淇江一中卓越班 2023-17

高三数学压轴解答题——函数导数——函数零点解答 1

题型一 判断、证明或讨论函数零点的个数

1.证明 (1)设
$$g(x) = f'(x)$$
,则 $g(x) = \cos x - \frac{1}{1+x}$, $g'(x) = -\sin x + \frac{1}{(1+x)^2}$.

当 $x \in \left(-1, \frac{\pi}{2}\right)$ 时,g'(x)单调递减,而 g'(0) > 0, $g'\left(\frac{\pi}{2}\right) < 0$,可得 g'(x)在 $\left(-1, \frac{\pi}{2}\right)$ 有唯一零点,设为 a.

则当 x \in $(-1, \alpha)$ 时,g'(x)>0;当 <math>x \in $\left(\alpha, \frac{\pi}{2}\right)$ 时,g'(x)<0.

所以 g(x)在 $(-1,\alpha)$ 上单调递增,在 $\left(\alpha,\frac{\pi}{2}\right)$ 上单调递减,故 g(x)在 $\left(-1,\frac{\pi}{2}\right)$ 上存在唯一极大值点,

即 f(x)在 $\left(-1,\frac{\pi}{2}\right)$ 上存在唯一极大值点.

(2)f(x)的定义域为(-1,+∞).

①当 $x \in (-1, 0]$ 时,由(1)知,f(x)在(-1, 0)上单调递增,而f(0) = 0,

所以当 $x \in (-1,0)$ 时,f(x) < 0,故 f(x)在(-1,0)上单调递减.

又 f(0) = 0 , 从而 x = 0 是 f(x)在(-1,0]上的唯一零点;

②当 $x \in \left(0, \frac{\pi}{2}\right]$ 时,由(1)知,f(x)在(0, α)上单调递增,在 $\left(\alpha, \frac{\pi}{2}\right)$ 上单调递减,而f(0) = 0, $f\left(\frac{\pi}{2}\right) < 0$,

所以存在 $\beta \in \left(\alpha, \frac{\pi}{2}\right)$,使得 $f(\beta) = 0$,且当 $x \in (0, \beta)$ 时, f(x) > 0;当 $x \in \left(\beta, \frac{\pi}{2}\right)$ 时, f(x) < 0.

故 f(x)在 $(0,\beta)$ 上单调递增,在 $\left(\beta,\frac{\pi}{2}\right)$ 上单调递减.又 f(0)=0, $f\left(\frac{\pi}{2}\right)=1$ - $\ln\left(1+\frac{\pi}{2}\right)>0$,

所以当 $x \in \left(0, \frac{\pi}{2}\right]$ 时,f(x) > 0.从而,f(x)在 $\left(0, \frac{\pi}{2}\right]$ 上没有零点;

③当
$$x \in \left(\frac{\pi}{2}, \pi\right]$$
时, $f(x) = \cos x - \frac{1}{1+x} < 0$,所以 $f(x)$ 在 $\left(\frac{\pi}{2}, \pi\right)$ 上单调递减.而 $f\left(\frac{\pi}{2}\right) > 0$, $f(\pi) < 0$,

所以 f(x)在 $\left(\frac{\pi}{2}, \pi\right)$ 上有唯一零点;

④当 $x \in (\pi, +\infty)$ 时, $\ln(x+1) > 1$,所以 f(x) < 0,从而 f(x)在 $(\pi, +\infty)$ 上没有零点.

综上, f(x)有且仅有2个零点.

2(1)解 由函数的解析式,得 $f(x)=x(e^x-2a), x \in \mathbb{R}$.

当 a>0 时,令 f(x)=0,得 x=0 或 $x=\ln(2a)$,

当 $0 < a < \frac{1}{2}$ 时,令 f'(x) > 0,得 x > 0 或 $x < \ln(2a)$;

所以 f(x)在 $(-\infty, \ln(2a))$, $(0, +\infty)$ 上单调递增,在 $(\ln(2a), 0)$ 上单调递减.

当 $a=\frac{1}{2}$ 时, $f(x)=x(e^x-1)\geqslant 0$ 且等号不恒成立,所以f(x)在 $(-\infty$, $+\infty$)上单调递增.

当 $a>\frac{1}{2}$ 时,令 f(x)>0,得 x<0 或 $x>\ln(2a)$;令 f(x)<0,得 $0< x<\ln(2a)$,

所以 f(x)在($-\infty$, 0), $(\ln(2a)$, $+\infty$)上单调递增, 在(0, $\ln(2a)$)上单调递减.

(2)证明 由于 $\frac{1}{2} < a \le \frac{e^2}{2}$,故 $1 < 2a \le e^2$,

则 b>2a>1, f(0)=b-1>0, $f(-b)=(-1-b)e^{-b}-ab^2+b<0$.

又由(1)知函数 f(x)在区间 $(-\infty, 0)$ 上单调递增,故函数 f(x)在区间 $(-\infty, 0)$ 上有一个零点.

 $f(\ln(2a)) = 2a[\ln(2a) - 1] - a[\ln(2a)]^2 + b > 2a[\ln(2a) - 1] - a[\ln(2a)]^2 + 2a = 2a\ln(2a) - a[\ln(2a)]^2 = a\ln(2a)[2 - \ln(2a)],$

由于 $\frac{1}{2} < a \le \frac{e^2}{2}$, $1 < 2a \le e^2$, 故 $a \ln(2a)[2 - \ln(2a)] \ge 0$,

结合函数 f(x)的单调性可知函数 f(x)在区间 $(0, +\infty)$ 上没有零点.

综上可得,函数 f(x)只有一个零点.

(3) 证明 由(1)知,f(x)在($-\infty$, $\ln(2a)$), $(0, +\infty)$ 上单调递增,在($\ln(2a)$, 0)上单调递减.

 $f(\ln(2a)) = 2a[\ln(2a) - 1] - a[\ln(2a)]^2 + b \le 2a[\ln(2a) - 1] - a[\ln(2a)]^2 + 2a = 2a\ln(2a) - a[\ln(2a)]^2 = a\ln(2a)[2 - \ln(2a)],$

由于 $0 < a < \frac{1}{2}$, 0 < 2a < 1, 则 $\ln(2a) < 0$, 故 $a \ln(2a)[2 - \ln(2a)] < 0$,

所以 $x \le 0$ 时, $f(x) \le f(\ln(2a)) < 0$, 此时 f(x) 无零点;

当 x>0 时,f(x)单调递增,注意到 $f(0)=b-1 \le 2a-1<0$,

取 $c = \sqrt{2(1-b)+2}$, 因为 $b \le 2a < 1$, 所以 $c > \sqrt{2} > 1$,

又易证 $e^c > c+1$,

所以
$$f(c) = (c-1)e^c - ac^2 + b > (c-1)(c+1) - ac^2 + b = (1-a)c^2 + b - 1 > \frac{1}{2}c^2 + b - 1 = 1 - b + 1 + b - 1 = 1 > 0$$
,

所以 f(x)在(0, c)上有唯一零点,即 f(x)在 $(0, +\infty)$ 上有唯一零点.

综上, f(x)只有一个零点.

3.解 (1)当 a=e 时, $f(x)=e^x-ex$, $f(x)=e^x-e$,令f(x)=0,得 x=1,

当 x<1 时,f(x)<0; 当 x>1 时,f(x)>0, 所以 f(x)在($-\infty$, 1)上单调递减,在(1, $+\infty$)上单调递增,

则 f(x)的最小值为 f(1)=0,无最大值.

 $(2)g(x)=f(x)=a^x \ln a - a$

- ①若 0 < a < 1, g(x) < 0 在(0, 1)恒成立,此时 g(x)在(0, 1)没有零点.
- ②若 a>1, $g'(x)=(\ln a)^2 a^x>0$, 所以 g(x)在(0, 1)单调递增.

易得 $g(0)=\ln a-a$,令 $h(a)=\ln a-a(a>1)$,因为 $h'(a)=\frac{1}{a}-1<0$,所以 h(a)在 $(1,+\infty)$ 单调递减,

故 h(a) < h(1) = -1 < 0,所以 $g(0) = \ln a - a < 0$; 又 $g(1) = a \ln a - a = a(\ln a - 1)$,

- ①当 $1 < a \le e$ 时, $g(1) \le 0$,g(x)在(0, 1)没有零点.
- ②当 a > e 时,g(1) > 0,g(x)在(0, 1)有且只有 1 个零点.

综上所述,若 0 < a < 1 或 $1 < a \le e$,g(x)在(0, 1)没有零点;若 a > e,g(x)在(0, 1)有且只有 1 个零点.

4.解 t(x) = 0, $x \in (0, \pi)$, 即 $\frac{x^2 - 1}{\sin x} - 2 = 0$, 等价于 $x^2 - 1 - 2\sin x = 0$.设 $g(x) = x^2 - 1 - 2\sin x$, $x \in (0, \pi)$,

则 $g'(x) = 2x - 2\cos x$.

①当
$$x \in \left[\frac{\pi}{2}, \pi\right)$$
时, $g'(x) > 0$, $g(x)$ 在区间 $\left[\frac{\pi}{2}, \pi\right]$ 上单调递增.又 $g\left(\frac{\pi}{2}\right) = \frac{\pi^2}{4} - 3 < 0$, $g(\pi) = \pi^2 - 1 > 0$,

所以 g(x)在区间 $\left[\frac{\pi}{2}, \pi\right]$ 上有一个零点.

②当 $x \in (0, \frac{\pi}{2})$ 时,设 $h(x) = g'(x) = 2x - 2\cos x \cdot h'(x) = 2 + 2\sin x > 0$,

所以 g'(x) 在区间 $\left(0, \frac{\pi}{2}\right)$ 上单调递增. 又 g'(0) = -2 < 0, $g'\left(\frac{\pi}{2}\right) = \pi > 0$,

所以存在 $x_0 \in \left(0, \frac{\pi}{2}\right)$, 使得 $g'(x_0) = 0$.所以当 $x \in (0, x_0)$ 时,g'(x) < 0,g(x)单调递减;

当 $x \in (x_0, \frac{\pi}{2})$ 时,g'(x) > 0,g(x)单调递增.又 g(0) = -1 < 0, $g(\frac{\pi}{2}) = \frac{\pi^2}{4} - 3 < 0$,所以 g(x)在区间 $\left(0, \frac{\pi}{2}\right)$ 上无零点.

综上所述,函数 t(x)在定义域内只有一个零点.

5.解 (1)由 $f(x) = \ln x - ae^x + 1$, 知 $x \in (0, +\infty)$.

当 a=1 时 , $f(x)=\ln x-e^x+1$, $f'(x)=\frac{1}{x}-e^x$, 显然 f'(x)在 $(0,+\infty)$ 上单调递减 .

$$\nabla f'(\frac{1}{2}) = 2 - \sqrt{e} > 0$$
, $f'(1) = 1 - e < 0$,

所以 f'(x) 在 $\left(\frac{1}{2}, 1\right)$ 上存在零点 x_0 , 且是唯一零点,

当 $x \in (0, x_0)$ 时,f'(x) > 0;当 $x \in (x_0, +\infty)$ 时,f'(x) < 0,

所以 x_0 是 $f(x) = \ln x - e^x + 1$ 的极大值点,且是唯一极值点.

(2)
$$rac{r}{r} f(x) = \ln x - ae^x + 1 = 0$$
, $rac{ln x + 1}{e^x}$. $rac{r}{r} y = a$, $g(x) = \frac{\ln x + 1}{e^x}$, $g'(x) = \frac{\frac{1}{x} - \ln x - 1}{e^x}$ (x>0).

令 $h(x) = \frac{1}{x} - \ln x - 1$,则 $h'(x) = -\frac{1}{x^2} - \frac{1}{x} < 0$,所以 h(x)在 $(0, +\infty)$ 上单调递减,而 h(1) = 0 ,

故当 $x \in (0,1)$ 时,h(x) > 0,即 g'(x) > 0,g(x)单调递增;

当 $x \in (1, +\infty)$ 时,h(x) < 0,即 g'(x) < 0,g(x)单调递减.故 $g(x)_{\max} = g(1) = \frac{1}{a}$.

又
$$g\left(\frac{1}{\mathrm{e}}\right)=0$$
 , 当 $x>1$ 且 $x\to+\infty$ 时 , $g(x)>0$ 且 $g(x)\to0$,

作出函数 $g(x) = \frac{\ln x + 1}{e^x}$ 的图象如图所示.

结合图象知,当 $a > \frac{1}{a}$ 时,f(x)无零点,

当 $a \le 0$ 或 $a = \frac{1}{e}$ 时 , f(x)有 1 个零点 ,

当 $0 < a < \frac{1}{e}$ 时,f(x)有两个零点.

6. 证明
$$f'(x) = \frac{1}{x} - axe^x = \frac{1 - ax^2e^x}{x}$$
, $\Rightarrow g(x) = 1 - ax^2e^x(x>0)$,

 $\therefore g'(x) = -ax(x+2)e^x < 0$, $\therefore g(x)$ 在 $(0, +\infty)$ 上单调递减,

$$\nabla g(1) = 1 - ae > 0$$
, $g\left(\ln \frac{1}{a}\right) = 1 - a\left(\ln \frac{1}{a}\right)^2 \frac{1}{a} = 1 - \left(\ln \frac{1}{a}\right)^2 < 0$,

∴
$$\exists x_0 \in \left(1, \ln \frac{1}{a}\right)$$
,使 $g(x_0) = 0$,即 $1 - ax_0^2 e^{x_0} = 0$,∴ 当 $x \in (0, x_0)$ 时, $g(x) > 0$,∴ $f'(x) > 0$,

当 $x \in (x_0$, $+\infty$)时,g(x) < 0 , : f'(x) < 0 , : f(x)在 $(0, x_0)$ 上单调递增,在 $(x_0, +\infty)$ 上单调递减,

: $f(x)_{\text{max}} = f(x_0) > f(1) = 0$,

∵
$$f(1) = 0$$
 , ∴ $f(x)$ 在 $(0$, x_0)上有唯一零点 1 , 又 $f\left(\ln\frac{1}{a}\right) = \ln\left(\ln\frac{1}{a}\right) - \ln\frac{1}{a} + 1$, 易证 $\ln x < x - 1(x > 1)$,

综上, f(x)有两个零点.

7.证明 $(1)f'(x) = \ln x - 2ax + 2$,则 f'(1) = 2 - 2a,即切线斜率为 2 - 2a,又 f(1) = 1 - a,

则切线 l 的方程为 y - (1 - a) = (2 - 2a)(x - 1) , 即 $y = (2 - 2a)(x - \frac{1}{2})$,

可得当 $x = \frac{1}{2}$ 时, y = 0, 故切线 l 恒过定点 $\left(\frac{1}{2}, 0\right)$.

