2/2

-1/2

2/2

0/2

2/2

-1/2

Loyau Nicolas Note: 9/20 (score total : 9/20)

	\coprod	
\Box	П	

+111/1/9+

QCM THLR 2		
Nom et prénom, lisibles :	Identifiant (de haut en bas) :	
LOYAU		
Nicoles		
ieurs réponses justes. Toutes les autres n'en ont qu'i lus restrictive (par exemple s'il est demandé si 0 es		
Pour toute expression rationnelle e , on a \emptyset + $\equiv e + \emptyset \equiv \emptyset$.	n'engendre pas :	
🔀 faux 🌘 vrai	<pre>" 'STDC'</pre>	
Pour toute expression rationnelle e , on a $\varepsilon e \equiv$		
: ≡ e.	Q.8 Soit Σ un alphabet. Pour tout $A, L_1, L_2 \subseteq \Sigma^*$,	
🗌 faux 🎇 vrai	on a $A \cdot L_1 = A \cdot L_2 \implies L_1 = L_2$.	
1.4 Il est possible de tester si une expression ra-	🖸 faux 🗌 vrai	
ionnelle engendre un langage vide. ☐ Souvent vrai ☐ Souvent faux	Q.9 L'expression Perl '[-+]?[0-9]+(,[0-9]+)?(e[-+]?[0-9]+)' n'engendre pas:	
☐ Toujours faux ☐ Toujours vrai	☐ '42,42e42' ☐ '42e42' ☐ '42,4e42' 2 '42,e42'	
.5 Pour toutes expressions rationnelles e, f , on a $(e+f)^* \equiv (e^*f^*)^*$.	Q.10 \bigwedge Soit A, L, M trois languages. Parmi les pro-	
🗌 faux 🏿 vrai	positions suivantes, lesquelles sont suffisantes pour garantir $L = M$?	
0 D (-1)* C -*1*		
Q.6 Pour $e = (ab)^*, f = a^*b^*$:	$\{a\} \cdot L = \{a\} \cdot M \qquad \Box AL = AM$ $\forall n > 1, L^n = M^n$	

Fin de l'épreuve.