Chapitre 17. Séries entières

Si r > 0 on notera D(a, r) = |a - r, a + r| dans \mathbb{R}

Rayon de convergence d'une série entière 1

Généralités

Définition 1.1. On appelle série entière toute série de fonctions du type $\sum u_n$ avec $u_n: z \in \mathbb{K} \mapsto a_n z^n \in \mathbb{K}$ avec $(a_n)_{n\in\mathbb{N}}$ suite de \mathbb{R} ou de \mathbb{C}

On la note $\sum_{n=0}^{+\infty} a_n z^n$

Théorème 1.2. Soit $\sum_{n=0}^{+\infty} a_n z^n$ une série entière. Alors dans $[0, +\infty]$

$$R = \sup \{r \ge 0 \mid (a_n r^n)_{n \in \mathbb{N}} \text{ bornée } \}$$

$$= \sup \left\{r \ge 0 \mid a_n r^n \xrightarrow[n \to +\infty]{} 0\right\}$$

$$= \sup \{r \ge 0 \mid (a_n r^n)_{n \in \mathbb{N}} \text{ sommable } \}$$

R est appelée rayon de convergence de $\sum_{n=0}^{+\infty} a_n z^n$

Théorème 1.3. Soit $\sum_{n=0}^{+\infty} a_n z^n$ de rayon R > 0

- 1. Pour tout $z \in \mathbb{K}$ avec $|z| < R \sum_{n=0}^{+\infty} a_n z^n$ converge absolument.
- 2. Pour tout $z \in \mathbb{K}$ avec $|z| > R \sum_{n=0}^{+\infty} a_n z^n$ diverge grossièrement (ie. $a_n z^n \not\to 0$)

Définition 1.4. Si $\mathbb{K} = \mathbb{C}$ (rp. \mathbb{R}) D(0,R) est appelé disque (rp. intervalle) ouvert de convergence de $\sum_{n=0}^{+\infty} a_n z^n$

Si $\mathbb{K} = \mathbb{C}$ alors C(0,R) est appelé cercle d'incertitude de $\sum^{+\infty} a_n z^n$

Si $\mathbb{K} = \mathbb{R}$ alors $\{-R, R\}$ sont appelés points d'incertitude.

La somme de la série entière est

$$S: z \mapsto \sum_{n=0}^{+\infty} a_n z^n$$

Son domaine de définition \mathcal{D}_S vérifie

$$D(0,R)\subset \mathcal{D}_S\subset \overline{D}(0,R)$$

1.2 La Règle de D'Alembert

Proposition 1.5 (Règle de D'alembert). Soit $\sum a_n z^n$ une série entière avec $a_n \neq 0$ pour tout n

$$\frac{|a_{n+1}|}{|a_n|} \xrightarrow[n \to +\infty]{} L$$

Alors dans $[0, +\infty]$

$$R = \frac{1}{I}$$

Théorème de comparaison

Théorème 1.6. Soit $\sum_{n=0}^{+\infty} a_n z^n$ de rayon R_a et $\sum_{n=0}^{+\infty} b_n z^n$ de rayon R_b

Alors:

- 1. Si pour tout $n \in \mathbb{N}$ $|a_n| \leq |b_n|$ alors $R_b \leq R_a$
- 2. Si $|a_n| = O(|b_n|)$ alors $R_b \leq R_a$
- 3. Si $|a_n| \underset{n \to +\infty}{\sim} |b_n|$ alors $R_b = R_a$

1.4 Rayon d'une somme, d'un produit

Proposition 1.7. On considère $\sum_{n=0}^{+\infty} a_n z^n$ de rayon R_a et $\sum_{n=0}^{+\infty} b_n z^n$ de rayon R_b

Notons R le rayon de $\sum_{n=0}^{+\infty} (a_n + b_n) z^n$

Alors:

- $R \ge \min(R_a, R_b)$ et même si $R_a \ne R_b$ alors $R = \min(R_a, R_b)$
- Si $|z| < \min(R_a, R_b)$ alors

$$\sum_{n=0}^{+\infty} (a_n + b_n) z^n = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=0}^{+\infty} b_n z^n$$

Définition 1.8. Soit $\sum_{n=0}^{+\infty} a_n z^n$ et $\sum_{n=0}^{+\infty} b_n z^n$ deux séries entières.

