель после того, как по кросс-валидации подобраны оптимальные гиперпараметры?

После подбора оптимальных гиперпараметров с помощью кросс-валидации итоговая модель строится следующим образом:

- Обучение на всех данных: Модель обучается на всём доступном наборе данных (без разделения на блоки) с использованием оптимальных гиперпараметров.
- Итоговая оценка: Если требуется оценить качество модели, можно использовать отдельный тестовый набор данных, который не использовался в процессе кросс-валидации.
- Использование модели: После обучения модель готова для применения на новых данных.

Что такое регуляризация? Для чего используется?

Регуляризация — это метод, который добавляет штраф к функции потерь модели для предотвращения переобучения. Она используется для:

- Уменьшения сложности модели.
- Улучшения обобщающей способности модели.
- Контроля за значениями параметров модели, чтобы они не становились слишком большими.

Пример: В линейной регрессии регуляризация добавляет штраф за большие значения коэффициентов модели.

Опишите, как работают L1- и L2-регуляризаторы.

L1-регуляризация (Lasso):

• Добавляет штраф, пропорциональный сумме абсолютных значений коэффициентов модели:

$$L_{\rm L1} = \lambda \sum_{i=1}^{n} |w_i|,$$

где w_i — коэффициенты модели, λ — параметр регуляризации.

• L1-регуляризация может обнулять некоторые коэффициенты, что делает её полезной для отбора признаков.

L2-регуляризация (Ridge):

• Добавляет штраф, пропорциональный сумме квадратов коэффициентов модели:

$$L_{L2} = \lambda \sum_{i=1}^{n} w_i^2.$$

• L2-регуляризация уменьшает значения коэффициентов, но не обнуляет их, что помогает снизить переобучение.

Различия:

- L1-регуляризация обнуляет некоторые коэффициенты, что полезно для отбора признаков.
- L2-регуляризация уменьшает значения коэффициентов, но не обнуляет их, что делает её более устойчивой к мультиколлинеарности.

Почему L1-регуляризация отбирает признаки?

L1-регуляризация (Lasso) отбирает признаки благодаря своей способности обнулять коэффициенты модели. Это происходит из-за того, что L1-регуляризация добавляет штраф, пропорциональный сумме абсолютных значений коэффициентов:

$$L_{\rm L1} = \lambda \sum_{i=1}^{n} |w_i|,$$

где w_i — коэффициенты модели, а λ — параметр регуляризации.

Почему L1 отбирает признаки:

- L1-регуляризация стремится минимизировать сумму абсолютных значений коэффициентов, что приводит к обнулению некоторых из них.
- Это свойство делает L1 полезной для задач отбора признаков, так как она автоматически исключает неважные признаки, обнуляя их коэффициенты.

Почему плохо накладывать регуляризацию на свободный коэффициент?

Свободный коэффициент (смещение, b) в модели отвечает за смещение предсказаний и не зависит от признаков. Накладывать регуляризацию на свободный коэффициент плохо, потому что:

- Регуляризация штрафует большие значения коэффициентов, чтобы уменьшить сложность модели. Однако свободный коэффициент не влияет на сложность модели, так как он не связан с признаками.
- Если наложить регуляризацию на свободный коэффициент, это может привести к смещению модели и ухудшению её предсказательной способности.

Что такое ElasticNet?

ElasticNet — это метод регуляризации, который сочетает в себе L1-регуляризацию (Lasso) и L2-регуляризацию (Ridge). Он был разработан для устранения некоторых недостатков Lasso и Ridge, особенно в случаях, когда данные имеют:

- мультиколлинеарность (сильную корреляцию между признаками);
- большое количество признаков по сравнению с количеством наблюдений.

Формула ElasticNet:

Функция потерь = Ошибка модели +
$$\lambda_1 \sum_{i=1}^n |w_i| + \lambda_2 \sum_{i=1}^n w_i^2$$

где:

- λ_1 параметр, контролирующий силу L1-регуляризации (Lasso),
- λ_2 параметр, контролирующий силу L2-регуляризации (Ridge),
- \bullet w_i веса модели.

Когда использовать ElasticNet?

- Когда данные содержат много коррелированных признаков.
- Когда нужно одновременно отбирать признаки (как Lasso) и сохранять устойчивость к мультиколлинеарности (как Ridge).
- Когда количество признаков больше количества наблюдений.

Где используется метод максимального правдоподобия?

Метод максимального правдоподобия (Maximum Likelihood Estimation, MLE) используется для оценки параметров модели на основе данных. Основные области применения:

- **Логистическая регрессия:** MLE используется для нахождения коэффициентов модели, которые максимизируют вероятность наблюдаемых данных.
- **Линейная регрессия:** При предположении нормального распределения ошибок MLE эквивалентен методу наименьших квадратов.
- **Генеративные модели:** Например, в задачах классификации с использованием гауссовских распределений.
- Оценка параметров распределений: Например, для оценки параметров нормального, пуассоновского или биномиального распределений.

Расскажите про метрики, которые штрафуют за перепрогноз сильнее, чем за недопрогноз и наоборот (pinball loss).

Pinball Loss — это функция потерь, которая позволяет штрафовать перепрогнозы и недопрогнозы с разной силой. Она используется в задачах квантильной регрессии.

Формула Pinball Loss:

$$L_{\tau}(y,\hat{y}) = \begin{cases} \tau \cdot (y - \hat{y}), & \text{если } y > \hat{y}, \\ (1 - \tau) \cdot (\hat{y} - y), & \text{если } y \leq \hat{y}, \end{cases}$$

где:

- y истинное значение,
- \hat{y} предсказанное значение,
- τ параметр, определяющий, насколько сильно штрафуется перепрогноз по сравнению с недопрогнозом.

Особенности Pinball Loss:

- Если $\tau > 0.5$, перепрогнозы штрафуются сильнее, чем недопрогнозы.
- Если $\tau < 0.5$, недопрогнозы штрафуются сильнее, чем перепрогнозы.
- Если $\tau = 0.5$, Pinball Loss эквивалентна MAE (Mean Absolute Error).

Пример использования:

• В задачах прогнозирования, где перепрогнозы и недопрогнозы имеют разную стоимость (например, в логистике или финансах).

Расскажите про виды скейлинга. Зачем они нужны?

Скейлинг (масштабирование) — это процесс приведения признаков к одинаковому масштабу. Это важно, потому что многие алгоритмы машинного обучения чувствительны к масштабу данных (например, методы, основанные на расстояниях или градиентных спусках).

Основные виды скейлинга:

• Минимаксное масштабирование (Min-Max Scaling):

$$x' = \frac{x - \min(X)}{\max(X) - \min(X)},$$

где x — исходное значение, $\min(X)$ и $\max(X)$ — минимальное и максимальное значения признака. Приводит значения к диапазону [0,1].

