Математический Анализ - 2 - Коллоквиум 1

Серёжа Рахманов | telegram, website Денис Болонин | telegram

Версия от 13.10.2020 18:24

1. Дайте определения: числовой ряд, частичная сумма ряда, сумма ряда, сходящийся ряд, расходящийся ряд. Рассмотрим ряд с общим членом a_n . Докажите, что $a_n \to 0$.

Определение. Пусть a_n – последовательность, т.е. $\mathbb{N} \to \mathbb{R}$. Формальная бесконечная сумма: $a_1 + a_2 + a_3 + \cdots = \sum_{n=1}^{\infty} a_n$ называется рядом. $S_N = \sum_{n=1}^N a_n$ – частичная сумма, сумма ряда: $S = \lim_{N \to \infty} S_N$

Возможны 3 случая:

- (a) $\exists S \in \mathbb{R}$
- (b) $\exists S = \infty$
- (c) ∄S

В первом случае говорят, что ряд сходится, иначе – что ряд расходится.

Замечание. Если ряд сходится, то $a_n \to 0$

Доказательство.
$$a_n = S_n - S_{n-1} \to 0$$
, т.к. $S_n \to S$ и $S_{n-1} \to S$

2. Сформулируйте критерий Коши сходимости числовой последовательности. Сформулируйте и докажите критерий Коши сходимости числового ряда.

Определение. a_n называется фундаментальной, если $\forall \varepsilon > 0 \ \exists N : \forall n > m > N, |S_n - S_m| < \varepsilon$

Теорема. S_n – сходится $\iff S_n$ – фундаментальная

Доказательство. $S_n - S_m = \sum_{k=m+1}^n a_k$ Тогда $\sum a_n$ – сходится $\iff \forall \varepsilon > 0 \; \exists N : \forall n > m > N \; | a_{m+1} + a_{m+2} + a_{m+2} + a_{m+3} = 0$

3. Сформулируйте и докажите признак сравнения положительных числовых рядов, основанный на неравенстве $a_n \leqslant b_n$.

 $a_n \leqslant b_n$ при всех $n \geqslant n_0$

Ряд
$$\sum b_n$$
 сходится \implies ряд $\sum a_n$ сходится

Ряд
$$\sum a_n$$
 расходится \implies ряд $\sum b_n$ расходится

Доказательство. На основании того, что отбрасывание конечного числа элементов ряда не отражается на его поведении, мы можем считать, что $a_n \leqslant b_n$ при всех $n=1,2,3,\ldots$ Обозначив частные суммы через A и B соответственно, имеем $A_n \leqslant B_n$. Пусть ряд $\sum b_n$ сходится, тогда B_n ограничена, $B_n \leqslant S(S=const,n=1,2,3,\cdots)$. В таком случае A_n также меньше либо равна некоторому S, что даёт нам ограниченность $\sum a_n$.

4. Сформулируйте и докажите признак сравнения положительных числовых рядов, основанный на неравенстве $\frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n}$.

Ряд
$$\sum b_n$$
 сходится \implies ряд $\sum a_n$ сходится

Ряд
$$\sum a_n$$
 расходится \implies ряд $\sum b_n$ расходится

Доказательство.

$$a_{n_0+1} \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot b_{n_0+1}$$

$$a_{n_0+2} \leqslant \frac{a_{n_0+1}}{b_{n_0+1}} \cdot b_{n_0+2} \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot b_{n_0+2}$$

:

$$a_{n_0+k} \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot b_{n_0+k} \implies \sum_{n=n_0}^N a_n \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot \sum_{n=n_0}^N b_n$$

5. Сформулируйте и докажите признак сравнения положительных числовых рядов, основанный на пределе $\lim_{n \to \infty} \frac{a_n}{b_n}$

$$\lim_{n\to\infty}\frac{a_n}{b_n}\in(0;+\infty)\implies \text{сходимость }\sum a_n\iff \text{сходимость }\sum b_n$$

Доказательство.

$$c = \lim_{n \to \infty} \frac{a_n}{b_n} > 0$$

$$\forall \varepsilon \ \exists n_0: \ c-\varepsilon \leqslant rac{a_n}{b_n} \leqslant c+\varepsilon, \ \mathrm{при} \ n \geqslant n_0$$

Возьмём
$$c-\varepsilon>0 \implies (c-\varepsilon)\cdot b_n\leqslant a_n\leqslant (c+\varepsilon)\cdot b_n$$

Сходимость следует из правой части неравенства, а расходимость из левой.

