一. 在 MIPS 五级流水线上执行下列代码,根据下列各种情况分别画出流水线处理示意图并给出处理所需的周期数。

label1: lw \$1,40(\$6) add \$2,\$6,\$4

beq \$1,\$3,label2 ; 分支发生

sw \$2,20(\$4)

label2: beq \$2,\$4,label1; 分支不发生

add \$4,\$1,\$2

sw \$2,20(\$4)

1. 如果没有转发或冒险电路,通过插入 nop 指令以保证正确执行。

参考解答: 软件办法

	Clk1	Clk2	Clk3	Clk4	Clk5	Clk6	Clk7	Clk8	Clk9	Clk10	Clk11	Clk12	Clk13	Clk14	Clk15	Clk16	Clk17	Clk18	Clk19
Lw \$1,40(\$6)	IF	ID	EX	MEM	WB														
Add \$2,\$6,\$4		IF	ID	EX	MEM	WB													
nop			IF	ID	EX	MEM	WB												
Beq \$1,\$3,label2				IF	ID	EX	MEM	WB											
Nop					IF	ID	EX	MEM	WB										
Nop						IF	ID	EX	MEM	WB									
nop							IF	ID	EX	MEM	WB								
Beq \$2,\$4,label1								IF	ID	EX	MEM	WB							
Nop									IF	ID	EX	MEM	WB						
Nop										IF	ID	EX	MEM	WB					
Nop											IF	ID	EX	MEM	WB				
Add \$4,\$1,\$2												IF	ID	EX	MEM	WB			
Nop													IF	ID	EX	MEM	WB		
Nop														IF	ID	EX	MEM	WB	
Sw \$2,20(\$4)															IF	ID	EX	MEM	WB

```
label1: lw $1,40($6)
     add $2,$6,$4
      nop; lw和 beq之间存在数据冒险
     beq $1,$3,label2 ; 分支发生
      Nop;插入3条Nop指令以延迟分支(无特别说明,分支结果在分支指令的MEM级产生,下同!)
      Nop
      nop
     sw $2,20($4)
label2: beq $2,$4,label1; 分支不发生
      Nop;插入3条Nop指令以延迟分支
      Nop
      nop
     add $4,$1,$2
      Nop; sw 和 add 之间存在数据冒险
      Nop
     sw $2,20($4)
```

2. 如果处理器中存在转发,没有采取措施解决分支预测。

参考解答:硬件办法

	Clk1	Clk2	Clk3	Clk4	Clk5	Clk6	Clk7	Clk8	Clk9	Clk10	Clk11	Clk12	Clk13	Clk14	Clk15	Clk16
Lw \$1,40(\$6)	IF	ID	EX	MEM	WB											
Add \$2,\$6,\$4		IF	ID	EX	MEM	WB										
Beq \$1,\$3,label2			IF	ID	EX	MEM	WB									
Beq \$2,\$4,label1							IF	ID	EX	MEM	WB					
Add \$4,\$1,\$2											IF	ID	EX	MEM	WB	
Sw \$2,20(\$4)				·								IF	ID	EX	MEM	WB

	Clk1	Clk2	Clk3	Clk4	Clk5	Clk6	Clk7	Clk8	Clk9	Clk10	Clk11	Clk12	Clk13	Clk14	Clk15	Clk16						
Lw \$1,40(\$6)	IF	ID	EX	MEM	WB																	
Add \$2,\$6,\$4		IF	ID	EX	MEM	WB																
Beq \$1,\$3,label2			IF	ID	EX	MEM	WB															
		Beq \$1	,\$3,lab	el2 和之	之前的第	3 条指	令 Lw	\$1,40(\$	66) 之门	可的数据	居冒险通											
	Beq \$1,\$3,label2 和之前的第 2 条指令 Lw \$1,40(\$6) 之间的数据冒险通过旁路解决; 为延迟分支,阻塞 3 个周期,结果分支发生 w \$2.20(\$4)																					
sw \$2,20(\$4)																						
sw \$2,20(\$4)					IF	0	0	0	0				sta	lled								
sw \$2,20(\$4)						IF	0	0	0	0												
Beq \$2,\$4,label1							IF	ID	EX	MEM	WB											
)	为延迟分	支,阻	塞3个	·周期,	结果分)支不发	生											
add \$4,\$1,\$2								IF	0	0	0	0										
add \$4,\$1,\$2									IF	0	0	0	0		stal	led						
add \$4,\$1,\$2										IF	0	0	0	0								
Add \$4,\$1,\$2											IF	ID	EX	MEM	WB							
Sw \$2,20(\$4)												IF	ID	EX	MEM	WB						
		Sw	\$2,20(\$4) 和之	之前的第	1条指	♦ Add	\$4,\$1,	\$2 之间	门的数据	冒险通	寸旁路解										

