Extrapolation methods for weak approximation schemes

Dejan Velušček

University of Ljubljana

Oxford, 21st May 2012

- Problems in computational finance
 - Basic setting and problems
 - Examples
 - Different approaches
- Symmetrically weighted sequential splitting
 - Spaces of controlled growth
 - Splitting
 - Extrapolation
- Numerical examples
 - Ornstein-Uhlenbeck
 - Heston model

Basic setting

• underlying modelled by a stochastic process $(X_t)_{t\geq 0}$

$$dX_t = AX_t dt + \sum_{i=0}^d V_i(X_t) \circ dB_t^i, \quad X_0 = x,$$

- state space: separable Hilbert space $(H, ||.||_H)$
- vector fields V_i , i = 0, ..., d Lipschitz
- A: unbounded operator on H
- A generates C⁰ pseudocontractible semigroup
- $B_t^0 = t$, $(B_t^i)_{i=1,...,d}$ d-dimensional Brownian motion
- pricing options, hedging,... \longrightarrow calculation of $P_t f = E[f(X_t)]$ for some payoff f

Problems

- exotic option,
- infinite dimensional state space, nontrivial geometric structure,
- arbitrarily large d,
- unbounded operator in the drift term,
- payoff and vector fields V_i not necessarily bounded C_b^{∞} .

- no closed form solution/formula for P_tf,
- standard methods either do not work or exhibit serious problems.

Example: Heath-Jarrow-Morton equation

- state space: forward yield curves $r: [0, \infty) \to \mathbb{R}$, e.g. $H = \{r \in L^1_{loc}(\mathbb{R}_+) | r' \in H^0_{\alpha}(\mathbb{R}_+)\}$
- HJM equation:

$$dr(t,r_0) = (Ar(t,r_0) + \alpha_{HJM}(r(t,r_0))) dt + \sum_{j=1}^d \sigma_j(r(t,r_0)) dB_t^j$$

- $A = \frac{d}{dx}$,
- $r(0, r_0) = r_0$,
- $\alpha_{HJM}(r)(x) = \sum_{j=1}^d \sigma_j(r)(x) \int_0^x \sigma_j(r)(\tau) d\tau$.
- Problems:
 - calibration: calibrate to the caplet prices observed on the market
 - pricing of swaptions

KLV approach

Kusuoka-Lyons-Victoir approach:

- abstract approach, free Lie algebra technique
 - all boils down to approximating $\exp(t(v_0 + \frac{1}{2}\sum_{i=1}^d v_i^2))$ in $\mathbb{R}\langle\langle v_0,\ldots,v_d\rangle\rangle$
- various types:
 - cubature schemes
 - Gaussian K-schemes:
 - Ninomiya-Victoir
 - Ninomiya-Ninomiya
- all KLV implementations respect the geometric structure of the state space
- under suitable assumption moving frame technique deals with unbounded operator A
- Gaussian K-schemes admit extrapolation of the Richardson type

Splitting-Semigroup approach

- operator semigroups: $P_t = \exp(t(\tilde{V}_0 + \frac{1}{2}\sum_{i=1}^d V_i^2))$
- splitting up: $\tilde{V}_0 + \frac{1}{2} \sum_{i=1}^d V_i^2 = \sum_{i=0}^k A_i$
- splitting of classical order s:

$$Q_t f = \prod_{j=1}^{p} \prod_{m=0}^{k} \exp(\gamma_{j,m} t A_m) f$$

- formal expansion in t of $P_t Q_t$: no terms up to t^{s+1}
- Hansen, Osterman (2009): under some conditions: $\|P_T f Q_{T/n}^n f\| = O(n^{-s})$
- for $\gamma_{i,m} > 0$ numerical order s max. 2
- respects geometrical structure
- under suitable assumptions moving frame technique deals with unbounded operator A

Why splitting?

- simple to implement as a Monte Carlo algorithm
- two general ways how to do it:
 - each $\exp(t\gamma_{j,m}A_m)f$ has an explicit solution
 - 2 $P_t^{(0)} f = \exp(t \tilde{V}_0) f$ and $P_t^{(i)} f = \exp(\frac{t}{2} V_i^2) f$, i = 1, ..., d
 - implementation:

$$\exp\left(\frac{t}{2}V_i^2\right)f(x) = E[\exp(\sqrt{t}ZV_i)f(x)], \quad Z \sim \mathcal{N}(0,1)$$

ullet usually combine the two ways o optimum performance

Need for acceleration

- Monte Carlo order of convergence $O(1/\sqrt{N}) \rightarrow$ want faster
- faster: quasi Monte Carlo, latices,... BUT need low integration dim.
- dim. of integration proportional to No. of timesteps

- need high order approx. schemes:
 - high order ⇒ less timesteps for same discretization err.

