Number Theory

Trong

Sat Dec 1, 2018—December 2, 2018

Contents

1 Congruences

2

1 Congruences

Theorem 1 (Divisor Sum). For any natural number n,

$$\sum_{d|n} \varphi(d) = n,$$

where $\varphi(d)$ is the Euler Totient function.

Proof. Consider the set $A(d) = \{k : (k, n) = d\}$. For each k, define l s.t. k = dl. Then it's easy to see that $(l, \frac{n}{d}) = 1$. In fact, there is a one-to-one correspondence between k and l, so that $|A(d)| = |\{k\}| = |\{l\}|$. Now the l's are numbers less than $\frac{n}{d}$ and coprime with it, so $|A(d)| = \varphi(\frac{n}{d})$.

Next, note that the sets A(d) for distinct d|n are disjoint and their union is $1, \ldots, n$. Therefore

$$n = \sum_{d|n} |A(d)| = \sum_{d|n} \varphi\left(\frac{n}{d}\right).$$

Finally

$$n = \sum_{d|n} \varphi\left(\frac{n}{d}\right) = \sum_{d|n} \varphi(d),$$

since the divisors $\frac{n}{d}$ in the first sum are the same as the divisors d in the second sum.

Problem 2. Find integers a_1, \ldots, a_5 s.t. every integer x

satisfies at least one of the congruences

$$x \equiv a_1 \mod 2$$
 $x \equiv a_2 \mod 3$
 $x \equiv a_3 \mod 4$
 $x \equiv a_4 \mod 6$
 $x \equiv a_5 \mod 12.$ (*)

Solution. Consider the remainder classes mod 3:

$$3n$$
$$3n+1$$
$$3n+2.$$

Substitute 2k and 2k+1 for n, and take their remainders mod 2, 3, and 6:

$$3 \cdot 2k \equiv 0 \mod 2$$

 $3(2k+1) = 6k+3 \equiv 0 \mod 3$
 $3 \cdot 2k+1 = 6k+1 \equiv 1 \mod 6$
 $3(2k+1)+1 = 6k+4 \equiv 0 \mod 2$
 $3 \cdot 2k+2 \equiv 0 \mod 2$
 $3(2k+1)+2 = 6k+5 \equiv 5 \mod 6$.

We've now covered every integer with mods 2, 3, and 6; if we can somehow write integers 5 mod 6 as either $a_3 \mod 4$ or

 $a_5 \mod 12$, then we will have expressed every integer in the form (*). Let's do that:

$$6 \cdot 2k + 5 = 12k + 5 = 4(3k + 1) + 1 \equiv 1 \mod 4$$

 $6(2k + 1) + 5 = 12k + 11 \equiv 11 \mod 12.$

Therefore every integer x satisfies at least one of

$$x \equiv 0 \bmod 2$$

$$x \equiv 0 \bmod 3$$

$$x \equiv 1 \bmod 4$$

$$x \equiv 1 \bmod 6$$

$$x \equiv 11 \mod 12$$
.