Database Design and the E-R Model

CISC637, Lecture #5
Ben Carterette

Copyright © Ben Carterette

1

Database Design

- Why are we using a database?
 - We have data (probably a lot of it)
 - We want to be able to maintain it easily and quickly
 - We want to be able to query it and get answers fast
 - We need to support many simultaneous users
- How do we design a database to support efficient and correct updates and queries?

Copyright © Ben Carterette

2

Database Design Process

- Start with enterprise requirements
 - → Translate to a conceptual model
 - → Translate to a logical model
 - → Translate to a physical model
- Iterate each step to ensure that everything that needs to be captured and that can be captured actually is captured

Copyright © Ben Carterette

3

Database Design Process

- Start with enterprise requirements
 - →Translate to a conceptual model
 - Entity-Relationship model (E-R model) subject of this week
 - → Translate to a logical model
 - Relational model subject of past two weeks
 - → Translate to a physical model
 - Implement in a database

Copyright © Ben Carterette

4

E-R Model

- Entity-relationship model
 - A data model for representing entities and relationships between them
- Entities represent objects in the enterprise
 - Each entity has attributes that describe it
 - An entity set is a set of entities with the same set of attributes

Е

- Relationships represent associations between two or more entities
 - Relationships can also have attributes
 - A relationship set is a set of pairs of entities with the same association

5

University Requirements

- Requirements regarding people in the university:
 - instructors are identified by an ID num, and we need to store their name and salary
 - every instructor must also be associated with exactly one department
 - students are identified by an ID num, and we need to store their name and total credits

 every student must also be associated with exactly one department
 - a student can have at most one instructor as advisor
 - instructors can advise any number of students
- Requirements regarding courses and course scheduling:
 - courses have IDs, titles, and number of credits
 - every course must be associated with exactly one department
 - courses are scheduled into sections
 - $\bullet\ \$ a section of a course is identified by a section number, semester, and year
 - $\bullet \quad \text{a section must be associated with exactly one course, though a course can have multiple sections} \\$
 - each section takes place in exactly one classroom (which has a certain capacity), and at exactly one of a pre-determined set of time slots
 - students take a section of a course for a grade
 - each section is taught by one or more instructors
 - some courses have one or more prerequisite courses
- Requirements regarding departments:
 - departments are identified by a name, and we need to store their home building and budget

E-R Model

- **Entity-relationship model**
 - A data model for representing *entities* and *relationships* between them
- **Entities** represent objects in the enterprise

 - Each entity has attributes that describe it
 An entity set is a set of entities with the same set of attributes

- **Relationships** represent associations between two or more entities
 - Relationships can also have attributes
 - A relationship set is a set of pairs of entities with the same association

- Mapping cardinalities tell us how many of one entity can be associated with how many of another entity
 - Many-to-many vs many-to-one vs one-to-many vs one-to-one

- **Participation constraints** tell us how many of the entities in an entity set *must* be involved in a relationship
 - All vs some (total participation vs partial participation)

