Stochastic Processes, Nonlocal Operators, and Partial Differential Equations in MIMIC

Woojin Ko

Korea Advanced Institute of Science and Technology

1 May 2023

Overview

- Stochastic Processes
 - 1. Brownian Motions
 - 2. Lévy Processes
- 2 Infinitesimal Generators and Nonlocal Operators
 - 1. Infinitesimal Generators
 - 2. Nonlocal Operators
 - 3. Fractional Laplacian
- 3 PDE with Nonlocal Operators

Definition of Brownian Motions

Definition.

A collection $\{X_t: t \geqslant 0\}$ of random vectors $X_t: \Omega \to \mathbb{R}^n$ is called a (n-dimensional) stochastic process.

Definition.

Let $B=\{B_t: t\geqslant 0\}$ be a n-dimensional stochastic process. We say B is a Wiener process if

- (a) $B_0 = 0$;
- (b) (independence of increments) for any $t_1 \le t_2 \le t_3$, $B_{t_2} B_{t_1}$ and $B_{t_3} B_{t_2}$ are independent;
- (c) (Gaussian increments) $B_{t_2} B_{t_1} \sim N(0, (t_2 t_1)\Sigma);$
- (d) the map $t \mapsto B_t$ is continuous;

We also call B the Brownian motion.

Properties of Brownian Motions

Properties

Let $B = \{B_t : t \ge 0\}$ be a Brownian motion.

- (i) (Scailing Relation) $B_{st} \stackrel{d}{=} \sqrt{t} B_s$.
- (ii) (Hölder Continuouity) $t \mapsto B_t \in C^{0,\gamma}$ for all $\gamma < 1/2$.

Definition of Lévy Processes

Definition.

Let $X = \{X_t : t \ge 0\}$ be a (n-dimensional) stochastic process. We say X is a Lévy process if

- (a) $X_0 = 0$;
- (b) (independence of increments) for any $t_1\leqslant t_2\leqslant t_3$, $X_{t_2}-X_{t_1}$ and $X_{t_3}-X_{t_2}$ are independent;
- (c) (stationarity of increments) $X_{t_2} X_{t_1} \stackrel{d}{=} X_{t_2-t_1}$;
- (d) (continuity in probability) for any $\epsilon > 0$ and $t \geqslant 0$, we have

$$\lim_{h \to 0+} P(|X_{t+h} - X_t| > \epsilon) = 0.$$

Characterization of Lévy Processes

Properties

Let $X = \{X_t : t \ge 0\}$ be a Lévy process.

(i) (Lévy-Khintchine) There exist a vector $b \in \mathbb{R}^n$, a positive semidefinite real matrix Σ , and a finite measure ν satisfying $E[e^{i\xi \cdot X_t}] = e^{-t\psi(\xi)}$ where

$$\psi(\xi) = -i\xi \cdot b + \xi^t \Sigma \xi + \int_{\mathbb{R}^n \setminus \{0\}} \left(1 - e^{i\xi \cdot y} + i\xi \cdot y \mathbb{1}_{\{|y| \leqslant 1\}} \right) \nu(dy).$$

We say that ψ is the characteristic exponent of X_t . Also, the triplet (b, Σ, ν) is uniquely determined.

Characterization of Lévy Processes

Properties (continued)

(ii) (Decompostion) X_t can be uniquely decomposed as

$$X_t = bt + B_t + J_t,$$

where bt represent a drift, B_t is the Brownian motion satisfying $B_t \sim N(0,2t\Sigma)$, and J_t is a right-continuous pure jump process satisfying $E[\#\{J_t-J_{t-}\in A:t\leqslant 1\}]=\nu(A)$ for all measurable $A\subset\mathbb{R}^n$. Also, these 3 processes are mutually independent.

Examples

- (1) The Standard Brownian motion B_t is a Lévy process with the triplet (0, I, 0).
- (2) The Poisson process N_t with rate λ which describes, for example, the number of phone call between time 0 and t is a Lévy process with b=0 and $\Sigma=0$.
- (3) Subordinate Brownian Motion: Let S_t be a 1-dimensional non-decreasing Lévy process, that is, it corresponds to a triplet $(b,0,\nu)$ where $b\geqslant 0$ and $\operatorname{supp}\nu\subset\mathbb{R}_{\geqslant 0}$. For example, the Poisson process N_t in (2) may be S_t . Then, B_{S_t} is a Lévy process where B is a Brownian motion.

