FISEVIER

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites

Shuijian He a,b, Wei Chen a,*

HIGHLIGHTS

- \bullet Ultralight and flexible MnO₂/carbon foam (MnO₂/CF) composites are synthesized.
- Flexible carbon foam with low density is obtained by carbonizing melamine resin foam.
- MnO₂ nanosheets with a few nanometers thickness are grown on highporous carbon foam.
- The porous MnO₂/CF can be fabricated into supercapacitor electrode without any binder.
- Supercapacitor from MnO₂/CF shows high specific capacitance and high energy density.

ARTICLE INFO

Article history: Received 19 December 2013 Received in revised form 22 February 2014 Accepted 28 March 2014 Available online 13 April 2014

Keywords:
Binder-free
Ultralight
Flexible
Manganese oxide
Carbon
Supercapacitor

G R A P H I C A L A B S T R A C T

ABSTRACT

The syntheses and capacitance performances of ultralight and flexible MnO₂/carbon foam (MnO₂/CF) hybrids are systematically studied. Flexible carbon foam with a low mass density of 6.2 mg cm⁻³ and high porosity of 99.66% is simply obtained by carbonization of commercially available and low-cost melamine resin foam. With the high porous carbon foam as framework, ultrathin MnO₂ nanosheets are grown through *in situ* redox reaction between KMnO₄ and carbon foam. The three-dimensional (3D) MnO₂/CF networks exhibit highly ordered hierarchical pore structure. Attributed to the good flexibility and ultralight weight, the MnO₂/CF nanomaterials can be directly fabricated into supercapacitor electrodes without any binder and conductive agents. Moreover, the pseudocapacitance of the MnO₂ nanosheets is enhanced by the fast ion diffusion in the three-dimensional porous architecture and by the conductive carbon foam skeleton as well as good contact of carbon/oxide interfaces. Supercapacitor based on the MnO₂/CF composite with 3.4% weight percent of MnO₂ shows a high specific capacitance of 1270.5 F g⁻¹ (92.7% of the theoretical specific capacitance of MnO₂) and high energy density of 86.2 Wh kg⁻¹. The excellent capacitance performance of the present 3D ultralight and flexible nanomaterials make them promising candidates as electrode materials for supercapacitors.

© 2014 Elsevier B.V. All rights reserved.

^a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, lilin, China

^b University of Chinese Academy of Sciences, Beijing 100039, China

^{*} Corresponding author. Tel.: +86 431 85262061. E-mail address: weichen@ciac.ac.cn (W. Chen).

1 Introduction

In recent years, a significant amount of effort has been devoted to exploring flexible and ultralight energy storage materials to meet the fast growing fashion of portable electronic devices, such as rollup displays, electronic paper, wearable devices, mobile phones, and computers. Supercapacitors, also called electrochemical capacitors. characteristic of high power and reasonably high energy densities. currently fill the gap between batteries and conventional solid state and electrolytic capacitors [1-4]. Supercapacitors have become a versatile solution to various emerging energy applications, especially when high power delivery or uptake is needed. Supercapacitors can store energy either by ion adsorption (electrochemical double layer capacitors, EDLCs) or by fast surface redox reactions (pseudocapacitors) in nature [5]. EDLCs mainly use various carbon nanomaterials as electrode materials. EDLCs often display relatively low specific capacitance (Cs) and energy densities but high power densities [6]. In contrast, pseudocapacitors which store energy via redox reactions of electroactive materials, like conducting polymers and transition metal oxides/hydroxides, possess opposite properties [7].

In order to explore electrode materials with both high energy densities and power densities, much work has been done on integrating active materials on 3D self-supported substrates [8-16], especially on light and flexible carbon skeletons including reduced graphene oxide gel/foam, carbon foam/paper/cloth, carbon nanotube arrays/film, etc [17-23]. These composites have many advantages when used as supercapacitor electrode materials. First. with these materials, no binder is needed for constructing supercapacitor electrodes, which simplify the electrode preparing process. The usually used binders which often raise the electrode resistance and lead to low power density are indispensable during electrode preparing. Therefore, supercapacitors based on binderfree electrode materials usually show relatively higher power densities and better rate capacitance performance [24,25]. Second, 3D carbon substrates can not only avoid the aggregation of capacitance-active materials but also facilitate the electron transfer during charge/discharge process which ensures full use of the active materials [26,27]. Moreover, Due to the large porosity (>90%) and high conductivity of the ultralight carbon materials, the 3D porous structures are very beneficial for electrolyte diffusion and electron transfer. Therefore, supercapacitors based on these flexible and lightweight carbon materials always show excellent rate capacitance performance and stability. Previous studies showed that by depositing active materials like MnO2 on the ultralight carbon materials, the specific capacitance and energy density of the hybrids can be greatly improved, which makes them promising candidates for flexible, ultralight energy storage materials [8,23].

However, the preparation of ultralight carbon materials is usually time-consuming and complicated. There are mainly two ways to fabricate the ultralight carbon support materials. One is that graphene/carbon nanotube hydrogels are first prepared through hydrothermal self-assembly of graphene or carbon nanotube. The hydrogels are then dried via freeze drying/lyophilization to get aerogels [17,18]. In another way, graphene layers or carbon nanotube array/sponge can be directly grown on various substrates through chemical vapor deposition, followed by removing substrates [8,28]. Both methods not only take time and need critical preparation conditions, but also produce only small-scale output. Therefore, it is still an urgent and important issue to explore facile methods to prepare flexible and ultralight energy storage materials with large-scale production and low cost.

