Triangles semblables

5.1 Définition

Définition 5.1 Deux triangles sont **semblables** lorsqu'ils ont leurs angles égaux deux à deux et leurs côtés **proportionnels**.

1. Les **angles homologues** sont égaux :

$$\widehat{A} = \widehat{K}$$
 $\widehat{B} = \widehat{J}$ $\widehat{C} = \widehat{I}$

2. Les côtés correspondants sont proportionnels :

	$_$ Côtés du triangle ABC	AB	BC	AC	
$(\times k)$	ightharpoonup Côtés du triangle IJK	JK	IJ	IK	

Table 5.1 – Si k>1, le triangle IJK est un agrandissement de ABC. Si k<1, le triangle IJK est une réduction de ABC.

$$\frac{JK}{AB} = \frac{IJ}{BC} = \frac{IK}{AC} = k$$

Figure 5.1 – Exemple de triangles emboités ABC et APQ: P est sur le segment [AB], et Q est sur le segment [AC].

Figure 5.2 – Exemple de triangles ABC et APQ en papillon : les points A, B et P sont alignés dans le même ordre que les points A, C et Q.

5.2 Théorème de Thalès et généralisation

Théorème 5.1 — Théorème de Thalès. Pour les configurations de triangles ABC et APQ emboités ou papillon.

Si les droites (PQ) et (BC) sont parallèles alors les 3 longueurs des côtés des triangles ABC et APQ sont respectivement proportionnelles.

Si les droites
$$(BC)//(PQ)$$
 alors $\frac{AP}{AB} = \frac{AQ}{AC} = \frac{PQ}{BC} = k$

Pour écrire les rapports de Thalès :

- a) au numérateur figurent les côtés d'un même triangle.
- b) chaque rapport est entre deux segments parallèles.
 - Si on choisit d'écrire les rapports des longueurs $\frac{\text{« petit »}}{\text{« grand »}}$ on obtient un **coefficient de réduction** k < 1.

Postulat 5.2 — Critère de similitude AA.

Si 2 angles d'un triangle T_1 sont **respectivement égaux** à 2 angles d'un triangle T_2 . Alors les deux triangles sont semblables :

- les angles homologues sont égaux
- les rapports de longueurs de côtés homologues sont égaux.

5.2.1 Démontrer le théorème de Thalès et sa généralisation

 $D\acute{e}monstration$. Le point C est sur le segment [AE]. Le point B est sur le segment [AD]. Les triangles ABC et ADE sont emboités.

Si (BC)//(ED) alors on peut dire :

 $G\acute{e}n\acute{e}ralisation.$ Soit deux triangles ABC et PQR ayant 2 angles homologues égaux.

1)
$$\widehat{ACB} = 180^{\circ} - \dots - 180^{\circ} - \dots = \widehat{PQR}$$

Les triangles ABC et PQR ont 3 paires d'angles homologues égaux.

2) Les triangles AR_1Q_1 et BP_2Q_2 ci-dessus sont égaux au triangle PRQ tous emboités au triangle ABC. Les droites (BC) et (R_1Q_1) sont parallèles, car les angles \widehat{ABC} et $\widehat{AR_1Q_1}$ sont égaux. Les droites (AC) et $(P2Q_2)$ sont parallèles, car les angles $\widehat{BP_2Q_2}$ et \widehat{BAC} sont égaux.

CLG Jeanne d'Arc, 3^e

5.2.2 Exercices : théorème de Thalès et généralisation

■ Exemple 5.3 Pour chaque figure donner l'égalité des rapports obtenue en utilisant le théorème de Thalès.

Exercice 1 Pour chaque figure donner l'égalité des rapports obtenue en utilisant le théorème de Thalès.

■ Exemple 5.4 — Exemple rédigé : Calculer d'une longueur à l'aide du théorème de Thalès. Sur les figures ci-dessous, les droites (RS) et (UE) sont parallèles. Calculer les longueurs SE, UE puis ED.

$-\nu$	E + U	\mathcal{D}		
	Justification	Affirmation		
Calcul des longueurs SE et UE				
1	Les points O , U et R sont alignés dans le même ordre que les points O , E et S .			
2		les droites (UE) et (RS) sont parallèles		
3	d'après le théorème de Thalès	····· = ····· = ·····		
4		····· = ····· = ·····		
5		$UE = \frac{\cdots \times \cdots \times \cdots}{\cdots \cdots}$ et $OS = \frac{\cdots \times \cdots \times \cdots}{\cdots \cdots}$		
6		UE =		

Calcul de la longueur ${\cal ED}$		
1		
2		
3	····· = ····· = ·····	
4	····· = ····· = ·····	
5	$ED = \frac{\dots \times \dots \times \dots}{\dots}$	
6	ED =	

Exercice 2 Appliquer le théorème de Thalès pour trouver les longueurs x et y demandées.

