ESCOM-IPN Departamento de Formación Básica

Asignatura: Probabilidad y Estadística

Profesor: Leticia Cañedo Suárez Ejercicio: Distribución Conjunta

1. Supón que la v. a. bidimensional (X,Y) tienen f.d. p conjunta dada por

$$f_{X,Y}(x,y) = kx(x-y)$$
 $0 < x < 2$ y $-x < y < x$

- *a*) Encuentra el valor de *k*.
- b) Encuentra las f. d. p marginales.

Respuesta
$$a$$
) $k = \frac{1}{8}$

b)
$$f_x(x) = \frac{1}{4}x^3$$
 para $0 < x < 2$

$$f_{Y}(y) = \begin{cases} \frac{1}{3} - \frac{1}{4}y + \frac{y^{3}}{48} & \text{para } 0 < y < 2\\ \frac{1}{3} - \frac{y}{4} + \frac{5y^{3}}{48} & \text{para } -2 \le y \le 0 \end{cases}$$

2. ¿Para que valores de k es $f_{X,Y}(x,y) = ke^{-(x+y)}$ una f. d. p conjunta de (X,Y) en la región 0 < x < 1, 0 < y < 1?

Respuesta
$$k = \frac{1}{\left(1 - e^{-1}\right)^2}$$

3. Supón que la v. a. bidimensional (X,Y) está distribuida uniformemente en el cuadrado cuyos vértices son (1,0), (0,1), (-1,0), (0,-1). Encuentra las marginales $f_x(x)$ y $f_y(y)$.

Respuesta

$$f_X(x) = 1 - |x|$$
 para $-1 < x < 1$
 $f_Y(y) = 1 - |y|$ para $-1 < y < 1$

$$f_{y}(y) = 1 - |y|$$
 para $-1 < y < 1$

- **4.** Supón que la f. d. p conjunta de (X,Y) está dada por $f_{X,Y}(x,y) = e^{-y}$ para x > 0 y y > x. Encuentra:
- a) Las marginales para X y para Y.
- **b**) P(X > 2|y < 4)

Respuesta

a)
$$f_X(x) = e^{-x}$$
 para $x > 0$, $f_Y(y) = ye^{-y}$ para $y > x > 0$, $y > 0$ b) $e^{-2} - 3e^{-4}$

1

- **5.** Cuando un automóvil es detenido por una patrulla, se revisa el desgaste de cada neumático y cada faro delantero se verifica para ver si está correctamente alineado. Denotemos por *X* el número de faros delanteros que necesitan ajuste y por *Y* él numero de neumáticos defectuosos.
- a) Si X y Y son independientes con $f_X(0) = 0.5$, $f_X(1) = 0.1$, $f_X(2) = 0.4$ y $f_Y(0) = 0.6$, $f_Y(1) = 0.1$. $f_Y(2) = f_Y(3) = 0.05$, $f_Y(4) = 0.2$ Escribe la función de probabilidad conjunta de la v. a. bidimensional (X,Y) mediante una tabla.
- b) Calcula $P(X \le 1, Y \le 1)$ y verifica que es igual al producto $P(X \le 1)$, $P(Y \le 1)$
- c) ¿Cuál es la probabilidad de no violaciones [P(X + Y = 0)]?

Respuesta

- **b**) 0.42 **c**) 0.30
- **6.** Un maestro acaba de entregar un largo artículo a una mecanógrafa y otro, un poco más corto a otra. Sea X el número de errores de mecanografía del primer artículo y Y el número de errores de mecanografía del segundo artículo. Supón que X tiene una distribución de Poisson con parámetro λ y Y tiene una distribución de Poisson con parámetros μ y que X y Y son independientes.
- a) ¿Cuál es la función de probabilidad conjunta para la v. a. bidimensional (X,Y)?
- **b**) ¿Cuál es la probabilidad de que a lo sumo se cometa un error en ambos artículos combinados?
- c) Obtén una expresión general para la probabilidad de que el número total de errores de los dos artículos sea m, donde m es un entero no negativo.

Sugerencia:
$$A = \{(x, y) | x + y = m\} = \{(m, 0), (m - 1, 1), ..., (1, m - 1), (0, m)\}$$

ahora suma la f. d. p conjunta sobre $(x, y) \in A$ y utiliza el Teorema del binomio que dice $\sum_{k=0}^{m} {m \choose k} a^k b^{m-k} = (a+b)^m$ para cualquier (a, b) .

Respuesta

b)
$$(1+\lambda+\mu)e^{-(\lambda+\mu)}$$
 c) $e^{-(\lambda+\mu)}\frac{(\lambda+\mu)^m}{m!}$