Géométrie Différentielle

Géométrie Locale des Applications Différentiables

Emmanuel Giroux

5 février 2024

Table des matières

1	App	olications Différentiables, Propriétés et Exemples	1
	1.1	Relations avec les Polynômes	1
	1.2	Construction par Convolution	2
2	2 Structure Locale des Applications Différentiables		
		Inversion Locale	
	2.2	Applications de rang Constant	5
	2.3	Applications de Rang Maximal	6
3	Applications Différentiables et Mesure		7
	3.1	Petit Théorème de Sard	7
	3.2	Théorème de Sard	8

1 Applications Différentiables, Propriétés et Exemples

1.1 Relations avec les Polynômes

Définition 1.1: Applications Différentiables, Lisses

Soit U un ouvert de \mathbb{R}^n . Une fonction $\varphi:U\to\mathbb{R}$ est $\mathcal{C}^r,\ r\geq 1$ si toutes ses dérivées partielles d'ordre $s,\ 1\leq s\leq r$, existent et sont continues. Une fonction \mathcal{C}^r est donc \mathcal{C}^s pour $s\leq r$.

On dit que φ est \mathcal{C}^{∞} ou lisse si elle est \mathcal{C}^r pour tout $r \geq 1$.

Théorème 1.1: Schwarz

Soit U un ouvert de \mathbb{R}^n et $\varphi: U \to \mathbb{R}$ une fonction \mathcal{C}^1 . Si les dérivées partielles $\partial_{x_j}\partial_{x_i}\varphi$ et $\partial_{x_i}\partial_{x_j}\varphi$ existent et sont continues sur U, elles sont égales.

Proposition 1.1: Intégration d'une Différentielle sur une Courbe

Soit $C = \gamma([a,b]) \subseteq \mathbb{R}^n$ une courbe paramétrée par une application \mathcal{C}^1 par morceaux γ . On définit

$$\int_{C} d\varphi = \int_{a}^{b} d_{\gamma(t)} \varphi (\gamma'(t)) dt$$
$$= \int_{a}^{b} (\varphi \circ \gamma)'(t) dt = \varphi(\gamma(b)) - \varphi(\gamma(a))$$

Remarque 1.1: Reformulation du Théorème de Taylor

Sur l'ensemble des fonctions réelles définies au voisinage de 0 dans \mathbb{R}^n on met la relation d'équivalence :

$$\varphi_1 \sim_r \varphi_2 \text{ si } \varphi_1 - \varphi_2 =_{x \to 0} o(|x|^r)$$

Le théorème de Taylor dit que, si on restreint cette relation à l'ensemble des fonctions C^r , chaque classe d'équivalence contient un et un seul polynôme de degré $\leq r$. Le quotient est ainsi un sev de dimension finie.

Théorème 1.2: Weierstraß

Soit K un compact de \mathbb{R}^n . Toute fonctions continue de K dans \mathbb{R} est limite uniforme de polynômes $\mathbb{R}^n \to \mathbb{R}$ restreints à K.

1.2 Construction par Convolution

Proposition 1.2: Fonctions Cloches

Soit $B(a, \delta) \subset \mathbb{R}^n$ la boule ouverte de rayon δ centrée en a. Il existe une fonction lisse $\chi : \mathbb{R}^n \to [0, 1]$ positive sur la boule et nulle en dehors.

Démonstration. Typiquement, on trouve

$$\chi(x) = \exp\left(\frac{1}{\left|x - a\right|^2 - \delta^2}\right)$$

Définition 1.2: Support

Soit $\varphi:X\to\mathbb{R}.$ Son support est le fermé :

$$Supp(\varphi): \overline{\{x \in U \mid \varphi(x) \neq 0\}}$$

Définition 1.3: Produit de Convolution

Le produit de convolution de deux fonctions intégrables φ,χ est la fonction intégrable :

$$(\varphi \star \chi)(x) = \int_{\mathbb{R}^n} \varphi(x - y) \chi(y) \, \mathrm{d}y$$

Lorsque χ est une fonction positive ou nulle d'intégrale 1, c'est à dire une densité de probabilité, la valeur de $\varphi \star \chi$ en un point x doit être vue comme la moyenne des valeurs de φ pour cette mesure de probabilité recentrée sur x.

Proposition 1.3: Indicatrice Normalisée

Pour $\delta > 0$ on considère $\chi_{\delta} = \frac{1}{2\delta} \mathbb{1}_{[-\delta,\delta]}$. On a, si φ est intégrable :

- $\int_{\mathbb{R}} (\varphi \star \chi_{\delta})(y) dy = \int_{\mathbb{R}} \varphi(y) dy \operatorname{car} \int_{\mathbb{R}} \chi_{\delta} = 1$
- $\operatorname{Supp}(\varphi \star \chi_{\delta}) \subseteq \operatorname{Supp}(\varphi) + [-\delta, \delta]$
- Si $\varphi = c$ est constante sur [a, b] de diamètre strictement plus grand que 2δ , alors $\varphi \star \chi_{\delta} = c$ sur $[a + \delta, b \delta]$.

