FIG. 1A

Met Leu Al I	a Arg Ala Leu I 5	Leo Leo Cys	Ala Val Leu 10	Ala Leu Se	
Thr Ala Asr	Pro Cys Cys S 20	Ser His Pro C 25	ys Gin Asn A	Arg Gly Val	Cys
Met Ser Val 35	l Gly Phe Asp (Gln Tyr Lys (40	Cys Asp Cys	Thr Arg Th 45	r Gly
Phe Tyr Gly 50	Glu Asa Cys S 5	Ser Thr Pro C 5	Hu Phe Leu 60	Thr Arg Ile	Lys
Leu Phe Lei 65	Lys Pro Thr P 70	ro Asn Thr V	al His Tyr I 75		lis 30
Phe Lys Gly	Phe Trp Asn V 85	al Val Asn A 90	Asn Ile Pro P	he Leu Arg 95	Asn
Ala Ile Met	Ser Tyr Val Lei 100	u Thr Ser Ar 105	g Ser His Le	u De Asp Se 110	ā
Pro Pro Thr 115	Tyr Asn Ala A	sp Tyr Gly T 120		rp Glu Ala 25	Phe
Ser Asn Leu 130	Ser Tyr Ty r Tl 13	u Arg Ala Lo 35	eu Pro Pro V 140	al Pro Asp	Asp
Cys Pro Thr 145	Pro Leu Gly V 150	al Lys Gly L	ys Lys Gln I 155	eu Pro Asp	Ser 160
Asn Glu Ile	Val Glu Lys Le 165	u Leu Leu A 17	rg Arg Lys F 70	he Ile Pro A	Asp
Pro Gln Gly	Ser Asn Met M 180	let Phe Ala P 185	he Phe Ala (Gln His Phe 190	Thr
His Gln Phe 195	Phe Lys Thr As	sp His Lys A 200	rg Gly Pro A	la Phe Thr 05	Asn
Gly Leu Gly 210	His Gly Val As	sp Leu Asn F 5	lis lle Tyr G 220	ly Glu Thr I	Leu
Ala Arg Gln 225	Arg Lys Leu A 230	rg Leu Phe 1	ys Asp Gly 235	Lys Met Ly	s Tyr 240
Gin He He A	sp Gly Glu Met 245	Tyr Pro Pro 250	Thr Val Lys	Asp Thr G	ln
Ala Glu Met	lie Tyr Pro Pro 260	Gln Val Pro 265	Glu His Leu	Arg Phe A 270	la
Val Gly Gln 275	Glu Val Phe Gl	y Leu Val Pr 280	o Gly Leu M 2	let Met Tyr 85	Ala
Thr Ile Trp L 290	eu Arg Glu His 295	Asa Arg Va	l Cys Asp V 300	al Leu Lys (Gln

FIG. 1B

Glu His Pro Glu Trp Gly Asp Glu Gln Leu Phe Gln Thr Ser Arg Leu Ile Leu Ile Gly Glu Thr Ile Lys Ile Val Ile Glu Asp Tyr Val Gln 330 His Leu Ser Gly Tyr His Phe Lys Leu Lys Phe Asp Pro Glu Leu Leu Phe Asn Lys Gln Phe Gln Tyr Gln Asn Arg Ile Ala Ala Glu Phe Asn 360 Thr Leu Tyr His Trp His Pro Leu Leu Pro Asp Thr Phe Gln Ile His Asp Gin Lys Tyr Asn Tyr Gin Gin Phe Ile Tyr Asn Asn Ser Ile Leu Leu Glu His Gly Ile Thr Gln Phe Val Glu Ser Phe Thr Arg Gln Ile 410 Ala Gly Arg Val Ala Gly Gly Arg Asn Val Pro Pro Ala Val Gln Lys Val Ser Gin Ala Ser Ile Asp Gin Ser Arg Gin Met Lys Tyr Gin Ser 445 Phe Asn Glu Tyr Arg Lys Arg Phe Met Leu Lys Pro Tyr Glu Ser Phe Glu Glu Leu Thr Gly Glu Lys Glu Met Ser Ala Glu Leu Glu Ala Leu Tyr Gly Asp Ile Asp Ala Val Glu Leu Tyr Pro Ala Leu Leu Val Glu 490 Lys Pro Arg Pro Asp Ala lle Phe Gly Glu Thr Met Val Glu Val Gly Ala Pro Phe Ser Leu Lys Gly Leu Met Gly Asn Val Ile Cys Ser Pro 520 Ala Tyr Trp Lys Pro Ser Thr Phe Gly Gly Glu Val Gly Phe Gln Ile 535 Ile Asn Thr Ala Ser lle Gin Ser Leu Ile Cys Asn Asn Val Lys Gly 550 Cys Pro Phe Thr Ser Phe Ser Val Pro Asp Pro Glu Leu Ile Lys Thr Val Thr Ile Asn Ala Ser Ser Ser Arg Ser Gly Leu Asp Asp Ile Asn 580 585 590 Pro Thr Val Leu Leu Lys Glu Arg Ser Thr Glu Leu 595

