Actuariat de l'Assurance Non-Vie # 10

A. Charpentier (Université de Rennes 1)

ENSAE ParisTech, Octobre / Décembre 2016.

http://freakonometrics.hypotheses.org

Généralités sur les Provisions pour Sinistres à Payer

Références: de Jong & Heller (2008), section 1.5 et 8.1, and Wüthrich & Merz (2015), chapitres 1 à 3, et Pigeon (2015).

"Les provisions techniques sont les provisions destinées à permettre le réglement intégral des engagements pris envers les assurés et bénéficaires de contrats. Elles sont liées à la technique même de l'assurance, et imposées par la réglementation."

"It is hoped that more casualty actuaries will involve themselves in this important area. IBNR reserves deserve more than just a clerical or cursory treatment and we believe, as did Mr. Tarbell Chat 'the problem of incurred but not reported claim reserves is essentially actuarial or statistical'. Perhaps in today's environment the quotation would be even more relevant if it stated that the problem '...is more actuarial than statistical'." Bornhuetter & Ferguson (1972)

La vie des sinistres

- date t_1 : survenance du sinistre
- période $[t_1, t_2]$: IBNR Incureed But Not Reported
- ullet date t_2 : déclaration du sinistre à l'assureur
- période $[t_2, t_3]$: IBNP Incureed But Not Paid
- période $[t_2, t_6]$: IBNS Incureed But Not Settled
- dates t_3, t_4, t_5 : paiements
- date t_6 : clôture du sinistre

La vie des sinistres

À la survenance, un montant estimé est indiqué par les gestionnaires de sinistres (charge dossier/dossier). Ensuite deux opérations sont possibles :

- effectuer un paiement
- réviser le montant du sinistre

La vie des sinistres: Problématique des PSAP

La Provision pour Sinistres à Payer est la différence entre le montant du sinistre et le paiement déjà effectué.

Montant de i à la date t, $C_i(t) = \sum_{j:T_{i,j} \leq t} Y_{i,j}$

Provision (idéale) à la date t, $R_i(t) = C_i(\infty) - C_i(t)$

Analyse micro
Sinistres $i = 1, \dots, n$

survenances, date $T_{i,0}$ déclaration, date $T_{i,0} + Q_i$ paiements, dates

$$T_{i,j} = T_{i,0} + Q_i + \sum_{k=1}^{j} Z_{i,k}$$

et montants $(T_{i,j}, Y_{i,j})$

Analyse macro

On agrége les sinistres par année de survenance :

$$S_i = \{k : T_{k,0} \in [i, i+1)\}$$

On regarde les paiements effectués après j années

$$Y_{i,j} = \sum_{k \in \mathcal{S}_i} \sum_{T_{k,\ell} \in [j,j+1)} Z_{k,\ell}$$

Ici
$$Y_{n-1,0}$$

Analyse macro

On agrége les sinistres par année de survenance :

$$S_i = \{k : T_{k,0} \in [i, i+1)\}$$

On regarde les paiements effectués après j années

$$Y_{i,j} = \sum_{k \in \mathcal{S}_i} \sum_{T_{k,\ell} \in [j,j+1)} Z_{k,\ell}$$

Ici
$$Y_{n-1,1}$$
 et $Y_{n,0}$

Analyse macro

On agrége les sinistres par année de survenance :

$$S_i = \{k : T_{k,0} \in [i, i+1)\}$$

On regarde les paiements effectués après j années

$$Y_{i,j} = \sum_{k \in \mathcal{S}_i} \sum_{T_{k,\ell} \in [j,j+1)} Z_{k,\ell}$$

Ici
$$Y_{n-1,2}, Y_{n,1}$$
 et $Y_{n+1,0}$

- les provisions techniques peuvent représenter 75% du bilan,
- le ratio de couverture (provision / chiffre d'affaire) peut dépasser 2,
- certaines branches sont à développement long, en montant

	n	n+1	n+2	n+3	n+4
habitation	55%	90%	94%	95%	96%
automobile	55%	80%	85%	88%	90%
dont corporels	15%	40%	50%	65%	70%
R.C.	10%	25%	35%	40%	45%

Triangles de Paiements : complément sur les données micro

On note \mathcal{F}_t^n l'information accessible à la date t,

$$\mathcal{F}_t^n = \sigma\{(T_{i,0}, T_{i,j}, X_{i,j}), i = 1, \cdots, n, T_{i,j} \le t\}$$

et
$$C(\infty) = \sum_{i=1}^{n} C_i(\infty)$$
.

Notons que $M_t = \mathbb{E}\left[C(\infty)|\mathcal{F}_{\sqcup}\right]$ est une martingale, i.e.

$$\mathbb{E}[M_{t+h}|\mathcal{F}_t] = M_t$$

alors que $V_t = \text{Var}\left[C(\infty)|\mathcal{F}_{\sqcup}\right]$ est une sur-martingale, i.e.

$$\mathbb{E}[V_{t+h}|\mathcal{F}_t] \le V_t.$$

	ODP/Bootstrap	Mack	Bayesian/BF Method	Judgement	Scenarios	Regression/Curve Fitting
Description	Most common bootstrap model. Potential to use different distribution for the residuals	Calculation of standard error with and without tail factors.	Uses ODP model with a series of prior ULR estimates defined by a distribution	Based on professional experience	Can include any variation such as changing development patterns or single events	Fits Craighead curve to each origin year to derive initial estimate of ULR, then smoothes across origin years using regression
Data required	Cumulative claims triangles (paid or incurred)	Cumulative claim triangles (paid or incurred)	Cumulative claim triangles (paid or incurred)	Any	Any	Premium and claim amounts triangles
Is the method acceptable to the Profession?	Yes	Yes	Yes	Yes	Yes Depends on purpose	
Is the method easy to use and is it practical?	Yes	Yes	No	Yes	Yes	Yes
Can judgement or amendments be applied?	Yes	Amendments needed where gaps in published method	Requires prior distribution of ultimate position of each origin year	Yes - essential	Yes via choice of scenarios and manual adjustments or tweaks	Yes, perhaps too easily
Is the method easy to explain?	Principles easy to explain	No	Very difficult	Yes	Yes	Yes
When is method good? (Or not?)	Good if little negative development and residuals are iid and run-off pattern is same for all years.	Good only if run-off pattern is same for all years	Good if little negative development and residuals are iid and run-off pattern is same for all years.	Good if actuary has additional knowledge; bad if not experienced	Not good if volatile datasets or inexperienced actuary	Good if run-off pattern varies across origin years. Not good if there is much negative development

	ODP/Bootstrap	Mack	Bayesian/BF Method	Judgement	Scenarios	Regression/Curve Fitting
Are extreme events included?	Only if in data	Only if in data	Yes, if in data and/or in prior distributions	Yes if desired	Yes if desired	Yes, if in data but can exclude if desired
Produce complete distribution of outcomes?	Yes if process error is simulated in addition to bootstrapping for parameter error	Produces mean and standard error only	Yes	Yes as any required percentile can be estimated using judgement	No – produces a few possible outcomes to which probabilities can be judgementally applied	No, just an approximate range
Type of uncertainty measured	Bootstrap method gives parameter uncertainty, process uncertainty can be simulated in addition	Process and parameter uncertainty	Process and parameter uncertainty	Potentially model error as well as parameter and process error	Usually just parameter uncertainty	Parameter uncertainty only (dependent variable in regression is expected ULR)
Time to program and complete	Easy to program in Excel though long time to run	Easy to program and quick to run	Specialist software required and very slow to run			Easy to do in Excel
Comparison of class results to aggregated	Automatic consistency between origin year and aggregate results	Automatic consistency between origin year and aggregate results	Automatic consistency between origin year and aggregate results	Should be consistent given enough care, but this not guaranteed	Does not produce separate assessment of aggregate uncertainty	Does not produce separate assessment of aggregate uncertainty

