TU WIEN

MASCHINEN-UND-ANTRIEBE

VO-370.015

Prüfungen Beispiele

Hybrid

Wir können die Unterlagen von denen wir gelernt haben nicht ändern, aber wir können der Nachwelt bessere hinterlassen.

Lizenz:

GNU GPLv3

10. Januar 2019

Inhaltsverzeichnis

1	For	melübersicht 4
	1.1	Gleichstrommaschine
		1.1.1 Permanentmagneterregt
		1.1.2 Fremderregt
	1.2	Permanentmagneterregte Synchronmaschine
		1.2.1 Wechselstrombetrieb
		1.2.2 BLDC-Betrieb
2	Prü	ifungen g
	2.1	PM-Synchronmaschine
		9.5.2011 1
		24.6.2013 2
		3.12.2013 3
		18.6.2014 4
		23.7.2014 5
		21.1.2015 6
		18.2.2015 7
		13.5.2015 8
		14.10.2015 9
		15.06.2016 10
		18.1.2017 11
	2.2	Gleichstrommaschine
		9.5.2011 12
		24.7.2013 13
		3.12.2013 14
		14.5.2014 15
		18.6.2014 16
		23.7.2014 17
		21.1.2015 18
		18.2.2015 19
		13.5.2015 20
		14.10.2015 21
		15.06.2016 22
		20.07.2016 23
		18.1.2017 24
		21.2.2017 25

Werter Student!

Diese Unterlagen werden dir kostenlos zur Verfügung gestellt, damit sie dir im Studium behilflich sind. Sie wurden von vielen Studierenden zusammengetragen, digitalisiert und aufgearbeitet. Ohne der Arbeit der Studierenden wären diese Unterlagen nicht entstanden und du müsstest dir jetzt alles selber zusammensuchen und von schlecht eingescannten oder abfotografierten Seiten lernen. Zu den Beispielen gibt es verschiedene Lösungen, welche du dir auch erst mühsamst raussuchen und überprüfen müsstest. Die Zeit die du in deine Suche und Recherche investierst wäre für nachfolgende Studenten verloren. Diese Unterlagen leben von der Gemeinschaft die sie betreuen. Hilf auch du mit und erweitere diese Unterlagen mit deinem Wissen, damit sie auch von nachfolgenden Studierenden genutzt werden können. Geh dazu bitte auf https://github.com/Painkilla/VO-370.015-Maschinenund-Antriebe/issues und schau dir in der TODO Liste an was du beitragen möchtest. Selbst das Ausbessern von Tippfehlern oder Rechtschreibung ist ein wertvoller Beitrag für das Projekt. Nütze auch die Möglichkeit zur Einsichtnahme von Prüfungen zu gehen und die Angaben Anderen zur Verfügung zu stellen, damit die Qualität der Unterlagen stetig besser wird. LATEX und Git sind nicht schwer zu lernen und haben auch einen Mehrwert für das Studium und das spätere Berufsleben. Sämtliche Seminar oder Bachelorarbeiten sind mit LaTeX zu schreiben. Git ist ideal um gemeinsam an einem Projekt zu arbeiten und es voran zu bringen. Als Student kann man auf GitHub übrigens kostenlos unbegrenzt private Projekte hosten.

Mit dem Befehl:

\$ git clone --recursive https://github.com/Painkilla/VO-370.015-Maschinen-und-Antriebe.gerstellst du eine lokale Kopie des Repositoriums. Du kannst dann die Dateien mit einem LATEX-Editor deiner Wahl bearbeiten und dir das Ergebnis ansehen. Bist du auf GitHub registriert, kannst du einen Fork (englisch für Ableger) erstellen und mit den Befehlen:

\$ git commit -m "Dein Kommentar zu den Änderungen"

\$ git push

werden deine Ergänzungen auf deinen Ableger am Server gesendet. Damit deine Ergänzungen auch in das zentrale Repositorium gelangen und allen Studierenden zur Verfügung stehen, musst du nur noch einen Pull-Request erstellen.

1 Formelübersicht

1.1 Gleichstrommaschine

Symbol	Bezeichnung	Einheit
I_A	Ankerstrom	A
U_A	Ankerspannung	V
R_A	Ankerwiderstand	Ω
L_A	Ankerinduktivität	Н
Ψ_A	Ankerfluss	$V_{\rm S}$
I_F	Feldstrom	A
U_F	Feldspannung	V
R_F	Feldwiderstand	R
L_F	Feldinduktivität	Н
Ψ_F	Feldfluss	Vs
U_i	Induzierte Spannung	V
Ψ_M	Permanentmagnetfluss	Vs
$k^{'}\phi$	Spannungskonstante	$V_{\rm S}$
Ω_m	Winkelgeschwindigkeit Motor	1/s
$\Omega_{m,0}$	Leerlauf Winkelgeschwindigkeit Motor	1/s
$\Omega_{m,N}$	Nennwinkelgeschwindigkeit Motor	1/s
Θ_m	Trägheitsmoment Motor	$\mathrm{kgm^2}$
M_m	Moment Motor	Nm
M_L	Moment Last	Nm
A_M	Fläche Magnet	m^2
A_L	Fläche Luftspalt	m^2
l_M	Länge Magnet	m
l_L	Länge Luftspalt	m
B_M	Flussdichte Magnet	Τ
B_r	Remanenzflussdichte Magnet	Τ
B_L	Flussdichte Luftspalt	T
μ_0	magnetische Feldkonstante	Vs/Am

1.1.1 Permanentmagneterregt

Ankerfluss

$$\Psi_A = \Psi_M + L_A \cdot I_A \tag{1.1.1}$$

Induzierte Spannung

$$U_i = k' \phi \cdot \Omega_m \tag{1.1.2}$$

Permanentmagnet

$$\Psi_L = \Psi_M \tag{1.1.3}$$

$$B_L \cdot A_L = B_M \cdot A_M \tag{1.1.4}$$

$$B_L = \mu_0 \cdot H_L = B_M \frac{A_M}{A_L} \tag{1.1.5}$$

$$2 \cdot H_L \cdot l_L = 2 \cdot H_M \cdot l_M \tag{1.1.6}$$

$$H_M = H_L \cdot \frac{l_L}{l_M} \tag{1.1.7}$$

$$B_M = B_r + \mu_0 \cdot \mu_r \cdot H_M \tag{1.1.8}$$

$$B_M = B_r + \mu_0 \cdot \mu_r \cdot H_L \cdot \frac{l_L}{l_M} \tag{1.1.9}$$

$$B_M = B_r + \mu_r \cdot B_M \frac{A_M}{A_L} \cdot \frac{l_L}{l_M} \tag{1.1.10}$$

$$B_M = \frac{B_r}{1 - \mu_r \frac{A_M}{A_L} \cdot \frac{l_L}{l_M}} \tag{1.1.11}$$

Ankerspannungsgleichung

$$U_A = R_A I_A + \frac{\partial \Psi_A}{\partial t} \tag{1.1.12}$$

$$=R_A I_A + \frac{\partial V_M + L_A I_A}{\partial t} \tag{1.1.13}$$

$$= R_A I_A + L_A \frac{\partial I_A}{\partial t} + k' \phi \cdot \Omega_m \tag{1.1.14}$$

Moment des Motors

$$M_m = k' \phi \cdot I_A \tag{1.1.15}$$

Mechanische Gleichung

$$\Theta_m \frac{\partial \Omega_m}{\partial t} = M_m - M_L \tag{1.1.16}$$

$$\Theta_m \frac{\partial \Omega_m}{\partial t} = k' \phi \cdot I_A - M_L \tag{1.1.17}$$

Mechanische Leistung

$$P_{mech} = M_m \cdot \Omega_m = k' \phi \cdot I_A \cdot \Omega_m \tag{1.1.18}$$

Wirkungsgrad

$$\eta_N = \frac{\Omega_N M_N}{U_N I_N} \tag{1.1.19}$$

Laplace Bereich

$$U_A(s) = R_A I_A(s) + L_A I_A(s) s + k' \phi \cdot \Omega_m(s)$$
(1.1.20)

$$\Theta_{m}\Omega_{m}(s)s = M_{m} - M_{L} = k'\phi \cdot I_{A}(s) - k_{L} \cdot \Omega_{m}(s)$$
(1.1.21)

$$\frac{\Omega_m(s)}{U_A(s)} = \frac{k'\phi}{s^2 L_A \Theta_m + s R_A \Theta_m + (k'\phi)^2}$$
(1.1.22)

$$\frac{\Omega_m(s)}{M_L(s)} = \frac{R_A + sL_A}{s^2 L_A \Theta_m + sR_A \Theta_m + (k'\phi)^2}$$
(1.1.23)

$$\frac{\Omega_m(s)}{I_A(s)} = \frac{k'\phi}{s\Theta_m + k_L} \tag{1.1.24}$$

Im Stationären Fall gilt folgendes:

$$\frac{\partial \Omega_m}{\partial t} = \frac{\partial I_A}{\partial t} = 0 \tag{1.1.25}$$

1.1.2 Fremderregt

$$U_F = I_F R_F + \frac{\partial \Psi_F}{\partial t} \tag{1.1.26}$$

$$\Psi_F = L_F(I_F)I_F \tag{1.1.27}$$

1.2 Permanentmagneterregte Synchronmaschine

\underline{i}_s	bezogener Statorstrom statorfest	[1]
\underline{i}_{sdq}	bezogener Statorstrom rotorfest	[1]
\underline{u}_s	bezogene Statorspannung statorfest	[1]
\underline{u}_{sdq}	bezogene Statorspannung rotorfest	[1]
r_s	bezogener Statorwiderstand	[1]
ω_K	bezogenes Rotierendes Koordinatensystem	[1]
ω_m	bezogene Winkelgeschwindigkeit Motor	[1]
l_s	bezogene Statorinduktivität	[1]
U_i	bezogene Induzierte Spannung	[1]
$\underline{\Psi}_M$	bezogener Permanentmagnetfluss	[1]
$\underline{\Psi}_s$	bezogene Statorflussverkettung	[1]
au	bezogene Zeit	[1]
$ au_m$	bezogenes Trägheitsmoment Motor	[1]
m_R	bezogenes Moment Rotor	[1]
m_L	bezogenes Moment Last	[1]

1.2.1 Wechselstrombetrieb

Statorinduktivität

$$l_s = \frac{3}{2} \cdot l_{strang} \tag{1.2.1}$$

Statorflussverkettungsgleichung

$$\underline{\Psi}_s = l_s \cdot \underline{i}_s + \underline{\Psi}_M = l_s \cdot \underline{i}_s + |\underline{\Psi}_M| \cdot e^{j \cdot \gamma + j\omega\tau}$$
(1.2.2)

Rotorstrom

$$\arg(\underline{i}_{sdq}) = \arg(\underline{i}_s) - \arg(\underline{\Psi}_M) \tag{1.2.3}$$

$$\underline{i}_{sdq} = |\underline{i}_s| \cdot e^{\jmath \arg(\underline{i}_{sdq})} \tag{1.2.4}$$

$$\underline{i}_{sd} = |\underline{i}_{sdq}| \cdot \cos(\arg(\underline{i}_{sdq})) \tag{1.2.5}$$

$$\underline{i}_{sq} = |\underline{i}_{sdq}| \cdot \sin(\arg(\underline{i}_{sdq})) \tag{1.2.6}$$

(1.2.7)

Statorstrom

$$\underline{i}_s = |\underline{i}_{sdq}| \cdot e^{\jmath(\arg(\underline{i}_{sdq}) + \arg(\underline{\Psi}_M))}$$
(1.2.8)

Statorspannungsgleichung

$$\underline{u}_s(\tau) = \underline{i}_s \cdot r_s + \frac{\partial \underline{\Psi}_s}{\partial \tau} + \jmath \omega_K \cdot \underline{\Psi}_s \tag{1.2.9}$$

Statorspannungsgleichung im rotorfesten Koordinatensystem

$$\underline{u}_{sdq}(\tau) = \underline{i}_{sdq} \cdot r_s + l_s \cdot \frac{\partial \underline{i}_{sdq}}{\partial \tau} + \frac{\partial |\underline{\Psi}_M|}{\partial \tau} + \jmath \omega_K \cdot l_s \cdot \underline{i}_{sdq} + \jmath \omega_K \cdot |\underline{\Psi}_M|$$
(1.2.10)

$$\frac{\partial |\underline{\Psi}_M|}{\partial \tau} = 0 \tag{1.2.11}$$

$$\omega_K = \omega_m \tag{1.2.12}$$

$$\underline{u}_{sdq}(\tau) = \underline{i}_{sdq} \cdot r_s + l_s \cdot \frac{\partial \underline{i}_{sdq}}{\partial \tau} + \jmath \omega_m \cdot l_S \cdot \underline{i}_{sdq} + \jmath \omega_m \cdot |\underline{\Psi}_M|$$
(1.2.13)

Stromzeiger im rotorfesten Koordinatensystem bei Kurzschluss im stationären Fall

$$0 = \underline{i}_{sdg} \cdot r_s + \jmath \omega_m \cdot l_S \cdot \underline{i}_{sdg} + \jmath \omega_m \cdot |\underline{\Psi}_M| \tag{1.2.14}$$

$$\underline{i}_{sdq} \cdot (r_s + \jmath \omega_m \cdot l_s) = -\jmath \omega_m \cdot |\underline{\Psi}_M| \tag{1.2.15}$$

$$\underline{i}_{sdq} = \frac{-\jmath \omega_m \cdot |\underline{\Psi}_M|}{(r_s + \jmath \omega_m \cdot l_s)} \tag{1.2.16}$$

$$\underline{i}_{sdq} = \frac{-\jmath \omega_m \cdot |\underline{\Psi}_M|}{(r_s + \jmath \omega_m \cdot l_s)} \cdot \frac{(r_s - \jmath \omega_m \cdot l_s)}{(r_s - \jmath \omega_m \cdot l_s)}$$
(1.2.17)

$$\underline{i}_{sdq} = \frac{-\omega^2 |\underline{\Psi}_M| l_s}{r_s^2 + (\omega l_s)^2} - \jmath \frac{\omega |\underline{\Psi}_M| r_s}{r_s^2 + (\omega l_s)^2}$$
(1.2.18)

Im rotorfesten Koordinatensystem ist die zeitliche Änderung des magnetischen Flusses vom Permanentmagneten null Glg.(1.2.11), weil sich der Magnet mit dem Koordinatensystem bewegt. Das Koordinatensystem bewegt sich mit der Geschwindigkeit des Motors. Glg.(1.2.12)

Statorspannungsgleichung im statorfesten Koordinatensystem

$$\arg(\underline{i}_s) = \arg(\underline{i}_{sdq}) + \arg(\underline{\Psi}_M) \tag{1.2.19}$$

$$\underline{i}_s = |\underline{i}_{sdq}| \cdot e^{j \arg(\underline{i}_s)} \tag{1.2.20}$$

$$\underline{u}_s(\tau) = \underline{i}_s \cdot r_s + l_s \cdot \frac{\partial \underline{i}_s}{\partial \tau} + \frac{\partial \underline{\Psi}_M}{\partial \tau} + \jmath \omega_K \cdot l_s \cdot \underline{i}_s + \jmath \omega_K \cdot \underline{\Psi}_M$$
 (1.2.21)

$$\omega_K = 0 \tag{1.2.22}$$

$$\frac{\partial \underline{\Psi}_{M}}{\partial \tau} = \frac{\partial |\underline{\Psi}_{M}| \cdot e^{j \cdot \gamma + \jmath \omega \tau}}{\partial \tau} = \jmath \omega \cdot |\underline{\Psi}_{M}| \cdot e^{j \cdot \gamma + \jmath \omega \tau} \tag{1.2.23}$$

$$\underline{u}_s(\tau) = \underline{i}_s \cdot r_s + l_s \cdot \frac{\partial \underline{i}_s}{\partial \tau} + \jmath \omega \cdot |\underline{\Psi}_M| \cdot e^{\jmath \cdot \gamma + \jmath \omega \tau}$$
(1.2.24)

Statorstromzeigers im statorfesten Koordinatensystem bei Kurzschluss im stationären Fall

$$0 = \underline{i}_s \cdot r_s + \jmath \omega \cdot |\underline{\Psi}_M| \cdot e^{\jmath \cdot \gamma + \jmath \omega \tau}$$
(1.2.25)

$$\underline{i}_s = \frac{\jmath\omega \cdot |\underline{\Psi}_M| \cdot e^{\jmath\cdot\gamma + \jmath\omega\tau}}{r_s} \tag{1.2.26}$$

Tabelle 1: Stromzeiger im BLDC Betrieb

Name	i_1	i_2	i_3	Winkel [°]			
A	+	-	0	-30			
В	+	0	-	30			
С	0	+	-	90			
D	_	+	0	150			
Е	_	0	+	210			
F	0	_	+	270			

Drehmomentgleichung

$$m_R(\tau) = -Im(\underline{i}_s^* \cdot \underline{\Psi}_s) = i_{sq} \cdot |\underline{\Psi}_M| \tag{1.2.27}$$

Mechanische Gleichung

$$\tau_m \cdot \frac{\partial \omega_m}{\partial \tau} = m_R - m_L = i_{sq} \cdot |\underline{\Psi}_M| - m_L \tag{1.2.28}$$

Strangströme

$$i_1 = \Re\{\underline{i}_s \cdot e^{j \cdot 0^\circ}\} = |\underline{i}_s| \cdot \cos(\arg(\underline{i}_s))$$
(1.2.29)

$$i_2 = \Re\{\underline{i}_s \cdot e^{-j \cdot 120^\circ}\} = |\underline{i}_s| \cdot \cos(\arg(\underline{i}_s) - 120)$$

$$\tag{1.2.30}$$

$$i_3 = \Re\{\underline{i}_s \cdot e^{j \cdot 120^{\circ}}\} = |\underline{i}_s| \cdot \cos(\arg(\underline{i}_s) + 120)$$
 (1.2.31)

1.2.2 BLDC-Betrieb

 ${\bf Stromraumzeiger}$

Abbildung 1: Stromzeiger graphisch dargestellt

$$\underline{i}_s = \frac{2}{3} \cdot [i_1 + i_2 \cdot e^{j \cdot 120^{\circ}} + i_3 \cdot e^{j \cdot 240^{\circ}}]$$
 (1.2.32)

Für den Fall A, also wenn der Stromzeiger bei -30° steht, wird in die Glg.(1.2.32) für $i_1 = 1$, $i_2 = -1$ und $i_3 = 0$ eingesetzt.

2 Prüfungen

2.1 PM-Synchronmaschine

9.5.2011 1.

Eine kurzgeschlossene permanentmagneterregte Synchronmaschine wird schlagartig an eine sich mit konstanter Drehzahl drehende Welle gekuppelt $n_{m,t=0}=0$, $n_{w,t=0}=\omega_w$. Die Maschine war vor dem Kuppelvorgang stromlos.

