Processos Estocásticos

Variáveis aleatórias conjuntamente distribuídas

Prof. Roberto Wanderley da Nóbrega

roberto.nobrega@ifsc.edu.br

PRE029006

ENGENHARIA DE TELECOMUNICAÇÕES

INSTITUTO **FEDERAL** Santa Catarina

Câmpus

São José

PMF conjunta e marginais

PMF conjunta: Definição e propriedades

Sejam X e Y duas VAs discretas definidas no mesmo experimento probabilístico.

Definição

A função massa de probabilidade conjunta de X e Y, denotada por $\mathfrak{p}_{X,Y}$, é definida por

$$p_{X,Y}(x,y) = \Pr[X = x \land Y = y],$$

para $x \in S_X$ e $y \in S_Y$.

PMF conjunta: Definição e propriedades

Sejam X e Y duas VAs discretas definidas no mesmo experimento probabilístico.

Definição

A função massa de probabilidade conjunta de X e Y, denotada por $\mathfrak{p}_{X,Y}$, é definida por

$$p_{X,Y}(x,y) = \Pr[X = x \land Y = y],$$

para $x \in S_X$ e $y \in S_Y$.

Propriedades

1
$$0 \le p_{X,Y}(x,y) \le 1, \forall x,y$$

$$\sum_{x,y} p_{X,Y}(x,y) = 1$$

Exemplo

Considere uma urna com duas bolas vermelhas (\mathbb{R}), uma bola verde (\mathbb{G}) e uma bola azul (\mathbb{B}). Retira-se duas bolas, sem reposição. Seja \mathbb{X} o nº de bolas \mathbb{R} e \mathbb{Y} o nº de bolas \mathbb{G} retiradas. Determine a PMF conjunta de \mathbb{X} e \mathbb{Y} .

Exemplo

Considere uma urna com duas bolas vermelhas (\mathbb{R}), uma bola verde (\mathbb{G}) e uma bola azul (\mathbb{B}). Retira-se duas bolas, sem reposição. Seja \mathbb{X} o nº de bolas \mathbb{R} e \mathbb{Y} o nº de bolas \mathbb{G} retiradas. Determine a PMF conjunta de \mathbb{X} e \mathbb{Y} .

B ₁	B ₂	Х	Y	Pr
R	R	2	0	1/6
R	G	1	1	1/6
R	В	1	0	1/6
G	R	1	1	1/6
G	В	0	1	1/12
В	R	1	0	1/6
В	G	0	1	1/12

Exemplo

Considere uma urna com duas bolas vermelhas (\mathbb{R}), uma bola verde (\mathbb{G}) e uma bola azul (\mathbb{B}). Retira-se duas bolas, sem reposição. Seja \mathbb{X} o nº de bolas \mathbb{R} e \mathbb{Y} o nº de bolas \mathbb{G} retiradas. Determine a PMF conjunta de \mathbb{X} e \mathbb{Y} .

В1	B_2	X	Y	Pr
R	R	2	0	1/6
R	G	1	1	1/6
R	В	1	0	1/6
G	R	1	1	1/6
G	В	0	1	1/12
В	R	1	0	1/6
В	G	0	1	1/12

$p_{X,Y}(x,y)$					
y = 0 $y = 1$					
x = 0	0	1/6			
x = 1 1/3 1/3					
x = 2 1/6 0					

PMFs marginais: Definição

Sejam X e Y duas VAs discretas com PMF conjunta $p_{X,Y}$.

Definição

As **PMFs marginais** de X e Y são dadas por

$$p_X(x) = \sum_{y \in S_Y} p_{X,Y}(x,y)$$

е

$$p_{Y}(y) = \sum_{x \in S_{X}} p_{X,Y}(x,y)$$

Exemplo

Considere o exemplo anterior (urna com 2R, 1G, 1B). Foi visto que a PMF conjunta de X e Y é dada por:

$p_{X,Y}(x,y)$					
y = 0 $y = 1$					
x = 0 0 1/6					
x = 1 1/3 1/3					
x = 2 1/6 0					

Determine as PMFs marginais de X e de Y.

