Flight Delay Analysis

By: Sena Hiraoka, Yi-Lin Liao

Flight Dataset

• The U.S. Department of Transportation's (DOT) Bureau of Transportation Statistics tracks the on-time performance of domestic flights operated by large air carriers.

Data Source:

- Kaggle https://www.kaggle.com/
- Dataset on Kaggle https://www.kaggle.com/usdot/flight-delays

Basic Info of Dataset

```
> # Basic Info of Dataset
> print (format (object.size (flightData), units="Mb")) # storage in megabytes
[1] "799.5 Mb"
> print (c ("Number of columns: ", ncol (flightData)))
[1] "Number of columns: " "31"
> print (c ("Number of rows: ", nrow (flightData)))
[1] "Number of rows: " "5819079"
> print (colnames (flightData))
 [1] "YEAR"
                           "MONTH"
                                                  "DAY"
                                                                                               "AIRLINE"
                                                                                                                                           "TAIL_NUMBER"
                                                                        "DAY_OF_WEEK"
                                                                                                                     "FLIGHT_NUMBER"
     "ORIGIN_AIRPORT"
                                                 "SCHEDULED_DEPARTURE"
                                                                        "DEPARTURE_TIME"
                                                                                              "DEPARTURE_DELAY"
                                                                                                                                           "WHEELS_OFF"
                           "DESTINATION_AIRPORT"
                                                                                                                     "TAXI_OUT"
     "SCHEDULED_TIME"
                           "ELAPSED_TIME"
                                                  "AIR_TIME"
                                                                        "DISTANCE"
                                                                                               "WHEELS_ON"
                                                                                                                     "TAXI_IN"
                                                                                                                                           "SCHEDULED_ARRIVAL"
     "ARRIVAL_TIME"
                           "ARRIVAL_DELAY"
                                                  "DIVERTED"
                                                                        "CANCELLED"
                                                                                               "CANCELLATION_REASON" "AIR_SYSTEM_DELAY"
                                                                                                                                           "SECURITY_DELAY"
    "AIRLINE_DELAY"
                           "LATE_AIRCRAFT_DELAY" "WEATHER_DELAY"
```

Cleaning and Transformations

Clean

- Remove cancelled and diverted flight subset
- Remove unused columns select
- Remove rows with NAs na.omit

Transform

- Create a column with values night, daytime, and evening based on the scheduled departure time – mutate
- Change character columns to factors
- (Optional) Take only around 100,000 rows

Structure of Dataset

```
'data.frame': 106343 obs. of 22 variables:
$ MONTH
                               : int 1111111111...
$ DAY
                               : int 1111111111...
$ DAY_OF_WEEK
                               : int 444444444...
$ AIRLINE
                               : Factor w/ 14 levels "AA", "AS", "B6", ...: 1 1 11 10 10 14 10 10 5 1 ....
                               : Factor w/ 625 levels "10135", "10136",...: 455 389 591 389 531 306 342 367 357 453 ...
$ ORIGIN_AIRPORT
$ DESTINATION_AIRPORT
                               : Factor w/ 625 levels "10135","10136",...: 507 390 389 480 389 447 480 480 455 390 ...
                               : int 618 623 634 658 758 607 639 654 621 622 ...
$ DEPARTURE_TIME
$ DEPARTURE_DELAY
                               : int 58 53 56 73 119 7 39 54 1 -3 ...
$ SCHEDULED_TIME
                               : int 141 125 142 150 141 120 130 51 161 210 ...
$ ELAPSED_TIME
                               : int 137 138 164 133 138 135 121 85 184 230 ...
$ AIR_TIME
                               : int 111 96 129 112 123 103 89 24 154 200 ...
$ DISTANCE
                               : int 964 641 909 862 819 759 674 86 878 1172 ...
                               : int 928 931 1009 801 1105 919 732 806 820 856 ...
$ WHEELS_ON
$ TAXI_IN
                               : int 7 10 9 10 11 3 8 13 5 16 ...
$ SCHEDULED_ARRIVAL
                               : int 841 835 900 715 920 900 710 651 801 855 ...
$ ARRIVAL DELAY
                               : int 54 66 78 56 116 22 30 88 24 17 ...
$ AIR_SYSTEM_DELAY
                               : int 0 13 22 0 0 15 0 34 23 17 ...
$ SECURITY_DELAY
                               : int 00000000000...
$ AIRLINE_DELAY
                               : int 54 53 56 56 0 7 30 0 1 0 ...
$ LATE_AIRCRAFT_DELAY
                               : int 00000000000...
                               : int 0000116005400...
$ WEATHER_DELAY
$ SCHEDULED_DEPARTURE_TIME_GROUP: Factor w/ 3 levels "Daytime", "Evening", ...: 3 3 3 3 3 3 3 3 ...
- attr(*, "na.action")= 'omit' Named int [1:4650569] 1 2 3 4 5 6 7 8 9 10 ...
 ..- attr(*, "names")= chr [1:4650569] "1" "2" "3" "4" ...
```