- 6. Пусть последовательности $\{a_n\}$, $\{A_n\}$ таковы, что $a_n-(A_n-A_{n-1})=c_n$ и ряд $\sum c_n$ сходится. Докажите, что существует C такое, что $a_1+a_2+\cdots+a_n=A_n+C+o(1)$.
- 7. Сформулируйте и докажите признак Лобачевского-Коши.

Предложение. Пусть $a_n > 0$ и $a_n \downarrow$

Тогда ряды $\sum a_n$ и $\sum 2^n \cdot a_{2^n}$ ведут себя одинаково

Доказательство. $a_1 + (a_2) + (a_3 + a_4) + (a_5 + \cdots + a_8) + \dots$

$$a_2 \leqslant a_1$$

$$a_2 \leqslant a_2$$

$$a_3 + a_4 \leq 2a_2$$

$$a_3 + a_4 \geqslant 2a_4$$

$$a_5 + \dots + a_8 \leqslant 4a_4$$

$$a_5 + \cdots + a_8 \geqslant 4a_8$$

. . .

$$a_1 + \sum_{n=0}^{m-1} 2^n a_{2n} \leqslant \sum_{n=1}^{2^m} a_n \leqslant a_1 + \frac{1}{2} \sum_{n=0}^{m} 2^n a_{2n}$$

8. Сформулируйте теорему Штольца о пределе последовательности. Покажите на примере, как с помощью теоремы Штольца можно уточнить асимптотическую оценку для частичной суммы ряда. $\frac{p_n}{a_n}$, p_n , $q_n \to 0$.

Теорема. (Штольца.) Если
$$p_n,q_n\to 0,q_n\downarrow$$
 и $\exists lim \frac{p_{n+1}-p_n}{q_{n+1}-q_n},$ то $\lim \frac{p_n}{q_n}=\lim \frac{p_{n+1}-p_n}{q_{n+1}-q_n}$

9. Пусть $\sum a_n, \sum a'_n$ - сходящиеся положительные ряды. Говорят, что ряд $\sum a'_n$ сходится быстрее ряда $\sum a_n$, если $a'_n = o(a_n)$. Докажите, что в этом случае также $r'_n = o(r_n)$, где r_n, r'_n - остатки соответствующих рядов.

Рассмотрим остатки каждого из рядов. $r_n=S-S_N$, где S_N - частичная сумма ряда $\sum a_n$ и $S_N\to S$ при $N\to\infty$. Для $\sum a_n'$ аналогично $r_n'=S'-S_N'$, где S_N' - частичная сумма ряда $\sum a_n'$ и $S_N'\to S'$ при $N\to\infty$. Идёт речь о том, что ряд a_n' сходится быстрее ряда a_n , т.е. оба ряда сходятся и S=S'. Но, поскольку члены рядов находятся в отношении $a_n'=o(a_n)$, то мы можем сделать выводы о частичных суммах S_N и S_N' . $\forall N, S_N'=o(S_N)$, что указывает нам в результате на отношение между остатками $r_n'=o(r_n)$.

10. Пусть $\sum a_n$, $\sum a'_n$ - расходящиеся положительные ряды. Говорят, что ряд $\sum a'_n$ расходится медленнее ряда $\sum a_n$, если $a'_n = o(a_n)$. Докажите, что в этом случае также $S'_n = o(S_n)$, где S_n , S'_n - частичные суммы соответствующих рядов.

Оба ряда расходятся, тогда $S_n \to \infty$ и $S_n' \to \infty$ при $n \to \infty$. Мы понимаем, что $S_n = \sum_{n=1}^N a_n, \, S_n' = \sum_{n=1}^N a_n'.$ Это

значит, что для некоторого n_1 мы имеем следующее: $S_{n_1} = \sum_{n=1}^{n_1} a_n$, $S'_{n_1} = \sum_{n=1}^{n_1} a'_n$, где для любого $n=1,2,3,\ldots,n_1$

выполняется отношение $a'_n = o(a_n)$. В таком случае для частичных сумм справедливо отношение $S'_{n_1} = o(S_{n_1})$. А так как и для всех последующих a_n и a'_n также справедливо отношение $a'_n = o(a_n)$, то мы можем сказать, что $S'_n = o(S_n)$.

