Odpowiedzi i schematy oceniania

Arkusz 20

Zadania zamknięte

Numer zadania	Poprawna odpowiedź	Wskazówki do rozwiązania	
1.	C.	a zł – cena czekolady (batonika) przed podwyżką	
		105% a zł – cena czekolady po podwyżce	
		125% a zł – cena batonika po podwyżce	
		2(125% a + 105% a) = 460% a = 4,6a – tyle trzeba zapłacić za	
		batonik i czekoladę po podwyżce	
		$\frac{4,6a - 4a}{4a} \cdot 100\% = 15\%$	
2.	C.	$ 2x-5 \le 3$	
		$-3 \le 2x - 5 \le 3$	
		$2 \le 2x \le 8$	
		$1 \le x \le 4$	
		Liczby naturalne należące do zbioru rozwiązań nierówności:	
		1, 2, 3, 4. Są więc 4 takie liczby.	
3.	B.	$f(2) - f(1) = (-4+4) - 1^3 = 0 - 1 = -1 < 0$	
4.	C.	$g(x) = (x-2)^2 + 6 - 4 = (x-2)^2 + 2$	
5.	D.	$x^2 - 6 = -3$ $(x - \sqrt{3})(x + \sqrt{3}) = 0$	
		$x^2 - 3 = 0$	
		$x = \sqrt{3} \text{ lub } x = -\sqrt{3}$ $x = \sqrt{3} \text{ lub } x = -\sqrt{3}$	
6.	C.	$b_n = b_1 \cdot q^{n-1}$	
		$b_n = b_1 \cdot q^{n-1}$ $b_1 = 3^a, q = 3$	
		$b_n = 3^a \cdot 3^{n-1} = 3^{n+a-1}$	
7.	A.	h – wysokość trójkąta	
		$\frac{h}{6} = tg\alpha$	
		$h = 6tg \alpha$	

		$P = \frac{1}{2} \cdot 12 \cdot 6tg \alpha = 36tg \alpha$
8.	B.	Współrzędne środka okręgu: (3, – 2), promień: 4, równanie
		stycznej: $y = -2 + 4 = 2$.
9.	B.	E – zwycięży Emilia
		A – zwycięży Aldona
		$P(E \cup A) = P(E) + P(A) - P(E \cap A)$
		$P(E \cup A) = 0.2 + 0.1 - 0 = 0.3$
10.	A.	$\frac{(a^{-2} \cdot a^{5})^{\frac{1}{6}}}{\sqrt{a}} = \frac{(a^{3})^{\frac{1}{6}}}{a^{\frac{1}{2}}} = \frac{a^{\frac{1}{2}}}{a^{\frac{1}{2}}} = 1$
11.	D.	$\frac{6 \cdot 2 + 10 \cdot 3 + 4 \cdot 4}{6 + 10 + 4} = \frac{58}{20}$
12.	A.	Objętość wylanej wody jest równa objętości kuli.
		$V = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi \cdot 3^3 = 36\pi$
13.	B.	h – wysokość ostrosłupa
		$\frac{1}{3} \cdot 6^2 \cdot h = 96$
		h = 8
		$\frac{h}{r} = \frac{8}{6} = \frac{4}{3}$
14.	D.	$x-1>0 \Rightarrow x>1$
		$5 - x > 0 \Rightarrow x < 5$ Stad: $1 < x < 5$.
		P(x) = (x-1)(5-x) – wykresem jest parabola o ramionach
		skierowanych do dołu. Wartość największą funkcja przyjmuje w
		punkcie $x_0 = \frac{x_1 + x_2}{2}$, gdzie $x_1 = 1$, $x_2 = 5$ (1,5 – miejsca zerowe
		funkcji).
		$x_0 = \frac{5+1}{2} = 3$
15.	B.	x, 2x, 2x – długości krawędź prostopadłościanu, $x > 0$

