A.A. 2021-2022

Elementi di Elettronica (INF) Prof. Paolo Crippa

Transistore Bipolare (BJT)

Simboli Circuitali

Flussi delle correnti nel transistore bipolare

Il transistore bipolare in tecnologia planare

Regioni di funzionamento del BJT

Regione di Funzionamento	Giunzione Base-Emettitore	Giunzione Base-Collettore
ATTIVA DIRETTA	ON	OFF
SATURAZIONE	ON	ON
INTERDIZIONE	OFF	OFF
ATTIVA INVERSA	OFF	ON

Il Modello del BJT per Grandi Segnali

Modello di Ebers-Moll (grandi segnali)

BJT npn

$$\begin{cases} i_{DE} = I_{SE} \left(e^{v_{BE}/V_T} - 1 \right) \\ i_{DC} = I_{SC} \left(e^{v_{BC}/V_T} - 1 \right) \end{cases}$$

$$\begin{cases} i_{DE} = I_{SE} \left(e^{v_{BE}/V_T} - 1 \right) \\ i_{DC} = I_{SC} \left(e^{v_{BC}/V_T} - 1 \right) \end{cases}$$

$$\begin{cases} i_{E} = i_{DE} - \alpha_{R} i_{DC} = I_{SE} \left(e^{v_{BE}/V_{T}} - 1 \right) - \alpha_{R} I_{SC} \left(e^{v_{BC}/V_{T}} - 1 \right) \\ i_{C} = -i_{DC} + \alpha_{F} i_{DE} = \alpha_{F} I_{SE} \left(e^{v_{BE}/V_{T}} - 1 \right) - I_{SC} \left(e^{v_{BC}/V_{T}} - 1 \right) \\ i_{B} = \left(1 - \alpha_{F} \right) i_{DE} + \left(1 - \alpha_{R} \right) i_{DC} \end{cases}$$

$$\begin{cases} i_E = a_{11}F_E + a_{12}F_C \\ i_C = a_{21}F_E + a_{22}F_C \end{cases}$$

$$F_E = \left(e^{v_{BE}/V_T} - 1\right)$$

$$F_C = \left(e^{v_{BC}/V_T} - 1\right)$$

Deve essere

$$\alpha_F I_{SE} = \alpha_R I_{SC} = I_S$$

infatti risulta

$$a_{12} = -a_{21}$$

da cui:

$$\begin{cases} i_{E} = \frac{I_{S}}{\alpha_{F}} \left(e^{v_{BE}/V_{T}} - 1 \right) - I_{S} \left(e^{v_{BC}/V_{T}} - 1 \right) \\ i_{C} = I_{S} \left(e^{v_{BE}/V_{T}} - 1 \right) - \frac{I_{S}}{\alpha_{R}} \left(e^{v_{BC}/V_{T}} - 1 \right) \\ i_{B} = \frac{I_{S}}{\beta_{F}} \left(e^{v_{BE}/V_{T}} - 1 \right) + \frac{I_{S}}{\beta_{R}} \left(e^{v_{BC}/V_{T}} - 1 \right) \end{cases} \qquad \beta_{F} = \frac{\alpha_{F}}{1 - \alpha_{F}}$$

$$\beta_F = \frac{\alpha_F}{1 - \alpha_F}$$

$$\beta_R = \frac{\alpha_R}{1 - \alpha_R}$$

1) Regime normale diretto

$$v_{BE} > 0$$
 , $v_{BC} < 0$ $v_{BE} \gg V_T$, $v_{BC} \ll V_T$

$$\left(e^{v_{BC}/V_T}-1\right) \rightarrow -1$$

$$\begin{cases} i_{E} \cong \frac{I_{S}}{\alpha_{F}} e^{v_{BE}/V_{T}} + I_{S} \left(1 - \frac{1}{\alpha_{F}}\right) \\ i_{C} \cong I_{S} e^{v_{BE}/V_{T}} + I_{S} \left(\frac{1}{\alpha_{R}} - 1\right) \\ i_{B} \cong \frac{I_{S}}{\beta_{F}} e^{v_{BE}/V_{T}} - I_{S} \left(\frac{1}{\beta_{F}} + \frac{1}{\beta_{R}}\right) \end{cases}$$

