KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

BİTİRME PROJESİ

ENDOMETRIAL KANSERIN AMELIYAT ÖNCESI BT GÖRÜNTÜLERINDE ELDE EDİLEN RADIOMİCS VERİLERI KULLANILARAK MAKİNE ÖĞRENMESİ TEKNİKLERİYLE KİTLE İÇİN YÜKSEK RİSK DEĞERLENDİRMESİ YÖNTEMİ

FEHIME YIGIT

KOCAELİ 2021

KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİTİRME PROJESİ

ENDOMETRIAL KANSERIN AMELIYAT ÖNCESI BT GÖRÜNTÜLERINDE ELDE EDİLEN RADIOMİCS VERİLERI KULLANILARAK MAKİNE ÖĞRENMESİ TEKNİKLERİYLE KİTLE İÇİN YÜKSEK RİSK DEĞERLENDİRMESİ YÖNTEMİ

FEHIME YIGIT

Dr.Öğr. Üye	si Alpaslan Burak İNNER	
Danışman,	Kocaeli Üniversitesi	***************************************
Dr.Öğr. Üye	si Özgür ÇAKIR	
Jüri Üyesi,	Kocaeli Üniversitesi	
Dr.Öğr. Üye	si Ersin KAYA	
Jüri Üvesi.	Konya Teknik Üniversitesi	••••••

Tezin Savunulduğu Tarih: 28.01.2021

ÖNSÖZ VE TEŞEKKÜR

Bu tez çalışmasında, Bilgisayarlı Tomografi görüntülerinden elde edilen doku analizi verilerinde makine öğrenmesiyle Endometrial Kanser kitle alt-tipi tespiti yapılmıştır. Yapılan çalışmaların makine öğrenmesi ve hastalık tespiti gibi alanlarda çalışan kişilere faydalı olmasını ümit ederim.

Tez çalışmam süresince büyük bir özen ve özveriyle, bilgi ve tecrübelerini benimle paylaşan, beni motive edip desteklerini esirgemeyen değerli tez danışmanım, Dr. Öğr. Üyesi Alpaslan Burak İNNER Hocama çok teşekkür ederim. Tez çalışmalarıma çok büyük destek ve emek veren Dr. Öğr. Üyesi Özgür ÇAKIR'a değerli katkıları için teşekkür ederim.

Çalışmalarım ve eğitim hayatım boyunca maddi ve manevi destekleriyle beni hiçbir zaman yalnız bırakmayan ve beni motive eden canım anneme, babama, kardeşlerime ve teyzeme çok teşekkür ederim. Zorlandığımda hep yanımda olan, benden sevgi ve desteklerini esirgemeyen kıymetli arkadaşlarıma çok teşekkür ederim.

Ocak – 2021 Fehime YİGİT

Bu dokümandaki tüm bilgiler, etik ve akademik kurallar çerçevesinde elde edilip sunulmuştur.

Ayrıca yine bu kurallar çerçevesinde kendime ait olmayan ve kendimin üretmediği ve başka

kaynaklardan elde edilen bilgiler ve materyaller (text, resim, şekil, tablo vb.) gerekli şekilde

referans edilmiş ve dokümanda belirtilmiştir.

Öğrenci No: 180201097 Adı Soyadı: Fehime YİGİT

İmza:

İÇİNDEKİLER

ÖNSÖZ	L VE TE	ŞEKKÜR	i
İÇİNDE	EKİLER		ii
		ZİNİ	
TABLC	LAR D	izini	v
SİMGE	LER VE	E KISALTMALAR DİZİNİ	vii
ÖZET			viii
ABSTR	ACT		ix
		LGİLER	
		metrial Kanser	
1.2.	2	olojik Tanısal Yöntemler	
		Manyetik rezonans görüntüleme	
		Bilgisayarlı tomografi	
1.3.		omics	
		ROI ve segmentasyon	
		3D Slicer	
		Doku(Texture) analizi	
		Pyradiomics	
1.4.		ne Öğrenmesi	
		Destek vektör makineleri	
		K-En yakın komşu algoritması	
		Karar ağaçları (Decision Tree)	
		Rasgele orman (Random forest)	
		Çok katmanlı algılayıcı	
		Gradient boosting machines	
		XGBoost	
		LightGBM	
		CatBoost	
1.5.		telik Seçimi	
		Chi square test (Ki-kare yöntemi)	
		Mutual information (Karşılıklı bilgi)	
		MRMR	
		ReliefF	
		Step forward selection	
4.6		Step backward selection	
1.6.		andırma Performans Metrikleri	
		Karmaşıklık matrisi	
		Doğruluk	
		Recall (Sensitivity)	
		Specificity (Özgüllük)	
		Eğri altında kalan alan (AUC)	
		Precision (Kesinlik)	
	1.6.7.	F-Score	22