In this paper, ultralight and flexible carbon foam (CF) with low density of 6.2 mg cm⁻³ was simply synthesized through carbonizing commercial melamine resin foam (MRF) with low cost and

large-scale production. This novel carbon foam is quite different from other resin-derived 3D porous carbon foams/monoliths/aerogels in the preparation, porous structure, density and flexibility. Traditionally, carbon foams/monoliths/aerogels were prepared by carbonizing blends of phenolic resins and templates like silica spheres. Zeolite Y. polystyrene spheres and block copolymers [29– 311. The removable, expensive polymer latex, silica, or other colloidal particles are energy-consuming and uneconomic, and the synthesis procedure is complicated and time-consuming [32]. What is more, the output and the processability of these carbon materials are largely limited. In this study, a type of large-scale producible and flexible carbon foam can be easily obtained from direct carbonization of low-cost melamine foam. The density of the carbon foam is comparable to other ultralight aerogel/foam/ sponge-like materials, like graphene foam/aerogels and CNT sponges [28,33–38]. Meanwhile, the prepared carbon foam can serve as an excellent 3D porous framework to fabricate ultralight supercapacitor electrode due to its low density and high flexibility. To the best of our knowledge, this is the first report of 3D supercapacitor fabricated from melamine resin-derived composite. Here, MnO₂ nanosheets/CF composites were prepared by in situ reaction between KMnO₄ and carbon and functioned as ultralight and flexible supercapacitor electrode materials for the first time. The electrochemical studies indicated that the as-prepared coaxial composites showed excellent capacitance performance. The highest specific capacitance of MnO₂ could reach 1270.5 F g⁻¹ which is 92.7% of its theoretical specific capacitance (1370 F g^{-1}) [39]. Moreover, the supercapacitor fabricated with the present 3D network materials exhibited high energy density of 86.2 Wh kg⁻¹, high power density of 160.0 kW kg⁻¹ and also high stability. Overall, this research provides a simple and efficient method for preparing MnO₂/CF composites from the low-cost and large-scale available melamine resin foam. With the advantages of easy fabrication, low cost, lightweight, high flexibility and excellent capacitance performance, the fabricated 3D porous MnO₂/CF hybrids represent a class of promising electrode materials for supercapacitors.

2. Experimental

All the reagents used in the experiments were analytical grade and were used without further purification.

2.1. Preparation of carbon foam

Carbon foam was prepared by carbonizing melamine resin foam (MRF, supplied by Puyang Green Universh Chemical Co., Ltd.) under Ar flow of 100 mL min $^{-1}$. MRF was cut into pieces with size of 0.5 cm \times 3.5 cm \times 25 cm before carbonization. The carbonization process is as follows: the temperature was first raised from room temperature to 300 $^{\circ}$ C at a rate of 5 $^{\circ}$ C min $^{-1}$ and kept for 5 min; in the next step, the temperature was further raised to 400 $^{\circ}$ C at a rate of 1 $^{\circ}$ C min $^{-1}$ and kept for 5 min; finally, the temperature was raised to 1000 $^{\circ}$ C at a rate of 3 $^{\circ}$ C min $^{-1}$ and kept for 1 h.

2.2. Fabrication of MnO₂/carbon foam composites (MnO₂/CF)

After carbonization, carbon foam retained one eighth of the size of the pre-carbonization MRF. We found that in order to improve the hydrophilicity of the prepared carbon foam, it should be soaked in ethanol first and then washed with abundant deionized water to remove ethanol, otherwise, it can hardly infiltrated by KMnO₄ aqueous solution. 55 mg of the pre-treated carbon foam was immersed in a 200 mL KMnO₄ aqueous solution in a glass bottle. The bottle was then put into a water bath at 60 °C until the purple

color of KMnO₄ disappeared. Finally, the products were collected, rinsed with deionized water and dried at 60 °C. A series of MnO₂/CF 3D porous materials were prepared by controlling the concentration of KMnO₄ aqueous solution from 0.2, 0.5, 1 to 2 mM. The composites are denoted as MnO₂/CF0.2, MnO₂/CF0.5, MnO₂/CF1 and MnO₂/CF2, respectively.

2.3. Material characterization

The contact angle of carbon foam was measured by a DSA100 drop shape analysis instrument (DSA, KRÜSS GMBH). The weight percentages of MnO₂ in the series of composites were calculated from thermogravimetric analysis (TGA, Pyris Diamond TG/DTA), which was carried out under air flow of 60 mL min⁻¹ with a heating rate of 5 °C min⁻¹. The morphologies of the samples were examined by scanning electron microscopy (SEM; XL30) and transmission electron microscopy (TEM; Hitachi H-600). Highresolution TEM (HRTEM) images, X-ray energy dispersive spectroscopy (EDS) and the selected area electron diffraction (SAED) were carried out on a JEM-2010(HR) microscope. The crystal structures of the as-prepared products were characterized by an Xray powder diffractometer (XRD; D/Max 2500 V/PC, Cu-Kα radiation) with a scan speed of 2° min⁻¹. Raman spectra were collected through a Renishaw 2000 model confocal microscopy Raman spectrometer with a CCD detector and a holographic notch filter (Renishaw Ltd., Gloucestershire, U.K.) at ambient conditions, using the radiation of 514.5 nm from an air-cooled argon ion laser to excite the SERS. X-ray photoelectron spectroscopy (XPS) measurements were performed on a VG Thermo ESCALAB 250 spectrometer (VG Scientific) operated at 120 W with an energy analyzer working in the pass energy mode at 100.0 eV. An Al Ka line was used as the excitation source. The binding energy was calibrated against the carbon 1s line. Nitrogen sorption isotherms were measured at 77 K on an automatic N2 adsorption/desorption instrument (Quantachrome Autosorb Automated Gas Sorption System) and the samples were outgassed in vacuum at 200 °C for 8 h before test. The specific surface areas of the materials were calculated by the Brunauer-Emmett-Teller (BET) method using the adsorption branch in the relative pressure range from 0.05 to 0.35. The pore size distributions were derived from the adsorption branch using the Barrett-Joyner-Halenda (BJH) model. The total pore volume was determined from the amount of N2 uptake at P/ $P_0 = 0.99$.

2.4. Electrochemical measurements

The working electrodes were prepared by pressing pieces of the as-synthesized materials with the same weight (1.0 mg) sandwiched between two pieces of Ni foams under 10 MPa. 1.0 M Na₂SO₄ aqueous solution was used as electrolyte. Electrochemical measurements were all conducted on a CHI 660D electrochemical workstation (Shanghai, Chenhua). Cyclic voltammogram (CV) and electrochemical impedance spectroscopy (EIS) measurements were carried out via a three-electrode cell with a graphite plate functioned as counter electrode and an Ag/AgCl electrode (saturated with KCl (aq)) acted as reference electrode. EIS was tested in the frequency range of 100 kHz to 10 mHz. Galvanostatic charge—discharge measurements (GCD) were carried out between 0 and 0.7 V in a symmetrical two-electrode system.

