Работа №1: Классификация звёздных спектров

Выполнил: Павел Соболев

Задачи

- Получить спектр звезды, используя моделируемые с помощью компьютера телескоп и спектрограф;
- Сравнить этот спектр со спектром звезды известного спектрального класса;
- Отождествить абсорбционные линии на графическом и фотографическом изображениях спектра;
- Обсудить относительную глубину абсорбционных линий, измерив их, и сравнить со стандартным спектром;

Ход выполнения и результаты

В ходе работы с виртуальным телескопом и спектрографом были получены следующие данные. Отождествления проведены по наличию линий, их интенсивности, а также по общим характеристикам спектра. Пояснения приведены в примечаниях.

Таблица 1: Данные и результаты отождествлений (часть 1)

№	Зв. величина	Класс	Линии (λ в Å, интенсивность)	Примечания
78	11.146	G2 IV	K Ca II (3933.68, 0.150) H Ca II (3968.49, 0.160) H_{ε} (3970.07, 0.180) Fe I (4045.82, 0.700) H_{δ} (4101.75, 0.660) Ca I (4226.74, 0.700) G Band (4300.00, 0.480)	Интенсивные линии Н и К Са II, ослабленная линия Н I, есть линия Са I и многочисленные линии металлов
140	10.086	B6 V	$\begin{array}{c} \text{H Ca II (3968.49, 0.410)} \\ \text{H}_{\varepsilon} \ (3970.07, 0.400) \\ \text{He II (4100.04, 0.390)} \\ \text{H}_{\delta} \ (4101.60, 0.400) \\ \text{H}_{\gamma} \ (4340.48, 0.330) \\ \text{Fe I (4143.88, 0.770)} \end{array}$	Линии поглощения водорода и гелия, сильная линия Н Са II
142	7.572	M2 I	Ca I (4226.74, 0.130) H Ca II (3968.49, 0.070) Mn I (4030.76, 0.180) Fe I (4383.56, 0.430) G Band (4300.00, 0.360)	Изреженный спектр, линии молекул, слабая полоса G

Таблица 2: Данные и результаты отождествлений (часть 2)

№	Зв. величина	Класс	Линии (λ в Å, интенсивность)	Примечания
433	5.658	O8 V	$\begin{array}{c} {\rm H~Ca~II~(3968.49,~0.670)} \\ {\rm He~I~(4024.80,~0.820)} \\ {\rm He~II~(4100.04,~0.700)} \\ {\rm H}_{\gamma}~(4340.48,~0.530) \end{array}$	Слабые линии нейтрального водорода, гелия, ионизованного гелия
146	10.596	F0 V	K Ca II (3933.68, 0.420) H Ca II (3968.49, 0.320) H_{γ} (4340.48, 0.440) Fe I (4383.56, 0.790) Ca I (4226.74, 0.820) G Band (4300.00, 0.770)	Усиленные линии Н и К Са II, слабые линии металлов, появляется линия Са I, появляется полоса G
152	11.282	B6 V	H Ca II (3968.49, 0.390) He I (4120.82, 0.740) He II (4100.04, 0.380) H_{δ} (4101.75, 0.390) H_{γ} (4340.48, 0.330)	Линии поглощения водорода и гелия, сильная линия Н Са II
155	8.330	K0 V	K Ca II (3933.68, 0.260) G Band (4300.00, 0.500) Fe I (4383.56, 0.620) Ca I (4226.74, 0.550) H_{δ} (4101.75, 0.650)	Линии металлов и полоса G интенсивны, слабые линии водорода
68	7.666	K0 III	K Ca II (3933.68, 0.060) H Ca II (3968.48, 0.110) H_{ε} (3970.07, 0.510) Mn I (4030.76, 0.510) Fe I (4045.82, 0.420) G Band (4300.00, 0.410) Fe I (4283.56, 0.530)	Линии металлов и полоса G интенсивны, слабые линии водорода
272	11.031	F0 II	K Ca II (3933.68, 0.310) H Ca II (3968.49, 0.240) H_{γ} (4340.48, 0.290) Ca I (4226.74, 0.690)	Усиленные линии Н и К Са II, появляется линия Са I
147	9.351	M2 I	K Ca II (3933.68, 0.030) H Ca II (3968.49, 0.050) Mn I (4030.76, 0.200) Ca I (4226.74, 0.240) G Band (4300.00, 0.340)	Изреженный спектр, линии молекул, слабые линии полосы G

