Math 362: Mathematical Statistics II

Le Chen

le.chen@emory.edu chenle02@gmail.com

> Emory University Atlanta, GA

Last updated on Spring 2021 Last compiled on January 15, 2023

2021 Spring

Creative Commons License (CC By-NC-SA)

Chapter 11. Regression

- § 11.1 Introduction
- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Model
- § 11.A Appendix Multiple/Multivariate Linear Regression
- § 11.5 The Bivariate Normal Distribution

Plan

- § 11.1 Introduction
- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Model
- § 11.A Appendix Multiple/Multivariate Linear Regression
- § 11.5 The Bivariate Normal Distribution

Chapter 11. Regression

- § 11.1 Introduction
- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Model
- § 11.A Appendix Multiple/Multivariate Linear Regressior
- § 11.5 The Bivariate Normal Distribution

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sigma_x \sigma_y} \ \, \Big] \ \, \text{Covarianced normalized by Standard Deviation} \\ \text{Correlation between X and Y} \\ \text{Standard deviation of X} \\ \text{Standard deviation of Y}$$

Notation:
$$Corr(X, Y) = \rho(X, Y) = \rho_{XY}$$

Computing:
$$Var(X) = \sigma_X^2$$
, $Var(Y) = \sigma_Y^2$, $Cov(X, Y) = \sigma_{XY}$

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_{X}\sigma_{Y}}$$

Notation:
$$Corr(X, Y) = \rho(X, Y) = \rho_{XY}$$

Computing:
$$\operatorname{Var}(X) = \sigma_X^2$$
, $\operatorname{Var}(Y) = \sigma_Y^2$, $\operatorname{Cov}(X,Y) = \sigma_{XY}$

$$\downarrow \rho_{XY} = \frac{\sigma_{XY}}{\sigma_{X}\sigma_{Y}}$$

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sigma_x \sigma_y} \ \ \, \int$$
 Covarianced normalized by Standard Deviation Correlation between X and Y
$$\int\limits_{\text{Standard deviation of Y}} \text{Correlation between X and Y}$$

Notation:
$$Corr(X, Y) = \rho(X, Y) = \rho_{XY}$$

Computing:
$$\operatorname{Var}(X) = \sigma_X^2$$
, $\operatorname{Var}(Y) = \sigma_Y^2$, $\operatorname{Cov}(X,Y) = \sigma_{XY}$

$$\psi$$

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_{X}\sigma_{Y}}$$

- a. $|\rho(X, Y)| \le 1$
- **b.** $\rho(X, Y) = 1$ if and only if Y = aX + b for some a > 0 and $b \in \mathbb{R}$; $\rho(X, Y) = -1$ if and only if Y = aX + b for some a < 0 and $b \in \mathbb{R}$.

Proof. (a)

$$|\rho(X, Y)| \le 1$$

1

$$\begin{split} |\mathbb{E}\left((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right)| &\leq \sqrt{\text{Var}(X)\text{Var}(Y)} \\ &= \sqrt{\mathbb{E}\left((X - \mathbb{E}(X))^2\right)}\sqrt{\mathbb{E}\left((Y - \mathbb{E}(Y))^2\right)} \end{split}$$

which is nothing but the Cauchy-Schwartz inequality

a.
$$|\rho(X, Y)| \leq 1$$

b. $\rho(X,Y)=1$ if and only if Y=aX+b for some a>0 and $b\in\mathbb{R}$; $\rho(X,Y)=-1$ if and only if Y=aX+b for some a<0 and $b\in\mathbb{R}$

Proof. (a)

$$|\rho(X, Y)| \le 1$$

1

$$\begin{split} |\mathbb{E}\left((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right)| &\leq \sqrt{\text{Var}(X)\text{Var}(Y)} \\ &= \sqrt{\mathbb{E}\left((X - \mathbb{E}(X))^2\right)}\sqrt{\mathbb{E}\left((Y - \mathbb{E}(Y))^2\right)} \end{split}$$

which is nothing but the Cauchy-Schwartz inequality.

