Introduction Chap.

Processus Stochastiques et Applications Financières (PSAF) Introduction et Chapitre 1

Pierre Etoré

Ensimag

2022-2023

ntroduction Chap. 1

Pierre Etoré

pierre.etore@univ-grenoble-alpes.fr

http://www-ljk.imag.fr/membres/Pierre.Etore/

Tel: 04 57 42 17 35

- Chercheur au Laboratoire Jean Kuntzmann, équipe IPS
- Domaine de recherche : étude des processus stochastiques et de leur simulation, lien avec les EDP, statistiques pour les processus stochastiques, ...
- Bureau 142, bâtiment IMAG.
- Enseigne les probas/stats en 1A tronc commun et en IF 2A (par le passé aussi en 3A IF et en MSIAM 2).

ntroduction Chap. 1

Objectifs et plan (gros grain) du cours

But du cours: Présenter la notion de processus stochastique, développer des exemples en *temps discret*. Puis présenter leurs applications à la finance; ce faisant on introduira des notions et concepts qui se retrouveront dans les modèles en temps continu (IPD au sem. 8, cours de 3A IF...).

- Chap. 1 : Rappels d'intégration et de probabilités.
- Chap. 2 : Espérance conditionnellement à une tribu.
- Chap. 3 : Processus stochastiques, exemple des chaînes de Markov.
- Chap. 4 : Martingales à temps discret
- Chap. 5 : Modèles financiers à temps discret [ex : Cox-Ross-Rubinstein ...]

ntroduction Chap. 1

Evaluation / Examen

- Examen sur table (si tout va bien...) :
 - Durée 3h
 - Compte pour 3/4 de la note
 - Documents autorisés : poly, fiches de TD, notes de cours et TD.
- DM
 - Posé vers la fin du cours, en décembre.
 - A faire en individuel.
 - Compte pour 1/4 de la note.

Autres : il y a deux groupes de TD; il y aura des séances de "Office hours" (pas encore placées dans ADE).

Chapitre 1 : rappels d'intégration et de probabilités

But du chapitre : Rappeler la définition et les propriétés de

$$\int_{E} f \, d\mu$$

où f est une fonction et μ une *mesure*, et l'intégrale est comprise "au sens de Lebesgue".

Intérêt : 1) Une mesure de probabilités c'est une mesure ! Par exemple si X v.a.r.

$$\mathbb{E}(X) = \int_{\Omega} X(\omega) \mathbb{P}(d\omega) = \int_{\Omega} X d\mathbb{P} = \int_{\mathbb{R}} x \mathbb{P}_{X}(dx)$$

(à la dernière égalité on a utilisé le théorème de transfert et \mathbb{P}_X désigne la loi de X).

Chap, 1

2) Si f est Riemann-intégrable, $\int f(x)dx = \int fd\lambda$ où λ est la "mesure de Lebesgue", mais l'intégrale de Lebesgue est plus souple à manipuler.

Par exemple si $f(x) = \mathbf{1}_{\mathbb{Q}}(x)$ que dire de

$$\int_0^1 f \, d\lambda \quad ?$$

(NB : f n'est pas continue, pas même continue par morceaux, pas Riemann-intégrable)

Grâce aux propriétés de l'intégrale de Lebesgue on trouvera facilement la valeur de cette intégrale (cf Exemple 1.4.1 à venir).

Chap. 1

1.1 Tribus, fonctions mesurables, mesures

Définition (1.1.1)

Soit E un ensemble et $\mathcal E$ un ensemble de parties de E. On dit que $\mathcal E$ est une tribu si

- i) On a $E \in \mathcal{E}$.
- ii) Pour tout $A \in \mathcal{E}$ on a $A^c \in \mathcal{E}$.
- iii) Pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'éléments de \mathcal{E} on a $\cup_{n\in\mathbb{N}}A_n\in\mathcal{E}$.

Exemples (1.1.1): 1) La tribu grossière $\mathcal{E} = \{E, \emptyset\}$; c'est la tribu la moins fine qu'on peut mettre sur E.