11. Пусть положительный ряд $\sum a_n$ расходится и S_n его частичная сумма. Докажите, что ряд $\sum (\sqrt{r_n} - \sqrt{r_{n+1}})$ также расходится, причём медленнее, чем ряд $\sum a_{n+1}$.

$$r_n = S - S_n$$
, тогда $\frac{\sqrt{r_n} - \sqrt{r_{n+1}}}{a_{n+1}} = \frac{\sqrt{S - S_n} - \sqrt{S - S_{n+1}}}{a_{n+1}} = \frac{S_{n+1} - S_n}{(S_{n+1} - S_n)(\sqrt{S - S_n} + \sqrt{S - S_{n+1}})}$, где $(S_{n+1} - S_n)(\sqrt{S - S_n} + \sqrt{S - S_{n+1}}) \to \infty$, $\frac{S_{n+1} - S_n}{(S_{n+1} - S_n)(\sqrt{S - S_n} + \sqrt{S - S_{n+1}})} \to 0$. Тогда ряд $\sum (\sqrt{r_n} - \sqrt{r_{n+1}})$ расходится, причём медленнее, чем ряд $\sum a_{n+1}$.

12. Пусть положительный ряд $\sum a_n$ расходится и S_n его частичная сумма. Докажите, что ряд $\sum (\sqrt{S_{n+1}} - \sqrt{S_n})$ также расходится, причём медленнее, чем ряд $\sum a_{n+1}$.

$$\frac{\sqrt{S_{n+1}}-\sqrt{S_n}}{a_{n+1}} = \frac{\sqrt{S_{n+1}}-\sqrt{S_n}}{S_{n+1}-S_n} = \frac{1}{\sqrt{S_{n+1}}+\sqrt{S_n}}, \text{ где } \sqrt{S_{n+1}}+\sqrt{S_n} \to \infty, \text{ а значит } \frac{1}{\sqrt{S_{n+1}}+\sqrt{S_n}} \to 0. \text{ Тогда ряд } \sum (\sqrt{S_{n+1}}-\sqrt{S_n}) \text{ расходится, причём медленнее, чем ряд } \sum a_{n+1}.$$

13. Сформулируйте признак Даламбера для положительного ряда

Теорема. Признак Даламбера. Пусть $a_n > 0$.

$$\overline{\lim} \frac{a_{n+1}}{a_n} < 1 \implies$$
 ряд $\sum a_n$ сходится.

$$\underline{\lim} \frac{a_{n+1}}{a_n} > 1 \implies \text{ряд } \sum a_n \text{ расходится.}$$

14. Сформулируйте радикальный признак Коши для положительного ряда.

Теорема. Радикальный признак Коши. Пусть $a_n \geqslant 0$.

$$\overline{\lim} \sqrt[n]{a_n} < 1 \implies$$
 ряд $\sum a_n$ сходится.

$$\underline{\lim} \sqrt[n]{a_n} > 1 \implies$$
 ряд $\sum a_n$ расходится.

15. Докажите, что всякий раз, когда признак Даламбера даёт ответ на вопрос о сходимости ряда, то радикальный признак Коши даёт (тот же) ответ на этот вопрос.

Пусть $a_n > 0$. Тогда:

$$\underline{\lim} \frac{a_{n+1}}{a_n} \leqslant \underline{\lim} \sqrt[n]{a_n} \leqslant \overline{\lim} \sqrt[n]{a_n} \leqslant \overline{\lim} \frac{a_{n+1}}{a_n}$$

Если
$$\overline{\lim} \frac{a_{n+1}}{a_n} < 1 \implies \overline{\lim} \sqrt[n]{a_n} < 1$$

Если
$$\underline{\lim} \frac{a_{n+1}}{a_n} > 1 \implies \underline{\lim} \sqrt[n]{a_n} > 1$$

Если
$$\exists \lim \frac{a_{n+1}}{a_n}$$
, то $\overline{\lim} \frac{a_{n+1}}{a_n} = \underline{\lim} \frac{a_{n+1}}{a_n} \implies \exists \lim \sqrt[n]{a_n} = \lim \frac{a_{n+1}}{a_n}$

16. -

17. -

18. Приведите пример ряда, который сходится медленнее любого ряда геометрической прогрессии, но быстрее любого обобщённого гармонического яда (с обоснованием).