Работа №2: Определение постоянной Хаббла

Выполнил: Павел Соболев

Задачи

- Получить спектр галактики в скоплении, используя моделируемый с помощью компьютера телескоп и спектрометр;
- Измерив длины волн линий Н и К (Са II) в спектре, определить Доплеровское смещение;
- Определить видимую звездную величину галактики;
- Вычислить расстояние, используя видимую и абсолютную величины;
- Определить значение постоянной Хаббла.

Ход выполнения и результаты

В ходе работы с виртуальным телескопом и спектрометром были получены следующие данные:

Таблица 1: Звездные величины и длины волн

Скопление	Код объекта	Зв. величина	K Ca II (λ,I)	H Ca II (λ,I)	G Band (λ, I)
Ursa Major II	uma2-1	16.87	4484.0,0.465	_	_
Ursa Major I	uma1-3	14.49	4130.0, 0.315	4167.0, 0.315	_
Coma Berenices	Coma1	12.30	4012.0, 0.255	4048.0, 0.265	4391.0, 0.605
Bootes	Boot1	16.52	4445.0, 0.465	4485.0, 0.485	_
Corona Borealis	CrBor1	15.08	4209.0, 0.330	4246.0, 0.345	_
Sagittarius	GAS	10.98	3973.0, 0.235	4008.0, 0.255	4348.0, 0.600

Пропуски означают отсутствие линии в наблюдаемом участке спектра.

Звездные величины были пересчитаны в расстояния согласно

$$M = m + 5 - 5 \lg D$$
, $\implies \lg D = (m - M + 5) / 5$,

где абсолютная звездная величина M полагается равной -22^m для всех объектов.

Замеры линий были пересчитаны в доплеровские смещения и скорости согласно

$$\Delta \lambda = \lambda_{\mbox{\tiny измер.}} - \lambda_{\mbox{\tiny станд.}},$$

$$v_K = c \frac{\Delta \lambda_K}{\lambda_{K, \text{станд.}}}, \quad v_H = c \frac{\Delta \lambda_H}{\lambda_{H, \text{станд.}}},$$

где $\lambda_{K,\text{станд.}} = 3933.67$ Å, $\lambda_{H,\text{станд.}} = 3968.847$ Å, c = 299792.458 км/с.

Результаты вычислений:

Таблица 2: Расстояния и скорости

Скопление	Код объекта	Расстояние	Скорость
Ursa Major II	uma2-1	594.29	41941.69 ± 76.21
Ursa Major I	uma1-3	198.61	14965.22 ± 53.65
Coma Berenices	Coma1	72.44	5974.31 ± 53.65
Bootes	Boot1	505.83	38978.89 ± 53.65
Corona Borealis	CrBor1	260.62	20959.28 ± 53.65
Sagittarius	GAS	39.45	2977.45 ± 53.65

Построенная на основе этих данных диаграмма Хаббла выглядит следующим образом:

Рис. 1: Диаграмма Хаббла

Коэффициент вписанной прямой (он же постоянная Хаббла) равен 74.151 ± 0.077 км/с/Мпк.

Работа №3: Фотоэлектрическая фотометрия звезд скопления Плеяды

Выполнил: Павел Соболев

Задачи

- Используя моделируемые с помощью компьютера телескоп и фотометр, измерить видимые B, V звездные величины;
- Построить диаграмму Герцшпрунга-Рессела для скопления (V vs (B-V));
- Определить расстояние до Плеяд.

