

FCC Measurement/Technical Report on

Telematics OBD Dongle OBD 2.0 3G BT OBD 2.0 TETH

FCC ID: 2AHR8 OBD20

IC: 21405 OBD20

Test Report Reference: MDE_JABIL_1602_FCCa

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Table of Contents

8	Photo Report	54
7	Measurement Uncertainties	54
6	Setup Drawings	53
5.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	52
5.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	51
5.4	Antenna R&S HF907 (1 GHz – 18 GHz)	50
5.3	Antenna R&S HL562 (30 MHz – 1 GHz)	49
5.1	LISN R&S ESH3-Z5 (150 kHz – 30 MHz) Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	47
5 5.1	Antenna Factors, Cable Loss and Sample Calculations	47 47
4.8	Power Density	42
4.7	Band Edge Compliance Radiated	39
4.6	Band Edge Compliance Conducted	36
4.5	Transmitter Spurious Radiated Emissions	25
4.4	Spurious RF Conducted Emissions	22
4.3	Peak Power Output	18
4.2	Occupied Bandwidth (99%)	15
4 4.1	Test Results Occupied Bandwidth (6 dB)	12 12
3.7	Product labelling	11
3.6	Operating Modes	11
3.5	EUT Setups	11
3.4	Auxiliary Equipment	11
3.3	Ancillary Equipment	10
3.2	EUT Main components	10
3.1	General EUT Description	9
3	Test object Data	9
2.4	Manufacturer Data	8
2.3	Applicant Data	8
2.2	Project Data	8
2.1	Testing Laboratory	8
2	Administrative Data	8
1.3	Measurement Summary / Signatures	5
1.2	FCC-IC Correlation Table	4
1.1	Applied Standards	3
1	Applied Standards and Test Summary	3

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-15 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note 1: (DTS Equipment)

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247, 558074 D01 DTS Meas Guidance v03r05, 2016-04-08" and also satisfy the newer version 558074 D01 DTS Meas Guidance v04, 2017-04-05. ANSI C63.10-2013 is applied.

TEST REPORT REFERENCE: MDE_JABIL_1602_FCCa

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 4: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 1: 5.2 (1)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 1: 5.4 (4)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 4: 6.13 / 8.9/8.10; RSS-247 Issue 1: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 4: 6.13 / 8.9/8.10; RSS-247 Issue 1: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 1: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 1: 5.2 (2)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 4: 8.3
Receiver spurious emissions	_	_

