Directed topic extraction with side information.

Maria Osipenko¹

Statistische Woche, TU Dortmund

 $^{^1}$ Hochschule für Wirtschaft und Recht Berlin; osipenko@hwr-berlin.de

Motivation

► Growing interest to sustainable investments

Figure 1: Source: Consultancy.eu

- Investment decisions integrate individual value systems
- ▶ Aligning investments with individual preferences
 - how to quantify sustainability?
 - how to compare investment possibilities?

Motivation

► Environment, social, governance (ESG) ratings diverge:

Figure 2: Ratings of different providers against a benchmark. Source: Berg, Kölbel, and Rigobon (2022) "Aggregated confusion The Divergence of ESG Ratings"

Motivation

- ► Kang and Kim (2022): Another source of information easily available to private investors
 - corporate responsibility reports
 - sustainability reports
 - environmental action reports
- ➤ A systematics e.g. in commonly accepted 17 UN sustainable development goals (SDGs) is at hand.

ightarrow leverage information from these sources via automatic topic extraction while considering the value system established by the 17 SDGs.

Methods available

- ▶ Topic analysis: represent each document/ context in a low dimensional latent topic space:
 - Specific for topic extraction: Latent (probabilistic) Semantic Analysis, Latent Dirichlet allocation (LDA) and extentions thereof.
 - General purpose matrix factorization (MF) methods: Principal component analysis, Non-negativ matrix factorization, probabilistic versions and extensions thereof.

Methods available

- How to embed known structure or side information in the unsupervised techniques?
 - keyword seeded LDA: Watanabe and Zhou (2022) and Eshima, Imai, and Sasaki (2023)
 - graph regularized MF: Rao et al. (2015) and Zhang et al. (2020) (recommendations)
 - common subspace projection/ subspace alignment (Fernando et al. (2013) for domain adaptation)
 - matrix co-factorization (MCF) techniques: Fang and Si (2011) (user communities) and Luo et al. (2019) (recommender systems)
- \rightarrow adopt MCF for topic extraction with side information.

Our approach

Decompose two term-context matrices (M from the sustainability reports and C from the SDG texts) jointly.

- ▶ M is the (weighted) term-context matrix for the corporate reports with dimensions $(p \times n)$, where p is the joint vocabulary.
- ightharpoonup C is the (weighted) term-context matrix for the sustainability goals with dimensions $(p \times m)$, where p is again the joint vocabulary.
- ▶ U is the term-topic representation matrix of dimensions $(p \times k)$, where k is the number of topics.
- ▶ V/Q is the context-topic representation matrix for the reports/SGDs of dimensions $(k \times n)$.

Our approach

The associated MCF problem is then:

$$\min(||M - U^{\top}V||^2 + \lambda ||C - U^{\top}Q||^2)$$

where λ adapts the importance of the loss on the second factorization term.

To preserve the non-negativity of the entries in M and C, to inhance interpretability \rightarrow restrict the components to be non-negative:

s.t. $U, V, Q \ge 0$ elementwise.

The algorithm

- alternating minimization/ alternating projection
- hierarchical non-negative alternating least squares (HALS) of Cichocki, Zdunek, and Amari (2007)
- with a modification for the co-factorization setup

Algorithm 1 HALS algorithm for MCF

```
 \begin{split} & \text{while not converged do} \\ & \text{for } k = 1 \text{ to } K \text{ do} \\ & \text{update } V_k \leftarrow \max\left(\frac{U_k(M-U_{-k}^\top V_{-k})}{U_k U_k^\top}, 0\right) \\ & \text{update } Q_k \leftarrow \max\left(\frac{U_k(C-U_{-k}^\top Q_{-k})}{U_k U_k^\top}, 0\right) \\ & \text{update } U_k^\top \leftarrow \max\left(\frac{(M-U_{-k}^\top V_{-k})V_k^\top + \lambda (C-U_{-k}^\top Q_{-k})Q_k^\top}{V_k^\top V_k + \lambda Q_k^\top Q_k}, 0\right) \\ & \text{end for end while} \end{aligned}
```

 X_k denotes the kth row of the matrix X and X_{-k} denotes the matrix without its kth row.

The data

- Corporate responsibility/sustainability reports: AAPL, AMZ, DELL, GOOG, IBM, INTC, MSFT, SSU
- ▶ Time Period: 2013 (or later)-2022
- ▶ 17 UN SDGs texts
- \blacktriangleright Bag-of-words (two-gramms) \rightarrow term-context representations with the pooled vocabulary

Optimal K and λ

- find the optimal k and λ in a data-driven fashion, via maximizing the **mean coherence**
- mean coherence \overline{coh} : the mean of the logratio topic coherence: $\log(\epsilon + TCM_{x,y}) \log(TCM_{y,y})$ for two terms x, y with TCM being the in-sample term co-occurrence matrix.
- ▶ for K = 8, $\lambda = 0$: $coh_{sustainability_reports} = -1.3048$, $coh_{SDGs} = -7.7671$, $\overline{coh} = -4.5359$
- ▶ for K = 8, $\lambda = 350$: $coh_{sustainability_reports} = -2.6230$, $coh_{SDGs} = -0.9374$, $\overline{coh} = -1.7802$

Optimal K and λ

Results: the topics

topics in reports

topic proportion

Results: the topics

Results: approximation in two dimensions

Results: the distributional distances

- ► Consider reports/SDGs as distributions/histogramms
- ▶ Find an optimal transport plan T^* , such that:

$$\min_{T} \sum_{i} \sum_{j} T_{ij} Cost_{ij},$$
 $s.t. T \mathbf{1}_{n} = \mathbf{p}, T^{\top} \mathbf{1}_{n} = \mathbf{q},$

where $Cost \in \mathbb{R}^{n \times n}$ is the cost matrix, $T \in \mathbb{R}^{n \times n}$ is the transport plan matrix and \mathbf{p}, \mathbf{q} are (term) probability vectors.