- 1. Geben Sie die Gleichungen für die Raumzeiger der Statorspannung und des Statorverkettungsflußes an. (2 P.)
- 2. Um den Verlauf des Statorstromzeigers Berechnen zu können, geben Sie zuerst die Übertragungsfunktion des Statorstromraumzeigers an (Statorfest). Hinweis: Als anregende Spannung wirkt die Induzierte Spannung, wobei Sie den Lagewinkel $e^{j\gamma}$ durch $e^{j\gamma} \cdot e^{j\omega t}$ ausdrücken können. (4P.)
- 3. Berechnen Sie den zeitlichen Verlauf des Statorstromraumzeigers im statorfesten Koordinatensystem. (2 P.)
- 4. Skizzieren Sie den Verlauf des Statorstromraumzeigers (statorfestes Koordinatensystem) in der Stromraumzeigerebene für eine elektrische Umdrehung, einmal unmittelbar nach dem Kurzschluss und einmal für den eingeschwungenen Zustand. (2 P.)

Lösung 1.

Hinweis: Diese Prüfung ist noch aus dem Masterstudium und ist nicht repräsentativ für den Prüfungsstoff im Bachelorstudium.

24.6.2013 2.

Eine dreisträngige symetrische aufgebaute permanentmagneterregte Synchronmaschine habe zu dem betrachteten Zeitpunkt einen normierten Rotorverkettungsfluss von $\underline{\Psi}_M = 1 \cdot e^{-\jmath 15^{\circ}}$. Folgende Berechnungen sollen unter optimaler Drehmomentausbeute erfolgen.

- 1. Berechnen Sie für einen BLDC-Betrieb jenen normierten Stromzeiger, welcher das motorische Bezugsmoment bei positiver Drehrichtung ergibt. Geben Sie ebenfalls die bezogenen Ströme in den Motorzuleitungen an. (3 P.)
- 2. Skizzieren Sie $\underline{\Psi}_M$, \underline{i}_s und die Moment entsprechende Fläche in der komplexen Raumzeigerebene (Strangachse "U" liegt in der reellen Achse) des obrigen Betriebpunktes. (1 P.)
- 3. Berechnen Sie für einen Sinus-Betrieb jenen normierten Stromraumzeiger, welcher das morotrische Bezugsmoment bei positiver Drehrichtung ergibt. Geben Sie ebenfalls die bezogenen Ströme in den Motorzuleitungen an. (3 P.)
- 4. Skizzieren Sie $\underline{\Psi}_M$, \underline{i}_s und die dem Moment entsprechende Fläche in der komplexen Raumzeigerebene (Strangachse "U" liegt in der reellen Achse) des obrigen Betriebspunktes. (1P.)

Lösung 2.

1. Das motorische Bezugsmoment bei positiver Drehzahl bedeutet $m_m = 1$. Im BLDC Betrieb ist der nächste Stromzeiger gem Abb.(1) zu -15° bei 90° der Fall C. Über die Dreiecksbeziehungen werden \underline{i}_{sdq} und \underline{i}_{sd} aus \underline{i}_{sq} berechnet. Anschließend wird \underline{i}_{sdq} auf \underline{i}_{s} umgeformt um die Ströme in den Motorzuleitungen zu berechnen.

$$m_m = 1 = \underline{i}_{sq} \cdot |\Psi_m| \tag{2.1.1}$$

$$1 = \underline{i}_{sq} \cdot 1 \tag{2.1.2}$$

$$\underline{i}_{sq} = 1 \tag{2.1.3}$$

$$\arg(\underline{i}_{sdq}) = \arg(\underline{i}_s) - \arg(\underline{\Psi}_M) = 105^{\circ}$$
(2.1.4)

$$\underline{i}_{sdq} = \frac{\underline{i}_{sq}}{\sin(\arg(\underline{i}_{sdq}))} = 1,0353 \tag{2.1.5}$$

$$\underline{i}_{sd} = \underline{i}_{sdq} \cdot \cos(\arg(\underline{i}_{sdq})) = -0,267 \tag{2.1.6}$$

$$\underline{i}_s = |\underline{i}_{sdq}| \cdot e^{\jmath(\arg(\underline{i}_{sdq}) + \arg(\underline{\Psi}_M))}$$
(2.1.7)

$$= 1,0353 \cdot e^{j(105 + (-15))} \tag{2.1.8}$$

In die Glg.(1.2.29),(1.2.30) und (1.2.31) wird der Statorstrom \underline{i}_s eingesetzt.

$$i_1 = \Re\{\underline{i}_s \cdot e^{j \cdot 0^\circ}\} = 0$$
 (2.1.9)

$$i_2 = \Re\{\underline{i}_s \cdot e^{-j \cdot 120^\circ}\} = 0,897$$
 (2.1.10)

$$i_3 = \Re\{\underline{i}_s \cdot e^{j \cdot 120^\circ}\} = -0,897$$
 (2.1.11)

Wie in Tab.(1) ersichtlich muss für den Fall C $i_2 = -i_3$ sein und $i_1 = 0$ gelten.

- 2. TODO: Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!
- 3. Da wir uns im Sinus-Betrieb befinden ist der Stromraumzeiger i_{sq} , welche das optimale Bezugsdrehmoment liefert, gleich dem Stromraumzeiger i_{sdq} . Der Winkel liegt somit exakt bei

 $\arg(\underline{i}_{sdq}) = 90^{\circ} \text{ zu } \underline{\Psi}_M.$

$$m_m = 1 = \underline{i}_{sq} \cdot |\underline{\Psi}_m| \tag{2.1.12}$$

$$1 = \underline{i}_{sq} \cdot 1 \tag{2.1.13}$$

$$\underline{i}_{sq} = 1 = \underline{i}_{sdq} \tag{2.1.14}$$

$$\underline{i}_{sd} = 0 \tag{2.1.15}$$

$$\underline{i}_s = |\underline{i}_{sdq}| \cdot e^{\jmath(\arg(\underline{i}_{sdq}) + \arg(\underline{\Psi}_M))} = 1 \cdot e^{\jmath(90-15)}$$
(2.1.16)

In die Glg.(1.2.29),(1.2.30) und (1.2.31) wird der Statorstrom \underline{i}_s eingesetzt.

$$i_1 = \Re\{\underline{i}_s \cdot e^{j \cdot 0^\circ}\} = 0,259$$
 (2.1.17)

$$i_2 = \Re\{\underline{i}_s \cdot e^{-j \cdot 120^\circ}\} = 0,707$$
 (2.1.18)

$$i_3 = \Re\{\underline{i}_s \cdot e^{j \cdot 120^\circ}\} = -0,966$$
 (2.1.19)

4. TODO: Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!

3.12.2013 3.

Eine dreisträngige symetrisch aufgebaute permanentmagneterregte Synchronmaschine läuft mit eingeprägter positiver Drehzahl von 10% der Bezugsdrehzahl. Zum Zeitpunkt τ_0 ist der normierte statorfeste Rotorverkettungsfluss $\Psi_M = 1 \cdot e^{j \cdot 50^{\circ}}$.

- 1. Berechnen Sie für einen BLDC-Betrieb jenen günstigen normierten Stromraumzeiger zum Zeitpunkt τ_0 , welcher das halbe generatorische Bezugsmoment bei positiver Drehrichtung ergibt. Geben Sie ebenfalls die bezogenen Ströme in den Motorzuleitungen an. (2 P.)
- 2. Berechnen Sie für einen Sinus-Betrieb jenen normierten Stromraumzeiger, welcher das gleiche Drehmoment unter optimaler Drehmomentausnutzung bei positiver Drehrichtung ergibt. Wie groß ist das Verhältnis des Strombetrags zum BLDC Betrieb für diesen Zeitpunkt τ_0 ? (2 P.)
- 3. Skizzieren Sie $\underline{\Psi}_M, \underline{i}_s$ und die dem Drehmoment entsprechende Fläche in der komplexen Raumzeigerebene (Strangachse "U" liegt in der reellen Achse) für beide obigen Betriebspunkte. (2P.)
- 4. Berechnen Sie für den stationären Sinus-Betrieb den bezogenen Statorspannungsraumzeiger im rotorfesten Koordinatensystem zum Zeitpunkt τ_0 mit den Maschinendaten $r_s = 0,05$ und $l_s = 0,25$. (1 P.)
- 5. Ausgehend vom Sinusbetrieb wird zum Zeitpunkt τ_0 bei eingeprägter Drehzahl vom Spannungszwischenkreisumrichter ein Klemmenkurzschluss angelegt. Berechnen Sie für den Zeitpunkt τ_0 die bezogene Stromänderung $\partial \underline{i}_s/\partial \tau$ sowie die Momentenänderung $\partial m/\partial \tau$. (2 P.)
- 6. Berechnen Sie den stationären Stromraumzeiger $\tau \to \infty$ im rotorfesten Koordinatensystem für die kurzgeschlossene Maschine bei konstanter Drehzahl, sowie das stationäre Drehmoment. (3 P.)

Lösung 3.

1. Das halbe generatorische Bezugsmoment bei positiver Drehzahl bedeutet $m_m = -0, 5$. Im BLDC Betrieb ist der nächste Stromzeiger gem Abb.(1) zu -40° bei -30° der Fall A. Über die Dreiecksbeziehungen werden \underline{i}_{sdq} und \underline{i}_{sd} aus \underline{i}_{sq} berechnet. Anschließend wird \underline{i}_{sdq} auf \underline{i}_{s} umgeformt um die Ströme in den Motorzuleitungen zu berechnen.

$$m_m = -0, 5 = \underline{i}_{sq} \cdot |\underline{\Psi}_m| \tag{2.1.20}$$

$$-0, 5 = \underline{i}_{sq} \cdot 1 \tag{2.1.21}$$

$$\underline{i}_{sq} = -0, 5 \tag{2.1.22}$$

$$\arg(\underline{i}_{sdq}) = \arg(\underline{i}_s) - \arg(\underline{\Psi}_M) = -80^{\circ}$$
(2.1.23)

$$\underline{i}_{sdq} = \frac{\underline{i}_{sq}}{\sin(\arg(\underline{i}_{sdq}))} = 0,507 \tag{2.1.24}$$

$$\underline{i}_{sd} = \underline{i}_{sdq} \cdot \cos(\arg(\underline{i}_{sdq})) = 0,088 \tag{2.1.25}$$

$$\underline{i}_s = |\underline{i}_{sdq}| \cdot e^{\jmath(\arg(\underline{i}_{sdq}) + \arg(\underline{\Psi}_M))} = 0,507 \cdot e^{\jmath(-80 + (50))}$$
(2.1.26)

In die Glg.(1.2.29),(1.2.30) und (1.2.31) wird der Statorstrom \underline{i}_s eingesetzt.

$$i_1 = \Re\{\underline{i}_s \cdot e^{j \cdot 0^\circ}\} = 0,44$$
 (2.1.27)

$$i_2 = \Re\{\underline{i}_s \cdot e^{-j \cdot 120^\circ}\} = -0,44$$
 (2.1.28)

$$i_3 = \Re\{\underline{i}_s \cdot e^{j \cdot 120^\circ}\} = 0$$
 (2.1.29)

Wie in Tab.(1) ersichtlich muss für den Fall A $i_1 = -i_2$ sein und $i_3 = 0$ gelten.

2. Da wir uns im Sinus-Betrieb befinden ist der Stromraumzeiger \underline{i}_{sq} , welche das optimale Bezugsdrehmoment liefert, gleich dem Stromraumzeiger \underline{i}_{sdq} . Der Winkel liegt somit exakt bei $\arg(\underline{i}_{sdq}) = -90^{\circ}$ zu $\underline{\Psi}_{M}$.

$$m_m = -0, 5 = \underline{i}_{sq} \cdot |\Psi_m| \tag{2.1.30}$$

$$-0,5 = \underline{i}_{sa} \cdot 1 \tag{2.1.31}$$

$$\underline{i}_{sq} = -0, 5 = \underline{i}_{sdq} \tag{2.1.32}$$

$$\underline{i}_{sd} = 0 \tag{2.1.33}$$

$$\underline{i}_s = |\underline{i}_{sdq}| \cdot e^{\jmath(\arg(\underline{i}_{sdq}) + \arg(\underline{\Psi}_M))} = 0, 5 \cdot e^{\jmath(-90 + 50)}$$
(2.1.34)

- 3. TODO: Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!
- 4. Der Spannungraumzeiger im rotorfesten Koordinatensystem errechnet sich nach Glg.(1.2.10), wobei die partiellen Terme wegfallen, weil wir uns im stationären Fall befinden. Für $\underline{i}_{sdq} = -0, 5j$ einsetzen.

$$\underline{u}_{sdq}(\tau) = \underline{i}_{sdq} \cdot r_s + l_s \cdot \frac{\partial \underline{i}_{sdq}}{\partial \tau} + \frac{\partial |\underline{\Psi}_M|}{\partial \tau} + \jmath \omega_K \cdot l_s \cdot \underline{i}_{sdq} + \jmath \omega_K \cdot |\underline{\Psi}_M|$$
 (2.1.35)

$$\underline{u}_{sdq}(\tau) = \underline{i}_{sdq} \cdot r_s + \jmath \omega_K \cdot l_s \cdot \underline{i}_{sdq} + \jmath \omega_K \cdot |\underline{\Psi}_M|$$
(2.1.36)

$$= -0.5j \cdot 0.05 + j0.1 \cdot 0.25 \cdot -0.5j + j0.1 \cdot 1$$
(2.1.37)

$$=0,076 \cdot e^{j80,53^{\circ}} \tag{2.1.38}$$

- 5. Der Strom wird durch die Spule gehalten, deshalb ist $\partial \frac{\underline{i}_s}{\partial \tau} = \frac{m}{\partial \tau} = 0$
- 6. Die Herleitung zu Glg.(1.2.18) durchführen und dann in Glg.(1.2.27) einsetzen.

$$i_{sq} \cdot |\underline{\Psi}_M| = -\frac{\omega |\underline{\Psi}_M|^2 r_s}{r_s^2 + (\omega l_s)^2} \tag{2.1.39}$$

18.6.2014 4.

Eine dreisträngige symetrische aufgebaute permanentmagneterregte Synchronmaschine habe zu dem betrachteten Zeitpunkt einen normierten Rotorverkettungsfluss von $\underline{\Psi}_M = 1 \cdot e^{-\jmath 15^{\circ}}$. Folgende Berechnungen sollen unter optimaler Drehmomentausbeute erfolgen.

- 1. Berechnen Sie für einen BLDC-Betrieb jenen normierten Stromanzeiger im statorfesten Koordinatensystem, welcher das motorische Bezugsmoment bei positiver Drehrichtung ergibt. Geben Sie ebenfalls die bezogenen Ströme i_1 , i_2 und i_3 in den Motorzuleitungen an. (3 P.)
- 2. Skizzieren Sie $\underline{\Psi}_M$, \underline{i}_s und die dem Moment entsprechende Fläche in der komplexen Raumzeigerebene (Strangachse "U" liegt in der reellen Achse) des obrigen Betriebpunktes. (1 P.)
- 3. Berechnen Sie für einen Sinus-Betrieb jenen normierten Stromraumzeiger im statorfesten Koordinatensystem, welcher das morotrische Bezugsmoment bei positiver Drehrichtung ergibt. Geben Sie ebenfalls die bezogenen Ströme i_1 , i_2 und i_3 in den Motorzuleitungen an. (3 P.)
- 4. Skizzieren Sie $\underline{\Psi}_M$, \underline{i}_s und die dem Moment entsprechende Fläche in der komplexen Raumzeigerebene (Strangachse "U" liegt in der reellen Achse) des obrigen Betriebspunktes. (1P.)

Lösung 4.

1. Das motorische Bezugsmoment bei positiver Drehzahl bedeutet $m_m = 1$. Im BLDC Betrieb ist der nächste Stromzeiger gem Abb.(1) zu -15° bei 90° der Fall C. Über die Dreiecksbeziehungen werden \underline{i}_{sdq} und \underline{i}_{sd} aus \underline{i}_{sq} berechnet. Anschließend wird \underline{i}_{sdq} auf \underline{i}_{s} umgeformt um die Ströme in den Motorzuleitungen zu berechnen.

$$m_m = 1 = \underline{i}_{sq} \cdot |\Psi_m| \tag{2.1.40}$$

$$1 = \underline{i}_{sq} \cdot 1 \tag{2.1.41}$$

$$\underline{i}_{sq} = 1 \tag{2.1.42}$$

$$\arg(\underline{i}_{sdq}) = \arg(\underline{i}_{s}) - \arg(\underline{\Psi}_{M}) = 105^{\circ}$$
(2.1.43)

$$\underline{i}_{sdq} = \frac{\underline{i}_{sq}}{\sin(\arg(\underline{i}_{sdq}))} = 1,0353$$
(2.1.44)

$$\underline{i}_{sd} = \underline{i}_{sdq} \cdot \cos(\arg(\underline{i}_{sdq})) = -0,267 \tag{2.1.45}$$

$$\underline{i}_s = |\underline{i}_{sdq}| \cdot e^{\jmath(\arg(\underline{i}_{sdq}) + \arg(\underline{\Psi}_M))} = 1,0353 \cdot e^{\jmath(105 + (-15))}$$
(2.1.46)

In die Glg.(1.2.29),(1.2.30) und (1.2.31) wird der Statorstrom \underline{i}_s eingesetzt.

$$i_1 = \Re\{\underline{i}_s \cdot e^{j \cdot 0^{\circ}}\} = 0$$
 (2.1.47)

$$i_2 = \Re\{\underline{i}_s \cdot e^{-j \cdot 120^\circ}\} = 0,897$$
 (2.1.48)

$$i_3 = \Re\{\underline{i}_s \cdot e^{j \cdot 120^\circ}\} = -0,897$$
 (2.1.49)

Wie in Tab.(1) ersichtlich muss für den Fall C $i_2 = -i_3$ sein und $i_1 = 0$ gelten.

- 2. TODO: Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!
- 3. Da wir uns im Sinus-Betrieb befinden ist der Stromraumzeiger \underline{i}_{sq} , welche das optimale Bezugsdrehmoment liefert, gleich dem Stromraumzeiger \underline{i}_{sdq} . Der Winkel liegt somit exakt bei

 $\arg(\underline{i}_{sdq}) = 90^{\circ} \text{ zu } \underline{\Psi}_M.$

$$m_m = 1 = \underline{i}_{sq} \cdot |\underline{\Psi}_m| \tag{2.1.50}$$

$$1 = \underline{i}_{sq} \cdot 1 \tag{2.1.51}$$

$$\underline{i}_{sq} = 1 = \underline{i}_{sdq} \tag{2.1.52}$$

$$\underline{i}_{sd} = 0 \tag{2.1.53}$$

$$\underline{i}_s = |\underline{i}_{sdq}| \cdot e^{\jmath(\arg(\underline{i}_{sdq}) + \arg(\underline{\Psi}_M))} = 0, 5 \cdot e^{\jmath(90-15)}$$
(2.1.54)

In die Glg.(1.2.29),(1.2.30) und (1.2.31) wird der Statorstrom \underline{i}_s eingesetzt.

$$i_1 = \Re\{\underline{i}_s \cdot e^{j \cdot 0^\circ}\} = 0,259$$
 (2.1.55)

$$i_2 = \Re\{\underline{i}_s \cdot e^{-j \cdot 120^\circ}\} = 0,707$$
 (2.1.56)

$$i_3 = \Re\{\underline{i}_s \cdot e^{j \cdot 120^\circ}\} = -0,966$$
 (2.1.57)

4. TODO: Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!

23.7.2014 5.

