Table 1: Properties of the Continuous-Time Fourier Series

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\pi/T)t}$$
$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt$$

Property	Periodic Signal	Fourier Series Coefficients
	$x(t)$ Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	$egin{aligned} a_k \ b_k \end{aligned}$
Linearity Time-Shifting Frequency-Shifting Conjugation Time Reversal	$Ax(t) + By(t)$ $x(t - t_0)$ $e^{jM\omega_0 t} = e^{jM(2\pi/T)t}x(t)$ $x^*(t)$ $x(-t)$	$Aa_k + Bb_k$ $a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$ a_{k-M} a_{-k}^* a_{-k}
Time Scaling Periodic Convolution	$x(\alpha t), \alpha > 0$ (periodic with period T/α) $\int_{T} x(\tau)y(t-\tau)d\tau$	$a_k \ T a_k b_k$
Multiplication	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$ $jk\omega_0 a_k = jk \frac{2\pi}{T} a_k$
Differentiation	$\frac{dx(t)}{dt}$	
Integration	$\int_{-\infty}^{t} x(t)dt$ (finite-valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k$
Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} a_k = a_{-k}^* \\ \Re e\{a_k\} = \Re e\{a_{-k}\} \\ \Im m\{a_k\} = -\Im m\{a_{-k}\} \\ a_k = a_{-k} \\ \not \exists a_k = - \not \exists a_{-k} \end{cases}$
Real and Even Signals	x(t) real and even	$a_k = -4a_{-k}$ a_k real and even
Real and Odd Signals	x(t) real and odd	a_k purely imaginary and odd
Even-Odd Decomposition of Real Signals	$\begin{cases} x_e(t) = \mathcal{E}v\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases}$	$\Re e\{a_k\}$ $j\Im m\{a_k\}$

Parseval's Relation for Periodic Signals

$$\frac{1}{T} \int_{T} |x(t)|^2 dt = \sum_{k=-\infty}^{+\infty} |a_k|^2$$

Table 2: Properties of the Discrete-Time Fourier Series

$$x[n] = \sum_{k=< N>} a_k e^{jk\omega_0 n} = \sum_{k=< N>} a_k e^{jk(2\pi/N)n}$$

$$a_k = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jk\omega_0 n} = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jk(2\pi/N)n}$$

Property	Periodic signal	Fourier series coefficients	
	x[n] Periodic with period N and fun- $y[n]$ damental frequency $\omega_0 = 2\pi/N$	$ \left\{ \begin{array}{c} a_k \\ b_k \end{array} \right\} Periodic with period N$	
Linearity Time shift Frequency Shift Conjugation	Ax[n] + By[n] $x[n - n_0]$ $e^{jM(2\pi/N)n}x[n]$ $x^*[n]$	$Aa_k + Bb_k$ $a_k e^{-jk(2\pi/N)n_0}$ a_{k-M} a_{-k}^*	
Time Reversal Time Scaling	$x[-n]$ $x_{(m)}[n] = \begin{cases} x[n/m] & \text{if } n \text{ is a multiple of } m \\ 0 & \text{if } n \text{ is not a multiple of } m \end{cases}$	$\frac{1}{m}a_k \left(\begin{array}{c} \text{viewed as} \\ \text{periodic with} \\ \text{period } mN \end{array} \right)$	
Periodic Convolution	(periodic with period mN) $\sum_{r=\langle N\rangle} x[r]y[n-r]$	Na_kb_k	
Multiplication	x[n]y[n]	$\sum a_l b_{k-l}$	
First Difference	x[n] - x[n-1]	$\sum_{l=\langle N\rangle} a_l b_{k-l} $ $(1 - e^{-jk(2\pi/N)}) a_k$	
Running Sum	$\sum_{k=-\infty}^{n} x[k] $ (finite-valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{\left(1 - e^{-jk(2\pi/N)}\right)}\right)a_k$	
Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} a_{k} = a_{-k}^{*} \\ \Re\{a_{k}\} = \Re\{a_{-k}\} \\ \Im\{a_{k}\} = -\Im\{a_{-k}\} \\ a_{k} = a_{-k} \\ A_{k} = -A_{k} \end{cases}$	
Real and Even Signals	x[n] real and even	a_k real and even	
Real and Odd Signals	x[n] real and odd	a_k purely imaginary and odd	
Even-Odd Decomposition of Real Signals	$x_e[n] = \mathcal{E}v\{x[n]\}$ $[x[n] \text{ real}]$ $x_o[n] = \mathcal{O}d\{x[n]\}$ $[x[n] \text{ real}]$	$\Re e\{a_k\} $ $j\Im m\{a_k\}$	
	Parseval's Relation for Periodic Signals		

$$\frac{1}{N} \sum_{n=\langle N \rangle} |x[n]|^2 = \sum_{k=\langle N \rangle} |a_k|^2$$

