Đề cương ôn tập Topology

Nguyễn Tú Anh - A
29888 - Đại Học Thăng Long ntanhtm@gmail.com

Ngày 8 tháng 6 năm 2019

Mục lục

Ι	Định nghĩa	3	
1	Điểm trong	3	
2	Điểm biên	3	
3	Tập mở, tập đóng	3	
4	Tập lồi	3	
5	Điểm bất động 5.1 Của hàm	3 3	
6	Ánh xạ co	3	
II	Phát biểu kết quả	4	
1	Điều kiện cần và đủ để một hàm là liên tục	4	
2	Định lý cực đại	4	
3	Định lý tách		
4	Định lý điểm bất động của Brouwer và Kakutani4.1 Định lý điểm bất động của Brouwer4.2 Định lý điểm bất động của Kakutani	4 4 5	
II	I Chứng minh định lý	6	
1	Bolzano-Weierstrass 1.1 Phát biểu 1.2 Chứng minh 1.2.1 Định lý bổ trợ 1.2.2 Chứng minh	6 6 6 6	
2	Ma trận sản xuất $2.1 \text{Phát biểu} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	7 7	
3	Định lý điểm bất động của ánh xạ co 3.1 Phát biểu	8	

Phần I

Định nghĩa

1 Điểm trong

Điểm ${\bf a}$ gọi là điểm trong của một tập $S\subset \mathbb{R}^n$ nếu $\exists r>0$ để hình cầu mở $B({\bf a},r)\subset S$

2 Điểm biên

Điểm \mathbf{a} gọi là điểm biển của S nếu $\forall r > 0$, $B(\mathbf{a}, r)$ chứa ít nhất một điểm thuộc S và 1 điểm không thuộc S.

3 Tập mở, tập đóng

Tập mở : Tập $A \subset S$ gọi là mở trong S nếu tất cả các điểm của A đều là điểm trong.

Tập đóng : Tập $A \subset S$ gọi là đóng trong S nếu S - A là tập mở trong S.

4 Tập lồi

Tập $C \subset \mathbb{R}^n$ là tập lồi nếu nó chứa mọi đường thẳng đi qua 2 điểm bất kì nằm trong nó. Hay nói cách khác, nếu $(1 - \lambda)a + \lambda b \in C$, với a, b là 2 điểm bất kì trong C và $0 \le \lambda \le 1$ thì ta nói C là tập lồi.

5 Điểm bất động

5.1 Của hàm

Cho một tập X và một hàm $f: X \to X, x^* \in X$ là điểm bất động của f nếu vài chỉ nếu $f(x^*) = x^*$.

5.2 Của phép tương ứng

Cho một tập X và một phép tương ứng $F: X \twoheadrightarrow Y, x^* \in X$ là một điểm bất động của F nếu và chỉ nếu $x^* \in F(x^*)$

6 Ánh xạ co

Cho S là một tập con khác rỗng của \mathbb{R}^n và K là tập của tất cả các hàm số bị chặn từ S vào \mathbb{R}^n . Toán tử $T:K\to K$ là ánh xạ co nếu tồn tại một số $\alpha\in[0,1)$ sao cho với mọi $\varphi,\psi\in K$,

$$\mathbf{d}(\mathbf{T}(\varphi), \mathbf{T}(\psi)) \le \alpha \mathbf{d}(\varphi, \psi)$$

Phần II

Phát biểu kết quả

1 Điều kiện cần và đủ để một hàm là liên tục

Định lý 13.3.4

Cho $f: \mathbb{R}^n \to \mathbb{R}^m$, f là liên tục nếu và chỉ nếu một trong các điều kiện tương đương sau được thỏa mãn:

- (a) $f^{-1}(U)$ là tập mở với mọi tập mở U trong \mathbb{R}^m
- (b) $f^{-1}(F)$ là tập đóng với moi tập đóng F trong \mathbb{R}^m

2 Định lý cực đại

Định lý 13.4.1

Giả sử f là một hàm liên tục từ $X \times Y$ đến \mathbb{R} , với $X \subseteq \mathbb{R}^n$, $Y \subseteq \mathbb{R}^m$, và Y là tập 'compact', $X, Y \neq \emptyset$. Thì:

- (a) Hàm giá trị $V(x) = \max_{y \in Y} f(x, y)$ là một hàm liên tục của x.
- (b) Nếu bài toán cực đại có duy nhất một lời giải y = y(x) với mọi x, thì y(x) là một hàm liên tục của x.

