Sucesiones y Series Numéricas

Sucesiones Numéricas

Definición. Una sucesión es una función de \mathbb{N} en \mathbb{R} .

$$f: \mathbb{N} \to \mathbb{R}$$

Una sucesión genera una lista ilimitada de números:

$$f(1), f(2), f(3), \ldots, f(n), \ldots$$

donde f(n) es el término n-ésimo de la sucesión. También se escribe la lista como

$$f_1, f_2, f_3, \ldots, f_n, \ldots$$

Es frecuente utilizar notaciones del tipo $\{f(n)\}, \{f_n\}, o \{f_n\}_{n=1}^{\infty}$, para denotar una sucesión.

Ejemplos de sucesiones

- $\bullet f_n = a, \qquad a, a, a, \dots$
- $f_n = n,$ 1, 2, 3, ...

Convergencia de sucesiones

Definición. Una sucesión $\{f_n\}$ es **convergente** si existe un número real L tal que para cada $\varepsilon > 0$ se puede encontrar un número natural $N(\varepsilon)$ tal que $\forall n \geq N$ se verifique $|f_n - L| < \varepsilon$. Se dice entonces que L es el **límite** de la sucesión $\{f_n\}$, y se escribe $L = \lim_{n \to \infty} f_n$, o también $f_n \to L$, si $n \to \infty$. También decimos que la sucesión $\{f_n\}$ converge a L. Una sucesión que no converge se dice que es **divergente**.

Ejemplos

- la sucesión $\{\frac{1}{n}\}$ converge a 0.
- la sucesión $\{n!\}$ es divergente.
- la sucesión $\{(-1)^n\}$ no es convergente.

Teorema 1 (Unicidad del límite) Una sucesión convergente tiene uno y sólo un límite.

Demostración. Sean $a,b \in \mathbb{R}$ tales que $a = \lim_{n \to \infty} f_n$, $b = \lim_{n \to \infty} f_n$. Supongamos que $a \neq b$, por ejemplo a < b. Elijase z tal que a < z < b. Puesto que z < b y b es límite de f_n , ha de existir un N' tal que para todo n > N' sea $f_n > z$. Igualmente, puesto que a < z y a es límite de f_n , ha de existir un N'' tal que para todo n > N'' sea $f_n < z$. Tomando $N = \max\{N', N''\}$, llegamos a una contradicción, ya que se tendría que cumplir $z < f_n < z$ para todo n > N.

Definición. Una sucesión $\{f_n\}$ se dice que está **acotada superiormente** si existe algún número $c \in \mathbb{R}$ tal que $\forall n \in \mathbb{N}$, $f_n \leq c$. Se dice que está **acotada inferiormente** si existe algún número $k \in \mathbb{R}$ tal que $\forall n \in \mathbb{N}$, $k \leq f_n$. Se dice que está **acotada** si lo está superior e inferiormente. Esto equivale a que exista algún número M > 0 tal que $\forall n \in \mathbb{N}$, $|f_n| \leq M$.

Definición.

- a) Una sucesión $\{f_n\}$ es monótona creciente si $f_n \leq f_{n+1} \ \forall n \in \mathbb{N}$.
- b) Una sucesión $\{f_n\}$ es monótona decreciente si $f_{n+1} \leq f_n \ \forall n \in \mathbb{N}$.
- c) Una sucesión $\{f_n\}$ es **monótona** cuando es creciente o decreciente.
- d) Una sucesión $\{f_n\}$ es **estrictamente creciente** si $f_n < f_{n+1} \ \forall n \in \mathbb{N}$.
- e) Una sucesión $\{f_n\}$ es **estrictamente decreciente** si $f_{n+1} < f_n \ \forall n \in \mathbb{N}$.

Teorema 2 (i) Toda sucesión monótona creciente y acotada superiormente es convergente. (ii) Toda sucesión monótona decreciente y acotada inferiormente es convergente. Esto equivale a decir que una sucesión monótona converge si y sólo si es acotada.

Demostración. Ver la demostración en Tom M. Apostol, 1982. □

Teorema 3 (Operaciones con sucesiones) Sean $\{a_n\}$ y $\{b_n\}$ sucesiones convergentes con límites

$$a = \lim_{n \to \infty} a_n, \qquad b = \lim_{n \to \infty} b_n.$$

Las siguientes reglas se cumplen:

- 1. Regla de la suma: $\lim_{n\to\infty} (a_n + b_n) = a + b$
- 2. Regla de la diferencia: $\lim_{n\to\infty} (a_n b_n) = a b$
- 3. Regla del producto: $\lim_{n\to\infty} (a_n b_n) = ab$
- 4. Regla de la multiplicación por una constante: $\lim_{n\to\infty} (cb_n) = cb$, donde $c \in \mathbb{R}$
- 5. Regla del cociente: $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}$, si $b\neq 0$

Teorema 4 (Teorema del sandwich para sucesiones) Sean $\{a_n\}$, $\{b_n\}$, y $\{c_n\}$ sucesiones de números reales. Si $a_n \leq b_n \leq c_n$ para toda n mayor que algún índice N, y $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, entonces también $\lim_{n\to\infty} b_n = L$.

Demostración. El teorema es intuitivo. La demostración se obtiene a partir de la definición de límite.

