Math 362: Mathematical Statistics II

Le Chen

le.chen@emory.edu chenle02@gmail.com

> Emory University Atlanta, GA

Last updated on Spring 2021 Last compiled on January 15, 2023

2021 Spring

Creative Commons License (CC By-NC-SA)

Chapter 5. Estimation

- § 5.1 Introduction
- § 5.2 Estimating parameters: MLE and MME
- § 5.3 Interval Estimation
- § 5.4 Properties of Estimators
- § 5.5 Minimum-Variance Estimators: The Cramér-Rao Lower Bound
- § 5.6 Sufficient Estimators
- § 5.7 Consistency
- § 5.8 Bayesian Estimation

1

Plan

- § 5.1 Introduction
- § 5.2 Estimating parameters: MLE and MME
- § 5.3 Interval Estimation

§ 5.4 Properties of Estimators

- § 5.5 Minimum-Variance Estimators: The Cramér-Rao Lower Bound
- § 5.6 Sufficient Estimators
- § 5.7 Consistency
- § 5.8 Bayesian Estimation

Chapter 5. Estimation

- § 5.1 Introduction
- § 5.2 Estimating parameters: MLE and MME
- § 5.3 Interval Estimation
- § 5.4 Properties of Estimators
- § 5.5 Minimum-Variance Estimators: The Cramér-Rao Lower Bound
- § 5.6 Sufficient Estimators
- § 5.7 Consistency
- § 5.8 Bayesian Estimation

Question: Estimators are not in general unique (MLE or MME ...). How to select one estimator?

Recall: For a random sample of size n from the population with given pdf, we have X_1, \dots, X_n , which are i.i.d. r.v.'s. The estimator $\hat{\theta}$ is a function of $X_i's$:

$$\hat{\theta} = \hat{\theta}(X_1, \cdots, X_n).$$

Criterions:

1. Unbiased. (Mean)

2. Efficiency, the minimum-variance estimator. (Variance

3. Sufficency

4. Consistency

(Asymptotic behavior)

Question: Estimators are not in general unique (MLE or MME ...). How to select one estimator?

Recall: For a random sample of size n from the population with given pdf, we have X_1, \dots, X_n , which are i.i.d. r.v.'s. The estimator $\hat{\theta}$ is a function of $X_i's$:

$$\hat{\theta} = \hat{\theta}(X_1, \cdots, X_n).$$

Criterions:

1. Unbiased. (Mean)

2. Efficiency, the minimum-variance estimator. (Variance)

3. Sufficency

4. Consistency

(Asymptotic behavior)

Question: Estimators are not in general unique (MLE or MME ...). How to select one estimator?

Recall: For a random sample of size n from the population with given pdf, we have X_1, \dots, X_n , which are i.i.d. r.v.'s. The estimator $\hat{\theta}$ is a function of $X_i's$:

$$\hat{\theta} = \hat{\theta}(X_1, \cdots, X_n).$$

Criterions:

1. Unbiased. (Mean)

2. Efficiency, the minimum-variance estimator. (Variance)

3. Sufficency.

4. Consistence

(Asymptotic behavior)

Question: Estimators are not in general unique (MLE or MME ...). How to select one estimator?

Recall: For a random sample of size n from the population with given pdf, we have X_1, \dots, X_n , which are i.i.d. r.v.'s. The estimator $\hat{\theta}$ is a function of $X_i's$:

$$\hat{\theta} = \hat{\theta}(X_1, \cdots, X_n).$$

Criterions:

1. Unbiased. (Mean)

2. Efficiency, the minimum-variance estimator. (Variance)

3. Sufficency.

4. Consistency. (Asymptotic behavior)

Unbiasedness

Definition 5.4.1. Given a random sample of size n whose population distribution dependes on an unknown parameter θ , let $\hat{\theta}$ be an estimator of θ .

Then $\hat{\theta}$ is called **unbiased** if $\mathbb{E}(\hat{\theta}) = \theta$;

and $\hat{\theta}$ is called asymptotically unbiased if $\lim_{n\to\infty}\mathbb{E}(\hat{\theta})=\theta$.

