Constructions of Vertex Operator Algebras and Their Modules

Johannes Flake¹

Rutgers University

Graduate VOA Seminar, Nov 2016

¹Happy to hear your questions or comments!

Meeting the family

We have heard a lot about VOAs and their modules².

These are VOAs and their modules...

- 1 ... associated to the Virasoro algebra
- 2 ... associated to affine Lie algebras
- 3 ... associated to Heisenberg algebras

We will discuss [LL, 6.1-6.3] and relevant parts of other sections of the same book.

²[LL, FLM]

Outline

VOAs and modules

- 1 ... associated to the Virasoro algebra
- 2 ... associated to affine Lie algebras
- 3 ... associated to Heisenberg algebras

The conformal element a.k.a. Virasoro vector

■ Virasoro algebra $\mathcal{L} := \text{Lie}$ algebra with basis $\{L_n\}_{n \in \mathbb{Z}} \cup \{\mathbf{c}\}$, with \mathbf{c} central and with relations

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{m^3-m}{12}\delta_{m,-n}\mathbf{c}$$
.

- subalgebras: $\mathbb{C}L(-1) \oplus \mathbb{C}L(0) \oplus \mathbb{C}L(1) \cong \mathfrak{sl}_2$, $\mathbb{C}L_0 \oplus \mathbb{C}\mathbf{c}$ abelian, $\bigoplus_{n \geq 1} \mathbb{C}L_{\pm n}$
- V a VOA $\Rightarrow \exists$ conformal element ω , $Y(\omega,z) =: \sum_{n \in \mathbb{Z}} L(n)z^{-n-2}$, and central charge (rank) $\ell \in \mathbb{C}$ such that $L_n \mapsto L(n)$, $\mathbf{c} \mapsto \ell \cdot \mathrm{id}_V$ is a representation of \mathcal{L} on V. creation property $\Rightarrow L(n)\mathbf{1} = \omega_{n+1}\mathbf{1} = 0$ for $n \ge -1$.

Look for modules of the Virasoro algebra!

- \mathcal{L} is a graded Lie algebra with $\mathcal{L}_{(0)} := \mathbb{C} L_0 \oplus \mathbb{C} \mathbf{c}$ and $\mathcal{L}_{(\pm n)} := \mathbb{C} L_{\mp n}$ for $n \ge 1$
- $\begin{array}{l} \blacksquare \ \mathbb{C}_{\ell,h} := \text{ one-dimensional } \mathcal{L}_{(\leq 0)}\text{-module,} \\ \mathbf{c}, L_0 \text{ act as } \ell, h \in \mathbb{C}, \ L_n \text{ acts as 0 for } n \geq 1 \\ \Rightarrow \mathbb{C}_{\ell,0} \text{ is a } \mathcal{L}_{(\leq 1)}\text{-module with } \mathcal{L}_{(1)} \text{ acting as 0} \\ \end{array}$
- \blacksquare \Rightarrow induced \mathcal{L} -modules

$$V_{Vir}(\ell,0) := U(\mathcal{L}) \otimes_{U(\mathcal{L}_{(\leq 1)})} \mathbb{C}_{\ell,0}$$

 $M_{Vir}(\ell,h) := U(\mathcal{L}) \otimes_{U(\mathcal{L}_{(\leq 0)})} \mathbb{C}_{\ell,h}$

with basis elements $L(-m_1)\cdots L(-m_r)\mathbf{1}=L_{-m_1}\cdots L_{-m_r}\otimes 1$ for $r\geq 0, m_1\geq \cdots \geq m_r\geq 2$ or $\ldots \geq 1$, resp., where L(n):= operator for $L_n, \mathbf{1}:=1\otimes 1$

Weight grading of $V_{Vir}(\ell,0)$ and $M_{Vir}(\ell,h)$

$$\begin{split} [L_0,L_{-m}] &= mL_{-m} \Rightarrow \\ L(0)L(-m_1)\cdots L(-m_r)\mathbf{1} &= (m_1+\cdots+m_r)L(-m_1)\cdots L(-m_r)\mathbf{1} \;. \\ &\Rightarrow \text{for every } k \in \mathbb{Z}, \; \{L(-m_1)\cdots L(-m_r)\mathbf{1}\}_{m_1+\cdots+m_r=k} \; \text{span the} \\ L(0)\text{-eigenspace with eigenvalue } k \; \text{or} \; k+h, \; \text{respectively.} \\ \text{This yields a } \mathbb{Z}\text{- or } \mathbb{C}\text{-grading } (\text{"by weight"}). \end{split}$$

We observe:

- each eigenspace is finite-dimensional
- for sufficiently negative eigenvalues, the eigenspaces are 0

(Recall:
$$r \geq 0, m_1 \geq \cdots \geq m_r \geq 2 \text{ or } \ldots \geq 1.$$
)

⇔ "two grading restrictions"

Look (no) further for modules of the Virasoro algebra!

