빵빵한 아두이노 센서 키트

총 40개의 모듈과 40핀 케이블이 포함되어 있습니다.

Version 1.1 릴리즈 2013년 09월 10일 메카솔루션

Intro...

빵빵한 센서 키트는 40개의 센서로 이루어진 패키지로 아두이노 초보자들을 위해고안되었습니다. 초보자들이 사용하기 쉽도록 납땜이 필요없이 간단히 케이블을 이용하여 아두이노와 연결할 수 있으며 각각의 센서에 대한 개괄적인 설명 및 아두이노코드를 제공함으로써 센서를 보다 쉽게 동작하고 응용할 수 있습니다.

본 매뉴얼에서 다루게 될 센서는 다음과 같습니다.

- 1. 초음파 거리 센서 모듈
- 2. 적외선 인체감지 센서 모듈
- 3. 아날로그 가속도 센서 모듈
- 4. 디지털 온도 센서 모듈
- 5. 진동 센서 모듈
- 6. 홀 자기 센서 모듈
- 7. 리셋 버튼 모듈
- 8. 적외선 발광 모듈
- 9. 수동 부저 모듈
- 10. 레이져 발광 모듈
- 11. RGB SMD LED 모듈
- 12. 포토인터럽트 모듈
- 13. 듀얼 컬러 LED 모듈 3mm (커먼 캐소드)
- 14. 피에조 버저 모듈
- 15. 아날로그 온도 센서 모듈
- 16. DHT11 디지털 온도 습도 센서 모듈
- 17. RGB 컬러 LED 모듈
- 18. 수은 기울기 스위칭 센서 모듈
- 19. 조도 센서 모듈
- 20. 5V 릴레이 모듈

- <u>21. 기울기 센서 모듈</u>
- 22. 소형 리드 스위치 모듈
- 23. 적외선 리모트 컨트롤 모듈
- 24. PS2 게임 조이스틱 모듈
- 25. 리니어 홀 자기 센서 모듈
- <u>26. 리드 스위치 모듈</u>
- 27. 불꽃 감지 센서 모듈
- 28. 매직 라이트 컵 모듈
- 29. 디지털 온도 센서 모듈
- 30. 듀얼 컬러 LED 모듈 5mm (커먼 캐소드)
- 31. 노크 센서 모듈
- 32. 적외선 장애물 감지 센서 모듈
- 33. 7 컬러 플래시 LED 모듈
- 34. 아날로그 홀 자기 센서 모듈
- <u>35. 터치 센서 모듈</u>
- 36. 고감도 사운드 센서 모듈
- 37. 마이크로폰 사운드 감지 센서 모듈
- 38. 심박 센서 모듈
- 39. 트랙킹 센서 모듈
- 40. 로터리 인코더 모듈

1. 초음파 거리 센서 모듈

- 기본 정보

■ 초음파를 이용한 거리 센서

■ 유효 측정 거리: 2~500cm

■ 입력 전압: 5V

- 핀 연결

센서 핀	아두이노 핀
VCC	5V
Trig	D12
Echo	D13
GND	GND

```
#define trigPin 12
#define echoPin 13
void setup() {
  Serial.begin (9600);
  pinMode(trigPin, OUTPUT);
  pinMode(echoPin, INPUT);
}
void loop() {
  int duration, distance;
  digitalWrite(trigPin, HIGH);
  delayMicroseconds(1000);
  digitalWrite(trigPin, LOW);
  duration = pulseIn(echoPin, HIGH);
  distance = (duration/2) / 29.1;
  if (distance >= 200 || distance <= 0){
    Serial.println("Out of range");
  }
  else {
    Serial.print(distance);
    Serial.println(" cm");
  }
  delay(500);
} (1000); // delay one second
```

2. 적외선 인체감지 센서 모듈

- 기본 정보

■ 유효 감지 거리: 7m

■ 감지 각도: 120°

■ 작동 전압: 5V - 20V

■ PCB Dimension: 32mm * 24mm

- 핀 연결

센서 핀	아두이노 핀
GND	GND
OUT	D2
VCC	5V

```
int motion_1 = 2;
int light_1 = 13;
void setup()
  pinMode (motion_1,INPUT);
  pinMode (light_1, OUTPUT);
}
void loop (){
  digitalWrite (light_1,LOW);
  delay(1000); //this delay is to let the sensor settle down before taking a reading
  int sensor_1 = digitalRead(motion_1);
  if (sensor_1 == HIGH){
    digitalWrite(light_1,HIGH);
    delay(500);
    digitalWrite(light_1,LOW);
    delay(500);
 }
```

3. 아날로그 가속도 센서 모듈

- 기본 정보

- 손쉽게 사용가능한 아날로그 출력형 3축 가속센서 보드로 +3/-3g 측정영역의 초절전 저노이즈형 제품으로 안정된 성능을 제공.
- X, Y, Z값을 이용하여 Pitch와 Roll의 값을 구할 수 있음.
- $\blacksquare \quad \text{Pitch} = \tan^{-1} \frac{x_{acc}}{y_{acc}^2 + z_{acc}^2}$
- $\blacksquare \quad \text{Roll} = \tan^{-1} \frac{y_{acc}}{x_{acc}^2 + z_{acc}^2}$

