PS-Q RAM:

Bosonic Quantum Memory in a Photonic-Crystal Supersolid

Robert Long screwball7605@aol.com

June 30, 2025

Abstract

We propose PS-Q RAM, a cryogenic bosonic quantum memory based on a Kerr-stabilized polariton cat state in a GaAs photonic-crystal cavity. By engineering two-photon drives and losses, PS-Q RAM stores logical qubits as superpositions of global condensate phases, achieving autonomous error protection, sub-100 µs coherence, and 100 ns-scale SWAP gates to superconducting qubits. This white paper outlines device physics, design architecture, simulation results, and a first-light experimental roadmap.

Contents

1	Introduction	1
2	Operating Principle	1
3	Device Architecture3.1 Photonic-Crystal Cavity3.2 Pump and Loss Engineering	2 2 2
4	Numerical Simulation	2
5	Performance Targets	2
6	Experimental Roadmap	2
7	Conclusion	2

1 Introduction

Quantum processors require fast, high-fidelity memory at millikelvin temperatures. Conventional SRAM/DRAM fail below 4K, and room-temperature quantum memories introduce latency. PS-Q RAM bridges this gap by storing qubit states in an all-optical, bosonic cat code realized within a GaAs photonic-crystal cavity.

2 Operating Principle

PS-Q RAM encodes a logical qubit in the coherent superposition

$$|C_{\pm}\rangle = \mathcal{N}_{\pm}(|\alpha\rangle \pm |-\alpha\rangle),$$

where α is the polariton amplitude. A two-photon resonant drive ϵ_2 and engineered two-photon loss κ_2 autonomously stabilize $|C_{\pm}\rangle$ against single-photon decay.

3 Device Architecture

3.1 Photonic-Crystal Cavity

A GaAs membrane hosts a high-Q nanobeam cavity (mode volume $V \sim (\lambda/n)^3$, $Q \ge 5 \times 10^6$) etched with elliptical holes. Underneath, a 20.5-pair AlGaAs/GaAs DBR suppresses radiative loss.

3.2 Pump and Loss Engineering

Two laser tones at $\omega_c/2$ drive the two-photon process, while an integrated superconducting nanowire provides engineered κ_2 via photon conversion to quasiparticles.

4 Numerical Simulation

We solve the Lindblad master equation

$$\dot{\rho} = -\frac{i}{\hbar}[H, \rho] + \kappa_1 \mathcal{D}[a]\rho + \kappa_2 \mathcal{D}[a^2]\rho,$$

with

$$H=\hbar\Delta\,a^{\dagger}a+\frac{\hbar K}{2}\,a^{\dagger 2}a^2+\frac{\hbar\epsilon_2}{2}\,(a^{\dagger 2}+a^2),$$

yielding cat-state fidelity F > 0.9 within 5 µs and coherence $T_2 \ge 100$ µs for $\alpha \approx 3$.

5 Performance Targets

- Coherence: $T_{2,\text{cat}} \ge 100 \,\mu\text{s}$ at $10 \,\text{mK}$.
- Gate speed: SWAP to transmon in 100 ns with fidelity $\geq 99\%$.
- Power: $< 1 \mu W$ per qubit.
- Density: $\sim 1000 \text{ qubits cm}^{-2}$ on a 10 mm reticle.

6 Experimental Roadmap

- 1. Fabricate single nanobeam cavity, measure $Q \ge 5 \times 10^6$.
- 2. Demonstrate two-photon stabilization and cat formation via Wigner tomography.
- 3. Integrate superconducting qubit swap line; benchmark $100\,\mathrm{ns}$ SWAP.
- 4. Scale to a 4×4 array; verify $T_2 > 100 \,\mu s$ across all sites.

7 Conclusion

PS-Q RAM offers a path to local, error-protected quantum memory at millikelvin temperatures. Its integration with superconducting processors promises to reduce latency, improve error-correction cycles, and accelerate hybrid quantum-classical algorithms.

References

- [1] Z. Leghtas $et\ al.$, "Confining the state of light via a superconducting nonlinear resonator," Phys. Rev. A, vol. 91, 043810 (2015).
- [2] M. Mirrahimi $et\ al.$, "Dynamically protected cat-qubits: a new platform for quantum information processing," New J. Phys., vol. 16, 045014 (2014).