		1.6.8. Matthews correlation coefficent.	22
2.	MA	TERYAL VE YÖNTEM	24
	2.1.	Veri Seti	0.4
	2.2.	Hasta Seçimi	24
	2.3.	BT Parametreleri	
	2.4.	Radiomics Verilerinin Çıkarılması	25
	2.5.	Veri Ön İşleme	26
	2.6.	Öznitelik Seçimi	
	2.7.	Makine Öğrenmesinin Uygulanması	28
3.	BUL	GULAR VE TARTIŞMA	30
	3.1.	Endometrioid- Seröz Alt-Tip İkili Sınıflandırma Sonuçları	30
	3.2.	Myom- NonMyom İkili Sınıflandırma Sonuçları	38
	3.3.	Myom-Endometrioid-Seröz Çok Sınıf Sınıflandırma Sonuçları	46
4.	SON	NUÇLAR VE ÖNERİLER	57
KA	YNA	KLAR	58
ΚİŞ	İSEL	YAYIN VE ESERLER	64
ÖZ	GEÇN	MİŞ	65

ŞEKİLLER DİZİNİ

Şekil 1.1. GLCM analizinin şematik çizimi, a) Gri Seviye Görüntü,	
b)Nümerik Gri Seviye Görüntü, c) Co-occurence Matris	8
Şekil 1.2. Destek vektör makineleri	11
Şekil 1.3. KNN algoritması için örnek veri dağılımı	
Şekil 1.4. Karar Ağacı yapısı	14
Şekil 1.5. Çok Katmanlı Algılayıcı Modeli	15
Şekil 1.6. Karmaşıklık matrisi	20
Şekil 2.1. Üç kesitli BT görüntüsü üzerinde segmentasyon işlemi,	
a) Axial Plan, b) Sagittal Plan, c)Koronal Plan	26
Şekil 3.1. a) Decision Tree kullanarak yapılan sınıflandırma sonucu	
elde edilen karmaşıklık matrisi b) CatBoost karmaşıklık matrisi	47
Şekil 3.2. Karmaşıklık matrisleri a) GBM b) CatBoost	49
Şekil 3.3. Karmaşıklık matrisleri, a) SVM, b)GBM, c)LightGBM,	
d) CatBoost	50
Şekil 3.4. MLP'ye ait karmaşıklık matrisi	52
Şekil 3.5. Karmaşıklık matrisleri, a) KNN, b) Random Forest	53
Şekil 3.6. Karmaşıklık matrisleri, a) SVM, b)MLP	55
Şekil 3.7. Karmaşıklık matrisleri, a)SVM, b)XGBoost	56