- 핀 연결

센서 핀	아두이노 핀
VCC	3.3V
X_OUT	A1
Y_OUT	A2
Z_OUT	A3
GND	GND

```
// x-axis of the accelerometer
const int xpin = A1;
const int ypin = A2;
                                      // y-axis
                                      // z-axis (only on 3-axis models)
const int zpin = A3;
int sampleDelay = 500; //number of milliseconds between readings
void setup()
  // initialize the serial communications:
  Serial.begin(9600);
 //Make sure the analog-to-digital converter takes its reference voltage from
  // the AREF pin
  analogReference(EXTERNAL);
  pinMode(xpin, INPUT);
  pinMode(ypin, INPUT);
  pinMode(zpin, INPUT);
}
void loop()
 int x = analogRead(xpin);
  //add a small delay between pin readings. I read that you should
  //do this but haven't tested the importance
    delay(1);
 int y = analogRead(ypin);
  //add a small delay between pin readings. I read that you should
  //do this but haven't tested the importance
    delay(1);
  int z = analogRead(zpin);
  //zero_G is the reading we expect from the sensor when it detects
  //no acceleration. Subtract this value from the sensor reading to
  //get a shifted sensor reading.
  float zero_G = 512.0;
  //scale is the number of units we expect the sensor reading to
  //change when the acceleration along an axis changes by 1G.
  //Divide the shifted sensor reading by scale to get acceleration in Gs.
```

```
float scale = 102.3;

Serial.print(((float)x - zero_G)/scale);
Serial.print(((float)y - zero_G)/scale);
Serial.print(((float)z - zero_G)/scale);
Serial.print(((float)z - zero_G)/scale);
Serial.print((\psi \psi - zero_G)/scale);
Serial.print(\psi \psi - zero_G)/scale);
// delay before next reading:
delay(sampleDelay);
}
```

4. 디지털 온도 센서 모듈

- 기본 정보

- DS18B20을 사용
- -55°C ~ +125°C, 정확도 ±0.5°C (-10°C ~ +85°C내)
- 센서의 +는 가운데 핀으로 -와 S핀 사이에 있음.

- 핀 연결

센서 핀	아두이노 핀
_	GND
+	5V
S	D10

- Arduino 소스 코드

#include <OneWire.h>

```
OneWire ds(10); // 디지털 10번 핀에 연결
void setup(void)
Serial.begin(9600);
void loop(void)
 byte i;
 byte present = 0;
 byte data[12];
 byte addr[8];
 int Temp;
 if (!ds.search(addr)) {
      ds.reset_search();
      return;
 }
 Serial.print("R=");
 for(i = 0; i < 8; i++) {
   Serial.print(addr[i], HEX);
   Serial.print(" ");
 }
 if (OneWire::crc8(addr, 7)!=addr[7]) {
      Serial.print("CRC is not valid!n");
      return;
 }
 if (addr[0] != 0x28) {
      Serial.print("Device is not a DS18S20 family device.n");
      return;
 }
 ds.reset();
 ds.select(addr);
 ds.write(0x44,1); // start conversion, with parasite power on at the end
 delay(1000); // maybe 750ms is enough, maybe not
 present = ds.reset();
 ds.select(addr);
 ds.write(0xBE); // Read Scratchpad
```

```
Serial.print("P=");
 Serial.print(present,HEX);
 Serial.print(" ");
 for (i = 0; i < 9; i++) {
                          // we need 9 bytes
   data[i] = ds.read();
   Serial.print(data[i], HEX);
   Serial.print(" ");
Temp=(data[1]<<8)+data[0];//take the two bytes from the response relating to
temperature
Temp=Temp>>4;//divide by 16 to get pure celcius readout
 //next line is Fahrenheit conversion
 Temp=Temp*1.8+32; // comment this line out to get celcius
 Serial.print("T=");//output the temperature to serial port
 Serial.print(Temp);
   Serial.print(" ");
 Serial.print(" CRC=");
 Serial.print( OneWire::crc8( data, 8), HEX);
 Serial.println();
```

5. 진동 센서 모듈

- 기본 정보

- SW-18015P을 사용
- 터치, 진동, 충격 등의 물리적인 움직임을 감지함
- Maximum 12V, 20mA current

Model	A	В	C	D	E	F	Sensitivity	Recapsulation
SW-18015	Ø4.5	10	8	*	S0. 5	Ø0. 15	High sensitivity	Unsealed
SW-18015P	ø4.8	11	8	*	S0. 5	Ø0. 15	High sensitivity	Sealed
SW-18020	04.5	10	8		S0. 5	≈0.20	standard	Unsealed
SW-18020P	ø4.8	11	8	*	S0. 5	ø0. 20	standard	Sealed
SW-18025	ø4, 5	10	8	*	S0. 5	ø0. 25	dull	Unsealed
SW-18025P	ø4.8	11	8	*	S0. 5	Ø0. 25	dull	Sealed
SW-18030	ø4. 5	10	8	*	S0. 5	ø0. 30	duller	Unsealed
SW-18030P	ø4.8	11	8	*	S0. 5	Ø0. 30	duller	Sealed

*Specification "D" size for 8-13mm, can according to the customer requirement.