Рассмотрим
$$e^{-\sqrt{n}}$$

$$\sum q^n$$
 - ряд геометрической прогрессии, $0 < q < q;\, q^n = e^{n*\ln q},$ где $\ln q < 0$

$$\sum \frac{1}{n^p}$$
 - обобщённый гармонический ряд. $\frac{1}{n^p} = e^{-p \ln n}, \, p > 1.$

$$p \ln n < \sqrt{n} < n \ln \frac{1}{q}, \, \forall p,q$$
 при $n \geqslant n_0.$

$$\frac{e^{-\sqrt{n}}}{q^n}=e^{-\sqrt{n}+n\ln\frac{1}{q}}\to +\infty, \text{ где } -\sqrt{n}+n\ln\frac{1}{q}\to +\infty \implies \sum e^{-\sqrt{n}} \text{ сходится медленнее ряда геометрической прогрессии.}$$

$$\frac{e^{-\sqrt{n}}}{1/n^p} = e^{-\sqrt{n} + p \ln n} \to 0,$$
где $-\sqrt{n} + p \ln n \to -\infty \implies \sum e^{-\sqrt{n}}$ сходится быстрее гармонического ряда.

19. Сформулируйте признак Гаусса для положительного ряда. Приведите пример применения признака Гаусса.

Если
$$\exists \delta > 0, p: \frac{a_{n+1}}{a_n} = 1 - \frac{p}{n} + O\left(\frac{1}{n^{1+\delta}}\right)$$
 то:

$$p > 1 \implies$$
 ряд $\sum a_n$ сходится.

$$p \leqslant 1 \implies$$
 ряд $\sum a_n$ расходится.

20. -

21. -

22. Что такое улучшение сходимости положительного ряда? Покажите на примере как можно улучшить сходимость ряда.

Пусть у нас есть некоторый ряд $\sum a_n$ и он сходится медленно. В таких случаях для расчёта суммы ряда с необходимой точностью потребуется взять больше членов, что неудобно. Мы можем преобразовать наш ряд для улучшения сходимости, т.е. получить некоторый ряд $\sum a_n$, который будет сходиться быстрее, чем исходный $\sum a_n$.

 $\Pi pumep$. Пусть у нас есть ряд $S = \sum_{n=1}^{\infty} \frac{1}{n^2 + 2} \approx \sum_{n=1}^{\infty} \frac{1}{n^2}$. Воспользуемся методом Куммера. Для улучшения сходимости будем брать ряды вида $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1, \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{4}, \dots$

В данном случае нам подойдёт первый ряд в этом списке, поскольку $\frac{1}{n^2} \sim \frac{1}{n(n+1)}$.

$$\begin{split} \sum_{n=1}^{\infty} \left(\frac{1}{n^2 + 2} - \frac{1}{n(n+1)} \right) &= S - 1 \implies S = 1 + \sum_{n=1}^{\infty} \left(\frac{1}{n^2 + 2} - \frac{1}{n(n+1)} \right) \\ \frac{1}{n^2 + 2} - \frac{1}{n(n+1)} &= \frac{1}{n^2} \cdot \left(\frac{1}{1 + \frac{2}{n^2}} - \frac{1}{1 + \frac{1}{n}} \right) = \frac{1}{n^2} \cdot \left(1 - \frac{2}{n^2} + o\left(\frac{1}{n^2}\right) - \left(1 - \frac{1}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)\right) \right) = \frac{1}{n^3} + o\left(\frac{1}{n^3}\right). \end{split}$$

Получили ряд $\sum_{n=1}^{\infty} \frac{1}{n^3}$, который сходится быстрее, $1 + \sum_{n=1}^{\infty} \frac{1}{n^3} \approx \sum_{n=1}^{\infty} \frac{1}{n^2 + 2}$.

