Método del Trapecio

Análisis numérico.

Equipo 1.

Integrantes:

- Alvares Benítez Maximiliano.
 - Ávila Revueltas Josbeth.
- Santiago Rodríguez Miguel Ángel.
 - Silva Garduño.

¿Quién lo creó?

En análisis numérico, la regla o método de Simpson (nombrada así en honor de **Thomas Simpson**) y a veces llamada **Regla de Kepler**, es un método de integración numérica que se utiliza para obtener la aproximación de la integral.

En integración numérica, una forma de aproximar una integral definida en un intervalo [a, b] mediante la **regla del trapecio**, es decir, que sobre cada subintervalo en el que se divide [a, b]se aproxima por un polinomio de primer grado.

La fórmula fue utilizada por primera vez por Evangelista Torricelli, pero debe su nombre al matemático Inglés Thomas Simpson. Corresponde a la regla del tonel que Johannes Kepler ya había formulado en 1615.

Objetivo del método

El objetivo principal del método del trapecio es estimar el valor numérico de una integral definida. Dada una función continua en un intervalo cerrado [a.b], el método del trapecio busca aproximar el área bajo la curva de la función dentro de ese intervalo.

Para este método, se ocupan 2 fórmulas dependiendo del caso que se tenga.

Desarrollo del método

Cuando solo se tiene un intervalo de (a, b), se aplica la siguiente fórmula:

$$\int_{a}^{b} f(x)dx = (b-a) \left[\frac{f(a)+f(b)}{2} \right]$$

Cuando el intervalo se divide en subintervalos, la fórmula es:

$$\int_{a}^{b} f(x)dx = \left[\frac{h}{2}\right] [f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1} + f(x_n))]$$

Ejemplo 1:

Ejemplos resueltos por el Método del Trapecio.

1. Encontrar el área bajo la curva dada la función $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx$ en los límites (-1,1).

$$\int_{-1}^{1} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

Utilizando las fórmulas anteriores mencionadas:

$$I = \int_{a}^{b} f(x)dx = \left[\frac{h}{2}\right] [f(a) + f(b)]$$
 (1)
$$h = \frac{b-a}{n}$$
 (2)

Se tiene que el valor de n=6, para lo cual se aplica la ecuación (2):

$$h = \frac{1 - (-1)}{6} = \frac{1}{3} = 0.3333333$$
$$x_0 = a : f(x_0) = 0.2419707$$
$$x_n = b : f(x_6) = 0.2419707$$

tabulando se obtiene.

i	x_i	x_i	x_i
0	$a=x_0$	-1	-1
1	$x_1 = x_0 + h$	$-\frac{2}{3}$	-0.666667
2	$x_2 = x_1 + h$	$-\frac{1}{3}$	-0.333333
3	$x_3 = x_2 + h$	0	0
4	$x_4 = x_3 + h$	$\frac{1}{3}$	0.333333
5	$x_5 = x_4 + h$	$\frac{2}{3}$	0.666667
6	$x_6 = x_5 + h = b$	1	1

Aplicando la integral divida en los intervalos se obtiene:

$$I = \int_{a=x_0}^{b=x_6} f(x)dx$$

$$I = \int_{x_0}^{x_1} f(x)dx + \int_{x_1}^{x_2} f(x)dx + \int_{x_2}^{x_3} f(x)dx + \int_{x_3}^{x_4} f(x)dx + \int_{x_4}^{x_5} f(x)dx + \int_{x_5}^{x_6} f(x)dx$$

Aplicando la fórmula del método del trapecio se aplica en cada intervalo:

$$I = \int_{-1}^{1} f(x)dx$$

$$= \frac{h}{2} [f(x_0) + f(x_1)] + \frac{h}{2} [f(x_1) + f(x_2)] + \frac{h}{2} [f(x_2) + f(x_3)]$$

$$+ \frac{h}{2} [f(x_3) + f(x_4)] + \frac{h}{2} [f(x_4) + f(x_5)] + \frac{h}{2} [f(x_5) + f(x_6)]$$

Factorizando:

$$I = \int_{-1}^{1} f(x)dx$$

$$= \frac{h}{2} [f(x_0) + 2[f(x_1) + f(x_1) + f(x_2) + f(x_3) + f(x_4) + f(x_5) + f(x_6)]]$$

Sintetizando la fórmula, se obtiene:

$$I = \int_{a=x_0}^{b=x_6} f(x)dx = \frac{h}{2} \left[f(x_0) + 2 \sum_{i=0}^{n} f(x_i) + f(x_n) \right]$$
 (3)

Evaluando de nuevo los puntos, pero para los valores de $f(x_i)$:

i	$\mathbf{x_i}$	$f(x_i)$
0	-1	0.2419707
1	-0.666667	0.319448
2	-0.333333	0.377383
3	0	0.398942
4	0.333333	0.377383
5	0.666667	0.319448
6	1	0.2419707

Remplazando en la ecuación (3) los datos obtenidos de la tabulación:

$$\sum_{i=0}^{n} f(x_i) = 0.319448 + 0.377383 + 0.398942 + 0.377383 + 0.319448 = 1.792604$$

$$I = \frac{0.333333}{2} [0.241971 + 2(1.792604) + 0.241971] = 0.6781191$$

$$\therefore I = 0.678191$$

Ejemplo 2:

2. Utilizar la regla del trapecio para obtener una aproximación de la integral definida siguiente, en el intercalo (-1,1):

$$\int_{1}^{2} \frac{x^3}{1 + x^{\frac{1}{2}}} dx$$

Utilizando las fórmulas anteriores mencionadas:

$$I = \int_{a}^{b} f(x)dx = \left[\frac{h}{2}\right] [f(a) + f(b)]$$
 (1)
$$h = \frac{b-a}{n}$$
 (2)

Donde:

$$a = 1$$

 $b = 2$
 $n = 1$

Sustituyendo en la segunda ecuación (2):

$$h = \frac{2-1}{1} = 1$$

$$f(a) = f(1) = 0.5$$

$$f(b) = f(2) = 3.313708$$

Remplazando en la ecuación (1):

$$I = \frac{1}{2}[0.5 + 3.313708]$$

$$\therefore I = 1.906854$$

Bibliografía

- https://es.khanacademy.org/math/ap-calculus-ab/ab-integration-new/ab-6-2/a/understanding-the-trapezoid-rulez
- https://blog.nekomath.com/calculo-diferencial-e-integral-ii-metodos-numericos-de -integracion-regla-del-punto-medio-y-del-trapecio/
- https://www.youtube.com/watch?v=6ycBGPIX5sI