db的日常笔记

dbydd

最后编译日期:2021 年 1 月 15 日

注: 本笔记有些部分来自于wikipedia

todos

- 1. 誊录纸质笔记 线性代数-线性无关,基和维数.
- 2. 隐函数存在定理,等幂求和-二项式系数-朱世杰恒等式-(复变函数)
- 3. 重写线性代数
- 4. 场论:p20,三个概念即两个公式的算子表示法
- 5. 补充多个section,计算机图形学,场论等
- 6. 整合冗余部分

目录

	N// N//		
第一章	数学		3
1.1	离散数学		3
	1.1.1 前量	如识	3
	1.1.2 集台	仑	3
	1.1.	1 集合论的主要内容	3
	1.1.		4
	1.1.		4
	1.1.		4
		W 2.1	
	1.1.	NAME OF THE PERSON OF THE PERS	4
	1.1.		5
	1.1.	7 有限集和无限集	5
	1.1.	8 可列集	5
	1.1.	9 相等	5
	1.1.	10 集合之间包含关系的性质	5
	1.1.	11 真子集	6
			6
			6
			7
			7
			7
	1.1.	17 集族	7
	1.1.	18 多重集	8
	1.1.	19 并集	8
	1.1.	20 交集	8

	1.1.2.21	不相交	9
	1.1.2.22	相对补集	9
	1.1.2.23	对称差	9
	1.1.2.24	绝对补集	9
	1.1.2.25	广义并集	9
	1.1.2.26	广义交1	0
	1.1.2.27	集合运算的优先级 1	0
	1.1.2.28	文氏图1	0
	1.1.2.29	容斥原理(排斥原理)	1
	1.1.2.30	基本集合恒等式 1	1
	1.1.2.31	集合恒等式推广到集族的情况1	2
	1.1.2.32	集合幂集运算的性质	2
	1.1.2.33	有序对(有序二元组)	2
	1.1.2.34	有序对性质的证明 1	3
	1.1.2.35	有序n元组1	4
	1.1.2.36	笛卡尔乘积集合(卡氏积) 1	4
		卡氏积的性质	
	1.1.2.38	卡氏积的图示	5
	1.1.2.39	n维卡氏积 1	6
	1.1.2.40	n维卡氏积的性质	7
	1.1.2.41	n元关系	7
	1.1.2.42	二元关系 1	7
	1.1.2.43	二元关系的记号 1	7
		A到B的二元关系	
		A到B的二元关系举例 1	8
		A上的二元关系	
	1.1.2.47	一些特殊关系	8
	1.1.2.48	与二元关系有关的概念 1	9
1.1.3	图论		1
		图论的主要内容 2	
	1.1.3.2	图论中的问题	1

Chapter 1

数学

注:由于特殊原因,数学分析,高等代数内容会被拆散放在各个章节中,善用搜索.注:待整理.

- 1 离散数学
- 1.1 前置知识
- 1.2 集合论
- 1.2.1 集合论的主要内容
 - 研究对象:集合,关系,函数,自然数,基数
 - 研究思想: 以逻辑为基础,以集合为工具,表示和构造各种数学对象
 - 研究内容:
 - 集合的基本概念:集合之间的关系,运算,恒等式
 - 二元关系:表示,性质,函数,等价关系,序关系
 - 自然数:皮亚诺系统,自然数的运算,性质
 - 基数:有序集于无穷集,基数的比较
 - 良序,超限归纳法

1.2.2 集合论中的问题

- 如何给集合下定义?
- 如何用集合去定义关系,函数,自然数?
- 如何比较集合的大小?
- 能否把每个集合的元素依次列举出来?
- 有没有最大的集合?

1.2.3 集合的表示

• 列举法:

列出集合中的全体元素,元素之间用逗号分开,然后用花括号括起来,比如: $A = \{a, b, c, d\}, B = \{2, 4, 6, \dots\}.$

• 描述法:

用谓词P(x)表示x具有性质P,用 $\{x|P(x)\}$ 表示具有性质P的集合.例如: $P_1(x)$ 表示x是英文字母, $P_2(x)$ 表示x是十进制数字, $C = \{x|P_1(x)\}$ 表示26个英文字母的集合, $D = \{x|P_2(x)\}$ 表示10个十进制数字的集合.

1.2.4 描述集合的注意事项

- 1. 集合中的元素是各不相同的.
- 2. 集合中的元素不规定顺序.
- 3. 集合的两种表示法可以互相转化,例如,B=2,4,6,...可用描述法表示为 $B=\{x|x>0$ 且x是偶数}或 $B=\{x|x=2(k+1),k$ 为非负整数}.

