

Outline

- 1 Exponential Smoothing methods
- 2 Exponential smoothing state space models
- Models with no trend, no seasonality
- 4 Models with trend
- 5 Models with seasonality
- 6 Lab Session 7

Outline

- 1 Exponential Smoothing methods
- 2 Exponential smoothing state space models
- 3 Models with no trend, no seasonality
- 4 Models with trend
- 5 Models with seasonality
- 6 Lab Session 7

Average method

■ Forecast of all future values is equal to mean of historical data $\{y_1, \dots, y_T\}$.

Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Average forecasts

$$\hat{y}_{T+h|T} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

Average forecasts

$$\hat{y}_{T+h|T} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

- Want something in between these methods.
- Most recent data should have more weight.
- Trend and seasonality

Historical perspective

- Developed in the 1950s and 1960s as **methods** (algorithms) to produce point forecasts.
- Combine a "level", "trend" (slope) and "seasonal" component to describe a time series.
- The rate of change of the components are controlled by "smoothing parameters": α , β and γ respectively.
- Need to choose best values for the smoothing parameters (and initial states).
- Equivalent ETS state space **models** developed in the 1990s and 2000s.

Pegel's classification

Exponential smoothing methods

		Seasonal Component		
Trend		N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
Ν	(None)	(N,N)	(N,A)	(N,M)
Α	(Additive)	(A,N)	(A,A)	(A,M)
A_d	(Additive damped)	(A _d ,N)	(A_d,A)	(A_d,M)

(N,N): Simple exponential smoothing

(A,N): Holt's linear method

(A_d,N): Additive damped trend method (A.A): Additive Holt-Winters' method

(A,M): Multiplicative Holt-Winters' method

(A_d,M): Damped multiplicative Holt-Winters' method

We want a method that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

We want a method that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m}$$

We want a method that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m}$$

Multiplicatively?

$$y_t = \ell_{t-1}b_{t-1}s_{t-m}$$

We want a method that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m}$$

Multiplicatively?

$$y_t = \ell_{t-1}b_{t-1}s_{t-m}$$

Perhaps a mix of both?

