

Plasma Kristal – 4: Anomalous diffusion in microgravity complex plasma cloud

E. Kostadinova, J. Padgett, C. Liaw, K. Busse, Peter Hartmann, Jorge Reyes, L. Matthews, T. Hyde

Center for Astrophysics, Space Physics, and Engineering Research (CASPER) One Bear Place #97310, Baylor University, Waco, TX 76798-7310

This work is supported by NASA grant number 1571701 and NSF grant numbers 1414523, 1740203, and 1707215 (L S M and T W H).

Anomalous Diffusion in dusty plasma

- Diffusion: random motion due to a gradient (concentration, pressure, temperature, etc.)
- * Observation: mean square displacement (MSD) as a function of time

Classical diffusion	Superdiffusion	Subdiffusion
local	nonlocal	nonlocal

Random walk

Positive correlations Negative correlations

QUESTION: In a fluid with nonlocal effects, can we predict the global dynamical state through analysis of the local diffusion regime?

Fractional Laplacian model of diffusion

Nearest-neighbor hopping

$$\delta t = 0$$

$$\delta t = 1$$

$$\delta t = 2$$

$$\delta t = 3$$

Classic Laplacian: <u>local operator</u> of the form

Classic diffusion: , weak correlations

Interaction at a distance

$$\delta t = 0$$

 $\delta t = 2$

Fractional Laplacian: , nonlocal operator

- Superdiffusion: , positive correlations
- Subdiffusion: , negative correlations

Spectral Approach to the Global Dynamics

Consider the general Hamiltonian

Let the system be in the initial state at The time evolution of the dynamics is given by

Compute the mathematical distance b/w any allowed energy state and the sequence

 \downarrow

Global Dynamics:

If continuous spectrum

If is singular spectrum

Application to dusty plasma

Dust-Plasma interactions

Dust-Dust interaction

Analysis code inputs

Fraction _ Diffusion regime

Influence _ Range of the nonlocal effects

Disorder _ Irregularities in the potential

PK-4 Dusty plasma experiments on the ISS

International Space Station Image credit: ESA website

ELENA SEROVA holding the PK-4 experimental rack Image credit: DLR Website

Ground model of PK-4 lab Image credit: DLR Website

Campaign 2, June 16, 2015

Dispenser 5 (shaker): MF,

Pure DC discharge: neon

Pressure: 50 Pa

Trapping: DutyCycle: 0.72, 100Hz

Large dust cloud in DC discharge - Imaging System

Particle Glow Observation camera, field of view (FoV)

Onset of global instability

Radial distribution of and

Radial distribution of dust charge

Due to, once the polarity switching is applied, layers of dust grains close to the central axis move slightly faster than the layers close to the exterior leading to the onset of global vortex instability.

Superdiffusion and global vorticity

- ❖ 153 particles over 500 frames in a region with minimum directed flow
- * Mean MSD slope for grains in the region is the particles are in the superdiffusive regime.
- These results suggest a connection between superdiffusion and global vorticity

Typical trajectory

Analysis code approach - vary disorder concentration

Increased concentration of disorder leads to disturbances in the global vortex flow.

In the PK-4 dust cloud, the charge gradient in the radial direction leads to suppression of superdiffusion in this direction.

Analysis code approach - vary range of nonlocal effects

Increased influence when enhances the superdiffusion effect and the global vortex flow.

❖ In the PK-4 dust cloud, the range of nonlocal effects is determined by the parameters of the DC discharge and the resulting ion flow.

Conclusions

- Dusty plasma experiments in microgravity show that superdiffusion of the dust is an indicator for a global vortex flow.
- * We combine techniques from **spectral theory** and **fractional calculus** to model the dynamics of a system with nonlocal interactions;
- The analysis code demonstrates that:
 - Fractional Laplacian with can be used to model superdiffusion
 - Increasing the disorder concentration suppresses superdiffusion and the vortex flow
 - Increasing the range of nonlocal effects enhances the global vortex flow

THANK YOU!

This work was supported by NASA grant number 1571701 and NSF grant numbers 1414523, 1740203, and 1707215.

Charge-induced instabilities

Motivation for this research

Instability-guided charge redistribution

In the presence of charge in a fluid, the nonlocal interactions can cause instabilities. Instabilities, in turn, cause charge redistribution.

Spectral approach:

Combine spectral theory and fractional calculus to model anomalous diffusion.

Anomalous diffusion on the small scales is an indicator of the global dynamics on the large scales.

Kinetic approach:

Study microgravity experiments with dusty plasma liquids on the ISS.

Agreement b/w the two methods will provide a powerful modeling tool for the study of the global dynamical state.