Санкт-Петербургский государственный университет
Математико-механический факультет
Кафедра статистического моделирования

Три задачи, связанные со случайным поиском

Стоюнина Татьяна Юрьевна, гр. 522

Научный руководитель: к.ф.-м.н., д. Некруткин В.В. Рецензент: к.ф.-м.н., д. Голяндина Н.Э.

Санкт-Петербург 2006г.

Содержание работы

Дипломная работа состоит из трех частей:

Оценка трудоемкости случайного поиска экстремума со случайной начальной точкой.

Аналитическое решение вспомогательной оптимизационной задачи.

Моделирование равномерного распределения в d-мерном шаре.

Поиск: основные определения и обозначения

- Пространство оптимизации: тор $\mathbb{I}^d=(0,1]^d$ с равномерной метрикой ρ_d .
- Целевая функция $f:\mathbb{I}^d\mapsto\mathbb{R}$ ограничена, измерима и
 - 1. принимает максимальное значение в единственной точке x_0 ,
 - 2. непрерывна в точке x_0 ,
 - 3. неравенство $\sup\{f(x): x \in S_r^c(x_0)\} < f(x_0)$ верно для любого r > 0.
- Случайный поиск:

Алгоритм

- **Шаг 1.** $\xi_0 \leftarrow x$; $i \leftarrow 1$.
- **Ш**аг 2. $\eta \leftarrow P(\xi_{i-1}, \cdot)$.
- **Шаг 3.** Если $f(\eta) \geq f(\xi_{i-1})$, то $\xi_i \leftarrow \eta$, иначе $\xi_i \leftarrow \xi_{i-1}$.
- **Шаг 4.** Если i < n, то $(i \leftarrow i + 1$ и перейти к шагу 2), иначе STOP.
- Вероятность $P(\mathbf{x}, \cdot)$ обладает симметричной плотностью

$$p(\mathbf{x}, \mathbf{y}) = g(\rho_d(\mathbf{x}, \mathbf{y})),$$

где g монотонно убывает.

Поиск: цель и характеристики случайного поиска

<u>Цель поиска:</u> — попадание в множество

$$M_{\varepsilon} = \{x \in S_{\varepsilon}(x_0) : f(x) > f(y)$$
для $y \in S_{\varepsilon}^{c}(x_0)\},$

где $S_{\varepsilon}(x_0)$ — шар радиуса ε с центром в x_0 .

Характеристика качества функции — коэффициент асимметрии:

$$F^{f}(r) = mes_d(M_r)/mes_d(S_r(x_0)).$$

Невырожденная функция: $F^f(r) \ge \theta > 0$.

Трудоемкость поиска: $\mathsf{E}_x \tau_{\varepsilon}$, где $\tau_{\varepsilon} = \min\{i \geq 0 : \xi_i \in M_{\varepsilon}\}$. x — начальная точка поиска.

Общая проблема: оценить/уменьшить трудоемкость поиска.

Поиск: известные результаты

Результаты А.С. Тихомирова.

Имеют место неравенства

$$C|\ln \varepsilon| \le \mathsf{E}_x \tau_\varepsilon \le I(\delta(x), \varepsilon; f, g).$$
 (1)

- Существует g_{opt} , доставляющая минимум правой части (1).
- \blacksquare Для невырожденных целевых функций существуют такие g, что

$$\mathsf{E}_x \tau_\varepsilon \le C(f,d) \ln^2(\varepsilon).$$

Если $F^f \equiv \theta$, то g_{opt} и $I(\delta(x), \varepsilon; f, g_{opt})$ находятся явно, причем g_{opt} не зависит от θ .

Проблемы:

- g_{opt} зависит от x, то есть от взаимного расположения начальной точки поиска и точки экстремума. А оно на практике неизвестно.
- Результаты, относящиеся к классам функций вида $\{f: F^f(r) \ge \theta > 0\}$.

Поиск: случайная начальная точка. Результаты

Основные результаты.

Пусть начальная точка поиска ξ равномерно распределена в \mathbb{I}^d . Тогда

- \blacksquare $\mathsf{E} au_{\varepsilon} \leq J(\varepsilon;f,g)$, где $J(\varepsilon;f,g)$ явно представлено в интегральной форме.
- Если $F^f(r) \ge \theta > 0$, то при $\varepsilon < 0.25$

$$J(\varepsilon; f, g) \le J_{\theta}(\varepsilon; g) = \frac{1}{\phi} \left(d \int_{2\varepsilon}^{0.5} \frac{1}{z^{d+1} g(z)} dz + \frac{2^d - \phi}{g(0.5)} \right). \tag{2}$$

■ Правая часть неравенства (2) достигает своего минимума при

$$g(r) = g_{\text{opt}}(r) = \left(d\ln(\beta/\alpha\varepsilon) - (2\beta)^{-d}\right)^{-1} \begin{cases} (\alpha\varepsilon)^{-d}, & \text{при } 0 < r \leqslant \alpha\varepsilon, \\ r^{-d}, & \text{при } a\varepsilon < r \leqslant \beta, \\ \beta^{-d}, & \text{при } \beta < r \leqslant 0.5, \end{cases}$$
(3)

если $\varepsilon < a(d,\theta)$. Иначе $g_{opt} \equiv 1$.

