The quest for consistency: What's wrong with the nodes of functional brain networks?

Onerva Korhonen 26.2.2019

What's wrong with the nodes of functional brain networks?

What's wrong with the nodes of functional brain networks?

- Network: a model of connections and interactions
 - Internet, public transport, social networks

- Network: a model of connections and interactions
 - Internet, public transport, social networks
- Nodes: network's basic elements
 - Web pages, stops, people

- Network: a model of connections and interactions
 - Internet, public transport, social networks
 - **Nodes:** network's basic elements
 - Web pages, stops, people
- Links: connections between nodes
 - Web links, transport lines, social relationships

- Network: a model of connections and interactions
 - Internet, public transport, social networks
- **Nodes:** network's basic elements
 - Web pages, stops, people
- Links: connections between nodes
 - Web links, transport lines, social relationships
 - Weights?

- Network: a model of connections and interactions
 - Internet, public transport, social networks
 - Nodes: network's basic elements
 - Web pages, stops, people
- Links: connections between nodes
 - Web links, transport lines, social relationships
 - Weights?
 - Direction?

What's wrong with the nodes of functional brain networks?

Brain networks:

 Model for interactions in the brain

Brain networks

- Brain: a system of neural interactions
- Network: a natural model for the brain
- Different brain networks:
 - Structural: anatomic connections
 - Functional: temporal coactivation
 - Effective: causality

What's wrong with the nodes of functional brain networks?

Functional brain networks:

- Links = coactivation
- From fMRI data

Brain networks:

 Model for interactions in the brain

Network from Nummenmaa et al. 2014, Neurolmage

What's wrong with the nodes of functional brain networks?

Nodes:

Regions of Interest (ROIs) or voxels?

Functional brain networks:

- Links = coactivation
- From fMRI data

Brain networks:

 Model for interactions in the brain

Voxels vs ROIs

Voxels:

- fMRI imaging resolution
- noisy signals?
- ~10.000 nodes
- large computational load

ROIs:

- collections of voxels
- defined by anatomy, function, connectivity, ...
- Homogeneous (= all voxels have same dynamics)?
- ROI time series to represent voxel dynamics:

$$X_I = \frac{1}{N_I} \sum_{i \in I} x_i$$

Violent?

Consistency of Regions of Interest as nodes of fMRI functional brain networks

Korhonen, O., Saarimäki, H., Glerean, E., Sams, M., & Saramäki, J. 2017. *Network Neuroscience*

Research questions

- What should nodes of brain networks depict?
 - ROIs or voxels?
- Are ROIs functionally homogeneous?

Methods

- Two sets of resting-state fMRI data:
 - 13 in-house subjects
 - 28 subjects from ABIDE I initiative
- 215 time points (~6 min)
- ROIs from three atlases:
 - HO: anatomical
 - AAL: anatomical
 - Brainnetome: connectivity-based
- Connectivity investigated at voxel and ROI levels

How correlated are voxels of a ROI?

How homogeneous are ROIs?

- Spatial consistency
- = measure of functional homogeneity:

$$\varphi_{spat}(I) = \frac{1}{N_I(N_I - 1)} \sum_{i,i' \in I} C(x_i, x_{i'})$$

- Straightforward to calculate
- Easy to interpret

Does consistency predict connectivity?

Does consistency predict connectivity?

Does consistency predict connectivity?

Does consistency tell about ROI's functional role?

Conclusions

- ROIs are not always functionally homogeneous
- Strong ROI-level correlations between low-consistency ROIs may be spurious
- Does a low spatial consistency tell about
 - a) A bad ROI definition
 - b) High noise level
 - c) Inactivity of the ROI?

Regions of Interest as nodes of dynamic functional brain networks

Ryyppö. E., Glerean, E., Brattico, E., Saramäki, J., & Korhonen, O. 2018, Network Neuroscience

Research questions

- ROIs as nodes of dynamic brain networks?
- Temporal behaviour of spatial consistency?