3 Định lý tách

Định lý 13.6.4

Cho S và T là 2 tập lồi trong $(R)^n$ với không có điểm trong tương đối chung nào. Khi đó, S và T có thể bị tách bởi một siêu phẳng, nghĩa là tồn tại một vec-tơ $\mathbf{a} \neq \mathbf{0}$ trong \mathbb{R}^n và một số vô hướng α sao cho:

 $\mathbf{a}.\mathbf{x} \leq \alpha \leq \mathbf{a}.\mathbf{y}$ với mọi \mathbf{x} trong S và mọi \mathbf{y} trong T

4 Định lý điểm bất động của Brouwer và Kakutani

4.1 Định lý điểm bất động của Brouwer

Định lý 14.4.1

Giả sử K là một tập lồi, compact, không rỗng trong \mathbb{R}^n , và một hàm liên tục f ánh xạ từ K và chính nó thì f có một điểm bất động x^* , có nghĩa là một điểm $x^* \in K$ sao cho $f(x^*) = x^*$

4.2 Định lý điểm bất động của Kakutani

Định lý 14.4.2

Giả sử K là một tập lồi, compact, không rỗng trong \mathbb{R}^n và F là một phép tương ứng từ $K \twoheadrightarrow K.$ Giải sử rằng:

- F(x) là một tập lồi không rỗng trong K với mỗi $x \in K$.
- $\bullet~F$ là nửa liên tục trên.

Khi đó F có một điểm bất động $x^* \in K$, nghĩa là một điểm x^* sao cho $x^* \in F(x^*)$

Phần III

Chứng minh định lý

1 Bolzano-Weierstrass

Định lý 13.2.5

1.1 Phát biểu

Một tập con S của \mathbb{R}^n là **compact** (đóng và bị chặn) nếu và chỉ nếu mọi dãy các điểm trong S có một dãy con hội tụ tới một điểm trong S.

1.2 Chứng minh

1.2.1 Định lý bổ trợ

Định lý 13.2.3 (Bao đóng và hội tụ)

- Với bất kỳ tập $S \subseteq \mathbb{R}^n$, một điểm a trong \mathbb{R}^n thuộc \overline{S} nếu và chỉ nếu a là giới hạn của một dãy $\{x_k\}$ trong S.
- Một tập $S \subseteq \mathbb{R}^n$ bị đóng nếu và chỉ nếu mọi chuỗi hội tụ của các điểm trong S có giới hạn của nó trong S.

Định lý 13.2.4 Một tập con $S \subseteq \mathbb{R}^n$ bị chặn nếu và chỉ nếu mỗi dãy của các điểm trong S có một dãy con hội tụ.

1.2.2 Chứng minh

Chiều thuận

Giả thiết	$S \subseteq \mathbb{R}^n$ là tập compact, $\{\mathbf{x}_k\}$ là một dãy trong S
Kết luận	$\{\mathbf{x}_k\}$ chứa một dãy con hội tụ tới một điểm trong S.

Chứng minh:

Do $S \subseteq \mathbb{R}^n$ và bị chặn (compact) $\Rightarrow \{\mathbf{x}_k\}$ chứa một dãy con hột tụ (Định lý 13.2.4).

Do S đóng nên giới hạn của dãy con phải nằm trong S (Định lý 13.2.3).

Vậy $\{\mathbf{x}_k\}$ chứa một dãy con hội tụ tới một điểm trong S.

Chiều ngược

	Mọi dãy các điểm trong S có một dãy con hội tụ tới một điểm trong S .
Kết luận	S đóng và bị chặn.

Chứng minh:

Theo định lý 13.2.4 thì S bị chặn.