Specific capacitance C_s (F g⁻¹), energy density W (Wh kg⁻¹) and power density P (kW kg⁻¹) were calculated from GCD curves according to the equations as follows [40]:

$$C_{\rm s} = 2I\Delta t/(m\Delta V) \tag{1}$$

$$W = 0.5 \times C_{\rm m} \times \Delta V^2 \tag{2}$$

$$P = W/\Delta t \tag{3}$$

where I is the charge—discharge current, m is the mass of MnO₂ in a single electrode, Δt is the discharge time, and ΔV is the potential drop during the discharge process (IR drop not included).

3. Results and discussion

3.1. Synthesis and characterization of materials

Melamine resin foam (MRF) is a type of commercially available and low-cost ultralight material, and has been widely applied in shock/sound absorption, heat insulation/preservation, aviation, automobile industry and other fields due to its good physical properties. In the present study, we found that flexible, ultralight and highly porous carbon foam (CF) can be easily obtained through carbonization of MRF. Fig. 1A shows the photographs of MRF, CF and MnO₂/CF composites containing different contents of MnO₂. It can be seen that the original white MRF changed to gray carbon foam after carbonization with a low carbon yield of 8.9%. With the content of MnO₂ in the MnO₂/CF composites increasing, the color of the materials changed gradually into dark brown. Moreover, both carbon foam and MnO₂/CF composites all retained the original foamlike shape of MRF. It should be noted that the obtained 3D MnO₂/ CF networks are ultralight. From the data listed in Table S1, CF and MnO₂/CF composites have very low mass density with the range from 6.2 to 10.5 mg cm $^{-3}$. As shown in Fig. 1B, due to the ultra-low mass density of the MnO₂/CF composites, a fragile dandelion sphere could even support a pile of MCF0.5 with volume of 14.6 cm³ without deformation. More importantly, such porous materials show good flexibility and super mechanical strength, as shown in Fig. 1C. The ultralow mass density of the obtained MnO₂/CF materials could be attributed to the high porosity of MRF and low carbon yield after carbonization, Fig.1D-F shows the morphologies and structures of the MRF precursor, carbon foam and the assynthesized 3D MnO₂/CF network. Clearly, after MnO₂ nanosheets grown on the carbon foam framework, the highly porous structure is well retained and all of the foam-like materials are composed of triangle fibers which interconnected and formed plenty of micronsized pores, resulting in network architectures. Meanwhile, there are also a lot of holes in the carbon fibers which can be seen in the cross section view of the materials (Fig. S1). These holes can further reduce the mass density and increase the porosity of CF and MnO₂/ CF composites. The porosity of carbon foam is as high as 99.66% calculated by the equation proposed by Chen et al. [41,42]. On the other hand, hydrophilicity of a material is very important for its application in supercapacitors. The hydrophilicity of the prepared materials was first studied. It can be seen from Fig. S2 that the asprepared carbon foam could float on water surface without being wetted and the contact angle of carbon foam was measured to be 133° (Fig. S2C), indicating the strong hydrophobicity of the assynthesized carbon foam. After reacting with KMnO₄, the resulted MnO₂/CF porous materials, however, showed excellent hydrophilicity and could be infiltrated once they were put into water as showed in Fig. S2A. The unique porous structures and excellent hydrophilic properties make the MnO₂/CF 3D networks promising supercapacitor materials.

The morphologies and compositions of the MnO₂/CF hybrids were analyzed by SEM and thermogravimetric analysis (TGA). Fig. 2 shows the SEM images of the MnO₂/CFO.2 (A, B), MnO₂/CFO.5 (C, D), MnO₂/CF1 (E, F) and MnO₂/CF2 (G, H), respectively. It can be seen that after *in situ* reaction with KMnO₄, a uniform layer of MnO₂

Fig. 1. (A) Photographs of melamine resin foam (MRF), carbon foam (CF) and MnO_2/CF composites with different MnO_2 content. (B) Digital photograph of a pile of MnO_2/CF 1 on a fragile dandelion sphere, showing the ultralight performance of the synthesized 3D MnO_2/CF composites. (C) Digital photograph of a piece of MnO_2/CF 1, indicating the high flexibility of the obtained MnO_2/CF materials. (D—F) SEM images of MRF (D), CF (E) and MnO_2/CF 2 (F), showing the highly porous 3D networks.

nanosheets is tightly adhered to the surface of the carbon form, forming a coaxial structure. The weight percents of MnO2 in the MnO₂/CF0.2, MnO₂/CF0.5, MnO₂/CF1 and MnO₂/CF2 were calculated to be 3.4%, 7.7%, 10.9% and 24.5%, respectively, according to the TGA measurements shown in Fig. S3. The TGA results indicate that the content of MnO₂ in the resulting hybrids increases with increasing the concentration of KMnO₄ during the syntheses. Moreover, from the SEM images shown in Fig. 2, both of the thickness of the MnO₂ layers and the size of MnO₂ nanosheets increase with the KMnO₄ concentration increasing. The produced MnO₂ nanosheets are only a few nanometers in thickness and have numerous wrinkles and ripples which form numerous nanoscale channels (Fig. 2 and Fig. 3A). Such hierarchical pore structure, including micron-sized pores of carbon foam and nanoscale channels among MnO₂ nanosheets, can effectively improve the surface/ interface area of MnO2 nanocrystals and facilitate electrolyte diffusion among interspaces of MnO2 nanosheets. The 3D porous MnO₂/CF hybrid materials synthesized by the present route are beneficial for the full utilization of MnO₂ nanosheets and enhancing their rate capacitance performance.

