

Natural Language Processing from Scratch

https://github.com/DataForScience/NLP @bgoncalves www.data4sci.com

Question

- Where are you located?
 - Europe
 - Asia
 - Africa
 - US
 - Canada
 - Latin America
 - Oceania

Question

- What's your job title?
 - Data Scientist
 - Statistician
 - Data Engineer
 - Researcher
 - Business Analyst
 - Software Engineer
 - Other

Question

- How experienced are you in Python?
 - Beginner (<1 year)
 - Intermediate (1-5 years)
 - Expert (5+ years)

Lesson 1: Text Representations

Lesson 1.1: Represent words and Numbers

Words and Numbers

- How can computers represent, analyze and understand a piece of text?
- Computers are really good at crunching numbers but not so much when it comes to words.
- Perhaps we can substitute words with numbers?
 - Unfortunately, computers assume that numbers are sequential.
- Vectors work much better!
 - Each word corresponds to a unique dimension.

Lesson 1.2: Use One-hot Encoding

One-hot Encoding

$$v_{after} = (0, 0, 0, 1, 0, 0, \cdots)^T$$
 One-hot $v_{above} = (0, 0, 1, 0, 0, 0, \cdots)^T$ encoding

- What about full texts instead of single words?
- The vector representation of a text is simply the vector sum of all the words it contains:

Mary had a little lamb, little lamb, little lamb, Mary had a little lamb whose fleece was white as snow. And everywhere that Mary went Mary went, Mary went, everywhere that Mary went The lamb was sure to go.

$$v_{text} = (2, 4, 1, 2, 2, 1, 1, 2, 6, 1, 5, 1, 2, 1, 1, 1, 1, 4, 1)^{T}$$

0	had	10	lamb
1	went	11	as
2	and	12	that
3	а	13	sure
4	was	14	whose
5	to	15	go
6	snow	16	the
7	everywhere	17	little
8	mary	18	white
9	fleece		

One-hot Encoding

$$v_{after} = (0, 0, 0, 1, 0, 0, \cdots)^T$$
 One-hot $v_{above} = (0, 0, 1, 0, 0, 0, \cdots)^T$ encoding

- What about full texts instead of single words?
- The vector representation of a text is simply the vector sum of all the words it contains:

```
\begin{aligned} & \text{Mary had a little lamb, little lamb,} \\ & \text{little lamb, Mary had a little lamb} \\ & \text{whose fleece was white as snow.} \\ & \text{And everywhere that Mary went} \\ & \text{Mary went, Mary went, everywhere} \\ & \text{that Mary went} \\ & \text{The lamb was sure to go.} \\ & v_{text} = \left(2,4,1,2,2,1,1,2,6,1,5,1,2,1,1,1,1,4,1\right)^T \end{aligned}
```

Ο	had	10	lamb
1	went	11	as
2	and	12	that
3	а	13	sure
4	was	14	whose
5	to	15	go
6	snow	16	the
7	everywhere	17	little
8	mary	18	white
9	fleece		

Lesson 1.3: Implement Bag of Words

Bag of Words

 In practice it's much more convenient to use a dictionary instead of an actual vector

This is known as a bag-of-words, and word order is discarded.

```
Mary had a little lamb, little lamb, little lamb, little lamb, Mary had a little lamb whose fleece was white as snow. And everywhere that Mary went Mary went, Mary went, everywhere that Mary went The lamb was sure to go. v_{text} = \left(2,4,1,2,2,1,1,2,6,1,5,1,2,1,1,1,1,4,1\right)^T
```

had	2	lamb	5
went	4	as	1
and	1	that	2
а	2	sure	1
was	2	whose	1
to	1	go	1
snow	1	the	1
everywhere	2	little	4
mary	6	white	1
fleece	1		

Lesson 1.4: Apply Stopwords

Word Frequency

• Some words are much more common than others.

and

one

а

to

zero

nine

two

- While most words are very rare.
- The most common words in a corpus of 17M words:
- These are known as "stopwords", words that carry little meaning and can be discarded.

Stopwords

- After removing the most common words we go from 17M words to just 9M, without significantly losing any information!
- In practice, stopwords aren't simply the most common words but rather curated lists of common and non-informative words.
- Computational linguists have published lists of stop words that can easily be found online, and that were curated for different languages and purposes.
- Stopwords in 40 languages: https://www.ranks.nl/stopwords

Stopwords

- NLTK also includes stopwords from the 14 languages listed here: http://anoncvs.postgresql.org/cvsweb.cgi/pgsql/src/backend/snowball/stopwords/ plus Romanian (http://arlc.ro/resources/) and Kasakh.
- And perhaps there is a better way to quantify how much information is carried by a word, other than just the number of times it is used in a single document?
- How can we compare different documents?