Motivation

Now, we want to decribe behaviors of particles that follow a stochastic process, in particular a Lévy process.

Assume that particles are spread out following the distribution density $f: \mathbb{R}^n \to \mathbb{R}$ at t=0. Consider each particle moves (also may jump) as a Lévy process X.

- Z: a random vector independent to X_t with Z ~ f (after normalizing);
- $X_t \sim \mu_t$.

Then, $Z + X_t \sim f * \mu_t = \int f(\cdot - y) \mu_t(dy)$.

If μ_t is symmetric, the distribution of particles at time t has the density

$$x \mapsto \int f(x+y)\mu_t(dy) = E[f(X_t+x)] =: T_t f(x).$$

Motivation

A natural proceeding is to differentiate $T_t f$. Roughly, we have

$$\frac{\partial}{\partial t} T_t f(x) = \lim_{h \to 0+} \frac{E[f(X_{t+h} + x)] - E[f(X_t + x)]}{h}$$

$$= \lim_{h \to 0+} \frac{E[E[f(X_t + X_h + x)]] - E[f(X_t + x)]}{h}$$

$$= \lim_{h \to 0+} \frac{E[T_t f(X_h + x)] - T_t f(x)}{h}.$$

Note that $X_{t+h} \stackrel{\text{d}}{=} X_t + X_h$ by the stationarity of increments of Lévy process.

Definition of Infinitesimal Generators

Definition

Let X_t be a n-dimensional Lévy process. For a suitable function $u: \mathbb{R}^n \to \mathbb{R}$, define $Au: \mathbb{R}^n \to \mathbb{R}$ by

$$Au(x) := \lim_{h \to 0+} \frac{E[u(X_h + x)] - u(x)}{h}, \quad x \in \mathbb{R}^n.$$

We say A is the (infinitesimal) generator of X_t .

Stochastic Processes

Then, $u(x,t) := T_t u_0(x) = E[u_0(X_t + x)]$ is a solution, actually a unique one, of the following equation:

$$\begin{cases} u_t = Au & \text{in } \mathbb{R}^n \times [0, \infty); \\ u(\cdot, 0) = u_0 & \text{in } \mathbb{R}^n \end{cases}$$

where A is the generator of X_t . Therefore, we note that each particle follows A infinitesimally.

Computation of A

Definition

Let $\psi:\mathbb{R}^n\to\mathbb{R}$ be the characteristic exponent of a Lévy process of the form

$$\psi(\xi) = -i\xi \cdot b + \xi^t \Sigma \xi + \int_{\mathbb{R}^n \setminus \{0\}} \left(1 - e^{i\xi \cdot y} + i\xi \cdot y \mathbb{1}_{\{|y| \leqslant 1\}} \right) \nu(dy).$$

Define an operator $\psi(D)$ by

$$\begin{split} \psi(D)u(x) := -b \cdot \nabla u(x) - (\nabla^t \Sigma \nabla) u(x) \\ + \int_{\mathbb{R}^n \backslash \{0\}} \left(u(x) - u(x+y) + y \cdot \nabla u(x) \mathbf{1}_{|y| \leqslant 1} \right) \nu(dy). \end{split}$$

Computation of A

Theorem

Let X_t be a Lévy process, and ψ , A be its characteristic exponent and generator, repectively. Then $A = -\psi(D)$.

Idea of proof. Use the Fourier transform on $T_t f$.