FIG. 2A

GTCCAGGAAC TCCTCAGCAG CGCCTCCTTC AGCTCCACAG CCAGACGCCC TCAGACAGCA	. 60
AAGCCTACCC CCGCGCCGCG CCCTGCCCGC CGCTGCGATG CTCGCCCGCG CCCTGCTGCT	120
GTGCGCGGTC CTGGCGCTCA GCCATACAGC AAATCCTTGC TGTTCCCACC CATGTCAAAA	180
CCGAGGTGTA TGTATGAGTG TGGGATTTGA CCAGTATAAG TGCGATTGTA CCCGGACAGG	240
ATTCTATGGA GAAAACTGCT CAACACCGGA ATTTTTGACA AGAATAAAAT TATTTCTGAA	
ACCCACTCCA AACACAGTOC ACTACATACT TACCCACTTC AAGGGATTTT GGAACGTTGT	360
GAATAACATT CCCTTCCTTC GAAATGCAAT TATGAGTTAT GTGTTGACAT CCAGATCACA	420
TTTGATTGAC AGTOCACCAA CTTACAATGC TGACTATGGC TACAAAAGCT GGGAAGCCTT	480
CTCTAACCTC TCCTATTATA CTAGAGCCCT TCCTCCTGTG CCTGATGATT GCCCGACTCC	540
CITGGGTGTC AAAGGTAAAA AGCAGCTTCC TGATTCAAAT GAGATTGTGG AAAAATTGCT	600
TCTAAGAAGA AAGTTCATCC CTGATCCCCA GGGCTCAAAC ATGATGTTTG CATTCTTTGC	660
CCAGCACTTC ACGCACCAGT TITTCAAGAC AGATCATAAG CGAGGGCCAG CTITCACCAA	720
CGGGCTGGGC CATGGGGTGG ACTTAAATCA TATTTACGGT GAAACTCTGG CTAGACAGCG	780
TAAACTGCGC CTTTTCAAGG ATGGAAAAAT GAAATATCAG ATAATTGATG GAGAGATGTA	840
TCCTCCCACA GTCAAAGATA CTCAGGCAGA GATGATCTAC CCTCCTCAAG TCCCTGAGCA	900
TCTACGGTTT GCTGTGGGGC AGGAGGTCTT TGGTCTGGTG CCTGGTCTGA TGATGTATGC	960
CACAATCTGG CTGCGGGAAC ACAACAGAGT ATGTGATGTG	1020
ATGGGGTGAT GAGCAGTTGT TCCAGACAAG CAGGCTAATA CTGATAGGAG AGACTATTAA	1080
GATTGTGATT GAAGATTATG TGCAACACTT GAGTGGCTAT CACTTCAAAC TGAAATTTGA	1140
CCCAGAACTA CTTTTCAACA AACAATTCCA GTACCAAAAT CGTATTGCTG CTGAATTTAA	1200
CACCCTCTAT CACTGGCATC CCCTTCTGCC TGACACCTTT CAAATTCATG ACCAGAAATA	1260
CAACTATCAA CAGTTTATCT ACAACAACTC TATATTGCTG GAACATGGAA TTACCCAGTT	1320
TGTTGAATCA TTCACCAGGC AAATTGCTGG CAGGGTTGCT GGTGGTAGGA ATGTTCCACC	1380
CGCAGTACAG AAAGTATCAC AGGCTTCCAT TGACCAGAGC AGGCAGATGA AATACCAGTC	1440
TTTTAATGAG TACCGCAAAC GCTTTATGCT GAAGCCCTAT GAATCATTTG AAGAACTTAC	1500
AGGAGAAAAG GAAATGTCTG CAGAGTTGGA AGCACTCTAT GGTGACATCG ATGCTGTGGA	1560
GCTGTATCCT GCCCTTCTGG TAGAAAAGCC TCGGCCAGAT GCCATCTTTG GTGAAACCAT	1620
GGTAGAAGTT GGAGCACCAT TCTCCTTGAA ACCACTTATC	1680
TGCCTACTGG AAGCCAAGCA CTTTTGGTGG AGAAGTGGGT TTTGGAAATGA TTA	1740

