

На правах рукописи

О монотонности интегральных функционалов при перестановках

Специальность —

«»

Диссертация на соискание учёной степени кандидата физико-математических наук

Научный руководитель: Назаров Александр Ильич

Оглавление

		Стр
Введе	ние	3
Глава	1. О неравенстве (3) в случае ограниченного роста	
	интегранта по производной	5
1.1	Условия, необходимые для выполнения неравенства (3)	5
1.2	Свойства весовой функции	8
1.3	Доказательство неравенства (3) для кусочно линейных функций.	10
1.4	О расширении класса функций, для которых выполняется	
	неравенство (3)	13
1.5	Переход к соболевским функциям	16
Глава	2. О неравенствах (3) и (4) в общем случае при $n=1$	18
2.1	Доказательство неравенства (3) для монотонных весов	18
2.2	Доказательство неравенства (3) для произвольных весов	21
2.3	Доказательство неравенства (3) для функций, закреплённых на	
	левом конце	28
2.4	Доказательство неравенства (4)	29
Глава	3. Монотонность функционалов с переменным	
	показателем суммирования	30
3.1	Введение	30
3.2	Необходимые условия	31
3.3	Доказательство неравенства $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$	32
3.4	Некоторые достаточные условия	34
Списо	к литературы	36

Введение

Пусть $\Omega = \omega \times [-1,1]$, где ω — ограниченная область в \mathbb{R}^{n-1} . Обозначим $x = (x_1, \dots, x_{n-1}, y) = (x', y)$.

Напомним теорему о послойном представлении измеримой неотрицательной функции u, заданной на Ω (см. [1, Теорема 1.13]). Положим $\mathcal{A}_t(x') := \{y \in [-1,1]: u(x',y) > t\}$. Тогда имеет место равенство

$$u(x',y) = \int_0^\infty \mathcal{X} \{ \mathcal{A}_t(x') \}(y) dt,$$

где $\mathcal{X}\{A\}$ — характеристическая функция множества A.

Определим симметричную перестановку измеримого множества $E\subset [-1,1]$ и симметричную перестановку (симметризацию по Штейнеру) неотрицательной функции $u\in W^1_1(\Omega)$:

$$E^* := \left[-\frac{|E|}{2}, \frac{|E|}{2} \right]; \qquad u^*(x', y) = \int_0^\infty \mathcal{X}\{(\mathcal{A}_t(x'))^*\}(y)dt.$$

В тех же условиях определим монотонную перестановку множества E и функции $u \in W^1_1(\Omega)$:

$$\overline{E} := [1 - \text{meas } E, 1]; \qquad \overline{u}(x', y) = \int_{0}^{\infty} \mathcal{X}\{\overline{\mathcal{A}_{t}(x')}\}(y)dt.$$

Возьмём выпуклую чётную функцию F и рассмотрим функционал

$$I(u) = \int_{\Omega} F(\|\nabla u\|) dx. \tag{1}$$

Для такого функционала хорошо известно классическое неравенство Пойа-Сегё: $I(u^*) \leqslant I(u)$.

В данной диссертации мы рассматриваем обобщения неравенства Пойа-Сегё на более общие классы функционалов. В первой и второй главах мы рассматриваем взвешенные аналоги классического функционала.

Определим множество \mathfrak{F} непрерывных функций $F: \boldsymbol{\omega} \times \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ (здесь и далее $\mathbb{R}_+ = [0, \infty)$), выпуклых и возрастающих по третьему аргументу, удовлетворяющих $F(\cdot, \cdot, 0) \equiv 0$.

Рассмотрим функционал:

$$J(u) = J(a, u) = \int_{\Omega} F(x', u(x), ||\mathcal{D}u||) dx,$$
 (2)

где $F \in \mathfrak{F}, \|\cdot\|$ — некоторая норма в \mathbb{R}^n , симметричная по последней координате, то есть удовлетворяющая $\|(x',y)\| = \|(x',-y)\|$,

$$\mathcal{D}u = (a_1(x', u(x))D_1u, \dots, a_{n-1}(x', u(x))D_{n-1}u, a(x, u(x))D_nu)$$

— градиент u с весом (обратите внимание, что только вес при $D_n u$ зависит от $y), a(\cdot, \cdot): \Omega \times \mathbb{R}_+ \to \mathbb{R}_+$ и $a_i(\cdot, \cdot): \omega \times \mathbb{R}_+ \to \mathbb{R}_+$ — непрерывные функции. Здесь и далее индекс i пробегает от 1 до n-1. Вторую форму записи J(a,u) мы используем лишь во второй главе. Также во второй главе мы будем использовать обозначение

$$J(B, a, u) = \int_{B} F(x', u(x), ||\mathcal{D}u||) dx.$$

Очевидно, что при $a_i = a \equiv 1$ выполнено $J \equiv I$.

В первой главе мы рассматриваем аналог неравенства Пойа-Сегё для монотонной перестановки с функционалом (2):

$$J(\overline{u}) \leqslant J(u) \tag{3}$$

Мы устанавливаем необходимые для выполнения неравенства условия на весовую функцию a. Также мы доказываем неравенство при необходимых условиях и дополнительном ограничении на рост интегранта по производной.

Во второй главе мы снимаем требование ограничения роста, и также доказываем аналогичный результат для симметричной перестановки:

$$J(u^*) \leqslant J(u),\tag{4}$$

тем самым закрывая пробел в работе [2].

Глава 1. О неравенстве (3) в случае ограниченного роста интегранта по производной

1.1 Условия, необходимые для выполнения неравенства (3)

Теорема 1. 1. Если неравенство (3) выполняется для некоторой $F \in \mathfrak{F}$ и произвольной кусочно линейной u, то вес а чётен по первому аргументу, то есть $a(x,v) \equiv a(-x,v)$.

2. Если неравенство (3) выполняется для произвольной $F \in \mathfrak{F}$ и произвольной кусочно линейной u, то вес а удовлетворяет неравенству

$$a(s, v) + a(t, v) \ge a(1 - t + s, v), \qquad -1 \le s \le t \le 1, v \in \mathbb{R}_+.$$
 (1.1)

Доказательство. 1. Предположим, что $a(x,v)\not\equiv a(-x,v)$. Тогда найдутся такие $\bar x\in (-1,1)$ и $\bar v\in \mathbb{R}_+$, что

$$a(\bar{x}, \bar{v}) < a(-\bar{x}, \bar{v}).$$

Поэтому существует $\varepsilon > 0$, такое, что

$$\bar{x} - \varepsilon \leqslant x \leqslant \bar{x}, \bar{v} \leqslant v \leqslant \bar{v} + \varepsilon \implies a(x, v) < a(-x, v),$$

и можно взять следующую функцию:

$$\begin{cases} u(x) = \bar{v} + \varepsilon, & x \in [-1, \bar{x} - \varepsilon] \\ u(x) = \bar{v} + \bar{x} - x, & x \in (\bar{x} - \varepsilon, \bar{x}) \\ u(x) = \bar{v}, & x \in [\bar{x}, 1] \end{cases}$$

Тогда $\overline{u}(x,v)=u(-x,v)$ и

$$J(a, u) - J(a, \overline{u})$$

$$= \int_{\bar{x} - \varepsilon}^{\bar{x}} F(\bar{v} + \bar{x} - x, a(x, \bar{v} + \bar{x} - x)) dx - \int_{-\bar{x}}^{-\bar{x} + \varepsilon} F(\bar{v} + \bar{x} + x, a(x, \bar{v} + \bar{x} + x)) dx$$

$$= \int_{\bar{x} - \varepsilon}^{\bar{x}} (F(\bar{v} + \bar{x} - x, a(x, \bar{v} + \bar{x} - x)) - F(\bar{v} + \bar{x} - x, a(-x, \bar{v} + \bar{x} - x))) dx < 0,$$

что противоречит условию. Утверждение 1 доказано.

2. Предположим, что условие (1.1) не выполняется. Тогда в силу непрерывности функции a найдутся такие $-1\leqslant s\leqslant t\leqslant 1,\ \epsilon,\delta>0$ и $\bar v\in\mathbb{R}_+$, что для любых $0\leqslant y\leqslant \epsilon$ и $\bar v\leqslant v\leqslant \bar v+\epsilon$ справедливо неравенство

$$a(s+y,v) + a(t-y,v) + \delta < a(1-t+s+2y,v).$$

Рассмотрим функцию u (см. рис. 1):

$$\begin{cases} u(x) = \bar{v}, & x \in [-1, s] \cup [t, 1] \\ u(x) = \bar{v} + x - s, & x \in [s, s + \varepsilon] \\ u(x) = \bar{v} + \varepsilon, & x \in [s + \varepsilon, t - \varepsilon] \\ u(x) = \bar{v} + t - x, & x \in [t - \varepsilon, t] \end{cases}$$

$$(1.2)$$

Тогда

$$\begin{cases} \overline{u}(x) = \overline{v}, & x \in [-1, 1 - t + s] \\ \overline{u}(x) = \overline{v} + \frac{x - (1 - t + s)}{2}, & x \in [1 - t + s, 1 - t + s + 2\varepsilon] \\ \overline{u}(x) = \overline{v} + \varepsilon, & x \in [1 - t + s + 2\varepsilon, 1] \end{cases}$$

(см. рис. 2).

Имеем

$$J(a, \overline{u}) = \int_{0}^{2\varepsilon} F(u(1 - t + s + z), \frac{a(1 - t + s + z, u(1 - t + s + z))}{2}) dz$$

$$= \int_{0}^{\varepsilon} 2F(\bar{v} + y, \frac{a(1 - t + s + 2y, \bar{v} + y)}{2}) dy$$

$$0 \le J(a, u) - J(a, \overline{u}) = \int_{0}^{\varepsilon} \left(F(\bar{v} + y, a(s + y, \bar{v} + y)) + F(\bar{v} + y, a(t - y, \bar{v} + y))\right)$$

$$- 2F(\bar{v} + y, \frac{a(1 - t + s + 2y, \bar{v} + y)}{2})) dy$$

$$< \int_{0}^{\varepsilon} \left(F(\bar{v} + y, a(s + y, \bar{v} + y)) + F(\bar{v} + y, a(t - y, \bar{v} + y))\right)$$

$$- 2F(\bar{v} + y, \frac{a(s + y, \bar{v} + y) + a(t - y, \bar{v} + y) + \delta}{2})) dy =: \Delta J.$$

Рассмотрим теперь функцию $F(v,p)=p^{\alpha}$. Очевидно, что при $\alpha=1$ выполнено неравенство

$$\frac{F(v,p) + F(v,q)}{2} - F\left(v, \frac{p+q}{2} + \frac{\delta}{2}\right) < 0.$$
 (1.3)

Нас интересуют p, q, лежащие на компакте [0,], где

$$A = \max_{(x,v)} a, \qquad (x,v) \in [-1,1] \times u([-1,1]).$$

Значит найдётся такое $\alpha>1$, что неравенство (1.3) будет продолжать выполняться. Например, подходит любое $1<\alpha<(\log_2\frac{2A}{A+\delta})^{-1}$.

Тем самым, мы подобрали строго выпуклую по второму аргументу функцию F, для которой $\Delta J \leqslant 0$. Это противоречие доказывает утверждение **2**. \square

Замечание 1. $Bu\partial ho$, что в доказательстве второго пункта теоремы функцию и на отрезке [-1,s] можно заменить на любую возрастающую функцию. Тем самым, условие (1.1) является необходимым и для выполнения неравенства (3) в случае закрепленных на левом конце функций: u(-1)=0.

Замечание 2. Пусть $a(\cdot, v)$ чётна. Тогда условие (1.1) эквивалентно субаддитивности функции $a(1-\cdot, v)$. В частности, если неотрицательная функция а чётна и вогнута по первому аргументу, она удовлетворяет (1.1).