- 2) La tribu la plus fine qu'on peut mettre sur E c'est $\mathcal{P}(E)$, l'ensemble de toutes les parties de E
- 3) Soit $\mathcal{C} \subset \mathcal{P}(E)$, l'ensemble \mathcal{C} n'étant pas forcément une tribu. On note $\sigma(\mathcal{C})$ la tribu engendrée par \mathcal{C} , i.e. la plus petite tribu qui contient \mathcal{C} (en ce sens que si \mathcal{Y} est une tribu t.q. $\mathcal{C} \subset \mathcal{Y}$ alors $\sigma(\mathcal{C}) \subset \mathcal{Y}$). Sur l'existence de $\sigma(\mathcal{C})$ cf l'Exercice 1 de la Feuille de TD1. Un exemple important est :

Exemple (1.1.2): la tribu des boréliens $\mathcal{B}(\mathbb{R})$. Il s'agit de la tribu engendrée par les ouverts de \mathbb{R} . Notons que $\mathcal{B}(\mathbb{R}) \subsetneq \mathcal{P}(\mathbb{R})$.

Notons que par passage au complémentaire on peut par exemple remplacer de façon équivalente dans la définition 1.1.1

- i) par i') $\emptyset \in \mathcal{E}$
- ... D'autres variantes de la définition 1.1.1 sont possibles (cf Remarques 1.1.1 et 1.1.2 du poly).

Définition (1.1.2)

Soient (E_1, \mathcal{E}_1) et (E_2, \mathcal{E}_2) deux espaces mesurables (i.e. munis chacun d'une tribu). Une fonction $f: E_1 \to E_2$ est dite mesurable si $\forall B \in \mathcal{E}_2$, on a $f^{-1}(B) \in \mathcal{E}_1$.

 $Si(E_i, \mathcal{E}_i) = (\mathbb{R}, \mathcal{B}(\mathbb{R})), i = 1, 2 \text{ on parle de fonction borélienne.}$

Exemple (1.1.3) : Si $f : \mathbb{R} \to \mathbb{R}$ est continue alors elle est borélienne.

[Preuve au tableau]

Propriété (1.1.1)

Soit (f_n) une suite de fonctions mesurables de (E, \mathcal{E}) vers $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Alors les fonction $\inf_n f_n$, $\sup_n f_n$, $\lim_n f_n$ et $\limsup_n f_n$ sont mesurables.

Passons maintenant à la notion de mesure.

Définition (1.1.3)

Soit (E,\mathcal{E}) un espace mesurable. Une mesure sur (E,\mathcal{E}) est une application $\mu:\mathcal{E}\to [0,+\infty]$ qui vérifie $\mu(\emptyset)=0$ et est σ -additive, i.e. si (A_n) est une suite d'éléments disjoints de \mathcal{E} alors $\mu(\cup_n A_n)=\sum_n \mu(A_n)$.

Proposition (1.1.1)

Soit μ une mesure sur (E, \mathcal{E}) . On a pour toute suite croissante (A_n) d'éléments de \mathcal{E} (i.e. $A_n \subset A_{n+1}$ pour tout n), $\lim_n \mu(A_n) = \mu(\cup_n A_n)$.

1.2 Intégration contre une mesure

Dans ce qui suit on a (E, \mathcal{E}, μ) un espace mesuré.

On considère d'abord les fonctions étagées $f:E o [0,\infty]$ i.e. de la forme

$$f(x) = \sum_{i=1}^{n} r_i \mathbf{1}_{A_i}(x)$$
 (*)

où $r_i \in [0, \infty]$ et $A_i \in \mathcal{E}$ pour tout $i = 1, \ldots, n$.

Fonction étagée sous forme "canonique" : c'est quand les A_i sont disjoints et les valeurs de r_i distinctes. On a alors $f^{-1}(r_i) = A_i$, $\forall i$ et la mesurabilité des fonctions étagées en découle naturellement...

Versions canoniques: parfois commode mais pas indispensable...

Définition (1.2.1)

Soit f étagée (sous la forme (*)). On note $\int_E f d\mu$ ou $\int_E f(x)\mu(dx)$, ou plus rarement $\int_E f(x)d\mu(x)$ la quantité

$$\sum^{n} r_{i}\mu(A_{i}) \in \overline{\mathbb{R}}_{+}$$

Puis on passe aux fonctions mesurables positives.