Lesson 1.5: Understand TF/IDF

Term Frequency

- We already saw that some words are much more common than others
- The number of times that a word appears in a document is known as the "term frequency" (TF)
- After the removal of stopwords, the term frequency is a good indicator of what words are most important. A book on Python programming will likely have words like "code", "script", "print", "error", etc much more frequently than a book on football.

the 1061396 of 593677 416629 and 411764 one 372201 in 325873 316376 to 264975 zero 250430 nine 192644 two

Inverse Document Frequency

- TF gives us an idea of how popular a specific term is within a document, but how can we compare across documents within a corpus?
- The inverse document frequency (IDF) tells us how unusual it is for a document to include that word. The idea is that words that appear in more documents are less meaningful.

the	1061396
of	593677
and	416629
one	411764
in	372201
а	325873
to	316376
zero	264975
nine	250430

192644

two

TF/IDF

Mathematically there are several possible definitions for both
 TF and IDF

• TF-IDF is the product of these two quantities and is useful for finding terms that are important for the specific document (high TF) and uncommon in the corpus as a whole (large IDF/small DF).

TF/IDF

- In particular, a term that occurs in every document is meaningless when it comes to distinguishing between documents.
- Stopwords, are naturally weighed down due to appearing in all documents.

Lesson 1.6: Understand Stemming

Word variants

- So far we have seen multiple techniques to represent words and to reduce the number of words we have to deal with.
- But what about word variants? Verb conjugations, plurals, nouns and adverbs?

love
loved
loves
loving
lovingly

• In some cases they should just be represented by the same stem or root.

Word variants

- So far we have seen multiple techniques to represent words and to reduce the number of words we have to deal with
- But what about word variants? Verb conjugations, plurals, nouns and adverbs?

 In some cases they should just be represented by the same stem or root.

Stemming

- Stemming is a series of techniques to automatically identify the stem or root of a word
- Naturally, the rules that must be applied depend on the grammar of the specific language being used
- For English, the most common algorithm is called Porter stemmer

- Let V be a set of one or more vowels (a, e, i, o, u, y) and C be a set of one of more consonants (b, c, d, f, ...).
- Any word in the English language is of the form:

$$[C](VC)^m[V]$$

where the contents of the [] are optional and $m \ge 0$ is known as the measure, the number of times that the sequence VC repeats.

• The Porter stemmer algorithm develops over the course of several steps, by the successive application of hand-crafted rules of the form:

```
(condition) \ old\_suffix \rightarrow new\_suffix
```

where *condition* is a boolean expression evaluated on the stem. Each rule can be read as "if *condition* is True, then replace *old_suffix* by *new_suffix*.

- Rules are grouped together and applied in a greedy fashion, such that the longest matching old_suffix takes precedence.
- new_suffix can be an empty string and condition can be null.

For example, the rule:

$$(m > 0) \ eed \rightarrow ed$$
would transform
$$agreed \rightarrow agree$$

$$feed \rightarrow feed$$
since
$$measure \ ('agr') = 1$$

$$measure \ ('f') = 0$$

Of course, not all conditions rely only on the value of measure

- Other expressions commonly used in *condition* are:
 - * S The stem ends with the letter S (or any other specified)
 - * v * The stem contains a vowel
 - * d The stem ends in a double consonant (-tt, -ss, etc)
 - * o The stem ends in cvc where the second c is not W, X, or Y
- Expressions can be combined using the usual boolean operators and, or, not, grouped using parenthesis, etc.
- For example (*d and not(*L or *S or *Z))

represents a stem ending with a double consonant other than L, S or Z.

Questions?

Lesson 2: Topic Modeling

Lesson 2.1: Find Topics in Documents

Topics

- A common application of NLP is to Search and Information Extraction.
- Can we automatically define the subject of a document?
- We saw in the previous lesson that some words are more meaningful than others.
- Based on the importance of each word for a specific document, it should be possible to characterize its topic.

