Analysis 1, Tutorium 8

8.1.2021

(b) Gleichmäßige Konvergenz als Konvergenz in der Supremumsnorm-Topologie: Sei $U\subseteq\mathbb{C}$ offen. Für eine beschränkte Funktion $f:U\to\mathbb{C}$ setzen wir

$$||f||_{\infty} := \sup_{u \in U} |f(u)|.$$

Zeige: Die Folge beschränkter Funktionen $(f_n)_{n\in\mathbb{N}}\in(\mathbb{C}^U)^{\mathbb{N}}$ konvergiert genau dann gleichmäßig gegen die beschränkte Funktion $f\in\mathbb{C}^U$, wenn $\lim_{n\to\infty}||f_n-f||_{\infty}=0$.

Fu: $\mathcal{U} \to \mathbb{C}$ Kouvegurz von $f_{\mathcal{U}}(x)$, $x \in \mathcal{U}$ $f_{\mathcal{U}} \to f$ punthweise $f: \mathcal{U} \to \mathbb{C}$ $f: \mathcal{U} \to \mathbb{C}$

YETO YXEU

Tousch dieses Quantoren liefot Refuition van gleichenapsger Konnegene (in xau)

 $\int_{0}^{\infty} \frac{1}{g^{2}} dx dx = 0$ $= \sup_{x \in \mathcal{U}} \left| \int_{0}^{\infty} f(x) - f(x) \right|$

 $= \int_{a}^{b} \frac{1}{2} \left\{ \frac{1}{2} \int_{a}^{b} \frac{1}{$

Zz: (Ilfu-fllw) NEN

konvergreit gegen O.

teso Fren tran: | If,-flo-0 | < & $= \left(\| \mathbf{t}^{n} - \mathbf{t} \|^{\infty} \right)$ = sup $|f_{n(x)}-f(x)|$ = 11 fu - f/100

$$\forall \varepsilon > 0 \exists m \in \mathbb{N} \forall u \Rightarrow m \forall x \in \mathcal{U} : |f_n(x) - f(x)| < \varepsilon$$
 $\forall \varepsilon > 0 \exists m \in \mathbb{N} \forall n \Rightarrow m : \sup_{x \in \mathcal{U}} |f_n(x) - f(x)| < \varepsilon$
 $\times \varepsilon u = \sup_{x \in \mathcal{U}} \frac{1}{2} |f_n(x) - f(x)| \times \varepsilon u$

Sei $\varepsilon > 0$. Sei $m \in \mathbb{N}$ so, dass $\forall u > m \forall x \in \mathcal{U}$:

 $|f_n(x) - f(x)| < \frac{\varepsilon}{2}$.

Danu flyt fûr alle urm $\sup \frac{3}{3} |f_n(x) - f(x)| \times \epsilon 2\ell$ = E/2 < E. == : analog. (VXEU:

(t"(x)-t(x)) < sup | fr(4) -f(7) |

(c) Die Folge von Funktionen (f_n)_{n∈N}, gegeben durch $\frac{f_n:[0,1]\to[0,1],\quad x\mapsto x^n,}{\text{konvergiert für }n\to\infty\text{ punktweise, aber nicht gleichmäßig.}}$ $f_n(x) = x^n$ [$x \in [0,1]$ Warum howegest das puntiueise? >> Warum konvergiet (xh) n EN fir alle x e [0,1]? Fulls x = 1: $(1^n) = (1)_n$ houstoute to Ge $0 \le x < 1$: $x^n \longrightarrow 0$ (ZB necl $\sum_{n=0}^{\infty} \times_{n} < \infty$ Ware from f for ingudein f: to,1] - R, o and fn(x) → o f(x) ∀x∈[0,1] ("declmó/sige μ. => phtw. Warr.") $\Rightarrow \qquad f(x) = \begin{cases} 0 & \text{für } 0 \leq x \leq 1 \\ 1 & \text{für } x = 1 \end{cases}$ Satz aus des Vorlessung. gn: H -> C stetige that
gn -> g gleichwassig auf H => g sterig and M.

f ist milit stering bei 1 \Rightarrow frague f Konvergiest $(0,1T \xrightarrow{f_n} 0,1T)$ gleidua/sig ogger 0? 3> "x : mrn Jr, OJ=x Y N/3mE O(34

JEZO YMEN JXETO, AT FUZM: X"ZE

 $\varepsilon = \frac{1}{2}$, $\omega \in \mathbb{N}$. Finde x nuit xm 7 1/2

Suzzenhaft. Die Fulkion y my ist stetig

auf IR, also gill Z.B.

for xn := 1-1 & CO,1T, dass x n nos 1.

