PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-067266

(43) Date of publication of application: 12.03.1996

(51)Int.CI.

B62D 6/00 B62D 5/04 // B62D119:00

(21)Application number : 06-206990

(71)Applicant: HONDA MOTOR CO LTD

(22)Date of filing:

31.08.1994

(72)Inventor: MUKAI YOSHINOBU

NORO EIKI

HIRONAKA SHINJI

(54) ELECTRIC DRIVEN POWER STEERING DEVICE

(57)Abstract:

PURPOSE: To provide an electric driven power steering device excellent in a steering feeling generating steering assist force in accordance with a target current even when steering is returned.

CONSTITUTION: An electric driven power steering device is provided with a steering torque sensor 10, control means 20 comprising a target current setting means 15, deviation determining means 16, drive control means 21, low-pass filter(LPF) 22A and 22B, electric motor rotational speed arithmetic means 23, steering condition detecting means 24 and a return time control means 25, electric motor drive means 13, electric motor 8, electric motor current detecting means 18 and an electric motor voltage detecting means 19.

LEGAL STATUS

[Date of request for examination]

30.10.1997

[Date of sending the examiner's decision of

rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3120003

[Date of registration]

13.10.2000

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

庁内整理番号

(11)特許出願公開番号

特開平8-67266

(43)公開日 平成8年(1996)3月12日

/ 51	١	Int.	C_1	6
เฉเ	,	Int.	LЛ	

識別記号

FΙ

技術表示箇所

6/00 B62D

5/04

// B62D 119:00

審査請求 未請求 請求項の数3 OL (全 9 頁)

(21)出願番号	特願平6-206990	(71)出願人 000005326
		本田技研工業株式会社
(22)出願日	平成6年(1994)8月31日	東京都港区南青山二丁目1番1号
		(72)発明者 向 良信
		埼玉県和光市中央1丁目4番1号 株式会
		社本田技術研究所内
		(72)発明者 野呂 栄樹
		埼玉県和光市中央1丁目4番1号 株式会
		社本田技術研究所内
		(72)発明者 広中 慎司
		埼玉県和光市中央1丁目4番1号 株式会
		社本田技術研究所内
		(74)代理人 弁理士 下田 容一郎 (外2名)
		1

(54) 【発明の名称】 電動パワーステアリング装置

(57)【要約】

ステアリングの戻り時にも目標電流に応じた操舵補助力 を発生する操舵フィーリングに優れた電動パワーステア リング装置を提供する。

【構成】 操舵トルクセンサ10と、目標電流設定手段 15、偏差決定手段16、駆動制御手段21、ローバス フィルタ(LPF)22Aおよび22B、電動機回転速 度演算手段23、ステアリング状態検出手段24、戻り 時制御手段25を備えた制御手段20と、電動機駆動手 段13と、電動機8と、電動機電流検出手段18および 電動機電圧検出手段19とを備えた電動パワーステアリ ング装置。

【特許請求の範囲】

【請求項1】 ステアリング系の操舵トルクを検出する 操舵トルクセンサと、ステアリング系に操舵補助力を作 用させる電動機と、この電動機の回転速度を検出する電 動機回転速度検出手段と、前記電動機の電動機電流を検 出する電動機電流検出手段と、少なくとも前記操舵トル クセンサが検出した操舵トルク信号に対応した目標電流 信号を発生する目標電流設定手段、前記目標電流信号と 前記電動機電流検出手段が検出した電動機電流信号の偏 差信号を決定する偏差信号決定手段、との偏差信号に基 10 づいてバルス幅変調信号およびオン信号を発生する駆動 制御手段を備えた制御手段と、この制御手段からの前記 パルス幅変調信号および前記オン信号に基づいてブリッ ジ回路を形成するスイッチング素子の1組の対辺のそれ ぞれが同時に制御され、前記電動機を正逆回転駆動する 駆動信号を発生する電動機駆動手段とを備えた電動パワ ーステアリング装置において、

