

Winning Space Race with Data Science

Ibrahim Muhammed 22 | 05 | 2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Aim: To predict landing success rate of spaceX falcon 9
- Webscrapping of data from the source.
- Exploratory data analysis (EDA) of first stage.
- SQL queries were used for EDA
- Machine learning models were used for predicting the success landing rate

Introduction

- The project emphasized on landing successes rate of Space X falcon 9. Space X is a company that advertised falcon 9 rocket launch on it website.
- Our aim is to predict the success of the launch by manipulating the data using python and constructing machine learning model.

Methodology

Executive Summary

- Data collection methodology:
 - Web scrapping was used to collect data from an article on Wikipedia about spaceX rocket launch.
- Perform data wrangling
 - Python packages were used to manipulate the data on jupyter notebook.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Python packages were imported which were used to build, tune and evaluate machine learning models

Data Collection

- BeautifulSoup was used to webscrap falcon 9 launch record.
- GET method was used to request falcon9 HTML page,as an HTML response

Data Collection - SpaceX API

- Python code was used to generate a GET response
- Beautiful soup was used to extract content from the data.
- https://github.com/iro062/Applied-Data-Science-Capstone-IBM/blob/main/jupyterlabs-webscraping.ipynb

```
# use requests.get() method with the provided static_url
# assign the response to a object
response = requests.get(static_url)

# Use BeautifulSoup() to create a BeautifulSoup object from a response text content
soup = BeautifulSoup(response.content, 'html.parser')
```

Data Collection - Scraping

- BeautifulSoup function was used to create a beautifulsoup object.
- Title attribute was used to print out the tittle
- find_all function was used to generate table
- https://github.com/iro062/Applied-Data-Science-Capstone-IBM/blob/main/jupyter-labswebscraping.ipynb

Use BeautifulSoup() to create a BeautifulSoup object from a response text content soup = BeautifulSoup(response.content, 'html.parser')


```
# Use soup.title attribute
title = soup.title.string
print("Page Title:", title)
```


Use the find_all function in the BeautifulSoup object, with element type `table`
Assign the result to a list called `html_tables`
html_tables = soup.find_all('table')

Data Wrangling

- Python packages were used to find pattern and manipulate data
- The necessary packages were imported
- Value_count function was used to calculate the number of particular variables;
 - · Number of launch on site
 - the number and occurrence of each orbit
 - number and occurence of mission outcome per orbit type
- A column was created for classification of the outcome column
- The average of the column class was calculated with a value of 0.666

https://github.com/iro062/Applied-Data-Science-Capstone-IBM/blob/main/spacex-data_wrangling_jupyterlite.jupyterlite.ipynb

```
# landing_class = 0 if bad_outcome
# landing_class = 1 otherwise
landing_class = []
for outcome in df["Outcome"]:
   if outcome in bad_outcomes:
     landing_class.append(0)
   else:
     landing_class.append(1)
```

Fig: classification of the outcome column into binary 0 and 1 $\,$

EDA with Data Visualization

- The visualisation of some features or columns were plotted to check for correlation
- Yearly success rate of launch was visualized
- It indicated that there was a rise from 2013
- https://github.com/iro062/Applied-Data-Science-Capstone-IBM/blob/main/jupyter_labs_eda_dataviz.ipynb

EDA with SQL

- Firstly, sql extention was created and connection was established from a database
- Sql query was performed for the following task;
 - the names of the unique launch sites in the space mission
 - Display 5 records where launch sites begin with the string 'CCA'
 - Display the total payload mass carried by boosters launched by NASA (CRS)
 - Display average payload mass carried by booster version F9 v1.1
 - · List the date when the first succesful landing outcome in ground pad was acheived.
 - List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
 - List the total number of successful and failure mission outcomes
 - · List the names of the booster_versions which have carried the maximum payload mass.
 - List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015
 - Rank the count of successful landing_outcomes between the date 04-06-2010 and 20-03-2017 in descending order.
- https://github.com/iro062/Applied-Data-Science-Capstone-IBM/blob/main/jupyter-labs-eda-sql-coursera_sqllite.ipynb