1) Regime normale diretto

Trascurando il secondo termine:

$$\left\{egin{aligned} i_E &\cong rac{I_S}{lpha_F} e^{
u_{BE}/V_T} \ i_C &\cong I_S e^{
u_{BE}/V_T} \ i_B &\cong rac{I_S}{oldsymbol{eta}_F} e^{
u_{BE}/V_T} \end{aligned}
ight.$$

da cui:

$$\frac{l_C}{l_R} = \beta_F$$

$$\frac{i_C}{i_F} = \alpha_F = \frac{\beta_F}{1 + \beta_F}$$

$$\frac{i_C}{i_E} = \alpha_F = \frac{\beta_F}{1 + \beta_F} \qquad \qquad \frac{i_B}{i_E} = \frac{\alpha_F}{\beta_F} = \frac{1}{1 + \beta_F}$$

2) Saturazione

Supponiamo che la la sia sufficiente per portare il transistore in saturazione

2) Saturazione

$$v_{BE} > 0 , v_{BC} > 0$$

$$\begin{cases} i_C \cong I_S e^{v_{BE}/V_T} - \frac{I_S}{\alpha_R} e^{v_{BC}/V_T} \\ i_B \cong \frac{I_S}{\beta_F} e^{v_{BE}/V_T} + \frac{I_S}{\beta_R} e^{v_{BC}/V_T} \end{cases}$$

$$\beta_{sat} = \frac{i_{C}}{i_{B}} = \frac{I_{S}e^{v_{BE}/V_{T}} - \frac{I_{S}}{\alpha_{R}}e^{v_{BC}/V_{T}}}{\frac{I_{S}}{\beta_{F}}e^{v_{BE}/V_{T}} + \frac{I_{S}}{\beta_{R}}e^{v_{BC}/V_{T}}} = \frac{I_{S}e^{v_{BE}/V_{T}}\left(1 - \frac{1}{\alpha_{R}}e^{v_{BC}/V_{T}}e^{-v_{BE}/V_{T}}\right)}{\frac{I_{S}}{\beta_{F}}e^{v_{BE}/V_{T}}\left(1 + \frac{\beta_{F}}{\beta_{R}}e^{v_{BC}/V_{T}}e^{-v_{BE}/V_{T}}\right)}$$

$$v_{BC} - v_{BE} = -v_{CEsat}$$

2) Saturazione

$$\beta_{sat} = \frac{i_C}{i_B} = \beta_F \frac{1 - \frac{1}{\alpha_R} e^{-v_{CE sat}/V_T}}{1 + \frac{\beta_F}{\beta_R} e^{-v_{CE sat}/V_T}} < \beta_F$$

che insieme alla

$$V_{CC} = R_C i_C + v_{CE\,sat} \qquad \qquad i_B = I_B$$

3) Interdizione

$$v_{BE} < 0 , \quad v_{BC} < 0$$

$$\left(v_{BE} < V_{\gamma}, \quad v_{BC} < V_{\gamma}\right) \qquad v_{BE} \ll V_{T}, \quad v_{BC} \ll V_{T}$$

$$\begin{cases} i_E \cong 0 \\ i_C \cong 0 \\ i_B \cong 0 \end{cases}$$

4) Regime normale inverso

$$v_{BE} < 0$$
, $v_{BC} > 0$ $v_{BE} \ll V_T$, $v_{BC} \gg V_T$

$$\begin{cases} i_E \cong -I_S e^{v_{BC}/V_T} + I_S \left(\frac{1}{\alpha_F} - 1\right) \\ i_C \cong -\frac{I_S}{\alpha_R} e^{v_{BC}/V_T} + I_S \left(\frac{1}{\alpha_R} - 1\right) \\ i_B \cong \frac{I_S}{\beta_R} e^{v_{BC}/V_T} - I_S \left(\frac{1}{\beta_F} + \frac{1}{\beta_R}\right) \end{cases}$$

