SAMB for "Th1"

Generated on 2023-09-27 01:35 by MultiPie 1.1.14

- Generation condition
 - model type: tight_binding
 - time-reversal type: electric
 - irrep: [Ag]
 - spinful
- Unit cell:

$$a=1.0,\ b=1.0,\ c=1.0,\ \alpha=90.0,\ \beta=90.0,\ \gamma=90.0$$

- Lattice vectors:
 - $\boldsymbol{a}_1 = \begin{pmatrix} 1.0 & 0 & 0 \end{pmatrix}$
 - $\boldsymbol{a}_2 = \begin{pmatrix} 0 & 1.0 & 0 \end{pmatrix}$
 - $\mathbf{a}_3 = \begin{pmatrix} 0 & 0 & 1.0 \end{pmatrix}$

Table 1: High-symmetry line: Γ -X.

symbol	position	symbol	position
Γ	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	X	$\begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$

• Kets: dimension = 24

Table 2: Hilbert space for full matrix.

No.	ket	No.	ket	No.	ket	No.	ket	No.	ket
 1	(s,\uparrow) @A ₁	2	(s,\downarrow) @A ₁	3	(p_x,\uparrow) @A ₁	4	(p_x,\downarrow) @A ₁	5	(p_y,\uparrow) @A ₁
6	(p_y,\downarrow) @A ₁	7	(p_z,\uparrow) @A ₁	8	(p_z,\downarrow) @A ₁	9	(s,\uparrow) @A ₂	10	(s,\downarrow) @A ₂
11	(p_x,\uparrow) @A ₂	12	(p_x,\downarrow) @A ₂	13	(p_y,\uparrow) @A ₂	14	(p_y,\downarrow) @A ₂	15	(p_z,\uparrow) @A ₂
16	(p_z,\downarrow) @A ₂	17	(s,\uparrow) @A ₃	18	(s,\downarrow) @A ₃	19	(p_x,\uparrow) @A ₃	20	(p_x,\downarrow) @A ₃
21	(p_y,\uparrow) @A ₃	22	(p_y,\downarrow) @A ₃	23	(p_z,\uparrow) @A ₃	24	(p_z,\downarrow) @A ₃		

• Sites in (primitive) unit cell:

Table 3: Site-clusters.

	site	po	sitio	on	mapping
S ₁ [3d: mmm]	A_1	$\left(\frac{1}{2}\right)$	0	0)	[1,2,3,4,13,14,15,16]
	A_2	0	$\frac{1}{2}$	0)	[5,6,7,8,17,18,19,20]
	A_3	(0	0	$\frac{1}{2}$	[9,10,11,12,21,22,23,24]

• Bonds in (primitive) unit cell:

Table 4: Bond-clusters.

	bond	tail	head	n	#	b@c	mapping
B ₁ [12j: m]	b_1	A_2	A_1	1	1	$ \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & 0 \end{pmatrix} $	[1,14]
	b_2	A_2	A_1	1	1	$ \left(\begin{array}{ccc} \frac{1}{2} & -\frac{1}{2} & 0 \end{array} \right) @ \left(\begin{array}{ccc} \frac{3}{4} & \frac{3}{4} & 0 \end{array} \right) $	[2,13]
	b_3	A_2	A_1	1	1	$\begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}$ @ $\begin{pmatrix} \frac{1}{4} & \frac{3}{4} & 0 \end{pmatrix}$	[3,16]
	b_4	A_2	A_1	1	1	$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \otimes \begin{pmatrix} \frac{3}{4} & \frac{1}{4} & 0 \end{pmatrix}$	[4,15]
	b_5	A_3	A_2	1	1	$\begin{pmatrix} 0 & -\frac{1}{2} & \frac{1}{2} \end{pmatrix} @ \begin{pmatrix} 0 & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$	[5,19]
	b_6	A_3	A_2	1	1	$ \left(0 \frac{1}{2} \frac{1}{2} \right) @ \left(0 \frac{3}{4} \frac{1}{4} \right) $	[6,20]

Table 4

Table 4							
	bond	tail	head	n	#	b@c	mapping
	b_7	A_3	A_2	1	1	$ \left(0 \frac{1}{2} -\frac{1}{2}\right) @ \left(0 \frac{3}{4} \frac{3}{4}\right) $	[7,17]
	b_8	A_3	A_2	1	1	$\begin{pmatrix} 0 & -\frac{1}{2} & -\frac{1}{2} \end{pmatrix} @ \begin{pmatrix} 0 & \frac{1}{4} & \frac{3}{4} \end{pmatrix}$	[8,18]
	b_9	A_3	A_1	1	1	$\left(-\frac{1}{2} 0 \frac{1}{2} \right) @ \left(\frac{1}{4} 0 \frac{1}{4} \right)$	[-9,-22]
	b_{10}	A_3	A_1	1	1	$\begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \end{pmatrix} @ \begin{pmatrix} \frac{3}{4} & 0 & \frac{3}{4} \end{pmatrix}$	[-10,-21]
	b_{11}	A_3	A_1	1	1	$\left(\begin{array}{cccc} \frac{1}{2} & 0 & \frac{1}{2} \end{array}\right) @ \left(\begin{array}{cccc} \frac{3}{4} & 0 & \frac{1}{4} \end{array}\right)$	[-11,-24]
	b_{12}	A_3	A_1	1	1	$\begin{pmatrix} -\frac{1}{2} & 0 & -\frac{1}{2} \end{pmatrix} @ \begin{pmatrix} \frac{1}{4} & 0 & \frac{3}{4} \end{pmatrix}$	[-12,-23]
B ₂ [3c: mmm]	b ₁₃	A_1	A_1	2	1	$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$	[1,2,-3,-4,-13,-14,15,16]
	b_{14}	A_2	A_2	2	1	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$	[5, -6, 7, -8, -17, 18, -19, 20]
	b_{15}	A_3	A_3	2	1	$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix} @ \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$	$[9,\!10,\!-11,\!-12,\!-21,\!-22,\!23,\!24]$
B ₃ [3c: mmm]	b ₁₆	A_1	A_1	2	2	$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$	[1,-2,-3,4,-13,14,15,-16]
	b_{17}	A_2	A_2	2	2	$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} @ \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$	[5,6,-7,-8,-17,-18,19,20]
	b_{18}	A_3	A_3	2	2	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$	[9, -10, -11, 12, -21, 22, 23, -24]
B ₄ [1a: m-3.]	b ₁₉	A_1	A_1	2	3	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} @ \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	[1,-2,3,-4,-13,14,-15,16]
	b_{20}	A_2	A_2	2	3	$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix} @ \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	[5, -6, -7, 8, -17, 18, 19, -20]
	b_{21}	A_3	A_3	2	3		[9,-10,11,-12,-21,22,-23,24]

• SAMB:

$$\begin{split} & \boxed{ \text{No. 1} } & \hat{\mathbb{Q}}_0^{(A_g)} \; [M_1, S_1] \\ & \hat{\mathbb{Z}}_1 = \mathbb{X}_1[\mathbb{Q}_0^{(a, A_g)}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s, A_g)}] \end{split}$$

$$\begin{split} & \boxed{ \text{No. 2} } \quad \hat{\mathbb{Q}}_0^{(A_g)} \ [\text{M}_3, \text{S}_1] \\ & \hat{\mathbb{Z}}_2 = \mathbb{X}_{23}[\mathbb{Q}_0^{(a, A_g)}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s, A_g)}] \end{split}$$

No. 4
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_4 = \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2}$$

No. 5
$$\hat{\mathbb{G}}_3^{(A_g)}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_5 = \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}]}{2}$$

No. 6
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,-1)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_6 = \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{31}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2}$$

No. 7
$$\hat{\mathbb{G}}_3^{(A_g)}(1,-1)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_7 = \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{31}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E_g)}]}{2}$$

No. 8
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_8 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A_g)}]$$

No. 9
$$\hat{\mathbb{G}}_{3}^{(A_g)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_9 = \frac{\sqrt{3}\mathbb{X}_2[\mathbb{M}_{1,0}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{22}[\mathbb{T}_{2,0}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_3[\mathbb{M}_{1,1}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{23}[\mathbb{T}_{2,1}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{M}_{1,2}^{(b,T_g)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(b,T_g)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{M}_{1,2}^{(b,T_g)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(b,T_g)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{M}_{1,2}^{(b,T_g)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(b,T_g)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{M}_{1,2}^{(b,T_g)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(b,T_g)}(1,-1)] \otimes \mathbb{Y}_{$$

No. 10
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{10} = \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{1,0}^{(a,T_{u})}] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(b,T_{u})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{Q}_{1,1}^{(a,T_{u})}] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(b,T_{u})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{1,2}^{(b,T_{u})}]}{3}$$

No. 11
$$\hat{\mathbb{Q}}_{4}^{(A_g)}$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{11} = \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{1,0}^{(a,T_{u})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{3,0}^{(b,T_{u},1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{Q}_{1,1}^{(a,T_{u})}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{3,1}^{(b,T_{u},1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{3,2}^{(b,T_{u},1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{3,2}^{(a,T_{u},1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u},1)}] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{3,2}^{(a,T_{u},1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u},1)}] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{3,2}^{(a,T_{u},1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u},1)}] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{3,2}^{(a,T_{u},1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u},1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{1,$$

No. 12
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,0)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{12} = \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_7[\mathbb{Q}_{1,2}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_8[\mathbb{Q}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_5[\mathbb{Q}_{1,0}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_9[\mathbb{Q}_{1,1}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_6[\mathbb{Q}_{1,1}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_9[\mathbb{Q}_{1,1}^{(b,T_u)}(1,0)] \otimes \mathbb{Y}_6[\mathbb{Q}_{1,1}^{(b,T_u)}(1,0)]}{3} + \frac{\sqrt{3}\mathbb{X}_9[\mathbb{Q}_{1,1}^{(b,T_u)}(1,0)] \otimes \mathbb{Y}_9[\mathbb{Q}_{1,1}^{(b,T_u)}(1,0)]}{3} + \frac{\sqrt{3}\mathbb{X}_9[\mathbb$$

No. 13
$$\hat{\mathbb{Q}}_{4}^{(A_g)}(1,0)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{13} = \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{3,2}^{(b,T_u,1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{3,0}^{(b,T_u,1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{1,1}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{3,1}^{(b,T_u,1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{1,1}^{(a,T_u,1)}(1,0)] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{3,1}^{(b,T_u,1)}]}{3$$

No. 14
$$\hat{\mathbb{G}}_{3}^{(A_g)}(1,-1)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{14} = \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{G}_{2,0}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{G}_{2,1}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{G}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{1,2}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,2}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,2}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,2}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,2}^{(b,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{2,2}^{(a,T_u)}(1,-$$

No. 15
$$\hat{\mathbb{G}}_3^{(A_g)}(1,-1)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{15} = -\frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{G}_{2,0}^{(a,T_u)}(1,-1)]\otimes\mathbb{Y}_{13}[\mathbb{Q}_{3,0}^{(b,T_u,1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{G}_{2,1}^{(a,T_u)}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{Q}_{3,1}^{(b,T_u,1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{G}_{2,2}^{(a,T_u)}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{3,2}^{(b,T_u,1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{2,2}^{(a,T_u)}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{3,2}^{(b,T_u,1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{2,2}^{(a,T_u)}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{3,2}^{(b,T_u,1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{2,2}^{(a,T_u)}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{3,2}^{(b,T_u,1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{2,2}^{(a,T_u)}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{3,2}^{(b,T_u,1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{2,2}^{(a,T_u)}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{3,2}^{(b,T_u,1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{3,2}^{(a,T_u)}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{3,2}^{(b,T_u,1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{3,2}^{(a,T_u)}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{Q}_{3,2}^{(b,T_u,1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{3,2}^{(b,T_u,1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{3,2}^{(b,T_u,1)}$$