说明:将被阻塞的指令和被冲洗掉的指令挤压掉不要,就是参考解答(下同)!

3. 在 2 的基础上又没有延迟时间槽而且在 EX 级执行分支。

参考解答: 硬件办法

	Clk1	Clk2	Clk3	Clk4	Clk5	Clk6	Clk7	Clk8	Clk9	Clk10	Clk11	Clk12	Clk13	Clk14
Lw \$1,40(\$6)	IF	ID	EX	MEM	WB									
Add \$2,\$6,\$4		IF	ID	EX	MEM	WB								
Beq \$1,\$3,label2			IF	ID	EX	MEM	WB							
Beq \$2,\$4,label1						IF	ID	EX	MEM	WB				
Add \$4,\$1,\$2									IF	ID	EX	MEM	WB	
Sw \$2,20(\$4)										IF	ID	EX	MEM	WB

Sw \$2,20(\$4)

	Clk1	Clk2	Clk3	Clk4	Clk5	Clk6	Clk7	Clk8	Clk9	Clk10	Clk11	Clk12	Clk13	Clk14
Lw \$1,40(\$6)	IF	ID	EX	MEM	WB									
Add \$2,\$6,\$4		IF	ID	EX	MEM	WB								
Beq \$1,\$3,label2			IF	ID	EX	MEM	WB							
F	Beq \$1,	\$3,labe	el2 和	之前的第	第2条指	i令 Lw	\$1,40(\$	66) 之间	门的数据	冒险通	过旁路角	解决;		
				为延迟	分支,	阻塞 2 ′	个周期,	结果分	大支发生	-				
sw \$2,20(\$4)				IF	0	0	0	0				. 11 1		
sw \$2,20(\$4)					IF	0	0	0	0			stalled		
Beq \$2,\$4,label1						IF	ID	EX	MEM	WB				
			2	为延迟分	分支,阻	1塞2个	周期,	结果分	支不发生	生				
add \$4,\$1,\$2							IF	0	0	0	0			
add \$4,\$1,\$2								IF	0	0	0	0	sta	lled
Add \$4,\$1,\$2									IF	ID	EX	MEM	WB	

MEM | WB

IF

ID

EX

Sw \$2,20(\$4) 和之前的第 1 条指令 Add \$4,\$1,\$2 之间的数据冒险通过旁路解决

4. 在 2 的基础上但在 ID 级执行分支。

参考解答: 硬件办法

	Clk1	Clk2	Clk3	Clk4	Clk5	Clk6	Clk7	Clk8	Clk9	Clk10	Clk11	Clk12	Clk13
Lw \$1,40(\$6)	IF	ID	EX	MEM	WB								
Add \$2,\$6,\$4		IF	ID	EX	MEM	WB							
Beq \$1,\$3,label2			IF	ID	ID	EX	MEM	WB					
Beq \$2,\$4,label1						IF	ID	EX	MEM	WB			
Add \$4,\$1,\$2								IF	ID	EX	MEM	WB	
Sw \$2,20(\$4)									IF	ID	EX	MEM	WB

Sw \$2,20(\$4)

	Clk1	Clk2	Clk3	Clk4	Clk5	Clk6	Clk7	Clk8	Clk9	Clk10	Clk11	Clk12	Clk13
Lw \$1,40(\$6)	IF	ID	EX	MEM	WB								
Add \$2,\$6,\$4		IF	ID	EX	MEM	WB							
Beq \$1,\$3,label2			IF	ID	ID	EX	MEM	WB					

Beq \$1,\$3,label2 和之前的第2条指令 Lw \$1,40(\$6) 之间的数据冒险通过旁路解决;

