Гомотопный класс отображения

Определение (Гомотопный класс отображения). Пусть $f: X \to Y$ - непрерывное Гомотопным классом отображения f называется

$$[f]\coloneqq\{g:\;X o Y\;$$
 непр-на. $f\simeq g\}$

Пример X - любое топологическое пространство

 $\overline{f:X o \mathbb{R}^n}$ - непр

 $orall g: X o \mathbb{R}^n$ - непр. $f \simeq g$

Доказатель ство

Рис. 1: линейная гомотопия

$$h_t(x) \coloneqq (1-t)f(x) + tg(x)$$
 - линейная гомотопия

Пример $Y \subset \mathbb{R}^n$ - выпуклое множество.

Любое топологическое пространство $X \quad \forall f,g: \ X \to Y$ непр. $f \simeq g$

Пусть $X = \{p\}$ - 1-элементное множество \implies гомотопия $h_t: X \to Y$ - путь в Y

Рис. 2: гомотопия-путь

Связная гомотопия

Определение (Связная гомотопия). Пусть $f,g:X\to Y$ - непр. $A\subset X$ $f|_A=g|_A$ Гомотопия h_t отображений f,g называется связной на множестве A, если

$$\forall t \quad h_t|_A = f|_A = g|_A$$

т.е.

$$\forall x \in A \quad h_t(x) = f(x) = g(x)$$

Гомотопия путей

Пусть $f,g:\ I\to Y$ - пути. $f(0)=g(0),\ f(1)=g(1).$

Под гомотопией путей всегда понимаем гомотопию, связанную на {0,1}

Свободная гомотопия

3амечание. $A=\varnothing$, то гомотопия называется свободной

§2. Определение фундаментальной группы

Определение. Топологическим пространством с отмеченной точкой называется пара $(X, x_0), \ x_0 \in X$ Петлёй с началом в точке x_0 называется непрерывное отображение $f: I \to X, \ f(0) = f(1) = x_0$

Рис. 3: петля

Гомотопия петель связана на $\{0,1\}$

 $F(X,x_0)$ - множество всех петель с началом в точке x_0

 $\pi_1(X,x_0)$ - множество гомотопических классов петель

Пример $\pi_1(\mathbb{R}^n,0)$ - одноэлементное множество, т.к. линейная гомотопия путей связана на $\{0,1\}$

$$h_t(x) = (1-t)h_0(x) + th_1(x)$$

$$h_t(0) = (1-t)h_0(0) + th_1(0) = (1-t+t)h_0(0) = h_0(0)$$

аналогично $h_t(1) = h_0(1)$

Умножение петель

$$u, v \in F(X, x_0)$$
 $(uv)(t) := \begin{cases} u(2t), & 0 \le t \le \frac{1}{2} \\ v(2t - 1), & \frac{1}{2} \le t \le 1 \end{cases}$

Рис. 4: умножение петель

Утверждение. f_0, g_0 - $nymu\ e\ X.\ f(1) = g(0)$

$$(f_0 g_0)(t) = \begin{cases} f_0(2t), & 0 \le t \le \frac{1}{2} \\ g_0(2t-1), & \frac{1}{2} \le t \le 1 \end{cases}$$
$$\begin{cases} f_0 \simeq f_1 \\ g_0 \simeq g_1 \end{cases} \implies f_0 g_0 \simeq f_1 g_1$$

Доказательство.

 f_t - гомотопия, соединяющая f_0 с f_1

 g_t - гомотопия, соединяющая g_0 с g_1

orall t $f_t g_t$ соединяет $f_0 g_0$ с $f_1 g_1$

По лемме о фундаментальном покрытии $\{f_tg_t\}$ непрерывное отображение

Следствие. $u, v \in F(X, x_0)$

 $[u][v]\coloneqq [uv]$ корректно определено

Теорема о фундаментальной группе

Теорема (о фундаментальной группе).

$$(\pi_1(X,x_0), \ y$$
множение) - группа

Доказательство. 1) ассоциативность

$$([u][v])[w] = [u]([v][w]) - ?$$

 $[uv][w] = [u][vw] - ?$
 $[(uv)w] = [u(vw)] - ?$
 $(uv)w \simeq u(vw) - ?$

$$H(s,t) = \begin{cases} u\left(\frac{4s}{t+1}\right), & 0 \le s \le \frac{t+1}{4} \\ v\left(4s - t - 1\right), & \frac{t+1}{4} \le s \le \frac{t+2}{4} \\ w\left(\frac{4s - t - 2}{2 - t}\right), & \frac{t+2}{4} \le s \le 1 \end{cases}$$

2) $\exists \epsilon_{x_0} = [e_{x_0}]: \ [u]\epsilon_{x_0} = \epsilon_{x_0}[u] = [u]$? e_{x_0} - постоянная петля: $e_{x_0}(I) = x_0$

 $ue_{x_0} \simeq u-?$

$$H(s,t) \coloneqq \begin{cases} u\left(\frac{2s}{t+1}\right), & 0 \le s \le \frac{t+1}{2} \\ e_{x_0}(s), & \frac{t+1}{2} \le s \le 1 \end{cases}$$