Neural Networks: Old and New

Ju Sun

Computer Science & Engineering University of Minnesota, Twin Cities

September 14, 2020

Outline

Start from neurons

Shallow to deep neural networks

A brief history of Al

Suggested reading

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Credit: Stanford CS231N

Credit: Stanford CS231N

Biologically ...

- Each neuron receives signals from its dendrites

Credit: Stanford CS231N

Biologically ...

- Each neuron receives signals from its dendrites
- Each neuron outputs signals via its single axon

Credit: Stanford CS231N

Biologically ...

- Each neuron receives signals from its dendrites
- Each neuron outputs signals via its single axon
- The axon branches out and connects via synapese to dendrites of other neurons

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Credit: Stanford CS231N

Credit: Stanford CS231N

Mathematically ...

- Each neuron receives x_i 's from its **dendrites**

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Credit: Stanford CS231N

Mathematically ...

- Each neuron receives x_i 's from its **dendrites**
- x_i 's weighted by w_i 's (synaptic strengths) and summed $\sum_i w_i x_i$

Credit: Stanford CS231N

Mathematically ...

- Each neuron receives x_i 's from its **dendrites**
- x_i 's weighted by w_i 's (synaptic strengths) and summed $\sum_i w_i x_i$
- The neuron fires only when the combined signal is above a certain threshold: $\sum_i w_i x_i + {\color{red}b}$

Credit: Stanford CS231N

Mathematically ...

- Each neuron receives x_i 's from its **dendrites**
- x_i 's weighted by w_i 's (synaptic strengths) and summed $\sum_i w_i x_i$
- The neuron fires only when the combined signal is above a certain threshold: $\sum_i w_i x_i + {\color{black} b}$
- Fire rate is modeled by an **activation function** f, i.e., outputting $f\left(\sum_{i}w_{i}x_{i}+b\right)$

Brain neural networks

Credit: Max Pixel

Brain neural networks

Credit: Max Pixel

Artificial neural networks

Brain neural networks

Credit: Max Pixel

Why called artificial?

Artificial neural networks

Brain neural networks

Credit: Max Pixel

Artificial neural networks

Why called artificial?

- (Over-)simplification on neural level
- (Over-)simplification on connection level

Brain neural networks

Credit: Max Pixel

Artificial neural networks

Why called artificial?

- (Over-)simplification on neural level
- (Over-)simplification on connection level

In this course, neural networks are always artificial.

Outline

Start from neurons

Shallow to deep neural networks

A brief history of AI

Suggested reading

$$f\left(\sum_{i} w_{i}x_{i} + b\right) = f\left(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x} + b\right)$$

$$f\left(\sum_{i} w_{i} x_{i} + b\right) = f\left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} + b\right)$$

We shall use σ instead of f henceforth.

Examples of activation function σ

$$f\left(\sum_{i} w_{i} x_{i} + b\right) = f\left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} + b\right)$$

We shall use σ instead of f henceforth.

$$f\left(\sum_{i} w_{i} x_{i} + b\right) = f\left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} + b\right)$$

We shall use σ instead of f henceforth.

Examples of activation function σ

Credit: [Hughes and Correll, 2016]

One neuron: $\sigma\left(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x}+b\right)$

One neuron: $\sigma\left(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x}+b\right)$

Neural networks (NN): **structured** organization of artificial neurons

One neuron: $\sigma\left(\boldsymbol{w}^{\intercal}\boldsymbol{x}+b\right)$

Neural networks (NN): **structured** organization of artificial neurons

 $oldsymbol{w}$'s and b's are unknown and need to be learned

One neuron: $\sigma\left(\boldsymbol{w}^{\intercal}\boldsymbol{x}+b\right)$

Neural networks (NN): **structured** organization of artificial neurons

 $m{w}$'s and $m{b}$'s are unknown and need to be learned Many models in machine learning $m{are}$ neural networks

Supervised Learning

– Gather training data $\left(oldsymbol{x}_1,oldsymbol{y}_1
ight),\ldots,\left(oldsymbol{x}_n,oldsymbol{y}_n
ight)$

