custom transformers + patsy & statsmodels

Lecture 17

Dr. Colin Rundel

Custom sklearn transformers

FunctionTransformer

The simplest way to create a new transformer is to use FunctionTransformer() from the preprocessing submodule which allows for converting a Python function into a transformer.

```
1 from sklearn.preprocessing import FunctionTransformer
2 X = pd.DataFrame({"x1": range(1,6), "x2": range(5, 0, -1)})
```

```
1 log_transform = FunctionTransformer(np.log)
2 lt = log_transform.fit(X)
3 lt
```

FunctionTransformer(func=<ufunc 'log'>)

```
1 lt.transform(X)

x1 x2
0 0.0000 1.6094
1 0.6931 1.3863
2 1.0986 1.0986
3 1.3863 0.6931
4 1.6094 0.0000
```

```
{'accept_sparse': False, 'check_inverse': True,
'feature names out': None, 'func': <ufunc
'log'>, 'inv_kw_args': None, 'inverse_func':
None, 'kw args': None, 'validate': False}
 1 dir(lt)
['__annotations__', '__class__', '__delattr__',
 __dict__', '__dir__', '__doc__', '__eq__',
 __format___', '___ge___', '___getattribute___',
  __init__', '__init_subclass__', '__le__',
' lt ', ' module ', ' ne ', ' new ',
'__reduce__', '__reduce_ex__', '__repr__',
 __setattr__', '__setstate__', '__sizeof__',
__sklearn_clone__', '__sklearn_is_fitted__',
' sklearn_tags__', '__str__',
'__subclasshook__', '__weakref__',
build request_for_signature',
_check_feature_names', '_check_input',
' check inverse transform',
' check n features', ' doc link module',
' doc link template',
' doc link url param generator',
I not default requestel I not des link!
```

1 lt.get params()

Input types

```
1 def interact(X, y = None):
      return np.c [X, X[:,0] * X[:,1]]
  3 X = pd.DataFrame(\{"x1": range(1,6), "x2": range(5, 0, -1)\})
  4 Z = np.array(X)
  1 FunctionTransformer(
                                                     1 FunctionTransformer(
      interact
                                                         interact
  3 ).fit_transform(X)
                                                     3 ).fit_transform(Z)
pandas.errors.InvalidIndexError: (slice(None,
                                                   array([[1, 5, 5],
None, None), 0)
                                                          [2, 4, 8],
                                                          [3, 3, 9],
                                                          [4, 2, 8],
                                                          [5, 1, 5]
    FunctionTransformer(
                                                     1 FunctionTransformer(
      interact, validate=True
                                                         interact, validate=True
  3 ).fit transform(X)
                                                     3 ).fit transform(Z)
array([[1, 5, 5],
                                                   array([[1, 5, 5],
       [2, 4, 8],
                                                          [2, 4, 8],
       [3, 3, 9],
                                                          [3, 3, 9],
                                                          [4, 2, 8],
       [4, 2, 8],
                                                          [5, 1, 5]
       [5, 1, 5]
```

Build your own transformer

For a more full featured transformer, it is possible to construct it as a class that inherits from BaseEstimator and TransformerMixin classes from the base submodule.

```
from sklearn.base import BaseEstimator, TransformerMixin

class scaler(BaseEstimator, TransformerMixin):

def __init__(self, m = 1, b = 0):
    self.m = m
    self.b = b

def fit(self, X, y=None):
    return self

def transform(self, X, y=None):
    return X*self.m + self.b
```

```
1 X = pd.DataFrame({
     "x1": range(1,6),
      "x2": range(5, 0, -1)}
 4 ); X
      x2
  x1
   1
       5
       4
   3 3
3
   4
                                                     double.set_params(b=-3).fit_transform(X)
    double = scaler(2)
    double.get_params()
                                                   x1 x2
{'b': 0, 'm': 2}
                                                   -1
                                                        7
                                                        5
   double.fit_transform(X)
                                                    3
                                                        3
                                                        1
  x1
      x2
                                                       -1
      10
   4 8
   6 6
  10
```

What else do we get?

```
1 print(
 2 np.array(dir(double))
 3 )
[' class '' delattr '' dict '' dir '' doc '' eq '' format '
 '__init_subclass__' '__le__' '__lt__' '__module__' '__ne__' '__new__'
'__reduce__' ' reduce_ex__' '__repr__' '__setattr__' '__setstate__'
'__sizeof__' '__sklearn_clone__' '__sklearn_tags__' '__str__'
'__subclasshook__' '__weakref__' '_build_request_for_signature'
'_check_feature_names' '_check_n_features' '_doc_link_module'
'_doc_link_template' '_doc_link_url_param_generator' '_get_default_requests'
'_get_doc_link' '_get_metadata_request' '_get_param_names' '_get_tags'
'_more_tags' '_repr_html_' '_repr_html_inner' '_repr_mimebundle_'
'_sklearn_auto_wrap_output_keys' '_validate_data' '_validate_params' 'b' 'fit'
'fit transform' 'get metadata routing' 'get params' 'm' 'set output'
'set params' 'transform']
```

Demo - Interaction Transformer

Useful methods

We employed a couple of special methods that are worth mentioning in a little more detail.

