

UE3-2:PH(1) – Physiologie – Neuroanatomie fonctionnelle

Système nerveux autonome (suite)

Colin Deransart, MCU-PH

1- Neurones et fibres **pré**-ganglionnaires

Centre PΣ Crânien

• Noyaux des nerfs III, VII et IX: vers ganglions $P\Sigma$ de la tête

Origine morcelée: 2 centres $P\Sigma$

- N. Edinger-Westphal du III: sphyncters pupillaires et muscles ciliaires de l'œil
- N. salivaire sup. du VII: glandes lacrymales et nasales, sublinguales et sous-maxillaires
- N salivaire inf. du IX: parotides
- Noyau du nerf X: vers organes du thorax et abdomen (cœur, bronches, œsophage, estomac, intestin grêle, côlon proximal, foie, vésicule biliaire, pancréas, partie haute des uretères)

Nerf X: 75% fibres $P\Sigma$

Centre PΣ Sacré

S2-S4: vers viscères pelviens ou paroi de ces organes

- Partie distale du gros intestin (côlon descendant et rectum)
- Vessie
- Partie basses des uretères
- Tissus érectiles des organes génitaux

III-Organisation anatomique B-Système parasympathique

2- Neurones et fibres **post**-ganglionnaires

III-Organisation anatomique

C- Comparaison des deux innervations

Caractéristiques	SNS Moteur somatique	SNA Moteur autonome
Organes effecteurs	Muscles squelettiques	Muscle cardiaque, lisse et glandes
Présence de ganglions	Pas de ganglions	Paravertébraux, prévertébraux, terminaux et intramuraux
Nb de neurones du SNC vers l'effecteur	Un	Deux (pré- et post-gg)
Type de jonction effectrice	Plaque motrice spécialisée	Présynaptique: chapelet de varicosités Pas de spécialisation de la mb post-syn
Neurotransmetteurs Récepteurs	Acétylcholine Récepteurs canaux	Σ : NA (exceptions!); P Σ : Ach Récepteurs canaux et couplés à ptot.G
Effet de l'activité nerveuse sur le muscle	Excitateur uniquement	Excitateur ou inhibiteur
Type de fibres nerveuses	Rapides, larges (9-13 μm), myélinisées	Lentes, fines: pré-gg.: faiblement myélinisées, fine (3 μm) post-gg: non myélinisées, très fines (1 μm)
Effet de la dénervation	Paralysie flasque et atrophie	Tonus musculaire et fonction persistent Hypersensibilité de dénervation des cellules cibles

Les principaux neurotransmetteurs du SNA Acétylcholine

- Synthèse dans le cytosol
- Transport des vésicules vers la synapse
- Dégradation rapide (<1/100 sec) par AchE

- **Tous** les neurones **pré**-ganglionnaires (Σ et $P\Sigma$)
 - Récepteurs: Nicotiniques (ionotropes)
- Neurones post-ganglionnaires PΣ et Σ des glandes sudoripares
 & m. piloérecteurs, certains vaisseaux sanguins
 - Récepteurs: Muscariniques M1 à M5 (métabotropes)

Catécholamines: DA, NA & Adrénaline

- Synthèse dans le cytosol
- Etape limitante: TH
- Transport des vésicules vers la synapse
- Dégradation lente par MAO et COMT

- Noradrénaline: la plupart des neurones postganglionnaires Σ (exceptions ci-contre!)
- Attention: médullo-surrénale libère AD (80%) et NA (20%)
 - Adrénorécepteurs (AD et NA): α1, α2 & β1, β2, β3 (métabotropes)

Neurotransmetteurs & Récepteurs

AD: adrénaline (épinéphrine), NA: noradrénaline (norépinéphrine); DA: dopamine Ach: acétylcholine; **N**: nicotinique (récepteur canal: rapide); **M**: muscarinique (PGCR: lent) \bigcirc Action excitatrice ou inhibitrice

Récepteurs nicotiniques (Ach)

Récepteur type	Localisation	Effet / fonction
Musculaire: $(\alpha 1)_2 \beta 1 \delta \epsilon$ ou $(\alpha 1)_2 \beta 1 \delta \gamma$	Jonctions neuromusculaires	PPSE, essentiellement par augmentation perméabilités Na+ et K+
Ganglionnaire: $(\alpha 3)_2(\beta 4)_3$	Ganglions autonomes	
Centraux: $(\alpha 4)_2(\beta 2)_{3,}$ $(\alpha 3)_2(\beta 4)_3$ $(\alpha 7)_5$	Cerveau	Excitation pré- et post-synaptique

Pentamères de sous-unités α , β , γ , δ , et ϵ

Le pore (juxtaposition segments M2) forme un canal:

Spécificité ionique: constitution en a.a. des segments M2

Récepteurs muscariniques (Ach)

Principaux effets de la liaison de l'Ach aux:

Récepteurs M1, M3, M5: excitateurs
 (couplage Qq, stimulation PLC, augmentation DAG +IP₃)

M1: Glandes salivaires et gastriques, cortex cérébral, Augmentation sécrétions

M3: Muscles lisses (vessie, tractus GI), Glandes salivaires (parotide) et gastriques Contraction muscles lisses bronchiques et tractus GI, sécrétions

M5: Hippocampe, substance noire

Récepteurs M2, M4: inhibiteurs
 Couplage Gi, inhibition AC, diminution AMPc

M2: Muscles lisses (vessie, tractus GI) et cardiaque, ensemble cerveau Diminution du rythme cardiaque et contractilité GI (& libération présynaptique)

M4: Muscles lisses, Hippocampe, substance noire, relaxation muscles lisses utérus, vessie & vaisseaux sanguins stimulation de la lipolyse

Récepteurs adrénergiques (NA & AD)

Principaux effets de la liaison de la NA aux:

Récepteurs Alpha – plus grande sensibilité à l'AD

 $\alpha 1$: stimulation

Contraction des vaisseaux sanguins de la peau et des vicères

 α 2: inhibition

Bronchodilatation, Inhibition de la sécrétion d'insuline par le pancréas

Récepteurs Beta

β1: stimulation

Augmentation de la force de contraction & fréquence cardiaque Sécrétion de rénine

β2: inhibition

Dilatation de vaisseaux coronaires et bronchioles Relaxation muscles lisses digestif & urinaire

β3: inhibition

relaxation muscles lisses utérus, vessie &vaisseaux sanguins stimulation de la lipolyse

Fonctions régulatrices du SNA

Activités cardiovasculaires

Force de contraction, fréquence cardiaque, pression, distribution

Biochimie des fluides interstitiels

pH, osmolarité, soif, teneur en eau

Activités pulmonaires

Fréquence respiratoire, diamètre des bronchioles, O2, CO2

Activités gastro-intestinales

Motilité, digestion mécanique et chimique

Réflexes viscéraux

Miction, défécation, réflexes sexuels

Stress

Libérations de diverses hormones pour faire face à la situation

Stress ou Syndrome Général d'Adaptation (Hans Seyle, 1925)

Réponse combat-fuite (Walter Bredford Cannon, 1929)

Activation SN Sympathique

Fonctions régulatrices du SNA

Division sympathique - combat ou fuite (flight or fight): ergotrope

- Sang acheminé vers les muscles squelettiques, le cerveau et le cœur, loin des organes digestifs et de la peau
- Augmentation de la fréquence cardiaque et de la pression artérielle
- Augmentation de la fréquence respiratoire, dilatation des bronchioles
- Dilatation des pupilles
- Libération de glucose par le foie pour répondre aux besoins énergétiques croissants
- Augmentation du métabolisme cellulaire
- Augmentation de la transpiration pour abaisser la température corporelle
- Augmentation de la production de globules rouges et de la capacité de coagulation
- Absorption de Na + / sécrétion de K +, diminution de la production d'urine

Permet au corps de faire face rapidement lors de situations d'urgence Dominant lors d'excitations, d'effroi ou pendant l'exercice

Fonctions régulatrices du SNA

Division parasympathique - repos et digestion: trophotrope

- Sang transféré aux organes viscéraux
- Contraction des pupilles
- Augmentation des sécrétions et de l'activité glandulaires digestives
- Sécrétions respiratoires et lacrymales
- Maintien à bas niveaux de la tension artérielle, fréquences respiratoire & cardiaque

Conserve l'énergie et dirige les activités de maintenance telles que digestion et excrétion Dominant dans des situations non stressantes

Equilibre entre divisions du SNA

Double innervation: la plupart des organes internes sont innervés par les deux divisions autonomes

Contrôle antagoniste: les divisions se contrebalancent en faisant des **ajustements continus** Le SNA excite ou inhibe davantage les organes

