

电子工程与光电技术学院 实验报告

课程名称: 雷达信号处理

班 级: 9161042101

姓 名: 黄云卿

学 号: 9161010E0115

指导老师: 张文青

目录

买验一	止交相十检波器	1
一,	实验目的	1
_,	实验仪器	1
三、	实验原理	1
	1. 正交相干检波器原理	1
	2. 幅相不平衡测量方法	3
四、	实验电路	4
五、	实验内容与步骤	5
	1. 实验装置的连接、检波器输出频率及幅相不平衡度	5
	2. 记录波形	5
	3. 中频本振的幅相不平衡度	8
六、	实验结果分析	8
七、	实验思考	9
	1. 幅相不平衡是什么原因造成的?	9
	2. 幅相不平衡如何进行调整?	9
	3. 不同频率下幅相不平衡度为什么不一致?	9
实验二	匹配滤波器	10
一、	实验目的	10
_,	实验仪器	10
三、	实验原理	10
四、	实验电路	11
五、	实验内容与步骤	12
	1. 实验步骤	12
	2. 数据统计	13
	3. 观测波形	13
六、	实验思考	17
	1. 为什么脉冲压缩输出波形为方波而不是三角波?	17
	2. 主副瓣比的测量方法有哪些?	17

3. 31 位 PN 截断码 (m 序列中截取一个周期) 与 31 位 m 序列的脉	
缩输出波形为何不一样?18	冲压
动目标检测与相参积累19	实验三
实验目的19	– ,
实验仪器19	_,
实验原理19	三,
1. 动目标检测(MTD)原理19	
2. MTD 滤波器副瓣电平测量计算方法24	
实验电路25	四、
实验内容与步骤25	五、
1. 内容与步骤25	
2. 波形观测27	
3. 实验结果28	
实验结果分析29	六、
实验思考29	七、
1. 为什么 FFT 等效于脉冲相参积累?29	
2. 为什么要加权?如何选择窗函数?29	
3. FFT+MTI 方法实现 MTD 与 FIR 滤波器组实现 MTD 有何区别? 30	

实验一 正交相干检波器

在雷达信号处理中,由于信号与干扰混合波形的振幅和相位均含有信息,因此对信号最佳处理应在接收机的中频进行。但是,对信号进行数字处理时,在中频进行采样是很困难的。由于中频本身并无目标信息,目标信息包含在中频的复包络中。因此,须将中频信号变成等效的复数视频信号,以利于用数字处理。正交相干检波器就是一种将中频信号变换成复数视频信号的装置。

一、实验目的

- 1. 掌握正交相干检波的基本原理和实现方法,运用它检测信号(如多普勒信号)。
- 2. 掌握正交相干检波器的幅度一致性和相位正交性(幅相不平衡度)的检测方法。

二、实验仪器

信号源、示波器、直流稳压电源

三、 实验原理

1. 正交相干检波器原理

本实验的原理方框图如图1所示。

Figure 1 正交相干检波器原理方框图

假定图1中输入的实窄带信号为:

$$x(t) = a(t)\cos[2\pi f_0 t + \varphi(t)]$$

其中,a(t)为实窄带信号的幅度调制; f_0 为实窄带信号的中频; $\varphi(t)$ 为实窄带信号的相位调制。如果 x(t) 用复指数表示,可写成:

$$x(t) = a(t)e^{j\varphi(t)}e^{j2\pi f_0 t} = u(t)e^{j2\pi f_0 t}$$
 2

其中, $a(t)e^{j\varphi(t)}$ 是复包络, $e^{j2\pi f_0 t}$ 是复载频。

x(t)中的信息全部包含在复包络u(t)中,所以只要处理u(t)就可以得到信号的全部信息。复包络u(t)可进一步写成:

$$u(t) = a(t)e^{j\varphi(t)} = a(t)\cos\varphi(t) + ja(t)\sin\varphi(t)$$

参见图1, I支路乘法器的输出为:

$$x(t)x_{L}(t) = 2a(t)\cos[2\pi f_{0}t + \varphi(t)]\cos(2\pi f_{0}t) = a(t)\{\cos\varphi(t) + \cos[4\pi f_{0}t + \varphi(t)]\}$$

