Data Science for Everyone – Grammar of Graphics

Dr. Ab Mosca (they/them)

Plan for Today

 Connect what we know about visualizations to ggplot in R

- Library for creating plots in R
- The "gg" stand for **g**rammar of **g**raphics

Big idea behind a grammar of graphics:

 Independently specify plot building blocks and combine them to create graphical displays

- Plot building blocks
 - data
 - aesthetic mappings (how we draw that stuff)
 - geometric objects (the literal stuff we draw)
 - statistical transformations (underlying model)
 - scales (range of values, colors, etc.)
 - faceting (small multiples)

- Plot building blocks
 - data
 - aesthetic mappings (how we draw that stuff)
 - geometric objects (the literal stuff we draw)
 - statistical transformations (underlying model)
 - scales (range of values, colors, etc.)
 - faceting (small multiples)

Plot building blocks

- data
- aesthetic mappings (how we draw that stuff)
- geometric objects (the literal stuff we draw)
- statistical transformations (underlying model)
- scales (range of values, colors, etc.)
- faceting (small multiples)

```
ggplot(data, aes()) +
geom_*
data
aesthetic mapping
```

geometric object

- Plot building blocks
 - data
 - aesthetic mappings (how we draw that stuff)
 - geometric objects (the literal stuff we draw)

Data

- First argument to ggplot is the data you want to plot
- We will use the iris dataset
- Open a new R Markdown and take a glimpse at the iris dataset

Data

- First argument to ggplot is the data you want to plot
- We will use the iris dataset
- Open a new R Markdown and take a glimpse at the iris dataset
- Let's make a plot with this dataset

• First argument to ggplot is the data you want to plot

ggplot(iris)

Aesthetic Mapping (aes ())

 Second argument is aes, the data to visual channels mapping

geom *

ggplot(data, aes()) +

data

geometric object

aesthetic mapping

```
ggplot(iris, aes(x = Sepal.Length, y = Petal.Length))
```


Last, add geom, which identifies the marks

```
ggplot(iris, aes(x = Sepal.Length, y = Petal.Length)) +
   geom_point()
```

ggplot(data, aes()) +

data

geometric object

aesthetic mapping

Last, add geom, which identifies the marks

```
ggplot(iris, aes(x = Sepal.Length, y = Petal.Length)) +
   geom_point()
```


ggplot(data, aes()) +

data

geometric object

aesthetic mapping

Last, add geom, which identifies the marks

```
ggplot(iris, aes(x = Sepal.Length, y = Petal.Length)) +
   geom line()
```

ggplot(data, aes()) +

data

geometric object

aesthetic mapping

Last, add geom, which identifies the marks

```
ggplot(iris, aes(x = Sepal.Length, y = Petal.Length)) +
   geom_point()
```


ggplot(data, aes()) +

data

geometric object

aesthetic mapping

Last, add geom, which identifies the marks

```
ggplot(iris, aes(x = Sepal.Length, y = Petal.Length)) +
   geom_point() + geom line()
```


Last, add geom, which identifies the marks

```
ggplot(iris, aes(x = Sepal.Length, y = Petal.Length)) +
   geom point() + geom line()
```


ggplot(data, aes()) +

data

geometric object

aesthetic mapping

Last, add geom, which identifies the marks

```
ggplot(iris, aes(x = Sepal.Length, y = Petal.Length)) +
   geom point() + geom line()
```


Last, add geom, which identifies the marks

```
ggplot(iris, aes(x = Sepal.Length, y = Petal.Length)) +
   geom_point() + geom_smooth()
```


ggplot(data, aes()) +

data

geometric object

aesthetic mapping

Last, add geom, which identifies the marks

```
ggplot(iris, aes(x = Sepal.Length, y = Petal.Length)) +
   geom_point() + geom_smooth(se = FALSE)
```

ggplot(data, aes()) +

data

geometric object

geom *

to remove error bands

aesthetic mapping

Last, add geom, which identifies the marks

```
ggplot(iris, aes(x = Sepal.Length, y = Petal.Length)) +
   geom_point() + geom_smooth(se = FALSE)
```

ggplot(data, aes()) +

data

geometric object

aesthetic mapping

• Last, add geom, which identifies the marks

```
ggplot(iris, aes(x = Sepal.Length) +
   geom histogram()
```


Last, add geom, which identifies the marks

```
ggplot(iris, aes(x = Sepal.Length) +
   geom_histogram()
```


1 [38;5;232m`stat_bin()` using `bins = 30`. Pick better value with `binwidth`. [39m

Last, add geom, which identifies the marks

```
ggplot(iris, aes(x = Sepal.Length) +
   geom_histogram(binwidth = ___)
```


ggplot(data, aes()) +

data

geometric object

aesthetic mapping

Themes


```
ggplot(iris, aes(x = Sepal.Length) +
   geom_histogram(binwidth = 0.1) +
   theme gray(base size = 22)
```


Themes


```
ggplot(iris, aes(x = Sepal.Length) +
   geom_histogram(binwidth = 0.1) +
   theme bw(base size = 22)
```


Plots as Objects

Your Turn!

- Upload the drinking-water.csv on the course website (under Labs) to your R Studio workspace
- Use ggplot to make a scatterplot of "# of Residential Connections" versus "Winter / Year Round Population Served"
 - Put "# of Residential Connections" on the x-axis
 - Hint: To refer to a variable with spaces in the name use ` around the name. Ex. x = "# of Residential Connections`
- What do you notice in the scatterplot?