1 Последовательность.

$$f: \mathbb{N} \to \mathbb{R}$$
$$f(n) =: f_n$$

Опр. Последовательность называется ограниченной сверху, если $\exists M: |f_n| \leqslant M$. Снизу, если $\exists m: f_n \geqslant m$. f_n ограниченная, если ограничена сверху и снизу.

Опр. $M_0 = \sup f_n$, если M_0 — верхняя грань и $\forall \varepsilon > 0 \; \exists n_0 : f_{n0} > M_0 - \varepsilon. \; m_0 = \inf f_n$, если m_0 — нижняя грань и $\forall \varepsilon > 0 \ \exists n_0 : f_{n_0} < m_0 + \varepsilon.$

Аксиома вещественных чисел. Если множество X ограничено сверху, то $\exists sup X$. Если f_n неограничено сверху, то $supf_n =: +\infty$. Если снизу, то $inff_n =: -\infty$.

Опр. f_n — бесконечно большая (бб), если $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : |f_n| > \frac{1}{\varepsilon} \ \forall n \geqslant N. \ f_n$ — не бб, $\exists \varepsilon > 0 : \forall N \exists n > N : |f_n| \leqslant \frac{1}{\varepsilon}$. Опр. f_n — бесконечно малая (бм), если $\forall \varepsilon > 0 \; \exists N = N(\varepsilon) : |f_n| < \varepsilon \; \forall n \geqslant N$.

Лемма. $f_n -$ бм $\Rightarrow f_n -$ ограничена.

Доказательство:

Пусть $\varepsilon = 1$, тогда $\exists N : |f_n| \leqslant 1 \ \forall n \geqslant N$

 $M := max|f_1|, \ldots, |f_{N-1}|, 1$, тогда $|f_n| \leq M \ \forall n \in N$.

Лемма.

a)
$$f_n - 66 \Rightarrow \frac{1}{f_n} - 6M$$

b)
$$f_n - \delta_M (f_n \neq 0) \Rightarrow \frac{1}{f_n} - \delta\delta$$

Лемма. f_n — неограниченная последовательность, тогда существует бб подпоследовательность f_{nk} . Доказательство:

$$\exists n_1 : |f_{n1} > 1|, \exists n_2 > n_1 : |f_{n2} > 2|, \exists n_3 > n_2 : |f_{n3}| > 3, \vdots, \exists n_1 < n_2 < \dots < n_k < \dots |f_{nk}| > k \Rightarrow f_{nk} - 66.$$

Лемма.

a)
$$6M + 6M = 6M$$

b)
$$6m \cdot C = 6m$$

c)
$$6m \cdot 6m = 6m$$

d)
$$66 \cdot C = 66, C \neq 0$$

e)
$$66 \cdot 66 = 66$$

Предел последовательности.

 a_n — последовательность.

Опр. $a = \lim a_n$, если $\forall \varepsilon > 0 \ \exists N : |a_n - a| < \varepsilon \ \forall n \geqslant N$.

Опр. Эпсилон окрестность: $U_{\varepsilon}(a) := (a - \varepsilon; a + \varepsilon)$. Выколотая эпсилон окрестность: $U_{\varepsilon}^{\circ}(a) := U_{\varepsilon}(a) \setminus \{a\}$. $\varepsilon_1 < \varepsilon_2 \Rightarrow U_{\varepsilon_1}(a) \subset U_{\varepsilon_2}(a), a \in \mathbb{R}.$

Опр. $\mathbb{R} \cup \{\pm \infty\} = \overline{\mathbb{R}}$ — расширенная числовая прямая.

Onp.
$$\varepsilon > 0$$
 $U_{\varepsilon}(+\infty) = (\frac{1}{\varepsilon}; +\infty); U_{\varepsilon}(-\infty) = (-\infty; -\frac{1}{\varepsilon}).$

$$\lim |a_n| = +\infty \Leftrightarrow \forall \varepsilon > 0 \ \exists N(\varepsilon) : |a_n| > \frac{1}{\varepsilon}.$$

Если a_n — бб $\Leftrightarrow \lim |a_n| = +\infty$.

Если $a_n - 6M \Leftrightarrow \lim |a_n| = 0.$

Утв. $\lim a_n = a \Leftrightarrow \exists$ бм последовательность d_n , такая что $a_n = a + d_n$.

