

DSC 291: ML Systems Spring 2024

LLMs

Parallelization

Single-device Optimization

Basics

Recap of Last Week: Memory Optimization

- Checkpointing and rematerialization
 - Limitations: for activations, trade flops
- CPU Swapping
 - Limitations: restricted by dram -> hbm bandwidth
- Quantization and Mixed precision
 - Potential accuracy (ML performance) loss
 - Kernel support cannot catch up

Next 2 weeks: Large-Scale Distributed ML

- Motivation
- History
- Parallelism Overview
- Data parallelism
- Model parallelism
 - Inter and intra-op parallelism
- Auto-parallelization

Big Model: The Core Computational Challenge

How to train and serve big models?

Using parallelization.

Moore's Law coming to an end

Meanwhile.... ML demands are exploding

[&]quot;Compute trends across three eras of machine learning", J. Sevilla, https://ar5iv.labs.arxiv.org/html/2202.05924

Why? Bigger model, better accuracy

Why? Emergence of foundation models

"Pathways Language Model (PaLM): Scaling to 540 Billion Parameters for Breakthrough Performance", S Narang, A Chowdhery et al, https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

Growing gap between demand and supply

[&]quot;Compute trends across three eras of machine learning", J. Sevilla, https://ar5iv.labs.arxiv.org/html/2202.05924

What about specialized hardware?

Specialized hardware not good enough

[&]quot;Compute trends across three eras of machine learning", J. Sevilla, https://ar5iv.labs.arxiv.org/html/2202.05924

Even if model sizes would stop growing...

... it would take decades for specialized hardware to catch up!

Example:

- Google's PaLM takes 6144 TPU v4 to train
- Assuming doubling performance every 18x month it would take ~19 years to train it on a single chip

Not only compute, but memory

Growing gap between memory demand and supply

No way out but to parallelize these workloads!

Data Parallel Training

Data Parallel Training

Need do parallelize the model, but how?

Tensor operator

Inter-operator parallelism

- Pipeline execution on both forward and backward paths
- . GPUs can be on the same machine or different machines

Intra-operator parallelism

Where we are

- Motivation
- History
- Parallelism Overview
- Data Parallelism
- Model parallelism
 - Inter and intra-op parallelism
- Auto-parallelization

Distributed DL History in 10 mins

2012

Reflections of DL parallelization in early DL papers

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Machine 2 Machine 4

Nachine 2 Machine 4

Figure from AlexNet [Krizhevsky et al., NeurlPS 2012], [Krizhevsky et al., preprint, 2014]

Figure from DistBelief
[Dean et al., NeurlPS 2012]

Data Parallelism with Parameter Server

Figure from DistBelief
[Dean et al., NeurlPS 2012]

Various implementations of parameter servers

- DistBelief [Dean et al., NeurIPS 2012]
- Parameter server [Li et al., NeurlPS 2012], [Li et al., OSDI 2014]
- Bosen [Wei et al., SoCC 2015]
- GeePS [Cui et al., Eurosys 2016], Poseidon [Zhang et al., ATC 2017]

Data Parallelism with All-reduce

```
2012
                    import torch.nn.parallel as dist
                    from torch.nn.parallel import DistributedDataParallel as DDP
2016
                    dist.init_process_group("nccl", rank=rank, world_size=world_size)
                    ddp_model = DDP(Model(), device_ids=[rank])
                    for batch in data_loader:
                       loss = train_step(ddp_model, batch)
```

Sergeev et al., "Horovod: fast and easy distributed deep learning in TensorFlow". *Preprint 2018*. Li et al., "PyTorch Distributed: Experiences on Accelerating Data Parallel Training". VLDB 2020.

Data Parallelism with All-reduce

Computational Graph and Placement

Model Parallelism Renaissance

GPT-3

GPT-3, trained with massive model parallelisms, enables new ML breakthroughs

Big Model Era

How to embrace big models?

