

I. Nombre

ERI-METFI (Entorno de Resonancia Inestable – METFI)

II. Objetivo general

Construcción de una **infraestructura de detección distribuida** que registre, en tiempo real, los indicadores electromagnéticos, sónicos, térmicos y dieléctricos asociados a eventos de desacoplamiento o resonancia núcleo-manto, según la hipótesis METFI (Modelo Electromagnético Toroidal de Fricción Interna).

III. Hipótesis

Bajo la premisa de que el sistema Tierra responde a **modulaciones resonantes electromagnéticas** provenientes de un Sol próximo actuando como oscilador acoplado, los eventos de desacoplamiento núcleo-manto (ECDO) generan **anomalías detectables** en múltiples dominios físicos. Estas pueden ser detectadas mediante una red distribuida de sensores **ERI-METFI**, operando en nodos terrestres, atmosféricos y subterráneos.

IV. Componentes del sistema

1. Sensores Primarios

- Magnetómetros triaxiales de alta resolución (≤ 1 nT)
- Antenas dieléctricas amplificadas (banda ELF y VLF)
- · Sismómetros de banda ancha
- · Sensores térmicos IR de superficie y subsuelo
- Micrófonos infrasonido (>0.01 Hz)

2. Sensores Secundarios

- Detectores de potencial Zeta en suelos
- Medidores de capacidad dieléctrica del aire
- Anemómetros ultrasensibles para correlación con patrones EM

3. Nodos Computacionales Locales (NCL)

- Microcontroladores ARM (ej. Raspberry Pi 5 / ESP32)
- Capacidad de análisis FFT local para detección de patrones
- Módulos de transmisión LoRa/LoRaWAN o GNSS+4G resiliente

4. Back-End Distribuido METFI

- Servidores descentralizados que ejecutan modelos predictivos ECDO
- Sistema de visualización METFI-Map (tipo GIS con overlays resonantes)
- Algoritmo de triangulación inversa para origen de patrones

V. Arquitectura de la red

```
Satélite GNSS / Ionosférico

Nodo Atmosférico (A)

Nodo Terrestre (T) — Nodo Subterráneo (S)

Hub ERI-METFI

Núcleo de Procesamiento METFI
```

Cada nodo forma parte de una **celda resonante ERI** dentro del modelo toroidal METFI, alineada con coordenadas geodésicas de puntos nodales de resonancia (según catálogo METFI-Geo).

VI. Funciones principales

- 1. Seguimiento continuo de:
 - Fluctuaciones dieléctricas locales.
 - Variaciones en el campo geomagnético.
 - Emisiones acústicas de ultra baja frecuencia.
 - Aumento de temperatura subsuperficial sin causa aparente.

2. Correlación sincrónica multinodal

• Cruce de datos entre sensores de distinta naturaleza.

3. Detección precoz de patrones de colapso

• Algoritmos de aprendizaje tipo wavelet-Fourier identifican patrones pre-ECDO.

4. Sincronización baricéntrica y solar

• Cross-matching con datos de posición solar local y nodos baricéntricos.

5. Generación de alertas predictivas METFI

• Envío de señales de alerta cuando se cruzan umbrales resonantes en más de tres nodos.

VII. Localización de prueba (Fase Alfa)

Nodo	Localización aproximada	Justificación
T1	Islas Canarias	Punto nodal volcánico y dieléctrico
A 1	Altiplano andino	Atmósfera de baja densidad + anomalías EM
S 1	Patagonia	Baja interferencia humana, nodo toroidal sur
T2	Cuenca del Congo	Núcleo de resonancia terrestre no industrial
A2	Mar Caspio	Punto nodal E-W según METFI Map

VIII. Resultados esperados

- Detección de **frecuencias umbral** asociadas a resonancias armónicas con el Sol.
- Identificación de picos térmicos inexplicables en condiciones atmosféricas estables.
- Registro de aceleración de ciclos LOD o microvariaciones en rotación terrestre.
- Generación de un mapa dinámico METFI de fricción interna.

IX. Conexión con el marco METFI

ERI-METFI constituye la infraestructura sensorial del modelo METFI, permitiendo:

- Validar el desacoplamiento núcleo-manto en tiempo real.
- Establecer mapas de probabilidad resonante para eventos sísmico-térmicos.
- Correlacionar con variables baricéntricas solares, comportamiento ionosférico y patrones GNSS.
- Integrarse con los demás prototipos METFI (ej. METFI-Domo, METFI-Torque, METFI-Permutador).

X. Fases de desarrollo

- 1. **FASE 1** Diseño modular y simulación en entorno virtual (finalizada)
- 2. FASE 2 Instalación piloto de 3 nodos híbridos T-A-S
- 3. FASE 3 Validación correlacional de patrones pre-ECDO
- 4. FASE 4 Ampliación geográfica y vinculación con observatorios ciudadanos