Contents

Introduction	2
Outline	2
What is Data?	2
What is a Database?	3
Metadata	3
Database Management Systems (DBMS)	3
Why should I care?	4
Why use a Database?	4
How do DB and DBMS address these problems?	5
Data Independence	5
Data Integrity	5
Backup and Recovery	5
Query Language Support	6
Metadata Management	6
Advantages of Databases	7
Disadvantages of the DB Approach	7
Database Languages	7
SQL	8
Data Definition Language	8
Data Manipulation Language	8
Data Query Language	8
Data Control Language	9
Transactions	9
Backup and Recovery	9

Users 9

Emergent	Databases
----------	-----------

10

Introduction

- Online Course
- Assessment
 - Exam: 75%
 - Countinuous Assessment: 25%
 - * Project Work
 - * Online Course

Outline

- System Engineering
- Information Design
- 1. Introduction to Databases
- 2. Database Architectures
- 3. Database Models
- 4. Relational Algebra for Data Manipulation
- 5. Designing Databases: Functional Dependency
- 6. Designing Databases: The Entity Relationship Approach
- 7. Designing Databases: Mapping from ER to Relations

What is Data?

- Data is any information that you want to store and refer to again. Data can be:
 - Text
 - Numbers
 - Dates
 - Images
 - Videos
 - Files
 - Any other types of information

What is a Database?

• An organised collection of Information, or Data

"A database is a persistent collection of related data supporting several different applications within an organisation"

- Organised to
 - Model aspects of reality
 - In a way that supports processes that require this information
 - * A collection of medican records in a Hospital
 - * Finding records by a specific Doctor or Patient
 - Mostly, to make the data more useful

Metadata

• Metadata adds context to data

Metadata	data
Student Number	4366247
Name	John Patrick Smith
Account Balance	1982.00

- Metadata can include:
 - Data type
 - Name of element
 - Size
 - etc.
- Can be used at any level of aggregation

Database Management Systems (DBMS)

- $\bullet\,$ Goal of a DBMS is to simplify the storage of, and access to, data
- DBMS support:
 - Definition
 - Manipulation

- Querying
- A DBMS can manage a single, or set of, DBs
- Should provide:
 - Efficient, reliable and secure management of large amounts of persistent data.
 - Languages for **defining** the DB:
 - * Data definition language
 - * This data about data is called metadata
 - Languages for **storing**, **retrieving** and **updating** data in the DB
 - * Data manipulation languages

Why should I care?

- Ubiquity
- Software Market
 - Roughly same size as OS market
- The majority of large corporations, web sites, scientific projects all manage both day to day operations as well as business intelligence and data mining using databases

Why use a Database?

- Pre-DB era was characterised by file processing systems
- File systems offered
 - Efficient, direct access to individual records
 - Fast sequential processing
- Choice of file organisation technique was based on the needs of the particular application
- $\bullet\,$ However, if multiple applications want to share data, this can give rise to wasteful duplication
 - Patient record application and Accounting application
 - Patient names, address, visit charges, etc.
- Duplication of data
 - Wasteful of storage
 - Inefficient
 - Most importantly, leads to inconsistencies
- DB approach aims to eliminate such redundancy
- Data from all applications is integrated and stored once in the DB
- All applications access the same physical copy of the data

How do DB and DBMS address these problems?

Data Independence

- File-based systems are data dependent
 - as the way in which data is viewed by an application and the way in which it is physically stored are built into the logic of the application program
- DBMS support logical data independence
 - by allowing the view of the data to be changed and data added without affecting it's underlying organisation
- DBMS support physical data independence
 - as they *insulate* the way in which data is viewed by the applications/users from the way in which it is physically stored

Data Integrity

- Data Integrity is concerned with the *consistency* and *accurancy* of the data in the Database
- Data Redundancy is a major threat to Data Integrity
- Support for Data Integrity is a key feature of any DBMS
- Database model parts of the real world in which many rules apply
 - "A student has only one address"
 - "A student must take five courses in the final year or four courses plus a project"
- DBMS express such rules by means of "integrity constraints"
- Validation of data values being entered into the DB is another aspect of Data Integrity
- Many users/applications simultaneously updating the Database can threaten Data Integrity
 - This requires "concurrency control"

Backup and Recovery

- The only facility available to file processing systems to restore data following failure is if a back-up was scheduled/manually taken
 - Time Machine on MacOSX
 - Backup and Recovery in Windows