- Universality of $V_{Vir}(\ell,0)$: For every \mathcal{L} -module M of central charge ℓ with $e \in M$ such that L(n)e = 0 for $n \ge -1$, there is a unique quotient map $V_{Vir}(\ell,0) \to M$ sending $\mathbf{1} \mapsto e$.
 - (Recall: This is the case if M is a VOA due to the creation property.)
- Universality of $M_{Vir}(\ell,h)$: For every \mathcal{L} -module M of central charge ℓ with $e \in M$ such that L(0)e = he and L(n)e = 0 for $n \geq 1$, there is a unique quotient map $M_{Vir}(\ell,0) \to M$ sending $\mathbf{1} \mapsto e$.

(Explicitly, these maps send
$$L(-m_1)\cdots L(-m_r)\mathbf{1}\mapsto L(-m_1)\cdots L(-m_r)e$$
.)

Recap ([LL, chapter 5])

W a vector space, $\mathcal{E}(W) := \mathrm{Hom}(W, W((x)))$ is a weak VA (i.e., without the Jacobi identity) with $Y_{\mathcal{E}}(a(x), x_0)b(x) := \mathrm{Res}_{x_1}(x_0^{-1}\delta(\frac{x_1-x}{x_0})a(x_1)b(x) - x_0^{-1}\delta(\frac{-x+x_1}{x_0})b(x)a(x_1))$ or $a(x)_nb(x) := \mathrm{Res}_{x_1}((x_1-x)^na(x_1)b(x) - (-x+x_1)^nb(x)a(x_1))$ a, b local : $\Leftrightarrow (x_1-x_2)^k[a(x_1),b(x_2)] = 0$ for $k \gg 0$

Theorem ([LL, 5.5.18])

 $S \subset \mathcal{E}(W)$ a set of mutually local weak vertex operators $\Rightarrow \langle S \rangle$, the weak VA generated by S, is a VA and equals span $\{a^{(1)}(x)_{n_1} \cdots a^{(r)}(x)_{n_r} 1_W\}$.

In our situation:

W a \mathcal{L} -module is called *restricted* : $\Leftrightarrow \forall w \in W, L_n w = 0$ for $n \gg 0$ $\Rightarrow L_W := \sum_{n \in \mathbb{Z}} L(n) x^{-n-2}$ lies in $\mathcal{E}(W)$

 L_W is self-local (Check!) $\Rightarrow \langle L_W \rangle$ is a VA

 $\Rightarrow (x_1 - x_2)^4 [L_W(x_1), L_W(x_2)] = 0.$

Scratch-work: L_W is self-local ([LL])

W a restricted \mathcal{L} -module of central charge ℓ , $L_W(x) := \sum_n L_W(n) x^{-n-1}$.

$$x_2^{-1}\delta(\frac{x_1}{x_2}) = \sum_n x_1^n x_2^{-n-1} \qquad \partial_{x_1}^k x_2^{-1}\delta(\frac{x_1}{x_2}) = \sum_n n \cdots (n-k+1)x_1^{n-k} x_2^{-n-1}$$
$$\frac{(-1)^k}{k!} \partial_{x_1}^k x_2^{-1}\delta(\frac{x_1}{x_2}) = (x_1 - x_2)^{k-1} - (-x_2 + x_1)^{k-1}$$

$$\begin{split} [L_{W}(x_{1}), L_{W}(x_{2})] &= \sum_{m,n} [L_{W}(m)x_{1}^{-m-2}, L_{W}(n)x_{2}^{-n-2}] \\ &= \sum_{m,n} ((m-n)L(m+n) + \frac{\ell}{12}(m^{3}-m)\delta_{m,-n})x_{1}^{-m-2}x_{2}^{-n-2} \\ &= \sum_{m,n} (((-m-n-2) + (2m+2))L(m+n) + \frac{\ell}{12}(m^{3}-m)\delta_{m,-n})x_{1}^{-m-2}x_{2}^{m+1}x_{2}^{-m-n-3} \\ &= \sum_{m} (L'_{W}(x_{2}) + 2(m+1)L_{W}(x_{2}))x_{1}^{-m-2}x_{2}^{m+1} + \frac{\ell}{12}(m-1)m(m+1)x_{1}^{-m-2}x_{2}^{m-2} \\ &= L'_{W}(x_{2})x_{2}^{-1}\delta(\frac{x_{1}}{x_{2}}) - 2L_{W}(x_{2})\partial_{x_{1}}x_{2}^{-1}\delta(\frac{x_{1}}{x_{2}}) - \frac{\ell}{12}\partial_{x_{1}}^{3}x_{2}^{-1}\delta(\frac{x_{1}}{x_{2}}) \end{split}$$