Exemples de cadence de paiement: multirisques habitation

Exemples de cadence de paiement: risque incendies entreprises

Exemples de cadence de paiement: automobile (total)

Exemples de cadence de paiement: automobile matériel

Exemples de cadence de paiement: automobile corporel

Exemples de cadence de paiement: responsabilité civile entreprise

Exemples de cadence de paiement: responabilité civile médicale

Exemples de cadence de paiement: assurance construction

Les triangles: incréments de paiements

Notés $Y_{i,j}$, pour l'année de survenance i, et l'année de développement j,

	0	1	2	3	4	5
0	3209	1163	39	17	7	21
1	3367	1292	37	24	10	
2	3871	1474	53	22		
3	4239	1678	103			
4	4929	1865				
5	5217					

Les triangles: paiements cumulés

Notés $C_{i,j} = Y_{i,0} + Y_{i,1} + \cdots + Y_{i,j}$, pour l'année de survenance i, et l'année de développement j,

	0	1	2	3	4	5
$\mid 0 \mid$	3209	4372	4411	4428	4435	4456
$\mid 1 \mid$	3367	4659	4696	4720	4730	
2	3871	5345	5398	5420		
3	4239	5917	6020		•	
4	4929	6794		•		
5	5217					

Les triangles: nombres de sinistres

Notés $N_{i,j}$ sinistres survenus l'année i connus (déclarés) au bout de j années,

	0	1	2	3	4	5
0	1043.4	1045.5	1047.5	1047.7	1047.7	1047.7
$\mid 1 \mid$	1043.0	1027.1	1028.7	1028.9	1028.7	
2	965.1	967.9	967.8	970.1		
3	977.0	984.7	986.8			
$\mid 4 \mid$	1099.0	1118.5				
5	1076.3					

La prime acquise

Notée π_i , prime acquise pour l'année i

Triangles

```
> rm(list=ls())
2 > source("http://freakonometrics.free.fr/bases.R")
_{3} > 1s()
4 [1] "INCURRED" "NUMBER" "PAID"
                                     "PREMIUM"
5 > PAID
       [,1] [,2] [,3] [,4] [,5] [,6]
 [1,] 3209 4372 4411 4428 4435 4456
 [2,] 3367 4659 4696 4720 4730
                                   NA
 [3,] 3871 5345 5398 5420
                                   ΝA
 [4,] 4239 5917 6020
                              NA
                                   ΝA
                        NA
  [5,] 4929 6794
                   ΝA
                       NΑ
                              ΝA
                                   ΝA
 [6,] 5217
              NA
                   NA
                        ΝA
                              ΝA
                                   ΝA
```

Triangles?

Actually, there might be two different cases in practice, the first one being when initial data are missing

In that case it is mainly an index-issue in calculation.

Triangles?

Actually, there might be two different cases in practice, the first one being when final data are missing, i.e. some tail factor should be included

In that case it is necessary to extrapolate (with past information) the final loss (tail factor).

The Chain Ladder estimate

We assume here that

$$C_{i,j+1} = \lambda_j \cdot C_{i,j} \text{ for all } i, j = 0, 1, \dots, n.$$

A natural estimator for λ_j based on past history is

$$\widehat{\lambda}_{j} = \frac{\sum_{i=0}^{n-j} C_{i,j+1}}{\sum_{i=0}^{n-j} C_{i,j}} \text{ for all } j = 0, 1, \dots, n-1.$$

Hence, it becomes possible to estimate future payments using

$$\widehat{C}_{i,j} = \left[\widehat{\lambda}_{n+1-i} \cdots \widehat{\lambda}_{j-1}\right] C_{i,n+1-i}.$$

$$\lambda_0 = \frac{4372 + \dots + 6794}{3209 + \dots + 4929} \sim 1.38093$$

$$\lambda_0 = \frac{4372 + \dots + 6794}{3209 + \dots + 4929} \sim 1.38093$$

$$\lambda_1 = \frac{4411 + \dots + 6020}{4372 + \dots + 5917} \sim 1.01143$$

$$\lambda_1 = \frac{4411 + \dots + 6020}{4372 + \dots + 5917} \sim 1.01143$$

$$\lambda_2 = \frac{4428 + \dots + 5420}{4411 + \dots + 5398} \sim 1.00434$$

$$\lambda_2 = \frac{4428 + \dots + 5420}{4411 + \dots + 5398} \sim 1.00434$$

	0	1	2	3	4	5
0	3209	4372	4411	4428	4435	4456
1	3367	4659	4696	4720	4730	
2	3871	5345	5398	5420	5430.1	
3	4239	5917	6020	6046.1	6057.4	
4	4929	6794	6871.7	6901.5	6914.3	
5	5217	7204.3	7286.7	7318.3	7331.9	

$$\lambda_3 = \frac{4435 + 4730}{4428 + 4720} \sim 1.00186$$

	0	1	2	3	4	5
0	3209	4372	4411	4428	4435	4456
1	3367	4659	4696	4720	4730	4752.4
2	3871	5345	5398	5420	5430.1	5455.8
3	4239	5917	6020	6046.1	6057.4	6086.1
$\mid 4 \mid$	4929	6794	6871.7	6901.5	6914.3	6947.1
5	5217	7204.3	7286.7	7318.3	7331.9	7366.7

$$\lambda_4 = \frac{4456}{4435} \sim 1.00474$$

	0	1	2	3	4	5
0	3209	4372	4411	4428	4435	4456
1	3367	4659	4696	4720	4730	4752.4
2	3871	5345	5398	5420	5430.1	5455.8
3	4239	5917	6020	6046.15	6057.4	6086.1
$\mid 4 \mid$	4929	6794	6871.7	6901.5	6914.3	6947.1
5	5217	7204.3	7286.7	7318.3	7331.9	7366.7

One the triangle has been completed, we obtain the amount of reserves, with respectively 22, 36, 66, 153 and 2150 per accident year, i.e. the total is 2427.

Computational Issues

```
> library(ChainLadder)
2 > MackChainLadder(PAID)
 MackChainLadder(Triangle = PAID)
                               IBNR Mack.S.E CV(IBNR)
   Latest Dev.To.Date Ultimate
    4,456
               1.000
                       4,456 0.0
                                      0.000
                                                NaN
 1
          0.995
                    4,752 22.4 0.639
                                            0.0285
    4,730
 3
          0.993
                                             0.0699
    5,420
                      5,456 35.8 2.503
          0.989
                      6,086 66.1 5.046
    6,020
                                            0.0764
          0.978
 5
    6,794
                    6,947 153.1
                                     31.332
                                            0.2047
           0.708
 6
    5,217
                       7,367 2,149.7
                                     68.449
                                             0.0318
             Totals
 Latest:
          32,637.00
          0.93
5 Dev:
16 Ultimate: 35,063.99
 IBNR:
       2,426.99
```

18 Mack.S.E 79.30 19 CV(IBNR): 0.03

Three ways to look at triangles

There are basically three kind of approaches to model development

• developments as percentages of total incured, i.e. consider $\varphi = (\varphi_0, \varphi_1, \dots, \varphi_n)$, with $\varphi_0 + \varphi_1 + \dots + \varphi_n = 1$, such that

$$\mathbb{E}(Y_{i,j}) = \varphi_j \mathbb{E}(C_{i,n}), \text{ where } j = 0, 1, \dots, n.$$

• developments as rates of total incured, i.e. consider $\gamma = (\gamma_0, \gamma_1, \dots, \gamma_n)$, such that

$$\mathbb{E}(C_{i,j}) = \gamma_j \mathbb{E}(C_{i,n}), \text{ where } j = 0, 1, \dots, n.$$

