در این پروژه، پردازنده 6 بیتی که در کلاس طراحی شده را پیادهسازی کرده و برای آن برنامهنویسی میکنیم. **توجه:** این پروژه در صورتی قابل قبول است که برای آن گزارش هم نوشته شود. در این گزارش نحوه پیادهسازی پردازنده و اجرای برنامه توسط آن با استفاده از عکسهای مناسب از خروجی شبیهسازی نشان داده شود.

بخش اول (**40% نمره پروژه):** براي انجام اين پروژه ابتدا پردازنده را با استفاده از ۷HDL يا Verilog پيادهسازي كرده و صحت عملكرد آن را با اجراي كد زير كه دو عدد 7 و 4 را با هم جمع ميكند بررسي كنيد.

LOAD R0, 7 LOAD R1, 4 ADD R0, R1

بخش دوم (%20 نمره پروژه): با توجه به این که این پردازنده دستور ضرب ندارد، عمل ضرب را با استفاده از عمل جمع و به صورت نرمافزاري پیاده سازي کرده و صحت عملکرد آن را با یك مثال نشان دهید (مشابه بخش اول یک کد اسمبلی بنویسید که عمل ضرب را انجام دهد). به عنوان مثال، حاصلضرب عدد 8 در 6 را حساب کند.

بخش سوم (**40% نمره پروژه):** دستور ضرب را با کمترین سربار سختافزاری به مجموعه دستورات اضافه کرده و صحت عملکرد آن را با نوشتن یک کد که حاصلضرب 8 در 6 را حساب کند نشان دهید. توجه کنید که برای این کار نیاز است تغییراتی در سختافزار و کد دستورات ایجاد کنید.

دستورات پردازنده:

این پردازنده چهار دستور LOAD، LOAD و SUB ، ADD ، LOAD) زیر است:

کد دستور	دستور	
00	LOAD	
01	ADD	
10	SUB	
11	JNZ	

قالب دستورات:

Op Code	R _{SRC}	R _{DST}
---------	------------------	------------------

چینش در حافظه	RTL	اسمبلی دستور
00 Rx 00 مقدار دستور بعدی	Rx ← M[PC]	LOAD Rx, VALUE
01 Rx Ry PC → دستور بعدی	$Rx \leftarrow Rx + Ry$	ADD Rx, Ry
10 Rx Ry PC → دستور بعدی	Rx ← Rx - Ry	SUB Rx, Ry
11 Rx 00 ادرس پرش آدرس پدی	If $(Rx != 0) PC \leftarrow M[PC]$ else $PC \leftarrow PC + 1$	JNZ Rx, Address

چارت ASM براي طراحي واحد كنترل:

