$$n = 0.35 \left(\frac{1.96}{0.03} \right)^2$$

$$-0.70.0.30\left(\frac{1.96}{0.03}\right)^{2}$$

2)
$$n = 120$$
 not large = 88
theat large = 120-88=30
 $p = \frac{32}{120} = 0.2607$

(i)
$$Se(\hat{p}) = \sqrt{\frac{eq}{0.7867.0.7333}}$$

 $Se(\hat{p}) = 0.0404$

(iii)
$$20.05 = 1.96$$

 95%
 $10.2467 \pm 1.96 \cdot 0.0404$
 10.2667 ± 0.0792
 $10.1875, 0.3459$

The width of the 95% CI would be bigger