Realizzazione di un ADC, note^a

Francesco Polleri^{1, b} e Mattia Sotgia^{1, c}

(Gruppo A1)

¹Dipartimento di Fisica.

Università degli Studi di Genova, I-16146 Genova,

talia

(Dated: presa dati 7 marzo 2022, consegnata in data 15 marzo 2022)

Mettiamo delle resistenze di valore ideale (in realtà sono leggermente più piccole, ma rimangono sempre tutte uguali R e 2R)

 $R = 270 \,\mathrm{k}\Omega$

 $2R = 560 \,\mathrm{k}\Omega$

1. CIRCUITO NON AMPLIFICATO

L'impedenza di uscita totale del nostro circuito è $R=270\,\mathrm{k}\Omega$, che però diventa confrontabile con il valore di impedenza di ingresso dell'oscilloscopio (circa $1\,\mathrm{M}\Omega$), che quindi si mangia 1/4 della tensione di ingresso, perchè abbiamo che di fatto l'impedenza in ingresso è confrontabile con l'impedenza in uscita del nostro circuito.

1.1. Appunti 15 marzo

Abbiamo notato che le impedenze in uscita del circuito costringevano ad avere tensioni che venivano *mangiate* come se si trovassero in una sorta di partitore di tensione.

2. CIRCUITO AMPLIFICATO

Aggiungendo l'amplificatore, che ha una impedenza di uscita praticamente infinita (maggiore di quella dell'oscilloscopio), otteniamo che questo problema non si pone più, e quindi con un guadagno pari a G=2, il valore massimo raggiungibile corrisponde effettivamente a 15/16 di 10 V, ovvero 9.3 V, che è il valore che otteniamo.

2.1. Appunti 15 marzo

Per il circuito amplificato scegliamo quindi di avere delle tensioni in ingresso inferiori, in particolare scegliamo come resistenze valori nominali di

 $R = 2.70 \,\mathrm{k}\Omega$

 $2R = 5.60 \,\mathrm{k}\Omega$

con valori reali molto vicini a questi valori nominali entro un errore inferiore al 5%.

3. NOTE SULLA PROGETTAZIONE DELL'ADC

Alcuni appunti di cui tenere conto per successivi progetti di circuiti di conversione digitale analogico o analogico digitale.

- Ogni volta controllare sul data sheet dello strumento tutte le caratteristiche, gli strumenti vanno generalmente collegati al GND, e necessitano di una tensione di funzionamento, spesso diverse.
- Durante la realizzazione può essere utile procedere pezzo per pezzo, ogni volta testare le uscite
- tenere un BNC libero per effettuare misure si tensione ai vari capi degli strumenti, procedere con senso fisico.
- Utilizzare il trigger in modo sensato, utilizzare anche la funzione single dell'oscilloscopio per fermare l'immagine al primo trigger.

^a Esperienza n. 5

b s5025011@studenti.unige.it

c s4942225@studenti.unige.it