THE CURSE OF DIMENSIONALITY

Challenges of high dimensional feature spaces

Intro to Machine Learning Jesse Knight 2015.10.14

BACKGROUND

- Often in pattern analysis:
 each feature is a new dimension
- Unfortunately, the space represented in N dimensions scales exponentially
 - e.g. Individual image pixels: had feature!
- The 'Curse of Dimensionality' is a range of problems which arise high dimensional features of models

Figure 1: Space sampling challenges: 1D - 4D spaces with 50% of each dimension; 42%, 14%, 7%, and 3% of data are captured

PROBLEM TYPES

- Data Sparsity: Not enough training points to understand all sub-regions of the space; difficult to achieve:
 - Statistical significance
 - Reliable machine learning model generalization
 - Expensive to evenly sample space

• Efficiency:

- Combination of d features with k possible states is $\sigma(k^d)$: impossible to consider all combinations
- Computing ∇J for all features becomes expensive

Distance Metrics:

- Euclidean distances between any two points theoretically converges, if uncorrelated
- In Nearest Neighbour searches, efficient rejection of inputs based on 1D difference is not possible
- Numerical Artifacts: can arise when dimensions are badly scaled

SOLUTIONS

- Dimensionality reduction:
 - Principal Component Analysis
 - May be lower layers in NN or before training features are defined
 - Identify and omit noise dimensions
- Improve target function smoothness: discontinuities prevent folding space
 - Rarely feasible as f_t is unknown!
- Nonlinear feature analysis:
 - 'Kernel Trick': compute a nondistance similarity function
 - e.g. Inner product
 - Monte Carlo methods

Figure 2: Exponential increase in space requires exponential computation expense