College code: 4212

Register num: 421221243003

WATER QUALITY ANALYSIS PHASE5-DATA ANALYTICS WITH COGNOS: GROUP2

INTRODUCTION:

Water is a fundamental resource essential for sustaining life, supporting ecosystems, and facilitating various human activities. The quality of water, determined by its chemical, physical, and biological characteristics, plays a pivotal role in its suitability for different purposes. Water quality analysis is the systematic assessment of these attributes to ensure the safety, health, and sustainability of water resources.

OBJECTIVE:

The primary objective of water quality analysis is to assess and measure the physical, chemical, and biological characteristics of water to determine its suitability for various purposes and to ensure it meets established standards and regulations.

DESIGN THINKING:

Designing a water quality analysis system using Python involves several steps. Here's a simplified design thinking process for such a project:

PREPARING OF DATA:

First we have to understand what was the data we are going to analyse for this we have to clean and process the data by using suitable techniques like dropping the null values, data types, remove the duplicate values, visualize the missing values drop the duplicates, by using the suitable functions like drop, is null etc....

EXPLORATORY DATA ANALYSIS:

This was the most important step in this project so we have to represent our data in the understandable visualization tools like pie Scattered plot, histogram, heat map to represent the relation and variation.

PREDICTIVE MODEL:

Random Forest (RF) and Logistic Regression (LG) are two different types of predictive models used in data analysis, but they are typically used for different types of tasks, and they may not be directly applicable to water quality analysis.

the model also depends on the quality and quantity of your data and the domain-specific knowledge you incorporate into feature engineering and model selection. It's a good practice to try different models and evaluate their performance to choose the one that best fits your particular analysis task.

DAC-phase5

```
[1]: import pandas as pd import numpy as np import matplotlib_pyplot as plt import plotly_express as px
```

```
[2]: df = pd.read_csv("water_potability.csv")
```

[3]: df.head

Solids
16441
NaN
NaN
86136
35738
48574
NaN
NaN
NaN
NaN
lity Potability
135 0
556 0
934 0
771 0
075
821 1
243 1
375 1

16.140368

[3276 rows x 10 columns]>

327.459761

3275

78.698446

2.309149

[4]: df_info(memory_usage="deep")

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3276 entries, 0 to 3275
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	ph	2785 non-null	float64
1	Hardness	3276 non-null	float64
2	Solids	3276 non-null	float64
3	Chloramines	3276 non-null	float64
4	Sulfate	2495 non-null	float64
5	Conductivity	3276 non-null	float64
6	Organic_carbon	3276 non-null	float64
7	Trihalomethanes	3114 non-null	float64
8	Turbidity	3276 non-null	float64
9	Potability	3276 non-null	int64
ء بداء		+C 4/1\	

dtypes: float64(9), int64(1) memory usage: 256.1 KB

[5]: print(df.shape) print(len(df))

print(f'Number of rows: {df.shape[0]} \nNumber of columns: {df.shape[1]}')

(3276, 10) 3276

Number of rows: 3276 Number of columns: 10

[6]: df.describe()

[6]:		ph	Hardness	Solids	Chloramines	Sulfate	١
	count	2785.000000	3276.000000	3276.000000	3276.000000	2495.000000	
	mean	7.080795	196.369496	22014.092526	7.122277	333.775777	
	std	1.594320	32.879761	8768.570828	1.583085	41.416840	
	min	0.000000	47.432000	320.942611	0.352000	129.000000	
	25%	6.093092	176.850538	15666.690300	6.127421	307.699498	
	50%	7.036752	196.967627	20927.833605	7.130299	333.073546	
	75%	8.062066	216.667456	27332.762125	8.114887	359.950170	
	max	14.000000	323.124000	61227.196010	13.127000	481.030642	

	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potability
count	3276.000000	3276.000000	3114.000000	3276.000000	3276.000000
mean	426.205111	14.284970	66.396293	3.966786	0.390110
std	80.824064	3.308162	16.175008	0.780382	0.487849
min	181.483754	2.200000	0.738000	1.450000	0.000000
25%	365.734414	12.065801	55.844536	3.439711	0.000000

