Heuristic Search

Lucia Moura

Winter 2021

Heuristic Search Intro

Heuristic Search vs Exhaustive Search

Exhaustive Search

- Backtracking (backtracking with bounding):
 - ► Find all feasible solutions.
 - ▶ Find one optimal solution.
 - Find all optimal solutions.
- Branch-and-Bound:
 - Find one optimal solution.

Heuristic Search

Types of problem it can be applied to:

- Find 1 optimal solution (when optimum value is known)
- Find a "close to" optimal solution (the best solution we manage).

Heuristics methods we will study:

• Hill-climbing, Simulated annealing, Tabu search, Genetic algorithms.

Heuristic Search Intro

Characteristics of heuristic search

- The state space is not fully explored.
- Randomization is often employed.
- There is a concept of neighbourhood search.
- Heuristics are applied to explore the solutions.
 The word "heuristics" means "serving or helping to find or discover" or "proceeding by trial and error".

Generic Optimization Problem (maximization):

Instance: A finite set \mathcal{X} .

an objective function $P: \mathcal{X} \to Z$.

m feasibility functions $g_j: \mathcal{X} \to Z$, $1 \leq j \leq m$.

Find: the maximum value of P(X)

subject to $X \in \mathcal{X}$ and $g_j(X) \geq 0$, for $1 \leq j \leq m$.

Exercise: pick your favorite combinatorial optimization problem and write it in this framework.

000000

A general framework for heuristic search (cont'd)

Designing a heuristic search:

- **1** Define a **neighbourhood function** $N: \mathcal{X} \to 2^{\mathcal{X}}$. E.g. $N(X) = \{X_1, X_2, X_3, X_4, X_5\}.$
- Design a neighbourhood search:

Algorithm that finds a feasible solution on the neighbourhood of a feasible solution X.

There are two types of neghbourhood searches:

- Exhaustive (chooses best profit among neighbour points)
- Randomized (picks a random point among the neighbour points)

Defining a neighbourhood function

$$N: \mathcal{X} \to 2^{\mathcal{X}}$$
.

So, N(X) is a subset of \mathcal{X} .

• N(X) should contain elements that are similar or "close to" X.

Heuristic Search Intro

000000

Defining a neighbourhood function

$$N: \mathcal{X} \to 2^{\mathcal{X}}$$
.

- N(X) should contain elements that are similar or "close to" X.
- N(X) may contain infeasible elements of \mathcal{X} .

Heuristic Search Intro

000000

Defining a neighbourhood function

$$N: \mathcal{X} \to 2^{\mathcal{X}}$$
.

- N(X) should contain elements that are similar or "close to" X.
- N(X) may contain infeasible elements of \mathcal{X} .
- In order to be useful, we would like to be able to get to X_{opt} from X_0 via a number of applications of $N(\cdot)$.

Heuristic Search Intro

000000

Defining a neighbourhood function

$$N: \mathcal{X} \to 2^{\mathcal{X}}$$
.

- N(X) should contain elements that are similar or "close to" X.
- N(X) may contain infeasible elements of \mathcal{X} .
- In order to be useful, we would like to be able to get to X_{opt} from X_0 via a number of applications of $N(\cdot)$.
- I.E. the graph G with $V(G)=\mathcal{X}$ and $E(G)=\{\{X,Y\}:Y\in N(X)\}$ should ideally be connected, or at least have one optimal solution in each of its connected components.

Heuristic Search Intro

000000

Defining a neighbourhood function

$$N: \mathcal{X} \to 2^{\mathcal{X}}$$
.

- N(X) should contain elements that are similar or "close to" X.
- N(X) may contain infeasible elements of \mathcal{X} .
- In order to be useful, we would like to be able to get to X_{opt} from X_0 via a number of applications of $N(\cdot)$.
- I.E. the graph G with $V(G) = \mathcal{X}$ and $E(G) = \{\{X,Y\} : Y \in N(X)\}$ should ideally be connected, or at least have one optimal solution in each of its connected components.
- Computing N(X) should be fast, and in particular |N(X)| shouldn't be too large.

000000

Examples of neighbourhood functions

First, define dist(X,Y) for $X,Y \in \mathcal{X}$.

Let d_0 be a constant positive integer.

We can define a neighbourhood function as follows:

$$N_{d_0}(X) = \{ Y \in \mathcal{X} : dist(X, Y) \le d_0 \}.$$

000000

Examples of neighbourhood functions based on distances

• $\mathcal{X} = \{0,1\}^n$, set of all binary *n*-tuples. Here *dist* is the Hamming distance. $N_1([010]) = \{[000], [110], [011], [010]\}.$

$$|N_{d_0}(X)| = \sum_{i=0}^{d_0} \binom{n}{i}.$$

Heuristic Search Intro

000000

Examples of neighbourhood functions based on distances

• $\mathcal{X} = \{0, 1\}^n$, set of all binary *n*-tuples. Here *dist* is the Hamming distance. $N_1([010]) = \{[000], [110], [011], [010]\}.$

$$|N_{d_0}(X)| = \sum_{i=0}^{d_0} \binom{n}{i}.$$

• $\mathcal{X} = \text{set of all permutations of } \{1,2,\ldots,n\}.$ Let $\alpha = [\alpha_1,\ldots,\alpha_n]$ and $\beta = [\beta_1,\ldots,\beta_n]$ be two permutations. Define distance as follows: $dist(\alpha,\beta) = |\{i:\alpha_i \neq \beta_i\}|.$ Note that $N_1(X) = \{X\}$ is not very useful; we need $d_0 > 1$. $N_2([1,2,3,4]) = \{[1,2,3,4],[2,1,3,4],[3,2,1,4], [4,2,3,1],[1,3,2,4],[1,4,3,2],[1,2,4,3]\}$ $|N_2(X)| = 1 + \binom{n}{2}.$

