Math 635 Lecture 10

Thomas Cohn

2/10/21

Recall from last time:

Defn: Given a vector bundle $\mathcal{E} \to M$ with connection ∇ , $X,Y \in \mathfrak{X}(M)$, the <u>curvature operator</u> \mathcal{R} of ∇ , evaluated on (X,Y), is

$$\mathcal{R}(X,Y):\Gamma(\mathcal{E})\to\Gamma(\mathcal{E})\\ (X,Y)\mapsto [\nabla_X,\nabla_Y]-\nabla_{[X,Y]}$$

Observe: When Do Carmo defines the curvature operator (Chapter 4, Definition 2.1, in the case where $\mathcal{E} = TM$), they use the opposite sign.

Observe: \mathcal{R} is given by a tensor! What does that mean? Last time, using the second approach, we computed locally in a moving frame (E_1, \ldots, E_r) (with associated connection matrix ϑ) that $[\nabla_X, \nabla_Y] = \nabla_{[X,Y]} + d\vartheta(X,Y) + [\vartheta(X), \vartheta(Y)]$. So \mathcal{R} has, for its components in the given frame, the components of the vector

$$(d\vartheta(X,Y) + [\vartheta(X),\vartheta(Y)])\vec{f} \qquad s = f^i E_i, \vec{f} = \begin{pmatrix} f^1 \\ \vdots \\ f^r \end{pmatrix}$$

Defn: $\Omega \stackrel{\text{def}}{=} d\vartheta + \vartheta \wedge \vartheta$ is the <u>curvature matrix</u> of ∇ with respect to the moving frame (E_1, \dots, E_r) .

(This is true because we observed $(\vartheta \wedge \vartheta)(X,Y) = [\vartheta(X),\vartheta(Y)]$.)

In fact, $\forall p \in U = \text{dom}(E_i)$, $\mathcal{R}(X,Y)(s)(p) \in \mathcal{E}_p$ is the image of s(p) by the linear transformation $\mathcal{E}_p \to \mathcal{E}_p$ whose matrix (in the basis $(E_1(p), \ldots, E_r(p))$) is $\Omega_p(X_p, Y_p)$.

The virtue of this definition is that it's a well-defined global object! But it turns out to be a differential operator of order 0, meaning there's no derivatives, so it's just multiplication. At each point it's given by a linear transformation of the fibers, with the matrix determined by X_p and Y_p .

Observe: The dependence on X and Y is punctual! $\forall p \in M, \mathcal{R}(X,Y)(s)(p)$ depends only on $X_p, Y_p \in T_pM$ and $s(p) \in \mathcal{E}_p$.

 \mathcal{R} , as an object, is "an End- \mathcal{E} valued 2-form on M". That is, $\forall p \in M, \forall u, v \in T_pM, \mathcal{R}_p(u, v) : \mathcal{E}_p \to \mathcal{E}_p$ is a linear map, and $\mathcal{R}(\cdot, \cdot)$ is bilinear and skew-symmetric.

Intuition: \mathcal{R} is given by infinitesimal holonomy. Given a tiny loop at p below, the holonomy of the path is approximately $\exp(\mathcal{R}_p(u,v))$ (using the matrix exponential).

Even though we're taling about an operator, it's given by a tensor. \mathcal{R} itself is a section of

$$\underbrace{T^*M \otimes T^*M}_{\text{2-form part}} \otimes \underbrace{\mathcal{E}_p \otimes \mathcal{E}_p}_{\text{Endomorphism part}}$$

We're well on our way to defining the Levi-Civita connection!

Consider a vector bundle $\mathcal{E} \to M$, now with a positive definite inner product on each fiber. (In the case where $\mathcal{E} = TM$, this exactly is a Riemannian metric.)

1

Defn: A connection ∇ on \mathcal{E} (with \langle , \rangle) is said to preserve \langle , \rangle iff $\forall \gamma : [a, b] \to M$, parallel transport $\mathcal{P}_{\gamma} : \mathcal{E}_{\gamma(a)} \to \mathcal{E}_{\gamma(b)}$ is an isometry, i.e., $\forall u, v \in \mathcal{E}_{\gamma(a)}, \langle \mathcal{P}_{\gamma}(u), \mathcal{P}_{\gamma}(v) \rangle_{\gamma(B)} = \langle u, v \rangle_{\gamma(a)}$.

