NuMa GU1

```
Erre Abbildung 11 11: V-> IR
heifst Norm aut V, falls
```

$$(N1)$$
 $||V|| \ge 0$ $\forall v \in V$ and $||v|| = 0 \iff v = 0$
 $(N2)$ $\forall a \in X [R, C], v \in V gilf:$
 $||a \cdot v|| = ||a| \cdot ||v||$
 $(N3)$ $\forall v, w \in V gilf:$
 $||v + w|| \le ||v|| + ||w||$

2.18. (Normen) $X \in \mathbb{R}^{2}$

i.) •
$$\chi \rightarrow 1\times 1$$

(N1) ist with extill : $(9) \rightarrow 101 = 0$
aber $\binom{0}{1} \neq \binom{0}{0}$

iv.) •
$$x \mapsto x_1 + x_2$$
 ist keine Norm, da $(N1)$
wiell exterly 18%:
 $x = (0, -1) \mapsto -1 \neq 0$

V.) •
$$\times \mapsto \int_{X_1 + X_2}^{X_1 + X_2}$$

 $\times = (-7, -7) \mapsto \sqrt{-2} \in \mathbb{R}$
Vi.) • $\times \mapsto \int_{X_1}^{X_2 + X_2} ist$ Norm, da:

$$vi.$$
) • $x \mapsto \int_{1}^{2} + x_{2}^{2} + x_{2}^{2} + x_{2}^{2} + x_{2}^{2} + x_{2}^{2} + x_{2}^{2} = 0$
 $(N.1)$ Set $0 \neq x \in \mathbb{R}^{2}$, $x_{1} \vee x_{2} \neq 0$, $x_{1}^{2} \vee x_{2}^{2} > 0$
 $= \sum_{1}^{2} \int_{1}^{2} + x_{1}^{2} = 0$
 $= \sum_{1}^{2} \int_{1}^{2} + x_{2}^{2} = 0$
 $= \sum_{1}^{2} \int_{$

```
|N3| ||x + y|| \le ||x|| + ||y|| \qquad \forall x, y \in \mathbb{R}^{2}
||x + y||^{2} = (x_{1} + y_{1})^{2} + (x_{2} + y_{2})^{2}
= (x_{1}^{2} + x_{2}^{2}) + 2 \cdot (x_{1} + x_{2} + x_{2}^{2}) + (y_{1}^{2} + y_{2}^{2})
\le (x_{1}^{2} + x_{2}^{2}) + 2 \sqrt{x_{1}^{2} + x_{2}^{2}} \cdot \sqrt{y_{1}^{2} + y_{2}^{2}} + (y_{1}^{2} + y_{2}^{2})
(aucling-Schwarz) (||x|| + ||y||)^{2}
```

=> 11x+y4 < 11x11 + 11y11

Vii.)
$$\times + \to |x_1| + |x_2|$$
 ist the Norm, de:
(N1) \vee
(N2) $q \in |R|$, $\times \in |R|^2$
 $||ax|| = |ax_1| + |ax_2| = |a| \cdot (|x_1| + |x_2|)$
 $= |a| \cdot ||x||$
(N3) $||x+y|| = |x_1+y_1| + |x_2+y_2|$
 $\leq |x_1| + |y_1| + |x_2| + |y_2|$
 $= ||x|| + ||y||$

Viii.) $\times + > \max(|x_1|, |x_2|)$ ist etne Norm, da:

(N.1) \times

(N2) $a \in IR$, $x \in IR^2$ $1|ax u = max(hx_1), |ax_2|) = |a| \cdot max(|x_1|, |x_2|)$ $= |a| \cdot ||x||$

(N3) x,y & 122

 $||x+y|| = \max(|x_1+y_1|, |x_2+y_2|)$ $\leq \max(|x_1|+|y_1|, |x_2|+|y_2|) \iff 1, \text{ Fall}: ||x|| = |x_1| \land ||y_1| = |y_2|$ $= > (*) = |x_1| + |y_2| = ||x_1| + ||y_1||$