Lemme 1.1: Régularité de la Convolée

Soit $\varphi: \mathbb{R} \to \mathbb{R}$ intégrable.

- 1. Si $|\varphi|$ est bornée par une constante μ , alors $\varphi \star \chi_\delta$ est μ/δ -lipschitzienne et donc continue.
- 2. Si φ est continue, alors $\varphi \star \chi_{\delta}$ est \mathcal{C}^1 et sa dérivée est donnée par

$$(\varphi \star \chi_{\delta})'(x) = \frac{\varphi(x+\delta) - \varphi(x-\delta)}{2\delta}$$

Par suite, si φ est \mathcal{C}^r , $\varphi \star \chi_{\delta}$ est \mathcal{C}^{r+1} .

Proposition 1.4: Convolution D'indicatrices

Soit δ_k une suite de nombres positifs dont la série converge. La suite ρ_k définie par :

$$\begin{cases} \rho_0 &= \chi_{\delta_0} \\ \rho_k &= \rho_{k-1} \star \chi_{\delta_k} \end{cases}$$

converge vers une fonction lisse ρ qui vérie $\rho(x)=0$ si et seulement si $|x|\geq \sum_{k\geq 0}\delta_k$. De plus, $\rho(x)=1$ si $|x|\leq \delta_0-\sum_{k\geq 1}\delta_k$.

Corollaire 1.1: Fonctions Cloches Revisitées

Soit $B(a, \delta) \subseteq \mathbb{R}^n$ la boule ouverte de rayon δ centrée en a. Il existe une fonction lisse $\chi : \mathbb{R}^n \to [0, 1]$ qui est positive sur $B(a, \delta)$ et nulle en dehors.

Démonstration. On pose $\chi(x) = \rho(|x-a|/\delta)$ où ρ est une fonction lisse positive sur [-1,1], nulle en dehors et constante près de 0. Une telle fonction existe par la proposition précédente.

Définition 1.4: Noyau Régularisant

On appelle noyau régularisant une fonction lisse, positive sur B(0,1) nulle en dehors et d'intégrale 1.

Définition 1.5: Construction de Noyaux

Soit ρ un noyau régularisant. Pour tout $\delta>0$ la fonction ρ_δ définie par

$$\rho_{\delta}(x) = \delta^{-n} \rho(x/\delta)$$

est toujours d'intégrale 1 et de support $\overline{B(0,\delta)}$.

Si $\varphi: U \to \mathbb{R}$ est \mathcal{C}^r sur U, la formule $\varphi \star \rho_\delta$ définit une fonction sur l'ouvert

$$U_{\delta} = \left\{ x \in U \mid \overline{B(x, \delta)} \subset U \right\}$$

qu'on peut écrire

$$\varphi \star \rho_{\delta}(x) = \int_{\mathbb{R}^n} \varphi(y) \rho_{\delta}(x - y) \, \mathrm{d}y$$

Proposition 1.5: Convolution avec un Noyau Régularisant

Les fonctions $\varphi \star \rho_{\delta}$ sont lisses et si $x \in U_{\delta}$:

$$\partial^{i}(\varphi \star \rho_{\delta})(x) = \int_{\mathbb{R}^{n}} \varphi(y) \delta^{i} \rho_{\delta}(x - y) \, \mathrm{d}y$$
$$= \int_{\mathbb{R}^{n}} \delta^{i} \varphi(y) \rho_{\delta}(x - y) \, \mathrm{d}y = \delta^{i} \varphi \star \rho_{\delta}$$

De plus, pour tout compact $K \subseteq U$, et tout $\varepsilon > 0$, il existe $\delta > 0$ tel que $K \subset U_{\delta}$ et

$$\|(\varphi \star \rho_{\delta}) - \varphi\|_{r,K} < \varepsilon$$

où $\left\|\psi\right\|_{r,K}=\sup\left\{\left|\partial^{i}\psi(x)\right|\mid x\in K, i\leq r\right\}$

2 Structure Locale des Applications Différentiables

2.1 Inversion Locale

Définition 2.1: Difféomorphisme

Une application $f: U \to V$ entre des ouverts U et V de \mathbb{R}^n est un difféormorphisme \mathcal{C}^r si c'est une application \mathcal{C}^r bijective dont l'inverse est \mathcal{C}^r ?

