Disaster Resilience in OpenStreetMaps

DS 6015

Ian Doran, Catherine Im, Lauren O'Donnell, OC Ofoma

OpenStreetMap Risk-Targeted Mapping Project Charter

Project Description:

Support OSM US's disaster relief efforts by providing insight into undermapped areas likely to be impacted by specific natural disasters.

Scope:

Produce county-level data focused on building footprints in OSM and disaster risk from the FEMA National Risk Index (NRI).

Deliverables:

The deliverable will be a Jupyter notebook capable of leveraging FEMA and OSM data and producing visualizations of undermapped, at-risk localities. The derived data used to produce the visualizations will also be included.

Team Members:

UVA - OSM -

Ian Doran
Catherine Im
Lauren O'Donnell
OC Ofoma
Jess Beutler
Diane Fritz
Maggie Cawley
Quincy Morgan

Business Needs:

Identify areas within the US that are undermapped and are at high risk for natural disasters with the goal of developing a tool to prioritize volunteer mapping efforts.

Overview

Problem Statement

OSM data does not capture all the relevant GIS data critical for disaster response support. Gaps in the data are filled in reactively after a disaster.

Project Goal

Provide an interactive tool capable of informing OSM US's proactive data gathering to prioritize at-risk, undermapped areas.

Overview Data Sources

OpenStreetMap (OSM)

- XML, semi-structured, geospatial data (GIS)

Microsoft Maps Deep Learning Model (MSAI)

 Publicly-available dataset with nearly 130 million computer-generated building footprints

FEMA National Risk Index (NRI)

Baseline risk assessment tool and interactive dashboard

US Census Boundaries

- Cartographic boundary files

Example of AI-generated building footprints from satellite imagery

Overlay of expected buildings and OSM-mapped buildings

Methods

Derived Undermapped and Priority Statistics

Defining Undermapped

- Focus on buildings and building footprints
- Mapping completion definition:
 - The area covered by structures in OSM vs. in MSAI data (baseline)

Undermapped Statistic

Undermapped Statistic =
$$(1 - \frac{Area \ of \ OSM \ Building \ Footprints}{Area \ of \ MSAI \ Building \ Footprints}) \times 100$$

Priority Statistic

Priority Statistic = $(Risk Statistic \times Ratio) + (Undermapped Statistic \times (1 - Ratio)) \times 100$

Interactive Framework

Select a natural disaster:

Select your desired ratio:

Selecting 0 will visualize only undermapped data, selecting 100 will visualize only risk data

Interactive Dashboard:

- Created using Dash
- Allows for the dynamic selection:
 - Disaster type of interest
 - Balance between risk and undermapped weighting.

(Risk Statistic \times Ratio) + (Undermapped Statistic \times (1 - Ratio)) \times 100

Challenges

GIS Data

- Deconflicting projection differences

Baseline Metric

Defining undermapped & overmapped

The Approach

- Configuring Third Party APIs
 - Google Places API constraints
 - Lack of comprehensive, low-cost data

MSAI Data

- Overcoming limitations
 - Varying data vintage 2012, 2019-2020
 - Simplified geometric shapes
 - 94.0% building recall

Conclusion

A combination of human-generated building footprints and computer-generated building footprints with a use-case dataset is feasible to generate an intuitive yet effective metric for understanding a region's combined level of mapping within OSM and level of risk from a given.

References

- Barrington-Leigh, C., & Millard-Ball, A. (2017, August). The world's user-generated road map is more than 80% complete. PLOS ONE, 12, e0180698. https://doi.org/10.1371/journal.pone.0180698
- Federal Emergency Management Agency (n.d.). National Risk Index. Retrieved from https://hazards.fema.gov/nri/
- Femin, A., & Biju, K. S. (2020). Accurate Detection of Buildings from Satellite Images using CNN. In 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE) (pp. 1-5). https://doi.org/10.1109/ICECCE49384.2020.9179232
- Hamaguchi, R., & Hikosaka, S. (2018). Building Detection From Satellite Imagery Using Ensemble of Size-Specific Detectors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (pp. 1-5). June 2018.
- U.S. Census Bureau. (n.d.). ANSI Codes. Retrieved from https://www.census.gov/library/reference/code-lists/ansi.html
- Wei, S., Ji, S., & Lu, M. (2020). Toward Automatic Building Footprint Delineation From Aerial Images Using CNN and Regularization. IEEE Transactions on Geoscience and Remote Sensing, 58(3), 2178-2189. https://doi.org/10.1109/TGRS.2019.2954461

Image Sources

- https://www.basecampconnect.com/natural-disasters-and-communication-challenges/
- https://www.cnet.com/home/energy-and-util ities/natural-disaster-guide-how-to-prep-forwildfires-hurricanes-storms-and-more/
- https://www.voanews.com/a/disaster-challe nge-aids-australia-s-response-to-natural-ha zards/6789575.html
- https://www.theactuary.com/2021/01/13/ins ured-losses-natural-disasters-rise-2020
- https://svs.gsfc.nasa.gov/2396

Backup Slides

Future Research

- Address the limitations to greatly improve the accuracy and reduce dependence on external datasets with unclear data vintage
 - Use updated imagery
- Redefine the undermapped statistic using different baseline data
 - i.e. social media activity, nighttime light activity, USPS address data, etc.

Social Media Activity

Nighttime Light Activity

