

Varun Gumma – 2017A7PS0165H

Muzaffar Ahmed – 2017A7PS0248H

SNS Maneesh Sarma – 2017A7PS0238H

Pavan Srihari Darbha – 2017A7PS0011H

FORTRAN (from Formula Translation) is a general-purpose, compiled, imperative programming language that is best suited to numerical and scientific computing. As such, it has been in use for six decades.

GNU Fortran was developed:

- by the developers at GNU Project, who develop and publish a variety of free software to give users freedom and control in the use of their computers
- between 2001 and 2005, with the initial release in April 2005 replacing the old g77 compiler
- since the principal author and maintainer of g77 stopped work on g77 in 2001, the GFortran project aimed to develop new Fortran front-end and run-time libraries for GCC (GNU Compiler Collection)

The Compilation Process

REPRESENTATIONS

- The source file ends with the extensions .f, .F, .for, .FOR or .i
- ❖ The compiler has an integrated C preprocessor that provides full cpp capabilities.
- ❖ The compiler produces a linkable object file when the −c command is specified. It takes the original filename but the output has the extension .o
- The executable file is a out by default.
- ❖ Another name can be specified for the executable using the −o *name* command.

STRENGTHS

- ✓ The efficiency of compiled code is quite high because Fortran is straight-forward to compile and techniques for handling it have reached a great degree of refinement.
- ✓ It's free, so easily available to all.
- ✓ Being Open-Source, the development is fast since anyone can contribute.
- ✓ GNU Fortran can be used in programs with multiple threads, while guaranteeing thread safety.
- ✓ The compiler does not evaluate all parts of an expression, if the result can be arrived at without needing all the parts.
- ✓ Asynchronous I/O is supported if the program is linked against the POSIX thread library. If not, all I/O performed is synchronous.
- ✓ For consistency, GNU Fortran uses buffered I/O in order to improve performance. This buffer is flushed automatically when full and whenever necessary.

WEAKNESSES

alist.

GNU Fortran does not support the latest Fortran standards (Fortran 2018). In fact, it does not even offer full support to Fortran 2003 and 2008 standards. ☐ When it comes to durability, GNU Fortran does not ensure that data is committed to stable storage. It is entirely left to the programmer to code for it if necessary. ☐ GNU Fortran creates a name.mod for each module name. This confuses the GNU make into thinking they are Modula2 source files. The user must manually over-ride this with a command. ☐ Block Data causes trouble with linking and initializing under GNU Fortran. Sharing common blocks across Fortran tasks is somewhat tedious. ☐ Some programs make use of overflow of variables for a desired result. GNU Fortran throws an ☐ Arithmetic Overflow error immediately and it must be forced to accept it manually. ☐ GNU Fortran's error messages do not comply to patterns in emacs's compilation-error-regexp-

OTHER COMPILERS

- Embedded systems: Keil, Code Composer Studio, GNU/GCC and Ride 7
- Small devices: SDCC (Small Device C Compiler), TCC (Tiny C Compiler)
- Parallel programming: ROSE, Intel Fortran Compiler, Intel C++ Compiler
- Graphics: Intel Graphics Compiler