Repaso de la regla de L'Hôpital

La regla de L'Hôpital permite calcular límites indeterminados para funciones de variable real.

I) Indeterminaciones de la forma $0/0, \infty/\infty, 0.\infty$

Teorema 5 (Regla de L'Hôpital) Sean f y g funciones diferenciables en un intervalo de la forma (a-r,a+r), con $a,r \in \mathbb{R}$, r > 0. Supongamos que

- a) $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0,$
- b) $g'(x) \neq 0 \ \forall x \in (a r, a + r), \ x \neq a,$
- c) $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L.$

Entonces, $\lim_{x\to a} \frac{f(x)}{g(x)} = L$.

Justificación: Como f y g son diferenciables en a, entonces f y g son continuas en a. Luego f(a) = 0 y g(a) = 0. Por lo tanto podemos escribir

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{\frac{f(x) - f(a)}{x - a}}{\frac{g(x) - g(a)}{x - a}}$$

Si $x \to a$ la expresión de la derecha tiende a

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = L.$$

Luego

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L.$$

Observación: El teorema es válido también para límites laterales: $x \to a^+$ o $x \to a^-$ y límites infinitos: $x \to +\infty$ o $x \to -\infty$.

Ejemplos

$$\underbrace{\lim_{x \to 1} \frac{x^3 - 1}{4x^3 - x - 3}}_{\frac{0}{2}} = \lim_{x \to 1} \frac{3x^2}{12x^2 - 1} = \frac{3}{11}$$

$$\underbrace{\lim_{x \to 0^+} x \ln x}_{0.(-\infty)} = \underbrace{\lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}}}_{-\frac{\infty}{\infty}} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \underbrace{\lim_{x \to 0^+} (-x)}_{\text{no es una indeterminación}} = 0$$

II) Indeterminaciones de la forma $\infty - \infty$, $-\infty + \infty$ Se pasan primero a la forma $\frac{0}{0}$, $\frac{\infty}{\infty}$, $0.\infty$

Ejemplo

$$\lim_{x \to 0^{+}} \frac{4x+1}{x} - \frac{1}{\sec x} = \lim_{x \to 0^{+}} \frac{(4x+1)\sec x - x}{x \sec x}$$

$$= \lim_{x \to 0^{+}} \frac{4 \sec x + (4x+1)(\cos x) - 1}{\sec x + x \cos x}$$

$$= \lim_{x \to 0^{+}} \frac{4 \cos x + 4 \cos x - (4x+1)\sec x}{\cos x + \cos x - x \sec x} = \frac{4+4}{2} = 4$$
no es una indeterminación

III) Indeterminaciones de la forma ∞^0

Proposición 1 $Si \lim_{x \to a} g(x)$ existe, entonces

$$\lim_{x \to a} e^{g(x)} = e^{\lim_{x \to a} g(x)}.$$

Si f(x) es de la forma ∞^0 utilizar la Proposición 1:

$$f(x) = e^{\ln f(x)}$$
$$\lim_{x \to \infty} f(x) = e^{\lim_{x \to \infty} \ln f(x)}$$

Cálculo de límite de sucesiones usando la regla de L'Hôpital

Teorema 6 (Uso de la regla de L'Hôpital) Suponga que f(x) es una función definida para todo $x \ge N$, $x \in \mathbb{R}$ y que $\{f_n\}$ es una sucesión de números reales tal que $f_n = f(n)$ para $n \ge N$, $n \in \mathbb{N}$. Entonces

$$\lim_{x \to \infty} f(x) = L \quad \Rightarrow \quad \lim_{n \to \infty} f_n = L.$$

Demostración. Ver demostración en Thomas y George, 2006.

Series Numéricas

Definición. Dada una sucesión de números reales $\{a_n\}$, se puede formar otra sucesión $\{s_n\}$ para la cual

$$s_n = a_1 + a_2 + \dots + a_n = \sum_{k=1}^n a_k$$

La sucesión de las sumas parciales $\{s_n\}$ se llama **serie infinita** o simplemente **serie**. Para representar una serie se utiliza la notación $\sum_{n=1}^{\infty} a_n$.

Definición.

- Una serie $\sum_{n=1}^{\infty} a_n$ es una **serie de términos positivos** cuando $a_n > 0$ para cada
- Una serie $\sum_{n=1}^{\infty} a_n$ es una **serie alternada** cuando $a_n = (-1)^n c_n$, para alguna sucesión $\{c_n\}$ tal que $c_n > 0$ para cada n.

Ejemplo. La serie armónica es $\sum_{k=1}^{n} \frac{1}{n}$. Para esta serie tenemos

$$a_n = \frac{1}{n}$$
, y $s_n = \sum_{k=1}^n \frac{1}{k}$.

