Mathematics 1553

Quiz 9

Prof. Margalit Section HP1 / HP2

6 November 2015

1. Consider the matrix

$$A = \left(\begin{array}{rrr} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{array}\right).$$

Is (1, 1, 1) an eigenvector for A? Why or why not?

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

List all eigenvalues of the following matrix:

det
$$(A - \lambda I) = \det \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$
.

$$\Rightarrow$$
 $\lambda_1=1$, $\lambda_2=2$, $\lambda_3=-1$

Suppose A is a 2×2 matrix and that T_A is the linear transformation $\mathbb{R}^2 \to \mathbb{R}^2$ that reflects about the line y = x. List one eigenvector of A and give the corresponding eigenvalue.

O if
$$\overrightarrow{V}$$
 is on the line $y=x$, after it is reflected, \overrightarrow{V} stays the same.
So $\lambda=1$, $\overrightarrow{V}=(\frac{1}{2})$, or any multiple of (!)

O if
$$\vec{V}$$
 is on the line $y=x$, $(\vec{z} + \vec{v}) = \vec{v}$ after it is reflected, $\vec{v} = \vec{v}$ stays the same. $(\vec{z} + \vec{v}) = \vec{v}$ So $\vec{\lambda} = 1$, $\vec{v} = (1)$, or any multiple of (1) $\vec{v} = \vec{v}$ So $\vec{\lambda} = 1$, $\vec{v} = (1)$, or any multiple.