sPLS model axes interpretation for 10x Single-cell RNA-Seq

Hadrien LORENZO and Robin GENUER 29/06/2017

Contents

Import datasets	1
PLS, sPLS and sPLS-DA	1
Back to the 10X dataset!	2
Tune the parameters Tune $keep_{X_1}$: the number of variables selected along the first axis	2 3 3
Check the final model	4
Model builing	4
We get the following per axis representation:	
Selected variables	5
PlotVar representation	5
Contribution plots	7
cim representation	10
Variances explained	11
Predict functions	12
Do the same with the all dataset	12
References	12

Import datasets

PLS, sPLS and sPLS-DA

(Lê Cao, Boitard, and Besse 2011)

As a reminder, each axis of a PLS problem solves the following optimization problem :

$$\max_{\substack{\boldsymbol{u}^T\boldsymbol{u}=1\\\boldsymbol{v}^T\boldsymbol{v}=1}}cov(\boldsymbol{X}\boldsymbol{u},\boldsymbol{Y}\boldsymbol{v}) = \max_{\substack{\boldsymbol{u}^T\boldsymbol{u}=1\\\boldsymbol{v}^T\boldsymbol{v}=1}}\boldsymbol{u}^T\boldsymbol{X}^T\boldsymbol{Y}\boldsymbol{v}.$$

The deflation permits to repeat that problem over successive axes in orthonormal ways.

The **sPLS** is the L_1 modified optimization problem, like for the LASSO, which constraints the weights to be smaller than the unconstrained problem (**PLS**).

 $\mathbf{sPLS} ext{-}\mathbf{DA}$ is a \mathbf{PLS} method which account to answer to $\mathbf 2$ questions in plus than the classical \mathbf{PLS} model :

- Deal with classes instead of quantitative variables,
- Select variables for each axis.

So, the \mathbf{sPLS} - \mathbf{DA} permits to select variables on different axes which will discriminate the different classes. For this we will have to tune two parameters:

- $keep_X$ per component: the number of genes selected per component,
- n_{comp} the total number of components.

Remark: In the sPLS problem we do not have to tune $keep_X$ because we fix it to the number of variables.

Back to the 10X dataset!

We have decided to deal with the 10X dataset and to treat firstly the case of 4 populations which are easily separable, which are :

- b-cells
- cd14_monocytes
- cd34
- cd56_nk

So, first of all we create new datasets with only the considered cells. We have to standardize the $\mathbf X$ dataset:

Tune the parameters

The tricky part of the algorithm is to tune the different parameters n_{comp} and $keep_X$.

The common way is to tune $keep_X$ on the 1^{st} component, then do the deflation, then tune $keep_X$ on the 2^{nd} component and re-apply up to a *coherent* value for n_{comp} .

To fix n_{comp} we will most of times use the rule of thumb : n_{comp} =**K-1**, where **K** is the number of classes in the dataset.

Here K=4 so we will build

$$n_{comp} = 3,$$

different components.

Now we have to find a way of selecting the number of variables per axis using a validation criterion. We wil use here the quality of classification in a cross-validation based method.

We will use

- n.folds = 20 cross-validation,
- $keep_{Xs} = 1:20$ the grid over which we test the model.

Tune $keep_{X_1}$: the number of variables selected along the first axis

Please use the function $crossValidate_splsDA$ to perform cross-validation.

Cross-validation error n.folds=20, 1st component

... it took a few times but you found certainly that $keep_X \in (2,7)$ are quite good possibilities. Tell us if you found anything different...

Whatever we will select the following parameter :

$$keep_{X_1} = 7.$$

Get $keep_{X_2}$ and $keep_{X_3}$

As we do not want to waste to much time, we have performed the other cross-validation procedures. The code is here :

Which permits to select the following values:

$$(keep_{X_2},keep_{X_3})=(5,6)$$

Check the final model

As we have selected the parameters which gives a good level of satisfaction in terms of prediction, we want to check out what we selected.

