Homework 2 Solutions

Zheming Gao

September 3, 2017

Problem 1.1

Solutions:

1. Let $x_2 = x_2^+ - x_2^-$ and $x_2^+, x_2^- \ge 0$. And add slack variables ξ_1, ξ_2 on the first and the second constraint respectively.

Minimize
$$4x_1 + \sqrt{2}x_2^+ - \sqrt{2}x_2^- - 0.35x_3$$

subject to $-0.001x_1 + 200x_2^+ - 200x_2^- - \xi_1 = 7\sqrt{261}$
 $7.07x_2^+ - 7.07x_2^- - 2.62x_3 + \xi_2 = -4$
 $x_1, x_2^+, x_2^-, x_3, \xi_1, \xi_2 \geqslant 0$

2. Let $a_1 = x_1 - 20$, $a_3 = x_3 + 15$, then $a_1, a_3 \ge 0$, and $x_1 = a_1 + 20$, $x_3 = a_3 - 15$. Add a slack variable ξ_1 on the second constraint. The standard form is

Minimize
$$3.1a_1 - 2\sqrt{2}x_2 + a_3 + 47$$

subject to $100a_1 - 20x_2 = -1993$
 $-11a_1 - 7\pi x_2 - 2a_3 + \xi_1 = 590$
 $a_1, x_2, a_3, \xi_1 \geqslant 0$

3. Since $x_3 \le 10$, $10 - x_3 \ge 0$. Let $a_3 = 10 - x_3$, then $a_3 \ge 0$ and $x_3 = 10 - a_3$. Let $x_1 = x_1^+ - x_1^-$, where $x_1^+, x_1^- \ge 0$. Add slack variables on each constraint and the standard form is the following,

Minimize
$$-x_1^+ + x_1^- - 3x_2 - 2a_3 + 20$$

subject to $3x_1^+ - 3x_1^- - 5x_2 - \xi_1 = -2$
 $3x_1^+ - 3x_1^- - 5x_2 + \xi_2 = 15$
 $-5x_1^+ + 5x_1^- + 20x_2 - \xi_3 = 11$
 $-5x_1^+ + 5x_1^- + 20x_2 + \xi_4 = 40$
 $x_1^+, x_1^-, x_2, a_3, \xi_i (i = 1, \dots, 4) \ge 0$

Problem 1.2

a) Let $x_1 = x_1^+ - x_1^-$, where $x_1^+, x_1^- \ge 0$. The standard form is the following,

Minimize
$$2x_1^+ - 2x_1^- + 6x_2 + 8x_3$$

subject to $x_1^+ - x_1^- + 2x_2 + x_3 = 5$
 $4x_1^+ - 4x_1^- + 2x_3 = 12$
 $x_1^+, x_1^-, x_2, x_3 \ge 0$

b) From the first constraint, solve x_1 as $x_1 = 5 - 2x_2 - x_3$. Plug it into the objective function and also the second constraint, then reform the LP problem as the following,

Minimize
$$2x_2 + 6x_3 + 10$$

subject to $-2x_2 - 2x_3 = -8$
 $x_2, x_3 \ge 0$

- c) It is already in the standard form.
- d) Use graphic method to solve the problem. Optimal value is z*=10 and the optimal solution is $x*=(x_2^*,x_3^*)=(0,0)$.

Problem 1.3

- a) No. Because there is a nonlinear term x_1^2 in the objective function and the first constraint.
- b) Yes. Use the first constraint, solve x_1^2 and get $x_1^2 = x_2$. Plug it into the objective function and get

Minimize
$$2x_2 + 4x_3$$

subject to $2x_2 + 4x_3 \ge 4$
 $x_1, x_3 \ge 0, x_2 \ge 2$

c) Use the similar technique in problem 1.1 and 1.2. Let $a_2 = x_2 - 2$. Then $a_2 \ge 0$, and $x_2 = a_2 + 2$. Add a slack variable on the constraint.

Minimize
$$2a_2 + 4x_3 + 4$$

subject to $2a_2 + 4x_3 - \xi = 0$
 $x_1, a_2, x_3, \xi \geqslant 0$

d) Yes. To solve the LP problem, use graphic method. To solve the original problem, we can graph the feasible region in 3-D and use graph method to solve it.

2

Problem 1.4

- a) No. Because it has absolute-value functions in the objective function.
- b) Let $x_i = x_i^+ x_i^-$, i = 1, 2, 3, where $x_i^+, x_i^- \ge 0$. Then $|x_i| = x_i^+ + x_i^-$. Add one slack variable ξ_1 on the first constraint and the problem is reformed as

Minimize
$$x_1^+ + x_1^- + 2x_2^+ + 2x_2^- - x_3^+ - x_3^-$$

subject to $x_1^+ - x_1^- + x_2^+ - x_2^- - x_3^+ + x_3^- + \xi_1 = 10$
 $x_1^+ - x_1^- - 3x_2^+ + 3x_2^- + 2x_3^+ - 2x_3^- = 12$
 $x_i^+, x_i^- \geqslant 0, i = 1, 2, 3.$
 $\xi_1 \geqslant 0$

c) Use the similar technique as in (b), let $a_1 = x_1 - 5$ and $a_2 = x_2 + 4$. Then, $|x_1 - 5| = a_1^+ + a_1^-$ and $|x_2 + 4| = a_2^+ + a_2^-$.

Also, it is clear to see that

$$x_1 = a_1 + 5 = a_1^+ - a_1^- + 5, \quad x_2 = a_2 - 4 = a_2^+ - a_2^- - 4.$$

Plug above into the problem and get the following standard form.

Minimize
$$a_1^+ + a_1^- + a_2^+ + a_2^-$$

subject to $a_1^+ - a_1^- + a_2^+ - a_2^- + \xi_1 = 10$
 $a_1^+ - a_1^- - 3a_2^+ + 3a_2^- - \xi_2 = -15$
 $a_i^+, a_i^-, \xi_i \geqslant 0, i = 1, 2.$

Problem 1.5