

Module 3 Summary

SESSION	TITLE	TEACHER
1	ML Foundations	Juan
2	Regression Introduction and Practice	Juan
3	Classification Introduction and Practice	Carlos
4	Feature Engineering and Selection for ML	Carlos
5	Advanced Supervised Models 1	Carlos
6	Advanced Supervised Models 2	Carlos
7	Hands-on Practice	Carlos

Outline

- Basic of Decision Trees
- Classification Trees
- Regression Trees
- Tree Pruning
- Bagging
- Random Forest
- Boosting

Classification and Regression Trees (CART)

CART, commonly known as Decision trees, can be applied to both regression and classification problems and can be represented as binary trees.

One of the most important aspects of CART is its interpretability.

 Chapter 8 of Introduction to Statistical Learning (Gareth James, et al.)

Let's start with a practical example

Let's say that every Sunday we meet some friends to play Padel.

Sometimes Rubén shows up and sometimes he doesn't.

For him it depends on a variety of factors, such as: temperature, humidity, wind, weather, family, etc.

So, we start keeping track of these events and its features to understand the pattern.

Our Data

Temp	Humidity	Outlook	Football	Rubén?
Mild	80	Sunny	No	Yes
Hot	75	Sunny	Yes	No
Hot	77	Overcast	No	Yes
Cool	70	Rain	No	Yes
Cool	72	Overcast	Yes	Yes
Mild	77	Sunny	No	No
Cool	70	Sunny	No	Yes
Mild	69	Rain	No	Yes
Mild	65	Sunny	Yes	Yes
Mild	77	Overcast	Yes	Yes
Hot	74	Overcast	No	Yes
Mild	d 77 Ra		Yes	No
Cool	73	Rain	Yes	No
Mild	78	Rain	No	Yes

Our Data

Temp	Humidity	Outlook	Football	Rubén?
Hot	70	Sunny	No	??

Temp	Humidity	Outlook	Football	Rubén?
Mild	80	Sunny	No	Yes
Hot	75	Sunny	Yes	No
Hot	77	Overcast	No	Yes
Cool	70	Rain	No	Yes
Cool	72	Overcast	Yes	Yes
Mild	77	Sunny No		No
Cool	70	Sunny	No	Yes
Mild	69	Rain	No	Yes
Mild	65	Sunny	Yes	Yes
Mild	77	Overcast	Yes	Yes
Hot	74	Overcast	No	Yes
Mild	77	Rain	Yes	No
Cool	73	Rain	Yes	No
Mild	78	Rain	No	Yes

In a tree we have:

Root:

- The node that performs the first split

Leaves:

- Terminal nodes that predict the outcome

Which feature should be the Root Node?

Suppose a Data with 3 features (X, Y, and Z) with two possible classes:

x	Y	Z	Class
1	1	1	A
1	1	0	A
0	0	1	В
1	0	0	В

Suppose a Data with 3 features (X, Y, and Z) with two possible classes:

x	Y	Z	Class
1	1	1	A
1	1	0	A
0	0	1	В
1	0	0	В

Suppose a Data with 3 features (X, Y, and Z) with two possible classes:

x	Y	Z	Class
1	1	1	Α
1	1	0	A
0	0	1	В
1	0	0	В

How do we know which variable to split by?

Entropy and **Information Gain** are the Mathematical Methods of

choosing the best split.

$$H(P) = -\sum_{Ci} p_{C_i} log_2(p_{C_i})$$

We will use a measure that gets the best value when the attribute gives me partitions that are as homogeneous as possible, on average

Sunny

Temp	Humidity	Outlook	Football	Rubén?
Mild	80	Sunny	No	Yes
Hot	75	Sunny	Yes	No
Mild	77	Sunny	No	No
Cool	70	Sunny	No	Yes
Mild	65	Sunny	Yes	Yes

Rain

Overcast

Temp	Humidity	Outlook	Football	Rubén?
Hot	77	Overcast	No	Yes
Cool	72	Overcast	Yes	Yes
Mild	77	Overcast	Yes	Yes
Hot	74	Overcast	No	Yes

Temp	Humidity	Outlook	Football	Rubén?
Cool	70	Rain	No	Yes
Mild	69	Rain	No	Yes
Mild	77	Rain	Yes	No
Cool	73	Rain	Yes	No
Mild	78	Rain	No	Yes

Cool

Mild

70

65

Sunny Outlook?

