Sieci komputerowe

Wykład 10: Kodowanie i szyfrowanie

Marcin Bieńkowski

10.1 Suma kontrolna CRC

10.1.1 Wielomiany

Sumy kontrolne CRC bazują na dzieleniu w pierścieniu wielomianów nad ciałem \mathcal{F}_2 (zbiór $\{0,1\}$ z działaniami modulo 2). W prostszych słowach podstawą CRC są działania wykonywane na wielomianach, których współczynniki są ze zbioru $\{0,1\}$, a działania na tych współczynnikach są wykonywane modulo 2. Poniżej przedstawimy krótkie przypomnienie własności takich wielomianów.

Weźmy przykładowo $A(x)=x^5+x^3+x^2+1$ i $B(x)=x^3+x$. Ich sumą jest $A(x)+B(x)=x^5+x^2+x+1$. Zauważmy, ze $A(x)+A(x)\equiv 0$ a zatem A(x)=-A(x) i dlatego odejmowanie jest tym samym co dodawanie: B(x)-A(x)=B(x)+A(x). Wielomiany można też mnożyć (tak jak mnożymy "zwykłe" wielomiany nad ciałem liczb rzeczywistych) pamiętając, że współczynniki są z ciała \mathcal{F}_2 . Czyli przykładowo $(x+1)\cdot (x+1)=x^2+x+x+1=x^2+1$.

Można też wielomiany dzielić (np. pisemnie) z resztą. Weźmy dwa dowolne wielomiany A(x), $B(x) \not\equiv 0$ i niech k będzie stopniem wielomianu B(x). Wtedy istnieje dokładnie jedna para wielomianów Q(x) i R(x), taka że

$$A(x) = Q(x) \cdot B(x) + R(x) ,$$

gdzie R(x) jest wielomianem stopnia co najwyżej k-1. Przykładowo jeśli $A(x)=x^{10}+x^8+x^3$ a $B(x)=x^3+x^2+1$, to $Q(x)=x^7+x^6+x^4+x$ a R(x)=x.

10.1.2 Liczenie CRC

Aby obliczyć sumę CRC zamieniamy ciąg bitów przesyłanej wiadomości \overline{m} na wielomian M(x), tzn. przykładowo $10100001 \rightarrow x^7 + x^5 + 1$. Załóżmy, że chcemy wygenerować r-bitową sumę kontrolną. Będziemy w tym celu potrzebowali wielomianu G(x) stopnia r (znanego nadawcy i odbiorcy)¹ o stopniu r. Naszym celem jest utworzenie takiej r-bitowej sumy kontrolnej \overline{s} , żeby wielomian odpowiadający ciągowi bitów \overline{ms} był podzielny przez G(x). Następnie wysyłamy wiadomość \overline{ms} i odbiorca sprawdza, czy jest ona podzielna przez G(x). Jeśli nie jest, to w transmisji musiało wystąpić przekłamanie. Jeśli wiadomość jest podzielna, to istnieje nadal mała szansa, że dane zostały przekłamane, lecz zakładamy, że zostały przesłane poprawnie.

Jak obliczyć \overline{s} ? Niech S(x) będzie wielomianem (stopnia r-1) odpowiadającym ciągowi bitów \overline{s} . Wtedy ciągowi \overline{ms} odpowiada $x^r \cdot M(x) + S(x)$. Przypomnijmy, że wymagamy, żeby

$$G(x) \mid x^r \cdot M(x) + S(x) \tag{1}$$

Niech R(x) będzie resztą z dzielenia wielomianu $x^r \cdot M(x)$ przez G(x), tj. istnieje taki wielomian Q(x), że $x^r \cdot M(x) = Q(x) \cdot G(x) + R(x)$, gdzie R(x) jest wielomianem stopnia co najwyżej r-1. Używając tych oznaczeń wymagamy, żeby $G(x)|Q(x)\cdot G(x)+R(x)+S(x)$, co jest równoważne G(x)|R(x)+S(x). Zauważmy, że R(x)+S(x) jest wielomianem stopnia co najwyżej r-1, a zatem G(x) może go dzielić tylko wtedy, jeśli jest on tożsamościowo równy zeru, tj. jeśli S(x)=R(x).

Przykładowo jeśli chcemy wysłać wiadomość $\overline{m}=10100001 \to x^7+x^5+1$, a wielomianem CRC jest x^3+x^2+1 , to suma kontrolna będzie miała 3 bity, tj. r=3. Dlatego $x^r\cdot M(x)=x^{10}+x^8+x^3=(x^7+x^6+x^4+x)\cdot G(x)+x$. Reszta z dzielenia, S(x)=x, odpowiada 3-bitowemu ciągowi $\overline{s}=010$, który zostaje dołączony na końcu wysyłanej wiadomości.

 $^{^1\}mathrm{W}$ rzeczywistych zastosowaniach te wielomiany określa standard. Na przykład w Ethernecie mamy 32-bitową sumę (CRC-32), której wielomian to $G(x)=x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1.$

10.1.3 Wykrywanie błędów

Jak wspomnieliśmy wyżej, odbiorca dzieli wielomian odpowiadający otrzymanej wiadomości przez G(x) i w ten sposób sprawdza, czy wiadomość została zakłócona. To jakie typy zakłóceń zostają wychwycone zależy od wyboru wielomianu G(x).