Prop: Given a vector bundle $\mathcal{E} \to M$, inner product $\langle \ , \ \rangle$ on each fiber, and a connection ∇ , the following are equivalent:

- (a) ∇ preserves \langle , \rangle .
- (b) $\forall s, t \in \Gamma(\mathcal{E}), \forall X \in \mathfrak{X}(M), X(\langle s, t \rangle) = \langle \nabla_X s, t \rangle + \langle s, \nabla_X t \rangle$. Note that $\langle s, t \rangle$ is a function on M, which we can differentiate with respect to X. We can think of this as a sort of "product rule".
- (c) $\forall (E_1, \ldots, E_r)$ local orthonormal frame (which exists by Gram-Schmidt), the connection matrix ϑ is skew symmetric, i.e., $\forall i, j, \, \theta_i^i = -\theta_i^j$.

Proof: First, we show that (b) \Leftrightarrow (c). Let (E_1, \ldots, E_r) be our local orthonormal frame. Then there are functions f^i, g^j such that $s = f^i E_i$ and $t = g^j E_j$. Thus, we can form \vec{f}, \vec{g} , and by orthonormality of the frame

$$\langle s, t \rangle = \sum_{i=1}^{r} \sum_{j=1}^{r} f^{i} g^{j} \underbrace{\langle E_{i}, E_{j} \rangle}_{=\delta_{ij}} = \sum_{i=1}^{r} f^{i} g^{i} = \vec{f} \cdot \vec{g}$$

Thus, with a slight abuse of notation,

$$\langle \nabla_X s, t \rangle$$
 "=" $(\nabla_X \vec{f}) \cdot \vec{g} = (X(\vec{f}) + \vartheta(X)\vec{f}) \cdot \vec{g}$

And

$$\langle \nabla_X s, t \rangle + \langle s, \nabla_X t \rangle = \underbrace{X(\vec{f}) \cdot \vec{g} + \vec{f} \cdot X(\vec{g})}_{=X(\vec{f} \cdot \vec{g}) = X(\langle s, t \rangle)} + (\vartheta(X)\vec{f}) \cdot \vec{g} + \vec{f} \cdot (\vartheta(X)\vec{g})$$

So the product rule holds iff $\forall s, t \ / \ \forall \vec{f}, \vec{g}, \ (\vartheta(X)\vec{f}) \cdot \vec{g} + \vec{f} \cdot (\vartheta(X)\vec{g}) = 0$, which is true iff $\vartheta(X)$ is skew-symmetric. In order to show (a) we just change the setting a bit. Let $\gamma : [a,b] \to M$ be a smooth curve. Take $V W \in \Gamma_*(\mathcal{E})$

In order to show (a), we just change the setting a bit. Let $\gamma:[a,b]\to M$ be a smooth curve. Take $V,W\in\Gamma_{\gamma}(\mathcal{E})$. We claim that, just as above, we get

$$\underbrace{\left\langle \frac{DV}{dt}, W \right\rangle}_{\text{a function of } t} + \left\langle V, \frac{DW}{dt} \right\rangle - \frac{d}{dt} \left\langle V, W \right\rangle = (\vartheta(\dot{\gamma})\vec{f}) \cdot \vec{g} + \vec{f} \cdot (\vartheta(\dot{\gamma})\vec{g})$$

Assume V and W are parallel along γ . By definition, this means $\frac{DV}{dt} = \frac{DW}{dt} = 0$. Then

$$-\frac{d}{dt}\left\langle V,W\right\rangle = (\vartheta(\dot{\gamma})\vec{f})\cdot\vec{g} + \vec{f}\cdot(\vartheta(\dot{\gamma})\vec{g})$$

Well,

$$\begin{split} \nabla \text{ preserves } \langle \ , \ \rangle &\Leftrightarrow \frac{d}{dt} \, \langle V, W \rangle = 0, \ \forall V, W \text{ parallel} \\ &\Leftrightarrow (\vartheta(\dot{\gamma}) \vec{f}) \cdot \vec{g} + \vec{f} \cdot (\vartheta(\dot{\gamma}) \vec{g}) = 0 \text{ in all instances} \\ &\Leftrightarrow \vartheta \text{ is skew symmetric} \end{split}$$

Thm: Let M be a Riemannian manifold. Then $\exists ! \nabla$ on $\mathcal{E} = TM \to M$ such that

- (a) ∇ preserves the Riemannian metric. (This depends on the choice of Riemannian metric.)
- (b) $\forall X, Y \in \mathfrak{X}(M), \nabla_X Y \nabla_Y X = [X, Y].$ (This does not depend on the choice of Riemannian metric.)

Defn: This ∇ is called the <u>Levi-Civita connection</u> on M.