Takehome Assigment 4 Due Friday, May 14

In this assignment unless otherwise indicated, all rings are unital rings (although they will not necessarily be commutative), and all homomorphisms are unital homomorphisms.

- 1. Let's begin by exploring unit groups. Recall that if R is a (unital) ring, then R^{\times} is the set of units, endowed with a group structure given by multiplication in R (cf. HW10 Problem 2).
 - (a) Let $\varphi: R \to S$ be a (unital) homomorphism of rings. Show that if $r \in R^{\times}$ then $\varphi(r) \in S^{\times}$. Give a counterexample where φ is not unital.
 - (b) Show that the restriction of φ to R^{\times} is a group homomorphism $\varphi^{\times}: R^{\times} \to S^{\times}$, which is injective if φ is.
 - (c) The analogous statement does not hold for φ surjective. Give an example of a surjective (unital) homomorphism $\varphi: R \to S$, but such that the induced map on unit groups $\varphi^{\times}: R^{\times} \to S^{\times}$ is not surjective.
 - (d) Let $\varphi: R \to S$ be a surjective (unital) homomorphism of *commutative* rings, and suppose that $\ker \varphi \subseteq \mathfrak{J}(R)$ (where \mathfrak{J} is the *Jacobson radical* from TH3 Problem 4). Prove that the induced map $\varphi^{\times}: R^{\times} \to S^{\times}$ is surjective.
- 2. In elementary calculus one often uses the fact that a polynomial of degree n over the real numbers has at most n roots. This turns out to be true over any field! For this problem we fix a field F.
 - (a) Let $f(x) \in F[x]$, and suppose that f(a) = 0 for some $a \in F$. Show that (x a) divides f(x). (Hint: recall that F[x] is Euclidean domain).
 - (b) Let $f(x) \in F[x]$, and suppose $f(a_1) = f(a_2) = \cdots = f(a_r) = 0$, for $a_i \in F$ all distinct. Prove by induction that $(x - a_1)(x - a_2) \cdots (x - a_r)$ divides f(x).
 - (c) Deduce from part (b) that if the degree of f(x) is n, then f(x) has at most n-roots.
 - (d) As a corollary, let $f(x) \in F[x]$ be a polynomial of degree 2 or 3. Prove that F[x]/(f(x)) is a field if and only if f(x) has no roots in F. Give an example to show this is not true for polynomials of degree 4.
- 3. We used many times this semester, (for example when classifying groups like in HW9) that if p is prime, the unit group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic of order p-1, and more generally that if p is an odd prime then $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$ is cyclic. But if you've been paying close attention you should notice that we haven't actually proved that fact yet! So let's come full circle and deduce this fact as a consequence of Problems 1 and 2.
 - (a) Consider a finite abelian group $G = Z_{n_1} \times Z_{n_2} \times \cdots \times Z_{n_k}$ in invariant factor form (so that $n_k | n_{k-1} | \cdots | n_2 | n_1$). Prove that if $k \neq 1$ then there are more than n_k elements in G whose order divides n_k .
 - (b) Let F be a field, and let $G \leq F^{\times}$ be a finite subgroup of the unit group of F. Prove that G is cyclic. Deduce that $(\mathbb{Z}/p\mathbb{Z})^{\times} \cong \mathbb{Z}_{p-1}$. (*Hint:* Can you express the condition in (a) in terms of solutions to a polynomial in F[x]?)

Let's now deduce the analogous result of $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$ for an odd prime p.

(c) Let G be a finite abelian group and suppose all it's Sylow subgroups are cyclic. Show that G is cyclic.

- (d) Show that the surjection of rings $\pi: \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ induces a surjection of groups $\pi^{\times}: (\mathbb{Z}/p^n\mathbb{Z})^{\times} \to (\mathbb{Z}/p\mathbb{Z})^{\times}$ whose kernel has order p^{n-1} . (Hint: use 1(d) and Lagrange's theorem).
- (e) Deduce from part (d) that for all primes $p \neq q$, the Sylow q-subgroups of $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$ are cyclic.

It remains to show that the Sylow p-subgroup of $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$ is cyclic. We will need the following technical result.

- (f) Let p be an odd prime. Prove the following identities by induction on k.
 - $(1+p)^{p^k} \equiv 1 \mod p^{k+1}$
 - $(1+p)^{p^k} \equiv 1 + p^{k+1} \mod p^{k+2}$
- (g) Deduce from part (f) that the Sylow *p*-subgroup of $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$ is cyclic. (*Hint:* Prove (1+p) is a generator!). Conclude that that $(\mathbb{Z}/p^n\mathbb{Z})^{\times} \cong Z_{p^{n-1}(p-1)}$.

By TH2 we know abstractly that for any n, $(\mathbb{Z}/n\mathbb{Z})^{\times}$ can be expressed as a product of cyclic groups. Now we can compute exactly which ones!

(h) Fix an integer n with prime factorization $p_1^{\alpha_1} \cdots p_t^{\alpha_t}$. Express $(\mathbb{Z}/n\mathbb{Z})^{\times}$ as a product of cyclic groups in terms of the prime factorization. (*Note:* Putting this into invariant factor form depends on the factorizations of the $p_i - 1$, which can vary wildly as the primes do, so don't worry about doing that).

Congratulations!! We've covered a ton of material and done a ton of problems this semester. Good work!