Scratch-work: L_W is self-local (variation)

f a polynomial, $a, b \in \mathbb{Z}$.

$$(x_1 - x_2) \sum_{m} f(m) x_1^{-m+a} x_2^{m+b} = \sum_{m} f(m) (x_1^{-m+a+1} x_2^{m+b} - x_1^{-m+a} x_2^{m+b+1})$$

$$= \sum_{m} (\underbrace{f(m+1) - f(m)}_{=:g(m)}) x_1^{-m+a} x_2^{m+b+1} ,$$

but
$$\deg g < \deg f \Rightarrow (x_1 - x_2)^k \sum_m f(m) x_1^{-m+a} x_2^{m+b} = 0$$
 for $k > \deg f$. Now
$$[L_W(x_1), L_W(x_2)] = \sum_{m,n} [L_W(m) x_1^{-m-2}, L_W(n) x_2^{-n-2}]$$

$$= \sum_{m,n} ((m-n)L(m+n) + \frac{\ell}{12}(m^3 - m)\delta_{m,-n}) x_1^{-m-2} x_2^{-n-2} \qquad s := m+n$$

$$= \sum_{m,s} ((2m-s)L(s) + \frac{\ell}{12}(m^3 - m)\delta_{s,0}) x_1^{-m-2} x_2^{-s+m-2}$$

$$= \sum_{m} \left(2m(\sum_s L(s) x_2^{-s}) - (\sum_s sL(s) x_2^{-s}) + \frac{\ell}{12}(m^3 - m) \right) x_1^{-m-2} x_2^{m-2}$$

$$\Rightarrow (x_1 - x_2)^4 [L_W(x_1), L_W(x_2)] = 0.$$

\mathcal{L} -modules as VOAs

Theorem ([LL, 6.1.5])

V an \mathcal{L} -module of central charge $\ell \in \mathbb{C}$ generated by $\mathbf{1} \in V$ such that $L(n)\mathbf{1} = 0$ for $n \geq -1 \implies V$ is "naturally" a VOA.

VOA	\mathcal{L} -module
1	1
ω	L(-2)1
$Y(L(n_1)\cdots L(n_r)1,x)$	$L_V(x)_{n_1+1}\cdots L_V(x)_{n_r+1}\operatorname{id}_V$ $L_V(x)$
$Y(\omega,x)$	$L_V(x)$

where
$$L_V(x) := \sum_{n \in \mathbb{Z}} L(n) x^{-n-2} \in \mathcal{E}(V)$$

Recall [LL, 5.7.1+4]

V a vector space (restricted \mathcal{L} -module), $\mathbf{1} \in V$, $d \in \operatorname{End}(V)$, $d(\mathbf{1}) = 0$, $T \subset V$, $Y_0(\cdot, x) : T \to \mathcal{E}(V) = \operatorname{Hom}(V, V((x)))$, $a \mapsto \sum_{n \in \mathbb{Z}} a_n x^{-n-1}$, V spanned by $\{a_{n_1}^{(1)} \cdots a_{n_r}^{(r)} \mathbf{1}\}$ for r > 0, $a^{(i)} \in T$, $n_i \in \mathbb{Z}$.

Extend Y_0 to V; $Y(a_{n_1}^{(1)}\cdots a_{n_r}^{(r)}\mathbf{1},x):=a^{(1)}(x)_{n_1}\cdots a^{(r)}(x)_{n_r}\mathbf{1}_V.$

This yields VOA (with $d(v) = v_{-2}\mathbf{1}$, $\omega := L(-2)\mathbf{1}$) if

- vacuum + creation property hold for $T, Y_0, \mathbf{1}$
- $Y_0(a,x), Y_0(b,x)$ for $a,b \in T$ are mutually local
- $[d, Y_0(a, x)] = \frac{d}{dx} Y_0(a, x)$ for $a \in T$
- L(-1) = d (as endomorphisms of V)
- $\omega \in T$, $Y_0(\omega, x) = \sum_n L(n)x^{-n-2} (= L_V(x))$
- the two grading restrictions hold

L-modules as VOAs

Theorem ([LL, 6.1.5])

V an \mathcal{L} -module of central charge $\ell \in \mathbb{C}$ generated by $\mathbf{1} \in V$ such that $L(n)\mathbf{1} = 0$ for $n \geq -1 \implies V$ is "naturally" a VOA.

