Снимаю с себя всю ответственность за нули на коллоквиуме, полученные из-за прочтения фактов с этого конспекта. По всем неточностям и предложениям: @helloclock.

Содержание

1	1екция 1 (введение)	2
2	Пекция 2 (модели, ДНФ)	3
	2.1 Модели	. 3
	2.2 Виды формул	. 3
	2.3 ДНФ	. 4
	2.4 Алгоритмическая сложность	. 4
	2.4.1 Задача о нахождении ДНФ по таблице истинности	. 4
	2.4.2 Задача о проверке тавтологичности	. 4
3	Пекция 3 (полнота и максимальность)	5
4	Пекция 4 (теорема Поста)	8
	1.1 Продолжение про классы функций	. 8
	1.2 Замены	. 10
5	Пекция 5 (выводы)	11
	б.1 Правила вывода	. 11
	5.2 Конкретные правила	. 12
6	Лекция 6 (продолжение про выводы)	13
	3.1 Примеры допустимых правил	. 13
	3.2 Противоречивость и непротиворечивость	. 14
7	Лекция 7	16
	7.1 Основное множество правил	. 16
8	Пекция 8	20
	3.1 Доказательства аксиом	. 21

1 Лекция 1 (введение)

Определение 1.1. *Алфавит* $\Sigma = \{ (,), \land, \lor, \neg, \rightarrow \} \cup \text{Prop},$ где Prop — множество пропозициональных переменных. В курсе Prop = $\{ p, \ldots, z, p_1, \ldots, z_1, \ldots \}$.

Определение 1.2. *Формула* — последовательность символов из алфавита, определяемая по индукции:

- 1. Т и F формулы;
- 2. $p \in \text{Prop} \text{формула};$
- 3. A -формула $\Longrightarrow \neg A$ формула;
- 4. A, B формулы $\implies (A \land B), (A \lor B), (A \to B)$ формулы.

Формулы удобно представлять в виде дерева, например для формулы

$$((p \land q) \to (\neg r \lor p))$$

дерево выглядит следующим образом:

Определение 1.3. Пусть A — последовательность символов в алфавите Σ :

$$A = a_1 \dots a_n \ (a_j \in \Sigma).$$

Тогда $B-npeфикс\ (B\sqsubseteq A),$ если $B=a_1\ldots a_k\ (k\leqslant n).$

Лемма 1.1. Если A- корректная формула и A'- её префикс, то A'- не корректная формула.

Лемма 1.2 (Об однозначности разбора). *Если* A — *корректно построена, то верно ровно одно из следующего:*

- 1. $A \in \text{Prop}$
- $2. A \in \{\top, \bot\}$
- *3.* ∃! B: A = ¬B
- 4. $\exists ! B, C : A = (B * C), \ r \partial e * \in \{ \land, \lor, \rightarrow \}$

2 Лекция 2 (модели, ДНФ)

2.1 Модели

Определение 2.1. Modenb — функция $\mathit{Var} \to \mathbb{B} = \{0,1\}$. Но т.к. Var бесконечно, в программах будем считать моделю любую функцию из конечного множества переменных. В таком случае некоторым переменным значение не приписывается.

Модель задаёт интерпретацию истинности всех формул.

Для формулы A ucmuhocmb формулы в модели M задаётся по индукции и обозначается M(A):

- $M(\top) = 1, M(\bot) = 0;$
- На переменных уже задано;
- $M(\neg B) = 1 M(B)$, если $A = \neg B$;
- $M(B_1 \odot B_2) = M(B_1) \odot M(B_2)$, если $A = (B_1 \odot B_2)$, $\odot \in \{ \lor, \land, \to \}$.

Определение 2.2. *Булевая функция* — отображение $\mathbb{B}^k \to \mathbb{B}$, задаёт булеву функцию данной формулу для фиксированного порядка переменных.

2.2 Виды формул

Определение 2.3. Тавтология — формула, истинная во всех моделях

Пример: $p \to p$, $p \lor \neg p$

Определение 2.4. *Тождественно ложная/противоречивая* формула — формула, ложная во всех моделях.

Пример: $p \land \neg p$

Определение 2.5. Выполнимая формула — формула, истинная хотя бы в одной модели.

Пример: $p \wedge q$

Пример:

Если в пробах с Европы (спутник Юпитера) обнаружены бактерии, то на Европе есть жизнь или бактерии были занесены с Земли. Если бактерии были занесены с Земли, то на Земле есть похожие бактерии. В пробах с Европы обнаружены бактерии, похожие на Земные, следовательно на Европе нет жизни.

- р "В пробах с Европы обнаружены бактерии"
- q "На Европе есть жизнь"
- r "Бактерии с Земли"
- s- "Бактерии похожи не Земные"

Утверждение можно записать следующей формулой:

$$((p \to q \lor r) \land (r \to s) \land s) \to \neg q$$

Если она тавтологична, то утверждение верно, иначе — нет.

Чтобы проверить на тавтологичность, надо проверить, есть ли набор переменных, для которого формула ложна, тогда она будет не тавтологична. Для этого первая скобка должна быть истинной, а вторая — ложной. Отсюда $q = \top$, $(p \to q \lor r) = \top$, $(r \to s) = \top$, $s = \top$. Из имеющегося получаем $p = q = r = s = \top$. Для этого набора переменных утверждение ложно, т.е. оно не тавтологично, а значит — не истинно во всех моделях.

2.3 ДНФ

Определение 2.6. Литерал — переменная или её отрицание.

Определение 2.7. Элементарная контюнкция/контюнкт — конъюнкция литералов.

Определение 2.8. Дизтюнктивная нормальная форма $(ДН\Phi)$ — дизъюнкция конъюнктов.

Определение 2.9. Совершенная дизъюнктивная нормальная форма $(CДH\Phi)$:

- Определена для фиксированного множества переменных;
- ДНФ, в которой в каждом конъюнкте участвуют все переменные из множества и только один раз.

Построение СДНФ:

- Можно построить по таблице истинности при условии, что в ней есть хотя бы одна 1;
- Каждая строка преобразуется в элементарную конъюнкцию, которая истинна только на данном наборе переменных и ложна на всех остальных;
- Итоговая формула дизъюнкция построенных конъюнктов.

Теорема 2.1. Для любой булевой функции существует булева

2.4 Алгоритмическая сложность

2.4.1 Задача о нахождении ДНФ по таблице истинности

- Прямой алгоритм перебирает строки таблицы истинности;
- Полиномиальная сложность по размеру таблицы истинности.

2.4.2 Задача о проверке тавтологичности

- Проверяет, истинна ли формула во всех моделях;
- Связана с проблемой SAT (проблема выполнимости);
- NP-полнота: нахождение эффективного алгоритма неизвестно;
- Есть очень хорошие SAT-решатели, которые применяют различные эвристики и быстро работают на формулах, которые появляются в реальных задачах.

3 Лекция 3 (полнота и максимальность)

Определение 3.1. Арность операции (функции) — количество аргументов.