Summary of columns in dataset

> summary(flightData)

MONTH	DAY	DAY_OF_WEEK	AIRLINE	ORIGIN_AIRPORT	DESTINATION_AIRPORT	DEPARTURE_TIME DEPARTURE_DELAY	SCHEDULED_TIME EL	APSED_TIME
Min. : 1.000	Min. : 1.00	Min. :1.000	WN :23807	ORD : 6665	ORD : 5890	Min. : 1 Min. : -28.00	Min. : 20.0 Min	. : 16.0
1st Qu.: 3.000	1st Qu.: 8.00	1st Qu.:2.000	AA :13002	ATL : 5643	ATL : 5148	1st Qu.:1156	1st Qu.: 86.0 1st	Qu.: 90.0
Median : 6.000	Median :16.00	Median :4.000	DL :11710	DFW : 5046	DFW : 4488	Median :1605 Median : 37.00	Median :125.0 Med	ian :130.0
Mean : 6.232	Mean :15.58	Mean :3.879	EV :10880	DEN : 4261	LAX : 4413	Mean :1527 Mean : 54.75	Mean :143.3 Mea	n :147.3
3rd Qu.: 9.000	3rd Qu.:23.00	3rd Qu.:5.000	00 :10743	LAX : 4019	DEN : 3789	3rd Qu.:1924 3rd Qu.: 70.00	3rd Qu.:175.0 3rd	Qu.:182.0
Max. :12.000	Max. :31.00	Max. :7.000	UA :10391	IAH : 3107	SFO : 3254	Max. :2400 Max. :1450.00	Max. :705.0 Max	. :724.0
			(Other):25810	(Other):77602	(Other):79361			
AIR_TIME	DISTANCE	WHEELS_ON	TAXI_IN	SCHEDULED_ARRI	VAL ARRIVAL_DELAY	AIR_SYSTEM_DELAY SECURITY_DELA	Y AIRLINE_DELAY	LATE_AIRCRAFT_DELAY
Min. : 9.0	Min. : 31.0	Min. : 1	Min. : 1.000	Min. : 1	Min. : 15.00	Min. : 0.00 Min. : 0.0	0000 Min. : 0.0	Min. : 0.00
1st Qu.: 62.0	1st Qu.: 383.0	1st Qu.:1241	1st Qu.: 4.000	1st Qu.:1300	1st Qu.: 23.00	1st Qu.: 0.00 1st Qu.: 0.0	0000 1st Qu.: 0.0	1st Qu.: 0.00
Median : 99.0	Median : 677.0	Median :1717	Median : 6.000	Median :1715	Median : 37.00	Median : 2.00 Median : 0.0	0000 Median: 2.0	Median : 3.00
Mean :117.8	Mean : 835.2	Mean :1579	Mean : 8.761	Mean :1620	Mean : 58.77	Mean : 13.55 Mean : 0.0	6384 Mean : 18.9	Mean : 23.33
3rd Qu.:149.0	3rd Qu.:1074.0	3rd Qu.:2038	3rd Qu.: 9.000	3rd Qu.:2025	3rd Qu.: 70.00	3rd Qu.: 18.00 3rd Qu.: 0.0	0000 3rd Qu.: 19.0	3rd Qu.: 29.00
Max. :670.0	Max. :4983.0	Max. :2400	Max. :176.000	Max. :2359	Max. :1444.00	Max. :738.00 Max. :221.0	0000 Max. :1444.0	Max. :1102.00

WEATHER_DELAY SCHEDULED_DEPARTURE_TIME_GROUP

Daytime:49108 Min. : 0.000 1st Qu.: 0.000 Evening:47996 Median : 0.000 NIGHT : 9239

Mean : 2.926 3rd Qu.: 0.000 Max. :995.000

Visualizations – Departure Delay

Visualizations

Prediction Model Preparation

- Training data to Testing data ratio is 7:3 (70000 to 30000 records)
- Conducted K-fold Cross validation on models using training dataset.

