A Path 3-List Coloring Algorithm for Plane Graphs

April 20, 2016

Abstract

We present an algorithm to path 3-list-color plane graphs based on the work by Skrekovski [2] and Hartman [1].

Introduction

All graphs discussed are assumed to be simple, undirected, and plane embeded. For plane embeddings we assume the edges around each vertex are arranged in clockwise order. For a graph G, let V(G) denote its vertex set and E(G) denote the edge set.

Using notation from [1], for $v \in V(G)$ we will denote the neighborhood of v in G as $N_G(x) = \{u \in V(G) \mid uv \in E(G)\}$. For $u, w \in N_G(v)$ we will use $[u, w]_v$ and $(u, w)_v$ to denote the ordered list of vertices between u and w in $N_G(v)$ in clockwise embedded order, inclusive and exclusive respectively. We will use $[u, w]_v'$ and $(u, w)_v'$ for the equivalent counterclockwise listings. If C is a cycle, for $u, v \in C$ let C[u, v] and C(u, v) denote the set of vertices between u and v in clockwise embedded order, inclusive and exclusive respectively.

If L(v) assigns a list of k colors to each vertex $v \in V(G)$, a k-list-coloring colors G such that each $v \in V(G)$ is colored from L(v). A path k-list-coloring is a k-list-coloring such that each color class induces a disjoint union of paths.

Vertex Removal

In this section we present a lemma describing the effects of vertex removal on weakly triangulated plane graphs. This will be necessary to remove already colored paths from our graph. We consider removing a vertex from the outer face that has only two neighbors in the outer face (i.e. no chords).

Lemma 1. Let G be a weakly triangulated 2-connected graph with $|V(G)| \ge 4$ and outer face $C = c_0 c_1 \dots c_n$ in clockwise embedded order. Then if $N_C(c_0) = \{c_1, c_n\}$, $G_0 = G - c_0$ is a weakly triangulated graph with $|V(G_0)| \ge 3$ and outer face $C_0 = c_1 \dots c_n (c_1, c_n)'_{c_0}$.

Proof. First notice that G_0 is clearly weakly triangulated since G was weakly triangulated and we removed a vertex from the outer face. Furthermore, C_0 is a cycle the path $(c_1, c_n)'_{c_0}$ was disjoint from C. Therefore for each $u, v \in C$ there will be two vertex disjoint uv-paths. Since G_0 is weakly

triangulated, each $v \in G_0 - C$ will have at least two vertex disjoint paths to vertices on the outer face. Thus, G_0 is 2-connected.

Removing c_0 with Lemma 1.

Path 3-List Coloring Plane Graphs

In this section we present a correct algorithm for producing path 3-list coloring of a plane graph. The following theorem is equivalent to the results produced by Hartman in [1] and independently by Skrekovski in [3]. The objective in restructuring the theorem is to empasize the mechanical operations that would take place in an algorithm implementation to produce such a coloring.

Theorem 2. Let G be a weakly triangulated 2-connected graph with outer face $C = c_0c_1 \dots c_n$ and let $x, y \in C$, not necessarily distinct. Suppose L(v) assigns a list of colors to each $v \in V(G)$ such that

$$\begin{split} |L(v)| &\geq 1 \quad \text{if } v = x \text{ or } v = y; \\ |L(v)| &\geq 2 \quad \text{if } v \in C, v \neq x, v \neq y; \\ |L(v)| &\geq 3 \quad \text{otherwise.} \end{split}$$

Let P be a (potentially null) induced path in G of vertices in C[x,y]. Assume there exists color α such that for all $v \in P$, $\alpha \in L(v)$ and v has been colored α . Also, for all $u \in C[x,y] - P$, $\alpha \notin L(u)$. If x = y = p, with p the first vertex of P, then p may be colored $\beta \neq \alpha$.

There exists a path list-coloring of G from list assignment L(v) such that x and y have at most one neighbor of the same color and no neighbors of P receive color α .

Proof. We proceed by induction on |V(G)|. If $|V(G)| \le 3$ the statement is trivial. Let $|V(G)| \ge 4$ and suppose the statement holds for all graphs G' with |G'| < |G|. Let $C = xc_1 \dots c_n$ be the outer face of G.

Suppose P is a null path. We will construct a new induced path P starting with x and satisfying the parameters of the Theorem statement. Let α be the first, and possibly only, color in L(x). Initialize P to be the singleton path x. Let $c_i \in C[x,y]$ be the current end of the path P. Let c_j be the closest vertex to y in $N_C(c_i) \cap C(c_i,y]$ such that $\alpha \in L(c_j)$. If such a c_j exists, append it to P and consider this new end vertex. Otherwise we are done and we color each vertex in P with α .

Suppose there exists a non-null induced path P. There are several cases to consider.

Case 1: Suppose P takes a chord $c_i c_j$, j > (i+1), accross C. Then the inductive hypothesis holds for the subgraph G_0 bounded by $C[c_i, c_j]$ with $x = c_j$, $y = c_i$, and $P = c_j c_i$. Furthermore, the inductive hypothesis holds for the subgraph G_1 bounded by $C[c_j, c_i]$ with P' = P, x' = x, y' = y. Since G_0 and G_1 share only vertices in P, the coloring of $G = G_0 \cup G_1$ will be a path coloring.