Term-Document Matrix

- We already know how to represent documents in terms of the TFIDF weights of each of their words.
- If we similarly use a vector representation where each element corresponds to a specific word, we can represent a corpus of documents as a matrix where each column is a document.
- Conversely, each word can be thought of as being represented by a row vector defined by its importance over all documents.

Lesson 2.2: Perform Explicit Semantic Analysis

Explicit Semantic Analysis

- In the term document matrix, each word is defined, explicitly, by its contribution for each document.
- We can infer the meaning of each word by the concepts (documents) it contributes to.
- Typically, the English Wikipedia is used as the knowledge base (corpus).
- Using the TD matrix we can represent any (other)
 document by the sum (or average) over all the words
 it contains. This is similar to what we did with one-hot
 encodings to define bag-of-words.

Explicit Semantic Analysis

• The similarity of words or new documents can be measured using the cosine similarity: $\sin(\overrightarrow{u}, \overrightarrow{v}) = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{||\overrightarrow{u}|| ||\overrightarrow{v}||}$

- Explicit semantic analysis, despite its simplicity, has been shown to improve the performance of different kinds of systems for search.
- The main disadvantage of ESA is that it requires the use of a large knowledge base corpus (the entire English Wikipedia!), resulting in high dimensional representations of words and documents.

Lesson 2.3: Understand Document clustering

Document Clustering

Using the cosine similarity:

$$\operatorname{sim}\left(\overrightarrow{u},\overrightarrow{v}\right) = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{||\overrightarrow{u}|| ||\overrightarrow{v}||}$$

we can easily measure the similarity between every pair of documents in our corpus to generate a square similarity matrix.

- There is a large literature on clustering algorithms for matrices.
- The simples approach is to impose a minimum similarity cutoff and consider any pair of documents with higher similarity to be part of the same cluster.

Hierarchical Document Clustering

- Algorithm
 - Assign each document to its own cluster.
 - Calculate the similarity matrix between all clusters.
 - Identify the two most similar clusters and merge them.
 - Recompute the similarity matrix for this reduced set of clusters.
 - Repeat until we reach the desired number of clusters.
- Library implementations will usually merge all the clusters until there is just one left so that any cutoff can be imposed a posteriori.

Lesson 2.4: Implement Latent Semantic Analysis

Singular Value Decomposition (SVD)

• Any matrix *M*, such as the TD matrix seen above, can be decomposed into three matrices of the form:

$$\begin{bmatrix} M \\ m \times n \end{bmatrix} = \begin{bmatrix} U \\ m \times m \end{bmatrix} \begin{bmatrix} \sum \\ m \times n \end{bmatrix} \begin{bmatrix} V^{\dagger} \\ n \times n \end{bmatrix}$$

where

U is a unitary matrix $(UU^{\dagger} = 1)$

 Σ is diagonal with non-negative elements

 V^{\dagger} is a unitary matrix

Singular Value Decomposition (SVD)

- The diagonal elements of Σ , σ_i are called the singular values of the matrix M and are conceptually similar to eigenvalues in the case of square matrices.
- σ_i are sorted from largest to smallest.
- The original matrix *M* can be approximated by keeping only the top *k* dimensions of the SVD decomposition.

• Naturally, the larger the value of k the better the approximation.

Latent Semantic Analysis (LSA)

- While ESA explicit defines each word based on the documents in contributes to in the knowledge base, LSA tries to implicitly determine a "latent" representation for each word and document.
- LSA defines the term-document matrix for the corpus under consideration (as opposed to an external knowledge base).
- The DT matrix is approximated using a k dimensional singular value decomposition
- Each of the *k* latent dimensions used represents a latent dimension (topic) of the underlying dataset.

Latent Semantic Analysis (LSA)

- The U_k represents the distribution of each topic among the words in our vocabulary, while the V_k matrix describes the distribution of each document across topics.
- Documents and words can be more effectively clustered in the singular space.
- New documents (or queries) can be mapped into the singular space using:

$$\hat{v} = \Sigma_k^{-1} U_k^{\dagger} v$$

where v is the column vector representing the original query and \hat{v} the transformed document vector.

Lesson 2.5: Implement Non-negative Matrix Factorization

Non-Negative Matrix Factorization

- Matrix factorization methods, like SVD, have a long history of application to natural language processing.
- Another common factorization method used to identify a latent structure to a dataset is non-negative matrix factorization (NMF).

$$\left| \begin{array}{c} M \\ m \times n \end{array} \right| = \left| \begin{array}{c} W \\ m \times k \end{array} \right| \left| \begin{array}{c} H \\ k \times n \end{array} \right|$$

• NMF directly approximates the matrix M for a given value of k.