No. 16
$$\hat{\mathbb{G}}_3^{(A_g)}(1,-1)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{16} = \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{17}[\mathbb{T}_{1,0}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{M}_{2,1}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{18}[\mathbb{T}_{1,1}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{1,2}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{1,2}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{1,2}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3$$

No. 17
$$\hat{\mathbb{G}}_{3}^{(A_g)}(1,-1)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{17} = -\frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)]\otimes\mathbb{Y}_{25}[\mathbb{T}_{3,0}^{(b,T_u,1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{M}_{2,1}^{(a,T_u)}(1,-1)]\otimes\mathbb{Y}_{26}[\mathbb{T}_{3,1}^{(b,T_u,1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]\otimes\mathbb{Y}_{27}[\mathbb{T}_{3,2}^{(b,T_u,1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]\otimes\mathbb{Y}_{27}[\mathbb{T}_{3,2}^{(b,T_u,1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]\otimes\mathbb{Y}_{27}[\mathbb{T}_{3,2}^{(b,T_u,1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]\otimes\mathbb{Y}_{27}[\mathbb{T}_{3,2}^{(b,T_u,1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]\otimes\mathbb{Y}_{27}[\mathbb{T}_{3,2}^{(b,T_u,1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]\otimes\mathbb{Y}_{27}[\mathbb{T}_{3,2}^{(b,T_u,1)}]}{3} - \frac{\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]\otimes\mathbb{Y}_{27}[\mathbb{T}_{3,2}^{(b,T_u,1)}]}{3} - \frac{\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]\otimes\mathbb{Y}_{27}[\mathbb{M}_{2,2}^{(b,T_u,1)}]}{3} - \frac{\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u,1)}(1,-1)]\otimes\mathbb{Y}_{27}[\mathbb{M}_{2,2}^{(a,T_u,1)}]}{3} - \frac{\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u,1)}(1,-1)]\otimes\mathbb{Y}_{27}[\mathbb{M}_{2,2}^{(a,T_u,1)}(1,-1)]}{3} - \frac{\mathbb{X}_{16}[\mathbb{M}_{$$

No. 18
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,0)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{18} = \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{T}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{17}[\mathbb{T}_{1,0}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{18}[\mathbb{T}_{1,1}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{18}[\mathbb{T}_{1,1}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{T}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{1,2}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{T}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{1,2}^{(a,T_u)}(1,0)]}{3} + \frac{\sqrt{3}\mathbb$$

No. 19
$$\hat{\mathbb{Q}}_{4}^{(A_g)}(1,0)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{19} = \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{T}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{25}[\mathbb{T}_{3,0}^{(b,T_u,1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{18}[\mathbb{T}_{1,1}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{26}[\mathbb{T}_{3,1}^{(b,T_u,1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{T}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{27}[\mathbb{T}_{3,2}^{(b,T_u,1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{T}_{1,2}^{(b,T_u,1)}(1,0)] \otimes \mathbb{Y}_{27}[\mathbb{T}_{3,2}^{(b,T_u,1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{T}_{1,2}^{(b,T_u,1)}(1,0)] \otimes \mathbb{Y}_{27}[\mathbb{T}_{3,2}^{(b,T_u,1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{T}_{1,2}^{(b,T_u,1)}(1,0)] \otimes \mathbb{Y}_{27}[\mathbb{T}_{3,2}^{(b,T_u,1)}(1,0)]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{T}_{1,2}^{(b,T_u,1)}(1,0)] \otimes \mathbb{Y}_{27}[\mathbb{T}_{3,2}^{(b,T_u,1)}(1,0)]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{T}_{3,2}^{(b,T_u,1)}(1,0)] \otimes \mathbb{Y}_{27}[\mathbb{T}_{3,2}^{(b,T_u,1)}(1,0)]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{T}_{3,2}^{(b,T_u,1)}(1,0)] \otimes \mathbb{Y}_{27}[\mathbb{T}_{3,2}^{(b,T_u,1)}(1,0)]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{T}_{3,2}^{(b,T_u,1)}(1,0)]}{3} + \frac{\sqrt{3}\mathbb{$$

No. 20
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{20} = \frac{\sqrt{3}\mathbb{X}_{20}[\mathbb{T}_{1,0}^{(a,T_u)}] \otimes \mathbb{Y}_{17}[\mathbb{T}_{1,0}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{T}_{1,1}^{(a,T_u)}] \otimes \mathbb{Y}_{18}[\mathbb{T}_{1,1}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{T}_{1,2}^{(a,T_u)}] \otimes \mathbb{Y}_{19}[\mathbb{T}_{1,2}^{(b,T_u)}]}{3}$$

No. 21
$$\hat{\mathbb{Q}}_4^{(A_g)}$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{21} = \frac{\sqrt{3}\mathbb{X}_{20}[\mathbb{T}_{1,0}^{(a,T_u)}] \otimes \mathbb{Y}_{25}[\mathbb{T}_{3,0}^{(b,T_u,1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{T}_{1,1}^{(a,T_u)}] \otimes \mathbb{Y}_{26}[\mathbb{T}_{3,1}^{(b,T_u,1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{T}_{1,2}^{(a,T_u)}] \otimes \mathbb{Y}_{27}[\mathbb{T}_{3,2}^{(b,T_u,1)}]}{3}$$

No. 22
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{22} = \mathbb{X}_{23}[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A_g)}]$$

No. 23
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{23} = \mathbb{X}_{24}[\mathbb{Q}_0^{(a,A_g)}(1,1)] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A_g)}]$$

No. 24
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{24} = \frac{\sqrt{5}\mathbb{X}_{25}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_{8}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{5} + \frac{\sqrt{5}\mathbb{X}_{26}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_{9}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{5} + \frac{\sqrt{5}\mathbb{X}_{27}[\mathbb{Q}_{2,0}^{(a,T_g)}] \otimes \mathbb{Y}_{10}[\mathbb{Q}_{2,0}^{(b,T_g)}]}{5} + \frac{\sqrt{5}\mathbb{X}_{28}[\mathbb{Q}_{2,1}^{(a,T_g)}] \otimes \mathbb{Y}_{11}[\mathbb{Q}_{2,1}^{(b,T_g)}]}{5} + \frac{\sqrt{5}\mathbb{X}_{29}[\mathbb{Q}_{2,2}^{(a,T_g)}] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(b,T_g)}]}{5} + \frac{\sqrt{5}\mathbb{X}_{29}[\mathbb{Q}_{2,1}^{(a,T_g)}] \otimes \mathbb{Y}_{11}[\mathbb{Q}_{2,1}^{(b,T_g)}]}{5} + \frac{\sqrt{5}\mathbb{X}_{29}[\mathbb{Q}_{2,1}^{(b,T_g)}] \otimes \mathbb{Y}_{11}[\mathbb{Q}_{2,1}^{(b,T_g)}]}{5} + \frac{\sqrt{5}\mathbb{X}_{29}[\mathbb{Q}_{2,1}^{(b,T_g)}]}{5} + \frac{\sqrt{5}\mathbb{X}_{29}[\mathbb{Q}_{2,1}^{(b,T_g)}]$$

No. 25
$$\hat{\mathbb{G}}_{3}^{(A_g)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{25} = \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_{9}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_{8}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2}$$

No. 26
$$\hat{\mathbb{Q}}_{4}^{(A_g)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{26} = \frac{\sqrt{30} \mathbb{X}_{25}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_{8}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{10} + \frac{\sqrt{30} \mathbb{X}_{26}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_{9}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{10} - \frac{\sqrt{30} \mathbb{X}_{27}[\mathbb{Q}_{2,0}^{(a,T_g)}] \otimes \mathbb{Y}_{10}[\mathbb{Q}_{2,0}^{(b,T_g)}]}{15} - \frac{\sqrt{30} \mathbb{X}_{29}[\mathbb{Q}_{2,2}^{(a,T_g)}] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(b,T_g)}]}{15} - \frac{\sqrt{30} \mathbb{X}_{29}[\mathbb{Q}_{2,2}^{(b,T_g)}] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(b,T_g)}]}{15} - \frac{\sqrt{30} \mathbb{X}_{29}[\mathbb{Q}_{2,2}^{(b,T_g)}]}{15} - \frac{\sqrt{30}$$

No. 27
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{27} = \frac{\sqrt{5}\mathbb{X}_{30}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{8}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{5} + \frac{\sqrt{5}\mathbb{X}_{31}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{9}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{5} + \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{Q}_{2,0}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{Q}_{2,0}^{(b,T_g)}]}{5} + \frac{\sqrt{5}\mathbb{X}_{34}[\mathbb{Q}_{2,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(b,T_g)}]}{5} + \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{Q}_{2,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(b,T_g)}]}{5} + \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{Q}_{2,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(b,T_g)}]}{5} + \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{Q}_{2,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(a,T_g)}(1,-1)]}{5} + \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{Q}_{2,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(a,T_g)}(1,-1)]}{5$$

No. 28
$$\hat{\mathbb{G}}_3^{(A_g)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{28} = \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{9}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{31}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{8}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2}$$

No. 29
$$\hat{\mathbb{Q}}_4^{(A_g)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{29} = \frac{\sqrt{30}\mathbb{X}_{30}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{8}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{10} + \frac{\sqrt{30}\mathbb{X}_{31}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{9}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{10} - \frac{\sqrt{30}\mathbb{X}_{32}[\mathbb{Q}_{2,0}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{Q}_{2,0}^{(b,T_g)}]}{15} - \frac{\sqrt{30}\mathbb{X}_{32}[\mathbb{Q}_{2,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(b,T_g)}]}{15} - \frac{\sqrt{30}\mathbb{X}_{32}[\mathbb{Q}_{2,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(a,T_g)}]}{15} - \frac{\sqrt{30}\mathbb{X}_{32}[\mathbb{Q}_{2,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(a,T_g)}]}{15} - \frac{\sqrt{30}\mathbb{X}_{32}[\mathbb{Q}_{2,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(a,T_g)}]}{15} - \frac{\sqrt{30}\mathbb{X}_{32}[\mathbb{Q}_{2,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(a,T_g)}}{15} - \frac{\sqrt{30}\mathbb{X}_{32}[\mathbb{Q}_{2,2}^{(a,T_g)}]}{15} - \frac{\sqrt{30}$$

No. 30
$$\hat{\mathbb{G}}_3^{(A_g)}(1,0)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{30} = \frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{G}_{1,0}^{(a,T_g)}(1,0)] \otimes \mathbb{Y}_{10}[\mathbb{Q}_{2,0}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{36}[\mathbb{G}_{1,1}^{(a,T_g)}(1,0)] \otimes \mathbb{Y}_{11}[\mathbb{Q}_{2,1}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{G}_{1,2}^{(a,T_g)}(1,0)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{Q}_{1,2}^{(a,T_g)}(1,0)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{Q}_{1,2}^{(b,T_g)}(1,0)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{Q}_{1,2}^{(b,T_g)}(1,0)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{Q}_{1,2}^{(b,T_g)}(1,0)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{1,2}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{Q}_{1,2}^{(b,T_g)}($$

No. 31
$$\hat{\mathbb{G}}_3^{(A_g)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{31} = \frac{\sqrt{3}\mathbb{X}_{38}[\mathbb{M}_{1,0}^{(a,T_g)}] \otimes \mathbb{Y}_{22}[\mathbb{T}_{2,0}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{39}[\mathbb{M}_{1,1}^{(a,T_g)}] \otimes \mathbb{Y}_{23}[\mathbb{T}_{2,1}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{40}[\mathbb{M}_{1,2}^{(a,T_g)}] \otimes \mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{40}[\mathbb{M}_{1,2}^{(a,T_g)}] \otimes \mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{40}[\mathbb{M}_{1,2}^{(a,T_g)}] \otimes \mathbb{Y}_{24}[\mathbb{M}_{1,2}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{40}[\mathbb{M}_{1,2}^{(b,T_g)}]}{3} + \frac{\sqrt$$

