

Explicit convergence bounds for Metropolis Markov chains

Isoperimetry, Spectral Gaps, and Complexity

Sam Power

University of Bristol

18 January, 2023

Links & Acknowledgements

- ✓ Main paper today: arXiv 2211.08959;
- ✓ All joint work with
 - Christophe Andrieu (Bristol)
 - Anthony Lee (Bristol)
 - ► Andi Q. Wang (Bristol ~> Warwick)

My Interests

- Computational aspects of statistical inference
- Stochastic algorithms for questions from statistics, machine learning, ...
- Theoretical properties of algorithms (efficiency, complexity, comparisons, ...)
- Motivated by the task of understanding structured probability distributions in high-dimensional spaces
 - posterior inference in Bayesian statistics
 - latent variable models, hidden Markov models
 - generative modeling
 - non-convex optimisation
 - **.** . .

My Goals

- Understanding structured probability distributions in high-dimensional spaces:
 - Developing and adapting mathematical tools for analysis of practical algorithms
 - Application of this understanding towards guiding practice

Today:

- A specific class of methods for this task,
- A specific algorithm within this class, and
- A mathematical analysis of this algorithm.

Markov Chain Monte Carlo (MCMC)

- κ Task: Generate approximate samples from a probability distribution π to which we have *limited access*.
- MCMC: An iterative approach to this task.
 - Simulate a time-homogeneous Markov chain $(X_n)_{n\geq 0}$ such that

$$\text{Law}(X_n) \to \pi \text{ as } n \to \infty.$$

(and hopefully, quickly)

- Current status:
 - Mature algorithmic field, many 'correct' solutions are known and practical.
 - Quantitative convergence theory is challenging; important.
 - ► 'Is (this algorithm) { performant, reliable, preferable, ... } ?'
 - Given π , which algorithm do I choose?'

Random Walk Metropolis

- ▼ Today: Study the Random Walk Metropolis (RWM) algorithm
 - \triangleright Only requires access to density of π , up to a multiplicative constant (typical).
 - ► Widely-used, simple, 'representative'
- 1. At x.
 - 1.1 Propose $x' \sim \mathcal{N}(x, \sigma^2 \cdot I_d)$.
 - 1.2 Evaluate $r(x, x') = \frac{\pi(x')}{\pi(x)}$.
 - 1.3 With probability min $\{1, r(x, x')\}$, move to x'; otherwise, remain at x.
- \checkmark Leaves π invariant, ergodic under mild conditions, exponentially so under tail conditions

Quantitative Convergence of RWM

- Despite ubiquity, sharp complexity analysis of RWM has long been open
- We obtain a convincing complexity analysis with
 - sharp dependence on the dimension of the problem
 - conjecturally sharp dependence on the conditioning of the problem
- Our proof techniques are remarkably robust, and largely new to this area
- Gives a relatively complete resolution to the question of RWM's mixing

Convergence of Markov Chains

- \mathbf{k} For nice f, define $Pf(x) = \mathbb{E}\left[f(X_1) \mid X_0 = x\right]$, where $X_1 \sim P\left(X_0 \to \cdot\right)$.
 - $ightharpoonup
 ightharpoonup P^n f(x) = \mathbb{E}\left[f(X_n) \mid X_0 = x\right]$
- \checkmark If the Markov chain converges in law to π , then

$$\forall x$$
, $\lim_{n \to \infty} P^n f(x) = \mathbb{E}_{\pi} \left[f(X) \right]$.

u 'Convergence in L^2 ': for $f \in L^2(\pi)$ with $\mathbb{E}_{\pi}[f(X)] = 0$, have

$$\lVert P^n f
Vert_2^2 := \int \pi(x) \left(P^n f(x)
ight)^2 \, \mathrm{d}x o 0.$$

Nice to work with, implies other common notions of convergence

L² Convergence of Markov Chains

If chain is exponentially ergodic and reversible, then there hold uniform bounds of the form

$$f \in \mathrm{L}^2(\pi) \implies \|P^n f\|_2 \leqslant \left(1 - \gamma_P\right)^n \cdot \|f\|_2$$
,

where $\gamma_P > 0$ is the 'spectral gap' of the chain.

- k Estimates on γ_P give control of mixing time, variance of MCMC estimators, etc.
 - ~> practically relevant.
- κ First goal: characterise γ_P for RWM.

