In [1]:	<pre>%matplotlib inline %load_ext autoreload %autoreload 2 import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pandas as pd import os from zipfile import ZipFile import shutil from sklearn.cluster import KMeans from sklearn.ensemble import RandomForestClassifier</pre>
	*Assignment Summary This is an exercise from the textbook (8.3.2. Example: Activity from Accelerometer Data): Obtain the activities of daily life dataset from the UC Irvine machine learning website (https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer, data provided by Barbara Bruno, Fulvio Mastrogiovanni and Antonio Sgorbissa).
	 Build a classifier that classifies sequences into one of the 14 activities provided. To make features, you should vector quantize, then use a histogram of cluster centers found through hierarchical k-means. For classification, any multi-class classifier works, but in this assignment we will use a decision forest because it is easy to use and effective. You should report (a) the total error rate and (b) the class confusion matrix of your classifier. Now see if you can improve your classifier by (a) modifying the number of cluster centers in your hierarchical k-means and (b) modifying the size of the fixed length samples that you use. Questions about the homework: How should we handle test/train splits?
	 Answer: You should not test on examples that you used to build the dictionary, but you can train on them. In a perfect world, I would split the volunteers into a dictionary portion (about half), then do a test/train split for the classifier on the remaining half. You can't do that, because for some signals there are very few volunteers. For each category, choose 20% of the signals (or close!) for testing. Then use the others to both build the dictionary and build the classifier. When we carve up the signals into blocks for making the dictionary, what do we do about leftover bits at the end of the signal? Answer: Ignore them; they shouldn't matter (think through the logic of the method again if you're
	 Uncertain about this) Data Description We'll use the activities of daily life dataset from the UC Irvine machine learning website (https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer). The data was provided by Barbara Bruno, Fulvio Mastrogiovanni and Antonio Sgorbissa Information Summary Input/Output: The data includes 14 directories, each of which represents a certain daily activity. There are 839 accelerometer recordings in the dataset, each with 3 columns and some number of rows. The sampling frequency of the device was 32 samples per second.
In [2]:	 Missing Data: There is no missing data. However, the data is not very well balanced, and some categories have really small amounts of data. Final Goal: We want to build a classifier using vector quantization and other techniques. D.3 Loading the Data # Let's extract the data with ZipFile('/HiDimClassification-lib/hmpdata.zip', 'r') as zipObj: zipObj.extractall() # Loading the data into lists of lists col_labels = ['X', 'Y', 'Z'] raw_txt_files = [] activity_labels = ['Liedown_bed', 'Walk', 'Eat_soup', 'Getup_bed', 'Descend_stairs',
In [4]:	# Let's clean up after we're done shutil.rmtree('./HMP_Dataset')
	Number of samples for each activity: Liedown_bed: 28 Walk: 100 Eat_soup: 3 Getup_bed: 101 Descend_stairs: 42 Use_telephone: 13 Standup_chair: 102 Brush_teeth: 12 Climb_stairs: 102 Sitdown_chair: 100 Eat_meat: 5 Comb_hair: 31 Drink_glass: 100 Pour_water: 100 Total number of samples: 839 O.4 Creating a Random Train-Test Split It is not wise to out-source this train-test split to traditional sklearn functions as the data is a bit unique
In [6]: In [7]:	<pre>np_random = np.random.RandomState(12345) train_val_txt_files = [] test_txt_files = [] for _,activity_txt_files in enumerate(raw_txt_files): num_txt_files = len(activity_txt_files) shuffled_indices = np.arange(num_txt_files) np_random.shuffle(shuffled_indices) train_val_txt_files.append([]) test_txt_files.append([]) for i, idx in enumerate(shuffled_indices): if i < test_portion * num_txt_files:</pre>
In [8]:	<pre>test_txt_files[-1].append(activity_txt_files[idx]) else:</pre>
