Команда 15

Классификатор пресс-релизов ЦБ с предсказанием будущей ключевой ставки

Куратор проекта: Ковалева Александра

Участники проекта:

Жарковский Дмитрий

Хадиев Руслан

Кузьмин Дмитрий

Иванов Иван

Куимов Владислав

Постановка задачи

ЦБ каждый раз после заседания по ключевой ставке на сайте публикует прессредизы, в которых рассказывается про состояние экономики, инфляцию, спрос на продукты, услуги и т.д. и объясняет причину изменения/не изменения ставки.

Задача состоит в том, чтобы по семантике текста понять, что будет происходить с ключевой ставкой после на следующем заседании: ЦБ ее поднимет, опустит или оставит неизменной. Необходимо создать классификатор, который сможет определить тексты на 3 класса: -1 (ставка опустится), 0 (останется неизменной), 1 (ставку повысят).

Лучшая линейная модель

На предыдущих этапах был построен следующий пайплайн на основе линейной модели, показавший наилучший результат:

- TF-IDF векторизация текстов пресс-релизов
- Отбор признаков при помощи логистической регрессии с L1-регуляризацией
- SVM-классификатор

Лучшая линейная модель: метрики качества

Метрика	Значение
Accuracy	0.691176
F1-score	0.693718
Recall	0.700864
Precision	0.691017
ROC-AUC OvR	0.840529
ROC-AUC OvO	0.844115

Метод опорных векторов показал достаточно хорошее качество, едва удалось побить эти метрики с помощью нелинейных моделей.

Нелинейные модели: KNN

Лучший пайплайн на основе классификатора KNN включает в себя:

- TF-IDF векторизация текстов пресс-релизов
- Отбор признаков при помощи логистической регрессии с L1-регуляризацией
- KNN-классификатор

KNN: метрики качества

Метрика	Значение
Accuracy	0.779412
F1-score	0.779213
Recall	0.780731
Precision	0.779259
ROC-AUC OvR	0.834168
ROC-AUC OvO	0.835548

По метрикам ROC-AUC качество несколько уменьшилось относительно линейной модели, но по другим метрикам результат улучшился.

Нелинейные модели: TimeSeries (KNN)

Модель использующая подходы временных рядов, тексты пресс-релизов в данной модели не используются.

Пайплайн этой модели включает в себя:

- Генерацию 4 лаговых признаков целевой переменной
- Герерацию 3 лаговых признаков, курса доллара, инфляции и величины процентной ставки
- Генерацию относительного прироста для каждого признака из предыдущего пункта
- Масштабирование признаков
- KNN-классификатор

TimeSeries: метрики качества

Метрика	Значение
Accuracy	0.705882
F1-score	0.713066
Recall	0.709940
Precision	0.717836
ROC-AUC OvR	0.806009
ROC-AUC OvO	0.809599

Модель одинаково хорошо детектирует все виды классов, и не разу не перепутала повышение ставки с понижением.

Нелинейные модели: RandomForest

Пайплайн для модели RandomForest включает в себя:

- TF-IDF векторизация текстов пресс-релизов
- Отбор признаков при помощи РСА
- RandomForest-классификатор

RandomForest: метрики качества

Метрика	Значение
Accuracy	0.632353
F1-score	0.631884
Recall	0.620548
Precision	0.681082
ROC-AUC OvR	0.817684
ROC-AUC OvO	0.822178

Случайный лес показал качество хуже более простых алгоритмов, возможно он требует больше данных для обучения.

Нелинейные модели: XGBoost

Пайплайн для модели XGBoost включает в себя:

- TF-IDF векторизация текстов пресс-релизов
- XGBoost-классификатор

XGBoost: метрики качества

Метрика	Значение
Accuracy	0.632353
F1-score	0.633905
Recall	0.625271
Precision	0.653274
ROC-AUC OvR	0.766337
ROC-AUC OvO	0.771152

XGBoost показал ассuracy лучше других бустингов, но хуже более простых алгоритмов.

Нелинейные модели: Catboost

Пайплайн для модели Catboost включает в себя:

- TF-IDF векторизация текстов пресс-релизов
- Catboost-классификатор

Catboost: метрики качества

Метрика	Значение
Accuracy	0.514706
F1-score	0.520886
Recall	0.506572
Precision	0.571789
ROC-AUC OvR	0.701963
ROC-AUC OvO	0.709235

Catboost показал качество хуже другх бустингов.

Нелинейные модели: LigthGBM

Пайплайн для модели LigthGBM включает в себя:

- TF-IDF векторизация текстов пресс-релизов
- LigthGBM-классификатор

LigthGBM: метрики качества

Метрика	Значение
Accuracy	0.588235
F1-score	0.598482
Recall	0.584844
Precision	0.637146
ROC-AUC OvR	0.789938
ROC-AUC OvO	0.796427

LigthGBM показал качество ROC-AUC лучше, чем другие бустинги, но хуже более простых алгоритмов.

Ансамбль из лучших моделей

В ансамбль методом обычного голосования мы включили следующие модели:

- SVC
- KNN
- TimeSeries (KNN)

Ансамбль: метрики качества

Метрика	Значение
Accuracy	0.764706
F1-score	0.767806
Recall	0.766238
Precision	0.771946
ROC-AUC OvR	0.860113
ROC-AUC OvO	0.863595

Ансамбль показывает самую высокую метрику ROC-AUC-OvO среди всех моделей классического ML, которые мы поробовали.

Метрики качества

Ансамбль превзошел по интегральным метрикам качества остальные модели, хотя его остальные метрики немного ниже чем у KNN.

Выводы

- При подборе лучших моделей для ансамбля, заметили, что стоит смотреть не только на ROC-AUC-OvO, но также и на Accuracy.
- Методы ансамблирования моделей, такие как бустинг и случайный лес, окзались хуже более простых моделей, да и качество линейных алгоритмов с трудом удалось перебить. Виной этому небольшая выборка и значительное количество признаков на порядок больше размера выборки.
- В связи с этим, методы РСА и отбор признаков с помощью L1-регуляризации оказали положительное влияние на качество моделей.
- Word2Vec и GloVe с нелинейными моделями показали плохой результат, как и в случае линейных, поскольку среднее от векторов слов плохо отражает смысл всего текста.