- validate_data() & _check_feature_names() are functions from sklearn.base.validate they are responsible for setting and checking the n_features_in_ and the feature_names_in_ attributes respectively.
- In general one or both is run during fit() with reset=True in which case the respective attribute will be set.
- Later, in transform() one or both will again be called with reset=False and the properties of X will be checked against the values in the attribute.
- These are worth using as they promote an interface consistent with sklearn and also provide convenient error checking with useful warning / error messages.

check_is_fitted()

This is another useful helper function from sklearn.utils - it is fairly simplistic in that it checks for the existence of a specified attribute. If no attribute is given then it checks for any attributes ending in _ that do not begin with ___.

Again this is useful for providing a consistent interface and useful error / warning messages.

See also the other check*() functions in sklearn.utils.

Other custom estimators

If you want to implement your own custom modeling function it is possible, there are different Mixin base classes in sklearn. base that provide the common core interface.

Class	Description
base.BiclusterMixin	Mixin class for all bicluster estimators
base.ClassifierMixin	Mixin class for all classifiers
base.ClusterMixin	Mixin class for all cluster estimators
base.DensityMixin	Mixin class for all density estimators
base.RegressorMixin	Mixin class for all regression estimators
base.TransformerMixin	Mixin class for all transformers
base.OneToOneFeatureMixin	Provides get_feature_names_out for simple transformers

patsy

patsy

patsy is a Python package for describing statistical models (especially linear models, or models that have a linear component) and building design matrices. It is closely inspired by and compatible with the formula mini-language used in R and S.

. . .

Patsy's goal is to become the standard high-level interface to describing statistical models in Python, regardless of what particular model or library is being used underneath.

Formulas

```
1 from patsy import ModelDesc
    ModelDesc.from_formula("y \sim a + a:b + np.log(x)")
ModelDesc(lhs_termlist=[Term([EvalFactor('y')])],
          rhs_termlist=[Term([]),
                        Term([EvalFactor('a')]),
                        Term([EvalFactor('a'), EvalFactor('b')]),
                        Term([EvalFactor('np.log(x)')])])
  1 ModelDesc.from_formula("y \sim a*b + np.log(x) - 1")
ModelDesc(lhs_termlist=[Term([EvalFactor('y')])],
          rhs_termlist=[Term([EvalFactor('a')]),
                        Term([EvalFactor('b')]),
                        Term([EvalFactor('a'), EvalFactor('b')]),
                        Term([EvalFactor('np.log(x)')])])
```

Model matrix

1 from patsy import demo_data, dmatrix, dmatrices

```
data = demo data(
    "y", "a", "b", "x1", "x2"
3
 pd.DataFrame(data)
                    x2
            x1
 а
    b1 1.7641 -0.1032 1.4941
    b2 0.4002 0.4106 -0.2052
a1
a2
    b1 0.9787 0.1440
                       0.3131
a2
    b2 2.2409 1.4543 -0.8541
    b1 1.8676 0.7610 -2.5530
a1
    b2 -0.9773 0.1217 0.6536
    b1 0.9501 0.4439 0.8644
a2
    b2 -0.1514 0.3337 -0.7422
```

```
dmatrix("a + a:b + np.exp(x1)", data)
DesignMatrix with shape (8, 5)
 Intercept a[T.a2] a[a1]:b[T.b2] a[a2]:b[T.b2]
                                                     np.exp(x1)
                                                        5.83604
          1
                   0
                                                        1,49206
                                                        2.66110
                                                        9.40173
                                                        6.47247
                                                        0.37633
                                                        2.58594
                                                        0.85954
                   1
 Terms:
    'Intercept' (column 0)
    'a' (column 1)
    'a:b' (columns 2:4)
    'np.exp(x1)' (column 4)
```