23. Дайте определения: знакопеременный ряд, знакочередующийся ряд, абсолютно сходящийся ряд, условно сходящийся ряд, положительная часть ряда, отрицательная часть ряда.

Определение. Пусть существует ряд $\sum a_n$. такой, что $\forall i,\ a_i$ может быть, как больше 0, так и меньше 0. В таком случае ряд $\sum a_n$ называется знакопеременным.

Определение. Пусть существует ряд $\sum a_n$. такой, что $\forall i, \ a_i \cdot a_{i+1} < 0$. В таком случае ряд $\sum a_n$ называется знакочередующимся.

Определение. Ряд $\sum_{n=1}^{\infty} a_n$ называется абсолютно сходящимся, если ряд $\sum_{n=1}^{\infty} |a_n|$ также сходится.

Если ряд $\sum_{n=1}^{\infty} a_n$ сходится абсолютно, то он является сходящимся (в обычном смысле). Обратное утверждение неверно.

Определение. Ряд $\sum_{n=1}^{\infty} a_n$ называется условно сходящимся, если сам он сходится, а ряд, составленный из модулей его членов, расходится.

Определение. Введем два ряда: $a_n^+ = \begin{cases} a_n, a_n > 0 \\ 0 \end{cases}$ и $a_n^- = \begin{cases} |a_n|, a_n < 0 \\ 0 \end{cases}$. Тогда ряды $\sum a_n^+$ и a_n^- соответственно называются положительной и отрицательной частью ряда $\sum a_n$.

24. Докажите, что ряд сходится абсолютно ровно в том случае, когда сходятся его положительная и отрицательная части.

Доказательство. Рассмотрим ряд $\sum a_n$, дополнительный ряд $\sum |a_n|$, а также положительную и отрицательную части $\sum a_n^+$ и $\sum a_n^-$.

- 1) Пусть ряд $\sum a_n$ сходится абсолютно. В таком случае ряд $\sum |a_n|$ сходится, а так как члены рядов $\sum a_n^+$ и $\sum a_n^-$ все содержатся в ряде $\sum |a_n|$, то для всех их частичных сумм справедливо следующее: $P_k \leqslant A_n'$ и $Q_m \leqslant A_n'$, где P_k и Q_m частичные суммы положительной и отрицательной части соответственно, а A_n' частичная сумма дополнительного ряда и $A_n' = P_k + Q_m, n = m + k$. Это значит, что оба ряда $\sum a_n^+$ и $\sum a_n^-$ сходятся.
- 2) Исходя из того, что $S_n = P_k Q_m, n = m + k$ и положительных и отрицательных элементов в $\sum a_n$ бесконечное множество, мы получаем, что при $n \to \infty$ одновременно $m \to \infty$ и $k \to \infty$. Переходя к пределу получаем, что исходный ряд сходится абсолютно и его сумма будет равна P Q.
- 25. Докажите, что если ряд сходится условно, то его положительная и отрицательная части расходятся (имеют бесконечные суммы).

Доказательство. Рассмотрим ряд $\sum a_n$, дополнительный ряд $\sum |a_n|$, а также положительную и отрицательную части $\sum a_n^+$ и $\sum a_n^-$. Поскольку ряд $\sum a_n$ сходится условно, то $\sum |a_n|$ расходится. Рассмотри частичные суммы $\sum |a_n|$, $\sum a_n^+$ и $\sum a_n^-$ - A_n' , P_k , Q_m соответственно. Для любого n=m+k, $A_n'=P_k+Q_m$. При $n\to\infty$, $m\to\infty$ и $k\to\infty$. Так как ряд $\sum |a_n|$ расходится, то сумма $A_n'\to\infty$. Поскольку число положительных и отрицательных элементов бесконечно, то получаем $P_k\to\infty$ и $Q_m\to\infty$, а значит ряды $\sum a_n^+$ и $\sum a_n^-$ расходятся.

26. Сформулируйте мажорантный признак Вейерштрасса. Приведите пример применения признака

Теорема. Если $|a_n| \leqslant b_n$ при $n > n_0$ и положительный ряд $\sum b_n$ сходится, то $\sum a_n$ сходится, причём абсолютно.

