a logic for synchronous relations

varun ramanathan

ANR DeLTA Meeting, LaBRI 2018

joint work with Pascal Weil and Diego Figueira

overview

- introduction
 - languages and relations
 - synchronous relations
 - logical formalism
- \bigcirc the Σ_1 fragment
 - characterization
 - decidability
- 3 conclusion
 - future work

languages and relations

regular languages of finite words are well studied. We use different tools: automata, logic, algebra. But what about relations?

```
Reverse: \{(a,a),(b,b),\ldots(baaba,abaab),\ldots\}
Prefix: \{(a,a),(b,b)...(abba,abbababb)...\}
Subword: \{(a, a) \dots (aba, bbaabbbab) \dots \}
```

What are some automata models for studying relations?

Rational relations: multi-tape automata with regular synchronizing language

Synchronous relations: multi-tape automata with synchronous movement of heads (i.e. synchronizing language $(12)^*(1^* + 2^*)$).

synchronous relations

Studied under the name regular relations (Libkin, et al, 2003) and automatic relations (Blumensath, Grädel, 2000).

Applications: Extended Conjunctive Regular Path Queries (ECPRQs) for graph databases.

Natural question: logical characterization?

Starting point: FO characterization given by Eilenberg et al (1969).

synchronizing a tuple of words

Representing a tuple of words as a single word:

Let $\bot \notin A$, and $A_\bot = A \cup \{\bot\}$. Synchronize words as follows:

$$(aabab, aba) \longrightarrow \begin{pmatrix} a \\ a \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} b \\ a \end{pmatrix} \begin{pmatrix} a \\ \bot \end{pmatrix} \begin{pmatrix} b \\ \bot \end{pmatrix}$$
$$(bbb, ababab) \longrightarrow \begin{pmatrix} b \\ a \end{pmatrix} \begin{pmatrix} b \\ b \end{pmatrix} \begin{pmatrix} b \\ a \end{pmatrix} \begin{pmatrix} \bot \\ b \end{pmatrix} \begin{pmatrix} \bot \\ a \end{pmatrix} \begin{pmatrix} \bot \\ b \end{pmatrix}$$
$$(aab, abaabb, baab) \longrightarrow \begin{pmatrix} a \\ a \\ b \end{pmatrix} \begin{pmatrix} a \\ b \\ a \end{pmatrix} \begin{pmatrix} b \\ a \end{pmatrix} \begin{pmatrix} \bot \\ a \\ b \end{pmatrix} \begin{pmatrix} \bot \\ b \\ \bot \end{pmatrix} \begin{pmatrix} \bot \\ b \\ \bot \end{pmatrix}$$

the synchronizing word of $(w_1, w_2 \dots w_k)$ is denoted by $w_1 \otimes w_2 \dots w_k$ or simply \bar{w} .

R is a synchronous relation if

$$L_{\mathbf{R}} = \{(w_1 \otimes w_2 \cdots \otimes w_k : (w_1, w_2 \dots w_k) \in \mathbf{R}\}$$
 is regular

synchronous relations

 $Sync_k(A^*)$: set of synchronous k-ary relations (of words in A^*)

$$\mathsf{Sync}(A^*) = \bigcup_{k \in \mathbb{N}} \mathit{Sync}_k(A^*)$$

Let $A_{\Delta} = \{ \alpha_1 \otimes \alpha_1 \colon \alpha_1 \in A \}$, $A_{\times} = A \times A$.

- the prefix relation is given by $A^*_{\Lambda}(\{\bot\} \times A)^*$
- ullet the equal length relation is given by A_{\times}^* .

logical formalism for synchronous relations

First order logic with predicate set $\sigma_A = (\leq, eq, \{\ell_a\}_{a \in A})$.

- $(w_1, w_2) \models x \leq y$ iff w_1 is a prefix of w_2
- \bullet $(w_1, w_2) \models eq(x, y) \text{ iff } |w_1| = |w_2|.$
- $w \models \ell_{\alpha}(x)$ iff $w \in A^*\alpha$

Using usual FO semantics, we can describe relations with $FO[\sigma]$ formulae.

$$(w_1, w_2, w_3) : \forall u((u \le w_1 \land u \le w_2) \iff u \le w_3)$$

 $\|\varphi\| = \{(w_1, w_2, w_3) : w_3 = w_1 \sqcap w_2\}$

Theorem (Eilenberg, Shepherdson, Elgot '69)

Let A be an alphabet with at least 2 letters. Then

$$\mathsf{Sync}(A^*) = \|\mathsf{FO}[\sigma_A]\|$$

from **FO** formulae to synchronous relations

for all $\varphi \in FO[\sigma_A]$, $\|\varphi\| \in Sync(A^*)$. Use induction on the structure of φ .

base case: Recall that the prefix and equal length relations are synchronous; $|\ell_{\alpha}(x)| = A^*\alpha$ is regular hence synchronous.

induction step: Synchronized languages are closed under Boolean set operations. Furthermore, if

$$\varphi(y_1, y_2 \dots y_{m-1}) : \exists y_m \psi(y_1, y_2 \dots y_m)$$

then

$$\mathbf{R}_{\varphi} = \pi_{\{1...(m-1)\}}(\mathbf{R}_{\psi})$$

Synchronous relations are closed under projections on any subset of the components.

Therefore, $\|\mathbf{FO}[\sigma_A]\| \subseteq \operatorname{Sync}(A^*)$.

from synchronous relations to FO-formulae

For the converse, let

- R synchronous relation
- \mathcal{A} automaton for $L_{\mathbf{R}}$ with states $\mathbf{Q} = \{q_1, q_2 \dots q_n\}$ and transition relation δ .