Exercice 3 — Brevet, 2017.

Un plan est remis aux élèves participant à une course. Les élèves doivent partir du point A et se rendre au point E en passant par les points B, C et D. C est le point d'intersection des droites (AE) et (BD). La figure ci-dessous résume le plan, elle n'est pas à l'échelle.

On donne AC = 400 m, EC = 1000 m et AB = 300 m.

- 1) Calculer BC.
- 2) Montrer ques les droites (AB) et (DE) sont parallèles.
- 3) Justifier que ED = 750m.
- 4) Déterminer la longueur réelle du parcours ABCDE

 $\begin{array}{c} ABCDE.\\ \textbf{Exercice 4} \end{array}$

Dans la figure ci-dessous les points A, B et C sont alignés et $\widehat{DBC} = \widehat{EBA}$. La figure n'est pas à l'échelle.

- 1) Montrer que les triangles ABE et BCD sont semblables.
- 2) Identifier les cotés homologues et écrire les rapports égaux.
- 3) En déduire la longueur EA.

Exercice 5

- 1) Montrer que les triangles ACB et ADE sont semblables.
- 2) Identifier les cotés homologues et écrire les rapports égaux.
- 3) Calculer AB.

Exercice 6

Dans le triangle ABC, le point D est sur le côté [AB] tel que $\widehat{ADE} = \widehat{C}$. La figure ci-dessous n'est pas à l'échelle.

- 1) Montrer que les triangles ADE et ABC sont semblables.
- 2) Identifier les cotés homologues et écrire les rapports égaux.
- 3) En déduire la longueur AB.

5.3 Réciproque du théorème de Thalès

Théorème 5.5 — Conséquence du théorème de Thalès. Si dans une configuration de triangles emboités ou papillon, un des trois rapports $\frac{AP}{AB}$; $\frac{AQ}{AC}$ et $\frac{PQ}{BC}$ est différent des deux autres, alors les droites (BC) et (PQ) ne sont pas parallèles.

Théorème 5.6 — La réciproque du théorème de Thalès. Pour les configurations de triangles emboités ou papillon ABC et APQ cicontre.

Si
$$\frac{AP}{AB} = \frac{AQ}{AC}$$
 alors $(BC)//(PQ)$

Critères de similitudes

Postulat 5.7 — Critère de proportionnalité des côtés. Si les longueurs des 3 côtés d'un triangle T_1 sont proportionnelles aux longueurs respectives des 3 côtés d'un triangle T_2 , alors les deux triangles sont semblables :

- les angles homologues sont égaux
- les rapports de longueurs de côtés homologues sont égaux.

Postulat 5.8 — Critère CAC-Semblable. Si deux triangles T_1 et T_2 ont un angle égal compris entre 2 côtés respectivement proportionnels, alors les deux triangles sont semblables :

- les angles homologues sont égaux
- les rapports de longueurs de côtés homologues sont égaux.

8

5.3.1 Démontrer la réciproque du théorème de Thalès et applications

Démonstration de la réciproque du théorème de Thalès.

On se donne un point C de la droite (DE) tel que

$$\frac{AB}{AD} = \frac{AC}{AE}$$

- 1) On trace la droite parallèle à (DE) passant par B. Elle coupe (AE) au point F.
- 2) D'après le théorème de Thalès $\frac{AB}{AD} = \frac{AF}{AE}$. On déduit que $AF = \frac{AB \times AE}{AD} = \dots$
- 4) Si, F et C sont le même point!
- 5) Les droites (BC) et (ED) sont parallèles.

 $G\'{e}n\'{e}ralisation : crit\`{e}res de similitude.$ Soit les triangles ABC, PQR et STU tel que :

$$\widehat{RPQ} = \widehat{CAB}$$
 et $\frac{PQ}{AB} = \frac{PR}{AC} = k$

 $2) \frac{AD}{AB} = \frac{AE}{AC} = \dots$

3) D'après la réciproque du théorème de Thalès,etsont

4) D'après le théorème de Thalès : $\frac{AD}{AB} = \frac{AE}{AC} = \frac{\dots}{\dots} = .$

5) $kAB = AD = PQ = \dots$; $kAC = AE = \dots = kBC = ED = \dots = \dots$

6) D'après le critèreles triangles ADE et PQR sont

7) D'après le critèreles triangles ADE et STU sont

8) ADE est semblable à ABC, donc PRQ est aussi semblable à ABC.

J'en déduis

5.3.2 Exercices : réciproque du théorème de Thalès, problèmes

En plus du théorème de Thalès et sa réciproque, on peut comparer les angles correspondants pour démontrer si deux droites sont parallèles ou non.

Exercice 7 Justifier sur les figures ci-dessous si les droites (BC) et (PQ) sont parallèles ou non.