000000

Neighbourhoods and Local Search

Video: Coursera Discrete Optimization, Pascal Van Hentenryck, LS1: intuition n-queens

https://www.coursera.org/lecture/discrete-optimization/

ls-1-intuition-n-queens-ZRJeF

Designing a neighbourhood search algorithm

Input: X

000

Heuristic Search Intro

Output: $Y \in N(X) \setminus \{X\}$ such that Y is feasible, or "fail".

Possible Neighbourhood Search Strategies:

- Find a feasible $Y \in N(X) \setminus \{X\}$ such that P(Y) is maximized. Return "fail" if there is no feasible solution in $N(X) \setminus \{X\}$.
- ② Find a feasible $Y \in N(X) \setminus \{X\}$ such that P(Y) is maximized. if P(Y) > P(X) then return Y; else return "fail". (steepest ascent method)
- **③** Find any feasible $Y \in N(X) \setminus \{X\}$. Return "fail" if there is no feasible solution in $N(X) \setminus \{X\}$.
- Find any feasible $Y \in N(X) \setminus \{X\}$. if P(Y) > P(X) then return Y; else return "fail".

Strategies 1 and 2 may be exhaustive.

Strateges 3 and 4 are usually randomized.

Heuristic Search Intro

A generic heuristic search algorithm

Given N, a neighbourhood function, the heuristic algorithm h_N either:

- Perform one neighbourhood search (using one of the strategies)
- Perform a sequence of j neighbourhood searches, where each one takes us from X_i to X_{i+1} : $[X=X_0,X_1,\ldots,X_j=Y]$.

```
Algorithm GENERICHEURISTICSEARCH(c_{max})

Select a feasible solution X \in \mathcal{X};

X_{best} \leftarrow X; (stores best so far); c \leftarrow 0;

while (c \leq c_{max}) do

Y \leftarrow h_N(X);

if (Y \neq \text{"fail"}) then X \leftarrow Y;

if (P(X) > P(X_{best})) then X_{best} \leftarrow X;

[else c \leftarrow c_{max} + 1; (add this if h_N is not randomized)]

c \leftarrow c + 1:
```

return X_{best} ;

Heuristic Search Intro

More examples on neighbourhood search: Swap Neighbourhood

- Video: Coursera Discrete Optimization, Pascal Van Hentenryck, LS2: (see swap neightbouhood and then magic square start at minute 8:13) https://www.coursera.org/lecture/discrete-optimization/ ls-2-swap-neighborhood-car-sequencing-magic-square-2vaaM
- Video: Coursera Discrete Optimization, Pascal Van Hentenryck, LS3: (local search for optimization: TSP/2-OPT see minute 5:37) https://www.coursera.org/lecture/discrete-optimization/ ls-3-optimization-warehouse-location-traveling-salesman-2

• Idea: Go up the hill continuously, stop when stuck.

- Idea: Go up the hill continuously, stop when stuck.
- Problem: it can get stuck in a local optimum.

- Idea: Go up the hill continuously, stop when stuck.
- Problem: it can get stuck in a local optimum.
- ullet Improvement: run the algorithm many times from different random starting points X.

- Idea: Go up the hill continuously, stop when stuck.
- Problem: it can get stuck in a local optimum.
- Improvement: run the algorithm many times from different random starting points X.
- For Hill-Climbing, $h_N(X)$ returns:

- Idea: Go up the hill continuously, stop when stuck.
- Problem: it can get stuck in a local optimum.
- Improvement: run the algorithm many times from different random starting points X.
- For Hill-Climbing, $h_N(X)$ returns:
 - ▶ $Y \in N(X)$ such that Y is feasible and P(Y) > P(X),

- Idea: Go up the hill continuously, stop when stuck.
- Problem: it can get stuck in a local optimum.
- ullet Improvement: run the algorithm many times from different random starting points X.
- For Hill-Climbing, $h_N(X)$ returns:
 - ▶ $Y \in N(X)$ such that Y is feasible and P(Y) > P(X),
 - or, otherwise, "fail".

Hill Climbing Algorithm

```
Algorithm GENERICHILLCLIMBING()
Select a feasible solution X \in \mathcal{X}.

X_{best} \leftarrow X; searching \leftarrow true;
while (searching) do
Y \leftarrow h_N(X);
if (Y \neq \text{``fail''}) then
X \leftarrow Y;
if (P(X) > P(X_{best})) then X_{best} \leftarrow X;
else searching \leftarrow false;
return X_{best};
```

Hill-climbing can get trapped in a local optimum.

Other search strategies (simulated annealing, tabu search) try to escape from local optima.

Simulated Annealing

• Analogy with a method of cooling metal: annealing.

