Thermodynamique hors équilibre

Vincent Le Chenadec

MFT-3-1-2 2021/2022

Introduction

- La plupart des phénomènes physiques qui nous entourent transportent de la masse et de la chaleur en présence (ou non) de réactions chimiques.
- Dans ces procédés, les systèmes utilisés ne sont jamais à l'équilibre, et la thermodynamique classique ne suffit donc pas à les décrire.
- La thermodynamique hors équilibre permet notamment de
 - Décrire précisément le couplage entre les phénomènes importants;
 - Donner une approche systématique pour la modélisation de tous types de transport ;
 - Quantifier la production d'entropie.

Repères historiques

- ► La thermodynamique hors équilibre décrit les phénomènes de transport dans des systèmes qui ne sont pas globalement à l'équilibre.
- ► La clef de voute de ce formalisme est le second principe de la thermodynamique.
- Contributions historiques depuis Thomson (thermoélectricité, 1856): Boltzmann, Nernst, Duhem, Jauman et Einstein.
- ► En 1931, Onsager propose le principe de la thermodynamique hors équilibre qui systématise ces travaux passés. Sa contribution est récompensée en 1968 par le prix Nobel de chimie.

Le second principe

- Dans la formulation de Onsager, le second principe relie le terme de production d'entropie à des paires conjuguées formées de flux, dénotés J_i , et de forces, dénotées X_i .
- Il s'énonce alors

$$\sigma = \sum_{i} J_i X_i \ge 0$$

- où σ dénote la production d'entropie.
- On modélise chaque flux par une combinaison linéaire des forces,

$$J_i = \sum_i L_{ij} X_j.$$

Les relations de réciprocité d'Onsager

- Les relations de réciprocité d'Onsager garantissent la positivité du terme de création d'entropie.
- ► Elles s'écrivent.

$$L_{ji} = L_{ij}$$
.

- La mise en pratique de cette théorie requiert avant tout l'identification d'un ensemble de variables extensives indépendantes, α_i.
- Les flux et forces s'écrivent alors

$$J_i riangleq rac{\mathrm{d}lpha_i}{\mathrm{d}t} \quad \mathrm{et} \quad X_i riangleq \left(rac{\partial \mathcal{S}}{\partial lpha_i}
ight)_{lpha_{i
eq i}}$$

- où S dénote l'entropie du système.
- ▶ Dans les années 40, Meixner et Prigogine poursuivent les travaux d'Onsager et les généralisent aux systèmes continus.

Flux de modèles simples

- Une modélisation précise des flux est nécessaire à toute application en ingénierie.
- Afin d'illustrer son apport, examinons les modèles les plus simples de transport de chaleur et de masse avec ceux de la thermodynamique hors équilibre.

▶ La loi de Fourier par exemple relie le flux de chaleur au gradient de température

$$J_q' = -\lambda \frac{\mathrm{d}T}{\mathrm{d}x}.$$

 $\{\#\text{eq:fourier}\}\ \text{Ici, }\lambda\ \text{dénote la conductivité thermique (en kg m s}^{-3}\ \text{K}^{-1})\ \text{et }\mathcal{T}\ \text{(en K) la température absolue.}$

▶ De la même manière, la loi de Fick modélise la diffusion en reliant le flux de masse d'un constituant au gradient de sa concentration molaire.

$$J=-D\frac{\mathrm{d}c}{\mathrm{d}x}.$$

 $\{\#\text{eq:fick}\}\ \text{lci},\ D\ \text{dénote la diffusivité (en m}^2\,\text{s}^{-1})\ \text{et }c\ \text{la concentration molaire (en mol m}^{-3}).$

- Les flux définis par les équations [-@eq:fourier;-@eq:fick] ne
- sont causés que par un seul gradient, donc une seule force. La loi de Fick nous dit par exemple qu'il n'y a pas de flux de
- matière en l'absence de gradient de concentration. Or l'expérience nous dit qu'un gradient de température peut donner lieu à un flux de matière.
- Négliger ces effets peut conduire à des prédictions erronées.

Aux interfaces, cela peut même mener à une incompatibilité

avec le premier principe de la thermodynamique.

- La thermodynamique hors équilibre généralise les équations
- [-@eq:fourier;-@eq:fick] pour prendre en compte ces forces. La théorie donne une base commune à toutes les équations de

d'espèce, la conduction de chaleur ou les réactions chimiques.

transport. Cela signifie qu'elle peut modéliser des phénomènes aussi variés

que l'hydrodynamique des fluides visqueux, la diffusion

Flux de la thermodynamique hors équilibre

- ▶ Il existe donc un couplage entre plusieurs flux, que la simplicité des équations [-@eq:fourier;-@eq:fick] ne permet pas de décrire.
- Nous verrons ce semestre qu'une description plus précise des flux de chaleur et de matière est donnée par les relations

$$J_{q}^{\prime} = L_{qq} \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{T} \right) + L_{q\mu} \left(-\frac{1}{T} \frac{\mathrm{d}\mu_{T}}{\mathrm{d}x} \right),$$

et

$$J = L_{\mu q} \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{T} \right) + L_{\mu \mu} \left(-\frac{1}{T} \frac{\mathrm{d}\mu_T}{\mathrm{d}x} \right).$$

Les paires conjuguées ainsi mises en évidence sont

Flux	Forces
J_q' J	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{T} \right) \\ -\frac{1}{T} \frac{\mathrm{d}\mu_T}{\mathrm{d}x}$

- Nous reviendrons plus tard sur la définition de μ_T , retenons pour l'instant qu'il s'agit d'un potentiel chimique.)
- ► L_{qq} , $L_{q\mu}$, $L_{\mu q}$ et $L_{\mu\mu}$ sont appelés cœfficients phénoménologiques ou cœfficients de Onsager.
- ► Ils doivent être mesurés.
- ▶ Ils forment une matrice dont les éléments diagonaux (L_{qq} et L_{uu}) peuvent être reliés à λ et D.

 On sait enfin que les relations de réciprocité d'Onsager réduisent le nombre de cœfficients de couplage à déterminer puisque

$$L_{au} = L_{ua}$$
.

- On voit donc que dans ce cas précis, la (puisqu'il n'y en a qu'une) relation d'Onsager réduit le nombre de cœfficients indépendants de 4 à 3.
- Les cœfficients de couplage peuvent être plus ou moins grands.
- Nous verrons qu'une grande valeur correspond à une faible création d'entropie.
- ▶ Enfin, dans les cas où $L_{q\mu}$ est difficile à mesurer, on peut mesurer $L_{\mu q}$ et inversement.
- Nous verrons enfin que les forces conjuguées peuvent être obtenues de manière systématique.

Exercice – Calculer le flux de chaleur J'_q en fonction du gradient

 $\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{T}\right)$ lorsqu'il n'y a pas de diffusion de matière (J=0).