Airline Satisfaction Survey Results

Meg Elliott Fitzgerald and Elise Roberts Scruggs

Data Set - Survey Features

Gender: Gender of the passengers (Female, Male)

Customer Type: The customer type (Loyal customer, disloyal customer)

Type of Travel: Purpose of the flight of the passengers (Personal Travel, Business Travel)

Class: Travel class in the plane of the passengers (Business, Eco, Eco Plus)

Age: The actual age of the passengers

Flight distance: The flight distance of this journey

Departure /Arrival Delay in Minutes: Minutes delayed when departure

Inflight wifi service: Satisfaction level of the inflight wifi service (0:Not Applicable;1-5)

Departure/Arrival time convenient: Satisfaction level of Departure/Arrival time convenient (0:Not Applicable;1-5)

Ease of Online booking: Satisfaction level of online booking (0:Not Applicable;1-5)

Gate location: Satisfaction level of Gate location (0:Not Applicable;1-5)

Food and drink: Satisfaction level of Food and drink (0:Not Applicable;1-5)

Online boarding: Satisfaction level of online boarding(0:Not Applicable;1-5)

Data Set - Survey Features Continued

Seat comfort: Satisfaction level of Seat comfort (0:Not Applicable;1-5)

On-board service: Satisfaction level of On-board service (0:Not Applicable;1-5)

Leg room service: Satisfaction level of Leg room service (0:Not Applicable;1-5)

Baggage handling: Satisfaction level of baggage handling (0:Not Applicable;1-5)

Check-in service: Satisfaction level of Check-in service (0:Not Applicable;1-5)

Inflight service: Satisfaction level of inflight service (0:Not Applicable;1-5)

Cleanliness: Satisfaction level of Cleanliness (0:Not Applicable;1-5)

Inflight entertainment: Satisfaction level of inflight entertainment (0:Not Applicable;1-5)

TARGET: Satisfaction: Airline satisfaction level(Satisfaction, neutral or dissatisfaction)

Likert Scale Features

- Named after American psychologist Rensis Likert in 1932
 - Scale of agreement (typically 1 to 5)
- Likert-type scales defined by Paul Lavrakas in 2008
 - Allows respondents to indicate degree of satisfaction (typically 1 to 5)

How satisfied are you with the security control at the airport?					
Very dissatisfied	Somewhat dissatisfied	Neither dissatisfied nor satisfied	Somewhat satisfied	Very satisfied	
$\overline{}$	\bigcirc	\bigcirc	\circ	\bigcirc	
1	2	3	4	5	

Using Likert-type scales for Classification

 Endresen and Janda (2016) discovered that Random Forest classification models were the best classical models to use for Likert or Likert-type scale features

Will a Multilayer Perceptron Network perform better than a Random Forest?

Exploratory Data Analysis - Categorical

- Gender
 - Women more satisfied with airline than men
- Customer Type
 - Loyal Customers more satisfied than Disloyal Customers
- Type of Travel
 - Business travel passengers more satisfied than Personal travel passengers
- Travel Class
 - Business Class and Economy Plus passengers more satisfied than Economy Class passengers

Exploratory Data Analysis - Continuous

- Departure and Arrival Delays
 - Skewed Distributions with no significant correlations
 - Therefore, we excluded this feature from the final model
- Flight Distance
 - Not highly correlated with satisfaction
- Age
 - Satisfaction not highly correlated with Age

Investigation of Age Feature

Likert-type - Highest Correlations

	Seat comfort	satisfaction_	v2
Θ	0	0.9979	08
1	1	0.4509	15
2	2	0.3577	94
3	3	0.3561	31
4	4	0.6518	45
5	5	0.9920	164
	Inflight ente	rtainment sat	isfaction_v2
Θ		Θ	0.660714
1		1	0.210656
2		2	0.170363
3		3	0.199188
4		4	0.719870
5		5	0.952064

Likert-type - Moderate/Average Correlations

	Gate	loca	tion	satisfaction_v2
Θ			Θ	1.000000
1			1	0.610926
2			2	0.580705
3			3	0.463065
4			4	0.497850
5			5	0.655479
	Food	and	drink	satisfaction_v2
Θ			Θ	0.779635
1			1	0.508473
2			2	0.432713
3			3	0.428612
4			4	0.590254
5			5	0.780084