E.g. 1.
$$f_Y(y; \theta) = \frac{2y}{\theta^2}$$
 if $y \in [0, \theta]$.
$$- \hat{\theta}_1 = \frac{3}{2} \overline{Y}$$

$$- \hat{\theta}_2 = \overline{Y}_{max}$$

$$- \hat{\theta}_3 = \frac{2n+1}{2} \overline{Y}_{max}$$

$$\hat{\theta} = \sum_{i=1}^{n} a_i X_i$$
 is unbiased $\iff \sum_{i=1}^{n} a_i = 1$

E.g. 1.
$$f_Y(y;\theta) = \frac{2y}{\theta^2}$$
 if $y \in [0,\theta]$.

$$-\hat{\theta}_1 = \frac{3}{2}\overline{Y}$$

$$-\hat{\theta}_2 = Y_{max}$$

$$-\hat{\theta}_3 = \frac{2n+1}{2n}Y_{max}$$

$$\hat{\theta} = \sum_{i=1}^{n} a_i X_i$$
 is unbiased $\iff \sum_{i=1}^{n} a_i = 1$

E.g. 1.
$$f_Y(y;\theta) = \frac{2y}{\theta^2}$$
 if $y \in [0,\theta]$.

$$-\hat{\theta}_1 = \frac{3}{2}\overline{Y}$$

$$-\hat{\theta}_2 = Y_{max}$$

$$-\hat{\theta}_3 = \frac{2D+1}{2D}Y_{max}$$

$$\hat{\theta} = \sum_{i=1}^n a_i X_i$$
 is unbiased $\iff \sum_{i=1}^n a_i = 1$

E.g. 1.
$$f_{Y}(y; \theta) = \frac{2y}{\theta^{2}}$$
 if $y \in [0, \theta]$.
 $-\hat{\theta}_{1} = \frac{3}{2}\overline{Y}$
 $-\hat{\theta}_{2} = Y_{max}$.
 $-\hat{\theta}_{3} = \frac{2n+1}{2n}Y_{max}$.

$$\hat{\theta} = \sum_{i=1}^n a_i X_i$$
 is unbiased $\iff \sum_{i=1}^n a_i = 1$

E.g. 1.
$$f_{Y}(y;\theta) = \frac{2y}{\theta^{2}}$$
 if $y \in [0,\theta]$.
 $-\hat{\theta}_{1} = \frac{3}{2}\overline{Y}$
 $-\hat{\theta}_{2} = \frac{2}{2}\frac{1}{2}$ $\frac{1}{2}\frac{1}{2}$ $\frac{1}{2}\frac{1}{2}$ $\frac{1}{2}\frac{1}{2}$ $\frac{1}{2}\frac{1}{2}$ $\frac{1}{2}\frac{1}{2}$ $\frac{1}{2}\frac{1}{2}$

$$\hat{\theta} = \sum_{i=1}^n a_i X_i$$
 is unbiased $\iff \sum_{i=1}^n a_i = 1$.

$$-\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$$

$$-S^2 = \text{Sample Variance} = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2$$

$$-S =$$
Sample Standard Deviation $= \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2}.$ (Biased for $\sigma!$

$$-\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$$

$$- \ S^2 = \text{Sample Variance} = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$$

$$-S =$$
Sample Standard Deviation $= \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2}.$ (Biased for $\sigma!$

$$-\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$$

-
$$S^2 = \text{Sample Variance} = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$$

$$-S = \text{Sample Standard Deviation} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2}.$$
 (Biased for σ !

$$- \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$$

$$-S^2 = \text{Sample Variance} = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$$

-
$$S = \text{Sample Standard Deviation} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2}$$
. (Biased for σ !)

 $n\overline{Y} = \sum_{i=1}^{n} Y_i \sim \text{Gamma distribution}(n, \lambda)$. Hence,

$$\mathbb{E}\left(\widehat{\lambda}\right) = \mathbb{E}\left(1/\overline{Y}\right) = n \int_0^\infty \frac{1}{y} \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y} \mathrm{d}y$$

$$= \frac{n\lambda}{n-1} \int_0^\infty \underbrace{\frac{\lambda^{n-1}}{\Gamma(n-1)} y^{(n-1)-1} e^{-\lambda y}}_{\text{pdf for Gamma distr. } (n-1,\lambda)} \mathrm{d}y$$

$$= \frac{n}{n-1} \lambda.$$

Biased! But $\mathbb{E}(\widehat{\lambda}) = \frac{n}{n-1}\lambda \to \lambda$ as $n \to \infty$. (Asymptotically unbiased.)

Note: $\hat{\lambda}^* = \frac{n-1}{n\overline{V}}$ is unbiased.