Утв. Если предел последовательности существует, то он единственный.

Доказательство:

$$\exists a < b$$
 и $a = \lim a_n, \ b = \lim a_n.$ Тогда $\varepsilon := \frac{b-a}{42}:$ $\exists N_1: a_n \in U_\varepsilon(a) \forall n \geqslant N_1$

$$\exists N_1 : a_n \in U_{\varepsilon}^{2}(a) \forall n \geqslant N_1$$

$$\exists N_2: a_n \in U_{\varepsilon}(b) \forall n \geqslant N_2 \\ \Rightarrow a_n \in (U_{\varepsilon}(a) \cap U_{\varepsilon}(b)) = \emptyset \ \forall n \geqslant \max\{N_1, N_2\}!?!.$$

Предельный переход в неравенства. $a_n \leqslant b_n \ \forall n \geqslant N_0$.

Пусть $\exists \lim a_n = a; \lim b_n = b, a, b \in \overline{\mathbb{R}}$

Тогда $a \leq b$.

Доказательство:

Пусть
$$a>b$$
. Тогда $\varepsilon:=\frac{a-b}{42}$: $\exists N_1: a_n\in U_\varepsilon(a) \forall n\geqslant N_1$ $\exists N_2: a_n\in U_\varepsilon(b) \forall n\geqslant N_2$ $\Rightarrow a_n>b_n \ \forall n\geqslant \max\{N_1,N_2\}!?!.$

Лемма о сжатых последовательностях. Пусть $a_n\leqslant b_n\leqslant c_n\ \forall n\geqslant N_0$ и $\exists \lim a_n=\lim c_n=a\in\overline{\mathbb{R}},$ тогда $\exists \lim b_n=a.$ Доказательство:

```
arepsilon>0: \exists \ a_n\in U_arepsilon,\ n\geqslant N_1 \exists \ c_n\in U_arepsilon,\ n\geqslant N_2 \Rightarrow b_n\in U_arepsilon:\ \forall n\geqslant \{N_1,N_2,N_0\}=:N\Rightarrow a=\lim b_n по определению.
```

Лемма об отделимости от нуля. Пусть $\exists \lim a_n = a > 0$. Тогда $\exists N : a_n > \frac{a}{2} > 0, \forall n \geqslant N$. Следствие. Если $\lim a_n \neq 0 \Rightarrow \frac{1}{a_n}$ ограничена $(a_n \neq 0)$. Доказательство:

$$\begin{split} & \lim a_n = a > 0 \\ & \exists N_1 : a_n > \frac{a}{2} \Rightarrow 0 < \frac{1}{a_n} < \frac{2}{a} \ \forall n \geqslant N_1 \\ & \min\{a_1, \dots, a_{N-1}, \frac{a}{2}\} \leqslant \frac{1}{a_n} \leqslant \max\{a_1, \dots, a_{N-1}, \frac{2}{a}\} \end{split}$$

Теорема. Арифметические свойства предела. Пусть $\lim a_n = a, \lim b_n = b; \ a,b \in \overline{\mathbb{R}}.$ Тогда:

- 1. $\lim(a_n + b_n) = a + b$, кроме случаев $+\infty + (-\infty), -\infty + (+\infty)$
- 2. $\lim(ka_n) = ka$, кроме случая $0 \cdot (\pm \infty)$
- 3. $\lim(a_n \cdot b_n) = ab$, кроме случая $0(\pm \infty)$
- 4. $\lim \frac{a_n}{b_n} = \frac{a}{b}$, кроме случаев $\frac{0}{0}$, $\frac{\infty}{\infty}$

Доказательство:

$$a,b\in\mathbb{R}$$
 $a_n=a+lpha_n,\ b_n=b+eta_n;\ lpha_n,eta_n-$ бм.

- 1. $a_n + b_n = (a+b) + (\alpha_n + \beta_n) \Leftrightarrow \lim(a_n + b_n) = a + b$.
- 2. Аналогично.

