Luke Catalano

Stat-155 Final Presentation

Coffee Consumer Clustering Project Journey

Introduction

Summary

- Exploring consumer trends of American coffee enthusiasts
- Attempting to group consumers through an unsupervised clustering algorithm using numerous features from a coffee survey data set

Motivation

- Worked as a Business Intelligence Intern last summer, and was tasked with finding new ways to group current customers into distinct categories
- Worked as a barista at Starbucks

Data Source

- 2023 survey of "Great American Coffee Taste Test" viewers
- This data is downloaded directly from a web URL every time a project script is ran.
- **Tidy Tuesday** provided a csv containing 4042 valid survey responses, and a cleaning script which turned the survey responses into discrete and continuous variables.
- 2970 survey responses had zero NA values, and were viable for modeling and analysis.
- This is a considerable drop in valid responses, potentially harming analysis.

Exploratory Data Analysis

Key Features:

- Favorite Coffee Drink
- Cups of Coffee Per Day
- Favorite Coffee Spot
- Do you Work from Home?
- Age, Education, Gender
- Avg Monthly Coffee Spending
- Do you Brew Coffee At Home?

Pourover/Drip Coffees are highly preferred amongst every subgroup based on age.

Age Group	Favorite Drink	Count
<18	Latte	8
18-24	Pourover	103
24-34	Pourover	566
35-44	Pourover	273
45-54	Pourover	78
55-64	Drip Coffee	40
>65	Drip Coffee	32

Exploratory Data Analysis

When individuals of a sample are extremely similar in characteristics, it becomes much more difficult to categorize them based on the observable data.

Modeling - PAM

 Used Grower Distance and PAM (Partition Around Medoids) to assign each consumer to a cluster

- Grower Distance normalize the differences between each pair of features and then averages these differences, resulting in a matrix of differences.
- PAM utilizes these grower distances to find naturally occurring groupings in the consumer dataset, minimizing the average differences between each observation

Principal Component Plot

Modeling - Results

- Principal Component Analysis flattens the dimensions of the data, which in turn may be causing the clusters to appear relatively close to each other.
- Further Analysis can be done to see the differences in certain key variables between the 3 clusters.

 Here we explore the "Most_Paid" variable, showing the distribution per cluster.

Monte Carlo Simulation - Proximus

Experimental Design

Factors: Levels:

Sample Size - {500, 1500, 2970} 90% Column Sparsity - {1 Col, 3 Cols, 6 Cols}

- Data is converted into a logical matrix of true or false questions (Do you value coffee from a cafe?... etc)
- Each Factor-Level will have 10 simulations with randomly generated data, that fits the current distribution of True / False in the current dataset (with some normalized error)
- Each simulation is a proximus model constructed off of the generated data. We will compare the Jaccard Similarity Error between all 90 of the simulations.

Key Findings

Obs	Sparse	Mean_Jsim	SD_Jsim
500	1	0.942	0.0199
500	3	0.925	0.0158
500	6	0.898	0.0432
1500	1	0.943	0.0275
1500	3	0.907	0.0258
1500	6	0.884	0.0259
2970	1	0.936	0.0135
2970	3	0.888	0.0343
2970	6	0.88	0.0141

* 10 Reps Each

We find that as matrix sparsity increases, the Jaccard Similarity measure decreases. Sample size has little effect on the average Jaccard Similarity score

Summary

Key Findings

- While it is possible to group coffee consumers using survey data, the population needs to be diverse enough, and the questions revealing enough, to create distinct customer classes.
- Our current sample size is likely too small, and too similar, to construct distinct classifications

What I've Learned

- Reproducibility is not as simple as providing a link to your data, and there is an extensive process to ensure others can accomplish a valid reproduction of your work.
- RStudio has far more features than I learned in courses like Econ 114 and Econ 124, and the reproducibility features like QMD's and RStudio Projects are extremely useful for keeping track of extensive projects.

Reflection and Considerations

Important Considerations for Clustering

- During the EDA stage, ensure your sample is diverse enough for high quality groupings
- Ensure the data has questions that can effectively group individuals

Project Considerations

- Especially when working with recursive clustering algorithms, always have a virtual backup of your work (Github)
- Regardless of if data is pulled from the web or not, keep a local copy of the data so you can work while
 offline