

AGENDA

Review Objective

System Diagram

Results

Audio Comparison

Future Work

OBJECTIVE: ENCODE, MODULATE, AND **DEMODULATE A** .FLAC FILE USING **QAM-256**

Observe differences in frequency spectrums at various points, changes in audio, and robustness of QAM-256

SYSTEM DIAGRAM

INITIAL TIME DOMAIN SIGNAL AND FREQUENCY SPECTRUM

QAM SPECTRUM AND CONSTELLATION

CARRIER MODULATION SPECTRUM

Print Figure

DEMODULATION AND RECOVERY

% Recover the original signal range
minValue = min(leftChannel); % Minimum value of the original signal
maxValue = max(leftChannel); % Maximum value of the original signal
recoveredSignal = normalizedSignalRecovered * (maxValue - minValue) + minValue;

AUDIO COMPARISON

Original Audio

Modulated Audio

Recovered Audio

Bonus Audio!

FUTURE WORK

Impacting the recovered signal via noise, was difficult. There

was very little effect.

Build stand-alone QAM

Investigate and implement stronger methods of noise injection

Consider Jamming Techniques