Model matrices

```
1 y, X = dmatrices("y \sim a + a:b + np.exp(x1)", data)
                                    1 X
  1 y
DesignMatrix with shape (8, 1)
                                 DesignMatrix with shape (8, 5)
                                    Intercept a[T.a2] a[a1]:b[T.b2] a[a2]:b[T.b2]
                                                                                       np.exp(x1)
   1.49408
                                                                                           5.83604
                                                      0
  -0.20516
                                                                                           1,49206
  0.31307
                                                                                           2.66110
  -0.85410
                                                                                           9.40173
  -2.55299
                                                      0
                                                                                           6.47247
  0.65362
                                                                                           0.37633
  0.86444
                                                                                           2.58594
  -0.74217
                                                                                           0.85954
  Terms:
                                    Terms:
    'v' (column 0)
                                      'Intercept' (column 0)
                                      'a' (column 1)
                                      'a:b' (columns 2:4)
                                      'np.exp(x1)' (column 4)
```

as DataFrames

```
dmatrix("a + a:b + np.exp(x1)", data, return_type='dataframe')
   Intercept a[T.a2] a[a1]:b[T.b2] a[a2]:b[T.b2]
                                                      np.exp(x1)
                   0.0
                                                            5.8360
0
         1.0
                                  0.0
                                                  0.0
1
         1.0
                  0.0
                                  1.0
                                                  0.0
                                                           1.4921
2
         1.0
                  1.0
                                  0.0
                                                  0.0
                                                           2.6611
3
         1.0
                  1.0
                                  0.0
                                                  1.0
                                                           9.4017
4
         1.0
                  0.0
                                                           6.4725
                                  0.0
                                                  0.0
5
         1.0
                  0.0
                                  1.0
                                                  0.0
                                                           0.3763
6
         1.0
                                                           2.5859
                   1.0
                                  0.0
                                                  0.0
         1.0
                   1.0
                                                           0.8595
                                  0.0
                                                  1.0
```

Formula Syntax

Code	Description	Example
+	unions terms on the left and right	a+a ⇒ a
_	removes terms on the right from terms on the left	$a+b-a \Rightarrow b$
:	constructs interactions between each term on the left and right	(a+b):c ⇒ a:c + b:c
*	short-hand for terms and their interactions	$a*b \Rightarrow a + b + a:b$
/	short-hand for left terms and their interactions with right terms	a/b ⇒ a + a:b
I()	used for arithmetic calculations	I(x1 + x2)
Q()	used to quote column names, e.g. columns with spaces or symbols	Q('bad name!')
C()	used for categorical data coding	C(a, Treatment('a2'))

Examples

```
dmatrix("x:y", demo_data("x","y","z"))
DesignMatrix with shape (5, 2)
 Intercept
                 X:V
         1 -1.72397
         1 0.38018
         1 - 0.14814
         1 - 0.23130
         1 0.76682
 Terms:
   'Intercept' (column 0)
   'x:v' (column 1)
 1 dmatrix("x*y", demo data("x","y","z"))
DesignMatrix with shape (5, 4)
 Intercept x
                               X:y
         1 1.76405 -0.97728
                              -1.72397
         1 0.40016 0.95009 0.38018
         1 0.97874 -0.15136 -0.14814
         1 2.24089 -0.10322 -0.23130
         1 1.86756 0.41060 0.76682
 Terms:
    'Intercept' (column 0)
    'x' (column 1)
    'v' (column 2)
    'x:y' (column 3)
```

```
dmatrix("x*(y+z)", demo_data("x","y","z"))
DesignMatrix with shape (5, 6)
 Intercept x y
                            Z
                                         x:y
                                                 X:Z
         1 1.76405 -0.97728 0.14404 -1.72397 0.25410
         1 0.40016 0.95009 1.45427 0.38018 0.58194
        1 0.97874 -0.15136 0.76104 -0.14814 0.74486
        1 2.24089 -0.10322 0.12168 -0.23130 0.27266
                                   0.76682 0.82894
        1 1.86756 0.41060 0.44386
 Terms:
   'Intercept' (column 0)
   'x' (column 1)
   'y' (column 2)
   'z' (column 3)
   'x:y' (column 4)
   'x:z' (column 5)
```

Intercept Examples (-1)

```
1 dmatrix("x", demo_data("x","y","z"))
DesignMatrix with shape (5, 2)
 Intercept
          1 1.76405
          1 0.40016
          1 0.97874
          1 2.24089
          1 1.86756
 Terms:
    'Intercept' (column 0)
    'x' (column 1)
 1 dmatrix("x-1", demo data("x","y","z"))
DesignMatrix with shape (5, 1)
        X
 1.76405
 0.40016
 0.97874
 2.24089
 1.86756
 Terms:
   'x' (column 0)
```

