PANDAS

AND

GRAPHICS

A Numerical Dataset

object	Height	Weight	Foot	Label
$ x_i $	(H)	(W)	(F)	$\left \begin{array}{c} \left(L \right) \end{array} \right $
x_1	5.00	100	6	green
$ x_2 $	5.50	150	8	green
x_3	5.33	130	7	green
x_4	5.75	150	9	green
x_5	6.00	180	13	red
$ x_6 $	5.92	190	11	red
$ x_7 $	5.58	170	12	red
x_8	5.92	165	10	red

- N = 8 items
- M = 3 (unscaled) attributes

Code for the Dataset

```
ipdb> data
 id Height Weight Foot Label
0 1 5.00
            100
                  6 green
            150
1 2 5.50
                  8 green
            130 7 green
2
  3 5.33
3 4 5.75
            150 9
                     green
4 5 6.00
            180
                13
                       red
5 6 5.92
            190
                  11 red
6 7 5.58
            170
                  12
                       red
7 8 5.92
            165
                  10
                       red
```

max

Desribing the Dataset

```
import pandas as pd
data = pd.DataFrame(
 {"id":[1,2,3,4,5,6,7,8],}
  "Label": ["green", "green", "green", "green",
                     "red", "red", "red", "red"],
  "Height": [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
  "Weight": [100,150,130,150,180,190,170,165],
  "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
  columns = ["id", "Height", "Weight",
                           "Foot", "Label"])
ipdb> data.describe()
                Height
                          Weight
           id
                                      Foot
                         8.000000 8.00000
     8.00000 8.000000
count
      4.50000 5.625000
                       154.375000 9.50000
mean
                        28.962722 2.44949
      2.44949 0.343428
std
   1.00000 5.000000
                       100.000000 6.00000
min
   2.75000 5.457500
25%
                       145.000000 7.75000
50%
   4.50000 5.665000
                       157.500000
                                   9.50000
   6.25000
              5.920000
75%
                       172.500000
                                  11.25000
   8.00000
              6.000000
                       190.000000
                                  13.00000
```

A Dataset Illustration

A Simple Histogram

```
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
data = pd.DataFrame(
{"id":[1,2,3,4,5,6,7,8],}
  "Label": ["green", "green", "green", "green",
                    "red", "red", "red", "red"],
  "Height": [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
  "Weight": [100,150,130,150,180,190,170,165],
  "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
  columns = ["id", "Height", "Weight",
                          "Foot", "Label"])
fig = plt.figure()
axes1 = fig.add_subplot(1,1,1)
axes1.hist(data["Height"], bins = 4,
  histtype='bar',ec="black", color="red")
axes1.set_title("Histogram of Heights")
axes1.set_xlabel("Height")
axes1.set_ylabel("Frequency")
axes1.yaxis.\
 set_major_locator(MaxNLocator(integer=True))
fig.show()
```

Histogram Illustration

A Simple Scatter Plot

```
import pandas as pd
import matplotlib.pyplot as plt
data = pd.DataFrame(
\{"id":[1,2,3,4,5,6,7,8],
  "Label": ["green", "green", "green", "green",
                    "red", "red", "red", "red"],
  "Height": [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
  "Weight": [100,150,130,150,180,190,170,165],
  "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
  columns = ["id", "Height", "Weight",
                          "Foot", "Label"])
scatter_plot = plt.figure()
axes1 = scatter_plot.add_subplot(1,1,1)
axes1.scatter(data["Height"], data["Weight"],
               color=data["Label"], s=200)
axes1.set_title("Height vs. Weight")
axes1.set_xlabel("Height")
axes1.set_ylabel("Weight")
scatter_plot.show()
```

A Scatterplot Illustration

Histogram With Density

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
data = pd.DataFrame(
 \{"id": [1,2,3,4,5,6,7,8],
  "Label": ["green", "green", "green", "green",
                    "red", "red", "red", "red"],
  "Height": [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
  "Weight": [100,150,130,150,180,190,170,165],
  "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
  columns = ["id", "Height", "Weight",
                           "Foot", "Label"])
hist, ax = plt.subplots()
ax = sns.distplot(data["Height"])
ax.set_title("Height with Density")
plt.show()
```

Histogram with Density Illustration

Density

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
data = pd.DataFrame(
 \{"id":[1,2,3,4,5,6,7,8],
  "Label": ["green", "green", "green", "green",
                    "red", "red", "red", "red"],
  "Height": [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
  "Weight": [100,150,130,150,180,190,170,165],
  "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
  columns = ["id", "Height", "Weight",
                          "Foot"."Label"])
hist, ax = plt.subplots()
ax=sns.distplot(data["Height"],
     hist=False, color="magenta")
ax.set_title("Height Density")
plt.show()
```

Density Illustration

Counting

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
data = pd.DataFrame(
 \{"id":[1,2,3,4,5,6,7,8],
  "Label": ["green", "green", "green", "green",
                    "red", "red", "red", "red"],
  "Height": [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
  "Weight": [100,150,130,150,180,190,170,165],
  "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
  columns = ["id", "Height", "Weight",
                          "Foot"."Label"])
count, ax = plt.subplots()
ax = sns.countplot("Label", data=data)
ax.set_title("count of labels")
ax.set_xlabel("Label")
ax.set_ylabel("Frequency")
axes1.yaxis.set_major_locator
      (MaxNLocator(integer=True))
plt.show()
```

Counting Illustration

Scatterplot With Regression

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
data = pd.DataFrame(
 \{"id":[1,2,3,4,5,6,7,8],
  "Label": ["green", "green", "green", "green",
                    "red", "red", "red", "red"],
  "Height": [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
  "Weight": [100,150,130,150,180,190,170,165],
  "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
  columns = ["id", "Height", "Weight",
                          "Foot", "Label"])
scatter, ax = plt.subplots()
ax = sns.regplot(x="Height", y="Weight",
                  data=data, color="blue")
ax.set_title("Weight vs. Height")
ax.set_xlabel("Height")
ax.set_ylabel("Weight")
plt.show()
```

