Design and Analysis of Algorithms

Lecture-34

Dharmendra Kumar (Associate Professor)
Department of Computer Science and Engineering
United College of Engineering and Research,
Prayagraj

Longest Common Subsequence Problem (LCS problem)

In the *longest-common-subsequence problem*, we are given two sequences $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ and wish to find a maximum length common subsequence of X and Y.

Longest Common Subsequence Problem (LCS problem)

Example:

- ❖ If X = < A, B, C, B, D, A, B > and Y = < B, D, C, A, B, A >, the sequence < B, C, A > is a common subsequence of both X and Y.
- ❖ The sequence < B, C, A > is not a *longest* common subsequence (LCS) of X and Y, however, since it has length 3 and the sequence < B, C, B, A >, which is also common to both X and Y, has length 4.
- ❖ The sequence < B, C, B, A > is an LCS of X and Y, as is the sequence < B, D, A, B >, since X and Y have no common subsequence of length 5 or greater.

Solving the LCS problem using dynamic programming

Step-1: Characterizing a longest common subsequence

Prefix of a sequence:

Given a sequence $X = \langle x_1, x_2, ..., x_m \rangle$, we define the ith **prefix** of X, for i = 0, 1, 2, ..., m, as $X_i = \langle x_1, x_2, ..., x_i \rangle$.

For example, if $X = \langle A, B, C, B, D, A, B \rangle$, then $X_4 = \langle A, B, C, B \rangle$ and X_0 is the empty sequence.

Solving the LCS problem using dynamic programming

Optimal substructure of an LCS

- Let $X = \langle x_1, x_2, \ldots, x_m \rangle$ and $Y = \langle y_1, y_2, \ldots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \ldots, z_k \rangle$ be any LCS of X and Y.
- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

Solving the LCS problem using dynamic

programming

Step 2: A recursive solution

Let c[i, j] be the length of an LCS of the sequences X_i and Y_j . If either i = o or j = o, one of the sequences has length o, and so the LCS has length o. The optimal substructure of the LCS problem gives the recursive formula:-

$$c[i,j] = o$$
 if $i = o$ or $j = o$
= $c[i-1,j-1]+1$, if $i, j > o$ and $x_i = y_j$

= max{ c[i-1, j], c[i,j-1] }, if i, j > 0 and
$$x_i \neq y_j$$

Let b is the matrix which stores one of the following three arrows, \leftarrow , \uparrow and \nwarrow .

$$b[i,j] = \leftarrow , \text{ if } c[i,j] = c[i,j-1]$$

$$b[i,j] = \uparrow , \text{ if } c[i,j] = c[i-1,j]$$

 $b[i,j] = \leftarrow , if c[i,j] = c[i-1,j-1]$

Step-3: Computing the length of an LCS

Following procedure is used to compute the table b and c.

```
LCS-LENGTH(X, Y)
    m = X.length
 2 n = Y.length
 3 let b[1..m, 1..n] and c[0..m, 0..n] be new tables
 4 for i = 1 to m
 5
         c[i, 0] = 0
 6
   for j = 0 to n
         c[0, j] = 0
 7
 8
    for i = 1 to m
 9
         for j = 1 to n
10
             if x_i == y_i
                  c[i, j] = c[i - 1, j - 1] + 1
11
                  b[i, j] = "\\\"
12
             elseif c[i - 1, j] \ge c[i, j - 1]
13
                  c[i, j] = c[i-1, j]
14
                  b[i, j] = "\uparrow"
15
16
              else c[i, j] = c[i, j - 1]
                  b[i, j] = "\leftarrow"
17
18
     return c and b
```

Step-3: Computing the length of an LCS.

Example: Find LCS of the following sequences:-

 $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$.

Solution: We compute the table corresponding to b and c as

6

following:-

i		y_j	B	D	C	\boldsymbol{A}	B	A
o	x_i	0	O	0	0	0	0	o
1	\boldsymbol{A}	0	↑ O	1	†	<u>\</u> 1	← 1	<u></u>
2	B	0	\ 1	←1	←1	↑	^ 2	←2
3	C	0	↑ 1	↑ 1	\ 2	←2	↑ 2	↑
4	B	0	\ 1	↑ 1	1 2	↑ 2	3	← 3
5	D	0	1	<u></u>	↑ 2	↑ 2	↑ 3	↑
6	\overline{A}	0	1	↑ 2	↑ 2	<u>\</u> 3	1	4
7	\boldsymbol{B}	0	\1	↑ 2	↑ 2	↑ 3	4	1 4

Step-4: Constructing an LCS

• The following recursive procedure prints out an LCS of X and Y in the proper, forward order. The initial call is PRINT-LCS(b, X, m, n).

```
PRINT-LCS(b, X, i, j)
   if i == 0 or j == 0
        return
  if b[i, j] == "
"
        PRINT-LCS(b, X, i-1, j-1)
        print x_i
   elseif b[i, j] == "\uparrow"
        PRINT-LCS(b, X, i - 1, j)
   else Print-LCS(b, X, i, j - 1)
```

Step-4:

Time complexity of this algorithm = O(m+n).

The LCS of sequences taken in previous example = BCBA.