

Chapter 2 Modeling System

Formal Model

- Construct a formal model of a system
 - Specifying key properties of the system
 - ◆ Abstract away details
 - For digital circuits
 - Useful: gates and Boolean values
 - Useless: voltage levels
 - ◆ For communication protocol
 - Useful: exchange of messages
 - Useless: contents of messages

- Modeling reactive system and their behavior over time
 - ◆ Interact with their environment frequently and often do not terminate
- State captures the values of the variables at a particular instant of time
- A transition describe the change by giving the state before the action occurs and the state after the action occurs.
- A computation is an infinite sequence of state where each state is obtained from the previous state by some transition

- State transition system: A **Kripke** structure
 - ◆ Capture the behavior of reactive system.
- Path: modeling computations of a system.
- Concurrent system
 - ◆ Program
 - ◆ Diagram for a circuit
- Unifying formalism to represent a current system
 - ◆ First order logic
 - ◆ Extract the Kripke structure

• Definition of Kripke structure

How to extract such structure from first order logic

• How difference programming constructs can be represented in term of first order formulae

Kripke structure(KS)

- Let AP be a set of atomic propositions. A Kripke structure M over AP is a four tuple $M=(S,S_0,R,L)$ where
 - ◆ S is a finite set of states
 - $S_0 \subseteq S$ is the set of initial states
 - \bullet R \subseteq S×S is a transition relation that must be total
 - Total: Each state $s \in S$, existing a state $s' \in S$, such that R(s, s')
 - ♦ L: $S \rightarrow 2^{AP}$ is a function that labels each state with the set of atomic propositions true in that state
- Sometimes ignore the initial states S_0

Modeling concurrent systems (cont)

• A path in the structure M from a state s is an infinite sequence of states $\pi = s_0 s_1 s_2 ...$ such that $s_0 = s$ and $R(s_i, s_{i+1})$ holds for all $i \ge 0$

example

- ◆ KS structure M=(S,S₀,R,L) over AP, AP={a,b,c}
 - $S=\{s_0, s_1, s_2\},$

.

First order logic

- First order logic: logical connectives and quantifications
- Describe states of concurrent system with first order logic
 - $V = \{v_1, ..., v_n\}$ is the set of system variables.
 - ◆ Variables in V range over a finite set D
 - \bullet A valuation for V is a function s: V \rightarrow D
 - ◆ A state is described by giving values for all of the elements in V
 - ◆ State: Write a formula that is true for that valuation

- Describe states of concurrent system with first order logic(cont)
 - ♦ Example V= $\{v_1, v_2, v_3\}$ and a valuation $< v_1 \leftarrow 2$, $v_2 \leftarrow 3$, $v_3 \leftarrow 5 >$
 - Derive the formula $(v_1=2) \land (v_2=3) \land (v_3=5)$
 - ◆ A formula may be true for many valuations, then representing many states
 - ◆ Initial: a first order formula S₀

- transition of concurrent system: first order logic
 - ◆ A set of ordered pairs of states
 - ◆ Two system variables V and V'.
 - Variables in V are present states
 - Variables in V' are next states
 - ◆ Each variable v in V has a corresponding next state variable in V', denoted by v'
 - ◆ Transition: an ordered pair of states of valuations in V and V'
 - represent the transition by formulas
 - a transition relation: the set of ordered pairs of states
 - \blacksquare R(V, V') denotes a formula that represents transition relation

- Example of transition system
 - ◆ Let V={ v_1, v_2, v_3 } and a valuation< v_1 ←2, v_2 ←3, v_3 ←5>
 - V'= $\{v_1', v_2', v_3'\}$ and a valuation $< v_1' \leftarrow 1, v_2' \leftarrow 5, v_3' \leftarrow 4 >$
 - A transition:

$$(v_1=2 \land v_2=3 \land v_3=5) \land (v_1'=1 \land v_2'=5 \land v_3'=4)$$

- Describe atomic propositions AP
 - \bullet AP: v=d where $v \in V$ and $d \in D$
 - ◆ A proposition v=d will be true in a state s if s(v)=d

Construct a KS from the first order formula

- Initial state S_0 and transition R
 - ◆ The set of states S is the set of all valuations for V.
 - ♦ The set initial S_0 is the set of all valuations s_0 for v that satisfy the formula S_0
 - ◆ Let s and s' be two states, then R(s,s') holds if R evaluates to True when each $v \in V$ is assigned the value s(v) and each $v' \in V'$ is assigned the value s'(v')
 - ◆ The labeling function L:S→ 2^{AP} is defined so that L(s) is the subset of all atomic propositions true in s.
 - \bullet Add R(s,s)if some state s has no successor so that a KS is total.