La série entière produit de Cauchy de $\sum_{n=0}^{+\infty} a_n z^n$ et $\sum_{n=0}^{+\infty} b_n z^n$ est $\sum_{n=0}^{+\infty} c_n z^n$ avec

$$c_n = \sum_{k=0}^n a_k b_{n-k} = \sum_{p+q=n} a_p b_q$$

Théorème 1.9. $\sum_{n=0}^{+\infty} a_n z^n$ de rayon R_a et $\sum_{n=0}^{+\infty} b_n z^n$ de rayon R_b

Soit $\sum_{n=0}^{+\infty} c_n z^n$ leur produit de Cauchy de rayon RAlors $R \ge \min(R_a, R_b)$ et si $|z| < \min(R_a, R_b)$ alors

$$\sum_{n=0}^{+\infty} c_n z^n = \left(\sum_{n=0}^{+\infty} a_n z^n\right) \left(\sum_{n=0}^{+\infty} b_n z^n\right)$$

Propriétés des séries entières dans le disque ouvert de convergence 2

Mode de convergence

Théorème 2.1. Soit $\sum_{n=0}^{+\infty} a_n z^n$ de rayon $R \in]0, +\infty]$

- 1. Il y a convergence absolue sur D(0, R)
- 2. Il y a convergence normale sur tout disque fermé $\overline{D}(0,r)$ inclus dans le disque ouvert de convergence (avec donc r < R)

2

En particulier, il y a convergence uniforme sur tout $\overline{D}(0,r)$ avec r < R

Corollaire 2.2. Soit $\sum_{n=0}^{+\infty} a_n z^n$ une série de rayon R > 0

Il y a convergence normale sur tout compact contenu dans le disque ouvert D(0, R)

La fonction somme $S: z \mapsto \sum_{n=0}^{+\infty} a_n z^n$ est continue sur D(0, R)

Dérivation d'une série entière

Définition 2.3. $\sum_{n=1}^{+\infty} na_n z^{n-1}$ ou $\sum_{n=0}^{+\infty} (n+1)a_{n+1}z^n$ est appelée série entière dérivée de $\sum_{n=0}^{+\infty} (n+1)a_{n+1}z^n$

Proposition 2.4. Si $\sum_{n=0}^{+\infty} a_n z^n$ a un rayon R alors sa série dérivée $\sum_{n=0}^{+\infty} n a_n z^{n-1}$ a le même rayon R

Théorème 2.5. Soit $S: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ de rayon R ($a_n \in \mathbb{K}$) Alors S est C^{∞} sur l'intervalle ouvert de convergence]-R, R[et on obtient S' en dérivant terme à terme : Pour tout $x \in]-R, R[$

$$S'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1} = \sum_{n=0}^{+\infty} (n+1) a_{n+1} x^n$$

Et si $p \ge 1$

$$S^{(p)}(x) = \sum_{n=p}^{+\infty} n(n-1)...(n-p+1)a_n x^{n-p} = \sum_{n=0}^{+\infty} (n+p)...(n+1)a_{n+p} x^n$$

Unicité des coefficients

Proposition 2.6. Soit $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ ($x \in \mathbb{R}$) une série entière de rayon R > 0 Alors f est C^{∞} sur]-R,R[et

$$a_n = \frac{f^{(n)}(0)}{n!}$$

En particulier, les coefficients d'une série entière de rayon > 0 sont uniquement déterminés par la fonction somme.

De plus, pour $x \in]-R, R[$

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$$

ie. f est égale à sa série de Taylor.

Corollaire 2.7. Si deux séries entières avec un rayon > 0 coïncident sur un voisinage de 0 (ou de 0^+ ou de 0^-) alors elles ont les mêmes coefficients et sont donc égales.