	Task 1 Write a vector-quantization function quantize that takes two arguments as input 1. $X:$ a numpy array with the shape $(N,3)$, where N is the number of samples in a single recording. The columns represent the acceleration in each of the x, y , and z directions. For example, we could have the X matrix as follows $X_{135\times3} = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ \dots & & & \\ x_{135} & y_{135} & z_{135} \end{bmatrix}$
In [9]:	2. d : This is the number of consecutive samples for each segment in the output. and returns the variable out , which arranges the vector into segments of size d and drops any incomplete final set of data. For instance, in our previous example we should have $out_{4\times96} = \begin{bmatrix} x_1 & y_1 & z_1 & x_2 & y_2 & z_2 & \cdots & x_{32} & y_{32} & z_{32} \\ \cdots & & & & & & & \\ x_{97} & y_{97} & z_{97} & x_{98} & y_{98} & z_{98} & \cdots & x_{128} & y_{128} & z_{128} \end{bmatrix}$ Each row is a segment of 32 consecutive samples (each sample with their corresponding x_i, y_i, z_i acceleration measurements). $\mathbf{def} \text{ quantize}(\mathbf{X}, \mathbf{d=32}):$
	Performs vector quantization. Parameters:
In [10]:	# Performing Sanity Checks on your Implementation some_data = (np.arange(135*3).reshape(-1,3) ** 13) % 20 some_q_data = quantize(some_data, d=32) assert np.array_equal(some_q_data, np.array([[0, 1, 12, 3, 4, 5, 16, 7, 8, 9
	12, 13, 4, 15, 12, 13, 4, 15, 16, 16, 17, 16, 18, 18, 19, 12, 18, 19, 12, 18, 16, 19, 12, 18, 18, 19, 12, 18, 18, 19, 12, 18, 18, 19, 16, 18, 19, 10, 18, 18, 19, 16, 13, 0, 7, 12, 18, 18, 19, 16, 13, 0, 7, 12, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18
In [11]: In [12]:	# This cell is left empty as a seperator. You can leave this cell as it is, and you
In [13]:	train_kmeans_model to get the training data data and k as arguments, and produce a SKLearn's KMeans object with k clusters that was trained on data . Important: You should use 12345 as the random_state variable for the sake of auto-grading. def train_kmeans_model(data, k): """ Performs kmeans clustering. Parameters: data (np,array): A data matrix of dimension N x d k (int): The number of clusters to identify in the data Returns: kmeans_model (class sklearn.cluster.KMeans): Returns an object that is use random_state as indicated in the statement of the problem
In [14]: In [15]:	<pre>kmeans_model = train_kmeans_model(quantized_data_for_clustering, k) assert kmeans_model.n_clusters == k assert kmeans_model.random_state == 12345</pre>
	Task 3 Using the quantize function you wrote before, write the new function text2hist that converts the data previously obtained from text files into a set of features using the K-Means model you have already trained. First, quantize the data. This should give you a matrix quantized_data with multiple rows which can then be fed to the K-Means clusterer. The output of the K-Means prediction km_pred has the same length as the number of rows in quantized_data, you should treat it as a set of samples. You should create a normalized count vector of length k . For normalization, consider that the prediction classes range between 0 and $k-1$ in value. This normalized count vector would be your output.
	 X: 1. X: a numpy array with the shape (N,3), where N is the number of samples in a single recording. The columns represent the acceleration in each of the x, y, and z directions. This is the same kind of input that was given to the quantize function. kmeans_model: This is a trained scikit-learn K-Means object that you could use for prediction. d: This is the vector quantization length. k: This is the number of clusters. The output should be a histogram hist; A numpy array with the shape of (k,), and non-negative elements that should sum up to 1. Hint: Numpy functions like np.bincount or np.histogram maybe useful for histogram production if
	you know how to use them. Student Notes: 626: 1. Call the quantize function written in previous task 2. Predict output on data from step 1 above using input variable kmeans_model 3. Use 'np.bincount' on predicted data to get array. Pay attention to minlength parameter. 4. Use 'np.histogram' function and pass predicted output from Step 2, bins=0 to k+1, range=min and max from step 3. Special attention to density input parameter of this function. Also remember this function returns two results but we only want the first result. 587: The array of k non-negative elements should only have 1 that is greater than 0, the other 99 (k-1) should be 0.
