Properties of Relations:

Reflexive Relation: A relation R on a set A is reflexive if a Ra for every a \in A, that is, if $(a,a) \in R$ for every a \in A. This simply means that each element a of A is related to itself.

For example,

- (a) If $R_1 = \{(1,1), (1,2), (2,2), (2,3), (3,3)\}$ be a relation on $A = \{1,2,3\}$, then R_1 is reflexive relation since for every $a \in A$, $(a,a) \in R_1$.
 - (b) If $R_2 = \{ (1,1), (1,2), (2,3), (3,3) \}$ be a relation on $A = \{1,2,3\}$, then R_2 is not a reflexive relation since for $2 \in A$, $(2,2) \notin R_2$.
- (c) $R_3 = \{(x,y) \in \mathbb{R}^2 : x \leq y\}$ is a reflexive relation since $x \leq x$ for any $x \in \mathbb{R}$ (a set of real numbers).

Irreflexive Relation: A relation R on a set A is irreflexive if, for every $a \in A$, $(a,a) \notin R$. In other words, there is no $a \in A$ such that a R a. The terms reflexive and irreflexive are extreme cases. Reflexive means that a R a is true for all a, and irreflexive means that is true for no a.

For example,

- (a) The relation $R_1 = \{(1,2), (1,3), (2,1), (2,3)\}$ on $A = \{1,2,3\}$ is irreflexive relation since $(x,x) \notin R_1$ for every $x \in R_1$.
- (b) The relation $R_2 = \{(x,y) \in R^2 : x = y\}$ is an irreflexive relation since x = x for no $x \in R$.

Non-reflexive Relation: A relation R on a set A is non-reflexive if R is neither reflexive nor irreflexive i.e., if a Ra is true for some a and Jalse for others.

For example,

 $R = \{(1,2), (2,2), (2,3), (3,1)\}$ on $A = \{1,2,3\}$ is a non-reflexive relation since 2R2 is true but 1R1 and 3R3 are false.

Symmetric Relation: A relation R on a set A is symmetric if whenever (a,b) &R then (b,a) &R, i.e., if aRb \Rightarrow b R \mathbb{R}. This means if any one element is related to any other element, then the second element is related to the first.

For example,

(a) $R_1 = \{(1,1), (1,2), (1,3), (2,2), (2,1), (3,1)\}$ on $A = \{1,2,3\}$ is a symmetric relation.

(b) $R_2 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ is a symmetric relation on R since if $x^2 + y^2 = 1$ then $y^2 + x^2 = 1$ too, i.e.

if $(x,y) \in R_2$ then $(y,x) \in R_2$.

Assymmetric Relation: A relation R on a set A is asymmetric if whenever $(a,b) \in R$ then $(b,a) \notin R$ for $a \neq b$ i.e., if $aRb \Rightarrow b Ra$. These means that the presence of (a,b) in R excludes the possibility of presence of (b,a) in R.

For example,

The relation $R_1 = \{(1,1), (2,1), (2,3), (3,1)\}$ on $A = \{1,2,3\}$ is an asymmetric relation.

Antisymmetric Relation: A relation R on a set A is antisymmetric if aRb and bRa \Rightarrow a=b for all a,b \in A. Fox example,

(a) $R_1 = \{(1,2), (2,2), (2,3)\}$ on $A = \{1,2,3\}$ is an antisymmetric relation.

(b) $R_2 = \{(x,y) \in R^2 \mid x \in y\}$ is an antisymmetric relation on R since $x \in y$ and $y \in x$ implies x = y, then $(x,y) \in R$ and $(y,x) \in R$ implies x = y.

(c) $R = \{(x,y) \in N \mid x \text{ is a divisor of } y\}$ is an antisymmetric relation since x divides y and y divides x implies x = y.

Note:

Antisymmetric is not the same as not symmetric. A relation may be symmetric as well as antisymmetric at the same time.

For example,

The relation $R = \{(1,1), (3,3)\}$ is both symmetric and antisymmetric on $A = \{1,2,3\}$.

Transitive Relation: A relation R on a set A is transitive if whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$, i.e., aRb and $bRc \Rightarrow aRc$.

For example:

- (a) The relation 'is parallel to' on the set of lines in a plane is transitive, because if a line x is parallel to the line y and if y is parallel to line z, then x is parallel to z.
- (b) The relation 'is less than' and 'is greater than' one transitive relations on the set of real numbers. If a < b and b < c implies a < c and if a > b and $b > c \Rightarrow a > c$ + real numbers a, b, c.