- Analogy with a method of cooling metal: annealing.
 - ▶ Temperature T decreases at each iteration, according to a **cooling** schedule (T_0, α) :

- Analogy with a method of cooling metal: annealing.
 - ▶ Temperature T decreases at each iteration, according to a **cooling** schedule (T_0, α) :
 - ▶ Initally $T \leftarrow T_0$;

- Analogy with a method of cooling metal: annealing.
 - ▶ Temperature T decreases at each iteration, according to a **cooling** schedule (T_0, α) :
 - ▶ Initally $T \leftarrow T_0$;
 - ▶ later $T \leftarrow \alpha T$ for a fixed $0 < \alpha < 1$.

- Analogy with a method of cooling metal: annealing.
 - ▶ Temperature T decreases at each iteration, according to a **cooling** schedule (T_0, α) :
 - ▶ Initally $T \leftarrow T_0$;
 - ▶ later $T \leftarrow \alpha T$ for a fixed $0 < \alpha < 1$.
- Going uphill is always accepted.

- Analogy with a method of cooling metal: annealing.
 - ▶ Temperature T decreases at each iteration, according to a **cooling** schedule (T_0, α) :
 - ▶ Initally $T \leftarrow T_0$;
 - ▶ later $T \leftarrow \alpha T$ for a fixed $0 < \alpha < 1$.
- Going uphill is always accepted.
- Going downhill is sometimes accepted with a probability based on how much downhill we go and on the current temperature.

- Analogy with a method of cooling metal: annealing.
 - ▶ Temperature T decreases at each iteration, according to a **cooling** schedule (T_0, α) :
 - ▶ Initally $T \leftarrow T_0$;
 - ▶ later $T \leftarrow \alpha T$ for a fixed $0 < \alpha < 1$.
- Going uphill is always accepted.
- Going downhill is sometimes accepted with a probability based on how much downhill we go and on the current temperature.
 - Given $Y = h_N(X)$ with $P(Y) \leq P(X)$,

Simulated Annealing

- Analogy with a method of cooling metal: annealing.
 - ▶ Temperature T decreases at each iteration, according to a **cooling** schedule (T_0, α) :
 - ▶ Initally $T \leftarrow T_0$;
 - ▶ later $T \leftarrow \alpha T$ for a fixed $0 < \alpha < 1$.
- Going uphill is always accepted.
- Going downhill is sometimes accepted with a probability based on how much downhill we go and on the current temperature.
 - Given $Y = h_N(X)$ with $P(Y) \leq P(X)$,
 - accept Y with probability

$$e^{(P(Y)-P(X))/T} = \frac{1}{e^{(P(X)-P(Y))/T}}$$

(We get pickier as we progress, since T decreases)

```
Algorithm GENERICSIMULATEDANNEALING(c_{max}, T_0, \alpha)
       c \leftarrow 0: T \leftarrow T_0:
       Select a feasible solution X \in \mathcal{X}; X_{best} \leftarrow X;
       while (c < c_{max}) do
               Y \leftarrow h_N(X); // this is usually a randomized choice
               if (Y \neq \text{"fail"}) then
                         if (P(Y) > P(X)) then
                                 X \leftarrow Y:
                                 if (P(X) > P(X_{best})) then X_{best} \leftarrow X;
                         else r \leftarrow random(0,1);
                                 if (r < e^{\frac{P(Y) - P(X)}{T}}) then X \leftarrow Y:
               c \leftarrow c + 1:
               T \leftarrow \alpha T:
```

Tabu Search

Tabu Search

Neighbourhood search:

Choose $Y \in N(X) \setminus \{X\}$ such that Y is feasible and P(Y) is maximum among all such elements (exhaustive neighbourhood search).

It may happen that P(Y) < P(X) (we escape from a local optimum).

Tabu Search

- Neighbourhood search:
 - Choose $Y \in N(X) \setminus \{X\}$ such that Y is feasible and P(Y) is maximum among all such elements (exhaustive neighbourhood search).
 - It may happen that P(Y) < P(X) (we escape from a local optimum).
- What may be the risk?

Tabu Search

- Neighbourhood search:
 - Choose $Y \in N(X) \setminus \{X\}$ such that Y is feasible and P(Y) is maximum among all such elements (exhaustive neighbourhood search).
 - It may happen that P(Y) < P(X) (we escape from a local optimum).
- What may be the risk?
 - Cycling.

Tabu Search

- Neighbourhood search:
 - Choose $Y \in N(X) \setminus \{X\}$ such that Y is feasible and P(Y) is maximum among all such elements (exhaustive neighbourhood search).
 - It may happen that P(Y) < P(X) (we escape from a local optimum).
- What may be the risk?
 - Cycling.
 - ▶ When going downhill from X to Y we may go back from X to Y.

Tabu Search

- Neighbourhood search:
 - Choose $Y \in N(X) \setminus \{X\}$ such that Y is feasible and P(Y) is maximum among all such elements (exhaustive neighbourhood search).
 - It may happen that P(Y) < P(X) (we escape from a local optimum).
- What may be the risk?
 - Cycling.
 - ▶ When going downhill from X to Y we may go back from X to Y.
 - ▶ Cycling may also take several steps, such as $X \to Y \to Z \to X$.

