Food Model

Sriram Sankaranarayanan

1 Crop Producer

The crop producer makes decisions on the land allotted for various crops. He has an "expectation" for the price of crops and their yield.

1.1 Problem

such that for $f \in C$

$$Q_{ynf}^F, A_{ynf}^F \ge 0 ag{1.2a}$$

Total area used for crops is less than land available:

$$A_n \geq \sum_{f \in C} A_{ynf}^F$$
 (δ_{yn}^1) $(1.2b)$

Total Quantity is yield times area for that crop, both in real terms and expected terms:

$$Q_{ynf}^F \leq \mathcal{Y}_{ynf} A_{ynf}^F \qquad (\delta_{ynf}^2) \qquad (1.2c)$$

Linking yield with climate yield factor:

$$\mathcal{Y}_{ynf} = \operatorname{aCYF} \left(\pi_{ynf}^F \right)^{\mathbf{e}}$$
 (1.2d)

Fallow constraint where $_{Fal}\mathcal{O}$ is a number between 0 and 1 indicating the fraction of land that gets fallowed. $_{Fal}\mathcal{O}^{Dur}$ is the duration of fallow cycle:

$$\sum_{f \in C} \sum_{y'=y}^{y+_{\operatorname{Fal}} \mathcal{O}^{\operatorname{Dur}}} A_{y'nf}^{F} \leq \sum_{y'=y}^{y+_{\operatorname{Fal}} \mathcal{O}^{\operatorname{Dur}}} A_{n} -_{\operatorname{Fal}} \mathcal{O} A_{n}$$
(1.2e)

Crop rotation constraint where f is the primary crop rotated with f':

$$\operatorname{Rot}^{\mathcal{O}} \sum_{y'=y}^{\operatorname{Pur}} A_{y'nf}^{F} \leq \operatorname{Rot}^{\mathcal{O}} \inf_{ff'} \sum_{y'=y}^{f^{\operatorname{Dur}}} A_{y'nf'}^{F}$$

$$(1.2f)$$

Livestock producer $\mathbf{2}$

Problem 2.1

$$\text{Maximize} \quad : \quad \sum_{\substack{y \in Y \\ f \notin C}} \mathsf{df}_y \left(\pi^F_{ynf} \mathcal{Q}^F_{ynf} + p^H_{yn} \mathcal{Q}^H_{yn} - \sum_{i \in N} (\mathscr{C}^{\mathsf{cow},\mathsf{trans}}_{yin} + \pi^{\mathsf{cow}}_{yi}) \mathcal{B}^{\mathsf{buy}}_{yin} - \mathcal{B}_{yn} \mathscr{C}^{\mathsf{cow}}_{yn} \right) \tag{2.1}$$

such that for $f \notin C$

$$\mathcal{B}_{yn}, \mathcal{B}_{yin}^{\text{buy}}, \mathcal{Q}_{ynf}^{F}, \mathcal{Q}_{yn}^{H}, \mathcal{B}_{yn}^{\text{slg}} \geq 0$$

$$\mathcal{Q}_{ynf}^{F} \leq \mathcal{Y}_{ynf} \mathcal{B}_{yn} \qquad (f = \text{Milk}) \qquad (\delta_{ynf}^{2})$$

$$\mathcal{Q}_{ynf}^{F} \leq \mathcal{Y}_{ynf} \mathcal{B}_{yn}^{\text{slg}} \qquad (f = \text{Beef}) \qquad (\delta_{ynf}^{2})$$

$$\mathcal{Q}_{yn}^{H} \leq \mathcal{Y}_{yn}^{H} \mathcal{B}_{yn}^{\text{slg}} \qquad (\delta_{yn}^{3}) \qquad (2.2b)$$

$$\mathcal{B}_{yn}^{\text{slg}} \leq \mathcal{B}_{yn} \qquad (\delta_{yn}^{4}) \qquad (2.2c)$$

$$\mathcal{B}_{yn} \leq (1 + k - \kappa) \mathcal{B}_{(y-1)n} - \mathcal{B}_{yn}^{\text{slg}} + \sum_{i \in N} \left(\mathcal{B}_{yin}^{\text{buy}} - \mathcal{B}_{yni}^{\text{buy}} \right) \qquad (\pi_{yn}^{\text{cow}}) \qquad (2.2d)$$

$$\mathcal{B}_{yn}^{\text{slg}} \geq \kappa_{yn}^{\text{death}} \mathcal{B}_{yn} \qquad (\delta_{yn}^{9}) \qquad (2.2e)$$

$$\mathcal{B}_{yn} \geq \mathcal{B}_{n}^{\text{herd}} \qquad (\delta_{n}^{10}) \qquad (2.2f)$$