Proof:

- By the universal property of $V_{Vir}(\ell, 0)$, V is a quotient of $V_{Vir}(\ell, 0)$, in particular, a restricted \mathcal{L} -module.
- Let d := L(-1), $\omega := L(-2)\mathbf{1}$, $T := \{\omega\} \subset V$, $Y_0(\omega, x) := L_V(x)$.

Then this extends to a VOA structure without the two grading restrictions by [LL, 5.7.4] if L_V is self-local, $[L(-1), L_V(x)] = \frac{d}{dx}L_V(x)$ and $[L(0), L_V(x)] = 2L_V(x) + x\frac{d}{dx}L_V(x)$. (Check!)

■ Again as V is a quotient of $\hat{V}_{Vir}(\ell,0)$, we get the two grading restrictions.

Recap [LL, 5.7.6]

V a VA generated by a local subset T, W a vector space, $Y_W^0(\cdot,x)=\iota_W^0:T\to\mathcal{E}(W), a\mapsto a_W(x)$ can be extended to map $Y_W(\cdot,x)=\iota_W:V\to\mathcal{E}(W)$ making W a V-module if

- $\bullet \iota_W(\mathbf{1}) = \mathsf{id}_W$
- \bullet $\iota_W(a_nv) = a_W(x)_n\iota_W(v)$ for all $a \in T, v \in V$

\mathcal{L} -modules as VA modules

Theorem ([LL, 6.1.7])

W a restricted \mathcal{L} -module of central charge $\ell \in \mathbb{C}$ \Rightarrow W is "naturally" a VA module of $V_{Vir}(\ell,0)$.

VOA module	\mathcal{L} -module
$Y_W(L(n_1)\cdots L(n_r)1,x)$	$L_W(x)_{n_1+1}\cdots L_W(x)_{n_r+1}\operatorname{id}_W$
$Y_W(\omega,x)$	$L_W(x)$

Proof:

$$\begin{array}{l} U:= \operatorname{span}\{L_W(x)_{n_1}\cdots L_W(x)_{n_r}1_W: r\geq 0, n_i\in \mathbb{Z}\}\subset \mathcal{E}(W)\\ \Rightarrow U \text{ is an } \mathcal{L}\text{-module with } L_n \text{ acting as } L_W(x)_{n+1}, \ L_W(x)_n1_W=0\\ \text{for } n\geq 0\\ \text{universality of } V:=V_{Vir}(\ell,0)\Rightarrow \exists \ \psi: V\rightarrow U \ \mathcal{L}\text{-module map}\\ \text{such that } \mathbf{1}\mapsto \operatorname{id}_W, \ \psi(\omega)=L_W. \ \Rightarrow \psi(\omega_nv)=L_W(x)_n\psi(v)\\ T:=\{\omega\}\stackrel{\operatorname{LL},5.7.6}{\Longrightarrow} W \text{ a V-module} \end{array}$$

L-modules as VOA modules

Theorem ([LL, 6.1.8])

Restricted \mathcal{L} -modules of central charge ℓ are just the VA modules of $V_{Vir}(\ell,0)$, in the respective "natural" interpretations. Under this correspondence, VOA modules of $V_{Vir}(\ell,0)$ correspond to restricted \mathcal{L} -modules which

- are graded by L(0)-eigenvalues and
- have the two grading restrictions.
- $M := M_{Vir}(\ell, h).$
- $\Rightarrow M$ is a VOA module of $V_{Vir}(\ell,0)$
- T := sum of proper submodules of M.
- $\Rightarrow L := L_{Vir}(\ell, h) := M/T$ is the unique irreducible quotient
- \Rightarrow L is an irreducible VOA module of $V_{Vir}(\ell,0)$ and those are all!

Irreducible VOA modules of $V_{Vir}(\ell,0)$

Theorem ([LL, 6.1.12])

The irreducible VOA modules of $V_{Vir}(\ell, 0)$ are just the $L_{Vir}(\ell, h)$ for all h.

<u>Proof:</u> W any irreducible VOA module of $V_{Vir}(\ell, 0)$.

- Pick a non-zero element w in the lowest L(0)-weight space, set h := the weight of w.
- M, T, L as above. Universal property of $M \Rightarrow \mathcal{L}$ -module map $M \rightarrow W$ sending $\mathbf{1}$ to w.
- W irreducible \Rightarrow map is onto and has kernel T.
- $W \cong L$ as \mathcal{L} -modules, and hence as VOA modules.

Summary

(arrows mean "special case of")

Outline

VOAs and modules

- 1 ... associated to the Virasoro algebra
- 2 ... associated to affine Lie algebras
- 3 ... associated to Heisenberg algebras

(Untwisted) Affine Lie algebras

f g a Lie algebra + invariant symmetric bilinear form $\langle\cdot,\cdot\rangle$ We define the affine Lie algebra $\hat{\mathfrak g}:=\mathfrak g\otimes\mathbb C[t,t^{-1}]\oplus\mathbb C\mathbf k$ with $\mathbf k$ central and with

$$[a \otimes t^m, b \otimes t^n] := [a, b] \otimes t^{m+n} + m\langle a, b \rangle \delta_{m,-n} \mathbf{k}$$
.