1.3 MEASUREMENT SUMMARY / SIGNATURES

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (a)	(2)	
Occupied Bandwidth (6 dB) The measurement was performed according to ANSI C63	3.10	Final R	esult
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency	CO1 DA01		
Bluetooth LE, mid	S01_BA01	Passed	Passed
Bluetooth LE, high	S01_BA01	Passed	Passed
Bluetooth LE, low	S01_BA01	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	-		
Occupied Bandwidth (99%)			
The measurement was performed according to ANSI C63	3.10	Final R	esult
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency	-		
Bluetooth LE, high	S01_BA01	N/A	Performed
Bluetooth LE, low	S01_BA01	N/A	Performed
Bluetooth LE, mid	S01_BA01	N/A	Performed
47 CFR CHAPTER I FCC PART 15 Subpart C	§ 15.247 (b)	(2)	
§15.247	g 15.247 (b)	(3)	
•		Final R	esult
§15.247 Peak Power Output	3.10		esult IC
§15.247 Peak Power Output The measurement was performed according to ANSI C63	3.10 Setup	Final R	
§15.247 Peak Power Output The measurement was performed according to ANSI C63 OP-Mode	3.10 Setup	Final R	
Peak Power Output The measurement was performed according to ANSI C63 OP-Mode Radio Technology, Operating Frequency, Measurement method	3.10 Setup	Final Ro	ıc
Peak Power Output The measurement was performed according to ANSI C63 OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted	3.10 Setup S01_BA01	Final Ro	IC Passed
Peak Power Output The measurement was performed according to ANSI C63 OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted	Setup So1_BA01 S01_BA01	Final Ro FCC Passed Passed Passed	IC Passed Passed
Peak Power Output The measurement was performed according to ANSI C63 OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted Bluetooth LE, mid, conducted 47 CFR CHAPTER I FCC PART 15 Subpart C	Setup S01_BA01 S01_BA01 S01_BA01 S01_BA01	Final Ro FCC Passed Passed Passed	IC Passed Passed Passed
Peak Power Output The measurement was performed according to ANSI C63 OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted Bluetooth LE, mid, conducted 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions	Setup S01_BA01 S01_BA01 S01_BA01 S01_BA01	Final Ro FCC Passed Passed Passed	IC Passed Passed Passed
Peak Power Output The measurement was performed according to ANSI C63 OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted Bluetooth LE, mid, conducted 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed according to ANSI C63 OP-Mode Radio Technology, Operating Frequency	Setup So1_BA01 S01_BA01 S01_BA01 S01_BA01 S01_BA01	Final Ro FCC Passed Passed Passed	IC Passed Passed Passed
Peak Power Output The measurement was performed according to ANSI C63 OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted Bluetooth LE, mid, conducted 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed according to ANSI C63 OP-Mode	Setup So1_BA01 S01_BA01 S01_BA01 S01_BA01 S01_BA01	Final Ro FCC Passed Passed Passed	IC Passed Passed Passed
Peak Power Output The measurement was performed according to ANSI C63 OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted Bluetooth LE, mid, conducted 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed according to ANSI C63 OP-Mode Radio Technology, Operating Frequency	Setup S01_BA01 S01_BA01 S01_BA01 S01_BA01 S01_BA01 S01_BA01 Setup	Final Ro Passed Passed Passed Final Ro	IC Passed Passed Passed Passed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)		
Transmitter Spurious Radiated Emissions The measurement was performed according to ANSI C6	53.10	Final Re	esult
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency, Measurement range			
Bluetooth LE, mid, 30 MHz - 1 GHz	S01_A002	Passed	Passed
Bluetooth LE, low, 30 MHz - 1 GHz	S01_A002	Passed	Passed
Bluetooth LE, mid, 9 kHz - 30 MHz	S01_A002	Passed	Passed
Bluetooth LE, high, 1 GHz - 26 GHz	S01_A002	Passed	Passed
Bluetooth LE, high, 1 GHz - 26 GHz Remark: For setup S01_CB05 tested in the range 1 - 8 GHz only	S01_CB05	Passed	Passed
Bluetooth LE, mid, 1 GHz - 26 GHz	S01_A002	Passed	Passed
Bluetooth LE, mid, 1 GHz - 26 GHz	S01_CB05	Passed	Passed
Bluetooth LE, low, 1 GHz - 26 GHz	S01_A002	Passed	Passed
Bluetooth LE, high, 30 MHz - 1 GHz	S01_A002	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)		
Band Edge Compliance Conducted			
The measurement was performed according to ANSI C6	53.10	Final Re	esult
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency, Band Edge	CO1 DA01		
Bluetooth LE, low, low	S01_BA01	Passed	Passed
Bluetooth LE, high, high	S01_BA01	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)		
Band Edge Compliance Radiated			_
The measurement was performed according to ANSI C6	53.10	Final Re	esult
OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	FCC	IC
Bluetooth LE, high, high	S01_CB05	Passed	Passed
Bluetooth LE, high, high	S01_A002	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (e)		
Power Density	53.10	Final Re	esult
Power Density The measurement was performed according to ANSI C6 OP-Mode	53.10 Setup	Final Re	esult IC
Power Density The measurement was performed according to ANSI C6 OP-Mode Radio Technology, Operating Frequency	Setup	FCC	IC
Power Density The measurement was performed according to ANSI C6 OP-Mode Radio Technology, Operating Frequency Bluetooth LE, mid	Setup S01_BA01	FCC Passed	IC Passed
Power Density The measurement was performed according to ANSI C6 OP-Mode Radio Technology, Operating Frequency Bluetooth LE, mid Bluetooth LE, low Bluetooth LE, high	Setup	FCC	IC

N/A: Not applicable N/P: Not performed

Two variants of the device were tested for this report.

The conducted tests were performed using the BT only variant (OBD 2.0 TETH), the radiated tests using the variant supporting 3G and BT (OBD 2.0 3G BT). Since later on a hardware change not related to the Bluetooth chip has been performed for the 3G and BT variant, radiated spot checks have been performed on the new hardware, including worst case mode of previous hardware.

(responsible for accreditation scope) (responsible for testing and report)

Dipl.-Ing. Marco Kullik Dipl.-Ing. Daniel Gall

2 ADMINISTRATIVE DATA

2.1 TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

This facility has been fully described in a report submitted to the IC and accepted under the registration number: Site# 3699A-1.

