Anomaly Detection

Lecture Notes for Chapter 9

Introduction to Data Mining, 2nd Edition by
Tan, Steinbach, Karpatne, Kumar

Anomaly/Outlier Detection

- What are anomalies/outliers?
 - The set of data points that are considerably different than the remainder of the data

- Natural implication is that anomalies are relatively rare
 - One in a thousand occurs often if you have lots of data
 - Context is important, e.g., freezing temps in July
- Can be important or a nuisance
 - Unusually high blood pressure
 - 200 pound, 2 year old

Importance of Anomaly Detection

Ozone Depletion History

- In 1985 three researchers (Farman, Gardinar and Shanklin) were puzzled by data gathered by the British Antarctic Survey showing that ozone levels for Antarctica had dropped 10% below normal levels
- Why did the Nimbus 7 satellite, which had instruments aboard for recording ozone levels, not record similarly low ozone concentrations?
- The ozone concentrations recorded by the satellite were so low they were being treated as outliers by a computer program and discarded!

Source:

http://www.epa.gov/ozone/science/hole/size.html

Causes of Anomalies

- Data from different classes
 - Measuring the weights of oranges, but a few grapefruit are mixed in

Natural variation

https://umn.zoom.us/my/kumar001

- Unusually tall people
- Data errors
 - 200 pound 2 year old

Distinction Between Noise and Anomalies

 Noise doesn't necessarily produce unusual values or objects

Noise is not interesting

Noise and anomalies are related but distinct concepts

Model-based vs Model-free

Model-based Approaches

- Model can be parametric or non-parametric
- Anomalies are those points that don't fit well
- Anomalies are those points that distort the model

Model-free Approaches

- Anomalies are identified directly from the data without building a model
- Often the underlying assumption is that the most of the points in the data are normal

General Issues: Label vs Score

- Some anomaly detection techniques provide only a binary categorization
- Other approaches measure the degree to which an object is an anomaly
 - This allows objects to be ranked
 - Scores can also have associated meaning (e.g., statistical significance)

Anomaly Detection Techniques

- Statistical Approaches
- Proximity-based
 - Anomalies are points far away from other points
- Clustering-based
 - Points far away from cluster centers are outliers
 - Small clusters are outliers
- Reconstruction Based

Statistical Approaches

- Probabilistic definition of an outlier: An outlier is an object that has a low probability with respect to a probability distribution model of the data.
- Usually assume a parametric model describing the distribution of the data (e.g., normal distribution)
- Apply a statistical test that depends on
 - Data distribution
 - Parameters of distribution (e.g., mean, variance)
 - Number of expected outliers (confidence limit)
- Issues
 - Identifying the distribution of a data set
 - Heavy tailed distribution
 - Number of attributes
 - Is the data a mixture of distributions?

Normal Distributions

One-dimensional Gaussian

Two-dimensional Gaussian

Grubbs' Test

- Detect outliers in univariate data
- Assume data comes from normal distribution
- Detects one outlier at a time, remove the outlier, and repeat
 - H₀: There is no outlier in data
 - H_A: There is at least one outlier
- □ Grubbs' test statistic: $G = \frac{\max |X \overline{X}|}{|X \overline{X}|}$

□ Reject H₀ if:

$$G > \frac{(N-1)}{\sqrt{N}} \sqrt{\frac{t_{(\alpha/N,N-2)}^2}{N-2+t_{(\alpha/N,N-2)}^2}}$$

Statistically-based — Likelihood Approach

- Assume the data set D contains samples from a mixture of two probability distributions:
 - M (majority distribution)
 - A (anomalous distribution)
- General Approach:
 - Initially, assume all the data points belong to M
 - Let L_t(D) be the log likelihood of D at time t
 - For each point x_t that belongs to M, move it to A
 - ◆ Let L_{t+1} (D) be the new log likelihood.
 - Compute the difference, $\Delta = L_t(D) L_{t+1}(D)$
 - If $\Delta > c$ (some threshold), then x_t is declared as an anomaly and moved permanently from M to A

Statistically-based — Likelihood Approach

- □ Data distribution, D = (1λ) M + λ A
- M is a probability distribution estimated from data
 - Can be based on any modeling method (naïve Bayes, maximum entropy, etc.)
- A is initially assumed to be uniform distribution
- Likelihood at time t:

$$L_{t}(D) = \prod_{i=1}^{N} P_{D}(x_{i}) = \left((1 - \lambda)^{|M_{t}|} \prod_{x_{i} \in M_{t}} P_{M_{t}}(x_{i}) \right) \left(\lambda^{|A_{t}|} \prod_{x_{i} \in A_{t}} P_{A_{t}}(x_{i}) \right)$$

$$LL_{t}(D) = \left| M_{t} \middle| \log(1 - \lambda) + \sum_{x_{i} \in M_{t}} \log P_{M_{t}}(x_{i}) + \left| A_{t} \middle| \log \lambda + \sum_{x_{i} \in A_{t}} \log P_{A_{t}}(x_{i}) \right|$$