Also gibt es en n uit xu 7, 2

Nelme x=xn.

Aufgabe 2. Beweise ohne Verwendung der Differentialrechnung:

(a) $\frac{1}{1+x}=1-x+x^2+O(x^3),$ für $x\to 0,$ $x\in \mathbb{C},$

(c) $\frac{1}{2}(e^x - e^{-x}) = x + \frac{1}{6}x^3 + o(x^3)$, für $x \to 0$, $x \in \mathbb{C}$,

(b) $\sqrt{1+x} = 1 + \frac{x}{2} + o(x)$, für $x \to 0, x \in \mathbb{R}$.

Beispel J:

1 = 1 + o(1)

f(x) = L(x) + O(g(x)) for $x \to x_0$

∀xEU ;

 $J(x) = L(x) + o(g(x)) \quad \text{for } x \rightarrow x_0$

 $\frac{\sqrt{1+x}-1}{e^x-1} = \frac{(1+\frac{x}{2}+o(x))-1}{(1+x+o(x))-1} =$

 $=\left(\frac{1}{2}+o(1)\right)(1+o(1))$

 $= \frac{1}{2} + o(1) \quad \text{für } x \to 0$

FC7,0 F Vuyely U von xo

g(x) 70 whe to

 $\frac{f(r) - L(x)}{g(r)} \xrightarrow{x \to x_0} 0$

|f(x)- h(x) | & C |g(x)|

= $\frac{f(x)}{x} = o(1)$

 $= \frac{(1 + \frac{x}{2} + o(x)) - 1}{(1 + x + o(x)) - 1} = \frac{\frac{x}{2} + o(x)}{x + o(x)} = \frac{\frac{1}{2} + o(1)}{x + o(1)}$ $= \frac{\frac{1}{2} + o(1)}{1 + o(1)} = \frac{\frac{1}{2} + o(1)}{1 + o(1)} = \frac{\frac{1}{2} + o(1)}{1 + o(1)} = (\frac{1}{2} + o(1)) \cdot (1 + o(1))$

"O" & ""

Landau

Notation

$$1 + o(1) + o(1)$$

$$+ o(1)^{2}$$

$$= o(1)$$

$$= 1 + o(1)$$

$$=$$

 $= \sum_{k=0}^{\infty} (-x)^{k} = 1 - x + x^{2} + \sum_{k=3}^{\infty} (-x)^{k}$

 $\left(\frac{1}{2} + o(1)\right) = \left(\frac{1}{2} + o(1)\right) \left(1 + o(1)\right)^{2}$

$$\frac{\sum_{k=3}^{\infty} (-x)^{k}}{x^{3}} = \frac{\sum_{k=3}^{\infty} (-x)^{k-3}}{k^{3}}$$

$$= \sum_{k=0}^{\infty} (-x)^{k} = \frac{1}{1+x}$$

 $\sum_{k=3}^{\infty} (-x)^{k} = O(x^{3})$

Das soll beschrächt sin in vier
$$U := U_1(0) = \sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}$$

$$\frac{1}{2} \frac{1}{1+x} < \frac{1}{1-\frac{1}{2}} = 2$$

Noch zu printen:

$$\frac{1}{2}\left(e^{x}-\bar{e}^{x}\right)=\frac{1}{2}\left(\sum_{k=0}^{\infty}\frac{x^{k}}{k!}-\sum_{k=0}^{\infty}\frac{(-x)^{k}}{k!}\right)$$