Extrapolation

Assumptions

- approximations $y_h^{(i)}$, $i \in I$ of y_0 amenable for all h > 0,
- known error expansion: $y_h^{(i)} = y_0 + \sum_{k=\alpha}^{\beta} c_k^{(i)} h^k + o(h^{\gamma}),$ $0 < \alpha \le \beta \le \gamma \text{ as } h \to 0$

Extrapolation

- killing error terms using lin. combination of:
 - various approximations
 - ② single approximation, varying *h* (Richardson extrapolation)

Extrapolation of splitting

- splitting for S(P)DE → num. order at most 2
- idea:
 - **1** calculate err. expansion in n: $P_t f (Q_{t/n}^{(i)})^n f$ for various splittings
 - 2 use a combination of:
 - lin. combination of various splittings,
 - Richardson extrapolation

to kill error terms/accelerate the numerical method

ODE solving

- generic case problems:
 - no explicit solution for $P_t^{(i)}f(x) \rightsquigarrow$ numerical ODE solver
 - compatibility: ODE solver ↔ extrapolated splitting ???
 - num. order of ODE solver
- SDE case: Ninomiya, Ninomiya (2009)
- SPDE case: Dörsek, Velušček (2012)
 - (extrapolated splitting, num order s) + (integration scheme ODE solver, num order 2s) = OK

Runge-Kutta OK

Definiton of B^{ψ} spaces

 transplant of the idea to S(P)DE case: Röckner, Sobol (2006), Dörsek, Teichmann (2011)

Definition

- let X completely regular Hausdorff space
- $\psi \colon X \to \mathbb{R}$ admissible weight function if $\{x \in X | \psi(x) \le R\}$ compact for all R > 0
- (X, ψ) weighted space

Definition

- let (X, ψ) weighted space
- $B^{\psi}(X) := \{f \colon X \to \mathbb{R} | \sup_{x \in X} \psi(x)^{-1} | f(x) | < \infty \}$
- $||f||_{\psi} := \sup_{x \in X} \psi(x)^{-1} |f(x)|$

B^{ψ} spaces II

- $(B^{\psi}(X), \|.\|_{\psi})$ is a Banach space
- ullet instead of ${\mathbb R}$ one can use a Banach space
- $\mathcal{B}^{\psi}(X) := \text{closure of } C_b(X) \text{ in } B^{\psi}(X)$
- taking X dual of a separable Banach space, ψ a D-admisible weight function:
 - define $B_k^{\psi}(X)$ analogously, taking derivatives D^1 up to D^k into consideration
 - $\mathcal{B}_k^{\psi}(X_{W*}):=$ closure of bounded smooth cylindrical functions in $\mathcal{B}_k^{\psi}(X)$

Lie-Trotter splitting

split SPDE into

$$\frac{d}{dt}z^{0}(t,x_{0}) = Az^{0}(t,x_{0}) + V_{0}(z^{0}(t,x_{0})),$$

$$dz^{j}(t,x_{0}) = V_{j}(z^{j}(t,x_{0})) \circ dB_{t}^{j}, \quad j = 1, \dots, d$$

- generated semigroups: P_t^i , i = 0, ..., d
- their infinitesimal generators: G_i , i = 0, ..., d
- Lie-Trotter: $\overrightarrow{Q}_t^{LT} = P_t^0 P_t^1 \dots P_t^d$
- its adjoint: $\overleftarrow{Q}_t^{LT} = P_t^d P_t^{d-1} \dots P_t^0$

Numerical order of Lie-Trotter

Theorem (Dörsek, Teichmann (2011))

Given $f \in \mathcal{B}^{\psi_{\ell_0}^n}$:

- $P_t f \in \text{dom } \mathcal{G}^2 \cap \bigcap_{i_1, i_2=1}^d \text{dom } \mathcal{G}_{i_1} \mathcal{G}_{i_2}$
- $\bullet \ \sup\nolimits_t \lVert \mathcal{G}_{j_1} \mathcal{G}_{j_2} P_t f \rVert_{\psi^n_{\ell_0}} < \infty$
- $\mathcal{G}^{i}P_{t}f = (\sum_{j=0}^{d} \mathcal{G}_{j})^{i}P_{t}f, i = 1, 2$

 \Downarrow

exists $C_f > 0$ such that $\forall t \in [0, T]$, $m \in \mathbb{N}$ we have $\|P_t f - (\overrightarrow{Q}_{t/m}^{LT})^m f\|_{\psi_{\ell_0}^n} \leq C_f m^{-1}$

• the same holds for \overleftarrow{Q}_t^{LT}

Error expansion of Lie-Trotter splitting

Gyöngy, Krylov (2006): Assuming

- nested Banach spaces W_i , $i \ge 0$, W_1 dense in W_0 , W_{i+1} continuously embeded in W_i , i > 0
- \bullet P_t and P_t^j bounded on W_i
- \bullet W_i invariant for P_t and P_t^j
- ...

then $\forall f \in W_{2(m+1)}$ we have

$$(\overrightarrow{Q}_{(T/n)}^{LT})^n f - P_T f = \sum_{k=1}^m \overrightarrow{f}_k n^{-k} + \overrightarrow{r}_{m,n} n^{-m-1}$$
$$(\overleftarrow{Q}_{(T/n)}^{LT})^n f - P_T f = \sum_{k=1}^m \overleftarrow{f}_k n^{-k} + \overleftarrow{r}_{m,n} n^{-m-1}$$

where
$$\overrightarrow{f}_k$$
, $\overleftarrow{f}_k \in W_0$, $\|\overrightarrow{r}_{m,n}\|$, $\|\overleftarrow{r}_{m,n}\| \le C_m$

