- X stands for distance
 - a)

- time b)
- **c**) distance

Y

- d) speed
- e) acceleration
- 2. Solve $V = \frac{x}{t}$

for X

Note: • means times

a)
$$X = \frac{v}{t}$$

(b)
$$X = V \cdot \hat{t}$$
 $t \cdot V = \frac{\times}{c} \cdot \hat{t}$

c)
$$X = V + t$$

d)
$$X = V - t$$
 $\forall t = x$

3. Solve $V = \frac{x}{t}$ for t

a)
$$t = \frac{x}{v}$$

b)
$$t = V \cdot x$$

b)
$$t = V \cdot X$$

d) $t = X - V$

c)
$$t = X + V$$

e) $t = \frac{v}{v}$

$$d) t = X - V$$

- 4. A ball is dropped. Since it was dropped, it has an initial velocity of 0. After a time of 5 seconds, it has a final velocity of -49 $m_{/s}$. What was its average velocity during those 5 seconds?
 - $-49 \, m/s$ a)

b) $-0 \, m/_{S}$

c) $+33.3 \, m/_{S}$

e) $+0^{m}/_{S}$

- When a ball is dropped the velocity is _____. 5.
 - 33 m/sa)

b) constant

changing d)

 $22 \, m/s$ e)