• developments as factors of previous estimation, i.e. consider $\lambda = (\lambda_0, \lambda_1, \dots, \lambda_n)$, such that

$$\mathbb{E}(C_{i,j+1}) = \lambda_j \mathbb{E}(C_{i,j}), \text{ where } j = 0, 1, \dots, n.$$

Three ways to look at triangles

From a mathematical point of view, it is strictly equivalent to study one of those. Hence,

$$\gamma_{j} = \varphi_{0} + \varphi_{1} + \dots + \varphi_{j} = \frac{1}{\lambda_{j}} \frac{1}{\lambda_{j+1}} \dots \frac{1}{\lambda_{n-1}},$$

$$\lambda_{j} = \frac{\gamma_{j+1}}{\gamma_{j}} = \frac{\varphi_{0} + \varphi_{1} + \dots + \varphi_{j} + \varphi_{j+1}}{\varphi_{0} + \varphi_{1} + \dots + \varphi_{j}}$$

$$\varphi_{j} = \begin{cases} \gamma_{0} \text{ if } j = 0\\ \gamma_{j} - \gamma_{j-1} \text{ if } j \geq 1 \end{cases} = \begin{cases} \frac{1}{\lambda_{0}} \frac{1}{\lambda_{1}} \cdots \frac{1}{\lambda_{n-1}}, \text{ if } j = 0\\ \frac{1}{\lambda_{j+1}} \frac{1}{\lambda_{j+2}} \cdots \frac{1}{\lambda_{n-1}} - \frac{1}{\lambda_{j}} \frac{1}{\lambda_{j+1}} \cdots \frac{1}{\lambda_{n-1}}, \text{ if } j \geq 1 \end{cases}$$

Three ways to look at triangles

On the previous triangle,

	0	1	2	3	4	n
λ_j	1,38093	1,01143	1,00434	1,00186	1,00474	1,0000
γ_j	70,819%	$97{,}796\%$	$98,\!914\%$	99,344%	$99{,}529\%$	100,000%
$\mid \varphi_j \mid$	70,819%	$26,\!977\%$	$1{,}118\%$	$0,\!430\%$	$0{,}185\%$	0,000%

d-triangles

It is possible to define the d-triangles, with empirical λ 's, i.e. $\lambda_{i,j}$

The Chain-Ladder estimate

The Chain-Ladder estimate is probably the most popular technique to estimate claim reserves. Let \mathcal{F}_t denote the information available at time t, or more formally the filtration generated by $\{C_{i,j}, i+j \leq t\}$ - or equivalently $\{X_{i,j}, i+j \leq t\}$

Assume that incremental payments are independent by occurrence years, i.e.

$$C_{i_1,.}$$
 and $C_{i_2,.}$ are independent for any i_1 and i_2 [H_1]

•

Further, assume that $(C_{i,j})_{j\geq 0}$ is Markov, and more precisely, there exist λ_j 's and σ_i^2 's such that

$$\begin{cases}
\mathbb{E}(C_{i,j+1}|\mathcal{F}_{i+j}) = \mathbb{E}(C_{i,j+1}|C_{i,j}) = \lambda_j \cdot C_{i,j} & [H_2] \\
\operatorname{Var}(C_{i,j+1}|\mathcal{F}_{i+j}) = \operatorname{Var}(C_{i,j+1}|C_{i,j}) = \sigma_j^2 \cdot C_{i,j} & [H_3]
\end{cases}$$

Under those assumption (see Mack (1993)), one gets

$$\mathbb{E}(C_{i,j+k}|\mathcal{F}_{i+j}) = (C_{i,j+k}|C_{i,j}) = \lambda_j \cdot \lambda_{j+1} \cdots \lambda_{j+k-1}C_{i,j}$$

Testing assumptions

Assumption H_2 can be interpreted as a linear regression model, i.e.

 $Y_i = \beta_0 + X_i \cdot \beta_1 + \varepsilon_i$, $i = 1, \dots, n$, where ε is some error term, such that $\mathbb{E}(\varepsilon) = 0$, where $\beta_0 = 0$, $Y_i = C_{i,j+1}$ for some j, $X_i = C_{i,j}$, and $\beta_1 = \lambda_j$.

Weighted least squares can be considered, i.e. $\min \left\{ \sum_{i=1}^{n-j} \omega_i \left(Y_i - \beta_0 - \beta_1 X_i \right)^2 \right\}$ where the ω_i 's are proportional to $\operatorname{Var}(Y_i)^{-1}$. This leads to

$$\min \left\{ \sum_{i=1}^{n-j} \frac{1}{C_{i,j}} \left(C_{i,j+1} - \lambda_j C_{i,j} \right)^2 \right\}.$$

As in any linear regression model, it is possible to test assumptions H_1 and H_2 , the following graphs can be considered, given j

- plot $C_{i,j+1}$'s versus $C_{i,j}$'s. Points should be on the straight line with slope $\widehat{\lambda}_j$.
- plot (standardized) residuals $\varepsilon_{i,j} = \frac{C_{i,j+1} \lambda_j C_{i,j}}{\sqrt{C_{i,j}}}$ versus $C_{i,j}$'s.

Testing assumptions

 H_1 is the accident year independent assumption. More precisely, we assume there is no calendar effect.

Define the diagonal $B_k = \{C_{k,0}, C_{k-1,1}, C_{k-2,2}, \cdots, C_{2,k-2}, C_{1,k-1}, C_{0,k}\}$. If there is a calendar effect, it should affect adjacent factor lines,

$$A_k = \left\{ \frac{C_{k,1}}{C_{k,0}}, \frac{C_{k-1,2}}{C_{k-1,1}}, \frac{C_{k-2,3}}{C_{k-2,2}}, \cdots, \frac{C_{1,k}}{C_{1,k-1}}, \frac{C_{0,k+1}}{C_{0,k}} \right\} = \sqrt[n]{\frac{\delta_{k+1}}{\delta_k}},$$

and

$$A_{k-1} = \left\{ \frac{C_{k-1,1}}{C_{k-1,0}}, \frac{C_{k-2,2}}{C_{k-2,1}}, \frac{C_{k-3,3}}{C_{k-3,2}}, \cdots, \frac{C_{1,k-1}}{C_{1,k-2}}, \frac{C_{0,k}}{C_{0,k-1}} \right\} = \frac{\delta_k}{\delta_{k-1}}.$$

For each k, let N_k^+ denote the number of elements exceeding the median, and N_k^- the number of elements lower than the mean. The two years are independent, N_k^+ and N_k^- should be "closed", i.e. $N_k = \min(N_k^+, N_k^-)$ should be "closed" to $(N_k^+ + N_k^-)/2$.

Testing assumptions

Since N_k^- and N_k^+ are two binomial distributions $\mathcal{B}\left(p=1/2,n=N_k^-+N_k^+\right)$, then

$$\mathbb{E}(N_k) = \frac{n_k}{2} - \begin{pmatrix} n_k - 1 \\ m_k \end{pmatrix} \frac{n_k}{2^{n_k}} \text{ where } n_k = N_k^+ + N_k^- \text{ and } m_k = \left[\frac{n_k - 1}{2}\right]$$

and

$$V(N_k) = \frac{n_k (n_k - 1)}{2} - \begin{pmatrix} n_k - 1 \\ m_k \end{pmatrix} \frac{n_k (n_k - 1)}{2^{n_k}} + \mathbb{E}(N_k) - \mathbb{E}(N_k)^2.$$

Under some normality assumption on N, a 95% confidence interval can be derived, i.e. $\mathbb{E}(Z) \pm 1.96 \sqrt{V(Z)}$.

