

Very low drop voltage regulators with inhibit function

SO-8

Features

- AEC-Q100 qualified (DPAK only)
- Very low dropout voltage (90 mV typ. at 10 mA load)
- Low quiescent current (typ. 2.5 mA, at 100 mA load)
- Output current up to 100 mA
- Adjustable (from V_{OUT} = 2.5 V only SO-8) and fixed (3.3 V and 5 V) output voltage version
- · Internal current and thermal limit
- Load dump protection up to 60 V
- Reverse transient protection up to 50 V
- Temperature range: 40 to 125 °C
- Package available: TO-92, DPAK, SO-8 (with inhibit control)

Description

The LM2931 are very low drop regulators. The very low drop voltage and the low quiescent current make them particular suitable for low noise, low power applications and in battery-powered systems. In the 8-pin configuration (SO-8), fully compatible with the older L78L family, a shutdown logic control function is available. This means that when the device is used as a local regulator it is possible to put a part of the board in standby, decreasing total power consumption. Ideal for automotive applications, LM2931 is protected from reverse battery installations or 2 battery jumps. During the transient, such as a 60 V load dump, when the input voltage can exceed the specified maximum operating input voltage of 26 V, the regulator automatically shuts down to protect both internal circuitry and the load.

Maturity status link

LM2931

1 Diagram

V₁
V₀
ADJ

| INTERNAL | REFERENCE | ROTECTION | RO

Figure 2. Schematic diagram

DS1760 - Rev 23 page 2/26

2 Pin configuration

Figure 3. Pin connections (top view)

AMG110720161101MT

Note: (*) ADJ pin on the adjustable version, not connected in the fixed output version.

DS1760 - Rev 23 page 3/26

3 Maximum ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
VI	DC positive input voltage	40	V
VI	DC reverse input voltage	-15	V
VI	Transient input voltage (T < 100 ms)	60	V
VI	Transient reverse input voltage (T < 100 ms)	-50	V
V _{INH}	Inhibit input voltage	40	V
I _O	Output current	Internally limited	
T _{STG}	Storage temperature range	-65 to 150	°C
T _{OP}	Operating junction temperature range	-40 to 125	°C

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 2. Thermal data

Symbol	Parameter		DPAK	TO-92	Unit
R _{thJC}	Thermal resistance junction-case		8	57	°C/W
R _{thJA}	Thermal resistance junction-ambient	55 ⁽¹⁾	100	200	°C/W

^{1.} Considering 6 cm² of copper board heat-sink.

DS1760 - Rev 23 page 4/26

4 Application circuits

Figure 4. Application circuit for fixed output

AMG110720161102MT

Figure 5. Application circuit for adjustable output

Note: R_1 suggested value = 27 $k\Omega$

 $V_0 = V_{REF} (R_1 + R_2)/R_1$

Inhibit pin: regulator is enabled when $V_{INH} < 1.2 \text{ V}$, disabled when $V_{INH} > 3.25 \text{ V}$

DS1760 - Rev 23 page 5/26

5 Electrical characteristics

Refer to the application circuit Figure 4. Application circuit for fixed output, T_J = 25 °C, C_I = 0.1 μ F, C_O = 100 μ F, V_I = 14 V, I_O = 10 mA, V_{INH} = 0 V, unless otherwise specified.

Table 3. Electrical characteristics of LM2931A33/LM2931A33Y

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Maximum operating input voltage	I _O = 10 mA, T _J = -40 to 125 °C	26			V
Vo	Output voltage		3.175	3.3	3.425	V
Vo	Output voltage	I_{O} = 100 mA, V_{I} = 6 to 26 V T_{J} = -40 to 125°C	3.135	3.3	3.465	V
DV_O	Line regulation	V _I = 9 to 16 V		2	10	mV
		V _I = 6 to 26 V		4	33	
DV_O	Load regulation	I _O = 5 to 100 mA		10	33	mV
V_d	Dropout voltage ⁽¹⁾	I _O = 10 mA		90	250	mV
		I _O = 100 mA		250	600	
I _d	Quiescent current	I _O = 100 mA		2.5	30	mA
	ON MODE					
	OFF MODE	V_{INH} = 2.5 V, R_{LOAD} = 330 Ω		0.3	1	mA
I _{SC}	Short circuit current		100	300		mA
SVR	Supply voltage rejection	I _O = 100 mA, V _I = 14 ± 2 V f = 120 Hz	55	78		dB
V _{IL}	Control input voltage low	T _J = -40 to 125 °C		2	1.2	V
V _{IH}	Control input voltage high	T _J = -40 to 125 °C	3.25	2		V
I _{INH}	Inhibit input current	V _{INH} = 2.5 V		22	50	μA
VI	Transient input voltage	R _{LOAD} = 330 Ω, T < 100 ms	60	70		V
VI	Reverse polarity input voltage	V_O = ± 0.3 V, R_{LOAD} = 330 Ω	-15	-50		V
VI	Reverse polarity input voltage transient	R _{LOAD} = 330 Ω, T < 100 ms	-50			V
eN	Output noise voltage	B = 10 Hz to 100 kHz		330		μV _{RMS}

^{1.} V_d measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V.