• Стандартизация (Z-score Normalization):

$$x' = \frac{x - \mu}{\sigma},$$

где μ — среднее значение признака, σ — стандартное отклонение. Приводит данные к распределению с нулевым средним и единичной дисперсией.

• Масштабирование до единичной длины (Normalization):

$$x' = \frac{x}{\|X\|},$$

где ||X|| — норма вектора признаков. Используется, например, в текстовых данных для приведения векторов к единичной длине.

• Robust Scaling:

$$x' = \frac{x - \text{медиана}(X)}{\text{IQR}(X)},$$

где IQR(X) — межквартильный размах. Устойчив к выбросам.

Зачем нужен скейлинг:

- Улучшает сходимость градиентных методов оптимизации.
- Уравнивает вклад признаков в модели, основанные на расстояниях (например, k-ближайших соседей, SVM).
- Помогает избежать доминирования признаков с большим масштабом.

Как записываются аналитические решения? Какие у них проблемы?

Аналитические решения — это решения, которые можно выразить в виде явной формулы, без необходимости итеративных вычислений. Например, в линейной регрессии аналитическое решение для нахождения коэффициентов модели записывается как:

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y},$$

где:

- \bullet X матрица признаков,
- y вектор целевых значений,
- \bullet w вектор коэффициентов модели.

Проблемы аналитических решений:

- Вычислительная сложность: Для больших матриц X вычисление обратной матрицы $(X^TX)^{-1}$ может быть очень затратным.
- Чувствительность к мультиколлинеарности: Если матрица $\mathbf{X}^T\mathbf{X}$ близка к вырожденной, обратная матрица может быть нестабильной или не существовать.
- Ограниченная применимость: Аналитические решения существуют только для определённых типов моделей (например, линейная регрессия). Для более сложных моделей (например, нейронных сетей) аналитические решения недоступны.
- **Проблемы с большими данными:** Для очень больших наборов данных аналитические решения могут быть неприменимы из-за ограничений памяти и вычислительной мощности.

2. Классификация

Запишите формулу для линейной модели классификации. Что такое отступ?

Линейная модель классификации предсказывает класс объекта на основе линейной комбинации признаков. Формула линейной модели:

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b,$$

где: \mathbf{x} — вектор признаков объекта, \mathbf{w} — вектор весов модели, b — свободный коэффициент (смещение).

Отступ (margin) — это величина, которая показывает, насколько уверенно модель классифицирует объект. Для объекта (\mathbf{x}, y) , где $y \in \{-1, 1\}$, отступ определяется как:

$$margin = y \cdot f(\mathbf{x}).$$

- Если отступ положительный, объект классифицирован правильно.
- Если отступ отрицательный, объект классифицирован неправильно.
- Чем больше отступ, тем увереннее классификация.

Как обучаются линейные классификаторы и для чего нужны верхние оценки пороговой функции потерь?

Обучение линейных классификаторов заключается в нахождении таких весов \mathbf{w} и смещения b, которые минимизируют функцию потерь. Например, в методе опорных векторов (SVM) минимизируется функция потерь с регуляризацией:

$$L(\mathbf{w}, b) = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{N} \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)),$$

где C — параметр регуляризации.

Верхние оценки пороговой функции потерь используются для упрощения оптимизации. Например, вместо минимизации пороговой функции потерь (которая не дифференцируема) минимизируют её верхнюю оценку (например, hinge loss в SVM), что позволяет использовать градиентные методы.

Что такое точность, полнота и F-мера? Почему F-мера лучше арифметического среднего и минимума?

Accuracy — показывает долю правильно предсказанных меток классов относительно общего количества предсказаний.

 $Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$

Обладает следующим недостатком: если один класс значительно преобладает над другим, Accuracy может вводить в заблуждение. Кроме того, Accuracy игнорирует ошибки разного типа (не различает FP и FN).

Точность (Precision) — это доля правильно предсказанных положительных классов среди всех предсказанных положительных классов:

$$Precision = \frac{TP}{TP + FP},$$

где:

- TP (True Positive) количество верно предсказанных положительных классов,
- FP (False Positive) количество неверно предсказанных положительных классов.

Полнота (Recall) — это доля правильно предсказанных положительных классов среди всех истинных положительных классов:

$$Recall = \frac{TP}{TP + FN},$$

где:

• FN (False Negative) — количество неверно предсказанных отрицательных классов.

F-мера (F1-score) — это гармоническое среднее точности и полноты:

$$F_1 = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

Почему F-мера лучше арифметического среднего и минимума:

- F-мера учитывает как точность, так и полноту, что делает её более сбалансированной метрикой.
- Арифметическое среднее может быть высоким даже при низком значении одной из метрик (точности или полноты).
- Минимум не учитывает баланс между точностью и полнотой.

Для чего нужен порог в линейном классификаторе? Из каких соображений он может выбираться?

Порог в линейном классификаторе используется для преобразования непрерывного выхода модели $f(\mathbf{x})$ в дискретные классы. Например, если $f(\mathbf{x}) \geq 0$, объект классифицируется как положительный, иначе — как отрицательный.

Выбор порога:

- По умолчанию: Порог равен 0, если модель откалибрована.
- **На основе метрик:** Порог можно выбрать для максимизации определённой метрики (например, F1-score или точности).
- **На основе бизнес-требований:** Например, если ложные положительные результаты дороже ложных отрицательных, порог можно увеличить, чтобы уменьшить FP.

Что такое AUC-ROC? Опишите алгоритм построения ROC-кривой.

AUC-ROC (Area Under the ROC Curve) — это метрика, которая оценивает качество классификатора по площади под ROC-кривой. ROC-кривая показывает зависимость между долей истинных положительных результатов (True Positive Rate, TPR) и долей ложных положительных результатов (False Positive Rate, FPR) при изменении порога классификации.

Алгоритм построения ROC-кривой:

- Упорядочить объекты по убыванию предсказанных вероятностей положительного класса.
- Для каждого возможного порога:
 - Вычислить TPR и FPR:

$$TPR = \frac{TP}{TP + FN}, \quad FPR = \frac{FP}{FP + TN}.$$

- Добавить точку (FPR, TPR) на график.
- Построить кривую, соединив все точки.
- Вычислить площадь под кривой (AUC-ROC).

Интерпретация AUC-ROC:

- AUC = 1: Идеальный классификатор.
- AUC = 0.5: Случайный классификатор.
- AUC < 0.5: Классификатор работает хуже случайного.

Что такое AUC-PRC? Опишите алгоритм построения PR-кривой.

AUC-PRC (Area Under the Precision-Recall Curve) — это метрика, которая оценивает качество классификатора по площади под PR-кривой. PR-кривая показывает зависимость между точностью (Precision) и полнотой (Recall) при изменении порога классификации.

