Ondas, Números Complexos e Fasores

Que é uma Onda?

- É um fenômeno físico em que há o transporte de energia ou informação de um ponto a outro do espaço
- Principais tipos de ondas:
 - Mecânicas
 - Eletromagnéticas

Onda Esférica e Onda Plana

Abertura (b) Onda plana (aproximação)

Onda plana uniforme_

Figura 7-2 Ondas radiadas por uma fonte de ondas eletromagnéticas, como uma lâmpada ou uma antena, sendo as frentes de onda esféricas como mostrado em (a); para um observador distante, a frente de onda se mostra aproximadamente plana, como mostrado em (b).

Linhas de Transmissão

Guias de ondas

Guia retangular metálico

Guia cilíndrico dielétrico (Fibra óptica)

Atmosfera como um guia de onda natural

Figura 7-1 A camada da atmosfera na parte superior, ionosfera, e a superfície da Terra na parte inferior formam uma estrutura de guia de ondas para a propagação de ondas de rádio na faixa HF.

Representação matemática para uma onda harmônica em um meio sem perdas

- Qualquer tipo de onda caracterizada matematicamente por um função seno ou cosseno é conhecida como onda harmônica.
- Considere uma onda se propagando na superfície de uma lago. Se y indica a altura da onda com relação ao nível sem distúrbio e x é a direção de deslocamento da onda na superfície, podemos então descrever uma onda harmônica como sendo função de x e do tempo t:

$$y(x,t) = A\cos(\omega t - \beta x + \phi_0)$$

Representação matemática para uma onda em um meio sem perdas

Em que:

$$\frac{2\pi}{T} = \omega$$
 é a frequência angular da onda [rad/s].

$$\frac{2\pi}{\lambda} = \beta$$
 é a constante de fase da onda [rad/m].

 ϕ_0 é a fase inicial da onda [rad ou graus]

T é o período da onda e f=1/T é a frequência da onda.

Podemos então reescrever y (x,t) com sendo:

$$y(x,t) = A\cos\left(\frac{2\pi}{T}t - \frac{2\pi}{\lambda}x + \phi_0\right)$$

Representação matemática para uma onda em um meio sem perdas

Vamos analisar o caso:
$$y(x,t) = A\cos\left(\frac{2\pi}{T}t - \frac{2\pi}{\lambda}x\right)$$

(b) y(x, t) versus t at x = 0

Figura 7-3 Gráficos de $y(x, t) = A \cos \left(\frac{2\pi t}{T} - \frac{2\pi x}{\lambda} \right)$ como uma função de (a) x para t = 0 e (b) t para x = 0.

y(x, 0)

Representação matemática para uma onda em um meio sem perdas

Vamos analisar o caso: $y(x,t) = A\cos\left(\frac{2\pi}{T}t - \frac{2\pi}{\lambda}x\right)$

Pode-se demonstrar que a velocidade de fase da onda é dada por:

$$v_{fase} = \lambda f$$

Figura 7-4 Gráficos de $y(x, t) = A \cos\left(\frac{2\pi t}{T} - \frac{2\pi x}{\lambda}\right)$ como uma função de (a) x para t = 0, (b) t = T/4 e (c) t = T/2. Observe que as ondas se movem na direção positiva de x com uma velocidade $u_p = \lambda / T$.

Figure 7-4

Representação matemática para uma onda em um meio sem perdas

Vamos analisar o caso:
$$y(x,t) = A\cos\left(\frac{2\pi}{T}t - \frac{2\pi}{\lambda}x + \phi_0\right)$$

Figure 7-5

Representação matemática para uma onda em um meio com perdas

- Se uma onda harmônica se propaga em um meio com perdas na direção ${\bf x}$, sua amplitude diminuirá conforme um fator de atenuação $e^{-\alpha x}$.
- α é chamado de constante de atenuação do meio, sendo sua unidade o neper por metro (Np/m).
- Portanto, em geral,

$$y(x,t) = Ae^{-\alpha x}\cos(\omega t - \beta x + \phi_0)$$

Representação matemática para uma onda em um meio com perdas

• Vamos analisar o caso: $y(x,t) = 10e^{-0.2x} \cos(\pi x)$

Figure 7-6

Exemplo

Exemplo 7-1

Onda Sonora na Água

Uma onda acústica que se desloca na direção x em um fluido (líquido ou gás) é caracterizada por uma pressão diferencial p(x,t). A unidade de pressão é o newton por metro quadrado (N/m²). Determine uma expressão para p(x,t) para uma onda sonora senoidal que se desloca na água na direção positiva de x, dado que a freqüência da onda é 1 kHz, a velocidade do som na água é 1,5 km/s, a amplitude da onda é 10 N/m² e p(x,t) apresenta seu valor máximo em t = 0 e x = 0,25 m. Considere a água como um meio que não apresenta perdas.

