CVC4 1.5 for Sygus Comp 2015

- CVC4 is an SMT solver
 - Fourth generation of Cooperating Validity Checker (CVC, CVC Lite, CVC3, CVC4)
 - Supports many ground theories:
 - Linear arithmetic, bitvectors, UF, datatypes, arrays, sets, strings, ...
 - Supports quantified formulas
 - Two new approaches for refutation-based synthesis [CAV 15]
 - 1. Single-invocation properties
 - 2. Syntax-guided synthesis (SyGuS) problems
- Submission for Sygus Comp 2015 was joint work between:
 - EPFL: Andrew Reynolds, Viktor Kuncak
 - University of Iowa: Cesare Tinelli
 - NYU: Clark Barrett, Morgan Deters
 - Verimag: Tim King

$$\exists f. \forall xy. (f(x,y) \ge x \land f(x,y) \ge y \land (f(x,y) = x \lor f(x,y) = y))$$

• Example: find a function f that computes max of two integers

 $\exists f. \forall xy.isMax(f(x,y),x,y)$

Find model for f that satisfies this property

Instead, show negated formula is *unsatisfiable*

$$\exists f. \forall xy.isMax(f(x,y),x,y)$$

Negate

 $\forall f. \exists xy.\neg isMax(f(x,y),x,y)$

• Eliminate second-order quantification over f in two ways

$$\exists f. \forall xy.isMax(f(x,y),x,y)$$

Negate

 $\forall f. \exists xy.\neg isMax(f(x,y),x,y)$

If single invocation, replace f with (first-order) variable g

 $\exists xy. \forall g. \neg isMax(g, x, y)$

 \Rightarrow g represents the return value of f

If single invocation, replace f with (first-order) variable g

Otherwise, replace \pm with datatype d, and operator ev

```
\exists xy. \forall g. \neg isMax(g, x, y)
```

```
D := zero | one | plus(D1, D2) | ...

\forall d.\exists xy.\neg isMax(ev(d,x,y),x,y)

\forall dxy.ev(d,x,y)=...
```

 \Rightarrow D models the domain of possible solutions for £

$$\exists$$
 f. \forall xy.isMax(f(x,y),x,y)

Negate

$$\forall f. \exists xy.\neg isMax(f(x,y),x,y)$$

If single invocation, replace f with (first-order) variable g

Otherwise, replace f with datatype d, and operator ev

```
\exists xy. \forall g. \neg isMax(g, x, y)
```

```
D := zero | one | plus(D1, D2) | ... \forall d.\exists xy.\neg isMax(ev(d,x,y),x,y) \forall dxy.ev(d,x,y)=...
```

 $\exists f. \forall xy.isMax(f(x,y),x,y)$

CVC4 in Sygus Comp 2015

- Entered all three tracks (General, LIA, INV)
 - For general/LIA track:
 - Most benchmarks are single invocation
 - Solution reconstruction methods to match syntactic restrictions, if necessary
 - For INV track:
 - All benchmarks are not single invocation
 - Due to form of benchmarks, for transition relations T:

$$\exists inv. \forall x. (inv(x) \land T(x, x')) \Rightarrow inv(x')$$

⇒ Resorts to syntax-guided approach