## التمرين 1:

لدراسة حركية تحول كيميائي تام، غمرنا في لحظة t=0 صفيحة من النحاس كتاتها  $m=3,175\,g$  في حجم قدره لدراسة حركية تحول كيميائي تام، غمرنا في لحظة t=0 صفيحة من النحاس كتاتها  $m=3,175\,g$  من محلول نترات الفضة M=10 الفضة M=10 من محلول نترات الفضة M=10 الذي يعبر عن تغيرات كتلة الفضة المتشكلة بدلالة الزمن M=10 معادلة التفاعل المنمذج لهذا التحول هي: M=10 M=10

2- حدد الثنائيتين Ox / Red المشاركتين في التفاعل واكتب عندئذ المعادلتين النصفيتين للأكسدة والإرجاع.



 $x_{\text{max}}$  واحسب قيمة التقدم الأعظمي  $x_{\text{max}}$ 

-4 احسب  $c_0$  التركيز المولى الابتدائى لمحلول نترات الفضة.

5- جد التركيب المولى (حصيلة المادة) في الحالة النهائية.

6- عَرِّف زمن نصف التفاعل  $t_{\chi}$  وحدد قيمته بيانياً.

7- أ. بين أن السرعة اللحظية لتشكل الفضة تعطى بالعبارة:

$$v_{Ag}(t) = \frac{1}{M_{Ag}} \cdot \frac{dm_{Ag}(t)}{dt}$$

حيث :  $M_{Ag}$  الكتلة المولية للفضة.

t=0 ب. احسب سرعة التفاعل في اللحظة

 $M(Cu) = 63.5 \text{ g.mol}^{-1}$  ,  $M(Ag) = 108 \text{ g.mol}^{-1}$  :

## التمرين 2:

لدراسة حركية تطور التحول الكيميائي بين محلول ثيوكبريتات الصوديوم  $(2Na^+_{(aq)} + S_2O_3^{2-}_{3(aq)})$  ومحلول حمض كلور الماء  $(H_3O^+_{(aq)} + Cl^-_{(aq)})$ 

في اللحظة  $C_1=0,5mol/L$  من محلول ثيوكبريتات الصوديوم تركيزه  $V_1=480mL$  مع حجم في اللحظة  $C_1=0,5mol/L$  من محلول حمض كلور الماء تركيزه  $C_2=5,0mol/L$  ننمذج التحول الحادث بالمعادلة الكيميائية  $V_2=20mL$  التالية:  $S_2O_{3-(\alpha q)}^{2-}+2H_3O_{(\alpha q)}^+=S_{(s)}+SO_{2(g)}+3H_2O_{(l)}$ 

1- أنشئ جدولا لتقدم التفاعل.

2- حدد المتفاعل المحد.

 $\sigma = 1$  الشكل (1) والممثل متابعة التحول عن طريق قياس الناقلية النوعية للمزيج التفاعلي مكنت من رسم بيان الشكل (1) والممثل التغيرات الناقلية النوعية بدلالة الزمن  $\sigma = f(t)$ .

- علَّل دون حساب سبب تناقص الناقلية النوعية.

 $\sigma(t) = 20.6 - 170x$  الناقلية النوعية للمزيج التفاعلي عند لحظة t بالعبارة: -4

أ- عرّف السرعة الحجمية للتفاعل.

## التمرين 3:

 $H_2O_{2(l)} + 2I^-_{(aq)} + 2H^+_{(aq)} = 2H_2O_{(l)} + I_{2(aq)} :$  نريد در اسة التحول الكيميائي المنمذج بالمعادلة التالية و  $S_2$  مع إضافة كمية من حمض الكبريت المركز المركز .

.  $C_1 = 10^{-2} \text{ mol.L}^{-1}$  تركيزه  $H_2O_2$  تركيزه  $V_1 = 60.0 \text{ mL} : S_1$  المحلول الماء الأكسيجيني

.  $C_2 = 2.10^{-2} \text{ mol.L}^{-1}$  تركيزه (  $K^+ + I^-$  ) من محلول يود البوتاسيوم (  $V_2 = 30.0 \text{ mL} : S_2$  المحلول

1 - اكتب المعادلتين النصفيتين للأكسدة و الارجاع و استنتج الثنائيتين Ox / Red الداخلتين في التفاعل.

2 - أنشئ جدول التقدم لهذا التفاعل الكيميائي .

3 - عين المتفاعل المحد و مقدار التقدم الأعظمي .

. الممثل المثل ا

أ / عرف السرعة الحجمية للتفاعل ، و أحسب قيمتها عند اللحظة : t = 5 min .

 $I_{(aq)}^{-}$  عند نفس اللحظة السرعة الحجمية لاختفاء وب

