# Sprawozdanie Lista 4

# Tymoteusz Roźmiarek

### 12 stycznia 2025

# Maksymalny przepływ

**Sieć rezydualna** to graf reprezentujący, ile dodatkowego przepływu można przesłać przez sieć przepływową, biorąc pod uwagę istniejący przepływ. Dla krawędzi z przepływem, pojemność rezydualna jest różnicą między oryginalną pojemnością a aktualnym przepływem.

**Ścieżka powiększająca** to ścieżka w sieci rezydualnej z węzła źródłowego do węzła ujścia, wzdłuż której można zwiększyć przepływ. Zwiększenie przepływu wzdłuż ścieżki powiększającej oznacza dodanie pewnej wartości do przepływu na każdej krawędzi tej ścieżki.

Algorytm Edmondsa-Karpa jest odmianą algorytmu Forda-Fulkersona do znajdowania maksymalnego przepływu w sieci przepływowej. Działa on poprzez wielokrotne znajdowanie ścieżki powiększającej w sieci rezydualnej i zwiększanie przepływu wzdłuż tej ścieżki. W przeciwieństwie do ogólnego algorytmu Forda-Fulkersona, algorytm Edmondsa-Karpa zawsze wybiera najkrótszą ścieżkę powiększającą, gdzie długość jest mierzona liczbą krawędzi. To ograniczenie gwarantuje, że algorytm zakończy się w czasie wielomianowym. Algorytm można podsumować następująco:

- 1. Inicjalizacja: Ustaw przepływ na każdej krawędzi na 0.
- 2. Pętla: Dopóki istnieje ścieżka powiększająca w sieci rezydualnej:
  - Znajdź najkrótszą ścieżkę powiększającą za pomocą przeszukiwania wszerz (BFS).
  - Zwiększ przepływ wzdłuż tej ścieżki o maksymalną możliwą wartość.
  - Zaktualizuj sieć rezydualną.
- 3. Zwróć znaleziony przepływ.

Algorytm Edmondsa-Karpa ma złożoność czasową  $O(nm^2)$ , gdzie n to liczba węzłów, a m to liczba krawędzi w sieci.

### Wyniki



Rysunek 1: Maksymalny przepływ w zależności od k



Rysunek 2: Czas działania programu w zależności od k (w mikrosekundach)



Rysunek 3: Liczba ścieżek powiększających w zależności od k

# Skojarzenie o największym rozmiarze

Do rozwiązania wykorzystałem **algorytm Hopcroft-Karp**. Jest to ulepszenie w stosunku do algorytmu Edmondsa-Karpa. W przypadku grafów dwudzielnych, problem maksymalnego dopasowania można przekształcić w problem maksymalnego przepływu, ale algorytm Hopcroft-Karp działa szybciej. Algorytm Hopcroft-Karp opiera się na koncepcji sieci rezydualnej i ścieżek powiększających, podobnie jak algorytm Edmondsa-Karpa. W sieci rezydualnej dla grafu dwudzielnego, każda ścieżka powiększająca ma długość co najmniej 2 (ponieważ musi przechodzić przez co najmniej jeden węzeł z każdego "zbioru" w grafie dwudzielnym). Algorytm Hopcroft-Karp wykorzystuje ten fakt, aby w każdej fazie znajdować maksymalny zbiór ścieżek powiększających o minimalnej długości, które nie mają ze sobą wspólnych węzłów. Zwiększa on przepływ wzdłuż wszystkich ścieżek w tym zbiorze jednocześnie, co przyspiesza proces znajdowania maksymalnego dopasowania. Algorytm można podsumować następująco:

- 1. Inicjalizacja: Ustaw dopasowanie na puste.
- 2. Petla: Dopóki istnieje ścieżka powiekszająca w sieci rezydualnej:
  - Znajdź maksymalny zbiór rozłącznych ścieżek powiększających o minimalnej długości.
  - Zwiększ dopasowanie o wszystkie krawędzie w znalezionych ścieżkach.
  - Zaktualizuj sieć rezydualną.
- 3. Zwróć maksymalne skojarzenie.

Algorytm Hopcroft-Karp ma złożoność czasową  $O(\sqrt{n}m)$ , gdzie n to liczba węzłów, a m to liczba krawędzi w grafie.

