Teoría de números algebraicos Tarea 8

Alexey Beshenov (alexey.beshenov@cimat.mx)

28 de octubre de 2020

Ejercicio 8.1. Demuestre que si X es un conjunto convexo simétrico compacto tal que vol $X=2^n\cdot\operatorname{covol}\Lambda$, entonces $X\cap\Lambda\neq\{0\}$.

Solución. Para $k = 1, 2, 3, \dots$ definamos

$$X_k = (1 + 1/k) X$$
.

Esto nos da una cadena de conjuntos convexos simétricos compactos

$$X_1 \supset X_2 \supset X_3 \supset \cdots \supset X$$

Además, es fácil ver que

$$\bigcap_{k\geq 1} X_k = X.$$

Notamos que $\operatorname{vol} X_k > \operatorname{vol} X$, así que para todo k se cumple la condición del teorema de Minkowski, y existe un punto no nulo $\omega_k \in X_k \cap \Lambda$. Todos estos puntos están en X_1 que es compacto, y por la compacidad la sucesión (ω_k) tiene una subsucesión convergente (ω_{n_k}) . Pongamos

$$\omega = \lim_{k \to \infty} \omega_{n_k}.$$

Primero, los ω_{n_k} son elementos de $\Lambda \setminus \{0\}$ que es un conjunto discreto, así que el mismo ω debe ser un elemento de $\Lambda \setminus \{0\}$.

Afirmamos que $\omega \in X \cap \Lambda$. En efecto, usando que Λ es un conjunto discreto, podemos concluir que para k suficientemente grande

$$\omega_{n_k} = \omega_{n_{k+1}} = \omega_{n_{k+2}} = \dots = \omega.$$

Efectivamente, existe $\epsilon>0$ suficientemente pequeño tal que $B_{\epsilon}(\omega)\cap\Lambda=\{\omega\}$. Luego existe k tal que todos los $\omega_{n_{\ell}}$ para $\ell\geq k$ están en la bola $B_{\epsilon}(\omega)$, y por esto coinciden con ω . Tenemos $\omega=\omega_{n_{\ell}}\in X_{n_{\ell}}$ para todo $\ell\geq k$, y luego

$$\omega \in \bigcap_{\ell \ge k} X_{n_\ell} = \bigcap_{k \ge 1} X_k = X.$$

Ejercicio 8.2. Para t > 0 consideremos el conjunto convexo simétrico

$$X_t = \{(x_\tau)_\tau \in K_\mathbb{R} \mid |x_\tau| < t \text{ para todo } \tau\}.$$

Calcule que

$$vol(X_t) = 2^{r_1} (2\pi)^{r_2} t^n.$$

Solución. Este cálculo es muy sencillo. Si x_{τ} es una coordenada real, entonces esta contribuye 2t. Por otra parte, si x_{σ} y $x_{\overline{\sigma}}$ es un par de coordenadas complejas, entonces nos interesa la condición $u^2 + v^2 < t^2$. Este es un círculo de radio t, y su área es πt^2 . Tenemos entonces

$$vol(X) = 2^{r_2} \ vol_{Leb.}(X) = 2^{r_2} \cdot (2t)^{r_1} \cdot (\pi t^2)^{r_2} = 2^{r_1} (2\pi)^{r_2} t^n.$$

Ejercicio 8.3. Supongamos que $d=p_1\cdots p_s$, donde s>1 y los p_i son diferentes primos y consideremos el campo cuadrático imaginario $K=\mathbb{Q}(\sqrt{-d})$. Demuestre que los ideales correspondientes $\mathfrak{p}_1,\ldots,\mathfrak{p}_s\subset\mathcal{O}_K$ generan un subgrupo en $\mathrm{Cl}(K)$ isomorfo a $(\mathbb{Z}/2\mathbb{Z})^{s-1}$.