Supervised Learning

- Gather training data $(oldsymbol{x}_1,oldsymbol{y}_1),\ldots,(oldsymbol{x}_n,oldsymbol{y}_n)$
- Choose a family of functions, e.g., \mathcal{H} , so that there is $f \in \mathcal{H}$ to ensure $\boldsymbol{y}_i \approx f\left(\boldsymbol{x}_i\right)$ for all i

Supervised Learning

- Gather training data $\left(oldsymbol{x}_1,oldsymbol{y}_1
 ight),\ldots,\left(oldsymbol{x}_n,oldsymbol{y}_n
 ight)$
- Choose a family of functions, e.g., \mathcal{H} , so that there is $f \in \mathcal{H}$ to ensure $m{y}_i pprox f\left(m{x}_i\right)$ for all i
- Set up a loss function ℓ to measure the approximation quality

Supervised Learning

- Gather training data $\left(oldsymbol{x}_1,oldsymbol{y}_1
 ight),\ldots,\left(oldsymbol{x}_n,oldsymbol{y}_n
 ight)$
- Choose a family of functions, e.g., \mathcal{H} , so that there is $f \in \mathcal{H}$ to ensure $m{y}_i pprox f\left(m{x}_i\right)$ for all i
- Set up a loss function ℓ to measure the approximation quality
- Find an $f \in \mathcal{H}$ to minimize the average loss

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(\boldsymbol{y}_{i}, f(\boldsymbol{x}_{i}))$$

Supervised Learning

- Gather training data $\left(oldsymbol{x}_1,oldsymbol{y}_1
 ight),\ldots,\left(oldsymbol{x}_n,oldsymbol{y}_n
 ight)$
- Choose a family of functions, e.g., \mathcal{H} , so that there is $f \in \mathcal{H}$ to ensure $m{y}_i pprox f\left(m{x}_i\right)$ for all i
- Set up a loss function ℓ to measure the approximation quality
- Find an $f \in \mathcal{H}$ to minimize the average loss

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{y}_i, f(\mathbf{x}_i))$$

... known as **empirical risk minimization** (ERM) framework in learning theory

Supervised Learning from NN viewpoint

– Gather training data $\left(oldsymbol{x}_1,oldsymbol{y}_1
ight),\ldots,\left(oldsymbol{x}_n,oldsymbol{y}_n
ight)$

Supervised Learning from NN viewpoint

- Gather training data $(oldsymbol{x}_1,oldsymbol{y}_1),\ldots,(oldsymbol{x}_n,oldsymbol{y}_n)$
- Choose a NN with k neurons, so that there is a group of weights, e.g., $(\boldsymbol{w}_1,\ldots,\boldsymbol{w}_k,b_1,\ldots,b_k)$, to ensure

$$\boldsymbol{y}_i pprox \left\{ \mathsf{NN}\left(\boldsymbol{w}_1, \dots, \boldsymbol{w}_k, b_1, \dots, b_k \right) \right\} \left(\boldsymbol{x}_i \right) \quad orall_i$$

Supervised Learning from NN viewpoint

- Gather training data $(oldsymbol{x}_1,oldsymbol{y}_1),\ldots,(oldsymbol{x}_n,oldsymbol{y}_n)$
- Choose a NN with k neurons, so that there is a group of weights, e.g., $(\boldsymbol{w}_1,\ldots,\boldsymbol{w}_k,b_1,\ldots,b_k)$, to ensure

$$oldsymbol{y}_i pprox \left\{ \mathsf{NN}\left(oldsymbol{w}_1, \ldots, oldsymbol{w}_k, b_1, \ldots, b_k
ight)
ight\} \left(oldsymbol{x}_i
ight) \quad orall_i$$

