Точечные оценки и их свойства

Грауэр Л.В.

Статистика

$$\xi$$
 — генеральная совокупность с ф.р. $F_{\xi}(x;\theta)$ $\theta=(\theta_1,\ldots,\theta_m)$ — неизвестные параметры $X_{[n]}=(X_1,\ldots,X_n)$ — выборка из ξ

Статистикой будем называть любую функцию, зависящую только от наблюдений.

Точечные оценки

Пусть $\theta \in \Theta \subset \mathbb{R}$.

Точечной оценкой неизвестного параметра или числовой характеристики θ распределения называется статистика $\hat{\theta}(X_{[n]})$, приближенно равная θ .

$$\xi \sim \mathit{N}(a,\sigma),\;\;$$
 а неизвестно $\mathit{X}_{[n]} = (\mathit{X}_1,\ldots,\mathit{X}_n)$ — выборка из ξ

$$\xi \sim \mathit{N}(a,\sigma),\;\; a$$
 неизвестно $X_{[n]} = (X_1,\ldots,X_n)$ — выборка из ξ

Возможные оценки параметра а

$$\xi \sim \mathit{N}(a,\sigma), \;\; a$$
 неизвестно $\mathit{X}_{[n]} = (\mathit{X}_1,\ldots,\mathit{X}_n)$ — выборка из ξ

Возможные оценки параметра а

Свойства точечных оценок

$$\xi, F_{\xi}(x,\theta), X_{[n]} = (X_1, \dots, X_n)$$

$$\hat{\theta}_n \sim \theta$$

Свойства точечных оценок

Несмещенность

Состоятельность

Эффективность

Асимптотическая нормальность

Робастность

Несмещенность.

Пусть параметр $\theta \in \Theta \subset \mathbb{R}$.

Говорят, что оценка $\hat{\theta}(X_{[n]})$ является несмещенной оценкой параметра θ , если $E\hat{\theta}(X_{[n]}) = \theta$ для любого $\theta \in \Theta$.

Несмещенность.

Пусть параметр $\theta \in \Theta \subset \mathbb{R}$.

Говорят, что оценка $\hat{\theta}(X_{[n]})$ является несмещенной оценкой параметра θ , если $E\hat{\theta}(X_{[n]})=\theta$

для любого $\theta \in \Theta$.

Говорят, что оценка $\hat{\theta}(X_{[n]})$ является асимптотически несмещенной оценкой параметра θ , если

$$E\hat{\theta}(X_{[n]}) \xrightarrow[n\to\infty]{} \theta$$

для любого $\theta \in \Theta$.

Пусть

$$\hat{ heta}_A$$
 и $\hat{ heta}_B$ — точечные оценки $heta$ из центров A и B :

$$E\hat{\theta}_A = E\hat{\theta}_B = \theta$$

 $D(\hat{\theta}_i) = E(\hat{\theta}_i - \theta)^2 = \sigma^2(\theta), i = A, B$

Пусть

$$\hat{ heta}_A$$
 и $\hat{ heta}_B$ — точечные оценки $heta$ из центров A и B :

$$E\hat{\theta}_A = E\hat{\theta}_B = \theta$$

$$D(\hat{\theta}_i) = E(\hat{\theta}_i - \theta)^2 = \sigma^2(\theta), i = A, B$$

Рассмотрим новую оценку:

$$\hat{\theta} = \frac{\hat{\theta}_A + \hat{\theta}_B}{2}$$

Рассмотрим выборочную дисперсию D^*

Рассмотрим выборочную дисперсию D^*

 D^* — смещенная оценка, однако асимптотически несмещенная: $ED^* \xrightarrow[n \to \infty]{} \sigma^2$.

Рассмотрим исправленную оценку дисперсии:

$$s^2 = \frac{n}{n-1}D^* = \frac{1}{n-1}\sum_{k=1}^n (X_k - \overline{X})^2,$$

 s^2 — несмещенная оценка дисперсии.

Рассмотрим исправленную оценку дисперсии:

$$s^2 = \frac{n}{n-1}D^* = \frac{1}{n-1}\sum_{k=1}^n (X_k - \overline{X})^2,$$

 s^2 — несмещенная оценка дисперсии.

Выборочное среднее

$$E\bar{X} = E\left\{\frac{1}{n}\sum_{k=1}^{n}X_{k}\right\}$$

Состоятельность

Пусть параметр $\theta \in \Theta \subset \mathbb{R}$. Говорят, что оценка $\hat{\theta}(X_{[n]})$ состоятельна, если $\hat{\theta}(X_{[n]}) \xrightarrow{\mathrm{P}} \theta$

для любого $\theta \in \Theta$.

Оценка $\hat{\theta}(X_{[n]})$ называется *сильно состоятельной* оценкой параметра θ , если $\hat{\theta}(X_{[n]}) \xrightarrow[n \to \infty]{\text{п.н.}} \theta$

для любого $\theta \in \Theta$.

Рассмотрим выборочное среднее $ar{X}$

Пусть

существует $E\xi^k$

$$a_k^* = \frac{1}{n} \sum_{i=1}^n X_i^k$$

Пусть

существует
$$E(\xi - E\xi)^k$$

$$\mu_k^* = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k$$

Эффективность

Рассмотрим класс оценок $K = \{\hat{ heta}(X_{[n]})\}$ параметра heta.

Говорят, что оценка $\theta^*(X_{[n]}) \in K$ является эффективной оценкой параметра θ в классе K, если для любой другой оценки $\hat{\theta} \in K$ имеет место неравенство:

$$E(\theta^* - \theta)^2 \leqslant E(\hat{\theta} - \theta)^2$$

для любого $\theta \in \Theta$.

Рассмотрим случай, когда $\theta = (\theta_1, \dots, \theta_m)$.

Для любого $y \in \mathbb{R}^m$ определим $\alpha_y = (\theta, y) = \theta_1 y_1 + \ldots + \theta_m y_m$. Тогда $\alpha_y^* = (\theta^*, y)$ — оценка параметра α_y .

Оценка $\theta^* \in K$ является эффективной оценкой параметра $\theta = (\theta_1, \dots, \theta_m)$ в классе K, если для любой другой оценки $\hat{\theta} \in K$ и любого $y \in \mathbb{R}^m$ при любом допустимом значении $\theta \in \Theta$ имеет место неравенство:

$$E(\alpha_y^* - \alpha_y)^2 \leqslant E(\hat{\alpha}_y - \alpha_y)^2,$$

где
$$\hat{\alpha}_y = (\hat{\theta}, y)$$
.

Класс несмещенных оценок обозначим через

$$K_0 = \left\{\hat{\theta}(X_{[n]}) : E\hat{\theta} = \theta, \forall \theta \in \Theta\right\}.$$

Оценка $\hat{\theta}$ эффективна в классе K_0 , или просто эффективна, если $D\tilde{\theta}-D\hat{\theta}\succeq 0$ (неотрицательно определенная матрица), где $\tilde{\theta}\in K_0$ для любого $\theta\in\Theta\subset\mathbb{R}^k$.

Теорема

Пусть несмещенные оценки $\hat{\theta}_1$ и $\hat{\theta}_2$ параметра $\theta \in \Theta \subset \mathbb{R}$ являются эффективными, тогда оценки $\hat{\theta}_1$ и $\hat{\theta}_2$ почти наверное совпадают.

Асимптотическая эффективность

Oценка $\hat{\theta}$ называется асимптотически эффективной в классе K оценок параметра $\theta \in \Theta \subset \mathbb{R}$, если

$$\lim_{n\to\infty}\frac{E(\hat{\theta}-\theta)^2}{E(\tilde{\theta}-\theta)^2}\leqslant 1$$

для любого параметра $heta \in \Theta \subset \mathbb{R}$ и любой оценки $\widetilde{ heta} \in K$.

Асимптотическая нормальность

Пусть оценивается параметр $\theta \in \Theta \subset \mathbb{R}$. Оценка $\hat{\theta}$ называется асимптотически нормальной оценкой параметра θ с коэффициентом рассеивания $\sigma^2(\theta)$, если

$$\sqrt{n}(\hat{\theta}-\theta) \xrightarrow[n\to\infty]{d} \zeta \sim N(0,\sigma(\theta)).$$

Для любого $x \in \mathbb{R}$ имеет место сходимость:

$$P\left\{\sqrt{n}(\hat{\theta}-\theta)\leqslant x\right\}\xrightarrow[n\to\infty]{}\frac{1}{\sqrt{2\pi}\sigma(\theta)}\int\limits_{-\infty}^{x}e^{-\frac{y^2}{2\sigma^2(\theta)}}dy.$$

Пусть оценивается параметр $\theta \in \Theta \subset \mathbb{R}^m$. Оценка $\hat{\theta} = (\hat{\theta}_1, \dots, \hat{\theta}_m)$ называется асимптотически нормальной с матрицей рассеивания $\Sigma(\theta)$, если имеет место сходимость по распределению:

$$\sqrt{n}(\hat{\theta}-\theta) \xrightarrow[n\to\infty]{d} \eta \sim N(0,\Sigma(\theta)).$$

Рассмотрим выборочное среднее $ar{X}$

Робастность

Робастность оценок в рамках "схемы засорения"

$$f(x,\theta) = (1 - \varepsilon)N(x,\theta,\sigma_1) + \varepsilon N(x,\theta,\sigma_2)$$
$$0 < \varepsilon < 1, \quad \sigma_2 >> \sigma_1$$
$$N(x,\theta,\sigma_i) = \frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{(x-\theta)^2}{2\sigma_i^2}}$$

По $X_{[n]}$ оценить θ

Рассмотрим оценки \bar{x} и x^*_{med}

$X[100] \propto 0.95N(x, 1, 1) + 0.05N(x, 1, 10)$