- a. $|\rho(X, Y)| \le 1$
- **b.** $\rho(X, Y) = 1$ if and only if Y = aX + b for some a > 0 and $b \in \mathbb{R}$;

$$\rho(X,Y)=-1$$
 if and only if $Y=aX+b$ for some $a<0$ and $b\in\mathbb{R}$

Proof. (a

$$|\rho(X, Y)| \le 1$$

1

$$\begin{split} |\mathbb{E}\left((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right)| &\leq \sqrt{\text{Var}(X)\text{Var}(Y)} \\ &= \sqrt{\mathbb{E}\left((X - \mathbb{E}(X))^2\right)}\sqrt{\mathbb{E}\left((Y - \mathbb{E}(Y))^2\right)} \end{split}$$

which is nothing but the Cauchy-Schwartz inequality

- a. $|\rho(X, Y)| \le 1$
- **b.** $\rho(X, Y) = 1$ if and only if Y = aX + b for some a > 0 and $b \in \mathbb{R}$; $\rho(X, Y) = -1$ if and only if Y = aX + b for some a < 0 and $b \in \mathbb{R}$.

Proof. (a

$$|\rho(X, Y)| \le 1$$

1

$$\begin{split} |\mathbb{E}\left((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right)| &\leq \sqrt{\text{Var}(X)\text{Var}(Y)} \\ &= \sqrt{\mathbb{E}\left((X - \mathbb{E}(X))^2\right)}\sqrt{\mathbb{E}\left((Y - \mathbb{E}(Y))^2\right)} \end{split}$$

which is nothing but the Cauchy-Schwartz inequality

- a. $|\rho(X, Y)| \le 1$
- **b.** $\rho(X, Y) = 1$ if and only if Y = aX + b for some a > 0 and $b \in \mathbb{R}$; $\rho(X, Y) = -1$ if and only if Y = aX + b for some a < 0 and $b \in \mathbb{R}$.

Proof. (a)

$$|\rho(X, Y)| \leq 1$$

1

$$\begin{aligned} |\mathbb{E}\left((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right)| &\leq \sqrt{\mathsf{Var}(X)\mathsf{Var}(Y)} \\ &= \sqrt{\mathbb{E}\left((X - \mathbb{E}(X))^2\right)}\sqrt{\mathbb{E}\left((Y - \mathbb{E}(Y))^2\right)} \end{aligned}$$

which is nothing but the Cauchy-Schwartz inequality.

(b) In the Cauchy-Schwartz inequality, the equality holds if and only if for some $a \neq 0$,

$$X - \mathbb{E}(X) = a[Y - E(Y)]$$

namely,

$$X = aY + b$$
, with $b = \mathbb{E}(X) - a\mathbb{E}(Y)$.

In particular, a>0 corresponds to the case $\rho(X,Y)=1$ and a<0 to $\rho(X,Y)=-1$.

(b) In the Cauchy-Schwartz inequality, the equality holds if and only if for some $a \neq 0$,

$$X - \mathbb{E}(X) = a[Y - E(Y)]$$

namely,

$$X = aY + b$$
, with $b = \mathbb{E}(X) - a\mathbb{E}(Y)$.

In particular, a > 0 corresponds to the case $\rho(X, Y) = 1$ and a < 0 to $\rho(X, Y) = -1$.

$$\begin{split} \rho(X,Y) &= \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}} \\ &= \frac{\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]}{\sqrt{\mathbb{E}[X^2] - \mathbb{E}[X]^2}\sqrt{\mathbb{E}[Y^2] - \mathbb{E}[Y]^2}} \end{split}$$

$$R = \frac{n \sum_{i=1}^{n} X_{i} Y_{i} - \left(\sum_{i=1}^{n} X_{i}\right) \left(\sum_{i=1}^{n} Y_{i}\right)}{\sqrt{n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2} \sqrt{n \sum_{i=1}^{n} Y_{i}^{2} - \left(\sum_{i=1}^{n} Y_{i}\right)^{2}}}$$

Pearson product-moment correlation coefficient

01

Sample correlation coefficien

$$\begin{split} \rho(X,Y) &= \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}} \\ &= \frac{\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]}{\sqrt{\mathbb{E}[X^2] - \mathbb{E}[X]^2}\sqrt{\mathbb{E}[Y^2] - \mathbb{E}[Y]^2}} \\ & \qquad \qquad \downarrow \end{split}$$

$$R = \frac{n \sum_{i=1}^{n} X_{i} Y_{i} - \left(\sum_{i=1}^{n} X_{i}\right) \left(\sum_{i=1}^{n} Y_{i}\right)}{\sqrt{n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2} \sqrt{n \sum_{i=1}^{n} Y_{i}^{2} - \left(\sum_{i=1}^{n} Y_{i}\right)^{2}}}}$$

