Defence Research and Recherche et développement pour la défense Canada

SR-1447 Fracture Mechanics Characterization of Aluminum Alloys for Marine Structural Applications

J. Keith Donald Amy Blair Fracture Technology Associates

Fracture Technology Associates 2412 Emrick Boulevard Bethlehem, PA 18020, USA

FTA # SSC 10624-01

Contract Number: W7707-053033/001/HAL

Contract Scientific Authority: Dr. Leon Cheng, 902-427-2601

Defence Scientist, Emerging Materials Section

The scientific or technical validity of this Contract Report is entirely the responsibility of the contractor and the contents do not necessarily have the approval or endorsement of Defence R&D Canada.

Defence R&D Canada - Atlantic

Contract Report DRDC Atlantic CR 2007-019 January 2007

SR-1447 Fracture Mechanics Characterization of Aluminum Alloys for Marine Structural Applications

J. Keith Donald Amy Blair Fracture Technology Associates

Fracture Technology Associates 2412 Emrick Boulevard Bethlehem, PA 18020, USA

FTA # SSC 10624-01

Contract number: W7707-053033/001/HAL

Contract Scientific Authority: Dr. Leon Cheng, (902) 427-2601

Defence Scientist, Emerging Materials Section

The scientific or technical validity of this Contract Report is entirely the responsibility of the contractor and the contents do not necessarily have the approval or endorsement of Defence R&D Canada.

Defence R&D Canada – Atlantic

Contract Report
DRDC Atlantic CR 2007-019
January 2007

The scientific or technical validity of this Contract Report is entirely the responsibility of the contractor and the contents do not necessarily have the approval or endorsement of Defence R&D Canada.

[©] Her Majesty the Queen as represented by the Minister of National Defence, 2007

[©] Sa majesté la reine, représentée par le ministre de la Défense nationale, 2007

Abstract

The Ship Structure Committee (SSC) identified a lack of information required for structural integrity and damage tolerance analyses of aluminum marine structures. The development of such data is vital in light of the increased use of aluminum alloys in marine construction. Under SSC project SR-1447, Fracture Technology Associates was contracted to characterize, through experimental fracture mechanics, the fatigue crack growth (FCG) resistance and fracture toughness of three aluminum alloys (5083, 5086, 5383) used in marine structural applications. Fatigue crack growth testing was performed following ASTM Standard E 647-00 in laboratory air at room temperature and in simulated ocean water per ASTM Standard D 1141. Non-linear fracture toughness testing was performed in accordance with ASTM Standard E 1820-01 in laboratory air at room temperature. For the three different grades of material, the difference in fatigue crack growth rate in laboratory air was negligible. In simulated seawater environment, AA5086 showed a slightly superior performance. In addition, all samples showed the same ranking of toughness with the 5086 showing the highest toughness, followed by 5083 and then 5383.

Résumé

Le Comité sur la structure des navires (CSN) a identifié des lacunes dans l'information requise pour l'analyse de l'intégrité structurale et de la tolérance aux avaries des structures maritimes en aluminium. Le développement de ces données est vital en ce sens que l'on utilise de plus en plus les alliages d'aluminium dans la construction maritime. Dans le cadre du projet SR-1447 du SSC, on a donné un contrat à la société Fracture Technology Associates pour qu'elle caractérise, grâce à des expériences de mécanique de la rupture, la résistance à la propagation des fissures en fatigue (PFF) et la ténacité (résistance à la propagation brutale de fissures) de trois alliages d'aluminium (5083, 5086, 5383) utilisés dans des applications structurales maritimes. Des essais sur la propagation des fissures en fatigue ont été réalisés, conformément à la norme ASTM Standard E 647-00, hors de l'eau et en laboratoire, à la température ambiante, ainsi que dans un milieu marin simulé en suivant la norme ASTM Standard D 1141. Des essais sur la résistance à la propagation de fissures non linéaires ont été réalisés, conformément à la norme ASTM Standard E 1820-01, hors de l'eau et en laboratoire, à la température ambiante. Pour les trois nuances d'alliages différentes, la différence dans le taux de propagation des fissures en laboratoire et hors de l'eau était négligeable. Dans le milieu marin simulé, l'alliage AA5086 a démontré une performance légèrement supérieure. En outre, tous les échantillons se sont situés à l'intérieur de la même plage de ténacité, l'alliage 5086 étant le plus résistant, suivi de l'alliage 5083, puis de l'alliage 5383.

This page intentionally left blank.

Executive summary

Introduction

As part of a Ship Structure Committee (SSC) project (Project SR-1447), Fracture Technology Associates was contracted to characterize, through experimental fracture mechanics, the fatigue crack growth (FCG) resistance and fracture toughness of three aluminum alloys (5083, 5086, 5383) used in marine structural applications. AA5083 is one of the aluminum alloys most widely used for the plate components of high-speed craft. Although 5083 performs well in its marine applications, it was not developed specifically for this environment and 5383 was specifically developed to help optimize aluminum behavior in the marine environment.

Significance

The Ship Structure Committee identified a lack of information required for structural integrity and damage tolerance analyses of aluminum marine structures. To acquire such information requires the characterization of fatigue crack growth resistance and fracture toughness through experimental fracture mechanics. The development of such data is vital in light of the increased use of aluminum alloys in marine construction.

Results

Fatigue crack growth rate and fracture toughness testing were conducted on the three grades of aluminum alloys. The fatigue crack growth testing was performed following ASTM Standard E 647-00 in laboratory air at room temperature and in simulated ocean water per ASTM Standard D 1141. Non-linear fracture toughness testing was performed in accordance with ASTM Standard E 1820-01 in laboratory air at room temperature.

For the three different grades of material, the difference in fatigue crack growth rate in laboratory air is negligible. In simulated seawater environment, AA5086 shows a slightly superior performance. In addition, all samples show the same ranking of toughness with the 5086 showing the highest toughness, followed by 5083 and then 5383.

Donald, J.K., Blair, A. 2007. SR-1447 Fracture Mechanics Characterization of Aluminum Alloys for Marine Structural Applications. DRDC Atlantic CR 2007-019. Defence R&D Canada – Atlantic.

Sommaire

Introduction

Dans le cadre d'un projet du SSC (Comité sur la structure des navires) (le projet SR-1447), on a donné un contrat à la société *Fracture Technology Associates* pour qu'elle caractérise, grâce à des expériences de mécanique de la rupture, la résistance à la propagation des fissures en fatigue (PFF) et la ténacité (résistance à la propagation brutale de fissures) de trois alliages d'aluminium (5083, 5086, 5383) utilisés dans des applications structurales maritimes. L'alliage AA5083 est l'un des alliages d'aluminium les plus couramment utilisés pour fabriquer des composants de plaques pour des embarcations rapides. Bien que l'alliage 5083 se comporte bien dans les applications maritimes, il n'a pas été mis au point spécifiquement pour ce milieu, alors que l'alliage 5383 a été spécifiquement élaboré pour optimiser le comportement de l'aluminium dans le milieu marin.

Portée

Le Comité sur la structure des navires (CSN) a identifié des lacunes dans l'information requise pour l'analyse de l'intégrité structurale et de la tolérance aux avaries des structures maritimes en aluminium. Pour obtenir ces renseignements, on doit caractériser la résistance à la propagation des fissures en fatigue (PFF) et la ténacité (résistance à la propagation brutale de fissures) par des expériences de mécanique de la rupture. L'élaboration de ces données est vitale en raison de l'utilisation de plus en plus grande des alliages d'aluminium dans la construction maritime.

Résultats

Des essais portant sur le taux de propagation des fissures en fatigue et sur la ténacité de trois nuances d'alliages d'aluminium ont été réalisés. Des essais sur la propagation des fissures en fatigue ont été réalisés, conformément à la norme ASTM Standard E 647-00, hors de l'eau et en laboratoire, à la température ambiante, ainsi que dans un milieu marin simulé en suivant la norme ASTM Standard D 1141. Des essais sur la résistance à la propagation de fissures non linéaires ont été réalisés, conformément à la norme ASTM Standard E 1820-01, hors de l'eau et en laboratoire à la température ambiante.

Pour les trois nuances d'alliages différentes, la différence dans le taux de propagation des fissures en laboratoire et hors de l'eau était négligeable. Dans le milieu marin simulé, l'alliage AA5086 a démontré une performance légèrement supérieure. En outre, tous les échantillons se sont situés à l'intérieur de la même plage de ténacité, l'alliage 5086 étant le plus résistant, suivi de l'alliage 5083, puis de l'alliage 5383.

Donald, J.K., Blair, A. 2007. SR-1447 Fracture Mechanics Characterization of Aluminum Alloys for Marine Structural Applications. DRDC Atlantic CR 2007-019. Defence R&D Canada – Atlantic.

Table of contents

Abst	ract			i				
Exec	utive sur	nmary		iii				
Somi	maire			iv				
Table	e of conte	ents		V				
List	of figures	S		vii				
List	of tables			X				
1.	Chem	nistry and	Mechanical Properties	1				
	1.1	Introduction						
	1.2	Test R	esults	1				
2.	Fatig	Fatigue Crack Growth Rate Characterization						
	2.1	Introduction						
	2.2	Test Equipment						
	2.3	Sample Preparation						
	2.4	Test Procedure						
	2.5	Test R	7					
		2.5.1	Reproducibility	12				
		2.5.2	Effect of Environment					
		2.5.3	Effect of Material	21				
		2.5.4	Effect of Frequency	23				
		2.5.5	Threshold Behavior	23				
		2.5.6	Effect of Crack Closure	23				
3.	Non-	Non-Linear Fracture Toughness Characterization						
	3.1	Introduction						
	3.2	Test E	quipment	38				
	3.3	Sampl	e Preparation	38				
	2.4	Tast D		20				

	3.5	Test Results and Discussion	40
Annex	x A – Pr	ocurement and Characterization of Alloys	45
Annex	k B – FC	CGR Methodology	58
Annex	C – Ph	notographs of Test Samples	70
Annex	x D – In	dividual FCGR Curves	76
Annex	к E – Ta	bular Results – ASTM E647 Analysis	106
Annex	k F – Inc	dividual J vs. Δa Curves	196
Annex	G – Lo	oad vs. Load-Line Displacement Plots	203
Annex	к H – Та	abular Results – ASTM E1820 Analysis	210
Distril	oution L	.ist	239

vi

List of figures

Figure 1. Photographs of test equipment and test set-up (laboratory air environment)
Figure 2. Photographs of test equipment and test set-up (seawater environment)
Figure 3. Diagram of C(T) sample for fatigue crack growth testing (diagram reproduction not to scale)
Figure 4. FCGR response comparing duplicate tests for the 5083-H321 alloy in laboratory air.12
Figure 5. FCGR response comparing duplicate tests for the 5086-H116 alloy in laboratory air.13
Figure 6. FCGR response comparing duplicate tests for the 5383-H116 alloy in laboratory air.14
Figure 7. FCGR response comparing duplicate tests for the 5083-H321 alloy in seawater 15
Figure 8. FCGR response comparing duplicate tests for the 5086-H116 alloy in seawater 16
Figure 9. FCGR response comparing duplicate tests for the 5383-H116 alloy in seawater 17
Figure 10. FCGR response showing the effect of environment for the 5083-H321 alloy 18
Figure 11. FCGR response showing the effect of environment for the 5086-H116 alloy 19
Figure 12. FCGR response showing the effect of environment for the 5383-H116 alloy 20
Figure 13. FCGR response showing the effect of the grade of material in laboratory air 21
Figure 14. FCGR response showing the effect of the grade of material in seawater
Figure 15. FCGR response showing the effect of frequency for the 5083-H321 alloy in seawater
Figure 16. FCGR response showing the effect of frequency for the 5086-H116 alloy in seawater
Figure 17. FCGR response showing the effect of frequency for the 5383-H116 alloy in seawater.
Figure 18. FCGR response showing the effect of the alloy on near-threshold behavior 28
Figure 19. FCGR response comparing near-threshold behavior with previous increasing K data for the 5083-H321 alloy. Note departure in behavior at ~1 x 10 ⁻⁷ inch/cycle 29
Figure 20. FCGR response comparing near-threshold behavior with previous increasing K data for the 5086-H116 alloy. Note departure in behavior at ~1 x 10 ⁻⁷ inch/cycle 30

data for the 5383-H116 alloy. Note departure in behavior at ~1 x 10 ⁻⁷ inch/cycle	31
Figure 22. FCGR response showing the effect of environment for the 5083-H321 alloy. Data are corrected for closure using the ACR method.	
Figure 23. FCGR response showing the effect of environment for the 5086-H116 alloy. Data are corrected for closure using the ACR method.	
Figure 24. FCGR response showing the effect of environment for the 5383-H116 alloy. Data are corrected for closure using the ACR method.	
Figure 25. FCGR response showing the effect of the grade of material in laboratory air. Data are corrected for closure using the ACR method.	
Figure 26. FCGR response showing the effect of the grade of material in seawater. Data are corrected for closure using the ACR method.	36
Figure 27. FCGR response showing the effect of the alloy on near-threshold behavior. Data are corrected for closure using the ACR method.	37
Figure 28. Diagram of C(T) sample for fracture toughness testing (diagram reproduction not to scale).	
Figure 29. Non-linear fracture toughness showing ranking of alloys as well as duplicate test results and the effect of side grooves.	41
Figure 30. Non-linear fracture toughness showing ranking of alloys as well as duplicate test results and the effect of sample size.	42
Figure 31. Non-linear fracture toughness showing ranking of alloys as well as duplicate test results and the effect of side grooves. Equivalent K is plotted.	43
Figure 32. Non-linear fracture toughness showing ranking of alloys as well as duplicate test results and the effect of sample size. Equivalent K is plotted	44
Figure 33. 5083 H321 – Longitudinal.	50
Figure 34. 5083 H321 – Transverse.	50
Figure 35. 5086 H32 – Longitudinal.	52
Figure 36. 5086 H32 – Transverse.	52
Figure 37. 5383 H116 – Longitudinal.	54
Figure 38. 5383 H116 – Transverse.	54
Figure 39. 5083 H321 – Transverse Stress-Strain Curves	56

VIII DRDC Atlantic CR 2007-019

Figure 40.	5086 H32 – Transverse Stress-Strain Curves.	56
Figure 41.	5383 H116 – Transverse Stress-Strain Curves	57

List of tables

Table 1. Summary of Chemical Analysis.	1
Table 2. Summary of Mechanical Properties.	2
Table 3. Estimation of K Residual Using Restoring Force Model.	9
Table 4. Summary of Fatigue Crack Growth Test Conditions and Results (Temperature: 75 Stress Ratio: 0.1, Orientation: T-L)	
Table 4. Summary of Fatigue Crack Growth Test Conditions and Results (continued)	. 11
Table 5. Summary of Fracture Toughness Test Conditions and Results (Temperature: 75°F, Orientation: T-L, Environment: Lab Air (RH = 40%))	
Table 6. Summary of Mechanical Properties.	. 46
Table 7. Summary of Chemical Composition.	. 46
Table 8. Plates Furnished by Suppliers.	. 47
Table 9. Mechanical Properties – 5083 H321.	. 49
Table 10. Chemical Composition – 5083 H321.	. 49
Table 11. Mechanical Properties – 5086 H32.	. 51
Table 12. Chemical Composition – 5086 H32.	. 51
Table 13. Mechanical Properties – 5383 H116.	. 53
Table 14. Chemical Composition – 5383 H116.	53
Table 15. Transverse Engineering Mechanical Properties.	. 55
Table 16. Transverse True Mechanical Properties.	. 55

1. Chemistry and Mechanical Properties

1.1 Introduction

The following alloys were procured as 0.5 inch thick plates measuring 24 x 24 inches.

5083 H321 supplied as 5083 H321 5086 H116 supplied as 5086 H32 (to ASTM B209) 5383 H116 supplied as 5383/5083 H116 (to ASTM B209-01)

Dr. Harold Reemsnyder provided a detailed summary in Annex A.

Dr. Catherine Wong provided metallography analysis on the procured alloys (See Annex A).

Dirats Laboratories was contracted to provide the following services:

- 1. 3 chemical analysis (one for each alloy)
- 2. 18 tensile test results (three alloys, 2 orientations, triplicate tests)
- 3. 15 compact tension samples for fatigue crack growth rate testing (T-L orientation, five per alloy)
- 4. 9 compact tension samples for non-linear fracture toughness testing (T-L orientation, three per alloy)

1.2 Test Results

Table 1 summarizes the chemical analysis for each alloy.

Table 1. Summary of Chemical Analysis.

Test ID	Material	Al %	Cr %	Cu %	Fe %	Mg %	Mn %	Si %	Ti %	Zn %	Zr %
5002 G 1	5002 11221					, ,					7.0
5083-C-1	5083-H321	Rem.	0.08	0.06	0.31	4.82	0.50	0.15	0.03	0.09	
5086-C-1	5086-H116	Rem.	0.19	0.07	0.31	3.79	0.45	0.14	0.03	0.03	
5383-C-1	5383-H116	Rem.	0.10	0.06	0.29	4.76	0.53	0.13	0.03	0.08	0.01

Table 2 summarizes the mechanical properties for each alloy.

Table 2. Summary of Mechanical Properties.

Test ID	Material	Orientation	0.2%Yield Strength (ksi)	Tensile Strength (ksi)	Elongation %	Reduction of Area %
5083-L-1	5083-H321	L	37.8	52.3	12.1	21.1
5083-L-2	5083-H321	L	37.8	53.0	14.3	20.5
5083-L-3	5083-H321	L	38.2	52.8	16.8	22.4
Average			37.9	52.7	14.4	21.3
5083-T-1	5083-H321	T	34.3	52.0	21.5	36.9
5083-T-2	5083-H321	Т	34.4	51.6	19.0	34.6
5083-T-3	5083-H321	Т	34.3	51.8	18.4	36.8
Average			34.3	51.8	19.6	36.1
5086-L-1	5086-H116	L	27.0	45.8	14.8	17.4
5086-L-2	5086-H116	L	26.9	45.7	15.1	16.8
5086-L-3	5086-H116	L	27.0	46.0	15.3	16.1
Average			27.0	45.8	15.1	16.8
5086-T-1	5086-H116	T	27.0	45.7	17.1	27.4
5086-T-2	5086-H116	Т	26.9	46.2	21.1	36.6
5086-T-3	5086-H116	Т	27.1	46.1	19.9	38.7
Average			27.0	46.0	19.4	34.2
5383-L-1	5383-H116	L	39.3	54.4	14.1	16.2
5383-L-2	5383-H116	L	39.2	54.1	14.4	17.2
5383-L-3	5383-H116	L	39.0	54.0	12.9	15.6
Average			39.2	54.2	13.8	16.3
5383-T-1	5383-H116	T	35.4	53.0	17.5	35.0
5383-T-2	5383-H116	T	35.4	53.5	16.4	24.8
5383-T-3	5383-H116	Т	35.5	53.3	18.1	23.3
Average			35.4	53.3	17.3	27.7
	•	Temperature	e: Room Temper	ature	•	

2. Fatigue Crack Growth Rate Characterization

2.1 Introduction

Fatigue crack growth rate (FCGR) testing was conducted on three grades of aluminum alloys designated 5083-H321, 5086-H116 and 5383-H116. A compact tension sample having a width of 4.000 inches and a thickness of 0.500 inches was chosen for all FCGR testing. For each grade of material, two replicate tests were conducted in laboratory air at room temperature and two replicate tests were conducted in simulated ocean water per ASTM Standard D 1141. All samples were machined in the T-L orientation and all testing was conducted using a stress ratio (R) of 0.1. A baseline test frequency of 10 Hz was selected for the laboratory air tests with a baseline frequency of 5 Hz selected for the tests conducted in seawater. Some data were generated in seawater at 0.5 and 0.05 Hz to evaluate frequency sensitivity. The testing was performed in accordance with the requirements of ASTM E647-00 "Standard Test Method for Fatigue Crack Growth Rates". Background information on the methodology for testing and analysis is given in Annex B.

2.2 Test Equipment

The tests were conducted on two MTS load frames equipped with a 5,000 lbf load cell. Each test frame and controller was interfaced to an Adwin-Gold FTA computer system. The crack length was monitored continuously using the compliance technique enabling the stress intensity to be precisely controlled as a function of crack length. An MTS model 632.03E-20 clip gage with a gage length of 0.475 inches and a working range of 0.100 inches was used for displacement measurement. Fixture alignment was verified for the compact tension clevises by applying a force on a dummy sample and measuring the distance between the loading pins on the front face and back face of the clevis. If the spacing differed by more than 0.001 inches, the clevises were shimmed to bring that difference to within tolerance. Compliance measurement accuracy was enhanced by mounting needle bearings in both the clevis holes and the specimen holes to minimize non-linearity in the load-displacement signal due to pin friction. In addition to improving the accuracy of crack growth measurements, this procedure is considered essential for accurate crack closure measurement. Laboratory temperature and relative humidity were controlled to 75°F ±2°F and 40% ±5% R.H. throughout the entire period of testing. Photographs of the test equipment and a close-up of a compact tension sample and test fixtures are shown in Figure 1.

For the synthetic seawater environment, one gallon of distilled water was combined with a sea-salt mix according to the ASTM D 1141 standard. A peristaltic pump was used to aerate the solution and transfer the environment to the test sample. Custom made clear plastic environment chambers were attached to the test sample with silicon

adhesive. These chambers were attached to the sample 24 hours prior to testing to allow a complete cure of the adhesive. A small hole was drilled in the notch to provide flow from one side of the sample to the other. A larger hole was also drilled in the notch and filled with sealant to provide a water-tight seal. The set-up included an air bleed so that the crack remained fully immersed in solution during the entire test. pH readings were recorded daily with a typical range of 8.4 to 7.8. Photographs of the test set-up for the seawater environment are shown in Figure 2.

Figure 1. Photographs of test equipment and test set-up (laboratory air environment).

Figure 2. Photographs of test equipment and test set-up (seawater environment).

2.3 Sample Preparation

The test samples were machined according to Figure 3. After machining the blanks to the final dimensions, but before machining the notch, reference scribes were placed on the edge of the sample spanning the location of the notch. The distance between these scribes was measured to a precision of ± 0.0001 inches, both before and after machining the notch. This information was used to estimate the magnitude of residual

K at the notch tip due to residual stress. A summary of these calculations is shown in Table 3 (Section 2.5).

Figure 3. Diagram of C(T) sample for fatigue crack growth testing (diagram reproduction not to scale).

2.4 Test Procedure

The pre-cracking was initiated at low values of K_{max} (~ 4 ksi \sqrt{in}) in order to initiate a crack at low growth rates. Once initiation was detected and crack evenness was verified, the pre-cracking was continued using a decreasing K-gradient of -4.0 1/inch until a crack growth rate of ~8 x 10^{-8} inch/cycle was achieved. At the completion of pre-cracking, the test was switched to an increasing K-gradient of +4.0 1/inch and continued at that K-gradient until a crack growth rate of 1 x 10^{-5} inch/cycle. A shallower K-gradient of +2.0 1/in was selected for upper region II (up to 1 x 10^{-4} inch/cycle). Region III crack growth rate data were generated under constant amplitude loading.

Periodic visual measurements of the crack length from each surface were recorded. These measurements, along with the corresponding normalized compliance (EvB/P), were entered into the post-test analysis software to correct for any discrepancy between the physical crack length and the compliance calculated crack length. The

cover page of each test (Annex E) includes a summary of errors between the physical and compliance calculated crack length as well as an adjustment factor (CAF) to the modulus of elasticity to minimize these errors. Compliance coefficients were selected from the ASTM E647 standard based on a clip gage location at the edge of the sample.

For the near-threshold tests, crack growth rate data were generated using a decreasing K-gradient of -4.0 1/inch and continued until crack growth rates were less than ~4 x 10⁻⁹ inch/cycle. After establishing threshold, the tests were continued using an increasing K-gradient of +4.0 1/inch and continued at that K-gradient until a crack growth rate of 1 x 10⁻⁵ inch/cycle. Both decreasing and increasing K data were generated in laboratory air at a cyclic test frequency of 24 Hz.

During testing, the FTA testing software calculated the effective stress intensity according to the ASTM opening load method. However, another methodology for determining the effective stress intensity was also used and is called the adjusted compliance ratio (ACR) method. Crack growth rates are computed using a combination of the modified secant method and the seven point incremental polynomial technique. The first method is computed as follows:

$$da/dN = (a_{i+2}-a_i)/(N_{i+2}-N_i)$$
(1)

and

$$a_{\text{average}} = (a_{i+2} + a_i)/2 \tag{2}$$

The second method is thoroughly described in Appendix X1 of ASTM E647. This method smoothes the data but misses three points at the beginning and three points at the end of the data set. The combined methods use the seven-point method for the bulk of the data with the modified secant method used for the "missed" points in the beginning and end of the data set.

2.5 **Test Results and Discussion**

Table 3 summarizes the calculation of K residual at the notch tip using the restoring force model. Table 4 summarizes key test conditions and the cyclic stress intensity at threshold (ΔK_{th}). Threshold determinations were made by applying the data fit as per **ASTM E647.**

The results of the K residual evaluation (Table 3) showed mostly tensile residual stress at the notch tip. However, the magnitude of the residual stress was small so no attempt was made to account for residual stress in the analysis.

All samples met the crack front evenness requirement according to ASTM E647. All other validity requirements were satisfied as well.

The following files are available.

*.dat files:

This file is produced by the analysis software and can be exported to Excel or Grapher for plotting or further analysis. For each data point, the following variables are tabulated:

<u>Description</u>	<u>Units</u>
Index number	
Maximum force	(lbf)
Cyclic force	(lbf)
Normalized compliance	(EvB/P)
Crack length	(in)
Cycle count	
Crack growth rate	(inch/cycle)
K_{max}	(ksi√in)
$\Delta K_{applied}$	(ksi√in)
$\Delta K_{\text{effective}}$ (2% offset opening load method)	(ksi√in)
$\Delta K_{effective}$ (ACR method)	(ksi√in)
$\Delta K_{\text{effective}} (2/\pi \text{ partial closure method})$	(ksi√in)

*.prn files:

These files include tabular results and additional information such as sample dimensions and visual observation (Annex E).

Table 3. Estimation of K Residual Using Restoring Force Model.

Notch Mouth Displacement Change (inches)	K _{residual} (ksi√in)
+0.0002	+0.12
+0.0001	+0.06
+0.0004	+0.24
+0.0004	+0.24
+0.0001	+0.06
+0.0002	+0.12
+0.0000	+0.00
+0.0002	+0.12
+0.0001	+0.06
+0.0000	+0.00
+0.0000	+0.00
+0.0001	+0.06
+0.0000	+0.00
-0.0001	-0.06
+0.0001	+0.06
	+0.0002 +0.0004 +0.0004 +0.0004 +0.0001 +0.0002 +0.0000 +0.0002 +0.0001 +0.0000 +0.0000 -0.0001

Table 4. Summary of Fatigue Crack Growth Test Conditions and Results (Temperature: 75°F, Stress Ratio: 0.1, Orientation: T-L).

Test ID	Material	Environment	K-Gradient (1/in)	Frequency (Hz)	ΔK _{th} (ksi√in)
5083-1B	5083-H321	Air	+4.0	10.0	
5083-1C	5083-H321	Air	+2.0	10.0	
5083-1D	5083-H321	Air	Constant Load	5.0	
5083-2B	5083-H321	Air	+4.0	10.0	
5083-2C	5083-H321	Air	+2.0	10.0	
5083-2D	5083-H321	Air	Constant Load	5.0	
5083-3B	5083-H321	Seawater	+4.0	5.0	
5083-3C	5083-H321	Seawater	+2.0	5.0	
5083-3D	5083-H321	Seawater	Constant Load	5.0	
5083-4B	5083-H321	Seawater	+4.0	5.0, 0.5	
5083-4C	5083-H321	Seawater	+2.0	5.0, 0.5, 0.05	
5083-4D	5083-H321	Seawater	Constant Load	5.0, 0.5, 0.05	
5083-5A	5083-H321	Air	-4.0	24.0	2.64
5083-5B	5083-H321	Air	+4.0	24.0	
500C 1D	500C 1111C	A :	.40	10.0	
5086-1B	5086-H116	Air	+4.0	10.0	
5086-1C	5086-H116	Air	+2.0	10.0	
5086-1D	5086-H116	Air	Constant Load	5.0	
5086-2B	5086-H116	Air	+4.0	10.0	
5086-2C	5086-H116	Air	+2.0	10.0	
5086-2D	5086-H116	Air	Constant Load	5.0	
5086-3B	5086-H116	Seawater	+4.0	5.0	
5086-3C	5086-H116	Seawater	+2.0	5.0	
5086-3D	5086-H116	Seawater	Constant Load	5.0	

Table 4. Summary of Fatigue Crack Growth Test Conditions and Results (continued).

Test ID	Material	Environment	K-Gradient (1/in)	Frequency (Hz)	ΔK _{th} (ksi√in)
5086-4B	5086-H116	Seawater	+4.0	5.0, 0.5	
5086-4C	5086-H116	Seawater	+2.0	5.0, 0.5, 0.05	
5086-4D	5086-H116	Seawater	Constant Load	5.0, 0.5, 0.05	
5086-5A	5086-H116	Air	-4.0	24.0	3.01
5086-5B	5086-H116	Air	+4.0	24.0	
5383-1B	5383-H116	Air	+4.0	10.0	
5383-1C	5383-H116	Air	+2.0	10.0	
5383-1D	5383-H116	Air	Constant Load	5.0	
5383-2B	5383-H116	Air	+4.0	10.0	
5383-2C	5383-H116	Air	+2.0	10.0	
5383-2D	5383-H116	Air	Constant Load	5.0	
5383-3B	5383-H116	Seawater	+4.0	5.0	
5383-3C	5383-H116	Seawater	+2.0	5.0	
5383-3D	5383-H116	Seawater	Constant Load	5.0	
5383-4B	5383-Н116	Seawater	+4.0	5.0, 0.5	
5383-4C	5383-H116	Seawater	+2.0	5.0, 0.5, 0.05	
5383-4D	5383-H116	Seawater	Constant Load	5.0, 0.5, 0.05	
5383-5A	5383-H116	Air	-4.0	24.0	2.67
5383-5B	5383-H116	Air	+4.0	24.0	

A series of plots have been prepared to facilitate the investigation of reproducibility, environment, material, frequency, threshold and crack closure.

2.5.1 Reproducibility

Figures 4 through 9 show duplicate test results in both laboratory air and seawater for each grade of material. Agreement is excellent within identical test conditions. For simplicity, the comparisons among the various materials, environments, etc. are made with only one of the duplicate tests.

Fatigue Crack Growth Rate vs. Stress Intensity

Figure 4. FCGR response comparing duplicate tests for the 5083-H321 alloy in laboratory air.

Figure 5. FCGR response comparing duplicate tests for the 5086-H116 alloy in laboratory air.

Figure 6. FCGR response comparing duplicate tests for the 5383-H116 alloy in laboratory air.

Figure 7. FCGR response comparing duplicate tests for the 5083-H321 alloy in seawater.

Figure 8. FCGR response comparing duplicate tests for the 5086-H116 alloy in seawater.

Figure 9. FCGR response comparing duplicate tests for the 5383-H116 alloy in seawater.

2.5.2 Effect of Environment

Figures 10 through 12 show the effect of environment for each grade of material. The impact is greater at lower growth rates. The crack growth rates may be too fast at the higher growth rates for significant environmental effects. It appears that the environmental effect is greater with the 5083-H321 and 5383-H116 alloys.

Fatigue Crack Growth Rate vs. Stress Intensity

Figure 10. FCGR response showing the effect of environment for the 5083-H321 alloy.

Figure 11. FCGR response showing the effect of environment for the 5086-H116 alloy.

Figure 12. FCGR response showing the effect of environment for the 5383-H116 alloy.

2.5.3 Effect of Material

Figures 13 and 14 show the effect of the grade of material in laboratory air and seawater, respectively. The difference in laboratory air is negligible (Figure 13). Figure 14 shows slightly superior performance with the 5086-H116 alloy.

Fatigue Crack Growth Rate vs. Stress Intensity

Figure 13. FCGR response showing the effect of the grade of material in laboratory air.

Figure 14. FCGR response showing the effect of the grade of material in seawater.

2.5.4 Effect of Frequency

In order to assess the effect of frequency on the FCGR tests conducted in seawater, one sample of each grade of material was tested at three different frequencies (5.0 Hz, 0.5Hz and 0.05Hz). At a frequency of 0.05 Hz, both a sinusoidal waveform shape and a hold at maximum load were investigated. For the dwell segment, the waveform consisted of an unload in 1 second, a reload in 1 second followed by a hold at maximum load for 18 seconds. Figures 15 through 17 show the effect of the frequency for each grade of material in seawater. The effect of frequency was investigated at crack growth rates of $\sim 1-2 \times 10^{-6}$, $\sim 1-2 \times 10^{-5}$, and $\sim 1-2 \times 10^{-4}$ inch/cycle. Almost no frequency effect was observed despite a change of two orders of magnitude in frequency. In fact, at growth rates of $\sim 1-2 \times 10^{-5}$ the crack growth rates at 0.05 Hz appeared to be slower, not faster, as would be expected. This behavior suggests that these alloys are fairly resistant to corrosion fatigue in seawater.

2.5.5 Threshold Behavior

Figure 18 shows a comparison of the threshold data for each grade of material. Good agreement was noted where the decreasing and increasing K data overlap. The increasing K data are in good agreement with the previous test data in laboratory air. However, the decreasing K threshold data appear higher than would have been expected from the results of the standard increasing K tests. An examination of the threshold fatigue surfaces indicates darker appearance, most likely associated with crack closure contact. The size of the sample and the long crack length are not generally recommended for threshold testing and this may in part explain some of the deviation in behavior just above the knee of the curve. This difference is clearly illustrated in Figures 19 through 21.

2.5.6 Effect of Crack Closure

In order to properly interpret the results of standard fatigue crack growth tests, it is often necessary to incorporate corrective techniques to the ΔK applied data. Since Elber discovered the existence of crack closure, it has become a widely used tool to explain the extrinsic response of fatigue crack growth rate behavior. Crack closure is a crack tip shielding mechanism whereby the crack-tip cyclic strain is partially shielded from damaging stress. The source of this shielding is most commonly caused by crack wake interference due to plasticity, roughness (microstructure), oxide and/or residual stress. The experimental measurement of crack closure has been hampered by widely varying and non-repeatable methods of evaluation.

Furthermore, experimental observations are subject to varying and inconsistent methods of interpretation. In an attempt to improve consistency of measurement, ASTM E647 has an automated offset opening load technique. After two round-robin programs, this method was adopted as an annex to the ASTM E647 standard. However, this method often over corrects the ΔK applied data primarily because the method fails to account for evidence of crack tip cyclic strain below the opening load. This is especially important if the closure mechanism is not necessarily near the crack tip but distributed along the full wake of the crack.

As an alternative approach, the adjusted compliance ratio (ACR) method of determining the effective stress intensity has been useful in accounting for compressive residual stress and other sources of remote closure resulting in an intrinsic FCGR curve that is thought to emulate the small crack behavior. The method uses the same load-displacement records as the opening load method, but it accounts for partial closure effects (effects below the opening load). Further details of this methodology are provided in Annex B.

The data from Figures 10 through 12 have been re-plotted in Figures 22 through 24 using the ACR method to estimate ΔK_{eff} . These plots show that in the absence of remote closure, the seawater environment has an equivalent or possibly even greater impact of the FCGR behavior. Depending on exposure times, crack size and crack growth rates, the extrinsic behavior (based on $\Delta K_{applied}$) may be different than the intrinsic behavior based on $\Delta K_{effective}$. This is because the environment can work in two ways. It tends to accelerate crack growth due to environmental influence at the crack tip. At the same time it can lead to suppressed crack growth rates due to corrosion product build-up resulting in crack closure shielding in the crack wake. By analyzing the effective stress intensity, the two opposing mechanisms can be partitioned.

A re-examination of the data from Figure 13 shows that when crack closure is accounted for, there is even less difference in the three grades of material (Figure 25). Similarly, in seawater, (Figure 14) some of the perceived differences in lower region II data may be attributed to crack closure as well (Figure 26). Finally, a re-examination of the near-threshold data from Figure 18 also shows that the intrinsic behavior of all three alloys is nearly identical (Figure 27).

Figure 15. FCGR response showing the effect of frequency for the 5083-H321 alloy in seawater.

Figure 16. FCGR response showing the effect of frequency for the 5086-H116 alloy in seawater.

Figure 17. FCGR response showing the effect of frequency for the 5383-H116 alloy in seawater.

Figure 18. FCGR response showing the effect of the alloy on near-threshold behavior.

Figure 19. FCGR response comparing near-threshold behavior with previous increasing K data for the 5083-H321 alloy. Note departure in behavior at ~1 x 10⁻⁷ inch/cycle.

Figure 20. FCGR response comparing near-threshold behavior with previous increasing K data for the 5086-H116 alloy. Note departure in behavior at ~1 x 10⁻⁷ inch/cycle.

Figure 21. FCGR response comparing near-threshold behavior with previous increasing K data for the 5383-H116 alloy. Note departure in behavior at ~1 x 10⁻⁷ inch/cycle.

Figure 22. FCGR response showing the effect of environment for the 5083-H321 alloy. Data are corrected for closure using the ACR method.

Figure 23. FCGR response showing the effect of environment for the 5086-H116 alloy. Data are corrected for closure using the ACR method.

Figure 24. FCGR response showing the effect of environment for the 5383-H116 alloy. Data are corrected for closure using the ACR method.

Figure 25. FCGR response showing the effect of the grade of material in laboratory air. Data are corrected for closure using the ACR method.

Figure 26. FCGR response showing the effect of the grade of material in seawater. Data are corrected for closure using the ACR method.

Figure 27. FCGR response showing the effect of the alloy on near-threshold behavior. Data are corrected for closure using the ACR method.

3. Non-Linear Fracture Toughness Characterization

3.1 Introduction

Non-Linear fracture toughness testing (NLFT) testing was conducted on three grades of aluminum alloys designated 5083-H321, 5086-H116 and 5383-H116. A compact tension sample having a width of 2.000 inches and a thickness of 0.500 inches was chosen for the majority of the NLFT testing. In addition, a compact tension sample having a width of 4.000 inches and a thickness of 0.500 inches was used to evaluate size effects. For each grade of material, two replicate tests were conducted using full thickness samples without side grooves. A third set of samples was tested with side-grooves to evaluate constraint effects. All samples were machined in the T-L orientation and all samples were tested laboratory air. Testing was performed in accordance with the ASTM E 1820-01 "Standard Test Method for Measurement of Fracture Toughness. A single specimen unloading compliance technique was used to monitor stable crack extension.

3.2 Test Equipment

The tests were conducted on one MTS load frame equipped with a 5,000 lbf load cell and interfaced to an Adwin-Gold FTA computer system and configured for fracture toughness testing. An MTS model 632.03B-30 (opt 006) clip gage was used for load-line displacement measurement. Compliance measurement accuracy was enhanced by mounting needle bearings in both the clevis holes and the specimen holes to minimize non-linearity in the load-displacement signal due to pin friction. Laboratory temperature and relative humidity were controlled to $75^{\circ}F \pm 2^{\circ}F$ and $40\% \pm 5\%$ R.H. throughout the entire period of testing.

3.3 Sample Preparation

The test samples were machined according to Figure 28.

Figure 28. Diagram of C(T) sample for fracture toughness testing (diagram reproduction not to scale).

3.4 Test Procedure

Data storage (.raw file extension) was set to 2 points per second for load displacement data in the ramp up/ramp down mode; 0.2 points per second for load displacement data during the hold mode, and 10 points per second for unloading slope data (.unl file extension). The actuator loading and unloading rate was set to 0.020 inches/minute. Each test was initially ramped to the approximate pre-crack load and several unloading slopes were performed with a loading/unloading data acquisition rate of 10 points/second to ensure the specimens were properly seated. The correlation coefficient of each unloading slope was typically 0.99998. After verification that the unloading slopes were repeatable and that the compliance measured crack length was within 2% of the predicted crack length, actual testing commenced. Load and clip gage displacement were recorded in the analysis file every 0.0010 - 0.0020 inches of clip gage displacement or every 200 lbs. increase in load. In addition, the largest observed load and corresponding displacement were stored.

Each test was terminated after about 0.2 inches of stable crack extension. The sample was then fatigue loaded to mark the final crack extension. A nine point average of the pre-crack as well as the final stable crack extension was recorded and used to verify the compliance calculated crack extension.

3.5 Test Results and Discussion

Table 5 summarizes key test conditions and results. The fracture toughness results are based on the J at initiation (J_{Ic}) according to ASTM E1820-01 as well as an equivalent K at initiation designated K_{JIc} . The toughness values at initiation for the side grooved and non-side grooved samples were almost equivalent. The larger sample size gave slightly higher values of toughness at initiation. Regardless of the size of the sample or the absence or presence of the side grooves, all samples showed the same ranking of toughness with the 5086-H116 showing the highest toughness, followed by the 5083-H321, and the 5383-H116 alloy showing the lowest toughness.

Table 5. Summary of Fracture Toughness Test Conditions and Results (Temperature: 75°F, Orientation: T-L, Environment: Lab Air (RH = 40%)).

Test ID	Material	Sample Size (W, in)	Side- Groove	$\begin{array}{c} J_{Ic}\text{-}1820 \\ (\text{in-lb/in}^2) \end{array}$	K _{JIC} (ksi √in)	Comments
5083-FT-1	5083-H321	2.00	no	96.6	33.4	Significant crack tunneling
5083-FT-2	5083-H321	2.00	no	91.8	32.6	Significant crack tunneling
5083-FT-3	5083-H321	2.00	yes	111.4	35.9	Straight crack front
5083-FT-5	5083-H321	4.00	no	146.9	41.2	Significant crack tunneling
5086-FT-1	5086-H116	2.00	no	155.4	42.3	Significant crack tunneling
5086-FT-2	5086-H116	2.00	no	147.6	41.3	Significant crack tunneling
5086-FT-3	5086-H116	2.00	yes	155.2	42.3	Straight crack front
5086-FT-5	5086-H116	4.00	no	201.0	48.2	Significant crack tunneling
5383-FT-1	5383-H116	2.00	no	86.6	31.6	Significant crack tunneling
5383-FT-2	5383-H116	2.00	no	86.1	31.5	Significant crack tunneling
5383-FT-3	5383-H116	2.00	yes	90.3	32.3	Straight crack front
5383-FT-5	5383-H116	4.00	no	99.9	34.0	Significant crack tunneling

The most significant difference between the side grooved and non-side grooved samples is illustrated in Figure 29. These R-curves show stable crack extension well beyond maximum load. The samples without the side grooves are representative of the fracture toughness characteristics of the 0.5 inches plate whereas the side grooved samples are representative of much thicker material since the side grooves add additional constraint and suppress plane stress behavior. Data beyond crack initiation

should be used with caution since stable crack extension behavior is highly geometry/application dependent (See annexes for details). The ranking of the alloys is also clearly indicated consistent with the previous observations regarding toughness at initiation. The reproducibility of duplicate tests is also clearly indicated.

Fracture Toughness R-Curve

Figure 29. Non-linear fracture toughness showing ranking of alloys as well as duplicate test results and the effect of side grooves.

Figure 30 illustrates the effect of sample size. In all cases, the larger sample size shows slightly higher values of toughness at a given increment of crack extension. Figures 31 and 32 show the same trends but the toughness values have been presented as equivalent values of stress intensity K instead of J.

Fracture Toughness R-Curve

Figure 30. Non-linear fracture toughness showing ranking of alloys as well as duplicate test results and the effect of sample size.

Fracture Toughness R-Curve

Figure 31. Non-linear fracture toughness showing ranking of alloys as well as duplicate test results and the effect of side grooves. Equivalent K is plotted.

Fracture Toughness R-Curve

Figure 32. Non-linear fracture toughness showing ranking of alloys as well as duplicate test results and the effect of sample size. Equivalent K is plotted.

The photographs in Annex C clearly show the crack straightness characteristic of each test. Annex F contains individual J vs. Δa plots. Annex G contains load vs. load-line displacement curves. Annex H contains the tabular results of the ASTM 1820 analyses including a summary of validity statements for each test.

Annex A – Procurement and Characterization of Alloys

A1. Summary

The Project Technical Committee selected four alloys – 5083 H321, 5086 H116, 5383 H116, and 5059 H321 – in ½-in-thick plates conforming to ASTM B 928. After much searching, a supplier (warehouse) was found that could supply three of the four selected alloys.

5083 H321 was supplied as 5083 H321 to ASTM B 928 and meets ASTM B 928 for mechanical properties and chemical composition. Metallographic examination showed that this alloy is not sensitized but has considerable grain boundary *Beta* and may have more than 15 mg/cm² mass loss in ASTM G 67.

5086 H116 was supplied as 5086 H32 to ASTM B 209 and met both ASTM B 928 for mechanical properties and chemical composition except for yield strength (27.0 ksi vis-à-vis 28.0 ksi minimum) and ASTM G 66 for exfoliation susceptibility. Metallographic examination showed that this alloy is not sensitized and has the least grain boundary *Beta* of the three alloys examined.

5383 H116 was supplied as 5383/5083 H116 to ASTM B 209 and met both ASTM B 928 for mechanical properties and chemical composition except for Fe and Mn content (respectively, 0.29% vis-à-vis 0.28% maximum and 0.53% vis-à-vis 0.7 - 1.0%) and ASTM G 66 for exfoliation susceptibility. Metallographic examination showed that this alloy has less grain boundary *Beta* than the 5083 H321 alloy examined.

It is interesting to note that the alloy furnished to ASTM B 928 – 5083 H321 – showed more *Beta* phase on the grain boundaries than either alloy – 5086 H32 and 5383 H116 – furnished to ASTM B 209.

No source could furnish grade 5059 in either temper, H116 or H321.

The mechanical properties and chemistries of the three alloys are compared in, respectively, Tables 6 and 7.

Table 6. Summary of Mechanical Properties.

Alloy	0.2% Yield Strength, ksi		Tensile Strength, ksi		Percent Elongation in 1 inch		Percent Reduction of Area	
	Long.	Transv.	Long.	Transv.	Long.	Transv.	Long.	Transv.
5083 H321	37.9	34.3	52.7	51.8	14.4	19.6	21.3	36.1
5086 H32	27.0	27.0	45.8	46.0	15.1	19.4	16.8	34.2
5383 H116	39.2	35.4	54.2	53.3	13.8	17.3	16.3	27.7

Table 7. Summary of Chemical Composition.

Alloy		Weight Percent Maximum										
Anoy	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti				
5083 H321	0.15	0.31	0.06	0.50	4.8	0.08	0.09	0.03				
5086 H32	0.14	0.31	0.07	0.45	3.8	0.19	0.03	0.03				
5383 H116	0.13	0.29	0.06	0.53	4.8	0.10	0.08	0.03				

A2. Tempers Used in Marine Alloys

The non-heat-treatable 5xxx alloys are solution-strengthened, primarily, by magnesium. The tempers H116 and H321 have been reserved by the Aluminum Association for wrought products in the 5xxx series containing 3% or more Mg. The temper designations are:

- H Strain hardened.
- H1 Strain hardened without thermal treatment. Second digit indicates degree of strain hardening.
- H116 Strain hardened only.
- H3 Strain hardened and stabilized by low temperature thermal treatment. Tensile strength reduced slightly but ductility improved.
- H32 Stabilized by a low-temperature thermal treatment after strain hardening. The second digit 2 indicates the degree of strain hardening, i.e., quarter-hard.

H321 Stabilized by a low-temperature thermal treatment after strain hardening less than the amount required for a controlled H32 temper. The third digit identifies variation from H32.

A3. Alloys Furnished to the Project

The PTC of the subject project selected four alloys – 5083 H321, 5086 H321, 5383 H321, and 5059 H321 – in ½-in-thick plates conforming to ASTM B 928^[1] for fracture mechanics characterization.

Contacts with both domestic and European aluminum manufacturers and builders of aluminum vessels were unsuccessful. However, a supplier (warehouse) was found that could supply three of the four selected alloys, Table 8. Each alloy was furnished as a ½x24x24-in plate.

No source could furnish grade 5059 in either temper, H 116 or H321.

Alloy Supplier Ordered Pierce, Warminster, Pa. Pierce, New Orleans, La. to B 928 Allov ASTM Std. Mfgr. **ASTM Std.** Mfgr. Allov 5083 H321 5083 H321 B 928 Pechiney B 209 [2] 5086 H116 5086 H32 Capral 5383 H116 5383/5083 H116 B 209 Pechiney

Table 8. Plates Furnished by Suppliers.

A3.1 Laboratories

Dirats Laboratories, Westfield, Massachusetts, performed the tensile tests and chemical analysis on the three furnished alloys.

The *tension specimens* were cylindrical with a test-section diameter of 0.25 in and a gage-length of 1 in. Data for each alloy are presented in the following sections. Note that *Elongation* is measured over a gage length of 4 times the diameter of the tension test specimen, i.e., 1 in. Three specimens were taken in both the longitudinal and

DRDC Atlantic CR 2007-019 47

-

¹ ASTM B928/B 928M-04a Standard Specification for High Magnesium Aluminum-Alloy Sheet and Plate for Marine Service and Similar Environments.

² ASTM B 209-02a Standard Specification for Aluminum-Alloy Sheet and Plate.

transverse directions (with respect to rolling direction) from each of the three 0.5 in thick alloys.

The results of the tensile tests and chemical analyses are listed below for each of the three alloys.

Dr Catherine Wong, Materials Engineer, NAVSEA, performed metallography on 2x2x0.5-in samples of each of the three acquired alloys. The primary purpose of this investigation was to determine the extent of the *Beta* phase (i.e., magnesium-rich precipitate) precipitation on the grain boundaries.

Her findings and metallographs are presented below for each of the three alloys.

A3.2 Beta Phase

In the 5xxx series alloys, magnesium can precipitate out of solution and solidify on the grain boundaries. This magnesium-rich precipitate is known as the *Beta* phase. Sensitivity of high magnesium aluminum plates to exfoliation and intergranular corrosion increases with the amount of *Beta* phase on the grain boundaries.

Solid lines of *Beta* phase are sensitive to intergranular corrosion whilst *Beta* phase as spheres at intermittent locations on the grain boundaries is resistant to intergranular corrosion.

The form and amount of Beta phase on the grain boundaries depend on

- Thermal-mechanical rolling practices, i.e., the number of passes, reduction in thickness per pass, total reduction, and metal temperature in each pass.
- Product thickness. E.g., The problem that led to the development of ASTM B 928 was confined to relatively thin 5083 H321 sheets and plates, i.e., 3/8-in thick and below.

A3.3 Alloy 5083 H321

For 5083 H321, Pierce, Warminster, Pa., supplied 5083 H321 to ASTM B 928 by Pechiney (France).

The alloy supplied met ASTM B 928 for mechanical properties and chemical composition, respectively, Tables 9 and 10.

Table 9. Mechanical Properties - 5083 H321.

S	ource	0.2% Yield S	Strength, ksi	Tensile St	% Elongation			
Source		min max		min max		min		
B 928		31.0 43.0		44.0 56.0		12		
Pierce		35.2 — 39.6		52.2 — 53.9		14 — 16		
Dirats	Long.	37	'.9	52.7		14.4		
Dirais	Transv. 34.3		1.3	51	8	19.6		
* Dirat	* Dirats Reduction of Area: Long., 21.3%, Transv., 36.1%							

Table 10. Chemical Composition – 5083 H321.

Source		Weight Percent Maximum unless shown as Range							
Source	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	
B 928	0.40	0.40	0.10	0.40 - 1.0	4.0 - 4.9	0.05 - 0.25	0.25	0.15	
Pierce	0.11	0.29	0.06	0.52	4.8	0.09	0.09	0.03	
Dirats	0.15	0.31	0.06	0.50	4.8	0.08	0.09	0.03	

A3.3.1 Metallography

This alloy is not sensitized but has considerable grain boundary *Beta* and may have more than 15 mg/cm² mass loss in ASTM G 67^[3]. Metallographs are shown in Figures 33 and 34 for, respectively, longitudinal and transverse sections.

DRDC Atlantic CR 2007-019 49

_

³ ASTM G 67 Test Method for Determining the Susceptibility to Intergranular Corrosion of 5xxx Series Aluminum Alloys by Mass Loss after Exposure to Nitric Acid

Figure 33. 5083 H321 – Longitudinal.

Figure 34. 5083 H321 – Transverse.

A3.4 Alloy 5086 H32

For 5086 H116, Pierce, Warminster, Pa, supplied 5086 H32 to ASTM B 209 manufactured by Capral (Australia).

The alloy supplied met ASTM B 928 for mechanical properties and chemical composition, respectively, Tables 11 and 12, with the exception of yield strength.

The alloy met ASTM G $66^{[4]}$ for exfoliation susceptibility. ASTM G 67 was not required in ASTM B 209 to which the alloy was supplied.

0.2% Yield Strength, ksi % Elongation Tensile Strength, ksi Source min min min max max B 928 28.0 40.0 10 Pierce 34.8 46.3 18 27.0* 45.8 Long. 15.1 **Dirats** 27.0 46.0 19.4 Transv. Dirats Reduction of Area: Long., 16.8%, Transv., 34.2% * Outside specification limits

Table 11. Mechanical Properties - 5086 H32.

Table 12. Chemical Composition – 5086 H32.

Source		Weight Percent Maximum unless shown as Range						
Source	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti
B 928	0.40	0.50	0.10	0.20 - 0.7	3.5 - 4.5	0.05—0.25	0.25	0.15
Pierce	0.17	0.27	0.03	0.38	3.8	0.07	0.02	0.01
Dirats	0.14	0.31	0.07	0.45	3.79	0.19	0.03	0.03

A3.4.1 Metallography

This alloy is not sensitized and has the least grain boundary *Beta* of the three alloys examined. Metallographs are shown in Figures 35 and 36 for, respectively, longitudinal and transverse sections.

DRDC Atlantic CR 2007-019 51

_

⁴ ASTM G 66-95 Test Method for Visual Assessment of Exfoliation Corrosion Susceptibility of 5xxx Aluminum Alloys.

Figure 35. 5086 H32 – Longitudinal.

Figure 36. 5086 H32 – Transverse.

A3.5 Alloy 5383 H3116

For 5383 H116, Pierce, New Orleans, La, supplied 5383/5083 H116 to ASTM B 209 manufactured by Pechiney (France).

The alloy supplied met ASTM B 928 for mechanical properties and chemical composition, respectively, Tables 8 and 9.

The alloy met ASTM G 66 for exfoliation susceptibility. ASTM G 67 is not required in ASTM B 209 to which the alloy was supplied.

Table 13. Mechanical Properties - 5383 H116.

S	011200	0.2% Yield S	Strength, ksi	Tensile St	rength, ksi	% Elongation				
Source		min	max	min max		min				
B 928		33.0		48.0 —		10				
Pierce C	ertificate	36.3 — 40.7		50.9 —53.4		16 — 17				
Dirats	Long.	39.2		54.2		13.8				
Dirais	Transv.	35	5.4	53	3.3	17.3				
Dirats R	eduction of Ar	ea: Long., 16.3	Dirats Reduction of Area: Long., 16.3%, Transv., 27.7%							

Table 14. Chemical Composition - 5383 H116.

Source		Weight Percent Maximum unless shown as Range										
Source	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti				
B 928	0.25	0.25	0.20	0.7 - 1.0	4.0 - 5.2	0.25	0.40	0.15				
Pierce	0.10	0.28*	0.06	0.56*	4.73	0.11	0.08	0.03				
Dirats	0.13	0.29*	0.06	0.53*	4.76	0.10	0.08	0.03				
Zr: ASTM B 928, 0.20% max., Pierce, 29 ppm, Dirats, 0.01%												
* Outside s	pecificatio	on limits										

A3.5.1 Metallography

This alloy is not sensitized and has less grain boundary Beta than the 5083 H321 alloy examined. Metallographs are shown in Figure 37 and 38 for, respectively, longitudinal and transverse sections.

Figure 37. 5383 H116 – Longitudinal.

Figure 38. 5383 H116 – Transverse.

A3.6 Stress-Strain Curves

Dirats Laboratories, Westfield, Massachusetts, performed additional tensile tests on the three alloys to determine the engineering and true stress-strain curves.

The *tension specimens* were cylindrical with a test-section diameter of 0.25 in and a gage-length of 1 in and were taken in the transverse direction (with respect to rolling direction) from each of the three 0.5 in thick alloys. The engineering and true stress-strain properties are listed in, respectively, Tables 15 and 16.

Alloy	0.2% Yield Strength, ksi	Tensile Strength, ksi	Percent Elongation in 1 inch	Percent Reduction of Area	
	Transv.	Transv.	Transv.	Transv.	
5083 H321	34.4	51.9	19.4	37.9	
5086 H32	27.0	46.1	24.0	34.7	
5383 H116	35.0	53.3	22.6	28.1	

Table 15. Transverse Engineering Mechanical Properties.

Table 16. Transverse True Mechanical Properties.

Alloy	0.2% Yield Strain, ϵ_{YS} , in/in	Young's Modulus, E, ksi	Strain-hardening Exponent, n	Strength Coefficient, k, ksi
	Transv.	Transv.	Transv.	Transv.
5083 H321	0.00505	11,300	0.155	79.2
5086 H32	0.00422	12,200	0.202	77.4
5383 H116	0.00505	11,500	0.158	81.9

The strain-hardening exponent n and the strength coefficient k are the parameters of the Ramberg-Osgood model of the true stress-strain curve

$$\varepsilon = \frac{\sigma}{E} + \left(\frac{\sigma}{k}\right)^{1/n} \tag{A-1}$$

where

 ε true strain = ln(1+e)

 σ true stress = s(1+e)

e engineering strain

s engineering stress

E Young's Modulus.

The stress-strain curves are shown for 5083 H321, 5086 H32 and 5383 H116 in, respectively, Figures 39, 40 and 41.

Figure 39. 5083 H321 - Transverse Stress-Strain Curves.

Figure 40. 5086 H32 - Transverse Stress-Strain Curves.

Figure 41. 5383 H116 – Transverse Stress-Strain Curves.

Annex B – FCGR Methodology

AN INTEGRATED METHODOLOGY FOR SEPARATING CLOSURE AND RESIDUAL STRESS EFFECTS FROM FATIGUE CRACK GROWTH RATE DATA

J. KEITH DONALD¹ and DIANA A. LADOS²

Fracture Technology Associates, Bethlehem, PA 18020, USA ²Worcester Polytechnic Institute, Metal Processing Institute, Worcester, MA 01609, USA

Abstract—To properly interpret the results of standard fatigue crack growth tests it is often necessary to incorporate corrective techniques to the ΔK applied data. This is especially true in the near-threshold regime where long crack data need to be closure corrected to predict small crack behavior. It is also an issue in the presence of residual stress. A methodology to separate the influence of sample size, geometry, crack length, and residual stress from the standard crack growth test data to obtain a true material response is presented. Stress ratio and residual stress contributions from known combinations of assumed crack size, applied stress, and residual stress are also addressed and incorporated in the fatigue crack growth behavior.

NOMENCLATURE

a = crack length

 a_i = notch length before crack initiation

 a_n , a_{n+1} = current crack lengths measured at two successive steps n and n+1

da = change in crack length

ACR = adjusted compliance ratio

 $C_o = \Delta \delta_{app}/\Delta P$, compliance above the opening load

 $C_s = \Delta \delta_{eff}/\Delta P$, secant compliance

 $C_i = \Delta \delta_i / \Delta P$, compliance of the notch before crack initiation E = modulus of elasticity

n = K_{max} sensitivity exponent

P_{msx} = maximum load

P_{min} = minimum load

 P_{op} = opening load P_{o} = zero load

R = ratio of minimum to maximum load or stress

Z(a) = influence function

dδ = change in displacement due to change in crack length

 $d\delta_{max}$ = change in displacement at maximum load due to change in crack length

 $d\delta_{res}$ = change in displacement due to residual stress and change in crack length

 $\Delta \delta_{max}$ = change in displacement at maximum load due crack advance from notch

 $\Delta \delta_{spp}$ = closure free displacement range

 $\Delta \delta_{\text{eff}}$ = actual measured displacement range

 $\Delta \delta_i$ = measured displacement range before crack initiation

 $\Delta \delta_{cl} = \Delta \delta_{app} - \Delta \delta_{eff}$, displacement difference due to closure

K = stress intensity factor

 K_{ess} = stress intensity due to residual stress

 $K_{max} = maximum stress intensity$

 K_{norm} = normalized stress intensity

∆K = stress intensity range

 ΔK_{app} = applied stress intensity range

 ΔK_{eff} = effective stress intensity range

 $\Delta K_{cl} = \Delta K_{app} - \Delta K_{eff}$, stress intensity reduction due to closure

Fatigue & Fracture of Engineering Materials - Special Issue Contribution (in press)

INTRODUCTION

Steady-state fatigue crack growth data generated for long cracks (corresponding to fatigue crack growth testing conducted on compact tension C(T), middle tension M(T), etc. specimens) can be altered by various external effects and often do not represent the true behavior of the material investigated. Such effects have various origins. One is related to the existence of closure mechanisms, active behind the crack tip, which create differences between long crack growth data (ΔK_{app}) and naturally initiated or small crack growth data (ΔK_{aff}) and can lead to non-conservative estimations of fatigue life. Another source of errors when incorporating long crack growth data in design is associated with the presence of externally induced (or global) compression or tension residual stresses [1,2,3]. In this case, sample size and/or geometry can produce variability in the data generated on virtually identical materials, and crack length can also play an important role. Numerous attempts to resolve these issues and normalize data generated under various specimen/testing conditions have been made in the past, but no comprehensive method able to appropriately handle all these effects has yet been proposed. Thus, in this study, a methodology able to successively handle these effects is proposed.

PROPOSED METHODOLOGY

The methodology correlates fatigue crack growth rate (FCGR) data from samples with either tensile, compressive or no residual stress using a combination of compliance measurement techniques, K-control, adjusted compliance ratio (ACR) crack closure measurement techniques, on-line crack-compliance K residual calculations and K_{\max} sensitivity concepts. The resulting FCGR curve is a material property response that has been de-coupled from the confounding effects of crack length, test coupon geometry and residual stress. As opposed to the traditional life prediction models, this methodology uses normalized data representative of a zero stress ratio (R = 0) with no remote closure (small crack behavior). Stress ratio effects can be further incorporated in fatigue crack growth data by back calculating ΔK_{eff} from the normalized K. Although it is believed that this approach gives the most reliable life prediction methodology, it is difficult to compare this process to more traditional methods since evaluations of residual stress and remote closure are generally not obtained during standard crack growth rate tests.

There are two fundamental reasons why data from large samples with long cracks may not be representative of the crack growth behavior of small cracks:

- In the presence of global residual stress (for example, caused by quenching as part of heat treatment), the larger the sample size relative to the original component, the greater the degree of residual stress captured in the machined sample. Also, edge crack samples and center crack samples generally exhibit different behavior if extracted from the same location within the original component.
- 2) The larger the sample and crack size, the smaller the applied stress for a given stress intensity. This point serves to amplify both the effects of remote closure and residual stress compared to test coupons with smaller crack sizes and higher stresses.

It is proposed that for common long crack test samples, a proper analytical evaluation of the fatigue crack growth rate data involves the following steps:

- Generate da/dN data using compliance measurement techniques and K-control.
- Determine the effective stress intensity using the ACR method.
- If possible, adjust for residual stress using the on-line crack-compliance method.

- Use K_{max} sensitivity concepts to incorporate residual stress effects into the normalized (or master) crack growth rate curve.
- Reintroduce stress ratio effects into the master curve from the knowledge of crack size, applied stress and residual stress in the structure.

Each of these steps will be detailed below:

1. Compliance measurement and K-control

K-control methodology offers advantages for fatigue crack growth data generation and uses a constant value of the expression (1/K)·(dK/da) to control the K profile. A negative value of this expression is used for decreasing K (near-threshold) and a positive value for increasing K (mid to upper Region II and Region III). This effectively results in a greater ΔK range over the same increment of crack extension. The details on the K-control procedure suggested in ASTM E647 were first performed in the 1970's (see Ref. [4]). Experience has shown this procedure substantially reduces the test time and cost necessary to generate fatigue crack growth data with no adverse impact on the test result.

When practical, the compliance method of monitoring crack length is used. The method has the advantage of higher resolution than either visual methods or the indirect potential drop method (foil gages) because the method averages the through-the-thickness crack length instead of the somewhat more discontinuous growth of the crack on the surface. When sample type and test temperature permit, the compliance method is generally preferred because of the added advantage that crack closure can be evaluated. Both the ASTM 2% offset opening load method [5] and the adjusted compliance ratio (ACR) method [6] are based on compliance data. The non-visual crack length measurement methods should be complemented by periodic visual measurements of the crack, both for validity purposes and for post-test analysis corrections to the original raw data.

Besides the commonly recognized closure mechanisms, macro residual stress-crack closure may significantly influence fatigue crack growth rate data. Therefore, in addition to measuring crack closure (using compliance measurements), notch closing or opening measurements are recommended on compact tension, C(T), samples before and after machining the notch as a means of evaluating/separating the individual influence of residual stress on/from the crack growth rate behavior. The significance of this statement including the impact of these observations on fatigue crack growth rates can be found elsewhere [7].

Adjusted Compliance Ratio (ACR) method

Since Elber introduced the concept of crack closure, it has become a widely used tool to explain the extrinsic response of fatigue crack growth rate behavior. Crack closure is a crack tip shielding mechanism whereby the crack-tip cyclic strain is partially shielded from damaging stress. The source of this shielding is most commonly caused by crack wake interference due to roughness (microstructure), oxides, plasticity, and/or residual stress. The experimental measurement of crack closure has been hampered by widely varying and non-repeatable methods of evaluation. Furthermore, experimental observations are subject to varying and inconsistent methods of interpretation. In an attempt to improve consistency of measurement, ASTM E647 has introduced an automated offset opening load technique. After two round-robin programs, this method was adopted as an annex to the ASTM E647 standard. However, this method often overcorrects the ΔK applied data primarily because the method fails to account for evidence of crack tip cyclic strain below the opening load [6]. This is especially important if the closure mechanism is not necessarily near the crack tip but distributed along the full wake of the crack or near the notch.

The ACR method of determining the effective stress intensity has been useful in accounting for compressive residual stress and other sources of remote closure resulting in an intrinsic FCGR curve that is thought to emulate small crack growth behavior. The method uses the same load-displacement records as the opening load method, but it accounts for partial closure effects (effects below the opening load). The assumption of crack tip activity below the opening load is most relevant at opening loads that are a large fraction of the applied load, such as the near-threshold regime. The ACR technique attempts to account for strain fields at the crack tip, below K_{op} , caused by interaction of the mating broken faces along the crack wake. Below K_{op} , the interference strains induce an additional K at the crack tip, which is added to the K_{min} , thus reducing the ΔK_{off} , while above K_{op} only the applied force contributes directly to K_{min} .

This method estimates ΔK_{eff} using the ratio of the actual displacement range ($\Delta \delta_{eff}$) to the displacement range that would have occurred in the absence of closure ($\Delta \delta_{app}$) (Figure 1). This method uses remote (front face) displacement measurements because the local crack tip strain is impractical or impossible to obtain. The displacements are a "quantitative" measure of the "qualitative" strain activity of the broken surfaces in the crack wake. Displacement measurements are evaluated relative to the original displacement of the notch at the beginning of the test, and therefore the adjusted compliance ratio is calculated by subtracting the initial notch displacement from both displacements in the presence and the absence of closure:

$$ACR = (\Delta \delta_{eff} - \Delta \delta_i)/(\Delta \delta_{app} - \Delta \delta_i) \qquad (1)$$

Converting to compliance, the expression for ACR becomes:

$$ACR = (C_i - C_i)/(C_o - C_i)$$
(2)

where

 $C_s = \Delta \delta_{eff}/\Delta P$ is the secant compliance

 $C_o = \Delta \delta_{app}/\Delta P$ is the compliance above the opening load

 $C_i = \Delta \delta_i / \Delta P$ is the compliance of the notch before crack initiation

Once ACR is determined, ΔK_{eff} can be calculated as:

$$\Delta K_{eff} = ACR \cdot \Delta K_{app} = \frac{\Delta \delta_{eff} - \Delta \delta_{i}}{\Delta \delta_{app} - \Delta \delta_{i}} \cdot \Delta K_{app} = \frac{C_{s} - C_{i}}{C_{o} - C_{i}} \cdot \Delta K_{app}$$
(3)

Experimental evidence shows that when the initial un-cracked compliance, C_i , is subtracted from both the numerator and denominator of the compliance ratio, the resulting ACR is measurement-location insensitive [6]. The similarity between the ACR method and the on-line crack compliance method (see Ref. 8 and Section 4) is shown in Figures 1 and 2. Either method gives an identical result for the calculation of ΔK_{eff} . In the first case, Figure 1, ΔK_{eff} is calculated directly from the ratio of compliances. In the second case, Figure 2, ΔK_{eff} is calculated directly and then subtracted from ΔK_{epp} to determine ΔK_{eff} .

Fig. 1. (a) Load-displacement records showing the critical parameters in the ACR method [6,10]; (b) equations used in the ACR method.

Fig. 2. (a) Load-displacement records showing the parameters used in the on-line crack-compliance technique for global closure correction; (b) equations used in the on-line crack-compliance technique for global closure correction.

Recently, a fracture mechanics based analysis providing mathematical foundation for residual stress and crack closure correction methodologies has been developed [8], and good agreement between this analysis and the ACR method was observed. It should be noted that the complexity and the unknown distribution of forces in the crack wake combined with the increasingly larger increments of crack extension used for calculating the ACR make the solution a good approximation rather than an exact solution. The effectiveness of the ACR method has been demonstrated in two recent publications [9,10], which show good correlations between small crack growth data and ACR corrected long crack growth data. The data from reference [9] uses an open-hole corner crack sample whereas the data from reference [10] employs axially loaded corner-crack specimen geometry. Figure 3 [from Ref. 10] shows that the small crack data (triangles) closely matches the ACR corrected data from the long crack sample (stars). This figure also shows the lack of correlation between small crack behavior and the ASTM 2% offset opening load method (squares).

Fig 3. Comparison of long crack data, small crack data, and closure corrected data (R=0.1) for an A1-7%Si-0.45%Mg cast alloy [10] (circles = uncorrected long crack growth data; triangles = small crack growth data; stars = ACR corrected long crack growth data; squares = opening load corrected long crack growth data).

3. Real-time determination of K_{res} using on-line crack-compliance method

Recent advances in fracture mechanics derivations for closure corrections [8] have remarkably improved the understanding of the ACR closure concept with notable similarities between this concept and the cut-compliance method [7,11,12] for determining K_{rec} . The on-line crack-compliance method of determining K_{rec} during a crack growth test [8] is also similar to the cut-compliance method [7,11], but it can be applied during testing and without using influence functions. This is the result of the advances in the understanding of the ACR methodology and experimental evidence that both the on-line crack-compliance method and the ACR method are indeed measurement location insensitive.

The cut-compliance method of computing the stress intensity due to residual stress, K_{rec} , was developed by Schindler [11] and is based on Castigliano's theorem. However, new influence functions have been developed [7,8] using front-face displacements instead of back-face strains:

$$K_{rec} = \frac{E}{Z(a)} \cdot \frac{d\delta}{da}$$
(4)

The new on-line crack-compliance technique can be applied by extrapolating the slope of the load-displacement curve down to a displacement corresponding to zero load and paying careful attention to signal stability and load-displacement linearity. As the crack advances, a decrease in displacement at zero load indicates a compressive (negative) K_{res} whereas an increase signifies tensile (positive) K_{res} . Tensile residual stress determination is straightforward since the tendency of the crack to open minimizes crack closure effects (Figure 4(a)). Compressive residual stress can also be measured as long as the slope of the load-displacement curve is determined above the closure level (Figure 4(b)). K_{res} can be determined by measuring the change in displacement (or strain) at maximum load for a given increment of crack extension and comparing this to the corresponding change in displacement (or strain) at zero load over the same increment of crack extension. The ratio of the displacement change at zero load $(d\delta_{res})$ to the displacement change at maximum load $(d\delta_{max})$ multiplied by K_{max} provides the K_{res} as shown below [8]:

$$K_{res} = K_{max} \cdot \frac{d\delta_{res}}{d\delta_{...}}$$
(5)

As mentioned earlier, the on-line crack-compliance technique can be applied without the need to calculate influence functions, Z(a). It needs to be noted that both this approach and the ACR method are based on ratios of displacements and they are convenient to use due to their simplicity. Since a ratio of displacements is used to calculate K_{cos} , the displacements need not be measured at the load-line. The practical application of this methodology requires sufficient signal stability and linearity to determine K_{cos} . Furthermore, predominately elastic behavior is assumed since the influence of the crack tip plastic zone would contribute to erroneous calculations of K_{cos} .

Fig. 4. Load-displacement records showing the critical parameters in the on-line crack-compliance residual measurement technique [8]: (a) tensile residual stress and (b) compressive residual stress; the dashed lines parallel with the a_{m+1} load-displacement (or tangent to the load-displacement) records represent residual stress free conditions.

4. K_{max} sensitivity

Compressive residual stress has a direct impact on the crack tip driving force, ΔK , especially at low stress ratios and at near-threshold crack growth rates. Tensile residual stress may only affect K_{max} since the crack can remain fully open even at the minimum load. Regardless of whether or not compressive or tensile residual stresses are present, correlating stress ratio effects using the ACR method often results in the observation that the FCGR response is determined not only by ΔK_{eff} but it also depends on K_{max} . It was also observed that this K_{max} dependence takes the form of a power law with the magnitude of the exponent being a measure of K_{max} sensitivity [13].

An earlier investigation of 2000, 6000, and 7000 series wrought aluminum alloys [14] has revealed a second order K_{max} effect that covers a wide range of crack growth rate data and stress ratios, Figure 5(a). In a similar manner to that proposed by Walker [15], a unique intrinsic FCGR curve can be obtained by normalizing the stress intensity according to the equation:

$$K_{norm} = \Delta K^{1-n} \cdot K_{max}^{n}$$
(6)

An empirically derived K_{max} sensitivity exponent n=0.25 was shown to "collapse" the data, Figure 5(b) (see Ref. [10]). In order to correctly incorporate this K_{max} sensitivity concept, it is necessary to first determine the effective stress intensity using the ACR method. Then K_{res} needs to be added to K_{max} applied to give the total K in the K normalization process. Equation (6) then becomes:

$$K_{norm} = \Delta K_{eff}^{l-n} \cdot K_{max+residual}^{n}$$
 (7)

The K_{max} sensitivity concept is intended to compensate for the interaction between ΔK and K_{max} under predominately elastic conditions and does not apply to Region III behavior. A methodology to correct Region III FCGR data for plasticity can be found elsewhere [16]. The magnitude of the K_{max} sensitivity exponent may vary according to material and environmental conditions. The correlation illustrated in this example may not apply as accurately to all combinations of growth rates and stress ratios for other material-environment systems.

Fig. 5. Fatigue crack growth data of 2324-T39 Al showing: (a) ΔK_{app} and (b) K_{norm} after ACR correction.

5. Re-introducing stress ratio effects

The normalization process masks the effect of stress ratio, residual stress, and remote closure. Since remote closure is also affected by a combination of sample size and geometry, the resulting FCGR response is expected to be a good indicator of the material property for a physically small crack as long as the elastic K analysis is still valid. The physically small crack is larger than the mechanically small crack (where K is no longer valid) and the micro-structurally small crack (where behavior is governed by micro-structural constituents on the order of the crack size). The normalization process is not expected to mask out material property details such as orientation, environment or toughness-related behavior associated with upper Region II and Region III behavior. Thus, the normalization process allows a direct comparison between the responses of different materials and different environments.

In order to apply the normalized curve into a life prediction process, it is necessary to reintroduce the stress ratio effect and solve for ΔK . Recognizing that:

$$K_{max} = \frac{\Delta K}{(1 - R)}$$
(8)

Equation (7) can be rearranged to solve for ΔK_{eff} as shown in equation (9):

$$\Delta K_{eff} = K_{norm} \cdot (1 - R)^n \qquad (9)$$

Equation (9) re-evaluates a curve for each stress ratio of interest from the single normalized curve. Figure 6(a) shows the effect of stress ratio (R = 0.1, 0.3, 0.5, and 0.7) after correcting for closure using the ACR method. In Figure 6(b), the stress ratio effect has been re-introduced using equation (9) for the normalized curved tested at a stress ratio R=0.1. After re-processing, Figure 6(b), data initially corresponding to one stress ratio closely match the data provided by the tests done under four different stress ratios (Figure 6(a)). Determining the proper stress ratio also requires knowledge of the applied stress and the residual stress for the structure.

Fig 6. Fatigue crack growth curves showing: (a) original ΔK_{eff} data (using ACR method) and (b) ΔK_{eff} data from single normalized curve after re-introducing stress ratio effect.

