DRUM: A Dynamic Range Unbiased Multiplier for Approximate Applications

Team 6 - Anoushka Vyas - 20171057

Digital VLSI Design - 2021

Overview I

- Introduction
- Preliminaries
- **6** DRUM
- Experimental Analysis
- 6 Applications
- 6 Conclusion

Introduction

Abstract

- The novel approach DRUM focuses on creating a multiplier which has unbiased error distribution, where the errors cancel out on repeated computations instead of accumulating.
- DRUM also uses a smaller multiplier than accurate multiplier thus saving on area and computation power.
- The design is flexible to incorporate any kind of multiplier for the purpose.

Preliminaries

- Leading One Detector: Leading One Detectors or LODs determine the location of the most significant one or a leading bit in a given binary.
- **Priority Encoder:** The priority encoders output corresponds to the currently active input which has the highest priority.
- **Multiplexer:** Multiplexer is a device which controls which signal will go on a common transmission line through a switch.
- Barrel Shifter: A barrel shifter is a combinational circuit that shifts a data word by a specified number of bits.
- Wallace-Tree Multiplier: Wallace-Tree multiplier is an efficient parallel multiplier.

DRUM - Design

Figure: An example of the approximation process (a) Original number (b) Number after unbiasing (c) Final approximated input

DRUM - Design

Figure: A working example of DRUM (n = 16, k = 6) (a) The input numbers (b) Approximated inputs (c) Result before shifting (d) Approximate result (e) Accurate result

DRUM - Design

Figure: The simplified schematics for DRUM

Figure: Operand A as used in error analysis

For operand A, the introduced error relative to the number is given by:

$$Err(A) = \begin{cases} X(U, L, t) = \frac{L}{2^t + (2U+1) \cdot 2^{t-k+1} + L} & \text{if} \quad A[t-k+1] = 1\\ Y(U, L, t) = \frac{L-2^{t-k+1}}{2^t + 2U \cdot 2^{t-k+1} + L} & \text{if} \quad A[t-k+1] = 0 \end{cases}$$
(1)

The maximum positive error (MPE) happens when L, and therefore t, is maximized and U is minimized. Thus, the MPE is equal to

$$MPE = \frac{2^{n-k} - 1}{2^{n-1} + 2^{n-k} - 1},$$
(2)

and the maximum negative error (MNE) happens for minimum values of L, U and t, and therefore it is equal to

$$MNE = 2^{-k+1}. (3)$$

Using Equation (2) and Equation (3), the maximum truncation error (MTE) is given by Equation (4):

$$MTE = max\{MPE, MNE\}$$
 (4)

If the input operands, A and B, are independent, the multiplication error can now be characterized in terms of truncation errors. Therefore, for maximum multiplication error (MME):

$$MME = \begin{cases} 2MPE - MPE^2 & if & MPE > MNE \\ 2MNE + MNE^2 & if & MPE < MNE \end{cases}$$
 (5)

To calculate the expected error, a uniform distribution is assumed on all the operands and it is calculated as:

$$E(Err(A)) = \frac{1}{2^n} \sum_{t=k}^{n-2} \sum_{L=0}^{2^{t-k+1}-1} \sum_{U=0}^{2^{k-2}-1} (X(U,L,t) + Y(U,L,t))$$
 (6)

Finally the expected multiplication error is given by

$$E[Err(AB)] = E[Err(A)] + E[Err(B)] + E[Err(A)] \cdot E[Err(B)]. \tag{7}$$

Experimental Analysis - Multiplier Results

The DRUM multiplier is run for two set of operands, one is a smaller 16-bit operand set of 11 and 55 and another one is a bigger 16-bit operand set of 3000 and 125.

16- bit numbers	Accurate	k = 4	<i>k</i> = 5	k = 6	k = 7	k = 8	k = 9
11 & 5	55	55	55	55	55	55	55
3000 & 125	375000	337920	365056	379008	372000	374000	375000

Table: Result of DRUM for various operands for different values of k

Experimental Analysis - Changing k

Figure: Errors as given by the equations (4), (5), and (7) for different values of k (n = 16)

Experimental Analysis - Changing k

First consider n = 16 for a 16-bit multiplier and examine the impact of changing the range as controlled by k.

Errors	k = 4	k=5	k = 6	k = 7	k = 8	k = 9
Max Error %	26.56	12.89	6.35	3.15	1.57	0.78
Max Truncation Error %	12.50	6.25	3.12	1.56	0.78	0.39
Average Error %	-0.53	-0.14	-0.04	-0.02	-0.01	-0.01
Average Abs. Error %	8.86	4.38	2.18	1.08	0.54	0.27

Table: Accuracy results for different k (n = 16)

Experimental Analysis - Changing n

Figure: Errors as given by the equations (4), (5), (7) for different values of n (k = 6)

Experimental Analysis - Changing n

Next, the impact of changing the multiplier size n is studied. The table summarizes the accuracy results for the case of n = 8, 10, 12, 14 and 16.

Errors	n = 8	n = 10	n = 12	n = 14	n = 16
Max Error %	6.35	6.35	6.35	6.35	6.35
Max Truncation Error %	3.12	3.12	3.12	3.12	3.12
Average Error %	-0.57	-0.30	-0.13	-0.07	-0.04
Average Abs. Error %	1.64	2.05	2.15	2.17	2.18

Table: Accuracy results for input size n (k = 6)

Experimental Analysis - Error Distribution

Figure: The fitted Gaussian error distributions for DRUM for different k (n = 16)

Experimental Analysis - Power and LUT Analysis

Multiplier	Power(μ W)	LUTs
Wallace Tree Multiplier (Signed)	1421	455
Wallace Tree Multiplier (Unsigned)	1326	328
DRUM (Signed)	1307	249
DRUM (Unsigned)	1240	191

Table: Power and LUTs required after synthesising in **Xylinx Vivado** for n = 6 and k = 6

Applications - Image Filtering

Figure: Gaussian filtering results for different values of k (a) Input image (b) Filtered with accurate multiplier (c) k = 3 (d) k = 4 (e) k = 5 (f) k = 6

Applications - JPEG Compression

Figure: JPEG compression algorithm (a) Compressed using accurate multiplier (b) Compressed using DRUM

Applications - Perceptron Classifier

Figure: Perceptron classifier (a) Input dataset with classes -1 (blue), 1 (red) (b) The outputs of accurate and approximate multipliers (dots:matching classification, crosses:mismatch, red:Additional detection, black:False alarm)

Conclusion

Conclusion

- It is observed that with changing k, the error shows an exponential behaviour which is obvious from the fact that a bit change corresponds to a change in power of 2.
- The Gaussian error distribution plot shows that with increasing *k* there is less error in multiplication.
- Overall, this method is a good exploitation of that fact that some applications are tolerant to small errors, as a result, at the cost of small error, power and area can be optimized.

Thank You