Balanced Search Trees

Computer Science E-22 Harvard Extension School David G. Sullivan, Ph.D.

Review: Balanced Trees

- A tree is *balanced* if, for each node, the node's subtrees have the same height or have heights that differ by 1.
- For a balanced tree with n nodes:
 - height = $O(\log_2 n)$.
 - gives a worst-case time complexity that is logarithmic (O(log₂n))
 - the best worst-case time complexity for a binary search tree

- With a binary search tree, there's no way to ensure that the tree remains balanced.
 - can degenerate to O(n) time

2-3 Trees

- A 2-3 tree is a balanced tree in which:
 - all nodes have equal-height subtrees (perfect balance)
 - · each node is either
 - a 2-node, which contains one data item and 0 or 2 children
 - a 3-node, which contains two data items and 0 or 3 children
 - the keys form a search tree

Search in 2-3 Trees

k2

Algorithm for searching for an item with a key k:
 if k == one of the root node's keys, you're done
 else if k < the root node's first key
 search the left subtree
 else if the root is a 3-node and k < its second key
 search the middle subtree

else search the right subtree

· Example: search for 87

Insertion in 2-3 Trees

 Algorithm for inserting an item with a key k: search for k, but don't stop until you hit a leaf node let L be the leaf node at the end of the search if L is a 2-node

add k to L, making it a 3-node

else if L is a 3-node

split L into two 2-nodes containing the items with the smallest and largest of: *k*, L's 1st key, L's 2nd key the middle item is "sent up" and inserted in L's parent

example: add 52

Example 1: Insert 8

• Search for 8:

• Add 8 to the leaf node, making it a 3-node:

Example 2: Insert 17

• Search for 17: 28 61 40 77 90

14 20

• Split the leaf node, and send up the middle of 14, 17, 20 and insert it the leaf node's parent:

[34][51

[68][80 87][93 97]

Example 3: Insert 92

• Search for 92:

• Split the leaf node, and send up the middle of 92, 93, 97 and insert it the leaf node's parent:

 In this case, the leaf node's parent is also a 3-node, so we need to split is as well...

Splitting the Root Node

- If an item propagates up to the root node, and the root is a 3-node, we split the root node and create a new, 2-node root containing the middle of the three items.
- Continuing our example, we split the root's right child:

34 51

68 80 87 92 97

Efficiency of 2-3 Trees

- A 2-3 tree containing n items has a height <= log₂n.
- Thus, search and insertion are both $O(\log n)$.
 - a search visits at most log₂n nodes

This is only case in which

the tree's height increases.

- an insertion begins with a search; in the worst case, it goes all the way back up to the root performing splits, so it visits at most 2log₂n nodes
- Deletion is tricky you may need to coalesce nodes!
 However, it also has a time complexity of O(log n).
- Thus, we can use 2-3 trees for a O(log n)-time data dictionary.

External Storage

- The balanced trees that we've covered don't work well if you
 want to store the data dictionary externally i.e., on disk.
- · Key facts about disks:
 - data is transferred to and from disk in units called blocks, which are typically 4 or 8 KB in size
 - disk accesses are slow!
 - reading a block takes ~10 milliseconds (10⁻³ sec)
 - vs. reading from memory, which takes ~10 nanoseconds
 - in 10 ms, a modern CPU can perform millions of operations!

B-Trees

- A B-tree of order *m* is a tree in which each node has:
 - at most 2*m* entries (and, for internal nodes, 2*m* + 1 children)
 - at least *m* entries (and, for internal nodes, *m* + 1 children)
 - exception: the root node may have as few as 1 entry
 - a 2-3 tree is essentially a B-tree of order 1
- To minimize the number of disk accesses, we make m as large as possible.
 - · each disk read brings in more items
 - the tree will be shorter (each level has more nodes), and thus searching for an item requires fewer disk reads
- A large value of *m* doesn't make sense for a memory-only tree, because it leads to many key comparisons per node.
- These comparisons are less expensive than accessing the disk, so large values of *m* make sense for on-disk trees.

Example: a B-Tree of Order 2

- Order 2: at most 4 data items per node (and at most 5 children)
- The above tree holds the same keys as one of our earlier 2-3 trees, which is shown again below:

- We used the same order of insertion to create both trees:
 51, 3, 40, 77, 20, 10, 34, 28, 61, 80, 68, 93, 90, 97, 87, 14
- For extra practice, see if you can reproduce the trees!

Search in B-Trees

- Similar to search in a 2-3 tree.
- Example: search for 87

Insertion in B-Trees

- Similar to insertion in a 2-3 tree:
 - search for the key until you reach a leaf node
 - if a leaf node has fewer than 2*m* items, add the item to the leaf node
 - else split the node, dividing up the 2m + 1 items:
 - the smallest *m* items remain in the original node
 - the largest *m* items go in a new node
 - send the middle entry up and insert it (and a pointer to the new node) in the parent
- Example of an insertion without a split: insert 13

Splits in B-Trees

• Insert 5 into the result of the previous insertion:

• The middle item (the 10) was sent up to the root. It has no room, so it is split as well, and a new root is formed:

- Splitting the root increases the tree's height by 1, but the tree is still balanced. This is only way that the tree's height increases.
- When an internal node is split, its 2m + 2 pointers are split evenly between the original node and the new node.

Analysis of B-Trees

- All internal nodes have at least *m* children (actually, at least *m*+1).
- Thus, a B-tree with n items has a height <= log_mn, and search and insertion are both O(log_mn).
- As with 2-3 trees, deletion is tricky, but it's still logarithmic.

Search Trees: Conclusions

- Binary search trees can be $O(\log n)$, but they can degenerate to O(n) running time if they are out of balance.
- 2-3 trees and B-trees are *balanced* search trees that guarantee *O*(log n) performance.
- When data is stored on disk, the most important performance consideration is reducing the number of disk accesses.
- B-trees offer improved performance for on-disk data dictionaries.