SUMMARY

A methodology has been presented to assist in providing a unique intrinsic FCGR curve that is thought to emulate small crack growth behavior of a material. The proposed methodology should be considered a guideline since for several applications some of the presented techniques may be impractical (for example, compliance measurement on samples with small cracks or aggressive environments is often impractical). The ACR methodology is presented as a useful and easy to implement tool to compensate for closure contributions and to determine the small crack growth behavior. On-line $K_{\rm rec}$ measurements are considered appropriate means to account for residual stress contributions as long as a high level of instrumentation precision, stability, and linearity can be achieved. $K_{\rm max}$ sensitivity corrections are introduced to broaden the usefulness of the methodology for life prediction since the FCGR curve (excluding Region III) can be normalized and expressed as a unique curve regardless of the stress ratio. A procedure to re-introduce stress ratio effects is also presented to allow the use of normalized data for life prediction.

REFERENCES

- Bucci, R.J., "Effect of Residual Stress on Fatigue Crack Growth Rate Measurements", Fracture Mechanics: Thirteenth Conference, ASTM STP 743, American Society for Testing and Materials, West Conshohocken, PA, pp. 28-47, 1981.
- Bush, R.W., Bucci, R.J., Magnusen, P.E. and Kuhlman, G.W., "Fatigue Crack Growth Rate Measurements in Aluminum Alloy Forgings: Effects of Residual Stress and Grain Flow." In Fracture Mechanics: Twenty Third Symposium, ASTM STP 1189, R. Chona, editor., ASTM, Philadelphia, pp. 568-589, 1993.
- John, R., Jata, K.V., Sadananda, K., "Residual Stress Effects on Near-Threshold Fatigue Crack Growth in Friction Stir Welds in Aerospace Alloys", International Journal of Fatigue, Nov. 2002.
- Donald, J. K., and Schmidt, D. W., "Computer-Controlled Stress Gradient Technique for High Rate Fatigue Crack Growth Testing." Journal of Testing and Evaluation. Vol. 8, No.1, Jan. 1980, pp. 19-24
- Donald, J. K., "A Procedure for Standardizing Crack Closure Levels," Mechanics of Fatigue Crack Closure, ASTM STP 982, J. C. Newman, Jr. and W.Elber, Eds., American Society for Testing and Materials, Philadelphia 1988, pp. 222-229.
- Donald, J. K., Bray, G. H., Bush, R. W., "An Evaluation of the Adjusted Compliance Ratio Technique for Determining the Effective Stress Intensity Factor," 29th National Symposium on Fatigue and Fracture Mechanics, ASTM STP 1332, T. L. Panontin, S. D. Sheppard, Eds., American Society for Testing and Materials 1998, pp. 674-695.
- D. A. Lados and D. Apelian (2006) The effect of residual stress on the fatigue crack growth behavior of Al-Si-Mg cast alloys: mechanisms and corrective mathematical models. *Metall. and Matls. Trans.* A 37A, pp. 133-145.
- D. A. Lados, D. Apelian and J. K. Donald (2006) Fracture mechanics analysis for residual stress and crack closure corrections. Int. J. Fatigue (in press).
- Zonker, H. R., Bray, G. H., George, K., Garratt, M.D., "Use of ACR method to estimate closure and residual stress free small crack growth data," 34th National Symposium on Fatigue and Fracture Mechanics, ASTM STP 1461, S. R. Daniewicz, J. C. Newman, K. H. Schwalbe, Eds. American Society for Testing and Materials, 2005.
- D. A. Lados, D. Apelian, P. C. Paris and J. K. Donald (2005) Closure mechanisms in Al-Si-Mg cast alloys and long-crack to small-crack corrections. *Int. J. Fatigue* 27(10-12), pp. 1463-1472.
- H. J. Schindler, W. Cheng and I. Finnie (1997) Experimental determination of stress intensity factors due to residual stresses. Experimental Mechanics 37(3), pp. 272-277.
- Schindler, H. J., "Experimental Determination of Crack Closure by the Cut Compliance Technique," Advances in Fatigue Crack Closure Measurement and Analysis: Second Volume, ASTM STP 1343,

- R. C. McClung, J. C. Newman, Jr., Eds., American Society for Testing and Materials, 1999, pp. 175-187.
- Donald, J. K., Bray, G. H., Bush, R. W., "Introducing the Kmax Sensitivity Concept for Correlating Fatigue Crack Growth Data," High Cycle Fatigue of Structural Materials (Professor Paul C. Paris Symposium), W. Soboyejo, T. S. Srivatsan, Eds., The Minerals, Metals & Materials Society (TMS), 1997. pp. 123-141
- Bray, G. H., Donald, J. K. "Separating the Influence of Kmax from Closure-Related Stress Ratio Effects Using the Adjusted Compliance Ratio Technique," Advances in Fatigue Crack Closure Measurement and Analysis: Second Volume, ASTM STP 1343, R. C. McClung, J. C. Newman, Jr., Eds., American Society for Testing and Materials, 1999, pp. 57-78.
- Walker, K., "The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum," Effects of Environment and Complex Load History on Fatigue Life, ASTM STP 462, American Society for Testing and Materials, 1970, pp. 1-14.
- D. A. Lados and D. Apelian (2006) Limitations of elastic definitions in Al-Si-Mg cast alloys with enhanced plasticity: linear elastic fracture mechanics versus elastic-plastic fracture mechanics. Engineering Fracture Mechanics 73(4), pp. 435-455.

Annex C – Photographs of Test Samples

Annex D – Individual FCGR Curves

Fatigue Crack Growth Rate vs. Stress Intensity

Annex E – Tabular Results – ASTM E647 Analysis

		d Fatigu Rate An			
Test ID Contract Material Temperature (F) Environment	5083-H32 75	4-01 O	eometry Prientation Vield (ksi) Modulus (Msi)		C(T) T-L 34.3 10.5
Specimen Dime	nsions (in)				
Thickness Net Thickness Width	0.499 0.499 4.000	N	eight Jotch Depth Gage Length		2.400 1.000 0.500
Precrack Para	meters				
Pmax (lbs) Final a (in)	784.0 1.050		tress Ratio max (ksi sqr		0.10 4.00
Test Paramete	rs				
EvBP Freq 23.681 10.00 31.519 10.00 49.471 5.00	Pmax 0 0 0 0 2800 0	R 0.10 1. 0.10 1. 0.10 0.	Ai Kmaxi 140 3.00 456 10.59 000 0.00	C 4.00 2.00 0.00	DKi 0.00 0.00 0.00
K Coeff .886 4.64 -13.32 14.72 -5.6	C Coeff 1.00098 -4.66951 18.4601 -236.825 1214.88 -2143.57				
Visual Observ	ations				
20.683 1 21.433 1 21.845 1 23.564 1 24.665 1 26.544 1 27.285 1 31.505 1 44.255 1	.040 1.0 .060 1.0 .142 1.1 .190 1.1 .267 1.2 .296 1.2 .443 1.4 .773 1.7	02 45 55 50 95 70 95 30 65	Error 0.001 0.005 -0.005 0.008 0.005 0.003 -0.001 -0.013 -0.008 -0.004 0.008	CAF 1.012 1.010 1.009 1.004 1.002 0.998 0.996 0.988 0.972 0.967 0.944	
Comments					
Date of test: 8/ Waveform Type	10/2006	Sine			

Test	ID 5083	-FCG-1					Pa	age 1
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[i	n]^.5)
5.00	23.68	1.1470	52239	0.0005	100000	0.0255.0	2 000	0.700
568	23.79	1.1518	106926	0.0095	106637	8.875E-8	3.099	2.789
577 587	23.89	1.1564	158876	0.0095	102998	9.213E-8 9.610E-8	3.162	2.846
	24.00		209924	0.0047	48855			2.902
597	24.11	1.1659	258943	0.0047	46770	1.012E-7	3.289	2.960
607 617	24.21	1.1706	304075 345371	0.0048	45029 42580	1.068E-7 1.125E-7	3.354	3.019
628	24.32	1.1753	387545	0.0048	40217	1.125E-7 1.188E-7	3.422	3.142
	24.43 24.55	1.1852	429050		38501		3.562	3.206
639				0.0048		1.243E-7		
650 660	24.66 24.77	1.1899	465404 500243	0.0048	37173 35193	1.293E-7 1.352E-7	3.635	3.271
672	24.77	1.1993	535082	0.0048	33173	1.352E-7 1.415E-7	3.781	3.403
683	24.99	1.2041	568406	0.0047	31760	1.483E-7	3.857	3.471
694	25.10	1.2088	598700	0.0047	30195	1.566E-7	3.934	3.541
706	25.21	1.2135	628088	0.0047	28428	1.664E-7	4.012	3.611
718	25.33	1.2182	655961	0.0047	26631	1.770E-7	4.093	3.683
730	25.44	1.2229	681411	0.0047	25137	1.888E-7	4.174	3.757
743	25.56	1.2277	705649	0.0047	23309	2.036E-7	4.258	3.832
755	25.67	1.2323	728190	0.0047	21539	2.199E-7	4.343	3.909
768	25.79	1.2371	749519	0.0047	20011	2.384E-7	4.429	3.986
781	25.90	1.2418	767940	0.0047	18427	2.606E-7	4.518	4.066
794	26.02	1.2464	785195	0.0048	16764	2.893E-7	4.606	4.146
807	26.13	1.2511	801479	0.0048	14884	3.298E-7	4.700	4.230
821	26.26	1.2560	816211	0.0048	13221	3.848E-7	4.795	4.316
835	26.38	1.2609	828774	0.0048	11604	4.511E-7	4.895	4.405
850	26.51	1.2658	838825	0.0048	10015	5.199E-7	4.994	4.494
864	26.62	1.2704	847267	0.0047	8565	5.885E-7	5.094	4.584
878	26.74	1.2750	854817	0.0047	7329	6.671E-7	5.195	4.676
894	26.86	1.2797	861569	0.0046	6441	7.515E-7	5.296	4.766
908	26.98	1.2843	867603	0.0047	5780	8.458E-7	5.402	4.862
923	27.10	1.2890	872748	0.0047	5166	9.484E-7	5.508	4.957
939	27.23	1.2937	877473	0.0047	4589	1.065E-6	5.619	5.057
955	27.36	1.2986	881948	0.0047	4066	1.203E-6	5.733	5.160
972	27.48	1.3034	885810	0.0048	3685	1.346E-6	5.848	5.263
988	27.61	1.3081	889103	0.0048	3331	1.491E-6	5.965	5.369
1004	27.73	1.3127	891997	0.0047	2954	1.638E-6	6.085	5.477
1022	27.86	1.3175	894859	0.0047	2658	1.806E-6	6.207	5.586
1039	27.99	1.3224	897460	0.0047	2421	2.000E-6	6.331	5.698
1056	28.12	1.3269	899673	0.0047	2217	2.200E-6	6.458	5.812
1074	28.25	1.3317	901756	0.0047	2004	2.418E-6	6.587	5.928
1093	28.38	1.3365	903631	0.0047	1818	2.641E-6	6.717	6.046
1111	28.51	1.3411	905298	0.0048	1684	2.871E-6	6.852	6.167
1129	28.64	1.3458	906881	0.0048	1549	3.107E-6	6.989	6.290
1149	28.77	1.3506	908369	0.0047	1426	3.347E-6	7.131	6.418

Test	ID 5083	-FCG-1					P	age 2
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[i	n]^.5)
1169	28.91	1.3556	909778	0.0047	1326	3.622E-6	7.275	6.548
1189	29.04	1.3603	911052	0.0047	1232	3.896E-6	7.422	6.680
1208	29.17	1.3649	912189	0.0047	1142	4.174E-6	7.570	6.813
1229	29.31	1.3696	913256	0.0047	1064	4.457E-6	7.717	6.945
1249	29.44	1.3742	914270	0.0047	993	4.759E-6	7.871	7.084
1270	29.58	1.3789	915219	0.0047	937	5.068E-6	8.028	7.226
1292	29.72	1.3838	916159	0.0048	886	5.423E-6	8.190	7.371
1314	29.86	1.3886	917012	0.0048	832	5.797E-6	8.357	7.521
1337	30.00	1.3933	917811	0.0048	783	6.166E-6	8.527	7.675
1360	30.14	1.3983	918571	0.0048	733	6.536E-6	8.699	7.829
1383	30.28	1.4030	919262	0.0047	692	6.869E-6	8.874	7.987
1406	30.42	1.4076	919919	0.0047	655	7.203E-6	9.052	8.147
1430	30.56	1.4124	920559	0.0047	624	7.541E-6	9.228	8.305
1453	30.70	1.4170	921163	0.0047	600	7.885E-6	9.413	8.472
1478	30.85	1.4217	921739	0.0048	578	8.232E-6	9.601	8.641
1503	31.00	1.4266	922315	0.0048	552	8.603E-6	9.794	8.815
1529	31.15	1.4314	922864	0.0096	1070	8.991E-6	9.992	8.993
1555	31.29	1.4362	923385	0.0095	1009	9.378E-6	10.195	9.175
	31.44	1.4409	923873					
	31.52	1.4435	924558					
1615	31.81	1.4528	925419	0.0190	1776	1.067E-5	10.702	9.632
1637	32.12	1.4624	926334	0.0192	1779	1.080E-5	10.911	9.820
1659	32.43	1.4720	927198	0.0189	1693	1.115E-5	11.127	10.014
1681	32.73	1.4813	928027	0.0096	815	1.179E-5	11.348	10.213
1704	33.05	1.4909	928822	0.0096	772	1.241E-5	11.577	10.419
1728	33.38	1.5009	929582	0.0095	735	1.304E-5	11.807	10.626
1751	33.70	1.5105	930308	0.0096	702	1.365E-5	12.046	10.841
1775	34.02	1.5199	930964	0.0095	665	1.426E-5	12.283	11.055
1799	34.34	1.5292	931605	0.0095	634	1.490E-5	12.525	11.272
1823	34.67	1.5386	932236	0.0095	609	1.561E-5	12.769	11.492
1847	35.00	1.5480	932812	0.0095	587	1.625E-5	13.024	11.721
1872	35.35	1.5577	933388	0.0095	561	1.697E-5	13.285	11.956
1899	35.71	1.5676	933964	0.0095	536	1.776E-5	13.550	12.195
1924 1949	36.06 36.40	1.5771	934486 934973	0.0095	517 494	1.846E-5 1.934E-5	13.821 14.094	12.439 12.685
1976	36.76	1.5959	935454	0.0095	467	2.033E-5	14.369	12.005
2002	37.11	1.6053	935913	0.0095	445	2.133E-5	14.656	13.191
2002	37.11	1.6151	936349	0.0095	429	2.133E-5 2.235E-5	14.656	13.191
2025	37.86	1.6246	936765	0.0096	411	2.235E-5 2.343E-5	15.244	13.450
2084	38.23	1.6341	937157	0.0097	391	2.467E-5	15.549	13.719
2112	38.62	1.6438	937548	0.0096	369	2.597E-5	15.861	14.275
2141	39.02	1.6537	937922	0.0095	349	2.742E-5	16.183	14.565
2170	39.42	1.6635	938259	0.0096	334	2.890E-5	16.500	14.850
2198	39.79	1.6725	938562	0.0096	314	3.047E-5	16.827	15.144
2226	40.18	1.6818	938861	0.0095	293	3.217E-5	17.155	15.439

Test	ID 5083	-FCG-1					P	age 3
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[i	n]^.5)
	40.60							
2256	40.60	1.6916	939159	0.0094	278	3.393E-5	17.489	15.741
2286	41.01 41.41	1.7011	939430 939681	0.0096	269 256	3.584E-5 3.776E-5	17.836 18.188	16.053 16.369
2346	41.83	1.7105	939927	0.0096	240	3.983E-5	18.555	16.699
2378	42.28	1.7301	940173	0.0096	228	4.204E-5	18.921	17.029
2409	42.72	1.7397	940396	0.0096	218	4.431E-5	19.301	17.371
2440	43.14	1.7490	940598	0.0098	207	4.713E-5	19.683	17.715
2472	43.59	1.7586	940799	0.0096	192	5.002E-5	20.071	18.064
2505	44.05	1.7683	940991	0.0095	180	5.312E-5	20.479	18.432
2539	44.53	1.7785	941167	0.0096	172	5.640E-5	20.876	18.789
2570	44.96	1.7875	941326	0.0097	162	5.995E-5	21.294	19.165
2602	45.42	1.7968	941478	0.0096	150	6.374E-5	21.712	19.541
2637	45.92	1.8069	941631	0.0095	141	6.797E-5	22.136	19.923
2671	46.40	1.8166	941768	0.0096	134	7.262E-5	22.576	20.319
2705	46.87	1.8258	941890	0.0097	126	7.733E-5	23.025	20.723
2740	47.37	1.8354	942012	0.0097	117	8.305E-5	23.477	21.129
2775	47.89	1.8453	942128	0.0196	222	8.837E-5	23.947	21.553
2811	48.40	1.8551	942234	0.0195	202	9.643E-5	24.425	21.983
	48.93	1.8648	942330					
2800	49.47 49.96	1.8747	942436 942538	0.0185	207	8.933E-5	24.846	22.360
2800	50.50	1.8932	942643	0.0108	211	9.167E-5	25.015	22.513
2800	51.05	1.9030	942749	0.0194	207	9.372E-5	25.192	22.673
2800	51.61	1.9126	942850	0.0097	101	9.580E-5	25.371	22.834
2800	52.16	1.9221	942948	0.0097	100	9.770E-5	25.555	22.999
2800	52.75	1.9320	943046	0.0098	98	9.984E-5	25.738	23.164
2800	53.33	1.9417	943143	0.0098	96	1.017E-4	25.929	23.336
2800	53.94	1.9517	943241	0.0098	94	1.041E-4	26.120	23.508
2800	54.55	1.9615	943334	0.0097	91	1.067E-4	26.313	23.682
2800	55.16	1.9712	943424	0.0097	89	1.096E-4	26.509	23.858
2800	55.78	1.9809	943509	0.0097	86	1.127E-4	26.701	24.031
2800	56.38	1.9902	943590	0.0096	83	1.155E-4	26.902	24.212
2800	57.03	2.0002	943676	0.0097	81	1.188E-4	27.100	24.390
2800	57.69	2.0100	943757	0.0096	79	1.218E-4	27.303	24.572
2800	58.32	2.0193	943833	0.0097	78	1.246E-4	27.513	24.761
2800	59.00	2.0293	943910	0.0097	75	1.282E-4	27.716	24.944
2800 2800	59.67 60.34	2.0388	943983 944056	0.0097	73 72	1.316E-4 1.353E-4	27.928 28.140	25.135 25.326
2800	61.04	2.0483	944126	0.0098	70	1.389E-4	28.358	25.522
2800	61.77	2.0680	944196	0.0097	68	1.426E-4	28.584	25.726
2800	62.53	2.0783	944267	0.0098	66	1.473E-4	28.807	25.926
2800	63.25	2.0878	944330	0.0099	64	1.535E-4	29.036	26.132
2800	63.97	2.0972	944392	0.0098	61	1.603E-4	29.263	26.336
2800	64.73	2.1070	944452	0.0097	58	1.679E-4	29.503	26.552
2800	65.57	2.1176	944511	0.0098	56	1.751E-4	29.733	26.760

Test	ID 5083	-FCG-1					P	age 4
Pmax (1b)	EvB/P	a (in)	И	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK n]^.5)
2800 2800 2800 2800 2800 2800 2800 2800	66.32 67.09 67.92 68.74 69.60 70.44 71.32 72.17 73.10 74.02 75.84 76.82 77.80 79.78 80.85 81.93 82.97 84.05 85.13 86.29 87.50 88.70 90.04 91.13 92.31 97.56 99.00 100.39 101.81 104.81 106.29 107.96 112.95 114.97 116.50 118.40 120.28	2.1269 2.1364 2.1464 2.1561 2.1661 2.1757 2.1857 2.1952 2.2053 2.2151 2.2247 2.2342 2.2441 2.2540 2.2638 2.2733 2.2835 2.2935 2.3031 2.3128 2.3232 2.3427 2.3527 2.3639 2.3730 2.3827 2.3527 2.3639 2.3730 2.3827 2.4134 2.4444 2.4546 2.4650 2.4753 2.4852 2.4961 2.5068 2.5170 2.5274 2.5395 2.5485 2.5599	944563 944614 944677 944772 944772 944868 944911 944953 945065 945169 945169 945259 945259 945259 945259 945259 945378 945497 945497 945498 945497 945595 945602 945603 945603 945603 945603 945603 945603	0.0098 0.0099 0.0098 0.0098 0.0098 0.0098 0.0098 0.0097 0.0097 0.0098 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0090 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	55 53 55 51 50 44 43 43 33 33 33 32 22 22 22 21 11 11 11 11 11 11 11 11 11	1.802E-4 1.843E-4 1.962E-4 1.962E-4 2.07E-4 2.174E-4 2.174E-4 2.521E-4 2.699E-4 2.699E-4 2.7925E-4 3.057E-4 3.198E-4 3.772E-4 4.2590E-4 4.2590E-4 4.2590E-4 4.2590E-4 4.2590E-4 4.2590E-4 4.2590E-4 4.2590E-4 4.2590E-4 4.2590E-4 4.2590E-4 4.2590E-4 4.2590E-4 4.2590E-4 4.2590E-4 4.2590E-4 4.2590E-4 5.123E-4 5.123E-4 5.123E-4 5.123E-4 5.123E-4 5.123E-4 5.123E-4 5.123E-4 5.123E-4 5.123E-4 5.123E-4 5.123E-4 5.123E-4 5.123E-4 5.123E-4 5.123E-4 5.123E-4 5.123E-4 5.399E-4 6.112E-4 8.904E-4 9.478E-4 9.478E-4 9.478E-3 1.196E-3 1.196E-3 1.196E-3 1.26E-3 1.26E-3 1.534E-3 2.415E-3 2.415E-3 2.415E-3 2.670E-3	29.981 30.220 30.463 30.719 30.970 31.231 31.486 31.757 32.023 32.296 32.570 33.422 33.711 34.016 34.317 34.627 34.941 35.574 35.574 36.611 36.952 37.317 37.671 38.416 39.211 39.609 40.027 40.441 40.866 41.289 41.289 42.665 43.132 43.654 44.079 44.610 45.579	26.983 27.198 27.417 27.646 27.872 28.108 28.337 28.581 28.9.066 29.312 29.563 29.563 30.884 31.163 31.445 31.723 32.015 32.946 33.255 34.240 35.263 35.2641 37.5566 37.957 38.381 38.797 39.2666 40.099 40.539 40.539 40.952
Test	ID 5083	FCG-1					F	Page 5
Pmax (1b)	EvB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	
2789 2790 2787	124.18 125.98 128.07 130.25	2.6004	945629 945632 945636 945639	0.0104 0.0104 0.0105 0.0216 0.0216	4 3 7	2.815E-3 2.977E-3 3.221E-3 3.080E-3 4.324E-3	46.627 47.141 47.631	41.882 * 42.324 * 42.746 *

	Automated Fati Growth Rate			
Test ID Contract Material Temperature (F) Environment RH = 4				C(T) T-L 34.3 10.5
Specimen Dimension	s (in)			
Thickness Net Thickness Width	0.498	Height Notch Depth Gage Length		2.400 1.000 0.500
Precrack Parameter	5			
	782.0 1.050	Stress Ratio Kmax (ksi sq		0.10 4.00
Test Parameters				
EvBP Freq 23.508 10.00 31.601 10.00 49.466 5.00		1.455 10.58	4.00 2.00	DKi 0.00 0.00 0.00
.886 4.64 - -13.32 14.72 - -5.6	C Coeff 1.00098 4.66951 18.4601 236.825 1214.88 2143.57			
Visual Observation	5			
EvB/P Crack(EvB/) 20.449 0.996 21.848 1.067 23.496 1.145 27.159 1.296 31.498 1.447 42.053 1.727 49.149 1.870 104.045 2.464 Comments	1.000 1.075 1.150 1.295 1.430 1.720 1.870 2.470	0.004 0.008 0.005 -0.001 -0.017 -0.007 0.000 0.006	CAF 1.019 1.015 1.010 1.001 0.992 0.976 0.968 0.936	
Date of test: 8/14/20 Waveform Type	06 Sir	ne .		

Test	ID 5083	-FCG-2					P	age l
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[i	
		,						
	23.51	1.1452	5353					
546	23.56	1.1477	40922	0.0074	98021	7.540E-8	2.997	2.697
556	23.67	1.1526	103374	0.0097	117902	8.199E-8	3.043	2.739
566	23.78	1.1574	158824	0.0044	51514	8.606E-8	3.105	2.794
575	23.88	1.1619	211935	0.0048	53696	8.948E-8	3.168	2.851
585	23.99	1.1667	263545	0.0047	50237	9.425E-8	3.232	2.908
595	24.10	1.1716	314436	0.0047	47764	9.928E-8	3.299	2.969
606	24.22	1.1766	363099	0.0047	45445	1.049E-7	3.365	3.028
616	24.32	1.1811	404796	0.0048	43195	1.105E-7	3.434	3.090
626	24.43	1.1857	445408	0.0048	41024	1.167E-7	3.500	3.150
636	24.54	1.1904	484607	0.0047	38584	1.227E-7	3.571	3.214
647	24.65	1.1952	522712	0.0047	36811	1.288E-7	3.644	3.280
659	24.77	1.2003	560580	0.0047	34973	1.359E-7	3.717	3.346
670	24.88	1.2050	594601	0.0048	33124	1.438E-7	3.793	3.414
681	24.99	1.2096	625664	0.0048	31162	1.528E-7	3.868	3.481
692	25.10	1.2142	655247	0.0047	28992	1.633E-7	3.945	3.550
704	25.21	1.2189	683351	0.0047	27070	1.754E-7	4.024	3.622
716	25.33	1.2237	709682	0.0047	25245	1.880E-7	4.106	3.696
729	25.45	1.2286	734534	0.0047	23470	2.017E-7	4.190	3.771
741	25.56	1.2333	757019	0.0047	21784	2.169E-7	4.273	3.846
753	25.67	1.2378	777136	0.0047	20078	2.354E-7	4.357	3.921
765	25.79	1.2423	796069	0.0046	18209	2.584E-7	4.442	3.998
778	25.90	1.2470	814055	0.0046	16482	2.883E-7	4.532	4.078
792	26.02	1.2519	830152	0.0047	15049	3.256E-7	4.620	4.158
805	26.14	1.2564	843789	0.0048	13449	3.710E-7	4.715	4.243
819	26.26	1.2611	855912	0.0047	11679	4.264E-7	4.810	4.329
833	26.38	1.2661	867429	0.0047	10044	5.022E-7	4.908	4.417
848	26.51	1.2709	876763	0.0047	8692	5.905E-7	5.006	4.505
861	26.62	1.2754	884131	0.0047	7541	6.819E-7	5.108	4.597
876	26.74	1.2800	890415	0.0046	6409	7.704E-7	5.205 5.310	4.685
890 906	26.86 26.98	1.2845	895941 901160	0.0047	5557 4959	8.682E-7 9.746E-7	5.413	4.779 4.872
921	27.10	1.2939	905881	0.0047		1.088E-6	5.526	4.872
937	27.23	1.2989	910107		4474 4057	1.202E-6	5.635	
953	27.23	1.3036	913882	0.0047	3680	1.311E-6	5.752	5.072 5.177
969	27.48	1.3088	917260	0.0047	3338	1.433E-6	5.864	5.277
985	27.60	1.3127	920282	0.0047	3010	1.565E-6	5.981	5.383
1001	27.73	1.3173	923239	0.0046	2754	1.715E-6	6.099	5.489
1019	27.73	1.3222	925906	0.0046	2529	1.885E-6	6.219	5.597
1036	27.98	1.3267	928167	0.0047	2341	2.050E-6	6.344	5.710
1058	28.11	1.3314	930403	0.0047	2146	2.226E-6	6.471	5.824
1071	28.24	1.3362	932435	0.0047	1959	2.414E-6	6.601	5.941
1089	28.37	1.3409	934325	0.0047	1812	2.640E-6	6.733	6.060
1108	28.51	1.3457	936114	0.0047	1657	2.903E-6	6.868	6.181

Test	ID 5083	-FCG-2					P	age 2
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[i	n]^.5)
1126	28.64	1.3503	937659	0.0047	1524	3.172E-6	7.006	6.305
1145	28.77	1.3550	939041	0.0047	1394	3.457E-6	7.145	6.430
1165	28.90	1.3597	940342	0.0047	1270	3.724E-6	7.289	6.560
1185	29.04	1.3645	941578	0.0047	1178	4.013E-6	7.435	6.691
1205	29.17	1.3692	942686	0.0047	1103	4.289E-6	7.580	6.822
1224	29.30	1.3736	943733	0.0047	1032	4.592E-6	7.735	6.961
1246	29.44	1.3785	944727	0.0047	965	4.918E-6	7.885	7.097
1267	29.58	1.3832	945657	0.0048	912	5.252E-6	8.046	7.242
1288	29.72	1.3880	946532	0.0048	856	5.623E-6	8.210	7.389
1311	29.86	1.3928	947365	0.0048	802	5.980E-6	8.377	7.539
1333	30.00	1.3977	948157	0.0047	753	6.334E-6	8.549	7.694
1357	30.15	1.4025	948867	0.0047	707	6.642E-6	8.720	7.848
1379	30.28	1.4071	949538	0.0047	667	6.989E-6	8.893	8.004
1401	30.42	1.4116	950175	0.0047	629	7.364E-6	9.064	8.158
1424	30.55	1.4160	950773	0.0046	601	7.731E-6	9.244	8.319
1449	30.70	1.4208	951366	0.0047	578	8.157E-6	9.424	8.482
1473	30.85	1.4256	951931	0.0047	558	8.532E-6	9.615	8.654
1498	30.99	1.4303	952470	0.0048	534	8.911E-6	9.814	8.832
1525	31.15	1.4353	953008	0.0097	1050	9.195E-6	10.009	9.008
1550	31.29	1.4400	953520	0.0093	968	9.641E-6	10.215	9.194
	31.44	1.4447	953976					
	31.60	1.4498	954790					
1612	31.80	1.4560	955367	0.0160	1474	1.087E-5	10.765	9.689
1634	32.11	1.4659	956264	0.0192	1750	1.095E-5	10.940	9.846
1656	32.41	1.4752	957117	0.0190	1660	1.146E-5	11.164	10.048
1679 1701	32.73 33.04	1.4849	957924 958705	0.0095	799	1.191E-5 1.238E-5	11.381	10.243
1724	33.36	1.5037	959432	0.0095	766 732	1.292E-5	11.839	10.446
1748	33.68	1.5132	960160	0.0095	700	1.350E-5	12.072	10.865
1772	34.01	1.5227	960860	0.0095	669	1.417E-5	12.314	11.083
1796	34.34	1.5322	961506	0.0095	642	1.482E-5	12.557	11.302
1820	34.67	1.5417	962126	0.0095	610	1.555E-5	12.807	11.527
1845	35.01	1.5512	962718	0.0095	584	1.627E-5	13.061	11.755
1870	35.35	1.5607	963284	0.0095	561	1.698E-5	13.318	11.986
1894	35.69	1.5700	963822	0.0095	534	1.770E-5	13.584	12.225
1920	36.05	1.5797	964361	0.0094	506	1.859E-5	13.856	12.470
1947	36.41	1.5895	964873	0.0095	487	1.955E-5	14.127	12.714
1972	36.75	1.5985	965328	0.0096	468	2.051E-5	14.409	12.968
1998	37.11	1.6078	965755	0.0095	442	2.148E-5	14.693	13.223
2026	37.49	1.6176	966204	0.0094	417	2.260E-5	14.986	13.488
2054	37.88	1.6275	966630	0.0095	399	2.380E-5	15.285	13.756
2081	38.24	1.6367	967012	0.0095	382	2.503E-5	15.592	14.033
2109	38.62	1.6461	967375	0.0095	361	2.633E-5	15.896	14.306
2136	39.00	1.6556	967721	0.0095	342	2.771E-5	16.209	14.588
2165	39.39	1.6651	968049	0.0095	327	2.907E-5	16.528	14.875

Test	ID 5083	-FCG-2					P	age 3
Pmax (1b)	EvB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK n]^.5)
2194 2224 2253 2282 2313 2344 2375 2405	39.78 40.20 40.60 41.01 41.42 41.86 42.29 42.71	1.6744 1.6843 1.6938 1.7031 1.7126 1.7225 1.7320 1.7413	968369 968684 968973 969233 969491 969737 969952 970163	0.0095 0.0095 0.0096 0.0096 0.0095 0.0096 0.0096	310 295 281 264 247 233 222 210	3.056E-5 3.224E-5 3.415E-5 3.644E-5 3.879E-5 4.129E-5 4.358E-5 4.596E-5	16.861 17.193 17.535 17.882 18.236 18.600 18.970 19.354	15.175 15.473 15.782 16.094 16.413 16.740 17.073 17.419
2438 2470 2502 2535 2568 2599 2633 2667 2702	43.17 43.62 44.07 44.53 44.98 45.43 45.91 46.40 46.90	1.7513 1.7609 1.7704 1.7800 1.7894 1.7984 1.8080 1.8178 1.8274	970373 970565 970748 970922 971082 971232 971374 971509 971635	0.0096 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095	198 188 178 167 157 148 138 129 121	4.842E-5 5.084E-5 5.352E-5 5.674E-5 6.045E-5 6.909E-5 7.409E-5 7.942E-5	19.734 20.132 20.530 20.934 21.336 21.758 22.180 22.623 23.072	17.761 18.119 18.478 18.841 19.203 19.583 19.962 20.361 20.765
2736 2770 2806	47.39 47.88 48.39 48.91 49.47 49.96	1.8369 1.8463 1.8558 1.8653 1.8756 1.8845	971752 971858 971959 972055 972161 972258	0.0096 0.0189 0.0190	114 207 197	8.479E-5 9.112E-5 9.659E-5 9.500E-5	23.525 23.988 24.454	21.173 21.590 22.009
2800 2800 2800 2800 2800 2800 2800	50.51 51.06 51.62 52.16 52.75 53.34 53.94	1.8943 1.9039 1.9134 1.9228 1.9326 1.9424 1.9521	972358 972459 972555 972647 972738 972829 972916	0.0194 0.0192 0.0096 0.0096 0.0097 0.0097	201 197 95 93 91 89	9.659E-5 9.723E-5 1.009E-4 1.035E-4 1.066E-4 1.096E-4	25.092 25.270 25.447 25.629 25.812 26.001 26.192	22.582 22.743 22.902 23.066 23.231 23.401 23.573
2800 2800 2800 2800 2800 2800 2800 2800	54.55 55.17 55.76 56.40 57.03 57.67 58.34 59.00	1.9618 1.9717 1.9808 1.9907 2.0003 2.0098 2.0197 2.0293	973002 973086 973166 973248 973327 973404 973477 973550	0.0097 0.0096 0.0096 0.0096 0.0097 0.0097	85 83 81 79 77 76 73	1.137E-4 1.159E-4 1.177E-4 1.207E-4 1.239E-4 1.276E-4 1.308E-4 1.347E-4	26.386 26.576 26.775 26.968 27.169 27.374 27.577 27.788	23.747 23.918 24.097 24.271 24.452 24.636 24.819 25.009
2800 2800 2800 2800 2800 2800 2800	59.68 60.33 61.08 61.77 62.48 63.20 64.00	2.0390 2.0481 2.0584 2.0679 2.0774 2.0869 2.0973	973620 973687 973758 973824 973889 973952 974014	0.0097 0.0096 0.0096 0.0097 0.0098 0.0097	70 69 67 66 64 62 60	1.377E-4 1.398E-4 1.428E-4 1.470E-4 1.516E-4 1.571E-4 1.636E-4	27.993 28.214 28.423 28.647 28.866 29.097 29.321	25.194 25.393 25.580 25.782 25.979 26.187 26.389

Test	ID 5083	FCG-2					F	age 4
Pmax (1b)	EvB/P	a (in)	И	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK .n]^.5)
2800 2800 2800	64.74 65.51 66.31	2.1067 2.1165 2.1263	974071 974127 974182	0.0098 0.0097 0.0096	58 55 53	1.697E-4 1.762E-4 1.825E-4	29.562 29.796 30.034	26.605 26.816 27.030
2800 2800	67.10 67.87	2.1360	974234 974281	0.0097	51 50	1.888E-4 1.947E-4	30.273	27.245 27.463
2800 2800 2800	68.68 69.54 70.40	2.1548 2.1648 2.1746	974329 974379 974425	0.0097 0.0097 0.0098	48 46 45	2.024E-4 2.111E-4 2.197E-4	30.761 31.014 31.274	27.685 27.912 28.146
2800 2800	71.28 72.16	2.1845 2.1943	974467 974509	0.0098 0.0098	43 41	2.287E-4 2.383E-4	31.536 31.802	28.382 28.621
2800 2800 2800	73.07 73.96 74.89	2.2041 2.2136 2.2234	974549 974587 974625	0.0098 0.0098 0.0098	39 38 36	2.476E-4 2.575E-4 2.688E-4	32.068 32.341 32.617	28.861 29.106 29.355
2800 2800	75.86 76.85	2.2334	974661 974695	0.0097 0.0098	35 34	2.798E-4 2.909E-4	32.902 33.185	29.611 29.866
2800 2800 2800	77.80 78.74 79.80	2.2529 2.2621 2.2723	974727 974757 974789	0.0098 0.0098 0.0097	32 31 29	3.046E-4 3.182E-4 3.364E-4	33.470 33.764 34.056	30.122 30.387 30.649
2800 2800	80.85 81.91	2.2823	974817 974844	0.0098	28 26	3.579E-4 3.843E-4	34.364	30.926
2800 2800 2800	82.99 84.09 85.20	2.3019 2.3118 2.3216	974869 974892 974913	0.0098 0.0098 0.0099	24 23 21	4.105E-4 4.371E-4 4.650E-4	34.987 35.306 35.621	31.487 31.773 32.056
2800 2800 2800	86.28 87.49 88.72	2.3309 2.3411 2.3514	974933 974953 974972	0.0098 0.0098 0.0098	20 19 18	4.871E-4 5.112E-4 5.382E-4	35.954 36.287 36.621	32.356 32.656 32.956
2800 2800	89.85 91.11	2.3607 2.3707	974990 975007	0.0098	17 16	5.723E-4 6.044E-4	36.977 37.312	33.276 33.577
2800 2799 2799	92.33 93.57 94.89	2.3803 2.3899 2.3999	975022 975036 975051	0.0097 0.0098 0.0098	16 15 14	6.339E-4 6.730E-4 7.110E-4	37.666 38.026 38.384	33.896 34.219 34.540
2799 2799 2799	96.20 97.57 98.92	2.4096 2.4196 2.4292	975065 975077 975089	0.0098 0.0099 0.0099	13 13 12	7.489E-4 7.860E-4 8.373E-4	38.763 39.135 39.526	34.880 * 35.215 * 35.566 *
2799 2799	100.37 101.81	2.4394	975101 975112	0.0103	11 11	9.104E-4 9.984E-4	39.917 40.322	35.918 * 36.280 *
2799 2795 2797	103.31 105.09 106.66	2.4594 2.4713 2.4819	975122 975132 975140	0.0101 0.0103 0.0103	10 9 8	1.082E-3 1.177E-3 1.256E-3	40.748 41.191 41.593	36.656 * 37.057 * 37.412 *
2797 2798	107.89 109.66	2.4899 2.5013	975147 975155 975162	0.0103 0.0101	8 7	1.336E-3 1.443E-3	42.089 42.494	37.860 * 38.226 *
2798 2796 2797	111.26 112.86 114.66	2.5113 2.5212 2.5320	975168 975174	0.0101 0.0105 0.0104	7 6 6	1.591E-3 1.692E-3 1.810E-3	42.968 43.454 43.921	39.081 * 39.499 *
2797 Test	116.46 ID 5083	2.5427 -FCG-2	975179	0.0104	6	1.891E-3		39.951 * age 5
Pmax (1b)	EvB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	
2797 2795	120.18	2.5530 2.5638	975190		5	1.991E-3 2.122E-3	45.418	40.832 *
2793 2790 2792	121.95 123.80 125.86	2.5735 2.5835 2.5943	975195 975199 975203		5 4 4	2.398E-3 2.766E-3 3.134E-3	46.433	41.721 *
2783 2772 2763	127.99 130.39 132.56	2.6053 2.6173 2.6279	975206 975209 975212	0.0107 0.0226	3 6 5	3.510E-3 3.767E-3	47.418 47.854	42.547 * 42.899 *
	134.56	2.6374	975214					

				igue Cra Analysi			
Test ID Contract Material Temperature Environment		SSC 10 5083-H 75	624-01	Geomet Orient Yield Modulu	ation		C(T) T-L 34.3 10.5
Specimen	Dimension	s (in)					
Thickness Net Thicknes Width		0.498 0.498 4.001			; Depth ength		2.400 1.000 0.500
	Parameter						
Pmax (lbs) Final a (in)		783.0 1.050			Ratio ksi sqr		0.10 4.00
Test Para	meters						
33.806 33.806	5.00 5.00	0	0.10	Ai 1.200 1.531 0.000	Kmaxi 2.40 9.01 0.00	2.00	0.00
K Coeff .886 4.64 -13.32 14.72 -5.6	-	C Coeff 1.00098 4.66951 18.4601 236.825 1214.88 2143.57					
Visual Ob	servation	s					
EvB/P C 20.705 21.841 23.618 24.536 24.722 25.856 29.095 33.824 47.605 58.004	rack (EvB/ 1.012 1.068 1.150 1.190 1.197 1.244 1.363 1.512 1.831 2.003	1 1 1 1 1 1 1	k (visua .000 .060 .160 .190 .200 .250 .370 .510 .830	al) Erro -0.01 -0.00 0.01 0.00 0.00 0.00 -0.00 -0.00	2 8 0 0 0 0 0 0 0 0 7 7 12	CAF 1.020 1.016 1.009 1.006 1.006 1.002 0.993 0.982 0.959 0.947	
Date of test	: 8/21/20	06					
Waveform Typ			Si	.ne			

Test	ID 5083	-FCG-3					Pa	ige 1
Pmax	EvB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[ir	deltaK
	24.73	1.1979	1932					
417	24.77	1.1996	27582	0.0057	85243	6.655E-8	2.359	2.124
423	24.87	1.2035	87175	0.0085	123618	6.901E-8	2.392	2.153
430	24.98	1.2081	151200	0.0040	51273	7.998E-8	2.436	2.192
437	25.09	1.2127	207030	0.0045	54630	8.420E-8	2.485	2.237
445 452	25.21 25.32	1.2175	258821 309570	0.0047	51470 47230	9.169E-8 9.928E-8	2.535	2.281
460	25.32	1.2268	355363	0.0046	43823	1.069E-7	2.638	2.374
468	25.55	1.2315	395997	0.0046	40644	1.155E-7	2.690	2.421
475	25.67	1.2315	434579	0.0046	37438	1.155E-7 1.248E-7	2.743	2.469
483	25.78	1.2405	469966	0.0040	34855	1.347E-7	2.797	2.517
491	25.70	1.2452	502687	0.0047	32526	1.452E-7	2.852	2.567
500	26.02	1.2498	534196	0.0047	30338	1.561E-7	2.912	2.620
509	26.14	1.2548	564493	0.0047	28278	1.664E-7	2.970	2.673
517	26.26	1.2596	591155	0.0046	26379	1.775E-7	3.031	2.728
526	26.38	1.2641	616605	0.0047	24682	1.896E-7	3.090	2.781
534	26.50	1.2685	639631	0.0046	22864	2.019E-7	3.152	2.837
544	26.62	1.2731	660960	0.0046	21491	2.154E-7	3.213	2.892
553	26.74	1.2778	682289	0.0046	19996	2.317E-7	3.278	2.950
562	26.86	1.2824	701679	0.0047	18614	2.515E-7	3.344	3.010
572	26.99	1.2872	720100	0.0046	17256	2.744E-7	3.411	3.070
582	27.11	1.2917	736580	0.0046	15666	3.013E-7	3.480	3.132
592	27.24	1.2965	751313	0.0046	14358	3.296E-7	3.549	3.194
602	27.36	1.3010	764496	0.0046	13108	3.577E-7	3.619	3.257
611	27.48	1.3054	776283	0.0046	12016	3.862E-7	3.691	3.322
622	27.60	1.3101	787825	0.0046	11133	4.144E-7	3.763	3.387
632	27.73	1.3147	798747	0.0046	10342	4.473E-7	3.839	3.455
643	27.86	1.3194	808675	0.0046	9702	4.790E-7	3.915	3.524
654	27.99	1.3240	818108	0.0046	9037	5.161E-7	3.994	3.594
665	28.12	1.3286	826549	0.0046	8342	5.571E-7	4.071	3.664
676	28.24	1.3330	834497	0.0046	7746	6.031E-7	4.154	3.738
687	28.37	1.3378	842046	0.0046	7127	6.579E-7	4.235	3.812
699	28.50	1.3424	848798	0.0046	6567	7.198E-7	4.321	3.889
711	28.64	1.3471	855150	0.0047	6004	7.953E-7	4.407	3.967
723	28.77	1.3518	860867	0.0093	10798	8.655E-7	4.497	4.047
736	28.91	1.3564	865948	0.0093	9654	9.630E-7	4.586	4.128
748	29.04	1.3611	870521	0.0461	73444	6.278E-7	0.000	0.000
869 884	30.27	1.4025	939392 942095	0.0461	71574	6.442E-7	0.000	0.000
	30.41 30.55			0.0092	5243 4953	1.759E-6 1.929E-6	5.695 5.813	5.126 5.232
899 915	30.55	1.4118	944635 947048	0.0096	4953	2.177E-6	5.930	5.232
931	30.71	1.4215	949106	0.0097	2012	2.1//E-6 2.411E-6	6.051	5.446
947	31.00	1.4210	950915	0.0045	1895	2.440E-6	6.174	5.557
963	31.15	1.4307	952622	0.0048	1772	2.636E-6	6.296	5.666
200	02.10	2.1007	202022	2.0010	2772	2.000E 0	0.250	0.000

Test ID 5083-FCG-3 Pa	ge 2
	deltaK
(lb) (in) (in) (in/cyc) (ksi[in]^.5)
979 31.29 1.4354 954167 0.0046 1633 2.780E-6 6.407	5.766
992 31.40 1.4387 956007 0.0047 1548 2.992E-6 6.558	5.902
1014 31.61 1.4453 957682 0.0046 1448 3.295E-6 6.664	5.997
1029 31.73 1.4492 958902 0.0046 1345 3.649E-6 6.822	6.139
1047 31.89 1.4539 960203 0.0048 1186 4.096E-6 6.947	6.252
1064 32.04 1.4585 961309 0.0045 1046 4.508E-6 7.086	6.377
1082 32.18 1.4631 962235 0.0047 967 4.997E-6 7.225	6.503
1100 32.34 1.4677 963123 0.0047 862 5.526E-6 7.371	6.634
1119 32.49 1.4725 963956 0.0047 784 6.038E-6 7.519	6.767
1138 32.65 1.4772 964706 0.0047 729 6.539E-6 7.672	6.904
1158 32.81 1.4819 965374 0.0047 675 6.997E-6 7.824	7.041
1177 32.96 1.4864 966012 0.0047 626 7.472E-6 7.983	7.185
1197 33.12 1.4912 966610 0.0046 587 7.902E-6 8.138	7.324
1217 33.27 1.4957 967175 0.0046 555 8.333E-6 8.304	7.473
1238 33.44 1.5004 967714 0.0093 1051 8.826E-6 8.464	7.618
1258 33.59 1.5049 968226 0.0091 989 9.235E-6 8.634	7.771
33.75 1.5095 968703	
33.81 1.5111 969068	
1295 33.92 1.5145 969361 0.0079 742 1.071E-5 8.952	8.057
1304 34.08 1.5190 969810 0.0095 847 1.122E-5 9.030	8.127
1313 34.26 1.5240 970208 0.0093 745 1.245E-5 9.115	8.204
1321 34.41 1.5283 970555 0.0050 443 1.174E-5 9.205	8.285
1330 34.57 1.5329 970967 0.0058 497 1.262E-5 9.294 1339 34.74 1.5376 971394 0.0065 554 1.271E-5 9.407	8.364
1339 34.74 1.5376 971394 0.0065 554 1.271E-5 9.407 1353 35.00 1.5446 972016 0.0074 622 1.253E-5 9.545	8.466
1371 35.34 1.5539 972793 0.0083 670 1.262E-5 9.709	8.738
1389 35.68 1.5633 973533 0.0090 707 1.279E-5 9.904	8.913
1408 36.04 1.5730 974287 0.0094 706 1.330E-5 10.099	9.089
1428 36.40 1.5825 974987 0.0094 675 1.391E-5 10.302	9.272
1447 36.76 1.5918 975634 0.0094 646 1.456E-5 10.504	9.454
1466 37.12 1.6010 976253 0.0093 611 1.526E-5 10.710	9.639
1485 37.48 1.6103 976845 0.0093 584 1.596E-5 10.919	9.827
	10.018
1525 38.22 1.6289 977950 0.0094 541 1.740E-5 11.352	10.217
	10.418
1566 39.01 1.6480 979000 0.0094 501 1.879E-5 11.810	10.629
1588 39.40 1.6576 979499 0.0095 486 1.953E-5 12.043	10.839
1609 39.80 1.6669 979968 0.0094 464 2.025E-5 12.285	11.057
1630 40.20 1.6763 980416 0.0094 445 2.098E-5 12.528	11.275
1652 40.61 1.6859 980864 0.0093 428 2.177E-5 12.770	11.493
1673 41.01 1.6949 981270 0.0094 413 2.263E-5 13.023	11.721
1695 41.42 1.7041 981669 0.0094 399 2.349E-5 13.273	11.946
1718 41.84 1.7135 982067 0.0094 382 2.447E-5 13.539	12.185
1741 42.28 1.7233 982447 0.0094 369 2.546E-5 13.804	12.424
1764 42.71 1.7327 982809 0.0094 356 2.649E-5 14.079	12.671

Test :	ID 5083	-FCG-3					P	age 3
Pmax (1b)	EvB/P	a (in)	И	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK n]^.5)
1787 1810	43.15 43.59	1.7420 1.7513	983155 983483	0.0095 0.0094	342 329	2.761E-5 2.864E-5	14.354 14.636	12.919 13.172
1834 1858	44.04 44.51	1.7607 1.7704	983803 984119	0.0094	317 305	2.976E-5 3.094E-5	14.926 15.221	13.434 13.699
1882	44.97	1.7798	984421	0.0095	296	3.213E-5	15.525	13.973
1907 1931	45.44 45.92	1.7893 1.7987	984709 984983	0.0096 0.0095	286 273	3.339E-5 3.469E-5	15.829 16.146	14.246 14.531
1957 1982	46.42 46.91	1.8085	985258 985518	0.0095 0.0095	260 249	3.654E-5 3.811E-5	16.465 16.789	14.818 15.110
2007	47.39	1.8272	985754	0.0095	241	3.949E-5	17.129	15.415
2034 2059	47.92 48.40	1.8371 1.8461	985980 986204	0.0094	230 221	4.096E-5 4.256E-5	17.453 17.802	15.708 16.022
2085 2112	48.92 49.45	1.8556 1.8651	986427 986640	0.0095	212 203	4.430E-5 4.635E-5	18.145 18.506	16.331 16.655
2139	49.99	1.8748	986841	0.0095	194	4.920E-5	18.867	16.980
2166 2193	50.52 51.06	1.8841	987024 987199	0.0095	183 173	5.209E-5 5.499E-5	19.242 19.620	17.317 17.658
2221 2249	51.64 52.19	1.9032	987369 987526	0.0094	163	5.800E-5 6.103E-5	20.003	18.003 18.355
2276	52.75	1.9219	987675	0.0095 0.0096	156 148	6.442E-5	20.399	18.710
2304	53.33 53.94	1.9312	987817 987960	0.0096	138 130	6.910E-5 7.445E-5	21.200	19.080 19.453
2363 2393	54.55 55.18	1.9509	988088 988198	0.0095	122 115	7.954E-5 8.411E-5	22.055	19.849
2422	55.76	1.9697	988303	0.0096	108	8.935E-5	22.928	20.234
2451 2483	56.38 57.02	1.9792	988408 988509	0.0190 0.0198	206 197	9.246E-5 1.003E-4	23.383	21.034 21.455
	57.71	1.9989	988605 989903					
2300	62.08 62.51	2.0637 2.0697	989969	0.0161	180	8.943E-5	23.567	21.211
2300 2300	63.23 63.96	2.0798	990083 990197	0.0200	228 229	8.770E-5 8.882E-5	23.720 23.915	21.348
2300 2300	64.73 65.52	2.1001	990312 990422	0.0103	111	9.251E-5 9.529E-5	24.114 24.316	21.702 21.885
2300	66.30	2.1106 2.1208	990527	0.0103 0.0103	108 104	9.873E-5	24.526	22.073
2300 2300	67.12 67.92	2.1313	990632 990728	0.0102	100 97	1.023E-4 1.053E-4	24.732 24.942	22.258
2300 2300	68.73 69.56	2.1514	990819 990911	0.0102	95 92	1.083E-4 1.115E-4	25.153 25.367	22.637
2300	70.41	2.1717	991003	0.0102	89	1.137E-4	25.589	23.030
2300 2300	71.31 72.20	2.1823	991094 991181	0.0102	88 85	1.165E-4 1.195E-4	25.814 26.039	23.232 23.435
2300 2300	73.06 73.99	2.2024	991263 991344	0.0102	83 80	1.228E-4 1.262E-4	26.272 26.494	23.644
2300	74.88	2.2226	991421	0.0101	78	1.296E-4	26.732	24.059

Test	ID 5083	-FCG-3					P	age 4	
Pmax (1b)	EvB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK n]^.5)	
2300	75.81	2.2327	991498	0.0102	76	1.333E-4	26.968	24.271	
2300	76.79	2.2431	991574	0.0102	74	1.371E-4		24.488	
2300	77.75	2.2532	991647	0.0103	73	1.412E-4		24.715	
2300	78.77	2.2636	991720	0.0103	71	1.451E-4		24.943	
2300	79.82	2.2741	991790	0.0102	68	1.499E-4		25.177	
2300	80.86	2.2845	991858	0.0103	66	1.555E-4		25.409	
2300	81.87	2.2943	991921	0.0103	63	1.625E-4		25.648	
2300	82.95	2.3046	991983	0.0102	60	1.711E-4		25.887	
2300	84.07	2.3150	992043	0.0102	56	1.819E-4		26.137	
2300	85.23	2.3256	992099	0.0103	54	1.915E-4		26.384	
2300	86.32	2.3354	992148	0.0103	52	1.985E-4		26.642	
2300	87.48	2.3457	992196	0.0102	50	2.053E-4		26.896	
2300	88.66	2.3560	992246	0.0101	48	2.112E-4		27.159	
2300	89.88	2.3663	992296	0.0103	47	2.178E-4		27.424	
2300	91.09	2.3764	992341	0.0104	46	2.260E-4		27.690	
2300	92.29	2.3862	992384	0.0102	43	2.364E-4		27.970	
2300	93.62	2.3969	992428	0.0102	41	2.491E-4		28.253	
2300	95.00	2.4078	992470	0.0102	39	2.619E-4		28.536	
	96.25								
2300 2300		2.4174	992506	0.0104	38	2.750E-4		28.834	
	97.60	2.4276	992542	0.0102	35	2.921E-4			
2300	99.00	2.4380	992577	0.0102	33	3.111E-4		29.424	
2300	100.44	2.4484	992610	0.0103	32	3.278E-4		29.728	
2300	101.85	2.4584	992638	0.0102	30	3.413E-4		30.045	
2300	103.35	2.4689	992667	0.0102	28	3.582E-4		30.358	
2300	104.84	2.4791	992696	0.0103	27	3.798E-4	34.090	30.679	
2300	106.34	2.4891	992723	0.0103	26	4.040E-4		31.004	
2300	107.88	2.4992	992747	0.0103	24	4.307E-4		31.342	
2300	109.57	2.5099	992770	0.0103	23	4.583E-4		31.675	
2300	111.17	2.5200	992791	0.0102	21	4.833E-4		32.035	
2300	112.87	2.5304	992812	0.0102	20	5.081E-4		32.391	
2300	114.65	2.5411	992833	0.0101	19	5.425E-4		32.738	
2300	116.24	2.5504	992850	0.0102	17	5.912E-4		33.109	
2300	118.00	2.5605	992867	0.0102	16	6.549E-4		33.462	
2300	119.79	2.5706	992882	0.0101	15	7.173E-4		33.839	
2300	121.68	2.5810	992895	0.0103	14	7.773E-4		34.234	
2300	123.68	2.5917	992908	0.0103	12	8.570E-4	38.480	34.624	*
2300	125.60	2.6018	992920	0.0110	11	9.696E-4	38.939	35.036	*
2299	127.61	2.6121	992931	0.0103	10	1.050E-3	39.397	35.445	*
2300	129.68	2.6225	992940	0.0103	10	1.095E-3	39.952	35.945	*
2300	132.57	2.6365	992950	0.0104	9	1.148E-3	40.343	36.297	*
2300	133.91	2.6429	992957	0.0103	9	1.192E-3	40.923	36.819	*
2300	136.13	2.6533	992966	0.0103	8	1.231E-3	41.343	37.198	*
2300	138.55	2.6643	992975	0.0098	8	1.335E-3	41.833	37.637	*
2299	140.76	2.6741	992982	0.0106	7	1.517E-3	42.371	38.119	*
2299	143.17	2.6846	992989	0.0097	7	1.586E-3	42.889	38.579	*
Test	ID 5083	-FCG-3					P	age 5	
Pmax	EvB/P	a	N	da	dN	da/dN	Vmov	deltaK	
(lb)	EVD/F	a (in)	14	(in)	CLY		(ksi[i		
(10)		(111)		(111)		(in/cyc)	(VPT[]		
2298	145.73	2.6954	992995	0.0103	6	1.764E-3	43.453	39.082	*
	148.40		993000			2.440E-3			
	149.67			0.0101		2.800E-3			
	153.30			0.0403		5.033E-3			
2295		2.7518	993013			3.904E-3			
		2.7454	993015		•				
		2							

Automated Fatigue Crack Growth Rate Analysis								
Test ID Contract Material Temperatur Environmen		5083-H321 75	Geometry Orientation Yield (ksi) Modulus (Ms:		C(T) T-L 34.3 10.5			
Specime	n Dimensions	(in)						
Thickness Net Thickn Width	ess	0.499 0.499 4.000	Height Notch Depth Gage Length		2.400 1.000 0.500			
Precrac	k Parameters							
Pmax (lbs) Final a (i	n) 7	84.0 1.050	Stress Ratio		0.10 4.00			
Test Pa	rameters							
EvBP 24.522 32.544 55.204	5.00 5.00			4.00 2.00	0.00			
K Coe		Coeff						
.88 4.6	-	.00098						
-13.3		8.4601						
14.7		36.825						
-5.	-	214.88 143.57						
Visual	Observations							
EvB/P 20.869 21.842 23.217 24.253 24.439 28.306 32.493 34.530 36.488 46.151 54.785 72.549	1.012 1.062 1.127 1.174 1.182 1.335 1.475 1.535 1.535 1.589 1.812 1.965 2.199	Crack(visu 1.000 1.065 1.125 1.170 1.195 1.350 1.480 1.530 1.580 1.805 1.955 2.210	al) Error -0.012 0.003 -0.002 -0.004 0.013 0.015 0.005 -0.005 -0.009 -0.007 -0.010 0.011	CAF 1.013 1.010 1.006 1.004 1.003 0.995 0.987 0.984 0.982 0.970 0.962 0.951				

Date of test: 9/10/2006 Waveform Type Sine

Test	ID 5083	-FCG-45					Pa	age 1
Pmax (1b)	EvB/P	a (in)	И	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[ir	deltaK 1]^.5)
449	24.52 24.60	1.1852 1.1888	52230 140390	0.0079	158059	5.019E-8	2.513	2.262
456	24.71	1.1932	210289	0.0078	151828	5.159E-8	2.550	2.295
461	24.79	1.1966	292218	0.0040	74574	5.363E-8	2.649	2.384
487	24.90	1.2012	372041	0.0043	67562	6.198E-8	2.689	2.420
493 501	24.98 25.08	1.2047	425966 499674	0.0044	64350 59975	7.006E-8 7.804E-8	2.790 2.842	2.511
510	25.21	1.2143	545760	0.0044	53716	8.544E-8	2.899	2.609
519	25.33	1.2194	596390	0.0048	50101	9.771E-8	2.953	2.658
526	25.42	1.2230	652069	0.0049	41088	1.205E-7	3.019	2.717
536	25.55	1.2284	694335	0.0048	36412	1.578E-7	3.073	2.766
545	25.68	1.2336	726571	0.0047	30946	2.041E-7	3.140	2.826
555	25.79	1.2384	746204	0.0049	24251	2.327E-7	3.203	2.882
564	25.91	1.2429	764234	0.0048	19921	2.538E-7	3.268	2.941
573 583	26.02 26.14	1.2476	782068 797577	0.0047	17651 17687	2.683E-7 2.705E-7	3.332	2.998 3.059
593	26.26	1.2523	813862	0.0047	17862	2.701E-7	3.466	3.120
603	26.38	1.2617	832474	0.0047	17733	2.645E-7	3.537	3.123
613	26.49	1.2664	852328	0.0047	17862	2.595E-7	3.607	3.247
624	26.62	1.2712	871405	0.0048	17603	2.711E-7	3.679	3.311
634	26.74	1.2760	888464	0.0048	16595	2.920E-7	3.754	3.378
645	26.86	1.2807	904747	0.0048	14878	3.297E-7	3.831	3.448
657	27.00	1.2859	919480	0.0047	13156	3.783E-7	3.906	3.516
668	27.11	1.2903	932043	0.0048	11769	4.365E-7	3.987	3.588
679	27.24	1.2950	941598	0.0048	10314	4.900E-7	4.064	3.658
690 702	27.35 27.49	1.2995	950338 959080	0.0047	8984 7895	5.469E-7 6.074E-7	4.148	3.733
714	27.43	1.3093	966630	0.0047	7245	6.672E-7	4.317	3.886
726	27.74	1.3141	973381	0.0048	6678	7.367E-7	4.400	3.960
738	27.86	1.3185	979415	0.0047	5941	8.173E-7	4.491	4.042
751	27.99	1.3234	985069	0.0099	10989	9.020E-7	4.580	4.122
764	28.13	1.3284	990404	0.0097	9654	1.004E-6	4.673	4.205
777	28.26	1.3331	994723	0.0654	39796	1.643E-6	0.000	0.000
965	29.99	1.3938	1030200	0.0653	37065	1.762E-6	0.000	0.000
981	30.12	1.3984	1031788	0.0096	3071	3.115E-6	6.281	5.653
998	30.27	1.4034	1033271	0.0097	2763	3.526E-6	6.404	5.764
1015	30.41 30.56	1.4081	1034551 1035746	0.0096	2475 1183	3.864E-6 4.122E-6	6.535 6.665	5.881 5.999
1049	30.70	1.4177	1036891	0.0048	1077	4.122E-6 4.458E-6	6.800	6.120
1067	30.75	1.4225	1037937	0.0047	998	4.806E-6	6.936	6.243
1085	31.00	1.4273	1038883	0.0047	925	5.201E-6	7.074	6.366
1103	31.14	1.4319	1039733	0.0047	854	5.608E-6	7.214	6.492
1121	31.28	1.4365	1040536	0.0048	797	6.010E-6	7.358	6.622
1141	31.43	1.4414	1041298	0.0048	751	6.399E-6	7.504	6.754

