第2次作业题

第 2.1 题

阅读并总结第2周阅读材料。

第 2.2 题

For any subset X of \mathbb{R}^n , define

$$X^* := \{ y \in \mathbb{R}^n \mid x^T y \le 1 \text{ for each } x \in X \}.$$

- Show that for each convex cone C, C* is a closed convex cone.
- (ii) Show that for each closed convex cone C, (C*)* = C.

第 2.3 题

Let $C \subseteq \mathbb{R}^n$. Then C is a closed convex cone if and only if $C = \bigcap \mathcal{F}$ for some collection \mathcal{F} of linear halfspaces.

(A subset H of \mathbb{R}^n is called a *linear halfspace* if $H = \{x \in \mathbb{R}^n \mid c^T x \leq 0\}$ for some nonzero vector c.)

第 2.4 题

Let P be a polyhedron.

- (i) Show that P* is again a polyhedron.(Hint: Use previous exercises.)
- (ii) Show that P contains the origin if and only if (P*)* = P.
- (iii) Show that the origin is an internal point of P if and only if P* is bounded.

第 2.5 题

Prove that there exists a vector $x \ge 0$ such that $Ax \le b$ if and only if for each $y \ge 0$ satisfying $y^TA \ge 0$ one has $y^Tb \ge 0$.

第 2.6 题

Prove that there exists a vector x > 0 such that Ax = 0 if and only if for each y satisfying $y^TA \ge 0$ one has $y^TA = 0$. (Stiemke's theorem (Stiemke [1915]).)