K - Means Clustering

K-means clustering is one of the simplest and popular **UNSUPERVISED** machine learning algorithms.

Introduction

- K Means Clustering make inferences from data using only input vectors without labelled outcomes.
- K means clustering makes partition of "n" observations into "k" clusters in which each observation belongs to the cluster with the nearest centroid
- A cluster refers to a collection of data points aggregated together because of certain similarities

Applications Of K - Means Clustering

- Academic performance Based on the scores, students are categorized into grades like A, B, or C.
- Search engines Clustering forms a backbone of search engines. When a search is performed, the search results need to be grouped, and the search engines use clustering to do this.
- Customer segmentation It helps marketers improve their customer base, work on target areas, and segment customers based on purchase history, interests, or activity monitoring.

Example For clustering

A bank wants to give credit card offers to its customers. Currently, they look at the details of each customer and based on this information they decide which offer should be given to which customer.

The bank will have millions of customers. So here clustering plays a vital role in segregating customers into different groups. For instance, the bank can group the customers based on their income:

Steps to perform K - Means Clustering

- 1. Specify the number of clusters (K) to be created
- 2. Select randomly (K) objects from the dataset as the initial cluster centroids
- 3. Assign each observation to their closest centroid, based on the Euclidean distance between the object and the centroid
- 4. For each of the k clusters update the cluster centroid by calculating the new mean values of all the data points in the cluster.
- 5. Iteratively minimize the total within sum of square. That is, iterating steps 3 and 4 until the cluster assignments stop changing

Importing Packages

```
In [39]: library(factoextra)
library(ggplot)
library(cluster)
```

Loading the Dataset

USArrests - This data set contains statistics, in arrests per 100,000 residents for assault, murder, and rape in each of the 50 US states in 1973. Also given is the percent of the population living in urban areas.

```
In [26]: #Inbuilt Dataset
df = USArrests
df
```

Murder Assault UrbanPop Rape

11/11/2020

			1	WICAIIS OI
	Murder	Assault	UrbanPop	Rape
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7
Connecticut	3.3	110	77	11.1
Delaware	5.9	238	72	15.8
Florida	15.4	335	80	31.9
Georgia	17.4	211	60	25.8
Hawaii	5.3	46	83	20.2
Idaho	2.6	120	54	14.2
Illinois	10.4	249	83	24.0
Indiana	7.2	113	65	21.0
lowa	2.2	56	57	11.3
Kansas	6.0	115	66	18.0
Kentucky	9.7	109	52	16.3
Louisiana	15.4	249	66	22.2
Maine	2.1	83	51	7.8
Maryland	11.3	300	67	27.8
Massachusetts	4.4	149	85	16.3
Michigan	12.1	255	74	35.1
Minnesota	2.7	72	66	14.9
Mississippi	16.1	259	44	17.1
Missouri	9.0	178	70	28.2
Montana	6.0	109	53	16.4
Nebraska	4.3	102	62	16.5
Nevada	12.2	252	81	46.0
New Hampshire	2.1	57	56	9.5
New Jersey	7.4	159	89	18.8
New Mexico	11.4	285	70	32.1
New York	11.1	254	86	26.1
North Carolina	13.0	337	45	16.1
North Dakota	0.8	45	44	7.3
Ohio	7.3	120	75	21.4
Oklahoma	6.6	151	68	20.0

	Murder	Assault	UrbanPop	Rape
Oregon	4.9	159	67	29.3
Pennsylvania	6.3	106	72	14.9
Rhode Island	3.4	174	87	8.3
South Carolina	14.4	279	48	22.5
South Dakota	3.8	86	45	12.8
Tennessee	13.2	188	59	26.9
Texas	12.7	201	80	25.5
Utah	3.2	120	80	22.9
Vermont	2.2	48	32	11.2
Virginia	8.5	156	63	20.7
Washington	4.0	145	73	26.2
West Virginia	5.7	81	39	9.3
Wisconsin	2.6	53	66	10.8
Wyoming	6.8	161	60	15.6

In [27]: su

summary(df)