Đặt \mathbf{x} là điểm tùy ý trong bao đóng của S.

 \Rightarrow có một dãy $\{\mathbf{x}_k\}$ trong S với $\lim_{k\to\infty}\mathbf{x}_k=\mathbf{x}$

Theo giả thiết, $\{\mathbf{x}_k\}$ có một dãy con $\{\mathbf{x}_{k_j}\}$ hội tụ đến một giới hạn \mathbf{x}' trong S. Nhưng $\{\mathbf{x}_{k_j}\}$ cũng hội tụ đến \mathbf{x} .

$$\Rightarrow \mathbf{x} = \mathbf{x}' \in S$$

$$\Rightarrow S$$
 đóng.

2 Ma trận sản xuất

Định lý 13.7.2

2.1 Phát biểu

Với một ma trận vuông cấp n với các phần tử không âm \mathbf{A} , các mệnh đề sau đây là tương đương:

- (a) A là ma trận sản xuất.
- (b) $\mathbf{A}^m \to \mathbf{0}$ khi $m \to \infty$.
- (c) $(\mathbf{I} \mathbf{A})^{-1} = \mathbf{I} + \mathbf{A} + \mathbf{A}^2 + \dots$
- (d) $(\mathbf{I} \mathbf{A})^{-1}$ tồn tại và không âm.

2.2 Chứng minh $(a) \Rightarrow (b)$

Chọn một vector $\mathbf{a} \gg 0$ sao cho $\mathbf{a} \gg \mathbf{A}\mathbf{a}$ (Do A là ma trận sản xuất) (Mỗi phần tử của \mathbf{a} lớn hơn hẳn phần tử tương ứng của $\mathbf{A}\mathbf{a}$).

Vì thế, $\exists \lambda \text{ trong } (0,1) \text{ sao cho } \lambda \mathbf{a} \gg \mathbf{A} \mathbf{a} \gg 0.$

Khi đó, $\lambda^2 \mathbf{a} = \lambda(\lambda \mathbf{a}) \gg \lambda \mathbf{A} \mathbf{a} = \mathbf{A} \lambda \mathbf{a} \geq \mathbf{A} \mathbf{A} \mathbf{a} = \mathbf{A}^2 \mathbf{a} \gg 0$

Bằng quy lạp, ta có $\lambda^m \mathbf{a} \gg \mathbf{A}^m \mathbf{a}$ với m = 1, 2, ...

Khi $m \to \infty$ thì $\lambda^m {\bf a} \to 0 \ (\lambda < 1)$

$$\Rightarrow \mathbf{A}^m \mathbf{a} \to 0$$
 khi $m \to \infty$

Có
$$\mathbf{A}^m \mathbf{a} = \mathbf{A}^m (\sum_{i=1}^n a_i \mathbf{e}_i) = \sum_{i=1}^n a_i \mathbf{A}^m \mathbf{e}_i \ge a_j \mathbf{A}^m \mathbf{e}_j$$
 với $j=1,2..n$

$$\Rightarrow$$
 cột thứ j - $\mathbf{A}^m\mathbf{e}_j$ của \mathbf{A}^m tiến đến $\mathbf{0}$ khi $m\to\infty$

$$\Rightarrow \mathbf{A}^m \to \mathbf{0}$$
 khi $m \to \infty$

3 Định lý điểm bất động của ánh xạ co

3.1 Phát biểu

Định lý 14.3.1

Cho S là một tập con khác rỗng của \mathbb{R}^n và K là tập của tất cả các hàm số bị chặn từ S vào \mathbb{R}^n . Giả sử toán tử $T:K\to K$ là ánh xạ co. Khi đó, tồn tại một hàm số duy nhất $\varphi^*\in K$ sao cho $\varphi^*=T(\varphi^*)$

3.2 Chứng minh

Chứng minh $T(\varphi^*(x)) = \varphi^*(x)$

Do T là ánh xạ co nên ta có: $d(T(\varphi), T(\psi)) \leq \alpha d(\varphi, \psi)$ với $\alpha \in [0, 1)$ và $\varphi, \psi \in K$

