What is Line Coding?

- One method to convert a binary information sequence into signals that enter the communication channel
 - ▶ E.g., "1" maps to +A square pulse; "0" to -A square pulse
- Design considerations:
 - Timing recovery
 - Low complexity and implementation cost
 - ▶ Low power and energy efficient
 - Better immunity to noise and interference
 - Built-in error detecting capability

Cpr E 489 -- D.Q. 2.10

Unipolar & Polar Non-Return-to-Zero (NRZ) Coding

Unipolar NRZ

- "1" maps to +A pulse
- "0" maps to no pulse
- Average Power: High
 0.5*A² + 0.5*0² = A²/2
- Long string of "1"s or "0"s
 - Poor timing
- Simple

Polar NRZ

- "1" maps to +A/2 pulse
- "0" maps to -A/2 pulse
- Average Power: Lower $0.5*(A/2)^2 + 0.5*(-A/2)^2 = A^2/4$
- Long string of "1"s or "0"s
 - Poor timing
- Simple

Bipolar Coding

- Three signal formats: {-A/2, 0, +A/2}
- "1" maps to +A/2 or −A/2 in alternation
- "0" maps to no pulse
 - ▶ Every + pulse matched by pulse
- String of "1"s produces a square wave
 - Spectrum centered at 1/(2T)
- Long string of "0"s causes receiver to lose synch
- Zero-substitution codes

Cpr E 489 -- D.Q. 2.12

NRZ-Inverted Coding

- Two signal formats: {-A/2, +A/2}
- "1" maps to transition in signal format at beginning of the bit interval
- "0" maps to no transition
- Differential line coding
- Errors occur in pairs
- Long string of "0"s causes receiver to lose synch

Manchester Coding & mBnB Coding

Manchester

- "1" maps to A/2 first T/2, -A/2 last T/2
- "0" maps to -A/2 first T/2, A/2 last T/2
- Every interval has transition in middle
 - Easy timing recovery
 - ▶ Double the minimum bandwidth
- Simple to implement
- Used in 10 Mbps Ethernet & other LAN systems

mBnB

- Maps block of *m* information bits into *n* pulses
- Manchester code is 1B2B code
- 4B5B code is used in 100 Mbps Ethernet
- 8B10B code is used in Gigabit Ethernet
- 64B66B code is used in 10 Gbps Ethernet

Cpr E 489 -- D.Q. 2.14

Differential Manchester Coding

- Systematic error in polarity (i.e., + become and vice versa) is possible
 - Manchester Coding can not handle this type of error
- Differential Manchester Coding provides robustness to this type of error
 - → "1" maps to transition in signal format at beginning of the bit interval
 - → "0" maps to no transition
 - Another type of differential line coding
 - Errors occur in pairs

2B1Q Coding* & mBnL Coding

2B1Q

	Previous level: positive	Previous level: negative
Next bits	Next level	Next level
"00"	+A/2	-A/2
"01"	+3A/2	-3A/2
"10"	-A/2	+A/2
"11"	-3A/2	+3A/2

mBnL

- Maps block of m information bits into n pulses
- There is a total of L different levels of pulses

Cpr E 489 -- D.Q. 2.16

Spectra of Line Codes

Assume "1"s & "0"s are independent and equal-probable

^{*} This version of 2B1Q coding is based on "Data Communications and Networking" by Behrouz A. Forouzan.