$$y_t = (\ell_{t-1} + b_{t-1})s_{t-m}$$

Exponential smoothing methods

Trend		Seasonal	
	N	Α	M
N	$\hat{y}_{t+h t} = \ell_t$ $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$	$\begin{split} \hat{y}_{t+h t} &= \ell_t + s_{t-m+h_m^+} \\ \ell_t &= \alpha (y_t - s_{t-m}) + (1 - \alpha) \ell_{t-1} \\ s_t &= \gamma (y_t - \ell_{t-1}) + (1 - \gamma) s_{t-m} \end{split}$	$\begin{split} \hat{y}_{t+h t} &= \ell_t s_{t-m+h_m^+} \\ \ell_t &= \alpha (y_t/s_{t-m}) + (1-\alpha)\ell_{t-1} \\ s_t &= \gamma (y_t/\ell_{t-1}) + (1-\gamma)s_{t-m} \end{split}$
A	$ \hat{y}_{t+h t} = \ell_t + hb_t \ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1}) b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} $	$\begin{split} \hat{y}_{t+h t} &= \ell_t + hb_t + s_{t-m+h_m^+} \\ \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m} \end{split}$	$\begin{split} \hat{y}_{t+h t} &= (\ell_t + hb_t)s_{t-m+h_m^+} \\ \ell_t &= \alpha(y_t/s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} \\ s_t &= \gamma(y_t/(\ell_{t-1} + b_{t-1})) + (1 - \gamma)s_{t-m} \end{split}$
${f A}_{ m d}$	$\begin{split} \hat{y}_{t+h t} &= \ell_t + \phi_h b_t \\ \ell_t &= \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) \phi b_{t-1} \end{split}$	$\begin{split} \hat{y}_{t+h t} &= \ell_t + \phi_h b_t + s_{t-m+h_m^+} \\ \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) \phi b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - \phi b_{t-1}) + (1 - \gamma) s_{t-m} \end{split}$	$\begin{split} \hat{y}_{t+h t} &= (\ell_t + \phi_h b_t) s_{t-m+h_m^+} \\ \ell_t &= \alpha(y_t/s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) \phi b_{t-1} \\ s_t &= \gamma(y_t/(\ell_{t-1} + \phi b_{t-1})) + (1 - \gamma) s_{t-m} \end{split}$
М	$\begin{aligned} \hat{y}_{t+h t} &= \ell_t b_t^h \\ \ell_t &= \alpha y_t + (1 - \alpha) \ell_{t-1} b_{t-1} \\ b_t &= \beta^* (\ell_t / \ell_{t-1}) + (1 - \beta^*) b_{t-1} \end{aligned}$	$\begin{split} \hat{y}_{t+h t} &= \ell_t b_t^h + s_{t-m+h_m^+} \\ \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)\ell_{t-1}b_{t-1} \\ b_t &= \beta^*(\ell_t/\ell_{t-1}) + (1 - \beta^*)b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1}b_{t-1}) + (1 - \gamma)s_{t-m} \end{split}$	$\begin{split} \hat{y}_{t+h t} &= \ell_t b_h^h s_{t-m+h_m^+} \\ \ell_t &= \alpha(y_t/s_{t-m}) + (1-\alpha)\ell_{t-1}b_{t-1} \\ b_t &= \beta^*(\ell_t/\ell_{t-1}) + (1-\beta^*)b_{t-1} \\ s_t &= \gamma(y_t/(\ell_{t-1}b_{t-1})) + (1-\gamma)s_{t-m} \end{split}$
$ m M_d$	$\begin{split} \hat{y}_{t+h t} &= \ell_t b_t^{\phi_h} \\ \ell_t &= \alpha y_t + (1 - \alpha) \ell_{t-1} b_{t-1}^{\phi} \\ b_t &= \beta^* (\ell_t / \ell_{t-1}) + (1 - \beta^*) b_{t-1}^{\phi} \end{split}$	$\begin{split} \hat{y}_{t+h t} &= \ell_t b_t^{\phi_h} + s_{t-m+h_m^+} \\ \ell_t &= \alpha(y_t \cdot s_{t-m}) + (1-\alpha)\ell_{t-1} b_{t-1}^{\phi} \\ b_t &= \beta^*(\ell_t/\ell_{t-1}) + (1-\beta^*)b_{t-1}^{\phi} \\ s_t &= \gamma(y_t - \ell_{t-1} b_{t-1}^{\phi}) + (1-\gamma)s_{t-m} \end{split}$	$\begin{split} \hat{y}_{t+h \ell} &= \ell_t b_t^{\phi_h} s_{t-m+h_m^+} \\ \ell_t &= \alpha(y_t/s_{1-m}) + (1-\alpha)\ell_{t-1} b_{t-1}^{\phi} \\ b_t &= \beta^* (\ell_t/\ell_{t-1}) + (1-\beta^*) b_{t-1}^{\phi} \\ s_t &= \gamma(y_t/(\ell_{t-1} b_{t-1}^{\phi})) + (1-\gamma) s_{t-m} \end{split}$