Murder	Assault	UrbanPop	Rape
Min. : 0.800	Min. : 45.0	Min. :32.00	Min. : 7.30
1st Qu.: 4.075	1st Qu.:109.0	1st Qu.:54.50	1st Qu.:15.07
Median : 7.250	Median :159.0	Median :66.00	Median :20.10
Mean : 7.788	Mean :170.8	Mean :65.54	Mean :21.23
3rd Qu.:11.250	3rd Qu.:249.0	3rd Qu.:77.75	3rd Qu.:26.18
Max. :17.400	Max. :337.0	Max. :91.00	Max. :46.00

Data Preprocessing

Scaling data - To avoid biased results

In [29]:

df <- scale(USArrests) # Scaling the data
head(df, n = 15)</pre>

	Murder	Assault	UrbanPop	Rape
Alabama	1.24256408	0.7828393	-0.52090661	-0.003416473
Alaska	0.50786248	1.1068225	-1.21176419	2.484202941
Arizona	0.07163341	1.4788032	0.99898006	1.042878388
Arkansas	0.23234938	0.2308680	-1.07359268	-0.184916602
California	0.27826823	1.2628144	1.75892340	2.067820292
Colorado	0.02571456	0.3988593	0.86080854	1.864967207
Connecticut	-1.03041900	-0.7290821	0.79172279	-1.081740768
Delaware	-0.43347395	0.8068381	0.44629400	-0.579946294
Florida	1.74767144	1.9707777	0.99898006	1.138966691
Georgia	2.20685994	0.4828549	-0.38273510	0.487701523

	Murder	Assault	UrbanPop	Rape
Hawaii	-0.57123050	-1.4970423	1.20623733	-0.110181255
Idaho	-1.19113497	-0.6090884	-0.79724965	-0.750769945
Illinois	0.59970018	0.9388312	1.20623733	0.295524916
Indiana	-0.13500142	-0.6930840	-0.03730631	-0.024769429
Iowa	-1.28297267	-1.3770485	-0.58999237	-1.060387812

summary(df)			
Murder	Assault	UrbanPop	Rape
Min. :-1.6044	Min. :-1.5090	Min. :-2.31714	Min. :-1.4874
1st Qu.:-0.8525	1st Qu.:-0.7411	1st Qu.:-0.76271	1st Qu.:-0.6574
Median :-0.1235	Median :-0.1411	Median : 0.03178	Median :-0.1209
Mean : 0.0000	Mean : 0.0000	Mean : 0.00000	Mean : 0.0000
3rd Qu.: 0.7949	3rd Qu.: 0.9388	3rd Qu.: 0.84354	3rd Qu.: 0.5277
Max. : 2.2069	Max. : 1.9948	Max. : 1.75892	Max. : 2.6444

STEP 1: FINDING NUMBER OF K VALUES

To find the appropriate suitable K value:

- 1. Compute k-means clustering using different values of clusters k.
- 2. Next, the wss (within sum of square) is drawn according to the number of clusters.
- 3. The location of a bend (knee) in the plot is generally considered as an indicator of the appropriate number of clusters.

After Performing Elbow Method

The Elbow method looks at the total within-cluster sum of square (WSS) as a

11/11/2020 K - Means Clustering

function with respect to the number of clusters.

The location of a knee in the plot is usually considered as an indicator of the appropriate number of clusters because it means that adding another cluster does not improve much better the partition

So Here k = 4 is a best fit and it points out position of elbow

code: fviz_nbclust(df, kmeans, method = "wss") + geom_vline(xintercept = 4, linetype = 3) + labs(subtitle = "Elbow method")

Optimal number of clusters

Compute k-means with k = 4

```
In [31]:
           set.seed(27)
           kmcluster <- kmeans(df, 4, nstart = 25)</pre>
```

set.seed() function in order to set a key for random number generator. As k-means clustering algorithm starts with k randomly selected centroids

Syntax <- kmeans("dataframe_name", Number of clusters, nstart = no. of different random starting choices)

```
In [36]:
          kmcluster
         K-means clustering with 4 clusters of sizes 16, 13, 8, 13
         Cluster means:
               Murder
                         Assault
                                   UrbanPop
                                                   Rape
         1 -0.4894375 -0.3826001 0.5758298 -0.26165379
           0.6950701 1.0394414 0.7226370 1.27693964
            1.4118898 0.8743346 -0.8145211 0.01927104
         4 -0.9615407 -1.1066010 -0.9301069 -0.96676331
         Clustering vector:
                                                                         California
```

