Dillan Marroquin MATH 331.1001 Scribing Week 14

Due. 29 November 2021

Lecture 35

An ideal $I \subseteq R$ is **principal** iff $\exists a \in I$ such that $I = (a) = \{ra | r \in R\}$.

Example. 1. Let $R = \mathbb{Z}$, $I = n\mathbb{Z} = (n)$.

2. For every ring, the zero ideal is principal and R is a principal ideal (i.e. $\{0_R\} = (0)$), R = (1).)

Definition (35.1). A ring *R* is a **principal ideal ring (PIR)** iff every ideal of *R* is principal.

R is a **principal ideal domain** (\overline{PID}) iff R is an integral domain and R is a PIR.

Recall Theorem 34.4 which stated that \mathbb{Z} is a PID (wasn't worded like this).

Proposition (35.2). $\forall n > 1$, $\mathbb{Z}/n/Z$ is a PIR.

Proposition (35.3). A field \mathbb{K} has exactly 2 ideals: the zero ideal and \mathbb{K} .

Corollary (35.4). 1. A field is a PID.

- 2. If \mathbb{K} is a field and $\varphi : \mathbb{K} \to S$ is a ring homomorphism, then φ is injective OR S is the zero ring.
- 3. $\mathbb{Z}/n\mathbb{Z}$ is a PID if *n* is prime.

Remark (35.5). 1. Nice Theorem in Paulin: "If R is a finite integral domain, then R is a field." So, $\mathbb{Z}/n\mathbb{Z}$ being an integral domain implies $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{[k]|\gcd(k,n)=1\} = \{[1],[2],\ldots,[n-1]\}$ since this is a field. Therefore if d|n and d < n, then d = 1. Thus n is prime and we conclude $\mathbb{Z}/n\mathbb{Z}$ is a PID iff $\mathbb{Z}/n\mathbb{Z}$ is a field iff n = p prime.

2. $\mathbb{Z}[x]$ is an integral domain by Theorem 33.4, but is not a PID.

How to Get More Examples of PIDs?

Recall in Theorem 13.3 (wayyyy back then), we showed that every subgroup of a cyclic group is cyclic. Crucial in our proof was the division algorithm in \mathbb{Z} .

Definition (35.6). Let *R* be a commutative ring such that $0 \ne 1$.

- 1. A **Euclidean function** on *R* is a set-theoretic function $N: R \{0_R\} \to \mathbb{N} \cup \{0\}$ such that
 - (a) $\forall a \in R, \forall b \in R \{0_R\}, N(a) \le N(ab).$
 - (b) $\forall a \in R \text{ and } \forall b \neq 0 \in R, \exists q, r \in R \text{ such that } a = bq + r \text{ with either } r = 0 \text{ OR } N(r) < N(b).$
- 2. An integral domain is the **Euclidean domain** iff *R* admits a Euclidean function.

Theorem (35.7). The following are Euclidean domains:

- 1. \mathbb{Z} with $N(m) := |m| \ \forall m \neq 0$ (absolute value).
- 2. Any field \mathbb{K} with $N(a) := 1 \ \forall a \neq 0 \in \mathbb{K}$.
- 3. $\mathbb{Z}[i]$ with $N(k+ib) := a^2 + b^2 \forall a+ib \neq 0$.
- 4. Polynomial Ring $\mathbb{K}[x]$ with coefficients in a field \mathbb{K} , $N(f) := \deg(f) \ \forall f \neq 0$.