Арность может быть равной 0 — это константы.

Арность:

• 0 — операций всего $2 (\top, \bot)$

_					_ (.	, — <i>,</i>
	$x \mid$	_	$\mid x \mid$	$\neg x$	T	
• 1 —	0	0	0	1	1	_
	1	0	1	0	1	_
	$x \mid$	$y \mid$	f_1	f_2	f_3	f_4
	0	0	0	0	0	
• 2 —	0	1	0	0	0	
	1	0	0	0	1	
	1	1	0	1	0	

Утверждение 3.1. Штрих Шеффера, имеющий следующую таблицу истинности:

\boldsymbol{x}	y	$x \uparrow y$
0	0	1
0	1	1
1	0	1
1	1	0

- полная операция, для системы $\{\uparrow\}$ верна теорема о функциональной полноте:
 - $x \uparrow x = \neg x$
 - $x \uparrow y = \neg(x \land y)$
 - $\neg(x \uparrow y) = \neg \neg(x \land y) = x \land y$
 - $x \lor y = \neg(\neg x \land \neg y)$

Утверждение 3.2. Стрелка Пирса, имеющая следующую таблицу истинности:

\boldsymbol{x}	y	$x \downarrow y$
0	0	1
0	1	0
1	0	0
1	1	0

— также полная операция и для неё выполнена теорема о функциональной полноте.

Определение 3.2. G — множество булевых функций, тогда [G] — *замыкание* множества G, т.е. все булевы функции, которые можно выразить формулами, использующими операции из G.

Эквивалентно, [G] — минимальное множество булевых функций, которое удовлетворяет следующим свойствам:

- 1. $G \subset [G]$;
- 2. 1. [G] замкнуто относительно композиции;
 - 2. $\forall f_1, \dots, f_n \in [G] \land g(x_1, \dots, x_n) \in G \hookrightarrow g(f_1(x_1, \dots, x_{m_1}), \dots, f_n(x_1, \dots, x_{m_n})) \in [G]$
- 3. [G] содержит все тождественные проекции, т.е. $\forall n \in \mathbb{N}, i < n : p_i^n(x_1, \dots, x_n) \equiv x_i$

Определение 3.3. Множество (класс) функций G называется *замкнутым*, если [G] = G.

Определение 3.4. Класс функций G называется *полным*, если $[G] = F_n$, где F_n — множество всех булевых функций n переменных.

Определение 3.5. Класс G называется *максимальным*, если это замкнутый собственный $(\neq F_n)$ класс, такой, что $\forall f \in F_m \setminus G \hookrightarrow G \cup \{f\}$ — полный класс. Эквивалентно, $[G \cup \{f\}] = F_n$.

Определение 3.6. Класс функций H неполный, если $\exists G$ — замкнутый, такой, что $G \neq F_n \land H \subset G$.

Лемма 3.1. Свойства замыкания:

- 1. $G \subset [G]$
- 2. $G \subset H \implies [G] \subset [H]$
- 3. [G] = [[G]]

Доказательство. 1. Очевидно

- 2. Пусть $f \in [G]$, тогда она получена по 1 и 2 свойствам замыкания из функций в G. Тогда очевидно, что $f \in [H]$.
- 3. \subset следует из первых двух пунктов \supset докажем по индукции. Пусть $f \in [[G]]$. Тогда пункты 1 и 3 из определения тривиальны. Проверим 2.

Факт: проекции позволяют увеличивать число переменных некоторыми мнимыми. Например, $g(p_1^3(x_1,x_2,x_3),p_2^3(x_1,x_2,x_3))$.

Пусть $f(x_1,\ldots,x_n)=g(f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n))$. По предположению индукции $f_i\in [G]\ \forall i$. Таким образом, $f\in [G]$ как композиция.

Лемма 3.2. H не является полной $\iff \exists G$ — максимальная $u \ H \subseteq G$.

- \implies если H неполная, тогда [H] замкнута и неполна.
 - 1. Случай 1: [H] максимальна, тогда всё хорошо.
 - 2. Случай 2: [H] не максимальна $\implies \exists f \in F_m \setminus [H] : [[H] \cup \{f\}] \neq F_m$. Тогда пусть $H := [H] \cup \{f\}$ и вернёмся в начало. Теоретически, этот процесс может не сойтись. Сходимость доказывается леммой Цорна и трансфинитной индукцией или из теоремы Поста.

Теорема 3.1 (Поста). $T_0 = \{ f \mid f(0, \dots, 0) = 0 \}$

Лемма 3.3. T_0 — максимальный замкнутый класс.

Доказательство.

• Замкнутость:

$$\underbrace{g}_{\in T_0}(\underbrace{f_1(\vec{0})}_{\in T_0}, \dots, \underbrace{f_n(\vec{0})}_{\in T_0}) = 0$$

- Максимальность: Пусть $h \notin T_0$, тогда $h(0, \dots, 0) = 1$. Получаем два случая:
 - $-h(1,\ldots,1)=1 \implies h(x,\ldots,x)\equiv 1$

Возьмём полную систему $\{\oplus, \wedge, 1\}$. 1 уже имеем, а для каждой из остальных функций множества принадлежность к классу T_0 очевидна.

 $-h(1,\ldots,1)=0 \implies h(x,\ldots,x)\equiv \neg x$

Заметим, что также имеем в T_0 конъюнкцию (т.к. $0 \land 0 \equiv 0 \implies \land \in T_0$). Тогда с помощью неё и отрицания выразим все остальные операции.

Определение 3.7. $T_1 = \{ f \mid f(1, \dots, 1) = 1 \}$. Лемма и её доказательство аналогичны T_0 , за исключением того, что если $h(x, \dots, x) = 0$, то берём полную систему $\{ \rightarrow, \bot \}$.

4 Лекция 4 (теорема Поста)

4.1 Продолжение про классы функций

Определение 4.1. *М* — класс монотонных функций, содержащий функции, неубыващие по каждому аргументу. Т.е., если для наборов аргументов

$$f(x_1,\ldots,x_n), f(y_1,\ldots,y_n)$$

верно

$$x_1 \leqslant y_1, \dots, x_n \leqslant y_n,$$

то выполняется

$$f(\vec{x}) \leqslant f(\vec{y}).$$

Пример монотонной функции: $x_1 \wedge x_2$.

Пример немонотонной функции: $x_1 \to x_2$.

Лемма 4.1. M является максимальным замкнутым классом.

Доказательство. Докажем замкнутость. Возьмём набор функций

$$g(x_1, \ldots, x_n), f_1(y_1, \ldots, y_m), \ldots, f_n(y_1, \ldots, y_m) \in M.$$

Рассмотрим $g(f_1(\vec{y}), \dots, f_n(\vec{y}))$, и возьмём $\vec{y'}$ такой, что $\forall i : y_i \leqslant y'_i$. Тогда $\forall i : f_i(\vec{y}) \leqslant f_i(\vec{y'})$, откуда получаем $g(f_1(\vec{y}), \dots, f_n(\vec{y})) \leqslant g(f_1(\vec{y'}), \dots, f_n(\vec{y'}))$.