Arizona

Arkansas

Alaska

Alabama

3	2	2	3	2
ر ما مسمامی	C	Dala	ر ماداد ماداد	Caanaia
Colorado	Connecticut	Delaware	Florida	Georgia
2	1	1	2	3
Hawaii	Idaho	Illinois	Indiana	Iowa
1	4	2	1	4
Kansas	Kentucky	Louisiana	Maine	Maryland
1	4	3	4	2
Massachusetts	Michigan	Minnesota	Mississippi	Missouri
1	2	4	3	2
Montana	Nebraska	Nevada	New Hampshire	New Jersey
4	4	2	4	1
New Mexico	New York	North Carolina	North Dakota	Ohio
2	2	3	4	1
Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
1	1	1	1	3
South Dakota	Tennessee	Texas	Utah	Vermont
4	3	2	1	4
Virginia	Washington	West Virginia	Wisconsin	Wyoming
1	1	4	4	1

Within cluster sum of squares by cluster: [1] 16.212213 19.922437 8.316061 11.952463 (between_SS / total_SS = 71.2 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"

In [44]: table(kmcluster\$tot.withinss)

56.4031734582928

1

In [43]: table(kmcluster\$cluster)

1 2 3 4 16 13 8 13

Plotting & Visulaization

Code :fviz_cluster(kmcluster, data = df)

Cluster plot North Carolina South Carolina Georgia Alasky labamaArkansas Leuiliannessee Montana + North Da Maryland Virginia Montana + North Da Maine Iorida Wexico Virginia New Mexico Virginia New Hampshire 1 Alasky labamaArkansas North Carolina Cluster 1 Alasky labamaArkansas North Carolina Virginia 1 Alasky labamaArkansas North Carolina Cluster 1 1 Alasky labamaArkansas North Carolina Virginia 1 Alasky labamaArkansas North Da Maine 1 2 New Hampshire 3 4 Vevada Auxilinais Colorado Vashingtonnecticut New Assattinas dand -2 Dim1 (62%)

Iris Dataset

In [8]: head(iris)

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

In [9]: ggplot(iris, aes(Petal.Length, Petal.Width)) + geom_point()

To Find optimal number of clusters

Elbow Method

Here we can see best fit at k = 3 and it points out position of elbow

```
set.seed(20)
In [51]:
          irisCluster <- kmeans(iris[, 1:4], 3, nstart = 20)</pre>
          irisCluster
          K-means clustering with 3 clusters of sizes 50, 62, 38
          Cluster means:
            Sepal.Length Sepal.Width Petal.Length Petal.Width
                5.006000
                             3.428000
                                          1.462000
                                                       0.246000
          1
                             2.748387
                                          4.393548
                                                       1.433871
          2
                5.901613
          3
                6.850000
                             3.073684
                                          5.742105
                                                       2.071053
```

```
Clustering vector:
```

Within cluster sum of squares by cluster: [1] 15.15100 39.82097 23.87947 (between_SS / total_SS = 88.4 %)

Available components:

```
[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"
```

In [11]:

irisCluster\$cluster

- 1. 1
- 2. 1
- 3. 1
- 4. 1
- 5. 1
- 6. 1
- 7. 1
- 8. 1
- 9. 1
- 10. 1
- 11. 1 12. 1
- 13. 1
- 14. 1
- 17. 1
- 15. 1 16. 1
- 17. 1
- 18. 1
- 19. 1
- 20. 1
- 21. 1
- 21. 1
- 22. 123. 1
- _ . .
- 24. 1
- 25. 1
- 26. 1
- 27. 1
- 28. 1
- 29. 1 30. 1
- 31. 1
- 32. 1
- 33. 1
- 34. 1

- 35. 1
- 36. 1
- 37. 1
- 38. 1
- 39. 1
- 40. 1
- 41. 1
- 42.1
- 43. 1
- 44. 1
- 45. 1
- 46. 1
- 47. 1
- 48. 1
- 49. 1
- 50. 1
- 51. 2
- 52. 2
- 53. 3
- 54. 2
- 55. 2
- 56. 2
- - -
- **57.** 2
- 58. 2
- 59. 2
- 60. 2
- 61. 2 62. 2
- 63. 2
- 64. 2
- 65. 2
- 66. 2
- 67. 2
- 68. 2
- 69. 2
- 70. 2
- 71. 2
- 72. 2
- 73. 2
- 74. **2**
- 75. 2
- __ _
- 76. 2
- 77. 2
- 78. 3
- 79. 2
- 80. 2
- 81. 2