TABLOLAR DİZİNİ

Tablo 3.1.	Tüm öznitelikler kullanılarak yapılan Endometrioid-Seröz	
	sınıflandırma sonuçları	30
Tablo 3.2.	Endometrioid- Seröz sınıflandırması için kullanılan yöntemler	
	ve elde edilen öznitelikler	31
Tablo 3.3.	Chi-Square Test ile öznitelik seçimi sonrası Endometrioid-	
	Seröz sınıflandırma sonuçları	32
Tablo 3.4.	Mutual Information ile seçilen özniteliklerle elde edilen	
14010 5	Endometrioid-Seröz sınıflandırma sonuçları.	33
	edilen Endometrioid-Seröz sınıflandırma sonuçları	
Tablo 3.6.	MRMR ile seçilen özniteliklerle elde edilen Endometrioid	
1 4010 3.0.	Seröz sınıflandırma sonuçları	34
Tablo 3.7.	Endometrioid-Seröz sınıflandırması için SFS ve SBS	
1 a010 3.7.	algoritmalarıyla seçilen öznitelikler	36
Tablo 3.8.	SFS ile elde edilen Endometrioid-Seröz sınıflandırma sonuçları	
	,	
Table 3.9.	SBS ile elde edilen Endometrioid-Seröz sınıflandırma sonuçları	3 /
Tablo 3.10.	Tüm Öznitelikler kullanılarak yapılan Myom-NonMyom	20
T 11 2 11	sınıflandırma sonuçları	38
Tablo 3.11.	Myom-NonMyom Sınıflandırması için kullanılan öznitelik	20
T. 1.1 . 2.12	seçim yöntemleri ve elde edilen öznitelikler	39
Tablo 3.12.	Chi Square Test ile öznitelik seçimi sonrası Myom-NonMyom	4.0
	sınıflandırma sonuçları	40
Tablo 3.13.	Mutual Information ile seçilen özniteliklerle elde edilen	
	Myom-Nonmyom sınıflandırma sonuçları	41
Tablo 3.14.	ReliefF ile seçilen özniteliklerle K=4 ve K=10 için yapılan	
	Myom-NonMyom sınıflandırma sonuçları	42
Tablo 3.15.	MRMR ile seçilen özniteliklerle elde edilen Myom-	
	NonMyom sınıflandırma sonuçları	43
Tablo 3.16.	Myom-NonMyom sınıflandırması için SFS ve SBS	
	algoritmalarıyla seçilen öznitelikler	44
Tablo 3.17.	SFS kullanılarak elde edilen Myom-NonMyom sınıflandırma	
	sonuçları	45
Tablo 3.18.	SBS ile elde edilen Myom-NonMyom sınıflandırma sonuçları	45
Tablo 3.19.	Tüm öznitelikler kullanılarak yapılan çoklu sınıflandırma	
	sonuçları	46
Tablo 3.20.	Çok sınıflı sınıflandırma için seçilen öznitelikler	
Tablo 3.21.	Chi Square Test ile öznitelik seçimi sonrası yapılan çoklu	
	sınıflandırma sonuçları	48
Tablo 3.22.	Mutual Information ile seçilen özniteliklerle elde edilen	
	çoklu sınıflandırma sonuçları	49
Tablo 3.23.	ReliefF ile seçilen özniteliklerle K=4 ve K=10 için elde edilen	
	coklu sınıflanıdırma sonuclar	51

Tablo 3.24.	MRMR yöntemiyle elde edilen çoklu sınıflandırma sonuçları	52
Tablo 3.25.	Çok sınıflı sınıflandırma için SFS ve SBS ile seçilen	
	öznitelikler	53
Tablo 3.26.	3.26. SFS algoritması kullanılarak elde edilen çoklu sınıflandırma	
	sonuçları	54
Tablo 3.27.	SBS ile elde edilen coklu sınıflandırma sonucları	

SİMGELER VE KISALTMALAR DİZİNİ

Kısaltmalar

AUC : Area Under the Curve (Eğri Altında Kalan Alan)

BT: Bilgisayarlı Tomografi

CPTAC : Clinical Proteomic Tumor Analysis Consortium (Klinik Proteomik

Tümör Analiz Konsorsiyumu)

DICOM: Digital Imaging and Communications in Medicine (Tipta Dijital

Görüntüleme ve İletisim

DMI : Depth of Myometrial Invasion (Miyometriyal invazyon derinliği)

: Exclusive Feature Bundling (Özel Değisken Paketi) **EFB**

: Gradient Boosting Machines (Gradyan Artırma Makineleri) **GBM**

GLCM : Grey Level Co-occurence Matrix (Gri Seviye Es Oluşum Matrisi) **GLDM** : Grey Level Dependence Matrix (Gri Seviye Bağımlılık Matrisi) GLRLM: Grey Level Run Length Matrix (Gri Seviye Dizi Uzunluğu Matrisi)

GLSZM: Grey Level Size Zone Matrix (Gri Seviye Boyutu Bölge Matrisi)

: K-Nearest Neighbours (K-En Yakın Komşu) KNN

MCC : Matthews Correlation Coefficient (Matthews Korelasyon Katsayısı)

