MATH101 ASSIGNMENT 8

MARK VILLAR

(1) (a) For
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
, $x \longmapsto \sin x$; $[0, 2\pi]$
(i) $f'(x) = \cos x$

$$\begin{cases}
< 0 & \text{for } (\frac{\pi}{2}, \frac{3\pi}{2}) \\
= 0 & \text{for } x = \frac{\pi}{2}, \frac{3\pi}{2} \\
> 0 & \text{for } (0, \frac{\pi}{2}) \text{ and } (\frac{3\pi}{2}, 2\pi)
\end{cases}$$

Thus f is monotonically decreasing on $(\frac{\pi}{2}, \frac{3\pi}{2})$ while it is monotonically increasing on $(0, \frac{\pi}{2})$ and $(\frac{3\pi}{2}, 2\pi)$. It has critical points at $x = \frac{\pi}{2}, \frac{3\pi}{2}$. As f is an oscillating function, this pattern is repeated over \mathbb{R} with periodicity 2π .

(ii)
$$f''(x) = -\sin x$$

$$\begin{cases}
< 0 & \text{for } (0, \pi) \\
= 0 & \text{for } x = 0, \pi, 2\pi \\
> 0 & \text{for } (\pi, 2\pi)
\end{cases}$$

Thus f is concave down on $(0,\pi)$ while it is concave up on $(\pi,2\pi)$. It has points of inflection at $x=0,\pi,2\pi$.

(b) For
$$g: \mathbb{R} \longrightarrow \mathbb{R}$$
, $x \longmapsto e^x + e^{-x}$
(i) $g'(x) = e^x + (-1)e^{-x}$
 $= e^x - e^{-x}$

$$\begin{cases} < 0 & \text{for } x < 0 \\ = 0 & \text{for } x = 0 \\ > 0 & \text{for } x > 0 \end{cases}$$

Thus f is monotonically decreasing when x < 0 while it is monotonically increasing when x > 0. It has a critical point at x = 0.

(ii)
$$g''(x) = e^{x} - (-1)e^{-x} \\ = e^{x} + e^{-x} \\ > 0 \text{ for } x \in \mathbb{R}.$$

Thus g is concave up for all x and has a turning point at x = 0.

(c) For
$$h : \mathbb{R} \longrightarrow \mathbb{R}$$
, $t \longmapsto 9t^3 - 9t^2 + 3$
(i) $h'(t) = 27t^2 - 18t$

$$\begin{cases} < 0 & \text{for } (0, \frac{2}{3}) \\ = 0 & \text{for } t = 0, \frac{2}{3} \\ > 0 & \text{for } (-\infty, 0) & \text{and } (\frac{2}{3}, \infty) \end{cases}$$

Thus f is monotonically decreasing on $(0, \frac{2}{3})$ while it is monotonically increasing when x < 0 and $x > \frac{2}{3}$. It has critical points at $t = 0, \frac{2}{3}$.

(ii)
$$h''(t) = 54t - 18$$

$$\begin{cases} < 0 & \text{for } (-\infty, \frac{1}{3}) \\ = 0 & \text{for } t = \frac{1}{3} \\ > 0 & \text{for } (\frac{1}{3}, \infty) \end{cases}$$

Thus h is concave down when $t < \frac{1}{3}$ while it is concave up when $t > \frac{1}{3}$. It has a point of inflection at $t = \frac{1}{3}$.

(d) For
$$k : \mathbb{R} \longrightarrow \mathbb{R}$$
, $u \longmapsto \ln(u^2 + 9)$
(i) $k'(u) = (\frac{1}{u^2 + 9})(2u) = \frac{2u}{u^2 + 9}$

$$\begin{cases}
< 0 & \text{for } u < 0 \\
= 0 & \text{for } u = 0 \\
> 0 & \text{for } u > 0
\end{cases}$$

Thus f is monotonically decreasing when u < 0 while it is monotonically increasing when u > 0. It has a critical point at u = 0.

