TÀI LIỆU ĐƯỢC SỬ DỤNG CHO MÔN THI TOÁN TOÁN HỌC TÍNH TOÁN

Họ tên : Nguyễn Minh Hách

MSSV : 0009568

```
f = lambda x: x**3 - x**2 - 3
2 from sympy import *
x = symbols('x')
 plot(f(x), (x, 1, 4))
_{5} plot(_{abs}(f(x).diff(x, 2)), (x, 1, 4))
 M = 22.5
7 t = symbols('t')
 df = lambda x: f(t).diff().subs(t, x)
 m = min(abs(df(1)), abs(df(4))
10 \times 0 = 4.
                                              # x_{n-1}
  for _ in range(3):
      x = N(x0 - f(x0) / df(x0), 6)
12
      ss = N(M / 2 /
                       m * (x - x0)**2, 6) # \varepsilon_n
13
      x = 0x
14
      print(x, ss)
                                      Mã 1:
```

```
from sympy import *

f = lambda x: sin(x)

a, b = 0, pi

import numpy as np

X = np.linspace(np.float32(0), np.float32(b), 11)
Y = [ f(x) for x in X ]
```

```
\sqrt{sum}([(X[i] - X[i-1]) * (Y[i] + Y[i-1]) / 2 \text{ for } i \text{ in } range(1, 11)]
    )
plot(f(x).diff(x, 2), (x, a, b))
9 M2 = 1
10 N(M2 * (b-a)**3 / 12 / 10**2, 6)
sum([(X[2*i] - X[2*i-2]) * (Y[2*i] + 4*Y[2*i-1] + Y[2*i-2])
    for i in range(1, 6)] )
plot(f(x).diff(x, 4), (x, a, b))
13 M4 = 1
N(M4 * (b-a)**5 / 180 / 10**4, 6)
                                   Mã 2:
X = [1, 1.3, 1.7, 2.]
_{2} Y = [3.5, 4., 4.6, 5.2]
3 from sympy import *
4 x = symbols('x')
5 cs = [1 + 0*x, x, log(x)]
V = [ [cs_i.subs(x, X_k) for X_k in X] for cs_i in cs ]
7 import numpy as np
8 A = [ [np.dot(V_i, V_j)  for V_j  in V]  for V_i  in V ]
9 b = [np.dot(Y, V_i) for V_i in V]
10 hs = np.linalg.solve(
     np.array(A).astype(float),
      np.array(b).astype(float) )
12
13 P = hs.dot(cs)
14 [P.subs(x, X_k) for X_k in X]
errors = [Y_k - P.subs(x, X_k)] for (X_k, Y_k) in zip(X, Y)
np.linalg.norm(np.array(errors).astype(float))
                                   Mã 3:
 X = [-1, 0, 1, 2]
  Y = [4, 3, 2, 7]
```

```
def L(i, x):
      prod = 1
      for j in range(4):
          if j != i:
               prod *= (x - X[j]) / (X[i] - X[j])
      return prod
9 from sympy import *
x = symbols('x')
11 L(0, x)
12 L(0, x).expand()
_{13} P = 0
14 for i in range(4):
      P += Y[i] * L(i, x)
15
16 P. expand()
 f = lambda x: x**
  f(0), f(2)
  a, b = 0, 2
  for _ in range(5):
      c = (a + b) / 2
      if f(c) == 0:
           print(f'Nghiệm đúng: {c}')
           break
8
       elif f(a) * f(c) < 0:
10
      else:
11
           a = c
12
      ss = b - a
                    # \varepsilon_n
13
      print(a, b) # a_n, b_n
                                     Mã 5:
d = lambda k, i: Y[i] if k == 0 else d(k-1, i+1) - d(k-1, i)
  [ [d(k, i) for i in range(4-k)] for k in range(4) ]
```

```
3 from sympy import *
 x, t = symbols('x t')
  P = 0
                                          # Y[3]
  for k in range(4):
      prod = d(k, 0) / factorial(k)
                                         # d(k, 3-k)
      for i in range(k):
8
           prod *= t - i
                                          # t + i
9
      P += prod
10
11 P
12 P.subs(t, (x - X[0]) / 1).expand()
                                          # X[3]
                                     Mã 6:
1 from sympy import *
  g = lambda x: root(x**2 + 3, 3)
x = symbols('x')
_{4} plot(g(x), (x, 1, 4))
5 plot(abs(g(x).diff()), (x, 1, 4))
  q = 0.38
7 \times 0 = 2.5
                                               # x_{n-1}
