Gibbs Sampling for LDA, Applications

Pawan Goyal

CSE, IIT Kharagpur

Week 9, Lecture 3

Approximating the posterior

Algorithms to approximate it fall in two categories:

Sampling-based Algorithms

Collect samples from the posterior to approximate it with an empirical distribution

Approximating the posterior

Algorithms to approximate it fall in two categories:

Sampling-based Algorithms

Collect samples from the posterior to approximate it with an empirical distribution

Variational Methods

- Deterministic alternative to sampling-based algorithms
- The inference problem is transformed to an optimization problem

- A form of Markov chain Monte Carlo (MCMC), which simulates a high-dimensional distribution by sampling on lower-dimensional subset of variables where each subset is conditioned on the value of all others
- Sampling is done sequentially and proceeds until the sampled values approximate the target distribution
- It directly estimates the posterior distribution over z, and uses this to provide estimates for β and θ

- Suppose we have a word token i for which we want to find the topic assignment probability : $p(z_i = j)$
- Represent the collection of documents by a set of word indices w_i and document indices d_i for this token i
- Gibbs sampling considers each word token in turn and estimates the probability of assigning the current word token to each topic, conditioned on the topic assignment to all other word tokens
- From this conditional distribution, a topic is sampled and stored as the new topic assignment for this word token
- This conditional is written as $P(z_i = j | z_{-i}, w_i, d_i, .)$

- Let us define two matrices C^{WT} and C^{DT} of dimensions $W \times T$ and $D \times T$ respectively.
- C_{wj}^{WT} contains the number of times word w is assigned to topic j, not including the current instance
- C_{dj}^{WT} contains the number of times topic j is assigned to some word token in document d, not including the current instance

- Let us define two matrices C^{WT} and C^{DT} of dimensions $W \times T$ and $D \times T$ respectively.
- C_{wj}^{WT} contains the number of times word w is assigned to topic j, not including the current instance
- C_{dj}^{WT} contains the number of times topic j is assigned to some word token in document d, not including the current instance

$$P(z_{i} = j | z_{-i}, w_{i}, d_{i}, .) \propto \frac{C_{w,j}^{WT} + \eta}{\sum_{w=1}^{W} C_{w,j}^{WT} + W\eta} \frac{C_{d,j}^{DT} + \alpha}{\sum_{t=1}^{T} C_{d,t}^{DT} + T\alpha}$$

- The left part is the probability of word w under topic j (How likely a word is for a topic) whereas
- The right part is the probability of topic j under the current topic distribution for document d (How dominant a topic is in a document)

Algorithm

- Start: Each word token is assigned to a random topic in [1...T]
- For each word token, a new topic is sampled as per $P(z_i = j | z_{-i}, w_i, d_i, .)$, adjusting the matrices C^{WT} and C^{DT}
- A single pass through all word tokens in the document is one Gibbs sample
- After the burnin period, these samples are saved at regularly spaced intervals, to prevent correlations between samples

Estimating θ and β

$$\beta_i^{(j)} = \frac{C_{ij}^{WT} + \eta}{\sum_{k=1}^{W} C_{kj}^{WT} + W\eta}$$

$$\theta_{j}^{(d)} = \frac{C_{dj}^{DT} + \alpha}{\displaystyle\sum_{k=1}^{T} C_{dk}^{DT} + T\alpha}$$

These values correspond to predictive distributions of

- sampling a new token of word i from topic j, and
- sampling a new token in document d from topic j

An Example

The algorithm can be illustrated by generating artificial data from a known topic model and applying the algorithm to check whether it is able to infer the original generative structure.

Example

 Let topic 1 give equal probability to MONEY, LOAN, BANK and topic 2 give equal probability to words RIVER, STREAM, and BANK

$$\beta_{\text{MONEY}}{}^{(1)} = \beta_{\text{LOAN}}{}^{(1)} = \beta_{\text{BANK}}{}^{(1)} = 1/3$$

$$\beta_{RIVER}^{(2)} = \beta_{STREAM}^{(2)} = \beta_{BANK}^{(2)} = 1/3$$

• We generate 16 documents by arbitrarily mixing two topics.

Initial Structure

	River	Stream	Bank	Money	Loan
12345678901123 112345	River O	Stream	Bank 0000 00000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000	Money 000000 000000 000000 000000 000000 000000 0000000 00000000	Loan 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16	••••	₩0000	••••	i I	

Colors reflect initial random assignment, black = topic 1, while = topic 2

After 64 iterations of Gibbs Sampling

	River	Stream	Bank	Money	Loan
1			0000	000000	000000
3			00000	000000	0000 0000
4			0000000	000000	•
5			0000000	••	0000000
6			00000000	000	0000
	0	00	000 0	- 000000	00000
	0	000	00000	0000	•••
	00	000	000000		9000
11	00	000	0000000	000	•
	000	000000	000000	•	į
	000000	000	●00000	l I	•
	0000	00000000	000000	1	1
	00000	0000000	00000	! 	

$$\beta_{MONEY}^{(1)} = 0.32, \beta_{LOAN}^{(1)} = 0.29, \beta_{BANK}^{(1)} = 0.39$$

$$\beta_{RIVER}^{(2)} = 0.25, \beta_{STREAM}^{(2)} = 0.4, \beta_{BANK}^{(2)} = 0.35$$

Computing Similarities

Document Similarity

Similarity between documents d_1 and d_2 can be measured by the similarity between their topic distributions $\theta^{(d_1)}$ and $\theta^{(d_2)}$

KL divergence :
$$D(p,q) = \sum_{j=1}^{T} p_j log_2 \frac{p_j}{q_j}$$

Symmetrized KL divergence: $\frac{1}{2}[D(p,q)+D(q,p)]$ seems to work well

Similarity with respect to query q

Maximize the conditional probability of query given the document:

$$p(q|d_i) = \prod_{w_k \in q} p(w_k|d_i)$$

$$= \prod_{w_k \in q} \sum_{i=1}^{T} P(w_k | z = j) P(z = j | d_i)$$

Computing Similarities

Similarity between two words

Having observed a single word in a new context, what are the other words that might appear in the same context, based on the topic interpretation for the observed word?

$$p(w_2|w_1) = \sum_{j=1}^{T} p(w_2|z=j)p(z=j|w_i)$$

Example

Observed and predicted responses for the word 'PLAY'

HUMANS	TOPIC

HUMANS		TOPICS	
FUN	.141	BALL	.036
BALL	.134	GAME	.024
GAME	.074	CHILDREN	.016
WORK	.067	TEAM	.011
GROUND	.060	WANT	.010
MATE	.027	MUSIC	.010
CHILD	.020	SHOW	.009
ENJOY	.020	HIT	.009
WIN	.020	CHILD	.008
ACTOR	.013	BASEBALL	.008
FIGHT	.013	GAMES	.007
HORSE	.013	FUN	.007
KID	.013	STAGE	.007
MUSIC	.013	FIELD	.006