Tahu Search

Tabu Search

- Neighbourhood search:
 - Choose $Y \in N(X) \setminus \{X\}$ such that Y is feasible and P(Y) is maximum among all such elements (exhaustive neighbourhood search).
 - It may happen that P(Y) < P(X) (we escape from a local optimum).
- What may be the risk?
 - Cycling.
 - ▶ When going downhill from *X* to *Y* we may go back from *X* to *Y*.
 - Cycling may also take several steps, such as $X \to Y \to Z \to X$.
- Tabu-search uses a strategy for avoiding cycling: a **tabu list**. After a move $X \to Y$, we forbit the application of $\operatorname{CHANGE}(Y,X)$ for L iterations (L is the lifetime of the tabu list).

Tahu Search

Tabu List

ullet After a move X o Y, we keep $\operatorname{CHANGE}(Y,X)$ t the Tabu List for L iterations.

Tabu Search

Tabu List

- ullet After a move $X \to Y$, we keep $\operatorname{CHANGE}(Y,X)$ t the Tabu List for L iterations.
- Example:

$$\mathcal{X}=\{0,1\}^n$$
, using $N_1(X)=\{Y\in\mathcal{X}:dist(X,Y)=1\}.$ $X=[0100]$ and $Y=[0101]$, we have that $\mathrm{CHANGE}(Y,X)=4=$ index of coordinate that was swapped.

Suppose L=2.

000000

Tabu Search

Tabu List

- ullet After a move $X \to Y$, we keep $\operatorname{CHANGE}(Y,X)$ t the Tabu List for L iterations.
- Example:

$$\mathcal{X}=\{0,1\}^n$$
, using $N_1(X)=\{Y\in\mathcal{X}:dist(X,Y)=1\}.$ $X=[0100]$ and $Y=[0101]$, we have that $\mathrm{CHANGE}(Y,X)=4=$ index of coordinate that was swapped.

Suppose L=2.

• So any sequence that cycles $X \to \ldots \to X$ has length at least 2L. Choosing L=10 is typical.

Tabu Searc

TABULIST is defined below to be a list where TABULIST[c] = δ , where δ is the designated forbidden (tabu) change at iteration c.

For tabu search, $h_N(X) = Y$, where

- $Y \in N(X)$, Y is feasible;
- CHANGE $(X,Y) \notin \{ \text{ TABULIST}[d] : c L \le d \le c 1 \};$
- ullet P(Y) is maximum among all such feasible elements.

In absolute no circumstance implement ${\it TabuList}$ as an array indexed by the number of iterations! Instead, implement ${\it TabuList}$ as a queue of length L. Note that the algorithm may mislead you to think you are using such an array, given the notation defined above; careful!

Tabu Search Algorithm: textbook version/typo correction

```
Algorithm GENERICTABUSEARCH(c_{max}, L)
  c \leftarrow 1:
  Select a feasible solution X \in \mathcal{X}.
  X_{best} \leftarrow X;
  while (c < c_{max}) do
      N \leftarrow N(X) \setminus \{F : \text{CHANGE}(X, F) \in \text{TABULIST}[d], c - L \le d \le c - 1\};
      for each (Y \in N) do if (Y \text{ is infeasible}) then N \leftarrow N \setminus \{Y\};
      if (N = \emptyset) then return X_{best};
      Find Y \in N such that P(Y) is maximum; /* computes Y = h_N(X) */
      TABULIST[c] \leftarrow CHANGE(Y, X);
      X \leftarrow Y:
      if (P(X) > P(X_{best})) then X_{best} \leftarrow X;
      c \leftarrow c + 1:
```

return X_{best} :

Tabu Search

Tabu List Implementation

In absolute no circumstance implement TABULIST as an array indexed by the number of iterations! In the real implementation, Tabulist can be a queue of length L!!!So, the operation TABULIST[c] \leftarrow CHANGE(Y, X); must be implemented as: TABULIST.insert(CHANGE(Y, X)); (only keeps last L elements) and the line: $N \leftarrow N(X) \setminus \{F :$ $CHANGE(X, F) \in TABULIST[d], c - L \le d \le c - 1\}$ should be understood as: $N \leftarrow N(X) \setminus \{F : \text{CHANGE}(X, F) \text{ is in TABULIST}\};$

Tabu Search Algorithm: with FIFO queue for TABULIST

```
Algorithm GENERICTABUSEARCH(c_{max}, L)
  c \leftarrow 1:
  Select a feasible solution X \in \mathcal{X}.
  X_{best} \leftarrow X;
  while (c < c_{max}) do
      N \leftarrow N(X) \setminus \{F : \text{CHANGE}(X, F) \text{ is in TABULIST}\}
      for each (Y \in N) do if (Y \text{ is infeasible}) then N \leftarrow N \setminus \{Y\};
      if (N = \emptyset) then return X_{best};
      Find Y \in N such that P(Y) is maximum; /* computes Y = h_N(X) */
      TABULIST.insert(CHANGE(Y, X), L); /* only keeps last L entries */
      X \leftarrow Y:
      if (P(X) > P(X_{best})) then X_{best} \leftarrow X;
      c \leftarrow c + 1:
  return X_{best}:
```

Genetic Algorithms

Fix a number PopSize (population size). One iteration works as follows:

00000

Iterate as many generations as you like.

Producing children from parents.

Method 1: Crossover.

Let j be a crossover point.

