Type Reconstruction Algorithms for Deadlock-Free and Lock-Free Linear π -Calculi

Luca Padovani Tzu-Chun Chen Andrea Tosatto

Dipartimento di Informatica – Università di Torino – Italy

Objective

What we want to do

- static analysis for deadlock and lock detection
- the problem is **undecidable** in general

How we want to do it

- 1 language for describing communicating processes
 - Kobayashi, Pierce, Turner, **Linearity and the pi-calculus**, TOPLAS 1999
- 2 type systems ensuring deadlock and lock freedom
 - Padovani, **Deadlock and lock freedom in the linear** π -calculus, CSL-LICS 2014
- 3 type reconstruction algorithms
 - this work

Outline

- 1 Language
- 2 The type systems at a glance
- 3 Type reconstruction algorithms
- 4 Demo
- **6** Concluding remarks

Outline

- 1 Language
- The type systems at a glance
- 3 Type reconstruction algorithms
- Demo
- **6** Concluding remarks

Example: full-duplex communication

```
*node?(a,b).

new c in
{ a!c
| b?d.node!(c,d) }
```

a and b are linear channels

- linear = 1 communication
- linearity ⇒ eventual synchronization

node is an unlimited channel

- unlimited = any number of communications
- replicated input ⇒ immediate synchronization

The linear π -calculus

Unlimited channel

 $p^{\omega}[t]$

 \geq 0 communications

Linear channel

p[t]

1 communication

Kobayashi, Pierce, Turner, **Linearity and the pi-calculus**, TOPLAS 1999

The (dead)lock-free linear π -calculus

Unlimited channel

$$p^{\omega}[t]$$

 \geq 0 communications

Linear channel

$$p[t]_k^h$$

1 communication

- $h \in \mathbb{Z}$ level
- $k \in \mathbb{N}$ tickets
- Padovani, **Deadlock and lock freedom in the linear** π -calculus, CSL-LICS 2014

Deadlock and lock freedom

Definition

P is **deadlock free** if $P \rightarrow^* \text{new } \tilde{a} \text{ in } Q \rightarrow \text{implies } \neg \text{wait}(a, Q)$

P is **lock free** if $P \to^* \text{new } \tilde{a} \text{ in } Q$ and wait(a, Q) implies $Q \to^* R$ such that sync(a, R)

Theorem (soundness)

- **1** \vdash ₀ *P* implies *P* deadlock free
- $2 \vdash_1 P$ implies P lock free

Outline

- 1 Language
- 2 The type systems at a glance
- 3 Type reconstruction algorithms
- 4 Demo
- **6** Concluding remarks

Input and output

level of u smaller than level of any channel in P

$$\frac{\Gamma, x : t \vdash P \qquad h < |\Gamma|}{\Gamma, u : ?[t]^h \vdash u?x.P}$$

$$a^{\bullet}?x.b^{\bullet}!x | b^{\bullet}?x.a^{\bullet}!x$$

$$\frac{\Gamma \vdash e : t \qquad h < |t|}{\Gamma, u : ![t]^h \vdash u!e}$$

Input and output

$$\frac{\Gamma, x: t \vdash P \qquad h < |\Gamma|}{\Gamma, u: ?[t]^h \vdash u?x.P}$$

level of u smaller than level of any channel in e

$$\frac{\Gamma \vdash e : t \qquad h < |t|}{\Gamma, u : ![t]^h \vdash u!e}$$


```
*node?(a^{0},b^{0}).

new c in
{ a^{0}!c -- a blocks c | b^{0}?d .node!(c ,d ) } -- b blocks c and d
```

```
*node?(a<sup>0</sup>,b<sup>0</sup>).

new c<sup>1</sup> in
{ a<sup>0</sup>!c<sup>1</sup> -- a blocks c
| b<sup>0</sup>?d .node!(c<sup>1</sup>,d ) } -- b blocks c and d
```

```
*node?(a<sup>0</sup>,b<sup>0</sup>).

new c<sup>1</sup> in

{ a<sup>0</sup>!c<sup>1</sup> -- a blocks c

| b<sup>0</sup>?d<sup>1</sup>.node!(c<sup>1</sup>,d<sup>1</sup>) } -- b blocks c and d
```

the levels of c and d don't match those of a and b

```
*node?(a<sup>0</sup>,b<sup>0</sup>).

new c<sup>1</sup> in
{ a<sup>0</sup>!c<sup>1</sup> -- a blocks c
| b<sup>0</sup>?d<sup>1</sup>.node!(c<sup>1</sup>,d<sup>1</sup>) } -- b blocks c and d
```

- the levels of c and d don't match those of a and b
- allow level polymorphism

$$\frac{\Gamma \vdash e : \bigwedge^{k} t}{\Gamma, u : !^{\omega}[t] \vdash u ! e}$$