E.g. 4'. Exponential distr.: $f_Y(y;\theta) = \frac{1}{n}e^{-y/\theta}$ for $y \ge 0$. $\theta = Y$ is unbiased

$$\mathbb{E}\left(\widehat{\theta}\right) = \frac{1}{n} \sum_{i} \mathbb{E}(Y_i) = \frac{1}{n} \sum_{i} \theta = \theta.$$

 $n\overline{Y} = \sum_{i=1}^{n} Y_i \sim \text{Gamma distribution}(n, \lambda)$. Hence,

$$\begin{split} \mathbb{E}\left(\widehat{\lambda}\right) &= \mathbb{E}\left(1/\overline{Y}\right) = n \int_0^\infty \frac{1}{y} \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y} \mathrm{d}y \\ &= \frac{n\lambda}{n-1} \int_0^\infty \underbrace{\frac{\lambda^{n-1}}{\Gamma(n-1)} y^{(n-1)-1} e^{-\lambda y}}_{\text{pdf for Gamma distr. } (n-1,\lambda)} \mathrm{d}y \\ &= \frac{n}{n-1} \lambda. \end{split}$$

Biased! But $\mathbb{E}(\widehat{\lambda}) = \frac{n}{n-1}\lambda \to \lambda$ as $n \to \infty$. (Asymptotically unbiased.)

Note: $\hat{\lambda}^* = \frac{n-1}{n\overline{V}}$ is unbiased.

E.g. 4'. Exponential distr.: $f_V(y;\theta) = \frac{1}{2}e^{-y/\theta}$ for $y \ge 0$. $\hat{\theta} = \overline{Y}$ is unbiased

$$\mathbb{E}\left(\widehat{\theta}\right) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(Y_i) = \frac{1}{n} \sum_{i=1}^{n} \theta = \theta.$$

$$n\overline{Y} = \sum_{i=1}^{n} Y_i \sim \text{Gamma distribution}(n, \lambda)$$
. Hence,

$$\begin{split} \mathbb{E}\left(\widehat{\lambda}\right) &= \mathbb{E}\left(1/\overline{Y}\right) = n \int_0^\infty \frac{1}{y} \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y} \, \mathrm{d}y \\ &= \frac{n\lambda}{n-1} \int_0^\infty \underbrace{\frac{\lambda^{n-1}}{\Gamma(n-1)} y^{(n-1)-1} e^{-\lambda y}}_{\text{pdf for Gamma distr. } (n-1,\lambda)} \, \mathrm{d}y \\ &= \frac{n}{n-1} \lambda. \end{split}$$

Biased! But $\mathbb{E}(\widehat{\lambda}) = \frac{n}{n-1}\lambda \to \lambda$ as $n \to \infty$. (Asymptotically unbiased.)

Note: $\hat{\lambda}^* = \frac{n-1}{n\overline{Y}}$ is unbiased.

E.g. 4'. Exponential distr.: $f_V(y;\theta) = \frac{1}{2}e^{-y/\theta}$ for $y \ge 0$. $\hat{\theta} = \overline{Y}$ is unbiased.

$$\mathbb{E}\left(\hat{\theta}\right) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(Y_i) = \frac{1}{n} \sum_{i=1}^{n} \theta = \theta.$$

$$n\overline{Y} = \sum_{i=1}^{n} Y_i \sim \text{Gamma distribution}(n, \lambda)$$
. Hence,

$$\mathbb{E}\left(\widehat{\lambda}\right) = \mathbb{E}\left(1/\overline{Y}\right) = n \int_0^\infty \frac{1}{y} \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y} dy$$

$$= \frac{n\lambda}{n-1} \int_0^\infty \underbrace{\frac{\lambda^{n-1}}{\Gamma(n-1)} y^{(n-1)-1} e^{-\lambda y}}_{\text{pdf for Gamma distr. } (n-1,\lambda)} dy$$

$$= \frac{n}{n-1} \lambda.$$

Biased! But $\mathbb{E}(\widehat{\lambda}) = \frac{n}{n-1}\lambda \to \lambda$ as $n \to \infty$. (Asymptotically unbiased.)

Note: $\hat{\lambda}^* = \frac{n-1}{n\overline{Y}}$ is unbiased.