From Chain-Ladder to Grossing-Up

The idea of the Chain-Ladder technique was to estimate the λ_j 's, so that we can derive estimates for $C_{i,n}$, since

$$\widehat{C}_{i,n} = \widehat{C}_{i,n-i} \cdot \prod_{k=n-i+1}^{n} \widehat{\lambda}_k$$

Based on the Chain-Ladder link ratios, $\widehat{\lambda}$, it is possible to define grossing-up coefficients

$$\widehat{\gamma}_j = \prod_{k=j}^n \frac{1}{\widehat{\lambda}_k}$$

and thus, the total loss incured for accident year i is then

$$\widehat{C}_{i,n} = \widehat{C}_{i,n-i} \cdot \frac{\widehat{\gamma}_n}{\widehat{\gamma}_{n-i}}$$

Variant of the Chain-Ladder Method (1)

Historically (see e.g.), the *natural* idea was to consider a (standard) average of individual link ratios.

Several techniques have been introduces to study individual link-ratios.

A first idea is to consider a simple linear model, $\lambda_{i,j} = a_j i + b_j$. Using OLS techniques, it is possible to estimate those coefficients simply. Then, we project those ratios using predicted one, $\hat{\lambda}_{i,j} = \hat{a}_j i + \hat{b}_j$.

Variant of the Chain-Ladder Method (2)

A second idea is to assume that λ_j is the weighted sum of $\lambda_{...,j}$'s,

$$\widehat{\lambda}_j = \frac{\sum_{i=0}^{j-1} \omega_{i,j} \lambda_{i,j}}{\sum_{i=0}^{j-1} \omega_{i,j}}$$

If $\omega_{i,j} = C_{i,j}$ we obtain the chain ladder estimate. An alternative is to assume that $\omega_{i,j} = i + j + 1$ (in order to give more weight to recent years).

Variant of the Chain-Ladder Method (3)

Here, we assume that cumulated run-off triangles have an exponential trend, i.e.

$$C_{i,j} = \alpha_j \exp(i \cdot \beta_j).$$

In order to estimate the α_j 's and β_j 's is to consider a linear model on $\log C_{i,j}$,

$$\log C_{i,j} = \underbrace{a_j}_{\log(\alpha_j)} + \beta_j \cdot i + \varepsilon_{i,j}.$$

Once the β_j 's have been estimated, set $\widehat{\gamma}_j = \exp(\widehat{\beta}_j)$, and define

$$\Gamma_{i,j} = \widehat{\gamma}_j^{n-i-j} \cdot C_{i,j}.$$

The extended link ratio family of estimators

For convenience, link ratios are factors that give relation between cumulative payments of one development year (say j) and the next development year (j + 1). They are simply the ratios y_i/x_i , where x_i 's are cumulative payments year j (i.e. $x_i = C_{i,j}$) and y_i 's are cumulative payments year j + 1 (i.e. $y_i = C_{i,j+1}$).

For example, the Chain Ladder estimate is obtained as

$$\widehat{\lambda}_j = \frac{\sum_{i=0}^{n-j} y_i}{\sum_{k=0}^{n-j} x_k} = \sum_{i=0}^{n-j} \frac{x_i}{\sum_{k=1}^{n-j} x_k} \cdot \frac{y_i}{x_i}.$$

But several other link ratio techniques can be considered, e.g.

$$\widehat{\lambda}_j = \frac{1}{n-j+1} \sum_{i=0}^{n-j} \frac{y_i}{x_i}$$
, i.e. the simple arithmetic mean,

$$\widehat{\lambda}_j = \left(\prod_{i=0}^{n-j} \frac{y_i}{x_i}\right)^{n-j+1}$$
, i.e. the geometric mean,

$$\widehat{\lambda}_j = \sum_{i=0}^{n-j} \frac{x_i^2}{\sum_{k=1}^{n-j} x_k^2} \cdot \frac{y_i}{x_i}, \text{ i.e. the weighted average "by volume squared"},$$

Hence, these techniques can be related to weighted least squares, i.e.

$$y_i = \beta x_i + \varepsilon_i$$
, where $\varepsilon_i \sim \mathcal{N}(0, \sigma^2 x_i^{\delta})$, for some $\delta > 0$.

E.g. if $\delta = 0$, we obtain the arithmetic mean, if $\delta = 1$, we obtain the Chain Ladder estimate, and if $\delta = 2$, the weighted average "by volume squared".

The interest of this regression approach, is that standard error for predictions can be derived, under standard (and testable) assumptions. Hence

- standardized residuals $(\sigma x_i^{\delta/2})^{-1} \varepsilon_i$ are $\mathcal{N}(0,1)$, i.e. QQ plot
- $\mathbb{E}(y_i|x_i) = \beta x_i$, i.e. graph of x_i versus y_i .

Properties of the Chain-Ladder estimate

Further

$$\widehat{\lambda}_j = \frac{\sum_{i=0}^{n-j-1} C_{i,j+1}}{\sum_{i=0}^{n-j-1} C_{i,j}}$$

is an unbiased estimator for λ_j , given \mathcal{F}_j , and $\widehat{\lambda}_j$ and $\widehat{\lambda}_{j+h}$ are non-correlated, given \mathcal{F}_j . Hence, an unbiased estimator for $\mathbb{E}(C_{i,j}|\mathcal{F}_n)$ is

$$\widehat{C}_{i,j} = \widehat{\lambda}_{n-i} \cdot \widehat{\lambda}_{n-i+1} \cdots \widehat{\lambda}_{j-2} \left(\widehat{\lambda}_{j-1} - 1 \right) \cdot C_{i,n-i}.$$

Recall that $\widehat{\lambda}_j$ is the estimator with minimal variance among all linear estimators obtained from $\lambda_{i,j} = C_{i,j+1}/C_{i,j}$'s. Finally, recall that

$$\widehat{\sigma}_{j}^{2} = \frac{1}{n-j-1} \sum_{i=0}^{n-j-1} \left(\frac{C_{i,j+1}}{C_{i,j}} - \widehat{\lambda}_{j} \right)^{2} \cdot C_{i,j}$$

is an unbiased estimator of σ_j^2 , given \mathcal{F}_j (see Mack (1993) or Denuit & Charpentier (2005)).

Prediction error of the Chain-Ladder estimate

We stress here that estimating reserves is a prediction process: based on past observations, we predict future amounts. Recall that prediction error can be explained as follows,

$$\underbrace{\mathbb{E}[(Y - \widehat{Y})^2]}_{\text{prediction variance}} = \underbrace{\mathbb{E}[\left((Y - \mathbb{E}Y) + (\mathbb{E}(Y) - \widehat{Y})\right)^2]}_{\text{process variance}} + \underbrace{\mathbb{E}[(\mathbb{E}Y - \widehat{Y})^2]}_{\text{estimation variance}}.$$

- the process variance reflects randomness of the random variable
- the estimation variance reflects uncertainty of statistical estimation

Process variance of reserves per occurrence year

The amount of reserves for accident year i is simply

$$\widehat{R}_i = \left(\widehat{\lambda}_{n-i} \cdot \widehat{\lambda}_{n-i+1} \cdots \widehat{\lambda}_{n-2} \widehat{\lambda}_{n-1} - 1\right) \cdot C_{i,n-i}.$$

Note that $\mathbb{E}(\widehat{R}_i|\mathcal{F}_n) = R_i$ Since

$$\operatorname{Var}(\widehat{R}_{i}|\mathcal{F}_{n}) = \operatorname{Var}(C_{i,n}|\mathcal{F}_{n}) = \operatorname{Var}(C_{i,n}|C_{i,n-i})$$
$$= \sum_{k=i+1}^{n} \prod_{l=k+1}^{n} \lambda_{l}^{2} \sigma_{k}^{2} \mathbb{E}[C_{i,k}|C_{i,n-i}]$$

and a natural estimator for this variance is then

$$\widehat{\operatorname{Var}}(\widehat{R}_{i}|\mathcal{F}_{n}) = \sum_{k=i+1}^{n} \prod_{l=k+1}^{n} \widehat{\lambda}_{l}^{2} \widehat{\sigma}_{k}^{2} \widehat{C}_{i,k}$$

$$= \widehat{C}_{i,n} \sum_{k=i+1}^{n} \frac{\widehat{\sigma}_{k}^{2}}{\widehat{\lambda}_{k}^{2} \widehat{C}_{i,k}}.$$