No. 32
$$\hat{\mathbb{G}}_{3}^{(A_g)}(1,1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{32} = \frac{\sqrt{3}\mathbb{X}_{41}[\mathbb{M}_{1,0}^{(a,T_g)}(1,1)] \otimes \mathbb{Y}_{22}[\mathbb{T}_{2,0}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{42}[\mathbb{M}_{1,1}^{(a,T_g)}(1,1)] \otimes \mathbb{Y}_{23}[\mathbb{T}_{2,1}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{43}[\mathbb{M}_{1,2}^{(a,T_g)}(1,1)] \otimes \mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{43}[\mathbb{M}_{1,2}^{(a,T_g)}(1,1)] \otimes \mathbb{Y}_{24}[\mathbb{M}_{1,2}^{(b,T_g)}(1,1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{43}[\mathbb{M}_{1,2}^{(a,T_g)}(1,1)] \otimes \mathbb{Y}_{24}[\mathbb{M}_{1,2}^{(a,T_g)}(1,1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{43}[\mathbb{M}_{1,2}^{(a,T_g)}(1,1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{43}[\mathbb{M}_{1,2}^{(a,T_g)}(1,1)$$

No. 33
$$\hat{\mathbb{G}}_3^{(A_g)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{33} = \frac{\sqrt{3}\mathbb{X}_{44}[\mathbb{M}_{1,0}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{22}[\mathbb{T}_{2,0}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{45}[\mathbb{M}_{1,1}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{23}[\mathbb{T}_{2,1}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{46}[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{46}[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{46}[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_$$

No. 34
$$\hat{\mathbb{G}}_3^{(A_g)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{34} = \mathbb{X}_{56} [\mathbb{M}_3^{(a,A_g)}(1,-1)] \otimes \mathbb{Y}_{16} [\mathbb{T}_0^{(b,A_g)}]$$

No. 35
$$\hat{\mathbb{G}}_{3}^{(A_g)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{35} = -\frac{\sqrt{3}\mathbb{X}_{47}[\mathbb{M}_{3,0}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{22}[\mathbb{T}_{2,0}^{(b,T_g)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{48}[\mathbb{M}_{3,1}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{23}[\mathbb{T}_{2,1}^{(b,T_g)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{49}[\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{49}[\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)]\otimes\mathbb{$$

No. 36
$$\hat{\mathbb{Q}}_{4}^{(A_g)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{36} = -\frac{\sqrt{3}\mathbb{X}_{50}[\mathbb{M}_{3,0}^{(a,T_g,2)}(1,-1)]\otimes\mathbb{Y}_{22}[\mathbb{T}_{2,0}^{(b,T_g)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{51}[\mathbb{M}_{3,1}^{(a,T_g,2)}(1,-1)]\otimes\mathbb{Y}_{23}[\mathbb{T}_{2,1}^{(b,T_g)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{52}[\mathbb{M}_{3,2}^{(a,T_g,2)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g)}]}{3} - \frac{\mathbb{X}_{52}[\mathbb{M}_{3,2}^{(a,T_g,2)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g)}]}{3} - \frac{\mathbb{X}_{52}[\mathbb{M}_{3,2}^{(a,T_g,2)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g,2)}]}{3} - \frac{\mathbb{X}_{52}[\mathbb{M}_{3,2}^{(a,T_g,2)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g,2)}]}{3} - \frac{\mathbb{X}_{52}[\mathbb{M}_{3,2}^{(b,T_g,2)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g,2)}]}{3} - \frac{\mathbb{X}_{52}[\mathbb{M}_{3,2}^{(b,T_g,2)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{M}_{3,2}^{(b,T_g,2)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g,2)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g,2)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g,2)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g,2)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g,2)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g,2)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g,2)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g,2)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g,2)}(1,-1)]\otimes\mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g,2)}(1,-1)]\otimes\mathbb{Y}_{24$$

No. 37
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,0)$$
 [M₃, B₁]

$$\begin{split} \hat{\mathbb{Z}}_{37} &= \frac{\sqrt{5}\mathbb{X}_{53}[\mathbb{T}_{2,0}^{(a,T_g)}(1,0)] \otimes \mathbb{Y}_{22}[\mathbb{T}_{2,0}^{(b,T_g)}]}{5} + \frac{\sqrt{5}\mathbb{X}_{54}[\mathbb{T}_{2,1}^{(a,T_g)}(1,0)] \otimes \mathbb{Y}_{23}[\mathbb{T}_{2,1}^{(b,T_g)}]}{5} + \frac{\sqrt{5}\mathbb{X}_{55}[\mathbb{T}_{2,2}^{(a,T_g)}(1,0)] \otimes \mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g)}]}{5} \\ &+ \frac{\sqrt{5}\mathbb{X}_{57}[\mathbb{T}_{2,0}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{20}[\mathbb{T}_{2,0}^{(b,E_g)}]}{5} + \frac{\sqrt{5}\mathbb{X}_{58}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{21}[\mathbb{T}_{2,1}^{(b,E_g)}]}{5} \end{split}$$

No. 38
$$\hat{\mathbb{G}}_3^{(A_g)}(1,0)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{38} = \frac{\sqrt{2}\mathbb{X}_{57}[\mathbb{T}_{2,0}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{21}[\mathbb{T}_{2,1}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{58}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{20}[\mathbb{T}_{2,0}^{(b,E_g)}]}{2}$$

No. 39
$$\hat{\mathbb{Q}}_{4}^{(A_g)}(1,0)$$
 [M₃, B₁]

$$\begin{split} \hat{\mathbb{Z}}_{39} &= -\frac{\sqrt{30}\mathbb{X}_{53}[\mathbb{T}_{2,0}^{(a,T_g)}(1,0)] \otimes \mathbb{Y}_{22}[\mathbb{T}_{2,0}^{(b,T_g)}]}{15} - \frac{\sqrt{30}\mathbb{X}_{54}[\mathbb{T}_{2,1}^{(a,T_g)}(1,0)] \otimes \mathbb{Y}_{23}[\mathbb{T}_{2,1}^{(b,T_g)}]}{15} - \frac{\sqrt{30}\mathbb{X}_{55}[\mathbb{T}_{2,2}^{(a,T_g)}(1,0)] \otimes \mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g)}]}{15} \\ &+ \frac{\sqrt{30}\mathbb{X}_{57}[\mathbb{T}_{2,0}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{20}[\mathbb{T}_{2,0}^{(b,E_g)}]}{10} + \frac{\sqrt{30}\mathbb{X}_{58}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{21}[\mathbb{T}_{2,1}^{(b,E_g)}]}{10} - \frac{\sqrt{30}\mathbb{X}_{55}[\mathbb{T}_{2,2}^{(a,T_g)}(1,0)] \otimes \mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g)}]}{15} \\ \end{split}$$

No. 40
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{40} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_{28}[\mathbb{Q}_0^{(b,A_g)}]$$

No. 41
$$\hat{\mathbb{G}}_3^{(A_g)}(1,-1)$$
 [M₂, B₂]

$$\hat{\mathbb{Z}}_{41} = \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{31}[\mathbb{T}_{1,0}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{M}_{2,1}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{32}[\mathbb{T}_{1,1}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{33}[\mathbb{T}_{1,2}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{33}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{33}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{33}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,$$

No. 42
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,0)$$
 [M₂, B₂]

$$\hat{\mathbb{Z}}_{42} = \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{T}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{31}[\mathbb{T}_{1,0}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{18}[\mathbb{T}_{1,1}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{32}[\mathbb{T}_{1,1}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{T}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{33}[\mathbb{T}_{1,2}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{T}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{33}[\mathbb{T}_{1,2}^{(a,T_u)}(1,0)]}{3} + \frac{\sqrt{3}\mathbb$$

No. 43
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₂, B₂]

$$\hat{\mathbb{Z}}_{43} = \frac{\sqrt{3}\mathbb{X}_{20}[\mathbb{T}_{1,0}^{(a,T_u)}] \otimes \mathbb{Y}_{31}[\mathbb{T}_{1,0}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{T}_{1,1}^{(a,T_u)}] \otimes \mathbb{Y}_{32}[\mathbb{T}_{1,1}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{T}_{1,2}^{(a,T_u)}] \otimes \mathbb{Y}_{33}[\mathbb{T}_{1,2}^{(b,T_u)}]}{3}$$

No. 44
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{44} = \mathbb{X}_{23}[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_{28}[\mathbb{Q}_0^{(b,A_g)}]$$

No. 45
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{45} = \mathbb{X}_{24}[\mathbb{Q}_0^{(a,A_g)}(1,1)] \otimes \mathbb{Y}_{28}[\mathbb{Q}_0^{(b,A_g)}]$$

No. 46
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{46} = \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_{29}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_{30}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2}$$

No. 47
$$\hat{\mathbb{G}}_3^{(A_g)}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{47} = \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_{30}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_{29}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2}$$

No. 48
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,-1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{48} = \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{29}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{31}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{30}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2}$$

No. 49
$$\hat{\mathbb{G}}_3^{(A_g)}(1,-1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{49} = \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{30}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{31}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{29}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2}$$

No. 50
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{50} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_{34}[\mathbb{Q}_0^{(b,A_g)}]$$

No. 51
$$\hat{\mathbb{G}}_3^{(A_g)}(1,-1)$$
 [M₂, B₃]

$$\hat{\mathbb{Z}}_{51} = \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{37}[\mathbb{T}_{1,0}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{M}_{2,1}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{38}[\mathbb{T}_{1,1}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{39}[\mathbb{T}_{1,2}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{39}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{39}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3$$

No. 52
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,0)$$
 [M₂, B₃]

$$\hat{\mathbb{Z}}_{52} = \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{T}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{37}[\mathbb{T}_{1,0}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{18}[\mathbb{T}_{1,1}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{38}[\mathbb{T}_{1,1}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{T}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{39}[\mathbb{T}_{1,2}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{T}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{39}[\mathbb{T}_{1,2}^{(a,T_u)}(1,0)]}{3} + \frac{\sqrt{3}\mathbb$$

No. 53
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₂, B₃]

$$\hat{\mathbb{Z}}_{53} = \frac{\sqrt{3}\mathbb{X}_{20}[\mathbb{T}_{1,0}^{(a,T_u)}] \otimes \mathbb{Y}_{37}[\mathbb{T}_{1,0}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{T}_{1,1}^{(a,T_u)}] \otimes \mathbb{Y}_{38}[\mathbb{T}_{1,1}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{T}_{1,2}^{(a,T_u)}] \otimes \mathbb{Y}_{39}[\mathbb{T}_{1,2}^{(b,T_u)}]}{3}$$

No. 54
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, B₃]

$$\hat{\mathbb{Z}}_{54} = \mathbb{X}_{23}[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_{34}[\mathbb{Q}_0^{(b,A_g)}]$$

No. 55
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,1)$$
 [M₃, B₃]

$$\hat{\mathbb{Z}}_{55} = \mathbb{X}_{24}[\mathbb{Q}_0^{(a,A_g)}(1,1)] \otimes \mathbb{Y}_{34}[\mathbb{Q}_0^{(b,A_g)}]$$

No. 56
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, B₃]

$$\hat{\mathbb{Z}}_{56} = \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_{35}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_{36}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2}$$

No. 57
$$\hat{\mathbb{G}}_{3}^{(A_g)}$$
 [M₃, B₃]

$$\hat{\mathbb{Z}}_{57} = \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_{36}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_{35}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2}$$

No. 58
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,-1)$$
 [M₃, B₃]

$$\hat{\mathbb{Z}}_{58} = \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{35}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{31}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{36}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2}$$

No. 59
$$\hat{\mathbb{G}}_{3}^{(A_g)}(1,-1)$$
 [M₃, B₃]

$$\hat{\mathbb{Z}}_{59} = \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{36}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{31}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{35}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2}$$

