РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра прикладной информатики и теории вероятностей ОТЧЕТ

по лабораторной работе № 9

дисциплина: Архитектура компьютера

Студент: Грязнов Михаил

Группа: НПИбд-01-22

MOCKBA

2022 г.

Цель работы:

Приобретение навыков написания программ с использованием циклов и обработкой аргументов командной строки.

Порядок выполнения лабораторной работы:

Реализация циклов в NASM.

Создадим каталог для программ лабораторной работы №9, перейдем в него и создадим нужный файл (рис. 1).

рис. 1. Создание файла lab9-1.asm

При реализации циклов в NASM с использованием инструкции loop необходимо помнить о том, что эта инструкция использует регистр есх в качестве счетчика и на каждом шаге уменьшает его значение на единицу. В качестве примера рассмотрим программу, которая выводит значение регистра есх (рис. 2).

```
\oplus
                              magryaznov@magryaznov:~/work/arch-pc/lab
ab9-1.asm
                   [----] 6 L:[ 1+25 26/33] *(246 / 307b) 0010 0x
%include 'in_out.asm'
section .data
nsgl db 'Введите N: ',0h
section .bss
N: resb 20
section .text
global _start
start:
nov eax,msgl
call sprint
mov ecx, N
nov edx, 10
call sread
mov eax, N
call atoi
nov [N],eax
mov ecx,[N]
label:
mov [N],ecx
mov eax,[N]
call iprintLF
loop label
call quit
```

рис. 2. Текст программы lab9-1

Создадим исполняемый файл и проверим его работу (рис. 3).

±	magryaznov@magryaznov:~/work/arch-pc/lab0
4294531610	
4294531608	
4294531606	
4294531604	
4294531602	
4294531600	
4294531598	
4294531596	
4294531594	
4294531592	
4294531590	
4294531588	
4294531586	
4294531584	
4294531582	
4294531580	
4294531578	
4294531576	
4294531574	
4294531572	
4294531570	
4294531568	
4294531566	
4294531564	
4294531562	
4294531560	
4294531558	
4294531556	
4294531554	
4294531552	
4294531550	
4294531548	
4294531546	
4294531544	
4294531542	
4294531540	
4294531538	
4294531536	
4294531534	
4294531532	
4294531530	
4294531528	
4294531526	
4294531524	
4294531522	
4294531520	
4294531518	

рис. 3. Результат работы программы lab9-1

Данный пример показывает, что использование регистра есх в теле цилка loop может привести к некорректной работе программы. Изменим текст программы добавив изменение значение регистра есх в цикле по следующему примеру (рис. 4).

```
mov ecx,[N]

label:

sub ecx,1

mov [N],ecx

mov eax,[N]

call iprintLF

loop label

call quit
```

рис. 4. Пример изменения части программы lab9-1

Создадим исполняемый файл и проверим его работу (рис. 5).

```
[magryaznov@magryaznov lab09]$ nasm -f elf lab9-1.asm
[magryaznov@magryaznov lab09]$ ld -m elf_i386 lab9-1.o -o lab9-1
[magryaznov@magryaznov lab09]$ ./lab9-1
Введите N: 3
3
```

рис. 5. Результат работы измененной программы lab9-1

Как видим, все работает. Регистр есх принимает все значения от N до 1 включительно, что соответствует числу проходов цикла, введенному с клавиатуры.

Для использования регистра есх в цикле и сохранения корректности работы программы можно использовать стек. Внесем изменения в текст программы по примеру, добавив команды push и рор (добавления в стек и извлечения из стека) для сохранения значения счетчика цикла loop (рис. 6).

```
mov ecx,[N]

label:

push ecx

mov [N],ecx

mov eax,[N]

call iprintLF

pop ecx

loop label

call quit
```

рис. 6. Внесение команд push и рор в текст программы lab9-1

Создадим исполняемый файл и проверим его работу (рис. 7).

```
[magryaznov@magryaznov lab09]$ nasm -f elf lab9-1.asm
[magryaznov@magryaznov lab09]$ ld -m elf_i386 lab9-1.o -o lab9-1
[magryaznov@magryaznov lab09]$ ./lab9-1
Введите N: 5
5
4
3
2
1
[magryaznov@magryaznov lab09]$ [
```

рис. 7. Результат работы измененной программы lab9-1

Как видим, программа работает корректно, число проходов цикла соответствует значению N, введенному с клавиатуры.