Définition (1.2.2)

Soit $f: E \to [0,\infty]$ mesurable. On appelle intégrale de f contre μ et on note $\int_E f d\mu$ la quantité

$$\sup \left\{ \int_F \varphi d\mu, \text{ avec } \varphi \text{ \'etag\'ee v\'erifiant } \varphi \leq f \right\} \in \overline{\mathbb{R}}_+.$$

La σ -additivité de μ permet de montrer le lemme suivant.

Lemme (1.2.1)

Soient $f, g : E \to [0, \infty]$ mesurables.

- i) Pour $a,b\in\mathbb{R}$, on a $\int_{\mathcal{E}}(af+bg)d\mu=a\int_{\mathcal{E}}fd\mu+b\int_{\mathcal{E}}gd\mu.$
- ii) Si $f \leq g$ alors

$$\int_{E} f d\mu \leq \int_{E} g d\mu.$$

Théorème (1.2.1, Beppo-Levi)

Soit (f_n) une suite croissante de fonctions mesurables positives $(f_n : E \to [0, \infty]$ pour tout n). Alors

$$\lim_{n\to\infty}\int_E f_n d\mu = \int_E \left[\lim_{n\to\infty} f_n\right] d\mu.$$

De Beppo-Levi on tire :

Théorème (1.2.2, Lemme de Fatou)

Soit (f_n) une suite de fonctions mesurables positives. Alors

$$\int_{F} \left[\liminf_{n} f_{n} \right] d\mu \leq \liminf_{n} \int_{F} f_{n} d\mu.$$

Preuve : [au tableau]

Définition (1.2.3)

Soit P(x) une propriété dépendant de $x \in E$. On dit que P(x) est vraie presque partout (p.p.), ou pour presque tout x, si l'ensemble $\{x \in E : P(x) \text{ n'est pas vraie}\}$ est négligeable, i.e. inclus dans $B \in \mathcal{E}$ avec $\mu(B) = 0$.

Proposition (1.2.1)

i) Pour $A \in \mathcal{E}$ on a

$$\int_{\mathcal{E}} (+\infty \mathbf{1}_{\mathcal{A}}) \, d\mu = \left\{ \begin{array}{ll} 0 & \text{si } \mu(\mathcal{A}) = 0 \\ +\infty & \text{si } \mu(\mathcal{A}) > 0 \end{array} \right.$$

ii) Pour $f: E \to [0, \infty]$ on a $\int_E f d\mu = 0$ si et seulement si f(x) = 0 p.p. De plus si $\int_E f d\mu < \infty$ alors $f(x) < \infty$ p.p.

Preuve: [au tableau]

On passe maintenant aux fonctions à valeurs réelles.

Pour toute fonction à valeurs réelles f on rappelle qu'on note f_+ et f_- les fonctions définies respectivement par $x \mapsto \max(f(x), 0)$ et $x \mapsto \max(-f(x), 0)$ (ce sont les parties positive et négative de la fonction f).

Définition (1.2.4)

Soit $f: E \to \overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$ mesurable ($\overline{\mathbb{R}}$ est muni de $\mathcal{B}(\overline{\mathbb{R}})$). On a la décomposition $f = f_+ - f_-$. On dit que f est intégrable si $\int_E f_+ d\mu < +\infty$ et $\int_E f_- d\mu < +\infty$ (ce qui équivaut à $\int_E |f| d\mu < +\infty$). On note alors

$$\int_{E} f d\mu := \int_{E} f_{+} d\mu - \int_{E} f_{-} d\mu.$$

On a le résultat suivant.