$p_{X,Y}(x,y)$				
	y = 0	y = 1	$p_X(x)$	
x = 0	0	1/6		
x = 1	1/3	1/3		
x = 2	1/6	0		
p _Y (y)				

$p_{X,Y}(x,y)$				
	y = 0	y = 1	$p_X(x)$	
x = 0	0	1/6	1/6	
x = 1	1/3	1/3		
x = 2	1/6	0		
$p_{Y}(y)$				

$$p_X(x=0) = p_{X,Y}(x=0,y=0) + p_{X,Y}(x=0,y=1) = 1/6$$

$p_{X,Y}(x,y)$				
	y = 0	y = 1	$p_X(x)$	
x = 0	0	1/6	1/6	
x = 1	1/3	1/3	2/3	
x = 2	1/6	0		
$p_{Y}(y)$				

$$p_X(x=0) = p_{X,Y}(x=0,y=0) + p_{X,Y}(x=0,y=1) = 1/6$$

$$p_X(x=1) = p_{X,Y}(x=1,y=0) + p_{X,Y}(x=1,y=1) = 2/3$$

$p_{X,Y}(x,y)$				
	y = 0	y = 1	$p_X(x)$	
x = 0	0	1/6	1/6	
x = 1	1/3	1/3	2/3	
x = 2	1/6	0	1/6	
$p_{Y}(y)$				

$$p_X(x=0) = p_{X,Y}(x=0,y=0) + p_{X,Y}(x=0,y=1) = 1/6$$

$$p_X(x=1) = p_{X,Y}(x=1,y=0) + p_{X,Y}(x=1,y=1) = 2/3$$

$$p_X(x=2) = p_{X,Y}(x=2,y=0) + p_{X,Y}(x=2,y=1) = 1/6$$

$p_{X,Y}(x,y)$				
	y = 0	y = 1	$p_X(x)$	
x = 0	0	1/6	1/6	
x = 1	1/3	1/3	2/3	
x = 2	1/6	0	1/6	
$p_{Y}(y)$	1/2			

$$p_X(x=0) = p_{X,Y}(x=0,y=0) + p_{X,Y}(x=0,y=1) = 1/6$$

$$p_X(x=1) = p_{X,Y}(x=1,y=0) + p_{X,Y}(x=1,y=1) = 2/3$$

$$p_X(x=2) = p_{X,Y}(x=2,y=0) + p_{X,Y}(x=2,y=1) = 1/6$$

$$p_Y(y=0) = p_{X,Y}(x=0,y=0) + p_{X,Y}(x=1,y=0) + p_{X,Y}(x=2,y=0) = 1/2$$

$p_{X,Y}(x,y)$				
	y = 0	y = 1	$p_X(x)$	
x = 0	0	1/6	1/6	
x = 1	1/3	1/3	2/3	
x = 2	1/6	0	1/6	
$p_{Y}(y)$	1/2	1/2		

$$p_X(x=0) = p_{X,Y}(x=0,y=0) + p_{X,Y}(x=0,y=1) = 1/6$$

$$p_X(x=1) = p_{X,Y}(x=1,y=0) + p_{X,Y}(x=1,y=1) = 2/3$$

$$p_X(x=2) = p_{X,Y}(x=2,y=0) + p_{X,Y}(x=2,y=1) = 1/6$$

$$p_Y(y=0) = p_{X,Y}(x=0,y=0) + p_{X,Y}(x=1,y=0) + p_{X,Y}(x=2,y=0) = 1/2$$

$$p_Y(y=1) = p_{X,Y}(x=0,y=1) + p_{X,Y}(x=1,y=1) + p_{X,Y}(x=2,y=1) = 1/2$$

$p_{X,Y}(x,y)$					
	y = 0	y = 1	$p_X(x)$		
x = 0	0	1/6	1/6		
x = 1	1/3	1/3	2/3		
x = 2	1/6	0	1/6		
$p_{Y}(y)$	1/2	1/2	1		

$$p_X(x=0) = p_{X,Y}(x=0,y=0) + p_{X,Y}(x=0,y=1) = 1/6$$

$$p_X(x=1) = p_{X,Y}(x=1,y=0) + p_{X,Y}(x=1,y=1) = 2/3$$

$$p_X(x=2) = p_{X,Y}(x=2,y=0) + p_{X,Y}(x=2,y=1) = 1/6$$

$$p_Y(y=0) = p_{X,Y}(x=0,y=0) + p_{X,Y}(x=1,y=0) + p_{X,Y}(x=2,y=0) = 1/2$$

$$p_Y(y=1) = p_{X,Y}(x=0,y=1) + p_{X,Y}(x=1,y=1) + p_{X,Y}(x=2,y=1) = 1/2$$

$p_{X,Y}(x,y)$				
	y = 0	y = 1	$p_X(x)$	
x = 0	0	1/6	1/6	
x = 1	1/3	1/3	2/3	
x = 2	1/6	0	1/6	
$p_{Y}(y)$	1/2	1/2	1	