1.2.5 常用的集合

- \mathbb{N} : 自然数集合 $\mathbb{N} = 0, 1, 2, 3, ...$
- \mathbb{Z} : 整数集合 $\mathbb{Z} = 0, \pm 1, \pm 2, \ldots = \ldots, -2, -1, 0, 1, 2, \ldots$
- ♥ ②: 有理数集合
- R: 实数集合
- C: 复数集合

1.2.6 子集

设A, B为二集合, 若B中的元素都是A中的元素,则称B是A的子集,也称A包含B,或者B包含于A,记作 $B\subseteq A$,其符号化形式为:

$$B \subseteq A \Leftrightarrow \forall x (x \in B \to x \in A)$$

若B不是A的子集,则记作B \subseteq A,其符号化形式为:

$$B \subseteq A \Leftrightarrow \exists x (x \in B \land x \notin A)$$

1.2.7 有限集和无限集

- 有限集,即元素数量优先的集合,定义叙述为 : S是由n个元素组成的集合(n是非负正整数,包含0),则 称S为有限集.
- 无限集:不是有限集的集合都是无限集.

1.2.8 可列集

可列集是无限集的一种,如果某无限集S中的元素可以按某种规则排成一列,并且无重复,无遗漏,则称该S为可列集.

此时8可以被用列举法或者描述法表示.

任何无限集都包含可列集,但是无限集本身不一定是可列集.

另外,可列个可列集的并也是可列集.

1.2.9 相等

设A, B为二集合,若A包含B且B包含A,则称A与B相等,记作A = B,符号化形式为:

$$A = B \Leftrightarrow \forall x (x \in B \leftrightarrow x \in A)$$

1.2.10 集合之间包含关系的性质

设A, B, C为三个集合,则以下三命题为真:

- 1. $A \subseteq A$;
- 2. 若 $A \subseteq A$ 且 $A \neq B$,则 $B \subsetneq A$;
- 3. 若 $A \subseteq B$ 且 $B \subseteq C$,则 $A \subseteq C$

1.2.11 真子集

设A,B为二集合,若A为B的子集且 $A \neq B$,则称A为B的真子集,或者又称B真包含A,记作 $A \subset B$,符号化形式为:

$$A \subset B \Leftrightarrow A \subset B \land A \neq B$$

若A不是B的真子集,则记作 $A \not\subset B$,其符号化形式为:

$$A \not\subset B \Leftrightarrow \exists x (x \in A \land x \notin B) \land A \neq B$$

设A, B, C为三个集合,则以下命题为真:

- 1. $A \not\subset A$;
- 2. 若 $A \subset B$,则 $B \not\subset A$;
- 3. 若 $A \subset B$,且 $B \subset C$,则 $A \subset C$

1.2.12 空集

不拥有任何元素的集合称为空集合,简称空集,记作 \emptyset (读作ugh) 比如 $\{x|x^2+1=0 \land x \in \mathbb{R}\}$ 和 $\{(x,y)|x^2+y^2<0 \land x,y \in \mathbb{R}\}$ 都是空集. 注意:

- 空集是一切集合的子集,
- 空集是唯一的
- 空集是最小的集合.

1.2.13 全集

如果限定所讨论的集合都是某个集合的子集,则称该集合为全集,记作图.

从定义可以看出,全集是相对的,视具体情况而定,因此不唯一.

比如:讨论区间(a,b)上的实数的性质时,可以取(a,b)为全集,也可以取[a,b),(a,b),(a,b), $(a,+\infty)$, 黑等为全集.

给定若干个集合之后,都可以找到包含它们的全集.在今后讨论中,所涉及的集合都可以看成是某个全集E的子集.

1.2.14 幂集

设A为一个集合,称由A的全体子集组成的集合为A的幂集,记作 $\mathcal{P}(A)$. 用描述法可以表示为 $\mathcal{P}(A) = \{x | x \subseteq A\}$ 注意:

- 在概率论中也会用 $\mathcal{P}(A)$ 来表示事件A的概率,两者虽然不相同但是定义是一样的.
- 为了避免混淆,也可以用2^A表示A的幂集.
- 这并不是没有道理,设集合A的元素个数|A| = n,则 $|\mathcal{P}(A)| = 2^n$

1.2.15 集合的元素个数

 \emptyset 为0元集,含1个元素的集合为单元集或1元集,含两个元素的集合为2元集,依次类推,含n个元素的集合称为n元集 $(n \ge 1)$.

用|A|表示集合A中该点元素个数,当A中的元素个数为有限数时,A称为有穷集或有限集.

1.2.16 求幂集的步骤

为了求出给定集合A的幂集,先求A的由低到高的所有子集,再将它们组成集合.