Алгоритм построения РК-кривой:

- Упорядочить объекты по убыванию предсказанных вероятностей положительного класса.
- Для каждого возможного порога:
 - Вычислить Precision и Recall:

$$\label{eq:Precision} Precision = \frac{TP}{TP + FP}, \quad Recall = \frac{TP}{TP + FN}.$$

- Добавить точку (Recall, Precision) на график.
- Построить кривую, соединив все точки.
- Вычислить площадь под кривой (AUC-PRC).

Интерпретация AUC-PRC:

- AUC-PRC = 1: Идеальный классификатор.
- AUC-PRC = 0: Классификатор не работает.
- AUC-PRC особенно полезна в задачах с дисбалансом классов, так как она учитывает Precision и Recall.

Что означает "модель оценивает вероятность положительного класса"? Как можно внедрить это требование в процедуру обучения модели?

"Модель оценивает вероятность положительного класса" означает, что модель предсказывает не только класс объекта, но и вероятность принадлежности к положительному классу. Например, в задаче бинарной классификации модель может предсказать вероятность $P(y=1|\mathbf{x})$.

Как внедрить это требование:

- Использование вероятностных моделей: Например, логистическая регрессия или метод опорных векторов с калибровкой вероятностей.
- **Калибровка вероятностей:** Если модель не возвращает вероятности, можно использовать методы калибровки, такие как:
 - Platt Scaling: Использует логистическую регрессию для калибровки выходов модели.
 - Isotonic Regression: Использует непараметрическую регрессию для калибровки.
- Обучение с учётом вероятностей: Например, в логистической регрессии минимизируется функция потерь, которая учитывает вероятности:

$$L(\mathbf{w}, b) = -\sum_{i=1}^{N} [y_i \log(p_i) + (1 - y_i) \log(1 - p_i)],$$

где
$$p_i = P(y_i = 1 | \mathbf{x}_i)$$
.

Запишите функционал логистической регрессии. Как он связан с методом максимума правдоподобия?

Функционал логистической регрессии — это функция потерь, которая минимизируется в процессе обучения модели. Для бинарной классификации она записывается как:

$$L(\mathbf{w}, b) = -\sum_{i=1}^{N} [y_i \log(p_i) + (1 - y_i) \log(1 - p_i)],$$

где:

- y_i истинный класс объекта (0 или 1),
- $p_i = \sigma(\mathbf{w}^T\mathbf{x}_i + b)$ предсказанная вероятность положительного класса,
- $\sigma(z) = \frac{1}{1+e^{-z}}$ сигмоидная функция.

Связь с методом максимума правдоподобия:

- Логистическая регрессия максимизирует правдоподобие данных при заданных параметрах модели.
- Функция потерь $L(\mathbf{w}, b)$ это отрицательное логарифмическое правдоподобие (Negative Log-Likelihood, NLL).
- Минимизация $L(\mathbf{w}, b)$ эквивалентна максимизации правдоподобия.

Когда используется ассигасу?

Ассигасу (**точность**) — это метрика, которая показывает долю правильно классифицированных объектов среди всех объектов:

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN},$$

где:

- TP (True Positive) количество верно предсказанных положительных классов,
- TN (True Negative) количество верно предсказанных отрицательных классов,
- FP (False Positive) количество неверно предсказанных положительных классов,
- FN (False Negative) количество неверно предсказанных отрицательных классов.

Когда использовать accuracy:

- Когда классы сбалансированы (количество объектов в каждом классе примерно одинаково).
- Когда ложные положительные и ложные отрицательные ошибки имеют одинаковую важность.
- В задачах, где важно общее количество правильных предсказаний.

Ограничения ассигасу:

• В задачах с дисбалансом классов ассигасу может быть misleading (например, если 95% объектов принадлежат к одному классу, ассигасу будет высокой даже при плохой классификации меньшего класса).

Как бороться с дисбалансом классов?

Дисбаланс классов — это ситуация, когда один класс значительно преобладает над другим. Это может привести к тому, что модель будет плохо предсказывать меньший класс. Методы борьбы с дисбалансом классов:

- Методы на уровне данных:
 - Увеличение меньшего класса (oversampling): Например, с помощью SMOTE (Synthetic Minority Over-sampling Technique), который создаёт синтетические объекты меньшего класса.
 - Уменьшение большего класса (undersampling): Удаление случайных объектов из большего класса.
- Методы на уровне алгоритма:
 - **Взвешивание классов:** Присвоение больших штрафов за ошибки на объектах меньшего класса.
 - **Использование метрик, устойчивых к дисбалансу:** Например, F1-score, AUC-PRC.
- Ансамблевые методы:
 - **Использование ансамблей:** Например, Random Forest или Gradient Boosting, которые могут быть настроены для работы с дисбалансом.
- Генерация синтетических данных:
 - SMOTE: Создание синтетических объектов меньшего класса на основе существующих.

• Использование порогов:

— **Настройка порога классификации:** Изменение порога для увеличения Recall или Precision в зависимости от задачи.

3. Многоклассовая классификация

Как измеряется качество в задаче многоклассовой классификации?

Качество в задаче многоклассовой классификации измеряется с помощью различных метрик, которые учитывают правильность предсказаний для каждого класса. Основные метрики:

• Accuracy (точность): Доля правильно классифицированных объектов среди всех объектов:

$$\text{Accuracy} = \frac{\sum_{i=1}^{C} \text{TP}_i}{\sum_{i=1}^{C} (\text{TP}_i + \text{FP}_i)},$$

где TP_i — количество верно предсказанных объектов для класса i, FP_i — количество неверно предсказанных объектов для класса i.

- Precision, Recall, F1-score: Эти метрики могут быть рассчитаны для каждого класса отдельно, а затем усреднены (микро- или макро-усреднение).
- Confusion Matrix: Матрица, которая показывает, сколько объектов каждого класса было классифицировано правильно и неправильно.
- AUC-ROC: Может быть рассчитана для каждого класса отдельно (one-vs-rest) или усреднена.

Расскажите микро и макро-усреднение?

Микро-усреднение (Micro-averaging):

- Все классы рассматриваются как один большой класс.
- Метрики (например, Precision, Recall, F1-score) вычисляются на основе общего количества TP, FP, FN для всех классов.
- Формула для микро-усреднённого Precision:

$$Micro-Precision = \frac{\sum_{i=1}^{C} TP_i}{\sum_{i=1}^{C} (TP_i + FP_i)}.$$

• Подходит для случаев, когда важно учитывать вклад каждого объекта, независимо от класса.

Макро-усреднение (Macro-averaging):

- Метрики вычисляются для каждого класса отдельно, а затем усредняются.
- Формула для макро-усреднённого Precision:

Macro-Precision =
$$\frac{1}{C} \sum_{i=1}^{C} \frac{\text{TP}_i}{\text{TP}_i + \text{FP}_i}.$$

• Подходит для случаев, когда все классы равнозначны, и важно учитывать качество классификации для каждого класса.

