01:XXX:XXX - Homework n

Pranav Tikkawar

October 14, 2024

Definition 1. Sample Variance

The sample variance is defined as $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$. If X_1, X_2, \dots, X_n are independent and identically distributed random variables with mean μ and variance σ^2 , then the sample variance S^2 is an unbiased estimator of the population variance σ^2 . That is $E(S^2) = \sigma^2$. It also has a chi-squared distribution with n-1 degrees of freedom. That is $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{\nu=n-1}$. Important identity: $\sum_{i=1}^n (X_i - \bar{X})^2 = \sum_{i=1}^n (X_i - \mu)^2 - n(\bar{X} - \mu)^2$. Sample variance is an unbiased estimator of the population variance. That is $E(S^2) = \sigma^2$.

Definition 2. Chebyshev's Theorem

If X is a random variable with mean μ and variance σ^2 , then for any k>0, $P(|X-\mu|\geq$ $k\sigma$) $\leq \frac{1}{k^2}$. Applying Chebyshev to a sample mean we get the weak law of large numbers. That is for a sample mean \bar{X} , $P(|\bar{X} - \mu| \geq k) \leq \frac{\sigma^2}{nk^2}$. Example question: How large should n so that the \bar{X} approximates μ within ϵ with probability at least $1 - \delta$ with population $\sigma_{pop}^2 = \sigma^2$? Sol:

$$P(|\bar{X} - \mu| < \epsilon) \ge 1 - \frac{\sigma^2}{n\epsilon^2} \ge 1 - \delta$$
$$n \ge \frac{\sigma^2}{\epsilon^2 \delta}$$

Definition 3. Chi-Squared Distribution

Parameters: ν degrees of freedom

MGF: $\frac{1}{(1-2t)^{\nu/2}}$

Mean: ν

Variance: 2ν

If X_1, X_2, \ldots, X_n are independent and identically distributed random variables with mean μ and variance σ^2 , then the sum of squares of these random variables is a chi-squared random variable with n degrees of freedom. That is $Y = X_1^2 + X_2^2 + \ldots + X_n^2 \sim \chi_{\nu=n}^2$.

Definition 4. Moment Generating Function

The moment generating function of a random variable X is defined as $M_X(t) = E(e^{tX})$.

Pranav Tikkawar 01:XXX:XXX Homework n

Some properties of the moment generating function are:

$$M_X(0) = 1$$

$$M'_X(0) = E(X)$$

$$M''_X(0) = E(X^2)$$

$$M_{aX+b}(t) = e^{bt} M_X(at)$$

$$M_{X+Y}(t) = M_X(t) M_Y(t) \text{ if } X \text{ and } Y \text{ are independent}$$

Definition 5. Central Limit Theorem

Suppose X_1, X_2, \ldots, X_n are independent and identically distributed random variables with well definied mgf. Then the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ approaches standard normal

$$P(a \le \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \le b)$$

as $n \to \infty$:

$$\lim_{n \to \infty} P(a \le \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \le b) = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

Definition 6. Gamma Distribution

Parameters: α, β PDF: $f(x) = \frac{x^{\alpha-1}e^{-x/\beta}}{\beta^{\alpha}\Gamma(\alpha)}$

MGF: $(1 - \beta t)^{-\alpha}$

Mean: $\alpha\beta$ Variance: $\alpha \beta^2$

We know that chi-squared distribution is a special case of gamma distribution with $\alpha = \nu/2$ and $\beta = 2$.

We know that the exponential distribution is a special case of gamma distribution with $\alpha = 1$ and $\beta = \lambda$.

Definition 7. Rth order statistic

The rth order statistic of a random sample X_1, X_2, \ldots, X_n is the rth smallest value in the sample. That is $X_{(r)}$ is the rth order statistic.

The pdf of the rth order statistic is given by $f_{X_{(r)}}(x) = \frac{n!}{(r-1)!(n-r)!}F(x)^{r-1}(1-F(x))^{n-r}f(x)$. We can clearly see that this is the probability of r-1 values being less than x and n-rvalues being greater than x and 1 being exactly x.

Textbook: 1

Exam topics:

MGFs

Chapter 6.3 Gamma distribution pg(178)

Pranav Tikkawar 01:XXX:XXX Homework n

Definition 8. Gamma Distribution

Parameters: α, β

PDF: $f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}$ for x > 0

MGF: $(1 - \beta t)^{-\alpha}$

Mean: $\alpha\beta$ Variance: $\alpha\beta^2$

Definition 9. exponential distribution

Parameters: λ

PDF: $f(x) = \frac{e^{-x/\lambda}}{\lambda}$ for x > 0 MGF: $(1 - \lambda t)^{-1}$

Mean: λ Variance: λ^2

Note that this is a special case of the gamma distribution with $\alpha = 1$ and $\beta = \lambda$.

Definition 10. Chi-Squared Distribution

Parameters: ν degrees of freedom

PDF: $f(x) = \frac{1}{2^{\nu/2}\Gamma(\nu/2)}x^{\nu/2-1}e^{-x/2}$ for x > 0

MGF: $\frac{1}{(1-2t)^{\nu/2}}$

Mean: ν Variance: 2ν

Note that this is a special case of the gamma distribution with $\alpha = \nu/2$ and $\beta = 2$.

If X is the standard normal distribution, then X^2 is a chi-squared distribution with 1 degree of freedom.

