Problem Set 3

Charisios Grivas cgrivas@math.aau.dk

Aalborg University

1 Analytical Exercises

- 1. A sample $\{X_t: t=1,...,1000\}$ from a zero-mean stationary process gave sample autocovariances $\hat{\gamma_0}=3.68,\ \hat{\gamma_1}=2.29$ and $\hat{\gamma_2}=1.85$. Find the Yule-Walker estimates of $\phi_1,\ \phi_2$ and σ^2 in the AR(2) model $X_t=\phi_1X_{t-1}+\phi_2X_{t-2}+\varepsilon_t$, where $\{\varepsilon_t\}\sim N(0,\sigma^2)$.
- **2.** The following table shows the sample ACF and PACF of a time series $\{X_t: t=1,...,400\}$ with $\hat{\gamma_0}=8.25$:

Lag	1	2	3	4	5	6	7	8
ACF	0.81	0.65	0.54	0.42	0.30	0.21	0.12	0.03
PACF	0.81	0.01	0.02	-0.07	-0.07	0.01	-0.06	-0.05

Specify a suitable ARMA model for $\{X_t\}$, giving estimates of all its parameters. Justify your choice of model. (You might want to start by calculating the bounds of ACF and PACF.)

2 R Exercises

3. Use the dataset Unit root.csv file and find the order of integration.