

线性代数往年期末试卷【含完整答案的新版本】

(包含 2004、2005、2007、2008、2009、2011、2012 年份试题)

【答案全且准确率高】优印堂打印店(B19-503-5) QQ:741819941

大连理工大学

课程名称:线性代数与解析几何 试卷: A

考试形式: 闭卷

授课院 (系): 应用数学系

考试日期: 2008年1月8日 试卷共6页

			111	四	五	六	七	八	九	总分
标准分	20	10	8	10	12	14	6	10	10	100
得 分				-	2111					

注: 1.E 表示单位阵,|A| 表示 A 的行列式,r(A) 表示 A 的秩, A^{-1} 表示 A 的逆阵, A^{T} 表示 A 的转置矩阵,tr(A)表示 A 的迹。

- 一. 填空题 (每题 2 分, 共 20 分)。
 - 1. 设A为三阶方阵,其列分块阵为 $A = [a_1, a_2, a_3]$,|A| = 2,则 $|a_1 + a_2, a_2, 3a_3| = _$
 - 2. 设A为四阶方阵,|A|=-1,则 $|A^{-1}+2A^*|=$ _____
 - 3. 设从向量空间 V 的基底 u_1, u_2, u_3 ,到基底 v_1, v_2, v_3 ,的过渡矩阵为 $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$,则

从基底 v_1,v_2,v_3 到基底 u_1,u_2,u_3 的过度矩阵为______

4. 己知
$$A = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & k & -1 \end{bmatrix}$$
的特征値 λ 对应的特征向量为 $\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$,则 $k =$ _____, $\lambda =$ ___

- 5. 若方阵 A 已知,且满足 $A^2 A + 2E = 0$,则 $(A + 3E)^{-1} =$ ______
- 6. Oxy 面上的曲线 $y^2 + x = -5$ 绕 x 轴旋转所得的旋转面方程为

试卷下载地址: zhuimenging.com 绿旗官方商城: greenflag.cn

1

7. 已知三个平面
$$\pi_1: A_i x + B_i y + C_i z + D_i = 0$$
($i = 1, 2, 3$),记 $A = \begin{bmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{bmatrix}$,

$$B = \begin{bmatrix} A_1 & B_1 & C_1 & D_1 \\ A_2 & B_2 & C_2 & D_2 \\ A_3 & B_3 & C_3 & D_3 \end{bmatrix}$$
,则三平面交于一条直线的充要条件是 $r(A)$ 和 $r(B)$ 满足

- 8. 设 3 阶方阵 A 满足 r(E+A)=r(E-A)=r(2E+A)=2,则 |A+3E|= 9.设 A 为 n×s 型矩阵,B 是秩为 k 的 n×k 型矩阵,且存在矩阵 P 使得 B=AP,则 r(P)= ______
- 二. (10 分)求向量组 $a_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}$, $a_2 = \begin{pmatrix} 2 \\ 1 \\ -1 \\ 1 \end{pmatrix}$, $a_3 = \begin{pmatrix} 4 \\ -1 \\ 1 \\ 3 \end{pmatrix}$, $a_4 = \begin{pmatrix} 3 \\ 1 \\ -1 \\ 2 \end{pmatrix}$, $a_5 = \begin{pmatrix} 3 \\ -2 \\ 2 \\ 3 \end{pmatrix}$ 的秩, 求

其一个极大无关组,并求出其余向量所求极大无关组线性表示的表达式。

三.
$$(8 分)$$
 设 $A = \begin{bmatrix} 3 & 0 & 1 \\ 1 & 2 & -1 \\ 0 & 1 & 2 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 \\ 3 & 0 \\ 2 & 1 \end{bmatrix}$, 并且 $AB = 2B + C$, 求矩阵 B .

四. $(10 \, \, \, \, \, \,)$ (1) 设 a_1,a_2,a_3 为线性无关向量组,数 k 使得 $4a_1+a_2,a_2-a_3,a_3+ka_1$ 线性无关,确定 k 的取值范围(2)设二次型 $f(x_1,x_2,x_3)=ax_1^2+x_2^2+(a-\frac{1}{2})x_3^2+2ax_1x_2$ 是正定的,确定 a 的取值范围

2

五. (12 分)1. k 取何值时,方程组
$$\begin{cases} kx_1 + & x_2 - x_3 & = k - 1 \\ x_1 + & kx_2 + x_3 & = 1 \\ x_1 + & x_2 - kx_3 & = k \end{cases}$$
 (1)有唯一解;(2)无解;

(3) 有无穷多解? 若存在无穷多解时, 求方程组的通解。

六. 已知矩阵
$$A = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 4 & 0 \\ 1 & -1 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & \\ & 4 & \\ & & 2 \end{bmatrix}$ 相似,求可逆阵 P 使得 $P^{-1}AP = B$

七. 选择题(10分)。

- 1. 设A,B为同阶非零实对称阵,则()
 - A. AB 是实对称阵

B. AB≠0

C. |AB| = |BA|

- D. AB 的特征值都是实数
- 2. 如果方阵 $A \neq 0$,那么 ()
 - A. 若 AB = AC ,则 B = C
- B. $r(A) \ge 1$

C. $|A| \neq 0$

- D. A可逆
- 3. 一个矩阵 A 为正交阵的充要条件是()
 - $A. \quad A^T A = AA^T = E$

B. A 的行向量组是标准正交向量组

C. $A^T A = E$

- D. A 的列向量组是正交向量组
- - A. $P^T A P = B$

B. r(A)=r(B)

C. $|AB| \ge 0$

- $D. \quad P^{-1}AP = B$
- 5. 如果 4 阶实方阵 A 满足 r(A)=2 ,则 ()
 - A. 方程组 $A^*x=0$ 的基础解系含有两个向量 B. $r(A^*)=2$

C. 方程组 $A^*x = 0$ 的解空间是 R^4

D. A^* 可以是可逆矩阵

八. (10 分)1. 若实对称阵 A 满足 $A^2 = E$, $|A| \prec 0$,证明 A + kE 为正定矩阵的充分必要 条件是 k > 1。

2. 设 p_1 是 $n \times n$ 型方程组 Ax = 0 的一个非零解向量,若存在一组向量 $p_1, p_2, \cdots p_s$,满足 $Ap_i = p_{i-1}, (i = 2, \cdots, s)$,证明向量组 $p_1, p_2, \cdots p_s$ 线性无关。

2008 年期末参考答案

1. 6

2. -1

$$\begin{array}{c|cccc}
3. & \begin{array}{c|cccc}
\frac{1}{2} & 0 & 0 \\
0 & 3 & -2 \\
0 & -1 & 1
\end{array}$$

绿旗

4. -1, 1

5. $-\frac{A-4B}{14}$

9. k

 $6. \quad y^2 + z^2 + x = 5$

(5改为-5)

7.
$$r(A) = r(B) = 2$$

_,

 $\therefore a_1, a_2, a_3, a_4, a_5$ 的秩为 3,其中一个极大无关组为 a_1, a_2, a_4

$$a_3 = 2a_1 + a_2, a_5 = 2a_1 - a_2 + a_4$$

三、

$$AB = 2B + C$$
 $(A - 2E)B = C$ $A - 2E = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$

$$(A-2E,C) = \begin{bmatrix} 1 & 0 & 1 & 1 & 2 \\ 0 & 1 & -1 & 3 & 0 \\ 0 & 1 & 0 & 2 & 1 \end{bmatrix} \xrightarrow{r_3-r_2} \begin{bmatrix} 1 & 0 & 1 & 1 & 2 \\ 0 & 1 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix} \xrightarrow{r_3+r_2} \begin{bmatrix} 1 & 0 & 0 & 2 & 1 \\ 0 & 1 & 0 & 2 & 1 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\therefore R = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$$

四、 (1) 设
$$A = (a_1, a_2, a_3), B = (4a_1 + a_2, a_2 - a_3, a_3 + ka_1)$$

则
$$B = AP$$
,其中 $P = \begin{bmatrix} 4 & 0 & k \\ 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & -4 & k \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & k - 4 \\ 0 & 0 & 0 \end{bmatrix}$

A 线性无关,要使 B 线性无关,则 r(P)=3, $\therefore k \neq 4$

(2)设

(2) 设
$$f(x_1, x_2, x_3) = x^T A x, 其中 A = \begin{bmatrix} a & a & 0 \\ a & 1 & 0 \\ 0 & 0 & a - 0.5 \end{bmatrix} 为正定$$

$$\therefore \begin{cases} |A_1| = a > 0 \\ |A_2| = a - a^2 > 0 \Rightarrow 0.5 < a < 1 \\ |A_3| = (a - 0.5)(a - a^2) > 0 \end{cases}$$