Exponential smoothing methods

Trend		Seasonal	
rend	N	A	M
N	$\hat{y}_{t+h t} = \ell_t$ $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$	$\hat{y}_{t+h t} = \ell_t + s_{t-m+h_m^+}$ $\ell_t = \alpha (y_t - s_{t-m}) + (1 - \alpha)\ell_{t-1}$	$\hat{y}_{t+h t} = \ell_t s_{t-m+h_m^+}$ $\ell_t = \alpha (y_t/s_{t-m}) + (1-\alpha)\ell_{t-1}$
A	$\hat{y}_{t+h t} = \ell_t + hb_t$ $\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$ $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}$	$\begin{split} s_t &= \gamma(y_t - \ell_{t-1}) + (1 - \gamma)s_{t-m} \\ \hat{y}_{t+h t} &= \ell_t + hb_t + s_{t-m+h_m} \\ \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m} \end{split}$	$\begin{aligned} s_t &= \gamma(y_t/\ell_{t-1}) + (1 - \gamma)s_{t-m} \\ \hat{y}_{t+h t} &= (\ell_t + hb_t)s_{t-m+h_m^+} \\ \ell_t &= \alpha(y_t/s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} \\ s_t &= \gamma(y_t/(\ell_{t-1} + b_{t-1})) + (1 - \gamma)s_{t-m} \end{aligned}$
$\mathbf{A}_{\mathbf{d}}$	$\begin{split} \hat{y}_{t+h t} &= \ell_t + \phi_h b_t \\ \ell_t &= \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) \phi b_{t-1} \end{split}$	$ \begin{aligned} \hat{y}_{t+h t} &= \ell_t + \phi_h b_t + s_{t-m+k+\frac{1}{m}} \\ \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) \phi b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - \phi b_{t-1}) + (1 - \gamma) s_{t-m} \end{aligned} $	$\begin{split} \hat{y}_{t+h t} &= (\ell_t + \phi_h b_t) s_{t-m+k\frac{t}{m}} \\ \ell_t &= \alpha(y_t/s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1} \\ s_t &= \gamma(y_t/(\ell_{t-1} + \phi b_{t-1})) + (1 - \gamma)s_{t-m} \end{split}$
М	$\begin{split} \hat{y}_{t+h t} &= \ell_t b_t^h \\ \ell_t &= \alpha y_t + (1 - \alpha) \ell_{t-1} b_{t-1} \\ b_t &= \beta^* (\ell_t / \ell_{t-1}) + (1 - \beta^*) b_{t-1} \end{split}$	$\begin{split} \hat{y}_{t+h t} &= \ell_t b_t^h + s_{t-m+h_m^+} \\ \ell_t &= \alpha (y_t - s_{t-m}) + (1 - \alpha)\ell_{t-1}b_{t-1} \\ b_t &= \beta^* (\ell_t/\ell_{t-1}) + (1 - \beta^*)b_{t-1} \\ s_t &= \gamma (y_t - \ell_{t-1}b_{t-1}) + (1 - \gamma)s_{t-m} \end{split}$	$\begin{split} \hat{y}_{t+h t} &= \ell_t b_t^h s_{t-m+h_m^+} \\ \ell_t &= \alpha(y_t/s_{t-m}) + (1-\alpha)\ell_{t-1}b_{t-1} \\ b_t &= \beta^*(\ell_t/\ell_{t-1}) + (1-\beta^*)b_{t-1} \\ s_t &= \gamma(y_t/(\ell_{t-1}b_{t-1})) + (1-\gamma)s_{t-m} \end{split}$
$ m M_d$	$\begin{split} \hat{y}_{t+h t} &= \ell_t b_t^{\phi_h} \\ \ell_t &= \alpha y_t + (1 - \alpha) \ell_{t-1} b_{t-1}^{\phi} \\ b_t &= \beta^* (\ell_t / \ell_{t-1}) + (1 - \beta^*) b_{t-1}^{\phi} \end{split}$	$\begin{split} \hat{y}_{t+h t} &= \ell_t b_t^{\phi_h} + s_{t-m+h_m^+} \\ \ell_t &= \alpha(y - s_{t-m}) + (1 - \alpha)\ell_{t-1} b_{t-1}^{\phi} \\ b_t &= \beta^* (\ell_t / \ell_{t-1}) + (1 - \beta^*) b_{t-1}^{\phi} \\ s_t &= \gamma(y_t - \ell_{t-1} b_{t-1}^{\phi}) + (1 - \gamma) s_{t-m} \end{split}$	$\begin{split} \hat{y}_{t+h t} &= \ell_t b_t^{\phi_h} s_{t-m+h_m^+} \\ \ell_t &= \alpha(y_t/s_{t-m}) + (1-\alpha)\ell_{t-1} b_{t-1}^{\phi} \\ b_t &= \beta^*(\ell_t/\ell_{t-1}) + (1-\beta^*) b_{t-1}^{\phi} \\ s_t &= \gamma(y_t/(\ell_{t-1}b_{t-1}^{\phi})) + (1-\gamma)s_{t-m} \end{split}$

How do the level, trend and seasonal components evolve over time?

Big idea: control the rate of change (smoothing)

 α controls the flexibility of the **level**

- If α = 0, the level never updates (mean)
- If α = 1, the level updates completely (naive)

 β controls the flexibility of the **trend**

- If β = 0, the trend is linear (regression trend)
- If β = 1, the trend updates every observation

 γ controls the flexibility of the **seasonality**

- If γ = 0, the seasonality is fixed (seasonal means)
- If γ = 1, the seasonality updates completely (seasonal naive)

Parameter estimation

- Need to choose value for smoothing and initial values.
- A robust and objective way to obtain values for the unknown parameters included in any exponential smoothing method is to estimate them from the observed data.
- Initial and smoothing values are chosen by minimising sum of squared errors (SSE):

SSE =
$$\sum_{t=1}^{N} (y_t - \hat{y}_{t|t-1})^2 = \sum_{t=1}^{N} e_t^2$$
.