前記制御手段に、前記操舵トルクセンサが検出した操舵トルク信号および前記電動機回転速度検出手段が検出した前記電動機回転速度信号に基づいてステアリング系の往き状態と戻り状態を検出するステアリング状態検出手段と、前記電動機回転速度信号に対応した戻り時制御信号を発生する戻り時制御手段とを設け、前記ステアリング状態検出手段がステアリング系の戻り状態を検出した場合には、前記戻り時制御信号に基づいて前記駆動制御手段が発生する前記オン信号を前記電動機回転速度信号に対応したパルス幅変調信号に変更することを特徴とする電動パワーステアリング装置。

【請求項2】 前記電動機回転速度検出手段に、前記電動機電流検出手段が検出した前記電動機電流信号と電動機電圧検出手段が検出する電動機電圧信号に基づいて前記電動機回転速度信号を演算する電動機回転速度演算手段を備えたことを特徴とする請求項1記載の電動パワーステアリング装置。

【請求項3】 前記電動機電流検出手段に、ホール素子を用いた非接触型の電流検出手段を備えたことを特徴とする請求項1記載の電動パワーステアリング装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、電動機の動力を操舵補助力としてステアリング系に直接作用させ、ドライバの操舵力の軽減を図る電動パワーステアリング装置に関する。

[0002]

【従来の技術】従来の電動パワーステアリング装置において、操舵トルクセンサが検出する操舵トルクに基づいて目標電流 I_{us} を設定し、この目標電流 I_{us} に対応した電動機電圧 V_u で電動機を駆動するとともに、電動機に流れる電動機電流 I_u を検出して負帰還(NFB)をかけ、目標電流 I_{us} と電動機電流 I_u の偏差信号に基づい

2

て電動機電圧V』を制御して目標電流 Ius と等しい電動機電流 Iuで電動機を駆動し、ステアリング系に操舵補助力を作用させるよう構成されたものは知られている。 [0003] また、従来の電動パワーステアリング装置は、電動機を駆動する電動機駆動手段をパワーFET(電界効果トランジスタ)やパワー・トランジスタ等のスイッチング素子を用いたブリッジ回路で構成し、制御手段からの制御(例えば、PWM制御)により電動機に供給するパルス状電源電圧のデューティを変化させるよう構成されている。

【0004】図4に従来の電動パワーステアリング装置の全体構成図、図5に従来の電動パワーステアリング装置の要部プロック構成図を示す。図4において、電動パワーステアリング装置1は、ステアリングホイール2、ステアリング軸3、ハイポイドギア4、ピニオン5 a およびラック軸5 b などからなるラック&ピニオン機構5、タイロッド6、操向車輪の前輪7、操舵補助力を発生する電動機8、ステアリングホイール2に作用する操舵トルクを検出して操舵トルクに対応した電気信号に変20 換された操舵トルク信号Tを出力する操舵トルクセンサ10、操舵トルク信号Tに基づいて電動機8を駆動、制御する制御手段12、電動機駆動手段13、電動機電流検出手段14等を備える。

【0005】ステアリングホイール2を操舵すると、ステアリング軸3に設けられた操舵トルクセンサ10が操舵トルクを検出して対応する電気信号に変換し、操舵トルク信号Tを制御手段12に送る。また、ステアリング軸3に加えられる回転は、ラック&ビニオン機構5を介してビニオン5aの回転力がラック軸5bの軸方向の直線運動に変換され、タイロッド6を介して前輪7の操向を変化させる。

【0006】制御手段12は操舵トルク信号Tに基づいて電動機駆動手段13に電動機制御電圧V。を供給し、電動機駆動手段13は電動機制御電圧V。に対応した電動機電圧V、を供給して電動機8を駆動する。

【0007】電動機電圧V』により駆動された電動機8は、ハイポイドギア4を介して電動機電圧V』のレベルおよび符号に対応した操舵補助力をステアリング系に作用させ、ステアリングホイール2に加えられる操舵力の軽減を図るよう構成されている。

