NLP Automated Customer Reviews: Comparative Analysis

Report

Executive Summary

This project developed and compared natural language processing (NLP) models for automated sentiment classification of customer reviews. We evaluated **traditional machine learning approaches** against **modern transformer-based models**, analyzing **55,000 customer reviews** from multiple sources to determine the most effective solution for automated sentiment analysis.

Key Findings

- Random Forest with TF-IDF achieved the highest overall accuracy at 80.3%, outperforming all transformer models
- DistilBERT was the best-performing transformer model with 78.0% accuracy
- Traditional ML models demonstrated superior performance, faster training, and more efficient deployment characteristics
- The neutral sentiment class presented challenges across all models due to class imbalance

1. Project Overview and Methodology

1.1 Objective

Develop an automated system to classify customer reviews into three sentiment categories:

Negative: Ratings 1-3Neutral: Rating 4

• **Positive:** Rating 5

1.2 Data Collection and Processing

• **Total Reviews:** 55,000 customer reviews

Data Sources:

• HuggingFace IMDB Dataset: 25,000 movie reviews

• Local Amazon Dataset: 30,000 product reviews

• Test Set Distribution:

• Positive: 6,590 reviews

• Negative: 2,988 reviews

• Neutral: 1,345 reviews

Preprocessing Steps:

- 1. Text cleaning and normalization
- 2. Tokenization
- 3. Lemmatization
- 4. Stop word removal
- 5. Vectorization (Count Vectorizer and TF-IDF)

1.3 Methodology

We implemented a dual-approach comparison:

- 1. **Traditional ML Pipeline:** Feature engineering with Count/TF-IDF vectorization + classical algorithms
- 2. **Transformer Pipeline:** Pre-trained models (BERT, RoBERTa, DistilBERT, ELECTRA) evaluated as baselines

Class Imbalance Handling:

- Applied class weighting (1.15x weight for neutral class).
- Mild oversampling using Random Oversampler
- Sample weighting for XGBoost

Why this setup:

- Class weights shift the decision boundary toward minority classes with minimal risk of overfitting.
- Mild over-sampling gives Neutral more representation without over-amplifying noise (we avoid fully balancing to Positive).
- By not fully balancing to Positive, we avoid introducing too much synthetic data/noise for the majority class.
- For transformers, we use a class-weighted CrossEntropyLoss in fine-tuning (WeightedTrainer) instead of resampling.

Scores:

- We are looking at <u>F1-score</u> and <u>recall</u> for the evaluation of our models, since it is the best approach for a class weight trained model (ML or Transformer).

2. Traditional Machine Learning Results

2.1 Complete Model Performance Comparison

Count Vectorizer Results

Model	Accuracy	Precision	Recall	F1-Score
Random Forest	79.9%	79.5%	79.9%	78.7%
SVM	72.9%	76.7%	72.9%	74.3%
Gradient Boosting	75.6%	75.2%	75.6%	74.8%
Logistic Regression	69.6%	77.2%	69.6%	71.8%
XGBoost	57.9%	77.8%	57.9%	60.7%
Naive Bayes	51.3%	75.9%	51.3%	53.0%
Extra Trees	37.2%	71.3%	37.2%	28.0%

TF-IDF Vectorizer Results

Model	Accuracy	Precision	Recall	F1-Score
Random Forest	80.3%	79.8%	80.3%	79.3%
Gradient Boosting	76.2%	76.0%	76.2%	75.5%
SVM	74.0%	78.1%	74.0%	75.4%
Logistic Regression	70.3%	78.9%	70.3%	72.5%
XGBoost	61.7%	78.1%	61.7%	64.4%
Naive Bayes	59.2%	72.9%	59.2%	61.4%
Extra Trees	36.9%	70.5%	36.9%	26.4%

2.2 Best Performing Model: Random Forest with TF-IDF

Overall Metrics:

Accuracy: 80.3%
Precision: 79.8%
Recall: 80.3%
F1-Score: 79.3%

• **Training Time:** 231.66 seconds

Per-Class Performance:

Class	Precision	Recall	F1-Score	Support
Negative	83.8%	76.0%	79.7%	2,988
Neutral	68.8%	39.1%	49.9%	1,345
Positive	80.3%	90.7%	85.2%	6,590

Confusion Matrix:

	Predicted Negative	Predicted Neutral	Predicted Positive
Negative	2,271	59	658
Neutral	6	526	813
Positive	434	180	5,976

Key Observations:

- Excellent performance on positive and negative sentiment detection
- Struggled with neutral sentiment classification due to class imbalance
- Strong recall for positive class (90.7%)
- Neutral class achieved only 39.1% recall despite class weighting strategies

Best model chosen:

- I used Grid Search for finding the best hyper-parameters for XGBoost and RandomForest models, both with TF-IDF vectorization.
 - They work well with multi-class prediction, since they are Ensemble methods. Also, RF works well with over-adjustment.

Some reasons for the Neutral score in the confusion matrix:

Random Forest:

- 4 and 5 (Neutral vs Positive) are often semantically close.
- After the sampling strategy (neutral gets closer to negative), the model is still biased to positive.

