DM N°4 (pour le 08/11/2011)

Même lorsque cela n'est pas mentionné par l'énoncé, il conviendra de justifier l'existence de toutes les intégrales écrites.

Première partie

1. Soient $a \in \mathbb{R}$ et $b \in \mathbb{R}$ deux nombres tels que a > 0, $b \neq 0$ et $\left| \frac{b}{a} \right| < 1$.

On considère la fonction de la variable réelle φ définie par :

$$f(\varphi) = \frac{1}{a + b\cos\varphi}.$$

a) Montrer qu'il existe des constantes réelles β et B, dont on précisera l'expression en fonction de *a* et *b*, telles que :

$$f(\varphi) = \frac{2z}{B(z-\beta)(z-\beta^{-1})}$$
, avec $z = e^{i\varphi}$ et $|\beta| < 1$.

b) Montrer que les sommes

$$\sum_{n=0}^{N} \beta^{n} e^{in\varphi} \quad \text{et} \quad \sum_{n=0}^{N} \beta^{n} e^{-in\varphi}$$

ont des expressions simples en fonction de N, $\beta,\,e^{i\phi}$ et $e^{-i\phi}$.

En déduire que les séries

$$\sum_{n\geqslant 0} \beta^n e^{in\varphi} \quad \text{et} \quad \sum_{n\geqslant 0} \beta^n e^{-in\varphi}$$

sont convergentes, et montrer que leurs sommes s'expriment de manière simple en fonction de β , $e^{i\phi}$ et $e^{-i\phi}$.

c) Établir l'identité

$$\frac{1}{a+b\cos\varphi} = A(a,b) \left(1+2\sum_{n=1}^{+\infty}\beta^n\cos n\varphi\right),\,$$

où A(a, b) est une constante dont on donnera l'expression en fonction de a et b.

(on pourra effectuer une décomposition en éléments simples de la fraction rationnelle de z obtenue à la question 1.a).

d) Montrer qu'il existe une suite (u_N) telle que $\lim_{N\to +\infty}u_N=0$ et vérifiant, pour tout $N\geqslant 1$, l'inégalité

$$\sup_{\varphi \in \mathbb{R}} \left| \frac{1}{a + b \cos \varphi} - A(a, b) \left(1 + 2 \sum_{n=1}^{N} \beta^{n} \cos n \varphi \right) \right| \leq u_{N}.$$

e) En déduire la valeur, exprimée en fonction de A(a, b), de l'intégrale

$$\int_0^{\pi} \frac{\mathrm{d}\varphi}{a + b\cos\varphi}.$$

- **2.** Soit α un nombre réel tel que $0 < \alpha < \pi$.
 - a) Établir la décomposition en éléments simples dans $\mathbb C$ de la fraction rationnelle

$$\frac{1}{1 - 2X\cos\alpha + X^2}$$

b) Établir la majoration : pour tout $N \ge 1$, $|\rho| < 1$ et $0 < \alpha < \pi$:

$$\left| \frac{1}{1 - 2\rho \cos \alpha + \rho^2} - \sum_{n=0}^{N} \rho^n \frac{\sin(n+1)\alpha}{\sin \alpha} \right| \leq \frac{2 \left| \rho \right|^{N+1}}{\left(1 - \left| \rho \right|\right) \sin \alpha}.$$

(on pensera à utiliser les résultats de la question 1.b).

3. On considère trois constantes réelles μ_1 , μ_2 et ρ , vérifiant les inégalités

$$-1 \le \mu_1 < \mu_2 \le 1$$
 et $0 \le \rho < 1$.

