1 Problem 1

1.1 Part a

1.1.1 i: Given an invertible matrix A, $(A^{-1})^T = (A^T)^{-1}$

Given that a full-rank matrix A is invertible, we can deduce two important facts:

- A^T is invertible
- ullet The inverses for both A and A^T are unique

Therefore, my proof is as follows. If I can show both $(A^{-1})^T$ and $(A^T)^{-1}$, are valid inverses for A^T , then I can conclude $(A^{-1})^T = (A^T)^{-1}$ via the above two facts.

The proof for $(A^T)^{-1}$ is trivial, since it is, by definition, the inverse of A^T . Since A^T is full rank, it will have an inverse and

$$A^T(A^T)^{-1} = I \tag{1}$$

Now, I aim to show that $A^{T}(A^{-1})^{T} = I$. By the properties of transposes, we see

$$A^{T}(A^{-1})^{T} = (AA^{-1})^{T} = I (2)$$

Since A is full rank, $AA^{-1} = I$ and the transpose of the identity is the identity. Therefore, since both $(A^{-1})^T$ and $(A^T)^{-1}$, are valid inverses for A^T , it can be concluded $(A^{-1})^T = (A^T)^{-1}$ and the proof is complete.

1.1.2 ii: Given that matrix A, B, A + B are invertible, $(A + B)^{-1} = A^{-1} + B^{-1}$

To disprove this claim, I will first show a symbolic proof, then a counterexample. First off, it's pretty easy to see that since A + B is invertible, its inverse will be unique. Next, it's also trivial to see

$$(A+B)(A+B)^{-1} = I (3)$$

Therefore, in order for the above statement to hold it must be true that $(A + B)(A^{-1} + B^{-1}) = I$. However,

$$(A+B)(A^{-1}+B^{-1}) = AA^{-1} + AB^{-1} + BA^{-1} + BB^{-1}$$
(4)

$$=2I+AB^{-1}+BA^{-1}\neq I \ \forall A,B \ invertible \tag{5}$$

As a counterexample, consider the case when A, B = I. Equation (4) will be, since $I^{-1} = I$,

$$(A+B)(A^{-1}+B^{-1}) = (2I)(2I) = 4I \neq I$$
(6)

1.1.3 iii: The inverse of a symmetric matrix is itself symmetric

So we are asked to prove that if $A = A^T$, $A^{-1} = (A^{-1})^T$. Therefore, to prove this claim it is sufficient to show $AA^{-1} = A(A^{-1})^T = I$. This is sufficient since we are given that the matrix A is symmetric, so $A = A^T$ and the above two expressions aim to show $A^TA^{-1} = A^T(A^{-1})^T = I$.

Therefore, our goal becomes to prove $AA^{-1} = A(A^{-1})^T = I$. We can then separate this into two categories

A is not invertible If A is not invertible, then A^{-1} does not exist and this fact becomes trivially false. Since no inverse exists, this fact cannot be proved true or false.

A is invertible If A is invertible, the proof is significantly less trivial. It is easy to see that $AA^{-1} = I$, and now I must show $A(A^{-1})^T = I$. To do so, see

$$A(A^{-1})^T = A^T(A^{-1})^T$$
 since $A = A^T$ (7)

$$=(AA^{-1})^T$$
 due to properties of transpose (8)

$$=I^{T}=I\tag{9}$$

and the proof is complete. Since the inverse of A is unique, we can say $A^{-1} = (A^{-1})^T$.

Therefore, this statement can be proved given that A is full rank. Technically, a matrix full of zeros is invertible, but obviously this matrix would not have an inverse.

1.2 Part b

In this problem, we are given a $m \times n$ matrix X with can be decomposed, via singular values, as $X = U\Sigma V^T$. We also know $UU^T = U^TU = VV^T = V^TV = I$ and Σ contains non-increasing non-negative values along its diagonal and zeros elsewhere. We are then asked to compute the eigendecomposition of XX^T .