Intercept Examples (0)

```
dmatrix("x+0", demo_data("x","y","z"))
DesignMatrix with shape (5, 1)
       X
 1.76405
 0.40016
 0.97874
 2.24089
 1.86756
 Terms:
    'x' (column 0)
    dmatrix("x-0", demo data("x","y","z"))
DesignMatrix with shape (5, 2)
 Intercept
            X
          1 1.76405
          1 0.40016
          1 0.97874
         1 2.24089
         1 1.86756
 Terms:
    'Intercept' (column 0)
    'x' (column 1)
```

Design Info

One of the key features of the design matrix object is that it retains all the necessary details (including stateful transforms) that are necessary to apply to new data inputs (e.g. for prediction).

```
1 d = dmatrix("a + a:b + np.exp(x1)", data, return type='dataframe')
 2 d.design info
DesignInfo(['Intercept',
            'a[T.a2]',
            'a[a1]:b[T.b2]',
            'a[a2]:b[T.b2]',
            'np.exp(x1)'],
           factor infos={EvalFactor('a'): FactorInfo(factor=EvalFactor('a'),
                                     type='categorical',
                                     state=<factor state>,
                                     categories=('a1', 'a2')),
                         EvalFactor('b'): FactorInfo(factor=EvalFactor('b'),
                                     type='categorical',
                                     state=<factor state>,
                                     categories=('b1', 'b2')),
                         EvalFactor('np.exp(x1)'): FactorInfo(factor=EvalFactor('np.exp(x1)'),
                                     type='numerical',
                                     state=<factor state>,
                                     num columns=1)},
           tarm codings-OrderedDict/[/Tarm/[])
                                          Sta 663 - Spring 2025
```

Stateful transforms

```
1 data = {"x1": np.random.normal(size=10)}
 2 new data = {"x1": np.random.normal(size=10)}
 1 d = dmatrix("scale(x1)", data)
                                                   1 pred = dmatrix(d.design info, new data)
 2 d
                                                   2 pred
DesignMatrix with shape (10, 2)
                                                 DesignMatrix with shape (10, 2)
                                                   Intercept scale(x1)
  Intercept scale(x1)
            -0.09901
                                                               -2.37105
            -1.28910
                                                               -0.51252
            0.14241
                                                               -2.46459
              1.21224
                                                               -1.65878
              0.17370
                                                               -0.60556
            0.80857
                                                           1 2.44812
             -0.55099
                                                               -0.79112
            0.98267
                                                               -2.10823
          1 0.71199
                                                              0.49866
             -2.09248
                                                               -0.63607
 Terms:
                                                   Terms:
    'Intercept' (column 0)
                                                     'Intercept' (column 0)
    'scale(x1)' (column 1)
                                                     'scale(x1)' (column 1)
 1 np.mean(d, axis=0)
                                                   1 np.mean(pred, axis=0)
array([1., 0.])
                                                 array([ 1. , -0.8201])
```

scikit-learn + Patsy

The state of affairs here is a bit of a mess at the moment - previously the sklego package implemented a PatsyTransformer class that has since been deprecated in favor of the FormulaicTransformer which uses the formulaic package for formula handling.

A PatsyTransformer

```
from patsy import dmatrix, build_design_matrices
 2 from sklearn.utils.validation import check is fitted
   from sklearn.base import BaseEstimator, TransformerMixin
 4
   class PatsyTransformer(TransformerMixin, BaseEstimator):
       def init (self, formula):
 6
           self.formula = formula
       def fit(self, X, y=None):
 9
           m = dmatrix(self.formula, X)
10
           assert np.array(m).shape[0] == np.array(X).shape[0]
11
           self.design_info_ = m.design_info
12
13
           return self
14
       def transform(self, X):
15
           check_is_fitted(self, 'design_info_')
16
           return build design matrices([self.design info], X)[0]
17
```

```
1 df = pd.DataFrame({
 2 "y": [2, 2, 4, 4, 6], "x": [1, 2, 3, 4, 5],
 3 "a": ["yes", "yes", "no", "no", "yes"]
 4 })
 5 X, y = df[["x", "a"]], df[["y"]].values
 1 pt = PatsyTransformer("x*a + np.log(x)")
                                                 1 make pipeline(
 2 pt.fit transform(X)
                                                     PatsyTransformer("x*a + np.log(x)"),
                                                     StandardScaler()
DesignMatrix with shape (5, 5)
                                                 4 ).fit transform(X)
  Intercept a[T.yes] x x:a[T.yes] np.log(x)
                                                array([[ 0.
                                     0.00000
                                                             0.8165, -1.4142, -0.3235, -1.6845
                  1 1
         1
                                   0.69315
                                                      [0. , 0.8165, -0.7071, 0.2157, -0.4651],
         1
                                                      [0., -1.2247, 0., -0.8627, 0.2483],
                                0 1.09861
         1
                                0 1.38629
                                                      [ 0.
                                                              , -1.2247, 0.7071, -0.8627, 0.7544],
                  1 5
                                   1.60944
                                                      [ 0.
                                                             , 0.8165, 1.4142, 1.8332, 1.1469]])
 Terms:
   'Intercept' (column 0)
   'a' (column 1)
   'x' (column 2)
```