Пример.
$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^p}$$
, $p > 0$

$$|sin(nx)|\leqslant 1 \implies \left|\frac{sin(nx)}{n^P}\right|\leqslant \frac{1}{n^p}$$

$$\sum \frac{1}{n^p} \, \operatorname{сходится} \, (p>1) \implies \sum_{n=1}^\infty \frac{\sin(nx)}{n^p} \, \operatorname{сходится} \, \operatorname{абсолютно}.$$

27. Что такое группировка членов ряда? Докажите, что любой ряд, полученный из сходящегося ряда группировкой его членов, сходится и имеет ту же сумму

Говорят, что ряд $\sum b_k$ получен из $\sum a_n$ группировкой членов, если $\exists n_1 < n_2 < \ldots$:

$$b_1 = a_1 + a_2 + \dots + a_{n_1}$$

$$b_2 = a_{n_1+1} + a_{n_1+2} + \dots + a_{n_2}$$

• •

Замечание. Если $\sum a_n$ сходится, то ряд $\sum b_k$ сходится к той же сумме.

Доказательство.
$$\sum_{k=1}^m b_k = \sum_{n=1}^{n_m} a_n$$

Обратное утверждение неверно: (1-1) + (1-1) + ...

28. Как с помощью группировки преобразовать знакопеременный ряд в знакочередующийся? Что можно утверждать о сходимости полученного знакочередующегося ряда?

Знакопеременный ряд при помощи группировки сводится к знакочередующемуся:

$$a_1 \leqslant 0, \ldots, a_{n_1} \leqslant 0; b_1 = \sum_{i=1}^{n_1} a_i \leqslant 0$$

$$a_{n_1+1} \geqslant 0, \ldots, a_{n_2} \geqslant 0; b_1 = \sum_{i=n_1+1}^{n_2} a_i \leqslant 0$$

При такой группировке сходимость исходного ряда \iff сходимость $\sum b_n$

29. Приведите пример преобразования знакопеременного (но не знакочередующегося) ряда к знакочередующемуся.

Пример.
$$\sum_{n=1}^{\infty} \frac{(-1)^{[\ln n]}}{n}$$

$$\sum_{k=0}^{\infty} b_k$$
, где $b_k = (-1)^k$

$$|b_k| = \sum_{n=[e^k]+1}^{[e^{k+1}]} \frac{1}{n} \leqslant \frac{1}{[e^k]+1} \cdot ([e^{k+1}] - [e^k]) \approx \frac{e^{k+1} - e^k}{e^k} \to e-1 > 0$$

30. -

31. Сформулируйте признак Лейбница для знакочередующегося ряда. Приведите пример применения признака Лейбница.

Теорема. Признак Лейбница. Если $u_n\downarrow 0$, то ряд сходится, причём $|r_n|\leqslant u_{n+1}$

Пример.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}, p > 0$$

$$\frac{1}{n^p} \downarrow 0 \implies$$
 ряд сходится (при $\forall p > 0$)

32. -

33. Покажите, что для любых числовых последовательностей $\{a_n\}$, $\{B_n\}$ справедлива формула суммирования по частям: $\sum_{n=m+1}^{N} a_n(B_n-B_{n-1}) = (a_NB_N-a_mB_m) - \sum_{n=m+1}^{N} (a_n-a_{n-1})B_{n-1}$

Суммируем равенство по индексу
$$n$$
: $\sum_{n=m+1}^{N} \sum_{n=m+1}^{N} a_n(B_n - B_{n-1}) = \sum_{n=m+1}^{N} (a_n B_n - a_{n-1} B_{n-1}) - \sum_{n=m+1}^{N} (a_n - B_{n-1})$

 $(a_{n-1})B_{n-1}$. Получаем из первой скобки путём сокращения элементов $a_NB_N-a_mB_m$. В итоге получаем $\sum_{n=m+1}^N a_n(B_n-a_m)B_n$

$$B_{n-1} = (a_N B_N - a_m B_m) - \sum_{n=m+1}^{N} (a_n - a_{n-1}) B_{n-1}.$$

34. Сформулируйте признак Дирихле. Приведите пример его применения.

$$\sum_{n=1}^{\infty} a_n \cdot b_n$$

Теорема. Признак Дирихле. Если $a_n \downarrow 0$, а частичные суммы $\left| \sum_{n=1}^N b_n \right| \leqslant C$ ограничены, то $\sum_{n=1}^\infty a_n \cdot b_n$ сходится.