Pearson product-moment correlation coefficient

or

Sample correlation coefficien

$$\begin{split} \rho(X,Y) &= \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}} \\ &= \frac{\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]}{\sqrt{\mathbb{E}[X^2] - \mathbb{E}[X]^2}\sqrt{\mathbb{E}[Y^2] - \mathbb{E}[Y]^2}} \\ & \quad \quad \downarrow \end{split}$$

$$R = \frac{n\sum_{i=1}^{n} X_{i}Y_{i} - \left(\sum_{i=1}^{n} X_{i}\right)\left(\sum_{i=1}^{n} Y_{i}\right)}{\sqrt{n\sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2}} \sqrt{n\sum_{i=1}^{n} Y_{i}^{2} - \left(\sum_{i=1}^{n} Y_{i}\right)^{2}}}$$

Pearson product-moment correlation coefficient

01

Sample correlation coefficien

$$\begin{split} \rho(X,Y) &= \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}} \\ &= \frac{\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]}{\sqrt{\mathbb{E}[X^2] - \mathbb{E}[X]^2}\sqrt{\mathbb{E}[Y^2] - \mathbb{E}[Y]^2}} \\ & \qquad \qquad \downarrow \end{split}$$

$$R = \frac{n \sum_{i=1}^{n} X_{i} Y_{i} - \left(\sum_{i=1}^{n} X_{i}\right) \left(\sum_{i=1}^{n} Y_{i}\right)}{\sqrt{n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2} \sqrt{n \sum_{i=1}^{n} Y_{i}^{2} - \left(\sum_{i=1}^{n} Y_{i}\right)^{2}}}}$$

Pearson product-moment correlation coefficient

or

Sample correlation coefficient

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSTR}{SST}$$

where

$$SSE = \sum_{i=1}^{n} \left(Y_i - \widehat{Y}_i \right)^2, \quad \widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

$$SST = \sum_{i=1}^{n} (Y_i - \overline{Y}_i)^2$$
, and $SSTR = SST - SSE$.

Remark SSE: sum of square errors \sim the variation in y_i 's not explained by L.M.

SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. \sim the variation in y_i 's explained by L.M.

 R^2 (or r^2 when X_i and Y_i are replaced by x_i and y_i) \sim proportion of total variation in the y_i 's that can be attributed to L.M.

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSTR}{SST}$$

where

$$SSE = \sum_{i=1}^{n} \left(Y_i - \widehat{Y}_i \right)^2, \quad \widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

$$SST = \sum_{i=1}^{n} (Y_i - \overline{Y}_i)^2$$
, and $SSTR = SST - SSE$.

Remark SSE: sum of square errors \sim the variation in y_i 's not explained by L.M.

SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. \sim the variation in y_i 's explained by L.M.

 R^2 (or r^2 when X_i and Y_i are replaced by x_i and y_i) \sim proportion of total variation in the y_i 's that can be attributed to L.M.

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSTR}{SST}$$

where

$$SSE = \sum_{i=1}^{n} \left(Y_i - \widehat{Y}_i \right)^2, \quad \widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

$$SST = \sum_{i=1}^{n} (Y_i - \overline{Y}_i)^2$$
, and $SSTR = SST - SSE$.

Remark SSE: sum of square errors \sim the variation in y_i 's not explained by L.M.

SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. \sim the variation in y_i 's explained by L.M.

 R^2 (or r^2 when X_i and Y_i are replaced by x_i and y_i) \sim proportion of total variation in the y_i 's that can be attributed to L.M.

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSTR}{SST}$$

where

$$SSE = \sum_{i=1}^{n} \left(Y_i - \widehat{Y}_i \right)^2, \quad \widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

$$= \sum_{i=1}^{n} \left(Y_i - \overline{Y}_i \right)^2 \quad \text{and} \quad SSTR = SST, \quad SSI$$

$$SST = \sum_{i=1}^{n} (Y_i - \overline{Y}_i)^2$$
, and $SSTR = SST - SSE$.