Pmax (1b)	Test :	ID 5083	-FCG-45					P	age 2
1160	Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
1811	(lb)		(in)		(in)		(in/cyc)	(ksi[i	n]^.5)
1201 31.89									
1221 32.04	1181	31.73	1.4510	1042716	0.0048	667	7.198E-6	7.816	7.034
1242 32.19	1201	31.89	1.4560	1043388	0.0048	625	7.655E-6	7.974	7.177
1262	1221	32.04	1.4607	1043997	0.0048	591	8.173E-6	8.135	7.322
32.50	1242	32.19	1.4653	1044539	0.0092	1050	8.788E-6	8.295	7.465
36.74	1262	32.34	1.4699	1045047	0.0095	1016	9.359E-6	8.462	7.616
1551 37.09		32.50	1.4748	1045555					
1572 37.47 1.6150 1055390 0.0193 1120 1.723E-5 11.581 10.423 1593 37.84 1.6246 1055941 0.0192 1078 1.784E-5 11.811 10.630 1614 38.21 1.6342 1056468 0.0096 511 1.886E-5 12.047 10.842 1636 38.61 1.6440 1056972 0.0097 491 1.974E-5 12.286 11.058 1680 39.39 1.6632 1057887 0.0096 426 2.247E-5 12.783 11.505 1702 39.79 1.6729 1058334 0.0096 426 2.247E-5 13.040 11.736 1748 40.60 1.6828 1058761 0.0096 410 2.338E-5 13.296 11.967 1748 40.60 1.6920 1059147 0.0096 377 2.536E-5 13.8291 12.464 1795 41.43 1.7112 1059899 0.0095 360 2.644E-5 <td< td=""><td></td><td>36.74</td><td>1.5959</td><td>1054252</td><td></td><td></td><td></td><td></td><td></td></td<>		36.74	1.5959	1054252					
1593 37.84 1.6246 1055941 0.0192 1078 1.784E-5 11.811 10.630 1614 38.22 1.6342 1056468 0.0096 511 1.886E-5 12.047 10.842 1636 38.61 1.6440 1056972 0.0097 491 1.974E-5 12.286 11.058 1658 39.00 1.6536 1057440 0.0097 470 2.066E-5 12.531 11.278 1680 39.39 1.6632 1057887 0.0096 447 2.154E-5 12.783 11.505 1702 39.79 1.6729 1058334 0.0096 426 2.247E-5 13.040 11.736 1726 40.21 1.6828 1058761 0.0096 410 2.338E-5 13.296 11.967 1748 40.60 1.6820 1059147 0.0096 395 2.431E-5 13.564 12.208 1771 41.01 1.7015 1059525 0.0096 377 2.536E-5 13.829 12.446 1795 41.43 1.7112 1059899 0.0095 360 2.644E-5 14.105 12.695 1818 41.85 1.7208 1060598 0.0096 334 2.861E-5 14.673 13.205 1867 42.72 1.7400 1060523 0.0096 321 2.978E-5 14.673 13.205 1891 43.15 1.7495 1061233 0.0095 295 3.213E-5 15.257 13.731 1915 43.59 1.7889 1061531 0.0095 295 3.213E-5 15.257 13.731 1965 44.49 1.7780 1062103 0.0096 274 3.493E-5 16.198 14.277 1965 44.49 1.7780 1062103 0.0096 274 3.493E-5 16.198 14.660 1.7876 1062370 0.0097 228 4.247E-5 17.163 15.447 2070 46.42 1.8170 1063109 0.0097 228 4.247E-5 17.163 15.447 2070 46.42 1.8170 1063109 0.0097 228 4.247E-5 17.163 15.447 2070 46.42 1.8170 1063109 0.0097 228 4.247E-5 17.501 15.751 2096 44.98 1.8547 1063739 0.0096 195 4.923E-5 18.571 16.713 2179 48.42 1.8548 1064105 0.0097 168 5.746E-5 19.697 17.727 2263 50.00 1.8844 1064447 0.0097 168 5.746E-5 19.697 17.727 2263 50.00 1.8844 1064407 0.0097 159 6.082E-5 20.085 18.076 2292 50.54 1.8940 1064010 0.0097 159 6.082E-5 20.085 18.076 2292 50.54 1.8940 1064010 0.0097 159 6.082E-5 20.085 18.076 2292 50.54 1.8940 106401	1551	37.09	1.6053	1054821	0.0191	1138	1.676E-5	11.357	10.222
1614 38.22 1.6342 1056468 0.0096 511 1.886E-5 12.047 10.842 1636 38.61 1.6440 1056972 0.0097 491 1.974E-5 12.286 11.058 1680 39.00 1.6536 1057440 0.0096 447 2.066E-5 12.531 11.278 1702 39.79 1.6729 1058334 0.0096 426 2.247E-5 13.040 11.736 1726 40.21 1.6828 1058761 0.0096 410 2.338E-5 13.296 11.967 1748 40.60 1.6920 1058147 0.0096 377 2.536E-5 13.829 12.446 1795 41.43 1.7112 1059999 0.0095 360 2.644E-5 14.105 12.695 1818 41.85 1.7208 1060257 0.0096 334 2.751E-5 14.387 12.948 1842 42.29 1.7305 1060598 0.0096 321 2.978E-5 14	1572	37.47	1.6150	1055390	0.0193	1120	1.723E-5	11.581	10.423
1636 38.61 1.6440 1056972 0.0097 491 1.974E-5 12.286 11.058 1658 39.00 1.6536 1057440 0.0097 470 2.066E-5 12.531 11.278 1702 39.79 1.6729 1058334 0.0096 426 2.247E-5 13.040 11.736 1726 40.21 1.6828 1058761 0.0096 410 2.338E-5 13.296 11.967 1748 40.60 1.6920 1059147 0.0096 375 2.536E-5 13.829 12.446 1795 41.43 1.7112 1059525 0.0096 377 2.536E-5 13.829 12.446 1795 41.43 1.7112 1059525 0.0096 377 2.536E-5 13.829 12.446 1795 41.43 1.7112 1059599 0.0095 360 2.64E-5 14.105 12.695 1818 41.85 1.7208 1060257 0.0096 321 2.978E-5 14.	1593	37.84	1.6246	1055941	0.0192	1078	1.784E-5		10.630
1658 39.00 1.6536 1057440 0.0097 470 2.066E-5 12.531 11.278 1680 39.39 1.6632 1057887 0.0096 447 2.154E-5 12.793 11.505 1726 40.21 1.6828 1058761 0.0096 410 2.338E-5 13.296 11.967 1748 40.60 1.6920 1059147 0.0096 395 2.431E-5 13.564 12.208 1771 41.01 1.7015 1059525 0.0096 377 2.536E-5 13.829 12.446 1795 41.43 1.7112 1059989 0.0095 360 2.644E-5 14.387 12.948 1818 41.85 1.7208 1060257 0.0096 342 2.861E-5 14.387 12.948 1842 42.29 1.7305 1060923 0.0096 321 2.978E-5 14.962 13.466 1891 43.15 1.7495 1061931 0.0095 295 3.213E-5 15	1614	38.22	1.6342	1056468	0.0096	511	1.886E-5	12.047	10.842
1680 39.39 1.6632 1057887 0.0096 447 2.154E-5 12.783 11.505 1702 39.79 1.6729 1058334 0.0096 426 2.247E-5 13.040 11.736 1726 40.21 1.6828 1058761 0.0096 410 2.338E-5 13.296 11.967 1748 40.60 1.6920 1059147 0.0096 395 2.431E-5 13.564 12.208 1771 41.01 1.7015 1059525 0.0096 377 2.536E-5 13.829 12.446 1795 41.43 1.7112 1059899 0.0095 348 2.751E-5 14.105 12.695 1818 41.85 1.7208 1060557 0.0096 334 2.861E-5 14.673 13.205 1867 42.72 1.7400 1060923 0.0096 321 2.978E-5 14.962 13.466 1891 43.15 1.7495 1061233 0.0095 298 3.213E-5 15	1636	38.61	1.6440	1056972	0.0097	491	1.974E-5		11.058
1702 39.79 1.6729 1058334 0.0096 426 2.247E-5 13.040 11.736 1726 40.21 1.6828 1058761 0.0096 410 2.338E-5 13.296 11.967 1748 40.60 1.6920 1059147 0.0096 395 2.431E-5 13.564 12.208 1771 41.01 1.7015 1059525 0.0096 377 2.536E-5 13.829 12.446 1795 41.43 1.7112 1059899 0.0095 360 2.644E-5 14.105 12.695 1818 41.85 1.7208 1060257 0.0096 348 2.751E-5 14.387 12.948 1842 42.29 1.7305 1060598 0.0096 321 2.978E-5 14.673 13.205 1867 42.72 1.7400 1060923 0.0095 308 3.092E-5 15.257 13.316 191 43.05 1.7589 1061531 0.0095 294 3.213E-5 15.	1658	39.00	1.6536	1057440	0.0097	470	2.066E-5	12.531	11.278
1726 40.21 1.6828 1058761 0.0096 410 2.338E-5 13.296 11.967 1748 40.60 1.6920 1059147 0.0096 395 2.431E-5 13.564 12.208 1771 41.01 1.7015 1059525 0.0096 377 2.536E-5 13.829 12.446 1795 41.43 1.7112 1059899 0.0096 348 2.751E-5 14.387 12.948 1818 41.85 1.7208 1060257 0.0096 348 2.751E-5 14.387 12.948 1842 42.29 1.7305 1060598 0.0096 334 2.861E-5 14.407 13.205 1867 42.72 1.7400 1060923 0.0096 321 2.978E-5 14.962 13.466 1891 43.15 1.7495 1061233 0.0095 295 3.213E-5 15.558 14.002 1941 44.04 1.7680 1062103 0.0095 284 3.351E-5 15	1680	39.39	1.6632	1057887	0.0096	447	2.154E-5	12.783	11.505
1748 40.60 1.6920 1059147 0.0096 395 2.431E-5 13.564 12.208 1771 41.01 1.7015 1059525 0.0096 377 2.536E-5 13.829 12.446 1795 41.43 1.7112 1059899 0.0096 348 2.751E-5 14.387 12.948 1818 41.85 1.7208 1060257 0.0096 348 2.751E-5 14.387 12.948 1842 42.29 1.7305 1060598 0.0096 334 2.861E-5 14.962 13.466 1867 42.72 1.7400 1060923 0.0096 321 2.978E-5 14.962 13.466 1891 43.15 1.7495 1061233 0.0095 295 3.213E-5 15.558 14.002 1941 44.04 1.7686 1061824 0.0095 284 3.351E-5 15.863 14.277 1965 44.49 1.7780 1062370 0.0097 263 3.667E-5 16	1702	39.79	1.6729	1058334	0.0096	426	2.247E-5	13.040	11.736
1771 41.01 1.7015 1059525 0.0096 377 2.536E-5 13.829 12.446 1795 41.43 1.7112 1059899 0.0095 360 2.644E-5 14.105 12.695 1818 41.85 1.7208 1060598 0.0096 348 2.751E-5 14.387 12.948 1842 42.29 1.7305 1060598 0.0096 321 2.978E-5 14.962 13.466 1867 42.72 1.7400 1060923 0.0096 321 2.978E-5 14.962 13.466 1891 43.15 1.7495 1061233 0.0095 295 3.213E-5 15.558 14.002 1941 44.04 1.7686 1061824 0.0095 284 3.351E-5 15.863 14.277 1965 44.49 1.7780 1062103 0.0096 274 3.493E-5 16.178 14.560 1991 44.96 1.7876 1062370 0.0097 263 3.45E-5 16.	1726	40.21	1.6828	1058761	0.0096	410	2.338E-5		11.967
1795 41.43 1.7112 1059899 0.0095 360 2.644E-5 14.105 12.695 1818 41.85 1.7208 1060257 0.0096 348 2.751E-5 14.387 12.948 1842 42.29 1.7305 1060598 0.0096 334 2.861E-5 14.673 13.205 1867 42.72 1.7400 1060923 0.0095 308 3.092E-5 15.257 13.731 1915 43.15 1.7495 1061233 0.0095 298 3.213E-5 15.558 14.002 1941 44.04 1.7686 1061824 0.0095 284 3.351E-5 15.863 14.277 1965 44.49 1.7780 1062103 0.0096 274 3.493E-5 16.178 14.560 1991 44.96 1.7876 1062370 0.0097 263 3.667E-5 16.495 14.846 2017 45.43 1.7972 1062878 0.0097 239 4.048E-5 17	1748	40.60	1.6920	1059147	0.0096	395	2.431E-5	13.564	12.208
1818 41.85 1.7208 1060257 0.0096 348 2.751E-5 14.387 12.948 1842 42.29 1.7305 1060598 0.0096 334 2.861E-5 14.673 13.205 1867 42.72 1.7400 1060923 0.0095 308 3.092E-5 14.962 13.466 1891 43.15 1.7495 1061231 0.0095 295 3.213E-5 15.558 14.002 1941 44.04 1.7686 1061824 0.0095 284 3.351E-5 15.863 14.277 1965 44.49 1.7780 1062103 0.0096 274 3.493E-5 16.178 14.560 1991 44.96 1.7876 1062370 0.0097 263 3.667E-5 16.495 14.846 2017 45.43 1.7972 1062624 0.0096 250 3.845E-5 16.825 15.142 2043 45.92 1.8070 1063739 0.0097 239 4.048E-5 17	1771	41.01	1.7015	1059525	0.0096	377	2.536E-5	13.829	12.446
1842 42.29 1.7305 1060598 0.0096 334 2.861E-5 14.673 13.205 1867 42.72 1.7400 1060923 0.0096 321 2.978E-5 14.962 13.466 1891 43.15 1.7495 1061233 0.0095 308 3.092E-5 15.257 13.731 1915 43.59 1.7589 1061531 0.0095 295 3.213E-5 15.558 14.002 1941 44.04 1.7686 1061824 0.0095 284 3.351E-5 15.863 14.277 1965 44.49 1.7780 1062103 0.0096 274 3.493E-5 16.178 14.560 1991 44.96 1.7876 1062370 0.0097 263 3.667E-5 16.495 14.846 2017 45.43 1.7972 1062624 0.0096 250 3.845E-5 16.825 15.142 2043 45.92 1.8070 1062878 0.0097 239 4.048E-5 17	1795	41.43	1.7112	1059899	0.0095	360	2.644E-5	14.105	12.695
1867 42.72 1.7400 1060923 0.0096 321 2.978E-5 14.962 13.466 1891 43.15 1.7495 1061233 0.0095 308 3.092E-5 15.257 13.731 1915 43.59 1.7589 1061531 0.0095 295 3.213E-5 15.558 14.002 1941 44.04 1.7686 1061824 0.0095 284 3.351E-5 15.863 14.277 1965 44.49 1.7780 1062103 0.0096 274 3.493E-5 16.178 14.560 1991 44.96 1.7876 1062370 0.0097 263 3.667E-5 16.495 14.846 2017 45.43 1.7972 1062624 0.0096 250 3.845E-5 16.825 15.142 2043 45.92 1.8070 1062878 0.0097 239 4.048E-5 17.163 15.447 2070 46.42 1.8170 1063109 0.0097 228 4.247E-5 17	1818	41.85	1.7208	1060257	0.0096	348	2.751E-5	14.387	12.948
1891 43.15 1.7495 1061233 0.0095 308 3.092E-5 15.257 13.731 1915 43.59 1.7589 1061531 0.0095 295 3.213E-5 15.558 14.002 1941 44.04 1.7686 1061824 0.0095 284 3.351E-5 15.863 14.277 1965 44.49 1.7780 1062103 0.0096 274 3.493E-5 16.178 14.560 1991 44.96 1.7876 1062370 0.0097 263 3.667E-5 16.495 14.846 2017 45.43 1.7972 1062624 0.0096 250 3.845E-5 16.825 15.142 2043 45.92 1.8070 1063109 0.0097 239 4.048E-5 17.163 15.447 2070 46.42 1.8170 1063109 0.0097 228 4.247E-5 17.501 15.751 2096 46.88 1.8262 1063323 0.0097 218 4.451E-5 17.855 16.395 2151 47.90 1.8457 1063739 0.0	1842	42.29	1.7305	1060598	0.0096	334	2.861E-5	14.673	13.205
1915 43.59 1.7589 1061531 0.0095 295 3.213E-5 15.558 14.002 1941 44.04 1.7686 1061824 0.0095 284 3.351E-5 15.863 14.277 1965 44.49 1.7780 1062103 0.0096 274 3.493E-5 16.178 14.560 1991 44.96 1.7876 1062370 0.0097 263 3.667E-5 16.495 14.846 2017 45.43 1.7972 1062624 0.0096 250 3.845E-5 16.825 15.142 2043 45.92 1.8070 1062878 0.0097 239 4.048E-5 17.163 15.447 2070 46.42 1.8170 1063109 0.0097 228 4.247E-5 17.501 15.751 2096 46.88 1.8262 1063323 0.0097 218 4.451E-5 17.855 16.070 2123 47.39 1.8360 1063536 0.0097 218 4.923E-5 18	1867	42.72	1.7400	1060923	0.0096	321	2.978E-5	14.962	13.466
1941 44.04 1.7686 1061824 0.0095 284 3.351E-5 15.863 14.277 1965 44.49 1.7780 1062103 0.0096 274 3.493E-5 16.178 14.560 1991 44.96 1.7876 1062370 0.0097 263 3.667E-5 16.495 14.846 2017 45.43 1.7972 1062624 0.0096 250 3.845E-5 16.825 15.142 2043 45.92 1.8070 1062878 0.0097 239 4.048E-5 17.163 15.447 2070 46.42 1.8170 1063109 0.0097 228 4.247E-5 17.501 15.751 2096 46.88 1.8262 1063323 0.0097 218 4.451E-5 17.855 16.070 2123 47.39 1.8457 1063739 0.0096 205 4.688E-5 18.205 16.385 2151 47.90 1.8457 1063739 0.0097 187 5.189E-5 18.936 17.042 2206 48.92 1.8648 1064105 0.0									
1965 44.49 1.7780 1062103 0.0096 274 3.493E-5 16.178 14.560 1991 44.96 1.7876 1062370 0.0097 263 3.667E-5 16.495 14.846 2017 45.43 1.7972 1062624 0.0096 250 3.845E-5 16.825 15.142 2043 45.92 1.8070 1062878 0.0097 239 4.048E-5 17.163 15.447 2070 46.42 1.8170 1063109 0.0097 228 4.247E-5 17.501 15.751 2096 46.88 1.8262 1063323 0.0097 218 4.451E-5 17.855 16.070 2123 47.39 1.8360 1063536 0.0096 205 4.688E-5 18.205 16.385 2151 47.90 1.8457 1063739 0.0096 195 4.923E-5 18.571 16.713 2179 48.42 1.8554 1063933 0.0097 187 5.189E-5 18	1915	43.59	1.7589	1061531	0.0095	295	3.213E-5	15.558	14.002
1991 44.96 1.7876 1062370 0.0097 263 3.667E-5 16.495 14.846 2017 45.43 1.7972 1062624 0.0096 250 3.845E-5 16.825 15.142 2043 45.92 1.8070 1062878 0.0097 239 4.048E-5 17.163 15.447 2070 46.42 1.8170 1063109 0.0097 228 4.247E-5 17.501 15.751 2096 46.88 1.8262 1063323 0.0097 218 4.451E-5 17.855 16.070 2123 47.39 1.8360 1063536 0.0096 205 4.688E-5 18.205 16.385 2151 47.90 1.8457 1063739 0.0096 195 4.923E-5 18.571 16.713 2179 48.42 1.8554 1063933 0.0097 187 5.189E-5 18.936 17.042 2206 48.92 1.8648 1064105 0.0097 178 5.451E-5 19.312 17.380 2234 49.44 1.8743 1064276 0.0097 168 5.746E-5 19.697 17.727 2263 50.00 1.8844 1064467 0.0097 159	1941	44.04	1.7686		0.0095	284		15.863	14.277
2017 45.43 1.7972 1062624 0.0096 250 3.845E-5 16.825 15.142 2043 45.92 1.8070 1062878 0.0097 239 4.048E-5 17.163 15.447 2070 46.42 1.8170 1063109 0.0097 228 4.247E-5 17.501 15.751 2096 46.88 1.8262 1063323 0.0097 218 4.451E-5 17.855 16.070 2123 47.39 1.8360 1063739 0.0096 205 4.688E-5 18.205 16.385 2151 47.90 1.8457 1063739 0.0096 195 4.923E-5 18.571 16.713 2179 48.42 1.8554 1063933 0.0097 187 5.189E-5 18.936 17.042 2206 48.92 1.8648 1064105 0.0097 178 5.451E-5 19.312 17.380 2234 49.44 1.8743 1064276 0.0097 168 5.746E-5 19	1965	44.49		1062103	0.0096	274	3.493E-5	16.178	14.560
2043 45.92 1.8070 1062878 0.0097 239 4.048E-5 17.163 15.447 2070 46.42 1.8170 1063109 0.0097 228 4.247E-5 17.501 15.751 2096 46.88 1.8262 1063323 0.0097 218 4.451E-5 17.855 16.070 2123 47.39 1.8450 1063536 0.0096 205 4.688E-5 18.205 16.385 2151 47.90 1.8457 1063733 0.0097 187 5.189E-5 18.571 16.713 2179 48.42 1.8554 1063933 0.0097 187 5.189E-5 18.936 17.042 2206 48.92 1.8648 1064105 0.0097 178 5.451E-5 19.312 17.380 2234 49.44 1.8743 1064276 0.0097 168 5.746E-5 19.697 17.727 2263 50.00 1.8844 10644601 0.0097 159 6.082E-5 2	1991	44.96	1.7876	1062370	0.0097	263		16.495	14.846
2070 46.42 1.8170 1063109 0.0097 228 4.247E-5 17.501 15.751 2096 46.88 1.8262 1063323 0.0097 218 4.451E-5 17.855 16.070 2123 47.39 1.8360 1063536 0.0096 205 4.688E-5 18.205 16.385 2151 47.90 1.8457 1063739 0.0096 195 4.923E-5 18.571 16.713 2179 48.42 1.8554 1063933 0.0097 187 5.189E-5 18.936 17.042 2206 48.92 1.8648 1064105 0.0097 178 5.451E-5 19.312 17.380 2234 49.44 1.8743 1064276 0.0097 168 5.746E-5 19.697 17.727 2263 50.00 1.8844 1064447 0.0097 159 6.082E-5 20.085 18.076 2292 50.54 1.8940 1064601 0.0097 151 6.422E-5 20.492 18.402 2315 51.65 1.9134 1064886 0.0	2017				0.0096		3.845E-5		15.142
2096 46.88 1.8262 1063323 0.0097 218 4.451E-5 17.855 16.070 2123 47.39 1.8360 1063536 0.0096 205 4.688E-5 18.205 16.385 2151 47.90 1.8457 1063739 0.0096 195 4.923E-5 18.571 16.713 2179 48.42 1.8554 1063933 0.0097 187 5.189E-5 18.936 17.042 2206 48.92 1.8648 1064105 0.0097 178 5.451E-5 19.312 17.380 2234 49.44 1.8743 1064276 0.0097 168 5.746E-5 19.697 17.727 2263 50.00 1.8844 1064447 0.0097 159 6.082E-5 20.085 18.076 2292 50.54 1.8940 1064601 0.0097 151 6.422E-5 20.492 18.442 2321 51.09 1.9036 1064747 0.0096 143 6.794E-5 20	2043	45.92	1.8070	1062878	0.0097	239	4.048E-5	17.163	15.447
2123 47.39 1.8360 1063536 0.0096 205 4.688E-5 18.205 16.385 2151 47.90 1.8457 1063739 0.0096 195 4.923E-5 18.571 16.713 2179 48.42 1.8554 1063933 0.0097 187 5.189E-5 18.936 17.042 2206 48.92 1.8648 1064105 0.0097 178 5.451E-5 19.312 17.380 2234 49.44 1.8743 1064276 0.0097 168 5.746E-5 19.697 17.727 2263 50.00 1.8844 1064447 0.0097 159 6.082E-5 20.085 18.076 2292 50.54 1.8940 1064601 0.0097 151 6.422E-5 20.492 18.442 2321 51.09 1.9036 1064747 0.0096 143 6.794E-5 20.899 18.809 2379 52.20 1.9228 1065011 0.0096 127 7.592E-5 21.727 19.554 2408 52.76 1.9322 1065132 0.0	2070	46.42	1.8170	1063109	0.0097	228	4.247E-5	17.501	15.751
2151 47.90 1.8457 1063739 0.0096 195 4.923E-5 18.571 16.713 2179 48.42 1.8554 1063933 0.0097 187 5.189E-5 18.936 17.042 2206 48.92 1.8648 1064105 0.0097 178 5.451E-5 19.312 17.380 2234 49.44 1.8743 1064276 0.0097 168 5.746E-5 19.697 17.727 2263 50.00 1.8844 1064447 0.0097 159 6.082E-5 20.085 18.076 2292 50.54 1.8940 1064601 0.0097 151 6.422E-5 20.492 18.442 2321 51.09 1.9036 1064747 0.0096 143 6.794E-5 20.899 18.809 2350 51.65 1.9134 1064886 0.0096 134 7.192E-5 21.307 19.176 2379 52.20 1.9228 1065011 0.0096 127 7.592E-5 21.727 19.554 2408 52.76 1.9322 1065132 0.0096 119 8.071E-5 22.150 19.935 2438 53.34 1.9419 1065250 0.0195 230	2096	46.88	1.8262	1063323	0.0097	218	4.451E-5	17.855	16.070
2179 48.42 1.8554 1063933 0.0097 187 5.189E-5 18.936 17.042 2206 48.92 1.8648 1064105 0.0097 178 5.451E-5 19.312 17.380 2234 49.44 1.8743 1064276 0.0097 168 5.746E-5 19.697 17.727 2263 50.00 1.8844 1064447 0.0097 159 6.082E-5 20.085 18.076 2292 50.54 1.8940 1064601 0.0097 151 6.422E-5 20.492 18.442 2321 51.09 1.9936 1064747 0.0096 143 6.794E-5 20.899 18.809 2350 51.65 1.9134 1064886 0.0096 134 7.192E-5 21.307 19.176 2379 52.20 1.9228 1065011 0.0096 127 7.592E-5 21.727 19.554 2408 52.76 1.9322 1065132 0.0096 119 8.071E-5 22.150 19.935 2438 53.34 1.9419 1065250 0.0195 230 8.487E-5 22.586 20.327					0.0096				
2206 48.92 1.8648 1064105 0.0097 178 5.451E-5 19.312 17.380 2234 49.44 1.8743 1064276 0.0097 168 5.746E-5 19.697 17.727 2263 50.00 1.8844 1064447 0.0097 159 6.082E-5 20.085 18.076 2292 50.54 1.8940 1064601 0.0097 151 6.422E-5 20.492 18.442 2321 51.09 1.9036 1064747 0.0096 143 6.794E-5 20.899 18.809 2350 51.65 1.9134 1064886 0.0096 134 7.192E-5 21.307 19.176 2379 52.20 1.9228 1065011 0.0096 127 7.592E-5 21.727 19.554 2408 52.76 1.9322 1065132 0.0096 119 8.071E-5 22.150 19.935 2438 53.34 1.9419 1065250 0.0195 230 8.487E-5 22.586 20.327	2151	47.90	1.8457	1063739	0.0096	195	4.923E-5	18.571	16.713
2234 49.44 1.8743 1064276 0.0097 168 5.746E-5 19.697 17.727 2263 50.00 1.8844 1064447 0.0097 159 6.082E-5 20.085 18.076 2292 50.54 1.8940 1064601 0.0097 151 6.422E-5 20.492 18.442 2321 51.09 1.9036 1064747 0.0096 143 6.794E-5 20.899 18.809 2350 51.65 1.9134 1064886 0.0096 134 7.192E-5 21.307 19.176 2379 52.20 1.9228 1065011 0.0096 127 7.592E-5 21.727 19.554 2408 52.76 1.9322 1065132 0.0096 119 8.071E-5 22.150 19.935 2438 53.34 1.9419 1065250 0.0195 230 8.487E-5 22.586 20.327	2179	48.42	1.8554	1063933	0.0097	187	5.189E-5		17.042
2263 50.00 1.8844 1064447 0.0097 159 6.082E-5 20.085 18.076 2292 50.54 1.8940 1064601 0.0097 151 6.422E-5 20.492 18.442 2321 51.09 1.9036 1064747 0.0096 143 6.794E-5 20.899 18.809 2350 51.65 1.9134 1064886 0.0096 134 7.192E-5 21.307 19.176 2379 52.20 1.9228 1065011 0.0096 127 7.592E-5 21.727 19.554 2408 52.76 1.9322 1065132 0.0096 119 8.071E-5 22.150 19.935 2438 53.34 1.9419 1065250 0.0195 230 8.487E-5 22.586 20.327	2206	48.92	1.8648	1064105	0.0097	178	5.451E-5	19.312	17.380
2292 50.54 1.8940 1064601 0.0097 151 6.422E-5 20.492 18.442 2321 51.09 1.9036 1064747 0.0096 143 6.794E-5 20.899 18.809 2350 51.65 1.9134 1064886 0.0096 134 7.192E-5 21.307 19.176 2379 52.20 1.9228 1065011 0.0096 127 7.592E-5 21.727 19.554 2408 52.76 1.9322 1065132 0.0096 119 8.071E-5 22.150 19.935 2438 53.34 1.9419 1065250 0.0195 230 8.487E-5 22.586 20.327	2234	49.44	1.8743	1064276	0.0097	168	5.746E-5	19.697	17.727
2321 51.09 1.9036 1064747 0.0096 143 6.794E-5 20.899 18.809 2350 51.65 1.9134 1064886 0.0096 134 7.192E-5 21.307 19.176 2379 52.20 1.9228 1065011 0.0096 127 7.592E-5 21.727 19.554 2408 52.76 1.9322 1065132 0.0096 119 8.071E-5 22.150 19.935 2438 53.34 1.9419 1065250 0.0195 230 8.487E-5 22.586 20.327									
2350 51.65 1.9134 1064886 0.0096 134 7.192E-5 21.307 19.176 2379 52.20 1.9228 1065011 0.0096 127 7.592E-5 21.727 19.554 2408 52.76 1.9322 1065132 0.0096 119 8.071E-5 22.150 19.935 2438 53.34 1.9419 1065250 0.0195 230 8.487E-5 22.586 20.327									
2379 52.20 1.9228 1065011 0.0096 127 7.592E-5 21.727 19.554 2408 52.76 1.9322 1065132 0.0096 119 8.071E-5 22.150 19.935 2438 53.34 1.9419 1065250 0.0195 230 8.487E-5 22.586 20.327									
2408 52.76 1.9322 1065132 0.0096 119 8.071E-5 22.150 19.935 2438 53.34 1.9419 1065250 0.0195 230 8.487E-5 22.586 20.327									
2438 53.34 1.9419 1065250 0.0195 230 8.487E-5 22.586 20.327									
2469 53.94 1.9517 1065362 0.0196 212 9.237E-5 23.035 20.731									
	2469	53.94	1.9517	1065362	0.0196	212	9.237E-5	23.035	20.731

Test	ID 5083	-FCG-45					P	age 3
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[i	n]^.5)
	54.55	1.9615	1065462					
	55.20	1.9719	1065576					
2450	55.75	1.9804	1065678	0.0181	212	8.538E-5	23.373	21.036
2450	56.37	1.9900	1065788	0.0195	220	8.858E-5	23.537	21.183
2450	57.02	1.9999	1065898	0.0196	216	9.059E-5	23.712	21.341
2450	57.66	2.0096	1066004	0.0097	104	9.258E-5	23.891	21.502
2450	58.32	2.0192	1066105	0.0098	102	9.495E-5	24.071	21.664
2450	58.98	2.0289	1066207	0.0098	100	9.728E-5	24.253	21.827
2450	59.65	2.0385	1066304	0.0098	98	9.924E-5	24.440	21.996
2450	60.36	2.0486	1066402	0.0098	96	1.011E-4	24.629	22.166
2450	61.08	2.0585	1066500	0.0098	94	1.034E-4	24.822	22.339
2450	61.79	2.0681	1066593	0.0098	92	1.055E-4	25.015	22.514
2450	62.50	2.0778	1066683	0.0097	90	1.079E-4	25.212	22.690
2450	63.25	2.0877	1066772	0.0097	87	1.107E-4	25.408	22.867
2450	63.99	2.0973	1066858	0.0097	85	1.137E-4	25.610	23.049
2450	64.74	2.1070	1066943	0.0097	83	1.165E-4	25.812	23.230
2450	65.51	2.1167	1067024	0.0097	81	1.197E-4	26.018	23.416
2450	66.29	2.1265	1067104	0.0098	79	1.238E-4	26.225	23.602
2450	67.08	2.1361	1067182	0.0097	76	1.281E-4	26.438	23.794
2450	67.89	2.1459	1067256	0.0097	73	1.322E-4	26.656	23.990
2450	68.75	2.1561	1067331	0.0097	71	1.366E-4	26.872	24.184
2450	69.56	2.1655	1067398	0.0098	69	1.411E-4	27.094	24.384
2450	70.38	2.1749	1067464	0.0091	63	1.456E-4	27.315	24.583
2450	71.25	2.1847	1067531	0.0077	52	1.517E-4	27.542	24.787
2450 2432	72.16 72.69	2.1948	1067596 1067632	0.0064	42 33	1.433E-4 1.401E-4	27.628 27.847	24.765 25.045
2447	72.82	2.2021	1067632	0.0032	20	1.711E-4	27.859	24.971
2450	72.99	2.2021	1067652	0.0034	24	1.647E-4	27.983	25.168
2450	73.17	2.2061	1067664	0.1146	509	2.252E-4	0.000	0.000
2450	84.23	2.3187	1068161	0.1216	527	2.308E-4	0.000	0.000
2450	85.21	2.3277	1068191	0.0190	63	3.015E-4	31.301	28.170
2450	86.33	2.3377	1068224	0.0200	66	3.035E-4	31.578	28.419
2450	87.46	2.3477	1068257	0.0202	64	3.159E-4	31.880	28.692
2450	88.64	2.3579	1068288	0.0102	32	3.212E-4	32.195	28.975
2450	89.91	2.3687	1068321	0.0102	31	3.315E-4	32.510	29.258
2450	91.13	2.3788	1068352	0.0102	29	3.460E-4	32.834	29.549
2450	92.34	2.3887	1068380	0.0102	28	3.601E-4	33.155	29.838
2450	93.58	2.3987	1068407	0.0101	27	3.769E-4	33.479	30.129
2450	94.87	2.4088	1068432	0.0102	26	3.933E-4	33.815	30.431
2450	96.21	2.4191	1068458	0.0103	25	4.114E-4	34.159	30.740
2450	97.59	2.4295	1068483	0.0103	24	4.328E-4	34.511	31.057
2450	98.98	2.4398	1068507	0.0104	23	4.614E-4	34.876	31.385
2450	100.44	2.4503	1068529	0.0103	22	4.854E-4	35.240	31.712
2450	101.88	2.4606	1068549	0.0103	21	5.071E-4	35.622	32.055
2449	103.43	2.4713	1068568	0.0104	19	5.334E-4	35.986	32.383

Automated Fatigue Crack Growth Rate Analysis							
Test ID Contract Material Temperature (F) Environment Sea W	5083-H321 75	Geometry Orientation Yield (ksi) Modulus (Msi)	C(T) T-L 34.3 10.5				
Specimen Dimension	ons (in)						
Thickness Net Thickness Width	0.499 0.499 4.000	Height Notch Depth Gage Length	2.400 1.000 0.500				
Precrack Paramete	ers						
Pmax (lbs) Final a (in)	784.0 1.050	Stress Ratio Kmax (ksi sqr	0.10 (in]) 4.00				
Test Parameters							
EvBP Freq 24.520 0.50 32.540 0.50 55.204 0.50	Pmax R 0 0.10 0 0.10 2450 0.10	1.491 8.80	4.00 0.00 2.00 0.00				
K Coeff .886 4.64 -13.32 14.72 -5.6	C Coeff 1.00098 -4.66951 18.4601 -236.825 1214.88 -2143.57						
Visual Observation	ons						
EvB/P Crack(EvB 20.869 1.012 21.842 1.062 23.217 1.127 24.253 1.174 24.439 1.182 28.306 1.338 32.493 1.478 34.530 1.538 36.488 1.589 46.151 1.812 54.785 1.965 72.549 2.199	1.000 1.065 7 1.125 4 1.170 2 1.195 5 1.350 1.480 5 1.530 9 1.580 2 1.805 5 1.955	1) Error -0.012 0.003 -0.002 -0.004 0.013 0.015 0.005 -0.005 -0.009 -0.007 -0.010 0.011	CAF 1.013 1.010 1.006 1.004 1.003 0.995 0.987 0.984 0.982 0.970 0.962 0.951				
Date of test: 9/10/2	2006						

Wa	aveform	Type		S	ine			
Test 1	ID 5083	-FCG-4pt	.5				р	age 1
		100 100					-	
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[i	n]^.5)
	28.48	1.3413	998455					
806	28.53	1.3430	1000171	0.0037	3556	1.051E-6	4.981	4.483
812	28.59	1.3450	1002011	0.0038	3513	1.088E-6	5.019	4.517
817	28.64	1.3469	1003684	0.0019	1632	1.178E-6	5.061	4.555
823	28.70	1.3489	1005309	0.0019	1565	1.241E-6	5.101	4.591
829	28.75	1.3508	1006809	0.0019	1477	1.294E-6	5.143	4.629
834	28.81	1.3528	1008246	0.0019	1427	1.338E-6	5.184	4.665
840	28.86	1.3546	1009559	0.0019	1375	1.371E-6	5.224	4.702
845	28.91	1.3564	1010871	0.0019	1344	1.398E-6	5.266	4.739
851 857	28.96 29.02	1.3583	1012246	0.0019	1313 1270	1.438E-6 1.487E-6	5.307 5.349	4.776 4.814
862	29.02	1.3603	1013333	0.0019	1226	1.549E-6	5.394	4.854
869	29.13	1.3642	1014071	0.0019	1171	1.629E-6	5.436	4.892
874	29.18	1.3642	1017181	0.0019	1127	1.674E-6	5.480	4.932
880	29.23	1.3678	1018227	0.0019	1082	1.750E-6	5.523	4.971
886	29.29	1.3697	1010227	0.0019	1040	1.798E-6	5.564	5.008
891	29.34	1.3715	1020318	0.0019	1013	1.861E-6	5.612	5.050
898	29.40	1.3736	1021364	0.0019	978	1.934E-6	5.654	5.088
904	29.45	1.3754	1022360	0.0019	951	2.009E-6	5.702	5.132
910	29.51	1.3774	1023256	0.0019	911	2.090E-6	5.746	5.171
916	29.56	1.3792	1024096	0.0019	871	2.149E-6	5.792	5.213
922	29.62	1.3811	1024980	0.0019	844	2.237E-6	5.837	5.253
928	29.67	1.3829	1025782	0.0019	823	2.290E-6	5.884	5.295
935	29.72	1.3848	1026592	0.0039	1642	2.381E-6	5.932	5.339
942	29.78	1.3868	1027424	0.0039	1600	2.451E-6	5.979	5.381
948	29.84	1.3887	1028192	0.0895	18520	4.831E-6	0.000	0.000
1293	32.54	1.4763	1045944	0.0890	17884	4.979E-6	0.000	0.000
1296	32.59	1.4778	1046076	0.0032	293	1.107E-5	0.000	0.000
1299	32.65	1.4796	1046237	0.0038	333	1.146E-5	8.760	7.884
1303	32.72	1.4816	1046409	0.0039	337	1.167E-5	8.793	7.914
1306	32.78	1.4835	1046574	0.0035	317	1.112E-5	8.826	7.944
1309	32.83	1.4851	1046726	0.0019	165	1.147E-5	8.863	7.976
1313	32.90	1.4872	1046904	0.0019	163	1.149E-5	8.898	8.008
1317	32.97	1.4894	1047083	0.0019	163	1.169E-5	8.931	8.038
1320	33.02	1.4909	1047228	0.0019	162	1.183E-5	8.970	8.073
1324	33.09	1.4928	1047386	0.0019	159	1.190E-5	9.003	8.102
1327	33.16	1.4949	1047551	0.0019	156	1.215E-5	9.037	8.134
1331	33.22	1.4967	1047697	0.0019	156	1.230E-5	9.074	8.167
1334	33.28	1.4985	1047855	0.0019	153	1.239E-5	9.111	8.200
1338	33.35	1.5007	1048021	0.0019	151	1.250E-5	9.146	8.231
1342	33.41	1.5025	1048166	0.0019	153	1.249E-5	9.183	8.264
1345	33.47	1.5043	1048305	0.0019	150	1.269E-5	9.218	8.297
1349	33.54	1.5062	1048457	0.0019	146	1.285E-5	9.253	8.328
1353	33.60	1.5081	1048615	0.0019	148	1.287E-5	9.291	8.362

Test	ID 5083	-FCG-4pt	5				P	age 2
Pmax	EvB/P	, a	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[i	nj~.5)
1356	33.67	1.5101	1048754	0.0019	150	1.281E-5	9.328	8.395
1360	33.73	1.5120	1048895	0.0019	147	1.285E-5	9.364	8.428
1364	33.79	1.5138	1049055	0.0019	143	1.312E-5	9.402	8.462
1367	33.86	1.5158	1049207	0.0019	144	1.318E-5	9.437	8.493
1371	33.92	1.5176	1049339	0.0019	142	1.347E-5	9.476	8.529
1375	33.99	1.5196	1049475	0.0019	136	1.396E-5	9.512	8.561
1378	34.05	1.5215	1049617	0.0019	133	1.431E-5	9.551	8.596
1382	34.12	1.5234	1049744	0.0019	134	1.423E-5	9.588	8.629
1386	34.19	1.5252	1049871	0.0019	134	1.427E-5	9.626	8.664
1390	34.25	1.5272	1050003	0.0019	131	1.451E-5	9.662	8.696
1393	34.31	1.5289	1050140	0.0038	275	1.386E-5	9.703	8.732
1397	34.39	1.5310	1050278	0.0040	260	1.549E-5	9.740	8.766
1401	34.45	1.5330	1050400	0.6731	17374	3.874E-5	0.000	0.000
2450	72.99	2.2041	1067652	0.6731	17264	3.899E-5	0.000	0.000
2450	73.17	2.2061	1067664	0.0040	24	1.662E-4	0.000	0.000
2450	73.35	2.2081	1067676	0.0043	24	1.784E-4	28.101	25.291
2450	73.55	2.2104	1067688	0.0041	22	1.872E-4	28.148	25.333
2450	73.72	2.2122	1067698	0.0039	22	1.792E-4	28.201	25.380
2450	73.90	2.2143	1067710	0.0021	11	1.832E-4	28.250	25.425
2450	74.09	2.2164	1067721	0.0020	11	1.836E-4	28.299	25.469
2450	74.27	2.2184	1067732	0.0020	11	1.828E-4	28.351	25.516
2450	74.46	2.2204	1067743	0.0020	11	1.841E-4	28.401	25.561
2450	74.65	2.2226	1067755	0.0020	11	1.832E-4	28.451	25.606
2450	74.83	2.2245	1067765	0.0020	11	1.833E-4	28.502	25.652
2450	75.01	2.2265	1067776	0.0021	11	1.854E-4	28.552	25.697
2450	75.21 75.39	2.2286	1067788	0.0020	11	1.873E-4 1.863E-4	28.602 28.655	25.742
2450			1067798		11			25.789
2450 2450	75.60 75.79	2.2328	1067809 1067821	0.0021	11 11	1.877E-4 1.900E-4	28.706 28.761	25.836 25.884
2450	75.79	2.2348	1067821	0.0020	11	1.932E-4	28.812	25.884
2450	76.17	2.2389	1067842	0.0021	10	1.932E-4 1.976E-4	28.864	25.931
2450	76.35	2.2409	1067852	0.0020	10	2.053E-4	28.915	26.023
2450	76.55	2.2429	1067861	0.0021	10	2.092E-4	28.966	26.023
2450	76.74	2.2450	1067871	0.0020	10	2.138E-4	29.020	26.118
2450	76.95	2.2450	1067881	0.0020	9	2.130E-4 2.189E-4	29.020	26.110
2450	77.13	2.2471	1067890	0.0021	9	2.105E-4 2.215E-4	29.126	26.213
2450	77.33	2.2511	1067899	0.0021	9	2.215E-4 2.264E-4	29.179	26.213
2450	77.53	2.2532	1067908	0.0020	9	2.299E-4	29.232	26.308
2450	77.74	2.2553	1067917	0.0020	17	2.255E-4 2.345E-4	29.285	26.356
2450	77.92	2.2572	1067925	0.0039	17	2.319E-4	29.338	26.404
	78.12	2.2593	1067934					

		Automated Fat: Growth Rate							
Test ID Contract Material Temperature Environment	e (F) c Sea Wat	5083-FCG-4pt0 SSC 10624-01 5083-H321 75 eer			C(T) T-L 34.3 10.5				
Specimen	n Dimensions	(in)							
Thickness Net Thickne Width	ess	0.499 0.499 4.000	Height Notch Depth Gage Length		2.400 1.000 0.500				
Precracl	C Parameters	5							
Pmax (lbs) Final a (ir		784.0 1.050	Stress Ratio		0.10 4.00				
Test Par	Test Parameters								
EvBP 32.540 55.200	Freq 0.05 0.05	Pmax R 0 0.10 2450 0.10	Ai Kmax 1.491 8.8 0.000 0.0	2.00	DKi 0.00 0.00				
K Coei .886 4.64 -13.32 14.72 -5.6	5 1 4 -4 2 1 2 -2 5 1 2	C Coeff 00098 1.66951 18.4601 236.825 .214.88 143.57							
Visual (Moservations	5							
EvB/P 20.869 21.842 23.217 24.253 24.439 28.306 32.493 34.530 36.488 46.151 54.785 72.549 Comments	1.012 1.062 1.127 1.174 1.182 1.335 1.475 1.535 1.589 1.812 1.965 2.199	P) Crack(visua: 1.000 1.065 1.125 1.170 1.195 1.350 1.480 1.530 1.580 1.580 1.955 2.210	1) Error -0.012 0.003 -0.002 -0.004 0.013 0.015 0.005 -0.005 -0.009 -0.007 -0.010 0.011	CAF 1.013 1.010 1.006 1.004 1.003 0.995 0.987 0.984 0.982 0.970 0.962 0.951					
Date of tes Waveform Ty	st: 9/11/200 /pe)6 Si:	ne						

Test ID 5083-FCG-4pt05						P	age 1	
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[i	n]^.5)
						•		
	34.57	1.5362	1050529					
1412	34.64	1.5383	1050642	0.0043	232	1.844E-5	9.890	8.901
1416	34.72	1.5405	1050761	0.0041	240	1.702E-5	9.932	8.939
1420	34.79	1.5424	1050882	0.0020	132	1.588E-5	9.973	8.976
1424	34.85	1.5442	1051008	0.0020	140	1.460E-5	10.011	9.010
1427	34.91	1.5461	1051155	0.0019	145	1.338E-5	10.051	9.046
1431	34.99	1.5481	1051322	0.0019	149	1.277E-5	10.091	9.082
1435	35.06	1.5501	1051481	0.0039	310	1.247E-5	10.132	9.118
1439	35.12	1.5520	1051632	0.0038	297	1.290E-5	10.173	9.156
1443	35.20	1.5540	1051778	0.7117	16317	4.362E-5	0.000	0.000
2450	78.55	2.2636	1067949	0.7113	16179	4.396E-5	0.000	0.000
2450	78.71	2.2653	1067957	0.0039	17	2.278E-4	29.553	26.596
2450	78.93	2.2675	1067966	0.0041	18	2.268E-4	29.602	26.642
2450	79.11	2.2693	1067975	0.0040	17	2.349E-4	29.661	26.694
2450	79.32	2.2715	1067983	0.0021	8	2.461E-4	29.711	26.741
2450	79.53	2.2735	1067992	0.0020	8	2.490E-4	29.769	26.792
2450	79.73	2.2756	1067999	0.0021	8	2.548E-4	29.825	26.842
2450	79.94	2.2777	1068007	0.0021	8	2.524E-4	29.878	26.891
2450	80.15	2.2797	1068016	0.0021	8	2.536E-4	29.938	26.943
2450	80.37	2.2819	1068024	0.0021	8	2.503E-4	29.991	26.993
2450	80.58	2.2839	1068033	0.0021	8	2.582E-4	30.050	27.045
2450	80.79	2.2860	1068041	0.0021	8	2.671E-4	30.107	27.096
2450	81.00	2.2880	1068048	0.0020	8	2.676E-4	30.162	27.146
2450	81.21	2.2901	1068055	0.0020	8	2.730E-4	30.221	27.198
2450	81.43	2.2923	1068063	0.0020	8	2.719E-4	30.273	27.245
2450	81.61	2.2940	1068070	0.0020	8	2.680E-4	30.330	27.297
2450	81.83	2.2961	1068078	0.0020	8	2.679E-4	30.386	27.347
2450	82.05	2.2982	1068086	0.0020	8	2.709E-4	30.442	27.398
2450	82.26	2.3002	1068093	0.0021	8	2.757E-4	30.499	27.449
2450	82.47	2.3022	1068100	0.0021	8	2.769E-4	30.558	27.502
2450	82.69	2.3043	1068108	0.0020	7	2.775E-4	30.615	27.552
2450	82.92	2.3065	1068115	0.0042	15	2.772E-4	30.672	27.606
2450	83.13	2.3085	1068123	0.0040	15	2.669E-4	30.732	27.657
	83.34	2.3105	1068130					

	Automated Fatigue Crack Growth Rate Analysis								
Test ID	5	083-FCG-4Cpt	:05Geometrv		C(T)				
Contract			Orientation	ı	T-L				
Material	5	083-H321	Yield (ksi)		34.3				
Temperature	(F)	75	Modulus (Ms	i)	10.5				
	Sea Wate	r							
Specimen	Dimensions	(in)							
Thickness		0.499	Height		2.400				
Net Thickne		0.499	Notch Depth		1.000				
Width		4.000	Gage Length		0.500				
Precrack	Parameters		,-						
Pmax (lbs)		4.0	Stress Rati		0.10				
Final a (in	1)	1.050	Kmax (ksi s	qr[in])	4.00				
Test Par	ameters								
EvBP	Freq P	max R	Ai Kmax	i C	DKi				
32.540		0 0.10		0 2.00					
02.040	0.00	0 0.10	1.451 0.0	2.00	0.00				
K Coef	f C	Coeff							
.886	1.	00098							
4.64	-4.	66951							
-13.32		.4601							
14.72		6.825							
-5.6		14.88 43.57							
Visual C) Dservations								
EVB/P 20.869	Crack(EvB/P) 1.012	1.000	-0.012	CAF 1.013					
	1.012								
21.842 23.217	1.127	1.065 1.125	0.003 -0.002	1.010					
24.253	1.174	1.170	-0.002	1.004					
24.439	1.182	1.195	0.013	1.003					
28.306	1.335	1.350	0.015	0.995					
32.493	1.475	1.480	0.005	0.987					
34.530	1.535	1.530	-0.005	0.984					
36.488	1.589	1.580	-0.009	0.982					
46.151	1.812	1.805	-0.007	0.970					
54.785	1.965	1.955	-0.010	0.962					
72.549		2.210	0.011	0.951					
Comments	;								
Date of tes	t: 9/11/2006								
Waveform Ty			ne						

Test ID 5083	3-FCG-4Cpt05					Pa	ge l
Pmax EvB/P (1b)	a (in)	N	da (in)		da/dN (in/cyc)	Kmax (ksi[in	deltaK]^.5)
35.27 1450 35.32 1454 35.39 1458 35.46 1463 35.54 1467 35.61 1470 35.67 1474 35.74 1478 35.81 1482 35.88 1486 35.95 1490 36.02 1494 36.08 1498 36.15 1502 36.23 1506 36.37	1.5574 10 1.5594 10 1.5613 10 1.5634 10 1.5654 10 1.5672 10 1.5689 10 1.5708 10 1.5728 10 1.5747 10 1.5747 10 1.5766 10 1.5784 10 1.5802 10 1.5802 10 1.5823 10 1.5842 10 1.5862 10	52211 0 52332 0 52446 0 52559 0 52668 0 52772 0 52872 0 52872 0 53990 0 53198 0 53198 0 53298 0 53394 0 53503 0 53611 0	0.0033 0.0039 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019	193 239 108 113 110 108 107 107 105 104 105 105 104 104 213 209	1.636E-5 1.733E-5 1.699E-5 1.717E-5 1.746E-5 1.754E-5 1.762E-5 1.785E-5 1.792E-5 1.810E-5 1.825E-5 1.849E-5 1.864E-5	10.294 10.330 10.372 10.415 10.455 10.496 10.536 10.577 10.618 10.660 10.701 10.742 10.786 10.827 10.873 10.916	9.264 9.297 9.335 9.373 9.410 9.447 9.482 9.519 9.556 9.594 9.631 9.668 9.707 9.744 9.786 9.824

				igue Cra			
		Grow	th Rate	Analysi	is		
Test ID		5083-F	CG-5	Geomet	ry		C(T)
Contract		SSC 10			tation		T-L
Material		5083-H	321	Yield	(ksi)		34.3
Temperature		75		Modulı	ıs (Msi)		10.5
Environment		0%					
Specimen	Dimensions	s (in)					
Thickness		0.501		Height	t Depth		2.400
Net Thicknes Width	5.5	0.501					1.000
Width		4.000		Gage I	Length		0.500
Precrack	Parameter	5					
Pmax (lbs)		970.0		Stress	Ratio		0.10
Final a (in))	1.070		Kmax	(ksi sqr[[in])	5.00
Test Para	ameters						
EvBP	Freq	Pmax	D	2.1	Kmaxi	С	DKi
22.377 2		0	0 10	1 070	5.00	-4 00	0.00
25.814					3.00		0.00
K Coefi	-	C Coeff					(DKapp)
.886		1.00098		Upper	da/dN li	mit	3.937E-8
4.64		4.66951					3.937E-9
-13.32 14.72		18.4601 236.825			slope (m		4.703E-19
-5.6		236.825 1214.88		da/dN	for delt	1) -a F	23.534 3.937E-9
		2143.57		delta	K	e r	2.640
Visual O	oservation:	5					
FtrB/D (Crack (EvB/	D) Crac	k (wi sua	1) Erro	or	CAF	
20.596	0.986		.002	0.01		1.004	
22.230	1.095	_	.085	-0.01		1.022	
23.182	1.153	1	.130	-0.02	23	1.031	
25.135	1.263	1	.280	0.01	17	1.050	
29.099	1.377	1	.380	0.00	03	1.007	
33.040	1.491		.485	-0.00	06	0.986	
36.200	1.571	1	.575	0.00	04	0.972	
Comments							
Date of test	t: 9/15/20	06					
Waveform Typ			Si	ne			

Test ID 5083-FCG-5 Page :

Pmax (1b)	EvB/P	a (in)	И	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[ir	deltaK 1]^.5)
,,	22.38	1.1041	10728	,,		,,	,	
915	22.47	1.1100	23029	0.0121	27551	4.410E-7	4.839	4.355
893	22.57	1.1163	38279	0.0123	32016	3.831E-7	4.750	4.275
873	22.67	1.1222	55045	0.0061	18007	3.736E-7	4.656	4.190
852	22.77	1.1286	75113	0.0061	19963	3.249E-7	4.568	4.111
832	22.88	1.1348	96589	0.0060	22076	2.914E-7	4.481	4.033
814	22.97	1.1406	118770	0.0061	24696	2.664E-7	4.396	3.957
796	23.07	1.1464	142808	0.0061	26807	2.441E-7	4.316	3.884
778	23.17	1.1523	170733	0.0061	28683	2.229E-7	4.232	3.809
759	23.28	1.1589	203223	0.0061	30846	2.046E-7	4.151	3.736
741	23.38	1.1652	235954	0.0061	32699	1.905E-7	4.069	3.662
724	23.49	1.1712	268687	0.0061	34308	1.810E-7	3.990	3.591
707	23.59	1.1772	303843	0.0061	35864	1.732E-7	3.914	3.523
691	23.69	1.1831	339000	0.0059	38490	1.643E-7	3.840	3.456
676	23.79	1.1891	376581	0.0061	41052	1.551E-7	3.767	3.390
660	23.90	1.1952	418404	0.0060	43715	1.453E-7	3.697	3.327
646	24.00	1.2008	466891	0.0060	50006	1.350E-7	3.622	3.260
629	24.12	1.2078	514999	0.0060	59226	1.248E-7	3.556	3.201
615	24.22	1.2134	566135	0.0058	69269	1.118E-7	3.484	3.136
601	24.33	1.2193	639038	0.0056	78447	9.119E-8	3.419	3.077
587	24.44	1.2254	731939	0.0050	87071	6.515E-8	3.359	3.023
576	24.53	1.2302	834016	0.0045	95189	4.837E-8	3.305	2.975
568	24.60	1.2341	937571	0.0039	99681	3.802E-8	3.260	2.934
560	24.66	1.2376	1037427	0.0032	100841	3.077E-8	3.226	2.904
554	24.71	1.2401	1137270	0.0027	100470	2.639E-8	3.194	2.875
549	24.75	1.2425	1237125	0.0025	99854	2.368E-8	3.173	2.856
546	24.78	1.2443	1336982	0.0022	99852	2.176E-8	3.149	2.834
541	24.83	1.2466	1436838	0.0020	99854	2.047E-8	3.129	2.816
536	24.87	1.2488	1536694	0.0017	99854	1.844E-8	3.108	2.797
532	24.90	1.2507	1636537	0.0016	99854	1.620E-8	3.089	2.780
529	24.93	1.2522	1736391	0.0014	99854	1.348E-8	3.074	2.767
527	24.94	1.2530	1836248	0.0012	99852	1.136E-8	3.063	2.756
525	24.96	1.2539	1936105	0.0010	99854	9.715E-9	3.053	2.747
523	24.98	1.2550	2035961	0.0008	99854	8.715E-9	3.044	2.739
521	25.00	1.2560	2135807	0.0008	99854	8.383E-9	3.034	2.731
520	25.01	1.2566	2235659	0.0008	99854	8.113E-9	3.027	2.724
519	25.02	1.2573	2335516	0.0008	99853	7.915E-9	3.019	2.717
517	25.04	1.2581	2435373	0.0008	99853	7.876E-9	3.012	2.711
515	25.06	1.2590	2535229	0.0008	99854	7.890E-9	3.004	2.704
513	25.07	1.2599	2635076	0.0007	99854	7.276E-9	2.996	2.697
512	25.09	1.2606	2734926	0.0006	99854	5.927E-9	2.989	2.690
511	25.10	1.2611	2834782	0.0004	99853	4.154E-9	2.984	2.685
510	25.10	1.2615	2934639	0.0003	99853	2.475E-9	2.981	2.683
	25.10	1.2615	3034496					

Test	ID 5083	-FCG-5					Pa	age 2
Pmax (lb)	EvB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[ir	deltaK 1]^.5)
510 674 685 696 709 720 732 744 757	25.10 25.10 27.12 27.24 27.36 27.49 27.61 27.73 27.86 27.98	1.2615 1.2615 1.3010 1.3059 1.3104 1.3157 1.3203 1.3251 1.3302 1.3350	3134345 3234193 1195575 1219053 1244502 1267528 1285949 1303205 1318713 1333137	0.0395-	199697 -1938770 -2015140 48927 48475 41447 19014 17151 15278 13697	-4.017E-10 -2.037E-8 -2.204E-8 1.915E-7 2.027E-7 2.400E-7 2.689E-7 2.972E-7 3.288E-7 3.702E-7	2.977 0.000 0.000 4.117 4.202 4.281 4.368 4.454 4.541 4.635	2.680 0.000 0.000 3.706 3.781 3.853 3.931 4.009 4.087 4.171
770 783 795 810 825 838 851 865	28.11 28.25 28.37 28.51 28.66 28.78 28.90 29.03	1.3402 1.3454 1.3501 1.3552 1.3609 1.3657 1.3702 1.3749	1347407 1359195 1368130 1376473 1384022 1389742 1394570 1399295	0.0050 0.0051 0.0051 0.0050 0.0049 0.0049 0.0048	12211 10885 9434 7861 6683 5941 5194 4512	4.295E-7 5.102E-7 5.970E-7 6.949E-7 7.959E-7 8.682E-7 9.459E-7 1.024E-6	4.728 4.823 4.923 5.026 5.128 5.232 5.335 5.433	4.255 4.340 4.431 4.523 4.616 4.709 4.802 4.890
879 895 911 926 943 959 974 991	29.16 29.31 29.45 29.58 29.73 29.87 30.00 30.14	1.3793 1.3840 1.3882 1.3924 1.3967 1.4010 1.4049 1.4092	1403773 1407636 1411091 1414180 1417074 1419676 1421993 1424076	0.0044 0.0043 0.0043 0.0042 0.0042 0.0042 0.0041	4073 3751 3397 3037 2740 2473 2264 2060	1.109E-6 1.204E-6 1.314E-6 1.428E-6 1.563E-6 1.724E-6 1.891E-6 2.057E-6	5.546 5.654 5.770 5.888 6.003 6.122 6.242 6.361	4.992 5.088 5.193 5.299 5.403 5.509 5.618 5.725
1007 1024 1041 1059 1077 1096 1115	30.28 30.42 30.56 30.70 30.85 31.00 31.15	1.4132 1.4175 1.4216 1.4257 1.4300 1.4345 1.4388	1425930 1427764 1429431 1430851 1432260 1433602 1434685	0.0041 0.0042 0.0042 0.0043 0.0042 0.0042	1863 1711 1588 1459 1319 1212 1132	2.252E-6 2.471E-6 2.704E-6 2.970E-6 3.252E-6 3.537E-6 3.789E-6	6.486 6.610 6.741 6.873 7.012 7.153 7.291	5.838 5.949 6.067 6.186 6.311 6.438 6.562
1132 1152 1171 1191 1211 1232 1253 1274	31.28 31.43 31.58 31.74 31.89 32.04 32.19 32.34	1.4425 1.4468 1.4511 1.4554 1.4595 1.4638 1.4680 1.4722	1435677 1436702 1437641 1438494 1439263 1440019 1440779 1441436	0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042	1039 944 889 850 789 735 688 652	4.081E-6 4.424E-6 4.767E-6 5.068E-6 5.380E-6 5.695E-6 6.085E-6 6.474E-6	7.437 7.577 7.729 7.878 8.039 8.193 8.357 8.518	6.693 6.819 6.956 7.090 7.235 7.374 7.522 7.666
1295 1317 1338 Test		1.4762 1.4805 1.4846 1.4892 -FCG-5	1442048 1442624 1443174 1443695	0.0042 0.0084 0.0086	613 1126 1071	6.983E-6 7.480E-6 8.070E-6		7.818 7.966 8.130 age 3
Pmax (lb)	EvB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i:	deltaK n]^.5)

	Automated Fat: Growth Rate		
Test ID Contract Material Temperature (F) Environment RH = 6	75	Geometry Orientation Yield (ksi) Modulus (Msi	
Specimen Dimension	ns (in)		
Thickness Net Thickness Width	0.496 0.496 4.000	Height Notch Depth Gage Length	
Precrack Parameter	rs		
Pmax (lbs) Final a (in)	779.0 1.050	Stress Ratio Kmax (ksi sq	
Test Parameters			
EvBP Freq 22.978 10.00 29.766 10.00 47.942 5.00		1.396 10.42	4.00 0.00 2.00 0.00
.886 4.64 - -13.32 14.72 - -5.6	C Coeff 1.00098 -4.66951 18.4601 -236.825 1214.88 -2143.57		
Visual Observation	ns		
EvB/P Crack(EvB, 20.484 0.989 21.438 1.038 21.843 1.059 22.920 1.110 24.869 1.197 26.312 1.256 27.456 1.301 29.780 1.384 39.990 1.675 47.607 1.838	1.001 1.035 1.055 1.115 1.195 1.255 1.295 1.380 1.665	1) Error 0.013 -0.003 -0.004 0.005 -0.002 -0.001 -0.006 -0.004 -0.010 0.012	CAF 1.011 1.009 1.007 1.005 1.000 0.997 0.994 0.990 0.975
Comments			
Date of test: 8/16/20 Waveform Type	006 Sin	ne	

Test	ID 5086	-FCG-1					P	age l
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[i:	n]^.5)
	23.06	1.1171	66929					
639	23.17	1.1219	119196	0.0095	102819	9.261E-8	3.441	3.097
650	23.27	1.1267	169748	0.0095	97833	9.739E-8	3.510	3.159
661	23.37	1.1314	217029	0.0048	46026	1.035E-7	3.580	3.222
672	23.48	1.1360	260146	0.0047	43374	1.097E-7	3.652	3.286
683	23.58	1.1408	302605	0.0047	40604	1.166E-7	3.724	3.352
695	23.69	1.1457	343082	0.0047	38177	1.245E-7	3.799	3.419
707	23.79	1.1504	379439	0.0048	36445	1.322E-7	3.875	3.487
718	23.90	1.1550	413372	0.0048	34216	1.401E-7	3.953	3.558
731	24.01	1.1598	446093	0.0047	31913	1.478E-7	4.033	3.630
744	24.12	1.1648	478814	0.0047	30297	1.563E-7	4.114	3.702
756	24.23	1.1694	507899	0.0048	28681	1.666E-7	4.196	3.777
768	24.33	1.1739	534561	0.0048	26662	1.789E-7	4.280	3.852
781	24.44	1.1787	561222	0.0047	24440	1.943E-7	4.365	3.929
795 808	24.55 24.66	1.1837	585460 606062	0.0047	22501 20642	2.132E-7 2.345E-7	4.453	4.008
821	24.77	1.1929	625453	0.0047	18525	2.600E-7	4.632	4.169
835	24.77	1.1976	642904	0.0047	16553	2.898E-7	4.723	4.251
849	24.99	1.2022	658414	0.0047	14981	3.249E-7	4.817	4.231
863	25.10	1.2069	672371	0.0047	13404	3.662E-7	4.914	4.422
878	25.21	1.2117	684779	0.0048	12067	4.094E-7	5.011	4.510
893	25.33	1.2164	695946	0.0048	10823	4.558E-7	5.115	4.603
909	25.44	1.2213	705875	0.0047	9675	5.053E-7	5.218	4.696
924	25.56	1.2262	715306	0.0047	8719	5.608E-7	5.325	4.792
940	25.68	1.2308	723351	0.0047	7863	6.164E-7	5.431	4.888
956	25.79	1.2354	730421	0.0047	7108	6.811E-7	5.540	4.986
972	25.91	1.2401	737090	0.0047	6341	7.605E-7	5.648	5.083
988	26.02	1.2447	743124	0.0047	5686	8.554E-7	5.762	5.186
1005	26.14	1.2496	748523	0.0047	5111	9.653E-7	5.877	5.290
1022	26.26	1.2544	753350	0.0047	4542	1.090E-6	5.996	5.397
1040	26.38	1.2591	757468	0.0047	4040	1.216E-6	6.118	5.506
1057	26.50	1.2637	761087	0.0047	3639	1.337E-6	6.237	5.613
1074	26.62	1.2684	764339	0.0047	3268	1.471E-6	6.361	5.725
1092	26.74	1.2730	767363	0.0047	2933	1.623E-6	6.489	5.840
1112	26.86	1.2779	770355	0.0047	2653	1.816E-6	6.620	5.958
1131	26.99	1.2828	772957	0.0047	2416	2.034E-6	6.751	6.076
1149	27.11	1.2873	775065	0.0047	2190	2.246E-6	6.888	6.199
1168	27.23	1.2919	777003	0.0047	1955	2.480E-6	7.022	6.320
1188	27.35	1.2967	778836	0.0047	1758	2.737E-6	7.161	6.445
1208	27.48	1.3013	780503	0.0048	1608	3.011E-6	7.307	6.577
1229	27.61	1.3063	782086	0.0048	1472	3.322E-6	7.456	6.710
1251	27.74	1.3112	783507	0.0048	1345	3.664E-6	7.605	6.845
1271	27.86	1.3158	784714	0.0048	1225	3.995E-6	7.762	6.986
1293	27.99	1.3205	785837	0.0047	1111	4.310E-6	7.916	7.125

Test	ID 5086	-FCG-1					P	age 2
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(1b)	200,2	(in)		(in)	021	(in/cyc)		n]^.5)
(120)		(222)		()		(211) 030)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,
1316	28.12	1.3254	786904	0.0047	1016	4.642E-6	8.074	7.267
1337	28.25	1.3300	787854	0.0047	950	4.961E-6	8.234	7.411
1359	28.37	1.3345	788750	0.0047	890	5.306E-6	8.396	7.556
1382	28.50	1.3392	789604	0.0047	828	5.691E-6	8.560	7.704
1405	28.64	1.3439	790415	0.0047	772	6.124E-6	8.733	7.860
1430	28.77	1.3488	791179	0.0047	727	6.564E-6	8.907	8.017
1454	28.90	1.3535	791870	0.0047	686	6.980E-6	9.086	8.177
1478	29.03	1.3581	792483	0.0048	647	7.371E-6	9.268	8.341
1503	29.17	1.3628	793114	0.0048	611	7.831E-6	9.452	8.507
1529	29.31	1.3676	793718	0.0048	573	8.304E-6	9.644	8.679
1555	29.44	1.3725	794294	0.0099	1125	8.837E-6	9.844	8.860
1583	29.59	1.3776	794843	0.0096	1014	9.505E-6	10.040	9.036
	29.72	1.3821	795308					
	29.77	1.3836	795836					
1627	29.88	1.3875	796251	0.0105	1074	9.792E-6	10.425	9.382
1643	30.08	1.3941	796910	0.0158	1558	1.014E-5	10.568	9.511
1664	30.35	1.4033	797809	0.0189	1803	1.048E-5	10.747	9.672
1687	30.64	1.4130	798713	0.0090	816	1.106E-5	10.958	9.862
1710	30.94	1.4228	799594	0.0095	827	1.150E-5	11.176	10.059
1734	31.23	1.4323	800388	0.0095	793	1.202E-5	11.400	10.260
1757	31.53	1.4417	801149	0.0095	757	1.258E-5	11.623	10.461
1781	31.82	1.4511	801874	0.0095	720	1.318E-5	11.851	10.666
1804	32.12	1.4604	802565	0.0095	690	1.372E-5	12.086	10.877
1829	32.43	1.4701	803256	0.0095	663	1.432E-5	12.327	11.094
1855	32.75	1.4799	803913	0.0095	639	1.492E-5	12.572	11.314
1880	33.05	1.4891	804526	0.0096	615	1.552E-5	12.827	11.545
1906	33.37	1.4988	805129	0.0095	587	1.621E-5	13.078	11.770
1931	33.69	1.5082	805706	0.0095	562	1.686E-5	13.340	12.006
1957	34.02	1.5178	806254	0.0096	540	1.765E-5	13.604	12.243
1984	34.35	1.5273	806776	0.0095	516	1.847E-5	13.873	12.486
2011	34.67	1.5367	807285	0.0096	493	1.942E-5	14.152	12.736
2039	35.02	1.5465	807766	0.0095	467	2.039E-5	14.432	12.989
2066	35.36	1.5560	808224	0.0095	445	2.146E-5	14.724	13.251
2094	35.71	1.5657	808661	0.0096	422	2.264E-5	15.011	13.510
2122	36.05	1.5748	809054	0.0095	398	2.384E-5	15.311	13.780
2150	36.40	1.5844	809445	0.0095	377	2.520E-5	15.610	14.049
2179	36.76	1.5940	809818	0.0095	357	2.671E-5	15.918	14.326
2208	37.12	1.6034	810156	0.0095	339	2.820E-5	16.236	14.613
2238	37.49	1.6130	810487	0.0095	321	2.971E-5	16.558	14.903
2269	37.87	1.6227	810800	0.0095	306	3.123E-5	16.882	15.194
2298	38.23	1.6319	811085	0.0097	295	3.271E-5	17.217	15.495
2328	38.60	1.6414	811369	0.0097	280	3.438E-5	17.559	15.803
2360	39.01	1.6513	811654	0.0096	263	3.642E-5	17.913	16.122
2393	39.42	1.6614	811924	0.0096	251	3.857E-5	18.277	16.449
2425	39.81	1.6709	812164	0.0097	239	4.088E-5	18.644	16.780

Test 1	ID 5086	-FCG-1					P	age 3
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[i	
2457	40.21	1.6803	812379	0.0096	223	4.303E-5	19.009	17.108
2488	40.59	1.6894	812590	0.0095	209	4.540E-5	19.389	17.451
2522	41.02	1.6994	812800	0.0095	198	4.801E-5	19.759	17.783
2554	41.42	1.7086	812992	0.0096	189	5.068E-5	20.159	18.143
2588	41.85	1.7183	813175	0.0096	180	5.363E-5	20.551	18.496
2622	42.28	1.7280	813349	0.0095	168	5.673E-5	20.965	18.869
2658	42.72	1.7377	813515	0.0096	160	6.010E-5	21.376	19.239
2692	43.15	1.7471	813668	0.0096	152	6.337E-5	21.800	19.620
2726	43.58	1.7564	813809	0.0096	144	6.649E-5	22.229	20.006
2762	44.04	1.7661	813950	0.0096	137	7.005E-5	22.665	20.399
2798	44.50	1.7758	814084	0.0097	130	7.413E-5	23.114	20.803
2834 2871	44.96 45.44	1.7853 1.7951	814212 814334	0.0097	124 118	7.824E-5 8.238E-5	23.577	21.220
2910	45.94	1.8053	814450	0.0097	112	8.678E-5	24.053	22.078
2947	46.42	1.8147	814555	0.0036	207	9.063E-5	25.022	22.521
2984	46.89	1.8240	814657	0.0189	199	9.509E-5	25.511	22.960
2304	47.39	1.8336	814754	0.0103	100	J.30JE 3	20.011	22.500
	47.94	1.8445	814876					
2975	48.38	1.8532	814967	0.0188	194	9.695E-5	25.976	23.378
2975	48.90	1.8633	815070	0.0202	205	9.839E-5	26.152	23.537
2975	49.42	1.8734	815172	0.0205	208	9.868E-5	26.347	23.712
2975	49.98	1.8838	815278	0.0101	103	9.856E-5	26.545	23.890
2975	50.54	1.8943	815383	0.0101	102	9.900E-5	26.743	24.069
2975	51.08	1.9043	815485	0.0101	101	9.977E-5	26.942	24.248
2975	51.61	1.9140	815583	0.0101	100	1.008E-4	27.142	24.427
2975	52.17	1.9241	815680	0.0100	98	1.022E-4	27.341	24.607
2975	52.75	1.9342	815778	0.0100	96	1.040E-4	27.546	24.792
2975	53.33	1.9443	815875	0.0101	96	1.057E-4	27.755	24.980
2975	53.91	1.9543	815969	0.0101	94	1.073E-4	27.966	25.169
2975	54.51	1.9644	816062	0.0101	93	1.091E-4	28.182	25.364
2975	55.14	1.9748	816156	0.0102	92	1.111E-4	28.399	25.559
2975	55.75	1.9849	816245	0.0102	90	1.126E-4	28.622	25.760
2975	56.38	1.9951	816335	0.0102	89	1.144E-4	28.846	25.961
2975	57.03	2.0053	816424	0.0102	87	1.164E-4	29.072	26.165
2975	57.67	2.0154	816510	0.0102	86	1.186E-4	29.303	26.372
2975	58.34	2.0256	816595	0.0101	83	1.214E-4	29.537	26.583
2975 2975	59.02	2.0360	816680 816758	0.0101	81 79	1.245E-4 1.277E-4	29.772 30.010	26.795
2975	59.69 60.36	2.0461	816834	0.0101	76	1.313E-4	30.010	27.009 27.224
2975	61.06	2.0660	816910	0.0101	74	1.355E-4	30.489	27.440
2975	61.77	2.0761	816983	0.0101	72	1.397E-4	30.734	27.660
2975	62.48	2.0860	817053	0.0101	70	1.448E-4	30.989	27.889
2975	63.23	2.0964	817124	0.0102	67	1.513E-4	31.242	28.117
2975	63.98	2.1066	817190	0.0102	65	1.576E-4	31.503	28.352
2975	64.73	2.1167	817252	0.0102	63	1.634E-4	31.768	28.591

Test ID	5086-FCG-1					P	age 4
Pmax E	vB/P a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK n]^.5)
(1b) 2975 6 2975 6 2975 6 2975 6 2975 6 2975 7 2975 7 2975 7 2975 7 2975 7 2975 7 2975 7 2975 7 2975 7 2975 7 2975 7 2975 7 2975 7 2975 7 2975 7 2975 7	-	817312 817371 817428 817485 817535 817586 817637 817684 817725 817760 817798 817833 817867 817902 817935 817963 817989 818014 818036 818057		60 58 56 54 52 50 46 44 41 38 36 35 34 32 28 22 20			
2975 8 2974 8 2974 8 2974 8 2974 8 2974 9 2974 9 2974 9 2973 9 2973 9 2973 9 2964 9 2964 9 2965 9	3.01 2.3199 4.06 2.3296 5.21 2.3400 6.35 2.3502 7.51 2.3603 8.61 2.3698 9.81 2.3800 1.07 2.3904 2.35 2.4007 3.69 2.4114 5.29 2.4238 6.28 2.4313 7.75 2.4424 9.26 2.4534 1.07 2.4663 2.64 2.4773	818057 818075 818093 818109 818123 818135 818147 818158 818169 818179 818188 818194 818200 818204 818207 818211	0.0102 0.0102 0.0101 0.0100 0.0101 0.0102 0.0106 0.0103 0.0104 0.0105 0.0109 0.0110 0.0239 0.0239	20 18 17 15 14 13 12 11 10 9 8 6 5 7	5.209E-4 5.681E-4 6.235E-4 6.847E-4 7.532E-4 8.124E-4 8.799E-4 9.708E-4 1.072E-3 1.228E-3 1.521E-3 1.970E-3 2.460E-3 3.416E-3 3.419E-3	37.902 38.273 38.630 39.008 39.371 39.752 40.137 40.531 40.948 41.405 41.715 42.203 42.543 42.984 43.391	34.107 * 34.442 * 34.762 * 35.102 * 35.428 * 35.769 * 36.117 * 36.467 * 36.844 * 37.245 * 37.519 * 37.519 * 37.514 * 38.616 * 38.960 *

	Automated Fatigue Crack Growth Rate Analysis									
Test ID Contract Material Temperature (F) Environment RH =		Geometry Orientation Yield (ksi) Modulus (Ms		C(T) T-L 27.0 10.5						
Specimen Dimensi	ons (in)									
Thickness Net Thickness Width	0.496 0.496 4.000	Height Notch Depth Gage Length		2.400 1.000 0.500						
Precrack Paramet										
Pmax (lbs) Final a (in)	779.0 1.050	Stress Rati Kmax (ksi s		0.10 4.00						
Test Parameters										
EvBP Freq 23.356 10.00 31.296 10.00 49.484 5.00	Pmax R 0 0.10 0 0.10 2840 0.10	Ai Kmax 1.130 3.0 1.446 10.6 0.000 0.0	i C 0 4.00 0 2.00 0 0.00	0.00						
K Coeff .886 4.64 -13.32 14.72 -5.6	C Coeff 1.00098 -4.66951 18.4601 -236.825 1214.88 -2143.57									
Visual Observati	ons									
EvB/P Crack(Ev 20.433 0.98 21.842 1.06 23.496 1.13 27.422 1.30 31.212 1.43 41.599 1.71 49.143 1.87 103.926 2.46	1 1.060 9 1.135 2 1.300 4 1.430 6 1.710 0 1.870	1) Error 0.013 -0.001 -0.004 -0.002 -0.004 -0.006 0.000 0.000	CAF 1.013 1.009 1.005 0.997 0.990 0.976 0.968 0.939							
Comments										
Date of test: 8/21/ Waveform Type	2006 Si:	ne								

Test	ID 5086	-FCG-2					Pa	age 1
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[in	1]^.5)
	23.36	1.1330	49863					
558	23.46	1.1378	135356	0.0089	154118	5.807E-8	3.031	2.728
566	23.55	1.1419	203981	0.0088	139929	6.284E-8	3.092	2.783
576	23.66	1.1466	275285	0.0048	68985	6.983E-8	3.153	2.838
586	23.77	1.1518	345898	0.0048	64956	7.576E-8	3.215	2.894
596	23.88	1.1565	403283	0.0050	63113	7.933E-8	3.285	2.957
607	23.99	1.1616	463772	0.0050	59559	8.343E-8	3.354	3.019
618	24.11	1.1669	525094	0.0049	55679	8.730E-8	3.424	3.082
629	24.22	1.1716	582657	0.0050	53373	9.266E-8	3.497	3.147
639	24.33	1.1765	632641	0.0049	49918	9.866E-8	3.566	3.209
650	24.44	1.1812	679974	0.0048	46008	1.058E-7	3.641	3.277
662	24.56	1.1863	723519	0.0047	42284	1.130E-7	3.712	3.341
673	24.66	1.1908	763279	0.0047	40012	1.187E-7	3.788	3.410
684	24.77	1.1955	801144	0.0047	37930	1.247E-7	3.862	3.476
695	24.88	1.2000	836361	0.0047	35722	1.300E-7	3.939	3.545
707	24.99	1.2048	872715	0.0047	33791	1.380E-7	4.018	3.616
719	25.11	1.2097	907554	0.0048	32126	1.485E-7	4.096	3.687
731	25.21	1.2142	937848	0.0048	30296	1.605E-7	4.180	3.762
743 757	25.33 25.45	1.2190	966024 993897	0.0047	27670 25096	1.734E-7 1.885E-7	4.265 4.351	3.839
770	25.45	1.2288	1018135	0.0046	23440	2.042E-7	4.437	3.994
782	25.67	1.2331	1038737	0.0047	21653	2.222E-7	4.523	4.071
794	25.78	1.2375	1058127	0.0047	19430	2.446E-7	4.613	4.152
808	25.90	1.2426	1078487	0.0048	17588	2.773E-7	4.704	4.233
822	26.03	1.2476	1095939	0.0048	15989	3.137E-7	4.803	4.323
837	26.15	1.2524	1110479	0.0047	14433	3.475E-7	4.902	4.412
851	26.27	1.2573	1123661	0.0046	12513	3.842E-7	4.999	4.499
865	26.38	1.2617	1134673	0.0046	11061	4.287E-7	5.095	4.586
878	26.49	1.2659	1144724	0.0047	9962	4.813E-7	5.191	4.672
892	26.60	1.2702	1153563	0.0046	8838	5.366E-7	5.294	4.765
908	26.73	1.2754	1162305	0.0046	7945	6.083E-7	5.400	4.860
925	26.86	1.2805	1170252	0.0048	7201	6.878E-7	5.509	4.958
939	26.98	1.2849	1176687	0.0049	6575	7.713E-7	5.622	5.059
955	27.09	1.2895	1182340	0.0049	5737	8.771E-7	5.734	5.161
972	27.23	1.2945	1187929	0.0047	5002	9.908E-7	5.852	5.267
990	27.36	1.2997	1193010	0.0048	4526	1.108E-6	5.974	5.376
1007	27.49	1.3045	1196725	0.0048	4131	1.199E-6	6.093	5.483
1022	27.60	1.3087	1200264	0.0048	3677	1.311E-6	6.216	5.594
1040	27.73	1.3135	1203842	0.0046	3229	1.443E-6	6.336	5.703
1058	27.86	1.3182	1207126	0.0047	3026	1.599E-6	6.464	5.817
1076	27.99 28.11	1.3232	1209988	0.0048	2784 2483	1.781E-6 1.960E-6	6.593 6.729	5.933 6.056
1113	28.25	1.3276	1212383	0.0047	2213	2.193E-6	6.861	6.175
1132	28.38	1.3374	1214003	0.0047	2014	2.405E-6	6.998	6.298
1102	20.00	2.00/4	1210000	0.0047	2027	2.4002 0	0.000	0.250

Test II	5086	-FCG-2					P	age 2
Pmax (1b)	EvB/P	a (in)	И	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK n]^.5)
1149 1169 1189 1211 1231 1251	28.50 28.63 28.77 28.92 29.04 29.17	1.3418 1.3466 1.3514 1.3568 1.3611 1.3656	1218737 1220404 1222071 1223487 1224674 1225864	0.0049 0.0047 0.0047 0.0048 0.0048	1851 1632 1483 1366 1253 1139	2.685E-6 2.975E-6 3.272E-6 3.580E-6 3.874E-6 4.201E-6	7.138 7.276 7.431 7.576 7.733 7.885	6.424 6.549 6.688 6.819 6.960 7.097
1251 1272 1294 1317 1340 1362 1383	29.31 29.44 29.59 29.73 29.87 29.99	1.3705 1.3751 1.3801 1.3851 1.3898 1.3939	1225564 1226932 1227924 1228906 1229802 1230570 1231292	0.0047 0.0048 0.0047 0.0047 0.0048 0.0047	1053 983 905 848 798 743	4.530E-6 4.928E-6 5.286E-6 5.649E-6 6.025E-6 6.375E-6	8.038 8.205 8.372 8.542 8.707 8.883	7.234 7.385 7.535 7.688 7.837 7.995
1407 1432 1455 1480 1503 1528 1556	30.14 30.28 30.42 30.56 30.70 30.83 30.99	1.3989 1.4038 1.4085 1.4131 1.4177 1.4221 1.4273	1232017 1232709 1233365 1233978 1234527 1235058 1235626	0.0047 0.0046 0.0047 0.0047 0.0048 0.0097 0.0104	696 660 628 602 574 1099 1092	6.713E-6 7.085E-6 7.477E-6 7.883E-6 8.342E-6 8.808E-6 9.484E-6	9.055 9.236 9.425 9.606 9.795 9.996 10.199	8.150 8.312 8.483 8.645 8.815 8.996 9.179
1618 1640	31.15 31.30 31.51 31.82	1.4325 1.4372 1.4440 1.4538	1236150 1236656 1237333 1238258	0.0166 0.0191	1602 1806	1.036E-5 1.057E-5	10.746 10.930	9.671 9.837
1662 1683 1708 1731 1755	32.11 32.41 32.74 33.06 33.37	1.4631 1.4724 1.4825 1.4923 1.5016	1239139 1239969 1240798 1241558 1242249	0.0186 0.0096 0.0095 0.0096 0.0096	1711 819 780 743 707	1.087E-5 1.170E-5 1.230E-5 1.294E-5 1.356E-5	11.145 11.371 11.595 11.831 12.065	10.031 10.234 10.435 10.648 10.859
1778 1802 1827 1851 1876 1902	33.69 34.01 34.34 34.67 35.01 35.36	1.5110 1.5206 1.5300 1.5394 1.5490 1.5588	1242940 1243597 1244209 1244786 1245362 1245911	0.0095 0.0095 0.0095 0.0095 0.0095	665 634 610 580 558 536	1.423E-5 1.491E-5 1.564E-5 1.636E-5 1.708E-5 1.777E-5	12.304 12.546 12.793 13.048 13.308 13.569	11.073 11.292 11.513 11.743 11.977 12.212
1927 1954 1980 2006 2033	35.69 36.05 36.40 36.75 37.11	1.5679 1.5778 1.5873 1.5966 1.6063	1246420 1246944 1247425 1247862 1248299	0.0095 0.0095 0.0095 0.0096 0.0096	513 490 467 445 420	1.851E-5 1.944E-5 2.045E-5 2.158E-5 2.285E-5	13.846 14.116 14.396 14.683 14.971	12.462 12.704 12.957 13.215 13.474
2060 2088 2117 2145 2173 2201	37.49 37.86 38.24 38.62 38.99 39.37	1.6160 1.6254 1.6352 1.6447 1.6540 1.6632	1248714 1249089 1249462 1249818 1250134 1250447	0.0096 0.0096 0.0095 0.0096 0.0096	399 379 358 341 328 311	2.407E-5 2.530E-5 2.654E-5 2.800E-5 2.933E-5 3.091E-5	15.270 15.579 15.886 16.202 16.515 16.851	13.743 14.021 14.298 14.582 14.863 15.166

Test	ID 5086	-FCG-2					P	age 3
Pmax (1b)	EvB/P	a (in)	И	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK n]^.5)
2232 2262 2292 2322 2352 2383 2415 2447 2479 2511	39.79 40.20 40.61 41.01 41.41 41.85 42.28 42.73 43.16 43.60	1.6734 1.6832 1.6929 1.7022 1.7115 1.7212 1.7311 1.7409 1.7503 1.7597	1250760 1251059 1251329 1251580 1251815 1252042 1252265 1252478 1252670 1252853	0.0096 0.0096 0.0097 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096	294 280 266 251 237 224 212 202 192 181	3.264E-5 3.437E-5 3.642E-5 3.849E-5 4.070E-5 4.291E-5 4.524E-5 4.757E-5 5.022E-5 5.337E-5	17.182 17.535 17.885 18.234 18.595 18.962 19.344 19.732 20.122 20.514	15.464 15.782 16.097 16.411 16.736 17.066 17.410 17.759 18.110 18.463
2543 2577 2612 2645 2679 2714 2749 2782 2818 2855	44.04 44.51 44.99 45.45 45.93 46.41 46.90 47.37 47.87 48.40 48.91	1.7691 1.7790 1.7891 1.7984 1.8080 1.8176 1.8272 1.8364 1.8460 1.8559 1.8655	1253027 1253193 1253353 1253498 1253633 1253761 1253883 1253999 1254110 1254217 1254313	0.0096 0.0096 0.0096 0.0097 0.0096 0.0095 0.0096 0.0096 0.0194 0.0195	170 161 151 143 134 126 120 113 218 203	5.657E-5 6.015E-5 6.409E-5 6.808E-5 7.165E-5 7.550E-5 7.974E-5 8.427E-5 8.922E-5 9.599E-5	20.924 21.342 21.766 22.209 22.640 23.090 23.535 24.001 24.471 24.953	18.832 19.208 19.590 19.988 20.376 20.781 21.182 21.601 22.024 22.458
2840 2840 2840 2840 2840 2840 2840 2840	49.48 49.97 50.51 51.05 51.61 52.19 52.77 53.33 53.91 54.53 55.14	1.8760 1.8847 1.8944 1.9040 1.9137 1.9236 1.9333 1.9427 1.9522 1.9621 1.9719	1254424 1254526 1254637 1254743 1254846 1254948 1255051 1255149 1255243 1255338 1255432	0.0184 0.0193 0.0193 0.0097 0.0096 0.0097 0.0097 0.0097 0.0097	213 217 209 104 101 99 98 96 93	8.662E-5 8.887E-5 9.225E-5 9.313E-5 9.494E-5 9.694E-5 9.885E-5 1.009E-4 1.039E-4	25.363 25.533 25.715 25.900 26.086 26.274 26.463 26.463 26.850 27.050	22.827 22.979 23.144 23.310 23.478 23.647 23.816 23.990 24.165 24.345
2840 2840 2840 2840 2840 2840 2840 2840	55.76 56.39 57.03 57.69 58.33 59.00 59.65 60.36 61.07 61.77 62.49 63.23 64.00	1.9816 1.9913 2.0011 2.0110 2.0204 2.0303 2.0396 2.0495 2.0595 2.0690 2.0787 2.0886 2.0986	1255522 1255608 1255694 1255780 1255862 1255940 1256017 1256094 1256168 1256238 1256306 1256376 1256448	0.0098 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097 0.0098 0.0098 0.0098	90 87 85 83 81 79 76 74 73 72 70 67 65	1.092E-4 1.113E-4 1.142E-4 1.166E-4 1.193E-4 1.227E-4 1.265E-4 1.340E-4 1.372E-4 1.401E-4 1.438E-4 1.492E-4	27.251 27.455 27.662 27.868 28.082 28.288 28.508 28.726 28.948 29.175 29.402 29.637 29.870	24.526 24.709 24.896 25.081 25.274 25.459 25.657 25.657 26.053 26.257 26.461 26.673 26.883

