线性代数 中国科学技术大学 2023 春 线性映射

主讲: 杨金榜 地空楼 525

助教: 苏煜庭、陈鉴、夏小凡

线性变换基本性质

性质 (线性映射的基本性质)

设 \mathcal{A} 为从 \mathbb{F} -线性空间V到 \mathbb{F} -线性空间W的线性映射.则

- **1** $\mathscr{A}(0) = 0;$
- ③ 设 $\alpha_1, \dots, \alpha_n$ 为 V 的一组基. 若 $\alpha = \lambda_1 \alpha_1 + \dots + \lambda_n \alpha_n$, 则 $\mathscr{A}(\alpha) = \lambda_1 \mathscr{A}(\alpha_1) + \dots + \lambda_n \mathscr{A}(\alpha_n)$.

即, 线性映射 \mathscr{A} 由 $\mathscr{A}(\alpha_1), \cdots, \mathscr{A}(\alpha_n)$ 这 n 个向量唯一确定.

- ① 若 β_1, \dots, β_m 线性相关,则 $\mathcal{A}\beta_1, \dots, \mathcal{A}\beta_m$ 也线性相关.
- ⑤ 若 $\mathcal{A}\beta_1, \dots, \mathcal{A}\beta_m$ 线性无关, 则 β_1, \dots, β_m 也线性无关.

性质(同构基本性质)

- 同构映射的逆映射也是同构映射.
- 同构为等价关系.
- (同一域上的)有限维线性空间同构当且仅当它们维数相同.

线性映射的矩阵*

设 \mathscr{A} 为从 n 维 \mathbb{F} -向量空间 V 到 m 维 \mathbb{F} -向量空间的一个线性变换. 分别 取定 V 和 W 的一组基 $\alpha_1, \cdots, \alpha_n$ 和 β_1, \cdots, β_m . 对任意 $j=1,2,\cdots,n$, 设 $\mathscr{A}(\alpha_j) \in W$ 在基 β_1, \cdots, β_m 下的坐标为 $(a_{1j}, \cdots, a_{mj})^T$, 即

$$\mathscr{A}(\alpha_j) = a_{1j}\beta_1 + \cdots + a_{mj}\beta_m.$$

则这一式子可改写为

$$\mathscr{A}(\alpha_1,\cdots,\alpha_n):=\Big(\mathscr{A}(\alpha_1),\cdots,\mathscr{A}(\alpha_n)\Big)=(\beta_1,\cdots,\beta_n)A,$$

其中 $A := (a_{ij})_{m \times n} \in F^{m \times n}$. 称 A 为线性映射 \mathscr{A} 在基 $\alpha_1, \dots, \alpha_n$ 和 β_1, \dots, β_m 下的矩阵.

例

设 $A \in \mathbb{F}^{m \times n}$. 定义从 \mathbb{F}^n 到 \mathbb{F}^m 的线性变换

$$\mathscr{A}(X) = AX.$$

则 A 在自然基下的矩阵为 A.

证: 记 e_1, \dots, e_n 为 \mathbb{F}^n 的自然基, e'_1, \dots, e'_m 为 \mathbb{F}^m 的自然基. 则 $\mathscr{A}(e_1, \dots, e_n) := (\mathscr{A}e_1, \dots, \mathscr{A}e_n) = (Ae_1, \dots, Ae_n) = A(e_1, \dots, e_n) = AI_n = A = I_m A = (e'_1, \dots, e'_m)A$.

线性映射的矩阵*

例 (从矩阵出发构造线性映射)

分别取定 \mathbb{F} -线性空间 V 和 W 的一组基 $\alpha_1, \cdots, \alpha_n$ 和 β_1, \cdots, β_m . 对于 给定矩阵 $B = (b_{ij})_{m \times n} \in \mathbb{F}^{m \times n}$, 如下给出一个从 V 到 W 的映射 \mathcal{B} . 对任意的 $\lambda_1 \alpha_1 + \cdots + \lambda_n \alpha_n \in V$, 定义 a

$$\mathscr{B}\left(\sum_{j=1}^n \lambda_j \alpha_j\right) := \sum_{i=1}^m \left(\sum_{j=1}^n b_{ij} \lambda_j\right) \beta_i.$$

则 \mathcal{B} 为从 V 到 W 的一个线性映射, 且其在基 $\alpha_1, \dots, \alpha_n$ 和 β_1, \dots, β_m 下的矩阵正好为 B.

a
这一定义也可改写为 $\mathscr{B}\left((\alpha_1,\cdots,\alpha_n)\begin{pmatrix}\lambda_1\\ \vdots\\ \lambda_n\end{pmatrix}\right)=(\beta_1,\cdots,\beta_n)B\begin{pmatrix}\lambda_1\\ \vdots\\ \lambda_n\end{pmatrix}.$