1.2 Свойства весовой функции

Для краткости в этом параграфе будем опускать второй аргумент у функции a. Тем самым, $a \in C[-1,1]$ и $a \geqslant 0$.

Лемма 1. Пусть а удовлетворяет (1.1).

1. Для любых $-1\leqslant t_1\leqslant t_2\leqslant\ldots\leqslant t_n\leqslant 1$ выполнены следующие неравенства

$$\sum_{k=1}^{n} a(t_k) \geqslant a(1 - \sum_{k=1}^{n} (-1)^k t_k), \qquad \qquad \text{для чётных } n,$$

$$\sum_{k=1}^{n} a(t_k) \geqslant a(-\sum_{k=1}^{n} (-1)^k t_k), \qquad \qquad \text{для нечётных } n.$$

2. Предположим дополнительно, что функция а чётна. Тогда также выполнены следующие неравенства

$$\sum_{k=1}^{n} a(t_k) \geqslant a(-1 + \sum_{k=1}^{n} (-1)^k t_k), \qquad \qquad \text{для чётных } n,$$

$$\sum_{k=1}^{n} a(t_k) \geqslant a(\sum_{k=1}^{n} (-1)^k t_k), \qquad \qquad \text{для нечётных } n.$$

$$\sum_{k=1}^{n-1} a(t_k) \geqslant a(-\sum_{k=1}^{n-1} (-1)^k t_k).$$

Значит

$$\sum_{k=1}^{n-1} a(t_k) + a(t_n) \geqslant a(-\sum_{k=1}^{n-1} (-1)^k t_k) + a(t_n) \geqslant a(1 - \sum_{k=1}^{n} (-1)^k t_k).$$

В случае нечётного n воспользуемся предположением индукции в следующем виде: $\sum_{k=2}^{n} a(t_k) \geqslant a(1 + \sum_{k=2}^{n} (-1)^k t_k)$. Тогда

$$a(t_1) + \sum_{k=2}^{n} a(t_k) \geqslant a(t_1) + a(1 + \sum_{k=2}^{n} (-1)^k t_k) \geqslant a(-\sum_{k=2}^{n} (-1)^k t_k + t_1) = a(-\sum_{k=1}^{n} (-1)^k t_k).$$

2. Доказательство этой части очевидно.

Лемма 2. 1. Пусть функция а удовлетворяет условию (1.1). Если найдётся такое $x_0 \in [-1,1]$, что $a(x_0) = 0$, то либо $a \equiv 0$ на $[x_0,1]$, либо множество нулей функции а периодично на $[x_0,1]$, причем период нацело делит $1-x_0$.

2. Пусть функция а удовлетворяет условию (1.1) и чётна. Если найдётся такое $x_0 \in [-1,1]$, что $a(x_0) = 0$, то либо $a \equiv 0$, либо функция а периодична на отрезке [-1,1], причем период нацело делит $1-x_0$.

Доказательство. 1. Прежде всего, заметим, что если для некоторых $s\leqslant t$ выполнено a(s)=a(t)=0, то неравенство (1.1) влечёт

$$0 = a(s) + a(t) \ge a(1 - (t - s)) \ge 0,$$

то есть a(1-(t-s))=0. Подставив $s=t=x_0$, получаем a(1)=0.

Точно так же, если $s \le 1 - t$ и a(s) = a(1 - t) = 0, то a(s + t) = 0.

Тем самым, множество нулей функции a симметрично на отрезке $[x_0, 1]$, и если $a(s) = a(s + \Delta) = 0$ ($\Delta \geqslant 0$), то $a(s + k\Delta) = 0$, для $s + k\Delta \leqslant 1$. Отсюда следует, что множество корней либо периодично на отрезке $[x_0, 1]$, либо совпадает ним.

2. Периодичность нулей функции a следует из её чётности и из первой части утверждения леммы. Обозначим расстояние между соседними нулями за Δ .

Тогда для $-1\leqslant x\leqslant 1-\Delta$ выполнено

$$a(x) = a(x) + a(1 - \Delta) \geqslant a(x + \Delta).$$

C другой стороны, $-1 \leqslant -(x+\Delta) \leqslant 1-\Delta$, и

$$a(x+\Delta) = a(-(x+\Delta)) + a(1-\Delta) \geqslant a(-x) = a(x).$$

Тем самым, $a(x) = a(x + \Delta)$.

Лемма 3. Пусть функции a_1 и a_2 удовлетворяют неравенству (1.1). Тогда функции $\max(a_1(x), a_2(x))$ и $a_1(x) + a_2(x)$ тоже ему удовлетворяет.

Доказательство. Положим $a(x) = \max(a_1(x), a_2(x))$. Тогда

$$a(1-t+s) = \max(a_1(1-t+s), a_2(1-t+s)) \leqslant \max(a_1(s) + a_1(t), a_2(s) + a_2(t))$$

$$\leqslant \max(a_1(s), a_2(s)) + \max(a_1(t), a_2(t)) = a(s) + a(t).$$

Утверждение для второй функции очевидно.

Лемма 4. Пусть функция а удовлетворяет неравенству (1.1), $k \in \mathbb{N}$. Тогда кусочно линейная функция a_k , интерполирующая функцию а по узлам $(-1 + \frac{2i}{k})$, $i = 0, 1, \ldots, k$, тоже удовлетворяет неравенству (1.1).

Доказательство. 1. Пусть $s = -1 + \frac{2i}{k}$, $t = -1 + \frac{2j}{k}$. Тогда неравенство выполняется для a_k , потому что оно выполняется для a, а в этих точках они совпадают.

2. Пусть теперь $s = -1 + \frac{2i}{k}$, и $t \in [-1 + \frac{2j}{k}, -1 + \frac{2(j+1)}{k}]$.

Рассмотрим линейную функцию $h_1(t)=a_k(1-t+s)-a_k(t)-a_k(s)$. Из части 1 следует $h_1(-1+\frac{2j}{k})\leqslant 0$ и $h_1(-1+\frac{2(j+1)}{k})\leqslant 0$. Значит, поскольку h_1 линейна, $h_1(t)\leqslant 0$. Тем самым, неравенство выполняется для любого $s=-1+\frac{2i}{k}$ и $t\in [-1,1]$.

3. Пусть *s* и *t* удовлетворяют соотношению $1 - t + s = \frac{2j}{k}$.

Рассмотрим функцию $h_2(y)=a_k(\frac{2j}{k})-a_k(s+y)-a_k(t+y)$. Если взять y_0 такое, что $s+y_0$ — один из узлов, то $t+y_0$ узел. Следовательно $h_2(y_0)=a(\frac{2j}{k})-a(s+y_0)-a(t+y_0)\leqslant 0$. Поскольку h_2 линейна между подобными y_0 , получаем $h_2(y)\leqslant 0$ для всех допустимых y.

4. Наконец, для произвольного $t \in [-1,1]$ рассмотрим $h_3(s) = a_k(1-t+s) - a_k(t) - a_k(s)$. Заметим, что если s или 1-t+s являются узлами, то из частей 2 и 3 следует $h_3(s) \leq 0$. Поскольку h_3 линейна между такими s, имеем $h_3(s) \leq 0$ для всех допустимых s, что завершает доказательство.

1.3 Доказательство неравенства (3) для кусочно линейных функций

Лемма 5. Пусть функция $a(x',\cdot,u)$ чётна и удовлетворяет условию (1.1) для всех (x',u). Тогда, если u — неотрицательная кусочно линейная функция, то $I(u) \geqslant I(\overline{u})$.

Доказательство. Пусть функция u имеет изломы на множестве C ($\partial\Omega\subset C\subset\Omega$). Возьмём

$$U := \{ (x', u(x', y)) : x' \in \omega, y \in (-1, 1), (x', y) \notin C \}.$$

Тогда открытое множество U разбивается в объединение конечного числа связных открытых множеств G_i . Обозначим m_i число прообразов значения

 $(x',u_0)\in G_j$, то есть число решений уравнения $u(x',y)=u_0$ (очевидно, это число постоянно для $(x',u_0)\in G_j$). Легко видеть, что эти прообразы являются линейными функциями $(x',u_0)\colon y=y_k^j(x',u_0),\ k=1,\ldots,m_j$, и $D_ny_k^j(x',u(x',y))=\frac{1}{D_nu(x',y)}$. Мы будем считать, что $y_1^j(x',u_0)< y_2^j(x',u_0)<\cdots< y_{m_j}^j(x',u_0)$.

Уравнение $\overline{u}(x_0', \overline{y}) = u_0$ задаёт \overline{y} как функцию $(x_0', u_0) \in G_j$. Её можно выразить через y_k^j (в частности, \overline{y} кусочно линейна):

$$u(x'_0,-1) < u_0$$
 m_j чётно $\overline{y} = 1 - \sum_{k=1}^{m_j} (-1)^k y_k^j$ m_j нечётно $\overline{y} = -\sum_{k=1}^{m_j} (-1)^k y_k^j$ $u(x'_0,-1) > u_0$ m_j чётно $\overline{y} = -1 + \sum_{k=1}^{m_j} (-1)^k y_k^j$ m_j нечётно $\overline{y} = \sum_{k=1}^{m_j} (-1)^k y_k^j$

Отсюда ясно, что

$$D_n \overline{y}(x', u(x', y)) = \frac{1}{D_n \overline{u}(x', y)} = \sum_{k=1}^{m_j} |D_n y_k^j(x', u(x', y))|$$

и $D_i\overline{u}(x',y)=\pm\sum_{k=1}^{m_j}(-1)^kD_iy_k^j(x',u(x',y))$, где знак перед правой частью зависит только от j.

Тогда

$$I(u) = \sum_{j=1}^{N} \int_{G_{j}} F(x', u(x), ||a_{i}(x', u(x))D_{i}u(x), a(x, u(x))D_{n}u(x)||) dx$$

$$= \sum_{j=1}^{N} \int_{u(G_{j})} \sum_{k=1}^{m_{j}} F\left(x', u, \frac{||a_{i}(x', u)D_{i}y_{k}^{j}(x', u), a(x', y_{k}^{j}(x', u), u)||}{|D_{n}y_{k}^{j}(x', u)|}\right) |D_{n}y_{k}^{j}(x', u)| dx' du,$$

$$(1.4)$$

$$I(\overline{u}) = \sum_{j=1}^{N} \int_{G_{j}} F(x', \overline{u}, ||a_{i}(x', \overline{u}(x))D_{i}\overline{u}(x), a(x, \overline{u}(x))D_{n}\overline{u}(x)||)dx$$

$$= \sum_{j=1}^{N} \int_{u(G_{j})} F\left(x', \overline{u}, \frac{||a_{i}(x', \overline{u})D_{i}\overline{y}(x', \overline{u}), a(x', \overline{y}(x', \overline{u}), \overline{u})||}{\sum_{k=1}^{m_{j}} |D_{n}y_{k}^{j}(x', \overline{u})|}\right) \times \sum_{k=1}^{m_{j}} |D_{n}y_{k}^{j}(x', \overline{u})|dx'd\overline{u}. \quad (1.5)$$

Зафиксируем j, x' и u и обозначим $b_k = |D_n y_k^j|, c_{ki} = D_i y_k^j, \overline{c}_i = D_i \overline{y},$ $y_k = y_k^j(x',u), \overline{y} = \overline{y}(x',u), m = m_j$. Тогда справедлива следующая цепочка неравенств:

$$\sum_{k=1}^{m} b_{k} F\left(\frac{\|a_{i}c_{ki}, a(y_{k})\|}{b_{k}}\right) \stackrel{a}{\geqslant} F\left(\frac{\sum_{k=1}^{m} \|a_{i}c_{ki}, a(y_{k})\|}{\sum_{k=1}^{m} b_{k}}\right) \sum_{k=1}^{m} b_{k}$$

$$\stackrel{b}{=} F\left(\frac{\sum_{k=1}^{m} \|(-1)^{k} a_{i}c_{ki}, a(y_{k})\|}{\sum_{k=1}^{m} b_{k}}\right) \sum_{k=1}^{m} b_{k} \stackrel{c}{\geqslant} F\left(\frac{\|\sum_{k=1}^{m} ((-1)^{k} a_{i}c_{ki}, a(y_{k}))\|}{\sum_{k=1}^{m} b_{k}}\right) \sum_{k=1}^{m} b_{k}$$

$$= F\left(\frac{\|\sum_{k=1}^{m} (-1)^{k} a_{i}c_{ki}, \sum_{k=1}^{m} a(y_{k})\|}{\sum_{k=1}^{m} b_{k}}\right) \sum_{k=1}^{m} b_{k} \stackrel{d}{\geqslant} F\left(\frac{\|\sum_{k=1}^{m} (-1)^{k} a_{i}c_{ki}, a(\overline{y})\|}{\sum_{k=1}^{m} b_{k}}\right) \sum_{k=1}^{m} b_{k}$$

$$\stackrel{e}{=} F\left(\frac{\|\pm a_{i} \sum_{k=1}^{m} (-1)^{k} c_{ki}, a(\overline{y})\|}{\sum_{k=1}^{m} b_{k}}\right) \sum_{k=1}^{m} b_{k} = F\left(\frac{\|a_{i}\overline{c}_{i}, a(\overline{y})\|}{\sum_{k=1}^{m} b_{k}}\right) \sum_{k=1}^{m} b_{k}. (1.6)$$

Здесь в переходе (a) применено неравенство Йенсена, в переходах (b) и (e) использована чётность нормы, в (c) использовано неравенство треугольника, в (d) — предложение 1 и чётность веса a по y.