Intégration d'une série entière

Proposition 2.8. Soit $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ de rayon R > 0

On peut intégrer terme à terme la série sur tout segment $[a,b]\subset]-R$, R[

En particulier si |x| < R

$$\int_0^x f(t) dt = \int_0^x \sum_{n=0}^{+\infty} a_n t^n dt = \sum_{n=0}^{+\infty} \frac{a_n x^{n+1}}{n+1}$$

Proposition 2.9. Soit $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ de rayon R > 0

Si $r \in [0, R[$ alors

$$a_n r^n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(re^{i\theta}) e^{-in\theta} d\theta$$

Complément: fonctions holomorphes

Définition 2.10. Soit Ω un ouvert de \mathbb{C} et $f:\Omega\to\mathbb{C}$

On dit que f est holomorphe (ou C-dérivable) si pour tout $z_0 \in \Omega \lim_{\substack{z \to z_0 \\ z \neq z_0}} \frac{f(z) - f(z_0)}{z - z_0}$ existe.

Cette limite est notée $f'(z_0)$

Théorème 2.11. Soit $\sum_{n=0}^{+\infty} a_n z^n = f(z)$ une série entière de rayon R > 0

Alors f est holomorphe sur D(0, R)

Pour tout $z \in D(0, R)$

$$f'(z) = \sum_{n=1}^{+\infty} n a_n z^{n-1}$$

En particulier f est C^{∞} sur D(0, R)

3 Fonctions développables en séries entières

Position du problème

Définition 3.1. Soit $f: U \to \mathbb{K}$, $U \subset \mathbb{K}$, $a \in U$ voisinage de a

On dit que f est développable en série entière en a (DSE en a) s'il existe r>0, $(a_n)_{n\geq 0}\in \mathbb{K}^{\mathbb{N}}$ tel que

$$\forall x \in U, |x-a| < r \implies f(x) = \sum_{n=0}^{+\infty} a_n (x-a)^n$$

 $\forall x \in U, |x-a| < r \implies f(x) = \sum_{n=0}^{+\infty} a_n (x-a)^n$ Si U est un ouvert et si f est DSE en tout point $a \in U$ on dit que f est analytique.

Proposition 3.2. Soit $f: I \to \mathbb{K}$ DSE en $a \in \overset{\circ}{I}$ alors :

- 1. f est C^{∞} au voisinage de a
- 2. Au voisinage de a

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

Application du développement de l'exponentielle

Proposition 3.3. L'exponentielle

$$e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$$

a un rayon infini.

Par opération, il en va de même pour cos, sin, cosh, sinh qui ont toutes un rayon infini

Pour tout $x \in \mathbb{R}$

$$\cosh(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}$$

$$\sinh(x) = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!}$$

$$\cos(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

$$\sin(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

3.3 Méthode de l'équation différentielle

Pour montrer qu'une fonction f est DSE en 0 on peut :

- Trouver une équation différentielle sur f d'ordre 1 ou 2 à coefficients polynomiaux.
- Analyse : on suppose f DSE en 0 avec un rayon R > 0 et on injecte dans l'équation différentielle. Par unicité des coefficients et les conditions de Cauchy on obtient les coefficients a_n
- Synthèse : On pose $g(x) = \sum_{n=0}^{+\infty} a_n x^n$ avec les a_n trouvés. On montre que $R_g > 0$, que g vérifie le même problème de Cauchy que f et donc f = g

Exercice : DSE en 0 de $f(t) = \cos(\alpha \arcsin(t))$ pour $\alpha \in \mathbb{R}$

3.4 La série de binôme de Newton

Théorème 3.4 (Série du binôme). Soit $\alpha \in \mathbb{R} \setminus \mathbb{N}$

La fonction $x \mapsto (1+x)^{\alpha}$ est développable de 0 en série entière avec un rayon égal à 1 et si |x| < 1

$$(1+x)^{\alpha} = \sum_{n=0}^{+\infty} \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!} x^n = \sum_{n=0}^{+\infty} {\alpha \choose n} x^n$$

Proposition 3.5. Pour |x| < 1

$$\frac{1}{1+x} = \sum_{n=0}^{+\infty} (-1)^n x^n$$
$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$$

$$\ln(1+x) = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{n+1}}{n+1} = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} x^n}{n}$$
$$\ln(1-x) = -\sum_{n=1}^{+\infty} \frac{x^n}{n}$$

$$arctan(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$$

$$\frac{1}{\sqrt{1+x}} = \sum_{n=0}^{+\infty} \frac{(-1)^n \binom{2n}{n}}{4^n} x^n$$

arcsin(x) =
$$\sum_{n=0}^{+\infty} \frac{\binom{2n}{n} x^{2n+1}}{(2n+1)4^n}$$

3.5 Complément : Développement en série entière des fractions rationnelles

Théorème 3.6. Soit $F \in \mathbb{C}(X)$ dont 0 n'est pas pôle. On note $a_1, ..., a_p$ ses pôles.