8 for _ in range(3):
      x = N(g(x0), 6)
      ss = N(q / (1-q) * abs(x - x0), 6)
      x0 = x
11
      print(x, ss)
                                     Mã 7:
                             # VD2, 3: import numpy as np
  f = lambda x, y: y - x # VD2: f = lambda x, y: np.array([x * y[0] - y[1],
     y[0] + y[1] - 1])
                             # VD3: f = lambda x, y: np.array([y[1], y[2], x *
     y[2] - y[0]
X = [0, 0.2, 0.3, 0.5]  # VD2: X = [1, 1.1, 1.3, 1.5]
                             # VD3: X = [-1, -0.8, -0.6, -0.5]
```

```
_{6} y = 2
                             # VD2: y = [-1, 2]
                             # VD3: y = [1, 0, -2]
  for n in range(len(X) - 1):
      h = X[n+1] - X[n]
      k1 = h * f(X[n])
10
                          , y)
      k2 = h * f(X[n] + h/2, y + k1/2)
11
      k3 = h * f(X[n] + h/2, y + k2/2)
12
      k4 = h * f(X[n] + h , y + k3)
13
      y = y + (k1 + 2*k2 + 2*k3 + k4)/6
14
      print(y)
15
                                      Mã 8:
                             # VD2, 3: import numpy as np
  f = lambda x, y: y - x # VD2: f = lambda x, y: np.array([x * y[0] - y[1]],
     y[0] + y[1] - 1])
                             # VD3: f = lambda x, y: np.array([y[1], y[2], x *
     y[2] - y[0])
                           # VD2: X = [1, 1.1, 1.3, 1.5]
4 X = [0, 0.2, 0.3, 0.5]
                             # VD3: X = [-1, -0.8, -0.6, -0.5]
                             # VD2: y = [-1, 2]
6 y = 2
                             # VD3: y = [1, 0, -2]
8 for n in range(3):
   h = X[n+1] - X[n]
    y = y + h * f(X[n], y
    print(y)
                                      Mã 9:
 A = [[-15.4, 1, 6.3], [-4.2, 10.8, 3.3], [-2.4, 5.3, 15.9]]
  b = [30, 25,
                 -10]
m = lambda i, j: -A[i][j] / A[i][i] if i != j else 0
 import numpy as np
B = \text{np.array}([ [ m(i, j) \text{ for } j \text{ in } range(3)] \text{ for } i \text{ in } range(3) ])
6 g = [ b[i] / A[i][i] for i in range(3) ]
                                     Mã 10:
X = [-0.7, 1.7, -4.9, 3.1, -1.3]
Y = [-2.9, -1.1, -2.9, 1.5, 0.8]
Z = [7.1, 5.8, -3.1, -1, -8.7]
```

```
4 from sympy import *
s x, y = symbols('x y')
6 cs = [1 + 0*x, x, y]
V = [ [cs_i.subs(\{x: X_k, y: Y_k\}) ]  for (X_k, Y_k)  in zip(X, Y)]  for
      cs_i in cs ]
8 import numpy as np
9 A = [ [np.dot(V_i, V_j) for V_j in V] for V_i in V ]
b = [np.dot(Z, V_i) \text{ for } V_i \text{ in } V]
hs = np.linalg.solve(
      np.array(A, dtype=float),
      np.array(b, dtype=float) )
13
P = hs.dot(cs)
[P.subs(\{x: X_k, y: Y_k\}) for (X_k, Y_k) in zip(X, Y)]
errors = [Z_k - P.subs(\{x: X_k, y: Y_k\})] for (X_k, Y_k, Z_k) in zip
     (X, Y, Z)]
np.linalg.norm( np.array(errors, dtype=float) )
                                    Mã 11:
1 import numpy as np
B = np.array([[-0.21, -0.28, 0.05]],
                  [0.19, 0.01, -0.26],
                  [ 0.39,
                          -0.12, -0.06]
 g = [-0.9, 3.8, -2.9]
6 q = np.linalg.norm(B, np.inf)
  q
                          # x^{(k-1)}
8 \times 0 = [0, 2, -1]
9 for _ in range(3):
      x = B.dot(x0) + g # x^{(k)}
      ss = q / (1-q) * np.linalg.norm(x - x0, np.inf) # \varepsilon_k
      x0 = x
      print(x, ss)
13
x = [0, 2, -1]
15 for _ in range(4):
     for i in range(3):
```

Mã 13: