γ analysis update in $B^\pm o (K^+K^-\pi^+\pi^-)_D K^\pm$ decays

Martin Tat

Oxford LHCb

28th June 2021

Summary of last time

- γ from $B^{\pm} \rightarrow DK^{\pm}$, $D \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}$, arXiv:hep-ph/0611272
- Model independent measurement with BESIII strong phase input
- Expected precision from signal-only study: $\Delta \gamma = 12^{\circ}$
- B candidate selection with BDT
- Inital mass fits

Summary of analysis procedure

- Perform global fit to fix yields and shapes
- ② Separate B^{\pm} candidates by charge and into bins
- **3** Extract x_{\pm} and y_{\pm} with a simultaneous fit
- **1** Interpret x_{\pm} and y_{\pm} in terms of γ

Outline

- Backgrounds
 - Mis-ID from $D \to K\pi\pi\pi$
 - Charmless backgrounds
- ② Global mass fit
- Toy studies
 - Standard fits with 4 and 8 bins
 - Biases in CP observables
 - Systematics from c_i , s_i
- Summary and future work

Mis-ID from $D \rightarrow K\pi\pi\pi$

- Mis-ID of D daughter $\pi \to K$
- Peaks a much higher D mass
- Much higher branching ratio
- ullet Similar background from $D o \pi\pi\pi\pi$ is negligible

(a) D invariant mass for $KK\pi\pi$ and $K\pi\pi\pi$

(b) Yield of $KK\pi\pi$ and $K\pi\pi\pi$ vs PIDK

Charmless backgrounds

- Background from $B^{\pm} \to KK\pi\pi h^{\pm}$
- Flight significance (FS) cut at 2
- Look in the lower D mass sideband $m(D) = [1770 \,\mathrm{MeV}, 1820 \,\mathrm{MeV}]$
- Upper sideband contaminated with $K\pi\pi\pi$
- \bullet Train a separate BDT without $\chi^2_{\rm DTF}$ to preserve D sidebands
- Overlap between samples without FS cut: 0.0%
- Overlap between samples with FS cut: 0.0%

Total charmless background yield

Figure 2: Charmless background in the D sideband

Charmless backgrounds by charge

Figure 3: Charmless background split by charge

Charmless backgrounds by bins

Figure 4: Charmless background split by bins

BDT cut optimization

- ullet Minimize statistical γ error
- Procedure:
 - Perform global fit to fix signal and background yields and PDF shapes
 - Generate 1000 toy datasets using the global fit parameters
 - lacktriangledown Fit for γ
 - lacktriangledown Extract expected γ precision from γ distribution of toy datasets

BDT cut optimization

(a) γ precision vs BDT cut for 4 bins

(b) γ precision vs BDT cut for 8 bins

Global mass fit

Standard toy studies with 4 and 8 bins

Figure 7: γ precision in toy studies

Biases in CP observables

Figure 8: CP observable that has bias

Biases in CP observables

Figure 9: CP observable bias with increased statistics

Systematics from c_i , s_i

Figure 10: Systematic uncertainty from c_i and s_i with extrapolated BESIII statistics

Summary and future work

- Summary:
 - Global mass fit looks promising
 - 2 $D o K\pi\pi\pi$ and charmless backgrounds under control
 - 3 Toy studies show no suspicious behaviour
 - **4** Expected c_i and s_i systematics are not too large
- Next steps:
 - Study semileptonic backgrounds in RapidSim
 - Recalculate PID efficiencies with PIDCalib
 - Refit MC signal shapes
 - Rerun everything with Run 1 (finally!)