Из (1.6) видно, что подынтегральное выражение в (1.4) не меньше подынтегрального выражения в (1.5). Тем самым, доказательство завершено.

Замечание 3. Если $u(\cdot, -1) \equiv 0$, то утверждение леммы верно без условия чётности веса. Чётность используется только в переходе (d) цепочки неравенств (1.6), и, поскольку при $u(\cdot, -1) \equiv 0$ всегда выполнено $u(x'_0, -1) < u_0$, то предложение 1 как раз обеспечивает требуемые для перехода (d) неравенства.

1.4 О расширении класса функций, для которых выполняется неравенство (3)

Следующее утверждение более-менее стандартно. Однако, множество $\{u: J(u) < \infty\}$ даже не является выпуклым подмножеством $W_1^1(\Omega)$. Поэтому здесь мы приводим полное доказательство для удобства читателя.

Лемма 6. Пусть функция а непрерывна. Тогда функционал J(u) слабо полунепрерывен снизу в $W_1^1(\Omega)$.

Доказательство. Пусть $u_m \to u$ в $W_1^1(\Omega)$. Обозначим $A = \underline{\lim} J(u_m) \geqslant 0$. Наша задача — доказать $J(u) \leqslant A$. Если $A = \infty$, то утверждение тривиально, поэтому можно считать $A < \infty$. Переходя к подпоследовательности, добиваемся $A = \lim J(u_m)$. Из слабой сходимости $u_m \to u$ заключаем, что найдётся R_0 такое, что $\|u_m\|_{W_1^1(\Omega)} \leqslant R_0$. Более того, переходя к подпроследовательности, можно считать, что $u_m \to u$ в $L_1(\Omega)$ и $u_m(x) \to u(x)$ почти всюду. Тогда по теореме Егорова для любого ε найдётся множество G_ε^1 такое, что $|G_\varepsilon^1| < \varepsilon$ и $u_m \Rightarrow u$ в $\Omega \setminus G_\varepsilon^1$.

Из равномерной сходимости u_m следует существование такого K, что для каждого m>K неравенство $|u_m|\leqslant |u|+\varepsilon$ выполнено для аргументов из $\Omega\setminus G^1_\varepsilon$. Возьмём $G^2_\varepsilon=\{x\in\Omega\setminus G^1_\varepsilon:|u(x)|\geqslant \frac{R_0+\varepsilon}{\varepsilon}\}$. Тогда

$$R_0 \geqslant \int_{\Omega} |u(x)| dx \geqslant \int_{G_{\varepsilon}^2} |u(x)| dx \geqslant \int_{G_{\varepsilon}^2} \frac{R_0 + \varepsilon}{\varepsilon} dx = |G_{\varepsilon}^2| \frac{R_0 + \varepsilon}{\varepsilon}.$$

То есть $|G_{\varepsilon}^2| \leqslant \varepsilon \frac{R_0}{R_0 + \varepsilon} < \varepsilon$. Тем самым, последовательность u_m равномерно сходится и равномерно ограничена вне множества $G_{\varepsilon} := G_{\varepsilon}^1 \cup G_{\varepsilon}^2$.

Из непрерывности F и a следует, что для произвольных ε и R найдётся такое $N(\varepsilon,R)$, что если $x\in\Omega\setminus G_{\varepsilon},\,|M|\leqslant R$ и $m>N(\varepsilon,R)$, то

$$|F(u_m(x), a(x, u_m(x))M) - F(u(x), a(x, u(x))M)| < \varepsilon.$$

Рассмотрим множества $E_{m,\varepsilon}:=\{x\in\Omega:|u_m'(x)|\geqslant \frac{R_0}{\varepsilon}\}$. Имеем

$$R_0 \geqslant \int_{\Omega} |u'_m(x)| \, dx \geqslant \int_{E_{m,\varepsilon}} |u'_m(x)| \, dx \geqslant \int_{E_{m,\varepsilon}} \frac{R_0}{\varepsilon} \, dx = \frac{R_0}{\varepsilon} |E_{m,\varepsilon}|.$$

Поэтому $|E_{m,\varepsilon}| \leq \varepsilon$.

Теперь можно ввести $L_{m,\varepsilon}:=\Omega\setminus (E_{m,\varepsilon}\cup G_{\varepsilon})$. Тогда $|L_{m,\varepsilon}|\geqslant 2-3\varepsilon$. Зафиксируем $R:=\frac{R_0}{\varepsilon},\ N(\varepsilon):=N(\varepsilon,\frac{R_0}{\varepsilon})$. Для любых $\varepsilon>0,\ x\in L_{m,\varepsilon}$ и $m>N(\varepsilon)$ получим

$$\left| F(u_m(x), a(x, u_m(x))|u'_m(x)|) - F(u(x), a(x, u(x))|u'_m(x)|) \right| < \varepsilon,$$

откуда

$$\int_{L_{m,\varepsilon}} \left| F\left(u_m(x), a(x, u_m(x)) | u'_m(x)|\right) - F\left(u(x), a(x, u(x)) | u'_m(x)|\right) \right| dx < 2\varepsilon. \quad (1.7)$$

Возьмём $\varepsilon_j = \frac{\varepsilon}{2^j} \ (j \geqslant 1), \ m_j = N(\varepsilon_j) + j \to \infty$ и $L_\varepsilon = \bigcap L_{m_j,\varepsilon_j}$. Тогда $\sum \varepsilon_j = \varepsilon$ и, тем самым, $|\Omega \setminus L_\varepsilon| < 3\varepsilon$. Поскольку из (1.7) следует

$$\int_{L_{\varepsilon}} \left| F\left(u_{m_j}(x), a(x, u_{m_j}(x)) | u'_{m_j}(x)|\right) - F\left(u(x), a(x, u(x)) | u'_{m_j}(x)|\right) \right| dx < 2\varepsilon_j,$$

мы получаем

$$A = \lim J(u_{m_j}) = \lim \int_{\Omega} F(u_{m_j}(x), a(x, u_{m_j}(x)) | u'_{m_j}(x) |) dx$$

$$\geqslant \underline{\lim} \int_{\Omega} \chi_{L_{\varepsilon}}(x) F(u(x), a(x, u(x)) | u'_{m_j}(x) |) dx =: \underline{\lim} J_{\varepsilon}(u'_{m_j}).$$

Наш новый функционал

$$J_{\varepsilon}(v) = \int_{\Omega} \chi_{L_{\varepsilon}}(x) F(u(x), a(x, u(x))|v(x)|) dx$$

выпуклый. Вновь переходя к подпоследовательности u_k , можно считать, что $\varliminf J_{\varepsilon}(u'_{m_j}) = \varliminf J_{\varepsilon}(u'_k)$. Так как $u'_k \to u'$ в L_1 , то можно подобрать последовательность выпуклых комбинаций u'_k , которые будут сходиться к u' сильно (см. [3, Теорема 3.13]). А именно: найдутся $\alpha_{k,l} \geqslant 0$ для $k \in \mathbb{N}, l \leqslant k$ такие, что $\sum_{l=1}^k \alpha_{k,l} = 1$ для каждого k и $w_k := \sum_{l=1}^k \alpha_{k,l} u'_l \to u'$ в L_1 . Кроме того, очевидно, можно потребовать, чтобы минимальный индекс l ненулевого коэффициента $\alpha_{k,l}$ стремился к бесконечности по k. Тогда

$$\lim J_{\varepsilon}(u'_k) = \lim \sum_{l=1}^k \alpha_{k,l} J_{\varepsilon}(u'_l).$$

В силу выпуклости J_{ε} имеем

$$\sum_{l=1}^k \alpha_{k,l} J_{\varepsilon}(u'_l) \geqslant J_{\varepsilon}(w_k).$$

Наконец, поскольку $w_k \to u'$ в $L_1(\Omega)$, переходя к подпоследовательности, можем считать, что $w_k(x) \to u'(x)$ почти всюду. Кроме того, так как для $x \in L_{\varepsilon}$ выполнено $|u_j'(x)| < \frac{R_0}{\varepsilon}$, то и $|w_k(x)| < \frac{R_0}{\varepsilon}$. Значит,

$$F(u(x), a(x, u(x))|w_k(x)|) \leqslant \max_{(x,M)} F(u(x), a(x, u(x))M) < \infty,$$

где максимум берется по компактному множеству $(x, M) \in \Omega \times [-\frac{R_0}{\varepsilon}, \frac{R_0}{\varepsilon}]$. Поэтому применима теорема Лебега, и мы получаем $\lim J_{\varepsilon}(w_k) = J_{\varepsilon}(u')$. Таким образом,

$$A\geqslant \lim J_{\varepsilon}(u_k')=\lim \sum_{l=1}^k \alpha_{k,l}J_{\varepsilon}(u_l')\geqslant \underline{\lim}\, J_{\varepsilon}(w_k)=J_{\varepsilon}(u').$$

Ввиду произвольности $\varepsilon > 0$ имеем $A \geqslant J(u)$.

Лемма 7. Пусть $A \subset W_1^1(\Omega)$. И пусть $B \subset A$ таково, что $\forall v \in B$ выполнено $J(\overline{v}) \leqslant J(v)$. Предположим, что для каждого $u \in A$ найдётся последовательность $u_k \in B$ такая, что $u_k \to u$ в $W_1^1(\Omega)$ и $J(u_k) \to J(u)$. Тогда $\forall u \in A$ будет выполнено $J(\overline{u}) \leqslant J(u)$.

Доказательство. Возьмём некоторую $u \in A$ и для нее найдем приближающую последовательность $\{u_k\} \subset B$. По условию $J(\overline{u_k}) \leqslant J(u_k) \to J(u)$. В [2, Theorem 1] показано, что

$$u_k \to u \text{ B } W_1^1(\Omega) \implies u_k^* \to u^* \text{ in } W_1^1(\Omega).$$

Поскольку $\overline{u_k}(x)=u_k^*(\frac{x-1}{2})$ and $\overline{u}(x)=u^*(\frac{x-1}{2}),$ имеем $\overline{u_k} \to \overline{u}$ в $W_1^1(\Omega).$ Из леммы 6 получаем

$$J(\overline{u}) \leqslant \liminf J(\overline{u_k}) \leqslant \lim J(u_k) = J(u).$$

Следствие 1. Пусть вес а непрерывен, и неравенство (3) верно для неотрицательных кусочно линейных функций и. Тогда оно верно для всех неотрицательных липшицевых функций.

