Illustration

An approximate Bayesian geophysical inversion framework based on local-Gaussian likelihoods

Martin Jullum

Odd Kolbjørnsen

University of Oslo

martinju@math.uio.no

May 29, 2015

(Basics of the petroleum industry)

(Basics of the petroleum industry)

Petroleum: Oil, gas etc.

Petroleum: Oil, gas etc.

Geophysical data: Seismic

Basics of the petroleum industry

Basics of the petroleum industry

Geophysical data: Seismic

Basics of the petroleum industry

Illustration

Geophysical data: Seismic

Brine-saturated sandstone Oil-saturated

sandstone Gas-saturated sandstone

Forward model

- r = Rock properties/types
- **m** = Geophysical properties
- **d** = Geophysical data

Brine-saturated sandstone

Oil-saturated

sandstone Gas-saturated sandstone

Forward model

- Statistical approach
- Bayes is natura
 - Specify p(r)
 Inversion ⇔ consult p(r|d)
- r = Rock properties/types
- **m** = Geophysical properties
- **d** = Geophysical data

Brine-saturated sandstone

Oil-saturated

Gas-saturated sandstone

sandstone

Forward model $p(\mathbf{m}|\mathbf{r}) \quad p(\mathbf{d}|\mathbf{m})$ $\mathbf{m} \quad \mathbf{d}$ Inversion

- Statistical approach
- Bayes is natura

Specify p(r)
 Inversion ⇔ consult p(r|d)

- **r** = Rock properties/types
- **m** = Geophysical properties
- **d** = Geophysical data

Brine-saturated

sandstone

sandstone

Oil-saturated

Gas-saturated sandstone

- Statistical approach
- Bayes is natural
 - Specify $p(\mathbf{r})$
 - Inversion \Leftrightarrow consult $p(\mathbf{r}|\mathbf{d})$
- r = Rock properties/types
- **m** = Geophysical properties
- **d** = Geophysical data

- Enormous amount of data
 - 5km \times 5km \times 2km (resolution 25m \times 25m \times 2m) \Rightarrow 4 · 10⁶ locations
- Wavelet smoothens the data, highly correlated data with complex dependency structures
- We are interested in the rock types/properties r in ALL locations t(i) at horizontal location i = 1, ..., I and depth t = 1, ..., T.
 - Marginals $p(r_{t(i)}|\mathbf{d})$ typically 'sufficient'

Typical working conditions

• Simplification: Horizontal dependencies are not modeled

x=State of the world

- $p(\mathbf{d}_i|\mathbf{m}_i) \sim N(Gm, \Sigma)$
- $p(\mathbf{m}_i|\mathbf{r}_i)$ and $p(\mathbf{r}_i)$ defined through sampling schemes

• Simplification: Horizontal dependencies are not modeled

x=State of the world

- $p(\mathbf{d}_i|\mathbf{m}_i) \sim N(Gm, \Sigma)$
- $p(\mathbf{m}_i|\mathbf{r}_i)$ and $p(\mathbf{r}_i)$ defined through sampling schemes

Typical working conditions

• Simplification: Horizontal dependencies are not modeled

View 2 \mathbf{r}_j \mathbf{m}_j \mathbf{d}_j

x=State of the world

y=Common feature

- $p(\mathbf{d}_i|\mathbf{m}_i) \sim N(Gm, \Sigma)$
- $p(\mathbf{m}_i|\mathbf{r}_i)$ and $p(\mathbf{r}_i)$ defined through sampling schemes

Typical working conditions

• Simplification: Horizontal dependencies are not modeled

x=State of the world

y=Common feature

- $p(\mathbf{d}_i|\mathbf{m}_i) \sim N(Gm, \Sigma)$
- $p(\mathbf{m}_i|\mathbf{r}_i)$ and $p(\mathbf{r}_i)$ defined through sampling schemes

• Simplification: Horizontal dependencies are not modeled

x=State of the world

- $p(\mathbf{d}_i|\mathbf{m}_i) \sim N(Gm, \Sigma)$
- $p(\mathbf{m}_i|\mathbf{r}_i)$ and $p(\mathbf{r}_i)$ defined through sampling schemes

Full profile posterior:

• $p(\mathbf{r}_i|\mathbf{d}_i) \propto p(\mathbf{d}_i|\mathbf{r}_i)p(\mathbf{r}_i) = \int p(\mathbf{d}_i|\mathbf{m}_i)p(\mathbf{m}_i|\mathbf{r}_i) d\mathbf{m}_i p(\mathbf{r}_i)$

Marginal posterior:

•
$$p(r_{t(i)}|\mathbf{d}_i) \propto p(\mathbf{d}_i|r_{t(i)})p(r_{t(i)}) = \int p(\mathbf{d}_i|\mathbf{r}_i)p(\mathbf{r}_i) d\mathbf{r}_{t(-i)} = \int \left[\int p(\mathbf{d}_i|\mathbf{m}_i)p(\mathbf{m}_i|\mathbf{r}_i) d\mathbf{m}_i\right]p(\mathbf{r}_i) d\mathbf{r}_{t(-i)}$$

- Exact computation?
- MCMC?
- Variational Bayes/Expectation Propagation?
- ABC?
- INLA?
- 'Everything Gaussian' Approximation?

Possible approaches

Full profile posterior:

• $p(\mathbf{r}_i|\mathbf{d}_i) \propto p(\mathbf{d}_i|\mathbf{r}_i)p(\mathbf{r}_i) = \int p(\mathbf{d}_i|\mathbf{m}_i)p(\mathbf{m}_i|\mathbf{r}_i) d\mathbf{m}_i p(\mathbf{r}_i)$

Marginal posterior:

•
$$p(r_{t(i)}|\mathbf{d}_i) \propto p(\mathbf{d}_i|r_{t(i)})p(r_{t(i)}) = \int p(\mathbf{d}_i|\mathbf{r}_i)p(\mathbf{r}_i) d\mathbf{r}_{t(-i)} = \int \left[\int p(\mathbf{d}_i|\mathbf{m}_i)p(\mathbf{m}_i|\mathbf{r}_i) d\mathbf{m}_i\right]p(\mathbf{r}_i) d\mathbf{r}_{t(-i)}$$

- Exact computation?
- MCMC?
- Variational Bayes/Expectation Propagation?
- ABC?
- INLA?
- 'Everything Gaussian' Approximation?

Our solution

- Let A = t(i)
- Define local subsets: B = B(A), C = C(A), D = D(A)
- $p(r_A|\mathbf{d}_i) \approx p(r_A|\mathbf{d}_D)$
- $p(r_A|\mathbf{d}_D) \propto$

Our solution

- Let A = t(i)
- Define local subsets: B = B(A), C = C(A), D = D(A)
- $p(r_A|\mathbf{d}_i) \approx p(r_A|\mathbf{d}_D)$
- $p(r_A|\mathbf{d}_D) \propto$ $\int p(\mathbf{d}_D|\mathbf{r}_B)p(\mathbf{r}_B)\,\mathrm{d}\mathbf{r}_{B(-A)}=$ $\int \left[\int p(\mathbf{d}_D | \mathbf{m}_C) p(\mathbf{m}_C | \mathbf{r}_B) \, \mathrm{d} \mathbf{m}_C \right] p(\mathbf{r}_B) \, \mathrm{d} \mathbf{r}_{B(-A)}.$

Our solution

Our solution: Local-Gaussian compound likelihoods II

- $p(\mathbf{d}_i|\mathbf{m}_i) \sim N(Gm, \Sigma) \Rightarrow p(\mathbf{d}_D|\mathbf{m}_i) \sim N(G_Dm, \Sigma_{DD})$
- $p(\mathbf{m}_C|\mathbf{r}_B) \approx p^*(\mathbf{m}_C|\mathbf{r}_B) \sim N(\mu(\mathbf{r}_B), \Sigma(k)), k = k(\mathbf{r}_B)$
- Approximation: $p(\mathbf{d}_D|\mathbf{r}_B) \approx \int p^*(\mathbf{d}_D|\mathbf{m}_C) p^*(\mathbf{m}_C|\mathbf{r}_B) d\mathbf{m}_C =$