Alors F est développable en série entière en 0 avec un rayon $R = \inf(|a_1|, |a_2|, ..., |a_p|)$ ($\sin p = 0, R = +\infty$)

4 Comportement aux points d'incertitude

4.1 Cas où
$$\sum_{n\in\mathbb{N}} |a_n| R^n < +\infty$$

Proposition 4.1. Si $\sum_{n=0}^{+\infty} a_n z^n$ est de rayon $R \in]0, +\infty[$ (fini) et si $\sum_{n \in \mathbb{N}} |a_n| R^n < +\infty$ alors

$$f: \begin{cases} \overline{D}(0,R) \to \mathbb{C} \\ z \mapsto \sum_{n=0}^{+\infty} a_n z^n \end{cases}$$

est continue sur $\overline{D}(0, R)$

4.2 Cas où R = 1 est les coefficients sont positifs

Proposition 4.2.

1. Si $\sum_{n\in\mathbb{N}} a_n < +\infty$ alors $f: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ est continue sur [-1,1]

2. Si
$$\sum_{n\in\mathbb{N}} a_n = +\infty$$
 alors $\lim_{x\to 1^-} \sum_{n=0}^{+\infty} a_n x^n = +\infty$

Dans $[0, +\infty]$ on a donc

$$\lim_{x \to 1^{-}} \sum_{n=0}^{+\infty} a_n x^n = \sum_{n \in \mathbb{N}} a_n$$

4.3 Le théorème d'Abel-radial

Théorème 4.3 (Théorème d'Abel-radial). Soit $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ une série entière de rayon $R \in]0, +\infty[$ ($\forall n \in \mathbb{N}, a_n \in \mathbb{K}, x \in \mathbb{R}$)

Si $\sum a_n R^n$ converge, alors f est continue en R (et donc sur]-R,R])

Autrement dit

$$\lim_{x \to R^{-}} \sum_{n=0}^{+\infty} a_{n} x^{n} = \sum_{n=0}^{+\infty} a_{n} R^{n}$$

5 Exercices classiques

5.1 Exercice type : traitement d'équations différentielles d'ordre 2

On considère (E) 4xy'' + 2y' - y = 0

Trouver les solutions sur \mathbb{R}_+^* , \mathbb{R}_-^* , \mathbb{R}_-

(Indication: on en cherchera une DSE)

5.2 Équivalent d'une série entière au point d'incertitude

Soit $(a_n)_{n\geq 0}$ suite de \mathbb{R}_+ , $(b_n)_{n\in\mathbb{N}}$ suite de \mathbb{R} avec $b_n = o(a_n)$ et $(c_n)_{n\in\mathbb{N}}$ suite de \mathbb{R} avec $c_n \sim a_n$

6

No suppose de plus
$$f(x) = \sum_{n=0}^{+\infty} a_n x^n$$
, $g(x) = \sum_{n=0}^{+\infty} b_n x^n$ et $h(x) = \sum_{n=0}^{+\infty} c_n x^n$ pour $|x| < 1$

- 1. Montrer que le rayon de g et de h est ≥ 1 , $\lim_{x \to 1^{-}} f(x) = +\infty$
- 2. Monter que g(x) = o(f(x))
- 3. Montrer que $h(x) \sim_{x \to 1^{-}} f(x)$

5.3 Analycité, inversion, composition

Soit
$$f(z) = \sum_{n=0}^{+\infty} a_n z^n$$
 de rayon $R > 0$

- 1. Montrer que si $a_0 \neq 0$ ie. $f(0) \neq 0$ alors $\frac{1}{f}$ est DSE en 0
- 2. Montrer que si $|z_0| < R$ alors f est DSE en z_0 (Analycité) f est donc analytique sur D(0,R)
- 3. Soit $g(z)=\sum\limits_{n=1}^{+\infty}b_nz^n$ ($b_0=0$ ie. g(0)=0) avec un rayon R'>0 Montrer que $f\circ g(z)=f(g(z))$ est DSE en 0