Теперь докажем максимальность. Возьмём $h \notin M$. Заметим, что $0, 1 \in M$. Тогда $\exists x_1 \leqslant y_1, \ldots, x_m \leqslant y_m : h(\vec{x}) > h(\vec{y})$, т.е. $h(\vec{x}) = 1$ и $h(\vec{y}) = 0$. Пусть $\vec{x} \preccurlyeq \vec{y} \iff x_1 \leqslant y_1 \land \cdots \land x_n \leqslant y_n$.

Лемма 4.2 (Вспомогательная лемма). Пусть $\vec{x} \preccurlyeq \vec{y}$. Тогда $\exists \vec{x}^1, \dots, \vec{x}^k \colon \vec{x}^1 = \vec{x} \land \vec{x}^k = \vec{y} \ u \ \vec{x}^i$ отличается от \vec{x}^{i+1} в одной координате $u \ \vec{x} = \vec{x}^1 \preccurlyeq \vec{x}^2 \preccurlyeq \dots \preccurlyeq \vec{x}^k = \vec{y}$.

Доказательство. Доказательства не было, интуитивно — путь в n-мерном булевом кубе от вершины \vec{x} до вершины \vec{y} .

Посмотрим значение функции h на точках \vec{x}^i . Тогда $h(\vec{x}^1)=1,\ h(\vec{x}^k)=0$. Понятно, что тогда $\exists i: h(\vec{x}^i)=1 \land h(\vec{x}^{i+1})=0$. Пусть у \vec{x}^i на j-ой позиции стоит 0, а у $\vec{x}^{i+1}-1$. Получаем

$$h(\dots \underbrace{0}_{j}\dots) = 1, h(\dots \underbrace{1}_{j}\dots) = 0 \implies h(\dots \underbrace{p}_{j}\dots) = \neg p$$

Таким образом получили отрицание. С другой стороны, конъюнкция также монотонна, а с помощью этих двух функций уже выразим все остальные.

Определение 4.2. S — класс самодвойственных функций, т.е функций, удовлетворяющих условию

$$f(\overline{x_1},\ldots,\overline{x_n})=\overline{f}(x_1,\ldots,x_n)$$

Пример несамодвойственной функции: $x \wedge y$.

Пример самодвойственной функции: $\neg x, x \oplus y \oplus z$.

Лемма 4.3. S является максимальным замкнутым классом.

Доказательство. Докажем замкнутость. Пусть

$$f_1, \ldots, f_n: \mathbb{B}^m \to \mathbb{B}; g: \mathbb{B}^n \to \mathbb{B} \in S$$

Рассмотрим $g(f_1(\overline{y_1},\ldots,\overline{y_m}),\ldots,f_n(\overline{y_1},\ldots,\overline{y_m}))=g(\overline{f_1(\vec{y})},\ldots,\overline{f_n(\vec{y})})=\overline{g(f_1(\vec{y}),\ldots,f_n(\vec{y}))}.$

Докажем максимальность. Пусть $h \notin S$, тогда $\exists x_1, \ldots, x_n : h(\overline{x_1}, \ldots, \overline{x_n}) = h(x_1, \ldots, x_n)$.

Обозначим $p^0 = \neg p, p^1 = p$. Тогда $h(p^{x_1}, \dots, p^{x_n}) = h(\overline{p^{x_1}}, \dots, \overline{p^{x_n}})$. Заметим, что

$$h(0^{x_1},\ldots,0^{x_n})=h(\overline{x_1},\ldots,\overline{x_n}),\ h(1^{x_1},\ldots,1^{x_n})=h(x_1,\ldots,x_n)$$

Пусть $g(p) := h(p^{x_1}, \dots, p^{x_n})$, тогда возможно два случая:

- 1. $g(p) \equiv 1$, тогда получаем $\neg 1 = 0$
- 2. $q(p) \equiv 0$, тогда получаем $\neg 0 = 1$

То есть имеем константы 0 и 1.

Рассмотрим $V(x_1, x_2, x_3) = x_1 \wedge x_2 \oplus x_2 \wedge x_3 \oplus x_1 \wedge x_3$. Тогда в поле \mathbb{F}_2 получаем:

$$(x_1+1)(x_2+1) + (x_2+1)(x_3+1) + (x_1+1)(x_3+1) = \dots =$$

$$= x_1x_2 + x_2x_3 + x_1x_3 + 1 =$$

$$= \overline{x_1x_2 + x_2x_3 + x_1x_3}$$

Т.е. $V \in S$. Заметим, что $V(x_1, x_2, 0) = x_1 \wedge x_2$, а также, что $\neg \in S$. В итоге получаем полную систему $\{\neg, V, 0\}$.

Определение 4.3. *Многочлен Жегалкина* — многочлен над полем \mathbb{F}_2 . Эквивалентно можно считать, что это формула с операциями \wedge , \oplus , 1, представляющая из себя сумму \oplus элементарных конъюнкций (*одночленов Жегалкина*) и, возможно, 1.

Лемма 4.4. Все булевы функции однозначно (с точностью до перестановки слагаемых и сомножителей) представляются в виде многочлена Жегалкина.

Доказательство. Всего одночленов Жегалкина от n переменных 2^n . Всего многочленов Жегалкина, соответственно, 2^{2^n} . Булевых функций $\mathbb{B}^n \to \mathbb{B}$ тоже 2^{2^n} . А т.к. каждая булева функция представима в виде многочлена Жегалкина (т.е. есть сюръекция) и их число одинаково, то имеем и биекцию между ними.

Определение 4.4. *Степень* многочлена Жегалкина равна количеству переменных в нём. *Линейными* называются многочлены, в которых все одночлены степени не больше 1.

Определение 4.5. L — класс функций, эквивалентных некоторому линейному многочлену Жегалкина.

Лемма 4.5. L является максимальным замкнутым классом.

Доказательство. Пусть $g \notin L$; $0, 1 \in L$ и определим $g(x_1, \ldots, x_n) = x_1 x_2 \ldots x_m + \ldots$ Рассмотрим $g(x_1, x_2, 1, \ldots, 1)$:

$$g(x_1, x_2, 1, \dots, 1) = \begin{cases} x_1 x_2 \\ x_1 x_2 + 1 \\ x_1 x_2 + x_1 \\ x_1 x_2 + x_2 \\ x_1 x_2 + x_1 + 1 \\ x_1 x_2 + x_2 + 1 \\ x_1 x_2 + x_1 + x_2 \\ x_1 x_2 + x_1 + x_2 + 1 \end{cases}$$

 $x_1, x_2 \in L$, тогда в каждом случае можем добавить нужное число раз $x_1, x_2, 1$ к выражению, чтобы получить $x_1x_2 \equiv x_1 \wedge x_2$. Получаем полную систему $\{\wedge, \neg\}$.