The pore structure of the materials was further probed using the nitrogen sorption technique. Fig. S4 shows the nitrogen sorption isotherms and the pore size distribution of the MnO_2/CF materials. From the isotherm curves shown in Fig. S4A, the uptakes at low relative pressures ($P/P_0 < 0.05$) are very low, suggesting a limited microporosity. However, significantly increased uptakes can be observed at higher relative pressures ($0.05 < P/P_0 < 1$), indicating the porosity in the meso- and macro-range. As illustrated in Fig. S4B, the pore size is mainly distributed in the range of 2.0-7.5 nm. Note that there are also many pores with the size above 7.5 nm but few pores below 2 nm, which is consistent with the results of the nitrogen sorption isotherms. The data of the specific surface area (S_A), total pore volume and average pore size are listed in Table S1. The S_A of the MnO_2/CF products is much larger than that of the CF. However, the S_A of the MnO_2/CF is not proportional to the

MnO₂ content, which would be due to the different size and thickness of MnO₂ nanosheets in the samples. With the low MnO₂ content of 3.4%, the SA of the MnO2/CF0.2 was calculated to be $69.6 \ m^2 \ g^{-1}$ which was about three times of that of the carbon foam. To evaluate the specific surface area from only MnO₂ nanosheets, the specific surface area based on the mass of MnO_2 (S_M) was also calculated. As shown in Table S1, the S_M data from MnO₂/ CF0.2, MnO₂/CF0.5, MnO₂/CF1 and MnO₂/CF2 were measured to be 1358.3, 1821.3, 1179.7 and 512.9 $\text{m}^2\text{ g}^{-1}$, respectively. It can be seen that the S_M of the MnO₂/CF composites first increases and then decreases with increasing the concentration of KMnO₄ solution, which could be attributed to the different structures of the composites. From the above SEM and TGA measurements, although the content of MnO₂ in the composites increases with increasing the concentration of KMnO₄, both the size of the formed MnO₂ nanosheets and the thickness of MnO2 layer on carbon foam increase with KMnO₄ concentration, which could result in the decreased specific surface area. The large values of S_M can guarantee the full utilization and high specific capacitance of MnO₂ nanosheets.

The crystal structure of the MnO₂ nanosheets was characterized by high-resolution TEM (HRTEM) measurements. From the HRTEM image shown in Fig. 3A, the formed MnO2 nanosheets exhibit porous and wrinkled structure. Upon careful HRTEM analysis on a piece of MnO₂ nanosheet (Fig. 3B), the well-resolved lattice fringes with interplanar spacing of 0.25 nm can be observed, which can be indexed to the (101) plane of birnessite-type MnO₂ [43,44]. The selected area electron diffraction (SAED) pattern shown in Fig. 3C displays a polycrystalline feature due to the random orientation of different MnO₂ nanocrystals. The X-ray energy dispersive spectroscopy (EDS) result in Fig. 3D demonstrates that the as-prepared composites mainly contain C, Mn, and O elements. The signal of potassium is possibly from KMnO₄ since there is always a possibility of potassium ions co-existing in the MnO₂ matrix [45,46]. The crystalline structure of the MnO₂ nanosheets was further identified by XRD measurements. As shown in Fig. 4A, for the carbon foam,

Fig. 2. Cross section (left panels) and top (right panels) SEM views of the MnO₂/CF0.2 (A, B), MnO₂/CF0.5 (C, D), MnO₂/CF1 (E, F) and MnO₂/CF2 (G, H).

there are two broad diffraction peaks with 2θ around 25° and 44° , which can be ascribed to the (002) and (100) planes of amorphous carbon. For MnO₂/CF composites, except for the signals from CF, several new diffraction peaks can be observed with 2θ around 12° , 25° , 37° and 66° , corresponding to the (001), (002), (111) and (020) diffraction of birnessite-type MnO₂ crystalline phase (JCPDS no.42-1317) [47,48]. Meanwhile, with the increasing of KMnO₄

concentration in the syntheses, the diffraction peaks belonging to MnO₂ become stronger and the intensities of the diffraction peaks from CF decrease, suggesting the increase of MnO₂ content from MnO₂/CF0.2 to MnO₂/CF2. The Raman spectra of carbon foam and the MnO₂/CF composites are shown in Fig. 4B. The two peaks at about 1369 and 1590 cm⁻¹ are ascribed to the D- and G-band of carbon materials, respectively. G-band is assigned to the stacking of

Fig. 3. (A, B) HRTEM images of MnO_2 nanosheets stripped from $MnO_2/CF0.2$ at different magnifications. (C) Selected area electron diffraction (SAED) pattern and (D) energy dispersive spectroscopy (EDS) spectrum of the $MnO_2/CF0.2$.

the graphite hexagon network plane, whereas D-band is attributed to the amorphous carbon or deformation vibrations of a hexagonal ring. It is accepted that the intensity ratio of the G and D bands (I_C) $I_{\rm D}$) can give the useful information on the graphite degree or the lattice distortion of carbon-based materials. The larger the ratio is, the higher the graphitization is [49]. The I_G/I_D of carbon foam was calculated to be 1.25 from Fig. 4B, indicating the relatively high graphitization of the as-obtained carbon material at a carbonization temperature of 1000 °C. As for the MnO₂/CF composites, three additional bands from MnO2 nanosheets can be observed at 490, 568, and 646 cm $^{-1}$ [50]. It should be noted that with the increasing of KMnO₄ concentration in the syntheses, the bands belonging to MnO₂ become more and more distinct and the intensity ratio of the bands from MnO₂ and carbon foam also increases, which further suggests the increase of MnO₂ content in the composites. The XPS survey on sample of MnO₂/CF0.5 is shown in Fig. 5. Agreeing well with the EDS results, the XPS signals from elements C, Mn and O can be observed in Fig. 5A. Fig. 5B shows the Mn 2p core-level XPS spectrum. The binding energies of Mn $2p_{3/2}$ and $2p_{1/2}$ located at about 642.1 and 653.8 eV, respectively, with a spin-energy separation of 11.7 eV, suggesting that the predominant oxidation state of Mn is +4 [51–53].

