Universidade de Aveiro

Departamento de Eletrónica, Telecomunicações e Informática

Compiladores

Exame	teórico	1	model	O

 $N^{\underline{o}}Mec:$ Nome:

1. Sobre o alfabeto $A = \{a, b, c\}$, considere a linguagem L_1 , definida pelo autómato finito M_1 , a linguagem L_2 , definida pela gramática regular G_2 (cujo símbolo inicial é S_2), e a linguagem L_3 .

$$S_2 \to a X$$

 $X \to b \mid b c b X \mid b S_2$ $L_3 = \{ab(c)^m (bb)^n : m > 0 \land n \ge 0\}$

$$L_3 = \{ab(c)^m (bb)^n : m > 0 \land n \ge 0\}$$

(a) Das seguintes afirmações apenas uma **não** é verdadeira. Assinale-a

 $abab \in L_1$

(b) Determine um autómatos finito determinista equivalente a M_1 .

d d x1, a 4 = ec d 3 6 = + 34 = x3 2d x1, 51 = ecd1 = d4 = x0 ded x1, c 4 = ec +24 = d 2, 14 = x2 2 dx2,3 4 = x3 Ddxz, ct ecdly=dz,14=x2

(c) Obtenha um autómato finito, determinista ou não determinista, mas não generalizado, que reconheça a linguagem $L_5 = L_1 \cdot L_2$. Apresente os passos intermédios e/ou o raciocínio adequados para justificar a sua resposta.

(d)	Das seguintes	${\rm express\tilde{o}es}$	${\rm regulares}$	apenas	uma	representa	a]	linguagem	L_3 .	${\bf Assinale-a.}$
-----	---------------	----------------------------	-------------------	--------	-----	------------	-----	-----------	---------	---------------------

$abcc^*bb^*$	
$abc^*(bb)^*$	$abc(c bb)^*$

(e) Das seguintes gramáticas apenas uma é uma gramática regular que representa a linguagem L_3 . Assinale-a.

(f) Obtenha uma **expressão regular** que reconheça a linguagem L_1 . Apresente os passos intermédios e/ou o raciocínio adequados para justificar a sua resposta.

(g) Mostre que $L_3 \subset L_1$. (Note que se trata do subconjunto em sentido estrito (\subset) e não em sentido lato (\subseteq).) Apresente os passos intermédios e/ou o raciocínio adequados para justificar a sua resposta.

```
Por observa ção chegamos à conclusão que Li tem todas as respostas possíveis de là, mas em sao iguais sendo que mão e possível começar uma expressão por "C" em L3, mas em Li e'. Por exemplo, "C bb".
```

- 2. Na linguagem Java um literal numérico inteiro pode ser escrito nas bases 2, 8, 10 e 16. Os prefixos 0b, 0 e 0x são usados para representar, respetivamente, as bases 2, 8 e 16. A base 10 não tem prefixo. Por exemplo, 0b11, 0743, 1299 e 0x12fD são literais numéricos válidos e 0b2 e 028 são inválidos.
 - (.) Apresente uma expressão regular que represente os padrões válidos para os literais numéricos em Java. Pode definir a expressão regular pretendida a partir de outras mais simples.

