Regressão linear Jones Granatyr

Regressão linear

- Modelagem da relação entre variáveis numéricas (variável dependente y e variáveis explanatórias x)
- Temperatura, umidade e pressão do ar $(x) \rightarrow velocidade do vento (y)$
- Gastos no cartão de crédito, histórico $(x) \rightarrow limite do cartão (y)$
- Idade (x) → custo plano de saúde (y)
- Tamanho da casa (x) → preço da casa (y)

Regressão linear

Relação linear entre os atributos: quanto maior a idade, maior o custo b_0 e b_1 definem a localização da linha (treinamento)

Regressão linear

Mean square error (MSE)

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

Preço real	Preço calculado	Erro
150	180	$(150 - 180)^2 = 900$
60	55	$(60 - 55)^2 = 25$
220	230	$(220 - 230)^2 = 100$
45	67	$(45 - 67)^2 = 484$

 $y = b_0 + b_1 * x_1$ Objetivo: ajustar os parâmetros $b_0 e b_1$ para ter o menor erro!

Regressão linear – ajuste dos parâmetros

- Design matrix (Álgebra Linear)
 - Bases de dados com poucos atributos
 - Inversão de matrizes que tem um custo computacional alto
- Gradient descent (descida do gradiente)
 - Desempenho melhor com muitos atributos

Descida do gradiente

min $C(B_1, B_2 ... B_n)$ Taxa de aprendizagem

Regressão linear múltipla

$$y = b_0 + b_1 * x_1$$

$$y = b_0 + b_1 * x_1 + b_2 * x_2 + ... + b_n * x_n$$

Conclusão