3.2. Electrochemical capacitance performance of MnO₂/CF composites

To investigate the potential application of the as-obtained 3D MnO₂/CF composites as supercapacitor electrode materials, the composites sandwiched in Ni foams were characterized by cyclic voltammogram (CV) and galvanostatic charge—discharge (GCD) measurements at varied scan rates and current densities. As shown in Fig. 6A, the CV curves of all the MnO₂/CF samples are almost ideally rectangular at potential scan rate of 5 mV s $^{-1}$. This is due to

the surface electrosorption of electrolyte cations and the fast, reversible successive surface redox reactions of MnO_2 by means of intercalation/de-intercalation processes of the cations ($C^+ = H^+$, Li^+ , Na^+ and K^+) according to the following reaction [39,54]

$$MnO_2 + C^+ + e^- \Leftrightarrow MnOOC \tag{4}$$

The absence of redox peaks indicates that the supercapacitors are charged and discharged at a pseudo-constant rate over the entire voltammetric cycles [26].

By comparing the integral areas of CV curves, the carbon foam substrate shows a negligible capacitance compared to the MnO₂/CF composites, which can be ascribed to its strong hydrophobicity (Fig. S2) and low specific surface area. Therefore, the capacitances of the MnO₂/CF composites mainly originate from the pseudocapacitance of MnO2 nanosheets, and the CF acts only as flexible electric conductivity scaffold. Based on these results, the weight of carbon foam was not taken into account for the specific capacitance calculations in the present study. Among the CVs of MnO₂/CF materials, one can see that the current density and the integration area of CV curve obtained from MnO₂/CF0.2 are significantly larger than those of the other MnO₂/CF samples, suggesting the largest capacitance of MnO₂/CF0.2. As aforementioned, the size of the MnO₂ nanosheets increases in the order of MnO₂/CF0.2 < MnO₂/ CF0.5 < MnO₂/CF1 < MnO₂/CF2. Although the specific surface area of MnO₂ in MnO₂/CF0.5 (1821.3 $\mathrm{m}^2\,\mathrm{g}^{-1}$) is larger than that of MnO₂/ CF0.2 (1358.3 m² g⁻¹), the specific capacitance of MnO₂/CF0.5 is smaller than that of MnO₂/CFO.2 due to relatively larger size of MnO₂ nanosheets which lead to larger resistance and lower utilization ratio of MnO₂. Thus the high capacitance performance of MnO₂/CF0.2 could be ascribed to its small and ultrathin nanosheet structure which can not only enlarge the surface area of MnO2 nanosheets, but also increase the contact area with carbon foam and thus accelerate the electron transfer. In the present study, the

Fig. 4. XRD patterns (A) and Raman spectra (B) of the carbon foam (CF) and MnO_2/CF composites.

 $\rm MnO_2$ nanosheets grow epitaxially on the surface of carbon foam, which allows easy and efficient access of both electrons and ions so as to afford a fast redox reaction at high scan rates. As shown in Fig. 6B, the $\rm MnO_2/CF$ electrodes show excellent rate capacitance performance as they could undergo high scan rate of 1 V s⁻¹. More importantly, the scan rate for $\rm MnO_2/CF0.2$ could be even increased to 5 V s⁻¹ (Fig. S5). It should be noted that the resistance of the composites could increase with the $\rm MnO_2/CF0.2$ content increasing. It can be seen from Fig. 6A that higher polarization occurs at high potentials with the increasing of $\rm MnO_2/CF0.2$ content in the composites. It is also clear from Fig. 6B that the CV curves of the $\rm MnO_2/CF$

composites gradually change from rectangular to oval shapes with the increasing of MnO₂ content, which is due to the low electric conductivity of MnO₂.

The GCD curves of the supercapacitors based on MnO₂/CF composites at current densities of 5 and 80 A g⁻¹ are shown in Fig. 6C and D. respectively. The symmetric and near linear charge/ discharge curves at both current densities reveal the excellent electrochemical reversibility and charge—discharge properties of the MnO_2/CF -based supercapacitors with a rapid I-V response. It is worth noting that the supercapacitors based on the composites could undergo current density as high as 80 A g⁻¹, which suggests their outstanding rapid charge-discharge performance. Moreover, as shown in Fig. S6, the MnO₂/CF0.2 electrode could even endure current density up to 600 A g⁻¹ with a charge-discharge cycle shorter than 0.32 s, which well meets the short time requirement of practical supercapacitors. On the other hand, the increased IR drop at the beginning of discharge process displayed in Fig. 6D suggests that the resistance of the electrodes increases with the MnO2 content in the MnO₂/CF composites. Such result agrees well with that from the CV measurements. The specific capacitances (C_s) of the four samples at different current densities ($I_{\rm m}$, A ${\rm g}^{-1}$) were calculated by Equation (1) ($C_s = 2I\Delta t/(m\Delta V)$ in Experimental Section) and displayed in Fig. 7A. By comparing the curves obtained from different samples, the $MnO_2/CF0.2$ exhibits the largest C_s among all the composites with 1270.5 F $\rm g^{-1}$ at 0.5 A $\rm g^{-1}$. Even at the high current density of 600 A g⁻¹, the MnO₂/CF0.2 still retains a relatively high C_s of 162.8 F g⁻¹. The excellent rate capacitance performance could be attributed to three reasons. First, the 3D selfsupported carbon foam scaffold can avoid the use of binder and thus guarantee the full utilization of MnO₂ nanosheets. Second, the hierarchical porous structure of the hybrid networks, including the micro-sized macropores of carbon foam and the nano-sized interspace among MnO2 nanosheets, is favorable for electrolyte immersion and diffusion. Finally, the ultrathin and wrinkled structure of MnO₂ nanosheets is beneficial for preventing aggregation of MnO₂ nanosheets and improving their available surface area. As listed in Table 1, the MnO₂/CF0.2 exhibits the largest specific capacitance compared to other hybrid composites. From the charge-discharge curves, energy density (W) and power density (P) can also be obtained. As displayed in Fig. 7B, the MnO₂/CF0.2 has an energy density of 86.2 Wh kg^{-1} at power density of 174.8 W kg^{-1} and the energy density of 6.4 Wh kg⁻¹ still can be retained even when the power density reaches 160.0 kW kg⁻¹ at a large current density of 600 A g^{-1} , indicating the excellent rate performance and high power density of the 3D hybrid materials.

The facilitated ion-transport kinetics and electrode conductivity of the synthesized MnO₂/CF composites were further confirmed by

Fig. 5. XPS spectra of MnO₂/CF0.2. (A) Survey spectrum; (B) the core-level XPS signals of Mn 2p.

