CALCOLO NUMERICO

Corso di Laurea in Informatica

A.A. 2023/2024 - Correzione Prova Scritta - 24/05/2023

NOME COGNOME MATRICOLA

Esercizio 1

- 1. $Ae = (1 n\alpha)e$. Per $\alpha = 1/n$ Ae = 0 e quindi A è non invertibile.
- 2. Si ha P = N e quindi $||P||_{\infty} = n|\alpha|$. Se $|\alpha| < 1/n ||P||_{\infty} < n/n = 1$ e quindi il metodo converge.
- 3. Dal teorema di Gerschgorin si ha $|\lambda| \leq n|\alpha|$. Inoltre $\lambda = n\alpha$ è autovalore di P con corrispondente autovettore e. Segue che $\rho(J) = n|\alpha|$ e il metodo converge se e solo se $|\alpha| < 1/n$.
- 4. L'iterazione $\mathbf{x}_{k+1} = \alpha \mathbf{e}(\mathbf{e}^T \mathbf{x}_k) + \mathbf{b}$ può essere implementata con costo lineare.

Esercizio 2

- 1. Si ha $f(x) \in C^{\infty}(\mathbb{R})$, $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to +\infty} f(x) = +\infty$, $f'(x) = 3x^2 3 \ge 0$ $\forall x \in (-\infty, -1] \cup [1, +\infty) \text{ e } f''(x) = 6x \ge 0 \ \forall x \ge 0$. Vale f(0) = 1 e f(1) = -1. Segue che $\exists 3$ soluzioni reali $\alpha, \beta, \gamma \text{ con } -2 < \alpha < -1 < \beta < 1 < \gamma < 2$.
- 2. Per $x_0 = -2$ si ha convergenza ad α per il teorema di convergenza in largo applicato in $[-2, \alpha)$. Per $x_0 = 2$ si ha convergenza a γ per il teorema di convergenza in largo applicato in $(\gamma, 2]$.
- 3. Vale $|g'(x)| = x^2$. Dunque $|g'(\alpha)| > 1$, $|g'(\gamma)| > 1$, $|g'(\beta)| < 1$. Il metodo è localmente convergente in β .