# Wyniki

### Wykresy wielkości maksymalnego skojarzenia w zaleznosci od i, dla kazdego k

















### Wykresy wykresy czasu działania programu w zależności od k, dla każdego i

















# Modele programowania liniowego

# Model dla zadania znajdowania maksymalnego przepływu:

Zbiór wierzchołków: V Zbiór krawędzi:  $E \subseteq V \times V$  Pojemność krawędzi:  $c_{ij} \geqslant 0, \quad \forall (i,j) \in E$  Wierzchołek źródłowy:  $s \geqslant 0$  Wierzchołek ujścia: t > 0 Przepływ po krawędzi:  $f_{ij} \geqslant 0, \quad \forall (i,j) \in E$ 

Problem maksymalnego przepływu:

maksymalizuj 
$$\sum_{(s,j)\in E} f_{sj}$$
 pod warunkiem że 
$$f_{uv}\leqslant c_{uv},\quad \forall (u,v)\in E$$
 
$$\sum_{u\in V:(u,v)\in E} f_{uv} = \sum_{w\in V:(v,w)\in E} f_{vw},\quad \forall v\in V\setminus \{s,t\}$$

# Wyniki

Tabela 1: Porównanie wyników algorytmu C++ i solvera dla k=2

| Parametr            | C++ (s) | Solver (s) |
|---------------------|---------|------------|
| Maksymalny przepływ | 5       | 5          |
| Czas (s)            | 0.0     | 0.0        |

Tabela 2: Porównanie wyników algorytmu C++ i solvera dla k=7

| Parametr            | C++ (s) | Solver (s) |
|---------------------|---------|------------|
| Maksymalny przepływ | 339     | 339        |
| Czas (s)            | 0.0     | 0.0        |

Tabela 3: Porównanie wyników algorytmu C++ i solvera dla  $k=13\,$ 

| Parametr            | C++ (s) | Solver (s) |
|---------------------|---------|------------|
| Maksymalny przepływ | 44555   | 44555      |
| Czas (s)            | 0.809   | 7.8        |

Tabela 4: Przepływy po krawędziach C++ i Solver dla k=2

| Krawędź           | Przepływ (C++) |
|-------------------|----------------|
| $0 \rightarrow 1$ | 1              |
| $0 \rightarrow 2$ | 2              |
| $1 \rightarrow 3$ | 1              |
| $2 \rightarrow 3$ | 2              |

| Krawędź           | Przepływ (Solver) |
|-------------------|-------------------|
| $0 \rightarrow 1$ | 1                 |
| $0 \rightarrow 2$ | 2                 |
| $1 \rightarrow 3$ | 1                 |
| $2 \rightarrow 3$ | 2                 |

Tabela 5: Przepływy po krawędziach C++ i Solver dla k=3

| Krawędź           | Przepływ (C++) |
|-------------------|----------------|
| $0 \rightarrow 1$ | 3              |
| $0 \rightarrow 2$ | 2              |
| $0 \rightarrow 4$ | 3              |
| $1 \rightarrow 3$ | 3              |
| $1 \rightarrow 5$ | 0              |
| $2 \rightarrow 3$ | 0              |
| $2 \rightarrow 6$ | 2              |
| $3 \rightarrow 7$ | 3              |
| $4 \rightarrow 5$ | 2              |
| $4 \rightarrow 6$ | 1              |
| $5 \rightarrow 7$ | 2              |
| $6 \rightarrow 7$ | 3              |

| Krawędź           | Przepływ (Solver) |
|-------------------|-------------------|
| $0 \rightarrow 1$ | 3                 |
| $0 \rightarrow 2$ | 2                 |
| $0 \rightarrow 4$ | 3                 |
| $1 \rightarrow 3$ | 3                 |
| $1 \rightarrow 5$ | 0                 |
| $2 \rightarrow 3$ | 0                 |
| $2 \rightarrow 6$ | 2                 |
| $3 \rightarrow 7$ | 3                 |
| $4 \rightarrow 5$ | 2                 |
| $4 \rightarrow 6$ | 1                 |
| $5 \rightarrow 7$ | 2                 |
| $6 \rightarrow 7$ | 3                 |

### Model dla zadania znajdowania największego skojarzenia:

Zbiory wierzchołków:

U, V

Macierz sąsiedztwa:

 $e_{uv} \in \{0, 1\}, \quad \forall u \in U, v \in V$ 

Zmienna decyzyjna:

 $x_{uv} \in \{0, 1\}, \quad \forall u \in U, v \in V$ 

Problem maksymalnego skojarzenia:

maksymalizuj 
$$\sum_{u \in U} \sum_{v \in V} x_{uv}$$
 pod warunkiem że 
$$\sum_{v \in V} x_{uv} \leqslant 1, \quad \forall u \in U$$
 
$$\sum_{u \in U} x_{uv} \leqslant 1, \quad \forall v \in V$$
 
$$x_{uv} \leqslant e_{uv}, \quad \forall u \in U, v \in V$$

# Wyniki

Tabela 6: Porównanie wyników algorytmu C++ i solvera dla  $k=4,,\,i=2$ 

| Parametr               | C++ $(s)$ | Solver (s) |
|------------------------|-----------|------------|
| Maksymalne skojarzenie | 13        | 13         |
| Czas (s)               | 0.0       | 0.0        |