Solución. Tenemos $d \neq 1,3$ y $\mathcal{O}_K^{\times} = \{\pm 1\}$. Todo primo $p_i \mid d$ se ramifica: se tiene $p_i \mathcal{O}_K = \mathfrak{p}_i^2$ para algún ideal primo $\mathfrak{p}_i \subset \mathcal{O}_K$. Este ideal no es principal: en el caso contrario $\alpha^2 = \pm p_i$ para algún $\alpha \in \mathcal{O}_K$, pero luego $\sqrt{\pm p_i} \in K$, y este no es el caso.

Consideremos el homomorfismo de grupos $\phi\colon (\mathbb{Z}/2\mathbb{Z})^s \to \mathrm{Cl}(K)$ que envía $(0,\dots,1,\dots,0)$ a $[\mathfrak{p}_i]$. Ocupando el mismo argumento de arriba, se calcula que

$$\ker \phi = \{(0, \dots, 0), (1, \dots, 1)\}.$$

Entonces, Cl(K) contiene como un subgrupo

$$\operatorname{im} \phi \cong (\mathbb{Z}/2\mathbb{Z})^s / \ker \phi \cong (\mathbb{Z}/2\mathbb{Z})^{s-1}.$$

Ejercicio 8.4. Calcule los grupos de clases de campos

$$\mathbb{Q}(\sqrt{-110}), \ \mathbb{Q}(\sqrt{-127}), \ \mathbb{Q}(\sqrt{33}), \ \mathbb{Q}(\sqrt[3]{19}), \ \mathbb{Q}(\sqrt{-3}, \sqrt{-5}).$$

Solución. Todos estos cálculos son bastante trabajosos, pero escogí los ejemplos de arriba precisamente para tener algo no trivial. Tal vez este ejercicio tenía que ser una tarea separada.

■ Para $K = \mathbb{Q}(\sqrt{-110})$ tenemos $\Delta_K = -2^3 \cdot 5 \cdot 11$, y la cota de Minkowski es $M_K \approx 13{,}35$. Las factorizaciones de primos relevantes son las siguientes:

$$2\mathcal{O}_K = \mathfrak{p}_2^2,$$

$$3\mathcal{O}_K = \mathfrak{p}_3 \, \mathfrak{p}_3',$$

$$5\mathcal{O}_K = \mathfrak{p}_5^2,$$

$$7\mathcal{O}_K = \mathfrak{p}_7 \, \mathfrak{p}_7',$$

$$11\mathcal{O}_K = \mathfrak{p}_{11}^2,$$

$$13\mathcal{O}_K = \mathfrak{p}_{13} \quad \text{(inerte)},$$

donde

$$\mathfrak{p}_2 = (2, \alpha),$$
 $\mathfrak{p}_3 = (3, 1 + \alpha),$
 $\mathfrak{p}_5 = (5, \alpha),$
 $\mathfrak{p}_7 = (7, 3 + \alpha),$
 $\mathfrak{p}_{11} = (11, \alpha).$

Aquí los ideales primos arriba de p=2,3,5,7,11 no son principales porque en $\mathcal{O}_K=\mathbb{Z}[\sqrt{-110}]$ no hay elementos de norma p: la norma viene dada por $N_{K/\mathbb{Q}}(a+b\,\alpha)=a^2+110\,b^2$. Otros ideales de norma $< M_K$ son

$$\mathfrak{p}_2\,\mathfrak{p}_3,\quad \mathfrak{p}_2\,\mathfrak{p}_3',\quad \mathfrak{p}_3^2,\quad \mathfrak{p}_3'^2,\quad \mathfrak{p}_2\,\mathfrak{p}_5.$$

Estos tampoco son principales: en \mathcal{O}_K no hay elementos de norma 6 y 10, y los elementos de norma 9 son ± 3 , y es fácil ver que $\mathfrak{p}_3^2 \neq 3\mathcal{O}_K$. Calculamos que $\mathfrak{p}_{11}\left(\alpha/11\right) = \mathfrak{p}_2\,\mathfrak{p}_5$, así que en el grupo de clases se tiene $[\mathfrak{p}_{11}] = [\mathfrak{p}_2\,\mathfrak{p}_5]$.