3 Distribution

3.1 Problem

Maximize :
$$\sum_{\substack{y \in Y \\ f \in F}} \mathsf{df}_y \left\{ \sum_{n \in N} \left(\mathcal{Q}_{ynf}^{D_s} \pi_{ynf}^S - \mathcal{Q}_{ynf}^{D_b} \pi_{ynf}^F \right) - \sum_{r \in R} \mathscr{C}_{yrf}^R \mathcal{Q}_{yrf}^D \right\}$$
(3.1)

such that

$$Q_{ynf}^{D_b}, Q_{yrf}^{D}, Q_{ynf}^{D_s} \geq 0 \tag{3.2a}$$

$$\mathcal{Q}_{ynf}^{D_b}, \mathcal{Q}_{yrf}^{D}, \mathcal{Q}_{ynf}^{D_s} \geq 0$$

$$\mathcal{Q}_{ynf}^{D_b} + \sum_{r \in R_{in}} \mathcal{Q}_{yrf}^{D} \geq \mathcal{Q}_{ynf}^{D_s} + \sum_{r \in R_{out}} \mathcal{Q}_{yrf}^{D}$$

$$\mathcal{Q}_{yrf}^{D} \leq \mathcal{Q}_{yrf}^{R,CAP}$$

$$(3.2a)$$

$$(5^6_{ynf})$$

$$(5^7_{yrf})$$

$$(3.2c)$$

$$Q_{yrf}^D \leq Q_{yrf}^{R,CAP}$$
 (δ_{yrf}^7) (3.2c)

4 Storage

4.1 Problem

Maximize :
$$\sum_{\substack{y \in Y \\ f \in F}} \left(\pi^{U}_{ynf} - \pi^{S}_{ynf} - \frac{1}{2} \mathscr{C}^{Sq}_{ynf} \mathcal{Q}^{S}_{ynf} - \mathscr{C}^{Sl}_{ynf} \right) \mathcal{Q}^{S}_{ynf}$$
 (4.1)

such that

$$Q_{ynf}^S \geq 0$$
 (4.2a)

$$\begin{array}{lcl}
\mathcal{Q}_{ynf}^{S} & \geq & 0 \\
\mathcal{Q}_{ynf}^{S} & \leq & \mathcal{Q}_{ynf}^{S,\text{CAP}} \\
\end{array} (4.2a)$$

$$(4.2b)$$

5 Market Clearing

$$Q_{ynf}^F = Q_{ynf}^{D_b} \qquad (5.1a)$$

$$\mathcal{Q}_{ynf}^{F} = \mathcal{Q}_{ynf}^{D_{b}} \qquad (\pi_{ynf}^{F}) \qquad (5.1a)$$

$$\pi_{ynf}^{U} = \alpha_{ynf} - \beta_{ynf} \mathcal{Q}_{ynf}^{S} + \sum_{i \in F} \chi_{ynfi} \pi_{yni}^{U} \qquad (\pi_{ynf}^{U}) \qquad (5.1b)$$

$$\mathcal{Q}_{ynf}^{S} = \mathcal{Q}_{ynf}^{D_{s}} \qquad (\pi_{ynf}^{S}) \qquad (5.1c)$$

$$Q_{ynf}^S = Q_{ynf}^{D_s} \tag{5.1c}$$

Electricity 6

Problem 6.1

We model electricity with a single operator. A subset of nodes can have production facilities. The production facilities have a minimum and maximum production capabilities. All nodes are connected by transmission lines, with a cost of transmission along each line. They have transmission capacities too. There is currently no possibility of expansion. The cost is minimized in the model.

$$\operatorname{Minimize} : \sum_{\substack{y \in Y \\ n \in N}} \left(\mathscr{C}_{yn}^{El} \mathcal{Q}_{yn}^{E-gen} + \frac{1}{2} \mathscr{C}_{yn}^{Eq} \mathcal{Q}_{yn}^{E-gen2} \right) + \sum_{\substack{y \in Y \\ r \in R}} \mathscr{C}_{yr}^{ER} \mathcal{Q}_{yr}^{E} \tag{6.1}$$

such that

$$Q_{un}^{E-gen} \geq 0$$
 (6.2a)

Generator limits

$$Q_{un}^{E-gen} \geq \underline{Q}_{un}^{E}$$
 (6.2b)

$$\mathcal{Q}_{yn}^{E-gen} \geq \mathcal{Q}_{yn}^{E}$$

$$\mathcal{Q}_{yn}^{E-gen} \leq \overline{\mathcal{Q}}_{yn}^{E}$$
(6.2b)
$$(6.2c)$$

The Kirchoff Current Law in each node. This also ensures that the demand is met in each node. \mathcal{L}_{yr}^{E} is the transmission loss.

$$Q_{yn}^{E-gen} + \sum_{r \in R_{\text{in}}} Q_{yr}^{E} \left(1 - \mathcal{L}_{yr}^{E} \right) \geq Q_{yn}^{E-dem} + \sum_{r \in R_{\text{out}}} Q_{yr}^{E}$$
(6.2d)

Transmission capacity

$$Q_{yr}^E \leq \overline{Q}_{yr}^E$$
 (6.2e)