4) Regime normale inverso

Trascurando il secondo termine:

$$\begin{cases} i_E \cong -I_S e^{v_{BC}/V_T} \\ i_C \cong -\frac{I_S}{\alpha_R} e^{v_{BC}/V_T} \\ i_B \cong \frac{I_S}{\beta_R} e^{v_{BC}/V_T} \end{cases}$$

da cui:

$$\frac{-i_E}{i_B} = \beta_R \qquad \qquad \frac{-i_E}{-i_C} = \alpha_R = \frac{\beta_R}{1 + \beta_R} \qquad \qquad \frac{i_B}{-i_C} = \frac{\alpha_R}{\beta_R} = \frac{1}{1 + \beta_R}$$

OSS. Sono le stesse relazioni viste nel funzionamento normale diretto con le seguenti sostituzioni: $i_C \rightarrow -i_E$; $i_E \rightarrow -i_C$; $\beta_F \rightarrow \beta_R$ $(\beta_R \ll \beta_F)$

Il Modello di Ebers Moll in Funzionamento Normale Diretto

Negli amplificatori il BJT lavora generalmente nel regime normale diretto

$$\begin{cases} i_E = \frac{I_S}{\alpha} e^{v_{BE}/V_T} \\ i_C = I_S e^{v_{BE}/V_T} \\ i_B = i_E - i_C \end{cases}$$

BASE COMUNE

Elementi di Elettronica (INF) A.A. 2021-22

Il Modello di Ebers Moll in Funzionamento Normale Diretto

npn

$$\begin{cases} i_C = I_S e^{v_{BE}/V_T} \\ i_B = \frac{I_S}{\beta} e^{v_{BE}/V_T} \\ i_E = i_B + i_C \end{cases}$$

EMETTITORE COMUNE

Il Modello di Ebers Moll in Funzionamento Normale Diretto

Elementi di Elettronica (INF) A.A. 2021-22

$$\begin{cases} i_E = \frac{I_S}{\alpha} e^{v_{EB}/V_T} \\ i_C = I_S e^{v_{EB}/V_T} \\ i_B = i_E - i_C \end{cases}$$

BASE COMUNE

Il Modello di Ebers Moll in Funzionamento Normale Diretto

Elementi di Elettronica (INF) A.A. 2021-22

$$\begin{cases} i_C = I_S e^{v_{EB}/V_T} \\ i_B = \frac{I_S}{\beta} e^{v_{EB}/V_T} \\ i_E = i_B + i_C \end{cases}$$

EMETTITORE COMUNE

$$i_C - v_{BE}$$

Effetto della temperatura a corrente costante

$$T_C \cong -2 \ mV / {^{\circ}C}$$

$$i_C = I_C e^{v_{BE}/V_T} \left(1 + \frac{v_{CE}}{V_A} \right)$$

 $V_{\scriptscriptstyle A}$: tensione di Early

$$r_o = \left[\frac{\partial i_C}{\partial v_{CE}} \Big|_{v_{BE} = \text{cost.}} \right]^{-1} \cong \frac{V_A}{I_C}$$

Modelli per Piccoli Segnali: EC

Modello per Piccoli Segnali: a <u>"Pi Greco"</u> o a <u>Emettitore</u> <u>Comune</u>