【0008】図5において、電動パワーステアリング装置1の制御手段12は、操舵トルクセンサ10からの操舵トルク信号Tに基づいて図6に示す操舵トルク(T)一目標電流(Ius)特性図の目標電流Iusに変換する目標電流設定手段15、目標電流Iusと、電動機電流検出手段14が検出した電動機電流Iuの電動機検出電流Iusとの偏差信号ΔIを演算する偏差決定手段16、偏差信号ΔIを電圧に変換し、電動機駆動手段13をPWM制御して偏差信号ΔIを速やかに0に収束させるような電動機制御電圧V。を発生する駆動制御手段17を備え

【0009】電動機駆動手段13は、例えばパワーFE T(電界効果トランジスタ)等のスイッチング素子4個 を用いたブリッジ回路で構成され、駆動制御手段17か ら提供されるスイッチオン/オフ信号および PWM制御 信号からなる電動機制御電圧V。で、2個をペアとした 2組のパワーFETのそれぞれのペアを駆動制御すると とにより、電動機8に供給する電動機電圧V₁の電圧値 と方向が設定される。なお、電動機電圧Vuの方向は、 駆動制御手段17から出力される電動機制御電圧V。の

極性に対応して決定される。

3

【0010】例えば、右方向のステアリング操作を行う と、プラス極性の操舵トルク信号Tが目標電流設定手段 15に入力され、図6に示すプラス極性の操舵トルク信 号Tに対応したプラス極性の目標電流Insが出力されて 電動機8にもプラス極性の電動機電流 [が流れ、右方 向の操舵補助力が発生する。この状態では、電動機電流 検出手段14が検出する電動機検出電流14.6もプラス極 性となり、偏差決定手段16から出力される偏差信号△ I は電動機電流 I μと電動機検出電流 I μ₂の差分 (I μ -Iua)となり、偏差信号AIは駆動制御手段17の制御 により速やかに0に収束される。

【0011】一方、左方向のステアリング操作を行う と、図6に示す目標電流 [45、電動機電流 [4および電 動機検出電流 I μο はマイナス極性となり、偏差決定手段 16から出力される偏差信号△ [は(- [, + [, ,) と なって偏差信号△Ⅰは速やかに〇に収束される。

【0012】とのように、制御手段12は電動機検出電 流 I μο の帰還ループを設け、目標電流 I μς と電動機検出 電流 Impの偏差信号 ΔIを制御するようにしたので、ス テアリングが左右いずれの方向であっても、偏差信号△ IをOに収束させ、速やかに電動機電流 I wが目標電流 Imsとなるよう制御するよう構成される。

[0013]

【発明が解決しようとする課題】従来の電動パワーステ アリング装置は、電動機検出電流 I μo のフィードバック により電動機8の駆動を制御するよう構成されているた め、例えば、車両が停止中の据え切り時にステアリング ホイールから手を放した時、またはステアリングホイー ルの戻り操作時には、タイヤからの反力によって電動機 40 が反対方向に回転し、電動機8の回生作用により発生す る逆起電力により回生電流 I、が流れ、回生電流 I、と電 動機電流 ["の和に対応した電動機検出電流 ["。がフィ ードバックされるため、偏差信号△Iが0に収束され ず、発散したり振動して不快音を発生したり、操舵フィ ーリングを低下させてしまう課題がある。

【0014】次に、電動機電流 I 』と回生電流 I ェの関係 について説明する。一般的に、電動機電圧V』は電動機 8のインダクタンス(L)を無視し、電動機電流 I "、

として数1で表わされる。

[0015]

【数1】V"=Rm*["+k,*N"

【0016】数1より電動機電流 1,は数2で表わさ れ、一方、タイヤからの反力によって電動機8が逆回転 した場合の電動機電流 [は数3で表わされる。

[0017]

[数2] I m = (V m - k s * N m) / R m

[0018]

【数3】 I m = {Vm - (-ks*Nm)}/Rm 【0019】数3より明らかなように、ステアリングの 戻り操作時には、回生電流 I_{κ} (= k_s*N_{μ}/Rm) の 発生によって電動機電流 I 』が増加し、制御手段12は 電動機電流Ⅰμのフィードバックでは偏差信号△Ⅰを0 に収束させることができない。

