МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.АЛЕКСЕЕВА

Институт радиоэлектроники и информационных технологий Кафедра информатики и систем управления

ОТЧЕТ

по лабораторной работе №2 по дисциплине

Сети и телекоммуникации

(подпись)	(фамилия, и.,о.)
СТУДЕНТ:	
	Пигасин Д. А.
(подпись)	(фамилия, и.,о.)
	<u>18-AC</u>
	(шифр группы)

Задание

- 1. Смоделировать сеть.
- 2. Расставить IP адреса и маски (у роутеров на интерфейсах ір адреса из начала диапазона).
- 3. Добавить маршруты для прохождения пакетов между всеми частями сети (ipforwarding).
- 4. Сделать несколько маршрутов специфичных, показать, как это работает (удаляя и добавляя маршрут).
- 5. Показать пример удаления маршрута с демонстрацией отсутствия ping.

Вариант 2

Рис. 2.3. Структура исследуемой сетевой архитектуры - вариант №2

- Файл со схемой сети: lab2_var2.jfst.
- Сеть между маршрутизаторами R1, R2 и R3: 172.168.3.0.
- Сеть между маршрутизаторами R5 и R6: 172.168.4.0.
- Компьютер РС1 имеет IP-адрес 172.168.0.100.
- Компьютер РСЗ имеет IP-адрес 172.168.1.100.
- Компьютер РС4 имеет IP-адрес: 172.168.2.100.
- Обозначения в задании: К1 РС1, К2 РС3, К3 РС4.

Собранная схема

Таблицы маршрутизации

R1

```
default via 172.168.0.1 dev eth0
172.168.0.0/24 dev eth0 proto kernel scope link src 172.168.0.1
172.168.1.0/24 via 172.168.3.2 dev eth1 metric 100
172.168.1.0/24 via 172.168.3.3 dev eth1 metric 200
172.168.2.0/24 via 172.168.3.3 dev eth1 metric 100
172.168.2.0/24 via 172.168.3.2 dev eth1 metric 200
172.168.3.0/24 dev eth1 proto kernel scope link src 172.168.3.1
```

R2

```
default via 172.168.3.1 dev eth0
10.0.2.0/24 dev eth1 proto kernel scope link src 10.0.2.1
172.168.1.0/24 via 10.0.2.4 dev eth1
172.168.2.0/24 via 10.0.2.3 dev eth1 metric 100
172.168.2.0/24 via 10.0.2.5 dev eth1 metric 200
172.168.3.0/24 dev eth0 proto kernel scope link src 172.168.3.2
```

R3

```
default via 172.168.3.1 dev eth0
10.0.2.0/24 dev eth1 proto kernel scope link src 10.0.2.2
172.168.1.0/24 via 10.0.2.4 dev eth1
172.168.2.0/24 via 10.0.2.5 dev eth1 metric 100
172.168.2.0/24 via 10.0.2.3 dev eth1 metric 200
172.168.3.0/24 dev eth0 proto kernel scope link src 172.168.3.3
```

R4

```
default via 10.0.2.1 dev eth0
10.0.2.0/24 dev eth0 proto kernel scope link src 10.0.2.3
172.168.0.0/24 via 10.0.2.2 dev eth0 metric 100
172.168.0.0/24 via 10.0.2.1 dev eth0 metric 200
172.168.2.0/24 dev eth1 proto kernel scope link src 172.168.2.1
```

R5

```
default via 10.0.2.1 dev eth0
10.0.2.0/24 dev eth0 proto kernel scope link src 10.0.2.5
172.168.2.0/24 via 172.168.4.2 dev eth1
172.168.4.0/24 dev eth1 proto kernel scope link src 172.168.4.1
```

R6

```
default via 172.168.4.1 dev eth0
172.168.2.0/24 dev eth1 proto kernel scope link src 172.168.2.2
172.168.4.0/24 dev eth0 proto kernel scope link src 172.168.4.2
```

R7

```
default via 10.0.2.1 dev eth0
10.0.2.0/24 dev eth0 proto kernel scope link src 10.0.2.4
172.168.1.0/24 dev eth1 proto kernel scope link src 172.168.1.1
```

Пример 1

В текущей конфигурации ping с компьютеров из сети 172.168.0.0/24 идет через R1-R3-R5-R6, так как в таблице R3 метрика R5(100) лучше, чем R4(200).

Ответ PC1 от PC4 идет по R4-R3-R1.

Таблица маршрутизации R3

```
default via 172.168.3.1 dev eth0
10.0.2.0/24 dev eth1 proto kernel scope link src 10.0.2.2
172.168.1.0/24 via 10.0.2.4 dev eth1
172.168.2.0/24 via 10.0.2.5 dev eth1 metric 100
172.168.2.0/24 via 10.0.2.3 dev eth1 metric 200
172.168.3.0/24 dev eth0 proto kernel scope link src 172.168.3.3
```

Изменим значения метрик (R4:100, R5:200).

```
default via 172.168.3.1 dev eth0
10.0.2.0/24 dev eth1 proto kernel scope link src 10.0.2.2
172.168.1.0/24 via 10.0.2.4 dev eth1
172.168.2.0/24 via 10.0.2.3 dev eth1 metric 100
172.168.2.0/24 via 10.0.2.5 dev eth1 metric 200
172.168.3.0/24 dev eth0 proto kernel scope link src 172.168.3.3
```

Результат

Теперь ping идет через R1-R3-R4.

Пример 2

PC2-R1-R2-R7-PC3

Таблица маршрутизации R2

```
default via 172.168.3.1 dev eth0
10.0.2.0/24 dev eth1 proto kernel scope link src 10.0.2.1
172.168.1.0/24 via 10.0.2.4 dev eth1
172.168.2.0/24 via 10.0.2.3 dev eth1 metric 100
172.168.2.0/24 via 10.0.2.5 dev eth1 metric 200
172.168.3.0/24 dev eth0 proto kernel scope link src 172.168.3.2
```

Удаляем путь до R7

```
root@R2:/tmp/pycore.37945/R2.conf# ip route del 172.168.1.0/24 via 10.0.2.4 root@R2:/tmp/pycore.37945/R2.conf# ip route show default via 172.168.3.1 dev eth0 10.0.2.0/24 dev eth1 proto kernel scope link src 10.0.2.1 172.168.2.0/24 via 10.0.2.3 dev eth1 metric 100 172.168.2.0/24 via 10.0.2.5 dev eth1 metric 200 172.168.3.0/24 dev eth0 proto kernel scope link src 172.168.3.2
```

Результат


```
From 172.168.3.2 icmp_seq=67 Time to live exceeded From 172.168.3.2 icmp_seq=68 Time to live exceeded From 172.168.3.2 icmp_seq=69 Time to live exceeded From 172.168.3.2 icmp_seq=70 Time to live exceeded From 172.168.3.2 icmp_seq=71 Time to live exceeded From 172.168.3.2 icmp_seq=72 Time to live exceeded From 172.168.3.2 icmp_seq=73 Time to live exceeded From 172.168.3.2 icmp_seq=74 Time to live exceeded From 172.168.3.2 icmp_seq=74 Time to live exceeded From 172.168.3.2 icmp_seq=75 Time to live exceeded
```