Test	ID 5086	-FCG-2					P	age 4
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)	,_	(in)		(in)		(in/cyc)		n]^.5)
2840	64.75	2.1083	1256511	0.0099	64	1.553E-4	30.113	27.101
2840	65.52	2.1180	1256571	0.0098	61	1.616E-4	30.350	27.314
2840	66.29	2.1276	1256628	0.0097	58	1.688E-4	30.603	27.542
2840	67.14	2.1380	1256688	0.0098	55	1.765E-4	30.841	27.757
2840	67.90	2.1472	1256741	0.0097	53	1.836E-4	31.102	27.991
2840	68.73	2.1571	1256793	0.0098	52	1.901E-4	31.349	28.214
2840	69.57	2.1668	1256841	0.0097	50	1.967E-4	31.601	28.440
2840	70.37	2.1760	1256886	0.0097	48	2.017E-4	31.868	28.680
2840	71.27	2.1861	1256937	0.0097	47	2.058E-4	32.130	28.916
2840 2840	72.17 73.04	2.1962	1256985 1257030	0.0098	46 45	2.098E-4 2.171E-4	32.400	29.159 * 29.411 *
2840	73.04	2.2155	1257030	0.0099	43	2.171E-4 2.274E-4	32.953	29.657 *
2840	74.89	2.2253	1257076	0.0097	41	2.386E-4	33.239	29.915 *
2840	75.85	2.2353	1257115	0.0098	39	2.508E-4	33.523	30.170 *
2840	76.79	2.2449	1257195	0.0099	37	2.673E-4	33.816	30.434 *
2840	77.77	2.2547	1257231	0.0099	35	2.830E-4	34.111	30.699 *
2840	78.78	2.2646	1257266	0.0099	33	2.992E-4	34.421	30.978 *
2840	79.87	2.2752	1257298	0.0099	32	3.142E-4	34.721	31.247 *
2840	80.85	2.2845	1257327	0.0099	30	3.275E-4	35.046	31.540 *
2840	81.94	2.2946	1257357	0.0098	29	3.408E-4	35.349	31.812 *
2840	82.98	2.3041	1257385	0.0098	27	3.564E-4	35.677	32.107 *
2840	84.10	2.3142	1257413	0.0099	26	3.815E-4	35.991	32.390 *
2840	85.17	2.3237	1257438	0.0098	24	4.116E-4	36.327	32.692 *
2840	86.32	2.3337	1257461	0.0099	23	4.476E-4	36.656	32.989 *
2840	87.49	2.3436	1257482	0.0100	21	4.849E-4	37.002	33.299 *
2840	88.68	2.3536	1257502	0.0099	20	5.150E-4	37.350	33.612 *
2840	89.89	2.3635	1257520	0.0099	18	5.440E-4	37.715	33.941 *
2840	91.19	2.3740	1257538	0.0098	17	5.778E-4	38.061	34.251 *
2839	92.36	2.3832	1257555	0.0098	16	6.087E-4	38.432	34.584 *
2839	93.61	2.3929	1257570	0.0098	15	6.389E-4	38.787	34.904 *
2839	94.90	2.4026	1257584	0.0097	14	6.857E-4	39.160	35.238 * 35.573 *
2839	96.23 97.54	2.4126	1257599 1257612	0.0098	13 12	7.498E-4 8.137E-4	39.533 39.924	35.573 * 35.923 *
2839 2838	98.95	2.4221	1257612	0.0099	11	8.917E-4	40.317	36.277 *
2839	100.38	2.4423	1257623	0.0103	11	9.812E-4	40.317	36.633 *
2838	101.81	2.4521	1257634	0.0103	10	1.055E-3	41.118	36.994 *
2838	103.19	2.4614	1257652	0.0102	9	1.150E-3	41.594	37.418 *
2837	105.14	2.4746	1257663	0.0102	8	1.442E-3	41.890	37.671 *
2828	106.32	2.4825	1257670	0.0107	7	1.894E-3	42.358	38.078 *
2821	107.95	2.4932	1257676	0.0109	6	2.505E-3	42.725	38.392 *
2821	109.84	2.5053	1257680	0.0103	4	2.960E-3	43.172	38.778 *
2822	111.60	2.5163	1257683	0.0215	6	3.584E-3	43.668	39.215 *
2819	113.31	2.5268	1257686	0.0202	6	3.370E-3	44.020	39.503 *
	114.94	2.5365	1257689					

	Automated Fati Growth Rate		
Test ID Contract Material Temperature (F) Environment Sea Wa	5086-FCG-3 SSC 10624-01 5086-H116 75	Geometry Orientation Yield (ksi) Modulus (Msi)	C(T) T-L 27.0 10.5
Specimen Dimension	ns (in)		
Thickness Net Thickness Width	0.496 0.496 4.001	Height Notch Depth Gage Length	
Precrack Parameter	:s		
		Stress Ratio Kmax (ksi sq	
Test Parameters			
EvBP Freq 24.592 5.00 32.530 5.00 53.965 5.00	Pmax R 0 0.10 0 0.10 2630 0.10	Ai Kmaxi 1.185 2.90 1.489 9.65 0.000 0.00	4.00 0.00
.886 4.64 - -13.32 14.72 - -5.6	C Coeff 1.00098 -4.66951 18.4601 -236.825 1214.88 -2143.57		
Visual Observation	ıs		
EvB/P Crack(EvB/ 20.713 1.016 21.842 1.074 23.158 1.137 23.897 1.170 28.441 1.352 32.409 1.484 44.737 1.794 53.608 1.957 107.893 2.499	1.002 1.050 1.150 1.200 1.340 1.500 1.790 1.950	L) Error -0.014 -0.024 0.013 0.030 -0.012 0.016 -0.004 -0.007 0.001	CAF 1.024 1.021 1.017 1.015 1.006 0.999 0.982 0.974 0.947
Comments			
Date of test: 8/26/20 Waveform Type	006 Sir	ne	

Test :	ID 5086	-FCG-3					Pa	age 1
Pmax (1b)	EvB/P	a (in)	И	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[ir	deltaK n]^.5)
521 530 539 548 558 567 576 587 597 607	24.59 24.64 24.75 24.87 24.98 25.09 25.21 25.44 25.56 25.67	1.2004 1.2024 1.2073 1.2121 1.2169 1.2217 1.2266 1.2312 1.2363 1.2410 1.2457	6238 25700 64978 107788 145913 177197 213681 244856 266568 291381 316197	0.0069 0.0098 0.0044 0.0048 0.0048 0.0048 0.0048 0.0048 0.0047	58740 82088 34574 36526 33598 30599 28381 27206 25004 23524	1.173E-7 1.189E-7 1.285E-7 1.316E-7 1.436E-7 1.602E-7 1.809E-7 1.809E-7 1.909E-7	2.973 3.016 3.078 3.140 3.205 3.267 3.337 3.401 3.472 3.542	2.676 2.714 2.770 2.826 2.884 2.940 3.003 3.061 3.125 3.188
617 627 638 649 661 672 682 694 705 717	25.79 25.90 26.02 26.14 26.27 26.39 26.50 26.62 26.74 26.86	1.2504 1.2549 1.2598 1.2645 1.2697 1.2742 1.2786 1.2833 1.2879 1.2926	340435 363703 386002 407331 425752 442231 456964 470767 484417 497446	0.0047 0.0048 0.0048 0.0047 0.0047 0.0047 0.0046 0.0046 0.0047	23461 22395 21006 19422 17844 16403 15019 14017 13132 12331	1.989E-7 2.115E-7 2.281E-7 2.490E-7 2.718E-7 2.926E-7 3.127E-7 3.302E-7 3.533E-7 3.815E-7	3.610 3.684 3.755 3.836 3.911 3.990 4.069 4.146 4.229 4.312	3.249 3.316 3.379 3.452 3.520 3.591 3.662 3.731 3.806 3.881
729 742 755 768 781 794 807 820 834	26.98 27.10 27.23 27.36 27.49 27.61 27.73 27.86 27.98	1.2973 1.3021 1.3070 1.3118 1.3166 1.3212 1.3258 1.3303 1.3350	509854 521022 530950 540382 548824 556771 564321 570755 577170	0.0047 0.0048 0.0048 0.0047 0.0047 0.0047 0.0046 0.0047	11603 10735 9888 9078 8289 7703 7148 6588 6152	4.150E-7 4.554E-7 4.942E-7 5.322E-7 5.714E-7 6.117E-7 6.591E-7 7.085E-7 7.734E-7	4.398 4.488 4.579 4.674 4.767 4.863 4.957 5.056 5.155	3.958 4.039 4.121 4.206 4.291 4.377 4.461 4.551 4.639
849 862 878 892 907 924 939 955 971 988 1004 1022 1039	28.11 28.24 28.38 28.50 28.64 28.78 28.91 29.04 29.18 29.31 29.45 29.59 29.59	1.3399 1.3443 1.3495 1.3537 1.3588 1.3686 1.3731 1.3778 1.3826 1.3872 1.3921 1.3921 1.3967 1.4012	583268 588349 593684 599276 604359 608677 612336 615425 618320 621051 623523 625840 627923 629861	0.0046 0.0047 0.0048 0.0048 0.0047 0.0047 0.0047 0.0047 0.0047 0.0048 0.0047 0.0047	5826 5601 5251 4845 4513 4106 3629 3194 2861 2598 2406 2243 2066 1890	8.108E-7 8.475E-7 9.017E-7 9.785E-7 1.093E-6 1.242E-6 1.397E-6 1.532E-6 1.680E-6 1.833E-6 1.973E-6 2.139E-6 2.519E-6	5.256 5.367 5.465 5.584 5.694 5.811 5.930 6.048 6.169 6.290 6.421 6.544 6.675 6.813	4.730 4.830 4.919 5.025 5.230 5.337 5.443 5.553 5.661 5.779 5.890 6.008 6.131

Pmax (1b)
1075
1093 30.14 1.4111 633444 0.0047 1593 3.036E-6 7.086 6.378 1110 30.28 1.4155 634865 0.0047 1459 3.315E-6 7.226 6.503 1129 30.41 1.4201 636206 0.0047 1327 3.596E-6 7.369 6.632 1148 30.56 1.4250 637480 0.0047 1218 3.941E-6 7.512 6.761 1167 30.70 1.4296 638617 0.0048 1116 4.325E-6 7.668 6.901 1188 30.85 1.4345 639738 0.0047 1026 4.720E-6 7.823 7.041 1209 31.01 1.4395 640752 0.0047 940 5.166E-6 7.981 7.183 1229 31.15 1.4441 641563 0.0048 866 5.608E-6 8.140 7.326 1249 31.28 1.4485 642361 0.0047 789 6.080E-6 8.303 7.473 1270 31.44 1.4534 643122 0.0047 717 6.584E-6 8.466 7.619 1292 31.59 1.4582 643812 0.0047 673 7.114E-6 8.636 7.773 1313 31.74 1.4629 644469 0.0048 627 7.674E-6 8.811 7.930 1336 31.89 1.4676 645054 0.0047 582 8.176E-6 8.988 8.089 1359 32.04 1.4724 645603 0.0094 1071 8.773E-6 9.165 8.249 1381 32.19 1.4770 646125 0.0093 1009 9.186E-6 9.348 8.413 32.33 1.4817 646612 32.53 1.4877 647008
1093 30.14 1.4111 633444 0.0047 1593 3.036E-6 7.086 6.378 1110 30.28 1.4155 634865 0.0047 1459 3.315E-6 7.226 6.503 1129 30.41 1.4201 636206 0.0047 1327 3.596E-6 7.369 6.632 1148 30.56 1.4250 637480 0.0047 1218 3.941E-6 7.512 6.761 1167 30.70 1.4296 638617 0.0048 1116 4.325E-6 7.668 6.901 1188 30.85 1.4345 639738 0.0047 1026 4.720E-6 7.823 7.041 1209 31.01 1.4395 640752 0.0047 940 5.166E-6 7.981 7.183 1229 31.15 1.4441 641563 0.0048 866 5.608E-6 8.140 7.326 1249 31.28 1.4485 642361 0.0047 789 6.080E-6 8.303 7.473 1270 31.44 1.4534 643122 0.0047 717 6.584E-6 8.466 7.619 1292 31.59 1.4582 643812 0.0047 673 7.114E-6 8.636 7.773 1313 31.74 1.4629 644469 0.0048 627 7.674E-6 8.811 7.930 1336 31.89 1.4676 645054 0.0047 582 8.176E-6 8.988 8.089 1359 32.04 1.4724 645603 0.0094 1071 8.773E-6 9.165 8.249 1381 32.19 1.4770 646125 0.0093 1009 9.186E-6 9.348 8.413 32.33 1.4817 646612 32.53 1.4877 647008
1110 30.28 1.4155 634865 0.0047 1459 3.315E-6 7.226 6.503 1129 30.41 1.4201 636206 0.0047 1327 3.596E-6 7.369 6.632 1148 30.56 1.4250 637480 0.0047 1218 3.941E-6 7.512 6.761 1167 30.70 1.4296 638617 0.0048 1116 4.325E-6 7.668 6.901 1188 30.85 1.4345 639738 0.0047 1026 4.720E-6 7.823 7.041 1209 31.01 1.4395 640752 0.0047 940 5.166E-6 7.981 7.183 1229 31.15 1.4441 641563 0.0048 866 5.608E-6 8.140 7.326 1249 31.28 1.4485 642361 0.0047 789 6.080E-6 8.303 7.473 1270 31.44 1.4534 643122 0.0047 717 6.584E-6 8.466 7.619 1292 31.59 1.4582 643812 0.0047 673 7.114E-6 8.636 7.773 1313 31.74 1.4629 644469 0.0048 627 7.674E-6 8.811 7.930 1336 31.89 1.4676 645054 0.0047 582 8.176E-6 8.988 8.089 1359 32.04 1.4724 645603 0.0094 1071 8.773E-6 9.165 8.249 1381 32.19 1.4770 646125 0.0093 1009 9.186E-6 9.348 8.413 32.33 1.4817 646612 32.53 1.4877 647008
1129 30.41 1.4201 636206 0.0047 1327 3.596E-6 7.369 6.632 1148 30.56 1.4250 637480 0.0047 1218 3.941E-6 7.512 6.761 1167 30.70 1.4296 638617 0.0048 1116 4.325E-6 7.668 6.901 1188 30.85 1.4345 639738 0.0047 1026 4.720E-6 7.823 7.041 1209 31.01 1.4395 640752 0.0047 940 5.166E-6 7.981 7.183 1229 31.15 1.4441 641563 0.0048 866 5.608E-6 8.140 7.326 1249 31.28 1.4485 642361 0.0047 789 6.080E-6 8.303 7.473 1270 31.44 1.4534 643122 0.0047 717 6.584E-6 8.466 7.619 1292 31.59 1.4582 643812 0.0047 673 7.114E-6 8.636 7.773 1313 31.74 1.4629 644469 0.0048 627 7.674E-6 8.811 7.930 1336 31.89 1.4676 645054 0.0047 582 8.176E-6 8.988 8.089 1359 32.04 1.4724 645603 0.0094 1071 8.773E-6 9.165 8.249 1381 32.19 1.4770 646125 0.0093 1009 9.186E-6 9.348 8.413 32.33 1.4817 646612 32.53 1.4877 647008
1148 30.56 1.4250 637480 0.0047 1218 3.941E-6 7.512 6.761 1167 30.70 1.4296 638617 0.0048 1116 4.325E-6 7.668 6.901 1188 30.85 1.4345 639738 0.0047 1026 4.720E-6 7.823 7.041 1209 31.01 1.4395 640752 0.0047 940 5.166E-6 7.981 7.183 1229 31.15 1.4441 641563 0.0048 866 5.608E-6 8.140 7.326 1249 31.28 1.4485 642361 0.0047 789 6.080E-6 8.303 7.473 1270 31.44 1.4534 643122 0.0047 717 6.584E-6 8.466 7.619 1292 31.59 1.4582 643812 0.0047 673 7.114E-6 8.636 7.773 1313 31.74 1.4629 644469 0.0048 627 7.674E-6 8.811 7.930 1336 31.89 1.4676 645054 0.0047 582 8.176E-6 8.988 8.089 1359 32.04 1.4724 645603 0.0094 1071 8.773E-6 9.165 8.249 1381 32.19 1.4770 646125 0.0093 1009 9.186E-6 9.348 8.413 32.33 1.4817 646612 32.53 1.4877 647008
1167 30.70 1.4296 638617 0.0048 1116 4.325E-6 7.668 6.901 1188 30.85 1.4345 639738 0.0047 1026 4.720E-6 7.823 7.041 1209 31.01 1.4395 640752 0.0047 940 5.166E-6 7.981 7.183 1229 31.15 1.4441 641563 0.0048 866 5.608E-6 8.140 7.326 1249 31.28 1.4485 642361 0.0047 789 6.080E-6 8.303 7.473 1270 31.44 1.4534 643122 0.0047 717 6.584E-6 8.466 7.619 1292 31.59 1.4582 643812 0.0047 673 7.114E-6 8.636 7.773 1313 31.74 1.4629 644469 0.0048 627 7.674E-6 8.811 7.930 1336 31.89 1.4676 645054 0.0047 582 8.176E-6 8.988 8.089 1359 32.04 1.4724 645603 0.0094 1071 8.773E-6 9.165 8.249 1381 32.19 1.4770 646125 0.0093 1009 9.186E-6 9.348 8.413 32.33 1.4817 646612 32.53 1.4877 647008
1188 30.85 1.4345 639738 0.0047 1026 4.720E-6 7.823 7.041 1209 31.01 1.4395 640752 0.0047 940 5.166E-6 7.981 7.183 1229 31.15 1.4441 641563 0.0048 866 5.608E-6 8.140 7.326 1249 31.28 1.4485 642361 0.0047 789 6.080E-6 8.303 7.473 1270 31.44 1.4534 643122 0.0047 717 6.584E-6 8.466 7.619 1292 31.59 1.4582 643812 0.0047 673 7.114E-6 8.636 7.773 1313 31.74 1.4629 644469 0.0048 627 7.674E-6 8.811 7.930 1336 31.89 1.4676 645054 0.0047 582 8.176E-6 8.988 8.089 1359 32.04 1.4724 645603 0.0094 1071 8.773E-6 9.165 8.249 1381 32.19 1.4770 646125 0.0093 1009 9.186E-6 9.348 8.413 32.33 1.4817 646612 32.53 1.4877 647008
1229 31.15 1.4441 641563 0.0048 866 5.608E-6 8.140 7.326 1249 31.28 1.4485 642361 0.0047 789 6.080E-6 8.303 7.473 1270 31.44 1.4534 643122 0.0047 717 6.584E-6 8.466 7.619 1292 31.59 1.4582 643812 0.0047 673 7.114E-6 8.636 7.773 1313 31.74 1.4629 644469 0.0048 627 7.674E-6 8.811 7.930 1336 31.89 1.4676 645054 0.0047 582 8.176E-6 8.988 8.089 1359 32.04 1.4724 645603 0.0094 1071 8.773E-6 9.165 8.249 1381 32.19 1.4770 646125 0.0093 1009 9.186E-6 9.348 8.413 32.33 1.4817 646612 32.53 1.4877 647008
1229 31.15 1.4441 641563 0.0048 866 5.608E-6 8.140 7.326 1249 31.28 1.4485 642361 0.0047 789 6.080E-6 8.303 7.473 1270 31.44 1.4534 643122 0.0047 717 6.584E-6 8.466 7.619 1292 31.59 1.4582 643812 0.0047 673 7.114E-6 8.636 7.773 1313 31.74 1.4629 644469 0.0048 627 7.674E-6 8.811 7.930 1336 31.89 1.4676 645054 0.0047 582 8.176E-6 8.988 8.089 1359 32.04 1.4724 645603 0.0094 1071 8.773E-6 9.165 8.249 1381 32.19 1.4770 646125 0.0093 1009 9.186E-6 9.348 8.413 32.33 1.4817 646612 32.53 1.4877 647008
1270
1292 31.59 1.4582 643812 0.0047 673 7.114E-6 8.636 7.773 1313 31.74 1.4629 644469 0.0048 627 7.674E-6 8.811 7.930 1336 31.89 1.4676 645054 0.0047 582 8.176E-6 8.988 8.089 1359 32.04 1.4724 645603 0.0094 1071 8.773E-6 9.165 8.249 1381 32.19 1.4770 646125 0.0093 1009 9.186E-6 9.348 8.413 32.33 1.4817 646612 32.53 1.4877 647008
1313 31.74 1.4629 644469 0.0048 627 7.674E-6 8.811 7.930 1336 31.89 1.4676 645054 0.0047 582 8.176E-6 8.988 8.089 1359 32.04 1.4724 645603 0.0094 1071 8.773E-6 9.165 8.249 1381 32.19 1.4770 646125 0.0093 1009 9.186E-6 9.348 8.413 32.33 1.4817 646612 32.53 1.4877 647008
1336 31.89 1.4676 645054 0.0047 582 8.176E-6 8.988 8.089 1359 32.04 1.4724 645603 0.0094 1071 8.773E-6 9.165 8.249 1381 32.19 1.4770 646125 0.0093 1009 9.186E-6 9.348 8.413 32.33 1.4817 646612 32.53 1.4877 647008
1359 32.04 1.4724 645603 0.0094 1071 8.773E-6 9.165 8.249 1381 32.19 1.4770 646125 0.0093 1009 9.186E-6 9.348 8.413 32.33 1.4817 646612 32.53 1.4877 647008
1381 32.19 1.4770 646125 0.0093 1009 9.186E-6 9.348 8.413 32.33 1.4817 646612 32.53 1.4877 647008
32.33 1.4817 646612 32.53 1.4877 647008
32.53 1.4877 647008
1427 32.73 1.4937 647606 0.0151 1479 1.021E-5 9.816 8.835
1445 33.03 1.5028 648487 0.0188 1702 1.107E-5 9.954 8.959
1465 33.35 1.5125 649308 0.0195 1617 1.206E-5 10.150 9.135
1486 33.68 1.5223 650104 0.0095 787 1.208E-5 10.353 9.318
1506 34.01 1.5318 650927 0.0097 754 1.274E-5 10.561 9.505
1526 34.34 1.5413 651668 0.0095 727 1.314E-5 10.773 9.695
1547 34.67 1.5510 652327 0.0095 691 1.373E-5 10.990 9.891
1569 35.02 1.5607 653013 0.0095 654 1.452E-5 11.200 10.080
1588 35.34 1.5695 653671 0.0096 636 1.505E-5 11.426 10.283
1609 35.68 1.5791 654248 0.0096 617 1.548E-5 11.651 10.486
1633 36.05 1.5891 654851 0.0095 588 1.615E-5 11.884 10.695
1655 36.41 1.5988 655482 0.0096 562 1.692E-5 12.126 10.913
1677 36.77 1.6084 656031 0.0096 546 1.750E-5 12.369 11.132 1700 37.13 1.6177 656540 0.0095 526 1.818E-5 12.612 11.351
1700 37.13 1.6177 656540 0.0095 526 1.818E-5 12.612 11.351 1722 37.49 1.6271 657043 0.0095 497 1.901E-5 12.860 11.574
1745 37.86 1.6365 657523 0.0095 478 1.975E-5 13.114 11.803 1768 38.23 1.6460 658004 0.0095 466 2.042E-5 13.371 12.034
1792 38.61 1.6555 658463 0.0096 448 2.129E-5 13.641 12.277
1816 39.01 1.6654 658900 0.0095 430 2.213E-5 13.909 12.518
1840 39.40 1.6748 659337 0.0095 412 2.306E-5 14.192 12.773
1865 39.80 1.6846 659730 0.0096 397 2.403E-5 14.466 13.019
1889 40.18 1.6935 660100 0.0095 384 2.489E-5 14.753 13.277
1913 40.58 1.7029 660474 0.0095 364 2.595E-5 15.047 13.543
1940 41.02 1.7130 660847 0.0095 351 2.701E-5 15.343 13.808
1966 41.43 1.7226 661203 0.0096 339 2.838E-5 15.654 14.088
1991 41.84 1.7319 661520 0.0096 324 2.976E-5 15.964 14.367
2018 42.27 1.7415 661833 0.0096 307 3.127E-5 16.281 14.653

Test	ID 5086	-FCG-3					P	age 3
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)	202,2	(in)		(in)		(in/cyc)		n]^.5)
(10)		(222)		()		(211/030)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,
2045	42.72	1.7512	662132	0.0095	289	3.283E-5	16.603	14.943
2071	43.16	1.7608	662416	0.0096	279	3.430E-5	16.936	15.242
2098	43.60	1.7704	662686	0.0097	267	3.626E-5	17.265	15.538
2125	44.03	1.7795	662937	0.0096	252	3.800E-5	17.613	15.852
2154	44.50	1.7894	663195	0.0096	240	4.014E-5	17.969	16.172
2183	45.01	1.7998	663432	0.0096	228	4.226E-5	18.321	16.488
2210	45.44	1.8086	663643	0.0096	218	4.413E-5	18.699	16.829
2239	45.92	1.8183	663853	0.0095	206	4.610E-5	19.057	17.152
2268	46.40	1.8278	664054	0.0094	197	4.800E-5	19.430	17.487
2296	46.88	1.8371	664246	0.0096	191	5.029E-5	19.811	17.830
2325	47.37	1.8466	664429	0.0096	182	5.279E-5	20.201	18.181
2355	47.89	1.8564	664612	0.0096	173	5.567E-5	20.604	18.544
2386	48.41	1.8663	664786	0.0096	164	5.882E-5	21.024	18.922
2418	48.95	1.8762	664945	0.0096	156	6.207E-5	21.436	19.293
2447	49.44	1.8853	665089	0.0097	147	6.571E-5	21.869	19.682
2478	49.97	1.8948	665231	0.0096	138	6.975E-5	22.288	20.059
2509	50.51	1.9044	665365	0.0096	130	7.371E-5	22.737	20.463
2542	51.08	1.9143	665493	0.0096	125	7.763E-5	23.191	20.872
2575	51.65	1.9242	665615	0.0097	118	8.206E-5	23.650	21.285
2606	52.20 52.77	1.9335	665726 665838	0.0189	223 214	8.491E-5	24.126	21.713
2639	53.37	1.9530	665940	0.0195	214	9.113E-5	24.601	22.140
	53.96	1.9627	666037					
2630	54.52	1.9716	666147	0.0188	224	8.411E-5	25.064	22.558
2630	55.15	1.9816	666261	0.0197	219	8.989E-5	25.233	22.710
2630	55.77	1.9913	666366	0.0193	207	9.315E-5	25.422	22.880
2630	56.39	2.0009	666468	0.0097	104	9.339E-5	25.611	23.050
2630	57.02	2.0105	666570	0.0097	102	9.519E-5	25.800	23.220
2630	57.65	2.0199	666667	0.0096	100	9.623E-5	25.995	23.395
2630	58.32	2.0298	666769	0.0096	98	9.778E-5	26.192	23.572
2630	59.01	2.0397	666871	0.0097	97	9.971E-5	26.390	23.750
2630	59.66	2.0490	666964	0.0098	96	1.015E-4	26.594	23.935
2630	60.36	2.0588	667057	0.0097	94	1.038E-4	26.797	24.117
2630	61.07	2.0686	667151	0.0097	90	1.067E-4	27.009	24.308
2630	61.80	2.0787	667245	0.0098	89	1.095E-4	27.219	24.497
2630	62.51	2.0882	667330	0.0097	87	1.120E-4	27.433	24.690
2630	63.23	2.0976	667411	0.0097	84	1.149E-4	27.650	24.885
2630	63.99	2.1076	667497	0.0097	82	1.184E-4	27.865	25.078
2630	64.75	2.1172	667578	0.0097	79	1.213E-4	28.086	25.277
2630	65.49	2.1266	667654	0.0096	78	1.239E-4	28.315	25.483
2630	66.31	2.1367	667734	0.0097	75	1.281E-4	28.537	25.684
2630	67.09	2.1462	667806	0.0097	72	1.333E-4	28.767	25.889
2630 2630	67.86 68.70	2.1554 2.1655	667877 667947	0.0097	70 67	1.388E-4 1.447E-4	29.003 29.236	26.103
2630	69.56	2.1754	668011	0.0098	66	1.500E-4	29.477	26.529
2030	05.50	2.1/54	960011	0.0050	60	1.5002-4	23.4//	20.025

Test	ID 5086	-FCG-3					P	age 4
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[i	n]^.5)
						_		
2630	70.38	2.1848	668072	0.0099	64	1.554E-4	29.727	26.754
2630	71.27	2.1947	668136	0.0098	61	1.600E-4	29.979	26.981
2630	72.20	2.2051	668200	0.0098	59	1.648E-4	30.235	27.211
2630	73.10	2.2149	668258	0.0098	58	1.705E-4	30.496	27.447
2630	74.00	2.2245	668313	0.0098	55	1.773E-4	30.757	27.681
2630	74.93	2.2342	668367	0.0097	52	1.850E-4	31.016	27.914
2630	75.85	2.2437	668417	0.0097	50	1.926E-4	31.282	28.153
2630	76.81	2.2534	668466	0.0097	48	2.004E-4	31.550	28.394
2630	77.78	2.2631	668513	0.0097	46	2.088E-4	31.825	28.642 *
2630	78.79	2.2729	668559	0.0098	45	2.189E-4	32.103	28.892 *
2630 2630	79.79	2.2826	668603 668645	0.0098	43	2.306E-4 2.425E-4	32.389	29.150 * 29.414 *
	80.83	2.2924		0.0098	41 39	2.425E-4 2.547E-4	32.976	29.678 *
2630 2630	81.93	2.3123	668685 668721	0.0098		2.668E-4	33.276	29.948 *
2630	82.99	2.3123			37		33.582	
2630	84.05 85.20	2.3218	668756 668792	0.0098	35 33	2.794E-4 2.936E-4	33.883	30.223 * 30.493 *
2630	86.32	2.3319	668824	0.0098	32	3.093E-4	34.203	30.493 *
2630	87.49	2.3514	668855	0.0098	32	3.093E-4 3.278E-4	34.523	31.069 *
2630	88.70	2.3615	668885	0.0098	28	3.501E-4	34.848	31.362 *
2630	89.90	2.3713	668912	0.0099	27	3.740E-4	35.170	31.651 *
2630	91.04	2.3804	668936	0.0098	25	3.740E-4 3.964E-4	35.513	31.960 *
2630	92.36	2.3908	668961	0.0098	23	4.216E-4	35.841	32.255 *
2630	93.64	2.4007	668983	0.0098	22	4.449E-4	36.189	32.568 *
2630	94.89	2.4101	669004	0.0099	21	4.660E-4	36.544	32.888 *
2630	96.25	2.4202	669025	0.0099	20	4.857E-4	36.901	33.208 *
2630	97.64	2.4303	669045	0.0099	19	5.084E-4	37.259	33.530 *
2630	98.95	2.4396	669063	0.0099	18	5.388E-4	37.645	33.877 *
2630	100.44	2.4501	669083	0.0098	17	5.870E-4	38.008	34.204 *
2630	101.87	2.4598	669099	0.0097	16	6.443E-4	38.396	34.552 *
2630	103.28	2.4693	669113	0.0098	14	7.180E-4	38.775	34.893 *
2629	104.74	2.4789	669126	0.0099	13	7.870E-4	39.165	35.243 *
2629	106.27	2.4887	669138	0.0100	12	8.697E-4	39.555	35.592 *
2630	107.78	2.4983	669148	0.0108	11	1.000E-3	39.991	35.985 *
2629	109.53	2.5095	669160	0.0102	10	1.120E-3	40.402	36.350 *
2628	111.17	2.5197	669169	0.0104	9	1.227E-3	40.961	36.854 *
2630	113.47	2.5338	669177	0.0108	8	1.377E-3	41.283	37.137 *
2626	114.53	2.5401	669184	0.0175	14	1.251E-3	41.844	37.637 *
2623	116.43	2.5513	669191	0.0230	13	1.770E-3	42.190	37.938 *
	118.50	2.5631	669197					

Automated Fatigue Crack Growth Rate Analysis										
Test ID Contract Material Temperature Environment	S S	5086-FCG-45 SSC 10624-01 5383-H116 75	_	C(T) T-L 35.4 10.5						
Specimen	Dimensions	(in)								
Thickness Net Thickne Width	ss	0.496 0.496 4.000	Height Notch Depth Gage Length		2.400 1.000 0.500					
Precrack	Parameters									
Pmax (lbs) Final a (in		59.0 1.050	Stress Ratio Kmax (ksi so		0.10 4.41					
Test Par	ameters									
	5.00 5.00	Pmax R 0 0.10 0 0.10 2750 0.10	1.451 9.69	4.00 2.00	DKi 0.00 0.00 0.00					
K Coef .886 4.64 -13.32 14.72 -5.6	14. 18 -23 12	Coeff .00098 .66951 3.4601 36.825 214.88								
Visual C	bservations									
EvB/P 20.753 21.841 23.480 23.760 26.667 27.531 30.339 34.274 48.661 59.300 66.619 101.006	0.983 1.040 1.121 1.134 1.260 1.294 1.397 1.524 1.865 2.043 2.142 2.462	Crack(visual 1.002 1.040 1.100 1.170 1.260 1.380 1.490 1.880 2.080 2.120 2.460	al) Error 0.019 0.000 -0.021 0.036 0.000 -0.014 -0.017 -0.034 0.015 0.037 -0.022 -0.002	CAF 0.993 0.992 0.990 0.989 0.987 0.986 0.983 0.981 0.973 0.969 0.967						
	t: 9/9/2006									
Dave of hes	0. 3/3/2000									

W	aveform	Type		S	ine			
Test	ID 5086	-FCG-45					Pa	age 1
								-
Pmax	EvB/P	a	И	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[i	n]^.5)
	23.78	1.1354	33353					
535	23.70	1.1402	83477	0.0093	107030	8.711E-8	2.916	2.625
544	23.99	1.1447	140383	0.0099	105802	9.340E-8	2.977	2.680
554	24.10	1.1501	189279	0.0050	45981	1.085E-7	3.037	2.734
564	24.22	1.1554	233480	0.0050	42879	1.212E-7	3.098	2.788
572	24.32	1.1599	277489	0.0050	39050	1.328E-7	3.165	2.849
582	24.44	1.1652	309241	0.0050	35546	1.427E-7	3.227	2.904
593	24.55	1.1701	340750	0.0049	32421	1.535E-7	3.293	2.963
602	24.66	1.1750	374683	0.0049	29126	1.674E-7	3.360	3.024
613	24.77	1.1800	402556	0.0048	27752	1.767E-7	3.425	3.083
622	24.87	1.1846	428006	0.0048	26217	1.880E-7	3.495	3.145
633 644	24.99 25.10	1.1895	452244 475755	0.0050	23955 22380	2.059E-7 2.211E-7	3.563	3.207
654	25.10	1.1991	498053	0.0049	20594	2.426E-7	3.713	3.342
667	25.34	1.2048	518413	0.0048	19165	2.607E-7	3.784	3.406
678	25.45	1.2094	536833	0.0050	17832	2.840E-7	3.866	3.479
689	25.56	1.2142	551568	0.0050	16287	3.041E-7	3.938	3.544
700	25.66	1.2186	567233	0.0049	14858	3.305E-7	4.022	3.620
713	25.79	1.2242	582744	0.0049	13629	3.635E-7	4.098	3.689
725	25.91	1.2288	595772	0.0049	12911	3.919E-7	4.187	3.769
737	26.03	1.2340	607561	0.0049	11872	4.203E-7	4.271	3.844
750	26.15	1.2388	618605	0.0048	10760	4.508E-7	4.356	3.920
762	26.26	1.2436	629031	0.0048	10112	4.779E-7	4.441	3.997
774 788	26.37 26.49	1.2481	638463 647302	0.0048	9538 8875	5.086E-7 5.444E-7	4.530 4.616	4.077 4.155
800	26.43	1.2578	656441	0.0049	8355	5.857E-7	4.714	4.242
815	26.74	1.2631	664786	0.0050	7894	6.358E-7	4.805	4.325
828	26.85	1.2677	671855	0.0049	7406	6.798E-7	4.907	4.416
843	26.98	1.2727	679160	0.0050	6772	7.370E-7	5.007	4.506
858	27.12	1.2781	685829	0.0048	6101	8.065E-7	5.108	4.597
872	27.23	1.2827	691736	0.0094	11243	8.360E-7	5.212	4.691
886	27.35	1.2875	697072	0.0094	9654	9.755E-7	5.314	4.782
901	27.47	1.2922	701390	0.0390	29392	1.326E-6	0.000	0.000
1014	28.37	1.3265	726464	0.0392	27605	1.418E-6	0.000	0.000
1031	28.50	1.3313	728995	0.0099	4844	2.034E-6	6.358	5.723
1048	28.64 28.77	1.3363	731308 733382	0.0099	4387	2.256E-6 2.477E-6	6.485	5.836 5.955
1066	28.90	1.3412	735297	0.0099	3989 1820	2.477E-6 2.783E-6	6.617 6.748	6.073
1102	29.04	1.3510	736972	0.0049	1657	3.053E-6	6.885	6.196
1121	29.17	1.3559	738453	0.0049	1501	3.346E-6	7.023	6.321
1140	29.31	1.3609	739913	0.0049	1352	3.702E-6	7.166	6.450
1160	29.45	1.3659	741247	0.0049	1233	4.075E-6	7.311	6.580
1179	29.58	1.3708	742390	0.0049	1137	4.436E-6	7.460	6.714
1199	29.72	1.3757	743407	0.0049	1036	4.797E-6	7.607	6.846

Test	ID 5086	-FCG-45					P	age 2
Pmax (1b)	EvB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK n]^.5)
1219	29.86	1.3805	744372	0.0049	943	5.188E-6	7.760	6.984
1240	29.99	1.3853	745277	0.0049	873	5.596E-6	7.914	7.122
1260	30.13	1.3902	746130	0.0049	817	6.049E-6	8.072	7.265
1281	30.27	1.3950	746903	0.0049	759	6.551E-6	8.235	7.411
1304	30.42	1.4000	747626	0.0049	706	7.078E-6	8.401	7.561
1326	30.56	1.4050	748309	0.0050	656	7.632E-6	8.572	7.715
1348	30.71	1.4099	748927 749510	0.0050	611 568	8.185E-6 8.750E-6	8.748 8.926	7.873
1395 1419	31.00 31.15 31.29 35.34	1.4199 1.4248 1.4295 1.5548	750065 750567 751034 2545	0.0099	1057 969	9.386E-6 9.969E-6	9.106 9.291	8.195 8.361
1744	35.68	1.5642	3058	0.0193	1039	1.858E-5	12.504	11.253
1767	36.03	1.5741	3584	0.0197	1040	1.889E-5	12.749	11.474
1791	36.38	1.5839	4098	0.0199	1004	1.981E-5	13.006	11.706
1815	36.74	1.5939	4588	0.0099	482	2.060E-5	13.266	11.939
1840	37.11	1.6038	5054	0.0099	463	2.143E-5	13.533	12.180
1864	37.48	1.6137	5507	0.0099	441	2.235E-5	13.809	12.428
1890	37.86	1.6239	5951	0.0098	423	2.323E-5	14.084	12.675
1915	38.24	1.6337	6364	0.0098	406	2.419E-5	14.367	12.930
1940	38.61	1.6433	6746	0.0098	389	2.521E-5	14.651	13.186
1965	38.99	1.6529	7127 7492	0.0098	371 355	2.639E-5 2.764E-5 2.895E-5	14.941 15.238 15.546	13.447
2018 2045 2072	39.78 40.18 40.59	1.6727 1.6827 1.6926	7841 8174 8492	0.0099 0.0099 0.0099	341 327 313	3.033E-5 3.171E-5	15.857 16.177	13.991 14.272 14.560
2099	41.01 41.43	1.7025	8794 9091	0.0099	298 285	3.311E-5 3.466E-5	16.506 16.839	14.856 15.155
2156	41.86	1.7225	9372	0.0099	273	3.625E-5	17.176	15.458
2184	42.27	1.7320	9629	0.0099	259	3.799E-5	17.524	15.772
2213	42.71	1.7421	9885	0.0098	246	3.992E-5	17.868	16.081
2242	43.15	1.7519	10128	0.0099	236	4.184E-5	18.228	16.405
2271	43.59	1.7616	10349	0.0099	228	4.367E-5	18.588	16.729
2300	44.03	1.7713	10564	0.0098	214	4.574E-5	18.970	17.073
2332	44.52	1.7817	10790	0.0099	201	4.888E-5	19.347	17.413
2362	44.99	1.7917	10995	0.0100	191	5.261E-5	19.736	17.762
2391	45.43	1.8010	11168	0.0099	181	5.575E-5	20.134	18.121
2423	45.91	1.8110	11332	0.0098	169	5.868E-5	20.539	18.485
2456	46.43	1.8215	11497	0.0098	160	6.157E-5	20.943	18.848
2486	46.89	1.8309	11652	0.0098	153	6.371E-5	21.376	19.238
2518	47.39	1.8407	11806	0.0099	148	6.613E-5	21.793	19.614
2551	47.89	1.8506	11952	0.0098	141	6.956E-5	22.218	19.997
2581	48.38	1.8600	12086	0.0100	135	7.377E-5	22.669	20.402
2615	48.91	1.8702	12219	0.0099	127	7.821E-5	23.119	20.807
2649	49.46	1.8805	12345		120	8.301E-5	23.597	21.237

Test	ID 5086	-FCG-45					P	age 3
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[i	n]^.5)
2685	50.01	1.8906	12462	0.0100	114	8.825E-5	24.066	21.660
2717	50.53	1.9001	12569	0.0194	210	9.254E-5	24.557	22.101
2751	51.08	1.9100	12672	0.0201	200	1.004E-4	25.042	22.538
	51.65	1.9201	12769					
	52.25	1.9306	12875					
2750	52.76	1.9394	12970	0.0188	201	9.340E-5	25.587	23.028
2750	53.34	1.9494	13076	0.0197	209	9.430E-5	25.765	23.188
2750	53.92	1.9591	13179	0.0197	205	9.589E-5	25.959	23.363
2750	54.52	1.9690	13281	0.0099	101	9.807E-5	26.152	23.537
2750	55.13	1.9790	13380	0.0099	99	9.979E-5	26.351	23.716
2750	55.76	1.9889	13478	0.0100	98	1.017E-4	26.553	23.897
2750	56.39	1.9990	13577	0.0100	96	1.037E-4	26.755	24.079
2750	57.02	2.0088	13671	0.0100	94	1.060E-4	26.963	24.267
2750	57.68	2.0189	13765	0.0099	92	1.085E-4	27.172	24.454
2750	58.35	2.0289	13855	0.0099	89	1.107E-4	27.384	24.645
2750	59.01	2.0388	13942	0.0100	88	1.127E-4	27.597	24.837
2750	59.68	2.0486	14027	0.0099	86	1.148E-4	27.810	25.029
2750	60.35	2.0583	14113	0.0099	84	1.171E-4	28.032	25.228
2750	61.07	2.0685	14200	0.0100	82	1.210E-4	28.250	25.425
2750	61.78	2.0784	14281	0.0099	80	1.252E-4	28.478	25.630
2750	62.50	2.0882	14357	0.0100	77	1.294E-4	28.711	25.840
2750	63.26	2.0986	14433	0.0100	75	1.335E-4	28.938	26.044
2750	63.99	2.1083	14504	0.0100	73	1.370E-4	29.178	26.260
2750	64.75	2.1182	14577	0.0099	70	1.401E-4	29.414	26.473
2750	65.53	2.1283	14648	0.0201	139	1.445E-4	29.656	26.691
2750	66.32	2.1383	14716	0.0195	131	1.492E-4	29.898	26.908
2750	67.08	2.1478	14779	0.1002	567	1.767E-4	0.000	0.000
2750	74.99	2.2385	15283	0.0999	543	1.839E-4	0.000	0.000
2750	75.86	2.2477	15322	0.0193	81	2.388E-4	32.857	29.570
2750	76.84	2.2578	15364	0.0202	81	2.488E-4	33.139	29.824
2750	77.83	2.2678	15403	0.0195	75	2.596E-4	33.430	30.086
2750	78.77	2.2773	15439	0.0100	36	2.789E-4	33.727	30.354
2750	79.75	2.2869	15472	0.0099	34	2.936E-4	34.029	30.625
2750	80.81	2.2971	15505	0.0099	32	3.103E-4	34.340	30.904
2750	81.90	2.3074	15537	0.0100	30	3.280E-4	34.655	31.189
2750	82.95	2.3172	15567	0.0099	29	3.467E-4	34.983	31.484
2750	84.05	2.3273	15595	0.0100	28	3.643E-4	35.302	31.771
2750	85.15	2.3371	15621	0.0100	27	3.804E-4	35.627	32.063
2750	86.22	2.3465	15644	0.0101	25	3.980E-4	35.973	32.374
2750 2750	87.47	2.3573	15671	0.0100	24 22	4.198E-4	36.312	32.679
2750	88.67	2.3675	15696	0.0100	22	4.482E-4 4.872E-4	36.675	33.005 33.323
2750	89.90 91.09	2.3777	15718	0.0101	19	4.872E-4 5.320E-4	37.028 37.385	33.323
2750	92.31	2.3873	15737 15755	0.0101	17	5.862E-4	37.745	33.967
2750	93.57	2.4070	15755	0.0100	16	6.385E-4	38.122	34.306
2/50	23.5/	2.4070	T2 / / T	0.0055	Τ0	0.3052-4	30.122	34.306

Test	ID 5086	-FCG-45					P	age 4	
Pmax (1b)	EvB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK .n]^.5)	
2750 2750	94.95 96.23	2.4176	15787 15800	0.0100	15 13	7.072E-4 7.746E-4	38.492	34.637 34.994	
2749	97.60	2.4374	15813	0.0101	12	8.391E-4	39.274	35.339 *	
2749 2749	98.99 100.36	2.4475 2.4572	15824 15834	0.0101 0.0108	11 10	9.128E-4 1.053E-3	39.668 40.081	35.694 * 36.064 *	
2749 2749	101.85	2.4677	15845 15854	0.0103	9	1.205E-3 1.473E-3	40.496	36.437 * 36.887 *	
2749 2740	105.40	2.4919	15861 15867	0.0106	7	1.871E-3 2.398E-3	41.314	37.159 * 37.631 *	k
2739	108.22	2.5103	15871	0.0104	4	2.988E-3	42.162	37.901 *	k.
2737 2730	109.87 111.59	2.5208 2.5314	15874 15877	0.0211	6 5	3.514E-3 3.987E-3	42.588 42.968	38.268 * 38.595 *	
	113.12	2.5407	15879						

	I			igue Cra Analysi					
Test ID Contract Material Temperature (Environment	(F)	SSC 10 5383-H 75	624-01 116	Geomet Orient Yield Modulu	ation		C(T) T-L 35.4 10.5		
Specimen D)imensions	(in)							
Thickness Net Thickness Width		0.496 0.496 4.000		Height Notch Gage L	Depth		2.400 1.000 0.500		
Precrack P	arameters								
Pmax (lbs) Final a (in)		59.0 1.050			Ratio ksi sqr	[in])	0.10 4.41		
Test Param	eters								
23.720 0 31.406 0	.50 .50	0	R 0.10 0.10 0.10	1.140	Kmaxi 2.80 9.69 0.00	4.00 2.00	0.00		
K Coeff .886 4.64 -13.32 14.72 -5.6	1. -4. 18 -23	Coeff .00098 .66951 3.4601 36.825 214.88 143.57							
Visual Obs	ervations								
EvB/P Cr 20.753 21.841 23.480 23.760 26.667 27.531 30.339 34.274 48.661 59.300 66.619 101.006	cack (EvB/P) 0.983 1.040 1.121 1.134 1.260 1.294 1.397 1.524 1.865 2.043 2.142 2.462	1 1 1 1 1 1 1 2 2	k(visua .002 .040 .100 .170 .260 .280 .380 .490 .880 .080 .120 .460	1) Erro 0.01 0.00 -0.02 0.03 0.00 -0.01 -0.01 -0.03 0.01 0.03 -0.02 -0.00	9 0 1 6 0 4 7 4 5 7 2	CAF 0.993 0.992 0.990 0.989 0.987 0.986 0.983 0.981 0.973 0.969 0.969			
Comments									
Date of test:	Date of test: 9/9/2006								

Wa	aveform	Type			Sine			
Test 1	ID 5086	FCG-4pt5					P	age 1
Pmax (lb)	EvB/P	a (in)	И	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK n]^.5)
925	27.62 27.66	1.2978 1.2994	704348 705872	0.0035	3329	1.056E-6	5.588	5.029
930 937	27.71 27.76	1.3013	707677 709455	0.0039	3583 1698	1.077E-6 1.121E-6	5.630 5.673	5.067 5.106
943	27.81	1.3053	711233	0.0019	1698	1.143E-6	5.720	5.148
950 956	27.87 27.92	1.3073	712947 714536	0.0020	1641 1588	1.182E-6 1.226E-6	5.765 5.811	5.189 5.230
962	27.96	1.3111	716061	0.0020	1535	1.276E-6	5.856	5.271
968 975	28.01 28.07	1.3130 1.3150	717521 718982	0.0023	1793 1988	1.384E-6 1.480E-6	5.903 5.951	5.313 5.355
982	28.12	1.3150	720442	0.0029	2156	1.530E-6	6.028	5.425
996	28.23	1.3213	723707	0.0039	2298	1.686E-6	6.116	5.504
1014 1031	28.37 28.50	1.3265	726464 728995	0.0100	5288 4844	1.887E-6 2.034E-6	6.230 6.358	5.607 5.723
1048	28.64	1.3363	731308	0.1073	22660	4.737E-6	0.000	0.000
1467 1471	31.56 31.62	1.4387	751655 751800	0.1041	20492 324	5.082E-6 1.132E-5	0.000 9.731	0.000 8.758
1475	31.68	1.4423	751979	0.0040	359	1.115E-5	9.770	8.793
1479 1483	31.74 31.80	1.4445 1.4463	752159 752317	0.0040	338 173	1.183E-5 1.133E-5	9.807 9.847	8.826 8.863
1487	31.86	1.4482	752496	0.0020	172	1.145E-5	9.886	8.897
1491	31.92	1.4503	752674	0.0020	172	1.147E-5	9.925	8.932
1495 1499	31.98	1.4522 1.4542	752839 753011	0.0020	173 170	1.148E-5 1.158E-5	9.965 10.006	8.969 9.005
1504	32.10	1.4562	753189	0.0020	167	1.168E-5	10.046	9.041
1508 1512	32.17 32.22	1.4582	753354 753513	0.0020	167 165	1.169E-5 1.179E-5	10.085	9.077 9.113
1516	32.28	1.4621	753678	0.0019	161	1.201E-5	10.164	9.148
1520 1524	32.34	1.4640 1.4660	753843 754002	0.0019	160 159	1.217E-5 1.233E-5	10.205	9.185 9.221
1528	32.47	1.4679	754154	0.0019	153	1.255E-5	10.286	9.258
1532	32.53	1.4699	754312	0.0019	150	1.286E-5	10.327	9.294
1536 1540	32.59 32.65	1.4718 1.4736	754464 754596	0.0020	152 281	1.310E-5 1.365E-5	10.367	9.330 9.367
1544	32.71	1.4756	754745	0.0042	318	1.328E-5	10.451	9.405
1549 2745	32.78 67.52	1.4779 2.1533	754914 14823	0.6776	-739922 -740078	-9.158E-7 -9.152E-7	0.000	0.000
2750	67.68	2.1552	14836	0.0038	26	1.469E-4	30.299	27.249
2750	67.83	2.1571	14849	0.0040	26	1.540E-4	30.377	27.338
2750 2750	68.00 68.16	2.1592 2.1611	14862 14875	0.0040	26 13	1.536E-4 1.519E-4	30.426 30.479	27.384 27.431
2750	68.33	2.1631	14888	0.0020	13	1.511E-4	30.530	27.477
2750 2750	68.49 68.66	2.1651 2.1671	14901 14915	0.0020	13 13	1.503E-4 1.518E-4	30.581	27.523 27.570
2700	00.00	2.10/1	14710	0.0020	13	1.0102-4	50.003	27.070

Test	ID 5086	-FCG-4pt5					P	age 2	
Pmax (1b)	EvB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK n]^.5)	
2750 2750 2750 2750 2750 2750 2750 2750	68.82 68.98 69.16 69.33 69.49 69.67 69.84 70.00 70.17 70.34 70.52 70.69	2.1691 2.1709 2.1730 2.1751 2.1770 2.1790 2.1810 2.1830 2.1849 2.1869 2.1889 2.1910	14928 14940 14953 14966 14978 14990 15002 15013 15024 15035 15046 15058	0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020	13 13 12 12 12 12 11 11 11	1.534E-4 1.551E-4 1.591E-4 1.615E-4 1.640E-4 1.671E-4 1.713E-4 1.748E-4 1.789E-4 1.789E-4 1.794E-4	30.683 30.735 30.787 30.839 30.893 30.944 30.997 31.048 31.101 31.153 31.207 31.261	27.614 27.662 27.708 27.755 27.803 27.849 27.898 27.943 27.991 28.038 28.036 28.135	
2750 2750 2750 2750 2750	70.87 71.04 71.22 71.40 71.58	2.1910 2.1930 2.1950 2.1970 2.1990 2.2011	15058 15069 15080 15091 15103 15115	0.0020 0.0020 0.0020 0.0041 0.0042	11 12 23 24	1.787E-4 1.781E-4 1.768E-4 1.738E-4	31.315 31.369 31.423 31.479	28.135 28.183 28.232 28.281 28.331	

				_	
		Automated F Growth Ra	atigue Cra te Analysi		
Test ID Contract Material Temperature Environment		5086-FCG-4p SSC 10624-0 5086-H116 75 ter)l Orient Yield	ation	C(T) T-L 27.0 10.5
Specimen	Dimension	s (in)			
Thickness Net Thickne Width		0.496 0.496 4.000		Depth Jength	2.400 1.000 0.500
Precrack	Parameter	5			
Pmax (lbs) Final a (in		779.0 1.050		Ratio ksi sqr[in	
Test Par	ameters				
	Freq 0.05 0.05	Pmax R 0 0.10 2750 0.10	1.451	Kmaxi 9.69 0.00	C DKi 2.00 0.00 0.00 0.00
K Coef .886 4.64 -13.32 14.72 -5.6	-	C Coeff 1.00098 4.66951 18.4601 236.825 1214.88 2143.57			
Visual 0	(bservation	5			
EvB/P 20.726 21.845 22.606 23.443 23.654 27.959 31.354 35.099 43.347 51.894 67.433	1.014 1.073 1.111 1.151 1.161 1.341 1.461 1.576 1.783 1.949 2.175	1.120 1.160 1.190 1.330 1.460 1.550 1.790	-0.01 -0.00 0.00 0.02 -0.01 -0.00 -0.02	3 1. 3 1. 9 1. 9 1. 1 1. 1 1. 1 1. 6 1. 9 0.	CAF 021 020 019 018 018 013 010 007 002 998 993
Date of tes Waveform Ty		06	Sine		

Test	ID 5086	-FCG-4pt	05				I	Page 1
Pmax	EvB/P	a.	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[i	in]^.5)
	32.94	1.5115	755158					
1562	32.97	1.5126	755226	0.0027	231	1.169E-5	10.821	9.737
1566	33.02	1.5142	755389	0.0038	351	1.078E-5	10.864	9.777
1570	33.09	1.5164	755577	0.0018	163	1.173E-5	10.904	9.814
1574	33.15	1.5183	755755	0.0019	182	1.071E-5	10.950	9.855
1579	33.22	1.5203	755947	0.0020	183	1.062E-5	10.994	9.894
1583	33.29	1.5223	756138	0.0019	182	1.058E-5	11.037	9.933
1587	33.35	1.5242	756316	0.0019	183	1.062E-5	11.081	9.973
1591	33.41	1.5260	756488	0.0019	177	1.074E-5	11.124	10.011
1595	33.47	1.5279	756667	0.0019	173	1.084E-5	11.168	10.051
1600	33.54	1.5299	756852	0.0019	173	1.101E-5	11.210	10.089
1604	33.60	1.5318	757010	0.0019	174	1.115E-5	11.254	10.128
1608	33.66	1.5335	757175	0.0020	172	1.136E-5	11.298	10.168
1612	33.72	1.5356	757354	0.0041	357	1.156E-5	11.343	10.208
1617	33.79	1.5377	757532	0.0041	343	1.190E-5	11.389	10.250
1621	33.86	1.5397	757697	0.6901	-742402	-9.296E-7	0.000	0.000
2750	71.93	2.2278	15130	0.6900	-742558	-9.292E-7	0.000	0.000
2750	72.09	2.2296	15139	0.0037	18	2.034E-4	32.322	29.095 *
2750	72.25	2.2315	15148	0.0041	21	1.935E-4	32.382	29.144 *
2750	72.45	2.2337	15160	0.0042	22	1.899E-4	32.436	29.192 *
2750	72.63	2.2356	15170	0.0020	10	2.051E-4	32.497	29.247 *
2750	72.81	2.2376	15179	0.0021	10	2.094E-4	32.556	29.300 *
2750	73.00	2.2398	15189	0.0020	9	2.150E-4	32.613	29.352 *
2750	73.18	2.2418	15198	0.0020	9	2.168E-4	32.673	29.405 *
2750	73.36	2.2438	15207	0.0020	9	2.158E-4	32.729	29.457 *
2750	73.53	2.2457	15216	0.0020	9	2.173E-4	32.788	29.509 *
2750	73.72	2.2477	15226	0.0041	19	2.166E-4	32.845	29.561 *
2750	73.91	2.2498	15235	0.0041	18	2.278E-4	32.905	29.615 *
	74.10	2.2518	15244		20			

	P	utomated Fati Growth Rate			
Test ID Contract Material Temperature Environment	2	75 75	Officential Office		C(T) T-L 27.0 10.5
Specimen	Dimensions	(in)			
Thickness Net Thickne Width	ss	0.496 0.496 4.000	Height Notch Depth Gage Length		2.400 1.000 0.500
	Parameters				
Pmax (lbs) Final a (in	77	9.0 1.050	Stress Ratio		0.10 4.00
Test Par	ameters				
		max R 0 0.10	Ai Kmaxi 1.451 9.69		DKi 0.00
K Coef .886 4.64 -13.32 14.72 -5.6	1. -4. 18 -23	Coeff 00098 66951 8.4601 86.825 114.88 43.57			
Visual O	bservations				
EvB/P 20.726 21.845 22.606 23.443 23.654 27.959 31.354 35.099 43.347 51.894 67.433	1.014 1.073 1.111 1.151 1.161 1.341 1.461 1.576 1.783 1.949 2.175	Crack(visual 1.001 1.070 1.120 1.160 1.190 1.330 1.460 1.550 1.790 1.920 2.200	L) Error -0.013 -0.003 0.009 0.009 0.029 -0.011 -0.001 -0.026 0.007 -0.029 0.025	CAF 1.021 1.020 1.019 1.018 1.018 1.013 1.010 1.007 1.007 1.002 0.998 0.993	
Date of tes Waveform Ty	t: 9/10/2006 pe	Sir	ne		

Test	ID 5086	-FCG-4Cpt05					P	age l
Pmax (lb)	EvB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK n]^.5)
1630 1634 1639 1644 1648 1652 1657 1661 1670 1679 1684 1693 1697	33.92 33.98 34.05 34.12 34.19 34.25 34.32 34.38 34.45 34.51 34.51 34.53 34.71 34.78 34.78 34.91 34.98 35.06	1.5415 1.5433 1.5452 1.5475 1.5494 1.5513 1.5533 1.5552 1.5572 1.5590 1.5610 1.5630 1.5648 1.5669 1.5687 1.5725	89 190 312 457 583 705 827 953 1079 1192 1310 1431 1540 1657 1766 1870 1992 2105	0.0037 0.0042 0.0020 0.0020 0.0029 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019	223 267 123 127 128 123 121 121 119 117 115 113 114 112 226 235	1.659E-5 1.572E-5 1.587E-5 1.559E-5 1.559E-5 1.572E-5 1.602E-5 1.608E-5 1.644E-5 1.659E-5 1.659E-5 1.708E-5 1.747E-5 1.696E-5	11.524 11.570 11.617 11.665 11.712 11.757 11.806 11.851 11.899 11.944 11.991 12.040 12.085 12.135 12.180 12.233	10.372 10.413 10.455 10.499 10.541 10.582 10.626 10.709 10.750 10.750 10.876 10.876 10.876 10.922 10.962

Automated Fatigue Crack Growth Rate Analysis							
Test ID Contract Material Temperature (F) Environment RH =	5086-H116 75	Geometry Orientation Yield (ksi) Modulus (Msi)	C(T) T-L 27.0 10.5				
Specimen Dimensio	ns (in)						
Thickness Net Thickness Width	0.497 0.497 4.000	Height Notch Depth Gage Length	2.400 1.000 0.500				
Precrack Paramete	rs						
Pmax (lbs) Final a (in)	962.0 1.070	Stress Ratio Kmax (ksi sqr[in])	0.10 5.00				
Test Parameters							
EvBP Freq 22.290 24.00 24.852 24.00	0 0.10	Ai Kmaxi C 1.070 5.00 -4. 1.190 3.40 4.	0.00				
.886 4.64 -13.32 14.72 -5.6	1214.88	da/dN Fit Paramete Upper da/dN limit Lower da/dN limit da/dN intercept (C da/dN slope (m) da/dN for delta K delta K	3.937E-8 3.937E-9 3.743E-29 41.858				
Visual Observatio	ns						
EvB/P Crack (EvB 20.547 0.990 22.223 1.089 24.200 1.194 24.485 1.208 25.589 1.242 28.155 1.334 31.334 1.435 36.192 1.569	1.000 1.070 1.190 1.220 1.250 1.325 1.430	L) Error CAF 0.011 1.00 -0.019 1.01 -0.004 1.02 0.012 1.02 0.008 1.01 -0.009 0.99 -0.005 0.98 0.006 0.97	9 6 4 5 1 9				
Date of test: 9/19/2	006						
Waveform Type	Sir	ie					

Test	ID 5086	-FCG-5					P	age l
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(1b)	212/1	(in)		(in)		(in/cyc)	(ksi[i	
(12)		(221)		(211)		(III/Cyc)	(252[2	,,
	22.29	1.0928	9610					
928	22.37	1.0972	21809	0.0099	29163	3.389E-7	4.905	4.414
907	22.47	1.1026	38773	0.0107	35479	3.005E-7	4.820	4.338
887	22.57	1.1079	57288	0.0053	20154	2.987E-7	4.724	4.252
866	22.67	1.1135	79640	0.0055	22614	2.590E-7	4.632	4.169
845	22.77	1.1193	105089	0.0055	24474	2.334E-7	4.542	4.088
826	22.87	1.1245	130533	0.0055	25268	2.154E-7	4.449	4.004
807	22.98	1.1302	157491	0.0053	27199	2.021E-7	4.364	3.928
788	23.08	1.1357	185617	0.0053	30028	1.920E-7	4.282	3.854
772	23.17	1.1407	208893	0.0055	33464	1.847E-7	4.198	3.779
755	23.26	1.1452	242836	0.0054	37154	1.675E-7	4.123	3.711
738	23.37	1.1511	285255	0.0055	39032	1.447E-7	4.029	3.626
715	23.49	1.1575	331318	0.0054	43992	1.292E-7	3.962	3.566
703	23.58	1.1624	380414	0.0056	50772	1.200E-7	3.866	3.479
684	23.70	1.1686	419811	0.0055	58616	1.138E-7	3.805	3.424
670	23.79	1.1732	472844	0.0052	67607	1.020E-7	3.726	3.353
655	23.90	1.1785	547467	0.0048	76435	8.309E-8	3.656	3.290
640	24.01	1.1842	636950	0.0041	86511	5.617E-8	3.591	3.232
628	24.09	1.1885	736959	0.0035	94315	3.915E-8	3.537	3.183
620	24.14	1.1911	839022	0.0027	98521	2.634E-8	3.495	3.146
615	24.18	1.1931	938878	0.0019	100250	1.747E-8	3.472	3.124
612	24.20	1.1939	1038734	0.0014	100838	1.289E-8	3.456	3.110
611	24.21	1.1946	1138591	0.0012	100470	1.112E-8	3.442	3.098
608	24.23	1.1956	1238447	0.0011	100470	1.080E-8	3.430	3.087
604	24.26	1.1970	1341989	0.0011	100471	1.125E-8	3.416	3.074
601	24.29	1.1983	1441844	0.0011	100471	1.095E-8	3.398	3.058
598	24.31	1.1995	1541700	0.0009	1004/1	9.168E-9	3.386	3.048
596	24.33	1.2003	1641557	0.0006	99854	6.044E-9	3.373	3.036
594	24.34	1.2009	1741414	0.0005	99854	4.054E-9	3.363	3.026
592	24.34	1.2009		-0.0005	199697	-2.307E-9	3.357	3.021
592	24.33	1.2005	1941111	0.0003	199710	1.530E-9	3.351	3.016
592	24.34	1.2012	2040967		-1011432	-7.369E-8	0.000	0.000
783	26.49	1.2750	929679		-1091165	-7.140E-8	0.000	0.000
796	26.60	1.2792	949802	0.0086	38114	2.256E-7	4.741	4.267
809	26.72	1.2836	967793	0.0088	33336	2.634E-7	4.833	4.349
823	26.84	1.2879	983138	0.0087	28228	3.089E-7	4.929	4.436
837	26.97	1.2923	996021	0.0044	13200	3.453E-7	5.024	4.522
850	27.08	1.2966	1007541	0.0044	11575	3.871E-7	5.122	4.610
864	27.20	1.3007	1018820	0.0044	10181	4.427E-7	5.225	4.702
880	27.20	1.3055	1029002	0.0044	9069	5.114E-7	5.326	4.793
895	27.46	1.3098	1023002	0.0044	8132	5.856E-7	5.434	4.891
910	27.59	1.3142	1037242	0.0044	7091	6.629E-7	5.541	4.987
925	27.33	1.3185	1050435	0.0045	6131	7.452E-7	5.651	5.086
941	27.71	1.3231	1056334	0.0044	5454	8.287E-7	5.763	5.187
241	27.04	1.3231	1000034	0.0044	3434	0.20/1-/	5./63	5.10/

				F	age 2
Pmax EvB/P a N (lb)	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[in	deltaK n]^.5)
957 27.97 1.3274 1061365 973 28.10 1.3318 1065787 989 28.22 1.3360 1069963 1006 28.35 1.3406 1073939 1024 28.49 1.3452 1077518 1041 28.62 1.3496 1080382 1058 28.75 1.3538 1082926 1076 28.88 1.3582 1085340 1095 29.02 1.3627 1087499 1113 29.15 1.3672 1089328 1132 29.29 1.3715 1090954 1151 29.43 1.3760 1092418 1171 29.56 1.3804 1093719 1190 29.70 1.3848 1094889 1211 29.84 1.3892 1095933 1232 29.98 1.3938 1096876 1252 30.11 1.3979 1097711 1272 30.25 1.4023 1098502 1294 30.40 1.4068 1099246 1316 30.53 1.4110 1099951 1338 30.68 1.4155 1100621 1361 30.83 1.4202 1101225 1383 30.97 1.4243 1101763 1407 31.11 1.4288 1102302	0.0044 0.0045 0.0044 0.0044 0.0045 0.0044	4952 4514 4008 3594 3259 2923 2565 2239 2006 1799 1592 1406 1258 1126 1014 781 725 675 633 595 1077 1051	9.127E-7 1.007E-6 1.123E-6 1.260E-6 1.421E-6 1.594E-6 2.019E-6 2.019E-6 2.589E-6 2.904E-6 3.255E-6 3.654E-6 4.454E-6 4.454E-6 4.882E-6 5.257E-6 5.641E-6 6.091E-6 6.571E-6 7.067E-6 7.067E-6 8.052E-6 8.619E-6	5.879 5.992 6.113 6.233 6.359 6.485 6.613 6.744 6.876 7.014 7.154 7.295 7.440 7.588 7.588 7.588 8.205 8.361 8.531 8.699 8.869 9.049 9.226	5.291 5.393 5.502 5.610 5.723 5.837 5.951 6.069 6.188 6.313 6.439 6.565 6.696 6.829 6.966 7.102 7.241 7.384 7.525 7.678 7.829 7.982 8.144 8.304

Automated Fatique Crack								
	Growth Rate	-						
Test ID Contract Material Temperature (F) Environment RH =	5383-FCG-1 SSC 10624-01 5383-H116 75	Geometry Orientation Yield (ksi) Modulus (Msi)						
Specimen Dimensions (in)								
Thickness Net Thickness Width	0.488 0.488 4.000	Height Notch Depth Gage Length						
Precrack Paramete	rs							
Pmax (lbs) Final a (in)	861.0 1.050	Stress Ratio Kmax (ksi sqr						
Test Parameters								
EvBP Freq 24.226 10.00 32.427 10.00 51.111 5.00	Pmax R 0 0.10 0 0.10 2675 0.10	Ai Kmaxi 1.170 3.00 1.486 10.58 0.000 0.00	2.00 0.00					
.886 4.64 -13.32 14.72 -5.6	C Coeff 1.00098 -4.66951 18.4601 -236.825 1214.88 -2143.57							
Visual Observation	ns							
EvB/P Crack (EvB 20.829 0.994 21.843 1.046 24.198 1.157 24.815 1.184 26.085 1.237 28.304 1.322 32.405 1.461 43.793 1.755 50.785 1.892 98.246 2.423	1.001 1.045 1.160 1.185 1.235 1.315 1.455 1.760 1.890	1) Error 0.007 -0.001 0.003 0.001 -0.002 -0.007 -0.006 0.005 -0.002 0.002	CAF 0.999 0.996 0.991 0.990 0.988 0.984 0.977 0.965 0.959					
Date of test: 8/24/2	006							
Waveform Type	Sir	ne						

Test	ID 5383	-FCG-1					Pa	age l
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(1b)	242,2	(in)		(in)	0.21	(in/cyc)	(ksi[ir	
(12)		(221)		(211)		(III/Cyc/	(227 [21	.,,
	24.23	1.1583	21299					
534	24.31	1.1621	84307	0.0088	141260	6.236E-8	3.014	2.712
544	24.43	1.1671	162559	0.0097	149583	6.490E-8	3.068	2.761
553	24.53	1.1718	233890	0.0047	66040	7.106E-8	3.131	2.818
562	24.64	1.1765	297453	0.0049	64780	7.560E-8	3.193	2.874
572	24.75	1.1813	356275	0.0048	59979	8.078E-8	3.258	2.932
582	24.87	1.1863	417537	0.0048	55917	8.680E-8	3.324	2.992
592	24.99	1.1912	472986	0.0048	52897	9.193E-8	3.392	3.053
602	25.10	1.1960	522431	0.0049	50414	9.707E-8	3.461	3.115
612	25.21	1.2008	569390	0.0048	47020	1.027E-7	3.529	3.176
622	25.32	1.2055	614832	0.0048	44090	1.084E-7	3.601	3.241
633	25.44	1.2104	658759	0.0048	41908	1.148E-7	3.673	3.305
644	25.56	1.2152	699657	0.0048	39888	1.214E-7	3.747	3.372
654	25.67	1.2200	737525	0.0048	37616	1.285E-7	3.824	3.441
666	25.79	1.2249	773879	0.0048	35596	1.352E-7	3.900	3.510
677	25.91	1.2297	808718	0.0048	33829	1.418E-7	3.979	3.581
688	26.02	1.2344	840527	0.0048	32012	1.485E-7	4.059	3.653
700	26.14	1.2392	872337	0.0047	30396	1.560E-7	4.139	3.725
712	26.26	1.2440	902631	0.0047	28831	1.643E-7	4.222	3.800
724	26.38	1.2486	929595	0.0047	27368	1.734E-7	4.306	3.876
736	26.50	1.2533	956256	0.0047	25661	1.851E-7	4.391	3.952
748	26.62	1.2581	981706	0.0048	24005	1.987E-7	4.478	4.030
761	26.74	1.2628	1004732	0.0048	22582	2.139E-7	4.569	4.112
774	26.86	1.2676	1026304	0.0048	20885	2.322E-7	4.660	4.194
787	26.98	1.2725	1046663	0.0048	19099	2.562E-7	4.755	4.279
800	27.11	1.2773	1065085	0.0048	17251	2.870E-7	4.850	4.365
814	27.23 27.36	1.2821	1081564	0.0048	15310	3.290E-7	4.950	4.455
828 842	27.48	1.2871	1096297 1108239	0.0048	13407 11594	3.827E-7 4.467E-7	5.048 5.150	4.635
856	27.40	1.2964	1118166	0.0048	9920	5.241E-7	5.252	4.727
870	27.73	1.3011	1127103	0.0040	8365	6.138E-7	5.357	4.821
885	27.86	1.3059	1134650	0.0047	7179	7.125E-7	5.465	4.919
901	27.99	1.3109	1141085	0.0048	6278	8.166E-7	5.574	5.016
916	28.12	1.3155	1146484	0.0048	5433	9.261E-7	5.686	5.118
931	28.24	1.3201	1151311	0.0047	4744	1.040E-6	5.800	5.220
947	28.38	1.3250	1155836	0.0048	4240	1.162E-6	5.914	5.323
963	28.51	1.3298	1159698	0.0048	3828	1.302E-6	6.033	5.430
979	28.63	1.3344	1163113	0.0048	3414	1.460E-6	6.156	5.541
996	28.77	1.3394	1166527	0.0048	3007	1.655E-6	6.281	5.653
1013	28.91	1.3445	1169454	0.0048	2711	1.852E-6	6.409	5.768
1030	29.04	1.3492	1171795	0.0049	2471	2.045E-6	6.537	5.883
1047	29.17	1.3537	1173878	0.0048	2184	2.246E-6	6.667	6.000
1065	29.31	1.3584	1175961	0.0047	1933	2.487E-6	6.801	6.121
1084	29.45	1.3636	1177940	0.0047	1766	2.751E-6	6.938	6.244

