Question 1

a.

i.

 $\{0, -1\}$

ii.

 $\{1, 4, 7, 10\}$

b.

i.

we get $|A \cup B| = |A| + |B| - |A \cap B| = 2n - 2$

ii.

we get $|P(A \cup B)| = 2^{2n-2}$

C.

i.

It's true.

Because $(A - B) \cap C = (A \cap \overline{B}) \cap C = A \cap \overline{B} \cap C = (C \cap \overline{B}) \cap A = (C - B) \cap A$

ii.

It's false.

Because $(A - B) \cup C = (A \cap \overline{B}) \cup C = (A \cup C) \cap (\overline{B} \cup C)$

and $(C - B) \cup A = (C \cap \overline{B}) \cup A = (C \cup A) \cap (\overline{B} \cup A) = (A \cup C) \cap (\overline{B} \cup A)$

Obviously, they are different.

iii.

It's true.

 $\mathsf{Because}(A-C) \cap (C-B) = (A \cap \bar{C}) \cap (C \cap \bar{B}) = A \cap (\bar{C} \cap C) \cap \bar{B} = A \cap \emptyset \cap \bar{B} = \emptyset$

d.

i.

р	q	r	$\neg q$	$p \land \neg q$	$r \lor q$	$(p \land \neg q) \to (r \lor q)$
F	F	F	Т	F	F	Τ
F	F	Τ	Т	F	Т	Т

F	Т	F	F	F	Т	Т
F	Т	Т	F	F	Т	Т
Т	F	F	Τ	T	F	F
Т	F	Τ	Т	T	Т	Т
Т	Т	F	F	F	Т	Т
Т	Т	Τ	F	F	Т	Т

ii.

This compound proposition is not a tautology, because when p is True, q is False and r is False ,the compound proposition will be False.

e.

i.

False. Because x>0,y>0, so x+y>0 and x*y>0

ii.

False. If x=1, y=1, then x*y=1, x+y=2, it will be false.

f.

i.

 $\exists a \in Z \ and \ b \in N, \forall c \in N \ such \ that \ ac \leq ab$

ii.

The original statement is false.

When a=0, it is wrong.

g.

Assume that $x \in A - C$, so $x \in B \cap (A - C)$ We can get that $B \cap (A - C) = B \cap (A \cap \overline{C}) = (A \cap B) \cap \overline{C}$ We know that $A \cap B \subseteq C$, so $(A \cap B) \cap C = \emptyset$ We can conclude that the assumption is wrong, so $x \notin A - C$

Question 3

a.

Euler path and Euler are both use each edge precisely once, but Euler path is a path while Euler cycle is a cycle, which means Euler cycle is a closed trail.

b.

set the maximum number of cimparisons are x.

$$2^x > 3000 > 2^{x-1}$$

 2^{12} =4096, 2^{11} =2048,so x=12

The maximum numer of comparisons are 12.

C.

i.

A path is a trail which neither vertices nor edges are repeated.

ii.

we study on each point to get the minimum distance to them. D(n) means the shortest distance from A to n.

D(B) = 23

D(C) = 39

D(D)=MIN((D(B)+28),(D(C)+20,56)=51

D(E)=MIN((D(D)+11),(D(B)+27))=50

D(F)=MIN((D(D)+21),(D(C)+44))=72

D(G)=MIN((D(D)+37),(D(F)+15))=87

D(H)=MIN((D(F)+27),(D(C)+83))=99

D(I)=MIN((D(H)+20),(D(F)+44),(D(G)+21))=108

So the shortest path from A to I is A-B-D-F-G-I, Which length is 108.

d.

i.

ii.

R is not symmetric because aRb, but not bRa.

R is anti-symmetric because there is not a pairwise such that aRb with bRa.

R is not transitive because bRc and cRd but not bRd.

iii.

R *=

		а	b	С	d
	а	1	1	1	1
	b	0	1	1	1
	С	0	0	1	1
	d	0	1	0	1

iv.

 $M_{R^*}=$

	а	b	С	d
а	0	1	0	0
b	0	0	1	0
С	0	0	0	1
d	0	1	0	0

e.

$$S(2) = \sum_{i=1}^{2} 2^{i-1} = 2^{0} + 2^{1} = 3$$

ii.

Basic step:

$$S(1)=1=2^1-1$$

Induction hypothesis:

For all integer $k \ge 1$, assume that $S(k) = 2^k - 1$

Induction step:

As for k+1,S(k+1)=
$$S(k) + 2^k = 2^k + 2^k - 1 = 2^{k+1} - 1$$
.
We can conclude that for any integer n>= 1,S(n)= 2^k -1

f.

we get:
$$(x.x.x.y.y + \bar{x}.y.y)(x.x + x.\bar{y}.\bar{y}.\bar{\bar{y}})$$

= $(x.y + \bar{x}y)(x + x.\bar{y})$ -idempotent law
= $(y(x + \bar{x})).\bar{x}$ -distributive law and absorption law
= $y.\bar{x}$ -complement law

So the simplication is $y.\bar{x}$