SHAMBHUNATH INSTITUTE OF ENGINEERING AND TECHNOLOGY

DEFIOI

Subject: Fundamentals of Electrical Engineering

Subject Code: BEE101

Semester: 1st

Course: B. Tech.

Branch: ALL

Sections: A, B & E

SECOND SESSIONAL EXAMINATION, ODD SEMESTER, (2022-2023)

Time - 2 hrs.

Maximum Marks – 45

1. Attempt <u>ALL</u> questions in brief. SECTION – A

QN				
	What will happen if the prime of	Marks	CO	BL
b.	What will happen if the primary of a transformer is connected to dc supply? List the various losses that occur in transformer.	2	CO ₃	L1
c.	Enlist the various methods of starting 6	2	CO3	L1
d.	Enlist the various methods of starting of single phase induction motor. Why Synchronous motor is not self-starting?	2	CO4	L1
e.	Why Earth pin is made thicker and bigger than line and neutral?	2	CO4	L1
f.	What do you mean by battery backup?	2	CO5	L1
	backup?	2	205	Y 1

SECTION - B

2. Attempt any <u>ONE</u> part of the following:

QN	QUESTION			
a.	Write analogy between magnetic circuit and electric circuit.	Marks	CO	BL
	A 40 kVA transformer has core loss of 400 W and full load copper loss of	5	CO3	L1
1 2.	800 W. If the power factor of the load is 0.9 (lagging) then calculate the efficiency of transformer at full load.	5	CO3	L3

3. Attempt any ONE part of the following:

QN	QUESTION	The Art State of the State of t	~	1
	Derive the expression of torque for dc motor. Also discuss the applications of	Marks	CO	BL
1	[.]L.	200	CO4	1.6
1 pt	An 8 pole lap wound de generator has 450 armature turns. It operates at 0.02			4 -10
Ъ.	Web flux per pole and runs at 1000 rpm at no load. Find the emf induced by it.	5	C04	_y L3

4. Attempt any <u>ONE</u> part of the following:

7. Inte	mpt any or the following.		1	
QN	QUESTION	Marks	CO	BL
a.	Write short notes on characteristics of battery. Calculate the backup of battery of 100 AH connected to load of 100 watts and supply voltage is 12V.	5	CO5	L3
b .	Name the various cables used in electrical system based on insulation. Explain any two.	5	CO5	L2

SECTION - C

5. Attempt any <u>ONE</u> part of the following:

ON	QUESTION	Marks	CO	BL
a.	Discuss the principle of operation of a single phase transformer. Derive EMF equation for a single phase transformer.	6	CO	L6
b.	What is voltage regulation in a single phase transformer? A 100 kVA, 2,400/240V, 50Hz, single phase transformer has the following parameters-Primary winding (hv side): resistance $R_1 = 2.4\Omega$, leakage reactance $X_1 = 6.0$ Ω . Secondary winding (lv side): resistance $R_2 = 0.03$ Ω , leakage reactance $X_2 = 0.07$ Ω . Find the equivalent resistance & leakage reactance referred to secondary.	6	C03	L3

6. Attempt any <u>ONE</u> part of the following:

QN	QUESTION	Marks	CO	BL
a.	Derive the relation between frequencies of stator and rotor currents? A 3- phase, 50Hz induction motor has 6 poles and operates with a slip of 5% at a certain load. Determine (i) The speed of rotor with respect to the stator. (ii) The frequency of the rotor current. (iii) The speed of the rotor magnetic field with respect to the stator.	6	C04	L6
b.	Draw and explain the torque-slip characteristics of three phase induction motor.	6	C04	L2

7. Attempt any ONE part of the following:

QN	QUESTION	Marks	CO	BL
a.	Write short notes on the following: (i) MCB (ii) ELCB (c) Fuse	6	C05	L1
b.	An alkaline cell is discharged at a steady current of 4 A for 12 hours, the average terminal voltage being 1.2 V. To restore it to original state of voltage, a steady current of 3 A for 20 hours is required, the average terminal voltage being 1.44 V. Calculate the ampere-hour and watt-hour efficiencies in this particular case.	6	C05	L3

Bloom's Taxonomy Level (BL):-

Remember (L1), Understanding (L2), Apply (L3), Analyze (L4), Evaluating (L5), Creating (L6)