A continuación obtendremos una desigualdad que se cumple para la serie armónica, y que será utilizada mas adelante.

$$s_{2n} - s_n = \frac{1}{n+1} + \dots + \frac{1}{2n} \ge \frac{1}{2n} + \dots + \frac{1}{2n} = \frac{n}{2n} = \frac{1}{2}$$

$$\Rightarrow s_{2n} - s_n \ge \frac{1}{2}.$$
(1)

Ejemplo. Para la serie $\sum_{n=1}^{\infty} (-1)^n$, tenemos $a_n = (-1)^n$, por lo cual es una serie alternada. Además

$$s_n = \sum_{k=1}^n (-1)^k = -1 + 1 - 1 + \dots + (-1)^n = \begin{cases} -1 & \text{si } n \text{ es impar} \\ 0 & \text{si } n \text{ es par} \end{cases}$$

Ejemplo. La serie geométrica de razón r es:

$$\sum_{n=0}^{\infty} r^n, \qquad \text{con } a_n = r^n.$$

Si r > 0 se trata de una serie de términos positivos.

Si r < 0 se trata de una serie alternada.

Para la serie geométrica se puede obtener una expresión analítica de las sumas parciales

$$rs_n = r + r^2 + \dots + r^{n+1} \Rightarrow$$

$$(1-r)s_n = s_n - rs_n$$

$$= (1 + r + \dots + r^n) - (r + r^2 + \dots + r^{n+1})$$

$$= 1 - r^{n+1}$$

Luego, si $r \neq 1$ tenemos

$$s_n = \frac{1 - r^{n+1}}{1 - r} \tag{2}$$

Convergencia y divergencia de series

Definición. Se dice que la serie $\sum_{n=1}^{\infty} a_n$ converge o es una serie convergente cuando la sucesión de sumas parciales $\{s_n\}$ tiene límite finito.

$$\lim_{n \to \infty} \sum_{k=1}^{n} a_k = \lim_{n \to \infty} s_n = s$$

El límite s es la **suma** de la serie. Una serie que no tiene límite finito se dice que es **divergente**.

Ejemplo. En (1) vimos que para la serie armónica $\sum_{n=1}^{\infty} \frac{1}{n}$ se cumple

$$\frac{1}{2} \le s_{2n} - s_n.$$

Supongamos que existe s tal que $\lim_{n\to\infty} s_n = s$. Luego

$$\frac{1}{2} \le \lim_{n \to \infty} s_{2n} - \lim_{n \to \infty} s_n = s - s = 0.$$

Llegamos a una contradicción. Por lo tanto la serie armónica no converge.

Teorema 7 (Condición necesaria para la convergencia de una serie)

- Si la serie $\sum_{n=1}^{\infty} a_n$ converge, entonces $\lim_{n\to\infty} a_n = 0$.
- $Si \lim_{n \to \infty} a_n \neq 0$, entonces la serie $\sum_{n=1}^{\infty} a_n$ diverge.

Demostración. Supongamos que la serie converge y su suma es s. Luego

$$a_n = s_n - s_{n-1},$$

 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = s - s = 0,$

con lo cual el teorema queda demostrado.

Nota:

- $\lim_{n\to\infty} a_n = 0$ es condición necesaria pero no suficiente para la convergencia.
- $\lim_{n\to\infty} a_n \neq 0$ es condición suficiente para la divergencia.

Ejemplo. Consideremos la serie geométrica (de razón r)

$$\sum_{n=0}^{\infty} r^n = \sum_{n=1}^{\infty} r^{n-1}$$

Si |r|>1 entonces $\lim_{n\to\infty}r^n\neq 0\Rightarrow$ la serie geométrica diverge.

En (2) se probó que si $r \neq 1$ entonces $s_n = \frac{1-r^{n+1}}{1-r}$. Luego, si |r| < 1 tenemos

$$s = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{1 - r^{n+1}}{1 - r} = \frac{1}{1 - r}.$$
 (3)

Notar que es posible obtener una expresión analítica para la suma de una serie geométrica de razón |r| < 1.

Reindexar términos

Mientras se preserve el orden de sus términos, podemos reindexar cualquier serie sin alterar su convergencia ni su suma:

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1+h}^{\infty} a_{n-h} = \sum_{n=1-h}^{\infty} a_{n+h} = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

Adición o supresión de términos

En una serie, siempre podemos agregar o suprimir un número finito de términos sin alterar su convergencia o divergencia. En el caso de la convergencia, esto suele modificar la suma.

Ejemplo. Si $\sum_{n=1}^{\infty} a_n$ converge, entonces $\sum_{n=k}^{\infty} a_n$ converge para cualquier k > 1 y se cumple:

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_{k-1} + \sum_{n=k}^{\infty} a_n$$

Ejemplo. Consider la serie geométrica (de razón r):

$$\sum_{n=0}^{\infty} r^n, \qquad s_n = \frac{1 - r^{n+1}}{1 - r}, \quad r \neq 1.$$

Vimos que si |r| < 1 luego $\lim_{n \to \infty} s_n = \frac{1}{1-r}$. Si se suprime el primer término, tenemos:

$$\sum_{n=1}^{\infty} r^n, \quad s_n = \frac{r - r^{n+1}}{1 - r}, \quad r \neq 1.$$

En este caso, si |r| < 1 luego $\lim_{n \to \infty} s_n = \frac{r}{1-r}$.

Teorema 8 (Propiedad de linealidad) Sean $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ series convergentes con sumas s' y s'', respectivamente. Si α , β son constantes, entonces la serie $\sum_{n=1}^{\infty} (\alpha a_n + \beta b_n)$ es convergente con suma $s = \alpha s' + \beta s''$.