Доказательство. Ввиду теоремы 1 из §6.6 [4], любая липшицева функция u может быть приближены последовательностью $u_k \in C^1(\overline{(\Omega)})$ в следующем смысле:

$$u_k \rightrightarrows u, \qquad u'_k \to u' \text{ fi.b.}, \qquad |u'_k| \leqslant const.$$

Тогда по теореме Лебега $u_k \to u$ в $W_1^1(\Omega)$ и $J(u_k) \to J(u)$. В свою очередь, u_k могут быть аналогичным образом приближены кусочно линейными функциями. Применив лемму 5 и лемму 7, получаем требуемое.

1.5 Переход к соболевским функциям

Теорема 2. Пусть функция $a(x',\cdot,u)$ чётна и удовлетворяет условию (1.1) для всех x' и u. Тогда

- **1.** Неравенство (3) верно для произвольной неотрицательной $u \in Lip(\Omega)$.
- 2. Предположим, что $\partial \mathbf{w} \in Lip\ u\ для\ любых\ x' \in \mathbf{w}, z \in \mathbb{R}_+, p \in \mathbb{R}$ функция $F\ удовлетворяет\ неравенству$

$$F(x', z, p) \le C(1 + |z|^{q^*} + |p|^q),$$

где $\frac{1}{q^*} = \frac{1}{q} - \frac{1}{n}$, если q < n, либо q^* любое в противном случае. Если $q \leqslant n$, то дополнительно предположим, что веса а и a_i ограничены. Тогда неравенство (3) верно для произвольной неотрицательной $u \in W^1_q(\Omega)$.

Доказательство. 1. Мы можем приблизить липшицевы u кусочно линейными функциями u_k вместе с производными почти всюду. Поскольку u_k равномерно ограничены вместе с производными, то и $F(x', u_k(x), \|\mathcal{D}u_k\|)$ равномерно ограничены. Тогда мы можем воспользоваться теоремой Лебега, получив $u_k \to u$ в $W_1^1(\Omega)$ и $I(u_k) \to I(u)$. Воспользовавшись предложением 7, получаем требуемое.

2. Рассмотрим произвольную $u \in W_q^1(\Omega)$. Для нее можно построить последовательность кусочно линейных функций u_k , приближающих её в $W_q^1(\Omega)$. Действительно, поскольку $\partial\Omega \in Lip$, u можно продолжить финитным образом на внутренность большого шара в \mathbb{R}^n и приблизить гладкими финитными функциями. Далее шар триангулируется, и значения функции линейно интерполируются. Очевидно, в процессе все функции остаются неотрицательными.

Тогда, ввиду предложения 7, достаточно добиться $I(u_k) \to I(u)$. Доказательство этой сходимости можно свести к теореме Красносельского о непрерывности оператора Немыцкого (см. [5, гл. 5, §17]). Однако для удобства читателя мы приводим здесь рассуждение целиком.

Покажем, что веса $a_i(x',u(x))$ и a(x,u(x)) ограничены. Если $q\leqslant n$, то это выполнено по предположению теоремы. Если же нет, то $W_q^1(\Omega)$ вкладывается в $C(\overline{\Omega})$, тем самым, $u_k(x)$ равномерно ограничены, а значит, и $a_i(x',u_k(x))$ и $a(x,u_k(x))$ равномерно ограничены. Поэтому $\|\mathcal{D}u_k(x)\|\leqslant C_1|\nabla u_k(x)|$. То есть,

$$F(x', u_k(x), ||\mathcal{D}u_k(x)||) \le C_2(1 + |u_k(x)|^{q^*} + |\nabla u_k(x)|^q).$$

Рассмотрим множества A_m , состоящие из $x \in \Omega$, для которых при всех $k \geqslant m$ выполнено $1 + |u_k(x)|^{q^*} + |\nabla u_k(x)|^q \leqslant 2(1 + |u(x)|^{q^*} + |\nabla u(x)|^q)$. Очевидно, что $A_m \subset A_{m+1}$. Переходя к подпоследовательности, можем считать, что $u_k \to u$ и $\nabla u_k \to \nabla u$ почти всюду. А значит $|A_m| \to |\Omega|$. Тогда

$$\mathcal{X}\{A_k\}F(x', u_k(x), \|\mathcal{D}u_k(x)\|) \leq 2(1 + |u(x)|^{q^*} + |\nabla u(x)|^q),$$

$$\mathcal{X}\{A_k\}F(x', u_k(x), \|\mathcal{D}u_k(x)\|) \to F(x', u(x), \|\mathcal{D}u(x)\|)$$

почти всюду. По теореме вложения $\|u_k\|_{q^*} \leqslant C_3 \|u_k\|_{W_q^1}$. Тем самым, мы нашли суммируемую мажоранту и получаем $\int_{A_k} \mathcal{X}\{A_k\} F(x',u_k(x),\|\mathcal{D}u_k(x)\|) dx \to I(u)$ по теореме Лебега .

Теперь оценим остаток:

$$\int_{\Omega \setminus A_k} F(x', u_k(x), \|\mathcal{D}u_k(x)\|) dx \leq \int_{\Omega \setminus A_k} C_2 (1 + |u_k(x)|^{q^*} + |\nabla u_k(x)|^q) dx
\leq C_4 \Big(\int_{\Omega \setminus A_k} (1 + |u(x)|^{q^*} + |\nabla u(x)|^q) dx + \int_{\Omega \setminus A_k} (1 + |u(x) - u_k(x)|^{q^*} + |\nabla (u - u_k)(x)|^q) \Big) dx.$$

Первое слагаемое стремится к нулю по абсолютной непрерывности интеграла. Для второго слагаемого выполнено

$$\int_{\Omega \setminus A_k} (1 + |u(x) - u_k(x)|^{q^*} + |\nabla (u - u_k)(x)|^q) dx$$

$$\leq (|\Omega \setminus A_m(k)| + ||u - u_k||_{W_q^1}^{q^*} + ||u - u_k||_{W_q^1}^q) \to 0.$$

Тем самым, сходимость $I(u_k) \to I(u)$ доказана.

Аналогично, с учётом замечаний (1) и (3), доказывается

Теорема 3. Пусть $u(\cdot, -1) \equiv 0$ и функция $a(x', \cdot, u)$ удовлетворяет условию (1.1) для всех x' и u. Тогда верны выводы теоремы 2.

Глава 2. О неравенствах (3) и (4) в общем случае при n=1

2.1 Доказательство неравенства (3) для монотонных весов

В этом параграфе мы получим неравенство (3) при дополнительном условии монотонности весовой функции при $x \in [-1,0]$ и при $x \in [0,1]$.

Лемма 8. Пусть a — непрерывная функция, $a(\cdot, u)$ возрастает на [-1, 0] u убывает на [0, 1] для всех $u \geqslant 0$. Тогда для любой функции $u \in W_1^1(-1, 1)$, $u \geqslant 0$, найдётся последовательность $\{u_k\} \subset Lip[-1, 1]$, удовлетворяющая

$$u_k \to u \in W_1^1(-1,1) \quad u \quad J(a,u_k) \to J(a,u).$$
 (2.1)

Доказательство. Можно считать, что $J(a,u) < \infty$.

Мы докажем утверждение для функционала

$$J_1(u) = \int_0^1 F(u(x), a(x, u(x))|u'(x)|) dx.$$

Вторая часть с интегрированием по [-1,0] сводится к J_1 заменой переменной.

Для доказательства мы модифицируем схему из [6, Теорема 2.4]. Частично доказательство совпадает с [6], но для удобства читателя мы приводим здесь его полностью.

Нам потребуется следующее вспомогательное утверждение.

Предложение 1. [6, Lemma 2.7]. Пусть $\varphi_h : [-1,1] \to \mathbb{R}$ — последовательность липшицевых функций, удовлетворяющих условиям: $\varphi'_h \geqslant 1$ для почти всех x и всех h, $\varphi_h(x) \to x$ для почти каждого x. Тогда для любой $f \in L_1(\mathbb{R})$ выполнено $f(\varphi_h) \to f$ в $L_1(\mathbb{R})$.

Для $h \in \mathbb{N}$ покроем множество $\{x \in [0,1]: |u'(x)| > h\}$ открытым множеством A_h . Не умаляя общности, можно считать, что $A_{h+1} \subset A_h$ и $|A_h| \to 0$ при $h \to \infty$.

Обозначим v_h неотрицательную непрерывную функцию, заданную на [0,1], совпадающую с u на множестве $[0,1]\setminus A_h$, и линейную на интервалах, составляющих A_h . Тогда $v_h\to u$ в $W_1^1(-1,1)$. Теперь изменим v_h так, чтобы сделать их липшицевыми.

Представим $A_h = \bigcup_k \Omega_{h,k}$, где $\Omega_{h,k} = (b_{h,k}^-, b_{h,k}^+)$. Обозначим

$$\alpha_{h,k} := |\Omega_{h,k}|, \quad \beta_{h,k} := v_h(b_{h,k}^+) - v_h(b_{h,k}^-) = u(b_{h,k}^+) - u(b_{h,k}^-).$$

Тогда $v_h' = \frac{\beta_{h,k}}{\alpha_{h,k}}$ в $\Omega_{h,k}$. Заметим, что

$$\sum_{k} |\beta_{h,k}| \leqslant \int_{A_h} |u'| \, dx \leqslant ||u'||_{L_1(-1,1)} < \infty,$$

а значит, $\sum_k |\beta_{h,k}| \to 0$ при $h \to 0$ по теореме Лебега.

Определим функцию $\phi_h \in W_1^1(0,1)$ следующим образом:

$$\phi_h(0) = 0$$

$$\phi'_h = 1 \qquad \qquad \text{B} [0, 1] \setminus A_h,$$

$$\phi'_h = \max\left(\frac{|\beta_{h,k}|}{\alpha_{h,k}}, 1\right) \quad \text{B} \Omega_{h,k}.$$

Заметим, что $\int_0^1 |\varphi_h'| dx \leqslant 1 + \sum_k |\beta_{h,k}| < \infty$. Покажем, что $\varphi_h' \to 1$ в $L_1(0,1)$:

$$\int |\varphi_h' - 1| \, dx = \sum_{h} \left(\max \left(\frac{|\beta_{h,k}|}{\alpha_{h,k}}, 1 \right) - 1 \right) \alpha_{h,k} \leqslant \sum_{h} |\beta_{h,k}| \to 0.$$

Отсюда следует, что φ_h удовлетворяет условиям предложения 1.

Рассмотрим теперь $\varphi_h^{-1}:[0,1]\to[0,1]$ — ограничение обратной к φ_h функции на [0,1]. Тогда $0\leqslant (\varphi_h^{-1})'\leqslant 1$ и

$$\begin{split} \phi_h^{-1}(0) &= 0 \\ (\phi_h^{-1})' &= 1 \\ (\phi_h^{-1})' &= \min\Bigl(\frac{\alpha_{h,k}}{|\beta_{h,k}|}, 1\Bigr) \quad \text{B } [0,1] \setminus \phi_h(A_h), \end{split}$$

Возьмём $u_h = v_h(\varphi_h^{-1})$. Заметим, что $u_h(0) = u(0)$, и

$$u'_{h} = v'_{h}(\varphi_{h}^{-1}) \cdot (\varphi_{h}^{-1})' = u'(\varphi_{h}^{-1})$$

$$u'_{h} = v'_{h}(\varphi_{h}^{-1}) \cdot (\varphi_{h}^{-1})' = \operatorname{sign} \beta_{h,k} \cdot \min \left(1, \frac{|\beta_{h,k}|}{\alpha_{h,k}}\right)$$

$$\operatorname{B} [0,1] \setminus \varphi_{h}(A_{h}),$$

$$\operatorname{B} [0,1] \cap \varphi_{h}(\Omega_{h,k}).$$

Тем самым, u_h липшицева, поскольку u' ограничена в $[0,1] \setminus A_h$.