(ii)
$$k''(u) = \frac{(u^2+9)(2)-(2u)(2u)}{(u^2+9)^2} = \frac{18-2u^2}{(u^2+9)^2}$$

$$\begin{cases} < 0 & \text{for } (-\infty, -3) \text{ and } (3, \infty) \\ = 0 & \text{for } u = -3, 3 \\ > 0 & \text{for } (-3, 3) \end{cases}$$

Thus k is concave down when u < -3 and u > 3 while it is concave up when -3 < u < 3. It has points of inflection at u = -3, 3.

(2) For
$$f: (-1, \infty) \longrightarrow \mathbb{R}$$
, $x \longmapsto \ln(1+x) - x$
(a)
$$f'(x) = \frac{1}{1+x} - 1 = -\frac{x}{1+x}$$

$$\begin{cases} < 0 & \text{for } (0, \infty) \\ = 0 & \text{for } x = 0 \\ > 0 & \text{for } (-1, 0) \end{cases}$$

Thus f is monotonically decreasing on \mathbb{R}_0^+ since f'(x) < 0 for all x > 0. As f is decreasing,

$$f(x) \le f(0) = 0$$

Hence, for all $x \ge 0$:

$$\ln(1+x) - x \le 0$$
$$\ln(1+x) \le x$$

(b) Let
$$g: (-1, \infty) \longrightarrow \mathbb{R}$$
, $x \longmapsto \ln(1+x) - x + \frac{x^2}{2}$

$$g'(x) = -\frac{x}{1+x} + x = \frac{x^2}{1+x}$$

$$\begin{cases} = 0 & \text{for } x = 0 \\ > 0 & \text{for } (-1, 0) & \text{and } (0, \infty) \end{cases}$$

Thus g is monotonically increasing on \mathbb{R}_0^+ since g'(x) > 0 for all x > 0. As g is increasing,

$$g(x) \ge g(0) = 0$$

Hence, for all $x \geq 0$:

$$\ln(1+x) - x + \frac{x^2}{2} \ge 0$$
$$\ln(1+x) \ge x - \frac{x^2}{2}$$

Let
$$h: (-1, \infty) \longrightarrow \mathbb{R}$$
, $x \longmapsto \ln(1+x) - x + \frac{x^2}{2} - \frac{x^3}{3}$
 $g'(x) = \frac{x^2}{1+x} - x^2 = -\frac{x^3}{1+x}$

$$\begin{cases} < 0 & \text{for } (0, \infty) \\ = 0 & \text{for } x = 0 \\ > 0 & \text{for } (-1, 0) \end{cases}$$

Thus h is monotonically decreasing on \mathbb{R}_0^+ since h'(x) < 0 for all x > 0. As h is decreasing,

$$h(x) \le h(0) = 0$$

Hence, for all $x \ge 0$:

$$\ln(1+x) - x + \frac{x^2}{2} - \frac{x^3}{3} \le 0$$
$$\ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}$$

Thus we have shown that

$$x - \frac{x^2}{2} \le \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}$$

(3) (a) For
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
, $x \longmapsto 3x^5 - 20x^3 + 45x + 1$

The domain of f is \mathbb{R} which contains no boundary points. Moreover, since f is a polynomial function it is differentiable everywhere. Hence,

$$f'(x) = 15x^4 - 60x^2 + 45 = 15(x^2 - 3)(x - 1)(x + 1) = 0$$

if and only if $x \in \{\pm 1, \pm \sqrt{3}\}$

$$f''(x) = 60x^3 - 120x$$

Then
$$f''(-\sqrt{3}) = -60\sqrt{3}$$
, $f''(-1) = 60$, $f''(1) = -60$, $f''(\sqrt{3}) = 60\sqrt{3}$

Thus f has relative minima at $x = -1, \sqrt{3}$ and relative maxima at $x = -\sqrt{3}, 1$.

$$f(-\sqrt{3}) = -12\sqrt{3} + 1 \approx -19.78, \quad f(-1) = -27, \quad f(1) = 29,$$

