Lógica Fuzzy aplicada a Sistemas de Informação de Apoio à Decisão

António Sérgio Matos da Silva

an.silva@logica.com

Telecommunication Business Logica

22 de Agosto de 2010 Reunião Mensal Zon

Breve contextualização Teórica Estado da Arte E agora? Sumário Referências

"À medida que a complexidade aumenta, as declarações precisas perdem relevância e as declarações relevantes perdem precisão."

Lofti Zadeh

- Breve contextualização Teórica
 - Motivação
 - História e Uso da Lógica Fuzzy
 - Fundamentos da Lógica Fuzzy
- Estado da Arte
 - Estilo Mamdami
 - Bousi-Prolog
- B agora?
- 4 Sumário

- Breve contextualização Teórica
 - Motivação
 - História e Uso da Lógica Fuzzy
 - Fundamentos da Lógica Fuzzy
- Estado da Arte
 - Estilo Mamdami
 - Bousi-Prolog
- B agora?
- Sumário

- Breve contextualização Teórica
 - Motivação
 - História e Uso da Lógica Fuzzy
 - Fundamentos da Lógica Fuzzy
- Estado da Arte
 - Estilo Mamdami
 - Bousi-Prolog
- 3 E agora?
- 4 Sumário

- Breve contextualização Teórica
 - Motivação
 - História e Uso da Lógica Fuzzy
 - Fundamentos da Lógica Fuzzy
- Estado da Arte
 - Estilo Mamdami
 - Bousi-Prolog
- 3 E agora?
- Sumário

- Breve contextualização Teórica
 - Motivação
 - História e Uso da Lógica Fuzzy
 - Fundamentos da Lógica Fuzzy
- Estado da Arte
 - Estilo Mamdami
 - Bousi-Prolog
- B agora?
- Sumário

Como "Raciocina" um Computador Tradicional?

Figura: Funcionamento de um PC

Pensamento Lógico Humano

Figura: Funcionamento do cérebro de Larry Wall

- Tradicionalmente, o comportamento dos sistemas é realizado pela representação da lógica de Boole, aceitando apenas dois resultados zero ou um, verdadeiro ou falso, tudo ou nada.
- No entanto, em muitas situações não relevamos esta dicotomia comportamental.
 - Apesar de a partida, uma pessoa com 1.75 m ser alta, esta não é assim tão alta;
 - Quando alguém nos diz que nos ama, não sabemos o quanto esta nos ama;
 - Nem sempre precisamos de obter um resultado baseado numa certeza, ficamos satisfeitos apenas com um certo grau de confiança.

- Tradicionalmente, o comportamento dos sistemas é realizado pela representação da lógica de Boole, aceitando apenas dois resultados zero ou um, verdadeiro ou falso, tudo ou nada.
- No entanto, em muitas situações não relevamos esta dicotomia comportamental.
 - Apesar de à partida, uma pessoa com 1.75 m ser alta, esta não é assim tão alta;
 - Quando alguém nos diz que nos ama, não sabemos o quanto esta nos ama;
 - Nem sempre precisamos de obter um resultado baseado numa certeza, ficamos satisfeitos apenas com um certo grau de confiança.

- Tradicionalmente, o comportamento dos sistemas é realizado pela representação da lógica de Boole, aceitando apenas dois resultados zero ou um, verdadeiro ou falso, tudo ou nada.
- No entanto, em muitas situações não relevamos esta dicotomia comportamental.
 - Apesar de à partida, uma pessoa com 1.75 m ser alta, esta não é assim tão alta;
 - Quando alguém nos diz que nos ama, não sabemos o quanto esta nos ama;
 - Nem sempre precisamos de obter um resultado baseado numa certeza, ficamos satisfeitos apenas com um certo grau de confiança.

- Tradicionalmente, o comportamento dos sistemas é realizado pela representação da lógica de Boole, aceitando apenas dois resultados zero ou um, verdadeiro ou falso, tudo ou nada.
- No entanto, em muitas situações não relevamos esta dicotomia comportamental.
 - Apesar de à partida, uma pessoa com 1.75 m ser alta, esta não é assim tão alta;
 - Quando alguém nos diz que nos ama, não sabemos o quanto esta nos ama;
 - Nem sempre precisamos de obter um resultado baseado numa certeza, ficamos satisfeitos apenas com um certo grau de confiança.

- Tradicionalmente, o comportamento dos sistemas é realizado pela representação da lógica de Boole, aceitando apenas dois resultados zero ou um, verdadeiro ou falso, tudo ou nada.
- No entanto, em muitas situações não relevamos esta dicotomia comportamental.
 - Apesar de à partida, uma pessoa com 1.75 m ser alta, esta não é assim tão alta;
 - Quando alguém nos diz que nos ama, não sabemos o quanto esta nos ama;
 - Nem sempre precisamos de obter um resultado baseado numa certeza, ficamos satisfeitos apenas com um certo grau de confiança.