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-00

Responsible for accreditation scope: Dipl.-Ing. Marco Kullik

Report Template Version: 2017-03-16

2.2 PROJECT DATA

Responsible for testing and report: Dipl.-Ing. Daniel Gall

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2017-05-02

Testing Period: 2016-06-22 to 2017-03-20

2.3 APPLICANT DATA

Company Name: Octo Telematics S.p.a

Address: Via Lamaro 51

00173 Roma

Italy

Contact Person: Johanna Piira

2.4 MANUFACTURER DATA

Company Name: Please see applicant data

Address:

Contact Person:

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

Kind of Device product description	OBD 2.0 3G and Bluetooth low energy dongle.
Product name	Telematics OBD Dongle
Туре	OBD 2.0 3G BT OBD 2.0 TETH
Declared EUT data by	the supplier
Voltage Type	DC
Voltage Level	13.8 V
Tested Modulation Type	GFSK
General product description	The EUT is a vehicle OBD II Dongle Telematics device with Vehicle GPS tracking. It consists of a 2G OBD dongle used as a tracking device. It is an aftermarket product connected to the standard OBD-II bus in the car. It is available as BT only and as BT + 3G variant.
Specific product description for the EUT	Bluetooth low energy transceiver operating in the 2.4 GHz band.
The EUT provides the following ports:	Enclosure J1962 plug with pins 4, 5, 6, 14, 16 present.
Tested datarates	1 Mbps

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

TEST REPORT REFERENCE: MDE_JABIL_1602_FCCa

3.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
DE1102002ao02	ao02	3G+BT radiated sample
Sample Parameter	Valu	е
Integral Antenna	2.7 dBi	
Serial No.	36153000022	
HW Version	B-sample; BLE: HW version 0x31	
SW Version	DSW 4.1 + bootloader; BLE: SW ve	ersion 0X0713; Cellular 3G:
	BHL85xx.5.14.0.6.1.20170103	
Comment		

Sample Name	Sample Code	Description
DE1102002ba01	ba01	BT only conducted sample
Sample Parameter		Value
Integral Antenna	Replaced by temporary antenna connector	
Serial No.		
HW Version	B-sample; BLE: HW vers	sion 0x31
SW Version	DSW 3.3 + bootloader	
Comment		

Sample Name	Sample Code	Description
DE1102002cb05	cb05	3G+BT radiated sample
Sample Parameter	Value	e
Integral Antenna	2.7 dBi	
Serial No.	70840000683GBT	
HW Version	B-sample; BLE: HW version 0x31	
SW Version	DSW 4.1 + bootloader; BLE: SW version 0X0713; Cellular 3G:	
	BHL85xx.5.14.0.6.1.20170103	
Comment	Spot Check sample with changed HW	

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

3.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, HW, SW, S/N)	Description
-		-

3.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S01_A002	DE1102002ao02,	BT+3G variant radiated setup
S01_BA01	DE1102002ba01,	BT only variant conducted setup
S01_CB05	DE1102002cb05,	BT+3G variant radiated setup

3.6 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

3.6.1 TEST CHANNELS

BT LE Test Channels: Channel: Frequency [MHz]

2.4 GHz ISM 2400 - 2483.5 MHz			
low	mid	high	
0	19	39	
2402	2440	2480	

3.7 PRODUCT LABELLING

3.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

3.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

4 TEST RESULTS

4.1 OCCUPIED BANDWIDTH (6 DB)

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.1.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (smallest) emission bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz

Span: 3 MHz
Trace: Maxhold
Sweeps: 2000
Sweeptime: 5 ms
Detector: Peak

4.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

4.1.3 TEST PROTOCOL

Ambient temperature: 24°C Air Pressure: 1019hPa Humidity: 45.5%

BT LE GFSK

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	0.637	0.5	0.137
	19	2440	0.685	0.5	0.185
	39	2480	0.703	0.5	0.203

Remark: Please see next sub-clause for the measurement plot.

TEST REPORT REFERENCE: MDE_JABIL_1602_FCCa Page 12 of 54

4.1.4 MEASUREMENT PLOTS

Radio Technology = Bluetooth LE, Operating Frequency = low (S01_BA01)

Radio Technology = Bluetooth LE, Operating Frequency = mid (S01_BA01)

Radio Technology = Bluetooth LE, Operating Frequency = high (S01_BA01)

4.1.5 TEST EQUIPMENT USED

- Regulatory WLAN RF Test Solution

4.2 OCCUPIED BANDWIDTH (99%)

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.2.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

Resolution Bandwidth (RBW): 30 kHzVideo Bandwidth (VBW): 100 kHz

Span: 3 MHz
Trace: Maxhold
Sweeps: 2000
Sweeptime: 8.5 ms
Detector: Sample

The 99 % measurement function of the spectrum analyser function was used to determine the 99 % bandwidth.

4.2.2 TEST REQUIREMENTS / LIMITS

No applicable limit:

4.2.3 TEST PROTOCOL

Ambient temperature: 24°C Air Pressure: 1019hPa Humidity: 45.5%

BT LE

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [kHz]
2.4 GHz ISM	0	2402	1040.080
	19	2440	1052.104
	39	2480	1052.104

Remark: Please see next sub-clause for the measurement plot.