五、设
$$A = \begin{bmatrix} k & 1 & -1 \\ 1 & k & 1 \\ 1 & 1 & -k \end{bmatrix}, b = \begin{bmatrix} k-1 \\ 1 \\ k \end{bmatrix}$$

$$(A,b) = \begin{bmatrix} k & 1 & -1 & k-1 \\ 1 & k & 1 & 1 \\ 1 & 1 & -k & k \end{bmatrix} \xrightarrow{\stackrel{r_1 \leftrightarrow r_3}{r_2 - r_1}} \begin{bmatrix} 1 & 1 & -k & k \\ 0 & k-1 & k-1 & 1-k \\ 2 & 1-k & k^2-1 & k-1-k^2 \end{bmatrix}$$
 (矩阵左下角的 2 改为 0)

$$\xrightarrow{r_3+r_2} \begin{bmatrix} 1 & 1 & -k & k \\ 0 & k-1 & k+1 & 1-k \\ 0 & 0 & k^2+k & -k^2 \end{bmatrix}$$

- 1. 当 $k^2 + k \neq 0$ 且 $-k^2 \neq 0$ 时,即 $k \neq 0$ 且 $k \neq \pm 1$ 时,有唯一解
- 2. 当 $k=\pm 1$ 时,无解

3. 当k=0时,有无穷多解。

$$(A,b) = \begin{bmatrix} 0 & 1 & -1 & -1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1 \\ 0 & 1 & -1 & -1 \end{bmatrix} \xrightarrow{r_3 - r_2} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{cases} x_1 = -x_3 + 1 \\ x_2 = x_3 - 1 \end{cases}$$
 : $Ax = b$ 的通解为 $\alpha \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$

六、由题意 A 与 B 相似, \therefore A 的特征值为: $\lambda_1 = 4(二重)$, $\lambda_2 = 2$

当 $\lambda = \lambda_1 = 4$ 时,(E - A)x = 0【E的前面加系数 λ 】的基础解系为: $P_{1=}$ (1,1,0) ^T; $P_{2}=(1,0,1)$ ^T

当 $\lambda = \lambda_2 = 2$ 时,(E - A)x = 0【改错同上】的基础解系为: $P_3 = (1,0,1)^T$

七、

- 1. C
- 3. A
- 5. C

- 2. B
- 4. D

八、

1.
$$A^2 = E, |A|^2 = 1$$
且 $|A| \prec 0, \therefore |A| = -1$ 设 A 的特征值为 $\lambda_1 \cdots \lambda_n A^2$ 的特征值为 λ_i^2 $\therefore \lambda_i^2 = 1, \lambda = \pm 1, |A| = \lambda_1 \cdots \lambda_n = -1 \therefore \lambda_i$ 不全为 1,存在-1

必要性: A+kE 的特征值为 $\lambda+k$, A+kE 为正定矩阵, $\therefore A+k \succ 0$, $\therefore k \succ -\lambda \mathbb{D} k \succ 1$

注意:【A+k>0 中的 A 改为 λ】

充分性: $:: k \succ 1, :: \lambda + k \succ 0, :: A + kE$ 为正定阵。

2.
$$AP_1 = 0$$
, $AP_i = P_{i-1}$ 令存在 $x_1 \cdots x_s$, 使 $x_1 P_1 + x_2 P_2 + \cdots + x_s P_s = 0$

两边左乘 A 得:
$$x_1AP_1 + x_2AP_2 + \cdots + x_sAP_s = 0$$
, $x_2P_1 + x_3P_2 + \cdots + x_sP_{s-1} = 0$

两边左乘 A 得:
$$x_2AP_1 + x_3AP_2 + \dots + x_sAP_{s-1} = 0$$
, $x_3P_1 + x_4P_2 + \dots + x_sP_{s-2} = 0$

以此类推:
$$x_4P_1 + x_5P_2 + \dots + x_sP_{s-3} = 0$$
, $x_sP_1 = 0, P_1 \neq 0$, $\therefore x_s = 0$

$$\mathbb{X} \boxplus : x_{s-1}P_1 + x_sP_2 = 0 , \therefore x_{s-1} = 0$$

以此类推: $x_s = x_{s-1} = \cdots x_1 = 0$, $\therefore P_1, P_2, \cdots P_s$ 线性无关。

:连理工大学

课程名称:线性代数与解析几何 试卷: A

考试形式: 闭卷

授课院(系): 数学科学学院 考试日期: 2007年1月11日 试卷共6页

	1	1 1	111	四	五	六	七	八	总分
标准分	28	12	8	12	12	10	8	10	100
得 分									

- 一. 填空题 (每题 4 分, 共 28 分)。
 - 1. 设三阶方阵 A 的行列式 $\det(A) = -2$,则 A^{-1} 的行列式 $\det(A^{-1}) = ______$, A^k 的 行列式 $\det(A^k) =$ _____

 - 3. 过点(1,1,1), 且垂直于直线 $\frac{x-3}{2} = \frac{y-1}{3} = \frac{z-1}{4}$ 的平面方程为_____
 - 4. 已知三元向量 $a_1 = \left(1, b_1, b_1^2\right)^T$, $a_2 = \left(1, b_2, b_2^2\right)^T$, $a_3 = \left(1, b_3, b_3^2\right)^T$ 线性相关,则 $b_i \left(i = 1, 2, 3\right)$
 - 5. 己知 R^3 的一组基为 $a_1 = (1,-1,1)^T$, $a_2 = (0,1,1)^T$, $a_3 = (-1,0,-1)^T$,则向量 $a = (2,1,3)^T$ 在基 a_1, a_2, a_3 下的坐标向量为_____
 - 6. 设A与 $\begin{vmatrix} 3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 2 \end{vmatrix}$ 相似,则 $A^2 + E$ 的行列式 $\det(A^2 + E) =$ ______
 - 7. 球面 $x^2 + y^2 + z^2 = 9$ 与平面 x + z = 1 的交线在 OXY 面上的投影方程为______
- 二. (8 分) 求向量组 $a_1 = (1,0,0,1)^T$, $a_2 = (0,1,1,0)^T$, $a_3 = (2,3,3,2)^T$, $a_4 = (2,1,2,0)^T$ 的秩 及一个极大线性无关组,并将其余向量用极大线性无关组线性表示。

三. (12 分) 设
$$u = (x, y, z)^T$$
, $v = (x_1, y_1, z_1)^T$, $f(x, y, z) = k(x^2 + y^2 + z^2) - 8(xy + yz + zx)$

- 1. 用正交变换u=Qv将f(x,y,z)化成的标准型
- 2. 若f(x,y,z)为正定二次型,求k的取值范围
- 四. (12 分) 设矩阵 $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$
 - 1. 求出可逆矩阵 P,使 $P^{-1}AP$ 为对称阵,并写出此对称阵;
 - 2. 计算 A^k 。

- 五. 单项选择题 (每题 2 分, 共 10 分)。
 - 设二次多项式 f(x) 有下列行列式确定

式
$$f(x)$$
 有下列行列式确定
$$f(x) = \begin{vmatrix} 1 & 1 & 2 & 3 \\ 1 & 2-x & 2 & 3 \\ 2 & 3 & 1 & 5 \\ 2 & 3 & 2 & 9-x \end{vmatrix}$$
 【第四排 9-x 的前面的 2 改成 1】

则 f(x) = 0 的根为 (

2. 设 $n (n \ge 3)$ 阶矩阵 A 的伴随矩阵 $A^* \ne 0$,且 A 的行列式 det(A) = 0,则 A , A^* 的秩分 别为()

A.
$$r(A) = n - 1, r(A^*) = n - 1$$
 B. $r(A) = n, r(A^*) = 2$

B.
$$r(A) = n, r(A^*) = 2$$

C.
$$r(A) = n - 1, r(A^*) = 1$$
 D. $r(A) = n - 1, r(A^*) = 0$

D.
$$r(A) = n-1, r(A^*) = 0$$

3. 下列说法正确的是()

