COMS 4995 Applied Deep Learning Final Project Report

Team Members: Jingyan Xu (jx2424), Chelsea Cui (ac4788)

Background

Problem

CAMELYON16 Challenge

In this challenge, we will focus on the detection of micro- and macro-metastases in lymph node digitized images. This subject is highly relevant; lymph node metastases occur in most cancer types (e.g. breast, prostate, colon). Metastatic involvement of lymph nodes is one of the most important prognostic variables in breast cancer.

The diagnostic procedure for pathologists is, however, tedious and time-consuming and prone to misinterpretation.

Data

Source: Data from CAMELYON16, which was collected from Radboud UMC and UMC Utrecht, which include slides and corresponding tumor masks

Tool: OpenSlide, a library that provides a simple interface to read whole-slide images

Slide

Goal

Given a collection of training data, develop a model that outputs a heatmap showing regions of a biopsy image likely to contain cancer.

Biopsy image

Ground truth (from pathologist)

Model predictions

^{*}Image from course slide

Solution

Approach

^{*}Image from course slide

^{*} Approach from paper Detecting Cancer Metastases on Gigapixel Pathology Images, 17

Process

Data Preprocessing

- 1. Use mask from the lowest magnification level to decide patch label from higher magnification levels.
- 2. Use size 128 * 128 as the unit patch size for prediction. This 128 * 128 patch label is the same as the 1*1 pixel from the mask of the lowest magnification level.
- 3. To avoid imbalanced data, at each step sample randomly for a positive or negative patch with equal probability
- 4. Take two magnification levels x and y for each patch
- 5. Apply mask on areas where gray intensity level is less than 0.8 to denoise the input

Model Structure

Experiments

- Image Net: Inception V3, VGG16
- Magnification Levels
- Heatmap window size

Experiments

Image Net	Zoom Levels	Time/Space Cost	Performance
Inception V3	(0,1)	Very Large	Good
Inception V3	(2,3)	Large	Good
Inception V3	(2,5)	Moderate	Bad
Inception V3	(4,5)	Moderate	Ok
VGG	(4,5)	Moderate	Ok

Experiment Visualizations

Result

Note: Due to limitation in RAM, we couldn't print three images in our notebook at the same time, so we kept records in these slides.

Visualization

Visualization

Visualization

Evaluation Metrics

Sensitivity = 0.8902

Sensitivity is defined as the probability of a positive diagnostic test in a patient with the illness or injury for which the test serves as a diagnostic tool.

Specificity = 0.6263

Specificity is the probability of a negative diagnostic test in a patient free of the disease or injury.

Evaluation Metrics

AUC = 0.7996

ROC Curve

Next Steps

- Incorporate more scales
- Improve specificity
- Improve computation power