Demostración. Ver la demostración en Tom M. Apostol, 1982. □

Corolario 1 Si $\sum_{n=1}^{\infty} a_n$ converge y $\sum_{n=1}^{\infty} b_n$ diverge, entonces $\sum_{n=1}^{\infty} (a_n + b_n)$ diverge.

Demostración. Si $\sum_{n=1}^{\infty} (a_n + b_n)$ fuera convergente, también lo sería $\sum_{n=1}^{\infty} b_n$ puesto que

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (a_n + b_n) + \sum_{n=1}^{\infty} (-a_n),$$

y por lo tanto, debiera valer el Teorema 8.

Propiedad telescópica

La serie $\sum_{n=1}^{\infty} a_n$ es telescópica cuando la representamos en la forma $\sum_{n=1}^{\infty} (b_n - b_{n+1})$, es decir cuando para una sucesión $\{b_n\}$ se cumple $a_n = b_n - b_{n+1}$. En tal caso tenemos:

$$\sum_{k=1}^{n} (b_k - b_{k+1}) = b_1 - b_{n+1}$$

Teorema 9 (Suma de series telescópicas) Sean $\{a_n\}$ y $\{b_n\}$ dos sucesiones tales que $a_n = b_n - b_{n+1}$, $n = 1, 2, 3, \ldots$ Entonces la serie $\sum_{n=1}^{\infty} a_n$ converge si y solo si la sucesión $\{b_n\}$ converge, en cuyo caso

$$\sum_{n=0}^{\infty} a_n = b_1 - L, \quad donde \quad L = \lim_{n \to \infty} b_n.$$

Ejemplo. Si $a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$, entonces

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n (\frac{1}{k} - \frac{1}{k+1}) = 1 - \frac{1}{n+1}$$

con lo que $\lim_{n\to\infty} s_n = 1$. Es decir, la serie $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converge y su suma es 1.

Nota: Toda serie se puede ver trivialmente como una serie telescópica, puesto que siempre se puede elegir un b_1 arbitrario y hacer $b_{n+1} = b_1 - s_n$, $n \ge 1$.

$$b_{n+1} = b_1 - s_n$$

$$b_n = b_1 - s_{n-1}$$

$$a_n = b_n - b_{n+1} = s_n - s_{n-1} = a_n$$

Criterios de convergencia para series de términos no negativos

Si los términos de la serie son no negativos, las sumas parciales también lo son.

$$a_n \ge 0$$
, $n = 1, 2, 3, \ldots \Rightarrow s_n \ge 0$, $n = 1, 2, 3, \ldots$

Teorema 10 (Criterio de acotación) Si $a_n \ge 0$ para cada $n \ge 1$ la serie $\sum_{n=1}^{\infty} a_n$ converge si y solo si la sucesión de sus sumas parciales $\{s_n\}$ está acotada superiormente.

Demostración. Para cada $n \in \mathbb{N}$ se cumple

$$s_{n+1} - s_n = a_{n+1} \ge 0,$$

por lo que la sucesión $\{s_n\}$ es monótona creciente. Luego, por el Teorema 2, la sucesión $\{s_n\}$ converge si y solo si está acotada superiormente.

Teorema 11 (Criterio de comparación) Si $a_n \ge 0$, $b_n \ge 0$, y existe una constante c > 0 tal que $a_n \le cb_n$, si $n \ge N$, entonces:

- $Si \sum_{n=1}^{\infty} b_n \ converge \Rightarrow \sum_{n=1}^{\infty} a_n \ converge.$
- $Si \sum_{n=1}^{\infty} a_n \ diverge \Rightarrow \sum_{n=1}^{\infty} b_n \ diverge.$

Demostración. Sean las sumas parciales $s_n = a_1 + \ldots + a_n$, $t_n = b_1 + \ldots + b_n$. Entonces $a_n \leq cb_n$ implica $s_n \leq ct_n$. Si $\sum_{n=1}^{\infty} b_n$ converge, sus sumas parciales están acotadas. Si M es una cota, se tiene $s_n \leq cM$ y, por lo tanto, $\sum_{n=1}^{\infty} a_n$ es también convergente puesto que sus sumas parciales están acotadas por cM.

Ejemplo. Considerar la serie $\sum_{n=1}^{\infty} \frac{2+\cos{(n^3)}}{2^n+n}$. Podemos escribir la siguiente desigualdad:

$$0 \le \frac{2 + \cos(n^3)}{2^n + n} \le \frac{3}{2^n} = 3\left(\frac{1}{2}\right)^n.$$

Sean

$$a_n = \frac{2 + \cos(n^3)}{2^n + n}, \quad b_n = 3\left(\frac{1}{2}\right)^n.$$

Luego se cumple $0 \le a_n \le b_n$. Como $\sum_{n=1}^{\infty} b_n = 3 \sum_{n=1}^{\infty} 0, 5^n$ converge (serie geométrica de razón 0, 5 < 1), entonces, por el criterio de comparación $\sum_{n=1}^{\infty} a_n$ también converge.