Ход выполнения и результаты

В ходе работы с виртуальным телескопом и фотометром были получены следующие данные:

Таблица 1: Видимые звездные величины в фильтрах В и V (часть 1)

Звезда	Прямое восхождение	Склонение	В	V	B-V
1	$3^h \ 41^m \ 05^s$	24° 05′ 11″	13.311	12.530	0.781
2	$3^h \ 42^m \ 15^s$	$24^{\circ}\ 19'\ 57''$	4.201	4.310	-0.109
3	$3^h \ 42^m \ 33^s$	$24^\circ~18'~55''$	8.948	8.602	0.346
4	$3^h \ 42^m \ 41^s$	$24^\circ~28'~22''$	10.246	9.700	0.546
5	$3^h \ 43^m \ 08^s$	$24^\circ~42'~47''$	13.060	12.049	1.011
6	$3^h \ 43^m \ 08^s$	25° 00′ 46″	15.343	14.337	1.006
7	$3^h \ 43^m \ 39^s$	23° 28′ 58″	8.472	8.110	0.362
8	$3^h \ 43^m \ 42^s$	23° 20′ 34″	13.009	12.022	0.987
9	$3^h \ 43^m \ 56^s$	23° 25′ 46″	11.162	10.520	0.642
10	$3^h \ 44^m \ 03^s$	24° 25′ 54″	6.820	6.798	0.022
11	$3^h \ 44^m \ 11^s$	24° 07′ 23″	9.932	9.458	0.474
12	$3^h \ 44^m \ 19^s$	24° 14′ 16″	13.750	12.631	1.119
13	$3^h \ 44^m \ 27^s$	23° 57′ 57″	2.780	2.870	-0.09
14	$3^h \ 44^m \ 39^s$	23° 27′ 17″	8.951	7.718	1.233
15	$3^h \ 44^m \ 39^s$	24° 34′ 47″	16.988	16.402	0.586
16	$3^h \ 44^m \ 45^s$	23° 24′ 52″	9.956	8.801	1.155
17	$3^h \ 45^m \ 09^s$	24° 50′ 59″	8.154	6.459	1.695
18	$3^h \ 45^m \ 27^s$	23° 17′ 57″	5.379	5.451	-0.072
19	$3^h \ 45^m \ 28^s$	23° 53′ 41″	10.586	10.022	0.564

Таблица 2: Видимые звездные величины в фильтрах В и V (часть 2)

Звезда	Прямое восхождение	Склонение	В	V	B-V
20	$3^h \ 45^m \ 33^s$	24° 12′ 59″	7.060	6.946	0.114
21	$3^h \ 46^m \ 26^s$	23° 41′ 11″	12.128	11.344	0.784
22	$3^h \ 46^m \ 26^s$	23° 49′ 58″	16.851	15.703	1.148
23	$3^h \ 46^m \ 57^s$	24° 04′ 51″	9.340	9.171	0.169
24	$3^h \ 47^m \ 29^s$	24° 20′ 34″	7.550	7.420	0.13

Построенная на основе этих данных диаграмма Герцшпрунга-Рессела выглядит так:

Рис. 1: Диаграмма Герцшпрунга-Рессела

Имеются следующие данные для абсолютных звездных величин:

Таблица 3: Абсолютные звездные величины в зависимости от показателя цвета

M	B-V	Класс
-5.8	-0.35	O5
-4.1	-0.31	В0
-1.1	-0.16	B5
-0.7	0.0	A0
2.0	0.13	A5
2.6	0.27	F0
3.4	0.42	F5
4.4	0.58	G0
5.1	0.70	G5
5.9	0.89	K0
7.3	1.18	K5
9.0	1.45	M0
11.8	1.63	M5
16.0	1.80	M8

Добавив эти данные на диаграмму Герцшпрунга-Рессела выше; убрав из измеренных данных звезды, не лежащие на главной последовательности; вписав в обе выборки полиномы третьей степени и вычислив разницу между ними, получаем следующий график:

Рис. 2: Разница между абсолютными и видимыми зв. величинами

Значение модуля разности (медианы \pm межквартильного размаха разницы полиномов на области определения видимых звездных величин) равно 5.83 ± 0.51^m .

Согласно

$$\lg D = (m - M + 5)/5,$$

расстояние до скопления Плеяды равно 146.0 ± 35.0 пк.