	50% 75% max	421.88496 481.79230 753.34262)5	14.218338 16.557652 28.300000	66.622485 77.337473 124.000000	3.955028 4.500320 6.739000	0.000000 1.000000 1.000000
[7]:	df.desci	ribe <mark>?</mark>					
[8]:	df.isnu	ıll().sum()					
[8]:	Hardnes Solids Chloram Sulfate Conduc Organic	nines tivity _carbon nethanes ty ity	491 0 0 0 781 0 0 162 0				
[9]:	tota mis for (sum() retu	II_prop(df) al_rows = c sing_val_d col in df.co missing_v) / total_ro arn missing it = isnul all_dict.iten	lf.shape ict = { olumns: ral_dict ows)] g_val_d	} [col] = [df[c	col].isnull().sum()), (df[col].is	snull().
	('Solids' 0.23840 ('Trihalo	', [0, 0.0] 04884004), ('Chl 8841]), [162,	oramines', [0 ('Conductivity 0.0494505494	789987]), ('Hardr), 0.0]), ('Sulfat ', [0, 0.0]), ('Org 15054945]), ('Tui	:e', [781, ganic_carbon	', [0, 0.0]),
[10]:	import p	pandas as p	d				
		for NaN vo		your DataFram	e (assuming df is	your DataFro	ате)
	ph Hardness Solids Chlorami Sulfate Conducti	ines	491 0 0 0 781 0				

```
Organic_carbon
                          0
     Trihalomethanes
                        162
     Turbidity
                           0
     Potability
                           0
     dtype: int64
[1]: df_missing = pd.DataFrame.from_dict(null_dict,
                                           orient="index",
                                          columns=["missing", "miss_percent"])
      df_missing
[11]:
                       missing miss_percent
                           491
                                   0.149878
      ph
      Hardness
                                   0.000000
                             0
      Solids
                             0
                                   0.000000
      Chloramines
                             0
                                   0.000000
      Sulfate
                           781
                                   0.238400
      Conductivity
                                   0.000000
                             0
                                   0.000000
      Organic_carbon
                             0
      Trihalomethanes
                           162
                                   0.049451
      Turbidity
                             0
                                   0.000000
      Potability
                             0
                                   0.000000
[33]: import numpy as np
      # Check for infinite values
      print(np.isinf(X_train).sum())
     ph
     Hardness
     Solids
     Chloramines
     Sulfate
     Conductivity
                         0
     Organic_carbon
                         0
     Trihalomethanes
                         0
     Turbidity
                        0
     dtype: int64
     1 visualization
[13]: plt.rcParams["figure.figsize"] = [20,10]
      df.hist()
```

plt.show()


```
fig = px.scatter (df, x = "ph", y = "Sulfate", color = "Potability", template = "plotly_dark", trendline="ols") fig.show ()
```

[15]: fig = px.scatter (df, x = "Organic_carbon", y = "Hardness", color = "Potability", template = "plotly_dark", trendline="lowess") fig.show ()

2 logestic regression

- import seaborn as sns
 from sklearn_linear_model import LogisticRegression
 from sklearn_model_selection import train_test_split
 from sklearn_metrics import confusion_matrix, accuracy_score,_
 classification_report
- [17]: # Creating model object
 model_lg = LogisticRegression(max_iter=120,random_state=0, n_jobs=20)
- [18]: df.fillna(df.mean(), inplace=True) # Replace NaN with mean of the column
- [19]: X_train=df[["ph","Hardness","Solids","Chloramines","Sulfate","Conductivity","Organic_carbon"," y_train= df["Potability"]
- [20]: # Training Model model_lg.fit(X_train, y_train)

```
[20]: LogisticRegression(max_iter=120, n_jobs=20, random_state=0)
```

```
[21]: X_train, X_test, y_train, y_test = train_test_split(
```

```
df[["ph","Hardness","Solids","Chloramines","Sulfate","Conductivity","Organic_carbon","Triha
    df["Potability"],
    test_size=0.2, # You can adjust the test size as needed
    random_state=42 # You can set a random seed for reproducibility
)

pred_lg = model_lg.predict(X_test)
```

```
[22]: lg = accuracy_score(y_test, pred_lg) print(lg)
```

0.6280487804878049

[23]: print(classification_report(y_test,pred_lg))

	precision	recall f1	-score	support
0	0.63	1.00	0.77	412
1	0.00	0.00	0.00	244
accuracy	0.31	0.50	0.63 0.39	656 656
macro avg weighted avg	0.39	0.50	0.39	656

C:\Users\lab\anaconda3\lib\sitepackages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning:

Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

C:\Users\lab\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning:

Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

C:\Users\lab\anaconda3\lib\sitepackages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning:

Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

```
[24]: cm1 = confusion_matrix(y_test, pred_lg)
sns_heatmap(cm1/np_sum(cm1), annot = True, fmt= "0.2%", cmap = "Reds")
```

[24]: <AxesSubplot:>

3 RandomForest

- [25]: from sklearn_ensemble import RandomForestClassifier
- [27]: model_rf.fit(X_train, y_train)
- [27]: RandomForestClassifier(n_estimators=300, random_state=32)
- [28]: $pred_rf = model_rf.predict(X_test)$
- [29]: rf = accuracy_score(y_test, pred_rf)
 print(rf)

0.6722560975609756

[30]: print(classification_report(y_test,pred_rf))

```
recall f1-score
              precision
                                              support
           0
                   0.69
                             0.87
                                       0.77
                                                   412
           1
                   0.61
                             0.34
                                        0.43
                                                   244
    accuracy
                                       0.67
                                                   656
                   0.65
                             0.60
                                       0.60
                                                   656
   macro avg
                                       0.64
weighted avg
                   0.66
                             0.67
                                                   656
```

```
[31]: cm3 = confusion_matrix(y_test, pred_rf)
sns_heatmap(cm3/np_sum(cm3), annot = True, fmt= "1%", cmap = "Reds")
```

[31]: <AxesSubplot:>

4 logestic regression vs random forest

[32]: Model Accuracy_score
1 Random Forest 0.672256
0 Logistic Regression 0.628049

INSIGHTS:

To assess water quality and determine its portability, an analysis should involve collecting and examining various water quality parameters and data. By analyzing parameters and factors, you can gain insights into the overall water quality. A comprehensive assessment would involve statistical analysis, data visualization, and the application of relevant models to predict and monitor water quality. Regular monitoring and testing are essential to ensure that water meets the required standards for portability and safety. If contaminants or quality issues are identified, appropriate water treatment and remediation measures should be implemented to make the water potable.