华中科技大学 2023 届微积分期中模拟试卷

出题人:CSXJ1902 Sukuna

2024年6月17日

一、基本计算题 (每小题 6 分, 共 60 分)

1. 求

$$\lim_{n\to\infty} \sqrt[n]{\frac{a^n+b^n+c^n}{3}}$$

 $(a \ge b \ge c)$

2. 求

$$\lim_{x\to 0} \frac{tan(sinx) - tan(tanx)}{x^3}$$

3. 求

$$\lim_{n\to\infty}\sin(\sqrt{n^2\pi^2+1})$$

4. 求

$$\lim_{x\to\infty} \left(\frac{x}{e} - \frac{x^{x+1}}{(x+1)^x}\right)$$

5. 求

$$\lim_{r\to 0} \frac{f(\sin^2 x)}{r^4}$$

假设 f''(x) 二阶连续可导,并且 f(0) = f'(0) = 0, f''(0) = 6

6.
$$x^{cotx}$$
 x^{cotx} $x = \frac{\pi}{4}$ 的导数

7.
$$y^3 + lny = x^2$$
, 求 y 的二阶导数 $\frac{d^2y}{dx^2}$

8. 已知
$$y = e^x + lnx$$
, 求反函数的二阶导 $\frac{d^2x}{dy^2}$

9.

$$\begin{cases} x = sint - tcost \\ y = cost + tsint \end{cases} \tag{1}$$

求参数方程的二阶导 $\frac{d^2y}{dx^2}$

10. $C \neq f(x) = e^{2x} ln(1-x)$, $x \neq f^{(4)}(x)$

二、综合题 (每小题 6 分, 共 30 分)

11.

$$f(x) = \begin{cases} \sqrt{\frac{1}{x}} (\sqrt{\frac{1}{x} + 1} - \sqrt{\frac{1}{x}}) & \text{for } x \ge 0; \\ \frac{1 - \cos x}{x^2}, & \text{for } x < 0. \\ c, & \text{for } x = 0. \end{cases}$$
 (3)

 $\lim_{x\to 0} f(x)$ 存在吗? 是否存在一个 c, 使得 f(x) 在 x=0 处连续?

- **12.** 若 $x_{n+1} = \sqrt{x_n(6-x_n)}$, 证明数列有极限, 并且求其值。
- **13.** 求 $x ln(x^2 3x + 2)$ 的 n 阶导
- 14. 求 $\frac{ln|x|}{|x-1|}$ sinx 的间断点,并说明类型。
- 15. 求 cos2x 的七阶麦克劳林展开, 余项是拉格朗日形式

三、证明题 (每小题 5分, 共 10分)

- 16. 假设 f(x) 在 [a,b] 上连续,f(0) = f(1), 试证明: $(1)\exists \varepsilon \in [0,1], s.t f(\varepsilon) = f(\varepsilon + \frac{1}{2})$ $(2)\exists \varepsilon \in [0,1], s.t f(\varepsilon) = f(\varepsilon + \frac{1}{4})$
- 17. f(x) 连续可导,证明存在 x,y,z,有

$$f'(x) = e^{z - y} f'(y)$$