- Insufficient in many on-line enivonments and organisations where data is a strategic resource
- DBMS provide very sophisticated recovery mechanisms

Query Language Support

- File systems are basically tools for physical storage of data
- They make data much less accessible to users than database systems
 - If a GP wanted to examine all records for a single patient, this would be very difficult
 - Even if they were meticulous in where the stored them
 - Potenially would need an application to process and combine the data
- DBMS provide a variety of interfaces to suit the needs of a wide range of users

Metadata Management

- In applications which process data from a file system, metadata is often part of the application program
- This can lead to duplication of metadata across applications
 - Leading to integrity problems
- Imagine a patient record, and to look at the data in this record, we would need to look at an application program:

```
public class Patient {
    private int patient_ID;
    private String patient_name;
    private String patient_address;
    private int patient_phone;
    private String patient_allergy;
    ...
}
```

- With a Database approach
 - Metadata is stored centrally in the catalog
 - Database catalog entry for patient record
 - * patient record contains basic details on patient

Patient_ID	int(4)	Unique
Patient_name	varchar(255)	Firstname followed by Surname
$Patient_Address$	varchar(255)	Truncate if necessary
Patient_Phone	int(10)	Home phone
Patient_Allgergies	varchar(255)	Drug name of None

Advantages of Databases

- Search and Retrieval Capabilities
 - Filtered according to specific needs
- Reduced Data Redundancy
 - Ease of Update
- Greater Data Integrity
- Independence from Applications, Concurrent Access
- Improved Data Security
- Reduced Costs for Data Entry, Storage and Retrieval

Disadvantages of the DB Approach

- Training required for management and querying
- Database systems are complex and time-consuming to design
- Cost
 - Software
 - Hardware
 - Training
- Loss of autonomy brought about by centrilising control of the data
- Infelixibility due to complexity

Database Languages

- Programming languages which are used to
 - Defining a database
 - * Its entities and the relationships between them

- Manipulate its content
 - * Insert new data and update or delete existing data
- Conduct queries
 - * Request information based upon defining criteria
- The Structured Query Language (SQL) is the most commonly used language for Relational Databases
 - Supported by all relational DBMS and is a standard

SQL

- SQL is split into four sets of commands which are divided based upon the tasks they are used for
 - Data Definition Language
 - Data Modification Language
 - Data Query Language
 - Data Control Language

Data Definition Language

- SQL uses a collection of imperative verbs whose effect is to modify the schema of the database
- Can use add, change, delete definitions of tables or other objects
- These statements can be freely mixed with other SQL statements
 - So the DDL is not truly a seperate language

Data Manipulation Language

- \bullet The data manipulation language comprises the SQL data change statements
 - Modifies stored data
 - Does **not** modify the schema or database objects
 - $^{*}\,$ This is always the responsibility of the Data Definition Language
- Used for inserting, deleting and updating data in the tables of a database

Data Query Language

• The data query language allows users of a database formulate requests and generate reports

- \bullet There is one primary command used in SQL to query the database the SELECT Statement
 - This statement is used to query or retrieve data from a table in the database
 - $-\,$ A query may retrieve information from specified columns or from all of the columns in the table
 - A query may have specified criteria that must be met in order for data to be returned

Data Control Language

- The data control language is used to control data access
- Can use grant to allow users to perform tasks
- Can use revoke to remove privileges and permissions

Transactions

- A way to group actions that must happen atomically
 - all or nothing
- Guarantees to move the DB content from one consistent state to another
- Isolates these actions from parallel execution of other actions/transactions
- Ensures the DB is recoverable in case of failure
 - e.g. the power goes out

Backup and Recovery

- Ensures that the DB can be returned to a stable state in case of errors, such as
 - Transaction failure
 - System errors
 - System crash
 - Data Corrution
 - Disk failure

Users

• DBMS implementer

- Builds the DBMS System
- Database designer
 - Designs the Database, Establishes the Schema
- Database application developer
 - Develops programs that operate upon the DB
- Database administrator
 - Has overall responsibility for the DB including specifying access constrains, selection of appropriate backup and recovery measures, monitoring performance, etc.

Emergent Databases

- XML Databases
 - Document-Orientated
- NoSQL Databases
 - Web Scale, Non-Relational, Open Source
- In Memory Databases
 - Stores data in main memory rather than on disk
- Others
 - Massively parallel processing (MPP) databases
 - Online analytical processing (OLAP) databases