Non-Negative Matrix Factorization

- In this formulation, it has the advantage of being easily interpretable:
 - Columns of W are the underlying basis vectors for each topic.
 - Columns of *H* are the contribution of each topic to a specific document.

Non-Negative Matrix Factorization

• The value of *W* and *H* are found through an optimization procedure where we minimize the error of the approximation:

$$\min_{W,H} ||V - WH||_F^2$$

• One simple way to do this is given by:

$$h_{ij} \leftarrow h_{ij} \frac{\left(W^{\dagger}V\right)_{ij}}{\left(W^{\dagger}WH\right)_{ij}} \qquad w_{ij} \leftarrow w_{ij} \frac{\left(VH^{\dagger}\right)_{ij}}{\left(WHH^{\dagger}\right)_{ij}}$$

- And we initiate the process by assigning random non-negative values to W and H.
- We stop updating the values of h_{ij} and w_{ij} when the cost function converges.

Questions?

Lesson 3: Sentiment Analysis

Lesson 3.1: Quantify words and feelings

Positive and Negative Words

- We often use words to describe how we are feeling or how we feel about something
- People associate specific connotations and meanings to words
- Some are obvious:
 - Love, yes, friendship, good, ... transmit positive feelings
 - Hate, no, animosity, bad, ... transmit negative feelings
- Others less so:
 - Blue, maybe, indifference, ...

Positive and Negative Texts

- We can use the words in a text to determine the sentiment behind the text
- The simplest approach:
 - count positive P and negative N words
 - define sentiment as:

sentiment =
$$\frac{P - N}{P + N}$$

- This effectively weighs positive words as +1 and negative words as -1 and defines sentiment as how dominant one sentiment is over another
- Despite it's simplicity, this approach is surprisingly powerful

Word Valence

- Many lexicons of positive and negative words are available online:
 - Opinion Lexicon: https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
 - Opinion Finder: https://mpqa.cs.pitt.edu/opinionfinder/
- Even commercial products use similar approaches:
 - Linguistic Inquiry and Word Count (LIWC) http://
 liwc.wpengine.com/
 - Valence Aware Dictionary and sEntiment Reasoner (VADER) https://github.com/cjhutto/vaderSentiment

Lesson 3.2: Use negations and modifiers

Negations and Modifiers

- So far, our approach to sentiment analysis has relied on considering just individual words
- However it's clear that context matters.
- "not pretty" is very different from "pretty"
- n-grams are a natural extension, but increase significantly the memory requirements
- An intermediate approach is to consider modifier words like "not", "much", "little", "very", etc.
- By keeping track of the modifiers we can generate n-grams on the fly

Modifiers

- While sentiment words contribute additively to the sentiment score, modifiers have a multiplicative effect
- If we define the weights of each modifier

```
not -1
very 1.5
somewhat 1.2
pretty 1.5
```

- We just have to check the previous word whenever we encounter one of the sentiment words in our lexicon
- Special care must be taken whenever a modifier word can also be a sentiment word (such as "pretty").

Modifiers

- We must keep two separate dictionaries of words: modifiers and valence words.
- For each word we encounter, we first check whether it is a modifier and only then whether it is valence word.
- Words that are in neither list act as a signal to end the current n-gram
- With this simple approach we can handle even long sequences of modifiers, double negatives, etc.

Lesson 3.3: Understanding corpus-based approaches

Corpus-based Approaches

- Sentiment analyses often rely on dictionaries of words and valences
- In many cases, these lists are curated manually with varying degrees of care
- Can we automatically generate them?
- With the advent of the Web, large corpora of product reviews became available
- Each review associates a piece of text with a numerical evaluation (typically 1-5 stars)

Corpus-based Approaches

- Corpus based approaches to sentiment analysis rely on these datasets to generate the lexicons used
- These approaches leverage sophisticated supervised machine learning techniques to automatically determine the weight that should be assigned to each word
- Modifiers can be identified using Part-of-Speech (POS) tagging
- The details of these techniques are beyond the scope of this introductory course, but it's important to understand their advantages and disadvantages

Corpus-based Approaches

- Hand curated lexicons are naturally subjective and potentially incomplete
- Lexicons generated automatically from large corpora can cover a wider range of languages and subjects
- Hand curation is more powerful when only smaller datasets are available
- Automatic generation relies on large datasets and their inherent biases. They are typically only applicable to specific domains and may appear to be more objective.
- Your results will only be as good as your lexicon. Make sure to understand its biases and limitations.

