Lecture 14: Model Serving System

CSE599G1: Spring 2017

Deep Learning Applications

"That drink will get you to 2800 calories for today"

"I last saw your keys in the store room"

"Remind Tom of the party"

"You're on page 263 of this book"

Intelligent assistant

Surveillance / Remote assistance

Input keyboard

Runtime Environment

Resource usage for a continuous vision app

Huge gap between workload and budget

Model Serving System Constraints

- Latency constraint
 - Batch size cannot be as large as possible when executing in the cloud
 - Can only run lightweight model in the device
- Resource constraint
 - Battery limit for the device
 - Memory limit for the device
 - Cost limit for using cloud
- Accuracy constraint
 - Some loss is acceptable by using approximate models
 - Multi-level QoS

System overview

Outline

- Model compression
- Serving Backend
- Runtime scheduling between device and cloud

Model Compression

- Tensor decomposition
- Quantization
- Smaller model

Matrix Decomposition

Fully-connected layer MN• Memory reduction: $\overline{(M+N)R}$

• Computation reduction: $\frac{MN}{(M+N)R}$

R

Tensor Decomposition

Convolutional layer

Memory reduction: $\overline{SR_3 + D^2R_3R_4 + TR_4}$

• Computation reduction: $D^2STH'W'$

 D^2ST

 $\overline{SR_3HW} + D^2R_3R_4H'W' + TR_4H'W'$

Decompose the entire model

Fine-tuning after decomposition

Accuracy & Latency after Decomposition

Model	Top-5	Weights	FLOPs	S6		Titan X
AlexNet	80.03	61M	725M	117ms	245mJ	0.54ms
AlexNet*	78.33	11M	272M	43ms	72mJ	0.30ms
(imp.)	(-1.70)	$(\times 5.46)$	$(\times 2.67)$	$(\times 2.72)$	$(\times 3.41)$	$(\times 1.81)$
VGG-S	84.60	103M	2640M	357ms	825mJ	1.86ms
VGG- S *	84.05	14M	549M	97ms	193mJ	0.92ms
(imp.)	(-0.55)	$(\times 7.40)$	$(\times 4.80)$	$(\times 3.68)$	$(\times 4.26)$	$(\times 2.01)$
GoogLeNet	88.90	6.9M	1566M	273ms	473mJ	1.83ms
GoogLeNet*	88.66	4.7M	760M	192ms	296mJ	1.48ms
(imp.)	(-0.24)	$(\times 1.28)$	$(\times 2.06)$	$(\times 1.42)$	$(\times 1.60)$	$(\times 1.23)$
VGG-16	89.90	138M	15484M	1926ms	4757mJ	10.67ms
VGG-16*	89.40	127M	3139M	576ms	1346mJ	4.58ms
(imp.)	(-0.50)	$(\times 1.09)$	$(\times 4.93)$	$(\times 3.34)$	$(\times 3.53)$	$(\times 2.33)$

Quantization

Quantization

Impact of Resnet Quantization on Validation Accuracy of CIFAR-10

PAU Param Size (MB) vs. Mode Validation. Color shows details about sum of Init Bits. Size shows sum of Width Factor. Shape shows details about sum of Depth. The **OF COM**data is filtered on Weight Mode, which keeps tanh. The view is filtered on sum of Width Factor, which ranges from 1 to 1.

Train smaller model

 Knowledge distillation: use a teacher model (large model) to train a student model (small model)

Algorithm	# params	Accuracy
Compression		A4 - 5-5-44 - 1-39 A1 A1 A1
FitNet	\sim 2.5M	91.61%
Teacher	~9M	90.18%
Mimic single	\sim 54M	84.6%
Mimic single	\sim 70M	84.9%
Mimic ensemble	\sim 70M	85.8%
State-of-the-art me	thods	65
Maxout	90.65%	
Network in Networ	91.2%	
Deeply-Supervised	91.78%	
Deeply-Supervised	88.2%	

Algorithm	# params	Accuracy	
Compression			
FitNet	\sim 2.5M	64.96 %	
Teacher	\sim 9M	63.54%	
State-of-the-a	rt methods		
Maxout	61.43%		
Network in N	64.32%		
Deeply-Super	65.43 %		

Table 1: Accuracy on CIFAR-10

Table 2: Accuracy on CIFAR-100

Serving backend

- Provide common abstraction for different frameworks
- Decide the batch size
- Load balancing and scheduling (on-going research)

Miscellaneous DL frameworks and models

^{*} Crankshaw, Daniel, et al. "Clipper: A Low-Latency Online Prediction Serving System." presentation for NSDI (2017). https://www.usenix.org/sites/default/files/conference/protected-files/nsdi17_slides_crankshaw.pdf

Clipper Architecture

Model Abstraction

Model container

```
class ModelContainer:
def __init__(model_data)
def predict_batch(inputs)
```

- Evaluate models using original framework
- Model run in separate process as Docker containers

Batch / latency trade-off

Batch / latency trade-off

Runtime scheduling between device and cloud

- Schedule execution between device and cloud, and select approximate models
- Manage the battery and memory constraints for the device
- Manage the cost constraint for the cloud
- Goal: Maximize the overall accuracy

Resource usage for a continuous vision app

Memory / accuracy trade-off

Energy / accuracy trade-off

Packing problem: pick versions that satisfy energy/cost budgets

$$\sum_{t} e_{i} x_{it} \le E, \sum_{t} c_{i} x'_{it} \le C \ (x_{it}, x'_{it} \in [0, 1], x_{it} \cdot x'_{it} = 0)$$

Paging problem: pick versions that fit in memory

$$\forall 1 \le t \le T, \sum_{i=1}^{n} s_i x_{it} \le S$$

Goal: maximize the accuracy

$$\max_{x} \sum_{t} \sum_{i} a_{i} (x_{it} + x'_{it})$$

No known optimal online algorithms

Heuristic scheduler

 Estimate future resource use and compute the budget for each request

- Account for paging cost to reduce oscillations
- Use increasingly more accurate versions of more heavily used models

Trace-driven evaluation

Reference

- Kim, Yong-Deok, et al. "Compression of deep convolutional neural networks for fast and low power mobile applications." ICLR (2016).
- Han, Seungyeop, et al. "MCDNN: An Approximation-Based Execution Framework for Deep Stream Processing Under Resource Constraints." MobiSys (2016).
- Romero, Adriana, et al. "Fitnets: Hints for thin deep nets." ICLR (2015).
- Crankshaw, Daniel, et al. "Clipper: A Low-Latency Online Prediction Serving System." NSDI (2017).