经过低通滤波(LPF)后输出为:

$$\mathbf{v}_{\mathbf{I}}(t) = a(t)\cos\varphi(t) \tag{5}$$

同样,Q支路乘法器的输出为:

$$x(t)x_{L}(t) = 2a(t)\cos[2\pi f_{0}t + \varphi(t)]\sin(2\pi f_{0}t) = a(t)\{\sin\varphi(t) - \sin[4\pi f_{0}t + \varphi(t)]\}$$

经过低通滤波(LPF)后输出为:

$$y_0(t) = a(t)\sin\varphi(t)$$

用 $y_I(t)$ 作为实部, $y_O(t)$ 作为虚部,组成一复信号恰好是中频x(t)的复包络,即:

$$\mathbf{u}(\mathbf{t}) = \mathbf{y}_{\mathbf{I}}(t) + j\mathbf{y}_{O}(t)$$
8

因 $y_I(t)$ 和 $y_O(t)$ 均为视频信号,而且包含了原信号的幅度和相位:

$$a(t) = \sqrt{y_I^2(t) + y_Q^2(t)}$$
9

$$\varphi(t) = \tan^{-1} \frac{y_Q(t)}{y_I(t)}$$

经变换后,就可对信号进行数字处理。

2. 幅相不平衡测量方法

1) 幅度平衡度

正交信号如图 2 所示:

Figure 2 正交信号示意图

从示波器上读取正交 I、Q 信号的电压幅度值为 A_I 、 A_Q ,按公式:

$$\Delta A = 20 \log_{10} \frac{A_I}{A_O} (dB)$$
 11

计算幅度平衡度。

2) 相位平衡度

测量图 $2 中 T_A 和 T_B$ 的值,按公式:

$$\Delta \varphi = \left| \frac{T_A - T_B}{T_A + T_B} \right| \times 90^{\circ}$$
 12

计算相位平衡度。

四、 实验电路

实验电路如图 3 所示:

Figure 3 正交相干检波器实验电路

其中,90°移相器和乘法器采用专用模块 SIQY-10D; 两路低通滤波器 (LPF) 的频率特性如图 4 所示:

Figure 4 低通滤波器(LPF)的频率特性

五、 实验内容与步骤

1. 实验装置的连接、检波器输出频率及幅相不平衡度

- 1) 实验装置的 Q9 座 "SIN"和 "FO"分别连接到两台"DDS 信号产生器实验装置"上; Q9 座 "OUT1"和 "OUT2"分别连接到示波器的两个输入端 "CH1"和 "CH2"上;正确连接 "+5V"和 "±12V"电源。
- 2) Q9座"FO"对应的"DDS 信号产生器实验装置"输出频率设置为 10MHz;
- 3) Q9 座 "SIN"对应的"DDS 信号产生器实验装置"输出频率从 9.6MHz 变到 9.999MHz,分别按"K1"和"K2"键。记录波形,并将测试数据填入表 1。

Table 1 检波器输出频率及幅相不平衡度随输入信号频率变化

输入频率/MHz	9.6	9.7	9.8	9.9	9.95	9.97	9.99	9.999
检波器输出频率/kHz	400.002	300.001	200.001	100	50.0002	30.0001	10	1
AI/V	6.4	9.2	9.4	9.8	10.8	11.2	11.6	11.8
AQ/V	6	8.4	8.8	9	9.6	10	10.04	10.08
ΔA幅度平衡度/dB	0.560574	0.790171	0.572904	0.739671	1.02305	0.98436	1.254486	1.36843
2TA/us	1.24	1.72	2.44	5	10.2	16.8	50	490
2TB/us	1.2	1.68	2.52	4.8	10	17.2	51	495
ΔΦ相位平衡/°	1.47541	1.058824	1.451613	1.836735	0.891089	1.058824	0.891089	0.456853