(2) : x_1 , x_2 是 f(x)的零点 , $x_2 > 2x_1$, 且 $x_1 > 0$, $x_2 > 0$,

$$\text{Im} \begin{cases} x_1 \ln x_1 - ax_1^2 + x_1 = 0 \ , \\ x_2 \ln x_2 - ax_2^2 + x_2 = 0 \ , \end{cases} \text{Im} \begin{cases} \ln x_1 + 1 = ax_1 \ , \\ \ln x_2 + 1 = ax_2 \ , \end{cases} \\ \therefore a = \frac{\ln x_1 + \ln x_2 + 2}{x_1 + x_2} = \frac{\ln x_2 - \ln x_1}{x_2 - x_1} \ ,$$

即
$$\ln(x_1x_2) + 2 = \frac{(x_1 + x_2)\ln\frac{x_2}{x_1}}{x_2 - x_1}$$
,令 $t = \frac{x_2}{x_1}$,则 $t > 2$,则 $\ln(x_1x_2) + 2 = \frac{(t+1)\ln t}{t-1}$,

令
$$g(t) = \frac{(t+1)\ln t}{t-1}$$
 , 则 $g'(t) = \frac{t-\frac{1}{t}-2\ln t}{(t-1)^2}$.

令 $h(t) = t - \frac{1}{t} - 2\ln t$, 则 $h'(t) = \frac{(t-1)^2}{t^2} > 0$, 则 h(t)单调递增 ,

∴ $h(t)>h(2)=\frac{3}{2}$ - 2ln 2>0,即g'(t)>0,则g(t)单调递增,∴ $g(t)>g(2)=3\ln 2$,

∴
$$\ln(x_1x_2) + 2 > 3\ln 2$$
, $\mathbb{P} \ln(x_1x_2) > 3\ln 2 - 2 = \ln \frac{8}{e^2}$, $\mathbb{P} x_1x_2 > \frac{8}{e^2}$,

则
$$\sqrt{x_1^2 + x_2^2} > \sqrt{2x_1x_2} > \frac{4}{6}$$
(由于 $x_1 \neq x_2$,故不取等号),

8. 【解析】: (I) 设曲线 y = f(x) 与 x 轴相切于点 $(x_0, 0)$,

则
$$f(x_0) = 0$$
, $f'(x_0) = 0$, 即
$$\begin{cases} x_0^3 + ax_0 + \frac{1}{4} = 0 \\ 3x_0^2 + a = 0 \end{cases}$$
,解得 $x_0 = \frac{1}{2}$, $a = -\frac{3}{4}$.

因此, 当 $a = -\frac{3}{4}$ 时, x轴是曲线 y = f(x)的切线.

(II) 当
$$x \in (1, +\infty)$$
时, $g(x) = -\ln x < 0$,从而 $h(x) = \min\{f(x), g(x)\} \le g(x) < 0$,

∴ h(x)在 (1, +∞) 无零点.

当 x=1 时,若 $a \ge -\frac{5}{4}$,则 $f(1) = a + \frac{5}{4} \ge 0$, $h(1) = \min\{f(1), g(1)\} = g(1) = 0$,故 x=1 是 h(x) 的零点;若 $a < -\frac{5}{4}$,则 $f(1) = a + \frac{5}{4} < 0$, $h(1) = \min\{f(1), g(1)\} = f(1) < 0$,故 x=1 不是 h(x) 的零点.

当 $x \in (0,1)$ 时, $g(x) = -\ln x > 0$,所以只需考虑f(x)在(0,1)的零点个数.

(i) 若 $a \le -3$ 或 $a \ge 0$,则 $f'(x) = 3^2a + 在(0,1)$ 无零点,故f(x)在(0,1)单调,而 $f(0) = \frac{1}{4}$, $f(1) = a + \frac{5}{4}$,

所以当 $a \le -3$ 时,f(x)在(0,1)有一个零点;当 $a \ge 0$ 时,f(x)在(0,1)无零点.

$$(ii)$$
若-3< a < 0 ,则 $f(x)$ 在 (0) , $\sqrt{-\frac{a}{3}}$, (1) 单调递增,故当 (1) 本 (2) 取

湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——函数零点解答 2

的最小值,最小值为 $f\left(\sqrt{-\frac{a}{3}}\right) = \frac{2a}{3}\sqrt{-\frac{a}{3}} + \frac{1}{4}$.

①若
$$f\left(\sqrt{-\frac{a}{3}}\right) > 0$$
, 即 $-\frac{3}{4} < a < 0$, $f(x)$ 在 $(0,1)$ 无零点.

②若
$$f\left(\sqrt{-\frac{a}{3}}\right)$$
=0, 即 $a = -\frac{3}{4}$, 则 $f(x)$ 在 (0,1) 有唯一零点;

③若
$$f\left(\sqrt{-\frac{a}{3}}\right)$$
<0,即 -3 < a < $-\frac{3}{4}$,由于 $f\left(0\right) = \frac{1}{4}$, $f\left(1\right) = a + \frac{5}{4}$, 所以当 $-\frac{5}{4}$ < a < $-\frac{3}{4}$ 时, $f\left(x\right)$ 在 $(0,1)$

有两个零点; 当 $-3 < a \le -\frac{5}{4}$ 时, f(x)在 (0,1) 有一个零点. …10 分

综上,当
$$a > -\frac{3}{4}$$
或 $a < -\frac{5}{4}$ 时, $h(x)$ 由一个零点;当 $a = -\frac{3}{4}$ 或 $a = -\frac{5}{4}$ 时, $h(x)$ 有两个零点;当 $-\frac{5}{4} < a < -\frac{3}{4}$ 时, $h(x)$ 有三个零点.

题型二 根据零点个数求参数范围

9.解 (1)当 a=1 时, $f(x)=e^x-x-2$, $x \in \mathbb{R}$,则 $f'(x)=e^x-1$.

当 x<0 时,f(x)<0;当 x>0 时,f(x)>0.所以 f(x)在($-\infty$, 0)单调递减,在(0 , $+\infty$)单调递增.

 $(2)f'(x) = e^x - a$.

①当 $a \le 0$ 时,f(x) > 0,所以 f(x)在($-\infty$, $+\infty$)单调递增.故 f(x)至多存在一个零点,不合题意.

②当 a>0 时,由 f(x)=0,可得 $x=\ln a$.当 $x\in (-\infty, \ln a)$ 时,f(x)<0;当 $x\in (\ln a, +\infty)$ 时,f(x)>0.

所以 f(x)在 $(-\infty, \ln a)$ 单调递减,在 $(\ln a, +\infty)$ 单调递增.

故当 $x = \ln a$ 时,f(x)取得最小值,最小值为 $f(\ln a) = -a(1 + \ln a)$.

(i)若 $0 < a \le \frac{1}{e}$, 则 $f(\ln a) \ge 0$, f(x)在(- ∞ , + ∞)至多存在一个零点 , 不合题意.

(ii) 若 $a > \frac{1}{e}$, 则 $f(\ln a) < 0$.因为 $f(-2) = e^{-2} > 0$, 所以 f(x)在(- ∞ , $\ln a$)存在唯一零点.

由(1)知,当 x>2时, $e^x-x-2>0$.所以当 x>4且 $x>2\ln(2a)$ 时, $f(x)=e_2^{\frac{x}{2}}e_2^{\frac{x}{2}}-a(x+2)>e^{\ln(2a)}\left(\frac{x}{2}+2\right)-a(x+2)=2a>0$.

故 f(x)在(ln a, + ∞)存在唯一零点.从而 f(x)在(- ∞ , + ∞)有两个零点.

综上,a 的取值范围是 $\left(\frac{1}{e}, +\infty\right)$.

10.解 (1)当 a = 2 时 , $f(x) = \frac{x^2}{2^x}(x > 0)$, $f'(x) = \frac{x(2 - x \ln 2)}{2^x}(x > 0)$,

令 f(x) > 0 , 则 $0 < x < \frac{2}{\ln 2}$, 此时函数 f(x)单调递增 ,

令 f(x) < 0 , 则 $x > \frac{2}{\ln 2}$, 此时函数 f(x)单调递减 ,

所以函数 f(x)的单调递增区间为 $\left(0, \frac{2}{\ln 2}\right)$,单调递减区间为 $\left(\frac{2}{\ln 2}, + \infty\right)$.

(2)曲线 y = f(x)与直线 y = 1 有且仅有两个交点,

可转化为方程 $\frac{x^a}{a^x}$ = 1(x > 0)有两个不同的解,即方程 $\frac{\ln x}{x}$ = $\frac{\ln a}{a}$ 有两个不同的解.

设
$$g(x) = \frac{\ln x}{x} (x > 0)$$
 , 则 $g'(x) = \frac{1 - \ln x}{x^2} (x > 0)$, 令 $g'(x) = \frac{1 - \ln x}{x^2} = 0$, 得 $x = e$,

当 0 < x < e 时,g'(x) > 0,函数 g(x)单调递增,

当 x > e 时 , g'(x) < 0 , 函数 g(x)单调递减 ,

故
$$g(x)_{\text{max}} = g(e) = \frac{1}{e}$$
,

且当 x > e 时, $g(x) \in \left(0, \frac{1}{e}\right)$,又 g(1) = 0,所以 $0 < \frac{\ln a}{a} < \frac{1}{e}$,所以 a > 1 且 $a \neq e$,

即 a 的取值范围为 $(1, e) \cup (e, +\infty)$.

11.(1)证明 当 a = 1 时 , $f(x) \ge 1$ 等价于($x^2 + 1$)e^{-x} - 1 ≤ 0 .

设函数
$$g(x) = (x^2 + 1)e^{-x} - 1$$
 , 则 $g'(x) = -(x^2 - 2x + 1)e^{-x} = -(x - 1)^2e^{-x}$,

当 $x \neq 1$ 时,g'(x) < 0,所以 g(x)在 $(0, +\infty)$ 单调递减,而 g(0) = 0,故当 $x \ge 0$ 时, $g(x) \le 0$,即 $f(x) \ge 1$.

- (2)解 设函数 $h(x) = 1 ax^2 e^{-x} f(x) \Phi(0, +\infty)$ 只有一个零点当且仅当 $h(x) \Phi(0, +\infty)$ 只有一个零点.
- ①当 $a \le 0$ 时 , h(x) > 0 , h(x)没有零点 ;
- ②当 a>0 时, $h'(x)=ax(x-2)e^{-x}$.当 $x\in(0,2)$ 时,h'(x)<0;当 $x\in(2,+\infty)$ 时,h'(x)>0.

所以 h(x)在(0, 2)单调递减,在 $(2, +\infty)$ 单调递增.

故 $h(2) = 1 - \frac{4a}{e^2}$ 是 h(x)在[0, +∞)的最小值.

1 若 h(2)>0 , 即 $a<\frac{e^2}{4}$, h(x)在 $(0 , +\infty)$ 没有零点 ;

2 若 h(2) = 0 , 即 $a = \frac{e^2}{4}$, h(x)在 $(0 , +\infty)$ 只有一个零点 ;

3 常 h(2)<0,即 $a>\frac{e^2}{4}$,由于 h(0)=1,所以 h(x)在(0,2)有一个零点.

由(1)知,当
$$x>0$$
 时, $e^x>x^2$,所以 $h(4a)=1-\frac{16a^3}{e^{4a}}=1-\frac{16a^3}{\left(e^{2a}\right)^2}>1-\frac{16a^3}{\left(2a\right)^4}=1-\frac{1}{a}>0.$

故 h(x)在(2, 4a)有一个零点.

因此 h(x)在 $(0, +\infty)$ 有两个零点.

综上 f(x)在 $(0, +\infty)$ 只有一个零点时, $a = \frac{e^2}{4}$.

12.证明 (1)函数 f(x)的定义域为(0, + ∞), 导函数 $f(x) = \frac{1}{2\sqrt{x}} - \frac{1}{x}$,

由
$$f'(x_1) = f'(x_2)$$
得 $\frac{1}{2\sqrt{x_1}} - \frac{1}{x_1} = \frac{1}{2\sqrt{x_2}} - \frac{1}{x_2}$,

因为
$$x_1 \neq x_2$$
 , 所以 $\frac{1}{\sqrt{x_1}} + \frac{1}{\sqrt{x_2}} = \frac{1}{2}$.

由基本不等式得 $\frac{1}{2}\sqrt{x_1x_2} = \sqrt{x_1} + \sqrt{x_2} \ge 2\sqrt[4]{x_1x_2}$,

因为 $x_1 \neq x_2$, 所以 $x_1x_2 > 256$.

由题意得 $f(x_1) + f(x_2) = \sqrt{x_1} - \ln x_1 + \sqrt{x_2} - \ln x_2 = \frac{1}{2}\sqrt{x_1x_2} - \ln(x_1x_2)$.

设
$$g(x) = \frac{1}{2}\sqrt{x} - \ln x$$
,

则
$$g'(x) = \frac{1}{4x}(\sqrt{x} - 4)$$
 ,

所以 x>0 时,g'(x),g(x)的变化情况如下表:

X	(0, 16)	16	(16, +∞)
<i>g</i> ′(<i>x</i>)	-	0	+
g(x)		2 - 4ln 2	

所以 g(x)在(256, + ∞)上单调递增,故 $g(x_1x_2)>g(256)=8-8\ln 2$,即 $f(x_1)+f(x_2)>8-8\ln 2$.

(2)
$$\Rightarrow m = e^{-(|a|+k)}$$
, $n = \left(\frac{|a|+1}{k}\right)^2 + 1$, $\mathbb{N} f(m) - km - a > |a| + k - k - a \ge 0$,

$$f(n) - kn - a < n \left(\frac{1}{\sqrt{n}} - \frac{a}{n} - k \right) \le n \left(\frac{|a|+1}{\sqrt{n}} - k \right) < 0$$
,所以,存在 $x_0 \in (m, n)$ 使 $f(x_0) = kx_0 + a$,

所以,对于任意的 $a \in \mathbb{R}$ 及 $k \in (0, +\infty)$,直线 y = kx + a 与曲线 y = f(x)有公共点.

由
$$f(x) = kx + a$$
 得 $k = \frac{\sqrt{x - \ln x - a}}{x}$.设 $h(x) = \frac{\sqrt{x - \ln x - a}}{x}$, 则 $h'(x) = \frac{\ln x - \frac{\sqrt{x}}{2} - 1 + a}{x^2} = \frac{-g(x) - 1 + a}{x^2}$,

其中 $g(x) = \frac{\sqrt{x}}{2} - \ln x$.由(1)可知 $g(x) \ge g(16)$,又 $a \le 3 - 4 \ln 2$,

故 -
$$g(x)$$
 - 1 + $a \le$ - $g(16)$ - 1 + $a =$ - 3 + $4 \ln 2 + a \le 0$,

所以 $h'(x) \le 0$,即函数 h(x)在 $(0, +\infty)$ 上单调递减,因此方程 f(x) - kx - a = 0至多 1 个实根.

综上, 当 $a \le 3$ - $4 \ln 2$ 时,对于任意 k > 0, 直线 y = kx + a 与曲线 y = f(x)有唯一公共点.

