Задача 9-4

Вещества X, Y и Z имеют схожую структуру и содержат в своем составе два элемента третьего периода $\mathbf{9}_1$ и $\mathbf{9}_2$.

Вещество X впервые было получено в 1883 году в ходе изучения устойчивости материалов химического оборудования к воздействию агрессивных сред. Вещество X получают

из тонко измельченного порошка вещества ${\bf A}$, который смешивают с избытком вещества ${\bf B}$ и нагревают. Сначала образуется вязкий прозрачный раствор,

из которого при длительном нагревании кристаллизуется бесцветный осадок Х.

Для анализа порошок X отделяют от избытка B промыванием в кипящей воде. Далее осадок сушат, сплавляют с NaOH (p-quя 1), растворяют плав в воде. При подкислении полученного раствора соляной кислотой образуется белый студенистый осадок (p-quя 2), который при прокаливании превращается в A (p-quя 3). При нейтрализации подкисленного раствора аммиаком и добавлении избытка раствора нитрата серебра выпадает желтый осадок C (p-quя 4). Ниже приведены результаты количественного анализа:

В-ва	X	A	C
Массы сухих веществ, г	0.6684	0.1988	2.7697

Вещество У можно получить по следующей методике:

 $40.00\ r$ 85%-ного водного раствора **D** выдерживают при $120\ °$ C, а затем добавляют тонкий порошок **A**. Полученную смесь нагревают при $300\ °$ C, а затем отжигают при $1000\ °$ C для кристаллизации. В результате образуется $42.00\ r$ вещества **Y**, которое анализируют аналогично **X**. Результаты анализа **Y** приведены в таблице:

В-ва	Y	A	C
Массы сухих веществ, г	0.4456	0.1843	1.5409

Вещество **Z** было получено случайно в 2005 году из-за того, что исходные вещества **Y** и **A** взятые для синтеза не были в достаточной степени высушены. В дальнейшем для его получения брали эквимолярные количества хорошо высушенных веществ **Y** и **A** и в 3 раза большее количество H_2O , далее смесь выдерживали под давлением 8.3 ГПа при $1000\,^{\circ}C$ (*p-ция* **5**). Вещество **Z** – единственный продукт реакции, после резкого охлаждения **Z** устойчиво при нормальном давлении. На формульную единицу **Z** приходится два атома элементов третьего периода.

Известно, что вещество $\bf B$ образуется при длительном выдерживании 85%-ного раствора $\bf D$ при 300 °C, потеря массы при этом составляет \sim 30.6%.

Вопросы:

- 1. Определите элементы \mathfrak{I}_1 и \mathfrak{I}_2 , состав неизвестных веществ X, Y и Z, а также A-D. Ответ обоснуйте, там, где это возможно, состав подтвердите расчетами.
- **2.** Запишите уравнения реакций (1-5).
- **3.** Предскажите координационные числа (6 или 4) элементов 3-го периода в структуре соединения **Y**.

Решение задачи 9-4 (автор: Птицын А.Д.)

1. Рассчитаем массу вещества D, взятого для синтеза Y:

* Дисперсионные – взаимодействия между частицами за счет образования мгновенных диполей.

† Поляризуемость характеризует способность образования диполя нейтральной частицей в электрическом поле. В слабых электрических полях наведённый дипольный момент пропорционален напряжённости электрического поля: μ = α eE , где коэффициент α e – количественная мера поляризуемости.

$$m(\mathbf{D}) = 40.0.85 = 34 \text{ r.}$$

При этом образуется 42 г **Y**. Т.е. анализируемая навеска вещества может быть получена из $\frac{34}{42}$ 0.4456 = 0.3607 г вещества **D**. Известно также, что оно превращается в желтый осадок (вещество **C**), который может быть или иодидом или фосфатом серебра.

В случае иодида:

$$v(AgI) = \frac{1.5409}{234.78} = 6.56 \cdot 10^{-3}$$
 моль;

Тогда молярная масса **D** в расчете на 1 атом иода:

$$M(\mathbf{D}) = \frac{0.3607}{6.56 \cdot 10^{-3}} = 54.98 \frac{\Gamma}{MOЛЬ} < 126.9 \frac{\Gamma}{MOЛЬ} = M(I)$$
, чего не может быть.

В случае фосфата серебра:

$$v(P) = v(Ag_3PO_4) = \frac{1.5409}{418.58} = 3.68 \cdot 10^{-3} \text{ моль};$$

Тогда молярная масса **D** в расчете на 1 атом фосфора:

$$M(\mathbf{D}) = \frac{0.3607}{3.68 \cdot 10^{-3}} \approx 98 \frac{\Gamma}{MOЛЬ}$$
, что соответствует фосфорной кислоте.

Из условия известно, что при нагревании раствора фосфорной кислоты (**D**) образуется вещество **B**, причем потеря массы составляет ~30.6%. Из них 15% - это вода, т.к. раствор 85%-ный, а остальное (15.6%) — потеря воды при разложении фосфорной кислоты, важно понимать что это доля от исходной массы, для того, чтобы вычислить долю от массы фосфорной кислоты необходимо $\frac{0.156}{0.85} = 0.184$. Т.к. молярная масса кислоты составляет 98 г/моль, потеря массы — 0.184.98 = 18 г/моль, что соответствует отщеплению одной молекулы воды с образованием *метафосфорной кислоты* (вещество **B**).

Теперь рассмотрим вещество **X**, которое содержит два элемента третьего периода, один из которых — это фосфор. Второй элемент вводится в виде белого порошка **A**. Вещество **A**, образующееся при прокаливании студенистого осадка, выпадающего при нейтрализации раствора, скорее всего является оксидом кремния или алюминия, т.к. выпадает из щелочного раствора.