2. 记录波形

分别按"K1"和"K2"键,"OUT1"和"OUT2"将循环输出表 2 信号,并通过对应发光二极管指示,记录这些波形,如图 5~11 所示。

Table 2 输出信号类型

符号	QQ	II	Q	Ι	/F0	F0	IN
含义	Q路输出	I路输出	Q路输出	I路输出	中频正交	中频	中频输入
	(LPF后)	(LPF后)	(LPF前)	(LPF前)	本振	本振	信号

Figure 5 Q 路输出(LPF 后)@输入信号频率 9.99MHz

Figure 6 I 路输出(LPF 后)@输入信号频率 9.99MHz

Figure 7 Q 路输出(LPF 前)@输入信号频率 9.99MHz

Figure 8 I 路输出(LPF 前)@输入信号频率 9.99MHz

Figure 9 中频正交本振

Figure 10 中频本振

Figure 11 输入信号

3. 中频本振的幅相不平衡度

如表 3 所示:

Table 3 中频本振的幅相不平衡度

0.55
0.5
0.827854
52
48
3.6

六、 实验结果分析

- 1. 从表格 1 中可以清楚地看到,如果输入信号 SIN 的频率偏离检波器理论中频本振频率 10MHz,将出现幅相不平衡的现象,且频率不同,幅相不平衡的程度也不同。频率偏离越大,幅相不平衡现象越明显。也就是说,如果雷达回波信号有多普勒频移,频移越大,幅相不平衡的影响就越严重。
- 2. 从表格 3 可以看出,实验用中频本振信号本身就存在一定的幅相不平衡, 用它来参与解调,必然使得输出信号呈现一定的幅相不平衡。

3. LPF 前的信号是解调处理前的中频正交信号, LPF 后的信号是解调后的输出视频信号。它们都呈现出了幅相不平衡的特点。

七、实验思考

1. 幅相不平衡是什么原因造成的?

原因来自两个方面:

- 1) 本振信号由模拟信号产生,模拟移相器输出正交的 SIN 和 COS 信号,很难完全保证幅度完全相同、相位相差 90°。采用这样的本振信号与输入信号相乘以后,必然导致幅相不平衡。
- 2) 实验中解调乘法完成以后,采用模拟低通滤波器滤波后,再经放大处理 得到视频 I 路和 Q 路信号。由于模拟滤波器和放大器不可能做到电路元 件参数完全一致,再加上温度等外界环境的影响,使得输出也不能一致。

2. 幅相不平衡如何进行调整?

可以采用误差校正技术。接收机 IQ 检波前注入一个已知的理想信号,该信号必须是已知其特性的合成多普勒信号。这个合成的多普勒信号经 IQ 检波和 FFT 处理器处理,信号在镜频出的响应反映了 IQ 通道的幅相不平衡,分析所得的误差数据,并记录储存在一个校准文件里。系统工作时,调用该校准文件即可。

3. 不同频率下幅相不平衡度为什么不一致?

由于两通道包括高放、混频、中放、A/D 等器件,不同频率下电路的电参数存在一定的偏差,使 I/Q 接受通道两路信号会产生幅度和相位不平衡。

实验二 匹配滤波器

一、实验目的

- 1. 了解匹配滤波器的工作原理。
- 2. 掌握二相编码脉压信号的压缩比、主旁瓣比、码元宽度的测量方法。
- 3. 加深和巩固课堂所学有关距离分辨力、横向滤波器和匹配滤波方面知识。

二、实验仪器

示波器、直流稳压电源、万用表。

三、 实验原理

二相编码信号的匹配滤波器为:

$$H(f) = \mu_1(f) \cdot \mu_2(f)$$
 13

其中, $\mu_1(f)$ 为子脉冲匹配滤波器, $\mu_2(f)$ 为横向滤波器(即抽头加权延时线 求和网络)。二相编码信号的匹配滤波结构如图 **12** 所示。

Figure 12 二相编码信号的匹配滤波结构

子脉冲匹配滤波器频率特性为:

$$\mu_1(f) = \sqrt{\frac{T}{P}} \sin c(fT) \cdot e^{j\pi fT}$$
 14

横向滤波器的频率特性为:

$$\mu_2(f) = \sum_{k=0}^{p-1} c_{(p-1)-k} \cdot e^{-j2\pi f KT}$$
 15

其中,P为码长,T为码元宽度,ck为二相编码信号。

在此,采用数字信号处理省略了子脉冲匹配滤波器,所以脉压输出不再是三角波而是方波。横向滤波器(即抽头加权延时线求和网络)的结构如图 **13** 所示,在此采用超大规模集成电路完成。