从而, 我们得到如下一一对应:

$$\left\{ \begin{array}{l} \left\{ \begin{array}{l} \mathbb{A} \ V \ \Im \ W \ \text{if} \\ \mathbb{A} \ V \ \Im \ W \ \text{if} \\ \mathbb{A} \ \mathbb{A} \ \mathbb{A} \ \mathbb{A} \end{array} \right\} \qquad \stackrel{\mathbb{B} \alpha_1, \cdots, \alpha_n}{\underset{\mathbb{A} \ (\alpha_1, \cdots, \alpha_n) = (\beta_1, \cdots, \beta_n) A}{\underbrace{\mathbb{A} \ \alpha_1, \cdots, \alpha_n = (\beta_1, \cdots, \beta_n) A}} \qquad \mathbb{F}^{m \times n}$$

线性映射的坐标表示*

定理

设 A 为线性映射 $\mathscr{A}: V \to W$ 在基 $\alpha_1, \cdots, \alpha_n$ 和 β_1, \cdots, β_m 下的矩阵. 若 X 为向量 $v \in V$ 在基 $\alpha_1, \cdots, \alpha_n$ 下的坐标, 以及 Y 为 $\mathscr{A}(v)$ 在基 β_1, \cdots, β_m 下的坐标, 则

$$Y = AX$$
.

换言之,线性映射的作用可以通过对坐标左乘矩阵 A 实现. 即,下图交换

证明思路:
$$\mathscr{A}(v) = \mathscr{A}((\alpha_1, \dots, \alpha_n)X) = \mathscr{A}(\alpha_1, \dots, \alpha_n) \cdot X = (\beta_1, \dots, \beta_m)A \cdot X = (\beta_1, \dots, \beta_m) \cdot AX.$$

线性变换的矩阵

现在, 我们考虑 W等于 V的情形.

设 $\mathscr A$ 为 V 上的线性变换. 固定 V 的一组基 α_1,\cdots,α_n . 则存在矩阵 $A:=(a_{ij})_{n\times n}$ 使得

$$\mathscr{A}(\alpha_1,\cdots,\alpha_n)=(\alpha_1,\cdots,\alpha_n)A.$$

称矩阵 A 为线性变换 \mathscr{A} 在基 $(\alpha_1, \dots, \alpha_n)$ 下的矩阵.

例

设
$$V=\mathbb{F}^{2 imes 2}$$
. 记 $A=egin{pmatrix}1&2\\3&4\end{pmatrix}\in V$. 定义 V 上的线性变换 \mathscr{A} $\mathscr{A}(M):=AM.$

求 \mathcal{A} 在 $e_{11}, e_{12}, e_{21}, e_{22}$ 下的矩阵.

线性变换的坐标表示

向量x和 $\mathcal{A}x$ 在同一组基下坐标之间的关系.

定理

设 $\mathscr{A}: V \to V$ 在基 $\alpha_1, \dots, \alpha_n$ 下的矩阵为 A. 若向量 $x \in V$ 在基 $\alpha_1, \dots, \alpha_n$ 下的坐标 $X \in \mathbb{F}^n$, 向量 $\mathscr{A}x$ 在基 $\alpha_1, \dots, \alpha_n$ 下的坐标为 $Y \in \mathbb{F}^n$, 则

$$Y = AX$$
.

例

- Φ 在 α₁, α₂, α₃ 下的矩阵;
- ② 《在自然基下的矩阵.

解答:

2
$$B = (\beta_1, \beta_2, \beta_3)(\alpha_1, \alpha_2, \alpha_3)^{-1} = \begin{pmatrix} 3 & -20 & 11 \\ 0 & -16 & 10 \\ 5 & -15 & 7 \end{pmatrix}.$$

线性映射的运算*

设 *U、V* 和 W 为有限维 ℙ-线性空间.

- ① (加法) 设 \mathscr{A} 和 \mathscr{B} 为从 V 到 W 的两线性映射. 对任意 $v \in V$, 定义 $(\mathscr{A} + \mathscr{B})(v) := \mathscr{A}(v) + \mathscr{B}(v)$:
- $(\lambda \mathscr{A})(v) := \lambda \mathscr{A}(v);$
- ③ (合成)设 ∅ 为从 V 到 W 的线性映射, ℬ 为从 U 到 V 的线性映射. 对于任意 $v \in V$, 定义

$$(\mathscr{A} \circ \mathscr{B})(u) := \mathscr{A}(\mathscr{B}(v)).$$

性质

- ① 以上三者均为线性映射的运算. 即. $\mathcal{A} + \mathcal{B}$. $\lambda \mathcal{A}$ 和 $\mathcal{A} \circ \mathcal{B}$ 仍为线 性变换.
- ② 若各自取定 U. V和 W的一组基, 设 A. B 在这些基下的矩阵分别 为 A.B. 则 $\mathcal{A} + \mathcal{B}$, $\lambda \mathcal{A}$ 和 $\mathcal{A} \circ \mathcal{B}$ 在这些基下的矩阵分别为 A + B. $\lambda A \approx AB$.
- ③ 从 V 到 W 上的全体线性映射组成的集合, 记为 Hom(V, W), 在线性 映射的加法和数乘下构成 F-线性空间.

