\equiv

Álgebra I - Lista 2

- 1. Seja M um R-módulo. Mostre que:
- (a) (-r)m = r(-m) = -rm para todo $r \in R$, $m \in M$.
- (b) 0m = 0 para todo $m \in M$.
- (c) $r \cdot 0 = 0$ para todo $r \in R$.
 - 2. Determinar todos os submódulos do \mathbb{Z} -módulo \mathbb{Z}_{12} . Determina o anulador de \mathbb{Z}_{12} .
- 3. Seja S um subconjunto de um R-módulo M. Seja $\mathcal F$ a família de todos os submódulos de M que contém S. Mostre que

$$(S) = \bigcap_{N \in \mathcal{F}} N$$

é um submódulo de S. Tal módulo é chamado de submódulo gerado por S.

- **4.** Mostre que se m e n são coprimos, então o único homomorfismo entre os \mathbb{Z} -módulos \mathbb{Z}_m e \mathbb{Z}_n é o homomorfismo nulo.
- **5.** Um R-módulo é chamado de simples se $M \neq (0)$ e os únicos submódulos de M são M e (0). Mostre que se M é simples e $f: M \longrightarrow N$ é um homomorfismo não nulo, então f é um monomorfismo. Mostre que se N também é simples, então f é um isomorfismo. Além disso, mostre que, se M é simples, então $\operatorname{Hom}_R(M,M)$ é um anel de divisão.
 - 6. Demonstre o segundo e o terceiro Teoremas do isomorfismo para módulos.
 - 7. Mostre que, se a sequência

$$M \xrightarrow{f} N \xrightarrow{g} R \xrightarrow{h} S$$

é exata, são equivalentes:

- (i) f é epimorfismo.
- (ii) Im(g) = (0).
- (iii) h é monomorfismo.
 - 8. Seja

$$M' \xrightarrow{f'} M \xrightarrow{f} M'' \longrightarrow 0$$

$$\downarrow^{\phi'} \qquad \downarrow^{\phi} \qquad \downarrow^{\phi''}$$

$$0 \longrightarrow N' \xrightarrow{g'} N \xrightarrow{g} N''$$

um diagrama comutativo, onde as filas são sequências exatas. Mostre que:

• Se ϕ' e ϕ'' são epimorfismos, então ϕ é epimorfismo.

- Se ϕ' e ϕ'' são isomorfismos, então ϕ é isomorfismo.
- 9. Mostre que todo submódulo de \mathbb{Z} (visto como \mathbb{Z} -módulo) é da forma $m\mathbb{Z}$ para algum $m \in \mathbb{Z}$.
- 10. Dada uma sequência exata

$$0 \longrightarrow E \xrightarrow{f} F \xrightarrow{g} G \longrightarrow 0$$

nem sempre Im(f) é somando direto de F. Dê um contra-exemplo.

11. Seja $M=N_1\oplus N_2$ um R-módulo e $N^{'}$ um submódulo de M isomorfo a N_1 . Em geral, não é verdade que $\frac{N_1\oplus N_2}{N^{'}}\cong N_2$. Dê um contra-exemplo.