Mineração de Dados 2018.2

Introdução a classificação de dados

(slides baseados no material do Prof. Carlos Soares e Prof. Eamonn Keogh [eamonn@cs.ucr.edu])

O problema de classificação

(definição informal)

Dada uma coleção de dados detalhados, neste caso 5 exemplos de **Esperança** e 5 do **Gafanhoto**, decida a qual tipo de inseto o exemplo não rotulado pertence.

Obs: **Esperança**: tipo de gafanhoto verde.

Esperança ou Gafanhoto?

Para qualquer domínio de interesse podemos medir *características*

Cor {Verde, Marrom, Cinza, Outra} Tem asas? Comprimento Comprimento Comprimento das antenas do abdomen do Tórax Tamanho da mandíbula Diâmetro dos orifícios de respiração **Comprimento das pernas**

Podemos armazenar as *características* em bases de dados

O problema de classificação agora pode ser expresso da seguinte forma:

 Dada uma base de treina mento(Minha_Coleção), prediga o rótulo da classe dos exemplos ainda não vistos

Minha_Coleção

ID do inseto	Comp. do abdômen	Comp. das antenas	Classe do inseto
1	2.7	5.5	Gafanhoto
2	8.0	9.1	Esperança
3	0.9	4.7	Gafanhoto
4	1.1	3.1	Gafanhoto
5	5.4	8.5	Esperança
6	2.9	1.9	Gafanhoto
7	6.1	6.6	Esperança
8	0.5	1.0	Gafanhoto
9	8.3	6.6	Esperança
10	8.1	4.7	Esperança

Exemplo não visto =	Exemp]	lo	não	visto	=
---------------------	--------	----	-----	-------	---

11	5.1	7.0	???????
----	-----	-----	---------

Gafanhoto

Esperança

Gafanhoto

Também utilizaremos esta base de dados maior para motivação ...

Cada um destes objetos de dados é chamado de...

- exemplar
- exemplo (de treinamento)
- instância
- tupla

Voltaremos ao slide anterior em dois minutos. Enquanto isso vamos jogar um joguinho rápido.

Vou mostrar a vocês alguns problemas de classificação que foram mostrados a pombos!

Vamos ver se você é tão esperto quanto um pombo!

Eis a regra. Se a barra esquerda é menor que a direita, é um A, caso contrário é um B.

A regra é: se duas barras são iguais em tamanho é um A. Caso contrário é um B.

A regra é a seguinte, se o quadrado da soma das duas barras é menor ou igual a 100, é um A. Caso contrário é um B.

Por que gastamos tanto tempo com este joguinho?

Porque queríamos mostrar que quase todos os problemas de classificação tem uma interpretação geométrica. Confira os próximos 3 slides...

Deixe-me procurar... aqui está... a regra é, se as duas barras têm tamanhos iguais, é um A. Senão é um B.

10 20 30 40 50 60 70 80 90 100

A regra novamente:

Se o quadrado da soma das duas barras é menor ou igual a 100, é um A. Senão é um B.

Gafanhoto

Esperança

11

5.1

7.0

???????

- Podemos "projetar" o exemplo não visto antes dentro do mesmo espaço que a base de dados.
- Acabamos de abstrair os detalhes do nosso problema particular. Será muito mais fácil conversar sobre pontos no espaço.

■ Esperança

Gafanhoto

Classificador Linear Simples

R.A. Fisher 1890-1962

Se exemplo não visto antes está acima da linha

Então

classe é **Esperança**

senão

classe é **Gafanhoto**

- **Esperança**
- Gafanhoto

O classificador linear simples é definido para espaços dimensionais maiores...

É interessante pensar no que aconteceria neste exemplo se não tivéssemos a terceira dimensão...

Podemos tentar resolver este problema usando um classificador *quadrático* simples ou um classificador *cúbico* simples...

Entretanto, como veremos mais tarde, esta é provavelmente uma idéia ruim... Quais dos "Problemas do Pombo" podem ser resolvidos pelo Classificador Linear Simples?

- 1) Perfeito
- 2) Inútil
- 3) Muito bom

Problemas que podem ser resolvidos por um classificador linear são chamados de **linearmente separáveis**.

Um problema famoso

R. A. Fisher's Iris Dataset.

- 3 classes
- 50 exemplos de cada classe

A tarefa é classificar as plantas em uma das 3 variedades usando comprimento de pétala e largura de pétala.

Iris Versicolor

Iris Virginica

Podemos generalizar o classificador linear relativo a variáveis a *C* classes, combinando *C*-1 linhas. Neste caso primeiramente aprendemos a linha para (perfeitamente) discriminar entre **Setosa** e **Virginica/Versicolor**, então aprendemos a discriminar aproximadamente entre **Virginica e Versicolor**.

Se comp. de pétala > 3.272 – (0.325 * comp. de pétala) **Então** classe = **Virginica Senão Se** largura de pétala...