试卷下载地址: zhuimenging.com

绿旗官方商城: greenflag.cn

- A. 若矩阵 AB 与 A 的秩相等,即 r(AB) = r(A),则 B 可逆
- B. 若矩阵 A 经初等行变换化为 B,则 A 的行向量组的极大无关组与 B 的行向量组的 极大无关组一一对应
- C. 若矩阵 A 经初等行变换化为 B,则 A 的列向量组的极大无关组与 B 的列向量组的 极大无关组一一对应
- D. 若矩阵 A 与 B 的秩相等, 即 r(A) = r(B), 则 A 的行向量与 B 的行向量组等价
- 4. 己知 η_1, η_2, η_3 是Ax = 0的基础解系,则此方程组的基础解系还可选用(
 - A. $\eta_1 \eta_2, \eta_2 \eta_3, \eta_3 \eta_1$
- B. 与 η_1, η_2, η_3 等价的向量组
- C. 与 η_1, η_2, η_3 等秩的向量组 D. $\eta_1 + \eta_2, \eta_2 + \eta_3, \eta_3 + \eta_1$
- 5. 设 A 是三阶方阵,将 A 的第一行和第二行对换得到的矩阵记为 B,再将 B 的第二行加到第三 行上得到矩阵 C,则满足 QA=C 的可逆矩阵 Q=()。

A.
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

B.
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

A.
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 B.
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
 C.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 D.
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

- 六. (8分) 设A,B均为n阶方阵,且AB = A + B,
 - 1. A-E, B-E 皆可逆;
 - AB = BA

greenflag. cn

- 七. (10 分) 设 A 为 n 阶实矩阵,且有 n 个正交的特征向量,证明:
 - 1. A 为实对称矩阵;
 - 2. 存在实数 k 及实对称矩阵 B, 使得 $A + kE = B^2$ 。

2007 年试卷答案:

一、填空题 1)
$$-\frac{1}{2} (-2)^k 2$$
 $\begin{bmatrix} 3 & 6 & 5 \\ 2 & 3 & 3 \\ 2 & 3 & 5 \end{bmatrix}$ 3) 、2(x-1)3(y-1)-4(z-1)=0 4、 $(b_2 - b_1)(b_3 - b_1)(b_3 - b_2) = 0$

5. (0,1,-2) 6. 500 7.
$$\begin{cases} 2x^2 + y^2 - 2x = 8 \\ z = 0 \end{cases}$$

二、

$$\begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 3 & 1 \\ 0 & 1 & 3 & 2 \\ 1 & 1 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \therefore r = 3$$
即秩为3【最后的矩阵 右上角的1改为2】

 \therefore 极大无关向量组为 $\alpha_1,\alpha_2,\alpha_4$ $\therefore \alpha_3$ = $2\alpha_2 + 3\alpha_1$

【上方改为
$$\alpha_3 = 2\alpha_1 + 3\alpha_2$$
】

$$\Xi \cdot A = \begin{bmatrix} k & -4 & -4 \\ -4 & k & -4 \\ -4 & -4 & k \end{bmatrix} \rightarrow \begin{bmatrix} k+4 & 0 & 0 \\ -4 & k & -4 \\ -4 & -4 & k \end{bmatrix} \rightarrow \begin{bmatrix} k+4 & 0 & 0 \\ -4 & k-4 & -4 \\ -4 & -8 & k \end{bmatrix}$$

$$\lambda E - A = \begin{bmatrix} \lambda - k & 4 & 4 \\ 4 & \lambda - k & 4 \\ 4 & 4 & \lambda - k \end{bmatrix} \rightarrow \begin{bmatrix} \lambda - k - 4 & 4 - \lambda + k & 0 \\ 4 & \lambda - k & 4 \\ 4 & 4 & \lambda - k \end{bmatrix} \rightarrow \begin{bmatrix} \lambda - k - 4 & 0 & 0 \\ 4 & \lambda - k & 4 \\ 4 & 4 & \lambda - k \end{bmatrix}$$

 $|\lambda E - A| = (\lambda - k)(\lambda - k + 4)(\lambda - k - 8) :: \lambda_1 = k + 4, \lambda_2 = k - 4, \lambda_3 = k + 8$

$$\therefore f = (k+4)x^2 + (k-4)y^2 + (k-8)z^2$$

2.

$$\begin{cases} k > 0 \\ k^2 - 16 > 0 \\ |A| = (k+4)[k^2 - 4k - 32] > 0 \end{cases} \Rightarrow k > 8$$

4水//

greenflag. cn

试卷下载地址:zhuimenging.com 绿旗官方商城:greenflag.cn

四、(1)

$$(\lambda_1 E - A)x = 0, \begin{bmatrix} 0 & 0 & 0 \\ -1 & -1 & -1 \\ -2 & 0 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 2 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 $Each MR \% P_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$

$$(\lambda_2 E - A)x = 0, \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & -1 \\ -2 & 0 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} 基础解系为P_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$(\lambda_{2}E - A)x = 0, \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & -1 \\ -2 & 0 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} 基础解系为P_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
$$(\lambda_{3}E - A)x = 0, \begin{bmatrix} 2 & 0 & 0 \\ -1 & 1 & -1 \\ -2 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix} 基础解系为P_{3} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

$$P = [P_1, P_2, P_3] = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$(2)P^{-1}AP = \Lambda = \begin{bmatrix} 1 & & \\ & 2 & \\ & & 3 \end{bmatrix}, A = P\Lambda P^{-1}, A^{k} = P\Lambda^{k}P^{-1} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & & \\ 2^{k} & \\ & 3^{k} \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} -1 & 0 & 0 \\ -2^k + 3^k & 2^k & -2^k + 3^k \\ 3^k - 1 & 0 & 3^k \end{bmatrix}$$

六、CCCDB

七、 (1)
$$AB-A-B+E=(A-E)(B-E)=E$$
 : $A-E$ 可逆, $B-E$ 可逆

$$(2)(A-E)(B-E) = E : (B-E)(A-E) = E = (A-E)(B-E)$$

$$BA - A - A + E = AB - A + E : AB = BA$$

【上方↑连续减两个A是错误的、第二个A改成B】

八、(1) : A有 \mathbf{n} 个正交特征向量:3正交阵P使得 $P^{-1}AP = \Lambda$

$$\therefore A = P\Lambda P^{-1}, A^{T} = (P^{-1})^{T} \Lambda^{T} P^{T} = P\Lambda P^{-1} = A$$

(2)
$$P^{-1}(A+kE) = \Lambda + kE$$
,设 λ 为 A 的最小特征值 : $\exists k > 0$ 使 $k + \lambda > 0$

$$\text{III} B^{2} = P^{-1}BP \cdot P^{-1}BP = P\Lambda^{2}P^{-1} = A + kE$$

车理工大学

课程名称:线性代数与解析几何

试卷: C

考试形式: 闭卷

授课院(系):应用数学系

考试日期: 2005年2月

试卷共6页

	1	1	11	四	五	六	七	八	总分
标准分	28	12	10	12	12	12	5	9	100
得分									

E 表示单位阵,A, $\det(A)$ 表示 A 的行列式,r(A)表示 A 的秩, A^* 表示 A 的伴随矩阵, A^T 表示 A 的转置矩阵。

一. 填空题 (每题 4 分, 共 28 分)。

- 2. 过两点(4,0,-2)和(5,1,7)的直线的对称式方程为______
- 3. 设向量组 $a_1 = (a,0,c)$, $a_2 = (b,c,0)$, $a_3 = (0,a,b)$ 线性无关,则 a,b,c 必满足关系式
- 4. 向量 $\begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$ 在基 $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ 下的坐标为______

- 二、单项选择题(每题2分,共6分)。
 - 1. 设 A, B 均为 2n×n 型矩阵,在下列各项中只有()正确
 - A. [A,B]与[B,A]相似

B. [A,B]与[B,A]的行列式相同

C. [A,B]与[B,A]相合

- D. [A,B]与[B,A]的秩相同
- 2. 非齐次方程组 Ax = b 有唯一解的充要条件是()
 - A. b 能用 A 的列向量组线性表示 B. A 的列向量组是[A,b]的列向量组的极大无关组
 - C. [*A*,*b*]的秩等于 A 的秩
- D. Ax = 0 有唯一解

试卷下载地址: zhuimenging.com

绿旗官方商城:greenflag.cn

- 3. 若 $A_{max}B_{horn}=0$,则A和B()
 - A. 至少有一个矩阵的秩小于 k
- B. 至少有一个是零矩阵
- C. 两个矩阵的秩都小于 k
- D. 至少有一个矩阵的秩等于 k
- 4. 若 A 为 n 阶对称负定阵, k 为正整数,则(
 - A. A 的行列式小于零

B. *A^k* 也负定

C. A⁻¹也负定

- D. A* 也负定
- 5. 设向量 α , β 分别是矩阵 A 的对应于特征值 λ , μ 的特征向量, 那么 ()

- 三、(12 分) 已知 $a_1 = (1,-1,2)^T$, $a_2 = (k.1,-2)^T$ 【句号改为逗号】, $a_3 = (2,-k,1)^T$, $\beta = (1,8,-7)^T$
 - 1. k 为何值时, β 不能表示成 a_1,a_2,a_3 的线性组合?
 - 2. k 为何值时, β 可由 a_1, a_2, a_3 唯一地线性表示?
 - 3. k 为何值时, β 可由 a_1, a_2, a_3 线性表示且表示式不唯一? 写出此表达式