Outline

- 1 Exponential Smoothing methods
- 2 Exponential smoothing state space models
- 3 Models with no trend, no seasonality
- 4 Models with trend
- 5 Models with seasonality
- 6 Lab Session 7

Exponential smoothing state space models

methods

- ES methods presented so far are algorithms that generate **point forecast**.
- Each exponential smoothing method can be written as an **Innovation state space model**

models

- Generate same point forecasts but can also generate forecast intervals.
- A stochastic (or random) data generating process that can generate an entire forecast distribution.
- Allow for "proper" model selection. Parameters

Exponential smoothing methods

		Seasonal Component		
Trend		N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	(N,N)	(N,A)	(N,M)
Α	(Additive)	(A,N)	(A,A)	(A,M)
A_d	(Additive damped)	(A _d ,N)	(A_d,A)	(A_d, M)

(N,N): Simple exponential smoothing

(A,N): Holt's linear method

(A_d,N): Additive damped trend method (A.A): Additive Holt-Winters' method

(A,M): Multiplicative Holt-Winters' method

(A_d,M): Damped multiplicative Holt-Winters' method

ETS models

- Two models for each method: one with additive and one with multiplicative errors (multiplicative error means the noise increases with level of series)
- The possibilities for each component are:
 - Error ={A,M}
 - ► Trend ={ N,A,A_d,M,M_d }
 - Seasonal ={N,A,M} where N = none, A = additive, M = multiplicative, and _d=damped.
- Each state space model can be labeled as ETS (Error, Trend, Seasonal).

ETS models

■ Each model consists of an *observation* equation that describes the observed data and *transition*, one for each state (level, trend, seasonal), i.e., state space models, that describe how the unobserved components or states change over time. Hence these are referred to as *state space models*.

General notation ETS: ExponenTial Smoothing

Trend Season

Error: Additive ("A") or multiplicative ("M")

General notation ETS: ExponenTial Smoothing

∠ ↑ △

Error Trend Season

Error: Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

Error: Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

Seasonality: None ("N"), additive ("A") or multiplicative ("M")

Additive Error		Seasonal Component		
Trend		N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	A,N,N	A,N,A	A,N,M
Α	(Additive)	A,A,N	A,A,A	A,A,M
A_d	(Additive damped)	A,A_d,N	A,A_d,A	A,A_d,M

Multiplicative Error		Seasonal Component		
Trend		N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	M,N,N	M,N,A	M,N,M
Α	(Additive)	M,A,N	M,A,A	M,A,M
A_d	(Additive damped)	M,A _d ,N	M,A_d,A	M,A_d,M

Additive error models

Trend		Seasonal	
	N	Α	M
N	$y_t = \ell_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = \ell_{t-1} s_{t-m} + \varepsilon_t$
	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / \ell_{t-1}$
	$y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = (\ell_{t-1} + b_{t-1})s_{t-m} + \varepsilon_t$
Α	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t / s_{t-m}$
	$b_t = b_{t-1} + \beta \varepsilon_t$	$b_t = b_{t-1} + \beta \varepsilon_t$	$b_t = b_{t-1} + \beta \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + b_{t-1})$
	$y_t = \ell_{t-1} + \phi b_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + \phi b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} + \varepsilon_t$
A_d	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t / s_{t-m}$
	$b_t = \phi b_{t-1} + \beta \varepsilon_t$	$b_t = \phi b_{t-1} + \beta \varepsilon_t$	$b_t = \phi b_{t-1} + \beta \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + \phi b_{t-1})$

Multiplicative error models

Trend		Seasonal	
	N	Α	M
N	$y_t = \ell_{t-1}(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = \ell_{t-1} s_{t-m} (1 + \varepsilon_t)$
	$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + \alpha(\ell_{t-1} + s_{t-m})\varepsilon_t$	$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$
	$y_t = (\ell_{t-1} + b_{t-1})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + b_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + b_{t-1})s_{t-m}(1 + \varepsilon_t)$
A	$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t$	$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$
	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t$	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + b_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$
	$y_t = (\ell_{t-1} + \phi b_{t-1})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + \phi b_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} (1 + \varepsilon_t)$
A_d	$\ell_t = (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_t$	$\ell_t = (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_t)$
	$b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_t$	$b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_t$	$b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_t$
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$