Fig. 6. (A, B) CV curves of the MnO_2/CF composites at the scan rates of 5 mV s⁻¹ (A) and 1 V s⁻¹ (B) in 1.0 M Na_2SO_4 aqueous electrolyte. (C, D) Galvanostatic charge—discharge curves collected at current densities of 5 A g⁻¹ (A) and 80 A g⁻¹ (B).

Fig. 7. (A) Specific capacitance plots of the MnO₂/CF composites at different current densities (inset showed C_s vs I_m at low I_m). (B, C) Ragone and Nyquist plots of the supercapacitors based on the MnO₂/CF composites (inset of C showed Nyquist plots at high frequency region). (D) Cycle life curves of the supercapacitors based on MnO₂/CF composites at a current density of 50 A g⁻¹.

Table 1Comparison of capacitive performance of the supercapacitors based on various binder-free MnO₂ composites presented in literature and the present work.

Samples	C_{\max}^{a}	$v_{ m max}$	I_{\max}	$W_{\rm max}$	P_{max}	T	$C_{\rm m}\%_{\rm T}$	Ref.
MnO ₂ /Au/Te nanowire arrays on CF cloth	930	100	1	80.55	18.61	1000	97	[61]
MnO ₂ /CNT on ITO	940	1000	1	1	1	1000	88.4	[62]
MnO ₂ on ITO	1018	/	30	90.5	17	1	1	[63]
MnO ₂ /MWCNT/GE/Ni foam	1108.79	1000	>160	391.7	799.84	13,000	97.94	[64]
MnO ₂ /Ni dendrites/Ni foil	1121	200	100	72	9	1500	81	[65]
MnO ₂ /Au nanowire/PET	1130	100	50	20	20	5000	90	[66]
MnO ₂ /nanoporous Au film	1145	1	20	57	16	1	1	[26]
WO _{3-x} /Au/MnO ₂ /Carbon Fabric	1195	100	15.2	106.4	30.6	5000	110	[67]
MnO ₂ /CNT/sponge	1230	10,000	100	31	63	10,000	96	[25]
MnO _x /MWCNT sheet	1250	200	10	135	17.4	500	95.5	[68]
3DOM Mn/MnO _x /Au/ITO	1200 ± 60	500	50	140	47.3	2000	96	[69]
MnO ₂ /HZnO/CF	1260.9	/	9.1	/	1	10,000	87.5	[27]
MnO ₂ nanosheets on flexible carbon foam	1270.5	5000	600	86.2	160.0	6000	108.4	This work

^a C_{max} , maximum specific capacitance, F g⁻¹, calculated based on the mass of MnO₂; v_{max} , maximum scan rate, mV s⁻¹; I_{max} , maximum current density, A g⁻¹; W_{max} maximum energy density, Wh kg⁻¹; W_{max} , maximum power density, kW kg⁻¹; W_{max} , retention rate of specific capacitance after cycle life test.

the results of electrochemical impedance spectroscopy (EIS) measurements. As shown in Fig. 7C, each EIS Nyquist plot has a short arc located at high frequencies followed by an inclined line with a slope about 45° and a vertical plot located at low frequencies. The span of the arc is indicative of the charge-transfer resistances of the electrode materials [55]. It can be seen from Fig. 7C that, the spans of the arcs in Nyquist plots increase with the MnO₂ content, which is in accordance with the results of the CV and GCD studies. On the other hand, the straight and nearly vertical lines in the low-frequency region also suggest that the total internal surface area of the porous materials is completely wetted by electrolyte, resulting in the good capacitive behaviors of the MnO₂/CF composites [56].

A long cycle life is another crucial parameter of supercapacitors, which can determine their practical applications. Hence, the stability of the supercapacitors based on the MnO₂/CF composites was tested by cycling at 50 A g^{-1} for 6000 cycles. As showed in Fig. 7D, all the supercapacitors based on the MnO₂/CF composites display excellent stability. The improvements of the specific capacitances upon voltammetric cycling were similar to other manganese oxidebased electrode materials reported previously [57-59]. The increase of the specific capacitance may be due to the activation effect of electrochemical cycling. A recent study showed that small defective or "disordered" regions could be formed in MnO2 nanostructures upon electrochemical cycling due to the repeated insertion/extraction of the electrolyte ions into/out of the MnO2 electrode materials [60]. The increased access of the electrolyte ions to the porous electrode materials can thus lead to the increase of capacitance. Table 1 demonstrates the comparison in the capacitive performance of supercapacitors based on various selfsupported MnO₂ composites presented in literature and this work. It can be seen that the capacitive performance of the present MnO₂/CF composites surpasses many other excellent 3D binderfree MnO₂ composites. Moreover, compared to the complicated preparation process of other 3D self-supporting MnO₂ composites, the MnO₂/CF composites shown in the present work can be fabricated simply through a green process. Furthermore, in comparison with the high price of other supports, such as porous carbon nanofiber, carbon nanotube arrays/film/paper, graphene gel and nanoporous Au foil, the present carbon foam derived from commercial melamine resin foam is quite cost-effective and it can be produced on large-scale.

4. Conclusion

In summary, a type of ultralight and flexible MnO₂/carbon foam composites were fabricated by growing a layer of MnO₂ nanosheets

on the surface of carbon foam via the in situ reaction between aqueous KMnO₄ and carbon. Ascribed to the ultrathin and wrinkled MnO₂ nanosheets, the 3D conductive network of carbon foam support, and the hierarchical porous structure of the hybrids, the synthesized MnO₂/CF materials are favorable for electrolyte diffusion and transfer and thus show excellent capacitance performance. It was found that the supercapacitors based on the MnO₂/CF with the thinnest layer of MnO₂ (MnO₂/CF0.2) exhibited the largest specific capacitance of 1270.5 F g⁻¹ which is 92.7% of the theoretical value of MnO₂. Moreover, the MnO₂/CF-based supercapacitors exhibit high stability and can endure large current density up to 600 A g^{-1} with high power density of 160.0 kW kg^{-1} . This study provides a facile, scalable and low-cost method for the preparation of ultralight and flexible 3D nanomaterials for supercapacitor electrodes. We expect that this work will open up new opportunities for the application of ultralight and flexible carbon foams in a broad range of emerging electrochemical energy storage and conversion devices, for example, supercapacitors and secondary batteries, to facilitate the corresponding performances.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21275136, 21043013) and the Natural Science Foundation of Jilin Province, China (No. 201215090).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.jpowsour.2014.03.137.

