39.6 Second-Order and Higher-Order Derivatives

Given two normed affine spaces E and F, and some open subset A of E, if Df(a) is defined for every $a \in A$, then we have a mapping $Df: A \to \mathcal{L}(\overrightarrow{E}; \overrightarrow{F})$. Since $\mathcal{L}(\overrightarrow{E}; \overrightarrow{F})$ is a normed vector space, if Df exists on an open subset U of A containing a, we can consider taking the derivative of Df at some $a \in A$.

Definition 39.12. Given a function $f: A \to F$ defined on some open subset A of E such that Df(a) is defined for every $a \in A$, If D(Df)(a) exists for every $a \in A$, we get a mapping $D^2f: A \to \mathcal{L}(\overrightarrow{E}; \mathcal{L}(\overrightarrow{E}; \overrightarrow{F}))$ called the *second derivative of* f *on* A, where $D^2f(a) = D(Df)(a)$, for every $a \in A$.

As in the case of the first derivative Df_a where $Df_a(u) = D_u f(a)$, where $D_u f(a)$ is the directional derivative of f at a in the direction u, it would be useful to express $D^2 f(a)(u)(v)$ in terms of two directional derivatives. This can indeed be done. If $D^2 f(a)$ exists, then for every $u \in \overrightarrow{E}$,

$$D^2 f(a)(u) = D(Df)(a)(u) = D_u(Df)(a) \in \mathcal{L}(\overrightarrow{E}; \overrightarrow{F}).$$

We have the following result.

Proposition 39.19. If $D^2 f(a)$ exists, then $D_u(D_v f)(a)$ exists and

$$D^2 f(a)(u)(v) = D_u(D_v f)(a), \text{ for all } u, v \in \overrightarrow{E}.$$

Proof. Recall from Proposition 37.61, that the map app from $\mathcal{L}(\overrightarrow{E}; \overrightarrow{F}) \times \overrightarrow{E}$ to \overrightarrow{F} , defined such that for every $L \in \mathcal{L}(\overrightarrow{E}; \overrightarrow{F})$, for every $v \in \overrightarrow{E}$,

$$\operatorname{app}(L,v) = L(v),$$

is a continuous bilinear map. Thus, in particular, given a fixed $v \in \overrightarrow{E}$, the linear map $\operatorname{app}_v \colon \mathcal{L}(\overrightarrow{E}; \overrightarrow{F}) \to \overrightarrow{F}$, defined such that $\operatorname{app}_v(L) = L(v)$, is a continuous map.

Also recall from Proposition 39.7, that if $h: A \to G$ is a function such that Dh(a) exits, and $k: G \to H$ is a continuous linear map, then, $D(k \circ h)(a)$ exists, and

$$k(\mathrm{D}h(a)(u)) = \mathrm{D}(k \circ h)(a)(u),$$

that is,

$$k(D_u h(a)) = D_u(k \circ h)(a),$$

Applying these two facts to h = Df, and to $k = app_v$, we have

$$D_u(Df)(a)(v) = D_u(app_v \circ Df)(a).$$

But $(\operatorname{app}_v \circ \operatorname{D} f)(x) = \operatorname{D} f(x)(v) = \operatorname{D}_v f(x)$, for every $x \in A$, that is, $\operatorname{app}_v \circ \operatorname{D} f = \operatorname{D}_v f$ on A. So, we have

$$D_u(Df)(a)(v) = D_u(D_v f)(a),$$