Теорема 4.1 (Поста). Множество булевых функций H не является полным тогда и только тогда, когда оно содержится в одном из классов T_0, T_1, M, S, L .

Доказательство. План доказательства:

- \Leftarrow : Если H содержится в каком-то собственном замкнутом классе, то он не полон;
- ullet \Longrightarrow : Покажем обратное. Пусть H не лежит целиком ни в одном из перечисленных классов:
 - Возьмём функцию $f_0 \in H$: $f_0 \notin T_0$. Тогда $f_0(x, \dots, x)$ либо равна 0, либо $\neg x$.
 - Возьмём функцию $f_1 \in H$: $f_1 \notin T_1$. Тогда $f_1(x, \dots, x)$ либо равна 0, либо $\neg x$.
 - Если есть $\neg x$: используем несамодвойственную функцию f_S и получим одну из констант.
 - Если есть 0 и 1, тогда используем немонотонную функцию f_M и получим отрицание $\neg x$.
 - У нас есть 0, 1 и ¬. Используя нелинейную функцию f_L можем получить \wedge

4.2 Замены

Определение 4.6. Замену переменной p на формулу ψ в формуле φ обозначается $\varphi[p/\psi]$.

Теорема 4.2. Пусть формулы ψ_1 и ψ_2 имеют одинаковые таблицы истинности ($\psi_1 \equiv \psi_2$), тогда для любой формулы φ

$$\varphi[p/\psi_1] \equiv \varphi[p/\psi_2]$$

Доказательство. По индукции:

База: для $\varphi = \bot / \top$ очевидно, как и для $\varphi = q \neq p$. Для $\varphi = p$ получаем $\varphi[p/\psi_1] = \psi_1$ и $\varphi[p/\psi_2] = \psi_2$, а они равны.

Шаг: $\varphi = \varphi_1 \wedge \varphi_2$

 $\varphi[p/\psi_1] = \varphi_1[p/\psi_1] \wedge \varphi_2[p/\psi_1]$, аналогично для ψ_2 . Тогда, по предположению индукции, $\varphi_1[p/\psi_1] \equiv \varphi_1[p/\psi_2]$ и $\varphi_2[p/\psi_1] \equiv \varphi_2[p/\psi_2]$, а объединение этих формул не влияет на эквивалентность.

5 Лекция 5 (выводы)

5.1 Правила вывода

Определение 5.1. *Правилом вывода* будем называть пару, состоящую из множества формул Γ и одной формулы φ . При этом Γ может быть пустым. Γ будем называть множеством *посылок*, а формулу φ *заключением*. Правила вывода обычно записывают так:

$$\frac{\Gamma}{\varphi}$$
 или $\frac{\psi_1,\ldots,\psi_n}{\varphi}$

Теоретически можно рассматривать правила, в которых Γ бесконечно, такие правила называются $un\phi unumaphumu$, но мы так делать не будем, у нас всё конечно.

Пусть Γ — множество формул (необязательно конечное), и φ — формула. Будем говорить, что из Γ логически следует φ , если в любой модели M, в которой истинны все формулы из Γ истинна и формула φ (обозначение: $\Gamma \models \varphi$). Правило $\frac{\Gamma}{\varphi}$ называется корректным, если $\Gamma \models \varphi$.

Пример корректных правил: $\frac{p}{p}, \frac{p \to q, q \to r}{p \to r}$ (силлогизм); пример некорректных правил: $\frac{p}{p}, \frac{p}{p \wedge q}$.

Определение 5.2. Правило вывода $\frac{\Delta}{\psi}$ является частным случаем правила $\frac{\Gamma}{\phi}$, если существуют формулы $\theta_1, \dots, \theta_n$ и переменные p_1, \dots, p_n , такие что первое правило получается из второго путём одновременной подстановки формул θ_i вместо каждого вхождения переменной p_i во всех посылках правила ψ (с сохранением их порядка), а также в его заключении.

Например,
$$\frac{(x \to x) \wedge (\neg y)}{x \to x}$$
 — частный случай правила $\frac{p \wedge q}{p}$.

Мы будем рассматривать наши правила выводов как схемы, т.е. одно правило — по сути бесконечно много правил, включающее все частные случаи данного правила.

Определение 5.3. Пусть у нас есть множество правил вывода \mathcal{R} , выводом в \mathcal{R} из множества гипотез Γ будем называть последовательность формул, каждая из которых либо принадлежит Γ , либо получена с помощью частного сдучая некоторого правила из \mathcal{R} , при этом множество посылок должно состоять только из формул, которые появлялись в выводе раньше.

Формула φ выводится из Γ в \mathcal{R} ($\Gamma \vdash_{\mathcal{R}} \varphi$), если существует вывод из Γ в \mathcal{R} , заканчивающийся формулой φ .

Если формула φ выводится из пустого множества гипотез в \mathcal{R} , то мы говорим, что φ выводима в \mathcal{R} и записывается как $\vdash_{\mathcal{R}} \varphi$.

Пример:

$$\mathcal{R} = \left\{ \frac{p \to q, q \to r}{p \to r}, \frac{p}{\neg \neg p} \right\}, \ \Gamma = \left\{ p \to \neg p \right\}$$

Тогда примером вывода будет:

$$p \to \neg p$$
$$\neg \neg (p \to \neg p)$$

Первое правило из \mathcal{R} мы использовать для вывода не можем. Добавим в Γ гипотезу $\neg p \to q$. Тогда, можем дополнить вывод до

$$\neg p \to q$$
$$p \to q.$$

Таким образом, $\Gamma \vdash_{\mathcal{R}} p \to q$

Теорема 5.1. Если все правила в \mathcal{R} корректны и $\Gamma \vdash_{\mathcal{R}} \varphi$, то $\Gamma \models \varphi$.

Доказательство. По индукции. Знаем, что для $\varphi_1, \ldots, \varphi_n$: $\forall i$: $\Gamma \models \varphi_i$.

База: $i = 1 \implies$

- 1. $\varphi_1 \in \Gamma \implies \varphi_1$ истинная в модели;
- 2. $\frac{1}{\varphi_1}$ частный случай правила из \mathcal{R} . Отсюда φ_1 тавтология $\implies \mathcal{M} \models \varphi_1$.

Шаг: пусть $\forall j < i$: $\Gamma \models \varphi_i$. Докажем для φ_i .

- 1. $\varphi_i \in \Gamma \implies \mathcal{M} \models \varphi_i$
- 2. $\exists j_1,\ldots,j_k< i: \frac{\varphi_{j_1},\ldots,\varphi_{j_k}}{\varphi_i}$ частный случай правила из $\mathcal R$. Тогда по предположению индукции $\varphi_{j_1},\ldots,\varphi_{j_k}$ истинны в \mathcal{M} .

Лемма 5.1. Если $\frac{\phi_1,\ldots,\phi_n}{\phi}$ корректно и $\frac{\eta_1,\ldots,\eta_n}{\eta}$ — частный случай (P), то оно тоже корректно.