Partendo dal modello per grandi segnali di Ebers-Moll:

$$i_C = I_S e^{v_{BE}/V_T}$$

$$i_{B} = \frac{I_{S}}{\beta} e^{v_{BE}/V_{T}}$$

Modelli per Piccoli Segnali: EC

Linearizzando:

$$i_c = g_m v_{be}$$

$$g_m = \frac{I_C}{V_T}$$

$$i_b = \frac{g_m}{\beta} v_{be} = \frac{v_{be}}{r_{\pi}}$$

$$r_{\pi} = \frac{\beta}{g_m} = \frac{V_T}{I_B}$$

Modello per Piccoli Segnali a "Pi Greco"

Modelli per Piccoli Segnali: BC

Modello per Piccoli Segnali: a " T " o a Base Comune

Partendo dal modello per grandi segnali di Ebers-Moll:

$$i_E = \frac{I_S}{\alpha} e^{v_{BE}/V_T}$$
 $i_C = I_S e^{v_{BE}/V_T}$

Linearizzando:

$$i_e = \frac{1}{r_e} v_{be}$$

$$i_c = g_m v_{be} = \alpha i_e$$

$$\frac{1}{r_e} = \frac{I_E}{V_T} = \frac{I_C}{\alpha V_T} = \frac{g_m}{\alpha}$$

Modelli per Piccoli Segnali: BC

Modello per Piccoli Segnali a " T "

$$r_e = \frac{\alpha}{g_m} = \frac{\beta}{g_m (1+\beta)} = \frac{r_\pi}{1+\beta}$$

Circuito per Piccoli Segnali Completo

Modello di Giacoletto

$$r_o = \frac{V_A}{I_C}$$

- Si è trascurata la r_{bb}

Elementi di Elettronica (INF) A.A. 2021-22

Il BJT come Amplificatore: Le Configurazioni Fondamentali

Combinando le due equazioni:

$$V_{CC} = R_C \left\{ I_S \left(e^{v_I / V_T} - 1 \right) - \frac{I_S}{\alpha_R} \left[e^{(v_I - v_O) / V_T} - 1 \right] \right\} + v_O$$

AB)
$$0 \leq v_{\scriptscriptstyle I} < V_{\scriptscriptstyle \gamma}$$
 , $i_{\scriptscriptstyle C} \cong 0$, $v_{\scriptscriptstyle O} \cong V_{\scriptscriptstyle CC}$ Q in interdizione

BC)
$$v_I \cong V_{\gamma} = 0.6 \,\mathrm{V}$$

Q in regime normale diretto

$$v_O > v_I$$

$$V_{CC} \cong R_C I_S \left(e^{v_I/V_T} - 1 \right) + v_O$$

CD)
$$v_I > v_O$$

Q in saturazione

$$v_{o} = v_{CE,sat} = 0.2 \div 0.3 \text{ V}$$

Nella regione quasi-lineare (BC), derivando,

$$0 \cong R_C \frac{I_S}{V_T} e^{v_I/V_T} + \frac{dv_O}{dv_I}$$

$$A_{v} = \frac{dv_{O}}{dv_{I}} \cong -R_{C} \frac{I_{C}}{V_{T}} = -g_{m}R_{C}$$

$$g_m = \frac{I_C}{V_T}$$

Affinché il BJT operi nella regione quasi-lineare BC con la $\,g_{\scriptscriptstyle m}\,$ desiderata è necessario fissare la $\,I_{\scriptscriptstyle C}\,$ e quindi il punto di riposo

$$A_i = \frac{i_2}{i_1} = \frac{\beta i_b}{i_b} = \beta$$

(si trascura r_o)

$$R_i = \frac{v_1}{i_1} = r_{\pi}$$

$$A_{v} = \frac{v_{2}}{v_{1}} = -\frac{i_{2}}{i_{1}} \frac{R_{C}}{R_{i}} = -A_{i} \frac{R_{C}}{R_{i}} = -\beta \frac{R_{C}}{r_{\pi}} = -g_{m}R_{C}$$

$$R_o' = \frac{v_2}{i_2} \Big|_{v_s=0} = r_o \qquad \qquad R_o = r_o \| R_C \cong R_C$$