Théorème (1.2.3)

1) (Fatou pour les fonctions réelles). Soit (f_n) une suite de fonctions mesurables avec $f_n(x) \ge m(x)$ pour μ -p.t. $x \in E$, pour tout n, avec m mesurable et intégrable. Alors

$$\int_{E} \left[\liminf_{n} f_{n} \right] d\mu \leq \liminf_{n} \int_{E} f_{n} d\mu.$$

- 1') : variante borne supérieure [cf poly]
- 2) (Théorème de convergence dominée de Lebesgue). Soit (f_n) une suite de fonctions mesurables avec :
- i) Pour μ -p.t. $x \in E$, $f_n(x) \to f(x)$ quand $n \to \infty$
- ii) Il existe h mesurable positive et intégrable telle que pour tout n, on a $|f_n(x)| \le h(x) \mu p.p.$

Alors f est intégrable et

$$\lim_{n\to\infty}\int_{E}f_{n}d\mu=\int_{E}fd\mu.$$

Le théorème de convergence dominée (CVD) a par exemple pour conséquence le résultat suivant.

Théorème (1.2.4)

[Dérivation sous le signe somme] Soit I un intervalle de $\mathbb R$ non réduit à un point et $f: E \times I \to \bar{\mathbb R}$ vérifiant :

- i) Il existe $t_0 \in I$ t.q. $f(\cdot, t_0) : x \mapsto f(x, t_0)$ est intégrable.
- ii) Pour tout $t \in I$ la fonction $f(\cdot, t)$ est mesurable.
- iii) Pour tout $t \in I$, la dérivée partielle $\frac{\partial f}{\partial t}$ existe et $\left|\frac{\partial f}{\partial t}(x,t)\right| \leq h(x)$ μ -p.p. avec h positive mesurable intégrable.

Alors pour tout $t \in I$, les fonctions $f(\cdot, t)$ et $\frac{\partial f}{\partial t}(\cdot, t)$ sont intégrables et la fonction

$$F(t) = \int_{E} f(x, t) \mu(dx)$$

est dérivable avec

$$\forall t \in I, \quad \frac{\mathrm{d}}{\mathrm{d}t}F(t) = \int_{E} \frac{\partial f}{\partial t}(x,t) \, \mu(dx).$$

On aura parfois besoin du résultat suivant.

Théorème (1.2.5, Théorème de Fubini)

Soit (F, \mathcal{F}, ν) un autre espace mesuré. On note $\mu \otimes \nu$ la mesure produit définie sur $(E \times F, \mathcal{E} \otimes \mathcal{F})$ (ici $\mathcal{E} \otimes \mathcal{F}$ désigne la plus petite tribu sur $E \times F$ contenant toutes les parties du type $A \times B$ avec $A \in \mathcal{E}$ et $B \in \mathcal{F}$). Cette mesure vérifie

$$\forall A \in \mathcal{E}, \forall B \in \mathcal{F}, \quad \mu \otimes \nu(A \times B) = \mu(A)\nu(B).$$

Soit $f: E \times F \to \overline{\mathbb{R}}$ mesurable qui est, soit à valeurs dans $[0, \infty] = \overline{\mathbb{R}}_+$, soit intégrable. Alors,

$$\int_{E\times F} f \ d(\mu\otimes\nu) = \int_{E} \Big(\int_{F} f(x,y)\nu(dy)\Big)\mu(dx) = \int_{F} \Big(\int_{E} f(x,y)\mu(dx)\Big)\nu(dy).$$

1.3 Exemples de mesure, mesure de Lebesgue

On considère $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

On a vu en TD que δ_{x_0} définie par $\delta_{x_0}(A) = \mathbf{1}_A(x_0)$, $A \in \mathcal{B}(\mathbb{R})$ est une mesure sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ (pour $x_0 \in \mathbb{R}$).

Un deuxième exemple, en quelque sorte "orthogonal" au premier, est celui de la mesure de Lebesgue.

Théorème (1.3.1)

Il existe une unique mesure λ sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, appelée "mesure de Lebesgue", telle que $\forall I \in \mathcal{B}(\mathbb{R})$ intervalle (i.e. I = [a, b], I = [a, b), I = (a, b) ou I = (a, b]) on a $\lambda(I) = |I|$ (où |I| = b - a est la "longueur" de I).

Idée de la preuve : On définit $\hat{\lambda}$: {intervalles} $\to \mathbb{R}$, puis on "étend" $\hat{\lambda}$ en λ définie sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ par le théorème de Carathéodory...