■ $\hat{\mathfrak{g}}_{(0)} := \mathfrak{g} \oplus \mathbb{C}\mathbf{k}$, $\hat{\mathfrak{g}}_{(n)} := \mathfrak{g} \otimes t^{-n}$ for $n \neq 0$ $\Rightarrow \hat{\mathfrak{g}}_{(\pm)}$, $\hat{\mathfrak{g}}_{(\leq 0)}$ subalgebras

Locality of vertex operators

For
$$a \in \mathfrak{g}$$
, write $a(n) := a \otimes t^n \in \hat{\mathfrak{g}}$
and $a(x) := \sum_{n \in \mathbb{Z}} a(n) x^{-n-1} \in \hat{\mathfrak{g}}[[x, x^{-1}]].$

$$\Rightarrow [a(x_1), b(x_2)] = [a, b](x_2) x_2^{-1} \delta(\frac{x_1}{x_2}) - \langle a, b \rangle \, \partial_{x_1} x_2^{-1} \delta(\frac{x_1}{x_2}) \mathbf{k}$$
$$\Rightarrow (x_1 - x_2)^2 [a(x_1), b(x_2)] = 0$$

$$\Rightarrow$$
 For any restricted $(\forall a, w : a(n)w = 0 \text{ if } n \gg 0) \hat{\mathfrak{g}}$ -module W , $S := \{a(x)\}_{a \in \mathfrak{g}} \subset \mathcal{E}(W) \text{ is local}$

$$\overset{\mathsf{LL},\,5,5.18}{\Rightarrow} \langle S \rangle$$
 is a VA spanned by $\{a^{(1)}(x)_{n_1} \cdots a^{(r)}(x)_{n_r} 1_W\}$.

Scratch-work: Locality of vertex operators

Recall:
$$f$$
 a polynomial, $a, b \in \mathbb{Z}$
 $\Rightarrow (x_1 - x_2)^{1 + \deg f} \sum_m f(m) x_1^{-m+a} x_2^{m+b} = 0.$

Now

$$[a(x_1), b(x_2)] = \sum_{m,n} [a(m), b(n)] x_1^{-m-1} x_2^{-n-1}$$

$$= \sum_{m,n} ([a, b](m+n) + m\langle a, b\rangle \delta_{m,-n} \mathbf{k}) x_1^{-m-1} x_2^{-n-1} \qquad s := m+n$$

$$= \sum_{m,s} ([a, b](s) + m\langle a, b\rangle \delta_{s,0} \mathbf{k}) x_1^{-m-1} x_2^{-s+m-1}$$

$$= \sum_{m} \left(\left(\sum_{s} [a, b](s) x_2^{-s} \right) + m\langle a, b\rangle \mathbf{k} \right) x_1^{-m-1} x_2^{m-1}$$

$$\Rightarrow (x_1 - x_2)^2 [a(x_1), b(x_2)] = 0.$$

Recall [LL, 5.7.1+4]

V a vector space (restricted \mathcal{L} -module), $\mathbf{1} \in V$, $d \in \text{End}(V)$, $d(\mathbf{1}) = 0$, $T \subset V$, $Y_0(\cdot, x) : T \to \mathcal{E}(V) = \text{Hom}(V, V((x)))$, $a \mapsto \sum_{n \in \mathbb{Z}} a_n x^{-n-1}$,

V spanned by $\{a_{n_1}^{(1)}\cdots a_{n_r}^{(r)}\mathbf{1}\}\$ for $r\geq 0$, $a^{(i)}\in T$, $n_i\in\mathbb{Z}$.

Extend Y_0 to V; $Y(a_{n_1}^{(1)}\cdots a_{n_r}^{(r)}\mathbf{1},x):=a^{(1)}(x)_{n_1}\cdots a^{(r)}(x)_{n_r}\mathbf{1}_V$.