Théorème 2.1: Inversion Locale

La différentielle d'un difféormorphisme est une application linéaire inversible. Réciproquement, si f est \mathcal{C}^r sur un ouvert dont la différentielle est inversible en tout point a, il existe un voisinage ouvert U_a de a dans U tel que l'application $f_{|_{U_a}}$ soit un \mathcal{C}^r -difféormorphisme. En particulier, f est une application ouverte.

2.2 Applications de rang Constant

Définition 2.2: Applications Equivalentes

Soit $f: U \to \mathbb{R}^m$, $f': U' \to \mathbb{R}^m$ des applications \mathcal{C}^r sur des ouverts $U, U' \subseteq \mathbb{R}^n$. On dit que f et f' sont équivalentes s'il existe :

- des voisinages ouverts V de f(U) et V' de f'(U') dans \mathbb{R}^m
- des C^r -difféormorphismes $u:U\to U'$ et $v:V\to V'$

de sorte que $f' = v \circ f \circ u^{-1}$.

Définition 2.3: Rang

Le rang d'une application différentiable en a est le rang de sa différentielle en a.

Proposition 2.1: Propriétés

- L'application qui à $a \in U$ associe le rang de f en a est semi-continue inférieurement
- Si f et $f' = v \circ f \circ u^{-1}$ sont équivalentes, leurs rangs sont égaux en a et en u(a).
- Si \bar{f} est affine, son rang est constant

Ainsi, si f est équivalente à son application tangente en un point, elle est de rang constant.

Théorème 2.2: du Rang Constant

Soit $f:U\to\mathbb{R}^m$ une application \mathcal{C}^r de rang constant k sur un ouvert U de \mathbb{R}^n . Il existe alors, si $a\in U$:

- des voisinages ouverts U_a de a dans U et V_a de f(a) dans \mathbb{R}^m
- des C^r -difféormorphismes u et v

tels que

$$v \circ f \circ u^{-1}(x_1, \dots, x_n) = (x_1, \dots, x_k, 0 \dots, 0) \in \mathbb{R}^m = \mathbb{R}^k \times \mathbb{R}^{m-k}$$

Remarque 2.1

- 1. Le théorème du rang constant est une version non linéaire du théorème du rang, équivalence en algèbre linéaire d'une matrice à sa réduite de Jordan.
- 2. L'énoncé du théorème du rang constant qu'on a donné est celui qui servira en pratique. Il n'affirme pas directement que, pour $a \in U$ quelconque, f est localement équivalente à \bar{f}_a mais dit que f est localement équivalente à une application linéaire de son rang. Pour en tirer la réponse à la question posée, il suffit d'observer que deux applications affines/linéaires $\mathbb{R}^n \to \mathbb{R}^m$ qui ont le même rang sont affinement/linéairement équivalentes (justement par le théorème du rang)

2.3 Applications de Rang Maximal

Définition 2.4: Immersions et Submersions

Soit f une application C^r sur un ouvert U de \mathbb{R}^n .

- 1. On dit que f est une immersion si son rang en tout point de U vaut n, ce qui signifie que la différentielle est injective et que $n \leq m$.
- 2. On dit que f est une submersion si son rang en tout point de U vaut m, ce qui signifie que la différentielle est surjective et suppose $n \ge m$.

On parle de même d'immersion et de submersion en a selon les propriétés de $d_a f$.

Proposition 2.2: Exemples

- Une application linéaire/affine est une submersion (resp. immersion) si et seulement si elle est surjective (resp. injective)
- Une application sur un ouvert de $\mathbb R$ est une immersion si et seulement si sa dérivée de s'annule pas.
- \bullet Une fonction à valeurs dans $\mathbb R$ est une submersion si et seulement si sa dérivée ne s'annule pas.
- Soit f une application C^r sur un ouvert U de \mathbb{R}^n . Alors l'application graphe est une immersion injective et la projection est une submersion surjective. Par suite, f est la composée d'une immersion et d'une submersion.

Théorème 2.3: Forme Normale des Immersions et Submersions

Soit $f: U \to \mathbb{R}^m$ une application \mathcal{C}^r sur un ouvert U de \mathbb{R}^n .

1. Si f est une immersion en a, il existe des voisinages ouverts U_a et V_a de a et de f(a) ainsi qu'un \mathcal{C}^r -difféomorphisme v tel que

$$v \circ f(x_1, \dots, x_n) = (x_1, \dots, x_n, 0, \dots, 0) \in \mathbb{R}^m = \mathbb{R}^n \times \mathbb{R}^{m-n}$$

2. Si f est une submersion en a, il existe de même U_a, V_a et un \mathcal{C}^r -difféormorphisme u tel que

$$f \circ u^{-1}(x_1, \dots, x_n) = (x_1, \dots, x_m) \in \mathbb{R}^m$$

Corollaire 2.1

Soit f une application C^r .

