- FusedAttention: fusing attention matrix into attention vector
 - Self-Attention
 - Fused-Attention

FusedAttention: fusing attention matrix into attention vector

If some formula are not displayed clearly, chose the pdf format **README.pdf** in this repository.

Self-Attention

Let $X \in \mathbb{R}^{h \times L}$ denotes a sequence of L feature vectors of dimensions h. Formally, X is projected by three matrices $W_Q \in \mathbb{R}^{u \times h}$, $W_K \in \mathbb{R}^{u \times h}$ and $W_V \in \mathbb{R}^{d \times h}$ to corresponding representations Q, K and V. The output for all positions is computed as follows

$$Q = W_Q * X,$$

$$K = W_K * X,$$

$$V = W_V * X,$$

$$\alpha = \operatorname{softmax}(K^T Q / \sqrt{d}),$$

$$Y = V * \alpha.$$

Note that the softmax funtion is appied column-wise. The Q,K,V and α are referred to as the queries, keys, values, and attention matrix respectively, following the common terminology.

Fused-Attention

In self-attention, the output Y at position t is computed as a weighted average of the feature representations of all positions with a weight proportional to a similarity score between the representations.

$$Q_{t} = W_{Q}X_{t},$$

$$K = W_{K}X,$$

$$V = W_{V}X,$$

$$\alpha_{t} = \operatorname{softmax}(K^{T}Q_{t}/\sqrt{d}),$$

$$Y_{t} = V * \alpha_{t}.$$

In short, self-attention maps ${\cal L}$ inputs to ${\cal L}$ outputs. In fused-attention, we rewrite the formula as

$$Q = f_{Q}(X),$$

$$K = f_{K}(X),$$

$$V = f_{V}(X),$$

$$\alpha = fuse (norm(K^{T}Q/\sqrt{d})),$$

$$Y = g_{V}(V * \alpha),$$

where f_Q , f_K and f_V are any functions that are legal to input X, norm is a normalization function default to softmax appied column-wise, fuse is an aggregation function default to mean appied row-wise, g_V is a transform function related to V, thus the attention variable $\alpha \in \mathbb{R}^{L \times 1}$ transforms values V from a matrix $\in \mathbb{R}^{d \times L}$ to a vector $\in \mathbb{R}^{d \times 1}$. In brief, fused-attention maps L inputs to 1 output. There are two forms of X:

- The first case is that X is a tensor of any size. Ignoring the batch dimension, suppose the size of X is $(C, W_1, W_2, ..., W_n)$, where C is the number of channels, W_n is the spatial width at the n-th spatial dimention. In this case, take f_V for example, it first transforms X into V' with size $(C', W_1', W_2', ..., W_n')$, then transforms V' into V with size (d, L), where $d = C' \prod_{i=1}^n \Delta W_i'$, of which $\Delta W_i'$ is the window size at the i-th spatial dimention, L is the total number of patches. f_Q and f_K are similar to f_V . If the number of dimentions of Y is required to be the same with X, then g_V transforms $V * \alpha$ into Y with size $(C', \Delta W_1', \Delta W_2', ..., \Delta W_n')$, otherwise g_V does nothing.
- The second case is that X is a collection of L tensors of the same size. Also ignoring the batch dimension, X_j is the j-th element of X, suppose the size of X_j is $(C, W_1, W_2, ..., W_n)$, where C is the number of channels, W_n is the spatial width at the n-th spatial dimention. In this case, take f_V for example, it first transforms X_j into V_j with size $(C', W_1', W_2', ..., W_n')$, then reshape V_j to V_j of size $(C', W_1', W_1', ..., U_n')$, then concatenate V_j , $j = 1, 2, ..., U_n'$ into V_n with size

 $(C^{'}\prod_{i=1}^{n}W_{i}^{'},L).f_{Q}$ and f_{K} are similar to f_{V} . As to g_{V} , it transforms $V*\alpha$ into Y with size $(C^{'},W_{1}^{'},W_{2}^{'},...,W_{n}^{'}).$