

University of Sri Jayewardenepura

M.Sc. in Computer Science First Semester Course Unit Examination – April, 2024

CSC 541 2.0 Computer System Architecture (Time: 2 hours)

This paper consists of 4 questions on 3 pages. Answer <u>all</u> questions. Some formulas are provided on the last page. You may freely use them.

Question 01 [A total of 25 marks]

(a) What are the types of memory present in a computer system? Briefly explain the purpose of each type and indicate where these memories are located within a computer system.

[08 Marks]

(b) Explain what is meant by Little endian memory of a 32-bit computer. Show how the following information are represented in such a computer.

Name of housing project (string):

Green Life

Price per unit in thousand rupees (integer):

18000

[08 Marks]

(c) Consider the byte **Olololoo**. In order to calculate the Hamming error correcting code, insert the four parity bit positions into this byte and obtain their parity values.

[09 Marks]

Question 02 [A total of 20 marks]

(a) Providing an illustrative example, explain how a coprocessor could increase the performance of a computer.

[05 Marks]

(b) Consider a dual-pipelined processor that can issue two instructions per clock cycle. Let A, B and C be threads and A_i, B_i and C_i are the instructions issued by these three threads, respectively. Assume that there is a miss penalty of two clock cycles for level 1 cache, three clock cycles for level 2 cache, and 10 clock cycles for last level cache if an instruction misses in the cache. Fig 2.1 shows the instructions issued by these threads. A square represents a clock cycle and blank squares mean CPU stalls due to cache misses.

	Aı	10 T. 1		A_2			A ₃	A ₄			A ₅	A ₆	A ₇				
Salaria C	B ₁		2005	,	B ₂	B ₃	B ₄	1	and d		B ₅			B ₆	B ₇	B ₈	
. O	C ₁	C ₂			C ₃			C ₄	C ₅	C ₆			C ₇	C ₈	C ₉		

Fig 2.1

Show the instructions issued in the first 15 clock cycles when fine-grained multithreading technique on a dual-pipelined processor is employed.

[15 Marks]

Question 03 [A total of 25 marks]

(a) A set of benchmark programs was executed on two computers, and the following measures were recorded. The clock frequency of Computer A is 0.2 GHz higher than the clock frequency of Computer B.

	Instruction	No. of Instructions	Clock Cycles per
	Type	Executed	Instruction
Computer A	ALU	18, 001, 547	1
	BRANCH	12, 412, 042	4
	OTHER	13, 945, 764	3
Computer B	ALU	24, 102, 334	1
	BRANCH	18, 247, 937	2
	OTHER	12, 001, 207	3

Calculate the clock frequency of Computer B if it is given that the above benchmark is executed in 1.02 times faster on Computer B than Computer A.

[15 Marks]

(b) Consider the specifications given below with respect to a computer system:

Cache memory size: 16MB

Cache organization: Single-level, direct-mapped

Cache line size: 128 bytes Memory word size: 8 bytes

Maximum amount of RAM accessible to the Operating System: 256GB

- (i) Show the components of the virtual memory address with their sizes.
- (ii) What is the location in cache for the memory reference EF000FE (given in hexadecimal)?

[10 Marks]

Question 04 [A total of 30 marks]

(a) Providing illustrative examples describe the differences between immediate addressing mode and direct addressing mode.

[05 Marks]

(b) Let A be an array of size 40 of 8-byte integers whose base address is assigned to the register x21. Translate the following C code fragments to RISC-V assembly language.

(i)
$$A[1] = (A[12] + b) *8 + 5;$$

(ii) while
$$(A[i] >= 0)$$

 $i += 1;$

[20 Marks]

(c) What is the RISC-V assembly language instruction of the following RISC-V machine language instruction given in hexadecimal?

060C0C93

[05 Marks]

Execution time_{New} = Execution time_{Old} $x \left[(1 - Fraction_{Enhanced}) + \frac{Fraction_{Enhanced}}{Speedup_{Enhanced}} \right]$

CPU execution time = (CPU clock cycles + Memory stall cycles) x Clock cycle time

Memory stall cycles = No. of misses x Miss penalty

= IC x Misses per instruction x Miss penalty

= IC x Memory references per instruction x Miss rate x Miss penalty

RISC-V instruction formats

		funct7	rs2	rs1	funct3	rd	opcode	
2	Type R	7-bit	5-bit	5-bit	3-bit	5-bit	7-bit	

	immediate	rs1	funct3	rd	opcode	
Type I	12-bit	5-bit	3-bit	5-bit	7-bit	

		immediate	rs2	rsl	funct3	immediate	opcode
* 1000 A	Type S	7-bit	5-bit	5-bit	3-bit	5-bit	7-bit

RISC-V instruction encoding

Instruction	funct7	funct3	opcode
add	0 .	0	51
sub	32	0	51
addi	-	0	19
ld	-	3	3
sd	•	3	35