– Set up a loss function ℓ to measure the approximation quality

Supervised Learning from NN viewpoint

- Gather training data $(oldsymbol{x}_1,oldsymbol{y}_1),\ldots,(oldsymbol{x}_n,oldsymbol{y}_n)$
- Choose a NN with k neurons, so that there is a group of weights, e.g., $(\boldsymbol{w}_1,\ldots,\boldsymbol{w}_k,b_1,\ldots,b_k)$, to ensure

$$\boldsymbol{y}_{i} \approx \left\{ \mathsf{NN}\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{k}, b_{1}, \ldots, b_{k} \right) \right\} \left(\boldsymbol{x}_{i}\right) \quad \forall i$$

- Set up a loss function ℓ to measure the approximation quality
- Find weights $(w_1, \ldots, w_k, b_1, \ldots, b_k)$ to minimize the average loss

$$\min_{\boldsymbol{w}'s,b's} \frac{1}{n} \sum_{i=1}^{n} \ell\left[\boldsymbol{y}_{i}, \left\{\mathsf{NN}\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{k}, b_{1}, \ldots, b_{k}\right)\right\}\left(\boldsymbol{x}_{i}\right)\right]$$

Linear regression

Credit: D2L

Credit: D2L

– Data: $\left(oldsymbol{x}_1, y_1
ight), \ldots, \left(oldsymbol{x}_n, y_n
ight)$, $oldsymbol{x}_i \in \mathbb{R}^d$

Credit: D2L

- Data: $(oldsymbol{x}_1, y_1), \ldots, (oldsymbol{x}_n, y_n)$, $oldsymbol{x}_i \in \mathbb{R}^d$
- Model: $y_i pprox oldsymbol{w}^\intercal oldsymbol{x}_i + b$

Credit: D2L

- Data: $(oldsymbol{x}_1, y_1), \ldots, (oldsymbol{x}_n, y_n)$, $oldsymbol{x}_i \in \mathbb{R}^d$
- Model: $y_i pprox oldsymbol{w}^\intercal oldsymbol{x}_i + b$
- Loss: $||y \hat{y}||_2^2$

Credit: D2L

- Data:
$$(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_n, y_n)$$
, $\boldsymbol{x}_i \in \mathbb{R}^d$

- Model:
$$y_i \approx {m w}^{\intercal} {m x}_i + b$$

- Loss:
$$||y - \hat{y}||_2^2$$

Optimization:

$$\min_{\boldsymbol{w},b} \ \frac{1}{n} \sum_{i=1}^{n} \|y_i - (\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i + b)\|_2^2$$

Credit: D2L

- Data: $(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_n, y_n)$, $\boldsymbol{x}_i \in \mathbb{R}^d$

- Model: $y_i \approx \boldsymbol{w}^\intercal \boldsymbol{x}_i + b$

- Loss: $||y - \hat{y}||_2^2$

Optimization:

$$\min_{\boldsymbol{w},b} \ \frac{1}{n} \sum_{i=1}^{n} \|y_i - (\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i + b)\|_2^2$$

 σ is the identity function

Frank Rosenblatt

(1928-1971)

Frank Rosenblatt

(1928-1971)

- Data: $(oldsymbol{x}_1, y_1), \ldots, (oldsymbol{x}_n, y_n)$, $oldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \{+1, -1\}$

Frank Rosenblatt

(1928-1971)

- Data: $(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_n, y_n)$, $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \{+1, -1\}$
- Model: $y_i \approx \sigma \left(\boldsymbol{w}^{\intercal} \boldsymbol{x}_i + b \right)$, σ sign function

Frank Rosenblatt

(1928-1971)

- Data: $(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_n, y_n)$, $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \{+1, -1\}$
- Model: $y_i \approx \sigma \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i + b \right)$, σ sign function

- Loss: $\mathbf{1}\left\{y \neq \hat{y}\right\}$

Frank Rosenblatt

- Data: $(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_n, y_n)$, $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \{+1, -1\}$
- Model: $y_i \approx \sigma \left(\boldsymbol{w}^\intercal \boldsymbol{x}_i + b \right)$, σ sign function