CLG Jeanne d'Arc, 3^e Année 2022/2023 Exercice 8 — exercice rédigé : utiliser les longueurs pour justifier le parallélisme. À l'aide des longueurs données, vérifier le parallélisme des droites (BC) et (IJ), (FE) et (HG) puis (FG) (BC) et (DE).

	$E = \frac{1}{G}$				
	Justification	Affirmation			
	(BC) et $((IJ)$ sont elles parallèles?				
1	Les points B , A et I sont alignés dans le même ordre que les points C , A et J .				
2		······ =			
3		······ =			
4		····· = ·····			
5	d'après	les droites (BC) et $((IJ)$			
	(FE) et $((GH)$ sont elles parallèles?				
1	Les points F , D et G sont alignés dans le même ordre que les points E , D et H .				
2		······ =			
3		······ =			
4		······ = ······			
5	d'après	les droites (GH) et (FE)			
(FG) et $((BC)$ sont elles parallèles?					
1					
2		······ =			
3		······ =			
4		······ = ······			
5	d'après	les droites (BC) et $((FG)$			

	(ED) et $((BC)$ sont elles parallèles?				
1					
2		······ =			
3		 =			
4					
5	d'après	les droites (BC) et (ED)			

Exercice 9

- 1) Montrer que (EF) et (GH) sont parallèles.
- 2) En déduire la longueur (EF).

Exercice 10 — Amérique du Nord, 2018.

La figure n'est pas à l'échelle. On donne les informations suivantes :

- Le triangle ADE vérifie AD = 7 cm, AE = 4,20 cm et DE = 5,60 cm.
- B est le point de [AD] et C est le point de [AE] tels que : AB = AC = 9 cm.
- F est le point de [AD] tel que $AF = 2.50 \,\mathrm{cm}$.
- La droite (FG) est parallèle à la droite (DE).
- 1) Réaliser une figure en vraie grandeur.
- 2) Prouver que ADE est un triangle rectangle en E.
- 3) Calculer la longueur FG.

La source de lumière C est située à 8 m de la toile (AB). La marionnette est représentée par le segment [DE]. La figure n'est pas à l'échelle.

- 1) Justifier que les droites (AB) et (DE) sont parallèles.
- 2) Calculer EC pour savoir où il doit placer sa marionnette.

Les points D, F, A et B sont alignés, ainsi que les points E, G, A et C. De plus, les droites (DE) et (FG) sont parallèles.

- 1) Montrer que le triangle AFG est un triangle rectangle.
- 2) Calculer la longueur du segment [AD]. En déduire la longueur du segment [FD].
- 3) Les droites (FG) et (BC) sont-elles parallèles? Justifier.

Exercice 13 — Triangles semblables. Pour chaque paire de triangle :

- 1) Justifier que les triangles sont semblables à l'aide d'un des 3 critères du cours.
- 2) Écrire l'égalité des rapports des côtés homologues.
- 3) Donner un rapport d'echelle (de réduction ou d'agrandissement) pour passer de ABC à DFE.

Année 2022/2023 CLG Jeanne d'Arc, 3^e

Exercice 14

- 1) Expliquer pourquoi le théorème de Thalès ne s'applique pas à la figure ci-contre.
- 2) Montrer que les triangles ACD et ABC sont semblables.
- 3) Identifier les cotés homologues et écrire les rapports égaux.
- 4) En déduire les longueurs AD et ED.

Exercice 15

La figure n'est pas à l'échelle.

- 1) Montrer que les triangles ACD et ABC sont semblables.
- 2) Identifier les cotés homologues et écrire les rapports égaux.
- 3) En déduire la longueur AD.

Exercice 16

La figure n'est pas à l'échelle. On a $\widehat{CAD} = \widehat{BAC}$.

- 1) Montrer que les triangles ACD et ABC sont semblables
- 2) Déterminer les côtés homologues et écrire l'égalité des rapports.
- 3) Calculer x.

Exercice 17

La figure n'est pas à l'échelle. On a $\widehat{DAC} = \widehat{ABC}$.

- 1) Démontrer que les triangles ACH et ABH sont semblables.
- 2) Identifier les cotés homologues et écrire les rapports égaux.
- 3) Calculer x.

Problème 1

B est un point du segment [AC]. Les triangles ABD et BCE sont situés du même côté du segment [AC] et sont équilatéraux. Le point I est l'intersection des segments [AE] et [CD], et J est l'intersection de [BD] et [AE].

- 1) Montrer que les triangles ABE et BCD sont égaux.
- 2) En déduire que AE = CD et $\widehat{JAB} = \widehat{JDI}$.
- 3) Montrer que les triangles JAB et JID sont semblables.
- 4) En déduire que $\widehat{DIJ} = 60^{\circ}$.