Figure 13 横向滤波器(即抽头加权延时线求和网络)结构示意图

四、实验电路

该实验箱能够产生矩形脉冲、m序列、PN 截断码、巴克码、互补码等多种信号以及其对应的匹配滤波输出。通过按键的选择,可以观察各种信号形式以及对应的匹配滤波输出结果,测量各种信号的脉压参数。具体实验电路如图 14 所示:

Figure 14 匹配处理系统实验箱

实验箱 OUT1 端口为原始波形信号输出,OUT2 端口为信号匹配滤波输出。

数码管用以显示当前信号波形以及频率指示,K1—K8 用来选择波形以及当前信号频率。其含义如下:

- 1. 按键K1: 数码管显示P。单脉冲。周期1ms;脉冲宽度30us。
- 2. 按键K2:数码管显示SP。脉冲串。周期1ms;脉冲宽度10us. 一个周期有7个单脉冲.
- 3. 按键K3:数码管显示31。31 位m 序列。无限长;码元宽度1us。
- 4. 按键K4:数码管显示P31。31 位PN 截断码。周期1ms;码元宽度1us。
- 5. 按键K5:数码管显示b13。13 位巴克码。周期1ms:码元宽度1us。
- 6. 按键K6:数码管显示cb47。4位/7位组合巴克码。周期1ms;码元宽度 1us。
- 7. 按键K7:数码管显示c32。双路32 位互补码。周期1ms;码元宽度1us。
- 8. 按键K8:数码管显示c321。输出其中一路32 位互补码。周期1ms;码元宽度1us。

注:

- i. 每次按键,实验箱OUT1输出码元信号,OUT2相对应的匹配输出。
- ii. 同一按键再按一次,码元宽度增加,数码管显示带小数点。

五、 实验内容与步骤

1. 实验步骤

- 1) 检查实验箱电源以及信号输出的连接方式。
- 2) 打开实验箱电源以及示波器,调整示波器使观察信号最佳。
- 3) 按键 K1,数码管显示 P,观察 OUT1 输出的单脉冲信号以及 OUT2 输出的匹配滤波信号,记录输出波形。
- 4) 用示波器测量压缩比、主旁瓣比、码元宽度等参数。
- 5) 再次按键 K1,改变单脉冲信号码元宽度,LED4 显示带小数点。观察信号及匹配滤波输出的改变,测量各项参数。

- 6) 依次按键 K2~K7 选择不同的输入信号, 重复步骤 2~4, 观察波形, 记录数据。
- 7) 关闭实验电源,总结实验数据。
- 8) 将实验记录数据填入表 4, 进行分析。

2. 数据统计

Table 4 测试数据

序号	信号波形	码元宽度/us	脉压后主峰宽度/us	压缩比	主旁瓣比/dB
1	单脉冲	31.00	61.00	0.51	50.80
1	半	60.00	118.00	0.51	45.60
2	 脉冲串	12.00	24.00	3.50	18.80
		24.00	44.00	3.82	18.80
3	 31位M序列	1.01	1.20	26.00	32.00
3	31 <u>1</u> 以IVI)」。 グリ	2.00	3.00	20.67	46.00
4	 31位PN截断码	1.01	1.20	26.00	48.00
4	21万人以联网担	2.06	3.00	21.33	36.80
5	 13位巴克码	1.08	1.80	18.55	35.20
5	13位6元49	2.12	3.60	7.67	28.40
6	4位/7位组合巴克码	0.99	2.00	14.80	16.00
		1.93	4.00	14.50	10.80

3. 观测波形

图 15~20 中的时域波形中,黄色曲线为脉压前波形,蓝色曲线为脉压后波形;同组中下图的码元宽度是上图的 2 倍。

1) 单脉冲

Figure 15 单脉冲时域波形和 FFT

2) 脉冲串

Figure 16 脉冲串时域波形和 FFT

3) 31 位 M 序列

Figure 17 31 位 M 序列时域波形和 FFT

4) 31 位 PN 截断码

Figure 18 31 位 PN 截断码时域波形和 FFT

5) 13 位巴克码

Figure 19 13 位巴克码时域波形和 FFT

6) 4位/7位组合巴克码

Figure 20 4 位/7 位组合巴克码时域波形和 FFT

六、 实验思考

1. 为什么脉冲压缩输出波形为方波而不是三角波?