- 핀 연결

센서 핀	아두이노 핀
_	GND
+	5V
S	D3

0.3-1.0

0.3-1.0

```
int Led=13;//define LED interface
int Shock=3;//define vibration sensor interface
int val;//define digital varible val
void setup()
{
    pinMode(Led,OUTPUT);//define LED as output
    pinMode(Shock,INPUT);//define shock as input
}
void loop()
{
    val=digitalRead(Shock);//
    if(val==HIGH)//
    {
        digitalWrite(Led,LOW);
    }
    else
```

```
{
    digitalWrite(Led,HIGH);
  }
}
```

6. 홀 자기 센서 모듈

- 기본 정보

- 3144EUA-S 홀 자기 센서 사용
- 홀 자기 센서는 자기장의 세기에 따라 전압이 변하는 소자로서 펄스 변조, 유량 및 유속 감지, 자동차 속도 측정 등 다양한 분야에 사용됨
- BLDC모터에서 회전체의 회전수를 감지하기 위해서도 사용됨
- 핀 연결

센서 핀	아두이노 핀
_	GND
+	5V
S	D3

- Arduino 소스 코드

int Led=13; int SENSOR=3;

```
int val;
void setup()
{
   pinMode(Led,OUTPUT);
   pinMode(SENSOR,INPUT);
}
void loop()
{
   val=digitalRead(SENSOR);
   if(val==HIGH)
   {
      digitalWrite(Led, HIGH);
   }
   else
   {
      digitalWrite(Led, LOW);
   }
}
```

7. 리셋 버튼 모듈

- 기본 정보

- 일반적으로 널리 사용되는 리셋버튼 스위치를 이용하여 디지털 핀 입력에 대한 학습을 할 수 있음.
- 버튼이 눌림에 따른 LED 점등 변화 확인.
- 핀 연결

센서 핀	아두이노 핀
_	GND
+	5V
S	D3

```
int Led=13;
int BUTTONPIN=3;
int val;
void setup()
{
```

```
pinMode(Led,OUTPUT);
pinMode(BUTTONPIN,INPUT);
}
void loop()
{
    val=digitalRead(BUTTONPIN);
    if(val==HIGH)
    {
        digitalWrite(Led, HIGH);
    }
    else
    {
        digitalWrite(Led, LOW);
    }
}
```

8. 적외선 발광 모듈

- 기본 정보

- IRremote.h는 메카솔루션 홈페이지에서 다운로드 가능
- 7 컬러 플래시 LED 모듈과 모양이 비슷하여 혼돈할 수 있음
- 7 컬러 플래시는 'CNT5', 'DHT11'이 기판에 적혀 있고, 적외선 발광 모듈은 기판에 홀이 많이 있음

- 핀 연결

센서 핀	아두이노 핀
_	GND
+	5V
S	D3

- Arduino 소스 코드

#include <IRremote.h>
IRsend irsend;

```
void setup ()
{
    Serial.begin (9600);
}
void loop ()
{
    for (int i = 0; i <50; i++)
    {
        irsend.sendSony (0xa90, 12); // Sony TV power code
        delay (40);
    }
}</pre>
```

9. 수동 부저 모듈

- 기본 정보

■ 버저는 소리 신호 알림 장치이며 기계, 전자기계, 압전 방식으로 되어 있음. 전기적 신호를 소리 신호로 변경함.

■ 출력: 95dBA

■ 주파수 영역: 2048Hz

- 핀 연결

센서 핀	아두이노 핀
_	GND
+	5V
S	D11

```
int buzzer=11;
void setup()
{
```

```
pinMode(buzzer,OUTPUT);
void loop()
  unsigned char i,j;
  while(1)
    for(i=0;i<80;i++)//output sound of one frequency
      digitalWrite(buzzer,HIGH);//make a sound
      delay(1);//delay 1ms
      digitalWrite(buzzer,LOW);//silient
      delay(1);//delay 1ms
    }
    for(i=0;i<500;i++)//output sound of another frequency
      digitalWrite(buzzer,HIGH);//make a sound
      delay(2);//delay 2ms
      digitalWrite(buzzer,LOW);//silient
      delay(2);//delay 2ms
    }
  }
```

10. 레이저 발광 모듈

- 기본 정보
 - 650nm 레이저 다이오드
- 핀 연결

센서 핀	아두이노 핀
1	GND
+	5V
S	D10

```
void setup ()
{
   pinMode (10, OUTPUT);
}
void loop ()
{
   digitalWrite (10, HIGH); // open the laser head
   delay (1000); // delay one second
```

```
digitalWrite (10, LOW); // turn off the laser head delay (1000); // delay one second }
```

11.RGB SMD LED 모듈

- 기본 정보
 - 풀 컬러 RGB LED
- 핀 연결

센서 핀	아두이노 핀
_	GND
R	D11
G	D10
В	D9

```
int redpin = 11;
int bluepin =10;
int yellowpin =9;
int val;
void setup()
```

```
pinMode(redpin, OUTPUT);
  pinMode(bluepin, OUTPUT);
  pinMode(yellowpin, OUTPUT);
  Serial.begin(9600);
}
void loop()
  for(val=255; val>0; val--)
   analogWrite(11, val);
   analogWrite(10, 255-val);
   analogWrite(9, 128-val);
   delay(1);
  }
  for(val=0; val<255; val++)
   analogWrite(11, val);
   analogWrite(10, 255-val);
   analogWrite(9, 128-val);
   delay(1);
  }
  Serial.println(val, DEC);
```