Teorema 12 (Criterio del límite) Sean $\{a_n\}$, $\{b_n\}$ dos sucesiones tales que $a_n \geq 0$, $b_n > 0$, y sea

$$\lambda = \lim_{n \to \infty} \frac{a_n}{b_n}$$

Si λ es finito y $\lambda \neq 0$ entonces $\sum_{n=1}^{\infty} b_n$ converge si y solo si $\sum_{n=1}^{\infty} a_n$ converge. Es decir, las dos series tienen el mismo carácter: ambas convergen o ambas divergen. (Notar que $0 < \lambda < \infty$).

Demostración. Sea $c \in (\lambda, \infty)$. Entonces existe algún $N \in \mathbb{N}$ tal que $a_n/b_n \leq c$ para todo $n \geq N$, es decir, $0 \leq a_n \leq cb_n$ para todo $n \geq N$. Si la serie $\sum_{n=1}^{\infty} b_n$ converge, entonces la serie $\sum_{n=1}^{\infty} a_n$ también converge por el criterio de comparación (ver Teorema 11). Por otra parte, sea $d \in (0, \lambda)$. Existe algún $N' \in \mathbb{N}$ tal que $a_n/b_n \geq d$ para todo $n \geq N'$, es decir, $a_n \geq db_n \geq 0$ para todo $n \geq N'$. Si la serie $\sum_{n=1}^{\infty} b_n$ diverge, entonces la serie $\sum_{n=1}^{\infty} a_n$ también diverge por el criterio de comparación.

Teorema 13 (Criterio de la raíz) Sea $\{a_n\}$ una sucesión tal que $a_n \geq 0$ y sea

$$\alpha = \lim_{n \to \infty} \sqrt[n]{a_n}.$$

Entonces

- (a) Si $\alpha < 1$, la serie $\sum_{n=1}^{\infty} a_n$ converge.
- (b) Si $\alpha > 1$, la serie $\sum_{n=1}^{\infty} a_n$ diverge.
- (c) Si $\alpha = 1$, el criterio no decide.

Demostración. Si $\alpha < 1$, elíjase L tal que $\alpha < L < 1$. Entonces $0 \le (a_n)^{\frac{1}{n}} \le L$ para todo $n \ge N$. Por lo tanto, $a_n \le L^n$ para todo $n \ge N$. La serie $\sum_{n=1}^{\infty} L^n$ es convergente (serie geométrica de razón L < 1). Luego, por el criterio de comparación (ver Teorema 11) la serie $\sum_{n=1}^{\infty} a_n$ converge.

Para demostrar (b) se observa que $\alpha > 1$ implica $a_n > 1$ para una infinidad de valores de n y por lo tanto a_n no puede tender a 0. Por lo cual, no se cumple la condición necesaria de convergencia del Teorema 7, y $\sum_{n=1}^{\infty} a_n$ diverge.

Para demostrar (c), consideremos dos ejemplos en los que $a_n = 1/n$, y $a_n = 1/n^2$. En ambos casos $\alpha = 1$. Sin embargo, $\sum_{n=1}^{\infty} 1/n$ diverge mientras que $\sum_{n=1}^{\infty} 1/n^2$ converge. \square

Teorema 14 (Criterio del cociente) Sea $\{a_n\}$ una sucesión tal que $a_n > 0$ y sea

$$L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}.$$

Entonces

- (a) Si L < 1, la serie $\sum_{n=1}^{\infty} a_n$ converge.
- (b) Si L > 1, la serie $\sum_{n=1}^{\infty} a_n$ diverge.

(c) Si L = 1, el criterio no decide.

Demostración. Si L < 1, elíjase z de manera que L < z < 1. Entonces ha de existir un N tal que $\frac{a_{n+1}}{a_n} < z$ para todo $n \ge N$. Luego

$$\frac{a_{n+1}}{a_n} < z = \frac{z^{n+1}}{z^n} \quad \Rightarrow \quad \frac{a_{n+1}}{z^{n+1}} < \frac{a_n}{z^n}, \quad \forall n \ge N.$$

Es decir, la sucesión $\{a_n/z^n\}$ es decreciente para $n \geq N$. En particular, $a_n/z^n \leq a_N/z^N$ para $n \geq N$, o de otro modo, $a_n \leq cz^n$, donde $c = a_N/z^N$. La serie $\sum_{n=1}^{\infty} z^n$ converge (serie geométrica, razón z < 1), luego $\sum_{n=1}^{\infty} a_n$ converge por el criterio de comparación. Para demostrar (b), basta observar que L > 1 implica $a_{n+1} > a_n$ para todo $n \geq N$, y por lo tanto a_n no tiende a 0.

Para demostrar (c) se pueden tomar los mismos ejemplos que en la demostración del item (c) del Teorema 13.

Teorema 15 (Criterio de la Integral) Sea f una función positiva y estrictamente decreciente definida en $[1,+\infty)$ tal que $f(n)=a_n$ para todo $n\in\mathbb{N}$. La serie $\sum_{n=1}^{\infty}a_n$ converge si y solo si la integral $\int_1^{+\infty}f(x)dx$ converge.

Demostración. Ver la demostración en Tom M. Apostol, 1982. □

Ejemplo. Consideremos la serie $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Sea $f(x) = \frac{1}{x^2}$. f es positiva para todo x.