四、(10 分)求向量组 $a_1 = \begin{bmatrix} -1,0,3,2 \end{bmatrix}^T$, $a_2 = \begin{bmatrix} 1,-1,-1,2 \end{bmatrix}^T$, $a_3 = \begin{bmatrix} -3,1,7,2 \end{bmatrix}^T$, $a_4 = \begin{bmatrix} -2,-2,9,7 \end{bmatrix}^T$ 的秩 及一个极大线性无关组,并将其余向量用该极大无关组线性表示。

greenflag.cn

五、(12分)设二次型 $f(x,y,z) = 2x^2 + 2y^2 + 2z^2 + 2xy + 2xz - 2yz$, 求二次型 f(x,y,z)的正、负惯 性指数;

六、(12 分)设
$$A = \begin{bmatrix} 4 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 4 \end{bmatrix}$$
,求正交矩阵 T 和对角阵 Λ ,使 $T^{-1}AT = A$ 【 A 改为 Λ 】

七、(5 分)已知向量组(I): a_1,a_2,a_3 ,(II): a_1,a_2,a_3,a_4 ,(III): a_1,a_2,a_3,a_5 ,如果r(I)=r(II)=3, r(III) = 4, 确定 $r(a_1, a_2, a_3, a_4 + a_5)$, 并说明理由。

八、 $(9 \, \beta)$ 设 n 元向量 $a = (1,1,\dots,1)^T$, $A = aa^T$, 求 A 的特征值与特征向量. A 能否相似对角矩阵 Λ ? 若不能, 说明理由; 若能, 求可逆矩阵 P, 使 $P^{-1}AP = \Lambda$

2005 年答案

一、填空题(1)12 (2)
$$\frac{x-4}{1} = \frac{y}{1} = \frac{z+2}{9}$$
 (3) $abc \neq 0$ (4) $\begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$ (5)-4, 3 (6)-8, $-\frac{81}{2}$ (7) $4x = y^2 + z^2$

二、选择题: DBACC

二、选择题: DBACC
$$\Xi \cdot [A:B] = \begin{bmatrix} \alpha_1, \alpha_2, \alpha_3, \alpha_4 \end{bmatrix} = \begin{bmatrix} 1 & k & 2 & 1 \\ -1 & 1 & -k & 8 \\ 2 & 2 & 1 & 7 \end{bmatrix} = \begin{bmatrix} 1 & k & 2 & 1 \\ 0 & k+1 & 2-k & 9 \\ 0 & -2-2k & -3 & -9 \end{bmatrix} = \begin{bmatrix} 1 & k & 2 & 1 \\ 0 & k+1 & 2-k & 9 \\ 0 & 0 & 1-2k & 9 \end{bmatrix}$$

greenflag. cn

【 $\uparrow \alpha_{\iota}$ 改为 β 】

 $1)r(A) \neq r(A:B) : 1-2k = 0, k = 0.5$

$$2)r(A) = r(A:B) = 3 : 1 - 2k \neq 0 \perp k + 1 \neq 0 : k \neq 0.5 \perp k \neq -1$$

$$3)r(A) = r(A:B) < 3 : k = -1$$

$$| \mathbb{U} | |a_1, a_2, a_3, a_4| = \begin{vmatrix} -1 & 1 & -3 & -2 \\ 0 & -1 & 1 & -2 \\ 3 & -1 & 7 & 9 \\ 2 & 2 & 2 & 7 \end{vmatrix} = \begin{vmatrix} -1 & 1 & -3 & -2 \\ 0 & -1 & 1 & -2 \\ 0 & 2 & -2 & 3 \\ 0 & 4 & -4 & 3 \end{vmatrix} = \begin{vmatrix} -1 & 1 & -3 & -2 \\ 0 & -1 & 1 & -2 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -5 \end{vmatrix} = \begin{vmatrix} -1 & 1 & -3 & -2 \\ 0 & -1 & 1 & -2 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{vmatrix}$$

 $r(a_1, a_2, a_3, a_4) = 3$,极大线性无关组 $a_1, a_2, a_4; a_3 = 2a_1 - a_2(+0a_4)$

五、记
$$f(x,y,z)=(x,y,z)^{\mathrm{T}}A(x,y,z)$$
,则 $A=\begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & -2 \\ 1 & -1 & 2 \end{vmatrix}$ 【左侧矩阵第二行最后一个数改为 -1】

$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ -1 & \lambda - 2 & 1 \\ -1 & 1 & \lambda - 2 \end{vmatrix} = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ \lambda - 3 & \lambda - 3 & 0 \\ \lambda - 3 & 0 & \lambda - 3 \end{vmatrix} = \begin{vmatrix} \lambda - 1 & -1 & -1 \\ 0 & \lambda - 3 & 0 \\ \lambda - 3 & 0 & \lambda - 3 \end{vmatrix} = \begin{vmatrix} \lambda & -1 & -1 \\ 0 & \lambda - 3 & 0 \\ 0 & 0 & \lambda - 3 \end{vmatrix} = \lambda(\lambda - 3) = 0$$

即 λ_1 ₂=3, λ_3 =0:正负惯性指数分别为p=2, q=0

$$|\lambda E - A| = \begin{vmatrix} \lambda - 4 & -1 & 0 \\ -1 & \lambda - 3 & -1 \\ 0 & -1 & \lambda - 4 \end{vmatrix} = \begin{vmatrix} \lambda - 5 & -1 & 0 \\ \lambda - 5 & \lambda - 3 & -1 \\ \lambda - 5 & -1 & \lambda - 4 \end{vmatrix} = \begin{vmatrix} \lambda - 5 & -1 & 0 \\ 0 & \lambda - 2 & -1 \\ 0 & 0 & \lambda - 4 \end{vmatrix}$$

①当其值为2时,2
$$E - A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$
得 $\alpha_1 = \begin{bmatrix} 1, -2, 1 \end{bmatrix}$

②当其值为4时,4
$$E - A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
得 $\alpha_2 = \begin{bmatrix} 1,0,-1 \end{bmatrix}^T$

①当其值为2时,2
$$E - A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$
得 $\alpha_1 = \begin{bmatrix} 1, -2, 1 \end{bmatrix}^T$
②当其值为4时,4 $E - A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ 得 $\alpha_2 = \begin{bmatrix} 1, 0, -1 \end{bmatrix}^T$
③同理可求得 $\alpha_3 = \begin{bmatrix} 1, 1, 1 \end{bmatrix}^T$ 则正交矩阵 $T = (\alpha_1, \alpha_2, \alpha_3)$ 对角阵 $\Lambda = \begin{bmatrix} 2 & 4 & 5 \end{bmatrix}$

八、
$$A = \alpha \alpha^T = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \dots & \dots & \dots & 1 \\ 1 & \dots & \dots & 1 \end{bmatrix}_{n \times n}$$
 为实对称阵,所以存在相似对角矩阵

$$\left|\lambda E - A\right| = (\lambda - n)\lambda^{n-1} = 0 :: \lambda_1 = n; \lambda_{2,3,\dots,n} = 0$$

①当
$$\lambda = \lambda_1 = n$$
时, $E - A = \begin{bmatrix} n-1 & -1 & \dots & 1 \\ -1 & n-1 & \dots & 1 \\ -1 & -1 & \dots & n-1 \end{bmatrix}$ [行数也是n行] $\therefore \alpha_1 = \begin{pmatrix} 1,1,1 & \dots \end{pmatrix}^T$

②当
$$\lambda = \lambda_{2,3...n} = 0$$
时, $-A = \begin{bmatrix} 1 & 1 & ... & 1 \\ 0 & 0 & ... & 0 \\ 0 & 0 & ... & 0 \end{bmatrix}$ [行数也是n行]:
$$\begin{cases} \alpha_2 = (1,-1,0,0...0)^T \\ \alpha_3 = (1,0,-1,0...0)^T \\ \alpha_{n-1} = (1,0,...0,-1)^T \end{cases}$$

大连理工大学

课程名称:线性代数与解析几何 试卷:C

考试形式: 闭卷

授课院(系): 数学系

考试日期: 2004年7月3日 试卷共6页

	_	1 1	111	四	五	六	七	八	总分
标准分	24	13	12	12	7	10	10	12	100
得 分									

一. 填空题 (每题 4 分, 共 24 分)。

1.
$$\begin{bmatrix} 2 & 3 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}^{-1} = \underline{\hspace{1cm}}$$

3. 方程组
$$\begin{cases} x_1 - x_2 + 3x_3 = 0 \\ x_1 + x_2 - x_3 = 0 \end{cases}$$
的基础解系为_____

5. 若 A 只有特征值-1 和 2,则 A²的特征值只能是_____, 3A 的特征值为

6. 若
$$A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 2 & 3 & 0 & 1 \\ 3 & 2 & 1 & 0 \end{bmatrix}$$
, 则 A 的列向量组线性______关,A 的行向量组线性_____关

二. (13 分) 当 k 和 m 满足什么条件时,方程组
$$\begin{cases} x_1 - x_2 - 2x_3 = 1 \\ 2x_1 - x_2 + kx_3 = 4 \\ -x_1 + 2x_2 + 3x_3 = m \end{cases}$$

1. 有唯一解; 2. 无解; 3. 有无穷多解, 并求出此时的通解。

三.
$$(12 分)$$
 设 $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & k \\ 2 & k & 1 \end{bmatrix}$, 说明理由,回答下列各题:

- 1. k 为哪些值时, Ax=0 有非零解?
- 2. k 和正数 m 为何值时, mA 是正交阵;
- 3. λ 和 k 为何值时,A 的特征值 λ 对应的特征向量为 $p = [1,1,1]^T$?