12. 포토인터럽트 모듈

- 기본 정보
 - 기판의 U자형 홈에 사물 혹은 조그만 시편을 지나가게 하면 이를 센싱함
- 핀 연결

센서 핀	아두이노 핀
_	GND
+	5V
S	D3

```
int Led = 13;// define LED Interface
int buttonpin = 3; // define the photo interrupter sensor interface
int val; // define numeric variables val
void setup ()
{
   pinMode (Led, OUTPUT);// define LED as output interface
   pinMode (buttonpin, INPUT);// define the photo interrupter sensor output interface
```

```
void loop ()

val = digitalRead (buttonpin);// digital interface will be assigned a value of 3 to read
val

if (val == HIGH) // When the light sensor detects a signal is interrupted, LED flashes

digitalWrite (Led, HIGH);

else

digitalWrite (Led, LOW);

digitalWrite (Led, LOW);

}
```

13. 듀얼 컬러 LED 모듈 3mm (커먼 캐소드)

- 기본 정보
 - 3mm와 5mm LED 중 3mm LED.
- 핀 연결

센서 핀	아두이노 핀
_	GND
G	D11
R	D10

```
int redpin = 10; // select the pin for the red LED
int greenpin = 11; // select the pin for the blueLED
int val;
void setup ()
{
   pinMode (redpin, OUTPUT);
   pinMode (greenpin, OUTPUT);
```

```
Serial.begin (9600);
}
void loop ()
{
for (val = 255; val> 0; val --)
{
    analogWrite (11, val);
    analogWrite (10, 255-val);
    delay (15);
}
for (val = 0; val <255; val ++)
{
    analogWrite (11, val);
    analogWrite (10, 255-val);
    delay (15);
}
Serial.println (val, DEC);
}
```

14.피에조 버저 모듈

- 기본 정보

■ 간혹, -와 +가 바뀌어 있는 경우가 있음. 스티커를 제거하였을 경우 버저의 +가 3핀쪽으로 오면 3핀의 -와 +가 반대로 연결되어 있기에 다음처럼 핀 연결을 함. 만약, 버저위의 +가 3핀의 반대 방향을 향하면 센서핀의 -는 아두이노의 GND에, 센서핀의 +는 아두이노의 5V에 정상적으로 연결함.

- 핀 연결

센서 핀	아두이노 핀
_	5V
+	GND
S	D8

- Arduino 소스 코드

int speakerPin = 8;

byte song_table [] = {30, 30, 30, 40, 50, 60, 70, 80, 90, 100,110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 250, 240, 230, 220, 210,

```
200, 190, 180,
170, 160, 150, 140, 130, 120, 110, 100, 90, 80, 70, 60, 50, 40, 30, 30, 30};
int MAX = 50;
int count = 0;
void setup () {
  pinMode (speakerPin, OUTPUT);
  }
void loop () {
  analogWrite (speakerPin, song_table [count]);
  count ++;
  if (count> MAX) {
  count = 0;
  }
  delay (50);
}
```

15.아날로그 온도 센서 모듈

- 기본 정보

- 써미스터를 이용한 온도 측정
- 테스트결과 -와 +극이 반대로 되어 있음을 확인(주의요망)
- Steinhart-Hart Thermistor equation을 이용하여 온도를 측정
- 핀 연결

센서 핀	아두이노 핀
_	5V
+	GND
S	A0

- Arduino 소스 코드

#include <math.h>
int sensorPin = A0; // select the input pin for the potentiometer
int ledPin = 13; // select the pin for the LED

```
int sensorValue = 0; // variable to store the value coming from the sensor
void setup()
  pinMode(ledPin, OUTPUT);
  Serial.begin(9600);
void loop()
 sensorValue = analogRead(sensorPin);
  digitalWrite(ledPin, HIGH);
 delay(sensorValue);
 digitalWrite(ledPin, LOW);
 delay(sensorValue);
  Serial.println(Thermister(sensorValue), DEC);
double Thermister (int RawADC)
 double Temp;
 Temp = \log (((10240000/RawADC) - 10000));
 Temp = 1 / (0.001129148 + (0.000234125 + (0.0000000876741 * Temp * Temp)) *
Temp);
 Temp = Temp - 273.15; // Convert Kelvin to Celcius
  return Temp;
```

16.DHT11 디지털 온도 습도 센서 모듈

- 기본 정보

■ DHT11를 이용한 온도와 습도 측정

■ 습도 측정 범위: 20-90% (5% 오차)

■ 온도 측정 범위: 0 - 50℃ (2℃ 오차)