Recursive processes and infinite delegations

```
*node?(a ,b ).
node!(a ,b )
```

e keeps passing a and b around without using them

Recursive processes and infinite delegations

```
*node?(a_{1}, b_{1}).
node!(a_{0}, b_{0})
```

- keeps passing a and b around without using them
- use tickets to limit the number of delegations before use

$$\frac{\Gamma \vdash e : \bigwedge_{1}^{k} t}{\Gamma, u : !^{\omega}[t] \vdash u ! e}$$

Outline

- 1 Language
- 2 The type systems at a glance
- 3 Type reconstruction algorithms
- 4 Demo
- **6** Concluding remarks

Type reconstruction

▶ Problem statement

Given an **untyped** process P, find Γ , **if** possible, such that $\Gamma \vdash_k P$

The standard approach

• use variables for unknown types/levels/tickets

$$u:\alpha$$

2 compute constraints for variables

$$\Gamma \vdash_k P \Rightarrow P \blacktriangleright_k \Delta; \varphi$$

3 look for a solution for the constraints φ

Taming complexity

Technically challenging setting

- same channel may have different types ⇒ no unification
- depending on whether a channel is linear or unlimited, level constraints may differ ⇒ conditional constraints

Taming complexity

Technically challenging setting

- same channel may have different types ⇒ no unification
- depending on whether a channel is linear or unlimited, level constraints may differ ⇒ conditional constraints

A different strategy

- Igarashi, Kobayashi, **Type reconstruction for linear** π -calculus with I/O subtyping, I&C 2000
- Padovani, Type reconstruction for the linear π -calculus with composite and equi-recursive types, FoSSaCS 2014

$$\frac{\Gamma, x : t \vdash P \qquad h < |\Gamma|}{\Gamma, u : ?[t]^h \vdash u?x.P}$$

$$\vdash a?x.b!x$$

$$\frac{\Gamma, x : t \vdash P \qquad h < |\Gamma|}{\Gamma, u : ?[t]^h \vdash u?x.P}$$

$$a:?[int], b:![int] \vdash a?x.b!x$$

$$\frac{\Gamma, x: t \vdash P \qquad h < |\Gamma|}{\Gamma, u: ?[t]^h \vdash u?x.P}$$

$$a:?[\operatorname{int}]^{\lambda_1}, b:![\operatorname{int}]^{\lambda_2} \vdash a?x.b!x$$

$$\frac{\Gamma, x : t \vdash P \qquad h < |\Gamma|}{\Gamma, u : ?[t]^h \vdash u?x.P}$$

$$a:?[\operatorname{int}]^{\lambda_1}, b:![\operatorname{int}]^{\lambda_2} \vdash a?x.b!x$$

$$\frac{\Gamma, x : t \vdash P \qquad h < |\Gamma|}{\Gamma, u : ?[t]^h \vdash u?x.P}$$

$$\frac{\Gamma, x : t \vdash P \qquad h < |\Gamma|}{\Gamma, u : ?[t]^h \vdash u?x.P}$$

$$a:?[\operatorname{int}]^{\lambda_1}, b:![\operatorname{int}]^{\lambda_2} \vdash a?x.b!x$$

$$a: ![int]^{\lambda_3}, b: ?[int]^{\lambda_4} \vdash b?x.a!x$$

$$ightharpoonup \lambda_1 < \lambda_2$$

$$ightharpoonup \lambda_4 < \lambda_3$$

$$\frac{\Gamma, x : t \vdash P \qquad h < |\Gamma|}{\Gamma, u : ?[t]^h \vdash u?x.P}$$

Another example, with level polymorphism

```
\frac{\Gamma \vdash e : \bigwedge^{k} t}{\Gamma, u : !^{\omega}[t] \vdash u ! e}
```

```
node: !^{\omega}[?[int] \times ![int]]
a:?[int] \vdash node!(a,b) \blacktriangleright
b:![int]
```

Another example, with level polymorphism

$$\frac{\Gamma \vdash e : \bigwedge^{k} t}{\Gamma, u : !^{\omega}[t] \vdash u ! e}$$

```
node: !^{\omega}[?[int]^{\lambda_1} \times ![int]^{\lambda_2}]
a:?[int]^{\lambda_3} \vdash node!(a,b) \blacktriangleright
b:![int]^{\lambda_4}
```