The following table summarizes the above properties.

Property	Meaning
1. Reflexivety	(a,a) ER, i.e. aRa taeA
2. Irreflexivity	(a,a) & R, i.e. a Ra + a EA
3. Symmetry	
	$(a,b) \in R \Rightarrow (b,a) \in R$, i.e. $aRb \Rightarrow bRa \\ \forall a,b \in A$
4. Asymmetry	$(a,b) \in R \Rightarrow (b,a) \notin R$, i.e., $aRb \Rightarrow bRa$
5. Antisymmetry	t a, b ∈ A
0 0	$(a,b) \in R \land (b,q) \in R \Rightarrow a=b, i.e.$ $aRb \text{ and } bRa \Rightarrow a=b \neq a,b \in A$
6. Transitivity	
	$(a,b) \in R \land (b,c) \in R \Rightarrow (a,c) \in R, i.e.$
	arb and bre = are + a,b, c fr

Equivalence Relation:

A relation on a set A is called an equivalence relation or RST relation if it is reflexive, symmetric and transitive. i.e., R is an equivalence relation on A if it has the following three properties:

- 1. (a, a) ER + a EA (reflexive)
- 2. (a,b) ER implies (b,a) ER (symmetric)
- 3. (a,b) and (b,c) ER => (a,c) ER (transitive)

Example 1. If R be a relation in the set of integers z defined by $R = \{(x,y) : x \in Z, y \in Z, (x-y) \text{ is divisible by 6}\}$ Then prove that R is an equivalence relation. Sol. Let $x \in Z$. Then x-x=0 and 0 is divisible by 6. Therefore, $x \in Z$. Hence, $x \in Z$. Hence, R is reflexive. Again, $x Ry \Rightarrow (x-y)$ is divisible by 6 $\Rightarrow -(x-y)$ is divisible by 6 $\Rightarrow (y-x)$ is divisible by 6 $\Rightarrow y Rx$.

Hence, R is symmetric.

xRy and $yRz \Rightarrow (x-y)$ is divisible by 6 and (y-z) is divisible by 6 $\Rightarrow [(x-y)+(y-z)] \text{ is divisible by 6}$ $\Rightarrow (x-z) \text{ is divisible by 6}$ $\Rightarrow xRz.$

Hence R is transitive.

Thus R is an equivalence relation.

Example 2. For any two real numbers 0 and \$\phi\$, we define $0R \neq if$ and only if $\sec^2 0 - \tan \phi = 1$. Show that R is an equivalence relation.

Sol. Reflexive

ORD if and only if $\sec^2 0 - \tan 0 = 1$ which is true for all $0 \in R$ hence R is reflexive.

Symmetric $OR\phi \Rightarrow See^2O - tan\phi = 1$ $\Rightarrow 1 + tano - (See^2\phi - 1) = 1$ $\Rightarrow 1 + tano - See^2\phi + 1 = 1$ $\Rightarrow See^2\phi - tano = 1$ $\Rightarrow \phi Ro$

Hence R is symmetric.

Townsitive

OR\$\phi\$ and ϕ R\$\psi\$ \(\neq \sec^2 \phi - \tan^2 = 1 \) and $\sec^2 \phi - an^2 = 1$ $\Rightarrow \sec^2 \theta - \tan^2 \phi + \sec^2 \phi - \tan^2 \phi = 2$ $\Rightarrow \sec^2 \theta + (\sec^2 \phi - \tan^2 \phi) - \tan^2 \phi = 2$

 \Rightarrow Sec²0 + 1 - $\tan y = 2$

→ Sec 0 - tany =1

- OR Y

Hence R is tocansitive.

Thus R is are equivalence relation.

Partial Order Relation:

A relation R on a set S is called a partial order if it is reflexive, antisymmetric and townsitive.

That is.

1. Reflexive: aRa + a ES

2. Antisymmetric: aRb and bRa > a=b

3. Toransitive: aRb and bRc = aRc.

A set s together with a partial order R is called a partial order set or a poset and is denoted by (S,R).

For example,

The greater or equal (>) relation is a partial ordering on z, the set of integers.

Reflexive: Since $a \geqslant a$ for every integer a, \geqslant is reflexive. Antisymmetric: Since $a \geqslant b$ & $b \geqslant a \Rightarrow a = b$, \geqslant is antisymmetric. Transitive: Since $a \geqslant b$ & $b \geqslant c \Rightarrow a \geqslant c$, \geqslant is transitive.

Hence, z is a pertial ordering on z, and (z, z) is a poset.