Покажем, что $u_h \to u$ в $W_1^1(0,1)$. Для этого достаточно оценить

$$||u'_h - u'||_{L_1} \leqslant \int_{[0,1]\setminus\varphi_h(A_h)} |u'_h - u'| + \int_{[0,1]\cap\varphi_h(A_h)} |u'_h| + \int_{[0,1]\cap\varphi_h(A_h)} |u'| =: P_h^1 + P_h^2 + P_h^3.$$

$$P_h^1 = \int_{[0,1]\backslash \varphi_h(A_h)} |u'(\varphi_h^{-1}) - u'| \, dx = \int_{\varphi_h^{-1}([0,1])\backslash A_h} |u' - u'(\varphi_h)| \, dz \leqslant \int_{[0,1]} |u' - u'(\varphi_h)| \, dz.$$

В силу предложения 1, $P_h^1 \to 0$. Далее,

$$P_h^2 \leqslant |\varphi_h(A_h)| = \sum_k |\varphi_h(\Omega_{h,k})| = \sum_k \max(|\beta_{h,k}|, \alpha_{h,k}) \leqslant \sum_k \alpha_{h,k} + \sum_k |\beta_{h,k}| \to 0.$$

Наконец, $P_h^3 \to 0$ по абсолютной непрерывности интеграла, и утверждение доказано.

Осталось показать, что $J_2(u_h) \to IWg_2(u)$.

$$J_{1}(u_{h}) = \int_{[0,1]\backslash\varphi_{h}(A_{h})} F(u_{h}(x), a(x, u_{h}(x))|u'_{h}(x)|) dx + \int_{[0,1]\cap\varphi_{h}(A_{h})} F(u_{h}(x), a(x, u_{h}(x))|u'_{h}(x)|) dx =: \hat{P}_{h}^{1} + \hat{P}_{h}^{2}.$$

Поскольку $u \in W_1^1(0,1)$, имеем $u \in L_\infty([0,1])$. Обозначим $||u||_\infty = r$, тогда $||u_h||_\infty < 2r$ при достаточно больших h. Кроме того, $|u_h'| \leqslant 1$ почти всюду в $\varphi_h(A_h)$. Тогда $\hat{P}_h^2 \leqslant M_F |\varphi_h(A_h)| \to 0$, где

$$M_F = \max_{[-2r,2r]\times[-M_a,M_a]} F; \quad M_a = \max_{[0,1]\times[-2r,2r]} a.$$

Далее,

$$\hat{P}_{h}^{1} = \int_{[0,1]\backslash \varphi_{h}(A_{h})} F(u(\varphi_{h}^{-1}(x)), a(x, u(\varphi_{h}^{-1}(x))|u'(\varphi_{h}^{-1}(x))(\varphi_{h}^{-1})'|)) dx$$

$$= \int_{\varphi_{h}^{-1}([0,1])\backslash A_{h}} F(u(z), a(\varphi_{h}(z), u(z))|u'(z)|) dz$$

$$= \int_{[0,1]} F(u(z), a(\varphi_{h}(z), u(z))|u'(z)|) \chi_{\varphi_{h}^{-1}([0,1])\backslash A_{h}} dz.$$

Последнее равенство, вообще говоря, не имеет смысла, так как $\varphi_h(z)$ может принимать значения вне [0,1]. Определим a(z,u)=a(1,u) при z>1, теперь

выражение корректно. Заметим, что $\chi_{\varphi_h^{-1}([0,1])\setminus A_h}$ возрастают, так как множества $\varphi_h^{-1}([0,1])$ возрастают и A_h убывают, то есть $\varphi_{h_1}^{-1}([0,1])\subset \varphi_{h_2}^{-1}([0,1])$ и $A_{h_1}\supset A_{h_2}$ при $h_1\leqslant h_2$. На отрезке [0,1] (и даже $\varphi_h([0,1])$) функция a убывает, а также $\varphi_h(z)$ убывает по h, значит $a(\varphi_h(z))$ будет расти по h. В таком случае можно применить теорему о монотонной сходимости и получить

$$\hat{P}_h^1 \to \int_{[0,1]} F(u(z), a(z, u(z))|u'(z)|) dz.$$

Замечание 4. Очевидно, что те же рассуждения с закреплением функции u на левом конце можно провести на любом интервале $[x_0, x_1]$, где вес а убывает по x. То есть можно получить последовательность $\{u_h\}$, удовлетворяющую

$$u_h(x_0) = u(x_0); u_h \to u \in W_1^1(x_0, x_1);$$

$$\int_{x_0}^{x_1} F(u_h(x), a(x, u_h(x))|u_h'(x)|) \to \int_{x_0}^{x_1} F(u(x), a(x, u(x))|u'(x)|).$$

Aналогично, если а возрастает по x, можно аппроксимировать и c закреплением на правом конце.

Следствие 2. Пусть функция а непрерывна, чётна, убывает на [0,1] и удовлетворяет неравенству (1.1). Тогда для любой $u \in W_1^1(-1,1)$ выполнено $IWg(a,u^*) \leq IWg(a,u)$.

2.2 Доказательство неравенства (3) для произвольных весов

Теперь мы хотим избавиться от условия монотонности веса по x. Будем это делать в несколько этапов.

Для начала отметим, что все свойства функции a интересуют нас лишь в окрестности графиков функций $u, \overline{u}.$

Мы вводим несколько ограничений на весовую функцию. Каждое следующее, будучи добавленным к предыдущим, задаёт более узкий класс весов.

- $(H1) \ a(x,v)$ чётна по x и удовлетворяет неравенству (1.1), а также $J(a,u) < \infty$.
- (H2) На множестве $v \in [\min u(x), \max u(x)]$, для которых $a(\cdot, v) \not\equiv 0$, количество нулей функций $a(\cdot, v)$ ограничено константой, не зависящей от v.
- (H3) Если $a(x_0,u(x_0))=0$ для некоторого x_0 , то $a(\cdot,u(x_0))\equiv 0$. Кроме того, выполнено $\lim_{k\to\infty}D_k(a,U(a))=0$, где

$$U(a) := \{ v \in [\min u(x), \max u(x)] : a(\cdot, v) \not\equiv 0 \},\$$

$$D_k(a, U) := \sup_{v \in U} \frac{\max_{|x_1 - x_2| \le \frac{2}{k}} |a(x_1, v) - a(x_2, v)|}{\min_{\text{dist}(x, u^{-1}(v)) \le \frac{2}{k}} a(x, v)}.$$
 (2.2)

- (H4) Найдется такое чётное k, что $a(\cdot,v)$ линейны для каждого v на участках $[-1+\frac{2i}{k},-1+\frac{2(i+1)}{k}].$
- (H5) Множество $v \in \mathbb{R}$, для которых $a(\cdot, v)$ имеет участки постоянства, отличается от множества $v \in \mathbb{R}$ таких, что $a(\cdot, v) \equiv 0$, лишь на множество меры 0.
- (H6) Отрезок [-1,1] можно разбить на конечное число промежутков, на каждом из которых в v-окрестности графика u(x) вес a не меняет монотонности по x.
- (H7) Пусть $x_1 < x_2 < x_3$, и на $[x_1, x_2]$ вес $a(\cdot, v)$ в v-окрестности графика функции u убывает, а на $[x_2, x_3]$ возрастает. Тогда в некоторой окрестности точки $u(x_2)$ имеем $a(\cdot, v) \equiv 0$.

Вес, удовлетворяющий условию (H1), мы будем называть допустимым для заданной функции u(x).

Теперь мы можем сформулировать основное утверждение.

Теорема 4. Пусть $F \in \mathfrak{F}$, функция $u \in W_1^1(-1,1)$ неотрицательна, и весовая функция $a : [-1,1] \times \mathbb{R}_+ \to \mathbb{R}_+$ непрерывна и допустима для u. Тогда справедливо неравенство (3).

Мы докажем неравенство (3) при условиях (H1) - (H7), а затем будем постепенно избавляться от них.

Для доказательства нам потребуются следующие факты.

Предложение 2. [1, Theorem 6.19] Для любой $u \in W_1^1(-1,1)$ и произвольного множества $A \subset \mathbb{R}$ нулевой меры выполнено u'(x) = 0 для почти всех $x \in u^{-1}(A)$.

Лемма 9. Пусть $u \in W_1^1(-1,1)$ неотрицательна. И пусть замкнутое множество $W \subset \mathbb{R}_+$ таково, что множество всех $v \in W$, для которых $a(\cdot,v) \not\equiv 0$, имеет меру ноль. Тогда найдется возрастающая последовательность весов \mathfrak{b}_ℓ такая, что

- 1) $\mathfrak{b}_{\ell}(\cdot,v) \Longrightarrow a(\cdot,v)$ для почти всех v;
- 2) $\mathfrak{b}_{\ell}(\cdot,v)\equiv 0$ для кажедого v в некоторой (зависящей от ℓ) окрестности W;

3)
$$J(\mathfrak{b}_{\ell}, u) \to J(a, u) \ u \ J(\mathfrak{b}_{\ell}, \overline{u}) \to J(a, \overline{u}).$$

Замечание 5. *Если а допустимы для и, то и* \mathfrak{b}_{ℓ} *тоже.*

Доказательство. Возьмём $\rho(d) := \min(1, \max(0, d)),$

$$\mathfrak{b}_{\ell}(x,v) := a(x,v) \cdot \rho(\ell \operatorname{dist}(v,W) - 1) \leqslant a(x,v).$$

Вес \mathfrak{b}_{ℓ} равен нулю в $\left(\frac{1}{\ell}\right)$ -окрестности W. Кроме того, $\mathfrak{b}_{\ell} \equiv a$ вне $\left(\frac{2}{\ell}\right)$ -окрестности W, а также $\mathfrak{b}_{\ell}(x,v)$ возрастает по ℓ . Тем самым , $\mathfrak{b}_{\ell}(\cdot,v) \rightrightarrows a(\cdot,v)$ для почти всех v. По теореме о монотонной сходимости имеем $J(u^{-1}(\mathbb{R}_+ \setminus W), \mathfrak{b}_{\ell}, u) \nearrow J(u^{-1}(\mathbb{R}_+ \setminus W), a, u)$.

Разобьем множество W на два: $W_1:=\{v\in W:a(\cdot,v)\equiv 0\}$ и $W_2=W\backslash W_1.$ Тогда

$$J(u^{-1}(W_1), \mathfrak{b}_{\ell}, u) = J(u^{-1}(W_1), a, u),$$

$$J(u^{-1}(W_2), \mathfrak{b}_{\ell}, u) = \int_{x \in u^{-1}(W_2)} F(u(x), \mathfrak{b}_{\ell}(x, u(x)) | u'(x) |) dx.$$

При этом, по предложению 2, почти всюду на $u^{-1}(W_2)$ выполнено u'(x)=0. То есть

$$J(u^{-1}(W_2), \mathfrak{b}_{\ell}, u) = \int_{x \in u^{-1}(W_2)} F(u(x), 0) dx = 0.$$

Аналогично $J(u^{-1}(W_2), a, u) = 0$, откуда $J(\mathfrak{b}_{\ell}, u) \to J(a, u)$. Вторая часть пункта 3) доказывается так же.

Перейдем к доказательству теоремы.

Шаг 1. Пусть $u \in W_1^1(-1,1)$, u вес а удовлетворяет условиям (H1) – (H7). Тогда выполняется неравенство (3).