7. Fall:
$$||x|| = |x_1| \wedge ||y|| = |y_2|$$

 $||x+y|| = \max(|x_1+y_1|, |x_2+y_2|)$
a.) falls $|x_1+y_1| \ge |x_2+y_2|$
 $||x+y|| = |x_1+y_1| \le |x_1| + |y_1| \le ||x|| + ||y||$
b.) falls $|x_2+y_2| > |x_1+y_1|$
 $||x+y|| = ||x_1+y_2|| \le ||x_1|| + ||y||$

A. 2.18.
$$A = \begin{pmatrix} 7/4 & \frac{1}{2\sqrt{2}} & -\frac{3}{4} \\ \frac{1}{2\sqrt{2}} & \frac{5}{2} & -\frac{1}{2\sqrt{2}} \\ -\frac{3}{4} & -\frac{1}{2\sqrt{2}} & \frac{7}{4} \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & \frac{1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} \\ -\frac{3}{4} & -\frac{1}{2\sqrt{2}} & \frac{7}{4} \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & \frac{1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} \\ -\frac{3}{4} & -\frac{1}{2\sqrt{2}} & \frac{7}{4} \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & \frac{1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} \\ -\frac{3}{4} & -\frac{1}{2\sqrt{2}} & \frac{7}{4} \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & \frac{1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} \\ -\frac{3}{4} & -\frac{1}{2\sqrt{2}} & \frac{7}{4} \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & \frac{1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} \\ -\frac{3}{4} & -\frac{1}{2\sqrt{2}} & \frac{7}{4} \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & \frac{1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} \\ -\frac{3}{4} & -\frac{1}{2\sqrt{2}} & \frac{7}{4} \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & \frac{1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} \\ -\frac{3}{4} & -\frac{1}{2\sqrt{2}} & \frac{7}{4} \end{pmatrix}$$

$$det(A-\lambda I) = 0$$
=> $\lambda^{3} - 6\lambda^{3} + 17\lambda - 6 = 0$
=> $\lambda = 1, 2, 3$
=> $1|A||_{2} = \sqrt{\lambda_{max}(A^{T}A)} = \sqrt{\lambda_{max}(A)}$
= $\lambda_{max}(A) = 3$

Mis Sia M

$$\frac{a_{i}}{\int \left|\frac{f(x)-f(x)}{f(x)}\right|} \stackrel{\text{def}}{\leq K_{rd}(x)} \stackrel{\text{def}$$

$$\left|\frac{f(x)-f(x)}{f(x)}\right| \stackrel{?}{=} \operatorname{Krel}(x) \cdot \left|\frac{x-x}{x}\right|$$

mit Krel (x):= | f'(x) ·
$$\frac{x}{f(x)}$$
 |

 $\left|\frac{x}{x-x}\right| \approx 5\%$

Krel (x) = $\left|-\frac{2x}{(x^2+1)^2} \cdot \frac{x}{\frac{1}{(x^2+1)}}\right| = \left|-\frac{2x^2}{x^2+1}\right|$

K rel (x) = $\left|-\frac{2x}{(x^2+1)^2} \cdot \frac{x}{\frac{1}{x^2+1}}\right|$

Republication

| $\frac{f(x)-f(x)}{f(x)} = 1$, 6 · 5% = 8%

=> vel. Felice in f behing f 8% [in 1. Notherror]

b.)

Rel(7.0)
$$\cdot e_{x} = 1$$

=> 1.6 $\cdot e_{x} = 1$

=> $e_{x} = \frac{1}{1.6} = 0,625$

=> Der rel. Fehler hax derf max. 0,675% betregen.

$$x_{2} = \frac{0.003252120000}{10^{3}}$$

$$x_{4} = \frac{0}{10^{3}}$$

$$x_{2} = \frac{0}{10^{3}}$$

$$x_1 + x_2 = -p$$
 $x_1 \cdot x_2 = q$
und vermeiden so testéschung:
 $x_1 = -\frac{p}{2} + \left(\text{stgu}(-p)\right) \sqrt{\frac{p^2}{4} - q}$

$$x_2 = \frac{2}{x_1}$$