Introduction to probabilistic programming languages (PPLs)

Andrés R. Masegosa and Thomas D. Nielsen

Plan for this week

- Day 1: Probabilistic programming
 - Introduction to probabilistic programming
 - Probabilistic programming in Pyro
- Day 2: Variational inference
 - Recap of variational inference (variational inference as optimization)
 - Derivation and implementation of selected examples
 - Bayesian linear regression
 - Factor analysis
 - ...
- Day 3: Variational inference cont'd
 - Black box variational inference
 - Variational inference in Pyro
 - Variational auto-encoders

The development of machine learning systems requires enormous efforts.

Data Science

Copyright © 2014 by Steven Geringer Raleigh, NC. Permission is granted to use, distribute, or modify this image, provided that this copyright notice remains intact.

The development of machine learning systems requires enormous efforts.

• It requires of highly qualified experts.

The development of machine learning systems requires enormous effort.

- It is necessary to have highly qualified experts.
- It is difficult to find the ML model most suitable for an application.

Hidden Technical Debt in Machine Learning Systems

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips {dsculley, gholt, dgg, edavydov, toddphillips}@google.com Google, Inc.

The development of machine learning applications requires enormous effort.

- It is necessary to have highly qualified experts.
- It is difficult to find the ML model most suitable for an application.
- Programming a ML model is a complex task where many problems are intermingled.

Developing Machine Learning Systems

Wanted: Artificial intelligence experts

In artificial intelligence, job openings are rising faster than job seekers.

Consequences:

• Shortage of AI experts (and high salaries).

Developing Machine Learning Systems

Wanted: Artificial intelligence experts

In artificial intelligence, job openings are rising faster than job seekers.

Consequences:

- Shortage of AI experts (and high salaries).
- Only big corporations have the resources for developing ML systems.

Similar situation than 50 years ago:

Similar situation than 50 years ago:

People used to program in low-level programming languages.

Similar situation than 50 years ago:

- People used to program in low-level programming languages.
- Programming was complex and demand high-expertise.

Similar situation than 50 years ago:

- People used to program in low-level programming languages.
- Programming was complex and demand high-expertise.
- Focus on application and low-level hardware details.

High-level programming languages brought many advantages:

Programmers focused on the applications.

- Programmers focused on the applications.
- Hardware Experts focused on compilers.

- Programmers focused on the applications.
- Hardware Experts focused on compilers.
- High gains in productivity.

- Programmers focused on the applications.
- Hardware Experts focused on compilers.
- High gains in productivity.
- "Democratization" of the software development.

 $Claire \ D. \ Costa. \ Best \ Python \ Libraries for \ Machine \ Learning \ and \ Deep \ Learning. \\ https://towardsdatascience.com/best-python-libraries-for-machine-learning-and-deep-learning-b0bd40c7e8c \ deep-learning-b0bd40c7e8c \ deep-learning-b0b$

Big Data and Machine Learning Libraries:

High-quality, well-maintained and open-source libraries

Claire D. Costa. Best Python Libraries for Machine Learning and Deep Learning. https://towardsdatascience.com/best-python-libraries-for-machine-learning-and-deep-learning-b0bd40c7e8c

Big Data and Machine Learning Libraries:

- High-quality, well-maintained and open-source libraries
- They try to provide **high-level abstractions**.

Claire D. Costa. Best Python Libraries for Machine Learning and Deep Learning. https://towardsdatascience.com/best-python-libraries-for-machine-learning-and-deep-learning-b0bd40c7e8c

Big Data and Machine Learning Libraries:

- High-quality, well-maintained and open-source libraries
- They try to provide **high-level abstractions**.
- Hiding under the hood **low level details**.

Claire D. Costa. Best Python Libraries for Machine Learning and Deep Learning. https://towardsdatascience.com/best-python-libraries-for-machine-learning-and-deep-learning-b0bd40c7e8c

Big Data and Machine Learning Libraries:

- High-quality, well-maintained and open-source libraries
- They try to provide high-level abstractions.
- Hiding under the hood **low level details**.
- Increase the adoption of these technologies.

PPLs as high-level programming languages for **probabilistic machine learning systems**:

Stacked architecture

PPLs as high-level programming languages for **probabilistic machine learning systems**:

- Stacked architecture
- Different Domain Experts will code their models using the same language.

PPLs as high-level programming languages for probabilistic machine learning systems:

- Stacked architecture
- Different Domain Experts will code their models using the same language.
- ML experts will focus on the development of new ML solvers.

PPLs as high-level programming languages for **probabilistic machine learning systems**:

- Stacked architecture
- Different Domain Experts will code their models using the same language.
- ML experts will focus on the development of new ML solvers.
- Compile experts will focus on running these ML solvers on specialized hardware.

Box's Loop

[Box, 1980; Rubin, 1984; Gelman+ 1996; Blei, 2014]

Benefits of PPLs for developing probabilistic machine learning systems:

Simplify probabilistic machine learning model code.

Box's Loop

[Box, 1980; Rubin, 1984; Gelman+ 1996; Blei, 2014]

Benefits of PPLs for developing probabilistic machine learning systems:

- Simplify probabilistic machine learning model code.
- Reduce development time and cost to encourage experimentation.

Box's Loop

[Box, 1980; Rubin, 1984; Gelman+ 1996; Blei, 2014]

Benefits of PPLs for developing probabilistic machine learning systems:

- Simplify probabilistic machine learning model code.
- Reduce development time and cost to encourage experimentation.
- Reduce the necessary level of expertise.