$$p_X(x=0) = p_{X,Y}(x=0,y=0) + p_{X,Y}(x=0,y=1) = 1/6$$

$$p_X(x=1) = p_{X,Y}(x=1,y=0) + p_{X,Y}(x=1,y=1) = 2/3$$

$$p_X(x=2) = p_{X,Y}(x=2,y=0) + p_{X,Y}(x=2,y=1) = 1/6$$

$$p_Y(y=0) = p_{X,Y}(x=0,y=0) + p_{X,Y}(x=1,y=0) + p_{X,Y}(x=2,y=0) = 1/2$$

$$p_Y(y=1) = p_{X,Y}(x=0,y=1) + p_{X,Y}(x=1,y=1) + p_{X,Y}(x=2,y=1) = 1/2$$

Basta somar linhas e colunas.

PDF conjunta e marginais

PDF conjunta: Definição e propriedades

Relembrando...

Seja X uma VA.

A **PDF** de X, denotada por f_X , é tal que

$$\Pr[X \in A] = \int_A f_X(x) dx,$$

para todo subconjunto $A \subseteq \mathbb{R}$.

PDF conjunta: Definição e propriedades

Definição (indireta)

Sejam X e Y duas VAs (definidas no mesmo experimento probabilístico).

A **PDF conjunta** de X e Y, denotada por $f_{X,Y}$, é tal que

$$\Pr[(X,Y) \in A] = \iint_A f_{X,Y}(x,y) dx dy,$$

para todo subconjunto $A \subseteq \mathbb{R}^2$.

PDF conjunta: Definição e propriedades

Definição (indireta)

Sejam X e Y duas VAs (definidas no mesmo experimento probabilístico).

A **PDF conjunta** de X e Y, denotada por $f_{X,Y}$, é tal que

$$\Pr[(X,Y) \in A] = \iint_A f_{X,Y}(x,y) dx dy,$$

para todo subconjunto $A \subseteq \mathbb{R}^2$.

Propriedades

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$$

PDF conjunta: Ilustração

$$\Pr\bigl[(X,Y)\in A\bigr]=\iint_A \mathsf{f}_{X,Y}(x,y)\,\mathrm{d} x\,\mathrm{d} y$$

Exemplo

Sejam X e Y duas VAs com PDF conjunta constante e diferente de zero apenas na área sombreada abaixo.

Determine a PDF conjunta de X e Y. Vídeo relacionado: YouTube 🗹

A PDF conjunta é dada por:

$$f_{X,Y}(x,y) = \begin{cases} k, & (x,y) \in \text{Circ}(\text{centro} = (0,0), \text{raio} = 1), \\ 0, & \text{c.c.}, \end{cases}$$

A PDF conjunta é dada por:

$$f_{X,Y}(x,y) = \begin{cases} k, & (x,y) \in \text{Circ}(\text{centro} = (0,0), \text{raio} = 1), \\ 0, & \text{c.c.}, \end{cases}$$

A PDF conjunta é dada por:

$$f_{X,Y}(x,y) = \begin{cases} k, & (x,y) \in \text{Circ}(\text{centro} = (0,0), \text{raio} = 1), \\ 0, & \text{c.c.}, \end{cases}$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y = 1$$

A PDF conjunta é dada por:

$$f_{X,Y}(x,y) = \begin{cases} k, & (x,y) \in \text{Circ}(\text{centro} = (0,0), \text{raio} = 1), \\ 0, & \text{c.c.}, \end{cases}$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$$

$$\pi \cdot k = 1$$

A PDF conjunta é dada por:

$$f_{X,Y}(x,y) = \begin{cases} k, & (x,y) \in \text{Circ}(\text{centro} = (0,0), \text{raio} = 1), \\ 0, & \text{c.c.}, \end{cases}$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$$

$$\pi \cdot k = 1$$

$$k = \frac{1}{-}$$

A PDF conjunta é dada por:

$$f_{X,Y}(x,y) = \begin{cases} k, & (x,y) \in \text{Circ}(\text{centro} = (0,0), \text{raio} = 1), \\ 0, & \text{c.c.}, \end{cases}$$

onde k é uma constante.

Portanto:

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 \le 1, \\ 0, & \text{c.c.} \end{cases}$$

PDFs marginais: Definição

Sejam X e Y duas VAs com PDF conjunta $f_{X,Y}$.

Definição

As **PDFs marginais** de X e Y são dadas por

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

е

$$f_{Y}(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

Exemplo

Sejam X e Y duas VAs com PDF conjunta constante e diferente de zero apenas na área sombreada abaixo.

Determine as PDFs marginais de X e de Y.