Esto nos dice que

$$Cl(K) = \{ [\mathcal{O}_K], [\mathfrak{p}_2], [\mathfrak{p}_3], [\mathfrak{p}_3'], [\mathfrak{p}_5], [\mathfrak{p}_2 \, \mathfrak{p}_3], [\mathfrak{p}_2 \, \mathfrak{p}_3'], [\mathfrak{p}_7], [\mathfrak{p}_7'], [\mathfrak{p}_3'], [\mathfrak{p}_3''], [\mathfrak{p}_2 \, \mathfrak{p}_5] \}$$

(todavía no estoy afirmando que todos estos elementos son distintos; lo veremos un poco más adelante).

Podemos calcular que

$$\mathfrak{p}_3^2 = (9, 4 + \alpha), \quad \mathfrak{p}_3^3 = (27, 22 + \alpha), \quad \mathfrak{p}_3^6 = (17 + 2\alpha).$$

El ideal \mathfrak{p}_3^3 tampoco es principal porque en \mathcal{O}_K no hay elementos de norma 27. Esto demuestra que $[\mathfrak{p}_3]$ es un elemento de orden 6 en el grupo de clases. Calculamos sus potencias

$$[\mathfrak{p}_3]^3 = [\mathfrak{p}_5], \quad [\mathfrak{p}_3]^4 = [\mathfrak{p}_3]^{-2} = [\mathfrak{p}_3'^2], \quad [\mathfrak{p}_3]^5 = [\mathfrak{p}_3]^{-1} = [\mathfrak{p}_3'].$$

Dado que $\mathrm{Cl}(K)$ tiene un elemento $[\mathfrak{p}_3]$ de orden 6 y otro elemento $[\mathfrak{p}_2] \neq [\mathfrak{p}_3]^3 = [\mathfrak{p}_5]$ de orden 2, podemos concluir que $\mathrm{Cl}(K)$ es un grupo abeliano de orden 12. En particular, todos los elementos en (*) son distintos. Hay solamente dos posibilidades: $\mathbb{Z}/12\mathbb{Z}$ y $\mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/3\mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})^2$.

Se puede probar la relación

$$[\mathfrak{p}_7] = [\mathfrak{p}_3'] [\mathfrak{p}_2] [\mathfrak{p}_5],$$

que nos dice en particular que $[\mathfrak{p}_7]$ tiene orden 6 en el grupo de clases. De aquí y nuestra lista de elementos de $\mathrm{Cl}(K)$ se ve que no hay elementos de orden 12. La única opción que nos queda es entonces $\mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

■ Para $K=\mathbb{Q}(\sqrt{-127})$ tenemos $\mathcal{O}_K=\mathbb{Z}\Big[\frac{1+\sqrt{-127}}{2}\Big]\cong\mathbb{Z}[x]/(x^2-x+32)$, $\Delta_K=-127$, y la cota de Minkowski es $M_K\approx 7,17$.

Denotemos $\alpha = \frac{1+\sqrt{-127}}{2}$.

El primo p=2 se escinde: tenemos

$$2\mathcal{O}_K = \mathfrak{p}_2 \, \mathfrak{p}_2', \quad \mathfrak{p}_2 = (2, \alpha), \quad \mathfrak{p}_2' = (2, 1 + \alpha).$$

Por otra parte, los primos p=3,5,7 son inertes. Como consecuencia, el grupo de clases está generado por $[\mathfrak{p}_2]$.

