DEEP RESIDUAL LEARNING

RESNET

컴 퓨 터 소 프 트 웨 어 학 부 2021088304 박 현 준

i. Introduction

ii. Deep Residual Learning

iii. Architecture

iv. Experiment

v. Conclusion

CHAPTER 1

Background

Convolutional Neural Network (CNN)

↓ key

Computer Vision

&

Image processing

Question

#Layer ↑

==

Network performance †

Is better networks as easy as stacking more layers?

Problem

Exploding / Vanishing

Gradient

(This problem, however, has been largely addressed by normalized initialization [23, 9, 37, 13] and intermediate normalization layers [16], which enable networks with tens of layers to start converging for stochastic gradient descent (SGD) with backpropagation [22].)

Degradation

Degradation Problem

: #Layer ↑ == Performance ↓

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Attention to ResNet

Reason why ResNet is in spotlight

: Nothing to do with overfitting

Underfitted

Good Fit/Robust

Overfitted

Idea from Degradation

Result by degradation problem

"Not all systems are similarly easy to optimize"

Construction to the deeper model

"the added layers are identity mapping, and the other layers are copied from the learned shallower model"

→ Not good Solution

Figure 2. Residual learning: a building block.

Idea

$$F(x) = H(x) - x$$

$$H(x) = F(x) + x$$

Postulate residual mapping is suitable for optimization

$$F(x) + x =$$
Shortcut Connection

- → Skip layers one or more
- Extra Parameter X
- Computational Complexity X

Idea

$$H(x) = F(x) + x$$

$$\downarrow$$

$$H'(x) = F'(x) + 1$$

: Residual function's gradient always 1 or more

Goal

- 1. Prove optimization is easier in ResNet than Plain Net
- 2. Accuracy of ResNet is proportional to depth of network

DEEP RESIDUAL LEARNING

CHAPTER 2

DEEP RESIDUAL LEARNING

Residual

Residual

(A) 남은, 잔여의

(M) $|\hat{y} - y|$

Identity shortcut

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}$$

- y: output vector of the layer
- x: input (identity) vector of the layer
- W: weight

DEEP RESIDUAL LEARNING

Shortcut

Projection shortcut

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + W_s \mathbf{x}$$

- y: output vector of the layer
- x: input vector (identity) of the layer
- W: weight
- s: square matrix

ARCHITECTURE

CHAPTER 3

VGG-19 34-layer plain 34-layer residual output size: 224 3x3 conv, 64 3x3 conv, 64 3x3 conv, 128 7x7 conv, 64, /2 7x7 conv, 64, /2 3x3 conv, 64 3x3 conv, 64 3x3 conv, 256 3x3 conv, 256 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 3x3 conv, 256 3x3 conv, 64 3x3 conv, 64 3x3 conv, 128 3x3 conv, 128 3x3 canv, 128 3x3 conv, 256, /2 3x3 conv, 256, /2 3x3 conv, 512 3x3 conv, 256 3x3 conv, 256 3x3 conv, 512 3x3 conv, 256 3x3 conv, 512, /2 3x3 conv, 512, /2 3x3 conv, 512 avg pool

Architecture

Importantly, dimension of Input and Output must be same

ARCHITECTURE

Plain vs Residual

Plain	Residual	
Inspired by philosophy of VGG NetConvolutional Layer	 Plain Net + shortcut connection → dim(Input) == dim(Output) 	
: 3x3 filters & strides = 2 [design rules] • Same filter numbers for same feature map size	(A) Use Zero-padding to make dimension equal (B) Use linear projection that is used in $y = F(x, \{W_i\}) + W_s x$	
 Feature map size x ½ = #filter x 2 Global Average pooling layer 1000-way fc layer with softmax 	→ make x(input) and F(output) have equal dimension	
- Total layer : 34 → 18% computation of VGG Net		

ARCHITECTURE

Implementation

Features

- 1. Image resized 224*224
- 2. Batch Normalization
- 3. Initialize Weights
- 4. SGD
- 5. 256 mini batches
- 6. Learning rate = 0.1
- 7. Iteration = $60*10^4$
- 8. Weight decay = 0.0001
- 9. Momentum = 0.9
- 10. No dropout

