Állománynév: aramkorok_07jelfeldolgozo_aramkorok03.pdf

Irodalom: Tankönyv: R. J. Smith & R. C. Dorf, "Circuits, Devices and Systems," Wiley,

(5th Edition), pp. 517- 544, 279-295.

Előadó jegyzetei: http://users.itk.ppke.hu/~kolumban/aramkorok/

7. JELFELDOLGOZÓ ÁRAMKÖRÖK

TARTALOM:

- 7.1. Ideális erősítők definiciója és matematikai modellje
- 7.2. Szimmetrikus/aszimmetrikus jelfeldolgozás
- 7.3. Blokkdiagram algebra
- 7.4. A visszacsatolás alkalmazása
- 7.5. Műveleti erősítők alkalmazása

7.1. Ideális erősítők definiciója és matematikai modellje

(Aszimmetrikus) erősítő

ahol $i_i = 0$ A, azaz $R_{be} \Rightarrow \infty \Omega$, és $R_{ki} = 0 \Omega$

Differenciál erősítő

7.2. Szimmetrikus/aszimmetrikus jelfeldolgozás

Vonalvevő alkalmazása (pl. Csavart érpárral működő Ethernet hálózatok) Szimmetrikus bemenet és szimmetrikus kimenet

Előnyök: • Bemeneten a közös módusú vezérlés, azaz zavaró jelek kiejtése Védelem külső zavarok ellen

> Kimeneten az ellentétes írányú áramok által generált elektromágneses tér (EMC, ElectroMagnetic Compability) kioltja egymást Nem zavar másokat

Szimmetrikus bemenet és aszimmetrikus kimenet

Előny: • Bemeneten a közös módusú vezérlés, azaz zavaró jelek kiejtése Védelem külső zavarok ellen Tipikus alkalmazás: EKG és EEG erősítők

Aszimmetrikus bemenet és aszimmetrikus kimenet

Matematikai leírás:

Bemenet felbontása egy szimmetrikus és egy közös módusú komponensre

Definició szerint az ún. differenciál erősítő bemenetein mért v_2 és v_1 jeleket felbontjuk egy közös módusú bemeneti jelre

$$v_{cm} = \frac{v_1 + v_2}{2}$$

és egy szimmetrikus bemeneti jelre

$$\Delta v = v_2 - v_1$$

A differenciál erősítő be- és kimenetein mért jelek

A v_{cm} közös módusú és Δv szimmetrikus bemeneti jelekkel a differenciál erősítő bemeneti jelei kifejezhetők mint

$$v_2 = v_{cm} + \frac{\Delta v}{2}$$
 és $v_1 = v_{cm} - \frac{\Delta v}{2}$

A differenciál erősítő kimeneti jele:

$$v_o = A \left(v_2 - v_1 \right) = A \Delta v$$

Vedd észre: A közös módusú bemenet nem jelenik meg a kimeneten

7.3. Blokkdiagram reprezentáció

Alapelv: Bármilyen bonyolultságú lineáris rendszer helyettesíthető egy, a blokk-diagram algebrával meghatározott átviteli függvénnyel

ahol
$$G_{61} = \frac{V_6}{V_1} = \frac{G_A G_B}{1 - G_A G_B \left(\frac{G_D}{G_A} - 1\right)}$$

A blokkdiagram algebra alkalmazásának feltételei:

A rendszer átviteli függvényekkel jellemzett, lineáris blokkokat tartalmazhat csak

$$V_2(s) = G(s)V_1(s)$$

- \bullet Az egyes blokkok nem terhelik egymást, mert minden blokkra $Z_{in} \to \infty$ és $Z_{out} = 0$
- A rendszert alkotó blokkok **unilaterálisak**, azaz egy blokk kimeneti jele nem jut vissza a blokk bemenetére. A jel haladási irányát nyíllal jelöljük

Legfontosabb fogalmak:

- Visszacsatolás: A kimenő jel egy részének bemenetre való visszavezetése
- Zárt és nyílt hurok
- ullet G az előremenő ág erősítése míg H a visszacsatoló ág átvitele
- ullet V_S a referencia jel, V_F a visszacsatolt jel és V_1 a hibajel

Visszacsatolt rendszer

Megszakított, azaz nyílt hurok

A blokkdiagram algebra építő elemei

(a) G(s) átviteli függvénnyel jellemzett blokk, azaz négypólus

$$V_2 = G(s)V_1$$

(b) Előjelesen összegző pont

$$V_2 = V_S \pm V_F$$

(c) Elágazás

$$V_3 = V_2 = V_1$$

A blokkdiagram algebra szabályai

- (I) Egy tetszőleges zárthurkú rendszer helyettesíthető egy ekvivalens nyílthurkú rendszerrel
- (II) A kaszkádba kapcsolt blokkok transzfer függvénye megegyezik az egyes blokkok átvitelének szorzatával

(III) Az összegzés sorrendje szabadon felcserélhető

(IV) Az összegzési pont négypóluson való átemelése

(III) Az elágazási pont négypóluson való átemelése

7.4. A visszacsatolás alkalmazása

Blokkvázlat

Átviteli függvény

$$V_1 = V_S + V_F$$

 $V_F = HV_2$
 $V_2 = GV_1 = G(V_S + V_F) = GV_S + GHV_2$

$$V_2 = \frac{G}{1 - GH} V_S = G_{VCS} V_S$$

Ahol: \bullet G az előremenő ág átvitele

ullet GH a nyílthurkú erősítés

Fontos: Figyelj oda a visszacsatolás előjelére, a fenti képlet összegző mellett érvényes!!!