Exemplo

Pretende-se comparar os dois mecanismos para efectuar a curva à direita.

Booleana

- Pressionar o travão com uma força de
 Newtons.
- Inclinar o volante15 graus para a Direita
- Colocar o volante na posição inicial (0 graus).

- Reduza a velocidade
- Vire um pouco para a direita
- Vire mais um pouco para a direita
- Siga em frente

Booleana

- Pressionar o travão com uma força de
 Newtons.
- Inclinar o volante15 graus para a Direita
- Colocar o volante na posição inicial (0 graus).

- Reduza a velocidade.
- Vire um pouco para a direita
- Vire mais um pouco para a direita
- Siga em frente

Booleana

- Pressionar o travão com uma força de
 Newtons.
- Inclinar o volante15 graus para a Direita
- Oclocar o volante na posição inicial (0 graus).

Humana

Reduza a velocidade.

Vire um pouco para a

direita

Vire mais um pouco para a direita

para a diroita

Siga em frente

Booleana

- Pressionar o travão com uma força de 20 Newtons.
- Inclinar o volante15 graus para a Direita
- Oclocar o volante na posição inicial (0 graus).

- Reduza a velocidade.
- Vire um pouco para a direita
- Vire mais um pouco para a direita
- Siga em frente.

Booleana

- Pressionar o travão com uma força de 20 Newtons.
- Inclinar o volante15 graus para a Direita
- Oclocar o volante na posição inicial (0 graus).

- Reduza a velocidade.
- Vire um pouco para a direita
- Vire mais um pouco para a direita
- Siga em frente.

Booleana

- Pressionar o travão com uma força de 20 Newtons.
- Inclinar o volante15 graus para a Direita
- Olocar o volante na posição inicial (0 graus).

- Reduza a velocidade.
- Vire um pouco para a direita
- Vire mais um pouco para a direita
- Siga em frente.

Booleana

- Pressionar o travão com uma força de 20 Newtons.
- Inclinar o volante15 graus para a Direita
- Olocar o volante na posição inicial (0 graus).

- Reduza a velocidade.
- Vire um pouco para a direita
- Vire mais um pouco para a direita
- Siga em frente.

- Breve contextualização Teórica
 - Motivação
 - História e Uso da Lógica Fuzzy
 - Fundamentos da Lógica Fuzzy
- Estado da Arte
 - Estilo Mamdami
 - Bousi-Prolog
- B agora?
- Sumário

Resumo Histórico...

- 1930 Jan Lukasiewz propôs o estudo de termos qualitativos do tipo alto, velho e quente e propôs a idéia da utilização de um intervalo de valores entre 0 e 1 para descrever a veracidade de uma dada afirmação;
- 1937 Max Black definiu o primeiro conjunto fuzzy e descreveu algumas idéias básicas de operações com estes.

Figura: Jan Lukasiewicz (1878–1956)

Resumo Histórico...

- 1930 Jan Lukasiewz propôs o estudo de termos qualitativos do tipo alto, velho e quente e propôs a idéia da utilização de um intervalo de valores entre 0 e 1 para descrever a veracidade de uma dada afirmação;
- 1937 Max Black definiu o primeiro conjunto fuzzy e descreveu algumas idéias básicas de operações com estes.

Figura: Jan Lukasiewicz (1878–1956)

Resumo Histórico...

1965 Lofti Zadeh publicou o artigo Fuzzy Sets que ficou conhecido como a origem da Lógica Fuzzy. Zadeh é conhecido como o "mestre" da Lógica Fuzzy.

Figura: Lofti Zadeh (1921–Actualidade)

Uso da Lógica Fuzzy

```
1970 Primeira aplicação da Lógica Fuzzy na engenharia de controlo;
```

- 1975 Introdução da Lógica Fuzzy no Japão;
- 1985 Ampla utilização no Japão;
- 1990 Ampla utilização na Europa;
- 1995 Ampla utilização nos EUA;
- 1996 1100 aplicações com Lógica Fuzzy publicadas;
- 2000 Aplicada a finanças e controle multi-variável.

- Robusta porque n\u00e3o requer entradas precisas;
- Facilmente modificável pois é baseada em regras;
- Evita o formalismo matemático para sistemas não lineares;
- Solução rápida e barata para sistemas complexos não lineares;
- Implementável em microprocessadores.

- Robusta porque n\u00e3o requer entradas precisas;
- Facilmente modificável pois é baseada em regras;
- Evita o formalismo matemático para sistemas não lineares;
- Solução rápida e barata para sistemas complexos não lineares;
- Implementável em microprocessadores.

- Robusta porque n\u00e3o requer entradas precisas;
- Facilmente modificável pois é baseada em regras;
- Evita o formalismo matemático para sistemas não lineares;
- Solução rápida e barata para sistemas complexos não lineares;
- Implementável em microprocessadores.