Eine dreisträngige symetrisch aufgebaute permanentmagneterregte Synchronmaschine in Y-Schaltung mit $I_N = 12~A$ (Effektivwert) habe zu dem betrachteten Zeitpunkt τ_0 einen normierten Rotorverkettungsfluss von $\underline{\Psi}_M = 1 \cdot e^{j40^\circ}$. Zu diesem Zeitpunkt τ_0 die Strangströme $I_1 = -3,088~A$, $I_2 = 8,891~A$ und $I_3 = -5,803~A$.

- 1. Berechnen Sie für diesen Zeitpunkt τ_0 den normierten Stromraumzeiger im statorfesten Koordinatensystem und das bezogene Drehmoment der Maschine. Geben Sie ebenfalls die bezogenen Ströme i_1 , i_2 und i_3 an. (3 P.)
- 2. Skizzieren Sie die Raumzeiger $\underline{\Psi}_M$ und \underline{i}_s sowie die dem Moment entsprechende Fläche in der komplexen Raumzeigerebene (Strangachse "U" liegt in der reellen Achse) des obrigen Betriebpunktes. (1 P.)
- 3. Berechnen Sie für einen BLDC-Betrieb zu diesem Zeitpunkt jenen normierten Stromraumzeiger im statorfesten Koordinatensystem, welcher das **halbe motorische** Bezugsmoment bei positiver Drehrichtung ergibt. (Die Berechnung soll unter optimaler Drehmomentenausbeute erfolgen). Geben Sie ebenfalls die bezogenen Ströme i_1 , i_2 und i_3 und die nicht bezogenen Ströme I_1 , I_2 und I_3 in den Motorzuleitungen an. (3 P.)
- 4. Skizzieren Sie die Raumzeiger $\underline{\Psi}_M$ und \underline{i}_s sowie die dem Moment entsprechende Fläche in der komplexen Raumzeigerebene (Strangachse "U" liegt in der reellen Achse) des obrigen Betriebpunktes. (1 P.)
- 5. Berechnen Sie den bezogenen rotorfesten Spannungsraumzeiger für den Sinus-Betrieb (ensprechend dem Punkt 1.) zum Zeitpunkt τ_0 , wenn die Maschine gerade mit 20% der Bezugsdrehzahl rotiert. Verwenden Sie dazu die Maschinenparameter $r_s=0,05$ und $l_s=0,3.$ (2 P.)

Lösung 5.

1.

$$i_1 = \frac{-3,088}{12} = -0,257 \tag{2.1.58}$$

$$i_2 = \frac{8,891}{12} = 0,741 \tag{2.1.59}$$

$$i_3 = \frac{-5,803}{12} = -0,484 \tag{2.1.60}$$

$$\underline{i}_s = \frac{2}{3} \cdot (i_1 + i_2 \cdot e^{j120^\circ} + i_3 \cdot e^{j240^\circ}) = 0,752 \cdot e^{j110^\circ}$$
(2.1.61)

- 2. **TODO:** Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!
- 3. Das **halbe motorische** Bezugsmoment bei positiver Drehzahl bedeutet $m_m = 0, 5$. Im BLDC Betrieb ist der nächste Stromzeiger gem Abb.(1) zu 40° bei 150° der Fall D. Über die Dreiecksbeziehungen werden \underline{i}_{sdq} und \underline{i}_{sd} aus \underline{i}_{sq} berechnet. Anschließend wird \underline{i}_{sdq} auf \underline{i}_{s} umgeformt um

die Ströme in den Motorzuleitungen zu berechnen.

$$m_m = 0, 5 = \underline{i}_{sq} \cdot |\Psi_m| \tag{2.1.62}$$

$$0,5 = \underline{i}_{sq} \cdot 1 \tag{2.1.63}$$

$$\underline{i}_{sq} = 0,5 \tag{2.1.64}$$

$$\arg(\underline{i}_{sdq}) = \arg(\underline{i}_s) - \arg(\underline{\Psi}_M) = 110^{\circ}$$
(2.1.65)

$$\underline{i}_{sdq} = \frac{\underline{i}_{sq}}{\sin(\arg(\underline{i}_{sdq}))} = 0,532 \tag{2.1.66}$$

$$\underline{i}_{sd} = \underline{i}_{sdq} \cdot \cos(\arg(\underline{i}_{sdq})) = -0,182 \tag{2.1.67}$$

$$\underline{i}_s = |\underline{i}_{sdq}| \cdot e^{\jmath(\arg(\underline{i}_{sdq}) + \arg(\underline{\Psi}_M))} = 0,532 \cdot e^{\jmath(110+40)}$$
(2.1.68)

In die Glg.(1.2.29),(1.2.30) und (1.2.31) wird der Statorstrom \underline{i}_s eingesetzt.

$$i_1 = \Re\{\underline{i}_s \cdot e^{j \cdot 0^\circ}\} = -0,461$$
 (2.1.69)

$$i_2 = \Re\{\underline{i}_s \cdot e^{-j \cdot 120^\circ}\} = 0,461$$
 (2.1.70)

$$i_3 = \Re\{\underline{i}_s \cdot e^{j \cdot 120^\circ}\} = 0$$
 (2.1.71)

Wie in Tab.(1) ersichtlich muss für den Fall A $i_1 = -i_2$ sein und $i_3 = 0$ gelten.

$$I_1 = i_1 \cdot I_N \cdot \sqrt{2} = -0,461 \cdot 12A \cdot \sqrt{2} = 7,82 A$$
 (2.1.72)

$$I_2 = i_2 \cdot I_N \cdot \sqrt{2} = 0,461 \cdot 12A \cdot \sqrt{2} = 7,82 A$$
 (2.1.73)

$$I_3 = i_3 \cdot I_N \cdot \sqrt{2} = 0 \cdot 12A \cdot \sqrt{2} = 0 A \tag{2.1.74}$$

- 4. TODO: Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!
- 5. Der Spannungraumzeiger im rotorfesten Koordinatensystem errechnet sich nach Glg.(1.2.10), wobei die partiellen Terme wegfallen, weil wir uns im stationären Fall befinden. Für $\underline{i}_{sdq} = 0,752e^{j70^{\circ}}$ einsetzen.

$$\underline{u}_{sdq}(\tau) = \underline{i}_{sdq} \cdot r_s + l_s \cdot \frac{\partial \underline{i}_{sdq}}{\partial \tau} + \frac{\partial |\underline{\Psi}_M|}{\partial \tau} + \jmath \omega_K \cdot l_s \cdot \underline{i}_{sdq} + \jmath \omega_K \cdot |\underline{\Psi}_M|$$
 (2.1.75)

$$\underline{u}_{sdq}(\tau) = \underline{i}_{sdq} \cdot r_s + \jmath \omega_K \cdot l_s \cdot \underline{i}_{sdq} + \jmath \omega_K \cdot |\underline{\Psi}_M|$$
(2.1.76)

$$= 0,752e^{j70^{\circ}} \cdot 0,05 + j0,2 \cdot 0,3 \cdot 0,752e^{j70^{\circ}} + j0,2 \cdot 1$$
(2.1.77)

$$=0,258 \cdot e^{j92,5^{\circ}} \tag{2.1.78}$$

21.1.2015 6.

Eine dreisträngige symetrisch aufgebaute permanentmagneterregte Synchronmaschine in Y-Schaltung mit $I_N=12~A$ (Effektivwert) habe zu dem betrachteten Zeitpunkt τ_0 einen normierten Rotorverkettungsfluss von $\underline{\Psi}_M=1\cdot e^{\jmath 40^\circ}$. Zu diesem Zeitpunkt τ_0 ist der normierte statorfeste Stromraumzeiger $\underline{i}_s=0,5\cdot e^{\jmath 110^\circ}$.

- 1. Berechnen Sie für diesen Zeitpunkt τ_0 die bezogenen Strangströme i_1 , i_2 und i_3 sowie die nicht bezogenen Ströme I_1 , I_2 und I_3 . (2P.)
- 2. Berechnen Sie für den Zeitpunkt τ_0 den normierten Stromraumzeiger im rotorfesten Koordinatensystem und das bezogene Drehmoment der Maschine. Skizzieren Sie die Raumzeiger $\underline{\Psi}_M$ und \underline{i}_s sowie die dem Moment entsprechende Fläche in der komplexen Raumzeigerebene (Strangachse "U" liegt in der reellen Achse) des obrigen Betriebpunktes. (2 P.)
- 3. Berechnen Sie alternativ für den BLDC-Betrieb zum Zeitpunkt τ_0 jenen normierten Stromraumzeiger im statorfesten Koordinatensystem, welcher das **halbe motorische** Bezugsmoment bei positiver Drehrichtung ergibt. (Die Berechnung soll unter optimaler Drehmomentenausbeute erfolgen). Geben Sie ebenfalls die bezogenen Ströme i_1 , i_2 und i_3 in den Motorzuleitungen an. (3 P.)
- 4. Skizzieren Sie die Raumzeiger $\underline{\Psi}_M$ und \underline{i}_s sowie die dem Moment entsprechende Fläche in der komplexen Raumzeigerebene (Strangachse "U" liegt in der reellen Achse) des obrigen Betriebpunktes. (1 P.)
- 5. Berechnen Sie den bezogenen rotorfesten Spannungsraumzeiger für den Sinus-Betrieb (ensprechend dem Punkt 1.) zum Zeitpunkt τ_0 , wenn die Maschine gerade mit 20% der der Bezugsdrehzahl rotiert. Verwenden Sie dazu die Maschinenparameter $r_s = 0,07$ und $l_s = 0,25$. (2 P.)

Lösung 6.

1. Da zum Zeitpunkt τ_0 der Rotorverkettungsfluss dem Stromraumzeiger nacheilt, kann es sich in diesem Beispiel nur um ein linksdrehenden Motor oder um einen rechtsdrehenden Generator handeln. In die Glg.(1.2.29),(1.2.30) und (1.2.31) wird der Statorstrom \underline{i}_s eingesetzt.

$$i_1 = \Re\{\underline{i}_s \cdot e^{j \cdot 0^\circ}\} = -0,171$$
 (2.1.79)

$$i_2 = \Re\{\underline{i}_s \cdot e^{-j \cdot 120^\circ}\} = 0,492$$
 (2.1.80)

$$i_3 = \Re\{\underline{i}_s \cdot e^{j \cdot 120^\circ}\} = -0,321$$
 (2.1.81)

Um die nicht bezogenen Ströme zu erhalten werden die bezogenen Ströme mit dem Bezugswert $I_N \cdot \sqrt{2}$ multipliziert. (Effektivwert auf Spitzenwert umrechnen)

$$I_1 = i_1 \cdot I_N \cdot \sqrt{2} = -0,171 \cdot 12A \cdot \sqrt{2} = -2,902 A$$
 (2.1.82)

$$I_2 = i_2 \cdot I_N \cdot \sqrt{2} = 0,492 \cdot 12A \cdot \sqrt{2} = 8,356 A$$
 (2.1.83)

$$I_3 = i_3 \cdot I_N \cdot \sqrt{2} = -0,321 \cdot 12A \cdot \sqrt{2} = -5,454 A$$
 (2.1.84)

2. Im Rotorfesten Koordinatensystem ist der Stromzeiger um 40° in negativer Drehrichtung verschoben. Der Statorstrom wird auch gleich in seine Komponente \underline{i}_{sq} und \underline{i}_{sd} aufgeteilt. Dann

wird \underline{i}_{sq} und Ψ_M in Glg.(1.2.27) eingesetzt.

$$\underline{i}_{sda} = \underline{i}_s \cdot e^{-j40^{\circ}} = 0, 5 \cdot e^{j110^{\circ}} \cdot e^{-j40^{\circ}} = 0, 5 \cdot e^{j70^{\circ}}$$
(2.1.85)

$$\underline{i}_{sd} = |\underline{i}_{sdq}| \cdot \cos(\arg(\underline{i}_{sdq})) = 0, 5 \cdot \cos(70) = 0, 171$$
 (2.1.86)

$$\underline{i}_{sq} = |\underline{i}_{sdq}| \cdot \sin(\arg(\underline{i}_{sdq})) = 0, 5 \cdot \sin(70) = 0, 47$$
 (2.1.87)

$$m_R(\tau) = i_{sq} \cdot |\underline{\Psi}_M| = 0,47 \cdot 1 = 0,47$$
 (2.1.88)

Da das Moment positiv ist, ist hier ersichtlich, dass es sich um einen motorischen linksbetrieb handelt. **TODO:** Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!

3. Das **halbe motorische** Bezugsmoment bei positiver Drehzahl bedeutet $m_m = 0, 5$. Im BLDC Betrieb ist der nächste Stromzeiger gem Abb.(1) zu 40° bei 150° der Fall D. Über die Dreiecksbeziehungen werden \underline{i}_{sdq} und \underline{i}_{sd} aus \underline{i}_{sq} berechnet. Anschließend wird \underline{i}_{sdq} auf \underline{i}_{s} umgeformt um die Ströme in den Motorzuleitungen zu berechnen.

$$m_m = 0, 5 = \underline{i}_{sq} \cdot |\Psi_m| \tag{2.1.89}$$

$$0,5 = \underline{i}_{sa} \cdot 1 \tag{2.1.90}$$

$$\underline{i}_{sq} = 0,5 \tag{2.1.91}$$

$$\arg(\underline{i}_{sdg}) = \arg(\underline{i}_s) - \arg(\underline{\Psi}_M) = 110^{\circ}$$
(2.1.92)

$$\underline{i}_{sdq} = \frac{\underline{i}_{sq}}{\sin(\arg(\underline{i}_{sdq}))} = 0,532 \tag{2.1.93}$$

$$\underline{i}_{sd} = \underline{i}_{sdq} \cdot \cos(\arg(\underline{i}_{sdq})) = -0,182 \tag{2.1.94}$$

$$\underline{i}_s = |\underline{i}_{sdq}| \cdot e^{\jmath(\arg(\underline{i}_{sdq}) + \arg(\underline{\Psi}_M))} = 0,532 \cdot e^{\jmath(110 + (40))}$$
(2.1.95)

In die Glg.(1.2.29),(1.2.30) und (1.2.31) wird der Statorstrom \underline{i}_s eingesetzt.

$$i_1 = \Re\{\underline{i}_s \cdot e^{j \cdot 0^\circ}\} = -0,461$$
 (2.1.96)

$$i_2 = \Re\{i_s \cdot e^{-j \cdot 120^\circ}\} = 0,461$$
 (2.1.97)

$$i_3 = \Re\{\underline{i}_s \cdot e^{j \cdot 120^\circ}\} = 0$$
 (2.1.98)

Wie in Tab.(1) ersichtlich muss für den Fall D $i_1 = -i_2$ sein und $i_3 = 0$ gelten.

- 4. **TODO:** Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!
- 5. Der Spannungraumzeiger im rotorfesten Koordinatensystem errechnet sich nach Glg.(1.2.10), wobei die partiellen Terme wegfallen, weil wir uns im stationären Fall befinden. Für $\underline{i}_{sdq} = 0, 5e^{j70^{\circ}}$ einsetzen.

$$\underline{u}_{sdq}(\tau) = \underline{i}_{sdq} \cdot r_s + l_s \cdot \frac{\partial \underline{i}_{sdq}}{\partial \tau} + \frac{\partial |\underline{\Psi}_M|}{\partial \tau} + \jmath \omega_K \cdot l_s \cdot \underline{i}_{sdq} + \jmath \omega_K \cdot |\underline{\Psi}_M|$$
(2.1.99)

$$\underline{u}_{sdq}(\tau) = \underline{i}_{sdq} \cdot r_s + \jmath \omega_K \cdot l_s \cdot \underline{i}_{sdq} + \jmath \omega_K \cdot |\underline{\Psi}_M|$$
(2.1.100)

$$= 0,5e^{j70^{\circ}} \cdot 0,07 + j0,2 \cdot 0,25 \cdot 0,5e^{j70^{\circ}} + j0,2 \cdot 1$$
(2.1.101)

$$=0,2 \cdot e^{j90,47^{\circ}} \tag{2.1.102}$$

18.2.2015 7.

Eine dreisträngige symetrisch aufgebaute permanentmagneterregte Synchronmaschine in Y-Schaltung mit $I_N = 4$ A (Effektivwert) habe zu dem betrachteten Zeitpunkt τ_0 einen normierten Rotorverkettungsfluss von $\underline{\Psi}_M = 1 \cdot e^{j20^{\circ}}$. Die Maschine wird im BLDC-Modus betrieben und hat zu diesem Zeitpunkt τ_0 die Strangströme $I_1 = 0$ A, $I_2 = 1, 9$ A und $I_3 = -1, 9$ A.

- 1. Berechnen Sie für diesen Zeitpunkt τ_0 die bezogenen Strangströme i_1 , i_2 und i_3 sowie den normierten statorfesten Stromraumzeiger \underline{i}_s . (2 P.)
- 2. Berechnen Sie für den Zeitpunkt τ_0 den normierten Stromraumzeiger im rotorfesten Koordinatensystem und das bezogene Drehmoment der Maschine. Skizzieren Sie die Raumzeiger $\underline{\Psi}_M$ und \underline{i}_s sowie die dem Moment entsprechende Fläche in der komplexen Raumzeigerebene (Strangachse "U" liegt in der reellen Achse) des obrigen Betriebpunktes. (2 P.)
- 3. Berechnen Sie alternativ für einen Sinus-Betrieb zum Zeitpunkt τ_0 jenen optimalen normierten Stromraumzeiger im rotorfesten und statorfesten Koordinatensystem, welcher das <u>halbe</u> motorische Bezugsmoment bei positiver Drehrichtung ergibt. (Die Berechnung soll unter optimaler Drehmomentenausbeute erfolgen). Geben Sie ebenfalls die bezogenen Ströme i_1 , i_2 und i_3 sowie die nicht bezogenen Ströme I_1 , I_2 und I_3 in den Motorzuleitungen an. (3 P.)
- 4. Skizzieren Sie die Raumzeiger $\underline{\Psi}_M$ und \underline{i}_s sowie die dem Moment entsprechende Fläche in der komplexen Raumzeigerebene (Strangachse "U" liegt in der reellen Achse) des obrigen Betriebpunktes. (1 P.)
- 5. Berechnen Sie den bezogenen rotorfesten Spannungsraumzeiger für den Sinus-Betrieb (ensprechend dem Punkt 3.) und Punkt 4.)) zum Zeitpunkt τ_0 , wenn die Maschine gerade stationär mit konstantem Moment bei 50% der Bezugsdrehzahl rotiert. Verwenden Sie dazu die Maschinenparameter $r_s = 0,07$ und $l_s = 0,4$. (2 P.)

Lösung 7.