Note that it is possible to get not only the variance of the ultimate cumulate payments, but also the variance of any increment. Hence

$$Var(Y_{i,j}|\mathcal{F}_n) = Var(Y_{i,j}|C_{i,n-i})$$

$$= \mathbb{E}[Var(Y_{i,j}|C_{i,j-1})|C_{i,n-i}] + Var[\mathbb{E}(Y_{i,j}|C_{i,j-1})|C_{i,n-i}]$$

$$= \mathbb{E}[\sigma_i^2 C_{i,j-1}|C_{i,n-i}] + Var[(\lambda_{j-1} - 1)C_{i,j-1}|C_{i,n-i}]$$

and a natural estimator for this variance is then

$$\widehat{\operatorname{Var}}(Y_{i,j}|\mathcal{F}_n) = \widehat{\operatorname{Var}}(C_{i,j}|\mathcal{F}_n) + (1 - 2\widehat{\lambda}_{j-1})\widehat{\operatorname{Var}}(C_{i,j-1}|\mathcal{F}_n)$$

where, from the expressions given above,

$$\widehat{\operatorname{Var}}(C_{i,j}|\mathcal{F}_n) = C_{i,n-i} \sum_{k=i+1}^{j-1} \frac{\widehat{\sigma}_k^2}{\widehat{\lambda}_k^2 \widehat{C}_{i,k}}.$$

Parameter variance when estimating reserves per occurrence year

So far, we have obtained an estimate for the process error of technical risks (increments or cumulated payments). But since parameters λ_j 's and σ_j^2 are estimated from past information, there is an additional potential error, also called parameter error (or estimation error). Hence, we have to quantify $\mathbb{E}\left([R_i - \widehat{R}_i]^2\right)$. In order to quantify that error, Murphy (1994) assume the following underlying model,

$$C_{i,j} = \lambda_{j-1} \cdot C_{i,j-1} + \eta_{i,j}$$

with independent variables $\eta_{i,j}$. From the structure of the conditional variance,

$$\operatorname{Var}(C_{i,j+1}|\mathcal{F}_{i+j}) = \operatorname{Var}(C_{i,j+1}|C_{i,j}) = \sigma_j^2 \cdot C_{i,j},$$

Parameter variance when estimating reserves per occurrence year

it is natural to write the equation above

$$C_{i,j} = \lambda_{j-1}C_{i,j-1} + \sigma_{j-1}\sqrt{C_{i,j-1}}\varepsilon_{i,j},$$

with independent and centered variables with unit variance $\varepsilon_{i,j}$. Then

$$\mathbb{E}\left(\left[R_{i}-\widehat{R}_{i}\right]^{2}|\mathcal{F}_{n}\right)=\widehat{R}_{i}^{2}\left(\sum_{k=0}^{n-i-1}\frac{\widehat{\sigma}_{i+k}^{2}}{\widehat{\lambda}_{i+k}^{2}\sum C_{\cdot,i+k}}+\frac{\widehat{\sigma}_{n-1}^{2}}{\left[\widehat{\lambda}_{n-1}-1\right]^{2}\sum C_{\cdot,i+k}}\right)$$

Based on that estimator, it is possible to derive the following estimator for the Conditional Mean Square Error of reserve prediction for occurrence year i,

$$CMSE_i = \widehat{Var}(\widehat{R}_i | \mathcal{F}_n) + \mathbb{E}\left([R_i - \widehat{R}_i]^2 | \mathcal{F}_n\right).$$

Variance of global reserves (for all occurrence years)

The estimate total amount of reserves is $\widehat{\operatorname{Var}}(\widehat{R}) = \widehat{\operatorname{Var}}(\widehat{R}_1) + \cdots + \widehat{\operatorname{Var}}(\widehat{R}_n)$.

In order to derive the conditional mean square error of reserve prediction, define the covariance term, for i < j, as

$$CMSE_{i,j} = \widehat{R}_i \widehat{R}_j \left(\sum_{k=i}^n \frac{\widehat{\sigma}_{i+k}^2}{\widehat{\lambda}_{i+k}^2 \sum C_{\cdot,k}} + \frac{\widehat{\sigma}_j^2}{[\widehat{\lambda}_{j-1} - 1] \widehat{\lambda}_{j-1} \sum C_{\cdot,j+k}} \right),$$

then the conditional mean square error of overall reserves

$$CMSE = \sum_{i=1}^{n} CMSE_i + 2\sum_{j>i} CMSE_{i,j}.$$

Application on our triangle

```
> MackChainLadder(PAID)
2
   Latest Dev. To. Date Ultimate
                             IBNR Mack.S.E CV(IBNR)
    4,456
          1.000
                   4,456 0.0
                                    0.000
                                             NaN
 1
         0.995
                          22.4 0.639
                                          0.0285
 2
    4,730
                   4,752
    5,420
         0.993
                   5,456 35.8 2.503
                                          0.0699
 3
                   6,086 66.1 5.046
         0.989
    6,020
                                          0.0764
                                   31.332
         0.978
                   6,947 153.1
                                          0.2047
    6,794
         0.708
    5,217
                     7,367 2,149.7 68.449
                                          0.0318
            Totals
 Latest:
       32,637.00
         0.93
з Dev:
4 Ultimate: 35,063.99
 IBNR:
        2,426.99
16 Mack.S.E 79.30
 CV(IBNR):
          0.03
```

Application on our triangle

```
1 > MackChainLadder(PAID)$f
2 [1] 1.380933 1.011433 1.004343 1.001858 1.004735 1.000000
3 > MackChainLadder(PAID)$f.se
4 [1] 5.175575e-03 2.248904e-03 3.808886e-04 2.687604e-04 9.710323e-05
5 > MackChainLadder(PAID)$sigma
6 [1] 0.724857769 0.320364221 0.045872973 0.025705640 0.006466667
7 > MackChainLadder(PAID)$sigma^2
8 [1] 5.254188e-01 1.026332e-01 2.104330e-03 6.607799e-04 4.181778e-05
```

A short word on Munich Chain Ladder

Munich chain ladder is an extension of Mack's technique based on paid (P) and incurred (I) losses.

Here we adjust the chain-ladder link-ratios λ_j 's depending if the momentary (P/I) ratio is above or below average. It integrated correlation of residuals between P vs. I/P and I vs. P/I chain-ladder link-ratio to estimate the correction factor.

Use standard Chain Ladder technique on the two triangles.

