# **ANGSTROMERS INTERNSHIP**

# Project Report on

PID Control Systems: Design and Implementation Across Various Dynamic Systems

**Trainee Name: MANGALI RAKESH** 

Date of Submission: 11/08/2024

**Institution: GPCET** 



# **Table of Contents**

- 1. Introduction
- 2. Cruise Control
- 3. Motor Speed
- 4. Motor Position
- 5. Suspension
- 6. <u>Inverted Pendulum</u>
- 7. Aircraft Pitch
- 8. Ball & Beam
- 9. Conclusion
- 10. Recommendations
- 11. References

# 1. Introduction:

## **Brief Summary**

This project explores PID control systems applied to various dynamic systems including Cruise Control, Motor Speed, Motor Position, Suspension, Inverted Pendulum, Aircraft Pitch, and Ball & Beam. It involves designing, implementing, and evaluating PID controllers using MATLAB to meet specific performance criteria.

### **Goals and Objectives**

- **Design:** Develop PID controllers for diverse dynamic systems.
- Implementation: Simulate systems using MATLAB.
- **Evaluation:** Assess PID controller performance based on overshoot, settling time, and stability.

#### **Boundaries and Extent**

- **Scope:** Theoretical modeling and simulation.
- **Exclusions:** Physical implementation and real-time testing.

#### **Context and Relevance**

PID control is fundamental in control systems engineering. This project demonstrates its application and effectiveness in real-world scenarios.



### 2. Cruise Control:

#### Overview

Cruise control systems maintain a vehicle's speed by adjusting the throttle based on speed error.

# **Objectives**

- **Speed Maintenance:** Keep the vehicle's speed constant.
- **Performance Criteria:** Minimal overshoot and fast settling time.

#### **Methods**

- 1. **Modelling:** Transfer function for speed control.
- 2. **PID Controller Design:** Implemented in MATLAB.
- 3. **Simulation:** Evaluated performance through simulations.

#### **Results**

- Overshoot: Minimal.
- Settling Time: Achieved quick stabilization.

#### **Conclusions**

PID control effectively maintained vehicle speed, meeting the performance criteria.



# 3. Motor Speed:

#### Overview

This section focuses on controlling the rotational speed of a DC motor.

# **Objectives**

- **Speed Control:** Achieve precise speed control.
- Error Reduction: Minimize steady-state error.

#### **Methods**

- 1. **Modelling:** DC motor speed model in MATLAB.
- 2. **PID Controller Design:** Tuning for speed control.
- 3. **Simulation:** Performance assessment.

#### **Results**

- Accuracy: Precise speed control.
- Error: Effective reduction in steady-state error.

#### **Conclusions**

PID control successfully managed motor speed with high accuracy and minimal error.



### 4. Motor Position:

#### Overview

Motor position control aims at accurate positioning of the motor shaft.

## **Objectives**

- Position Accuracy: Exact positioning.
- **Overshoot Control:** Minimize overshoot.

### **Methods**

- 1. **Modelling:** Position control transfer function.
- 2. **PID Controller Design:** Applied and tuned in MATLAB.
- 3. **Simulation:** Analyzed system performance.

#### **Results**

- Positioning: Accurate control.
- Overshoot: Controlled to acceptable levels.

#### **Conclusions**

PID control achieved accurate motor positioning with minimal overshoot.



# 5. Suspension:

### Overview

Suspension control improves ride comfort and vehicle handling.

# **Objectives**

- **Ride Comfort:** Enhance vehicle ride quality.
- **Handling Improvement:** Improve vehicle handling.

#### **Methods**

- 1. **Modelling:** Suspension system model.
- 2. **PID Controller Design:** Optimization for ride and handling.
- 3. **Simulation:** Performance evaluation.

#### **Results**

- Comfort: Enhanced.
- **Handling:** Improved.

#### **Conclusions**

PID control improved both ride comfort and handling.



### 6. Inverted Pendulum:

#### Overview

The inverted pendulum system aims to balance a pendulum upright on a cart.

# **Objectives**

- Stabilization: Balance the pendulum.
- Oscillation Minimization: Reduce instability.

### **Methods**

- 1. **Modelling:** Dynamic model in MATLAB.
- 2. **PID Controller Design:** Stabilization through PID.
- 3. **Simulation:** System performance testing.

#### **Results**

- Stabilization: Achieved.
- Oscillations: Reduced.

#### **Conclusions**

PID control successfully stabilized the inverted pendulum.



# 7. Aircraft Pitch:

### Overview

Aircraft pitch control manages the pitch angle for stable flight.

# **Objectives**

- Performance Metrics: Achieve specific metrics.
- Stability: Ensure pitch control stability.

### **Methods**

- 1. **Modelling:** Aircraft pitch dynamics.
- 2. **PID Controller Design:** Applied PID tuning.
- 3. **Simulation:** Performance analysis.

#### **Results**

- Overshoot: 7.5%
- **Rise Time:** 0.413 seconds
- Settling Time: 9.25 seconds
- Steady-State Error: 0%

#### **Conclusions**

PID control met performance metrics for aircraft pitch control.



### 8. Ball & Beam:

# Overview

Ball & Beam control involves positioning a ball on a beam by adjusting the beam's angle.

# **Objectives**

- **Position Control:** Precise ball positioning.
- Performance Criteria: Meet settling time and overshoot targets.

#### **Methods**

- 1. **Modelling:** Ball & Beam transfer function.
- 2. **PID Controller Design:** Proportional-Derivative control.
- 3. **Simulation:** Performance testing.

#### **Results**

- **Settling Time:** Less than 3 seconds.
- **Overshoot:** Less than 5%.

#### **Conclusions**

PID control achieved desired performance in ball positioning.



### 9. Conclusion:

# **Summary of Key Findings**

- Effectiveness of PID Control: Successfully met performance criteria across systems.
- Versatility: Demonstrated effectiveness in diverse applications.

# **Implications**

Highlights PID control's role in achieving desired system performance, offering insights for control systems engineering.

### 10. Recommendations:

#### **Future Work**

- Further Optimization: Explore advanced tuning techniques.
- Real-Time Implementation: Consider practical implementations.
- Alternative Strategies: Investigate other control strategies.

### 11. References:

1. GitHub Repository: MATLAB PID Control Systems