I Étincelle de rupture

Soit le circuit représenté ci-contre.

L'interrupteur K est initialement fermé depuis longtemps. On bascule cet interrupteur en position ouverte à t=0.

- 1. Quelle est la valeur de l'intensité $i(0^+)$ dans le circuit ?
- 2. Déterminez i(t) et tracez son allure. Que se passe-t-il si R devient très grande par rapport à r?
- 3. Déterminez u(t) et tracez son allure. Que se passe-t-il si R devient très grande par rapport à r?
- 4. Finalement, que risque-t-on en enlevant la résistance R de ce montage?

I | Intensité débitée par un générateur de tension

A l'instant t = 0, on ferme l'interrupteur K qui était ouvert depuis très longtemps.

- 1. Expliquer pourquoi on peut affirmer a priori que $u_C(0^-) = 0$ et $i_2(0^-) = 0$.
- 2. Après la fermeture que l'interrupteur K, pour t > 0, à quelles conditions sur R, r, L et C, l'intensité i(t) débitée par le générateur de tension est-elle constante dans le temps ?
- 3. On suppose les conditions précédentes vérifiées. Déterminer alors l'expression de i(t).
- 4. On donne E = 1 V, $R = r = 1 \text{ k}\Omega$, L = 0.1 H et C = 0.1 µF. Tracer i(t), $i_1(t)$ et $i_2(t)$ sur le même graphique pour $t \in [-0.1 \text{ ms}; 0.5 \text{ ms}]$. Dessiner également les tangentes à $i_1(t)$ et $i_2(t)$ en $t = 0^+$.

Lois de Kirchhoff: circuit électrique dépendant du temps

On suppose que le générateur de tension fournit une tension qui dépend du temps : E = E(t). Les intensités et les tensions dans le circuit dépendent donc également du temps. Dans le cas contraire, nous verrons dans un chapitre suivant que le courant ne pourrait pas circuler à cause du condensateur.

- 1. Flécher les tensions aux bornes des dipôles et les intensités dans les différentes branches du circuit de façon à ce que le générateur de tension soit en convention générateur et que les résistances, condensateur et bobine soient en convention récepteur. On appellera i_k et U_k l'intensité qui traverse la résistance R_k et la tension aux bornes de R_k . Pour le condensateur et la bobine, on appellera ces quantités respectivement U_C et i_C ou U_L et i_L .
- 2. Que peut-on dire de i_C et i_L ?
- 3. En appliquant la loi des nœuds, trouver 2 équations. Sont-elles indépendantes ?
- 4. En appliquant la loi des mailles, trouver 2 équations indépendantes.
- 5. En appliquant la loi d'Ohm, trouver 2 équations indépendantes.
- 6. En appliquant les loi des condensateurs et des bobines, trouver 2 équations indépendantes reliant i_C, U_C, i_L, U_L et certaines de leurs dérivées par rapport au temps.
- 7. Dans ce circuit, quelles grandeurs sont inconnues? A-t-on suffisamment d'équations pour les déterminer?
- 8. Trouver l'équation différentielle vérifiée par i_C .
- 9. Que se serait-il passé si le condensateur avait été fléché en convention générateur ?

I | Charge d'une bobine

On considère une bobine d'inductance L et de résistance r selon le schéma ci-après.

L'ordinateur nous permet de suivre l'évolution de l'intensité i du courant en fonction du temps. On donne $R=50\Omega$ et E=3,0V.

- 1. Reproduire le schéma du montage et indiquer où doivent être branchées la masse M et les voies d'entrées de la carte d'acquisition pour étudier les variations de l'intensité dans le circuit.
- 2. Écrire l'équation différentielle vérifiée par i(t).
- 3. Exprimer l'intensité i(t) en fonction des données.
- 4. Soit I l'intensité du courant électrique qui traverse le circuit en régime permanent. Donner sa valeur numérique et en déduire la résistance r de la bobine.
- 5. Déterminer, à partir de la courbe expérimentale, la valeur de l'inductance L de la bobine.
- 6. Faire les schémas équivalents du circuit à $t = 0^+$ et lorsque t tend vers l'infini.

I | Modélisation d'un pH-mètre : difficultés expérimentales de mesure

Remarque préalable : Aucune connaissance de chimie n'est nécessaire ici.

On se propose de modéliser un pH-mètre comme une association en série d'un générateur de tension idéale de force électromotrice E (qui est fonction du pH) avec une résistance électrique r, comme schématisé sur la figure ci-contre.

- 1. On souhaite mesurer la force électromotrice E du pH-mètre à l'aide d'un voltmètre de résistance interne $R_V=1\,\mathrm{M}\Omega$. Il n'est, en pratique, pas possible d'accéder directement à la force électromotrice E. Le voltmètre mesure en fait e, la tension aux bornes du pH-mètre. Faire le schéma du montage, puis exprimer la tension mesurée e en fonction de E, R et R_V . Calculer numériquement la valeur de e en prenant $r=10\,\mathrm{M}\Omega$ et $E=0.20\,\mathrm{mV}$. Exprimer l'erreur relative $\epsilon=(E-e)/E$ en fonction de r et R_V uniquement. La calculer. Que pensez-vous de ce résultat ? Ce montage est-il concluant ?
- 2. Quelle valeur minimale de résistance interne du voltmètre R_V' aurait-il fallu avoir pour commettre une erreur relative inférieure à 10%? Vous donnerez une expression littérale que vous calculerez ensuite.

|Batterie tampon

On donne $e_2 = 2 \text{ V} = cte$, $r_2 = 0.2 \Omega$, $r_3 = 50 \Omega$. La tension e_1 décroît linéairement de 6 V à 5 V en 24 h. La résistance r_1 est choisie de telle sorte que la fermeture de l'interrupteur K à t = 0 ne provoque aucun courant dans r_2 .

- 1. Exprimer les intensités $i_1(t)$ et $i_2(t)$. Le temps t sera exprimé en jour. En déduire la valeur de r_1 .
- 2. Déterminer la diminution relative de l'intensité i(t) qui traverse la résistance r_3 en un jour :
 - \bullet si K est ouvert
 - \bullet si K est fermé

En déduire le rôle du générateur de tension e_2 .