四. (12 分)设
$$A = \begin{bmatrix} 3 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
, 求正交阵 Q 和对角阵 Λ ,使得? $Q^{-1}AQ = \Lambda$

五. (7 分)说明理由,
$$k$$
 满足什么条件时,二次型 $f(x_1,x_2,x_3)=x_1^2\div 2x_2^2+kx_3^2\div 2(x_1x_2+kx_1x_3)$ 为正定二次型,否则不正定?【上面的除号改为加号】

六、(12 分)证明: 设 λ 和 μ 是 n 阶实对称阵 A 的特征值,对应的特征向量分别为 p 和 q ,若 $\lambda \neq \mu$,则 p 和 q 正交。

2004 年答案

一、(1)
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -3 & 1 \end{bmatrix}$$
 (2) 5, -2, -1 (3) $\begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$ (4) 1, 3 (5) 1, 4; -3, 6 (6) 相,无

greenflag. cn

【下方第三个矩阵第一行后两个数改为: -2; 1】

- ①当 r(A)=r(A)=3 时,有唯一解, $k \neq -3$ 且 $m \neq 1$ ② k = -3 且 $m \neq 1$,当 r(A)< r(A) 时无解
- ③当 r(A)=r(A)<3 时有无穷多解,k=-3 且 m=1,通解为 $x=k(1,-1,1)^T+(3,2,0)^T$

$$\equiv$$
, (1) $|A|=0$
 $1-k^2-2(2-2k)+2(2k-2)=0; -k^2+8k-7=0; k_1=1, k_2=7$
 $(2)2+2+2k=0 \rightarrow k=-2; m^2(1+2^2+2^2)=1, m>0 : m=1/3$

(3)
$$\begin{bmatrix} \lambda - 1 & 2 & 2 \\ 2 & \lambda - 1 & k \\ 2 & k & \lambda - 1 \end{bmatrix} = 0, \lambda = 5; 2 + 1 + k = \lambda, k = 2$$

$$\square$$
 、 $|\lambda E - A| = 0$ ∴ $\lambda_1 = 1$, $\lambda_2 = 5$, $\lambda_3 = 2$

$$\begin{bmatrix} -2 & 2 & 0 \\ 2 & -2 & 0 \\ 0 & 0 & -1 \end{bmatrix} [P] = 0 : P_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} P_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} P_3 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

$$E \not \gtrsim \& Q = \begin{bmatrix} -\sqrt{2} & 0 & \sqrt{2}/2 \\ \sqrt{2}/2 & 0 & -\sqrt{2}/2 \\ 0 & 1 & 0 \end{bmatrix} Q^{-1}AQ = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\exists L \cdot (x_1 + x_2 + kx_3)^2 = k_1^2 + x_2^2 + 2x_1x_2 + 2kx_1x_3 + 2kx_2x_3 + k^2x_3^2$$

$$f(x_1, x_2, x_3) = (x_1 + x_2 + kx_3)^2 + x_2^2 - 2kx_2x_3 + (k - k^2)x_3^2$$

$$k - 2k^2 > 0,0 < k < 1/2$$

课程名称:线性代数与解析几何 试卷: A

考试形式: 闭卷

授课院(系):应用数学系

考试日期: 2009年1月9日 试卷共6页

	1	1 1	111	四	五	六	七	八	总分
标准分	8	5	8	15	14	30	10	10	100
得 分									

E 表示单位阵,|A| 表示 A 的行列式,r(A) 表示 A 的秩, A^{-1} 表示 A 的逆阵, A^{T} 表示 A 的转置,tr(A) 表示 A 的迹。

一.
$$(8\ \%)$$
 求向量组 $a_1 = \begin{bmatrix} -1\\ -1\\ 1\\ 2 \end{bmatrix}$, $a_2 = \begin{bmatrix} -2\\ -2\\ 2\\ 4 \end{bmatrix}$, $a_3 = \begin{bmatrix} 1\\ -1\\ -3\\ 2 \end{bmatrix}$, $a_4 = \begin{bmatrix} -1\\ -3\\ -1\\ 6 \end{bmatrix}$ 的秩, 一个极大无关组,并

试卷下载地址: zhuimenging.com

绿旗官方商城: greenflag.cn

用所求极大无关组线性表示其余向量。

二.
$$(5分)$$
 设 $A = \begin{bmatrix} 1 & b & 0 \\ b & 3 & 0 \\ 0 & 0 & b \end{bmatrix}$ 为正定阵,试确定 b 的取值范围。

三.
$$(8分)$$
 设 $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 4 & -4 \\ 0 & 1 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 1 & -2 \\ 2 & -1 \\ 1 & -3 \end{bmatrix}$, 并且 $AB = 2B + C$, 求矩阵 B .

四. (14 分) 已知二次型
$$f(x_1, x_2, x_3) = 2x_1x_2 + 2x_2x_3 + 2x_1x_3$$

求正交变换I=Qy将该二次型化为标准形,并写出相应的标准形。

五. 填空题 (每题 3 分, 共 30 分)。

1. 设矩阵
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix}$$
, A^* 为 A 的伴随矩阵,则 $(A^*)^{-1} = \underline{\hspace{1cm}}$

- 2. 已知四阶矩阵 A 的行列式等于 2,则 $\det((2A)^{-1} A^*) =$ ______
- 3. 设 $A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 3 & 0 & 4 \end{bmatrix}$, $a = \begin{bmatrix} k \\ 1 \\ 1 \end{bmatrix}$, a 是 A 的特征向量,则 $k = \underline{\qquad \qquad }$

4. 已知
$$A = \begin{bmatrix} 2 & 2 \\ 2 & k \end{bmatrix}$$
,若 aA 为正交矩阵,则 $a=$ ______, $k=$ ______

- 5. 设 A 是 4×3 型矩阵,将 A 的第 1 列与第 2 列交换得到 B,再把 B 的第 2 列加到第 3 列上得到 C,那么满足 A=CQ 的可逆矩阵 Q 可取为
- 6. 已知 $A = \begin{bmatrix} x & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$ 的特征值为 $\lambda_1 = \lambda_2 = 2$, $\lambda_3 = 4$,则 $\mathbf{x} = \underline{\hspace{1cm}}$,

且 A 对角化(选填可以或不可以)。

- 7. 设向量组 $a_1 = \begin{bmatrix} 1,1,-1 \end{bmatrix}^T$, $a_2 = \begin{bmatrix} -1,1,1 \end{bmatrix}^T$ 是向量空间 V 的一个基底,基底 b_1 , b_2 到 a_1 , a_2 的 过渡矩阵为 $\begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$,则 $b_1 = \underline{\qquad}$, $b_2 = \underline{\qquad}$
- 8. 已知 m×3 型的非零矩阵 A 的列向量组 a_1 , a_2 , a_3 满足 $a_1+a_2-a_3=0$,且 $b=-a_1+a_2$,

$$b = 4a_1 - a_3$$
,则 $Ax = b$ 的通解为______

六. 单项选择题(每题2分,共10分)。

- 1. 己知 A, B 分别为 $m \times 4$ 和 $n \times 4$ 型的矩阵,且(AB)x=0 只有零解,则()
 - A. $\min(m,n) \leq 4$

