

PVsyst - Simulation report

Grid-Connected System

Project: 25_08_25_Bomen PVSyst - 2021 - per inverter

Variant: 24_10_08_Match_measured_inv_2_1
Tracking system with backtracking

System power: 2285 kWp

Wagga Wagga - Australia

PVsyst student

PVsyst student

Author Sijin Wang (Australia)

PVsyst student

Variant: 24_10_08_Match_measured_inv_2_1

PVsyst V8.0.15

VC1, Simulation date: 10/09/25 14:47 with V8.0.15

Sijin Wang (Australia)

Project summary

Geographical Site

Situation

Weather data

Wagga Wagga

Latitude -35.13 °(S) 147.32 °(E) Bomen Solar Farm 2021 wind

Australia

Longitude Altitude

Custom file - Imported

213 m

Time zone UTC+10

Monthly albedo values

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.
Albedo	0.20	0.20	0.19	0.20	0.17	0.14	0.13	0.16	0.19	0.20	0.17	0.21

System summary

Grid-Connected System

Simulation for year no 2

Tracking system with backtracking

Orientation #1 Tracking plane, horizontal N-S axis **Near Shadings**

Linear shadings : Slow (simul.)

User's needs

Unlimited load (grid)

Bifacial perf. ratio

0 ° Axis azimuth

-/+ 60 ° Phi min / max. Diffuse shading all trackers

Tracking algorithm Astronomic calculation Backtracking activated

System information

CO₂ Emission Balance

PV Array

Inverters

Nb. of modules

Nb. of units 5936 units

1 unit

Pnom total

2285 kWp

Total power

2750 kWac

Pnom ratio

0.83

Results summary

Produced Energy 3108.7 MWh/year Specific production

1360 kWh/kWp/year Perf. Ratio PR 64.83 % 61.98 %

Table of contents Project and results summary General parameters, PV Array Characteristics, System losses 3 Near shading definition - Iso-shadings diagram 6 Main results 7 8 Loss diagram Predef. graphs 9 11 Single-line diagram

12

Variant: 24_10_08_Match_measured_inv_2_1

PVsyst V8.0.15

VC1, Simulation date: 10/09/25 14:47 with V8.0.15

Sijin Wang (Australia)

General parameters

Grid-Connected System

Orientation #1

Tracking plane, horizontal N-S axis

Axis azimuth

0 °

Phi min / max.

-/+ 60 °

Diffuse shading all trackers

Tracking algorithm
Astronomic calculation
Backtracking activated

Tracking system with backtracking

Field properties
Nb. of trackers 72 units

Sizes

Tracker Spacing 4.95 m
Sensitive width 2.03 m
GCR Shading 41.0 %

Tracking plane, horizontal N-S axis

Backtracking limit angle

Phi limits +/-65.8 °

Backtracking parameters

Linear shadings: Slow (simul.)

Backtracking pitch 4.95 m
Backtracking width 2.03 m
Left inactive band 0.00 m
Right inactive band 0.00 m
GCR Backtracking 41.0 %
Parameters choice Automatic

Near Shadings

User's needs
Unlimited load (grid)

Bifacial system definition

Orientation #1
Bifacial system

Horizon

Free Horizon

Model Unlimited Trackers 2D model

Bifacial model geometry

Tracker Spacing 4.95 m
Tracker width 2.03 m
Axis height above ground 2.10 m
Nb. of sheds 3972 units

Bifacial model definitions

Ground albedo average 0.18
Bifaciality factor 70 %
Rear shading factor 6.5 %
Rear mismatch loss 10.0 %
Shed transparent fraction 0.0 %

Monthly ground albedo values

Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Year
0.20	0.20	0.19	0.20	0.17	0.14	0.13	0.16	0.19	0.20	0.17	0.21	0.18

Circumsolar

Diffuse

Models used

Transposition

Perez, Meteonorm separate

Perez

den

Variant: 24_10_08_Match_measured_inv_2_1

PVsyst V8.0.15

VC1, Simulation date: 10/09/25 14:47 with V8.0.15

Sijin Wang (Australia)

PV Array Characteristics

PV module Inverter Manufacturer

Manufacturer Generic Model JKM-385M-72H-TV-Bifacial Model Sunny Central 2750-EV

(Original PVsyst database) (Original PVsyst database)

2750 kWac Unit Nom. Power 385 Wp Unit Nom. Power Number of PV modules 5936 units Number of inverters 1 unit Nominal (STC) 2285 kWp 2750 kWac Total power Modules 212 string x 28 In series Operating voltage 875-1425 V

0.83

At operating cond. (50°C) Pnom ratio (DC:AC)

Pmpp 2096 kWp U mpp 1023 V I mpp 2048 A

Total PV power Total inverter power

2750 kWac Nominal (STC) 2285 kWp Total power Total 5936 modules Number of inverters 1 unit

Module area 12152 m² Cell area 10495 m²

Array losses

Pnom ratio

Array Soiling Losses

Average loss Fraction 0.3 %

Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.
0.3%	0.2%	0.7%	0.6%	0.2%	0.1%	0.2%	0.2%	0.2%	0.1%	0.1%	0.2%

Thermal Loss factor

Module temperature according to irradiance Uc (const) 18.0 W/m²K

Uv (wind) 0.0 W/m2K/m/s

Global array res.

DC wiring losses

 $3.5 \text{ m}\Omega$

Serie Diode Loss

Voltage drop 0.7 V

0.83

Loss Fraction 0.63 % at STC Loss Fraction 0.1 % at STC

LID - Light Induced Degradation

Loss Fraction 2.5 % **Module Quality Loss**

Loss Fraction 0.70 % Module mismatch losses

Loss Fraction 2.00 % at MPP

Strings Mismatch loss

Loss Fraction 0.15 % Module average degradation

Year no

Loss factor 0.4 %/year 80% / 20% Imp / Vmp contributions

Mismatch due to degradation

Imp RMS dispersion 0.4 %/year 0.4 %/year Vmp RMS dispersion

IAM loss factor

Incidence effect (IAM): Fresnel, AR coating, n(glass)=1.526, n(AR)=1.290

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.999	0.987	0.963	0.892	0.814	0.679	0.438	0.000

Spectral correction

FirstSolar model

Coefficient Set	C0	C1	C2	C3	C4	C5
Monocrystalline Si	0.85914	-0.02088	-0.0058853	0.12029	0.026814	-0.001781

Variant: 24_10_08_Match_measured_inv_2_1

PVsyst V8.0.15

VC1, Simulation date: 10/09/25 14:47 with V8.0.15

Time fraction

Sijin Wang (Australia)

System losses

Unavailability of the system

2.0 %

Auxiliary losses

constant (fans)

88.0 kW

7.3 days, 0.0 kW from Power thresh.

3 periods Night aux. cons. 88.0 kW

Variant: 24_10_08_Match_measured_inv_2_1

Sijin Wang (Australia)

PVsyst V8.0.15 VC1, Simulation date: 10/09/25 14:47

with V8.0.15

Variant: 24_10_08_Match_measured_inv_2_1

PVsyst V8.0.15

VC1, Simulation date: 10/09/25 14:47 with V8.0.15

Sijin Wang (Australia)

Main results

System Production

Produced Energy

3108.7 MWh/year

Specific production Perf. Ratio PR

Bifacial perf. ratio

1360 kWh/kWp/year

64.83 % 61.98 %

Normalized productions (per installed kWp)

Performance Ratio PR

Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR	PRBifi
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	ratio	ratio
Jan. 21	84.3	30.31	8.56	108.2	104.8	202.9	134.2	0.543	0.517
Feb. 21	195.8	54.18	21.84	256.5	250.5	482.4	415.5	0.709	0.677
Mar. 21	154.0	53.66	18.49	198.0	191.1	381.8	265.5	0.587	0.560
Apr. 21	134.4	38.38	13.81	179.6	173.3	357.7	288.4	0.703	0.672
May 21	92.7	32.50	10.91	121.7	116.8	248.6	179.9	0.647	0.621
June 21	58.7	28.34	8.55	72.5	69.0	150.0	83.6	0.505	0.485
July 21	64.9	30.26	7.96	80.2	76.4	166.0	97.1	0.530	0.510
Aug. 21	101.7	40.08	8.68	131.0	126.3	268.7	198.4	0.663	0.636
Sep. 21	138.8	47.34	11.01	179.6	174.2	360.8	291.2	0.709	0.678
Oct. 21	194.0	60.62	13.74	248.3	242.1	485.7	412.1	0.726	0.693
Nov. 21	164.9	65.05	17.08	204.9	199.2	393.8	275.2	0.588	0.563
Dec. 21	243.8	65.31	21.50	317.7	310.3	592.6	467.4	0.644	0.614
Year	1628.0	546.05	13.43	2098.1	2034.1	4090.9	3108.7	0.648	0.620

Legends

GlobHor Global horizontal irradiation

DiffHor Horizontal diffuse irradiation

T_Amb Ambient TemperatureGloblnc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings

EArray E_Grid Effective energy at the output of the array

PR PRBifi Energy injected into grid

Performance Ratio

Bifacial Performance Ratio

Variant: 24_10_08_Match_measured_inv_2_1

PVsyst V8.0.15

VC1, Simulation date: 10/09/25 14:47 with V8.0.15

Sijin Wang (Australia)

Variant: 24_10_08_Match_measured_inv_2_1

Sijin Wang (Australia)

PVsyst V8.0.15 VC1, Simulation date: 10/09/25 14:47

Variant: 24_10_08_Match_measured_inv_2_1

Sijin Wang (Australia)

PVsyst V8.0.15 VC1, Simulation date: 10/09/25 14:47 with V8.0.15

PVsyst student

PVsyst student

Variant: 24_10_08_Match_measured_inv_2_1

PVsyst V8.0.15

VC1, Simulation date: 10/09/25 14:47 with V8.0.15

Sijin Wang (Australia)

CO₂ Emission Balance

-219999.2 tCO₂ Total:

Generated emissions 288725.12 tCO₂

Source: Detailed calculation from table below

Replaced Emissions

Total: 79207.8 tCO₂ System production: 3117.19 MWh/yr Grid Lifecycle Emissions: 847 gCO₂/kWh

Source: **IEA List** Country: Australia Lifetime: 30 years Annual degradation: 1.0 %

Saved CO₂ Emission vs. Time

System Lifecycle Emissions Details

Item	LCE	Quantity	Subtotal
			[kgCO₂]
Modules	1713 kgCO2/kWp	118019 kWp	202134255
Supports	5.65 kgCO2/kg	15327200 kg	86590863