Đặt $T(\varphi_n) = \varphi_{n+1}$ với $n = 0, 1, 2, ... (\varphi_i \in K)$

Đặt $\gamma_n = d(\varphi_{n+1}, \varphi_n)$, ta có:

 $\gamma_{n+1}=d(\varphi_{n+2},\varphi_{n+1})=d(T(\varphi_{n+1}),T(\varphi_n))\leq \alpha d(\varphi_{n+1},\varphi_n)\leq \alpha \gamma_n$ với $n\geq 0$

Từ $\gamma_{n+1} \leq \alpha \gamma_n$ dễ dàng ta có $\gamma_n \leq \alpha^n \gamma_0$.

Có $\varphi_m - \varphi_n = (\varphi_m - \varphi_{m-1}) + (\varphi_{m-1} - \varphi_{m-2}) + \dots + (\varphi_{n+1} - \varphi_n)$ với m > n.

Ta có:

$$\parallel \varphi_m(x) - \varphi_n(x) \parallel = \parallel \sum_{r=n}^{m-1} (\varphi_{r+1}(x) - \varphi_r(x)) \parallel \leq \sum_{r=n}^{m-1} \parallel \varphi_{r+1}(x) - \varphi_r(x) \parallel \text{(Bắt đẳng thức tam giác)}$$

Do $\gamma_n = d(\varphi_{n+1}, \varphi_n)$ và $\gamma_n \leq \alpha^n \gamma_0$ ta được:

$$\parallel \varphi_m(x) - \varphi_n(x) \parallel \leq \sum_{r=n}^{m-1} \gamma_r \leq \sum_{r=n}^{m-1} \alpha^r \gamma_0$$

Do:

$$\sum_{r=n}^{m-1} \alpha^r \gamma_0 = \gamma_0 \sum_{r=n}^{m-1} \alpha^r = \gamma_0 \alpha^n \sum_{i=0}^{m-n-1} \alpha^i = \gamma_0 \alpha^n \frac{1 - \alpha^{m-n}}{1 - \alpha} \le \frac{\gamma_0 \alpha^n}{1 - \alpha}$$

Ta được:

$$\| \varphi_m(x) - \varphi_n(x) \| \le \frac{\gamma_0 \alpha^n}{1 - \alpha}$$

Do $\alpha \in [0,1)$ nên n càng lớn thì $\frac{\gamma_0 \alpha^n}{1-\alpha}$ càng nhỏ, suy ra $\{\varphi_n(x)\}$ là một chuỗi Cauchy với giới hạn $\varphi^*(x)$.

Vậy khi $m \to \infty$ thì $\varphi_m \to \varphi^*$, ta được:

$$\| \varphi^*(x) - \varphi_n(x) \| \le \frac{\gamma_0 \alpha^n}{1 - \alpha}$$

Ta có:

$$||T(\varphi^*(x)) - \varphi_{n+1}(x)|| = ||T(\varphi^*(x)) - T(\varphi_n(x))|| \le \alpha ||\varphi^*(x) - \varphi_n(x)|| \le \frac{\gamma_0 \alpha^{n+1}}{1 - \alpha}$$

Khi $n \to \infty$ thì $\varphi_n \to \varphi^*$ (Caushy) và $\frac{\gamma_0 \alpha^{n+1}}{1-\alpha} \to 0$ ($\alpha < 1$) nên $|| T(\varphi^*(x)) - \varphi^*(x) || = 0$ hay $T(\varphi^*(x)) = \varphi^*(x)$

Chứng minh tính duy nhất

Giả sử một hàm khác φ^{**} thỏa mãn $T(\varphi^{**}(x)) = \varphi^{**}(x)$ Ta có:

$$d(\varphi^*, \varphi^{**}) = d(T(\varphi^*), T(\varphi^{**})) \le \alpha d(\varphi^*, \varphi^{**})$$

Do
$$\alpha \in [0,1)$$
 và $d(\varphi^*,\varphi^{**}) \geq 0$ nên $d(\varphi^*,\varphi^{**}) = 0 \Longrightarrow \varphi^* = \varphi^{**}$