$$\left(e^{\times}-\bar{e}^{\times}\right)=$$

$$e^{x} - \bar{e}^{x}) =$$

$$1 \left(\frac{\omega}{\omega} \right) \times e^{x}$$

$$=\frac{1}{2}\left(\frac{\sum_{k=0}^{\infty} \times \frac{k-(-x)^{k}}{k!}}{k!}\right)$$

$$=\frac{1}{2}\left(\frac{\sum_{k=0}^{\infty} \times \frac{x^{2k+1}}{(2k+1)!}}{(2k+1)!}\right)$$

$$= x^{1} + \frac{x^{3}}{6} + \sum_{k=2}^{\infty} \frac{x^{2k-1}}{(2k+1)!}$$

$$= 0 (x^{3})$$

$$= 0 (x^{3})$$

$$= 0 (x^{3})$$

$$= \sum_{k=2}^{2k+1-3} \frac{x^{2k+1-3}}{(2k+1)!}$$

$$= \sum_{k=1}^{\infty} \frac{x^{2k}}{(2k+3)!}$$

$$= \sum_{k=1}^{\infty} \frac{x^{2k}}{(2k+3)!}$$

$$= \sum_{k=1}^{\infty} \frac{|x|^{2k}}{(2k+3)!}$$

$$= \sum_{k=1}^{\infty} \frac{|x|^{2k}}{(2k+3)!}$$

$$\frac{\lambda}{(2h+3)!}$$

$$= \frac{1}{(2h+3)!}$$

$$= \frac{1}{(2h+3)!}$$

$$= \frac{1}{|x|^3} \frac{|x|^{2h}}{(2h+3)!}$$

$$= \frac{1}{|x|^3} \frac{|x|^{2h}}{h=1}$$

$$= \frac{1}{(2h+3)!}$$

$$= \frac{1}{|x|^3} \frac{|x|^{2h}}{h=1}$$

$$= \frac{1}{(2h+3)!}$$

$$u = 1 \quad (2h + 3)$$

$$= \frac{1}{|x|^3} \quad \frac{|x|}{|x|^3}$$

$$= \frac{1}{|x|^3} \quad \frac{|x|}{(2h + 3)!}$$

Aufgabe 3. Seien $X\subseteq\mathbb{C}$ und $f,g:X\to\mathbb{C}$ stetig. Angenommen, f und g stimmen auf einer dichten Menge $U\subseteq X$ überein: $f|_U=g|_U$. Zeige: f=g.

Formal: $U \subseteq X$ didt ledentet: $\forall x \in X \ \forall \in >0: \ U_{\varepsilon}(x) \cap U \neq \emptyset$, Sei $x \in X$. Wir zeigen f(x) = g(x).

For NEW, walle and Un (x) ou.

Jetzt gilt: an ~ x, $\left| x - a_n \right| \leq \frac{1}{n} \xrightarrow{n \to \infty} 0,$ also lin |x-an|=0, nd des ist aquivalent zer lin an = X. Da f R g stehig sind, sind sie insbesondere fogenstiting, who filet: $f(x) = f(\lim_{n \to \infty} a_n) = \lim_{n \to \infty} f(a_n)$ $=\lim_{n\to\infty}g(\alpha_n)=g(\lim_{n\to\infty}\alpha_n)$ = g(x), an EU & fly=glu

Odes kurter:
$$f, g \text{ stetig} \Rightarrow f - g \text{ stetig}$$

 $\{0\} \in C \text{ ist abgasculassee}.$
 $\Rightarrow (f - g)^{-1} \{0\} \text{ calageachlossee}$
 $\{x \in X \mid (f - g)(x) = 0\}$
 $\Rightarrow f(x) - g(x) = 0$
 $\Rightarrow f(x) = g(x)$
 $\Rightarrow X = U \subseteq \{x \in X \mid f(x) = g(x)\}$

Absoluts reliner early Intersioner
$$= 9/n$$
 abjectioner Maye

 $\begin{cases} x \in X \mid f(x) = g(x) \end{cases}$

→) × = $\{x \in X \mid f(x) = g(x)\}$