- Robusta porque n\u00e3o requer entradas precisas;
- Facilmente modificável pois é baseada em regras;
- Evita o formalismo matemático para sistemas não lineares;
- Solução rápida e barata para sistemas complexos não lineares;
- Implementável em microprocessadores.

- Breve contextualização Teórica
 - Motivação
 - História e Uso da Lógica Fuzzy
 - Fundamentos da Lógica Fuzzy
- Estado da Arte
 - Estilo Mamdami
 - Bousi-Prolog
- B agora?
- 4 Sumário

Exemplo (O caso do ar condicionado)

No edifício Pinta o ar condicionado encontra-se constantemente avariado. Pretende-se desenvolver uma lógica que pretende avaliar se uma dada temperatura é confortável ou não.

Numa primeira análise vem o José e diz que a temperatura ideal para ele é de exactamente 20° C.

Figura: Função de Verdade de uma Lógica tipicamente Booleana.

No entanto o Miguel discorda com valor estipulado anteriormente. "Vamos lá ver! Se a temperatura for 18 ou 22 não deixa de ser bom também!"

Figura: Função de Verdade de uma Lógica na Cabeça do "Miguel". Logica

No dia seguinte já com o ar condicionado a funcionar e uma temperatura a funcionar o Miguel pergunta ao Pedro.

"Bom dia! Está bom tempo hoje!"

Ao que este responde:

"Sim está. Nem muito quente nem muito frio..."

Figura: Função de Verdade de uma Lógica Fuzzy.

Conceito de Difusidade

Na verdade o que o Pedro pensou...

Figura: Função de Verdade de uma Lógica Fuzzy representando mais do que uma valoração ao mesmo tempo.

Definições Fuzzy — Etiqueta linguística

Definição

A descrição de inúmeras situações concretas referentes a uma dada variável faz-se por intermédio de etiquetas linguísticas. Estas representam o carácter qualitativo de todas as possibilidades de uma dada variável.

Etiquetas Bivalentes

- Lento:
- Rápido.

Definições Fuzzy — Etiqueta linguística

Definição

A descrição de inúmeras situações concretas referentes a uma dada variável faz-se por intermédio de etiquetas linguísticas. Estas representam o carácter qualitativo de todas as possibilidades de uma dada variável.

Etiquetas Bivalentes

- Lento;
- Rápido.

Definições Fuzzy — Exemplo de Etiquetas Linguísticas

Etiquetas Trivalentes

- Baixo;
- Médio;
- Alto.

Etiquetas Multivalentes

- Muito Frio
- Frio;
- Moderado;
- Quente;
- Muito Quente.

Definições Fuzzy — Variável Linguística

Definição

Uma variável linguística pode ser contínua ou discreta.

Exemplo (Temperatura)

Figura: Exemplo de Variável Linguística contínua.

Definições Fuzzy — Variável Linguística

Definição

Uma variável linguística pode ser contínua ou discreta.

Exemplo (Temperatura)

Figura: Exemplo de Variável Linguística contínua.

Exemplo (Rodas de um camião)

Figura: Exemplo de Variável Linguística Discreta.

Definições Fuzzy — Conjuntos Fuzzy no Mundo Real

Convenção

Geralmente os Sistemas de Informação baseados num sistema de decisão Fuzzy usam a seguinte simplificação das etiquetas. A partir de agora usaremos também esta notação.

Exemplo (Conjunto Fuzzy no Mundo Real)

Figura: Exemplo de Variável Linguística Contínua do Mundo Real.

Definições Fuzzy — Etiquetas e Conjuntos Fuzzy

Definição

Seja X uma Etiqueta Linguística. Esta é representada por um Conjunto Fuzzy C descrito pela função de pertença $\mu_X(x_0)$.

Figura: Etiqueta Linguística e respectiva Função Pertença.

Definições Fuzzy — Suporte

Definição

Seja X uma Etiqueta Linguística. Designa-se por Suporte de X (\mathcal{S}_X) a zona em que a sua função pertença não é nula. Ou seja: $\{\mu_X(x_0) \mid \mu_X(x_0) \neq 0 \land x_0 \in [0,1]\}$

Figura: Suporte de uma Etiqueta Linguística

Definicões Fuzzy — Núcleo

Definicão

Seja X uma Etiqueta Linguística. Designa-se por Núcleo de X (\mathcal{N}_{x}) a zona em que a sua função pertença é máxima. Ou seja: $\{\mu_X(x_0) \mid \mu_X(x_0) = 1 \land x_0 \in [0, 1]\}$

Figura: Núcleo de uma Etiqueta Linguística

Definições Fuzzy — Variável Linguística Normada

Definição

Uma Variável Línguística diz-se Normada se esta gera um discurso limitado pelo conjunto [-1,1]

Figura: Variável não normada.

Definições Fuzzy — Variável Linguística Normada Exemplo

Exemplo (Variável Linguística Normada)

Figura: Variável normada à escala 1/120.