Пример.
$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^p}, p > 0$$

$$a_n = \frac{1}{n^p} \downarrow 0, \ b_n = \sin nx$$

$$b_1 + b_2 + b_3 + \dots + b_N = \sin x + \sin 2x + \dots + \sin Nx = \frac{\cos \frac{x}{2} - \cos ((N+1/2)x)}{2\sin \frac{x}{2}}; \left| \sum_{n=1}^{N} b_n \right| \leqslant \frac{2}{2\sin \frac{x}{2}} = \frac{1}{\sin \frac{x}{2}}$$

Ряд сходится по признаку Дирихле

35. Сформулируйте признак Абеля. Выведите утверждение признака Абеля из признака Дирихле.

Теорема. Признак Абеля. Если a_n монотонна и ограничена, а ряд $\sum_{n=1}^{\infty} b_n$ сходится, то $\sum_{n=1}^{\infty} a_n \cdot b_n$ сходится.

36. Что такое перестановка членов ряда? Приведите пример.

Пусть $f: \mathbb{N} \to \mathbb{N}$ – биекция

Говорят, что ряд $\sum b_n$ получен из $\sum a_n$ перестановкой членов, если $b_n = a_{f(n)}$

37. -

38. Сформулируйте свойство абсолютно сходящегося ряда, связанное с перестановкой членов. (теорема Римана)

Теорема. (Римана) Если ряд $\sum a_n$ сходится условно, то для $\forall S \in [-\infty; +\infty]$ то \exists перестановка f такая, что $\sum a_{f(n)} = S$

39. -

40. Как определяется произведение рядов? Что можно утверждать о произведении абсолютно сходящихся рядов?

$$\sum_{k=1}^{\infty} a_k, \sum_{m=1}^{\infty} b_m$$

$$\left(\sum_{k=1}^{K} a_k\right) \cdot \left(\sum_{m=1}^{M} b_m\right) = \sum_{1 \le k \le K, 1 \le m \le M} a_k \cdot b_m$$

Если эта сумма имеет предел при $K, M \to \infty$, не зависящий от порядка суммирования, то говорят, что определено произведение рядов.

Теорема. (Коши) Если $\sum a_k$, $\sum b_m$ сходятся абсолютно, то определено их произведение.

$$\left(\sum_{k=1}^{\infty} a_k\right) \cdot \left(\sum_{m=1}^{\infty} b_m\right) = \sum_{n=1}^{\infty} a_{k_n} \cdot b_{m_n}$$

41. Что такое произведение рядов в форме Коши? Приведите пример вычисления такого произведения.

Произведение рядов по Коши:

$$c_2 = a_1 \cdot b_1$$

$$c_3 = a_2 \cdot b_1 + a_1 \cdot b_2$$

$$c_4 = a_3 \cdot b_1 + a_2 \cdot b_2 + a_1 \cdot b_3$$

. . .

$$\left(\sum_{k=1}^{\infty} a_k\right) \cdot \left(\sum_{m=1}^{\infty} b_m\right) = \sum_{n=2}^{\infty} c_n$$

42. Дайте определения: бесконечное произведение, частичное произведение, сходящееся бесконечное произведение, расходящееся бесконечное произведение

$$\prod_{n=1}^{N} a_n = a_1 \cdot a_2 \cdot \dots \cdot a_N$$
 – частичное произведение.

Бесконечным произведением называют формальную запись $\prod_{n=1}^{\infty} a_n$

Значением бесконечного произведения является предел частичного произведения:

$$\prod_{n=1}^{\infty} a_n = \lim_{N \to \infty} \prod_{n=1}^{N} a_n$$

Если предел существует и он конечен – то бесконечное произведение сходится, иначе расходится.

43. Сформулируйте и докажите необходимое условие сходимости бесконечного произведения.