【0020】図3に電動機駆動手段の動作説明図を示 す。図3において、電動機駆動手段13は、ブリッジ回 路を形成する4個のパワーFET (電界効果トランジス タ) Q1~Q4を備え、各FETQ1~Q4はそれぞれ 20 のソース、ドレイン間にダイオード D1~ D4を内蔵し ており、Q1およびQ2は直流電源E。、Q2およびQ 4は車体アース(GND)にそれぞれ接続される。-方、Q1とQ2の接続点、Q3とQ4の接続点間に電動 機8が接続され、図5の駆動制御手段17から供給され る電動機制御電圧V。でFET(電界効果トランジス タ) Q1~Q4のそれぞれのゲートG1~G4を制御す ることにより、電動機8に電動機電圧V_mと電動機電流 Iuを供給する。なお、ブリッジ回路はパワーFETに 代えてダイオードを並列接続したパワートランジスタで 30 構成される場合もある。

【0021】回転方向右のステアリング往き状態では、 例えば、電動機制御電圧V。のオン信号V。, をQ1のゲ ートGI、PWM信号VpwwをQ4のゲートG4、オフ 信号VorをそれぞれQ2のゲートG2とQ3のゲートG 3に供給することにより、直流電源E。→FET(電界 効果トランジスタ)Q1→電動機8→FET(電界効果 トランジスタ) Q4→車体アース (GND) の経路の電 動機電流!」(破線矢印方向)を電動機8に供給する。 【0022】一方、回転方向左のステアリング往き状態 では、オン信号VowをQ3のゲートG3、PWM信号V rumをQ2のゲートG2、オフ信号V。rをそれぞれQ1 のゲートG1とQ4のゲートG4に供給することによ り、直流電源E。→FET (電界効果トランジスタ) Q 3→電動機8→FET (電界効果トランジスタ) Q2→ 車体アース(GND)の経路の電動機電流I』(破線矢 印と逆方向)を電動機8に供給する。

【0023】このように、電動機制御電圧V。のオン信 号VawとPWM信号Vawwでブリッジ回路の対辺を形成 するFET (電界効果トランジスタ) Q1とQ4、FE 5

により、電動機電流 I nの方向と大きさを決定し、電動機8の回転方向と回転速度を制御することができる。

【0024】また、抵抗R。は電動機電流 I wの方向とレベルを電圧V r (極性と電圧値)として検出し、電動機電流検出手段14で電流に変換して電動機検出電流 I w。を出力し、偏差決定手段16にフィードバックする。【0025】次に、回転方向右のステアリング往き状態から戻り状態に移行した場合、タイヤからの反力により電動機8に逆起電力が発生し、逆起電力による回生電流 I wが電動機8→ダイオードD3→FET(電界効果トランジスタ)Q1→電動機8の閉ループを流れ、電動機8に流れる電流は電動機制御電圧V。制御による電動機

[0026]電動機電流検出手段14が増加した電動機電流 (I_u+I_x) を検出し、電動機電流 (I_u+I_x) に対応した電動機検出電流 I_{uo} を偏差決定手段16 にフィードバックするため、電動機8の逆起電力により発生した回生電流 I_x については制御ができず、図5の駆動制御手段17は電動機制御電圧 V_o を決定できなくなって電動機電流 (I_u+I_x) に寄生発振やハンチング現象を生じ、ステアリングの戻り時に不快音を発生したり、操舵フィーリングの低下を招く場合がある。

電流 I w と回生電流 I x の和 (I w + I x) となって増加す

[0027] との発明はこのような課題を解決するためなされたもので、その目的はステアリングの戻り時にも目標電流に応じた操舵補助力を発生し、操舵フィーリングを向上することができる電動パワーステアリング装置を提供することにある。

[0028]

【課題を解決するための手段】前記課題を解決するため 30 この発明に係る電動パワーステアリング装置は、制御手段に、操舵トルクセンサが検出した操舵トルク信号および電動機回転速度検出手段が検出した電動機回転速度信号に基づいてステアリング系の往き状態と戻り状態を検出するステアリング状態検出手段と、電動機回転速度信号に対応した戻り時制御信号を発生する戻り時制御手段とを設け、ステアリング状態検出手段がステアリング系の戻り状態を検出した場合には、戻り時制御信号に基づいて駆動制御手段が発生するオン信号を電動機回転速度信号に対応したパルス幅変調信号に変更することを特徴 40 とする。