This yields VOA (with $d(v) = v_{-2}\mathbf{1}$, $\omega := L(-2)\mathbf{1}$) if

- vacuum + creation property hold for $T, Y_0, \mathbf{1}$
- $Y_0(a,x), Y_0(b,x)$ for $a,b \in T$ are mutually local
- $[d, Y_0(a, x)] = \frac{d}{dx} Y_0(a, x)$ for $a \in T$
- L(-1) = d (as endomorphisms of V)
- $\omega \in T$, $Y_0(\omega, x) = \sum_n L(n)x^{-n-2} (= L_V(x))$
- $\blacksquare \forall a \in T \exists m \in \mathbb{Z} : [L(0), a(x)] = ma(x) + x \frac{d}{dx} a(x)$
- the two grading restrictions hold

A vertex algebra for every level

$$\begin{split} &\mathbb{C}_{\ell} := \hat{\mathfrak{g}}_{(\leq 0)}\text{-module such that } \mathbf{k} \text{ acts as } \ell, \text{ everything else as } 0 \\ &V_{\hat{\mathfrak{g}}}(\ell,0) := \operatorname{Ind}_{\hat{\mathfrak{g}}_{(\leq 0)}}^{\hat{\mathfrak{g}}} \mathbb{C}_{\ell} = U(\hat{\mathfrak{g}}) \otimes_{U(\hat{\mathfrak{g}}_{(\leq 0)})} \mathbb{C}_{\ell} \\ &\Rightarrow V_{\hat{\mathfrak{g}}}(\ell,0) \text{ spanned by } \{a^{(1)}(-m_1)\cdots a^{(r)}(-m_r)\mathbf{1}\} \\ &V_{\hat{\mathfrak{g}}}(\ell,0)_{(n)} := \operatorname{span}\{a^{(1)}(-m_1)\cdots a^{(r)}(-m_r)\mathbf{1} : m_1+\cdots+m_r=n\} \\ &d \text{ derivation on } V_{\hat{\mathfrak{g}}}(0,\ell) \text{ defined by } \mathbf{k} \mapsto 0, \ a(n) \mapsto -na(n-1) \\ &\Rightarrow [d,a(n)] = -na(n-1) \text{ as operators on } V_{\hat{\mathfrak{g}}}(\ell,0) \end{split}$$

Theorem ([LL, 6.2.11])

There is a unique structure map Y such that $(V_{\hat{\mathfrak{g}}}(\ell,0),Y,1)$ is a VA and such that Y(a,x)=a(x) for all $a\in\mathfrak{g}$. Explicitly, $Y(a^{(1)}(n_1)\cdots a^{(r)}(n_r)\mathbf{1},x)=a^{(1)}(x)_{n_1}\cdots a^{(r)}(x)_{n_r}\mathbf{1}$.

$V_{\hat{\mathfrak{g}}}(\ell,0)$ -modules = restricted $\hat{\mathfrak{g}}$ -modules of level ℓ

Theorem ([LL, 6.2.13])

W a VA module of $V_{\hat{\mathfrak{a}}}(\ell,0)$

 \Rightarrow W a restricted $\hat{\mathfrak{g}}$ -module of level ℓ with $a_W(x) = Y_W(a,x)$.

W a restricted $\hat{\mathfrak{g}}$ -module of level ℓ

 \Rightarrow W a VA module of $V_{\hat{\mathfrak{a}}}(\ell,0)$ with

$$Y_W(a^{(1)}(n_1)\cdots a^{(r)}(n_r)\mathbf{1},x)=a_W^{(1)}(x)_{n_1}\cdots a_W^{(r)}(x)_{n_r}\mathbf{1}_W$$
.

Now for VOAs

Assume $d := \dim \mathfrak{g} < \infty$, $\langle \cdot, \cdot \rangle$ non-degenerate.

Pick an orthonormal basis $(u^{(i)})_i$.

 \Rightarrow Casimir element $\Omega := \sum_i u^{(i)} u^{(i)} \in U(\mathfrak{g})$ is central and independent of the choice of $(u^{(i)})_i$.

Assume Ω acts as $2h \in \mathbb{C}$ on \mathfrak{g} (under the adjoint action), $\ell \neq -h$.

$$\underline{\omega} := \frac{1}{2(\ell+h)} \sum_{i=1}^{d} u^{(i)}(-1) u^{(i)}(-1) \mathbf{1} \quad \in V_{\hat{\mathfrak{g}}}(\ell,0)_{(2)}$$

Theorem ([LL, 6.2.15])

The components L(n) of $Y(\omega,x)$ viewed as operators on any restricted $\hat{\mathfrak{g}}$ -module of level ℓ satisfy the Virasoro relations corresponding to the central charge $d\ell/(\ell+h)$. Furthermore, L(0)v=nv for all $v\in V_{\hat{\mathfrak{g}}}(\ell,0)_{(n)}$ and $L(-1)=\mathcal{D}$ on $V_{\hat{\mathfrak{g}}}(\ell,0)$.