Emettitore Comune (EC)

Elementi di Elettronica (INF) A.A. 2021-22

Configurazione a Emettitore Comune (EC) con Degenerazione di Emettitore (RE)

Elementi di Elettronica (INF) A.A. 2021-22

Configurazione a Emettitore Comune (EC) con Degenerazione di Emettitore

Configurazione a Emettitore Comune (EC) con Degenerazione di Emettitore

$$A_i = \frac{i_2}{i_1} = \frac{\beta i_b}{i_b} = \beta$$
 (si trascura r_o)

$$v_1 = r_{\pi} i_1 + (1 + \beta) i_1 R_E$$
 $R_i = \frac{v_1}{i_1} = r_{\pi} + (1 + \beta) R_E$

$$A_{v} = \frac{v_{2}}{v_{1}} = -\frac{i_{2}}{i_{1}} \frac{R_{C}}{R_{i}} = -A_{i} \frac{R_{C}}{R_{i}} = -\beta \frac{R_{C}}{r_{\pi} + (1 + \beta)R_{E}} = -\frac{g_{m}R_{C}}{1 + g_{m}R_{E} / \alpha}$$

Elementi di Elettronica (INF) A.A. 2021-22

Configurazione a Emettitore Comune (EC) con Degenerazione di Emettitore

$$v_{2} = (i_{2} - \beta i_{b}) r_{o} - R_{s}' i_{b}$$

$$(i_{2} + i_{b}) R_{E} = -R_{s}' i_{b}$$

$$v_{2} = i_{2} r_{o} + (\beta r_{o} + R_{s}') \left(\frac{i_{2} R_{E}}{R_{s}' + R_{E}}\right)$$

$$R_{o}' = \frac{v_{2}}{i_{2}} \Big|_{v_{s} = 0} = r_{o} + (\beta r_{o} + R_{s}') \frac{R_{E}}{R' + R_{E}} \cong r_{o} \left(1 + \frac{\beta R_{E}}{R_{s} + r_{\pi} + R_{E}}\right)$$

(si trascura
$$r_o$$
)

$$i_2 = -i_e = -(1+\beta)i_1$$

$$v_1 = r_{\pi} i_1 + (1 + \beta) i_1 R_F$$

$$A_{i} = \frac{i_{2}}{i_{1}} = \frac{-(1+\beta)i_{b}}{i_{b}} = -(1+\beta)$$

$$R_i = \frac{v_1}{i_1} = r_{\pi} + (1+\beta)R_E$$

$$A_{v} = \frac{v_{2}}{v_{1}} = -\frac{i_{2}}{i_{1}} \frac{R_{E}}{R_{i}} = -A_{i} \frac{R_{E}}{R_{i}} = (1+\beta) \frac{R_{E}}{r_{\pi} + (1+\beta)R_{E}} = \frac{R_{i} - r_{\pi}}{R_{i}} = 1 - \frac{r_{\pi}}{R_{i}}$$

$$(1+\beta)i_b + i_2 - v_2/r_o = 0$$

$$v_2 = -R_s' i_b$$

$$-(1+\beta)v_2/R_s' + i_2 - v_2/r_o = 0$$

$$i_2 = v_2 \left(\frac{1}{r_o} + \frac{1+\beta}{R_s'} \right) \cong v_2 \frac{1+\beta}{R_s'}$$

$$R_o' = \frac{v_2}{i_2} = \frac{r_\pi + R_s}{1 + \beta}$$

(si trascura r_o)

$$i_2 = \alpha i_e$$
 $i_1 = -i_e$

$$A_i = \frac{i_2}{i_1} = -\alpha = -\frac{\beta}{1+\beta}$$

$$R_i = \frac{v_1}{i_1} = r_e = \frac{r_{\pi}}{1+\beta}$$

$$A_{v} = \frac{v_{2}}{v_{1}} = -\frac{i_{2}}{i_{1}} \frac{R_{C}}{R_{i}} = -A_{i} \frac{R_{C}}{R_{i}} = \frac{\beta}{1 + \beta} \frac{R_{C}}{r_{e}} = \beta \frac{R_{C}}{r_{\pi}}$$

