Least Squares Generative Adversarial Networks 最小二乘生成对抗网络

李豪 2019/7/21

LSGANs基本思想

• 将GAN的目标函数由交叉熵损失换成最小二乘损失

$$\min_{G} \max_{D} V_{\text{GAN}}(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))].$$

$$\lim_{D} V_{\text{LSGAN}}(D) = \frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [(D(\boldsymbol{x}) - b)^{2}] + \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [(D(G(\boldsymbol{z})) - a)^{2}]$$

$$\min_{D} V_{\text{LSGAN}}(G) = \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [(D(G(\boldsymbol{z})) - c)^{2}],$$

$$(2)$$

优于GANs

• 提高图片生成质量

• 改进训练过程不稳定

提高图片生成质量

以交叉熵作为损失,会使得生成器不会再优化那些被判别器识别为真实图片的生成图片

最小二乘损失,在混淆判别器的前提下还得让生成器把距离决策边界比较远的生成图片拉向决策边界

改进训练过程不稳定

在更新生成器时,惩罚距离决策边界很远的样本可以产生更多的梯度

与F散度的关系

$$\begin{split} & \min_{D} V_{\text{\tiny LSGAN}}(D) = \frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{\tiny data}}(\boldsymbol{x})} \big[(D(\boldsymbol{x}) - b)^2 \big] + \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \big[(D(G(\boldsymbol{z})) - a)^2 \big] \\ & \min_{G} V_{\text{\tiny LSGAN}}(G) = \frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{\tiny data}}(\boldsymbol{x})} \big[(D(\boldsymbol{x}) - c)^2 \big] + \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \big[(D(G(\boldsymbol{z})) - c)^2 \big]. \end{split}$$

$$\frac{1}{2} \left[\frac{P_{\text{data}}(x) \left[\left[P_{\text{CN}} - b \right]^{2} \right] dx}{2} + \frac{1}{2} \left[\frac{P_{\text{GW}} \left[P_{\text{CN}} - a \right]^{2} \right]}{2} \right] \\
= \left[\frac{1}{2} \frac{P_{\text{data}}(x) \left[\left[P_{\text{CN}} + b \right]^{2} \right] + \frac{1}{2} P_{\text{GW}} \left[\left[P_{\text{CN}} - a \right]^{2} \right]}{2} dx} \right] \\
= \frac{1}{2} \left[\frac{1}{2} \frac{P_{\text{data}}(x) \left[\left[P_{\text{CN}} + b \right]^{2} \right] + \frac{1}{2} P_{\text{GW}} \left[\left[P_{\text{CN}} - a \right]^{2} \right]}{2} dx} \right] \\
= \frac{1}{2} \left[\frac{1}{2} \frac{P_{\text{data}}(x) \left[\left[P_{\text{CN}} + b \right]^{2} \right] + \frac{1}{2} P_{\text{GW}} \left[\left[P_{\text{CN}} - a \right]^{2} \right]}{2} dx} \right] \\
= \frac{1}{2} \left[\frac{1}{2} \frac{P_{\text{data}}(x) \left[\left[P_{\text{CN}} + b \right]^{2} \right] + \frac{1}{2} P_{\text{GW}} \left[\left[P_{\text{CN}} - a \right]^{2} \right]}{2} dx} \right] \\
= \frac{1}{2} \left[\frac{1}{2} \frac{P_{\text{data}}(x) \left[\left[P_{\text{CN}} + b \right]^{2} \right] + \frac{1}{2} P_{\text{GW}} \left[\left[P_{\text{CN}} - a \right]^{2} \right]}{2} dx} \right] \\
= \frac{1}{2} \left[\frac{1}{2} \frac{P_{\text{data}}(x) \left[\left[P_{\text{CN}} + b \right]^{2} \right] + \frac{1}{2} P_{\text{GW}} \left[\left[P_{\text{CN}} - a \right]^{2} \right]}{2} dx} \right]$$

$$\frac{df(D) = A(D-b) + B(D-a) = 0}{dD}$$

$$\frac{(A+B)D = Ab + aB}{D = Ab + aB} = \frac{bPdata(x) + aPs(x)}{Pdata(x) + Ps(x)}$$

