Listing of the Claims

This listing of claims will replace all prior versions, and listings of claims in the application.

1 - 3. (Cancelled)

- 4. (Original) A method for the identification of an agent to be used in the treatment of AD and/or symptoms thereof, wherein said agent is capable of altering the production of Cu(I) by Aβ, said method comprising:
 - (a) adding Cu(II) to a first $A\beta$ sample;
 - (b) allowing said first sample to incubate for an amount of time sufficient to generate Cu(I);
 - (c) adding Cu(II) to a second Aβ sample, said second sample additionally comprising a candidate pharmacological agent;
 - (d) allowing said second sample to incubate for the same amount of time as said first sample;
 - (e) determining the amount of Cu(I) produced by said first sample and said second sample; and
 - (f) comparing the amount of Cu(I) produced by said first sample to the amount of Cu(I) produced by said second sample;

whereby a difference in the amount of Cu(I) produced by said first sample as compared to said second sample indicates that said candidate pharmacological agent has altered the production of Cu(I) by $A\beta$.

- 5. (Original) The method of claim 4, wherein the amount of Cu(I) present in said first and said second sample is determined by
 - (a) adding a complexing agent to said first and said second sample, wherein said complexing agent is capable of combining with Cu(I) to form a complex compound, wherein said complex compound has an optimal visible absorption wavelength;
 - (b) measuring the absorbencies of said first and second samples; and
 - (c) calculating the concentration of Cu(I) in said first and second samples using the absorbencies obtained in (b).
- 6. (Original) The method of claim 5, wherein said complexing agent is bathocuproinedisulfonic anion.
- 7. (Original) The method of claim 4, wherein said method is performed in a microtiter plate, and the absorbency measurements are performed by a plate reader.
- 8. (Original) The method of claim 4, wherein two or more different test candidate agents are simultaneously evaluated for an ability to alter the production of Cu(I) by Aβ.

- (divisional of 09/560,883; filed April 28, 2000)
- 9. (Original) The method of claim 4, wherein said first and second $A\beta$ samples are biological samples.
 - 10. (Original) The method of claim 9, wherein said biological samples are CSF.
- 11. (Original) A method for the identification of an agent to be used in the treatment of AD and/or symptoms thereof, wherein said agent is capable of altering the production of Fe(II) by A β , said method comprising:
 - (a) adding Fe(III) to a first A β sample;
 - (b) allowing said first sample to incubate for an amount of time sufficient to generate Fe(II);
 - (c) adding Fe(III) to a second Aβ sample, said second sample additionally comprising a candidate pharmacological agent;
 - (d) allowing said second sample to incubate for the same amount of time
 as said first sample;
 - (e) determining the amount of Fe(II) produced by said first sample and second sample; and
 - (f) comparing the amount of Fe(II) present in said first sample to the amount of Fe(II) present in said second sample;

whereby a difference in the amount of Fe(II) present in said first sample as compared to said second sample indicates that said candidate pharmacological agent has altered the production of Fe(II) by A β .

(divisional of 09/560,883; filed April 28, 2000)

- 12. (Original) The method of claim 11, wherein the amount of Fe(II) present in said first and second samples is determined by
 - (a) adding a complexing agent to said first and second samples, wherein said complexing agent is capable of combining with Fe(II) to form a complex compound, wherein said complex compound has an optimal visible absorption wavelength;
 - (b) measuring the absorbencies of said first and second samples; and
 - (c) calculating the concentration of Fe(II) in said first and second samples using the absorbencies obtained in (b).
- 13. (Original) The method of claim 12, wherein said complexing agent is bathophenanthrolinedisulfonic (BP) anion.
- 14. (Original) The method of claim 11, wherein said method is performed in a microtiter plate, and the absorbency measurements are performed by a plate reader.
- 15. (Original) The method of claim 11, wherein two or more different test candidate agents are simultaneously evaluated for an ability to alter the production of Fe(II) by Aβ.
- 16. (Original) The method of claim 11, wherein said first and second $A\beta$ samples are biological samples.
 - 17. (Original) The method of claim 16, wherein said biological samples are CSF.