因为采用数字信号处理省略了子脉冲匹配滤波器,所以脉压输出不再是三角波而是方波。

2. 主副瓣比的测量方法有哪些?

1) 用示波器测量主峰幅度 V1, 副瓣幅度 V2 根据以下公式计算主副瓣比:

$$MSR = 20 \log_{10} \frac{V_1}{V_2}$$

2) 主副瓣比 MSR=(主瓣─副瓣)×24.2

3. 31 位 PN 截断码 (m 序列中截取一个周期) 与 31 位 m 序 列的脉冲压缩输出波形为何不一样?

所谓截断序列就是从 M 序列中截取一个周期得到的序列,很明显,截断的序列失去了周期性,是个非周期序列任何截断序列的自相关函数均不保持双电平性。不同的截取位置将得到不同的截断序列码型。

实验三 动目标检测与相参积累

一、实验目的

- 1. 了解动目标检测(MTD)及相参积累的工作原理。
- 2. 掌握动目标检测(MTD)及相参积累的性能测试方法。

二、实验仪器

示波器、万用表。

三、 实验原理

1. 动目标检测(MTD)原理

动目标检测(MTD)是利用了动目标雷达回波信号的多普勒频率偏移,采用 滤波器组在复杂的雷达回波中检测出运动目标的多普勒频率,并以此来确定动目 标的距离、速度和方位。其中,滤波器组具有不同的中心频率,其实质是相当于 对不同多普勒通道进行相参积累处理。

当杂波功率谱 C(f)和信号频谱 S(f)已知时,最佳滤波器的频率响应是:

$$H(f) = \frac{S^*(f)e^{-j2\pi f t_0}}{C(f)}$$

这实际上就是基于有色噪声(这里称为杂波)白化处理的匹配滤波器。这一 滤波器可分为两个级联的滤波器和,其传递函数分别为

$$|H_1(f)|^2 = \frac{1}{C(f)}$$

 $H_2(f) = H_1^*(f)S^*(f)e^{-j2\pi f t_0}$

可以粗略的认为, H₁(f)用于杂波抑制, 而H₂(f)用于对雷达回波脉冲串信号

匹配。对MTI而言,它要使杂波得到抑制而要让各种速度的运动目标信号通过,所以MTI滤波器即相当于H₁(f);至于和目标信号的匹配,对单个脉冲而言可用中频带通放大器来保证,而对脉冲串则只能采用对消后的非相参积累。所以实际能做到的大多数MTI滤波器,只能使其滤波特性的凹口对准杂波梳状谱的中心,且使二者宽度基本相当。有时也将这称为杂波抑制准最佳滤波。对于相参脉冲串信号,2()还可进一步表示成:

$$H_2(f) = H_{21}(f)H_{22}(f)$$

即信号匹配滤波器为 $H_{21}(f)$ 和 $H_{22}(f)$ 两个滤波器级联。式中 $H_{21}(f)$ 为单个脉冲的匹配滤波器,通常由接收机中放实现; $H_{22}(f)$ 专对相参脉冲串进行匹配滤波,它利用了回波脉冲串的相位特性而进行相参积累; $H_{22}(f)$ 是梳齿形滤波器,齿的间隔为脉冲重复频率,齿的位置取决于回波信号的多普勒频移,而齿的宽度则应和回波谱线宽度相一致。

要对回波相参脉冲串作匹配滤波,必须知道目标的多普勒频移以及天线扫描 对脉冲串的调制情况(亦即信号的时宽,对简单信号而言它决定信号的频宽)。 实际情况中,多普勒频移不能预知,因此需要采用一组相邻且部分重叠的滤波器 组,覆盖整个多普勒频率范围,这就是窄带多普勒滤波器组,如下图所示。