Questions?

Lesson 4: Applications

Lesson 4.1: Understand Word2vec word embeddings

Distributional hypothesis

- We already saw various way in which to represent word in a vectorial form, but never in a way that was semantically meaningful.
- The distributional hypothesis in linguistics states that words with similar meanings should occur in similar contexts.
- In other words, from a word we can get some idea about the context where it might appear.

And from the context we have some idea about possible words.

The red	is beautiful.	$\max p\left(w C\right)$
The blue	is old.	

word2vec variations

- Hierarchical Softmax:
 - Approximate the softmax using a binary tree
 - Reduces the number of calculations per training example from V to $\log_2 V$ and increases performance by orders of magnitude.
- Negative Sampling:
 - Under sample the most frequent words by removing them from the text before generating the contexts
 - Similar idea to removing stop-words very frequent words are less informative.
 - Effectively makes the window larger, increasing the amount of information available for context

word2vec details

- The output of this neural network is deterministic:
 - If two words appear in the same context ("blue" vs "red", for e.g.), they will have similar internal representations in Θ_1 and Θ_2
 - Θ_1 and Θ_2 are vector embeddings of the input words and the context words respectively
- Words that are too rare are also removed.
- The original implementation had a dynamic window size:
 - for each word in the corpus a window size k' is sampled uniformly between 1 and k

Reference implementations

- C https://code.google.com/archive/p/word2vec/ (the original one)
- Python/tensorflow https://www.tensorflow.org/tutorials/ word2vec
- Python/gensim https://radimrehurek.com/gensim/models/
 word2vec.html
- Pretrained embeddings:
 - 30+ languages, https://github.com/Kyubyong/wordvectors
 - 100+ languages trained using wikipedia: https://sites.google.com/site/rmyeid/projects/polyglot

Visualization

Analogies

 The embedding of each word is a function of the context it appears in:

$$\sigma(red) = f(context(red))$$

 words that appear in similar contexts will have similar embeddings:

$$context\left(red\right) \approx context\left(blue\right) \implies \sigma\left(red\right) \approx \sigma\left(blue\right)$$

"Distributional hypotesis" in linguistics

Analogies

$$\sigma\left(France\right) - \sigma\left(Paris\right) + \sigma\left(Rome\right) = \sigma\left(Italy\right)$$

$$\vec{b} - \vec{a} + \vec{c} = \vec{d}$$

Analogies

$$ec{b}-ec{a}+ec{c}=ec{d}$$
 What is the word d that is most solution $d^{\dagger}=rgmaxrac{\left(ec{b}-ec{a}+ec{c}
ight)^{T}}{\left|\left|ec{b}-ec{a}+ec{c}
ight|\right|}ec{x}$ b and c and most dissimilar to a?

What is the word d that is most similar to

$$d^{\dagger} \sim \operatorname*{argmax}_{x} \left(\vec{b}^{T} \vec{x} - \vec{a}^{T} \vec{x} + \vec{c}^{T} \vec{x} \right)$$

Country-Capital

Lesson 4.2: Define GloVe

Global Vectors (GloVe)

- An alternative to word2vec developed by the Stanford NLP Group in 2014
- Explicitly models word cooccurrences by a cooccurrence matrix X where rows correspond to input words and columns to context words
- X_{ij} is the number of times word i occurred with context word j
- Contexts are defined through a sliding window

Global Vectors (GloVe)

Embedding vectors for word i is defined as:

$$w_i^T \tilde{w}_k + b_i + \tilde{b}_k = \log(X_{ik})$$

• Embedding vectors are found through an optimization procedure with a cost function of the form:

$$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_k - \log\left(X_{ij}\right)\right)^2$$

$$f(X_{ij}) = \begin{cases} \left(\frac{X_{ij}}{X_{max}}\right) & \text{if } X_{ij} < x_{max} \\ 1 & \text{otherwise} \end{cases}$$

Global Vectors (GloVe)

- $f(X_{ij})$ prevents common word pairs from skewing our cost function
- Explicitly considers the context in which each word appears
- Word-context matrix is large, but sparse
- Relatively fast to train
- Highlights the importance of relative frequency of words
- Impractical to use as a language model (to explicitly calculate the value of $\max p(w|C)$)

Resources

- The original implementation: https://nlp.stanford.edu/
 projects/glove/
- Python package: https://pypi.org/project/glove/
- Pre-trained vectors: https://github.com/stanfordnlp/GloVe

Lesson 4.3: Apply Language detection

Language Detection

- Sometimes a given corpus will contain documents written in different languages (comment boxes in international websites, for example)
- We intrinsically assumed that each individual documents is comparable with all others.
- When multiple languages are present within the same corpus (on Twitter, in the comment boxes of an international website, etc) this is no longer true.