Различия:

- Микро-усреднение больше зависит от крупных классов, так как они вносят больший вклад в общие TP, FP, FN.
- Макро-усреднение даёт равный вес каждому классу, независимо от его размера.

Что такое mean-target encoding?

Mean-target encoding — это метод кодирования категориальных признаков, при котором каждое значение категории заменяется средним значением целевой переменной для этой категории. Например, для бинарной классификации:

Encoded value =
$$\frac{\sum_{i=1}^{N} y_i \cdot \mathbb{I}(x_i = \text{category})}{\sum_{i=1}^{N} \mathbb{I}(x_i = \text{category})},$$

где:

- y_i целевая переменная для объекта i,
- x_i значение категориального признака для объекта i,
- $\mathbb{I}(\cdot)$ индикаторная функция, равная 1, если условие выполняется, и 0 иначе.

Преимущества:

- Учитывает взаимосвязь между категориальным признаком и целевой переменной.
- Может улучшить качество модели, особенно для деревьев и ансамблей.

Может ли mean-target encoding привести к переобучению? Как можно этого избежать?

Да, mean-target encoding может привести к переобучению, так как при кодировании используется информация о целевой переменной, что может "просачиваться" в обучающие данные.

Как избежать переобучения:

- Использование кросс-валидации: Разделить данные на фолды, и для каждого фолда вычислять mean-target encoding только на основе данных из других фолдов.
- Добавление шума: Добавить небольшой случайный шум к закодированным значениям, чтобы уменьшить их зависимость от целевой переменной.
- **Регуляризация:** Использовать сглаживание (smoothing), например, добавляя глобальное среднее значение целевой переменной:

Encoded value =
$$\frac{\sum_{i=1}^{N} y_i \cdot \mathbb{I}(x_i = \text{category}) + \alpha \cdot \text{global mean}}{\sum_{i=1}^{N} \mathbb{I}(x_i = \text{category}) + \alpha},$$

где α — параметр сглаживания.

Как можно отбирать признаки для линейной модели?

Отбор признаков для линейной модели может быть выполнен с помощью следующих методов:

- **Фильтры:** Использование статистических метрик (например, корреляция с целевой переменной, взаимная информация) для выбора наиболее информативных признаков.
- Обёртки (Wrapper methods): Поиск оптимального набора признаков с помощью алгоритмов, таких как Forward Selection, Backward Elimination или Recursive Feature Elimination (RFE).
- Встроенные методы (Embedded methods): Использование моделей, которые автоматически отбирают признаки в процессе обучения, например, L1-регуляризация (Lasso), которая обнуляет неважные коэффициенты.
- Анализ важности признаков: Использование методов, таких как SHAP или Feature Importance из ансамблевых моделей (например, Random Forest), для оценки вклада каждого признака.

Что такое решающее дерево?

Решающее дерево — это модель машинного обучения, которая строит иерархическую структуру решений, разделяя данные на подмножества на основе значений признаков. Каждый внутренний

узел дерева представляет собой условие (предикат) на основе одного из признаков, а каждый лист — предсказание (класс или значение).

Основные компоненты:

- Внутренние узлы: Условия на основе признаков (например, $x_1 > 5$).
- Листья: Конечные узлы, содержащие предсказания.
- Ветви: Результаты выполнения условий (например, "да"или "нет").

Опишите жадный алгоритм обучения решающего дерева.

Жадный алгоритм обучения решающего дерева строит дерево, на каждом шаге выбирая наилучшее разбиение данных на основе критерия качества (например, критерия хаотичности). Процесс:

- Выбор предиката: Для каждого признака и каждого возможного значения предиката вычисляется качество разбиения (например, уменьшение энтропии или критерия Джини).
- Разбиение данных: Данные разделяются на подмножества в соответствии с выбранным предикатом.
- **Рекурсия:** Процесс повторяется для каждого подмножества, пока не будет выполнено условие остановки (например, достижение максимальной глубины дерева или минимального количества объектов в листе).

Почему с помощью бинарного решающего дерева можно достичь нулевой ошибки на обучающей выборке без повторяющихся объектов?

Бинарное решающее дерево может достичь нулевой ошибки на обучающей выборке без повторяющихся объектов, потому что:

- Каждый объект обучающей выборки уникален и может быть отделён от других объектов с помощью последовательных разбиений.
- Дерево может продолжать разбивать данные до тех пор, пока каждый объект не окажется в своём собственном листе.
- Это приводит к тому, что дерево "запоминает" обучающие данные, что может привести к переобучению.

Что такое критерий хаотичности? Как он используется для выбора предиката во внутренней вершине решающего дерева?

Критерий хаотичности — это мера, которая оценивает, насколько хорошо разбиение данных разделяет классы или уменьшает неопределённость. Основные критерии:

• Энтропия: Мера неопределённости распределения классов:

Entropy(S) =
$$-\sum_{i=1}^{C} p_i \log_2(p_i)$$
,

где p_i — доля объектов класса i в множестве S.

• Критерий Джини: Мера неоднородности:

$$Gini(S) = 1 - \sum_{i=1}^{C} p_i^2.$$

Использование для выбора предиката:

• Для каждого возможного предиката вычисляется уменьшение хаотичности (Information Gain):

Information Gain = Entropy(S) -
$$\sum_{v \in \text{values}} \frac{|S_v|}{|S|} \text{Entropy}(S_v)$$
,

где S_v — подмножество данных, для которых предикат принимает значение v.

• Выбирается предикат, который максимизирует Information Gain.

В чем отличия энтропийного критерия и критерия Джини?

Энтропийный критерий и критерий Джини используются для оценки качества разбиения в решающих деревьях. Их основные отличия:

- Энтропия:
 - Основан на теории информации.
 - Вычисляется как Entropy(S) = $-\sum_{i=1}^{C} p_i \log_2(p_i)$.
 - Более чувствителен к изменениям в распределении классов.
- Критерий Джини:
 - Основан на мере неоднородности.

- Вычисляется как $\mathrm{Gini}(S) = 1 \sum_{i=1}^{C} p_i^2$.
- Менее чувствителен к изменениям в распределении классов.
- Вычислительно проще, чем энтропия.

Выбор критерия:

- Оба критерия обычно дают схожие результаты.
- Критерий Джини чаще используется на практике из-за его вычислительной простоты.

Как связаны линейные модели и решающие деревья?