4.2.4 MEASUREMENT PLOTS

Radio Technology = Bluetooth LE, Operating Frequency = low (S01_BA01)

Radio Technology = Bluetooth LE, Operating Frequency = mid (S01_BA01)

Radio Technology = Bluetooth LE, Operating Frequency = high (S01_BA01)

4.2.5 TEST EQUIPMENT USED

- Regulatory WLAN RF Test Solution

4.3 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.3.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Resolution Bandwidth (RBW): 1 MHz

Video Bandwidth (VRW): 2 MHz

• Video Bandwidth (VBW): 3 MHz

Trace: MaxholdSweeps: 2000Sweeptime: 5 msDetector: Peak

The channel power function of the spectrum analyser was used (Used channel bandwidth = DTS bandwidth)

4.3.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

TEST REPORT REFERENCE: MDE_JABIL_1602_FCCa Page 18 of 54

Used conversion factor: Limit (dBm) = $10 \log (Limit (W)/1mW)$

4.3.3 TEST PROTOCOL

Ambient temperature: 24°C Air Pressure: 1019hPa Humidity: 45.5%

BT LE

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]
2.4 GHz ISM	0	2402	8.0	30.0	22.0
	19	2440	8.0	30.0	22.0
	39	2480	7.7	30.0	22.3

Remark: Please see next sub-clause for the measurement plot.

4.3.4 MEASUREMENT PLOTS

Radio Technology = Bluetooth LE, Operating Frequency = low, Measurement method = conducted (S01_BA01)

Radio Technology = Bluetooth LE, Operating Frequency = mid, Measurement method = conducted (S01_BA01)

TEST REPORT REFERENCE: MDE_JABIL_1602_FCCa

Radio Technology = Bluetooth LE, Operating Frequency = high, Measurement method = conducted (S01_BA01)

4.3.5 TEST EQUIPMENT USED

- Regulatory WLAN RF Test Solution

4.4 SPURIOUS RF CONDUCTED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.4.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

Frequency range: 30 – 25000 MHz
Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz

Trace: MaxholdSweeps: 2

Sweep Time: 330 sDetector: Peak

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc limit.

4.4.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

4.4.3 TEST PROTOCOL

Ambient temperature: 24°C Air Pressure: 1019hPa Humidity: 45.5% BT LE GFSK

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	-	-	PEAK	100	7.7	-12.3	> 20
19	2440	-	-	PEAK	100	7.6	-12.4	> 20
39	2480	-	-	PEAK	100	7.5	-12.5	> 20

Remark: Please see next sub-clause for the measurement plot.

TEST REPORT REFERENCE: MDE_JABIL_1602_FCCa Page 22 of 54

4.4.4 MEASUREMENT PLOTS

Radio Technology = Bluetooth LE, Operating Frequency = low (S01_BA01)

Radio Technology = Bluetooth LE, Operating Frequency = mid (S01_BA01)

Title: spurious emissions
Comment A: CH M2: 2440 MHz
Date: 22.JUN.2016 11:15:48

Radio Technology = Bluetooth LE, Operating Frequency = high (S01_BA01)

4.4.5 TEST EQUIPMENT USED

- Regulatory WLAN RF Test Solution

4.5 TRANSMITTER SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.5.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30--1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 3 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz

TEST REPORT REFERENCE: MDE_JABIL_1602_FCCa

Frequency steps: 30 kHzIF-Bandwidth: 120 kHz

Measuring time / Frequency step: 100 ms
Turntable angle range: -180° to 90°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: \pm 45 ° around the determined value - Height variation range: \pm 100 cm around the determined value

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by $\pm 45^{\circ}$

EMI receiver settings (for all steps):

Detector: Peak, AverageIF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 1 MHz - Measuring time: 1 s

4.5.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

4.5.3 TEST PROTOCOL

Ambient temperature: 25 °C Air Pressure: 1013 1013 hPa Humidity: BT low Energy

Setup	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
S01_A002	2402	-	-	PEAK	1000	74.0	=	RB
S01_A002	2440	-	-	PEAK	1000	74.0	-	RB
S01_A002	2480	2487.7	55.4	PEAK	1000	74.0	18.6	RB
S01_A002	2480	2487.9	40.8	AV	1000	54.0	13.2	RB
S01_CB05	2440	-	-	PEAK	1000	74.0	-	RB
S01_CB05	2480	2208.1	56.3	PEAK	1000	74.0	17.7	RB
S01_CB05	2480	2207.7	50.6	AV	1000	54.0	3.4	RB
S01_CB05	2480	2483.5	67.4	PEAK	1000	74.0	6.6	RB
S01_CB05	2480	2488.0	47.4	AV	1000	54.0	6.6	RB

Remark: Please see next sub-clause for the measurement plot.