1.

$$i_1 = 0 (2.1.103)$$

$$i_2 = \frac{1,9}{\sqrt{2} \cdot 4} = 0,335 \tag{2.1.104}$$

$$i_3 = \frac{-1,9}{\sqrt{2} \cdot 4} = -0,335 \tag{2.1.105}$$

$$\underline{i}_s = \frac{2}{3} \left(i_1 + i_2 \cdot e^{j120^\circ} + i_3 \cdot e^{j240^\circ} \right) = 0,387j$$
 (2.1.106)

2. Im Rotorfesten Koordinatensystem ist der Stromzeiger um 20° in negativer Drehrichtung verschoben. Der Statorstrom wird auch gleich in seine Komponenten \underline{i}_{sq} und \underline{i}_{sd} aufgeteilt. Dann wird \underline{i}_{sq} und Ψ_M in Glg.(1.2.27) eingesetzt.

$$\underline{i}_{sdq} = \underline{i}_s \cdot e^{-j20^{\circ}} = 0,387 \cdot e^{j90^{\circ}} \cdot e^{-j20^{\circ}} = 0,387 \cdot e^{j70^{\circ}}$$
(2.1.107)

$$\underline{i}_{sd} = |\underline{i}_{sdq}| \cdot \cos(\arg(\underline{i}_{sdq})) = 0,387 \cdot \cos(70) = 0,132$$
 (2.1.108)

$$\underline{i}_{sq} = |\underline{i}_{sdq}| \cdot \sin(\arg(\underline{i}_{sdq})) = 0,387 \cdot \sin(70) = 0,364$$
 (2.1.109)

$$m_R(\tau) = i_{sq} \cdot |\underline{\Psi}_M| = 0,364 \cdot 1 = 0,364$$
 (2.1.110)

Da das Moment positiv ist, ist hier ersichtlich, dass es sich um einen motorischen Linksbetrieb handelt.

TODO: Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!

3. Da wir uns im motorischen linksdrehenden Sinus-Betrieb befinden ist der Stromraumzeiger \underline{i}_{sq} , welche das optimale **halbe** Bezugsdrehmoment liefert, gleich dem Stromraumzeiger \underline{i}_{sdq} . Der Winkel liegt somit exakt bei $\arg(\underline{i}_{sdq}) = 90^{\circ}$ zu $\underline{\Psi}_{M}$.

$$m_m = 0, 5 = \underline{i}_{sq} \cdot |\Psi_m| \tag{2.1.111}$$

$$0,5 = \underline{i}_{sq} \cdot 1 \tag{2.1.112}$$

$$\underline{i}_{sq} = 0, 5 = \underline{i}_{sdq} \tag{2.1.113}$$

$$\underline{i}_{sd} = 0 \tag{2.1.114}$$

$$\underline{i}_s = |\underline{i}_{sdq}| \cdot e^{\jmath(\arg(\underline{i}_{sdq}) + \arg(\underline{\Psi}_M))} = 0, 5 \cdot e^{\jmath(90 + 20)}$$
(2.1.115)

In die Glg.(1.2.29),(1.2.30) und (1.2.31) wird der Statorstrom \underline{i}_s eingesetzt.

$$i_1 = \Re\{\underline{i}_s \cdot e^{j \cdot 0^\circ}\} = -0,171$$
 (2.1.116)

$$i_2 = \Re\{\underline{i}_s \cdot e^{-j \cdot 120^\circ}\} = 0,492$$
 (2.1.117)

$$i_3 = \Re\{\underline{i}_s \cdot e^{j \cdot 120^\circ}\} = -0,321$$
 (2.1.118)

Um die nicht bezogenen Ströme zu erhalten werden die bezogenen Ströme mit dem Bezugswert $I_N \cdot \sqrt{2}$ multipliziert. (Effektivwert auf Spitzenwert umrechnen)

$$I_1 = i_1 \cdot I_N \cdot \sqrt{2} = -0,171 \cdot 4A \cdot \sqrt{2} = -0,967 A$$
 (2.1.119)

$$I_2 = i_2 \cdot I_N \cdot \sqrt{2} = 0,492 \cdot 4A \cdot \sqrt{2} = 2,785 A$$
 (2.1.120)

$$I_3 = i_3 \cdot I_N \cdot \sqrt{2} = -0.321 \cdot 4A \cdot \sqrt{2} = -1.818 A$$
 (2.1.121)

- 4. **TODO:** Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!
- 5. Der Spannungraumzeiger im rotorfesten Koordinatensystem errechnet sich nach Glg.(1.2.10), wobei die partiellen Terme wegfallen, weil wir uns im stationären Fall befinden. Für $\underline{i}_{sdq} = 0, 5j$ einsetzen.

$$\underline{u}_{sdq}(\tau) = \underline{i}_{sdq} \cdot r_s + l_s \cdot \frac{\partial \underline{i}_{sdq}}{\partial \tau} + \frac{\partial |\underline{\Psi}_M|}{\partial \tau} + \jmath \omega_K \cdot l_s \cdot \underline{i}_{sdq} + \jmath \omega_K \cdot |\underline{\Psi}_M|$$
 (2.1.122)

$$\underline{u}_{sdq}(\tau) = \underline{i}_{sdq} \cdot r_s + \jmath \omega_K \cdot l_s \cdot \underline{i}_{sdq} + \jmath \omega_K \cdot |\underline{\Psi}_M|$$
(2.1.123)

$$= 0, 5j \cdot 0, 07 + j0, 5 \cdot 0, 4 \cdot 0, 5j + j0, 5 \cdot 1$$
(2.1.124)

$$=0,544 \cdot e^{j100,59^{\circ}} \tag{2.1.125}$$

13.5.2015 8.

Eine dreisträngige symetrische aufgebaute permanentmagneterregte Synchronmaschine in Sternschaltung ohne Mittelpunktleiter ($I_N=10~A,\,U_N=230~V$) läuft mit eingeprägter positiver Drehzahl von **30% der Bezugsdrehzahl**. Zum Zeitpunkt τ_0 ist der normierte statorfeste Rotorverkettungsfluss $\underline{\Psi}_M=1\cdot e^{j\cdot 80^\circ}$.

- 1. Berechnen Sie für einen BLDC-Betrieb jenen günstigen normierten Stromraumzeiger, welche das halbe generatorische Bezugsmoment bei positiver Drehzahl ergibt. Geben Sie ebenfalls die bezogenen und nicht bezogenen Ströme in den Motorzuleitungen an. (2 P.)
- 2. Berechnen Sie für einen Sinus-Betrieb jenen normierten Stromraumzeiger, welcher das gleiche (halbe generatorische) Drehmoment unter optimaler Drehmomentausnutzung bei positiver Drehrichtung ergibt. Wie groß ist das Verhältnis der Strombetrags zum BLDC-Betrieb für diesen Zeitpunkt? (2 P.)
- 3. Skizzieren Sie jeweils die Raumzeiger $\underline{\Psi}_{M},\underline{i}_{s}$ und die dem Moment entsprechende Fläche in der komplexen Raumzeigerebene (Strangachse "U" liegt in der reellen Achse) für beide obrigen Betriebpunkte. (1 P. +1 P. Skizze)
- 4. Berechnen Sie für den stationären Sinus-Betrieb (siehe Punkt 2.) den bezogenen Statorspannungsraumzeiger im rotorfesten und statorfesten Koordinatensystem zum Zeitpunkt τ_0 mit den Maschinendaten $r_s = 0,08$ und $l_s = 0,3$. (2P.)
- 5. Berechnen Sie für die Maschinendaten $r_s = 0,08$ und $l_s = 0,3$ den Verlauf des stationären Kurzschlussmoments $m(\omega_m)$ in Abhängigkeit der Drehzahl ω_m für einen kurzgeschlossenen Stator und skizzieren Sie den Verlauf. (2P.)

Lösung 8.

1. Das **halbe** generatorische Bezugsmoment bei positiver Drehzahl bedeutet $m_m = -0, 5$. Im BLDC Betrieb ist der nächste Stromzeiger gem Abb.(1) zu 80° bei -30° der Fall A. Über die Dreiecksbeziehungen werden \underline{i}_{sdq} und \underline{i}_{sd} aus \underline{i}_{sq} berechnet. Anschließend wird \underline{i}_{sdq} auf \underline{i}_{s} umgeformt um die Ströme in den Motorzuleitungen zu berechnen.

$$m_m = -0, 5 = \underline{i}_{sq} \cdot |\Psi_m|$$
 (2.1.126)

$$-0, 5 = \underline{i}_{sq} \cdot 1 \tag{2.1.127}$$

$$\underline{i}_{sq} = -0.5$$
 (2.1.128)

$$\arg(\underline{i}_{sdq}) = \arg(\underline{i}_s) - \arg(\underline{\Psi}_M) = -110^{\circ}$$
(2.1.129)

$$\underline{i}_{sdq} = \frac{\underline{i}_{sq}}{\sin(\arg(\underline{i}_{sdq}))} = 0,532 \tag{2.1.130}$$

$$\underline{i}_{sd} = \underline{i}_{sdq} \cdot \cos(\arg(\underline{i}_{sdq})) = -0,181 \tag{2.1.131}$$

$$\underline{i}_s = |\underline{i}_{sdq}| \cdot e^{\jmath(\arg(\underline{i}_{sdq}) + \arg(\underline{\Psi}_M))} = 0,532 \cdot e^{\jmath(-110 + (80))}$$
(2.1.132)

In die Glg.(1.2.29),(1.2.30) und (1.2.31) wird der Statorstrom \underline{i}_s eingesetzt.

$$i_1 = \Re\{\underline{i}_s \cdot e^{j \cdot 0^\circ}\} = 0,46$$
 (2.1.133)

$$i_2 = \Re\{\underline{i}_s \cdot e^{-j \cdot 120^\circ}\} = -0,46$$
 (2.1.134)

$$i_3 = \Re\{\underline{i}_s \cdot e^{j \cdot 120^\circ}\} = 0$$
 (2.1.135)

Wie in Tab.(1) ersichtlich muss für den Fall A $i_1 = -i_2$ sein und $i_3 = 0$ gelten. Um die nicht bezogenen Ströme zu erhalten werden die bezogenen Ströme mit dem Bezugswert $I_N \cdot \sqrt{2}$ multipliziert. (Effektivwert auf Spitzenwert umrechnen)

$$I_1 = i_1 \cdot I_N \cdot \sqrt{2} = 0,46 \cdot 10A \cdot \sqrt{2} = 6,517 A$$
 (2.1.136)

$$I_2 = i_2 \cdot I_N \cdot \sqrt{2} = -0.46 \cdot 10A \cdot \sqrt{2} = -6.517 A$$
 (2.1.137)

$$I_3 = i_3 \cdot I_N \cdot \sqrt{2} = 0 \cdot 10A \cdot \sqrt{2} = 0 A$$
 (2.1.138)

2. Da wir uns im generatorischen linksdrehenden Sinus-Betrieb befinden ist der Stromraumzeiger \underline{i}_{sq} , welche das optimale **halbe** Bezugsdrehmoment liefert, gleich dem Stromraumzeiger \underline{i}_{sdq} . Der Winkel liegt somit exakt bei $\arg(\underline{i}_{sdq}) = -90^{\circ}$ zu $\underline{\Psi}_{M}$.

$$m_m = -0, 5 = \underline{i}_{sq} \cdot |\Psi_m| \tag{2.1.139}$$

$$-0, 5 = \underline{i}_{sq} \cdot 1 \tag{2.1.140}$$

$$\underline{i}_{sq} = -0, 5 = \underline{i}_{sdq} \tag{2.1.141}$$

$$\underline{i}_{sd} = 0 \tag{2.1.142}$$

$$\underline{i}_s = |\underline{i}_{sdq}| \cdot e^{\jmath(\arg(\underline{i}_{sdq}) + \arg(\underline{\Psi}_M))} = -0, 5 \cdot e^{\jmath(-90 + 80)}$$
(2.1.143)

In die Glg.(1.2.29),(1.2.30) und (1.2.31) wird der Statorstrom \underline{i}_s eingesetzt.

$$i_1 = \Re\{\underline{i}_s \cdot e^{j \cdot 0^\circ}\} = 0,492$$
 (2.1.144)

$$i_2 = \Re\{\underline{i}_s \cdot e^{-j \cdot 120^\circ}\} = -0,321$$
 (2.1.145)

$$i_3 = \Re\{\underline{i}_s \cdot e^{j \cdot 120^\circ}\} = -0,171$$
 (2.1.146)

Um die nicht bezogenen Ströme zu erhalten werden die bezogenen Ströme mit dem Bezugswert $I_N \cdot \sqrt{2}$ multipliziert. (Effektivwert auf Spitzenwert umrechnen)

$$I_1 = i_1 \cdot I_N \cdot \sqrt{2} = 6,958 \ A \tag{2.1.147}$$

$$I_2 = i_2 \cdot I_N \cdot \sqrt{2} = -4,545 \ A \tag{2.1.148}$$

$$I_3 = i_3 \cdot I_N \cdot \sqrt{2} = -2,418 \ A \tag{2.1.149}$$

Das Verhältnis der Strombelags ist der Betrag I_n/I_{ZK} , wobei I_{ZK} gleich dem Strom im BLDC ist.

$$\alpha_1 = \frac{|I_1|}{|I_{ZK}|} = 1,068 \tag{2.1.150}$$

$$\alpha_2 = \frac{|I_2|}{|I_{ZK}|} = 0,697 \tag{2.1.151}$$

$$\alpha_3 = \frac{|I_3|}{|I_{ZK}|} = 0,371 \tag{2.1.152}$$

- 3. **TODO:** Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!
- 4. Der Spannungraumzeiger im rotorfesten Koordinatensystem errechnet sich nach Glg.(1.2.10), wobei die partiellen Terme wegfallen, weil wir uns im stationären Fall befinden. Für $i_{sdq} =$

 $0,5e^{j-90^{\circ}}$ einsetzen.

$$\underline{u}_{sdq}(\tau) = \underline{i}_{sdq} \cdot r_s + l_s \cdot \frac{\partial \underline{i}_{sdq}}{\partial \tau} + \frac{\partial |\underline{\Psi}_M|}{\partial \tau} + \jmath \omega_K \cdot l_s \cdot \underline{i}_{sdq} + \jmath \omega_K \cdot |\underline{\Psi}_M|$$
(2.1.153)

$$\underline{u}_{sdq}(\tau) = \underline{i}_{sdq} \cdot r_s + \jmath \omega_K \cdot l_s \cdot \underline{i}_{sdq} + \jmath \omega_K \cdot |\underline{\Psi}_M|$$
(2.1.154)

$$= 0,5e^{\jmath-90^{\circ}} \cdot 0,08 + \jmath0,3 \cdot 0,3 \cdot 0,5e^{-\jmath90^{\circ}} + \jmath0,3 \cdot 1$$
(2.1.155)

$$= 0,264 \cdot e^{j80,18^{\circ}} \tag{2.1.156}$$

Der Spannungraumzeiger im statorfesten Koordinatensystem errechnet sich nach Glg.(1.2.24). Für $\underline{i}_s = 0, 5e^{\jmath-10^\circ+\omega\tau}$ einsetzen. Da $\tau_0 = 0$ ist, fällt der zweite teil weg.

$$\underline{u}_s(\tau) = \underline{i}_s \cdot r_s + l_s \cdot \frac{\partial \underline{i}_s}{\partial \tau} + \jmath \omega \cdot |\underline{\Psi}_M| \cdot e^{\jmath \cdot \gamma + \jmath \omega \tau}$$
(2.1.157)

$$\underline{u}_s(\tau) = \underline{i}_s \cdot r_s + \jmath \omega \cdot |\underline{\Psi}_M| \cdot e^{\jmath \cdot \gamma} = 0,26 \cdot e^{\jmath 169,6^{\circ}}$$
(2.1.158)

5. In Glg.(1.2.27) wird der Imaginärteil von Glg.(1.2.18) eingesetzt.

$$m_m(\omega_m) = \frac{\omega |\underline{\Psi}_M|^2 r_s}{r_s^2 + (\omega l_s)^2} = \frac{0,888 \cdot \omega}{\omega^2 + 0,0711}$$
(2.1.159)

TODO: Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!

14.10.2015 9.

Eine dreisträngige symetrisch aufgebaute permanentmagneterregte Synchronmaschine in Y-Schaltung mit $I_N = 25~A$ (Effektivwert) habe zu dem betrachteten Zeitpunkt τ_0 einen normierten Rotorverkettungsfluss von $\underline{\Psi}_M = 1 \cdot e^{j275^{\circ}}$. Zu diesem Zeitpunkt τ_0 ist der normierte statorfeste Stromraumzeiger $\underline{i}_s = 0, 6 \cdot e^{j350^{\circ}}$.

- 1. Berechnen Sie für diesen Zeitpunkt τ_0 die bezogenen Strangströme i_1 , i_2 und i_3 sowie die nicht bezogenen Ströme I_1 , I_2 und I_3 . (2 P.)
- 2. Berechnen Sie für den Zeitpunkt τ_0 den normierten Stromraumzeiger im rotorfesten Koordinatensystem und das bezogene Drehmoment der Maschine. Skizzieren Sie die Raumzeiger $\underline{\Psi}_M$ und \underline{i}_s sowie die dem Moment entsprechende Fläche in der komplexen Raumzeigerebene (Strangachse "U" liegt in der reellen Achse) des obrigen Betriebpunktes. (2 P.)
- 3. Berechnen Sie alternativ für den BLDC-Betrieb zum Zeitpunkt τ_0 jenen normierten Stromraumzeiger im statorfesten Koordinatensystem, welcher das **halbe motorische** Bezugsmoment bei positiver Drehrichtung ergibt. (Die Berechnung soll unter optimaler Drehmomentenausbeute erfolgen). Geben Sie ebenfalls die d- und q- Stromkomponenten für diesen an. (3 P.)
- 4. Skizzieren Sie die Raumzeiger $\underline{\Psi}_M$ und \underline{i}_s sowie die dem Moment entsprechende Fläche in der komplexen Raumzeigerebene (Strangachse "U" liegt in der reellen Achse) des obrigen BLDC-Betriebpunktes. (1P.)
- 5. Berechnen Sie für die Maschinendaten $r_S=0,07$ und $l_S=0,35$ den Verlauf des stationären Kurzschlussmoments $m(\omega_m)$ in Abhängigkeit der Drehzahl ω_m für einen kurzgeschlossenen Stator ($\underline{u}_s=0$) und skizzieren Sie den Verlauf im Bereich $\omega_m=[0\dots 1]$. (2P.)

Lösung 9.

