This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

What is claimed is:

1. A method for secure transmission of an information-containing optical signal, comprising:

dividing the optical signal into a first plurality of sub-bands,

modifying each of the first plurality of sub-bands to encrypt the information contained in the optical signal,

combining the modified first plurality of sub-bands into a combined optical signal,

dividing the combined optical signal into a second plurality of sub-bands, modifying each of the second plurality of sub-bands to decrypt the previously encrypted information contained in the optical signal.

- 2. The method of claim 1 wherein the information-containing optical signal has a bandwidth and at least one of the first and second plurality of sub-bands has a sub-band resolution at least 50 times finer than the bandwidth of the information-containing optical signal.
- 3. The method of claim 1 wherein the information-containing optical signal is transmitted at a bit rate of not less than 1 gigabit per second.
- 4. The method of claim 1 wherein the information-containing optical signal is transmitted at a bit rate of not less than 10 gigabits per second, wherein at least the first plurality of sub-bands comprise not less than 50 sub-bands and wherein at least the first plurality of sub-bands has a spatial resolution at a focal plane of not greater than 200 MHz.
- 5. The method of claim 1 wherein the first plurality of sub-bands comprise not less than 100 sub-bands.

- 6. The method of claim 1 wherein at least one of the steps of modifying each of the first plurality of sub-bands and modifying each of the second plurality of sub-bands comprises at least one of imparting a phase shift to each sub-band, imparting a time delay to each sub-band, and imparting a frequency shift to each sub-band.
- 7. The method of claim 6 comprising at least one of imparting a phase shift to each sub-band, imparting a time delay to each sub-band, and imparting a frequency shift to each sub-band at a rate that changes over time.
- 8. The method of claim 1 comprising imparting a frequency shift to the input information-containing optical signal.
- 9. A system for secure transmission of an information-containing optical signal, comprising:

at least a first OTDL configured to enable division of the optical signal into a first plurality of sub-bands,

at least a first phase modulator configured to enable modification of each of the first plurality of sub-bands to encrypt the information contained in the optical signal, the first OTDL being configured to enable combining the modified first plurality of sub-bands into a combined optical signal,

at least a second OTDL configured to enable division of the combined optical signal into a second plurality of sub-bands,

at least a second phase modulator configured to enable modification of each of the second plurality of sub-bands to decrypt the information previously encrypted, the second OTDL being configured to enable combining the modified second plurality of sub-bands into a combined optical signal.

10. The system of claim 9 comprising:

at least a third OTDL configured to enable division of each of the first plurality of sub-bands into a plurality of finer sub-bands, and wherein at least the first phase

modulator is configured to enable modification of each of the plurality of finer sub-bands to encrypt the information contained in the optical signal.

- 11. The system of claim 9 wherein at least one of the first and second phase modulator comprises a reflective phase modulating array.
- 12. The system of claim 9 wherein at least one of the first and second phase modulator comprises a transmissive phase modulating array.
- 13. The system of claim 9 comprising at least one computer for controlling at least one of modification of the first plurality of sub-bands by the first phase modulator and modification of the second plurality of sub-bands by the second phase modulator
- 14. The system of claim 9 wherein at least one of the first and second phase modulator comprises at least one of a liquid crystal array, a MEMS device, an array of III-V or II-VI semiconductor devices.
 - 15. The system of claim 9 wherein

at least a first pair of OTDL configured to enable division of the optical signal into a first plurality of sub-bands,

at least a second pair of OTDL configured to enable division of the combined optical signal into a second plurality of sub-bands,

wherein at least one of the first and second phase modulator comprises a transmissive phase modulating array.

16. The system of claim 9 wherein the first phase modulator is configured to enable modification of each of the first plurality of sub-bands by at least one of imparting a phase shift to each sub-band, imparting a time delay to each sub-band, and imparting a frequency shift to each sub-band, and wherein the second phase modulator is configured to enable modification of each of the second plurality of sub-bands at least one of

imparting a phase shift to each sub-band, imparting a time delay to each sub-band, and imparting a frequency shift to each sub-band.