'x:a' (column 3)

'np.log(x)' (column 4)

```
Sta 663 - Spring 2025
```

statsmodels

statsmodels

statsmodels is a Python module that provides classes and functions for the estimation of many different statistical models, as well as for conducting statistical tests, and statistical data exploration. An extensive list of result statistics are available for each estimator. The results are tested against existing statistical packages to ensure that they are correct.

```
1 import statsmodels.api as sm
2 import statsmodels.formula.api as smf
3 import statsmodels.tsa.api as tsa
```

statsmodels uses slightly different terminology for referring to y (dependent / response) and x (independent / explanatory) variables. Specifically it uses endog and exog to refer to y and x variable(s) respectively.

This is particularly important when using the main API, less so when using the formula API.

OpenIntro Loans data

This data set represents thousands of loans made through the Lending Club platform, which is a platform that allows individuals to lend to other individuals. Of course, not all loans are created equal. Someone who is a essentially a sure bet to pay back a loan will have an easier time getting a loan with a low interest rate than someone who appears to be riskier. And for people who are very risky? They may not even get a loan offer, or they may not have accepted the loan offer due to a high interest rate. It is important to keep that last part in mind, since this data set only represents loans actually made, i.e. do not mistake this data for loan applications!

For the full data dictionary see here. We have removed some of the columns to make the data set more reasonably sized and also droped any rows with missing values.

```
1 loans = pd.read_csv("data/openintro_loans.csv")
2 loans
```

	state	emp_length	term	homeownership	annual_income	 loan_amount	grade	interest_rate
\								
0	NJ	3	60	MORTGAGE	90000.0	 28000	C	14.07
1	HI	10	36	RENT	40000.0	 5000	C	12.61
2	WI	3	36	RENT	40000.0	 2000	D	17.09
3	PA	1	36	RENT	30000.0	 21600	Α	6.72
4	CA	10	36	RENT	35000.0	 23000	C	14.07
9177	TX	10	36	RENT	108000.0	 24000	Α	7.35
9178	PA	8	36	MORTGAGE	121000.0	 10000	D	19.03
9179	CT	10	36	MORTGAGE	67000.0	 30000	Е	23.88
9180	WI	1	36	MORTGAGE ₊	80000 0 a 663 - Spring 2025 66000 0	 24000	Α	5.32
9181	CT	3	36	RENT	66000.0	 12800	В	10.91

OLS

ValueError: Pandas data cast to numpy dtype of object. Check input data with np.asarray(data).

What do you think the issue is here?

The error occurs because X contains mixed types - specifically we have categorical data columns which cannot be directly converted to a numeric dtype so we need to take care of the dummy coding for statsmodels (with this interface).

```
1 X_dc = pd.get_dummies(X)
2 model = sm.OLS(endog=y, exog=X_dc)
```

ValueError: Pandas data cast to numpy dtype of object. Check input data with np.asarray(data).

```
1 X dc.dtypes
annual income
                          float64
debt to income
                          float64
interest rate
                          float64
public record bankrupt
                             int64
homeownership MORTGAGE
                             bool
homeownership OWN
                             bool
                             bool
homeownership RENT
dtype: object
 1 X dc = pd.get dummies(X, dtype='int')
 2 model = sm.OLS(endog=y, exog=X dc)
```

1 model

<statsmodels.regression.linear_model.OLS object at 0x15ed640b0>

1 np.array(dir(model))

Fitting and summary

```
1 res = model.fit()
2 print(res.summary())
```

OLS Regression Results

0.975l	coef s	td err t	P> t	[0.025
Covariance Type:	nonrobust			
Df Model:	6			
Df Residuals:	9175	BIC:		1.946e+05
No. Observations:	9182	AIC:		1.945e+05
Time:	09:50:55	Log-Likelihood:		-97245.
Date:	Fri, 21 Feb 2025	<pre>Prob (F-statistic):</pre>		2.33e-285
Method:	Least Squares	F-statistic:		239.5
Model:	0LS	Adj. R-squared:		0.135
Dep. Variable:	loan_amount	R-squared:		0.135