Emlékeztetőül az átviteli függvény: $V_2 = \frac{G}{1-GH} V_S = G_{VCS} V_S$

A visszacsatolás fajtái, és azok alkalmazása

- ullet Pozitív visszacsatolás: 0 < GH < 1 Alkalmazás: Erősítés növelés regeneratív vevőkben
- Oszcillátor: GH = 1

$$\underbrace{(1-GH)}_{=0}V_2 \equiv GV_S = 0$$

Alkalmazás: Oszcillátorok és multivibrátorok megvalósítása

ullet Negatív visszacsatolás: GH < 0

Alkalmazások:

- Erősítés pontos értékének beállítása és stabilizálása
- Torzítás csökkentése
- Be- és kimeneti impedanciák optimális beállítása

7.4(a) A pozitív visszacsatolás

Blokkvázlat

Átviteli függvény

$$V_2 = \frac{G}{1 - GH} V_S = G_{VCS} V_S$$

A nyílthurkú erősítésre tett feltétel: 0 < GH < 1

Ha G=100 és H=0,009 akkor a hurokerősítés GH=0,9 és

$$G_{VCS} = \frac{G}{1 - GH} = \frac{100}{1 - 0.9} = 1000$$

Hátránya, ami miatt ma már nem használják: Igen nagyfokú érzékenység az áramköri paraméterek változásaira

7.4(b) Oszcillátor kialakítása

Egy erősítő modellje

A visszacsatolt rendszer

Az oszcilláció feltétele: GH=1, ahol $GH(j\omega)$, egy frekvenciafüggő komplex mennyiség

A generált szinuszjel paramétereinek meghatározása

Egy fokozat erősítése:

$$\mathbf{A} = A(j\omega) = \frac{A_O}{1 + j\omega R_o C_o}$$

Ha a H visszacsatolás frekvenciafüggetlen, akkor a nyílthurkú erősítés:

$$G(j\omega)H = A(j\omega)^{3}H = \left(\frac{A_{O}}{1 + j\omega R_{o}C_{o}}\right)^{3}H$$

Legyen az oszcillációs frekvencia $\omega_{osc}=\frac{\sqrt{3}}{R_oC_o}$ (stabil fázistolás)

$$G(j\omega)H\mid_{\omega_{osc}} = \left(\frac{A_O}{1+j\sqrt{3}}\right)^3 H = H\left(\frac{A_O}{2}\right)^3 \angle -180^\circ$$

Mivel az oszcilláció GH feltétele egy komplex mennyiség, ezért az felbontható egy, az **abszolút érték**re, és egy a **fázis**ra vonatkozó feltételre

Legyen a visszacsatolás frekvenciafüggetlen és kis értékű, hogy a visszacsatolás a kimenő jel teljesítményének csak egy nagyon kis részét használja fel

$$H = \mathbf{H} = 0,008$$

(a) Az abszolút értékre vonatkozó feltétel az erősítő nemlinearitásán keresztül a rezgés amplitúdóját adja meg:

$$\mid GH(j\omega_{osc})\mid = \mathbf{H}\left(\frac{|A_O|}{2}\right)^3 \equiv 1$$

amiből az amplitúdófeltétel:

$$|A_O| = 2 \sqrt[3]{\frac{1}{\mathbf{H}}} = 10$$

(b) Az eredő fázistolás a rezgés frekvenciáját határozza meg:

$$\angle GH(j\omega_{osc}) = -180^{\circ} + 3 \times \angle A_O + 0^{\circ} \equiv \pm k \times 360^{\circ}, \quad k = 0, 1, 2, \cdots$$

amely feltétel invertáló erősítőkkel ($\angle A_O = \angle -10 = -180^\circ$) teljesíthető

A megtervezett fázistolós oszcillátor adatai: H=0,008, $A_O=-10$ és $\omega_{osc}=\frac{\sqrt{3}}{R_oC_o}$

7.4(a) A negatív visszacsatolás

Átviteli függvény

$$V_2 = rac{G}{1 - GH} V_S = G_{VCS} V_S$$
 ahol $GH < 0$

Negatív visszacsatolás legfontosabb alkalmazása, az erősítés beállítása és stabilizálása

$$G_{VCS} = \frac{G}{1 - GH} \mid_{GH >> 1} \approx \frac{G}{-GH} = -\frac{1}{H}$$

Vedd észre, a visszacsatolt erősítést a visszacsatolás határozza meg

Műveleti erősítők \bullet G-t a műveleti erősítő határozza meg. Igen széles tartomány felett szór

 \bullet H-t a diszkrét elemekből kialakított visszacsatolás határozza meg, ami igen pontos (akár 0,5%-os alkatrészek!!!)

