Homework1

Hao Cui

September 25, 2018

1 Prove $2n + \Theta(n^2) = \Theta(n^2)$

Let $f(n) \in \Theta(n^2)$, we can find c_1, c_2, n_0 such that $\forall n \geq n_0, 0 \leq c_1 n^2 \leq f(n) \leq c_2 n^2$, that is $c_1 n^2 + 2n \leq f(n) + 2n \leq c_2 n^2 + 2n$.

So we only need to prove $f(n) + 2n \in \Theta(n^2)$, that means we need to find c_3, c_4 so that $\forall n \geq n_0, 0 \leq c_3 n^2 \leq f(n) + 2n \leq c_4 n^2$.

Solve inequations: $\begin{cases} c_3 n^2 \le c_1 n^2 + 2n \\ c_4 n^2 \ge c_2 n^2 + 2n \end{cases}$ We can find $\begin{cases} c_3 < c_1 \\ c_4 > 2/n_0 + c_2 \end{cases}$ such that $\forall n \ge n_0, 0 \le c_3 n^2 \le f(n) + 2n \le c_4 n^2$.

Thus $f(n) + 2n \in \Theta(n^2)$, and $2n + \Theta(n^2) = \Theta(n^2)$.

2 Prove $\Theta(g(n)) \cap o(g(n)) = \emptyset$

Assume $\Theta(g(n)) \cap o(g(n)) \neq \emptyset$, then exists $f(n) \in \Theta(g(n))$ and $f(n) \in o(g(n))$, so $\exists c_1 > 0, c_2 > 0, n_0 > 0$ for that $\forall n \geq n_0, \forall c > 0, \begin{cases} 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \\ 0 \leq f(n) < c g(n) \end{cases}$, let $\mathbf{c} = \frac{c_1}{2}$, so $c_1 g(n) \leq f(n) < c g(n) = \frac{c_1}{2} g(n), c_1 < 0$. This is a contradiction, thus $\Theta(g(n)) \cap o(g(n)) = \emptyset$.

3 Prove $\Theta(g(n)) \cup o(g(n)) \neq O(g(n))$

 $\text{Let } f(n) = \begin{cases} g(n) \text{ when } n \text{ is even} \\ 0 \text{ otherwise} \end{cases}, \exists c = 1, n_0 > 0, s.t. \forall n \geq n_0, 0 \leq f(n) \leq cg(n), \text{so } f(n) \in O(g(n)).$

If 0 < c < 1 and n is even number, f(n) > cg(n), so $f(n) \notin o(g(n))$.

If n is not even number, f(n)=0, there is not a $c_1>0$ so that $0 \le c_1g(n) \le f(n)$, so $f(n) \notin \Theta(g(n))$. Thus $f(n) \notin \Theta(g(n)) \cup o(g(n)) \cup o(g(n)) \cup o(g(n)) = O(g(n))$.

4 Prove $max(f(n), g(n)) = \Theta(f(n) + g(n))$

To show that $max(f(n), g(n)) = \Theta(f(n) + g(n))$, we want to find constants $c_1, c_2, n_0 > 0$ such that $0 \le c_1(f(n) + g(n)) \le max(f(n), g(n)) \le c_2(f(n) + g(n))$ for all $n \ge n_0$.

Note that $max(f(n), g(n)) \le f(n) + g(n)$, we can find $c_2 = 1$ such that $max(f(n), g(n)) \le c_2(f(n) + g(n))$.

Assume $f(n) \leq g(n)$, and let $c_1 = \frac{1}{2}$, we can find $\frac{1}{2}(f(n) + g(n)) \leq f(n) \leq g(n) = \max(f(n), g(n))$.

So when $c_1 = \frac{1}{2}$, $c_2 = 1$, we can find $n_0 > 0$ such that $0 \le c_1(f(n) + g(n)) \le max(f(n), g(n)) \le c_2(f(n) + g(n))$ for all $n \ge n_0$.

Thus $max(f(n), g(n)) = \Theta(f(n) + g(n)).$

5 Solve the recurrence $T(n) = 2T(\sqrt{n}) + 1$

Let m = lgn, then $T(2^m) = 2T(2^{\frac{m}{2}}) + 1$. Let $S(m) = T(2^m)$, then $S(m) = 2S(\frac{m}{2}) + 1$. According to the master method, $f(m) = 1 = O(m^{\log_2 2 - 1})$, so that $S(m) = \Theta(m)$. Thus $T(n) = T(2^m) = S(m) = \Theta(m) = \Theta(lgn)$.

6 Solve the recurrence nT(n) = (n-2)T(n-1) + 2

 $T(n)=1 \text{ when } n\geq 2.$ Prove: 1. n=2,2T(2)=2, T(2)=1. 2. Assume T(k)=1,k>2, then (k+1)T(k+1)=(k-1)+2, then T(k+1)=1. Thus $T(n)=1=\Theta(1)$.

7 CLRS,pp61,3-3

7.1 Rank the following functions by order of growth

Functions on the same line are in the same equivalence class.

$$\begin{array}{c} 2^{2^{n+1}} \\ 2^{2^n} \\ (n+1)! \\ n! \\ e^n \\ n \cdot 2^n \\ 2^n \\ (lgn)^{lgn}, n^{lglgn} \\ (lgn)! \\ n^3 \\ n^2, 4^{lgn} \\ nlgn, lg(n!) \\ n, 2^{lgn} \\ \sqrt{2}^{lgn} \\ 2^{\sqrt{2lgn}} \\ lg^2n \\ lnn \\ \sqrt{lgn} \\ lnlnn \\ 2^{lg^*n} \\ lg^*n, lg^*(lgn) \\ lg(lg^*)n \\ n^{\frac{1}{lgn}}, 1 \end{array}$$

7.2 F(n) is neither $O(g_i(n))$ nor $\Theta(g_i(n))$

$$f(n) = \begin{cases} 2^{2^{2^{n+1}}} & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$$