LAB 3: Task Space Motion Control

José Yecid Moreno Villamizar: 11195127

1. Decentralized control (Lecture G0)

1.1, 1.2 - Generate sinusoidala and step reference

Para a geração das referencias foi usado o mesmo conceito em LAB 2, Section 1.1 and Section 1.2, usando a posição atual como origem e deslocando de acordo ao tipo de sinal, o deslocamento para a pocisção $\mathbf{p^d}$, velocidade $\mathbf{\dot{p}^d}$ e aceleração $\mathbf{\ddot{p}^d}$ são definidos da seguinte forma:

$$\mathbf{p^d} = \mathbf{p_0} + \mathbf{A} \cdot \sin(\omega \cdot t + \phi)$$
 $\dot{\mathbf{p}^d} = \frac{d}{dt} \left(\mathbf{p_0} + \mathbf{A} \cdot \sin(\omega * t + \phi) \right) = \mathbf{A} \cdot \omega \cdot \cos(\omega \cdot t + \phi)$
 $\ddot{\mathbf{p}^d} \frac{d}{dt} \left(\mathbf{A} \cdot \omega \cdot \cos(\omega \cdot t + \phi) \right) = -\mathbf{A} \cdot \omega^2 \cdot \sin(\omega \cdot t + \phi)$

Aonde $\omega=2\cdot pi\cdot {\bf freq}$, as linhas vermelhas da figura embaixo representam o resultado final da trajetória gerada para a posição desejada no extremo do braço.

1.4 - Cartesian Space PD control

Após aplicar um controlador PD convencional no f-atuador, observamos que o seguimento de trajetória é relativamente aceitável, mas não é o máximo que se pode melhorar, alem da posição no eixo **z**, que tem um deslocamento negativo devido a a força que a gravidade faz sobre o elo final.

1.5 - Cartesian Space PD control - postural task

A tarefa de postura simplesmente faz uma tentativa e evitar que os atuadores fiquem com movimentos aleatorios, esto é solucionado colocando molas virtuais em cada um dos atuadores, da seginte forma:

$$au_0 = \mathbf{K_q}(q_0 - q) - \mathbf{D_q}\mathbf{\dot{q}}$$
 $N = I_{6 imes 6} - J^TJ^{T\square}$ $au = au_{PD} + N \cdot au_0$

Aonde $\mathbf{K_q}$ e $\mathbf{D_q}$ são as constantes de rigidez e amortecimento das juntas, dando como resultado um comportamento mais suave, pois a mola virtual não deixa que o robô perca a postura inicial $\mathbf{q_0}$, o termo N é a projeção do J no espaço nulo.

1.6 - Cartesian Space PD control + Gravity Compensation

Como já sabemos em aulas anteriores o compensador de gravidade simplesmente soma a força exercida pela gravidade em cada junta, tirando o deslocamento constante na posição atual com a desejada.

1.7 - Cartesian PD control + Gravity Compensation + Feed-Forward term

Para aplicar os termos de feed-foward num controle convencional, precisamos da matriz \mathbf{M} , mas como estamos no espaço nulo precisamos projetar esta matriz, usando o termo $\mathbf{\Lambda}$ que é calculado da seguinte forma:

$$oldsymbol{\Lambda} = (J imes M imes J^T)^{-1}$$

O resultado é uma antecipação ao movimento do robô para compensar usando o modelo, e deixando que o controlador PD faça um ajuste mais fino.

2 Centralized task space control (Lecture H0)

2.1 - Cartesian space inverse dynamics

Aplicando a dinâmica inversa no espaço nulo obtemos melhores resultados, pois logramos um desacople das juntas do braço, compensando as forças propagas no sistema, é notável que as posições **y** e **z** apresentam deslocamentos, mas sua magnitude é quase depreciável

2.2 - Cartesian space inverse dynamics - simplified

É a mesma abordagem anterior, a única diferença é o custo computacional, pois evita o cálculo de \dot{J} e $J^{T\Box}$

2.3 - External Force:

Quando uma força externa é aplicada no eixo **z** este é deslocado ao sentido da força, este comportamento é devido à mola virtual implementada no espaço de tarefas, quando a constante de esta mola é maior, o robô tenta fazer mais força oposta para compensar o deslocamento, na figura de embaixo, a constante da esquerda é maior do que a direita.