为延迟分支,阻塞1个周期,结果分支发生

		i			1	1				stalled					
sw \$2,20(\$4)				IF	0	0	0	0		stal	lled				
Beq \$2,\$4,label1					IF	ID	EX	MEM	WB						
		为延	迟分支,	阻塞	1 个周	期,结果	果分支ス	下发生							
add \$4,\$1,\$2						IF	0	0	0	0	stal	led			
Add \$4,\$1,\$2							IF	ID	EX	MEM	WB				

Sw \$2,20(\$4) 和之前的第 1 条指令 Add \$4,\$1,\$2 之间的数据冒险通过旁路解决

IF

ID

EX

MEM | WB

5. 在4的基础上使用了延迟时间槽,给定的代码中跟在分支之后的指令是该分支的延迟槽指令。

参考解答: 硬件办法+软件办法

	Clk1	Clk2	Clk3	Clk4	Clk5	Clk6	Clk7	Clk8	Clk9	Clk10	Clk11	Clk12
Lw \$1,40(\$6)	IF	ID	EX	MEM	WB							
Add \$2,\$6,\$4		IF	ID	EX	MEM	WB						
Beq \$1,\$3,label2			IF	ID	ID	EX	MEM	WB				
Sw \$2,20(\$4)				IF	IF	ID	EX	MEM	WB			
Beq \$2,\$4,label1						IF	ID	EX	MEM	WB		
Add \$4,\$1,\$2							IF	ID	EX	MEM	WB	
Sw \$2,20(\$4)								IF	ID	EX	MEM	WB

label1: lw \$1,40(\$6)

add \$2,\$6,\$4

beq \$1,\$3,label2 ; 分支发生

sw \$2,20(\$4); 时间槽指令

label2: beq \$2,\$4,label1 ; 分支不发生

add \$4,\$1,\$2; 时间槽指令

sw \$2,20(\$4)

	Clk1	Clk2	Clk3	Clk4	Clk5	Clk6	Clk7	Clk8	Clk9	Clk10	Clk11	Clk12			
Lw \$1,40(\$6)	IF	ID	EX	MEM	WB										
Add \$2,\$6,\$4		IF	ID	EX	MEM	WB									
Beq \$1,\$3,label2			IF	ID	ID	EX	MEM	WB							
Beq \$1,\$3	3,label2	2 和之	前的第	5 2 条指	÷♦ Lw S	\$1,40(\$	66) 之间	门的数据	冒险通	过旁路的	解决;				
Beq \$1,\$3,label2 和之前的第 2 条指令 Lw \$1,40(\$6) 之间的数据冒险通过旁路解决; 为延迟分支,使用 1 条时间槽指令,结果分支发生															
Sw \$2,20(\$4)															
Sw \$2	2,20(\$4)和之下	前的第	2条指	♦ Add	\$2,\$6,\$	4 之间	的数据冒	冒险通过	过旁路解	决				
Beq \$2,\$4,label1						IF	ID	EX	MEM	WB					
		为延过	2分支,	使用	1 条时间	可槽指~	令,结身	見分支 不	发生						
Add \$4,\$1,\$2							IF	ID	EX	MEM	WB				
Sw \$2,20(\$4)								IF	ID	EX	MEM	WB			
Sw \$2	,20(\$4)) 和之	前的第	51条指	♦ Add	\$4,\$1,	\$2 之间	的数据	冒险通过	过旁路角	军决				

注意: 1) 时间槽指令是紧跟分支指令之后进入流水线而且必须正常执行的指令。

2) 如果时间槽指令与相邻的指令之间存在数据冒险,则还必须按数据冒险的处理方式处理,以消除相应的数据冒险。

- 3) 如果在 ID 级决定分支结果,并且使用了时间槽指令,则预测无意义!
- 二. 在 MIPS 五级流水线上执行下列代码:

1. 假设有完全旁路和预测分支总发生,画出循环一次执行的流水线图。

	Clk1	Clk2	Clk3	Clk4	Clk5	Clk6	Clk7	Clk8	Clk9	Clk10
Lw r1, 0(r1)	IF	ID	EX	MEM,	WB					
And r1, r1, r2		IF	ID	ID	EX	MEM	WB			
Sw r1, 0(r1)			IF	IF	ID	EX	MEM	WB		
Addi r2, r0, -1					IF	ID	EX	MEM	WB	
Beq r2, r0, loop						IF	ID	EX	MEM	WB