线性函数与对偶空间*

我们考虑 $W = \mathbb{F}$ 的情形.

称从 V 到 ℙ 的线性映射为 V 上的线性函数. 记

$$V^* = \operatorname{Hom}(V, \mathbb{F}) = \{f \colon V \to \mathbb{F} \mid f \not \to \emptyset \ \text{性函数} \}.$$

为V上全体线性函数组成的集合. 由线性映射的加法和数乘, 我们有线性函数的加法和数乘

$$(f+g)(v) := f(v) + g(v)$$
$$(\lambda f)(v) := \lambda f(v)$$

性质

在线性函数的加法和数乘下, V^* 构成 \mathbb{F} -线性空间. 称之为 V 的对偶空间.

对偶空间基本性质*

性质 (对偶空间的维数与基)

- 对偶空间 V* 的维数与 V 的维数相同.
- 若 e_1 e_n 为 V 的一组基, 则 V^* 存在唯一的一组基 f_1 ,..., f_n 满 足

$$f_j(e_i) = \delta_{ij} = \begin{cases} 1, & \text{\vec{x} } i = j; \\ 0, & \text{\vec{x} } i \neq j \end{cases}.$$

称 f_1, \dots, f_n 为 e_1, \dots, e_n 的对偶基.

我们有如下自然的取值映射 (evaluation map):

$$ev: V^* \times V \to \mathbb{F}; \quad (f, v) \mapsto f(v).$$

性质

$$V \cong V^{**} \quad v \mapsto ev(-, v)$$

注: 若我们不要求 V 为有限维的, 则映射 $V \rightarrow V^{**}$ 仅为单射.

向量的逆变性与对偶向量的协变性*

性质 (向量的逆变性与对偶向量的协变性)

设 e_1, \cdots, e_n 以及 e'_1, \cdots, e'_n 为 V 为有限维 \mathbb{F} -线性空间的两组基. 设过渡矩阵为 A, 即

$$(e'_1,\cdots,e'_n)=(e_1,\cdots,e_n)A.$$

记这两组基的对偶基分别为 f_1, \dots, f_n 和 f'_1, \dots, f'_n

① (向量的逆变性)设 $v \in V$ 在两组基下坐标为X和X'.即,

$$v=(e_1,\cdots,e_n)X=(e'_1,\cdots,e'_n)X'.$$

则

$$X' = A^{-1}X$$
 $\not A$ $(x'_1, \dots, x'_n) = (x_1, \dots, x_n)(A^{-1})^T$.

② (对偶向量协变性) 设对偶向量 f 在两组对偶基下坐标为 Y 和 Y'. 即, $f = (f_1, \dots, f_n)Y = (f'_1, \dots, f'_n)Y'$.

则

$$Y' = A^T Y$$
 $\not \propto$ $(y'_1, \dots, y'_n) = (y_1, \dots, y_n) A$.

证明思路:

$$(f_1, \dots, f_n) = (f_1, \dots, f_n)(A^{-1})^T$$
.

多项式在线性变换处取值

设 \mathscr{A} 和 \mathscr{B} 为 \mathbb{F} -线性空间 V 上的线性变换. 记 $\mathscr{A}^0:=\operatorname{id}(:=\varepsilon)$. 对任意正整数 k, 定义

$$\mathscr{A}^k := \underbrace{\mathscr{A} \circ \mathscr{A} \circ \cdots \circ \mathscr{A}}_{k \not \sim}.$$

対于
$$f(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{F}[x]$$
, 定义
$$f(\mathscr{A}) := a_0 \cdot \varepsilon + a_1 \mathscr{A} + \dots + a_n \mathscr{A}^n.$$

例

若 \mathscr{A} 在 V 的某组基 e_1, \cdots, e_n 下的矩阵为 A. 则 $f(\mathscr{A})$ 在基 e_1, \cdots, e_n 下的矩阵为 f(A).