Разобьем отрезок [-1,1] на отрезки $\Delta_k = [\hat{x}_k, \hat{x}_{k+1}]$, состоящие из двух частей. В левой части каждого отрезка вес a будет возрастать по x в окрестности графика u(x), в правой же будет убывать. Согласно замечанию 4 на каждом таком отрезке можно повторить схему из леммы 8, приближая функцию u липшицевыми функциями u_n . Это даёт $J(\Delta_k, a, u_n) \to J(\Delta_k, a, u)$.

Однако при такой аппроксимации функции u_n могут иметь разрывы в точках \hat{x}_k .

Заметим теперь, что согласно условию (H7) можно выбрать точки \hat{x}_k так, что $a\equiv 0$ в (x,v)-окрестности точек $(\hat{x}_k,u(\hat{x}_k))$.

Изменим теперь функции u_n в окрестности точек \hat{x}_k на линейные, сделав u_n непрерывными на [-1,1]. В силу вышесказанного, интегралов $J(\Delta_k, a, u_n)$ это не изменит, и мы получаем $J(a, u_n) \to J(a, u)$ и $u_n \to u$ в $W_1^1(-1,1)$.

По лемме 7 получаем (3).

Шаг 2. Пусть вес а удовлетворяет условиям (H1) - (H6). Тогда выполняется неравенство (3).

Применим лемму 9. В качестве множества W возьмем множество всех v, при которых происходит переход графика u(x) из промежутка, в котором вес убывает по x, в промежуток, в котором вес возрастает. Очевидно, получившиеся функции \mathfrak{b}_{ℓ} удовлетворяют (H1)-(H7). Из шага 1 имеем $J(\mathfrak{b}_{\ell},\overline{u})\leqslant J(\mathfrak{b}_{\ell},u)$. Переходя к пределу, получаем требуемое неравенство (3).

Шаг 3. Пусть вес а удовлетворяет условиям (H1) - (H5). Тогда выполняется неравенство (3).

Рассмотрим абсциссы точек излома функции a и ординаты, для которых a имеет участки постоянства. Эти абсциссы и ординаты определяют деление прямоугольника $[-1,1] \times [\min u(x), \max u(x)]$ на более мелкие, внутри которых вес a не меняет монотонности. Однако, количество мелких прямоугольников может оказаться бесконечным. Кроме того, если функция пересекает горизонтальную границу прямоугольника, монотонность в v-окрестности точки пересечения может меняться.

Возьмем множество W точек v, для которых вес a имеет участки постоянства по x. В соответствии с (H5) множество $v \in W$, для которых $a(\cdot,v) \not\equiv 0$, имеет нулевую меру.

Применив лемму 9, построим последовательность весов \mathfrak{b}_{ℓ} . У каждого из них количество участков монотонности конечно, поскольку между соседними по v участками строгой монотонности присутствует полоса нулевых значений веса шириной по крайней мере $\frac{2}{k}$.

Тем самым, вес \mathfrak{b}_ℓ может менять монотонность вдоль графика u либо в точках $x=-1+\frac{2i}{k}$, либо в тех местах, где график пересекает полосу нулевых значений веса. Ясно, что таких пересечений может быть лишь конечное число, поскольку $\int |u'|$ увеличивается как минимум на $\frac{2}{\ell}$ во время такого перехода, а $u' \in L_1(-1,1)$.

Мы получили, что \mathfrak{b}_{ℓ} удовлетворяют (H1)-(H6). Из шага 2 имеем $J(\mathfrak{b}_{\ell},\overline{u})\leqslant J(\mathfrak{b}_{\ell},u)$. Переходя к пределу, получаем (3).

Шаг 4. Пусть вес а удовлетворяет условиям (H1) - (H3). Тогда выполняется неравенство (3).

Предположим, что функция a удовлетворяет (H1)-(H3), в частности $J(a,u)<\infty.$

Зафиксируем произвольное четное k. По точкам $a(-1+\frac{2i}{k},v)$ для каждого v построим кусочно линейную по x интерполяцию. Получившаяся функция $a_k(x,v)$ непрерывна, четна по x и по лемме 4 удовлетворяет неравенству (1.1). Кроме того, $a_k \to a$ при $k \to \infty$, причем сходимость равномерная на компактах. Однако неравенство $a_k(x,u(x)) \leqslant a(x,u(x))$ не обязано выполняться, и потому веса a_k могут не быть допустимыми для u.

Возьмем $\mathfrak{c}_k := (1 - D_k(a_k, U(a_k)))a_k$, где D_k определены в (2.2). Числа $D_k(a_k, U(a_k))$ положительны и стремятся к нулю, поэтому $\mathfrak{c}_k \to a$ при $k \to \infty$. Покажем, что $\mathfrak{c}_k(x, u(x)) \leqslant a(x, u(x))$. Возьмем некоторое число $x \in [-1 + \frac{2i}{k}, -1 + \frac{2(i+1)}{k}] =: [x_i, x_{i+1}]$. Тогда $\mathfrak{c}_k(x, u(x)) \leqslant \max(\mathfrak{c}_k(x_i, u(x)), \mathfrak{c}_k(x_{i+1}, u(x)))$, поскольку \mathfrak{c}_k кусочно линейны по x. Далее,

$$\mathbf{c}_{k}(x_{i}, u(x)) = (1 - D_{k}(a_{k}, U(a_{k}))) \cdot a(x_{i}, u(x))$$

$$\leq a(x_{i}, u(x)) - \frac{a(x_{i}, u(x)) - a(x, u(x))}{a(x_{i}, u(x))} \cdot a(x_{i}, u(x)) = a(x, u(x)).$$

Аналогично, $\mathfrak{c}_k(x_{i+1}, u(x)) \leqslant a(x, u(x))$. Тем самым, $\mathfrak{c}_k(x, u(x)) \leqslant a(x, u(x))$ для любого x, и \mathfrak{c}_k являются допустимыми для u. То есть функции \mathfrak{c}_k удовлетворяют (H1) - (H4).

При заданном $k \in \mathbb{N}$, будем приближать функцию $\mathfrak{c}_k =: \mathfrak{c}$ весами, удовлетворяющими (H1)-(H5). Рассмотрим вспомогательную функцию $\Lambda(x)=1-|x|$, удовлетворяющую условию (1.1).

Возьмем

$$t(v) := D_k(\mathfrak{c}, U(\mathfrak{c})) \cdot \max\{\tau \geqslant 0 : \forall x \in u^{-1}(v) \quad \tau \Lambda(x) \leqslant \mathfrak{c}(x, u(x))\}.$$

Функция t зависит от k, но мы будем опускать это в записи.

Ясно, что максимальное τ равно нулю только если $c(\cdot,v)\equiv 0$, иначе нарушается условие (H3). Функция t может не быть непрерывной. Однако, несложно видеть, что она полунепрерывна снизу. Возьмем теперь

$$\tilde{t}(v) := \inf_{w \in u([-1,1])} \{ t(w) + |v - w| \}.$$

Очевидно, что $\tilde{t}\leqslant t$, и множества нулей функций t и \tilde{t} совпадают.

Покажем, что \tilde{t} непрерывна (и даже липшицева). Зафиксируем некоторое v_1 . Тогда найдутся сколь угодно малое $\varepsilon > 0$ и $w_1 \in u([-1,1])$, удовлетворяющие $\tilde{t}(v_1) = t(w_1) + |v_1 - w_1| - \varepsilon$. Для любого v_2 имеем $\tilde{t}(v_2) \leqslant t(w_1) + |v_2 - w_1|$. И, тем самым, $\tilde{t}(v_2) - \tilde{t}(v_1) \leqslant |v_1 - v_2| + \varepsilon$. В силу произвольности v_1 , v_2 и ε , получаем, что \tilde{t} непрерывна.

При $\alpha \in [0,1]$ функция $\mathfrak{d}_{\alpha}(x,v) := \mathfrak{c}(x,v) + \alpha \Lambda(x) \tilde{t}(v)$ чётна x, удовлетворяет неравенству (1.1) согласно лемме 3, и не превосходит a(x,v) по построению функции \tilde{t} . Таким образом, \mathfrak{d}_{α} — допустимый вес. И теперь очевидно, что \mathfrak{d}_{α} удовлетворяет условиям (H1)-(H4).

Покажем, что найдется последовательность $\alpha_j \searrow 0$, что \mathfrak{d}_{α_j} не имеет горизонтальных участков, кроме v, для которых $\mathfrak{d}_{\alpha_j}(\cdot,v)\equiv 0$, и множества меры ноль. Обозначим множество α , "плохих" на участке $[x_i,x_{i+1}]$:

$$A_i := \left\{ \alpha \in [0, 1] : \\ \max\{v \in [\min u, \max u] : \frac{\mathfrak{c}(x_{i+1}, v) - \mathfrak{c}(x_i, v))}{\frac{2}{k}} + \alpha \chi_i \tilde{t}(v) = 0 \right\} > 0 \right\},$$

где $\chi_i=1$ если $[x_i,x_{i+1}]\subset [0,1],$ и $\chi_i=-1,$ если $[x_i,x_{i+1}]\subset [-1,0].$

Рассмотрим функцию

$$h_i(v) = \frac{\mathfrak{c}(x_{i+1}, v) - \mathfrak{c}(x_i, v)}{\tilde{t}(v)}$$
 при $\tilde{t}(v) \neq 0$
 $h_i(v) = 0$ при $\tilde{t}(v) = 0$

Тогда $\operatorname{card}(A_i) = \operatorname{card}(\{\alpha \in [0,1] : \operatorname{meas}\{v \in [\min u, \max u] : h_i(v) \pm \frac{2}{k}\alpha = 0\} > 0\})$. Значит $\operatorname{card}(A_i) \leqslant \aleph_0$, а также $\operatorname{card}(\cup_i A_i) \leqslant \aleph_0$. Тем самым, найдется последовательность весов $\mathfrak{d}_{\alpha_j} \searrow \mathfrak{c}$, удовлетворяющих (H1) - (H5). Из шага 3 имеем $J(\mathfrak{d}_{\alpha_j}, \overline{u}) \leqslant J(\mathfrak{d}_{\alpha_j}, u)$. Переходя к пределу, получаем $J(\mathfrak{c}, \overline{u}) \leqslant J(\mathfrak{c}, u)$.

Далее, при $x \in [-1, 1]$ имеем

$$F(u(x), \mathfrak{c}_k(x, u(x))|u'(x)|) \to F(u(x), a(x, u(x))|u'(x)|)$$
(2.3)

при $k \to \infty$. Кроме того, F(u(x), a(x, u(x))|u'(x)|) является суммируемой мажорантой для левой части соотношения (2.3). По теореме Лебега о мажорируемой сходимости, получаем $J(\mathfrak{c}_k, u) \to J(a, u)$. Поскольку $J(\mathfrak{c}_k, \overline{u}) \leqslant J(\mathfrak{c}_k, u)$, лемма 7 даёт неравенство (3).

Шаг 5. Пусть вес а удовлетворяет лишь условию (H1). Тогда выполняется неравенство (3).

Будем строить приближение для a весами, удовлетворяющими (H1)-(H2). Воспользуемся леммой 9 с множеством $W=\{v\in\mathbb{R}_+:a(\cdot,v)\equiv 0\}$. Введем обозначение

$$Z_a(v) := \{x \in [-1, 1] : a(x, v) = 0\}.$$

Заметим, что множества $Z_{\mathfrak{b}_{\ell}}(v)$ совпадают либо с $Z_a(v)$, либо с [-1,1].

Покажем, что \mathfrak{b}_{ℓ} удовлетворяет (H2). Действительно, в противном случае найдется последовательность v_m , для которой $m < \operatorname{card}(Z_{\mathfrak{b}_{\ell}})(v_m) < \infty$. После перехода к подпоследовательности имеем $v_m \to v_0$. Из части 2 леммы 2 следует, что множества $Z_{\mathfrak{b}_{\ell}}(v_m) = Z_a(v_m)$ периодические с периодом не более $\frac{2}{m-1}$. Возьмем некоторый $x \in [-1,1]$. Для каждого m найдется x_m такой, что $|x-x_m| \leq \frac{1}{m-1}$ и $a(x_m,v_m) = 0$. Но $a(x_m,v_m) \to a(x,v_0)$. Тем самым, $a(x,v_0) = 0$.

