Due: Sunday, October 7, 2018

1. Convert the following numbers from the given base to the other three bases listed in the table:

Decimal	Binary	Octal	Hexadecimal
69.3125 ₁₀	?	?	?
?	10111101.101_2	?	?
?	?	326.5_{8}	?
?	?	?	$C7.A_{16}$

- 2. Perform the following arithmetic operations using 2's complement arithmetic and assuming a word length of 8 bits:
 - a. $17_{10} 69_{10}$
 - b. $-12_{10} \times 11_{10}$
 - c. $-116_{10} \div -21_{10}$
- 3. Calculate the decimal value which is equivalent to the binary value: 100010010110 in each of the following cases:
 - a. If it represents a BCD number.
 - b. If it represents a Gray Code.
 - c. If it represents a signed number in the sign-magnitude form.
 - d. If it represents a signed number in the 1's complement form.
- 4. Represent 69.3125₁₀ as a single-precision floating-point binary number.