

Signals and Systems Laplace Transform and Its Applications

Student: Ali Abbasi (ID: 9531503)

Course Instructors: Dr. M Shahraki, Dr. M Mehrjoo

Course Number: 20 14 255

Faculty of Electrical and Computer Engineering, University of Sistan and Baluchestan, Zahedan, Iran

Note: All trademarks, logos, service marks displayed, and software used to make this video are the trade mark of their respective company.

Frequency Range

Note: This slide has been used in assignment 9 to present applications of Fourier analysis.

Audio Systems with Multiple Speakers

Picture Source: https://www.bhphotovideo.com/explora/amp/audio/tips-and-solutions/what-about-all-those-speaker-specs Note: This slide has been used in assignment 9 to present applications of Fourier analysis.

Filters Circuits

Low-pass Filter Analysis

All initial conditions are zero.

$$v_{in}(t) = v_R(t) + v_{out}(t)$$

$$v_{in}(t) = Ri(t) + \frac{1}{C} \int_{-\infty}^{t} i(\tau) d\tau$$

$$v_{in}(t) = RC \frac{dv_{out}(t)}{dt} + \frac{1}{C} \int_{-\infty}^{t} C \frac{dv_{out}(\tau)}{dt} d\tau$$

$$v_{in}(t) = RC \frac{dv_{out}(t)}{dt} + v_{out}(t)$$

Low-pass Filter Analysis (cont.)

$$v_{in}(t) = RC \frac{dv_{out}(t)}{dt} + v_{out}(t)$$

$$V_{in}(s) = RCsV_{out}(s) + V_{out}(s)$$

$$V_{in}(s) = V_{out}(s)(RCs + 1)$$

$$v_{out}(t) = v_{in}(t)(1 - e^{-\frac{1}{RC}t})$$

$$Laplace^{-1}$$

$$V_{out}(s) = \frac{1}{RC}(\frac{1}{s + \frac{1}{RC}})V_{in}(s)$$

Devices in S-Domain

Device	Time – Domain	S-Domain		
		Voltage	Current	Impedance (with zero initial condition)
IVS	$v_S(t)$	$V_{S}(s)$	_	_
ICS	$i_{S}(t)$	_	$I_{S}(s)$	_
VCVS	$v_2(t) = \mu v_1(t)$	$V_2(s) = \mu V_1(s)$	-	_
VCCS	$i_2(t) = gv_1(t)$	-	$I_2(s) = gV_1(s)$	_
CCVS	$v_2(t) = ri_1(t)$	$V_2(s) = rI_1(s)$	_	_
CCCS	$i_2(t) = \beta i_1(t)$	_	$I_2(s) = \beta I_1(s)$	_
Resistor	$v_R(t) = Ri_R(t)$	$V_R(s) = RI_R(s)$	$I_R(s) = \left(\frac{1}{R}\right) V_R(s)$	$Z_R(s)=R$
Capacitor	$v_C(t) = \int_0^t i_C(\tau) d\tau$	$V_C(s) = \frac{1}{sC}I_C(s) + \frac{v_{c(0)}}{s}$	$I_C(s) = (sC)V_C(s) - Cv_c(0)$	$Z_{\mathcal{C}}(s) = \frac{1}{s\mathcal{C}}$
Inductor	$v_L(t) = L \frac{di_L(t)}{dt}$	$V_L(s) = sLI_L(s) - Li_L(0)$	$I_L(s) = \left(\frac{1}{sL}\right)V_L(s) + \frac{i_L(0)}{s}$	$Z_L(s) = sL$

S-Domain Thévenin's and Norton's Equivalent for Passive Elements

Band-pass Filter: S-Domain Analysis

$$V_{out}(s) = \left(\frac{R}{sL + \frac{1}{sC} + R}\right) V_{in}(s)$$

$$T(s) = \frac{V_{out}(s)}{V_{in}(s)} = \left(\frac{R}{L}\right) \frac{s}{\left[s^2 + \left(\frac{R}{L}\right)s + \frac{1}{LC}\right]}$$

Band-pass Filter: S-Domain Analysis (cont.)

$$s = j\omega \rightarrow T(j\omega) = \frac{V_{out}(j\omega)}{V_{in}(j\omega)} = \left(\frac{R}{L}\right) \frac{j\omega}{\left[(j\omega)^2 + \left(\frac{R}{L}\right)s + \frac{1}{LC}\right]} = \left(\frac{R}{L}\right) \frac{j\omega}{\left[\left(\frac{1}{LC} - \omega^2\right) + \left(\frac{R}{L}\right)j\omega\right]}$$

$$\frac{1}{LC} - \omega^2 = 0 \to \omega_0 = \frac{1}{\sqrt{LC}}$$

$$\frac{1}{LC} - \omega^2 = \pm \frac{R}{L} \omega \rightarrow \omega^2 \pm \frac{R}{L} \omega - \frac{1}{LC} = 0 \rightarrow \begin{cases} \omega_{C1} = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}} \\ \omega_{C2} = +\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}} \end{cases}$$

$$Band_width = \omega_{C2} - \omega_{C1} = \frac{R}{L}$$
 and $Q_factor = \frac{\omega_0}{BandWidth} = \frac{1/\sqrt{LC}}{R/L} = \frac{1}{R}\sqrt{\frac{L}{C}}$

Band-pass Filter as a System

• For a band-pass filter (all initial conditions are zero):

$$T(s) = \frac{A_0 2\zeta \omega_0 s}{s^2 + 2\zeta \omega_0 s + \omega_0^2} = \frac{A_0 \frac{\omega_0}{Q} s}{s^2 + \frac{\omega_0}{Q} s + \omega_0^2} = \frac{A_0 B s}{s^2 + B s + \omega_0^2}$$

*A*₀: *Midband Gain*

 ω_0 : Resonant Frequency

ζ: Damping Coefficient

Q: Quality Factor

Control Systems and S-Domain

Picture Source: "Applications of Laplace Transform in Control Systems.", "Mobile Tutor" channel on YouTube.

Control Systems and S-Domain (cont.)

- Help in solving differential equations of higher orders and evaluating system output.
- Gain Factor K:

$$T(s) = \frac{1}{As^2 + Bs + C} \xrightarrow{Magnitude \ Amplification} T(s) = K \frac{1}{As^2 + Bs + C}$$

Nyquist Diagram

Control Systems and S-Domain (cont.)

 $\sigma = 0$ محدودهای برای M طوری بدست آورید که تنها دو قطب حلقه بستهی سیستم زیر بین خطوط $\sigma = 0$ و $\sigma = 0$ قرار بگیرند. حداقل مقدار خطای حالت دائم به ورودی شیب واحد و نیز کمترین زمان نشست دو درصد این سیستم در پاسخ به ورودی پله در محدودهی تعیین شده تقریباً چقدر است؟

Picture Source: 2010218 (Linear System and Control) at University of Sistan and Baluchestan, Semester 3981, Midterm Exam, by Dr. Saeed Tavakoli Afshari.

Control Systems and S-Domain (cont.)

Faster forecasting of the outputs of a system.

The END!