【0029】また、この発明に係る電動パワーステアリング装置は、電動機回転速度検出手段に、電動機電流検出手段が検出した電動機電流信号と電動機電圧検出手段が検出する電動機電圧信号に基づいて電動機回転速度信号を演算する電動機回転速度演算手段を備えたことを特徴とする。

【0030】さらに、この発明に係る電動パワーステアリング装置は、電動機電流検出手段に、ホール素子を用いた非接触型の電流検出手段を備えたことを特徴とす

る。

[0031]

【作用】との発明に係る電動パワーステアリング装置は、制御手段に、操舵トルクセンサが検出した操舵トルク信号および電動機回転速度検出手段が検出した電動機回転速度信号に基づいてステアリング系の往き状態と戻り状態を検出するステアリング状態検出手段と、電動機回転速度信号に対応した戻り時制御信号を発生する戻り時制御手段とを設けたので、ステアリング状態検出手段がステアリング系の戻り状態を検出した場合には、戻り時制御信号に基づいて駆動制御手段が発生するオン信号を電動機回転速度信号に対応したパルス幅変調信号に変更するので、電動機の逆起電力による回生電流を補償して電動機電流を目標電流に収束させることができる。

6

[0032] また、この発明に係る電動パワーステアリング装置は、電動機回転速度検出手段に、電動機電流検出手段が検出した電動機電流信号と電動機電圧検出手段が検出する電動機電圧信号に基づいて電動機回転速度信号を演算する電動機回転速度演算手段を備えたので、電 動機回転速度センサを用いなくとも電動機回転速度を検出することができる。

【0033】さらに、この発明に係る電動パワーステアリング装置は、電動機電流検出手段に、ホール素子を用いた非接触型の電流検出手段を備えたので、電動機の動作に影響を与えず電動機電流を検出することができる。 【0034】

【実施例】以下、との発明の実施例を添付図面に基づいて説明する。図1はとの発明に係る電動パワーステアリング装置の要部ブロック構成図である。図1において、

電動パワーステアリング装置は、操舵トルクセンサ10、制御手段20、電動機駆動手段13、電動機8、電動機回転速度検出手段30の検出部を構成する電動機電流検出手段18および電動機電圧検出手段19を備える。また、電動機電流検出手段18を介して電動機電流L_nのフィードバックループを形成する。

【0035】制御手段20はマイクロプロセッサ、ROM/RAM等のメモリ、インタフェース回路、およびソフトプログラムで構成され、目標電流設定手段15、偏差決定手段16、駆動制御手段21、ローパスフィルタ(LPF)22Aおよび22B、電動機回転速度演算手段23、ステアリング状態検出手段24、戻り時制御手段25を備える。また、ローパスフィルタ(LPF)22Aおよび22B、電動機回転速度演算手段23は、電動機電流検出手段18および電動機電圧検出手段19とともに電動機回転速度検出手段30を構成する。

【0036】目標電流設定手段15はROM等のメモリで構成し、予めメモリに設定した図6に示す操舵トルク(T)一目標電流(Ius)特性から操舵トルク信号Tに対応した目標電流信号Iusを選定して偏差決定手段16 に提供する。偏差決定手段16は目標電流信号Iusと、

7

電動機電流検出手段18およびローパスフィルタ(LPF) 22 A を介してフィードバックされる電動機電流 $I_{\mu \nu}$ の電流信号 $I_{\mu \nu}$ の偏差を演算し、偏差信号 ΔI を駆動制御手段21 に供給する。