El ideal \mathfrak{p}_2 no es principal: la norma sobre \mathcal{O}_K viene dada por

$$N(a+b\alpha) = a^2 + ab + 32b^2 = \frac{1}{4}\left((2a+b)^2 + 127b^2\right),$$

y esta no puede ser igual a 2. Además,

$$\mathfrak{p}_2^2 = (4, 2\alpha, \alpha^2) = (4, \alpha)$$

tampoco será principal: para esto basta notar que el único elemento en \mathcal{O}_K de norma 4 es ± 2 y $\mathfrak{p}_2^2 \neq 2\mathcal{O}_K$. De manera similar, se verifica que \mathfrak{p}_2^3 y

$$\mathfrak{p}_2^4=(16,4\alpha,\alpha^2)=(16,\alpha)$$

no son principales. Por otra parte,

$$\mathfrak{p}_{2}^{5} = (16, \alpha)(2, \alpha) = (32, 2\alpha, \alpha^{2}) = (\alpha)$$

sí es principal (para la última igualdad, use que $32=N_{K/\mathbb{Q}}(\alpha)$, y por otra parte, $\alpha^2-\alpha+32=0$).

Esto demuestra que $[\mathfrak{p}_2]$ tiene orden 5 en el grupo de clases. Podemos concluir que $\mathrm{Cl}(K)\cong \mathbb{Z}/5\mathbb{Z}$.

■ Para $K=\mathbb{Q}(\sqrt{33})$ tenemos $\Delta_K=33$, y la cota de Minkowski es $M_K\approx 2,87$. Bastaría entonces revisar qué sucede con el primo p=2. Escribamos $\mathcal{O}_K=\mathbb{Z}[\alpha]$, donde $\alpha=\frac{1+\sqrt{33}}{2}$. Factorizando el polinomio mínimo $f=f_\mathbb{Q}^\alpha=x^2-x-8$ mód 2, se obtiene

$$2\mathcal{O}_K = \mathfrak{p}_2 \mathfrak{p}_2', \quad \mathfrak{p}_2 = (2, \alpha), \quad \mathfrak{p}_2' = (2, 1 + \alpha).$$

Estos ideales resultan ser principales. Por ejemplo, se tiene $\mathfrak{p}_2=(2+\alpha)$. Una de las inclusiones está clara, y para la otra podemos observar que $N_{K/\mathbb{Q}}(2+\alpha)=-2$, así que 2 (y luego α) pertenece al ideal generado por $2+\alpha$.

Podemos concluir que el grupo de clases es trivial. Notamos que según el ejercicio anterior, el grupo de clases del campo *imaginario* $\mathbb{Q}(\sqrt{-33})$ será no trivial, con por lo menos un elemento no trivial de 2-torsión (en realidad, $\mathrm{Cl}(\mathbb{Q}(\sqrt{-33}))\cong \mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z})$. Como acabamos de ver, el mismo resultado no funciona para los campos cuadráticos reales.

■ Para $K = \mathbb{Q}(\sqrt[3]{19})$ tenemos $\Delta_K = -3 \cdot 19^2$ y la cota de Minkowski es $M_K \approx 9,31$. Los primos relevantes se descomponen de la siguiente manera:

$$2\mathcal{O}_K = \mathfrak{p}_2 \, \mathfrak{p}_2',$$

 $3\mathcal{O}_K = \mathfrak{p}_3 \, \mathfrak{p}_3'^2,$
 $5\mathcal{O}_K = \mathfrak{p}_5 \, \mathfrak{p}_5',$
 $7\mathcal{O}_K = \mathfrak{p}_7$ (inerte).