$$v_2 = (i_2 - \alpha i_e) r_o - r_e i_e$$

$$\left[\left(i_{2}-\alpha i_{e}\right)+i_{e}\right]R_{s}=-r_{e}i_{e}$$

$$v_2 = i_2 r_o - i_e \left(r_e + \alpha r_o \right)$$

$$i_2 R_s = \left[-r_e - \left(1 - \alpha \right) R_s \right] i_e = -\left(r_e + \frac{R_s}{1 + \beta} \right) i_e$$

$$v_2 = i_2 r_o + i_2 \frac{R_s}{r_e + \frac{R_s}{1 + \beta}} \alpha r_o$$

$$R_{o}' = \frac{v_{2}}{i_{2}} = r_{o} \left(1 + \frac{R_{s} \frac{\beta}{1 + \beta}}{\frac{r_{\pi} + R_{s}}{1 + \beta}} \right) = r_{o} \left(1 + \frac{\beta R_{s}}{r_{\pi} + R_{s}} \right)$$

Caratteristiche delle Configurazioni Base a BJT

	EC	EC con RE	CC	ВС
$A_i = \frac{i_2}{i_1}$	β	β	$-(1+\beta)$	$-\alpha = -\frac{\beta}{1+\beta}$
$R_i = \frac{v_1}{i_1}$	r_{π}	$r_{\pi} + (1+\beta)R_{E}$	$r_{\pi} + (1 + \beta) R_{L}$	$r_e = \frac{r_{\pi}}{1 + \beta}$
$A_{v} = \frac{v_2}{v_1}$	$-g_m R_C$	$-\frac{g_m R_C}{1+g_m R_E / \alpha}$	$1 - \frac{r_{\pi}}{R_i}$	$\alpha \frac{R_C}{r_e} = g_m R_C$
$R_o' = \frac{v_2}{i_2}$	r_o	$r_o \left(1 + \frac{\beta R_E}{R_s + r_\pi + R_E} \right)$	$\frac{r_{\pi}+R_{s}}{1+\beta}$	$r_o \left(1 + \frac{\beta R_s}{r_\pi + R_s} \right)$
R_o	R_{C}	R_{C}	$R_o{'} \ R_C$	R_{C}

Polarizzazione del BJT Discreto

- La rete di polarizzazione ha il compito di stabilire il punto di lavoro desiderato per il dispositivo
- Deve assicurare l'insensibilità della I_{E} (I_{C}) alle variazioni di temperatura e alle tolleranze dei parametri ($oldsymbol{eta}$)

Polarizzazione del BJT Discreto

Applicando Thevenin tra A e B:

$$V_{BB} = \frac{R_2}{R_1 + R_2} V_{CC} \qquad R_{BB} = R_1 || R_2 = \frac{R_1 R_2}{R_1 + R_2}$$

$$V_{BB} = R_{BB}I_B + V_{BE} + R_EI_E = R_{BB}\frac{I_E}{1+\beta} + V_{BE} + R_EI_E$$

$$I_{E} = \frac{V_{BB} - V_{BE}}{R_{E} + R_{BB} / (1 + \beta)}$$

Per rendere $I_{\scriptscriptstyle E}$ insensibile alle variazioni di T e β :

$$\begin{cases} V_{BB} \gg V_{BE} \\ R_E \gg \frac{R_{BB}}{(1+\beta)} \end{cases} \qquad I_E \cong \frac{V_{BB}}{R_E}$$