Já foi visto que a PDF conjunta é dada por $f_{X,Y}(x,y) = \frac{1}{\pi}[x^2 + y^2 \le 1]$.

Já foi visto que a PDF conjunta é dada por $f_{X,Y}(x,y) = \frac{1}{\pi}[x^2 + y^2 \le 1]$.

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}y$$

Já foi visto que a PDF conjunta é dada por $f_{X,Y}(x,y) = \frac{1}{\pi}[x^2 + y^2 \le 1]$.

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \,\mathrm{d}y$$

1 Caso x < -1 ou x > 1:

$$f_X(x) = \int_{u=-\infty}^{y=\infty} 0 \, \mathrm{d}y = 0$$

Já foi visto que a PDF conjunta é dada por $f_{X,Y}(x,y) = \frac{1}{\pi}[x^2 + y^2 \le 1]$.

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \,\mathrm{d}y$$

1 Caso x < -1 ou x > 1:

$$f_X(x) = \int_{y=-\infty}^{y=\infty} 0 \, \mathrm{d}y = 0$$

2 Caso $-1 \le x \le 1$:

$$f_X(x) = \int_{y=-\sqrt{1-x^2}}^{y=\sqrt{1-x^2}} \frac{1}{\pi} dy$$
$$= \frac{2}{\pi} \sqrt{1-x^2}$$

Portanto:

$$f_X(x) = \begin{cases} \frac{2}{\pi} \sqrt{1 - x^2}, & -1 \le x \le 1, \\ 0, & \text{c.c.} \end{cases}$$

PDFs marginais: Exemplo

Portanto:

$$f_X(x) = \frac{2}{\pi} \sqrt{1 - x^2} \left[-1 \le x \le 1 \right]$$

PDFs marginais: Exemplo

Portanto:

$$f_X(x) = \frac{2}{\pi} \sqrt{1 - x^2} [-1 \le x \le 1]$$

PDFs marginais: Exemplo

Portanto:

$$f_X(x) = \frac{2}{\pi} \sqrt{1 - x^2} [-1 \le x \le 1]$$

Analogamente:

$$f_Y(y) = \frac{2}{\pi} \sqrt{1 - y^2} [-1 \le y \le 1]$$

Independência

Independência: Definição

Definição

Duas VAs X e Y são ditas ser (estatisticamente) independentes se

$$p_{X,Y}(x,y) = p_X(x) p_Y(y)$$

$$f_{X,Y}(x,y) = f_X(x) f_Y(y)$$

Independência: Definição

Definição

Duas VAs X e Y são ditas ser (estatisticamente) independentes se

$$p_{X,Y}(x,y) = p_X(x) p_Y(y)$$
$$f_{X,Y}(x,y) = f_X(x) f_Y(y)$$

(caso discreto) (caso geral)

A conjunta se fatora no produto das marginais.

Exemplo

Sejam U ~ DiscreteUniform(0,2) e V ~ Binomial($n=2, p=\frac{1}{2}$) duas VAs independentes.

- a Determine as PMFs marginais de U e de V.
- **b** Determine a PMF conjunta de U e V.

Sejam
$$X = U + V e Y = UV$$
.

- c Determine a PMF conjunta de X e Y.
- d Determine as PMFs marginais de X e de Y.

$$U \sim \text{DiscreteUniform}(0,2)$$
 $V \sim \text{Binomial}(n=2, p=\frac{1}{2})$

$$U \sim \text{DiscreteUniform}(0,2)$$
 $V \sim \text{Binomial}(n=2, p=\frac{1}{2})$

$$V \sim \text{Binomial}(n=2, p=\frac{1}{2})$$

b Determine a PMF conjunta de U e V.

b Determine a PMF conjunta de U e V.

U e V independentes $\implies p_{U,V}(u,v) = p_U(u) p_V(v)$.

ы Determine a PMF conjunta de U e V.

U e V independentes $\implies p_{U,V}(u,v) = p_U(u) p_V(v)$.

u)
3
3
3

ы Determine a PMF conjunta de U e V.

U e V independentes $\implies p_{U,V}(u,v) = p_U(u) p_V(v)$.

$\mathfrak{p}_{\mathrm{U},\mathrm{V}}(\mathfrak{u},\mathfrak{v})$							
$v = 0$ $v = 1$ $v = 2$ $p_{U}(u)$							
u = 0	1/12	1/6	1/12	1/3			
u = 1	1/12	1/6	1/12	1/3			
u = 2	1/12	1/6	1/12	1/3			
$p_V(v)$	1/4	1/2	1/4	1			

ы Determine a PMF conjunta de U e V.