Solução: De acordo com a forma geral dada pela Eq. (7.1) para uma onda que se desloca na direção positiva de x,

$$p(x,t) = A \cos\left(\frac{2\pi}{T}t - \frac{2\pi}{\lambda}x + \phi_0\right) (N/m^2).$$

A amplitude $A = 10 \text{ N/m}^2$, $T = 1/f = 10^{-3} \text{s}$ e, a partir de $u_p = f\lambda$,

$$\lambda = \frac{u_{\rm p}}{f} = \frac{1.5 \times 10^3}{10^3} = 1.5 \,\mathrm{m}.$$

Portanto,

$$p(x,t) = 10\cos\left(2\pi \times 10^{3}t - \frac{4\pi}{3}x + \phi_{0}\right)$$
(N/m²).

Visto que em t = 0 e x = 0,25 m, p(0,25,0) = 10 N/m², temos

$$10 = 10\cos\left(\frac{-4\pi}{3}0,25 + \phi_0\right)$$
$$= 10\cos\left(\frac{-\pi}{3} + \phi_0\right),$$

que resulta em $(\phi_0 - \pi/3) = \cos^{-1}(1)$ ou $\phi_0 = \pi/3$. Portanto,

$$p(x,t) = 10\cos\left(2\pi \times 10^{3}t - \frac{4\pi}{3}x + \frac{\pi}{3}\right)$$
(N/m²).

Exemplo 7-2 Perda de Potência

Um feixe *laser* de luz que se propaga na atmosfera é caracterizado por uma intensidade de campo elétrico dada por

$$E(x,t) = 150e^{-0.03x}\cos(3 \times 10^{15}t - 10^7x) \text{ (V/m)},$$

onde x é a distância em metros a partir da fonte. A atenuação se deve à absorção pelos gases da atmosfera. Determine (a) a direção de deslocamento da onda, (b) a velocidade da onda e (c) a amplitude da onda a uma distância de 200 m.

Solução: (a) Como os coeficientes de *t* e *x* no ar- (b) gumento da função co-seno têm sinais opostos, a onda tem de se deslocar na direção positiva de *x*.

$$u_{\rm p} = \frac{\omega}{\beta} = \frac{3 \times 10^{15}}{10^7} = 3 \times 10^8 \,\text{m/s},$$

que é igual a c, a velocidade da luz no espaço livre.

(c) Para x = 200 m, a amplitude de E(x, t) é

$$150e^{-0.03 \times 200} = 0.37$$
 (V/m).

Por que considerar uma onda como tendo um comportamento harmônico (senoidal ou cossenoidal)?

Série de Fourier

Definição

"Qualquer <u>curva</u>, não importa que natureza seja ou de que maneira foi originalmente obtida, pode ser fielmente reproduzida através da <u>superposição</u> de um número suficiente de curvas <u>harmônicas simples</u>".

Ou seja, qualquer <u>onda</u>, por mais complexa que seja, contanto que seja <u>periódica</u>, pode ser representada pela superposição de uma <u>série de ondas harmônicas</u>, com <u>amplitudes e freqüências cuidadosamente escolhidas</u>. Tal série é chamada *Série de Fourier*.

Definição

 Dada uma curva f(t) com período T, ela é representada pela Série de Fourier por:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right)$$

com

$$a_n = \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \cos(n\omega_0 t) dt e$$

$$b_n = \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \sin(n\omega_0 t) dt.$$

 ω_0 : frequência da fundamental

 Além disso o termo a₀/2 é conhecido como valor médio ou DC da curva e somatório é a componente alternada ou AC da curva.

Exemplo

1) Calcular a série de Fourier para a onda definida por:

$$f(t) = \begin{cases} 0, & -2 < t < -1 \\ 6, & -1 < t < 1 ; f(t+4) = f(t) \\ 0, & 1 < t < 2 \end{cases}$$

Trem de pulsos para N=100

Exercício

2) Calcular a série de Fourier para a onda definida por

$$f(t) = t$$
, $-\pi < t < \pi$ com $f(t + 2\pi) = f(t)$

N=10

N=100

N=1000

Trem de pulsos para N=200

Números complexos

$$z = x + jy$$
, $x = \Re e(z)$, $y = \Im m(z)$.