Example: j = 3

Parents: [110|1101001] [100|1000101] Children: [110|1000101] [100|1101001]

Mating Strategies (Recombination), cont'd

Method 2: Partially matched crossover (for permutations)

Two crossover points: $1 \le j < k \le n$

Example: j = 3 and k = 6

$$\alpha = [3, 1, 4, 7, 6, 5, 2, 8]$$
 $\beta = [8, 6, 4, 3, 7, 1, 2, 5]$

swap	α	β
$4 \leftrightarrow 4$	[3, 1, 4, 7, 6, 5, 2, 8]	[8, 6, 4, 3, 7, 1, 2, 5]
$7 \leftrightarrow 3$	[7, 1, 4, 3, 6, 5, 2, 8]	[8, 6, 4, 7, 3, 1, 2, 5]
$6 \leftrightarrow 7$	[6, 1, 4, 3, 7, 5, 2, 8]	[8, 7, 4, 6, 3, 1, 2, 5]
$5 \leftrightarrow 1$	[6, 5, 4, 3, 7, 1, 2, 8]	[8, 7, 4, 6, 3, 5, 2, 1]

Mating Schemes

Kids may be infeasible: incorporate constraints as penalties.

Various methods are possible for mating schemes:

- Random monogamy with 2 kids per couple: randomly partition population into pairs, with two kids produced by each pair.
- Make better parents having more kids: measure parent fitness by objective function; parents with higher fitness produce more kids.


```
Algorithm GENERICGENETICALGORITHM(PopSize, c_{max})
       Select an initial population \mathcal{P} with PopSize feasible solutions;
       for each X \in \mathcal{P} do X \leftarrow h_N(X); [mutation]
       X_{best} \leftarrow \text{element in } \mathcal{P} \text{ with maximum profit; } c \leftarrow 1;
       while (c \leq c_{max}) do
               \mathcal{Q} \leftarrow \mathcal{P}; Construct a pairing of the elements in \mathcal{P};
               for each pair (W, X) in the pairing do
                    (Y,Z) \leftarrow rec(W,X); [recombination/mating]
                    Y \leftarrow h_N(Y); Z \leftarrow h_N(Z); [mutations]
                    \mathcal{Q} \leftarrow \mathcal{Q} \cup \{Y, Z\};
               Set \mathcal{P} to be the best PopSize members of \mathcal{Q};
               Let Y be the element in \mathcal{P} with maximum profit;
               if (P(Y) > P(X_{best})) then X_{best} \leftarrow Y;
               c \leftarrow c + 1:
       return X_{best};
```

Steepest Ascent for Uniform Graph Partition

PROBLEM: UNIFORM GRAPH PARTITION

Instance: A complete graph on 2n vertices,

 $cost: E \to Z^+ \cup \{0\} \text{ (COST FUNCTION)}$

FIND: THE MINIMUM VALUE OF

$$C([X_0, X_1]) = \sum_{u \in X_0, v \in X_1} cost(u, v)$$

SUBJECT TO
$$V = X_0 \cup X_1, |X_0| = |X_1| = n.$$

Example:
$$n = 4$$
; $cost(1,2) = 1$, $cost(1,3) = 2$, $cost(1,4) = 5$, $cost(2,3) = 2$

0, cost(2,4) = 5, cost(3,4) = 1.

Only 3 feasible solutions (except for exchanging X_0 and X_1):

$$X_0 = \{1, 2\}, \quad X_1 = \{3, 4\}, \qquad C([X_0, X_1]) = 12$$

$$X_0 = \{1, 3\}, \quad X_1 = \{2, 4\}, \qquad C([X_0, X_1]) = 7 \quad (optimal)$$

$$X_0 = \{1, 4\}, \quad X_1 = \{2, 3\}, \qquad C([X_0, X_1]) = 9$$

Uniform Graph Partition: Steepest Ascend Algorithm

Neighbourhood function: exchange $x \in X_0$ and $y \in X_1$.

```
Algorithm UGP (C_{max})
      X = [X_0, X_1] \leftarrow \texttt{SelectRandomPartition}
      c \leftarrow 1
      while (c \leq C_{max}) do
           [Y_0,Y_1] \leftarrow \texttt{Ascend}(X)
           if not fail then
                       \{X_0 \leftarrow Y_0; X_1 \leftarrow Y_1; \}
           else return
           c \leftarrow c + 1
```

Hill-climbing Algorithms

Ascend Algorithm

```
Algorithm Ascend([X_0, X_1])
      q \leftarrow 0
      for each i \in X_0 do
            for each j \in X_1 do
                   t \leftarrow G_{[X_0,X_1]}(i,j) (gain obtained in exchange)
                   if (t > q) then \{x \leftarrow i; y \leftarrow j; q \leftarrow t\}
      if (q > 0) then
          Y_0 \leftarrow (X_0 \cup \{y\}) \setminus \{x\}
          Y_0 \leftarrow (X_1 \cup \{x\}) \setminus \{u\}
           fail \leftarrow false
           return [Y_0, Y_1]
      else {fail \leftarrow true; return [X_0, X_1]}
```

SelectRandomPartition

Two possible algorithms:

- Picking X_0 as a random n-subset r of a 2n-set: Get a random integer $r \in [0, \binom{2n}{n} - 1]$ and apply kSubsetLexUnrank(r, n, 2n).
- @ Randomly shufling elements in [0,2n-1]:
 Create array A[0,2n-1] with randomly chosen numbers as elements.
 Create array B[0,2n-1] initially with B[i]=i.
 Sort A, doing same swaps on B.
 Take X_0 as the first half of B, and X_1 as the second half.

