集合と位相

nukui

2016年9月28日

第I部

集合と写像

1 集合とは

1.1

- 1. 成り立つ。Y に含まれる要素は全て X に含まれる。
- 2. 成り立つ。∵3はWに含まれるがZに含まれない。
- 3. 成り立つ。 \because 4 は \lor に含まれるが、 \lor に含まれない。
- 4. 成り立たない。::4 は V に含まれるが X には含まれない。
- 5. 成り立たない。 $\because 1$ は X に含まれるが W に含まれない。
- 6. 成り立たない。 $\because V$ の全ての要素はW に含まれる。
- 7. 成り立つ。∵ V の全ての要素は Z に含まれる。
- 8. 成り立つ。 :: 3 は X に含まれるが Z に含まれない。
- 9. 成り立たない。 \odot Y に含まれる全ての要素は Z に含まれる。
- 10. 成り立たない。::3 は W に含まれるが Y には含まれない。

1.2

- 1. D
- 2. B
- 3. C,E,F
- 4. B,D

1.3

- 1. 成り立たない。
- 2. 成り立つ。
- 3. 成り立つ。
- 4. 成り立つ。
- 5. 成り立たない。
- 6. 成り立つ。

1.4

集合 A が 1 個の元から成るとき、部分集合は A と \emptyset の 2 通り。よって n=1 のとき、命題は成り立つ。 集合 A が n 個の元から成り、その部分集合は全部で 2^n 個から成るとする。今、集合 A に元 X を一つ加え、n+1 個の元から成る集合 B を考える。集合 B の部分集合は、

- 1. 集合 A の部分集合と一致。 $(2^n$ 個)
- 2. 集合 A の部分集合に元 X を加えたものに一致。 $(2^n$ 個)

のいずれかである。よって、集合 B の部分集合の個数は $2^n+2^n=2^{n+1}$ 個になる。以上より、すべての自然数 n で命題は成り立つ。