To do so, see

$$XX^{T} = U\Sigma V^{T} (U\Sigma V^{T})^{T}$$
 By SVD definition (10)

$$= U\Sigma V^T V\Sigma^T U^T \tag{11}$$

$$= U\Sigma\Sigma^T U^T$$
 By definition of V (12)

Therefore, we define $\Lambda = \Sigma \Sigma^T$ and Q = U. Since U is square and $UU^T = I$, we can define $Q^{-1} = U^T$. So the eigenvalues of XX^T lie in the diagonal matrix Λ and the eigenvectors lie in the columns of the square matrix U.

1.3 Part c

This problem was done in Python. Since the code is not required, I will merely show the results for both part a and b. The screenshot for the Python code is shown below where both answers are shown:

[scale=1]

2 Problem 2

2.1 Part a

2.1.1 i:
$$P(H = h|D = d)$$
 ? $P(H = h)$

From Bayes, we know

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \tag{13}$$

substituting H = h for A and D = d for B, we see

$$P(H = h|D = d) = \frac{P(D = d|H = h)}{P(D = d)}P(H = h)$$
(14)

And therefore it is easy to see that the relationship between P(H = h|D = d) and P(H = h) is dependent on the ratio $\frac{P(D=d|H=h)}{P(D=d)}$. If this ratio is less than or equal to one, we can conclude $P(H = h|D = d) \leq P(H = h)$ with analogous relationships holding for \geq and =. However, there is no way to determine the value of this ratio. It could very well be the case that P(D = d) is very low, but when we know H = h, P(D = d|H = h) gets much larger. In this case, the sign would be \geq . It could also be the case that P(D = d) is very high, but when we know H = h, P(D = d|H = h) gets much lower. In this case, the sign would be \leq . Therefore, we can only say that the question mark in P(H = h|D = d)? P(H = h) is **depends**.

2.1.2 ii: P(H = h|D = d) ? P(D = d|H = h)P(H = h)

Once again, we go back to Bayes Theorem, which says

$$P(H = h|D = d) = \frac{P(D = d|H = h)P(H = h)}{P(D = d)}$$
(15)

Now, the question mark only depends on $\frac{1}{P(D=d)}$. From the axioms of probability, we know that $P(D=d) \leq 1$ This means that, due to this fact,

$$P(H = h|D = d) \le P(D = d|H = h)P(H = h)$$
 (16)

2.2 Part b

In this problem we are given random variables X and Y which have a joint distribution p(x,y).

2.2.1 i: $\mathbb{E}[X] = \mathbb{E}_Y[\mathbb{E}_X[X|Y]]$

From definition, we know

$$\mathbb{E}_X[X|Y]] = \int \frac{xp(x,y)}{p_y(y)} dx \tag{17}$$

Therefore, \mathbb{E}_Y of the above would be:

$$\mathbb{E}_Y[\mathbb{E}_X[X|Y]] = \int \left(\int \frac{xp(x,y)}{p_y(y)} dx\right) p_y(y) dy \tag{18}$$

To start, since $p_y(y)$ is non-dependent on x, we can pull that term out of the dx term. This means

$$= \int \left(\int x p(x,y) dx \right) \frac{p_y(y)}{p_y(y)} dy = \int \left(\int x p(x,y) dx \right) dy \tag{19}$$

Lastly, due to the properties of integrals, we know:

$$\int \left(\int x p(x,y) dx \right) dy = \int \left(\int p(x,y) dy \right) x dx \tag{20}$$

And we know $\int p(x,y)dy = p_x(x)$, so therefore the integral becomes:

$$\int \left(\int p(x,y)dy \right) xdx = \int p_x(x)xdx \tag{21}$$

which, by definition, $\mathbb{E}[X] = \int p_x(x)xdx$ and the result is proved.