- 핀 연결

센서 핀	아두이노 핀
_	5V
+	GND
S	A0

- Arduino 소스 코드

#define dht_dpin A0
byte bGlobalErr;
byte dht_dat[5];
void setup(){
InitDHT();

```
Serial.begin(9600);
delay(300);
Serial.println("Humidity and temperaturenn");
delay(700);
void loop(){
  ReadDHT();
  switch (bGlobalErr){
     case 0:
 Serial.print("Current humdity = ");
 Serial.print(dht_dat[0], DEC);
 Serial.print(".");
 Serial.print(dht_dat[1], DEC);
 Serial.print("% ");
 Serial.print("temperature = ");
 Serial.print(dht_dat[2], DEC);
 Serial.print(".");
 Serial.print(dht_dat[3], DEC);
 Serial.println("C ");
        break;
     case 1:
        Serial.println("Error 1: DHT start condition 1 not met.");
        break;
     case 2:
        Serial.println("Error 2: DHT start condition 2 not met.");
        break;
     case 3:
        Serial.println("Error 3: DHT checksum error.");
        break;
     default:
        Serial.println("Error: Unrecognized code encountered.");
        break;
      }
  delay(800);
void InitDHT(){
   pinMode(dht_dpin,OUTPUT);
        digitalWrite(dht_dpin,HIGH);
}
void ReadDHT(){
bGlobalErr=0;
byte dht_in;
byte i;
digitalWrite(dht_dpin,LOW);
delay(20);
```

```
digitalWrite(dht_dpin,HIGH);
delayMicroseconds(40);
pinMode(dht_dpin,INPUT);
//delayMicroseconds(40);
dht_in=digitalRead(dht_dpin);
if(dht_in){
   bGlobalErr=1;
   return;
   }
delayMicroseconds(80);
dht_in=digitalRead(dht_dpin);
if(!dht_in){
   bGlobalErr=2;
   return;
delayMicroseconds(80);
for (i=0; i<5; i++)
   dht_dat[i] = read_dht_dat();
pinMode(dht_dpin,OUTPUT);
digitalWrite(dht_dpin,HIGH);
byte dht_check_sum =
       dht_dat[0]+dht_dat[1]+dht_dat[2]+dht_dat[3];
if(dht_dat[4]!= dht_check_sum)
   {bGlobalErr=3;}
};
byte read_dht_dat(){
  byte i = 0;
  byte result=0;
  for(i=0; i < 8; i++)
  {
    while(digitalRead(dht_dpin)==LOW);
    delayMicroseconds(30);
    if (digitalRead(dht_dpin)==HIGH)
    result |=(1<<(7-i));
    while (digitalRead(dht_dpin)==HIGH);
    }
  return result;
```

17.RGB 컬러 LED 모듈

- 기본 정보
 - RGB 컬러 LED (5mm)
- 핀 연결

센서 핀	아두이노 핀
_	GND
R	D11
G	D10
В	D9

- Arduino 소스 코드

int redpin = 11;
int bluepin =10;
int yellowpin =9;
int val;

```
void setup()
  pinMode(redpin, OUTPUT);
  pinMode(bluepin, OUTPUT);
  pinMode(yellowpin, OUTPUT);
  Serial.begin(9600);
void loop()
  for(val=255; val>0; val--)
   analogWrite(11, val);
   analogWrite(10, 255-val);
   analogWrite(9, 128-val);
   delay(1);
  for(val=0; val<255; val++)
   analogWrite(11, val);
   analogWrite(10, 255-val);
   analogWrite(9, 128-val);
   delay(1);
  Serial.println(val, DEC);
```

18. 수은 기울기 스위칭 센서 모듈

- 기본 정보
 - 유리관 속의 수은이 기울기에 따라 움직이며 LED를 스위칭하는 동작
- 핀 연결

센서 핀	아두이노 핀
_	GND
+	5V
S	D2

```
const int S = 2;  // the number of the pushbutton pin
const int ledPin = 13;  // the number of the LED pin
int sensorstate = 0;  // variable for reading the pushbutton status

void setup() {
   pinMode(ledPin, OUTPUT);
   pinMode(S, INPUT);
}
```

```
void loop(){
    sensorstate = digitalRead(S);
    if (sensorstate == HIGH) {
        // turn LED on:
        digitalWrite(ledPin, HIGH);
    }
    else {
        // turn LED off:
        digitalWrite(ledPin, LOW);
    }
}
```

19.조도 센서 모듈

- 기본 정보

- 빛의 밝기에 따라 저항값이 변하는 특성을 이용한 센서
- 광센서, 포토셀, 혹은 조도센서라 불림.
- 핀 연결

센서 핀	아두이노 핀
_	GND
+	5V
S	Α0

```
int sensorPin = A0; // select the input pin for the potentiometer int ledPin = 13; // select the pin for the LED int sensorValue = 0; // variable to store the value coming from the sensor
```

```
void setup() {
  pinMode(ledPin, OUTPUT);
  Serial.begin(9600);
}
void loop()
{
  sensorValue = analogRead(sensorPin);
  Serial.println(sensorValue, DEC);
  delay(50);
}
```

20.5V 릴레이 모듈

- 기본 정보

- 릴레이는 전기적으로 구동되는 스위치로서 많은 릴레이는 전자석으로 스위칭하는 구조를 가지고 있음.
- 릴레이에 신호를 가하면 딸깍하는 소리가 나며 NO, NC, 그리고 COM의 출력을 갖는다.
- 예를 들어, 두 개의 신호선을 스위칭할 경우, 한 쪽은 NO (Normally Opened)에 그리고 다른 하나는 COM에 연결하면 릴레이에 신호를 가하지 않을 때까지 두 신호선은 열려 있다. 그리고, 릴레이에 신호가 가해지면 NO와 COM은 연결되어 두 신호선은 닫히게 된다.

- 핀 연결

센서 핀	아두이노 핀
_	GND
+	5V
S	D10

```
int relay = 10; // relay turns trigger signal - active high;
void setup ()
{
    pinMode (relay, OUTPUT); // Define port attribute is output;
}
void loop ()
{
    digitalWrite (relay, HIGH); // relay conduction;
    delay (1000);
    digitalWrite (relay, LOW); // relay switch is turned off;
    delay (1000);
}
```

