Control System Design

Introduction to Control Theory

- Order of a system
- Linear Time Invariant (LTI) systems
 - Single integrator (kinematic)
 - Double integrator
 - Feedforward, feedback control
- Controller Design
 - Gain tuning
- Linear controller for a quadrotor
 - Planar quadrotor
 - Project 1 Phase 2 introduction

Control of a simple first-order system

Problem

State, input

$$x, u \in \mathbb{R}$$

Kinematic plant model

$$\dot{x} = u$$

Want x to follow trajectory $x^{des}(t)$

General Approach

Define error, $e(t)=x^{des}(t)-x(t)$

Want e(t) to converge exponentially to zero

Strategy

Find u such that

$$\dot{e} + K_p e = 0$$
 $K_P > 0$
$$u(t) = \dot{x}^{des}(t) + K_P e(t)$$
 Feedforward

Control of a simple second-order system

Problem

State, input

$$x, u \in \mathbb{R}$$

Kinematic plant model

$$\ddot{x} = u$$

Want x to follow trajectory $x^{des}(t)$

General Approach

Define error, $e(t)=x^{des}(t)-x(t)$

Want e(t) to converge exponentially to zero

0.25 0.2 0.15 0.1 0 0.05 -0.05 -0.05 0 0.1 0.2 0.3 0.4 0.5

Strategy

Find *u* such that

$$\ddot{e} + K_v \dot{e} + K_p e = 0$$

$$K_p, K_v > 0$$

$$u(t) = \ddot{x}^{des}(t) + K_V \dot{e}(t) + K_P e(t)$$
Feedforward

Proportional

Derivative

Control for trajectory tracking in a simple second-order system

PD control

$$u(t) = \ddot{x}^{des}(t) + K_V \dot{e}(t) + K_P e(t)$$

Proportional control acts like a spring (capacitance) response

Derivative control is a viscous dashpot (resistance) response

Large derivative gain makes the system overdamped and the system converges slowly

PID control

In the presence of disturbances or modeling errors, it is often advantageous to use PID control

$$u(t) = \ddot{x}^{des}(t) + K_V \dot{e}(t) + K_P e(t) + K_I \int_0^t e(\tau) d\tau$$
Integral

PID control generates a third-order closed-loop system Integral control makes the steady-state error go to zero

Disadvantages of PID or PD control schemes

$$m\ddot{x}(t) + b\dot{x}(t) + kx(t) = f(t)$$

- performance will depend on the model
- need to tune gains to maximize performance

Model based control law

model based
$$f(t) = m(\ddot{x}_d(t) + k_p e(t) + k_v \dot{e}(t)) + b\dot{x}(t) + kx(t)$$
feedforward + PD feedback model based

Two parts of a model based scheme

- model based part
 - cancel the dynamics of the system
 - specific to the model
- servo based part
 - use PID or PD with feedforward to drive errors to zero
 - independent of the model of the system

Model

$$m\ddot{x}(t) + b\dot{x}(t) + kx(t) = f(t)$$

Model based control law

model based
$$f(t) = m \left(\ddot{x}_d(t) + k_p e(t) + k_v \dot{e}(t) \right) + b \dot{x}(t) + k x(t)$$
servo

Performance

$$\ddot{e} + k_v \dot{e} + k_p e = 0$$

Advantage

- decomposes the control law into
 - model-dependent part (depends on the knowledge of the model)
 - model-independent part (servo control, gains are independent of the model)

Disadvantage

Model based control law (based on estimates of model parameters)

$$f(t) = \hat{m}(\ddot{x}_d(t) + k_p e(t) + k_v \dot{e}(t)) + \hat{b}\dot{x}(t) + \hat{k}x(t)$$

Ideal performance

$$\ddot{e} + k_{v}\dot{e} + k_{p}e = 0$$

Actual performance

$$\ddot{e} + k_{v}\dot{e} + k_{p}e = \left(\frac{m}{\hat{m}} - 1\right)\ddot{x} + \frac{b - \hat{b}}{\hat{m}}\dot{x} + \frac{k - \hat{k}}{\hat{m}}x$$

- 1. Error term will not go exponentially to zero
- 2. Right hand side is a forcing function driving the error away from zero

Not all is lost however

- Treat f_p as a perturbation or a disturbance force
- -If $\max_{t} f_p(t) < M$ we can prove that the error e(t) is also bounded

Gain Tuning

Manual Tuning

Manual Tuning

Parameter Increased	K _p	K _d	K _i
Rise Time	Decrease	-	Decrease
Overshoot	Increase	Decrease	Increase
Settling Time	-	Decrease	Increase
Steady-State Error	Decrease	n/a	Eliminate

Ziegler-Nichols Method

Heuristic for tuning gains

- 1. Set $K_i = K_d = 0$
- 2. Increase K_p until ultimate gain, K_u , when output starts to oscillate
- 3. Find the oscillation period T_u at K_u
- 4. Set gains according to:

Controller	K _p	K _d	K _i
Р	0.50K _u	-	-
PD	0.80K _u	K _p T _u /8	-
PID	0.60K _u	2K _p /T _u	K _p T _u /8