E.g. 4'. Exponential distr.: $f_V(v;\theta) = \frac{1}{2}e^{-y/\theta}$ for y > 0. $\hat{\theta} = \overline{Y}$ is unbiased.

$$n\overline{Y} = \sum_{i=1}^{n} Y_i \sim \text{Gamma distribution}(n, \lambda)$$
. Hence,

$$\mathbb{E}\left(\widehat{\lambda}\right) = \mathbb{E}\left(1/\overline{Y}\right) = n \int_{0}^{\infty} \frac{1}{y} \frac{\lambda^{n}}{\Gamma(n)} y^{n-1} e^{-\lambda y} dy$$

$$= \frac{n\lambda}{n-1} \int_{0}^{\infty} \underbrace{\frac{\lambda^{n-1}}{\Gamma(n-1)} y^{(n-1)-1} e^{-\lambda y}}_{\text{pdf for Gamma distr. } (n-1,\lambda)} dy$$

$$= \frac{n}{n-1} \lambda.$$

Biased! But $\mathbb{E}(\widehat{\lambda}) = \frac{n}{n-1}\lambda \to \lambda$ as $n \to \infty$. (Asymptotically unbiased.)

Note: $\hat{\lambda}^* = \frac{n-1}{n\overline{Y}}$ is unbiased.

$$n\overline{Y} = \sum_{i=1}^{n} Y_i \sim \text{Gamma distribution}(n, \lambda)$$
. Hence,

$$\mathbb{E}\left(\widehat{\lambda}\right) = \mathbb{E}\left(1/\overline{Y}\right) = n \int_0^\infty \frac{1}{y} \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y} dy$$

$$= \frac{n\lambda}{n-1} \int_0^\infty \underbrace{\frac{\lambda^{n-1}}{\Gamma(n-1)} y^{(n-1)-1} e^{-\lambda y}}_{\text{pdf for Gamma distr. } (n-1,\lambda)} dy$$

$$= \frac{n}{n-1} \lambda.$$

Biased! But $\mathbb{E}(\widehat{\lambda}) = \frac{n}{n-1}\lambda \to \lambda$ as $n \to \infty$. (Asymptotically unbiased.)

Note: $\hat{\lambda}^* = \frac{n-1}{n\overline{Y}}$ is unbiased.

$$n\overline{Y} = \sum_{i=1}^{n} Y_i \sim \text{Gamma distribution}(n, \lambda)$$
. Hence,

$$\mathbb{E}\left(\widehat{\lambda}\right) = \mathbb{E}\left(1/\overline{Y}\right) = n \int_0^\infty \frac{1}{y} \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y} dy$$

$$= \frac{n\lambda}{n-1} \int_0^\infty \underbrace{\frac{\lambda^{n-1}}{\Gamma(n-1)} y^{(n-1)-1} e^{-\lambda y}}_{\text{pdf for Gamma distr. } (n-1,\lambda)} dy$$

$$= \frac{n}{n-1} \lambda.$$

Biased! But $\mathbb{E}(\widehat{\lambda}) = \frac{n}{n-1}\lambda \to \lambda$ as $n \to \infty$. (Asymptotically unbiased.)

Note: $\hat{\lambda}^* = \frac{n-1}{n\overline{V}}$ is unbiased.

 $n\overline{Y} = \sum_{i=1}^{n} Y_i \sim \text{Gamma distribution}(n, \lambda)$. Hence,

$$\begin{split} \mathbb{E}\left(\widehat{\lambda}\right) &= \mathbb{E}\left(1/\overline{Y}\right) = n \int_0^\infty \frac{1}{y} \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y} \mathrm{d}y \\ &= \frac{n\lambda}{n-1} \int_0^\infty \underbrace{\frac{\lambda^{n-1}}{\Gamma(n-1)} y^{(n-1)-1} e^{-\lambda y}}_{\text{pdf for Gamma distr. } (n-1,\lambda)} \mathrm{d}y \\ &= \frac{n}{n-1} \lambda. \end{split}$$

Biased! But $\mathbb{E}(\widehat{\lambda}) = \frac{n}{n-1}\lambda \to \lambda$ as $n \to \infty$. (Asymptotically unbiased.)

Note: $\hat{\lambda}^* = \frac{n-1}{n\overline{V}}$ is unbiased.