 $f'(x) = -2x^{-3} < 0$ si $x > 0 \implies f$ es estrictamente decreciente en $[1, +\infty)$. Estudiaremos la integral:

$$\int_{1}^{+\infty} \frac{1}{x^{2}} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^{2}} dx = \lim_{b \to \infty} \left[\frac{-1}{x} \right]_{1}^{b} = \lim_{b \to \infty} \left(1 - \frac{1}{b} \right) = 1.$$

Entonces $\int_1^{+\infty} \frac{1}{x^2} dx$ converge y la serie $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge.

Criterios de convergencia para series alternadas

Las series alternadas son de la forma:

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n = a_1 - a_2 + a_3 - a_4 + \dots + (-1)^{n-1} a_n + \dots$$

donde cada $a_n > 0$.

Ejemplo. La serie logarítmica es una serie alternada:

$$\ln (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$

Teorema 16 (Criterio de Leibniz) $Si \{a_n\}$ es una sucesión monótona decreciente con límite 0, la serie alternada $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ converge.

Figura 1: Demostración del criterio de Leibniz.

Demostración. La sucesión se sumas parciales $\{s_{2n}\}$ es creciente puesto que

$$s_{2(n+1)} - s_{2n} = a_{2n+1} - a_{2n+2} \ge 0.$$

En forma similar, se puede demostrar que $\{s_{2n-1}\}$ es decreciente. Además, se cumple

$$s_{2n} < s_1$$
 y $s_{2n-1} > s_2$ $\forall n$.

Se tiene entonces que las sucesiones de sumas parciales son monótonas (crecientes las pares y decrecientes las impares) y acotadas (ver la representación en la Figura 1). Luego, ambas sucesiones son convergentes. Sea

$$s' = \lim_{n \to \infty} s_{2n}, \qquad s'' = \lim_{n \to \infty} s_{2n-1}.$$

Tenemos que

$$s' - s'' = \lim_{n \to \infty} (s_{2n} - s_{2n-1}) = \lim_{n \to \infty} (-a_{2n}) = 0.$$

Es decir, s' = s'' y la serie alternada es convergente.

Ejemplo. Considerar la serie armónica alternada $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$. La sucesión $\{\frac{1}{n}\}$ es decreciente con límite 0. Por lo tanto la serie armónica alternada converge. Recordar que la serie armónica $\sum_{n=1}^{\infty} \frac{1}{n}$ no converge.

Convergencia condicional y absoluta

Teorema 17 Si $\sum_{n=1}^{\infty} |a_n|$ converge, también converge $\sum_{n=1}^{\infty} a_n$ y tenemos

$$\left| \sum_{n=1}^{\infty} a_n \right| \le \sum_{n=1}^{\infty} |a_n| \,. \tag{4}$$

Demostración. Definamos $b_n = a_n + |a_n|$. Resulta $b_n = 0$ o $b_n = 2 |a_n|$. Luego siempre vale $0 \le b_n \le 2 |a_n|$. Notar que $\sum_{n=1}^{\infty} b_n$ es una serie de términos no negativos. Como $\sum_{n=1}^{\infty} |a_n|$ converge y $2\sum_{n=1}^{\infty} |a_n|$ domina a $\sum_{n=1}^{\infty} b_n$, luego $\sum_{n=1}^{\infty} b_n$ converge. Ahora $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n - \sum_{n=1}^{\infty} |a_n|$ y por el teorema de la propiedad de linealidad (ver Teorema 8), $\sum_{n=1}^{\infty} a_n$ converge. En cuanto a la desigualdad (4), es una propiedad conocida del valor absoluto.

Definición.

- Una serie $\sum_{n=1}^{\infty} a_n$ es absolutamente convergente si $\sum_{n=1}^{\infty} |a_n|$ converge.
- Una serie $\sum_{n=1}^{\infty} a_n$ es **condicionalmente convergente** si $\sum_{n=1}^{\infty} a_n$ converge y en cambio $\sum_{n=1}^{\infty} |a_n|$ diverge.

Sucesiones y series de funciones

Definición. Sea A un subconjunto de \mathbb{R} . Supongamos que para cada número natural n está dada una función $f_n: A \to \mathbb{R}$; la aplicación $n \to f_n$ recibe el nombre de **sucesión** de funciones (definidas en A).

Notación: $\{f_n\} = f_1, f_2, f_3, \dots, f_n, \dots$

 f_n es el término n-ésimo de la sucesión.

Para cada $x \in A$, podemos considerar la sucesión numérica que tiene por término n-ésimo el número real $f_n(x)$.

Definición. El campo de convergencia de una sucesión de funciones es el conjunto C de todos los puntos $x \in A$ para los que $\{f_n(x)\}$ converge.

Definición (Convergencia puntual). Sea $\{f_n\}$ una sucesión de funciones definidas en un conjunto A, S un subconjunto de A y f una función definida en S. Si $\forall x \in S$, $f(x) = \lim_{n \to \infty} f_n(x)$, se dice que la sucesión $\{f_n\}$ converge puntualmente a f en S.

En este caso, a f se la llama la función límite de $\{f_n\}$ en S.

Cuando existe tal función f, decimos que $\{f_n\}$ es **convergente puntualmente** en S.