References

- [1] P. Simon, Y. Gogotsi, Nat. Mater. 7 (2008) 845-854.
- [2] P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, R. Carter, Energy Environ. Sci. 3 (2010) 1238–1251.
- [3] S.W. Lee, B.M. Gallant, H.R. Byon, P.T. Hammond, Y. Shao-Horn, Energy Environ. Sci. 4 (2011) 1972–1985.
- [4] G.M. Wang, X.H. Lu, Y.C. Ling, T. Zhai, H.Y. Wang, Y.X. Tong, Y. Li, ACS Nano 6 (2012) 10296–10302.
- [5] W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Chem. Soc. Rev. 40 (2011) 1697–1721.
- [6] Y.P. Zhai, Y.Q. Dou, D.Y. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Adv. Mater. 23 (2011) 4828–4850.
- [7] G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41 (2012) 797—828.
- [8] Y.M. He, W.J. Chen, X.D. Li, Z.X. Zhang, J.C. Fu, C.H. Zhao, E.Q. Xie, ACS Nano 7 (2013) 174–182.
- [9] X. Huang, Z.Y. Zeng, Z.X. Fan, J.Q. Liu, H. Zhang, Adv. Mater. 24 (2012) 5979—6004.
- [10] S.J. He, X.W. Hu, S.L. Chen, H. Hu, M. Hanif, H.Q. Hou, J. Mater. Chem. 22 (2012) 5114–5120.

- [11] S.J. He, C.X. Hu, H.Q. Hou, W. Chen, J. Power Sources 246 (2014) 754-761.
- [12] S.J. He, L.L. Chen, C.C. Xie, H. Hu, S.L. Chen, M. Hanif, H.Q. Hou, J. Power Sources 243 (2013) 880–886.
- [13] Y.X. Zhang, M. Huang, F. Li, X.L. Wang, Z.Q. Wen, J. Power Sources 246 (2014) 449-456
- [14] M.S. Wang, L.Z. Fan, M.A. Huang, J.H. Li, X.H. Qu, J. Power Sources 219 (2012) 29-35.
- [15] L.B. Hu, W. Chen, X. Xie, N.A. Liu, Y. Yang, H. Wu, Y. Yao, M. Pasta, H.N. Alshareef, Y. Cui. ACS Nano 5 (2011) 8904-8913.
- [16] Z. Gui, H.L. Zhu, E. Gillette, X.G. Han, G.W. Rubloff, L.B. Hu, S.B. Lee, ACS Nano 7 (2013) 6037-6046.
- [17] Z.S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X.L. Feng, K. Mullen, Adv. Mater. 24 (2012) 5130-5135.
- [18] Y. Zhao, C.G. Hu, Y. Hu, H.H. Cheng, G.Q. Shi, L.T. Qu, Angew. Chem. Int. Ed. 51 (2012) 11371-11375.
- [19] G.K. Wang, X. Sun, F.Y. Lu, H.T. Sun, M.P. Yu, W.L. Jiang, C.S. Liu, J. Lian, Small 8 (2012) 452-459
- [20] J. Biener, M. Stadermann, M. Suss, M.A. Worsley, M.M. Biener, K.A. Rose, T.F. Baumann, Energy Environ. Sci. 4 (2011) 656–667.
 [21] Y.M. He, W.J. Chen, C.T. Gao, J.Y. Zhou, X.D. Li, E.Q. Xie, Nanoscale 5 (2013)
- 8799-8820
- [22] A.L.M. Reddy, S.R. Gowda, M.M. Shaijumon, P.M. Ajayan, Adv. Mater. 24 (2012) 5045-5064.
- [23] L.F. Chen, Z.H. Huang, H.W. Liang, Q.F. Guan, S.H. Yu, Adv. Mater. 25 (2013) 4746-4752.
- [24] L. Nyholm, G. Nystrom, A. Mihranyan, M. Stromme, Adv. Mater. 23 (2011) 3751-3769
- [25] W. Chen, R.B. Rakhi, L.B. Hu, X. Xie, Y. Cui, H.N. Alshareef, Nano Lett. 11 (2011)
- 5165-5172. [26] X.Y. Lang, A. Hirata, T. Fujita, M.W. Chen, Nat. Nanotechnol. 6 (2011) 232–236.
- [27] P.H. Yang, X. Xiao, Y.Z. Li, Y. Ding, P.F. Qiang, X.H. Tan, W.J. Mai, Z.Y. Lin, W.Z. Wu, T.Q. Li, H.Y. Jin, P.Y. Liu, J. Zhou, C.P. Wong, Z.L. Wang, ACS Nano 7 (2013) 2617-2626.
- [28] Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, S.F. Pei, H.M. Cheng, Nat. Mater. 10 (2011) 424 - 428.
- [29] M.C. Gutierrez, F. Pico, F. Rubio, J.M. Amarilla, F.J. Palomares, M.L. Ferrer, F. del Monte, J.M. Rojo, J. Mater. Chem. 19 (2009) 1236-1240.
- [30] M. Antonietti, N. Fechler, T.-P. Fellinger, Chem. Mater. 26 (2014) 196–210.
- [31] N. Brun, S.R.S. Prabaharan, C. Surcin, M. Morcrette, H. Deleuze, M. Birot, O. Babot, M.F. Achard, R. Backov, J. Phys. Chem. C 116 (2012) 1408-1421.
- [32] M.T. Zheng, Y.L. Liu, S.A. Zhao, W.Q. He, Y. Xiao, D.S. Yuan, Inorg. Chem. 49 (2010) 8674-8683.
- [33] H.C. Bi, X. Xie, K.B. Yin, Y.L. Zhou, S. Wan, L.B. He, F. Xu, F. Banhart, L.T. Sun, R.S. Ruoff, Adv. Funct. Mater. 22 (2012) 4421-4425.
- [34] X.C. Dong, J. Chen, Y.W. Ma, J. Wang, M.B. Chan-Park, X.M. Liu, L.H. Wang, W. Huang, P. Chen, Chem. Commun. 48 (2012) 10660-10662.
- [35] M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, J.H. Satcher, T.F. Baumann, . Am. Chem. Soc. 132 (2010) 14067-14069.
- [36] H.X. Ji, L.L. Zhang, M.T. Pettes, H.F. Li, S.S. Chen, L. Shi, R. Piner, R.S. Ruoff, Nano Lett. 12 (2012) 2446-2451.
- [37] S. Nardecchia, D. Carriazo, M.L. Ferrer, M.C. Gutierrez, F. del Monte, Chem. Soc. Rev. 42 (2013) 794-830.
- [38] Z.Y. Wu, C. Li, H.W. Liang, J.F. Chen, S.H. Yu, Angew. Chem. Int. Ed. 52 (2013) 2925-2929.