Aquí

$$N(\mathfrak{p}_2) = 2, \ N(\mathfrak{p}'_2) = 2^2,$$

 $N(\mathfrak{p}_3) = N(\mathfrak{p}'_3) = 3,$
 $N(\mathfrak{p}_5) = 5, \ N(\mathfrak{p}'_5) = 5^2,$
 $N(\mathfrak{p}_7) = 3^3.$

De manera explícita, denotando $\alpha = \sqrt[3]{19}$, los ideales primos que están sobre 2 y 5 se obtienen factorizando el polinomio $f = x^3 - 19$:

$$\mathfrak{p}_2 = (2, 1+\alpha), \quad \mathfrak{p}_2' = (2, 1+\alpha+\alpha^2), \quad \mathfrak{p}_5 = (5, 1+\alpha), \quad \mathfrak{p}_5' = (5, 1+4\alpha+\alpha^2).$$

Los ideales primos arriba de 3 se obtiene factorizando $g=x^3-x^2-6x-12$ que es el polinomio mínimo de $\beta=\frac{1}{3}\left(1+\alpha+\alpha^2\right)$ (véase el capítulo 3 de los apuntes donde se considera el ejemplo de $\mathbb{Q}(\sqrt[3]{19})$). El resultado es

$$\mathfrak{p}_3 = (3, 2 + \beta), \quad \mathfrak{p}_3' = (3, \beta).$$

Primero afirmo que en \mathcal{O}_K no hay elementos de norma 2 y 4, y por lo tanto los ideales \mathfrak{p}_2 y \mathfrak{p}_2' no son principales. Recordemos que

$$\mathcal{O}_K = \mathbb{Z}[\alpha, \beta] = \mathbb{Z} \oplus \mathbb{Z}\alpha \oplus \mathbb{Z}\beta.$$

Calculamos

$$N_{K/\mathbb{O}}(a+b\alpha+c\beta) = a^3 + a^2c - 19abc - 6ac^2 + 19b^3 + 19b^2c + 12c^3.$$

Las ecuaciones

$$N_{K/\mathbb{O}}(a+b\alpha+c\beta) \equiv 2,4 \pmod{19}$$

no tienen solución, y por lo tanto podemos concluir que $N_{K/\mathbb{Q}}(a+b\alpha+c\beta)=2,4$ tampoco tienen solución.

Ahora se puede calcular que

$$(3) \mathfrak{p}_2^3 = (4 + \alpha + \alpha^2),$$

así que $[\mathfrak{p}_2]$ es un elemento de orden 3 en el grupo de clases. Por otra parte, $[\mathfrak{p}_2']=[\mathfrak{p}_2]^{-1}=[\mathfrak{p}_2]^2$.

Luego con ayuda de computadora se verifican las relaciones

$$3 \mathfrak{p}_3 = \mathfrak{p}'_3 (2 + \alpha),$$

 $3 \mathfrak{p}_2 = \mathfrak{p}'_3 (1 - \alpha),$
 $3 \mathfrak{p}_5 = \mathfrak{p}'_3 (4 - \alpha),$

de donde

$$[\mathfrak{p}_3] = [\mathfrak{p}_3'] = [\mathfrak{p}_2], \quad [\mathfrak{p}_5] = [\mathfrak{p}_2].$$

De aquí podemos concluir que $Cl(K) \cong \mathbb{Z}/3\mathbb{Z}$.

■ Para $K = \mathbb{Q}(\sqrt{-3}, \sqrt{-5})$ tenemos $\mathcal{O}_K = \mathbb{Z}\Big[\frac{1+\sqrt{-3}}{2}, \sqrt{-5}\Big]$, $\Delta_K = 2^4 \cdot 3^2 \cdot 5^2$, y la cota de Minkowski es $M_K \approx 9{,}11$. Nos interesa cómo los primos p=2,3,5,7 se factorizan en \mathcal{O}_K . El tipo de descomposición puede ser deducido de la descomposición de p en los subcampos $\mathbb{Q}(\sqrt{-3})$, $\mathbb{Q}(\sqrt{-5})$, $\mathbb{Q}(\sqrt{15})$, usando que K/\mathbb{Q} es una extensión de Galois.

$$2\mathcal{O}_{K} = \mathfrak{p}_{2}^{2}, \qquad N = 4,$$
 $3\mathcal{O}_{K} = \mathfrak{p}_{3}^{2} \mathfrak{p}_{3}^{\prime 2}, \qquad N = 3,$ $5\mathcal{O}_{K} = \mathfrak{p}_{5}^{2}, \qquad N = 25,$ $7\mathcal{O}_{K} = \mathfrak{p}_{7} \mathfrak{p}_{7}^{\prime} \mathfrak{p}_{7}^{\prime \prime \prime}, \qquad N = 7.$

El ideal primo arriba de p=5 será irrelevante porque su norma excede la cota de Minkowski.