Időállandó lecsökkentése negatív visszacsatolással

(Azaz határfrekvencia megnövelése)

Eredeti rendszer

Visszacsatolással feljavított rendszer

Az eredeti rendszer átviteli függvénye (feszültségosztó tétele):

$$\frac{v_2}{v_1} = \frac{1}{1 + sRC} = \frac{1}{1 + s\tau}$$

Átvitel DC meghajtásra

$$\frac{v_2}{v_1}\mid_{s=0}=1$$

Eredeti rendszer

Visszacsatolással feljavított rendszer

A visszacsatolással feljavított rendszer átvitele a v_1 és v_2 pontok között

$$\frac{v_2}{v_1} = \frac{G\frac{1}{1+sRC}}{1 - G\frac{1}{1+sRC}H} = \frac{G}{1+sRC - GH}$$

Átvitel DC meghajtásra

$$\frac{v_2}{v_1}|_{s=0} = \frac{G}{1 - GH}$$

Eredeti rendszer

Visszacsatolással feljavított rendszer

A G' blokk feladata, a DC erősítés 1-re való beállítása

$$\frac{v_2}{v_1'} = \frac{v_2 v_1}{v_1 v_1'} = \frac{1 - GH}{G} \frac{G}{(1 - GH) + sRC} = \frac{1}{1 + s \frac{RC}{1 - GH}} = \frac{1}{1 + s \frac{T}{1 - GH}}$$

Vedd észre, a negatív visszacsatolással az időállandó a hurokerősítés arányában lecsökkent. A frekvenciatartományban ez sávszélesség növekedést jelent

Alkalmazás: Szabályozástechnika és erősítők sávszélességének megnövelése

7.5. Műveleti erősítők szimbóluma és matematikai modellje

Tulajdonságok: • Szimmetrikus bemenet és aszimmetrikus kimenet

•
$$i_p = i_n = 0$$
 A, $A_u \to \infty$ és $R_{ki} = 0$ Ω

Valóságos adatok (LF356): • $i_p \approx i_n \approx 30$ pA, de ≤ 100 pA

- $R_{out} \leq 40 \ \Omega$
- $A_u \approx 200.000$, de ≥ 50.000

7.5(a) Invertáló alapkapcsolás

Kulcs: 1. Műveleti erősítő két bemenete között \sim 0 V feszültség van

$$V_p - V_n = \frac{V_o}{A} \to 0, \quad \text{mivel} \quad A \to \infty$$

- 2. Műveleti erősítő neminvertáló bemenete földön van
- 3. Az invertáló bemenet földpotenciálon van, ezért **virtuális föld**nek nevezzük
- 4. Felírjuk Kirchhoff csomóponti törvényét a virtuális földpontra

A megoldás:

Kirchhoff csomóponti törvényét a pirossal jelölt invertáló bemenetre felírva kapjuk

$$I_1 + I_F = \frac{V_1}{Z_1(s)} + \frac{V_o}{Z_2(s)} = 0$$

Amiből az átviteli függvény (erősítés) kifejezhető

$$A_u = \frac{V_o}{V_1} = -\frac{Z_2(s)}{Z_1(s)}$$

Vedd észre: A_u értékét a **negatív visszacsatolás** állítja be

7.5(b) Neminvertáló alapkapcsolás

Kulcs: 1. Műveleti erősítő két bemenete között \sim 0 V feszültség van

$$V_p - V_n = rac{V_o}{A}
ightarrow 0, \quad ext{mivel} \quad A
ightarrow \infty$$

2. A pirossal jelölt invertáló bemenetre a feszültségosztó tételt alkalmazzuk

$$V_1 - \frac{Z_1(s)}{Z_1(s) + Z_2(s)} V_o = V_p - V_n = 0$$

A megoldás:

A neminvertáló alapkapcsolás átviteli függvénye (erősítése):

$$A_u = \frac{V_o}{V_1} = \frac{Z_1(s) + Z_2(s)}{Z_1(s)}$$

Vedd észre: \bullet A_u értékét a **negatív visszacsatolás** állítja be

 Ha egy műveleti erősítő két bemenete között bármelyik kapcsolásban feszültség mérhető, akkor a műveleti erősítő vagy tönkrement, vagy a munkapontja rosszul van beállítva

7.5(c) Differenciál erősítő alapkapcsolás

Kulcs: Szuperpozició alkalmazása

$$V_o = V_{o1} + V_{o2} = -\frac{Z_2(s)}{Z_1(s)}V_1 + \frac{Z_1(s) + Z_2(s)}{Z_1(s)} \left(\frac{Z_2(s)}{Z_1(s) + Z_2(s)}V_2\right) = \frac{Z_2(s)}{Z_1(s)}(V_2 - V_1)$$

Vedd észre: A_u értékét a **negatív visszacsatolás** állítja be