

Set Theory

Practice Set - 2 Relations

30 Standard Questions

Instructor:

Deepak Poonia MTech, IISc Bangalore GATE CSE AIR 53; AIR 67; AIR 107; AIR 206; AIR 256

Discrete Mathematics Complete Course:

https://www.goclasses.in/courses/Discrete-Mathematics-Course

lest

Series

GO Classes

Here it Comes!!

GATE Overflow + GO Classes

2-IN-1 TEST SERIES

Most Awaited

GO Test Series

is Here

REGISTER NOW

http://tests.gatecse.in/

Number of tests

Number of Full Length Mock Tests

× 15 APRIL 2023

+91 - 7906011243

+91-6398661679

On

GATE Overflow

Website

Join GO+ GO Classes Combined Test Series for BEST quality tests, matching

GATE CSE Level:

Visit <u>www.gateoverflow.in</u> website to join Test Series.

- 1. Quality Questions: No Ambiguity in Questions, All Well-framed questions.
- 2. Correct, Detailed Explanation, Covering Variations of questions.
- 3. Video Solutions.

https://gateoverflow.in/blog/14987/gate-overflow-and-go-classes-test-series-gate-cse-2024

Join GO Classes GATE CSE Complete Course now:

https://www.goclasses.in/s/pages/gatecompletecourse

- 1. Quality Learning: No Rote-Learning. Understand Everything, from
- basics, In-depth, with variations.
- 2. Daily Homeworks, Quality Practice Sets, Weekly Quizzes.
- 3. Summary Lectures for Quick Revision.
- 4. Detailed Video Solutions of Previous ALL GATE Questions.
- 5. Doubt Resolution, Revision, Practice, a lot more.

Download the GO Classes Android App:

https://play.google.com/store/apps/details?id=c om.goclasses.courses

Search "GO Classes" on Play Store.

Hassle-free learning
On the go!

Gain expert knowledge

NOTE:

Complete Discrete Mathematics & Complete Engineering

Mathematics Courses, by GO Classes, are FREE for ALL learners.

Visit here to watch: https://www.goclasses.in/s/store/

SignUp/Login on Goclasses website for free and start learning.

We are on Telegram. Contact us for any help.

Link in the Description!!

Join GO Classes **Doubt Discussion** Telegram Group:

Username:

@GATECSE_GOCLASSES

We are on Telegram. Contact us for any help.

Join GO Classes Telegram Channel, Username: @GOCLASSES_CSE

Join GO Classes **Doubt Discussion** Telegram Group:

Username: @GATECSE_Goclasses

(Any doubt related to Goclasses Courses can also be asked here.)

Join GATEOverflow Doubt Discussion Telegram Group:

Username: @GateOverflow_CSE

Q 1

Exercise 1. Let $A = \{0, 1, 2, 3\}$ and R a relation over A:

$$R = \{(0,0), (0,1), (0,3), (1,1), (1,0), (2,3), (3,3)\}$$

Draw the directed graph of R. Check whether R is an equivalence relation. Give a counterexample in each case in which the relation does not satisfy one of the properties of being an equivalence relation.

Solution 1:

Exercise 1. Let $A = \{0, 1, 2, 3\}$ and R a relation over A:

$$R = \{(0,0), (0,1), (0,3), (1,1), (1,0), (2,3), (3,3)\}$$

Draw the directed graph of R. Check whether R is an equivalence relation. Give a counterexample in each case in which the relation does not satisfy one of the properties of being an equivalence relation.

Solution.

R is not reflexive because $(2,2) \notin R$. It is not symmetric because $(3,2) \notin R$. It is not transitive because (1,0) and (0,3) are in R but $(1,3) \notin R$.

Relations on \mathbb{Z} :

<

≤

1

 \neq

Reflexive Symmetric Transitive

Q 2: Fill "Yes or No" in the above table.

Solution 2:

Relations on \mathbb{Z} :	<	≤	=		1	≠	
Reflexive	no	yes	yes	yes	no	no	
Symmetric	no	no	yes	no	no	yes	
Transitive	yes	yes	yes	yes	no	no	

3. For each of these relations on the set {1, 2, 3, 4}, decide whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive.

- a) $\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$
- **b)** {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}
- c) $\{(2,4),(4,2)\}$
- **d)** $\{(1,2),(2,3),(3,4)\}$
- **e)** $\{(1, 1), (2, 2), (3, 3), (4, 4)\}$
- **f)** $\{(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)\}$

Source: Kenneth H. Rosen, Discrete Mathematics and Its Applications Seventh Edition

Q 4: Find the Types of Relation.

Problem 1. The following table describes a binary relation. Find the set of ordered pairs that is this relation, as in the definition of a binary relation.