Yes

Yes

No

Yes

					\	Temp	Humidity	Outlook	Football	Rubén?
						Hot	77	Overcast	No	Yes
Temp	Humidity	Outlook	Football	Rubén?	\	Cool	72	Overcast	Yes	Yes
Mild	80	Sunny	No	Yes	\	Mild	77	Overcast	Yes	Yes
Hot	75	Sunny	Yes	No	Rain	Hot	74	Overcast	No	Yes
Mild	77	Sunny	No	No						

$H(P_1) = -((3/5) *$	$log_2(3/5) + (2/5)$	$*log_2(2/5)) = 0.97$

Sunny

Sunny

Temp	Humidity	Outlook	Football	Rubén?
Cool	70	Rain	No	Yes
Mild	69	Rain	No	Yes
Mild	77	Rain	Yes	No
Cool	73	Rain	Yes	No
Mild	78	Rain	No	Yes

Overcast

Temp	Humidity	Outlook	Football	Rubén?
Hot	77	Overcast	No	Yes
Cool	72	Overcast	Yes	Yes
Mild	77	Overcast	Yes	Yes
Hot	74	Overcast	No	Yes

Temp	Humidity	Outlook	Football	Rubén?
Mild	80	Sunny	No	Yes
Hot	75	Sunny	Yes	No
Mild	77	Sunny	No	No
Cool	70	Sunny	No	Yes
Mild	65	Sunny	Yes	Yes

$$H(P_1) = -((3/5) * log_2(3/5) + (2/5) * log_2(2/5)) = 0.97$$

Temp	Humidity	Outlook	Football	Rubén?
Cool	70	Rain	No	Yes
Mild	69	Rain	No	Yes
MIld	77	Rain	Yes	No
Cool	73	Rain	Yes	No
Mild	78	Rain	No	Yes

Outlook?

Rain

Sunny

$$H(P_2) = -((3/5) * log_2(3/5) + (2/5) * log_2(2/5)) = 0.97$$

Temp

Mild

Hot

Mild

Cool

Mild

Humidity

80

75

77

70

65

Outlook

Sunny

Sunny

Sunny

Sunny

Sunny

 $H(P_1) = -((3/5) * log_2(3/5) + (2/5) * log_2(2/5)) = 0.97$

Football

No

Yes

No

No

Yes

Overcast

Temp	Humidity	Outlook	Football	Rubén?
Hot	77	Overcast	No	Yes
Cool	72	Overcast	Yes	Yes
Mild	77	Overcast	Yes	Yes
Hot	74	Overcast	No	Yes

$H(P_3) = -((4/4) * log_2(4/4) + (0/4) * log_2(0/4)) = 0$)
---	---

	*			
Temp	Humidity	Outlook	Football	Rubén?
Cool	70	Rain	No	Yes
Mild	69	Rain	No	Yes
Mild	77	Rain	Yes	No
Cool	73	Rain	Yes	No
Mild	78	Rain	No	Yes

Outlook?

Rain

Sunny

Rubén?

Yes

No

No

Yes

Yes

$$H(P_2) = -((3/5) * log_2(3/5) + (2/5) * log_2(2/5)) = 0.97$$

18

IMMUNE

Temp

Mild

Hot

Mild

Cool

Mild

Humidity

80

75

77

70

65

Outlook

Sunny

Sunny

Sunny

Sunny

Sunny

 $H(P_1) = -((3/5) * log_2(3/5) + (2/5) * log_2(2/5)) = 0.97$

 $H_{mean} = \frac{5}{14} * 0.97 + \frac{5}{14} * 0.97 + \frac{4}{14} * 0 = 0.69$

Football

No

Yes

No

No

Yes

 $H(P) = -\sum_{Ci} p_{C_i} log_2(p_{C_i})$

Overcast

Outlook?

Rain

Sunny

Rubén?

Yes

No

No

Yes

Yes

Temp	Humidity	Outlook	Football	Rubén?
Hot	77	Overcast	No	Yes
Cool	72	Overcast	Yes	Yes
Mild	77	Overcast	Yes	Yes
Hot	74	Overcast	No	Yes
TT(D)	// / / / / 1	(1.11) . (0 (4) 1 (0	(4))

$H(P_3) = -((4/4) * log_2(4/4) + (0/4) * log_2(0/4)) =$	0
---	---

Temp	Humidity	Outlook	Football	Rubén?
Cool	70	Rain	No	Yes
Mild	69	Rain	No	Yes
MIld	77	Rain	Yes	No
Cool	73	Rain	Yes	No
Mild	78	Rain	No	Yes

$$H(P_2) = -((3/5) * log_2(3/5) + (2/5) * log_2(2/5)) = 0.97$$

19

Humidity	Rubén?
80	Yes
75	No
77	Yes
70	Yes
72	Yes
77	No
70	Yes
69	Yes
65	Yes
77	Yes
74	Yes
77	No
73	No
78	Yes

 $X \leq X \leq X >$

65 - Yes, 69 - Yes, 70 - Yes Yes, 72 - Yes, 73 - Yes, 74 - Yes, 75 - No, 77 - Yes Yes No No, 78 - Yes, 80 - Yes,

Humidity	Rubén?
80	Yes
75	No
77	Yes
70	Yes
72	Yes
77	No
70	Yes
69	Yes
65	Yes
77	Yes
74	Yes
77	No
73	No
78	Yes

$$H(P) = -\sum_{Ci} p_{C_i} log_2(p_{C_i})$$

Humidity?

$$H(P) = -\sum_{Ci} p_{C_i} log_2(p_{C_i})$$

65 - Yes, 69 - Yes, 70 - Yes Yes, 72 - Yes, 73 - Yes, 74 - Yes, 75 - No, 77 - Yes Yes No No, 78 - Yes, 80 - Yes, $H1_{mean} = 0.49$

$$oxed{H(P) = -\sum_{Ci} p_{C_i} log_2(p_{C_i})}$$

Humidity?

