K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DIODE APPLICATIONS

Numerical 1:

Simulate a half wave rectifier circuit with input Amplitude = 150V peak, f = 50 Hz and $R_1 = 110\Omega$ using LTSpice. Select diode as IN4148. Use 10:1 step down transformer. Plot the following using LTSpice:

- a) Primary peak voltage
- b) Secondary peak voltage
- c) Output voltage across resistor
- d) Output voltage across diode
- e) Current flowing through the circuit

Also, calculate the efficiency of the Half wave rectifier circuit.

SOLUTION:

Figure 1: Circuit Diagram

$$V_m = \frac{V_1}{10}$$
 $V_m = 15V$
 $I_m = \frac{V_m}{R_1}$
 $I_m = \frac{15}{110}$
 $I_m = 136.36\text{mA}$
 $P_{DC} = \frac{V_m^2}{\pi^2 \times R_1}$
 $P_{DC} = 0.2072\text{W}$
 $P_{AC} = \frac{V_m^2}{4R_1}$
 $P_{AC} = 0.51136\text{W}$
Efficiency = $\frac{P_{DC}}{P_{AC}} \times 100$
Efficiency = 40.52%
PIV rating = $-V_m = -15\text{V}$

SIMULATED RESULTS:

The given circuit is simulated in LTSpice and the results obtained are as follows:

Figure 2: Circuit Schematic and Simulated Results

Waveforms:

Figure 3: Simulated Waveforms

Comparison of theoretical and simulated values:

Parameters	Theoretical Values	Simulated Values
Output Peak Voltage	15V	14.113136V
Output Peak Current	113.36mA	128.3311mA
AC Power	0.51136W	0.51136W
DC Power	0.2072W	0.18346559W
Efficiency	40.52%	40.488%
PIV Rating	-15V	-14.113136V

Table 1: Numerical 1

Numerical 2:

Simulate a Full wave rectifier circuit with input Amplitude = 140V peak, f = 50 Hz and $R_1 = 110\Omega$ using LTSpice. Select diode as IN4148. Use 10:1 step down center tap transformer. Plot the following using LTSpice:

- a) Primary peak voltage
- b) Secondary peak voltage
- c) Output voltage across resistor
- d) Output voltage across diodes
- e) Current flowing through the diodes
- f) Current flowing through the circuit

Also, calculate the efficiency of the Full wave Center tapped rectifier circuit.

SOLUTION:

Figure 4: Circuit Diagram

$$V_{m} = \frac{V_{1}}{10}$$

$$V_{m} = 14V$$

$$I_{m} = \frac{V_{m}}{R_{1}}$$

$$I_{m} = \frac{14}{110}$$

$$I_{m} = 127.27\text{mA}$$

$$P_{DC} = \frac{4I_{m}^{2} \times R_{1}}{\pi^{2}}$$

$$P_{DC} = 0.72211276\text{W}$$

$$P_{AC} = \frac{I_{m}^{2} \times R_{1}}{2}$$

$$P_{AC} = 0.890871\text{W}$$
Efficiency = $\frac{P_{DC}}{P_{AC}} \times 100$
Efficiency = 81.0569%
PIV rating = $-2V_{m} = -28\text{V}$

SIMULATED RESULTS:

The given circuit is simulated in LTSpice and the results obtained are as follows:

Figure 5: Circuit Schematic and Simulated Results

Waveforms:

Figure 6: Simulated Waveforms

Comparison of theoretical and simulated values:

Parameters	Theoretical Values	Simulated Values
Output Peak Voltage	14V	13.115159V
Output Peak Current	$127.27 \mathrm{mA}$	119.30864 mA
AC Power	0.890871W	0.783W
DC Power	0.72211276W	0.634W
Efficiency	81.0569%	81.057%
PIV Rating	-28V	-27.093769V

Table 2: Numerical 2