13.解 当 x < 0 时,h'(x) < 0,h(x)在区间($-\infty$, 0)单调递减,又 $h(-\sqrt{m}) = 0$,

故 h(x)在区间($-\infty$,0)有唯一实根,

当
$$x>0$$
 时, $h(x) = \ln x^2 - x + \frac{m}{x} - \ln m$, $h'(x) = \frac{2}{x} - 1 - \frac{m}{x^2} = \frac{-x^2 + 2x - m}{x^2}$,

①若
$$m \ge 1$$
, $-x^2 + 2x - m = -(x - 1)^2 + 1 - m \le 0$,

当 x>0 时, $h'(x) \leq 0$,h(x)在区间 $(0, +\infty)$ 单调递减,

故 h(x)在区间 $(0, + \infty)$ 至多有一个实根,不符合题意.

②若 0 < m < 1,令 x_1 , $x_2(x_1 < x_2)$ 是方程 - $x^2 + 2x - m = 0$ 的两不同实根,

则 $x_1 + x_2 = 2$, $x_1x_2 = m$, 则 $0 < x_1 < x_2$,

故 h(x)在区间 $(0, x_1), (x_2, +\infty)$ 上单调递减,在区间 (x_1, x_2) 上单调递增.

$$h(x_1) = \ln x_1^2 - x_1 + \frac{m}{x_1} - \ln m = \ln x_1^2 - x_1 + \frac{-x_1^2 + 2x_1}{x_1} - \ln(-x_1^2 + 2x_1) = -2x_1 + 2 + \ln x_1 - \ln(2 - x_1),$$

$$\varphi(x) = -2x + 2 + \ln x - \ln(2 - x)(0 < x < 1)$$
, $\varphi'(x) = -2 + \frac{1}{x} + \frac{1}{2 - x} = \frac{2(x - 1)^2}{x(2 - x)} > 0$,

 $\varphi(x) < \varphi(1) = 0$, $h(x_1) < 0$, 同理可证 $h(x_2) > 0$.

$$x_4 \le \frac{m^2}{4} < \frac{m}{2} < x_1 = 1 - \sqrt{1 - m} , \ h(x_4) > 2\sqrt{x_4} - \frac{2}{\sqrt{x_4}} + \frac{m}{x_4} + \left(\ln \frac{1}{m} - x_4\right) = 2\sqrt{x_4} + \frac{m - 2\sqrt{x_4}}{x_4} + \left(\ln \frac{1}{m} - x_4\right) > 0.$$

故 h(x)在 (x_4, x_1) , (x_1, x_2) , (x_2, x_3) 各存在一个零点,

实数m的取值范围是(0,1).

湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——函数零点解答 3

14.

【解答】解: (1)
$$f(x)$$
 的定义域为 $(0,+\infty)$, $f'(x) = a(\frac{1}{x} - \frac{1}{x^2}) = \frac{a(x-1)}{x^2}$,

当a > 0时,f(x)在(0,1)上递减,在 $(1,+\infty)$ 上递增,

所以 f(x) 在 x=1 处取得极小值 a,

当a=0时,f(x)=0,所以无极值,

当a < 0时,f(x)在(0,1)上递增,在 $(1,+\infty)$ 上递减,

所以 f(x) 在 x=1 处取得极大值 a.

(2)
$$interpretation h(x) = 2f(x) - lnx + x + 2$$
, $interpretation h(x) = (2a - 1)lnx + \frac{2a}{x} + x + 2$,

$$h'(x) = \frac{2a-1}{x} - \frac{2a}{x^2} + 1 = \frac{(x-1)(x+2a)}{x^2} (x > 0).$$

①若 $a \ge 0$, 则当 $x \in (0,1)$ 时, h'(x) < 0 , h(x) 单调递减,

当 $x \in (1,+\infty)$ 时,h'(x) > 0,h(x)单调递增,h(x)至多有两个零点.

②若
$$a = -\frac{1}{2}$$
, 则 $x \in (0,+\infty)$, $h'(x) \geqslant 0$ (仅 h' (1) = 0),

h(x) 单调递增,h(x) 至多有一个零点.

③若
$$-\frac{1}{2}$$
< a < 0 ,则 0 < $-2a$ < 1 ,

当 $x \in (0,-2a)$ 或 $x \in (1,+\infty)$ 时, h'(x) > 0 , h(x) 单调递增;

当 $x \in (-2a,1)$ 时, h'(x) < 0 , h(x) 单调递减,

要使
$$h(x)$$
 有三个零点,必须有
$$\begin{cases} h(-2a) > 0 \\ h(1) < 0 \end{cases}$$
 成立.

由
$$h(1) < 0$$
,得 $a < -\frac{3}{2}$,这与 $-\frac{1}{2} < a < 0$ 矛盾,所以 $h(x)$ 不可能有三个零点.

④若
$$a < -\frac{1}{2}$$
 ,则 $-2a > 1$. 当 $x \in (0,1)$ 或 $x \in (-2a,+\infty)$ 时, $h'(x) > 0$, $h(x)$ 单调递增;

当 $x \in (1,-2a)$ 时,h'(x) < 0,h(x)单调递减,

要使
$$h(x)$$
 有三个零点,必须有
$$\begin{cases} h(1) > 0 \\ h(-2a) < 0 \end{cases}$$
 成立,

由
$$h(1) > 0$$
,得 $a > -\frac{3}{2}$,

由
$$h(-2a) = (2a-1)[ln(-2a)-1] < 0$$
 及 $a < -\frac{1}{2}$,得 $a < -\frac{e}{2}$,

$$h(e^{-2}) = 4 + e^{-2} + 2a(e^2 - 2) < 4 + e^{-2} - e(e^2 - 2) < 4 + 1 - 5e < 0$$
,

$$h(e^2) = e^2 + 2a(e^{-2} + 2) > e^2 - 3(e^{-2} + 2) = e^2 - 6 - 3e^{-2} > e^2 - 7 > 0$$
.

综上,使 h(x) 有三个零点的 a 的取值范围为 $\left(-\frac{3}{2}, -\frac{e}{2}\right)$.

15.M: (1) $\boxtimes \coprod f(x) = e^x - a(x-2)^2$, a > 0, $f'(x) = e^x - 2a(x-2) = g(x)$,

 $g'(x) = e^x - 2a$, $\Leftrightarrow g'(x) = e^x - 2a = 0$, $m = \ln(2a)$.

可得函数 g(x) 在 $(-\infty, x_0)$ 上单调递减,在 $(x_0, +\infty)$ 上单调递增.

 $\therefore g(x)_{min} = g(x_0) = g(ln(2a)) = 2a - 2a(ln(2a) - 2) = 6a - 2aln(2a),$

①令 $6a-2aln(2a)\geqslant 0$, 化为: $ln(2a)\leqslant 3$,解得 $a\leqslant \frac{e^3}{2}$.

 $\therefore 0 < a \le \frac{e^3}{2}$ 时, $f'(x) \ge 0$,函数 f(x) 在 R 上单调递增.

令 6a - 2aln(2a) < 0,化为: ln(2a) > 3,解得 $a > \frac{e^3}{2}$.

 $x \to -\infty$ 时, $f'(x) \to +\infty$; $x \to +\infty$ 时, $f'(x) \to +\infty$.

::存在 $2 < x_1 < x_2$, 使得 $f'(x_1) = f'(x_2) = 0$.

可得: 函数 f(x) 在 $(-\infty, x_1)$ 单调递增,在 (x_1, x_2) 上单调递减,在 $(x_2, +\infty)$ 上单调递增.

综上可得: $0 < a \le \frac{e^3}{2}$ 时,函数 f(x) 在 R 上单调递增.

 $a > \frac{e^3}{2}$ 时. 函数 f(x) 在 $(-\infty, x_1)$ 单调递增,在 (x_1, x_2) 上单调递减,在 $(x_2, +\infty)$ 上单调递增.

其中 $f'(x_1) = f'(x_2) = 0$.

②由上面可得: $x_0 = ln(2a)$ 时, f'(x)取得最小值, $\therefore m = 6a - 2aln(2a)$, 令 2a = t > 0.

 $\therefore m \leqslant e^2$.

(2) 函数 $f(x) = e^x - a(x-2)^2$, a > 0,

 $\therefore f(2) = e^2 \neq 0$, $\therefore 2$ 不是函数 f(x) 的零点. 由 $f(x) = e^x - a(x-2)^2 = 0$, 化为: $a = \frac{e^x}{(x-2)^2} (x \neq 2)$.

令 $G(x) = \frac{e^x}{(x-2)^2} (x \neq 2)$,可得 $G'(x) = \frac{e^x (x-4)}{(x-2)^3}$.

可得函数 G(x) 在 $(-\infty,2)$ 上单调递增,在 (2,4) 上单调递减,在 $(4,+\infty)$ 上单调递增. $G(4) = \frac{e^4}{4}$.

画出图象:可得 $a > \frac{e^4}{4}$.

∴ a 的取值范围是 $(\frac{e^4}{4}, +\infty)$.

16.解 (1)当 a = 1 时, $f(x) = e^x - (x + 2)$, $f'(x) = e^x - 1$,

令 f'(x) < 0,解得 x < 0,令 f'(x) > 0,解得 x > 0,

所以 f(x)在(- ∞ ,0)上单调递减,在(0,+ ∞)上单调递增.

(2)方法一 $f'(x) = e^x - a$.

①当 $a \le 0$ 时,f'(x) > 0,所以 f(x)在 $(-\infty, +\infty)$ 上单调递增.故 f(x)至多存在一个零点,不符合题意.

②当 a>0 时,由 f'(x)=0,可得 $x=\ln a$.

当 $x \in (-\infty, \ln a)$ 时, f'(x) < 0;

当 $x \in (\ln a, +\infty)$ 时, f'(x) > 0.

所以 f(x)在 $(-\infty, \ln a)$ 上单调递减,在 $(\ln a, +\infty)$ 上单调递增.

故当 $x = \ln a$ 时,f(x)取得最小值,最小值为 $f(\ln a) = -a(1 + \ln a)$.

(i)若 $0 < a \le \frac{1}{e}$,则 $f(\ln a) \ge 0$, f(x)在(- ∞ , + ∞)上至多存在一个零点,不符合题意.

(ii) 若 $a>\frac{1}{e}$, $f(\ln a)<0$.因为 $f(-2)=e^{-2}>0$, 所以 f(x)在(-∞, $\ln a$)上存在唯一零点.

由(1)知,当x>2时, $e^x-x-2>0$,

所以当 x>4 且 $x>2\ln 2a$ 时, $f(x)=\mathrm{e}^{\frac{x}{2}}\cdot\mathrm{e}^{\frac{x}{2}}-a(x+2)>\mathrm{e}^{\ln 2a}\left(\frac{x}{2}+2\right)-a(x+2)=2a>0.$

故 f(x)在 $(\ln a \ , \ + \infty)$ 上存在唯一零点 . 从而 f(x)在 $(\ - \infty \ , \ + \infty)$ 上有两个零点 .

综上, a 的取值范围是 $\left(\frac{1}{e}, +\infty\right)$.

所以函数 $y = \frac{1}{a}$ 的图象与函数 $\varphi(x) = \frac{x+2}{e^x}$ 的图象有两个交点,

 $\varphi'(x) = \frac{-x-1}{e^x}$, $\stackrel{=}{=} x \in (-\infty, -1)$ in (x) > 0; $\stackrel{=}{=} x \in (-1, +\infty)$ in (x) < 0,

所以 $\varphi(x)$ 在 $(-\infty, -1)$ 上单调递增,在 $(-1, +\infty)$ 上单调递减,

所以 $\varphi(x)_{\max} = \varphi(-1) = e$, 且 $x \to -\infty$ 时 , $\varphi(x) \to -\infty$; $x \to +\infty$ 时 , $\varphi(x) \to 0$,

所以 $0 < \frac{1}{a} < e$, 解得 $a > \frac{1}{e}$.

所以 a 的取值范围是 $\left(\frac{1}{e}, +\infty\right)$.

17.解 $f(x) = \frac{x^a}{a^x} = 1 \Leftrightarrow a^x = x^a \Leftrightarrow x \ln a = a \ln x \Leftrightarrow \frac{\ln x}{x} = \frac{\ln a}{a}$, 设函数 $g(x) = \frac{\ln x}{x}$,

则 $g'(x) = \frac{1 - \ln x}{x^2}$, 令 g'(x) = 0 , 得 x = e ,

在(0, e)上, g'(x)>0, g(x)单调递增;

在 $(e, +\infty)$ 上,g'(x)<0,g(x)单调递减,

 $\therefore g(x)_{\text{max}} = g(e) = \frac{1}{e} ,$

又 g(1) = 0, 当 $x \rightarrow + \infty$ 时, $g(x) \rightarrow 0$,

∴曲线 y = f(x)与直线 y = 1 有且仅有两个交点,即曲线 y = g(x)与直线 $y = \frac{\ln a}{a}$ 有两个交点的充要条件是 $0 < \frac{\ln a}{a} < \frac{1}{e}$,这即是 0 < g(a) < g(e),

∴a 的取值范围是 $(1, e) \cup (e, +\infty)$.

18.解 (1)当 a=1 时, $f(x)=e^x-x-2$, $x \in \mathbb{R}$,则 $f'(x)=e^x-1$.

当 x<0 时,f(x)<0; 当 x>0 时,f(x)>0.所以 f(x)在($-\infty$, 0)单调递减,在(0, $+\infty$)单调递增.

 $(2)f'(x) = e^x - a$.

①当 $a \le 0$ 时,f(x) > 0,所以 f(x)在 $(-\infty, +\infty)$ 单调递增.故 f(x)至多存在一个零点,不合题意.

②当 a>0 时,由 f(x)=0,可得 $x=\ln a$.当 $x\in (-\infty, \ln a)$ 时,f(x)<0;当 $x\in (\ln a, +\infty)$ 时,f(x)>0,

所以 f(x)在($-\infty$, $\ln a$)单调递减, 在($\ln a$, $+\infty$)单调递增.

故当 $x=\ln a$ 时,f(x)取得最小值,最小值为 $f(\ln a)=-a(1+\ln a)$.

又当 $x \to -\infty$ 时, $f(x) \to +\infty$; 当 $x \to +\infty$ 时, $f(x) \to +\infty$,

所以要使 f(x)有两个零点,只要 $f(\ln a)<0$ 即可,则 $1+\ln a>0$,可得 $a>\frac{1}{a}$

综上,若 f(x)有两个零点,a 的取值范围是 $\left(\frac{1}{e}, +\infty\right)$.