		$\sqrt{x^2 + (2x)^2 + (2x)^2} = \sqrt{9x^2} = 3x$
		3x = 6
		x = 2
		Pole podstawy: $2 \cdot 4 = 8$.
16.	C.	$6 \cdot 5 = 30$
17.	D.	a = 2, b = 8
		b = 400% a
18.	A.	Obliczamy pierwszą współrzędną punktu przecięcia prostych.
		x - y - m = 0
		y = x - m
		-2x - y + 4 = 0 $y = -2x + 4$
		y = -2x + 4
		x - m = -2x + 4
		$x = \frac{m+4}{3}$
		Pierwsza współrzędna ma być liczbą dodatnią.
		$\left \frac{m+4}{3}\right>0$
		m > -4
19.	D.	Wykresem funkcji $f(x) = -(x+5)(x-3)$ jest parabola o
		ramionach skierowanych ku dołowi, przecinająca oś <i>OX</i> w
		punktach (-5, 0), (3, 0). Dodatnie wartości przyjmuje w przedziale
		(-5,3).
		Liczbami całkowitymi spełniającymi daną nierówność są więc
		liczby: -4 , -3 , -2 , -1 , 0 , 1 , 2 . Do zbioru rozwiązań nie należy 3 .
20.	C.	Mediana jest równa:
		$\frac{x+4+x+6}{2} = x+5$.
		Na podstawie treści zdania: $x + 5 = 9 \Rightarrow x = 4$.
		Najmniejsza liczba to 4, największa to 24.
		24 - 4 = 20

21.	A.	Pierwszą rękawiczkę można włożyć do szuflad na 4 sposoby,
		podobnie drugą rękawiczkę.
		$4 \cdot 4 = 16$
22.	B.	l – tworząca stożka
		$l^2 = 5^2 + 12^2$
		l = 13
		Pole powierzchni bocznej:
		$\pi r l = \pi \cdot 12 \cdot 13 = 156\pi.$
23.	A.	$\log_5 a = 2 \Rightarrow a = 25$
		$\log_4 b = 2 \Longrightarrow b = 16$
		$\log_8 c = 1 \Rightarrow c = 8$
		$\sqrt{a + b + c} = \sqrt{25 + 16 + 8} = \sqrt{49} = 7$
24.	C.	(x, y) – współrzędne punktu leżącego na symetralnej
		$\sqrt{(x+3)^2 + (y-4)^2} = \sqrt{(x-2)^2 + (y-1)^2}$
		$x^{2} + 6x + 9 + y^{2} - 8y + 16 = x^{2} - 4x + 4 + y^{2} - 2y + 1$
		5x - 3y + 10 = 0
		Dla $x = 0$
		0 - 3y + 10 = 0
		$y = \frac{10}{3}$
		3
25.	B.	a – długość krawędzi kostki
		$a^2 = 4 \Rightarrow a = 2$
		$a^3 \cdot 9 = 8 \cdot 9 = 72 \text{ (g)}$

Zadania otwarte

Numer	Modelowe etapy rozwiązania	Liczba
zadania	włodciowe ctapy rozwiązania	punktów
26.	Zapisanie zależności między wysokością drzewa, a jego cieniem:	1
	α – miara kąta, pod jakim promienie słoneczne padają do poziomu,	

