Υπολογιστικά Μαθηματικά 2021–2022

Παύλος Ορφανίδης Γιώργος Χατζηλίγος Σπύρος Κοντάκης

9 Ιανουαρίου 2022

Περιεχόμενα

1	Про	όβλημα 1	1	
		Να βρεθούν οι τύποι για την επίλυση του Π.Α.Τ με την Μέθοδο		
		του $Euler$ και την βελτιωμένη μέθοδο του $Euler$ με τις παρακάτω		
		τιμές για τις εισόδους και τις αρχικές συνθήκες	1	
	1.2	ερώτημα γ: Μέθοδος Ευλερ	3	
		1.2.1 Δεδομένα:	3	
Γ	Γενικά δεδομένα			
		AM = 4835	(1)	
		$ms'' = (f_1 + f_2) - b_s s' s'$	(2)	
		$I_z\omega'=rac{d}{2}(f_2-f_1)-b_ heta \omega \omega$	(3)	
		2	(4)	
		$s(0) = s_0$	(4)	
		$s'(0) = 0, \omega(0) = 0$	(5)	
		m = 9kg		
		d = 1m		
		$I_z = 0.38 kgm^2$		

1 Πρόβλημα 1

1.1 Να βρεθούν οι τύποι για την επίλυση του $\Pi.A.T$ με την Μέθοδο του Euler και την βελτιωμένη μέθοδο του Euler με τις παρακάτω τιμές για τις εισόδους και τις αρχικές συνθήκες

 $Euler\ s'$

Έχουμε από τα δεδομένα ότι:

$$s'' = f'(x, y) = (f1 + f2) - bs|s'|s'$$
(6)

$$s' = f(x, y)$$

$$[f_1, f_2]^T = [A.M./7000, A.M./7000]^T$$

$$[f_1, f_2]^T = [A.M./7000, A.M./8000]^T$$

$$s_0 = A.M./1000$$

$$\theta_0 = 0$$
(7)

Εφαρμόζουμε την μέθοδο Euler:

$$t_n = t_0 + nh$$

το οποίο σημαίνει ότι:

$$t_1 = t_0 + 1h$$

$$t_2 = t_0 + 2h$$

$$\vdots$$

 $t_n = t_0 + nh$

$$s'_{n+1} = s'_n + hf'(t, y)n$$

Το οποίο σημαίνει ότι:

$$s'_1 = s'_0 + hs''_0$$

$$s'_2 = s'_1 + hs''_1$$

.

Βελτιωμένη μέθοδος Euler s'

Εφαρμόζουμε την βελτιωμένη μέθοδο Euler:

$$t_n = t_0 + nh$$

το οποίο σημαίνει ότι:

$$t_1 = t_0 + 1h$$

$$t_2 = t_0 + 2h$$

$$\vdots$$

$$\vdots$$

$$t_n = t_0 + nh$$

$$s'_{n+1} = s'_n + \frac{h}{2} [f'(t_n, s'_n) + f'(t_n + h, s'_n + hf'(t_n, s'_n))]$$

Άρα

$$s_n' + \frac{h}{2} \big[\frac{f_1 + f_2 - b_s |s_n'|s'}{m} + \frac{f_1 + f_2}{m} - \frac{|s_n' + h \frac{f_1 + f_2 - b_s |s_n'|s'}{m} \big|}{m} \frac{(s_n' + h \frac{f_1 + f_2 - b_s |s_n'|s'}{m})}{m} \big]$$

Euler s

Εφαρμόζουμε την μέθοδο Euler:

$$t_n = t_0 + nh$$

το οποίο σημαίνει ότι:

$$t_1 = t_0 + 1h$$

$$t_2 = t_0 + 2h$$

.

$$t_n = t_0 + nh$$

$$s_{n+1} = s_n + hf(t,s)n$$

το οποίο σημαίνει ότι:

$$s_{n+1} = s_n + hs_n'$$

$$s_1 = s_0 + hs_0'$$

1.2 ερώτημα γ: Μέθοδος Ευλερ

1.2.1 Δεδομένα:

$$f_1 + f_2 = Kps(sdes - s) - Kds(s')$$
(8)

$$K_{ps} = 5 (9)$$

$$K_{ds} = 15 + (AM/100) \tag{10}$$

$$S_0 = 0 \tag{11}$$

$$S_{des} = AM/200 \tag{12}$$

Μεταφορική Κίνηση

Άρα, για την συνάρτηση σ(τ) έχουμε:

$$\tau v = \tau 0 + \nu \eta \quad \sigma \nu + 1 = \sigma \nu + \eta \varsigma' \nu$$

$$\begin{array}{l} \tau 1 = \tau 0 + 1 \eta \; \sigma 1 = \sigma 0 + \eta \varsigma' 0 \; \tau 2 = \tau 0 + 2 \eta \; \sigma 2 = \sigma 1 + \eta \varsigma' 1 \; . \; . \; . \; . \; . \; \tau 30.000 \\ = \tau 0 + 30.000 \eta \; \sigma 30.000 = \sigma 29.999 + \eta \varsigma' 29.999 \end{array}$$

Για την συνάρτηση ς'(τ):

$$\Sigma'' = K\pi\sigma(\sigma\delta\epsilon\varsigma - \varsigma) - K\delta\sigma(\varsigma') - \beta\sigma\varsigma'\varsigma'$$

Άρα, προκύπτει:

$$\tau v = \tau 0 + \nu \eta \ \varsigma' \nu + 1 = \varsigma' \nu + \eta \varsigma'' \nu$$

$$\begin{array}{l} \tau 1 = \tau 0 + 1 \eta \ \varsigma ' 1 = \varsigma ' 0 + \eta \varsigma '' 0 \ \tau 2 = \tau 0 + 2 \eta \ \sigma 2 = \varsigma ' 1 + \eta \varsigma '' 1 \ . \ . \ . \ . \ . \\ \tau 30.000 = \tau 0 + 30.000 \eta \ \sigma 30.000 = \sigma 29.999 + \eta \varsigma '' 29.999 \end{array}$$