More generally, if X_1, X_2, \ldots, X_n are independent and identically distributed standard normal random variables, then $X_1^2 + X_2^2 + \ldots + X_n^2$ is a chi-squared distribution with n degrees of freedom.

If X_1, X_2, \dots, X_n are independent and identically distributed chi-squared random variables with $\nu_1, \nu_2, \dots, \nu_n$ degrees of freedom, then $X_1 + X_2 + \dots + X_n$ is a chi-squared distribution with $\nu_1 + \nu_2 + \ldots + \nu_n$ degrees of freedom.

Chapter 8.1 pg(233)

Definition 11. Random Sample:

A random sample is a set of independent and identically distributed random variables. X_1, X_2, \ldots, X_n are independent and identically distributed random variables they consitute a random sample of size n from the population.

Definition 12. Sample Mean:

The sample mean is defined as $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. $E[\bar{X}] = \mu$ and $Var[\bar{X}] = \frac{\sigma^2}{n}$. If \bar{X} is from a normal population of μ, σ^2 , then \bar{X} is normally distributed with mean μ and variance $\frac{\sigma^2}{n}$.

Definition 13. Sample Variance:

The sample variance is defined as $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$.

Pranav Tikkawar 01:XXX:XXX Homework n

Chapter 8.2 sample mean pg(235)

Definition 14. Law of Large Numbers:

For any positive constant c, the proability that \bar{X} will take a value between $\mu \pm c$ is at least $1 - \frac{\sigma^2}{nc^2}$. When $n \to \infty$ the probability approaches 1. In other words, the sample mean \bar{X} approaches the population mean μ as the sample size n

increases.

Definition 15. Central Limit Theorem:

Suppose X_1, X_2, \ldots, X_n are independent and identically distributed random variables from an infinite population with a mean μ and variance σ^2 and an MGF $M_X(t)$. Then the limiting distribution of

 $Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$

is the standard normal distribution as $n \to \infty$.

Chapter 8.4 Chi-Squared pg(242)

Theorem 1. If \bar{X} and S^2 are the sample mean and sample variance of a random sample of size n from a normal population with mean μ and variance σ^2 , then

- 1. \bar{X} and S^2 are independent random variables.
- 2. The random variable $\frac{(n-1)S^2}{\sigma^2}$ has a chi-squared distribution with n-1 degrees of freedom. Chapter 8.7 Order Statistic pg(252)

Definition 16. Order Statistic:

Let X_1, X_2, \ldots, X_n be a random sample of size n from a population with CDF F(x). The order statistics are the random variables $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ defined as follows:

$$\begin{split} X_{(1)} &= \min(X_1, X_2, \dots, X_n) \\ X_{(2)} &= \text{second smallest value in the sample} \\ &\vdots \\ X_{(n)} &= \max(X_1, X_2, \dots, X_n) \end{split}$$

The pdf of the rth order statistic is given by $f_{X_{(r)}}(x) = \frac{n!}{(r-1)!(n-r)!}F(x)^{r-1}(1-F(x))^{n-r}f(x)$. Clearly this is the probability that there are r-1 values less than x, n-r values greater than x, and exactly 1 value equal to x.

Another form of the pdf is

$$g_r(y_r) = \frac{n!}{(r-1)!(n-r)!} f(y_r) \left[\int_{-\infty}^{y_r} f(y) dy \right]^{r-1} \left[\int_{y_r}^{\infty} f(y) dy \right]^{n-r}$$

Common order statistics are the minimum $Y_{(1)}$, the maximum $Y_{(n)}$, and the median $Y_{(m+1)}$ for n = 2m + 1.

Pranav Tikkawar 01:XXX:XXX Homework n

Chapter 10.1 pg(283)

Definition 17. Point Estimator:

Using the vaule of a sample statistic to estimate the value of a population parameter is called point estimation. We refer to the value of the statistic as a point estimate. A point estimator is unbiased if $E[\hat{\theta}] = \theta$.

Chapter 10.2 Point estimator, unbiased estimators pg(284)

Definition 18. Unbiased Estimator:

A point estimator $\hat{\theta}$ of a parameter θ is said to be unbiased if $E[\hat{\theta}] = \theta$.

Definition 19. Bias:

The bias of an estimator $\hat{\theta}$ of a parameter θ is defined as $Bias(\hat{\theta}) = E[\hat{\theta}] - \theta$. An estimator is unbiased if $Bias(\hat{\theta}) = 0$.

Definition 20. Asymtotically Unbiased:

An estimator $\hat{\theta}$ of a parameter θ is said to be asymptotically unbiased if $\lim_{n\to\infty} Bias(\hat{\theta}) = 0$.

Chapter 10.8 Method of Max liklyhood pg(301)

Definition 21. Method of Maximum Likelihood:

The method of maximum likelihood is a method of estimating the value of a parameter by maximizing the likelihood function. The likelihood function is defined as $L(\theta) = \prod_{i=1}^{n} f(x_i|\theta)$.

We also consider the log-likelihood function $l(\theta) = \ln(L(\theta)) = \sum_{i=1}^{n} \ln(f(x_i|\theta))$.

The maximum likelihood estimator $\hat{\theta}$ is the value of θ that maximizes the likelihood function.

2 Review

Using chebs: want a probability of p that the sample mean is within $\mu \pm k\sigma \implies k \ge \frac{1}{\sqrt{1-p}}$