Л.Р.1с. Измерение параметров диаграммы направленности радиотелескопа УРТ-2,5 НИАИ СпбГУ

F, Γ гц = 4,50 **Дата наблюдения** — 02.08.2008 ФИО – Соболев Павел Леонидович

Дата обработки - 03.09.2021

Группа - 591

Поляризация – интенсивность

Тип аппроксимации – модель (Гауссиана / ф-я Бесселя)

(P.S. расчет по исходной кривой не производить)

АЛЬФА			Гла	вный .	ЛЕПЕСТОК		ПЕ	ПЕРВЫЙ ЛЕВЫЙ ЛЕПЕСТОК			ПЕРВЫЙ ПРАВЫЙ ЛЕПЕСТОК			
Nº	Тнач. -Ткон.	CL	CR	A % dX '	ΏA ′	W	Ώ′	W	L ′	Ι%	Ώ′	W	L ′	I %
скана		C	См. н кринш	-	HPBW	Wbm	SLW	Wsl	SLF	Ampl	SLW	Wsl	SLF	Ampl
1	14.47- 14.53				111,41	112,75	84,51	6,82	-183,02	1,64	65,55	3,07	180,43	0,91
2					111,54	113,32	75,25	6,24	-180,67	1,64	62,84	2,77	180,72	0,88
Среднее					111,48	113,04	79,88	6,53	-181,85	1,64	64,20	2,92	180,58	0,90
Диспер					0,07	0,28	4,63	0,29	1,18	0,00	1,36	0,15	0,14	0,02
ДЕЛЬТА		Главный лепесток				ПЕР	вый вер	РХНИЙ ЛЕПЕСТОК ПЕРВЫЙ НИЖНИЙ ЛЕПЕСТОК						
Nº	Тнач. -Ткон.	CL	CR	A % dX '	ΏD ′	W	Ώ′	W	L '	Ι%	Ώ΄	W	L '	Ι%
скана		C	См. н	-	HPBW	Wbm	SLW	Wsl	SLF	Ampl	SLW	Wsl	SLF	Ampl
1	15.08- 15.23				107,66	104,17	75,96	7,03	-161,36	2,08	73,65	15,22	177,52	4,09
2					106,18	101,15	73,41	6,12	-155,1	1,92	74,43	13,82	179,79	3,66
Среднее					106,92	102,66	74,69	6,57	-158,23	2,00	74,04	14,52	178,66	3,88
Диспер.					0,74	1,51	1,28	0,45	3,13	0,08	0,39	0,70	1,13	0,22

Расчет К по средним параметрам лепестков:

$$L' = 174.83$$

174,83
$$\Omega$$
 бок ' = 73,20 I % = 2,10

$$1\% = 2.10$$

W главная =
$$18 \times \Omega_A' \times \Omega_D' = 214540$$
 W боковых = $L' \times \Omega_{BOK}' \times I\% = 25405$

M FOR OR IN
$$= I' \times O$$
 FOR $' \times I\% = 25405$

$$\mathbf{K}$$
 (%) = \mathbf{W} боковых / (\mathbf{W} главная + \mathbf{W} боковых) ×100 = 10,59

Расчет К по результатам численного интегрирования:

W alpha + **W** delta = 215,69
$$\sum$$
 W боковых = 30,54

K (%) = (
$$\sum$$
 W боковых) / (**W** alpha + **W** delta + \sum **W** боковых) ×100 = 12,40

Сканы по Альфа

Сканы по Дельта

Работа №5: Построение кривой блеска и определение параметров поляризации

Выполнил: Павел Соболев

Задачи

- Используя данные выбранного объекта, измерить видимые R, I звездные величины и параметры поляризации;
- Построить кривые блеска для каждого из фильтров в соотношении со стандартом;
- Построить график зависимости степени поляризации от даты;
- Проанализировать, наблюдается ли корреляция между значениями кривой блеска и степенями поляризации.