Build an Interactive Map with Folium

- Folium packages were imported and installed to build an Interactive map
- Markers, circles and lines were used to mark the success or failed launches for each site on the map
- The distances between a launch site to its proximities was calculated
- https://github.com/iro062/Applied-Data-Science-Capstone-IBM/blob/main/lab_jupyter_launch_site_location.ipynb

Build a Dashboard with Plotly Dash

- Pie chart and scatter plot were used
- SpaceX launch site
- Pie chart and Scatter plot were used to showcase the following
 - Site with the largest launches
 - Site with the highest launch success rate
 - Payload with highest and lowest success rate
 - F9 booster version with highest lauch success rate
- https://github.com/iro062/Applied-Data-Science-Capstone-IBM/blob/main/Interactive%20Dashboard%20with%20Ploty%20Dash

Predictive Analysis (Classification)

- The required packages machine learning packages were imported
- The data was splitted into train and test sets
- Various classification models were carried out such as logistic regression and SVM
- The models were evaluated and improved
- The score and accuracy for each model was calculated and compared to choose the best performing model
- https://github.com/iro062/Applied-Data-Science-Capstone-IBM/blob/main/SpaceX_Machine_Learning_Prediction_Part_5_jupyt erlite%20(3).ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

A scatter plot of Flight Number vs. Launch Site

- CCAFS LC-40 at the range of 0 to 20 flight number has high rate of low success rate and high success rate at the range of 60 to 80
- VAFB SLC 4E has low flight number and a high success rate
- KSC LC 39A had no flight number output at the range of 0 to 20 with few numbers at the range of 40 to 6p but had high success rate

Payload vs. Launch Site

A scatter plot of Payload vs.
 Launch Site

• For the VAFB-SLC launchsite ,there are no rockets launched for heavypayload mass(greater than 10000).

Success Rate vs. Orbit Type

 A bar chart for the success rate of each orbit type

 Orbit types ES-L1, SSO, and GEO have the highest success rate with GTO having low success rate

Flight Number vs. Orbit Type

 A scatter point of Flight number vs. Orbit type

• In the LEO orbit the Success appears related to the number of flights; on the other hand, there seems to be no relationship between flight number when in GTO orbit.

Payload vs. Orbit Type

 A scatter point of payload vs. orbit type

 Heavy payloads have a negative influence on GTO orbits and positive on GTO and Polar LEO (ISS) orbits.

Launch Success Yearly Trend

- A line chart of yearly average success rate
- The sucess rate since 2013 kept increasing till 2020

All Launch Site Names

• The names of the unique launch sites

Launch Site Names Begin with 'CCA'

• 5 records where launch sites begin with `CCA`

	Display 5 red	cords wher	re launch sites be	gin with the st	tring 'CCA'				
n [9]:	%%sql SEL FROM SPAC WHERE Lau LIMIT 5;	EXTBL	LIKE 'CCAK'						
	* sqlite://	//my_data	a1.db						
ut[9]:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome
	06/04/2010	18:45:00	F9 v1.0 B0003	CCAFS LC-	Dragon Spacecraft Qualification Unit	0.0	LEO	SpaceX	Success
	12/08/2010	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0.0	LEO (ISS)	NASA (COTS) NRO	Success
	22/05/2012	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525.0	LEO (ISS)	NASA (COTS)	Success
	10/08/2012	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500.0	LEO (ISS)	NASA (CRS)	Success
	03/01/2013	15:10:00	F9 v1.0 B0007	CCAFS LC-	SpaceX CRS-2	677.0	LEO (ISS)	NASA (CRS)	Success