Линейные модели и решающие деревья— это два разных подхода к моделированию данных, но они могут быть связаны следующим образом:

- **Линейные модели:** Предполагают, что зависимость между признаками и целевой переменной линейна. Они хорошо работают, когда данные имеют линейную структуру.
- Решающие деревья: Могут моделировать нелинейные зависимости, разделяя данные на подмножества на основе значений признаков.
- **Комбинация:** Линейные модели и решающие деревья могут быть объединены в ансамблевые методы, такие как Gradient Boosting, где деревья используются для аппроксимации остатков линейной модели.
- Интерпретируемость: Линейные модели легко интерпретируемы, но могут быть ограничены в сложных данных. Решающие деревья менее интерпретируемы, но могут моделировать сложные зависимости.

Как посчитать хаотичность вершины в задаче классификации? A в задаче регрессии?

Хаотичность вершины — это мера неопределённости или неоднородности данных в вершине дерева. Она используется для выбора наилучшего разбиения.

В задаче классификации:

• Энтропия:

Entropy(S) =
$$-\sum_{i=1}^{C} p_i \log_2(p_i)$$
,

где p_i — доля объектов класса i в множестве S.

• Критерий Джини:

$$Gini(S) = 1 - \sum_{i=1}^{C} p_i^2.$$

В задаче регрессии:

• Дисперсия: Хаотичность вершины измеряется как дисперсия значений целевой переменной:

Variance(S) =
$$\frac{1}{|S|} \sum_{i=1}^{|S|} (y_i - \bar{y})^2$$
,

где y_i — значение целевой переменной для объекта i, \bar{y} — среднее значение целевой переменной в множестве S.

В чем заключается метод опорных векторов?

Метод опорных векторов (SVM) — это алгоритм классификации и регрессии, который находит гиперплоскость, максимально разделяющую классы в пространстве признаков.

Основные идеи:

- **Гиперплоскость:** SVM ищет гиперплоскость, которая максимизирует зазор (margin) между классами.
- Опорные векторы: Это объекты, которые находятся ближе всего к гиперплоскости и определяют её положение.
- Ядра (Kernels): SVM может использовать ядра для преобразования данных в пространство более высокой размерности, где классы могут быть линейно разделимыми.

Формула для линейного SVM:

$$\min_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{N} \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)),$$

где:

- w вектор весов,
- b смещение,
- C параметр регуляризации,
- y_i метка класса (± 1) ,
- \mathbf{x}_i вектор признаков.

В чем заключается метод к-ближайших соседей?

Метод k-ближайших соседей (k-NN) — это алгоритм классификации и регрессии, который предсказывает значение целевой переменной на основе значений ближайших объектов в пространстве признаков.

Основные идеи:

- **Расстояние:** Для каждого объекта вычисляется расстояние до всех объектов в обучающей выборке (например, евклидово расстояние).
- Выбор ${\bf k}$ соседей: Выбираются k объектов с наименьшим расстоянием.

• Предсказание:

- В задаче классификации: Предсказанный класс это наиболее часто встречающийся класс среди k соседей.
- В задаче регрессии: Предсказанное значение это среднее значение целевой переменной среди k соседей.

Параметры:

- к: Количество ближайших соседей.
- Метрика расстояния: Например, евклидово расстояние, манхэттенское расстояние.

Преимущества:

- Простота реализации.
- Не требует обучения (ленивый алгоритм).

Недостатки:

- Вычислительная сложность на больших данных.
- Чувствительность к масштабу данных и выбросам.

Нужно ли заниматься предобработкой данных в случае дерева?

Решающие деревья менее чувствительны к предобработке данных по сравнению с другими моделями, но некоторые шаги всё же могут быть полезны:

- Масштабирование: Деревья не требуют масштабирования признаков, так как они работают с пороговыми значениями.
- Обработка пропущенных значений: Деревья могут работать с пропущенными значениями (NaN), но их обработка может улучшить качество модели.
- **Кодирование категориальных признаков:** Деревья могут работать с категориальными признаками, но их кодирование (например, One-Hot Encoding) может упростить интерпретацию.
- Удаление выбросов: Деревья устойчивы к выбросам, но их удаление может улучшить качество модели.

Как деревья работают с Nan?

Решающие деревья могут работать с пропущенными значениями (NaN) следующим образом:

- **Разделение на подмножества:** Если значение признака отсутствует, дерево может разделить объекты на два подмножества: одно для объектов с известным значением, другое для объектов с NaN.
- Использование суррогатных разбиений: Если основной признак для разбиения содержит NaN, дерево может использовать другой признак (суррогатный) для принятия решения.
- Пропуск объектов: В некоторых реализациях объекты с NaN могут быть пропущены при построении дерева.

Как деревья работают с категориальными значениями?

Решающие деревья могут работать с категориальными значениями следующим образом:

- Бинарное разбиение: Для каждого категориального признака дерево может разделить объекты на две группы: одна группа содержит объекты с определённым значением категории, другая все остальные.
- Многозначное разбиение: Некоторые реализации деревьев поддерживают многозначное разбиение, где каждая категория становится отдельной ветвью.
- **Кодирование:** Категориальные признаки могут быть закодированы (например, One-Hot Encoding), чтобы упростить процесс разбиения.

Как сделать многоклассовую классификацию через логрег?

Логистическая регрессия (Logistic Regression, LogReg) изначально предназначена для бинарной классификации, но её можно расширить для многоклассовой классификации с помощью следующих подходов:

• One-vs-Rest (OvR):

- Для каждого класса строится отдельная бинарная модель, которая предсказывает вероятность принадлежности к этому классу.
- Объект классифицируется в класс с наибольшей предсказанной вероятностью.

• One-vs-One (OvO):

- Для каждой пары классов строится отдельная бинарная модель.
- Объект классифицируется в класс, который выигрывает большинство "голосов" от всех моделей.

• Multinomial Logistic Regression:

- Используется одна модель, которая предскажает вероятности для всех классов одновременно.
- Функция потерь это кросс-энтропия для многоклассовой классификации:

$$L(\mathbf{W}) = -\sum_{i=1}^{N} \sum_{j=1}^{C} y_{ij} \log(p_{ij}),$$

где y_{ij} — индикатор принадлежности объекта i к классу j, p_{ij} — предсказанная вероятность.

4. Леса

Приведите пример семейства алгоритмов с низким смещением и большим разбросом.

Алгоритмы с низким смещением и большим разбросом — это алгоритмы, которые хорошо обучаются на тренировочных данных, но могут плохо обобщаться на новые данные. Примеры:

• Решающие деревья: Могут достигать нулевой ошибки на обучающей выборке, но сильно зависят от конкретных данных, что приводит к высокому разбросу.

- Метод k-ближайших соседей (k-NN) с малым k: При малом k модель хорошо подстраивается под данные, но чувствительна к шуму и выбросам.
- **Нейронные сети с большим количеством параметров:** Могут переобучаться на тренировочных данных, что приводит к высокому разбросу.

Приведите пример семейства алгоритмов с большим смещением и низким разбросом.

