Data Structures and Algorithms

https://powSoder.com

Add WeChat powcoder Lecture 10: Binary Search Trees

Overview

- Trees
- Sorted Sequences Assignment Project Exam Help
- Binary Search Trees https://powcoder.com

Representing Trees

- Each node stores WeChat powcoder
 - an element
 - has a pointer to the left subtree (might be empty)
 - has a point to the right subtree (might be empty)

Treeltem

Class Handle = Pointer to Treeltem

Assignment Project Exam Help

Class Treeltem of Element https://powcoder.com

e: Element

Add WeChat powcoder right

e

left

right: Handle

left: Handle

Tree Traversal

 Want to visit every node in the tree (and print) out the elements).

Assignment Project Exam Help

Recursive formulation for tree traversal

https://powcoder.com

Preorder Traversal

Preorder(Tree T)

- 1. Visit the root (and print out the element)
 Assignment Project Exam Help
- 2. If (T->left !=null) Preorder(T->left) https://powcoder.com
- 3. If (T->right !=null) Preorder(T->right) Add WeChat powcoder

Preorder Traversal

Order nodes are visited: 17, 7, 3, 2, 5, 13, 11, 19, 18, 22

Postorder Traversal

Postorder(Tree T)

- 1. If (T->left !=null) Postorder(T->left) Assignment Project Exam Help
- 2. If (T->right !=null) Postorder(T->right) https://powcoder.com
- 3. Visit the root (and print out the element) Add WeChat powcoder

Postorder Traversal

Order nodes are visited: 2, 5, 3, 11, 13, 7, 18, 22, 19, 17

Inorder Traversal

Inorder(Tree T)

- 1. If (T->left !=null) Inorder(T->left)
 Assignment Project Exam Help
- 2. Visit the root (and print out the element) https://powcoder.com
- 3. If (T->right !=null) Inorder(T->right) Add WeChat powcoder

Inorder Traversal

Order nodes are visited: 2, 3, 5, 7, 11, 13, 17, 18, 19, 22

Observation: This sequence is sorted

Sorted Sequences

Operations for Sorted Sequences

- Find an element e in the sorted sequence Assignment Project Exam Help
- Insert an element e into the sorted sequence https://powcoder.com
- Delete an element e from the sorted Add WeChat powcoder sequence.

Want to have all these operations implemented in time O(log n).

Binary Search Tree

Sorted sequence by Inorder Traversal: 2, 3, 5, 7, 11, 13, 17, 18, 19, 22

Properties of Binary Search Trees

• All elements in the left subtree of a node k have value smaller than k.

• All elements in the right subtree of a node k have value larger than R.

Method find

find(k)

- Start at the root. Assignment Project Exam Help
- At a node x, compare x and k. https://powcoder.com
- 1. If k=x, then found
- Add WeChat powcoder

 2. If k < x, search in the left subtree of x. If subtree does not exist return not found.
- 3. If k > x, search in the right subtree of x. If subtree does not exist, return not found

insert(k)

- 1. find(k) Assignment Project Exam Help
- 2. If not found, element with key k becomes https://powcoder.com/child of the last visited node of find(k).

 Add WeChat powcoder

Remove

remove(k)

- 1. find(k)
- If k is stores ignaneatf Pole lette Exist et all and the
- incoming edge.
 https://powcoder.com
 If k has one child x, redirect pointer pointing to k to x and deleted WeChat powcoder
- If k has two children
 - search in the tree for the largest element x smaller than k.
 - swap x and k and delete(k)

Remove leaf

Remove leaf

How to find the largest element smaller than k?

- Go to the left child of k (has to exist as k has two children.
- Follow the pointer to the right as long as possible.

 https://powcoder.com
 Add WeChat powcoder

INCHIOVE 17

Perfectly Balanced Binary Search Trees

• A binary search tree is perfectly balanced if it has height $\log n$ (height is the length of the longest path from the root to a leaf)

https://powcoder.com

19

Insert 17

Assignment Project Exam Help

https://powcoder.com

Insert 13

https://powcoder.com

...