类型三 求零点及零点代数式的最值与范围

19.
$$(1)f(x) = \frac{a}{x} - 2 = \frac{a - 2x}{x} (x > 0).$$

当 $a \le 0$ 时,f(x) < 0,则 f(x)在(0, + ∞)上单调递减,不符合题意;

当 a>0 时,令 f(x)>0,即 a-2x>0,解得 $x<\frac{a}{2}$,则 f(x)在 $\left(0,\frac{a}{2}\right)$ 上单调递增, $\left(\frac{a}{2},+\infty\right)$ 上单调递减,

故要使 f(x)有两个零点,只需 $f(\frac{a}{2}) > 0$,即 $a \ln \frac{a}{2} - a + 3 > 0$.

$$†g(a) = a ln \frac{a}{2} - a + 3 = a ln a - a ln 2 - a + 3(a > 0) , g'(a) = 1 + ln a - ln 2 - 1 = ln a - ln 2 ,$$

∴当 $a \in (0, 2)$ 时,g'(a) < 0,g(a)单调递减;当 $a \in (2, +\infty)$ 时,g'(a) > 0,g(a)单调递增,

 $\therefore g(a)_{\min} = g(2) = 1 > 0$, $\therefore g(a) > 0$ 恒成立, $\therefore a$ 的取值范围为 $(0, +\infty)$.

(2)由题意得 $a \ln x_1 - 2x_1 + 3 = a \ln x_2 - 2x_2 + 3 = 0$,

$$\mathbb{E} a = \frac{2x_1 - 3}{\ln x_1} = \frac{2x_2 - 3}{\ln x_2} = \frac{2(x_2 - x_1)}{\ln \frac{x_2}{x_1}} = \frac{2x_1(\frac{x_2}{x_1} - 1)}{\ln \frac{x_2}{x_1}}, \quad \frac{\frac{x_2}{x_1} - 1}{\ln \frac{x_2}{x_1}} = \frac{2x_1 - 3}{2x_1 \ln x_1}.$$

由于 f(1) = 1 , $: 0 < x_1 < 1 < x_2$. 令 $\frac{x_2}{x_1} = t$, 函数 $h(t) = \frac{t-1}{\ln t}$, t > 1 ,

则
$$h'(t) = \frac{\ln t - (t-1)}{\ln^2 t} = \frac{\ln t - 1 + \frac{1}{t}}{\ln^2 t}$$
. 令函数 $\varphi(t) = \ln t - 1 + \frac{1}{t}$,则 $\varphi'(t) = \frac{1}{t} - \frac{1}{t^2} = \frac{t-1}{t^2} > 0$,

∴函数 $\varphi(t)$ 在 $(1, + \infty)$ 上单调递增,又 $\varphi(1) = 0$,∴h'(t) > 0 在 $(1, + \infty)$ 恒成立,函数 h(t)在 $(1, + \infty)$ 上单调递增,

故当 t 取最小值时,等价于 h(t) 取最小值

湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——函数零点解答 4

. 令函数
$$F(x) = \frac{2x-3}{2x \ln x} (0 < x < 1)$$
 ,则 $F'(x) = \frac{2x \ln x - (2x-3)(1 + \ln x)}{2x^2 \ln^2 x} = \frac{3 \ln x - (2x-3)}{2x^2 \ln^2 x}$.

令
$$G(x) = 3 \ln x - (2x - 3)$$
 , 则 $G'(x) = \frac{3}{x} - 2 = \frac{3 - 2x}{x}$, ∴ $G(x)$ 在(0 , 1)上单调递增.

又 G(1) = 1 > 0 , : G(x) = 0 在(0, 1)内存在唯一实根 m ,

即 G(m) = 0, $3 \ln m - (2m - 3) = 0$, ∴ 函数 F(x)在(0, m)上单调递减,在(m, 1)上单调递增, ∴ $F(x)_{min} = F(m)$,

$$\therefore h(t) = F(x_1)$$
, \therefore 当 $h(t)$ 取最小值时, $F(x_1)$ 取最小值,此时 $a = \frac{2x_1 - 3}{\ln x_1} = 3$.

综上所述,a=3.

20 (1) 由题意, 函数
$$f(x) = x \ln x + \frac{1}{x}$$
, 则 $f'(x) = \ln x + 1 - \frac{1}{x^2}$,

设
$$g(x) = \ln x + 1 - \frac{1}{x^2}$$
, 则 $g'(x) = \frac{1}{x} + \frac{2}{x^3}$,

当x>0时,g'(x)>0,函数g(x)单调递增,即f'(x)在 $(0,+\infty)$ 上单调递增,

因为f'(1)=0, 所以当0 < x < 1时, f'(x) < 0, 当x > 1时, f'(x) > 0,

所以函数 f(x) 的单调递减区间为(0,1), 单调递增区间为 $(1,+\infty)$.

(2) 设函数
$$F(x) = x \ln x + \frac{1}{x} - kx + k$$
,

由曲线 y = f(x) 与直线 y = kx - k(k > 0) 有且只有一个公共点 $P(x_0, y_0)$,等价于函数 F(x) 有且只有一个零点 x_0 ,

又由
$$F'(x) = \ln x + 1 - \frac{1}{x^2} - k$$
 , 设 $h(x) = \ln x + 1 - \frac{1}{x^2} - k$, 则 $h'(x) = \frac{1}{x} + \frac{2}{x^3}$,

当x > 0时,h'(x) > 0,函数h(x)单调递增,即F'(x)在 $(0,+\infty)$ 上单调递增,

因为
$$F^{'}(1) = -k < 0, F^{'}(e^{k}) = 1 - \frac{1}{e^{2k}} > 0$$
,所以存在 $x_{1} \in (1, e^{k})$,使 $F^{'}(x_{1}) = 0$,

所以当 $0 < x < x_1$ 时,F'(x) < 0,F(x) 单调递减,当 $x > x_1$ 时,F'(x) > 0,F(x) 单调递增,

$$\overrightarrow{m} F(1) = 1 > 0, F(e^{k+1}) = e^{k+1} \ln e^{k+1} + \frac{1}{e^{k+1}} - ke^{k+1} + k = e^{k+1} + \frac{1}{e^{k+1}} + k > 0$$

所以要使函数 F(x) 有且只有一个零点 x_0 ,则 $x_1 = x_0$,

所以
$$\begin{cases} F\left(x_{0}\right) = 0 \\ F'\left(x_{0}\right) = 0 \end{cases}$$
,即 $\begin{cases} x_{0}\ln x_{0} + \frac{1}{x_{0}} - kx_{0} + k = 0 \\ \ln x_{0} + 1 - \frac{1}{x_{0}^{2}} - k = 0 \end{cases}$,消元得 $\ln x_{0} - x_{0} + \frac{2}{x_{0}} - \frac{1}{x_{0}^{2}} + 1 = 0$.

当x>1时,G'(x)<0,所以函数G(x)单调递减,

又由
$$G(2) = \ln 2 - \frac{1}{4} > 0$$
, $G(3) = \ln 3 - \frac{13}{9} < 0$,所以存在 $x_0 \in (2,3)$,使得 $G(x_0) = 0$,

即若曲线 y = f(x) 与直线 y = kx - k(k > 0) 有且只有一个公共点 $P(x_0, y_0)$, 则 $2 < x_0 < 3$.

21. (1) 因为
$$f'(x) = 3x^2 + b$$
,由题意, $f'(\frac{1}{2}) = 0$,即 $3 \times \left(\frac{1}{2}\right)^2 + b = 0$,则 $b = -\frac{3}{4}$;

(2) 由 (1) 可得
$$f(x) = x^3 - \frac{3}{4}x + c$$
, $f'(x) = 3x^2 - \frac{3}{4} = 3(x + \frac{1}{2})(x - \frac{1}{2})$,

所以 f(x) 在 $\left(-\frac{1}{2}, \frac{1}{2}\right)$ 上单调递减,在 $\left(-\infty, -\frac{1}{2}\right)$, $\left(\frac{1}{2}, +\infty\right)$ 上单调递增,

若 f(x) 所有零点中存在一个绝对值大于 1 的零点 x_0 ,则 f(-1) > 0 或 f(1) < 0 ,即 $c > \frac{1}{4}$ 或 $c < -\frac{1}{4}$.

$$\mathbb{X} f(-4c) = -64c^3 + 3c + c = 4c(1-16c^2) < 0$$

由零点存在性定理知 f(x) 在 (-4c,-1) 上存在唯一一个零点 x_0 ,

即 f(x) 在 $(-\infty, -1)$ 上存在唯一一个零点,在 $(-1, +\infty)$ 上不存在零点,

此时 f(x) 不存在绝对值不大于 1 的零点,与题设矛盾;

$$\mathbb{X} f(-4c) = 64c^3 + 3c + c = 4c(1-16c^2) > 0$$
,

由零点存在性定理知f(x)在(1,-4c)上存在唯一一个零点 x_0' ,

即 f(x) 在 $(1,+\infty)$ 上存在唯一一个零点,在 $(-\infty,1)$ 上不存在零点,

此时 f(x) 不存在绝对值不大于 1 的零点,与题设矛盾; 综上, f(x) 所有零点的绝对值都不大于 1.

22 (I) 证明: 由题知
$$f(x) = \ln x + x - 4 - axe^x$$
, 则 $f'(x) = \frac{1}{x} + 1 - e(x+1)e^x = \frac{(x+1)(1-exe^x)}{x}$,

$$\mathbb{Z}u(0)=1>0$$
, $u\left(\frac{1}{e}\right)=1-e^{\frac{1}{e}}<0$,

所以存在
$$x_0 \in \left(0, \frac{1}{e}\right)$$
, 使得 $u(x_0) = 0$,

综上
$$f'(x)$$
存在唯一零点 $x_0 \in \left(0, \frac{1}{e}\right)$.

当
$$x \in (0,x_0)$$
, $u(x) > 0$, 于是 $f'(x) > 0$, $f(x)$ 在 $(0,x_0)$ 单调递增;

当
$$x \in (x_0, +\infty)$$
, $u(x) < 0$, 于是 $f'(x) < 0$, $f(x)$ 在 $(x_0, +\infty)$ 单调递减.

故
$$f(x)_{\text{max}} = f(x_0) = \ln x_0 + x_0 - 4 - ex_0 e^{x_0}$$
,

$$\nabla u(x_0) = 1 - ex_0 e^{x_0} = 0$$
, $ex_0 = \frac{1}{e^{x_0}}$, $x_0 = \ln \frac{1}{ex_0} = -1 - \ln x_0$,

故
$$f(x)_{\text{max}} = \ln x_0 + (-1 - \ln x_0) - 4 - ex_0 \frac{1}{ex_0} = -6$$
.

(II)
$$|p(x)| > q(x), |\ln x + x - 4| > axe^x \Leftrightarrow a < \frac{|\ln x + x - 4|}{xe^x}$$

$$\diamondsuit h(x) = \frac{\ln x + x - 4}{xe^x}, \quad \square h'(x) = \frac{(x+1)(\ln x + x - 5)}{x^2e^x},$$

$$\nabla \varphi(3) = \ln 3 - 2 < 0$$
, $\varphi(4) = \ln 4 - 1 > 0$,

∴存在
$$t \in (3,4)$$
, 使得 $\varphi(t) = 0$.

$$\therefore$$
当 $x \in (0,t)$, $\varphi(x) < 0$, 即 $h'(x) < 0$, $h(x)$ 在 $(0,t)$ 单调递减;

当
$$x \in (t, +\infty)$$
, $\varphi(x) > 0$, 即 $h'(x) > 0$, $h(x)$ 在 $(t, +\infty)$ 单调递增.

∴
$$h(1) = -\frac{3}{e} < 0$$
, $h(2) = \frac{\ln 2 - 2}{2e^2} < 0$, $h(3) = \frac{\ln 3 - 1}{3e^3} > 0$, $\exists x > 3 \exists x > 3 \exists x > 3$

$$\left| \left| \left| h(1) \right| \right| = \frac{3}{e}, \quad \left| h(2) \right| = \frac{2 - \ln 2}{2e^2} > h(3) = \frac{\ln 3 - 1}{3e^3}, \quad \left| h(4) \right| = \frac{2\ln 2}{4e^4},$$

故要使不等式式|p(x)| > q(x)解集中有且只有两个整数,

a的取值范围应为: $\frac{\ln 3 - 1}{3e^3} \le a < \frac{2 - \ln 2}{2e^2}$.

23.

(1)

解: 因为 $f(x) = x + ke^x$, 则 $f'(x) = 1 + ke^x$, 所以, $f(2) = 2 + ke^2$, $f'(2) = 1 + ke^2$,

因此, 曲线 y = f(x) 在点 M(2, f(2)) 处的切线方程 $y - (2 + ke^2) = (1 + ke^2)(x - 2)$,

(2)

解: 函数 $f(x) = x + ke^x$ 的定义域为 R, 且 $f'(x) = 1 + ke^x$.

当 $k \ge 0$ 时,对任意的 $x \in \mathbb{R}$, f'(x) > 0,此时函数f(x)的单调递增区间为 $(-\infty, +\infty)$,无递减区间;

当k < 0时, 由f'(x) = 0, 可得 $x = -\ln(-k)$.

 $\leq x < -\ln(-k)$ $\exists t$, f'(x) > 0; $\leq x > -\ln(-k)$ $\exists t$, f'(x) < 0.

此时,函数f(x)的单调递增区间为 $(-\infty, -\ln(-k))$,单调递减区间为 $(-\ln(-k), +\infty)$.

综上所述, 当 $k \ge 0$ 时, 函数 f(x) 的单调递增区间为 $(-\infty, +\infty)$, 无递减区间;

当k < 0时,函数f(x)的单调递增区间为 $\left(-\infty, -\ln(-k)\right)$,单调递减区间为 $\left(-\ln(-k), +\infty\right)$.

(3)

证明: 由 $f(x) = x + ke^x = 0$ 可得 $k = -\frac{x}{e^x}$,

因为函数 $f(x) = x + ke^x$ 有两个不同的零点,且较大的零点为 x_0 ,则 $k = -\frac{x_0}{a^{x_0}}$,

要证 $(1+ke^2)x_0-ke^2=x_0+ke^2(x_0-1)=x_0-\frac{x_0(x_0-1)}{e^{x_0-2}}>0$ 对任意的 $x_0\in(1,2)$ 恒成立,

即证 $e^{x_0-2} > x_0 - 1$ 对任意的 $x_0 \in (1,2)$ 恒成立,

构造函数 $g(x) = e^{x-2} - x + 1$, 其中 $x \in (1,2)$, 则 $g'(x) = e^{x-2} - 1 < 0$,

所以,函数g(x)在(1,2)上单调递减,所以,g(x) > g(2) = 0,

因为 $x_0 \in (1,2)$,则 $g(x_0) > g(2) = 0$,即 $e^{x_0-2} > x_0 - 1$,故原不等式得证.

24.(1)解 当 a = -1 时, $f(x) = \ln x - x^2 - x$,且定义域为 $(0, +\infty)$,

$$\mathbb{M}f(x) = \frac{1}{x} - 2x - 1 = -\frac{(x+1)(2x-1)}{x}.$$

故 f(x)在 $\left(0, \frac{1}{2}\right)$ 上单调递增,在 $\left(\frac{1}{2}, +\infty\right)$ 上单调递减,

故 f(x)的极大值是 $f(\frac{1}{2}) = -\ln 2 - \frac{3}{4}$,

综上,函数 f(x)的极大值是 $f(\frac{1}{2}) = -\ln 2 - \frac{3}{4}$,无极小值.

