DEVOIR SURVEILLÉ N°04

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

Exercice 1.

1. Soient a et b deux réels positifs. Montrer que

$$\arctan(a) - \arctan(b) = \arctan\left(\frac{a-b}{1+ab}\right)$$

2. En déduire que pour tout $k \in \mathbb{N}^*$,

$$\arctan\left(\frac{2}{k^2}\right) = \arctan(k+1) - \arctan(k-1)$$

3. On pose pour $n \in \mathbb{N}^*$

$$u_n = \sum_{k=1}^n \arctan\left(\frac{2}{k^2}\right)$$

Déterminer la limite de la suite (u_n) .

EXERCICE 2.

1. Soit $(a,b) \in \mathbb{R}^* \times \mathbb{R}$. Montrer qu'un argument de a+ib est congru à $\arctan\left(\frac{b}{a}\right)$ modulo π .

2. Vérifier que

$$(5+i)^4 = 2 \cdot (1+i) \cdot (239+i)$$

3. En déduire que

$$4\arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right) \equiv \frac{\pi}{4}[\pi]$$

4. Montrer que

$$\frac{\pi}{4} - \pi < 4 \arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right) < \frac{\pi}{4} + \pi$$

5. En déduire que

$$4\arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right) = \frac{\pi}{4}$$

EXERCICE 3.

On se donne $p \in \mathbb{N}^*$ et on pose pour $n \in \mathbb{N}^*$,

$$S_n = \sum_{k=n}^{np} \sinh \frac{1}{k}$$

On souhaite étudier la limite éventuelle de la suite (S_n) .

- **1.** Pour $x \in \mathbb{R}$, on pose $f(x) = \operatorname{ch}^2 x + \operatorname{sh} x$.
 - **a.** Résoudre l'équation $2 \operatorname{sh} x + 1 = 0$. On notera α son unique solution que l'on exprimera à l'aide de la fonction ln.
 - **b.** Déterminer une expression simple de $f(\alpha)$.
 - c. Justifier que f est dérivable sur $\mathbb R$ et dresser le tableau de variations de f sur $\mathbb R$. On ne demande pas de préciser les limites de f en $-\infty$ et $+\infty$.
 - **d.** En déduire que pour tout $x \in \mathbb{R}$, f(x) > 0.
- **2.** Pour $x \in \mathbb{R}$, on pose $g(x) = e^{\sin x} x 1$.
 - **a.** Justifier que g est dérivable sur \mathbb{R} et calculer g'(x) pour tout $x \in \mathbb{R}$.
 - **b.** Justifier que g' est dérivable sur \mathbb{R} et calculer g''(x) pour tout $x \in \mathbb{R}$ où g'' désigne la dérivée de g'.
 - **c.** En déduire les variations de g' puis celle de g, et enfin que $g(x) \ge 0$ pour tout $x \in \mathbb{R}$.
 - **d.** Montrer que pour tout $x \in [0, 1[$,

$$1 + x \le e^{\sinh x} \le \frac{1}{1 - x}$$

3. a. Soit $n \in \mathbb{N} \setminus \{0, 1\}$. Montrer que pour tout $k \in [n, np]$,

$$\frac{k+1}{k} \le e^{\operatorname{sh}\frac{1}{k}} \le \frac{k}{k-1}$$

b. En déduire que pour tout $n \in \mathbb{N} \setminus \{0, 1\}$,

$$\frac{np+1}{n} \le e^{S_n} \le \frac{np}{n-1}$$

c. Déterminer la limite de la suite (S_n) .

Exercice 4.

On pose pour $x \in \mathbb{R}^*$,

$$f(x) = x \operatorname{ch}\left(\frac{1}{x}\right)$$

- **1.** Déterminer la parité de f.
- 2. Justifier que l'équation $th(x) = \frac{1}{x}$ admet une unique solution sur \mathbb{R}_+^* . On notera α cette unique solution.
- 3. Montrer que $f\left(\frac{1}{\alpha}\right) = \frac{1}{\sqrt{\alpha^2 1}}$.
- **4.** Préciser les limites de f en 0^+ et en $+\infty$. On justifiera ses réponses.
- 5. Déterminer les variations de f sur \mathbb{R}^*_{\perp} . On fera intervenir le réel α de la question 2.
- **6.** Montrer que la courbe de f admet une asymptote oblique dont on précisera une équation.
- 7. Préciser la position de la courbe de f par rapport à son asymptote sur \mathbb{R}_+^* .
- 8. Tracer la courbe de f. On fera apparaître les différentes asymptotes ainsi que les tangentes horizontales. On donne $\frac{1}{\alpha} \approx 0,83$ et $\frac{1}{\sqrt{\alpha^2-1}} \approx 1,51$.