

ALTERNATIVE VEIW OF BP: α -BP

Input:

- A pairwise Markov random field: $p(\mathbf{x}) \propto \prod_{s \in \mathcal{V}} \varphi_s(x_s) \prod_{(s,t) \in \mathcal{E}} \varphi_{st}(x_s, x_t)$
- A trial distribution:
 q(x) ∝ ∏_{s∈V} φ̃_s(x_s) ∏_{(s,t)∈ε} φ̃_{st}(x_s, x_t) with factorization φ̃_{s,t}(x_s, x_t) := m_{st}(x_t)m_{ts}(x_s)
- A metric: α -Divergence

Approximate local minimization:

- $\qquad \text{ Direct minimization: } \mathop{\mathrm{argmin}}_{\tilde{\varphi}_{ls}^{\mathrm{new}}(x_t, x_{\mathsf{S}})} \mathcal{D}_{\alpha_{l\mathsf{S}}} \big(p^{\setminus (t, s)} \! \big(\boldsymbol{x} \big) \varphi_{l\mathsf{S}}(x_t, x_{\mathsf{S}}) \big) \| q^{\setminus (t, s)} \! \big(\boldsymbol{x} \big) \tilde{\varphi}_{ls}^{\mathrm{new}}(x_t, x_{\mathsf{S}}) \big)$
- Local minimization: $\underset{\tilde{\varphi}_{ls}^{\text{new}}(x_t, x_s)}{\operatorname{argmin}} \mathcal{D}_{\alpha_{ls}}(q^{\setminus (t,s)}(\mathbf{x})\varphi_{ls}(x_t, x_s) \| q^{\setminus (t,s)}(\mathbf{x}) \tilde{\varphi}_{ls}^{\text{new}}(x_t, x_s)),$ say you are updating $\tilde{\varphi}_{ls}^{\text{new}}(x_t, x_s) = m_{ls}^{\text{new}}(x_s) m_{st}(x_t)$

MESSAGE PROPAGATION RULE

Updating message via α -BP:

$$m_{ts}^{\text{new}}(x_s) \propto m_{ts}(x_s)^{1-\alpha_{ts}} \bigg[\sum_{x_t} \varphi_{ts}(x_t, x_s)^{\alpha_{ts}} m_{st}(x_t)^{1-\alpha_{ts}} \qquad \underbrace{\varphi_t(x_t) \prod_{w \in \mathcal{N}(t) \setminus s} m_{wt}(x_t)}_{} \bigg].$$

msg. from variable node t to factor φ_{st}

Message Propagation Rule

Updating message via α -BP:

$$m_{ts}^{\text{new}}(x_s) \propto m_{ts}(x_s)^{1-\alpha_{ts}} \left[\sum_{x_t} \varphi_{ts}(x_t, x_s)^{\alpha_{ts}} m_{st}(x_t)^{1-\alpha_{ts}} \quad \underbrace{\varphi_t(x_t) \prod_{w \in \mathcal{N}(t) \setminus s} m_{wt}(x_t)}_{} \right].$$

msg. from variable node t to factor φ_{st}