Another example, with level polymorphism

$$\frac{\Gamma \vdash e : \bigwedge^{k} t}{\Gamma, u : !^{\omega}[t] \vdash u! e}$$

$$\operatorname{node} : !^{\omega}[?[\operatorname{int}]^{\lambda_{1}} \times ![\operatorname{int}]^{\lambda_{2}}]$$

$$a : ?[\operatorname{int}]^{\lambda_{3}} \qquad \vdash \operatorname{node}!(a, b) \blacktriangleright \lambda_{3} = \lambda_{1} + \lambda_{5}$$

$$b : ![\operatorname{int}]^{\lambda_{4}} \qquad \vdash \operatorname{node}!(a, b) \blacktriangleright \lambda_{4} = \lambda_{2} + \lambda_{5}$$

$$?[int] \Rightarrow ?[int]^{\lambda}$$

```
?[int] \Rightarrow ?[int]^{\lambda}
t = ?[int \times t]
```

```
?[int] \Rightarrow ?[int]^{\lambda}
t = ?[int \times t] \stackrel{?}{\Rightarrow} T = ?[int \times T]^{\lambda_1}
```

```
?[int] \Rightarrow ?[int]^{\lambda}
t = ?[int \times t] \stackrel{?}{\Rightarrow} T = ?[int \times T]^{\lambda_1}
\stackrel{?}{\Rightarrow} T = ?[int \times ?[int \times T]^{\lambda_2}]^{\lambda_1}
```

$$?[int] \Rightarrow ?[int]^{\lambda}$$

$$t = ?[int \times t] \stackrel{?}{\Rightarrow} T = ?[int \times T]^{\lambda_1}$$

$$\stackrel{?}{\Rightarrow} T = ?[int \times ?[int \times T]^{\lambda_2}]^{\lambda_1}$$

$$\stackrel{?}{\Rightarrow} T = ?[int \times ?[int \times ?[int \times T]^{\lambda_3}]^{\lambda_2}]^{\lambda_1}$$

$$\stackrel{?}{\Rightarrow} \cdots$$

- We cannot generate infinitely many level variables
- When do we stop unfolding a type? We don't know!
- Be lazy!

```
\Rightarrow ?[int]^{\lambda}
?[int]
t = ?[int \times t] \Rightarrow T = ?[int \times T]^{\lambda_1}
                                        \stackrel{?}{\Rightarrow} T = ?[\operatorname{int} \times ?[\operatorname{int} \times T]^{\lambda_2}]^{\lambda_1}
                                        \stackrel{?}{\Rightarrow} T = ?[\text{int} \times ?[\text{int} \times ?[\text{int} \times T]^{\lambda_3}]^{\lambda_2}]^{\lambda_1}
                                         \Rightarrow ?[int \times \alpha^t]^{\lambda}
```

- We cannot generate infinitely many level variables
- When do we stop unfolding a type? We don't know!
- 🕕 Be lazy!

Results

Theorem (correctness)

If $P \triangleright_k \Delta$; φ and $\sigma \vDash \varphi$, then $\sigma \Delta \vdash_k P$

Theorem (completeness)

If $\Gamma \vdash_k P$, then there exist Δ , φ , and σ such that

- P ▶_k ∆; φ
- $\sigma \models \varphi$
- $\Gamma = \sigma \Delta$

Theorem (solver)

There exists an algorithm that, for every φ , finds a σ such that $\sigma \models \varphi$ whenever such σ does exist

Outline

- 1 Language
- 2 The type systems at a glance
- 3 Type reconstruction algorithms
- 4 Demo
- **6** Concluding remarks

Outline

- 1 Language
- The type systems at a glance
- 3 Type reconstruction algorithms
- Demo
- **6** Concluding remarks

On performances

Reconstruction times for hypercube of dimension N and side 5

Ν	Proc.	Chan.	Lin.	Constr.	Levels	Tickets	Overall
1	5	8	0.021	0.006	0.002	0.003	0.032
2	25	80	0.128	0.051	0.009	0.012	0.200
3	125	600	1.439	0.844	0.069	0.124	2.477

On performances

Reconstruction times for hypercube of dimension N and side 5

Ν	Proc.	Chan.	Lin.	Constr.	Levels	Tickets	Overall
1	5	8	0.021	0.006	0.002	0.003	0.032
2	25	80	0.128	0.051	0.009	0.012	0.200
3	125	600	1.439	0.844	0.069	0.124	2.477
4	625	4000	33.803	26.422	1.116	3.913	65.254

On performances

Reconstruction times for hypercube of dimension N and side 5

Ν	Proc.	Chan.	Lin.	Constr.	Levels	Tickets	Overall
1	5	8	0.021	0.006	0.002	0.003	0.032
2	25	80	0.128	0.051	0.009	0.012	0.200
3	125	600	1.439	0.844	0.069	0.124	2.477
4	625	4000	33.803	26.422	1.116	3.913	65.254

- plenty of room for improvement
- ILP is potentially expensive, but not in practice

Related software

TyPiCal

```
http://www-kb.is.s.u-tokyo.ac.jp/~koba/typical/
```

- better precision for unlimited channels (allows reasoning on races)
- no recursive types and no level polymorphism (limits recursive processes and network topologies)

Hypha

```
http://www.di.unito.it/~padovani/Software/hypha/
```