设 $A = \{a, b, c\}, \bar{x}\mathcal{P}(A)$ 的步骤如下:

0元子集为 \emptyset ;1元子集为 $\{a\}$, $\{b\}$, $\{c\}$;2元子集为 $\{a,b\}$, $\{a,c\}$, $\{b,c\}$;3元子集为 $\{a,b,c\}=A$; 所以,A的幂集为:

$$\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}$$

1.2.17 集族

除了幂集 $\mathcal{P}(A)$ 以外,还有其他形式的由集合构成的集合,统称为集族.若集族中的集合都赋予记号,则可得带指标集的集族.

设A为一个集族,S为一个集合,若对于任意的 $\alpha \in S$,存在唯一的 $A_{\alpha} \in A$ 与之对应,而且A中的任意集合都对应S中的某一元素,则称A是以S为指标集的集族,S称为A的指标集.记为 $A = \{A_{\alpha} | \alpha \in S\}$,或 $A = \{A_{\alpha}\}_{\alpha \in S}$ 如果把 \emptyset 看作集族,则称 \emptyset 为空集族.

1.2.18 多重集

设全集为 \mathbb{E} , \mathbb{E} 中元素可以不止一次在A中出现的集合A称为多重集.若 \mathbb{E} 中元素a在A中出现k次($k \ge 0$),则称a在A中重复度为k.

例如:设全集 $E = \{a, b, c, d, e\}, A = \{a, a, b, b, c\}$ 为多重集,其中a, b的重复度为2, c的重复度为1, md, e的重复度为0.

集合可以看作重复度均<1的多重集.

1.2.19 并集

设A,B为二集合,称由A和B的所有元素组成的集合为A与B的并集,记作 $A \cup B$,称 \cup 为并元算符. $A \cup B$ 得到的集合,用描述法可以表示为:

$$A \cup B = \{x | x \in A \lor x \in B\}$$

集合的并运算可以推广到有限个或可数个集合(初级并).

设 $A_1, A_2, ..., A_n$ 为n个集合, $A_1, A_2, ..., A_n, ...$ 为可数个集合,则:

$$A_1 \cup A_2 \cup \ldots \cup A_n = \{x | \exists i (1 \le i \le n \land x \in A_i)\}$$

并集也可以写作类似求和的形式:

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \ldots \cup A_n$$

1.2.20 交集

设A,B为二集合,称由A和B的公共元素组成的集合为A与B的交集,记作 $A \cap B$,称 \cap 为并元算符. $A \cap B$ 的描述法表示为

$$A\cap B=\{x|x\in A\wedge x\in B\}$$

集合的交运算可以推广到有限个或可数个集合(初级交).

设 $A_1, A_2, \dots, A_n, \dots$ 为可数个集合,则:

$$A_1 \cap A_2 \cap \ldots \cap A_n = \{x | \forall i (1 \le i \le n \to x \in A_i)\}$$

同样的,也有这种简化形式:

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \ldots \cap A_n$$

1.2.21 不相交

设A,B为二集合,若 $A \cap B = \emptyset$,则称A和B是不交的.设 A_1 , A_2 ,...是可数个集合秒如果对于任意的 $i \neq j$,都有 $A_i \cap A_i = \neq$,则称 A_1 , A_2 ,...是互不相交的.

设 $A_n = \{x \in R | n-1 < x < n\}, n = 1, 2, \dots, MA_1, A_2, \dots$ 是互不相交的.

1.2.22 相对补集

设A,B为二集合,称属于A而不属于B的全体元素组成的集合为B对A的相对补集,记作A-B或 $\mathbb{C}_AB.A-B$ 的描述法表示为:

$$A - B = \{x | x \in A \land x \notin B\}$$

1.2.23 对称差

设A, B为二集合,称属于A而不属于B,或属于B而不属于A的全体元素组成的集合为A与B的对称差,记作 $A \oplus B$.

 $A \oplus B$ 的描述法表示为:

$$A \oplus B = \{x | (x \in A \land x \notin B) \lor (x \notin A \land x \in B)\}$$

容易看出:

$$A \oplus B = (A - B) \cup (B - A) = (A \cup B) - (A \cap B)$$

1.2.24 绝对补集

设图为全集, $A\subseteq\mathbb{E}$, 称A对图的相对补集为A的绝对补集,记作 $A^{\mathfrak{C}}$ 或 $^{\sim}A$ 或 $\mathfrak{C}_{\mathbb{E}}A$.

A^C的描述法表示为:

$$A^{\,\complement} = \{x | x \in \mathbb{E} \land x \notin A\}$$

因为 \mathbb{E} 是全集,所以 $x \in \mathbb{E}$ 是真命题,于是:

$$A^{\,\complement} = \{x | x \notin A\}$$

1.2.25 广义并集

设A为一个集族,称由A中全体元素的元素组成的集合为A的广义并,记作 $\bigcup A$ ("大并A").