Polarizzazione del BJT Discreto

DOPPIA ALIMENTAZIONE

$$V_{EE} = R_B \frac{I_E}{1+\beta} + V_{BE} + R_E I_E$$

$$I_E = \frac{V_{EE} - V_{BE}}{R_E + R_B / (1 + \beta)}$$

$$\begin{cases} V_{EE} \gg V_{BE} \\ R_E \gg \frac{R_{BB}}{\left(1+\beta\right)} \end{cases}$$

Amplificatori a Singolo Stadio: Emettitore Comune (EC)

 C_{C1} C_{C2} Capacità di disaccoppiamento: bloccano la componente continua cosicché il punto di lavoro non dipende dal generatore di segnale e dal carico

 $C_{\it E}$ Capacità di bypass: serve a cortocircuitare la $R_{\it E}$ cosicché il guadagno risulta più elevato

 C_{C1} C_{C2} C_{E} devono essere sufficientemente elevate cosicché possono essere considerate dei cortocircuiti alle frequenze di interesse (medie frequenze)

Amplificatori a Singolo Stadio: Emettitore Comune (EC) con Re

Emettitore Comune con resistenza di emettitore non cortocircuitata

 $C_{{\it C}1}$ $C_{{\it C}2}$: capacità di disaccoppiamento

 $C_{\scriptscriptstyle E}$: capacità di cortocircuito di $R_{\scriptscriptstyle F2}$ all'emettitore

Amplificatori a Singolo Stadio: Collettore Comune (CC)

Collettore Comune (CC) o Emitter Follower (Inseguitore di Emettitore)

 $C_{c1} \ \ C_{c2}$: capacità di disaccoppiamento

 $C_{\scriptscriptstyle C}$: capacità di cortocircuito del collettore

Amplificatori a Singolo Stadio: Base Comune (BC)

Base Comune (BC)

 $C_{c1} \ \ C_{c2}$: capacità di disaccoppiamento

 $C_{\scriptscriptstyle R}$: capacità di cortocircuito della base

Polarizzazione del BJT nei Circuiti Integrati

Connessione a diodo

$$v_{CB} = v_{CE} + v_{EB} = 0$$

- Il dispositivo lavora in funzionamento normale
- Alle variazioni è equivalente a r_{ρ}

Polarizzazione del BJT nei Circuiti Integrati

Specchio di corrente (current mirror)

• Realizza un generatore di corrente indipendente quasi ideale, che eroga una corrente proporzionale ad una corrente di riferimento $I_{\scriptscriptstyle REF}$

$$Q_1 \equiv Q_2$$

questa condizione è ben verificata nei circuiti integrati

$$I_{REF} = I_{B1} + I_{B2} + I_{C1}$$

$$V_{BE1} = V_{BE2} \implies I_{B1} = I_{B2} = \frac{I_{C1}}{\beta} \qquad I_{C1} = I_{C2} = I_{O}$$

Polarizzazione del BJT nei Circuiti Integrati

da cui:

$$I_{REF} = \left(1 + \frac{2}{\beta}\right)I_{C_1} = \left(1 + \frac{2}{\beta}\right)I_O$$

$$\frac{I_O}{I_{REF}} = \frac{1}{1 + 2/\beta} \cong 1$$

$$I_{REF} = \frac{V_{CC} - V_{BE}}{R} \cong \frac{V_{CC}}{R}$$

è indipendente dai transistori

Generazione di Diversi Valori di Corrente

Generazione di Diversi Valori di Corrente

$$I_{REF} = \frac{V_{CC} + V_{EE} - V_{EB1} - V_{BE2}}{R} \cong \frac{V_{CC} + V_{EE}}{R}$$