Отсюда $Z_a(v_0) = [-1, 1]$. Но это означает, что для любого v, для которого $|v - v_0| \leq \frac{1}{\ell}$, выполнено $\mathfrak{b}_{\ell}(\cdot, v) \equiv 0$, что противоречит $\operatorname{card}(Z_{\mathfrak{b}_{\ell}})(v_m) < \infty$.

Зафиксируем теперь $\ell \in \mathbb{N}$, обозначим $\mathfrak{b}_{\ell} =: \mathfrak{b}$ и приблизим функцию \mathfrak{b} весами, удовлетворяющими (H1)-(H3). Из (H2) следует, что найдётся множество $T \subset [-1,1]$ состоящее из конечного числа элементов, такое, что если $x \not\in T$ и $\mathfrak{b}(x,v)=0$ для некоторого v, то $\mathfrak{b}(\cdot,v)\equiv 0$.

Вновь воспользуемся леммой 9 с множеством $W = u(T) \cup \overline{u}(T)$. Полученные при помощи леммы веса \mathfrak{c}_j удовлетворяют (H1) - (H2), поскольку отличаются от \mathfrak{b} лишь домножением на непрерывный множитель, меньший единицы и зависящий только от v.

Из непрерывности u следует, что для достаточно больших k найдутся j=j(k) такие, что

$$u\Big(\Big\{x\in[-1,1]:dist(x,T)\leqslant\frac{4}{k}\Big\}\Big)\subset\Big\{v\in\mathbb{R}_{+}:dist(v,u(T))\leqslant\frac{1}{2j}\Big\},$$

и $j(k)\to\infty$ при $k\to\infty$. Отсюда $\min_{dist(x,u^{-1}(v))\leqslant \frac{2}{k}}c_j(x,v)>0$ для всех $v\in U(c_j)$.

Более того, при $v \in U(c_j)$

$$\frac{\max_{\substack{|x_i - x_{i+1}| \leqslant \frac{2}{k}}} |\mathbf{c}_j(x_i, v) - \mathbf{c}_j(x_{i+1}, v)|}{\min_{\substack{\text{dist}(x, u^{-1}(v)) \leqslant \frac{2}{k}}} \mathbf{c}_j(x, v)} = \frac{\max_{\substack{|x_i - x_{i+1}| \leqslant \frac{2}{k}}} |\mathbf{b}(x_i, v) - \mathbf{b}(x_{i+1}, v)|}{\min_{\substack{\text{dist}(x, u^{-1}(v)) \leqslant \frac{2}{k}}} \mathbf{b}(x, v)}.$$

При этом, знаменатель второй дроби при $v \in U(\mathfrak{c}_j)$ отделен от нуля. Тем самым, $D_k(\mathfrak{c}_j, U(\mathfrak{c}_j))$ ограничена.

Поскольку D_k не меняется при домножении первого аргумента на коэффициент, не зависящий от x, и $U(\mathfrak{c}_j)\nearrow U(\mathfrak{b})$, имеем

$$D_k(\mathfrak{c}_j, U(\mathfrak{c}_j)) = D_k(\mathfrak{b}, U(\mathfrak{c}_j)) \leqslant D_k(\mathfrak{b}, U(\mathfrak{b})) \to 0$$

при $k \to \infty$.

Таким образом, веса $\mathfrak{c}_{j(k)}$ удовлетворяют (H1)-(H3). Из шага 4 имеем $J(\mathfrak{c}_{j(k)}, \overline{u}) \leqslant J(\mathfrak{c}_{j(k)}, u)$. Переходя к пределу, получаем $J(\mathfrak{b}_{\ell}, \overline{u}) \leqslant J(\mathfrak{b}_{\ell}, u)$, а затем и неравенство (3).

Тем самым, теорема 4 доказана.

2.3 Доказательство неравенства (3) для функций, закреплённых на левом конце

Рассмотрим теперь случай, когда функция u удовлетворяет дополнительному условию u(-1) = 0.

Теорема 5. Пусть $F \in \mathfrak{F}$, функция $u \in W_1^1(-1,1)$ неотрицательна, u(-1) = 0, весовая функция $a : [-1,1] \times \mathbb{R}_+ \to \mathbb{R}_+$ непрерывна и удовлетворяет неравенству (1.1). Тогда справедливо неравенство (3).

Доказательство. Мы следуем схеме доказательства теоремы 4, но вместо (H1) и (H7) накладываем следующие условия на вес:

- (H1') a(x,v) удовлетворяет неравенству (1.1), а также $J(a,u) < \infty$.
- (H7') Выполнено условие (H7), и $a(\cdot,v)\equiv 0$ в некоторой v-окрестности нуля.

Шаг 1. Пусть $u \in W_1^1(-1,1)$, выполнено u(-1) = 0, u вес а удовлетворяет условиям (H1'), (H2) - (H6), (H7'). Тогда выполняется неравенство (3) holds.

Для доказательства будем приближать функцию u так же, как и в первом шаге доказательства теоремы 4, с заменой u в некоторой окрестности точки x=-1 на линейную так, чтобы $u_n(-1)=0$.

Шаг 2. Пусть вес а удовлетворяет условиям (H1'), (H2) - (H6). Тогда выполняется неравенство (3).

Для доказательства добавим в множество W из второго шага доказательства теоремы 4 точку 0 и повторим рассуждение.

Дальнейшие шаги проходят без изменений.

2.4 Доказательство неравенства (4)

Теорема 6. Пусть $F \in \mathfrak{F}$, функция $u \in W_1^1(-1,1)$ неотрицательна, и непрерывная весовая функция $a : [-1,1] \times \mathbb{R}_+ \to \mathbb{R}_+$ чётна и выпукла по первому аргументу. Тогда справедливо неравенство (4).

Доказательство. Для липшицевых функций u утверждение теоремы доказано в [2]. Таким образом, необходимо лишь перейти к W_1^1 -функциям.

Структура выпуклого по x веса гораздо проще структуры веса, который мы рассматривали для случая монотонной перестановки. Выпуклый вес убывает при x < 0 и возрастает при x > 0 независимо от v. Тем самым, мы сразу входим в условия (H6) из теоремы 4. Чтобы войти в условия (H7), применим лемму 9 с множеством $W = \{u(0)\}$. Это дает нам возможность сразу воспользоваться шагом 1 доказательства, получив неравенство (4) в общем виде. Заметим, что шаг 1 использует лишь условия (H1), (H6), (H7), так что нет нужды проверять остальные.

Глава 3. Монотонность функционалов с переменным показателем суммирования

3.1 Введение

Положим $u \in W_1^0$ [-1,1], $u \geqslant 0$. Обозначим через symmu симметричную перестановку функции u. Тогда выполнено классическое неравенство Пойя-Сегё:

$$I(u^*) \leqslant I(u),$$
 где $I(u) = \int_{-1}^{1} |u'(x)|^p dx, \quad p \geqslant 1$ (3.1)

Обобщения неравенства (3.1) обсуждаются в большом количестве работ (см. обзор [7] и цитированную в нем литературу). В частности, в статье [2] показано, что неравенство (3.1) выполняется для функционалов вида

$$\int_{-1}^{1} F(u(x), a(x, u(x))|u'(x)|) dx,$$

где a выпукла, а F непрерывна и выпукла по второму аргументу, а также для многомерного аналога. В работе [8] восполнены пробелы в доказательстве [2], и результат доказан для естественного класса функций u. Аналогичные результаты для монотонной перестановки также получены в [9] и [8].

Рассмотрим функционалы с переменным показателем суммирования:

$$\mathcal{J}(u) = \int_{-1}^{1} |u'(x)|^{p(x)} dx, \qquad \mathcal{I}(u) = \int_{-1}^{1} (1 + |u'(x)|^2)^{\frac{p(x)}{2}} dx.$$

Здесь $p(x) \geqslant 1$ — непрерывная функция на [-1,1], $u \in W_1^1$ [-1,1]. Подобные функционалы встречаются в некоторых задачах математической физики, в частности при моделировании электрореологических жидкостей. Более подробное описание задач и связанных с ними подходов может быть найдено в книгах [10] и [11].

3.2 Необходимые условия

Теорема 7. Предположим, что неравенство $\mathcal{J}(u^*) \leqslant \mathcal{J}(u)$ выполнено для любой кусочно линейной функции u. Тогда $p(x) \equiv const$.

Доказательство. Зафиксируем произвольное $x_0 \in (-1,1)$. Для каждого $\alpha > 0$ и $\epsilon > 0$ такого, что $[x_0 - \epsilon, x_0 + \epsilon] \subset [-1,1]$, определим функцию

$$u_{\alpha,\varepsilon}(x) = \alpha(\varepsilon - |x - x_0|)_+.$$

Тогда $symmu_{\alpha,\varepsilon}(x) = \alpha(\varepsilon - |x|)_+$, и

$$\mathcal{J}(u_{\alpha,\varepsilon}) = \int_{x_0-\varepsilon}^{x_0+\varepsilon} \alpha^{p(x)} dx, \qquad \mathcal{J}(u_{\alpha,\varepsilon}^*) = \int_{-\varepsilon}^{\varepsilon} \alpha^{p(x)} dx.$$

Перейдя к пределу при $\varepsilon \to 0$ в неравенстве

$$\frac{\mathcal{J}(u_{\alpha,\varepsilon}^*)}{2\varepsilon} \leqslant \frac{\mathcal{J}(u_{\alpha,\varepsilon})}{2\varepsilon},$$

получим $\alpha^{p(0)} \leqslant \alpha^{p(x_0)}$, в силу непрерывности $\alpha^{p(x)}$. Заметим, что при $\alpha > 1$ и $\alpha < 1$ это даёт неравенства $p(0) \leqslant p(x_0)$ и $p(0) \geqslant p(x_0)$ соответственно.

Таким образом, прямое обобщение неравенства (3.1) невозможно.

Теорема 8. Предположим, что неравенство $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$ выполнено для любой кусочно линейной функции u. Тогда функция p чётна u выпукла. Более того, выпукла функция двух переменных

$$K(s,x) = s(1+s^{-2})^{\frac{p(x)}{2}}$$
 $s > 0, x \in [-1,1].$

Набросок доказательства. Зафиксируем две точки на отрезке $-1 < x_1 < x_2 < 1$ и рассмотрим финитную кусочно линейную функцию с ненулевыми производными только в окрестностях x_1 и x_2 . А именно, для произвольных s,t>0 и достаточно малого ε положим

$$u_{\varepsilon}(x) = \min(2\varepsilon, (\varepsilon + s^{-1}(x - x_1))_+, (\varepsilon + t^{-1}(x_2 - x))_+).$$

Тогда

$$u_{\varepsilon}^*(x) = \min(2\varepsilon, (\varepsilon + (t+s)^{-1}(x_2 - x_1 - 2|x|))_+).$$

Полагая s=t, из неравенства $\mathcal{I}(u^*)\leqslant \mathcal{I}(u)$ получим $p(x_1)+p(x_2)\leqslant p(\frac{x_1-x_2}{2})+p(\frac{x_2-x_1}{2})$. Можно проверить ([8, Lemma 10]), что отсюда следует чётность и выпуклость функции p. Далее, рассматривая произвольные s и t, получаем выпуклость функции K.

3.3 Доказательство неравенства $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$

В этом параграфе мы покажем, что условия, приведенные в теореме 8 являются не только необходимыми, но и достаточными.