21.기울기 센서 모듈

- 기본 정보
 - 센서 내부의 금속이 기울기에 따라 움직이며 아두이노의 LED를 스위칭하는 동작
- 핀 연결

센서 핀	아두이노 핀
_	GND
+	5V
S	D2

```
const int S = 2;  // the number of the pushbutton pin
const int ledPin = 13;  // the number of the LED pin
int sensorstate = 0;  // variable for reading the pushbutton status

void setup() {
   pinMode(ledPin, OUTPUT);
   pinMode(S, INPUT);
```

```
void loop(){
  sensorstate = digitalRead(S);
  if (sensorstate == HIGH) {
    // turn LED on:
       digitalWrite(ledPin, HIGH);
    }
  else {
       // turn LED off:
       digitalWrite(ledPin, LOW);
  }
}
```

22.소형 리드 스위치 모듈

- 기본 정보
 - 리드 스위치는 자석을 가까이 가져갔을 때 연결이 되고 자석을 떼었을 때 단락이 되는 성질을 이용한 센서입니다.
- 핀 연결

센서 핀	아두이노 핀
_	GND
+	5V
S	D2

```
const int S = 2;  // the number of the pushbutton pin
const int ledPin = 13;  // the number of the LED pin
int sensorstate = 0;  // variable for reading the pushbutton status

void setup() {
   pinMode(ledPin, OUTPUT);
```

```
pinMode(S, INPUT);
}
void loop(){
  sensorstate = digitalRead(S);
  if (sensorstate == HIGH) {
    // turn LED on:
    digitalWrite(ledPin, HIGH);
  }
  else {
    // turn LED off:
    digitalWrite(ledPin, LOW);
  }
}
```

23.적외선 리모트 컨트롤 모듈

- 기본 정보
 - IRremote.h 라이브러리는 메카솔루션 홈페이지에서 다운로드 가능
- 핀 연결

센서 핀	아두이노 핀
_	GND
+	5V
S	D11

```
#include <IRremote.h>
int RECV_PIN = 11; // define input pin on Arduino
IRrecv irrecv (RECV_PIN);
decode_results results;
void setup ()
{
    Serial.begin (9600);
```

```
irrecv.enableIRIn (); // Start the receiver
}
void loop () {
if (irrecv.decode (& results)) {
  Serial.println (results.value, HEX);
  irrecv.resume (); // Receive the next value
}
}
```

24.PS2 게임 조이스틱 모듈

- 기본 정보

- 로봇제어 및 모터제어에 사용되는 조이스틱으로 아날로그 출력 방식의 조이스틱으로 Arduino에 연결하여 쉽게 제어를 할 수 있는 제품
- 2축 조이스틱 (X,Y,푸쉬버튼 기능)
- 핀 연결

센서 핀	아두이노 핀
GND	GND
+5V	5V
VRx	A0
VRy	A1
SW	D3

- Arduino 소스 코드

int JoyStick_X = 0; //x int JoyStick_Y = 1; //y

```
int JoyStick_Z = 3; / key
void setup ()
pinMode (JoyStick_X, INPUT);
pinMode (JoyStick_Y, INPUT);
pinMode (JoyStick_Z, INPUT_PULLUP);
Serial.begin (9600); / / 9600 bps
}
void loop ()
int x, y, z;
x = analogRead (JoyStick_X);
y = analogRead (JoyStick_Y);
z = digitalRead (JoyStick_Z);
Serial.print (x, DEC);
Serial.print (",");
Serial.print (y, DEC);
Serial.print (",");
Serial.println (z, DEC);
delay (100);
```

25.리니어 홀 자기 센서 모듈

- 기본 정보

- 리드센서와 마찬가지로 자석에 반응하는 센서
- 아날로그 (AO)와 디지털 (DO)신호 모두 검출 가능
- 핀 연결

센서 핀	아두이노 핀
DO	D2
+	5V
G	GND
AO	A0

```
const int S = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin
int sensorstate = 0; // variable for reading the pushbutton status
```

```
void setup() {
    pinMode(ledPin, OUTPUT);
    pinMode(S, INPUT);
}
void loop(){
    sensorstate = digitalRead(S);
    if (sensorstate == HIGH) {
        // turn LED on:
        digitalWrite(ledPin, HIGH);
    }
    else {
        // turn LED off:
        digitalWrite(ledPin, LOW);
    }
}
```

26.리드 스위치 모듈

- 기본 정보
 - 홀 자기 센서와 마찬가지로 자석에 반응하는 센서
 - 아날로그 (AO)와 디지털 (DO)신호 모두 검출 가능
- 핀 연결

센서 핀	아두이노 핀
DO	D2
+	5V
G	GND
AO	A0

- Arduino 소스 코드

const int S = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin
int sensorstate = 0; // variable for reading the pushbutton status

```
void setup() {
    pinMode(ledPin, OUTPUT);
    pinMode(S, INPUT);
}

void loop(){
    sensorstate = digitalRead(S);
    if (sensorstate == HIGH) {
        // turn LED on:
        digitalWrite(ledPin, HIGH);
    }
    else {
        // turn LED off:
        digitalWrite(ledPin, LOW);
    }
}
```

27.불꽃 감지 센서 모듈

- 기본 정보
 - 불꽃 감지 센서
 - 아날로그 (AO)와 디지털 (DO)신호 모두 검출 가능
- 핀 연결

센서 핀	아두이노 핀
DO	D2
+	5V
G	GND
AO	A0

```
const int S = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin
int sensorstate = 0; // variable for reading the pushbutton status
```

```
void setup() {
    pinMode(ledPin, OUTPUT);
    pinMode(S, INPUT);
}
void loop(){
    sensorstate = digitalRead(S);
    if (sensorstate == HIGH) {
        // turn LED on:
        digitalWrite(ledPin, HIGH);
    }
    else {
        // turn LED off:
        digitalWrite(ledPin, LOW);
    }
}
```