Алгоритмы с большим смещением и низким разбросом — это алгоритмы, которые плохо обучаются на тренировочных данных, но стабильно работают на новых данных. Примеры:

- **Линейная регрессия:** Предполагает линейную зависимость между признаками и целевой переменной, что может быть слишком упрощённым для сложных данных.
- **Наивный байесовский классификатор:** Делает сильные предположения о независимости признаков, что может привести к высокому смещению.
- Метод k-ближайших соседей (k-NN) с большим k: При большом k модель становится менее чувствительной к шуму, но может пропускать сложные зависимости в данных.

Что такое бэггинг? Как его смещение и разброс связаны со смещением и разбросом базовых моделей?

Бэггинг (Bootstrap Aggregating) — это метод ансамблевого обучения, который объединяет предсказания нескольких моделей, обученных на разных подвыборках данных. Основные шаги:

- **Создание подвыборок:** Из исходной выборки создаются несколько подвыборок с повторениями (bootstrap samples).
- Обучение моделей: На каждой подвыборке обучается отдельная модель.
- **Агрегация:** Предсказания моделей объединяются (например, усредняются для регрессии или голосованием для классификации).

Смещение и разброс бэггинга:

- Смещение: Бэггинг сохраняет смещение базовых моделей. Если базовые модели имеют высокое смещение, бэггинг также будет иметь высокое смещение.
- **Разброс:** Бэггинг уменьшает разброс, так как усреднение предсказаний снижает влияние случайных ошибок отдельных моделей.

Что такое случайный лес? Чем он отличается от бэггинга над решающими деревьями?

Случайный лес (Random Forest) — это метод ансамблевого обучения, который объединяет предсказания множества решающих деревьев, обученных на разных подвыборках данных и с разными подмножествами признаков.

Основные отличия от бэггинга над решающими деревьями:

- Случайный выбор признаков: В случайном лесе на каждом шаге построения дерева выбирается случайное подмножество признаков для разбиения. Это уменьшает корреляцию между деревьями и улучшает обобщающую способность.
- Разнообразие моделей: Случайный лес создаёт более разнообразные деревья, чем бэггинг, что помогает снизить переобучение.
- Уменьшение разброса: Случайный лес дополнительно уменьшает разброс по сравнению с бэггингом, так как деревья менее коррелированы.

Преимущества случайного леса:

- Устойчивость к переобучению.
- Возможность работы с пропущенными значениями и категориальными признаками.
- Высокая интерпретируемость (например, через важность признаков).

Перечислите основные плюсы решающего леса.

Решающий лес (Random Forest) имеет следующие преимущества:

- Устойчивость к переобучению: За счёт усреднения предсказаний множества деревьев, случайный лес менее склонен к переобучению, чем отдельные деревья.
- Высокая точность: Случайный лес часто показывает высокую точность на различных задачах классификации и регрессии.
- **Работа с пропущенными значениями:** Случайный лес может обрабатывать пропущенные значения без необходимости их предварительной обработки.
- Работа с категориальными признаками: Случайный лес может работать с категориальными признаками без необходимости их кодирования.
- **Интерпретируемость:** Случайный лес позволяет оценивать важность признаков, что помогает в анализе данных.

• Параллелизация: Обучение деревьев в случайном лесе может быть легко распараллелено, что ускоряет процесс обучения.

Назовите недостатки случайного леса.

Случайный лес (Random Forest) имеет следующие недостатки:

- Вычислительная сложность: Обучение большого количества деревьев может быть computationally expensive, особенно на больших данных.
- Память: Случайный лес требует больше памяти для хранения множества деревьев.
- **Меньшая интерпретируемость:** По сравнению с одним деревом, случайный лес сложнее интерпретировать из-за большого количества деревьев.
- **Чувствительность к шуму:** Хотя случайный лес устойчив к переобучению, он может быть чувствителен к шуму в данных, особенно если деревья глубокие.

Как работает алгоритм градиентного бустинга.

Градиентный бустинг (Gradient Boosting) — это метод ансамблевого обучения, который строит последовательность моделей, каждая из которых корректирует ошибки предыдущих моделей. Основные шаги:

- **Инициализация:** Начальное предсказание это константа (например, среднее значение целевой переменной для регрессии).
- Итерации: На каждой итерации:
 - Вычисляются остатки (разница между истинными значениями и предсказаниями текущей модели).
 - Обучается новая модель (обычно решающее дерево) на этих остатках.
 - Предсказания новой модели добавляются к текущей модели с некоторым коэффициентом обучения (learning rate).
- Остановка: Процесс повторяется до достижения заданного числа итераций или пока ошибка не перестанет уменьшаться.

Как обычно выглядят базовые модели в бустинге. Опишите почему?

Базовые модели в бустинге обычно представляют собой слабые модели, такие как решающие деревья небольшой глубины (например, деревья с 3–6 уровнями). Причины:

- Слабость моделей: Бустинг предполагает, что каждая модель исправляет ошибки предыдущих моделей. Слабые модели (например, мелкие деревья) не переобучаются и вносят небольшие корректировки.
- Устойчивость к переобучению: Мелкие деревья менее склонны к переобучению, что помогает улучшить обобщающую способность ансамбля.
- Вычислительная эффективность: Мелкие деревья быстрее обучаются и требуют меньше памяти.

Что такое сдвиги в градиентном бустинге, зачем они нужны?

Сдвиги (Shifts) в градиентном бустинге — это изменения в распределении данных, которые могут возникать между обучающей и тестовой выборками или между разными итерациями бустинга. Они могут быть вызваны, например, изменением статистических свойств данных или наличием выбросов.

Зачем нужны сдвиги:

- Устойчивость к изменениям: Градиентный бустинг должен быть устойчив к сдвигам в данных, чтобы сохранять высокую точность на новых данных.
- **Коррекция ошибок:** Сдвиги могут привести к ошибкам в предсказаниях, и бустинг должен корректировать эти ошибки на последующих итерациях.
- Обобщающая способность: Учёт сдвигов помогает улучшить обобщающую способность модели, особенно в реальных задачах, где данные могут меняться со временем.

Как бороться с сдвигами:

- Использование регуляризации (например, L1 или L2).
- Ограничение глубины деревьев.
- Использование методов, таких как AdaBoost, которые адаптивно изменяют веса объектов в зависимости от ощибок.

Как обучается очередной базовый алгоритм в градиентном бустинге?

Очередной базовый алгоритм в градиентном бустинге обучается на остатках (ошибках) предыдущих моделей. Процесс:

• **Вычисление остатков**: На каждом шаге вычисляются остатки (разница между истинными значениями и предсказаниями текущей модели):

$$r_i = y_i - F_{m-1}(x_i),$$

где y_i — истинное значение, $F_{m-1}(x_i)$ — предсказание текущей модели.

