Math 401: Homework 2

Tim Farkas

Aug 2021

Problem 1

Define $f: (1,4) \to \mathbb{R}$ by

$$f(x) = \frac{1}{x^2 - 5x + 4}$$

We can analyze the behavior of f by looking at the denominator only, which we define as g(x).

 $g(x) = x^2 - 5x + 4 = (x - 4)(x - 1)$, hence the function is indeed properly defined on the whole domain (1, 4).

g'(x) = 2x - 5, hence there is a single inflection point at 5/2.

g''(x) = 2 > 0, hence the inflection point is a local minimum for g(x), and a local maximum for f(x).

1a

f is not one to one, because there is an inflection point within the domain and the inflection point does not occur at either boundary of the domain.

1b

The inflection point occurs at x = 5/2. Because 5/2 > y, $\forall y \in (1,2)$ and f is concave, f is monotonic increasing on (1,2). Hence:

$$f((1,2)) = (f(1)^+, f(2)^-) = (-\infty, -1/2)$$

1c

Because the inflection point occurs at $x = 5/2 \in (1,3)$ and f is concave:

$$f(1,3) = (\min(f(1)^+, f(3)), f(5/2)) = (\min(-\infty, -1/2), -1/4) = (-\infty, -1/4)$$

Problem 2

Define $f: \mathbb{Z} \to \mathbb{Z}$ by

$$f(x) = 3\left|x - \frac{1}{3}\right|$$

We rewrite as a piecewise function:

$$f(x) = \begin{cases} 3x - 1 & x \ge 1/3 \leftrightarrow x \ge 1\\ 1 - 3x & x < 1/3 \leftrightarrow x \le 0 \end{cases}$$

2a

f is one-to-one.

Proof:

Both piecewise elements of f(x) are linear in x and hence are monotonic, so both pieces are are themselves one-to-one.

We have left to show that the ranges of each piece have no common elements, which we prove by contradiction. Take x < 0 < y and $x, y \in \mathbb{Z}$. The conditions under which two functions have the same outcome can be derived:

$$3x - 1 = 1 - 3y \tag{1}$$

$$3x = 2 - 3y \tag{2}$$

$$x = \frac{2}{3} - y \tag{3}$$

But then either $x \notin \mathbb{Z}$ or $y \notin \mathbb{Z}$ and the proof is complete. \square

2b

f is not onto, because no negative integers are in the range, but all negative integers are in the codomain. To prove, we factor f into 3 and |x-1/3| and note that both are non-negative for all

 $x \in \mathbb{R} \supseteq \mathbb{Z}$.

Problem 3

 $f \colon \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \max(2x, 1)$$

For analysis, we rewrite piecewise:

$$f(x) = \begin{cases} 1 & x \le 1/2 \\ 2x & x > 1/2 \end{cases}$$

3a

 $f^{-1}((0,1)) = \emptyset$, because f(x) is never less than 1.

3b

 $f^{-1}((1,2))=(1/2,1)$. If f(x)>1, as it is for the whole specified subset of the codomain, then f(x)=2x and $x=y/2=f^{-1}(y)$. Then, because f(x)=2x is monotonic increasing, $f^{-1}((1,2))=(f^{-1}(1)^+,f^{-1}(2)^-)=(1/2,1)$. \square

3c

 $f^{-1}((-\infty,2))=(-\infty,1)$. Because the minimum value in the range is 1, $f^{-1}((-\infty,1)=\emptyset$. The remainder of the codomain is [1,2), which differs from 3b only by the inclusion of 1. But $f^{-1}(\{1\})=(-\infty,1/2]$. Because $(-\infty,1/2]\cup(1/2,1)=(-\infty,1)$, we see that $f^{-1}((-\infty,2))=(-\infty,1)$.

Problem 4

Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = y = \begin{cases} x^2 & x \le 0\\ x+1 & x > 0 \end{cases}$$

Therefore, we have that $f^{-1}(\{y\}) = \{-\sqrt{y} : y \ge 0\} \cup \{y-1 : y > 1\}$. Note the functions defining both sets in this union are monotonic.

4a

$$f^{-1}((0,1)) = (f^{-1}(1)^+, f^{-1}(0)^-) \cup \emptyset = (-\sqrt{1}, -\sqrt{0}) = (-1,0)$$

4b

$$f^{-1}((1,2)) = \{\{-\sqrt{y} : y \in (1,2) \cap [0,\infty)\}, \{y-1 : y \in (1,2) \cap (1,\infty)\}\}$$
$$= \{(-\sqrt{2},-1), (0,1)\}$$
$$= (-\sqrt{2},-1) \cup (0,1)$$

4c

 $f^{-1}((-\infty,2)) = (-\sqrt{2},1)$. Because the minimum value in the range is 0, $f^{-1}((-\infty,0) = \emptyset$. The remaining range is [0,2), which differs from the union of ranges from 4a and 4b by inclusion of 0 and 1.

$$f^{-1}([0,2)) = \{\{-\sqrt{y} : y \in [0,2) \cap [0,\infty) = [0,2)\}, \{y-1 : y \in [0,2) \cap (1,\infty) = (1,2)\}\}$$

$$= \{(-\sqrt{2},0], (0,1)\}$$

$$= (-\sqrt{2},0] \cup (0,1)$$

$$= (-\sqrt{2},1)$$

Problem 5

If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are both one-to-one, then the function $h: \mathbb{R} \to \mathbb{R}$ defined by

$$h(x) = \begin{cases} f(x) & if x \le 0 \\ g(x) & if x > 0 \end{cases}$$

is also one to one.

This statement is false. Take f(x) = -x and g(x) = x. Each are one-to-one. But then h(x) = |x|, which is not one-to-one.