与F散度的关系

$$D^*(\boldsymbol{x}) = \frac{bp_{\text{data}}(\boldsymbol{x}) + ap_g(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_g(\boldsymbol{x})}.$$

$$2C(G) = \mathbb{E}_{\boldsymbol{x} \sim p_{d}} \left[(D^{*}(\boldsymbol{x}) - c)^{2} \right] + \mathbb{E}_{\boldsymbol{x} \sim p_{g}} \left[(D^{*}(\boldsymbol{x}) - c)^{2} \right]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{d}} \left[\left(\frac{bp_{d}(\boldsymbol{x}) + ap_{g}(\boldsymbol{x})}{p_{d}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} - c \right)^{2} \right] + \mathbb{E}_{\boldsymbol{x} \sim p_{g}} \left[\left(\frac{bp_{d}(\boldsymbol{x}) + ap_{g}(\boldsymbol{x})}{p_{d}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} - c \right)^{2} \right]$$

$$= \int_{\mathcal{X}} p_{d}(\boldsymbol{x}) \left(\frac{(b - c)p_{d}(\boldsymbol{x}) + (a - c)p_{g}(\boldsymbol{x})}{p_{d}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} \right)^{2} d\boldsymbol{x} + \int_{\mathcal{X}} p_{g}(\boldsymbol{x}) \left(\frac{(b - c)p_{d}(\boldsymbol{x}) + (a - c)p_{g}(\boldsymbol{x})}{p_{d}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} \right)^{2} d\boldsymbol{x}$$

$$= \int_{\mathcal{X}} \frac{\left((b - c)p_{d}(\boldsymbol{x}) + (a - c)p_{g}(\boldsymbol{x}) \right)^{2}}{p_{d}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} d\boldsymbol{x}$$

$$= \int_{\mathcal{X}} \frac{\left((b - c)(p_{d}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})) - (b - a)p_{g}(\boldsymbol{x}) \right)^{2}}{p_{d}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} d\boldsymbol{x}.$$

与F散度的关系

If we set b-c=1 and b-a=2, then

$$2C(G) = \int_{\mathcal{X}} \frac{\left(2p_g(\boldsymbol{x}) - (p_d(\boldsymbol{x}) + p_g(\boldsymbol{x}))\right)^2}{p_d(\boldsymbol{x}) + p_g(\boldsymbol{x})} dx$$

$$= \chi^2_{\text{Pearson}}(p_d + p_g || 2p_g),$$
(7)

$$a=-1 b=1 c=0$$

$$\min_{D} V_{\text{LSGAN}}(D) = \frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} \left[(D(\boldsymbol{x}) - 1)^{2} \right] + \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \left[(D(G(\boldsymbol{z})) + 1)^{2} \right]
\min_{G} V_{\text{LSGAN}}(G) = \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \left[(D(G(\boldsymbol{z})))^{2} \right].$$
(8)

c=b=1 a=0

$$\min_{D} V_{\text{LSGAN}}(D) = \frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} \left[(D(\boldsymbol{x}) - 1)^{2} \right] + \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \left[(D(G(\boldsymbol{z})))^{2} \right]
\min_{G} V_{\text{LSGAN}}(G) = \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \left[(D(G(\boldsymbol{z})) - 1)^{2} \right].$$
(9)

Method	Inception Score
DCGAN (reported in [10])	6.16
DCGAN	6.22
LSGAN (ours)	6.47
	AND THE RESERVE AND THE RESERV

Table 1. Inception scores on CIFAR-10.

(a) Generated images (112 \times 112) by LSGANs.

(b) Generated images (112 \times 112) by DCGANs.

(b) Generated images (64×64) by DCGANs (reported in [25]). Figure 4. Generated images on LSUN-bedroom.

(a) LSGANs: without BN in G using Adam.

(c) LSGANs: without BN in G and D using RMSProp.

(b) Regular GANs: without BN in G using Adam.

(d) Regular GANs: without BN in G and D using RMSProp. Figure 6. Comparison experiments by excluding batch normalization (BN).

1.生成器带有batch normalization并且使用Adam优化器的话,LSGANs图片质量较好 2.生成器和判别器都带有BN层,并且使用RMSProp, LSGANs图片质量更高

Real 站朽了平移落叫幅益之炳建案之餐瓷性离饿疽诸绳且难霉篆朱陨铬轴再井Generated 贴朽了实移窿叶临适咨炀律案公餐瓮塘熟饿死诸绳狙炸新疆东股钻幅桶打Real 坚适即修遵职、罢置繁胶疽追艇挟流临溪道缮完高苦苔圣灯人听宝俭数韶兵Generated 图查邓尽漫频差显零级桓这种拔说侗袋湾缮免窃苫蕻屋叼失咐宝俭数韶兵

Figure 8. Generated images of handwritten Chinese characters by LSGANs. For row 1 and row 2, the images in the same column belong to the same class of characters. Row 3 and row 4 are also with this condition. The generated characters are readable.

谢谢