A short word on Munich Chain Ladder

The (standard) payment triangle, P

	0	1	2	3	4	5
0	3209	4372	4411	4428	4435	4456
1	3367	4659	4696	4720	4730	4752.4
2	3871	5345	5398	5420	5430.1	5455.8
3	4239	5917	6020	6046.15	6057.4	6086.1
$\mid 4 \mid$	4929	6794	6871.7	6901.5	6914.3	6947.1
5	5217	7204.3	7286.7	7318.3	7331.9	7366.7

Computational Issues

```
> MackChainLadder(PAID)
2
   Latest Dev. To. Date Ultimate
                             IBNR Mack.S.E CV(IBNR)
    4,456
          1.000
                   4,456 0.0
                                    0.000
                                             NaN
 1
         0.995
                   4,752 22.4 0.639
                                          0.0285
 2
    4,730
 3
    5,420
         0.993
                   5,456 35.8 2.503
                                          0.0699
                   6,086 66.1 5.046
         0.989
    6,020
                                          0.0764
                                   31.332
          0.978
                   6,947 153.1
                                          0.2047
    6,794
    5,217
         0.708
                      7,367 2,149.7 68.449
                                          0.0318
            Totals
 Latest:
         32,637.00
         0.93
з Dev:
4 Ultimate: 35,063.99
 IBNR:
        2,426.99
16 Mack.S.E 79.30
 CV(IBNR):
          0.03
```

A short word on Munich Chain Ladder

The Incurred Triangle (I) with estimated losses,

	0	1	2	3	4	5
0	4795	4629	4497	4470	4456	4456
1	5135	4949	4783	4760	4750	4750.0
2	5681	5631	5492	5470	5455.8	5455.8
3	6272	6198	6131	6101.1	6085.3	6085.3
4	7326	7087	6920.1	6886.4	6868.5	6868.5
5	7353	7129.1	6991.2	6927.3	6909.3	6909.3

Computational Issues

```
> MackChainLadder(INCURRED)
   Latest Dev.To.Date Ultimate
                          IBNR Mack.S.E CV(IBNR)
   4,456
              1.00
                  4,456 0.0
                                  0.000
                                           NaN
         1.00
   4,750
                  4,750 0.0
                               0.975
                                       Inf
        1.00
                  5,456 -14.2 4.747 -0.334
   5,470
        1.01 6,085 -45.7 8.305 -0.182
   6,131
         1.03
                  6,869 -218.5 71.443
   7,087
                                         -0.327
   7,353
         1.06
                     6,909 -443.7 180.166
                                         -0.406
            Totals
 Latest: 35,247.00
       1.02
 Dev:
 Ultimate: 34,524.83
      -722.17
 IBNR:
6 Mack.S.E 201.00
```

(keep only here $\widehat{C}_n = 34,524$, to be compared with the previous 35,067.

Computational Issues

```
> MunichChainLadder(PAID, INCURRED)
2
   Latest Paid Latest Incurred Latest P/I Ratio Ult. Paid Ult.
      Incurred Ult. P/I Ratio
         4,456
                         4,456
                                            1.000 4,456
4 1
                         1
     4,456
      4,730
 2
                          4,750
                                            0.996
                                                       4,753
     4,750
                         1
         5,420
                          5,470
6 3
                                            0.991
                                                       5,455
                         1
     5,454
         6,020
                          6,131
                                                       6,086
                                            0.982
 4
     6,085
         6,794
                          7,087
                                            0.959
                                                      6,983
 5
                         1
     6,980
 6
         5,217
                          7,353
                                            0.710
                                                       7,538
     7,533
                         1
```

```
Totals

Paid Incurred P/I Ratio

Latest: 32,637 35,247 0.93

Ultimate: 35,271 35,259 1.00
```

It is possible to get a model mixing the two approaches together...

One of the difficulties with using the chain ladder method is that reserve forecasts can be quite unstable. The Bornhuetter & Ferguson (1972) method provides a procedure for stabilizing such estimates.

Recall that in the standard chain ladder model,

$$\widehat{C}_{i,n} = \widehat{F}_n \cdot C_{i,n-i}$$
, where $\widehat{F}_n = \prod_{k=n-i}^{n-1} \widehat{\lambda}_k$

If \hat{R}_i denotes the estimated outstanding reserves,

$$\widehat{R}_i = \widehat{C}_{i,n} - C_{i,n-i} = \widehat{C}_{i,n} \cdot \frac{\widehat{F}_n - 1}{\widehat{F}_n}.$$

For a bayesian interpretation of the Bornhutter-Ferguson model, England & Verrall (2002) considered the case where incremental paiments $Y_{i,j}$ are i.i.d. overdispersed Poisson variables. Here

$$\mathbb{E}(Y_{i,j}) = a_i b_j \text{ and } Var(Y_{i,j}) = \varphi \cdot a_i b_j,$$

where we assume that $b_1 + \cdots + b_n = 1$. Parameter a_i is assumed to be a drawing of a random variable $A_i \sim \mathcal{G}(\alpha_i, \beta_i)$, so that $\mathbb{E}(A_i) = \alpha_i/\beta_i$, so that

$$\mathbb{E}(C_{i,n}) = \frac{\alpha_i}{\beta_i} = C_i^*,$$

which is simply a prior expectation of the final loss amount.

The posterior distribution of $X_{i,j+1}$ is then

$$\mathbb{E}(X_{i,j+1}|\mathcal{F}_{i+j}) = \left(Z_{i,j+1}C_{i,j} + [1 - Z_{i,j+1}]\frac{C_i^*}{\widehat{F}_j}\right) \cdot (\lambda_j - 1)$$

where
$$Z_{i,j+1} = \frac{\widehat{F}_j^{-1}}{\beta \varphi + \widehat{F}_j}$$
, where $\widehat{F}_j = \lambda_{j+1} \cdots \lambda_n$.

Hence, Bornhutter-Ferguson technique can be interpreted as a Bayesian method, and a credibility estimator (since bayesian with conjugated distributed leads to credibility).

The underlying assumptions are here

- assume that accident years are independent
- assume that there exist parameters $\boldsymbol{\mu} = (\mu_0, \dots, \mu_n)$ and a pattern $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_n)$ with $\beta_n = 1$ such that

$$\mathbb{E}(C_{i,0}) = \beta_0 \mu_i$$

$$\mathbb{E}(C_{i,j+k}|\mathcal{F}_{i+j}) = C_{i,j} + [\beta_{j+k} - \beta_j] \cdot \mu_i$$

Hence, one gets that $\mathbb{E}(C_{i,j}) = \beta_j \mu_i$.

The sequence (β_j) denotes the claims development pattern. The Bornhuetter-Ferguson estimator for $\mathbb{E}(C_{i,n}|C_i,1,\cdots,C_{i,j})$ is

$$\widehat{C}_{i,n} = C_{i,j} + [1 - \widehat{\beta}_{j-i}]\widehat{\mu}_i$$

where $\widehat{\mu}_i$ is an estimator for $\mathbb{E}(C_{i,n})$.

If we want to relate that model to the classical Chain Ladder one,

$$\beta_j$$
 is $\prod_{k=j+1}^n \frac{1}{\lambda_k}$

Consider the classical triangle. Assume that the estimator $\hat{\mu}_i$ is a plan value (obtain from some business plan). For instance, consider a 105% loss ratio per accident year.

i	0	1	2	3	4	5
premium	4591	4692	4863	5175	5673	6431
$\widehat{\mu}_i$	4821	4927	5106	5434	5957	6753
λ_i	1,380	1,011	1,004	1,002	1,005	
eta_i	0,708	0,978	0,989	0,993	0,995	
$\widehat{C}_{i,n}$	4456	4753	5453	6079	6925	7187
\widehat{R}_i	0	23	33	59	131	1970

Boni-Mali

As point out earlier, the (conditional) mean square error of prediction (MSE) is

$$\operatorname{mse}_{t}(\widehat{X}) = \mathbb{E}\left([X - \widehat{X}]^{2} | \mathcal{F}_{t}\right)$$

$$= \underbrace{\operatorname{Var}(X | \mathcal{F}_{t})}_{\operatorname{process variance}} + \underbrace{\mathbb{E}\left(\mathbb{E}\left(X | \mathcal{F}_{t}\right) - \widehat{X}\right)^{2}}_{\operatorname{parameter estimation error}}$$

i.e
$$\widehat{X}$$
 is
$$\begin{cases} \text{a predictor for } X \\ \text{an estimator for } \mathbb{E}(X|\mathcal{F}_t). \end{cases}$$

But this is only a a long-term view, since we focus on the uncertainty over the whole runoff period. It is not a one-year solvency view, where we focus on changes over the next accounting year.