- Обучение новой модели: Новая модель $h_m(x)$ обучается на остатках r_i . Обычно это решающее дерево.
- Обновление модели: Предсказания новой модели добавляются к текущей модели с коэффициентом обучения η :

$$F_m(x) = F_{m-1}(x) + \eta \cdot h_m(x).$$

Расскажите про виды бустинга (CatBoost, LightGBM, XGBoost), их особенности и различия.

Основные виды бустинга:

- XGBoost (eXtreme Gradient Boosting):
 - Высокая производительность и точность.
 - Поддержка параллельных вычислений.
 - Встроенная регуляризация для предотвращения переобучения.
 - Поддержка различных функций потерь и метрик.
- LightGBM (Light Gradient Boosting Machine):
 - Оптимизирован для работы с большими данными.
 - Использует Gradient-based One-Side Sampling (GOSS) и Exclusive Feature Bundling (EFB) для ускорения обучения.
 - Поддержка категориальных признаков без предварительного кодирования.
- CatBoost (Categorical Boosting):
 - Специализирован на работе с категориальными признаками.
 - Использует Ordered Boosting для борьбы с переобучением.
 - Автоматически обрабатывает категориальные признаки и пропущенные значения.

– Высокая точность и устойчивость к переобучению.

Основные различия:

- Обработка категориальных признаков: CatBoost лучше всего подходит для задач с большим количеством категориальных признаков.
- Скорость обучения: LightGBM обычно быстрее, чем XGBoost и CatBoost, особенно на больших данных.
- **Точность:** XGBoost и CatBoost часто показывают более высокую точность, но требуют больше времени на обучение.

Почему дерево строится по MSE (идея, что связано с косинусным расстоянием)?

Дерево строится по MSE (Mean Squared Error) в задачах регрессии, потому что:

- MSE минимизирует квадратичную ошибку: Это соответствует минимизации евклидова расстояния между предсказанными и истинными значениями.
- **Связь с косинусным расстоянием:** Минимизация MSE эквивалентна минимизации угла между вектором предсказаний и вектором истинных значений в пространстве признаков, что связано с косинусным расстоянием.
- **Простота вычислений:** MSE легко дифференцировать, что делает его удобным для градиентных методов оптимизации.

Как работает ООВ (Out-of-Bag)?

OOB (Out-of-Bag) — это метод оценки качества модели в случайном лесе без использования отдельной тестовой выборки. Процесс:

- **Создание подвыборок:** Каждое дерево в случайном лесе обучается на bootstrap-подвыборке данных.
- **ООВ-объекты:** Объекты, не вошедшие в bootstrap-подвыборку для конкретного дерева, называются ООВ-объектами.
- Оценка качества: Для каждого ООВ-объекта используется предсказание деревьев, которые его не видели. Ошибка на ООВ-объектах даёт оценку качества модели.

Преимущества ООВ:

- Не требует отдельной тестовой выборки.
- Даёт несмещённую оценку качества модели.

Как работает feature importance?

Feature importance (важность признаков) — это метод оценки вклада каждого признака в предсказания модели. Основные подходы:

- На основе уменьшения ошибки: Для каждого признака измеряется, насколько уменьшается ошибка (например, MSE или Gini) при его использовании для разбиения в дереве. Признаки, которые чаще используются для разбиения и сильнее уменьшают ошибку, считаются более важными.
- **На основе перестановок:** Для каждого признака измеряется, насколько ухудшается качество модели, если значения этого признака случайно переставить. Чем сильнее ухудшение, тем важнее признак.
- **На основе весов:** В линейных моделях важность признака может быть оценена по абсолютному значению его коэффициента.

Пример для случайного леса:

- Для каждого дерева вычисляется важность признаков на основе уменьшения ошибки.
- Итоговая важность признака это среднее значение по всем деревьям.

5. Кластеризация

Опишите задачу кластеризации. Приведите примеры.

Задача кластеризации — это задача разбиения множества объектов на группы (кластеры) таким образом, чтобы объекты внутри одного кластера были похожи друг на друга, а объекты из разных кластеров — отличались. Кластеризация является методом обучения без учителя (unsupervised learning), так как не требует размеченных данных.

Примеры задач кластеризации:

- Сегментация клиентов: Разделение клиентов на группы на основе их поведения, предпочтений или демографических данных.
- **Анализ изображений:** Группировка изображений по схожим характеристикам (например, по цвету или текстуре).

- Биоинформатика: Кластеризация генов или белков на основе их функций или структуры.
- Обнаружение аномалий: Выделение объектов, которые не попадают ни в один из кластеров, как потенциальных аномалий.

Метрики качества кластеризации.

Метрики качества кластеризации используются для оценки того, насколько хорошо алгоритм кластеризации разделил данные на кластеры. Основные метрики:

• Индекс силуэта (Silhouette Score): Оценивает, насколько объект похож на свой кластер по сравнению с другими кластерами. Значения варьируются от -1 до 1, где 1 — идеальная кластеризация.

$$s(i) = \frac{b(i) - a(i)}{\max(a(i), b(i))},$$

где a(i) — среднее расстояние от объекта i до других объектов в том же кластере, b(i) — среднее расстояние до объектов в ближайшем другом кластере.

• Индекс Дэвиса-Боулдина (Davies-Bouldin Index): Оценивает компактность и разделимость кластеров. Чем меньше значение, тем лучше кластеризация.

$$DB = \frac{1}{k} \sum_{i=1}^{k} \max_{j \neq i} \left(\frac{\sigma_i + \sigma_j}{d(c_i, c_j)} \right),$$

где σ_i — среднее расстояние внутри кластера $i, d(c_i, c_j)$ — расстояние между центрами кластеров i и j.

• Индекс Калински-Харабаса (Calinski-Harabasz Index): Оценивает отношение дисперсии между кластерами к дисперсии внутри кластеров. Чем выше значение, тем лучше кластеризация.

$$CH = \frac{\text{SSB}}{\text{SSW}} \cdot \frac{N - k}{k - 1},$$

где SSB — сумма квадратов между кластерами, SSW — сумма квадратов внутри кластеров, N — количество объектов, k — количество кластеров.

Расскажите про алгоритмы кластеризации, которые вы знаете (например, k-means, DBSCAN...).

Основные алгоритмы кластеризации:

- K-means:
 - Разделяет данные на k кластеров, минимизируя сумму квадратов расстояний от объектов до центроидов кластеров.

- Требует задания числа кластеров k.
- Чувствителен к начальным условиям и выбросам.

• DBSCAN (Density-Based Spatial Clustering of Applications with Noise):

- Группирует объекты на основе плотности. Кластеры это области с высокой плотностью, разделённые областями с низкой плотностью.
- Не требует задания числа кластеров.
- Устойчив к выбросам и может находить кластеры произвольной формы.

