DUAL, HCMOS-INTERFACED FIXED DELAY LINE (SERIES MDU28C)

FEATURES

- Two independent delay lines
- Fits standard 8-pin DIP socket
- Low profile
- Auto-insertable
- Input & outputs fully CMOS interfaced & buffered
- 10 T²L fan-out capability

PACKAGES

MDU28C-xx DIP MDU28C-xxA1 Gull-Wing MDU28C-xxB1 J-Lead MDU28C-xxM Military DIP Military SMD MDU28C-xxMD1 MDU28C-xxMD4

FUNCTIONAL DESCRIPTION

The MDU28C-series device is a 2-in-1 digitally buffered delay line. The signal inputs (I1-I2) are reproduced at the outputs (O1-O2), shifted in time by an amount determined by the device dash number (See Table). The delay lines function completely independently of each other.

PIN DESCRIPTIONS

I1-I2 Signal InputsO1-O2 Signal Outputs

VDD +5 Volts GND Ground

SERIES SPECIFICATIONS

Minimum input pulse width: 100% of total delay

• Output rise time: 8ns typical • Supply voltage: $5VDC \pm 5\%$

• Supply current: I_{CCL} = 40μa typical

 I_{CCH} = 45ma typical **Operating temperature:** 0° to 70° C

• Temp. coefficient of total delay: 300 PPM/°C

DASH NUMBER SPECIFICATIONS

Part Number	Delay Per Line (ns)			
MDU28C-10	10 ± 2.0			
MDU28C-12	12 ± 2.0			
MDU28C-16	16 ± 2.0			
MDU28C-20	20 ± 2.0			
MDU28C-25	25 ± 2.0			
MDU28C-30	30 ± 2.0			
MDU28C-35	35 ± 2.0			
MDU28C-40	40 ± 2.0			
MDU28C-45	45 ± 2.2			
MDU28C-50	50 ± 2.5			
MDU28C-60	60 ± 3.0			
MDU28C-75	75 ± 3.7			
MDU28C-100	100 ± 5.0			

NOTE: Any dash number between 10 and 100 not shown is also available.

Functional block diagram

©1997 Data Delay Devices

APPLICATION NOTES

HIGH FREQUENCY RESPONSE

The MDU28C tolerances are guaranteed for input pulse widths and periods greater than those specified in the test conditions. Although the device will function properly for pulse widths as small as 100% of the total delay and periods as small as 200% of the total delay (for a symmetric input), the delays may deviate from their values at low frequency. However, for a given input condition, the deviation will be repeatable from pulse to pulse. Contact technical support at Data Delay Devices if your application requires device testing at a specific input condition.

POWER SUPPLY BYPASSING

The MDU28C relies on a stable power supply to produce repeatable delays within the stated tolerances. A 0.1uf capacitor from VDD to GND, located as close as possible to the VDD pin, is recommended. A wide VDD trace and a clean ground plane should be used.

DEVICE SPECIFICATIONS

TABLE 1: ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
DC Supply Voltage	V_{DD}	-0.3	7.0	V	
Input Pin Voltage	V_{IN}	-0.3	V _{DD} +0.3	V	
Storage Temperature	T_{STRG}	-55	150	С	
Lead Temperature	T_{LEAD}		300	С	10 sec

TABLE 2: DC ELECTRICAL CHARACTERISTICS

(0C to 70C, 4.75V to 5.25V)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
High Level Output Voltage	V_{OH}	3.98	4.4		V	$V_{DD} = 5.0, I_{OH} = MAX$
						$V_{IH} = MIN, V_{IL} = MAX$
Low Level Output Voltage	V_{OL}		0.15	0.26	V	$V_{DD} = 5.0, I_{OL} = MAX$
						$V_{IH} = MIN, V_{IL} = MAX$
High Level Output Current	I _{OH}			-4.0	mA	
Low Level Output Current	I _{OL}			4.0	mA	
High Level Input Voltage	V_{IH}	3.15			V	
Low Level Input Voltage	V_{IL}			1.35	V	
Input Current	I _{IH}			0.10	μΑ	$V_{DD} = 5.0$

PACKAGE DIMENSIONS

MDU28C-xx (Commercial DIP)

MDU28C-xxM (Military DIP)

MDU28C-xxA1 (Commercial Gull-Wing)

MDU28C-xxB1 (Commercial J-Lead)

MDU28C-xxD1 (Commercial SMD) MDU28C-xxMD1 (Military SMD)

MDU28C-xxD4 (Commercial SMD) MDU28C-xxMD4 (Military SMD)

DELAY LINE AUTOMATED TESTING

TEST CONDITIONS

INPUT: OUTPUT:

Ambient Temperature: $25^{\circ}\text{C} \pm 3^{\circ}\text{C}$ **Load:** 1 FAST-TTL Gate

Supply Voltage (VDD): $5.0V \pm 0.1V$ C_{load}: $5pf \pm 10\%$

Input Pulse: High = $5.0V \pm 0.1V$ Threshold: 2.5V (Rising & Falling)

 $\label{eq:Low} \begin{array}{ll} \text{Low} = 0.0 \text{V} \pm 0.1 \text{V} \\ \text{Source Impedance:} & 50 \Omega \text{ Max}. \end{array}$

Rise/Fall Time: 5.0 ns Max. (measured

between 0.5V and 4.5V)

Pulse Width: $PW_{IN} = 1.5 \times Total Delay$ Period: $PER_{IN} = 10 \times Total Delay$

NOTE: The above conditions are for test only and do not in any way restrict the operation of the device.

Test Setup

Timing Diagram For Testing