Application to Quadrotors

Planar Quadrotor Model

$$\mathbf{x} = [y \ z \ \phi \ \dot{y} \ \dot{z} \ \dot{\phi}]^T$$

$$\sum \mathbf{F}_y = -u_1 \sin(\phi) = m\ddot{y}$$

$$\sum \mathbf{F}_z = -mg + u_1 \cos(\phi) = m\ddot{z}$$

$$\mathbf{M} = u_2 = I_{xx}\ddot{\phi}$$

$$\begin{bmatrix} \ddot{y} \\ \ddot{z} \\ \ddot{\phi} \end{bmatrix} = \begin{bmatrix} 0 \\ -g \\ 0 \end{bmatrix} + \begin{bmatrix} -\frac{1}{m}\sin\phi & 0 \\ \frac{1}{m}\cos\phi & 0 \\ 0 & \frac{1}{I_{xx}} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

Planar Quadrotor Model

$$\begin{bmatrix} \ddot{y} \\ \ddot{z} \\ \ddot{\phi} \end{bmatrix} = \begin{bmatrix} 0 \\ -g \\ 0 \end{bmatrix} + \begin{bmatrix} -\frac{1}{m}\sin\phi & 0 \\ \frac{1}{m}\cos\phi & 0 \\ 0 & \frac{1}{I_{xx}} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$x = egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} \dot{z} \ \dot{\phi} \ \dot{\dot{z}} \ \dot{\dot{\phi}} \end{bmatrix}$$

Linearized Dynamic Model

Nonlinear dynamics

$$\ddot{y} = -\frac{u_1}{m}\sin(\phi)$$

$$\ddot{z} = -g + \frac{u_1}{m}\cos(\phi)$$

$$\ddot{\phi} = \frac{u_2}{I_{rr}}$$

Equilibrium hover configuration

$$y_0, z_0, \phi_0 = 0, u_{1,0} = mg, u_{2,0} = 0,$$

Linearized dynamics

$$\ddot{y} = -g\phi$$

$$\ddot{z} = -g + \frac{u_1}{m}$$

$$\ddot{\phi} = \frac{u_2}{I_{xx}}$$

Nested Control Structure

Lateral dynamics

$$\ddot{y} = -g\phi$$

$$\ddot{\phi} = \frac{u_2}{I_{xx}}$$

Attitude control

$$u_2 = k_{p,\phi}(\phi_c - \phi) + k_{d,\phi}(\dot{\phi}_c - \dot{\phi})$$

Position control - determining $\phi_c, \dot{\phi}_c$

$$\phi_c = -\frac{\ddot{y}_c}{g}$$

$$\dot{\phi}_c = 0$$

Vertical dynamics

$$\ddot{z} = -g + \frac{u_1}{m}$$

Z-position control

$$u_1 = m(g + \ddot{z}_c)$$

Determining \ddot{y}_c, \ddot{z}_c

$$\mathbf{x} = \begin{bmatrix} y & z \end{bmatrix}^T$$

$$\ddot{\mathbf{e}} + k_{d,x}\dot{\mathbf{e}}_{des} + k_{p,x}\mathbf{e} = 0$$

Determining \ddot{y}_c, \ddot{z}_c

$$\mathbf{x} = [y \ z]^T$$

$$(\ddot{\mathbf{x}}_{des} - \ddot{\mathbf{x}}_c) + k_{d,x}(\dot{\mathbf{x}}_{des} - \dot{\mathbf{x}}) + k_{p,x}(\mathbf{x}_{des} - \mathbf{x}) = 0$$
Actual states

Specified by trajectory

Note:

$$u_1 = m(g + \ddot{z}_{des} + k_{d,z}(\dot{z}_{des} - \dot{z}) + k_{p,z}(z_{des} - z))$$

$$\phi_c = -\frac{1}{g}(\ddot{y}_{des} + k_{d,y}(\dot{y}_{des} - \dot{y}) + k_{p,y}(y_{des} - y))$$
Model-based Feedforward Feedback

29

$$u_{1} = m(g + \ddot{z}_{des} + (k_{d,z})(\dot{z}_{des} - \dot{z}) + (k_{p,z})(z_{des} - z))$$

$$u_{2} = (k_{p,\phi})(\phi_{c} - \phi) + (k_{d,\phi})(\dot{\phi}_{c} - \dot{\phi})$$

$$\phi_{c} = -\frac{1}{g}(\ddot{y}_{des} + (k_{d,y})(\dot{y}_{des} - \dot{y}) + (k_{p,y})(y_{des} - y))$$

PD Controller

High K_p

Low K_p (soft response)

High K_d (overdamped)

Trajectory Tracking

Given $\mathbf{x}_{traj}(t), \mathbf{\dot{x}}_{traj}(t), \mathbf{\ddot{x}}_{traj}(t)$

Trajectory Tracking

Given $\mathbf{x}_{traj}(t), \mathbf{\dot{x}}_{traj}(t), \mathbf{\ddot{x}}_{traj}(t)$

3-D Quadrotor

Penn Engineering

Control for Hovering

$$m\ddot{\mathbf{r}} = \begin{bmatrix} 0\\0\\-mg \end{bmatrix} + R \begin{bmatrix} 0\\0\\F_1 + F_2 + F_3 + F_4 \end{bmatrix}$$

Linearization

$$(u_1 \sim mg, \theta \sim 0, \phi \sim 0, \psi \sim \psi_0)$$

 $\ddot{r}_1 = \ddot{x} = g(\theta \cos \psi + \phi \sin \psi)$
 $\ddot{r}_2 = \ddot{y} = g(\theta \sin \psi - \phi \cos \psi)$