UA的描述法表示为:

$$\bigcup \mathcal{A} = \{x | \exists z (x \in z \land z \in \mathcal{A})\}\$$

设 $\mathcal{A} = \{\{a,b\}, \{c,d\}, \{d,e,f\}\}, 则 \bigcup \mathcal{A} = \{a,b,c,d,e,f\}.$ 当 \mathcal{A} 是以 \mathcal{S} 为指标集的集族时:

$$\bigcup \mathcal{A} = \bigcup \{A_{\alpha} | \alpha \in S\} = \bigcup_{\alpha \in S} A_{\alpha}$$

1.2.26 广义交

设A为一个集族,称由A中全体元素的元素组成的集合为A的广义并,记作 $\bigcap A$ ("大并A"). $\bigcap A$ 的描述法表示为:

$$\bigcap \mathcal{A} = \{x | \exists z (x \in z \land z \in \mathcal{A})\}\$$

设 $\mathcal{A} = \{\{1, 2, 3\}, \{1, a, b\}, \{1, 6, 7\}\},$ 则 $\cap \mathcal{A} = \{1\}.$

当A是以S为指标集的集族时:

$$\bigcap \mathcal{A} = \bigcap \{A_{\alpha} | \alpha \in S\} = \bigcap_{\alpha \in S} \mathcal{A}_{\alpha}$$

注意: 当 $A = \emptyset$ 时, $\cap \emptyset$ 无意义.

1.2.27 集合运算的优先级

有以下几类:

- 第一类运算(此类运算按照从左向右的顺序进行):绝对补,幂集,广义交,广义并等.
- 第二类运算(此类运算按照括号决定的顺序运算,多个括号并排或没有括号的部分按照从左向右的顺序运算):初级并,初级交,相对补,对称差等.

1.2.28 文氏图

文氏图就是将集合与集合之间的关系以及一些运算的结果用图像进行表示.在文氏图中,用矩形代表全集,用元或者其他闭曲线的内部代表E的子集,并将运算结果得到的集合用阴影部分表示.

1.2.29 容斥原理(排斥原理)

设 A_1, A_2, \ldots, A_n 为n个集合,则:

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{i=1}^{n} |A_i| - \sum_{i < j} |A_i \cap A_j| + \sum_{i < j < k} |A_i \cup A_j \cup A_k| - \dots + (-1)^{n-1} |A_1 \cup A_2 \cup \dots \cup A_n|$$

1.2.30 基本集合恒等式

设E,A,B,C为E的任意子集:

- 1. 幂等律: $A \cap A = A$, $A \cup A = A$
- 2. 交換律: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- 3. 结合律: $(A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C)$
- 4. 分配律: $A \cup (B \cap C) = (A \cap B) \cap (A \cup C), A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 5. 德·摩根律:
 - 绝对形式: $(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}, (A \cap B)^{\complement} = A^{\complement} \cup B^{\complement}$
 - 相对形式: $\mathbb{E} (A \cup B) = (\mathbb{E} A) \cap (\mathbb{E} B), \mathbb{E} (A \cap B) = (\mathbb{E} A) \cup (\mathbb{E} B)$
- 6. 吸收律: $A \cup (A \cap B) = A, A \cap (A \cup B) = A$
- 7. 零律: $A \cup \mathbb{E} = E, A \cap \emptyset = \emptyset$
- 8. 同一律: $A \cup \emptyset = A, A \cap E = A$
- 9. 排中律: $A \cup A^{\complement} = \mathbb{E}$
- 10. 矛盾律: $A \cap A^{\complement} = \emptyset$
- 11. 余补律: $\emptyset^{\complement} = \mathbb{E}, \mathbb{E}^{\complement} = \emptyset$
- 12. 双重否定律: $(A^{\complement})^{\complement} = A$
- 13. 补交转换律: $A B = A \cap B^{\complement}$

1.2.31 集合恒等式推广到集族的情况

设 $\{A_{\alpha}\}_{\alpha\in S}$ 为集族,B为一集合:

- 分配律: $B \cup (\bigcap \{A_{\alpha}\}_{\alpha \in S}) = \bigcap_{\alpha \in S} (B \cup A_{\alpha}), B \cap (\bigcup \{A_{\alpha}\}_{\alpha \in S}) = \bigcup_{\alpha \in S} (B \cap A_{\alpha})$
- 德·摩根律:
 - 绝对形式:

*
$$(\bigcup \{A_{\alpha}\}_{\alpha \in S})^{\complement} = \bigcap_{\alpha \in S} (A_{\alpha}^{\complement})$$

$$* (\bigcap \{A_{\alpha}\}_{\alpha \in S})^{\complement} = \bigcup_{\alpha \in S} (A_{\alpha}^{\complement})$$

- 相对形式:

*
$$B - (\bigcup \{A_{\alpha}\}_{{\alpha} \in S}) = \bigcap_{{\alpha} \in S} (B - A_{\alpha})$$

*
$$B - (\bigcap \{A_{\alpha}\}_{{\alpha} \in S}) = \bigcup_{{\alpha} \in S} (B - A_{\alpha})$$

1.2.32 集合幂集运算的性质

- 1. $A \subseteq B$ 当且仅当 $\mathcal{P}(A) \subseteq \mathcal{P}(B)$
- 2. $\mathcal{P}(A-B) \subseteq (\mathcal{P}(A) \mathcal{P}(B)) \cup \{\emptyset\}$

1.2.33 有序对(有序二元组)

有序对又称有序二元组:

$$\langle a, b \rangle = \{\{a\}, \{a, b\}\}\$$

其中a是第一元素,b是第二元素.