1. In die Glg.(1.2.29),(1.2.30) und (1.2.31) wird der Statorstrom \underline{i}_s eingesetzt.

$$i_1 = \Re\{\underline{i}_s \cdot e^{j \cdot 0^\circ}\} = 0,591$$
 (2.1.160)

$$i_2 = \Re\{\underline{i}_s \cdot e^{-j \cdot 120^\circ}\} = -0,386$$
 (2.1.161)

$$i_3 = \Re\{\underline{i}_s \cdot e^{j \cdot 120^\circ}\} = -0,205$$
 (2.1.162)

Um die nicht bezogenen Ströme zu erhalten werden die bezogenen Ströme mit dem Bezugswert $I_N \cdot \sqrt{2}$ multipliziert. (Effektivwert auf Spitzenwert umrechnen)

$$I_1 = i_1 \cdot I_N \cdot \sqrt{2} = 20,89 \ A$$
 (2.1.163)

$$I_2 = i_2 \cdot I_N \cdot \sqrt{2} = -13,65 \ A \tag{2.1.164}$$

$$I_3 = i_3 \cdot I_N \cdot \sqrt{2} = -7,24 \ A \tag{2.1.165}$$

2. Im Rotorfesten Koordinatensystem ist der Stromzeiger um 85° in positiver Drehrichtung verschoben. Der Statorstrom wird auch gleich in seine Komponente \underline{i}_{sq} und \underline{i}_{sd} aufgeteilt. Dann wird \underline{i}_{sq} und Ψ_M in Glg.(1.2.27) eingesetzt.

$$\underline{i}_{sdg} = \underline{i}_s \cdot e^{-j10^{\circ}} = 0, 6 \cdot e^{-j10^{\circ}} \cdot e^{j85^{\circ}} = 0, 6 \cdot e^{j75^{\circ}}$$
(2.1.166)

$$\underline{i}_{sd} = |\underline{i}_{sdq}| \cdot \cos(\arg(\underline{i}_{sdq})) = 0, 6 \cdot \cos(75) = 0, 155$$
(2.1.167)

$$\underline{i}_{sq} = |\underline{i}_{sdq}| \cdot \sin(\arg(\underline{i}_{sdq})) = 0, 6 \cdot \sin(75) = 0, 58$$
 (2.1.168)

$$m_R(\tau) = i_{sq} \cdot |\underline{\Psi}_M| = 0,58 \cdot 1 = 0,58$$
 (2.1.169)

Da das Moment positiv ist, ist hier ersichtlich, dass es sich um einen motorischen Linksbetrieb handelt.

TODO: Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!

3. Das **halbe** motorische Bezugsmoment bei positiver Drehzahl bedeutet $m_m = 0, 5$. Im BLDC Betrieb ist der nächste Stromzeiger gem Abb.(1) zu -85° bei 30° der Fall B. Über die Dreiecksbeziehungen werden \underline{i}_{sdq} und \underline{i}_{sd} aus \underline{i}_{sq} berechnet. Anschließend wird \underline{i}_{sdq} auf \underline{i}_{s} umgeformt um die Ströme in den Motorzuleitungen zu berechnen.

$$m_m = 0, 5 = \underline{i}_{sq} \cdot |\Psi_m| \tag{2.1.170}$$

$$0,5 = \underline{i}_{sa} \cdot 1 \tag{2.1.171}$$

$$\underline{i}_{sq} = 0, 5$$
 (2.1.172)

$$\arg(\underline{i}_{sdq}) = \arg(\underline{i}_s) - \arg(\underline{\Psi}_M) = 115^{\circ}$$
(2.1.173)

$$\underline{i}_{sdq} = \frac{\underline{i}_{sq}}{\sin(\arg(\underline{i}_{sdq}))} = 0,552 \tag{2.1.174}$$

$$\underline{i}_{sd} = \underline{i}_{sdq} \cdot \cos(\arg(\underline{i}_{sdq})) = -0,233 \tag{2.1.175}$$

$$\underline{i}_s = |\underline{i}_{sdq}| \cdot e^{\jmath(\arg(\underline{i}_{sdq}) + \arg(\underline{\Psi}_M))} = 0,552 \cdot e^{\jmath(115 + (-85))}$$
(2.1.176)

- 4. **TODO:** Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!
- 5. In Glg.(1.2.27) wird der Imaginärteil von Glg.(1.2.18) eingesetzt.

$$m_m(\omega_m) = \frac{\omega |\underline{\Psi}_M|^2 r_s}{r_s^2 + (\omega l_s)^2} = \frac{0.571 \cdot \omega}{\omega^2 + 0.040}$$
 (2.1.177)

TODO: Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!

15.06.2016 10.

Eine dreisträngige symetrisch aufgebaute 4-polige (p=2) permanentmagneterregte Synchronmaschine in Y-Schaltung mit $I_N=15$ A (Effektivwert) und $n_N=1500$ U/min habe zu dem betrachteten Zeitpunkt τ_0 einen normierten Rotorverkettungsfluss von $\underline{\Psi}_M=1\cdot e^{-\jmath 20^\circ}$. Zu diesem Zeitpunkt τ_0 ist der normierte statorfeste Stromraumzeiger $\underline{i}_s=-0,15-\jmath 0,9$.

- 1. Berechnen Sie für diesen Zeitpunkt τ_0 die bezogenen Strangströme i_1 , i_2 und i_3 sowie die nicht bezogenen Ströme I_1 , I_2 und I_3 . (2 P.)
- 2. Berechnen Sie für den Zeitpunkt τ_0 den normierten Stromraumzeiger im rotorfesten Koordinatensystem und das bezogene Drehmoment der Maschine. Skizzieren Sie die Raumzeiger $\underline{\Psi}_M$ und \underline{i}_s sowie die dem Moment entsprechende Fläche in der komplexen Raumzeigerebene (Strangachse "U" liegt in der reellen Achse) des obrigen Betriebpunktes. (2 P.)
- 3. Berechnen Sie alternativ für den BLDC-Betrieb zum Zeitpunkt τ_0 jenen normierten Stromraumzeiger im statorfesten Koordinatensystem, welcher das **generatorische** Bezugsmoment bei positiver Drehrichtung ergibt. (Die Berechnung soll unter optimaler Drehmomentenausbeute erfolgen). Geben Sie ebenfalls die d- und q- Stromkomponenten für diesen an. (3 P.)
- 4. Skizzieren Sie die Raumzeiger $\underline{\Psi}_M$ und \underline{i}_s sowie die dem Moment entsprechende Fläche in der komplexen Raumzeigerebene (Strangachse "U" liegt in der reellen Achse) des obrigen BLDC-Betriebpunktes. (1P.)
- 5. Skizzieren Sie den Zeitverlauf des nicht bezogenen Strangstroms $I_1(t)$ [A] in Abhängigkeit der Zeit t [ms] ab dem Zeitpunkt t_0 ensprechend Frage 3.) für den BLDC-Betrieb, wenn die PSM mit einer positiven Drehzahl von $\omega_m = 0, 1$ bei konstantem generatorischem Bezugsmoment läuft. (2 P.)

Lösung 10.

1. Da zum Zeitpunkt τ_0 der Rotorverkettungsfluss dem Stromraumzeiger voreilt, kann es sich in diesem Beispiel nur um ein linksdrehenden Generator oder um einen rechtsdrehenden Motor handeln. Zuerst wird der Statorstrom in Polarkoordinaten gebracht.

$$|\underline{i}_s| = \sqrt{0,15^2 + 0,9^2} = 0,912$$
 (2.1.178)

$$\arg(\underline{i}_s) = -90 - \arctan\left(\frac{0,15}{0,9}\right) = -99,46$$
 (2.1.179)

$$\underline{i}_s = 0,912 \cdot e^{-j99,46^{\circ}} \tag{2.1.180}$$

In die Glg.(1.2.29),(1.2.30) und (1.2.31) wird der Statorstrom \underline{i}_s eingesetzt.

$$i_1 = \Re\{\underline{i}_s \cdot e^{j \cdot 0^\circ}\} = -0,15$$
 (2.1.181)

$$i_2 = \Re\{\underline{i}_s \cdot e^{-j \cdot 120^\circ}\} = -0,709$$
 (2.1.182)

$$i_3 = \Re\{\underline{i}_s \cdot e^{j \cdot 120^\circ}\} = 0,851$$
 (2.1.183)

Um die nicht bezogenen Ströme zu erhalten werden die bezogenen Ströme mit dem Bezugswert $I_N \cdot \sqrt{2}$ multipliziert. (Effektivwert auf Spitzenwert umrechnen)

$$I_1 = i_1 \cdot I_N \cdot \sqrt{2} = -0,15 \cdot 15A \cdot \sqrt{2} = -3,18 A$$
 (2.1.184)

$$I_2 = i_2 \cdot I_N \cdot \sqrt{2} = -0,709 \cdot 15A \cdot \sqrt{2} = -15,04 A$$
 (2.1.185)

$$I_3 = i_3 \cdot I_N \cdot \sqrt{2} = 0,851 \cdot 15A \cdot \sqrt{2} = 18,05 A$$
 (2.1.186)

2. Im Rotorfesten Koordinatensystem ist der Stromzeiger um 20° in positiver Drehrichtung verschoben. Der Statorstrom wird auch gleich in seine komponenten \underline{i}_{sq} und \underline{i}_{sd} aufgeteilt. Dann wird \underline{i}_{sq} und Ψ_M in Glg.(1.2.27) eingesetzt.

$$\underline{i}_{sdq} = \underline{i}_s \cdot e^{j20^\circ} = 0,912 \cdot e^{-j99,46^\circ} \cdot e^{j20^\circ} = 0,912 \cdot e^{-j79,46^\circ}$$
(2.1.187)

$$\underline{i}_{sd} = |\underline{i}_{sdq}| \cdot \cos(\arg(\underline{i}_{sdq})) = 0,912 \cdot \cos(-79,46) = 0,166$$
(2.1.188)

$$\underline{i}_{sq} = |\underline{i}_{sdq}| \cdot \sin(\arg(\underline{i}_{sdq})) = 0,912 \cdot \sin(-79,46) = -0,896$$
 (2.1.189)

$$m_R(\tau) = i_{sq} \cdot |\underline{\Psi}_M| = -0.896 \cdot 1 = -0.896$$
 (2.1.190)

Da das Moment negativ ist, ist hier ersichtlich, dass es sich um einen generatorischen linksbetrieb handelt.

3. Der optimalste Stromvektor steht normal auf den Rotorverkettungsfluss. Der nächstgelegene Stromraumzeiger zu $e^{-\jmath 110^{\circ}}$ ist Fall F bei -90° . Generatorisches Bezugsmoment heißt, dass $m_R = -1$ sein muss. Optimale Drehmomentausbeute bedeutet, dass $\underline{i}_{sq} = -1$ sein muss. (Negativ weil generatorisch)

$$m_{R,BLDC}(\tau) = i_{sq} \cdot |\underline{\Psi}_M| \tag{2.1.191}$$

$$\arg(\underline{i}_{sdq}) = \arg(\underline{i}_s) - \arg(\underline{\Psi}_M) = -90 - (-20) = -70^{\circ}$$
 (2.1.192)

$$|\underline{i}_{sdq}| = \frac{i_{sq}}{\sin(\arg(\underline{i}_{sdq}))} = \frac{-1}{-0,939} = 1,064$$
 (2.1.193)

$$\underline{i}_{sd} = |\underline{i}_{sdq}| \cdot \cos(\arg(\underline{i}_{sdq})) = 1,064 \cdot \cos(-70) = 0,363$$
 (2.1.194)

4.

5. Zuerst wird die Zeit berechnet, welche eine ganze Umdrehung braucht. Anschließend werden die Funktionen für die einzelnen Fälle berechnet. Da in der Angabe steht, dass hier nur skizziert werden soll, sind die Schritte von (2.1.195) bis (2.1.206) nicht notwendig. t_X für X=A,B,C,D sind die Zeiten, welche notwendig sind, um den Sinus in den richtigen Bereich zu verschieben. Mit -90° wird, für die Zeiten A und B, der Sinus auf 0° verschoben. bzw. mit 90° bei D und E. Die 20° stehen für die anfängeliche Verschiebung von Ψ_M gegenüber der x-Achse. Die nächseten 30° sind die Differenz bis zum nächsten Stromzeigersegment, welches in diesem Fall A ist und bei 300° beginnt. (Generatorischer Linksbetrieb) Ψ_M eilt dem Strom vorraus! Die letzten 30° sind dazu da den Sinus in die Mitte des Segments A zu legen. Der Strom Steigt an den Rändern von den Bereichen an, weil das Moment konstant ist, und somit i_{sq} konstant sein muss. Weil sich i_{sq} weiterdreht und konstant ist, muss i_{sdq} immer größer werden. Im Fall B,D und E wird zwischen den beiden 30° Termen vielfache von 60° eingefügt, um den Sinus entsprechend verschieben zu können. Die Aufteilung enspricht Tab.1

$$t_{\circ} = \frac{1}{\frac{n_N}{60} \cdot 2\pi \cdot \frac{\omega_m}{2\pi}} = 400 \ ms \tag{2.1.195}$$

$$I_1(t)|_X = \sqrt{2} \cdot I_N \cdot \frac{m_{R,BLDC}}{|\Psi_M|} \cdot \frac{1}{\sin\left(\frac{360 \cdot \frac{n_N}{60} \cdot \omega_m}{1000} \cdot (t - t_X)\right)}$$
(2.1.196)

$$t_A = t_\circ \cdot \frac{-90 + 20 + 30 + 30}{360} = -11,11 \ ms \tag{2.1.197}$$

$$t_B = t_\circ \cdot \frac{-90 + 20 + 30 + 60 + 30}{360} = 55,55 \ ms \tag{2.1.198}$$

$$t_{A} = t_{\circ} \cdot \frac{360}{360} = -11,11 \, ms$$

$$t_{B} = t_{\circ} \cdot \frac{-90 + 20 + 30 + 60 + 30}{360} = 55,55 \, ms$$

$$t_{D} = t_{\circ} \cdot \frac{90 + 20 + 30 + 60 + 60 + 60 + 30}{360} = 255,55 \, ms$$

$$t_{E} = t_{\circ} \cdot \frac{90 + 20 + 30 + 60 + 60 + 60 + 60 + 30}{360} = 455.55 \, ms$$

$$(2.1.197)$$

$$(2.1.198)$$

$$t_E = t_\circ \cdot \frac{90 + 20 + 30 + 60 + 60 + 60 + 60 + 30}{360} = 455.55 \ ms \tag{2.1.200}$$

$$t_{FA} = t_{\circ} \cdot \frac{20 + 30}{360} = 55,55 \ ms \tag{2.1.201}$$

$$t_{AB} = t_{\circ} \cdot \frac{360}{360} = 122, 22 \ ms$$

$$t_{BC} = t_{\circ} \cdot \frac{20 + 30 + 60 + 60}{360} = 188, 88 \ ms$$

$$t_{CD} = t_{\circ} \cdot \frac{20 + 30 + 60 + 60 + 60}{360} = 255, 55 \ ms$$

$$t_{DE} = t_{\circ} \cdot \frac{20 + 30 + 60 + 60 + 60}{360} = 322, 22 \ ms$$

$$(2.1.202)$$

$$t_{DE} = t_{\circ} \cdot \frac{20 + 30 + 60 + 60 + 60 + 60}{360} = 322, 22 \ ms$$

$$(2.1.205)$$

$$t_{BC} = t_{\circ} \cdot \frac{20 + 30 + 60 + 60}{360} = 188,88 \ ms \tag{2.1.203}$$

$$t_{CD} = t_{\circ} \cdot \frac{20 + 30 + 60 + 60 + 60}{360} = 255,55 \ ms \tag{2.1.204}$$

$$t_{DE} = t_{\circ} \cdot \frac{20 + 30 + 60 + 60 + 60 + 60}{360} = 322, 22 \ ms \tag{2.1.205}$$

$$t_{EF} = t_{\circ} \cdot \frac{20 + 30 + 60 + 60 + 60 + 60 + 60}{360} = 388,88 \ ms \tag{2.1.206}$$

18.1.2017 11.

Eine dreisträngige, vierpolige (2p=4) symetrische aufgebaute permanentmagneterregte Synchronmaschine in Y-Schaltung hat die Nennwerte (Effektivwerte):

```
I_N ...... 8 A
U_N ...... 400 V
n_N ..... 2250 \frac{U}{min}
```

- 1. Berechnen Sie den Bezugsstrom I_{Bez} , die Bezugsspannung U_{Bez} , den Bezugswiderstand R_{Bez} , die Bezugskreifrequenz Ω_{Bez} , die Bezugszeit T_{Bez} und die Bezugsinduktivität L_{Bez} . (2 P.)
- 2. Berechnen Sie für den Zeitpunkt τ_0 , den optimalen <u>statorfesten und rotorfesten</u> Stromraumzeiger im **BLDC-Betrieb** für ein Drehmoment m=2/3, wenn zum Zeitpunkt τ_0 der normierte statorfeste Rotorverkettungsfluß $\underline{\Psi}_M = 1 \cdot e^{\jmath 40^\circ}$ beträgt. Skizzieren Sie maßstäblich die Raumzeiger $\underline{\Psi}_M$ und \underline{i}_s sowie die dem Moment entsprechende Fläche in der komplexen Raumzeigerebene, wenn die Strangachse Üïn der reellen Achse liegt. (2 P. + 1 P. für die Skizze)
- 3. Berechnen Sie für den Zeitpunkt τ_0 (statorfeste Rotorverkettungsfluß $\underline{\Psi}_{M,(\tau_0)} = 1 \cdot e^{\jmath 40^{\circ}}$) im **Sinusbetrieb** jeweils den optimalen normierten Stromraumzeiger im statorfesten Koordinatensystem, um halbes motorisches und gernatorisches Drehmoment zu erzeugen. Geben Sie für beide Fälle die nichtbezogenen Ströme I_1, I_2, I_3 an. (2 P.)
- 4. Berechnen Sie für den Statorkurzschluss $\underline{u}_s = 0$ allgemein den Verlauf des stationären Kurzschlussmoments $m(\omega_m)$ in Abhängigkeit der Drehzahl ω_m , des Statorwiderstandes r_s und der Statorinduktivität l_s . Berechnen Sie daraus die Statorinduktivität l_s , wenn das Maximum des Kurzschlussmoments bei einer Drehzahl $\omega_m = 0,15$ liegt und der Statorwiderstand $r_s = 0,045$ beträgt. Wie groß ist das max. Kurzschlussmoment $m(\omega_m = 0,15)$? Skizzieren Sie den Verlauf $m(\omega_m)$ im Bereich $\omega_m = -1...+1.$ (3 P.)

Lösung 11.

2.2 Gleichstrommaschine

9.5.2011 12.

Eine Maschine ist über ein Getriebe an die Seiltrommel eines Krans gekuppelt. Das Übersetzungsverhältnis beträgt 100:1, die Seiltrommel hat einen Radius von 75 cm. Die maximale Last des Krans beträgt 5 t. Die Fremderregte Gleichstrommaschine hat folgende Daten.

 I_N 200 A $k\phi_N$ 15 Vs n_N 1960 $\frac{U}{min}$ n_0 2000 $\frac{U}{min}$

- 1. Berechnen Sie den Ankerwiderstand der Gleichstrommaschine. (2 P.)
- 2. Der Motor wird mit einer konstanten Spannung von 500 V versorgt. Wie groß ist ein Vorwiderstand R_V zu wählen, damit die vorerst ruhende Last mit der Mindestbeschleunigung 1 m/s^2 gehoben wird? (3 P.)
- 3. Welche maximale Geschwindigkeit der Last ist mit diesem Vorwiderstand erreichbar? (3 P.)
- 4. Zeichnen Sie schematisch den zeitlichen Verlauf des Ankerstromes sowie der Geschwindigkeit der Last über die Zeit. (2P.)

Lösung 12.

Hinweis: Diese Prüfung ist noch aus dem Masterstudium und ist nicht repräsentativ für den Prüfungsstoff im Bachelorstudium.

24.7.2013 13.

Eine fremderregte Gleichstrommaschine hat folgende Daten.