Ход выполнения и результаты

В ходе обработки данных Лацертиды (BL Lacertae) были получены следующие данные:

Таблица 1: Видимые звездные величины объекта в фильтрах R и I (часть 1)

JD (R)	R	σR	JD (I)	Ι	σ I	R-I
56536.3558	13.7460	0.0090	56536.3585	12.7920	0.0070	0.9540
56540.4226	14.0420	0.0070	56540.4283	13.1880	0.0040	0.8540
56541.3018	13.9430	0.0050	56541.3046	13.1150	0.0040	0.8280
56542.5013	13.9610	0.0050	56542.5060	13.0970	0.0040	0.8640
56543.3541	13.9590	0.0050	56543.3568	13.0980	0.0030	0.8610
56545.3668	14.0490	0.0060	56545.3697	13.0830	0.0040	0.9660
56546.3152	13.7970	0.0050	56546.3180	12.9690	0.0030	0.8280
56547.3304	13.6750	0.0040	56547.3354	12.7810	0.0030	0.8940
56549.2789	13.5480	0.0040	56549.2818	12.7300	0.0030	0.8180
56550.3737	13.5830	0.0040	56550.3764	12.7200	0.0030	0.8630
56552.3870	13.5410	0.0040	56552.3919	12.6760	0.0030	0.8650
56569.4054	13.5210	0.0040	56569.4087	12.7030	0.0030	0.8180
56577.3632	13.2990	0.0060	56577.3684	12.4990	0.0040	0.8000
56578.1791	13.1860	0.0130	56578.1912	12.4130	0.0030	0.7730
56580.3644	13.3850	0.0030	56580.3671	12.5610	0.0020	0.8240
56585.3955	13.1770	0.0030	56585.3982	12.3470	0.0020	0.8300
56586.2477	13.1650	0.0030	56586.2517	12.3550	0.0020	0.8100
56588.2350	13.3790	0.0050	56588.2377	12.5410	0.0040	0.8380

Таблица 2: Видимые звездные величины объекта в фильтрах R и I (часть 2)

JD (R)	R	σR	JD (I)	I	σ I	R-I
56591.3998	13.2820	0.0030	56591.4194	12.4730	0.0020	0.8090
56597.1685	12.8060	0.0030	56597.1715	12.0380	0.0020	0.7680
56602.3555	13.1470	0.0020	56602.3584	12.3430	0.0020	0.8040
56605.2586	12.8570	0.0020	56605.2841	12.0460	0.0020	0.8110
56608.1664	13.2440	0.0030	56608.1693	12.4410	0.0020	0.8030
56615.1514	13.2540	0.0030	56615.1723	12.4230	0.0030	0.8310
56621.2505	12.6410	0.0020	56621.2532	11.8660	0.0010	0.7750
56623.1098	12.7320	0.0030	56623.1139	11.9390	0.0020	0.7930
56631.3270	13.1630	0.0030	56631.3299	12.3420	0.0020	0.8210
56640.1457	13.7100	0.0050	56640.1492	12.8670	0.0030	0.8430
56641.1475	13.3790	0.0040	56641.1506	12.5830	0.0030	0.7960

Таблица 3: Степени и углы поляризации объекта (часть 1)

JD	m	Р	σP	PA	σ PA	FWHM
56536.3634	13.6705	0.6914	1.4793	140.6096	61.4042	2.1475
56540.4348	13.9200	4.8775	1.0199	169.0117	6.0012	1.9563
56541.3129	13.8915	3.2152	1.7247	7.1903	15.3950	1.9462
56542.5114	13.8355	5.4152	1.5334	158.2911	8.1268	1.9813
56543.3620	13.8675	10.1796	0.7187	150.5006	2.0264	2.1850
56545.3768	13.8780	15.3213	2.8278	162.6254	5.2971	1.9325
56546.3229	13.7575	12.4428	2.3806	150.0168	5.4909	2.0025
56547.3473	13.6090	14.6659	2.3789	161.5024	4.6553	1.9588
56549.2873	13.4665	11.2744	1.5462	141.3837	3.9360	2.0075

Таблица 4: Степени и углы поляризации объекта (часть 2)

