Skupina 18: Kemijski grafi

Avtorja: David Planinšek Šilc, Lenart Žerdin

Datum: 20. 12. 2024

Najina tema je raziskovanje kemijskih grafov in njihovega totalnega $\sigma\textsc{-}\textsc{indeksa}$ iregularnosti.

Opis problema

Graf je kemijski, če so vsa njegova vozlišča stopnje največ 4. Če ima kemijski graf a_i vozlišč stopnje i, $1 \le i \le 4$, potem njegovo stopenjsko zaporedje označimo kot $(1^{a_1}, 2^{a_2}, 3^{a_3}, 4^{a_4})$.

Definiramo totalni σ -indeks iregularnosti, v angleščini 'Total σ -irregularity', $\sigma_t^{f(n)}(G)$ kot

$$\sigma_t^{f(n)}(G) = \sum_{\{u,v\} \subseteq V(G)} |d_G(u) - d_G(v)|^{f(n)},$$

kjer je n = |V(G)| in je f(n) funkcija, definirana za $n \ge 4$.

Očitno je, da je minimalna vrednost $\sigma_t^{f(n)}$ dosežena z regularnimi grafi, ki jih na primer ponazarjajo strukture, kot so cikel C_n ali grafi z stopnjskimi zaporedji, kot so $(1^0, 2^0, 3^0, 4^n)$. Zato se osredotočamo na kemijske grafe, ki dosegajo maksimalno vrednost $\sigma_t^{f(n)}$.

Izrek

Naj bo $n\geq 7$, $f(n)\leq \log_3\left(\frac{3n^2}{3n^2-8}\right)$, in naj bo $(1^{a_1},2^{a_2},3^{a_3},4^{a_4})$ stopenjsko zaporedje kemijskega grafa G z maksimalno vrednostjo $\sigma_t^{f(n)}(G)$. Potem velja:

- 1. Če n = 4k 1, potem $a_1 = a_3 = a_4 = k$ in $a_2 = k 1$.
- 2. Če n = 4k, potem $a_1 = a_2 = a_3 = a_4 = k$.
- 3. Če n = 4k + 1, potem $a_1 = a_2 = a_3 = k$ in $a_4 = k + 1$.
- 4. Če n=4k+2, potem velja bodisi $a_1=a_3=k$ in $a_2=a_4=k+1$, bodisi $a_1=a_3=k+1$ in $a_2=a_4=k$.

Ker je za kemijske grafe razlika med stopnjami vozlišč omejena, domnevamo naslednje:

- **Domneva 1:** Isti grafi, kot v Izreku, imajo maksimalno vrednost za $\sigma_t^{f(n)}$, če je $f(n) = \frac{1}{n}$.
- Domneva 2: Isti grafi, kot v Izreku, imajo maksimalno vrednost za $\sigma_t^{f(n)}$, če je f(n) = c, kjer je c konstanta v intervalu (0,1).

Potek dela

- 1. Implementirala bova algoritmem za sistematično iskanje vseh možnih stopenjskih zaporedij za kemijske grafe do števila vozliščn=10, saj se čas iskanja eksponentno povečuje.
- 2. Za vsako stopenjsko zaporedje bova izračunala $\sigma_t^{f(n)}(G)$ z ustrezno funkcijo $f(n)=\frac{1}{n}$ ali $f(n)=c,\ c\in(0,1)$, in jih uredila po velikosti. Osredotočila se bova na c-je, ki so blizu 0 oziroma 1.
- 3. Za obe funkciji in za različne parametre c bova preverila ujemanje s posledicama izreka.
- 4. Implementirala bova algoritmem za stohastično iskanje stopnejskih zaporedij za kemijske grafe za n>10. Najna hipoteza je, da je za večji totalni σ -indeks biti števila stopenjskega zaporedja blizu skupaj. Algoritem bo začel z nekim naključnim grafom, nato pa bo iterativno mutiral trenutni graf, tj. odstranil in dodal po 1 povezavo tako, da bo graf še vedno kemijski, in izračunal vrednost $\sigma_t^{f(n)}$ za mutiran graf. Če mutirani graf izboljša vrednost $\sigma_t^{f(n)}$, ga agoritem sprejme kot trenutni graf. Po končnem številu iteracij bo algoritem vrnil stopenjsko zaporedje, kjer je bil dosežen maksimum, torej trenutnega grafa.