Language Detection

- One way to handle this would be to cluster documents, as documents in the same language will naturally cluster together. However:
 - there might be multiple clusters using the same language
 - We might not be interested in doing all this work for languages other than, say, English
- Language detection allows us to preprocess our corpus so that we can focus on specific languages, sort documents by language (to use different stopword lists), etc.
- Languages can be characterized by their character (letter) distribution.

Character distributions

 The character level distribution for English, obtained using Google Books 1-gram dataset is:

Character distributions

- We measured the probability distribution of letters in the english language. In effect, we calculated: *P(letter|english)*
- The probability of seeing a specific letter given that the text is in English. If we do this for a few other languages we can have a table of the form: P(letter|language)
- Google Books covers several different languages, among which we an find 5 different European languages: English, French, German, Italian and Spanish.

Character distributions

 Character distributions for different languages look different in at least a few of the characters due to the idiosyncrasies of each language, even in the case of closely related languages.

Conditional Probabilities

 Using these conditional probabilities, and Bayes Theorem, we can easily build a language detector. For that we just need to calculate:

P(language|text)

Which we can rewrite as:

 $P(language|letter_1, letter_2, \cdots, letter_n)$

•If we treat each letter independently, we obtain:

$$P(language|letter_1, letter_2, \cdots, letter_n) = \prod_i P(language|letter_i)$$

Naive Bayes

- This is known as the Naive Bayes Approach and is an obvious oversimplification: It completely ignores correlations present in the sequence of letters.
- All we have to do now is apply Bayes Theorem to our original table:

$$P\left(language|letter\right) = \frac{P\left(letter|language\right)P\left(language\right)}{P\left(letter\right)}$$

 And if we assume that all languages are equally probable (non-informative prior):

$$P\left(language\right) = \frac{1}{N_{langs}}$$

Naive Bayes

- Naive Bayes approaches (and many others) use terms of the form: $\prod_{i} P(A|B_i)$
- which implies multiplying many small numbers. To avoid numerical complications, it is best to use, instead:

$$\sum_{i} \log P\left(A|B_{i}\right)$$

 Which is commonly referred to as the "Log-Likelihood". Our expression then becomes:

$$\mathcal{L}\left(language|letter_{1}, letter_{2}, \cdots, letter_{n}\right) = \sum_{i} \log \left[\frac{P\left(letter_{i}|language\right) P\left(language\right)}{P\left(letter_{i}\right)}\right]$$

Language detection

Or more simply:

$$\mathcal{L}\left(language|text\right) = \sum_{i} \log \left[\frac{P\left(letter_{i}|language\right) P\left(language\right)}{P\left(letter_{i}\right)} \right]$$

And finally:

$$\mathcal{L}(language|text) = \sum_{i} \mathcal{L}(language|letter_{i})$$

• Providing us with a quick and easy way to determine which language is more likely to be the correct one.

Question

- How was the technical level?
 - 1 Too Low
 - 2 Low
 - 3 Just Right
 - 4 High
 - 5 Too High

Question

- How was the level of Python code/explanations?
 - 1 Too Low
 - 2 Low
 - 3 Just Right
 - 4 High
 - 5 Too High

Questions?

Other Tutorials

Natural Language Processing Bruno Gonçalves

Data Visualization With Matplotlib and Seaborn

Aug 9, 2019 - 5am-9pm (PST)

Graphs and Network Algorithms from Scratch

• Sep 16, 2019 - 5am-9pm (PST)

Deep Learning from Scratch

• Sept 24, 2019 - Strata NYC

Strata Data Conference PRESENTED WITH CLOUDERA Sep 23-26, 2019

Deep Learning from Scratch

Sept 30, 2019 - 5am-9pm (PST)

Natural Language Processing (NLP) from Scratch

http://bit.ly/LiveLessonNLP (On Demand)

www.data4sci.com/newsletter

END