< a, b >也记作(a, b).

由于集合没有顺序,因此a,b和b,a是一样的.又称无序对,在公理集合论中有一条定义无序对的公理,称为无序对公理:

如果a,b是集合,则{a,b}依然是集合

而在< a, b >中,a在每一个子集合中,而b只出现在其中一个子集合中,因此他们的地位不相等,所以在有序对中a是第一元素,n是第二元素.

实际上是定义了一个数组,用这种方法来保证元素的顺序.

接下来一章严格证明有序对的性质.

1.2.34 有序对性质的证明

• 引理1: $\{x, a\} = \{x, b\} \Leftrightarrow a = b$

叙述为: 当集合 $\{x,a\}$ 等于 $\{x,b\}$ 当且仅当a=b.

证明:

- 充分性(←) 是显然的,因此不证.
- 必要性(⇒) 分两种情况:

1.
$$x = a$$
. $\{x, a\} = \{x, b\} \Rightarrow \{a, a\} = \{a, b\} \Rightarrow \{a\} = \{a, b\} \Rightarrow a = b$

2.
$$x \neq a$$
. $a \in \{x, a\} = \{x, b\} \Rightarrow a = b$.

□-Q.E.D.(Quod Erat Demonstrandum/证毕)

- 引理2:若A = B ≠ Ø.则:
 - 1. $\bigcup A = \bigcup B$
 - 2. $\bigcap \mathcal{A} = \bigcap \mathcal{B}$

证明:

1.
$$\forall x, x \in \bigcup \mathcal{A} \Leftrightarrow \exists z (z \in \mathcal{A} \land x \in z) \Leftrightarrow \exists z (z \in \mathcal{B} \land x \in z) \Leftrightarrow x \in \bigcup \mathcal{B}$$

2.
$$\forall x, x \in \bigcap \mathcal{A} \Leftrightarrow \forall z (z \in \mathcal{A} \land x \in z) \Leftrightarrow \forall z (z \in \mathcal{B} \land x \in z) \Leftrightarrow x \in \bigcap \mathcal{B}$$

□-Q.E.D.(Quod Erat Demonstrandum/证毕)

● 定理(性质1)–两个有序对相对,当且仅当他们的第一个元素和第二个元素分别相等 : < a, b >=< c, d >⇔ a = c \land b = d

证明:

- (⇐) 显然,不证.
- $(\Rightarrow) :$

由引理2,{
$$\{a\}$$
, { a , $b\}$ } = { $\{c\}$, { c , $d\}$ } \Rightarrow \bigcap { $\{a\}$, { a , $b\}$ } = \bigcap { $\{c\}$, { c , $d\}$ } \Rightarrow { a } = { c } \Leftrightarrow $a = c$ 又因为< a , b >=< c , d > \Leftrightarrow { $\{a\}$, { a , $b\}$ } = { $\{c\}$, { c , $d\}$ } \Rightarrow \bigcup { $\{a\}$, { a , $b\}$ } = \bigcup { $\{c\}$, { c , $d\}$ } \Rightarrow { a , b } = { c , d }

再由引理1,得出b=d.

□-Q.E.D.(Quod Erat Demonstrandum/证毕)

推论: a ≠ b ⇒ < a, b > ≠ < b, a >
证明(反证):

$$\langle a, b \rangle = \langle b, a \rangle \Leftrightarrow a = b$$

与 $a \neq b$ 矛盾.

□-Q.E.D.(Quod Erat Demonstrandum/证毕)

1.2.35 有序n元组

• 有序三元组:

$$< a, b, c > = << a, b >, c >$$

有序n(n > 2)元组:

$$\langle a_1, a_2, \dots, a_n \rangle = \langle \langle a_1, a_2, \dots, a_{n-1} \rangle, a_n \rangle$$

有以下定理:

$$< a_1, a_2, \dots, a_n > = < b_1, b_2, \dots, b_n > \Leftrightarrow a_i = b_i, i = 1, 2, \dots, n$$

1.2.36 笛卡尔乘积集合(卡氏积)

设A,B为两个集合, \mathbb{R} x \in A,y \in B,构造有序对集合 $\{(x,y)|x\in A\land y\in B\}$ (属于A的x在前面,属于B的y在后面),将这样的集合记为笛卡尔乘积集合(又称为卡氏积):

$$A\times B=\{< x,y>|x\in A\wedge y\in B\}$$

这种集合可以用来表示两个集合中元素的排列组合.