Notons qu'on a en particulier $\lambda(\{a\}) = \lambda([a, a]) = a - a = 0$.

A retenir : "La mesure de Lebesgue attribue la masse nulle aux singletons".

Définition (1.3.1)

Soient μ et ν deux mesures sur l'espace mesurable (E,\mathcal{E}) . On dit que ν est absolument continue par rapport à μ , et on note $\nu << \mu$, si pour tout $N \in \mathcal{E}$ t.q. $\mu(N) = 0$ on a $\nu(N) = 0$.

Théorème (1.3.2, Théorème de Radon-Nikodym)

Soient μ et ν deux mesures finies sur (E, \mathcal{E}) . Il y a équivalence entre

- i) On a $\nu << \mu$
- ii) II existe $f: E \to [0, \infty]$ mesurable et intégrable t.q.

$$\nu(A) = \int_A f d\mu, \quad \forall A \in \mathcal{E}.$$

1.4 Lien avec l'intégrale de Riemann

Théorème (1.4.1)

Si $f:[a,b] \to \mathbb{R}$ est Riemann intégrable et mesurable alors elle est Lebesgue intégrable et on a

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f d\lambda.$$

Mais l'intégrale de Lebesgue est plus souple à manipuler...

Exemple 1.4.1: La fonction $\mathbf{1}_{\mathbb{Q}}$ n'est pas Riemann-intégrable sur [0,1]. Mais avec l'intégrale de Lebesgue on a simplement

$$\int_0^1 \mathbf{1}_{\mathbb{Q}} d\lambda = 0$$

[au tableau].

uction Chap. 1

1.5 Rappels de probabilités

Un espace de probabilités $(\Omega, \mathcal{F}, \mathbb{P})$ est donné. C'est un espace mesuré avec $\mathbb{P}(\Omega)=1$.

Définition (1.5.1)

Une variable aléatoire (v.a.) définie sur $(\Omega, \mathcal{F}, \mathbb{P})$, à valeurs dans E (muni d'une tribu \mathcal{E}), c'est une application $X:\Omega\to E$, mesurable de (Ω,\mathcal{F}) vers $(\mathcal{E},\mathcal{E})$.

Pour X v.a. à valeurs dans (E, \mathcal{E}) et $B \in \mathcal{E}$ on note

$${X \in B} = X^{-1}(B) = {\omega \in \Omega : X(\omega) \in B} \in \mathcal{F}.$$

On note \mathbb{P}_X la mesure image de \mathbb{P} par X, définie sur (E,\mathcal{E}) par

$$\forall B \in \mathcal{E}, \quad \mathbb{P}_X(B) := \mathbb{P}(X \in B).$$

La mesure \mathbb{P}_X est appelée la loi de X. Notons que c'est à son tour une mesure de probabilités (sur (E, \mathcal{E})).

Soit $f: E \to \mathbb{R}$ t.q. $\int_{\Omega} |f(X(\omega))| \mathbb{P}(d\omega) < +\infty$. On note

$$\mathbb{E}(f(X)) = \int_{\Omega} f(X(\omega)\mathbb{P}(d\omega)) = \int_{\Omega} f(X)d\mathbb{P} = \int_{E} f(x)\mathbb{P}_{X}(dx) = \int_{E} fd\mathbb{P}_{X}.$$

Notons qu'on a utilisé ici le théorème de transfert.

On note $\sigma(X)$ la plus petite tribu sur Ω qui rend mesurable X, i.e. $\sigma(X) \subset \mathcal{F}$, X est mesurable de $(\Omega, \sigma(X))$ vers (E, \mathcal{E}) , et $\sigma(X)$ est le plus petite sous-tribu de \mathcal{F} qui réalise cela (cf Feuille de TD 2 Exercice 3).

Définition (1.5.2)

On dit qu'une propriété $P(\omega)$ est vraie presque sûrement (p.s.), ou pour presque tout ω , si il existe $A \in \mathcal{F}$ avec $\mathbb{P}(A) = 0$ et $P(\omega)$ vraie pour tout $\omega \in A^c$.

