Mal for rapport til laboratorium i fysikk

J. O. Bruun, S. Klyve

Sammendrag

Sammendraget er en kort og konsis oppsummering av innholdet i rapporten. Sammendraget er den delen av rapporten som skal skrives sist, når du har full kontroll på alt innholdet. En god lengde for et sammendrag er 4–5 setninger. I løpet av disse setningene skal forsøket introduseres, du skal fortelle hvilke metoder som ble brukt, resultatene skal presenteres og du må fortelle kort hva resultatene betyr. Om resultatet eksisterer i form av et tallsvar skal dette oppgis med tilhørende usikkerhet.

1. Introduksjon

Stefan-Boltzmanns lov er en viktig relasjon i fysikken, som forbinder emittert varmeenergi fra et svart legeme, med dets temperatur. Den ble først formulert av Joseph Stefan i 1879, og utledet av Ludwig Boltzmann fem år senere (INSERT KILDE). I dette forsøket skal vi studere emissiviteten til ulike overflater ved ulike temperaturer, i tillegg til å verifisere Stefan-Boltzmanns lov ved å sjekke forholdet mellom temperatur og emittert varme fra et objekt.

Her begynner den egentlige rapporten. Mer informasjon om hva de enkelte delene av rapporten skal inneholde finnes på nettsiden til laben [1]. På slutten av forrige setning ser vi et eksempel på en referanse. Her er et eksempel på en referanse til læreboka [2]. Referanselisten kommer til slutt i rapporten. I denne malen har vi brukt BIBTEX til å formatere referansene, men det er også mulig å formatere dem manuelt direkte i tex-filen.

2. Teori

Et svart legeme er et objekt som absorberer all innkommende strålingsenergi, uavhengig av bølgelengden. Dersom objektet er i termisk likevekt, blir det totalt sett hverken tilført eller avgitt energi. Det vil si at objektet må emittere like mye stråling som det absorberer for å oppnå likevekt. For et svart legeme betyr dette at den emitterte strålingsenergien er lik den absorberte. Forholdet mellom den emitterte effekten per flateenhet, j, og det svarte legemets temperatur er gitt ved Stefan-Boltzmanns lov:

$$j = \sigma T^4 \tag{1}$$

Her er $\sigma = 5.67 \cdot 10^{-8} \, \mathrm{Wm^{-2} K^{-4}}$ Stefan-Boltzmann-konstanten. Dersom dette skal gjelde for et objekt med vilkårlig emissivitet ϵ , må vi justere til

$$j = \epsilon \sigma T^4. \tag{2}$$

For å måle temperaturen til glødetråden i en Stefan-Boltzmann-lampe, kan følgende relasjon brukes:

$$T = T_0 + \frac{R - R_0}{\alpha R_0} \tag{3}$$

Her er $\alpha=4.5\cdot 10^{-3}\,\mathrm{K}^{-1}$ temperaturkoeffisienten til wolfram. R_0 er motstanden ved referansetemperatur T_0 , og $R=\frac{V}{I}$ er motstand ved temperatur T. Siden denne relasjonen i utgangspunktet gjelder kun for små temperaturvariasjoner i metallet, må vi bruke relativ motstand R/R_0 , og lese av temperaturen til wolframtråden fra tabell. Fra dette finner vi usikkerheten i den relative resistansen ved Gauss feilforplantning

$$\left(\Delta \frac{R}{R_0}\right)^2 = \frac{\Delta R^2}{R_0^2} + \frac{R^2 \Delta R_0^2}{R_0^4}.$$
 (4)

En Wheatstonebro kan brukes til å måle nøyaktig motstand i en krets. Ved bruk av Kirchhoffs lover i lag med flere resistorer, kan unøyaktigheten i målingen presses ned mot veldig lav feilmargin. Dette passer fint til måling av motstanden i Stefan-Boltzmann-lampenved romtemperatur, spesielt med tanke på at feilmarginen i denne målingen vil forplante seg betydlig i resultatene. Feilmarginen i R_0 kan da finnes ved Gauss feilforplantning

$$\Delta R_0^2 = \frac{(R_{x1} - R_{x0})^2}{R_1^2} \left(\Delta R_3^2 + \frac{R_3^2 \Delta R_1^2}{R_1^2} \right) + \frac{R_3^2}{R_1^2} \left(\Delta R_{x1}^2 + \Delta R_{x0}^2 \right).$$
 (5)

3. Metode

Dette forsøket omfatter i hovedsak to ulike deler; først å undersøke emissivitet til ulike overflater ved ulike temperaturer ved bruk av en Leslies kube, og deretter verifisere Stefan-Boltzmann lov ved å måle emittert varmestråling fra en lampe ved varme temperaturer.

Leslies kube er et objekt med fire ulike overflater; svart, hvit, upolert aluminium og blankt aluminium (speil). Den

Utkast levert til Veileder 19. oktober 2022

varmes opp innvendig ved hjelp av en glødepære, og temperaturen til kuben kan leses av i tabell basert på resistansen i en innebygd termistor. Når resistansen stabiliserer seg på en gitt verdi, har kuben oppnådd termostatisk likevekt. Fra dette kan det måles avgitt varmestråling med en strålingssensor, og med det undersøke hvordan dette avhenger med overflate og temperatur.