1102	Test ID 5383	Page 2
1121		deltaK [in]^.5)
1259 30.70 1.4062 1188899 0.0048 899 5.358E-6 8.289 1281 30.85 1.4111 1189795 0.0048 842 5.725E-6 8.455 1302 31.00 1.4159 1190607 0.0048 797 6.063E-6 8.628 1325 31.14 1.4207 1191371 0.0048 758 6.408E-6 8.902 1347 31.29 1.4256 1192096 0.0048 710 6.784E-6 8.978 1370 31.44 1.4303 1192787 0.0048 671 7.132E-6 9.159 1393 31.59 1.4352 1193444 0.0048 635 7.498E-6 9.345 1417 31.74 1.4400 1194057 0.0047 601 7.903E-6 9.527 1440 31.88 1.4446 1194633 0.0048 567 8.384E-6 9.718 1464 32.03 1.4493 1195190 8.871E-6 10.106 <	1121 29.72 1138 29.85 1158 29.99 1178 30.14 1197 30.28 1218 30.42	8 6.496 61 6.625 96 6.756 96 6.890 92 7.031 96 7.169
1417 31.74 1.4400 1194057 0.0047 601 7.903E-6 9.527 1440 31.88 1.4446 1194633 0.0048 567 8.384E-6 9.718 1464 32.03 1.4493 1195182 0.0095 1070 8.871E-6 9.907 1488 32.18 1.4541 1195703 0.0096 1008 9.554E-6 10.106 32.33 1.4589 1196910 32.43 1.4618 1196914 32.72 1.4710 1197845 0.0190 1943 9.781E-6 10.615 1567 33.04 1.4808 1198857 0.0190 1943 9.781E-6 10.615 1567 33.04 1.4808 1199790 0.0193 1763 1.095E-5 11.035 1609 33.69 1.5001 1200620 0.0097 866 1.121E-5 11.257 1631 34.00 1.5095 1201449 0.0097 812 1.184E-5 11.480 1654 34.34	1259 30.70 1281 30.85 1302 31.00 1325 31.14 1347 31.29 1370 31.44	7.460 7.609 8 7.765 2 7.922 8 8.081 9 8.243
1567 33.04 1.4808 1198857 0.0199 1945 1.022E-5 10.822 1589 33.37 1.4908 1199790 0.0193 1763 1.095E-5 11.035 1609 33.69 1.5001 1200620 0.0097 866 1.121E-5 11.257 1631 34.00 1.5095 1201449 0.0097 812 1.184E-5 11.480 1654 34.34 1.5194 1202278 0.0096 772 1.246E-5 11.707 1676 34.68 1.5292 1203038 0.0097 743 1.308E-5 11.944 1699 35.02 1.5389 1203730 0.0097 707 1.372E-5 12.425 1745 35.70 1.5581 1204420 0.0096 639 1.494E-5 12.672 1769 36.05 1.5676 1205690 0.0096 615 1.552E-5 12.923 1792 36.40 1.5772 1206293 0.0096 591 1.619E-5 </td <td>1417 31.74 1440 31.88 1464 32.03 1488 32.18 32.33 32.43</td> <td>8.574 8.747 8.916 9.095</td>	1417 31.74 1440 31.88 1464 32.03 1488 32.18 32.33 32.43	8.574 8.747 8.916 9.095
1769 36.05 1.5676 1205690 0.0096 615 1.552E-5 12.923 1792 36.40 1.5772 1206293 0.0096 591 1.619E-5 13.176	1567 33.04 1589 33.37 1609 33.69 1631 34.00 1654 34.34 1676 34.68 1699 35.02	9.740 9.932 7 10.131 10 10.332 7 10.536 44 10.750 12 10.964
1840 37.11 1.5963 1207418 0.0097 548 1.762E-5 13.702 1865 37.48 1.6060 1207967 0.0097 524 1.846E-5 13.980 1890 37.86 1.6158 1208489 0.0097 500 1.942E-5 14.263 1917 38.25 1.6257 1208976 0.0097 478 2.042E-5 14.546 1942 38.62 1.6351 1209435 0.0096 449 2.151E-5 14.843 1968 39.02 1.6450 1209872 0.0096 424 2.267E-5 15.135 1994 39.41 1.6547 1210287 0.0096 403 2.394E-5 15.431 2020 39.78 1.6638 1210661 0.0096 381 2.514E-5 15.740 2047 40.19 1.6735 1211035 0.0096 363 2.646E-5 16.048 2074 40.60 1.6834 1211391 0.0096 343 2.799E-5 16.362	1769 36.05 1792 36.40 1816 36.75 1840 37.11 1865 37.48 1890 37.86 1917 38.25 1942 38.62 1968 39.02 1994 39.41 2020 39.78 2047 40.19	3 11.631 16 11.859 19 12.095 12 12.332 10 12.582 13 12.837 16 13.092 15 13.622 11 13.888 10 14.166 18 14.443

Test	ID 5383	-FCG-1					P	age 3
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(1b)	_,_,_	(in)		(in)		(in/cyc)	(ksi[i	
		,		,		,		
2129	41.42	1.7026	1212049	0.0096	308	3.148E-5	17.022	15.320
2157	41.85	1.7123	1212347	0.0096	291	3.336E-5	17.362	15.626
2185	42.27	1.7218	1212618	0.0097	275	3.534E-5	17.707	15.937
2214	42.70	1.7313	1212880	0.0097	256	3.764E-5	18.056	16.251
2243	43.14	1.7411	1213137	0.0097	242	4.015E-5	18.413	16.572
2272	43.58	1.7508	1213372	0.0098	230	4.273E-5	18.782	16.904
2302	44.04	1.7606	1213587	0.0097	216	4.549E-5	19.158	17.242
2333	44.50	1.7704	1213797	0.0097	202	4.841E-5	19.546	17.591
2364	44.98	1.7804	1213999	0.0098	190	5.172E-5	19.930	17.938
2393	45.44	1.7897	1214173	0.0098	179	5.492E-5	20.332	18.299
2424	45.91	1.7994	1214346	0.0097	165	5.909E-5	20.741	18.667
2458	46.43	1.8098	1214514	0.0097	153	6.392E-5	21.146	19.031
2488	46.90	1.8192	1214659	0.0097	144	6.854E-5	21.573	19.416
2519	47.38	1.8286	1214788	0.0097	134	7.319E-5	21.997	19.797
2552	47.89	1.8384	1214916	0.0097	124	7.856E-5	22.427	20.185
2585	48.41	1.8481	1215038	0.0097	117	8.371E-5	22.871	20.585
2617	48.91	1.8577	1215149	0.0098	111	8.849E-5	23.335	21.002
2652	49.46	1.8678	1215256	0.0198	209	9.473E-5	23.792	21.413
2685	49.99	1.8775	1215358	0.0194	198	9.810E-5	24.274	21.846
	50.54	1.8872	1215454					
0.000	51.11	1.8974	1215566					
2675	51.61	1.9062	1215661	0.0185	197	9.368E-5	24.702	22.231
2675	52.17	1.9159	1215763	0.0199	200	9.952E-5 1.071E-4	24.876 25.055	22.388
2675 2675	52.78 53.36	1.9261	1215861 1215950	0.0200	187 91	1.071E-4 1.087E-4	25.055	22.550 22.717
2675	53.95	1.9456	1216035	0.0099	87	1.126E-4	25.424	22.881
2675	54.53	1.9550	1216121	0.0098	85	1.156E-4	25.615	23.053
2675	55.17	1.9653	1216206	0.0097	83	1.176E-4	25.801	23.221
2675	55.79	1.9751	1216287	0.0097	81	1.197E-4	25.999	23.399
2675	56.42	1.9849	1216369	0.0098	79	1.229E-4	26.189	23.570
2675	57.03	1.9943	1216446	0.0097	76	1.269E-4	26.385	23.746
2675	57.67	2.0040	1216522	0.0097	73	1.326E-4	26.583	23.924
2675	58.34	2.0140	1216596	0.0097	70	1.391E-4	26.780	24.101
2675	58.98	2.0234	1216659	0.0098	69	1.432E-4	26.985	24.286
2675	59.65	2.0331	1216724	0.0098	67	1.471E-4	27.191	24.472
2675	60.36	2.0431	1216790	0.0098	65	1.506E-4	27.399	24.659
2675	61.06	2.0529	1216858	0.0099	64	1.530E-4	27.613	24.852
2675	61.76	2.0626	1216921	0.0099	64	1.559E-4	27.831	25.048
2675	62.50	2.0727	1216983	0.0098	62	1.591E-4	28.050	25.245
2675	63.24	2.0826	1217043	0.0098	60	1.634E-4	28.277	25.449
2675	64.00	2.0926	1217105	0.0098	58	1.688E-4	28.500	25.650
2675	64.74	2.1022	1217162	0.0098	55	1.764E-4	28.726	25.853
2675	65.49	2.1117	1217216	0.0098	53	1.847E-4	28.954	26.059
2675	66.27	2.1216	1217266	0.0097	51	1.935E-4	29.187	26.268
2675	67.09	2.1316	1217315	0.0099	48	2.041E-4	29.422	26.479

Test	ID 5383	-FCG-1					P	age 4
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)		n]^.5)
2675	67.87	2.1412	1217362	0.0099	46	2.158E-4	29.665	26.698
2675 2675	68.69 69.59	2.1509	1217408 1217452	0.0099	43 41	2.303E-4 2.442E-4	29.914 30.160	26.922 27.144
2675	70.44	2.1713	1217490	0.0099	39	2.544E-4	30.419	27.377
2675	71.29	2.1810	1217524	0.0099	38	2.635E-4	30.667	27.600
2675	72.13	2.1904	1217560	0.0097	35	2.727E-4	30.927	27.834
2675	73.04	2.2004	1217598	0.0099	34	2.836E-4	31.182	28.063
2675	73.95	2.2102	1217633	0.0098	34	2.919E-4	31.447	28.301
2675	74.85	2.2198	1217663	0.0099	33	3.009E-4	31.728	28.554
2675 2675	75.87 76.81	2.2304	1217696 1217728	0.0099	32 31	3.121E-4 3.223E-4	31.995 32.285	28.795 29.056
2675	77.79	2.2499	1217759	0.0100	30	3.334E-4	32.569	29.311
2675	78.81	2.2601	1217789	0.0099	28	3.537E-4	32.860	29.573
2675	79.85	2.2702	1217817	0.0099	27	3.780E-4	33.150	29.834
2675	80.84	2.2797	1217841	0.0099	25	4.005E-4	33.450	30.103
2675	81.89	2.2895	1217864	0.0099	23	4.287E-4	33.746	30.369
2675	82.97	2.2995	1217887	0.0098	21	4.615E-4	34.053	30.646
2675	84.08 85.22	2.3095	1217909	0.0100	20	5.041E-4 5.473E-4	34.369	30.930 31.210
2675 2675	86.32	2.3197	1217928 1217945	0.0100	19 17	5.4/3E-4 5.970E-4	34.681 35.014	31.510
2675	87.53	2.3396	1217961	0.0099	16	6.399E-4	35.330	31.794
2675	88.68	2.3493	1217976	0.0099	15	6.795E-4	35.666	32.095
2675	89.85	2.3590	1217989	0.0099	14	7.162E-4	36.000	32.396
2675	91.08	2.3689	1218003	0.0098	13	7.557E-4	36.340	32.701
2675	92.34	2.3790	1218016	0.0099	12	8.065E-4	36.689	33.015
2674	93.62	2.3889	1218028	0.0100	12	8.658E-4	37.038	33.329
2674 2674	94.87 96.19	2.3985	1218039 1218049	0.0103	11 10	9.432E-4 1.002E-3	37.397 37.767	33.651 33.983
2674	97.63	2.4190	1218059	0.0100	10	1.002E-3	38.148	34.315
2670	99.24	2.4308	1218069	0.0103	9	1.148E-3	38.531	34.669
2673	100.38	2.4391	1218077	0.0105	9	1.207E-3	38.941	35.025
2674	101.83	2.4495	1218085	0.0105	8	1.277E-3	39.343	35.400 *
2674	103.39	2.4604	1218093	0.0101	8	1.361E-3	39.768	35.778 *
2673	104.97	2.4712	1218101	0.0105	7	1.472E-3	40.208	36.173 *
2673	106.55	2.4818	1218108	0.0106	7	1.603E-3	40.631	36.551 *
2673	108.05	2.4916	1218114	0.0105	6 6	1.738E-3	41.080	36.953 *
2672 2671	109.72 111.39	2.5023	1218120 1218125	0.0103	5	1.914E-3 2.091E-3	41.508 41.964	37.330 * 37.735 *
2670	113.08	2.5232	1218130	0.0105	5	2.306E-3	42.416	38.138 *
2672	114.68	2.5328	1218134	0.0104	4	2.425E-3	42.870	38.534 *
2669	116.48	2.5434	1218138	0.0104	4	2.606E-3	43.374	38.990 *
2669	118.47	2.5549	1218142	0.0103	4	2.799E-3	43.833	39.393 *
2669	120.18	2.5645	1218146	0.0106	4	2.924E-3	44.352	39.854 *
2667	122.12	2.5751	1218149	0.0108	4	3.068E-3	44.816	40.259 *
2666	123.93	2.5849	1218152	0.0105	3	3.292E-3	45.352	40.729 *
Test	ID 5383	-FCG-1					Б	age 5
1620		100 1					-	age o
Pmax	EvB/P	a (in)	N	da (in)	dN	da/dN		deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[i	
	126.17		1218156			3.774E-3	45.830	
	128.45		1218159		3		46.308	
	130.35		1218161			4.563E-3		
2645			1218163 1218165		4			
2023			1218165	0.0190	-	4.030E-3	47.403	12.000 "
		2						

Automated Fatigue Crack Growth Rate Analysis									
Test ID Contract Material Temperature (F) Environment RE		01 Orientation	35.4						
Specimen Dimen	sions (in)								
Thickness Net Thickness Width	0.487 0.487 4.001	Height Notch Depth Gage Length							
Precrack Param	eters								
Pmax (lbs) Final a (in)	861.0 1.050	Stress Ratio Kmax (ksi sq							
Test Parameter	's								
EvBP Freq 24.663 10.00 32.708 10.00 50.476 5.00	0 0.1 0 0.1	0 1.180 3.00 0 1.495 10.56	4.00 0.00 2.00 0.00						
K Coeff .886 4.64 -13.32 14.72 -5.6	C Coeff 1.00098 -4.66951 18.4601 -236.825 1214.88 -2143.57								
Visual Observa	tions								
20.552 0. 21.843 1. 23.970 1. 24.563 1. 27.161 1. 28.537 1. 32.684 1. 50.171 1.	EvB/P) Crack(vi. 994 1.000 061 1.060 160 1.160 186 1.185 290 1.285 341 1.340 478 1.475 884 1.890 451 2.450	0.006 -0.001 0.000 -0.001 -0.005 -0.001 -0.003 0.006	CAF 1.013 1.009 1.003 1.001 0.995 0.992 0.985 0.963 0.933						
Comments									
Date of test: 8/3 Waveform Type	0/2006	Sine							

Test	ID 5383	-FCG-2					Pa	age 1
Pmax (1b)	EvB/P	a (in)	И	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[ir	deltaK n]^.5)
547 557 566 576 586 596	24.66 24.73 24.84 24.95 25.06 25.18 25.29	1.1898 1.1925 1.1974 1.2021 1.2067 1.2117 1.2164	17589 51634 109433 161141 211789 263538 308981	0.0076 0.0096 0.0044 0.0048 0.0048	91844 109507 48565 50194 47751 45798	8.322E-8 8.759E-8 9.160E-8 9.510E-8 1.003E-7	3.157 3.206 3.271 3.339 3.404 3.476	2.841 2.886 2.944 3.005 3.063 3.128
606 617 627 637 648 660 671 682	25.42 25.53 25.65 25.76 25.88 26.00 26.12 26.24	1.2213 1.2262 1.2309 1.2355 1.2403 1.2452 1.2500 1.2545	352797 395940 435931 472285 508639 544992 578316 608611	0.0048 0.0048 0.0048 0.0047 0.0047 0.0048 0.0047	43416 40850 39335 37587 35445 34082 33072 31507	1.108E-7 1.166E-7 1.219E-7 1.270E-7 1.330E-7 1.389E-7 1.439E-7 1.500E-7	3.545 3.617 3.690 3.764 3.840 3.917 3.996 4.077	3.190 3.256 3.321 3.387 3.456 3.526 3.596 3.669
694 705 718 729 742 754 767	26.36 26.48 26.60 26.71 26.84 26.96 27.08	1.2593 1.2641 1.2688 1.2733 1.2780 1.2828 1.2873	640421 670715 697679 723129 747366 770392 790994	0.0047 0.0047 0.0047 0.0047 0.0047 0.0047	29690 28175 26964 25096 23278 21693 20036	1.571E-7 1.658E-7 1.755E-7 1.871E-7 2.016E-7 2.186E-7 2.379E-7	4.157 4.242 4.325 4.413 4.498 4.588 4.681	3.742 3.818 3.892 3.971 4.049 4.129 4.213
780 793 806 820 834 848 862	27.21 27.33 27.45 27.58 27.71 27.84	1.2922 1.2969 1.3015 1.3063 1.3109 1.3158 1.3203	810385 827836 843346 857303 869090 879639 888575	0.0047 0.0047 0.0047 0.0047 0.0047 0.0048	18323 16450 14774 13032 11381 9922 8548	2.628E-7 2.940E-7 3.330E-7 3.804E-7 4.382E-7 5.106E-7 5.974E-7	4.773 4.869 4.967 5.065 5.169 5.270 5.377	4.296 4.382 4.470 4.558 4.652 4.743 4.839
877 892 908 923 938 954 970 986	28.09 28.22 28.36 28.49 28.61 28.75 28.88 29.01	1.3250 1.3300 1.3349 1.3394 1.3439 1.3488 1.3534	896122 902875 908591 913164 917232 921094 924549 927639	0.0047 0.0047 0.0047 0.0047 0.0047 0.0047 0.0047	7346 6266 5420 4738 4127 3614 3238 2924	6.988E-7 8.158E-7 9.424E-7 1.056E-6 1.180E-6 1.335E-6 1.507E-6 1.684E-6	5.485 5.596 5.709 5.823 5.939 6.055 6.178 6.303	4.936 5.036 5.138 5.240 5.345 5.449 5.560 5.673
1004 1021 1037 1055 1073 1091	29.15 29.28 29.41 29.55 29.69 29.83 29.97	1.3630 1.3676 1.3721 1.3769 1.3817 1.3864 1.3911	930273 932589 934777 936756 938610 940193 941598	0.0047 0.0047 0.0047 0.0047 0.0047 0.0047	2610 2344 2092 1888 1725 1559 1425	1.870E-6 2.063E-6 2.285E-6 2.537E-6 2.824E-6 3.131E-6 3.423E-6	6.428 6.556 6.686 6.818 6.954 7.095	5.785 5.901 6.017 6.137 6.259 6.386 6.513

Test :	ID 5383	FCG-2					P	age 2
Pmax (1b)	EvB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK n]^.5)
1128 1147 1167 1187 1206 1226 1248 1269 1290 1311 1334 1357 1380 1404 1428	30.11 30.25 30.39 30.54 30.67 30.81 30.97 31.11 31.25 31.40 31.55 31.70 31.85 32.01 32.16	1.3958 1.4005 1.4054 1.4102 1.4146 1.4193 1.4243 1.4290 1.4335 1.4382 1.4431 1.4479 1.4525 1.4574	942940 944130 945304 946371 947278 948174 949070 949839 950560 951286 951277 952599 953177 953781 954330	0.0048 0.0047 0.0047 0.0047 0.0047 0.0047 0.0047 0.0048 0.0048 0.0048 0.0048 0.0048 0.0047 0.0047	1294 1181 1096 1022 952 876 819 783 738 685 657 628 592 564	3.733E-6 4.028E-6 4.351E-6 4.684E-6 5.018E-6 5.384E-6 5.743E-6 6.082E-6 6.460E-6 7.254E-6 7.663E-6 8.056E-6 8.404E-6 8.720E-6	7.382 7.531 7.684 7.835 7.992 8.151 8.312 8.480 8.647 8.822 8.996 9.179 9.366 9.554 9.747	6.644 6.778 6.916 7.052 7.193 7.336 7.481 7.632 7.782 7.939 8.097 8.261 8.429 8.599 8.773
1452 1476	32.31 32.46 32.61 32.71	1.4668 1.4715 1.4762 1.4791	954839 955363 955844 956507	0.0093 0.0094	1033 1005	9.000E-6 9.345E-6	9.944 10.139	8.950 9.125
1533 1555 1576 1597 1618 1640 1662 1684 1732 1754 1778 1802 1826 1851 1875 1900 1925 1978	32.71 33.00 33.34 33.65 33.98 34.30 34.63 35.30 35.66 36.03 36.73 37.09 37.44 37.82 38.20 38.57 38.96 39.36	1.4791 1.4880 1.4979 1.5073 1.5169 1.5262 1.5357 1.5453 1.5544 1.5743 1.5743 1.5931 1.6027 1.6117 1.6214 1.6310 1.6402 1.6499 1.6597	956507 957438 958381 959280 960109 960904 961699 962424 963115 963806 964463 965048 965624 966173 966682 967207 967687 968682 967207 967687 96805 968042 969457	0.0189 0.0193 0.0190 0.0095 0.0094 0.0096 0.0096 0.0096 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095	1874 1842 1728 831 789 754 726 691 654 625 595 567 537 516 497 478 463 438 438 431 400	1.007E-5 1.050E-5 1.098E-5 1.144E-5 1.193E-5 1.256E-5 1.318E-5 1.385E-5 1.461E-5 1.537E-5 1.607E-5 1.677E-5 1.754E-5 1.905E-5 1.988E-5 2.078E-5 2.178E-5 2.178E-5	10.658 10.859 11.078 11.294 11.519 11.745 11.974 12.217 12.460 12.710 12.969 13.222 13.481 13.751 14.018 14.296 14.581 14.581 14.581 14.581 14.581 14.581 14.581 14.581	9.591 9.773 9.970 10.165 10.367 10.571 10.776 10.995 11.214 11.439 11.672 11.900 12.133 12.376 12.617 12.866 13.123 13.383 13.653 13.924
2004 2029 2057 2085 2112 2139	40.15 40.54 40.97 41.40 41.81 42.23	1.6787 1.6879 1.6978 1.7076 1.7169 1.7263	969832 970187 970543 970881 971183 971468	0.0096 0.0095 0.0095 0.0095 0.0097	379 357 335 320 306 287	2.534E-5 2.671E-5 2.830E-5 2.997E-5 3.169E-5 3.355E-5	15.774 16.088 16.405 16.732 17.065 17.402	14.197 14.479 14.764 15.059 15.358 15.662

Test :	ID 5383	-FCG-2					P	age 3
Pmax (1b)	EvB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK n]^.5)
2168 2197 2226 2254 2284 2314 2374 2405 2435 2467 2502 2563	42.67 43.12 43.56 44.00 44.45 44.93 45.40 45.87 46.35 47.35 47.88 48.37	1.7360 1.7460 1.7554 1.7646 1.7741 1.7840 1.7936 1.8032 1.8128 1.8222 1.8321 1.8423 1.8516 1.8609	971752 972023 972263 9722478 972698 972908 973091 973274 973448 973606 973758 973903 974027 974138	0.0095 0.0096 0.0096 0.0096 0.0096 0.0096 0.0097 0.0097 0.0097 0.0096 0.0096 0.0096	266 253 240 223 209 198 188 177 166 156 144 133 123 217	3.578E-5 3.804E-5 4.038E-5 4.303E-5 4.865E-5 5.133E-5 5.468E-5 5.468E-5 6.243E-5 6.763E-5 7.383E-5 8.759E-5	17.750 18.103 18.461 18.827 19.195 19.577 19.969 20.363 20.763 21.178 21.608 22.033 22.478 22.915	15.975 16.293 16.615 16.945 17.276 17.619 17.972 18.327 18.687 19.060 19.447 19.830 20.230 20.624
2596	49.40 49.93 50.48	1.8706 1.8801 1.8898	974244 974341 974442	0.0192	203	9.459E-5	23.359	21.024
2590 2590 2590 2590 2590 2590 2590 2590				0.0191 0.0195 0.0193 0.0097 0.0097 0.0096 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097	212 220 211 102 100 96 93 92 90 87 84 82 80 77 75 73 71 70 68 65	9.010E-5 8.844E-5 9.164E-5 9.536E-5 9.786E-5 1.005E-4 1.028E-4 1.073E-4 1.103E-4 1.171E-4 1.215E-4 1.263E-4 1.301E-4 1.334E-4 1.34E-4 1.34E-4 1.34E-4 1.34E-4	23.791 23.969 24.141 24.315 24.490 24.668 24.850 25.028 25.214 25.399 25.586 25.778 25.973 26.167 26.369 26.570 26.774 26.774 26.774 27.403	21.398 21.572 21.727 21.884 22.041 22.201 22.365 22.525 22.692 22.859 23.027 23.200 23.376 23.550 23.732 23.913 24.097 24.286 24.472 24.663
2590 2590 2590 2590 2590 2590 2590 2590	63.90 64.64 65.40 66.19 67.00 67.78 68.64 69.48	2.0928 2.1024 2.1120 2.1218 2.1318 2.1411 2.1514 2.1611	976247 976307 976366 976423 976478 976530 976586 976640	0.0097 0.0097 0.0096 0.0098 0.0098 0.0098 0.0098	63 58 57 56 54 52 49	1.533E-4 1.602E-4 1.667E-4 1.730E-4 1.770E-4 1.816E-4 1.878E-4 1.965E-4	27.617 27.832 28.052 28.278 28.502 28.742 28.972 29.214	24.855 25.048 25.247 25.450 25.652 25.867 26.074 26.292

Test	ID 5383	-FCG-2					P	age 4	
Pmax (1b)	EvB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK n]^.5)	
2590 2590	70.32 71.18	2.1708 2.1805	976687 976732	0.0099	48 46	2.064E-4 2.150E-4	29.454 29.696	26.508 26.726	
2590	72.04	2.1901	976774	0.0098	43	2.247E-4	29.950	26.954	
2590	72.98	2.2003	976818	0.0098	41	2.348E-4	30.199	27.178	
2590	73.89	2.2101	976862	0.0099	39	2.493E-4	30.460	27.413	
2590	74.81	2.2198	976900	0.0098	38	2.652E-4	30.717	27.644	
2590	75.74	2.2294	976934	0.0098	36	2.798E-4	30.985	27.885	
2590	76.74	2.2396	976968	0.0098	33	2.984E-4	31.246	28.121	
2590	77.69	2.2491	976999	0.0098	31	3.131E-4	31.524	28.370	
2590	78.69	2.2590	977031	0.0099	30	3.294E-4 3.474E-4	31.796	28.615	
2590 2590	79.70 80.76	2.2687	977059 977088	0.0098	28 27	3.474E-4 3.670E-4	32.081	28.872	
2590	81.80	2.2885	977113	0.0098	25	3.883E-4	32.657	29.389	
2590	82.87	2.2983	977137	0.0098	24	4.079E-4	32.945	29.649	
2590	83.94	2.3080	977161	0.0098	23	4.337E-4	33.247	29.920	
2590	85.08	2.3181	977183	0.0098	21	4.645E-4	33.544	30.188	
2590	86.19	2.3277	977204	0.0098	20	5.063E-4	33.856	30.468	
2590	87.35	2.3376	977223	0.0098	19	5.397E-4	34.167	30.747	
2590	88.54	2.3475	977240	0.0099	18	5.690E-4	34.483	31.031	
2590	89.71	2.3571	977255	0.0099	16	6.036E-4	34.804	31.320	
2590	90.91	2.3669	977272	0.0099	15	6.435E-4	35.144	31.626	
2590	92.27	2.3776	977289	0.0098	15	6.834E-4	35.471	31.920	
2589	93.52	2.3873	977302	0.0098	14	7.174E-4	35.821	32.234	
2590 2589	94.77 96.07	2.3968 2.4065	977314 977327	0.0099	13 12	7.645E-4 8.148E-4	36.158 36.502	32.537	
2589	97.40	2.4162	977339	0.0099	11	8.709E-4	36.859	33.167	
2589	98.81	2.4264	977350	0.0102	11	9.246E-4	37.224	33.495	
2589	100.27	2.4366	977361	0.0102	11	9.824E-4	37.605	33.835	
2589	101.75	2.4468	977370	0.0103	10	1.055E-3	37.990	34.173	
2586	103.37	2.4580	977381	0.0104	9	1.165E-3	38.390	34.539	
2588	104.77	2.4676	977390	0.0104	8	1.270E-3	38.803	34.900	
2589	106.33	2.4782	977397	0.0104	8	1.373E-3	39.217	35.280	*
2588	107.91	2.4886	977404	0.0102	7	1.486E-3	39.643	35.660	
2588	109.50	2.4988	977411	0.0105	7	1.603E-3	40.072	36.047	
2588	111.11	2.5090	977417	0.0104	6	1.689E-3	40.502	36.432	
2588	112.79	2.5193	977423	0.0103	6	1.841E-3	40.947	36.826	
2585 2587	114.63 116.34	2.5305 2.5405	977429 977434	0.0104	5 5	1.985E-3 2.134E-3	41.406 41.861	37.238 37.640	
2586	118.09	2.5507	977434	0.0106	5	2.134E-3 2.282E-3	42.341	38.066	
2586	119.99	2.5614	977443	0.0108	4	2.502E-3	42.792	38.462	
2583	121.88	2.5718	977447	0.0106	4	2.769E-3	43.300	38.910	
2582	123.96	2.5831	977451	0.0106	4	3.039E-3	43.828	39.368	*
2582	126.31	2.5954	977455	0.0105	3	3.519E-3	44.288	39.768	*
2579	128.01	2.6041	977457	0.0106	3	3.624E-3	44.856	40.271	*
2579	130.01	2.6142	977460	0.0104	3	3.956E-3	45.286	40.634	*
Test	ID 5383	-FCG-2					P	age 5	
Pmax (1b)	EvB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK n]^.5)	

lest	ID 5383	-FCG-2					F	age 5
Pmax (1b)	EvB/P	a (in)	И	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK .n]^.5)
2575	132.12	2.6245	977462	0.0103	2	4.271E-3	45.780	41.058 *
2569	134.40	2.6355	977465	0.0209	5	4.171E-3	46.247	41.448 *
2564	136.52	2.6454	977467	0.0216	4	5.391E-3	46.664	41.766 *
	139.07	2.6570	977469					

	Automated Fat Growth Rate	•	
Test ID Contract Material Temperature (F) Environment Sea U	5383-H116 75	Geometry Orientation Yield (ksi) Modulus (Msi	35.4
Specimen Dimensi	ons (in)		
Thickness Net Thickness Width	0.487 0.487 4.000	Height Notch Depth Gage Length	2.400 1.000 0.500
Precrack Paramete	ers		
Pmax (lbs) Final a (in)	860.0 1.050	Stress Ratio Kmax (ksi sq	
Test Parameters			
EvBP Freq 25.056 5.00 33.659 5.00 55.211 5.00	Pmax R 0 0.10 0 0.10 2400 0.10	1.180 2.40 1.521 9.37	4.00 0.00 2.00 0.00
K Coeff .886 4.64 -13.32 14.72 -5.6	C Coeff 1.00098 -4.66951 18.4601 -236.825 1214.88 -2143.57		
Visual Observation	ons		
EvB/P Crack(Evi 20.632 1.02 21.843 1.08 23.350 1.15 24.006 1.18 26.368 1.28 29.105 1.38 33.513 1.52 46.153 1.82 54.802 1.97	1.001 1.090 1.170 1.200 1.280 2.1.380 2.1.510 4.1.820	1) Error -0.023 0.005 0.015 0.016 -0.001 -0.002 -0.012 -0.004 0.005	CAF 1.035 1.031 1.026 1.024 1.017 1.010 1.001 0.982 0.973
Comments			
Date of test: 9/2/20 Waveform Type		ne	

Test	ID 5383	-FCG-3					Pa	age 1
Pmax (1b)	EvB/P	a (in)	И	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[in	deltaK n]^.5)
503 510	25.54 25.67 25.78	1.2484 1.2537 1.2581	214020 251086 290636	0.0097	76616 70817	1.261E-7 1.382E-7	2.996	2.697
520 529	25.91	1.2635	321903	0.0048	33533	1.402E-7	3.123	2.811
536	26.03 26.12	1.2679	353412 387345	0.0046	31395 29166	1.477E-7 1.568E-7	3.183	2.865
546 555	26.26 26.37	1.2773	415219 439457	0.0046 0.0046	27833 25975	1.669E-7 1.828E-7	3.308 3.377	2.977 3.040
564 574	26.48 26.61	1.2858	465633 488901	0.0047 0.0046	23454 22039	2.002E-7 2.121E-7	3.446	3.102 3.162
584 594	26.74 26.85	1.2958	509261 528067	0.0046 0.0047	20972 19452	2.261E-7 2.413E-7	3.584 3.658	3.226
604 614	26.98 27.10	1.3048	547452 565287	0.0047 0.0047	18288 17479	2.541E-7 2.672E-7	3.728 3.804	3.355
625 635	27.23 27.35	1.3142	582346 598629	0.0047 0.0047	16671 15405	2.840E-7 3.048E-7	3.880 3.959	3.492
646 657	27.48 27.61	1.3237	614137 628095	0.0047	14273 13168	3.309E-7 3.615E-7	4.039	3.635
668 679	27.73 27.86	1.3328	639881 650926	0.0046	12026 10914	3.958E-7 4.344E-7	4.201	3.781
691 703	27.99 28.12	1.3421	661352 670784	0.0046	9913 9127	4.752E-7 5.158E-7	4.370 4.458	3.933 4.013
715 727	28.25	1.3516	679623 687570	0.0046	8397 7665	5.622E-7 6.158E-7	4.547	4.092
739 751	28.50	1.3606	694640 701309	0.0046	6993 6367	6.749E-7 7.465E-7	4.729	4.256
764 777	28.77	1.3700	707343 712742	0.0047	5847 5457	8.215E-7 8.767E-7	4.918 5.019	4.426
791 805	29.04 29.18	1.3795	717823	0.0047	5090 4728	9.293E-7 9.881E-7	5.121	4.609
818 831	29.31	1.3887	727379 731851	0.0047	4377 4013	1.068E-6 1.184E-6	5.330 5.434	4.797
846 860	29.58	1.3982	735713 739005	0.0046	3641 3240	1.340E-6 1.512E-6	5.544 5.654	4.989
874 889	29.86	1.4074	741899 744501	0.0046	2859 2545	1.693E-6 1.889E-6	5.766 5.880	5.190
904	30.13	1.4166	746818 749005	0.0047	2292 2073	2.088E-6 2.306E-6	5.997	5.398
935 951	30.42	1.4262	750984 752755	0.0047	1888 1736	2.538E-6 2.773E-6	6.241	5.617
967 984	30.71	1.4354	754339 755826	0.0047	1584 1444	3.006E-6 3.269E-6	6.495	5.846
1000	31.00 31.14	1.4449	757235 758509	0.0046	1318 1219	3.562E-6 3.867E-6	6.757 6.892	6.081

Test	ID 5383	-FCG-3					P	age 2
Pmax	EvB/P	a (in)	И	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK n]^.5)
1034 1051 1069 1088 1106 1124 1143 1162 1182 1203	31.29 31.43 31.58 31.73 31.88 32.03 32.19 32.34 32.49 32.65	1.4541 1.4585 1.4632 1.4681 1.4727 1.4773 1.4820 1.4866 1.4914 1.4962	759646 760660 761652 762634 763488 764286 765081 765807 766498 767154	0.0047 0.0046 0.0046 0.0047 0.0047 0.0047 0.0047 0.0047 0.0047	1135 1042 963 906 858 808 753 709 672 631	4.176E-6 4.501E-6 4.843E-6 5.180E-6 5.498E-6 5.842E-6 6.234E-6 6.625E-6 7.056E-6 7.517E-6	7.025 7.166 7.308 7.454 7.606 7.757 7.910 8.070 8.232 8.396	6.322 6.449 6.578 6.708 6.845 6.981 7.119 7.263 7.409 7.557
1223 1244 1265 1286	32.80 32.96 33.12 33.27 33.44 33.66 33.77	1.5008 1.5055 1.5103 1.5147 1.5196 1.5260 1.5293	767740 768316 768865 769352 769833 770407 770712	0.0047 0.0047 0.0092 0.0093	591 556 1036 968	7.954E-6 8.452E-6 8.901E-6 9.579E-6	8.567 8.738 8.911 9.092	7.711 7.864 8.020 8.183
1346 1364 1382 1401 1420 1439	34.01 34.33 34.67 35.01 35.35 35.70	1.5360 1.5453 1.5547 1.5643 1.5738 1.5831	771334 772176 773003 773771 774485 775198	0.0160 0.0187 0.0090 0.0094 0.0094	1464 1669 748 758 728 695	1.096E-5 1.121E-5 1.204E-5 1.246E-5 1.298E-5 1.352E-5	9.670 9.835 10.029 10.228 10.431 10.638	8.703 8.851 9.026 9.205 9.388 9.574
1459 1478 1498 1518 1539 1559	36.05 36.40 36.76 37.12 37.50 37.86	1.5925 1.6019 1.6114 1.6207 1.6303 1.6396	775884 776543 777174 777777 778354 778902	0.0094 0.0094 0.0094 0.0094 0.0094 0.0094	668 645 617 590 565 544	1.401E-5 1.459E-5 1.524E-5 1.592E-5 1.662E-5 1.732E-5	10.848 11.063 11.281 11.507 11.731 11.964	9.763 9.956 10.153 10.356 10.558 10.767
1580 1601 1623 1645 1667 1689 1711	38.23 38.62 39.01 39.40 39.81 40.20 40.61	1.6489 1.6583 1.6679 1.6774 1.6869 1.6962 1.7056	779424 779933 780435 780916 781375 781812 782227	0.0094 0.0094 0.0094 0.0095 0.0094 0.0094	523 504 485 467 448 429 411	1.801E-5 1.870E-5 1.942E-5 2.018E-5 2.097E-5 2.180E-5 2.272E-5	12.200 12.442 12.690 12.945 13.200 13.461 13.722	10.980 11.197 11.421 11.650 11.880 12.115 12.350
1733 1756 1779 1803 1827 1850 1874 1900 1925	41.00 41.42 41.84 42.28 42.72 43.14 43.59 44.05 44.53	1.7147 1.7241 1.7336 1.7432 1.7529 1.7619 1.7713 1.7811 1.7909	782619 783011 783384 783758 784113 784430 784743 785056 785355	0.0094 0.0094 0.0094 0.0095 0.0095 0.0095 0.0094	397 384 367 354 341 329 311 296 286	2.359E-5 2.456E-5 2.548E-5 2.659E-5 2.783E-5 2.905E-5 3.040E-5 3.184E-5 3.339E-5	13.991 14.265 14.548 14.840 15.131 15.431 15.737 16.050 16.369	12.592 12.839 13.093 13.356 13.618 13.888 14.163 14.445 14.732

Test :	ID 5383	-FCG-3					P	age 3
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[i	n]^.5)
1949	44.98	1.8001	785625	0.0096	271	3.520E-5	16.696	15.027
1975	45.44	1.8094	785887	0.0094	254	3.698E-5	17.027	15.324
2001	45.93	1.8192	786144	0.0093	241	3.894E-5	17.363	15.626
2027	46.42	1.8287	786371	0.0095	233	4.077E-5	17.695	15.926
2051	46.86	1.8372	786581	0.0095	223	4.270E-5	18.048	16.243
2078	47.37	1.8469	786801	0.0095	210	4.482E-5	18.395	16.556
2105	47.89	1.8568	787020	0.0094	201	4.711E-5	18.769	16.892
2133	48.42	1.8667	787222	0.0096	194	4.980E-5	19.144	17.230
2160	48.94	1.8761	787404	0.0096	184	5.258E-5	19.526	17.573
2187	49.45	1.8854	787578	0.0096	172	5.576E-5	19.910	17.919
2215	49.99	1.8950	787744	0.0095	161	5.917E-5	20.304	18.273
2243	50.54	1.9047	787904	0.0095	152	6.315E-5	20.705	18.634
2271	51.09	1.9141	788049	0.0095	142	6.734E-5	21.117	19.005
2300	51.64	1.9236	788185	0.0095	133	7.198E-5	21.533	19.380
2329	52.21	1.9332	788313	0.0095	123	7.751E-5	21.948	19.754
2357	52.76	1.9423	788429	0.0095	114	8.377E-5	22.383	20.145
2386	53.34	1.9518	788540	0.0191	212	9.007E-5	22.815	20.533
2416	53.94	1.9614	788641	0.0190	192	9.914E-5	23.265	20.938
	54.53	1.9709	788732					
	55.21	1.9819	788832					
2400	55.75	1.9907	788930	0.0187	207	9.056E-5	23.642	21.276
2400	56.37	2.0007	789039	0.0204	219	9.324E-5	23.817	21.435
2400	57.03	2.0111	789149	0.0205	212	9.650E-5	24.002	21.601
2400	57.67	2.0211	789251	0.0102	103	9.869E-5	24.196	21.776
2400	58.34	2.0315	789353	0.0102	100	1.016E-4	24.388	21.949
2400	59.02	2.0418	789454	0.0101	97	1.042E-4	24.584	22.126
2400	59.70	2.0519	789548	0.0102	95	1.070E-4	24.780	22.302
2400	60.37	2.0617	789637	0.0101	91	1.101E-4	24.980	22.482
2400	61.07	2.0718	789731	0.0101	88	1.140E-4	25.182	22.664
2400	61.81	2.0823	789820	0.0100	85	1.176E-4	25.385	22.847
2400	62.51	2.0922	789901	0.0101	83	1.212E-4	25.597	23.038
2400	63.25	2.1024	789983	0.0101	81	1.252E-4	25.802	23.222
2400	63.97	2.1121	790060	0.0100	79	1.277E-4	26.015	23.414
2400	64.72	2.1221	790136	0.0100	77	1.296E-4	26.232	23.609
2400	65.52	2.1326	790216	0.0100	75	1.321E-4	26.448	23.803
2400	66.29	2.1425	790291	0.0101	74	1.348E-4	26.672	24.005
2400	67.07	2.1524	790365	0.0101	73	1.378E-4	26.894	24.205
2400 2400	67.87 68.70	2.1624 2.1725	790435 790505	0.0101	71 69	1.417E-4 1.460E-4	27.121 27.355	24.409 24.619
2400	69.55	2.1725	790505	0.0102	67	1.520E-4	27.593	24.833
2400	70.41	2.1931	790642	0.0102	64	1.595E-4	27.836	25.052
2400	71.29	2.2034	790707	0.0101	61	1.679E-4	28.083	25.275
2400	72.19	2.2136	790764	0.0101	58	1.767E-4	28.330	25.496
2400	73.07	2.2236	790817	0.0101	55	1.845E-4	28.578	25.720
2400	73.95	2.2333	790870	0.0100	52	1.910E-4	28.831	25.948

Test	ID 5383	-FCG-3					P	age 4
Pmax (1b)	EvB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK n]^.5)
2400	74.90	2.2436	790921	0.0100	52	1.949E-4	29.083	26.175
2400	75.83	2.2535	790971	0.0101	50	1.992E-4	29.344	26.409
2400	76.76	2.2634	791021	0.0101	48	2.065E-4	29.612	26.650
2400	77.77	2.2738	791073	0.0101	47	2.162E-4	29.880	26.892
2400	78.79	2.2841	791119	0.0102	45	2.304E-4	30.156	27.140
2400	79.78	2.2939	791159	0.0103	42	2.470E-4	30.436	27.392
2400	80.83	2.3042	791201	0.0102	39	2.656E-4	30.728	27.654
2400 2400	81.94	2.3149	791239	0.0101 0.0102	36	2.831E-4	31.016	27.915
2400	83.03 84.09	2.3251	791273 791305	0.0102	34 32	3.016E-4 3.218E-4	31.315	28.182 28.443
2400	85.13	2.3444	791334	0.0102	30	3.387E-4	31.910	28.718
2400	86.34	2.3552	791364	0.0099	28	3.538E-4	32.213	28.991
2400	87.54	2.3656	791392	0.0101	27	3.698E-4	32.533	29.278
2400	88.69	2.3755	791418	0.0101	26	3.849E-4	32.842	29.557
2400	89.80	2.3848	791443	0.0100	25	3.999E-4	33.165	29.847
2400	91.06	2.3952	791468	0.0100	24	4.195E-4	33.479	30.130
2400	92.31	2.4053	791491	0.0101	23	4.415E-4	33.818	30.435
2400	93.59	2.4154	791514	0.0103	22	4.665E-4	34.159	30.741
2400	94.90	2.4257	791535	0.0102	21	4.900E-4	34.513	31.060
2400	96.30	2.4363	791556	0.0101	20	5.180E-4	34.866	31.378
2400	97.65	2.4464	791575	0.0101	18	5.504E-4	35.232	31.707
2400	99.02	2.4564	791593	0.0101	17	5.963E-4	35.586	32.025
2400	100.37	2.4661	791609	0.0101	16	6.434E-4	35.950	32.352
2400	101.77	2.4759	791624	0.0100	15	6.871E-4	36.318	32.683
2400	103.25	2.4861	791637	0.0101	14	7.346E-4	36.704	33.030
2400	104.81	2.4966	791651	0.0102	13	7.867E-4	37.087	33.374
2399	106.30	2.5064	791664	0.0102	12	8.499E-4	37.508	33.753
2400	107.97	2.5172	791676	0.0107	12	9.410E-4	37.904	34.107
2399 2399	109.57 111.19	2.5274 2.5374	791687 791696	0.0102	10 9	1.031E-3 1.119E-3	38.327 38.808	34.486 * 34.914 *
2400	113.30	2.5502	791706	0.0102	9	1.217E-3	39.177	35.250 *
2400	114.60	2.5578	791713	0.0101	8	1.291E-3	39.669	35.689 *
2399	116.29	2.5676	791720	0.0101	8	1.346E-3	40.050	36.037 *
2399	118.03	2.5775	791727	0.0097	7	1.402E-3	40.503	36.448 *
2400	119.92	2.5879	791734	0.0102	7	1.456E-3	40.952	36.848 *
2399	121.76	2.5979	791741	0.0103	7	1.518E-3	41.433	37.279 *
2399	123.70	2.6082	791748	0.0104	6	1.633E-3	41.918	37.711 *
2398	125.79	2.6190	791755	0.0103	6	1.773E-3	42.423	38.161 *
2399	127.89	2.6296	791760	0.0103	6	1.932E-3	42.933	38.616 *
2398	129.96	2.6399	791765	0.0104	5	2.122E-3	43.454	39.087 *
2399	131.99	2.6496	791770	0.0104	5	2.315E-3	43.966	39.537 *
2398	134.17	2.6599	791774	0.0105	4	2.545E-3	44.502	40.019 *
2397	136.51	2.6706	791778	0.0104	4	2.814E-3	45.051	40.503 *
2397	138.90	2.6813	791782	0.0106	3	3.270E-3	45.620	41.010 *
2395	141.47	2.6925	791785	0.0119	3	4.179E-3	46.087	41.403 *
Test	ID 5383	-FCG-3					P	age 5
Pmax (1b)	EvB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)		deltaK n]^.5)
	140.00				_			41 550
	143.82			0.0129		4.988E-3		
		2.7131		0.0286		7.155E-3		
23/5		2.7312		0.0349	5	6.974E-3	47.886	42.911 *
	105.25	2./4/3	131133					

Automated Fatigue Crack Growth Rate Analysis									
Test ID Contract Material Temperature Environment	e (F)	SSC 10 5383-H 75	5383-H116 75		Geometry Orientation Yield (ksi) Modulus (Msi)		C(T) T-L 35.4 10.5		
Specimer	n Dimension	s (in)							
Thickness Net Thickne Width	Net Thickness		5	Height Notch Depth Gage Length			2.400 1.000 0.500		
Precrack Parameters									
Pmax (lbs) Final a (ir	359.0 1.050)	Str Kma	ess Ratio x (ksi so	pr[in])	0.10 4.50			
Test Parameters									
EvBP 23.789 30.408 48.973	5.00 5.00		0.10	1.14	. Kmaxi 0 3.10 6 9.34	4.00 2.00	0.00		
K Coef .886 4.64 -13.32 14.72 -5.6	5 4 2 2	C Coeff 1.00098 4.66951 18.4601 236.825 1214.88 2143.57	} - - - -						
Visual (Observation	5							
EvB/P 20.753 21.841 23.480 23.760 26.667 27.531 30.339 34.274 48.661 59.300 66.619 101.006		1 1 1 1 1 1 1 1 2 2	ck (visua 002 040 100 170 260 280 380 490 880 880 800 120	-0 -0 0 -0 -0 -0	0.019 0.001 0.021 0.036 0.000 0.014 0.017 0.033 0.015 0.037	CAF 0.993 0.991 0.989 0.989 0.985 0.985 0.983 0.972 0.969 0.966			
Date of tes		06							
Dave of ber									

W	aveform	Type		S	ine			
Test	TD 5383	-FCG-45					D.	age 1
1000		100 10					-	9
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[i:	n]^.5)
	23.88	1.1397	98879					
592	23.99	1.1451	149517	0.0100	95897	1.043E-7	3.295	2.966
601	24.10	1.1497	194776	0.0102	80660	1.269E-7	3.370	3.033
613	24.22	1.1554	230177	0.0051	36339	1.477E-7	3.435	3.091
623	24.32	1.1601	262838	0.0049	31739	1.654E-7	3.508	3.158
633	24.43	1.1650	290853	0.0050	27100	1.889E-7	3.580	3.222
644 654	24.55 24.65	1.1701	316914 339948	0.0048	24356 21817	2.097E-7 2.344E-7	3.649 3.725	3.284
666	24.05	1.1798	357374	0.0049	19901	2.505E-7	3.725	3.415
676	24.77	1.1844	376314	0.0049	18184	2.714E-7	3.874	3.487
688	24.99	1.1896	393740	0.0049	16568	2.941E-7	3.948	3.553
699	25.09	1.1941	410257	0.0049	15684	3.184E-7	4.031	3.628
711	25.21	1.1994	426017	0.0050	14224	3.586E-7	4.113	3.701
724	25.33	1.2044	439353	0.0049	12936	3.988E-7	4.195	3.776
736	25.44	1.2093	451477	0.0049	11685	4.385E-7	4.285	3.856
749	25.56	1.2143	461659	0.0049	10480	4.783E-7	4.368	3.931
761	25.67	1.2191	471354	0.0049	9615	5.147E-7	4.457	4.011
774	25.78	1.2237	480369	0.0049	8757	5.580E-7	4.547	4.093
788	25.91	1.2289	488898	0.0048	8082	6.017E-7	4.636	4.172
801	26.02	1.2336	497041	0.0049	7501	6.660E-7	4.731	4.258
814	26.14	1.2387	504019	0.0049	6919	7.224E-7	4.822	4.340
827 842	26.25 26.38	1.2431	510148 516358	0.0049	6326 11736	7.842E-7 8.521E-7	4.924 5.017	4.432 4.516
856	26.49	1.2531	521884	0.0100	10496	9.030E-7	5.124	4.612
870	26.62	1.2580	526854	0.0450	31113	1.446E-6	0.000	0.000
999	27.63	1.2980	552997	0.0442	27932	1.581E-6	0.000	0.000
1013	27.73	1.3022	554786	0.0089	3659	2.434E-6	6.265	5.638
1030	27.86	1.3069	556656	0.0095	3577	2.662E-6	6.379	5.741
1047	27.98	1.3117	558363	0.0098	3333	2.933E-6	6.507	5.856
1065	28.11	1.3167	559989	0.0049	1561	3.203E-6	6.638	5.974
1083	28.25	1.3218	561534	0.0050	1434	3.517E-6	6.775	6.098
1102	28.38	1.3268	562916	0.0050	1315	3.859E-6	6.914	6.223
1121	28.51	1.3318	564152	0.0049	1199	4.225E-6	7.057	6.351
1140	28.65	1.3367	565260	0.0049	1088	4.617E-6	7.197	6.477
1159	28.78	1.3415	566255	0.0049	989	5.011E-6	7.343	6.609
1179	28.91	1.3463	567184	0.0049	907	5.431E-6	7.489	6.740
1199 1219	29.04 29.17	1.3513	568059 568851	0.0049	840 786	5.864E-6 6.289E-6	7.638 7.794	6.874 7.015
1240	29.31	1.3610	569595	0.0049	737	6.695E-6	7.948	7.153
1261	29.45	1.3659	570299	0.0049	687	7.160E-6	8.110	7.299
1282	29.59	1.3709	570970	0.0049	640	7.651E-6	8.273	7.445
1304	29.72	1.3757	571607	0.0049	599	8.187E-6	8.442	7.598
1326	29.86	1.3807	572178	0.0049	563	8.718E-6	8.606	7.745
1347	30.00	1.3853	572690	0.0094	1010	9.343E-6	8.781	7.903

Test 1	ID 5383	-FCG-45					P	age 2
Pmax (1b)	EvB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK n]^.5)
1370	30.13 30.27 34.37	1.3902 1.3951 1.5263	573188 573679 581958	0.0097	989	9.839E-6	8.952	8.057
1699 1722	34.66 34.99	1.5348	582335 582815	0.0183 0.0196	857 950	2.135E-5 2.067E-5	12.199 12.426	10.979 11.183
1744	35.33	1.5544	583285 583734	0.0198	919 443	2.153E-5 2.234E-5	12.676	11.408
1792 1817 1841	36.04 36.40 36.76	1.5744 1.5845 1.5942	584171 584596 584990	0.0099 0.0099 0.0099	426 410 396	2.320E-5 2.414E-5 2.495E-5	13.192 13.457 13.727	11.873 12.112 12.354
1865 1891	37.11 37.49	1.6039	585368 585746	0.0098	378 362	2.593E-5 2.698E-5	14.004	12.604
1916 1941 1967	37.86 38.23 38.61	1.6237 1.6335 1.6433	586109 586439 586770	0.0099 0.0099 0.0098	352 339 323	2.812E-5 2.929E-5 3.052E-5	14.569 14.859 15.163	13.112 13.373 13.646
1995	39.02	1.6537	587101 587400	0.0099	309 298	3.195E-5 3.323E-5	15.163 15.467 15.780	13.920
2048 2075	39.79 40.20	1.6730 1.6831	587682 587961	0.0099	285 270	3.467E-5 3.631E-5	16.100 16.417	14.490 14.775
2103 2130 2159	40.61 41.02 41.44	1.6929 1.7028 1.7128	588228 588482 588723	0.0098 0.0099 0.0098	258 247 234	3.806E-5 3.998E-5 4.194E-5	16.750 17.085 17.430	15.075 15.377 15.687
2188 2216	41.86 42.29	1.7226	588950 589163	0.0098	222 211	4.417E-5 4.649E-5	17.777	15.999
2244 2273 2304	42.71 43.14 43.60	1.7418 1.7517 1.7617	589366 589559 589748	0.0098 0.0098 0.0098	201 189 179	4.896E-5 5.176E-5 5.505E-5	18.486 18.856 19.235	16.638 16.971 17.311
2334 2363	44.06 44.50	1.7717	589927 590082	0.0099	169 159	5.879E-5 6.258E-5	19.616	17.654
2395 2426	44.96 45.44	1.7911	590234 590379	0.0099	148 138	6.718E-5 7.229E-5	20.408	18.367 18.734
2457 2489 2522	45.91 46.41 46.90	1.8109 1.8211 1.8310	590511 590637 590752	0.0099 0.0099 0.0099	130 121 113	7.734E-5 8.271E-5 8.836E-5	21.241 21.667 22.103	19.117 19.500 19.892
2554 2587	47.39 47.89	1.8407	590859 590961	0.0195	209 198	9.346E-5 1.003E-4	22.548	20.293
2575	48.41 48.97 49.45	1.8606 1.8713 1.8803	591057 591167 591269	0.0190	211	8.982E-5	23.393	21.054
2575 2575	49.99	1.8902	591378 591484	0.0198	215 208	9.223E-5 9.493E-5	23.554	21.199
2575 2575	51.08 51.63	1.9100	591586 591679	0.0099	99 95	9.993E-5 1.038E-4	23.898	21.508
2575 2575	52.20 52.77	1.9297 1.9396	591773 591862	0.0099	92 90	1.073E-4 1.103E-4	24.249 24.427	21.824 21.984

Pmax	Test	ID 5383	-FCG-45					P	age 3
2575	Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
2575 53.93 1.9592 592037 0.0099 85 1.157E-4 24.792 22.313 2575 54.54 1.9693 592123 0.0100 81 1.194E-4 24.977 22.480 2575 55.14 1.9790 592203 0.0100 81 1.236E-4 25.171 22.654 2575 55.78 1.9893 582285 0.0099 74 1.338E-4 25.557 23.001 2575 57.04 2.0091 592430 0.0099 74 1.338E-4 25.567 23.001 2575 57.68 2.0188 592500 0.0194 136 1.427E-4 25.947 23.352 2575 59.30 2.0285 592631 0.1208 649 1.862E-4 0.000 0.000 2575 69.02 2.1493 593291 0.0281 14 2.468E-4 2.9.511 26.243 2576 69.73 2.1676 593291 0.0281 14 2.468E-4 2.9.511	(lb)		(in)		(in)		(in/cyc)	(ksi[i	n]^.5)
2575 53.93 1.9592 592037 0.0099 85 1.157E-4 24.792 22.313 2575 54.54 1.9693 592123 0.0100 81 1.194E-4 24.977 22.480 2575 55.14 1.9790 592203 0.0100 81 1.236E-4 25.171 22.654 2575 55.78 1.9893 582285 0.0099 74 1.338E-4 25.557 23.001 2575 57.04 2.0091 592430 0.0099 74 1.338E-4 25.567 23.001 2575 57.68 2.0188 592500 0.0194 136 1.427E-4 25.947 23.352 2575 59.30 2.0285 592631 0.1208 649 1.862E-4 0.000 0.000 2575 69.02 2.1493 593291 0.0281 14 2.468E-4 2.9.511 26.243 2576 69.73 2.1676 593291 0.0281 14 2.468E-4 2.9.511							_		
2575 54.54 1.9693 592123 0.0100 83 1.194E-4 24.977 22.480 2575 55.78 1.9893 592203 0.0100 81 1.236E-4 25.171 22.654 2575 55.78 1.9893 592285 0.0099 71 1.387E-4 25.557 23.001 2575 57.64 1.9997 592362 0.0099 74 1.337E-4 25.557 23.001 2575 57.68 2.0188 592500 0.0194 136 1.427E-4 25.947 23.352 2575 58.32 2.0285 592566 0.0197 131 1.504E-4 26.148 23.533 2575 59.00 2.0385 592566 0.0197 131 1.504E-4 26.148 23.533 2575 68.71 2.1676 593291 0.0281 114 2.468E-4 0.000 0.000 2575 68.71 2.1676 593291 0.0281 114 2.468E-4 29.161 26.243 2575 70.39 2.1875 593367 0.0199 76 2.613E-4 29.161 26.243 2575 71.24 2.1973 593404 0.0099 37 2.695E-4 30.020 27.017 2575 72.16 2.2076 593478 0.0101 34 2.963E-4 30.839 27.485 2575 74.90 2.2375 593541 0.0101 34 2.963E-4 30.839 27.485 2575 77.78 2.2480 593571 0.0100 28 3.540E-4 31.893 27.728 2575 77.78 2.2480 593571 0.0100 27 3.710E-4 31.640 28.475 2575 77.78 2.2773 593647 0.0100 27 3.710E-4 31.640 28.475 2575 77.78 2.2773 593647 0.0100 27 3.710E-4 31.640 28.475 2575 87.98 2.2773 593647 0.0100 27 3.710E-4 33.092 27.728 2575 87.78 2.2773 593673 0.0100 27 3.710E-4 33.133 30.345 2575 87.78 2.2773 593673 0.0100 27 3.710E-4 33.433 30.345 2575 87.89 2.3875 593890 0.0099 17 5.741E-4 33.693 37.728 2575 87.89 2.3875 593890 0.0099 19 5.308E-4 30.309 27.728 2575 87.78 2.2773 593673 0.0100 27 3.710E-4 33.433 30.345 2575 87.89 2.3875 593890 0.0099 17 5.741E-4 33.693 27.758 2575 87.80 2.3875 593890 0.0099 17 5.741E-4 33.693 37.758 2575 87.80 2.3875 593890 0.0099 17 5.741E-4 33.693 33.345 2575 87.80 2.3876 593895 0.0100 28 3.22E-4 36.037	2575	53.34	1.9493	591947	0.0099	87	1.125E-4	24.609	22.148
2575 55.14 1.9790 592203 0.0100 81 1.236E-4 25.171 22.654 2575 55.78 1.9893 592285 0.0099 77 1.239E-4 25.364 22.828 2575 56.44 1.9997 592362 0.0099 74 1.338E-4 25.557 23.001 2575 57.04 2.0091 592430 0.0099 71 1.387E-4 25.756 23.180 2575 57.68 2.0188 592500 0.0194 136 1.427E-4 25.947 23.352 2575 58.32 2.0285 592666 0.0197 131 1.504E-4 26.148 23.533 2575 59.00 2.0385 592631 0.1208 649 1.862E-4 0.000 0.000 2575 68.71 2.1676 593291 0.0281 114 2.468E-4 29.161 26.243 2575 69.53 2.1775 593329 0.0199 76 2.613E-4 29.511 26.560 2575 70.39 2.1875 593367 0.0198 75 2.642E-4 29.760 26.784 2575 71.24 2.1973 593404 0.0099 37 2.695E-4 30.020 27.017 2575 72.16 2.2076 593442 0.0100 35 2.805E-4 30.027 27.248 2575 73.96 2.2176 593481 0.0101 34 2.963E-4 30.839 27.485 2575 73.97 2.2272 593510 0.0101 33 3.121E-4 30.810 27.728 2575 74.90 2.2375 593541 0.0100 30 3.343E-4 31.083 27.7728 2575 77.78 2.2674 593622 0.0099 26 3.820E-4 31.389 28.722 2575 77.78 2.2674 593622 0.0099 26 3.820E-4 31.389 28.222 2575 77.78 2.2674 593622 0.0099 26 3.820E-4 31.389 28.222 2575 78.78 2.2773 593647 0.0100 27 3.710E-4 31.640 28.475 2575 87.78 2.2872 593673 0.0100 24 4.137E-4 32.491 29.242 2575 87.78 2.2877 593697 0.0100 24 4.137E-4 32.491 29.242 2575 87.78 2.2877 593697 0.0100 24 4.137E-4 32.491 29.242 2575 87.78 2.2877 593698 0.0100 27 3.710E-4 31.640 28.475 2575 87.78 2.2877 593698 0.0100 27 3.710E-4 31.640 28.475 2575 87.52 2.3578 593898 0.0099 17 5.741E-4 34.4678 31.309 2575 87.52 2.3578 593898 0.0100 28 4.265E-4 32.079 29.5161 2575 87.52 2.3578 593898 0.0100 28 4.265E-4 36.03	2575	53.93	1.9592	592037	0.0099	85	1.157E-4	24.792	22.313
2575 55.78 1.9893 592285 0.0099 77 1.289E-4 25.364 22.828 2575 57.04 2.0091 592430 0.0099 74 1.338E-4 25.556 23.180 2575 57.68 2.0188 592500 0.0194 136 1.427E-4 25.947 23.352 2575 59.00 2.0385 592500 0.0194 136 1.427E-4 25.947 23.352 2575 59.00 2.0385 592631 0.1208 649 1.862E-4 0.000 0.000 2575 67.20 2.1493 593215 0.1291 660 1.956E-4 0.000 0.000 2575 67.20 2.1493 593275 0.0199 76 2.613E-4 29.511 26.6243 2575 71.24 2.1973 593404 0.0099 37 2.695E-4 30.202 27.017 2575 73.06 2.2176 593478 0.0101 34 2.963E-4 30.276	2575	54.54	1.9693	592123	0.0100	83	1.194E-4	24.977	22.480
2575 56.44 1.9997 592430 0.0099 74 1.338E-4 25.557 23.180 2575 57.68 2.0188 592500 0.0194 136 1.427E-4 25.756 23.352 2575 58.32 2.0285 592566 0.0197 131 1.504E-4 26.148 23.533 2575 59.00 2.0385 592666 0.0197 131 1.504E-4 26.148 23.533 2575 67.20 2.1493 593215 0.1291 660 1.956E-4 0.000 0.000 2575 67.20 2.1473 593291 0.0281 114 2.468E-4 29.161 26.243 2575 70.39 2.1875 593397 0.0199 76 2.613E-4 29.511 26.60 2575 70.39 2.1875 593404 0.0100 35 2.805E-4 30.020 27.017 2575 73.06 2.2176 593478 0.0101 34 2.963E-4 30.276	2575	55.14	1.9790	592203	0.0100	81		25.171	22.654
2575 \$7.04 \$2.0091 \$92430 \$0.0099 71 \$1.387E-4 \$25.756 \$23.180 2575 \$58.32 \$2.0285 \$92500 \$0.0194 \$136 \$1.427E-4 \$25.947 \$23.533 2575 \$59.00 \$2.0385 \$92631 \$0.1291 \$600 \$1.95EE-4 \$0.000 \$0.000 2575 \$67.20 \$2.1493 \$593215 \$0.1291 \$600 \$1.95EE-4 \$0.000 \$0.000 2575 \$67.20 \$2.1493 \$593291 \$0.0281 \$114 \$2.468E-4 \$2.96161 \$26.243 2575 \$69.53 \$2.1775 \$933291 \$0.0199 \$76 \$2.642E-4 \$2.9511 \$26.560 2575 \$70.39 \$2.1875 \$933291 \$0.0199 \$76 \$2.642E-4 \$29.510 \$2.0161 \$26.243 2575 \$70.39 \$2.1875 \$93442 \$0.0100 \$35 \$2.805E-4 \$30.202 \$27.017 2575 \$73.94 \$2.2272 \$99350 \$0.0	2575	55.78	1.9893		0.0099	77	1.289E-4	25.364	22.828
2575 57.68 2.0188 592500 0.0194 136 1.427E-4 25.947 23.352 2575 58.32 2.0285 592566 0.0197 131 1.504E-4 26.148 23.533 2575 59.00 2.0385 592631 0.1291 660 1.956E-4 0.000 0.000 2575 67.20 2.1493 593215 0.1291 660 1.956E-4 0.000 0.000 2575 67.20 2.1493 593215 0.1291 660 1.956E-4 0.000 0.000 2575 69.53 2.1775 593329 0.0199 76 2.613E-4 29.511 26.560 2575 70.39 2.1875 593404 0.0099 37 2.699E-4 30.020 27.07 2575 73.06 2.2176 593478 0.0101 34 2.963E-4 30.539 27.485 2575 73.94 2.2272 593510 0.0101 33 3.121E-4 30.802 <t< td=""><td>2575</td><td>56.44</td><td>1.9997</td><td></td><td>0.0099</td><td>74</td><td>1.338E-4</td><td>25.557</td><td>23.001</td></t<>	2575	56.44	1.9997		0.0099	74	1.338E-4	25.557	23.001
2575 58.32 2.0285 592566 0.0197 131 1.504E-4 26.148 23.533 2575 59.00 2.0385 592631 0.1208 649 1.862E-4 0.000 0.000 2575 67.20 2.1493 593215 0.1291 660 1.956E-4 0.000 0.000 2575 68.71 2.1676 593291 0.0281 114 2.468E-4 29.161 26.243 2575 70.39 2.1875 593367 0.0199 76 2.613E-4 29.511 26.560 2575 70.39 2.1875 593404 0.0099 37 2.699E-4 30.020 27.017 2575 72.16 2.2076 593478 0.0101 34 2.963E-4 30.276 27.248 2575 73.94 2.2272 593510 0.0101 33 3.121E-4 30.810 27.728 2575 74.90 2.2375 593571 0.0100 33 3.343E-4 31.083	2575	57.04	2.0091	592430	0.0099	71	1.387E-4	25.756	23.180
2575 59.00 2.0385 592631 0.1208 649 1.862E-4 0.000 0.000 2575 67.20 2.1493 593215 0.1291 660 1.956E-4 0.000 0.000 2575 69.53 2.1775 593329 0.0199 76 2.613E-4 29.511 26.560 2575 70.39 2.1875 593367 0.0198 75 2.642E-4 29.760 26.784 2575 71.24 2.1973 593404 0.0099 37 2.699E-4 30.020 27.017 2575 73.06 2.2176 593478 0.0101 34 2.963E-4 30.539 27.485 2575 73.94 2.2272 593510 0.0101 33 3.121E-4 30.810 27.728 2575 74.90 2.2375 593571 0.0100 28 3.560E-4 31.389 2.2798 2575 76.83 2.2578 593529 0.0100 27 3.710E-4 31.640 <t< td=""><td>2575</td><td>57.68</td><td>2.0188</td><td>592500</td><td>0.0194</td><td>136</td><td>1.427E-4</td><td>25.947</td><td>23.352</td></t<>	2575	57.68	2.0188	592500	0.0194	136	1.427E-4	25.947	23.352
2575 67.20 2.1493 593215 0.1291 660 1.956E-4 0.000 0.000 2575 68.71 2.1676 593291 0.0281 114 2.468E-4 29.161 26.243 2575 69.53 2.1775 593367 0.0198 75 2.642E-4 29.760 26.784 2575 71.24 2.1973 593404 0.0099 37 2.699E-4 30.020 27.017 2575 72.16 2.2076 593478 0.0101 34 2.963E-4 30.276 27.248 2575 73.06 2.2176 593478 0.0101 34 2.963E-4 30.539 27.488 2575 73.94 2.2272 593510 0.0101 33 3.121E-4 30.810 27.728 2575 74.90 2.2375 593591 0.0100 28 3.560E-4 31.589 2.2480 593571 0.0100 28 3.560E-4 31.589 22.2480 593571 0.0100 27	2575	58.32	2.0285	592566	0.0197	131	1.504E-4	26.148	23.533
2575 68.71 2.1676 593291 0.0281 114 2.468E-4 29.161 26.243 2575 69.53 2.1775 593329 0.0199 76 2.613E-4 29.561 26.560 2575 70.39 2.1875 593367 0.0198 75 2.695E-4 29.760 26.784 2575 71.24 2.1973 593404 0.0009 37 2.695E-4 30.020 27.017 2575 73.06 2.2176 593478 0.0101 34 2.963E-4 30.539 27.485 2575 73.94 2.2272 593510 0.0101 33 3.121E-4 30.810 27.728 2575 74.90 2.2375 593541 0.0100 30 3.343E-4 31.083 27.974 2575 75.89 2.2480 593571 0.0100 23 3.560E-4 31.359 28.222 2575 76.83 2.2578 593627 0.0100 27 3.710E-4 31.640	2575	59.00	2.0385	592631	0.1208	649	1.862E-4	0.000	0.000
2575 69.53 2.1775 593329 0.0199 76 2.613E-4 29.511 26.560 2575 70.39 2.1875 593367 0.0198 75 2.642E-4 29.760 26.784 2575 71.24 2.1973 593404 0.0099 37 2.699E-4 30.276 27.248 2575 72.16 2.2076 593478 0.0101 34 2.963E-4 30.276 27.248 2575 73.06 2.2176 593478 0.0101 34 2.963E-4 30.539 27.485 2575 73.94 2.2272 593510 0.0100 33 3.121E-4 30.810 27.728 2575 74.90 2.2375 593541 0.0100 23 3.560E-4 31.359 28.222 2575 76.83 2.2578 593599 0.0100 27 3.710E-4 31.640 28.475 2575 77.78 2.2674 593622 0.0099 26 3.820E-4 31.291	2575	67.20	2.1493	593215	0.1291	660	1.956E-4	0.000	
2575 70.39 2.1875 593367 0.0198 75 2.642E-4 29.760 26.784 2575 71.24 2.1973 593404 0.0099 37 2.699E-4 30.020 27.017 2575 72.16 2.2076 593478 0.0101 34 2.963E-4 30.276 27.248 2575 73.04 2.2272 593510 0.0101 34 2.963E-4 30.810 27.728 2575 74.90 2.2375 593541 0.0100 30 3.343E-4 31.083 27.974 2575 76.83 2.2578 593599 0.0100 28 3.560E-4 31.359 28.222 2575 76.83 2.2578 593599 0.0100 27 3.710E-4 31.640 28.475 2575 77.78 2.2674 593622 0.0099 26 3.820E-4 31.921 28.728 2575 79.78 2.2872 593673 0.0100 24 4.137E-4 32.491	2575	68.71	2.1676	593291		114	2.468E-4	29.161	26.243
2575 71.24 2.1973 593404 0.0099 37 2.699E-4 30.020 27.017 2575 72.16 2.2076 593442 0.0100 35 2.805E-4 30.276 27.248 2575 73.06 2.2176 593478 0.0101 34 2.963E-4 30.539 27.485 2575 73.94 2.2272 593510 0.0101 33 3.121E-4 30.810 27.728 2575 74.90 2.2375 593541 0.0100 30 3.343E-4 31.083 27.974 2575 75.89 2.2480 593571 0.0100 28 3.560E-4 31.359 28.222 2575 76.83 2.2578 593599 0.0100 27 3.710E-4 31.640 28.475 2575 77.78 2.2674 593647 0.0100 25 3.982E-4 31.202 28.980 2575 79.78 2.2872 593673 0.0100 24 4.137E-4 32.491	2575	69.53	2.1775	593329	0.0199	76	2.613E-4	29.511	26.560
2575 72.16 2.2076 593442 0.0100 35 2.805E-4 30.276 27.248 2575 73.06 2.2176 593478 0.0101 34 2.963E-4 30.539 27.485 2575 73.94 2.2272 593510 0.0100 30 3.343E-4 31.083 27.974 2575 74.90 2.2375 593510 0.0100 30 3.343E-4 31.083 27.974 2575 75.89 2.2480 593571 0.0100 28 3.560E-4 31.359 28.222 2575 76.83 2.2578 593599 0.0100 27 3.710E-4 31.640 28.475 2575 77.78 2.2674 593622 0.0099 26 3.820E-4 31.521 28.728 2575 79.78 2.2677 593673 0.0100 25 3.982E-4 32.202 28.980 2575 80.80 2.2970 593697 0.0100 24 4.265E-4 32.797	2575		2.1875	593367	0.0198	75	2.642E-4	29.760	26.784
2575 73.06 2.2176 593478 0.0101 34 2.963E-4 30.539 27.485 2575 73.94 2.2272 593510 0.0101 33 3.121E-4 30.810 27.728 2575 74.90 2.2375 593541 0.0100 28 3.560E-4 31.359 28.222 2575 76.83 2.2578 593579 0.0100 27 3.710E-4 31.640 28.475 2575 77.78 2.2674 593622 0.0099 26 3.820E-4 31.921 28.728 2575 78.78 2.2773 593647 0.0100 25 3.982E-4 32.202 28.980 2575 79.78 2.2872 593673 0.0100 24 4.137E-4 32.491 29.728 2575 79.78 2.2872 593673 0.0100 24 4.265E-4 32.797 29.516 2575 80.80 2.3175 593720 0.0100 24 4.265E-4 32.797	2575	71.24	2.1973	593404	0.0099	37	2.699E-4	30.020	27.017
2575 73.94 2.2272 593510 0.0101 33 3.121E-4 30.810 27.728 2575 74.90 2.2375 593541 0.0100 30 3.343E-4 31.083 27.974 2575 76.83 2.2578 593599 0.0100 27 3.710E-4 31.359 28.222 2575 76.83 2.2578 593599 0.0100 27 3.710E-4 31.640 28.475 2575 77.78 2.2674 593622 0.0099 26 3.820E-4 31.921 28.728 2575 78.78 2.2773 593647 0.0100 25 3.982E-4 32.202 28.980 2575 79.78 2.2872 593673 0.0100 24 4.137E-4 32.491 29.242 2575 80.80 2.2970 593790 0.0100 24 4.265E-4 32.797 29.516 2575 81.93 2.3175 593742 0.0100 21 4.736E-4 33.413	2575	72.16	2.2076	593442	0.0100	35	2.805E-4	30.276	27.248
2575 74.90 2.2375 593541 0.0100 30 3.343E-4 31.083 27.974 2575 75.89 2.2480 593571 0.0100 28 3.560E-4 31.359 28.222 2575 76.83 2.2578 593599 0.0100 27 3.710E-4 31.640 28.728 2575 77.78 2.2674 593622 0.0099 26 3.820E-4 31.921 28.728 2575 79.78 2.2872 593673 0.0100 23 4.137E-4 32.491 29.242 2575 79.78 2.2872 593673 0.0100 24 4.137E-4 32.491 29.242 2575 80.80 2.2970 593697 0.0100 24 4.265E-4 32.797 29.516 2575 81.93 2.3077 593742 0.0100 21 4.736E-4 33.413 30.070 2575 84.10 2.3277 593763 0.0101 20 5.006E-4 33.718	2575	73.06	2.2176	593478	0.0101	34	2.963E-4	30.539	27.485
2575 75.89 2.2480 593571 0.0100 28 3.560E-4 31.359 28.222 2575 76.83 2.2578 593599 0.0100 27 3.710E-4 31.640 28.475 2575 77.78 2.2674 593622 0.0099 26 3.820E-4 31.921 28.728 2575 78.78 2.2773 593673 0.0100 25 3.982E-4 32.202 28.980 2575 79.78 2.2872 593673 0.0100 24 4.137E-4 32.491 29.242 2575 80.80 2.2970 593697 0.0100 24 4.265E-4 32.797 29.516 2575 81.93 2.3077 593720 0.0100 23 4.477E-4 33.092 29.782 2575 82.98 2.3175 593742 0.0100 21 4.736E-4 33.413 30.070 2575 84.10 2.3277 593782 0.0009 19 5.306E-4 34.035	2575	73.94	2.2272	593510	0.0101	33	3.121E-4	30.810	27.728
2575 76.83 2.2578 593599 0.0100 27 3.710E-4 31.640 28.475 2575 77.78 2.2674 593622 0.0099 26 3.820E-4 31.921 28.728 2575 78.78 2.2773 593647 0.0100 25 3.982E-4 32.202 28.980 2575 79.78 2.2872 593673 0.0100 24 4.137E-4 32.491 29.242 2575 80.80 2.2970 593697 0.0100 24 4.265E-4 32.797 29.516 2575 81.93 2.3077 593702 0.0100 23 4.477E-4 33.092 29.782 2575 82.98 2.3175 593742 0.0100 21 4.736E-4 33.413 30.070 2575 84.10 2.3277 593763 0.0101 20 5.006E-4 33.718 30.345 2575 85.19 2.3375 593800 0.0099 19 5.308E-4 34.035	2575	74.90	2.2375	593541	0.0100	30	3.343E-4	31.083	27.974
2575 77.78 2.2674 593622 0.0099 26 3.820E-4 31.921 28.728 2575 78.78 2.2773 593647 0.0100 25 3.982E-4 32.202 28.980 2575 79.78 2.2872 593673 0.0100 24 4.137E-4 32.491 29.242 2575 80.80 2.2970 593697 0.0100 24 4.265E-4 32.797 29.516 2575 81.93 2.3077 593720 0.0100 23 4.477E-4 33.092 29.782 2575 82.98 2.3175 593742 0.0100 21 4.736E-4 33.413 30.070 2575 84.10 2.3277 593763 0.0101 20 5.006E-4 33.718 30.345 2575 85.19 2.3375 593782 0.0099 19 5.308E-4 34.073 30.630 2575 86.31 2.3473 593800 0.0099 17 5.741E-4 34.678	2575	75.89	2.2480	593571	0.0100	28	3.560E-4	31.359	28.222
2575 78.78 2.2773 593647 0.0100 25 3.982E-4 32.202 28.980 2575 79.78 2.2872 593673 0.0100 24 4.137E-4 32.491 29.242 2575 80.80 2.2970 593697 0.0100 24 4.265E-4 32.797 29.516 2575 81.93 2.3077 593720 0.0100 23 4.477E-4 33.092 29.782 2575 82.98 2.3175 593742 0.0100 21 4.736E-4 33.413 30.070 2575 84.10 2.3277 593763 0.0101 20 5.006E-4 33.718 30.345 2575 85.19 2.3375 593782 0.0099 19 5.308E-4 34.035 30.630 2575 86.31 2.3473 593800 0.0099 17 5.741E-4 34.678 31.208 2575 87.52 2.3578 593818 0.0099 16 6.301E-4 34.678	2575	76.83	2.2578	593599	0.0100	27	3.710E-4	31.640	28.475
2575 79.78 2.2872 593673 0.0100 24 4.137E-4 32.491 29.242 2575 80.80 2.2970 593697 0.0100 24 4.265E-4 32.797 29.516 2575 81.93 2.3077 593720 0.0100 23 4.477E-4 33.092 29.782 2575 82.98 2.3175 593742 0.0100 21 4.736E-4 33.413 30.070 2575 84.10 2.3277 593763 0.0101 20 5.006E-4 33.718 30.345 2575 85.19 2.3375 593782 0.0099 19 5.308E-4 34.035 30.630 2575 86.31 2.3473 593800 0.0099 17 5.741E-4 34.362 30.924 2575 87.52 2.3578 593818 0.0099 16 6.301E-4 34.678 31.208 2575 88.65 2.3674 593833 0.0100 14 7.337E-4 35.349	2575	77.78	2.2674	593622	0.0099	26	3.820E-4	31.921	28.728
2575 80.80 2.2970 593697 0.0100 24 4.265E-4 32.797 29.516 2575 81.93 2.3077 593720 0.0100 23 4.477E-4 33.092 29.782 2575 82.98 2.3175 593742 0.0100 21 4.736E-4 33.413 30.070 2575 84.10 2.3277 593763 0.0101 20 5.006E-4 33.718 30.345 2575 85.19 2.3375 593782 0.0099 19 5.308E-4 34.035 30.630 2575 86.31 2.3473 593800 0.0099 17 5.741E-4 34.678 31.208 2575 87.52 2.3578 593818 0.0099 16 6.301E-4 34.678 31.208 2575 88.65 2.3674 593833 0.0100 15 6.825E-4 35.010 31.507 2575 89.80 2.3769 593846 0.0100 14 7.337E-4 35.493	2575	78.78	2.2773	593647	0.0100	25	3.982E-4	32.202	28.980
2575 81.93 2.3077 593720 0.0100 23 4.477E-4 33.092 29.782 2575 82.98 2.3175 593742 0.0100 21 4.736E-4 33.413 30.070 2575 84.10 2.3277 593763 0.0101 20 5.006E-4 33.718 30.345 2575 85.19 2.3375 593782 0.0099 19 5.308E-4 34.035 30.630 2575 86.31 2.3473 593800 0.0099 17 5.741E-4 34.678 31.208 2575 87.52 2.3578 593818 0.0099 16 6.301E-4 34.678 31.208 2575 88.65 2.3674 593833 0.0100 15 6.325E-4 35.010 31.507 2575 89.80 2.3769 593846 0.0100 14 7.337E-4 35.349 31.812 2575 91.07 2.3873 593883 0.0101 12 8.232E-4 36.037	2575	79.78	2.2872	593673	0.0100	24	4.137E-4	32.491	29.242
2575 82.98 2.3175 593742 0.0100 21 4.736E-4 33.413 30.070 2575 84.10 2.3277 593763 0.0101 20 5.006E-4 33.718 30.345 2575 85.19 2.3375 593782 0.0099 19 5.308E-4 34.035 30.630 2575 86.31 2.3473 593800 0.0099 17 5.741E-4 34.678 31.208 2575 87.52 2.3578 593818 0.0099 16 6.301E-4 34.678 31.208 2575 88.65 2.3674 593833 0.0100 15 6.825E-4 35.010 31.507 2575 89.80 2.3769 593846 0.0100 14 7.37E-4 35.349 31.812 2575 91.07 2.3873 593872 0.0100 12 8.232E-4 36.037 32.430 2575 93.58 2.4071 593883 0.0101 12 8.526E-4 36.398 <	2575	80.80	2.2970	593697	0.0100	24	4.265E-4	32.797	29.516
2575 84.10 2.3277 593763 0.0101 20 5.006E-4 33.718 30.345 2575 85.19 2.3375 593782 0.0099 19 5.308E-4 34.035 30.630 2575 86.31 2.3473 593800 0.0099 17 5.741E-4 34.362 30.924 2575 87.52 2.3578 593818 0.0099 16 6.301E-4 34.678 31.208 2575 88.65 2.3674 593833 0.0100 15 6.825E-4 35.010 31.507 2575 89.80 2.3769 593846 0.0100 14 7.37E-4 35.349 31.812 2575 91.07 2.3873 593859 0.0100 14 7.798E-4 35.688 32.117 2575 92.36 2.3976 593872 0.0100 12 8.232E-4 36.037 32.430 2575 93.58 2.4071 593893 0.0101 12 8.796E-4 36.754 <	2575	81.93	2.3077	593720	0.0100	23	4.477E-4	33.092	29.782
2575 85.19 2.3375 593782 0.0099 19 5.308E-4 34.035 30.630 2575 86.31 2.3473 593800 0.0099 17 5.741E-4 34.362 30.924 2575 87.52 2.3578 593818 0.0099 16 6.301E-4 34.678 31.208 2575 88.65 2.3674 593833 0.0100 15 6.825E-4 35.010 31.507 2575 89.80 2.3769 593846 0.0100 14 7.337E-4 35.349 31.812 2575 91.07 2.3873 593859 0.0099 13 7.798E-4 35.688 32.117 2575 92.36 2.3976 593872 0.0100 12 8.232E-4 36.037 32.430 2575 93.58 2.4071 593883 0.0101 12 8.526E-4 36.398 32.755 2575 94.89 2.4172 593895 0.0101 12 8.796E-4 36.398 32.755 2575 96.25 2.4275 593906 0.0100 11 9.133E-4 37.128 33.411 2575 97.64 2.4377 593917 0.0105 11 9.704E-4 37.507 33.752 2575 99.03 2.4478 593928 0.0102 10 1.028E-3 37.804 34.091 2574 100.38 2.4574 593937 0.0102 9 1.182E-3 38.601 34.806 2575 103.40 2.4785 593955 0.0102 8 1.253E-3 39.148 35.222 * 2574 105.02 2.4895 593963 0.0103 8 1.345E-3 39.522 35.562 *	2575	82.98	2.3175	593742	0.0100	21	4.736E-4	33.413	30.070
2575 86.31 2.3473 593800 0.0099 17 5.741E-4 34.362 30.924 2575 87.52 2.3578 593818 0.0099 16 6.301E-4 34.678 31.208 2575 88.65 2.3674 593833 0.0100 15 6.825E-4 35.010 31.507 2575 89.80 2.3769 593846 0.0100 14 7.337E-4 35.349 31.812 2575 91.07 2.3873 593859 0.0099 13 7.798E-4 35.688 32.117 2575 92.36 2.3976 593872 0.0100 12 8.232E-4 36.037 32.430 2575 93.58 2.4071 593893 0.0101 12 8.526E-4 36.398 32.755 2575 94.89 2.4172 593895 0.0101 12 8.796E-4 36.754 33.075 2575 96.25 2.4275 593996 0.0100 11 9.133E-4 37.128	2575	84.10	2.3277	593763	0.0101	20	5.006E-4	33.718	30.345
2575 87.52 2.3578 593818 0.0099 16 6.301E-4 34.678 31.208 2575 88.65 2.3674 593833 0.0100 15 6.825E-4 35.010 31.507 2575 89.80 2.3769 593846 0.0100 14 7.337E-4 35.349 31.812 2575 91.07 2.3873 593859 0.0099 13 7.798E-4 35.688 32.117 2575 92.36 2.3976 593872 0.0100 12 8.232E-4 36.037 32.430 2575 93.58 2.4071 593893 0.0101 12 8.526E-4 36.398 32.755 2575 94.89 2.4172 593895 0.0101 12 8.796E-4 36.754 33.075 2575 96.25 2.4275 593906 0.0100 11 9.133E-4 37.128 33.411 2575 99.03 2.4478 593917 0.0105 11 9.704E-4 37.507 33.752 2575 99.03 2.4478 593937 0.0102	2575	85.19	2.3375	593782	0.0099	19	5.308E-4	34.035	30.630
2575 88.65 2.3674 593833 0.0100 15 6.825E-4 35.010 31.507 2575 89.80 2.3769 593846 0.0100 14 7.337E-4 35.349 31.812 2575 91.07 2.3873 593859 0.0099 13 7.798E-4 35.688 32.117 2575 92.36 2.3976 593872 0.0100 12 8.232E-4 36.037 32.430 2575 93.58 2.4071 593893 0.0101 12 8.526E-4 36.398 32.755 2575 94.89 2.4172 593895 0.0101 12 8.796E-4 36.754 33.075 2575 96.25 2.4275 593906 0.0100 11 9.133E-4 37.128 33.411 2575 99.03 2.4478 593917 0.0105 11 9.704E-4 37.507 33.752 2574 100.38 2.4574 593937 0.0102 10 1.028E-3 37.884 34.091 2575 103.40 2.4785 593955 0.0102 9 1.182E-3 38.681 34.806 2575 103.40 2.4785 593955 0.0102 8 1.253E-3	2575	86.31	2.3473	593800	0.0099	17	5.741E-4	34.362	30.924
2575 89.80 2.3769 593846 0.0100 14 7.337E-4 35.349 31.812 2575 91.07 2.3873 593859 0.0099 13 7.798E-4 35.688 32.117 2575 92.36 2.3976 593872 0.0100 12 8.232E-4 36.037 32.430 2575 93.58 2.4071 593893 0.0101 12 8.526E-4 36.398 32.755 2575 94.89 2.4172 593895 0.0101 12 8.796E-4 36.754 33.075 2575 96.25 2.4275 593906 0.0100 11 9.133E-4 37.128 33.411 2575 99.03 2.4478 593917 0.0105 11 9.704E-4 37.507 33.752 2575 99.03 2.4478 593928 0.0102 10 1.028E-3 37.884 34.091 2574 100.38 2.4574 593937 0.0103 10 1.093E-3 38.320	2575	87.52	2.3578	593818	0.0099	16	6.301E-4	34.678	31.208
2575 91.07 2.3873 593859 0.0099 13 7.798E-4 35.688 32.117 2575 92.36 2.3976 593872 0.0100 12 8.232E-4 36.037 32.430 2575 93.58 2.4071 593883 0.0101 12 8.526E-4 36.398 32.755 2575 94.89 2.4172 593895 0.0101 12 8.796E-4 36.754 33.075 2575 96.25 2.4275 593906 0.0100 11 9.133E-4 37.128 33.411 2575 97.64 2.4377 593917 0.0105 11 9.704E-4 37.507 33.752 2575 99.03 2.4478 593928 0.0102 10 1.028E-3 37.884 34.091 2574 100.38 2.4574 593937 0.0103 10 1.093E-3 38.320 34.476 2575 103.40 2.4785 593955 0.0102 9 1.182E-3 39.148	2575	88.65	2.3674	593833	0.0100	15	6.825E-4	35.010	31.507
2575 92.36 2.3976 593872 0.0100 12 8.232E-4 36.037 32.430 2575 93.58 2.4071 593883 0.0101 12 8.526E-4 36.398 32.755 2575 94.89 2.4172 593895 0.0101 12 8.796E-4 36.754 33.075 2575 96.25 2.4275 593906 0.0100 11 9.133E-4 37.128 33.411 2575 99.03 2.4478 593917 0.0105 11 9.704E-4 37.507 33.752 2574 100.38 2.4574 593928 0.0102 10 1.028E-3 37.884 34.091 2574 102.16 2.4699 593947 0.0102 9 1.182E-3 38.681 34.806 2575 103.40 2.4785 593955 0.0102 9 1.182E-3 39.148 35.222 * 2574 105.02 2.4895 593963 0.0103 8 1.253E-3	2575	89.80	2.3769	593846	0.0100	14	7.337E-4	35.349	31.812
2575 93.58 2.4071 593883 0.0101 12 8.526E-4 36.398 32.755 2575 94.89 2.4172 593895 0.0101 12 8.796E-4 36.754 33.075 2575 96.25 2.4275 593906 0.0100 11 9.133E-4 37.128 33.411 2575 97.64 2.4377 593917 0.0105 11 9.704E-4 37.507 33.752 2575 99.03 2.4478 593928 0.0102 10 1.028E-3 37.884 34.091 2574 100.38 2.4574 593937 0.0103 10 1.093E-3 38.320 34.476 2574 102.16 2.4699 593947 0.0102 9 1.182E-3 38.681 34.806 2575 103.40 2.4785 593955 0.0102 8 1.253E-3 39.148 35.222 * 2574 105.02 2.4895 593963 0.0103 8 1.345E-3	2575	91.07	2.3873	593859	0.0099	13	7.798E-4	35.688	32.117
2575 94.89 2.4172 593895 0.0101 12 8.796E-4 36.754 33.075 2575 96.25 2.4275 593906 0.0100 11 9.133E-4 37.128 33.411 2575 97.64 2.4377 593917 0.0105 11 9.704E-4 37.507 33.752 2575 99.03 2.4478 593928 0.0102 10 1.028E-3 37.884 34.091 2574 100.38 2.4574 593937 0.0103 10 1.093E-3 38.320 34.476 2574 102.16 2.4699 593947 0.0102 9 1.182E-3 38.681 34.806 2575 103.40 2.4785 593955 0.0102 8 1.253E-3 39.148 35.222 * 2574 105.02 2.4895 593963 0.0103 8 1.345E-3 39.522 35.562 *	2575	92.36	2.3976	593872	0.0100	12	8.232E-4	36.037	32.430
2575 96.25 2.4275 593906 0.0100 11 9.133E-4 37.128 33.411 2575 97.64 2.4377 593917 0.0105 11 9.704E-4 37.507 33.752 2575 99.03 2.4478 593928 0.0102 10 1.028E-3 37.884 34.091 2574 100.38 2.4574 593937 0.0103 10 1.093E-3 38.320 34.476 2574 102.16 2.4699 593947 0.0102 9 1.182E-3 38.681 34.806 2575 103.40 2.4785 593955 0.0102 8 1.253E-3 39.148 35.222 * 2574 105.02 2.4895 593963 0.0103 8 1.345E-3 39.522 35.562 *	2575	93.58	2.4071	593883	0.0101	12	8.526E-4	36.398	32.755
2575 97.64 2.4377 593917 0.0105 11 9.704E-4 37.507 33.752 2575 99.03 2.4478 593928 0.0102 10 1.028E-3 37.884 34.091 2574 100.38 2.4574 593937 0.0103 10 1.093E-3 38.320 34.476 2574 102.16 2.4699 593947 0.0102 9 1.182E-3 38.681 34.806 2575 103.40 2.4785 593955 0.0102 8 1.253E-3 39.148 35.222 * 2574 105.02 2.4895 593963 0.0103 8 1.345E-3 39.522 35.562 *	2575	94.89	2.4172	593895	0.0101	12	8.796E-4	36.754	33.075
2575 99.03 2.4478 593928 0.0102 10 1.028E-3 37.884 34.091 2574 100.38 2.4574 593937 0.0103 10 1.093E-3 38.320 34.476 2574 102.16 2.4699 593947 0.0102 9 1.182E-3 38.681 34.806 2575 103.40 2.4785 593955 0.0102 8 1.253E-3 39.148 35.222 * 2574 105.02 2.4895 593963 0.0103 8 1.345E-3 39.522 35.562 *	2575	96.25	2.4275	593906	0.0100	11	9.133E-4	37.128	33.411
2574 100.38 2.4574 593937 0.0103 10 1.093E-3 38.320 34.476 2574 102.16 2.4699 593947 0.0102 9 1.182E-3 38.681 34.806 2575 103.40 2.4785 593955 0.0102 8 1.253E-3 39.148 35.222 * 2574 105.02 2.4895 593963 0.0103 8 1.345E-3 39.522 35.562 *	2575	97.64	2.4377	593917	0.0105	11	9.704E-4	37.507	33.752
2574 102.16 2.4699 593947 0.0102 9 1.182E-3 38.681 34.806 2575 103.40 2.4785 593955 0.0102 8 1.253E-3 39.148 35.222 * 2574 105.02 2.4895 593963 0.0103 8 1.345E-3 39.522 35.562 *	2575	99.03	2.4478	593928	0.0102	10	1.028E-3	37.884	34.091
2575 103.40 2.4785 593955 0.0102 8 1.253E-3 39.148 35.222 * 2574 105.02 2.4895 593963 0.0103 8 1.345E-3 39.522 35.562 *	2574	100.38	2.4574	593937	0.0103	10	1.093E-3	38.320	34.476
2574 105.02 2.4895 593963 0.0103 8 1.345E-3 39.522 35.562 *	2574	102.16	2.4699	593947	0.0102	9	1.182E-3	38.681	34.806
	2575	103.40	2.4785	593955	0.0102	8	1.253E-3	39.148	35.222 *
2574 106.48 2.4991 593970 0.0100 7 1.445E-3 39.954 35.953 *	2574	105.02	2.4895	593963	0.0103	8	1.345E-3	39.522	35.562 *
	2574	106.48	2.4991	593970	0.0100	7	1.445E-3	39.954	35.953 *

