EM314 NUMERICAL METHODS ASSIGNMENT 2 JAYASOORIYA J.K.C.N.

E/15/154

Theory

(1).

Consider after k iterations,

$$b_k - a_k = \frac{b_{k-1} - a_{k-1}}{2}$$

$$b_{k-1} - a_{k-1} = \frac{b_{k-2} - a_{k-2}}{2}$$

$$b_1 - a_1 = \frac{b_0 - a_0}{2}$$

$$\Rightarrow$$
 $b_k - a_k = \frac{b - a}{2^k} - A$

If tolerance T is satisfied after k iterations,

$$\log_2\left(\frac{b-a}{T}\right)$$
 < $(k+1) \cdot \log_2 2$

(3).
$$g(x) = e^{-x}$$

 $G = [ln 1.1, ln 3]$
 $= [0.0953, 1.0986]$

(a)
$$g(n_{11}) = 0.9091$$
, $g(n_{3}) = 0.3333$
 $\left|g(n_{11}) - g(n_{3})\right| = 0.5758$

A < 0

:. g is contraction on G.//

and docreasing in the given interval. Further,

- g is a contraction on G.

(c) From Banach Fixed point the it can be concluded that,

g(x) = xx, converges to the unique fixed point x e G for any

7. E G. //

(3).
$$g(x) = \tan^{-1}(2x)$$

$$g'(x) = \frac{1}{1+(2x)^2} \cdot 2 = \frac{2}{1+4x^2}$$

when
$$x = 0.5$$

(i)
$$res = |g(x_0) - x_0| = \frac{73.96}{43.96} = 0.6741$$

 $k = 1 \cdot x_1 = g(x_0) = x_1 = 1.3258$
 $k = 2 \cdot x_2 = g(x_1)$
 $k = 2 \cdot x_2 = g(x_1)$

$$= 2 = |.210|$$

$$= 2 = |.16 - 1.210|$$

$$= 0.0501//$$

$$k=3: \quad \alpha_3 = g(x_2)$$

$$= 1.1789$$

$$Q_3 = [1.16 - 1.1789]$$

$$= 0.018 //$$

(ii)
$$x_{k+1} = g(x_k)$$
$$g(x) = \tan^{-1}(2x)$$

Let
$$f(x) = \tan^{-1}(2x) - x$$

 $\Rightarrow f(x) = 0$
 $\Rightarrow \tan^{-1}(2x) - x = 0$

From Newton's method,
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$\chi_{n+1} = \chi_n - \frac{1}{1 + 4\chi_n^2}$$

Let
$$x_0 = 2$$
.
 $k = 1: x_1 = 2 - \frac{1}{1+4 \times 2^2}$

$$\begin{cases} 1 - 4 \times 2^2 \end{cases}$$

$$k=2:$$
 $\alpha_2 = 1.2359 - \frac{\tan^{-1}(2 \times 1.2359)}{(1-4 \times 1.2359^2)}$

4. (a) Newton's Method (MATLAB code)

```
☐ function [x n1, res, niter] = newtons(f, diff f, x0, T, nmax)
  niter=0;
  res=abs(x0);
  x n=x0;
  x_n1 = x_n - (f(x_n)/diff_f(x_n));
  if (diff f(x n) == 0)
      disp('diff f(x) must be none zero value.');
      return
  end
while(res>=T) && (niter<nmax)</pre>
      x_n1 = x_n - (f(x_n)/diff_f(x_n));
      res=abs(x n1-x n);
      x n=x n1;
      niter=niter+1;
 -end
testNewtons.m
 x0=100;
 T=10^{(-5)};
 nmax=100;
 [x_n1, res, niter] = newtons(@f, @diff f, x0, T, nmax)
f.m
\Box function y=f(x)
y=x^2+4*x-4;
diff f.m
\neg function y=diff f(x)
     y=2*x+4;
```

(b).

Output

9

Expected solution is obtained and it is accurate up to 4 decimal places.

(c).

```
□ function [x n1,res,niter]=newtons(f,diff f,x0,T,nmax)
 niter=0;
 res=abs(x0);
 x n=x0;
 x true=2*(sqrt(2)-1);
 ek 1=abs(x n-x true);
 x_n1 = x_n - (f(x_n)/diff_f(x_n));
 if (diff f(x n) == 0)
    disp('diff f(x) must be none zero value.');
 end
                                     \n');
 fprintf('____
 fprintf('| k | xk | ek=|xk - x^*| | ek/(ek-1)^2 | n');
 fprintf('|----+\n');
while(res>=T) && (niter<nmax)
    x_n1 = x_n - (f(x_n)/diff_f(x_n));
    res=abs(x_n1-x_n);
    ek=abs(x n-x true);
    x n=x n1;
    niter=niter+1;
    c=ek/(ek 1)^2;
    fprintf('|%2d | %10.6f | %10.6f | %10f |\n',niter,x_n,ek,c);
    ek 1=ek;
-end
```