RESEARCH

Democratizing access to large-scale language models with OPT-175B

May 3, 2022

Where we are

- Motivation
- History
- Parallelism Overview
- Data parallelism
- Model parallelism
 - Inter and intra-op parallelism
- Auto-parallelization

Background: DL Computation

$$heta^{(t+1)} = f(heta^{(t)}, \,
abla_L(heta^{(t)}, \, D^{(t)}))$$
 $ext{ weight update model (sgd, adam, etc.)}$

Problem Overview

Two Views of ML Parallelisms

Classic view

Data parallelism

Model parallelism

New view (this tutorial)

Inter-op parallelism

Intra-op parallelism

Data and Model Parallelism

Data parallelism

Model parallelism

$$heta^{(t+1)} = f(heta^{(t)}, \,
abla_L(heta^{(t)}, \, D^{(t)}))$$
 weight update model (Sgd, adam, etc.) (CNN, GPT, etc.)

Two Views of ML Parallelisms

Data and model parallelism

- . Two pillars: **data** and **model**.
- . Utility "Data parallelism" is general and precise.
- . ? "Model parallelism" is vague.
- The view creates ambiguity for methods that neither partitions data nor the model computation.

New: Inter-op and Intra-op parallelism.

- Two pillars: computational graph and device cluster
- This view is based on their computing characteristics.
- This view facilitates the development of new parallelism methods.

DL Computation

$$egin{aligned} heta^{(t+1)} &= fig(heta^{(t)},\,
abla_Lig(heta^{(t)},\, D^{(t)}ig)ig) \ L &= ext{MSE}(w_2 \cdot ext{ReLU}(w_1x),\, y) \;\;\; heta = \{w_1,w_2\},\, D = \{(x,y)\} \ f(heta,
abla_L) &= heta -
abla_L \end{aligned}$$

Forward Backward Weight update $L(\cdot)$ $\nabla_L(\cdot)$ $f(\cdot)$

Device Cluster

Nvidia DGX with V100

Figure from NMDIA

A typical GPU cluster topology

Fast connections

Slow connections

Partitioning Computation Graph on Device Cluster

How to partition the computational graph on the device cluster?

Partitioning Computation Graph

Strategy 1

Strategy 2

Partitioning Computation Graph

Strategy 1: Inter-operator Parallelism

Strategy 2: Intra-operator Parallelism

More Parallelisms...

Multiple intra-op strategies for a single node

More strategies

Summary: Inter-op and Intra-op Parallelisms

Inter-op parallelism: Assign different operators to different devices.

Intra-op parallelism: Assign different regions of a single operator to different devices.

Inside Intra- and Inter-op Parallelism

$$Y = X \cdot W_1 \cdot W_2 = X \cdot egin{bmatrix} W_1^{d1} & W_1^{d2} \end{bmatrix} \cdot egin{bmatrix} W_2^{d1} \ W_2^{d2} \end{bmatrix}$$

Inter-op and Intra-op Parallelism: Characteristics

Inter-op parallelism:

Requires point-to-point communication but results in device idle

Intra-op parallelism:

Devices are busy but requires collective communication

Inter-op and Intra-op Parallelism: Characteristics

Inter-op parallelism

Trade-off

	Parallelism	Parallelism
Communication	Less	More
Device Idle Time	More	Less

Intra-op parallelism

ML Parallelization under New View

Terminologies: Point-to-point Communication

Terminologies: Collective Communication


```
ddp_model = DDP(Model(), device_ids=[rank])
for batch in data_loader:
   loss = train_step(ddp_model, batch)
```


all-reduce

Figure from NCCL documentation

Terminologies: Collective Communication

Reduce-scatter

outY[i] = sum(inX[Y*count+i])

Figures from NCCL documentation

Next Week

- Motivation
- History
- Parallelism Overview
- Data parallelism
- Model parallelism
 - Inter and intra-op parallelism
- Auto-parallelization