UC Computer Science and Software Engineering

COSC362 Data and Network Security Semester Spring, 2021

Lab Quiz 1

Quiz relates to Lectures 3, 5 and 6. Questions might have been seen in a different order on LEARN.

QUESTION 1											
The inverse of 3 modulo 17 is:											
(a) 4											
(b) 1											
(c) 3											
(d) 6											
6											
QUESTION 2 Which of the following integers does not have an inverse modulo 21?											
(a) 1											
(b) 2											
(c) 3											
(d) 4											
3											

QUESTION 3

Which of the following integers is a generator for \mathbb{Z}_7^* , the non-zero integers modulo 7?
(a) 1
(b) 2
(c) 3
(d) 6
3
QUESTION 4
What is $8^{-1} \mod 21$?
(a) 1
(b) 2
(c) 4
(d) 8
8
QUESTION 5
A generator for \mathbb{Z}_{15}^* has order:
(a) 1
(b) 3
(c) 8
(d) 14
8

QUESTION 6

Which o	of the fol	lowing	is a	fundamer	tal wea	kness o	f the	Hill d	rinher	for an	v size	α f	encryption	matrix?
VV IIICII V	or the rol	10 Willig	13 a	Tunuanici	itai wca	KIICSS U.	I UIC	THILL	dipinoi .	ioi an	y SIZC	O1	chery phon	maura:

- (a) The number of possible keys is too small
- (b) Encryption is a linear function
- (c) The encryption function is computationally expensive
- (d) Decryption is not always possible

Encryption is a linear function

QUESTION 7

Following Kerckhoff's principle, we usually assume that an attacker of an encryption scheme has access to:

- (a) unbounded computational power
- (b) the encryption and decryption keys
- (c) the description of the encryption and decryption algorithms
- (d) all of the above

the description of the encryption and decryption algorithms

QUESTION 8

If a plaintext comes from a natural language, such as English, which of the following encryption algorithms can be expected to have the most uniform ("flattest") frequency distribution of ciphertext characters?

- (a) The Caesar cipher
- (b) The random simple substitution cipher
- (c) A transposition cipher on blocks of size 12
- (d) The Vigenere cipher with a key of length 8

The Vigenere cipher with a key of length 8

QUESTION 9

If a plaintext comes from a natural language, such as English, for which of the following ciphers is the frequency of any particular character equal in both plaintext and ciphertext?

- (a) The Caesar cipher
- (b) The random simple substitution cipher
- (c) A transposition cipher on blocks of size 12
- (d) The Vigenere cipher with a key of length 8

A transposition cipher on blocks of size 12

QUESTION 10

Which is the smallest of the following key sizes that would be acceptable to prevent exhaustive key search today?

- (a) 256 bits
- (b) 512 bits
- (c) 1024 bits
- (d) 2048 bits

256 bits