Scatterplot with Regression Illustration

Scatterplot Without Regression

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
data = pd.DataFrame(
 {"id":[1,2,3,4,5,6,7,8]}
  "Label": ["green", "green", "green", "green",
                    "red", "red", "red", "red"],
  "Height": [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
  "Weight": [100,150,130,150,180,190,170,165],
  "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
  columns = ["id", "Height", "Weight",
                          "Foot"."Label"])
scatter, ax = plt.subplots()
ax = sns.regplot(x="Height", y="Weight",
      data=data,color="blue", fit_reg=False)
ax.set_title("Weight vs. Height")
ax.set_xlabel("Height")
ax.set_ylabel("Weight")
plt.show()
```

Scatterplot Without Regression

Scatterplot with Regression

Illustration

Density for Two Variables

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
data = pd.DataFrame(
 {"id":[1,2,3,4,5,6,7,8],}
  "Label":["green", "green", "green", "green",
                    "red", "red", "red"],
  "Height": [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
  "Weight": [100,150,130,150,180,190,170,165],
  "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
  columns = ["id", "Height", "Weight",
                   "Foot", "Label"])
kde, ax = plt.subplots()
ax = sns.kdeplot(data=data["Height"],
      data2=data["Weight"], shade=True)
ax.set_title("Kernel Density Estimation \
               for Height and Weight")
ax.set_xlabel("Height")
ax.set_ylabel("Weight")
plt.show()
```

Density for Two Variables

Kernel Density Estimation for Height and Weight

Joint Density

Joint Density

Bar Plots

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
data = pd.DataFrame(
 {"id":[1,2,3,4,5,6,7,8]}
  "Label": ["green", "green", "green", "green",
                    "red", "red", "red", "red"],
  "Height": [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
  "Weight": [100,150,130,150,180,190,170,165],
  "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
  columns = ["id", "Height", "Weight",
bar, ax = plt.subplots()
ax = sns.barplot(x="Height",y="Weight",data=data)
ax.set_title("Weight vs. Height")
ax.set_xlabel("Height")
ax.set_ylabel("Weight")
plt.show()
```

Bar Plots

Box Plots

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
data = pd.DataFrame(
 {"id":[1,2,3,4,5,6,7,8],}
  "Label":["green", "green", "green", "green",
                    "red", "red", "red"],
  "Height": [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
  "Weight": [100,150,130,150,180,190,170,165],
  "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
  columns = ["id", "Height", "Weight",
                          "Foot"."Label"])
box, ax = plt.subplots()
ax = sns.boxplot(x="Label",y="Foot",data=data)
ax.set_title("Boxplot of Foot Sizes")
ax.set_xlabel("Label")
ax.set_ylabel("Foot")
plt.show()
```

Box Plots

Violin Plots

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
data = pd.DataFrame(
 {"id":[1,2,3,4,5,6,7,8]}
  "Label": ["green", "green", "green", "green",
                    "red", "red", "red", "red"],
  "Height": [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
  "Weight": [100,150,130,150,180,190,170,165],
  "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
  columns = ["id", "Height", "Weight",
                          "Foot", "Label"])
violin, ax = plt.subplots()
ax = sns.violinplot(x="Height",
                      y="Weight", data=data)
ax.set_title("violin plot of weight vs. height")
ax.set_xlabel("height")
ax.set_ylabel("weight")
plt.show()
```

Violin Plots

Pairwise Relationships

Pairwise Relationships

Specific Pairwise relationships

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
data = pd.DataFrame(
 {"id":[1,2,3,4,5,6,7,8],}
  "Label": ["green", "green", "green", "green",
                    "red", "red", "red", "red"],
  "Height": [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
  "Weight": [100,150,130,150,180,190,170,165],
  "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
  columns = ["id", "Height", "Weight",
                          "Foot", "Label"])
pair_grid = sns.PairGrid(data[["Height",
                 "Weight", "Foot"]])
pair_grid = pair_grid.map_upper(sns.regplot)
pair_grid = pair_grid.map_lower(sns.kdeplot)
pair_grid = pair_grid.map_diag(sns.distplot,
                       rug=True)
plt.show()
```

Specific Relationships

Colored Violin Plot

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
data = pd.DataFrame(
 {"id":[1,2,3,4,5,6,7,8]}
  "Label": ["green", "green", "green", "green",
                    "red", "red", "red", "red"],
  "Height": [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
  "Weight": [100,150,130,150,180,190,170,165],
  "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
  columns = ["id", "Height", "Weight",
                          "Foot", "Label"])
colored_violin, ax = plt.subplots()
ax = sns.violinplot(x="Height",y="Weight",
        hue="Label", data=data, split=True)
ax.set_title("(colored) violin plot \
                    weight vs. height")
ax.set_xlabel("Height")
ax.set_ylabel("Weight")
plt.show()
```

Colored Violin Plot

Regression Plot by Label

Regression Plot By Label

Colored Pair Plots

Colored Pair Plot

Concepts Check:

- (a) histogram
- (b) scatter plot
- (c) density
- (d) multi-variate density
- (e) counting
- (f) bar and violin plots
- (g) pair plots