Formula interface

Most of the modeling interfaces are also provided by smf (statsmodels.formula.api), in which case patsy is used to construct the model matrices.

```
1 model = smf.ols(
2   "loan_amount ~ homeownership + annual_income + debt_to_income + interest_rate + public_record_bankrupt",
3   data = loans
4  )
5   res = model.fit()
6   print(res.summary())
OLS Regression Results
```

			==========
Dep. Variable:	loan_amount	R-squared:	0.135
Model:	0LS	Adj. R-squared:	0.135
Method:	Least Squares	F-statistic:	239.5
Date:	Fri, 21 Feb 2025	<pre>Prob (F-statistic):</pre>	2.33e-285
Time:	09:50:55	Log-Likelihood:	-97245.
No. Observations:	9182	AIC:	1.945e+05
Df Residuals:	9175	BIC:	1.946e+05
Df Model:	6		

Covariance Type: nonrobust

=======================================						
	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.002e+04	357.245	28.048	0.000	9319.724	1.07e+04
homeownership[T.OWN]	-1139.5893	322.361	-3.535	0.000	-1771.489	-507.690
homeownership[T.RENT]	-2573.4652	221.101	-11.639	0.000	-3006.873	-2140.057
annual_income	0.0505	0.002	31.952	0.000	0.047	0.054
debt_to_income	65.6641	7.310	8.982	0.000	51.334	79.994
interest_rate	204.2480	20.448	9.989	0.000	164.166	244.330
<pre>public_record_bankrupt</pre>	-1362.3253	306.019	-4.452	0.000	-1962.191	-762.460
=======================================						

Omnibus: 481.833 Durbin-Watson: 2.002

Result values and model parameters

Diagnostic plots

QQ Plot

1 plt.figure()

- 2 sm.graphics.qqplot(res.resid, line="s")
- 3 plt.show()

Leverage plot

- 1 plt.figure()
- 2 sm.graphics.plot_leverage_resid2(res)
- 3 plt.show()

Alternative model

```
1 res = smf.ols(
2 "np.sqrt(loan_amount) ~ homeownership + annual_income + debt_to_income + interest_rate + public_record_bankrupt",
3 data = loans
4 ).fit()
5 print(res.summary())
```

OLS Regression Results

============			
Dep. Variable:	np.sqrt(loan_amount)	R-squared:	0.132
Model:	0LS	Adj. R-squared:	0.132
Method:	Least Squares	F-statistic:	232.7
Date:	Fri, 21 Feb 2025	<pre>Prob (F-statistic):</pre>	1.16e-277
Time:	09:50:56	Log-Likelihood:	-46429.
No. Observations:	9182	AIC:	9.287e+04
Df Residuals:	9175	BIC:	9.292e+04
Df Madal.	c		

Df Model: 6
Covariance Type: nonrobust

	========			=======		=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept	95 . 4915	1.411	67 . 687	0.000	92 . 726	98.257
homeownership[T.OWN]	-4.4495	1.273	-3.495	0.000	-6.945	-1.954
homeownership[T.RENT]	-10.4225	0.873	-11.937	0.000	-12.134	-8.711
annual_income	0.0002	6.24e-06	30.916	0.000	0.000	0.000
<pre>debt_to_income</pre>	0.2720	0.029	9.421	0.000	0.215	0.329
interest_rate	0.8911	0.081	11.035	0.000	0.733	1.049
<pre>public_record_bankrupt</pre>	-4.6899	1.208	-3.881	0.000	-7.059	-2.321

Omnibus: 178.498 Durbin-Watson: 2.011

```
1 plt.figure()
```

- 2 sm.graphics.qqplot(res.resid, line="s")
- 3 plt.show()