No. 60
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{60} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_{40}[\mathbb{Q}_0^{(b,A_g)}]$$

No. 61
$$\hat{\mathbb{G}}_3^{(A_g)}(1,-1)$$
 [M₂, B₄]

$$\hat{\mathbb{Z}}_{61} = \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{43}[\mathbb{T}_{1,0}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{M}_{2,1}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{44}[\mathbb{T}_{1,1}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{45}[\mathbb{T}_{1,2}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{45}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{45}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3$$

No. 62
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,0)$$
 [M₂, B₄]

$$\hat{\mathbb{Z}}_{62} = \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{T}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{43}[\mathbb{T}_{1,0}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{18}[\mathbb{T}_{1,1}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{44}[\mathbb{T}_{1,1}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{T}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{45}[\mathbb{T}_{1,2}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{T}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{45}[\mathbb{T}_{1,2}^{(a,T_u)}(1,0)]}{3} + \frac{\sqrt{3}\mathbb$$

No. 63
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₂, B₄]

$$\hat{\mathbb{Z}}_{63} = \frac{\sqrt{3}\mathbb{X}_{20}[\mathbb{T}_{1,0}^{(a,T_u)}] \otimes \mathbb{Y}_{43}[\mathbb{T}_{1,0}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{T}_{1,1}^{(a,T_u)}] \otimes \mathbb{Y}_{44}[\mathbb{T}_{1,1}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{T}_{1,2}^{(a,T_u)}] \otimes \mathbb{Y}_{45}[\mathbb{T}_{1,2}^{(b,T_u)}]}{3}$$

No. 64
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, B₄]

$$\hat{\mathbb{Z}}_{64} = \mathbb{X}_{23}[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_{40}[\mathbb{Q}_0^{(b,A_g)}]$$

No. 65
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,1)$$
 [M₃, B₄]

$$\hat{\mathbb{Z}}_{65} = \mathbb{X}_{24}[\mathbb{Q}_0^{(a,A_g)}(1,1)] \otimes \mathbb{Y}_{40}[\mathbb{Q}_0^{(b,A_g)}]$$

No. 66
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, B₄]

$$\hat{\mathbb{Z}}_{66} = \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_{41}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_{42}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2}$$

No. 67
$$\hat{\mathbb{G}}_{3}^{(A_g)}$$
 [M₃, B₄]

$$\hat{\mathbb{Z}}_{67} = \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_{42}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_{41}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2}$$

No. 68
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,-1)$$
 [M₃, B₄]

$$\hat{\mathbb{Z}}_{68} = \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{41}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{31}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{42}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2}$$

No. 69
$$\hat{\mathbb{G}}_3^{(A_g)}(1,-1)$$
 [M₃, B₄]

$$\hat{\mathbb{Z}}_{69} = \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{42}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{31}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{41}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2}$$

Table 5: Atomic SAMB group.

group	bra	ket
M_1	$(s,\uparrow),(s,\downarrow)$	$(s,\uparrow),(s,\downarrow)$
M_2	$(s,\uparrow),(s,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$
M_3	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$

Table 6: Atomic SAMB.

symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_g)}$	M_1	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{X}_2	$\mathbb{M}_{1,0}^{(a,T_g)}(1,-1)$	M_1	$\begin{pmatrix} 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & 0 \end{pmatrix}$
\mathbb{X}_3	$\mathbb{M}_{1,1}^{(a,T_g)}(1,-1)$	M_1	$egin{pmatrix} 0 & -rac{\sqrt{2}i}{2} \ rac{\sqrt{2}i}{2} & 0 \end{pmatrix}$
\mathbb{X}_4	$\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)$	M_1	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0\\ 0 & -\frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{X}_5	$\mathbb{Q}_{1,0}^{(a,T_u)}$	M_2	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_6	$\mathbb{Q}_{1,1}^{(a,T_u)}$	M_2	$ \begin{pmatrix} 0 & -\frac{\sqrt{2}}{2} \end{pmatrix} $ $ \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{2} \end{pmatrix} $ $ \begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{2} \end{pmatrix} $
\mathbb{X}_7	$\mathbb{Q}_{1,2}^{(a,T_u)}$	M_2	$egin{pmatrix} 0 & 0 & 0 & 0 & rac{\sqrt{2}}{2} & 0 \ 0 & 0 & 0 & 0 & rac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{X}_8	$\mathbb{Q}_{1,0}^{(a,T_u)}(1,0)$	M_2	$\left(egin{matrix} 0 & 0 & -rac{1}{2} & 0 & 0 & rac{1}{2} \ 0 & 0 & 0 & rac{i}{2} & -rac{1}{2} & 0 \ \end{pmatrix} ight)$
\mathbb{X}_9	$\mathbb{Q}_{1,1}^{(a,T_u)}(1,0)$	M_2	$egin{pmatrix} rac{i}{2} & 0 & 0 & 0 & 0 & -rac{i}{2} \ 0 & -rac{i}{2} & 0 & 0 & -rac{i}{2} & 0 \end{pmatrix}$
\mathbb{X}_{10}	$\mathbb{Q}_{1,2}^{(a,T_u)}(1,0)$	M_2	$egin{pmatrix} 0 & -rac{1}{2} & 0 & rac{1}{2} & 0 & 0 \ rac{1}{2} & 0 & rac{i}{2} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{11}	$\mathbb{G}_{2,0}^{(a,T_u)}(1,-1)$	M_2	$\begin{pmatrix} 0 & 0 & \frac{i}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & -\frac{i}{2} & -\frac{1}{2} & 0 \end{pmatrix}$
\mathbb{X}_{12}	$\mathbb{G}_{2,1}^{(a,T_u)}(1,-1)$	M_2	$\left(egin{array}{cccccc} rac{\dot{ au}}{2} & 0 & 0 & 0 & 0 & rac{\dot{ au}}{2} \ 0 & -rac{\dot{ au}}{2} & 0 & 0 & rac{\dot{ au}}{2} & 0 \end{array} ight)$
\mathbb{X}_{13}	$\mathbb{G}_{2,2}^{(a,T_u)}(1,-1)$	M_2	$\begin{pmatrix} 0 & \frac{1}{2} & 0 & \frac{i}{2} & 0 & 0 \\ -\frac{1}{2} & 0 & \frac{i}{2} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{14}	$\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)$	M_2	$\left(egin{array}{ccccc} 0 & 0 & rac{1}{2} & 0 & 0 & -rac{\imath}{2} \ 0 & 0 & 0 & -rac{1}{2} & rac{\imath}{2} & 0 \end{array} ight)$
\mathbb{X}_{15}	$\mathbb{M}_{2,1}^{(a,T_u)}(1,-1)$	M_2	$egin{pmatrix} rac{1}{2} & 0 & 0 & 0 & 0 & rac{1}{2} \ 0 & -rac{1}{2} & 0 & 0 & rac{1}{2} & 0 \end{pmatrix}$
X ₁₆	$\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)$	M_2	$\begin{pmatrix} 0 & -\frac{i}{2} & 0 & \frac{1}{2} & 0 & 0 \\ \frac{i}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \end{pmatrix}$

Table 6

======================================	4		£ ₀
symbol	type	group	form
\mathbb{X}_{17}	$\mathbb{T}_{1,0}^{(a,T_u)}(1,0)$	M_2	$\begin{pmatrix} 0 & 0 & -\frac{1}{2} & 0 & 0 & -\frac{i}{2} \\ 0 & 0 & 0 & \frac{1}{2} & \frac{i}{2} & 0 \end{pmatrix}$
\mathbb{X}_{18}	$\mathbb{T}_{1,1}^{(a,T_u)}(1,0)$	M_2	$\begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 & -\frac{1}{2} \\ 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$
\mathbb{X}_{19}	$\mathbb{T}_{1,2}^{(a,T_u)}(1,0)$	M_2	$\begin{pmatrix} 0 & \frac{i}{2} & 0 & \frac{1}{2} & 0 & 0 \\ -\frac{i}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{2}i}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}i}{2} & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{20}	$\mathbb{T}_{1,0}^{(a,T_u)}$	M_2	$\begin{pmatrix} \frac{\sqrt{2}i^{2}}{2} & 0 & 0 & 0 & 0 & 0\\ 0 & \frac{\sqrt{2}i}{2} & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{21}	$\mathbb{T}_{1,1}^{(a,T_u)}$	M_2	$\begin{pmatrix} 0 & -\frac{1}{2} & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & \frac{i}{2} & 0 & \frac{1}{2} & 0 & 0 \\ -\frac{i}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} \frac{\sqrt{2}i}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}i}{2} & 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & \frac{\sqrt{2}i}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{2}i}{2} & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{2} & 0 & 0 \end{pmatrix}$
\mathbb{X}_{22}	$\mathbb{T}_{1,2}^{(a,T_u)}$	M_2	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{2} \end{pmatrix}$
\mathbb{X}_{23}	$\mathbb{Q}_0^{(a,A_g)}$	$ m M_3$	$\begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \end{pmatrix}$
\mathbb{X}_{24}	$\mathbb{Q}_0^{(a,A_g)}(1,1)$	$ m M_3$	$ \begin{pmatrix} 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}}{6} & 0 \\ \frac{\sqrt{3}i}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & -\frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \\ \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \end{pmatrix} $
\mathbb{X}_{25}	$\mathbb{Q}_{2,0}^{(a,E_g)}$	$ m M_3$	$\begin{pmatrix} -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & 0\\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0\\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{3} & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{3} \end{pmatrix}$

continued ...

Table 6

Table 6			
symbol	type	group	form
\mathbb{X}_{26}	$\mathbb{Q}_{2,1}^{(a,E_g)}$	$ m M_3$	$\begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
\mathbb{X}_{27}	$\mathbb{Q}_{2,0}^{(a,T_g)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{X}_{28}	$\mathbb{Q}_{2,1}^{(a,T_g)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
\mathbb{X}_{29}	$\mathbb{Q}_{2,2}^{(a,T_g)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$
X ₃₀	$\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & -\frac{\sqrt{6}}{12} \\ 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & \frac{\sqrt{6}}{12} & 0 \\ \frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{6}i}{12} \\ 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & \frac{\sqrt{6}i}{12} & 0 \\ 0 & \frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 \\ -\frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 & 0 \end{pmatrix}$

Table 6

Table 6			
symbol	type	group	form
X31	$\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)$	M_3	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & \frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{32}	$\mathbb{Q}_{2,0}^{(a,T_g)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}i}{4} & 0\\ 0 & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & -\frac{\sqrt{2}i}{4}\\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0\\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0\\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0\\ 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{33}	$\mathbb{Q}_{2,1}^{(a,T_g)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0\\ 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0\\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4}\\ 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \end{pmatrix}$
\mathbb{X}_{34}	$\mathbb{Q}_{2,2}^{(a,T_g)}(1,-1)$	M_3	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{35}	$\mathbb{G}_{1,0}^{(a,T_g)}(1,0)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

Table 6

symbol	type	group	form
X36	$\mathbb{G}_{1,1}^{(a,T_g)}(1,0)$	M ₃	$\begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0\\ 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0\\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4}\\ 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \end{pmatrix}$
\mathbb{X}_{37}	$\mathbb{G}_{1,2}^{(a,T_g)}(1,0)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{38}	$\mathbb{M}_{1,0}^{(a,T_g)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{X}_{39}	$\mathbb{M}_{1,1}^{(a,T_g)}$	M_3	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{i}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{i}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
\mathbb{X}_{40}	$\mathbb{M}_{1,2}^{(a,T_g)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & -\frac{i}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{i}{2} & 0 & 0 \\ \frac{i}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{i}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$

Table 6

Table 6			
symbol	type	group	form
\mathbb{X}_{41}	$\mathbb{M}_{1,0}^{(a,T_g)}(1,1)$	M_3	$ \begin{pmatrix} 0 & \frac{\sqrt{30}}{15} & 0 & -\frac{\sqrt{30}i}{20} & \frac{\sqrt{30}}{20} & 0\\ \frac{\sqrt{30}}{15} & 0 & \frac{\sqrt{30}i}{20} & 0 & 0 & -\frac{\sqrt{30}}{20}\\ 0 & -\frac{\sqrt{30}i}{20} & 0 & -\frac{\sqrt{30}}{30} & 0 & 0\\ \frac{\sqrt{30}i}{20} & 0 & -\frac{\sqrt{30}}{30} & 0 & 0 & 0\\ \frac{\sqrt{30}i}{20} & 0 & 0 & 0 & 0 & -\frac{\sqrt{30}}{30}\\ 0 & -\frac{\sqrt{30}}{20} & 0 & 0 & 0 & -\frac{\sqrt{30}}{30} & 0 \end{pmatrix} $
\mathbb{X}_{42}	$\mathbb{M}_{1,1}^{(a,T_g)}(1,1)$	$ m M_3$	$\begin{bmatrix} 0 & \frac{\sqrt{30}i}{30} & 0 & \frac{\sqrt{30}}{20} & 0 & 0\\ -\frac{\sqrt{30}i}{30} & 0 & \frac{\sqrt{30}}{20} & 0 & 0 & 0\\ 0 & \frac{\sqrt{30}}{20} & 0 & -\frac{\sqrt{30}i}{15} & \frac{\sqrt{30}}{20} & 0\\ \frac{\sqrt{30}}{20} & 0 & \frac{\sqrt{30}i}{15} & 0 & 0 & -\frac{\sqrt{30}i}{20}\\ 0 & 0 & \frac{\sqrt{30}}{20} & 0 & 0 & \frac{\sqrt{30}i}{30}\\ 0 & 0 & 0 & -\frac{\sqrt{30}}{20} & -\frac{\sqrt{30}i}{30} & 0 \end{bmatrix}$
\mathbb{X}_{43}	$\mathbb{M}_{1,2}^{(a,T_g)}(1,1)$	$ m M_3$	$ \begin{pmatrix} -\frac{\sqrt{30}}{30} & 0 & 0 & 0 & \frac{\sqrt{30}}{20} \\ 0 & \frac{\sqrt{30}}{30} & 0 & 0 & \frac{\sqrt{30}}{20} & 0 \\ 0 & 0 & -\frac{\sqrt{30}}{30} & 0 & 0 & -\frac{\sqrt{30}i}{20} \\ 0 & 0 & 0 & \frac{\sqrt{30}}{30} & \frac{\sqrt{30}i}{20} & 0 \\ 0 & \frac{\sqrt{30}}{20} & 0 & -\frac{\sqrt{30}i}{20} & \frac{\sqrt{30}}{15} & 0 \\ \frac{\sqrt{30}}{20} & 0 & \frac{\sqrt{30}i}{20} & 0 & 0 & -\frac{\sqrt{30}}{15} \end{pmatrix} $
\mathbb{X}_{44}	$\mathbb{M}_{1,0}^{(a,T_g)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \end{pmatrix}$
\mathbb{X}_{45}	$\mathbb{M}_{1,1}^{(a,T_g)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0\\ \frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0\\ 0 & 0 & \frac{\sqrt{6}i}{6} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}i}{6}\\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & 0 \end{pmatrix}$

Table 6

	T		
symbol	type	group	form
X46	$\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)$	$ m M_3$	$\begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} \end{pmatrix}$
\mathbb{X}_{47}	$\mathbb{M}_{3,0}^{(a,T_g,1)}(1,-1)$	$ m M_3$	$ \begin{pmatrix} 0 & \frac{\sqrt{5}}{5} & 0 & \frac{\sqrt{5}i}{10} & -\frac{\sqrt{5}}{10} & 0\\ \frac{\sqrt{5}}{5} & 0 & -\frac{\sqrt{5}i}{10} & 0 & 0 & \frac{\sqrt{5}}{10}\\ 0 & \frac{\sqrt{5}i}{10} & 0 & -\frac{\sqrt{5}}{10} & 0 & 0\\ -\frac{\sqrt{5}i}{10} & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & 0\\ -\frac{\sqrt{5}}{10} & 0 & 0 & 0 & -\frac{\sqrt{5}}{10}\\ 0 & \frac{\sqrt{5}}{10} & 0 & 0 & -\frac{\sqrt{5}}{10} & 0 \end{pmatrix} $
\mathbb{X}_{48}	$\mathbb{M}_{3,1}^{(a,T_g,1)}(1,-1)$	$ m M_3$	$\begin{bmatrix} -\frac{\sqrt{5}i}{10} & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & 0\\ 0 & -\frac{\sqrt{5}}{10} & 0 & -\frac{\sqrt{5}i}{5} & -\frac{\sqrt{5}}{10} & 0\\ -\frac{\sqrt{5}}{10} & 0 & \frac{\sqrt{5}i}{5} & 0 & 0 & \frac{\sqrt{5}i}{10}\\ 0 & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & \frac{\sqrt{5}i}{10}\\ 0 & 0 & 0 & \frac{\sqrt{5}}{10} & -\frac{\sqrt{5}i}{10} & 0 \end{bmatrix}$
\mathbb{X}_{49}	$\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)$	$ m M_3$	$\begin{pmatrix} -\frac{\sqrt{5}}{10} & 0 & 0 & 0 & -\frac{\sqrt{5}}{10} \\ 0 & \frac{\sqrt{5}}{10} & 0 & 0 & -\frac{\sqrt{5}}{10} & 0 \\ 0 & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & \frac{\sqrt{5}i}{10} \\ 0 & 0 & 0 & \frac{\sqrt{5}}{10} & -\frac{\sqrt{5}i}{10} & 0 \\ 0 & -\frac{\sqrt{5}}{10} & 0 & \frac{\sqrt{5}i}{10} & \frac{\sqrt{5}}{5} & 0 \\ -\frac{\sqrt{5}}{10} & 0 & -\frac{\sqrt{5}i}{10} & 0 & 0 & -\frac{\sqrt{5}}{5} \end{pmatrix}$
X ₅₀	$\mathbb{M}_{3,0}^{(a,T_g,2)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}}{6} & 0 \\ 0 & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 \\ \frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & 0 \\ -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{6} \\ 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 \end{pmatrix}$

Table 6

Table 6			
symbol	type	group	form
\mathbb{X}_{51}	$\mathbb{M}_{3,1}^{(a,T_g,2)}(1,-1)$	M_3	$\begin{pmatrix} 0 & \frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & 0 & 0\\ -\frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0\\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}}{6} & 0\\ -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & -\frac{\sqrt{3}}{6}\\ 0 & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}i}{6}\\ 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & \frac{\sqrt{3}i}{6} & 0 \end{pmatrix}$
\mathbb{X}_{52}	$\mathbb{M}_{3,2}^{(a,T_g,2)}(1,-1)$	M_3	$\begin{pmatrix} \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \\ \frac{\sqrt{3}}{6} & 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{53}	$\mathbb{T}_{2,0}^{(a,T_g)}(1,0)$	M_3	$ \begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{6}i}{12} & \frac{\sqrt{6}}{12} & 0\\ 0 & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 & -\frac{\sqrt{6}}{12}\\ 0 & \frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{6} & 0 & 0\\ -\frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0\\ \frac{\sqrt{6}}{6} & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} \end{pmatrix} $
\mathbb{X}_{54}	$\mathbb{T}_{2,1}^{(a,T_g)}(1,0)$	$ m M_3$	$\begin{pmatrix} 0 & \frac{\sqrt{6}i}{6} & 0 & \frac{\sqrt{6}}{12} & 0 & 0\\ -\frac{\sqrt{6}i}{6} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 & 0\\ 0 & \frac{\sqrt{6}}{12} & 0 & 0 & -\frac{\sqrt{6}}{12} & 0\\ \frac{\sqrt{6}}{12} & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{12}\\ 0 & 0 & -\frac{\sqrt{6}}{12} & 0 & 0 & -\frac{\sqrt{6}i}{6}\\ 0 & 0 & 0 & \frac{\sqrt{6}}{12} & \frac{\sqrt{6}i}{6} & 0 \end{pmatrix}$
\mathbb{X}_{55}	$\mathbb{T}_{2,2}^{(a,T_g)}(1,0)$	$ m M_3$	$\begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{12} \\ 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}}{12} & 0 \\ 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}i}{12} \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}i}{12} & 0 \\ 0 & -\frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 \\ -\frac{\sqrt{6}}{12} & 0 & \frac{\sqrt{6}i}{12} & 0 & 0 & 0 \end{pmatrix}$

Table 6

symbol	type	group	form
X56	$M_3^{(a,A_g)}(1,-1)$	M ₃	$\begin{pmatrix} 0 & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & \frac{\sqrt{3}i}{6} & 0 \\ \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 \end{pmatrix}$
\mathbb{X}_{57}	$\mathbb{T}_{2,0}^{(a,E_g)}(1,0)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{58}	$\mathbb{T}_{2,1}^{(a,E_g)}(1,0)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}i}{12} \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}i}{12} & 0 \\ -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & \frac{\sqrt{6}}{12} & 0 \\ 0 & \frac{\sqrt{6}}{6} & 0 & 0 & \frac{\sqrt{6}}{12} & 0 \\ 0 & -\frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 \\ \frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 & 0 \end{pmatrix}$

Table 7: Cluster SAMB.

symbol	type	cluster	form
\mathbb{Y}_1	$\mathbb{Q}_0^{(s,A_g)}$	S_1	$\begin{pmatrix} \sqrt{3} & \sqrt{3} & \sqrt{3} \\ 3 & 3 & 3 \end{pmatrix}$
\mathbb{Y}_2	$\mathbb{Q}_{2,0}^{(s,E_g)}$	S_1	$\begin{pmatrix} -\frac{11\sqrt{6}}{42} & -\frac{\sqrt{6}}{21} & \frac{13\sqrt{6}}{42} \\ \left(\frac{5\sqrt{2}}{2} & -\frac{4\sqrt{2}}{2} & \frac{3\sqrt{2}}{2} \right) \end{pmatrix}$
\mathbb{Y}_3	$\mathbb{Q}_{2,1}^{(s,E_g)}$	S_1	$\begin{pmatrix} -\frac{11\sqrt{6}}{42} & -\frac{\sqrt{6}}{21} & \frac{13\sqrt{6}}{42} \\ \left(\frac{5\sqrt{2}}{14} & -\frac{4\sqrt{2}}{7} & \frac{3\sqrt{2}}{14} \right) \end{pmatrix}$
\mathbb{Y}_4	$\mathbb{Q}_0^{(b,A_g)}$	B_1	$\left(\frac{\sqrt{3}}{6} \frac{\sqrt{3}}{6} \right)$
\mathbb{Y}_5	$\mathbb{Q}_{1,0}^{(b,T_u)}$	B_1	$ \begin{pmatrix} \frac{3\sqrt{13}}{26} & -\frac{3\sqrt{13}}{26} & \frac{3\sqrt{13}}{26} & -\frac{3\sqrt{13}}{26} & 0 & 0 & 0 & \frac{\sqrt{13}}{13} & -\frac{\sqrt{13}}{13} & -\frac{\sqrt{13}}{13} \end{pmatrix} $
\mathbb{Y}_6	$\mathbb{Q}_{1,1}^{(b,T_u)}$	B_1	$ \begin{pmatrix} \frac{\sqrt{13}}{13} & -\frac{\sqrt{13}}{13} & -\frac{\sqrt{13}}{13} & \frac{\sqrt{13}}{13} & \frac{3\sqrt{13}}{26} & -\frac{3\sqrt{13}}{26} & -\frac{3\sqrt{13}}{26} & \frac{3\sqrt{13}}{26} & 0 & 0 & 0 \end{pmatrix} $