On définit des constantes a et b et une fonction $\xi = \xi(\varphi)$ de la variable réelle φ par :

$$a = 2(1 - \rho(\mu_1 + \mu_2) + \rho^2), \quad b = 2\rho(\mu_1 - \mu_2), \quad \text{et} \quad \xi = \frac{1}{2} \left[\mu_1 + \mu_2 - (\mu_1 - \mu_2)\cos\varphi \right].$$

a) Exprimer de manière simple en fonction de μ_1 , μ_2 , ρ et ξ les quantités a+b, a-b et $a+b\cos\varphi$. En déduire l'identité

$$\int_0^{\pi} \frac{d\phi}{1 - 2\rho \xi(\phi) + \rho^2} = \frac{\pi}{\sqrt{(1 - 2\rho \mu_1 + \rho^2)(1 - 2\rho \mu_2 + \rho^2)}}$$

- b) Exprimer $1 + \cos \varphi$ et $1 \cos \varphi$ de manière simple en fonction de μ_1 , μ_2 et ξ . En déduire l'expression de $\sin \varphi$ en fonction de μ_1 , μ_2 et ξ lorsque $\varphi \in [0, \pi]$.
- c) Comparer les expressions :

$$\int_{\mu_1}^{\mu_2} \frac{d\xi}{(1-2\rho\xi+\rho^2)\sqrt{(\mu_2-\xi)(\xi-\mu_1)}} \quad \text{et} \quad \frac{\pi}{\sqrt{(1-2\rho\mu_1+\rho^2)(1-2\rho\mu_2+\rho^2)}} \cdot$$

d) On pose désormais $\mu_1=\cos\theta$, avec $0<\theta<\pi$, $\mu_2=1$ et $\xi=\cos\alpha$. Établir l'identité :

$$\frac{2}{\pi} \int_0^{\theta} \frac{(1-\rho)\cos\frac{\alpha}{2} d\alpha}{(1-2\rho\cos\alpha+\rho^2)\sqrt{2(\cos\alpha-\cos\theta)}} = \frac{1}{\sqrt{1-2\rho\cos\theta+\rho^2}},$$

pour tout $0 \le \rho < 1$ et $0 < \theta < \pi$.

e) Établir, en justifiant l'existence de la convergence de la série du membre de droite, l'identité :

$$\frac{(1-\rho)\cos\frac{\alpha}{2}}{1-2\rho\cos\alpha+\rho^2} = \sum_{n=0}^{\infty} \rho^n \cos\left(n+\frac{1}{2}\right)\alpha$$

pour $|\rho| < 1$ et $0 < \alpha < \pi$.

f) Déterminer un majorant de

$$\left| \frac{(1-\rho)\cos\frac{\alpha}{2}}{1-2\rho\cos\alpha+\rho^2} - \sum_{n=0}^{N} \rho^n \cos\left(n+\frac{1}{2}\right)\alpha \right|$$

qui soit indépendant de $\alpha \in]0, \pi[$ et qui tende vers 0 lorsque $N \to +\infty$.

g) Soit θ un nombre réel tel que $0 < \theta < \pi$. On considère la suite (ν_n) définie par

$$v_n = \frac{2}{\pi} \int_0^{\theta} \frac{\cos\left(n + \frac{1}{2}\right)\alpha}{\sqrt{2(\cos\alpha - \cos\theta)}} d\alpha.$$

Montrer que v_n est définie pour tout $n \in \mathbb{N}$, et qu'il existe un nombre $M < \infty$ (dépendant de θ) tel que $|v_n| \leq M$ pour tout $n \in \mathbb{N}$.

Montrer que, pour tout $|\rho| < 1$ et $0 < \theta < \pi$, on a :

$$\lim_{N \to +\infty} \left| \frac{1}{\sqrt{1-2\rho\cos\theta+\rho^2}} - \sum_{n=0}^N \rho^n \left[\frac{2}{\pi} \int_0^\theta \frac{\cos\left(n+\frac{1}{2}\right)\alpha}{\sqrt{2(\cos\alpha-\cos\theta)}} \, d\alpha \right] \right| = 0 \,.$$

4. Pour $0 < \theta < \pi$ fixé, on considère la fonction de $x \in \mathbb{R}$ définie par

$$g(x) = \frac{1}{\sqrt{1 - 2x\cos\theta + x^2}}.$$

a) Montrer que g est indéfiniment dérivable sur \mathbb{R} .

Vérifier que si $g^{(n)}$ désigne la dérivée n-ième de g, alors, pour tout $n \in \mathbb{N}$, $g^{(n)}(0) = n!P_n(\cos \theta)$ où P_n est un polynôme de degré n.