(Source: http://alexhwilliams.info/itsneuronalblog/2020/10/09/optimal-transport/#f5b)

Results: distributional distances

- Consider reports/SDGs as distributions/histogramms
- ► Find an optimal transport plan *T**, such that:

$$\min_{T} \sum_{i} \sum_{j} T_{ij} Cost_{ij},$$

$$s.t. T \mathbf{1}_{n} = \mathbf{p}, T^{\top} \mathbf{1}_{n} = \mathbf{q},$$

Lee et al. (2022) cosine dissimilarity as cost for optimal transport plan (contextualized mover's distance, CMD):

$$Cost_{ij}^{CMD} = 1 - cos(x_i, x_j)$$

with $x_k, k = 1, ..., n$ being the topic-term embedding for the kth term.

► Take the minimized total cost:

$$extit{Cost}^* = \sum_i \sum_j extit{T}^*_{ij} extit{Cost}^{ extit{CMD}}_{ij}$$

to compare reports and SDGs as word distributions.

Results: distributional distances

Results: individual preferences

M1: 1/3 G4 + 1/3 G12 + 1/3 G16

M2: 1/2 G4 + 1/4 G12 + 1/4 G16

M3: 2/3 G4 + 1/6 G12 + 1/6 G16

M4: 3/4 G4 + 1/8 G12 + 1/8 G16

M5: 4/5 G4 + 1/10 G12 + 1/10 G16

Summary

- \blacktriangleright Topic extraction with side information \rightarrow low dim. representation in a prestructured topic space.
- Projection on a common subspace via non-negative matrix co-factorization, using an algorithm which is easily implemented and delivers interpretable results.
- The resulting topic-term embeddings are used to compare the documents via the optimal transport metric which assists financial decisions under SDGs based preferences.

References I

- Berg, Florian, Julian F Kölbel, and Roberto Rigobon. 2022. "Aggregate Confusion: The Divergence of ESG Ratings*." Review of Finance 26 (6): 1315–44. https://doi.org/10.1093/rof/rfac033.
- Cichocki, Andrzej, Rafal Zdunek, and Shun-ichi Amari. 2007. "Hierarchical ALS Algorithms for Nonnegative Matrix and 3D Tensor Factorization." In *Independent Component Analysis and Signal Separation*, edited by Mike E. Davies, Christopher J. James, Samer A. Abdallah, and Mark D. Plumbley, 169–76. Berlin, Heidelberg: Springer Berlin Heidelberg.
- Eshima, Shusei, Kosuke Imai, and Tomoya Sasaki. 2023. "Keyword Assisted Topic Models." https://arxiv.org/abs/2004.05964.
- Fang, Yi, and Luo Si. 2011. "Matrix Co-Factorization for Recommendation with Rich Side Information and Implicit Feedback." In *Proceedings of the 2nd International Workshop on Information Heterogeneity and Fusion in Recommender Systems*, 65–69. HetRec '11. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/2039320.2039330.
- Fernando, Basura, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars. 2013. "Unsupervised Visual Domain Adaptation Using Subspace Alignment." In 2013 IEEE International Conference on Computer Vision, 2960–67. https://doi.org/10.1109/ICCV.2013.368.

References II

- Kang, Hyewon, and Jinho Kim. 2022. "Analyzing and Visualizing Text Information in Corporate Sustainability Reports Using Natural Language Processing Methods." Applied Sciences 12 (11). https://doi.org/10.3390/app12115614.
- Lee, Seonghyeon, Dongha Lee, Seongbo Jang, and Hwanjo Yu. 2022. "Toward Interpretable Semantic Textual Similarity via Optimal Transport-Based Contrastive Sentence Learning." In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, 5969–79. Dublin, Ireland: Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.acl-long.412.
- Luo, Ling, Haoran Xie, Yanghui Rao, and Fu Lee Wang. 2019. "Personalized Recommendation by Matrix Co-Factorization with Tags and Time Information." *Expert Systems with Applications* 119: 311–21. https://doi.org/https://doi.org/10.1016/j.eswa.2018.11.003.
- Rao, Nikhil, Hsiang-Fu Yu, Pradeep K Ravikumar, and Inderjit S Dhillon. 2015. "Collaborative Filtering with Graph Information: Consistency and Scalable Methods." In *Advances in Neural Information Processing Systems*, edited by C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2015/file/f4573fc71c731d5c362f0d7860945b88-Paper.pdf.

References III

Watanabe, Kohei, and Yuan Zhou. 2022. "Theory-Driven Analysis of Large Corpora: Semisupervised Topic Classification of the UN Speeches." *Social Science Computer Review* 40 (2): 346–66. https://doi.org/10.1177/0894439320907027.

Zhang, Yupei, Yue Yun, Huan Dai, Jiaqi Cui, and Xuequn Shang. 2020. "Graphs Regularized Robust Matrix Factorization and Its Application on Student Grade Prediction." *Applied Sciences* 10 (5). https://doi.org/10.3390/app10051755.