Cost-Aware Bayesian Optimization with Adaptive Stopping via Gittins Indices

Qian Xie 谢倩 (Cornell ORIE)

INFORMS Annual Meeting 2025 Job Market Showcase

ML model training:

Training hyperparameters ------

Adaptive experimentation:

Decision/design variables ———

Revenue

Input $x \longrightarrow$

 \longrightarrow Performance metric f(x)

expensive-to-evaluate

ML model training:

Training time

Compute credits

→ Accuracy

Adaptive experimentation:

Decision/design variables ——

Training

Operational cost User experience

→ Revenue

High-level goal: Choose $x_1, ..., x_T$ to maximize the expected best observed value $\mathbb{E} \max_{t=1,2,...,T} f(x_t)$

High-level goal: Choose x_1, \dots, x_T to maximize the expected best observed value

$$\mathbb{E} \max_{t=1,2,\dots,T} f(x_t)$$

adaptively

High-level goal: Choose $x_1, ..., x_T$ to maximize the expected best observed value \mathbb{E} max $f(x_t)$

$$\mathbb{E} \max_{t=1,2,\dots,T} f(x_t)$$

Fewer #evaluations

Efficient framework: Bayesian optimization

Black-box function

Probabilistic model

0.6

0.4

0.2

(e.g., Gaussian process)

Probabilistic model (e.g., Gaussian process)

0.6

0.4

0.2

Probabilistic model (e.g., Gaussian process)

Decision rule (e.g., UCB, TS)

Probabilistic model

(e.g., Gaussian process)

Probabilistic model (e.g., Gaussian process)

14

Existing Design Principles

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling

New Design Principle: Gittins Index

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling
- •Gittins Index

16

New Design Principle: Gittins Index

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling
- •Gittins Index

New Design Principle: Gittins Index

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling
- •Gittins Index

- 1. Naturally handles practical considerations
- 2. Performs competitively on benchmarks
- 3. Comes with theoretical guarantees

Under-explored Practical Considerations

Observable multi-stage feedback

Under-explored Practical Considerations

Observable multi-stage feedback

New design principle:
Gittins index

>> Smart stopping time

Observable multi-stage feedback

New design principle: Gittins index

Observable multi-stage feedback

New design principle: Gittins index

Optimal in related sequential decision problems

Smart stopping time

Features in Pandora's box

Observable multi-stage feedback

New design principle: Gittins index

Optimal in related sequential decision problems

Varying evaluation costs

Features in Pandora's box

Smart stopping time

Features in Pandora's box

Observable multi-stage feedback

Features in Markovian bandits

New design principle: Gittins index

Optimal in related sequential decision problems

What is Pandora's Box?

Smart stopping time

Features in Pandora's box

Observable multi-stage feedback Features in Markovian bandits

New design principle: Gittins index

Optimal in related sequential decision problems

High-level goal: Choose x_1, \dots, x_T to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,\dots,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$
Flexible stopping time

$$t = 0$$

High-level goal: Choose $x_1, ..., x_T$ to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$

$$t = 1$$

High-level goal: Choose x_1, \dots, x_T to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$

$$t = 2$$

High-level goal: Choose $x_1, ..., x_T$ to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$

$$t = 3$$

High-level goal: Choose x_1, \dots, x_T to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$

t = T, stop

High-level goal: Choose x_1, \dots, x_T to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$

Continuous

Correlated

Fixed-iteration

Expected best-observed value

$$\mathbb{E} \max_{t=1,2,\dots,T} f(x_t)$$

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected utility $\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$

32

Continuous

Correlated

Fixed-iteration

Expected regret $\mathbb{E} \max_{x \in \mathcal{X}} f(x) - \mathbb{E} \max_{t=1,2,...,T} f(x_t)$

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

$$\mathbb{E} \max_{x \in \mathcal{X}} f(x) - \mathbb{E} \max_{t=1,2,\dots,T} f(x_t) + \mathbb{E} \sum_{t=1}^{T} c(x_t)$$

Continuous

Correlated

Fixed-iteration

Expected regret

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

Optimal policy: Gittins index

Optimal Policy: Gittins Index

Step 1: Assign each box a Gittins index (higher is better)

35

Optimal Policy: Gittins Index

Step 2: Open the box with highest index if it is closed

36

Optimal Policy: Gittins Index

Step 2': Select the box with highest index if it is opened and stop

Bayesian Optimization

Continuous

Correlated

Fixed-iteration

Expected regret

Is Gittins index good?

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

Gittins index is optimal

38

Bayesian Optimization

Continuous

Correlated

Fixed-iteration

Expected regret

Is Gittins index good?

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

Gittins index is optimal

39

New Design Principle: Gittins Index

- Improvement-based (e.g., LogEIPC)
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling (TS)
- •Gittins Index (PBGI)

Why another principle?

- 1. Naturally handles practical considerations
- 2. Performs competitively on benchmarks
- 3. Comes with theoretical guarantees

Gittins Index vs Baselines on AutoML Benchmark

Bayesian Optimization

Continuous

Correlated

Fixed-iteration

Expected regret

Is Gittins index good?

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

Gittins index is optimal

New Design Principle: Gittins Index

- Improvement-based (e.g., LogEIPC)
- Entropy-based
- Confidence bounds
- Thompson sampling
- •Gittins Index

Why another principle?

- 1. Naturally handles practical considerations
- 2. Performs competitively on benchmarks
- 3. Comes with theoretical guarantees

Theoretical Guarantee and Empirical Validation

Theorem (No worse than stopping-immediately)

 $\mathbb{E}[R(\text{ours}; PBGI)] \le R[\text{stopping immediately}]$

Implication:

- Matches the best achievable performance in the worst case (evaluations are all very costly).
- Avoids over-spending a property many cost-unaware stopping rules lack.

Studied problem

Varying evaluation costs

Adaptive stopping time

Impact

Competitive empirical performance & interests from practitioners

"Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index." NeurIPS'24.

Key idea

Link to Pandora's Box problem & Gittins index theory

Ongoing work

Sharper theoretical guarantees & blackbox optimization w/ multi-stage feedback

"Cost-aware Stopping for Bayesian Optimization." Under review.

Studied problem

Varying evaluation costs

Impact

Competitive empirical performance & interests from practitioners

"Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index." NeurIPS'24.

Key idea

Link to Pandora's Box problem & Gittins index theory

Ongoing work

LLM-driven black-box optimization

"Cost-aware Stopping for Bayesian Optimization." Under review.

Recap: Bayesian Optimization

Ongoing: LLM-Driven Black-Box Optimization

Decision rule

(e.g., Softmax sampling)

Probabilistic model (large language model)

Ongoing: LLM-Driven RL Training Optimization

Mixed-autonomy traffic control:

Decision rule (e.g., Softmax sampling)

Probabilistic model (large language model)