Introduction to Adversarial Attack on Machine Learning Model

Presenter: Jin Huiwen

Date: Feb 3 2022

Outline

- Background
- Development history
- Adversarial Machine Learning
- Typical AI Security Attacks
- Adversarial robustness toolbox

Background

- Machine Learning (ML) methods and Artificial Intelligence (AI)
- Extensive application in security system
 - Autonomous car with object detection task
 - Surveillance system with face recognition
 - Door access system with voice recognition
- Security issue of ML and Al

Development History

- 2004 Attack on the linear classifier of email spam
- General classification of attack was proposed by Marco e.tl in 2006
- Attack on non-linear classifier (e.g. Support Vector Machine)
- Attack on Neural Network

Adversarial Machine Learning

- Machine learning methods to cause malfunction of models
- Weakness of ML security system is lack of explainability
- White box (e.g. Linear regression) vs Black box (e.g. NN)
- Adversarial attacks are categorised into different categories

- Evasion attack Modify model input
 - Adversarial examples: Add small digital perturbation to model input (Fast Gradient Sign Method)
 - Attacks in the physical world: Modify input physically (e.g. traffic signs)
 - Real-world adversarial patches evasion attack on autonomous cars.
 - Transferability and black-box attacks: Attack without known parameters.

- Poisoning Modify training data
 - Al system constantly collects new samples to retrain model
 - Inject crafted samples to contaminate the training data
 - Jagielski [5] et al. proved effectiveness and proposed attack models
 - Spammer send malicious emails with crafted contents to distort Google spam filter.

- Backdoor attack Modify model structure
 - Embed hidden malicious behaviors into deep learning models
 - Model triggered by backdoor with the specific input
 - Attack is more effective in NN because of large number of parameters
 - Wenger et.al proposed digital/physical triggers in facial recognition models

- Model Extraction Steal model
 - Analyze the input, output, and other external information of a system
 - Parameters or training data of the model could be speculated
 - Attackers can craft adversarial examples using extracted models.
 - Limitations: intellectual property, black-box attack
 - Model extraction attack had been successfully applied on online services of BigML and Amazon Machine Learning

Summary on Al Adversarial Attacks

- Evasion attack
- Poison attack
- Backdoor attack
- Model extraction

Quiz Time

• 5 questions in the Zoom Poll

Al Model Defence

Al Model Defence

Adversarial Robustness Toolbox

- A python library developed by IBM for Machine learning security
- All learning frameworks: TensorFlow, Keras, PyTorch, MXNet, etc.
- All task: Classification, object detection etc.
- All Data: Images, tables, audio, video, etc
- Main website: https://adversarial-robustness-toolbox.org/
- Github page: https://github.com/Trusted-Al/adversarial-robustness-toolbox

Attacking and Defending with ART

Example notebook – evasion attack

ART Installation

- Installation: https://github.com/Trusted-Al/adversarial-robustness-toolbox/wiki/Get-Started#setup
- Documentation: https://adversarial-robustness-toolbox.readthedocs.io/en/latest/
- Folder structure
 - art (source code)
 - Examples: how to apply art in a specific framework
 - Notebook: example of applying attack/defense/evaluation module

'Hello world' in Adversarial Attack

- Evasion Attack-FGSM (Tensorflow.Keras)
 - Fast gradient sign method (non-targeted attack): Explaining And Harnessing Adversarial Examples by Goodfellow et al.
 - Notebook: https://drive.google.com/drive/folders/1QRJz2oN8Qy-uDcppl4ruql45JLE6iwGH?usp=sharing

Let θ be the parameters of a model, x the input to the model, y the targets associated with x (for machine learning tasks that have targets) and $J(\theta, x, y)$ be the cost used to train the neural network.

'Hello world' in Adversarial Attack

- ART Adversarial Patch Evasion Attack TensorFlow v2
 - Adversarial patch could be generated on digital world through optimization
 - Optimized patch could be printed and added in any scene to attack in real-life.
 - Notebook: https://drive.google.com/drive/folders/1QRJz2oN8Qy-uDcppl4ruql45JLE6iwGH?usp=sharing

Feedback form

Thanks for listening!

https://forms.gle/4NjyQQYqyiuDsm1j9