FIG. 2B

CTCAATTCAG TCTCTCATCT GCAATAACGT GAAGGGCTGT CCCTTTACTT CATTCAGTGT	180
TCCAGATCCA GAGCTCATTA AAACAGTCAC CATCAATGCA AGTTCTTCCC GCTCCGGACT	1866
AGATGATATC AATCCCACAG TACTACTAAA AGAACGCTCG ACTGAACTGT AGAAGTCTA	1920
TGATCATATT TATTTATTTA TATGAACCAT GTCTATTAAT TTAATTATTT AATAATATTT	1986
ATATTAAACT CCTTATGTTA CTTAACATCT TCTGTAACAG AAGTCAGTAC TCCTGTTGCG	2040
GAGAAAGGAG TCATACTTGT GAAGACTTTT ATGTCACTAC TCTAAAGATT TTGCTGTTGC	2100
TOTTAAGITT GGAAAACAGT TITTATTCTG TTTTATAAAC CAGAGAGAAA TGAGTTTTGA	2160
CGTCTTTTTA CTTGAATTTC AACTTATATT ATAAGGACGA AAGTAAAGAT GTTTGAATAC	2220
TTAAACACTA TCACAAGATG CCAAAATGCT GAAAGTTTTT ACACTGTCGA TGTTTCCAAT	2280
GCATCTTCCA TGATGCATTA GAAGTAACTA ATGTTTGAAA TIITAAAGTA CTTTTGGGTA	2340
TITTICTGIC ATCAAACAAA ACAGGTATCA GTGCATTATT AAATGAATAT TTAAATTAGA	2400
CATTACCAGT AATTTCATGT CTACTTTTTA AAATCAGCAA TGAAACAATA ATTTGAAATT	2460
TCTAAATTCA TAGGGTAGAA TCACCTGTAA AAGCTTGTTT GATTTCTTAA AGTTATTAAA	2520
CTTGTACATA TACCAAAAAG AAGCTGTCTT GGATTTAAAT CTGTAAAATC AGATGAAATT	2580
TTACTACAAT TGCTTGTTAA AATATTTTAT AAGTGATGTT CCTTTTTCAC CAAGAGTATA	2640
AACCITITIA GTGTGACTGT TAAAACITCC TITTAAATCA AAATGCCAAA TITATTAAGG	2700
TGGTGGAGCC ACTGCAGTGT TATCTCAAAA TAAGAATATC CTGTTGAGAT ATTCCAGAAT	2760
CTGTTTATAT GGCTGGTAAC ATGTAAAAAC CCCATAACCC CGCCAAAAGG GGTCCTACCC	2820
TTGAACATAA AGCAATAACC AAAGGAGAAA AGCCCAAATT ATTGGTTCCA AATTTAGGGT	2880
TTAAACTTTT TGAAGCAAAC TTTTTTTTAG CCTTGTGCAC TGCAGACCTG GTACTCAGAT	2940
TITGCTATGA GGITAATGAA GTACCAAGCT GTGCTTGAAT AACGATATGT TITCTCAGAT	3000
TITCTGITGI ACAGTITAAT TTAGCAGTCC ATATCACATT GCAAAAGTAG CAATGACCTC	3060
ATAAAATACC TCTTCAAAAT GCTTAAATTC ATTTCACACA TTAATTTTAT CTCAGTCTTG	3120
AAGCCAATTC AGTAGGTGCA TTGGAATCAA GCCTGGCTAC CTGCATGCTG TTCCTTTTCT	3180
TITCTTCTTT TAGCCATTTT GCTAAGAGAC ACAGTCTTCT CAAACACTTC GITTCTCCTA	3240
TITTOTITTA CTAGTITTAA GATCAGAGIT CACITICITT GGACTCTGCC TATATTITCT	3300
TACCTGAACT TITGCAAGTT TTCAGGTAAA CCTCAGCTCA GGACTGCTAT TTAGCTCCTC	3360
TTAAGAAGAT TAAAAAAAAA AAAAAAG	2207