Operações Com Conjuntos Fuzzy

Proposição

Seja \Im o Universo de uma Variável Linguística e sejam $\mathcal A$ e $\mathcal B$ dois Conjuntos Fuzzy definidos por:

$$\mathcal{A} = \{(x, \mu_{\mathcal{A}}(x)) \mid x \in \mho \land \mu_{\mathcal{A}}(x) \in [0, 1]\}$$

$$\mathcal{B} = \{(x, \mu_{\mathcal{B}}(x)) \mid x \in \mho \land \mu_{\mathcal{B}}(x) \in [0, 1]\}$$

Operações Com Conjuntos Fuzzy — União

Definição (União)

A união entre A e B é definida por:

$$\mathcal{A} \cup \mathcal{B} = \{(x, max(\mu_{\mathcal{A}}(x), \mu_{\mathcal{B}}(x))) \mid x \in \mho\}$$

Figura: Diagrama de Venn da União de dois Conjuntos

Operações Com Conjuntos Fuzzy — Intersecção

Definição (Intersecção)

A Intersecção entre A e B é definida por:

$$\mathcal{A} \cap \mathcal{B} = \{(x, \min(\mu_{\mathcal{A}}(x), \mu_{\mathcal{B}}(x))) \mid x \in \mho\}$$

Figura: Diagrama de Venn da Intersecção de dois Conjuntos

Operações Com Conjuntos Fuzzy — Complemento

Definição (Complemento)

O Complemento de A é definido por:

$$\neg \mathcal{A} = \{ (x, \mu_{\neg \mathcal{A}}(x)) \mid x \in \mho \land \mu_{\neg \mathcal{A}}(x) = 1 - \mu_{\mathcal{A}}(x) \}$$

Figura: Diagrama de Venn do Complemento de um Conjunto

Modificadores Linguísticos

Definição

Seja $\mathcal A$ um conjunto Fuzzy intervalar com a função de pertinência $\mu_{\mathcal A} x$. Então o *Modificador Línguístico* de $\mathcal A$ é uma função intervalar $\mathcal M$ definida por:

$$\mathcal{M}:\mathcal{I}[0,1]\to\mathcal{I}[0,1]$$

que age na função pertinência $\mu_{\mathcal{I}\mathcal{A}}x$ transformando-a em $\mu_{m\mathcal{I}\mathcal{A}}x$ onde:

$$\mu_{m\mathcal{I}\mathcal{A}}(\mathbf{x}) = \mathcal{M}(\mu_{\mathcal{I}\mathcal{A}}(\mathbf{x}))$$

Modificadores Linguísticos — Very

Definição (Very)

O modificador Very (muito) define-se por:

$$\mu_{\mathcal{V}\mathcal{A}}\mathbf{X} = \mu_{\mathcal{V}\mathcal{A}}^2\mathbf{X}$$

Figura: Representação Gráfica do Modificador Very

Modificadores Linguísticos — Somewhat

Definição (Somewhat)

O modificador Somewhat (pouco) define-se por:

$$\mu_{VA}X = \sqrt[2]{\mu_{VA}X}$$

Figura: Representação Gráfica do Modificador Somewhat

Modificadores Linguísticos — Above

Definição (Above)

O modificador Above (acima) define-se por:

$$\mu_{VA} \mathbf{X} = \mu_{VA} \mathbf{X} - \delta$$

Figura: Representação Gráfica do Modificador Above

Modificadores Linguísticos — Below

Definição (Below)

O modificador Below (abaixo) define-se por:

$$\mu_{VA} \mathbf{X} = \mu_{VA} \mathbf{X} + \delta$$

Figura: Representação Gráfica do Modificador Below

Modificadores Linguísticos — Not

Definição (Not)

O modificador Not (não) define-se por:

$$\mu_{\mathbf{V}\mathcal{A}}\mathbf{X} = \mathbf{1} - \mu_{\mathbf{V}\mathcal{A}}\mathbf{X}$$

Figura: Representação Gráfica do Modificador Not

Modificadores Linguísticos — Not Very

Definição (Not Very)

O modificador Not Very (não muito) define-se por:

$$\mu_{v\mathcal{A}}x = 1 - \mu_{v\mathcal{A}}^2x$$

Figura: Representação Gráfica do Modificador Not Very

- Para fazer deduções com conjuntos difusos utilizam-se regras de inferência, formatando afirmações condicionais como implicações do tipo "if-then";
- O antecedente diz respeito às "condições lógicas" impostas sobre essa variável linguística;
- O consequente diz respeito às "acções" decorrentes dessas condições na variável de saída;
- No controlo difuso costumam haver múltiplas regras de inferência, de acordo com a natureza dos estados medidos no processo.

- Para fazer deduções com conjuntos difusos utilizam-se regras de inferência, formatando afirmações condicionais como implicações do tipo "if-then";
- O antecedente diz respeito às "condições lógicas" impostas sobre essa variável linguística;
- O consequente diz respeito às "acções" decorrentes dessas condições na variável de saída;
- No controlo difuso costumam haver múltiplas regras de inferência, de acordo com a natureza dos estados medidos no processo.