	The result of your kmeans_model.predict() function should be directly used in constructing the histogram. np.histogram(): use parameters bin and density. 693: np.bincount creates histograms for different classes. This distribution is then used for predicting the classes by the classifier. Applied Machine Learning book (Section : 8.3.2, Figure: 8.15):
	0.15 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.1
	numpy.bincount(x, /, weights=None, minlength=0): Count number of occurrences of each value in array of non-negative ints. minlength:int, optional: A minimum number of bins for the output array Returns: out, ndarray of ints numpy.histogram(a, bins=10, range=None, normed=None, weights=None, density=None): Compute the histogram of a dataset. bins: int or sequence of scalars, optional int: defines number of equal-width bins sequence: defines a monotonically increasing array of bin edges, including the rightmost edge. density: bool, optional False: result will contain the number of samples in each bin. True: result is the value of the probability density function at the bin, normalized such that the integral over the range is 1. Note: sum of the histogram values will not equal 1 unless bins of unity width are chosen; it is not a probability mass function. Returns: 1. hist, array, The values of the histogram. 2. bin_edges: array of dtype float, Return the bin edges (length(hist)+1).
In [18]:	<pre>def text2hist(X, kmeans_model, d, k): """ Creates a normalized count vector representation of the data X. Parameters:</pre>
	<pre># Beginning of Mo's code # 1: "First, quantize the data. This should give you a matrix quantized_data with quantized_data = quantize(X, d=d) # Step 2: Feed quantized_data to k-means clusterer. Predict output on data from km_pred = kmeans_model.predict(quantized_data) # treat km_pred as a set of samples # Step 3: Use 'np.bincount' on predicted data to get array. Special attention to bins = np.bincount(km_pred, minlength = k) # Step 4: Use 'np.histogram' function and pass predicted output from Step 2, bin: # Pay attention to density input parameter. # Remember this function returns two results but we only want the first result #hist = np.histogram(km_pred, bins = k, range = (min(bins), max(bins))) hist = np.histogram(km_pred, bins= np.arange(k+1), range=[0,k-1], normed=None, we hist = hist[0]</pre>
In [19]:	<pre>some_data = (np.arange(135*3).reshape(-1,3) ** 13) % 20 some_hist = text2hist(some_data, kmeans_model, d, k)</pre>
In [20]: In [21]:	# This cell is left empty as a seperator. You can leave this cell as it is, and you a seperator. You can leave this cell as it is, and you a seperator. You can leave this cell as it is, and you a seperator. You can leave this cell as it is, and you a seperator. You can leave this cell as it is, and you a seperator. You can leave this cell as it is, and you a seperator. You can leave this cell as it is, and you a seperator. You can leave this cell as it is, and you a seperator.
