

J.R. Esteban

ÁLGEBRA LINEAL Y GEOMETRÍA

Doble Grado en CC. Matemáticas e Ingeniería Informática 2019-2020

Matrices diagonalizables

Definición 1. Decimos que la matriz A es diagonalizable cuando es semejante a una matriz diagonal, es decir, cuando existe P invertible tal que

$$\mathbf{AP} = \mathbf{P} \operatorname{diag} \left[\lambda_1 \, \mathbf{I}_{g_1} \,, \lambda_2 \, \mathbf{I}_{g_2} \,, \dots \,, \lambda_s \, \mathbf{I}_{g_s} \right],$$

donde los $\lambda_1, \lambda_2, \ldots, \lambda_s$ son distintos entre sí.

Escribamos $\mathbf{P} = \begin{bmatrix} \mathbf{P}_1 \,, \mathbf{P}_2 \,, \dots \,, \mathbf{P}_s \end{bmatrix}$. Consecuencia de esta definición es que cada columna \mathbf{u} de \mathbf{P}_j satisface $\mathbf{A}\mathbf{u} = \lambda_j \, \mathbf{u}$, esto es $\mathbf{u} \in \text{nul} \, (\mathbf{A} - \lambda_j \, \mathbf{I})$. Observamos también que $g_j = \dim \operatorname{nul} (\mathbf{A} - \lambda_j \mathbf{I})$ y además

$$\det (\mathbf{A} - z \mathbf{I}) = (-1)^{g_1 + g_2 + \dots + g_s} (z - \lambda_1)^{g_1} (z - \lambda_2)^{g_2} \cdots (z - \lambda_s)^{g_s}.$$

Definición 2. Decimos que $\lambda \in \mathbb{C}$ es un autovalor de **A** cuando

$$\mathrm{nul}\left(\mathbf{A} - \lambda \mathbf{I}\right) \neq \left\{\mathbf{0}\right\}.$$

 $Todo\ vector\ \mathbf{u} \neq \mathbf{0}\ y\ \mathbf{u} \in \mathrm{nul}\left(\mathbf{A} - \lambda \mathbf{I}\right)\ se\ llama\ vector\ propio\ asociado\ al$ autovalor λ . Se llama multiplicidad geométrica del autovalor a

$$g = \dim \operatorname{nul} (\mathbf{A} - \lambda \mathbf{I})$$

$$p_{\mathbf{A}}(z) = \det(\mathbf{A} - z\mathbf{I}).$$

Escribimos $p_{A}(z)$ en la forma

$$p_{\mathbf{A}}(z) = \det(\mathbf{A} - z\mathbf{I}) = (-1)^n (z - \lambda_1)^{m_1} (z - \lambda_2)^{m_2} \cdots (z - \lambda_s)^{m_s},$$

donde las raíces $\lambda_1, \lambda_2, \ldots, \lambda_s$ son distintas entre sí y

 m_i se llama multiplicidad algebraica de λ_i .

Sabemos que siempre se verifica

$$m_1 + m_2 + \dots + m_s = n.$$

Teorema 1. Sean, para cada $j = 1, 2, \dots, s$, \mathbf{u}_j vector propio asociado al autovalor λ_j . Si los autovalores $\lambda_1, \lambda_2, \ldots, \lambda_s$ son distintos entre sí entonces los vectores propios $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_s$ son linealmente independientes.

Demostración. Si $x_1 \mathbf{u}_1 + x_2 \mathbf{u}_2 + \cdots + x_s \mathbf{u}_s = \mathbf{0}$, multiplicando sucesivamente por $\mathbf{A} - \lambda_2 \mathbf{I}$, ..., $\mathbf{A} - \lambda_s \mathbf{I}$, resulta

$$x_1 (\lambda_1 - \lambda_2) \cdots (\lambda_1 - \lambda_s) \mathbf{u}_1 = \mathbf{0}.$$

La Definición 1. se puede entonces escribir en la forma

Teorema 1. Sean $\lambda_1, \lambda_2, \ldots, \lambda_s$, distintos entre sí, los autovalores de **A**. Son equivalentes:

- 1. **A** es diagonalizable en \mathbb{K}^n .
- 2. Existe una base de \mathbb{K}^n formada por vectores propios.
- Para todo autovalor, las multiplicidades algebraica y geométrica coinciden.

4.

$$\mathbb{K}^{n} = \operatorname{nul}(\mathbf{A} - \lambda_{1} \mathbf{I}) \oplus \operatorname{nul}(\mathbf{A} - \lambda_{2} \mathbf{I}) \oplus \cdots \oplus \operatorname{nul}(\mathbf{A} - \lambda_{s} \mathbf{I}).$$

Teorema 2. Si para todo autovalor λ de **A** se verifica índice $(\mathbf{A} - \lambda \mathbf{I}) = 1$ entonces A es diagonalizable.

En efecto: Tenemos

$$\mathbb{K}^n = \operatorname{nul}\left(\mathbf{A} - \lambda \mathbf{I}\right) \oplus \operatorname{col}\left(\mathbf{A} - \lambda \mathbf{I}\right)$$

y existe \mathbf{Q} invertible tal que

$$\mathbf{Q}^{-1}(\mathbf{A} - \lambda \mathbf{I})\mathbf{Q} = \begin{bmatrix} \mathbf{0}_{g \times g} & \\ & \mathbf{C}_{r \times r} \end{bmatrix}$$

donde C es invertible, $r = \text{rango}(A - \lambda I)$ y las g primeras columnas de la matriz Qforman una base de nul $(\mathbf{A} - \lambda \mathbf{I})$. La igualdad anterior se escribe

$$\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q} = \begin{bmatrix} \lambda \, \mathbf{I}_g & \\ & \mathbf{A}_1 \end{bmatrix} \,, \qquad \mathbf{A}_1 = \mathbf{C} + \lambda \, \mathbf{I}_r$$

 \mathbf{A} sy \mathbf{C} invertible significa que λ no es autovalor de \mathbf{A}_1 . Además, cualquier otro autrovalor de \mathbf{A} distinto de λ ha de ser autovalor de \mathbf{A}_1 . En consecuencia de \mathbf{A}_1 \mathbf{A}_2 \mathbf{A}_3 \mathbf{A}_4 \mathbf{A}_4 \mathbf{A}_4 \mathbf{A}_4 \mathbf{A}_4 obtenemes \mathbf{A}_4 $p_{\mathbf{A}}(z)$ obtenemos g = m.

Ejemplo. Teniendo en cuenta que A es normal si y sólo si A - z I es normal para todo z, resulta que toda matriz normal es diagonalizable.