MLP : Multi Layer Perceptrons (Çok Katmanlı Algılayıcılar)

: Magnetic Resonance Imaging (Manyetik Rezonans Görüntüleme) MRI : Minimum Redundancy Maximum Relevence (Minimum Fazlalık MRMR Maksimum Alaka)

NGTDM: Neighborhood Grey Tone Difference Matrix (Komşuluk Gri Ton Fark Matrisi)

PET: Positron Emission Tomography (Pozitron Emisyon Tomografi) ROC: Receiver Operating Characteristic (Alıcı İsletim Karakteristiği)

ROI: Region of Interest (İlgili Bölge)

: Step Backward Selection (Geri Yönlü Arama Seçimi) SBS SFS : Step Forward Selection (İleri Yönlü Arama Seçimi)

: Support Vector Machines (Destek Vektör **SVM**

Makineleri) TCGA : The Cancer Genome Atlas (Kanser

Genom Atlası)

TCIA : The Cancer Imaging Archive (Kanser Görüntüleme Arşivi)

: Uterine Corpus Endometrial Carcinoma (Rahim Yapısı Endometrial UCEC

Karsinom)

ENDOMETRİAL KANSERİN AMELİYAT ÖNCESİ BT GÖRÜNTÜLERİNDE ELDE EDİLEN RADİOMİCS VERİLERİ KULLANILARAK MAKİNE ÖĞRENMESİ TEKNİKLERİYLE KİTLE İÇİN YÜKSEK RİSK DEĞERLENDİRMESİ YÖNTEMİ ÖZET

Endometrial kanser; günümüzde giderek artan obezite vakaları, fiziksel aktivitelerin azalması ve ortalama yaşam süresinin artmasıyla birlikte gün geçtikçe yaygınlaşan bir jinekolojik kanser türüdür. Endometrial kanserde hızlı ve yüksek doğrulukla tanı koymak çok önemlidir. Makine öğrenmesiyle Endometrial kanser için yapılan çalışma sayısı oldukça az olduğundan yapılan çalışma bu alana katkı sağlamayı hedefledi. Bu tez çalışmasında açık kaynaklı veri kümesi koleksiyonu olan The Cancer Genome Atlas (TCGA) 'dan alınan Bilgisayarlı Tomografi (BT) verileri kullanıldı. 135 adet hastaya ait olan BT verileri uzman radyolog tarafından 3D Slicer yazılımı ve Pyradiomics eklentisiyle doku analizi işlemi yapılarak elde edilen 130 öznitelik içeren radiomics verileri kullanıldı. Radiomics radyografik tıbbi görüntülerden çok sayıda sayısal parametrik değerler çıkarılarak elde edilen veridir. Veri ön işleme adımında radiomics sürüm bilgilerini içeren öznitelikler çıkarıldı ve aynı gruba ait olan kitle tipleri etiketlendi. Özniteliklerin sayısının azaltılması için Chi- Square Test, Mutual Information, ReliefF, MRMR, SBS ve SFS algoritmaları kullanıldı. Bu yöntemlerle elde edilen özniteliklerle; KNN, SVM, MLP, Decision Tree, Random Forest, GBM, LightGBM, XGBoost ve CatBoost sınıflandırma algoritmaları kullanılarak üç farklı sınıflandırma yapıldı. Yapılan ilk sınıflandırma Endometrioid ve Seröz alt-tiplerini kendi aralarında ayırabilmek için yapıldı ve bu sınıflandırma sonucunda elde edilen başarı %92 oldu. İkinci sınıflandırmada Myom tipini diğer tiplerden ayırmak istendi ve Myom-NonMyom sınıflandırması sonucunda%95 başarılara ulaşıldı. Son olarak çok sınıflı sınıflandırma yapıldı ve kitleler kendi aralarında sınıflandırıldı. Genel olarak yüksek sonuçlar veren bu sınıflandırmada %92 başarıya ulaşıldı. Bu çalışma sonucunda; radiomics verilerinin makine öğrenmesiyle kanser alt-tiplerini tespit etmek için kullanılmasının uvgun olduğu görüldü.

Anahtar Kelimeler: Doku Analizi, Endometrial Kanser, Makine Öğrenmesi, Radiomics, Yapay Zeka.