Alternativamente, z pode ser escrito na forma polar como a seguir:

$$z = |z|e^{j\theta} = |z| \underline{\angle \theta}$$

|z| é o módulo θ é o ângulo de fase.

identidade de Euler. $e^{j\theta} = \cos \theta + j \sin \theta$.

$$z = |z|e^{j\theta} = |z|\cos\theta + j|z|\sin\theta$$

$$x = |z| \cos \theta, \quad y = |z| \sin \theta,$$

$$|z| = \sqrt[+]{x^2 + y^2}, \ \theta = tg^{-1}(y/x)$$

Figura 7-7 Relação entre as representações retangular e polar de um número complexo z = x + $jy = |z|e^{i\theta}$.

complexo conjugado de z

$$z^* = (x + jy)^* = x - jy = |z|e^{-j\theta} = |z| \angle -\frac{\theta}{2}$$
.

O módulo |z| é igual à raiz quadrada positiva do produto de z pelo seu conjugado complexo:

$$|z| = \sqrt[+]{zz^*}$$

Igualdade: Se dois números complexos z_1 e z_2 são dados por

$$z_1 = x_1 + jy_1 = |z_1|e^{j\theta_1},$$
 (7.27)

$$z_2 = x_2 + jy_2 = |z_2|e^{j\theta_2},$$
 (7.28)

então $z_1 = z_2$ se e apenas se $x_1 = x_2$ e $y_1 = y_2$ ou, de forma equivalente, $|z_1| = |z_2|$ e $\theta_1 = \theta_2$.

Multiplicação:

$$z_1 z_2 = (x_1 + jy_1)(x_2 + jy_2)$$

= $(x_1 x_2 - y_1 y_2) + j(x_1 y_2 + x_2 y_1)$ (7.30a)

ou

$$z_1 z_2 = |z_1| e^{j\theta_1} \cdot |z_2| e^{j\theta_2}$$

$$= |z_1| |z_2| e^{j(\theta_1 + \theta_2)}$$

$$= |z_1| |z_2| [\cos(\theta_1 + \theta_2) + j \sin(\theta_1 + \theta_2)]$$
(7.30b)

Adição:

$$z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2).$$
 (7.29)

Divisão: Para $z_2 \neq 0$,

$$\frac{z_1}{z_2} = \frac{x_1 + jy_1}{x_2 + jy_2}$$

$$= \frac{(x_1 + jy_1)}{(x_2 + jy_2)} \cdot \frac{(x_2 - jy_2)}{(x_2 - jy_2)}$$

$$= \frac{(x_1x_2 + y_1y_2) + j(x_2y_1 - x_1y_2)}{x_2^2 + y_2^2}$$

ou

$$\frac{z_1}{z_2} = \frac{|z_1|e^{j\theta_1}}{|z_2|e^{j\theta_2}}$$

$$= \frac{|z_1|}{|z_2|}e^{j(\theta_1 - \theta_2)}$$

$$= \frac{|z_1|}{|z_2|}[\cos(\theta_1 - \theta_2) + j \sin(\theta_1 - \theta_2)].$$
43

Potências: Para qualquer inteiro positivo n,

$$z^{n} = (|z|e^{j\theta})^{n}$$

$$= |z|^{n}e^{jn\theta} = |z|^{n}(\cos n\theta + j \sin n\theta) \quad (7.32)$$

$$z^{1/2} = \pm |z|^{1/2}e^{j\theta/2}$$

$$= \pm |z|^{1/2}[\cos(\theta/2) + j \sin(\theta/2)] \quad (7.33)$$

Relações úteis:

$$-1 = e^{j\pi} = e^{-j\pi} = 1/180^{\circ},$$

$$j = e^{j\pi/2} = 1/90^{\circ},$$
(7.34)

$$-j = -e^{j\pi/2} = e^{-j\pi/2} = 1 \angle -90^{\circ}, \tag{7.35}$$

$$\sqrt{j} = (e^{j\pi/2})^{1/2} = \pm e^{j\pi/4} = \frac{\pm (1+j)}{\sqrt{2}},$$
 (7.36)

$$\sqrt{-j} = \pm e^{-j\pi/4} = \frac{\pm (1-j)}{\sqrt{2}} \ . \tag{7.36}$$

Exemplo

Exemplo 7-3

Trabalhando com Números Complexos

Dados dois números complexos

$$V = 3 - j4$$
,
 $I = -(2 + j3)$.