Symmetrically weighted sequential splitting (SWSS)

- suitable choice of $\mathcal{B}_{k}^{\psi_{\ell}}(H_{\ell})$ spaces satisfy the Gyöngy, Krylov (2006) condition
- Oshima, Teichmann, Velušček (2011) type of argument \rightsquigarrow for every odd k: $\overrightarrow{f}_k = -\overleftarrow{f}_k$

symmetrically weighted sequential splitting:

$$Q_{T,n}^{SWSS} = \frac{1}{2} ((\overrightarrow{Q}_{T/n}^{LT})^n + (\overleftarrow{Q}_{T/n}^{LT})^n)$$

- numerical order of $Q_{T,n}^{SWSS}$ is 2
- ullet error expansion of $Q_{T,n}^{SWSS}$ contains only even terms

Extrapolation of SWSS

Theorem (Dörsek, Velušček 2011)

- $K_j \in \mathbb{N}$, j = 1, ..., m pairwise distinct,
- $\lambda_j \in \mathbb{R}$, $j = 1, \ldots, m$ such that $\sum_{j=1}^m \lambda_j = 1$ and $\sum_{j=1}^m \lambda_j K_j^{-2i} = 0$, $i = 1, \ldots, m$
- $f \in \mathcal{B}_{8m}^{\psi_{\ell}^{(n)}}((H_{\ell})_{w})$ with $0 \le \ell \le \ell_{0} 4m 1$

then

$$\|P_T f - \sum_{i=1}^m \lambda_j Q_{T, \mathsf{n} \mathsf{K}_j}^{\mathsf{SWSS}} f\|_{\mathcal{B}^{\psi_\ell^{(n)}}((H_\ell)_w)} \leq C_f n^{-2m}$$

KLV perspective

- ullet Lie-Trotter splittings $\overrightarrow{Q}_t^{LT}$ and \overleftarrow{Q}_t^{LT} Gaussian K-schemes
- algebraic properties, (Kusuoka, 2009) \leadsto first term of error expansion of $(\overrightarrow{Q}_{T/n}^{LT})^n$ and $(\overleftarrow{Q}_{T/n}^{LT})^n$ differs just by a sign

- $Q_T^{SWSS} = \frac{1}{2}((\overrightarrow{Q}_{T/n}^{LT})^n + (\overleftarrow{Q}_{T/n}^{LT})^n)$ numerical order 2
- convergence in L^{∞} norm \rightsquigarrow SWSS also for BUC functions

Ornstein-Uhlenbeck, payoff: sin

Ornstein-Uhlenbeck, payoff: cosh

Ornstein-Uhlenbeck, Eurocall

Heston model

- $T = 1, K = 1.05, \mu = 0.05, \alpha = 2, \beta = 0.1, \theta = 0.09, \rho = 0, X_0 = (1.0, 0.09)$
- $2\alpha\theta \beta^2 > 0$ \Longrightarrow volatility process=perturbation of a square of a Brownian motion

Open problems

- How to introduce ψ -controlled growth in Gaussian K-scheme setting without involving derivatives?
- further extrapolation of SWSS without the extra conditions on derivatives even in non-weighted case

Webpage

The C++ source code of the SWSS with examples and documentation available online:

www.math.ethz.ch/~ doersekp/was

Literature

- P. Dörsek, Numerical Methods for Stochastic Partial Differential Equations, Ph.D. thesis, Vienna University of Technology, October 2011.
- P. Dörsek and J. Teichmann, A semigroup point of view on splitting schemes for stochastic (partial) differential equations. Arxiv preprint ArXiv:1011.2651 (2010).
- Θ P. Dörsek and D. Velušček, Generalized Fujiwara extrapolation method and extrapolated symmetrized splitting in the B^ψ setting, in preparation.
- Stván Gyöngy and Nicolai Krylov, Expansion of solutions of parameterized equations and acceleration of numerical methods. Illinois J. Math. 50 (2006), no. 1-4, 473-514 (electronic).
- István Gyöngy and Nicolai Krylov, Accelerated Numerical Schemes for PDEs and SPDEs, Stochastic Analysis 2010 (Dan Crisan, ed.), Springer Berlin Heidelberg, 2011, pp. 131–168.
- Eskil Hansen and Alexander Ostermann, Exponential splitting for unbounded operators, Math. Comp. 78 (2009), no. 267, 1485–1496.
- S. Kusuoka, Gaussian K-Scheme, Journal of Mathematical Sciences of the University of Tokyo (2009), no. 15
- M. Ninomiya and S. Ninomiya, A new higher-order weak approximation scheme of stochastic differential equations and the Runge-Kutta method. Finance and Stochastics vol 13, No. 3 (2009) pp. 415–443.
- St. Oshima, J. Teichmann, and D. Velušček, A new extrapolation method for weak approximation schemes with applications, Ann. Appl. Probab., to appear (2011).

