Data Structures, Algorithms & Data Science Platforms

Instructor: Chirag Jain

Exercise 1

Level Order Traversal of Binary Tree

Output: a b c d e f g h i j

Recall Queue

- **FIFO** Principle: *First in, First Out*
- Elements enqueued only at rear end and dequeued from front
- Also called "Head" and "Tail"

Front Rear

Level Order Traversal of Binary Tree

Output: a b c d e f g h i j

Algorithm

Level Order Traversal of Binary Tree

Algorithm

Input: Tree with n nodes

Measure the following using Big-Oh measure:

- (i) worst-case runtime & (ii) space complexity
- (iii) best-case runtime & (iv) space complexity
- (v) average-case runtime & (vi) space complexity

WRITE ALL SIX ANSWERS ON YOUR ROUGH SHEET

Exercise 2

Diameter of a binary tree

The diameter of a binary tree is the length of the longest path between any two nodes

Note that the length of a path between two nodes is calculated by the number of edges between them.

Algorithm?

Pseudo-code?

Worst-case runtime?

Tasks

- Suggested readings before next lecture
 - Hashing (from online sources)
 - B-Trees (from online sources)
- Programming assignment 2 is available now
 - Due Sept 24 18:00
 - https://github.com/DS221-2021/Assignment2