	Inflight wifi s	service	satisfaction_v2
0		0	0.446154
1		1	0.268507
2		2	0.502356
3		3	0.509557
4		4	0.638368
5		5	0.669114
	Online support	satisf	action_v2
Θ	Θ		0.000000
1	1		0.295464
2	2		0.296755
3	3		0.282690
4	4		0.680481
5	5		0.773152

	Ease of 0	nline bo	oking	satisfaction_	.v2
Θ			Θ	0.0006	100
1			1	0.1927	730
2			2	0.2863	68
3			3	0.3576	153
4			4	0.7178	13
5			5	0.7654	99
	On-board	service	satis	faction_v2	
0		Θ		0.000000	
1		1		0.265825	
2		2		0.340831	
3		3		0.410290	
4		4		0.647394	
5		5		0.765692	

Likert-type - Moderate/Average Correlations

	Leg	room	service	satis	facti	on_v2		
Θ			Θ		0.6	2308		
1			1		0.2	33384		
2			2		0.3	76378		
3			3		0.3	71746		
4			4		0.6	73345		
5			5		0.70	98523		
	Depa	arture	e/Arrival	time	conve	nient	satisfa	ction_v2
0						Θ		0.542444
1						1	1	9.586154
2						2		0.540268
3						3	1	0.539680
4						4		0.524607
5						5	- 1	0.556450

	Cleanliness	sat	isfaction_v2
Θ			0.000000
1	1		0.403047
2	2		0.404760
3	3		0.317899
4			0.586767
5	5		0.731698
	Online board	ing	satisfaction_v2
Θ			0.000000
1		1	0.264925
2		2	0.281309
3		3	0.549557
		4	0.652527
5		5	0.731715

	Baggage	handling	satisfaction_v2
Θ		1	0.422574
1		2	0.396250
2		-3	0.315119
3		4	0.588480
4		5	0.735817
	Checkin	service	satisfaction_v2
Θ		0	0.000000
1		1	0.316277
2		2	0.332643
3		3	0.567485
4		4	0.577010
5		5	0.735763

Principal Component Analysis

Multilayer Perceptron Neural Network

Binary Classification Network

5 Layer MLP - Adam

- First-order, gradient-based optimization of stochastic objective functions
 - o Straightforward to implement
 - Computationally efficient
 - Little memory requirements

	precision	recall	f1-score	support
0	0.91	0.91	0.91	11692
1	0.92	0.92	0.92	14206
accuracy			0.92	25898
macro avg	0.91	0.92	0.92	25898
weighted avg	0.92	0.92	0.92	25898

5 Layer MLP - SGD

• Stochastic Gradient Descent Backpropagation

	precision	recall	f1-score	support
θ	0.90	0.91	0.90	11692
1	0.92	0.92	0.92	14206
accuracy			0.91	25898
macro avg	0.91	0.91	0.91	25898
weighted avg	0.91	0.91	0.91	25898

5 Layer MLP - L-BFGS

- Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
 - Quasi-Newtonian Method
 - Uses the approximated second order gradient information
- Best model with 15 neurons in each layer

	precision	recall	f1-score	support
0	0.91	0.93	0.92	11692
1	0.94	0.93	0.93	14206
accuracy			0.93	25898
macro avg	0.93	0.93	0.93	25898
weighted avg	0.93	0.93	0.93	25898

Modifications of 5 Layer LBFGS Model

- Increase the neurons in one layer only
 - Number of neurons in each hidden layer: 10 15 10
- Increase the neurons in all hidden layers
 - Number of neurons in each hidden layer: 15 15 15
 - Number of neurons in each hidden layer: 20 20 20
- Change activation function
 - Logistic activation function
- Using SGD, change momentum and alpha
 - Momentum 0.95 and alpha 0.01
 - Momentum 0.95 and alpha 0.01 with logistic regression

6 Layer MLP

- Using L-BFGS
 - O Number of neurons in each hidden layer: 10 10 10 10 as well as 15 15 15 15

	precision	recall	f1-score	support
θ	0.90	0.91	0.91	11692
1	0.93	0.92	0.92	14206
accuracy			0.92	25898
macro avg	0.92	0.92	0.92	25898
weighted avg	0.92	0.92	0.92	25898

