

Cloud Computing

OpenStack Nova Architecture

Seyyed Ahmad Javadi

sajavadi@aut.ac.ir

Spring 2023

https://www.slideshare.net/HaimAteya/an-intrudction-to-openstack-2017

https://docs.openstack.org/security-guide/introduction/introduction-to-openstack.html

Overview

OpenStack Conceptual Architecture

OpenStack Installation

Hardware Requirements

https://docs.openstack.org/install -guide/overview.html networking-option-1-providernetworks

OpenStack Installation

Networking Option 1: Provider Networks Service Layout

Block Storage

Nodes

ISC SI Target

Service

Block Storage

Volume Service

Shared File System

Service

Telemetry

Object

Object Storage

Account Service

Object Storage

Container Service

Object Storage Object Service

Run Kubernetes Cluster on OpenStack

Check slides and watch the video

- https://object-storage-ca-ymq 1.vexxhost.net/swift/v1/6e4619c416ff4bd19e1c087f27a43eea/www-assets prod/summits/27/presentations/24157/slides/OpenInfra-Summit-Shanghai-OpenShift-on OpenStack.pdf
- https://www.youtube.com/watch?v=DuBYWXTnnsg
- https://www.youtube.com/watch?v=uipIRQ2pQfc&t=176s

Nova

- Provided compute as service
- ➤ The main part of an laaS system
- ➤ It is designed to manage and automate pools of computer resources
- Compute's architecture is designed to scale horizontally

Nova Components

Nova Components

- ➤ Nova-conductor
 - Provides database-access support for Compute nodes
- Nova-consoleauth
 - Handles console authentication
- ➤ Nova-novncproxy
 - Provides a VNC proxy for browsers

The Nova VNC proxy

https://leftasexercise.com/2020/02/14/openstack-nova-installation-and-overview/

NOVA API

➤ NOVA-API is responsible to provide an API for users and services to interact with NOVA

On Compute Node

➤ There is a periodic task

(Resource Tracker), which collects host information.

➤ This information is then stored to *database*

OpenStack API Amazon EC2 API nova-api AMQP SQI nova-scheduler database queue nova-volume nova-network nova-compute

https://www.oreilly.com/library/view/deploying-openstack/9781449311223/ch04.html

On Controller Node

- Request from nova API reaches conductor
- Conductor interacts with the scheduler
- Scheduler *uses filters* to identify the best node
 - From the information stored in database
- Selected host information is sent back to conductor
- ➤ Conductor uses the compute queue and directs it to selected host
- The compute node then launches the instance

Filters and Weights

Some Common Filters

> AvailabilityZoneFilter

Return hosts where node_availability_zone name is the same as the one requested

≻ RamFilter

 Return hosts where (free_ram * ram_allocation_ration) is greater than requested ram.

≻ComputerFilter

Return hosts where asked instance_type (with extra_specs) match capabilities

Some Common Filters (cont.)

≻ DiskFilter

 Returns hosts with sufficient disk space available for root and ephemeral storage.

≻ RetryFilter

 Filters out hosts that have already been attempted for scheduling purposes.

Weights

>Scheduler applies cost function on each host & calculates the weight.

https://docs.openstack.org/nova/latest/admin/scheduling.html

Some Possible Cost Functions

- ➤ Considering free RAM among filtered hosts.
 - Highest free RAM wins.
- Considering least workload (e.g., IO ops) among filtered hosts.

- ➤ Can consider any specific metric we want to consider in a similar fashion.
 - Can be enabled from configuration file.

```
weight = w1_multiplier * norm(w1) + w2_multiplier * norm(w2) + ...
```

Weights (cont.)

> RAMWeigher

Compute weight based on available RAM on the compute node.
 Sort with the largest weight winning.

≻CPUWeigher

Compute weight based on available vCPUs om the compute node.
 Sort with the largest weight winning.

➤ DiskWeigher

 Hosts are weighted and sorted by free disk space with the largest weight wining.

Weights (cont.)

≻ MetricWeigher

- This weigher can compute the weight based on the compute node host's various metrics.
- The to-be weighed metrics and their weighing ration are specified in the configuration file as the followings:

```
[metrics]
weight_setting = name1=1.0, name2=-1.0
```

General Cost Function

```
weight = w1_multiplier * norm(w1) + w2_multiplier * norm(w2) + ...
```

Metric	Range
CPU utilization	(0, 100) usage percentage
Outbound network traffic	(0, 10^9) byte per second

Least Loaded Server with No Normalization

Weight (Load) = 1 * (CPU utilization) + 1* (Outbound network traffic)

	CPU utilization	Outbound network traffic
Host1	95	100000
Host2	10	100090

Least Loaded Server Without Normalization

Weight (Load) = 1 * (CPU utilization) + 1* (Outbound network traffic)

	Weight
Host1	(1 * 95) + (1 * 100000) = 100095 \
Host2	(1*10) + (1* 100090) = 100100

Host1 is selected!

Not good ⊗

Min-Max Normalization

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

Getting Back to the Previous Example

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

	CPU utilization	Outbound network traffic
Host1	95	100000
Host2	10	100090

	CPU utilization	Outbound network traffic
Host1	(95-0)/(100-0)=0.95	(100000-0)/(10^9-0)=0.0001
Host2	(10-0)/(100-0)=0.1	(100090-0)/(10^9-0)=0.00010009

Least Loaded Server with Normalization

Weight (Load) = 1 * norm(CPU utilization) +
 1* norm(Outbound network traffic)

	Weight
Host1	(1 * 0.95) + (1 * 0.0001) = 0.9501
Host2	(1*0.1) + (1* 0.00010009) = 0.10010009√

Host2 is selected!

Good job:)

Recap

https://docs.oracle.com/cd/E36784 01/html/E54155/archover.html

24/05/2023

Recap (cont.)

