Psy/Educ 6600: Unit 1 Homework

Exploratory Data Analysis

Your Name

Spring 2018

Contents

Chapter 1. DATA PREPARATION	2
Load Packages	2
Import Data, Define Factors, and Compute New Variables	2
Chapter 2. DISTRIBUTION and UNIVARIATE PLOTS	9
2C-1. Frequency Distribution and Bar Chart	•
2C-2. Bar Charts	4
2C-3. Frequency Distribution and Histogram	Ę
2C-4. Frequency Distribution and Histogram	
2C-6. Histograms -by- a Factor	
2C-9. Deciles and Quartiles	
2C-10. Various Percentiles	
Chapter 3. SUMMARY DESCRIPTIVE STATISTICS	10
3C-1/3. Descriptive Statistics -full	10
3C-1/3. Descriptive Statistics -full	10 11
3C-1/3. Descriptive Statistics -full- 3C-4 Boxplots	10 11 11
3C-1/3. Descriptive Statistics -full- 3C-4 Boxplots	10 11 11 12
3C-1/3. Descriptive Statistics -full- 3C-4 Boxplots	10 11 11 12 13
3C-1/3. Descriptive Statistics -full- 3C-4 Boxplots	10 11 12 13 14
3C-1/3. Descriptive Statistics -full- 3C-4 Boxplots	10 11 11 12 13 14 15
3C-1/3. Descriptive Statistics -full- 3C-4 Boxplots	10 11 12 13 14 14

Chapter 1. DATA PREPARATION

Load Packages

• Make sure the packages are **installed** (Package tab)

```
library(tidyverse)  # Loads several very helpful 'tidy' packages
library(readxl)  # Read in Excel datasets
library(furniture)  # Nice tables (by our own Tyson Barrett)
library(psych)  # Lots of nice tid-bits
```

Import Data, Define Factors, and Compute New Variables

- Make sure the **dataset** is saved in the same *folder* as this file
- Make sure the that folder is the working directory

NOTE: I added the second line to convert all the variables names to lower case. I still kept the F as a capital letter at the end of the five factor variables.

```
data_clean <- read_excel("Ihno_dataset.xls") %>%
  dplyr::rename_all(tolower) %>%
  dplyr::mutate(genderF = factor(gender,
                                 levels = c(1, 2),
                                 labels = c("Female",
                                             "Male"))) %>%
  dplyr::mutate(majorF = factor(major,
                                levels = c(1, 2, 3, 4,5),
                                labels = c("Psychology",
                                            "Premed",
                                            "Biology",
                                            "Sociology",
                                            "Economics"))) %>%
  dplyr::mutate(reasonF = factor(reason,
                                 levels = c(1, 2, 3),
                                 labels = c("Program requirement",
                                             "Personal interest",
                                             "Advisor recommendation"))) %>%
  dplyr::mutate(exp_condF = factor(exp_cond,
                                   levels = c(1, 2, 3, 4),
                                   labels = c("Easy",
                                              "Moderate",
                                               "Difficult",
                                               "Impossible"))) %>%
  dplyr::mutate(coffeeF = factor(coffee,
                                 levels = c(0, 1),
                                 labels = c("Not a regular coffee drinker",
                                             "Regularly drinks coffee"))) %>%
  dplyr::mutate(hr_base_bps = hr_base / 60) %>%
  dplyr::mutate(anx_plus = rowsums(anx_base, anx_pre, anx_post)) %>%
  dplyr::mutate(hr_avg = rowmeans(hr_base + hr_pre + hr_post)) %>%
  dplyr::mutate(statDiff = statquiz - exp_sqz)
```

Chapter 2. DISTRIBUTION and UNIVARIATE PLOTS

2C-1. Frequency Distribution and Bar Chart

Request a frequency distribution using the furniture::tableF(continuous_var) function

Frequency distribution: majorF

Create a bar chart using geom_bar() for the Undergraduate Major (majorF) variable for Ihno's students.

Make sure to add the variable of interest into the asthetics: ggplot(aes(continuous_var)) before adding the geom_bar() layer.

Bar Plot: majorF

2C-2. Bar Charts

Repeat Exercise 1 for the variables prevmath and phobia.

IN THE WRITEUP: Would it make sense to request a histogram instead of a bar chart for phobia ? Discuss.

Bar Plot: prevmath

Bar Plot: phobia

2C-3. Frequency Distribution and Histogram

Request a frequency distribution and a histogram for the variable statquiz. Use the option in the function geom_histogram(bins = #) to change the number of bins or geom_histogram(binwidth = #) to change the bin width to give a better figure.

