AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listing, of claims in the application:

Listing of Claims:

1. (Currently Amended) A method of administering to patients by injection or infusion a suspension of microparticles homogeneously distributed in an aqueous liquid carrier by means of an injector system comprising a syringe containing said suspension and a power driven piston for injecting said suspension into a patient, <u>said method</u> comprising:

subjecting the suspension in the syringe to a rotation or rocking motion,
thereby maintaining said suspension homogeneous by preventing
segregation of the microparticles by gravity or buoyancy, this being and
without damaging said particles or disturbing said distribution.

- 2. (Original) The method of claim 1, in which said motion is provided by outside means for imparting motion to said particles, which motion is then transferred to said liquid carrier.
- 3. (Original) The method of claim 1, in which said motion of rocking or rotation is alternated.
- 4. (Original) The method of claim 3, in which said motion is applied along or around the syringe longitudinal or transverse axis.
- 5. (Original) The method of claim 4, in which said motion is provided by subjecting the syringe to continuous or intermittent rotation.
 - 6. (Original) The method of claim 5, in which the rotation rate is from 0.5 to 200 rpm.
- 7. (Original) The method of claim 1, in which said motion is alternating rotation the direction of which is reversed every 30°, 60°, 90°, 180°, 270° or 360°.

8. (Original) The method of claim 7, in which the direction is alternated at a frequency of 0.5 Hz, 1.0 Hz, 1.5 Hz, 2.0 Hz, 2.5 Hz, 3.0 Hz or 3.5 Hz.

- 9. (Original) The method of claim 1, in which said motion is carried out stepwise. 10-21. (Cancelled).
- 22. (Original) The method of claim 1, in which the suspension is a contrast agent for ultrasonic imaging of patients.
- 23. (Original) The method of claim 22, in which the contrast agent comprises in suspension in an aqueous liquid carrier,

gas filled microvesicles which are either microbubbles bounded by a gas/liquid interface made from dissolved surfactants, or microballons bounded by a material envelope made of organic polymers, or of dior tri- glycerides.

- 24. (Original) The method of claim 23, in which the gas is a pure physiologically acceptable halogenated gas or gas mixture comprising at least one physiologically acceptable halogenated gas.
- 25. (Original) The method of claim 24, in which the halogenated gas is selected from CF_4 , C_2F_6 , C_3F_8 , C_4F_8 , C_4F_{10} , C_5F_{12} , C_6F_{14} or SF_6 .
- 26. (Original) The method of claim 24, wherein the gas mixture contains a gas selected from air, oxygen, nitrogen, helium, xenon or carbon dioxide.
- 27. (Original) The method of claim 23, in which at least one of the surfactants is a saturated phospholipids in a lamellar or laminar form.

28. (Original) The method of claim 27, in which at least one of the phospholipids is a diacylphosphatidyl compound wherein the acyl group is a C_{16} fatty acid residue or a higher homologue thereof.

- 29. (Original) The method of claim 23, in which the polymer of the membrane is selected from polylactic or polyglycolic acid and their copolymers, denatured serum albumin, denatured haemoglobin, polycyanoacrylate, and esters of polyglutamic and polyaspartic acids.
- 30. (Original) The method of claim 29, in which the microballons are filled with C_3F_8 and the material envelope is made from albumin.
- 31. (Original) The method of claim 23, in which the microballons are bounded by saturated triglycerides, preferably tristearine, tripalmitine or mixtures of thereof with other glycerides, fatty acids and biodegradable polymers.
- 32. (Original) The method of claim 1 in which the suspension is a contrast agent for CT imaging.
- 33. (Original) The method of claim 32, in which the contrast agent comprises as a suspension in a liquid carrier phase liposomes filled with an iodinated compound selected from iomeprol, iopamidol, iohexol, metrizamide, iopromide, iogulamide, iosimide or ioversol.
 - 34. (Original) The method of claim 33, in which iodine over lipid ratio I/L is 3 or more. 35-38. (Cancelled).
- 39. (Currently Amended) A method of imaging organs, blood vessels or tissues of a mammal comprising administering to the mammal by injection or infusion a suspension of micoparticles microparticles homogenously distributed in an aqueous liquid carrier by means of an injector system comprising a syringe containing said suspension and a power driven piston for injecting said suspension into a patient, comprising:

subjecting the suspension in the syringe to a rotation or rocking motion, thereby maintaining said suspension homogenous by preventing segregation of the microparticles by gravity or buoyancy, this being and without damaging said particles or disturbing their distribution and thereafter imaging the mammal.

- 40. (Previously Presented) The method of claim 39, in which the organ imaged is the heart, brain, kidney or liver.
- 41. (Currently Amended) A method of CT imaging organs, blood vessels or tissue of a mammal comprising administering to the mammal by injection or infusion a suspension of micoparticles microparticles homogeneously distributed in an aqueous liquid carrier by means of an injector system comprising a syringe containing said suspension and a power driven piston for injecting said suspension into a patient, said method comprising
 - subjecting the suspension in the syringe to a rotation or rocking motion, thereby maintaining said suspension homogenous by preventing segregation of the microparticles by gravity or buoyancy, this being and without damaging said particles or disturbing their distribution and thereafter imaging the mammal.
 - 42. (Previously Presented) The method of claim 41, in which the liver is imaged.