U e V independentes $\implies p_{U,V}(u,v) = p_U(u) p_V(v)$.

$\mathfrak{p}_{\mathrm{U},\mathrm{V}}(\mathfrak{u},\mathfrak{v})$								
	$v = 0$ $v = 1$ $v = 2$ $p_{U}(u)$							
u = 0	1/12	1/6	1/12	1/3				
u = 1	1/12	1/6	1/12	1/3				
u = 2	1/12	1/6	1/12	1/3				
$p_V(v)$	1/4	1/2	1/4	1				

As linhas/colunas são múltiplas umas das outras.

Determine a PMF conjunta de X e Y.

Determine a PMF conjunta de X e Y.

u	V	Х	Y	Pr
0	0	0	0	1/12
0	1	1	0	2/12
0	2	2	0	1/12
1	0	1	0	1/12
1	1	2	1	2/12
1	2	3	2	1/12
2	0	2	0	1/12
2	1	3	2	2/12
2	2	4	4	1/12

Determine a PMF conjunta de X e Y.

u	V	X	Y	Pr
0	0	0	0	1/12
0	1	1	0	2/12
0	2	2	0	1/12
1	0	1	0	1/12
1	1	2	1	2/12
1	2	3	2	1/12
2	0	2	0	1/12
2	1	3	2	2/12
2	2	4	4	1/12

$p_{X,Y}(x,y)$								
	y = 0	y = 0 $y = 1$ $y = 2$ $y = 4$						
x = 0	1/12	0	0	0				
x = 1	3/12	0	0	0				
x = 2	2/12	2/12	0	0				
x = 3	0	0	3/12	0				
x = 4	0	0	0	1/12				

$p_{X,Y}(x,y)$						
	y = 0	y = 1	y = 2	y = 4	$p_X(x)$	
x = 0	1/12	0	0	0		
x = 1	3/12	0	0	0		
x = 2	2/12	2/12	0	0		
x = 3	0	0	3/12	0		
x = 4	0	0	0	1/12		
p _Y (y)						

$p_{X,Y}(x,y)$						
	y = 0	y = 1	y = 2	y = 4	$p_X(x)$	
x = 0	1/12	0	0	0	1/12	
x = 1	3/12	0	0	0	3/12	
x = 2	2/12	2/12	0	0	4/12	
x = 3	0	0	3/12	0	3/12	
x = 4	0	0	0	1/12	1/12	
p _Y (y)	6/12	2/12	3/12	1/12		

$p_{X,Y}(x,y)$						
	y = 0	y = 1	y = 2	y = 4	$p_X(x)$	
x = 0	1/12	0	0	0	1/12	
x = 1	3/12	0	0	0	3/12	
x = 2	2/12	2/12	0	0	4/12	
x = 3	0	0	3/12	0	3/12	
x = 4	0	0	0	1/12	1/12	
p _Y (y)	6/12	2/12	3/12	1/12	1	

d Determine as PMFs marginais de X e de Y.

$p_{X,Y}(x,y)$							
	y = 0	y = 1	y = 2	y = 4	$p_X(x)$		
x = 0	1/12	0	0	0	1/12		
x = 1	3/12	0	0	0	3/12		
x = 2	2/12	2/12	0	0	4/12		
x = 3	0	0	3/12	0	3/12		
x = 4	0	0	0	1/12	1/12		
$p_{Y}(y)$	6/12	2/12	3/12	1/12	1		

X e Y são dependentes.

Exemplo

Sejam X e Y duas VAs com PDF conjunta dada por

$$f_{X,Y}\big(x,y\big) = \begin{cases} \mathrm{e}^{-(x+y)}, & x,y \geq 0, \\ 0, & \text{c.c.} \end{cases}$$

- a Determine as PDFs marginais de X e de Y.
- **b** São X e Y dependentes ou independentes?

$$f_{X,Y}(x,y) = e^{-(x+y)}[x \ge 0 \land y \ge 0]$$

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}y$$

a Determine as PDFs marginais de X e de Y.

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}y$$

■ Caso x < 0:

$$f_X(x) = \int_{y=-\infty}^{y=\infty} 0 \, \mathrm{d}y = 0$$

Determine as PDFs marginais de X e de Y.

