ALGORITMICA NUMÉRICA

Ejercicio Laboratorio 1

Respuestas de Clase

Apellidos, Nombre:
Tesoro García, Pablo
Arleth Padrón, Alex
Heras Álvarez, Sergio
Cantalejo Nieto, Héctor

En cada apartado, adjuntar el código necesario, gráficas, comentarios pedidos, etc.

Recortar las páginas anteriores antes de entregar vuestro ejercicio. Esta es la única página que debéis subir a Moodle.

Los ejercicios que no hayáis tenido tiempo de terminar durante la clase deberías terminarlos por vuestra cuenta.

RECORDAD que cada hora de clase debe ir acompañada de <u>al menos</u> 1h 30m de trabajo en casa.

```
A.4

x=(0:0.01:2*pi);

A.6

x(length(x));

A.9

(sin linspace)
 x = (0:sqrt(3)/10:sqrt(3));

(con linspace)
 x = linspace(0, sqrt(3), 10);
```

```
B.2

A = ones(3,6);
A = A * 7;

B.6

x = rand(1,10);
mean(x)
mean(x)= 0.6239
x = rand(1,100);
```

```
mean(x);

mean(x)= 0.5148

x = rand(1,100000);

mean(x);

mean(x)= 0.4998

Se observa que a medida que aumenta el tamaño del vector x, el valor de la media es más próximo a 0.5.

B.7

x = -1 + 2 * rand(1,5);
```

```
C.2
B=A(:,end);
C.4
B = A([1 \ 3],:);
C.8
A(:,end)=-1
C.10
a)
notaMedia=mean(nota)
5.5716
notaMaxima=max(nota)
8.1425
notaMinima=min(nota)
2.7519
b)
notaMediaAprobados=mean(nota(nota>=5))
6.2096
c)
nota(nota > = 4.7 \& nota < = 5) = 5
```

```
D.1d

x(2:2:end)=0;
D.3c

A=[x:y];B=A.';
```

```
E.4

A=[1 2; -1 3];
B=[-1 0; 0 1];

C1 = A*B; C1=[-1 2;1 3];
C2 = B*A C2=[-1 -2;-1 3];
RES1 =(C1 == C2);
```

Como no son iguales, ya que la multiplicación matricial no es conmutativa, la matriz resultante no está compuesta completamente por unos.

```
C3=B.'*A.';

RES2 = (C1.' == C3);
En este caso como si que cumple la segunda propiedad pues ahora sí la matriz resultante está compuesta enteramente por unos.

E.5

A = [1 2; -1 3];
C = A^3; C=[-9 22;-11 13];
D = A.^3; D=[1 8;-1 27];
RES(C==D);
Como no son iguales el resultado no es una matriz de unos (de hecho en este caso está compuesto por ceros completamente). Solo C es igual a A*A*A ya que D no es una multiplicación matricial sino una multiplicación de los elementos de la matriz.
```

```
F<sub>1b</sub>
x = [1 2 3 4];
y = [5678];
RES = x./y
F 1d
x = [1 2 3 4];
y = [1 \ 1 \ 1 \ 1];
RES = y./x;
F.3
z = (0:9)./(1:10);
F8
x = 1./(1:100);
RES = sum(x.*x)
y = 1./(1:1000);
n1 = RES - (pi^2)/6;
n2 = sum(y.*y) - (pi^2)/6;
Como el valor de n1 es 0.01 y el de n2 -9.995e-04 podemos ver que ser aproxima a (pi^2)/6
```

```
a)
x=(-pi:0.01:pi);
f1=cos(x)/2;
f2=x.*exp(-abs(x));
Plot(x, f1, x, f2);
```


G.4

x1=(0:0.1:100) f1=exp(-x1) plot(x1,f1) semilogy(x1,f1)

G.6

```
a)
th=(0:0.01:2*pi);
b)
A=10;
E=0.5;
r=(A*(1-E^2))./(1+E*cos(th));
c)
x=r.*cos(th);
y=r.*sin(th);
d)
plot(x,y);
```