	Clk1	Clk2	Clk3	Clk4	Clk5	Clk6	Clk7	Clk8	Clk9	Clk10
Lw r1, 0(r1)	IF	ID	EX	MEM	WB					
And r1, r1, r2		IF	ID	0	0	0		sta	lled	
And r1, r1, r2 ID EX MEM WB										
And r1, r1, r2 和前	前面的]	Lw r1, (0(r1)之	间的数据	居冒险	在 And	【阻塞 1	个周期后	· 三利用旁	路解决
Sw r1, 0(r1)			IF	IF	ID	EX	MEM	WB		
Sw	r1,0(r1)和前回	面的 Ar	nd r1,r1,r	2 之间	的数据冒	冒险通过	旁路解码	央	
Addi r2, r0, -1					IF	ID	EX	MEM	WB	
Beq r2, r0, loop						IF	ID	EX	MEM	WB
В	Beq r2,r),loop 🔻	∏ Addi	r2.r0,-1	之间的	数据冒口	俭通过旁	路解决		

2. 假设只有 Mem/WB 流水线寄存器到 EX 阶段的旁路,预测分支总发生,画出循环一次执行的流水线图。

	Clk1	Clk2	Clk3	Clk4	Clk5	Clk6	Clk7	Clk8	Clk9	Clk10	Clk11	Clk12
Lw r1, 0(r1)	IF	ID	EX	MEM,	WB							
And r1, r1, r2		IF	ID	ID	EX	MEM	WB					
Sw r1,0(r1)			IF	IF	ID	ID	EX	MEM	WB			
Addi r2, r0, -1					IF	IF	ID	EX	MEM,	WB		
Beq r2, r0, loop							IF	ID	ID	EX	MEM	WB

	Clk1	Clk2	Clk3	Clk4	Clk5	Clk6	Clk7	Clk8	Clk9	Clk10	Clk11	Clk12						
Lw r1, 0(r1)	IF	ID	EX	MEM	WB													
And r1, r1, r2		IF	ID	0	0	0	stalle	d			,	,						
And r1, r1, r2				ID	EX	MEM	WB											
And r1, r1, r2 和前面的 Lw r1, 0(r1)之间的数据冒险在 And 阻塞 1 个周期后利用旁路解决																		
Sw r1,0(r1)			IF	IF	ID	0	0	0	stalled									
Sw r1,0(r1)						ID	EX	MEM	WB									
Sw r1, 0(r1)和前	了面的 <i>A</i>	And r1.	, r1, r2	之间的	数据旨	险在 sw	v 阻塞	1 个周期	期后通过	寸旁路解	译决							
Addi r2, r0, -1					IF	IF	ID	EX	MEM	WB								
Beq r2, r0, loop							IF	ID	0	(O	0	stalled						
Beq r2, r0, loop									ID	EX	MEM	WB						
Beq r2, r0, loop	和 Add	li r2, r0	,-1之	间的数	· 据冒险	左 beq	· 阻塞 1	· 个周期	 后通过	旁路解》	' 夬	I						

bed 12, 10, 100p 和 Addi 12, 10, -1 之间的数据自密征 bed 阻塞 1 1 间别用通过方面解认

3. 假设有完美的分支预测和完全旁路,循环三次需要多少个时钟周期?

参考解答: 4+3*6=22

分析如下:前4个周期之后,每6个周期完成一次循环

	Clk1	Clk2	Clk3	Clk4	Clk5	Clk6	Clk7	Clk8	Clk9	Clk10
Lw r1, 0(r1)	IF	ID	EX	MEM,	WB					
And r1, r1, r2		IF	ID	ID	EX	MEM	WB			
Sw r1, 0(r1)			IF	IF	ID	EX	MEM	WB		
Addi r2, r0, -1					IF	ID	EX	MEM	WB	
Beq r2, r0, loop						IF	ID	EX	MEM	WB