Test	ID 5383	FCG-45					P	age 4
Pmax (1b)	EvB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK n]^.5)
2575 2574 2574 2574 2574 2574 2574 2574	107.99 109.62 111.32 113.00 114.72 116.41 118.22 120.16 122.25 124.12 125.91 127.90 130.18 132.74 135.08 137.14 139.37 141.95	2.5089 2.5193 2.5298 2.5401 2.5503 2.5602 2.5704 2.5813 2.5926 2.6026 2.6118 2.6220 2.6333 2.6456 2.6566 2.6661 2.6761 2.6873	593977 593983 593989 593995 594000 594004 594009 594013 594021 594024 594027 594030 594033 594035 594038 594038	0.0103 0.0101 0.0102 0.0103 0.0103 0.0105 0.0104 0.0103 0.0103 0.0105 0.0107 0.0107 0.0107 0.0109 0.0109 0.0101 0.0101	7 6 6 5 5 5 4 4 4 4 3 3 3 2 2 2 1 2	1.552E-3 1.654E-3 1.810E-3 1.942E-3 2.097E-3 2.191E-3 2.384E-3 2.538E-3 3.032E-3 3.032E-3 3.706E-3 4.402E-3 5.107E-3 6.174E-3 6.856E-3 1.033E-2	40.371 40.814 41.261 41.722 42.182 42.653 43.147 43.660 44.162 44.680 45.169 45.683 46.204 46.800 47.313 47.891 48.307 48.759	36.323 * 36.721 * 37.121 * 37.534 * 37.945 * 38.366 * 38.809 * 39.267 * 40.178 * 40.608 * 41.062 * 41.509 * 42.032 * 42.472 * 43.322 * 43.700 *
2532	144.15 146.48	2.6967	594040 594041	0.0191	2	9.541E-3	49.066	43.917 *

				igue Cra Analysi			
Test ID Contract Material Temperature Environment	(F)	SSC 10 5383-H 75	CG-4pt5 624-01 1116	Geomet Orient Yield Modulu	try tation (ksi) us (Msi)		C(T) T-L 35.4 10.5
Specimen	Dimension	s (in)					
Thickness Net Thickne Width	ss	0.486 0.486 4.002		Height Notch Gage I	t Depth Length		2.400 1.000 0.500
Precrack	Parameter	s					
Pmax (lbs) Final a (in)	859.0 1.050		Stress Kmax	s Ratio (ksi sqr	[in])	0.10 4.50
Test Par	ameters						
23.789 30.408	Freq 0.50 0.50 0.50	Pmax 0 0 2575	0.10	1.140	Kmaxi 3.10 9.34 0.00	4.00	0.00
K Coef .886 4.64 -13.32 14.72 -5.6	-	C Coeff 1.00098 4.66951 18.4601 236.825 1214.88 2143.57					
			1- 1	1) 7		63.F	
EVB/P 20.753 21.841 23.480 23.760 26.667 27.531 30.339 34.274 48.661 59.300 66.619 101.006	Crack (EvB/ 0.983 1.041 1.121 1.134 1.260 1.294 1.397 1.523 1.865 2.043 2.142 2.462	1 1 1 1 1 1 1 2 2	% (visua .002 .040 .100 .170 .260 .280 .380 .490 .880 .080 .120		19 21 36 00 14 17 33 15	CAF 0.993 0.991 0.989 0.989 0.986 0.985 0.983 0.980 0.972 0.969 0.969 0.959	
Comments							

Date of test: 9/17/2006

Wave	form ?	Type		Si	ne			
Test ID	5383-	-FCG-4pt5					Pa	age 1
Pmax E	vB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[ir	deltaK n]^.5)
20 890 2 902 2 908 2 914 2 920 2 927 2 933 2 939 2 952 2 952 2 952 2 955 2 965 2 971 2 978 2 978 2 978 2 1410 3 1417 3 1417 3 1417 3 1421 3 1436 3 1440 3 1448 3 1468 3 1460 3 146	6.74 6.77 6.81 6.86 6.91 6.90 7.01 7.16 7.21 7.21 7.36 7.41 0.41 0.51 7.36 0.57 0.53 0.57 0.53 0.57 0.53 0.53 0.91 1.20 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	1.2630 1.2641 1.2661 1.2680 1.2701 1.2720 1.2739 1.2759 1.2759 1.2759 1.2839 1.2839 1.2838 1.2878 1.2896 1.2937 1.3997 1.4011 1.4031 1.4052 1.4072 1.4072 1.4110 1.4131 1.4149 1.4169 1.4189 1.4189 1.4189 1.4288 1.4288 1.4286 1.4366 1.4326 1.4326 1.4336 1.4385 1.4385 1.4385 1.4405	529674 530731 532397 534036 535687 537212 538610 540007 541468 542928 544325 545597 546727 547845 548912 550030 551147 574028 574141 574028 574459 574624 574769 574624 574769 575364 575369 576339	0.0031 0.0040 0.0018 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0038 0.0040 0.1081 0.1074 0.0035 0.0041 0.1074 0.0020	2723 3305 1489 1546 1512 1482 1482 1398 1353 1306 1241 1184 1137 2235 23998 22994 264 318 332 153 153 153 153 153 148 148 149 147 140 138 137 138 137 138 139 149 147 140 138 137 138 139 139 149 149 149 149 149 149 149 149 149 14	1.140E-6 1.196E-6 1.232E-6 1.232E-6 1.305E-6 1.372E-6 1.407E-6 1.449E-6 1.518E-6 1.556E-6 1.724E-6 1.744E-6 1.809E-6 4.672E-6 1.315E-5 1.289E-5 1.289E-5 1.289E-5 1.324E-5 1.324E-5 1.324E-5 1.325E-5 1.325E-5 1.325E-5 1.325E-5 1.325E-5 1.325E-5 1.325E-5 1.325E-5 1.325E-5 1.405E-5 1.405E-5 1.495E-5 1.513E-5 1.533E-5	5.370 5.405 5.449 5.492 5.536 5.580 5.625 5.671 5.717 5.764 5.810 5.858 5.903 5.950 0.000 0.000 9.300 9.333 9.371 9.409 9.446 9.484 9.520 9.559 9.596 9.636 9.636 9.713 9.750 9.788 9.828 9.867 9.946	4.833 4.865 4.904 4.943 4.983 5.022 5.063 5.104 5.188 5.229 5.355 5.355 5.399 0.000 0.000 8.370 8.399 8.434 8.501 8.535 8.603 8.637 8.672 8.741 8.775 8.810 8.845 8.810 8.916 8.951 8.951 8.951 8.959
1500 3: 1504 3: 1508 3:	1.68 1.74 1.80 1.85 1.92	1.4424 1.4443 1.4463 1.4481 1.4502	577121 577243 577365 577482 577614	0.0019 0.0019 0.0019 0.0020 0.0020	125 125 125 125 124	1.549E-5 1.566E-5 1.577E-5 1.576E-5 1.576E-5	10.105 10.145 10.183 10.226 10.265	9.095 9.131 9.165 9.203 9.238

Test :	ID 5383	-FCG-4pt5					P	age 2
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[i	n]^.5)
1516	31.98	1.4521	577746	0.0019	121	1.575E-5	10.308	9.277
1520	32.04	1.4542	577873	0.0040	239	1.672E-5	10.348	9.313
1524	32.10	1.4561	577985	0.0036	215	1.666E-5	10.387	9.348
1528	32.15	1.4578	578088	0.5905	14701	4.017E-5	0.000	0.000
2574	59.55	2.0466	592686	0.5907	14611	4.043E-5	0.000	0.000
2575	59.67	2.0485	592699	0.0038	27	1.409E-4	26.554	23.896
2575	59.81	2.0504	592713	0.0038	26	1.452E-4	26.595	23.935
2575	59.93	2.0522	592725	0.0039	26	1.505E-4	26.638	23.974
2575	60.08	2.0544	592739	0.0019	13	1.514E-4	26.676	24.009
2575	60.21	2.0562	592751	0.0019	12	1.539E-4	26.717	24.046
2575	60.33	2.0579	592762	0.0019	12	1.537E-4	26.757	24.081
2575	60.46	2.0599	592774	0.0019	12	1.556E-4	26.796	24.117
2575	60.60	2.0618	592787	0.0019	12	1.585E-4	26.836	24.152
2575	60.73	2.0636	592799	0.0019	12	1.628E-4	26.878	24.191
2575	60.86	2.0655	592811	0.0020	12	1.674E-4	26.919	24.227
2575	61.01	2.0676	592822	0.0020	12	1.720E-4	26.962	24.265
2575	61.15	2.0696	592833	0.0020	12	1.755E-4	27.005	24.305
2575	61.30	2.0716	592845	0.0020	12	1.754E-4	27.049	24.344
2575	61.44	2.0737	592857	0.0020	12	1.719E-4	27.093	24.384
2575	61.59	2.0757	592868	0.0020	12	1.700E-4	27.136	24.422
2575	61.72	2.0776	592880	0.0020	12	1.703E-4	27.178	24.460
2575	61.86	2.0795	592891	0.0020	12	1.699E-4	27.221	24.499
2575	62.01	2.0815	592903	0.0020	12	1.690E-4	27.265	24.539
2575	62.16	2.0837	592916	0.0020	12	1.706E-4	27.309	24.578
2575	62.31	2.0856	592927	0.0020	12	1.714E-4	27.354	24.618
2575	62.44	2.0875	592938	0.0039	23	1.687E-4	27.397	24.657
2575	62.59	2.0895	592950	0.0042	24	1.738E-4	27.442	24.698
	62.75	2.0917	592962					

				tigue Cra e Analysi			
Test ID Contract Material Temperature Environment		SSC 10 5383-F 75)624-01 1116				C(T) T-L 35.4 10.5
Specimer	n Dimensio	ns (in)					
Thickness Net Thickne Width		0.486 0.486 4.002	5		; Depth Jength		2.400 1.000 0.500
Pmax (lbs) Final a (ir		859.0 1.050		Stress Kmax	Ratio (ksi sqr		0.10 4.50
Test Par	rameters						
EvBP 30.410 48.970	0.05	0	0.10	Ai 1.416 0.000	9.34	2.00	
K Coef .886 4.64 -13.32 14.72 -5.6	5 4 2 2	C Coeff 1.00098 -4.66951 18.4601 -236.828 1214.88 -2143.57					
Visual (Dservatio	ns					
EvB/P 20.753 21.841 23.480 23.760 26.667 27.531 30.339 34.274 48.661 59.300 66.619 101.006	Crack (EvB 0.983 1.041 1.121 1.134 1.260 1.294 1.397 1.523 1.865 2.043 2.142 2.462	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ck(visua 1.002 1.040 1.100 1.170 1.260 1.280 1.380 1.490 1.880 2.080 2.120 2.460	al) Erro 0.01 -0.02 0.03 0.00 -0.01 -0.03 0.01 0.03 -0.02 -0.00	19 21 36 30 14 17 33 15	CAF 0.993 0.991 0.989 0.989 0.985 0.985 0.983 0.972 0.969 0.966 0.959	
Date of tes	st: 9/18/2	006	s.	ine			

Test	ID 5383	-FCG-4pt0)5				P	age 1
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[i	n]^.5)
	32.28	1.4618	578265					
1541	32.34	1.4638	578397	0.0040	278	1.430E-5	10.553	9.498
1545	32.40	1.4658	578543	0.0042	298	1.397E-5	10.597	9.538
1550	32.47	1.4679	578695	0.0020	142	1.408E-5	10.640	9.576
1554	32.53	1.4699	578827	0.0020	142	1.396E-5	10.683	9.614
1558	32.59	1.4717	578965	0.0020	139	1.394E-5	10.726	9.653
1562	32.65	1.4737	579117	0.0019	138	1.401E-5	10.767	9.690
1566	32.72	1.4757	579249	0.0037	259	1.441E-5	10.809	9.728
1570	32.77	1.4775	579376	0.0038	275	1.391E-5	10.853	9.768
1575	32.84	1.4796	579524	0.6184	13601	4.547E-5	0.000	0.000
2574	63.06	2.0958	592977	0.6178	13461	4.590E-5	0.000	0.000
2575	63.17	2.0974	592985	0.0036	19	1.884E-4	27.617	24.858
2575	63.32	2.0994	592996	0.0041	22	1.875E-4	27.660	24.894
2575	63.48	2.1015	593007	0.0040	21	1.901E-4	27.705	24.934
2575	63.62	2.1034	593017	0.0020	10	1.989E-4	27.751	24.976
2575	63.77	2.1053	593026	0.0020	10	2.043E-4	27.795	25.015
2575	63.93	2.1074	593036	0.0020	10	2.094E-4	27.841	25.058
2575	64.08	2.1095	593046	0.0020	9	2.135E-4	27.887	25.099
2575	64.23	2.1115	593055	0.0020	10	2.117E-4	27.933	25.140
2575	64.38	2.1134	593064	0.0020	10	2.111E-4	27.978	25.181
2575	64.53	2.1154	593073	0.0020	9	2.114E-4	28.022	25.220
2575	64.68	2.1173	593083	0.0020	9	2.104E-4	28.069	25.262
2575	64.84	2.1194	593093	0.0020	9	2.134E-4	28.114	25.303
2575	65.00	2.1214	593102	0.0020	9	2.182E-4	28.160	25.345
2575	65.15	2.1234	593111	0.0020	9	2.262E-4	28.209	25.388
2575	65.31	2.1255	593120	0.0020	9	2.342E-4	28.253	25.428
2575	65.46	2.1274	593128	0.0020	8	2.396E-4	28.301	25.471
2575	65.61	2.1293	593136	0.0020	8	2.450E-4	28.347	25.512
2575	65.77	2.1314	593144	0.0020	8	2.514E-4	28.393	25.554
2575	65.93	2.1334	593152	0.0020	8	2.548E-4	28.440	25.596
2575	66.08	2.1354	593160	0.0020	8	2.579E-4	28.488	25.639
2575	66.25	2.1374	593167	0.0040	15	2.652E-4	28.534	25.680
2575	66.40	2.1393	593175	0.0039	15	2.572E-4	28.581	25.723
	66.55	2.1412	593182					

		tomated Fati Growth Rate			
Test ID Contract Material Temperature (F Environment	SS 53	83-H116 75	SGeometry Orientation Yield (ksi) Modulus (Msi		C(T) T-L 35.4 10.5
Specimen Di	mensions (in)			
Thickness Net Thickness Width	0 4	.486	Height Notch Depth Gage Length		2.400 1.000 0.500
Precrack Pa					
Pmax (lbs) Final a (in)		.050	Stress Ratio		0.10 4.50
Test Parame	ters				
EvBP Fr 30.410 0.	eq Pm 05	max R 0 0.10	Ai Kmaxi 1.416 9.34	. C 2.00	DKi 0.00
K Coeff .886 4.64 -13.32 14.72 -5.6	1.0 -4.6 18. -236 121	ceff 0098 6951 4601 .825 4.88 3.57			
Visual Obse	rvations				
	ck (EvB/P) 0.983 1.041 1.121 1.134 1.260 1.294 1.397 1.523 1.865 2.043 2.142 2.462	Crack(visual 1.002 1.040 1.100 1.170 1.260 1.280 1.380 1.490 1.880 2.080 2.120 2.460		CAF 0.993 0.991 0.989 0.989 0.985 0.985 0.983 0.980 0.972 0.969 0.966	
Date of test: Waveform Type	9/18/2006	Sin	e		

Test :	ID 5383	FCG-4Cpt	t05				P	age 1
Pmax (1b)	EvB/P	a (in)	N	da (in)	dN	da/dN (in/cyc)	Kmax (ksi[i	deltaK .n]^.5)
1583 1587 1591 1596 1601 1605 1609 1614 1618 1622 1626 1631 1636 1640 1644 1649 1653 1657	32.92 32.96 33.02 33.08 33.16 33.22 33.28 33.35 33.41 33.47 33.53 33.60 33.66 33.73 33.86 33.80 33.80	1.4853 1.4872 1.4895 1.4915 1.4935 1.4954 1.4973 1.4992 1.4992 1.5031 1.5031	579814 579876 579979 580084 580197 580297 580388 580484 580580 580671 580767 580858 580954 581053 581141 581229 581320 581400 581491	0.0032 0.0037 0.0019 0.0020 0.0020 0.0029 0.0019 0.0019 0.0020 0.0020 0.0020 0.0020 0.0020 0.0019 0.0019 0.0019	165 198 96 100 100 98 95 94 94 95 94 95 94 95 94 95 94 95 94	1.936E-5 1.889E-5 1.980E-5 1.986E-5 2.006E-5 2.028E-5 2.040E-5 2.053E-5 2.059E-5 2.110E-5 2.1145E-5 2.145E-5 2.142E-5 2.145E-5 2.168E-5 2.155E-5 2.219E-5	11.025 11.070 11.114 11.161 11.250 11.250 11.293 11.337 11.381 11.427 11.474 11.568 11.613 11.656 11.702	9.889 9.922 9.963 10.003 10.045 10.125 10.125 10.164 10.204 10.243 10.285 10.327 10.368 10.411 10.451 10.490 10.532 10.572
	34.12	1.5188	581583					

Automated Fatigue Crack Growth Rate Analysis								
Test ID Contract Material Temperature (F) Environment RH = 6	5383-FCG-5 SSC 10624-01 5383-H116 75	Geometry Orientation Yield (ksi) Modulus (Msi)	C(T) T-L 35.4 10.5					
Specimen Dimension	ns (in)							
Thickness Net Thickness Width	0.485 0.485 4.000	Height Notch Depth Gage Length	2.400 1.000 0.500					
Precrack Paramete	rs							
Pmax (lbs) Final a (in)	940.0 1.070	Stress Ratio Kmax (ksi sqr						
Test Parameters								
EvBP Freq 22.287 24.00 27.215 24.00	0 0.10	Ai Kmaxi 1.070 5.00 1.295 3.80	-4.00 0.00					
.886 4.64 -13.32 14.72 -5.6	C Coeff 1.00098 -4.66951 18.4601 -236.825 1214.88 -2143.57	Upper da/dN l Lower da/dN l da/dN interce	ameters (DKapp) imit 3.937E-8 imit 3.937E-9 pt (C) 2.334E-20 m) 26.384 ta K 3.937E-9 2.664					
Visual Observation	ns							
EvB/P Crack(EvB, 20.522 0.994 22.228 1.092 25.029 1.235 25.901 1.275 27.145 1.296 29.657 1.385 33.513 1.505 54.805 1.955 Comments	1.000 1.080 1.245 1.270 1.310 1.380 1.490	L) Error 0.006 -0.012 0.010 -0.005 0.014 -0.005 -0.015 0.005	CAF 1.014 1.019 1.027 1.029 1.001 0.994 0.985					
Date of test: 9/21/2006 Waveform Type Sine								

Test	ID 5383	-FCG-5					Pa	age 1
Pmax	EvB/P	a	N	da	dN	da/dN	Kmax	deltaK
(lb)	EVB/F	(in)	14	(in)	OLV.	(in/cyc)	(ksi[ir	
(10)		(111)		(111)		(III/Cyc)	(VPI [II	1] .0)
	22.29	1.0954	7627					
907	22.38	1.1003	20207	0.0098	25134	3.918E-7	4.923	4.431
888	22.47	1.1053	32761	0.0104	27658	3.776E-7	4.827	4.344
866	22.57	1.1108	47865	0.0052	17462	3.359E-7	4.732	4.259
844	22.68	1.1164	70317	0.0053	19373	2.900E-7	4.639	4.175
826	22.77	1.1217	93159	0.0053	22485	2.547E-7	4.550	4.095
809	22.86	1.1264	112397	0.0054	24332	2.281E-7	4.459	4.013
789	22.97	1.1321	136443	0.0052	25439	2.167E-7	4.378	3.940
771	23.07	1.1374	167668	0.0053	27491	2.035E-7	4.288	3.859
753	23.18	1.1429	193854	0.0054	28528	1.872E-7	4.202	3.782
735	23.27	1.1479	222949	0.0051	29854	1.747E-7	4.123	3.711
719	23.38	1.1533	258105	0.0052	32813	1.711E-7	4.037	3.634
701	23.49	1.1590	283564	0.0053	34409	1.584E-7	3.966	3.570
688	23.56	1.1625	315568	0.0054	37136	1.520E-7	3.879	3.491
670	23.68	1.1688	364545	0.0053	40622	1.433E-7	3.816	3.434
657	23.79	1.1745	400307	0.0053	42944	1.265E-7	3.723	3.351
637	23.91	1.1803	445767	0.0056	43419	1.239E-7	3.665	3.299
626	24.00	1.1849	501834	0.0052	43590	1.183E-7	3.575	3.218
609	24.12	1.1909	541230	0.0052	51961	1.100E-7	3.518	3.167
597	24.22	1.1958	576081	0.0048	61192	1.086E-7	3.448	3.103
585	24.31	1.1999	626084	0.0047	68516	1.062E-7	3.382	3.043
570	24.42	1.2054	712071	0.0043	78963	6.965E-8	3.331	2.998
562	24.49	1.2090	812917	0.0038	89797	4.611E-8	3.269	2.942
551	24.58	1.2133	912927	0.0034	98106	3.498E-8	3.229 3.192	2.907
544 539	24.65 24.69	1.2164	1015005 1114861	0.0028	100417 100253	2.787E-8 2.165E-8	3.152	2.872
534	24.73	1.2206	1214718	0.0022	100253	1.596E-8	3.139	2.825
530	24.77	1.2221	1314575	0.0017	99857	1.421E-8	3.119	2.807
528	24.76	1.2221	1414432	0.0010	99857	1.421E-8	3.108	2.797
527	24.79	1.2233	1514289	0.0008	99857	9.415E-9	3.086	2.778
521	24.85	1.2259	1614145	0.0011	99857	1.040E-8	3.076	2.768
518	24.84	1.2258	1714002	0.0013	99857	1.221E-8	3.061	2.755
518	24.84	1.2256	1813859	0.0011	99857	1.127E-8	3.048	2.743
516	24.90	1.2286	1913716	0.0008	99857	9.714E-9	3.039	2.735
512	24.93	1.2300	2013572	0.0009	99857	9.823E-9	3.033	2.729
512	24.94	1.2302	2113429	0.0010	99857	8.605E-9	3.022	2.719
511	24.95	1.2306	2213285	0.0009	199713	4.674E-9	3.014	2.712
508	24.96	1.2311	2313142	0.0011	199714	5.453E-9	3.006	2.706
	24.97	1.2317	2412999					
	28.37	1.3404	388127					
736	28.51	1.3453	410668	0.0098	40963	2.402E-7	4.683	4.215
749	28.65	1.3503	429090	0.0092	32962	2.782E-7	4.778	4.300
761	28.77	1.3545	443630	0.0090	27722	3.252E-7	4.876	4.388
774	28.91	1.3593	456812	0.0046	11897	4.385E-7	4.968	4.471

Test :	ID 5383	FCG-5					Pa	age 2
Pmax	EvB/P	a.	N	da	dN	da/dN	Kmax	deltaK
(lb)		(in)		(in)		(in/cyc)	(ksi[in	1]^.5)
787	29.04	1.3638	466583	0.0045	9780	5.280E-7	5.069	4.562
801	29.18	1.3685	474898	0.0046	8203	6.367E-7	5.168	4.651
814	29.31	1.3730	482048	0.0046	6811	7.405E-7	5.271	4.744
828	29.45	1.3775	487768	0.0046	5835	8.459E-7	5.380	4.842
843	29.59	1.3824	492849	0.0045	5019	9.596E-7	5.485	4.936
857	29.72	1.3869	497680	0.0046	4369	1.092E-6	5.595	5.036
870	29.86	1.3914	501595	0.0046	3920	1.221E-6	5.704	5.134
885	29.99	1.3958	505010	0.0046	3507	1.360E-6	5.817	5.235
900	30.14	1.4005	508263	0.0045	3067	1.527E-6	5.933	5.339
916	30.28	1.4052	511289	0.0046	2779	1.717E-6	6.051	5.446
931	30.42	1.4098	513891	0.0047	2505	1.932E-6	6.171	5.554
946	30.55	1.4142	516079	0.0046	2237	2.157E-6	6.298	5.668
963	30.71	1.4192	518267	0.0047	1997	2.436E-6	6.417	5.775
979	30.85	1.4237	520038	0.0047	1775	2.722E-6	6.552	5.897
996	31.00	1.4283	521685	0.0047	1600	3.020E-6	6.683	6.015
1014	31.15	1.4333	523268	0.0046	1422	3.352E-6	6.819	6.137
1031	31.30	1.4379	524539	0.0046	1305	3.649E-6	6.954	6.258
1047	31.43	1.4421	525677	0.0046	1181	3.967E-6	7.094	6.385
1065	31.59	1.4468	526797	0.0045	1060	4.320E-6	7.230	6.507
1083	31.74	1.4515	527865	0.0046	990	4.688E-6	7.374	6.637
1101	31.88	1.4560	528772	0.0047	936	5.050E-6	7.520	6.768
1119	32.03	1.4605	529626	0.0046	865	5.422E-6	7.670	6.903
1138	32.19	1.4653	530480	0.0046	789	5.840E-6	7.825	7.043
1159	32.35	1.4702	531292	0.0046	743	6.301E-6	7.982	7.184
1178	32.50	1.4747	531987	0.0047	702	6.722E-6	8.140	7.326
1197	32.64	1.4790	532600	0.0046	651	7.166E-6	8.304	7.474
1218	32.80	1.4838	533231	0.0046	602	7.665E-6	8.464	7.618
1238	32.96	1.4884	533835	0.0046	568	8.176E-6	8.637	7.773
1259	33.12		534384	0.0094	1070	8.762E-6	8.809	7.928
1280	33.28	1.4978	534905	0.0093	1009	9.253E-6	8.986	8.088
	33.44	1.5025	535393					

Annex F – Individual J vs. Δa Curves

ASTM E1820-02 Standard Test

ASTM E1820-02 Standard Test

ASTM E1820-02 Standard Test

ASTM E1820-02 Standard Test

ASTM E1820-02 Standard Test

ASTM E1820-02 Standard Test

Annex G – Load vs. Load-Line Displacement Plots

Annex H – Tabular Results – ASTM E1820 Analysis

Ela	stic-Plas	stic Fract	ure To	oughness	Analysi	is	
Specimen ID Contract Material Temperature(F) Environment	SS	5083-FT-1 C 10624-01 5083-H321 75.0 LAB AIR		Geometry Orientation Yield (ksi) Tensile (ksi) Modulus (M			C(T) T-L 34.3 51.8 10.5
Specimen Dimensions Thickness (in) Net Thickness (in) Width (in) Pin Spacing (in)		0.500 0.500 2.000 1.100		Notch Depth Gage Lengti Alpha Ratio			1.100 0.200 1
Precrack Parameters Pmax (lbf) Final a (in) Pf (lbf)		310.0 1.200 1056		Stress Ratio Kmax (ksi se			0.1 6.0
Initial measured crack len 1.182 1.195	gths (in) 1.199	1.200	1.205	1.208	1.209	1.206	1.196
Final measured crack length 1.318	1.440 n)	1.583 x 1.201 1.466	1.682 x	1.573 x aoq (in) Compliance			1.329 x n/a 1.014
Delta a measured (in) Delta a predicted (in) Results Ja (E1820)		0.264 0.203 bf-in/in^2		Effective Mo	odulus (MS	1)	10.6
K _{JIC} (E ⁺ JQ)^1/2 <u>Qualification of Data</u> 7.4.2: precrack length 9.1.4.1; precrack 9.1.4.2; final crack 9.1.5.1; Δa meas	valid valid invalid valid	si sqrt(in)		Qualification A9.9.1; thick A9.9.2; ligan A9.9.3; slope	ness	J _{ic} valid valid valid	
9.1.5.2; Δa pred A9.6.4; # of pnts in reg.A A9.6.4; # of pnts in reg.B A9.8.1; C ₂ <1 A9.8.2.1; a _{0q} -a ₀ A9.8.2.2; # of pnts for J _Q A9.8.2.2; # of pnts < J _Q A9.3.3.1; correlation	invalid valid valid valid #VALUE! valid valid valid						

Index	Time	Force	Disp1	Disp2	Crack	∆a	CTOD	K561	K1820	KJ1820	J1820	Je	Jpl
	Sec	lbf	inch	inch	inch	inch	inch	ksi sqr(in)	ksi sqr(in)	ksi sqr(in)	lbf/in	lbf/in	lbf/in
8	391.1	727.8	0.00877	0.11444	1.2018	0.0000	0.00027	14.59	14.10	14.10	17.23	17.24	-0.01
9	428.8	847.8	0.01032	0.13367	1.2018		0.00038	17.21	16.43	16.60	23.87	23.40	0.47
10	465.8	965.4	0.01187	0.15198	1.2012		0.00052	19.84	18.68	19.09	31.57	30.26	1.31
11	502.6	1078.9	0.01341	0.17029	1.2037		0.00066	22.66	20.99	21.49	40.01	38.17	1.84
12	539	1187.1	0.01496	0.18707	1.2028		0.00084	25.29	23.05	23.94	49.68	46.05	3.63
13	575.1	1291.3	0.01652	0.20325	1.2015		0.00105	27.90	25.01	26.39	60.37	54.20	6.17
14 15	610.8 646.5	1390.5 1480.1	0.01808 0.01964	0.21820 0.23193	1.2027 1.2039		0.00125 0.00148	30.70 33.38	26.99 28.80	28.75 31.09	71.64 83.77	63.15 71.88	8.49 11.89
16	681.6	1559.9	0.01364	0.23193	1.2055		0.00148	35.92	30.42	33.40	96.68	80.22	16.46
17	716.6	1631.3	0.02121	0.25726	1.2075		0.00178	38.47	31.97	35.62	109.97	88.58	21.39
18	751.1	1673.0	0.02436	0.26306	1.2112		0.00227	40.32	33.03	37.76	123.58	94.55	29.03
19	785.8	1723.0	0.02596	0.27039	1.2159		0.00255	42.72	34.34	39.84	137.56	102.17	35.39
20	820.1	1729.1	0.02754	0.27283	1.2221		0.00286	43.83	34.89	41.76	151.13	105.50	45.63
21	854.6	1745.0	0.02912	0.27344	1.2271		0.00318	45.20	35.57	43.66	165.17	109.64	55.53
22	889.3	1754.2	0.03070	0.27496	1.2332	0.0315	0.00350	46.56	36.21	45.42	178.83	113.62	65.21
23	924	1747.4	0.03224	0.27466	1.2380	0.0362	0.00384	47.08	36.42	47.15	192.70	114.98	77.71
24	959.8	1778.4	0.03384	0.28015	1.2393	0.0375	0.00417	48.63	37.17	49.03	208.36	119.74	88.62
25	995	1779.0	0.03542	0.27985	1.2422		0.00452	49.20	37.41	50.76	223.34	121.30	102.05
26	1030.6	1796.4	0.03703	0.28137	1.2454		0.00487	50.58	38.03	52.47	238.64	125.33	113.31
27	1066.1	1802.4	0.03862	0.28351	1.2473		0.00523	51.23	38.31	54.18	254.36	127.17	127.19
28	1101.6	1804.5	0.04022	0.28381	1.2495		0.00560	51.78	38.53	55.83	270.18	128.66	141.52
29	1137.5	1811.5	0.04182	0.28656	1.2511		0.00597	52.45	38.81	57.47	286.21	130.55	155.66
30	1173.2	1812.4	0.04343	0.28442	1.2534		0.00634	52.98	39.02	59.03	302.04	131.94	170.10
31	1209.1	1817.9	0.04502	0.28534	1.2551		0.00671	53.61	39.27	60.57	317.98	133.68	184.30
32 33	1245 1280.9	1817.6 1815.8	0.04662 0.04821	0.28534 0.28473	1.2563 1.2584		0.00709 0.00747	53.86 54.24	39.37 39.51	62.12 63.56	334.46 350.10	134.34 135.28	200.12 214.82
34	1317	1808.5	0.04821	0.28412	1.2615		0.00747	54.56	39.61	64.93	365.34	135.26	229.38
35	1352.9	1791.4	0.04302	0.28076	1.2634		0.00700	54.11	39.40	66.32	381.24		246.72
00	1002.5	1101.4	0.00140	0.20070	1.2004	0.0011	0.00020	04.11	00.40	00.02	001.24	104.02	240.72
00	4000.4	4700.4	0.05000	0.07054	4.0004	0.0040	0.00005	54.00	00.45	67.60	000.00	404.00	004.50
36	1389.1	1783.4	0.05303 0.05465	0.27954	1.2661		0.00865	54.30	39.45	67.63	396.36	134.86 134.15	261.50
37 38	1425.5 1462.2	1768.8 1763.5	0.05624	0.28046 0.27832	1.2687 1.2712		0.00906 0.00945	54.13 54.42	39.34 39.44	68.92 70.16	411.65 426.59	134.78	291.81
39	1499.1	1757.2	0.05783	0.27527	1.2733		0.00984	54.57	39.47	71.39	441.71	135.04	306.67
40	1536.1	1743.8	0.05942	0.27435	1.2764		0.01024	54.58	39.44	72.53	455.93	134.82	321.11
41	1573.4	1735.7	0.06101	0.27313	1.2782		0.01064	54.58	39.42	73.72	471.06	134.66	336.40
42	1610.5	1726.4	0.06261	0.27069	1.2809		0.01105	54.70	39.44	74.85	485.49	134.80	350.69
43	1648.1	1717.8	0.06418	0.26978	1.2831		0.01144	54.75	39.43	75.95	499.95	134.76	365.19
44	1685.9	1706.4	0.06582	0.26794	1.2854	0.0836	0.01187	54.66	39.37	77.09	515.03	134.30	380.73
45	1723.9	1699.7	0.06740	0.26825	1.2884	0.0866	0.01226	55.01	39.48	78.09	528.53	135.06	393.48
46	1761.9	1693.6	0.06897	0.26642	1.2918	0.0900	0.01266	55.49	39.63	79.05	541.53	136.12	405.41
47	1800.1	1685.3	0.07054	0.26581	1.2940	0.0922	0.01306	55.58	39.64	80.07	555.66	136.16	419.50
48	1838.6	1665.2	0.07215	0.26215	1.2981	0.0963	0.01350	55.43	39.52	80.96	568.13	135.39	432.74
49	1877.2	1642.0	0.07380	0.25818	1.3008		0.01395	54.74	39.21	81.96	582.22	133.26	448.97
50	1916.6	1629.8	0.07541	0.25665	1.3049		0.01437	55.06	39.29	82.79	594.09	133.79	460.31
51	1955.9	1612.6	0.07701	0.25391	1.3077		0.01480	54.73	39.12	83.71	607.28	132.64	
52	1995.4	1599.3	0.07861	0.25085	1.3121		0.01523	55.06	39.20	84.47	618.33	133.16	
53	2035.1	1573.2	0.08020	0.24811	1.3167		0.01568	54.64	38.97	85.19	628.99	131.63	
54	2074.9	1538.4	0.08178	0.24170	1.3225		0.01615	53.98	38.63	85.78	637.70	129.31	
55 56	2115.9	1525.3	0.08337	0.23956	1.3263		0.01659	54.13	38.64	86.52	648.75	129.40	
56 57	2157.1 2198.2	1512.4 1492.0	0.08494 0.08650	0.23834 0.23529	1.3293 1.3335		0.01702 0.01747	54.11 53.89	38.59 38.45	87.29 87.94	660.37 670.25	129.10 128.15	
58	2239.9	1492.0	0.08810	0.23254	1.3367		0.01747	53.50	38.25	88.69	681.67	126.82	
59	2281.9	1447.1	0.08971	0.23254	1.3420		0.01793	53.20	38.06	89.23	690.02	125.57	
60	2324.6	1434.0	0.00371	0.22553	1.3457		0.01885	53.30	38.06	89.88	700.06	125.53	
61	2367.4	1416.6	0.09291	0.22339	1.3501		0.01932	53.30	38.00	90.47	709.40	125.16	
62	2410.6	1395.3	0.09454	0.22125	1.3547		0.01980	53.08	37.85	91.04	718.24	124.19	594.05
63	2454.4	1374.7	0.09615	0.21790	1.3585		0.02028	52.72	37.66	91.63	727.69	122.90	

Index	Time	Force	Disp1	Disp2	Crack	∆ a	CTOD	K561	K1820	KJ1820	J1820	Je	Jpl
	Sec	lbf	inch	inch	inch	inch	inch	ksi sqr(in)	ksi sqr(in)	ksi sqr(in)	lbf/in	lbf/in	lbf/in
64	2498.6	1353.8	0.09775	0.21484	1.3635	0.1617	0.02077	52.60	37.55	92.11	735.33	122.17	613.15
65	2543.4	1342.6	0.09933	0.21210	1.3669	0.1652	0.02122	52.75	37.56	92.70	744.80	122.26	622.53
66	2588.6	1329.3	0.10091	0.21057	1.3713	0.1695	0.02168	52.99	37.60	93.19	752.65	122.53	630.12
67	2634.2	1310.0	0.10252	0.20843	1.3754	0.1736	0.02217	52.73	37.44	93.71	761.03	121.51	639.52
68	2679.9	1290.9	0.10410	0.20416	1.3797	0.1780	0.02266	52.54	37.31	94.17	768.63	120.65	647.98
69	2726.7	1273.5	0.10573	0.20111	1.3841	0.1823	0.02316	52.47	37.22	94.65	776.41	120.09	656.33
70	2773.9	1259.2	0.10732	0.19928	1.3881	0.1863	0.02364	52.52	37.19	95.12	784.15	119.86	664.29
71	2821.6	1239.0	0.10894	0.19714	1.3923	0.1905	0.02414	52.19	37.00	95.57	791.61	118.65	672.96
72	2869.7	1221.5	0.11055	0.19501	1.3963	0.1946	0.02465	51.99	36.87	96.02	799.14	117.79	681.34
73	2918.6	1205.8	0.11216	0.19165	1.4009	0.1991	0.02515	52.07	36.84	96.41	805.51	117.62	687.90
74	2967.7	1190.9	0.11374	0.18951	1.4051	0.2034	0.02564	52.12	36.80	96.79	811.95	117.37	694.58

Ela	stic-Plas	tic Fract	ure To	oughness	Analysi	s	
Specimen ID Contract Material Temperature(F) Environment	ss	5083-FT-2 C 10624-01 5083-H321 75.0 LAB AIR		Geometry Orientation Yield (ksi) Tensile (ksi) Modulus (Ms			C(T) T-L 34.3 51.8 10.5
Specimen Dimensions Thickness (in) Net Thickness (in) Width (in) Pin Spacing (in)		0.500 0.500 2.000 1.100		Notch Depth Gage Length Alpha Ratio			1.100 0.200 1
Precrack Parameters Pmax (lbf) Final a (in) Pf (lbf)		310.0 1.200 1057		Stress Ratio Kmax (ksi so			0.1 6.0
Initial measured crack len 1.160 1.176	gths (in) 1.187	1.195	1.205	1.214	1.221	1.223	1.214
Final measured crack length 1.296 1.335 x x	gths (in) 1.427	1.570 x	1.652 X	1.562 x	1.433	1.365 x	1.354 x
Ave. initial crack length (in Ave. final crack length (in Delta a measured (in) Delta a predicted (in)		1.201 1.459 0.258 0.202		aoq (in) Compliance Effective Mo	•		n/a 0.985 10.3
Results J _a (E1820) K _{JIC} (E'*JQ)^1/2		bf-in/in^2 si sqrt(in)					
Qualification of Data 7.4.2: precrack length 9.1.4.1; precrack 9.1.4.2; final crack 9.1.5.1; Δa meas 9.1.5.2; Δa pred A9.6.4; # of pnts in reg.A A9.6.4; # of pnts in reg.B A9.8.1; $C_2 < 1$ A9.8.2.1; $a_{0q} - a_0$ A9.8.2.2; # of pnts or $J_α$ A9.8.2.2; # of pnts $< J_α$ A9.3.3.1; correlation	valid valid invalid valid valid valid valid #VALUE! valid valid valid			Qualification A9.9.1; thick A9.9.2; ligan A9.9.3; slope	ness	valid valid valid	

Index	Time	Force	Disp1	Disp2	Crack	∆a	CTOD	K561	K1820	KJ1820	J1820	Je	Jpl
	Sec	lbf	inch	inch	inch	inch	inch	ksi sqr(in)	ksi sqr(in)	ksi sqr(in)	lbf/in	lbf/in	lbf/in
9	419.3	846.7	0.01060	0.13367	1.2015		0.00039	17.17	16.40	16.39	23.29	23.31	-0.03
10	456.3	961.8	0.01217	0.15167	1.2016		0.00052	19.78	18.63	18.85	30.78	30.09	0.69
12	529.1	1180.7	0.01529	0.18616	1.2020		0.00084	25.08	22.90	23.67	48.57	45.43	3.14
13	565.1	1282.8	0.01684	0.20142	1.2017		0.00103	27.70	24.86	26.05	58.81	53.55	5.26
14	600.8	1379.2	0.01840	0.21729	1.2019		0.00124	30.32	26.74	28.40	69.91	61.95	7.96
15	636.1	1470.5	0.01999	0.23163	1.2025		0.00147	32.97	28.54	30.74	81.89	70.59	11.30
16	671.3	1547.7	0.02156	0.24322	1.2045		0.00171	35.48	30.16	33.00	94.37	78.81	15.56
17	706	1611.2	0.02314	0.25421	1.2069		0.00197	37.75	31.54	35.21	107.43	86.21 92.68	21.22
18	740.3	1657.3	0.02472	0.26062	1.2109 1.2157		0.00224	39.75	32.70	37.30	120.61 134.17		27.93
19 20	775 809.5	1697.8 1731.3	0.02632	0.26642 0.27252	1.2193		0.00253 0.00283	41.78 43.52	33.82 34.74	39.35 41.37	148.33	99.15 104.62	35.02 43.71
21	843.8	1751.3	0.02752	0.27557	1.2133		0.00263	45.04	35.52	43.34	162.80	104.62	53.47
22	878.6	1785.3	0.02334	0.28046	1.2263		0.00314	46.69	36.34	45.28	177.71	114.42	63.29
23	913.3	1801.0	0.03114	0.28320	1.2294		0.00340	47.87	36.89	47.18	192.95	117.96	74.99
24	948.1	1817.8	0.03273	0.28778	1.2321		0.00300	49.04	37.44	49.07	208.71	121.48	87.23
25	982.8	1827.6	0.03599	0.28839	1.2344		0.00450	49.90	37.82	50.88	224.38	123.97	100.40
26	1017.8	1839.3	0.03762	0.28931	1.2360		0.00486	50.71	38.19	52.70	240.66	126.38	114.28
27	1052.5	1831.1	0.03920	0.28992	1.2395		0.00522	51.02	38.29	54.33	255.79		128.71
28	1087.6	1836.2	0.04081	0.28900	1.2421		0.00558	51.76	38.60	55.96	271.44	129.16	142.28
29	1123	1846.9	0.04242	0.29144	1.2442		0.00594	52.71	39.01	57.59	287.41		155.54
30	1158.2	1852.0	0.04403	0.29083	1.2460		0.00631	53.32	39.25	59.19	303.66	133.55	170.11
31	1193.6	1848.8	0.04565	0.29175	1.2479	0.0464	0.00670	53.58	39.35	60.77	320.03	134.18	185.85
32	1228.9	1832.4	0.04728	0.28839	1.2516		0.00709	53.57	39.30	62.20	335.34	133.88	201.46
33	1264.6	1836.2	0.04887	0.28992	1.2523	0.0508	0.00747	53.92	39.45	63.72	351.85	134.85	217.00
34	1300.1	1826.3	0.05043	0.28686	1.2549	0.0534	0.00785	53.99	39.45	65.08	367.01	134.85	232.16
35	1336	1826.9	0.05204	0.28748	1.2568	0.0553	0.00823	54.43	39.61	66.47	382.97	136.00	246.96
36	1372	1825.6	0.05363	0.28717	1.2588	0.0573	0.00861	54.82	39.75	67.82	398.64	136.97	261.67
37	1407.7	1811.2	0.05522	0.28534	1.2612	0.0597	0.00900	54.64	39.65	69.12	414.00	136.24	277.76
38	1444.1	1802.2	0.05682	0.28259	1.2638	0.0623	0.00940	54.75	39.67	70.37	429.12	136.36	292.76
39	1480.4	1787.1	0.05844	0.28239	1.2662		0.00980	54.73	39.54	71.61	444.45	135.53	308.93
40	1516.7	1776.9	0.05044	0.28015	1.2690		0.00360	54.63	39.55	72.77	459.00	135.58	323.42
41	1553.6	1768.7	0.06162	0.27832	1.2721		0.01059	54.92	39.64	73.90	473.31	136.18	337.13
42	1590.5	1755.7	0.06320	0.27740	1.2737		0.01100	54.60	39.48	75.09	488.73		353.61
43	1627.4	1735.7	0.06481	0.27283	1.2775		0.01141	54.41	39.36	76.12	502.21	134.26	367.95
44	1664.7	1718.8	0.06645	0.27039	1.2803		0.01184	54.14	39.21	77.22	516.81	133.26	383.55
45	1702.4	1708.1	0.06806	0.26917	1.2841		0.01225	54.46	39.30	78.19	529.85	133.86	395.99
46	1740.1	1699.4	0.06965	0.26703	1.2868		0.01265	54.62	39.34	79.21	543.71		409.61
47	1778.2	1692.5	0.07127	0.26703	1.2900		0.01306	54.99	39.45	80.19	557.29	134.89	422.40
48	1816.2	1676.5	0.07284	0.26367	1.2928		0.01348	54.76	39.32	81.15	570.71		436.70
49	1854.7	1656.2	0.07443	0.26215	1.2988	0.0973	0.01390	55.07	39.38	81.85	580.61	134.37	446.25
50	1893.5	1636.8	0.07604	0.25757	1.3012	0.0997	0.01434	54.54	39.13	82.83	594.61		461.93
51	1932.6	1621.1	0.07766	0.25574	1.3041	0.1026	0.01478	54.35	39.01	83.74	607.74	131.89	475.85
52	1971.9	1601.6	0.07926	0.25146	1.3083	0.1068	0.01522	54.24	38.92	84.52	619.07	131.25	487.82
53	2011.6	1589.1	0.08083	0.24994	1.3120	0.1105	0.01564	54.41	38.94	85.29	630.46	131.42	499.04
54	2051.4	1554.6	0.08252	0.24567	1.3171	0.1156	0.01613	53.61	38.55	86.02	641.33	128.76	512.57
55	2092.1	1544.7	0.08409	0.24445	1.3207	0.1192	0.01656	53.91	38.62	86.76	652.40	129.29	523.11
56	2132.4	1510.6	0.08570	0.23865	1.3262	0.1247	0.01704	53.20	38.26	87.36	661.38	126.88	534.49
57	2173.7	1500.4	0.08727	0.23590	1.3297	0.1282	0.01747	53.45	38.32	88.06	672.08	127.29	544.79
58	2215.2	1480.1	0.08886	0.23346	1.3342	0.1327	0.01792	53.30	38.21	88.69	681.73	126.51	555.22
59	2257.4	1461.6	0.09053	0.23071	1.3375	0.1360	0.01840	52.98	38.03	89.45	693.41	125.36	568.05
60	2299.7	1442.9	0.09219	0.22797	1.3426	0.1411	0.01888	53.09	38.01	90.02	702.31		577.08
61	2342.5	1426.1	0.09380	0.22614	1.3466		0.01934	53.02	37.94	90.64	712.00	124.73	587.27
62	2385.7	1413.0	0.09536	0.22339	1.3496	0.1481	0.01979	52.93	37.86	91.31	722.58	124.23	598.36
63	2428.9	1395.0	0.09691	0.22156	1.3530		0.02025	52.62	37.69	91.93	732.35	123.12	
64	2472.7	1367.7	0.09851	0.21667	1.3586		0.02074	52.25	37.47	92.35	739.07		617.41
65	2517.1	1350.6	0.10008	0.21362	1.3631	0.1616	0.02121	52.29	37.42	92.83	746.81	121.38	625.43

Index	Time	Force	Disp1	Disp2	Crack	∆a	CTOD	K561	K1820	KJ1820	J1820	Je	Jpl
	Sec	lbf	inch	inch	inch	inch	inch	ksi sqr(in)	ksi sqr(in)	ksi sqr(in)	lbf/in	lbf/in	lbf/in
66	2562.1	1328.0	0.10175	0.21271	1.3681	0.1666	0.02172	52.05	37.26	93.31	754.51	120.35	634.16
67	2607.4	1308.8	0.10331	0.20752	1.3725	0.1710	0.02220	51.87	37.14	93.77	761.99	119.52	642.48
68	2653.4	1292.9	0.10490	0.20538	1.3773	0.1758	0.02268	52.02	37.13	94.19	768.90	119.50	649.40
69	2699.9	1268.8	0.10653	0.20142	1.3825	0.1810	0.02319	51.69	36.93	94.58	775.29	118.20	657.08
70	2747.2	1242.7	0.10818	0.19867	1.3883	0.1868	0.02373	51.36	36.72	94.90	780.59	116.88	663.71
71	2795.1	1231.4	0.10975	0.19562	1.3926	0.1911	0.02420	51.68	36.80	95.32	787.38	117.36	670.02
72	2843.2	1208.9	0.11136	0.19257	1.3971	0.1956	0.02472	51.24	36.56	95.72	794.05	115.85	678.21
73	2892.6	1198.4	0.11293	0.19073	1.4005	0.1990	0.02519	51.40	36.58	96.19	801.81	115.96	685.85
74	2942.2	1190.9	0.11448	0.18982	1.4036	0.2021	0.02564	51.67	36.65	96.68	810.04	116.39	693.66

Elas	stic-Pla	stic Fract	ure To	oughness	Analysi	is	
Specimen ID Contract Material Temperature(F) Environment	SS	5083-FT-3 SC 10624-01 5083-H321 75.0 LAB AIR		Geometry Orientation Yield (ksi) Tensile (ksi) Modulus (Ms	si)		C(T) T-L 34.3 51.8 10.5
Specimen Dimensions Thickness (in) Net Thickness (in) Width (in) Pin Spacing (in)		0.500 0.395 2.000 1.100		Notch Depth Gage Length Alpha Ratio			1.100 0.200 1
Precrack Parameters Pmax (lbf) Final a (in) Pf (lbf)		310.9 1.200 1053		Stress Ratio Kmax (ksi so	ırt (in))		0.1 6.0
Initial measured crack leng 1.211 1.213	<u>ths (in)</u> 1.211	1.207	1.204	1.199	1.197	1.192	1.186
Final measured crack lengt 1.422 1.423	ths (in) 1.429	1.421	1.416	1.414	1.398	1.395	1.397
Ave. initial crack length (in Ave. final crack length (in) Delta a measured (in) Delta a predicted (in))	1.203 1.413 0.210 0.199		aoq (in) Compliance Effective Mo	•		1.204 1.019 10.7
Results J _Q (E1820) K _{JIC} (E**JQ)^1/2		lbf-in/in^2 ksi sqrt(in)					
Qualification of Data 7.4.2: precrack length 9.1.4.1; precrack 9.1.4.2; final crack 9.1.5.1; Δa meas 9.1.5.2; Δa pred A9.6.4; # of pnts in reg.A A9.6.4; # of pnts in reg.B A9.8.1; C_2 <1 A9.8.2.1; a_{0q} - a_0 A9.8.2.2; # of pnts for J_q A9.8.2.2; # of pnts < J_q A9.3.3.1; correlation	valid valid valid valid valid valid valid valid invalid valid valid			Qualification A9.9.1; thick A9.9.2; ligam A9.9.3; slope	ness nent	valid valid valid valid	

Index	Time	Force	Disp1	Disp2	Crack	∆a	CTOD	K561	K1820	KJ1820	J1820	Je	Jpl
	Sec	lbf	inch	inch	inch	inch	inch	ksi sqr(in)	ksi sqr(in)	ksi sqr(in)	lbf/in	lbf/in	lbf/in
10	380.8	304.3	0.00371	0.04822	1.2029	-0.0014	0.00004	6.70	6.65	6.65	3.84	3.83	0.01
11	430.1	388.2	0.00477	0.06165	1.2027	-0.0015	0.00007	8.58	8.48	8.50	6.27	6.23	0.04
12	462.8	471.2	0.00583	0.07416	1.2031	-0.0011	0.00012	10.49	10.30	10.34	9.26	9.20	0.06
13	495.1	554.5	0.00687	0.08698	1.2041	-0.0002	0.00017	12.45	12.15	12.15	12.80	12.78	0.01
14	526	638.0	0.00793	0.10071	1.2043	0.0001	0.00023	14.46	13.98	14.00	17.00	16.94	0.06
15	556.1	719.9	0.00898	0.11383	1.2047	0.0004	0.00030	16.48	15.79	15.81	21.67	21.60	0.07
16	586.1	800.9	0.01002	0.12604	1.2049	0.0006	0.00038	18.53	17.57	17.63	26.95	26.76	0.19
17	616.1	882.9	0.01108	0.13916	1.2051	0.0008	0.00047	20.68	19.37	19.47	32.85	32.53	0.32
18	645.8	960.5	0.01213	0.15137	1.2053	0.0011	0.00058	22.79	21.09	21.29	39.28	38.55	0.73
19	675.1	1031.2	0.01318	0.16296	1.2063	0.0021	0.00069	24.83	22.69	23.10	46.23	44.61	1.63
20	704.3	1099.4	0.01424	0.17334	1.2052	0.0010	0.00084	26.73	24.13	24.95	53.94	50.48	3.47
21	733.3	1166.2	0.01531	0.18372	1.2064	0.0022	0.00097	28.83	25.66	26.73	61.92	57.08	4.84
22	762.1	1228.5	0.01638	0.19318	1.2067	0.0024	0.00113	30.80	27.05	28.53	70.52	63.39	7.13
23	790.6	1286.3	0.01743	0.20264	1.2072	0.0029	0.00129	32.72	28.35	30.27	79.41	69.64	9.78
24	819.3	1341.9	0.01851	0.21210	1.2090	0.0048	0.00145	34.78	29.68	31.98	88.66	76.34	12.32
25	847.8	1394.0	0.01958	0.21912	1.2103	0.0061	0.00163	36.76	30.91	33.70	98.41	82.83	15.58
26	876.1	1435.6	0.02065	0.22614	1.2126	0.0084	0.00181	38.54	31.98	35.35	108.30	88.63	19.66
27	904.5	1470.5	0.02173	0.23071	1.2161	0.0118	0.00200	40.31	32.99	36.96	118.37	94.30	24.07
28	932.6	1498.4	0.02282	0.23682	1.2200	0.0157	0.00219	41.94	33.88	38.52	128.57	99.46	29.11
29	960.8	1514.1	0.02392	0.23895	1.2263	0.0221	0.00239	43.49	34.67	39.98	138.55	104.19	34.36
30	989.1	1523.4	0.02502	0.23926	1.2334	0.0292	0.00258	44.98	35.40	41.36	148.28	108.59	39.69
31	1017.3	1514.0	0.02606	0.23834	1.2411	0.0369	0.00279	45.78	35.74	42.62	157.45	110.71	46.73
32	1045.7	1500.8	0.02714	0.23560	1.2519	0.0476	0.00298	46.97	36.24	43.73	165.77	113.81	51.95
33	1074.2	1460.1	0.02821	0.22919	1.2654	0.0612	0.00318	47.33	36.29	44.68	173.00	114.11	58.88
34	1103.9	1418.9	0.02933	0.22308	1.2815	0.0772	0.00338	48.14	36.52	45.50	179.46	115.57	63.88
35	1133.9	1365.8	0.03040	0.21576	1.2975	0.0932	0.00359	48.30	36.43	46.22	185.14	115.01	70.13
36	1165.6	1344.0	0.03146	0.21179	1.3088	0.1046	0.00379	49.33	36.78	47.08	192.06	117.27	74.79
37	1197.6	1283.0	0.03259	0.20233	1.3264	0.1221	0.00402	49.32	36.58	47.68	197.03	115.99	81.04
38	1230.9	1215.1	0.03380	0.19135	1.3459	0.1417	0.00428	49.19	36.31	48.21	201.47	114.26	87.21
39	1266.6	1201.2	0.03487	0.18890	1.3554	0.1511	0.00449	50.43	36.74	49.00	208.08	116.96	91.12
40	1302.6	1162.3	0.03599	0.18372	1.3679	0.1637	0.00473	50.65	36.68	49.67	213.78	116.60	97.18
41	1339.4	1099.8	0.03718	0.17365	1.3853	0.1810	0.00501	50.23	36.29	50.10	217.54	114.12	103.42
42	1378	1052.1	0.03831	0.16632	1.4024	0.1981	0.00524	50.82	36.31	50.40	220.16	114.28	105.87

Elas	tic-Plas	stic Fract	ure To	oughness /	Analysi	is	
Specimen ID Contract Material Temperature(F) Environment	SS	5083-FT-5 C 10624-01 5083-H321 75.0 LAB AIR		Geometry Orientation Yield (ksi) Tensile (ksi) Modulus (Ms	i)		C(T) T-L 34.3 51.8 10.5
Specimen Dimensions Thickness (in) Net Thickness (in) Width (in) Pin Spacing (in)		0.501 0.501 4.000 2.200		Notch Depth Gage Length Alpha Ratio			2.200 0.200 1
Precrack Parameters Pmax (lbf) Final a (in) Pf (lbf)		733.0 2.400 2158		Stress Ratio Kmax (ksi sq	rt (in))		0.1 9.9
Initial measured crack lengt 2.340 2.365	ths (in) 2.382	2.394	2.401	2.404	2.403	2.395	2.375
Final measured crack lengt 2.484 2.531 x	hs (in) 2.617	2.754	2.815 x	2.719	2.596	2.548	2.519
Ave. initial crack length (in) Ave. final crack length (in) Delta a measured (in) Delta a predicted (in)		2.388 2.635 0.247 0.213		aoq (in) Compliance / Effective Mod			2.391 0.985 10.3
Results Ja (E1820) K _{JIC} (E**JQ)^1/2		bf-in/in^2 ssi sqrt(in)					
Qualification of Data 7.4.2: precrack length 9.1.4.1; precrack 9.1.4.2; final crack 9.1.5.1; Δa meas 9.1.5.2; Δa pred A9.6.4; # of pnts in reg.A A9.6.4; # of pnts in reg.B A9.8.1; C ₂ <1 A9.8.2.1; a_{0q} - a_0 A9.8.2.2; # of pnts for J _Q A9.8.2.2; # of pnts < J _Q A9.3.3.1; correlation	valid valid invalid valid valid valid valid valid valid valid valid valid			Qualification A9.9.1; thicki A9.9.2; ligam A9.9.3; slope	ness ent	valid valid valid	

