Math 5102 – Linear Algebra– Fall 2024 w/Professor Penera

Paul Carmody Homework #5 – NONE

Page 84: 4, 8, 9, 13, 16

4. Define

$$T: M_{2\times 1}(R) \to P_2(R)$$
 by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+b) + (2d)x + bx^2$.

Let

$$\beta = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right) \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\} \text{ and } \gamma = \{1, x, x^2\}$$

Computer $[T]^{\gamma}_{\beta}$.

- 8. Let V be an n-dimensional vector space with an ordere basis β . Define $T:V\to F^n$ by $T(x)=[x]_{\beta}$. Prove that T is linear.
- 9. Let V be the vector space of complex numbes over the field R. Define $T:V\to V$ by $T(z)=\overline{z}$, where \overline{z} is the complex conjugate of z. Prove that T is linear, and compute $[T]_{\beta}$, where $\beta=\{1,i\}$. (Recall by Exersise 38 of Section 2.1 that T is not linear if V is regarded as a vector space over the field C.)
- 13. Let V and W be vector spaces, and let T and U be nonzero linear transformations from V into W If $R(t) \cap R(U) = \{0\}$, prove that $\{T, U\}$ is linearly independent subset of $\mathcal{L}(V, W)$.
- 16. Let V and W be vector spaces such that $\dim(V) = \dim(W)$, and let $T: V \to W$ be linear. Show that there exist ordered bases β and γ for V and W, respectively, such that $[T]^{\gamma}_{\beta}$ is a diagonal matrix.

Page 96: 3, 9, 11, 12, 13

3. Let g(x) = 3 + x. Let $T: P_2(R) \to P_2(R)$ adn $U: P_2(R) \to \mathbb{R}^3$ be the linear transformations respectively defined by

$$T(f(x)) = f'(x)g(x) + 2f(x)$$
 and $U(a + bx + cx^2) = (a + b, c, a - b)$.

Let β and γ be the standard ordered bases of $P_2(R)$ and \mathbb{R}^3 , respectively

- (a) Compute $[U]^{\gamma}_{\beta}$, $[T]^{\gamma}_{\beta}$ directly. Then use Theorem 2.11 to verify your results.
- (b) Let $h(x) = 3 2x + x^2$. Compute $[h(x)]_{\beta}$ and $[U(h(x))]_{\gamma}$. Then use $[U]_{\beta}^{\gamma}$ from (a) and Theorem 2.14 to verily your results.
- 9. Find linear transformations $U, T: F^2 \to F^2$ such that $UT = T_0$ (the zero transformation) but $TU \neq T_0$. Use your answer to find matrices A and B such that AB = 0 but $BA \neq 0$.
- 11. Let V be a vector space, and let $T: V \to V$ be linear. Prove that $T^2 = T_0$ if and only if $R(T) \subseteq N(T)$.
- 12. Let V, W and Z be vector spaces, and let $: V \to W$ and $U :: W \to Z$ be linear.
 - (a) Prove that if UT is one-to-one, then T is one-to-one. Must U also be one-to-one?
 - (b) Proive that if UT is onto, then U is onto. Must T also be onto?
 - (c) Prove that if U and T are one-to-one and onto, then UT is also.
- 13. Let A and B be $n \times n$ matrices. Recall that the trace of A is defined by

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii}$$

Prove that tr(AB) = tr(BA) and $tr(A) = tr(A^t)$