Table 7

symbol	type	cluster	form
\mathbb{Y}_7	$\mathbb{Q}_{1,2}^{(b,T_u)}$	B_1	$ \begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{13}}{13} & \frac{\sqrt{13}}{13} & -\frac{\sqrt{13}}{13} & -\frac{\sqrt{13}}{13} & \frac{3\sqrt{13}}{26} & -\frac{3\sqrt{13}}{26} & \frac{3\sqrt{13}}{26} & -\frac{3\sqrt{13}}{26} \end{pmatrix} $
\mathbb{Y}_8	$\mathbb{Q}_{2,0}^{(b,E_g)}$	B_1	$\left(-\frac{11\sqrt{6}}{84} -\frac{11\sqrt{6}}{84} -\frac{11\sqrt{6}}{84} -\frac{11\sqrt{6}}{84} -\frac{\sqrt{6}}{42} -\frac{\sqrt{6}}{42} -\frac{\sqrt{6}}{42} -\frac{\sqrt{6}}{42} \frac{13\sqrt{6}}{84} \frac{13\sqrt{6}}{84} \frac{13\sqrt{6}}{84} \frac{13\sqrt{6}}{84} \right)$
\mathbb{Y}_9	$\mathbb{Q}_{2,1}^{(b,E_g)}$	B_1	$\left(\frac{5\sqrt{2}}{28} \frac{5\sqrt{2}}{28} \frac{5\sqrt{2}}{28} \frac{5\sqrt{2}}{28} -\frac{2\sqrt{2}}{7} -\frac{2\sqrt{2}}{7} -\frac{2\sqrt{2}}{7} -\frac{2\sqrt{2}}{7} \frac{3\sqrt{2}}{28} \frac{3\sqrt{2}}{28} \frac{3\sqrt{2}}{28} \frac{3\sqrt{2}}{28} \right)$
\mathbb{Y}_{10}	$\mathbb{Q}_{2,0}^{(b,T_g)}$	B_1	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{Y}_{11}	$\mathbb{Q}_{2,1}^{(b,T_g)}$	B_1	$\left(egin{matrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & rac{1}{2} & rac{1}{2} & -rac{1}{2} & -rac{1}{2} \end{array} ight)$
\mathbb{Y}_{12}	$\mathbb{Q}_{2,2}^{(b,T_g)}$	B_1	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{13}	$\mathbb{Q}_{3,0}^{(b,T_u,1)}$	B_1	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{14}	$\mathbb{Q}_{3,1}^{(b,T_u,1)}$	B_1	$\left(-\frac{3\sqrt{13}}{26} \frac{3\sqrt{13}}{26} \frac{3\sqrt{13}}{26} -\frac{3\sqrt{13}}{26} \frac{\sqrt{13}}{13} -\frac{\sqrt{13}}{13} -\frac{\sqrt{13}}{13} \frac{\sqrt{13}}{13} 0 0 0 0\right)$
\mathbb{Y}_{15}	$\mathbb{Q}_{3,2}^{(b,T_u,1)}$	B_1	$\begin{pmatrix} 0 & 0 & 0 & -\frac{3\sqrt{13}}{3} & -\frac{3\sqrt{13}}{3} & \frac{3\sqrt{13}}{3} & \frac{\sqrt{13}}{3} & -\frac{\sqrt{13}}{3} & \frac{\sqrt{13}}{3} & -\frac{\sqrt{13}}{3} \end{pmatrix}$
\mathbb{Y}_{16}	$\mathbb{T}_0^{(b,A_g)}$	B_1	$\begin{pmatrix} \sqrt{3}i & -\sqrt{3}i & -$
\mathbb{Y}_{17}	$\mathbb{T}_{1,0}^{(b,T_u)}$	B_1	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{18}	$\mathbb{T}_{1,1}^{(b,T_u)}$	B_1	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{19}	$\mathbb{T}_{1,2}^{(b,T_u)}$	B_1	$ \begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{13}i}{13} & \frac{\sqrt{13}i}{13} & -\frac{\sqrt{13}i}{13} & -\frac{\sqrt{13}i}{13} & -\frac{3\sqrt{13}i}{26} & \frac{3\sqrt{13}i}{26} & -\frac{3\sqrt{13}i}{26} & \frac{3\sqrt{13}i}{26} \end{pmatrix} $
\mathbb{Y}_{20}	$\mathbb{T}_{2,0}^{(b,E_g)}$	B_1	
\mathbb{Y}_{21}	$\mathbb{T}_{2,1}^{(b,E_g)}$	B_1	$ \begin{pmatrix} 84 & 84 & 84 & 84 & 42 & 42 & 42 & 42 &$
\mathbb{Y}_{22}	$\mathbb{T}_{2,0}^{(b,T_g)}$	B_1	$\left(egin{matrix} 0 & 0 & 0 & rac{i}{2} & -rac{i}{2} & rac{i}{2} & -rac{i}{2} & 0 & 0 & 0 \end{array} ight)$
\mathbb{Y}_{23}	$\mathbb{T}_{2,1}^{(b,T_g)}$	B_1	$\left(egin{matrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & -rac{i}{2} & -rac{i}{2} & rac{i}{2} & rac{i}{2} \end{pmatrix} ight)$
\mathbb{Y}_{24}	$\mathbb{T}_{2,2}^{(b,T_g)}$	B_1	$\left(egin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{25}	$\mathbb{T}_{3,0}^{(b,T_u,1)}$	B_1	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{26}	$\mathbb{T}_{3,1}^{(b,T_u,1)}$	B_1	$ \left(-\frac{3\sqrt{13}i}{26} \frac{3\sqrt{13}i}{26} \frac{3\sqrt{13}i}{26} -\frac{3\sqrt{13}i}{26} \frac{\sqrt{13}i}{13} -\frac{\sqrt{13}i}{13} -\frac{\sqrt{13}i}{13} \frac{\sqrt{13}i}{13} 0 0 0 \right) $
\mathbb{Y}_{27}	$\mathbb{T}_{3,2}^{(b,T_u,1)}$	B_1	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{28}	$\mathbb{Q}_0^{(b,A_g)}$	B_2	$\left(rac{\sqrt{3}}{3} - rac{\sqrt{3}}{3} - rac{\sqrt{3}}{3} ight)$
\mathbb{Y}_{29}	$\mathbb{Q}_{2,0}^{(b,E_g)}$	B_2	$\left(-rac{11\sqrt{6}}{42} - rac{\sqrt{6}}{21} - rac{13\sqrt{6}}{42} ight)$
\mathbb{Y}_{30}	$\mathbb{Q}_{2,1}^{(b,E_g)}$	B_2	$\left(rac{5\sqrt{2}}{14} - rac{4\sqrt{2}}{7} - rac{3\sqrt{2}}{14} ight)'$
\mathbb{Y}_{31}	$\mathbb{T}_{1,0}^{(b,T_u)}$	B_2	$\begin{pmatrix} 0 & i & 0 \end{pmatrix}$
\mathbb{Y}_{32}	$\mathbb{T}_{1,1}^{(b,T_u)}$	B_2	$\begin{pmatrix} 0 & 0 & i \end{pmatrix}$
\mathbb{Y}_{33}	$\mathbb{T}_{1,2}^{(b,T_u)}$	B_2	$\begin{pmatrix} i & 0 & 0 \end{pmatrix}$
\mathbb{Y}_{34}	$\mathbb{Q}_0^{(b,A_g)}$	B_3	$\left(rac{\sqrt{3}}{3} rac{\sqrt{3}}{3} rac{\sqrt{3}}{3} ight)$

Table 7

symbol	type	cluster	form
\mathbb{Y}_{35}	$\mathbb{Q}_{2,0}^{(b,E_g)}$	B_3	$\left(-\frac{11\sqrt{6}}{42} - \frac{\sqrt{6}}{21} - \frac{13\sqrt{6}}{42}\right)$
\mathbb{Y}_{36}	$\mathbb{Q}_{2,0}^{(b,E_g)}$ $\mathbb{Q}_{2,1}^{(b,E_g)}$	B_3	$\begin{pmatrix} -\frac{11\sqrt{6}}{42} & -\frac{\sqrt{6}}{21} & \frac{13\sqrt{6}}{42} \\ \left(\frac{5\sqrt{2}}{14} & -\frac{4\sqrt{2}}{7} & \frac{3\sqrt{2}}{14} \right) \end{pmatrix}$
\mathbb{Y}_{37}	$\mathbb{T}_{1,0}^{(b,T_u)}$	B_3	$\begin{pmatrix} 0 & 0 & i \end{pmatrix}$
\mathbb{Y}_{38}	$\mathbb{T}_{1,1}^{(b,T_u)}$	B_3	$\begin{pmatrix} i & 0 & 0 \end{pmatrix}$
\mathbb{Y}_{39}	$ \mathbb{T}_{1,0}^{(b,T_u)} \\ \mathbb{T}_{1,1}^{(b,T_u)} \\ \mathbb{T}_{1,1}^{(b,T_u)} $	B_3	$\begin{pmatrix} 0 & i & 0 \end{pmatrix}$
\mathbb{Y}_{40}	$\mathbb{Q}_0^{(b,A_g)}$	B_4	$ \begin{pmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \\ \left(-\frac{11\sqrt{6}}{42} & -\frac{\sqrt{6}}{21} & \frac{13\sqrt{6}}{42}\right) \\ \left(\frac{5\sqrt{2}}{14} & -\frac{4\sqrt{2}}{7} & \frac{3\sqrt{2}}{14}\right) \end{pmatrix} $
\mathbb{Y}_{41}	$\mathbb{Q}_{2,0}^{(b,E_g)}$	B_4	$\left(-\frac{11\sqrt{6}}{42} - \frac{\sqrt{6}}{21} - \frac{13\sqrt{6}}{42} \right)$
\mathbb{Y}_{42}	$\mathbb{Q}_{2,0}^{(b,E_g)}$ $\mathbb{Q}_{2,1}^{(b,E_g)}$	B_4	$\begin{pmatrix} -\frac{11\sqrt{6}}{42} & -\frac{\sqrt{6}}{21} & \frac{13\sqrt{6}}{42} \\ \left(\frac{5\sqrt{2}}{14} & -\frac{4\sqrt{2}}{7} & \frac{3\sqrt{2}}{14} \right) \end{pmatrix}$
\mathbb{Y}_{43}	$\mathbb{T}_{1,0}^{(b,T_u)}$ $\mathbb{T}_{1,1}^{(b,T_u)}$	B_4	$\begin{pmatrix} i & 0 & 0 \end{pmatrix}$
\mathbb{Y}_{44}	$\mathbb{T}_{1,1}^{(b,T_u)}$	B_4	$\begin{pmatrix} 0 & i & 0 \end{pmatrix}$
\mathbb{Y}_{45}	$\mathbb{T}_{1,2}^{(b,T_u)}$	B_4	$\begin{pmatrix} 0 & 0 & i \end{pmatrix}$

Table 8: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_g)}$	0	A_g	_	_	1
2	$\mathbb{Q}_{1,0}^{(T_u)}$	1	T_u	_	0	\overline{x}
3	$\mathbb{Q}_{1,1}^{(T_u)}$	1	T_u	_	1	y
4	$\mathbb{Q}_{1,2}^{(T_u)}$	1	T_u	_	2	z
5	$\mathbb{Q}_{2,0}^{(E_g)}$	2	E_g	_	0	$-\frac{x^2}{2} - \frac{y^2}{2} + z^2$
6	$\mathbb{Q}_{2,1}^{(E_g)}$	2	E_g	_	1	$\frac{\sqrt[2]{3}(x^2-y^2)}{2}$
7	$\mathbb{Q}_{2,0}^{(T_g)}$	2	T_g	_	0	$\sqrt{3}yz$
8	$\mathbb{Q}_{2,1}^{(T_g)}$	2	T_g	_	1	$\sqrt{3}xz$
9	$\mathbb{Q}_{2,2}^{(T_g)}$	2	T_g	_	2	$\sqrt{3}xy$
10	$\mathbb{Q}_{3,0}^{(T_u,1)}$	3	T_u	1	0	$\frac{x(2x^2-3y^2-3z^2)}{2}$