Index	Time	Force	Disp1	Disp2	Crack	∆a	CTOD	K561	K1820	KJ1820	J1820	Je	Jpl
	Sec	lbf	inch	inch	inch	inch	inch	ksi sqr(in)	ksi sqr(in)	ksi sar(in)	lbf/in	lbf/in	lbf/in
20	704.3	2535.4	0.03334	0.83618	2.3892		0.00215	37.85	34.21	34.12	100.90	101.40	-0.51
21	735.6	2647.3	0.03551	0.87647	2.3903		0.00247	39.95	35.76	36.54	115.73	110.80	4.94
22	767.1	2742.0	0.03770	0.90912	2.3957		0.00279	42.03	37.23	38.86	130.86	120.13	10.73
23	798.3	2838.8	0.03990	0.93842	2.3984		0.00314	44.06	38.64	41.18	146.95	129.42	17.53
24	829.5	2921.9	0.04205	0.96436	2.4010		0.00350	45.89	39.88	43.40	163.26	137.83	25.43
25	860.8	2997.1	0.04423	0.99121	2.4051		0.00387	47.71	41.07	45.57	179.99	146.19	33.80
26	892.3	3076.8	0.04639	1.02051	2.4082		0.00424	49.62	42.29	47.70	197.18	155.00	42.19
27	923.6	3151.1	0.04857	1.04370	2.4093	0.0186	0.00464	51.32	43.36	49.85	215.39	162.93	52.47
28	954.8	3215.2	0.05074	1.06720	2.4124		0.00504	52.99	44.37	51.91	233.55	170.66	62.89
29	986	3273.0	0.05292	1.08612	2.4138		0.00546	54.44	45.24	53.97	252.47	177.36	75.10
30	1017.5	3328.3	0.05510	1.10169	2.4144	0.0237	0.00590	55.78	46.03	56.02	272.01	183.62	88.40
31	1048.9	3380.1	0.05728	1.12396	2.4166	0.0259	0.00633	57.22	46.85	57.99	291.49	190.22	101.28
32	1080.5	3429.7	0.05947	1.13251	2.4191		0.00677	58.65	47.65	59.92	311.21	196.79	114.43
33	1111.7	3475.9	0.06165	1.15051	2.4207		0.00721	59.97	48.37	61.84	331.46	202.80	128.66
34	1143.1	3511.5	0.06387	1.16455	2.4225	0.0318	0.00768	61.05	48.96	63.76	352.30	207.72	144.58
35	1174.4	3541.9	0.06608	1.17584	2.4254	0.0347	0.00815	62.13	49.52	65.59	372.88	212.53	160.34
36	1205.7	3574.4	0.06830	1.18622	2.4285	0.0378	0.00861	63.31	50.13	67.39	393.56	217.81	175.74
37	1237.1	3586.4	0.07051	1.18591	2.4312	0.0405	0.00911	63.92	50.43	69.17	414.69	220.44	194.24
38	1268.5	3595.1	0.07272	1.19049	2.4362	0.0455	0.00959	64.71	50.81	70.83	434.82	223.77	211.05
39	1300	3609.6	0.07493	1.20178	2.4376	0.0469	0.01009	65.26	51.09	72.57	456.47	226.22	230.26
40	1331.6	3620.6	0.07714	1.19751	2.4419	0.0511	0.01058	66.05	51.46	74.19	477.06	229.54	247.52
41	1363.4	3627.2	0.07940	1.20575	2.4447	0.0540	0.01110	66.57	51.71	75.86	498.74	231.71	267.03
42	1395.1	3634.9	0.08163	1.20392	2.4498	0.0591	0.01159	67.39	52.08	77.40	519.23	235.10	284.13
43	1427	3634.9	0.08386	1.20575	2.4547	0.0640	0.01210	67.99	52.35	78.91	539.67	237.48	302.19
44	1459.1	3641.4	0.08607	1.21002	2.4565	0.0658	0.01261	68.40	52.53	80.50	561.57	239.19	322.38
45	1491.1	3626.9	0.08829	1.20056	2.4626	0.0719	0.01313	68.73	52.65	81.90	581.26	240.27	340.99
46	1523.1	3630.2	0.09053	1.20087	2.4648	0.0741	0.01366	69.10	52.82	83.43	603.26	241.78	361.48
47	1555.7	3624.4	0.09276	1.20422	2.4698	0.0791	0.01418	69.56	53.01	84.82	623.58	243.49	380.09
48	1588.2	3612.4	0.09497	1.19934	2.4742	0.0834	0.01471	69.76	53.07	86.20	643.98	244.07	399.91
49	1621	3599.6	0.09724	1.18957	2.4803	0.0896	0.01525	70.16	53.22	87.52	663.83	245.43	418.40
50	1653.6	3563.2	0.09945	1.17706	2.4855	0.0948	0.01581	69.71	52.97	88.81	683.52	243.14	440.37
51	1686.9	3561.9	0.10166	1.18317	2.4902	0.0995	0.01633	70.29	53.21	90.08	703.32	245.34	457.98
52	1720	3543.1	0.10388	1.17188	2.4944	0.1037	0.01689	70.25	53.16	91.37	723.54	244.91	478.64
53	1753.4	3534.7	0.10614	1.17401	2.4981	0.1074	0.01744	70.48	53.24	92.67	744.31	245.65	498.66
54	1787.1	3520.2	0.10837	1.16882	2.5040	0.1133	0.01798	70.82	53.35	93.84	763.20	246.70	516.50
55	1821	3510.3	0.11057	1.16303	2.5087		0.01852	71.13	53.46	95.02	782.53	247.71	534.82
56	1854.7	3494.0	0.11274	1.15601	2.5150		0.01905	71.47	53.57	96.09	800.22	248.75	551.47
57	1889	3482.1	0.11497	1.15753	2.5204		0.01960	71.83	53.70	97.22	819.07	249.89	569.19
58	1923	3461.9	0.11717	1.14532	2.5262		0.02016	71.98	53.72	98.29	837.30	250.12	587.18
59	1957.5	3431.9	0.11938	1.14014	2.5328	0.1421	0.02073	71.89	53.63	99.31	854.82	249.29	605.53
60	1992.4	3426.1	0.12157	1.13831	2.5373	0.1466	0.02127	72.35	53.80	100.40	873.55	250.88	622.67
61	2027.4	3394.0	0.12382	1.12244	2.5448	0.1541	0.02186	72.32	53.73	101.37	890.49	250.23	640.26
62	2062.9	3377.7	0.12607	1.11542	2.5500		0.02243	72.51	53.78	102.41	909.00	250.65	658.35
63	2098.2	3355.3	0.12828	1.11206	2.5552		0.02301	72.48	53.72	103.43	927.07	250.15	676.92
64	2133.9	3334.2	0.13052	1.10596	2.5615		0.02359	72.67	53.76	104.38	944.27	250.48	693.79
65	2169.9	3320.9	0.13270	1.10413	2.5673		0.02415	73.07	53.89	105.31	961.07	251.71	709.36
66	2206.1	3294.5	0.13489	1.08948	2.5740		0.02473	73.12	53.86	106.18	977.08	251.43	725.65
67	2242.4	3254.9	0.13708	1.07819	2.5794		0.02534	72.48	53.54	107.11	994.23	248.39	745.84
68	2279.4	3239.0	0.13927	1.07849	2.5864		0.02591	72.96	53.69	107.92	1009.45	249.85	759.60
69	2316.4	3205.9	0.14149	1.05743	2.5940		0.02652	72.89	53.60	108.72	1024.31	248.97	775.34
70	2353.6	3164.8	0.14371	1.04584	2.6026	0.2119	0.02715	72.66	53.43	109.44	1038.01	247.40	790.61

Elas	tic-Plas	stic Fract	ure To	oughness	Analysi	is	
Specimen ID Contract Material Temperature(F) Environment	ss	5086-FT-1 C 10624-01 5086-H116 75.0 LAB AIR		Geometry Orientation Yield (ksi) Tensile (ksi) Modulus (Ms			C(T) T-L 27.0 46.0 10.5
Specimen Dimensions Thickness (in) Net Thickness (in) Width (in) Pin Spacing (in)		0.496 0.496 2.000 1.100		Notch Depth Gage Length Alpha Ratio			1.100 0.200 1
Precrack Parameters Pmax (lbf) Final a (in) Pf (lbf)		308.4 1.200 887		Stress Ratio Kmax (ksi so			0.1 6.0
Initial measured crack length 1.172 1.189	ths (in) 1.200	1.204	1.208	1.212	1.213	1.207	1.197
Final measured crack length 1.324 1.358 x x	<u>hs (in)</u> 1.451	1.566 x	1.647 X	1.547 x	1.426	1.354 x	1.338 x
Ave. initial crack length (in) Ave. final crack length (in) Delta a measured (in) Delta a predicted (in)		1.202 1.460 0.258 0.200		aoq (in) Compliance Effective Mo	•		1.201 0.995 10.4
Results J _a (E1820) K _{JIC} (E**JQ)^1/2		bf-in/in^2 si sqrt(in)					
Qualification of Data 7.4.2: precrack length 9.1.4.1; precrack 9.1.4.2; final crack 9.1.5.1; Δa meas 9.1.5.2; Δa pred A9.6.4; # of pnts in reg.A A9.6.4; # of pnts in reg.B A9.8.1; C_2 <1 A9.8.2.1; a_{0q} - a_0 A9.8.2.2; # of pnts for J_{q} A9.8.2.2; # of pnts < J_{q} A9.3.3.1; correlation	valid valid invalid valid valid valid valid valid valid valid valid valid			Qualification A9.9.1; thick A9.9.2; ligan A9.9.3; slope	ness nent	valid valid valid	

Index	Time	Force	Disp1	Disp2	Crack	∆a	CTOD	K561	K1820	KJ1820	J1820	Je	Jpl
	Sec	lbf	inch	inch	inch	inch	inch	ksi sqr(in)	ksi sqr(in)	ksi sqr(in)	lbf/in	lbf/in	lbf/in
5	238.6	353.5	0.00415	0.05585	1.2025	0.0016	0.00003	6.99	6.91	6.92	4.15	4.14	0.01
6	310.3	476.7	0.00569	0.07538	1.2015	0.0007	0.00010	9.49	9.30	9.36	7.59	7.49	0.10
7	350.6	598.8	0.00725	0.09399	1.2024		0.00020	12.09	11.70	11.83	12.12	11.86	0.26
8	389.1	716.1	0.00882	0.11322	1.2017		0.00032	14.64	13.97	14.29	17.70	16.92	0.78
9	426.7	828.7	0.01039	0.13092	1.2027		0.00047	17.25	16.20	16.71	24.21	22.75	1.47
10	464.2	937.8	0.01196	0.14831	1.2025		0.00064	19.87	18.32	19.14	31.74	29.10	2.64
11	500.8	1039.3	0.01354	0.16327	1.2026		0.00084	22.46	20.31	21.53	40.19	35.77	4.42
12	537.3	1133.7	0.01509	0.17853	1.2012		0.00107	24.90	22.10	23.89	49.46	42.33	7.13
13	573.6	1219.2	0.01665	0.19287	1.2010		0.00131	27.29	23.75	26.20	59.49	48.90	10.59
14	609.1	1298.7	0.01824	0.20386	1.2016		0.00157	29.70	25.33	28.48	70.32	55.62	14.70
15 16	644.3 679.6	1365.5 1424.7	0.01981 0.02139	0.21545 0.22430	1.2025 1.2021		0.00185 0.00215	31.88	26.68 27.82	30.68 32.89	81.57 93.74	61.71 67.08	19.86 26.66
17	714.3	1477.1	0.02139	0.23254	1.2021		0.00215	33.79 35.65	28.88	35.02	106.31	72.27	34.04
18	749.1	1519.8	0.02250	0.23234	1.2027		0.00243	37.31	29.78	37.11	119.38	76.84	42.54
19	783.6	1558.1	0.02433	0.23526	1.2035		0.00270	38.82	30.57	39.16	132.93	81.00	51.93
20	817.8	1589.4	0.02779	0.24902	1.2056		0.00344	40.17	31.25	41.12	146.51	84.64	61.87
21	852	1614.4	0.02940	0.25482	1.2078		0.00378	41.47	31.88	42.99	160.21	88.08	72.13
22	886.1	1630.7	0.03101	0.25604	1.2089		0.00413	42.31	32.27	44.86	174.42	90.27	84.15
23	920.3	1646.1	0.03264	0.26001	1.2116		0.00449	43.38	32.76	46.63	188.43	92.99	95.44
24	954.3	1652.5	0.03424	0.25909	1.2139		0.00485	44.01	33.03	48.34	202.49	94.56	107.93
25	988.8	1660.8	0.03586	0.26032	1.2158		0.00521	44.68	33.32	50.02	216.84	96.22	120.61
26	1022.8	1663.7	0.03747	0.26123	1.2184		0.00557	45.25	33.55	51.61	230.88	97.57	133.31
27	1057.2	1665.0	0.03908	0.26306	1.2209	0.0201	0.00594	45.76	33.76	53.17	245.00	98.75	146.25
28	1091.7	1672.8	0.04069	0.26215	1.2232	0.0224	0.00630	46.53	34.07	54.69	259.19	100.59	158.60
29	1126.1	1673.9	0.04231	0.26367	1.2239	0.0231	0.00668	46.72	34.14	56.26	274.35	101.02	173.33
30	1160.6	1671.3	0.04392	0.26367	1.2268	0.0260	0.00705	47.13	34.29	57.67	288.24	101.90	186.34
31	1195.2	1678.5	0.04555	0.26337	1.2281	0.0272	0.00743	47.71	34.52	59.15	303.21	103.30	199.91
32	1229.9	1675.1	0.04717	0.26337	1.2298	0.0290	0.00781	47.88	34.58	60.56	317.82	103.61	214.20
33	1264.6	1673.9	0.04878	0.26276	1.2314		0.00819	48.13	34.67	61.93	332.36	104.15	228.20
34	1299.6	1672.5	0.05039	0.26215	1.2322		0.00858	48.22	34.69	63.32	347.46	104.32	243.14
35	1334.6	1666.4	0.05201	0.26215	1.2346		0.00896	48.38	34.74	64.59	361.51	104.57	256.94
36	1369.6	1663.5	0.05360	0.26092	1.2374		0.00934	48.79	34.88	65.78	375.00	105.42	269.58
37	1404.9	1664.4	0.05522	0.26092	1.2380		0.00973	48.96	34.94	67.10	390.19	105.80	284.39
38	1440.1	1661.4	0.05682	0.26062	1.2391		0.01011	49.02	34.95	68.35	404.93	105.87	299.06
39	1475.6	1657.7	0.05843	0.26032	1.2411		0.01050	49.25	35.02	69.53	418.96	106.30	312.65
40	1510.7	1648.4	0.06004	0.25848	1.2430		0.01089	49.16	34.97	70.69	433.03	105.97	327.05
41	1546.5	1644.3	0.06167	0.25940	1.2454		0.01129	49.43	35.05	71.81	446.92	106.46	340.45
42 43	1582.2 1618	1641.2 1633.9	0.06329 0.06488	0.25848 0.25726	1.2466 1.2480		0.01169 0.01208	49.53 49.42	35.08 35.02	72.97 74.08	461.45 475.64	106.64 106.29	354.81 369.35
43	1654	1626.4	0.06466	0.25665	1.2491		0.01208	49.42	34.94	75.21	490.24	105.83	384.41
45	1690	1619.3	0.06813	0.25452	1.2517		0.01248	49.42	34.98	76.22	503.49	106.04	397.44
46	1726.1	1615.8	0.06972	0.25452	1.2529		0.01200	49.48	34.99	77.28	517.62	106.11	411.51
47	1762.5	1614.5	0.00372	0.25574	1.2544		0.01366	49.73	35.07	78.30	531.39	106.61	424.78
48	1798.7	1608.0	0.07290	0.25360	1.2572		0.01407	49.99	35.14	79.21	543.83	107.04	436.79
49	1835.1	1600.7	0.07453	0.25116	1.2585		0.01448	49.86	35.08	80.25	558.18	106.65	451.53
50	1871.9	1598.4	0.07614	0.25146	1.2599		0.01487	50.03	35.13	81.25	572.16	106.95	465.21
51	1908.6	1595.3	0.07775	0.25146	1.2616	0.0607	0.01528	50.23	35.19	82.21	585.71	107.33	478.39
52	1945.1	1590.9	0.07937	0.24963	1.2635		0.01569	50.42	35.24	83.14	599.03	107.63	
53	1982	1586.5	0.08099	0.24933	1.2647		0.01609	50.44	35.23	84.11	613.12		505.53
54	2018.7	1577.2	0.08260	0.24872	1.2664		0.01650	50.27	35.15	85.03	626.60		519.51
55	2055.6	1573.0	0.08416	0.24780	1.2678	0.0670	0.01690	50.36	35.17	85.92	639.78	107.21	532.58
56	2092.9	1570.1	0.08577	0.24689	1.2692	0.0683	0.01731	50.50	35.21	86.83	653.45	107.43	546.02
57	2130.1	1555.9	0.08739	0.24445	1.2714	0.0705	0.01773	50.17	35.06	87.67	666.12	106.51	559.61
58	2167.4	1544.9	0.08901	0.24353	1.2741		0.01816	50.14	35.01	88.46	678.13	106.25	571.87
59	2204.9	1535.9	0.09066	0.24322	1.2764		0.01860	50.13	34.98	89.27	690.70	106.07	
60	2242.4	1524.8	0.09228	0.24139	1.2786	0.0777	0.01903	49.98	34.90	90.07	703.02	105.56	597.45

Index	Time	Force	Disp1	Disp2	Crack	∆a	CTOD	K561	K1820	KJ1820	J1820	Je	Jpl
	Sec	lbf	inch	inch	inch	inch	inch	ksi sqr(in)	ksi sqr(in)	ksi sqr(in)	lbf/in	lbf/in	lbf/in
61	2280.4	1513.5	0.09388	0.23773	1.2816	0.0808	0.01946	50.00	34.87	90.77	713.99	105.40	608.59
62	2318.4	1500.2	0.09545	0.23773	1.2845	0.0837	0.01989	49.86	34.79	91.45	724.78	104.89	619.89
63	2356.6	1485.8	0.09706	0.23438	1.2874	0.0866	0.02033	49.65	34.68	92.14	735.70	104.21	631.49
64	2395.2	1479.3	0.09864	0.23438	1.2901	0.0892	0.02075	49.87	34.73	92.82	746.62	104.54	642.09
65	2433.9	1471.1	0.10023	0.23254	1.2921	0.0913	0.02118	49.84	34.70	93.54	758.33	104.33	654.00
66	2472.9	1460.9	0.10180	0.23254	1.2939	0.0930	0.02160	49.62	34.59	94.27	770.25	103.69	666.57
67	2512.1	1448.7	0.10342	0.22919	1.2979	0.0970	0.02206	49.80	34.61	94.82	779.20	103.83	675.37
68	2551.6	1440.0	0.10501	0.22766	1.3001	0.0992	0.02250	49.77	34.58	95.50	790.41	103.62	686.79
69	2591.2	1428.2	0.10662	0.22675	1.3021	0.1013	0.02294	49.52	34.46	96.19	801.91	102.89	699.02
70	2631.1	1412.2	0.10825	0.22430	1.3067	0.1058	0.02342	49.56	34.42	96.66	809.76	102.69	707.07
71	2671.2	1399.4	0.10984	0.22339	1.3086		0.02386	49.19	34.26	97.34	821.10	101.72	719.39
72	2711.7	1392.5	0.11146	0.22125	1.3106	0.1098	0.02431	49.24	34.25	97.99	832.24	101.68	730.56
73	2752.2	1383.1	0.11304	0.21942	1.3138	0.1129	0.02476	49.38	34.27	98.52	841.26	101.78	739.48
74	2793.1	1374.5	0.11463	0.21912	1.3163	0.1154	0.02520	49.41	34.25	99.11	851.36	101.69	749.67
75	2834.2	1366.6	0.11621	0.21790	1.3187		0.02565	49.48	34.25	99.69	861.37	101.66	759.71
76	2875.6	1351.2	0.11784	0.21515	1.3222		0.02613	49.29	34.14	100.19	870.01	101.00	769.00
77	2916.9	1339.7	0.11942	0.21393	1.3259		0.02660	49.43	34.15	100.63	877.64	101.04	776.59
78	2958.9	1324.9	0.12098	0.21210	1.3289	0.1280	0.02706	49.17	34.01	101.11	886.09	100.26	785.84
79	3001.2	1309.5	0.12260	0.20843	1.3325	0.1316	0.02755	49.00	33.91	101.56	893.96	99.63	794.33
80	3043.9	1298.8	0.12417	0.20721	1.3357		0.02802	49.06	33.89	102.01	901.82	99.54	802.28
81	3086.9	1286.9	0.12577	0.20508	1.3387		0.02850	48.96	33.82	102.49	910.33	99.12	811.20
82	3130.1	1273.3	0.12739	0.20355	1.3420		0.02899	48.83	33.73	102.94	918.30	98.60	819.70
83	3173.7	1262.5	0.12896	0.20294	1.3442		0.02945	48.63	33.63	103.45	927.50	98.00	829.51
84	3217.7	1255.8	0.13056	0.20203	1.3476		0.02992	48.98	33.72	103.86	934.93	98.54	836.39
85	3261.9	1247.7	0.13214	0.20050	1.3499		0.03039	49.00	33.70	104.36	943.91	98.41	845.50
86	3306.4	1236.9	0.13375	0.19836	1.3530		0.03088	48.98	33.65	104.79	951.77	98.16	853.61
87	3351.4	1232.2	0.13532	0.19714	1.3546		0.03133	49.04	33.66	105.35	961.87	98.19	863.68
88	3396.4	1219.8	0.13692	0.19562	1.3569	0.1561		48.74	33.52	105.83	970.71	97.36	873.36
89	3441.4	1202.7	0.13856	0.19287	1.3601		0.03233	48.28	33.31	106.24	978.13	96.15	881.98
90	3487.4	1199.2	0.14013	0.19257	1.3622		0.03278	48.56	33.39	106.71	986.88	96.61	890.28
91	3533.4	1189.4	0.14173	0.19135	1.3659		0.03328	48.78	33.42	107.03	992.73	96.81	895.91
92	3579.7	1176.9	0.14336	0.18951	1.3681		0.03378	48.39	33.25	107.51	1001.79	95.82	905.97
93	3626.2	1166.1	0.14495	0.18799	1.3721		0.03429	48.62	33.29	107.77	1006.57	96.02	910.54
94	3673.2	1155.8	0.14658	0.18738	1.3746		0.03479	48.47	33.20	108.21	1014.73	95.53	919.20
95	3720.7	1147.3	0.14820	0.18524	1.3779		0.03530	48.68	33.24	108.53	1020.88	95.75	925.12
96	3768.6	1136.2	0.14980	0.18372	1.3814		0.03581	48.73	33.21	108.83	1026.44	95.60	930.84
97	3816.6	1124.0	0.15138	0.18249	1.3851		0.03633	48.74	33.17	109.09	1031.43	95.35	936.09
98	3865.4	1116.9	0.15296	0.18066	1.3872		0.03681	48.75	33.15	109.52	1039.48	95.21	944.27
99	3914.2	1104.0	0.15457	0.17883	1.3900		0.03733	48.45	33.00	109.87	1046.21	94.39	951.82
100	3963.7	1096.8	0.15615	0.17700	1.3931		0.03783	48.71	33.06	110.17	1051.94	94.70	957.24
101	4013.4	1085.2	0.15776	0.17609	1.3958		0.03834	48.48	32.94	110.52	1058.68	94.04	964.64
102	4063.4	1073.2	0.15935	0.17456	1.3991		0.03887	48.37	32.86	110.80	1063.93	93.57	970.36
103	4113.8	1059.4	0.16092	0.17212	1.4029	0.2020	0.03940	48.25	32.77	110.99	1067.71	93.05	974.65

Elastic-Plastic Fracture Toughness Analysis 5086-FT-2 Specimen ID Geometry C(T) Contract SSC 10624-01 Orientation T-L Material 5086-H116 Yield (ksi) 27.0 Temperature(F) 75.0 Tensile (ksi) 46.0 Environment LAB AIR Modulus (Msi) 10.5 Specimen Dimensions Thickness (in) 0.497 1.100 Notch Depth (in) Net Thickness (in) 0.497 Gage Length (in) 0.200 Width (in) 2.000 Alpha Ratio 1 1.100 Pin Spacing (in) Precrack Parameters 308.4 Stress Ratio 0.1 Pmax (lbf) Final a (in) 1.200 Kmax (ksi sqrt (in)) 6.0 Pf (lbf) 885 Initial measured crack lengths (in) 1.208 1.209 1.211 1.209 1.199 1.181 1.180 1.199 Final measured crack lengths (in) 1.636 1.349 1.338 1.331 1.362 1.446 1.577 1.514 1.405 Ave. initial crack length (in) 1.203 aoq (in) n/a Ave. final crack length (in) Compliance Adj. Factor 1.453 1.014 Delta a measured (in) 0.250 Effective Modulus (Msi) 10.6 Delta a predicted (in) 0.198 Results J_a (E1820) 147.6 lbf-in/in^2 K_{JIC}(E'*JQ)^1/2 41.3 ksi sqrt(in) Qualification of Ja as Jic Qualification of Data 7.4.2: precrack length valid A9.9.1; thickness 9.1.4.1; precrack valid valid 9.1.4.2; final crack invalid A9.9.2; ligament valid 9.1.5.1; ∆a meas A9.9.3; slope valid valid 9.1.5.2; ∆a pred invalid A9.6.4; # of pnts in reg.A valid

DRDC Atlantic CR 2007-019 223

A9.6.4; # of pnts in reg.B

A9.8.2.2; # of pnts for Ja

A9.8.2.2; # of pnts < Ja

A9.3.3.1; correlation

A9.8.1; C2<1

A9.8.2.1; a_{0q}-a₀

valid

valid

valid

valid

valid

#VALUE!

Index	Time	Force	Disp1	Disp2	Crack	∆a	CTOD	K561	K1820	KJ1820	J1820	Je	Jpl
	Sec	lbf	inch	inch	inch	inch	inch	ksi sqr(in)	ksi sqr(in)	ksi sqr(in)	lbf/in	lbf/in	lbf/in
7	361.7	478.5	0.00561	0.07507	1.2031	0.0000	0.00010	9.56	9.36	9.37	7.61	7.60	0.01
9	439.8	719.3	0.00872	0.11322	1.2033	0.0002	0.00033	14.76	14.08	14.35	17.86	17.18	0.68
11	513.8	942.5	0.01185	0.14801	1.2037	0.0006	0.00065	20.05	18.46	19.26	32.14	29.54	2.60
12	550.5	1044.3	0.01341	0.16419	1.2043	0.0012	0.00085	22.69	20.48	21.65	40.64	36.34	4.29
13	586.8	1139.7	0.01498	0.17914	1.2043	0.0012	0.00107	25.27	22.35	24.04	50.11	43.29	6.81
14	622.6	1227.7	0.01658	0.19379	1.2042	0.0011	0.00132	27.78	24.07	26.43	60.54	50.21	10.33
15	658.1	1304.6	0.01815	0.20508	1.2045	0.0014	0.00159	30.14	25.59	28.72	71.48	56.78	14.71
16	693.5	1372.8	0.01974	0.21545	1.2052	0.0020	0.00188	32.37	26.97	30.98	83.21	63.02	20.18
17	728.3	1432.7	0.02133	0.22461	1.2056	0.0024	0.00218	34.42	28.16	33.20	95.52	68.75	26.77
18	763.1	1483.9	0.02294	0.23285	1.2063	0.0031	0.00249	36.30	29.21	35.38	108.46	73.96	34.50
19	797.5	1525.4	0.02455	0.23956	1.2074	0.0043	0.00282	37.96	30.10	37.47	121.70	78.51	43.19
20	831.6	1561.4	0.02615	0.24597	1.2082	0.0051	0.00315	39.43	30.86	39.51	135.26	82.51	52.74
21	865.8	1587.2	0.02778	0.24994	1.2100	0.0069	0.00350	40.69	31.48	41.48	149.13	85.88	63.26
22	899.8	1606.0	0.02941	0.25177	1.2121	0.0089	0.00385	41.76	31.98	43.39	163.17	88.65	74.52
23	933.8	1620.5	0.03102	0.25391	1.2141	0.0110	0.00420	42.67	32.40	45.21	177.16	90.99	86.17
24	968.1	1629.0	0.03265	0.25635	1.2164	0.0133	0.00457	43.40	32.72	46.98	191.32	92.81	98.51
25	1002.1	1640.3	0.03425	0.25818	1.2197	0.0165	0.00492	44.42	33.17	48.63	204.96	95.34	109.62
26	1036.4	1650.4	0.03588	0.25879	1.2213	0.0182	0.00528	45.16	33.48	50.33	219.52	97.16	122.36
27	1070.6	1656.7	0.03750	0.26001	1.2237	0.0205	0.00565	45.85	33.77	51.94	233.78	98.83	134.95
28	1104.7	1660.8	0.03913	0.25971	1.2244		0.00603	46.17	33.90	53.59	248.94	99.60	149.34
29	1139.1	1663.8	0.04075	0.26123	1.2253	0.0221	0.00640	46.48	34.03	55.19	263.94	100.34	163.60
30	1173.2	1664.4	0.04236	0.26062	1.2281	0.0250	0.00677	47.03	34.24	56.62	277.83	101.58	176.25
31	1207.5	1664.3	0.04395	0.26184	1.2297		0.00715	47.33	34.34	58.07	292.21	102.22	189.99
32	1242.1	1666.1	0.04557	0.26276	1.2316	0.0285	0.00752	47.77	34.51	59.49	306.73	103.24	203.49
33	1276.7	1670.4	0.04717	0.26306	1.2320	0.0289	0.00790	48.07	34.63	60.95	321.92	103.95	217.97
34	1311.4	1674.3	0.04881	0.26367	1.2337	0.0306	0.00828	48.61	34.84	62.33	336.65	105.19	231.46
35	1346.1	1675.7	0.05044	0.26367	1.2355	0.0324	0.00867	49.03	34.99	63.68	351.41	106.12	245.30
36	1380.7	1666.6	0.05206	0.26245	1.2358	0.0327	0.00906	48.63	34.83	65.06	366.86	105.12	261.74
37	1415.6	1666.0	0.05367	0.26215	1.2389	0.0358	0.00944	49.23	35.04	66.25	380.33	106.39	273.95
38	1450.7	1666.1	0.05530	0.26154	1.2396	0.0365	0.00983	49.38	35.09	67.57	395.67	106.72	288.95
39	1485.5	1650.7	0.05691	0.25971	1.2416	0.0385	0.01022	48.98	34.91	68.76	409.78	105.62	304.17
40	1520.6	1650.1	0.05852	0.25909	1.2436	0.0405	0.01061	49.37	35.05	69.93	423.78	106.44	317.34
41	1555.9	1650.1	0.06012	0.26184	1.2447	0.0415	0.01100	49.59	35.12	71.13	438.46	106.90	331.56
42	1591.2	1645.8	0.06172	0.25848	1.2463	0.0432	0.01139	49.70	35.15	72.27	452.65	107.07	345.58
43	1626.6	1642.5	0.06334	0.25757	1.2475	0.0443	0.01178	49.77	35.16	73.43	467.30	107.15	360.15
44	1662.4	1641.8	0.06495	0.25848	1.2492	0.0460	0.01217	50.10	35.27	74.53	481.39	107.84	373.55
45	1698.1	1643.5	0.06656	0.25787	1.2496	0.0464	0.01256	50.28	35.34	75.70	496.58	108.25	388.34
46	1733.9	1643.4	0.06817	0.25909	1.2517	0.0486	0.01295	50.75	35.50	76.73	510.25	109.23	401.02
47	1769.6	1635.9	0.06975	0.25665	1.2534	0.0503	0.01335	50.71	35.46	77.76	524.02	109.00	415.02
48	1805.2	1629.9	0.07135	0.25574	1.2550	0.0519	0.01374	50.73	35.46	78.78	537.95	108.95	429.00
49	1841.1	1622.0	0.07293	0.25574	1.2568	0.0536	0.01414	50.67	35.41	79.77	551.55	108.69	442.86
50	1877.2	1615.1	0.07456	0.25330	1.2586	0.0554	0.01455	50.69	35.40	80.77	565.41	108.60	456.81
51	1913.4	1607.2	0.07619	0.25269	1.2604	0.0573	0.01496	50.64	35.36	81.75	579.22	108.37	470.85
52	1949.6	1591.6	0.07778	0.24963	1.2630	0.0599	0.01537	50.35	35.22	82.63	591.70	107.50	484.20
53	1986	1588.1	0.07941	0.24963	1.2651	0.0620	0.01579	50.61	35.30	83.55	605.00	107.98	497.02
54	2022.6	1584.5	0.08102	0.24994	1.2668	0.0637	0.01619	50.80	35.35	84.47	618.45	108.29	510.16
55	2059.2	1579.9	0.08264	0.24841	1.2687	0.0656	0.01660	50.95	35.39	85.38	631.75	108.52	523.23
56	2095.9	1570.3	0.08425	0.24811	1.2711	0.0679	0.01702	50.94	35.35	86.23	644.40	108.32	536.08
57	2132.9	1563.1	0.08589	0.24689	1.2731	0.0700	0.01745	50.99	35.35	87.10	657.55	108.29	549.26
58	2170.1	1560.2	0.08749	0.24567	1.2749	0.0717	0.01785	51.22	35.42	87.96	670.54	108.72	561.82
59	2207.2	1550.8	0.08907	0.24384	1.2778	0.0747	0.01827	51.34	35.43	88.70	681.92	108.78	573.14
60	2244.7	1541.4	0.09066	0.24261	1.2797	0.0766	0.01869	51.23	35.37	89.52	694.60	108.40	586.20
61	2282.2	1534.6	0.09226	0.24261	1.2820	0.0789	0.01911	51.36	35.38	90.30	706.73	108.51	598.21
62	2319.9	1526.2	0.09388	0.24109	1.2841	0.0810	0.01954	51.36	35.36	91.10	719.20	108.36	610.84
63	2357.9	1513.7	0.09550	0.23865	1.2880	0.0849	0.01999	51.51	35.37	91.73	729.31	108.42	620.89
64	2395.9	1508.6	0.09712	0.23865	1.2895	0.0863	0.02041	51.55	35.37	92.55	742.40	108.42	633.98

Index	Time	Force	Disp1	Disp2	Crack	∆a	CTOD	K561	K1820	KJ1820	J1820	Je	Jpl
	Sec	lbf	inch	inch	inch	inch	inch	ksi sqr(in)	ksi sqr(in)	ksi sqr(in)	lbf/in	lbf/in	lbf/in
65	2434.1	1497.3	0.09874	0.23651	1.2923	0.0891	0.02085	51.52	35.32	93.25	753.68	108.14	645.54
66	2472.6	1490.5	0.10034	0.23590	1.2944	0.0913	0.02128	51.61	35.33	93.99	765.56	108.20	657.36
67	2510.9	1473.7	0.10196	0.23377	1.2975	0.0944	0.02173	51.29	35.18	94.64	776.19	107.25	668.94
68	2549.9	1460.3	0.10354	0.23071	1.3008	0.0977	0.02218	51.25	35.12	95.23	785.96	106.90	679.06
69	2588.9	1450.0	0.10515	0.23010	1.3039	0.1008	0.02263	51.36	35.12	95.84	796.09	106.92	689.16
70	2628.2	1440.3	0.10676	0.22858	1.3066	0.1034	0.02307	51.37	35.10	96.49	806.91	106.76	700.15
71	2667.7	1424.4	0.10836	0.22583	1.3097	0.1065	0.02353	51.09	34.96	97.08	816.73	105.91	710.82
72	2707.6	1414.3	0.10994	0.22430	1.3127	0.1095	0.02398	51.18	34.95	97.65	826.44	105.88	720.56
73	2747.7	1405.5	0.11156	0.22308	1.3151	0.1119	0.02443	51.19	34.93	98.29	837.32	105.73	731.59
74	2788.2	1396.6	0.11319	0.22186	1.3177	0.1146	0.02489	51.27	34.92	98.90	847.71	105.70	742.00
75	2828.7	1384.1	0.11479	0.22064	1.3208	0.1176	0.02535	51.18	34.86	99.45	857.24	105.29	751.94
76	2869.6	1371.9	0.11643	0.21820	1.3241	0.1210	0.02583	51.20	34.82	99.98	866.35	105.08	761.28
77	2910.4	1358.6	0.11808	0.21607	1.3267	0.1236	0.02630	50.95	34.70	100.58	876.67	104.35	772.32
78	2951.9	1344.8	0.11970	0.21393	1.3306	0.1275	0.02679	50.97	34.66	101.02	884.46	104.11	780.35
79	2993.4	1331.2	0.12131	0.21179	1.3334	0.1303	0.02726	50.74	34.54	101.56	893.87	103.39	790.48
80	3035.2	1320.7	0.12288	0.21027	1.3373	0.1341	0.02773	51.00	34.59	101.95	900.87	103.67	797.20
81	3077.7	1308.8	0.12452	0.20904	1.3402	0.1371	0.02822	50.91	34.52	102.47	910.00	103.26	806.74
82	3120.2	1298.7	0.12613	0.20691	1.3435	0.1403	0.02869	51.04	34.52	102.93	918.16	103.29	814.86
83	3163.1	1283.4	0.12773	0.20447	1.3471	0.1440	0.02919	50.89	34.42	103.34	925.45	102.69	822.76
84	3206.2	1274.9	0.12934	0.20325	1.3505	0.1474	0.02967	51.17	34.48	103.76	933.08	103.03	830.05
85	3249.9	1263.3	0.13091	0.20172	1.3541	0.1510	0.03015	51.26	34.47	104.14	939.98	102.95	837.03
86	3293.9	1258.7	0.13250	0.20142	1.3566	0.1535	0.03061	51.60	34.55	104.64	948.93	103.48	845.45
87	3338.2	1250.5	0.13410	0.20050	1.3581	0.1550	0.03107	51.38	34.46	105.23	959.75	102.90	856.86
88	3382.4	1240.5	0.13569	0.19867	1.3611	0.1580	0.03156	51.45	34.44	105.66	967.54	102.80	864.74
89	3427.2	1228.0	0.13728	0.19714	1.3642	0.1610	0.03205	51.32	34.36	106.07	975.07	102.30	872.77
90	3472.1	1208.8	0.13885	0.19348	1.3678	0.1647	0.03256	50.81	34.13	106.40	981.18	100.95	880.23
91	3517.7	1201.6	0.14047	0.19287	1.3716	0.1685	0.03306	51.30	34.25	106.73	987.17	101.69	885.48
92	3563.6	1190.6	0.14207	0.19073	1.3745	0.1714	0.03355	51.24	34.19	107.13	994.66	101.34	893.32
93	3609.6	1176.2	0.14367	0.18921	1.3785	0.1754	0.03407	51.21	34.13	107.41	999.80	100.95	898.85
94	3656.2	1168.5	0.14527	0.18860	1.3815	0.1783	0.03457	51.42	34.16	107.80	1007.10	101.16	905.95
95	3702.9	1145.6	0.14689	0.18494	1.3852	0.1821	0.03511	50.58	33.82	108.09	1012.65	99.14	913.51
96	3750.4	1137.8	0.14848	0.18311	1.3883	0.1852	0.03561	50.82	33.86	108.44	1019.08	99.39	919.69
97	3798.2	1129.3	0.15009	0.18189	1.3907	0.1876	0.03610	50.79	33.82	108.86	1027.05	99.14	927.91
98	3846.2	1117.6	0.15167	0.18005	1.3942	0.1910	0.03662	50.79	33.78	109.15	1032.48	98.87	933.62
99	3894.7	1097.6	0.15331	0.17761	1.3979	0.1948	0.03718	50.14	33.50	109.42	1037.64	97.27	940.37
100	3943.7	1087.7	0.15488	0.17609	1.4008	0.1977	0.03768	50.13	33.46	109.74	1043.70	97.02	946.68

Elastic-Plastic Fracture Toughness Analysis

Specimen ID		5086-FT-3		Geometry			C(T)
Contract	SS	C 10624-01		Orientation			T-L
Material		5086-H116		Yield (ksi)			27.0
Temperature(F)		75.0		Tensile (ksi)			46.0
Environment		LAB AIR		Modulus (Ms	si)		10.5
Specimen Dimensions							
Thickness (in)		0.496		Notch Depth			1.100
Net Thickness (in)		0.396		Gage Length	ı (in)		0.200
Width (in)		2.000		Alpha Ratio			1
Pin Spacing (in)		1.100					
Precrack Parameters							
Pmax (lbf)		308.0		Stress Ratio			0.1
Final a (in)		1.200		Kmax (ksi so	qrt (in))		6.1
Pf (lbf)		872					
luitial account and land							
Initial measured crack leng 1.187 1.204	1.208	1.207	1.210	1.213	1.215	1.213	1.207
1.107 1.204	1.200	1.201	1.210	1.213	1.215	1.213	1.207
Final measured crack leng	the (in)						
1.419 1.424	1.429	1.416	1.409	1.418	1.415	1.418	1.416
	25						
Ave. initial crack length (in)	1.208		aoq (in)			1.207
Ave. final crack length (in)		1.418		Compliance			1.017
Delta a measured (in)		0.210		Effective Mo	dulus (Msi)	10.7
Delta a predicted (in)		0.199					
December							
Results	455.0	of-in/in^2					
J _a (E1820) K _{iic} (E**JQ)^1/2							
N _{IIC} (E "JQ)"1/2	42.3 K	si sqrt(in)					
Qualification of Data				Qualification	of Las	L.	
7.4.2: precrack length	valid			Quannoacion	1010000	iic.	
9.1.4.1; precrack	valid			A9.9.1; thick	ness	valid	
9.1.4.2; final crack	valid			A9.9.2; ligan		valid	
9.1.5.1; ∆a meas	valid			A9.9.3; slope		valid	
9.1.5.2; ∆a pred	valid			,			
A9.6.4; # of pnts in reg.A	valid						
A9.6.4; # of pnts in reg.B	valid						
A9.8.1; C ₂ <1	valid						
A9.8.2.1; a _{0q} -a ₀	valid						
A9.8.2.2; # of pnts for Jo	valid						
A9.8.2.2; # of pnts < J _Q	valid						
A9.3.3.1; correlation	valid						

Index	Time	Force	Disp1	Disp2	Crack	∆a	CTOD	K561	K1820	KJ1820	J1820	Je	Jpl
	Sec	lbf	inch	inch	inch	inch	inch	ksi sqr(in)	ksi sqr(in)	ksi sqr(in)	lbf/in	lbf/in	lbf/in
10	342.7	304.1	0.00366	0.04822	1.2084	0.0011	0.00002	6.81	6.73	6.75	3.95	3.93	0.02
11	385.4	385.6	0.00471	0.06103	1.2080	0.0007	0.00007	8.68	8.53	8.57	6.36	6.31	0.05
12	418.3	464.9	0.00577	0.07294	1.2080		0.00013	10.55	10.29	10.39	9.36	9.17	0.19
13	450.6	544.6	0.00682	0.08575	1.2071	-0.0002	0.00021	12.45	12.03	12.21	12.91	12.54	0.37
14	481.3	619.2	0.00787	0.09766	1.2065		0.00030	14.29	13.66	14.02	17.02	16.18	0.85
15	511.8	695.3	0.00894	0.10956	1.2079		0.00040	16.29	15.38	15.80	21.65	20.51	1.14
16	542.1	766.5	0.00998	0.12085	1.2068		0.00052	18.13	16.92	17.60	26.85	24.81	2.04
17	571.8	836.3	0.01105	0.13214	1.2073		0.00064	20.08	18.48	19.37	32.52	29.60	2.92
18	601.6	904.2	0.01211	0.14282	1.2081		0.00078	22.08	20.01	21.13	38.71	34.72	4.00
19	631.1	969.8	0.01318	0.15350	1.2082		0.00093	24.05	21.47	22.89	45.41	39.94	5.47
20	660.5	1031.7	0.01425	0.16296	1.2064		0.00110	25.86	22.75	24.70	52.87	44.87	8.00
21	689.5	1088.6	0.01532	0.17212	1.2083		0.00126	27.85	24.10	26.38	60.32	50.34	9.98
22	718.6	1142.0	0.01639	0.17944	1.2071		0.00145	29.57	25.23	28.13	68.60	55.15	13.46
23	747.3	1191.7	0.01748	0.18738	1.2090		0.00164	31.51	26.42	29.80	76.97	60.51	16.45
24	775.8	1236.6	0.01857	0.19501	1.2101		0.00184	33.28	27.48	31.47	85.84	65.43	20.41
25	804.3	1277.0	0.01966	0.20111	1.2102	0.0029	0.00205	34.85	28.38	33.14	95.19	69.81	25.37
26	832.6	1313.6	0.02074	0.20691	1.2102		0.00226	36.31	29.19	34.78	104.86	73.87	31.00
27	860.8	1347.7	0.02185	0.21240	1.2108		0.00248	37.80	29.99	36.41	114.92	77.94	36.99
28	888.8	1375.7	0.02296	0.21698	1.2119		0.00271	39.13	30.68	37.99	125.06	81.56	43.51
29	916.8	1399.5	0.02406	0.22125	1.2136		0.00294	40.42	31.31	39.51	135.31	84.98	50.33
30	945	1420.4	0.02517	0.22308	1.2151		0.00317	41.59	31.88	41.02	145.80	88.06	57.74
31	973	1433.9	0.02628	0.22491	1.2179		0.00340	42.65	32.36	42.44	156.10	90.75	65.35
32	1000.8	1448.1	0.02739	0.22736	1.2205		0.00364	43.76	32.85	43.83	166.51	93.54	72.97
33	1028.7	1456.8	0.02848	0.22949	1.2231	0.0158	0.00387	44.63	33.23	45.17	176.85	95.69	81.17
34 35	1057 1085	1467.7 1476.4	0.02960 0.03071	0.23132 0.23193	1.2261 1.2286		0.00411 0.00436	45.72 46.61	33.68 34.05	46.49 47.81	187.34 198.10	98.32 100.48	89.02 97.62
36	1112.9	1470.4	0.03071	0.23193	1.2334		0.00456	47.29	34.03	48.98	207.95	101.90	106.05
37	1112.5	1468.2	0.03161	0.23163	1.2382	0.0308	0.00484	47.29	34.53	50.12	217.74	103.36	114.38
38	1169.4	1451.9	0.03292	0.22858	1.2440	0.0367	0.00509	48.22	34.57	51.18	227.02	103.57	123.45
39	1198.2	1450.2	0.03515	0.22766	1.2440	0.0307	0.00534	49.32	34.96	52.22	236.34	105.90	130.45
40	1227.2	1430.2	0.03625	0.22644	1.2561	0.0423	0.00559	49.87	35.10	53.20	245.28	106.80	138.48
41	1256.5	1420.9	0.03739	0.22400	1.2613		0.00586	49.97	35.09	54.24	254.99	106.70	148.29
42	1286	1400.3	0.03853	0.22003	1.2694		0.00612	50.46	35.19	55.08	262.97	107.31	155.66
43	1316	1371.5	0.03974	0.21576	1.2780		0.00641	50.53	35.11	55.96	271.40	106.87	164.53
44	1346.4	1330.7	0.04098	0.20935	1.2892		0.00671	50.37	34.93	56.68	278.42	105.72	172.70
45	1377.4	1316.1	0.04210	0.20721	1.2962	0.0889	0.00698	51.02	35.09	57.45	286.07	106.71	179.36
46	1408.6	1282.5	0.04320	0.20264	1.3052		0.00725	50.81	34.90	58.08	292.33	105.58	186.75
47	1441.1	1264.5	0.04431	0.19928	1.3133		0.00752	51.49	35.06	58.72	298.80	106.51	192.29
48	1473.7	1243.9	0.04544	0.19531	1.3213		0.00780	51.99	35.14	59.36	305.35	106.99	198.36
49	1506.6	1201.8	0.04653	0.18921	1.3303		0.00810	51.01	34.67	59.90	310.95	104.19	206.76
50	1541.1	1185.5	0.04766	0.18677	1.3380	0.1306	0.00838	51.74	34.84	60.49	317.13	105.19	211.94
51	1575.2	1152.9	0.04874	0.18189	1.3471	0.1398	0.00867	51.52	34.64	60.93	321.79	104.02	217.77
52	1610.5	1114.7	0.04992	0.17578	1.3584	0.1511	0.00899	51.34	34.44	61.30	325.66	102.78	222.89
53	1647.2	1115.6	0.05103	0.17578	1.3622		0.00926	52.51	34.79	62.04	333.59	104.91	228.68
54	1683.7	1084.6	0.05214	0.17090	1.3708		0.00957	52.20	34.57	62.47	338.20	103.58	234.62
55	1721.1	1051.9	0.05327	0.16510	1.3801	0.1728	0.00988	51.88	34.34	62.83	342.18	102.18	240.00
56	1758.9	1008.3	0.05435	0.15869	1.3909	0.1836	0.01021	50.90	33.85	63.04	344.38	99.32	245.06
57	1798.6	988.5	0.05543	0.15564	1.3987	0.1914	0.01051	51.27	33.87	63.40	348.34	99.45	248.90
58	1838.9	957.8	0.05652	0.15198	1.4079	0.2006	0.01083	50.96	33.64	63.65	351.12	98.10	253.03

Elastic-Plastic Fracture Toughness Analysis

Specimen ID Contract Material Temperature(F) Environment		5086-FT-5 C 10624-01 5086-H116 75.0 LAB AIR		Geometry Orientation Yield (ksi) Tensile (ksi) Modulus (Msi)		C(T) T-L 27.0 46.0 10.5
Specimen Dimensions Thickness (in) Net Thickness (in) Width (in) Pin Spacing (in)		0.497 0.497 4.000 2.200		Notch Depth Gage Length Alpha Ratio			2.200 0.200 1
Precrack Parameters Pmax (lbf) Final a (in) Pf (lbf)		727.0 2.400 1811		Stress Ratio Kmax (ksi sq	rt (in))		0.1 9.9
Initial measured crack lengt 2.362 2.387	ths (in) 2.401	2.406	2.405	2.401	2.390	2.372	2.343
Final measured crack lengt 2.510 2.552	hs (in) 2.633	2.727	2.784 x	2.690	2.574	2.522	2.504
Ave. initial crack length (in) Ave. final crack length (in) Delta a measured (in) Delta a predicted (in)		2.389 2.624 0.234 0.218		aoq (in) Compliance A Effective Mod	•		2.389 0.991 10.4
Results Ja (E1820) K _{JIC} (E**JQ)^1/2		of-in/in^2 si sqrt(in)					
Qualification of Data 7.4.2: precrack length 9.1.4.1; precrack 9.1.4.2; final crack 9.1.5.1; Δ a meas 9.1.5.2; Δ a pred A9.6.4; # of pnts in reg.A A9.6.4; # of pnts in reg.B A9.8.1; C_2 <1 A9.8.2.1; a_{0q} - a_0 A9.8.2.2; # of pnts for J_Q A9.8.2.2; # of pnts $< J_Q$ A9.3.3.1; correlation	valid valid invalid valid valid valid valid valid valid valid valid valid			Qualification A9.9.1; thickn A9.9.2; ligam A9.9.3; slope	ness ent	valid valid valid	

Index	Time	Force	Disp1	Disp2	Crack	∆a	СТОД	K561	K1820	KJ1820	J1820	Je	Jpl
	Sec	lbf	inch	inch	inch	inch	inch	ksi sqr(in)	ksi sqr(in)	ksi sqr(in)	lbf/in	lbf/in	lbf/in
13	466.3	1883.2	0.02421	0.62164	2.3904	0.0013	0.00140	27.74	25.65	25.60	56.80	57.00	-0.20
14	498.2	2016.1	0.02637	0.66681	2.3919	0.0027	0.00168	30.11	27.49	28.01	67.99	65.51	2.48
15	529.8	2141.9	0.02853	0.70343	2.3911	0.0019	0.00199	32.34	29.19	30.41	80.15	73.82	6.33
16	561.1	2259.8	0.03071	0.74554	2.3923		0.00231	34.59	30.83	32.75	92.97	82.37	10.60
17	592.3	2368.8	0.03289	0.78369	2.3924	0.0033	0.00266	36.70	32.32	35.07	106.59	90.53	16.06
18	623.8	2467.5	0.03507	0.81177	2.3929		0.00303	38.69	33.68	37.34	120.86	98.33	22.53
19	655	2560.1	0.03727	0.84503	2.3948		0.00341	40.71	35.01	39.56	135.60	106.24	29.36
20	686.1	2641.9	0.03943	0.87128	2.3964		0.00380	42.54	36.19	41.70	150.71	113.50	37.21
21	717.3	2716.4	0.04162	0.89752	2.3965		0.00422	44.18	37.21	43.85	166.68	120.01	46.67
22	748.6	2785.9	0.04383	0.91736	2.3963		0.00466	45.73	38.16	45.99	183.32	126.19	57.14
23	779.6	2842.1	0.04604	0.94116	2.3989		0.00510	47.20	39.02	48.03	199.89	131.97	67.92 79.06
24 25	810.5 841.1	2895.8 2943.3	0.04826 0.05045	0.95551 0.97198	2.4017 2.4019		0.00554	48.67 49.84	39.87 40.53	50.02 52.00	216.82 234.38	137.77 142.40	91.98
26	871.8	2985.4	0.05043	0.98419	2.4019		0.00645	51.13	41.24	53.87	251.53	147.37	104.16
27	902.8	3024.4	0.05284	0.99640	2.4049		0.00693	52.11	41.77	55.81	269.94	151.23	118.71
28	933.6	3059.2	0.05705	1.00952	2.4069		0.00740	53.18	42.34	57.64	287.89	155.35	132.54
29	964.1	3089.4	0.05923	1.02020	2.4093		0.00787	54.18	42.86	59.40	305.82	159.19	146.63
30	995.1	3116.5	0.06146	1.03332	2.4109		0.00836	55.05	43.30	61.19	324.49	162.50	161.99
31	1025.9	3138.9	0.06365	1.03882	2.4119		0.00885	55.75	43.66	62.94	343.31	165.17	178.15
32	1057	3165.3	0.06586	1.04523	2.4143	0.0252	0.00934	56.70	44.13	64.62	361.89	168.75	193.13
33	1087.7	3187.6	0.06804	1.05194	2.4150	0.0259	0.00983	57.39	44.47	66.29	380.89	171.37	209.52
34	1118.6	3207.3	0.07024	1.06445	2.4173	0.0281	0.01032	58.17	44.84	67.92	399.78	174.27	225.51
35	1149.4	3219.8	0.07245	1.06415	2.4205	0.0314	0.01082	58.87	45.16	69.48	418.37	176.77	241.60
36	1180.2	3237.6	0.07466	1.07391	2.4217	0.0326	0.01132	59.51	45.47	71.08	437.91	179.17	258.74
37	1211.1	3248.3	0.07684	1.08093	2.4230	0.0338	0.01182	59.96	45.68	72.63	457.17	180.81	276.36
38	1242	3252.9	0.07907	1.07269	2.4257		0.01233	60.39	45.86	74.14	476.39	182.29	294.10
39	1273	3267.8	0.08127	1.08307	2.4271		0.01284	61.00	46.14	75.65	495.97	184.51	311.46
40	1304	3275.6	0.08350	1.08612	2.4306		0.01335	61.62	46.41	77.08	514.92	186.66	328.26
41 42	1334.9 1366	3286.4 3291.5	0.08571 0.08794	1.08490 1.09222	2.4307 2.4322		0.01387 0.01439	61.97 62.30	46.57 46.71	78.59 80.04	535.25 555.26	187.96 189.10	347.29 366.16
43	1397.1	3297.1	0.09794	1.03222	2.4322		0.01439	62.69	46.88	81.44	574.85	190.48	384.37
44	1428.1	3297.7	0.09236	1.08795	2.4369		0.01543	63.04	47.02	82.79	594.07	191.62	402.45
45	1459.2	3291.6	0.09457	1.08643	2.4404		0.01595	63.26	47.10	84.09	612.79	192.25	420.54
46	1490.5	3290.4	0.09680	1.08734	2.4429		0.01649	63.52	47.20	85.42	632.32	193.07	439.25
47	1522.1	3294.2	0.09902	1.09192	2.4452		0.01701	63.92	47.36	86.72	651.71	194.43	457.28
48	1553.6	3292.4	0.10123	1.09344	2.4490		0.01754	64.33	47.52	87.94	670.21	195.70	474.51
49	1585.1	3284.3	0.10346	1.08398	2.4524	0.0633	0.01808	64.49	47.57	89.17	689.11	196.12	493.00
50	1616.6	3276.5	0.10569	1.08612	2.4565	0.0673	0.01862	64.75	47.65	90.35	707.51	196.81	510.70
51	1648.4	3277.9	0.10794	1.08337	2.4584	0.0692	0.01916	65.03	47.77	91.62	727.45	197.74	529.71
52	1680.1	3281.9	0.11017	1.08337	2.4611	0.0720	0.01969	65.52	47.96	92.82	746.60	199.34	547.27
53	1712.2	3280.5	0.11240	1.08307	2.4651	0.0760	0.02023	65.99	48.13	93.95	764.92	200.80	564.12
54	1744.1	3272.1	0.11460	1.08276	2.4687		0.02077	66.18	48.19	95.07	783.27	201.26	582.01
55	1776.1	3265.8	0.11681	1.08215	2.4735		0.02131	66.60	48.33	96.12	800.74	202.48	598.26
56	1808.1	3260.6	0.11903	1.08520	2.4765		0.02186	66.82	48.41	97.25	819.59	203.09	616.50
57	1840.5	3246.8	0.12126	1.07056	2.4819		0.02242	67.06	48.47	98.25	836.68	203.62	633.06
58	1872.9	3237.6	0.12347	1.07544	2.4857		0.02297	67.26	48.52	99.31	854.74	204.07	
59	1905.2	3226.2	0.12571	1.07117	2.4901		0.02353	67.46	48.58	100.33	872.47	204.51	
60	1937.7	3217.2	0.12794	1.06506	2.4952		0.02409	67.85	48.70	101.30	889.38	205.55	
61	1970.5	3213.4	0.13016	1.06506	2.4990		0.02464 0.02521	68.25	48.84	102.31	907.24	206.73	
62 63	2003.2 2036.1	3197.6 3182.8	0.13238 0.13461	1.05408	2.5040 2.5072		0.02579	68.38 68.28	48.85 48.79	103.26 104.29	924.16 942.58	206.86 206.33	
63 64	2068.9	3166.2	0.13683	1.05072 1.04858	2.5144		0.02679	68.71	48.79 48.91	104.29	957.26	206.33	
65	2102.4	3161.0	0.13907	1.04553	2.5144		0.02693	69.01	49.01	106.08	975.30	207.33	
66	2135.9	3146.2	0.13307	1.04333	2.5226		0.02653	69.15	49.03	106.08	991.70	208.32	
67	2169.6	3130.8	0.14348	1.03394	2.5284		0.02808	69.43	49.09	107.80	1007.17		
68	2203.4	3118.0	0.14569	1.03455	2.5332		0.02866	69.66	49.15	108.67	1023.38		

Time	Force	Disp1	Disp2	Crack	∆a	CTOD	K561	K1820	KJ1820	J1820	Je	Jpl
Sec	lbf	inch	inch	inch	inch	inch	ksi sqr(in)	ksi sqr(in)	ksi sqr(in)	lbf/in	lbf/in	lbf/in
2237.2	3103.9	0.14789	1.02875	2.5358	0.1467	0.02923	69.49	49.06	109.63	1041.64	208.61	833.04
2271.2	3088.7	0.15012	1.01990	2.5427	0.1535	0.02982	69.93	49.18	110.38	1055.92	209.65	846.27
2305.2	3067.2	0.15229	1.01990	2.5467	0.1576	0.03041	69.69	49.06	111.23	1072.22	208.58	863.64
2339.4	3053.4	0.15452	1.01135	2.5519	0.1628	0.03100	69.95	49.12	112.03	1087.77	209.07	878.71
2373.9	3030.1	0.15677	0.99731	2.5582	0.1691	0.03161	69.97	49.08	112.78	1102.36	208.74	893.62
2408.7	3017.9	0.15900	1.00342	2.5630	0.1739	0.03221	70.23	49.14	113.58	1118.08	209.27	908.81
2443.6	2998.4	0.16124	0.99426	2.5682	0.1791	0.03282	70.24	49.10	114.36	1133.38	208.96	924.42
2478.6	2987.5	0.16347	0.98724	2.5729	0.1838	0.03342	70.54	49.18	115.14	1148.98	209.61	939.37
2513.9	2979.7	0.16572	0.98084	2.5773	0.1881	0.03401	70.92	49.29	115.94	1164.95	210.55	954.40
2549.1	2962.5	0.16793	0.98145	2.5818	0.1926	0.03462	70.91	49.25	116.71	1180.42	210.22	970.20
2584.4	2949.8	0.17013	0.97229	2.5881	0.1990	0.03522	71.42	49.39	117.35	1193.57	211.42	982.15
2620.2	2933.5	0.17234	0.96863	2.5931	0.2040	0.03583	71.53	49.39	118.08	1208.34	211.44	996.90
2655.9	2909.2	0.17455	0.96039	2.5987	0.2095	0.03646	71.39	49.29	118.75	1222.21	210.59	1011.62
2692.2	2895.2	0.17679	0.95306	2.6029	0.2138	0.03707	71.48	49.29	119.51	1237.82	210.58	1027.24
2728.7	2885.0	0.17899	0.95062	2.6080	0.2189	0.03768	71.90	49.41	120.18	1251.80	211.54	1040.26
	Sec 2237.2 2271.2 2305.2 2339.4 2373.9 2408.7 2443.6 2513.9 2549.1 2584.4 2620.2 2655.9 2692.2	Sec Ibf 2237.2 3103.9 2271.2 3088.7 2305.2 3067.2 2339.4 3053.4 2373.9 3030.1 2408.7 3017.9 2443.6 2998.4 2478.6 2987.5 2513.9 2979.7 2549.1 2962.5 2584.4 2949.8 2620.2 2933.5 2655.9 2909.2 2692.2 2895.2	Sec Ibf inch 2237.2 3103.9 0.14789 2271.2 3088.7 0.15012 2305.2 3067.2 0.15229 2333.4 3053.4 0.15452 2373.9 3030.1 0.15900 2443.6 2998.4 0.16124 2478.6 2987.5 0.16347 2513.9 2979.7 0.16572 2549.1 2962.5 0.16793 2584.4 2949.8 0.17013 2620.2 2933.5 0.17234 2655.9 2909.2 0.17455 2692.2 2895.2 0.17679	Sec Ibf inch inch 2237.2 3103.9 0.14789 1.02875 2271.2 3088.7 0.15012 1.01990 2305.2 3067.2 0.15229 1.01990 2339.4 3053.4 0.15452 1.01135 2373.9 3030.1 0.15677 0.99731 2408.7 3017.9 0.15900 1.00342 2443.6 2998.4 0.16124 0.99426 2478.6 2987.5 0.16347 0.98724 2513.9 2979.7 0.16572 0.98084 2549.1 2962.5 0.16793 0.98145 2584.4 2949.8 0.17013 0.97229 2620.2 2933.5 0.17234 0.96863 2655.9 2909.2 0.17455 0.96039 2692.2 2895.2 0.17679 0.95306	Sec Ibf inch inch inch 2237.2 3103.9 0.14789 1.02875 2.5358 2271.2 3088.7 0.15012 1.01990 2.5427 2305.2 3067.2 0.15229 1.01990 2.5467 2337.4 3053.4 0.15452 1.01135 2.5519 2378.9 3030.1 0.15677 0.99731 2.5620 2443.6 2998.4 0.16124 0.99426 2.5630 2478.6 2987.5 0.16347 0.98724 2.5729 2513.9 2979.7 0.16572 0.98084 2.5773 2549.1 2962.5 0.16347 0.98724 2.5729 2549.1 2962.5 0.16793 0.98145 2.5818 2584.4 2949.8 0.17013 0.97229 2.5881 2620.2 2933.5 0.17234 0.96863 2.5931 2655.9 2909.2 0.17455 0.96039 2.5987 2692.2 2895.2 0.17679	Sec lbf inch inch inch inch 2237.2 3103.9 0.14789 1.02875 2.5358 0.1467 2271.2 3088.7 0.15012 1.01990 2.5427 0.1535 2305.2 3067.2 0.15229 1.01990 2.5467 0.1576 2337.4 3053.4 0.15452 1.01135 2.5519 0.1628 2373.9 3030.1 0.15670 1.9971 2.5582 0.1691 2408.7 3017.9 0.15900 1.00342 2.5630 0.1739 2443.6 2998.4 0.16124 0.99426 2.5729 0.1838 2513.9 2979.7 0.16572 0.98084 2.5773 0.1881 2513.9 2979.7 0.16572 0.98084 2.5773 0.1881 2549.1 2962.5 0.16793 0.98145 2.5818 0.1926 2584.4 2949.8 0.17013 0.97229 2.5881 0.1990 2620.2 2933.5 0.17234	Sec Ibf inch inch inch inch inch inch 2237.2 3103.9 0.14789 1.02875 2.5358 0.1467 0.02923 2271.2 3088.7 0.15012 1.01990 2.5427 0.1535 0.02982 2305.2 3067.2 0.15229 1.01990 2.5467 0.1576 0.03041 2339.4 3053.4 0.15452 1.01135 2.5519 0.1628 0.03100 2378.9 3030.1 0.15677 0.99731 2.5582 0.1691 0.03161 2404.7 3017.9 0.15900 1.00342 2.5630 0.1739 0.03221 2478.6 2987.5 0.16347 0.99426 2.5729 0.1838 0.03342 2513.9 2979.7 0.16572 0.98084 2.5773 0.1881 0.03401 2549.1 2962.5 0.16793 0.98145 2.5818 0.1926 0.03462 2584.4 2949.8 0.17013 0.97229 2.5881 <t< td=""><td>Sec Ibf inch inch inch inch inch inch ksi sqr(in) 2237.2 3103.9 0.14789 1.02875 2.5358 0.1467 0.02923 69.49 2271.2 3088.7 0.15012 1.01990 2.5427 0.1535 0.02982 69.93 2305.2 3067.2 0.15229 1.01990 2.5467 0.1576 0.03041 69.69 2339.4 3053.4 0.15672 1.01135 2.5519 0.1628 0.03100 69.95 2408.7 3017.9 0.15900 1.00342 2.5630 0.1691 0.03161 69.97 2443.6 2998.4 0.16124 0.99426 2.5682 0.1791 0.03221 70.23 2478.6 2987.5 0.16347 0.98724 2.5729 0.1838 0.03342 70.54 2513.9 2979.7 0.16572 0.98084 2.5773 0.1881 0.03401 70.92 2549.1 2962.5 0.16793 0.98145 <td< td=""><td>Sec Ibf inch inch inch inch inch sinch ksi sqr(in) ksi sqr(in) 2237.2 3103.9 0.14789 1.02875 2.5358 0.1467 0.02923 69.49 49.06 2271.2 3088.7 0.15012 1.01990 2.5427 0.1535 0.02982 69.93 49.18 2305.2 3067.2 0.15229 1.01990 2.5467 0.1576 0.03041 69.69 49.06 2333.4 3053.4 0.15452 1.01135 2.5519 0.1628 0.03100 69.95 49.12 2408.7 3030.1 0.15677 0.99731 2.5582 0.1691 0.03161 69.97 49.08 2408.7 3017.9 0.15900 1.00342 2.5630 0.1739 0.03221 70.23 49.14 2443.6 2998.4 0.16124 0.99426 2.5682 0.1791 0.03282 70.24 49.10 2478.6 2987.5 0.166347 0.98724 2.5729</td><td>Sec Ibf inch inch inch inch inch sis sqr(in) ksi sqr(in) ksi sqr(in) ksi sqr(in) 2237.2 3103.9 0.14789 1.02875 2.5358 0.1467 0.02923 69.49 49.06 109.63 2271.2 3088.7 0.15012 1.01990 2.5427 0.1535 0.02982 69.93 49.18 110.38 2305.2 3067.2 0.15229 1.01990 2.5467 0.1576 0.03041 69.69 49.06 111.23 2337.4 3053.4 0.15672 1.01195 2.5519 0.1628 0.03100 69.95 49.12 112.03 2408.7 3017.9 0.15507 0.99731 2.5582 0.1691 0.03161 69.97 49.08 112.78 2408.7 3017.9 0.15900 1.00342 2.5630 0.1799 0.03221 70.23 49.14 113.58 2443.6 2998.4 0.16124 0.99462 2.5682 0.1791 0.03282 70.24</td><td>Sec Ibf inch inch inch inch inch sis sqr(in) ksi sqr(in) ksi sqr(in) ksi sqr(in) lbf/in 2237.2 3103.9 0.14789 1.02875 2.5358 0.1467 0.02923 69.49 49.06 109.63 1041.64 2271.2 3088.7 0.15012 1.01990 2.5427 0.1535 0.02982 69.93 49.18 110.38 1055.92 2305.2 3067.2 0.15229 1.01990 2.5427 0.15676 0.03041 69.69 49.06 111.23 1072.22 2337.4 3053.4 0.15452 1.01135 2.5582 0.1691 0.03161 69.95 49.12 112.03 1087.77 2373.9 3030.1 0.15900 1.00342 2.5680 0.1691 0.03161 69.97 49.08 112.78 1102.36 2443.6 2987.5 0.16347 0.9942 2.5682 0.1791 0.03282 70.24 49.14 113.58 1118.08 24</td><td>Sec Ibf inch inch inch inch inch inch ksi sqr(in) ksi sqr(in) ksi sqr(in) lbf/in Ibf/in 208.61 2377.2 3103.9 0.15012 1.01990 2.5427 0.1535 0.02982 69.93 49.18 110.38 105.922 209.65 2305.2 3067.2 0.15229 1.01990 2.5467 0.1576 0.03041 69.69 49.06 111.23 1072.22 208.58 2337.4 3053.4 0.15677 0.99731 2.5582 0.1691 0.03101 69.97 49.08 112.78 110.23 208.74 2408.7 3017.9 0.15900 1.00342 2.5682 0.1791 0.03221 70.23 49.14</td></td<></td></t<>	Sec Ibf inch inch inch inch inch inch ksi sqr(in) 2237.2 3103.9 0.14789 1.02875 2.5358 0.1467 0.02923 69.49 2271.2 3088.7 0.15012 1.01990 2.5427 0.1535 0.02982 69.93 2305.2 3067.2 0.15229 1.01990 2.5467 0.1576 0.03041 69.69 2339.4 3053.4 0.15672 1.01135 2.5519 0.1628 0.03100 69.95 2408.7 3017.9 0.15900 1.00342 2.5630 0.1691 0.03161 69.97 2443.6 2998.4 0.16124 0.99426 2.5682 0.1791 0.03221 70.23 2478.6 2987.5 0.16347 0.98724 2.5729 0.1838 0.03342 70.54 2513.9 2979.7 0.16572 0.98084 2.5773 0.1881 0.03401 70.92 2549.1 2962.5 0.16793 0.98145 <td< td=""><td>Sec Ibf inch inch inch inch inch sinch ksi sqr(in) ksi sqr(in) 2237.2 3103.9 0.14789 1.02875 2.5358 0.1467 0.02923 69.49 49.06 2271.2 3088.7 0.15012 1.01990 2.5427 0.1535 0.02982 69.93 49.18 2305.2 3067.2 0.15229 1.01990 2.5467 0.1576 0.03041 69.69 49.06 2333.4 3053.4 0.15452 1.01135 2.5519 0.1628 0.03100 69.95 49.12 2408.7 3030.1 0.15677 0.99731 2.5582 0.1691 0.03161 69.97 49.08 2408.7 3017.9 0.15900 1.00342 2.5630 0.1739 0.03221 70.23 49.14 2443.6 2998.4 0.16124 0.99426 2.5682 0.1791 0.03282 70.24 49.10 2478.6 2987.5 0.166347 0.98724 2.5729</td><td>Sec Ibf inch inch inch inch inch sis sqr(in) ksi sqr(in) ksi sqr(in) ksi sqr(in) 2237.2 3103.9 0.14789 1.02875 2.5358 0.1467 0.02923 69.49 49.06 109.63 2271.2 3088.7 0.15012 1.01990 2.5427 0.1535 0.02982 69.93 49.18 110.38 2305.2 3067.2 0.15229 1.01990 2.5467 0.1576 0.03041 69.69 49.06 111.23 2337.4 3053.4 0.15672 1.01195 2.5519 0.1628 0.03100 69.95 49.12 112.03 2408.7 3017.9 0.15507 0.99731 2.5582 0.1691 0.03161 69.97 49.08 112.78 2408.7 3017.9 0.15900 1.00342 2.5630 0.1799 0.03221 70.23 49.14 113.58 2443.6 2998.4 0.16124 0.99462 2.5682 0.1791 0.03282 70.24</td><td>Sec Ibf inch inch inch inch inch sis sqr(in) ksi sqr(in) ksi sqr(in) ksi sqr(in) lbf/in 2237.2 3103.9 0.14789 1.02875 2.5358 0.1467 0.02923 69.49 49.06 109.63 1041.64 2271.2 3088.7 0.15012 1.01990 2.5427 0.1535 0.02982 69.93 49.18 110.38 1055.92 2305.2 3067.2 0.15229 1.01990 2.5427 0.15676 0.03041 69.69 49.06 111.23 1072.22 2337.4 3053.4 0.15452 1.01135 2.5582 0.1691 0.03161 69.95 49.12 112.03 1087.77 2373.9 3030.1 0.15900 1.00342 2.5680 0.1691 0.03161 69.97 49.08 112.78 1102.36 2443.6 2987.5 0.16347 0.9942 2.5682 0.1791 0.03282 70.24 49.14 113.58 1118.08 24</td><td>Sec Ibf inch inch inch inch inch inch ksi sqr(in) ksi sqr(in) ksi sqr(in) lbf/in Ibf/in 208.61 2377.2 3103.9 0.15012 1.01990 2.5427 0.1535 0.02982 69.93 49.18 110.38 105.922 209.65 2305.2 3067.2 0.15229 1.01990 2.5467 0.1576 0.03041 69.69 49.06 111.23 1072.22 208.58 2337.4 3053.4 0.15677 0.99731 2.5582 0.1691 0.03101 69.97 49.08 112.78 110.23 208.74 2408.7 3017.9 0.15900 1.00342 2.5682 0.1791 0.03221 70.23 49.14</td></td<>	Sec Ibf inch inch inch inch inch sinch ksi sqr(in) ksi sqr(in) 2237.2 3103.9 0.14789 1.02875 2.5358 0.1467 0.02923 69.49 49.06 2271.2 3088.7 0.15012 1.01990 2.5427 0.1535 0.02982 69.93 49.18 2305.2 3067.2 0.15229 1.01990 2.5467 0.1576 0.03041 69.69 49.06 2333.4 3053.4 0.15452 1.01135 2.5519 0.1628 0.03100 69.95 49.12 2408.7 3030.1 0.15677 0.99731 2.5582 0.1691 0.03161 69.97 49.08 2408.7 3017.9 0.15900 1.00342 2.5630 0.1739 0.03221 70.23 49.14 2443.6 2998.4 0.16124 0.99426 2.5682 0.1791 0.03282 70.24 49.10 2478.6 2987.5 0.166347 0.98724 2.5729	Sec Ibf inch inch inch inch inch sis sqr(in) ksi sqr(in) ksi sqr(in) ksi sqr(in) 2237.2 3103.9 0.14789 1.02875 2.5358 0.1467 0.02923 69.49 49.06 109.63 2271.2 3088.7 0.15012 1.01990 2.5427 0.1535 0.02982 69.93 49.18 110.38 2305.2 3067.2 0.15229 1.01990 2.5467 0.1576 0.03041 69.69 49.06 111.23 2337.4 3053.4 0.15672 1.01195 2.5519 0.1628 0.03100 69.95 49.12 112.03 2408.7 3017.9 0.15507 0.99731 2.5582 0.1691 0.03161 69.97 49.08 112.78 2408.7 3017.9 0.15900 1.00342 2.5630 0.1799 0.03221 70.23 49.14 113.58 2443.6 2998.4 0.16124 0.99462 2.5682 0.1791 0.03282 70.24	Sec Ibf inch inch inch inch inch sis sqr(in) ksi sqr(in) ksi sqr(in) ksi sqr(in) lbf/in 2237.2 3103.9 0.14789 1.02875 2.5358 0.1467 0.02923 69.49 49.06 109.63 1041.64 2271.2 3088.7 0.15012 1.01990 2.5427 0.1535 0.02982 69.93 49.18 110.38 1055.92 2305.2 3067.2 0.15229 1.01990 2.5427 0.15676 0.03041 69.69 49.06 111.23 1072.22 2337.4 3053.4 0.15452 1.01135 2.5582 0.1691 0.03161 69.95 49.12 112.03 1087.77 2373.9 3030.1 0.15900 1.00342 2.5680 0.1691 0.03161 69.97 49.08 112.78 1102.36 2443.6 2987.5 0.16347 0.9942 2.5682 0.1791 0.03282 70.24 49.14 113.58 1118.08 24	Sec Ibf inch inch inch inch inch inch ksi sqr(in) ksi sqr(in) ksi sqr(in) lbf/in Ibf/in 208.61 2377.2 3103.9 0.15012 1.01990 2.5427 0.1535 0.02982 69.93 49.18 110.38 105.922 209.65 2305.2 3067.2 0.15229 1.01990 2.5467 0.1576 0.03041 69.69 49.06 111.23 1072.22 208.58 2337.4 3053.4 0.15677 0.99731 2.5582 0.1691 0.03101 69.97 49.08 112.78 110.23 208.74 2408.7 3017.9 0.15900 1.00342 2.5682 0.1791 0.03221 70.23 49.14

