CSCI 335 Theory of Computing

Lecture 14 – Turing Machines IV: Church–Turing Thesis

DATE: December 05 2022

Learning Outcomes

NEWGIZA UNIVERSITY

Learning Outcomes

By the end of this section you will be able to:

- Understand Church-Turing thesis
- Get acquainted with an undecidable problem among Hilbert's problems
- Get familiar with string encoding of different objects for TM simulations

Outline

- Church-Turing thesis
- Hilbert's problems
- String representation of objects

Church-Turing thesis

Alonzo Church 1903–1995

Instead of Turing machines, can use any other "reasonable" model of unrestricted computation: λ -calculus, random access machine, your favorite programming language, ...

Alan Turing 1912–1954

Big impact on mathematics, computer science, and artificial intelligence.

Alonzo Church 1903–1995

Algorithm Turing machine

Intuitive Formal

- This thesis states that all possible models of computation, if they are sufficiently broad, must be equivalent.
- It also implies that there is an inherent limitation in this and that there are functions that cannot be expressed in any way that gives an explicit method for their computation.
- A general principle for algorithmic computation and, while not provable, gives strong evidence that no more powerful models can be found.

Alan Turing 1912–1954

Hilbert's problems

Hilbert's 10th problem

NEW GIZA UNIVERSITY

In 1900 David Hilbert posed 23 problems

- #1) Problem of the continuum (Does set A exist where $|\mathbb{N}| < |A| < |\mathbb{R}|$?).
- #2) Prove that the axioms of mathematics are consistent.
- #10) Give an algorithm for solving *Diophantine equations*.

Diophantine equations:

Equations of polynomials where solutions must be integers.

Example: $3x^2 - 2xy - y^2z = 7$ solution: x = 1, y = 2, z = -2

Hilbert's 10^{th} problem: Give an algorithm to decide D.

Matiyasevich proved in 1970: *D* is not decidable.

David Hilbert 1862—1943

Note: *D* is T-recognizable.

String representation of objects

String representation of objects

Notation for encoding objects into strings

- If O is some object (e.g., polynomial, automaton, graph, etc.), we write $\langle O \rangle$ to be an encoding of that object into a string.
- If $O_1, O_2, ..., O_k$ is a list of objects then we write $\langle O_1, O_2, ..., O_k \rangle$ to be an encoding of them together into a single string.

Notation for writing Turing machines

We will use high-level English descriptions of algorithms when we describe TMs, knowing that we could (in principle) convert those descriptions into states, transition function, etc. Our notation for writing a TM M is

M = "On input w [English description of the algorithm]"

Example: String

NEW GIZA UNIVERSITY

FIGURE 3.24

A graph G and its encoding $\langle G \rangle$

Example: String

representation of graphs

The right-hand column shows possible ASCII string representations of the corresponding examples of graph concepts.

cvcle

"a,b,7 a,c,3 b,d,2 c,d,8 d,e,12"

Page 48, John MacCormick: What Can Be Computed?: A Practical Guide to the Theory of Computation. Princeton University Press, 2018

Summary

Summary

- Church-Turing thesis
- Hilbert's problems
- String representation of objects

Readings

Church-Turing thesis: Section 3.3 (Sipser 2013)