Brownian Motion and Heat Equation

Let B_t be a n-dimensional Brownian motion with $B_t \sim N(0,2tI)$. Then the generator of B_t is $\Delta = \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}$, the Laplacian operator in \mathbb{R}^n . And the solution of the equaion

$$\begin{cases} u_t = \Delta u & \text{in } \mathbb{R}^n \times [0, \infty); \\ u(\cdot, 0) = u_0 & \text{in } \mathbb{R}^n \end{cases}$$

is given by

$$u(x,t) = E[u_0(B_t+x)] = u_0 * K_t(x) = \int_{\mathbb{R}^n} u_0(y) \frac{1}{(4\pi t)^{n/2}} e^{-\frac{|x-y|^2}{4t}} dy$$

where $K_t(x) = e^{-|x|^2/4t}/(4\pi t)^{n/2}$ is a Gaussian function which is the density of $\sim N(0,2tI)$.

The above's are well-knowned as a study of "Heat Equation."

Local and Nonlocal Operators

Definition

Let $L: F \to G$ be an operator for some function spaces

F = F(X) and G = G(X) with domain X.

We say that L is local if for any $x \in X$ and any neighborhood N of x, we have $Au(x) = A(u1_N)(x)$.

We say L is nonlocal if it is not local.

Examples

- Every differential operator ∂_{x_j} on \mathbb{R}^n is a local operator.
- The Fourier transform $\mathcal{F}: u \mapsto \mathcal{F}u(\xi) = \int_{\mathbb{R}^n} e^{-2\pi i \xi \cdot x} u(x) dx$ and its inverse \mathcal{F}^{-1} are nonlocal operators.

Nonlocality of Generators

Let X_t be a Lévy process with the characteric exponent ψ . For convinience,

$$\psi(\xi) = \int_{\mathbb{R}^n \setminus \{0\}} \left(1 - e^{i\xi \cdot y} \right) \nu(dy).$$

Then,

$$Au(x) = -\psi(D)u(x) = \int_{\mathbb{R}^n \setminus \{0\}} (u(x+y) - u(x)) \nu(dy).$$

Since $\nu(dy) = E[\#\{X_t - X_{t-} \in dy : t \leq 1\}]$, we can also guess that Au is the infinitesimal change of amount of particles distributed as u which behave like X_t .

Note that A is a nonlocal operator since it needs all of informations over \mathbb{R}^n .

One of the most important example of nonlocal operator is the fractional Laplacian.

Definition |

Let $s \in (0,1)$. For a suitable function $u : \mathbb{R}^n \to \mathbb{R}$, define

$$(-\Delta)^{s}u(x) := C(n,s)P.V. \int_{\mathbb{R}^{n}} \frac{u(x) - u(y)}{|x - y|^{n+2s}} dy$$
$$= C(n,s) \lim_{\epsilon \to 0+} \int_{\mathbb{R}^{n} \setminus B_{\epsilon}(x)} \frac{u(x) - u(y)}{|x - y|^{n+2s}} dy$$

where $C(n,s) = \left(\int_{\mathbb{R}^n} \frac{1-\cos\zeta_1}{|\zeta|^{n+2s}} d\zeta\right)^{-1}$ is a constant depending only on n and s. We say $(-\Delta)^s$ is the fractional Laplacian operator of order s.

Proposition

For suitable u, we have

$$(-\Delta)^s u = \mathcal{F}^{-1}[|\cdot|^{2s} \mathcal{F} u].$$

Since $-\Delta u = \mathcal{F}^{-1}[|\cdot|^2\mathcal{F}u]$, it is the reason of that the operator is called as "the fractional Laplacian".

Also, the fractional Laplacian can be computed as

$$-(-\Delta)^s u(x) = C(n,s) \int_{\mathbb{R}^n \setminus \{0\}} \frac{u(x+y) - u(x)}{|y|^{n+2s}} dy.$$

Therefore, $-(-\Delta)^s$ is the infinitesimal generator of a Lévy process X_t with triplet $(0,0,\nu)$ where $\nu(dy)=C(n,s)|y|^{-n-2s}dy$ if such a process exists.

