

ECG SIGNALS CLASSIFICATION

Luca Galli

Enrico Mannarino

850859

Christian Persico

829558

TABLE OF CONTENTS

- O1 Goals and presentation of the dataset O2 Data exploration and pre-processing
- **03** Deep learning models **04** and results
- **05** Evaluation on test set **06** Future developments

O1. GOALS AND PRESENTATION OF THE DATASET

Dataset

The **PhysioNet 2017** dataset consists of 8528 electrocardiogram (ECG) recordings, collected using the AliveCor device, sampled at 300 Hz and divided by a group of experts into four different classes (all data are provided in MATLAB):

Normal Rhythm (N), Atrial Fibrillation (A), Other Rhythm (O), Noisy Recording (~)

Goals

The aim of the project is to build a neural network that is able to classify ECGs to their respective class with a good degree of accuracy.

In particular, atrial fibrillation is a type of irregular heartbeat that occurs when the heart's upper chambers, the atria, beat out of coordination with the lower chambers, the ventricles. It is the most common sustained cardiac arrhythmia, occurring in 1-2% of the general population and is associated with significant mortality and morbidity through association of risk of death, stroke, hospitalization, heart failure and coronary artery disease, etc.

Source: https://a-fib.com/

O2.

DATA EXPLORATION AND PRE-PROCESSING

The observations in the dataset vary in signal length from 2714 to 18286 samples (approximately 9 to 60 seconds).

SOLUTION

Signal truncation by multiples of 9000 values.

SOLUTION

- Assigning different weights for each class
- Data augmentation

Signals selection and division

	Discarded (< 9000)	Splitted (≥ 18000)	Total
Normal Rhythm	521	408	- 113
Atrial Fibrillation	113	93	- 20
Other Rhythm	194	341	+ 147
Noisy Recording	139	6	- 133
	- 967	+ 848	- 119

- New total of observations: 8409 (from 8528).
- New class distribution:

Descriptive statistics

	Overall average	Mean standard deviation	Мах	Min
Normal Rhythm	7.85	199.37	8318	- 10636
Atrial Fibrillation	7.72	183.25	6342	-6787
Other Rhythm	6.89	196.31	8257	-7655
Noisy Recording	1.66	397.23	7309	-6646

Dataset division

The dataset was divided into three parts, with stratified sampling by class:

- **60%** training set (5045 obs.)
- **20%** validation set (1682 obs.)
- 20% test set (1682 obs.)

- Standardization
- One-hot encoding

O3. DEEP LEARNING MODELS

Hyperparameters

LOSS: Categorical cross-entropy

ACTIVATION FUNCTIONS: ReLU and Softmax

OPTIMIZER: Adam

• **LEARNING RATE**: from 0.001

CALLBACKS

- EARLY STOPPING: patience of 10 on validation loss value
- REDUCE LR ON PLATEAU: patience of 5 on validation loss value

WEIGHTED LOSS APPROACH:

Assign different weights for each class in the classification process as follows:

 $1 - \frac{\text{number of samples present}}{\text{total number of samples}}$

- Accuracy is low
- Model is not complex enough

SOLUTION

 Let's add a Convolutional layer, a Dense layer and set dense layers' kernel initializer to normal