2.2.2 ii: $var[X] = \mathbb{E}_Y[var_X[X|Y]] + var_Y[\mathbb{E}_X[X|Y]]$

One important fact from class is that:

$$var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$
(22)

With this fact, we can expand $\mathbb{E}_Y[\operatorname{var}_X[X|Y]] + \operatorname{var}_Y[\mathbb{E}_X[X|Y]]$ to

$$\mathbb{E}_{y}\left(\mathbb{E}_{x}[([X|Y] - \mathbb{E}_{x}[X|Y])^{2}]\right) + \mathbb{E}_{y}\left(\left\{\mathbb{E}_{x}[X|Y] - \mathbb{E}_{y}\mathbb{E}_{x}[X|Y]\right\}^{2}\right) \tag{23}$$

From part i of this problem, we know $\mathbb{E}[X] = \mathbb{E}_Y[\mathbb{E}_X[X|Y]]$ and therefore the below can be reformulated as

$$\mathbb{E}_{y}\left(\mathbb{E}_{x}[([X|Y] - \mathbb{E}_{x}[X|Y])^{2}]\right) + \mathbb{E}_{y}\left([\mathbb{E}_{x}[X|Y] - \mathbb{E}[X]]^{2}\right)$$

$$= \mathbb{E}_{y}\left\{\mathbb{E}_{x}([X|Y]^{2}) - 2\mathbb{E}_{x}[X|Y]\mathbb{E}_{x}[X|Y] + (\mathbb{E}_{x}[X|Y])^{2} + (\mathbb{E}_{x}[X|Y])^{2} - 2\mathbb{E}_{x}[X|Y]\mathbb{E}[X] + \mathbb{E}[X]^{2}\right\}$$
(25)

$$= \mathbb{E}_y \left\{ \mathbb{E}_x([X|Y]^2) - 2\mathbb{E}_x[X|Y]\mathbb{E}[X] + \mathbb{E}[X]^2 \right\} \text{ Move the } \mathbb{E}_y \text{ inside}$$
 (26)

$$= \mathbb{E}_y \mathbb{E}_x([X|Y]^2) - 2\mathbb{E}_y \mathbb{E}_x[X|Y]\mathbb{E}[X] + \mathbb{E}[X]^2 \text{ since } \mathbb{E}[X] = \mathbb{E}_Y[\mathbb{E}_X[X|Y]]$$
 (27)

$$= \mathbb{E}_y \mathbb{E}_x([X|Y]^2) - (\mathbb{E}_x[X])^2 \tag{28}$$

So what we must prove is $\mathbb{E}_y \mathbb{E}_x([X|Y]^2) = \mathbb{E}(X^2)$. From class, we know this term is:

$$\int \left(\int x^2 p(x|y) dx \right) p_y(y) dy = \int \left(\int x^2 \frac{p(x,y)}{p_y(y)} dx \right) p_y(y) dy \tag{29}$$

Using the logic from part i, this integral can be reduced to:

$$\int x^2 p_x(x) dx = \mathbb{E}(X^2) \tag{30}$$

which means (28) is

$$\mathbb{E}(X^2) - (\mathbb{E}[X])^2 = var[X] \tag{31}$$

and the theorem is proved.

3 Problem 3

Using the spectral decomposition, we know that $Au_i = \lambda_i u_i$, where u_i is the i^{th} column of a $d \times d$ matrix U such that $U^TU = I$ and $A = U\Lambda U^T$. λ_i is the i^{th} eigenvalue and $\Lambda = diag(\lambda_1, \ldots, \lambda_d)$. Since $U^TU = I$, we can say

$$u_j^T u_i = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$
 (32)

3.1 Part a: Prove A is PSD $\Leftrightarrow \lambda_i \geq 0$ for each i

$3.1.1 \Rightarrow$

For now, we assume that A is PSD, which means for all $x \in \mathbb{R}^d$, $x^T A x \ge 0$. Additionally, we know that

$$Au_i = \lambda_i u_i \tag{33}$$

For each eigenvalue $diag(\lambda_1, \ldots, \lambda_d)$. Multiplying each side by u_i^T we get

$$u_i^T A u_i = u_i^T \lambda_i u_i$$
 since λ_i is a scalar (34)

$$u_i^T A u_i = u_i^T u_i \lambda_i = \lambda_i \tag{35}$$

So we get the important relation $u_i^T A u_i = \lambda_i$, and we know, from the assumption A is PSD, that $u_i^T A u_i \geq 0$ for any u_i . Therefore, $0 \leq u_i^T A u_i = \lambda_i$ and $\lambda_i \geq 0$ in order for the relation $A u_i = \lambda_i u_i$ to hold. This will hold for any $i \in \{1, \ldots, d\}$, and therefore we can say $\lambda_i \geq 0$ for $i \in \{1, \ldots, d\}$ and the theorem is proved.