Refer to the application circuit Figure 4. Application circuit for fixed output, T_J = 25 °C, C_I = 0.1 μ F, C_O = 100 μ F, V_I = 14 V, I_O = 10 mA, V_{INH} = 0 V, unless otherwise specified.

Table 4. Electrical characteristics of LM2931A50/ LM2931A50Y

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Maximum operating input voltage	I_{O} = 10 mA, T_{J} = -40 to 125 °C	26			V
Vo	Output voltage		4.81	5	5.19	V
Vo	Output voltage	I_{O} = 100 mA, V_{I} = 6 to 26 V T_{J} = -40 to 125 °C	4.75	5	5.25	V
DVO	Line regulation	V _I = 9 to 16 V		2	10	mV
		V _I = 6 to 26 V		4	30	
DV _O	Load regulation	I _O = 5 to 100 mA		15	50	mV
V _d	Dropout voltage ⁽¹⁾	I _O = 10 mA		90	200	mV
		I _O = 100 mA		250	600	

DS1760 - Rev 23 page 6/26

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _d	Quiescent current ON MODE	I _O = 100 mA		2.5	30	mA
	OFF MODE	V_{INH} = 2.5 V, R_{LOAD} = 500 Ω		0.3	1	mA
I _{SC}	Short circuit current		100	300		mA
SVR	Supply voltage rejection	I _O = 100 mA, V _I = 14 ± 2 V f = 120 Hz	55	75		dB
V _{IL}	Control input voltage low	T _J = -40 to 125 °C		2	1.2	V
V _{IH}	Control input voltage high	T _J = -40 to 125 °C	3.25	2		V
I _{INH}	Inhibit input current	V _{INH} = 2.5 V		22	50	μA
VI	Transient input voltage	R _{LOAD} = 500 Ω, T < 100 ms	60	70		V
VI	Reverse polarity input voltage	$V_{O} = \pm 0.3 \text{ V}, R_{LOAD} = 500 \Omega$	-15	-50		V
VI	Reverse polarity input voltage transient	R _{LOAD} = 500 Ω, T < 100 ms	-50			V
eN	Output noise voltage	B = 10 Hz to 100 kHz		500		μV _{RMS}

^{1.} V_d measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V.

Refer to the application circuit Figure 5. Application circuit for adjustable output with R_1 = 27 K Ω and R_2 = 40.5 k Ω , T_J = 25 °C, C_I = 0.1 μ F, C_O = 100 μ F, V_I = 14 V, I_O = 10 mA, V_{INH} = 0 V, unless otherwise specified.

Table 5. Electrical characteristics of LM2931 (adjustable version)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Maximum operating input voltage	I_{O} = 10 mA, T_{J} = -40 to 125 °C	26			V
V _{REF}	Reference voltage (1)		1.14	1.2	1.26	V
V_{REF}	Reference voltage (1)	I_{O} = 100 mA, T_{J} = -40 to 125 °C	1.08	1.2	1.32	V
DV _O	Line regulation	V _I = 3.6 to 26 V		0.6	4.5	mV
DV _O	Load regulation	I _O = 5 to 100 mA		9	30	mV
V _d	Dropout voltage ⁽²⁾	I _O = 10 mA		90	200	mV
		I _O = 100 mA		250	600	
I _d	Quiescent current ON MODE	I _O = 100 mA		2.5	30	mA
	OFF MODE	V_{INH} = 2.5 V, R_{LOAD} = 300 Ω		0.3	1	mA
I _{SC}	Short circuit current		100	300		mA
SVR	Supply voltage rejection	I _O = 100 mA, V _I = 14 ± 2 V f = 120 Hz	55	80		dB
V _{IL}	Control input voltage low	T _J = -40 to 125 °C		2	1.2	V
V _{IH}	Control input voltage high	T _J = -40 to 125 °C	3.25	2		V
I _{INH}	Inhibit input current	V _{INH} = 2.5 V		22	50	μA
VI	Transient input voltage	R _{LOAD} = 300 Ω, T < 100 ms	60	70		V
VI	Reverse polarity input voltage	V_O = ± 0.3 V, R_{LOAD} = 300 Ω	-15	-50		V
VI	Reverse polarity input voltage transient	R _{LOAD} = 300 Ω, T < 100 ms	-50			V
eN	Output noise voltage	B = 10 Hz to 100 kHz		330		μV _{RMS}

^{1.} Reference voltage is measured from $V_{\mbox{\scriptsize OUT}}$ to ADJ pin.