Innovations state space models

Let
$$\mathbf{x}_t = (\ell_t, b_t, s_t, s_{t-1}, \dots, s_{t-m+1})$$
 and $\varepsilon_t \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$.

$$y_{t} = \underbrace{h(\mathbf{x}_{t-1})}_{\mu_{t}} + \underbrace{k(\mathbf{x}_{t-1})\varepsilon_{t}}_{e_{t}}$$
$$\mathbf{x}_{t} = f(\mathbf{x}_{t-1}) + g(\mathbf{x}_{t-1})\varepsilon_{t}$$

Additive errok(x) = 1.
$$y_t = \mu_t + \varepsilon_t$$
.
Multiplicative (x_trot) = μ_t . $y_t = \mu_t (1 + \varepsilon_t)$.
 $\varepsilon_t = (y_t - \mu_t)/\mu_t$ is relative error.

Innovations state space models

Fstimation

$$L^*(\boldsymbol{\theta}, \mathbf{x}_0) = n \log \left(\sum_{t=1}^n \varepsilon_t^2 / k^2(\mathbf{x}_{t-1}) \right) + 2 \sum_{t=1}^n \log |k(\mathbf{x}_{t-1})|$$
$$= -2 \log(\text{Likelihood}) + \text{constant}$$

Estimating ETS models

- Smoothing parameters α , β , γ and ϕ , and the initial states ℓ_0 , b_0 , s_0 , s_{-1} , ..., s_{-m+1} are estimated by maximising the "likelihood" = the probability of the data arising from the specified model.
- For models with additive errors equivalent to minimising SSE.
- For models with multiplicative errors, not equivalent to minimising SSE.

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where *L* is the likelihood and *k* is the number of parameters initial states estimated in the model.

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where *L* is the likelihood and *k* is the number of parameters initial states estimated in the model.

Corrected AIC

$$AIC_c = AIC + \frac{2(k+1)(k+2)}{T-k}$$

which is the AIC corrected (for small sample bias).

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where *L* is the likelihood and *k* is the number of parameters initial states estimated in the model.

Corrected AIC

$$AIC_c = AIC + \frac{2(k+1)(k+2)}{T-k}$$

which is the AIC corrected (for small sample bias).

Bayesian Information Criterion

$$BIC = AIC + k(\log(T) - 2).$$

ETS(A,N,N): Specifying the model

```
ETS(y ~ error("A") + trend("N") + season("N"))
```

Outline

- 1 Exponential Smoothing methods
- 2 Exponential smoothing state space models
- 3 Models with no trend, no seasonality
- 4 Models with trend
- 5 Models with seasonality
- 6 Lab Session 7

ETS(A,N,N): SES with additive errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T$$

Measurement equation $y_t = \ell_{t-1} + \varepsilon_t$

State equation $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$

where $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

ETS(A,N,N): SES with additive errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T$$

Measurement equation $y_t = \ell_{t-1} + \varepsilon_t$

State equation $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$

where $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

- "innovations" or "single source of error" because equations have the same error process, ε_t .
- Measurement equation: relationship between observations and states.
- Transition/state equation(s): evolution of the state(s) through time.

ETS(M,N,N): SES with multiplicative errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T$$

Measurement equation $y_t = \ell_{t-1}(1 + \varepsilon_t)$

State equation $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$

where $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

ETS(M,N,N): SES with multiplicative errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T$$

Measurement equation $y_t = \ell_{t-1}(1 + \varepsilon_t)$

State equation $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$

where $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

Models with additive and multiplicative errors with the same parameters generate the same point forecasts but different prediction intervals.

Outline

- 1 Exponential Smoothing methods
- 2 Exponential smoothing state space models
- 3 Models with no trend, no seasonality
- 4 Models with trend
- 5 Models with seasonality
- 6 Lab Session 7

Holt's linear trend

Additive errors: ETS(A,A,N)

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T + hb_T$$

Measurement equation $y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$

State equations $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$
 $\ell_t = \ell_{t-1} + \beta \varepsilon_t$

Holt's linear trend

Additive errors: ETS(A,A,N)

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T + hb_T$$

Measurement equation
$$y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$$

State equations
$$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$$

$$b_t = b_{t-1} + \beta \varepsilon_t$$

Multiplicative errors: ETS(M,A,N)

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T + hb_T$$

Measurement equation
$$y_t = (\ell_{t-1} + b_{t-1})(1 + \varepsilon_t)$$

State equations
$$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$$

$$b_t = b_{t-1} + \beta \varepsilon_t$$

Damped trend additive

- Holt's linear model displays a constant trend (increasing or decreasing) indefinitely into the future.
- The exponential trend model also includes exponential growth or decline.
- Empirical evidence indicates that these methods tend to over-forecast, especially for longer forecast horizons.
- Motivated by this, a dampening parameter is introduced so that the trend approaches a flat line some time in the future.

