DEVOIR À LA MAISON 15

Expressions des variations d'entropie valables pour tout le sujet :

- Variation d'entropie pour une masse m de phase condensée de capacité thermique massique c lorsque la température passe de T_I à T_F : $\Delta S_{IF} = mc \ln \left(\frac{T_F}{T_I} \right)$
- Variation d'entropie pour une masse m de gaz parfait passant de l'état (T_I, p_I, V_I) à l'état (T_F, p_F, V_F) :

$$\begin{split} \Delta S_{IF} &= mc_V \ln\!\left(\frac{T_F}{T_I}\right) + nR \ln\!\left(\frac{V_F}{V_I}\right) = mc_P \ln\!\left(\frac{T_F}{T_I}\right) - nR \ln\!\left(\frac{p_F}{p_I}\right) \\ &= mc_V \ln\!\left(\frac{p_F}{p_I}\right) + mc_P \ln\!\left(\frac{V_F}{V_I}\right) \end{split}$$

avec $mc_V = C_V$ et $mc_P = C_P$ les capacités thermiques à volume constant et à pression constante.

Exercice 1 – Mélange d'eau sous trois phases

Dans une enceinte parfaitement calorifugée, on introduit :

- un glaçon de masse $m_1 = 120$ g initialement à la température $\theta_1 = 0$ °C
- de l'eau liquide de masse $m_2 = 260~\mathrm{g}$ initialement à la température $\theta_2 = 20~\mathrm{^{\circ}C}$
- de la vapeur d'eau de masse $m_3 = 100 \, \mathrm{g}$ initialement à la température $\theta_3 = 100 \, \mathrm{^{\circ}C}$.

Le mélange est à la pression atmosphérique $P_{atm} = 1$ bar.

<u>Données</u>:

Enthalpie massique de vaporisation de l'eau à 100 °C : $\Delta_{vap}h=2$ 250 kJ.kg $^{-1}$

Enthalpie massique de fusion de la glace à 0 °C : $\Delta_{fus}h = 340 \text{ kJ.kg}^{-1}$

Capacité thermique massique de l'eau liquide (indépendante de la température) : $c_e = 4,18 \ \mathrm{kJ.K^{-1}.kg^{-1}}$

- 1. Déterminer les caractéristiques (température et composition) de l'état d'équilibre final, qui est un équilibre diphasé liquide-vapeur.
- 2. Déterminer la variation d'entropie, l'entropie échangée et l'entropie créée de l'ensemble. Effectuer les applications numériques. Commenter.

DEVOIR À LA MAISON 15

Exercice 2 - États de l'éther

On conserve dans une pièce à $18,0^{\circ}$ C un flacon contenant $V_0=50$ mL d'éther éthylique (CH $_3$ -CH $_2$ -O-CH $_2$ -CH $_3$ appelé simplement éther), liquide à cette température, et à la pression de vapeur saturante $P_{sat}=0,544$ bar . On suppose que le flacon ne contient que de l'éther. On donne les caractéristiques physiques suivantes pour l'éther :

T (°C)	P_{sat} (bar)	holiquide (kg.L-1)
18,0	0,544	0,716
49,0	1,65	0,679

La pression du point critique est 36,4 bar et sa température 194°C.

- 1. Déterminer la masse et la quantité de matière d'éther contenu dans ce flacon à 18,0°C. On donne la masse molaire de l'éther M = 74,1 g.mol⁻¹.
- 2. Déterminer les volumes massiques du liquide saturant et de la vapeur saturante à cette température. On suppose l'éther se comportant comme un gaz parfait à l'état de vapeur et on donne $R = 8,31 \text{ J.K}^{-1}.\text{mol}^{-1}$ la constante des gaz parfaits.
- 3. Dans le diagramme de Clapeyron massique, représenter trois isothermes (à 18,0°C, à 49,0°C et à 194°C). Indiquer les différents états physiques de l'éther. Représenter les courbes de rosée et d'ébullition.
- 4. Quel est l'intervalle de valeurs possibles pour le volume du flacon permettant d'avoir un mélange liquide-vapeur d'éther à 18,0°C ?
- 5. Pour un volume V = 5,50 L, déterminer le volume massique. Déduire la fraction massique de la vapeur ainsi que la composition du système.
- 6. Quel est l'état du système si on augmente la température jusqu'à 49°C? Déterminer la fraction de vapeur si c'est un mélange liquide vapeur ou la pression si c'est un système gazeux.
- 7. Reprendre les questions 5 et 6 pour un volume V' = 10.0 L.

Exercice 3 - Cycle de Lenoir

Le cycle de Lenoir a permis de réaliser le premier moteur à combustion interne à deux temps : les deux temps correspondent à un aller-retour du piston.

Le fonctionnement du moteur est schématisé par le diagramme de Watt (P,V) où P est la pression du gaz contenu dans le volume V de l'enceinte.

Les étapes du cycle sont les suivantes :

1er temps:

❖ I→A : entrée du mélange air – combustible avec explosion en A

- **❖ A**→**B**: compression isochore due à l'explosion du mélange
- \bullet **B** \rightarrow **C**: détente adiabatique réversible
- $\leftarrow C \rightarrow A \rightarrow I :$ échappement isobare

Tout se passe comme si le système fermé constitué de n=1 mol d'air décrivait le cycle ABCA. L'air se comporte comme un gaz parfait de coefficient $\gamma=\frac{C_P}{C_V}=1,4$.

La capacité thermique à volume constant est $C_V = \frac{nR}{\gamma-1}$, avec $R=8,31~\mathrm{J.K^{-1}.mol^{-1}}$

la constante des gaz parfaits.

- 1. Exprimer les transferts de chaleur $Q_{A\to B}$, $Q_{B\to C}$ et $Q_{C\to A}$ pour chacune des trois transformations, en fonction des températures T_A , T_B , T_C , de n et γ .
- 2. Définir le rendement η de ce moteur.
- 3. Exprimer le rendement η en fonction des quantités de chaleur, puis en fonction des températures T_A , T_B , T_C et de γ .
- 4. Déterminer l'expression du rendement η en fonction de γ et du rapport de compression $a = \frac{P_B}{P_A}$. (<u>Indication</u>: exprimer d'abord T_B et T_C en fonction de T_A , a et γ).
- 5. Calculer η pour a = 5,0.
- 6. Déterminer, en fonction de a, n et γ , l'expression de la variation d'entropie ΔS pour chacune des trois transformations. En déduire la variation d'entropie sur tout le cycle. Commenter.
- 7. Déterminer l'entropie créée sur tout le cycle. La calculer et conclure sur la réversibilité du cycle. Préciser les causes d'irréversibilité le cas échéant.