XGBoost:

- Imbalanced set, too many positives form IMDB (binary dataset)
- Weight biased towards neutral values.

	Negative	Neutral	Positive
Negative	2256	75	657
Neutral	14	634	697
Positive	442	436	5712

	Negative	Neutral	Positive
Negative	2279	453	256
Neutral	5	1313	27
Positive	772	3789	2029

Random Forest

XGBoost

3. Transformer Model Results

3.1 Baseline Performance (Pre-trained Models - No Fine-tuning)

					F1-
Model	Architecture	Accuracy	Precision	Recall	Score
DistilBERT	Distilled BERT	78.0%	70.3%	78.0%	73.7%
BERT	Base Uncased	73.8%	75.9%	73.8%	74.7%

RoBERTa	Twitter Optimized	73.0%	74.3%	73.0%	73.4%
ELECTRA	Token	27.2%	7.4%	27.2%	11.6%
	Replacement				

Model Selection Rationale:

DistilBERT was selected as the best transformer baseline due to:

- **Superior accuracy** (78.0%) among all transformers tested
- **Computational efficiency:** 60% smaller than BERT
- Faster inference: 60% faster than full BERT
- Good balance between speed and accuracy
- Easier deployment in production environments

Why have I added ELECTRA:

- Newer architecture, but less stablished.
- Better performance and sample-efficient than BERT, since it learns from all tokens.

3.2 Best Performing Transformer: DistilBERT Baseline

Overall Metrics:

Accuracy: 78.0%
Precision: 70.3%
Recall: 78.0%
F1-Score: 73.7%

Per-Class Performance:

Class	Precision	Recall	F1-Score	Support
Negative	67.4%	89.7%	77.0%	136
Neutral	0.0%	0.0%	0.0%	55
Positive	84.0%	86.7%	85.4%	309

Confusion Matrix:

		Predicted Negative	Predicted Neutral	Predicted Positive
Negative	122	0	14	
Neutral	18	0	37	
Positive	41	0	268	}

Key Observations:

- **Complete failure** to predict neutral class (0% precision and recall)
- Strong performance on positive and negative classes
- Model collapsed neutral predictions into the majority classes
- Pre-trained sentiment models not optimized for 3-class sentiment task

Why is neutral missing? Some possible causes:

- Many pre-trained "sentiment-analysis" checkpoints (e.g., SST-2 distilBERT) are binary and will never output a Neutral class.
 - o As a reminder, I address imbalance with class-weighted and RandomOverSampler
- MOST PROBABLY: IMDB dataset is binary, so when mapped it only fixated in two values.

Pros and cons of using a combined dataset:

- Better prediction for Positive and Negative, but neutral get lost.
- Neutral can be learnt better with a traditional LM.

4. Comprehensive Comparative Analysis

4.1 Performance Comparison

	Best		F1-		
Approach	Model	Accuracy	Score	Precision	Recall
Traditional ML	RF + TF-IDF	80.3%	79.3%	79.8%	80.3%
Transformer	DistilBERT	78.0%	73.7%	70.3%	78.0%
	Baseline				

Performance Gap: Traditional ML outperformed transformers by **2.3% in accuracy** and **5.6% in F1-score**.

4.2 Speed and Efficiency Comparison

Model	Training	Inference	Computational
	Time	Speed	Requirements
RF + TF-IDF	231.66s	Very Fast	CPU sufficient
DistilBERT	Slow	Moderate	GPU recommended
BERT/RoBERTa	Very Slow	Slow	GPU required

4.3 Per-Class Performance Comparison

Negative Class:

Random Forest: 83.8% precision, 76.0% recall

• DistilBERT: 67.4% precision, 89.7% recall

Neutral Class:

• Random Forest: 68.8% precision, 39.1% recall

• DistilBERT: 0.0% precision, 0.0% recall

Positive Class:

Random Forest: 80.3% precision, 90.7% recall

• DistilBERT: 84.0% precision, 86.7% recall

4.4 Key Findings

- 1. Traditional ML superiority: Random Forest with TF-IDF achieved the best overall performance
- 2. **Neutral class challenge:** Both approaches struggled with neutral sentiment, but transformers failed completely
- 3. Speed advantage: Traditional ML trains and infers significantly faster
- 4. Resource efficiency: Traditional ML requires only CPU, making deployment easier
- 5. **Model interpretability:** Traditional ML offers better feature importance analysis

5. Business Implications and Recommendations

5.1 Primary Recommendation

Deploy Random Forest with TF-IDF for production use based on:

Higher Accuracy: 80.3% vs 78.0% **Better F1-Score:** 79.3% vs 73.7%

Fast Training: Suitable for regular retraining **Real-time Inference:** Very fast predictions

Lower Computational Requirements: No GPU needed Model Interpretability: Feature importance available Easy Deployment: Standard scikit-learn compatibility

Cost-Effective: Lower infrastructure costs

5.2 Use Cases for Traditional ML (Recommended)

- Real-time sentiment analysis systems
- Resource-constrained environments
- High-throughput batch processing
- Applications requiring model interpretability
- Budget-conscious implementations

• Quick deployment requirements

5.3 When to Consider Transformer Models

Transformer models may be preferable when:

- Fine-tuning with large domain-specific datasets is feasible
- Deep language understanding is critical
- Abundant computational resources (GPUs) are available
- Latest state-of-the-art performance is mandatory
- Budget allows for higher infrastructure costs

Note: Without fine-tuning, transformers underperformed traditional ML in this task.