Table 3: Properties of the Continuous-Time Fourier Transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

Property	Aperiodic Signal	Fourier transform
	x(t) $y(t)$	$X(j\omega) \\ Y(j\omega)$
Linearity Time-shifting Frequency-shifting Conjugation Time-Reversal Time- and Frequency-Scaling	$ax(t) + by(t)$ $x(t - t_0)$ $e^{j\omega_0 t}x(t)$ $x^*(t)$ $x(-t)$ $x(at)$	$aX(j\omega) + bY(j\omega)$ $e^{-j\omega t_0}X(j\omega)$ $X(j(\omega - \omega_0))$ $X^*(-j\omega)$ $X(-j\omega)$ $\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$ $\frac{1}{2\pi}X(j\omega)*Y(j\omega)$
Multiplication Differentiation in Time	$x(t)y(t)$ $\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
Integration	$\int_{-\infty}^{t} x(t)dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
Differentiation in Frequency	tx(t)	$jrac{d}{d\omega}X(j\omega) \ (X(j\omega)=X^*(-j\omega)$
Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} \Re e\{X(j\omega)\} = \Re e\{X(-j\omega)\} \\ \Im m\{X(j\omega)\} = -\Im m\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \\ \not \preceq X(j\omega) = -\not \preceq X(-j\omega) \end{cases}$
Symmetry for Real and Even Signals	x(t) real and even	$X(j\omega)$ real and even
Symmetry for Real and Odd Signals Even-Odd Decomposition for Real Signals	$x(t)$ real and odd $x_e(t) = \mathcal{E}v\{x(t)\} [x(t) \text{ real}]$ $x_o(t) = \mathcal{O}d\{x(t)\} [x(t) \text{ real}]$	

Parseval's Relation for Aperiodic Signals
$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(j\omega)|^2 d\omega$$

Table 4: Basic Continuous-Time Fourier Transform Pairs

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta(\omega - k\omega_0)$	a_k
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0$, otherwise $a_1 = -a_{-1} = \frac{1}{2j}$
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_k = 0$, otherwise
x(t) = 1	$2\pi\delta(\omega)$	
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and $x(t+T) = x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$
$\sum \delta(t-nT)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$ \frac{1}{x(t)} \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases} $ $ \sin Wt $	$\frac{2\sin\omega T_1}{\omega}$	_
$\frac{\sin \hat{W}t}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	_
$\delta(t)$	1	_
u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$ $e^{-j\omega t_0}$	_
$\delta(t-t_0)$	$e^{-j\omega t_0}$	
$e^{-at}u(t), \Re e\{a\} > 0$	$\frac{1}{a+j\omega}$	_
$te^{-at}u(t), \Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	_
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$ $\Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$	_