- Para fazer deduções com conjuntos difusos utilizam-se regras de inferência, formatando afirmações condicionais como implicações do tipo "if-then";
- O antecedente diz respeito às "condições lógicas" impostas sobre essa variável linguística;
- O consequente diz respeito às "acções" decorrentes dessas condições na variável de saída;
- No controlo difuso costumam haver múltiplas regras de inferência, de acordo com a natureza dos estados medidos no processo.

- Para fazer deduções com conjuntos difusos utilizam-se regras de inferência, formatando afirmações condicionais como implicações do tipo "if-then";
- O antecedente diz respeito às "condições lógicas" impostas sobre essa variável linguística;
- O consequente diz respeito às "acções" decorrentes dessas condições na variável de saída;
- No controlo difuso costumam haver múltiplas regras de inferência, de acordo com a natureza dos estados medidos no processo.

Exemplo (Base de Regras)

```
if (antecedente<sub>1</sub>) then (consequente<sub>1</sub>) or
if (antecedente<sub>2</sub>) then (consequente<sub>2</sub>) or
...
if (antecedente<sub>n</sub>) then (consequente<sub>n</sub>)
```


Pausa...

Programa

- Breve contextualização Teórica
 - Motivação
 - História e Uso da Lógica Fuzzy
 - Fundamentos da Lógica Fuzzy
- Estado da Arte
 - Estilo Mamdami
 - Bousi-Prolog
- B agora?
- 4 Sumário

História do Estilo Mamdami

Estilo Mamdani

O estilo de inferência Mandani foi criado pelo professor Mandani da Universidade de Londres em 1975. O seu principal objectivo era desenvolver sistemas Fuzzy, baseando-se em regras de conjuntos Fuzzy com o intuito de representar experiências da vida real.

Figura: Ebrahim Mamdani (1943–2010)

Definição

- Fuzzyficação;
- Avaliação das Regras Fuzzy;
- Agregação das Regras Fuzzy;
- O Defuzzyficação

Definição

- Fuzzyficação;
- Avaliação das Regras Fuzzy;
- Agregação das Regras Fuzzy;
- Defuzzyficação

Definição

- Fuzzyficação;
- Avaliação das Regras Fuzzy;
- Agregação das Regras Fuzzy;
- Defuzzyficação

Definição

- Fuzzyficação;
- Avaliação das Regras Fuzzy;
- Agregação das Regras Fuzzy;
- O Defuzzyficação.

Exercício

Exemplo (Análise de Risco)

Considere a análise de riscos num projecto. Pretende-se estabelecer, sendo conhecidos um valor x de recurso monetário e um número y de funcionários para trabalhar no mesmo, qual o risco z nesse projecto.

Variáveis de Entrada

Fundos do projecto(x)	
Valor linguístico	Notação
Inadequado	A1
Razoável	A2
Adequado	A3

Funcionários do Projecto(y)	
Valor linguístico	Notação
Pequeno	B1
Grande	B2

Variáveis de Saída

Risco do Projecto(z)	
Valor linguístico	Notação
Baixo	C1
Normal	C2
Alto	C3

Fuzzyficação

Exemplo (Entradas Crisp)

Sejam x e y duas entradas crisp representando os conjuntos Fuzzy X (Fundos do Projecto) e Y (Funcionários do Projecto respectivamente). Então aplicando as entradas as conjuntos Fuzzy obtemos o valor das funções de pertença.

Fuzzyficacao da Variável referente aos Fundos do Projecto

Figura: Fuzzyficacao da Variável referente aos Fundos do Projecto

Fuzzyficacao da Variável referente aos Funcionários do Projecto

Figura: Fuzzyficacao da Variável referente aos Funcionários do Projecto

Variáveis de Entrada Fuzzificadas

Fundos do projecto (x)		
Etiqueta	Valor	
A1	0.5	
A2	0.2	
A3	0	

Funcionários do Projecto (y)		
Etiqueta	Valor	
B1	0.1	
B2	0.7	

Avaliação das Regras Fuzzy

Exemplo (Avaliação das Regras Fuzzy)

Com base nos graus de pertinência e nas correlações entre as variáveis linguísticas, têm-se as regras.

- **1** IF ((x is A3(0)) OR (y is B1(0.1))) THEN (z is C1(0.1))
- ② IF ((x is A2(0.2)) AND (y is B2(0.7))) THEN (z is C2(0.2))
- **3** IF (x is A1(0.5) THEN (z is C3(0.5)))

Avaliação das Regras Fuzzy

Exemplo (Avaliação das Regras Fuzzy)

Com base nos graus de pertinência e nas correlações entre as variáveis linguísticas, têm-se as regras.

