attention

강사:백병인

pi.paek@modulabs.co.kr

모두의연구소 Research Scientist

seq2seq vs. attention

seq2seq

$$p(y_i|y_1,\ldots,y_{i-1},\mathbf{x})=g(y_{i-1},s_i,c)$$

attention

$$p(y_i|y_1,\ldots,y_{i-1},\mathbf{x})=g(y_{i-1},s_i,c_i)$$

[틀린그림찾기] 두 수식에서 다른 부분은 어디일까요? 그 차이점이 의미하는 것은 무엇일까요?

관측자의 위치와 시선의 변화

- State Vector라는 개념의 전제
- 동일한 X를 해석(Encode)
 한 state c는 그 해석을
 받아들이는 Decoder의
 현재 위치에 무관하게 항
 상 <u>동일하게</u> 표현
 (represent)될 수 있다.

• 과연?

다양한 각도에서 본 육면체

Ci의 i가 의미하는 것

• 맥락 c는 Decoder의 포지션 i에 따라 <u>**다르게**</u> 표현(represent)되 어야 한다.

NMT with attention

 Bahdanau et al. (2014) Neural Machine Translation by Jointly Learning to Align and Translate

$$p(y_i|y_1,\ldots,y_{i-1},\mathbf{x}) = g(y_{i-1},s_i,c_i)$$

Decoder Language Model

$$s_i = f(s_{i-1}, y_{i-1}, c_i)$$

S_i: decoder state

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

C_i: state from attention

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$$

 α_{ii} : attention weight w/ softmax

$$e_{ij} = a(s_{i-1}, h_j)$$

e_{ii}: E-D state alignment

alignment of states (1)

- h_i는 Encoder state space의 원소이다.
- S_i는 Decoder state space의 원소이다.
- 서로 다른 벡터공간 상의 두 벡터의 alignment를 어떻게 비교할 수 있을까?

Decoder State Space

alignment of states (2)

alignment score functions

Luong et al. [2015] Effective Approaches to Attention-based Neural Machine Translation

$$score(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_s) = \begin{cases} \boldsymbol{h}_t^{\top} \bar{\boldsymbol{h}}_s & \textit{dot} \\ \boldsymbol{h}_t^{\top} \boldsymbol{W}_a \bar{\boldsymbol{h}}_s & \textit{general} \\ \boldsymbol{v}_a^{\top} \tanh \left(\boldsymbol{W}_a [\boldsymbol{h}_t; \bar{\boldsymbol{h}}_s] \right) & \textit{concat} \end{cases}$$

attention weight matrix

Visualization of attention weight matrix

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$$

어순이 다른 언어간 번역

- attention을 통해 어순이 다른 언어간 번역 품질 향상
- 파파고 사례
 - Attention Map
 - 입력: 존과 메리는 아들과 딸이 있다.
 - 결과: John and Mary have a son and a daughter.

	<5>	₹/NOUN	71/JOSA	# I/PROPERNOUN	E/JO5A	마듬/NOUN	71/JOSA	발/NOUN (I/JOSA	U/NORMALVERS	()/EOMI	/ETC	4/51
HEF	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
John/NNP	0.07	0.18	0.13	0.12	0.11	0.04	0.04	0.03	0.06	0.08	0.06	0.04	0.0
and/CC	0.07	0.03	0.44	0.06	0.06	0.01	0.06	0.02	0.05	0.07	0.05	0.04	0.0
Mary/NNP	0.02	0.04	0.03	0.52	0.08	0.02	0.01	0.12	0.05	0.03	0.03	0.02	0.00
have/VBP	0.06	0.02	0.09	0.06	0.07	0.04	0.06	0.05	0.10	0.19	0.10	0.08	0.0
a/DT	0.05	0.03	0.05	0.04	0.07	0.11	0.12	0.09	0.12	0.11	0.07	0.08	0.0
son/NN	0.04	0.03	0.04	0.05	0.06	0.15	0.11	0.14	0.09	0.09	0.06	0.08	0.06
and/CC	0.05	0.02	0.07	0.02	0.06	0.07	0.21	0.07	0.09	0.08	0.07	0.10	0.0
a/DT	0.03	0.02	0.02	0.10	0.05	0.06	0.06	0.30	0.09	0.07	0.06	0.08	0.0
aughter/NN	0.02	0.01	0.01	0.08	0.03	0.05	0.03	0.49	0.10	0.04	0.04	0.07	0.0
J.	0.10	0.01	0.03	0.02	0.06	0.04	0.08	0.07	0.11	0.10	0.10	0.14	0.1
8	0.10	0.03	0.03	0.04	0.07	0.04	0.05	0.05	0.11	0.10	0.09	0.11	0.2

seq2seq with attention

Attention의 장점

- NMT의 정확도 향상
- seq2seq의 단점 개선
 - state bottleneck의 구조적 단점 극복
 - encoder state에 decode가 직접 접근하므로 vanishing gradient 극복
- Attention Matrix가 주는 interpretability
- General Deep Learning Technique
 - More general definition of attention:
 - Given a set of vector values, and a vector query, attention is a technique to compute a weighted sum of the values, dependent on the query.

Image to Text

Attention이 적용되지 않은 Image2Text

 Vinyals et al.[2014] <u>Show and Tell</u>: A Neural Image Caption Generator

Attention이 적용된 Image2Text

 Xu et al.[2015] <u>Show, Attend and Tell</u>: Neural Image Caption Generation with Visual Attention