Table 8

No.	symbol	rank	irrep.	mul.	comp.	form
11	$\mathbb{Q}_{3,1}^{(T_u,1)}$	3	T_u	1	1	$-\frac{y(3x^2-2y^2+3z^2)}{2}$
12	$\mathbb{Q}_{3,2}^{(T_u,1)}$	3	T_u	1	2	$-\frac{z(3x^2+3y^2-2z^2)}{2}$

Table 9: Axial harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{G}_{1,0}^{(T_g)}$	1	T_g	_	0	X
2	$\mathbb{G}_{1,1}^{(T_g)}$	1	T_g	_	1	Y
3	$\mathbb{G}_{1,2}^{(T_g)}$	1	T_g	_	2	Z
4	$\mathbb{G}_{2,0}^{(T_u)}$	2	T_u	_	0	$\sqrt{3}YZ$
5	$\mathbb{G}_{2,1}^{(r_u)}$	2	T_u	_	1	$\sqrt{3}XZ$
6	$\mathbb{G}_{2,2}^{(T_u)}$	2	T_u	_	2	$\sqrt{3}XY$
7	$\mathbb{G}_3^{(A_g)}$	3	A_g	_	_	$\sqrt{15}XYZ$
8	$\mathbb{G}_{3,0}^{(T_g,1)}$	3	T_g	1	0	$\frac{X(2X^2-3Y^2-3Z^2)}{2}$
9	$\mathbb{G}_{3,1}^{(T_g,1)}$	3	T_g	1	1	$-\frac{\frac{X(2X-31-3Z)}{2}}{\frac{Y(3X^2-2Y^2+3Z^2)}{2}}$
10	$\mathbb{G}_{3,2}^{(T_g,1)}$	3	T_g	1	2	$-\frac{2(3X+31-2Z)}{2}$
11	$\mathbb{G}_{3,0}^{(T_g,2)}$	3	T_g	2	0	$\frac{\sqrt{15}X(Y-Z)(Y+Z)}{2}$
12	$\mathbb{G}_{3,1}^{(T_g,2)}$	3	T_g	2	1	$-\frac{\sqrt{15}Y(X-Z)(X+Z)}{2}$
13	$\mathbb{G}_{3,2}^{(T_g,2)}$	3	T_g	2	2	$\frac{\sqrt{15}Z(X-Y)(X+Y)}{2}$

 \bullet Group info.: Generator = {2001|0}, {2010|0}, {3^{+}_{111}|0}, {-1|0}

Table 10: Conjugacy class (point-group part).

rep. SO	symmetry operations
{1 0}	{1 0}
${\{2_{001} 0\}}$	$\{2_{001} 0\}, \{2_{100} 0\}, \{2_{010} 0\}$
${3^{+}_{111} 0}$	$\{3_{111}^{+} 0\}, \{3_{1-1-1}^{+} 0\}, \{3_{-11-1}^{+} 0\}, \{3_{-1-11}^{+} 0\}$
$-{\{3^{-}_{111} 0\}}$	$\{3_{111}^- 0\}, \{3_{1-1-1}^- 0\}, \{3_{-11-1}^- 0\}, \{3_{-1-11}^- 0\}$
$\{-1 0\}$	$\{-1 0\}$
$\{m_{001} 0\}$	$\{m_{001} 0\}, \{m_{100} 0\}, \{m_{010} 0\}$
$\{-3^{+}_{111} 0\}$	$\{-3^{+}_{111} 0\}, \{-3^{+}_{1-1-1} 0\}, \{-3^{+}_{-11-1} 0\}, \{-3^{+}_{-1-11} 0\}$
$\{-3^{-}_{111} 0\}$	$\{-3^{-}_{111} 0\}, \{-3^{-}_{1-1-1} 0\}, \{-3^{-}_{-11-1} 0\}, \{-3^{-}_{-1-11} 0\}$

Table 11: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
1	$\{1 0\}$	2	$\{2_{001} 0\}$	3	$\{2_{100} 0\}$	4	$\{2_{010} 0\}$	5	$\{3^{+}_{111} 0\}$
6	$\{3^+_{1-1-1} 0\}$	7	${3^{+}_{-11-1} 0}$	8	${3^{+}_{-1-11} 0}$	9	$\{3^{-}_{111} 0\}$	10	$\{3^{-}_{1-1-1} 0\}$
11	$\{3^{-}_{-11-1} 0\}$	12	$\{3^{-}_{-1-11} 0\}$	13	$\{-1 0\}$	14	$\{m_{001} 0\}$	15	$\{m_{100} 0\}$
16	$\{m_{010} 0\}$	17	$\{-3^{+}_{111} 0\}$	18	$\{-3^+_{1-1-1} 0\}$	19	$\{-3^{+}_{-11-1} 0\}$	20	$\{-3^{+}_{-1-11} 0\}$
21	$\{-3^{111} 0\}$	22	$\{-3^{1-1-1} 0\}$	23	$\{-3^{-}_{-11-1} 0\}$	24	$\{-3^{-}_{-1-11} 0\}$		

Table 12: Character table (point-group part).

	1	2001	3 ⁺ ₁₁₁	3-111	-1	m ₀₀₁	-3^{+}_{111}	-3 ⁻ ₁₁₁
A_g	1	1	1	1	1	1	1	1
$E_g^{(a)}$	1	1	ω^*	ω	1	1	ω^*	ω
$E_g^{(b)}$	1	1	ω	ω^*	1	1	ω	ω^*
T_g	3	-1	0	0	3	-1	0	0
A_u	1	1	1	1	-1	-1	-1	-1

Table 12

	1	2001	3 ⁺ ₁₁₁	3-111	-1	m ₀₀₁	-3^{+}_{111}	-3^{-}_{111}
$E_u^{(a)}$	1	1	ω^*	ω	-1	-1	$-\omega^*$	$-\omega$
$E_u^{(b)}$	1	1	ω	ω^*	-1	-1	$-\omega$	$-\omega^*$
T_u	3	-1	0	0	-3	1	0	0

Table 13: Parity conversion.

\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
$A_g (A_u)$	$E_g^{(a)} (E_u^{(a)})$	$E_g^{(b)} (E_u^{(b)})$	$T_g (T_u)$	$A_u (A_g)$
$E_u^{(a)} (E_g^{(a)})$	$E_u^{(b)} (E_g^{(b)})$	$T_u (T_g)$		

Table 14: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_g	$E_g^{(a)}$	$E_g^{(b)}$	T_g	A_u	$E_u^{(a)}$	$E_u^{(b)}$	T_u
A_g	A_g	$E_g^{(a)}$ $E_g^{(b)}$	$E_g^{(b)}$	T_g	A_u	$E_u^{(a)}$	$E_u^{(b)}$	T_u
$E_g^{(a)}$		$E_g^{(b)}$	A_{g}	T_g	$E_u^{(a)}$ $E_u^{(b)}$	$E_u^{(b)}$	A_u	T_u
$E_g^{(a)}$ $E_g^{(b)}$			$E_g^{(a)}$	T_g	$E_u^{(b)}$	A_u	$E_u^{(a)}$	T_u
T_g				$A_g + E_g^{(a)} + E_g^{(b)} + T_g$	T_u	T_u	T_u	$A_u + E_u^{(a)} + E_u^{(b)} + 2T_u$
$ \begin{array}{c} A_u \\ E_u^{(a)} \\ E_u^{(b)} \end{array} $					A_g	$E_g^{(a)}$ $E_g^{(b)}$	$E_g^{(b)}$	T_g
$E_u^{(a)}$						$E_g^{(b)}$	A_g	T_g
$E_u^{(b)}$							$E_g^{(a)}$	T_g
T_u								$A_g + E_g^{(a)} + E_g^{(b)} + T_g$

Table 15: Anti-symmetric product, $[\Gamma \otimes \Gamma]_-$.

A_g	$E_g^{(a)}$	$E_g^{(b)}$	T_g	A_u	$E_u^{(a)}$	$E_u^{(b)}$	T_u
	_	_	T_g	_	_	_	T_g

Table 16: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	(3 2 1)	2	$\begin{pmatrix} -3 & -2 & 1 \end{pmatrix}$	3	$\begin{pmatrix} 3 & -2 & -1 \end{pmatrix}$	4	$\begin{pmatrix} -3 & 2 & -1 \end{pmatrix}$
5	$\begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$	6	$\begin{pmatrix} -1 & -3 & 2 \end{pmatrix}$	7	$\begin{pmatrix} 1 & -3 & -2 \end{pmatrix}$	8	$\begin{pmatrix} -1 & 3 & -2 \end{pmatrix}$
9	$\begin{pmatrix} 2 & 1 & 3 \end{pmatrix}$	10	$\begin{pmatrix} -2 & 1 & -3 \end{pmatrix}$	11	$\begin{pmatrix} -2 & -1 & 3 \end{pmatrix}$	12	$\begin{pmatrix} 2 & -1 & -3 \end{pmatrix}$
13	$\begin{pmatrix} -3 & -2 & -1 \end{pmatrix}$	14	$\begin{pmatrix} 3 & 2 & -1 \end{pmatrix}$	15	$\begin{pmatrix} -3 & 2 & 1 \end{pmatrix}$	16	$\begin{pmatrix} 3 & -2 & 1 \end{pmatrix}$
17	$\begin{pmatrix} -1 & -3 & -2 \end{pmatrix}$	18	$\begin{pmatrix} 1 & 3 & -2 \end{pmatrix}$	19	$\begin{pmatrix} -1 & 3 & 2 \end{pmatrix}$	20	$\begin{pmatrix} 1 & -3 & 2 \end{pmatrix}$
21	$\begin{pmatrix} -2 & -1 & -3 \end{pmatrix}$	22	$\begin{pmatrix} 2 & -1 & 3 \end{pmatrix}$	23	$\begin{pmatrix} 2 & 1 & -3 \end{pmatrix}$	24	$\begin{pmatrix} -2 & 1 & 3 \end{pmatrix}$

Table 17: Virtual-cluster basis.