Total params: 39 556

OBSERVATIONS

- Overfitting
- Accuracy fluctuations

SOLUTION

- Let's add Dropout layers
- Introduce dynamic LR

Total params: 66 756

OBSERVATIONS

Good performance

SOLUTION

 Let's try changing filters and kernel size to improve performance

Total params: 66 756

OBSERVATIONS

• Better performance

SOLUTION

 Let's try increasing complexity by adding a Dense Layer

Total params: 593 028

Model Vs.a

OBSERVATIONS

Slightly worse performance than V4

SOLUTION

Let's try increasing complexity by adding a Convolutional layer

Total params: 606 228

OBSERVATIONS

 Slightly worse performance than V4

SOLUTION

 Let's try adding two LSTM layers to the V5.a to find a better solution

Total params: 886 164

Model Vs.b

OBSERVATIONS

 Best performance overall

Total params: 844 164

Metrics of the models

	Loss	Accuracy	AUC	Precision	Recall
V1	0.8613	0.6034	0.8654	0.6343	0.5589
V2	0.9900	0.7539	0.9215	0.7551	0.7533
V3	0.5266	0.8020	0.9509	0.8073	0.7943
V4	0.4906	0.8543	0.9624	0.8571	0.8484
V5.a	0.4892	0.8442	0.9638	0.8500	0.8424
V6	0.5415	0.8419	0.9583	0.8466	0.8365
V5.b	0.4497	0.8633	0.9648	0.8646	0.8615

O4. DATA AUGMENTATION AND RESULTS

Data augmentation

The four classes have very unbalanced values between them, respectively numbering 2962, 431, 1562 and 90 elements in the **training set**, so we want to balance them out by bringing them all to 2962 components (numerosity of the majority class).

To accomplish this process, a technique called <u>Jittering</u> is used, which involves adding a small random constant distributed as a standard Normal distribution to duplicate signals until class balancing is achieved.

Example of zoomed jittered signal with sd = 10 to make the transformation more obvious

CLASSES

Class 0

Class 1

Class 2

Class 3

Non-augmented class sizes

2962

431

1562

90

Augmented class sizes

2962

2962

2962

2962

Total

5045

11848

Metrics with class weights

	Loss	Accuracy	AUC	Precision	Recall
V4	0.4906	0.8543	0.9624	0.8571	0.8484
V5.a	0.4892	0.8442	0.9638	0.8500	0.8424
V5.b	0.4497	0.8633	0.9648	0.8646	0.8615

Metrics on augmented data

	Loss	Accuracy	AUC	Precision	Recall
V4	0.6607	0.8466	0.9525	0.8479	0.8454
V5.a	0.6479	0.8436	0.9522	0.8451	0.8430
V5.b	0.5991	0.8347	0.9478	0.8376	0.8341

Class weights naive method

Augmented data with Jittering

Class weights naive method

Augmented data with Jittering

Class weights naive method

Augmented data with Jittering

Architecture of Model V5.b

O5. EVALUATION ON TEST SET

Metrics on test set

•	Precision	Recall	F1-score	Support
Normal Rhythm	0.89	0.94	0.92	988
Atrial Fibrillation	0.77	0.74	0.76	143
Other Rhythm	0.82	0.73	0.77	520
Noisy Recording	0.65	0.65	0.65	31

Accuracy	Loss	AUC	Precision	Recall
0.8549	0.4685	0.9626	0.8603	0.8532

O6. FUTURE DEVELOPMENTS

As future improvements could be considered:

- Alternative way of managing signal lengths
- Implementation of further data augmentation methods for the type of data at our disposal (e.g. **GAN**).
- Implementation of signal handling and transformation methods (Short-Time Fourier Transform/Wavelet Transform and so on).
- Transfer learning of already proven models with fine-tuning of hyperparameters → e.g. MobileNet/ResNet (involve transformation of signals into images) or specialised models for ECG classification (e.g. neural network trained on the Icentia11k dataset).

REFERENCES

- https://it.mathworks.com/help/deeplearning/ug/classify-ecg-signals-using-long-shortterm-memory-networks.html
- https://physionet.org/content/challenge-2017/1.0.0/
- https://keras.io/examples/timeseries/eeg_signal_classification/#prepare-tfdatadataset
- http://103.82.172.44:8080/xmlui/bitstream/handle/123456789/614/Thesis%20Book%20
 154404_154407.pdf?sequence=1&isAllowed=y
- https://arxiv.org/pdf/1706.00527.pdf
- https://arxiv.org/pdf/2206.13508.pdf
- https://www.tensorflow.org/tutorials/structured_data/imbalanced_data
- https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8759878

THANKS

l.galli40@campus.unimib.it e.mannarino1@campus.unimib.it c.persico4@campus.unimib.it