In [22]:	<pre>feature_vec = text2hist(txt_df.values, kmeans_model, d=d, k=k) features.append(feature_vec.reshape(1,-1)) labels.append(activity_idx) features = np.concatenate(features, axis=0) labels = np.array(labels) return features, labels</pre>
In [39]:	Using Scikit-learn's implementation, train a Random Forest classifier. Write the function train_classifier to get the training data train_features and train_labels as arguments, and return a SKLearn's RandomForestClassifier object that was trained on data. Use 100 trees for building the random forest. Important: You should use 12345 as the random_state variable for the sake of auto-grading. Parameters: n_estimators: int, default=100: The number of trees in the forest. def train_classifier(train_features, train_labels): """ Creates a random forest classifier. Parameters: train_features (ndarray): A matrix of dimension n_samples, n_feature train_labels (ndarray): An matrix of dimension n_samples
In [40]:	Returns:
In []: In [41]: In [42]:	<pre>train_pred = classifier.predict(train_features) print(f' Training accuracy: {np.mean(train_pred==train_labels)}') Training accuracy: 1.0</pre>
In [43]: Out[43]:	from sklearn.metrics import plot_confusion_matrix fig, ax = plt.subplots(figsize=(8,8), dpi=100) plot_confusion_matrix(classifier, test_features, test_labels,
	Getup_bed - 0 0 0 17 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Pour_water - O O O O O O O O O O O O O O O O O O
In [44]:	<pre>der train_and_evaluate(train_txt_files, test_txt_files, d, k, prot_confusion_mat=rain quantized_data_for_clustering = [] for activity_idx, activity_txt_files in enumerate(train_txt_files): for txt_df in activity_txt_files: quantized_text = quantize(txt_df.values, d=d) quantized_data_for_clustering.append(quantized_text) quantized_data_for_clustering = np.concatenate(quantized_data_for_clustering, ax. kmeans_model = train_kmeans_model(quantized_data_for_clustering, k) train_features, train_labels = feature_maker(train_txt_files, kmeans_model, d, k) classifier = train_classifier(train_features, train_labels) test_features, test_labels = feature_maker(test_txt_files, kmeans_model, d, k) test_pred = classifier.predict(test_features) test_acc = np.mean(test_pred==test_labels)</pre>
	<pre>if plot_confusion_mat: fig, ax = plt.subplots(figsize=(8,8), dpi=100) plot_confusion_matrix(classifier, test_features, test_labels,</pre>
In [45]:	<pre>cross_val_pairs = [] for fold_idx in range(cv_folds): train_cv_files = [] val_cv_files = [] for activity_idx, activity_txt_files in enumerate(train_val_txt_files):</pre>
	<pre>train_cv_files.append([]) val_cv_files.append([]) for i, txt_df in enumerate(activity_txt_files): if float(fold_idx+1)/cv_folds > float(i)/len(activity_txt_files) >= :</pre>
In [46]: In [47]: In [48]:	<pre>kd_acc[(k_candidate, d_candidate)] = cv_acc print('') return kd_acc # List of k and d candidates for performing hyper-parameter optimization using Cross k_list = [50, 200, 500] d_list = [8, 16, 32, 64] # This cell is left empty as a seperator. You can leave this cell as it is, and you</pre>
In [49]:	<pre>if perform_computation: fig, ax = plt.subplots(figsize=(10,8), dpi=100) for (k_,d_), acc_ in kd_acc.items(): ax.scatter([k_], [d_]) ax.annotate('%.lf'%(acc_*100.) + '%', (kint((max(k_list)-min(k_list))*0.02. ax.set_xlabel('Number of clusters') ax.set_ylabel('Vector Quantization Length') ax.set_yscale('symlog', base=2) ax.set_yticks(d_list) from matplotlib.ticker import ScalarFormatter ax.yaxis.set_major_formatter(ScalarFormatter()) ax.ticklabel_format(axis='y', style='plain') _ = ax.set_title('Cross-Validation Accuracy Values (*Dry Run)')</pre>
	Cross-Validation Accuracy Values (*Dry Run) 53.2% 48.0% 26.6% 48.0% 48.0% 48.0% 51.8% 48.0%
	8 - 51.9% 49.2% 54.5% 54.5% 100 200 300 400 500
In [50]:	Number of clusters
	Liedown_bed - 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
In [51]: In [52]: In [56]:	Predicted label 2.1.2 Getting a More Serious Run Now we will perform cross-validation with the full set of samples. The following may take up to an hour, so please be patient # List of k and d candidates for performing hyper-parameter optimization using Cross-k_list = [50, 200, 500] d_list = [8, 16, 32, 64] # This cell is left empty as a seperator. You can leave this cell as it is, and you seem to be a separator of the control of
In [56]: In [54]:	<pre>if perform_computation: cross_val_pairs = generate_cv_pairs(train_val_txt_files, cv_folds=3) kd_acc = perform_cross_validation(cross_val_pairs, k_list=k_list, d_list=d_list) </pre>
	70.1% 72.4% 74.9% 16 - 71.7% 73.9% 73.9%
	8 - 77.3% 75.1% 74.6% 100 200 300 400 500 Number of clusters