[0037] 駆動制御手段21はPID(比例・積分・ 微分)補償手段、電流一電圧変換手段およびPWM制御 信号発生手段等を備え、偏差信号△IをPID制御した 後、電流信号を電圧信号に変換し、電動機制御電圧V。 (Von、Vpun、Vor)を電動機駆動手段13に供給す る。また、駆動制御手段21は制御電圧変更手段を備 え、後述する戻り時制御手段25からステアリング戻り 時に制御信号Vx(例えば、符号化レベル信号)が供給 された場合には、電動機制御電圧V。のオン信号V。*を 制御信号Vx (例えば、符号化レベル信号) に対応した PWM信号Vorusに変更して出力するよう構成する。 【0038】ローパスフィルタ22Aはアクティブフィ ルタやソフト処理のフィルタで構成し、電動機電流検出 手段18が検出した電動機電流 [』の電動機検出電流 [woの所定周波数以上の、例えばノイズレベルを含む不要 帯域レベルを減衰させ、電動機電流 1 に対応した電流 信号」。。を偏差決定手段16および電動機回転速度演算 手段23に供給する。ローパスフィルタ22Bもアクテ ィブフィルタやソフト処理のフィルタで構成し、電動機 電圧検出手段19が検出した電動機電圧V』の電動機検 出電圧Vոοの所定周波数以上の、例えばノイズレベルを 含む不要帯域レベルを減衰させ、電動機電圧V』に対応 した電圧信号Vurを電動機回転速度演算手段23に供給

[0039] 電動機回転速度演算手段23はソフトプロ グラムの演算機能を備え、ローバスフィルタ22Aから 30 する。の電流信号 [ur およびローバスフィルタ22Bからの電 圧信号 Vur に基づいて数4で表わされる電動機回転速度 状態をNuを演算し、電動機回転速度信号 Nuをステアリング状 ちr に 態検出手段24 および戻り時制御手段25 に提供する。 デア! (0040) 状態)

[数4] Nu= (Vu-Rm*Iu)/ks

【0041】なお、電動機回転速度検出手段30は、電動機電流検出手段18および電動機電圧検出手段19を回路で構成し、制御手段20の一部を構成するローバスフィルタ22A、ローバスフィルタ22Bおよび電動機回転速度演算手段23を用いて電動機電流IM、電動機電圧VMのノイズ成分を減衰させ、電動機回転速度NMを演算して検出するので、タコジェネレータ等のセンサに代えて比較的単純な構成で、検出精度の良い検出器を構成する。

【0042】図2に非接触型の電動機電流検出手段の要部プロック構成図を示す。図2において、電動機電流検出手段18は、非接触型のホール素子18Aは電動機8変換手段18Bで構成し、ホール素子18Aは電動機8を駆動する電動機電流 I "をホール電圧 V "。として検出

し、電流変換手段18Bはホール電圧V_n。を電動機検出電流 I_n。に変換して出力するよう構成する。

【0043】電動機電流検出手段18は、電動機8や電動機駆動手段13の被測定系に影響を及ぼさず電動機電流 I_Nを検出するので、検出精度が高く、経時変化の少ない電動機電流検出手段を構成する。

【0044】ステアリング状態検出手段24は比較・判定機能を備え、操舵トルクセンサ10が検出した操舵トルク信号Tの符号信号Fおよび電動機回転速度演算手段1023で演算した電動機回転速度信号Nェの符号(極性)信号Gに基づいてステアリングの往き状態または戻り状態を検出し、ステアリング状態信号Sτを戻り時制御手段25に提供する。

 $\{0045\}$ ステアリング状態は、操舵トルク信号Tの符号信号Fと電動機回転速度信号 N_{\star} の符号(極性)信号Gが一致する場合はステアリング往き状態と判定し、例えばLレベルのステアリング状態信号 S_{τ} を出力し、符号信号Fと符号(極性)信号Gが不一致の場合にはステアリング戻り状態と判定し、例えばHレベルのステア リング状態信号 S_{τ} を出力するよう構成する。

【0046】戻り時制御手段25はROM等のメモリ、切替機能を備え、予め図7に示すような電動機回転速度N』と制御信号Vx(例えば、符号化レベル信号)の対応データを記憶しておき、電動機回転速度演算手段23から電動機回転速度信号N』が供給されると、対応した制御信号Vx(例えば、符号化レベル信号)を駆動制御手段21に提供し、駆動制御手段21から出力される電動機制御電圧V。のオン信号Vonを制御信号Vxに対応したPWM信号Vopumに変更(Von→Vopum)するよう制御する。