DS1760 - Rev 23 page 7/26

^{2.} V_d measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V.

6 Typical characteristics

Unless otherwise specified C_I = 0.1 μF , C_O = 100 μF .

DS1760 - Rev 23 page 8/26

DS1760 - Rev 23 page 9/26

Figure 14. Output voltage vs input voltage

Figure 15. Short circuit current vs drop voltage

Figure 16. Quiescent current vs temperature

Figure 17. Quiescent current vs input voltage

DS1760 - Rev 23 page 10/26

Figure 18. Quiescent current vs output current GC86611 $I_q(mA)$ 12 9 6 V_{IN} =14V T_J =25℃ $C_{IN} = 0.1 \mu F$ $C_0 = 100 \mu$ F Inhibit to GND 3 0 160 0 80 240 lo (mA) AMG110720161212MT

Figure 19. Supply voltage rejection vs temperature GC86620 SVR(dB) 75 70 $V_{IN} - V_{O} = 14 \pm 2V$ I₀=100mA 65 f=120Hz $C_{IN} = 1 \mu F$ $C_{0} = 100 \mu F$ Inhibit to GND 60 0 -50 50 100 T_J(°C) AMG110720161213MT

DS1760 - Rev 23 page 11/26

Figure 24. Load transient

AMG150320171502MT

DS1760 - Rev 23 page 12/26

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

DS1760 - Rev 23 page 13/26

7.1 DPAK package information

Figure 25. DPAK package outline

0068772_A_21

Table 6. DPAK mechanical data

Dim.	mm				
	Min.	Тур.	Max.		
Α	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		

DS1760 - Rev 23 page 14/26

Dim.	mm			
	Min.	Тур.	Max.	
D1		5.10		
E	6.40		6.60	
E1		4.70		
е		2.28		
e1	4.40		4.60	
Н	9.35		10.10	
L	1.00		1.50	
(L1)		2.80		
L2		0.80		
L4	0.60		1.00	
R		0.20		
V2	0°		8°	

Figure 26. DPAK recommended footprint (dimensions are in mm)

FP_0068772_24

DS1760 - Rev 23 page 15/26

7.2 DPAK packing information

Figure 27. DPAK tape outline

DS1760 - Rev 23 page 16/26

Figure 28. DPAK reel outline

7.3 SO8 package information

Figure 29. SO-8 package outline

DS1760 - Rev 23 page 17/26

Table 7. SO-8 mechanical data

Dim.		mm	
	Min.	Тур.	Max.
Α			1.75
A1	0.10		0.25
A2	1.25		
b	0.28		0.48
С	0.17		0.23
D	4.80	4.90	5.00
Е	5.80	6.00	6.20
E1	3.80	3.90	4.00
е		1.27	
h	0.25		0.50
L	0.40		1.27
L1		1.04	
k	0°		8°
ccc			0.10

Figure 30. SO-8 recommended footprint

0016023_I

DS1760 - Rev 23 page 18/26

7.4 SO-8 packing information

Figure 31. SO-8 tape and reel outline

Table 8. SO-8 mechanical data

Dim.	mm				
	Min.	Тур.	Max.		
Α			330		
С	12.8		13.2		
D	20.2				
N	50				
Т			22.4		
Ao	6.4	6.5	6.6		
Во	5.2		5.4		
Ко	2.1		2.3		
Po	3.9		4.1		
Р	7.9		8.1		
W	11.7	12.0	12.3		

DS1760 - Rev 23 page 19/26

7.5 TO-92 package information

Figure 32. TO-92 package outline

Table 9. TO-92 mechanical data

Dim.	mm					
	Min.	Тур.	Max.			
А	4.32		4.95			
b	0.36		0.51			
D	4.45		4.95			
Е	3.30		3.94			
е	2.41		2.67			
e1	1.14		1.40			
L	12.70		15.49			
R	2.16		2.41			
S1	0.92		1.52			
W	0.41		0.56			
V		5°				

DS1760 - Rev 23 page 20/26

8 Ordering informations

Table 10. Order code

DPAK		TO-92 (bag)	SO-8	Output voltages
AG	Standard			
LM2931ADT33RY (1)			LM2931AD33R	3.3 V
LM2931ADT50RY ⁽¹⁾	LM2931ADT50R	LM2931AZ50R	LM2931AD50R	5.0 V
			LM2931D-R	2.5 to 26 V

Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent.