$3.1.2 \Leftarrow$

Now, we assume that $\lambda_i \geq 0$ for each i, and must prove that $x^T A x \geq 0$ for all $x \neq 0$. To complete this proof, take any vector x and define it as $x = U\tilde{x}$. Since $UU^T = I$, we know U has an inverse and therefore is full rank. Therefore, $x = U\tilde{x}$ will not suffer any loss of rank and can span $\mathbb{R}^{d \times 1}$. Using this, it is easy to see:

$$x^T A x = \tilde{x}^T U^T A U \tilde{x}$$
 from eigendecomposition know $U^T A U = \Lambda$ (36)

$$= \tilde{x}^T \Lambda \tilde{x} \tag{37}$$

Since we know $\Lambda \geq 0$, by definition of a positive semi-definite matrix $\tilde{x}^T \Lambda \tilde{x} \geq 0$ and therefore

$$x^T A x = \tilde{x}^T \Lambda \tilde{x} \ge 0 \tag{38}$$

and therefore, via the equality $x^T A x \ge 0$ and the proof is complete.

3.2 Part b: Prove A is PD $\Leftrightarrow \lambda_i > 0$ for each i

The proof for both necessity and sufficiency follow the exact same procedure as in part a, with the only exception being the change from ≥ 0 to > 0.

$3.2.1 \Rightarrow$

For now, we assume that A is PD, which means for all $x \in \mathbb{R}^d$, $x^T A x > 0$. Additionally, we know that

$$Au_i = \lambda_i u_i \tag{39}$$

For each eigenvalue $diag(\lambda_1, \ldots, \lambda_d)$. Multiplying each side by u_i^T we get

$$u_i^T A u_i = u_i^T \lambda_i u_i$$
 since λ_i is a scalar (40)

$$u_i^T A u_i = u_i^T u_i \lambda_i = \lambda_i \tag{41}$$

So we get the important relation $u_i^T A u_i = \lambda_i$, and we know, from the assumption A is PD, that $u_i^T A u_i > 0$ for any u_i . Therefore, $0 < u_i^T A u_i = \lambda_i$ and $\lambda_i > 0$ in order for the relation $A u_i = \lambda_i u_i$ to hold. This will hold for any $i \in \{1, \ldots, d\}$, and therefore we can say $\lambda_i > 0$ for $i \in \{1, \ldots, d\}$ and the theorem is proved.

$3.2.2 \Leftarrow$

Now, we assume that $\lambda_i > 0$ for each i, and must prove that $x^T A x > 0$. To complete this proof, take any vector x and define it as $x = U \tilde{x}$. Since $U U^T = I$, we know U has an inverse and therefore is full rank. Therefore, $x = U \tilde{x}$ will not suffer any loss of rank and can span $\mathbb{R}^{d \times 1}$. Using this, it is easy to see:

$$x^T A x = \tilde{x}^T U^T A U \tilde{x}$$
 from eigendecomposition know $U^T A U = \Lambda$ (42)

$$= \tilde{x}^T \Lambda \tilde{x} \tag{43}$$

Since we know $\Lambda > 0$, by definition of a positive semi-definite matrix $\tilde{x}^T \Lambda \tilde{x} > 0$ and therefore

$$x^T A x = \tilde{x}^T \Lambda \tilde{x} > 0 \tag{44}$$

and therefore, via the equality $x^T A x > 0$ and the proof is complete.