• Иерархическая кластеризация:

- Строит иерархию кластеров, начиная с отдельных объектов и последовательно объединяя их в кластеры.
- Результат может быть представлен в виде дендрограммы.
- Не требует задания числа кластеров, но требует выбора метода объединения (например, single-linkage, complete-linkage).

• Gaussian Mixture Models (GMM):

- Предполагает, что данные сгенерированы смесью нескольких гауссовских распределений.
- Использует Expectation-Maximization (EM) алгоритм для оценки параметров распределений.
- Может находить кластеры различной формы и размера.

• Mean Shift:

- Находит центры кластеров, итеративно сдвигая точки в направлении увеличения плотности.
- Не требует задания числа кластеров.
- Устойчив к выбросам и может находить кластеры произвольной формы.

6. Computer Vision (CV)

Что такое свёрточные нейронные сети (CNN)?

Свёрточные нейронные сети (Convolutional Neural Networks, CNN) — это класс глубоких нейронных сетей, предназначенных для обработки данных с grid-подобной структурой, таких как изображения. CNN автоматически извлекают признаки из данных с помощью свёрточных операций.

Как работает свёртка?

Свёртка — это математическая операция, которая применяет фильтр (ядро) к входным данным для извлечения признаков. Математически свёртка определяется следующим образом:

$$(f * g)(x,y) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} f(i,j) \cdot g(x-i,y-j)$$

Где:

- f входное изображение (матрица пикселей).
- g фильтр (ядро свёртки).
- (x,y) координаты выходного значения.

Пример свёртки

Для изображения f размером 3×3 и фильтра g размером 2×2 :

$$f = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \quad g = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Результат свёртки:

$$(f * g) = \begin{bmatrix} (1 \cdot 1 + 2 \cdot 0 + 4 \cdot 0 + 5 \cdot (-1)) & \dots \\ & \dots & & \dots \end{bmatrix}$$

Как работает архитектура ResNet?

ResNet (Residual Network) — это глубокая нейронная сеть, которая использует "остаточные блоки" (residual blocks) для упрощения обучения очень глубоких сетей. Основная идея ResNet — использование skip-connections (пропускных соединений), которые позволяют градиентам проходить через сеть без затухания.

Зачем нужны skip-connections?

Skip-connections позволяют информации "перепрыгивать" через несколько слоёв, что решает проблему затухающих градиентов (vanishing gradients) в глубоких сетях. Математически остаточный блок можно описать как:

$$y = F(x, \{W_i\}) + x$$

Где:

- x входные данные.
- $F(x, \{W_i\})$ преобразование, выполняемое слоями.
- y выход блока.

Что такое пулинг (Pooling)?

Пулинг — это операция, которая уменьшает размерность карты признаков, сохраняя важные признаки. Это помогает уменьшить вычислительную сложность и предотвратить переобучение.

Виды пулинга

• Max Pooling: Выбирает максимальное значение в области.

Max Pooling
$$(x, y) = \max_{i, j \in \text{Область}} f(i, j)$$

• Average Pooling: Вычисляет среднее значение в области.

Average
$$\operatorname{Pooling}(x,y) = \frac{1}{n} \sum_{i,j \in \operatorname{odjactb}} f(i,j)$$

Пример пулинга

Для карты признаков f размером 4×4 и окна пулинга 2×2 :

$$f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}$$

Результат Max Pooling:

$$\text{Max Pooling}(f) = \begin{bmatrix} 6 & 8 \\ 14 & 16 \end{bmatrix}$$

Результат Average Pooling:

Average Pooling
$$(f) = \begin{bmatrix} 3.5 & 5.5 \\ 11.5 & 13.5 \end{bmatrix}$$

7. Bias-Variance Decomposition

Bias-Variance Decomposition — это метод анализа ошибки модели машинного обучения, который разделяет общую ошибку на три компоненты: bias (смещение), variance (разброс) и неустранимую ошибку (irreducible error).

Математическая формула

Общая ошибка модели может быть выражена как:

$$O$$
шибка = $Bias^2 + Variance + Неустранимая ошибка$

Где:

- Bias (смещение) это ошибка, вызванная упрощением модели. Высокий bias означает, что модель слишком проста и не может уловить сложные закономерности в данных (недообучение).
- Variance (разброс) это ошибка, вызванная чувствительностью модели к небольшим изменениям в обучающих данных. Высокий variance означает, что модель слишком сложна и переобучается на шум в данных (переобучение).
- **Неустранимая ошибка** это ошибка, вызванная шумом в данных, которую невозможно устранить никакой моделью.

Пример

Предположим, у нас есть истинная функция f(x), а модель предсказывает $\hat{f}(x)$. Тогда:

$${\rm Bias}=\mathbb{E}[\hat{f}(x)]-f(x)$$

$${\rm Variance}=\mathbb{E}[(\hat{f}(x)-\mathbb{E}[\hat{f}(x)])^2]$$

 Неустранимая ошибка = $\mathbb{E}[(y-f(x))^2]$

Интерпретация

- Если bias высокий, модель слишком проста и не может уловить сложные зависимости.
- Если variance высокий, модель слишком сложна и переобучается на шум в данных.
- Идеальная модель имеет низкий bias и низкий variance.

Variance (разброс) — это мера того, насколько предсказания модели изменяются при изменении обучающих данных. Высокий variance указывает на то, что модель слишком чувствительна к шуму в данных, что приводит к переобучению.

Для модели $\hat{f}(x)$, variance вычисляется как:

Variance =
$$\mathbb{E}[(\hat{f}(x) - \mathbb{E}[\hat{f}(x)])^2]$$

Где:

- $\hat{f}(x)$ предсказание модели для входного значения x.
- $\mathbb{E}[\hat{f}(x)]$ математическое ожидание (среднее значение) предсказаний модели.

Предположим, у нас есть несколько обучающих выборок, и для каждой выборки модель делает предсказания $\hat{f}_1(x), \hat{f}_2(x), \dots, \hat{f}_n(x)$. Тогда:

$$\mathbb{E}[\hat{f}(x)] = \frac{1}{n} \sum_{i=1}^{n} \hat{f}_i(x)$$

Variance =
$$\frac{1}{n} \sum_{i=1}^{n} (\hat{f}_i(x) - \mathbb{E}[\hat{f}(x)])^2$$

- Если **variance** высокий, это означает, что модель слишком чувствительна к изменениям в обучающих данных и переобучается.
- Если variance низкий, модель устойчива к изменениям в данных и хорошо обобщает.

Связь с переобучением

- Высокий variance часто связан с переобучением, когда модель слишком сложна и "запоминает" шум в данных.
- Для уменьшения variance можно использовать методы регуляризации (например, L1, L2), увеличить количество данных или упростить модель.