Remark SSE: sum of square errors \sim the variation in y_i 's not explained by L.M.

SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. \sim the variation in y_i 's explained by L.M.

 R^2 (or r^2 when X_i and Y_i are replaced by x_i and y_i) \sim proportion of total variation in the y_i 's that can be attributed to L.M.

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSTR}{SST}$$

where

$$\begin{split} SSE &= \sum_{i=1}^n \left(Y_i - \widehat{Y}_i \right)^2, \quad \widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i \\ SST &= \sum_{i=1}^n \left(Y_i - \overline{Y}_i \right)^2, \quad \text{and} \quad SSTR = SST - SSE. \end{split}$$

Remark SSE: sum of square errors \sim the variation in y_i 's not explained by L.M.

SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. \sim the variation in y_i 's explained by L.M.

 R^2 (or r^2 when X_i and Y_i are replaced by x_i and y_i) \sim proportion of total variation in the y_i 's that can be attributed to L.M.

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSTR}{SST}$$

where

$$\begin{split} SSE &= \sum_{i=1}^n \left(Y_i - \widehat{Y}_i \right)^2, \quad \widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i \\ SST &= \sum_{i=1}^n \left(Y_i - \overline{Y}_i \right)^2, \quad \text{and} \quad SSTR = SST - SSE. \end{split}$$

Remark SSE: sum of square errors \sim the variation in y_i 's not explained by L.M.

SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. \sim the variation in y_i 's explained by L.M.

 R^2 (or r^2 when X_i and Y_i are replaced by x_i and y_i) \sim proportion of total variation in the y_i 's that can be attributed to L.M.

Proof

Def. The adjusted R-squareed:

$$R_{adj}^2 := 1 - rac{\textit{MSE}}{\textit{MST}}$$

where

$$MSE = \frac{SSE}{n-q}$$
 and $MST = \frac{SST}{n-1}$

and *q* is number of parameters in the model.

Relation:

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-q}$$

MSE: Mean squared error.

MST: Mean squared total

MSR = MSTR: Mean square for treatment (or regresssion)

$$extit{MSR} = extit{MSTR} = rac{ extit{SSTR}}{q-1}$$

Def. The adjusted R-squareed:

$$R_{adj}^2 := 1 - rac{\textit{MSE}}{\textit{MST}}$$

where

$$MSE = \frac{SSE}{n-q}$$
 and $MST = \frac{SST}{n-1}$

and *q* is number of parameters in the model.

Relation:

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-q}$$

MSE: Mean squared error.

MST: Mean squared total.

MSR = MSTR: Mean square for treatment (or regresssion).

$$MSR = MSTR = rac{SSTR}{q-1}$$

Def. The adjusted R-squareed:

$$R_{adj}^2 := 1 - \frac{MSE}{MST}$$

where

$$MSE = \frac{SSE}{n-q}$$
 and $MST = \frac{SST}{n-1}$

and *q* is number of parameters in the model.

Relation:

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-q}$$

MSE: Mean squared error.

MST: Mean squared total.

MSR = MSTR: Mean square for treatment (or regresssion).

$$MSR = MSTR = rac{SSTR}{q-1}$$

Def. The adjusted R-squareed:

$$R_{adj}^2 := 1 - rac{ extit{MSE}}{ extit{MST}}$$

where

$$MSE = \frac{SSE}{n-q}$$
 and $MST = \frac{SST}{n-1}$

and *q* is number of parameters in the model.

Relation:

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-q}$$

MSE: Mean squared error.

MST: Mean squared total.

MSR = MSTR: Mean square for treatment (or regresssion)

$$extit{MSR} = extit{MSTR} = rac{ extit{SSTR}}{q-1}$$

Def. The adjusted R-squareed:

$$R_{adj}^2 := 1 - rac{\textit{MSE}}{\textit{MST}}$$

where

$$MSE = \frac{SSE}{n-q}$$
 and $MST = \frac{SST}{n-1}$

and *q* is number of parameters in the model.

Relation:

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-q}$$

MSE: Mean squared error.

MST: Mean squared total.

MSR = MSTR: Mean square for treatment (or regresssion).

$$MSR = MSTR = \frac{SSTR}{q-1}$$