Доказательство. Имеем $\eta_1 = \psi_1[p_1/\theta_1, p_2/\theta_2, \dots, p_n/\theta_n], \dots, \xi = \varphi[p_1/\theta_1, p_2/\theta_2, \dots, p_n/\theta_n]$ P — корректна $\implies \forall \mathcal{M}: \psi_1, \dots, \psi_n$ истинны $\implies \varphi$ — истинна.

Пусть η_1, \ldots, η_n истинны в модели \mathcal{M} . Возьмём \mathcal{M}' такую, что $\forall i : \mathcal{M}' \models p_i \iff \mathcal{M} \models \theta_i$. Утверждение: $\forall \varphi : \mathcal{M} \models \varphi \iff \mathcal{M} \models \varphi[p/\theta_1]$. Доказывается индукцией по длине φ .

Тогда по лемме φ_i истинна в \mathcal{M} .

5.2 Конкретные правила

Определение 5.4. Modus Ponens:

$$\frac{p, p \to q}{q}$$

Определение 5.5. Аксиомы Гильберта:

1. (*I*1):

$$q \to (p \to q)$$

2. (D):

$$(p \to (q \to r)) \to ((p \to q) \to (p \to r))$$

3. (N):

$$(\neg q \to \neg p) \to (p \to q)$$

Страница 12 из 22

6 Лекция 6 (продолжение про выводы)

Определение 6.1. Правило $\frac{\Gamma}{\omega}$ называется *допустимым* в множестве правил вывода \mathcal{R} , если

$$\Gamma \vdash_{\mathcal{R}} \varphi$$

Лемма 6.1. Если $\frac{\Gamma}{\varphi}$ — допустимое в $\mathcal R$ правило, а $\frac{\Delta}{\varphi}$ — частный случай правила $\frac{\Gamma}{\psi}$, то

$$\Delta \vdash_{\mathcal{R}} \psi$$

Теорема 6.1 (The Lemma Theorem). Если правило ρ допустимо (доказуемо) в множестве правил вывода $\mathcal{R} \cup \lambda$ и при этом λ допустимо в \mathcal{R} , то и ρ допустимо в \mathcal{R} .

Доказательство. ТООО

6.1 Примеры допустимых правил

Пусть $\mathcal{R} = \{I1, D, N, MP\}$, тогда в \mathcal{R} допустимы правила

$$(I0)_{\overline{p \to p}}, \ \frac{p \to q, q \to r}{p \to r}, \ \frac{p \to q, p \to \neg q}{\neg p}$$

Теорема 6.2 (Теорема о дедукции). Если \mathcal{R} — множество правил вывода, содержащее (MP), (I1) и (D), и все остальные правила являются аксиомами (пустое множество посылок), то для любых формул φ , ψ и множества формул Γ верно

$$\Gamma \cup \{\varphi\} \vdash_{\mathcal{R}} \psi \iff \Gamma \vdash_{\mathcal{R}} (\varphi \to \psi)$$

Доказательство. В одну сторону можно усилить утверждение

Лемма 6.2. Если \mathcal{R} — множество правил вывода, содержащее (MP), то для любых формул φ , ψ и множества формул Γ верно

$$\Gamma \vdash_{\mathcal{R}} (\varphi \to \psi) \implies \Gamma \cup \{\varphi\} \vdash_{\mathcal{R}} \psi$$

Доказательство. Пусть есть набор формул $\Gamma, \varphi \to \psi, \varphi$. Тогда по modus ponens ψ .

Осталось доказать, что $\Gamma \cup \{\varphi\} \vdash_{\mathcal{R}} \psi \implies \Gamma \vdash_{\mathcal{R}} (\varphi \to \psi)$.

Будем доказывать индукцией по длине вывода. Пусть $\xi_1, \xi_2, \dots, \xi_n = \psi$ — вывод из $\Gamma \cup \{\varphi\}$. Будем доказывать, что для любого $i \leqslant n$ верно

$$\Gamma \vdash_{\mathcal{R}} (\varphi \to \xi_i)$$

Разберём случаи:

- Возьмём $\xi_i = \varphi$. Докажем, что $\Gamma \vdash_{\mathcal{R}} (\varphi \to \varphi)$. Но уже доказывали (в ДЗ), что из пустого множества посылок доказуемо выражение $p \to p$, а $\varphi \to \varphi$ его частный вид.
- Пусть теперь $\xi_i \in \Gamma$. Тогда нужно построить вывод $\Gamma \vdash_{\mathcal{R}} (\varphi \to \xi_i)$. Тогда

Обновлено: 2 апреля 2025 г.

- 1. ξ_i 2. $\xi_i \to (\varphi \to \xi_i)$ (I0) 3. $\varphi \to \xi_i$ (MP)
- ξ_i получена по правилу (I1) или (D) (с пустым множеством посылок). То же самое вроде.
- ξ_i получена по правилу (MP) из ξ_j и ξ_k . Тогда ξ_k имеет вид $\xi_j \to \xi_i$. По предположению индукции $\Gamma \vdash_{\mathcal{R}} (\varphi \to \xi_j)$ и $\Gamma \vdash_{\mathcal{R}} (\varphi \to (\xi_j \to \xi_i))$. Тогда вывод будет иметь вид $\ldots \varphi \to \xi_j \ldots \varphi \to (\xi_j \to \xi_i)$.

Формула $(\varphi \to (\xi_j \to \xi_i)) \to ((\varphi \to \xi_j) \to (\varphi \to \xi_i))$ есть частный случай (D). Тогда, применив modus ponens к нему и последнему правилу предыдущего абзаца получаем $((\varphi \to \xi_j) \to (\varphi \to \xi_i))$. Получаем $(\varphi \to \xi_i)$ (MP).

6.2 Противоречивость и непротиворечивость

Рассмотрим аксиому

$$(I2) \ (\neg p \to (p \to q))$$

Пусть \mathcal{R} — множество правил вывода, которое включает MP, I0 и I2, а также может дополнительно включать только правила вывода без посылок. Множество формул Γ называется (синтаксически) *противоречивым* (*inconsistent*) (относительно \mathcal{R}), если выполняется одно из следующих пяти эквивалентных условий:

- Формула $\neg(p \to p)$ выводится из Γ в \mathcal{R} $(\Gamma \vdash_{\mathcal{R}} \neg(p \to p))$
- Отрицание некоторой аксиомы выводимо из Г
- $\Gamma \vdash_{\mathcal{R}} \varphi$ и $\Gamma \vdash_{\mathcal{R}} \neg \varphi$ для некоторой формулы φ
- Из Γ можно вывести в \mathcal{R} любую формулу (вообще любую)
- ullet Отрицание всех аксиом доказуемы в $\mathcal R$ из Γ

Множество формул, которое не является противоречивым, называется *непротиворечивым* (consistent).

Доказательство. $5 \implies 1, 1 \implies 2$: очевидно.

