Al Prototype Class 9+10

② Created @February 12, 2024 4:10 PM③ Class AI

<u>Al บุญเสริม.pdf</u>

Deep Learning

• input = image (This class)

Theory

1. Classical

 \rightarrow แปลงให้อยู่ในรูป Vector \rightarrow ชุดของตัวเลข $\{x1,x2,x3,...,xn\}$ \rightarrow data is feature vector have n dimension

2. Deep Learning

- → Feature engineering
- \rightarrow Histogram of Oriented Gradients
- → Image
 - → Sobel filter
 - → Gx, Gy = ค่ามาก = แนวตั้ง , ค่าน้อย = ไม่ตั้ง

Al Prototype Class 9+10

6.7.1 เพอร์เซปตรอน

เพอร์เซปตรอน (perceptron) เป็นข่ายงานประสาทเทียมแบบง่ายมีหน่วยเดียวที่จำลอง ลักษณะของเซลล์ประสาทดังรูปที่ 6–35

รูปที่ 6–35 เปอร์เชปตรอน

x = feateur

w =weight

ตารางที่ 6–18 ฟังก์ชัน AND(x1,x2)

x_1	x_2	เอาต์พุต
		เป้าหมาย
0	0	0
0	1	0
1	0	0
1	1	1

Al Prototype Class 9+10

ฟังก์ชันกระตุ้น

ในรูปแสดงฟังก์ชันกระดุ้น (activation function) ชนิดที่เรียกว่าฟังก์ชันสองขั้ว (bipolar function) ซึ่งแสดงผลของเอาต์พุตเป็น 1 กับ -1 ฟังก์ชันกระดุ้นอื่นๆ ที่นิยมใช้ก็ อย่างเช่น ฟังก์ชันไบนารี (binary function) ซึ่งแสดงผลของเอาต์พุตเป็น 1 กับ 0 และเขียน

Net Sum	Target	Actual	Alpha*
Input	Output	Output	Error
0.10	0	1	-0.50
-0.30	0	0	0.00

ผลรวมของ sum > 0 จะผ่าน activation function \rightarrow output = 1 แต่ค่าจริงๆ = 0 ผลรวมของ sum < 0 จะผ่าน avtivation function \rightarrow output = 0

Fully connected / Dense layer

Input Node ขึ้นอยู่กับ feature = n

Input Node \rightarrow layer 1 \rightarrow layer 2 \rightarrow output

Deep Learning

: max pooling = สรุปเฉพาะจุดเด่น activation function = กำหนดค่าที่ไปคูณให้อยู่ใน range ต้องการ

Al Prototype Class 9+10

Soble filter

H11	H12	H13		F11	F12	F13	F14	F15	F16		G11	G12	G13	G14	G15	G16
H21	H22	H23	X	F21	F22	F23	F24	F25	F26	_	G21	G22	G23	G24	G25	G26
H31	H32	H33		F31	F32	F33	F34	F35	F36		G31	G32	G33	G34	G35	G36
				F41	F42	F43	F44	F45	F46	=	G41	G42	G43	G44	G45	G46
				F51	F52	F53	F54	F55	F56		G51	G52	G53	G54	G55	G56
				F61	F62	F63	F64	F65	F66		G61	G62	G63	G64	G65	G66

Binary cross entropy loss

$$ext{Loss} = -rac{1}{ ext{output}} \sum_{i=1}^{ ext{output}} y_i \cdot \log \, \hat{y}_i + (1-y_i) \cdot \log \, (1-\hat{y}_i)$$

→ for Many Class