- 82. 2
- 83. 2
- 84. 2
- 85. 2
- 86. 2
- 87. 2
- 88. 2
- 89. 2
- ____
- 90. 2
- 91. 2
- 92. 2
- 93. 2
- 94. 2
- 95. 2
- 96. 2
- 97. 2
- J.. _
- 98. 2
- 99. 2
- 100. 2
- 101.3
- 102. 2
- 103.3
- 104. 3
- 105. 3
- 106. 3
- 107. 2
- 108. 3
- 109. 3
- 110. 3
- 111. 3
- 112. 3
- 113. 3
- 114. 2
- 115. 2
- 116. 3
- 117. 3
- 118. 3
- 119. 3
- 120. 2
- 121. 3
- 122. 2
- 123.3
- 124. 2
- 125. 3
- 126. 3
- 127. 2
- 128. 2

- 129.3
- 130.3
- 131.3
- 132.3
- 133. 3
- 134. 2
- 135.3
- 136. 3
- 137. 3
- 138. 3
- 139. 2
- 140. 3
- 141. 3
- 142. 3
- 143. 2
- 144. 3
- 145. 3
- 146. 3
-
- 147. 2
- 148. 3
- 149.3
- 150.2

In [12]:

irisCluster\$tot.withinss

78.851441426146

In [13]:

iris\$Species

- 1. setosa
- 2. setosa
- 3. setosa
- 4. setosa
- 5. setosa
- 6. setosa
- 7. setosa
- 8. setosa
- 9. setosa
- 10. setosa
- 11. setosa
- 12. setosa
- 13. setosa
- 14. setosa
- 15. setosa
- 16. setosa
- 17. setosa
- 18. setosa
- 19. setosa

- 20. setosa
- 21. setosa
- 22. setosa
- 23. setosa
- 24. setosa
- 25. setosa
- 26. setosa
- 27. setosa
- 28. setosa
- 29. setosa
- 30. setosa
- 31. setosa
- 32. setosa
- 33. setosa
- 34. setosa
- 35. setosa
- 36. setosa
- 37. setosa
- 38. setosa
- 39. setosa
- 40. setosa
- 41. setosa
- 42. setosa
- 43. setosa
- 44. setosa
- 45. setosa
- 46. setosa
- 47. setosa 48. setosa
- 49. setosa
- 50. setosa
- 51. versicolor
- 52. versicolor
- 53. versicolor
- 54. versicolor
- 55. versicolor
- 56. versicolor
- 57. versicolor
- 58. versicolor
- 59. versicolor
- 60. versicolor
- 61. versicolor
- 62. versicolor
- 63. versicolor
- 64. versicolor
- 65. versicolor
- 66. versicolor

- 67. versicolor
- 68. versicolor
- 69. versicolor
- 70. versicolor
- 71. versicolor
- 72. versicolor
- 73. versicolor
- 74. versicolor
- 75. versicolor
- 76. versicolor
- 77. versicolor
- 78. versicolor
- 79. versicolor
- 80. versicolor
- ____
- 81. versicolor
- 82. versicolor
- 83. versicolor
- 84. versicolor
- 85. versicolor
- 86. versicolor
- 87. versicolor
- 88. versicolor
- 89. versicolor
- 90. versicolor
- 91. versicolor
- 92. versicolor
- 93. versicolor
- 94. versicolor95. versicolor
- 96. versicolor
- Jo. Verbicolor
- 97. versicolor
- 98. versicolor99. versicolor
- 100. versicolor
- 101. virginica
- 400 . . .
- 102. virginica
- 103. virginica
- 104. virginica
- 105. virginica
- 106. virginica
- 107. virginica
- 108. virginica
- 109. virginica
- 110. virginica
- 111. virginica
- 112. virginica
- 113. virginica

