Notes on Natural-Gradient Variational Inference

Yuanxing Cheng

March 23, 2022

1 About natural gradient VI

1.1 Exponential familiy

$$q(\theta \mid \eta) = q_n(\theta) = h(\theta) \exp\left\{ \langle \eta, \phi(\theta) \rangle - A(\eta) \right\}$$
(1.1)

Here q is an exponential familiy over parameters θ with natural parameters η .

- $\phi(\theta)$ is the vector of sufficient statistics.
- $A(\eta) = \log \int \exp \left(\phi(\theta)^{\top} \eta\right) d\theta$ is the log-partition function.
- $h(\theta)$ is a scaling constant.

As in our case, this $q(\theta \mid \eta)$ is our $\rho(x)$. This paper update q through updating η .

Also assume a minimal exponential familiy, then $\phi(\theta)$ are lin-idp. And this leads to the result that there's a 1-to-1 mapping between η and mean parameters m.

$$m = \mathrm{E}\left[\phi(\theta)\right] = \nabla_{\eta} A(\eta)$$

Above equation is obtained by considering it as the first order dirivative of first momentum. Next, the objective function is ELBO defined as following:

$$\mathcal{L}(\eta) = \mathbb{E}_{q_{\eta}(\theta)} \left[\log p(\mathcal{D} \mid \theta) \right] + \mathbb{E}_{q_{\eta}(\theta)} \left[\log \frac{p_{0}(\theta)}{q_{\eta}(\theta)} \right]$$
 (1.2)

where \mathcal{D} are data. Above it's a expectaion of likelihood plus the KL divergence.

1.2 Updating strategy

$$\eta_{t+1} = \eta_t + \beta_t \mathbf{F}^{-1}(\eta_t) \nabla_{\eta} \mathcal{L}(\eta_t)$$
(1.3)

with $\mathbf{F}(\eta_t) = \mathbb{E}_{q_{\eta}(\theta)} \left[\nabla_{\eta} \log q_{\eta}(\theta) \nabla_{\eta} \log q_{\eta}(\theta)^{\top} \right]$ the Fisher Information matrix. i.e., $I = \int \rho |\nabla \log \rho|^2 dx$ in our case. And β_t is the learning rate.

A simplification with result: $\mathbf{F}(\eta) = \nabla_{\eta\eta}^2 A(\eta)$, then by consider \mathcal{L} as a function of m instead of η (denote as \mathcal{L}_*), we have

$$\nabla_{\eta} \mathcal{L}(\eta_t) = \nabla_{\eta} m_t \nabla_m \mathcal{L}_*(m_t) = \nabla_{\eta\eta}^2 A(\eta) \nabla_m \mathcal{L}_*(m_t) = \mathbf{F}(\eta) \nabla_m \mathcal{L}_*(m_t)$$
(1.4)

And thus the updating strategy is reduced to

$$\eta_{t+1} = \eta_t + \beta_t \nabla_m \mathcal{L}_*(m_t) \tag{1.5}$$

Then we plug in \mathcal{L}_* , first we notice the gradient of KL term is easily obtained.

$$\nabla_m \text{KL} = \nabla_m \mathbb{E}_{q_\eta \theta} \left[\phi(\theta)^\top (\eta_0 - \eta) + A(\eta) + \text{const} \right]$$

$$= \nabla_m (m^{\top} (\eta_0 - \eta)) + \nabla_m A(\eta)$$

= $(\eta_0 - \eta - \nabla_m \eta^{\top}) + \nabla_m A(\eta)$
= $\eta_0 - \eta - \mathbf{F}^{-1}(\eta) m + \mathbf{F}^{-1}(\eta) m = \eta_0 - \eta$

Then the update further reduced through

$$\eta_{t+1} = \eta_t + \beta_t (\nabla_m \text{likelihood} + (\eta_0 - \eta_t))$$
(1.6)