(2)证明 由题意 $f(x) = \frac{1}{x} + 2ax - 1 = \frac{2ax^2 - x + 1}{x}$,且 x > 0,

淇江一中卓越班 2023-17

高三数学压轴解答题——函数导数——函数零点解答 5

则 x_1 , x_2 是方程 $2ax^2-x+1=0$ 的两个不相等正实根,

$$\therefore \begin{cases}
\Delta = 1 - 8a > 0, \\
x_1 + x_2 = \frac{1}{2a} > 0, \\
x_1 + x_2 = \frac{1}{2a} > 0,
\end{cases}$$

$$\text{#24 0 < a < \frac{1}{8}}.$$

$$f(x_1)+f(x_2)-x_1-x_2=\ln x_1+\ln x_2+ax_1^2+ax_2^2-2(x_1+x_2)=a(x_1^2+x_2^2)-2(x_1+x_2)+\ln(x_1x_2)$$

$$=a[(x_1+x_2)^2-2x_1x_2]-2(x_1+x_2)+\ln(x_1x_2)=\ln\frac{1}{2a}-\frac{3}{4a}-1,$$

$$\diamondsuit t = \frac{1}{2a}, \ g(t) = \ln t - \frac{3t}{2} - 1, \ t \in (4, +\infty), \ \text{if } g'(t) = \frac{1}{t} - \frac{3}{2} = \frac{2 - 3t}{2t} < 0, \ t \in (4, +\infty),$$

故 g(t)在 $(4, +\infty)$ 上单调递减,故 $g(t) < g(4) = \ln 4 - 7 < 2 - 7 = -5$,所以 $f(x_1) + f(x_2) < x_1 + x_2 - 5$.

题型四 函数零点的综合问题

25 (1)解 f(x)的定义域为(0, $+\infty$), $f'(x)=2e^{2x}-\frac{a}{x}(x>0)$.

当 a≤0 时, f(x)>0, f(x)没有零点;

当 a>0 时,因为 $y=e^{2x}$ 单调递增, $y=-\frac{a}{x}$ 单调递增,所以 f(x) 在 $(0,+\infty)$ 上单调递增.

又f(a)>0, 当b满足 $0<b<\frac{a}{4}$, 且 $b<\frac{1}{4}$ 时, f(b)<0,

(讨论 $a \ge 1$ 或 a < 1 来检验,

①
$$\triangleq a \ge 1 \text{ ff}, \text{ } \emptyset \text{ } 0 < b < \frac{1}{4}, \text{ } f(b) = 2e^{2b} - \frac{a}{b} < 2e_2^{\frac{1}{2}} - 4a < 2e_2^{\frac{1}{2}} - 4 < 0;$$

②当
$$a<1$$
 时,则 $0, $f(b)=2e^{2b}-\frac{a}{b}<2e_2^{\frac{a}{2}}-4<2e_2^{\frac{1}{2}}-4<0$,综上, $f(b)<0$.)$

故当 a>0 时,f(x)存在唯一零点.

综上, 当 $a \le 0$ 时, f(x)没有零点, 当 a > 0 时, f(x)存在唯一零点.

(2)证明 由(1),可设 f(x)在(0, $+\infty$)上的唯一零点为 x_0 ,

又当 $x \in (0, x_0)$ 时,f(x) < 0; 当 $x \in (x_0, +\infty)$ 时,f(x) > 0,

故 f(x)在 $(0, x_0)$ 上单调递减,在 $(x_0, +\infty)$ 上单调递增,

所以当 $x=x_0$ 时,f(x)取得最小值,最小值为 $f(x_0)$.

由于
$$2e2x_0 - \frac{a}{x_0} = 0$$
,则 $e2x_0 = \frac{a}{2x_0}$, $x_0 = \frac{a}{2e2x_0}$,所以 $f(x_0) = e2x_0 - a\ln x_0 = \frac{a}{2x_0} + 2ax_0 + a\ln \frac{2}{a} \ge 2a + a\ln \frac{2}{a}$.

故当 a>0 时, $f(x) \ge 2a + a \ln \frac{2}{a}$.

27(1)解
$$f(x) = 3x^2 + b$$
.依题意得 $f(\frac{1}{2}) = 0$,即 $\frac{3}{4} + b = 0$,故 $b = -\frac{3}{4}$.

(2)证明 由(1)知
$$f(x) = x^3 - \frac{3}{4}x + c$$
, $f'(x) = 3x^2 - \frac{3}{4}$. 令 $f'(x) = 0$, 解得 $x = -\frac{1}{2}$ 或 $x = \frac{1}{2}$

当x变化时,f(x)与f(x)的变化情况如下表:

x	$\left(-\infty, -\frac{1}{2}\right)$	$-\frac{1}{2}$	$\left(-\frac{1}{2}, \frac{1}{2}\right)$	$\frac{1}{2}$	$\left(\frac{1}{2}, +\infty\right)$
f(x)	+	0	_	0	+
f(x)		$c + \frac{1}{4}$		$c-\frac{1}{4}$	

因为 $f(1)=f(-\frac{1}{2})=c+\frac{1}{4}$,所以当 $c<-\frac{1}{4}$ 时,f(x)只有大于1的零点.

因为 $f(-1) = f(\frac{1}{2}) = c - \frac{1}{4}$,所以当 $c > \frac{1}{4}$ 时, f(x)只有小于一1 的零点.

由题设可知 $-\frac{1}{4} \leqslant c \leqslant \frac{1}{4}$.

当 $c = -\frac{1}{4}$ 时,f(x)只有两个零点 $-\frac{1}{2}$ 和 1.

当 $c = \frac{1}{4}$ 时,f(x)只有两个零点-1 和 $\frac{1}{2}$.

当 $-\frac{1}{4}$ <c< $\frac{1}{4}$ 时,f(x)有三个零点 x_1 , x_2 , x_3 ,

 $\mathbb{E}_{x_1} \in \left(-1, -\frac{1}{2}\right), x_2 \in \left(-\frac{1}{2}, \frac{1}{2}\right), x_3 \in \left(\frac{1}{2}, 1\right).$

综上,若 f(x)有一个绝对值不大于 1 的零点,则 f(x)所有零点的绝对值都不大于 1.

隐零点

类型一 导函数隐零点中的(整体)代换

1.(1)解 f(x)的定义域为 $(0, +\infty)$ $f'(x) = 2e^{2x} - \frac{a}{x}(x>0)$.由 f'(x) = 0 得 $2xe^{2x} = a$.令 $g(x) = 2xe^{2x}$ $g'(x) = (4x + 2)e^{2x} > 0(x \ge 0)$,

从而 g(x)在[0, + ∞)上单调递增,所以 x>0 时, g(x)>g(0)=0.

故当 a>0 时,方程 g(x)=a 有一个根,即 f'(x)存在唯一零点;

当 $a \le 0$ 时,方程 g(x) = a 没有根,即 f(x)没有零点.

(2)证明 由(1)可设 f(x)在(0, + ∞)上的唯一零点为 x_0 ,当 $x \in (0, x_0)$ 时,f(x) < 0;当 $x \in (x_0, +\infty)$ 时,f(x) > 0.

故 f(x)在(0, x_0)上单调递减,在 $(x_0$, + ∞)上单调递增,所以 $f(x)_{\min}$ = $f(x_0)$.

由
$$2e2x_0 - \frac{a}{x_0} = 0$$
 得 $e2x_0 = \frac{a}{2x_0}$,又 $x_0 = \frac{a}{2e2x_0}$,得 $\ln x_0 = \ln \frac{a}{2e2x_0} = \ln \frac{a}{2} - 2x_0$,所以 $f(x_0) = e2x_0 - a\ln x_0 = \frac{a}{2x_0} - a\left(\ln \frac{a}{2} - 2x_0\right)$

$$=\frac{a}{2x_0} + 2ax_0 + a\ln \frac{2}{a} \ge 2\sqrt{\frac{a}{2x_0}} \cdot 2ax_0 + a\ln \frac{2}{a} = 2a + a\ln \frac{2}{a}$$
. 当且仅当 $x_0 = \frac{1}{2}$ 时取等号.

故当 a > 0 时 , $f(x) \ge 2a + a \ln \frac{2}{a}$.

2.证明 $(1)f(x) = \ln x + 1 - a(x+1)$, x>0,

结合题意, $\ln x + 1 - a(x+1) = 0$,即 $\ln x + 1 = a(x+1)$ 存在 2 个不同正根,

先考虑 y = a(x+1)与 $y = \ln x + 1$ 相切,记切点横坐标为 x_0 ,

则
$$\left\{ a \ (x_0 + 1) = \ln x_0 + 1, \atop a = \frac{1}{x_0}, \right\}$$
 解得 $\left\{ ax_0 = 1, \atop x_0 \ln x_0 = 1, \right\}$

则 $g'(x) = 1 + \ln x$, 令 g'(x) = 0, 解得 $x = \frac{1}{e}$,

故 y=g(x)在 $\left(0,\frac{1}{\mathrm{e}}\right)$ 上单调递减,在 $\left(\frac{1}{\mathrm{e}},+\infty\right)$ 上单调递增,且 g(1)=-1<0, $g(2)=\ln 4-1>0$,故存在唯一 $x_0\in(1,2)$,使得 $x_0\ln x_0=1$ 成立,取 $m=\frac{1}{x_0}\in\left(\frac{1}{2},1\right)$,

则 0 < a < m 时 f(x)恰有 2 个极值点 , 得证.

(2)由(1)知,
$$f(x_1) = \ln x_1 + 1 - a(x_1 + 1)$$
,且 $\frac{1}{e} < x_1 < x_0 < 2$,故 $a = \frac{\ln x_1 + 1}{x_1 + 1}$,代入 $f(x_1)$,

得
$$f(x_1) = \frac{1}{2}(x_1 \ln x_1 - x_1 - \ln x_1 - 1)$$
 , 设 $h(x) = \frac{1}{2}(x \ln x - x - \ln x - 1)$, $\frac{1}{e} < x < 2$, $h'(x) = \frac{1}{2}(\ln x - \frac{1}{x})$,

由
$$h'(x_0) = 0$$
 , 得 $\ln x_0 = \frac{1}{x_0}$, 即 $x_0 \ln x_0 = 1$,

则
$$x \in \left(\frac{1}{e}, x_0\right)$$
时, $h'(x) < 0$, $x \in (x_0, 2)$, $h'(x) > 0$,

故 h(x)在 $\left(\frac{1}{e}, x_0\right)$ 上单调递减,在 $(x_0, 2)$ 上单调递增

$$h(x) > h(x_0) = \frac{1}{2} (x_0 \ln x_0 - \ln x_0 - x_0 - 1) = \frac{1}{2} \left(1 - \frac{1}{x_0} - x_0 - 1 \right) = -\frac{1}{2} \left(x_0 + \frac{1}{x_0} \right),$$

而
$$h(x) < h(\frac{1}{e}) = -\frac{1}{e} > h(2) = \frac{1}{2} (\ln 2 - 3)$$
,故 $-\frac{5}{4} < f(x_1) < -\frac{1}{e}$.

类型二 导函数零点的设而不求技巧

3.证明 ::
$$f(x) = e^{x+a} - \frac{1}{x}(x>0)$$
,

设
$$g(x) = f'(x)$$
 , 则 $g'(x) = e^{x+a} + \frac{1}{x^2} > 0$, ∴ $g(x)$ 是增函数.

$$\vdots$$
e^x+^a>e^a, 又由 e^a> $\frac{1}{x}$ ⇒x>e^{-a}, ∴当 x>e^{-a}时, f(x)>0;

若
$$0 < x < 1 \Rightarrow e^{x_+ a} < e^{a_+ 1}$$
 , 由 $e^{a_+ 1} < \frac{1}{x} \Rightarrow x < e^{-a_- 1}$,

∴当
$$0 < x < \min\{1, e^{-a_-1}\}$$
时, $f'(x) < 0$,

故
$$f(x) = 0$$
 仅有一解,记为 x_0 ,则当 $0 < x < x_0$ 时, $f'(x) < 0$, $f(x)$ 递减;

当 $x>x_0$ 时 , f(x)>0 , f(x)递增 ;

$$\therefore f(x)_{\min} = f(x_0) = ex_0 + a - \ln x_0 , \ \overline{\sqcap} f(x_0) = ex_0 + a - \frac{1}{x_0} = 0 \Rightarrow ex_0 + a = \frac{1}{x_0} \Rightarrow a = -\ln x_0 - x_0 ,$$

记
$$h(x) = \ln x + x$$
 ,则 $f(x_0) = \frac{1}{x_0} - \ln x_0 = h\left(\frac{1}{x_0}\right)$, $a > 1 - \frac{1}{e} \Leftrightarrow -a < \frac{1}{e} - 1 \Leftrightarrow h(x_0) < h\left(\frac{1}{e}\right)$,

而 h(x)显然是增函数

$$\therefore 0 < x_0 < \frac{1}{e} \Leftrightarrow \frac{1}{x_0} > e , \therefore h\left(\frac{1}{x_0}\right) > h(e) = e + 1.$$

综上,当
$$a>1 - \frac{1}{e}$$
时, $f(x)>e+1$.

4. 证明 (1)f(x)的定义域为 $(0, +\infty)$.

$$f(x) = \frac{x-1}{x} + \ln x - 1 = \ln x - \frac{1}{x}$$

记
$$g(x) = \ln x - \frac{1}{x}$$
,则 $g'(x) = \frac{1}{x} + \frac{1}{x^2} > 0$,

所以 f(x)在 $(0, +\infty)$ 上单调递增.

$$\nabla f(1) = -1 < 0$$
, $f(2) = \ln 2 - \frac{1}{2} = \frac{\ln 4 - 1}{2} > 0$,

故存在唯一 $x_0 \in (1, 2)$, 使得 $f(x_0) = 0$.

又当 $x < x_0$ 时,f(x) < 0,f(x) 单调递减,当 $x > x_0$ 时,f(x) > 0,f(x) 单调递增,因此,f(x)存在唯一的极值点.

(2)由(1)知 $f(x_0) < f(1) = -2$,又 $f(e^2) = e^2 - 3 > 0$,

所以 f(x) = 0 在 $(x_0, +\infty)$ 内存在唯一根 $x = \alpha$.由 $\alpha > x_0 > 1$ 得 $\frac{1}{\alpha} < 1 < x_0$.

又
$$f(\frac{1}{a}) = (\frac{1}{a} - 1) \ln \frac{1}{a} - \frac{1}{a} - 1 = \frac{f(a)}{a} = 0$$
, 故 $\frac{1}{a}$ 是 $f(x) = 0$ 在 $(0, x_0)$ 的唯一根.

综上,f(x) = 0 有且仅有两个实根,且两个实根互为倒数.

