Claims Listing:

The status of pending claims 1-18 is as follows.

1. (Previously Amended) A device for forming an image from a plurality of sub images, the device comprising:

a single-surface detector which includes a plurality of sensor elements for generating image data, said sensor elements arranged in groups for forming a plurality of sub-areas (T1 to TN) of the image, where each sub-image corresponds to each sub-area;

read-out units (V₁ to V_N) associated with the sub-areas (T₁ to T_N) of the image, an analysis unit arranged to evaluate image data from adjoining image areas (S₆₃ and S₆₆) of neighboring sub-areas (T₁ and T₂) and to generate correction data, and a correction unit arranged to correct incorrect image data by means of the correction

a correction unit arranged to correct incorrect image data by means of the correction data.

- 2. (Previously Amended) The device as claimed in claim 1, wherein the sensor elements arranged in rows and columns forming a matrix.
- 3. (Previously Amended) The device as claimed in claim 2, wherein the rows or columns, or parts thereof, constitute an image area, that a plurality of image areas constitute a sub-area, and wherein amplifiers are included to read out image data from the sub-areas.
- 4. (Previously Amended) The device as claimed in claim 1, further comprising a memory for storing the correction data.
- 5. (Previously Amended) The device as claimed in claim 1, wherein the image data is applied to the analysis unit at a reduced rate.
- 6. (Previously Amended) The device as claimed in claim 3, wherein the analysis unit is arranged to receive image data from adjoining columns of neighboring amplifiers, and includes a histogram generator for generating histograms of the image data received, and

- a summing unit for forming cumulative histograms from the histograms, and an adaptation unit for forming a functional dependency between the amplification characteristics of the amplifiers of neighboring columns and for generating correction data.
- 7. (Previously Amended) The device as claimed in claim 6, wherein the histogram generator is arranged to receive the image data and to generate histograms over a selectable period of time.
- 8. (Previously Amended) The device as claimed in claim 1, wherein the analysis unit further comprising means for forming an estimated value (SW₆₅) for the image value (GW₆₅) of a pixel (P₆₅) of a sub-area (T₂) to be corrected, the pixel (P₆₅) being situated at a boundary (G) with a neighboring sub-area (T₁), while utilizing an image value (GW₆₄) of the adjoining image area (S₆₄) of the neighboring sub-area (T₁), and means for forming a correction value for the relevant image value (GW₆₅) in the sub-area (T₂) to be corrected by comparison of the actual image value SW₆₅ of the pixel (P₆₅) with the estimated value (SW₆₅).
- 9. (Previously Amended) The device as claimed in claim 8, wherein the analysis unit further comprises means for extrapolating across the boundary (G) the image values (GW₆₃, GW₆₄) of pixels (P₆₃, P₆₄) of an image area (S₆₃, S₆₄) of the neighboring sub-area (T₁), adjoining the pixel (P₆₅) of the sub-area (T₂) to be corrected.
- 10. (Previously Amended) A method of forming an image using image data acquired from a plurality of sub-areas (T_1 to T_N) of a flat dynamic x-ray detector, wherein a read-out unit (V_1 to V_N) is associated with each sub-area, and wherein the image data from adjoining image areas (S_{63} and S_{66}) of neighboring sub-areas (T_1 and T_2) is evaluated in order to mitigate differences between amplifier characteristics.
- 11. (Previously Amended) The method as claimed in claim 10, further including determining an estimated value (SW₆₅) for an image value (GW₆₅) of a pixel (P₆₅) of a sub-area (T₂) to be corrected, the pixel (P₆₅) located at a boundary (G) with a neighboring sub-area (T₁), said estimating

carried out utilizing the image value (GW_{64}) of a pixel (P_{64}) of the adjoining image area (S_{64}) of the neighboring sub-area (T_1) , and determining a correction value for the relevant image value (GW_{65}) in the sub-area (T_2) to be corrected by comparison of the actual image value (GW_{65}) of the pixel (P_{65}) and the estimated value (SW_{65}) .

- 12. (Previously Amended) The method as claimed in claim 10, further including using a directly adjacent pixel of the neighboring sub-area as the estimated value of the image value.
- 13. (Previously Amended) The method as claimed in claim 10, further including extrapolating the image values (GW_{63} , GW_{64}) of pixels (P_{63} , P_{64}) of the adjoining image area (S_{63} , S_{64}) of the neighboring sub-area (S_{63} , S_{64}) across the boundary (S_{65}).
- 14. (Previously Amended) The method as claimed in claim 10, further including forming a first correction value for the image value (GW_{65}) of a pixel (P_{65}) of the sub-area (P_{65}) to be corrected, and determining an estimated value (P_{64}) for the neighboring pixel (P_{65}) for a neighboring pixel (P_{65}) of the sub-area (P_{65}) to be corrected, the forming and determining utilizing image values (P_{65}) of the sub-area (P_{65}) to be corrected, forming a second correction value by comparison of the estimated value (P_{64}) and the actual image value (P_{64}) of the neighboring pixel (P_{64}), and forming a common correction value for the relevant image value (P_{65}) of the sub-area (P_{65}) to be corrected from the first and the second correction value.
- 15. (Previously Amended) The method as claimed in claim 10, further including forming a common correction value for the relevant image value in the sub-area to be corrected from the correction values for the same image values of different pixels of the sub-area to be corrected.
- 16. (Previously Amended) The method as claimed in claim 10, further including storing the correction values for the image values of the individual sub-areas (T_1 to T_N) in an adaptation table (LUT) and are fetched from this table (LUT) for correction.

17. (Previously Amended) An X-ray examination apparatus which includes an X-ray source for emitting X-rays and for forming an X-ray image, a flat dynamic X-ray detector for forming an optical image from the X-ray image, which detector includes sensor elements arranged in rows and columns and at least two amplifiers (V₁ to V_N) for reading out detected image data, at least one amplifier being associated with each of a plurality of sub-areas (T₁ to T_N) in order to read out detected image data, comprising

an analysis unit for forming correction data on the basis of the evaluation of image data from adjoining image areas (S_{64} and S_{65}) of neighboring sub-areas (T_1 and T_2), and a correction unit for correcting the incorrect image data by means of the correction data.

18. (Previously Amended) A computer program for the correction of image data derived from a single-surface detector comprising a plurality of sub-areas (T_1 to T_N), wherein a respective read-out unit (V_1 to V_N) is associated with sub-areas (T_1 to T_N) of the image and image data from image areas (S_{64} and S_{65}) of adjoining sub-areas (T_1 and T_2) of neighboring read-out units (V_1 and V_2) is evaluated by formation of histograms in order to generate correction data after integration of the histograms, which correction data is used to adapt the image data from one sub-area (T_2) to the amplifier characteristic of the read-out unit (V_1) which amplifies the adjoining sub-area (T_1).