Ela	astic-Plas	stic Fract	ure To	oughness	Analysi	s	
Specimen ID Contract Material Temperature(F) Environment	ss	5383-FT-1 C 10624-01 5383-H116 75.0 LAB AIR		Geometry Orientation Yield (ksi) Tensile (ksi) Modulus (Ms	si)		C(T) T-L 35.4 53.3 10.5
Specimen Dimensions Thickness (in) Net Thickness (in) Width (in) Pin Spacing (in)		0.487 0.487 2.000 1.100		Notch Depth Gage Length Alpha Ratio			1.100 0.200 1
Precrack Parameters Pmax (lbf) Final a (in) Pf (lbf)		303.0 1.200 1060		Stress Ratio Kmax (ksi so			0.1 6.0
Initial measured crack len 1.194 1.209	ngths (in) 1.214	1.210	1.208	1.205	1.198	1.184	1.171
Final measured crack length 1.303 1.349 X X	gths (in) 1.482	1.592 x	1.630 x	1.544 x	1.426	1.332 x	1.326 x
Ave. initial crack length (i Ave. final crack length (in Delta a measured (in) Delta a predicted (in)		1.201 1.459 0.258 0.204		aoq (in) Compliance Effective Mo			n/a 1.003 10.5
Results J _a (E1820) K _{JIC} (E'*JQ)^1/2		bf-in/in^2 ssi sqrt(in)					
Qualification of Data 7.4.2: precrack length 9.1.4.1; precrack 9.1.4.2; final crack 9.1.5.1; Δa meas 9.1.5.2; Δa pred A9.6.4; # of pnts in reg.A A9.6.4; # of pnts in reg.B A9.8.1; C_2 <1 A9.8.2.1; a_{0q} - a_0 A9.8.2.2; # of pnts for J_q A9.8.2.2; # of pnts < J_q A9.3.3.1; correlation	valid valid invalid valid valid valid valid #VALUE! valid valid valid			Qualification A9.9.1; thick A9.9.2; ligan A9.9.3; slope	ness nent	valid valid valid valid	

Index	Time	Force	Disp1	Disp2	Crack	∆a	CTOD	K561	K1820	KJ1820	J1820	Je	Jpl
	Sec	lbf	inch	inch	inch	inch	inch	ksi sqr(in)	ksi sqr(in)	ksi sqr(in)	lbf/in	lbf/in	lbf/in
6	330.8	476.7	0.00582	0.07477	1.2014	0.0000	0.00009	9.62	9.48	9.48	7.79	7.79	0.01
7	371.7	597.2	0.00736	0.09369	1.2010	-0.0004	0.00017	12.14	11.87	11.95	12.39	12.20	0.18
8	410.7	716.7	0.00891	0.11292	1.2018		0.00025	14.74	14.26	14.41	18.00	17.63	0.37
9	448.8	831.9	0.01046	0.13092	1.2026		0.00036	17.34	16.58	16.85	24.60	23.83	0.77
10	486.3	945.3	0.01202	0.14893	1.2018	0.0004	0.00050	19.92	18.81	19.31	32.33	30.67	1.66
11	523.5	1053.5	0.01358	0.16602	1.2025	0.0011	0.00065	22.56	20.99	21.74	40.95	38.19	2.76
12	560.3	1158.8	0.01514	0.18219	1.2026	0.0012	0.00082	25.21	23.09	24.14	50.50	46.22	4.28
13	596.8	1257.3	0.01669	0.19806	1.2041		0.00100	27.90	25.13	26.48	60.78	54.74	6.04
14	633.1	1350.1	0.01825	0.21362	1.2046		0.00121	30.51	27.01	28.83	72.03	63.25	8.79
15	669	1434.8	0.01981	0.22553	1.2054		0.00144	33.03	28.75	31.15	84.11	71.65	12.47
16	704.3	1493.8	0.02139	0.23498	1.2090		0.00169	35.17	30.15	33.36	96.46	78.79	17.67
17	739.8	1553.5	0.02295	0.24475	1.2128		0.00194	37.49	31.60	35.49	109.15	86.51	22.64
18	774.8	1574.3	0.02454	0.24750	1.2209		0.00221	39.12	32.54	37.44	121.51	91.76	29.74
19	810.1	1603.1	0.02610	0.25238	1.2263		0.00250	40.82	33.50	39.39	134.48	97.28	37.20
20	845.8	1617.0	0.02770	0.25574	1.2321		0.00281	42.12	34.20	41.30	147.79	101.35	46.44
21	881.5	1636.1	0.02930	0.25757	1.2356		0.00313	43.34	34.85	43.24	162.03	105.24	56.78
22	917.6	1656.8	0.03087	0.26001	1.2385		0.00345	44.59	35.50	45.10	176.26	109.22	67.04
23	953.8	1666.4	0.03248	0.26459	1.2419		0.00380	45.52	35.96	46.92	190.83	112.08	78.75
24	990	1687.5	0.03407	0.26489	1.2446		0.00413	46.85	36.62	48.71	205.62	116.24	89.38
25	1026.1	1682.3	0.03566	0.26489	1.2480		0.00449	47.19	36.77	50.41	220.20	117.16	103.03
26	1063	1696.6	0.03725	0.26672	1.2504		0.00484	48.24	37.27	52.10	235.24	120.38 122.23	114.86
27	1099.2	1698.2 1706.4	0.03884	0.26733	1.2536		0.00519	48.89	37.55	53.71	249.98		127.75
28	1136.1	1708.4	0.04044 0.04204	0.26886	1.2551		0.00556 0.00593	49.54	37.86	55.36	265.62 280.82	124.21	141.41 155.01
29 30	1172.7 1209.6	1708.7	0.04204	0.26855 0.26764	1.2576 1.2603		0.00593	50.10 50.64	38.10 38.33	56.92 58.44	295.98	125.81 127.32	168.66
31	1246.6	1706.7	0.04505	0.26764	1.2628		0.00669	50.93	38.44	59.94	311.41	128.03	183.38
32	1283.4	1699.4	0.04527	0.26703	1.2651		0.00707	51.15	38.52	61.38	326.55	128.56	197.99
33	1320.6	1698.3	0.04845	0.26581	1.2671		0.00745	51.52	38.66	62.80	341.77	129.53	212.24
34	1357.9	1685.9	0.05005	0.26520	1.2697		0.00745	51.43	38.59	64.16	356.73	129.09	227.64
35	1395.4	1678.0	0.05163	0.26459	1.2721		0.00703	51.53	38.61	65.47	371.51	129.20	242.30
36	1433.1	1665.2	0.05103	0.26215	1.2755		0.00864	51.58	38.60	66.72	385.83	129.13	256.70
37	1470.9	1654.2	0.05483	0.26032	1.2792		0.00903	51.80	38.66	67.89	399.50	129.52	
38	1509	1638.5	0.05645	0.25726	1.2819		0.00945	51.57	38.52	69.12	414.06	128.61	285.45
39	1546.9	1615.0	0.05804	0.25513	1.2840		0.00987	50.79	38.14	70.33	428.72	126.09	302.62
40	1585.6	1610.4	0.05964	0.25360	1.2884		0.01026	51.47	38.41	71.36	441.28	127.85	313.44
41	1624.5	1598.8	0.06122	0.25146	1.2917		0.01066	51.58	38.42	72.41	454.44	127.92	326.52
42	1663.5	1581.6	0.06281	0.24841	1.2944		0.01108	51.23	38.23	73.50	468.23	126.68	341.56
43	1702.7	1566.8	0.06441	0.24597	1.2982		0.01150	51.27	38.21	74.48	480.78	126.51	354.27
44	1742.4	1528.5	0.06611	0.24078	1.3028		0.01199	50.18	37.66	75.47	493.57	122.90	370.67
45	1782.5	1518.3	0.06768	0.23834	1.3065	0.1051	0.01239	50.42	37.73	76.36	505.37	123.37	382.00
46	1822.6	1491.8	0.06928	0.23498	1.3123		0.01284	50.20	37.57	77.12	515.48	122.30	393.17
47	1863.1	1457.2	0.07084	0.22888	1.3188	0.1174	0.01329	49.67	37.25	77.77	524.12	120.27	403.85
48	1904.6	1445.9	0.07242	0.22766	1.3212	0.1198	0.01372	49.56	37.17	78.70	536.74	119.75	416.99
49	1946.2	1414.8	0.07405	0.22400	1.3279	0.1265	0.01419	49.23	36.95	79.31	545.19	118.32	426.87
50	1988.5	1395.1	0.07562	0.22034	1.3329	0.1314	0.01463	49.18	36.87	80.00	554.60	117.81	436.79
51	2031.4	1373.0	0.07729	0.21607	1.3377	0.1363	0.01510	48.95	36.71	80.73	564.79	116.80	447.98
52	2074.7	1351.2	0.07889	0.21271	1.3437	0.1423	0.01556	48.96	36.65	81.31	572.91	116.42	456.49
53	2118.6	1325.7	0.08048	0.20843	1.3486	0.1472	0.01603	48.53	36.40	81.94	581.83	114.81	467.01
54	2163.2	1312.6	0.08205	0.20660	1.3527	0.1513	0.01647	48.63	36.40	82.60	591.33	114.82	476.51
55	2208.1	1297.0	0.08362	0.20416	1.3580	0.1566	0.01692	48.85	36.44	83.15	599.18	115.08	484.10
56	2253.7	1275.9	0.08525	0.20294	1.3626		0.01740	48.57	36.26	83.78	608.27		494.32
57	2299.7	1258.6	0.08685	0.19928	1.3672		0.01787	48.52	36.18	84.36	616.81		503.33
58	2346.2	1237.9	0.08842	0.19562	1.3721		0.01834	48.32	36.04	84.88	624.43		511.87
59	2393.4	1217.0	0.08998	0.19287	1.3764		0.01882	47.95	35.82	85.44	632.64		521.44
60	2441.4	1200.9	0.09161	0.18982	1.3810		0.01930	47.95	35.77	85.97	640.60		529.72
61	2489.9	1184.4	0.09323	0.18677	1.3854		0.01979	47.87	35.68	86.52	648.74		538.39
62	2538.9	1152.2	0.09485	0.18280	1.3912		0.02033	47.05	35.24	86.92	654.78		547.14
63	2588.7	1137.7	0.09644	0.18097	1.3962		0.02080	47.22	35.26	87.34	661.15		553.38
64 65	2639.2	1113.1	0.09810	0.17731	1.4016		0.02134	46.78	35.00	87.76	667.46		561.29
65	2690.9	1099.6	0.09970	0.17425	1.4050	0.2036	0.02183	46.63	34.89	88.31	675.86	105.50	370.36

Ela	stic-Plas	tic Fract	ure To	oughness	Analysi	is	
Specimen ID Contract Material Temperature(F) Environment	SS	5383-FT-2 C 10624-01 5383-H116 75.0 LAB AIR		Geometry Orientation Yield (ksi) Tensile (ksi) Modulus (Ms			C(T) T-L 35.4 53.3 10.5
Specimen Dimensions Thickness (in) Net Thickness (in) Width (in) Pin Spacing (in)		0.487 0.487 2.000 1.100		Notch Depth Gage Length Alpha Ratio			1.100 0.200 1
Precrack Parameters Pmax (lbf) Final a (in) Pf (lbf)		302.0 1.200 1057		Stress Ratio Kmax (ksi so			0.1 6.0
Initial measured crack len 1.197 1.211	gths (in) 1.215	1.212	1.208	1.205	1.199	1.186	1.172
Final measured crack length 1.301	1.500	1.629 x 1.202 1.467	1.652 x	1.558 x aoq (in) Compliance	•		1.291 x n/a 1.009
Delta a measured (in) Delta a predicted (in) Results Ja (E1820) Kuc(E**JQ)^1/2		0.264 0.206 bf-in/in^2 si sqrt(in)		Effective Mo	dulus (Ms	1)	10.6
Qualification of Data 7.4.2: precrack length 9.1.4.1; precrack 9.1.4.2; final crack 9.1.5.1; Δa meas 9.1.5.2; Δa pred A9.6.4; # of pnts in reg.A A9.6.4; # of pnts in reg.B A9.8.1; $C_2 < 1$ A9.8.2.1; $a_{0q} - a_0$ A9.8.2.2; # of pnts for J_q A9.8.2.2; # of pnts $< J_q$ A9.3.3.1; correlation	valid valid invalid invalid invalid valid valid valid #VALUE! valid valid valid			Qualification A9.9.1; thick A9.9.2; ligan A9.9.3; slope	ness nent	Valid Valid Valid Valid	

8 4172 4771 0.002 0.002 0.000 0.000 9.00 9.50 9.51 7.84 7.83 0.002 9 457.8 898.3 .00275 0.00949 1.0000 0.0000 9.61 11.91 11.99 11.92 11.90 11.93 1.19 11.99 11.91 11.99 11.92 11.90 11.91 11.99 11.91 11.99 11.91 11.90 12.27 12.00 0.01 0.0000 0.0000 0.0000 1.0000 1.91 11.91 11.92 12.20 2.0000 0.0000 <td< th=""><th>Index</th><th>Time</th><th>Force</th><th>Disp1</th><th>Disp2</th><th>Crack</th><th>∆a</th><th>CTOD</th><th>K561</th><th>K1820</th><th>KJ1820</th><th>J1820</th><th>Je</th><th>Jpl</th></td<>	Index	Time	Force	Disp1	Disp2	Crack	∆a	CTOD	K561	K1820	KJ1820	J1820	Je	Jpl
497.8 598.3 0.00725 0.09491 1.2025 0.00003 0.00014 12.19 11.91 11.99 11.247 12.20 0.016 11 534.5 834.2 0.01030 0.11361 1.2023 0.0000 0.00031 11.96 1.60 1.69 1.69 1.01941 0.12020 0.0000 0.00031 1.76 1.66 1.692 2.482 2.2389 0.93 13 609 10591 0.01347 1.6754 1.2026 0.0000 0.00081 2.208 2.219 2.83 14.30 38.55 0.1565 15 716.6 1.01841 2.1244 0.0017 0.0003 0.0002 2.26 2.109 2.83 14.33 3.855 7.411 6.82 16 716.5 1.4444 0.0107 0.0002 0.00120 0.002 2.211 2.66 61.61 55.09 6.517 7.411 8.22 17 7.415.5 1.4444 0.0019 0.00220 0.00147														
14 15 15 15 15 15 15 15														
14 534.5 834.2 0.01034 0.1184 1.0203 0.0005 0.00036 17.36 16.60 16.92 24.82 23.89 0.35 13.609 10.6147 0.16145 1.0206 0.0001 0.00063 22.68 21.09 21.83 41.30 35.65 27.15 14.64.8 3.66 1.01847 0.16145														
18														
18														
146 64.5 16.5 0.01502 0.18402 1.2002 0.0005 0.0008 25.8 23.23 24.23 50.67 45.77 4.11 56.23 126.5 0.01659 0.2019 1.2024 0.0005 0.00102 30.78 27.21 28.99 72.79 64.17 86.2 77.4 5 144.4 0.1970 0.2277 1.208 0.0012 0.00143 33.24 28.90 72.71 28.99 72.79 64.17 86.2 79.0 1.509.1 1.509.1 0.02127 0.23773 1.2084 0.0057 0.00143 33.24 28.90 33.53 97.44 80.10 17.34 80.8 1.509.5 0.0228 0.24750 1.2116 0.0089 0.00193 37.83 31.82 35.72 110.50 87.75 22.85 80.5 1.509.5 0.0228 0.24750 1.2116 0.0089 0.0023 39.19 32.50 37.74 12.34 92.00 31.35 80.5 1.509.5 0.0228 0.25991 1.2264 0.0237 0.00254 40.977 34.50 41.87 151.50 87.75 93.77 23.9 36.5 1.665.0 0.00243 0.26092 1.2341 0.0034 0.00347 43.92 33.59 39.84 137.56 97.78 39.77 23.9 36.5 1.665.0 0.00340 0.26215 1.2381 0.0034 0.00347 43.92 33.51 43.77 160.06 107.25 58.90 4 100.3 1.665.8 0.00340 0.26215 1.2381 0.0034 0.0034 45.01 35.72 45.99 180.10 10.0038 0.0034 4.00347 4														
16														
16														
17														
18														
98.5														
20														
21 886.1 1688.3 0.02620 0.25391 1.2564 0.0278 0.00284 42.79 33.59 39.84 137.56 97.78 93.77 23 967.6 1687.9 0.02983 0.26902 1.2341 0.0314 0.00317 43.92 35.18 43.77 165.06 107.25 58.80 24 1003.3 1665.8 0.03104 0.02650 1.249 0.0402 0.0036 45.99 36.15 47.40 14.914 11.326 11.616 69.82 26 1075.6 1683.8 0.03426 0.26500 1.2480 0.0432 0.00419 46.84 36.61 47.81 14.74 11.328 11.618 9.33 1.2618 1.0688 0.0045 4.761 39.89 50.92 2.278 116.18 9.33 1.262 1.2681 0.0481 0.0482 36.61 47.40 44.91 3.323 3.222 1.2681 0.0482 0.0681 0.0681 0.0681 3.061 47.40 4.242														
22 932.1 1646.0 002782 0.26082 1.2296 0.0284 0.0284 3.480 44.87 151.90 103.75 48.16 24 1003.3 1665.5 0.03104 0.2615 1.2393 0.0366 0.00380 45.91 35.18 43.77 160.60 107.25 88.80 25 1039.5 1633.3 0.03260 0.26520 1.2460 0.0432 0.00481 46.84 36.61 49.18 19.74 113.28 81.48 26 1075.6 1633.8 0.03587 0.26611 1.2485 0.0482 0.00487 46.84 36.61 49.18 0.0588 11.818 93.93 224.78 118.51 10.00 119.00 119.00 119.00 119.00 119.00 119.00 119.00 119.00 119.00 10.00 119.00 119.00 119.00 119.00 119.00 119.00 119.00 119.00 119.00 119.00 119.00 119.00 119.00 119.00 119.00														
23 997.6 1687.9 0.02943 0.26092 1.2241 0.0314 0.0316 0.26215 1.2383 0.0366 0.0350 45.01 35.72 45.59 18012 1106.0 69.52 25 1093.5 1673.1 0.03265 0.2650 1.2429 0.0402 0.00385 46.89 36.15 47.40 194.74 113.28 81.46 26 1075.6 1683.8 0.03426 0.2650 1.2480 0.0459 0.0465 47.61 48.98 36.61 49.18 20.581 1106.1 1.0816 0.0059 2.6871 1.0816 0.0489 0.0465 47.61 48.98 50.92 2.278 118.51 10.0381 1.0816 10.0059 1.2810 10.0064 40.0527 49.13 37.378 52.63 2.4007 121.03 112.03 112.03 12.251 170.10 0.04070 2.2788 1.2518 0.0521 0.0518 3.737.89 37.89 55.94 277.11 124.22 126.25 159.37														
24 1003.3 1665.8 0.031.0 0.26215 12.233 0.0360 45.01 35.72 45.59 180.12 110.26 89.52 25 1075.6 1683.8 0.03425 0.26520 1.2460 0.0432 0.00419 46.84 36.61 47.40 194.74 113.28 81.36 27 1112.1 1691.6 0.03587 0.26733 1.2508 0.0481 0.00451 48.44 33.73 52.62 20.07 12.13 119.04 29 1185.2 170.70 0.03909 0.26978 1.2531 0.0604 0.00527 49.13 37.68 54.29 255.40 123.07 132.33 30 1222.1 170.02 0.04070 0.27039 1.2504 0.0559 0.00601 50.26 33.17 57.41 224.24 146.75 31 1258.7 1705.8 0.04329 0.26865 1.2500 0.0578 0.0661 50.25 38.17 57.41 224.24 126.25 189.37														
25 1035.5 1673.1 0.03265 0.26500 1.2429 0.0432 0.00435 48.89 36.15 47.40 147.41 13.28 81.45 26 1075.6 1683.8 0.03426 0.265020 1.2460 0.0432 0.00419 46.84 36.61 49.18 209.58 116.16 13.39 27 1112.1 1691.6 0.03587 0.2631 1.2568 0.0481 0.00451 48.44 37.37 52.63 2.0407 121.03 119.04 29 1185.2 1707.0 0.03099 0.26896 1.2587 0.0569 0.0652 49.13 37.68 55.94 271.17 124.42 146.75 31 1228.7 1708.8 0.04229 0.26896 1.2587 0.0593 0.00610 50.46 38.75 58.98 301.46 126.77 174.69 32 1295.6 1705.8 0.04715 0.26855 1.2600 0.0593 0.00640 50.46 38.25 58.98 301.45														
26 1075.6 1683.8 0.03452 0.26520 1.2465 0.0458 0.0459 47.61 36.98 50.93 224.78 116.15 106.28 28 1148.6 1701.1 0.03748 0.26733 1.2508 0.0481 0.00491 48.44 37.37 52.63 240.07 121.03 119.02 29 1185.2 1707.0 0.03999 0.26878 1.2531 0.0501 0.00557 49.13 37.68 54.29 255.40 123.07 132.33 31 1258.7 1708.8 0.04229 0.26866 1.2587 0.0559 0.0601 50.25 38.17 57.41 285.62 126.25 159.37 32 1295.6 1705.8 0.04529 0.26865 1.2650 0.0539 0.00607 51.05 38.17 57.41 285.62 126.27 174.69 33 1332.9 171.16 0.04572 0.06865 1.26675 0.0639 0.06745 51.62 38.69 61.93 33.237 <td></td>														
27 1112.1 1891.6 0.03587 0.26611 1.2485 0.0488 0.04951 47.61 3.98 59.93 224.78 118.51 105.28 28 1148.6 1707.0 0.03909 0.26978 12.251 0.0507 49.13 37.68 54.29 25.40 123.07 132.33 30 1222.1 1710.2 0.04070 0.27039 12.2548 0.0521 0.0565 49.59 37.89 55.94 271.17 124.42 146.75 31 1255.6 1705.8 0.04392 0.26855 1.2605 0.0579 0.06040 50.46 38.25 58.98 301.46 126.77 174.69 33 1332.9 1711.6 0.0475 0.26855 1.2620 0.0093 0.00677 51.05 38.51 60.50 317.21 129.50 202.62 35 1407.5 1705.0 0.0487 0.26865 1.2675 0.0684 0.00745 51.62 38.50 61.93 33.237 129.75														
28 1148.6 1701.1 0.03798 0.26738 1.2508 0.0481 0.00491 48.44 37.37 52.63 240.07 121.03 119.04 29 1185.2 17710.0 0.03909 0.26788 1.2531 0.05604 0.00567 45.59 37.68 54.29 255.40 123.07 123.03 31 1258.7 1700.8 0.04329 0.26886 1.2568 0.0578 0.0504 50.64 38.25 58.98 301.46 126.71 174.69 32 1256.6 1705.8 0.04367 0.26855 1.2660 0.0533 0.0677 51.05 38.51 60.50 317.21 128.50 188.71 34 1370.1 1709.0 0.04877 52.6886 1.2675 0.0600 0.00765 51.52 38.69 61.93 332.37 129.75 202.62 35 1407.5 1608.6 0.0539 0.2686 1.2675 0.0680 0.00765 51.62 38.70 64.83 36.24														
186.2 1707.0 0.03990 0.26978 1.2531 0.0504 0.0527 49.13 37.68 54.29 225.40 123.07 132.33 1225.7 1701.0 0.04070 0.27039 1.2648 0.0521 0.05656 49.59 37.89 55.94 271.17 124.42 146.75 125.67 1701.0 0.04229 0.26886 1.2587 0.0593 0.0601 50.25 38.17 57.41 285.62 126.25 159.37 32.20 1295.6 1705.8 0.04322 0.26855 1.2605 0.0593 0.06040 50.46 38.25 58.98 301.46 126.77 174.69 33.237 129.75 202.62 35.31 1705.0 0.04715 0.26855 1.2605 0.0593 0.00715 51.52 38.69 61.93 332.37 129.75 202.62 35.31 107.5 1705.0 0.04877 0.26855 1.2605 0.0523 0.00715 51.52 38.69 61.93 332.37 129.75 202.62 35.34 1407.5 1705.0 0.04877 0.26856 1.2675 0.0680 0.00764 51.83 38.81 63.34 347.71 130.53 217.18 37.44 1482.6 1685.2 0.05201 0.26611 1.2726 0.0699 0.00834 51.91 38.79 66.03 377.91 130.40 247.51 38.15 157.7 1664.2 0.05200 0.05201 1.2786 0.0699 0.00834 51.91 38.79 66.03 377.91 130.40 247.51 38.15 157.7 1644.2 0.05520 0.05600 1.2786 0.0781 0.0781 0.0914 51.62 38.63 67.29 392.37 129.11 263.06 0.05520 0.05520 0.05520 0.05601 1.2786 0.0781 0.0783 0.0955 51.31 38.43 69.71 421.19 127.97 293.22 42.2676 1607.7 0.0596 0.25241 1.2887 0.0860 0.01036 51.30 38.33 71.84 447.24 127.35 319.84 44.74 44.751 44.751 1.574.6 0.06320 0.04811 1.2955 0.0962 0.01071 51.36 38.32 72.90 460.56 127.28 333.28 47.791 1.301.0 47.51														
90 1222.1 1710.2 0.0470 0.27039 1.258.8 0.0521 0.00561 49.59 37.89 55.94 271.17 124.24 146.55 31 1258.6 1705.8 0.04229 0.26865 1.2605 0.0578 0.00601 50.46 38.25 58.98 301.46 126.77 174.69 33 1332.9 1711.6 0.04552 0.27039 1.2600 0.0593 0.00677 51.05 38.51 60.50 317.21 128.50 188.71 36 1407.5 1705.0 0.04715 0.26865 1.2675 0.0680 0.00754 51.83 38.81 63.34 347.71 130.53 217.18 36 1445.1 1695.6 0.05201 0.26081 1.2675 0.0690 0.00796 51.62 38.70 64.83 342.41 129.79 234.46 37 148.6 1685.2 0.05201 0.26011 12786 0.0528 0.00844 51.62 38.63 67.29 392.37 <td></td> <td></td> <td>1707.0</td> <td></td> <td>0.26978</td> <td></td> <td>0.0504</td> <td>0.00527</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			1707.0		0.26978		0.0504	0.00527						
32 1295.6 1705.8 0.04392 0.26855 1.2605 0.0578 0.00640 50.46 38.25 58.98 301.46 126.77 174.69 33 1332.9 1711.6 0.04552 0.27039 1.2650 0.06933 0.00715 51.52 38.51 60.50 317.21 128.50 188.71 36 1407.5 1705.0 0.04877 0.26866 1.2675 0.0648 0.00754 51.83 38.81 63.34 347.71 130.53 217.18 36 1445.1 1695.6 0.05201 0.27008 1.2687 0.0660 0.00766 51.62 38.70 64.83 364.24 129.79 234.46 37 1486.6 1685.2 0.05270 0.26611 12726 0.06990 0.00834 5191 38.79 64.83 364.24 129.79 234.24 38 1519.7 1667.8 0.05399 0.25767 12810 0.0783 0.0914 51.62 38.63 67.29 392.37 <td></td> <td></td> <td></td> <td>0.04070</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>146.75</td>				0.04070										146.75
33 1332.9 1711.6 0.04562 0.27039 1.2620 0.0593 0.00775 51.05 38.51 60.50 317.21 128.50 188.71 34 1370.1 1709.0 0.04877 0.26886 1.2675 0.0648 0.00754 51.83 38.81 63.34 347.71 130.53 217.18 36 1445.1 1695.6 0.05043 0.27008 1.2687 0.0660 0.00796 51.62 38.70 64.83 364.24 129.79 234.46 37 1482.6 1688.2 0.05201 0.26631 1.2755 0.0788 0.00874 51.62 38.63 67.29 392.37 129.31 230.03 39 1557.7 1654.2 0.05679 0.26777 1.2810 0.0761 0.0995 51.51 38.59 68.48 406.45 129.08 277.38 41 1634.1 1628.3 0.05679 0.25741 1.2846 0.0918 0.0955 51.51 38.47 70.81 43.43	31	1258.7	1708.8	0.04229	0.26886	1.2587	0.0559	0.00601	50.25	38.17	57.41	285.62	126.25	159.37
34 1370.1 1709.0 0.04715 0.26855 1.2650 0.0623 0.00715 51.52 38.69 61.93 332.37 129.75 202.62 35 1447.5 1705.0 0.04877 0.26868 1.2675 0.0648 0.00754 51.83 38.81 63.34 347.71 130.53 217.18 36 1445.1 1695.6 0.05201 0.26611 1.2726 0.0699 0.00834 51.91 38.79 66.03 377.91 130.40 247.51 38 1519.7 1667.8 0.05590 0.26001 1.2788 0.0761 0.00914 51.62 38.63 67.29 392.37 129.31 283.06 40 1595.7 1639.3 0.05679 0.25757 1.2810 0.0783 0.09055 51.31 38.43 69.71 421.19 127.97 293.22 41 1634.6 1607.7 0.05996 0.25421 1.2816 0.0918 0.01036 51.30 38.33 71.81 447.24 </td <td>32</td> <td>1295.6</td> <td>1705.8</td> <td>0.04392</td> <td>0.26855</td> <td>1.2605</td> <td>0.0578</td> <td>0.00640</td> <td>50.46</td> <td>38.25</td> <td>58.98</td> <td>301.46</td> <td>126.77</td> <td>174.69</td>	32	1295.6	1705.8	0.04392	0.26855	1.2605	0.0578	0.00640	50.46	38.25	58.98	301.46	126.77	174.69
35 1407.5 1705.0 0.04877 0.26886 1.2675 0.0648 0.00754 51.83 38.81 63.34 347.71 130.53 217.18 36 1445.1 1695.6 0.05043 0.27008 1.2687 0.0660 0.00796 51.62 38.79 66.03 377.91 130.40 247.51 37 1482.6 1685.2 0.05399 0.26337 1.2755 0.0728 0.00874 51.62 38.63 67.29 392.37 129.31 283.06 39 1557.7 1664.2 0.05520 0.26001 1.2788 0.0761 0.00914 51.63 38.59 68.48 406.45 129.09 227.738 40 1595.7 1681.2 0.05679 0.25677 1.2810 0.0783 0.00955 51.31 38.47 70.81 434.1219 127.97 293.22 41 1672.6 1607.7 0.05996 0.25421 1.2887 0.0896 0.01036 51.30 38.33 71.84 447.2	33	1332.9	1711.6	0.04552	0.27039	1.2620	0.0593	0.00677	51.05	38.51	60.50	317.21	128.50	188.71
36 1445.1 1695.6 0.05043 0.27008 1.2687 0.0660 0.00796 51.62 38.70 64.83 364.24 129.79 234.46 37 1482.6 1685.2 0.05201 0.26611 1.2755 0.0728 0.00874 51.62 38.63 67.29 392.37 129.31 253.06 39 1557.7 1654.2 0.05520 0.26001 1.2788 0.0761 0.00914 51.63 38.59 68.48 406.45 129.08 277.38 40 1595.7 1639.3 0.05679 0.25577 1.2810 0.0783 0.00995 51.31 38.43 69.71 421.19 127.97 293.22 41 1634.1 1628.3 0.05683 0.25574 1.2846 0.0818 0.00905 51.50 38.47 70.81 434.53 128.28 306.26 42 1672.6 1607.7 0.05996 0.25421 1.2897 0.0860 0.01036 51.30 38.33 71.84 447.25 </td <td>34</td> <td>1370.1</td> <td>1709.0</td> <td>0.04715</td> <td>0.26855</td> <td>1.2650</td> <td>0.0623</td> <td>0.00715</td> <td>51.52</td> <td>38.69</td> <td>61.93</td> <td>332.37</td> <td>129.75</td> <td>202.62</td>	34	1370.1	1709.0	0.04715	0.26855	1.2650	0.0623	0.00715	51.52	38.69	61.93	332.37	129.75	202.62
37 1482.6 1685.2 0.05201 0.26611 1.2726 0.0699 0.00834 51.91 38.79 66.03 377.91 130.40 247.51 38 1519.7 1667.8 0.05359 0.26337 1.2755 0.0728 0.00874 51.62 38.63 67.29 392.37 129.31 253.06 40 1595.7 1654.2 0.05520 0.26001 1.2788 0.0763 0.00995 51.31 38.43 69.71 421.19 127.77 293.22 41 1634.1 1628.3 0.05838 0.25574 1.2887 0.0960 0.01036 51.50 38.47 70.81 447.24 127.35 319.89 43 1711.6 1595.0 0.06157 0.25024 1.2921 0.0894 0.01077 51.36 38.32 72.90 460.56 127.28 332.28 44 1751 1574.6 0.0620 0.24411 1.2955 0.0928 0.01127 51.00 38.12 73.96 474.05	35	1407.5	1705.0	0.04877	0.26886	1.2675			51.83	38.81	63.34	347.71	130.53	
38 1519.7 1667.8 0.05359 0.26337 1.2755 0.0728 0.00874 51.62 38.63 67.29 392.37 129.31 263.06 39 1557.7 1654.2 0.05520 0.26001 1.2788 0.0761 0.00914 51.63 38.59 68.48 406.45 129.08 277.38 40 1595.7 1639.3 0.05679 0.25757 1.2810 0.0783 0.00955 51.31 38.43 69.71 421.19 127.77 293.22 41 1634.1 1628.3 0.05838 0.2574 1.2846 0.0816 0.00995 51.50 38.47 70.81 434.53 128.28 306.26 42 1672.6 1607.7 0.05996 0.25421 1.2895 0.0908 0.01077 51.36 38.32 72.90 460.56 127.28 333.28 41 1751 1574.6 0.06320 0.24414 1.3012 0.0948 0.01167 55.00 37.85 74.85 485.59														
1557.7 1654.2 0.05520 0.26001 1.2788 0.0761 0.00914 51.63 38.59 68.48 406.45 129.08 277.38 40 1595.7 1639.3 0.05679 0.25767 1.2810 0.0783 0.00955 51.31 38.43 69.71 421.19 127.97 293.22 41 1634.1 1628.3 0.05838 0.25574 1.2846 0.0818 0.00995 51.50 38.47 70.81 434.53 128.28 306.26 42 1672.6 1607.7 0.05996 0.25421 1.2867 0.0860 0.01036 51.30 38.33 71.84 447.24 127.35 319.89 43 1711.6 1595.0 0.06167 0.25024 1.2921 0.0894 0.01077 51.36 38.32 72.90 460.56 127.28 333.28 44 1751 1574.6 0.06320 0.24811 1.2955 0.0928 0.01121 51.00 38.12 73.96 474.05 125.96 348.09 45 1790.6 1543.6 0.06487 0.24414 1.3012 0.0984 0.01167 50.54 37.85 74.85 485.59 124.18 361.41 46 1830.9 1533.5 0.06645 0.24200 1.3054 0.1026 0.01207 50.90 37.97 75.75 497.29 124.93 372.35 47 1871.1 1514.4 0.06804 0.23895 1.3089 0.1062 0.01250 50.62 37.89 76.68 509.57 123.84 385.72 48 1912 1491.7 0.06968 0.23438 1.3131 0.1104 0.01295 50.26 37.59 77.57 521.53 122.48 399.05 49 1953.1 1472.0 0.07129 0.23163 1.3173 0.1146 0.01339 50.08 37.46 78.41 532.81 121.64 411.16 50 1994.5 1461.6 0.07287 0.23041 1.3210 0.1183 0.01381 50.29 37.52 79.25 544.26 121.99 422.27 51 20361 1442.6 0.0748 0.22247 1.3349 0.1282 0.01476 49.35 36.69 80.74 564.96 118.51 446.45 53 2120.9 1388.8 0.07773 0.21942 1.3348 0.1321 0.01507 48.95 36.69 80.74 575.30 117.78 457.52 54 2164.1 1364.1 0.07934 0.21515 1.3406 0.1379 0.01567 48.95 36.69 80.74 575.30 117.78 457.52 54 2262.4 1325.8 0.08256 0.20966 1.3500 0.1473 0.01659 48.74 36.69 82.07 583.74 116.67 467.08 57 2296.9 1298.4 0.08416 0.20538 1.3560 0.1593 0.01767 47.80 35.92 43.44 616.43														
40 1595.7 1639.3 0.05679 0.25757 1.2810 0.0783 0.00955 51.31 38.43 69.71 421.19 127.97 293.22 41 1634.1 1628.3 0.05898 0.25574 1.2846 0.0818 0.00995 51.50 38.47 70.81 434.53 128.28 306.26 42 1672.6 1607.7 0.05996 0.25421 1.2887 0.0860 0.01077 51.36 38.33 71.84 447.24 127.35 319.89 43 1711.6 1595.0 0.06157 0.25024 1.2921 0.0984 0.01077 51.36 38.32 72.90 460.56 127.28 333.28 44 1751 1574.6 0.06320 0.24811 1.2955 0.0928 0.01121 51.00 38.12 73.96 474.05 125.96 348.09 45 1790.6 153.36 0.06645 0.24200 1.3054 0.006 0.01207 50.92 37.80 75.75 497.29														
41 1634.1 1628.3 0.05838 0.25574 1.2846 0.0818 0.00995 51.50 38.47 70.81 434.53 128.28 306.26 42 1672.6 1607.7 0.05960 0.25421 1.2887 0.0860 0.01036 51.30 38.33 71.84 447.24 127.35 319.89 43 1711.6 1595.0 0.06157 0.25024 1.2921 0.0894 0.01077 51.36 38.32 72.90 460.56 127.28 333.28 44 1751 1574.6 0.06320 0.24811 1.2955 0.0928 0.01167 50.54 37.85 74.85 485.59 124.18 361.41 46 1830.9 1533.5 0.06645 0.24200 1.3054 0.1026 0.01207 50.90 37.97 75.75 497.29 124.18 361.41 47 1871.1 1514.4 0.06808 0.23438 1.3131 0.1104 0.01250 50.62 37.80 76.68 509.57 <td></td>														
42 1672.6 1607.7 0.05996 0.25421 1.2887 0.0860 0.01036 51.30 38.33 71.84 447.24 127.35 319.89 43 1711.6 1595.0 0.06157 0.25024 1.2921 0.0984 0.01077 51.36 38.32 72.90 460.56 127.28 333.28 44 1751 1574.6 0.06320 0.24811 1.2955 0.0928 0.01121 51.00 38.12 73.96 474.05 125.96 348.09 45 1790.6 1543.6 0.06487 0.24414 1.3012 0.0984 0.01127 50.90 37.97 75.75 497.29 124.93 372.95 47 1871.1 1514.4 0.06804 0.23895 1.3089 0.1062 0.01250 50.62 37.80 76.68 509.57 123.84 385.72 48 1912.1 1491.7 0.06686 0.23438 1.3131 0.1146 0.01295 50.26 37.59 77.57 521.53 <td></td>														
43 1711.6 1595.0 0.06157 0.25024 1.2921 0.0894 0.01077 51.36 38.32 72.90 460.56 127.28 333.28 44 1751 1574.6 0.06320 0.24811 1.2955 0.0928 0.01121 51.00 38.12 73.96 474.05 125.96 348.09 45 1790.6 1543.6 0.06487 0.24414 1.3012 0.0984 0.01167 50.54 37.85 74.85 485.59 124.18 361.41 46 1830.9 153.5 0.06645 0.24200 1.3054 0.1026 0.01250 50.62 37.80 76.68 509.57 123.84 385.72 48 1912 1491.7 0.06968 0.23438 1.3131 0.1140 0.01295 50.26 37.59 77.57 521.53 122.48 399.05 49 1953.1 1472.0 0.07129 0.23163 1.3173 0.1146 0.01339 50.08 37.46 78.41 532.81														
44 1751 1574.6 0.06320 0.24811 1.2955 0.0928 0.01121 51.00 38.12 73.96 474.05 125.96 348.09 45 1790.6 1543.6 0.06487 0.24414 1.3012 0.0984 0.01167 50.54 37.85 74.85 485.59 124.18 361.41 46 1830.9 1533.5 0.06645 0.24200 1.3054 0.1026 0.01207 50.90 37.97 75.75 497.29 124.93 372.35 48 1912 1491.7 0.06968 0.23438 1.3131 0.1104 0.01295 50.26 37.59 77.57 521.53 122.48 385.72 49 1953.1 1472.0 0.07129 0.23163 1.3173 0.1146 0.01339 50.08 37.46 78.41 532.81 121.64 411.16 50 1994.5 1461.6 0.07247 0.23041 1.3210 0.1183 0.01389 50.08 37.46 78.41 532.81														
45 1790.6 1543.6 0.06487 0.24414 1.3012 0.0984 0.01167 50.54 37.85 74.85 485.59 124.18 361.41 46 1830.9 1533.5 0.06645 0.24200 1.3054 0.1026 0.01207 50.90 37.97 75.75 497.29 124.93 372.35 47 1871.1 1514.4 0.06804 0.23895 1.3089 0.1062 0.01250 50.62 37.80 76.68 509.57 123.84 385.72 48 1912 1491.7 0.06968 0.23438 1.3131 0.1104 0.01295 50.26 37.59 77.57 521.53 122.48 399.05 49 1953.1 1472.0 0.07129 0.23061 1.3173 0.1146 0.01339 50.08 37.46 78.41 532.81 121.64 411.16 50 1994.5 1461.6 0.07248 0.22827 1.3254 0.1227 0.01425 50.17 37.42 80.02 554.98 <td></td>														
46 1830.9 1533.5 0.06645 0.24200 1.3054 0.1026 0.01207 50.90 37.97 75.75 497.29 124.93 372.35 47 1871.1 1514.4 0.06804 0.23895 1.3089 0.1062 0.01250 50.62 37.80 76.68 509.57 123.84 385.72 48 1912 1491.7 0.06968 0.23438 1.3131 0.1104 0.01295 50.26 37.59 77.57 521.53 122.48 399.05 49 1953.1 1472.0 0.07129 0.23163 1.3173 0.1148 0.01339 50.08 37.46 78.41 532.81 121.64 411.16 50 1994.5 1461.6 0.07248 0.22827 1.3210 0.1183 0.01381 50.29 37.52 79.25 544.26 121.99 422.27 51 2036.1 1442.6 0.07448 0.22827 1.3349 0.1227 0.01476 49.35 36.98 80.74 564.96 <td></td>														
47 1871.1 1514.4 0.06804 0.23895 1.3089 0.1062 0.01250 50.62 37.80 76.68 509.57 123.84 385.72 48 1912 1491.7 0.06968 0.23438 1.3131 0.1104 0.01295 50.26 37.59 77.57 521.53 122.48 399.05 49 1953.1 1472.0 0.07129 0.23163 1.3173 0.1146 0.01339 50.08 37.46 78.41 532.81 121.64 411.16 50 1994.5 1461.6 0.07287 0.23041 1.3210 0.1183 0.01381 50.29 37.52 79.25 544.26 121.99 422.27 51 2036.1 1442.6 0.07448 0.22827 1.3254 0.1227 0.01425 50.17 37.42 80.02 554.98 121.32 433.66 52 2078.1 1407.2 0.07616 0.22247 1.3309 0.1282 0.01476 49.35 36.98 80.74 564.96 <td></td>														
48 1912 1491.7 0.06968 0.23438 1.3131 0.1104 0.01295 50.26 37.59 77.57 521.53 122.48 399.05 49 1953.1 1472.0 0.07129 0.23163 1.3173 0.1146 0.01339 50.08 37.46 78.41 532.81 121.64 411.16 50 1994.5 1461.6 0.07287 0.23041 1.3210 0.1183 0.01331 50.29 37.52 79.25 544.26 121.99 422.27 51 2036.1 1442.6 0.07448 0.22827 1.3254 0.1227 0.01425 50.17 37.42 80.02 554.98 121.32 433.66 52 2078.1 1407.2 0.07616 0.22247 1.3348 0.1321 0.01520 49.20 36.86 81.47 575.30 117.78 457.52 54 2164.1 1364.1 0.07734 0.21515 1.3406 0.1379 0.01567 48.95 36.69 82.07 583.74 <td></td>														
49 1953.1 1472.0 0.07129 0.23163 1.3173 0.1146 0.01339 50.08 37.46 78.41 532.81 121.64 411.16 50 1994.5 1461.6 0.07287 0.23041 1.3210 0.1183 0.01381 50.29 37.52 79.25 544.26 121.99 422.27 51 2036.1 1442.6 0.07448 0.22827 1.3254 0.1227 0.01425 50.17 37.42 80.02 554.98 121.32 433.66 52 2078.1 1407.2 0.07616 0.22247 1.3309 0.1282 0.01476 49.35 36.98 80.74 564.96 118.51 446.45 53 2120.9 1389.8 0.07773 0.21942 1.3348 0.1321 0.01520 49.20 36.86 81.47 575.30 117.78 457.52 54 2164.1 1364.1 0.07934 0.21210 1.3458 0.1431 0.01613 48.81 36.56 82.69 592.64 </td <td></td>														
50 1994.5 1461.6 0.07287 0.23041 1.3210 0.1183 0.01381 50.29 37.52 79.25 544.26 121.99 422.27 51 2036.1 1442.6 0.07448 0.22827 1.3254 0.1227 0.01425 50.17 37.42 80.02 554.98 121.32 433.66 52 2078.1 1407.2 0.07616 0.22247 1.3309 0.1282 0.01476 49.35 36.98 80.74 564.96 118.51 446.45 53 2120.9 1389.8 0.07773 0.21942 1.3348 0.1321 0.01520 49.20 36.86 81.47 575.30 117.78 457.52 54 2164.1 1364.1 0.07934 0.21515 1.3406 0.1379 0.01567 48.95 36.69 82.07 583.74 116.67 467.08 55 2207.9 1342.6 0.08095 0.21210 1.3458 0.1431 0.01613 48.81 36.56 82.69 592.64 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.1146</td> <td>0.01339</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							0.1146	0.01339						
52 2078.1 1407.2 0.07616 0.22247 1.3309 0.1282 0.01476 49.35 36.98 80.74 564.96 118.51 446.45 53 2120.9 1389.8 0.07773 0.21942 1.3348 0.1321 0.01520 49.20 36.86 81.47 575.30 117.78 457.52 54 2164.1 1364.1 0.07934 0.21515 1.3406 0.1379 0.01567 48.95 36.69 82.07 583.74 116.67 467.08 55 2207.9 1342.6 0.08095 0.21210 1.3458 0.1431 0.01613 48.81 36.56 82.69 592.64 115.87 476.77 56 2252.4 1325.8 0.08256 0.20966 1.3500 0.1473 0.01659 48.74 36.49 83.37 602.32 115.37 486.95 57 2296.9 1298.4 0.08416 0.20538 1.3561 0.1534 0.01707 48.41 36.27 83.86 609.42 </td <td></td> <td></td> <td></td> <td>0.07287</td> <td></td>				0.07287										
53 2120.9 1389.8 0.07773 0.21942 1.3348 0.1321 0.01520 49.20 36.86 81.47 575.30 117.78 457.52 54 2164.1 1364.1 0.07934 0.21515 1.3406 0.1379 0.01567 48.95 36.69 82.07 583.74 116.67 467.08 55 2207.9 1342.6 0.08095 0.21210 1.3458 0.1431 0.01613 48.81 36.56 82.69 592.64 115.87 476.77 56 2252.4 1325.8 0.08256 0.20966 1.3500 0.1473 0.01659 48.74 36.49 83.37 602.32 115.37 486.95 57 2296.9 1298.4 0.08416 0.20538 1.3561 0.1534 0.01707 48.41 36.27 83.86 609.42 114.01 495.41 58 2342.4 1267.2 0.08574 0.20111 1.3662 0.1635 0.01802 47.87 35.91 84.92 625.06 </td <td>51</td> <td>2036.1</td> <td>1442.6</td> <td>0.07448</td> <td>0.22827</td> <td>1.3254</td> <td>0.1227</td> <td>0.01425</td> <td>50.17</td> <td>37.42</td> <td>80.02</td> <td>554.98</td> <td>121.32</td> <td>433.66</td>	51	2036.1	1442.6	0.07448	0.22827	1.3254	0.1227	0.01425	50.17	37.42	80.02	554.98	121.32	433.66
54 2164.1 1364.1 0.07934 0.21515 1.3406 0.1379 0.01567 48.95 36.69 82.07 583.74 116.67 467.08 55 2207.9 1342.6 0.08095 0.21210 1.3458 0.1431 0.01613 48.81 36.56 82.69 592.64 115.87 476.77 56 2252.4 1325.8 0.08256 0.20966 1.3500 0.1473 0.01659 48.74 36.49 83.37 602.32 115.37 486.95 57 2296.9 1298.4 0.08416 0.20538 1.3561 0.1534 0.01707 48.41 36.27 83.86 609.42 114.01 495.41 58 2342.4 1267.2 0.08574 0.20111 1.3620 0.1593 0.01757 47.80 35.92 84.34 616.43 111.83 504.60 59 2388.9 1253.4 0.08732 0.19897 1.3662 0.1635 0.01802 47.87 35.91 84.92 625.06 </td <td>52</td> <td>2078.1</td> <td>1407.2</td> <td>0.07616</td> <td>0.22247</td> <td>1.3309</td> <td>0.1282</td> <td>0.01476</td> <td>49.35</td> <td>36.98</td> <td>80.74</td> <td>564.96</td> <td>118.51</td> <td>446.45</td>	52	2078.1	1407.2	0.07616	0.22247	1.3309	0.1282	0.01476	49.35	36.98	80.74	564.96	118.51	446.45
55 2207.9 1342.6 0.08095 0.21210 1.3458 0.1431 0.01613 48.81 36.56 82.69 592.64 115.87 476.77 56 2252.4 1325.8 0.08256 0.20966 1.3500 0.1473 0.01659 48.74 36.49 83.37 602.32 115.37 486.95 57 2296.9 1298.4 0.08416 0.20538 1.3561 0.1534 0.01707 48.41 36.27 83.86 609.42 114.01 495.41 58 2342.4 1267.2 0.08574 0.20111 1.3620 0.1593 0.01757 47.80 35.92 84.34 616.43 111.83 504.60 59 2388.9 1253.4 0.08732 0.19897 1.3662 0.1635 0.01802 47.87 35.91 84.92 625.06 111.74 513.32 60 2435.4 1235.5 0.08892 0.19853 1.3702 0.1675 0.01850 47.63 35.75 85.53 634.00 </td <td>53</td> <td>2120.9</td> <td>1389.8</td> <td>0.07773</td> <td>0.21942</td> <td>1.3348</td> <td>0.1321</td> <td>0.01520</td> <td>49.20</td> <td>36.86</td> <td>81.47</td> <td>575.30</td> <td>117.78</td> <td>457.52</td>	53	2120.9	1389.8	0.07773	0.21942	1.3348	0.1321	0.01520	49.20	36.86	81.47	575.30	117.78	457.52
56 2252.4 1325.8 0.08256 0.20966 1.3500 0.1473 0.01659 48.74 36.49 83.37 602.32 115.37 486.95 57 2296.9 1298.4 0.08416 0.20538 1.3561 0.1534 0.01707 48.41 36.27 83.86 609.42 114.01 495.41 58 2342.4 1267.2 0.08574 0.20111 1.3620 0.1593 0.01757 47.80 35.92 84.34 616.43 111.83 504.60 59 2388.9 1253.4 0.08732 0.19897 1.3662 0.1635 0.01802 47.87 35.91 84.92 625.06 111.74 513.32 60 2435.4 1235.5 0.08892 0.19653 1.3702 0.1675 0.01850 47.63 35.75 85.53 634.00 110.78 523.22 61 2482.4 1216.4 0.09048 0.19226 1.3753 0.1726 0.01897 47.55 35.66 86.00 640.97 </td <td>54</td> <td>2164.1</td> <td>1364.1</td> <td>0.07934</td> <td>0.21515</td> <td>1.3406</td> <td>0.1379</td> <td>0.01567</td> <td>48.95</td> <td>36.69</td> <td>82.07</td> <td>583.74</td> <td>116.67</td> <td>467.08</td>	54	2164.1	1364.1	0.07934	0.21515	1.3406	0.1379	0.01567	48.95	36.69	82.07	583.74	116.67	467.08
57 2296.9 1298.4 0.08416 0.20538 1.3561 0.1534 0.01707 48.41 36.27 83.86 609.42 114.01 495.41 58 2342.4 1267.2 0.08574 0.20111 1.3620 0.1593 0.01757 47.80 35.92 84.34 616.43 111.83 504.60 59 2388.9 1253.4 0.08732 0.19897 1.3662 0.1635 0.01802 47.87 35.91 84.92 625.06 111.74 513.32 60 2435.4 1235.5 0.08892 0.19653 1.3702 0.1675 0.01850 47.63 35.75 85.53 634.00 110.78 523.22 61 2482.4 1216.4 0.09048 0.19226 1.3753 0.1726 0.01897 47.55 35.66 86.00 640.97 110.22 530.75 62 2530.1 1181.5 0.09215 0.18829 1.3827 0.1800 0.01952 46.96 35.30 86.31 645.56 </td <td>55</td> <td>2207.9</td> <td>1342.6</td> <td>0.08095</td> <td>0.21210</td> <td>1.3458</td> <td>0.1431</td> <td>0.01613</td> <td>48.81</td> <td>36.56</td> <td>82.69</td> <td>592.64</td> <td>115.87</td> <td>476.77</td>	55	2207.9	1342.6	0.08095	0.21210	1.3458	0.1431	0.01613	48.81	36.56	82.69	592.64	115.87	476.77
58 2342.4 1267.2 0.08574 0.20111 1.3620 0.1593 0.01757 47.80 35.92 84.34 616.43 111.83 504.60 59 2388.9 1253.4 0.08732 0.19897 1.3662 0.1635 0.01802 47.87 35.91 84.92 625.06 111.74 513.32 60 2435.4 1235.5 0.08892 0.19653 1.3702 0.1675 0.01850 47.63 35.75 85.53 634.00 110.78 523.22 61 2482.4 1216.4 0.09048 0.19226 1.3753 0.1726 0.01897 47.55 35.66 86.00 640.97 110.22 530.75 62 2530.1 1181.5 0.09215 0.18829 1.3827 0.1800 0.01952 46.96 35.30 86.31 645.56 108.02 537.54 63 2578.6 1151.4 0.09370 0.18280 1.3900 0.1873 0.02050 46.71 35.05 86.54 649.03 </td <td>56</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>48.74</td> <td></td> <td></td> <td>602.32</td> <td></td> <td></td>	56								48.74			602.32		
59 2388.9 1253.4 0.08732 0.19897 1.3662 0.1635 0.01802 47.87 35.91 84.92 625.06 111.74 513.32 60 2435.4 1235.5 0.08892 0.19653 1.3702 0.1675 0.01850 47.63 35.75 85.53 634.00 110.78 523.22 61 2482.4 1216.4 0.09048 0.19226 1.3753 0.1726 0.01897 47.55 35.66 86.00 640.97 110.22 530.75 62 2530.1 1181.5 0.09215 0.18829 1.3827 0.1800 0.01952 46.96 35.30 86.31 645.56 108.02 537.54 63 2578.6 1151.4 0.09370 0.18280 1.3900 0.1873 0.02002 46.61 35.06 86.54 649.03 106.55 542.47 64 2628.4 1135.1 0.09528 0.18005 1.3953 0.1926 0.02050 46.71 35.05 86.94 655.05 106.47 548.58 65 2678.4 1110.7 0.09687														
60 2435.4 1235.5 0.08892 0.19653 1.3702 0.1675 0.01850 47.63 35.75 85.53 634.00 110.78 523.22 61 2482.4 1216.4 0.09048 0.19226 1.3753 0.1726 0.01897 47.55 35.66 86.00 640.97 110.22 530.75 62 2530.1 1181.5 0.09215 0.18829 1.3827 0.1800 0.01952 46.96 35.30 86.31 645.56 108.02 537.54 63 2578.6 1151.4 0.09370 0.18280 1.3900 0.1873 0.02002 46.61 35.06 86.54 649.03 106.55 542.47 64 2628.4 1135.1 0.09528 0.18005 1.3953 0.1926 0.02050 46.71 35.05 86.94 655.05 106.47 548.58 65 2678.4 1110.7 0.09687 0.17731 1.4010 0.1983 0.02101 46.36 34.82 87.28 660.28 </td <td></td>														
61 2482.4 1216.4 0.09048 0.19226 1.3753 0.1726 0.01897 47.55 35.66 86.00 640.97 110.22 530.75 62 2530.1 1181.5 0.09215 0.18829 1.3827 0.1800 0.01952 46.96 35.30 86.31 645.56 108.02 537.54 63 2578.6 1151.4 0.09370 0.18280 1.3900 0.1873 0.02002 46.61 35.06 86.54 649.03 106.55 542.47 64 2628.4 1135.1 0.09528 0.18005 1.3953 0.1926 0.02050 46.71 35.05 86.94 655.05 106.47 548.58 65 2678.4 1110.7 0.09687 0.17731 1.4010 0.1983 0.02101 46.36 34.82 87.28 660.28 105.10 555.19														
62 2530.1 1181.5 0.09215 0.18829 1.3827 0.1800 0.01952 46.96 35.30 86.31 645.56 108.02 537.54 63 2578.6 1151.4 0.09370 0.18280 1.3900 0.1873 0.02002 46.61 35.06 86.54 649.03 106.55 542.47 64 2628.4 1135.1 0.09528 0.18005 1.3953 0.1926 0.02050 46.71 35.05 86.94 655.05 106.47 548.58 65 2678.4 1110.7 0.09687 0.17731 1.4010 0.1983 0.02101 46.36 34.82 87.28 660.28 105.10 555.19														
63 2578.6 1151.4 0.09370 0.18280 1.3900 0.1873 0.02002 46.61 35.06 86.54 649.03 106.55 542.47 64 2628.4 1135.1 0.09528 0.18005 1.3953 0.1926 0.02050 46.71 35.05 86.94 655.05 106.47 548.58 65 2678.4 1110.7 0.09687 0.17731 1.4010 0.1983 0.02101 46.36 34.82 87.28 660.28 105.10 555.19														
64 2628.4 1135.1 0.09528 0.18005 1.3953 0.1926 0.02050 46.71 35.05 86.94 655.05 106.47 548.58 65 2678.4 1110.7 0.09687 0.17731 1.4010 0.1983 0.02101 46.36 34.82 87.28 660.28 105.10 555.19														
65 2678.4 1110.7 0.09687 0.17731 1.4010 0.1983 0.02101 46.36 34.82 87.28 660.28 105.10 555.19														

Elastic-Plastic Fracture Toughness Analysis

Specimen ID Contract Material Temperature(F) Environment	SS	5383-FT-3 C 10624-01 5383-H116 75.0 LAB AIR		Geometry Orientation Yield (ksi) Tensile (ksi) Modulus (Ms	i)		C(T) T-L 35.4 53.3 10.5
Specimen Dimensions Thickness (in) Net Thickness (in) Width (in) Pin Spacing (in)		0.484 0.377 2.000 1.100		Notch Depth Gage Length Alpha Ratio		1.100 0.200 1	
Precrack Parameters Pmax (lbf) Final a (in) Pf (lbf)		300.9 1.200 1044		Stress Ratio Kmax (ksi sqrt (in))			0.1 6.1
Initial measured crack leng 1.196 1.202	ths (in) 1.205	1.204	1.204	1.206	1.208	1.205	1.204
Final measured crack lengt 1.388 1.407	<u>hs (in)</u> 1.414	1.414	1.426	1.420	1.419	1.410	1.391
Ave. initial crack length (in) Ave. final crack length (in) Delta a measured (in) Delta a predicted (in))	1.204 1.413 0.208 0.202		aoq (in) Compliance / Effective Mod			1.205 1.027 10.8
Results Ja (E1820) K _{JIC} (E**JQ)^1/2		of-in/in^2 si sqrt(in)					
Qualification of Data 7.4.2: precrack length 9.1.4.1; precrack 9.1.4.2; final crack 9.1.5.1; Δa meas 9.1.5.2; Δa pred A9.6.4; # of pnts in reg.A A9.6.4; # of pnts in reg.B A9.8.1; C_2 <1 A9.8.2.1; a_{0q} - a_{0} A9.8.2.2; # of pnts for J_{q} A9.8.2.2; # of pnts $< J_{q}$ A9.3.3.1; correlation	valid valid valid valid valid valid valid valid valid valid valid valid			Qualification A9.9.1; thicki A9.9.2; ligam A9.9.3; slope	ness ent	valid valid valid	

Index	Time	Force	Disp1	Disp2	Crack	∆a	CTOD	K561	K1820	KJ1820	J1820	Je	Jpl
	Sec	lbf	inch	inch	inch	inch	inch	ksi sqr(in)	ksi sqr(in)	ksi sqr(in)	lbf/in	lbf/in	lbf/in
4	173.2	302.6	0.00378	0.04883	1.2045	-0.0005	0.00003	6.96	6.90	6.91	4.14	4.13	0.01
5	279.4	423.1	0.00534	0.06744	1.2038	-0.0012	0.00009	9.79	9.64	9.67	8.11	8.06	0.05
6	314.3	538.2	0.00687	0.08575	1.2040	-0.0010	0.00017	12.57	12.27	12.36	13.24	13.04	0.19
7	347.8	651.3	0.00841	0.10376	1.2035	-0.0016	0.00027	15.37	14.83	15.06	19.67	19.06	0.61
8	380.8	761.9	0.00996	0.12116	1.2040	-0.0010	0.00040	18.24	17.37	17.74	27.28	26.14	1.13
9	413.6	869.3	0.01150	0.13916	1.2031	-0.0020	0.00055	21.08	19.78	20.44	36.20	33.91	2.29
10	445.8	974.9	0.01306	0.15442	1.2041	-0.0009	0.00072	24.11	22.23	23.09	46.20	42.82	3.38
11	477.8	1074.2	0.01462	0.17029	1.2040	-0.0010	0.00091	27.04	24.49	25.76	57.49	51.97	5.52
12	509.3	1165.8	0.01618	0.18616	1.2054	0.0004	0.00112	29.99	26.65	28.34	69.60	61.54	8.05
13	540.6	1246.2	0.01774	0.19775	1.2085	0.0035	0.00134	32.92	28.66	30.86	82.54	71.20	11.33
14	571.1	1288.9	0.01931	0.20386	1.2185	0.0135	0.00158	35.39	30.24	33.13	95.10	79.27	15.82
15	601.8	1307.4	0.02089	0.20630	1.2341	0.0291	0.00181	37.81	31.67	35.13	106.97	86.91	20.06
16	631.3	1248.3	0.02243	0.19775	1.2628	0.0578	0.00204	38.87	32.11	36.51	115.53	89.38	26.15
17	663.5	1226.8	0.02399	0.19470	1.2845	0.0794	0.00227	40.84	33.09	38.02	125.28	94.88	30.40
18	696.1	1158.3	0.02554	0.18372	1.3130	0.1080	0.00252	41.69	33.33	39.14	132.74	96.27	36.47
19	730.8	1103.4	0.02709	0.17487	1.3374	0.1324	0.00279	42.64	33.62	40.27	140.57	97.98	42.58
20	766.3	995.5	0.02868	0.15808	1.3770	0.1720	0.00303	43.07	33.48	40.64	143.16	97.12	46.04
21	806	911.6	0.03024	0.14587	1.4063	0.2013	0.00334	42.90	33.10	41.27	147.65	94.98	52.67

Elastic-Plastic Fracture Toughness Analysis

Specimen ID Contract Material Temperature(F) Environment		5383-FT-5 C 10624-01 5383-H116 75.0 LAB AIR		Geometry Orientation Yield (ksi) Tensile (ksi) Modulus (Msi	i)		C(T) T-L 35.4 53.3 10.5
Specimen Dimensions Thickness (in) Net Thickness (in) Width (in) Pin Spacing (in)		0.485 0.485 4.000 2.200		Notch Depth Gage Length Alpha Ratio		2.200 0.200 1	
Precrack Parameters Pmax (lbf) Final a (in) Pf (lbf)		710.2 2.400 2148		Stress Ratio Kmax (ksi sq		0.1 9.9	
Initial measured crack leng 2.338 2.370	ths (in) 2.387	2.398	2.402	2.407	2.405	2.394	2.375
Final measured crack lengt 2.475 2.495 x	<u>hs (in)</u> 2.587	2.729	2.825 x	2.713	2.579	2.526	2.503
Ave. initial crack length (in) Ave. final crack length (in) Delta a measured (in) Delta a predicted (in))	2.390 2.618 0.228 0.211		aoq (in) Compliance A Effective Mod			2.394 0.975 10.2
Results J _Q (E1820) K _{JIC} (E'*JQ)^1/2		of-in/in^2 si sqrt(in)					
Qualification of Data 7.4.2: precrack length 9.1.4.1; precrack 9.1.4.2; final crack 9.1.5.1; Δa meas 9.1.5.2; Δa pred A9.6.4; # of pnts in reg.A	valid valid invalid valid valid valid			Qualification A9.9.1; thickr A9.9.2; ligam A9.9.3; slope	ness ent	valid valid valid	
A9.6.4; # of pnts in reg.B A9.8.1; C_2 <1 A9.8.2.1; a_{0q} - a_0 A9.8.2.2; # of pnts for J_Q A9.8.2.2; # of pnts < J_Q A9.3.3.1; correlation	valid valid valid valid invalid valid						

Index	Time	Force	Disp1	Disp2	Crack	∆a	CTOD	K561	K1820	KJ1820	J1820	Je	Jpl
	Sec	lbf	inch	inch	inch	inch	inch	ksi sqr(in)	ksi sqr(in)	ksi sqr(in)	lbf/in	lbf/in	lbf/in
18	637.1	2303.0	0.03057	0.75714	2.3911	-0.0026	0.00164	34.94	32.13	32.08	89.19	89.46	-0.27
19	669.1	2418.5	0.03275	0.79742	2.3943	0.0006	0.00192	37.16	33.85	34.46	102.89	99.28	3.61
20	701.1	2518.9	0.03490	0.82825	2.3993	0.0056	0.00221	39.27	35.42	36.72	116.86	108.75	8.11
21	733.1	2608.8	0.03709	0.86243	2.4047	0.0110	0.00252	41.28	36.88	38.98	131.66	117.89	13.76
22	765.1	2694.6	0.03925	0.89172	2.4091	0.0154	0.00285	43.22	38.26	41.16	146.85	126.86	20.00
23	797.6	2779.5	0.04143	0.92651	2.4121	0.0184	0.00319	45.13	39.58	43.36	162.94	135.79	27.15
24	830	2864.1	0.04358	0.94604	2.4143	0.0206	0.00354	47.04	40.88	45.51	179.52	144.81	34.70
25	862.3	2936.1	0.04578	0.96985	2.4171	0.0235	0.00392	48.78	42.02	47.65	196.75	153.04	43.71
26	894.6	3003.2	0.04794	0.98908	2.4211	0.0274	0.00429	50.55	43.15	49.68	213.93	161.37	52.56
27	926.8	3073.1	0.05013	1.01349	2.4234	0.0297	0.00469	52.31	44.26	51.76	232.17	169.75	62.42
28	959	3135.5	0.05231	1.03882	2.4246	0.0310	0.00510	53.87	45.21	53.81	250.95	177.16	73.78
29	991.3	3193.5	0.05449	1.05621	2.4278	0.0341	0.00550	55.51	46.19	55.78	269.61	184.93	84.68
30	1023.6	3244.5	0.05666	1.07269	2.4294	0.0357	0.00592	56.89	47.00	57.74	288.97	191.49	97.48
31	1056	3291.0	0.05884	1.08765	2.4330	0.0393	0.00635	58.38	47.85	59.63	308.20	198.44	109.76
32	1088.5	3330.1	0.06104	1.10413	2.4353	0.0416	0.00679	59.59	48.53	61.54	328.26	204.13	124.13
33	1120.9	3365.9	0.06321	1.11115	2.4397	0.0460	0.00723	60.95	49.27	63.33	347.61	210.40	137.21
34	1153.2	3391.0	0.06540	1.12610	2.4434	0.0497	0.00768	62.00	49.82	65.13	367.62	215.15	152.46
35	1185.6	3395.2	0.06763	1.12457	2.4470	0.0533	0.00818	62.48	50.07	66.93	388.21	217.27	170.94
36	1218.2	3421.0	0.06982	1.12976	2.4526	0.0590	0.00863	63.79	50.74	68.58	407.64	223.12	184.52
37	1250.6	3427.4	0.07200	1.13892	2.4585	0.0648	0.00909	64.61	51.14	70.19	426.96	226.65	200.32
38	1283.4	3439.8	0.07423	1.13739	2.4641	0.0705	0.00957	65.60	51.62	71.81	446.97	230.93	216.04
39	1316.2	3447.3	0.07645	1.14563	2.4689	0.0753	0.01006	66.37	51.99	73.43	467.25	234.23	233.02
40	1349.2	3438.9	0.07867	1.13647	2.4766	0.0830	0.01055	67.03	52.27	74.91	486.37	236.82	249.55
41	1382.6	3437.8	0.08094	1.14319	2.4832	0.0895	0.01106	67.79	52.61	76.43	506.31	239.91	266.41
42	1415.9	3437.6	0.08315	1.13800	2.4899	0.0963	0.01155	68.63	52.98	77.87	525.51	243.30	282.21
43	1449.5	3433.2	0.08534	1.13983	2.4950	0.1013	0.01205	69.12	53.19	79.33	545.45	245.23	300.22
44	1483.1	3425.9	0.08755	1.14105	2.5019	0.1082	0.01256	69.78	53.47	80.71	564.50	247.76	316.74
45	1517	3406.5	0.08978	1.13159	2.5086	0.1149	0.01309	70.04	53.54	82.08	583.84	248.46	335.38
46	1551	3380.1	0.09194	1.11633	2.5187	0.1250	0.01359	70.52	53.70	83.24	600.44	249.93	350.51
47	1585.6	3365.8	0.09411	1.11389	2.5267	0.1331	0.01409	71.14	53.94	84.44	617.99	252.12	365.87
48	1620.5	3342.6	0.09631	1.10779	2.5352	0.1415	0.01462	71.52	54.05	85.63	635.53	253.22	382.30
49	1655.6	3326.0	0.09851	1.10413	2.5419	0.1482	0.01515	71.89	54.18	86.87	654.04	254.37	399.67
50	1690.9	3304.4	0.10072	1.09406	2.5490	0.1554	0.01569	72.16	54.25	88.07	672.18	255.03	417.15
51	1726.1	3264.0	0.10290	1.08246	2.5610	0.1674	0.01623	72.46	54.29	89.02	686.75	255.46	431.28
52	1762.1	3233.3	0.10513	1.07056	2.5695	0.1759	0.01679	72.59	54.29	90.12	703.82	255.43	448.39
53	1798.5	3220.7	0.10734	1.06415	2.5767	0.1830	0.01732	73.20	54.51	91.23	721.29	257.50	463.79
54	1834.6	3183.1	0.10953	1.05072	2.5859	0.1922	0.01789	73.18	54.43	92.22	737.12	256.72	480.40
55	1871.5	3158.0	0.11175	1.04706	2.5937	0.2000	0.01845	73.42	54.47	93.27	753.92	257.17	496.75
56	1908.6	3139.3	0.11395	1.04065	2.6025	0.2088	0.01899	74.08	54.69	94.23	769.50	259.25	510.24

Distribution List

Document No.: DRDC Atlantic CR 2007-019

LIST PART 1: Internal Distribution by Centre:

- 2 Dr. Leon Cheng (1 CD, 1 hardcopy)
- 1 Dr. Calvin Hyatt
- 1 Dr. David Stredulinsky
- 5 DRDC Atlantic Library (4CDs, 1 hard copy)

TOTAL LIST PART 1: 9 (7 CDs, 2 hard copies)

LIST PART 2: External Distribution by DRDKIM:

- 2 Mr. J. Keith Donald (1 CD, 1 hardcopy)
 Fracture Technology Associates
 2412 Emrick Boulevard
 Bethlehem, PA 18020
 USA
- 1 DRDKIM

TOTAL LIST PART 2: 3 (2 CDs, 1 hard copy)

TOTAL COPIES REQUIRED: 12

UNCLASSIFIED

DOCUMENT CONTROL DATA (Security classification of the title, body of abstract and indexing annotation must be entered when the overall document is classified)									
ORIGINATOR (The name and address of the for whom the document was prepared, e.g. Centre agency, are entered in section 8.)	SECURITY CLASSIFICATION (Overall security classification of the document including special warning terms if applicable.)								
Publishing: DRDC Atlantic	UNCLASSIFIED								
Performing: Fracture Technology A Bethleham, PA 18020,									
Monitoring:									
Contracting: DRDC Atlantic									
3. TITLE (The complete document title as indicated on the title page. Its classification is indicated by the appropriate abbreviation (S, C, R, or U) in parenthesis at the end of the title) SR-1447 Fracture Mechanics Characterization of Aluminum Alloys for Marine Structural									
Applications (U)									
4. AUTHORS (First name, middle initial and last n	ame. If military, show rank,	e.g. Maj. John E. Doe.)							
J. Keith Donald; Amy Blair									
5. DATE OF PUBLICATION		6b. NO. OF REFS							
(Month and year of publication of document.)	(Total containing infor Annexes, Appendices		(Total cited in document.)						
January 2007	, ,								
7. DESCRIPTIVE NOTES (The category of the document, e.g. technical document, technical note or memorandum. If appropriate, enter the type of document, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.) Contract Report									
8. SPONSORING ACTIVITY (The names of	the department project office	e or laboratory sponsoring th	e research and development – include address.)						
Sponsoring:			·						
Tasking:									
9a. PROJECT OR GRANT NO. (If appropriate research and development project or grant under written. Please specify whether project or grant.)	the document was w	CONTRACT NO. (If appropriate, the applicable number under which the document was written.)							
11gu08		W7707–053	3033/001/HAL						
10a. ORIGINATOR'S DOCUMENT NUMBER (The official document number by which the document is identified by the originating activity. This number must be unique to this document) 10b. OTHER DOCUMENT NO(s). (Any other numbers under may be assigned this document either by the originator or by the sponsor.)									
DRDC Atlantic CR 2007–019 FTA # SSC 10624–01									
 		ļ							

11. DOCUMENT AVAILABILITY (Any limitations on the dissemination of the document, other than those imposed by security classification.)

Unlimited distribution

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the Document Availability (11), However, when further distribution (beyond the audience specified in (11) is possible, a wider announcement audience may be selected.))

Unlimited announcement

UNCLASSIFIED

UNCLASSIFIED

DOCUMENT CONTROL DATA

(Security classification of the title, body of abstract and indexing annotation must be entered when the overall document is classified)

- 13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include here abstracts in both official languages unless the text is bilingual.)
- (U) The Ship Structure Committee (SSC) identified a lack of information required for structural integrity and damage tolerance analyses of aluminum marine structures. The development of such data is vital in light of the increased use of aluminum alloys in marine construction. Under SSC project SR–1447, Fracture Technology Associates was contracted to characterize, through experimental fracture mechanics, the fatigue crack growth (FCG) resistance and fracture toughness of three aluminum alloys (5083, 5086, 5383) used in marine structural applications. Fatigue crack growth testing was performed following ASTM Standard E 647–00 in laboratory air at room temperature and in simulated ocean water per ASTM Standard D 1141. Non–linear fracture toughness testing was performed in accordance with ASTM Standard E 1820–01 in laboratory air at room temperature. For the three different grades of material, the difference in fatigue crack growth rate in laboratory air was negligible. In simulated seawater environment, AA5086 showed a slightly superior performance. In addition, all samples showed the same ranking of toughness with the 5086 showing the highest toughness, followed by 5083 and then 5383.
- (U) Le Comité sur la structure des navires (CSN) a identifié des lacunes dans l'information requise pour l'analyse de l'intégrité structurale et de la tolérance aux avaries des structures maritimes en aluminium. Le développement de ces données est vital en ce sens que l'on utilise de plus en plus les alliages d'aluminium dans la construction maritime. Dans le cadre du projet SR-1447 du SSC, on a donné un contrat à la société Fracture Technology Associates pour qu'elle caractérise, grâce à des expériences de mécanique de la rupture, la résistance à la propagation des fissures en fatigue (PFF) et la ténacité (résistance à la propagation brutale de fissures) de trois alliages d'aluminium (5083, 5086, 5383) utilisés dans des applications structurales maritimes. Des essais sur la propagation des fissures en fatigue ont été réalisés, conformément à la norme ASTM Standard E 647-00, hors de l'eau et en laboratoire, à la température ambiante, ainsi que dans un milieu marin simulé en suivant la norme ASTM Standard D 1141. Des essais sur la résistance à la propagation de fissures non linéaires ont été réalisés, conformément à la norme ASTM Standard E 1820-01, hors de l'eau et en laboratoire, à la température ambiante. Pour les trois nuances d'alliages différentes, la différence dans le taux de propagation des fissures en laboratoire et hors de l'eau était négligeable. Dans le milieu marin simulé, l'alliage AA5086 a démontré une performance légèrement supérieure. En outre, tous les échantillons se sont situés à l'intérieur de la même plage de ténacité, l'alliage 5086 étant le plus résistant, suivi de l'alliage 5083, puis de l'alliage 5383.
- 14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)
- (U) Fracture crack growth, fracture toughness, aluminum, marine

UNCLASSIFIED

Defence R&D Canada

R & D pour la défense Canada

Canada's leader in defence and National Security Science and Technology Chef de file au Canada en matière de science et de technologie pour la défense et la sécurité nationale

www.drdc-rddc.gc.ca