举例,设 $A = \{\emptyset, a\}, B = \{1, 2, 3\}, 则$:

$$\bullet \ \ A \times B = \{<\emptyset, 1>, <\emptyset, 2>, <\emptyset, 3>, < a, 1>, < a, 2>, < a, 3>\}$$

•
$$B \times A = \{ \langle 1, \emptyset \rangle, \langle 1, a \rangle, \langle 2, \emptyset \rangle, \langle 2, a \rangle, \langle 3, \emptyset \rangle, \langle 3, a \rangle \}$$

$$\bullet \ \ A\times A=\{<\emptyset,\emptyset>,<\emptyset,a>,< a,\emptyset>,< a,a>\}$$

• . . .

1.2.37 卡氏积的性质

• 卡氏积非交换性: $A \times B \neq B \times A$ (除非 $A = B \lor A = \emptyset \lor B = \emptyset$)

反证法反例:设 $A = \{1\}, B = \{2\}$:

$$A \times B = \{ <1, 2 > \} \neq \{ <2, 1 > \} = B \times A$$

□-Q.E.D.(Quod Erat Demonstrandum/证毕)

• 卡氏积非结合性: $(A \times B) \times C \neq A \times (B \times C)$ (除非 $A = \emptyset \lor B = \emptyset \lor C = \emptyset$)

反证法反例: $A = B = C = \{1\}$:

$$(A \times B) \times C = \{ << 1, 1>, 1> \} \neq \{ <1, <1, 1>> \} = A \times (B \times C)$$

□-Q.E.D.(Quod Erat Demonstrandum/证毕)

• 卡氏积分配律:

1.
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

2.
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

3.
$$(B \cup C) \times A = (B \times A) \cup (C \cup A)$$

4.
$$(B \cap C) \times A = (B \times A) \cap (C \times A)$$

其中选一个证明: $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

证明: $\forall < x, y >, < x, y > \in A \times (B \cup C)$

 $\Leftrightarrow x \in A \land y \in (B \cup C) \Leftrightarrow x \in A \land (y \in B \lor y \in C)$

 $\Leftrightarrow (x \in A \lor y \in B) \lor (x \in A \land y \in C)$

 $\Leftrightarrow (< x, y > \in A \times B) \lor (< x, y > \in A \times C)$

 $\Leftrightarrow < x, y > \in (A \times B) \cup (A \times C)$

□-Q.E.D.(Quod Erat Demonstrandum/证毕)

1.2.38 卡氏积的图示

放张图就一目了然了:

特别的: $A=B=\mathbb{R}, 则 A\times B=\mathbb{R}\times\mathbb{R}=\mathbb{R}^2,$ 也就是笛卡尔平面直角坐标系. 同样的,也有 R^3,R^n

$$A = \{x | x \in \mathbb{R} \land a \le x \le b\}$$

$$B = \{y | y \in \mathbb{R} \land c \le y \le d\}$$

$$C = \{ z | z \in \mathbb{R} \land e \le z \le f \}$$

那么 $A \times B$ 的图像表示就是:

同样的, $A \times B \times C$ 表示的是空间中的一个立方体,这里就不画了(邪恶的tikz).

1.2.39 n维卡氏积

• n维卡氏积:

$$A_1 \times A_2 \times \cdots \times A_n = \{ \langle x_1, x_2, \dots, x_n \rangle \mid x_1 \in A_1 \land x_2 \in A_2 \land \cdots \land x_n \in A_n \}$$

• $A^n = A \times A \times \cdots \times A$

- $|A_i| = n_i, i = 1, 2, \dots, n \Rightarrow |A_1 \times A_2 \times \dots \times A_n| = n_1 \times n_2 \times \dots \times n_n.$
- n维卡氏积性质于2维卡氏积类似.

1.2.40 n维卡氏积的性质

- 非交换: $A \times B \times C \neq B \times C \times A$ (要求A, B, C均非空,且互不相等)
- 非结合:(非二元运算)
- 分配律:例如: $A \times B \times (C \cup D) = (A \times B \times C) \cup (A \times B \times D)$
- 其他: 比如 $A \times B \times C = \emptyset \Leftrightarrow A = \emptyset \vee B = \emptyset \vee C = \emptyset$.