【0047】また、戻り時制御手段25はステアリング 状態検出手段24から供給されるステアリング状態信号 S_τ に基づいて制御信号 V_x の供給/停止が制御され、ステアリング状態信号 S_τ が H レベル(ステアリング戻り 状態)の場合は制御信号 V_x を出力し、ステアリング状態信号 S_τ が L レベル(ステアリング往き状態)の場合 には制御信号 V_x を停止するよう構成する。

[0048]演算された電動機回転速度N、は電動機電流I、に対応し、ステアリング戻り時の制御信号V、(例 れば、符号化レベル信号)は電動機回転速度N、に対応するよう形成し、さらにステアリング戻り時の電動機制御電圧V。のPWM信号V。puxも制御信号Vxに対応するよう形成したので、図3に示すようなステアリング戻り時に電動機8の逆起電力によって回生電流I、が発生しても、図3のFET(電界効果トランジスタ)Q1のゲートG1に印加されている電動機制御電圧V。のオン信号VoxをPWM信号Vopuxに変更し、しかも回生電流I、に対応したバルス幅のデューティを変化(例えば、回生電流I、が増加するとバルス幅のオフ時デューティを 増加)し、回生電流I、に相当する電流を減少させるよ

20

うQ1を制御する。

【0049】続いて、との発明に係る電動パワーステアリング装置の動作を図3に基づいて説明する。回転方向右のステアリングの往き状態では、図1の駆動制御手段21から目標電流 I us に対応した電動機制御電圧 V。が図3に示す電動機駆動手段13に出力され、FET(電界効果トランジスタ)Q1~Q4のゲートG1~G4にはそれぞれ電動機制御電圧 V。を形成するオン信号Vor、オフ信号Vor、偏差信号△Iに対応するPWM信号Vpunが供給され、電動機電流 I uが矢10印(破線)の方向に流れ、電動機 8 が駆動されて操舵方向に操舵補助力を作用させる。

9

【0050】この状態から、ステアリング戻り状態に移行すると、タイヤからの反力により電動機8に逆起電力が発生し、操舵トルクと反対方向に対応した回生電流 I_{κ} が矢印の方向に発生して電動機8に流れる電流は回生電流 I_{κ} に目標電流 I_{κ} に対応した電動機電流 I_{κ} が加算($I_{\kappa}+I_{\kappa}$)されたものとなる。

【0051】加算された電流($l_{II}+l_{IK}$)および電動機電圧 V_{IK} はそれぞれ図1の電動機電流検出手段18、電動機電圧検出手段19で検出され、それぞれローバスフィルタ22A、22Bを介してノイズレベルが減衰された電流信号 l_{IIF} 、電圧信号 V_{IIF} が電動機回転速度演算手段23に入力され、電動機回転速度 V_{IIF} が減算される。【0052】一方、ステリング状態検出手段23が操舵トルク信号T(符号信号F)および電動機回転速度 V_{IIF} (符号信号G)からステアリング戻り状態を検出してステアリング状態信号 S_{IIF} を出力する。

【0053】戻り制御手段25は、ステアリング状態信号 S_{τ} が入力されると、電動機回転速度信号 N_{κ} に対応し 30 た制御信号 V_{κ} を駆動制御手段21に供給して電動機制御電圧 V_{ϵ} のオン信号 V_{ϵ} のを制御信号 V_{κ} のレベルに対応したPWM信号 V_{ϵ} のがっトG1が制御信号 V_{κ} に対応してPWM制御される。

【0054】ゲートG1がPWM制御されると、FETQ1およびFETQ4がオフ時に車体アース(GND) \rightarrow ダイオードD2 \rightarrow 電動機8 \rightarrow ダイオードD3 \rightarrow 直流電源E。(+)の経路で流れる電流により電動機8が発電作用をするので、電動機電流の増加が抑制され、ステアリング戻り状態において回生電流 I_{κ} が電動機駆動手段13に発生しても、制御手段20は回生電流 I_{κ} の増加分を補償して目標電流 I_{κ} に等しい電動機電流(I_{κ} + I_{κ})で電動機8を駆動し、ステアリング系に操舵補助力を作用する。

