CLAIM AMENDMENTS

1. (canceled)

- 2. (previously presented) The method according to claim
 10 wherein for regions of the image data with high contrast, a
 2 parameter estimation or approximation is carried out.
- 3. (previously presented) The method according to claim
 2 wherein for the parameter estimation or approximation, the "total
 3 least squares" (TLS), "ordinary least squares" (OLS), "Mixed OLS4 TLS" and/or variation methods is used.
- 4. (previously presented) The method according to claim
 10 wherein the decay constant c and/or the object shift u is
 3 determined by parameter approximation from the image data.
- 5. (previously presented) The method according to claim
 10 wherein the decay constant c is determined by calibration of the
 2 camera.

6. (canceled)

1

- 7. (currently amended) The method according to claim [[6]] $\underline{10}$ wherein known object movements u_x and u_y are introduced directly into the differential equation (1).
- 8. (previously presented) The method according to claim
 10 wherein field programmable gate arrays (FPGA's) are used.

9. (canceled)

- 10. (currently amended) A method of digital image processing in CMOS camera images, the method comprising the steps of:
- generating an output signal g from a CMOS camera;
- deriving from the output signal g its spatio-temporal
- q_{x} gradients (g_{x}, g_{v}, g_{t}) ;
- establishing a time constant c and a local object shift
- 9 (u_x, u_v) from prior knowledge; and
- calculating a target signal value q from the output
- signal g as [[g]] $q = (g_x * u_x) + (g_v * u_v) + (g * -1 * c) + g_t$.
- 1 11. (currently amended) The method according to claim [[11]] $\underline{10}$ wherein the target signal value q, the constant c, the x component u_x of the local object shift u, or the [[u]] y component
- $\mathbf{u}_{\mathbf{v}}$ of the local object shift \mathbf{u} is derived by parameter estimation.