E.g. 4'. Exponential distr.: $f_Y(y;\theta) = \frac{1}{\theta}e^{-y/\theta}$ for $y \ge 0$. $\widehat{\theta} = \overline{Y}$ is unbiased.

$$\mathbb{E}\left(\widehat{\theta}\right) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(Y_i) = \frac{1}{n} \sum_{i=1}^{n} \theta = \theta$$

 $n\overline{Y} = \sum_{i=1}^{n} Y_i \sim \text{Gamma distribution}(n, \lambda)$. Hence,

$$\begin{split} \mathbb{E}\left(\widehat{\lambda}\right) &= \mathbb{E}\left(1/\overline{Y}\right) = n \int_0^\infty \frac{1}{y} \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y} \mathrm{d}y \\ &= \frac{n\lambda}{n-1} \int_0^\infty \underbrace{\frac{\lambda^{n-1}}{\Gamma(n-1)} y^{(n-1)-1} e^{-\lambda y}}_{\text{pdf for Gamma distr. } (n-1,\lambda)} \mathrm{d}y \\ &= \frac{n}{n-1} \lambda. \end{split}$$

Biased! But $\mathbb{E}(\widehat{\lambda}) = \frac{n}{n-1}\lambda \to \lambda$ as $n \to \infty$. (Asymptotically unbiased.)

Note: $\hat{\lambda}^* = \frac{n-1}{n\overline{V}}$ is unbiased.

E.g. 4'. Exponential distr.: $f_Y(y;\theta) = \frac{1}{\theta}e^{-y/\theta}$ for $y \ge 0$. $\widehat{\theta} = \overline{Y}$ is unbiased.

$$\mathbb{E}\left(\widehat{\theta}\right) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(Y_i) = \frac{1}{n} \sum_{i=1}^{n} \theta = \theta$$

 $n\overline{Y} = \sum_{i=1}^{n} Y_i \sim \text{Gamma distribution}(n, \lambda)$. Hence,

$$\begin{split} \mathbb{E}\left(\widehat{\lambda}\right) &= \mathbb{E}\left(1/\overline{Y}\right) = n \int_0^\infty \frac{1}{y} \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y} \mathrm{d}y \\ &= \frac{n\lambda}{n-1} \int_0^\infty \underbrace{\frac{\lambda^{n-1}}{\Gamma(n-1)} y^{(n-1)-1} e^{-\lambda y}}_{\text{pdf for Gamma distr. } (n-1,\lambda)} \mathrm{d}y \\ &= \frac{n}{n-1} \lambda. \end{split}$$

Biased! But $\mathbb{E}(\widehat{\lambda}) = \frac{n}{n-1}\lambda \to \lambda$ as $n \to \infty$. (Asymptotically unbiased.)

Note: $\hat{\lambda}^* = \frac{n-1}{n\overline{V}}$ is unbiased.

E.g. 4'. Exponential distr.: $f_Y(y;\theta) = \frac{1}{\theta}e^{-y/\theta}$ for $y \ge 0$. $\widehat{\theta} = \overline{Y}$ is unbiased.

$$\mathbb{E}\left(\widehat{\theta}\right) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(Y_i) = \frac{1}{n} \sum_{i=1}^{n} \theta = \theta.$$

Efficiency

Definition 5.4.2. Let $\widehat{\theta}_1$ and $\widehat{\theta}_2$ be two unbiased estimators for a parameter θ . If $\text{Var}(\widehat{\theta}_1) < \text{Var}(\widehat{\theta}_2)$, then we say that $\widehat{\theta}_1$ is **more efficient** than $\widehat{\theta}_2$. The **relative efficiency** of $\widehat{\theta}_1$ w.r.t. $\widehat{\theta}_2$ is the ratio $\text{Var}(\widehat{\theta}_1)/\text{Var}(\widehat{\theta}_2)$.

$$-\hat{\theta}_1 = \frac{3}{2}\overline{Y}$$
$$-\hat{\theta}_3 = \frac{2n+1}{2n}Y_{max}.$$

E.g. 2. Let X_1, \dots, X_n be a random sample of size n with the unknown parameter $\theta = \mathbb{E}(X)$ (suppose $\sigma^2 = \text{Var}(X) < \infty$).

$$- \hat{\theta}_1 = \frac{3}{2}\overline{Y}$$

$$- \hat{\theta}_3 = \frac{2n+1}{2n}Y_{max}.$$

E.g. 2. Let X_1, \dots, X_n be a random sample of size n with the unknown parameter $\theta = \mathbb{E}(X)$ (suppose $\sigma^2 = \text{Var}(X) < \infty$).

$$-\hat{\theta}_1 = \frac{3}{2}Y$$

$$-\hat{\theta}_3 = \frac{2n+1}{3}Y_{\text{max}}.$$

E.g. 2. Let X_1, \dots, X_n be a random sample of size n with the unknown parameter $\theta = \mathbb{E}(X)$ (suppose $\sigma^2 = \text{Var}(X) < \infty$).

$$-\hat{\theta}_1 = \frac{3}{2}\overline{Y}$$

$$\hat{\theta}_1 = \frac{3}{2}\overline{Y}$$

E.g. 2. Let X_1, \dots, X_n be a random sample of size n with the unknown parameter $\theta = \mathbb{E}(X)$ (suppose $\sigma^2 = \text{Var}(X) < \infty$).