~	1	2	3	4	5	6
1	*					*
2		*				
3				*	*	
4			*		*	
5			*	*		
6	*					*

Q 5:

Problem 5. Let A be the set of all ordered pairs of integers, that is, $A = Z \times Z$. Define a binary relation R on A as follows: for all $(a, b), (c, d) \in A$,

$$(a,b)R(c,d) \Leftrightarrow a \leq c \text{ and } b \leq d.$$

- (a) Is R reflexive?
- (b) Is R symmetric?
- (c) Is R antisymmetric?
- (d) Is R transitive?
- (e) Is R an equivalence relation, a partial order, neither, or both?

+ +

Discrete Mathematics

Q 6:

- 9. Define \mathcal{R} the binary relation on $\mathbb{N} \times \mathbb{N}$ to mean $(a,b)\mathcal{R}(c,d)$ iff b|d and a|c
 - (a) R is symmetric but not reflexive.
 - (b) R is transitive and symmetric but not reflexive
 - (c) R is reflexive and transitive but not symmetric
 - (d) None of the above

Question 7:

Let A be any set.

Subset Relation on P(A) is Anti-symmetric??

Given a relation R on a set A, R is called antisymmetric if for all $a, b \in A$, (aRb and bRa) $\Rightarrow a = b$.

Example (7.11)

For a universe U, define the relation R on P(U) by $(A, B) \in R$ if $A \subseteq B$, for $(A, B) \subseteq U$.

So R is the subset relation of Chapter 3 and if ARB and BRA, then we have $A \subseteq B$ and $B \subseteq A$, which gives us A = B.

Consequently, this relation is antisymmetric, as well as reflexive and transitive, but it is not symmetric.

Q 8: Consider the Graph Representation below of a Relation R over the set {a,b,c,d}. Is Relation R Transitive?

Q 9: Consider the Graph Representation below of a Relation R over the set {a,b,c,d}.

Is Relation R Transitive?

Q 10: Consider the Graph Representation below of a Relation R over the set {a,b,c,d}.

Is Relation R Transitive?

Q 11: Consider the Graph Representation below of a Relation R over the set {a,b,c,d}.

Is Relation R Transitive?

)

Discrete Mathematics

Q 12:

9. Define \mathcal{R} the binary relation on $\mathbb{N} \times \mathbb{N}$ to mean $(a,b)\mathcal{R}(c,d)$ iff b|d and a|c

Q 13:

- P2.8.2 Consider the following binary relations on the naturals (non-negative integers). Which ones are reflexive? Symmetric? Anti-symmetric? Transitive? Partial orders? Justify your claims.
 - (a) A(x,y), defined to be true if and only if y is even.
 - (b) B(x, y), defined to be true if and only if x < y.
 - (c) C(x,y), defined to be true if and only if $x+2 \ge y$.
 - (d) D(x, y), defined to be true if and only if $x \neq y$.
 - (e) E(x,y), defined to be true if and only if the English name of x comes no later than the name of y in alphabetical order. (So, for example, E(8,81) is true because eight comes before eighty-one, and E(8,8) is true because eight comes no later than eight.)

Q 14:

Show that the relation $R = \emptyset$ on a nonempty set S is symmetric and transitive, but not reflexive.

8. Show that the relation $R = \emptyset$ on a nonempty set S is symmetric and transitive, but not reflexive.

Source: Kenneth H. Rosen, Discrete Mathematics and Its Applications Seventh Edition

Q 15:

- (a) The relation \mathcal{R} on \mathbb{Q} with $\forall x, y \in \mathbb{Q} : x \sim y$ if xy = 0.
- (b) The relation "has the same mother" on the set of students.
- (c) The relation \sim on \mathbb{Q} where $a, b \in \mathbb{Q}$ have $a\mathcal{R}b$ if ab > 0.
- (d) The relation of division on the integers.
- (e) The relation $\{(a,b),(b,c),(a,c)\}$ on the set $\{a,b,c\}$.
- (f) The relation $\{(x, x), (y, y)\}$ on $\{x, y\}$

Q 16:

Are the following relations reflexive, symmetric, transitive, antisymmetric? Explain.

- 1. Let R be a relation on \mathbb{Z} such that $(a,b) \in R$ iff b=a or b=-a.
- 2. Let R be a relation on \mathbb{R} such that $(a,b) \in R$ iff $ab \leq 0$.
- 3. Let R be a relation on \mathbb{R} such that $(a,b) \in R$ iff a+2b=17.
- 4. Let R be a relation on \mathbb{R} such that $(a, b) \in R$ iff a + b is a rational number, that is can be represented by a fraction.

Q 17:

- (8) Let $A \neq \emptyset$ be a set. Consider the following statements: (1) \emptyset is a reflexive binary relation on A; (2) \emptyset is a symmetric binary relation on A; (3) \emptyset is a transitive binary relation on A; Which of the following is correct?
 - (a) Only (1) and (3) are correct.
 - (b) Only (1) and (2) are correct.
 - (c) Only (2) and (3) are correct.
 - (d) None is correct.
 - (e) All are correct.