Methods

- Two sets of fMRI data:
 - Music listenig (13 subjects)
 - Resting-state (28 subjects)
- ROIs:
 - Brainnetome
 - HO
 - AAL
- Time windows: 80 samples (160s), 50% overlap
- For each ROI, we build "closest neighborhoods" (35 strongest links of ROI)

Measures

- Spatial consistency φ_{spat} : functional homogeneity of ROI
- Spatiotemporal consistency: time-dependence of φ_{spat}

$$\varphi_{st}(I) = \frac{N_t(N_t - 1)}{2\sum_{t < t'} \frac{\left|\varphi_{spat}(I, t) - \varphi_{spat}(I, t')\right|}{\varphi_{spat}(I, t)}}$$

Network turnover: changes in local network structure

$$\delta_{network}(I) = 1 - \mu_t^{Jaccard}(I)$$

Spatial consistency changes in time

Spatial consistency changes in time

Turnover in network neighborhoods

Turnover in network neighborhoods

ROIs have rich internal connectivity structure

ROIs have rich internal connectivity structure

ROIs have rich internal connectivity structure

Intra-ROI modules

Network topology?

Conclusions

- Spatial consistency changes in time
 - Reflects activation?
- ROIs have time-dependent internal structure
 - Relates to network topology?
- Do brain networks have stable nodes?

Internal connectivity and topological roles of nodes in functional brain networks

Ryyppö. E, Saramäki, J., & **Korhonen, O.** Work in progress

Research questions

- Functional meaning of internal connectivity?
- Do internal connectivity and functional homogeneity predict ROIs' topological roles (= Hub or non-hub? Bridge-builder or provincial hub?)?

Methods

- Free music listening fMRI data (see above)
- ROIs: Brainnetome
- Links:
 - Pearson correlation coefficient between voxels
 - Thresholded to 0.01%
 - Link between ROIs = number of links between ROIs' voxels
- Predictors:
 - Spatial consistency φ_{spat}
 - Spatiotemporal consistency φ_{st}
 - SD of correlations inside ROI: broadness of correlation distribution
 - Self-link weight: number of voxel-level links inside the ROI
 - Relative self-link weight: normalized by ROI size
 - ROI size

Topological roles*

- Communities detected with Louvain algorithm
- Within-module strength: how connected node i is in its own module s?

$$z_{i} = \frac{\kappa_{i} - \bar{\kappa}_{s}}{\sigma_{\kappa_{s}}}$$

$$\kappa_{i} = \sum_{i' \in s} A(i, i')$$

 Participation coefficient: how distributed are node i's connections among modules?

$$P_i = 1 - \sum_{s} \left(\frac{\kappa_{is}}{k_i}\right)^2$$

^{*} According to Guimerà & Nunes Amaral 2005, Nature

Prediction tasks

1) Hub vs non-hub: logistic ridge regression

Prediction tasks

2) Provincial vs connector hub: logistic ridge regression

Prediction tasks

3) Multi-role classification: linear discriminant model

Results: Hub vs non-hub

Accuracy:
Training 74.43%
Test 74.07%
(> Random 55.01%)

Accuracy:
Training 64.22%
Test 62.31%
(> Random 55.01%)

Results: Provincial vs connector hub

Results: Multi-role classification

Conclusions

- Internal connectivity measures predict topological roles
 Varying homogeneity not a technical flaw!
- Often ROI time series = average of voxel time series
 - ⇒ Low homogeneity = lost data
 - ⇒ Flexible nodes needed
- Next:
 - Topological roles without Louvain
 - Neuroscientific interpretation
 - Network model with flexible nodes

 Based on multilayer networks (= different connections in the same network)

1. Layers = time windows

 Based on multilayer networks (= different connections in the same network)

1. Layers = time windows

ROIs optimized inside layers for maximal consistency

 Based on multilayer networks (= different connections in the same network)

- 1. Layers = time windows
- 2. ROIs optimized inside layers for maximal consistency
- 3. Interlayer links = Pearson correlation

 Based on multilayer networks (= different connections in the same network)

- 1. Layers = time windows
- ROIs optimized inside layers for maximal consistency
- Interlayer links = Pearson correlation
 - Intralayer links = spatial overlap

General conclusions

- It's not trivial to construct a functional brain network
 - Know your methods!
- Currently used nodes are not functionally homogeneous
 - Data lost in averaging
 - Risk of spurious connectivity?
- Homogeneity changes in time
 - Changes relate to function?
 - Homogeneity predicts topology
- Low homogeneity isn't a technical flaw
 - \Rightarrow Can't be fixed by new static nodes
 - ⇒ Flexible nodes needed!