Among all possible unbiased estimators $\hat{\theta} = \sum_{i=1}^{n} a_i X_i$ with $\sum_{i=1}^{n} a_i = 1$. Find the most efficient one.

Sol:

$$\operatorname{Var}(\widehat{\theta}) = \sum_{i=1}^{n} a_i^2 \operatorname{Var}(X) = \sigma^2 \sum_{i=1}^{n} a_i^2 \ge \sigma^2 \frac{1}{n} \left(\sum_{i=1}^{n} a_i \right)^2 = \frac{1}{n} \sigma^2,$$

with equality iff $a_1 = \cdots = a_n = 1/n$

Hence, the most efficient one is the sample mean $\widehat{\theta} = \overline{X}$.

$$-\hat{\theta}_1 = \frac{3}{2}\overline{Y}$$

$$\hat{\theta}_1 = \frac{3}{2}\overline{Y}$$

E.g. 2. Let X_1, \dots, X_n be a random sample of size n with the unknown parameter $\theta = \mathbb{E}(X)$ (suppose $\sigma^2 = \text{Var}(X) < \infty$).

Among all possible unbiased estimators $\hat{\theta} = \sum_{i=1}^{n} a_i X_i$ with $\sum_{i=1}^{n} a_i = 1$. Find the most efficient one.

Sol:

$$\operatorname{Var}(\widehat{\theta}) = \sum_{i=1}^{n} a_i^2 \operatorname{Var}(X) = \sigma^2 \sum_{i=1}^{n} a_i^2 \ge \sigma^2 \frac{1}{n} \left(\sum_{i=1}^{n} a_i \right)^2 = \frac{1}{n} \sigma^2,$$

with equality iff $a_1 = \cdots = a_n = 1/n$

Hence, the most efficient one is the sample mean $\widehat{\theta} = \overline{X}$.

$$-\hat{\theta}_1 = \frac{3}{2}\overline{Y}$$

$$\hat{\theta}_1 = \frac{2n+1}{2}$$

E.g. 2. Let X_1, \dots, X_n be a random sample of size n with the unknown parameter $\theta = \mathbb{E}(X)$ (suppose $\sigma^2 = \text{Var}(X) < \infty$).

Among all possible unbiased estimators $\hat{\theta} = \sum_{i=1}^{n} a_i X_i$ with $\sum_{i=1}^{n} a_i = 1$. Find the most efficient one.

Sol

$$\operatorname{Var}(\widehat{\theta}) = \sum_{i=1}^{n} a_i^2 \operatorname{Var}(X) = \sigma^2 \sum_{i=1}^{n} a_i^2 \ge \sigma^2 \frac{1}{n} \left(\sum_{i=1}^{n} a_i \right)^2 = \frac{1}{n} \sigma^2,$$

with equality iff $a_1 = \cdots = a_n = 1/n$.

Hence, the most efficient one is the sample mean $\widehat{\theta} = \overline{X}$

$$-\hat{\theta}_1 = \frac{3}{2}\overline{Y}$$

$$-\hat{\theta}_3 = \frac{2n+1}{2}Y_{max}.$$

E.g. 2. Let X_1, \dots, X_n be a random sample of size n with the unknown parameter $\theta = \mathbb{E}(X)$ (suppose $\sigma^2 = \text{Var}(X) < \infty$).

Among all possible unbiased estimators $\hat{\theta} = \sum_{i=1}^{n} a_i X_i$ with $\sum_{i=1}^{n} a_i = 1$. Find the most efficient one.

Sol:

$$\operatorname{Var}(\widehat{\theta}) = \sum_{i=1}^{n} a_i^2 \operatorname{Var}(X) = \sigma^2 \sum_{i=1}^{n} a_i^2 \ge \sigma^2 \frac{1}{n} \left(\sum_{i=1}^{n} a_i \right)^2 = \frac{1}{n} \sigma^2,$$

with equality iff $a_1 = \cdots = a_n = 1/n$.

Hence, the most efficient one is the sample mean $\hat{\theta} = \overline{X}$.