Ejemplo (Sucesión de funciones continuas con función límite discontinua). La sucesión $\{x^n\}$ converge puntualmente en [0,1] a la función f definida en dicho intervalo por

$$f(x) = \begin{cases} 0 & \text{si } 0 \le x < 1\\ 1 & \text{si } x = 1 \end{cases}$$

Ejemplo (Sucesión para la que el límite de la integral no es igual a la integral del límite). Sea $f_n(x) = nx(1-x^2)^n$ para $0 \le x \le 1$. La sucesión $\{f_n(x)\}$ converge puntualmente a f(x) = 0, para todo $x \in [0,1]$. Luego, $\int_0^1 f(x) dx = 0$. Sin embargo,

$$\int_0^1 f_n(x) \ dx = n \int_0^1 x (1 - x^2)^n \ dx = -\frac{n}{2} \frac{(1 - x^2)^{n+1}}{n+1} \Big|_0^1 = \frac{n}{2(n+1)}$$

Por consiguiente,

$$\frac{1}{2} = \lim_{n \to \infty} \int_0^1 f_n(x) \ dx \neq \int_0^1 \lim_{n \to \infty} f_n(x) \ dx = 0.$$

Definición (Otra definición equivalente de convergencia puntual).

Sea $\{f_n\}$ una sucesión de funciones definidas en A, S un subconjunto de A. La sucesión $\{f_n\}$ converge puntualmente a f en S si y solo si para todo $x \in S$ y para todo $\varepsilon > 0$ existe un $N(\varepsilon, x)$ tal que siempre que $n > N(\varepsilon, x)$ se verifica $|f_n(x) - f(x)| < \varepsilon$.

Figura 2: Interpretación gráfica de la convergencia uniforme. Se cumple que $f(x) - \varepsilon < f_n(x) < f(x) + \varepsilon$, si $n > N(\varepsilon)$, $\forall x \in S$.

Definición. Una **serie de funciones** $\sum_{n=1}^{\infty} f_n$ es un par ordenado de sucesiones de funciones $\{f_n, s_n\}$ relacionadas por la condición:

$$s_n = f_1 + f_2 + \dots + f_n.$$

Para cada $n \in \mathbb{N}$,

 f_n es el **término** n-ésimo de la serie

 s_n es la **suma parcial** n-ésima de la serie

Una serie de funciones **converge puntualmente** a una función s en S si para todo $x \in S$, $s(x) = \lim_{n \to \infty} s_n(x) = \sum_{n=1}^{\infty} f_n(x)$.

Definición (Convergencia uniforme). Sea $\{f_n\}$ una sucesión de funciones definidas en A, S un subconjunto de A, f una función definida en S. Se dice que $\{f_n\}$ converge uniformemente a f en S si para cada $\varepsilon > 0$ existe un $N(\varepsilon)$ tal que siempre que $n > N(\varepsilon)$ se verifica $|f_n(x) - f(x)| < \varepsilon$, para todo $x \in S$. (Ver interpretación en la Figura 2).

Toda sucesión $\{f_n\}$ que converge uniformemente a f en S, también converge puntualmente a f en S.

Convergencia uniforme y continuidad

A diferencia de la convergencia puntual, la convergencia uniforme conserva la continuidad.

Teorema 18 Sea $\{f_n\}$ una sucesión de funciones que converge uniformemente en un conjunto S a una función f, y sea x un punto de S. Si cada función f_n es continua en x, entonces f también es continua en x.

Demostración. Sea $\varepsilon > 0$. Según la definición de convergencia uniforme, existe algún $n \in \mathbb{N}$ tal que para todo $t \in S$

$$|f_n(t) - f(t)| < \frac{\varepsilon}{3},$$

de hecho, vale para todo $n > N(\frac{\varepsilon}{3})$.

 f_n es continua en x, luego existe algún $\delta > 0$ tal que

$$|f_n(y) - f_n(x)| < \frac{\varepsilon}{3},$$

siempre que $|y-x| < \delta$. Entonces, si $|y-x| < \delta$ se tiene

$$|f(y) - f(x)| = |f(y) - f_n(y) + f_n(y) - f_n(x) + f_n(x) - f(x)|$$

$$\leq |f(y) - f_n(y)| + |f_n(y) - f_n(x)| + |f_n(x) - f(x)|$$

$$< \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon$$

Es decir, f es continua en x.

Ejemplo. La sucesión $f_n(x) = x^n$ no converge uniformemente a

$$f(x) = \begin{cases} 0 & \text{si } 0 \le x < 1\\ 1 & \text{si } x = 1 \end{cases}$$

en [0, 1]. Pues si convergiera uniformemente, la función límite sería continua, ya que cada f_n es continua.

Definición. Una serie de funciones $\sum_{n=1}^{\infty} f_n$ se dice que converge uniformemente a una función s en S cuando la sucesión $\{s_n\}$ de sus sumas parciales,

$$s_n = f_1 + f_2 + \dots + f_n,$$

converge uniformemente a s en S.

Corolario 2 Si una serie de funciones $\sum_{n=1}^{\infty} f_n$ converge uniformemente a la función suma s en S y cada término f_n es una función continua en un punto $x \in S$, entonces f es continua en x.

Convergencia uniforme e integración

La convergencia uniforme permite intercambiar el símbolo de integración con el paso al límite.