4 Problem 4

For this problem, we are given iid Poisson random variables $\{X_1, \ldots, X_n\}$ with intensity parameter λ and asked to determine the maximum likelihood estimator of λ . The maximum likelihood estimate is defined as

$$\hat{\theta} \in \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log f(X_i; \lambda) \tag{45}$$

Where the Poisson distribution $f(X_i; \lambda)$ is

$$f(X_i; \lambda) = \frac{\lambda^{x_i} e^{-\lambda}}{x_i!} \tag{46}$$

Therefore, the log sum would be

$$\sum_{i=1}^{n} \log \left(\frac{\lambda^{x_i} e^{-\lambda}}{x_i!} \right) = \sum_{i=1}^{n} \left(x_i \log(\lambda) - \lambda - \log(x_i!) \right) \tag{47}$$

$$= \sum_{i=1}^{n} x_i \log(\lambda) - n\lambda - \sum_{i=1}^{n} \log(x_i!)$$
(48)

To find the maximum, we find $\hat{\lambda}$ such that $\delta\left(\sum_{i=1}^{n} \log f(X_i; \lambda)\right) / \delta \hat{\lambda} = 0$.

$$=\frac{\sum_{i=1}^{n} x_i}{\hat{\lambda}} - n = 0 \Rightarrow \hat{\lambda} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$\tag{49}$$

And therefore $\hat{\lambda} = \frac{\sum_{i=1}^{n} x_i}{n}$ is the maximum likelihood estimator.

5 Problem 5

5.1 Part a

We are asked to show that is if f is strictly convex, then f has at most one global minimizer. To show this, I will use the constraint:

$$f(x+y) \ge f(x) + \nabla_x f(x)y \tag{50}$$

If f is strictly convex, this means that this constraint holds for every $x, y \in \mathbb{R}$. I will prove this by contradiction. Assume we have two global minimums x_1, x_2 in our strictly convex function. Since our set of $x \in \mathbb{R}$ is the entire real domain, we know at the minimum, we know that $\nabla_x f(x) = 0$. I.e., it is not a closed set of points but rather the entire domain and the minimum won't occur at the boundary. Therefore, at the minimum points x_1 and x_2

$$f(x_1 + y_1) \ge f(x_1) + 0 * y_1 \tag{51}$$

$$f(x_2 + y_2) \ge f(x_2) + 0 * y_2 \tag{52}$$

For any $y_1, y_2 \in \mathbb{R}$. For arguments sake, set $y_1 = x_2 - x_1$ and $y_2 = x_1 - x_2$ and the above become:

$$f(x_2) \ge f(x_1) \tag{53}$$

$$f(x_1) \ge f(x_2) \tag{54}$$

And the only way the above can hold is if $x_1 = x_2$ and therefore there can only be one global minimizer.

5.2 Part b

For the next two parts, we can use the following facts. The first of which is that a twice continually differentiable function admits the quadratic expansion

$$f(x) = f(y) + \langle \nabla f(y), x - y \rangle + \frac{1}{2} \langle x - y, \nabla^2 f(y)(x - y) \rangle + \sigma(\|x - y\|^2)$$
 (55)

where $\sigma(t)$ denotes a function satisfying $\lim_{t\to 0} \frac{\sigma(t)}{t} = 0$, as well as the expansion

$$f(x) = f(y) + \langle \nabla f(y), x - y \rangle + \frac{1}{2} \langle x - y, \nabla^2 f(y + t(x - y))(x - y) \rangle$$
 (56)

for some $t \in (0,1)$.

For this part of the problem, I will use Equation (55) to prove this fact. Let's say that our local minimum is at $x^* = y$, and therefore

$$f(x) = f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + \frac{1}{2} \langle x - x^*, \nabla^2 f(x^*)(x - x^*) \rangle + \sigma(\|x - x^*\|^2)$$
 (57)

At a local minimum, we know that $\nabla f(x^*) = 0$ and therefore the above can be simplified to:

$$f(x) - f(x^*) = \frac{1}{2} \langle x - x^*, \nabla^2 f(x^*)(x - x^*) \rangle + \sigma(\|x - x^*\|^2)$$
 (58)

