

節末問題 2.5 的解答

問題 2.5.1

這是測試對求和符號(→2.5.9項)的理解的問題。

答案如下:

$$\sum_{i=1}^{100} i = (1+2+3+\dots+100) = 5050$$

$$\sum_{i=1}^{3} \sum_{j=1}^{3} ij = (1+2+3+2+4+6+3+6+9) = 36$$

另外,從 1 到 100 的總和在第 1.1 節中也有提到,可以用和的公式(\rightarrow **2.5.10項**)來計算出 $100 \times 101 \div 2 = 5050$ 。

問題 2.5.2

這是測試集合基本概念 (→2.5.5項) 理解的問題。答案如下:

- 1. |S| = 3, |T| = 4
- 2. $S \cup T = \{2,3,4,7,8,9\}$ (任意一方包含的部分)
- 3. $S \cap T = \{2\}$ (兩者都包含的部分)
- 4. 非空的子集合有 **{2}**, **{4}**, **{7}**, **{2**, **4}**, **{2**, **7**}, **{4**, **7**}, **{2**, **4**, **7**} 共 7個。不懂的話,請回 到第 58 頁確認。

問題 2.5.3

由於是階乘 $N! = 1 \times 2 \times 3 \times \cdots \times N$,撰寫使用 for 敘述進行乘法運算的程式即可。此外,當 N = 20 時, $N! = 2.4 \times 10^{18}$,注意如int型態等 32 位元的整數會發生溢出。(在以下的原始碼中,使用了 long long 型態來取代)

#include <iostream>
using namespace std;

```
int main() {
    long long N;
    long long Answer = 1;
    cin >> N;
    for (int i = 2; i <= N; i++) Answer *= i; // 將 Answer 乘以 i
    cout << Answer << endl;
    return 0;
}</pre>
```

※ Python等原始碼請參閱 chap2-5.md 。

問題 2.5.4

撰寫如下的程式即可獲得正確答案。函數 isprime(x) 是用來判斷 2 以上的整數 x 是否為質數的函數,如果 x 是質數為 true,否則為 false。此外,如以下步驟逐個檢查,藉此判斷 x 是否為質數。

- x 能被 2 整除嗎?
- x 能被3整除嗎?

:

• x 能被 N-1 整除嗎?

```
#include <iostream>
using namespace std;
bool isprime(int x) {
   for (int i = 2; i <= x - 1; i++) {
        // 將 x 除以 i 的餘數為 0 時、x 可以被 i 整除
        if (x % i == 0) return false;
    }
    return true;
}
int main() {
   int N, Answer = 0;
    cin >> N;
    for (int i = 2; i <= N; i++) {</pre>
        if (isprime(i) == true) cout << i << endl;</pre>
    }
    return 0;
}
```

※ Python 等原始碼請參閱 chap2-5.md 。

問題 2.5.5

這個問題的答案是 1000。

最簡單的方法是計算所有包含在 $1 \le a \le 4, 1 \le b \le 4, 1 \le c \le 4$ 內的整數組合 (a, b, c),但這樣做會很繁瑣。

a = 合計			
1	2	3	4
2	4	6	8
3	6	9	12
4	8	12	16

a = 合計			
2	4	6	8
4	8	12	16
6	12	18	24
8	16	24	32

a = 合計		L	
3	6	9	12
6	12	18	24
9	18	27	36
12	24	36	48

a = 4 時 合計 400				
	4	8	12	16
	8	16	24	32
	12	24	36	48
	16	32	48	64

所以,思考以下的雙重求和的值。總和為100。

$$\sum_{b=1}^{4} \sum_{c=1}^{4} bc = 100$$

合計各 a 的 abc 的總和如下:

• 當 a = 1 時, $abc (= 1 \times bc)$ 的總和: $1 \times 100 = 100$

• 當 a = 2 時, abc (= $2 \times bc$) 的總和: $2 \times 100 = 200$

• 當 a = 3 時, $abc (= 3 \times bc)$ 的總和: $3 \times 100 = 300$

• 當 a = 4 時, abc (= $4 \times bc$) 的總和: $4 \times 100 = 400$

所求的三重求和為上述 4 項全部相加的值1000。

問題 2.5.6

擁有共通部分的充要條件是 $\max(a,c) < \min(b,d)$ 。

不懂 max 函數和 min 函數的人可以回到第 2.3.2 項確認。

問題 2.5.7

每個i的值的「cnt增加次數」如下:。

• i=1 時: $2 \le j \le N$, 故增加次數為 N-1 次

• i=2 時: $3 \le j \le N$, 故增加次數為 N-2 次

• $\mathbf{i}=3$ 時: $4 \le j \le N$, 故增加次數為 N-3 次

:

• i=N-1 時:1次

• i=N 時:0次

因此,依和的公式(\rightarrow **2.5.10項**),執行結束時的 cnt 值為:

$$(N-1) + (N-2) + \dots + 1 + 0 = \frac{(N-1) \times N}{2} \left(= \frac{1}{2}N^2 - \frac{1}{2}N \right)$$

cnt 的值中最重要的項為 $(1/2) \times N^2$,所以,這個程式的計算複雜度是 $O(N^2)$ 。 $(\rightarrow 2.4.8 \, \overline{\mathbf{q}})$