

Model Development Phase Template

Date	06-06-2024
TeamID	740055
Project Title	
	DETECTION OF PHISHING WEBSITE FROM URLS
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

Theinitialmodeltrainingcodewillbeshowcasedinthefuturethroughascreenshot. Themodel validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

InitialModelTrainingCode:

[38];	<pre>from sklearn.linear_model import LogisticRegression model = LogisticRegression(max_iter=10000) model.fit(x train, y train) # Use model to fit the training data</pre>
	, - , , - ,
[38]:	LogisticRegression
	LogisticRegression(max iter=10000)
	Logistichegi essibil (max_ttel =10000)
[39]:	<pre>model.fit(x_train,y_train)</pre>
[39]:	* LogisticRegression 0 0
	LogisticRegression(max iter=10000)
[40]:	<pre>y_pred1=model.predict(x_test)</pre>
[41]:	<pre>y_pred1 = model.predict(x_test) # Predict Labels (if not already done)</pre>
	from sklearn.metrics import accuracy_score
	accuracy = accuracy_score(y_test, y_pred1)
	print(f"Logistic Regression Accuracy: {accuracy:.4f}") # Print accuracy with formatting
	Logistic Regression Accuracy: 0.8027
	LUGISELLE REGIESSION ACCURACY. 0.0027

Model Validation and Evaluation Report:

		F1	
		Scor	
Model	Classification Report	e	Confusion Matrix

Logistic Regressi on	[[37, 19, 0, 0, 0, 0,] [77, 23, 1, 0, 0, 0,] [126, 50, 1, 0, 0, 0,] [105, 16, 1, 0, 0, 0,] [38, 30, 0, 0, 0, 0,] [477, 14, 1, 0, 0, 1,] ['legitine 'phishing']	te" 'phishing' 'phishing'	. 'legitimate'	'legitimate'		80%	
Decision Tree	-					79%	<pre>confusion_matrix(y_test,ypred) array([[62, 13],</pre>
KNN	print(classification_repor Loan will be Approved Loan will not be Approved accuracy macro avg weighted avg			f1-score 0.59 0.68 0.64 0.63 0.64	5 support 75 94 169 169 169	64%	<pre>confusion_matrix(y_test,ypred) array([[43, 32],</pre>

Gradient Boosting	print(classification_report Loan will be Approved Loan will not be Approved accuracy macro avg	precision 0.71 0.85	necall 0.84 0.72	f1-score 0.77 0.78 0.78	support 75 94 169 169	78%	<pre>confusion_matrix(y_test,ypred) array([[63, 12],</pre>
	weighted avg	0.79	0.78	0.78	169		