(a) Expresse V e I na forma polar e determine (b) VI, (c) VI^* , (d) V/I e (e) \sqrt{I} .

Solução:

(a)
$$|V| = \sqrt[4]{VV^*}$$

 $= \sqrt[4]{(3-j4)(3+j4)} = \sqrt[4]{9+16} = 5,$
 $\theta_V = \operatorname{tg}^{-1}(-4/3) = -53,1^{\circ},$
 $V = |V|e^{j\theta_V} = 5e^{-j53,1^{\circ}} = 5 \angle -53,1^{\circ},$
 $|I| = \sqrt[4]{2^2 + 3^2} = \sqrt[4]{13} = 3,61.$

Como I = (-2 - j3) está no terceiro quadrante no plano complexo [Fig. 7-8],

$$\theta_I = 180^\circ + \text{tg}^{-1} \left(\frac{3}{2}\right) = 236,3^\circ,$$

 $I = 3,61 \angle 236.3^\circ.$

(b)
$$VI = 5e^{-j53.1^{\circ}} \times 3.61e^{j236.3^{\circ}}$$

= $18.05e^{j(236.3^{\circ}-53.1^{\circ})} = 18.05e^{j183.2^{\circ}}$.

(c)
$$VI^* = 5e^{-j53.1^{\circ}} \times 3.61e^{-j236.3^{\circ}}$$

= $18.05e^{-j289.4^{\circ}} = 18.05e^{j70.6^{\circ}}$.

(d)
$$\frac{V}{I} = \frac{5e^{-j53,1^{\circ}}}{3,61e^{j236,3^{\circ}}}$$

= 1,39 $e^{-j289,4^{\circ}} = 1,39e^{j70,6^{\circ}}$.

(e)
$$\sqrt{I} = \sqrt{3,61}e^{j236.3^{\circ}}$$

= $\pm \sqrt{3,61}e^{j236.3^{\circ}/2} = \pm 1,90e^{j118.15^{\circ}}$.

Figura 7-8 Os números complexos $V \in I$ no plano complexo (Exemplo 7-3).

Fasores

- A análise fasorial é uma ferramenta matemática usada na análise e solução de problemas que envolvem sistemas lineares nos quais a excitação é uma função periódica no tempo.
- Se a excitação é harmônica (varia senoidalmente com o tempo), o uso da notação fasorial nos permite converter uma equação integral/diferencial em uma equação linear.

- A representação fasorial também é útil para sistemas lineares em que a excitação é qualquer função periódica no tempo (não-senoidal), por exemplo: uma onda quadrada ou uma sequência de pulsos. Nesse caso, pode-se expandir a excitação em uma série de Fourier, calcula-se a variável desejada usando análise fasorial para cada componente da série.
- Pelo princípio da superposição, a soma das soluções referentes a todas as componentes da série fornece o mesmo resultado que seria obtido caso o problema fosse solucionado inteiramente no domínio do tempo sem a ajuda da representação de Fourier.

 No caso de funções não-periódicas, tais como um único pulso, as funções podem ser expressas como integrais de Fourier e uma aplicação similar do princípio da superposição também pode ser usada.

Exemplo – Circuito RC simples

Figura 7-9 Circuito RC conectado a uma fonte de tensão.

$$v_{\rm s}(t) = V_0 \operatorname{sen}(\omega t + \phi_0),$$

$$R i(t) + \frac{1}{C} \int i(t) dt = v_s(t)$$
(domínio do tempo) (7.39)

1 – Adotar um referência co-seno

$$\begin{aligned} v_s(t) &= V_0 \operatorname{sen}(\omega t + \phi_0) \\ &= V_0 \cos\left(\frac{\pi}{2} - \omega t - \phi_0\right) \\ &= V_0 \cos\left(\omega t + \phi_0 - \frac{\pi}{2}\right), \end{aligned}$$

onde usamos as propriedades sen $x = \cos(\pi/2 - x)$ e $\cos(-x) = \cos x$.