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}y$$

■ Caso $x \ge 0$:

$$\begin{split} f_X(x) &= \int_{y=-\infty}^{y=0} 0 \, \mathrm{d}y + \int_{y=0}^{y=\infty} \mathrm{e}^{-(x+y)} \, \mathrm{d}y \\ &= \mathrm{e}^{-x} \int_{y=0}^{y=\infty} \mathrm{e}^{-y} \, \mathrm{d}y \\ &= \mathrm{e}^{-x} \Big[-\mathrm{e}^{-y} \Big]_{y=0}^{y=\infty} \\ &= \mathrm{e}^{-x} [-0 - (-1)] = \mathrm{e}^{-x} \end{split}$$

Portanto:

$$f_X(x) = \begin{cases} e^{-x}, & x \ge 0, \\ 0, & \text{c.c.} \end{cases}$$
 [ou seja, $X \sim \text{Exponential}(1)$]

Portanto:

$$f_X(x) = \begin{cases} e^{-x}, & x \ge 0, \\ 0, & \text{c.c.} \end{cases}$$

[ou seja, $X \sim \operatorname{Exponential}(1)$]

Analogamente:

$$f_{Y}(y) = \begin{cases} e^{-y}, & y \ge 0, \\ 0, & \text{c.c.} \end{cases}$$

[ou seja, Y $\sim \operatorname{Exponential}(1)$]

Portanto:

$$f_X(x) = \begin{cases} e^{-x}, & x \ge 0, \\ 0, & \text{c.c.} \end{cases}$$

[ou seja, $X \sim \operatorname{Exponential}(1)$]

Analogamente:

$$f_Y(y) = \begin{cases} e^{-y}, & y \ge 0, \\ 0, & \text{c.c.} \end{cases}$$

[ou seja, Y $\sim \operatorname{Exponential}(1)$]

b São X e Y dependentes ou independentes?

b São X e Y dependentes ou independentes?

$$f_{X,Y}(x,y) = e^{-(x+y)}[x \ge 0 \land y \ge 0]$$

b São X e Y dependentes ou independentes?

$$f_{X,Y}(x,y) = e^{-(x+y)}[x \ge 0 \land y \ge 0]$$

= $e^{-x}e^{-y}[x \ge 0][y \ge 0]$

b São X e Y dependentes ou independentes?

$$f_{X,Y}(x,y) = e^{-(x+y)} [x \ge 0 \land y \ge 0]$$

= $e^{-x} e^{-y} [x \ge 0] [y \ge 0]$
= $e^{-x} [x \ge 0] e^{-y} [y \ge 0]$

b São X e Y dependentes ou independentes?

$$\begin{split} f_{X,Y}(x,y) &= \mathrm{e}^{-(x+y)} \big[x \ge 0 \land y \ge 0 \big] \\ &= \mathrm{e}^{-x} \mathrm{e}^{-y} \big[x \ge 0 \big] \big[y \ge 0 \big] \\ &= \mathrm{e}^{-x} \big[x \ge 0 \big] \, \mathrm{e}^{-y} \big[y \ge 0 \big] \\ &= f_X(x) \, f_Y(y) \end{split}$$

b São X e Y dependentes ou independentes?

$$\begin{split} f_{X,Y}(x,y) &= e^{-(x+y)} \big[x \ge 0 \land y \ge 0 \big] \\ &= e^{-x} e^{-y} \big[x \ge 0 \big] \big[y \ge 0 \big] \\ &= e^{-x} \big[x \ge 0 \big] e^{-y} \big[y \ge 0 \big] \\ &= f_X(x) f_Y(y) \end{split}$$

Portanto, X e Y são independentes.

Distribuição condicional

Sejam X e Y duas VAs discretas definidas no mesmo experimento probabilístico.

Sejam X e Y duas VAs discretas definidas no mesmo experimento probabilístico.

Definição

A **PMF condicional** de X dado Y = y é definida por

$$p_X(x \mid Y = y) = \frac{p_{X,Y}(x,y)}{p_Y(y)},$$

definida apenas se $p_Y(y) \neq 0$.

Sejam X e Y duas VAs discretas definidas no mesmo experimento probabilístico.

Definição

A **PMF condicional** de X dado Y = y é definida por

$$p_X(x \mid Y = y) = \frac{p_{X,Y}(x,y)}{p_Y(y)},$$

definida apenas se $p_Y(y) \neq 0$.

Como X se distribui sabendo que Y = y.

Sejam X e Y duas VAs discretas definidas no mesmo experimento probabilístico.

Definição

A **PMF condicional** de X dado Y = y é definida por

$$p_X(x \mid Y = y) = \frac{p_{X,Y}(x,y)}{p_Y(y)},$$

definida apenas se $p_Y(y) \neq 0$.

