

BMM Group Meeting

Ilaria Bonavita

ilaria_bonavita@psych.mpg.de

May 30, 2017

Outline

- Background: review of Nonparametric canonical correlation analysis.
- Experiment: genotype multi phenotype association in dyslexia data.
- Future steps.

NCCA: a recap

Finding maximally correlated projections among families of (nonlinear)

high-dimensional \boldsymbol{X}

high-dimensional Y

NCCA

- dim of the transformed feature space d
- kernel
- Number of nearest neighbours NNs

• . . .

d canonical correlation coefficients (+ p values)

d-dimensional (transformed)

X_new

d-dimensional (transformed)

Y_new

Genotype - multi-phenotype correlation in dyslexia data

J Child Psychol Psychiatry. 2013 Jun;54(6):686-94. doi: 10.1111/jcpp.12029. Epub 2012 Dec 10.

Predictors of developmental dyslexia in European orthographies with varying complexity.

Landerl K¹, Ramus F, Moll K, Lyytinen H, Leppänen PH, Lohvansuu K, O'Donovan M, Williams J, Bartling J, Bruder J, Kunze S, Neuhoff N, Tóth D, Honbolygó F, Csépe V, Bogliotti C, Iannuzzi S, Chaix Y, Démonet JF, Longeras E, Valdois S, Chabernaud C, Delteil-Pinton F, Billard C, George F, Ziegler JC, Comte-Gervais I, Soares-Boucaud I, Gérard CL, Blomert L, Vaessen A, Gerretsen P, Ekkebus M, Brandeis D, Maurer U, Schulz E, van der Mark S, Müller-Myhsok B, Schulte-Körne G.

- Developmental dyslexia affects 3-7% of the population.
- Mix of biological and environmental factors.
- Orthography has a central role in reading acquisition and dyslexia.
- Considerable variability in symbol-sound consistency among different orthographies.
- Explore the relation between orthography complexity and cognitive mechanisms underlying dyslexia.
- Large-scale cross-linguistic study (English, French, Dutch, German, Hungarian, Finnish).

Data and preprocessing

Country	Cases	Controls	tot
Austria+Germany+Switzerland	1047	407	1454
Finland	161	163	324
Holland	136	148	284

SNPs
5747699
6197707
5978155

10 Phenotype

DS digit span; WR word reading; WS word spelling; NWR non-word reading; LRAN letters rapid automatic naming etc.

LD pruning - treshold: 0.2

Dosage conversion

Country	tot.	SNPs
ags	1127	116256
fin	324	164505
hol	232	130827

Fixed sliding window genotype - phenotype analysis

AGS 70% train, 30% test test results

Train the algorithm on AGS data → Apply trained projections on new datasets

Finland

Holland

Fixed sliding window genotype - phenotype pairs analysis

- 100 SNPs vs 2 phenotypes
- 45 phenotypes pairs

smallest p values 1st ncca coefficient pheno pair - SNPs window

pheno pair	AGS	Finland	Holland
1_9	8.94710026517753e-05	5.91008242434299e-05	0.000953834766024619
3_4	0.000154633222918754	3.52949277511172e-05	0.000484424322801713
3_5	3.37191036623441e-05	0.00359810876349331	0.000883104434246107
3_6	0.000633477658925852	4.38931205160031e-05	0.000239652057659967
3_7	0.000413722553299189	0.00531509617684156	0.000276435066801528
3_8	8.89852411845027e-05	0.000842239250596011	0.00080290694893681
5_6	0.000181776179200566	5.18759593954865e-05	6.22549350504098e-05
6_7	0.000386939081757909	0.0046467251046225	7.13167746747567e-05
6_8	8.79188199557346e-05	0.00146918973130294	0.000921721186726954
6_9	0.000775853337516841	0.000168751090801722	0.000437043859029096
7_10	0.000134082259051649	9.10316205422479e-05	1.16902085212089e-06
7_8	9.71884507707799e-05	0.000910602324073362	9.19539739170361e-05
7_9	0.000553138409451481	0.000354164889564412	2.08531109957555e-06
8_10	0.0001857414063966	0.00042691537525319	0.00113091333033422
8_9	0.00058218627497153	0.000488026970689281	0.00323001819848012
9_10	1.55119370752743e-05	0.000919093767100976	2.91006587109788e-05

Kendall rank correlation coefficient

	ags	finland	holland
ags	1	-0.070707070707	0.0464646464
finland	-0.070707070707	1	-0.018181818181
holland	0.0464646464	-0.018181818181	1

Gene-based approach

Country	Num of tested genes
AGS	3440
fin	4724
hol	3836

single gene vs10 phenotype

Relation with number of SNPs in the tested genes

MLLT4 gene - phenotype association test

AGS cohort
2 dimensional
projection of the test
SNPs dataset

Future steps

- Identify subsets of SNPs using prior biological knowledge.
- Meta analysis of different cohorts results.
- Code optimisation.
 - Make training and testing independent.
- Cluster analysis of the low-dimensionally projected data.

Thanks!