Date of Examination: 26.10.2021

AHSANULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Department: Computer Science and Engineering
Program: B.Sc. in Computer Science and Engineering
Semester Final Examination: Fall 2020
Year: 4th Semester: 2nd
Course Number: CSE4203

Course Number: CSE4203 Course Name: Computer Graphics

Time: 2 (Two) Hours Full Marks: 50

Use single answer script

Instructions:	ructions: i) Answer script should be hand written and should be written in A4 white j			
		must submit the hard copy of this answer script to the Department when the uni reopens.		
	ii)	You must write the following Department:	ng information at the top page of each answer script: Program:	
		Course no:	Course Title:	
		Examination:	Semester (Session):	
		Student ID:	Signature and Date:	
	iii)	Write down Student ID, Co	ourse number and put your signature on top of every single	
		page of the answer script.		
	iv)	Write down page number at the bottom of every page of the answer script.		
	v)	Upload the scan copy of your answer script in PDF format through provided good		
		form at the respective course site (i.e., google classroom) using institutional email		
		within the allocated time. Uploading clear and readable scan copy (uncorru		
		your responsibility and must cover the full page of your answer script. However, for		
		clear and readable scan cop	by of the answer script student should use only one side of	
		a page for answering the qu	estions.	
	vi)	You must avoid plagiarism, maintain academic integrity, and ethics. You are not		
		allowed to take any help from another individual and if taken so can result in stern		
		disciplinary actions from the	e university authority.	
	vii)	Marks allotted are indicated in the right margin.		
viii)		Assume any reasonable data if needed.		
	ix)	Symbols and characters have	ve their usual meaning.	
	x)	Before uploading rename the	ne PDF file as CourseNo_StudentID.pdf	
		For example, CSE4203_17	0104001.pdf	
	xi)	* '	gle pdf file) must be uploaded at designated location in	
		the provided google form l	ink available in the google classroom.	

There are 06 (seven) Questions. Answer any 04 (four).

Qu	estion 1. [Marks: 12.5]				
a)	AB is a line and P is a point in 3D space; where the points A , B and P are $(1,1,1)$, $(3,3,3)$ and $(2,2,4)$ respectively. We want to rotate P with respect to AB by -90° . Determine the composite transformation matrix to do the task.				
b)	Show that, in case of midpoint line drawing algorithm, we can successively update the decision variable by adding $(y_1-x_1)-(y_0-x_0)$ for each selection of a northeast pixel. Here, (x_0,y_0) and (x_1,y_1) are two endpoints of the line.				
Qu	estion 2. [Marks: 12.5]				
a)	A 2D Bezier curve Q is situated inside a regular hexagon $V_0V_1V_2V_3V_4V_5$ (see the following figure). The control points are chosen from the vertices of the hexagon. If Q has the same starting and ending point V_0 , what is the Euclidean distance between $Q\left(\frac{1}{3}\right)$ and $Q\left(\frac{1}{5}\right)$? Given that, the vertices V_0 and V_1 are $(-1,0)$ and $(-1,\frac{\sqrt{3}}{2})$ respectively. Hint: a regular hexagon has symmetric property.	[8]			
	V_0 (0,0) \bullet \circ				
b)	In OpenGL, which form of the perspective matrix is implemented? Show that, it can be expressed in terms of field of view, aspect ratio, near and far plane.				
Qu	estion 3. [Marks: 12.5]				
a)	Consider a clipping rectangle that has a width and height of 10 units. Its lower left corner is located at $(3,3)$. Also consider a line that has a starting point at $(1,1)$, $length = 20$ units, and $slope = 2$. Determine all the line-edge intersecting points (if any) with respect to the clipping rectangle using the Cyrus-Beck algorithm. Show your steps and calculations (assume any data if necessary).				
b)	Show that, in case of Phong Shading model, $r = 2(l \cdot n)n - l$, where symbol holds the conventional meaning.				

Ouestion 4. [Marks: 12.5] Draw the following pattern using Bresenham's circle drawing algorithm. The pattern is [7.5] constituted of two half circles with the centers C_1 and C_2 respectively having the same radius of r=4. Both of the circumferences go through (0,0). Show the steps to determine the points' positions and plot them. AY c_2 (0,0)Derive the viewport transformation matrix with necessary explanations and diagrams. Question 5. [Marks: 12.5] Suppose we have a 2D quad OABC with the vertices O(0,0), A(1,1), B(2,0) and C(1,-1). [2+5]Using the concept of barycentric coordinate, determine if a point P(1,0) is inside the quad. Describe your approach and show your calculations. Assume, ABCD is a 2D rectangle and the vertices are A(1,1), B(7,1), C(7,7), and D(1,7). [5.5] Introduce shear on ABCD to obtain A'B'C'D' such that A'D' and B'C' both create 45 degree with X-axis after the transformation. Determine the composite transformation matrix to perform this task. Perform all the multiplications and plot A'B'C'D'. Question 6. [Marks: 12.5] [12.5] 0 0 Frame-2 Frame-1

Consider a 2D canonical camera coordinate system with origin O and basis vectors $\{y, z\}$; where -z is the viewing direction and y is the up vector. Also consider 2 frame coordinate system inside the canonical (see the above figure), which are -

- a) Frame-1: Origin e and basis vectors $\{v_1, w_1\}$; where $-w_1$ is the viewing direction and v_1 is the up vector.
- b) Frame-2: Origin e and basis vectors $\{v_2, w_2\}$; where $-w_2$ is the viewing direction and v_2 is the up vector.

Here e is located on y axis and is a vertex of an equilateral triangle Δeab . where each edge has a length of 1 unit for both the frames. Determine the position of the $\mathbf{0}$ w.r.t Frame-1 and Frame-2.