IN THE WRITEUP: Describe the shape of this distribution.

Frequency distrubution: statquiz

Histogram: statquiz, with a different number/width of bins

2C-4. Frequency Distribution and Histogram

Request a frequency distribution and a histogram for the variables baseline anxiety (anx_base) and baseline heart rate (hr_base).

IN THE WRITEUP: Comment on R's choice of class intervals for each histogram.

Frequency distrubution: anx_base

Histogram: anx_base

Frequency distrubution: hr_base

Histogram: hr_base

2C-6. Histograms -by- a Factor

Request Histograms for the variables anx_base and hr_base divided by genderF using an additional $facet_grid(group_var \sim .)$ layer to create two plots.

```
# Histogram: anx_base, by genderF
# Histogram: hr_base, by genderF
```

2C-9. Deciles and Quartiles

Using the quantile(probs = c(#, #, ..., #)) function, request the deciles and quartiles for the phobia variable.

Make sure to add a <code>dplyr::pull(varname)</code> step to pull out only the one variable you are interested in.

```
# Deciles: phobia
# Quartiles: phobia
```

2C-10. Various Percentiles

Request the following percentiles for the variables hr_base and hr_pre: 15, 30, 42.5, 81, and 96.

```
# Percentiles: hr_base
# Percentiles: hr_pre
```

Chapter 3. SUMMARY DESCRIPTIVE STATISTICS

3C-1/3. Descriptive Statistics -full-

Use the psych::describe() function to find the mode, median and mean, as well as the ~range, semi-interquartile range, unbiased variancez, and~ unbiased* standard deviation** for each of the quantitative variables in Ihno's data set.

Make sure to use a dplyr::select(var1, var2, ..., var12) step to select only the variables of interest.

Descriptive Stats: all quant vars

3C-4 Boxplots

(a) Boxplot

Create a plot for the statquiz variable using a geom_boxplot() layer.

Make sure to specify the astheticis in ggplot(aes(...)). Since you want to plot the entire sample together, set x = "Full Sample" and $y = continuous_var$

Boxplot: statquiz

(b) Boxplots -by- a Factor

Create a plot for the statquiz variable by majorF.

You may choose to (1) split the x-axis with the $x = grouping_var$ option in the asthetics, (2) specify a variable to fill in the boxes with color with the fill = $grouping_var$, or (3) make separate panels by adding a facet_grid(. ~ $grouping_var$ layer.

Boxplot: statquiz, by majorF

(c) Boxplot -for- a Subset

Use a dplyr::filter() step filter the subjects in the dataset to create a **Boxplot** for the statquiz variable for just the female Biology majors.

Make sure to use == instead of = to test for equality within the filter step. Make sure the use a & symbol to require multiple conditions.

Boxplot: statquiz, for a subset

(d) Boxplots -by- a Factor and -for- a Subset

Use dplyr::filter() to create a SIDE-by-SIDE Boxplots for the statquiz variable that compares the female Psychology majors to the female Biology majors.

A helpful symbol-set is %in%, which tests if the thing before it (majorF) is included in the concatinated list of options (eg. c("Biology", "Psychology")) that comes after it. Make sure the use a & symbol to require multiple conditions.

Boxplot: statquiz, by a factor, for a subset

3C-5. Boxplots -for- Repeated Measures

Create Boxplots for both baseline and prequiz anxiety, so that they appear side-by-side on the same graph.

Some data manipulations is needed to "stack" the two variables (baseline and pre-test) into a single variable. This is done with with the tidyr::gather(key = "new_key", value = "new_value", old_var_1, old_var_2, ...) function.

Boxplot: anxiety, compare two repeated measures

3C-6. Descriptive Statistics -by- a Factor

Use furniture::table1() to find the mean and standard deviation for each of the quantitative variables separately for the male and female econ majors.

Make sure to use the dplyr::group_by(grouping_var) step before the furniture::table1() step.

Descriptive Stats: all quant vars, by genderF

Chapter 4. STANDARDIZED SCORES

4C-1. Calculate z-Scores

Use the dplyr::mutate(new_zscore_var = scale(old_orig_var)) function to create two new variables consisting of the z scores for the anxiety and heart rate measures at baseline in Ihno's data set.

Then request *means* and *SD's* of the *z-score* variables with the furniture::table1() function to demonstrate that the means and SD s are 0 and 1, respectively, in each case.

Descriptive Stats: baseline anx & hr, original and z-scores