4.5.4 MEASUREMENT PLOTS

Radio Technology = Bluetooth LE, Operating Frequency = mid, Measurement range = 30 MHz - 1 GHz (S01_AO02)

Radio Technology = Bluetooth LE, Operating Frequency = low, Measurement range = 30 MHz - 1 GHz (S01_AO02)

Radio Technology = Bluetooth LE, Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz (S01_A002)

Radio Technology = Bluetooth LE, Operating Frequency = high, Measurement range = 30 MHz - 1 GHz (S01_A002)

Radio Technology = Bluetooth LE, Operating Frequency = low, Measurement range = 1 GHz - 26 GHz (S01_A002)

Critical_Freqs

Frequency (MHz)	MaxPeak (dBμV/m)	Average (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)
2378.08000		41.79	54.00	12.21			150.0	٧	19.0	105.2
2388.72000	55.01		74.00	18.99			150.0	٧	11.0	85.8
2764.97000	54.56		74.00	19.44			150.0	Н	-187.0	94.0
2765.18000		40.09	54.00	13.91			150.0	Н	124.0	13.6

Final Result

Frequency	MaxPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Elevation
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)	(deg)
					(ms)					
2378.08000		36.30	54.00	17.70	1000.0	1000.000	150.0	Н	19.0	105.2
2388.72000	53.24		74.00	20.76	1000.0	1000.000	150.0	٧	11.0	86.0
2764.97000	49.62		74.00	24.38	1000.0	1000.000	150.0	Н	-187.0	93.9
2765.18000		36.98	54.00	17.02	1000.0	1000.000	150.0	Н	124.0	13.9

Radio Technology = Bluetooth LE, Operating Frequency = mid, Measurement range = 1 GHz - 26 GHz (S01_A002)

Radio Technology = Bluetooth LE, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S01_A002)

Critical_Freqs

Frequency	MaxPeak	Average	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Elevation
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)	(deg)
					(ms)					
2483.50000	59.64		74.00	14.36			150.0	٧	-21.0	89.0
2483.50000		40.25	54.00	13.75			150.0	Н	-19.0	-1.8
2487.70750	55.94		74.00	18.06			150.0	٧	24.0	94.4
2487.87250		43.59	54.00	10.41			150.0	٧	-21.0	103.9

Final Result

Frequency (MHz)	MaxPeak (dBμV/m)	CAverage (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)
0400 50000		22.22	54.00	47.07	(ms)	1000 000	450.0	.,	10.0	
2483.50000		36.93	54.00	17.07	1000.0	1000.000	150.0	٧	-19.0	-2.0
2483.50000	61.08	-	74.00	12.92	1000.0	1000.000	150.0	٧	-21.0	88.9
2487.70750	55.36	-	74.00	18.64	1000.0	1000.000	150.0	٧	24.0	93.9
2487.87250		40.81	54.00	13.19	1000.0	1000.000	150.0	٧	-21.0	104.8

Radio Technology = Bluetooth LE, Operating Frequency = mid, Measurement range = 1 GHz - 26 GHz (S01_CB05)

Critical Freqs

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)
2711.840000	-	43.80	54.00	10.20		-	150.0	٧	28.0	-12.1
2712.050000	54.71	-	74.00	19.29		-	150.0	٧	3.0	105.2

Final_Result

F	Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)
2	2711.840000	-	41.54	54.00	12.46	1000.0	1000.000	150.0	٧	28.0	-12.2
2	2712.050000	52.79		74.00	21.21	1000.0	1000.000	150.0	V	3.0	105.2

Radio Technology = Bluetooth LE, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S01_CB05)

Critical Freqs

Frequency (MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)
2483.500000		42.07	54.00	11.93			150.0	٧	10.0	94.6
2483.500000	67.49		74.00	6.51			150.0	٧	24.0	94.4
2488.037500		49.72	54.00	4.28			150.0	٧	22.0	93.5

Final Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)
2483.500000		39.88	54.00	14.12	1000.0	1000.000	150.0	٧	11.0	94.8
2483.500000	67.37		74.00	6.63	1000.0	1000.000	150.0	٧	24.0	93.8
2488.037500	-	47.37	54.00	6.63	1000.0	1000.000	150.0	٧	22.0	93.9