Now(!) for VOAs

$$\dots$$
} \Rightarrow

Theorem ([LL, 6.2.18])

If $\mathfrak g$ is a d-dimensional Lie algebra with non-degenerate symmetric bilinear form such that Ω acts on $\mathfrak g$ as scalar 2h and $\ell \neq -h$, then $V_{\widehat{\mathfrak g}}(\ell,0)$ is a VOA of central charge $d\ell/(\ell+h)$ with conformal element ω as above.

Furthermore, L(0)-eigenvalues are determined by the chosen \mathbb{Z} -grading and $\mathfrak{g}=V_{\hat{\mathfrak{g}}}(\ell,0)_{(1)}$ generates $V_{\hat{\mathfrak{g}}}(\ell,0)$ as VA.

Irreducible modules of $V_{\hat{\mathfrak{g}}}(\ell,0)$

U a finite-dimensional \mathfrak{g} -module such that Ω acts as $h_U \in \mathbb{C}$ $\Rightarrow U$ a $\hat{\mathfrak{g}}_{(\leq 0)}$ -module where \mathbf{k} acts as ℓ and $\hat{\mathfrak{g}}_{(-)}$ acts as 0

 $W:=\operatorname{Ind}_{\mathfrak{g}}^{\hat{\mathfrak{g}}}(U)=U(\hat{\mathfrak{g}})\otimes_{\hat{\mathfrak{g}}_{(\leq 0)}}U$ is a $\hat{\mathfrak{g}}$ -module $L_{\hat{\mathfrak{g}}}(\ell,U):=$ the unique irreducible quotient of W

Theorem ([LL, 6.2.21])

W is a VOA module of $V_{\hat{\mathfrak{g}}}(\ell,0)$.

Theorem ([LL, 6.2.23])

The irreducible VOA modules of $V_{\hat{\mathfrak{g}}}(\ell,0)$ are just the modules $L_{\hat{\mathfrak{g}}}(\ell,U)$ for all finite-dimensional irreducible \mathfrak{g} -modules U.

 \Rightarrow [LL, 6.2.25]: $L_{\hat{\mathfrak{a}}}(\ell,0):=L_{\hat{\mathfrak{a}}}(\ell,\mathbb{C})$ is a simple VOA.

Outline

VOAs and modules

- 1 ... associated to the Virasoro algebra
- 2 ... associated to affine Lie algebras
- 3 ... associated to Heisenberg algebras

From affine Lie algebras to Heisenberg algebras

Specialize \mathfrak{g} to be a commutative Lie algebra and call it \mathfrak{h} . $\hat{\mathfrak{h}} = \mathfrak{h} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}\mathbf{k}$, \mathbf{k} central,

$$[\alpha \otimes t^m, \beta \otimes t^n] = \langle \alpha, \beta \rangle m \delta_{m,-n} \mathbf{k} .$$

 $\hat{\mathfrak{h}}_{(0)} = \mathfrak{h} \oplus \mathbb{C} \mathbf{k}$, $\hat{\mathfrak{h}}_{(n)} = \mathfrak{h} \otimes t^{-n}$, $\hat{\mathfrak{h}} = \mathfrak{h} \oplus \hat{\mathfrak{h}}_*$ with $\hat{\mathfrak{h}}_* := \hat{\mathfrak{h}}_{(-)} \oplus \mathbb{C} \mathbf{k} \oplus \hat{\mathfrak{h}}_{(+)}$, a *Heisenberg algebra* (i.e. it has a one-dimensional center which equals the commutator subalgebra).

For any $\hat{\mathfrak{h}}$ -module W, the action of $\alpha \otimes t^n$ is denoted by $\alpha(n)$, and $\alpha_W(x) := \sum_n \alpha(n) x^{-n-1}$.

Action of the Casimir

Identify \mathfrak{h} with \mathfrak{h}^* using $\langle \cdot, \cdot \rangle$.

For any $\alpha \in \mathfrak{h}$, let \mathbb{C}_{α} be the one-dimensional \mathfrak{h} -module with $\beta \in \mathfrak{h}$ acting as $\langle \beta, \alpha \rangle$. Then

$$\Omega \cdot 1 = \sum_{i} u^{(i)} u^{(i)} \cdot 1 = \sum_{i} \langle u^{(i)}, \alpha \rangle^{2} 1 = \langle \alpha, \alpha \rangle 1.$$

Regard \mathbb{C}_{α} as $\hat{\mathfrak{h}}_{(\leq 0)}$ -module such that **k** acts as ℓ , $\hat{\mathfrak{h}}_{(-)}$ acts as 0.

$$\begin{split} & \underline{\mathcal{M}(\ell,\alpha)} := \operatorname{Ind}_{\mathfrak{h}}^{\hat{\mathfrak{h}}}(\mathbb{C}_{\alpha}) = U(\hat{\mathfrak{h}}) \otimes_{U(\hat{\mathfrak{h}}_{(\leq 0)})} \mathbb{C}_{\alpha} \\ & \Rightarrow \mathcal{M}(\ell,0) = V_{\hat{\mathfrak{h}}}(\ell,0), \ \Omega \text{ acts as } 0 \ (\text{``= 2h''}). \end{split}$$

Theorem ([LL, 6.3.2+3])

For $\ell \neq 0$, $V_{\hat{\mathfrak{h}}}(\ell,0) = M(\ell,0)$ is naturally a VOA. For any $\alpha \in \mathfrak{h}$, $M(\ell,\alpha)$ is naturally a module of $V_{\hat{\mathfrak{h}}}(\ell,0)$.

