Theorem 5.20

If G is a k-connected graph, $k \geq 2$, then every k vertices of G lie on a common cycle of G.

Proof:

Let $S = \{v_1, v_2, \dots, v_k\}$ be a set of k vertices of G. We show that there exists a cycle in G containing every vertex of S. Among all cycles in G, let G be one containing a maximum number ℓ of vertices of S. We claim that $\ell = k$. Assume, to the contrary, that $\ell < k$. Since G is k-connected, $k \ge 2$ it follows that G is 2-connected and so $0 \le \ell < k$ by Theorem 5.7. We may assume that G contains the vertices $0 \le k$ of $0 \le k$ and that the vertices of $0 \le k$ on $0 \le k$ appear in the order $0 \le k$ as we proceed cyclically about $0 \le k$.

Since $\ell < k$, there is a vertex $u \in S$ that does not belong to C. Furthermore, since $2 \le \ell < k$, the graph G is ℓ -connected as well. Suppose first that the order of C is ℓ . Applying Corollary 5.19 to the vertices $u, v_1, v_2, \ldots, v_\ell$, we see that G contains internally disjoint $u - v_i$ paths $P_i (1 \le i \le \ell)$. Replacing the edge v_1, v_2 by P_1 and P_2 produces a cycle containing the vertices $u, v_1, v_2, \ldots, v_\ell$, which gives a contradiction.

Hence we may assume that C contains a vertex $v_0 \notin S$. Since $2 \le \ell + 1 \le k$, the graph G is $(\ell + 1 - 1)$ connected. Applying Corollary 5.19 to the vertices $u, v_0, v_1, v_2, \ldots, v_\ell$, we see that G contains internally disjoint $u-v_i$ paths P_i ($0 \le i \le \ell$). Let $v_i'(0 \le i \le \ell)$ be the first vertex of P_i that belongs to C (possibly $v_i' = v_i$ abd ket P_i' be the $u-v_i'$ subpath of P_i . Since there are $\ell+1$ paths P_i' and ℓ vertices C that belong to S, there are distinct vertices v_r' and vertices belonging to S. Deleting the interior vertices of P' from C and adding the paths P_i' and P_i' produces a cycle containing the vertices $u, v_1, v_2, \ldots, v_\ell$, which is a contradiction.