Tabela 7: Porównanie wyników algorytmu C++ i solvera dla  $k=8, i=4\,$ 

| Parametr            | C++ (s) | Solver (s) |
|---------------------|---------|------------|
| Maksymalny przepływ | 248     | 248        |
| Czas(s)             | 0.003   | 0.7        |

Tabela 8: Porównanie wyników algorytmu C++ i solvera dla k=10, i=5

| Parametr            | C++ (s) | Solver (s) |
|---------------------|---------|------------|
| Maksymalny przepływ | 1016    | 1016       |
| Czas (s)            | 0.025   | 82.8       |

| C++    | Solver |
|--------|--------|
| (0, 1) | (0, 1) |
| (1, 0) | (1, 0) |
| (3, 2) | (3, 2) |

Tabela 9: k = 2, i = 1

| C++    | Solver |
|--------|--------|
| (0, 1) | (0, 1) |
| (1, 6) | (1, 6) |
| (2, 3) | (2, 3) |
| (3, 0) | (3, 0) |
| (4, 4) | (4, 4) |
| (6, 7) | (6, 7) |
| (7, 5) | (7, 5) |

Tabela 10: k = 3, i = 2

| C++      | Solver   |
|----------|----------|
| (0, 4)   | (0, 4)   |
| (1, 2)   | (1, 2)   |
| (2, 3)   | (2, 3)   |
| (3, 13)  | (3, 13)  |
| (4, 5)   | (4, 5)   |
| (6, 11)  | (6, 11)  |
| (7, 0)   | (7, 0)   |
| (8, 8)   | (8, 8)   |
| (9, 10)  | (9, 10)  |
| (10, 6)  | (10, 6)  |
| (11, 9)  | (11, 9)  |
| (12, 7)  | (12, 7)  |
| (13, 12) | (13, 12) |
| (15, 1)  | (15, 1)  |

Tabela 11: k = 4, i = 2

# Algorytm Dynica

Sieć warstwowa składa się z warstw węzłów, gdzie warstwa 0 to węzeł źródłowy, a warstwa k to zbiór węzłów, do których można dotrzeć z węzła źródłowego w dokładnie k krokach w sieci rezydualnej. Algorytm Dynica jest algorytmem służącym do znajdowania maksymalnego przepływu w sieci przepływowej. Działa on poprzez budowanie sieci warstwowej, która jest podgrafem sieci rezydualnej, i znajdowanie w niej ścieżek powiększających. Algorytm Dynica wyszukuje ścieżki powiększające w sieci warstwowej, dopóki nie będzie już możliwe dotarcie do węzła ujścia. Wtedy buduje nową sieć warstwowa i powtarza proces.

Algorytm można podsumować następująco:

- 1. Inicjalizacja: Ustaw przepływ na każdej krawędzi na 0.
- 2. Pętla: Dopóki istnieje ścieżka z węzła źródłowego do węzła ujścia w sieci rezydualnej:
  - Zbuduj sieć warstwową.
  - Znajdź ścieżki powiększające w sieci warstwowej i zwiększ przepływ wzdłuż tych ścieżek.
- 3. Zwróć znaleziony przepływ.

Algorytm Dynica ma złożoność czasową  $O(n^2m)$ , gdzie n to liczba węzłów, a m to liczba krawędzi w sieci. W praktyce algorytm Dynica często działa szybciej, szczególnie w przypadku gęstych sieci.

# Wyniki

# maksymalny przepływ Edmonds-Karp Dynic 500000 400000 200000 100000 2 4 6 8 10 12 14 16

Rysunek 4: Maksymalny przepływ w zależności od  $\boldsymbol{k}$ 



Rysunek 5: Czas działania programu w zależności od k (w mikrosekundach)



Rysunek 6: Liczba ścieżek powiększających w zależności od  $\boldsymbol{k}$ 

Na powyższych wykresach widać, że algorytm Dynica działa o wiele szybciej niż algorytm Edmondsa-Karpa. Różnica robi się bardzo zauważalna dla  $k \geqslant 12$ . Ponadto algorytm Dynica wykorzystuje zdecydowanie więcej ścieżek powiększających.