Q 18

Define the binary relation R on the set $A := \{-4, -3, -2, -1, 1, 2, 3, 4\}$ as follows:

$$(x,y) \in R \iff |x^2 - y^2| \le 5$$

for all $x, y \in A$. Which of the following statements are true? Tick all of the correct options; there may be more than one, or none at all.

- R is reflexive.
- R is irreflexive.
- R is transitive.
- Ris symmetric.
- R is asymmetric.
- R is antisymmetric.

Q 19:

Q1 (10 points)

$$R = \{(x,y) \in \mathbb{N}^2 : \exists n \in \mathbb{N}, x^n = y\}$$

is a binary relation on the set of natural numbers \mathbb{N} .

Determine which of the following properties R satisfies:

- (a) Reflexive
- (b) Symmetric
- (c) Anti-symmetric
- (d) Transitive

For each property, either justify that the property always holds or show by a counterexample that the property does not hold.

Q 20

- 1. Determine if each of the following relations is reflexive, symmetric, antisymmetric, or transitive. Indicate if the relation is an equivalence relation.
 - (a) $R_1 = \{(a,b) | -1 \le a-b \le 1\}$ on **R**
 - (b) $R_2 = \{(1,1), (1,3), (1,4), (2,2), (2,4), (3,1), (3,3), (4,1), (4,2)\}$ on $\{1, 2, 3, 4\}$
 - (c) $R_3 = \{(X, Y) | X \cap Y = \emptyset \}$ on $\mathcal{P}(\{a, b, c\})$
 - (d) $R_4 = \{(a,b) | \text{"is a friend of"} \}$ on the set of all people
 - (e) $R_5 = \{((a,b),(c,d))|ad = bc\}$ on $\mathbf{Z} \times \mathbf{Z}$
 - (f) $R_6 = \{(a,b)| \frac{a}{b} \in \mathbf{Z}\}$ on **N**
 - (g) $R_7 = \{(a,b)| \frac{a}{b} \in \mathbf{Z}\}$ on \mathbf{Z}

Q 21:

Let $R \subseteq \mathbb{N} \times \mathbb{N}$ be a relation (a binary relation) on the set of natural numbers defined as follows:

$$(x,y) \in R \iff x+y \ge 18.$$

- Is R reflexive? Prove your answer. {1 point}
- Is R symmetric? Prove your answer. {1 point}
- Is R antisymmetric? Prove your answer. {1 point}
- Is R transitive? Prove your answer. {1 point}

Question 5 (10 points)

Among reflexive, symmetric, antisymmetric and transitive, which of those properties are true of the above relation?

- It is both reflexive and symmetric
- It is only reflexive
- It is only antisymmetric
- It is both reflexive and transitive

Among reflexive, symmetric, antisymmetric and transitive, which of those properties are true of the above relation?

- It is both symmetric and transitive
- It is both reflexive and transitive
- It is reflexive, antisymmetric and transitive
- It is both reflexive and antisymmetric

Question 2 (10 points)

Among reflexive, symmetric, antisymmetric and transitive, which of those properties are true of the above relation?

- It is only reflexive
- It is reflexive, symmetric and transitive
- It is both reflexive and antisymmetric
- It is both reflexive and symmetric

Q 25:

Among reflexive, symmetric, antisymmetric and transitive, which of those properties are true of the above relation?

- It is only transitive
- It is both antisymmetric and transitive
- () It is both reflexive and transitive
- 1 It has none of those properties

Q 26:

Let R be the relation on $M = \{1,2,3\}$ with the following diagraph representation:

Then

- O R is not reflexive, not symmetric, and not transitive
- R is transitive but not reflexive
- R is an equivalence relation
- R is symmetric but not transitive
- R is reflexive but not symmetric

$$orall m,n\in Z,\ m\ O\ n\ \longleftrightarrow\ \exists k\in Z\ |\ (m-n)=2k+1$$

Which one of the following statements about the relation O is true?

- The relation O is reflexive, not symmetric, and transitive.
- The relation O is reflexive, symmetric, and transitive.
- The relation O is not reflexive, not symmetric, and transitive.
- The relation O is not reflexive, symmetric, and not transitive.

Q 28

Given the relation R = $\{(n, m) \mid n, m \in \mathbb{Z}, |n| \neq |m|\}$. Which of the following statements about R is correct?