更一般地, 记
$$\exp(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
. 定义
$$\exp(\mathscr{A}) = \varepsilon + \frac{\mathscr{A}}{1!} + \frac{\mathscr{A}^2}{2!} + \frac{\mathscr{A}^3}{3!} + \cdots$$

性质

若 $\mathscr{A}\mathscr{B} = \mathscr{B}\mathscr{A}$, 则 $\exp(\mathscr{A} + \mathscr{B}) = \exp(\mathscr{A})\exp(\mathscr{B})$.

线性映射在不同基下的矩阵与相抵关系*

设 \mathscr{A} 为从 n 维 \mathbb{F} -向量空间 V 到 m 维 \mathbb{F} -向量空间的一个线性映射. 设线性映射 \mathscr{A} 在基 $\alpha_1, \cdots, \alpha_n$ 和 β_1, \cdots, β_m 下的矩阵为 A. 即

$$\mathscr{A}(\alpha_1,\cdots,\alpha_n)=(\beta_1,\cdots,\beta_m)A.$$

设线性映射 \mathscr{A} 在另外两组基 $\alpha_1', \cdots, \alpha_n'$ 和 $\beta_1', \cdots, \beta_m'$ 下的矩阵为 B. 即

$$\mathscr{A}(\alpha'_1,\cdots,\alpha'_n)=(\beta'_1,\cdots,\beta'_m)B.$$

定理

记从线性空间 V 的基 $\alpha_1, \cdots, \alpha_n$ 到基 $\alpha'_1, \cdots, \alpha'_n$ 的过渡矩阵为 Q, 以及 从线性空间 W 的基 β_1, \cdots, β_m 到基 $\beta'_1, \cdots, \beta'_m$ 的过渡矩阵为 P. 则 $B = P^{-1}AQ$.

$$\mathscr{A}(\alpha'_1,\dots,\alpha'_n)=\mathscr{A}(\alpha_1,\dots,\alpha_n)Q=(\beta_1,\dots,\beta_m)AQ=(\beta'_1,\dots,\beta'_m)P^{-1}AQ.$$

推论

线性映射在不同基下的矩阵之间相抵.

注: 反之亦然. 即, 相抵的矩阵是同一个线性映射在不同基下的矩阵.

线性变换在不同基下的矩阵

定理

设线性空间 V上的线性变换 \mathscr{A} 在两组基 $\alpha_1, \dots, \alpha_n$ 和 β_1, \dots, β_n 下的 矩阵为 A 和 B. 设 $\alpha_1, \dots, \alpha_n$ 到 β_1, \dots, β_n 的过渡矩阵为 T. 则

$$B = T^{-1}AT.$$

例

设线性变换 $\mathscr{A}: \mathbb{F}^3 \to \mathbb{F}^3$ 满足

$$\mathscr{A}\left(\begin{pmatrix}2\\3\\5\end{pmatrix},\begin{pmatrix}0\\1\\2\end{pmatrix},\begin{pmatrix}1\\0\\0\end{pmatrix}\right) = \begin{pmatrix}\begin{pmatrix}2\\3\\5\end{pmatrix},\begin{pmatrix}0\\1\\2\end{pmatrix},\begin{pmatrix}1\\0\\0\end{pmatrix}\right)\begin{pmatrix}4&9&-5\\-1&-23&15\\-7&-16&13\end{pmatrix}.$$

求
$$\mathscr{A}$$
 在基 $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$, $\begin{pmatrix} 2\\1\\2 \end{pmatrix}$, $\begin{pmatrix} -2\\0\\-1 \end{pmatrix}$ 下的矩阵.

矩阵的相似

定义(相似)

设 $A, B \in \mathbb{F}^{n \times n}$ 为两个 n 阶方阵. 若存在可逆阵 $T \in \mathbb{F}^{n \times n}$ 使得 $B = T^{-1}AT$, 则称 $A \to B$ 相似. 记为 $A \sim B$.

性质

相似为等价关系.

根据相似关系,将全体 n 阶矩阵分为若干类. 相似类,代表元.

定理

一个线性变换在不同基下矩阵相似. 反之任意属于该相似类的矩阵, 均为该线性变换在某组基下的矩阵.

证明思路: 设 $\mathscr{A}(\alpha_1,\dots,\alpha_n)=(\alpha_1,\dots,\alpha_n)A$. 若 $B=T^{-1}AT$, 记 $(\beta_1,\dots,\beta_n)=(\alpha_1,\dots,\alpha_n)T$, 则 $\mathscr{A}(\beta_1,\dots,\beta_n)=(\beta_1,\dots,\beta_n)B$. 相似不变量.e.g. 行列式, 秩. 类比于相抵关系. 对相似关系我们有如下基本问题:

- 两个矩阵相似充要条件
- 2 相似等价类中的最简代表元