(a) 动目标显示滤波; (b) 多普勒滤波器组的特性

Figure 21 动目标显示和多普勒滤波器组的特性

从图 1 的对比,我们可以看出 MTI 滤波无法抑制图中具有多普勒频移的气象杂波,气象杂波干扰了动目标信号的检测;但 MTD 滤波时,气象杂波与动目标回波处于不同的多普勒通道,第 5 号滤波器通道取出了动目标回波,完全抑制气象杂波对动目标回波的干扰,同时我们也可以初步确定动目标回波的多普勒频移范

制。

MTD 滤波器具有 N 个输出的横向滤波器,经过各重复周期的不同加权并求和后,即可实现图 1 所要求的 N 个相邻的窄带滤波器组,其原理性结构框图如图 2 所示。

Figure 22 MTD 横向滤波器组结构

由于离散傅里叶变换(DFT)是一种特殊的横向滤波器,可以等效成窄带滤波器组,所以若将图2的加权因子按DFT定义选择,并采用DFT的快速算法FFT,就可实现基于FFT的MTD滤波。所以MTD滤波器组既可以在频域利用DFT滤波器组实现也可以在时域采用FIR滤波器两种方法来实现。

不管是采用何种形式的 MTD 多普勒滤波器,MTD 处理首先面临的问题就是输入序列的存储及数据格式及数据率的转换。来自零中频正交采样的 I、Q 复序列是按先不同距离单元、再不同扫掠(重复周期)的顺序输入的,而 MTD 处理是对同一距离单元的相邻若干次扫掠内的信号进行频域滤波,且所需处理的通常不是某一个或某一部分距离单元,而是作用距离的全程。因此在 I/Q 采用与 MTD 滤波器之间必须要有 MTD 输入缓存器来完成序列的暂存与格式转换。它的工作方式为正交存取方式,图 3 示出其存储空间分布及写入/读出顺序。随后,MTD 依次对每一距离单元的 N 点数据进行多普勒滤波,为保证对全程内每个距离单元的滤波能在 N (即相参处理间隔 CPI) 内完成,输入缓存的读出速率(即滤波器的处理速率)一般可比其写入速率(即距离单元采样速率)快些。在实际实现中,一般需要两组结构相同的输入缓存电路乒乓交替读写,以保证在不丢失任何扫掠数据的前提下进行 MTD 流水式滤波处理。且每一组均有两套结构相同的存储电路,以分别同时缓存同相和正交数据。

Figure 23 MTD 输入缓存器存储空间分布及写入/读出顺序

另外对于相邻 CPI 有交叠甚至连续滑窗式 MTD 情况,数据的输入/输出读写控制方式和实现会更加复杂一些。

如图 24 所示,采用时域 FIR 滤波器组实现的 MTD 特性曲线。图 24 (左)为 16 脉冲 MTD 特性曲线,图 24 (右)为 8 脉冲 MTD 特性曲线。

Figure 24 (左) 16 脉冲 MTD 特性曲线 (右) 8 脉冲 MTD 特性曲线

图 25 为实际测量的 MTD 滤波器特性曲线。图中凹口宽度 W1 与总底部宽度 W2 之比定义为凹口相对宽度,它代表了抑制杂波的频谱宽度。越宽则抑制杂波的频谱宽度越宽,杂波抑制性能越好,但盲速越严重,丢失运动目标的可能性越大,信噪比损失越严重;反过来,MTD 滤波器凹口相对宽度越窄则抑制杂波的频谱宽度越窄,杂波抑制性能越差,盲速越相对不严重,丢失运动目标的可能性越小,信噪比损失不严重。因此 MTD 滤波器凹口宽度要折中选择。

Figure 25 16 脉冲 MTD 实测特性曲线 (对数,滤波器组 16 根曲线叠加在一起)

时域单个 FIR 滤波器的结构如图 26 所示, 16 脉冲 MTD 则需要 16 个这样的电路, 8 脉冲 MTD 则需要 8 个这样的电路。

Figure 26 时域单个 FIR 滤波器实现框图

2. MTD 滤波器副瓣电平测量计算方法

1) MTD 线性输出 16bit 经过对数电路变为 8bit

按照如下关系运算:

$$M = 52.9433 \log N$$

式中, M: 8bit 数据, N: 16bit 数据。

比如,当 N=65535 时,M=52.94331og65535=255; N=32768 时, M=52.94331og32768=239.