Existence

Let $\alpha = 2s \in (0,2)$. There exists a Lévy process X_t such that its characteristic exponent ψ is given by

$$\psi(\xi) = |\xi|^{\alpha} = \int_{\mathbb{R}^{n \setminus \{0\}}} \left(1 - e^{i\xi \cdot y}\right) \frac{C(n,s)}{|y|^{n+\alpha}} dy.$$

The process X_t is often called the α -stable process. The α -stable process X_t has the characteristic function

$$E[e^{i\xi \cdot X_t}] = e^{-t\psi(\xi)} = e^{-t|\xi|^{\alpha}}$$

and it is a unique process which satisfies

$$X_{t}^{(1)} + \cdot + X_{t}^{(m)} \stackrel{d}{=} m^{1/\alpha} X_{t}$$

where $X_t^{(j)}$'s denote the independent copies of X_t . Also, X_t is a subordinate Brownian motion, i.e. there is S_t such that $X_t = B_{S_t}$.

In the previous section, we considered the equation

$$u_t = Lu$$

for some linear operator L. When $L=\Delta,$ we get the heat equation. We can regard the heat equation as finding points in some space satisfying

$$\partial_t = \partial_{x_1}^2 + \dots + \partial_{x_n}^2,$$

while paraboloid in \mathbb{R}^{n+1} is of the form

$$t = c_1 x_1^2 + \dots + c_n x_n^2, \quad (x_1, \dots, x_n, t) \in \mathbb{R}^{n+1}.$$

$$u_t = Lu + (additional term)$$
: "Parabolic Type"

Examples

- $u_t \Delta u = 0$ (Heat Equation)
- $u_t \Delta u = f(u)$ (Scalar Reaction Diffusion Equation)
- $iu_t + Lu = 0$ (Schrödinger Equation)
- $iu_t + Lu = f(|u|^2)u$ (Nonlinear Schrödinger Equation)

Consider that it's been a long enogh time and the system is stable with almost equilibrium state. Then,

$$Lu = u_t = 0.$$

When $L=\Delta$, we get the harmonic equation. We can regard the equation as finding points in some space satisfying

$$\partial_{x_1}^2 + \dots + \partial_{x_n}^2 = 0,$$

while ellipsoid in \mathbb{R}^n is of the form

$$c_1 x_1^2 + \dots + c_n x_n^2 = c, \quad (x_1, \dots, x_n) \in \mathbb{R}^n.$$

$$Lu + (additional term) = 0$$
: "Elliptic Type"

Examples

- $-\Delta u = 0$ (Harmonic Equation)
- $-\Delta u = f(u)$ (Nonlinear Poisson Equation)
- $Lu = \lambda u$ (Eigenvalue problem of Elliptic Equation)
- $\nabla \cdot (d\nabla u) + u(m-u) = 0$ (Logistic Equation)

Elliptic PDE with Nonlocal Operator

- X_t: Lévy Process;
- ψ : Characteristic Exponent of X_t ;
- $A = -\psi(D)$: Generator of X_t .

We may consider the following elliptic equation with nonlocal operator:

$$Au + (additional term) = 0.$$

For example,

$$(-\Delta)^{\alpha/2}u = f(u)$$

for some f which may be nonlinear. (e.g. $f(u) = |u|^{p-1}u$) This equation describes the equilibrium state of particles that follows the process with external force.

My Research

Question

- *X_t*: Subordinate Brownian Motion;
- ψ : Characteristic Exponent of X_t ;
- $f: \mathbb{R} \to \mathbb{R}$: continuous on $(0, \infty)$, f(t) = 0 for $t \le 0$, $\lim_{t \to 0+} f(t) = -\infty$.

For example, $f(t) = \log t$ for t > 0.

Does a (radially symmetric nonnegative) solution of following equation exist?

$$\psi(D)u = f(u)$$
 in \mathbb{R}^n

Interesting Results (Liouville Theorem)

Theorem

Let $s \in (0,1)$ and consider

$$(-\Delta)^s u = 0 \quad \text{in } \mathbb{R}^n.$$

Then, $u(x) = a \cdot x + b$ for some $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. Furthermore, a = 0 if $s \leq 1/2$.

Theorem

Let ψ be the characteristic exponent of a Lévy process with a finite moment and $\{\xi:\psi(\xi)=0\}=\{0\}$, and consider

$$-\psi(D)u = 0 \quad \text{in } \mathbb{R}^n.$$

Then, u must be a polynomial.

Thank you!