ASA - Relatório 2

Marisa Roque - 76653

23 de Abril de 2014

Introdução

Foi apresentado um problema que consistia em modelar um sistema para o controlo de multidões dado um mapa de uma cidade com pontos onde as pessoas se podem concentrar e ligações entre esses pontos. Este modelo tem que garantir a não existência de comunicação entre um conjunto de pontos críticos. Para solucionar e para garantir a segurança da cidade as forças de segurança podem barrar algumas da ligações, de modo a evitar que seja iniciado um motim, minimizando os custos desta operação.

Descrição da solução

Este problema pode ser modelado com um grafo, em que os pontos onde as pessoas se podem concentrar serão os vértices do grafo e as estradas entre estes pontos serão os arcos do grafo. O problema exposto desta maneira dá origem a um grafo não dirigido.

A passagem de pessoas entre os vários pontos da cidade constitui um fluxo de pessoas, o que em teoria de grafos equivale a um problema de fluxos. No entanto, este requer que os arcos entre os vértices possuam uma capacidade especificada e que o grafo seja dirigido. O segundo problema é resolvido criando um par de arcos anti-paralelos para cada ligação entre pontos.

Para o primeiro problema, como não é especificado a capacidade de cada estrada, assume-se que todas terão uma capacidade equivalente. Como a capacidade num problema de fluxo de grafos é meramente relativa, escolheu-se o valor unitário para todos os arcos.

O objectivo deste projecto é descobrir o valor mínimo de estradas a cortar pelas forças de segurança, ou seja descobrir o valor de corte mínimo de um grafo. Na teoria de grafos, o corte mínimo de um grafo é equivalente ao fluxo máximo do mesmo, pelo Teorema do Fluxo Máximo e Corte Mínimo [1].

O algoritmo clássico para determinar o fluxo máximo de um grafo, entre um vértice de origem s e um vértice de destino t, é o método de Ford-Fulkerson. Este método considera duas ideias importantes em problemas de fluxo: redes residuais e caminhos de aumento. Com a condição inicial de um fluxo nulo, o método irá repetir enquanto existir um caminho de aumento na rede residual entre s e t. Em cada iteracção, o fluxo ao longo desse caminho é aumentado com o mínimo das capacidades da rede residual ao longo do mesmo.

O método usado neste projecto é o Edmonds–Karp, que é uma variante do método Ford-Fulkerson, em que os caminhos de aumento são escolhidos usando um método de pesquisa em largura (BFS) na rede residual. A pesquisa dos caminhos de aumento desta forma garante que o caminho encontrado seja sempre o caminho mais curto, que por sua vez garante uma ordem de grandeza do tempo de execução do algoritmo de $O(VE^2)$, sendo V os vértices e E os arcos.

A solução para o problema apresentado foi implementada em ANSI C, aproveitando algum código de representação de grafos do projecto anterior.

Na solução apresentada, a representação do grafo foi efectuada com um vector de listas ligadas, denominada lista das adjacências. Esta representação assenta em três tipos definidos. Um tipo *Vertex* que é um simples inteiro, uma estrutura *Node* para ser usada nas listas ligadas, onde está contida a informação das capacidades e fluxos de cada arco e a terceira estrutura *Graph* que contêm o vector das listas das adjacências e o seu tamanho.

As principais funções do programa apresentado que merecem destaque são:

```
Graph GRAPHresidual(Graph G);
Vertex *bfs(Graph G, Vertex s, Vertex t, int *size, int *gray_size);
int ford_fulkerson(Graph G, Vertex s, Vertex t);
int main(int argc, char *argv[]);
```

A função GRAPHresidual recebe uma estrutura que representa o grafo que se pretende resolver, G, e retorna um nova estrutura que representa a sua rede residual, G_f . Internamente à função, são determinadas as capacidades residuais da rede residual a partir do fluxo e capacidade do grafo G e filtram-se apenas as que são positivas.

A função bfs recebe um grafo G, um vértice de origem s e um vértice de destino t e devolve um vector de vértices que representam o caminho de s até t. Os argumentos size e $gray_size$ são usados para retornar, via referências, o tamanho do vector do caminho e o número de arcos que a pesquisa não conseguiu visitar entre s e t.

A lógica desta função consiste em percorrer todos vértices do grafo, marcando-os como não-visitados, em visita actual e visitados. Os vértices são percorridos recorrendo a uma fila, com o princípio FIFO (first in, first out), onde se vão colocando todos os vértices adjacentes do vértice em visita actual. A função termina quando atingir o vértice de destino t ou quando a fila ficar vazia.

A função $ford_fulkerson$ recebe a estrutura que representa o grafo G e os vértices de origem e destino s e t, respectivamente. O valor de retorno da função é o valor de corte mínimo do grafo, para o par origem-destino fornecido.

A função começa por inicializar a zero o fluxo de todo o grafo e inicia um ciclo em que vai calcular a rede residual, determinar um caminho de aumento entre s e t na rede residual. Se o caminho existir, vai determinar a capacidade residual mínima ao longo desse caminho e vai aumentar o fluxo do grafo com o valor da capacidade residual calculado. Se o caminho não existir, vai retornar o valor $gray_size$ que é devolvido pela função bfs. Este valor corresponde ao número de arcos que a pesquisa não conseguiu transpor para atingir t que equivale ao valor do corte mínimo e retorna-o.

A função main é o início do programa, como todos em C, pelo que os seus argumentos de entrada bem como o valor de saída não necessitam de explicação. A função começa por ler do stdin as linhas que correspondem ao grafo e constrói o objecto que o representa. Segue-se a leitura das h linhas que contêm o conjunto dos pontos críticos a ser avaliados pelo programa e por cada uma determina-se o seu corte mínimo. O cálculo do corte mínimo de cada linha corresponde ao mínimo dos cortes da combinação C_2^k dos k pontos críticos, calculado com recurso à função $ford_fulkerson$, uma vez que a ordem dos pontos não afecta o cálculo e os pontos não se repetem.

Análise teórica

Este programa executa em tempo linear ao tamanho do problema. A complexidade temporal de cada função do programa:

- main $O(hn^2VE^2)$
- leitura do input $\Theta(E)$
- $\bullet\,$ conjuntos de pontos críticos $O(hn^2VE^2)$
- \bullet determinar corte mínimo para conjunto de pontos críticos $O(n^2VE^2)$
- Ford-Fulkerson $O(VE^2)$
- Rede Residual O(E)
- BFS O(V+E)

em que V são os vértices, E são os arcos, n o número de pontos críticos no conjunto e h o número de conjuntos de pontos críticos. Assim, a complexidade final do programa é $O(hn^2VE^2)$.

Resultados da avaliação experimental

Esta solução passa com sucesso nos 16 testes presentes no sistema de testes automáticos Mooshak.

Foi verificado experimentalmente, que o tempo de execução varia com as variáveis definidas atrás, V, E, n e h. Ou seja, quando se aumenta, por exemplo o número de pontos críticos de um conjunto, o tempo de execução aumentava, assim como para o número de conjuntos a determinar e o número de arcos e vértices.

Referências

[1] Thomas H. Cormen, *Introduction to Algorithms*. Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, Third Edition, September 2009.