三. 假设一个五阶段流水线,具有完全的旁路,在 ID 阶段能够计算出跳转目标地址,在 EX 阶段判断是否要跳转,并且预测分支总是发生。画出下列代码的流水线执行示意图并指出需要多少个时钟周期。

lw r2, 0(r1)

label1: beq r2, r0, label2 //第一次不跳转,第二次跳转

lw r3, 0(r2)

beq r3, r0, label1 //跳转

add r1, r3, r4

label2: sw r1, 0(r2)

add r3, r1, r2

	Clk1	Clk2	Clk3	Clk4	Clk5	Clk6	Clk7	Clk8	Clk9	Clk10	Clk11	Clk12	Clk13	Clk14
Lw r2, 0(r1)	IF	ID	EX	MEM	WB									
Beq r2, r0, label2		IF	ID	ID	EX	MEM	WB							
Lw r3, 0(r2)						IF	ID	EX	MEM,	WB				
Beq r3, r0, label1							IF	ID	ID	ĒΧ	MEM	WB		
Beq r2, r0, label2								IF	IF	ID	EX	MEM	WB	
Sw r1, 0(r2)										IF	ID	EX	MEM	WB

	Clk1	Clk2	Clk3	Clk4	Clk5	Clk6	Clk7	Clk8	Clk9	Clk10	Clk11	Clk12	Clk13	Clk14
Lw r2, 0(r1)	IF	ID	EX	MEM	WB									
Beq r2, r0, label2		IF	ID	0	0	0				sta	lled			
Beq r2, r0, label2				ID	EX	MEM	WB							
sw r1, 0(r2)			IF	IF	ID	0	0	0				fluckad		
add r3, r1, r2					IF	0	0	0	0			flushed		
Beq 和前面的 Lw 之间存在数据冒险,Beq 需要阻塞 1 个周期;预测分支发生,结果预测失败,需要清除 sw 和 add														
Lw r3, 0(r2)						IF	ID	EX	MEM	WB				
Beq r3, r0, label1							IF	ID	0	<u></u>	0		stalled	
Beq r3, r0, label1									ID	EX	MEM	WB		
Beq r2, r0, label2								IF	IF	ID	EX	MEM	WB	
Beq 和前面的 Lw	之间和	字在数	据冒险	Beq	需要阻	塞1个原	周期; 予	页测分支	发生,	结果预	测成功			
Beq 预测分支发生	上,结:	果预测	成功											
Sw r1, 0(r2)										IF	ID	EX	MEM	WB

四、假设下列 MIPS 代码在一个五级流水线、有完全旁路和预测分支总发生的处理器上运行,给定的代码中跟在分支之后的指令是该分支的延迟槽指令,分支的执行在 ID 级,画出流水线执行示意图,标出转发箭头,框出要阻塞的指令。

L2: Lw \$1,40(\$6)
beq \$1,\$2,L1; 分支不发生 1 次然后发生
add \$1,\$6,\$4; 时间槽指令
sw \$1,16(\$2)
L1: beq \$1,\$2,L2; 分支发生 1 次然后不发生
[w \$4,50(\$1)]; 时间槽指令
sw \$4,100(\$4)

clk	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Lw \$1, 40(\$6)	IF	ID	EX	MA	WB			3		3												
beg \$1, \$2, L1		IF	ID	ID	ID	EX	MA	WB														
add \$1, \$6, \$4			IF	IF	IF	ID	EX	MA	WB													
sw \$1, 16(\$2)				100	7	IF	ID /	EX	MA	WB												
beg \$1, \$2, L2							IF	ID	EX	MA	WB											
lw \$4,50(\$1)								IF	ID	EX	MA	WB										
Lw \$1, 40(\$6)				- 2					IF	ID	EX	MA	WB									
beg \$1, \$2, L1										IF	ID	ID	ID	EX	MA	WB						
add \$1, \$6, \$4											IF	IF	IF	ID	EX	MA	WB					
beg \$1, \$2, L2														IF	ID ;	ID	EX	MA	WB			
lw \$4,50(\$1)															IF	IF	ID	EX	MA	WB		
sw \$4, 100(\$4)																	IF	ID	ID '	EX	MA	WB