Замечание. Величина $J_{\theta}(\varepsilon; g_{opt})$ и постоянные a, α и β выписываются явно.

Оптимизационная задача: постановка

Постановка задачи: ставится задача минимизации функционала

$$\mathcal{J}_{u,v}(w) = \int_{u}^{v} \frac{h^{2}(r)}{w(r)} + \frac{c}{w(1)},$$

(где $0 < u < v \le 1$, c > 0 и $h \in \mathbb{L}^2(u,v)$ — неотрицательная функция) в классе невозрастающих строго положительных непрерывных слева плотностей w.

Мотивация: см. формулу (2).

База: А.С. Тихомиров для случая v = 1.

Результаты А.С. Тихомирова (краткая сводка):

- Теорема существования w_{opt} .
- lacksquare Анализ структуры $w_{opt}.$
- Явный вид w_{opt} в случае v=1, когда функция h гладкая и строго убывает (2 параметра).

Оптимизационная задача: результаты

Полученные результаты для случая произвольной h и $v \le 1$:

- Теорема существования w_{opt} .
- \blacksquare Анализ структуры w_{opt} .
- Вид w_{opt} в случае, когда функция h является непрерывной и строго убывает (3 параметра).

Общий вид:

$$w_{ ext{opt}}(r) = w_{b,d, heta}(r) = rac{1}{\lambda_{b,d, heta}} egin{cases} h(b), & ext{при } r \in (0,b], \ h(r), & ext{при } r \in (b,d], \ h(d), & ext{при } r \in (d,v], \ heta, & ext{при } r \in (v,1] \end{cases}$$

 $c u < b \le d \le v, \ \theta \le h(d).$

Техника: А.С.Тихомиров.

Моделирование: алгоритм И.В.Романовского

Задача: моделирование р. р. в единичном *d*-мерном шаре

База: алгоритм (и реализация) Л.А.Евдокимова и И.В.Романовского. Идея:

- \blacksquare Шар большого радиуса R (R^2 целое).
- Покрытие шара единичными кубами (целочисленные вершины)

$$c_d(t) = \{x | t_j \le x_j < t_j + 1, j = 1, \dots, d\}.$$

- **П**араметризация кубов с помощью векторов $t = (t_1, \dots, t_d)$.
- \blacksquare Моделирование номера i куба.
- Сопоставление номера i кубу $t^{(i)}$ (метод Уолкера d раз).
- Моделирование р. р. в кубе $t^{(i)}$ и проверка принадлежности шару. Если "да", то деление полученного вектора на R.

Параметры алгоритма: d, R^2 .

Моделирование: ограничения и затраты

Ограничение: число кубов $\leq 2^{31} - 1$ (тип long).

Объем памяти: необходимый объем памяти $\sim 8dR^3$ байт.

Результат: трудоемкость отбора при разных ограничениях на память.

d	C_{min}	10 Mb	5 Mb	1 Mb
2	≈1	1.01	1.01	1.03
3	≈1	1.03	1.03	1.06
5	1.05	1.07	1.09	1.17
7	1.25	1.25	1.25	1.33
10	2.31	2.31	2.31	2.31
20	229	229	229	229

Проблема: При ограничении на трудоемкость отбора < 2 получаем ограничение < 10 на размерность d.

Моделирование: результаты

Модификации:

- Хранение целых в виде частного и остатка при делении на $2^{32} 1$ (структура superlong).
 - Ограничение: число кубов $< 2^{32}(2^{32} 1) 1$.
- Оптимизация хранения массивов (выигрыш $\sim 13R^3$ байт).
- Частичное использование типа long (выигрыш $\approx dR^3$ байт).

Результат: трудоемкость отбора резко падает при больших d.

	10 Mb		5 Mb		1 Mb	
d	C_{long}	C_{slong}	C_{long}	C_{slong}	C_{long}	C_{slong}
2	1.01	≈ 1	1.01	≈ 1	1.03	≈ 1
3	1.03	1.02	1.03	1.02	1.06	1.04
5	1.07	1.06	1.09	1.08	1.17	1.14
7	1.25	1.13	1.25	1.17	1.33	1.29
10	2.31	1.29	2.31	1.37	2.31	1.69
20	229	5.27	229	5.27	229	7.34

Моделирование: тестирование и программа

Тестирование.

Статистика критерия:

Пусть (ξ_1,\ldots,ξ_d) р.р. в единичном d-мерном шаре $B_d(1)$. Тогда

$$\left(\frac{\xi_{i+1}^2 + \dots + \xi_d^2}{1 - \xi_1^2 - \dots - \xi_i^2}\right)^{d-i}$$

р.р. на (0,1) для любого $0 \le i < d$.

Критерии: Колмогорова и χ^2 с 20 интервалами. N=1000.

Программа:

- Реализация алгоритма с модификациями для размерности $d \le 20$.
- Выбор параметров алгоритма согласно заданному ограничению по памяти.
- Тестирование сгенерированной выборки.