Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. However, readability is more than just programming style. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. Programming languages are essential for software development. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. It is usually easier to code in "high-level" languages than in "low-level" ones. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. It affects the aspects of quality above, including portability, usability and most importantly maintainability. Use of a static code analysis tool can help detect some possible problems. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Normally the first step in debugging is to attempt to reproduce the problem. Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. One approach popular for requirements analysis is Use Case analysis. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. Provided the functions in a library follow the appropriate run-time conventions (e.g., method of passing arguments), then these functions may be written in any other language. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users.