Construct a KS

Example

- $V = \{x,y\}$ and $D = \{0,1\}$
- \bullet S₀ $(x,y) \equiv x=1 \land y=1$
- **◆** Transition:

$$R(x,y,x',y') \equiv x' = (x+y) \mod 2 \land y' = y$$

Question: $KS=(S,S_0,R,L)$??

Concurrent System

16

- Consider two modes of execution
 - ◆ Digital circuit
 - Asynchronous or interleaved execution: only one component makes a step at a time
 - Synchronous: all of the components make a step at the same time.
 - ◆ Program
 - Communication by shared variables

Digital circuits

- Each state holding element of a circuits can have the value 0 or 1
- Give a valuation, we can write a boolean expression that is true.
- $S_0(V)$ and R(V, V') represent the set of initial states and the transition relation of the circuit.

Synchronous digital circuits

- Let $V = \{v_0, v_1, ..., v_{n-1}\}$ and $V' = \{v_0, v_1, ..., v_{n-1}\}$
- $v_i' = f_i(V)$
- Define the relations
 - $\bullet R_i(V, V') \equiv (v_i' \Leftrightarrow f_i(V))$
 - ◆ Conjunction of these formulae

$$R(V, V') \equiv R_0(V, V') \land R_0(V, V') \land \dots \land R_{n-1}(V, V')$$

Question: synchronous model of 8 counter?

Synchronous digital circuits

- •Synchronous modulo 8 counter
- •Three components, they compute their valuation simultaneously every time.

Asynchronous digital circuit

- Assume that all the components of circuits have exactly one output and have no internal state variables
- Use an interleaving semantics in which exactly one component changes at a time
- The results in a disjunction of the form

$$R(V,\,V')\equiv R_0(V,\,V')\vee R_1(V,\,V')\vee\ldots\vee R_{n\text{--}1}(V,\,V')$$
 where

$$R_i(V, V') \equiv (v_i' \Leftrightarrow f_i(V)) \land \bigwedge_{j \neq i} (v_j' \Leftrightarrow v_j)$$

- $V = \{v_0, v_1\}$
- $v_0' = v_0 \oplus v_1$ and $v_1' = v_0 \oplus v_1$
- For synchronous, the transition relation is $R(V,V') \equiv (v_0' \Leftrightarrow v_0 \oplus v_1) \wedge (v_1' \Leftrightarrow v_0 \oplus v_1)$
- For asynchronous, the transition relation is

$$R(V,V') \equiv ((v_0 \Leftrightarrow v_0 \oplus v_1) \land (v_1 \Leftrightarrow v_1)) \lor ((v_0 \Leftrightarrow v_0) \land (v_1 \Leftrightarrow v_0 \oplus v_1))$$

- If a state($v_0 = 1, v_1 = 1$)
 - For synchronous, the next state is $(v_0=0,v_1=0)$
 - For asynchronous, the next states have two states: $(v_0=0, v_1=1)$ and $(v_0=1, v_1=0)$
- Question: Models of synchronous and asynchronous?

Program modeling

- Sequential program
 - ◆ Each statement has a unique entry point and unique exit point that are labeled.
 - ◆ A labeling transformation that given an unlabeled program P results in a labeled program P^L
 - ◆ A statement exit point is the entry point of the next statement

- Sequential program (cont)
 - \bullet Define the labeled statement P^L :
 - If P is not a composite statement, then $P^L = P$
 - If P=P1;P2, then $P^L = P_1^L$; l'': P_2^L .
 - If P=if b then P_1 else P_2 endif, therefore P^L =if b then l_1 : P_1^L else l_2 : P_2^L endif.
 - If P=while b do P_1 endwhile, then P^L = while b do l_1 : P_1^L endwhile

Sequential program (cont)

- ◆ pc—program counter that range over the set of program labels and additional value ⊥(undefined value, the program is not active)
- ◆ The entry and exit point of P are labeled by m and m'
- same(Y) is an abbreviation for the formula $\bigwedge_{y \in Y} (y' = y)$

- Sequential program (cont)
 - ◆ Initial states:

pre(V): initial value of the variables of P

Initial states: $S_0(V, pc) \equiv pre(V) \land pc=m$

- Transition procedure C(l, P, l'): the entry label l, the labeled statement P and the exit label l'
- \bullet C(l, P, l') is the disjunction of all transition

- Sequential program (cont)
 - ◆ C define statements' transition
 - assignment:

$$C(l, v \leftarrow e, l') \equiv pc = l \land pc' = l' \land v' = e \land same(V \setminus \{v\})$$

skip:

$$C(l, \text{skip}, l') \equiv pc = l \land pc' = l' \land same(V)$$

Sequential composition :

$$C(l,P_1; l'':P_2, l') \equiv C(l, P_1, l'') \lor C(l'',P_2, l')$$

- conditional:
- while:

- Sequential program (cont)
 - ◆ C define statements' transition
 - conditional:

```
C(l, \text{ if b then } l_1: P_1 \text{ else } l_2: P_2 \text{ endif, } l')
```

is the disjunction of the following four formulae:

$$pc=l \land pc'=l_1 \land b \land same(V)$$

$$pc=l \land pc'=l_2 \land \neg b \land same(V)$$

$$C(l_1, P_1, l')$$

$$C(l_2, P_2, l')$$

• while:

- Sequential program (cont)
 - ◆ C define statements' transition
 - while: C (l, while b do l_l : P1 endwhile, l')

is the disjunction of the following three formulas:

$$\checkmark pc=l \land pc'=l_1 \land b \land same(V)$$

$$\checkmark pc=l \land pc'=l' \land \neg b \land same(V)$$

$$\checkmark C(l_1, P_1, l)$$

exercise

 building boolean formula for the following program, while

$$V=\{x,y,z\}$$
, initial value: $x=y=z=0$

• Program

experiment

IMP language:

Aexp

$$a:=n|x|a_0+a_1|a_0-a_1|a_0\times a_1$$
 $n\in[0,2]$

Bexp

b::=true|false|
$$a_0=a_1|a_0 \le a_1| -b$$

| $b_0 \land b_1|b_0 \lor b_1$

Com

c::=skip|x:=a|
$$c_0$$
; c_1 |if b then c_0 else c_1
|while b do c

Experiment (cont')

- ◆ The range of variables integers of [0,2]
- ◆ Values of boolean variables: 0 and 1
- ◆ The name of all variables are single lower letter
- Give a program of IMP, Please transform it into labeled program
- Please translate a program of IMP into the first order formulae

Concurrent programs

- A set of processes that can be executed in parallel.
- A process is composed of sequential statements
- asynchronous programs in which exactly one process can be executed at any time
- V_i is the set of variables in the process P_i, pc_i is the program counter of P_i, PC is the set of all program counter

Concurrent programs(cont)

• A concurrent program P has the form:

Cobegin $P_1 || P_2 || \dots || P_n$ coend

- The labeled concurrent program P^L:
 - If $P = Cobegin P_1 || P_2 || ... || P_n coend, then$

```
\mathbf{P}^{L} = \text{conbegin } l_1 : \mathbf{P}_1^{L} \ l_1' \| \ l_2 : \mathbf{P}_2^{L} \ l_2' \| \dots \| \ l_n : \\ \mathbf{P}_n^{L} \ l_n' \text{coend}
```

Concurrent programs(cont)

- Initial and transition formulae
 - ♦ Initial state set

$$S_0(V,PC) \equiv pre(V) \land pc = m \land \bigwedge_{i=1}^{n} (pc_i = \bot)$$

◆ Transition procedure

$$C$$
 (m , conbegin $l_1: P_1^L l_1' || l_2: P_2^L l_2' || ... || l_n: P_n^L l_n'$ coend, m') is the disjunction of three formulas:

■
$$pc=m \wedge pc_1'=l_1 \wedge ... \wedge pc_n'=l_n \wedge pc' = \bot$$

$$pc = \bot \land pc_1 = l_1' \land \dots \land pc_n = l_n' \land pc' = m' \land \land \\ (pc_i' = \bot)$$

Concurrent programs(cont)

- Shared variables
 - wait: C(l, wait(b), l') is a disjunction of the following two formulae:
 - $(pc_i = l \land pc_i' = l \land \neg b \land same(V_i))$
 - $(pc_i = l \land pc_i' = l' \land b \land same(V_i))$
 - lock: C(l, lock(v), l') is a disjunction of the following two formulae:
 - $(pc_i=l \land pc_i'=l \land v=1 \land same(V_i))$
 - $(pc_i = l \land pc_i' = l' \land v = 0 \land v' = 1 \land same(V_i \setminus \{v\}))$
 - unlock:
 - C(l, unlock(v), l') $\equiv \text{pc}_i = l \land \text{pc}_i' = l' \land v' = 0 \land same(V_i \setminus \{v\})$

- Example
 - ◆ P \equiv m: cobegin P₀ || P₁ coend m'
 - \bullet two processes P_0 and P_1 .