Boni-Mali

From time t = n and time t = n + 1,

$$\widehat{\lambda_j}^{(n)} = \frac{\sum_{i=0}^{n-j-1} C_{i,j+1}}{\sum_{i=0}^{n-j-1} C_{i,j}} \text{ and } \widehat{\lambda_j}^{(n+1)} = \frac{\sum_{i=0}^{n-j} C_{i,j+1}}{\sum_{i=0}^{n-j} C_{i,j}}$$

and the ultimate loss predictions are then

$$\widehat{C}_i^{(n)} = C_{i,n-i} \cdot \prod_{j=n-i}^n \widehat{\lambda_j}^{(n)} \text{ and } \widehat{C}_i^{(n+1)} = C_{i,n-i+1} \cdot \prod_{j=n-i+1}^n \widehat{\lambda_j}^{(n+1)}$$

Boni-Mali and the one-year-uncertainty

Boni-Mali and the one-year-uncertainty

Boni-Mali and the one-year-uncertainty

Boni-Mali

In order to study the one-year claims development, we have to focus on

$$\widehat{R}_{i}^{(n)}$$
 and $Y_{i,n-i+1} + \widehat{R}_{i}^{(n+1)}$

The boni-mali for accident year i, from year n to year n+1 is then

$$\widehat{BM}_{i}^{(n,n+1)} = \widehat{R}_{i}^{(n)} - \left[Y_{i,n-i+1} + \widehat{R}_{i}^{(n+1)} \right] = \widehat{C}_{i}^{(n)} - \widehat{C}_{i}^{(n+1)}.$$

Thus, the conditional one-year runoff uncertainty is

$$\widehat{mse}(\widehat{BM}_{i}^{(n,n+1)}) = \mathbb{E}\left(\left[\widehat{C}_{i}^{(n)} - \widehat{C}_{i}^{(n+1)}\right]^{2} | \mathcal{F}_{n}\right)$$

Boni-Mali

Hence,

$$\widehat{mse}(\widehat{BM}_{i}^{(n,n+1)}) = [\widehat{C}_{i}^{(n)}]^{2} \left[\frac{\widehat{\sigma}_{n-i}^{2} / [\widehat{\lambda}_{n-i}^{(n)}]^{2}}{C_{i,n-i}} + \frac{\widehat{\sigma}_{n-i}^{2} / [\widehat{\lambda}_{n-i}^{(n)}]^{2}}{\sum_{k=0}^{i-1} C_{k,n-i}} + \sum_{j=n-i+1}^{n-1} \frac{C_{n-j,j}}{\sum_{k=0}^{n-j} C_{k,j}} \cdot \frac{\widehat{\sigma}_{j}^{2} / [\widehat{\lambda}_{j}^{(n)}]^{2}}{\sum_{k=0}^{n-j-1} C_{k,j}} \right]$$

Further, it is possible to derive the MSEP for aggregated accident years (see Merz & Wüthrich (2008)).

Boni-Mali, Computational Issues

```
> CDR(MackChainLadder(PAID))
            IBNR CDR(1)S.E.
                              Mack.S.E.
         0.00000
                  0.0000000
                              0.000000
1
        22.39684 0.6393379
                              0.6393379
3
        35.78388 2.4291919
                              2.5025153
        66.06466 4.3969805
                              5.0459004
5
       153.08358 30.9004962 31.3319292
6
      2149.65640 60.8243560 68.4489667
Total 2426.98536 72.4127862 79.2954414
```

Ultimate Loss and Tail Factor

The idea - introduced by Mack (1999) - is to compute

$$\widehat{\lambda}_{\infty} = \prod_{k > n} \widehat{\lambda}_k$$

and then to compute

$$C_{i,\infty} = C_{i,n} \times \lambda_{\infty}.$$

Assume here that λ_i are exponentially decaying to 1, i.e. $\log(\lambda_k - 1)$'s are linearly decaying

```
1 > Lambda=MackChainLadder(PAID)$f[1:(ncol(PAID)-1)]
2 > logL <- log(Lambda-1)
3 > tps <- 1:(ncol(PAID)-1)
4 > modele <- lm(logL~tps)
5 > logP <- predict(modele,newdata=data.frame(tps=seq(6,1000)))
6 > (facteur <- prod(exp(logP)+1))
7 [1] 1.000707</pre>
```

Ultimate Loss and Tail Factor

```
1 > DIAG <- diag(PAID[,6:1])
2 > PRODUIT <- c(1,rev(Lambda))
3 > sum((cumprod(PRODUIT)-1)*DIAG)
4 [1] 2426.985
5 > sum((cumprod(PRODUIT)*facteur-1)*DIAG)
6 [1] 2451.764
```


The ultimate loss is here 0.07% larger, and the reserves are 1% larger.

Ultimate Loss and Tail Factor

```
> MackChainLadder(Triangle = PAID, tail = TRUE)
2
    Latest Dev. To. Date Ultimate
                               IBNR Mack.S.E CV(IBNR)
    4,456
          0.999
                            3.15
                                      0.299
                                             0.0948
                       4,459
4 0
          0.995
                      4,756
                            25.76
                                   0.712
                                             0.0277
 12
     4,730
          0.993
     5,420
                       5,460
                            39.64 2.528
                                             0.0638
 24
          0.988
    6,020
                       6,090 70.37 5.064
                                             0.0720
 36
     6,794
          0.977
                       6,952 157.99
                                      31.357 0.1985
 48
 60
     5,217
          0.708
                       7,372 2,154.86 68.499
                                             0.0318
            Totals
2 Latest: 32,637.00
        0.93
з Dev:
4 Ultimate: 35,088.76
15 IBNR:
       2,451.76
16 Mack.S.E 79.37
7 CV(IBNR):
          0.03
```

La méthode dite London Chain a été introduite par Benjamin & Eagles (1986). On suppose ici que la dynamique des $(C_{ij})_{j=1,...,n}$ est donnée par un modèle de type AR(1) avec constante, de la forme

$$C_{i,k+1} = \lambda_k \cdot C_{ik} + \alpha_k$$
 pour tout $i, k = 1, ..., n$

De façon pratique, on peut noter que la méthode standard de Chain Ladder, reposant sur un modèle de la forme $C_{i,k+1} = \lambda_k C_{ik}$, ne pouvait être appliqué que lorsque les points $(C_{i,k}, C_{i,k+1})$ sont sensiblement alignés $(\grave{a} \ k \ fix\acute{e})$ sur une droite passant par l'origine. La méthode London Chain suppose elle aussi que les points soient alignés sur une même droite, mais on ne suppose plus qu'elle passe par 0.

Example:On obtient la droite passant au mieux par le nuage de points et par 0, et la droite passant au mieux par le nuage de points.

Dans ce modèle, on a alors 2n paramètres à identifier : λ_k et α_k pour k = 1, ..., n. La méthode la plus naturelle consiste à estimer ces paramètres à l'aide des moindres carrés, c'est à dire que l'on cherche, pour tout k,

$$(\widehat{\lambda}_k, \widehat{\alpha}_k) = \arg\min \left\{ \sum_{i=1}^{n-k} (C_{i,k+1} - \alpha_k - \lambda_k C_{i,k})^2 \right\}$$

ce qui donne, finallement

$$\widehat{\lambda}_{k} = \frac{\frac{1}{n-k} \sum_{i=1}^{n-k} C_{i,k} C_{i,k+1} - \overline{C}_{k}^{(k)} \overline{C}_{k+1}^{(k)}}{\frac{1}{n-k} \sum_{i=1}^{n-k} C_{i,k}^{2} - \overline{C}_{k}^{(k)2}}$$

où
$$\overline{C}_k^{(k)} = \frac{1}{n-k} \sum_{i=1}^{n-k} C_{i,k}$$
 et $\overline{C}_{k+1}^{(k)} = \frac{1}{n-k} \sum_{i=1}^{n-k} C_{i,k+1}$

et où la constante est donnée par $\widehat{\alpha}_k = \overline{C}_{k+1}^{(k)} - \widehat{\lambda}_k \overline{C}_k^{(k)}$.