5.解 (1)∵函数 f(x)在区间[e, +∞)上为增函数,∴ $f(x) = a + \ln x + 1 \ge 0$ 在区间[e, +∞)上恒成立,

 $\therefore a \ge (-\ln x - 1)_{\max} = -2$. ∴ a 的取值范围是[-2, +∞).

(2)当
$$a = 1$$
 时, $f(x) = x + x \ln x$, $k \in \mathbb{Z}$ 时,不等式 $k(x - 1) < f(x)$ 在 $x \in (1, +\infty)$ 上恒成立, $\therefore k < \left(\frac{x + x \ln x}{x - 1}\right) \min$

∴h(x)在(1, +∞)上单调递增.

$$\therefore h(3) = 1 - \ln 3 < 0$$
 , $h(4) = 2 - 2 \ln 2 > 0$, ∴存在 $x_0 \in (3, 4)$, 使 $h(x_0) = 0$,

即当 $1 < x < x_0$ 时,h(x) < 0,即 g'(x) < 0,

当 $x>x_0$ 时,h(x)>0,即 g'(x)>0,

g(x)在 $(1, x_0)$ 上单调递减,在 $(x_0, +\infty)$ 上单调递增

 $k < g(x)_{\min} = x_0 ∈ (3, 4), \exists k ∈ \mathbf{Z},$

 $\therefore k_{\text{max}} = 3.$

6.(1)证明 函数
$$f(x) = x$$
, $g(x) = x^2 + 2x - 2$, 则 $f'(x) = 1$, $g'(x) = 2x + 2$.

由
$$f(x) = g(x)$$
且 $f'(x) = g'(x)$,得
$$\begin{cases} x = x^2 + 2x - 2 \\ & \text{此方程组无解.因此,} f(x) 与 g(x) 不存在 "S 点". \\ 1 = 2x + 2 \end{cases}$$

(2) **M B B b**
$$f(x) = ax^2 - 1$$
 , $g(x) = \ln x$, $\mathfrak{M} f'(x) = 2ax$, $g'(x) = \frac{1}{x}$

设
$$x_0$$
 为 $f(x)$ 与 $g(x)$ 的 " S 点" ,由 $f(x_0) = g(x_0)$ 且 $f'(x_0) = g'(x_0)$,得
$$\begin{cases} ax_0^2 - 1 = \ln x_0 \\ 2ax_0 = \frac{1}{x_0} \end{cases}$$
,即
$$\begin{cases} ax_0^2 - 1 = \ln x_0 \\ 2ax_0^2 = 1 \end{cases}$$
 (*)

得
$$\ln x_0 = -\frac{1}{2}$$
, 即 $x_0 = e^{-\frac{1}{2}}$, 则 $a = \frac{1}{2(e^{-\frac{1}{2}})^2} = \frac{e}{2}$.

当 $a = \frac{e}{2}$ 时, $x_0 = e^{-\frac{1}{2}}$ 满足方程组(*), 即 x_0 为 f(x)与 g(x)的 "S 点".

因此,a 的值为 $\frac{e}{2}$.

(3)解 对任意 a>0, 设 $h(x)=x^3-3x^2-ax+a$.

因为 h(0) = a > 0 , h(1) = 1 - 3 - a + a = -2 < 0 , 且 h(x)的图象是不间断的.

所以存在 $x_0 \in (0, 1)$, 使得 $h(x_0) = 0$.

令
$$b = \frac{2x_0^3}{ex_0(1-x_0)}$$
 , 则 $b>0$.函数 $f(x) = -x^2 + a$, $g(x) = \frac{be^x}{x}$.则 $f'(x) = -2x$, $g'(x) = \frac{be^x(x-1)}{x^2}$

由 f(x) = g(x)且 f'(x) = g'(x),

湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——函数零点解答 6

得
$$\left\{ -x^2 + a = \frac{be^x}{x}, \\ -2x = \frac{be^x(x-1)}{x^2}, \right\}$$

$$\left\{ -2x = \frac{be^x(x-1)}{x^2}, \right\}$$

$$\left\{ -2x = \frac{2x_0^3}{ex_0(1-x_0)} \cdot \frac{e^x(x-1)}{x^2}, \right\}$$

$$\left\{ -2x = \frac{2x_0^3}{ex_0(1-x_0)} \cdot \frac{e^x(x-1)}{x^2}, \right\}$$

此时, x_0 满足方程组(**),即 x_0 是函数 f(x)与 g(x)在区间(0,1)内的一个 "S 点". 因此,对任意 a>0,存在 b>0,使函数 f(x)与 g(x)在区间(0, + ∞)内存在 "S 点".

7.解 (1)
$$f(x)=x-\ln x-\frac{e^x}{x}$$
, 定义域为(0, +∞), $f'(x)=1-\frac{1}{x}-\frac{e^x(x-1)}{x^2}=\frac{(x-1)(x-e^x)}{x^2}$.

令 $g(x)=x-e^{x}(x>0)$,则 $g'(x)=1-e^{x}<0$,所以 g(x)在 $(0,+\infty)$ 上单调递减,故 g(x)< g(0)=-1<0,

当 $x \in (0, 1)$ 时, f(x)>0, f(x)在(0, 1)上单调递增;

当 x∈(1, +∞)时, f(x)<0, f(x)在(1, +∞)上单调递减.

所以 $f(x)_{max} = f(1) = 1 - e$.

$$(2)f(x) + \left(x + \frac{1}{r}\right)e^x - bx \ge 1$$
, $\Leftrightarrow -\ln x + x - \frac{e^x}{r} + xe^x + \frac{e^x}{r} - bx \ge 1$, $\Leftrightarrow \frac{xe^x - \ln x - 1 + x}{r} \ge b$ 恒成立,

$$\diamondsuit \varphi(x) = \frac{xe^x - \ln x - 1 + x}{x}, \quad \emptyset \varphi'(x) = \frac{x^2e^x + \ln x}{x^2}.$$

令 $h(x)=x^2e^x+\ln x$,则 h(x)在(0, +∞)上单调递增, $x\to 0$, $h(x)\to -\infty$,且 h(1)=e>0,所以 h(x)在(0,1)上存在零点 x_0 ,

$$\mathbb{E} h(x_0) = x_0^2 e x_0 + \ln x_0 = 0, \quad x_0^2 e x_0 + \ln x_0 = 0 \Leftrightarrow x_0 e x_0 = -\frac{\ln x_0}{x_0} = \left(\ln \frac{1}{x_0}\right) (e^{\ln \frac{1}{x_0}}),$$

由于 $y=xe^x$ 在 $(0, +\infty)$ 上单调递增,故 $x_0=\ln\frac{1}{x_0}=-\ln x_0$,即 $ex_0=\frac{1}{x_0}$,

所以 $\varphi(x)$ 在 $(0, x_0)$ 上单调递减,在 $(x_0, +\infty)$ 上单调递增,

$$\varphi(x)_{\min} = \varphi(x_0) = \frac{x_0 e x_0 - \ln x_0 - 1 + x_0}{x_0} = \frac{1 + x_0 - 1 + x_0}{x_0} = 2,$$

因此 $b \le 2$, 即实数 b 的取值范围是($-\infty$, 2].

8.(1)
$$\Re f(x) = (x+1)e^x - a\left(1 + \frac{1}{x}\right) = (x+1)\left(e^x - \frac{a}{x}\right) = \frac{(x+1) - (xe^x - a)}{x}, \ x \in (0, +\infty).$$

①当 $a \le 0$ 时,f(x) > 0,f(x)在 $(0, +\infty)$ 上为增函数,不存在极值点;

②当 a>0 时,令 $h(x)=xe^x-a$, $h'(x)=(x+1)e^x>0$,显然函数 h(x)在 $(0, +\infty)$ 上是增函数,

又因为当 $x\to 0$ 时, $h(x)\to -a<0$, $h(a)=a(e^a-1)>0$,必存在 $x_0>0$,使 $h(x_0)=0$.

当 $x \in (0, x_0)$ 时, h(x) < 0, f(x) < 0, f(x)为减函数;

当 x∈(x_0 , +∞)时, h(x)>0, f(x)>0, f(x)为增函数,

所以, $x=x_0$ 是 f(x)的极小值点.

综上, 当 $a \le 0$ 时, f(x)无极值点, 当 a > 0 时, f(x)有一个极值点.

(2)证明 由(1)得, $f(x_0)$ =0,即 x_0 e x_0 =a,

 $f(x_0) = x_0 e x_0 - a(x_0 + \ln x_0) = x_0 e x_0 (1 - x_0 - \ln x_0),$

因为 $f(x_0)>0$,所以 $1-x_0-\ln x_0>0$,

$$\Leftrightarrow g(x) = 1 - x - \ln x, \ g'(x) = -1 - \frac{1}{x} < 0,$$

g(x)在(0, + ∞)上是减函数,且 g(1)=0,

由 g(x)>g(1)得 x<1,所以 $x_0 \in (0, 1)$,

设
$$\varphi(x) = \ln x - x + 1$$
, $x \in (0, 1)$, $\varphi'(x) = \frac{1}{x} - 1 = \frac{1 - x}{x}$,

当 $x \in (0, 1)$ 时, $\varphi'(x) > 0$,所以 $\varphi(x)$ 为增函数, $\varphi(x) < \varphi(1) = 0$,即 $\varphi(x) < 0$,

即 $\ln x < x - 1$,所以 $-\ln x > 1 - x$,

所以 $\ln(x+1) < x$,所以 $e^x > x+1 > 0$,则 $e^x > x_0 + 1$.

因为 $x_0 \in (0, 1)$,所以 $1-x_0-\ln x_0>1-x_0+1-x_0=2(1-x_0)>0$.

相乘得 $ex_0(1-x_0-\ln x_0)>(x_0+1)(2-2x_0)$,

所以 $f(x_0) = x_0 e x_0 (1 - x_0 - \ln x_0)$

 $>2x_0(x_0+1)(1-x_0)=2x_0(1-x_0^2)=2(x_0-x_0^3).$

故 $f(x_0) > 2(x_0 - x_0^3)$ 成立.

最值函数的零点问题

1. 【解答】(I)证明:设函数 $\varphi(x) = \ln x - x + 1$,则 $\varphi'(x) = \frac{1}{x} - 1, x > 0$.

令 $\varphi'(x) = 0$ 得 x = 1,则在 (0,1) 上, $\varphi'(x) > 0$, $\varphi(x)$ 递增,在 $(1,+\infty)$ 上, $\varphi'(x) < 0$, $\varphi(x)$ 递减. 所以 $\varphi(x) \leqslant \varphi(1) = 0$,即 $\ln x \leqslant x - 1$.

(II) 证明: 当
$$a = 2$$
时, $f(x) = lnx - x^2 + 2x \leqslant x - 1 - x^2 + 2x = -(x - \frac{3}{2})^2 + \frac{5}{4} \leqslant \frac{5}{4}$,

前面的 " \leq " 仅当 x=1 时取等号后面的 " \leq " 仅当 $x=\frac{3}{2}$ 时取等号,不能同时取到.

所以 $f(x) < \frac{5}{4}$.

(III)解:在区间 $(1,+\infty)$ 上,g(x) > 0,所以 $h(x) = max\{f(x), g(x)\} \geqslant g(x) > 0$,

所以 $h(x) = max\{f(x), g(x)\} \geqslant g(x) > 0$ 在区间 $(1,+\infty)$ 上不可能有零点.

下面只考虑区间(0,1))上和x=1处的情况.

由题意
$$f(x)$$
 的定义域为 $(0,+\infty)$, $f'(x) = \frac{1}{x} - 2x + a = \frac{-2x^2 + ax + 1}{x}$.

令
$$f'(x_0) = 0$$
 可得 $x_0 = \frac{a + \sqrt{a^2 + 8}}{4}$ (负值舍去).

在 $(0,x_0)$ 上f'(x)>0,f(x)递增,在 $(x_0,+\infty)$ 上f'(x)<0,f(x)递减, $f(x)_{max}=f(x_0)$.

① $\exists a = 1 \forall , x_0 = 1, \exists f(x)_{max} = f(1) = 0.$

因为在区间(0,1)上,g(x)<0,且g(1)=0,所以此时h(x)存在唯一的零点x=1.

②当
$$0 < a < 1$$
 时, $x_0 = \frac{a + \sqrt{a^2 + 8}}{4} < 1$. 因为 $f'(x_0) = \frac{1}{x_0} - 2x_0 + a = 0$,所以 $a = 2x_0 - \frac{1}{x_0}$.

所以
$$f(x_0) = lnx_0 - x_0^2 + x_0(2x_0 - \frac{1}{x_0}) = lnx_0 + x_0^2 - 1 < ln1 + 1^2 - 1 = 0$$
.

于是 f(x) < 0恒成立.

结合函数 g(x) 的性质, 可知此时 h(x) 存在唯一的零点 x=1.

③当
$$a>1$$
时, $x_0=\frac{a+\sqrt{a^2+8}}{4}>1$,所以 $f(x)$ 在(0,1)上递增.

又因为
$$f(1) = a - 1 > 0$$
, $f(\frac{1}{2a}) = \ln \frac{1}{2a} - \frac{1}{4a^2} + \frac{1}{2} < \frac{1}{2a} - 1 - \frac{1}{4a^2} + \frac{1}{2} = -(\frac{1}{2a} - \frac{1}{2})^2 - \frac{1}{4} < 0$,

所以 f(x) 在区间 (0,1) 上存在唯一的零点 $x=x_1$.

结合函数 g(x) 的性质, 可知 x = x, 是 h(x) 唯一的零点.

综上所述: 当 $0 < a \le 1$ 时,h(x)在 $(0,+\infty)$ 上有唯一的零点x=1; 当a > 1时,h(x)在 $(0,+\infty)$ 上也有1个零点.

2.
$$M: (1)$$
 $f'(x) = (x-3)e^{x-3} - x + 3 = (x-3)(e^{x-3} - 1)$, (1%)

当x=3时,f'(x)=0,(2分)

所以当 $x \in R$ 时, $f'(x) \ge 0$,即f(x)在R上是增函数;(3分)

又 f(3) = 0,所以 f(x) > 0 的解集为 $(3, +\infty)$. (4 分)

(2)
$$g'(x) = e^x - \sin x$$
. (5 $\%$)

由x>0, 得 $e^x>1$, $\sin x \in [-1, 1]$, (6分)

则 $g'(x) = e^x - \sin x > 0$,即 g(x) 在 $(0,+\infty)$ 上为增函数. (7分)

故 g(x) > g(0) = 2,即 g(x) > 2. (8分)

(3)由(1)知,

当 $x \ge 3$ 时, $f(x) \ge 0$ 恒成立,故 $h(x) \ge 0$ 恒成立;

当x < 3时,f(x) < 0,因为 $h(x) = max\{f(x), g(x)\}$,要使得 $h(x) \ge 0$ 恒成立,

只要 $g(x) \ge 0$ 在 (0,3) 上恒成立即可. (9 分)

设函数
$$r(x) = -\frac{\cos x}{e^x}$$
, $x \in [0, 3]$,

则
$$r'(x) = \frac{\sin x + \cos x}{e^x}$$
. (10 分)

$$\Leftrightarrow r'(x) = 0$$
,得 $x = \frac{3}{4}\pi$.