28.매직 라이트 컵 모듈

- 기본 정보

- 두 개가 하나의 세트
- 하나의 모듈에 LED불이 들어왔다가 두 개를 동시에 기울이면 다른 쪽으로 LED 불빛이 전달되는 현상

- 핀 연결

센서A 핀	아두이노 핀	센서B 핀	아두이노 핀
G	GND	G	GND
+	5V	+	5V
S	D7	S	D4
L	D5	L	D6

- Arduino 소스 코드

int LedPinA = 5;
int LedPinB = 6;
int SPinA = 7;
int SPinB = 4;

```
int buttonStateA = 0;
int buttonStateB = 0;
int brightness = 0;
void setup()
    pinMode(LedPinA, OUTPUT);
    pinMode(LedPinB, OUTPUT);
    pinMode(SPinA, INPUT);
    pinMode(SPinB, INPUT);
}
void loop()
 buttonStateA = digitalRead(SPinA);
 if (buttonStateA == HIGH && brightness != 255)
   brightness ++;
   buttonStateB = digitalRead(SPinB);
   if (buttonStateB == HIGH && brightness != 0)
  brightness --;
      analogWrite(LedPinA, brightness); // A will turn off gradually
      analogWrite(LedPinB, 255 - brightness); // B will turn on gradually
      delay(25);
```

29.디지털 온도 센서 모듈

- 기본 정보

- 디지털 온도 센서 모듈이지만, 아날로그 센서로도 사용 가능.
- 아날로그 (AO)와 디지털 (DO)신호 모두 검출 가능
- 핀 연결

센서 핀	아두이노 핀
DO	D2
+	5V
G	GND
AO	A0

- Arduino 소스 코드

const int S = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin
int sensorstate = 0; // variable for reading the pushbutton status

```
void setup() {
    pinMode(ledPin, OUTPUT);
    pinMode(S, INPUT);
}

void loop(){
    sensorstate = digitalRead(S);
    if (sensorstate == HIGH) {
        // turn LED on:
        digitalWrite(ledPin, HIGH);
    }
    else {
        // turn LED off:
        digitalWrite(ledPin, LOW);
    }
}
```

30.듀얼 컬러 LED 모듈 5mm (커먼 캐소드)

- 기본 정보

■ 5mm 사이즈의 Red, Green 듀얼 컬러 LED

- 핀 연결

센서 핀	아두이노 핀
_	GND
+ (레드)	D11
S (그린)	D10

```
int redpin = 11; // select the pin for the red LED
int greenpin = 10; // select the pin for the greenLED
int val;
void setup () {
pinMode (redpin, OUTPUT);
pinMode (greenpin, OUTPUT);
Serial.begin (9600);
void loop ()
for (val = 255; val > 0; val --)
analogWrite (11, val);
analogWrite (10, 255-val);
delay (15);
for (val = 0; val < 255; val ++)
analogWrite (11, val);
analogWrite (10, 255-val);
delay (15);
Serial.println (val, DEC);
```

31.노크 센서 모듈

- 기본 정보
 - 플라스틱 케이스 안의 금속이 진동 및 충격을 감지하여 출력.
- 핀 연결

센서 핀	아두이노 핀
_	GND
+	5V
S	D3

```
int Led=13;//define LED interface
int Shock=3;//define vibration sensor interface
int val;//define digital varible val
void setup()
{
    pinMode(Led,OUTPUT);//define LED as output
```

```
pinMode(Shock,INPUT);//define shock as input
}
void loop()
{
    val=digitalRead(Shock);//
    if(val==HIGH)//
    {
        digitalWrite(Led,LOW);
    }
    else
    {
        digitalWrite(Led,HIGH);
    }
}
```

32.적외선 장애물 감지 센서 모듈

- 기본 정보

- 적외선이 장애물에 의해 반사되면 LED를 깜빡임.
- LED 발광 다이오드를 통해 출력된 빛이 장애물에 의해 반사되고 이를 포토트렌지스터를 통해 읽음.

- 핀 연결

센서 핀	아두이노 핀
GND	GND
+	5V
out	D3
EN	X 연결안함

- Arduino 소스 코드

int Led = 13;// define LED Interface

int buttonpin = 3; // define the obstacle avoidance sensor interface

int val;// define numeric variables val

```
void setup ()
{
  pinMode (Led, OUTPUT) ;// define LED as output interface
  pinMode (buttonpin, INPUT) ;// define the obstacle avoidance sensor output interface
}
void loop ()
{
  val = digitalRead (buttonpin) ;// digital interface will be assigned a value of 3 to read
  val
  if (val == HIGH) // When the obstacle avoidance sensor detects a signal, LED flashes
  {
    digitalWrite (Led, HIGH);
  }
  else
  {
    digitalWrite (Led, LOW);
  }
}
```

33.7 컬러 플래시 LED 모듈

- 기본 정보
 - 3개의 핀 중 가운데 핀은 연결하지 않도록 한다 (주의)
- 핀 연결

센서 핀	아두이노 핀
_	GND
+	X (연결안함)
S	D12

```
void setup() {
   pinMode(12, OUTPUT);
}
void loop() {
   digitalWrite(12, HIGH); // set the LED on
```

```
delay(1000); // wait for a second
digitalWrite(12, LOW); // set the LED off
delay(1000); // wait for a second
}
```