Output when $\tau = 10^{-5}$

>> testNewtons

Ī	k	П	xk	П	ek= xk - x*	Ī	ek/(ek-1)^2
1.		-+-		-+-		-+-	
I	1		49.039216		99.171573	I	0.010084
I	2		23.597979		48.210789	I	0.004902
1	3		10.955252		22.769552	1	0.009796
I	4		4.786381		10.126825	I	0.019533
1	5		1.982606		3.957954	1	0.038594
I	6		0.995671		1.154179	I	0.073677
1	7		0.833096		0.167243	1	0.125546
1	8		0.828431		0.004668	1	0.166908
	9	-	0.828427	-	0.000004	1	0.176485

 $x_n1 =$

0.8284

res =

3.8464e-06

niter =

9

Quadratic convergence is not obtained. Value of the last column of the table does not converge to a constant.

(d). $Output \ when \ \tau = 10^{-8}$

>> testNewtons

k	П	xk	T	ek= xk - x*	Ī	ek/(ek-1)^2
	-+-		-+-		-+-	
1		49.039216	-1	99.171573	1	0.010084
2	-1	23.597979	1	48.210789	1	0.004902
3	-1	10.955252	1	22.769552	I	0.009796
4	-1	4.786381	1	10.126825	1	0.019533
5	-1	1.982606	1	3.957954	I	0.038594
6	-1	0.995671	1	1.154179	1	0.073677
7	-1	0.833096	1	0.167243	1	0.125546
8	-1	0.828431	1	0.004668	1	0.166908
9	-1	0.828427	1	0.000004	1	0.176485
10	-1	0.828427	1	0.000000	I	0.176766

 $x_n1 =$

0.8284

res =

2.6155e-12

niter =

10

Here the value of the last column converges to some constant with an accuracy of 0.001. Therefore it can be concluded that quadratic convergence is obtained here.

(5). Kepler's Equation

newtons.m

```
☐ function [x n1, res, niter] = newtons(f, diff f, x0, T, nmax)
  niter=0;
  res=abs(x0);
  x n=x0;
  x_n1 = x_n - (f(x_n)/diff_f(x_n));
  if (diff f(x n) == 0)
      disp('diff f(x) must be none zero value.');
      return
  end
while(res>=T) && (niter<nmax)</pre>
      x_n1 = x_n - (f(x_n)/diff_f(x_n));
      res=abs(x_n1-x_n);
      x n=x n1;
      niter=niter+1;
 ∟end
f.m
\neg function y=f(x)
     M=3;
      e=0.8;
      y=x-\sin(x)*e-M;
diff f.m
\Box function y=diff f(x)
     e=0.8;
     y=1-\cos(x)*e;
q5.m
x0=4;
T=10^{(-8)};
nmax=100;
[x n1, res, niter] = newtons(@f, @diff f, x0, T, nmax)
```

EM314 – Assignment 2

Output

>> q5

x_n1 =

3.0629

res =

4.0056e-09

niter =

4

Hence, angle E = 3.0629 rad

(6). State Equation of a Gas

bisection.m

```
[ function [zero, res, niter] = bisection(f,a,b,tol,nmax)
     x = [a (a+b)/2 b];
     y = f(x);
     niter = 0;
     I = (b-a)/2;
 if y(1)*y(3)>0
     disp('The signs of the function at the extrema must be opposite');
 elseif y(1) == 0
      zero = a; res = 0; return
 elseif y(3) == 0
      zero = b; res = 0; return
 end
while ( I >= tol && niter <= nmax )</pre>
     if sign(y(1))*sign(y(2))<0
         x(3) = x(2); x(2) = (x(1) + x(3))/2;
         y = f(x); I = (x(3)-x(1))/2;
     elseif sign(y(2))*sign(y(3))<0
         x(1) = x(2); x(2) = (x(1) + x(3))/2;
         y = f(x); I = (x(3)-x(1))/2;
     else
         x(2) = x(y == 0); I = 0;
      end
     niter = niter+1;
 end
 if niter > nmax
     disp('bisection method exited without convergence');
 end
     zero = x(2); res = f(x(2));
```

f.m

```
\neg function y = f(x)
     p=3.5*(10^7);
      a=0.401;
     N=1000;
     b=42.7*10^{-6};
     k=1.3806503*(10^(-23));
      T=300;
      y=p*(x.^3)+a*(N^2)*x-a*b*(N^3)-(N*b*p+k*N*T)*x.^2;
q6.m
a = 0;
b = 1;
tol = 10^{(-12)};
nmax = 100;
[zero, res, niter] = bisection(@f,a,b,tol,nmax)
Output
>> q6
zero =
    0.0427
res =
   4.0787e-07
niter =
    39
```

Therefore, volume = 0.0427 m^3