Notation: For P_i , CR_i : $turn=1 \equiv CR_i$: $turn=(turn+1) \mod 2$

Initial states of P

$$S_0(V, PC) \equiv pc = m \wedge pc_0 = \bot \wedge pc_1 = \bot$$

• Transition relation R(V, PC, V', PC')

$$\bullet$$
 pc= $m \land pc_0'=l_0 \land pc_1'=l_1 \land pc'=\bot$

•
$$pc = \bot \land pc_0 = l_0' \land pc_1 = l_1' \land pc' = m' \land pc_0' = \bot \land pc_1' = \bot$$

$$\bullet$$
 C(l₀,P₀,l₀') \land same(V\V₀) \land same(PC\{pc₀}),

which is equivalent to

$$C(l_0,p_0,l_0') \wedge same(pc,pc_1)$$

 \bullet C(l₁,P₁,l₁') \land same(V\V₁) \land same(PC\{pc₁}),

which is equivalent to

$$C(l_1,p_1,l_1') \wedge same(pc,pc_0)$$

- Summary: $C(m, \text{ cobegin } P_0 || P_1 \text{ coend}, m')$
 - \bullet pc= $m \land pc_0'=l_0 \land pc_1'=l_1 \land pc'=\bot$
 - $pc = \bot \land pc_0 = l_0' \land pc_1 = l_1' \land pc' = m' \land pc_0' = \bot \land pc_1' = \bot$
 - $\bullet C(l_0, p_0, l_0') \land same(pc, pc_1)$
 - $\bullet C(l_1,p_1,l_1') \land same(pc,pc_0)$

- Transition relation R(V, PC, V', PC')(cont). For each processes P_i , $C(l_i, p_i, l_i')$ is the disjunction of
- $C(l_i$, while True do NC_i ...endwhile, l_i')
 - $pc_i = l_i \land pc_i' = NC_i \land True \land same(turn)$
 - $pc_i = l_i \land pc_i' = l_i' \land False \land same(turn)$
 - \bullet C(NC_i , ,wait(turn=i);CR_i:turn=(i+1)mod 2, l_i)

- $C(l_i$, while True do ...endwhile, l_i')
 - **♦**
 - \bullet C(NC_i , ,wait(turn=i); CR_i :turn=(i+1)mod 2, l_i)
 - ◆ C(NC_i , ,wait(turn=i), CR_i)∨C(CR_i , turn=(i+1)mod 2, l_i)
 - \bullet C(NC_i , ,wait(turn=i), CR_i)
 - $pc_i = NC_i \land pc_i' = CR_i \land turn = i \land same(turn)$
 - $pc_i = NC_i \land pc_i' = NC_i \land turn \neq i \land same(turn)$
 - \bullet C(CR_i , turn=(i+1)mod 2, l_i)
 - $pc_i = CR_i \land pc_i' = I_i \land turn' = (i+1) \mod 2$

- $C(l_i$, while True do ...endwhile, l_i')
 - $pc_i = l_i \land pc_i' = NC_i \land True \land same(turn)$
 - $pc_i = NC_i \land pc_i' = CR_i \land turn = i \land same(turn)$
 - $pc_i = NC_i \land pc_i' = NC_i \land turn \neq i \land same(turn)$
 - $pc_i = CR_i \land pc_i' = I_i \land turn' = (i+1) \mod 2$

- Summary: C(m, cobegin $P_0||P_1$ coend, m')
 - \bullet pc=m \wedge pc0'= $I_0 \wedge$ pc1'= $I_1 \wedge$ pc'= \bot

 - $pc_i = I_i \land pc_i' = NC_i \land True \land same(turn)$
 - $pc_i = NC_i \land pc_i' = CR_i \land turn = i \land same(turn)$
 - $pc_i = NC_i \land pc_i' = NC_i \land turn \neq i \land same(turn)$
 - \bullet pc_i= $CR_i \land pc_i'=I_i \land turn'=(i+1) \mod 2$

exercise

- \bullet P≡m: cobegin P₀ || P₁ coend m'
- \bullet two processes P_0 and P_1 .

where: turn, x are integers and turn \in [0,1] and x \in [1,2] The initialized value of x is 1.

- 1. First order logic formulas
- 2. Kripke Structure.

experiment

IMP language:

- Aexp a::= $n|X|a_0+a_1|a_0-a_1|a_0\times a_1$ $n\in[0,2]$
- Bexp

b::=true|false|
$$a_0$$
= a_1 | a_0 ≤ a_1 | \neg b
$$|b_0 \land b_1|b_0 \lor b_1$$

• Com

c::=cobegin c||c coend | skip | X:=a |c₀;c₁ |wait(b) |if b then c₀ else c₁|while b do c

- The range of variables integers of [0,2]
- Values of boolean variables: 0 and 1
- The name of all variables are single lower letter

experiment(cont')

- Please translate the concurrent program into the first order logic.
- Please translate the first order logic into Kripke structure and draw a graph to represent KS.
- 3-part tool: Graphyviz
- official website: http://www.graphviz.org/ (better over wall)
- download link: http://soft.hao123.com/soft/appid/6971.html

summary

- Kripke Structure
- Translate one order logic into Kripke Structure
- Modeling digital circuit
- Modeling concurrent program