Établir la relation

$$\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}, \ P_{n+1}(x) = \frac{2n+1}{n+1} x P_n(x) - \frac{n}{n+1} P_{n-1}(x)$$

(Rem : les P_n s'appellent les polynômes de Legendre).

b) Établir que, pour tout $0 < \theta < \pi$ et $|\rho| < 1$, on a l'identité :

$$\frac{1}{\sqrt{1-2\rho\cos\theta+\rho^2}} = \sum_{n=0}^{+\infty} \rho^n P_n(\cos\theta).$$

c) Vérifier qu'il existe un $\epsilon_0>0$ et une constante $D<\infty$ tels que, pour tout $|\rho|\leqslant\epsilon_0$ et $0<\theta<\pi$,

$$\left| \frac{1}{\sqrt{1 - 2\rho \cos \theta + \rho^2}} - \sum_{n=0}^{N-1} \rho^n P_n(\cos \theta) \right| \leq D \left| \rho \right|^N.$$

(Rem : cette question comporte une légère erreur ; je vous laisse le soin de la trouver et de citer un résultat correct).

Seconde partie

- 1. Soit $h(x) = (1-x)^{-1/2}$ pour $x \in]-1,1[$.
 - a) Vérifier que h est indéfiniment dérivable sur]-1,1[. Si $h^{(n)}$ désigne la dérivée n-ième de h, déterminer $h^{(n)}(x)$ et $h^{(n)}(0)$ en fonction de $(1-x)^{-n-1/2}$, 2^{2n} , n! et (2n)!.
 - **b)** Montrer qu'il existe une constante $K < \infty$ telle que, pour tout $N \ge 1$ et $|x| \le \frac{1}{2}$, on ait :

$$\left| \frac{1}{\sqrt{1-x}} - \sum_{n=0}^{N-1} \frac{x^n}{n!} h^{(n)}(0) \right| \le K \frac{(2N)!}{2^N (N!)^2} |x|^N.$$

c) En déduire qu'il existe un $\epsilon>0$, et pour tout $N\geqslant 1$, une constante $C_N<\infty$, tels que, pour tout $\left|\rho\right|\leqslant\epsilon$ et $\theta\in\mathbb{R}$,

$$\left| \frac{1}{\sqrt{1 - 2\rho\cos\theta + \rho^2}} - \sum_{n=0}^{N-1} \frac{\left[\rho(2\cos\theta - \rho)\right]^n}{n!} h^{(n)}(0) \right| \leq C_N \left|\rho\right|^N.$$

2. a) Montrer que

$$P_n(x) = a_n(x^n + b_{n,1}x^{n-2} + \dots + b_{n,k}x^{n-2k} + \dots),$$

où a_n et $\left\{b_{n,k},\ 1\leqslant k\leqslant \frac{n}{2}\right\}$ sont des constantes que l'on déterminera.

b) Vérifier que les polynômes P_n , $n=0,1,\ldots$, sont liés par les relations de récurrence :

$$P'_{n+1}(x) - xP'_n(x) = (n+1)P_n(x).$$

Troisième partie

Cette partie a pour objet de calculer numériquement l'intégrale

$$I = \int_0^{\pi/2} \frac{d\phi}{2 + \cos\phi}$$

par une méthode de quadrature basée sur les sommes de Riemann.

- 1. À l'aide du changement de variable $t = \tan \frac{\varphi}{2}$, exprimer I sous la forme $I = \int_0^1 \frac{dt}{Q(t)}$ où Q est une fonction que l'on précisera.
- 2. Donner en Maple un programme permettant de calculer

$$I_{\mathrm{N}}' = \frac{1}{\mathrm{N}} \sum_{i=1}^{\mathrm{N}} \frac{1}{\mathrm{Q}\left(\frac{i}{\mathrm{N}}\right)} \quad \text{ et } \quad I_{\mathrm{N}}'' = \frac{1}{\mathrm{N}} \sum_{i=1}^{\mathrm{N}} \frac{1}{\mathrm{Q}\left(\frac{i-1}{\mathrm{N}}\right)}$$

en fonction de $N \ge 1$.

3. Écrire un programme en Maple permettant de calculer I à 10^{-M} près ($1 \le M \le 6$).