- R is not an equivalence relation because it is not reflexive or transitive.
- R is not an equivalence relation because it is not antisymmetric
- R is not an equivalence relation because it is not symmetric
- R is an equivalence relation

Q 29:

1 Relations

Determine whether the following relations are reflexive, symmetric, antisymmetric, and/or transitive:

- a) The empty relation $R = \{\}$ defined on the natural numbers.
- b) The complete relation $R = N \times N$ defined on the natural numbers.
- c) The relation R on the positive integers where aRb means a | b.
- d) The relation R on $\{w, x, y, z\}$ where $R = \{(w, w), (w, x), (x, w), (x, x), (x, z), (y, y), (z, y), (z, z)\}.$
- e) The relation R on the integers where aRb means $a^2 = b^2$.

Q 30:

7.5.3. For each of the following relations R on the set of real numbers, decide whether it is reflexive, symmetric and/or transitive? Justify your arguments. Is the relation an equivalence relation? Explain.

- (a) $(x, y) \in R$ if and only if $|x y| \le 3$.
- (b) $(x, y) \in R$ if and only if $x \cdot y > 0$.
- (c) $(x, y) \in R$ if and only if $x^2 y = y^2 x$.
- (d) $(x, y) \in R$ if and only if $(x y)(x^2 + y^2 1) = 0$.
- (e) $(x, y) \in R$ if and only if |x + y| = |x| + |y|.

Transitive: A relation R on a set A is called *transitive* if whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$, for all $a,b,c \in A$.

If there is a path from one vertex to another, there is an edge from the vertex to another.

Properties of Relations

Definitions

A relation R is called **reflexive** on a set S if for all $x \in S$, $(x, x) \in R$.

A relation R is called **irreflexive** on a set S if for all $x \in S$, $(x, x) \notin R$.

A relation R is **symmetric** on a set S if for all $x \in S$ and for all $y \in S$, if $(x, y) \in R$ then $(y, x) \in R$.

A relation R is **antisymmetric** on a set S if for all $x \in S$ and for all $y \in S$, if $(x, y) \in R$ and $(y, x) \in R$, then x = y

A relation R is **transitive** on a set S if for all $x, y, z \in S$, if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$.

Definition 1. Let A and B be sets. A relation from A to B is a set of ordered pairs (a, b) such that $a \in A$ and $b \in B$. In other words, a relation from A to B is a subset of $A \times B$.

If A is a set then a relation on A means a relation from A to A. We often write aRb to mean $(a,b) \in R$.

Definition 2. Suppose that R is a relation on a set A.

We say that R is ... if ... $\forall x \in A, (x, x) \in R$

irreflexive $\forall x \in A, (x, x) \notin R$

symmetric $\forall x, y \in A, (x, y) \in R \implies (y, x) \in R$

antisymmetric $\forall x, y \in A, (x, y) \in R \land (y, x) \in R \implies x = y$

transitive $\forall x, y, z \in A, (x, y) \in R \land (y, z) \in R \implies (x, z) \in R$

Properties of Binary Relations

A binary relation $R \subseteq A \times A$ is called

- Reflexive iff $\forall x (x, x) \in R$
- Symmetric iff $\forall x, y \ ((x, y) \in R \rightarrow (y, x) \in R)$
- Antisymmetric iff $\forall x, y \ ((x, y) \in R \land (y, x) \in R \rightarrow x = y)$
- Transitive iff $\forall x, y, z \ ((x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R)$.

Examples:

- $\bullet \leq$ and = are reflexive, but < is not.
- \bullet = is symmetric, but \leq is not.
- $\bullet \le$ is antisymmetric.

Note: = is also antisymmetric, i.e., = is symmetric and antisymmetric.

< is also antisymmetric, since the precondition of the implication is always false.

(日) (日) (日) (日) (日) (日)

However, $R = \{(x, y) \mid x + y \le 3\}$ is not antisymmetric, since $(1, 2), (2, 1) \in R$.

• All three, =, \leq and < are transitive. $R = \{(x, y) \mid y = 2x\}$ is not transitive.

Example (7.6)

With $A = \{1, 2, 3\}$, we have:

- a) $R_1 = \{(1,2), (2,1), (1,3), (3,1)\}$ a symmetric, but not reflexive, relation on A;
- b) $R_2 = \{(1,1), (2,2), (3,3), (2,3)\}$ a reflexive, but not symmetric, relation on A;
- c) $R_3 = \{(1,1), (2,2), (3,3)\}$ and $R_4 = \{(1,1), (2,2), (3,3), (2,3), (3,2)\}$, two relations on A that are both reflexive and symmetric; and
- d) $R_5 = \{(1,1), (2,2), (3,3)\}$, a relation on A that is neither reflexive nor symmetric.

Properties

Reflexive: A relation R on a set A is called *reflexive* if $(a, a) \in R$ for every element $a \in A$.

Every vertex has a self-loop.

Symmetric: A relation R on a set A is called *symmetric* if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$.

If there is an edge from one vertex to another, there is an edge in the opposite direction.

Antisymmetric: A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called *antisymmetric*.

There is at most one edge between distinct vertices.