Dans le cas particulier du triangle que nous étudions, on obtient

k	0	1	2	3	4
$\widehat{\lambda}_k$	1.404	1.405	1.0036	1.0103	1.0047
$\widehat{\alpha}_k$	-90.311	-147.27	3.742	-38.493	0

The completed (cumulated) triangle is then

	0	1	2	3	4	5
0	3209	4372	4411	4428	4435	4456
1	3367	4659	4696	4720	4730	
2	3871	5345	5398	5420		
3	4239	5917	6020		•	
4	4929	6794				
5	5217					

	0	1	2	3	4	5
0	3209	4372	4411	4428	4435	4456
1	3367	4659	4696	4720	4730	4752
2	3871	5345	5398	5420	5437	5463
3	4239	5917	6020	6045	6069	6098
$\mid 4 \mid$	4929	6794	6922	6950	6983	7016
5	5217	7234	7380	7410	7447	7483

One the triangle has been completed, we obtain the amount of reserves, with respectively 22, 43, 78, 222 and 2266 per accident year, i.e. the total is 2631 (to be compared with 2427, obtained with the Chain Ladder technique).

La méthode dite London Pivot a été introduite par Straub, dans *Nonlife* Insurance Mathematics (1989). On suppose ici que $C_{i,k+1}$ et $C_{i,k}$ sont liés par une relation de la forme

$$C_{i,k+1} + \alpha = \lambda_k \cdot (C_{i,k} + \alpha)$$

(de façon pratique, les points $(C_{i,k}, C_{i,k+1})$ doivent être sensiblement alignés (à k $fix\acute{e}$) sur une droite passant par le point dit pivot $(-\alpha, -\alpha)$). Dans ce modèle, (n+1) paramètres sont alors a estimer, et une estimation par moindres carrés ordinaires donne des estimateurs de façon itérative.

This approach was studied in a paper entitled Separation of inflation and other effects from the distribution of non-life insurance claim delays

We assume the incremental payments are functions of two factors, one related to accident year i, and one to calendar year i + j. Hence, assume that

$$Y_{ij} = r_j \mu_{i+j-1}$$
 for all i, j

Hence, incremental payments are functions of development factors, r_j , and a calendar factor, μ_{i+j-1} , that might be related to some inflation index.

In order to identify factors $r_1, r_2, ..., r_n$ and $\mu_1, \mu_2, ..., \mu_n$, i.e. 2n coefficients, an additional constraint is necessary, e.g. on the r_j 's, $r_1 + r_2 + + r_n = 1$ (this will be called arithmetic separation method). Hence, the sum on the latest diagonal is

$$d_n = Y_{1,n} + Y_{2,n-1} + \dots + Y_{n,1} = \mu_n (r_1 + r_2 + \dots + r_k) = \mu_n$$

On the first sur-diagonal

$$d_{n-1} = Y_{1,n-1} + Y_{2,n-2} + \dots + Y_{n-1,1} = \mu_{n-1} (r_1 + r_2 + \dots + r_{n-1}) = \mu_{n-1} (1 - r_n)$$

and using the nth column, we get $\gamma_n = Y_{1,n} = r_n \mu_n$, so that

$$r_n = \frac{\gamma_n}{\mu_n} \text{ and } \mu_{n-1} = \frac{d_{n-1}}{1 - r_n}$$

More generally, it is possible to iterate this idea, and on the *i*th sur-diagonal,

$$d_{n-i} = Y_{1,n-i} + Y_{2,n-i-1} + \dots + Y_{n-i,1} = \mu_{n-i} (r_1 + r_2 + \dots + r_{n-i})$$
$$= \mu_{n-i} (1 - [r_n + r_{n-1} + \dots + r_{n-i+1}])$$

and finally, based on the n-i+1th column,

$$\begin{array}{lll} \gamma_{n-i+1} & = & Y_{1,n-i+1} + Y_{2,n-i+1} + \dots + Y_{i-1,n-i+1} \\ & = & r_{n-i+1}\mu_{n-i+1} + \dots + r_{n-i+1}\mu_{n-1} + r_{n-i+1}\mu_n \end{array}$$

$$r_{n-i+1} = \frac{\gamma_{n-i+1}}{\mu_n + \mu_{n-1} + \dots + \mu_{n-i+1}} \text{ and } \mu_{k-i} = \frac{d_{n-i}}{1 - [r_n + r_{n-1} + \dots + r_{n-i+1}]}$$

k	1	2	3	4	5	6
μ_k	4391	4606	5240	5791	6710	7238
r_k in %	73.08	25.25	0.93	0.32	0.12	0.29

The challenge here is to forecast forecast values for the μ_k 's. Either a linear model or an exponential model can be considered.

Lemaire (1982) and autoregressive models

Instead of a *simple* Markov process, it is possible to assume that the $C_{i,j}$'s can be modeled with an autorgressive model in two directions, rows and columns,

$$C_{i,j} = \alpha C_{i-1,j} + \beta C_{i,j-1} + \gamma.$$

Zehnwirth (1977)

Here, we consider the following model for the $C_{i,j}$'s

$$C_{i,j} = \exp(\alpha_i + \gamma_i \cdot j) (1+j)^{\beta_i},$$

which can be seen as an extended Gamma model. α_i is a scale parameter, while β_i and γ_i are shape parameters. Note that

$$\log C_{i,j} = \alpha_i + \beta_i \log (1+j) + \gamma_i \cdot j.$$

For convenience, we usually assume that $\beta_i = \beta$ et $\gamma_i = \gamma$.

Note that if $\log C_{i,j}$ is assume to be Gaussian, then $C_{i,j}$ will be lognormal. But then, estimators one the $C_{i,j}$'s while be overestimated.

Zehnwirth (1977)

Assume that $\log C_{i,j} \sim \mathcal{N}(X_{i,j}\beta, \sigma^2)$, then, if parameters were obtained using maximum likelihood techniques

$$\mathbb{E}\left(\widehat{C}_{i,j}\right) = \mathbb{E}\left(\exp\left(X_{i,j}\widehat{\beta} + \frac{\widehat{\sigma}^2}{2}\right)\right)$$

$$= C_{i,j}\exp\left(-\frac{n-1}{n}\frac{\sigma^2}{2}\right)\left(1 - \frac{\sigma^2}{n}\right)^{-\frac{n-1}{2}} > C_{i,j},$$

Further, the homoscedastic assumption might not be relevant. Thus Zehnwirth suggested

$$\sigma_{i,j}^2 = Var(\log C_{i,j}) = \sigma^2 (1+j)^h.$$

Regression and reserving

De Vylder (1978) proposed a least squares factor method, i.e. we need to find $\boldsymbol{\alpha} = (\alpha_0, \dots, \alpha_n)$ and $\boldsymbol{\beta} = (\beta_0, \dots, \beta_n)$ such

$$(\widehat{\boldsymbol{\alpha}}, \widehat{\boldsymbol{\beta}}) = \operatorname{argmin} \sum_{i,j=0}^{n} (X_{i,j} - \alpha_i \times \beta_j)^2,$$

or equivalently, assume that

$$X_{i,j} \sim \mathcal{N}(\alpha_i \times \beta_j, \sigma^2)$$
, independent.

A more general model proposed by De Vylder is the following

$$(\widehat{\boldsymbol{\alpha}}, \widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\gamma}}) = \operatorname{argmin} \sum_{i,j=0}^{n} (X_{i,j} - \alpha_i \times \beta_j \times \gamma_{i+j-1})^2.$$

In order to have an identifiable model, De Vylder suggested to assume $\gamma_k = \gamma^k$ (so that this coefficient will be related to some inflation index).