Table 5: Properties of the Discrete-Time Fourier Transform

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$

Property	Aperiodic Signal	Fourier transform
Linearity Time-Shifting Frequency-Shifting Conjugation Time Reversal Time Expansions Convolution Multiplication	$x[n]$ $y[n]$ $ax[n] + by[n]$ $x[n - n_0]$ $e^{j\omega_0 n} x[n]$ $x^*[n]$ $x[-n]$ $x[-n]$ $x(k)[n] = \begin{cases} x[n/k], & \text{if } n = \text{multiple of } k \\ 0, & \text{if } n \neq \text{multiple of } k \end{cases}$ $x[n] * y[n]$ $x[n]y[n]$	$X(e^{j\omega}) \} \text{ Periodic with } Y(e^{j\omega}) \} \text{ period } 2\pi$ $aX(e^{j\omega}) + bY(e^{j\omega})$ $e^{-j\omega n_0}X(e^{j\omega})$ $X(e^{j(\omega-\omega_0)})$ $X^*(e^{-j\omega})$ $X(e^{-j\omega})$ $X(e^{jk\omega})$ $X(e^{jk\omega})$ $X(e^{j\omega})Y(e^{j\omega})$ $\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$
Differencing in Time Accumulation	$x[n] - x[n-1]$ $\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1 - e^{-j\omega}} X(e^{j\omega})$ $\frac{1}{1 - e^{-j\omega}} X(e^{j\omega})$
Differentiation in Frequency	nx[n]	$+\pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(e^{j\omega})}{d\omega}$
Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ \Re e\{X(e^{j\omega})\} = \Re e\{X(e^{-j\omega})\} \\ \Im m\{X(e^{j\omega})\} = -\Im m\{X(e^{-j\omega})\} \\ X(e^{j\omega}) = X(e^{-j\omega}) \\ \not \triangleleft X(e^{j\omega}) = - \not \triangleleft X(e^{-j\omega}) \end{cases}$
Symmetry for Real, Even Signals	x[n] real and even	$X(e^{j\omega})$ real and even
Symmetry for Real, Odd Signals Even-odd Decomposition of Real Signals		$X(e^{j\omega})$ purely imaginary and odd $\Re e\{X(e^{j\omega})\}$ $j\Im m\{X(e^{j\omega})\}$

Parseval's Relation for Aperiodic Signals

$$\sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(e^{j\omega})|^2 d\omega$$

Table 6: Basic Discrete-Time Fourier Transform Pairs

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=\langle N\rangle} a_k e^{jk(2\pi/N)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	a_k
$e^{j\omega_0 n}$	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, & k = m, m \pm N, m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
$\cos \omega_0 n$	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$	(b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic (a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic (a) $\omega_0 = \frac{2\pi r}{N}$
$\sin \omega_0 n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \{ \delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l) \}$	$k = r, r + N, r + 2N, \dots$
x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$		$a_k = \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N \sin[2\pi k/2N]}, k \neq 0, \pm N, \pm 2N, \dots$ $a_k = \frac{2N_1 + 1}{N}, k = 0, \pm N, \pm 2N, \dots$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N}$ for all k
$a^n u[n], a < 1$	$\frac{1}{1 - ae^{-j\omega}}$ $\sin\left[\omega(N_1 + \frac{1}{2})\right]$	_
$x[n] \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	_
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc} \left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$\frac{\sin[\omega(X_1 + \frac{1}{2})]}{\sin(\omega/2)}$ $X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$	_
$\delta[n]$	1	_
u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{+\infty} \pi \delta(\omega - 2\pi k)$	_
$\delta[n-n_0]$	$e^{-j\omega n_0}$	_
$(n+1)a^n u[n], a < 1$	$\frac{1}{(1-ae^{-j\omega})^2}$	_
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a < 1$	$\frac{1}{(1 - ae^{-j\omega})^r}$	

Table 7: Properties of the Laplace Transform

Property	Signal	Transform	ROC
	x(t)	X(s)	R
	$x_1(t)$	$X_1(s)$	R_1
	$x_2(t)$	$X_2(s)$	R_2
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	At least $R_1 \cap R_2$
Time shifting	$x(t-t_0)$	$e^{-st_0}X(s)$	R
Shifting in the s -Domain	$e^{s_0t}x(t)$	$X(s-s_0)$	Shifted version of R [i.e., s is in the ROC if $(s - s_0)$ is in R]
Time scaling	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	"Scaled" ROC (i.e., s is in the ROC if (s/a) is in R)
Conjugation	$x^*(t)$	$X^*(s^*)$	R
Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$
Differentiation in the Time Domain	$\frac{d}{dt}x(t)$	sX(s)	At least R
Differentiation in the s -Domain	-tx(t)	$\frac{d}{ds}X(s)$	R
Integration in the Time Domain	$\int_{-\infty}^{t} x(\tau)d(\tau)$	$\frac{1}{s}X(s)$	At least $R \cap \{\Re e\{s\} > 0\}$