Обработка аргументов командной строки.

При разработке программ иногда встает необходимость указывать аргументы, которые будут использоваться в программе, непосредственно из командной строки при запуске программы. При запуске программы в NASM аргументы командной строки загружаются в стек в обратном порядке, кроме того в стек записывается имя программы и общее количество аргументов. Последние два элемента стека для программы, скомпилированной NASM, – это всегда имя программы и количество переданных аргументов. Таким образом, для того чтобы использовать аргументы в программе, их просто нужно извлечь из стека. Обработку

аргументов нужно проводить в цикле. Т.е. сначала нужно извлечь из стека количество аргументов, а затем циклично для каждого аргумента выполнить логику программы. В качестве примера рассмотрим программу, которая выводит на экран аргументы командной строки (рис. 8). Создадим в каталоге лабораторной работы №9 файл lab9-2 и введем текст из рис. 8.

```
⊞
                              magryaznov@magryaznov:~/work/arch-p
                   [----] 0 L:[ 1+ 0 1/22] *(0 / 162b) 003
lab9-2.asm
%include 'in_out.asm'
section .text
global _start
start:
pop ecx
pop edx
sub ecx,1
next:
cmp ecx,0
pop eax
call sprintLF
loop next
end:
call quit
```

рис. 8. Текст программы lab9-2

Затем создадим исполняемый файл и запустим программу, указав следующие аргументы (рис. 9).

```
magryaznov@magryaznov:~/work/arch-pc/lab09

[magryaznov@magryaznov lab09]$ mcedit lab9-2.asm

[magryaznov@magryaznov lab09]$ nasm -f elf lab9-2.asm

[magryaznov@magryaznov lab09]$ ld -m elf_i386 lab9-2.o -o lab9-2

[magryaznov@magryaznov lab09]$ ./lab9-2

[magryaznov@magryaznov lab09]$ ./lab9-2 arg1 arg 2 'arg 3'

arg1

arg

2

arg 3

[magryaznov@magryaznov lab09]$ []
```

рис. 9. Результат работы программы lab9-2

Как видим, программа восприняла "аргумент" и "2" как отдельные аргументы, в то время как 'аргумент 3' как один. Соответственно программой было обработано 4 аргумента.

Рассмотрим еще один пример программы которая выводит сумму чисел, которые передаются в программу как аргументы. Создадим файл lab9-3.asm в том же каталоге и введем в него следующий текст программы (рис. 10).

```
\oplus
                              magryaznov@magryaznov:~/work/arch-pc/
                   [-M--] 11 L:[ 1+23 24/33] *(203 / 283b) 0010
lab9-3.asm
%include 'in_out.asm'
section .data
msg db "Результат: ",0
section .text
global _start
_start:
pop ecx
pop edx
mov esi,0
next:
cmp ecx, 0h
jz _end
pop eax
call atoi
add esi,eax
loop next
end:
mov eax, msg
call sprint
mov eax, esi
call iprintLF
call quit
```

рис. 10. Текст программы lab9-3

Затем создадим исполняемый файл и запустим его, указав аргументы (рис. 11).

```
[magryaznov@magryaznov lab09]$ mcedit lab9-3.asm
[magryaznov@magryaznov lab09]$ nasm -f elf lab9-3.asm
[magryaznov@magryaznov lab09]$ ld -m elf_i386 lab9-3.o -o lab9-3
[magryaznov@magryaznov lab09]$ ./lab9-3 1 2 3 4
Результат: 10
[magryaznov@magryaznov lab09]$ []
```

рис. 11. Результат работы программы lab9-3

Как видим, все работает корректно.