Conductance Methods for Markov Chains

- Many tools exist for studying convergence of Markov chains.
- ★ Conductance analysis is well-suited to study of chains making 'local' moves.
 - Facilitated by recent progress in *isoperimetry* of probability measures.
- κ Consider for $A \subseteq \mathbb{R}^d$

$$\pi(A) \coloneqq \int_{x \in A} \pi(x) \, \mathrm{d}x \ \pi \otimes P(A imes A^\complement) \coloneqq \int_{x \in A} \int_{x \in A} \pi(x) P(x,y) \, \mathrm{d}x \mathrm{d}y.$$

- - ▶ so if $c \gg 0$, then the set A is easy for P to escape.
- k If every set A is easy for P to escape, then P cannot get stuck ...
 - ... and hence must converge quickly.

Cheeger's Inequality for Markov Chains

 \checkmark Define the 'conductance' of P as

$$\Phi_P := \mathsf{inf}\left\{rac{\pi\otimes P(A imes A^\complement)}{\pi(A)}: \pi(A) \leqslant rac{1}{2}
ight\}.$$

Then for (positive, reversible) P, it holds that $\gamma_P \geqslant \frac{1}{2}\Phi_P^2$.

- k For $P = P^{\text{RWM}}$, we will lower bound Φ_P , and hence γ_P .
- Kemark: For $\pi(A) \approx 0$, things can be much better; gives sharper description of convergence when far from equilibrium.

Bounding Conductance for 'Local' Markov Chains

- ★ The following is true for general Markov chains on metric spaces:
 - Suppose that
 - 1. ('close coupling') For some $(\delta, \tau) \in \mathbb{R}_+ \times (0, 1)$, it holds that

$$\mathsf{d}(\mathit{x},\mathit{y}) \leqslant \delta \implies \mathsf{TV}\left(\mathit{P}_{\mathit{x}},\mathit{P}_{\mathit{y}}\right) \leqslant 1 - \tau.$$

2. ('good isoperimetry') For some $\Phi_{\pi} > 0$, the target measure π satisfies

$$\pi^+(A) \geqslant \Phi_{\pi} \cdot \pi(A)$$
,

where π^+ is the 'Minkowski content' (\approx boundary mass) of A.

- Interpretation: under 'natural, local dynamics' on π , all sets are easy to escape.
- Then, it holds that

$$\Phi_P \gtrsim \tau \cdot \delta \cdot \Phi_{\pi}$$
.

 \not P is 'nice' at small scales $+\pi$ is 'nice' at large scales \rightsquigarrow good mixing!

Conductance for RWM

- We argue as follows:
 - 1. To guarantee that 'close coupling' holds, it suffices to control

```
lpha_0 := \inf \left\{ \mathrm{P} \left( \text{ accept proposed move } \mid \text{current state } = x 
ight) : x \in \mathrm{R}^d 
ight\}  = 'worst-case acceptance rate out of a state'
```

- 2. For 'well-concentrated' targets, Φ_{π} can be controlled explicitly in cases of interest.
- Failure of these conditions corresponds to known failure modes for RWM.

Application to Log-Concave Targets

- Write $U = -\log \pi$, assume that $0 < m \le U'' \le L$ (in matrix sense).
- \swarrow Consider RWM with $\sigma \simeq (L \cdot d)^{-1/2}$. Then
 - 1. P satisfies 'close coupling' with $(\delta, \tau) \asymp \Big((L \cdot d)^{-1/2}$, 1 $\Big)$.
 - 2. π has 'good isoperimetry', with $\Phi_{\pi} \gtrsim m^{1/2}$.
- ★ It thus follows that

$$\Phi_P \gtrsim \left(rac{m}{L\cdot d}
ight)^{1/2} \ \gamma_P \gtrsim rac{m}{L\cdot d}.$$

№ Interpretation: 'difficulty' of sampling from π scales as $\kappa \cdot d$, where $\kappa = \frac{L}{m}$.

Other Results

- $\swarrow \gamma_P$ implies an estimate for the asymptotic variance
- $\bigvee \gamma_P$ implies an estimate for the relaxation time
- More detailed analysis gives a good estimate of the mixing time
- k Can handle π with tails 'from exponential to Gaussian'.
- ✓ Can treat related 'Metropolis-type' algorithms (pCN).

Future Work

 \checkmark Analysis of RWM on Heavy-Tailed π (where $\Phi_{\pi} = 0$)

★ Analysis of other practical samplers ({ Langevin, Hamiltonian } Monte Carlo)

Development of new samplers inspired by insights suggested by our proof techniques

Recap

- Markov chain analysis for computational statistics
- ✓ Sharp analysis of Random Walk Metropolis algorithm
- New theoretical approach centered on isoperimetry
- ✓ Proof tools should generalise well to other 'local' algorithms