symbol	1	2	3	4	5	6	7	8	9	10
$\mathbb{Q}_0^{(A_g)}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{1,0}^{(T_u)}$	$\frac{3\sqrt{7}}{28}$	$-\frac{3\sqrt{7}}{28}$ $\frac{\sqrt{7}}{14}$	$\frac{3\sqrt{7}}{28}$	$-\frac{3\sqrt{7}}{28}$	$\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{14}$	$-\frac{\sqrt{7}}{14}$
	$-\frac{\sqrt{7}}{14}$	$\frac{\sqrt{7}}{14}$	$-\frac{3\sqrt{7}}{28}$	$\frac{3\sqrt{7}}{28}$	$-\frac{3\sqrt{7}}{28}$	$\frac{3\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$ $\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{28}$
	$-\frac{\sqrt{7}}{14}$	$\frac{\sqrt{7}}{14}$	$\frac{\sqrt{7}}{14}$	$-\frac{\sqrt{7}}{14}$						
$\mathbb{Q}_{1,1}^{(T_u)}$	$\frac{\sqrt{7}}{14}$	$-\frac{\sqrt{7}}{14}$	$-\frac{\sqrt{7}}{14}$	$\frac{\sqrt{7}}{14}$	$\frac{3\sqrt{7}}{28}$	$-\frac{3\sqrt{7}}{28}$	$-\frac{3\sqrt{7}}{28}$	$\frac{3\sqrt{7}}{28}$	$\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{28}$
	$-\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{14}$	$\frac{\sqrt{7}}{14}$	$\frac{\sqrt{7}}{14}$	$-\frac{\sqrt{7}}{14}$	$-\frac{3\sqrt{7}}{28}$	$\frac{3\sqrt{7}}{28}$	$\frac{3\sqrt{7}}{28}$	$-\frac{3\sqrt{7}}{28}$
	$-\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{28}$						
$\mathbb{Q}_{1,2}^{(T_u)}$	$\frac{\frac{\sqrt{7}}{28}}{\frac{3\sqrt{7}}{28}}$	$\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{14}$	$\frac{\sqrt{7}}{14}$	$-\frac{\sqrt{7}}{14}$	$-\frac{\sqrt{7}}{14}$	$\frac{3\sqrt{7}}{28}$	$-\frac{3\sqrt{7}}{28}$ $\frac{\sqrt{7}}{14}$
	$\frac{3\sqrt{7}}{28}$	$-\frac{3\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{14}$	$-\frac{\sqrt{7}}{14}$	$\frac{\sqrt{7}}{14}$	$\frac{\sqrt{7}}{14}$
	$-\frac{3\sqrt{7}}{28}$	$\frac{3\sqrt{7}}{28}$	$-\frac{3\sqrt{7}}{28}$	$\frac{3\sqrt{7}}{28}$						
$\mathbb{Q}_{2,0}^{(E_g)}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{\sqrt{3}}{42}$	$-\frac{\sqrt{3}}{42}$	$-\frac{\sqrt{3}}{42}$	$-\frac{\sqrt{3}}{42}$	$\frac{13\sqrt{3}}{84}$	$\frac{13\sqrt{3}}{84}$
	$\frac{13\sqrt{3}}{84}$	$\frac{13\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{\sqrt{3}}{42}$	$-\frac{\sqrt{3}}{42}$	$-\frac{\sqrt{3}}{42}$	$-\frac{\sqrt{3}}{42}$

Table 17

Table 17	1									10
symbol	$\frac{1}{\frac{13\sqrt{3}}{84}}$	$\frac{2}{\frac{13\sqrt{3}}{84}}$	$\frac{3}{\frac{13\sqrt{3}}{84}}$	13√3	5	6	7	8	9	10
$\mathbb{Q}_{2,1}^{(E_g)}$				$\frac{13\sqrt{3}}{84}$	2	2	2	2	3	3
$\mathbb{Q}_{2,1}$	5 28	$\frac{5}{28}$	5 28	5 28	$-\frac{2}{7}$	$-\frac{2}{7}$	$-\frac{2}{7}$	$-\frac{2}{7}$	$\frac{3}{28}$	$\frac{3}{28}$
	$\frac{3}{28}$	$\frac{3}{28}$	$\frac{5}{28}$	$\frac{5}{28}$	$\frac{5}{28}$	$\frac{5}{28}$	$-\frac{2}{7}$	$-\frac{2}{7}$	$-\frac{2}{7}$	$-\frac{2}{7}$
- (Ta)	3/28	3/28	$\frac{3}{28}$	3/28	2./2	2./2	2./2	2./2	2./2	2./2
$\mathbb{Q}_{2,0}^{(T_g)}$	$\frac{\sqrt{2}}{14}$	$-\frac{\sqrt{2}}{14}$	$\frac{\sqrt{2}}{14}$	$-\frac{\sqrt{2}}{14}$	$\frac{3\sqrt{2}}{14}$	$-\frac{3\sqrt{2}}{14}$	$\frac{3\sqrt{2}}{14}$	$-\frac{3\sqrt{2}}{14}$	$\frac{3\sqrt{2}}{28}$	$-\frac{3\sqrt{2}}{28}$
	$-\frac{3\sqrt{2}}{28}$	$\frac{3\sqrt{2}}{28}$	$\frac{\sqrt{2}}{14}$	$-\frac{\sqrt{2}}{14}$	$\frac{\sqrt{2}}{14}$	$-\frac{\sqrt{2}}{14}$	$\frac{3\sqrt{2}}{14}$	$-\frac{3\sqrt{2}}{14}$	$\frac{3\sqrt{2}}{14}$	$-\frac{3\sqrt{2}}{14}$
(T.)	$\frac{3\sqrt{2}}{28}$	$-\frac{3\sqrt{2}}{28}$	$-\frac{3\sqrt{2}}{28}$	$\frac{3\sqrt{2}}{28}$						
$\mathbb{Q}_{2,1}^{(T_g)}$	$\frac{3\sqrt{2}}{28}$	$-\frac{3\sqrt{2}}{28}$	$-\frac{3\sqrt{2}}{28}$	$\frac{3\sqrt{2}}{28}$	$\frac{\sqrt{2}}{14}$	$-\frac{\sqrt{2}}{14}$	$-\frac{\sqrt{2}}{14}$	$\frac{\sqrt{2}}{14}$	$\frac{3\sqrt{2}}{14}$	$\frac{3\sqrt{2}}{14}$
	$-\frac{3\sqrt{2}}{14}$	$-\frac{3\sqrt{2}}{14}$	$\frac{3\sqrt{2}}{28}$	$-\frac{3\sqrt{2}}{28}$	$-\frac{3\sqrt{2}}{28}$	$\frac{3\sqrt{2}}{28}$	$\frac{\sqrt{2}}{14}$	$-\frac{\sqrt{2}}{14}$	$-\frac{\sqrt{2}}{14}$	$\frac{\sqrt{2}}{14}$
	$\frac{3\sqrt{2}}{14}$	$\frac{3\sqrt{2}}{14}$	$-\frac{3\sqrt{2}}{14}$	$-\frac{3\sqrt{2}}{14}$						
$\mathbb{Q}_{2,2}^{(T_g)}$	$\frac{3\sqrt{2}}{14}$	$\frac{3\sqrt{2}}{14}$	$-\frac{3\sqrt{2}}{14}$	$-\frac{3\sqrt{2}}{14}$	$\frac{3\sqrt{2}}{28}$	$\frac{3\sqrt{2}}{28}$	$-\frac{3\sqrt{2}}{28}$	$-\frac{3\sqrt{2}}{28}$	$\frac{\sqrt{2}}{14}$	$-\frac{\sqrt{2}}{14}$
	$\frac{\sqrt{2}}{14}$	$-\frac{\sqrt{2}}{14}$	$\frac{3\sqrt{2}}{14}$	$\frac{3\sqrt{2}}{14}$	$-\frac{3\sqrt{2}}{14}$	$-\frac{3\sqrt{2}}{14}$	$\frac{3\sqrt{2}}{28}$	$\frac{3\sqrt{2}}{28}$	$-\frac{3\sqrt{2}}{28}$	$-\frac{3\sqrt{2}}{28}$
	$\frac{\sqrt{2}}{14}$	$-\frac{\sqrt{2}}{14}$	$\frac{\sqrt{2}}{14}$	$-\frac{\sqrt{2}}{14}$						
$\mathbb{Q}_3^{(A_u)}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{3,0}^{(T_u,1)}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{3,1}^{(T_u,1)}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{3,2}^{(T_u,1)}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
•	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$					- -	
$\mathbb{Q}_{3,0}^{(T_u,2)}$	$\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{21}$
0,0	$\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$
	$\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{21}$	0.	0.	0.	0.1	0.	Ü.
$\mathbb{Q}_{3,1}^{(T_u,2)}$	$-\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$
-0,1	21	21	21	- 21	04	04	04	04	04	04

Table 17

symbol	1	2	3	4	5	6	7	8	9	10
	$-\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{84}$
	$-\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$						
$\mathbb{Q}_{3,2}^{(T_u,2)}$	$\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{84}$
	$\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{21}$
	$-\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{84}$						
$\mathbb{Q}_{4,0}^{(T_g,1)}$	$\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$	$\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$	$\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$	$\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$	$-\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$
	$\frac{64\sqrt{829}}{5803}$	$-\frac{64\sqrt{829}}{5803}$	$\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$	$\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$	$\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$	$\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$
	$-\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$	$-\frac{64\sqrt{829}}{5803}$						
$\mathbb{Q}_{4,1}^{(T_g,1)}$	$-\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$	$-\frac{64\sqrt{829}}{5803}$	$\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$	$\frac{9\sqrt{829}}{23212}$	$\frac{125\sqrt{829}}{23212}$	$\frac{125\sqrt{829}}{23212}$
	$-\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$	$-\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$	$-\frac{64\sqrt{829}}{5803}$	$\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$	$\frac{9\sqrt{829}}{23212}$
	$\frac{125\sqrt{829}}{23212}$	$\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$						
$\mathbb{Q}_{4,2}^{(T_g,1)}$	$\frac{125\sqrt{829}}{23212}$	$\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$	$-\frac{64\sqrt{829}}{5803}$	$-\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$	$\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$
	$\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$	$\frac{125\sqrt{829}}{23212}$	$\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$	$-\frac{64\sqrt{829}}{5803}$	$-\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$
	$\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$	$\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$						
$\mathbb{Q}_{4,0}^{(T_g,2)}$	$\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$	$\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$	$-\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$	$-\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$	$-\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$
	$\frac{\sqrt{829}}{829}$	$-\frac{\sqrt{829}}{829}$	$\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$	$\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$	$-\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$	$-\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$
	$-\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$	$-\frac{\sqrt{829}}{829}$						
$\mathbb{Q}_{4,1}^{(T_g,2)}$	$-\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$	$-\frac{\sqrt{829}}{829}$	$\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$	$\frac{39\sqrt{829}}{3316}$	$-\frac{11\sqrt{829}}{3316}$	$-\frac{11\sqrt{829}}{3316}$
	$\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$	$-\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$	$-\frac{\sqrt{829}}{829}$	$\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$	$\frac{39\sqrt{829}}{3316}$
	$-\frac{11\sqrt{829}}{3316}$	$-\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$						
$\mathbb{Q}_{4,2}^{(T_g,2)}$	$-\frac{11\sqrt{829}}{3316}$	$-\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$	$-\frac{\sqrt{829}}{829}$	$-\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$	$\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$
	$\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$	$-\frac{11\sqrt{829}}{3316}$	$-\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$	$-\frac{\sqrt{829}}{829}$	$-\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$
	$\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$	$\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$						
$\mathbb{Q}_{5,0}^{(E_{\boldsymbol{u}})}$	$\frac{5}{28}$	$\frac{5}{28}$	$\frac{5}{28}$	$\frac{5}{28}$	$-\frac{2}{7}$	$-\frac{2}{7}$	$-\frac{2}{7}$	$-\frac{2}{7}$	$\frac{3}{28}$	$\frac{3}{28}$
	$\frac{3}{28}$	$\frac{3}{28}$	$-\frac{5}{28}$	$-\frac{5}{28}$	$-\frac{5}{28}$	$-\frac{5}{28}$	$\frac{2}{7}$	$\frac{2}{7}$	$\frac{2}{7}$	$\frac{2}{7}$
-	$-\frac{3}{28}$	$-\frac{3}{28}$	$-\frac{3}{28}$	$-\frac{3}{28}$						
$\mathbb{Q}_{5,1}^{(E_{u})}$	$\frac{11\sqrt{3}}{84}$	$\frac{11\sqrt{3}}{84}$	$\frac{11\sqrt{3}}{84}$	$\frac{11\sqrt{3}}{84}$	$\frac{\sqrt{3}}{42}$	$\frac{\sqrt{3}}{42}$	$\frac{\sqrt{3}}{42}$	$\frac{\sqrt{3}}{42}$	$-\frac{13\sqrt{3}}{84}$	$-\frac{13\sqrt{3}}{84}$
	$-\frac{13\sqrt{3}}{84}$	$-\frac{13\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{\sqrt{3}}{42}$	$-\frac{\sqrt{3}}{42}$	$-\frac{\sqrt{3}}{42}$	$-\frac{\sqrt{3}}{42}$
	$\frac{13\sqrt{3}}{84}$	$\frac{13\sqrt{3}}{84}$	$\frac{13\sqrt{3}}{84}$	$\frac{13\sqrt{3}}{84}$						