Representação Monomial *

Vanderlei Lopes de Jesus [†]
5 de dezembro de 2019

1 Resultados Auxiliares

O Objetivo principal desse trabalho é provar o Teorema de Blichfeldt:

Teorema 1 (Blichfeldt) Seja G um grupo finito, \mathbb{F} um corpo algebricamente fechado e M um $\mathbb{F}G$ -módulo simples que proporciona uma representação fiel de G. Suponha que G possui um subgrupo normal abeliano A com $A \nsubseteq Z(G)$. Então, existe um subgrupo próprio H < G e um $\mathbb{F}H$ -módulo simples N tal que M e N^G são $\mathbb{F}G$ -isomorfos.

Esse teorema apresenta a condição necessária para isomorfismos de módulos induzidos por um subgrupo H < G e $\mathbb{F}G$ -módulos simples de um grupo finito G. Para tanto vamos precisar dos seguintes resultados, bem conhecidos e importantes de teoria de representações de grupos: O Lema de Schur e o Teorema de Clifford.

Teorema 2 (Lema de Schur) Sejam U e V dois $\mathbb{F}G$ -módulos simples e $\varphi: U \to V$ um G-homomorfismo. Então $\varphi = 0$ ou φ é um isomorfismo.

Como consequência do Lema de Schur temos o corolário:

Corolário 3 Seja G um grupo finito abeliano, \mathbb{F} um corpo algebricamente fechado, e V um $\mathbb{F}G$ -módulo simples de dimensão finita. Então $\dim_{\mathbb{F}}V = 1$.

Teorema 4 (Clifford) Seja G um grupo finito, V um $\mathbb{F}G$ -módulo simples de dimensão finita, $N \subseteq G$ e $U \subseteq_N V$ um N-submódulo simples. Então,

- 1. $V = \sum_{g \in G} Ug$, onde Ug é um N-módulo simples e V é completamente redutível.
- 2. Sejam S_1, \ldots, S_k os tipos de isomorfismo dos N-submódulos simples de V e seja para $i \in \{1, \ldots, k\}$, $V_i = \sum W$ onde $W \leq_N V$ e $W \cong S_i$. Então $V = V_1 \oplus \cdots \oplus V_k$ como N-módulo.
- 3. G age transitivamente no conjunto $\{V_1, \ldots, V_k\}$.
- 4. Seja $G_i = G_{V_i}$ (o estabilizador). Então V_i é um $\mathbb{F}G_i$ -módulo simples.

^{*}Trabalho realizado como parte da avalição da disciplina *Grupos e Representações* sob regência do Professor Csaba Schneider.

 $^{^\}dagger \text{Email: vanderleilopesbh@gmail.com.}$ Doutorado em Matemática, Universidade Federal de Minas Gerais

2 Representação Monomial

Definição 5 Sejam G um grupo, \mathbb{F} um corpo e M um \mathbb{F} -espaço vetorial. Dizemos que uma representação $\rho: G \to GL(M)$ é uma representação monomial se $\rho = \rho_1 \oplus \cdots \oplus \rho_k$, onde ρ_i é induzida por uma representação de grau 1 de um subgrupo H de G.

Para visualizar uma representação monomial precisamos examinar a sua representação matricial associada. Suponha que $\rho: G \to GL(M)$ é uma representação monomial de $G, \ \rho = \rho_1 \oplus \cdots \oplus \rho_k$ e $M = M_1 \oplus \cdots \oplus M_k$, onde ρ_i corresponde ao $\mathbb{F}G$ -módulo á direita M_i . Então, pode definição de representação monomial, temos para cada $1 \leq i \leq k$ que $M_i = N_i^G$, onde N_i é um $\mathbb{F}H_i$ -módulo de dimensão 1, para H_i um subgrupo de G. Digamos, $N_i = \mathbb{F}a_i$. Escolhendo $\{t_1^{(i)}, \ldots, t_{r_i}^{(i)}\}$ uma transversal de H_i em G, segue que $\{a_i \otimes t_i^{(i)}: 1 \leq j \leq r_i\}$ é uma base para M_i como $\mathbb{F}G$ -módulo à direita.