- **1** IF ((x is A3(0)) OR (y is B1(0.1))) THEN (z is C1(0.1))
- ② IF ((x is A2(0.2)) AND (y is B2(0.7))) THEN (z is C2(0.2))
- **3** IF (x is A1(0.5) THEN (z is C3(0.5))

Avaliação das Regras Fuzzy

Exemplo (Avaliação das Regras Fuzzy)

Com base nos graus de pertinência e nas correlações entre as variáveis linguísticas, têm-se as regras.

- **1** IF ((x is A3(0)) OR (y is B1(0.1))) THEN (z is C1(0.1))
- ② IF ((x is A2(0.2)) AND (y is B2(0.7))) THEN (z is C2(0.2))
- **3** IF (x is A1(0.5) THEN (z is C3(0.5)))

Agregação das Regras Fuzzy

Figura: Conjunto Fuzzy Resultante do Processo de Agregação das Regras Fuzzy

Defuzzyficação

Definição (Defuzzyficação)

O método de defuzzyficação mais comum é a técnica do centróide, que obtém o ponto onde uma linha vertical divide ao meio um conjunto agregado. A equação que descrever o cálculo da centróide é a seguinte \mathcal{COG} :

$$COG = \frac{\sum_{x=a}^{b} \mu(x) \cdot x}{\sum_{x=a}^{b} \mu(x)}$$

Defuzzyficação — Exemplo

Exemplo

Considerando o conjunto Fuzzy anterior, o resultado numérico obtido com a aplicação técnica do centróide \mathcal{COG} é dado por (considerando intervalos percentuais de 10%, variando de 0% a 100%):

$$\mathcal{COG} = \frac{ \begin{pmatrix} (0+10+20) \cdot 0.1 + \\ (30+40+50) \cdot 0.2 + \\ \hline (60+70+80+90+100) \cdot 0.5 \\ \hline 0.1+0.1+0.1 + \\ 0.2+0.2+0.2 + \\ 0.5+0.5+0.5 \end{pmatrix} = 67.4$$

Assim tem-se que o risco do projecto em questão é de 67.4%.

Programa

- Breve contextualização Teórica
 - Motivação
 - História e Uso da Lógica Fuzzy
 - Fundamentos da Lógica Fuzzy
- Estado da Arte
 - Estilo Mamdami
 - Bousi-Prolog
- B agora?
- Sumário

- Os matemáticos descobriram que apesar da lógica de primeira ordem não ser automaticamente dedutível, existem subconjuntos que o são;
- 1965 Robinson definiu a dedução automática
- 1969 Green Implementou um sistema de Resolução em Lisp
- 1970 Kowalsky começa a usar as Cláusulas de Horn (subconjunto da lógica da 1ª ordem) para "provas automáticas".

- Os matemáticos descobriram que apesar da lógica de primeira ordem não ser automaticamente dedutível, existem subconjuntos que o são;
- 1965 Robinson definiu a dedução automática;
- 1969 Green Implementou um sistema de Resolução em Lisp
- 1970 Kowalsky começa a usar as Cláusulas de Horn (subconjunto da lógica da 1ª ordem) para "provas automáticas".

- Os matemáticos descobriram que apesar da lógica de primeira ordem não ser automaticamente dedutível, existem subconjuntos que o são;
- 1965 Robinson definiu a dedução automática;
- 1969 Green Implementou um sistema de Resolução em Lisp
- 1970 Kowalsky começa a usar as Cláusulas de Horn (subconjunto da lógica da 1ª ordem) para "provas automáticas".

- Os matemáticos descobriram que apesar da lógica de primeira ordem não ser automaticamente dedutível, existem subconjuntos que o são;
- 1965 Robinson definiu a dedução automática;
- 1969 Green Implementou um sistema de Resolução em Lisp
- 1970 Kowalsky começa a usar as Cláusulas de Horn (subconjunto da lógica da 1ª ordem) para "provas automáticas".

- 1972 Um grupo de investigadores da Universidade de Marselha desenvolveu um sistema de resolução para as Cláusulas de Horn;
- 1980- O governo Japonês investiu no projecto designado por quinta geração que teve como resultado grandes contribuições para a computação lógica;
- propuseram uma extensão à máquina de inferência
 Prolog, utilizando lógica Fuzzy, para que existissem
 "respostas mais flexíveis às perguntas". Para isso foi
 implementado o sistema Bousi Prolog e continua em
 desenvolvimento na Universidad de Castilla-La Mancha

- 1972 Um grupo de investigadores da Universidade de Marselha desenvolveu um sistema de resolução para as Cláusulas de Horn;
- 1980- O governo Japonês investiu no projecto designado por quinta geração que teve como resultado grandes contribuições para a computação lógica;
- 2008 Julián-Iranzo, Rubio-Manzano e Gallardo Casero propuseram uma extensão à máquina de inferência Prolog, utilizando lógica Fuzzy, para que existissem "respostas mais flexíveis às perguntas". Para isso foi implementado o sistema Bousi Prolog e continua em desenvolvimento na Universidad de Castilla-La Mancha

- 1972 Um grupo de investigadores da Universidade de Marselha desenvolveu um sistema de resolução para as Cláusulas de Horn;
- 1980- O governo Japonês investiu no projecto designado por quinta geração que teve como resultado grandes contribuições para a computação lógica;
- 2008 Julián-Iranzo, Rubio-Manzano e Gallardo Casero propuseram uma extensão à máquina de inferência Prolog, utilizando lógica Fuzzy, para que existissem "respostas mais flexíveis às perguntas". Para isso foi implementado o sistema Bousi Prolog e continua em desenvolvimento na Universidad de Castilla-La Mancha.