Damped trend additive

Component form

$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}.$$

Damped trend additive

Component form

$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}.$$

- Damping parameter $0 < \phi < 1$.
- If ϕ = 1, identical to Holt's linear trend.
- As $h \to \infty$, $\hat{y}_{T+h|T} \to \ell_T + \phi b_T/(1-\phi)$.
- Short-run forecasts trended, long-run forecasts constant.

ETS(A,Ad,N): Damped trend multiplicative

Additive errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T + b_T^{\dagger} \phi + \cdots + \phi^{h-1}$$
)

Measurement equation $y_t = (\ell_{t-1} + \phi b_{t-1}) + (1 + \varepsilon_t)$

State equations $\ell_t = (\ell_{t-1} + \phi b_{t-1}) + (1 + \alpha \varepsilon_t)$
 $\ell_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_t$

ETS(A,Ad,N): Damped trend multiplicative

Additive errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T + b_T^{\dagger} \phi + \cdots + \phi^{h-1}$$
)

Measurement equation $y_t = (\ell_{t-1} + \phi b_{t-1}) + (1 + \varepsilon_t)$

State equations $\ell_t = (\ell_{t-1} + \phi b_{t-1}) + (1 + \alpha \varepsilon_t)$
 $\ell_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_t$

Outline

- 1 Exponential Smoothing methods
- 2 Exponential smoothing state space models
- 3 Models with no trend, no seasonality
- 4 Models with trend
- 5 Models with seasonality
 - 6 Lab Session 7

Holt-Winters method

- Holt and Winters extended Holt's method to capture seasonality.
- There are two variations to this method that differ in the nature of the seasonal component: -**Additive:** The additive method is preferred when the seasonal variations are roughly constant through the series, - Multiplicative: the multiplicative method is preferred when the seasonal variations are changing proportional to the level of the series.

ETS(A,A,A): Holt-Winters additive

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t+h-m(k+1)}$$

Observation equation $y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$
State equations $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$
 $\ell_t = \ell_{t-1} + \beta \varepsilon_t$
 $\ell_t = s_{t-m} + \gamma \varepsilon_t$

- k = integer part of (h-1)/m.
- \blacksquare $\sum_i s_i \approx 0.$
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality (e.g. m = 4 for quarterly data).

ETS(M,A,M): Holt-Winters multiplicative

Forecast equation
$$\hat{y}_{t+h|t} = (\ell_t + hb_t)s_{t+h-m(k+1)}$$

Observation equation $y_t = (\ell_{t-1} + b_{t-1})s_{t-m}(1 + \varepsilon_t)$
State equations $\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$
 $b_t = b_{t-1}(1 + \beta \varepsilon_t)$
 $s_t = s_{t-m}(1 + \gamma \varepsilon_t)$

- k is integer part of (h-1)/m.
- \blacksquare $\sum_i s_i \approx m$.
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality (e.g. m = 4 for quarterly data).

Holt-Winters damped method

Often the single most accurate forecasting method for seasonal data:

$$\hat{y}_{t+h|t} = [\ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t]s_{t+h-m(k+1)}$$

$$\ell_t = \alpha(y_t/s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}$$

$$s_t = \gamma \frac{y_t}{(\ell_{t-1} + \phi b_{t-1})} + (1 - \gamma)s_{t-m}$$

Outline

- 1 Exponential Smoothing methods
- 2 Exponential smoothing state space models
- 3 Models with no trend, no seasonality
- 4 Models with trend
- 5 Models with seasonality
- 6 Lab Session 7

Lab Session 7

Use ETS model to produce forecast for 42 days:

- Split daily time series into train and test
- Specify following models and train data:
 - single exponential smoothing
 - holt-winter
 - automatic ETS()
- use glance, tidy and report functions to extract information from trained models
- Report forecast accuracy
- which model is more accurate?