随着x变化,r'(x)与r(x)的变化情况如下表所示:

x	$(0,\frac{3\pi}{4})$	$\frac{3}{4}\pi$	$(\frac{3\pi}{4},3)$
r'(x)	+	0	_
r(x)	单调递增	极大值	单调递减

所以r(x)在 $(0,\frac{3\pi}{4})$ 上单调递增,在 $(\frac{3\pi}{4},3)$ 上单调递减. (11 分)

$$r(x)$$
 在 $(0,3)$ 上唯一的一个极大值,即极大值 $r(\frac{3\pi}{4}) = \frac{\sqrt{2}}{2}e^{-\frac{3\pi}{4}}$,故 $a \geqslant \frac{\sqrt{2}}{2}e^{-\frac{3\pi}{4}}$.

综上所述,所求实数a的取值范围为[$\frac{\sqrt{2}}{2}e^{-\frac{3\pi}{4}}$, + ∞). (12 分)

3. (1) 证明: 由题得 f(x) 的定义域为 $(0,+\infty)$,

则 $x^2 - x - x \ln x \ge 0$ 在 $x \in (0, +\infty)$ 上恒成立等价于 $x - 1 - \ln x \ge 0$ 在 $x \in (0, +\infty)$ 上恒成立, (1分)

记
$$\phi(x) = x - 1 - \ln x$$
,则 $\phi'(x) = 1 - \frac{1}{x} = \frac{x - 1}{x}$, (2分)

当 $\phi'(x) < 0$ 时,0 < x < 1; $\phi'(x) > 0$ 时,x > 1,

(2) 解: 由题得 h(x) = 1 - lnx,

② $\stackrel{\text{def}}{=} x = e \text{ pr}$, h(e) = 0, $g(e) = e^3 - 3ae + e$

$$a$$
. 当 g (e) = $e^3 - 3ae + e \le 0$, 即 $a \ge \frac{e^2 + 1}{3}$ 时, $x = e \not\in \varphi(x)$ 的一个零点;

③当x>e时,h(x)<0恒成立,因此只需考虑g(x)在 $(e,+\infty)$ 上的零点情况.

a. 当 $a \le e^2$ 时,g'(x) > 0,g(x)在 $(e, +\infty)$ 上单调递增,且 $g(e) = e^3 - 3ae + e$,

当
$$a < \frac{e^2 + 1}{3}$$
 时, g (e) > 0,则 $g(x)$ 在 $(e, +\infty)$ 上无零点,故 $\varphi(x)$ 在 $(0, +\infty)$ 上无零点;

当
$$a = \frac{e^2 + 1}{3}$$
 时, $g(e) = 0$,则 $g(x)$ 在 $(e, +\infty)$ 上无零点,故 $\varphi(x)$ 在 $(0, +\infty)$ 上有 1 个零点;

当
$$\frac{e^2+1}{3}$$
 < $a \le e^2$ 时,由 $g(e) < 0$, $g(2e) = 8e^3 - 6ae + e \ge 8e^3 - 6e^3 + e > 0$,得 $g(x)$ 在 $(e, +\infty)$ 上仅有一个零点,故 $\varphi(x)$ 在 $(0, +\infty)$ 上有 2 个零点;

b. 当 $a > e^2$ 时,由 g'(x) = 0 得 $x = \pm \sqrt{a}$,

由 g'(x) < 0 时, $e < x < \sqrt{a}$; 当 g'(x) > 0 时 $x > \sqrt{a}$, g'(x) < 0,

故 g(x) 在 (e,\sqrt{a}) 上单调递减, g(x) 在 $(\sqrt{a},+\infty)$ 上单调递增;

由 g (e) <0, $g(2a)=8a^3-6a^2+e>2a^2+e>0$,得 g(x) 在 $(e,+\infty)$ 上仅有一个零点,故 $\varphi(x)$ 在 $(0,+\infty)$ 上有 2 个零点;

综上所述, $a > \frac{e^2 + 1}{3}$ 时, $\varphi(x)$ 在 $(0, +\infty)$ 上恰有两个零点......(12 分)

4. $\Re: (1) :: f'(x) = 2x^2 - 4x = 2x(x-2)$,

 $\therefore f(x)$ 在($-\infty$,0)和(2,+ ∞)上单调递增,在(0,2)上单调递减,

f(x) 的极大值为 $f(0) = \frac{4}{3}$, f(x) 的极小值为 $f(2) = -\frac{4}{3}$,

湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——函数零点解答 7

又 $f(3) = \frac{4}{3}$, ∴ 若 f(x) 在区间 [a-5, a-1] 上的最大值为 $\frac{4}{3}$,

则 $\begin{cases} a-5 \leqslant 0 \\ 0 \leqslant a-1 \leqslant 3 \end{cases}$, 解得 1 \leqslant a \leqslant 4;

(2)
$$h(x) = \frac{3}{2}f(x) - x + 1 = x^3 - 3x^2 - x + 3 = (x+1)(x-1)(x-3)$$
,

当 $x \le -1$ 时, $g(x) = e^x - ax > 0$,此时F(x) = h(x),

 $\therefore F(x)$ 在 $(-\infty, -1]$ 上有一个零点, $x_1 = -1$;

当x > -1时, $g'(x) = e^x - a$, $\therefore g(x)$ 在(0,lna)上单调递减,在 $(lna,+\infty)$ 上单调递增,

 $\mathbb{Z} a \geqslant e^3$, :.lna $\geqslant 3$,

由于g(0)=1>0, g(1)=e-a<0, $x\in (-1,1)$ 时, f(x)>0,

 $\therefore F(x)$ 在 (0,1) 上有一个零点 x_2 ;

 $\mathbb{Z} g(lna) = a(1-lna) < 0$,

$$\diamondsuit k(x) = x - \ln x (x \geqslant e^3) , \quad k'(x) = \frac{x - 1}{x} > 0 ,$$

 $\therefore k(x)$ 在[e^3 , + ∞) 上单调递增, $k(x) = x - lnx \geqslant k(e^3) = e^3 - 3 > 0$,

 $\therefore a > lna$, $g(a) = e^a - a^2$.

再令
$$\varphi(x) = e^x - x^2(x \ge 2)$$
, $\varphi' = e^x - 2x$, $\varphi''(x) = e^x - 2 > 0$,

 $\therefore \varphi'$ 在[2, +\infty] 上单调递增,从而 $\varphi'(x) > \varphi'$ (2) = $e^2 - 4 > 0$,

 $\therefore \varphi(x)$ 在[2, +∞]上单调递增, $\varphi(x) > \varphi$ (2) = $e^2 - 4 > 0$,则 g (a) > 0.

 $\therefore F(x)$ 在 (lna,a) 上有一个零点 x_3 ,

综上所述,当 $a \geqslant e^3$ 时,F(x)有三个零点 $x_1 = -1$, $0 < x_2 < 1$, $lna < x_3 < a$.

 $\mathbb{E} x_1 < x_2 < x_3$.

零点差问题解答

5.

【解答】解:(I) 当a=b=-3时, $f(x)=(x^3+3x^2-3x-3)e^{-x}$,

故
$$f'(x) = -(x^3 + 3x^2 - 3x - 3)e^{-x} + (3x^2 + 6x - 3)e^{-x} = -e^{-x}(x^3 - 9x) = -x(x - 3)(x + 3)e^{-x}$$

当x < -3或0 < x < 3时,f'(x) > 0;

当-3 < x < 0或x > 3时,f'(x) < 0.

从而 f(x) 在 $(-\infty, -3)$, (0,3) 单调增加,在 (-3,0) , $(3,+\infty)$ 单调减少;

(II)
$$f'(x) = -(x^3 + 3x^2 + ax + b)e^{-x} + (3x^2 + 6x + a)e^{-x} = -e^{-x}[x^3 + (a - 6)x + b - a]$$
.

由条件得: f'(2) = 0, 即 $2^3 + 2(a-6) + b - a = 0$, 故 b = 4 - a,

从而 $f'(x) = -e^{-x}[x^3 + (a-6)x + 4 - 2a]$.

因为 $f'(\alpha) = f'(\beta) = 0$,

所以
$$x^3 + (a-6)x + 4 - 2a = (x-2)(x-\alpha)(x-\beta) = (x-2)(x^2 - (\alpha+\beta)x + \alpha\beta)$$
.

将右边展开,与左边比较系数得, $\alpha+\beta=-2$, $\alpha\beta=a-2$.

故
$$\beta - \alpha = \sqrt{(\beta + \alpha)^2 - 4\alpha\beta} = \sqrt{12 - 4a}$$
.,

又 $(\beta-2)(\alpha-2)<0$,即 $\alpha\beta-2(\alpha+\beta)+4<0$. 由此可得a<-6.

于是 $\beta-\alpha>6$.

6. 【解答】(1) 解: 当a=1时, $f(x)=\frac{1}{2}e^{2x}-x^2-x$,

$$g(x) = f(x) + x^2 = \frac{1}{2}e^{2x} - x$$
, $g'(x) = e^{2x} - 1$,

所以 g(x) 的单调递增区间为 $(0,+\infty)$,单调递减区间为 $(-\infty,0)$.

(2) 证明: 函数
$$f(x) = \frac{1}{2}ae^{2x} - x^2 - ax$$
 的定义域为 R , $f'(x) = ae^{2x} - 2x - a$,

因为函数 f(x) 有两个极值点 x_1 , $x_2(x_1 < x_2)$,

所以 x_1 , x_2 是函数h(x)的两个零点,

$$h(x_1) = h(x_2) = 0$$
,

$$h'(x) = 2ae^{2x} - 2$$
, $\diamondsuit h'(x) > 0$, $\exists a \in \mathbb{R}$, $\diamondsuit h'(x) < 0$, $\exists a \in \mathbb{R}$, $\diamondsuit h'(x) < 0$, $\exists a \in \mathbb{R}$, $\diamondsuit h'(x) < 0$, $\exists a \in \mathbb{R}$, $b \in \mathbb{R}$

所以 h(x) 在 $(-\infty, \frac{1}{2} \ln \frac{1}{a})$ 上单调递减,在 $(\frac{1}{2} \ln \frac{1}{a}, +\infty)$ 上单调递增,

所以
$$x_1 < \frac{1}{2} \ln \frac{1}{a}$$
, $x_2 > \frac{1}{2} \ln \frac{1}{a}$,

曲
$$0 < a < \frac{4}{e^4 - 1}$$
,可得 $\frac{1}{2} ln \frac{1}{a} > \frac{1}{2} ln \frac{e^4 - 1}{4} > 0$,

因为h(0) = 0,所以 $x_1 = 0$,

所以要证 $x_2 - x_1 > 2$, 即证 $x_2 > 2$, 只需证h(2) < 0,

因为
$$0 < a < \frac{4}{e^4 - 1}$$
,

所以
$$h(2) = ae^4 - 4 - a = a(e^4 - 1) - 4 < \frac{4}{e^4 - 1}(e^4 - 1) - 4 < 4 - 4 = 0$$

所以 $x_3 - x_1 > 2$,得证.

7.解: (1) 函数 f(x) 的定义域为 $(0,+\infty)$,

$$f'(x) = \frac{1}{x} - a = \frac{1 - ax}{x},$$

当 $a \leqslant 0$ 时,f'(x) > 0,

所以 f(x) 在 $(0,+\infty)$ 上单调递增.

当a > 0时,令g(x) = 1 - ax,

所以在 $(0,\frac{1}{a})$ 上,g(x)>0,f'(x)>0,f(x)单调递增,

在 $(\frac{1}{a}, +\infty)$ 上,g(x)<0,f'(x)<0,f(x)单调递减,

综上, 当 $a \le 0$ 时, f(x)在 $(0,+\infty)$ 上单调递增.

当a > 0时, 在 $(0, \frac{1}{a})$ 上f(x)单调递增, 在 $(\frac{1}{a}, +\infty)$ 上f(x)单调递减.

(2) 证明: (i) 由 (1) 可知,要使由函数 f(x) 有两个零点,需 a > 0,且 $f(x)_{max} = f(\frac{1}{a}) > 0$,则 $0 < a < \frac{1}{e}$,

又
$$x_1 < x_2$$
,故 $0 < x_1 < \frac{1}{a}, x_2 > \frac{1}{a}$,则 $\frac{2}{a} - x_1 > \frac{1}{a}$,

$$\therefore g(x)$$
在 $(0,\frac{1}{a})$ 上单减,

$$\therefore g(x_1) > g(\frac{1}{a}) = 0,$$

$$\nabla f(x_1) = 0$$

$$\therefore f(\frac{2}{a} - x_1) = \ln(\frac{2}{a} - x_1) - a(\frac{2}{a} - x_1) - f(x_1) = g(x_1) > 0,$$

$$\nabla f(x_2) = 0$$
,

$$\therefore x_2 > \frac{2}{a} - x_1$$
, $\exists P x_1 + x_2 > \frac{2}{a}$;

(*ii*) 要证
$$x_2 - x_1 > \frac{2\sqrt{1-ea}}{a}$$
 , 由(1)可知,只需证 $x_1 + x_2 + x_2 - x_1 > \frac{2}{a} + \frac{2\sqrt{1-ea}}{a}$, 即证 $x_2 > \frac{1+\sqrt{1-ea}}{a} > \frac{1}{a}$,

∴ 只需证
$$f(\frac{1+\sqrt{1-ea}}{a}) > 0$$
, 即证 $\ln \frac{1+\sqrt{1-ea}}{a} - (1+\sqrt{1-ea}) > 0$,

所以上述不等式等价于
$$\ln \frac{et}{1-(t-1)^2} - t > 0$$
,即 $\ln \frac{e}{2-t} - t > 0$, 亦即 $\ln (2-t) + t < 1$,

$$\Rightarrow \varphi(t) = ln(2-t) + t$$
, $\psi(t) = -\frac{1}{2-t} + 1 = \frac{1-t}{2-t} < 0 (t ∈ (1,2))$,

 $\therefore \varphi(t)$ 在(1,2)上单调递减,即 $\varphi(t) < \varphi$ (1)=1,即得证.

8.解: (1) 由题意可知, f(x) 的定义域为 $(0,+\infty)$,

因为
$$f(x) = ax + lnx$$
,所以 $f'(x) = \frac{1}{x} + a = \frac{1+ax}{x}$,

当 $a \ge 0$ 时, f'(x) > 0 ,则 f(x) 在 $(0,+\infty)$ 上单调递增;

当a < 0时, 当 $0 < x < -\frac{1}{a}$ 时, f'(x) > 0, 则f(x)单调递增,

当 $x > -\frac{1}{a}$ 时, f'(x) < 0 ,则 f'(x) 单调递减.