Notações alternativas

$$p_X(x | Y = y) = p_{X|Y=y}(x) = p_{X|Y}(x | y)$$

Exemplo

Considere o exemplo anterior (urna com 2R, 1G, 1B). Lembre-se que X é o n^o de bolas R e Y é o n^o de bolas G, após retiradas duas bolas. Foi visto que a PMF conjunta de X e Y é dada por:

$p_{X,Y}(x,y)$					
$y = 0$ $y = 1$ $p_X(x)$					
x = 0	0	1/6	1/6		
x = 1	1/3	1/3	2/3		
x = 2	1/6	0	1/6		
p _Y (y)	1/2	1/2	1		

Determine as PMFs condicionais de Y dado X = x, para $x \in \{0, 1, 2\}$.

$$p_Y(y \mid X = x) = \frac{p_{X,Y}(x,y)}{p_X(x)}$$

$p_{X,Y}(x,y)$				
$y = 0$ $y = 1$ $p_X(x)$				
x = 0	0	1/6	1/6	
x = 1	1/3	1/3	2/3	
x = 2	1/6	0	1/6	
p _Y (y)	1/2	1/2	1	

y = 0	y = 1

$$p_Y(y \mid X = 0) = \frac{p_{X,Y}(0,y)}{p_X(0)}$$

$p_{X,Y}(x,y)$				
	y = 0	y = 1	$p_X(x)$	
x = 0	0	1/6	1/6	
x = 1	1/3	1/3	2/3	
x = 2	1/6	0	1/6	
p _Y (y)	1/2	1/2	1	

	y = 0	y = 1
$p_{Y}(y \mid X = 0)$	0	1

$$p_Y(y \mid X = 1) = \frac{p_{X,Y}(1,y)}{p_X(1)}$$

$p_{X,Y}(x,y)$			
	y = 0	y = 1	$p_X(x)$
x = 0	0	1/6	1/6
x = 1	1/3	1/3	2/3
x = 2	1/6	0	1/6
p _Y (y)	1/2	1/2	1

	y = 0	y = 1
$p_{Y}(y \mid X = 0)$	0	1
$p_{Y}(y \mid X = 1)$	1/2	1/2

$$p_Y(y \mid X = 2) = \frac{p_{X,Y}(2,y)}{p_X(2)}$$

$p_{X,Y}(x,y)$			
	y = 0	y = 1	$p_X(x)$
x = 0	0	1/6	1/6
x = 1	1/3	1/3	2/3
x = 2	1/6	0	1/6
p _Y (y)	1/2	1/2	1

	y = 0	y = 1
$p_{Y}(y \mid X = 0)$	0	1
$p_{Y}(y \mid X = 1)$	1/2	1/2
$p_{Y}(y \mid X = 2)$	1	0

$$p_{Y}(y \mid X = x) = \frac{p_{X,Y}(x,y)}{p_{X}(x)}$$

$p_{X,Y}(x,y)$			
	y = 0	y = 1	$p_X(x)$
x = 0	0	1/6	1/6
x = 1	1/3	1/3	2/3
x = 2	1/6	0	1/6
p _Y (y)	1/2	1/2	1

	y = 0	y = 1
$p_{Y}(y \mid X = 0)$	0	1
$p_{Y}(y \mid X = 1)$	1/2	1/2
$p_{Y}(y \mid X = 2)$	1	0

Basta normalizar as linhas (ou as colunas).

Caso geral

Sejam X e Y duas VAs definidas no mesmo experimento probabilístico.

Caso geral

Sejam X e Y duas VAs definidas no mesmo experimento probabilístico.

Definição

A **PDF condicional** de X dado Y = y é definida por

$$f_X(x | Y = y) = \frac{f_{X,Y}(x,y)}{f_Y(y)},$$

definida apenas se $f_Y(y) \neq 0$.

Caso geral

Sejam X e Y duas VAs definidas no mesmo experimento probabilístico.

Definição

A **PDF condicional** de X dado Y = y é definida por

$$f_X(x \mid Y = y) = \frac{f_{X,Y}(x,y)}{f_Y(y)},$$

definida apenas se $f_Y(y) \neq 0$.

Notações alternativas

$$f_X(x | Y = y) = f_{X|Y=y}(x) = f_{X|Y}(x | y)$$

llustração

Corresponde a cortes (normalizados) na PDF conjunta.

Exemplo

Sejam X e Y duas VAs com PDF conjunta constante e diferente de zero apenas na área sombreada abaixo.