34.아날로그 홀 자기 센서 모듈

- 기본 정보
 - 자기력에 의해 값이 변함
- 핀 연결

센서 핀	아두이노 핀
_	GND
+	5V
S	A0

```
}
void loop()
{
  sensorValue = analogRead(sensorPin);
  Serial.println(sensorValue, DEC);
  delay(50);
}
```

35.터치 센서 모듈

- 기본 정보
 - 터치 감지 센서
 - 아날로그 (AO)와 디지털 (DO)신호 모두 검출 가능
- 핀 연결

센서 핀	아두이노 핀
DO	D2
+	5V
G	GND
AO	A0

```
const int S = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin
int sensorstate = 0; // variable for reading the pushbutton status

void setup() {
```

```
pinMode(ledPin, OUTPUT);
pinMode(S, INPUT);
}
void loop(){
  sensorstate = digitalRead(S);
  if (sensorstate == HIGH) {
    // turn LED on:
        digitalWrite(ledPin, HIGH);
    }
  else {
        // turn LED off:
        digitalWrite(ledPin, LOW);
    }
}
```

36.고감도 사운드 센서 모듈

- 기본 정보
 - 고감도 사운드 감지 센서
 - 아날로그 (AO)와 디지털 (DO)신호 모두 검출 가능
- 핀 연결

센서 핀	아두이노 핀
DO	D2
+	5V
G	GND
AO	A0

```
const int S = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin
int sensorstate = 0; // variable for reading the pushbutton status

void setup() {
```

```
pinMode(ledPin, OUTPUT);
pinMode(S, INPUT);
}

void loop(){
  sensorstate = digitalRead(S);
  if (sensorstate == HIGH) {
    // turn LED on:
    digitalWrite(ledPin, HIGH);
  }
  else {
    // turn LED off:
    digitalWrite(ledPin, LOW);
  }
}
```

37.마이크로폰 사운드 감지 센서 모듈

- 기본 정보
 - 사운드 감지 센서
 - 아날로그 (AO)와 디지털 (DO)신호 모두 검출 가능
- 핀 연결

센서 핀	아두이노 핀
DO	D2
+	5V
G	GND
AO	A0

```
const int S = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin
int sensorstate = 0; // variable for reading the pushbutton status

void setup() {
```

```
pinMode(ledPin, OUTPUT);
pinMode(S, INPUT);
}
void loop(){
  sensorstate = digitalRead(S);
  if (sensorstate == HIGH) {
    // turn LED on:
    digitalWrite(ledPin, HIGH);
  }
  else {
    // turn LED off:
    digitalWrite(ledPin, LOW);
  }
}
```

38.심박 센서 모듈

- 기본 정보

- 손가락을 두 개의 다이오드 사이에 넣으면 적외선이 손가락을 투과하여 심박을 측정한다.
- 핀 연결

센서 핀	아두이노 핀
_	GND
+	5V
S	Α0

```
int ledPin = 13;
int sensorPin = 0;
double alpha = 0.75;
int period = 20;
double change = 0.0;
void setup ()
{
```

```
pinMode (ledPin, OUTPUT);
Serial.begin (115200);
}
void loop ()
{
  static double oldValue = 0;
  static double oldChange = 0;
  int rawValue = analogRead (sensorPin);
  double value = alpha * oldValue + (1 - alpha) * rawValue;
  Serial.print (rawValue);
  Serial.print (",");
  Serial.println (value);
  oldValue = value;
  delay (period);
}
```

39.트랙킹 센서 모듈

- 기본 정보
 - 가변저항을 돌려주면서 감도(Sensitivity)를 조절할 수 있다.
- 핀 연결

센서 핀	아두이노 핀
_	GND
+	5V
S	D3

```
int Led=13;//define LED interface
int Shock=3;//define vibration sensor interface
int val;//define digital varible val
void setup()
{
   pinMode(Led,OUTPUT);//define LED as output
   pinMode(Shock,INPUT);//define shock as input
```

```
}
void loop()
{
  val=digitalRead(Shock);//
  if(val==HIGH)//
  {
    digitalWrite(Led,LOW);
  }
  else
  {
    digitalWrite(Led,HIGH);
  }
}
```

40.로터리 인코더 모듈

- 기본 정보
 - 로터리 인코더를 돌리면서 회전 정도를 측정.
- 핀 연결

센서 핀	아두이노 핀
GND	GND
+	5V
SW	D2
DT	D3
CLK	D4

- Arduino 소스 코드

int aPin = 3; int bPin = 4;

int buttonPin = 2;

```
int temp;
int temprotation = 100;
int rotation = 100;
void setup()
  pinMode(aPin, INPUT);
  pinMode(bPin, INPUT);
  pinMode(buttonPin, INPUT);
  Serial.begin(9600);
void loop()
    int change = getEncoderTurn();
    if(change!=temp)
    {
      rotation = rotation + change;
      if(rotation != temprotation)
      Serial.println(rotation);
     temprotation = rotation;
    temp = change;
    delay(1);
int getEncoderTurn()
  // return -1, 0, or +1
  static int oldA = LOW;
  static int oldB = LOW;
  int result = 0;
  int newA = digitalRead(aPin);
  int newB = digitalRead(bPin);
  if (newA != oldA | | newB != oldB)
    if (oldA == LOW && newA == HIGH)
      result = -(oldB * 2 - 1);
    }
  }
  oldA = newA;
```

oldB = newB;
return result;
}