Box's Loop

[Box, 1980; Rubin, 1984; Gelman+ 1996; Blei, 2014]

Benefits of PPLs for developing probabilistic machine learning systems:

- Simplify probabilistic machine learning model code.
- Reduce development time and cost to encourage experimentation.
- Reduce the necessary level of expertise.
- "Democratization" of the development of probabilistic ML systems.

1st Generation of PPLs :

• Bugs, WinBugs, Jags, Figaro, etc.

1st Generation of PPLs :

- Bugs, WinBugs, Jags, Figaro, etc.
- Turing-complete probabilistic programming languages. (i.e. they can represent any computable probability distribution).

1st Generation of PPLs:

- Bugs, WinBugs, Jags, Figaro, etc.
- Turing-complete probabilistic programming languages. (i.e. they can represent any computable probability distribution).
- Inference engine based on Monte Carlo methods.

1st Generation of PPLs:

- Bugs, WinBugs, Jags, Figaro, etc.
- Turing-complete probabilistic programming languages. (i.e. they can represent any computable probability distribution).
- Inference engine based on Monte Carlo methods.
- They did not scale to large data samples/high-dimensional models.

2nd Generation of PPLs :

Infer.net, Factorie, Amidst, etc.

PPL:

2nd Generation of PPLs:

- Infer.net, Factorie, Amidst, etc.
- Inference engine based on message passage algorithms and/or variational inference methods.

PPL:

- Infer.net, Factorie, Amidst, etc.
- Inference engine based on message passage algorithms and/or variational inference methods.
- They did scale to large data samples/high-dimensional models.

PPL:

- Infer.net, Factorie, Amidst, etc.
- Inference engine based on message passage algorithms and/or variational inference methods.
- They did scale to large data samples/high-dimensional models.
- Restricted probabilistic model family (i.e. factor graphs, conjuage exponential family, etc.)

TensorFlow Probability, Pyro, PyMC3, InferPy, etc.

- TensorFlow Probability, Pyro, PyMC3, InferPy, etc.
- Black Box Variational Inference and Hamiltonian Monte-Carlo.

- TensorFlow Probability, Pyro, PyMC3, InferPy, etc.
- Black Box Variational Inference and Hamiltonian Monte-Carlo.
- They did scale to large data samples/high-dimensional models.

- TensorFlow Probability, Pyro, PyMC3, InferPy, etc.
- Black Box Variational Inference and Hamiltonian Monte-Carlo.
- They did scale to large data samples/high-dimensional models.
- Turing-complete probabilistic programming languages.

- TensorFlow Probability, Pyro, PyMC3, InferPy, etc.
- Black Box Variational Inference and Hamiltonian Monte-Carlo.
- They did scale to large data samples/high-dimensional models.
- Turing-complete probabilistic programming languages.
- Rely on deep learning frameworks (TensorFlow, Pytorch, Theano, etc).

- TensorFlow Probability, Pyro, PyMC3, InferPy, etc.
- Black Box Variational Inference and Hamiltonian Monte-Carlo.
- They did scale to large data samples/high-dimensional models.
- Turing-complete probabilistic programming languages.
- Rely on deep learning frameworks (TensorFlow, Pytorch, Theano, etc).
 - Specialized hardware like GPUs, TPUs, etc.

- TensorFlow Probability, Pyro, PyMC3, InferPy, etc.
- Black Box Variational Inference and Hamiltonian Monte-Carlo.
- They did scale to large data samples/high-dimensional models.
- Turing-complete probabilistic programming languages.
- Rely on deep learning frameworks (TensorFlow, Pytorch, Theano, etc).
 - Specialized hardware like GPUs, TPUs, etc.
 - Automatic differentiation methods.

Pyro's main features (www.pyro.ai):

• Developed by UBER (the car riding company).

Pyro's main features (www.pyro.ai):

- Developed by UBER (the car riding company).
- Focus on deep generative models (Day 4).

Pyro's main features (www.pyro.ai):

- Developed by UBER (the car riding company).
- Focus on deep generative models (Day 4).
- Rely on Pytorch (Deep Learning Framework).

Pyro's main features (www.pyro.ai):

- Developed by UBER (the car riding company).
- Focus on deep generative models (Day 4).
- Rely on Pytorch (Deep Learning Framework).
- Enable GPU accelaration and distributed learning.

Pyro's main features (www.pyro.ai):

- Developed by UBER (the car riding company).
- Focus on deep generative models (Day 4).
- Rely on Pytorch (Deep Learning Framework).
- Enable GPU accelaration and distributed learning.

https://github.com/PGM-Lab/probai-2021-pyro

Bayesian linear regression

Relationship between topographic heterogeneity and GDP per capita

 Terrain ruggedness or bad geography is related to poorer economic performance outside of Africa.

Relationship between topographic heterogeneity and GDP per capita

- Terrain ruggedness or bad geography is related to poorer economic performance outside of Africa.
- Rugged terrains have had a reverse effect on income for African nations.

Day1/bayesian_linear_regression.ipynb

Linear Regression Model

- Negative slope for Non African Nations.
- Positive slope for African Nations.

Bayesian Linear Regression Model

- Modeling data noise (aleatoric uncertainty).
- Modeling uncertainty about the linear coefficients (epistemic uncertainty).