(2020.12.03 重村 哲至) IE4 ____**番 氏名 模範解答**

【注意】以下の全ての問題では、プロセスの優先度を 表す数値が小さい方が優先度が高いものとします。

1 語句に関する問題

次の文章の空欄に最適な言葉を語群から記号で答えなさい. (1 点×30 問= 30 点)

HDD, SSD, (1) 等のデータを記憶する装置のことを(2) と呼ぶ. これらの装置は OS によってファイルシステムとして(3) される. (4) は専用の仮想 CPU と仮想メモリを持っており、また、システムコールを通じて入出力も可能である. これはコンピュータそのものを(3) したものだと言える. ハードウェア資源は OS によって仮想化され必要な数だけ利用できる. CPU は(5) により、メモリは主に(6) により仮想化される. ユーザプログラムのバグや悪意により、他のプログラムや OS が破壊されないように(7) を行う必要がある. ユーザプログラム実行中は(8) が(9) になる. (9) でアクセスできるメモリの範囲に制約を設けることで、(7) が実現される. また、I/O 装置へのアクセスや(8) の切り替えを行う命令は、(10) と呼ばれ(9) では実行できない.

(11) 方式のコンピュータは、同じ機能の CPU を複数個備えている。複数の CPU は 1 つの (12) を共有する。また、I/O 装置を接続するコントローラやアダプタも (12) を共有しており、CPU を介することなく I/O 装置と (12) の間でデータを転送する (13) が可能である。I/O 装置の動作が完了するまでの間、CPU は別の仕事をすることができる。I/O 装置の動作完了は (14) により CPU へ通知される。

ユーザプロセス実行中に (14) が発生すると、ハードウェアが自動的に、(15) を保存し (8) を (16) に切り換え (17) ヘジャンプする。 (17) はプロセスの (18) を保存した後、カーネル内の処理ルーチンへジャンプする。カーネル内の処理が終了すると (19) が呼出され、ユーザプロセスの実行が再開される。

OS には高い信頼性が要求される。そこで、カーネルの機能をサーバプロセスに移し、モジュール化を徹底する方式が考案された。この方式は(20)カーネル方式と

呼ばれる。一方で従来の方式は(21)カーネル方式と呼ばれる。(20)カーネル方式でユーザプロセスは,(22)を用いてサーバプロセスにサービスを要求する。一般に(20)カーネル方式は(23)は高いが(24)が低い。

ユーザの操作への反応時間は (25) 時間, 処理が開始 可能になって完了するまでの時間は (26) と呼ばれる. 処理能力が高いシステムのことは, (27) が高いシステムと言う. デスクトップ PC はユーザが直接操作する ので操作性が良くなければならない. そこで, (25), (26), (27) の中では (28) が重視される. 制御用のシステムでは締切り時刻を守ることが重要である. 必ず締切を守る必要がある場合は (29) リアルタイム, できるだけ守れば良い場合は (30) リアルタイムと呼ばれる.

語群:

- (あ) DMA(Direct Memory Access),
- (ני) IPC(Inter-Process Communication),
- (う) PSW(Program Status Word),
- (λ) SMP(Symmetric Multiprocessing),
- (お) USB メモリ, (か) コンテキスト,
- (き) スーパバイザモード (カーネルモード, 特権モード),
- (く) スループット, (け) ソフト,
- (こ) ターンアラウンド, (さ) ディスパッチャ,
- (し) ハード, (す) プロセス, (せ) マイクロ,
- (そ)メモリ(主記憶装置),(た)モノリシック,
- (ち) ユーザモード, (つ) レスポンス, (て) 記憶保護,
- (と)空間分割多重,(な)実行モード,(に)信頼性,
- (ぬ) 時分割多重, (ね) 性能, (の) 抽象化,
- (は) 特権命令,(ひ)2次記憶装置(ストレージ),
- (ふ) 割込み, (へ) 割込みハンドラ

