Random Variables

Lecture 4

01/14/2013

(Lecture 4) 01/14/2013 1 / 33

Random Variables

 A random variable is a numerical variable whose value depends on the outcome of a random phenomenon.

• Each outcome is a number:

	1	2	3	
\mathbb{P}	0.2	0.6	0.2	

Name the random variable X

$$P(X = 1) = 0.2$$

$$\mathbb{P}(X = 2) = 0.6, \dots$$

X	1	2	3	
\mathbb{P}	0.2	0.6	0.2	

Outcomes

• X = number of Heads

$$P(X = 3) = 1/8$$

(Lecture 4) 01/14/2013 3 / 33

Outcomes

• X = number of Heads

$$P(X = 3) = 1/8$$

(Lecture 4) 01/14/2013 4 / 33

Outcomes

• X = number of Heads

$$\mathbb{P}(X = 3) = 1/8$$

 $\mathbb{P}(X = 2) = 3/8$

(Lecture 4) 01/14/2013 5 / 33

Outcomes

X = number of Heads

$$\mathbb{P}(X = 3) = 1/8$$

 $\mathbb{P}(X = 2) = 3/8$
 $\mathbb{P}(X = 1) = 3/8$
 $\mathbb{P}(X = 0) = 1/8$

Probability distribution function (pdf)

k	X=0	<i>X</i> = 1	<i>X</i> = 2	<i>X</i> = 3
$\mathbb{P}(X=k)$	1/8	3/8	3/8	1/8

(Lecture 4) 01/14/2013 7 / 33

More generally

• X takes values $\{x_1, \ldots, x_k\}$

PDF

$$\begin{array}{c|ccccc} k & X = x_1 & \dots & X = x_k \\ \hline \mathbb{P}(X = k) & p_1 & \dots & p_k \end{array}$$

$$p_1=P(X=x_1),$$

. . .

$$p_k = P(X = x_k)$$

(Lecture 4)

Remarks

All probabilities add up to 1.

$$p_1 + \ldots + p_k = 1$$

For every k

$$0 \leq \mathbb{P}(X = k) \leq 1$$

All other numbers have probability 0.

(Lecture 4) 01/14/2013 9 / 33

Roll Two Dice

Outcomes

(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

- X = sum of two dice
- PDF

											12
$\mathbb{P}(X=k)$	<u>1</u> 36	<u>1</u> 18	<u>1</u> 12	<u>1</u>	<u>5</u> 36	<u>1</u> 6	<u>5</u> 36	<u>1</u> 9	<u>1</u> 12	<u>1</u> 18	<u>1</u> 36

Roll Two Dice

	2										
$\mathbb{P}(X=k)$	<u>1</u> 36	<u>1</u> 18	<u>1</u> 12	<u>1</u> 9	<u>5</u> 36	<u>1</u>	<u>5</u> 36	<u>1</u>	<u>1</u> 12	1 18	1 36

(Lecture 4) 01/14/2013

Two coins are tossed and the *total number of Tails is counted*. Which of the following would be a legitimate probability model for the total number of heads?

That is, which of the following satisfies the rules of probability?

(a)			
k	0	1	2
$\mathbb{P}(X=k)$	1/3	2/3	1/3
(b)			
k	0	1	2
$\mathbb{P}(X=k)$	1/16	5/8	5/16
(c)	•		
k	0	1	2
$\mathbb{P}(X=k)$	1/2	3/4	-1/4

(Lecture 4) 01/14/2013

Two coins are tossed and the *total number of Tails is counted*. Which of the following would be a legitimate probability model for the total number of heads?

(a)			
k	0	1	2
$\mathbb{P}(X=k)$	1/3	2/3	1/3
(b)			
k	0	1	2
$\mathbb{P}(X=k)$	1/16	5/8	5/16
(c)			
k	0	1	2
$\mathbb{P}(X=k)$	1/2	3/4	-1/4

Event $A = \{X = k\}$

- The events $\{X = k\}$ and $\{X = j\}$ are mutually exclusive.
- Simple OR Rule:

$$\mathbb{P}(X = k \text{ or } X = j) = \mathbb{P}(X = k) + \mathbb{P}(X = j)$$

(Lecture 4) 01/14/2013

Job interview

- 5 applicants are selected for an interview
- X = number of women

• What is the probability that one or two women are selected for interview?

(Lecture 4) 01/14/2013

Job interview

$$\mathbb{P}$$
(one or two women)

$$= \mathbb{P}(X = 1 \text{ or } X = 2)$$

$$= \mathbb{P}(X = 1) + \mathbb{P}(X = 2) = 0.1563 + 0.3125 = 0.4688$$

(Lecture 4) 01/14/2013

Job interview

• What is the probability that at least 2 women are selected?

$$\mathbb{P}(X \ge 2) = \mathbb{P}(X = 2) + \mathbb{P}(X = 3) + \mathbb{P}(X = 4) + \mathbb{P}(X = 5)$$
$$= 0.3125 + 0.3125 + 0.1563 + 0.0312 = 0.8125.$$

(Lecture 4) 01/14/2013 17 / 33

 What is the probability that at most two women are selected for interview?