1.2.41 n元关系

- n元关系:其元素全是有序n元组的集合.
- 例1: $F_1 = \{ \langle a, b, c, d \rangle, \langle 1, 2, 3, 4 \rangle, \langle \alpha, \beta, \gamma, \delta \rangle \}$ — F_1 是3元关系.
- 例2: $F_2 = \{ \langle a, b, c \rangle, \langle \alpha, \beta, \gamma \rangle, \langle A, B, C \rangle \}$ — F_2 是3元关系

1.2.42 二元关系

- 2元关系(关系):元素全是有序对的集合.
- 比如 $A = \{ < A, B >, < 1, 2, 3 >, a, \alpha, 1 \}$ —如果 $a, \alpha, 1$ 不是有序对,那么A不是关系.

1.2.43 二元关系的记号

- 设F是二元关系,那么有三种记法:
 - 中缀(infix)记号: xFy
 - 前缀(prefix)记号: F(x,t), Fxy
 - 后缀(suffix)记号: $\langle ,xy \rangle \in F,xyF$
- 例如: $2 < 15 \Leftrightarrow < (2,15) \Leftrightarrow \langle 2,15 \rangle \in <$

1.2.44 A到B的二元关系

- A到B的二元关系:是 $A \times B$ 的任意子集. $R \not = A \otimes B \otimes R \in P(A \times B)$
- 如果|A| = m,|B| = n,则 $|A \times B| = mn$,所以 $|P(A \times B)| = 2^{mn}$,也就是说A到B不同的二元关系共有 2^{mn} 个.

1.2.45 A到B的二元关系举例

设 $A = \{a_1, a_2\}, B = \{b_1, b_2\}, 则A到B的二元关系共有4个:$

$$R_1 = \emptyset, R_2 = \{\langle a_1, b \rangle\}, R_3 = \{\langle a_2, b \rangle\}, R_4 = \{\langle a_1, b \rangle, \langle a_2, b \rangle\}$$

反过来,B到A的二元关系也有4个:

$$R_5 = \emptyset.R_6 = \{\langle b, a_1 \rangle\}, R_7 = \{\langle b, a_2 \rangle\}, R_8 = \{\langle b, a_1 \rangle, \langle b, a_2 \rangle\}$$

1.2.46 A上的二元关系

- A上的二元关系:是 $A \times A$ 的任意子集. R是A上的二元关系 $\Leftrightarrow R \subseteq A \times A \Leftrightarrow R \in P(A \times A)$
- $\mathfrak{M} + |A| = m, \mathfrak{M} |A \times A| = m^2, \mathfrak{M} :$

$$|P(A \times A)| = 2^{m^2}$$

即A上不同的二元关系共有 2^{m^2} 个

1.2.47 一些特殊关系

- 设A是任意集合,则可以定义A上的:
 - 空关系:∅
 - 恒等关系: $I_A = \{\langle x, x \rangle | x \in A\}$
 - 全域关系: $E_A = A \times A = \{\langle x, y \rangle | x \in A \land y \in A\}$
 - 包含关系: \subseteq_A = { $\langle x, y \rangle | x \subseteq \land y \subseteq A \land x \subseteq y$ }

- 真包含关系: \subset_A = { $\langle x, y \rangle | x \subseteq A \land y \subseteq A \land x \subset y$ }
- $\forall A \subseteq Z, \text{则可以定义} A$ 上的:
 - 整除关系: $D_A = \{\langle x, y \rangle | x \in A \land y \in A \land x | y \}$
 - 例: $A = \{1, 2, 3, 4\},$ 则:

$$D_A = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 1, 4 \rangle, \langle 2, 2 \rangle, \langle 2, 4 \rangle, \langle 3, 3 \rangle, \langle 4, 4 \rangle\}$$

- 设 $A \subset R$,则可以定义A上的:
 - 小于等于(less than or equal to)关系: $LE_A = \{\langle x, y \rangle | x \in A \land y \in A \land x \leq y \}$
 - 小于(less than)关系: $L_A = \{\langle x, y \rangle | x \in A \land y \in A \land x < y\}$
 - 大于等于(greater than or equal to)关系
 - 大于(greater than)关系,...

1.2.48 与二元关系有关的概念

- 对任意集合R,可以定义:
 - 定义域(domain): $dom\ R = \{x | \exists y (xRy)\}$
 - 值域(range): $ran R = \{y | \exists x(xRy)\}$
 - -域(field): $fld R = dom R \cup ran R$

例:

$$-R_1 = \{a, b\}$$

$$- R_2 = \{a, b, \langle c, d \rangle, \langle e, f \rangle\}$$

$$-R_3 = \{\langle 1, 2 \rangle, \langle 3, 4 \rangle, \langle 5, 6 \rangle\}$$

当a,b不是有序对时, R_1 和 R_2 不是关系.

$$-$$
 dom $R_1 = \emptyset$, ran $R_1 = \emptyset$, fld $R_1 = \emptyset$

$$- dom R_2 = \{c, e\}, ran R_2 = \{d, f\}, fld R_2 = \{c, d, e, f\}$$

$$- dom R_3 = \{1, 3, 5\}, ran R_3 = \{2, 4, 6\}, fld R_3 \{1, 2, 3, 4, 5, 6\}$$

• 对任意集合F,G,可以定义:

- 逆(inverse): $F^{-1} = \{\langle x, y \rangle | yFx \}$

定理:设F,G为二集合,则 $(F \circ G)^{-1} = G^{-1} \circ F^{-1}$

这个可以用矩阵的逆来理解.