3.
$$a_n b_n = (a + \alpha_n)(b + \beta_n) = ab + \alpha_n b + \beta_n a + \alpha_n + \beta_n$$

4. Если
$$b \neq 0$$
 $\frac{1}{b_n}$ — ограниченна
$$\frac{a_n}{b_n} - \frac{a}{b} = \frac{a + \alpha_n}{b + \beta_n} - \frac{a}{b} = \frac{\alpha_n b - \beta_n a}{b_n b} = \frac{1}{b} \cdot \frac{1}{b_n} \cdot (\alpha_n b - \beta_n a)$$
 Если $b = 0 \Rightarrow b_n$ бм $\Rightarrow \frac{1}{b_n}$ — бб $\Rightarrow a_n \cdot \frac{1}{b_n}$ = ограниченная бб

Опр. Линейное пространство — множество, сумма двух элементов которого лежит в этом множестве и элемент с коэффициентом лежит в этом множестве.

Опр. Последовательность называется возвратной, если $a_n = \beta_{n-1}a_{n-1} + \beta_{n-2}a_{n-2} + \cdots + \beta_{n-k}a_{n-k}$; βi — фиксированные коэффициенты.

$$a_n^{(1)}, a_n^{(2)} \Rightarrow \forall \lambda, \mu \in \mathbb{R} \ \lambda a_n^{(1)} + \mu a_n^{(2)}$$
 тоже удовлетворяет (x) . $a_n := t^n$ $t^k = \beta_{n-1} t^{k-1} + \dots + \beta_{n-k}$ t_0 — простой корень, то t_0^n t_0 — корень $(m) \Rightarrow t_0^n; nt_0^n; n^2t_0^n; \dots; n^{m-1}t_0^n$ Теорема.

- 1. Пусть a_n возрастает и ограничена сверху. Тогда $\exists \lim a_n = \sup a_n$
- 2. Пусть a_n убывает и ограничена снизу. Тогда $\exists \lim a_n = \inf a_n$

Доказательство:

Найти предел последовательности $a_n = (1 + \frac{1}{n})^n$.

$$\begin{array}{l} b_n = (1+\frac{1}{n})^{n+1}; b_1 = 4, b_2 = 3, \dots b_n \downarrow \\ b_n \geqslant 1 \\ \ \, \text{Докажем, что } b_n \text{ убывает.} \\ \frac{b_n}{b_{n+1}} = \frac{(\frac{n+1}{n})^{n+1}}{(\frac{n+2}{n+1})^{n+2}} = \frac{n+1}{n})^{n+1} \cdot \frac{n+1}{n+2})^{n+2} = \frac{n+1}{n+2} \cdot (\frac{n^2+2n+1}{n^2+2n})^{n+1} = \frac{n+1}{n+2} \cdot (1+\frac{1}{n^2+2n})^{n+1} \text{ (неравенство Бернули)} \\ > \frac{n+1}{n+2} \cdot (1+\frac{n+1}{n^2+2n}) = \frac{(n+1)(n^2+3n+1)}{(n+2)(n^2+2n)} = \frac{n^3+4n^2+4n+1}{n^3+4n^2+4n} > 1. \\ a_n = \frac{b_n}{(1+\frac{1}{n})} \\ \lim_{n \to \infty} = \lim \frac{b_n}{1+\frac{1}{n}} = \frac{\lim b_n}{\lim(1+\frac{1}{n})} = \lim b_n - \text{существует.} \\ e := \lim_{n \to \infty} (1+\frac{1}{n})^n \approx 2.718281828459045... \end{array}$$

Теорема Вейерштрасса. Пусть последовательность a_n ограничена. Тогда существует сходящаяся подпоследовательность. Доказательство:

$$\begin{array}{l} |a_n|\leqslant M\\ [-M=\alpha_1;M=\beta_1].\ \alpha_2-\text{середина}.\ a_1=x_1\in [\alpha_1;\alpha_2].\\ [\alpha_2;\beta_2].\ \beta_3-\text{середина}.\ x_2=a_{\min n}\in [\alpha_2;\beta_3].\\ \text{И тд.}\\ \alpha_k \text{ неубывающая и ограниченная сверху. } \exists \lim \alpha_k=\alpha.\ \beta_k \text{ неубывающая и ограниченная сверху. } \exists \lim \beta_k=\beta.\\ \beta-\alpha=\lim_{k\to\infty}(\beta_k-\alpha_k)=\lim_{k\to\infty}\frac{2M}{2^{k-1}}=0.\\ \text{По построению } x_k-\text{подпоследовательность и } \alpha_k\leqslant x_k\leqslant\beta_k\Rightarrow\exists \lim x_k. \end{array}$$

Опр. Последовательность называется фундаментальной (или последовательностью Коши), если $\forall \varepsilon > 0 \ \exists N(\varepsilon)$: $|a_n - a_k| < \varepsilon \ \forall n, k \geqslant N$.