[0055]

【発明の効果】以上説明したようにこの発明に係る電動 機駆動手段、14,18…電動機電流検出手段、15… にワーステアリング装置は、制御手段に、操舵トルクセ 目標電流設定手段、16…偏差決定手段、17…駆動制 ンサが検出した操舵トルク信号および電動機回転速度検 御手段、18A…ホール素子、18B…電流変換手段、出手段が検出した電動機回転速度信号に基づいてステア 50 19…電動機電圧検出手段、21…駆動制御手段、22

リング系の往き状態と戻り状態を検出するステアリング 状態検出手段と、電動機回転速度信号に対応した戻り時 制御信号を発生する戻り時制御手段とを設け、ステアリ ング状態検出手段がステアリング系の戻り状態を検出し た場合には、戻り時制御信号に基づいて駆動制御手段が 発生するオン信号を電動機回転速度信号に対応したパル ス幅変調信号に変更し、電動機の逆起電力による回生電 流を補償して電動機電流を目標電流に収束させることが できるので、不快音や電動機電流のハンチング現象を防 止して操舵フィーリングを向上させることができる。

【0056】また、この発明に係る電動パワーステアリング装置は、電動機回転速度検出手段に、電動機電流検出手段が検出した電動機電流信号と電動機電圧検出手段が検出する電動機電圧信号に基づいて電動機回転速度信号を演算する電動機回転速度演算手段を備え、電動機回転速度センサを用いなくとも電動機回転速度を検出することができるので、構成の単純化ならびに検出精度の向上を図ることができる。

【0057】さらに、この発明に係る電動パワーステアリング装置は、電動機電流検出手段に、ホール素子を用いた非接触型の電流検出手段を備え、電動機の動作に影響を与えず電動機電流を検出することができるので、検出精度と信頼性の向上を図ることができる。

【0058】よって、ステアリングの戻り時にも目標電流に応じた操舵補助力を発生する操舵フィーリングに優れた電動パワーステアリング装置を提供することができる。

【図面の簡単な説明】

【図 1 】 この発明に係る電動パワーステアリング装置の 要部ブロック構成図

【図2】非接触型の電動機電流検出手段の要部ブロック 構成図

【図3】電動機駆動手段の動作説明図

【図4】従来の電動パワーステアリング装置の全体構成 図

【図5】従来の電動パワーステアリング装置の要部ブロック構成図

【図6】操舵トルク(T)一目標電流(I_{MS})特性図

【図7】電動機回転速度(N_x) —制御信号(V_x)特性

【符号の説明】

1…電動パワーステアリング装置、2…ステアリングホイール、3…ステアリング軸、4…ハイポイドギア、5 …ラック&ビニオン機構、5a…ピニオン、5b…ラック軸、6…タイロッド、7…前輪、8…電動機、10…操舵トルクセンサ、12,30…制御手段、13…電動機駆動手段、14,18…電動機電流検出手段、15…目標電流設定手段、16…偏差決定手段、17…駆動制御手段、18A…ホール素子、18B…電流変換手段、19…電動機響圧輸出手段。21…駆動制御手段。22

A, 22B…ローパスフィルタ(LPF)、23…電動機回転速度演算手段、24…ステアリング状態検出手段、25…戻り時制御手段、30…電動機回転速度検出手段、D1~D4…ダイオード、F, G…符号信号、G1~G4…ゲート、I₆…回生電流、I_m…電動機電流、I_m。…電動機検出電流、I_m,…電流信号、I_ms…目標電米

11

* 流信号、 Δ I ··· 偏差信号、 $N_{\tt u}$ ··· 電動機回転速度信号、 Q 1 \sim Q 4 ··· X 7 ··· Y 7 ··· Y 7 ··· Y 8 ··· Y 7 ··· Y 8 ··· Y 9 ·

【図1】

【図3】

【図5】

[図7]