

FIG. 1A

Cell Sheet Constructs

Temperature responsive polymer
Poly (N-isopropylacrylamide) (PIPAAm)

Exemplary Dimensions:

$1.11 \pm 0.05\text{cm}^2$ in area
 $50.2 \pm 6.0\mu\text{m}$ thick

BEST AVAILABLE COPY

Poly (acrylamide) (PAAm)

FIG. 1B

Temperature responsive culture dish

FIG.2

FIG.3 Experimental Protocol

FIG.4 Regenerative therapy for cardiac muscle by cell transplantation

FIG.5 Problems with tissue transplantation

Cardiac muscle graft with scaffold

Alignment and cell-to-cell adhesion of transplanted cells within scaffold

Changes in scaffold in organism: elicitation of inflammation

Acceptance of scaffold by recipient's heart

Development of high biocompatible cardiac muscle graft without scaffold

FIG.6 Implantation of cardiomyocyte sheet into infarcted heart

Implantation into rat infarct model

In vivo
Implantation of GFP rat newborn cardiomyocyte sheet

Cardiomyocyte sheet

FIG.7

Tissue
2 weeks after implantation

HE staining

Factor VIII staining

Evaluation of Cardiac function - 1

Control

Implantation of prosthetic tissue

FIG.9

Evaluation of cardiac function - 2

Ejection Fraction

Base line

Fractional Shortening

Implanted cardiomyocyte sheet

End-systolic area

*: p<0.05 to control

FIG. 10

Electrophysiological Evaluation

Buried electrode at
sheet implanted site

Electrophysiological Evaluation

FIG. 11

ECG 1:ECG (Surface)

ECG 2: Normal heart (anterior wall)

Ligation model (injured)

**Prosthetic tissue implanted
(prosthetic tissue injured)**

Isolation and culture of myoblast

Methods: Myoblast Sheet Construction

FIG. 13

FIG. 14

Experimental Protocol

FIG. 15
Myoblast sheet: 4W post implantation

x10

x200

HE staining

Implanted myoblasts

x1000

FIG. 16 Myoblast sheet Implantation procedure

After myoblast sheet implantation

Lewis rat ligation model

FIG.17 HistologyMasson's Trichrome Staining

FIG. 18

CKA

M-mode analysis

FIG.19

#P< 0.05 for control; *P< 0.05 to for injection needle group

FIG.20 Anterior Wall Thickness Comparison
Myoblast injection

x40

Control

x40

FIG.21 Myoblast sheet:
Desmin Staining

x100

Control

x40

Myoblast prosthetic
tissue group (GFP)

x100

Factor VIII staining

x40

Myoblast prosthetic tissue

22 /47
x100

Myoblast prosthetic tissue

x40

FIG.22A

FIG.22B

FIG.22C

FIG.22D

FIG.22E

FIG.22F

FIG.23A

FIG.23B

FIG.23C

FIG.24A

FIG.24B

FIG.24C

FIG.25A

FIG.25B

FIG.25C

FIG.26A

FIG.26B

FIG.26C

FIG.27A

FIG.27B

FIG.27C

FIG.28

FIG.29

Masson's Trichrome staining x400

HE staining x400

MHC fast x400

MHC slow x400

FIG.30A Tissue (Masson's Trichrome staining)

FIG. 30B

FIG. 30C

FIG.30D

FIG.31 Survival rate of implanted cell

FIG.32 Electronical properties of myoblast sheet

MED system

Cardiomyocyte sheet

Myoblast sheet

FIG.33A Myoblast sheet implantation to dilated cardiomyopathic hamster

HE staining

Masson's Trichrome staining

FIG.33B

Left ventricular end-systolic diameter

Left ventricular end-diastolic diameter

FIG.33C

Control group

Myoblast sheet implantation group

FIG.34 Myoblast sheet implantation into pig infarction model

Evaluation of cardiac function (systolic function) of pig infarction model by CKI method

FIG. 35

Before operation After operation

Implantation
site

FIG.36 Evaluation of cardiac function (diastolic function) of pig infarction model by CKI method

→
Implantation
site

FIG.37

Without ascorbic acid

FIG.38

With ascorbic acid

FIG.39

FIG.41

$$\text{Rigidity } H = \frac{F}{A} = \frac{F}{k_1 h_p^2}$$

$$\text{Young's modulus } E = \left[\frac{dF}{dh} \right]_{F_{max}} \cdot \frac{1 - \nu^2}{2 \cdot k_2 \cdot h_{pmax}}$$

$$\text{Contact depth } h_p = h_r + 0.25(h_{max} - h_r)$$

F : Load
A : Contact projection area
h_p : Contact depth area
$k_1 k_2$: Shape coefficient
F_{max} : Maximum load
h_{max} : Max. displacement
h_r : Point at which tangential line cross weight 0
dF/dh : Gradient of tangential line of the removal of load curve
ν : Poisson's ratio

FIG.42

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.