AYUDANTÍA 4

1. Fracciones continuas y ecuación de Pell

Ejercicio 1: Considere la ecuación de Markoff

$$(1.1) x^2 + y^2 + z^2 = 3xyz,$$

donde la solución trivial es (x, y, z) = (0, 0, 0). Demuestre lo siguiente

- (a) Sea (a,b,c) una solución para (1.1). Entonces (a,b,3ab-c) también es solución.
- (b) Cada solución positiva no trivial de (1,1) puede ser generado, empleando el inciso anterior, por (1,1,1) como solución inicial.

Ejercicio 2: La fracción continua para el número e está dado por

$$e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, \ldots].$$

Muestre que

$$\left| e - \frac{p}{q} \right| > \frac{c}{q^2 \log q}.$$

para todos los racionales p/q, (q > 0), donde c es una constante positiva.

Ejercicio 3: La fracción continua para $\sqrt{6}$ es $[2,\overline{2,4}]$, a partir de éste dato, encuentre una solución para la ecuación de Pell $x^2 - 6y^2 = 1$.

Ejercicio 4: Considere $u=a+b\sqrt{d}$ donde $a^2-db^2=1$ con a y b enteros positivos. Para cada n entero no nulo, toda solución entera de $x^2-dy^2=n$ es $(x'+y'\sqrt{d})u^k$ donde $x'^2-dy'^2=n$, k entero, y

(1.2)
$$|x'| \le \frac{\sqrt{|n|}(\sqrt{u} + 1/\sqrt{u})}{2}$$
 $y |y'| \le \frac{\sqrt{|n|}(\sqrt{u} + 1/\sqrt{u})}{2\sqrt{d}}$.

Si n > 0 entonces consideramos $|y'| \le \sqrt{n}(\sqrt{u} - 1/\sqrt{u})/(2\sqrt{d}) < \sqrt{nu}/(2\sqrt{d})$.

Ejercicio 5: Para una ecuación de Pell generalizada $x^2 - dy^2 = n$ con $n \neq 0$ existe un conjunto finito de soluciones tales que cada solución de Pell es múltiplo de alguna de éstas soluciones.

Ejercicio 6: Encuentre las soluciones enteras de $x^2 - 6y^2 = 3$.

Referencias

- 1. Baker, A. A Concise Introduction to the Theory of Numbers (Cambridge University Press, 1984).
- 2. CONRAD, K. Pell's equation II https://kconrad.math.uconn.edu/blurbs/. [Online].
- 3. Hua, L. K. y Shiu, P. *Introduction to Number Theory* (Springer-Verlag Berlin Heidelberg, 1982).

 $Correo\ electr\'onico : {\tt rseplveda@uc.cl}$