In his 1917 paper, "On the Quantum Theory of Radiation," Einstein uses the following argument to derive Planck's law. The argument requires induced emission, a process which was a theoretical discovery by Einstein. Prior to Einstein, no one was aware that induced emission existed.

Consider a gas at temperature T. Let N be the number of molecules in the gas and let N_n be the number of molecules with internal energy ε_n . By the Maxwell-Boltzmann distribution we have

$$\frac{N_n}{N} = p_n \exp\left(-\frac{\varepsilon_n}{kT}\right)$$

where k is Boltzmann's constant. The coefficient p_n is a statistical weighting factor that does not depend on T.

Let us now consider the processes by which a molecule transitions between energy levels. The processes are absorption, induced emission, and spontaneous emission. Let ε_m be an energy level such that $\varepsilon_m > \varepsilon_n$. Let B_n , B_m , and A_m be coefficients of transition rates such that

$$\frac{dN_n}{dt} = B_n \rho(\nu) N_n \qquad \frac{dN_m}{dt} = B_m \rho(\nu) N_m \qquad \frac{dN_m}{dt} = A_m N_m$$
absorption induced emission spontaneous emission $\varepsilon_m \to \varepsilon_m$

Absorption and induced emission are proportional to $\rho(\nu)$ which is the radiant energy density of the gas as a function of radiant frequency ν . The A and B coefficients are presumed to not depend on temperature T.

At equilibrium, transition rates between ε_m and ε_n are equal.

$$B_n \rho(\nu) N_n = B_m \rho(\nu) N_m + A_m N_m$$
absorption induced emission spontaneous emission
$$\substack{\varepsilon_m \to \varepsilon_m \\ \varepsilon_m \to \varepsilon_n}$$

Divide through by N to obtain

$$B_n \rho(\nu) p_n \exp\left(-\frac{\varepsilon_n}{kT}\right) = B_m \rho(\nu) p_m \exp\left(-\frac{\varepsilon_m}{kT}\right) + A_m p_m \exp\left(-\frac{\varepsilon_m}{kT}\right)$$
absorption induced emission spontaneous emission
$$\varepsilon_m \to \varepsilon_m$$
 spontaneous emission
$$\varepsilon_m \to \varepsilon_n$$

Note that for increasing T we have

$$\lim_{T \to \infty} \exp\left(-\frac{\varepsilon_n}{kT}\right) = 1$$

It follows that for $T \to \infty$ the equilibrium formula is

$$B_n \rho(\nu) p_n = B_m \rho(\nu) p_m + A_m p_m$$

Divide through by $\rho(\nu)$.

$$B_n p_n = B_m p_m + A_m p_m / \rho(\nu)$$

Energy density $\rho(\nu)$ increases with temperature T hence $A_m p_m/\rho(\nu)$ vanishes for $T \to \infty$ leaving

$$B_n p_n = B_m p_m$$

Einstein reasoned that the above relation is true in general based on the assumption that the factors involved do not depend on T. By substitution in the absorption term we can now eliminate $B_n p_n$ and obtain

$$B_{m}\rho(\nu)p_{m}\exp\left(-\frac{\varepsilon_{n}}{kT}\right) = B_{m}\rho(\nu)p_{m}\exp\left(-\frac{\varepsilon_{m}}{kT}\right) + A_{m}p_{m}\exp\left(-\frac{\varepsilon_{m}}{kT}\right)$$
absorption
$$\varepsilon_{n} \to \varepsilon_{m}$$
induced emission
$$\varepsilon_{m} \to \varepsilon_{n}$$
spontaneous emission
$$\varepsilon_{m} \to \varepsilon_{n}$$

Divide through by $B_m p_m$ and rearrange terms.

$$\rho(\nu) \exp\left(-\frac{\varepsilon_n}{kT}\right) - \rho(\nu) \exp\left(-\frac{\varepsilon_m}{kT}\right) = (A_m/B_m) \exp\left(-\frac{\varepsilon_m}{kT}\right)$$
absorption induced emission spontaneous emission
$$\varepsilon_m \to \varepsilon_m \qquad \varepsilon_m \to \varepsilon_n$$

Solve for energy density $\rho(\nu)$.

$$\rho(\nu) = \frac{A_m}{B_m} \frac{\exp\left(-\frac{\varepsilon_m}{kT}\right)}{\exp\left(-\frac{\varepsilon_n}{kT}\right) - \exp\left(-\frac{\varepsilon_m}{kT}\right)}$$
$$= \frac{A_m}{B_m} \frac{1}{\exp\left(\frac{\varepsilon_m - \varepsilon_n}{kT}\right) - 1}$$

We now consider the limit of $\rho(\nu)$ for large $\varepsilon_m - \varepsilon_n$.

$$\lim \rho(\nu) = \frac{A_m}{B_m} \exp\left(\frac{\varepsilon_m - \varepsilon_n}{kT}\right)$$

Then by equivalence with Wien's law (which is accurate for large ν)

$$\rho_{\text{wien}}(\nu) = \frac{2h\nu^3}{c^2} \exp\left(-\frac{h\nu}{kT}\right)$$

we have

$$\frac{A_m}{B_m} = \frac{2h\nu^3}{c^2}$$

and

$$\varepsilon_m - \varepsilon_n = h\nu$$

Substitution yields Planck's law.

$$\rho(\nu) = \frac{A_m}{B_m} \frac{1}{\exp\left(\frac{\varepsilon_m - \varepsilon_n}{kT}\right) - 1}$$
$$= \frac{2h\nu^3}{c^2} \frac{1}{\exp\left(\frac{h\nu}{kT}\right) - 1}$$