Let ρ be a run of \mathscr{A} on some synchronized word $\bar{\mathbf{w}}$. idea: to encode ρ as a synchronized word. For every $q_i \in Q$, u_i is a word in $\{0,1\}^*$ such that:

- $u_i[j] = 1$ if ρ contains q_i at position j, 0 otherwise.
- $\bullet |u_i| = |\rho|$

Then $\bar{u}_{\rho} = u_1 \otimes u_2 \dots u_n$.

For example if ρ is $q_1 \rightarrow q_2 \rightarrow q_1 \rightarrow q_3 \rightarrow q_4$ then

$$\bar{u}_{\rho} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\exists \vec{\mathbf{y}}(\psi_{\mathrm{enc}}(\vec{\mathbf{y}}) \land \psi_{\mathrm{run}}(\vec{\mathbf{x}}, \vec{\mathbf{y}}))$$

where

- $\psi_{\text{enc}}(\vec{y})$: for encoding
- $\psi_{\text{run}}(\vec{y}, \vec{x})$: for stating the encoding is a valid run. (Here, due to the "next state" formula using the successor relation, ψ_{run} is a Π_2 formula.)

Therefore $\varphi \in \Sigma_3[\sigma_A]$.

Corollary

$$Sync(A^*) = ||FO[\sigma_A]|| = ||\Sigma_3[\sigma_A]||.$$

the quantifier alternation hierarchy

FO collapses to Σ_3 . But what about Σ_1 ?

- Characterization: What sort of relations are Σ_1 definable?
- Membership: Given a **Sync** relation is it Σ_1 -definable?
- What about Σ_2 , $\Re \Sigma_1$, Δ_2 ?

Let's jog our memories and go back to the classical FO[<] world.

FO on words: Let *B* be an alphabet. Recall the first order logic **FO**[<, **B**] finite total order(<) and letter predicates ($\mathbf{B} = \{\mathbf{b}\}_{b \in B}$).

 $\Sigma_1[<, \textbf{B}]$ sentences define finite unions of languages of the form

$$B^*b_1B^*b_2\dots B^*b_nB^*$$

where $b_1, b_2 \dots b_n \in B$.

 $\Sigma_1[<,B,\mathit{last}]$ sentences define finite unions of languages of the form

$$B^*b_1B^*b_2\dots B^*b_n$$

 $w = b_1 b_2 \dots b_n \text{ is called a } subword \text{ of } w', \ (w \sqsubseteq w') \text{ iff } w' \in B^*b_1 B^*b_2 \dots B^*b_n B^*$

back to relations: $\Sigma_1[\sigma_A]$ -definable relations are connected to classical $\Sigma_1[<]$ -definable languages.

Recall the alphabets

$$A_{\Delta} = \{ \alpha \otimes \alpha \colon \alpha \in A \}$$
$$A_{\times} = A \times A$$

$$A_1 = A \times \{\bot\}$$
$$A_2 = \{\bot\} \times A$$

Theorem

If $\varphi(x_1, x_2) \in \Sigma_1[\sigma]$, then synchronization language of $\|\phi\|$ is a finite union of languages of the form

$$L_{\Delta}L_{\times}L_{\perp}$$

where

- $\bullet \ L_{\Delta} \in \|\Sigma_1[<,\mathbf{A}_{\Delta}]\|$
- $L_{\times} \in \|\Sigma_1[<, \mathbf{A}_{\times}, last]\|$
- $L_{\perp} \in \|\Sigma_1[<, \mathbf{A}_1, last]\| \cup \|\Sigma_1[<, \mathbf{A}_2, last]\|$

Key idea: The notion of subwords can be generalized from words to pair of words.

varun ramanathan a logic for synchronous relations

synchronized subwords

then \bar{w} is a synchronized subword of \bar{w}' , denoted by $\bar{w} \triangleleft \bar{w}'$.

some corollaries

 $\Sigma_1[<]$ sentences describe words which contain some specific subwords.

 $\Sigma_1[\sigma_A]$ formulae describe pairs whose synchronized word contains specific synchronized subwords.

 $\Re \Sigma_1[<]$ sentences describe words having the same set of bounded subwords.

 $\Re \Sigma_1[\sigma_A]$ formulae describe pairs whose synchronized words have the same set of bounded synchronized subwords.

Corollaries:

- binary $\|\Sigma_1[\sigma_A]\|$ membership decidable
- binary $\Re \Sigma_1[<]$ membership decidable

conclusion and future work

To conclude

- **FO**[σ_A] completely characterizes synchronous relations
- **FO**[σ_A] collapses to its Σ_3 fragment
- Σ_1 and $\Re \Sigma_1$ membership decidable in the binary case

Future work:

- Generalizing the Σ_1 characterization to greater arities.
- Characterizing $\|\Sigma_2\|$ relations as projections of $\|\Pi_1\|$ relations.
- Undecidable to check if a given rational relation is synchronous. But is it decidable to check if it is in Σ_1 ? This is unknown.

$$\begin{pmatrix} T \\ y \end{pmatrix} \begin{pmatrix} h \\ o \end{pmatrix} \begin{pmatrix} \alpha \\ u \end{pmatrix} \begin{pmatrix} n \\ \bot \end{pmatrix} \begin{pmatrix} k \\ \bot \end{pmatrix}$$