Утв. Пусть $\exists \lim a_n = a \in \mathbb{R}$. Тогда $\{a_n\}$ фундаментальная. Доказательство:

$$\operatorname{fix}\,\varepsilon>0 \exists N: |a_n-a|<\tfrac{\varepsilon}{2} \forall n\geqslant N. \ \operatorname{Tогдa}\,\forall n,k\geqslant N \ |a_n-a_k|=|(a_n-a)+(a-a_k)|\leqslant |a_n-a|+|a_k-a|<\tfrac{\varepsilon}{2}+\tfrac{\varepsilon}{2}=\varepsilon.$$

Теорема Коши. Пусть $\{a_n\}$ фундаментальная последовательность. Тогда $\exists \lim a_n$. Доказательство:

- 1) (!) $\{a_n\}$ ограничена. $\varepsilon = 1$: $\exists N \colon |a_n a_k| \leqslant \varepsilon \ \forall n, k \geqslant N \Rightarrow a_k \in [a_{N-1}; a_{N+1}] \forall k \geqslant N$ $M = max\{|a_1|, |a_2|, \dots, |a_N+1|\} \Rightarrow |a_n| \leqslant M \forall n$.
- 2) Тогда по теореме Вейерштрасса $\exists a_{n_k}$ подпоследовательность; $\lim_{n\to\infty} a_{n_k} = a$.
- 3) fix $\varepsilon > 0$. $\exists N_1: |a_{n_k} a| < \frac{\varepsilon}{2} \ \forall n_k \geqslant N_1$ $\exists N_2: |a_m a_n| < \frac{\varepsilon}{2} \ \forall m, n \geqslant N_2$ $\exists N_2: |a_m a_n| < \frac{\varepsilon}{2} \ \forall m, n \geqslant N_2$ $\exists n_k \geqslant m$. $|a_m a| = |(a_m a_{n_k}) + (a_{n_k} a)| \leqslant |a_n a_{n_k}| + |a_{n_k} a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \Rightarrow a = \lim_{m \to \infty} a_m$.

2 Возведение в вещественную степень.

$$n\in\mathbb{N};\,x^n=x\cdot x\cdot\ldots\cdot x,\,n$$
 раз.
$$x^{-n}=\frac{1}{x^n},\,x\neq0$$
 $x^0:=1$ $\sqrt[n]{x}=x^{\frac{1}{n}}$ $x^p,\,p\in\mathbb{Q},\,x\geqslant0$ $(p>0)$ или $x>0$ $(p\geqslant0)$ $\text{fix }a>0,\,x\in\mathbb{R}$ $a^x:=\lim_{n\to\infty}a^{x_n}$, где $\{x_n\}$ последовательность, такая что $x_n\in\mathbb{Q},\,\lim_{n\to\infty}x_n:=x.$ Корректность определения.

- 1. $x \in \mathbb{Q}$. Докажем, что a^x совпадает со старым определением. $x \in \mathbb{Q}$, берем $x_n = x \Rightarrow a^x = a^x$
- 2. Берем произвольную последовательность $\{x_n\}$, $x_n \to x \Rightarrow x_n$ фундаментальная последовательность. fix $\varepsilon > 0$ $|a^{x_n} a^{x_k}| = a^{x_n} |1 a^{x_k x_n}|$. Сходится. Значит ограничена. Тогда a^{x_n} ограничена. Тогда $a^{x_n} |1 a^{x_k x_n}| \le M \cdot |1 a^{x_k x_n}|$. $\exists N : |a^{\frac{1}{m}} 1| < \frac{M}{\varepsilon} \ \forall m \geqslant N \Rightarrow |a^{\frac{1}{n}} 1| < \frac{M}{\varepsilon} \Rightarrow \exists N_0 : |x_n x_k| < \frac{1}{N} \ \forall n, k \geqslant N$ $M \cdot |1 a^{x_k x_n}| < M \cdot \frac{2}{M} \ \forall n, k \geqslant N_0 \Rightarrow a^{x_n}$ образует фундаментальную последовательность \Rightarrow (по теореме Коши) $\exists \lim_{n \to \infty} a^{x_n}$
- 3. $x_n \to x, y_m \to x, x_n, y_m \in \mathbb{Q}$ $\exists a = \lim a^{x_n}; \alpha = \lim a^{y_m}$ $(a - \alpha) = \lim_{n \to \infty} (a^{x_n} - a^{y_m}) = \lim_{n \to \infty} a^{x_n} (1 - a^{x_n - y_m}) = 0$ $\lim (y_n - x_n) = x - x = 0$