Para ocupar el teorema de Kummer–Dedekind, podemos, por ejemplo, tomar $\alpha=\frac{1+\sqrt{-3}}{2}+\sqrt{-5}$. El polinomio mínimo correspondiente es $f=x^4-2x^3+13x^2-12x+21$. Calculamos $\Delta(f)=\Delta(\mathbb{Z}[\alpha])=2^4\cdot 3^2\cdot 5^2\cdot 17^2$. Entonces, $[\mathcal{O}_K:\mathbb{Z}[\alpha]]=17$, y las factorizaciones de $p\neq 17$ corresponden a las factorizaciones de f mód p. Calculamos

$$f \equiv (x^2 + x + 1)^2 \pmod{2},$$

 $f \equiv x^2 (x + 2)^2 \pmod{3},$
 $f \equiv x (x + 1) (x + 5) (x + 6) \pmod{7}.$

Entonces,

$$\begin{split} \mathfrak{p}_2 &= (2,\alpha^2 + \alpha + 1), \\ \mathfrak{p}_3 &= (3,\alpha), \quad \mathfrak{p}_3' = (3,\alpha + 2), \\ \mathfrak{p}_7 &= (7,\alpha), \quad \mathfrak{p}_7' = (7,\alpha + 1), \quad \mathfrak{p}_7'' = (7,\alpha + 5), \quad \mathfrak{p}_7'' = (7,\alpha + 6). \end{split}$$

No es difícil verificar que el ideal \mathfrak{p}_2 es principal: podemos tomar como su generador $\sqrt{-3}+\sqrt{-5}$. Para el resto de ideales, nos conviene escribirlos ocupando los automorfismos que generan el grupo de Galois:

$$\sigma: \sqrt{-3} \mapsto -\sqrt{-3}, \quad \tau: \sqrt{-5} \mapsto -\sqrt{-5}.$$

Primero, tenemos

$$\mathfrak{p}_3 = \left(3, \frac{1+\sqrt{-3}}{2} + \sqrt{-5}\right), \quad \mathfrak{p}_3' = \tau(\mathfrak{p}_3),$$

donde $D(\mathfrak{p}_3|3)=D(\mathfrak{p}_3'|3)=\{1,\sigma\}.$ Para los ideales arriba de p=7, tenemos

$$\mathfrak{p}_7 = \left(7, \frac{1+\sqrt{-3}}{2} + \sqrt{-5}\right), \quad \mathfrak{p}_7' = \tau(\mathfrak{p}_7), \quad \mathfrak{p}_7'' = \sigma(\mathfrak{p}_7), \quad \mathfrak{p}_7'' = \sigma\tau(\mathfrak{p}_7).$$

Calculamos

$$\mathfrak{p}_3^2 = \left(\frac{1+3\sqrt{-3}}{2} + \sqrt{-5}\right), \quad \mathfrak{p}_3'^2 = \tau(\mathfrak{p}_3^2),$$

y además

$$\mathfrak{p}_3\,\mathfrak{p}_3'=(\sqrt{-3}).$$

Afirmo que los ideales \mathfrak{p}_3 y \mathfrak{p}_3' no son principales. Para esto bastaría ver que en \mathcal{O}_K no hay elementos de norma 3. Lo haré en PARI/GP, reduciendo la norma mód 5.

