◎ 特征选择与模型训练流程说明(基于 Minimal Depth 策略)

本项目旨在建立一个鲁棒的分类器模型,在"高维低样本"的背景下,**有效挑选出具有判别力的特征**,并通过逐步训练过程获得性能最优的模型结构。整个流程包括三个核心部分:

★ 一、特征选择机制设计

1. Lasso 初筛(稀疏建模)

目的:在原始的高维特征空间中(可能是成百上千个),快速删除与分类目标无关的特征,缩小搜索空间。

- Lasso(L1正则化逻辑回归)会压缩某些特征系数为0;
- 非零系数对应的是可能对分类任务有意义的特征;
- Lasso 具有稳定性强、可解释性好的特点,适合作为第一步降维手段。

✓ **好处:**大幅压缩特征维度,减少后续模型复杂度。

2. Minimal Depth(最小深度)排序

目的:使用随机森林分析"每个特征在树中首次分裂的位置",也就是它被模型首次使用的深度。

- 如果一个特征经常在靠近根节点分裂 → 表示它能早期将样本划分开,重要性较高;
- 多棵树平均后,最小深度越小,表示特征越重要;
- 更稳健于特征之间的相关性。

☑ **作用:**在 Lasso 初筛后进一步对特征重新排序,获取精细的"实际重要性"排序。

3. 逐步递减特征数(逐轮训练)

目的:从最小深度排名中,逐步减少特征数量,观察模型性能的变化。

每一轮:

- 重新选择 top-K 个特征;
- 重新训练一个 RandomForest 模型;
- 使用调参工具(RandomizedSearchCV)找到最优超参数;
- 用最优模型在测试集上预测,记录 AUC 和 Recall。
- ★*注意:**每一轮都会重新训练随机森林 → 重新排序 → 再决定下一轮的特征。
- ☑ **优势:**这是一种模拟"特征重要性稳定性"的方式,寻找最优的特征组合规模。

◎ 二、模型评估指标说明

1. ROC AUC (Area Under Curve)

定义:ROC 曲线下的面积,用于衡量模型区分正负样本的能力。

- AUC 越接近 1,模型越优秀;
- AUC = 0.5 表示模型跟随机分类差不多;
- 对于**类别不平衡问题**非常适合,衡量模型整体判别力。

🗸 本项目核心优化指标。

2. Recall (召回率)

定义:真正例 / (真正例 + 假负例),也就是预测出的正例中, 有多少是真正的正例。

- 强调模型"不要漏掉"正例;
- 对于某些任务如疾病检测、欺诈识别尤为重要;

• 和 AUC 搭配使用可以监控模型稳定性。

▼ 作为辅助指标,判断模型在不同特征数量下的实用性。

☑ 三、训练过程概述

步骤	内容	说明
1	加载数据并标准化	分 cohort 独立归一化,防止信 息泄露
2	Lasso 特征初筛	稀疏建模,去除冗余无关特征
3	初始化候选特征集	Lasso 输出结果作为初始 pool
4	进入循环,从最多特征到最少特征(不少于5 个)	每轮减一维,训练 + 排序 + 筛 选
(5)	每轮使用 RandomForest 得到当前特征集的 最小深度排序	每轮排序都更新,不是静态排 序
6	基于 Top-K 特征调参训练模型	交叉验证 + AUC评分
7	记录 AUC、Recall、重要性、SHAP图等	为后续分析保留完整路径
8	输出性能变化曲线	找出最佳特征数量对应的模型
9	输出最终模型参数与特征组合	作为推荐最终方案

沙 附:核心参数说明

参数名称	建议默认值	含义与备注
max_iter (Lasso)	10000	防止迭代未收敛
cv (Lasso/RF)	5 或 10	数据量小建议10,大可调为5加速
n_iter (RandomSearch)	30	每轮超参搜索次数,越大越精细
k 起点	len(features)	每轮减少1个特征直到5个
shap_values	维度大时可选取 sample	否则时间开销很大

☑ 总结

本代码实现的是一种"**结构化、多轮、自动化的特征评估与模型选择流程**",通过:

- Lasso 控制规模、
- Random Forest + Minimal Depth 评估强弱、
- 多轮比较寻找最优模型结构,

最终得到一个在测试集上**AUC 最优、可解释性强、特征维度控制合理**的模型,适用于后续部署、报告撰写、以及科研成果产出。