B. $\min(m,4) \le n$

C. $\max(m,n) \leq 4$

- D. $\max(n,4) \le m$
- 2. 设 a_1, a_2, a_3 线性无关,则下列向量组线性相关的是()
 - A. $a_1 + a_2, a_2 + a_3, a_3 + a_1$
- B. $a_1 a_2, a_2 a_3, a_3 a_1$
- C. $a_1 a_2, a_2 a_3, a_3 + a_1$
- D. $a_1 + a_2, a_2 a_3, a_3 a_1$
- 3. 设A是非零方阵,满足 $A^3=0$,则()
 - A. E-A和E+A都可逆
- B. E-A 可逆,而 E+A 不可逆
- C. E-A和E+A都不可逆
- D. E-A 不可逆,而 E+A 可逆
- 4. 下列叙述不正确的是()
 - A. 若A和B相合,则 $|AB| \ge 0$
 - B. 设A,B为同阶对称阵,若AB为对称阵,则AB=BA
 - C. 若 $m \times n$ 型矩阵 A 的列向量组线性无关,则其行向量也线性无关
 - D. 若A,B为同阶方阵,则|AB| = |BA|

5. 设
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \end{bmatrix}$$
, β 是三元列向量,若 a, b, c, d 互异,则()

A. Ax = 0 只有零解

B. $AA^Tx = 0$ 有非零解

- C. $AA^Tx = \beta$ 有唯一解
- D. $AA^Tx = \beta$ 有无穷多解

七. (共10分)

- 1. 设 $v_1, v_2, \dots v_r$ 为齐次方程组Ax = 0的基础解系, $v_1, v_2, \dots v_r$ 可由 $u_1, u_2, \dots u_r$ 线性表示,证明 $u_1, u_2, \cdots u_r$ 也是 Ax = 0的基础解系。
- 2. 设 $f(x_1,x_2,\cdots x_n)$ 为 n 元实二次型,若对任意非零 n 元实向量 $x=[x_1,x_2,\cdots x_n]^T$ 都有 $f(x_1, x_2, \cdots x_n) \neq 0$, 证明: $f(x_1, x_2, \cdots x_n)$ 要么为正定二次型, 要么为负定二次型。

【下方 a_2 前系数改为-2】 $- \text{、} 解:[a_1,a_2,a_3,a_4] = \begin{bmatrix} -1 & -2 & 1 & -1 \\ 0 & 0 & -2 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \therefore r(A) = 2; a_2 \pi a_4$ 为一个极大无关组 $\begin{cases} a_3 = -a_4 \\ a_1 = -a_2 - 2a_4 \end{cases}$

$$= \sqrt{\frac{3-b^2 > 0}{b(3-b^2) > 0}}$$
解得 $0 < b < \sqrt{3}$

greenflag.cn

 $\equiv AB = 2B + C, (A - 2E) \cdot B = C, B = (A - 2E)$

$$(A-2E) = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 2 & -4 \\ 0 & 1 & 1 \end{bmatrix}$$
其逆阵为
$$\begin{bmatrix} -1 & 0 & 1 \\ 1/6 & 1/6 & 1/2 \\ -1/6 & -1/6 & 1/2 \end{bmatrix} \therefore B = (A-2E)^{-1}C = \begin{bmatrix} 0 & -1 \\ 1 & -2 \\ 0 & -1 \end{bmatrix}$$

四、
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
, $(\lambda E - A) = \begin{bmatrix} -\lambda & -1 & -1 \\ -1 & \lambda & -1 \\ -1 & -1 & \lambda \end{bmatrix} = (\lambda + 1)^2 (\lambda - 2)$ ∴ $\lambda = -1$ (二重)或2

∴ 标准型 $f = -v_1^2 - v_2^2 + 2v_3^2$

当 $\lambda = 2$ 时,同理可求得 $\alpha_3 = (1,1,1)^T$;对 α_1 和 α_2 进行史密特正交化

$$\beta_1 = \alpha_1 = (-1,1,0)^T$$
, $\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = [-1,-1,2]$;

再进行单位化 $\beta_1 = \frac{1}{\sqrt{2}} [-1,1,0]^T$, $\beta_2 = \frac{1}{\sqrt{6}} [-1,-1,2]^T$, $\beta_3 = \frac{1}{\sqrt{3}} [1,1,1]^T$

$$\therefore Q = \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

五、(1)
$$-A$$
、(2) $\frac{3}{4}$ 、(3) -1 、(4) $\frac{\sqrt{2}}{4}$, -2 、(5) $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ 、(6) 2, 不可以、(7) $\begin{bmatrix} -3 \\ -1 \\ 3 \end{bmatrix}$ 、(8) $k_1 \begin{bmatrix} -5 \\ 1 \\ 1 \end{bmatrix} + k_2 \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$

六、ABACC

七、(1) $v_1...v_s$ 可由 $u_1...u_s$ 线性表示,则 $s = r(v_1...v_s) \le r(u_1...u_s) \le s$ $\therefore r(u_1...u_s) = s \therefore u_1...u_s$ 也可由 $v_1...v_s$ 线性表示,对任意 u_z 也是Ax = 0的解,所以也是Ax = 0的基础解系 (2)假设 $f(x_1...x_n)$ 不为正定二次型也不是负定二次型,则特征值含0,或含有异号特征值; 若含0,则 $f(x_1...x_n)$ 化为规范型会缺项,缺项中 x_i 为任意值时, $f(x_1...x_n)=0$ 与题意矛盾 若含有异号特征值,不妨设 $f(x_1...x_n) = -x_1^2 + x_2^2$,则只要 $x_1^2 = x_2^2$, $f(x_1...x_n) = 0$,与题意矛盾,假设不成立

连理工大学

课程名称:线性代数与解析几何

试卷: B

22

考试形式: 闭卷

授课院 (系): 数学科学学院

考试日期: 2011年1月13日 试券共6页

试卷下载地址: zhuimenging.com

绿旗官方商城: greenflag.cn

	_	1	111	四	五.	六	七	八	九	总分
标准分	30	10	6	12	8	8	12	8	6	100
得 分										

注: .E 表示单位阵,|A| , $\det(A)$ 表示 A 的行列式,r(A) 表示 A 的秩, A^* 表示 A 的伴随矩阵, A^T 表示 A 的转置矩阵。

- 一. 填空题 (每题 3 分, 共 30 分)。
 - 1. 设三阶方程 A 的列分块阵为 $A = (a_1, a_2, a_3)$,且 A 的行列式 $\det(A) = -3$,若三阶方阵 $B = (a_1, -3a_2, 2a_3)$,则 A + B 的行列式 $\det(A + B) =$ ______
 - 2. 设 A 为 n 阶矩阵,且 $A^2 + 3A = 0$, $3A^2 + A = 0$,则 A 的行列式 det(A) =______
 - 3. 已知 $A^{-1} = \begin{pmatrix} 2 & -2 & 0 \\ -1 & 2 & -2 \\ 0 & 1 \end{pmatrix}$ 【缺的数是-1】,则 $(A^T)^{-1} =$ ______
 - 4. 已知由三元向量组 $a_1 = (2,2,k)^T$, $a_2 = (2,k,2)^T$, $a_3 = (k,2,2)^T$, 生成的向量空间的维数为 2,则 k=______
 - 5. 设 β_1 , β_2 , β_3 是3维向量空间 R^3 的一组基,则由基 β_1 , β_2 , β_3 到基 β_1 + β_3 , β_1 + β_2 , β_2 + β_3 的过度矩阵为_____
 - 6. 已知 R^3 的一组基为 $a_1 = \begin{pmatrix} 1,0,0 \end{pmatrix}^T$, $a_2 = \begin{pmatrix} 1,1,0 \end{pmatrix}^T$, $a_3 = \begin{pmatrix} 1,1,1 \end{pmatrix}^T$,则向量 $a = \begin{pmatrix} 1,2,3 \end{pmatrix}^T$ 在基 a_1 , a_2 , a_3 下的坐标向量为_____
 - 7. 设 A 与 $\begin{pmatrix} 2 & & \\ & 1 & \\ & & -2 \end{pmatrix}$ 相似,则 $A^2 + E$ 的行列式 $\det(A^2 + E) =$ ______
- 二. 单项选择题(每题3分,共18分)。
 - 1. $\forall n(n \succ 2)$ 阶方阵 A 的行列式 |A| = 0,且 A 的伴随矩阵 $A^* \neq 0$,则 A^* 的秩为()

A. n-1

B n

C. 2

D. 1

2. 设实二次型 $f(x_1, x_2) = -2x_1^2 + x_2^2$ 经可逆线性变换 x = Cy,化成标准形 $f = y_1^2 - y_2^2$,则可逆矩阵 C 为(