 $2 \implies 3$:

Пусть есть α — аксиомы из \mathcal{R} и $\varphi = \alpha$, тогда $\Gamma \vdash_{\mathcal{R}} \alpha$. С другой стороны, $\Gamma \vdash_{\mathcal{R}} \neg \alpha$ из предположения.

 $3 \implies 4$:

Имеем вывод вида . . . φ . . . $\neg \varphi$. Тогда пусть ψ — любая формула, тогда можем записать ($\neg \varphi \rightarrow (\varphi \rightarrow \psi)$) (I2), $\varphi \rightarrow \psi(MP)$, ψ (MP)

 $4 \implies 5$: опять очевидно.

Теорема 6.3. Пусть $\{MP, I1, D, N\} \subseteq \mathcal{R}$ и, кроме MP, все правила в \mathcal{R} без посылок. Для любого множества формул Γ и формулы φ верно, что $\Gamma \cup \{\neg \varphi\}$ противоречиво в \mathcal{R} , тогда $\Gamma \vdash_{\mathcal{R}} \varphi$. Т.е.,

$$\Gamma \cup \{ \neg \varphi \} \vdash_{\mathcal{R}} \neg (p \to p) \implies \Gamma \vdash_{\mathcal{R}} \varphi$$

Доказательство. По теореме о дедукции, левая часть последнего утверждения равносильна $\Gamma \vdash_{\mathcal{R}} (\neg \varphi \to \neg (p \to p))$.

Тогда имеем вывод

1.
$$\neg \varphi \rightarrow \neg (p \rightarrow p)$$

2.
$$(\neg \varphi \to (p \to p)) \to ((p \to p) \to \varphi) (N)$$

3.
$$(p \to p) \to \varphi(MP)$$

4.
$$p \rightarrow p$$

5.
$$\varphi$$

Лемма 6.3. Пусть $\mathcal{R} = \{MP, I1, D, N\}$, тогда правило I2 допустимо в \mathcal{R} , т.е.

$$\vdash_{\mathcal{R}} (\neg p \to (p \to q))$$

Доказательство. Хотим доказать $\neg p \vdash_{\mathcal{R}} (p \to q)$.

Построим вывод. Гипотеза — $\neg p$, тогда

1.
$$\neg p \rightarrow (\neg q \rightarrow \neg p)$$
 (I1)

2.
$$\neg q \rightarrow \neg p \text{ (MP)}$$

3.
$$(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q)$$
 (N)

4.
$$p \rightarrow q \text{ (MP)}$$

7 Лекция 7

7.1 Основное множество правил

ТООО: про полноту че то

Modus Ponens (MP):

$$\frac{p,p\to q}{q}$$

$$(I0) (p \to p)$$

$$(I1) (q \to (p \to q))$$

$$(D) ((p \to (q \to r)) \to ((p \to q) \to (p \to r)))$$

$$(I2) (\neg p \to (p \to q))$$

$$(N) ((\neg q \to \neg p) \to (p \to q))$$

$$(NI) (p \to (\neg q \to \neg (p \to q)))$$

$$(NN) (p \to \neg \neg p)$$

$$(R) ((q \to p) \to ((\neg q \to p) \to p))$$

Будем писать ⊢ (без индекса) для выводимости в этом множестве правил.

На самом деле, обязательными являются лишь правила I1, D, N.

Обозначим систему аксиом Γ ильберта как \mathcal{H} .

Определение 7.1. Пусть φ — формула, и $b \in \{\text{True}, \text{False}\}$, тогда

$$\varphi^b = \begin{cases} \varphi, \ b = \text{True} \\ \neg \varphi, \ b = \text{False} \end{cases}$$

Определение 7.2. Пусть M — некоторая конечная модель , т.е. отображение из конечного множества переменных в множество { True, False }.

Определим множество формул

$$\Gamma_M = \bigcup_{M[p]=b} \left\{ p^b \right\}$$

Лемма 7.1. Пусть φ — формула, и M оценивает все формулы из φ и $M[\varphi]$ — истинностное значение формулы φ при оценке M, тогда

$$\Gamma_M \vdash \varphi^{M[\varphi]}$$

Доказательство. Доказательство индукцией по длине формулы:

База: $\varphi = p$. Утверждение следует из того, что $p \vdash p$ и $\neg p \vdash \neg p$.

Шаг:

• $\varphi = \neg \psi$

Если $M[\psi] = \text{True}$, то $M[\varphi] - \text{False}$. Тогда по предположению индукции $\Gamma_M \vdash \psi^{\text{True}} = \psi$. Надо доказать, что $\Gamma_M \vdash \varphi^{\text{False}} = \neg \neg \psi$. Достаточно доказать, что $\vdash (\psi \to \neg \neg \psi)$ (правило NN). Вывод для $\neg \neg \psi$ выглядит так:

- 1. ...
- $2. \psi$
- 3. $\psi \rightarrow \neg \neg \psi$
- $4. \neg \neg \psi \square$

Если $M[\psi] = \text{False}$, то $M[\varphi] = \text{True}$. По ПИ имеем $\Gamma_M \vdash \neg \psi$, нужно доказать $\Gamma_M \vdash \varphi \to \neg \psi$.

- $\varphi = (\psi_1 \to \psi_2)$. По предположению индукции $\Gamma_M \vdash \psi_1^{M[\psi_1]}$ и $\Gamma_M \vdash \psi_2^{M[\psi_2]}$. Надо разобрать 4 случая:
 - 1. $M[\psi_1] = \text{False}, M[\psi_2] = \text{False}.$ Докажем $\neg \psi_1, \neg \psi_2 \vdash (\psi_1 \to \psi_2)$ с помощью I2 $(\neg p \to (p \to q))$. Имеем вывод
 - 1. ...
 - $2. \neg \psi_1$
 - 3. $\neg \psi_1 \to (\psi_1 \to \psi_2)$ (I2)
 - 4. $\psi_1 \rightarrow \psi_2 \text{ (MP)}$
 - 2. False, True. Докажем $\neg \psi_1, \psi_2 \vdash (\psi_1 \rightarrow \psi_2)$ (I2) или (I1). То же самое
 - 3. True, False. Докажем $\psi_1, \neg \psi_2 \vdash \neg(\psi_1 \rightarrow \psi_2)$ (NI). Получим вывод
 - 1. ...
 - 2. ψ_1
 - 3. ...
 - $4. \neg \psi_2$
 - 5. $\psi_1 \to (\neg \psi_2 \to \neg(\psi_1 \to \psi_2))$ (NI)
 - 6. $\neg \psi_2 \rightarrow \neg (\psi_1 \rightarrow \psi_2)$ (MP)
 - 7. $\neg(\psi_1 \to \psi_2)$ (MP)
 - 4. True, True. Докажем $\psi_1, \psi_2 \vdash (\psi_1 \rightarrow \psi_2)$. Соответствующий вывод:
 - 1. ...
 - $2. \psi_2$
 - 3. $\psi_2 \to (\psi_1 \to \psi_2)$ (I1)
 - 4. $\psi_1 \rightarrow \psi_2 \text{ (MP)}$

Лемма 7.2. Если $\Gamma \cup \{p\} \vdash \varphi \ u \ \Gamma \cup \{\neg p\} \vdash \varphi, \ mo \ \Gamma \vdash \varphi$.