24

$$oxed{H(P) = -\sum_{Ci} p_{C_i} log_2(p_{C_i})}$$

$$X \leq X \leq X >$$

 $H2_{mean} = 0.67$ 65 - Yes, 69 - Yes, 70 - Yes Yes, 72 - Yes, 73 - Yes, 74 - Yes, 75 - No, 77 - Yes Yes No No, 78 - Yes, 80 - Yes, 9 Yes, 4 No

7,5

25

$$egin{aligned} H(P) = -\sum_{Ci} p_{C_i} log_2(p_{C_i}) \end{aligned}$$

Humidity?

Which feature should be the Root Node?

Which feature should be the Root Node?

Recursive tree construction

Now that we have created the root node, the process continues recursively. We have to build sub-trees with the remaining data.

Temp	Humidit y	Outlook	Football	Rubén?
Mild	80	Sunny	No	Yes
Hot	75	Sunny	Yes	No
Hot	77	Overcast	No	Yes
Cool	70	Rain	No	Yes
Cool	72	Overcast	Yes	Yes
Mild	77	Sunny	No	No
Cool	70	Sunny	No	Yes
Mild	69	Rain	No	Yes
Mild	65	Sunny	Yes	Yes
Mild	77	Overcast	Yes	Yes
Hot	74	Overcast	No	Yes
Mlld	77	Rain	Yes	No
Cool	73	Rain	Yes	No
Mild	78	Rain	No	Yes

Recursive tree construction

Now that we have created the root node, the process continues recursively. We have to build sub-trees with the remaining data.

Temp	Humidity	Outlook	Football	Rubén?
Mild	80	Sunny	No	Yes
Hot	75	Sunny	Yes	No
Hot	77	Overcast	No	Yes
Mild	77	Sunny	No	No
Mild	77	Overcast	Yes	Yes
Mild	77	Rain	Yes	No
Mild	78	Rain	No	Yes

Regression Trees

What if the output is continuous?

Instead of using entropy reduction we use variance reduction.

We can create two types of trees:

Model trees

Regression trees

Regression Trees

On the leaves, we will put the average of the outputs of the data that have arrived at each leaf.

On the leaves, we will put the average of the outputs of the data that have arrived at each leaf.

Children	Salary
0	8,56
2	9.5
4	12
5	13

Model Trees

On each leaf, we will build a linear regression model with the data that has reached that leaf.

Advantages and Disadvantages of Trees

Pro

- Trees are very easy to explain to people (maybe easier to Linear regression)
- More closely mirror human decision-making
- Can be displayed graphically
- Easily interpreted even by a non-expert (small trees)
- Trees can easily handle qualitative predictors without the need to create dummy variables

Cons

 Trees generally do not have the same level of predictive accuracy as some of the other regression and classification approaches

Tree Pruning

CO

As the number of splits in DTs increase, their complexity rises.

In general, simpler DTs are preferred over super complex ones, since they are easier to understand and they are less likely to fall into overfitting.

Pruning: reduces the size of DTs by removing sections of the Tree that provide <u>little predictive</u> or <u>classification power</u>.

Random Forest

To improve performance, we can use many trees with a random sample of features chosen as the split.

 A new random sample of feature is chosen for every single tree at every single split.

- For **classification**, *m* (sample of features) is typically chosen to be the square root of the total of features.

Random Forest

What's the idea behind?

Suppose there we have a very **strong feature** in our data set. When using a bag of trees (**bagging**), most of the trees will use that feature as the top split, having an ensemble of similar trees that are very similar or **highly correlated.**

By randomly leaving out candidate features from each split, **Random Forest** "decorrelates" the trees, such that the averaging process can reduce the variance of the resulting model

Bagging?

Boosting?

Ensemble algorithms?

Bootstrap resampling

Quantify the uncertainty associated with statistics of a population or skills of a machine learning model (resampled -> sample -> population)

- from our data set (Z) to create bootstrap data sets (Z^{*1} , Z^{*2} ,..., Z^{*B}) where B = 1000, 10 000,...
- > same
 observation can be sampled more than once
- Each bootstrap sample will have the
 as the original data
 set

Bootstrap

out-of-bag observations (OOB)

Bagging

It refers to (Bootstrap Aggregators).

"Bagging predictors is a method for generating multiples versions of a predictor and using these to get an aggregated predictor".

Once each model has develop a prediction, the models use voting for classification or averaging for regression

This helps to decrease variance i.e. reduce the overfit.

Bagging

It refers to (Bootstrap Aggregators).

"Bagging predictors is a method for generating multiples versions of a predictor and using these to get an aggregated predictor".

Once each model has develop a prediction, the models use voting for classification or averaging for regression

Boosting

It refers to a group of algorithms that utilize weighted averages to make weak learners into stronger learners.

The models with better outcomes have a stronger pull on the final output.