证明: $\forall \langle x, y \rangle, \langle x, y \rangle \in (F \circ G)^{-1}$

- $\Leftrightarrow \langle y, x \rangle \in (F \circ G)$
- $\Leftrightarrow \exists z(yGz \land zFx)$
- $\Leftrightarrow \exists z (zG^{-1}y \wedge xF^{-1}z)$
- $\Leftrightarrow \exists z (xF^{\text{-}1}\,z \wedge zG^{\text{-}1}\,y) \Leftrightarrow \langle x,y \rangle \in G^{\text{-}1} \circ F^{\text{-}1}$

□-Q.E.D.(Quod Erat Demonstrandum/证毕)

- 合成(复合)(composite): $F \circ G = \{\langle x, y \rangle | \exists z (xGz \land zFy)\}$

关于合成,还分为:

- * 顺序合成(右合成): $F \circ G = \{\langle x, y \rangle | \exists z (xFz \wedge zGy) \}$
- * 逆序合成(左合成): $F \circ G = \{\langle x, y \rangle | \exists z (xGz \wedge zFy) \}$

合成运算有结合律:

* 设 R_1, R_2, R_3 为集合,则:

$$(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$$

证明: $\forall \langle x, y \rangle, \langle x, y \rangle \in (R_1 \circ R_2) \circ R_3$

- $\Leftrightarrow \exists z (xR_3z \wedge z(R_1 \circ R_2)y)$
- $\Leftrightarrow \exists z (xR_3z \land \exists t (zR_2t \land tR_1y))$
- $\Leftrightarrow \exists z \exists t (x R_3 z \land (z R_2 t \land t R_1 y))$
- $\Leftrightarrow \exists t \exists z (xR_3z \wedge zR_2t \wedge tR_1y)$
- $\Leftrightarrow \exists t \exists z (xR_3z \wedge zR_2t \wedge tR_1y)$
- $\Leftrightarrow \exists t (\exists z (xR_3z \land zR_2t) \land tR_1y)$
- $\Leftrightarrow \exists t(x(R_2 \circ R_3)t \wedge tR_1y)$

$$\Leftrightarrow xR_1 \circ (R_2 \circ R_3)y$$

$$\Leftrightarrow \langle x, y \rangle \in R_1 \circ (R_2 \circ R_3)$$

$$\therefore (R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$$

□-Q.E.D.(Quod Erat Demonstrandum/证毕)

- 对任意集合F, A, 可以定义:
 - 限制(restriction): $F \uparrow A = \{\langle x, y \rangle | xFy \land x \in A\}$
 - $$image: F[A] = ran(F ↑ A), F[A] = {y|∃x(x ∈ A ∧ xFy)}$
- 对任意集合F,可以定义:
 - 单根(single rooted): 一个y对应唯一的一个x就是单根. F是单根的 $\Leftrightarrow \forall y(y \in ran\ F \rightarrow \exists! x(x \in dom\ F \land xFy)) \Leftrightarrow (\forall y \in ran\ F)(\exists! x \in dom\ F)(xFy)$
 - * 3!表示"存在唯一的"
 - * $\forall x(x \in A \to B(x))$ 缩写为($\forall x \in A$)B(x)
 - * $\exists x (x \in A \land B(x))$ 缩写为 $(\exists x \in A)B(x)$
 - 单值(single valued): 一个x对应一个唯一的y就是单值.

F是单值的 $\Leftrightarrow \forall x(x \in dom\ F \to \exists! y(y \in) F \land xFy)) \Leftrightarrow (\forall x \in dom\ F)(\exists! y \in ran\ F)(xFy)$

1.3 图论

1.3.1 图论的主要内容

• 研究对象:由顶点和边构成的图

• 研究思想: 以集合论为基础,以图为工具,为各种二元关系建立模型

• 研究内容:

- 图的基本概念:连通性,矩阵表示,带权图

- 欧拉图,哈密顿图:边和顶点的遍历

- 树:表示层级组织关系

- 平面图: 判定,表示,性质

- 图的着色:各种调度问题的模型
- 独立集,支配集,覆盖集,匹配:各种应用问题

1.3.2 图论中的问题

- 什么是图?有哪些图?图有什么性质?
- 什么是欧拉图?什么是哈密顿图?
- 什么是树?如何用矩阵表示图?
- 什么是图的着色?
- 什么是支配集,独立集,覆盖,匹配?
- 什么是带权图?