Доказательство. Следует из аксиомы (R).

По теореме о дедукции из первого утверждения $\Gamma \vdash p \to \varphi$, а из второго $\Gamma \vdash \neg p \to \varphi$. Получим вывод:

- 1. $(p \to \varphi) \to ((\neg p \to \varphi) \to \varphi)$
- 2. $(\neg p \to \varphi) \to \varphi$
- $3. \varphi$

Теорема 7.1 (О полноте). Если φ — тавтология, то $\vdash \varphi$, а значит и $\vdash_{\mathcal{H}} \varphi$.

Доказательство. \forall модели M, содержащей все переменные из φ имеем $M[\varphi] = \text{True}$, Тогда по лемме

$$\Gamma_M \vdash \varphi$$
 для любой модели M .

Пусть p — некоторая переменная из φ , тогда все модели разобьются на пары, т.что в паре оценка отличается только в переменной p. Пусть M_1 и M_2 — две такие модели. Пусть

$$\Gamma_{M_1} = \Gamma' \cup \{p\}$$
 и $\Gamma_{M_2} - \Gamma' \cup \{\neg p\}$

По предыдущей лемме получим $\Gamma' \vdash \varphi$. Проделав так с каждой парой моделей мы уменьшим на 1 количество посылок. Действуя так мы сможем избавиться от всех посылок.

Теорема 7.2 (О сильной полноте). Пусть Γ — конечное множество формул и φ — формула, тогда

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

Доказательство. \leftarrow было в теореме о корректности.

 \implies Пусть $\Gamma = \{ \psi_1, \dots, \psi_n \}$. По теореме о дедукции (применив n раз)

$$\Gamma \vdash \iff \vdash (\psi_1 \to (\dots (\psi_n \to \varphi) \dots))$$

Осталось показать, что

$$\Gamma \models \varphi \iff (\psi_1 \to (\dots (\psi_n \to \varphi) \dots))$$
 — тавтология

В правую сторону импликация известна, осталось доказать в левую. Пусть это не тавтология, тогда \exists модель, её опровергащая. Тогда надо чтобы ψ_i были истинными, а φ — ложной. Тогда $\Gamma \not\models \varphi$. \square

Переформулируем это утверждение в симметричной форме.

 $\Gamma \models \varphi$ эквивалентно тому, что $\Gamma \cup \{ \neg \varphi \}$ не имеет модели.

 $\Gamma \vdash \varphi$ эквивалентно тому, что $\Gamma \cup \{\, \neg \varphi \,\}$ противоречиво:

$$\Gamma \cup \{\, \neg \varphi\,\} \vdash \neg \varphi, \Gamma \cup \{\, \neg \varphi\,\} \vdash \varphi \implies \Gamma \cup \{\, \neg \varphi\,\} \ - \ \text{противоречиво}$$

В другую сторону знаем, что $\Gamma \cup \{ \neg \varphi \} \vdash \neg (p \to p)$. Тогда:

- 1. $\Gamma \vdash \neg \varphi \rightarrow \neg (p \rightarrow p)$
- 2. $(\neg \varphi \to \neg (p \to p)) \xrightarrow{\cdot} ((p \to p) \to \varphi)$ (N)
- 3. $(p \to p) \to \varphi$
- 4. $p \rightarrow p$ (I0)
- 5. φ

Тогда изначальное утверждение эквивалентно следующему:

 Γ не имеет модели \iff Γ противоречиво

или

 Γ выполнимо \iff Γ непротиворечиво

Теорема 7.3 (О компактности (синтаксическая)). Бесконечное множество формул непротиворечиво тогда и только тогда, когда любое его конечное подмножество непротиворечиво.

Доказательство. Пусть Γ противоречиво, тогда можно вывести $\Gamma \vdash \neg (p \to p)$, т.е. имеем вывод

- 1. ...
- $2. \neg (p \rightarrow p),$

он использует конечное число формул из Γ . Пусть Γ_0 — все формулы, используемые в доказательстве. Тогда $\Gamma_0 \vdash \neg (p \to p)$.

В другую сторону, если существует $|\Gamma_0| < \infty, \Gamma_0 \subseteq \Gamma$ и Γ_0 противоречива, то Γ также противоречива.

Теорема 7.4 (О компактности (семантическая)). Бесконечное подмножество формул Γ выполнимо (имеет модель) тогда и только тогда, когда любое его конечное подмножество выполнимо.

8 Лекция 8

Теорема 8.1 (О полноте в сильной форме). Произвольное множество формул Γ выполнимо тогда и только тогда, когда Γ непротиворечиво.

Доказательство.

Определение 8.1. Множество формул Γ называется *полным*, если оно непротиворечиво и «максимально», т.е. для любой формулы $\varphi \notin \Gamma$ верно, что $\Gamma \cup \{\varphi\}$ — противоречиво.

Лемма 8.1 (Линденбаум). Любое непротиворечивое множество можно дополнить до полного.

Доказательство. Перечислим все формулы $\varphi_0, \varphi_1, \dots$

Будем строить Γ_n по индукции. $\Gamma_0 = \Gamma$,

$$\Gamma_{n+1} = egin{cases} \Gamma_n \cup \{\, arphi_n \,\}\,, \ \text{если} \ \Gamma_n \cup \{\, arphi_n \,\}\, - \ \text{непротиворечиво} \ \Gamma_n, \ \text{иначе} \end{cases}$$

$$\Delta = \bigcup_{n \in \mathbb{N}} \Gamma_n$$

Проверим, что Δ непротиворечиво и максимально.

- Непротиворечивость
 - Если Δ противоречиво, то $\Delta \vdash \neg (p \to p)$. Такой вывод использует конечное число формул, а значит $\exists n \colon \Gamma_n \vdash \neg (p \to p) \implies \Gamma_n$ противоречиво, что противоречит построению Γ_n
- Максимальность
 - Пусть оно не максимально, т.е. $\exists \varphi \notin \Delta : \Delta \cup \{\varphi\}$ непротиворечиво. Тогда $\exists n : \varphi = \varphi_n$, но тогда $\Gamma_{n+1} = \Gamma_n \cup \{\varphi_n\}$
 - 1. $\Gamma_n \cup \{\varphi_n\}$ противоречиво, тогда $\Gamma_n \cup \{\varphi_n\} \vdash \neg(p \to p)$, откуда следует $\Delta \vdash \neg(p \to p)$, а значит Δ противоречива, противоречие
 - 2. $\Gamma_n \cup \{\varphi_n\}$ непротиворечиво, тогда $\varphi_n = \varphi \in \Delta$, противоречие