- 114. virginica
- 115. virginica
- 116. virginica
- 117. virginica
- 118. virginica
- 119. virginica
- 120. virginica
- 121. virginica
- 122. virginica
- 123. virginica
- 124. virginica
- 125. virginica
- 126. virginica
- 127. virginica
- 128. virginica
- 129. virginica
- 130. virginica
- 131. virginica
- 132. virginica
- 133. virginica
- 134. virginica
- 135. virginica
- 136. virginica
- 137. virginica
- 138. virginica
- 139. virginica
- 140. virginica
- 141. virginica
- 142. virginica
- 143. virginica
- 144. virginica
- 145. virginica
- 146. virginica
- 147. virginica
- 148. virginica
- 149. virginica
- 150. virginica

► Levels:

table(irisCluster\$cluster, iris\$Species) In [14]:

> setosa versicolor virginica 1 50 0

> 2 14 0 48 2 36

In [15]: irisCluster\$cluster <- as.factor(irisCluster\$cluster)</pre>

In [16]: | irisCluster\$cluster

- 1. 1
- 2. 1
- 3. 1
- 4. 1
- 5. 1
- 6. 1
- 7. 1
- 8. 1
- 9. 1
- 10. 1
- 11. 1
- 12. 1
- 13. 1
- 14. 1
- 15. 1
- 16. 1
- 17. 1
- 18. 1
- 19. 1
- 20. 1
- 21. 1
- 22. 1
- 23. 1
- 24. 1
- 25. 1
- 26. 1
- 27. 1
- 28. 1
- 29. 1
- 30. 1
- 31. 1
- 32. 1
- 33. 1
- 34. 1
- 35. 1
- 36. 1
- 37. 1
- 38. 1
- 39. 1
- 40. 1 41. 1
- 42. 1
- 43. 1
- 44. 1
- 45. 1

- 46. 1
- 47. 1
- 48. 1
- 49. 1
- 50. 1
- 51. 2
- 52. 2
- 53. 3
- 54. 2
- 55. 2
- 56. 2
- 57. **2**
- 58. 2
- 59. 2
- 60. 2
- 61. 2
- 62. 2
- 63. 2
- 64. 2
- 65. 2
- 66. 2
- 67. 2
- 68. 2
- 69. 2
- 70. 2
- 71. 2
- 72. 2
- 73. 2
- 74. 2
- **75.** 2
- 76. 2
- , o. L
- 77. 278. 3
- 79. 2
- , J. L
- 80. 2
- 81. 2
- 82. 2
- 83. 2
- 84. 2
- 85. 2
- 86. 2
- 87. 2
- 88. 2
- 89. 2
- 90. 2
- 91. 2
- 92. 2

- 93. 2
- 94. 2
- 95. 2
- 96. 2
- 97. 2
- 98. 2
- 99. 2
- 100. 2
-
- 101. 3
- 102. 2
- 103.3
- 104. 3
- 105.3
- 106.3
- 107. 2
- 108.3
- 109. 3
- 110. 3
- - -
- 111. 3112. 3
- 113. 3
-
- 114. 2
- 115. 2
- 116. 3
- 117. 3
- 118. 3
- 119.3
- 120. 2
- 121.3
- 122. 2
- 123. 3
- 124. 2
- 125. 3
- 126. 3
- 127. 2
- 128. 2
- 129. 3
- 130. 3
- 131. 3
- 132. 3
- 133.3
- 134. 2
- 135.3
- 136. 3
- 137. 3
- 138.3
- 139. 2

140.3

141. 3

142. 3

143. 2

144. 3

145. 3

146. 3

147. 2

148. 3

149. 3

150. 2

► Levels:

In [17]: ggplot(iris, aes(Petal.Length, Petal.Width, color = irisCluster\$cluster)) + geom_poi

In [24]: clusplot(iris, irisCluster\$cluster, color=T, shade=T,lines=0)

CLUSPLOT(iris)

These two components explain 95.02 % of the point variability.

Some Takeaways

- Scale/standardize the data when applying kmeans algorithm.
- Elbow method for selecting number of clusters
- Kmeans gives more weight to the bigger clusters.
- Kmeans may still cluster the data even if it can't be clustered
- Different initial partitions can result in different final clusters.
- It can not handle noisy data and outliers.
- It is not suitable to identify clusters with non-convex shapes(irregular shapes elliptical).

****THANK YOU****

<th>nt></th>	nt>
-----------------	-----

In []:	
In []:	