Convencional Lógica

Convenciona
Lógica
Convenciona

Lógica

Processamento Numérico Processamento Simbólico;

Soluções Algorítmicas Soluções Heurística;

nhecimento Integradas
Estruturas de Controle e Conhecimento Separadas.

Convencional Lógica

Convencional Lógica

Convencional

Lógica

Processamento Numérico Processamento Simbólico;

Soluções Algorítmicas Soluções Heurística;

Estruturas de Controle e Conhecimento Integradas Estruturas de Controle e Conhecimento Separadas.

Convencional Processamento Numérico Lógica Processamento Simbólico:

Convencional Soluções Algorítmicas **Lógica** Soluções Heurística;

Convencional Estruturas de Controle e Co-

nhecimento Integradas

Lógica Estruturas de Controle e Co-

nhecimento Separadas.

Convencional Lógica

Convencional

Lógica

Convencional

Lógica

Difícil Modificação ; Fácil Modificação ;

Somente Respostas Total-

mente Correctas

Incluem Respostas Parcial-

mente Correctas;

Somente a Melhor Solução

Possível

Incluem Todas as Soluções

Possíveis

Convencional

Lógica

Convencional

Lógica

Convencional

Lógica

Difícil Modificação Fácil Modificação;

-acii iviodilicação

Somente Respostas Total-

mente Correctas

Incluem Respostas Parcial-

mente Correctas;

Somente a Melhor Solução

Possível

Incluem Todas as Soluções

Possíveis

Convencional Difícil Modificação Lógica Fácil Modificação ;

Convencional Somente Respostas Total-

mente Correctas

Lógica Incluem Respostas Parcial-

mente Correctas;

Convencional Somente a Melhor Solução

Possível

Lógica Incluem Todas as Soluções

Possíveis.

Arquitectura Prolog

Figura: Arquitectura Prolog

Nota

- Basicamente um programa Prolog é um conjunto de Factos e Regras;
- A interacção é feita através de Queries.

Exemplo

Exemplo (Árvore Genealógica)

Pretende-se escrever em prolog a árvore genealógica seguinte, e representar as relações familiares entre os indivíduos.

Programa Heurístico

Exemplo (Alice na Floresta do esquecimento)

A Alice tinha má memória. Um dia entrou na floresta do Esquecimento e esquesceu-se do dia-da-semana. Os seus amigos Coelho e Cuco são visitantes frequentes da floresta. Estes dois são criaturas estranhas.

O coelho mente às Segundas, Terças e Quartas e diz a verdade no resto da Semana. Por outro lado, o Cuco mente às Quintas, Sextas e Sábados dizendo a verdade no resto dos dias.

Programa Heurístico

Exemplo (Alice na Floresta do esquecimento)

Um certo dia a Alice encontrou estes dois debaixo de uma árvore. Eles fizeram as seguintes declarações:

- Coelho: Ontem foi um dos dias que eu menti;
- Cuco: Ontem foi um dos dias que eu menti.

A Alice foi capaz, usando estas declarações, de deduzir o dia-da-semana em que se encontrava.

Programa Heurístico

Exemplo (Alice na Floresta do esquecimento)

Com este exemplo pretende-se:

- Escrever uma Base de Conhecimento que descreva esta história;
- Escrever um predicado diadehoje/1 que lhe permita saber qual o dia-da-semana.

Extensões Bousi-Prolog

Exemplo (Exemplos Bousi-Prolog)

Em seguida serão apresentados os seguintes exemplos em Bousi-Prolog

- Programa de cálculo de idades;
- Programa de que emula um sistema de "Information Retrieval";
- Programa de escolha de apartamento inteligente.

O que pode ser feito?

- Estudar o sistema que esta a ser desenvolvido na universidade de Málaga FSQL (Fuzzy SQL) e tentar integrar nos sistemas actuais (Neste site propões-se a interacção com SQL Server e Oracle).
- Estudar as funções Fuzzy disponibilizadas nos SGBDs actuais (exemplo Soundex e Difference no SQL SERVER).
- Estudar os algoritmos de procura de pares em Fuzzy (Busca de informação repetida).

O que pode ser feito?