Comparaison des effets physiologiques des systèmes Σ et $P\Sigma$

Cibles	Σ	$\mathbf{P}\Sigma$
Peau, muscles (vaisseaux, glandes sudoripares, muscles piloérecteurs)	Vasoconstriction, sudation, piloérection	Aucun
Iris	Mydriase	Myosis
Glandes lacrymales	Peu d'effets	Sécrétions
Glandes salivaires	Salive peu abondante, visqueuse	Salive abondante, fluide
Coeur	Tachycardie	Bradycardie
Bronches	Bronchodilatation	Bronchoconstriction
Tube digestif	Inhibition péristaltisme & sécrétions	Augmentation péristaltisme & sécrétions
	Contraction sphincters	Relâchement sphincters
Vessie	Relâchement paroi, remplissage	Contraction paroi, vidange
	Contraction sphincters	Relâchement sphincters
Organes reproducteurs	Clitoris: aucune action	Clitoris: vasodilatation (érection)
	Pénis: éjaculation	Pénis: vasodilatation (érection)

Antagonisme

Prédominance d'un des deux systèmes

Synergie, complémentarité

Notion de Tonus

La composante sympathique contrôle la pression sanguine et maintient les vaisseaux sanguins dans un **état continu de constriction partielle** (artères et veines)

Tonus sympathique & parasympathique:

Selon l'organe, l'un des deux tonus va prédominer:

Système vasculaire (artères & veines)	Tonus ∑
Tube digestif	Tonus PΣ
Utérus	Tonus PΣ
Vessie	Tonus PΣ
Glandes salivaires	Tonus PΣ

Origine du tonus: extrinsèque

Elle dépend de l'activité intrinsèque de neurones du tronc cérébral

Contrôle de l'activité des neurones pré-ganglionnaires

Contrôle Périphérique:

Les Réflexes

R/S=Gain

R: amplitude de r S: intensité de s

Réflexes mettant en jeu le SNA:

- somato-végétatifs
- viscéro-végétatifs

Contrôle de l'activité des neurones pré-ganglionnaires

Contrôle Central:

- Genèse **permanente** de l'activité tonique Neurones du **pacemaker** du TC
- Modulation **permanente** des réflexes du SNA Réglage du **Gain**: adaptation des réflexes aux conditions variables de l'organisme
- Commandes **transitoires** d'adaptation
 - transition allongé → debout
 - réaction « combat ou fuite » (stress)

Rôle de coordination entre:

- les réflexes végétatifs
- les différents groupes de neurones pré-ganglionnaires
- le Σ et PΣ
- le SNA & SNS

Contrôle de l'activité des neurones pré-ganglionnaires

Contrôle Central:

Cortex associatif préfrontal,

Amygdale (système limbique) : resp. des réponses autonomes au cours des états émotionnels (rougeur, pâleur, évanouissement, transpiration, fréquence cardiaque)

Hypothalamus: centre régulateur majeur du SNA

Intégration des réponses autonomes, somatiques et endocriniennes Régulation température, soif, faim

Tronc cérébral

Régulation diamètre pupillaire, respiration, activité cardiaque, pression artérielle, déglutition

Moelle épinière

Réflexes autonomes (miction, défécation, érection)

Ganglion autonome

Connexions nerveuses afférentes et efférentes et influences endocrines de l'hypothalamus

Messages essentiels du cours

- Le SNA contrôle des fonctions involontaires par action sur les fibres musculaires lisses et cardiaques et sur les glandes. Il comprend 2 divisions majeures:
 - Σ : mobilise les ressources de l'organisme pour faire face aux défis de tous genres.
 - PΣ : prédomine lors des états de repos relatif, de sorte que les sources d'énergie précédemment dépensées peuvent être restaurées.
- La régulation neuronale continue des dépenses et de la reconstitution des ressources du corps contribue de manière importante à l'équilibre physiologique global des fonctions corporelles appelé homéostasie.
- L'hypothalamus est le centre supérieur de commande et de coordination du SNA.
- Le statut du Σ et du PΣ est modulé par des voies descendantes vers les neurones préganglionnaires du tronc cérébral et de la moelle épinière.
- Le niveau d'activité des neurones prégang détermine à son tour l'activité des neurones moteurs viscéraux primaires dans les ganglions autonomes.
- La régulation autonome de plusieurs systèmes d'organes revêt une importance particulière en pratique clinique.

Mentions légales

L'ensemble de ce document relève des législations française et internationale sur le droit d'auteur et la propriété intellectuelle. Tous les droits de reproduction de tout ou partie sont réservés pour les textes ainsi que pour l'ensemble des documents iconographiques, photographiques, vidéos et sonores.

Ce document est interdit à la vente ou à la location. Sa diffusion, duplication, mise à disposition du public (sous quelque forme ou support que ce soit), mise en réseau, partielles ou totales, sont strictement réservées à l'Université Grenoble Alpes (UGA).

L'utilisation de ce document est strictement réservée à l'usage privé des étudiants inscrits en Première Année Commune aux Etudes de Santé (PACES) à l'Université Grenoble Alpes, et non destinée à une utilisation collective, gratuite ou payante.

