What is Claimed:

9.

ı

2

i	A scrambling method for scrambling UWB (ultra wideband) data, the method comprising the steps of:
2	the method comprising the steps of:
3	shifting a first bit string a first number of bits;
4	shifting a second bit string a second number of bits;
5	combining the first and second shifted bit strings;
6 7	generating scrambler control bits from the combined first and second shifted bit strings; and
8 9	scrambling at least a portion of the UWB data responsive to the generated scrambler control bits.
1 2	2. The method of claim 1, further including where the first bit string and the second bit string are randomly initialized.
1 2	3. The method of claim 2, wherein the first bit string and second bit strings are randomly initialized using a pseudo random sequence.
1 2	4. The method of claim 2, wherein the first bit string and second bit strings are randomly initialized using a random sequence.
1 2	 The method of claim 1, wherein the scrambling method for scrambling UWB data is applied to each frame.
1 2	6. The method of claim 1, wherein the UWB data includes payload and non-payload data and the scrambling step scrambles the payload data.
1 2	7. The method of claim 6 wherein the method further comprises the step of:
3	selectively applying random frame reversion to the non-payload data.
1	8. The method of claim 7 wherein the step of selectively applying
2	random frame reversion to the non-payload data includes the steps of:
3 4	generating a pseudo random sequence with an evenly distributed function;
5 6	selectively inverting a data sequence responsive to the pseudo random data sequence.

having payload data and non-payload data, the method comprising the steps of:

A scrambling method for scrambling ultra wideband (UWB) data

3	scrambling the payload data using a pseudo random sequence configured for initialization using a seed set with substantially uncorrelated seed values; and
5	selectively applying random frame reversion to the non-payload data.
ı	10. The method of claim 9 wherein the step of selectively applying
2	random frame reversion to the non-payload data includes the steps of:
3	generating a random sequence with an evenly distributed function;
4	selectively inverting a data sequence responsive to the random data
5	sequence.
1	11. A scrambler for scrambling UWB data, the scrambler comprising:
2	a first shift register to shift a first bit string a first number of bits;
3	a second shift register to shift a second bit string a second number of
4	bits; ,
5	a combining circuit to combine the first and second shifted bit strings;
6	a third shift register to load the combined first and second shifted bit
7	strings; and
8	a control circuit to generate scrambler control bits from the combined
9	first and second shifted bit strings for scrambling at least a portion of the UWB data.
1	12. The scrambler of claim 11, further including a polynomial
2	generator which produces a pseudo random sequence to initialize the first bit string and
3	the second bit string.
1	13. The scrambler of claim 12, wherein the random sequence
2	produced by the polynomial generator is greater than or equal to 15 bits.
1	14. The scrambler of claim 11, wherein the first shift register and the
2	second shift registers are initialized responsive to a new frame.
1	15. The scrambler of claim 14, wherein each frame of the UWB data
2	includes payload and non-payload data and the scrambler further comprises:
3	a selective random frame reversion circuit for selectively inverting at
4	least the non-payload data of each scrambled frame.
1	16 he scrambler of claim 15 wherein the selective random frame
2	reversion circuit comprises:

3	a random sequence generator to generate a pseudo random data
4	sequence with an evenly distributed function; and
5	an inverter to selectively invert a data sequence responsive to the pseudo
6	random data sequence.
1	17. A scrambler system for data whitening to reduce the PSD (power
2	spectral density) of (ultra wide-band) UWB signals having payload data and non-
3	payload data, the scrambler system comprising:
4	a scrambler configured to scramble the payload data, the scrambler
5	comprising a linear feedback shift register configured for initialization using a seed set
6	with substantially uncorrelated seed values; and
7	a selective random frame reversion circuit configured to selectively invert
8	the non-payload data.
1	18. The scrambler of claim 17, wherein the seed set includes at least
2	4 seed values and wherein the seed value within the seed set has at least 16 bits.
1	19. The scrambler of claim 17 wherein the selective random frame
2	reversion circuit includes:
3	a random sequence generator to generate a pseudo random sequence
4	with an evenly distributed function; and
5	an inverter to invert a data sequence responsive to the random data
6	sequence.
1	20. A computer readable carrier, including software that is configured
2	to control a computer to implement a scrambling method for scrambling UWB data, the
3	method including the steps of
4	shifting a first bit string a first number of bits;
5	shifting a second bit string a second number of bits;
6	combining the first and second shifted bit strings;
7	generating scrambler control bits from the combined first and second
8	shifted bit strings; and
9 10	scrambling at least a portion of the UWB data responsive to the generated scrambler control bits.

1	21. A computer readable carrier including software that is configured
2	to control a computer to implement a scrambling method for scrambling UWB data
3	having payload data and non-payload data, the method comprising the steps of:
4	scrambling the payload data using a pseudo random sequence configured
5	for initialization using a seed set with substantially uncorrelated seed values; and
6	selectively applying random frame reversion to the non-payload data,
7	random frame reversion including the steps of:
8	generating a random sequence with an evenly distributed function;
9	selectively inverting a data sequence responsive to the random data
10	sequence; and
_ 11	transmitting the selectively inverted data sequence.