Math 445 Number Theory

October 5, 2008

We wish to prove:

Conjecture: A prime p is a sum of two squares $\Leftrightarrow (p = 2 \text{ or}) \ p \equiv 1 \pmod{4}$.

It turns out that what is really relevant to the discussion is under what circumstances the equation $x^2 \equiv -1 \pmod{p}$ has a solution! And for this, we need:

Theorem: If p is prime, the equation $x^2 \equiv -1 \pmod{p}$ has a solution $\Leftrightarrow p = 2$ or $p \equiv 1 \pmod{4}$.

Checking this for p=2 is quick (x=1 works), and so we need to show that (1) if $p \equiv 1 \pmod 4$ then $x^2 \equiv -1 \pmod p$ has a solution, and (2) if $p \equiv 3 \pmod 4$ then $x^2 \equiv -1 \pmod p$ has no solution.

To see the first, since p-1=4k for some k, we have, since there is a primitive root of 1 mod p, a c such that $c^{p-1}=c^{4k}\equiv 1$ but $c^{2k}\not\equiv 1$, so (by Euler) $c^{2k}\equiv -1$. But then setting $x=c^k$, we then have $x^2=(c^k)^2=c^{2k}\equiv -1$, giving us our desired solution.

The second case is really rather quick. If, by way of contradiction, we have $x^2 \equiv -1 \pmod{p}$, then since by FLT $x^{p-1} \equiv 1 \pmod{p}$, we have, mod p,

$$1 \equiv x^{p-1} = x^{(4k+3)-1} = x^{4k+2} = x^{2(2k+1)} = (x^2)^{2k+1} \equiv (-1)^{2k+1} = -1$$

so $1 \equiv -1 \pmod{p}$. i.e., p|2, which is absurd.

With this in hand, we can show:

Proposition: If $n = a^2 + b^2$, p|n, and $p \equiv 3 \pmod 4$, then p|a and p|b.

If not, then either $p \not| a$ or $p \not| b$, say $p \not| a$. Then (a,p)=1, so there is a z with $az \equiv 1 \pmod p$. But then since $p|n,\ p|a^2+b^2$, so $a^2+b^2\equiv 0 \pmod p$. Then $1+(bz)^2=(az)^2+(bz)^2=z^2(a^2+b^2)\equiv z^20=0 \pmod p$, so x=bz satisfies $x^2+1\equiv 0 \pmod p$, i.e., $x^2\equiv -1 \pmod p$, a contradication. So p|a and p|b.

(*) This means that $p^2|a^2$ and $p^2|b^2$, so $p^2|a^2+b^2=n$, and $(n/p^2)=(a/p)^2+(b/p)^2$. This will be very significant shortly!