JD	m	Р	σP	PA	σ PA	FWHM
56550.3813	13.4765	9.9617	1.2404	156.8403	3.5736	2.1537
56552.3971	13.4075	12.4410	0.9988	165.5077	2.3041	2.0625
56569.4146	13.4940	11.4891	1.0966	167.2973	2.7392	1.9925
56577.3847	13.2490	12.1699	1.4052	173.9112	3.3138	2.0250
56578.1851	13.1785	10.2769	0.7384	178.2259	2.0621	2.0525
56580.3721	13.3010	2.9258	0.9708	14.3813	9.5232	2.2112
56585.4175	13.1090	0.4402	1.1097	144.0068	72.3504	2.1625
56586.2331	13.0810	1.3070	0.6599	118.1502	14.4896	2.2775
56588.2425	13.2775	1.0461	0.7691	136.1884	21.1001	2.5575
56591.4052	13.2495	10.0611	1.0264	9.7501	2.9278	1.9875
56597.1839	12.7745	7.6083	0.3221	182.0373	1.2150	2.3400
56602.3644	13.0600	5.8633	0.4352	31.6716	2.1304	2.3800
56605.2773	12.7875	8.0028	0.3421	67.6820	1.2270	2.2675
56608.1600	13.1820	12.1093	0.5322	56.5424	1.2614	2.2050
56615.1587	13.1835	12.6558	0.6592	12.7137	1.4949	2.6412
56621.2582	12.5450	8.6208	0.2372	29.1651	0.7898	2.0250
56623.1202	12.6690	5.9439	0.7510	173.9255	3.6261	2.9037
56631.3110	13.0800	20.3393	1.2419	177.1344	1.7524	2.0538
56640.1541	13.6340	3.3824	0.7550	153.7711	6.4061	2.3363
56641.1556	13.3140	2.3131	0.8012	156.2109	9.9406	2.1563

Таблица 5: Степени и углы поляризации первого стандарта (часть 1)

JDmP σP PA σPA FWHM56536.363411.99852.30240.144338.20821.79822.172556540.434811.99250.58070.1701151.20298.40741.9956541.312912.00252.8540.094892.73090.9532.007556542.511411.98452.48930.1032160.11711.19031.967556543.36212.0030.86250.0983166.17853.27082.202556545.376811.99954.80460.101927.8370.60851.967556546.322911.98654.02060.1082179.32860.77241.987556547.347311.9964.04690.1047160.34570.74281.9956549.287311.97952.59230.101895.53331.12731.9756550.381311.99652.00580.1184126.37131.69482.17556552.397112.0041.54770.125998.28772.3342.07556569.414611.99251.69990.12893.30772.16122.00556577.384711.9951.46070.356194.68326.9942.00556580.372112.0041.7710.159130.95862.57712.1956586.233112.0071.02540.11242.74543.14752.32556588.242511.99551.65640.120129.30272.0811.9656597.183911.9990.451<							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	JD	m	Р	σP	PA	σPA	FWHM
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56536.3634	11.9985	2.3024	0.1443	38.2082	1.7982	2.1725
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56540.4348	11.9925	0.5807	0.1701	151.2029	8.4074	1.99
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56541.3129	12.0025	2.854	0.0948	92.7309	0.953	2.0075
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56542.5114	11.9845	2.4893	0.1032	160.1171	1.1903	1.9675
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56543.362	12.003	0.8625	0.0983	166.1785	3.2708	2.2025
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56545.3768	11.9995	4.8046	0.1019	27.837	0.6085	1.9675
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56546.3229	11.9865	4.0206	0.1082	179.3286	0.7724	1.9875
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56547.3473	11.996	4.0469	0.1047	160.3457	0.7428	1.99
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56549.2873	11.9795	2.5923	0.1018	95.5333	1.1273	1.97
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56550.3813	11.9965	2.0058	0.1184	126.3713	1.6948	2.175
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56552.3971	12.004	1.5477	0.1259	98.2877	2.334	2.075
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56569.4146	11.9925	1.6999	0.128	93.3077	2.1612	2.005
56580.3721 12.0085 1.5602 0.1138 158.1154 2.0942 2.2325 56585.4175 12.004 1.771 0.159 130.9586 2.5771 2.19 56586.2331 12.007 1.0254 0.1124 2.7454 3.1475 2.325 56588.2425 11.9955 1.0479 0.1498 17.1494 4.103 2.555 56591.4052 11.9825 1.6564 0.1201 29.3027 2.081 1.96 56597.1839 11.999 0.451 0.0962 100.7342 6.1223 2.35	56577.3847	11.995	1.4607	0.356	194.6832	6.994	2.005
56585.4175 12.004 1.771 0.159 130.9586 2.5771 2.19 56586.2331 12.007 1.0254 0.1124 2.7454 3.1475 2.325 56588.2425 11.9955 1.0479 0.1498 17.1494 4.103 2.555 56591.4052 11.9825 1.6564 0.1201 29.3027 2.081 1.96 56597.1839 11.999 0.451 0.0962 100.7342 6.1223 2.35	56578.1851	11.9775	0.6991	0.2067	164.2015	8.4839	2.0725
56586.2331 12.007 1.0254 0.1124 2.7454 3.1475 2.325 56588.2425 11.9955 1.0479 0.1498 17.1494 4.103 2.555 56591.4052 11.9825 1.6564 0.1201 29.3027 2.081 1.96 56597.1839 11.999 0.451 0.0962 100.7342 6.1223 2.35	56580.3721	12.0085	1.5602	0.1138	158.1154	2.0942	2.2325
56588.2425 11.9955 1.0479 0.1498 17.1494 4.103 2.555 56591.4052 11.9825 1.6564 0.1201 29.3027 2.081 1.96 56597.1839 11.999 0.451 0.0962 100.7342 6.1223 2.35	56585.4175	12.004	1.771	0.159	130.9586	2.5771	2.19
56591.4052 11.9825 1.6564 0.1201 29.3027 2.081 1.96 56597.1839 11.999 0.451 0.0962 100.7342 6.1223 2.35	56586.2331	12.007	1.0254	0.1124	2.7454	3.1475	2.325
56597.1839 11.999 0.451 0.0962 100.7342 6.1223 2.35	56588.2425	11.9955	1.0479	0.1498	17.1494	4.103	2.555
	56591.4052	11.9825	1.6564	0.1201	29.3027	2.081	1.96
56602.3644 11.9985 0.6034 0.1025 171.4364 4.8771 2.39	56597.1839	11.999	0.451	0.0962	100.7342	6.1223	2.35
	56602.3644	11.9985	0.6034	0.1025	171.4364	4.8771	2.39

Таблица 6: Степени и углы поляризации первого стандарта (часть 2)

$_{ m JD}$	\mathbf{m}	P	σP	PA	σPA	FWHM
56605.2773	11.9975	0.4469	0.1119	0.0382	7.1888	2.265
56608.16	12.0125	0.7509	0.109	10.0366	4.1652	2.215
56615.1587	12.014	0.8929	0.1421	178.9649	4.5686	2.6525
56621.2582	11.9825	0.22	0.1223	132.5542	15.9533	1.96
56623.1202	11.996	1.2349	0.1296	177.3136	3.0129	2.925
56631.311	12.0015	2.1033	0.0992	88.0951	1.353	2.0525
56640.1541	12.002	0.9688	0.1167	13.7974	3.4563	2.3375
56641.1556	11.997	1.1075	0.1466	176.0218	3.8004	2.1675

Из этих данных были отброшены несколько точек объекта, имеющих высокие ошибки тех или иных параметров: 1, 3, 15-18. На основе оставшихся данных были получены следующие графики:

Рис. 1: Кривая блеска в фильтре R

Рис. 2: Кривая блеска в фильтре I

Рис. 3: Зависимость степени поляризации от даты

Рис. 4: Зависимость показателя цвета от даты

Между значениями звездных величин и поляризацией наблюдаются следующие корреляции:

- Участки постоянства значений на промежутке от первого отсчета даты до дня 56575 (с учетом компенсации ошибки в данных, выражающейся в резком повышении звездной величины стандарта);
- Медленное убывание значения звездной величины на промежутке от дня 56575 до дня 56590; убывание степени поляризации на том же промежутке;
- Локальные минимумы значения звездной величины на днях 56600, 56620; локальные минимумы у степени поляризации там же;
- Локальные максимумы значения звездной величины на днях 56617, 56630; локальные максимумы у степени поляризации там же.