

درس «مبانی کامپیوتر و برنامهسازی»

توابع بازگشتی

سرفصل مطالب

- مسایلی که به صورت بازگشتی حل میشوند
 - تابع بازگشتی
 - کاربردهای توابع بازگشتی
 - چند مثال

راهحلهای بازگشتی

- برخی از مسایل، ذاتاً بازگشتی تعریف میشوند
- مثلاً: فیبوناچی n اُم عبارت است از مجموع فیبوناچی n-1 اُم و فیبوناچی n-2 اُم
 - راه حل برخی از مسایل به صورت **بازگشتی** قابل بیان است
 - n! محاسبه

$$n! = n * (n-1)!$$
 وراه حل بازگشتی:

$$n! = 1 * 2 * * n$$
 : وراه حل غيربازگشتى : o

- در راه حلهای بازگشتی، شرایط پایه را باید مشخص کنیم. مثلاً:
 - فیبوناچی یکم و دوم برابر با ۱ هستند.
 - یکفاکتوریل (!1) برابر با ۱ است.
- در این صورت راهحل به صورت استقرایی قابل اجرا است (چرخه بینهایت تشکیل نمیشود)

توابع بازگشتی

- میدانیم هر تابع می تواند توابع دیگری را فراخوانی کند
 - فراخوانی تودرتو
- مثلاً در پیادهسازی permutation و combination از تابع factorial استفاده کردیم
 - اما هر تابع می تواند خودش را هم فراخوانی کند
 - مثل یک تابع دیگر، اما خودش را صدا میزند
 - همه فرایند، مثل فراخوانی یک تابع دیگر است (مراسم صدا زدن، پشته، ارسال پارامترها و ...)
 - به این گونه توابع (که خودشان را فراخوانی می کنند) تابع بازگشتی می گویند

مثال: فاكتوريل

• تابع فاکتوریل را به صورت بازگشتی پیادهسازی کنید

```
int factorial(int n) {
   if(n<0)
     return 0;
   int f = 1;
   while(n>1)
     f*=n--;
   return f;
}
```

```
int factorial(int n){
   if(n==1) return 1;
   return n* factorial (n-1);
}
```

- به شرایط پایه دقت کنید
 - $n! = 1 \leftarrow n == 1 \bullet$
- بدون شرایط پایه، چه مشکلی وجود داشت؟
 - کدامیک سادهتر است؟

بررسی پشته فراخوانی تابع factorial

```
int factorial(int n){
    if(n==1) return 1;
    int result=n*factorial(n-1);
    return result;
}
```

• فرض كنيد factorial(3) فراخواني شود

result	
n	1
result	?
n	2
result	?
n	3

$$f(4) = \begin{cases} f(3) = f(4) = \\ 4 \cdot f(3) \end{cases}$$
 $f(4) = \begin{cases} f(4) = \\ 4 \cdot f(3) \end{cases}$

$$f(2)= f(3)= 2 \cdot f(1) 3 \cdot f(2)$$

$$f(3) = f(4) = 3 \cdot f(2) + 4 \cdot f(3)$$

24,

صادق على اكبرى

int fib(int n);

تمرير

• تابع فیبوناچی را به صورت بازگشتی پیادهسازی کنید

```
int fib(int n) {
                                                    • به شرایط یایه دقت کنید
   if(n<=0)
      return 0;
                                                      • کدام یک سادهتر است؟
   if(n==1)
      return 1;
                                                      • کدامیک سریعتر است؟
   int a = 1, b = 1;
   for (int i = 3; i <= n; i++) {
      int c = a + b;
      a = b;
      b = c;
               int fib(int n){
                  return (n==1 | | n==2) ? 1 : fib(n-1)+fib(n-2);
   return b;
```



```
int fib(int n){
  return (n==1||n==2)?1:fib(n-1)+fib(n-2);
}
```

درخت اجرای (7) fib


```
int fib(int n){
  return (n==1 || n==2) ? 1 : fib(n-1)+fib(n-2);
}
```


فراخوانی تابع $\mathrm{fib}(5)$ را دنبال کنیدlacktriangle

دقت کنید: بعضی از زیرمسألهها چند بار حل شدند مثلاً fib(3) دو بار محاسبه شد


```
int fib(int n){
  return (n==1 || n==2) ? 1 : fib(n-1)+fib(n-2);
}
```

تمرير

• پشته فراخوانی (5)

			f(2)	f (1)											
		f (3)	f (3)	f (3)	f (3)		f(2)				f (2)	f (1)			
	f (4)	f(4)	f (4)	f (4)		f (3)	f (3)	f (3)	f (3)						
f (5)															

جریان اجرای (4) fib

مرور راهحلهای بازگشتی

- در این رویکرد، مسأله را به مسایل کوچکتر تقسیم میکنیم
 - اگر مسأله کوچکتر حل شود، حل مسأله بزرگتر آسان است
- مثال: fib(n-1) را با کمک fib(n-1) و fib(n-1) حل می کنیم
- مثال: factorial(n) را با کمک factorial(n-1) حل می کنیم
- همچنین یک شرایط اولیه، برای خاتمه شرایط بازگشتی تعیین میکنیم
 - تا ابد که نمی شود مسأله را به مسایل کوچکتر تقسیم کرد!
 - بالاخره در کوچکترین مسأله، جواب بدیهی یا ساده وجود دارد
 - مثلاً: 1! = 1! یا 1!=fib(2) •

مثال: برنامه زیر چه چیزی نمایش میدهد؟

```
void show_number(int n)
   cout<<n<<end1;</pre>
   show_number(n-1);
int main()
   show number(5);
```

• و بعد از چاپ تعداد زیادی عدد، برنامه با خطا مواجه میشود و اجرایش قطع میشود

مثال: برنامه زیر چه چیزی نمایش میدهد؟

```
void show_number(int n)
   if(n==0)
      return;
   cout<<n<<end1;</pre>
   show number(n-1);
int main()
   show_number(5);
```

```
void show_number(int n)
   if(n==0)
      return;
   cout<<n<<end1;</pre>
   show number(n-1);
   cout<<n<<end1;</pre>
int main()
   show number(5);
```

حلقه یا بازگشتی؟ مسأله این است...