	10	
	$tg\alpha = \frac{10}{10\sqrt{3}}.$	
	1	1
	Podanie miary kąta: $tg\alpha = \frac{1}{\sqrt{3}} \Rightarrow \alpha = 30^{\circ}$.	
27.	Obliczenie <i>a</i> – pierwszego wyrazu ciągu i różnicy <i>r</i> :	1
	$a_3 = 4$,	
	a+2r=4, $a=4-2r,$	
	a + a + r + a + 2r + a + 3r = 14,	
	2a+3r=7,	
	2(4-2r) + 3r = 7,	
	r = 1,	
	a = 4 - 2 = 2.	
	Obliczenie a_{10} : $a_{10} = 2 + 9 = 11$.	1
•		
28.	Przekształcenie równania i obliczenie sin x:	1
	$(\cos x + \sin x)^2 - 2\sin x \cos x = 2\sin x,$	
	$\cos^2 x + \sin^2 x + 2\sin x \cos x - 2\sin x \cos x = 2\sin x,$	
	$1 = 2\sin x,$	
	$\sin x = \frac{1}{x}$.	
	2	
	Określenie miary kąta: $x = 30^{\circ}$.	1
29.	Zapisanie odpowiedniego układu równań:	1
	x m – długość pociągu,	
	v m/s – prędkość pociągu,	
	$\int x = 5v$	
	$\begin{cases} 300 + x = 25v \end{cases}$	
	Obliczenie prędkości:	1
	300 + 5v = 25v,	
	300 = 20v,	
1		
	v = 15 m/s.	

	Obliczenie długości pociągu:	1
	x = 5.15 = 75 (m).	
	Obliczenie, jak długo pociąg osobowy będzie mijał pociąg	1
	towarowy:	
	$\frac{75+150}{15} = \frac{225}{15} = 15 $ (s).	
30.	Zapisanie równania w postaci iloczynowej:	1
	$(\operatorname{tg}\alpha - \sqrt{3})(\operatorname{tg}\alpha + \sqrt{3}) = 0.$	
	Podanie rozwiązania równania: $\alpha = 60^{\circ}$.	1
	Obliczenie: $\sin 60^{\circ} = \frac{\sqrt{3}}{2} \approx 0.9, \cos 60^{\circ} = 0.5$.	1
	Porównanie liczb: $0.9 > 0.5 \Rightarrow \sin \alpha > \cos \alpha$.	1
31.	Zauważenie, że wartości krosna w poszczególnych latach stanowią	1
	kolejne wyrazy malejącego ciągu arytmetycznego.	
	Określenie pierwszego i ostatniego wyrazu ciągu:	1
	w – początkowa wartość krosna,	
	r – kwota, o jaką rocznie maleje wartość krosna,	
	$a_1 = w - r$,	
	$a_n = 0$.	
	Zapisanie odpowiedniego układu równań:	1
	$\int w - nr = 0$	
	$\begin{cases} 4a_{20} = a_2 \\ w - nr = 0 \\ 4(w - 20r) = w - 2r \end{cases}$	
	$\int w - nr = 0$	
	$\int 4(w-20r) = w-2r$	
	Przekształcenie układu równań:	1
	$\int w - nr = 0$	
	3w = 78r	
	$\begin{cases} w - nr = 0 \\ 3w = 78r \end{cases},$ $\begin{cases} w - nr = 0 \\ w = 26r \end{cases},$	
	w = 26r	
	$\begin{cases} 26r - nr = 0 \\ w = 26r \end{cases}.$	
	w = 26r	
	Zauważenie, że $r \neq 0$ i obliczenie n :	1

	26r - nr = 0/: r,	
	n=26.	
32.	Określenie liczby zdarzeń elementarnych w przypadku siadania	1
	przy stole: $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$.	
	Obliczenie liczby zdarzeń elementarnych w przypadku siadania na	1
	lawie: $6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$.	
	Liczba zdarzeń sprzyjających w przypadku siadania na ławie:	1
	$2 \cdot (5 \cdot 4 \cdot 3 \cdot 2 \cdot 1) = 240.$	
	Liczba zdarzeń sprzyjających w przypadku siadania przy stole:	1
	$2 \cdot (4 \cdot 3 \cdot 2 \cdot 1) = 48.$	
	Obliczenie i porównanie prawdopodobieństw:	2
	$P(S) = \frac{48}{120} = 0.4 ,$	
	$P(L) = \frac{240}{720} \approx 0.3,$	
	P(S) > P(L).	