Strengths/Weaknesses of Statistical Approaches

- Firm mathematical foundation
- Can be very efficient
- Good results if distribution is known
- In many cases, data distribution may not be known
- For high dimensional data, it may be difficult to estimate the true distribution
- Anomalies can distort the parameters of the distribution

Distance-Based Approaches

The outlier score of an object is the distance to its kth nearest neighbor

One Nearest Neighbor - One Outlier

One Nearest Neighbor - Two Outliers

Five Nearest Neighbors - Small Cluster

Five Nearest Neighbors - Differing Density

Strengths/Weaknesses of Distance-Based Approaches

- Simple
- □ Expensive O(n²)
- Sensitive to parameters
- Sensitive to variations in density
- Distance becomes less meaningful in highdimensional space

Density-Based Approaches

- Density-based Outlier: The outlier score of an object is the inverse of the density around the object.
 - Can be defined in terms of the k nearest neighbors
 - One definition: Inverse of distance to kth neighbor
 - Another definition: Inverse of the average distance to k neighbors
 - DBSCAN definition
- If there are regions of different density, this approach can have problems

Relative Density

- Consider the density of a point relative to that of its k nearest neighbors
- \square Let $y_1, ..., y_k$ be the k nearest neighbors of x

$$density(\mathbf{x}, k) = \frac{1}{dist(\mathbf{x}, k)} = \frac{1}{dist(\mathbf{x}, \mathbf{y}_k)}$$

relative density(
$$\mathbf{x}$$
, k) = $\frac{\sum_{i=1}^{k} density(\mathbf{y}_{i},k)/k}{density(\mathbf{x},k)}$

$$= \frac{dist(x,k)}{\sum_{i=1}^{k} dist(y_{i},k)/k} = \frac{dist(x,y)}{\sum_{i=1}^{k} dist(y_{i},k)/k}$$

Can use average distance instead

Relative Density Outlier Scores

Relative Density-based: LOF approach

- For each point, compute the density of its local neighborhood
- Compute local outlier factor (LOF) of a sample p as the average of the ratios of the density of sample p and the density of its nearest neighbors
- Outliers are points with largest LOF value

In the NN approach, p_2 is not considered as outlier, while LOF approach find both p_1 and p_2 as outliers

Strengths/Weaknesses of Density-Based Approaches

- Simple
- Expensive O(n²)
- Sensitive to parameters
- Density becomes less meaningful in highdimensional space

Clustering-Based Approaches

- An object is a cluster-based outlier if it does not strongly belong to any cluster
 - For prototype-based clusters, an object is an outlier if it is not close enough to a cluster center
 - Outliers can impact the clustering produced
 - For density-based clusters, an object is an outlier if its density is too low
 - Can't distinguish between noise and outliers
 - For graph-based clusters, an object is an outlier if it is not well connected

Distance of Points from Closest Centroids

Relative Distance of Points from Closest Centroid

Strengths/Weaknesses of Clustering-Based Approaches

- Simple
- Many clustering techniques can be used
- Can be difficult to decide on a clustering technique
- Can be difficult to decide on number of clusters

Outliers can distort the clusters

Reconstruction-Based Approaches

- Based on assumptions there are patterns in the distribution of the normal class that can be captured using lower-dimensional representations
- Reduce data to lower dimensional data
 - E.g. Use Principal Components Analysis (PCA) or Auto-encoders
- Measure the reconstruction error for each object
 - The difference between original and reduced dimensionality version

Reconstruction Error

- Let x be the original data object
- Find the representation of the object in a lower dimensional space
- Project the object back to the original space
- Call this object x̂

Reconstruction Error(
$$\mathbf{x}$$
)= $\|\mathbf{x} - \hat{\mathbf{x}}\|$

 Objects with large reconstruction errors are anomalies

Reconstruction of two-dimensional data

Basic Architecture of an Autoencoder

- An autoencoder is a multi-layer neural network
- The number of input and output neurons is equal to the number of original attributes.

Strengths and Weaknesses

Does not require assumptions about distribution of normal class

Can use many dimensionality reduction approaches

- The reconstruction error is computed in the original space
 - This can be a problem if dimensionality is high

Information Theoretic Approaches

Key idea is to measure how much information decreases when you delete an observation

$$Gain(x) = Info(D) - Info(D \setminus x)$$

Anomalies should show higher gain

Normal points should have less gain

Information Theoretic Example

Survey of height and weight for 100 participants

weight	height	Frequency
low	low	20
low	medium	15
medium	medium	40
high	high	20
high	low	5

□ Eliminating last group give a gain of 2.08 – 1.89 = 0.19

Strengths and Weaknesses

Solid theoretical foundation

Theoretically applicable to all kinds of data

 Difficult and computationally expensive to implement in practice

Evaluation of Anomaly Detection

- If class labels are present, then use standard evaluation approaches for rare class such as precision, recall, or false positive rate
 - FPR is also know as false alarm rate

- For unsupervised anomaly detection use measures provided by the anomaly method
 - E.g. reconstruction error or gain
- Can also look at histograms of anomaly scores.