2 – Expressar as variáveis dependentes do tempo como fasores

Qualquer função senoidal variante no tempo z(t) pode ser expressa na forma

$$z(t) = \Re e \left[\widetilde{Z} \ e^{j\omega t} \right]$$

onde \widetilde{Z} é uma função independente do tempo denominada *fasor* da função *instantânea* z(t).

$$\begin{split} v_{\mathrm{s}}(t) &= \mathfrak{Re} \left[V_0 e^{j(\omega t + \phi_0 - \pi/2)} \right] \\ &= \mathfrak{Re} \left[V_0 e^{j(\phi_0 - \pi/2)} e^{j\omega t} \right] \\ &= \mathfrak{Re} \left[\widetilde{V}_{\mathrm{s}} e^{j\omega t} \right], \end{split}$$

$$\widetilde{V}_{\rm s} = V_0 e^{j(\phi_0 - \pi/2)}$$

$$\Rightarrow i(t) = \Re e(\tilde{I}e^{j\omega t}),$$

$$\frac{di}{dt} = \frac{d}{dt} \left[\Re e(\tilde{I}e^{j\omega t}) \right]$$

$$= \Re e \left[\frac{d}{dt} (\tilde{I}e^{j\omega t}) \right]$$

$$= \Re e [j\omega \tilde{I}e^{j\omega t}],$$

3 – Rearranjar a equação diferencial/integral na forma fasorial

$$R\Re(\tilde{I}e^{j\omega t}) + \frac{1}{C}\Re\left(\frac{\tilde{I}}{j\omega}e^{j\omega t}\right) = \Re(\tilde{V}_{\mathrm{S}}e^{j\omega t}) \qquad \qquad \tilde{I}\left(R + \frac{1}{j\omega C}\right) = \tilde{V}_{\mathrm{S}}$$

4 - Calcular a equação no domínio fasorial

$$\begin{split} \tilde{I} &= \frac{\tilde{V}_{\rm s}}{R + 1/(j\omega C)} \end{split} \qquad \qquad \tilde{I} = V_0 e^{j(\phi_0 - \pi/2)} \left[\frac{j\omega C}{1 + j\omega RC} \right] \\ &= V_0 e^{j(\phi_0 - \pi/2)} \left[\frac{\omega C e^{j\pi/2}}{\sqrt[4]{1 + \omega^2 R^2 C^2}} e^{j\phi_1} \right] \\ &= \frac{V_0 \omega C}{\sqrt[4]{1 + \omega^2 R^2 C^2}} e^{j(\phi_0 - \phi_1)}, \ \phi_1 = {\rm tg}^{-1}(\omega RC) \end{split}$$

5 – Determinar o expressão instantânea

$$\begin{split} i(t) &= \Re \mathbf{e} \left[\tilde{I} e^{j\omega t} \right] \\ &= \Re \mathbf{e} \left[\frac{V_0 \omega C}{\sqrt[+]{1 + \omega^2 R^2 C^2}} e^{j(\phi_0 - \phi_1)} e^{j\omega t} \right] \\ &= \frac{V_0 \omega C}{\sqrt[+]{1 + \omega^2 R^2 C^2}} \cos(\omega t + \phi_0 - \phi_1) \end{split}$$

Resumo de algumas funções no domínio do tempo e suas representações no domínio fasorial

Tabela 7-1 Funções senoidais z(t) no domínio do tempo e suas respectivas funções equivalentes \widetilde{z} no domínio fasorial com referência em co-seno, onde $z(t) = \Re e [\widetilde{Z} e^{j\omega t}]$.

z(t)		ĩ
$A\cos\omega t$	\leftrightarrow	A
$A\cos(\omega t + \phi_0)$	\leftrightarrow	$Ae^{j\phi_0}$
$A\cos(\omega t + \beta x + \phi_0)$	\leftrightarrow	$Ae^{j(\beta x+\phi_0)}$
$Ae^{-\alpha x}\cos(\omega t + \beta x + \phi_0)$	\leftrightarrow	$Ae^{-\alpha x}e^{j(\beta x+\phi_0)}$
$A \operatorname{sen} \omega t$	\leftrightarrow	$Ae^{-j\pi/2}$
$A \operatorname{sen}(\omega t + \phi_0)$	\leftrightarrow	$Ae^{j(\phi_0-\pi/2)}$
$\frac{d}{dt}(z_1(t))$	\leftrightarrow	$j\omega\widetilde{Z}_1$
$\frac{d}{dt}[A\cos(\omega t + \phi_0)]$	\leftrightarrow	$j\omega Ae^{j\phi_0}$
$\int z_1(t) dt$	\leftrightarrow	$\frac{1}{j\omega}\widetilde{Z}_1$
$\int A \operatorname{sen}(\omega t + \phi_0) dt$		$\frac{1}{j\omega}Ae^{j(\phi_0-\pi/2)}$