CHAPTER 4

ImageNet Classification

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112	7×7, 64, stride 2				
		3×3 max pool, stride 2			le 2	
conv2_x	56×56	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $
	1×1	average pool, 1000-d fc, softmax				
FLO	OPs	1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^9	11.3×10^9

ImageNet Classification

	plain	ResNet
18 layers	27.94	27.88
34 layers	28.54	25.03

<Residual Network>

- 1. Performance: 18-Layer < 34-Layer
- → Degradation problem was effectively managed despite the increased depth of layers
- 2. Training error ↓
- 3. Similar accuracy, but 18-layer's convergence speed is faster
- → Optimization with SGD is easier in ResNet

model top-1 err. top-5 err. 9.33 VGG-16 [41] 28.07 9.15 GoogLeNet [44] 7.38 24.27 PReLU-net [13] plain-34 28.54 10.02 7.76 ResNet-34 A 25.03 24.52 7.46 ResNet-34 B 24.19 7.40 ResNet-34 C 6.71 ResNet-50 22.85 21.75 6.05 ResNet-101 21.43 5.71 ResNet-152

EXPERIMENT

ImageNet Classification

<Identity vs Projection Shortcuts>

Compare three options

- (A) zero-padding shortcuts (parameter free)
- (B) projection shortcuts (others are identity)
- (C) All shortcuts are projections
- → degradation problem // projection shortcut

ImageNet Classification

<Deeper Bottleneck Architecture>

For reducing and then increasing (restoring) dimensions $(1 \times 1) \rightarrow (3 \times 3) \rightarrow (1 \times 1)$

- 1. 50-layer
- 2. 101-layer and 152-layer ResNet
- 3. Comparisons with state-of-art Methods

ImageNet Classification

<Deeper Bottleneck Architecture>

Reducing training time

ResNet: 3x3x64 + 3x3x64 = 1152

Bottleneck: 1x1x64 + 3x3x64 + 1x1x256 = 896

#Parameter reduced despite increase of #layer

output map size 32×32 16×16 8×8 # layers1+2n2n2n# filters163264

method		error (%)	
Maxout [10]		9.38	
NIN [25]			8.81
DSN [24]		8.22	
	# layers	# params	
FitNet [35]	19	2.5M	8.39
Highway [42, 43]	19	2.3M	$7.54 (7.72 \pm 0.16)$
Highway [42, 43]	32	1.25M	8.80
ResNet	20	0.27M	8.75
ResNet	32	0.46M	7.51
ResNet	44	0.66M	7.17
ResNet	56	0.85M	6.97
ResNet	110	1.7M	6.43 (6.61±0.16)
ResNet	1202	19.4M	7.93

EXPERIMENT

CIFAR-10 and Analysis

#layers and performances are proportional

But, when trying more than 1000 layers, its error rate is worse than before because of **overfitting**.

So, it has to apply regularization methods.

(ex) maxout, dropout

Object Detection on PASCAL and MS COCO

training data	07+12	07++12
test data	VOC 07 test	VOC 12 test
VGG-16	73.2	70.4
ResNet-101	76.4	73.8

Table 7. Object detection mAP (%) on the PASCAL VOC 2007/2012 test sets using **baseline** Faster R-CNN. See also Table 10 and 11 for better results.

metric	mAP@.5	mAP@[.5, .95]
VGG-16	41.5	21.2
ResNet-101	48.4	27.2

Table 8. Object detection mAP (%) on the COCO validation set using **baseline** Faster R-CNN. See also Table 9 for better results.

Adopt Faster R-CNN as detection method

CONCLUSION

CHAPTER 5

CONCLUSION

Proof

- 1. Proof optimization is easier in ResNet than Plain Net
 - → degradation problem decreased
- 2. Accuracy of ResNet is proportional to depth of network
 - → Training 1000+ layers

CONCLUSION

Result

Degradation occurs when layers go beyond optimal depth

- → Create incredibly deep network
- → Send the value from optimal depth straight to the output

Skip Connection

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

THANK YOU

The End