Załóżmy, że oryginalnie przesyłaną wiadomością (wraz z sumą CRC) jest \bar{t} , czyli G(x)|T(x). W trakcie transmisji zostają zmienione wartości niektórych bitów, co odpowiada dodaniu do T(x) wielomianu E(x) nazywanego wielomianem blędu. Odbiorca uzna wiadomość za poprawną jeśli $G(x)|T(x)+E(x) \Leftrightarrow G(x)|E(x)$.

Przykład 10.1. W przypadku przeklamania jednego bitu, $E(x) = x^j$. Bład ten zostanie wykryty jeśli G(x) jest suma co najmniej dwóch jednomianów.

Przykład 10.2. CRC oparte o wielomian $G(x) = x^2 + x + 1$ wykryje bląd polegający na zamianie pięciu kolejnych bitów.

Dowód. Załóżmy, że ostatnim bitem na którym wystąpił błąd jest bit nr i; wielomianem błędu jest zatem $E(x) = x^{i+4} + x^{i+3} + x^{i+2} + x^{i+1} + x^i = x^i \cdot (x^4 + x^3 + x^2 + x + 1)$. Musimy pokazać, że dla dowolnego i zachodzi G(x) / E(x).

Po pierwsze zauważmy, że G(x) nie dzieli $x^4 + x^3 + x^2 + x + 1$, bo $x^4 + x^3 + x^2 + x + 1 = x^2 \cdot (x^2 + x + 1) + (x + 1)$. Po drugie $G(x) \perp x^i$ (G(x) jest względnie pierwsze z x^i) bo jedynym dzielnikiem pierwszym x^i jest x. Zatem G(x) nie dzieli $x^i \cdot (x^4 + x^3 + x^2 + x + 1)$.

10.2 Algorytm szyfrowania RSA

Na początku generujemy dla siebię kluczy (publiczny i prywatny) w następujący sposób.

- 1. Wybieramy $p \neq q$: duże liczby pierwsze.
- 2. Obliczamy $n = p \cdot q$.
- 3. Znajdujemy dużą liczbę d względnie pierwszą z $(p-1) \cdot (q-1)$.
- 4. Znajdujemy takie e, że $d \cdot e \mod (p-1) \cdot (q-1) = 1$ (za pomocą rozszerzonego algorytmu Euklidesa).
- 5. Para (e, n) to nasz klucz publiczny, a (d, n) to nasz klucz prywatny.

Jak teraz szyfrujemy daną wiadomość? Zapisujemy ją bitowo i dzielimy na kawałki, których długość jest nie większa od $\log n$. Dzięki temu, każdy z kawałków jest liczbą z zakresu [0,n). Każdą z liczb będziemy szyfrować osobno.³

Załóżmy zatem, że chcemy zaszyfrować liczbę $m \in [0, n)$. Obliczamy liczbe

$$E(m) = m^e \mod n$$
,

i wysyłamy ją jako szyfrogram \boldsymbol{s} odbiorc
y. Odbiorca otrzymuje szyfrogram \boldsymbol{s} i odszyfrowuje go
 obliczając

$$D(s) = s^d \mod n \ .$$

 $^{^2}$ Nie wystarczy powiedzieć, że $G(x)\not|x^i,$ bo z $A\not|B$ i $A\not|C$ nie wynika $A\not|(B\cdot C)$

³Takie naiwne podejście prowadzi do tego, że takie same kawałki byłyby szyfrowane w ten sam sposób. W praktyce stosuje się różne obejścia tego problemu, np. dołączanie losowego ciągu.

10.2.1 Dlaczego to działa?

Musimy pokazać, że dla dowolnego $m \in [0, n)$ zachodzi D(E(m)) = m. Pokażemy to dla m większych od zera i względnie pierwszych z n. Udowodnienie tego dla pozostałych wartości m pozostawiam jako ćwiczenie. Mamy

$$\begin{split} D(E(m)) &= (m^e \mod n)^d \mod n \\ &= (m^e)^d \mod n \qquad \qquad \text{(z własności modulo)} \\ &= m^{k \cdot (p-1) \cdot (q-1) + 1} \mod n \qquad \qquad (k \in \mathbb{N} \cup \{0\}) \\ &= 1^k \cdot m^1 \mod n \qquad \qquad \text{(z Twierdzenia Eulera)} \\ &= m \end{split}$$

Twierdzenie 10.3 (Twierdzenie Eulera). Dla dowolnej dodatniej liczby naturalnej n, niech $\mathbb{Z}_n^* = (\{a: 1 \leqslant a \leqslant n \land a \perp n\}, \cdot \mod n)$ będzie grupą, której elementami są liczby względnie pierwsze z n, zaś działaniem mnożenie modulo n. Niech $\phi(n)$ będzie liczbą elementów takiej grupy. Wtedy dla $m \in \mathbb{Z}_n^*$ zachodzi $m^{\phi(n)} \equiv 1 \mod n$.