Supplementary Material for manuscript: Valid causal inference with unobserved confounding in

high-dimensional settings

Niloofar Moosavi, Tetiana Gorbach, Xavier de Luna

Department of Statistics, USBE, Umeå University, Umeå, Sweden

email: name.surname@umu.se

We consider three low-dimensional settings. The distribution of covariates and error terms, number of replication and other details not mentioned here can be found in the paper. The motivation for considering low-dimensional scenarios is that they are, needless to say, more convenient to work with and interpret, and they are, nevertheless, no exception to the issues that can arise for post-selection estimators [see, e.g., Leeb and Pötscher, 2005, Moosavi et al., 2023].

Scenario one:

 $Y(1) = 2 + 0.5X_1 + \alpha X_2 - \rho \lambda(X_2) + \xi,$

 $T^* = X_2 + \eta.$

1

Web Table 1. The value of α in Scenarios one and two and (α, α') in Scenario three for each considered sample size n

n	1000	5000	20000
Scenario1	-0.07	-0.035	-0.015
Scenario2	0.12	0.075	0.06
Scenario3	(-0.07, 0.12)	(-0.035, 0.075)	(-0.015, 0.06)

Scenario two:

$$Y(1) = 2 - 0.5X_2 - \rho\lambda(X_1 + \alpha X_2) + \xi,$$

$$T^* = X_1 + \alpha X_2 + \eta.$$

Scenario three:

$$Y(1) = 2 - 0.5X_1 + \alpha X_2 - \rho \lambda (X_1 + \alpha' X_2) + \xi,$$

$$T^* = X_1 + \alpha' X_2 + \eta.$$

In Scenario one, covariate X_2 has a weaker association with the outcome and, therefore, is sometimes omitted in the variable selection step. The same occurs with Scenario two, where covariate X_2 has a weaker relationship with the treatment assignment, and with Scenario three, where X_2 is weakly associated with both outcome and treatment. If α was constant with increasing sample size, X_2 would eventually be selected by lasso for large sample sizes. In order to consider the cases where lasso can omit X_2 even for bigger sample sizes, we let the value of α depend on the sample size (see Web Table 1).

Web Table 2. Scenario one: Empirical coverages of 95% confidence intervals for τ

	0.3	0.93	0.95	0.95
	0.4	0.92	0.94	0.97
$-\hat{b}_c^{refi}$	0.5	0.93	0.95	0.95
$\hat{b}_{AIPW}^{refit} - \hat{b}_{c}^{ref}$	9.0	0.93	0.92	0.95
,,	0.7	0.91	0.93	0.90
	8.0	0.88	0.90	0.90
	0.3	0.95	0.95	0.94
t,	0.4	0.92	0.92	0.84
$ \hat{b}^{refi}$	0.5	0.92	0.83	0.54
$\hat{ au}_{AIPW}^{refit} - \hat{b}^{refi}$	9.0	0.88	0.58	0.11
	0.7	0.71	0.20	0.01
	8.0	0.37	0.03	0.00
	0.3	0.94	0.96	0.94
	0.4	0.94	0.95	0.94
$V_V - b^*$	0.5		0.97	
$\hat{ au}_{AIPW}^{refit}$	9.0	0.94	0.95	0.96
	0.7	3	33	5
	8.0	0.94	$0 \mid 0.97 \mid 0.9$	0.94
Estimator	$d \setminus u$	1000	2000	20000

Web Table 3. Scenario two: Empirical coverages of 95% confidence intervals for au

	0.3	0.94	0.95	96.0
	0.4	0.95	0.97	0.93
$-\hat{b}_c^{refin}$	0.5	0.94	0.93	0.93
$\hat{ au}_{AIPW}^{refit} - \hat{b}_c^{refi}$	9.0	0.91	0.94	0.95
7,	0.7	0.90	0.92	0.93
	8.0	0.89	0.87	0.92
	0.3	0.94	0.93	0.94
t	0.4	0.93	0.93	0.83
$ \hat{b}^{refi}$	0.5	0.88	0.80	0.53
$\hat{ au}_{AIPW}^{refit} - \hat{b}^{refit}$	9.0	0.84	0.52	0.11
	0.7	0.65	0.18	0.03
	8.0	0.38	0.03	0.00
	0.3	0.94	0.94	0.96
	0.4	0.95	0.95	0.94
$y - b^*$	0.5	0.95	0.94	0.97
$\hat{ au}_{AIPW}^{refit}$	9.0	96.0	0.97	0.96
	0.7	0.95	0.95	0.97
	8.0	0.95	96.0	0.93
Estimator	$n \setminus \rho \mid 0.8 0.7$	1000	2000	20000

Web Table 4. Scenario three: Empirical coverages of 95% confidence intervals for τ

	0.3	0.93	0.94	0.94
$\hat{ au}_{AIPW}^{refit} - \hat{b}_c^{refit}$	0.4	96.0	0.97	0.93
	0.5	0.94	0.95	0.94
	9.0	0.90	0.95	0.95
,6	0.7	0.91	0.91	0.93
	8.0	0.91	0.89	0.94
	0.3	0.95	0.93	0.95
t t	0.4	0.95	0.93	0.83
$_{r}-\hat{b}^{refi}$	0.5	0.90	0.81	0.55
$\hat{ au}_{AIPW}^{refit}$ -	9.0	98.0	0.55	0.12
	0.7	0.65	0.18	0.03
	8.0	0.41	0.03	0.00
	0.3	96.0	0.94	0.97
	0.4	0.94	0.94	0.93
$\hat{\tau}_{AIPW}^{refit} - b^*$	0.5	0.93	0.94	0.95
	9.0	0.94	0.95	0.95
	0.7	0.95	0.95	0.97
	8.0		0.97	
Estimator	$d \setminus u$	1000	2000	20000

References

- H. Leeb and B. M. Pötscher. Model selection and inference: Facts and fiction. *Econometric Theory*, 21(1):21–59, 2005.
- N. Moosavi, J. Häggström, and X. de Luna. The Costs and Benefits of Uniformly Valid Causal Inference with High-Dimensional Nuisance Parameters. *Statistical Science*, 38(1):1 12, 2023. doi: 10.1214/21-STS843. URL https://doi.org/10.1214/21-STS843.