6. Challenges and Limitations

6.1 Class Imbalance Issues

Test Set Distribution:

• Positive: 60.9% (6,590 reviews)

Negative: 27.6% (2,988 reviews)

• Neutral: 12.4% (1,345 reviews)

Impact:

- Neutral class significantly underrepresented
- All models struggled with neutral predictions
- DistilBERT completely failed to predict neutral class
- Random Forest achieved only 39.1% neutral recall despite mitigation strategies

Mitigation Attempts:

- Class weighting (1.15x for neutral)
- Random oversampling
- Sample weighting for XGBoost
- Results: Partial improvement but challenge persists

6.2 Transformer Limitations Observed

- Pre-trained models optimized for binary sentiment (positive/negative)
- Neutral class completely ignored by DistilBERT
- Fine-tuning required for 3-class sentiment task
- High computational requirements without performance gain
- Slow inference speed compared to traditional ML

7. Future Improvements

7.1 Some possible improvements

1. Enhanced Class Balancing:

- 1. Advanced oversampling techniques (SMOTE, ADASYN)
- 2. More aggressive synthetic data generation for neutral class
- 3. Cost-sensitive learning with dynamic weights

2. Feature Engineering:

- 1. N-gram analysis (bigrams, trigrams)
- 2. Sentiment lexicons integration
- 3. Part-of-speech tagging features

3. Ensemble Methods:

- 1. Combine Random Forest and SVM predictions
- 2. Stacking with meta-learner
- 3. Voting classifier with multiple models
- 4. Replace the alternative dataset:
 - 1. I would consider an alternative dataset as SemEval.

8. Conclusion

This comprehensive study demonstrates that **traditional machine learning approaches**, specifically **Random Forest with TF-IDF vectorization**, outperform pre-trained transformer models for sentiment classification of customer reviews.

Final Results Summary

Metric	Random Forest + TF-IDF	DistilBERT Baseline	Winner
Accuracy	80.3%	78.0%	Traditional ML
F1-Score	79.3%	73.7%	Traditional ML
Speed	Very Fast	Moderate	Traditional ML
Resources	CPU Only	GPU Preferred	Traditional ML
Deployment	Easy	Complex	Traditional ML

Full Dashboard

A full dashboard file is available. You can open it locally using "python3 -m http.server 8000 --directory Dashboard".

The dashboard is a static HTML/JavaScript page (index.html) that runs in the browser and loads JSON summaries.

An alternative dashboard is available in the Jupyter Notebook file, using Plotly.

Failed Implementation of fine-tuning

During the project, the fine-tuning failed, for some unknown reason. At first, it was a compatibility problem with Python 3.11. Then, it was a problem downloading models or weights from Hugging-Face. Later, it was a problem with Visual Studio Code where the cells didn't load. I stopped the implementation of this feature, but I added as an file .py.

Generative Al

A method for using generative AI for summarizing reviews is available, but not fully implemented.

Final Recommendation

Implement Random Forest with TF-IDF for immediate production deployment based on:

- Superior accuracy and F1-score
- Significantly faster training and inference
- Lower computational and infrastructure costs
- Easier deployment and maintenance
- Better model interpretability

Parallel Development Strategy:

- Continue exploring transformer fine-tuning as a parallel development track
- Investigate hybrid approaches combining traditional and deep learning
- Address neutral class imbalance through advanced sampling techniques
- Monitor emerging NLP techniques for future improvements

The combination of high performance, operational efficiency, and cost-effectiveness makes traditional ML the clear choice for this sentiment analysis application.

Appendix: Technical Details

A. Training Configuration

Traditional ML:

- Random Forest: 400 estimators, balanced subsample weighting
- SVM: Linear kernel, balanced class weights
- Logistic Regression: L-BFGS solver, multinomial classification
- Training data: Balanced with Random Oversampler

Transformers:

- All models: Pre-trained, no fine-tuning
- Max sequence length: 512 tokens
- Batch processing: 1 sample at a time (baseline evaluation)
- Device: MPS (Apple Silicon M4)

B. Evaluation Metrics

- **Accuracy:** Overall correct predictions / total predictions
- **Precision:** True positives / (True positives + False positives)
- **Recall:** True positives / (True positives + False negatives)
- **F1-Score:** Harmonic mean of precision and recall
- Macro F1: Average F1-score across all classes (equal weight)
- **Weighted F1:** F1-score weighted by class support

C. Hardware and Software Environment

- Hardware: MacBook Air M4
- OS: macOS
- **Python:** 3.10
- Key Libraries:
- scikit-learn: Traditional ML models
- transformers: Hugging Face transformer models
- pandas, numpy: Data processing
- imbalanced-learn: Class imbalance handling

Project: NLP Automated Customer Reviews Analysis

Status: Production Recommendation Ready