For Leslies kube kobles utstyret opp som vist i figur 1 og skrur på lampen i Leslies kuben på høy intesitet først før den skrus ned når ohmmeteteret viser omtrent $40\,\mathrm{k}\Omega$ før intensiteten skrus ned. Venter så til det oppnås en form for termisk likevekt og måler så varmestråling ved å lese av voltmeteret koblet til sensoren på hver av de fire sidene og skrur så opp intensiteten, venter i omtrent fem minutter til det er tilnærmet termisk likevekt og måler så varmestråling på nytt. Gjør dette fire ganger.

Kobler opp utstyr som vist i figur 2. Setter spenningen til $1\,\mathrm{V}$ og måler så av strøm og spenning i kretsen med Stefan-Boltzmann-lampen og spenningen i varmestrålingssensoren. Setter så opp spenningen med $1\,\mathrm{V}$ og gjør det samme til og med $12\,\mathrm{V}$.

4. Resultater

Ofte vil vi skrive inn enkeltmålinger i resultatdelen. Da er det viktig å angi usikkerhet. For eksempel kan lengden til pendelen være $l=(1000,015\pm0,005)\,\mathrm{mm}$. Vi kan også skrive opp usikkerheten separat. I dette tilfellet har

Figur 1: Utstyrsoppsett. Leslies kube er koblet til et strømuttak og et ohmmeter, varmestrålingssensoren er koblet til et voltemeter.

Figur 2: Utstyrsoppsett. Kobler et voltmeter paralelt med Stefan-Boltzmann-lampen i en krets med et ammeter og en spenningskilde som kobles til et strømuttak. Kobler et voltmeter til sensoren.

vi $\Delta l = 5 \cdot 10^{-3}$ mm. Alternativt kunne vi skrevet denne usikkerheten som $\Delta l = 5 \cdot 10^{-6}$ m eller $\Delta l = 5$ µm.

I resultatdelen er det ofte bruk for tabeller for å presentere måledata på en oversiktlig måte. Husk at alle måledata skal oppgis med usikkerhet! Tabell 1 er et godt eksempel. I tabell 2 ser vi et eksempel der den samme tabellen er laget på en litt annen måte. Merk at mens figurtekster står under figurene skal tabelltekster plasseres over tabellene.

Selv om tabeller er hendige, er de ikke alltid den beste løsningen i resultatdelen. Det er for eksempel lettere å se om det er en sammenheng mellom avstanden fra opphengspunktet til massesenteret og verdien og usikkerheten som ble målt for tyngdeakselerasjonen dersom vi plotter resultatene i en figur. Figur 3 er et eksempel på dette. Denne presentasjonsformen blir mer aktuell dersom vi har mange resultater.

5. Diskusjon

Rapportskriving i IATEX gir mange muligheter. Selv om det er endel tekniske finesser som skal på plass er det viktig å huske på at god skriving og godt språk ligger til grunn for å skrive en god rapport.

6. Konklusjon

Nå har vi gitt endel eksempler på formatering. For å mestre LATEX er det bare én ting som gjelder – trening. Last ned kildefilene og lek med de ulike elementene. Sitter du fast er det som regel noen som har hatt de samme problemene før deg. Det meste av dokumentasjon er å finne på CTAN. Spørsmål og svar er å finne på LATEX StackExchange. Lykke til!

Tabell 1: Dette er den obligatoriske tabellteksten. Den kommer over tabellen. Husk at de samme reglene gjelder for utforming av tabellteksten som for utforming av figurteksten.

h [cm]	$g [\mathrm{m/s^2}]$
20	$9,836 \pm 0,004$
23	$9,847 \pm 0,002$
29	$9,839 \pm 0,008$
33	$9,840 \pm 0,001$
40	$9,\!829 \pm 0,\!006$

Tabell 2: Denne tabellen har identisk innhold som den forrige, men er laget på en litt annen måte.

h [cm]	$g [\mathrm{m/s^2}]$
20	$9,836 \pm 0,004$
23	$9,847 \pm 0,002$
29	$9,839 \pm 0,008$
33	$9,840 \pm 0,001$
40	$9,829 \pm 0,006$

Figur 3: Denne presentasjonsformen egner seg bedre til å tydeliggjøre trender i datagrunnlaget. Her kan det se ut som om verdien vi måler for g og usikkerheten i målingene er relativt uavhengig av h.

Referanser

- Nesse, T. og V. Risinggård, Institutt for fysikk, NTNU: NT-NU Fysikklab. http://home.phys.ntnu.no/brukdef/undervisning/ fyslab/rapport.html, (sjekket 13.09.2016).
- fyslab/rapport.html, (sjekket 13.09.2016).
 [2] Young, H. D. og R. A. Freedman: *University Physics*. Pearson Education, 14. utgave, 2016.