Bushtail Possums

Data representing possums in Australia and New Guinea. This is a copy of the data set by the same name in the DAAG package, however, the data set included here includes fewer variables.

```
possum = pd.read_csv("data/possum.csv")
    possum
     site
                            head_l
                                    skull_w
                                             total l
                                                       tail l
             pop sex
                      age
             Vic
                      8.0
                              94.1
                                       60.4
                                                 89.0
                                                         36.0
             Vic
                      6.0
                              92.5
                                       57.6
                                                91.5
                                                         36.5
        1
                      6.0
                              94.0
                                       60.0
                                                95.5
                                                         39.0
             Vic
3
             Vic
                      6.0
                              93.2
                                       57.1
                                                92.0
                                                         38.0
             Vic
                      2.0
                              91.5
                                       56.3
                                                 85.5
                                                         36.0
                                                          . . .
                              89.5
                                       56.0
                                                 81.5
                                                         36.5
           other
                   m 1.0
99
                              88.6
                                                         39.0
100
           other
                   m 1.0
                                       54.7
                                                 82.5
                   f 6.0
101
           other
                              92.4
                                       55.0
                                                 89.0
                                                         38.0
                                       55.2
                                                         36.5
102
           other
                      4.0
                              91.5
                                                82.5
```

93.6

59.9

f 3.0

[104 rows x 8 columns]

other

103

89.0

40.0

Logistic regression models (GLM)

```
1  y = pd.get_dummies( possum["pop"], drop_first = True, dtype="int")
2  X = pd.get_dummies( possum.drop(["site","pop"], axis=1), dtype="int")
3
4  model = sm.GLM(y, X, family = sm.families.Binomial())
```

statsmodels.tools.sm_exceptions.MissingDataError: exog contains inf or nans

What went wrong this time?

Missing values

Missing values can be handled via missing argument, possible values are "none", "drop", and "raise".

```
1 model = sm.GLM(y, X, family = sm.families.Binomial(), missing="drop")
2 res = model.fit()
3 print(res.summary())
```

Success vs failure

Note endog can be 1d or 2d for binomial models - in the case of the latter each row is interpreted as [success, failure].

```
1  y = pd.get_dummies( possum["pop"], dtype="int")
2  X = pd.get_dummies( possum.drop(["site","pop"], axis=1), dtype="int")
3
4  res = sm.GLM(y, X, family = sm.families.Binomial(), missing="drop").fit()
5  print(res.summary())
```

Generalized Linear Model Regression Results

Dep. Variable Model: Model Family Link Function Method: Date: Time: No. Iteration Covariance	y: on: Fr ons:	Vic', 'other' Gl Binomia Logi IRL i, 21 Feb 202 09:50:5	Df Real Df Moit Scale LS Log-L Devia Pears Pseud	: .ikelihood:		102 95 6 1.0000 -31.942 63.885 154. 0.5234
========	coef	std err	z	P> z	[0.025	0.975]
age head_l skull_w total_l tail_l sex_f sex_m	0.1373 -0.1972 -0.2001 0.7569 -2.0698 40.0148 38.5395	0.183 0.158 0.139 0.176 0.429 13.077	0.751 -1.247 -1.443 4.290 -4.820 3.060 2.978	0.453 0.212 0.149 0.000 0.000 0.002 0.003	-0.221 -0.507 -0.472 0.411 -2.912 14.385 13.175	0.495 0.113 0.072 1.103 -1.228 65.645 63.904

Formula interface

```
1 res = smf.glm(
2  "pop ~ sex + age + head_l + skull_w + total_l + tail_l-1",
3  data = possum,
4  family = sm.families.Binomial(),
5  missing="drop"
6 ).fit()
7 print(res.summary())
```

Generalized Linear Model Regression Results

Dep. Variable: ['pop[Vic]', 'pop[other]'] No. Observations: 102 GLM Df Residuals: Model: 95 Model Family: Binomial Df Model: 6 Link Function: Logit Scale: 1.0000 IRLS Log-Likelihood: Method: -31.942Fri, 21 Feb 2025 Deviance: 63.885 Date: 09:50:57 Pearson chi2: Time: 154. 7 Pseudo R-squ. (CS): 0.5234 No. Iterations:

Covariance Type: nonrobust

	coef	std err	Z	P> z	[0.025	0.975]
sex[f]	40.0148	13.077	3.060	0.002	14.385	65.645
sex[m]	38.5395	12.941	2.978	0.003	13.175	63.904
age	0.1373	0.183	0.751	0.453	-0.221	0.495
head_l	-0.1972	0.158	-1.247	0.212	-0.507	0.113
skull_w	-0.2001	0.139	-1.443	0.149	-0.472	0.072
total_l	0.7569	0.176	4.290	0.000	0.411	1.103
tail_l	-2.0698	0.429	-4 . 820	0.000	-2.912	-1.228

sleepstudy data

These data are from the study described in Belenky et al. (2003), for the most sleep-deprived group (3 hours time-in-bed) and for the first 10 days of the study, up to the recovery period. The original study analyzed speed (1/(reaction time)) and treated day as a categorical rather than a continuous predictor.

```
1 sleep = pd.read_csv("data/sleepstudy.csv")
2 sleep
```