Setup S01_CB05

4.5.5 TEST EQUIPMENT USED

- Radiated Emissions

4.6 BAND EDGE COMPLIANCE CONDUCTED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.6.1 TEST DESCRIPTION

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions". The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

• Frequency Range: 2397 MHz – 2403 MHz and 2479 MHz – 2485 MHz

Detector: Peak

Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz

Sweeptime: 5 msTrace: Maxhold

4.6.2 TEST REQUIREMENTS / LIMITS

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

TEST REPORT REFERENCE: MDE_JABIL_1602_FCCa

4.6.3 TEST PROTOCOL

Ambient temperature: 24°C 1019hPa Air Pressure: Humidity: 45.5% BT LE GFSK

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400.0	-34.1	PEAK	100	7.7	-12.3	21.8
39	2480	2483.5	-40.1	PEAK	100	7.5	-12.5	27.5

Remark: Please see next sub-clause for the measurement plot.

4.6.4 MEASUREMENT PLOTS

Radio Technology = Bluetooth LE, Operating Frequency = low, Band Edge = low (S01_BA01)

Title: Band Edge Compliance
Comment A: CH B: 2402 MHz
Date: 22.JUN.2016 10:51:19

Radio Technology = Bluetooth LE, Operating Frequency = high, Band Edge = high (S01_BA01)

4.6.5 TEST EQUIPMENT USED

- Regulatory WLAN RF Test Solution

4.7 BAND EDGE COMPLIANCE RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.7.1 TEST DESCRIPTION

Please see test description for the test case "Spurious Radiated Emissions"

4.7.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

TEST REPORT REFERENCE: MDE_JABIL_1602_FCCa Page 39 of 54

4.7.3 TEST PROTOCOL

Ambient temperature: 24°C
Air Pressure: 1019hPa
Humidity: 45.5%

BT LE GFSK

Setup	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
S01_A002	2480	2483.5	61.1	PEAK	1000	74.0	12.9	BE
S01_A002	2480	2483.5	36.9	AV	1000	54.0	17.1	BE
S01_CB05	2480	2483.5	67.4	PEAK	1000	74.0	6.6	BE
S01_CB05	2480	2483.5	39.9	AV	1000	54.0	14.1	BE

Remark: Please see next sub-clause for the measurement plot.

4.7.4 MEASUREMENT PLOTS

Radio Technology = Bluetooth LE, Operating Frequency = high, Band Edge = high (S01_AO02)

Final Result

Frequency (MHz)	MaxPeak (dBμV/m)	CAverage (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)
					1 -/					
2483.50000		36.93	54.00	17.07	1000.0	1000.000	150.0	٧	-19.0	-2.0
2483.50000	61.08		74.00	12.92	1000.0	1000.000	150.0	٧	-21.0	88.9
2487.70750	55.36		74.00	18.64	1000.0	1000.000	150.0	٧	24.0	93.9
2487.87250		40.81	54.00	13.19	1000.0	1000.000	150.0	٧	-21.0	104.8

Radio Technology = Bluetooth LE, Operating Frequency = high, Band Edge = high (S01_CB05)

Critical Freqs

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)
2483.500000		42.07	54.00	11.93			150.0	٧	10.0	94.6
2483.500000	67.49		74.00	6.51			150.0	٧	24.0	94.4
2488.037500		49.72	54.00	4.28			150.0	٧	22.0	93.5

Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)
2483.500000		39.88	54.00	14.12	1000.0	1000.000	150.0	٧	11.0	94.8
2483.500000	67.37		74.00	6.63	1000.0	1000.000	150.0	٧	24.0	93.8
2488.037500		47.37	54.00	6.63	1000.0	1000.000	150.0	٧	22.0	93.9

Setup S01_CB05

4.7.5 TEST EQUIPMENT USED

- Radiated Emissions

4.8 POWER DENSITY

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.8.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up in a shielded room to perform the Power Density measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) power density.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Resolution Bandwidth (RBW): 3 kHzVideo Bandwidth (VBW): 10 kHz

Trace: MaxholdSweeps: 2000Sweeptime: 420 msDetector: Peak

4.8.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

•••

The same method of determining the conducted output power shall be used to determine the power spectral density.

4.8.3 TEST PROTOCOL

Ambient temperature: 24°C Air Pressure: 1019hPa Humidity: 45.5%

BT LE

Band	Channel No.	Frequency [MHz]	Power Density [dBm/3kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	0	2402	1.2	8.0	6.8
	19	2440	1.4	8.0	6.6
	39	2480	1.1	8.0	6.9

Remark: Please see next sub-clause for the measurement plot.