(1)	(お)	(2)	(Ŋ)	(3)	(Ø)	(4)	(す)
(5)	(&3)	(6)	(と)	(7)	(て)	(8)	(な)
(9)	(ち)	(10)	(は)	(11)	(え)	(12)	(そ)
(13)	(あ)	(14)	(&)	(15)	(う)	(16)	(き)
(17)	(^)	(18)	(な)	(19)	(さ)	(20)	(せ)
(21)	(た)	(22)	(64)	(23)	(に)	(24)	(ね)
(25)	(つ)	(26)	(5)	(27)	(<)	(28)	(つ)
(29)	(し)	(30)	(11)				

(24) は (く) でも正解, (27) は (ね) でも正解

(2020.12.03 重村 哲至) IE4 番 **氏名 模範解答**

2 プロセスの状態

次の図はプロセスの状態遷移図を表します。以下の間に答えなさい。

1. 状態遷移図の状態名と遷移名を語群の記号で答えなさい。(2点×9問=18点)

語群:(あ) Block (事象待ち), (い) Complete (事象完了), (う) Create (生成),

- (え) Dispatch (派遣), (お) Exit (終了), (か) Preemption (横取り),
- (き) Ready (実行可能), (く) Running (実行中), (け) Waiting (待ち)

(a)	(き)	(b)	(け)	(c)	(<)	-	-	-	-	-	-
1	(う)	2	(٢٧)	3	(な)	4	(え)	5	(あ)	6	(お)

- 2. 実行中のプロセスにどの遷移が起こるか状態遷移図の① \sim ⑥で答えなさい。 (2 点 \times 3 間=6 点)
 - (a) より優先度の高いプロセスが実行可能になった.
 - (b) sleep システムコールを発行した.
 - (c) exit システムコールを発行した.

(a) <u>3</u>	(b)	5	(c)	6
--------------	-----	---	-----	---

- 3. どの状態のことか状態遷移図の (a) \sim (c) で答えなさい. (2点 \times 3問=6点)
 - (a) プロセスが生成された直後の状態.
 - (b) プロセスが CPU の割当を待っている状態.
 - (c) プロセスが実行できない状態.

3 PCB JAト

次の図は、ある瞬間の PCB のリストを現しています。このシステムの CPU は 1 つだけです。実行可能なプロセスはリスト上で「優先度順」にソートされ、リスト先頭のプロセスが次回ディスパッチされます。イベント待ちプロセスはリスト上で「到着順」にソードされ、リスト先頭のプロセスから順に取り出されます。以上の前提で以下の間に答えなさい。

(2020.12.03 重村 哲至) IE4 番 **氏名 模範解答**

- 1. 該当するプロセスの PID を答えなさい. (5 点 ×2 問=10 点)
 - (a) PID=51 のプロセスが終了した時,次に実行されるプロセス.
 - (b) イベント1が発生した時、状態遷移するプロセス.

2. 1.(a),(b) の後, ②の待ち行列がどうなるか図に表しなさい. (5 点) (「記載例」のように、図の PCB には PID だけを書き込めば良い.)

4 CPU スケジューリング

プロセスの実行順をガントチャートで示しなさい。また、平均ターンアラウンド時間を小数点以下2桁で四捨五入して答えなさい。ガントチャートには、プロセス名と、切換え発生時刻を全て書くこと。(5点×5問=25点)

ガントチャートの記入例:

(2020.12.03 重村 哲至)

IE4

番 氏名

模範解答

プロセス名	到着時刻 (ms)	CPU バースト時間 (ms)	優先度
P_1	0	80	2
P_2	10	20	3
P_3	30	40	1

1. FCFS (First-Come, First-Served) でスケジューリングした場合 (プリエンプションしない)

平均ターンアラウンド時間 = (93.3) ms

2. SJF (Shortest-Job-First) でスケジューリングした場合 (プリエンプションしない)

平均ターンアラウンド時間 = (93.3) ms

3. SRTF (Shortest-Remaining-Time-First) でスケジューリングした場合 (プリエンプションする)

平均ターンアラウンド時間 = (66.7) ms

4. 優先度順 (Priority) でスケジューリングした場合 (プリエンプションする)

平均ターンアラウンド時間 = (96.7) ms

5. クォンタムタイム 20ms の RR (Round Robin) でスケジューリングした場合 (プリエンプションしない)

平均ターンアラウンド時間 = (86.7) ms