Se

$$Q_1 \equiv Q_3 \equiv Q_5 \equiv Q_6$$

$$I_1 \cong I_{REF}$$

$$I_3 \cong 2I_{REF}$$

$$Q_2 \equiv Q_4 \equiv Q_7 \equiv Q_8 \equiv Q_9$$

$$I_2 \cong I_{REF}$$

$$I_4 \cong 3I_{REF}$$

Elementi di Elettronica (INF) A.A. 2021-22

Sorgente di Corrente Migliorata

$$Q_{1} \equiv Q_{2} \equiv Q_{3}$$

$$I_{O} = \beta I_{B_{2}} = \beta \left(I_{E_{3}} - I_{B_{1}}\right)$$

$$= \beta \left[\left(1 + \beta\right)I_{B_{3}} - \frac{I_{C_{1}}}{\beta}\right]$$

$$= \beta \left[\left(1 + \beta\right)\left(I_{REF} - I_{C_{1}}\right) - \frac{I_{C_{1}}}{\beta}\right]$$

$$I_{C_1} = I_{C_2} = I_O$$
 \Rightarrow $I_O \left[\beta (1+\beta) + 2 \right] = \beta (1+\beta) I_{REF}$

$$\frac{I_O}{I_{REF}} = \frac{\beta(1+\beta)}{\beta(1+\beta)+2} = \frac{1}{1+\frac{2}{\beta(1+\beta)}} \cong \frac{1}{1+\frac{2}{\beta^2}} \cong 1$$

Generatore di Wilson

$$I_{C_1} = \frac{\beta}{2+\beta} \frac{I_O}{\beta} (1+\beta)$$

Generatore di Wilson

$$I_{O} = \beta \left(I_{REF} - \frac{1+\beta}{2+\beta} I_{O} \right) \qquad I_{O} \left(1 + \frac{\beta (1+\beta)}{2+\beta} \right) = \beta I_{REF}$$

$$I_{O} = \frac{\beta}{1 + \frac{\beta(1+\beta)}{2+\beta}}I_{REF} = \frac{\beta(2+\beta)}{2+\beta+\beta+\beta^{2}}I_{REF} = \frac{\beta(2+\beta)}{2+\beta(2+\beta)}I_{REF}$$

$$\frac{I_O}{I_{REF}} = \frac{1}{1 + \frac{2}{\beta(2 + \beta)}} \cong 1$$

Generatore di Widlar

$$\downarrow I_O \qquad V_{BE1} = V_T \ln \left(\frac{I_{REF}}{I_S} \right) \qquad V_{BE2} = V_T \ln \left(\frac{I_O}{I_S} \right)$$

$$\begin{cases} V_{BE1} - V_{BE2} = V_T \ln \left(\frac{I_{REF}}{I_O} \right) \\ V_{BE1} \cong V_{BE2} + R_E I_O \end{cases}$$

$$I_O R_E = V_T \ln \left(\frac{I_{REF}}{I_O} \right)$$

Consente di ottenere una $I_{\scriptscriptstyle O} \ll I_{\scriptscriptstyle REF}$

Generatore di Widlar

Generatore di Widlar

$$i_{1} = \frac{v_{\pi}}{R'_{E}} \qquad i_{2} = g_{m}v_{\pi} + i_{1} = \left(g_{m} + \frac{1}{R'_{E}}\right)v_{\pi}$$

$$\begin{cases}
i_{x} = g_{m}v_{\pi} - i_{2} = g_{m}v_{\pi} - \left(g_{m} + \frac{1}{R'_{E}}\right)v_{\pi} = -\frac{v_{\pi}}{R'_{E}} \\
v_{x} = -r_{o}i_{2} - v_{\pi} = -\left(g_{m} + \frac{1}{R'_{E}}\right)v_{\pi}r_{o} - v_{\pi}
\end{cases}$$

$$R_{o} = \frac{v_{x}}{i_{x}} = \frac{1 + \left(g_{m} + \frac{1}{R'_{E}}\right)r_{o}}{\frac{1}{R'_{E}}} = R'_{E} + \left(1 + g_{m}R'_{E}\right)r_{o}$$

$$R_{o} \cong \left(1 + g_{m}R'_{E}\right)r_{o}$$

La resistenza di uscita è molto alta, il generatore è quasi ideale