A realization of $\hat{\mathfrak{h}}$ and $\hat{\mathfrak{h}}_*$

 $d := \dim \mathfrak{h}, (u^{(i)})_i$ an orthonormal basis of $\mathfrak{h}, P(\ell, \alpha) := \mathbb{C}[x_{ij}]_{1 \le i,j \le d}.$ Define an action of $\hat{\mathfrak{h}}$ on $P(\ell, \alpha)$: for n > 0,

- **k** acts as ℓ
- $\mathbf{u}^{(i)}(0) := \langle u^{(i)}, \alpha \rangle$
- $u^{(i)}(n) := n\ell \frac{d}{dx_{in}}$
- $u^{(i)}(-n) := x_{in}$ (left-multiplication in $P(\ell, \alpha)$).

Theorem ([LL, 6.3.4])

This makes $P(\ell, \alpha)$ an irreducible $\hat{\mathfrak{h}}$ -module and irreducible $\hat{\mathfrak{h}}_*$ -module.

$M(\ell, \alpha)$ and $P(\ell, \alpha)$

W an $\hat{\mathfrak{h}}_*$ -module, $w \in W$ is called *vacuum vector* if $\hat{\mathfrak{h}}_{(-)}w = 0$.

Theorem ([LL, 6.3.8])

- $-M(\ell,\alpha)$ is an irreducible $\hat{\mathfrak{h}}$ -module $/\hat{\mathfrak{h}}_*$ -module.
- Any $\hat{\mathfrak{h}}$ -submodule generated by a vacuum vector $\cong M(\ell, \alpha)$.
- $M(\ell,0)$ is the unique irreducible $\hat{\mathfrak{h}}_*$ -module containing a vacuum vector.

Proof:

- $\mathbb{C} \subset P(\ell, \alpha)$ is equivalent to \mathbb{C}_{α} universality of $M(\ell, \alpha) \Rightarrow \exists$ module map $M(\ell, \alpha) \rightarrow P(\ell, \alpha)$ irreducibility of $P(\ell, \alpha) \Rightarrow M(\ell, \alpha) \cong P(\ell, \alpha)$ as $\hat{\mathfrak{h}}$ -modules
- W an $\hat{\mathfrak{h}}_*$ -module of level ℓ generated by a vacuum vector w $\Rightarrow W$ an $\hat{\mathfrak{h}}$ -module with \mathfrak{h} acting as 0 $\Rightarrow \mathbb{C}w \cong \mathbb{C}_{\alpha}$ for $\alpha = 0$, $W \cong M(\ell, 0) \cong P(\ell, 0)$

VOAs and modules, revisited

As a consequence, we get the following improvements:

Theorem ([LL, 6.3.9])

For $\ell \neq 0$, $V_{\hat{\mathfrak{h}}}(\ell,0) = M(\ell,0)$ is a simple VOA. For any $\alpha \in \mathfrak{h}$, $M(\ell,\alpha)$ is one of its irreducible modules, and we obtain all irreducible modules in this way.

Theorem ([LL, 6.3.10])

For
$$\ell \neq 0$$
, $V_{\hat{\mathbf{h}}}(\ell,0) \cong V_{\hat{\mathbf{h}}}(1,0)$ as VOAs.

<u>Proof:</u> $V_{\hat{\mathfrak{h}}}(\ell,0) \rightarrow V_{\hat{\mathfrak{h}}}(1,0)$,

$$\alpha^{(1)}(n_1)\cdots\alpha^{(r)}(n_r)\mathbf{1}\mapsto(\sqrt{\ell})^r\alpha^{(1)}(n_1)\cdots\alpha^{(r)}(n_r)\mathbf{1}$$
,

for any choice of $\sqrt{\ell}$ is an isomorphism. (Check!)

References

[LL] J. Lepowsky, H. Li. Introduction to vertex operator algebras and their representations. Birkhäuser, Boston, 2004.

[FLM] I. Frenkel, J. Lepowsky, A. Meurman. Vertex operator algebras and the Monster. Vol. 134. Academic press, 1989.