Classical Model

Random Forest Classifier

• Accuracy of 0.92

Results

 Best Model - 5 Multilayer Perceptron Network with L-BFGS optimization method and hidden layer sizes of 15 - 15 - 15

Recommend using Random Forest for Likert-type scale features

Conclusion

 Multilayer Perceptron Network can be used to classify Likert-type scale features from survey responses

 Agree with Endreson and Janda - recommend using classical Random Forest classification model

References

D, J. (2018, June 10). *Passenger Satisfaction*. Kaggle. Retrieved on 13 June 2021 from https://www.kaggle.com/johnddddd/customer-satisfaction.

Das, S. (2021, June 11). Airline Passenger Satisfaction - Prediction > 95%. Kaggle. Retrieved on 13 June 2021 from https://www.kaggle.com/codesagnik/airline-passenger-satisfaction-prediction-95.

Endresen, A., & Janda, L. A. (2016). Five statistical models for Likert-type experimental data on acceptability judgments. *Journal of Research Design and Statistics in Linguistics and Communication Science*, 3(2). Retrieved on 20 June 2021 from https://doi.org/10.1558/jrds.v2i1.2269

Goodfellow, I., Bengio, Y., & Courville, A. (2017). 6.5 Back-Propagation and Other Differentiation Algorithms. In *Deep Learning* (pp. 200–220). MIT Press.

Hagan, M. T., Demuth, H. B., Beale, M. H., & De Jesús, O. (2016). Neural network design. s. n. https://hagan.okstate.edu/nnd.html.

Jais, I. K. M., Ismail, A. R., & Nisa, S. Q. (2019). Adam Optimization Algorithm for Wide and Deep Neural Network . *Knowledge Engineering and Data Science (KEDS)*, 2(1), 41–46. https://core.ac.uk/download/pdf/287322851.pdf

Kingma, D. P., & Ba, J. (2017, January 30). Adam: A Method for Stochastic Optimization. arXiv.org. https://arxiv.org/abs/1412.6980.

Lavrakas, P. J. (2008). *Encyclopedia of Survey Research Methods*. Thousand Oaks, CA: SAGE Publications. https://doi.org/10.4135/9781412963947

References Continued

Likert, R. (1932). A Technique for the Measurement of Attitudes. Doctoral dissertation. Columbia University. Series Archives of Psychology 22: 5–55. NY: The Science Press. Retrieved on 20 June 2021 from http://www.voteview.com/pdf/Likert_1932.pdf

Liu, D. C., & Nocedal, J. (1989). On the limited memory BFGS method for large scale optimization. *Mathematical Programming: Series A and B*, 45(1-3), 503–528. https://doi.org/10.5555/3112655.3112866

Moritz, P., Nishihara, R., & Jordan, M. I. (2016, April 13). *A Linearly-Convergent Stochastic L-BFGS Algorithm*. arXiv.org. https://arxiv.org//abs/1508.02087.

Najafabadi, M. M., Khoshgoftaar, T. M., Villanustre, F., & Holt, J. (2017). Large-scale distributed L-BFGS. *Journal of Big Data*, 4(22). https://doi.org/10.1186/s40537-017-0084-5

Rafati, J., & Marcia, R. F. (2018). Improving L-BFGS Initialization for Trust-Region Methods in Deep Learning. 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). https://doi.org/10.1109/icmla.2018.00081

Rumelhart, D. E., Group, P. D. P. R., & McClelland, J. L. (1986). *Parallel Distributed Processing, Explorations in the Microstructure of Cognition: Foundations (Vol. 1)*. MIT Press.

Saad, D. (1998). On-line learning in neural networks. Cambridge.

Shamir, O. & Zhang, T. (2013). Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes. *Journal of Machine Learning Research: W & CP*: 28, p. 71-79. http://proceedings.mlr.press/v28/shamir13.pdf.

Xiao, Y., Wei, Z., Wang, Z. (2008). A limited memory BFGS-type method for large-scale unconstrained optimization. *Computers & Mathematics with Applications*, 56(4), 1001-1009. https://doi.org/10.1016/j.camwa.2008.01.028.