2) MTD 滤波器副瓣电平计算

i. 线性: 20log N₁ N₂

式中, N1:16bit 主峰数据, N2: 16bit 副瓣数据。

ii. 对数: C (M1-M2)

式中, M1: 8bit 主峰数据, M2:8bit 副瓣数据, C 为常数。下面给出 C 的数据:

$$20\log \frac{N_1}{N_2} = C(M1 - M2) = 52.9433 \text{Clog} \frac{N_1}{N_2}$$

故 C=20/52.943=0.38

3) 通过示波器测量副瓣电平

8 脉冲和 16 脉冲 MTD 实测对数特性曲线如图 5、6 所示,关键在于找到主峰和副瓣的幅度,如果示波器测得 D/A 满幅度值为 F,主峰值为 M,副瓣值为 S,则副瓣电平为:

$$255C \frac{M-S}{F} = 96.9 \frac{M-S}{F}$$

本实验装置 D/A 满幅度值为 F=4V,则副瓣电平为 24.2x (M-S) dB。

四口相对宽度为凹口宽度 W1 与总底部宽度 W2 之比:

$$\frac{W1}{W2} = 100\%$$

四、 实验电路

Figure 27 实验装置的原理框图

如图 27 所示,本实验装置由 I&Q 正交信号产生器、对数电路、CPLD、控制电路、开关电路、两路 D/A 及低通滤波器以及完成运算功能的 FPGA 组成。I&Q 正交信号产生器根据需要产生正交扫频信号或模拟静止或运动目标,作为 MTD 的输入信号; FPGA 则完成上述 MTD 运算,在此采用 FIR 滤波器组; 对数电路则将线性输出结果转换成对数输出,便于观测细小的输出; D/A 及低通滤波器将数字输出转换成模拟信号; 开关电路则根据需要选择合适的输出,便于观测; CPLD 和控制电路则完成各种设置、地址发生、时序产生等工作。

五、 实验内容与步骤

1. 内容与步骤

1) 实验装置的连接:实验装置上的 Q9 座 "OUT1"和 "OUT2"分别连接到示波器的两个输入端 "CH1"和 "CH2"上; Q9 座 "OUT3"连接到示波器的外部触发输入端 "Trigger";插上侧面 220v 电源线到插座上,打开示波器电源和实验装置电源(电源开关在实验装置侧面)。

- 2) 将 "S1"地址开关设置为 "11111111", "S2"和 "S3"设置为 "00"和 "10", 记录波形、测试和计算数据, 对应位置的发光二极管将点亮。
- 3) 改变 "S2"和 "S3"为 "00"和 "00", 再记录波形、测试和计算数据。
- 4) 改变 "S2" 和 "S3" 为 "10" 和 "01", 再记录波形、测试和计算数据。
- 5) 将 "S1"地址开关分别设置为 "10111111", "11011111", "10011111", "111011111", "10101111", "10001111", 重复上述 (2) ~ (4) 步骤, "S1", "S2"和 "S3"的功能见表 5.

Table 5 按键 "S1"、"S2"和"S3"的功能

S1·····	功能	· S2· · · ·	· OUT1输出·	· · · \$3· ·	····· OUT2输
111111111111111111111111111111111111111	16脉冲MTD特性曲线···	. 00	・1通道输出・	00	· · · · · 线性输
101111111	·8脉冲MTD特性曲线···	10	Q.通道输出·	10 · · ·	····Q通道输出↩
110111111	16 脉冲 FFT 特性曲线・	• 01• • •	・线性输出・・	01	· · · · 对数输
10011111	8脉冲 FFT 特性曲线·····	11	— —	11.	
111011111	···16 脉冲 MTD 输出↵				
10101111	····8脉冲 MTD 输出√				
11001111	····16 脉冲 FFT 输出↩				
10001111	·····8脉冲 FFT 输出→				

