Расчет концентрации примеси в осесимметричном течении

Добрикова Д.П.

науч.рук. д.ф-м.н., проф. Алексин В.А.

Московский государственный индустриальный университет Кафедра «Информационные системы и технологии»

Постановка задачи

Уравнение Навье-Стокса:

$$rac{\partial ec{V}}{\partial t} + (ec{V} \cdot igtriangle) ec{V} = -igtriangledown p + rac{1}{\mathrm{Re}} \Delta ec{V},$$
 $igtriangledown \cdot ec{V} = 0$, где $ec{V} = ec{V}(u,v,w)$.

Уравнение для концентрации примеси:

$$\frac{\partial C}{\partial t} + \frac{\partial}{\partial x}(uC) + \frac{\partial}{\partial y}(vC) + \frac{\partial}{\partial z}(wC) = \frac{1}{\operatorname{Sc} \cdot \operatorname{Re}} \left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2} + \frac{\partial^2 C}{\partial w^2} \right).$$

Уравнение для температуры:

$$\frac{\partial T}{\partial t} + \frac{\partial}{\partial x}(uT) + \frac{\partial}{\partial y}(vT) + \frac{\partial}{\partial z}(wT) = \frac{1}{\text{Pe}}\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial w^2}\right).$$

Условия

Начальные: $u_H=w_H=0$, $v_H=\omega$, $p=p_H$, $c_H=1$, $t_H=0$. Граничные:

1. на вращающейся крышке радиусом N:

$$u = 0$$
, $v = \omega$, $w = 0$;

2. меньшего радиуса: u = 0, $v = \omega$, w = 0; и на свободной границе сверху: $\frac{\partial u}{\partial n} = 0$, $\frac{\partial v}{\partial n} = 0$, w = 0; на трех неподвижных: u=0, v=0, w=0; для давления: $\frac{\partial p}{\partial p} = 0$; для концентрации: на верхней стенке $c_H = 1$, на нижней стенке $c_w=0$, на левой и правой - $\frac{\partial c}{\partial p}=0$; для температуры: на верхней стенке $T_H = 1$, нижней - $T_w=0.5,$ на левой и правой - $\dfrac{\partial T}{\partial n}=0.5$

Численный метод

Метод расщепления по физическим факторам:

1.
$$\frac{\widetilde{\vec{V}} - \vec{V}^n}{\tau} = -(\vec{V}^n \cdot \nabla) \vec{V}^n - \nu \nabla \times \vec{\omega}^n,$$

$$2. \ \Delta p = \frac{D}{\tau}$$

3.
$$\frac{\vec{V}^{n+1} - \tilde{\vec{V}}}{\tau} = -\nabla p,$$

где
$$ec{\omega} =
abla imes ec{V}, \quad \widetilde{D} =
abla \cdot ec{V}$$

Численный метод

$$4. \ \frac{\partial c}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (ruc) + \frac{1}{r} \frac{\partial}{\partial z} (wc) = \frac{1}{\mathsf{ReSc}} \left(\frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial c}{\partial r}) + \frac{\partial^2 c}{\partial z^2} \right)$$

$$u_{ik} \bullet \bigcup_{C_{jk}}^{W_{jk+1}} u_{j+1k}$$

$$\frac{\partial T}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (ruT) + \frac{1}{r} \frac{\partial}{\partial z} (wT) = \frac{1}{\mathbf{Pe}} \left(\frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial T}{\partial r}) + \frac{\partial^2 T}{\partial z^2} \right)$$

Изолинии функции тока и концентрации примеси при $\mathrm{Re}=100$

Сравнение результатов для функции тока при $\mathrm{Re}=180$ и $\mathrm{Re}=400$

Изолинии концентрации примеси и изотермы при $\mathrm{Re}=400$

Изолинии функции тока при r=0,2*N, $\mathrm{Re}=100$ и $\mathrm{Re}=400$

Сравнение результатов функции тока при радиусах r = 0, 2 * N и r = 0, 4 * N, $\mathrm{Re} = 400$

Изолинии концентрации примеси и изотермы: r=0,4*N, $\mathrm{Re}=400$

Графики компонент скорости на верхней границе

Выводы

- Реализован метод расщепления для расчета течения несжимаемой вязкой жидкости, полей концентрации примеси и температуры.
- Исследовано влияние различных чисел Рейнольдса $(100 \leqslant \mathrm{Re} \leqslant 400)$ и радиуса верхней вращающейся стенки на изолинии концентрации примеси.
- Получены графики компонент скорости для верхней границы.