By definition, any point around the local minimum must be larger than the minimum, i.e.,

$$f(x) - f(x^*) > 0 (59)$$

Let us now consider the case when $x \to x^*$, or our reference point x starts to approach the local minimum. From definition, we know $\lim_{t\to 0} \frac{\sigma(t)}{t} = 0$, or the σ function divided by t approaches zero. In the above equation, we simply have $\sigma(\|x-x^*\|^2)$ without the division of $\|x-x^*\|^2$. This means that this function will approach 0 faster as $x \to x^*$. Therefore, as $x \to x^*$, σ becomes very small or even approaches zero and will not factor much into the equation and we can say:

$$0 < f(x) - f(x^*) \approx \frac{1}{2} \langle x - x^*, \nabla^2 f(x^*)(x - x^*) \rangle$$
 (60)

$$\Rightarrow 0 < \langle x - x^*, \nabla^2 f(x^*)(x - x^*) \rangle \tag{61}$$

$$0 < (x - x^*)^T \nabla^2 f(x^*)(x - x^*)$$
(62)

And therefore $\nabla^2 f(x^*)$ must be positive definite (by the definition of a positive definite matrix).

5.3 Part c

For this part, I consider Equation (56), which states

$$f(x) = f(y) + \langle \nabla f(y), x - y \rangle + \frac{1}{2} \langle x - y, \nabla^2 f(y + t(x - y))(x - y) \rangle$$
 (63)

Additionally, from convex functions we know that, for any $x, y \in \mathbb{R}^d$,

$$f(x+y) \ge f(y) + \nabla f(y)^T x \tag{64}$$

$$\Rightarrow f(x+y) - f(y) - \nabla f(y)^T x \ge 0 \tag{65}$$

The constraint above can be simplified to

$$f(x) = f(y) + \nabla f(y)^{T} (x - y) + \frac{1}{2} (x - y)^{T} \nabla^{2} f(y + t(x - y)) (x - y)$$
(66)

For our purposes, say we define $x = \bar{x} + y$. The above equation then becomes:

$$f(\bar{x} + y) = f(y) + \nabla f(y)^{T}(\bar{x}) + \frac{1}{2}\bar{x}^{T} \nabla^{2} f(y + t\bar{x})\bar{x}$$
(67)

or equivalently

$$f(\bar{x} + y) - f(y) - \nabla f(y)^{T}(\bar{x}) = \frac{1}{2}\bar{x}^{T} \nabla^{2} f(y + t\bar{x})\bar{x}$$
 (68)

And in order for this function to be convex, we need

$$0 \le (\bar{x} + y) - f(y) - \nabla f(y)^{T}(\bar{x}) = \frac{1}{2}\bar{x}^{T} \nabla^{2} f(y + t\bar{x}) \bar{x}$$
 (69)

$$\Rightarrow 0 \le \frac{1}{2}\bar{x}^T \nabla^2 f(y + t\bar{x})\bar{x} \tag{70}$$

And therefore, I have shown that the Hessian needs to be positive definite for any $x, y \in \mathbb{R}^d$ and $t \in (0,1)$. As a note, the expression $y + t\bar{x}$ will cover all of \mathbb{R}^d because \bar{x}, y spans then entire \mathbb{R}^d .

5.4 Part d

We are given the function $f(x) = \frac{1}{2}x^TAx + b^Tx + c$, where A is symmetric. We are asked to derive the Hessian of f, which would be derived as

$$f(x) = \frac{1}{2}x^T A x + b^T x + c \tag{71}$$

$$\Rightarrow \nabla_x f(x) = \frac{1}{2} A x + \frac{1}{2} A x + b^T = A x + b^T$$

$$\tag{72}$$

$$\Rightarrow \nabla_x^2 f(x) = A \tag{73}$$

From the above sections, we know that a positive semi-definite Hessian implies convexity. It can also be said that a positive definite Hessian implies strict convexity, since there are no points which $\nabla_x^2 f(x) = 0$ and therefore the convexity conditions will always strictly hold. Therefore, we can say

- $A \succeq 0 \Rightarrow f$ is convex
- $A \succ 0 \Rightarrow f$ is strictly convex