Свойства:

- 1. $a^x \cdot a^y = a^{x+y}$ Пусть $x_n \to x, \ y_n \to y; \ x_n, y_n \in \mathbb{Q}$ $a^{x_n} \cdot a^{y_n} = a^{x_n+y_n}$ $a^x \cdot a^y = \lim a^{x_n} \cdot \lim a^{y_n} = \lim a^{x_n} \cdot a^{y_n} = \lim a^{x_n+y_n} = a^{x+y}$
- 2. $(a^x)^y = a^{xy}$ Пусть $x_n \to x, y_m \to y; x_n, y_m \in \mathbb{Q}$ $x_n y_n \to xy$ $\lim_{m \to \infty} (\lim_{n \to \infty} a^{x_n})^{y_m} ? \lim_{n \to \infty} a^{x_n y_n}$ $\lim_{n \to \infty} (a^x)^{y_n} = \lim_{n \to \infty} a^{x_n y_n}$ $\lim_{n \to \infty} |b^{y_n} a^{x_n y_n}| = 0$, где $b = a^x$ $\exists N : |a^{x_n} b| < \varepsilon \ \forall n \ge N$ $b \varepsilon < a^{x_n} < b + \varepsilon$ $1 \frac{\varepsilon}{b} < \frac{a^{x_n}}{b} < 1 + \frac{\varepsilon}{b} \uparrow^{y_n}, y_n > 0$, для < 0 аналогично $(1 \frac{\varepsilon}{b})^{y_n} < (\frac{a^{x_n}}{b})^{y_n} < (1 + \frac{\varepsilon}{b})^{y_n}$ $1 \frac{y_n \varepsilon}{b} < \frac{a^{x_n y_n}}{b^{y_n}} < 1 + \frac{y_n \varepsilon}{b}$ $\Rightarrow |\frac{a^{x_n y_n}}{b^{y_n}} 1| \le \frac{|y_n|}{b} \varepsilon$ $|a^{x_n y_n} b^{y_n}| < \frac{|y_n|}{b} \cdot b^{y_n} \varepsilon \le M \varepsilon \ \forall n \ge N$ $\Rightarrow \lim |b^{y_n} a^{x_n y_n}| = 0$

fix a > 0, $a \neq 1$ $y = a^x$, $x \in \mathbb{R}$

Опр. f(x) — возрастающая на X, если $\forall x_1, x_2 \in X$ $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$. f(x) неубывающая, если \leqslant . **Утв.** При a > 1 $f(x) = a^x$ — возрастает на \mathbb{R} ; При 0 < a, < 1 $f(x) = a^x$ — убывает на \mathbb{R} .

Пусть $x < \xi$, $x_n \to x$, $\xi_n \to \xi$ $x < x_0 < \xi_0 < \xi$ и x_0 не в окрестности x и аналогично ξ . $\forall n \geqslant N$ $x_n < x_0 < \xi_0 < \xi_0$ Тогда $a^{x_n} < a^{x_0} < a^{\xi_0} < a^{\xi_n}$ $a^x \leqslant a^{x_0} < a^{\xi_0} \leqslant a^\xi \Rightarrow a^x < a^\xi$ 0 < a < 1 $a^x = (\frac{1}{a})^{-x}; \ a^\xi = (\frac{1}{a})^{-\xi}$ $x < \xi \Rightarrow -x > -\xi$ $(\frac{1}{a})^{-x} > (\frac{1}{a})^{-\xi} \Rightarrow a^x > a^\xi$