HST.121: Gastroenterology, Fall 2005

Instructors: Dr. Martin C. Carey

Steps in Processing Dietary Lipids

Absorption Efficiency of Dietary Lipids

ABSORPTION OF FAT OVER LENGTH OF HUMAN SMALL INTESTINE

Adapted from: Figure 2 in Borgstrom, B., et al. "Studies of Intestinal Digestion and Absorption in the Human." J Clin Invest 36 (1957): 1525.

ABSORPTION OF CARBOHYDRATE OVER LENGTH OF HUMAN SMALL INTESTINE

Adapted from: Figure 2 in Borgstrom, B., et al. "Studies of Intestinal Digestion and Absorption in the Human." *J Clin Invest* 36 (1957): 1525.

ABSORPTION OF PROTEIN OVER LENGTH OF HUMAN SMALL INTESTINE

Adapted from: Figure 2 in Borgstrom, B., et al. "Studies of Intestinal Digestion and Absorption in the Human." J Clin Invest 36 (1957): 1525.

Figure removed due to copyright reasons. Please see: Claude Bernard's Memoire sur le Pancreas, Bailliére, Paris, 1856, color plate No. 7-8.

CANINE FAT ABSORPTION WITH CHOLECYSTO-INTESTINAL FISTULA

A Dastre, Recherches sur la Bile, Arch Physiol (Paris), 1890:2:315-330.

DIETARY FAT

95% TG

FAT DIGESTION 24 HR. INPUT-OUTPUT BALANCE

DIETARY FAT

BILIARY LIPIDS 30g BILE SALTS 10-15g P'LIPIDS 1-2g CHOL.

DESQUAMATED CELLS

DEAD BACTERIA

FECAL FAT

TONGUE

ESOPHAGUS

STOMACH

BILIARY TREE

DUODENUM

PANCREAS

JEJUNUM

ILEUM

COLON

PHYSICAL STATES OF MAJOR DIETARY LIPIDS

Figure removed due to copyright reasons. Please see:

Figure 1 in Carey, M. C., D. M. Small, and C. M. Bliss. "Lipid Digestion and Absorption." *Annual Review of Physiology* 45 (1983): 651-677.

SOURCES OF CHOLESTEROL ENTERING THE GASTROINTESTINAL TRACT

	MG/D	8	
DIET	300-500	20	
BILE	720-1920	65	
CELLS	180-480	15	
	1200-2900		

For Effective Hydrolysis...

Dietary fats must be dispersed as stable emulsion particles

DISPERSED STATES OF MAJOR DIETRY LIPIDS IN WATER

DIETARY LIPIDS AND INTRALUMINAL PHYSICAL STATE

FAT DIGESTION: THE LIPASES

Humans: Luminal Triglyceride Lipases

- Gastric Lipase (chief cells)
- Bile Salt-Activated Lipase (breast, pancreas)
- Colipase-Dependent Lipase (pancreas)

POSITIONAL SPECIFICITY OF PRE-DUODENAL LIPASES

EMULSIFICATION OF FAT IN STOMACH AND PYLORIC-DUODENAL REGION

EMULSION UNSTABLE IN STOMACH

EMULSION 'STABLE' IN DUODENUM

HORMONAL COORDINATION OF THE DIGESTIVE SEQUENCE: PYLORUS - DUODENUM

1. FA(NOT TG) and Acid (HCl) stimulate the release of CCK and secretin respectively.

2. Secretin \rightarrow HCO₃ - Rich fluid from the Pancreas, Biliary tree and Brunner's glands.

→ Inhibition of gastric and duodenal motility, contracts pylorus.

→ Potentiates CCK.

3. CCK \rightarrow Strong stimulant of enzyme secretion by the pancreas.

→ Contracts gallbladder and pylorus, stimulates intestinal motility, inhibits ODDI's sphincter.

→ Induces satiety?

4. VIP $\uparrow 2^{\circ}$ Vagal activity \rbrack ? Physiological role GIP $\uparrow 2^{\circ}$ Fat in duodenum

Result: Digestive millieu (pH, [lipid], [enzymes]) maintained relatively constant.

HUMAN SPHINCTER OF ODDI

Image courtesy of Dr. James Toouli. Used with permission.

DUODENUM - JEJUNUM ADSORPTION OF BILIARY LIPIDS TO EMULSION INTERFACE

DUODENUM - JEJUNUM

"ACTIVATION" OF COLIPASE

POSITIONAL SPECIFICITY OF PANCREATIC LIPASE

FAT (TRIGLYCERIDE) DIGESTION

Structure of the pancreatic lipase-procolipase complex

Non-catalytic C terminus

Catalytic N terminus

Figure removed due to copyright reason. Please see:

van Tilbeurgh H., et al. "Structure of the pancreatic lipase-procolipase complex." *Nature* 359 (1992): 159-62.

van Tilbeurgh H., et al. "Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography." *Nature* 362 (1993): 814-20.

Interfacial activation

Figure removed due to copyright reason. Please see:

van Tilbeurgh H., et al. "Structure of the pancreatic lipase-procolipase complex." *Nature* 359 (1992): 159-62.

van Tilbeurgh H. et al. "Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography." *Nature* 362 (1993): 814-20.