Determine a PDF condicional de X dado Y = y.

$$f_X(x \mid Y = y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Já foi visto: GeoGebra 🔀

$$f_{X,Y}(x,y) = \frac{1}{\pi} [x^2 + y^2 \le 1]$$
 e $f_Y(y) = \frac{2}{\pi} \sqrt{1 - y^2} [-1 \le y \le 1]$

$$f_X(x | Y = y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Já foi visto: GeoGebra 🗹

$$f_{X,Y}(x,y) = \frac{1}{\pi} \big[x^2 + y^2 \le 1 \big] \quad e \quad f_Y(y) = \frac{2}{\pi} \sqrt{1 - y^2} \big[-1 \le y \le 1 \big]$$

Caso y < -1 ou y > 1:

 $f_X(x \mid Y = y)$ não está definida!

$$f_X(x \mid Y = y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Já foi visto: GeoGebra 🔀

$$f_{X,Y}(x,y) = \frac{1}{\pi} \big[x^2 + y^2 \le 1 \big] \quad e \quad f_Y(y) = \frac{2}{\pi} \sqrt{1 - y^2} \big[-1 \le y \le 1 \big]$$

Caso $-1 \le y \le 1$:

$$f_X(x \mid Y = y) = \frac{\frac{1}{\pi} [x^2 + y^2 \le 1]}{\frac{2}{\pi} \sqrt{1 - y^2}} = \frac{[x^2 + y^2 \le 1]}{2\sqrt{1 - y^2}}$$

$$f_X(x \mid Y = y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Já foi visto: GeoGebra 🔀

$$f_{X,Y}(x,y) = \frac{1}{\pi} \big[x^2 + y^2 \le 1 \big] \quad e \quad f_Y(y) = \frac{2}{\pi} \sqrt{1 - y^2} \big[-1 \le y \le 1 \big]$$

Caso $-1 \le y \le 1$:

$$f_X(x \mid Y = y) = \begin{cases} \frac{1}{2\sqrt{1 - y^2}}, & -\sqrt{1 - y^2} \le x \le \sqrt{1 - y^2}, \\ 0, & \text{c.c.} \end{cases}$$

$$f_X(x \mid Y = y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Já foi visto: GeoGebra 🔀

$$f_{X,Y}(x,y) = \frac{1}{\pi} \big[x^2 + y^2 \le 1 \big] \quad e \quad f_Y(y) = \frac{2}{\pi} \sqrt{1 - y^2} \big[-1 \le y \le 1 \big]$$

Caso $-1 \le y \le 1$:

$$f_X(x \mid Y = y) = \begin{cases} \frac{1}{2\sqrt{1 - y^2}}, & -\sqrt{1 - y^2} \le x \le \sqrt{1 - y^2}, \\ 0, & \text{c.c.} \end{cases}$$

Conclusão: $(X \mid Y = y) \sim \text{Uniform}([-\sqrt{1-y^2}, \sqrt{1-y^2}]).$

Relembrando a PDF marginal de X:

Independência revisitada

Proposição

Para o caso discreto:

$$X$$
 e Y são independentes \iff $p_{X|Y=y} = p_X \ \forall y : p_Y(y) \neq 0$

Para o caso geral:

$$X$$
 e Y são independentes \iff $f_{X|Y=y} = f_X \ \forall y : f_Y(y) \neq 0$

Independência revisitada

Proposição

Para o caso discreto:

$$X$$
 e Y são independentes \iff $p_{X|Y=y} = p_X \ \forall y : p_Y(y) \neq 0$

Para o caso geral:

$$X \text{ e Y s\~ao independentes} \quad \Longleftrightarrow \quad f_{X|Y=y} = f_X \quad \forall \, y: f_Y(y) \neq 0$$

Demonstração:

$$f_X(x \mid Y = y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{f_X(x) f_Y(y)}{f_Y(y)} = f_X(x).$$

Exercícios propostos

Yates-Goodman

5.2.1.

5.2.4.

5.3.1.

5.3.4.

5.4.1.

5.4.2.

5.5.1, 7.5.6.

5.5.4, 7.5.7.

5.6.3

5.6.7

7.4.3.

7.4.11

Esboce sua resposta sempre que possível.

Referências

Referências

JOSÉ PAULO DE ALMEIDA ALBUQUERQUE, JOSÉ MAURO PEDRO FORTES, AND WEILER ALVES FINAMORE.

PROBABILIDADE, VARIÁVEIS ALEATÓRIAS E PROCESSOS ESTOCÁSTICOS. Editora Interciência, 2008.

STEVEN M. KAY.

INTUITIVE PROBABILITY AND RANDOM PROCESSES USING MATLAB®. Springer, 2006.

ROY D. YATES AND DAVID J. GOODMAN. **PROBABILITY AND STOCHASTIC PROCESSES.** Wiley, 3rd edition, 2014.