- Estudar o sistema que esta a ser desenvolvido na universidade de Málaga FSQL (Fuzzy SQL) e tentar integrar nos sistemas actuais (Neste site propões-se a interacção com SQL Server e Oracle).
- Estudar as funções Fuzzy disponibilizadas nos SGBDs actuais (exemplo Soundex e Difference no SQL SERVER).
- Estudar os algoritmos de procura de pares em Fuzzy (Busca de informação repetida).

O que pode ser feito?

- Estudar o sistema que esta a ser desenvolvido na universidade de Málaga FSQL (Fuzzy SQL) e tentar integrar nos sistemas actuais (Neste site propões-se a interacção com SQL Server e Oracle).
- Estudar as funções Fuzzy disponibilizadas nos SGBDs actuais (exemplo Soundex e Difference no SQL SERVER).
- Estudar os algoritmos de procura de pares em Fuzzy (Busca de informação repetida).

O que há para fazer ainda em Fuzzy?

- Implementar sistemas fuzzy com relações n-árias;
- Estudar a possibilidade de desenvolver sistemas com Conjuntos Analógicos;
- Modelação de um sistema deductivo de pesquisa de documentação inteligente.

O que há para fazer ainda em Fuzzy?

- Implementar sistemas fuzzy com relações n-árias;
- Estudar a possibilidade de desenvolver sistemas com Conjuntos Analógicos;
- Modelação de um sistema deductivo de pesquisa de documentação inteligente.

O que há para fazer ainda em Fuzzy?

- Implementar sistemas fuzzy com relações n-árias;
- Estudar a possibilidade de desenvolver sistemas com Conjuntos Analógicos;
- Modelação de um sistema deductivo de pesquisa de documentação inteligente.

- Vimos motivação do estudo da lógica Fuzzy, bem como algumas vantagens da implementação desta;
- Estudamos os conceitos Fundamentais da Lógica Fuzzy;
- Resolvemos um exercício de Decisão recorrendo à metodologia Mamdani;
- Apresentamos o sistema Bousi-Prolog, analizando para isso vários exemplos de programas em Prolog e Bousi-Prolog;
- Discutimos onde poderia ser usado o conceito na nossa corporação e melhorias que poderiam ser feitas a este.

- Vimos motivação do estudo da lógica Fuzzy, bem como algumas vantagens da implementação desta;
- Estudamos os conceitos Fundamentais da Lógica Fuzzy;
- Resolvemos um exercício de Decisão recorrendo à metodologia Mamdani;
- Apresentamos o sistema Bousi-Prolog, analizando para isso vários exemplos de programas em Prolog e Bousi-Prolog;
- Discutimos onde poderia ser usado o conceito na nossa corporação e melhorias que poderiam ser feitas a este.

- Vimos motivação do estudo da lógica Fuzzy, bem como algumas vantagens da implementação desta;
- Estudamos os conceitos Fundamentais da Lógica Fuzzy;
- Resolvemos um exercício de Decisão recorrendo à metodologia Mamdani;
- Apresentamos o sistema Bousi-Prolog, analizando para isso vários exemplos de programas em Prolog e Bousi-Prolog;
- Discutimos onde poderia ser usado o conceito na nossa corporação e melhorias que poderiam ser feitas a este.

- Vimos motivação do estudo da lógica Fuzzy, bem como algumas vantagens da implementação desta;
- Estudamos os conceitos Fundamentais da Lógica Fuzzy;
- Resolvemos um exercício de Decisão recorrendo à metodologia Mamdani;
- Apresentamos o sistema Bousi-Prolog, analizando para isso vários exemplos de programas em Prolog e Bousi-Prolog;
- Discutimos onde poderia ser usado o conceito na nossa corporação e melhorias que poderiam ser feitas a este.

- Vimos motivação do estudo da lógica Fuzzy, bem como algumas vantagens da implementação desta;
- Estudamos os conceitos Fundamentais da Lógica Fuzzy;
- Resolvemos um exercício de Decisão recorrendo à metodologia Mamdani;
- Apresentamos o sistema Bousi-Prolog, analizando para isso vários exemplos de programas em Prolog e Bousi-Prolog;
- Discutimos onde poderia ser usado o conceito na nossa corporação e melhorias que poderiam ser feitas a este.

Breve contextualização Teórica Estado da Arte E agora? Sumino

Dúvidas?

Para ler depois I

Kazuo Tanaka.

An Introduction to Fuzzy Logic for Practical Applications.
Springer 1996

Springer, 1996.

Shapiro. The Art of Prolog. MIT Press, 1986.

Zadeh.

Fuzzy Sets.

Information and Control, 8(3):338-353, 1965.

- Apêndice
 - Material Adicional

Programa

Material Adicional

Definições Fuzzy — Etiquetas e Conjuntos Fuzzy Detalhe

$$\mu_X(x_0) = \begin{cases} 1 & \text{sse } x \in \mathcal{C} \\ 0 & \text{sse } x \notin \mathcal{C} \\ 0 \le \mu_X(x_0) \le 1 & \text{sse } x \sim \in \mathcal{C} \end{cases}$$

√ Voltar