Hill-climbing for Steiner triple systems

Textbook, Section 5.4.

Definition

A Steiner triple system of order v, denoted STS(v), is a pair (V, \mathcal{B}) where: $V = \{1, 2, \dots v\}$ is a set of points, $\mathcal{B} = \{B_1, B_2, \dots, B_b\}$ is a set of 3-sets, called blocks, such that any pair

 $\mathcal{B} = \{B_1, B_2, \dots, B_b\}$ is a set of 3-sets, called blocks, such that any pair of points in V is in a unique block $B_i \in \mathcal{B}$.

Example: STS(9):

$$\begin{split} V = & \{1,2,3,4,5,6,7,8,9\} \\ \mathcal{B} = & \{ & \{1,2,3\}, \{1,4,7\}, \{1,5,9\}, \{1,6,8\}, \{4,5,6\}, \{2,5,8\}, \\ & \{2,6,7\}, \{2,4,9\}, \{7,8,9\}, \{3,6,9\}, \{3,4,8\}, \{3,5,7\}\} \end{split}$$

Replication number and number of blocks

Lemma

Let (V, \mathcal{B}) be an STS(v). Then, every point in V occurs in exactly $r = \frac{v-1}{2}$ blocks and $|\mathcal{B}| = \frac{v(v-1)}{6}$.

Proof:

- **1** Any point x must appear in some block with each of all other (v-1) points. Point x occurs with x other points in each of the x blocks it appears. Therefore, x = $\frac{v-1}{2}$.
- ② We count T, the number of points with their replications appearing on \mathcal{B} , in two ways: $T=3\times b$ and $T=v\times r$. Thus, $3\times b=v\times r$, which implies $b=\frac{v(v-1)}{6}$.

Necessary and sufficient conditions for existence of STS(v)

Since $r=\frac{v-1}{2}$ (point replication number) and $b=\frac{v(v-1)}{6}$ (number of blocks) must be integer numbers, we need $v\equiv 1,3\pmod{6}$. These necessary conditions have been proven to be sufficient:

Theorem

$$\exists STS(v) \iff v \equiv 1, 3 \pmod{6}$$

So, there exists an STS(v) for v=1,3,7,9,13,15,19,21,25,17,31,33,...

A partial Steiner triple system consists of a set of triples \mathcal{B} with each pair of points appearing in at most one $B_i \in \mathcal{B}$. Then, we can formulate the search problem as follows.

Searching for Steiner Triple Systems

PROBLEM: CONSTRUCT A STEINER TRIPLE SYSTEM

Instance: v such that $v \equiv 1, 3 \pmod{6}$

FIND: Maximize $|\mathcal{B}|$

SUBJECT TO: $([1, v], \mathcal{B})$ IS A

PARTIAL STEINER TRIPLE SYSTEM

The **universe** \mathcal{X} is the set of all sets of blocks \mathcal{B} , such that $([1,v],\mathcal{B})$ is a partial Steiner triple system.

An **optimal solution** is any feasible solution with $|\mathcal{B}| = \frac{v(v-1)}{\varepsilon}$.

Hill-climbing Algorithms

Stinson's hill-climbing algorithm for STSs

```
Algorithm Stinson's Algorithm(v)

Numblocks \leftarrow 0
V \leftarrow \{1,2,\dots v\}
\mathcal{B} \leftarrow \emptyset

While (Numblocks < \frac{v(v-1)}{2}) do \{ SWITCH\}
output (V,\mathcal{B})
```

To present SWITCH, we need:

Definition

A point x is said to be a **live point** in $([1,v],\mathcal{B})$ if $r_x<\frac{v-1}{2}$. A pair $\{x,y\}$ is said to be a **live pair** in $([1,v],\mathcal{B})$ if there exists no $B\in\mathcal{B}$ with $\{x,y\}\subseteq B$

Stinson's hill-climbing for STSs: Switch Algorithm

```
Algorithm SWITCH Choose a random live point x. Choose random y,z such that \{x,y\} and \{x,z\} are live pairs. If (\{y,z\} \text{ is a live pair}) then \mathcal{B} \leftarrow \mathcal{B} \cup \{\{x,y,z\}\} Numblocks \leftarrow Numblocks +1 else Let \{w,y,z\} \in \mathcal{B} be the block containing \{y,z\} \mathcal{B} \leftarrow \mathcal{B} \cup \{\{x,y,z\}\} \setminus \{\{w,y,z\}\}
```

See implementation details in the textbook.

Using appropriatte data structures, SWITCH is implemented in constant time.

Two heuristics for the Knapsack Problem

Knapsack (Optimization) Problem

Instance: Profits $p_0, p_1, \ldots, p_{n-1}$ Weights $w_0, w_1, \ldots, w_{n-1}$ Knapsack capacity M

Universe: $\mathcal{X}=\{0,1\}^n$ (set of all n-tuples) an n-tuple $[x_0,x_1,\ldots,x_{n-1}]$ is feasible if $\sum_{i=0}^{n-1} w_i x_i \leq M$.

Objective: maximize $P(X) = \sum_{i=0}^{n-1} p_i x_i$.

Two heuristics for the Knapsack Problem

Knapsack Simulated Annealing Results

TABLE 5.3
Summary data for the knapsack simulated annealing algorithm.

