3.2 Descriptive Analytics for Fraud Detection

3.2.1 Descriptive vs Predictive #Descriptive #Predictive

Descriptive Analytics	Predictive Analytics
Aims at finding anomalous behavior deviating from the norm	Assumes the availability of historical data with known frauds
 Behavior of the average customer across a time period. 	The analytical models built can only detect known fraud patterns.
● The <i>average behavior</i> of a given customer across a time period.	 Useful to explain the anomalies found by descriptive analytics.
Can identify emerging unknown cyber threats.	Are based on known fraudulent patterns.
Unsupervised Learning	Supervised Learning

3.2.2 Descriptive Analytics = Unsupervised learning = Anomaly Detection

It aims at finding anomalies, suspicious observations, outliers or exceptions.

66 Grubbs (1969)

An **outlying observation**, or outlier, is one that appears to *deviate markedly from* other members of the sample in which it occurs.

Relevant in environments where:

- Organizations are starting doing fraud detection.
- There is no labeled historical data set available.
- Fraudsters are continuously adapting their strategies.

3.2.2.1 Unsupervised Learning Challenge

Define the average behavior or norm:

- Depend on the application field.
- Boundary between norm and outliers is not clear-cut.
 - Fraudsters try to blend into norm
- The norm may change over time

- Analytical models built need to be continuously monitored and updated.
- Anomalies do not necessarily represent frauds.

Unsupervised learning for fraud detection require extensive validation of the identified suspicious observations.

3.2.3 Graphical outlier detection procedures

<u>Ideal tools to explore the data</u> and get preliminary insights:

- One-dimensional outliers (histogram or box plot).
- Two-(three) dimensional outliers (scatter plot).

P Disadvantages:

- Less formal and only limited to a few dimensions.
- Require active involvement of the end-user.
- For a large dimensional data set, is cumbersome.

Next chapter: <u>Statistical Outlier Detection</u>