Name: Sahas Marwah Roll Number: 2020237

Computer Architecture Assignment 1

1. Observations on L2 cache miss rate statistics:

In our assignment, we are changing L2 cache size and associativity. This leads to changes in hit and miss rates.

So intuitively and experimentally, we can infer that **by increasing the cache size miss rate decreases**. This is due to the fact that more data can be cached due to the larger size.

We know that higher associativity means more complex hardware We also observed that the miss rate was reduced by increasing the associativity in the L2 cache parameter.

2. A. Configuration script:

Attached in the zip file: **cache_and_main.py** (explanation of code written in comments)

B. Graph:

Configurations used:

Size_Associativity:

4kB_1	8kB_1	16kB_1	32kB_1	64kB_1	128kB_1	256kB_1	512kB_1	1024kB_1
4kB_2	8kB_2	16kB_2	32kB_2	64kB_2	128kB_2	256kB_2	512kB_2	1024kB_2
4kB_4	8kB_4	16kB_4	32kB_4	64kB_4	128kB_4	256kB_4	512kB_4	1024kB_4
4kB_8	8kB_8	16kB_8	32kB_8	64kB_8	128kB_8	256kB_8	512kB_8	1024kB_8

Values:

```
X = [4, 8, 16, 32, 64, 128, 256, 512, 1024]

Y_1 = [0.984961, 0.977155, 0.894834, 0.828099, 0.635401, 0.538618, 0.456808, 0.368668, 0.248481]

Y_2 = [0.982304, 0.973260, 0.955630, 0.721525, 0.634303, 0.539766, 0.448473, 0.366017, 0.257389]

Y_4 = [0.815644, 0.805447, 0.780133, 0.722954, 0.641631, 0.546105, 0.453966, 0.369617, 0.280239]

Y_8 = [0.813614, 0.803059, 0.775371, 0.724465, 0.643745, 0.547417, 0.455057, 0.371925, 0.286720]
```

Observations from my graph:

My graph is a bit different from the one given in the book. In my graph, for different associativity line graphs, they all converge from 64kb - 512kb L2 cache size and then diverge a little bit in the end.

This may be because of the different input file.

But the general trend is almost the same.

C. Explanation for graph and statistics:

We observed that the miss rate is inversely proportional to cache size as well as the associativity.

The larger a cache is, the less chance there will be of a conflict, hence fewer misses.

In the case of associativity, **higher associativity means each set has more blocks, so there's less chance of a conflict** between two addresses. Hence, fewer misses.

We see this trend from the graph too.