Лемма 8.2 (Свойства полных множеств). Пусть Δ — полное множество формул, тогда:

- $\neg \psi \in \Delta \iff \psi \notin \Delta$
- $(\psi_1 \to \psi_2) \in \Delta \iff (\psi_1 \notin \Delta \land \psi_2 \in \Delta)$

Доказательство. • Пусть оба $\in \Delta$, тогда получаем $\Delta \vdash \psi$ и $\Delta \vdash \neg \psi$ и Δ противоречиво Пусть оба $\notin \Delta$. Тогда по максимальности добавление ψ и $\neg \psi$ приводит к противоречивости:

$$\begin{cases} \Delta \cup \{\,\psi\,\} \, - \, \text{противоречиво} \implies \Delta \vdash \neg \psi \\ \Delta \cup \{\,\neg\psi\,\} \, - \, \text{противоречиво} \implies \Delta \vdash \neg \neg \psi \end{cases}$$

- Имея первый пункт, достаточно исключить следующие 3 случая:
 - $-(\psi_1 \to \psi_2) \in \Delta$ и $\psi_1 \in \Delta$ и $\neg \psi_2 \in \Delta$, тогда $\Delta \vdash (\psi_1 \to \psi_2)$ и $\Delta \vdash \psi_1$. По MP получаем $\Delta \vdash \psi_2$, но $\Delta \vdash \neg \psi_2$, откуда Δ противоречиво.

 $-\neg(\psi_1\to\psi_2)\in\Delta$ и $\neg\psi_1\in\Delta$. Имеем $\neg\psi_1\to(\psi_1\to\psi_2)$, по MP получим $\Delta\vdash\psi_1\to\psi_2$, и имея $\Delta\vdash\neg(\psi_1\to\psi_2)$ получаем противоречие.

 $-\neg(\psi_1\to\psi_2)\in\Delta$ и $\psi_2\in\Delta$ аналогично предыдущему пункту.

Определение 8.2. Пусть Δ — полное множество формул. Определим модель M_{Δ} следующим образом:

$$M_{\Delta}[p] = \begin{cases} \text{True, } p \in \Delta \\ \text{False, } p \notin \Delta \end{cases}$$

Лемма 8.3. Для произвольной формулы φ верно, что

$$M_{\Delta}[\varphi] = \text{True} \iff \varphi \in \Delta$$

Доказательство. Докажем индукцией по φ .

База: верна по определению $M_{\Delta}[\varphi]$

Шаг:

- $\varphi = \neg \psi$ $M_{\Delta}[\varphi] = \begin{cases} \text{True, } M_{\Delta}[\psi] = \text{False} \iff \psi \notin \Delta \iff \varphi = \neg \psi \in \Delta \\ \text{False, } M_{\Delta}[\psi] = \text{True} \iff \psi \in \Delta \iff \varphi = \neg \psi \notin \Delta \end{cases}$ из предыдущей леммы.
- $\varphi = (\psi_1 \to \psi_2)$. $(\psi_1 \to \psi_2) \in \Delta \iff \psi_1 \notin \Delta \lor \psi_2 \in \Delta \iff M_{\Delta}[\psi_1] = \text{False} \lor M_{\Delta}[\psi_2] = \text{True}$

Докажем наконец изначальную теорему (да, это было доказательство теоремы на полторы страницы):

 \Longrightarrow Если Γ выполнимо, то $\exists M$, оценивающая все переменные, в которой все формулы из Γ истинны. Пусть Γ противоречиво, тогда $\Gamma \vdash \neg (p \to p)$, но в силу того, что все правила корректны, т.е. сохраняют истинность, то в модели M должна быть истинная формула $\neg (p \to p)$, что невозможно.

 \longleftarrow Теперь, пусть Γ непротиворечиво, тогда его можно расширить по лемме Линдебаума до полного множества Δ . Тогда в модели M_{Δ} будут истинны все формулы из Γ благодаря предыдущей лемме. \square

8.1 Доказательства аксиом

• (I2):

$$\neg p \to (p \to q)$$

Доказательство. 1. $\neg p \to (\neg q \to \neg p)$ (I1)

- 2. $(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q)$ (N)
- 3. $\neg p \rightarrow (p \rightarrow q)$ (силлогизм)

• Вспомогательная аксиома

$$\vdash \neg \neg p \rightarrow p$$

Страница 21 из 22

Доказательство. По лемме о дедукции доказательство аксиомы эквивалентно доказательству $\neg\neg p \vdash p$. Хотим вывести $\vdash \neg\neg p \to (\neg\neg p \to p)$

1.
$$\neg \neg p \rightarrow (\neg \neg \neg \neg p \rightarrow \neg \neg p)$$
 (I1)

2.
$$\neg \neg p \vdash \neg \neg \neg \neg p \rightarrow \neg \neg p$$

3.
$$(\neg\neg\neg\neg p \rightarrow \neg\neg p) \rightarrow (\neg p \rightarrow \neg\neg\neg p)$$

4.
$$\neg \neg p \vdash \neg p \rightarrow \neg \neg \neg p$$

5.
$$(\neg p \rightarrow \neg \neg \neg p) \rightarrow (\neg \neg p \rightarrow p)$$

6.
$$\neg \neg p \vdash \neg \neg p \rightarrow p$$

7.
$$\neg \neg p \vdash p$$

• (NN):

$$p \rightarrow \neg \neg p$$

Доказательство. 1. $(\neg \neg \neg p \rightarrow \neg p) \rightarrow (p \rightarrow \neg \neg p)$ (N)

2.
$$\vdash \neg \neg \neg p \rightarrow \neg p$$
 (предыдущий пункт)

3.
$$\vdash p \rightarrow \neg \neg p \text{ (MP)}$$

 $\vdash (p \to q) \to (\neg q \to \neg p)$

Доказательство. По теореме о дедукции она выводима тогда и только тогда, когда выводима $(p \to q) \vdash \neg q \to \neg p$. Докажем вспомогательную лемму

Лемма 8.4.

$$\vdash (p \to q) \to (\neg \neg p \to \neg \neg q)$$

Доказательство. Вывод эквивалентен $p \to q \vdash \neg \neg p \to \neg \neg q \iff p \to q, \neg \neg p \vdash \neg \neg q$. По одному из прошлых пунктов знаем $\vdash \neg \neg p \to p$, по силлогизму получаем $\vdash \neg \neg p \to q$, $\vdash q \to \neg \neg q, \vdash \neg \neg p \to \neg \neg q$.

Имеем $(p \to q) \vdash \neg \neg p \to \neg \neg q$, откуда получаем $p \to q \vdash \neg q \to \neg p$

• (NI):

$$\vdash (p \to (\neg q \to \neg (p \to q)))$$

Доказательство. Достаточно вывести $p \vdash \neg q \to \neg (p \to q)$. Если сможем доказать $p \vdash (p \to q) \to q$, то получим требуемое. По теореме о дедукции это эквивалентно $p, p \to q \vdash q$, по MP это верно.