Лемма 10. Пусть m — чётное положительное число, $s_k > 0$ (k = 1 ... m), $-1 \leqslant x_1 \leqslant ... \leqslant x_m \leqslant 1$. Тогда, если K(s,x) чётна по x и выпукла по совокупности аргументов, то

$$\sum_{k=1}^{m} K(s_k, x_k) \geqslant 2K\left(\frac{1}{2}\sum_{k=1}^{m} s_k, \frac{1}{2}\sum_{k=1}^{m} (-1)^k x_k\right). \tag{3.2}$$

Доказательство. Заметим, что неравенство (3.2) равносильно такому же неравенству для функции M(s,x)=K(s,x)-s. Прямое вычисление показывает, что функция M убывает по s. Тогда

$$\sum_{k=1}^{m} M(s_k, x_k) \geqslant M(s_1, x_1) + M(s_m, x_m) \stackrel{a}{\geqslant} 2M(\frac{s_1 + s_m}{2}, \frac{x_m - x_1}{2}) \geqslant$$

$$\stackrel{b}{\geqslant} 2M(\frac{1}{2} \sum_{k=1}^{m} s_k, \frac{x_m - x_1}{2}) \stackrel{c}{\geqslant} 2M(\frac{1}{2} \sum_{k=1}^{m} s_k, \frac{1}{2} \sum_{k=1}^{m} (-1)^k x_k).$$

Неравенство (а) сделует из того, что M чётна по x и выпукла, (b) — из убывания M по s, (c) — из возрастания M по x при $x\geqslant 0$.

Лемма 11. Пусть функция K(s,x) чётна по x и выпукла по совокупности аргументов. Тогда $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$ для любой кусочно линейной функции $u \in W_1^1$ [-1,1].

Доказательство. Обозначим $L \subset [-1,1]$ множество точек перелома функции u (включая концы отрезка). Возьмём $U = u([-1,1]) \setminus u(L)$, образ функции

u без образов точек излома. Это множество представляется в виде объединения конечного числа непересекающихся интервалов $U = \cup_j U_j$. Заметим, что для каждого j множество $u^{-1}(U_j)$ разбивается на чётное число интервалов, на каждом из которых функция u совпадает с некоторой линейной функцией y_k^j , $k=1,\ldots,m_j$. Для удобства считаем, что носители y_k^j для каждого j идут по порядку, то есть $\sup dom(y_k^j) \leqslant \inf dom(y_{k+1}^j)$. Обозначим $b_k^j = |y_k^{j\prime}(x)|$. Также обозначим

$$Z = \max\{x \in (-1,1)|u'(x) = 0\} = \max\{x \in (-1,1)|u^{*'}(x) = 0\}.$$

Тогда

$$\mathcal{I}(u) - Z = \sum_{j} \int_{u^{-1}(U_j)} (1 + u'^2(x))^{\frac{p(x)}{2}} dx = \sum_{j} \sum_{k} \int_{dom(y_k^j)} (1 + y_k^{j'^2}(x))^{\frac{p(x)}{2}} dx =$$

$$= \sum_{j} \int_{U_j} \sum_{k} \frac{1}{b_k^j} (1 + b_k^{j^2})^{\frac{p((y_k^j)^{-1}(y))}{2}} dy = \sum_{j} \int_{U_j} \sum_{k} K\left(\frac{1}{b_k^j}, (y_k^j)^{-1}(y)\right) dy.$$

Любая точка $y \in U$ имеет два прообраза относительно функции symmu, поэтому на множестве U можно определить $(u^*)^{-1}: U \to [0,1]$. Для каждого j можно выразить $(u^*)^{-1}$ и модуль её производной на участке U_j следующим образом:

$$(u^*)^{-1}(y) = \frac{1}{2} \sum_{k=1}^{m_j} (-1)^k (y_k^j)^{-1}(y);$$

$$|((u^*)^{-1})'(y)| = \frac{1}{|u^{*'}((u^*)^{-1}(y))|} = \frac{1}{2} \sum_{k=1}^{m_j} \frac{1}{b_k^j} =: \frac{1}{b_j^*}.$$

Ввиду чётности *symmu* имеем

$$\mathcal{I}(u^*) - Z = 2 \int_{(u^*)^{-1}(U)} (1 + u^{*\prime 2}(x))^{\frac{p(x)}{2}} dx =$$

$$= 2 \int_{U} |((u^*)^{-1})'(y)| \cdot \left(1 + \frac{1}{((u^*)^{-1})'(y)^2}\right)^{\frac{p((u^*)^{-1}(y))}{2}} dy =$$

$$= 2 \sum_{j} \int_{U_j} \frac{1}{b_j^*} (1 + b_j^{*2})^{\frac{1}{2}p\left(\frac{1}{2}\sum_{k=1}^{m_j} (-1)^k (y_k^j)^{-1}(y)\right)} dy =$$

$$= 2 \sum_{j} \int_{U_j} K\left(\frac{1}{2}\sum_{k=1}^{m_j} \frac{1}{b_j^j}, \frac{1}{2}\sum_{k=1}^{m_j} (-1)^k (y_k^j)^{-1}(y)\right) dy.$$

Зафиксируем j и y. Тогда для доказательства леммы достаточно выполнения

$$\sum_{k=1}^{m_j} K\left(\frac{1}{b_k^j}, (y_k^j)^{-1}(y)\right) \geqslant 2K\left(\frac{1}{2}\sum_{k=1}^{m_j} \frac{1}{b_k^j}, \frac{1}{2}\sum_{k=1}^{m_j} (-1)^k (y_k^j)^{-1}(y)\right).$$

Но это неравенство обеспечивается леммой 10.

Теперь можно доказать неравенство для функций u общего вида.

Теорема 9. Пусть р чётна, а K выпукла. Тогда для любой функции $u \in W_1^1$ [-1,1] выполнено $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$.

Доказательство. Поскольку p(x) ограничена, можно построить последовательность кусочно постоянных функций v_n , сходящуюся к u' в $L^{p(x)}$ (см. [12, Теорема 1.4.1]). Обозначим u_n первообразные к v_n . Изменяя, если необходимо, v_n в окрестности концов отрезка, можно считать, что $u_n \geqslant 0$ и $u_n(\pm 1) = 0$.

Из вложения $L^{p(x)}[-1,1]$ в $L^1[-1,1]$ следует $u_n \to u$ в W_1^1 [-1,1]. Также, поскольку $|\sqrt{1+x^2}-\sqrt{1+y^2}|\leqslant |x-y|$ для любых аргументов, из $v_n\to u'$ в $L^{p(x)}$ следует сходимость $\mathcal{I}(u_n)\to\mathcal{I}(u)$.

Согласно [2, Theorem 1], из $u_n \to u$ в W_1^1 [-1,1] следует $symmu_n \to u^*$ в W_1^1 [-1,1]. Кроме того, функционал $\mathcal I$ секвенциально слабо полунепрерывен снизу по теореме Тонелли (см., напр., [13, Теорема 3.5]). Поэтому

$$\mathcal{I}(u^*) \leqslant \liminf \mathcal{I}(u_n^*) \leqslant \lim \mathcal{I}(u_n) = \mathcal{I}(u).$$

3.4 Некоторые достаточные условия

Вычисление показывает, что функция K выпукла по s. Если p выпукла, то K выпукла также по x. А выпуклость K по совокупности переменных равносильна выполнению неравенства $D_{ss}K(s,x)D_{xx}K(s,x)-(D_{sx}K(s,x))^2\geqslant 0$ в смысле мер.

Это неравенство приводится к следующему виду:

$$q''(x) \geqslant \frac{q'(x)^2}{q(x)} A(q(x), w),$$
 (3.3)

где $q(x) = p(x) - 1, w = s^{-2},$

$$A(q,w) = \frac{q(4w - (w+3)\ln(w+1)) - \frac{w-1}{w}\ln(w+1) + 4\frac{w}{\ln(w+1)} - 4}{2(qw+1)} \cdot \frac{q}{q+1}.$$

Лемма 12. Для любого $\alpha > 0$ и $q \in C[-1,1]$ выпуклость функции q^{α} равносильна выполнению неравенства $q''(x) \geqslant (1-\alpha) \frac{q'(x)^2}{q(x)}$ в смысле мер.

Лемма доказывается прямым вычислением.

Из леммы следует, что если $A(q,w)\leqslant M$, где M<1 — некоторая константа, то неравенство (3.3) следует из выпуклости функции $(p(x)-1)^{1-M}$.

Численное исследование показывает, что при всех $q\geqslant 0$ и w>0 выполнено неравенство A(q,w)<0.63. Если же дополнительно q<1.36, то A(q,w)<0.5. Отсюда с учётом теоремы 9 следует

Теорема 10. Пусть функция p(x) чётна.

- 1) Если $(p(x)-1)^{0.37}-$ выпуклая функция, то для всех $u\in W_1^1$ [-1,1] справедливо неравенство $\mathcal{I}(u^*)\leqslant \mathcal{I}(u)$.
- 2) Если p(x) < 2.36 и $\sqrt{p(x) 1} выпуклая функция, то для всех <math>u \in W_1^0$ [-1, 1] справедливо неравенство $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$.

Список литературы

- 1. $\mathit{Либ}, \, \mathit{Э}. \, \mathsf{Анализ} \, / \, \mathit{Э}. \, \mathsf{Либ}, \, \mathsf{M}. \, \mathsf{Лосс}. \, \, \mathsf{Новосибирск} : \mathsf{Научная} \, \mathsf{книга}, \, 1998. \, \, 276 \, \mathsf{c}.$
- 2. Brock, F. Weighted Dirichlet-type inequalities for Steiner symmetrization / F. Brock // Calc. Var. and PDEs. 1999. T. 8, № 1. C. 15—25.
- 3. Рудин, У. Функциональный анализ / У. Рудин. М. : Мир, 1975. 444 с.
- 4. Эванс, Л. Теория меры и тонкие свойства функций / Л. Эванс, Р. Ф. Гариепи. Новосибирск : Научная книга, 2002. 216 с.
- 5. Интегральные операторы в пространствах суммируемых функций / М. А. Красносельский [и др.]. М. : Наука, 1966. 500 с.
- 6. Alberti, G. Non-occurrence of gap for one-dimensional autonomous functionals / G. Alberti, F. Serra Cassano // Proceedings of "Calc. Var., Homogen. and Cont. Mech." / под ред. G. Bouchitté, G. Buttazzo, P. Suquet. Singapore, 1994. С. 1—17.
- 7. Talenti, G. The art of rearranging / G. Talenti // Milan Journ of Math. 2016. T. 84, \mathbb{N} 1. C. 105—157.
- 8. Bankevich, S. V. On monotonicity of some functionals under rearrangements / S. V. Bankevich, A. I. Nazarov // Calc. Var. and PDEs. 2015. T. 53, \mathbb{N}^2 3/4. C. 627—647.
- 9. Банкевич, C. B. Об обобщении неравенства Пойа-Сеге для одномерных функционалов / С. В. Банкевич, А. И. Назаров // Доклады Академии Наук. 2011. Т. 438, № 1. С. 11—13.
- 10. Lebesgue and Sobolev spaces with Variable Exponents / L. Diening [и др.]. Berlin: Springer, 2011. IX, 509. (Lecture Notes in Mathematics; 2017).
- 11. Жиков, В. В. О вариационных задачах и нелинейных эллиптических уравнениях с нестандартными условиями роста / В. В. Жиков. Новосибирск : Т. Рожковская, 2017. 120 с.

- 12. *Шарапудинов*, *И. И.* Некоторые вопросы теории приближений в пространствах Лебега с переменным показателем / И. И. Шарапудинов. Владикавказ : ЮМИ ВНЦ РАН и РСО-А, 2012. 267 с. (Итоги науки. Юг России. Математическая монография ; 5).
- 13. *Буттац*о, Д. Одномерные вариационные задачи. Введение / Д. Буттаццо, М. Джаквинта, С. Гильдебрандт. Новосибирск : Научная книга, 2002.-246 с.