Задача №3

Стержни различных карандашей изготавливают из веществ **A** и Γ . Эти вещества образуются при разложении (со взрывом) бинарного вещества **Ж** в инертной атмосфере. Массовая доля одного из элементов в **Ж** составляет 10,0%. Рисунки, сделанные карандашом со стержнем, изготовленным из вещества **A**, со временем приобретают коричневый оттенок.

При взаимодействии вещества $\bf A$ с концентрированной азотной кислотой образуются вещество $\bf B$, применявшееся раньше для дезинфекции ран, и газ $\bf B$. Вещество $\bf B$ взаимодействует с раствором гидроксида натрия, при этом образуется соль $\bf C_1$ и окрашенный осадок $\bf Z$, который разлагается при 300°C на вещество $\bf A$ и газ $\bf E$.

При взаимодействии вещества Γ с концентрированной азотной кислотой образуется смесь газов B и 3. Если пропускать эту смесь через избыток раствора гидроксида натрия, то образуются соли C_1 , C_2 и C_3 . Если смесь газов B и 3 смешать с стехиометрическим количеством газа E, то при пропускании этой смеси через избыток раствора щелочи образуются C_1 и C_2 .

Так же известно, что при взаимодействии растворов веществ \mathbf{F} и \mathbf{C}_2 образуются \mathbf{C}_1 и светложелтый осадок соли \mathbf{C}_4 .

- 1. Определите формулы вещества А, Г и Ж. Ответ подтвердите расчетом.
- 2. Объясните, почему рисунки, выполненные карандашами со стержнем из вещества **A**, со временем меняют цвет.
 - 3. Определите формулы остальных веществ.
- 4. Напишите уравнения всех упомянутых в тексте задачи реакций. Учтите, что во всех упомянутых реакциях **может** участвовать или образовываться вода.

Решение:

1) Разумно предположить, что один из материалов грифеля карандаша уголь. Тогда можно рассчитать состав вещества \mathbf{K} . Скорее всего приведенная массовая доля – это массовая доля углерода, как достаточно легкого элемента. Состав вещества \mathbf{K} можно представить формулой $C_x \mathcal{Y}_y$. Рассмотрим, вариант, когда в формулярной единице вещества один атом углерода, т.е. состава вещества выражается формулой $C\mathcal{Y}_y$, тогда молярная масса вещества равна:

состава вещества выражается формулой СЭ_у, тогда молярная масса вещества равна:
$$M(CЭ_y) = \frac{M(C)}{\omega(C)} = \frac{12 \text{ г/моль}}{0.1} = 120 \text{ г/моль}$$

Тогда молярная масса «у» атомов элемента составляет 108 г/моль. Несложно заметить, что это соответствует одному атому серебра. Тогда формулярная единица вещества \mathbf{W} – AgC, что отвечает ацетилениду серебра $\mathrm{Ag_2C_2}$. Ацетиленид серебра разлагается при нагревании на серебро и углерод (если проводить реакцию не в инертной атмосфере, то будут образовываться их оксиды):

$$Ag_2C_2 \rightarrow 2Ag + 2C$$

Так как с рисунками, выполненными угольным карандашом, со временем ничего не происходит, то можно сделать вывод, что вещество Γ – уголь (графит), тогда вещество Λ – серебро.

2) Рисунки выполненные серебряным карандашом приобретают коричневую окраску со временем, т.к. серебро реагирует с сероводородом, всегда присутствующим в воздухе даже в небольших концентрациях, в присутствии кислорода, и образующийся устойчивый сульфид серебра обуславливает возникающую окраску:

$$4Ag + 2H_2S + O_2 \rightarrow 2Ag_2S + 2H_2O$$

3) При взаимодействии серебра с концентрированной азотной кислотой образуются нитрат серебра $AgNO_3$ (**Б**) и оксид азота (IV) (газ **B**). Нитрат серебра взаимодействует с раствором гидроксида натрия, при этом образуется нитрат натрия (соль C_1) и осадок оксида серебра Ag_2O (Д). Оксид серебра разлагается на серебро и кислород O_2 (газ **E**).

При взаимодействии угля с концентрированной азотной кислотой образуются оксид азота (IV) (газ $\bf B$) и углекислый газ (газ $\bf 3$). При пропускании этой смеси через раствор гидроксида натрия в обоих случаях образуется карбонат натрия. Оксид азота (IV) при взаимодействии с щелочью диспропорционирует на нитрат натрия и нитрит натрия, а в присутствии кислорода азот окисляется до степени окисления +5, поэтому образуется только нитрат натрия (соль $\bf C_1$). Следовательно, соль $\bf C_2$ — карбонат натрия $\bf Na_2CO_3$, а соль $\bf C_3$ — нитрит натрия $\bf NaNO_2$.

При смешивании растворов нитрата серебра (\mathbf{F}) и карбоната натрия (\mathbf{C}_2) образуются нитрат натрия (\mathbf{C}_1) и осадок карбоната серебра (\mathbf{C}_4). Итого:

A	Б	В	Γ	Д	E
Ag	AgNO ₃	NO ₂	C	Ag ₂ O	O_2
Ж	3	Cı	C2	C 3	C4
Ag ₂ C ₂	CO ₂	NaNO ₃	Na ₂ CO ₃	NaNO ₂	Ag ₂ CO ₃

4) Уравнения остальных описанных в тексте задачи реакций:

$$\begin{array}{c} Ag + 2HNO_{3(\text{конц.})} \rightarrow AgNO_{3} + NO_{2} + H_{2}O \\ 2AgNO_{3} + 2NaOH \rightarrow Ag_{2}O + 2NaNO_{3} + H_{2}O \\ 2Ag_{2}O \rightarrow 4Ag + O_{2} \\ C + 4HNO_{3(\text{конц.})} \rightarrow CO_{2} + 4NO_{2} + 2H_{2}O \\ CO_{2} + 2NaOH \rightarrow Na_{2}CO_{3} + H_{2}O \\ 2NO_{2} + 2NaOH \rightarrow NaNO_{3} + NaNO_{2} + H_{2}O \\ 4NO_{2} + 4NaOH + O_{2} \rightarrow 4NaNO_{3} + 2H_{2}O \\ Na_{2}CO_{3} + 2AgNO_{3} \rightarrow 2NaNO_{3} + Ag_{2}CO_{3} \end{array}$$

Критерии оценивания:

- 1) Любой разумный вывод формулы вещества $\mathbf{\mathcal{K}} \mathbf{2}$ балла (1 балл, если написано, что формула $\mathbf{\mathcal{K}} \mathbf{AgC}$). Уравнение разложения вещества $\mathbf{\mathcal{K}} \mathbf{1}$ балл.
- 2) Объяснение факта изменения окраски рисунка, сделанного серебряным карандашом 1 балл. Уравнение реакции серебра с сероводородом и кислородом 1 балл.
 - 3)Определение остальных веществ по 1 баллу (всего 11 баллов).
- 4) Написание остальных реакций по 0,5 балла (всего 4 балла).

Итого: 20 баллов