 $f(\sqrt{3}) = 12\sqrt{3} + 1 \approx 21.78$

(b) For
$$g: \mathbb{R} \longrightarrow \mathbb{R}$$
, $t \longmapsto t^2 e^{2t}$

The domain of g is \mathbb{R} which contains no boundary points. Additionally, g is differentiable everywhere. Hence,

$$g'(t) = 2te^{2t} + 2t^2e^{2t} = 2te^{2t}(1+t) = 0$$

if and only if $t \in \{-1, 0\}$

$$g''(t) = 4te^{2t} + 2e^{2t} + 4t^2e^{2t} + 4te^{2t} = 4t^2e^{2t} + 8te^{2t} + 2e^{2t}$$

Then
$$g''(-1) = -\frac{2}{g^2}$$
, $g''(0) = 2$

Thus g has relative maximum at x = -1 and relative minimum at x = 0.

$$g(-1) = \frac{1}{e^2} \approx 0.135, \quad g(0) = 0$$

(c) For
$$h:(-3,\infty)\longrightarrow \mathbb{R}, x\longmapsto \sqrt{x^3+3x^2+3}$$

We observe that h is differentiable over its domain $(-3, \infty)$. Hence,

$$h'(x) = \left(\frac{1}{2}\right)(x^3 + 3x^2 + 3)^{-\frac{1}{2}}(3x^2 + 6x) = \frac{3x^2 + 6x}{2\sqrt{x^3 + 3x^2 + 3}} = \frac{3x(x+2)}{2\sqrt{x^3 + 3x^2 + 3}} = 0$$

if and only if $x \in \{-2, 0\}$

(The only critical points are given by $3x^2(x+2) = 0$ since $x^3 + 3x^2 + 3 > 0$)

$$h''(x) = \frac{1}{2} \left[\left(-\frac{1}{2} \right) (3x^2 + 6x)(x^3 + 3x^2 + 3)^{-\frac{3}{2}} (3x^2 + 6x) + (x^3 + 3x^2 + 3)^{-\frac{1}{2}} (6x + 6) \right]$$
$$= \frac{6x + 6}{2\sqrt{x^3 + 3x^2 + 3}} - \frac{(3x^2 + 6x)^2}{4(x^3 + 3x^2 + 3)^{\frac{3}{2}}}$$

Then
$$h''(-2) = -\frac{3\sqrt{7}}{7}$$
, $h''(0) = \sqrt{3}$

Thus h has relative maximum at x = -2 and relative minimum at x = 0.

$$h(-2) = \sqrt{7}, \quad h(0) = \sqrt{3}$$

(4) For $n \in \mathbb{N}$ and $x \geq 0$, let P(n) be the proposition:

$$\ln(1+x) \ge x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots - \frac{x^{2n}}{2n}$$

Equivalently,

$$\ln(1+x) \ge \sum_{n=1}^{\infty} \left[\frac{x^{2n-1}}{2n-1} - \frac{x^{2n}}{2n} \right]$$

n=1:

$$\frac{x^{2n-1}}{2n-1} - \frac{x^{2n}}{2n} = \frac{x^{2-1}}{2-1} - \frac{x^2}{2} = x - \frac{x^2}{2}$$

We showed in Question 2(b) that $\ln(1+x) \ge x - \frac{x^2}{2}$. Therefore P(1) is true. $\mathbf{n} \ge \mathbf{2}$: We make the inductive hypothesis that P(n) is true for n = k.

$$\ln(1+x) \ge \sum_{k=1}^{\infty} \left[\frac{x^{2k-1}}{2k-1} - \frac{x^{2k}}{2k} \right]$$

We now prove P(k+1):

Let
$$j(x) = \ln(1+x) - x + \frac{x^2}{2} - \frac{x^3}{3} + \frac{x^4}{4} - \dots + \frac{x^{2k}}{2k} - \frac{x^{2k+1}}{2k+1}$$

Then j is differentiable over its domain $(-1, \infty)$ and

$$j'(x) = \frac{1}{1+x} - 1 + x - x^2 + x^3 - \dots + x^{2k-1} - x^{2k}$$
$$= -\frac{x}{1+x} + \sum_{k=1}^{\infty} \left[x^{2k-1} - x^{2k} \right] = -\frac{x}{1+x} + \frac{1}{x^2+x} = \frac{1-x}{x}$$

It follows that

$$j'(x) = \begin{cases} < 0 & \text{for } x > 1 \\ = 0 & \text{for } x = 1 \\ > 0 & \text{for } 0 < x < 1 \end{cases}$$

Thus j is monotonically increasing for 0 < x < 1 and as such,

$$j(x) \ge j(0) = 0$$

Hence, for 0 < x < 1:

$$\ln(1+x) - x + \frac{x^2}{2} - \frac{x^3}{3} + \frac{x^4}{4} - \dots + \frac{x^{2k}}{2k} - \frac{x^{2k+1}}{2k+1} \ge 0$$

$$\ln(1+x) \ge x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots - \frac{x^{2n}}{2n} + \frac{x^{2k+1}}{2k+1}$$

Therefore P(k+1) is true whenever P(k) is true. So by the principle of mathematical induction, for all $n \in \mathbb{N}$:

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots - \frac{x^{2n}}{2n} \le \ln(1+x)$$

We then let S(n) be the statement:

$$\ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{x^{2n-1}}{2n-1}$$

Equivalently,

$$\ln(1+x) \le x - \sum_{n=1}^{\infty} \left[\frac{x^{2n}}{2n} - \frac{x^{2n+1}}{2n+1} \right]$$

n=1:

$$x - \frac{x^{2n}}{2n} + \frac{x^{2n+1}}{2n+1} = x - \frac{x^2}{2} + \frac{x^3}{3}$$

We showed in Question 2(b) that $\ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}$. Therefore S(1) is true. $\mathbf{n} \ge \mathbf{2}$: We make the inductive hypothesis that S(n) is true for n=k.

$$\ln(1+x) \le x - \sum_{k=1}^{\infty} \left[\frac{x^{2k}}{2k} - \frac{x^{2k+1}}{2k+1} \right]$$

We now prove S(k+1):

Let
$$l(x) = \ln(1+x) - x + \frac{x^2}{2} - \frac{x^3}{3} + \frac{x^4}{4} - \dots - \frac{x^{2k-1}}{2k-1} + \frac{x^{2k}}{2k}$$

Then l is differentiable over its domain $(-1, \infty)$ and

$$l'(x) = \frac{1}{1+x} - 1 + x - x^2 + x^3 - \dots + x^{2k-2} - x^{2k-1}$$
$$= -\frac{x}{1+x} + \sum_{k=1}^{\infty} \left[x^{2k-2} - x^{2k-1} \right] = -\frac{x}{1+x} + \frac{1}{x^3 + x^2} = \frac{1-x^3}{x^3 + x^2}$$

It follows that

$$l'(x) = \begin{cases} < 0 & \text{for } x > 1 \\ = 0 & \text{for } x = 1 \\ > 0 & \text{for } 0 < x < 1 \end{cases}$$

Thus l is monotonically decreasing for x > 1 and as such,

$$l(x) \le l(0) = 0$$

Hence, for x > 1:

$$\ln(1+x) - x + \frac{x^2}{2} - \frac{x^3}{3} + \frac{x^4}{4} - \dots - \frac{x^{2k-1}}{2k-1} + \frac{x^{2k}}{2k} \le 0$$

$$\ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{x^{2k-1}}{2k-1} - \frac{x^{2k}}{2k}$$

Therefore S(k+1) is true whenever S(k) is true. So by the principle of mathematical induction, for all $n \in \mathbb{N}$:

$$\ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{x^{2n-1}}{2n-1}$$

Finally, we have shown that

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots - \frac{x^{2n}}{2n} \le \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{x^{2n-1}}{2n-1}$$