Figure removed due to copyright reason. Please see:
Figure 6 in Wang, X., et al. "The crystal structure of bovine bile salt activated lipase: insights into the bile salt activation mechanism.' Structure 5 (1997): 1209-18

POSITIONAL SPECIFICITY OF PANCREATIC PHOSPHOLIPASE A PARTIAL HYDROLYSIS

<u>SPHINGOMYELIN</u>

R=Typical fatty acids are palmitic, stearic, behenic (22:0), nervonic (24:1) and lignoceric (24:0)

PHYSICAL - CHEMISTRY OF FAT DIGESTION

Figure removed due to copyright reasons. Please see:

Figure 11 in Hernell, O., et al. "Physical-chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 2. Phase analysis and aggregation states of luminal lipids during duodenal fat digestion in healthy adult human beings." *Biochemistry* 29 (1990): 2041-2056.

FATE OF FATTY ACIDS AND MONOGLYCERIDES IN ABSORPTIVE CELLS

Figure removed due to copyright reasons. Please see:

Figure 1 in Lammert, F., and David Q.-H. Wang. "New Insights Into the Genetic Regulation of Intestinal Cholesterol Absorption." *Gastroenterology* 129 (2005): 718-34.

ENTEROHEPATIC CIRCULATION OF BILE SALTS SYNTHESIS (0.2-0.6 g/d) URINARY (<0.5 mg/d) BILIARY SECRETION=POOL x CYCLES (12-36g/d) (-3g) x (4-12/d) PORTAL VENOUS RETURN (>95% OF BILIARY SECRETION) FECAL EXCRETION (0.2-0.6g/d)

DISTRIBUTION OF MICROORGANISMS IN ALIMENTARY TRACT

FATE OF FAT IN THE COLON

- TG → 3FA + Glycerol
 PL → 2FA + Glycerol + Phosphate + Choline
 CE → 1FA + Ch
- Reduction of FA double bonds to form saturated FA
- Oxidation of FA double bonds to form OH-FA (e.g., oleic acid -> 9-hydroxy stearic acid: potent cathartics)
- Formation of Ca²⁺ and Mg²⁺ (divalent) soaps
- Formation of Na⁺ and K⁺ (monovalent) soaps

'NORMAL' FECAL FAT 2-5 g/day

DERIVED FROM

- 1. DIET
- 2. BILE
- 3. DESQUAMATED CELLS
 - 4. BACTERIA

PHYSICAL STATES OF FECAL FAT

CHEMICAL AND PHYSICAL-CHEMICAL STATES OF NORMAL FECAL FAT (4-5g/24 hours)

CHEMICAL	PHASE	% TOTAL FAT
Fatty Acids (long-chain including OH-FA)	Oil or Solid	70
Na ⁺ + K ⁺ Soaps	Aqueous or Solid	
Ca ²⁺ + Mg ²⁺ Soaps	Crystalline Solids	10
Glycerides (TG, DG, MG)	Oil	0
Steroids Acidic (Bile Acids)	Solid Aqueous or Solid] 15
Other (Bacterial PL)	Oil or Solid	5

Classification of Malabsorption Syndromes

- Faulty Digestion (Intraluminal)
- Faulty Dispersion (Intraluminal)
- Faulty Absorption (Mucosal)
- Faulty Transport (Lamina Propria, Lymphatics)

Work-up of Fat Malabsorption

- Suspect
- Prove presence of malabsorption: Steatorrhea
- Distinguish faulty digestion/dispersion from faulty absorption/transport
- Confirm specific diagnosis
- Initiate specific treatment

DIAGNOSTIC PROFILE

	Faulty Digestion/Dispersion	Faulty Absorption/Transport
Fecal Fat	1	A
Chemistry of Fecal Fat	FA Soaps (TG, DG, MG; only if massive)	FA Soaps
D-xylose	Normal	
Small Bowel X-ray	±	Abnormal
Jejunal Biopsy	Normal	Abnormal

MIXED PATHOPHYSIOLOGIES IN FAT MALABSORPTION

DISEASE	MAJOR	MINOR	CAUSE
Celiac Sprue	Faulty	Faulty	Gut enteropathy and endocrinopathy
Whipple's	Absorption/	Digestion/	
Disease	Transport	Dispersion	
Pancreatic Insufficiency	Faulty Digestion	Faulty Dispersion	(Phospho)lipase/ colipase and bile salt deficiency
'Blind-Loop'	Faulty	Faulty	Bile salt deficiency and gut enteropathy
Syndrome	Dispersion	Absorption	

Hormonal Control of Appetite and Weight (I)

Rapidly acting (via vagal afferents to the arcuate and other nuclei of hypothalamus)

- a) GHRELIN: from gastric endocrine cells when stomach is empty; stimulates appetite
- b) CHOLECYSTOKININ (CCK): from endocrine cells in duodenum-jejunum; promotes satiety

Hormonal Control of Appetite and Weight (II)

- Long-term regulators (via blood to specific cells in hypothalmus, generally in proportion to body fat, and exerting sustained inhibitive effects on food intake while increasing energy expenditure)
- a) INSULIN: from β-cells of pancreas; augmented by VIP and in proportion to dietary intake of fat and sugars;
- b) LEPTIN: from adipocytes in proportion to body stores of fat;
- c) PYY3-36: from Neuropeptide Y endocrine cells in distal ileum and colon; blood levels increase several hours after ingestion of a meal.