Total Payload Mass

The total payload carried by boosters from NASA

```
Task 3

Display the total payload mass carried by boosters launched by NASA (CRS)

In [10]: 

**SELECT SUM(PAYLOAD_MASS_KG_) AS TotalPayloadMass FROM SPACEXTBL WHERE CUSTOMER = "NASA (CRS)";

** sqlite://my_datal.db Done.

Dut[10]: 
TotalPayloadMass

45596.0
```

Average Payload Mass by F9 v1.1

• The average payload mass carried by booster version F9 v1.1

```
Task 4

Display average payload mass carried by booster version F9 v1.1

In [11]:

** SELECT AVG(PAYLOAD_MASS_KG_) AS AveragePayloadMass FROM SPACEXTBL WHERE Booster_Version LIKE 'F9 v1.1%';

** sqlite:///my_data1.db Done.

Out[11]: AveragePayloadMass

2534.666666666665
```

First Successful Ground Landing Date

the dates of the first successful landing outcome on ground pad was achieved

Successful Drone Ship Landing with Payload between 4000 and 6000

 The names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

Total Number of Successful and Failure Mission Outcomes

the total number of successful and failure mission outcomes

Boosters Carried Maximum Payload

the names of the booster which have carried the maximum payload mass

```
Task 8
          List the names of the booster_versions which have carried the maximum payload mass. Use a subquery
          *Xsql SELECT booster_version
           FROM SPACEXTBL
           WHERE PAYLOAD MASS KG = (
               SELECT MAX(PAYLOAD MASS KG )
               FROM SPACEXTBL
         * sqlite:///my_data1.db
Out [26]: Booster_Version
            F9 B5 B1048.4
            F9 B5 B1049.4
            F9 B5 B1051.3
            F9 B5 B1056.4
            F9 B5 B1048.5
            F9 B5 B1051.4
            F9 B5 B1049.5
            F9 B5 B1060.2
            F9 B5 B1058.3
            F9 B5 B1051.6
            F9 B5 B1060.3
            F9 B5 B1049.7
```

2015 Launch Records

the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

Launch sites on a map

• Generated folium map with all launch site locations

Color labeled Outcome

• the folium map with the color-labeled launch outcomes on the map

Folium Map launch site and it proximities

• The generated folium map and selected launch site to its proximities such as railway, highway, coastline, with distance calculated and displayed

Dashboard of launch success count for all sites

- Successful launches distributed by launch sites
- Most successful rate (41.7%) belongs to the KSC LC-39A site

Dashboard for Pie chart for highest success rate

- The pie chart for the launch site with highest launch success ratio
- It has a success rate of 76.9%

Dashboard for Payload vs Launch Outcome

 Payload vs. Launch Outcome scatter plot for all sites, with different payload selected in the range slider

Classification Accuracy

Confusion Matrix

- All 4 models (LogReg, SVM, Tree, and KNN) show similar behavior and performance
- The Tree model has the lowest and F1 score which maybe due false positive

Out[]:	LogisticReg		SVM	Tree	KNN
	F1_Score	0.814815	0.814815	0.666667	0.814815
	Accuracy	0.833333	0.833333	0.666667	0.833333

Conclusions

- The features shows relationship when plotted against each other.
- There is an increase of success rate from 2013 till 2020
- KSC LC-39A has the highest success rate among the launching site
- All the constructed models showed similar accuracy except tree model
- The false positive part of the confusion matrix is the main source of error

Appendix

- import pandas as pd
- import seaborn as sns
- Import matplotlib.pyplot as plt
- data = { 'Model': ['LogisticReg', 'SVM', 'Tree', 'KNN'], 'Accuracy': [0.833333, 0.833333, 0.666667, 0.833333]}
- df = pd.DataFrame(data)sns.barplot(x='Model', y='Accuracy', data=df)
- plt.title('Accuracy for Different Models')
- plt.xlabel('Model')
- plt.ylabel('Accuracy')plt.show()