TEST REPORT REFERENCE: MDE_JABIL_1602_FCCa Page 42 of 54

4.8.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Radio Technology = Bluetooth LE, Operating Frequency = low (S01_BA01)

Radio Technology = Bluetooth LE, Operating Frequency = mid (S01_BA01)

Radio Technology = Bluetooth LE, Operating Frequency = high (S01_BA01)

4.8.5 TEST EQUIPMENT USED

- Regulatory WLAN RF Test Solution

Test Equipment

1 Radiated Emissions Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	NRV-Z1	Sensor Head A	Rohde & Schwarz	827753/005	2016-05	2017-05
1.2	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2015-08 2016-09	2016-08 2017-09
1.3	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936	2015-02	2017-02
1.4	Anechoic Chamber	10.58 x 6.38 x 6.00 m ³	Frankonia	none		
1.5	HL 562	Ultralog new biconicals	Rohde & Schwarz	830547/003	2015-06	2018-06
1.6		High Pass Filter	Trilithic	9942012		
1.7	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
1.8	Room	8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647-001- PRB		
1.9		Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2016-02	2018-02
1.10		Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
1.11	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2014-12 2016-12	2016-12 2018-12
1.12	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069		
1.13	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright	09		
1.14	4HC1600/12750 -1.5-KK	High Pass Filter	Trilithic	9942011		
1.15	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		
1.16	42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
1.17	TT 1.5 WI	Turn Table	Maturo GmbH	-		
1.18	HL 562 Ultralog	Logper. Antenna	Rohde & Schwarz	100609	2016-04	2019-04
1.19		/ Pyramidal Horn Antenna 40 GHz	EMCO Elektronic GmbH	00086675		
1.20	5HC3500/18000 -1.2-KK	High Pass Filter	Trilithic	200035008		
1.21	HFH2-Z2		Rohde & Schwarz	829324/006	2014-11	2017-11
1.22	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	12482	2015-03	2017-03

TEST REPORT REFERENCE: MDE_JABIL_1602_FCCa

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.23		EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2014-11 2016-11	2016-11 2018-11
1.24	35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
1.25	AS 620 P	Antenna mast	HD GmbH	620/37		
_		Antrieb TD1.5- 10kg	Maturo GmbH	TD1.5- 10kg/024/37907 09		
1.27		Spectrum Analyzer	Rohde & Schwarz	830482/004	2015-12	2017-12
1.28	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
1.29	AM 4.0	Antenna mast	Maturo GmbH	AM4.0/180/1192 0513		
1.30		Double-ridged horn	Rohde & Schwarz	102444	2015-05	2018-05

2 Regulatory WLAN RF Test Solution Regulatory WLAN RF Tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Calibration	
2.1		Rubidium Frequency Normal MFS	Datum GmbH	002	2015-08 2016-09	2016-08 2017-09
2.2	TGA12101	Arbitrary Waveform Generator	Aim and Thurlby Thandar Instruments	284482		
2.3	EX520	Digital Multimeter 12 (Multimeter)	Extech Instruments Corp	05157876	2016-02	2018-02
2.4	NRV Z1 A	Power Sensor	Rohde & Schwarz	832279/013	2015-08 2016-09	2016-08 2017-09
2.5	Opus10 THI (8152.00)	T/H Logger 15	Lufft Mess- und Regeltechnik GmbH	13985	2015-03	2017-03
2.6	TOCT Switching Unit		7layers, Inc.	040107		
2.7	KWP 120/70	Temperature Chamber Weiss 01	Weiss	59226012190010	2016-03	2018-03
2.8	NRVD	Powermeter	Rohde & Schwarz	832025/059	2015-08 2016-08	2016-08 2017-08
2.9	FSU3	Spectrum Analyser	Rohde & Schwarz GmbH & Co. KG	200046	2016-06	2017-06
2.10	FSIQ26	Signal Analyser	Rohde & Schwarz	832695/007	2014-08 2106-09	2016-08 2018-09
2.11	FSU26	Spectrum Analyser	Rohde & Schwarz GmbH & Co. KG	100136	2016-01 2017-01	2017-01 2018-01
2.12	SMIQ03B	Signal Generator	Rohde & Schwarz	832870/017	2016-06	2019-06
2.13	NGSM 32/10	Power Supply	Rohde & Schwarz	2725	2015-06	2017-06

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

5 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

> cable loss (incl. 10

> > dΒ attenuator) dΒ 10.0 10.2 10.3 10.3 10.4

> > > 10.4

10.4

10.5

10.5

10.6

10.6 10.7 10.7

10.8

LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Frequency	Corr.	LISN insertion loss ESH3- Z5
MHz	dB	dB
0.15	10.1	0.1
5	10.3	0.1
7	10.5	0.2
10	10.5	0.2
12	10.7	0.3
14	10.7	0.3
16	10.8	0.4
18	10.9	0.4
20	10.9	0.4
22	11.1	0.5
24	11.1	0.5
26	11.2	0.5
28	11.2	0.5
30	11.3	0.5