-	0					
c_{max}	profits found minimum maximum average					
1000	1441	1454	1446.8			
5000	1448	1456	1452.1			
20000	1448	1456	1450.9			
1000	1445	1455	1448.4			
5000	1450	1458	1454.6			
20000	1452	1458	1453.9			
1000	1445	1455	1449.6			
5000	1450	1458	1454.3			
20000	1453	1458	1456.1			
	1000 5000 20000 1000 5000 20000 1000 5000	minimum 1000 1441 5000 1448 20000 1448 1000 1445 5000 1450 20000 1452 1000 1445 5000 1450	minimum maximum 1000 1441 1454 5000 1448 1456 20000 1448 1456 1000 1445 1455 5000 1450 1458 20000 1445 1455 1000 1445 1455 5000 1450 1458			

Two houristics for the Knapsack Problem

Tabu Search for Knapsack

We will use the same neighbourhood $N_1(.)$.

Do exhaustive search on the neighbourhood in order to find the best way to update the current solution.

Instead of Profit improvement only, we look for improvements based on the ratio p_i/w_i :

- Chose i with maximum p_i/w_i among the indexes j where $x_j=0$, j is not on TABULIST, and changing x_j to 1 does not exceed M.
- ② If there is no j as above, then choose i with minimum p_i/w_i among the indexes j where $x_j=1$ and j is not on TABULIST.

This can be expressed by saying that we want to maximize

$$(-1)^{x_j} \frac{p_j}{w_i}.$$

```
Algorithm KnapsackTabuSearch(c_{max}, L)
             Select a random feasible X = [x_0, x_1, \dots, x_{n-1}] \in \{0, 1\}^n;
             curW \leftarrow \sum_{i=0}^{n-1} x_i w_i; X_{best} \leftarrow X;
             for (c \leftarrow 1; c \leq c_{max}; c \leftarrow c + 1) do
                 N \leftarrow \{0, 1, \dots, n-1\} \setminus \{j : j \text{ is in TABULIST}\};
                 for each (i \in N) do
                      if (x_i = 0) and (curW + w_i > M) then N \leftarrow N \setminus \{i\};
                 if (N = \emptyset) then break for-loop;
                 Find i \in N such that (-1)^{x_i} p_i / w_i is maximum;
                 TABULIST.INSERT(i, L); (removing oldest, if has L + 1 items)
                 x_i \leftarrow 1 - x_i; (swap i coordinate)
                 if (x_i = 1) then curW \leftarrow curW + w_i;
                               else curW \leftarrow curW - w_i:
                 if P(X) > P(X_{best}) then X_{best} \leftarrow X:
             return X_{best};
```

Two heuristics for the Knapsack Problem

TABLE 5.6
Summary data for the knapsack tabu search algorithm (24 items).

L	profi	ts found (in 2	# optimal solutions found	
	minimum	maximum	average	•
1	13079298	13466838	13388643.5	0
2	13084476	13500943	13415747.5	0
3	13245597	13500943	13456205.2	0
4	13264009	13500943	13446933.8	0
5	13358351	13500943	13458145.8	0
6	13148978	13549094	13427333.6	1
7	13116665	13549094	13462902.4	4
8	13346220	13549094	13497932.2	7
	/			,

ELIV.

000000000

A Genetic Algorithm for the TSP

Traveling Salesman Problem (TSP)

Instance: a complete graph K_n

a cost function $c: V \times V \to R$

Find: a Hamiltonian circuit $[x_0, x_1, \dots, x_{n-1}]$ that minimizes

$$C(X) = c(x_0, x_1) + c(x_1, x_2) + \ldots + c(x_{n-1}, x_0)$$

Note that 2n permutations represent the same cycle.

Universe: $\mathcal{X} = \mathsf{set} \ \mathsf{of} \ \mathsf{all} \ n!$ permutations.

Steps:

- Selection of initial population.
- Mutation: steepest ascent 2-opt.
- Recombination using two methods: partially matched crossover and another method.

Mutation

Steepest ascent algorithm based on the 2-opt heuristic:

Gain in applying a 2-opt move:

$$\begin{array}{lcl} G(X,i,j) & = & C(X) - C(X_{ij}) \\ & = & c(x_i,x_{i+1}) + c(x_j,x_{j+1}) - c(x_{i+1},x_{j+1}) - c(x_i,x_j) \end{array}$$

N(X)= all $Y\in\mathcal{X}$ that can be obtained from X by a 2-opt move.

```
Algorithm STEEPESTASCENTTWOOPT(X)
              done \leftarrow false;
              while (not done) do
                      done \leftarrow true; q_0 \leftarrow 0;
                      for i \leftarrow 0 to n-1 do
                           for i \leftarrow i + 2 to n - 1 do
                               q \leftarrow G(X, i, j);
                               if (q > q_0) then
                                  q_0 \leftarrow q; i_0 \leftarrow i; j_0 \leftarrow j;
                      if (g_0 > 0) then
                         X \leftarrow X_{i_0, i_0};
                         done \leftarrow false:
```

A Genetic Algorithm for TSP

Selecting the initial population

Randomly pick one and then mutate it:

```
Algorithm Select(popsize) for i \leftarrow 0 to popsize - 1 do r \leftarrow \text{RandomInteger}(0, n! - 1); P_i \leftarrow \text{PermLexUnrank}(n, r); \text{SteepestAscentTwoOpt}(P_i); \text{return } [P_0, P_1, \dots, P_{popsize-1}];
```