- $\bullet\,$ Si f est une immersion, f est localement injective
- ullet Si f est une submersion, f est une application ouverte (qu'on peut voir comme une surjectivité locale).

Définition 2.5: Transversalité

Deux sev E_1, E_2 d'un ev E sont dits transversaux si $E_1 + E_2 = E$.

Théorème 2.4: Fonctions Implicites

Soit $f: U \to \mathbb{R}^m$ une submersion \mathcal{C}^r sur un ouvert $U \subseteq \mathbb{R}^n$ et soit $a \in U$. On suppose le noyau de $d_a f$ transversal au sous-espace $\{0\} \times \mathbb{R}^m \subseteq \mathbb{R}^{n-m} \times \mathbb{R}^m = \mathbb{R}^n$. Il existe alors un voisinage ouvert U_a de a du type :

$$U_a = U' \times U'' \subseteq \mathbb{R}^{n-m} \times \mathbb{R}^m = \mathbb{R}^n$$

et une application $s:U'\to U''$ de classe \mathcal{C}^r tels que

$$f^{-1}(f(a)) \cap U_a = \{x = (x', x'') \in U' \times U'' = U_a \mid x'' = s(x')\}$$

3 Applications Différentiables et Mesure

3.1 Petit Théorème de Sard

Lemme 3.1: Critère de Fubini

Soit $N \subseteq \mathbb{R}^m$ un ensemble Lebesgue-Mesurable dont toutes les tranches sont des parties négligeables dans \mathbb{R}^{m-1} . Alors N est négligeable dans \mathbb{R}^m .

Lemme 3.2: Constante de Lipschitz Locale

Soit $f: U \to \mathbb{R}^m$ une application \mathcal{C}^1 sur un ouvert U de \mathbb{R}^n et soit $K \subset U$ un compact convexe. L'application $f_{|_K}: V \to \mathbb{R}^m$ est alors lipschitzienne de constante au plus $\sup\{|\mathbf{d}_a f|, a \in K\}$.

Proposition 3.1: Petit Théorème de Sard

Soit $f: U \to \mathbb{R}^m$ une application \mathcal{C}^1 sur un ouvert U de \mathbb{R}^n .

- Si m > n, alors f(U) est négligeable dans \mathbb{R}^m .
- Si m=n et si $n \subseteq U$ est négligeable dans \mathbb{R}^n , alors f(N) est négligeable dans \mathbb{R}^n .

Lemme 3.3: Réduction Locale

Pour montrer que l'image f(P) d'une partie $P \subseteq U$ par une application $f: U \to \mathbb{R}^m$ est négligeable dans \mathbb{R}^m , il suffit de montrer que chaque point $a \in U$ possède un voisinage $U_a \subseteq U$ tel que $f(P \cap V_a)$ soit négligeable dans \mathbb{R}^m .

Démonstration. En effet, bien que la famille $\{V_a\}$ ne soit pas dénombrable, on peut choisir tous les V_a dans un ensemble dénombrable, par exemple une base dénombrable d'ouverts de \mathbb{R}^n . Ainsi, $P = \bigcup P \cap V_a$ et f(P) est négligeable comme union dénombrable de parties négligeables dans \mathbb{R}^m .

Corollaire 3.1: Invariance des Ensembles Négligeables

Soit $f:U\to V$ un difféormorphisme entre deux ouverts de \mathbb{R}^n . Une partie $N\subseteq U$ est négligeable si et seulement si son image $f(N)\subseteq V$ l'est.

3.2 Théorème de Sard

Définition 3.1: Critique

Soit $f: U \to \mathbb{R}^m$ une application \mathcal{C}^1 sur un ouvert U de \mathbb{R}^n . On appelle

- Point Critique de f tout point $a \in U$ où $d_a f : \mathbb{R}^n + \mathbb{R}^m$ n'est pas surjective.
- Valeur Critique de f tout point $y \in \mathbb{R}^m$ qui est l'image d'un point critique.
- \bullet Point Régulier (resp. valeur) de f tout point (resp. valeur) non critique.

Théorème 3.1: de Sard

Soit $f:U\to\mathbb{R}^n$ une application \mathcal{C}^r sur un ouvert U de \mathbb{R}^n . Si $r\geq 1+\max(n-m,0)$ alors l'ensemble des valeurs régulières de f est de mesure pleine et est en particulier dense dans \mathbb{R}^m .

Autrement dit, l'ensemble $f(C_f)$ des valeurs critiques est négligeable.