بسیاری از مسایل را هم با حلقه و هم

به صورت بازگشتی میتوانیم حل کنیم

- مزایا و معایب راه حل بازگشتی:
- عیب: معمولاً کارایی کمتری دارد (از نظر سرعت و حافظه بدتر است)
 - بار بالا به خاطر فراخوانی تودرتو و بازگشتی تابع
- نگه داشتن آدرس بازگشتی، مراسم فراخوانی تابع، ایجاد متغیرها، پشته بزرگ میشود و ...
 - عیب: ممکن است یک زیرمسأله چند بار حل میشود
 - محاسبه می شود fib(2) می مثلاً در جریان محاسبه حل fib(4) ، دو بار
- مزیت: حل برخی مسایل به صورت غیربازگشتی، بسیار سخت تر یا گاهی غیرممکن است
 - مزیت: معمولاً برنامه سادهتر و کوتاهتر است
 - خوانایی و فهم برنامه راحت تر است
 - معمولاً طراحي راهحل سادهتر است

مسأله برج هانوي

- در معبدی در شرق آسیا، سه میله الماسی قرار داشت که یکی از آنها حاوی ۶۴ قرص (حلقه) طلا بود
- حلقهها در اندازههای مختلف به ترتیب نزولی روی هم چیده شده بودند
- کاهنان معبد میخواستند حلقههای طلا را از آن میله به میلهای دیگر انتقال دهند
 - به نحوی که هیچگاه یک حلقه بزرگتر روی یک حلقه کوچکتر قرار نگیرد

• آنها باور داشتند که با تمام شدن انتقال حلقهها، عمر جهان نیز به پایان خواهد رسید

مشاهده


```
void Hanoi(int m, char from, char help, char to);
int main() {
   int discs;
   cout << "Enter the number of discs: " << endl;
   cin >> discs;
   Hanoi(discs, 'A', 'B', 'C');
void Hanoi(int m, char from, char help, char to) {
   if (m == 1)
                                                 Enter the number of discs:
      cout << from << " => " << to << endl;</pre>
                                                 A => C
   else {
                                                 A => B
      Hanoi(m - 1, from, to, help);
                                                 C \Rightarrow B
      cout << from << " => " << to << endl;
                                                 A => C
      Hanoi(m - 1, help, from, to);
                                                 B \Rightarrow A
                                                 B \Rightarrow C
                                                 A => C
```

صادق على اكبري

مبانی کامپیوتر و برنامهسازی

توابع بازگشتی

تمرين

- آیا کاهنان درست فکر می کردند؟
- با پایان کار انتقال حلقهها، عمر دنیا به پایان میرسد؟
 - چند حرکت برای انتقال ۶۴ حلقه لازم است؟
 - فرض کنید هر حرکت یک ثانیه طول میکشد
 - نتیجه: ۵۸۵ میلیارد سال
- برنامهای بنویسید که تعداد حرکتهای لازم را حساب کند
- کافیست برنامهای که برای حل مسأله برج هانوی نوشتید را اندکی تغییر دهید
 - راه حل بهتری برای پیدا کردن تعداد حرکتهای لازم؟
 - ثابت کنید تعداد حرکتهای لازم 2^{N} -1 است N تعداد حلقههاست)
- اگر مسأله فقط پیدا کردن تعداد حرکتهای لازم بود، آیا راه حل بازگشتی مناسب بود؟

تمرين

- ullet فرض کنید N سکه در اختیار دارید که هر یک داری دو طرف سفید و سیاه هستند
 - با این فرض که هیچ دو سکه سیاهی کنار هم نباشند،
 - به چند حالت می توانیم این سکهها را کنار هم قرار دهیم؟
- ullet تابعی بازگشتی بنویسید که N را به عنوان پارامتر بگیرد و تعداد حالتهای ممکن را برگرداند

• راهنمایی:

پاسخ

- اشد $\mathbf{F}(\mathbf{N})$ باشد ورض کنید تعداد حالتهای ممکن برای چینش $\mathbf{F}(\mathbf{N})$ باشد
 - پاسخ را به دو زیرمسأله تقسیم می کنیم:
 - ۱- در خانه اول سکه سفید بگذاریم و ۲- در خانه اول سکه سیاه بگذاریم
 - اگر در خانه اول، سکه سفید بگذارید:
 - F(N-1) خانه بعدی را هرطور بخواهید می توانید بچینید N-1
 - اگر در خانه اول، سکه سیاه بگذارید:
 - مجبورید خانه دوم را سفید بگذارید
- F(N-2) خانه بعدی را هرطور بخواهید میتوانید بچینید N-2 \bullet

 $\mathbf{F}(1) = 2$

 $\mathbf{F(2)} = 3$

F(N) = F(N-1) + F(N-2)

جمعبندي

- حل مسایل به صورت بازگشتی
 - توابع بازگشتی
 - مزایا و معایب توابع بازگشتی

مطالعه

• Chapter 5 of C How to Program (Deitel & Deitel), 7th edition

C++ و یا بخشهای متناظر در کتاب \bullet

5.14 Recursion

187

جستجوی بیشتر

• مفهوم برنامهنویسی پویا به چه معناست و چه ارتباطی با برنامهنویسی بازگشتی دارد؟ (Dynamic Programming)

پایان