Name: Nirmal kumar Ravi

Id: A20320832

Data-Set Used

svar-set1.dat

Data Plot

INPUT DATA

The data looks fairly linear. Let's fit linear model to it.

I have split the input data to train (75%) and test (25%) and trained the model using linear regression

Coefficients of our model fit:

0.2662876 1.9893976

Model on test Data

MODEL FIT ON TEST DATA

As we can see from the above graph our model fits well on test data

Mean squared error		
Testing set	4.63139	
Training Set	4.106837	

Training set error will always be less than testing set. As we use training set to build our model

Let's try with higher order polynomials

Polynomial	Error on test set	Error on Train Set
1	4.63139	4.106837
2	4.930847	4.072704
3	4.938525	4.028656

From the above table as we go for higher order polynomial, the error on train set decreases but error on test set seems to increase. Over fitting happens for higher order polynomial.

So Linear model is good fit

Data-Set Used

svar-set2.dat

Data Plot

INPUT DATA

From the above graph we can see that the data is non-linear. We would be requiring higher order polynomial to fit our data

Let us start with linear model

From the above graph we can see linear model does not fit our data well.

Let's try non-linear some non-linear models

This seems okay. But let's try with order 3

This seems to be the best fit. Let's try with higher order four.

Plot with polynomial six

MODEL FIT ON TEST DATA

Definitely from the above graph it is clear that our model over fits the data.

Let's do 10 fold cross validation to decide among polynomial 3, 4, 5

The mean squared error is low for **model with degree 4**. So we conclude this is the **best model**

Polynomial	Error on test set	Error on Train Set
1	0.04382677	0.06488278
2	0.03304288	0.0407704
3	0.01845931	0.02117343
4	0.01167638	0.01147739
5	0.01075711	0.01127793
6	0.01150745	0.01084436

From the above table the error on test set starts increasing at polynomial six. To decide upon 3, 4, 5 we used 10-fold cross validation and **model with degree four seems to be the best**

Data-Set Used

svar-set3.dat

Data Plot

INPUT DATA

From the graph we can see there is a big bump in the middle. Polynomial with order two would be the good fit

As expected the model does not fit the data well. As the dataset is non-linear

This fits the graph fairly well.

This is clearly **over-fitting the data**

So the best fit for model for this data is model with polynomial 2 or 3

Data-Set Used

svar-set4.dat

Data Plot

INPUT DATA

This data has got three bumps so polynomial with 3 or 4 would be the good fit

As we clearly know the data is non-linear let's start from polynomial of order 2

As we can see from the above plot the model does not fit the data well and the MSE is also high

Let's try with **polynomial of order 6.** This should reduce the MSE on training set and increase the error on test set

As expected it **over-fits** the data. So our answer is somewhere between 3 to 5 Let's try **10** fold cross validation to choose the best model.

After 10-fold cross validation we found that polynomial with order 5 is the best fit for this data

Model fit with polynomial 5

Let's take a linear model and polynomial model **reduce the amount of training data to see what happens**

Linear model dataset	svar-set1.dat
Polynomial model dataset	svar-set2.dat

- In both data set as we reduce the amount of training data, the MSE **starts increasing**.
- It increases in higher rate in polynomial model than in linear model