 I_N 200 A $k_1\phi_N$ 15 Vs n_N 1960 $\frac{U}{min}$ n_0 2000 $\frac{U}{min}$

- 1. Berechnen Sie den Ankerwiderstand der Gleichstrommaschine. (2P.)
- 2. Wie groß ist das Nennmoment der Gleichstrommaschine. (1P.)
- 3. Die Gleichstrommaschine wird mit konstanter Ankerspannung $U_A = 300 \ V$ versorgt, es liegt Nennerregung an. Berechnen Sie die Drehzahl in Abhängigkeit des Moments $n = f(M_i)$. (3 P.)
- 4. Skizzieren Sie für den gegebenen Motor diesen Verlauf im Bereich $\pm M_N$. (1P.)
- 5. Das Feld wird nun auf die Hälfte der Nennerregung eingestellt. Wie groß ist nun das mit Nennstrom maximal erreichbare Drehmoment. (1P.)
- 6. Die Gleichstrommaschine wird mit konstanter Ankerspannung $U_A = 300 V$ versorgt, jedoch mit halber Nennerregung. Berechnen Sie die Drehzahl in Abhängigkeit des Moments $n = f(M_i)$. (2 P.)
- 7. Skizzieren Sie diesen Verlauf im Bereich $\pm M_N$. (1P.)
- 8. Berechnen Sie den Wirkungsgrad der Gleichstrommaschine. (1P.)

Lösung 13.

1. Um den Ankerwiderstand berechnen zu können wird die Ankernennspannung benötigt. Diese errechnet sich aus der Spannungskonstante mit der Leerlaufdrehzahl. Anschließend wird mit (1.1.14) der Ankerwiderstand durch umformen errechnet.

$$U_{A,N} = \frac{k\Phi}{2\pi} \cdot \frac{2000}{60} 2\pi = 500 \ V \tag{2.2.1}$$

$$R_A = \frac{U_{A,N} - \frac{k\Phi}{2\pi} \cdot \frac{n_N}{60} 2\pi}{I_A} = 50 \ m\Omega \tag{2.2.2}$$

$$k'\Phi = \frac{k\Phi}{2\pi} \tag{2.2.3}$$

2. Das Moment errechnet sich mit (1.1.15).

$$M_N = \frac{k\Phi}{2\pi} \cdot I_N = 477,46 \ Nm \tag{2.2.4}$$

3. Das Ankermoment (1.1.15) wird auf I_A umgeformt und in (1.1.14) eingesetzt und auf Ω umgeformt und Anschließend mit $\frac{60}{2\pi}$ mulitpliziert um auf n in Umdrehungen pro Minute zu kommen.

$$n(M_i) = \frac{U_A - R_A \frac{M_i}{k'\Phi}}{k'\Phi} \cdot \frac{60}{2\pi} = 1200 - 0,0837 \cdot M_i$$
 (2.2.5)

- 4. TODO: Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!
- 5. Das Moment errechnet sich mit (1.1.15), wobei die Hälfte der Erregung $k'\Phi$ eingesetzt wird.

$$M_{\frac{N}{2}} = \frac{k'\Phi}{2}I_A = 238,73 \ Nm \tag{2.2.6}$$

6. Das Ankermoment (1.1.15) wird auf I_A umgeformt und in (1.1.14) eingesetzt und auf Ω umgeformt, wobei die Hälfte der Erregung $k'\Phi$ eingesetzt wird und Anschließend mit $\frac{60}{2\pi}$ mulitpliziert wird um auf n in Umdrehungen pro Minute zu kommen.

$$n(M_i) = \frac{U_A - R_A \frac{2M_i}{k'\Phi}}{k'\Phi} \cdot 2 \cdot \frac{60}{2\pi} = 2400 - 0,335 \cdot M_i$$
 (2.2.7)

- 7. TODO: Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!
- 8. In (1.1.19) einsetzen. Es ergeben sich drei Wirkungsgrade. (Nennwirkungsgrad, Wirkungsgrad bei 300 V und Nennmoment, Wirkungsgrad bei 300 V Aus der allgemeinen Wirkungsgradgleichung:

$$\eta = \frac{P_{out}}{P_{in}}$$

$$\eta_N = \frac{M_N \Omega_N}{U_{A,N} I_A} = 0,98 \tag{2.2.8}$$

$$\eta_1 = \frac{M_N \Omega_{M_N}}{300 \cdot I_A} = 0,967 \tag{2.2.9}$$

$$\eta_2 = \frac{M_{N/2}\Omega_{M_N}}{300 \cdot I_A} = 0,963 \tag{2.2.10}$$

3.12.2013 14.

Eine fremderregte Gleichstrommaschine hat folgende Daten.

 I_N 200 A $k_1\phi_N$ 15 Vs n_N 1960 $\frac{U}{min}$ n_0 2000 $\frac{U}{min}$

- 1. Berechnen Sie den Ankerwiderstand der Gleichstrommaschine. (2P.)
- 2. Wie groß ist das Nennmoment der Gleichstrommaschine. (1P.)
- 3. Berechnen Sie den Wirkungsgrad der Gleichstrommaschine. (1P.)
- 4. Die Gleichstrommaschine wird mit konstanter Ankerspannung $U_A = 500 \ V$ versorgt, es liegt Nennerregung an. Berechnen Sie die Drehzahl in Abhängigkeit des Moments $n = f(M_i)$. (2 P.)
- 5. Skizzieren Sie für den gegebenen Motor diesen Verlauf im Bereich $\pm M_N$. (1P.)
- 6. Das Feld wird nun auf die Hälfte der Nennerregung eingestellt. Wie groß ist nun das mit Nennstrom maximal erreichbare Drehmoment. (1P.)
- 7. Die Gleichstrommaschine wird mit konstanter Ankerspannung $U_A = 300 V$ versorgt, jedoch mit halber Nennerregung. Berechnen Sie die Drehzahl in Abhängigkeit des Moments $n = f(M_i)$. (2 P.)

Lösung 14.

1. Um den Ankerwiderstand berechnen zu können wird die Ankernennspannung benötigt. Diese errechnet sich aus der Spannungskonstante mit der Leerlaufdrehzahl. Anschließend wird mit (1.1.14) der Ankerwiderstand durch umformen errechnet.

$$U_{A,N} = \frac{k\Phi}{2\pi} \cdot \frac{2000}{60} 2\pi = 500 \ V \tag{2.2.11}$$

$$R_A = \frac{U_{A,N} - \frac{k\Phi}{2\pi} \cdot \frac{n_N}{60} 2\pi}{I_A} = 50 \ m\Omega \tag{2.2.12}$$

$$k'\Phi = \frac{k\Phi}{2\pi} \tag{2.2.13}$$

2. Das Moment errechnet sich mit (1.1.15).

$$M_N = \frac{k\Phi}{2\pi} \cdot I_N = 477,46 \ Nm \tag{2.2.14}$$

3. In (1.1.19) einsetzen.

$$\eta_N = \frac{M_N \Omega_N}{U_{ANI_A}} = 0,98 \tag{2.2.15}$$

4. Das Ankermoment (1.1.15) wird auf I_A umgeformt und in (1.1.14) eingesetzt und auf Ω umgeformt und Anschließend mit $\frac{60}{2\pi}$ mulitpliziert wird um auf n zu kommen.

$$n(M_i) = \frac{U_A - R_A \frac{M_i}{k'\Phi}}{k'\Phi} \cdot \frac{60}{2\pi} = 2000 - 0,0838 \cdot M_i$$
 (2.2.16)

5. **TODO:** Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!

6. Das Moment errechnet sich mit (1.1.15), wobei die Hälfte der Erregung $k^{'}\Phi$ eingesetzt wird.

$$M_{\frac{N}{2}} = \frac{k'\Phi}{2}I_A = 238,73 \ Nm \tag{2.2.17}$$

7. Das Ankermoment (1.1.15) wird auf I_A umgeformt und in (1.1.14) eingesetzt und auf Ω umgeformt, wobei die Hälfte der Erregung $k'\Phi$ eingesetzt wird und Anschließend mit $\frac{60}{2\pi}$ mulitpliziert wird um auf n zu kommen.

$$n(M_i) = \frac{U_A - R_A \frac{2M_i}{k'\Phi}}{k'\Phi} \cdot 2 \cdot \frac{60}{2\pi} = 2400 - 0,335 \cdot M_i$$
 (2.2.18)

14.5.2014 15.

Eine permanentmagneterregte Gleichstrommaschine hat folgende Daten.

 $I_{A,N}$ 10 A $U_{A,N}$ 48 V n_0 4000 $\frac{U}{min}$

- 1. Wie groß ist die Spannungskonstante $k_1 \cdot \phi$ und das Nennmoment M_N der Gleichstrommaschine? (2 P.)
- 2. Berechnen Sie den Ankerwiderstand R_A der Gleichstrommaschine, wenn durch eine Messung bei $U_A = 12 V$ unter Belastung mit Nennstrom $I_{A,N}$ eine Drehzahl n = 750 U/min ermittelt wurde. Berechnen Sie weiters die Nenndrehzahl n_N und den Wirkungsgrad der Gleichstrommaschine im Nennpunkt (M_N, n_N) . (2 P.)
- 3. Die Gleichstrommaschine (Ankerspannung U_A) wird mittels eines idealen Tiefsetzstellers von einer Batterie $U_B = 48~V$ versorgt. Wie groß ist das Tastverhältnis $\delta = U_A/U_B$ zu wählen, damit bei halber Leerlaufdrehzahl eine mechanische Leistung von $P_{mech} = 200~W$ abgegeben wird? (2 P.)
- 4. Aufgrund einer Erwärmung der Gleichstrommaschine um 50 °C kommt es zur Veränderung des Erregerflusses sowie des Ankerwiderstandes ausgehend von den angegebenen Nenndaten. Die Temperaturabhängigkeit des Ankerwiderstands wird mit $R_T = R_0 \cdot (1 + \alpha \cdot (T T_0))$ und einem Temperaturkoeffizient $\alpha = 0,00393~K^{-1}$ berücksichtigt. Im Datenblatt des eingebauten Permanentmagneten wird der Temperaturkoeffizient der Remanenzflussdichte B_r mit -0,2%/K angegeben welche gleichermaßen für die Beschreibung der Temperaturabhängigkeit des Erregerflusses $\phi(T)$ verwendet werden soll. Berechnen Sie für die erhöhte Temperatur die Spannungskonstante, den Ankerwiderstand, sowie die Nenndrehzahl und Nennleistung bei unverändertem Nennstrom und einer Ankerspannung $U_A = 48~V.$ (2 P.)

Lösung 15.

1. Im Leerlauf ist der Ankerstrom Null und mittels Glg.(1.1.14) lässt sich die Spannungskonstante errechnen.

$$U_{A,N} = \frac{k_1 \cdot \phi}{2\pi} \cdot \frac{4000}{60} \cdot 2\pi \tag{2.2.19}$$

$$k_1 \cdot \phi = 0,72 \ Vs \tag{2.2.20}$$

$$k' \cdot \phi = \frac{k_1 \cdot \phi}{2\pi} = 0,114 \ Vs$$
 (2.2.21)

$$M_N = \frac{k_1 \cdot \phi_N}{2\pi} \cdot I_A = 1{,}145 Nm \tag{2.2.22}$$

2. Die Glg.(1.1.14) wird auf R_A umgeformt. Für die Berechnung der Nenndrehzahl wird in Glg.(1.1.14) die Nennwerte eingesetzt und auf Ω_N umgeformt. Um auf n_N zu kommen wird noch mit $\frac{60}{2\pi}$

mulitpliziert. Der Wirkungsgrad errechnet sich nach Glg.(1.1.19).

$$U_{A,N} = R_A I_A + k_1 \cdot \phi \cdot \frac{750}{60} \tag{2.2.23}$$

$$R_A = \frac{U_{A,N} - k_1 \cdot \phi \cdot \frac{750}{60}}{I_A} = 300 \ m\Omega \tag{2.2.24}$$

$$\Omega_N = \frac{U_{A,N} - R_A I_A}{k' \cdot \phi} \tag{2.2.25}$$

$$n_N = \frac{U_{A,N} - R_A I_A}{k' \cdot \phi} \cdot \frac{60}{2\pi} = 3750 \ U/min$$
 (2.2.26)

$$\eta_N = \frac{\Omega_N M_N}{U_N I_N} = 0,938 \tag{2.2.27}$$

3. In Glg.(1.1.18) wird Glg.(1.1.14) auf I_A umgeformt und eingesetzt. Anschließend wird auf δ umgeformt.

$$P_{mech} = M_m \cdot \Omega_m = k' \phi \cdot I_A \cdot \Omega_m \tag{2.2.28}$$

$$= k'\phi \cdot \frac{U_B\delta - k'\phi\Omega}{R_A} \cdot \Omega_m \tag{2.2.29}$$

$$\delta = \frac{\frac{P_{mech}}{\Omega} \cdot R_A + (k'\phi)^2 \Omega}{k'\phi U_B} = 0,552$$
 (2.2.30)

4. Die Spannungskonstante wird über den Dauermagneten beschrieben.

TODO: Bessere Erklärung.

$$k_1 \cdot \phi_{N,50^{\circ}C} = k_1 \phi_N \cdot (1 - 0,002 \cdot 50) = 0,648$$
 (2.2.31)

$$R_{A,50^{\circ}C} = 0, 3 \cdot (1+0,00393 \cdot 50) = 359 \ m\Omega$$
 (2.2.32)

$$n_{N,50^{\circ}C} = \frac{U_A - R_{A,50^{\circ}C} \cdot I_A}{k_1 \cdot \phi_{N,50^{\circ}C}} \cdot \frac{60}{2\pi} = 4112 \ U/min$$
 (2.2.33)

18.6.2014 16.

Eine fremderregte Gleichstrommaschine hat folgende Daten.

 I_N 200 A $k\phi_N$ 15 Vs n_N 1960 $\frac{U}{min}$ n_0 2000 $\frac{U}{min}$

- 1. Berechnen Sie den Ankerwiderstand der Gleichstrommaschine. (2P.)
- 2. Wie groß ist das Nennmoment der Gleichstrommaschine. (1P.)
- 3. Die Gleichstrommaschine wird mit konstanter Ankerspannung $U_A = 300V$ versorgt, es liegt Nennerregung an. Berechnen Sie die Drehzahl in Abhängigkeit des Moments $n = f(M_i)$. (3 P.)
- 4. Skizzieren Sie für den gegebenen Motor diesen Verlauf im Bereich $\pm M_N$. (1P.)
- 5. Das Feld wird nun auf die Hälfte der Nennerregung eingestellt. Wie groß ist nun das mit Nennstrom maximal erreichbare Drehmoment. (1P.)
- 6. Die Gleichstrommaschine wird mit konstanter Ankerspannung $U_A = 300V$ versorgt, jedoch mit halber Nennerregung. Berechnen Sie die Drehzahl in Abhängigkeit des Moments $n = f(M_i)$. (2 P.)
- 7. Skizzieren Sie diesen Verlauf im Bereich $\pm M_N$. (1 P.)
- 8. Berechnen Sie den Wirkungsgrad der Gleichstrommaschine. (1P.)

Lösung 16.

1. Um den Ankerwiderstand berechnen zu können wird die Ankernennspannung benötigt. Diese errechnet sich aus der Spannungskonstante mit der Leerlaufdrehzahl. Anschließend wird mit (1.1.14) der Ankerwiderstand durch umformen errechnet.

$$U_{A,N} = \frac{k\Phi}{2\pi} \cdot \frac{2000}{60} 2\pi = 500 \ V \tag{2.2.34}$$

$$R_A = \frac{U_{A,N} - \frac{k\Phi}{2\pi} \cdot \frac{n_N}{60} 2\pi}{I_A} = 50 \ m\Omega \tag{2.2.35}$$

$$k'\Phi = \frac{k\Phi}{2\pi} \tag{2.2.36}$$

2. Das Moment errechnet sich mit (1.1.15).

$$M_N = \frac{k\Phi}{2\pi} \cdot I_N = 477,46 \ Nm \tag{2.2.37}$$

3. Das Ankermoment (1.1.15) wird auf I_A umgeformt und in (1.1.14) eingesetzt und auf Ω umgeformt und Anschließend mit $\frac{60}{2\pi}$ mulitpliziert wird um auf n zu kommen.

$$n(M_i) = \frac{U_A - R_A \frac{M_i}{k'\Phi}}{k'\Phi} \cdot \frac{60}{2\pi} = 1200 - 0,0838 \cdot M_i$$
 (2.2.38)

- 4. TODO: Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!
- 5. Das Moment errechnet sich mit (1.1.15), wobei die Hälfte der Erregung $k'\Phi$ eingesetzt wird.

$$M_{\frac{N}{2}} = \frac{k'\Phi}{2}I_A = 238,73 \ Nm \tag{2.2.39}$$

6. Das Ankermoment (1.1.15) wird auf I_A umgeformt und in (1.1.14) eingesetzt und auf Ω umgeformt, wobei die Hälfte der Erregung $k'\Phi$ eingesetzt wird und Anschließend mit $\frac{60}{2\pi}$ mulitpliziert wird um auf n zu kommen.

$$n(M_i) = \frac{U_A - R_A \frac{2M_i}{k'\Phi}}{k'\Phi} \cdot 2 \cdot \frac{60}{2\pi} = 2400 - 0,335 \cdot M_i$$
 (2.2.40)

- 7. TODO: Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!
- 8. In (1.1.19) einsetzen.

$$\eta_N = \frac{M_N \Omega_N}{U_{A,N} I_A} = 0,98 \tag{2.2.41}$$

23.7.2014 17.

Eine fremderregte Gleichstrommaschine hat folgende Daten. Generatorkennlinie ist gegeben (siehe Abb.2)

 I_N 100 A $U_{A,N}$ 400 V n_N 2940 $\frac{U}{min}$ n_0 3000 $\frac{U}{min}$

- 1. Berechnen Sie den Ankerwiderstand R_A der Gleichstrommaschine und die Spannungskonstante $k_1\phi_N$ im Nennpunkt der Maschine. (2P.)
- 2. Wie groß ist das Nennmoment M_N der Gleichstrommaschine. (1 P.)
- 3. Die Gleichstrommaschine wird mit konstanter Ankerspannung $U_A = 400V$ versorgt, es liegt <u>halbe</u> Nennerregung an. Berechnen Sie die Drehzahl in Abhängigkeit des Moments $n = f(M_i)$ und skizzieren Sie diesen Verlauf im Bereich $\pm M_N/2$. (3 P.)
- 4. Die Maschine wird nun als Nebenschlussgenerator betrieben. Skizzieren Sie das Ersatzschaltbild des Generators. Der Gesamtwiderstand im Erregerkreis ist konstant und beträgt $R_E = 45~\Omega$ (Summe aus Spulen und Vorwiderstand). Aus dem Leerlaufversuch konnte folgende Kennlinie des Erregerflusses ermittelt werden. Ermitteln Sie bei konstanter Drehzahl n = 3000~U/min die Ankerspannung U_A sowie den Erregerstrom I_E für den leerlaufenden Generator. (4 P.)

Abbildung 2: Generatorkennlinie

Lösung 17.