- (a) 0.1875
- (b) 0.5
- (c) 0.8125

(Lecture 4)

- What is the probability that at most two women are selected for interview?
- (a) 0.1875
- (b) 0.5
- (c) 0.8125

(Lecture 4)

• What is the probability that at most two women are selected for interview?

$$\mathbb{P}(X \le 2) = \mathbb{P}(X = 0) + \mathbb{P}(X = 1) + \mathbb{P}(X = 2)$$
$$= 0.0312 + 0.1563 + 0.3125 = 0.5$$

(Lecture 4) 01/14/2013 20 / 33

Sigma Notation

A short hand for writing long sums

$$\sum_{k=1}^{5} k = 1 + 2 + 3 + 4 + 5$$

$$\sum_{k=1}^{5} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2$$
$$= 1 + 4 + 9 + 16 + 25$$

$$\sum_{0 \le k \le 3} (k-1)^2 = (0-1)^2 + (1-1)^2 + (2-1)^2 + (3-1)^2$$
$$= 1 + 0 + 1 + 4$$

(Lecture 4) 01/14/2013

Fundamental probability formula

- X = random variable
- A =a set of possible values of X (an event)

$$P(X \text{ takes a value in } A) = \sum_{\text{for all } k \text{ that are in } A} \mathbb{P}(X = k).$$

(Lecture 4) 01/14/2013 22 / 33

Fundamental probability formula

- X = random variable
- A = a set of possible values of X (an event)

(Lecture 4) 01/14/2013 23 / 33

Job Interview Example

Meaning	Probability	Σ notation	Compute
at least 3	ℙ(X≥3)	$\sum_{k\geq 3} \mathbb{P}(X=k)$	$\mathbb{P}(X=3)+\mathbb{P}(X=4) + \mathbb{P}(X=5)$
at most 3	ℙ(X≤3)	$\sum_{k\leq 3}\mathbb{P}(X=k)$	$\mathbb{P}(X=0) + \mathbb{P}(X=1)$ $+\mathbb{P}(X=2) + \mathbb{P}(X=3)$
less than 3	ℙ(X<3)	$\sum_{k<3} \mathbb{P}(X=k)$	$\mathbb{P}(X=0) + \mathbb{P}(X=1) + \mathbb{P}(X=2)$
more than 3	ℙ(<i>X</i> >3)	$\sum_{k>3} \mathbb{P}(X=k)$	$\mathbb{P}(X=4)+\mathbb{P}(X=5)$

(Lecture 4) 01/14/2013

A family has 4 children.

$$X =$$
 number of girls

What is the probability that this family has at most three girls, if

(a) 0.3125, (b) 0.0625, (c) 0.6875, (d) 0.9375

(Lecture 4) 01/14/2013 25/33

A family has 4 children.

$$X =$$
 number of girls

What is the probability that this family has at most three girls, if

(a) 0.3125, (b) 0.0625, (c) 0.6875, (d) 0.9375

26 / 33

(Lecture 4) 01/14/2013

Example

$$X = 0$$
 $X = 1$ $X = 2$ $X = 3$ $X = 4$ $\mathbb{P}(X = x)$ 0.0625 0.25 0.375 0.25 0.0625

We want to compute the following probability:

$$\mathbb{P}(\text{ at most 3 girls }) = \mathbb{P}(X \le 3)$$

$$= \mathbb{P}(X = 0) + \mathbb{P}(X = 1) + \mathbb{P}(X = 2) + \mathbb{P}(X = 3)$$

$$= 0.0625 + 0.25 + 0.375 + 0.25 = \mathbf{0.9375}.$$

(Lecture 4) 01/14/2013 27 / 33

Example

$$X = 0$$
 $X = 1$ $X = 2$ $X = 3$ $X = 4$ $\mathbb{P}(X = x)$ 0.0625 0.25 0.375 0.25 0.0625

Another way to compute this probability is through the complement rule:

$$\mathbb{P}(X \le 3) = 1 - \mathbb{P}(X > 3)$$

= $1 - \mathbb{P}(X = 4)$
= $1 - 0.0625 = 0.9375$.

(Lecture 4) 01/14/2013 28 / 33

Expected Value

$$\mathbb{E}(X) = \sum_{\textit{all } k} k \, \mathbb{P}(X = k)$$

Interpretation

- A probability-weighted average.
- Long-run average of X.
- The fair value of a gamble.
- The balance point for a probability histogram/bargraph.

(Lecture 4) 01/14/2013 29 / 33

How to compute $\mathbb{E}(X)$

$$\begin{array}{c|ccc} k & 2 & 5 \\ \hline \mathbb{P}(X=k) & 1/3 & 2/3 \end{array}$$

$$\mathbb{E}(X) = \frac{2 \cdot \mathbb{P}(X = 2) + 5 \cdot \mathbb{P}(X = 5)}{= \frac{2(1/3) + 5(2/3)}{= \frac{2}{3} + \frac{10}{3} = \frac{12}{3} = 4}$$

(Lecture 4) 01/14/2013 30 / 33

$$\begin{array}{c|cccc} k & 2 & 5 \\ \hline \mathbb{P}(X=k) & 1/3 & 2/3 \end{array}$$

(Lecture 4) 01/14/2013 31 / 33

(Lecture 4) 01/14/2013 32 / 33

(Lecture 4) 01/14/2013 33 / 33