Model builing

We build the model as follows:

```
ncomp <- 3
modele <- splsda(X_4_pop,y_4_pop,ncomp = ncomp,keepX = c(7,5,6))</pre>
```

We get the following per axis representation:

```
plots <- list()
for(i in 1:ncomp){
  dat <- data.frame(VariateX = modele$variates$X[,i], cell_type = y_4_pop)
  a <- ggplot(dat, aes(x = VariateX, fill = cell_type)) +
    geom_density(alpha = 0.6)+theme(
    legend.title = element_text(size = 20, face = "bold"),
    legend.text = element_text(size = 15),
        axis.title = element_text(size=15),
        axis.text = element_text(size=15))+
    xlab(paste("Component",i))
    plots[[i]] <- a
}
do.call(gridExtra::grid.arrange, c(grobs=plots, ncol=3))</pre>
```


A few things seem clear over the discrimination of the axes against the cell types :

- Component 1 : Discriminates CD 14 versus the others
- Component 2 : Discriminates CD 56 versus the others
- Component 3 : Discriminates CD 34 & B-cells versus the others

Selected variables

For example we might want to get the gene names selected. For this we can do so :

matGenes <- round(modele\$loadings\$X[-which(rowSums(modele\$loadings\$X)==0),],3)
matGenes[which(matGenes==0)] <- ''
kable(matGenes)</pre>

	comp 1	comp 2	comp 3
$\overline{\text{CD52}}$			-0.084
S100A6	0.251		
S100A4	0.447		
RPS27	-0.349		
CD74			-0.846
HLA.A		0.006	
HLA.C		0.13	
LTB			-0.346
EEF1A1			-0.311
IFITM2		0.254	
FTH1	0.47		
MALAT1	-0.194		
B2M		0.943	
RPL13			-0.131
PFN1		0.172	
OAZ1	0.05		
FTL	0.595		
CD37			-0.212

PlotVar representation

It permits to represent the weights in two-dimensionnal figures.

plotVar(modele,comp = 1:2,cex=3)

plotVar(modele,comp = c(1,3),cex=3)

What are the problems of that representation ?

Contribution plots

Those plots are quite fancy to check the weights of each variable selected along its component plotLoadings(modele, comp = 1, method = 'mean', contrib = 'max',legend=F)

Contribution on comp 1

plotLoadings(modele, comp = 2, method = 'mean', contrib = 'max',legend=F)

Contribution on comp 2

plotLoadings(modele, comp = 3, method = 'mean', contrib = 'max',legend=F)

cim representation

An interpretable way of representing the selected genes is to use **cim** representation from mixOmics. Actually it represents the values

How can you comment that figure?

Can you find information redundant with previous figures?

Variances explained

In mixOmics we calculate the variance explain by each component related to each data (X or Y).

modele\$explained_variance

```
## $X
## comp 1 comp 2 comp 3
## 0.09226848 0.08613825 0.04301901
##
```

```
## $Y

## comp 1 comp 2 comp 3

## 0.3333333 0.3331567 0.3312492
```

Are the variances increasing or decreasing?

Is that necessarly the case

Predict functions

PLS-based methods permit to construct a regression model.

For example, if we want to test a few predictions :

```
id_test <- c(1,2,5,6,5,22,20,12,55,256,758,726,540,265,799)
predicted_classes <- predict(object = modele,newdata = X_4_pop[id_test,] )
# compare prediction to reality
kable(table(predicted_classes$class$max.dist[,ncomp], y_4_pop[id_test]))</pre>
```

	b_cells	cd14_monocytes	cd34	$cd56$ _nk
b_cells	9	0	0	0
$cd14_monocytes$	0	2	0	0
cd34	0	0	1	0
$cd56_nk$	0	0	0	3

Do the same with the all dataset

No cheat here but ask for help if needed!

References

Lê Cao, Kim-Anh, Simon Boitard, and Philippe Besse. 2011. "Sparse Pls Discriminant Analysis: Biologically Relevant Feature Selection and Graphical Displays for Multiclass Problems." *BMC Bioinformatics* 12 (1). BioMed Central: 253.