Teorema 19 Sea $\{f_n\}$ una sucesión de funciones continuas en un intervalo [a,b] que convergen uniformemente en [a,b] a una función f. Entonces f es integrable en [a,b] y se cumple

$$\lim_{n \to \infty} \int_a^b f_n(x) \ dx = \int_a^b f(x) \ dx.$$

Demostración. f es integrable porque es continua según el Teorema de convergencia uniforme y continuidad. Para cada $n \in \mathbb{N}$,

$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| = \left| \int_{a}^{b} \left(f_{n}(x) - f(x) \right) dx \right|$$

$$\leq \int_{a}^{b} \left| f_{n}(x) - f(x) \right| dx \leq (b - a) \sup \left\{ \left| f_{n}(x) - f(x) \right| : x \in [a, b] \right\}.$$

Que $\{f_n\}$ converja uniformemente a f en [a,b] implica que

$$\lim_{n \to \infty} \sup \left\{ \left| f_n(x) - f(x) \right| : x \in [a, b] \right\} = 0,$$

por lo tanto

$$\lim_{n \to \infty} \left| \int_a^b f_n(x) \ dx - \int_a^b f(x) \ dx \right| = 0.$$

con lo cual el teorema queda demostrado.

Condición suficiente para la convergencia uniforme de series de funciones

Teorema 20 (Criterio M de Weierstrass) Sea $\sum_{n=1}^{\infty} f_n$ una serie de funciones que converge puntualmente hacia una función s en un conjunto S. Si existe una serie numérica de términos no negativos, convergente, $\sum_{n=1}^{\infty} M_n$, tal que

$$0 \le |f_n(x)| \le M_n, \quad \forall \ n \ge 1 \ y \ \forall \ x \in S,$$

entonces la serie $\sum_{n=1}^{\infty} f_n$ converge uniformemente en S.

Demostración. Para cualquier $x \in S$ tenemos

$$|s(x) - s_n(x)| = \left| \sum_{k=n+1}^{\infty} f_k(x) \right| \le \sum_{k=n+1}^{\infty} |f_k(x)| \le \sum_{k=n+1}^{\infty} M_k.$$

Sea $\varepsilon > 0$. Como la serie $\sum_{k=n+1}^{\infty} M_n$ converge, existe algún $N(\varepsilon) \in \mathbb{N}$ tal que para todo $n > N(\varepsilon)$ se cumple $\sum_{k=n+1}^{\infty} M_k < \varepsilon$ (condición de Cauchy para una serie convergente). Por lo tanto

$$\sup\{|s(x) - s_n(x)| : x \in S\} < \varepsilon, \qquad n > N(\varepsilon),$$

con lo cual $\sum_{n=1}^{\infty} f_n$ converge uniformemente a s en S.

Series de potencias

Definición. Una serie de potencias alrededor de x = 0 es una serie de la forma

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

Una serie de potencias alrededor de x = c es una serie de la forma

$$\sum_{n=0}^{\infty} a_n(x-c)^n = a_0 + a_1(x-c) + a_2(x-c)^2 + \dots + a_n(x-c)^n + \dots$$

en la cual el **centro** c y los coeficientes $a_0, a_1, \dots, a_n, \dots$ son constantes.

Nota: En general x, c, a_0 , a_1 , \cdots son números complejos pero consideraremos solamente el caso en que son números reales.

Intervalo de convergencia

Cada serie de potencias está asociada a un intervalo, llamado **intervalo de convergencia** (círculo de convergencia en el plano complejo) tal que:

- la serie converge absolutamente para todo x interior al mismo.
- la serie diverge para todo x exterior al mismo.
- el comportamiento de la serie en los puntos frontera del intervalo no puede predecirse.

El intervalo de convergencia posee un radio de convergencia r alrededor del centro c (ver Figura 3). La demostración de la existencia del círculo de convergencia puede hallarse en Tom M. Apostol, 1982.

Figura 3: Intervalo de convergencia de una serie de potencias.

En general, el intervalo de convergencia puede determinarse mediante el criterio del cociente o de la raíz.

Ejemplo. Considerar la serie $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. Apliquemos el criterio del cociente. Si $x \neq 0$:

$$\left| \frac{x^{n+1}}{(n+1)!} \frac{n!}{x^n} \right| = \frac{|x|}{n+1}$$

Se cumple $\lim_{n\to\infty}\frac{|x|}{n+1}=0<1$. Luego, la serie converge absolutamente para todo $x\neq 0$. Si x=0 la serie también converge y el radio de convergencia es $+\infty$.

Ejemplo. Considerar la serie $\sum_{n=0}^{\infty} n^2 3^n x^n$. Apliquemos el criterio de la raíz:

$$(n^23^n\left|x\right|^n)^{\frac{1}{n}}=3\left|x\right|n^{\frac{2}{n}}\to 3\left|x\right|,$$
cuando $n\to\infty.$

Por lo tanto la serie converge absolutamente si |x| < 1/3 y diverge si |x| > 1/3. Es decir, el radio de convergencia es 1/3.

Esta serie diverge si |x| = 1/3, va que $|n^2 3^n x^n| = n^2$.

Bibliografía

- 1. Tom M. Apostol, *CALCULUS*, Volumen 1, Editorial Reverté, 1982.
- 2. Thomas, Jr., and George B., *Cálculo. Varias variables*, Undécima edición, Pearson Education, México, 2006.