- [39] M. Toupin, T. Brousse, D. Belanger, Chem. Mater. 16 (2004) 3184-3190.
- [40] Z.W. Xu, Z. Li, C.M.B. Holt, X.H. Tan, H.L. Wang, B.S. Amirkhiz, T. Stephenson, D. Mitlin, J. Phys. Chem. Lett. 3 (2012) 2928–2933.
- [41] S. Chen, H. Hou, F. Harnisch, S.A. Patil, A.A. Carmona-Martinez, S. Agarwal, Y. Zhang, S. Sinha-Ray, A.L. Yarin, A. Greiner, U. Schroder, Energy Environ. Sci. 4 (2011) 1417-1421.
- [42] S. Chen, G. He, H. Hu, S. Jin, Y. Zhou, Y. He, S. He, F. Zhao, H. Hou, Energy Environ. Sci. 6 (2013) 2435–2439.
- [43] Z. Liu, R. Ma, Y. Ebina, K. Takada, T. Sasaki, Chem. Mater. 19 (2007) 6504-6512
- [44] Y. Luo, J. Jiang, W. Zhou, H. Yang, J. Luo, X. Qi, H. Zhang, D.Y.W. Yu, C.M. Li, T. Yu, J. Mater. Chem. 22 (2012) 8634–8640.
- [45] H.Q. Wang, G.F. Yang, Q.Y. Li, X.X. Zhong, F.P. Wang, Z.S. Li, Y.H. Li, New J. Chem. 35 (2011) 469-475.
- [46] P. Ragupathy, D.H. Park, G. Campet, H.N. Vasan, S.-J. Hwang, J.-H. Choy, N. Munichandraiah, I. Phys. Chem. C 113 (2009) 6303-6309.
- [47] J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Carbon 48 (2010) 3825-3833.
- [48] Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Adv. Funct. Mater. 21 (2011) 2366-2375
- [49] C.T. Hsieh, H. Teng, W.Y. Chen, Y.S. Cheng, Carbon 48 (2010) 4219-4229.
- [50] J.G. Wang, Y. Yang, Z.H. Huang, F.Y. Kang, J. Power Sources 224 (2013) 86–92.
- [51] R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Adv. Energy Mater. 2 (2012) 381-389.
- [52] J. Zhang, X.S. Zhao, Carbon 52 (2013) 1-9.
- [53] J. Han, L. Li, P. Fang, R. Guo, J. Phys. Chem. C 116 (2012) 15900-15907.
- [54] S.C. Pang, M.A. Anderson, T.W. Chapman, J. Electrochem. Soc. 147 (2000) 444-450
- [55] Z. Weng, Y. Su, D.W. Wang, F. Li, J. Du, H.M. Cheng, Adv. Energy Mater. 1 (2011) 917-922.
- [56] E. Ra, E. Raymundo-Pinero, Y. Lee, F. Beguin, Carbon 47 (2009) 2984–2992.
- [57] M. Toupin, T. Brousse, D. Bélanger, Chem. Mater. 14 (2002) 3946–3952.
- [58] H. Jiang, L. Yang, C. Li, C. Yan, P.S. Lee, J. Ma, Energy Environ. Sci. 4 (2011) 1813-1819
- [59] C.-Y. Chen, C.-Y. Fan, M.-T. Lee, J.-K. Chang, J. Mater. Chem. 22 (2012) 7697— 7700
- [60] W. Chen, R.B. Rakhi, Q.X. Wang, M.N. Hedhili, H.N. Alshareef, Adv. Funct.
- Mater. (2014), http://dx.doi.org/10.1002/adfm.201303508. [61] J. Cao, M. Safdar, Z. Wang, J. He, J. Mater. Chem. A 1 (2013) 10024–10029.
- S.W. Lee, J. Kim, S. Chen, P.T. Hammond, Y. Shao-Horn, ACS Nano 4 (2010) 3889-3896.
- [63] Y. Zhang, J. Li, F. Kang, F. Gao, X. Wang, Int. J. Hydrogen Energy 37 (2012) 860-866.
- [64] W. Wang, S.R. Guo, K.N. Bozhilov, D. Yan, M. Ozkan, C.S. Ozkan, Small 9 (2013) 3714-3721.
- [65] Z. Sun, S. Firdoz, E. Ying-Xuan Yap, L. Li, X. Lu, Nanoscale 5 (2013) 4379-4387.
- [66] Y.L. Chen, P.C. Chen, T.L. Chen, C.Y. Lee, H.T. Chiu, J. Mater. Chem. A 1 (2013) 13301-13307.
- [67] X. Lu, T. Zhai, X. Zhang, Y. Shen, L. Yuan, B. Hu, L. Gong, J. Chen, Y. Gao, J. Zhou, Y. Tong, Z.L. Wang, Adv. Mater. 24 (2012) 938-944.
- [68] J.H. Kim, K.H. Lee, L.J. Overzet, G.S. Lee, Nano Lett. 11 (2011) 2611-2617.
- [69] M.J. Deng, P.J. Ho, C.Z. Song, S.A. Chen, J.F. Lee, J.M. Chen, K.T. Lu, Energy Environ. Sci. 6 (2013) 2178-2185.