18 - 23. (Cancelled)

24. (Original) A method for the identification of an agent to be used in the treatment of AD and/or symptoms thereof, wherein said agent is capable of reducing the toxicity of Aβ, said method comprising:

- (a) adding Aβ to a first cell culture;
- (b) adding Aβ to a second cell culture, said second cell culture additionally containing a candidate pharmacological agent;
- (c) determining the level of neurotoxicity of $A\beta$ in said first and second samples; and
- (d) comparing the level of neurotoxicity of $A\beta$ in said first and second samples,

whereby a lower neurotoxicity level in said second sample as compared to said first sample indicates that said candidate pharmacological agent has reduced the neurotoxicity of AB, and is thereby capable of being used to treat AD and/or symptoms thereof.

- 25. (Original) The method of claim 24, wherein the neurotoxicity of $A\beta$ is determined by using an MTT assay.
- 26. (Original) The method of claim 24, wherein the neurotoxicity of $A\beta$ is determined by using an LDH release assay.

- 27. (Original) The method of claim 24, wherein the neurotoxicity of $A\beta$ is determined by using a Live/Dead assay.
 - 28. (Original) The method of claim 24, wherein the cells are rat cancer cells.
- 29. (Original) The method of claim 24, wherein the cells are rat primary frontal neuronal cells.
- 30. (Original) A kit for determining whether an agent is capable of altering the production of Cu(I) by $A\beta$ which comprises a carrier means being compartmentalized to receive in close confinement therein one or more container means wherein
 - (a) the first container means contains a peptide comprising Aβ peptide;
 - (b) a second container means contains a Cu(II) salt; and
 - (c) a third container means contains BC anion.
- 31. (Original) The kit of claim 30, wherein said A β peptide is present as a solution in an aqueous buffer or a physiological solution, at a concentration from about 10 μ M to about 25 μ M.
- 32. (Original) A kit for determining whether an agent is capable of altering the production of Fe(II) by A β which comprises a carrier means being compartmentalized to receive in close confinement therein one or more container means wherein
 - (a) the first container means contains a peptide comprising $A\beta$ peptide;

- 10 -

BUSH et al.

Appl. No. To be assigned

(divisional of 09/560,883; filed April 28, 2000)

- (b) a second container means contains an Fe(III) salt; and
- (c) a third container means contains BP anion.
- 33. (Original) The kit of claim 32, wherein said A β peptide is present as a solution in an aqueous buffer or a physiological solution, at a concentration from about 10 μ M to about 25 μ M.
- 34. (Original) A kit for determining whether an agent is capable of altering the production of H_2O_2 by A β which comprises a carrier means being compartmentalized to receive in close confinement therein one or more container means wherein
 - (a) the first container means contains a peptide comprising $A\beta$ peptide;
 - (b) a second container means contains a Cu(II) salt;
 - (c) a third container means contains TCEP; and
 - (d) a fourth container means contains DTNB.
- 35. (Original) The kit of claim 34, wherein said A β peptide is present as a solution in an aqueous buffer or a physiological solution, at a concentration from about 10 μ M to about 25 μ M.
- 36. (Original) A method for the identification of an agent to be used in the treatment of AD and/or symptoms thereof, wherein said agent is capable of inhibiting redox-reactive metal-mediated crosslinking Aβ, said method comprising:
 - (a) adding a redox-reactive metal to a first $A\beta$ sample;

- (b) allowing said first sample to incubate for an amount of time sufficient to allow $A\beta$ crosslinking;
- (c) adding said redox-reactive metal to a second Aβ sample, said second sample additionally comprising a candidate pharmacological agent;
- (d) allowing said second sample to incubate for the same amount of timeas said first sample;
- (e) removing an aliquot from each of said first and second samples; and
- (f) determining presence or absence of crosslinking in said first and second samples,

whereby an absence of $A\beta$ crosslinking in said second sample as compared to said first sample indicates that said candidate pharmacological agent has inhibited $A\beta$ crosslinking.

- 37. (Original) The method of claim 36, wherein at (f), a western blot analysis is performed to determine the presence or absence of crosslinking in the first and second samples.
- 38. (Currently amended) A method of treating AD and/or symptoms thereof, comprising administering to a patient in need thereof an effective amount of an agent identified by the screening assay of claim [[1,]] 4, 11, [[18,]] 24 or 36.