Nur die Aufgaben mit einem * werden korrigiert.

7.1. MC Fragen.

(a) Wählen Sie alle Funktionen, die in jedem Punkt ihres Definitionsbereichs stetig sind.

$$\Box$$
 $f: \mathbb{R} \to \mathbb{R}, \qquad f(x) = \frac{(4x-6)^{12} + x^4}{x^2 + 1};$

$$\Box \quad f \colon \mathbb{R} \to \mathbb{R}, \qquad f(x) = \frac{1}{x};$$

$$\Box \quad f \colon \mathbb{R} \to \mathbb{R}, \qquad f(x) = |x|;$$

$$\Box$$
 $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \text{sign}(x)$, wobei

$$sign(x) = \begin{cases} +1, & x > 0, \\ 0, & x = 0, \\ -1, & x < 0. \end{cases}$$

$$\Box$$
 $f: \mathbb{R} \to \mathbb{R}, \quad f(x) = |x| \cdot \operatorname{sign}(x).$

- (b) Sei I ein Intervall und $f\colon I\to\mathbb{R}$ eine stetige Funktion. Kreuzen Sie die richtigen Aussagen an.
 - \square Falls I kompakt ist, ist auch f(I) kompakt.
 - \square Falls I kompakt ist, ist f(I) nicht unbedingt kompakt.
 - $\hfill \Box$ Falls f(I) kompakt ist, ist auch I kompakt.
- (c) Welche der folgenden Aussagen ist korrekt? In allen Fällen seien a, b reelle Zahlen mit a < b.
 - \square Sei $f : [a, b] \to \mathbb{R}$ eine stetige Funktion und es gelte f(a) < f(b). Dann liegen alle Funktionswerte zwischen f(a) und f(b).
 - \square Sei $f:[a,b]\to\mathbb{R}$ eine monoton wachsende stetige Funktion mit $f(a)\leq 0\leq f(b)$. Dann besitzt f in [a,b] genau eine Nullstelle.
 - \square Sei $f:[a,b]\to\mathbb{R}$ eine streng monoton wachsende stetige Funktion mit f(a)<0< f(b). Dann besitzt f in (a,b) genau eine Nullstelle.
- *7.2. Umkehrfunktion. Analysiere folgende Funktionen auf strikte Monotonie, und falls möglich, bestimme die Inverse Funktion.

- (a) $f(x) = 4 \cdot \ln(x+7) + 3 \text{ für } x \in (-7, +\infty),$
- (b) $f(x) = \frac{e^x e^{-x}}{2}$ für $x \in \mathbb{R}$,
- (c) $f(x) = e^{-x^2}$ für $x \in \mathbb{R}$.
- **7.3. Zwischenwertsatz II.** Beweisen Sie, dass am Äquator der Erde es immer zwei gegenüberliegende Punkte mit gleicher Temperatur gibt.

Hinweis: Nehmen Sie an, dass die Temperatur durch eine stetige Funktion dargestellt werden kann, und betrachten Sie die Temperaturdifferenz zwischen Antipodenpunkten auf einem Grosskreis.

*7.4. Surjektivität von x^n . Zeigen Sie, dass die Funktion

$$f: [0, \infty) \to [0, \infty), \qquad x \mapsto x^n$$

surjektiv ist.