

Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет транспорта» (РУТ (МИИТ)) Кафедра «Физика» им. П.Н. Лебедева

Институт, группа	К работе допущен _	
		(дата, подпись преподавателя)
Студент	Работа выполнена	_
•	_	(дата, подпись преподавателя)
Преподаватель	Отчет принят	
<u> </u>	1	(лата, полпись преполавателя)

РАБОЧАЯ ТЕТРАДЬ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 75

Название работы

ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА С ПОМОЩЬЮ ДАТЧИКА ХОЛЛА

- 1 Соленоид с датчиком Холла (на схеме датчик Холла обозначен буквой M).
- 2 Выпрямитель с амперметром (задает ток $I_{\rm C}$ через соленоид, на схеме амперметр обозначен буквами PA1, а сам выпрямитель буквами BC-42).
- 3 Источник постоянного тока УНИП с миллиамперметром (задает ток $I_{\rm X}$ = 150 мА через датчик Холла, на схеме миллиамперметр обозначен буквами PA2).
- 4 Милливольтметр GDM-8145 (измеряет ЭДС Холла $U_{\rm Y}$, на схеме милливольтметр обозначен буквами PV).

Внешний вид и схема установки

1. Запишите цель проводимого эксперимента:
2. Какие данные о проводниках и полупроводниках можно получить на основозкопериментального изучения эффекта Холла?
3. Запишите формулу для определения величины силы Лоренца если известна величина заряда, величина мгновенной скорости заряда, величина индукции магнитного поля и величина угла между вектором мгновенной скорости и вектором индукции магнитного поля.
4. Объясните, как определив знак Холловской разности потенциалов, можно установить знак носителей тока?
5. Поясните как с помощью эффекта Холла можно измерить индукцию магнитного поля.

6.	Заполните таблиц	ы измерений в ла	боратории.	
$I_x = $ _	k =		$L = \underline{\hspace{1cm}}$	$R = \underline{\hspace{1cm}}$

Таблица 1

Экспериментальные данные

$x_0 = 0$ мм				$x_0 = 75 \text{ MM}$				
No	Сила	Э.Д.С.	Индукция	ω, m ⁻¹	Сила	Э.Д.С.	Индукция	ω, m ⁻¹
п/п	тока	Холла	В, Тл	×10 ³	тока	Холла	В, Тл	$\times 10^3$
	через	$U_{\rm Y}$, B	×10 ⁻³		через	$U_{\rm Y},{ m B}$	×10 ⁻³	
	соленоид	×10 ⁻³	[формула (6)]		соленоид	×10 ⁻³	[формула (6)]	
	Ic, A				Ic, A			
1	1,5				1,5			
2	2,0				2,0			
3	2,5				2,5			
4	3,0				3,0			
5	3,5				3,5			
среднее (ω)					реднее (ω)			

 $\label{eq:2.2.2} \mbox{ Таблица 2}$ Экспериментальные данные ($I_c = 2,5 \ \mbox{A}$)

№ п/п	Координата x , мм ($x_0 = 0$)		Индукция <i>В</i> , Тл
		×10 ⁻³	×10 ⁻³
1	0		
2	5		
3	10		
4	15		
5	20		
6	25		
7	30		
8	35		
9	40		
10	45		
11	50		
12	55		
13	60		
14	65		
15	70		
16	75		
17	80		

Подпись преподавателя ______ Дата _____

7. По данным табл. 1 построить график зависимости $B=f(I_c)$ для случаев $x_0=0$ мм и $x_0=75$ мм.

8. По данным табл. 2 построить график зависимости индукции магнитного поля соленоида от координаты B = f(x). Отметить на графике участки, соответствующие однородному и неоднородному характеру зависимости магнитной индукции от координаты.

^	~~ ~		U
9.	Ооработка	результатов	измерении.

9.1. Рассчитайте приборные погрешности ($k_{\rm np}-$ класс точности прибора):

$$\Delta I_x = \frac{k_{\pi p} \cdot I_{max}}{100} =$$

$$\Delta U_Y = \frac{k_{\rm np} \cdot U_{max}}{100} =$$

9.2. Рассчитать относительную погрешность вычисления магнитной индукции для опытов № 1, 3, 5 табл.1 при $x_0=0$ мм $\Big(\frac{\Delta a}{a}=0.05\Big)$.

$$\delta_{B1} = \frac{\Delta B_1}{B_1} = \frac{\Delta a}{a} + \frac{\Delta I_x}{I_{x1}} + \frac{\Delta U_Y}{U_{Y1}} =$$

$$\delta_{B3} = \frac{\Delta B_2}{B_3} = \frac{\Delta a}{a} + \frac{\Delta I_x}{I_{x3}} + \frac{\Delta U_Y}{U_{Y3}} =$$

$$\delta_{B5} = \frac{\Delta B_1}{B_5} = \frac{\Delta a}{a} + \frac{\Delta I_x}{I_{x5}} + \frac{\Delta U_Y}{U_{Y5}} =$$

9.3. Рассчитать абсолютную погрешность.

$$\Delta B_1 = \delta_{B1} \cdot B_1 =$$

$$\Delta B_3 = \delta_{B3} \cdot B_3 =$$

$$\Delta B_5 = \delta_{B5} \cdot B_5 =$$

9.4. Записать результат в стандартном виде для каждого опыта:

$$B = B_i \pm \Delta B_i$$
, ед. изм.

1 опыт

3 опыт

5 опыт

9.5.Сформулировать общие выводы по выполненной работе_

_				
_	_	 	 	_

Подпись студента