Recombination algorithm 1: Partially Matched Crossover

```
Algorithm PMRec(A, B)

h \leftarrow \text{RandomInteger}(10, n/2); (length of the substring)

j \leftarrow \text{RandomInteger}(0, n-1); (start of the substring)

(C, D) \leftarrow \text{PartiallyMatchedCrossover}(A, B, j, (h+j) mod n)

SteepestAscentTwoOpt(C);

SteepestAscentTwoOpt(D);

return (C, D);
```

Recombination Algorithm 2

```
Algorithm MGKRec(A, B)
   h \leftarrow \text{RANDOMINTEGER}(10, n/2); (length of the substring)
   j \leftarrow \text{RANDOMINTEGER}(0, n-1); (start of the substring)
   T \leftarrow \emptyset:
   (pick subcycle of length h starting from pos j:)
   for i \leftarrow 0 to h-1 do
       D[i] \leftarrow B[(i+j) \mod n];
       T \leftarrow T \cup \{D[i]\};
   Complete cycle with permutation in A using guys not already in D
   in the order prescribed by A:
   for i \leftarrow 0 to n-1 do
       if A[j] \notin T then \{D[i] \leftarrow A[j]; i \leftarrow i+1; \}
   STEEPESTASCENTTWOOPT(D);
    (Similarly build C swapping A and B roles:)...\Box
```

```
(Algorithm continued)
     (Similarly build C swapping A and B roles:)...
     j \leftarrow \text{RANDOMINTEGER}(0, n-1); (start of the substring)
     T \leftarrow \emptyset:
     for i \leftarrow 0 to h-1 do
         C[i] \leftarrow A[(i+j) \mod n];
         T \leftarrow T \cup \{C[i]\}:
     for i \leftarrow 0 to n-1 do
         if B[j] \notin T then \{C[i] \leftarrow B[j]; i \leftarrow i+1; \}
     STEEPESTASCENTTWOOPT(C);
     return (C, D);
```

Genetic Algorithm for TSP

```
Algorithm GENETICTSP(popsize, c_{max})
      [P_0, P_1, \dots, P_{ponsize-1}] \leftarrow \text{Select}(popsize);
     Sort P_0, P_1, \ldots, P_{popsize-1} in increasing order of cost.
      X_{best} \leftarrow P_0; BestCost \leftarrow C(P_0);
      for (c \leftarrow 1; c \leq c_{max}; c \leftarrow c + 1) do
          for i \leftarrow 0 to popsize/2 - 1 do
               (P_{nonsize+2i}, P_{nonsize+2i+1}) \leftarrow \text{Rec } (P_{2i}, P_{2i+1});
          Sort P_0, P_1, \ldots, P_{2nonsize-1} in increasing order of cost.
          curCost \leftarrow C(P_0):
          if (curCost < BestCost) then
             X_{best} \leftarrow P_0:
             BestCost \leftarrow curCost:
      return X_{heet}:
```

A Genetic Algorithm for TSF

TABLE 5.7
GENETICTSP data with recombination operation PMRec.

					cost found			
M	n	Opt. Cost	popsize	c_{max}	min	max	avg	No. Opt. found
M50a	50	185	8	50	192	214	200.50	0
				100	191	219	200.00	0
				200	190	203	196.60	0
			16	50	187	207	193.20	0
				100	187	206	193.20	0
				200	187	200	193.70	0
			32	50	189	205	194.70	0
				100	186	199	190.70	0
				200	188	200	192.40	0
M50b	50	158	8	50	163	184	175.40	0
				100	163	195	173.70	0
				200	160	191	177.30	0
			16	50	159	176	167.40	0
				100	163	184	171.50	0
				200	161	189	172.10	0
			32	50	161	173	167.60	0
				100	163	178	169.40	0
				200	159	178	166.70	0
M50c	50	155	8	50	162	181	169.40	0
				100	159	186	169.50	0
				200	159	187	169.30	0
			16	50	155	171	161.30	1
				100	155	182	166.10	1
				200	157	182	167.70	0
			32	50	155	170	161.60	1
				100	158	167	161.40	0
				200	157	180	162.50	0

A Genetic Algorithm for TSF

TABLE 5.8
GENETICTSP with recombination operation MGKREC.

18000				cost found				
M	n	Opt. Cost	popsize	Cmaz	min	max	avg	No. Opt. found
M50a	50	185	8	50	186	196	191.70	0
Marie II				100	186	199	190.30	0
				200	186	194	189.20	0
			16	50	186	192	189.20	0
				100	185	192	187.00	3
				200	185	192	187.60	1
			32	50	186	192	188.10	0
				100	185	190	187.30	1
				200	185	190	187.30	1
M50b	50	158	8	50	160	171	165.30	0
				100	159	166	161.60	0
				200	159	170	162.00	0
			16	50	158	164	161.20	1
	1			100	158	162	159.80	1
				200	159	163	160.70	0
			32	50	158	165	160.70	1
	1			100	159	163	160.30	0
				200	158	160	158.90	2
M50c	50	155	8	50	156	168	160.50	0
				100	155	167	160.70	2
				200	155	162	157.30	5
			16	50	155	162	157.50	2
				100	155	159	156.30	5
				200	155	159	155.70	8
			32	50	155	159	156.10	6
				100	155	158	155.40	8
				200	155	156	155.10	9