Изменим строку

add esi,ecx

на

move ebx, eax

mov eax, esi

mul ecx

mov esi, eax

```
\oplus
                               magryaznov@magryaznov:~/work/arch-pc/lab09 — mcedit lab9-3.a
lab9-3.asm
                   [----] 0 L:[ 1+ 0 1/36] *(0 / 318b) 0037 0x025
Winclude 'in_out.asm'
section .data
nsg db "Результат: ",0
section .text
global _start
_start:
оор есх
oop edx
sub ecx,1
mov esi,1
next:
cmp ecx, 0h
jz _end
pop eax
call atoi
nov ebx, eax
mov eax, esi
mul ebx
nov esi, eax
loop next
mov eax, msg
call sprint
nov eax, esi
call iprintLF
call quit
```

а также присвоим esi значение 1, чтобы программа выводила произведение аргументов командной строки и запустим ее (рис. 12).

```
[magryaznov@magryaznov lab09]$ mcedit lab9-3.asm
[magryaznov@magryaznov lab09]$ nasm -f elf lab9-3.asm
[magryaznov@magryaznov lab09]$ ld -m elf_i386 lab9-3.o -o lab9-3
[magryaznov@magryaznov lab09]$ ./lab9-3
Результат: 1
[magryaznov@magryaznov lab09]$ ./lab9-3 1 2 3 4
Результат: 24
[magryaznov@magryaznov lab09]$ []
```

рис. 12. Результат работы программы

Порядок выполнения самостоятельной работы:

Напишем программу, которая находит сумму значений функции f(x) для x = x1, x2, ..., xn, т.е. программа должна выводить значение f(x1) + f(x2) + ... + f(xn). Значения xi передаются как аргументы. Вид функции f(x) выберем в соответствии с вариантом, полученным при выполнении лабораторной работы N° 7 (вариант 15). Создадим исполняемый файл и проверим его работу на нескольких наборах x = x1, x2, ..., xn.

```
f(x) = 6x + 13
```

```
\oplus
                             magryaznov@magryaznov:~/w
lab9-sm.asm
                   [----] 0 L:[ 1+ 0 1/39] *(0
%include 'in_out.asm'
section .data
msg db "Результат: ",0
msgf db "Функция: f(x)=6x+13",0
section .text
global _start
_start:
pop ecx
pop edx
sub ecx,1
mov esi,0
next:
cmp ecx, 0h
jz _end
pop eax
call atoi
mov ebx,6
mul ebx
add eax,13
add esi,eax
loop next
_end:
mov eax, msgf
call sprintLF
mov eax, msg
call sprint
mov eax, esi
call iprintLF
call quit
```

рис. 13. Текст программы lab9-sm

```
[magryaznov@magryaznov lab09]$ mcedit lab9-sm.asm
[magryaznov@magryaznov lab09]$ nasm -f elf lab9-sm.asm
[magryaznov@magryaznov lab09]$ ld -m elf_i386 lab9-sm.o -o lab9-sm
[magryaznov@magryaznov lab09]$ ./lab9-sm
Функция: f(x)=6x+13
Результат: 0
[magryaznov@magryaznov lab09]$ ./lab9-sm 1
Функция: f(x)=6x+13
Результат: 19
[magryaznov@magryaznov lab09]$ ./lab9-sm 1 2
Функция: f(x)=6x+13
Результат: 44
[magryaznov@magryaznov lab09]$ ./lab9-sm 1 2 3
Функция: f(x)=6x+13
Результат: 75
[magryaznov@magryaznov lab09]$
```

рис. 14. Результат работы программы lab9-sm

Все работает корректно.

Вывод:

Во время выполнения лабораторной работы были приобретены навыки написания программ с использованием циклов и обработкой аргументов командной строки.