- Loss: $\mathbf{1}\left\{y \neq \hat{y}\right\}$
- Optimization:

$$\min_{\boldsymbol{w},b} \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \left\{ y_i \neq \sigma \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i + b \right) \right\}$$

Perceptron is a single artificial neuron for binary classification

Perceptron is a single artificial neuron for binary classification

dominated early AI (50's - 70's)

Perceptron is a single artificial neuron for binary classification

dominated early AI (50's - 70's)

Logistic regression is similar but with sigmod activiation

– Data: $(x_1,y_1),\ldots,(x_n,y_n)$, $x_i\in\mathbb{R}^d$, $y_i\in\{L_1,\ldots,L_p\}$, i.e., multiclass classification problem

- Data: $(x_1,y_1),\ldots,(x_n,y_n)$, $x_i\in\mathbb{R}^d$, $y_i\in\{L_1,\ldots,L_p\}$, i.e., multiclass classification problem
- Data preprocessing: labels into vectors via one-hot encoding

$$L_k \Longrightarrow [\underbrace{0,\ldots,0}_{k-1\,0's},1,\underbrace{0,\ldots,0}_{n-k\,0's}]^{\mathsf{T}}$$

So: $y_i \Longrightarrow \boldsymbol{y}_i$

- Data: $(x_1,y_1),\ldots,(x_n,y_n)$, $x_i\in\mathbb{R}^d$, $y_i\in\{L_1,\ldots,L_p\}$, i.e., multiclass classification problem
- Data preprocessing: labels into vectors via one-hot encoding

$$L_k \Longrightarrow [\underbrace{0,\ldots,0}_{k-1\,0's},1,\underbrace{0,\ldots,0}_{n-k\,0's}]^{\mathsf{T}}$$

So: $y_i \Longrightarrow \boldsymbol{y}_i$

- Model: $m{y}_i pprox \sigma \left(m{W}^\intercal m{x}_i + m{b} \right)$, here σ is the softmax function

- Data: $(x_1,y_1),\ldots,(x_n,y_n)$, $x_i\in\mathbb{R}^d$, $y_i\in\{L_1,\ldots,L_p\}$, i.e., multiclass classification problem
- Data preprocessing: labels into vectors via one-hot encoding

$$L_k \Longrightarrow [\underbrace{0,\ldots,0}_{k-1\,0's},1,\underbrace{0,\ldots,0}_{n-k\,0's}]^{\mathsf{T}}$$

So: $y_i \Longrightarrow \boldsymbol{y}_i$

- Model: $y_i \approx \sigma (W^{\mathsf{T}} x_i + b)$, here σ is the softmax function (maps vectors to vectors): for $z \in \mathbb{R}^p$,

$$oldsymbol{z} \mapsto \left[rac{e^{z_1}}{\sum_j e^{z_j}}, \dots, rac{e^{z_p}}{\sum_j e^{z_j}}
ight]^{\intercal}.$$

- Data: $(x_1,y_1),\ldots,(x_n,y_n)$, $x_i\in\mathbb{R}^d$, $y_i\in\{L_1,\ldots,L_p\}$, i.e., multiclass classification problem
- Data preprocessing: labels into vectors via one-hot encoding

$$L_k \Longrightarrow [\underbrace{0,\ldots,0}_{k-1\,0's},1,\underbrace{0,\ldots,0}_{n-k\,0's}]^{\mathsf{T}}$$

So: $y_i \Longrightarrow \boldsymbol{y}_i$

- Model: $y_i \approx \sigma (W^{\mathsf{T}} x_i + b)$, here σ is the softmax function (maps vectors to vectors): for $z \in \mathbb{R}^p$,

$$oldsymbol{z} \mapsto \left[rac{e^{z_1}}{\sum_j e^{z_j}}, \dots, rac{e^{z_p}}{\sum_j e^{z_j}}
ight]^\intercal.$$

