AI Tools and Applications Report

Theme: Mastering the AI Toolkit

Group Members:

1. Nelly Naserian

Email: nellylongesele175@gmail.com

2. Allan Mboti

Email:allanmboti@gmail.com

Course: AI Tools Assignment

Date: 18/10/2025

Part 1: Theoretical Understanding

Q1. Differences Between TensorFlow and PyTorch

- TensorFlow uses **static computation graphs**, making deployment easier but debugging harder.
- PyTorch uses **dynamic computation graphs**, which are easier to debug and experiment with.
- TensorFlow is preferred for **production-ready applications**, while PyTorch is preferred for **research and experimentation**.

Q2. Two Use Cases for Jupyter Notebooks

1. Interactive coding with **step-by-step execution** and **visualization** of results.

2. Documentation of experiments, combining **code**, **text**, **and graphs** for collaboration and sharing.

Q3. How spaCy Enhances NLP Tasks

- Provides pre-trained models for tokenization, part-of-speech tagging, and named entity recognition.
- Faster and more accurate than basic Python string operations.
- Easy integration with **custom pipelines** and rule-based NLP tasks.

Comparison: Scikit-learn vs TensorFlow

Feature	Scikit-learn	TensorFlow
Target Applications	Classical ML (SVM, Decision Trees)	Deep Learning (CNNs, RNNs)
Ease of Use	Beginner-friendly	More advanced, steeper learning curve
Community Support	Large, active	Large, active

Part 2: Practical Implementation

Task 1: Classical ML (Scikit-learn)

• Dataset: Iris Species Dataset

• Model: Decision Tree Classifier

• Evaluation Metrics: Accuracy, Precision, Recall

Sample Output:

Accuracy: 1.0

Precision: 1.0

Recall: 1.0

Screenshot: Task 1: Decision Tree Classifier training and evaluation metrics (Accuracy, Precision, Recall

Task 2: Deep Learning (TensorFlow)

• Dataset: MNIST Handwritten Digits

• Model: Convolutional Neural Network (CNN)

• Goal: Test accuracy > 99%

Sample Output:

Epoch 1/5: Accuracy 0.9562, Loss 0.1434

Task 3: NLP with spaCy

• Dataset: Sample Amazon Product Reviews

• Goal: Named Entity Recognition (NER) for products and brands, sentiment analysis

NER Output Example:

Review: I love the Apple iPhone 14, the camera quality is amazing.

Entities: [('Apple', 'ORG'), ('iPhone 14', 'PRODUCT')]

Sentiment Analysis Example:

Review: The Samsung Galaxy battery dies so fast, I regret buying it.

Sentiment: Negative

Screenshot: Sentiment analysis results for sample Amazon product reviews

Part 3: Ethics & Optimization

Ethical Considerations:

- Bias can exist in datasets (e.g., class imbalance in MNIST, overly positive/negative Amazon reviews).
- Mitigation:
 - Use TensorFlow Fairness Indicators to check model bias.
 - Use **spaCy rule-based filters** to balance entity recognition and sentiment classification.

Troubleshooting Example:

- Issue: Dimension mismatch error in TensorFlow model.
- Fix: Corrected input shape in model.fit() and reshaped data arrays.

References

- TensorFlow Documentation: https://www.tensorflow.org/
- PyTorch Documentation: https://pytorch.org/
- spaCy Documentation: https://spacy.io/
- Kaggle Datasets: https://www.kaggle.com/