Create Prediction Model for Delay time

```
> summary(model)
Call:
lm(formula = .outcome \sim ., data = dat)
Residuals:
      Min
                         Median
                                                 Max
-2.519e-09 -1.800e-13 -2.000e-14 1.300e-13 1.047e-10
Coefficients: (184 not defined because of singularities)
                                       Estimate Std. Error
                                                             t value Pr(>|t|)
(Intercept)
                                     -9.947e-12 9.695e-12 -1.026e+00 0.30490
MONTH
                                    -9.279e-15 1.155e-14 -8.040e-01 0.42163
DAY
                                     -1.908e-15 4.214e-15 -4.530e-01 0.65071
                                     2.328e-14 1.865e-14 1.249e+00 0.21177
DAY_OF_WEEK
AIRLINEAS
                                     -2.755e-13 3.663e-13 -7.520e-01 0.45195
AIRLINEB6
                                     6.297e-13 2.477e-13 2.543e+00 0.01101 *
                                     8.095e-14 2.024e-13 4.000e-01 0.68914
AIRLINEDL
                                    -8.622e-14 2.280e-13 -3.780e-01 0.70534
AIRLINEEV
AIRLINEF9
                                     2.211e-13 3.010e-13 7.350e-01 0.46248
AIRLINEHA
                                     1.684e-12 7.347e-13 2.292e+00 0.02190 *
                                     2.089e-13 2.365e-13 8.830e-01 0.37698
AIRLINEMQ
                                     1.217e-13 2.667e-13 4.560e-01 0.64809
AIRLINENK
AIRLINE00
                                     3.246e-13 2.183e-13 1.487e+00 0.13698
AIRLINEUA
                                     4.841e-13 2.002e-13 2.418e+00 0.01559 *
AIRLINEUS
                                     -6.434e-15 2.583e-13 -2.500e-02 0.98013
AIRLINEVX
                                     1.772e-13 3.952e-13 4.480e-01 0.65389
AIRLINEWN
                                     5.043e-13 1.940e-13 2.599e+00
                                                                     0.00934 **
                                                       NA
ORIGIN_AIRPORT10136
                                            NA
ORIGIN_AIRPORT10140
                                     1.617e-12 7.241e-12 2.230e-01 0.82328
ORIGIN_AIRPORT10141
                                     1.152e-12 9.696e-12 1.190e-01 0.90541
ORIGIN AIRPORT10146
ORTGIN ATRPORTIGISA
                                                       МΔ
```

```
> summary(model2)
Call:
lm(formula = .outcome \sim ., data = dat)
Residuals:
      Min
                         Median
-2.524e-09 -7.000e-14 0.000e+00 9.000e-14 5.207e-10
Coefficients:
                                                             t value Pr(>|t|)
                                       Estimate Std. Error
                                     -1.000e-11 1.524e-13 -6.560e+01 < 2e-16 ***
(Intercept)
AIRLINEAS
                                     1.118e-12 2.756e-13 4.057e+00 4.98e-05 ***
AIRLINEB6
                                      3.874e-14 1.896e-13 2.040e-01 0.838041
AIRLINEDL
                                      4.865e-13 1.544e-13 3.151e+00 0.001629 **
AIRLINEEV
                                     -4.939e-12 1.617e-13 -3.054e+01 < 2e-16 ***
ATRLINEF9
                                     1.408e-12 2.690e-13 5.235e+00 1.66e-07 ***
AIRLINEHA
                                      3.996e-13 4.176e-13 9.570e-01 0.338722
AIRLINEMQ
                                      3.624e-12 1.917e-13 1.890e+01 < 2e-16 ***
AIRLINENK
                                      4.496e-12 2.329e-13 1.931e+01 < 2e-16 ***
AIRLINE00
                                      2.269e-12 1.621e-13 1.400e+01 < 2e-16 ***
                                      2.356e-12 1.601e-13 1.472e+01 < 2e-16 ***
AIRLINEUA
AIRLINEUS
                                      8.918e-13 2.254e-13 3.958e+00 7.58e-05 ***
                                     1.254e-12 3.666e-13 3.422e+00 0.000623 ***
ATRLINEVX
AIRLINEWN
                                     1.212e-12 1.352e-13 8.965e+00 < 2e-16 ***
SCHEDULED TIME
                                     1.000e+00 2.044e-15 4.893e+14 < 2e-16 ***
ELAPSED_TIME
                                     -1.000e+00 1.970e-15 -5.076e+14 < 2e-16 ***
ARRIVAL_DELAY
                                     1.000e+00 5.802e-16 1.723e+15 < 2e-16 ***
SCHEDULED_DEPARTURE_TIME_GROUPEvening -1.018e-13 7.811e-14 -1.304e+00 0.192294
SCHEDULED_DEPARTURE_TIME_GROUPNIGHT -4.907e-15 1.369e-13 -3.600e-02 0.971409
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

Prediction Model Validation