Initial- and Final Value Theorems

If x(t) = 0 for t < 0 and x(t) contains no impulses or higher-order singularities at t = 0, then

$$x(0^+) = \lim_{s \to \infty} sX(s)$$

If x(t) = 0 for t < 0 and x(t) has a finite limit as $t \to \infty$, then

$$\lim_{t\to\infty} x(t) = \lim_{s\to 0} sX(s)$$

Table 8: Laplace Transforms of Elementary Functions

Signal	Transform	ROC
1. $\delta(t)$	1	All s
$2. \ u(t)$	1_	
3u(-t)	$\frac{s}{\frac{1}{s}}$	$\Re e\{s\} < 0$
4. $\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	$\Re e\{s\} > 0$ $\Re e\{s\} < 0$ $\Re e\{s\} > 0$
5. $-\frac{t^{n-1}}{(n-1)!}u(-t)$	$\frac{1}{s^n}$	$\Re e\{s\} < 0$
$6. e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	$\Re e\{s\} > -\Re e\{\alpha\}$
$7e^{-\alpha t}u(-t)$	$\frac{1}{s+\alpha}$	$\Re e\{s\} < -\Re e\{\alpha\}$
8. $\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^n}$	$\Re e\{s\} > -\Re e\{\alpha\}$
9. $-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)$	$\frac{1}{(s+\alpha)^n}$	$\Re e\{s\} < -\Re e\{\alpha\}$
10. $\delta(t-T)$	e^{-sT}	All s
11. $[\cos \omega_0 t] u(t)$	$\frac{s}{s^2 + \omega_0^2}$	$\Re e\{s\} > 0$
12. $[\sin \omega_0 t] u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\Re e\{s\} > 0$
13. $[e^{-\alpha t}\cos\omega_0 t]u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega_0^2}$	$\Re e\{s\} > -\Re e\{\alpha\}$
14. $[e^{-\alpha t}\sin\omega_0 t]u(t)$	$\frac{\omega_0}{(s+\alpha)^2 + \omega_0^2}$	$\Re e\{s\} > -\Re e\{\alpha\}$
15. $u_n(t) = \frac{d^n \delta(t)}{dt^n}$	s^n	All s
16. $u_{-n}(t) = \underbrace{u(t) * \cdots * u(t)}_{n \text{ times}}$	$\frac{1}{s^n}$	$\Re e\{s\} > -\Re e\{\alpha\}$ $\Re e\{s\} > -\Re e\{\alpha\}$ All s $\Re e\{s\} > 0$

Table 9: Properties of the z-Transform

Property	Sequence	Transform	ROC
	$x[n]$ $x_1[n]$ $x_2[n]$	$X(z) X_1(z) X_2(z)$	$R \\ R_1 \\ R_2$
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	At least the intersection of R_1 and R_2
Time shifting	$x[n-n_0]$	$z^{-n_0}X(z)$	R except for the possible addition or deletion of the origin
Scaling in the z -Domain	$e^{j\omega_0 n}x[n]$ $z_0^n x[n]$ $a^n x[n]$	$X(e^{-j\omega_0}z)$ $X\left(\frac{z}{z_0}\right)$ $X(a^{-1}z)$	R z_0R Scaled version of R (i.e., $ a R = $ the set of points $\{ a z\}$ for z in R)
Time reversal	x[-n] $x[r] n = rk$	$X(z^{-1})$	Inverted R (i.e., R^{-1} = the set of points z^{-1} where z is in R)
Time expansion	$x_{(k)}[n] = \begin{cases} x[r], & n = rk \\ 0, & n \neq rk \end{cases}$ for some integer r	$X(z^k)$	$R^{1/k}$ (i.e., the set of points $z^{1/k}$ where z is in R)
Conjugation	$x^*[n]$	$X^*(z^*)$	R
Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	At least the intersection of R_1 and R_2
First difference	x[n] - x[n-1]	$(1-z^{-1})X(z)$	At least the intersection of R and $ z > 0$
Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-z^{-1}}X(z)$	At least the intersection of R and $ z > 1$
Differentiation in the z -Domain	nx[n]	$-z\frac{dX(z)}{dz}$	R
		tue Theorem for $n < 0$, then	

Initial Value Theorem
If x[n] = 0 for n < 0, then $x[0] = \lim_{z \to \infty} X(z)$

Table 10: Some Common z-Transform Pairs

Signal	Transform	ROC
1. $\delta[n]$	1	All z
$2. \ u[n]$	$\frac{1}{1-z^{-1}}$	z > 1
3. $u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
$6\alpha^n u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha $
7. $n\alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $
$8n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $
9. $[\cos \omega_0 n] u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2\cos \omega_0] z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n] u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n] u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}}$	z > r