试卷下载地址: zhuimenging.com

绿旗官方商城:greenflag.cn

A.
$$\begin{pmatrix} 0 & 1 \\ \frac{\sqrt{2}}{2} & 0 \end{pmatrix}$$

B.
$$\begin{pmatrix} 0 & \frac{\sqrt{2}}{2} \\ 1 & 0 \end{pmatrix}$$

C.
$$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0 \\ 0 & 1 \end{pmatrix}$$

A.
$$\begin{pmatrix} 0 & 1 \\ \frac{\sqrt{2}}{2} & 0 \end{pmatrix}$$
 B. $\begin{pmatrix} 0 & \frac{\sqrt{2}}{2} \\ 1 & 0 \end{pmatrix}$ C. $\begin{pmatrix} \frac{\sqrt{2}}{2} & 0 \\ 0 & 1 \end{pmatrix}$ D. $\begin{pmatrix} 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & 0 \end{pmatrix}$

3. 设 λ_1 , λ_2 是矩阵 A 的两个不同的特征值,对应的特征向量分别为 a_1 , a_2 ,则 $k_1a_1+k_2a_2$ 是 A 的特征向量的充分必要条件是(

A.
$$k_1 = 0, k_2 \neq 0$$

B. k_1, k_2 有且只有一个不为零

C.
$$k_1 \neq 0, k_2 \neq 0$$

D. $k_1 \neq 0, k_2 = 0$

4. 设 A, B 分别是 $m \times n$, $n \times s$ 矩阵, 当 () 时,齐次线性方程组 ABx = 0 与 Bx = 0 同解。

B. $\Re r(B) = s$

C. 秩
$$r(A) = n$$

D. 秩 r(B) = n

三.
$$(6 分)$$
 设 $\mathbf{B} = \begin{pmatrix} -1 & -1 & 0 \\ -1 & 0 & 1 \\ 2 & 2 & 1 \end{pmatrix}$, 满足 $\mathbf{B}\mathbf{A} = \mathbf{B} + 2\mathbf{A}$, 求 \mathbf{A} 。

四. (8 分)设 4 维向量组 $\beta_1 = (1+\lambda,1,1,1)^T$, $\beta_2 = (2,2+\lambda,2,2)^T$, $\beta_3 = (3,3,3+\lambda,3)^T$, $eta_4 = ig(4,4,4,4+\lambdaig)^T$,问 λ 为何值时, eta_1,eta_2,eta_3,eta_4 线性相关? 当 eta_1,eta_2,eta_3,eta_4 线性相关时,求 其一个极大线性无关组。

五. (8 分) 已知三阶矩阵 $A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix}$ 的特征值为 1, 1, 7, 就正交矩阵 Q 及对角矩阵 Λ ,使

 $Q^{-1}AQ = \Lambda \circ$

六、(12分) 设
$$A = \begin{pmatrix} k & 2 & 2 \\ 2 & k & 2 \\ 2 & 2 & k \end{pmatrix}$$
, $u = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$,

(4分) 求 A 的三个特征值;

(4分) 若 $f(u) = u^T A u$ 是正定二次型,则 k 应满足什么条件;

七、 (8分)设A为m×n矩阵,B,C均为n×s矩阵,且 $AB = AC, B \neq C$,证明:A的秩 $r(A) \prec n$ 。

八、 $(6 \, \text{分})$ 设 A,B 均为 n 阶实对称矩阵,且 A 是正定矩阵, $B \neq 0$ 为半正定矩阵,证明: |A + B| > |A|。

2011 年答案

一、填空题

① 36② 0③
$$\begin{bmatrix} 2 & -1 & 0 \\ -2 & 2 & -1 \\ 0 & -2 & 1 \end{bmatrix}$$
 ④ -4 【解析: $k = 2$ 舍去】 ⑤
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

①36②0③
$$\begin{bmatrix} 2 & -1 & 0 \\ -2 & 2 & -1 \\ 0 & -2 & 1 \end{bmatrix}$$
 ④ -4 【解析: $k = 2$ 舍去】⑤ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ ⑥ $\begin{bmatrix} -1, -1, 3 \end{bmatrix}$ 【解析: $(\alpha_1, \alpha_2, \alpha_3)$ $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \alpha$,即为 $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$,求x的三个值即可】⑦25

二、选择: DBBD

$$\equiv$$
 $BA-2A=B \rightarrow (B-2E)A=B \rightarrow A=(B-2E)^{-1}B$

$$B - 2E = \begin{bmatrix} -1 & -1 & 0 \\ -1 & 0 & 1 \\ 2 & 2 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} -3 & -1 & 0 \\ -1 & -2 & 1 \\ 2 & 2 & -1 \end{bmatrix}; |B - 2E| = -1; |B - 2E|^* = \begin{bmatrix} 0 & -1 & -1 \\ 1 & 3 & 3 \\ 2 & 4 & 5 \end{bmatrix}$$

$$(B-2E)^{-1} = \begin{bmatrix} 0 & 1 & 1 \\ -1 & -3 & -3 \\ -2 & -4 & -5 \end{bmatrix} :: A = (B-2E)^{-1}B = \begin{bmatrix} 1 & 2 & 2 \\ -2 & -5 & -6 \\ -4 & -8 & -9 \end{bmatrix}$$

四、若 β_1 , β_2 , β_3 , β_4 线性相关

$$\mathbb{Q} D = \begin{vmatrix} 1+\lambda & 2 & 3 & 4 \\ 1 & 2+\lambda & 3 & 4 \\ 1 & 2 & 3+\lambda & 4 \\ 1 & 2 & 3 & 4+\lambda \end{vmatrix} = 0 \rightarrow \begin{vmatrix} 1+\lambda & 2 & 3 & 4 \\ -\lambda & \lambda & 0 & 0 \\ -\lambda & 0 & \lambda & 0 \\ -\lambda & 0 & 0 & \lambda \end{vmatrix} = \lambda^{3} (\lambda + 10)$$

当|D|=0时, $\lambda=0$ 或 $\lambda=-10$,此向量组线性相关

 $\begin{cases} \exists \lambda = 0 \text{时,向量组的秩为1,} : 极大无关组为1个,可以为四组向量中任意一组 \\ \exists \lambda = -10 \text{时,向量组的秩为3,} : 极大无关组为3个,可以为四组向量的任意三个组合$

当
$$\lambda = 7$$
时, $7E - A = \begin{bmatrix} 4 & -2 & -2 \\ -2 & 4 & -2 \\ -2 & -2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & -1 \\ 1 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$ 第三个特征向量为 $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

三个特征向量相互正交, 不需再正交化

$$Q = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}, \quad Q^{-1}AQ = \Lambda = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$|\lambda - k| = \begin{vmatrix} \lambda - k & -2 & -2 \\ -2 & \lambda - k & -2 \end{vmatrix} \xrightarrow{r_3 - r_1} (\lambda - k + 2)^2 \begin{vmatrix} \lambda - k & -2 & -2 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix} = 0$$

解得 $\lambda_1 = k + 4$, $\lambda_2 = k - 2$ (二重)

(2) 当 $f(u) = u^T A u$ 是正定二次型时,矩阵 A 的特征值都应该是大于零的数,所以 > 2

八、由于 A 正定,那么存在可逆矩阵 P,使得 A = P'EP = P'P;设 $c = (P')^{-1}BP^{-1},$ 即B = P'CP,显然c也是半正定矩阵 由于 c 半正定,那么存在正交矩阵 Q,使 c = Q'JQ,J为对角矩阵,不妨设 $J = \mathrm{diag}\{c_1,c_2...c_i\}$ 显然 $c_i > 0$ $|A+B| = |P'P+P'CP| = |P'|\cdot|I+C|\cdot|P| = |P'|\cdot|Q'Q+Q'JQ|\cdot|P| = |P'|\cdot|Q'|\cdot|I+J|\cdot|Q|\cdot|P| = |P|^2|Q|^2|I+J|$ 考虑到 Q是正交阵,那么 $|Q| = \pm 1$, $|Q|^2 = 1$ $|I+J| = \prod_{i=1}^n (c_i+1)$,考虑到 $c_i \geq 0$,并且不全为零,那么必有 $|I+J| = \prod_{i=1}^n (c_i+1) > 1$ 那么 $|A+B| = |P|^2|Q|^2|I+J| > |P|^2 = A$.. 得证

试卷下载地址:zhuimenging.com 绿旗官方商城:greenflag.cn

在理工大学

课程名称:线性代数与解析几何 试卷: A

考试形式: 闭卷

授课院(系):数学科学学院 考试日期:2012年1月5日 试卷共6页

	_		111	四	五.	六	七	八	九	总分
标准分	30	15	7	8	8	10	10	6	6	100
得 分										

 $_{\mathrm{E}}$ & $_{\mathrm{E}}$ & $_{\mathrm{E}}$ & $_{\mathrm{A}}$ но горяд, $_{\mathrm{E}}$ формал, $_{\mathrm{E}}$ формал, $_{\mathrm{E}}$ в в разования $_{\mathrm{E}}$ в