Our solution: Local-Gaussian compound likelihoods II

Our solution

- $p(\mathbf{d}_i|\mathbf{m}_i) \sim N(Gm, \Sigma) \Rightarrow p(\mathbf{d}_D|\mathbf{m}_i) \sim N(G_Dm, \Sigma_{DD})$
 - $p(\mathbf{d}_D|\mathbf{m}_C) \approx p^*(\mathbf{d}_D|\mathbf{m}_C) \sim N(G_{DC}\mathbf{m}_C, \Sigma_{DD})$
- $p(\mathbf{m}_C|\mathbf{r}_B) \approx p^*(\mathbf{m}_C|\mathbf{r}_B) \sim N(\mu(\mathbf{r}_B), \Sigma(k)), k = k(\mathbf{r}_B)$
- Approximation: $p(\mathbf{d}_D|\mathbf{r}_B) \approx \int p^*(\mathbf{d}_D|\mathbf{m}_C) p^*(\mathbf{m}_C|\mathbf{r}_B) d\mathbf{m}_C =$

Our solution: Local-Gaussian compound likelihoods II

Our solution

- $p(\mathbf{d}_i|\mathbf{m}_i) \sim N(Gm, \Sigma) \Rightarrow p(\mathbf{d}_D|\mathbf{m}_i) \sim N(G_Dm, \Sigma_{DD})$
 - $p(\mathbf{d}_D|\mathbf{m}_C) \approx p^*(\mathbf{d}_D|\mathbf{m}_C) \sim N(G_{DC}\mathbf{m}_C, \Sigma_{DD})$
- $p(\mathbf{m}_C|\mathbf{r}_B) \approx p^*(\mathbf{m}_C|\mathbf{r}_B) \sim N(\mu(\mathbf{r}_B), \Sigma(k)), k = k(\mathbf{r}_B)$
 - Sample lots of pairs $(\mathbf{m}_C, \mathbf{r}_B)$ from $p(\mathbf{m}_C, \mathbf{r}_B)$
 - Use flexible regression scheme (MARS, Projection pursuit etc.) and fit $\mu(\mathbf{r}_B)$ in $\mathbf{m}_C = \mu(\mathbf{r}_B) + \varepsilon$
 - Divide residuals ε into groups $k = k(\mathbf{r}_B) \in \{1, \dots, K\}$ and fit separate $\Sigma(k)$ with range spanning covariance estimation routine*
- Approximation: $p(\mathbf{d}_D|\mathbf{r}_B) \approx \int p^*(\mathbf{d}_D|\mathbf{m}_C)p^*(\mathbf{m}_C|\mathbf{r}_B) d\mathbf{m}_C = p^*(\mathbf{d}_D|\mathbf{r}_B) \sim N(G_{DC}\mu(\mathbf{r}_B), \Sigma_{DD} + G_{DC}\Sigma(k)G_{CD})$
- - Weighted Monte Carlo approach: Sample from $p(\mathbf{r}_B)$, weight corresponding r_A by $p^*(\mathbf{d}_D|\mathbf{r}_B)$ and normalize
 - Properly aggregate weighted samples to approx. distribution quantities

Our solution: Local-Gaussian compound likelihoods II

- $p(\mathbf{d}_i|\mathbf{m}_i) \sim N(Gm, \Sigma) \Rightarrow p(\mathbf{d}_D|\mathbf{m}_i) \sim N(G_Dm, \Sigma_{DD})$
 - $p(\mathbf{d}_D|\mathbf{m}_C) \approx p^*(\mathbf{d}_D|\mathbf{m}_C) \sim N(G_{DC}\mathbf{m}_C, \Sigma_{DD})$
- $p(\mathbf{m}_C|\mathbf{r}_B) \approx p^*(\mathbf{m}_C|\mathbf{r}_B) \sim N(\mu(\mathbf{r}_B), \Sigma(k)), k = k(\mathbf{r}_B)$
 - Sample lots of pairs $(\mathbf{m}_C, \mathbf{r}_B)$ from $p(\mathbf{m}_C, \mathbf{r}_B)$
 - Use flexible regression scheme (MARS, Projection pursuit etc.) and fit $\mu(\mathbf{r}_B)$ in $\mathbf{m}_C = \mu(\mathbf{r}_B) + \varepsilon$
 - Divide residuals ε into groups $k = k(\mathbf{r}_B) \in \{1, \dots, K\}$ and fit separate $\Sigma(k)$ with range spanning covariance estimation routine*
- Approximation: $p(\mathbf{d}_D|\mathbf{r}_B) \approx \int p^*(\mathbf{d}_D|\mathbf{m}_C)p^*(\mathbf{m}_C|\mathbf{r}_B) d\mathbf{m}_C = p^*(\mathbf{d}_D|\mathbf{r}_B) \sim N(G_{DC}\mu(\mathbf{r}_B), \Sigma_{DD} + G_{DC}\Sigma(k)G_{CD})$
- - Weighted Monte Carlo approach: Sample from $p(\mathbf{r}_B)$, weight corresponding r_A by $p^*(\mathbf{d}_D|\mathbf{r}_B)$ and normalize
 - Properly aggregate weighted samples to approx. distribution quantities