– Loss: cross-entropy loss $-\sum_j y_j \log \hat{y}_j$

- Data: $(x_1,y_1),\ldots,(x_n,y_n)$, $x_i\in\mathbb{R}^d$, $y_i\in\{L_1,\ldots,L_p\}$, i.e., multiclass classification problem
- Data preprocessing: labels into vectors via one-hot encoding

$$L_k \Longrightarrow [\underbrace{0,\ldots,0}_{k-1\,0's},1,\underbrace{0,\ldots,0}_{n-k\,0's}]^{\mathsf{T}}$$

So: $y_i \Longrightarrow \boldsymbol{y}_i$

- Model: $y_i \approx \sigma (W^{\mathsf{T}} x_i + b)$, here σ is the softmax function (maps vectors to vectors): for $z \in \mathbb{R}^p$,

$$z \mapsto \left[\frac{e^{z_1}}{\sum_j e^{z_j}}, \dots, \frac{e^{z_p}}{\sum_j e^{z_j}}\right]^{\mathsf{T}}.$$

- Loss: cross-entropy loss $-\sum_j y_j \log \hat{y}_j$
- Optimization ...

... for multiclass classification

Multilayer perceptrons

Multilayer perceptrons

Also called feedforward networks or fully-connected networks

Multilayer perceptrons

Also called feedforward networks or fully-connected networks

Modern NNs: many hidden layers (deep), refined connection structure and/or activations

They're all (shallow) NNs

- Linear regression
- Perception and Logistic regression
- Softmax regression
- Multilayer perceptron (feedforward NNs)

They're all (shallow) NNs

- Linear regression
- Perception and Logistic regression
- Softmax regression
- Multilayer perceptron (feedforward NNs)
- Support vector machines (SVM)
- PCA (autoencoder)
- Matrix factorization

see, e.g., Chapter 2 of [Aggarwal, 2018].

Outline

Start from neurons

Shallow to deep neural networks

A brief history of AI

Suggested reading

Birth of Al

Birth of Al

- Crucial precursors: first computer, Turing test

Birth of Al

- Crucial precursors: first computer, Turing test
- 1956: Dartmouth Artificial Intelligence Summer Research
 Project Birth of Al

Turing test

Turing Test

Alan Turing (1912-1954)

Symbolic AI: based on rules and logic

Symbolic AI: based on rules and logic

Symbolic AI: based on rules and logic

rules for recognizing dogs?

First Al winter

First Al winter

Gartner hype cycle

Perceptron

invented 1962

Perceptron

invented 1962

written in 1969, end of Perceptron era

Marvin Minsky (1927–2016)

Birth of computer vision

MASSACHUSETTS INSTITUTE OF TECHNOLOGY PROJECT MAC

Artificial Intelligence Group Vision Memo. No. 100. July 7, 1966

THE SUMMER VISION PROJE

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

1966

around 1980

Second golden age

Second golden age

expert system

Can we build comprehensive knowledge bases and know all rules?

25/31

Big bang in DNNs

Key ingredients of DL have been in place for 25-30 years:

Landmark	Emblem	Epoch
Neocognitron	Fukushima	1980
CNN	Le Cun	mid 1980s'
Backprop	Hinton	mid 1980's
SGD	Le Cun, Bengio etc	mid 1990's
Various	Schmidhuber	mid 1980's
CTF	DARPA etc	mid 1980's

After 2nd Al winter

After 2nd Al winter

Machine learning takes over ...

Golden age of Machine learning

```
Starting 1990's
```

Support vector machines (SVM)

Adaboost

Decision trees and random forests

Deep learning

. . .

Outline

Start from neurons

Shallow to deep neural networks

A brief history of AI

Suggested reading

Suggested reading

- Chap 2, Neural Networks and Deep Learning.
- Chap 3-4, Dive into Deep Learning.
- Chap 1, Deep Learning with Python.

References i

[Aggarwal, 2018] Aggarwal, C. C. (2018). **Neural Networks and Deep Learning.** Springer International Publishing.

[Hughes and Correll, 2016] Hughes, D. and Correll, N. (2016). **Distributed machine** learning in materials that couple sensing, actuation, computation and communication. arXiv:1606.03508.