Судя по изображению в структуре **X** присутствуют фрагменты $\{\mathfrak{I}_2O_7\}$ (наличие кислорода следует из того, что в качестве исходного вещества используют метафосфорную кислоту). Так как для фосфора характерно образование подобного аниона, $\{P_2O_7\}^4$, рассмотрим возможные варианты. Из рисунка не следует стехиометрия, поэтому заряд катиона вычислить из имеющихся данных мы не можем. Количество вещества фосфора в анализируемой навеске **X**:

$$v(P) = v(Ag_3PO_4) = \frac{2.7697}{418.58} = 6.62 \cdot 10^{-3}$$
 моль

Рассмотрим оба варианта (кремний и алюминий):

A	$V_A = \frac{0.1988}{M(A)}$, ммоль	v_P/v_A	$\mathbf{M}(\mathbf{X})$, $^{\Gamma}/_{\text{моль}}$ на 1 моль \mathbf{A}	Состав соединения X
SiO ₂	3.31	2.00	202	SiP ₂ O ₇ [‡]
Al ₂ O ₃	1.95	3.39	343	_

Определим теперь состав Y на основании результатов анализа:

$$v(P) = v(Ag_3PO_4) = \frac{1.5409}{418.58} = 3.68 \cdot 10^{-3}$$
 моль

$$v(Si) = v(SiO_2) = \frac{0.1843}{60.084} = 3.07 \cdot 10^{-3} \text{ моль}$$

Для определения числа атомов кремния и фосфора в формульной единице представим число атомов фосфора в виде $\frac{3.68}{3.07} \cdot \boldsymbol{n}$, где \boldsymbol{n} — число атомов кремния. Перебором \boldsymbol{n} получаем, что при $\boldsymbol{n} = 5$, $\frac{3.68}{3.07} \cdot \boldsymbol{n} = 5.99$, т.е. на формульную единицу приходится 5 атомов кремния и 6 атомов фосфора. Молярная масса:

$$M(\mathbf{Y}) = \frac{0.4456}{3.68 \cdot 10^{-3}} \cdot 6 = 726.5 \text{ F/MOJIL},$$

что соответствует формуле $Si_5O(PO_4)_6$ или $Si_5P_6O_{25}$.

Вещество **Z** образуется при взаимодействии эквимолярных количеств $Si_5O(PO_4)_6$ и SiO_2 , т.е. число атомов фосфора и кремния становится равным, по условию на формульную единицу приходится по одному атому фосфора и

кремния, при этом число атомов кислорода 25+2=27 не кратно 6, т.е. необходимо добавить 3 молекулы воды (см. уравнение реакции 5) $\mathbf{Z} = \mathrm{SiPO_4(OH)}^{**}$.

X	Y	Z	A	В	C	D
SiP ₂ O ₇	Si ₅ O(PO ₄) ₆	SiPO ₄ (OH)	SiO ₂	HPO_3	Ag_3PO_4	H_3PO_4

2. Уравнения реакций:

- 1) $SiP_2O_7 + 8$ NaOH = $Na_2SiO_3 + 2$ Na₃PO₄ + 4 H₂O или $SiP_2O_7 + 10$ NaOH = $Na_4SiO_4 + 2$ Na₃PO₄ + 5 H₂O
- 2) $Na_2SiO_3 + 2 HCl = 2 NaCl + SiO_2 \cdot xH_2O + (1-x) H_2O$ или $Na_4SiO_4 + 4 HCl = 4 NaCl + SiO_2 \cdot xH_2O + (2-x) H_2O$
- 3) $SiO_2 \cdot xH_2O = SiO_2 + x H_2O$
- 4) $Na_2HPO_4 + 3 AgNO_3 + NH_3 = Ag_3PO_4 \downarrow + 2 NaNO_3 + NH_4NO_3$
- 5) $Si_5O(PO_4)_6 + SiO_2 + 3 H_2O = 6 SiPO_4(OH)$

[‡] K. Huttner. *Uber die Einwirkung der Phosphorsaure auf Kieselsaure und Silikatglaser* // Z AAC **59**, 216 – 224 (1908)

[§] Poojary, D.M., Borade, R.B., Clearfield, A., Structural characterization of silicon orthoph osphate // Inorg. Chim. Acta 208, 23 – 29 (1993)

4. В структуре вещества **Y** фосфор находится в тетраэдрическом окружении, а кремний и в тетраэдрическом, и в октаэдрическом окружении атомов кислорода. Это можно понять, если сосчитать количество «концевых» атомов кислорода в фосфатных группах и прибавить валентность атома кислорода: 6.3 + 2 = 20, т.е. в среднем на 1 атом кремния должно приходиться 5 связей, а т.к. в условии предложен выбор между 4 и 6, то половина атомов кремния имеет кч = 6, а половина – кч = 4.

Система оценивания:

3	Координационные число Р - 0.5 балла	1.5 балла	
3	Координационные число Р - 0.5 балла Координационные числа Si – 1 балл	1.5 балла	
3	• • • • • • • • • • • • • • • • • • • •	1.5 балла	
2	Уравнения реакций 1 – 5 по 1.5 балла	7.5 баллов	
	Вещества $\mathbf{A} - \mathbf{D}$ по 1.5 балла	6 баллов	
	Вещества Х, У и Z по 1 балл	3 балла	
1	Элементы Э1 и Э2 по 1 баллу	2 балла	

^{**} L. A. Stearns, T. L. Groy, K. Leinenweber, *High-pressure synthesis and crystal structure o f silicon phosphate hydroxide, SiPO*₄(OH) //J. Solid State Chem., **178**, 2594 – 2601 (2005)