Todo esto quiere decir que $[\mathfrak{p}_3]=[\mathfrak{p}_3']$ es un elemento de orden 2 en el grupo de clases.

Calculamos que

$$\mathfrak{p}_3\,\mathfrak{p}_7 = \Big(\frac{1+\sqrt{-3}}{2}+\sqrt{-5}\Big).$$

De manera similar,

$$\mathfrak{p}_3 \, \sigma \mathfrak{p}_7 = \sigma \mathfrak{p}_3 \, \sigma \mathfrak{p}_7 = \sigma(\mathfrak{p}_3 \, \mathfrak{p}_7) = \left(\frac{1 - \sqrt{-3}}{2} + \sqrt{-5}\right),$$

У

$$\mathfrak{p}_3'\,\tau\mathfrak{p}_7 = \tau(\mathfrak{p}_3\,\mathfrak{p}_7) = \Big(\frac{1+\sqrt{-3}}{2} - \sqrt{-5}\Big),$$

y en fin,

$$\mathfrak{p}_3'\,\sigma\tau\mathfrak{p}_7=\sigma\tau(\mathfrak{p}_3\,\mathfrak{p}_7)=\Big(\frac{1-\sqrt{-3}}{2}-\sqrt{-5}\Big).$$

Estos cálculos demuestran que

$$[\mathfrak{p}_7] = [\mathfrak{p}_7'] = [\mathfrak{p}_7''] = [\mathfrak{p}_7'''] = [\mathfrak{p}_3] = [\mathfrak{p}_3'].$$

Podemos concluir que $Cl(K) \cong \mathbb{Z}/2\mathbb{Z}$.

Ejercicio 8.5. Sea K/\mathbb{Q} un campo de números. Demuestre que para cualquier ideal $I \subset \mathcal{O}_K$ existe una extensión finita L/K tal que el ideal correspondiente $I \mathcal{O}_L$ es principal.

Solución. Gracias a la finitud del grupo de clases, sabemos que el ideal I^n es principal para algún $n=1,2,3,\ldots$ (por ejemplo, basta tomar $n=h_K$). Tenemos $I^n=(\alpha)$ para algún $\alpha\in\mathcal{O}_K$. Ahora $\sqrt[n]{\alpha}$ es también un entero algebraico, y en la extensión $L=K(\sqrt[n]{\alpha})$ se tiene $I\mathcal{O}_L=(\sqrt[n]{\alpha})$.

Ejercicio 8.6. Consideremos una sucesión exacta corta de *R*-módulos

$$0 \to M' \xrightarrow{i} M \xrightarrow{p} M'' \to 0$$

- 1) Demuestre que si M'' es un R-módulo libre, entonces el homomorfismo p admite una **sección** $s\colon M''\to M$ tal que $p\circ s=id_{M''}$.
- 2) Demuestre si existe una sección s como arriba, entonces $M' \oplus M'' \cong M$.

Solución. Si $(e_i)_{i\in I}$ es una base de M'' como R-módulo, escojamos elementos $(m_i)_{i\in I}$ tales que $p(m_i)=e_i$. Luego $s\colon e_i\mapsto m_i$ define una sección.

En la parte 2), definamos la aplicación R-lineal

$$\phi: M' \oplus M'' \to M, \quad (m', m'') \mapsto i(m') + s(m'').$$

Tenemos un diagrama conmutativo

$$0 \longrightarrow M' \xrightarrow{m' \mapsto (m',0)} M' \oplus M'' \xrightarrow{(m',m'') \mapsto m''} M'' \longrightarrow 0$$

$$\downarrow^{id} \qquad \qquad \downarrow^{\phi} \qquad \downarrow^{id}$$

$$0 \longrightarrow M' \xrightarrow{i} M \xrightarrow{p} M'' \longrightarrow 0$$

Por el lema del tres (o del cinco, lema de la serpiente, etc.) podemos concluir que ϕ es un isomorfismo.