	Reaction	Days	Subject
0	249.5600	0	308
1	258.7047	1	308
2	250.8006	2	308
3	321.4398	3	308
4	356.8519	4	308
175	329.6076	5	372
176	334.4818	6	372
176 177	334.4818 343.2199	6 7	372 372
		_	
177	343.2199	7	372

[180 rows x 3 columns]

1 g = sns.relplot(x="Days", y="Reaction", col="Subject", col_wrap=6, data=sleep, height=2)

Random intercept model

```
1 me_rand_int = smf.mixedlm(
2   "Reaction ~ Days", data=sleep, groups=sleep["Subject"],
3   subset=sleep.Days >= 2
4 )
5 res_rand_int = me_rand_int.fit(method=["lbfgs"])
6 print(res_rand_int.summary())
```

Mixed Linear Model Regression Results

```
Model: MixedLM Dependent Variable: Reaction No. Observations: 180 Method: REML No. Groups: 18 Scale: 960.4529 Min. group size: 10 Log-Likelihood: -893.2325 Max. group size: 10 Converged: Yes Mean group size: 10.0 Coef. Std.Err. z P>|z| [0.025 0.975] Intercept 251.405 9.747 25.793 0.000 232.302 270.509 Days 10.467 0.804 13.015 0.000 8.891 12.044 Group Var 1378.232 17.157
```

lme4 version

```
1 summary(
     lmer(Reaction ~ Days + (1|Subject), data=sleepstudy)
 3 )
Linear mixed model fit by REML ['lmerMod']
Formula: Reaction ~ Days + (1 | Subject)
  Data: sleepstudy
REML criterion at convergence: 1786.5
Scaled residuals:
   Min 10 Median 30 Max
-3.2257 - 0.5529  0.0109  0.5188  4.2506
Random effects:
Groups Name
             Variance Std.Dev.
 Subject (Intercept) 1378.2 37.12
 Residual
                     960.5 30.99
Number of obs: 180, groups: Subject, 18
```

Predictions

Recovering random effects for prediction

```
# Multiply each RE by the random effects design matrix for each group
   rex = [
 3
     np.dot(
        me_rand_int.exog_re_li[j],
       res_rand_int.random_effects[k]
 6
      for (j, k) in enumerate(me_rand_int.group_labels)
   rex[0]
array([40.7838, 40.7838, 40.7838, 40.7838, 40.7838, 40.7838, 40.7838, 40.7838,
      40.7838, 40.7838])
 2 # Add the fixed and random terms to get the overall prediction
 3 y_hat = res_rand_int.predict() + np.concatenate(rex)
```


Random intercept and slope model

```
1 me_rand_sl= smf.mixedlm(
2   "Reaction ~ Days", data=sleep, groups=sleep["Subject"],
3   subset=sleep.Days >= 2,
4   re_formula="~Days"
5 )
6 res_rand_sl = me_rand_sl.fit(method=["lbfgs"])
7 print(res_rand_sl.summary())
```

Mixed Linear Model Regression Results

```
Model:
                    MixedLM
                             Dependent Variable:
                                                  Reaction
No. Observations:
                    180
                             Method:
                                                  REML
No. Groups:
                    18
                             Scale:
                                                  654.9412
Min. group size:
                   10
                            Log-Likelihood:
                                                 -871.8141
                             Converged:
Max. group size:
                    10
                                                  Yes
Mean group size:
                    10.0
```

	Coef.	Std.Err.	Z	P> z	[0.025	0.975]
Intercept Days Group Var Group x Days Cov Days Var	251.405 10.467 612.089 9.605 35.072	1.546 11.881 1.820			238.029 7.438	

lme4 version

```
1 summary(
 2 lmer(Reaction ~ Days + (Days|Subject), data=sleepstudy)
 3 )
Linear mixed model fit by REML ['lmerMod']
Formula: Reaction ~ Days + (Days | Subject)
  Data: sleepstudy
REML criterion at convergence: 1743.6
Scaled residuals:
   Min
           10 Median 30 Max
-3.9536 - 0.4634  0.0231  0.4634  5.1793
Random effects:
Groups
        Name
              Variance Std.Dev. Corr
 Subject (Intercept) 612.10 24.741
         Days
              35.07 5.922 0.07
 Residual 654.94 25.592
Number of obs: 180, groups: Subject, 18
Fixed effects:
          Estimate Std. Error t value
```

Prediction