```
> rmse(predictions,test_df$DEPARTURE_DELAY)
[1] 9.615932e-12
```

```
> rmse(predictions2,test_df$DEPARTURE_DELAY)
[1] 9.82185e-12
```

Now let's look at Arrival Delay

Arrival Delay Visualizations

Arrival Delay Visualizations

Arrival Delay

Arrival Delay

```
> summary(model)
call:
lm(formula = .outcome \sim ., data = dat)
Residuals:
       Min
                   1Q
                         Median
                                                  Max
-2.601e-10 -1.400e-13 4.000e-14 2.200e-13 2.466e-09
Coefficients: (159 not defined because of singularities)
                                                            t value Pr(>|t|)
                                     Estimate Std. Error 1.112e+00 0.26594
                                    6.897e-12 6.200e-12 1.210e-01 0.90395
(Intercept)
                                    1.375e-15 1.139e-14 -1.470e-01 0.88343
MONTH
                                   -6.083e-16 4.149e-15 2.230e-01 0.82338
DAY
                                    4.095e-15 1.835e-14 2.664e+00
DAY_OF_WEEK
                                                                    0.00773 **
                                    9.739e-13 3.656e-13 -2.178e+00
                                                                    0.02938 *
AIRLINEAS
                                   -5.311e-13 2.438e-13 1.335e+00
                                                                    0.18186
AIRLINEB6
                                    2.654e-13 1.988e-13 1.862e+00 0.06263 .
AIRLINEDL
                                    4.168e-13 2.238e-13
                                                         7.699e+00 1.39e-14 ***
AIRLINEEV
                                    2.305e-12 2.994e-13 4.905e+00 9.36e-07 ***
AIRLINEF9
AIRLINEHA
                                    3.633e-12 7.406e-13 4.108e+00 4.00e-05 ***
                                    9.598e-13 2.336e-13 -9.150e-01 0.36037
AIRLINEMO
                                   -2.428e-13 2.654e-13 5.286e+00 1.26e-07 ***
AIRLINENK
```

```
> summary(model2)
Call:
lm(formula = .outcome ~ ., data = dat)
Residuals:
       Min
                         Median
                                                  Max
-4.308e-10 -5.000e-14 -2.000e-14 1.000e-14 2.466e-09
Coefficients:
                  Estimate Std. Error
                                         t value Pr(>|t|)
                1.511e-11 1.612e-13 9.370e+01 < 2e-16 ***
(Intercept)
                8.099e-12 2.823e-13 2.869e+01 < 2e-16 ***
AIRLINEAS
ATRI TNFB6
                -3.779e-12 1.924e-13 -1.964e+01 < 2e-16
AIRLINEDL
                -3.559e-12 1.567e-13 -2.272e+01 < 2e-16 ***
               -9.569e-12 1.638e-13 -5.841e+01 < 2e-16 ***
AIRLINEEV
                -3.194e-12 2.740e-13 -1.166e+01 < 2e-16 ***
AIRLINEF9
                -2.952e-12 4.280e-13 -6.898e+00 5.32e-12 ***
AIRLINEHA
AIRLINEMQ
                -4.039e-12 1.932e-13 -2.090e+01 < 2e-16
                -2.119e-12 2.386e-13 -8.880e+00 < 2e-16 ***
AIRLINENK
                -2.766e-12 1.641e-13 -1.686e+01 < 2e-16 ***
AIRLINEOO
                -2.723e-12 1.616e-13 -1.685e+01 < 2e-16 ***
AIRLINEUA
AIRLINEUS
                -3.980e-12 2.273e-13 -1.751e+01 < 2e-16 ***
```

Arrival Delay

```
> rmse(predictions,test_df$ARRIVAL_DELAY)
[1] 9.439005e-12
```

```
> rmse(predictions2,test_df$ARRIVAL_DELAY)
[1] 9.957019e-12
```

Model 1 (using all attributes) has lower RMSE for both departure and arrival delay prediction.

Conclusion

- 1. Linear Regression maybe not suitable for predicting delay time.
- 2. Model 2 may have too less columns and be a bit overfitting.
- 3. K fold only 3 folds so both models aren't trained enough to show more accurate results.