一. 填空题 (每题 3 分, 共 30 分)。

- 已知 A 是 3 阶方阵, a_1, a_2, a_3 是三元线性无关的列向量组,若 $Aa_1 = a_1 + a_2$, $Aa_2 = a_2 + 2a_3$,

 $Aa_3 = 2a_1 + a_3$,则 A 的行列式等于____

- 4. 若矩阵 A,B 可逆,则 $\begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}^{-1} =$
- 5. 设 a_1, a_2, a_3 为向量空间 R^3 的一组基,则从基 $a_1, \frac{1}{2}a_2, \frac{1}{3}a_3$ 到基 $a_1 a_2, a_2 a_3, a_1 + a_3$ 过度矩阵为
- 6. 若 5 阶方阵 A 满足秩为 3,则 r (A*) =_____

6. 若 5 阶方阵 A 满足秩为 3,则 r(A*)=_____
7. 矩阵
$$\begin{bmatrix} 1 & 0 & -k \\ 0 & k & 0 \\ k & 0 & 9 \end{bmatrix}$$
为正定阵的充要条件是 k 满足_____

8. 设矩阵
$$A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 1 & x \\ 4 & 0 & 5 \end{pmatrix}$$
可相似对角化,则 $\mathbf{x} = \underline{\qquad}$

- 二. 单项选择题(每题3分,共15分)。
- 设 n 阶方阵 A, B, C, 满足 ABC=E, 则必有()

A. BCA=E

B. CBA=E

C. ACB=E

D. BAC=E

绿旗官方商城: greenflag.cn

2. 设 $A = (a_{ij})_{min}$ 【m 改成 n】为非零矩阵, $\overline{a_{ij}}$ 为元素 a_{ij} 的代数余子式且满足 $a_{ij} = \overline{a_{ij}}$,则(

A. r(A) = 0

B. r(A)=1

C. r(A) = n

D. r(A) = n-1

3. 下面哪一项不是"方阵 A 可逆"的充要条件()

A. $|A| \neq 0$

B. A 可分解为有限个初等阵的乘积

C. A的特征值全不为0

D. Ax = 0 有非零解

4.设二次多项式
$$f(x) = \begin{vmatrix} 1 & 3-x & 2 \\ 1 & 1 & x \\ 3 & 3 & 3 \end{vmatrix}$$
,则 $f(x) = 0$ 的根为 ()

- A.1, -2
- B.2, -2
- C.2,1
- D. -1,2

三.
$$(7分)$$
 计算行列式
$$\begin{vmatrix} x_1-a & x_2 & \cdots & x_n \\ x_1 & x_2-a & \cdots & x_n \\ \cdots & \cdots & \cdots \\ x_1 & x_2 & \cdots & x_n-a \end{vmatrix}$$

四. 设
$$A = \begin{pmatrix} 0 & 2 & 0 & 0 \\ 2 & -2 & 0 & 0 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 1 & 4 \end{pmatrix}$$
, $AB = A + B$, 求矩阵 B

五. (10 分)求向量组 $a_1 = (1,-2,1,1)^T$, $a_2 = (1,0,-1,1)^T$, $a_3 = (-2,2,0,0)^T$, $a_4 = (5,-6,1,3)^T$ 的秩及一个极大无关组,并将其余向量用此极大无关组线性表示。

六. (10 分)已知二次型 $f(x_1,x_2,x_3) = ax_2^2 + 2x_2^2 + 2bx_1x_3 - 2x_3^2$ 【左式中等号后面的、含系数 a 的第一项的 x 的角标改为 1】,其中 $b \succ 0$,该二次型所对应对称阵的特征值之和为 1,特征值之积为-12,求:(1)a,b 的值;(2)用正交变换将该二次型化为标准型,并写出正交矩阵;

七. (6分) 设 A 为实对称矩阵,B 为实反对矩阵,并且满足 AB=BA,A-B 为可逆阵,证明: $(A+B)(A-B)^{-1}$ 是正交阵。

八. (6 分)设 A 为 3 阶方阵, a_1,a_2,a_3 为三元非零列向量。已知 $Aa_1=-a_1$, $Aa_2=a_2$, $Aa_3=a_2+a_3$ 。 试证明: a_1,a_2,a_3 线性无关。

2012 年试卷答案

一、填空题

1.
$$\begin{pmatrix} 3 & 2 & 2 \\ 5 & 3 & 3 \\ 6 & 3 & 5 \end{pmatrix}$$
 2. 1【解析: $\lambda_3 = 1, |E - A| = 0, \lambda_2 = -2; tr(A) = 1 + 2 + (-2) = 1$ 】

3.
$$\begin{pmatrix} A\alpha_1 \\ A\alpha_2 \\ A\alpha_3 \end{pmatrix} \Rightarrow \mathbf{K}$$
解析:
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} A\alpha_1 \\ A\alpha_2 \\ A\alpha_3 \end{pmatrix} \mathbf{J}$$

4.
$$\begin{pmatrix} 0 & B^{-1} \\ A^{-1} & 0 \end{pmatrix}$$
 5. $\begin{pmatrix} 1 & 0 & 1 \\ -2 & 2 & 0 \\ 0 & -3 & 3 \end{pmatrix}$ 6. 0 7. $0 < k < 3$ 8. 3

二、选择题: ACDC

$$\Xi \cdot \cancel{\square} = \begin{vmatrix} \sum x_i - a & x_2 & \dots & x_n \\ \sum x_i - a & x_2 - a & \dots & x_n \\ \dots & \dots & \dots & \dots \\ \sum x_i - a & x_2 & \dots & x_n - a \end{vmatrix} = \begin{vmatrix} \sum x_i - a & x_2 & x_3 & \dots & x_n \\ 0 & -a & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a \end{vmatrix}$$

$$= \left(\sum x_i - a\right)^{n-1} - a - a - a - a - a - a - a - a$$

四、
$$AB-B=A$$
、 $(A-E)B=A$ 、 $A-E=\begin{pmatrix} -1 & 2 & 0 & 0\\ 2 & -3 & 0 & 0\\ 0 & 0 & 1 & 2\\ 0 & 0 & 1 & 3 \end{pmatrix}$ 、 $(A-E,A)$ — 初等变换 (E,B) 即可求出答案

五、
$$A = \begin{pmatrix} 1 & 1 & -2 & 5 \\ -2 & 0 & 2 & -6 \\ 1 & -1 & 0 & 1 \\ 1 & 1 & 0 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & 5 \\ 0 & 2 & -2 & 4 \\ 0 & -2 & 2 & -4 \\ 0 & 0 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & 5 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & -2 & 4 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & 4 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \therefore$$
 秩为3

极大无关组、将其余向量用此极大无关组表示等等可很容易写出,不再加以赘述

$$(2)A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & -2 \end{pmatrix} \to 【利用正交变换求解,为普通计算不再赘述】$$

七、证明:假设 $A^T = A, B^T = -B$

$$(A+B)(A-B)^{-1}[(A+B)(A-B^{-1})]^{T} = (A+B)(A-B)^{-1}\{(A-B)^{T}\}^{-1}(A+B)^{T}\}$$

$$= (A+B)(A-B)^{-1}(A+B)^{-1}(A+B) = (A+B)[(A+B)(A-B)]^{-1}(A-B)$$
由于AB = BA, 易知[(A+B)(A-B)]^{-1} = [(A-B)(A+B)]^{-1}
∴ 上式 = (A+B)[(A-B)(A+B)^{-1}](A-B) = E, 得证。

八、(采用反证法)

 $A(A\alpha_3)$ ① α_1 与 α_3 线性无关

- ② α_1 与 α_2 线性无关, $\alpha_2 = k\alpha_1$, $A\alpha_2 = kA\alpha_1$, $\alpha_2 = -k\alpha_1$, $2\alpha_2 = 0 \Rightarrow \alpha_2 = 0$ 矛盾]
- ③假设线性相关, $\alpha_3 = k_1\alpha_1 + k_2\alpha_2$, $A\alpha_3 = A(k_1\alpha_1 + k_2\alpha_2)$, $\alpha_1 + \alpha_2 = -k_1\alpha_1 + k_2\alpha_2$

 $k_1\alpha_1 + k_2\alpha_2 = -k_1\alpha_1 - \alpha_2 + k_2\alpha_2 \Rightarrow k_1\alpha_1 = -k_1\alpha_1 - \alpha_2$ [矛盾]:. 线性无关