Case 1: P takes a chord along C.

Case 2: Suppose P does not take any chords of C (i.e. P is a continuous section of the outer face). We will remove p, the first vertex in the path P, and show the inductive hypothesis holds for each of the remaining blocks of G - p. Let denote the vertices of the outer face in clockwise order as $C = pc_1 \dots c_n$.

Case 2.1: $p \neq x$, $p \neq y$.

Case 2.1: Suppose $N_C(p) = \{c_1, c_n\}$. Let α be the color of p. For each vertex $n \in N_G(p) - P$ assign $L'(n) = L(n) \setminus \{\alpha\}$, and set L'(v) = L(v) for all other vertices v. After removing p, there may be vertices in P' = P - p and it must be maintained that P' is between x' and y' clockwise on the outer face. If x = y = p (x and y are removed), set $x' = c_1$ and $y' = c_n$. If p = x, $p \neq y$ (x is removed) we set $x' = c_n$, otherwise x' = x. Similarly, if y = p set $y' = c_1$, and otherwise y' = y. Since for any $v \in C[x, y]$, $\alpha \notin L(v)$, for all $n \in N_G(p)$ such that $n \in C[x, y]$, $|L'(n)| \geq 2$. Furthermore, for $n \in N_G(p)$, $n \notin C$, $|L'(v)| \geq 2$.

Case 2.1: p = x, $p \neq y$ (left), and Case 2.1: p = x = y (right).

If $p \neq x$ and $p \neq y$, then clearly all $n \in N_G(p)$ fit these the above critera. Thus, using Lemma 1 the inductive hypothesis holds for $G_0 = G - p$, x', y', P', and L'(v). If x = y = p, we may have $|L'(c_n)| = 1$ and $|L'(c_1)| = 1$, but we have $x' = c_1$ and $y' = c_n$ so the hypothesis holds. In the case x = p (or y = p), we may have $|L'(c_n)| = 1$ (or $|L'(c_1)| = 1$), but $x' = c_n$ (or $y' = c_1$) so the inductive hypothesis still holds.

Case 2.2: Suppose $|N_C(p)| > 2$. Let us select the largest $i \in \mathbb{Z}^+$ such that $c_i \in N_C(p)$ and $c_i \in C(c_1, c_n)$. Since P is induced in $G, c_i \in C(p', c_n)$.

Case 2.2.1: Suppose $c_i \in C[x, c_n)$. Notice the inductive hypothesis holds for the to the subgraph G_0

bounded by $C[c_i, p]$ and the edge pc_i with P' = p, x' = p and $y' = c_i$. Furthermore, the inductive hypothesis holds for the subgraph G_1 bounded by $C[p, c_i]$ and the edge pc_i with P' = P, x' = x, and y' = y. So the coloring of $G = G_0 \cup G_1$ is a path coloring.

Case 2.2.2: $c_i \in C(x, y]$.

Case 2.2.2: Suppose $c_i \in C[y,x)$. Notice the inductive hypothesis holds for the subgraph G_0 bounded by $C[c_i, p]$ and the edge pc_i with P' = p, x' = x, and y' = p. Furthermore, the inductive hypothesis holds for the subgraph G_1 bounded by $C[p, c_i]$ and the edge pc_i , P' = P, x' = p, y' = y. Since the removal of p in G_0 and G_1 will set c_i to x and y respectively, c_i will have at most one

neighbor in each subgraph. Therefore the coloring of $G = G_0 \cup G_1$ is a path coloring.

Case 2.2.3: $c_i \in C(y, p')$.

Case 2.2.3: Suppose $c_i \in C(p', y)$. This is similar to Case 2.2.1, but with the added dificulty that there might be remaining vertices of P in the subgraph not containing x and y. First notice that the inductive hypothesis holds for the subgraph G_0 bounded by $C[c_i, p]$ and the edge pc_i , P' = p, x' = x, y' = y. Now c_i is colored with some color $\beta \neq \alpha$ by the path coloring of G_0 . Let G_1 be the subgraph bounded by $C[p, c_i]$ and the edge pc_i . Then the inductive hypothesis holds for for G_1 with $P' = c_i P$, $x' = c_i$, $y' = c_i$. Since c_i will have no same color neighbors in G_1 , the coloring of $G = G_0 \cup G_1$ is a path coloring.

Since adding edges does not make a graph easier to color, we may add edges to weakly triangulate any graph. Then we may assign color lists of size 3 to each vertex, set x and y to be arbitrary vertices on the outer face, and apply Theorem 2.

References

- [1] Hartman, C., "Extremal problems in graph theory," Ph.D. thesis, Department of Mathematics, University of Illinois at Urbana-Champaign, 1997.
- [2] Skrekovski, R., "List improper colourings of planar graphs," Combinatorics, Probability and Computing, vol. 8, pp. 293-299, 1999.