其中,测试 MTD 和 FFT 特性曲线, I&Q 通道信号源采用扫频信号;测试 MTD 和 FFT 的输出, I&Q 通道信号源采用模拟动目标和静止目标信号。

2. 波形观测

Figure 28 8 脉冲 MTD 特性曲线

Figure 29 16 脉冲 MTD 特性曲线

Figure 30 16 脉冲 FFT 特性曲线

Figure 318 脉冲 FFT 特性曲线

3. 实验结果

将测量结果填入如下表格:

Table 6 测试数据

	副瓣电平/dB	凹口相对宽度%
16 点 MTD	−32 . 75	53. 24
8 点 MTD	-19. 375	72.6

六、 实验结果分析

本实验是基于硬件的动目标检测电路,MTD 滤波器具有 N 个输出的横向滤波器,经过各重复周期的不同加权并求和后,可实现 N 个相邻的窄带滤波器组。同理,也可以用快速傅里叶变换 FFT 算法实现滤波器组,运算简单方便。本实验分别运用 8 脉冲和 16 脉冲的 FIR 时域滤波器组,实现雷达动目标多普勒频移的检测。根据实验结果,我们可以看出 MTD 滤波器,8 脉冲的副瓣电平要比 16 脉冲的高,凹口相对宽度要低。它代表了抑制杂波的频谱宽度,越宽则抑制杂波的频谱宽度越宽,杂波抑制性能越好,但盲速越严重,丢失运动目标的可能性越大,信噪比损失越严重。由此可见,16 脉冲 MTD 滤波器杂波抑制性能更好,但是它的信噪比损失也更严重。所以,滤波器的凹口相对宽度要折衷选择。在 FFT 特性曲线上就可以看出有多少个脉冲。

七、实验思考

1. 为什么 FFT 等效于脉冲相参积累?

FFT 和 IFFT 的信号处理是在频域里对信号处理的。具有 N 个输出的横向滤波器 (N 个重复周期和 N-1 根延迟线),经过各重复周期的不同加权并求和后,实现 N 个相邻的窄带滤波器组。全部滤波器响应覆盖了从零到 的频率范围,输入信号经延迟排列等待;当信号全部输入完毕才同时输出,这样相参的信号幅度叠加输出为最大值,不相参信号则幅度相减。通过该滤波器后,它将 N 个相参脉冲积累,使信噪比提高 N 倍。这就是 FFT 等效于相参积累的原因。

2. 为什么要加权? 如何选择窗函数?

加权是为了抑制旁瓣,即把旁瓣电平降低,使得弱回波目标能够检测出来。 FFT 滤波器组各个滤波器的旁瓣较高,止带衰减小,对数据进行加窗处理降低旁 瓣电平,但压低副瓣的同时加宽了主瓣并引起了失配损失,目前常用的窗函数主 要有汉宁窗、海明窗、布莱克曼窗、泰勒窗、切比雪夫窗等。一要求窄的主瓣和 低的副瓣是矛盾的,折衷考虑,海明窗的综合性能最佳,但具体使用哪个窗函数 则要视具体情况而定。

3. FFT+MTI 方法实现 MTD 与 FIR 滤波器组实现 MTD 有何区别?

FFT 滤波器组在零频附近没有足够的凹陷,因而无法很好地抑制地物杂波,可以在 FFT 滤波器组之前加上 MTI 处理先抑制地物杂波来改善检测性能。其运算量少,速度快。

FIR 横向滤波器形式可以灵活设计每个滤波器的权系数,使其幅度频率响应都在零频附近有较深的凹陷,用于抑制地杂波。具有灵活性高、运算控制简单、可根据杂波设计自适应和杂波抑制能力强等优点,并随着大规模集成电路和高速数字信号处理技术的飞速发展,目前 FIR 滤波器组的实现已不成问题。所以,目前 MTD 滤波器组常采用有限脉冲响应(FIR)滤波器组来实现。

FFT 是在频域对信号处理的,输出为延迟波形;而 FIR 是在时域对信号处理,输出是实时波形。