1. Im Leerlauf ist der Ankerstrom Null und mittels Glg.(1.1.14) lässt sich die Spannungskonstante errechnen.

$$U_{A,N} = \frac{k_1 \cdot \phi}{2\pi} \cdot \frac{n_0}{60} \cdot 2\pi \tag{2.2.42}$$

$$k_1 \cdot \phi = 8 \ Vs \tag{2.2.43}$$

$$k' \cdot \phi = \frac{k_1 \cdot \phi}{2\pi} = 1,273 \ Vs$$
 (2.2.44)

Um den Ankerwiderstand berechnen zu können wird die Ankernennspannung benötigt. Diese errechnet sich aus der Spannungskonstante mit der Leerlaufdrehzahl. Anschließend wird mit (1.1.14) der Ankerwiderstand durch umformen errechnet.

$$U_{A,N} = \frac{k_1 \Phi}{2\pi} \cdot \frac{n_0}{60} 2\pi = 400 \ V \tag{2.2.45}$$

$$R_A = \frac{U_{A,N} - \frac{k\Phi}{2\pi} \cdot \frac{n_N}{60} 2\pi}{I_A} = 80 \ m\Omega \tag{2.2.46}$$

(2.2.47)

2. Das Moment errechnet sich mit (1.1.15).

$$M_N = \frac{k\Phi}{2\pi} \cdot I_N = 127, 3 \ Nm \tag{2.2.48}$$

3. Das Ankermoment (1.1.15) wird auf I_A umgeformt und in (1.1.14) eingesetzt und auf Ω umgeformt, wobei die Hälfte der Erregung $k'\Phi$ eingesetzt wird und Anschließend mit $\frac{60}{2\pi}$ mulitpliziert wird um auf n zu kommen.

$$n(M_i) = \frac{U_A - R_A \frac{2M_i}{k'\Phi}}{k'\Phi} \cdot 2 \cdot \frac{60}{2\pi} = 6000 - 0,197 \cdot M_i$$
 (2.2.49)

TODO: Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!

4. **TODO:** Programmiere oder zeichne die Grafik für den Nebenschlussgenerator und scan sie ein und lade sie hoch! Da die Spannungskonstante von dem Erregerstrom abhängig ist, kann hier kein konstanter Wert eingesetzt werden. Es wird die Steigung $k'\phi/I_E$ ermittelt, welche dann als Linie in Abb.(2) eingezeichnet wird. Bei der Berechnung wird von Glg.(1.1.14) ausgegangen und auf $k'\phi/I_E$ umgeformt.

$$U_A = (R_E + R_A)I_A + k'\phi \cdot \Omega_m \tag{2.2.50}$$

$$\frac{k_1\phi}{I_E} = \frac{R_E + R_A}{\Omega_N} \cdot 2\pi = 0,901 \tag{2.2.51}$$

Eine Gerade mit der Steigung 0,901 einzeichnen und bei dem Schnittpunkt ablesen. $I_E=7,4~A$ und $R_E\cdot I_E=315~V.$

21.1.2015 18.

Eine Permanentmagnet erregte Gleichstrommaschine wird an einem Stromrichter (Tiefsetzsteller) betrieben. Die Drehzahl wird durch einen Drehzahlregler <u>auf halbe</u> Nenndrehzahl geregelt. Der Umrichter besitzt eine konstante Zwischenkreisspannung von 12 V und hat eine Schaltfrequenz von 8 kHz. Die Gleichstrommaschine hat folgende Daten:

 $I_{A,N}$ 15 A $U_{A,N}$ 10 V n_N 1000 $\frac{U}{min}$ L_A 180 μH Θ_m 0,002 $kg m^2$ R_A 0 Ω

- Zeichnen Sie das Blockschaltbild des 1Q-Stellers inkl. Motor ab dem Zwischenkreiskondensator.
 (1P.)
- 2. Wie groß ist das Nennmoment des Motors? (1P.)
- 3. Berechnen Sie unter der Annahme einer konstanten Drehzahl des Motors den Mittelwert der nötigen Ankerspannung und das daraus resultierende Tastverhältnis $\alpha = T_{on}/T_{PWM}$ des Tiefsetzsteller im eingeschwungenen Zustand für <u>halbes</u> Nennmoment des Motors sowie <u>halber</u> Nenndrehzahl. (2 P.)
- 4. Berechnen und skizzieren Sie die Amplitude des Stromrippels zufolge des Schaltens des Umrichters. *Hinweis*: Die Differenz von Umrichterspannung und innerer Spannung wirkt als anregende Spannung, wenn der Schalter des Tiefsetzsteller geschlossen ist. (2 P. +1 P. Skizze)
- 5. Wie groß ist die Amplitude des daraus resultierenden Momentenrippels? (1 P.)
- 6. Berechnen Sie die Auslaufzeit des Antriebs nach Abschalten des Ankerstroms von halber Nenndrehzahl bis auf Stillstand, wenn kein äußeres Lastmoment anliegt aber ein konstantes Reibmoment von 5% des Nennmoments angenommen wird. (2 P.)

Lösung 18.

- 1. **TODO:** Programmiere oder zeichne die Grafik für die Gleichstrommaschine mit Tiefsetzsteller und scan sie ein und lade sie hoch!
- 2. Da der Ankerwiderstand null ist, ist die Ankerspannung gleich der Induzierten Spannung bei Nenndrehzahl. Mittels Glg.(1.1.14) lässt sich die Spannungskonstante errechnen.

$$U_{A,N} = \frac{k_1 \cdot \phi}{2\pi} \cdot \frac{n_N}{60} \cdot 2\pi \tag{2.2.52}$$

$$k_1 \cdot \phi = 0,597 \ Vs \tag{2.2.53}$$

$$k' \cdot \phi = \frac{k_1 \cdot \phi}{2\pi} = 0,095 \ Vs \tag{2.2.54}$$

Das Moment errechnet sich mit (1.1.15).

$$M_N = \frac{k\Phi}{2\pi} \cdot I_N = 1,432 \ Nm \tag{2.2.55}$$

3. Ausgehend von Glg.(1.1.14) wird für $U_{A,N}=\alpha\cdot 12V$ und für die die Drehzahl die Hälfte

eingesetzt.

$$\alpha \cdot U_{ZK} = k' \phi \cdot \frac{n_N}{2 \cdot 60} \cdot 2\pi \tag{2.2.56}$$

$$\alpha = 0,416 \tag{2.2.57}$$

$$t_{on} = \frac{1}{8 \ kHz} \cdot 0,416 = 52,08 \ \mu s \tag{2.2.58}$$

$$t_{off} = \frac{1}{8 \ kHz} \cdot (1 - 0.416) = 72,92 \ \mu s \tag{2.2.59}$$

4. **TODO:** Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch! Für die Berechnung des Stromrippels gehen wir von Glg.(1.1.14) aus, welche auf I_A umgeformt werden, wobei wir die differentiellen Anteile nicht vernachlässigen dürfen, da es sich hier um dynamische Prozesse handelt. Es muss zwischen den zwei Zuständen S,Offen und S,Zu (S ... Schalter) unterschieden werden. Der Therm mit $R_A \cdot I_A$ fällt weg, da $R_A = 0$ Ω ist.

S,Offen
$$0 = L_A \frac{\partial I_A}{\partial t} + k' \phi \cdot \Omega_{N/2}$$
 (2.2.60)

S,Zu
$$U_{ZK} = L_A \frac{\partial I_A}{\partial t} + k' \phi \cdot \Omega_{N/2}$$
 (2.2.61)

S,Offen
$$I_{A,Offen} = -\frac{1}{L_A} \int_{0}^{t_{off}} k' \phi \cdot \Omega_{N/2} \partial t = -2,014 A$$
 (2.2.62)

S,Zu
$$I_{A,Zu} = -\frac{1}{L_A} \int_{0}^{t_{on}} U_{ZK} - k' \phi \cdot \Omega_{N/2} \partial t = -2,025 A$$
 (2.2.63)

5. Die Amplitude ist die Differenz zwischen den beiden Werten.

$$|I_{A,Zu} - I_{A,Offen}| = 11,45 \ mA$$
 (2.2.64)

$$|M_{\alpha}| = |(I_{A,Zu} - I_{A,Offen})| \cdot k' \phi = 1,08 \ mNm$$
 (2.2.65)

6. Zur Berechnung der Auslaufzeit wird die Glg.(1.1.17) einmal integriert. Anschließend werden die Anfangsbedingungen eingesetzt und die Zeit ermittelt. Der Strom $I_A = 0$, da die Maschine abgeschaltet wird!

$$\Theta \cdot \ddot{\varphi} = M_m - M_L \tag{2.2.66}$$

$$\Theta \cdot \ddot{\varphi} = k' \phi \cdot I_A - M_N \cdot 0,05 \tag{2.2.67}$$

$$\dot{\varphi} = \frac{-0.05 \cdot M_N \cdot t}{\Theta} + C \tag{2.2.68}$$

$$\Omega_{N/2} = \frac{-0.05 \cdot M_N \cdot 0}{\Theta} + C \tag{2.2.69}$$

$$C = \Omega_{N/2} \tag{2.2.70}$$

$$\dot{\varphi} = \frac{-0.05 \cdot M_N \cdot t}{\Theta} + \Omega_{N/2} \tag{2.2.71}$$

$$0 = \frac{-0.05 \cdot M_N \cdot t}{\Theta} + \Omega_{N/2} \tag{2.2.72}$$

$$t = 1,462 s (2.2.73)$$

18.2.2015 19.

Eine fremderregte Gleichstrommaschine hat folgende Daten.

 I_N 200 A $k_1\phi_N$ 15 Vs n_N 1940 $\frac{U}{min}$ n_0 2000 $\frac{U}{min}$

- 1. Berechnen Sie den Ankerwiderstand R_A der Gleichstrommaschine und die Ankernennspannung. (2 P.)
- 2. Wie groß ist das Nennmoment M_N der Gleichstrommaschine. (1 P.)
- 3. Berechnen Sie den Wirkungsgrad der Gleichstrommaschine im Nennpunkt. (1P.)
- 4. Die Gleichstrommaschine wird mit konstanter Ankerspannung $U_A = 300 \ V$ versorgt, es liegt Nennerregung an. Berechnen Sie die Drehzahl in Abhängigkeit des Moments $n = f(M_i)$ und Skizzieren Sie diesen Verlauf im Bereich $\pm M_N$. (3 P.)
- 5. Das Feld wird nun auf die Hälfte der Nennerregung eingestellt und die Gleichstrommaschine wird mit konstanter Ankerspannung $U_A = 300 V$ versorgt, jedoch nun mit halber Nennerregung. Berechnen Sie die Drehzahl in Abhängigkeit des Moments $n = f(M_i)$ und skizzieren Sie diesen Verlauf im Bereich $\pm M_N$. Wie groß ist der benötigte Ankerstrom I_A damit Nennmoment M_N bei halber Nennerregung erzeugt wird? (3 P.)

Lösung 19.

1. Um den Ankerwiderstand berechnen zu können wird die Ankernennspannung benötigt. Diese errechnet sich aus der Spannungskonstante mit der Leerlaufdrehzahl. Anschließend wird mit (1.1.14) der Ankerwiderstand durch umformen errechnet.

$$U_{A,N} = \frac{k_1 \Phi}{2\pi} \cdot \frac{n_0}{60} 2\pi = 500 \ V \tag{2.2.74}$$

$$R_A = \frac{U_{A,N} - \frac{k\Phi}{2\pi} \cdot \frac{n_N}{60} 2\pi}{I_A} = 75 \ m\Omega \tag{2.2.75}$$

(2.2.76)

2. Das Moment errechnet sich mit (1.1.15).

$$M_N = \frac{k\Phi}{2\pi} \cdot I_N = 477,46 \ Nm$$
 (2.2.77)

3. Der Wirkungsgrad errechnet sich über Glg.(1.1.19).

$$\eta_N = \frac{M_N \cdot \Omega_N}{U_N \cdot I_N} = 0,98$$
(2.2.78)

4. Das Ankermoment (1.1.15) wird auf I_A umgeformt und in (1.1.14) eingesetzt und auf Ω umgeformt und Anschließend mit $\frac{60}{2\pi}$ mulitpliziert wird um auf n zu kommen.

$$n(M_i) = \frac{U_A - R_A \frac{M_i}{k'\Phi}}{k'\Phi} \cdot \frac{60}{2\pi} = 1200 - 0, 125 \cdot M_i$$
 (2.2.79)

TODO: Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!.

5. Das Ankermoment (1.1.15) wird auf I_A umgeformt und in (1.1.14) eingesetzt und auf Ω umgeformt, wobei die Hälfte der Erregung $k'\Phi$ eingesetzt wird und Anschließend mit $\frac{60}{2\pi}$ mulitpliziert wird um auf n zu kommen.

$$n(M_i) = \frac{U_A - R_A \frac{2M_i}{k'\Phi}}{k'\Phi} \cdot 2 \cdot \frac{60}{2\pi} = 2400 - 0,502 \cdot M_i$$
 (2.2.80)

Es wird der doppelte Strom benötigt.

$$M_N = \frac{k'\phi}{2} \cdot I_A \tag{2.2.81}$$

$$I_A = \frac{2 \cdot M_N}{k' \phi} \tag{2.2.82}$$

TODO: Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!.

13.5.2015 20.

Eine kompensierte Reihenschluss-Gleichstrommaschine hat folgende Daten.

Eine Leerlaufkennlinie $\frac{U_i}{I_E}$ bei $n=800 \frac{U}{min}$ ist gegeben (siehe Abb.3).

 $I_{A,N}$ 280 A $U_{A,N}$ 300 V n_N 1200 $\frac{U}{min}$

- 1. Wie groß ist die Spannungskonstante $k_1\phi_N$ im Nennpunkt, das Nennmoment M_N und die Nennleistung P_N der Gleichstrommaschine? (2 P.)
- 2. Berechnen Sie den Innenwiderstand R_i (= Ankerwiderstand R_A + Erregerwiderstand R_E) und den Wirkungsgrad η_N im Nennpunkt. (2 P.)
- 3. Bestimmen Sie die Drehzahl n und das Drehmoment M für eine Ankerspannung $U_A=200\ V$ und $I_A=140\ A.$ (1P.)
- 4. Skizzieren Sie die Drehzahl-Drehmoment Kennlinie (M/n) bei Nennspannung $U_{A,N}=300~V$ im Bereich ca. $0,2M_N$ bis M_N . (2 P.)
- 5. Die Maschine wird bei n=500~U/min auf einen Widerstand R_L gebremst. Dimensionieren Sie den Bremswiderstand R_L so, dass ein anfänglicher Bremsstrom von 200 A fließt und geben Sie die Ankerspannung U_A an den Maschinenklemmen und das Bremsmoment zu Begin der Bremsung an. (3 P.)

Abbildung 3: Leerlaufkennlinie

Lösung 20.

1. Da es sich hier um eine **Reihenschluss**-Gleichstrommaschine handelt, ist der Strom, welcher durch die Erregerwicklung geht gleich dem Strom durch den Anker $I_A = I_E$. Aus der Abb.3 wird bei $I_A = 280$ A die Induzierte Spannung $U_i = 190$ V abgelesen. Das Moment errechnet

sich nach Glg.(??).

$$U_i = k' \Phi \cdot \Omega \tag{2.2.83}$$

$$k'\Phi = \frac{U_i}{\Omega} = 2,267 \ Vs$$
 (2.2.84)

$$M_N = k' \Phi \cdot I_N = 635 \ Nm \tag{2.2.85}$$

$$P_N = U_N \cdot I_N = 84 \ kW \tag{2.2.86}$$

2. Mit Glg.(1.1.14) wird der Innenwiderstand durch umformen errechnet.

$$U_{A,N} = \frac{k_1 \Phi}{2\pi} \cdot \frac{n_0}{60} 2\pi \tag{2.2.87}$$

$$R_i = \frac{U_{A,N} - \frac{k\Phi}{2\pi} \cdot \frac{n_N}{60} 2\pi}{I_A} = 54 \ m\Omega \tag{2.2.88}$$

Der Wirkungsgrad errechnet sich über Glg.(1.1.19). Hier müssen aber die Verluste über die Erregerwicklung berückischtigt werden.

$$\eta_N = \frac{M_N \cdot \Omega_N}{U_N \cdot I_N} = 0,95 \tag{2.2.89}$$

3. Bei einem geänderten Ankerstrom wird auch eine andere Spannung induziert, wodurch $k_1\Phi$ neu bestimmt werden muss. Aus der Abb.3 wird bei $I_A=140~A$ die Induzierte Spannung $U_i=150~V$ abgelesen. Das Moment errechnet sich nach Glg.(??).

$$U_{i} = k' \Phi \cdot \Omega = 1,79 \cdot 800 \cdot \frac{2\pi}{60}$$
 (2.2.90)

$$k'\Phi = \frac{U_i}{800 \cdot \frac{2\pi}{60}} = 1,79 \ Vs \tag{2.2.91}$$

$$M_N = k' \Phi \cdot I_N = 250 \ Nm \tag{2.2.92}$$

Mit Glg.(1.1.14) wird die Drehzahl durch umformen und mulitplizieren mit $\frac{60}{2\pi}$ berechnet.

$$n = \frac{U_A - R_A I_A}{k' \Phi} \cdot \frac{60}{2\pi} = 1029 \ U/min$$
 (2.2.93)

- 4. Keine Ahnung, wie bei einer Reihenschlussmaschine die Drehzahlkennlinie aufgenommen werden kann.
- 5. Da ein anderer Ankerstrom fließt als in den oberen Punkten, muss wieder ein neues $k_1\Phi$ bestimmt werden.

$$k'\Phi = \frac{U_i}{\Omega} = 2,029 \ Vs$$
 (2.2.94)

$$U_A = R_A \cdot I_A + k' \Phi \Omega \tag{2.2.95}$$

$$R_L \cdot I_A = R_A \cdot I_A + k' \Phi \Omega \tag{2.2.96}$$

$$R_L = \frac{R_A \cdot I_A + k' \Phi \Omega}{I_A} = 585 \ m\Omega \tag{2.2.97}$$

$$M = k' \Phi \cdot I_A = 405,8 \ Nm \tag{2.2.98}$$

14.10.2015 21.

Hinweis: In der Original Angabe ist die x-Achse des Diagramms nicht sichtbar, die Skalen auf der x-Achse sind somit geschätzt und es können unerwartete Ergebnisse auftreten.

Eine kompensierte **Nebenschluss-Gleichstrommaschine** hat folgende Daten. Eine Leerlaufkennlinie $U_i = f(I_E)$ bei $n = 800 \ U/min$ ist gegeben (siehe Abb.4).