综上所述, 当 $a \ge 0$ 时, f(x)在 $(0,+\infty)$ 上单调递增;

当 a < 0 时, f(x) 在 $(0, -\frac{1}{a})$ 上单调递增,在 $(-\frac{1}{a}, +∞)$ 上单调递减.

(2) 证明: (*i*) 原不等式等价于
$$\frac{x_1 + x_2}{2} > -\frac{1}{a}$$
,

因为 $-ax_1 = lnx_1$ ①, $-ax_2 = lnx_2$ ②,

曲②-①,可得-
$$a(x_2-x_1)=lnx_2-lnx_1$$
,故- $a=\frac{lnx_2-lnx_1}{x_2-x_1}$,

则
$$\frac{x_1 + x_2}{2} > -\frac{1}{a}$$
 等价于 $\frac{x_1 + x_2}{2} > \frac{x_2 - x_1}{lnx_2 - lnx_1}$,

因为 $x_1 > x_1 > 0$,所以 $lnx_1 - lnx_1 > 0$,

即证明
$$lnx_2 - lnx_1 > \frac{2(x_2 - x_1)}{x_1 + x_2}$$
③,

等价于证明
$$\ln \frac{x_2}{x_1} - \frac{2(\frac{x_2}{x_1} - 1)}{1 + \frac{x_2}{x}} > 0$$
,

令
$$t = \frac{x_1}{x_1}(t > 1)$$
 , 设 $g(t) = lnt - \frac{2(t-1)}{1+t}(t > 1)$, 即证明 $g(t) > 0$,

因为
$$g'(t) = \frac{1}{t} - \frac{4}{(1+t)^2} = \frac{(t-1)^2}{t(t+1)^2} > 0$$
,

则 g(t) 在 $(1,+\infty)$ 上单调递增,且 g(t) > g (1) = 0,

因此
$$x_1 + x_2 > -\frac{2}{a}$$
;

所以h(x)在(0,e)上单调递增,在 $(e,+\infty)$ 上单调递减,

因为-a = h(x)有两个不相等的实数根,且h(e) $=\frac{1}{e}$,

则
$$0 < -a < \frac{1}{e}$$
 且 $1 < x_1 < e < x_2$,

因为lnx < 1-x对于 $x \in (0, 1) \cup (1, +\infty)$ 恒成立,

则
$$\ln \frac{1}{x} > 1 - x$$
 对于 $x \in (0,1)$ 恒成立,

湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——函数零点解答 8

所以
$$-ax_1-1=lnx_1-1=ln\frac{x_1}{e}>1-\frac{e}{x_1}$$
,

因为
$$x_1 > 0$$
,所以 $-ax_1^2 - 2x_1 + e > 0$,

又因为
$$a < 0$$
, $\triangle = 4 + 4ae > 0$,

所以
$$x_1 < -\frac{1}{a} + \frac{\sqrt{1+ea}}{a}$$
 或 $x_1 > -\frac{1}{a} - \frac{\sqrt{1+ea}}{a}$,

因为
$$0 < x_1 < e$$
且 $-\frac{1}{e} < a < 0$,所以 $x_1 < -\frac{1}{a} + \frac{\sqrt{1+ea}}{a}$

因为
$$\frac{x_1+x_2}{2}$$
> $-\frac{1}{a}$,所以 $\frac{x_1+x_2}{2}$ - x_1 > $-\frac{1}{a}$ - $(-\frac{1}{a}+\frac{\sqrt{1+ea}}{a})$,

所以
$$x_2 - x_1 > -\frac{2\sqrt{1+ea}}{a}$$
.

同构法解零点问题

9. 【解答】解: 方法一: 由
$$f(x) = \frac{ax}{e^{x-1}} + x - \ln(ax) - 2(a > 0)$$
 可得 $f'(x) = \frac{x-1}{e^{x-1}} (\frac{e^{x-1}}{x} - a)$,

设
$$y = \frac{e^{x-1}}{x} - a$$
 , $x > 0$, $a > 0$, 则 $y' = \frac{e^{x-1}(x-1)}{x^2}$, 令 $y' = 0 \Rightarrow x = 1$, ∴ $y \in x \in (0,1)$ 单调递减,在 $x \in (1,+\infty)$ 单调递增,

故
$$y_{min} = y$$
 (1) = 1-a.

①当
$$0 < a < 1$$
时,令 $f'(x) = 0 \Rightarrow x = 1$,当 $x \in (0,1)$ 时, $f(x)$ 单调递减,当 $x \in (1,+\infty)$ 时, $f(x)$ 单调递增,

$$\therefore f(x)_{min} = f(1) = a - 1 - lna > 0$$
,此时 $f(x)$ 在区间 $(0,+\infty)$ 内无零点;

②当
$$a=1$$
时, $f(1)=a-1-lna=0$,此时 $f(x)$ 在区间 $(0,+\infty)$ 内有零点;

③当
$$a > 1$$
时,令 $f'(x) = \frac{x-1}{e^{x-1}} (\frac{e^{x-1}}{x} - a) = 0$,解得 $x = x_1$ 或 1 或 x_2 ,且 $0 < x_1 < 1 < x_2$,

此时 f(x) 在 $x \in (0,x_1)$ 单减, $x \in (x_1, 1)$ 单增, $x \in (1,x_2)$ 单减, $x \in (x_2, +\infty)$ 单增,

当 $x = x_1$ 或 x_2 时, $f(x)_{\text{Whú}} = 0$,此时 f(x) 在区间 $(0, +\infty)$ 内有两个零点;

综合①②③知 f(x) 在区间 $(0,+\infty)$ 内有零点 $\Rightarrow a \geqslant 1$.

方法二: 由题意可得

$$e^{-x+1+ln(ax)} = ln(ax) - x + 2$$
, $\mathbb{E}[e^{-x+1+ln(ax)} - [-x+1+ln(ax)] - 1 = 0$,

因为 $e^x \ge x + 1$ 当x = 0时等号成立,

所以
$$-x+1+ln(ax)=0$$
, 即 $ax=e^{x-1}$,

$$a = \frac{e^{x-1}}{x}$$
, $\Leftrightarrow g(x) = \frac{e^{x-1}}{x}$, $g'(x) = \frac{1}{e} \times \frac{(x-1)e^x}{x^2}$,

易知
$$g(x)$$
 在 $(0,1)$ 单减,在 $(1,+\infty)$ 上单增,所以 $g(x) \ge g$ (1)=1,

又x趋近于0和正无穷时,g(x)趋近于正无穷,所以 $a \ge 1$.

10.
$$\Re$$
: (1) $g(x) = \frac{a}{2}x^2 + x\cos x - \sin x$, $x \in (0, \frac{\pi}{2}]$,

所以 $g'(x) = x(a - \sin x)$,

当 $a\geqslant 1$ 时, $a?\sin x\geqslant 0$,所以g(x)在 $(0, \frac{\pi}{2}]$ 单调递增,

又因为g(0)=0,所以g(x)在 $(0, \frac{\pi}{2}]$ 上无零点;

当0 < a < 1时, $\exists x_0 \in (0, \frac{\pi}{2})$,使得 $\sin x_0 = a$,

所以 g(x) 在 $(x_0, \frac{\pi}{2}]$ 单调递减,在 $(0,x_0)$ 单调递增,

又因为
$$g(0) = 0$$
, $g(\frac{\pi}{2}) = \frac{a\pi^2}{8} - 1$,

所以若 $\frac{a\pi^2}{8}$ -1>0,即 $a>\frac{8}{\pi^2}$ 时,g(x)在 $(0,\frac{\pi}{2}]$ 上无零点,

若
$$\frac{a\pi^2}{8}$$
?1 \leqslant 0,即 $0 < a \leqslant \frac{8}{\pi^2}$ 时, $g(x)$ 在 $(0, \frac{\pi}{2}]$ 上有一个零点,

当 $a \le 0$ 时, $g'(x) = a - x \sin x < 0$, g(x) 在 $(0 , \frac{\pi}{2}]$ 上单调递减, g(x) 在 $(0 , \frac{\pi}{2}]$ 上无零点,

综上当
$$0 < a \le \frac{8}{\pi^2}$$
时, $g(x)$ 在 $(0, \frac{\pi}{2}]$ 上有一个零点;

(2)
$$\boxplus xe^{x-a} = f(x) - \frac{a}{2}x^2 + ax - 1(x > 0)$$
,

则有 $e^{x-a} + (x-a) = x + lnx$,

$$\Rightarrow h(x) = x + lnx$$
, $x > 0$, $\emptyset h(e^{x-a}) = e^{x-a} + (x-a)$,

 $h'(x) = 1 + \frac{1}{x} > 0$, 所以函数 h(x) 在 $(0, +\infty)$ 上递增,

所以 $e^{x-a}=x$,则有x-a=lnx,即a=x-lnx,x>0,

因为关于 x 的方程 $xe^{x-a} = f(x) - \frac{a}{2}x^2 + ax - 1$ 有两个不同的实数解,

则方程a=x-lnx, x>0有两个不同的实数解,

$$\Leftrightarrow \varphi(x) = x - \ln x$$
, $\emptyset \varphi'(x) = 1 - \frac{1}{x} = \frac{x - 1}{x}$,

所以函数 $\varphi(x) = x - lnx$ 在(0,1) 上递减,在 $(1,+\infty)$ 上递增,

所以 $\varphi(x)_{min} = \varphi$ (1) =1,

当 $x \to 0$ 时, $\varphi(x) \to +\infty$,当 $x \to +\infty$ 时, $\varphi(x) \to +\infty$, 所以 $\{a \mid a > 1\}$.

11. 【解答】解: (1) 因为函数 y = f(x) 在 $(0, \frac{1}{2})$ 上单调递减,所以 $f'(x) \le 0$ 在 $(0, \frac{1}{2})$ 上恒成立,

可得
$$f'(x) = 2e^{2x+a} - \frac{1}{2x} = \frac{4xe^{2x+a} - 1}{2x}$$
,

由于x > 0,则 $4xe^{2x+a} - 1 \le 0$ 在 $(0, \frac{1}{2})$ 上恒成立,

$$\Rightarrow F(x) = 4xe^{2x+a} - 1$$
, $F'(x) = (8x+4)e^{2x+a} > 0$,

故 F(x) 在 $(0,\frac{1}{2})$ 上单调递增,

所以只需 $F(\frac{1}{2}) \leq 0$ 即可, $F(\frac{1}{2}) = 2e^{1+a} - 1 \leq 0$,

所以 $a \leq -1 - ln2$,

所以a的取值范围是 $(-\infty, -1-ln2]$.

(2)
$$f(x) = e^{2x+a} - \frac{1}{2} lnx + \frac{a}{2}$$
的定义域为(0,+∞),

$$f'(x) = 2e^{2x+a} - \frac{1}{2x}$$
, $\Leftrightarrow g(x) = 2e^{2x+a}$, $h(x) = \frac{1}{2x}$,

当x>0时,g(x) 单调递增, $g(x)\in (2e^a,+\infty)$, $h(x)\in (0,+\infty)$,

故存在
$$x_0 \in (0, +\infty)$$
, 使得 $f'(x_0) = 0$, 即 $2e^{2x_0 + a} - \frac{1}{2x_0} = 0$,

即
$$4e^{2x_0+a} = \frac{1}{x_0}$$
 ①,两边取对数得 $ln4 + 2x_0 + a = -lnx_0$ ②,

而 f(x) 在 $(0,x_0)$ 上单调递减,在 $(x_0,+\infty)$ 上单调递增,

故
$$f(x)_{min} = f(x_0) > 0$$
,故 $e^{2x_0+a} - \frac{1}{2}lnx_0 + \frac{a}{2} > 0$,

将①②代入上式得
$$\frac{1}{4x_0} + \frac{\ln 4 + 2x_0 + a}{2} + \frac{a}{2} > 0$$
, 化简得 $a > -\frac{1}{4x_0} - x_0 - \ln 2$,

因为
$$\frac{1}{4x_0} + x_0 \ge 1$$
, 当且仅当 $\frac{1}{4x_0} = x_0$, 即 $x_0 = \frac{1}{2}$ 时取等号,

所以
$$-\frac{1}{4x_0}-x_0-ln2\leqslant -1-ln2$$
,

故 a > -1 - ln2,

即 a 的取值范围是 $(-1-ln2,+\infty)$.

12.解: (1) 若选①:
$$m = \frac{1}{2}$$
, 则函数 $f(x) = e^{x-1} - \frac{1}{2}x^2$,

所以
$$f'(x) = e^{x-1} - x$$
, $f''(x) = e^{x-1} - 1$,

因为f''(x)单调递增,且f''(1) = 0,

所以 f'(x) 在 (0,1) 上单调递减, $(1,+\infty)$ 上单调递增,

则 $f'(x) \geqslant f'(1) = 0$,

故 f(x) 在 (0,+∞) 上单调递增,

所以不存在极小值点;

若选②: m=1, 则 $f(x)=e^{x-1}-x^2$,

所以 $f'(x) = e^{x-1} - 2x$, $f''(x) = e^{x-1} - 2$,

由 f''(x) 单调递增,且 f''(1+ln2)=0,

所以 f'(x) 在 (0,1+ln2) 上单调递减,在 $(1+ln2,+\infty)$ 上单调递增,

故 $f'(x) \ge f'(1 + ln2) = -2ln2 < 0$,

$$\sum f'(4) = e^3 - 8 > 0$$
,

所以存在极小值点 $x_0 \in (1 + \ln 2, 4)$.

(2) $\Rightarrow g(x) = 0$, $\bigoplus e^{x-1} - mx^2 + mx\ln(mx) = 0$,

 $\mathbb{Z}mx > 0$,

所以
$$\frac{e^{x-1}}{mx} - x + ln(mx) = \frac{e^{x-1}}{e^{ln(mx)}} - x + ln(mx) = e^{x-ln(mx)-1} - [x - ln(mx)] = 0$$
,

 $\diamondsuit t = x - ln(mx) ,$

故 $e^{t-1}-t=0$ 有解,

设 $h(t) = e^{t-1} - t$,

则 $h'(t) = e^{t-1} - 1$, 令 h'(t) = 0, 解得 t = 1,

所以h(t)在 $(-\infty,1)$ 上单调递减,在 $(1,+\infty)$ 上单调递增,

所以 $h(t) = e^{t-1} - t$ 有唯一的零点t = 1,

若 g(x) 在区间 $(0,+\infty)$ 上存在零点,

即1 = x - ln(mx)在 $(0,+\infty)$ 上有解,

整理可得1+lnm=x-lnx,

 $\Leftrightarrow l(x) = x - lnx$,

则 $l'(x) = 1 - \frac{1}{x}$, 令 l'(x) = 0, 解得 x = 1,

所以l(x)在(0,1)上单调递减,在 $(1,+\infty)$ 上单调递增,

故 $l(x) \ge l (1) = 1$,

所以1+lnm≥1,

解得 $m \ge 1$,

所以m的取值范围为 $[1, +\infty)$.