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

5.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

	1	
	AF	
Frequency	HFH-Z2)	Corr.
MHz	dB (1/m)	dB
0.009	20.50	-79.6
0.01	20.45	-79.6
0.015	20.37	-79.6
0.02	20.36	-79.6
0.025	20.38	-79.6
0.03	20.32	-79.6
0.05	20.35	-79.6
0.08	20.30	-79.6
0.1	20.20	-79.6
0.2	20.17	-79.6
0.3	20.14	-79.6
0.49	20.12	-79.6
0.490001	20.12	-39.6
0.5	20.11	-39.6
0.8	20.10	-39.6
1	20.09	-39.6
2	20.08	-39.6
3	20.06	-39.6
4	20.05	-39.5
5	20.05	-39.5
6	20.02	-39.5
8	19.95	-39.5
10	19.83	-39.4
12	19.71	-39.4
14	19.54	-39.4
16	19.53	-39.3
18	19.50	-39.3
20	19.57	-39.3
22	19.61	-39.3
24	19.61	-39.3
26	19.54	-39.3
28	19.46	-39.2
30	19.73	-39.1

`		<u> </u>				
cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-40 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	
0.2	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.3	0.1	-40	30	3
0.4	0.1	0.3	0.1	-40	30	3
	- : -					

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit}/d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

5.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

 $(d_{Limit} = 3 m)$

$d_{Limit} = 3 m$		
F	AF R&S	C - ***
Frequency	HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

			1			1
cable	cable	cable	cable	distance	d_{Limit}	$d_{\sf used}$
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

 $(d_{Limit} = 10 m)$

(<u>d_{Limit} = 10 m</u>	1)								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

5.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

	AF R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

		cable		
cable		loss 3		
loss 1		(switch		
(relay +	cable	`unit,		
cable	loss 2	atten-	cable	
inside	(outside	uator &	loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

cable loss 1 (relay inside chamber)	cable loss 2 (inside chamber)	cable loss 3 (outside chamber)	cable loss 4 (switch unit, atten- uator & pre-amp)	cable loss 5 (to receiver)	used for FCC 15.247
dB	dB	dB	dB	dB	131217
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

5.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Frequency	AF EMCO 3160-09	Corr.
MHz	dB (1/m)	dB
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.3	-21.3
20000	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

		,		
cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0.72	-35.85	6.20	2.81	2.65
0.69	-35.71	6.46	2.76	2.59
0.76	-35.44	6.69	3.15	2.79
0.74	-35.07	7.04	3.11	2.91
0.72	-34.49	7.30	3.07	3.05
0.78	-34.46	7.48	3.12	3.15
0.87	-34.07	7.61	3.20	3.33
0.90	-33.96	7.47	3.28	3.19
0.89	-33.57	7.34	3.35	3.28
0.87	-33.66	7.06	3.75	2.94
0.88	-33.75	6.92	3.77	2.70
0.90	-33.35	6.99	3.52	2.66
0.88	-33.99	6.88	3.88	2.58
0.91	-33.89	7.01	3.93	2.51
0.88	-33.00	6.72	3.96	2.14
0.89	-34.07	6.90	3.66	2.22
0.86	-35.11	7.02	3.69	2.28
0.90	-35.20	7.15	3.91	2.36

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

5.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Frequency	AF EMCO 3160-10	Corr.
GHz	dB (1/m)	dB
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

•						
cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4.4				-15.6	3	0.5
4.4				-15.6	3	0.5
4.5				-15.6	3	0.5
4.6				-15.6	3	0.5
4.7				-15.6	3	0.5
4.7				-15.6	3	0.5
4.8				-15.6	3	0.5
4.9				-15.6	3	0.5
5.0				-15.6	3	0.5
5.1				-15.6	3	0.5
5.1				-15.6	3	0.5
5.2				-15.6	3	0.5
5.3				-15.6	3	0.5
5.4		-		-15.6	3	0.5
5.5				-15.6	3	0.5

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

6 SETUP DRAWINGS

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane.

Drawing 2: Setup for conducted radio tests.

7 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty	
AC Power Line	Power	± 3.4 dB	
Field Strength of spurious radiation	Power	± 5.5 dB	
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz	
Conducted Output Power	Power	± 2.2 dB	
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz	
Frequency Stability	Frequency	± 25 Hz	
Power Spectral Density	Power	± 2.2 dB	

8 PHOTO REPORT

Please see separate photo report.