Our solution: Local-Gaussian compound likelihoods II

- $p(\mathbf{d}_i|\mathbf{m}_i) \sim N(Gm, \Sigma) \Rightarrow p(\mathbf{d}_D|\mathbf{m}_i) \sim N(G_Dm, \Sigma_{DD})$
 - $p(\mathbf{d}_D|\mathbf{m}_C) \approx p^*(\mathbf{d}_D|\mathbf{m}_C) \sim N(G_{DC}\mathbf{m}_C, \Sigma_{DD})$
- $p(\mathbf{m}_C|\mathbf{r}_B) \approx p^*(\mathbf{m}_C|\mathbf{r}_B) \sim N(\mu(\mathbf{r}_B), \Sigma(k)), k = k(\mathbf{r}_B)$
 - Sample lots of pairs $(\mathbf{m}_C, \mathbf{r}_B)$ from $p(\mathbf{m}_C, \mathbf{r}_B)$
 - Use flexible regression scheme (MARS, Projection pursuit etc.) and fit $\mu(\mathbf{r}_B)$ in $\mathbf{m}_C = \mu(\mathbf{r}_B) + \varepsilon$
 - Divide residuals ε into groups $k = k(\mathbf{r}_B) \in \{1, \dots, K\}$ and fit separate $\Sigma(k)$ with range spanning covariance estimation routine*
- Approximation: $p(\mathbf{d}_D|\mathbf{r}_B) \approx \int p^*(\mathbf{d}_D|\mathbf{m}_C)p^*(\mathbf{m}_C|\mathbf{r}_B) d\mathbf{m}_C = p^*(\mathbf{d}_D|\mathbf{r}_B) \sim N(G_{DC}\mu(\mathbf{r}_B), \Sigma_{DD} + G_{DC}\Sigma(k)G_{CD})$
- - Weighted Monte Carlo approach: Sample from $p(\mathbf{r}_B)$, weight corresponding r_A by $p^*(\mathbf{d}_D|\mathbf{r}_B)$ and normalize
 - Properly aggregate weighted samples to approx. distribution quantities

Basics of the petroleum industry

Basics of the petroleum industry

An approximate Bayesian geophysical inversion framework based on local-Gaussian likelihoods

An approximate Bayesian geophysical inversion framework based on local-Gaussian likelihoods

An approximate Bayesian geophysical inversion framework based on local-Gaussian likelihoods

Illustration: Real case

Basics of the petroleum industry

Illustration: Real case

Illustration: Real case

Concluding remarks

Approximation ingredients:

- Compound local-Gaussian likelihood approximation
 - Linear Gaussian approx. directly from model knowledge + non-linear sampling based approx.
- Selecting/tuning local subset parameters (training on synthetic data)
- Weighted Monte Carlo sampling routine
- Some connections to INLA
- May approximate realistic models directly
- Well suited for parallellization (18 000 cells in 30' on 8 cored Windows laptop using plain R-programming)
- Application: Clearly improves upon common methodology

Concluding remarks

Approximation ingredients:

- Compound local-Gaussian likelihood approximation
 - Linear Gaussian approx. directly from model knowledge + non-linear sampling based approx.
- Selecting/tuning local subset parameters (training on synthetic data)
- Weighted Monte Carlo sampling routine
- Some connections to INLA
- May approximate realistic models directly
- Well suited for parallellization (18 000 cells in 30' on 8 cored Windows laptop using plain R-programming)
- Application: Clearly improves upon common methodology