On dit par exemple que (X_n) suite de v.a. définies sur $(\Omega, \mathcal{F}, \mathbb{P})$ converge p.s. vers X définie sur le même espace (et à valeurs dans le même espace), et on note

$$X_n \xrightarrow[n\to\infty]{\text{p.s.}} X$$
,

si et seulement si il existe $A \in \mathcal{F}$ t.q. $\mathbb{P}(A) = 0$ et

$$\forall \omega \in A^c, \quad X_n(\omega) \xrightarrow[n \to \infty]{} X(\omega).$$

On a des version probabilistes des théorèmes de convergence vus à la section 1.2.

Théorème (1.5.1)

1) Soit (X_n) une suite de v.a. positives tendant en croissant vers X. Alors

$$\lim_{n\to\infty}\mathbb{E}(X_n)=\mathbb{E}(\lim_{n\to\infty}X_n).$$

2) Soit (X_n) suite de v.a. positives on a

$$\mathbb{E}(\liminf_n X_n) \leq \liminf_n \mathbb{E}(X_n).$$

3) Si $X_n \to X$ p.s. quand $n \to \infty$, et s'il existe Y v.a. positive intégrable (i.e. dans $L^1(\mathbb{P})$, i.e. $\mathbb{E}|Y| < \infty$) t.q. $|X_n| \le Y$ p.s., alors

$$\lim_{n\to\infty}\mathbb{E}(X_n)=\mathbb{E}(\lim_{n\to\infty}X_n).$$

Rappel : les modes de convergence des v.a.

- i) Convergence en probabilité : [cf poly]
- ii) Convergence L^p : [cf poly]
- iii) Convergence p.s. : [déjà vu]
- iv) Convergence en loi :

Définition (1.5.3)

Soit (X_n) suite de v.a. à valeurs dans (E, \mathcal{E}) (chaque X_n est définie sur $(\Omega_n, \mathcal{F}_n, \mathbb{P}_n)$). Pour tout n on note \mathbb{P}_{X_n} la loi de X_n sur (E, \mathcal{E}) . Soit X v.a. à valeurs dans (E, \mathcal{E}) , définie sur $(\Omega, \mathcal{F}, \mathbb{P})$.

On dit que (X_n) converge en loi vers X, et on note $X_n \xrightarrow{\mathcal{L}} X$, $n \to \infty$ si $\mathbb{P}_{X_n} \rightharpoonup \mathbb{P}_X$, $n \to \infty$, i.e. $\forall f \in C_b(E)$ on a $\int_E f d\mathbb{P}_{X_n} \to \int_E f d\mathbb{P}_X$, $n \to \infty$.

NB : Si $(\Omega_n, \mathcal{F}_n, \mathbb{P}_n) = (\Omega, \mathcal{F}, \mathbb{P})$, $\forall n$, la condition ci-dessus peut s'exprimer comme "on a $\mathbb{E}(f(X_n)) \to \mathbb{E}(f(X))$, $\forall f \in C_b(E)$ ".

Notons que dans le cas de v.a.. réelles (v.a.r.) on a la variante :

Définition (1.5.4)

Soient (X_n) suite de v.a.r et X v.a.r. On dit que $X_n \xrightarrow{\mathcal{L}} X$, $n \to \infty$, si $F_{X_n}(x) \to F_X(x)$ en tout point de continuité de F_X .

Pour finir :

Théorème (1.5.2, Loi forte des grands nombres)

Soit (X_n) suite de v.a. dans L¹, indépendantes et identiquement distribuées (i.i.d.). Alors

$$\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k \xrightarrow[n \to \infty]{\text{p.s.}} \mathbb{E}(X_1).$$

Théorème (1.5.3, TCL)

Soit (X_n) suite i.i.d. de v.a.r. dans L^2 . Posons $\sigma^2 = \mathbb{V}ar(X_1)$. Alors

$$\frac{\sqrt{n}}{\sigma}(\overline{X}_n - \mathbb{E}(X_1)) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, 1),$$

où $\mathcal{N}(0,1)$ désigne la loi normale centrée réduite.