clk		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Lw	\$1, 40(\$6)	IF	ID	EX	MA	WB																	
beq	\$1, \$2, L1		IF	ID	0	0	0																
beq	\$1, \$2, L1				ID	0	0	0															
beq	\$1, \$2, L1					ID	EX	MA	WB														
add	\$1, \$6, \$4			IF	IF	IF	ID	EX,	MA	WB													
SW	\$1, 16(\$2)						IF	ID /	EX	MA	WB												
beq	\$1, \$2, L2							IF	ID	EX	MA	WB											
lw	\$4, 50(\$1)								IF	ID	EX	MA	WB										
Lw	\$1,40(\$6)									IF	ID	EX	MA	WB									
beq	\$1, \$2, L1										IF	ID	0	0	0								
beq	\$1, \$2, L1												ID	0	0	0							
beq	\$1, \$2, L1													ID	EX	MA	WB						
add	\$1, \$6, \$4											IF	IF	IF	ID	EX,	MA	WB					
beq	\$1, \$2, L2														IF	ID /	(O	0	0				
beq	\$1, \$2, L2																ID	EX	MA	WB			
lw	\$4, 50(\$1)															IF	IF	ID	EX	MĄ	WB		
SW	\$4, 100(\$4)																	IF	ID	0	(O	0	
sw	\$4, 100(\$4)																			ID	EX	MA	WB

说明:此例中即使预测失败也不存在清除指令的问题!因为分支是否发生在ID级决定,同一周期时间槽指令进入流水线。下一周期是预测方向上的第一条指令,如果预测成功,继续沿着预测方向前进;如果预测失败,下一周期回到另一方向上的第一条指令。此时的预测失去意义!

五.对 MIPS 系统下面的如下程序段,假设其在一个五级流水线(IF ID EX ME WB)、有完全转发和预测分支总发生的处理器上运行,假设没有延时时间槽而且分支在 ID 级判断和执行,画出此指令序列的流水线执行图(在图上用箭头指明指令间的转发和阻塞)。

L0: s1t \$1, \$2, \$3

beg \$1, \$0, L1 ; 发生一次, 然后未发生

lw \$10, 4(\$10)

addi \$5, \$5, 2

sub \$10, \$11, \$10

sw \$10,0(\$11)

beq \$0, \$0, end

L1: lw \$11,0(\$10)

add \$11, \$5, \$2

beq \$11, \$0, L0 ; 发生

end:

cycle	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Slt \$1,\$2,\$3	IF	ID	EX.	MEM	WB															
Beq \$1,\$0,L1		IF	ID .	ÎD	EX	MEM	WB													
Lw \$11,0(\$10)			IF	IF	ID	EX	MEM	WB												
Add \$11,\$5,\$2					IF	ID	EX	MEM	WB											
Beq \$11,\$0,L0						IF	ID	ID	EX	MEM	WB									
Slt \$1,\$2,\$3							IF	IF	ID	EX	MEM	WB								
Beq \$1,\$0,L1									IF	ID .	ID	EX	MEM	WB						
Lw \$10,4(\$10)												IF	ID	EX	MEM	WB				
Addi \$5,\$5,2													IF	ID	EX	MEM	WB			
Sub \$10,\$11,\$10														IF	ID	EX	MEM	WB		
Sw \$10,0(\$11)															IF	ID	EX	MEM	WB	
Beq \$0,\$0,end																IF	ID	EX	MEM	WB

cycle	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Slt \$1,\$2,\$3	IF	ID	EX	MEM	WB															
Beq \$1,\$0,L1		IF	ID	(<u>0</u>	0	0	stalled													
Beq \$1,\$0,L1				¹ D	EX	MEM	WB													
Lw \$11,0(\$10)			IF	IF	ID	EX	MEM	WB												
Add \$11,\$5,\$2					IF	ID	EX.	MEM	WB											
Beq \$11,\$0,L0						IF	ID \	0	0	0	stalled									
Beq \$11,\$0,L0								ID	EX	MEM	WB									
Slt \$1,\$2,\$3							IF	IF	ID	EX,	MEM	WB								
Beq \$1,\$0,L1									IF	ID \	0	0	0	stalled						
Beq \$1,\$0,L1										•	ID	EX	MEM	WB						
lw \$11,0(\$10)											IF	0	0	0	0	预测失	败而 flu	shed		
Lw \$10,4(\$10)												IF	ID	EX	MEM	WB				
Addi \$5,\$5,2													IF	ID	EX	MEM	WB			
Sub \$10,\$11,\$10														IF	ID	EX	MEM	WB		
Sw \$10,0(\$11)															IF	ID	EX	MEM	WB	
Beq \$0,\$0,end																IF	ID	EX	MEM	WB