Если
$$P_N = \prod_{n=1}^N a_n$$
 сходится, то $a_n = \frac{P_n}{P_{n-1}} \to 1$

45. Как определяется соответствующий бесконечному произведению ряд? Сформулируйте и докажите утверждение об их взаимосвязи.

$$\prod_{n=1}^{N} a_n = e^{\ln \prod_{n=1}^{N} a_n} = e^{\sum_{n=1}^{N} \ln a_n}$$

$$\prod_{n=1}^{\infty} a_n = P \iff \sum_{n=1}^{\infty} \ln a_n = \ln P \ (P \neq 0, a_n \to 1)$$

46. В каком случае бесконечное произведение называется сходящимся абсолютно? Сформулируйте и докажите критерий абсолютной сходимости бесконечного произведения

$$\prod_{n=1}^{\infty} a_n$$
 называется абсолютно сходящимся, если абсолютно сходится соответствующий ему ряд $\sum_{n=1}^{\infty} \ln a_n$

Замечание.
$$\prod_{n=1}^{\infty} a_n$$
 сходится абсолютно $\iff \sum_{n=1}^{\infty} (a_n-1)$ сходится абсолютно.

47. Напишите произведение Валлиса и его значение. Вычисление каких интегралов приводит к этой формуле?

Пример. (Произведение Валлиса)
$$\prod_{n=1}^{\infty} \frac{4n^2}{4n^2-1} = \frac{\pi}{2}$$
 – получается из анализа интегралов $\int_0^{\frac{\pi}{2}} \sin^n x dx$

Прим. ред.: есть отличное видео с интуитивно понятным доказательством.

48. Дайте определение дзета-функции (ζ -функция) Римана. Сформулируйте тождество Эйлера для ζ -функции.

$$\varPi p$$
имер. (Дзета-функция Римана) $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, s>1$

Тождество Эйлера:

$$\zeta(s) = \frac{1}{\prod_{n=1}^{\infty} (1 - \frac{1}{p_s^s})}$$
, где $p_1 = 2, p_2 = 3, p_3 = 5, \dots$

49. Дайте определения: функциональная последовательность, точка сходимости функциональной последовательности, область (множество) сходимости функциональной последовательности, поточечная сходимость функциональной последовательности на данном множестве.

Определение. Функциональным рядом (последовательностью) называется такой ряд (последовательность), что его элементами являются не числа, а функции $f_n(x)$.

Определение. Пусть $\forall n, n \in \mathbb{N}, f_n : D \to \mathbb{R}, D \subseteq \mathbb{R}$

Говорят, что $a \in D$ - точка сходимости $\{f_n(x)\}$, если последовательность $\{f_n(a)\}$ сходится.

Определение. Множество всех точек сходимости называется множеством сходимости.

Определение. Говорят, что последовательность сходится на D поточечно, если D – множество сходимости.

50. Что такое равномерная норма? Покажите (исходя из определения нормы), что равномерная норма является нормой в соответствующем линейном пространстве (всех числовых функций, определённых на заданном множестве).

Определение. Рассмотрим множество всех функций $f:D\to \mathbb{R}.$ $||f||=\sup_{x\in D}|f(x)|$ - равномерная норма в пространстве D.

51. Сформулируйте определения равномерной сходимости функциональной последовательности: в терминах нормы и на языке $\varepsilon - \delta$.

Определение. 1)
$$f_n \stackrel{D}{\rightrightarrows} f \iff ||f_n - f|| \to 0.$$

2) $\sum f_n(x) \rightrightarrows S(x) \iff \forall \varepsilon > 0, \exists N(\varepsilon) : \forall n \geqslant N(\varepsilon), |S_n(x) - S(x)| < \varepsilon.$

52. Докажите, что из равномерной сходимости следует поточечная сходимость на данном множестве.

Доказательство. Рассмотрим определения поточечной сходимости и равномерной сходимости:

$$\forall x \in E, \forall \varepsilon > 0 \exists N = N(\varepsilon, x) : \forall n \geqslant N, |f_n(x) - f(x)| < \varepsilon$$
 - поточечная сходимость.

$$\forall \varepsilon > 0 \exists N = N(\varepsilon, x) : \forall n \geqslant N, \forall x \in E, |f_n(x) - f(x)| < \varepsilon$$
 - равномерная сходимость.

Заметим, что свойство равномерной сходимости не слабее, чем поточечной, а значит, из равномерной сходимости следует поточечная.

8