

COURSE NAME

Data Engineering with Databricks

DURATION

32 Hours

PREREQUISITES

- Beginner familiarity with basic cloud concepts (virtual machines, object storage, identity management)
- Ability to perform basic code development tasks (create compute, run code in notebooks, use basic notebook operations, import repos from git, etc.)
- Intermediate familiarity with basic SQL concepts (CREATE, SELECT, INSERT, UPDATE,
- DELETE, WHILE, GROUP BY, JOIN, etc.)
- Basic knowledge of Python programming, jupyter notebook interface, and PySpark fundamentals

COURSE OUTLINE

Module 1: Introduction to Data Engineering and Data Ingestion Strategies

- What is Data Engineering
- Role of a Data Engineer in modern data architecture
- Conceptual, Logical, and Physical Data Models
- OLTP vs. OLAP Systems
- ETL vs. ELT in Modern Data Architectures
- Data Ingestion Methods
- Batch Processing vs. Streaming Processing
- Extracting Data from APIs, Databases, Object Storage (S3, HDFS, ADLS, GCS)
- Working with Data Formats: CSV, JSON, XML, Avro, Parquet, ORC, Protobuf, Thrift
- Real-time Data Ingestion with Apache Kafka, AWS Kinesis, Google Pub/Sub
- Data Lake Architecture (Raw, Processed, Curated Layers)
- Incremental Load & Change Data Capture (CDC) Strategies
- Log-Based CDC
- Trigger-Based CDC
- Watermarking & Checkpointing in Streaming Pipelines
- Data Validation & Quality Checks
- Handling Corrupt Records in Large Datasets
- Schema Evolution & Enforcement in Avro & Parquet

Module 2: Introduction to Apache Spark & PySpark

- What is Apache Spark? Why is it Used for Big Data Processing?
- Spark Core Components & Execution Flow

- RDDs (Resilient Distributed Datasets) vs. DataFrames vs. Datasets
- Transformations vs. Actions in Spark
- Understanding PySpark
- PySpark vs. Pandas vs. Dask
- Schema Inference & Explicit Schema Definition in PySpark
- Reading & Writing Data in PySpark (CSV, JSON, Avro, Parquet, ORC, Delta)
- Creating Spark DataFrames from Multiple Sources (relevant will be covered)
- RDDs, Lists, Databases, CSV, JSON, Avro, Parquet, ORC, Google BigQuery, Snowflake
- Essential DataFrame Operations

Module 3: Databricks Lakehouse & Medallion Architecture

- Introduction to Databricks Lakehouse
 - o Lakehouse vs. Data Lake vs. Data Warehouse
 - Key Features and Benefits
- Medallion Architecture
 - Bronze Layer (Raw Data Ingestion)
 - Silver Layer (Data Cleaning & Transformations)
 - Gold Layer (Aggregated Data for Analytics)
- Performance Optimization in Medallion Architecture
 - Best Practices for Data Organization
 - o Incremental Data Processing for Each Layer
- Lab:
 - o Ingest raw data into Bronze, clean it in Silver, and aggregate it in Gold.

Module 4: Managing Data with Delta Lake

- Delta Lake Overview
 - O What is Delta Lake?
 - o Delta vs. Traditional Data Lakes
 - o ACID Transactions & Schema Enforcement
 - Delta Lake in Medallion Architecture
- Schema Evolution & Enforcement
 - o Schema-on-Read vs. Schema-on-Write
 - Handling Evolving Data Schemas
 - o Auto Evolution vs. Explicit Schema Management
- Time Travel & Data Versioning
 - o How to Query Previous Versions of Data
 - o Implementing Rollback & Recovery

- o Tracking Data Modifications for Audit Purposes
- Optimizing Delta Tables
 - o Optimize & Compact Small Files
 - o Auto Optimize, Vacuum & Retention Policies
 - o Handling Large-Scale Data Growth with OPTIMIZE
- Handling Late Arriving Data
 - Strategies to Handle Late Events
 - Watermarking & Checkpointing in Streaming Pipelines
 - o MERGE INTO for Handling Late Data Updates
- Lab:
 - o Implement a Delta Lake-based Data Pipeline with Time Travel & Schema Evolution
 - Optimize queries using Z-Ordering and Auto Optimize
- Scalable Data Pipelines & Job Orchestration

Module 5: Delta Live Table Basics

- Introduction to Delta Live Tables
 - O What is Delta Live Tables (DLT)?
 - O Why Use DLT for Data Pipelines?
 - DLT vs. Standard Data Pipelines
- Key Features of DLT
 - o Continuous vs. Triggered Processing
 - o Data Quality Enforcements & Expectations
 - Understanding the Event Log in DLT

Module 6: Deploy Workloads with Databricks Workflows

- Introduction to Databricks Workflows
 - o What are Workflows & Why Use Them?
 - o Jobs vs. Notebooks Execution
 - Best Practices for Productionizing Data Pipelines
- Job Orchestration Strategies
 - o Triggering Workflows
 - o Managing Job Dependencies
 - o Handling Job Failures & Retries
- Advanced Workflow Features
 - Multi-Task Workflows
 - o Task Parameterization & Job Chaining

- Notifications & Monitoring in Workflows
- Lab:
 - o Automate an ELT Pipeline using Databricks Workflows
 - o Schedule a Pipeline & Monitor Jobs

Module 7: Data Governance with Unity Catalog

- Introduction to Unity Catalog
 - Multi-Cloud Data Governance in Databricks
 - Key Benefits of Unity Catalog
 - Comparison with Other Governance Tools
- Access Control & Permissions
 - Role-Based Access Control (RBAC)
 - Managing Users, Groups, and Roles
 - o Row-Level Security (RLS) & Column-Level Security (CLS)
- Data Lineage & Auditing
 - o Tracking Data Lineage
 - Using Unity Catalog for Audit Logging
 - o Compliance Considerations (GDPR, HIPAA, SOC 2)
- Lab:
 - Configure Unity Catalog & Set Access Controls
 - o Implement Row & Column Level Security Policies

Module 8: Performance Tuning & Cost Optimization

- Optimizing Spark Performance
 - Understanding the Catalyst Optimizer
 - o Predicate Pushdown & Join Optimization
 - o Caching Strategies for Performance Gains
- Databricks Cluster Optimization
 - o Choosing the Right Cluster for Workloads
 - Auto Scaling vs. Fixed Cluster Sizing
 - Optimizing Costs with Spot Instances
- Optimizing Delta Lake Queries
 - o Z-Ordering vs. Clustering
 - o Auto Optimize & File Compaction Strategies
 - o Impact of Large File Sizes on Query Performance
- Lab:
 - o Run performance benchmarks on optimized vs. non-optimized queries

o Tune cluster configuration for cost and performance efficiency

Module 9: Capstone Project - Real-World Implementation

Note: The Capstone project will take place post-training and falls outside the designated training hours.

- End-to-End Data Pipeline Implementation
 - o Define Business Use Case & Data Requirements
 - o Design and Implement an ETL Pipeline with Delta Live Tables
 - o Use Workflows to Automate & Optimize the Pipeline
 - o Implement Security & Governance using Unity Catalog
- Final Review & Certification Preparation
 - o Mock Test for Databricks Data Engineer Associate Certification
 - o Best Practices for Databricks Deployment in Production
- Capstone Project:
 - o Build a Full Data Pipeline from S3 to Delta Lake to Gold Tables in Databricks
 - o Optimize, Secure, and Monitor the Entire Data Pipelin