 $I_{A,N}$ 300 A $U_{A,N}$ 250 V n_N 1000 $\frac{U}{min}$

- 1. Skizzieren Sie die Schaltung der Nebenschlussmaschine am Gleichspannungsnetz. (1P.)
- 2. Wie groß ist die Spannungskonstante $k_1\phi_N$ im Nennpunkt, das Nennmoment M_N und die mechanische Nennleistung P_N der Gleichstrommaschine, wenn ein Erregerwiderstand $R_E = 15,6 \Omega$ verwendet wird? (3 P.)
- 3. Wie groß ist dabei die Leerlaufdrehzahl n_0 und der Ankerwiderstand R_A (2 P.)
- 4. Berechnen Sie den Wirkungsgrad η_N im Nennpunkt der Maschine unter Berücksichtigung des Ankerwiderstand R_A und des Erregerwiderstands $R_E = 15, 6 \Omega$. Die mechanischen Verluste, Bürstenverluste und Eisenverluste werden vernachlässigt. (1P.)
- 5. Die Maschine wird bei einer konstanten Drehzahl n=800~U/min als Generator mit $R_E=15,6~\Omega$ eingesetzt und mit einem umschaltbaren Lastwiderstand $R_L=0,1/0,5/1~\Omega$ belastet. Berechnen und Skizzieren Sie die (äussere) Generatorkennlinie $U_A=f(I_L)$ für die unterschiedlichen Belastungen inklusive Leerlauf des Generators mit $I_L=0~A.$ (3 P.)

Abbildung 4: Leerlaufkennlinie

Lösung 21.

- 1. **TODO:** Programmiere oder zeichne die Grafik für die Nebenschlussmaschine und scan sie ein und lade sie hoch!
- 2. Hinweis: In der Original Angabe ist die x-Achse des Diagramms nicht sichtbar, die Skalen auf

der x-Achse sind	somit	geschätzt	und es	können	unerwartete	Ergebnisse	auftreten.

15.06.2016 22.

Eine kompensierte **Nebenschluss-Gleichstrommaschine** hat folgende Daten. Eine Leerlaufkennlinie $U_i = f(I_E)$ bei $n = 1000 \ U/min$ ist gegeben (siehe Abb.5).

 $I_{A,N}$ 200 A $U_{A,N}$ 40 V n_N 2000 $\frac{U}{min}$

- 1. Skizzieren Sie die Schaltung der Nebenschlussmaschine am Gleichspannungsnetz. (1P.)
- 2. Wie groß ist bei Nennspannung $U_{A,N}$ im motorischen Betrieb die Spannungskonstante $k_1\phi_N$ im Nennpunkt, das Nennmoment M_N und die mechanische Nennleistung P_N der Gleichstrommaschine, wenn ein Erregerwiderstand $R_E = 2,5 \Omega$ verwendet wird? (3 P.)
- 3. Wie groß ist dabei die Leerlaufdrehzahl n_0 bei Nennspannung $U_{A,N}$ und wie groß ist der Ankerwiderstand R_A (2 P.)
- 4. Berechnen Sie den Wirkungsgrad η_N im Nennpunkt der Maschine unter Berücksichtigung des Ankerwiderstand R_A und des Erregerwiderstands $R_E = 2,5$ Ω . Die mechanischen Verluste, Bürstenverluste und Eisenverluste werden vernachlässigt. (1P.)
- 5. Die Maschine wird bei einer konstanten Drehzahl $n=2000~U/min~als~Generator~mit~R_E=2,5~\Omega$ eingesetzt und mit einem umschaltbaren Lastwiderstand $R_L=0,01/0,02/0,05~\Omega$ belastet. Berechnen Sie jeweils den Laststrom und den Erregerstrom und skizzieren Sie die (äussere) Generatorkennlinie $U_A=f(I_L)$ für die unterschiedlichen Belastungen inklusive Leerlauf des Generators mit $I_L=0.~(3~P.)$

Leerlaufkennlinie U_i/I_E bei 1000 U/min

Abbildung 5: Leerlaufkennlinie

Lösung 22.

- 1. Kann hier jemand mit TikZ die Schaltung programmieren und hier reinstellen?
- 2. Die Spannungskonstante im Nennpunkt errechnet sich über Glg.(1.1.2). Dazu wird über das

Diagramm die Induzierte Spannung bei I_E abgelesen. Einsetzen und auf $k^{'}\Phi$ umformen.

$$I_E = \frac{U_{A,N}}{R_E} = \frac{40}{2,5} = 16 A (2.2.99)$$

$$\Omega_{1000} = \frac{1000 \cdot 2\pi}{60} = 104,71 \ 1/s \tag{2.2.100}$$

$$\Omega_N = \frac{2000 \cdot 2\pi}{60} = 209,43 \ 1/s \tag{2.2.101}$$

$$k'\Phi = \frac{U_i}{\Omega_{1000}} = \frac{19,5V}{104,71} = 0,186 \ Vs \tag{2.2.102}$$

$$k_1 \phi_N = k' \Phi \cdot 2\pi = 1,17 \ Vs$$
 (2.2.103)

$$M_N = k' \Phi \cdot I_A = 0,186 \cdot 200 = 37,242 \ Nm$$
 (2.2.104)

$$P_N = M_N \cdot \Omega_N = 37,242 \cdot 209,43 = 7,8 \ kW \tag{2.2.105}$$

(2.2.106)

3. Der Ankerwiderstand errechnet sich über Glg.(1.1.14).

$$U_{A,N} = k' \phi_N \cdot \Omega_0 = k' \phi_N \cdot \frac{n_0}{60} \cdot 2\pi$$
 (2.2.107)

$$n_0 = \frac{U_{A,N} \cdot 60}{k' \phi_N \cdot 2\pi} = \frac{40 \cdot 60}{0,186 \cdot 2\pi} = 2053,61 \ U/min$$
 (2.2.108)

$$\Omega_0 = \frac{n_0 \cdot 2\pi}{60} = \frac{2053, 61 \cdot 2\pi}{60} = 215, 05 \ 1/s \tag{2.2.109}$$

$$R_A = \frac{k'\phi_N \cdot (\Omega_0 - \Omega_N)}{I_N} = \frac{0,186 \cdot (215,05 - 209,43)}{200} = 5,22 \ m\Omega$$
 (2.2.110)

4. Der Wirkungsgrad errechnet sich über Glg.(1.1.19). Hier müssen aber die Verluste über die Erregerwicklung berückischtigt werden.

$$\eta_N = \frac{M_N \cdot \Omega_N}{U_N \cdot (I_N + I_E)} = \frac{37,242Nm \cdot 209,431/s}{40 \cdot (200 + 16)} = 0,903$$
 (2.2.111)

5. Hier bitte ein Bild von der Schaltung. Der Strom I_A ist jetzt negativ, weil wir uns im Generatorbetrieb befinden. Als Startgleichung wird hier Glg.(1.1.14) verwendet. Die Glg wird auf eine Form $U_i(I_E)/I_E$ umgeformt, was einer Steigung entspricht, und dann der Schnittpunkt mit der Linie im Diagramm abgelesen. Da die Drehzahl im Diagramm bei 1000 U/min aufgenommen wurde, wir aber mit 2000 U/min arbeiten, ist für die induzierte Spannung ein Faktor

2 vorzusehen.

$$I_A \cdot R_A + I_L \cdot R_L = k' \Phi \cdot \frac{2000}{60} \cdot 2\pi$$
 (2.2.112)

$$(I_L + I_E)R_A + I_E \cdot R_E = U_i(I_E) \cdot 2 \tag{2.2.113}$$

$$\left(\frac{I_E \cdot R_E}{R_L} + I_E\right) R_A + I_E R_E = U_i(I_E) \cdot 2 \tag{2.2.114}$$

$$R_A I_E \left(\frac{R_E}{R_L} + 1\right) + I_E R_E = U_i(I_E) \cdot 2$$
 (2.2.115)

$$I_E\left(R_E + R_A\left(1 + \frac{R_E}{R_L}\right)\right) = U_i(I_E) \cdot 2 \tag{2.2.116}$$

$$\frac{U_i(I_E)}{I_E} = \frac{R_E + R_A \left(1 + \frac{R_E}{R_L}\right)}{2} \tag{2.2.117}$$

$$\frac{U_i(I_E)}{I_E}|_{R_L=0,01} = 1,91 (2.2.118)$$

$$\frac{U_i(I_E)}{I_E}|_{R_L=0,02} = 1,58 (2.2.119)$$

$$\frac{U_i(I_E)}{I_E}|_{R_L=0,05} = 1,38 (2.2.120)$$

$$\frac{U_i(I_E)}{I_E}|_{R_L=\infty} = 1,25 \tag{2.2.121}$$

Die Steigungen werden in Abb.5 eingezeichnet und bei dem Schnittpunkt mit der Kurve der Erregerstrom und die induzierte Spannung abgelesen. Der Laststrom und die Lastspannung ergeben sich wie folgt:

$$I_L = \frac{I_E \cdot R_E}{R_L} \tag{2.2.122}$$

$$U_L = I_E \cdot R_E \tag{2.2.123}$$

20.07.2016 23.

Eine kompensierte **Reihenschluss-Gleichstrommaschine** hat folgende Daten. Die Maschine ist im Nennpunkt nicht gesättigt ($\Phi \sim I_A$). Die Maschine hat nur ohmsche Verluste, Reibungsverluste

 $I_{A,N}$ 225 A

und Eisenverluste sind vernachlässigbar.

 $P_{N,mech}$... 81 kW n_N 2000 $\frac{U}{min}$

 $\eta_N \dots 90\%$

- 1. Skizzieren Sie die Schaltung der Reihenschlussmaschine am Gleichspannungsnetz inkl. aller Widerstände und Induktivitäten der Maschine. (1 P.)
- 2. Wie groß ist das Nennmoment M_N und die Spannungskonstante $k_1 \cdot \phi_N$ im Nennpunkt im motorischen Betrieb? Wie groß ist die Leerlaufdrehzahl n_0 ? (2 P.)
- 3. Wie groß ist die Nennspannung U_N und wie groß ist der Ankerwiderstand R_A und der Erregerwiderstand R_E , wenn sich der Erregerwiderstand R_E zum Ankerwiderstand R_E : $R_A = 2:5$ verhält? (2 P.)
- 4. Skizzieren Sie maßstäblich die Drehzahl-Drehmoment Kennlinie (M/n) bei Nennspannung im Bereich ca. $0, 2 \cdot M_N$ bis $1, 5 \cdot M_N$. (2 P.)
- 5. Berchnen Sie den benötigten Vorwiderstand R_V wenn die Maschine bei Nennspannung U_N mit $M=1,5\cdot M_N$ aus dem Stillstand angefahren werden soll. (1 P.)
- 6. Die Gleichstrommaschine wird von einem Stromrichter mit konstantem, halben Nennstrom bei n=2000~U/min als Motor betrieben. Berechnen und Skizzieren Sie den Drehzahlverlauf n(t), wenn die Last schlagartig abgekuppelt wird. Der Stromrichter liefert dabei weiterhin den konstanten Strom und schaltet die Gleichstrommaschine erst bei Erreichen einer Spannung von U=460~V ab. Wie lange dauert es bis zum Abschalten und welche Enddrehzahl wird erreicht? Das Trägheitsmoment der Gleichstrommaschine ist $\Theta_{GM}=12~kg~m^2$ und das Reibungsmoment beträgt konstant 1% des Nennmoments. (2 P.)

Lösung 23.

- 1. TODO: Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!
- 2. Die Spannungskonstante errechnet sich durch umformen der Glg.(1.1.18). Durch umformen der Glg.(1.1.14) auf Ω und anschließendendem mulitplizieren mir $\frac{60}{2\pi}$ erhalten wir die Leerlaufdrehzahl. Die Ankerspannung ist dabei $\frac{P_{mech}}{0.9I_{AN}}$

$$P_{mech} = M_m \cdot \Omega_m = k' \phi \cdot I_A \cdot \Omega_m \tag{2.2.124}$$

$$k'\phi = \frac{P_{mech}}{I_A \cdot \Omega_m} = 1,718 \ Vs$$
 (2.2.125)

$$M_N = k' \phi \cdot I_A = 386,75 \ Nm \tag{2.2.126}$$

$$U_{A,N} = \frac{P_{mech}}{0.9I_{A,N}} = 400 V (2.2.127)$$

$$n_0 = \frac{U_{A,N}}{k'\phi} \cdot \frac{60}{2\pi} = 2222 \ U/min \tag{2.2.128}$$

3. Ankerspannung ist im vorherigen Unterpunkt schon berechnet worden. Die Widerstände er-

rechnen sich aus Glg.(1.1.14) durch umformen und einsetzen der Widerstandsbeziehung.

$$U_{A,N} = (R_E + R_A) \cdot I_A + k' \phi \cdot \Omega_N \tag{2.2.129}$$

$$U_{A,N} = \left(\frac{2}{5} + 1\right) \cdot R_A \cdot I_A + k' \phi \cdot \Omega_N \tag{2.2.130}$$

$$R_A = \frac{U_{A,N} - k'\phi \cdot \Omega_N}{I_A \cdot (\frac{2}{5} + 1)} = 126,98 \ m\Omega$$
 (2.2.131)

$$R_E = \frac{2}{5} \cdot R_A = 50,79 \ m\Omega \tag{2.2.132}$$

4. Das Ankermoment (1.1.15) wird auf I_A umgeformt und in (1.1.14) eingesetzt und auf Ω umgeformt und Anschließend mit $\frac{60}{2\pi}$ mulitpliziert um auf n zu kommen.

$$n(M_i) = \frac{U_A - (R_A + R_E)\frac{M_i}{k'\Phi}}{k'\Phi} \cdot \frac{60}{2\pi} = 2222 - 0,575 \cdot M_i$$
 (2.2.133)

TODO: Programmiere oder zeichne die Grafik und scan sie ein und lade sie hoch!.

5. Für n wird 0 eingesetzt, da die Maschine steht.

$$U_A = I_A(R_V + R_E + R_A) + k' \phi \Omega_m$$
 (2.2.134)

$$M_m = k' \phi \frac{I_A^2}{I_N} \tag{2.2.135}$$

$$I_A = \sqrt{\frac{1,5M_n \cdot I_N}{k'\phi}} = 275,588 A$$
 (2.2.136)

$$k'\phi = \frac{1,5M_n}{I_A} = 2,1052 \ Vs \tag{2.2.137}$$

$$U_{A} = I_{A}(R_{V} + R_{E} + R_{A}) + k' \phi \cdot n \cdot \frac{2\pi}{60}$$
(2.2.138)

$$R_V = \frac{U_A}{I_A} - R_E - R_A = 1,274 \ \Omega \tag{2.2.139}$$

6.

$$M_m = \frac{k'\phi}{2} \cdot I_A = 96,694 \ Nm \tag{2.2.140}$$

$$\Theta_{GM} \frac{\partial \Omega_m}{\partial \tau} = M_m - M_R \tag{2.2.141}$$

$$\Theta_{GM}\Omega_m = (M_m - M_R) \cdot \tau + C \tag{2.2.142}$$

$$n = \frac{60}{2\pi} \frac{M_m - M_R}{\Theta_{GM}} \cdot t + C \tag{2.2.143}$$

$$n = 73,86 \cdot t + 2000 \tag{2.2.144}$$

$$U_A = (R_A + R_E) \cdot I_A + \frac{k'\phi}{2} \cdot \frac{2\pi}{60} \cdot 73,86 \cdot t + 2000$$
 (2.2.145)

$$73,86 \cdot t + 2000 = \frac{U_A - I_A(R_E + R_A)}{\frac{k'\phi}{2} \cdot \frac{2\pi}{60}}$$
 (2.2.146)

$$t = 39,105 \ s \tag{2.2.147}$$

18.1.2017 24.

Eine kompensierte **Reihenschluss-Gleichstrommaschine** hat folgende Daten. Eine Leerlaufkennlinie U_i/I_E bei n = 500 U/min ist gegeben.

 $I_{A,N}$ 160 A U_N 200 V n_N 1000 $\frac{U}{min}$

- 1. Wie groß ist die Spannungskonstante $k_1 \cdot \phi_N$ im Nennpunkt, das Nennmoment M_N und die Nennleistung P_N der Gleichstrommaschine? (2P.)
- 2. Berechnen Sie den Innenwiderstand R_i (=Ankerwiderstand R_A + Erregerwiderstand R_E) und den Wirkungsgrad η_N im Nennpunkt. (2 P.)
- 3. Bestimmen Sie die Drehzahl n und das Drehmoment M der Maschine für eine Ankerspannung $U_A=150\ V$ und $I_A=160\ A\ (1\,{\rm P.})$
- 4. Skizzieren Sie die Drehzahl-Drehmoment Kennlinie (M/n) bei Nennspannung $U_{A,N}=200\ V$ im Bereich ca. $0,2M_N$ bis M_N . $(2\,\mathrm{P.})$
- 5. Die Maschine wird bei $n = 500 \ U/min$ auf einen Widerstand R_L gebremst. Dimensionieren Sie den Bremswiderstand R_L so, dass ein anfänglicher Bremsstrom von 200 A ließt und geben Sie die Ankerspannung U_A an den Maschinenklemmen und das Bremsmoment zu Beginn der Bremsung an. (3 P.)

Abbildung 6: Leerlaufkennlinie

Lösung 24.

21.2.2017 25.

	$I_{A,N}$	225 A
Eine kompensierte Reihenschluss-Gleichstrommaschine hat folgende Daten .	$P_{N,mech}$	81~kW
Eine kompensierte Remenschluss-Gielchstrommaschlife nat lolgende Daten.	n_N	$2000 \frac{U}{min}$
	μ_N	90%

Die Maschine ist im Nennpunkt nicht gesättigt ($\Phi \approx I_A$). Die Maschine hat nur ohmsche Verluste, Reibungsverluste und Eisenverluste sind vernachlässigbar.

- 1. Skizzieren Sie die Schaltung der Reihenschlussmaschine am Gleichspannungsnetz inkl. aller Widerstände und Induktivitäten der Maschine. (1P.)
- 2. Wie groß ist das Nennmoment M_N und die Spannungskonstante $k_1\phi_N$ im Nennpunkt im motorischen Betrieb? Wie groß ist die Leerlaufdrehzahl n_0 ? (2 P.)
- 3. Wie groß ist die Nennspannung U_N und wie groß ist der Ankerwiderstand R_A und der Erregerwiderstand R_E , wenn sich der Erregerwiderstand R_E zum Ankerwiderstand R_E : $R_A = 2:5$ verhält? (2 P.)
- 4. Skizzieren Sie maßstäblich die Drehzahl-Drehmoment Kennlinie (M/n) bei Nennspannung im Bereich ca. $0, 2M_N$ bis $1, 5M_N$. (2P.)
- 5. Berechnen Sie den benötigten Vorwiderstand R_V , wenn die Maschine bei Nennspannung U_N mit $M=1,5\cdot M_N$ aus dem Stillstand angefahren werden soll. (1 P.)
- 6. Die Gleichstrommaschine wird von einem Stromrichter mit konstantem, halben Nennstrom bei n=2000~U/min als Motor betrieben. Berechnen und Skizzieren Sie den Drehzahlverlauf n(t), wenn die Last schlagartig abgekuppelt wird. Der Stromrichter liefert dabei weiterhin den konstanten Strom und schaltet die Gleichstrommaschine erst bei Erreichen einer Spannung von U=460~V ab. Wie lange dauert es bis zum Abschalten und welche Enddrehzahl wird erreicht? Das Trägheitsmoment der Gleichstrommaschine ist $\Theta_{GM}=12~kgm^2$ und das Reibmoment beträgt konstant 1% des Nennmoments. (2 P.)

Lösung 25.