DS1760 - Rev 23 page 21/26

Revision history

Table 11. Document revision history

Date	Revision	Changes
21-Jun-2004	12	Document updated.
16-Jun-2006	13	Order codes updated.
27-Jul-2007	14 15	Added Table 1 in cover page.
21-Aug-2007		Added root part number - (see Table 1).
22-Nov-2007	16	Modified: Table 1.
11-Feb-2008	17	Modified: Table 1 on page 1.
10-Jul-2008	18	Removed package TO-220, modified Table 1 on page 1.
26-May-2010	19	Modified: $V_{\rm I}$ values Table 4 on page 6, Table 5 on page 7 and Table 6 on page 8.
02-Nov-2011	20	Modified: Figure 4 on page 6. Added: (*) ADJ pin on the Adjustable version, Not Connected in the fixed output version. on page 4 and Inhibit pin: regulator is enabled when VINH < 1.2 V , disabled when VINH > 3.25 V on page 6.
09-Apr-2014	21	Part numbers LM2931XX, LM2931AXX33 and LM2931AXX50 changed to LM2931. Updated the description in cover page Section 2: Pin configuration and Section 7: Package information. Added Section 8: Revision history. Minor text changes.
16-Mar-2017	22	Updated features in cover page, removed Table 1. Device summary from cover page, Table 3: "Electrical characteristics of LM2931A33/LM2931A33Y", Table 4: "Electrical characteristics of LM2931A50/ LM2931A50Y" and Table 5: "Electrical characteristics of LM2931 (adjustable version)".
		Updated Section 7: "Package information".
		Added Section 8: "Ordering information".
		Minor text changes.
23-Feb-2018	23	Updated Figure 5. Application circuit for adjustable output.

DS1760 - Rev 23 page 22/26

Contents

1	Diag	gram	
2	Pin (configuration	
3	Max	imum ratings	
4	Арр	lication circuits	5
5	Elec	trical characteristics	6
6	Турі	cal characteristics	8
7	Pacl	kage information	13
	7.1	DPAK package information	14
	7.2	DPAK packing information	
	7.3	SO8 package information	
	7.4	SO-8 packing information	18
	7.5	TO-92 package information	19
8	Orde	ering informations	21
Rev	vision	history	
Cor	ntents	·	23
List	of tal	bles	24
List	of fig	jures	25
Dis	claime	er	

List of tables

Table 1.	Absolute maximum ratings	. 4
Table 2.	Thermal data	. 4
Table 3.	Electrical characteristics of LM2931A33/LM2931A33Y	. 6
Table 4.	Electrical characteristics of LM2931A50/ LM2931A50Y	. 6
Table 5.	Electrical characteristics of LM2931 (adjustable version)	. 7
Table 6.	DPAK mechanical data	14
	SO-8 mechanical data	
Table 8.	SO-8 mechanical data	19
	TO-92 mechanical data	
Table 10.	Order code	21
Table 11.	Document revision history	22

List of figures

Figure 2.	Schematic diagram	. 2
Figure 3.	Pin connections (top view)	. 3
Figure 4.	Application circuit for fixed output	. 5
Figure 5.	Application circuit for adjustable output	. 5
Figure 6.	Output voltage vs temperature	. 8
Figure 7.	Output voltage vs temperature	. 8
Figure 8.	Reference voltage vs temperature	. 8
Figure 9.	Line regulation vs temperature	. 8
Figure 10.	Load regulation vs temperature	. 9
Figure 11.	Dropout voltage vs temperature	. 9
Figure 12.	Dropout voltage vs temperature	. 9
Figure 13.	Dropout voltage vs output current	. 9
Figure 14.	Output voltage vs input voltage	10
Figure 15.	Short circuit current vs drop voltage	10
Figure 16.	Quiescent current vs temperature	10
Figure 17.	Quiescent current vs input voltage	
Figure 18.	Quiescent current vs output current	11
Figure 19.	Supply voltage rejection vs temperature	11
Figure 20.	Supply voltage rejection vs frequency	11
Figure 21.	Supply voltage rejection vs output current	11
Figure 22.	Stability vs C _O	11
Figure 23.	Line transient	11
Figure 24.	Load transient	12
Figure 25.	DPAK package outline	14
Figure 26.	DPAK recommended footprint (dimensions are in mm)	15
Figure 27.	DPAK tape outline	16
Figure 28.	DPAK reel outline	17
Figure 29.	SO-8 package outline	17
Figure 30.	SO-8 recommended footprint	18
Figure 31.	SO-8 tape and reel outline	19
Figure 32.	TO-92 package outline	20

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

DS1760 - Rev 23 page 26/26