 $\{a_i \otimes t_j^{(i)}: 1 \leq j \leq r_i\}$ é uma base para M_i como $\mathbb{F}G$ -módulo à direita. Vamos ver a ação de cada $g \in G$ nos elementos da base de M_i construída acima: primeiro note que que $t_j^{(i)}g = ht_k^{(i)}$ para únicos $h \in H_i$ e k > 1 inteiro. Também observe que $a_i h = C_{i,j}^{(g)}a_i$ com $C_{i,j}^{(g)} \in \mathbb{F}$ não nulo, pois $N_i = \mathbb{F}a_i$. Logo,

$$(a_i \otimes t_j^{(i)})g = a_i \otimes t_j^{(i)}g = a_i \otimes ht_k^{(i)} = a_i h \otimes t_k^{(i)}$$
$$= C_{i,j}^{(g)}a_i \otimes t_k^{(i)} = C_{i,j}^{(g)}(a_i \otimes t_k^{(i)}).$$

Assim a matriz representando $g\rho$ com respeito a base de todos $a_i \otimes t_j^{(i)}$ tem sua entrada (i,j:i,k) igual a $C_{i,j}^{(g)}$ e todas as outras zero. portanto $g\rho^*$ tem precisamente um elemento não nulo em cada linha e em cada coluna (uma matriz com essa propriedade é chamada matriz monomial).

Representações monomiais definem os chamados M-grupos. Um grupo finito G é dito M-grupo se, sempre que $\mathbb F$ é algebricamente fechado e $char\mathbb F \nmid |G|$, então toda representação de G é monomial. Pelo teorema de Maschke um grupo G é M-grupo se, e somente se, todas as representações irredutíveis de G são monomiais. Assim, veja que grupos finitos abelianos são M-grupos.

Sejam G um grupo, \mathbb{F} um corpo e M um \mathbb{F} -espaço vetorial. Se $M \cong N^G$ para N um $\mathbb{F}H$ -módulo de dimensão 1 para algum subgrupo H de G, então dizemos que M é monomial. Em particular, todo $\mathbb{F}G$ -módulo de dimensão 1 é monomial.

Teorema 6 (Blichfeldt) Seja G um grupo finito, \mathbb{F} um corpo algebricamente fechado e M um $\mathbb{F}G$ -módulo simples que proporciona uma representação fiel de G. Suponha que G possui um subgrupo normal abeliano A com $A \nsubseteq Z(G)$. Então, existe um subgrupo próprio H < G e um $\mathbb{F}H$ -módulo simples N tal que M e N^G são $\mathbb{F}G$ -isomorfos.

Prova: Primeiro, por 2 e 3 do Teorema 4 podemos escrever $M = M_1 \oplus \cdots \oplus M_k$, onde M_i é uma soma de $\mathbb{F}A$ -módulos simples isomorfos e G age transitivamente em $\Omega = \{M_1, \ldots, M_k\}$. Ainda, pelo Corolário 3 a ação de A em M_i é escalar.

Afirmamos que k > 1. Com efeito, se k = 1 então $M = M_1$ e afirmamos que $A \subseteq Z(G)$. De fato, G age transitivamente em M e como a ação de A em M é escalar, temos que para quaisquer $m \in M$, $a \in A$ e $g \in G$

$$m(ag) = (ma)g = (m\lambda_a)g = (mg)\lambda_a = m(ga),$$

onde $\lambda_a \in \mathbb{F}$. Logo, $m(aga^{-1}g^{-1}) = m$ donde $aga^{-1}g^{-1} = 1$, isto é, ag = ga. Logo $A \subseteq Z(G)$ que é uma contradição com a hipótese. Portanto k > 1.

Seja $N=M_1$ e defina $H=G_N=\{g\in G:Ng=N\}$ o estabilizador de N em G. Como G age transitivamente em Ω temos que $[G:G_N]=k>1$ e por 4 do Teorema 4 segue que N é $\mathbb{F}H$ -módulo simples. Por transitividade $M_i=Ng_i$ para algum $g_i\in G$ e $\{g_1,\ldots,g_k\}$ é uma transversal direita de H em G.

Se $a_i \in N$, então

$$\varphi: N^G \to M, \ \sum_i a_i \otimes g_i \mapsto \sum_i a_i g_i,$$

é o $\mathbb{F}G$ -isomorfismo desejado.

Referências

[1] Derek J. S. Robinson, A Course in the Theory of Groups. Springer-Verlang, New York, 1996.