CURS 11: MORFISME DE INELE

SAI

1. Morfisme de inele

Definiția 1. Fie R și S două inele. Spunem că funcția $f: R \to S$ este morfism de inele dacă sunt îndeplinite condițiile:

- $\forall x, y \in R \quad f(x+y) = f(x) + f(y)$ şi
- ii) $\forall x, y \in R$ f(xy) = f(x)f(y).

Definiția 2. Dacă R și S sunt inele unitare, atunci morfismul de inele $f: R \to S$ se numeşte **unitar** dacă f(1) = 1.

Exemplul 3. Dacă R este un inel (unitar), atunci $\mathbf{1}_R: R \to R$, $\mathbf{1}_R(x) = x$ este un morfism (unitar) de inele. El se numeste morfismul identic al lui R.

Exemplul 4. Dacă R și S sunt inele, atunci $f: R \to S$, f(x) = 0 este un morfism de inele. El se numeste **morfismul nul** de la R la S.

Exemplul 5. Dacă S este subinel al inelului R, atunci $i: S \to R$, i(x) = x este morfism (injectiv) de inele.

Exemplul 6. Pentru orice $n \in \mathbb{N}$, $\pi : \mathbb{Z} \to \mathbb{Z}_n$, $\pi(a) = \hat{a}$ este morfism unitar de inele.

Exemplul 7. Fie R_1, R_2, \ldots, R_n in ele (unitare) și $R = R_1 \times R_2 \times \ldots \times R_n$ R_n produsul lor direct. Atunci:

- Funcția $\sigma_i: R_i \to R, \ \sigma_i(a) = (0,0,\ldots,0,a,0,\ldots,0)$ este morfism de inele (Temă: demonstrați această afirmație!). Acest morfism se numește injecția canonică a lui R_i în R.
- Funcția $\pi_i: R \to R_i, \ \pi_i(a_1, a_2, \ldots, a_n) = a_i \text{ este morfism (unitar)}$ de inele (Temă: demonstrați această afirmație!). Acest morfism se numește **proiecția canonică** a lui R pe R_i .

Exemplul 8. Dacă R este un inel, iar $n \in \mathbb{N}^*$, atunci $j: R \to \mathcal{M}_n(R)$,

$$j(a) = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & a & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a \end{pmatrix} \text{ este un morfism injectiv de inele.}$$

2 SAI

Propoziția 9. Dacă $f: R \to S$ și $g: S \to T$ sunt morfisme (unitare) de inele, atunci $g \circ f$ este morfism (unitar) de inele.

Definiția 10. Numim **endomorfism de inele** orice morfism de inele $f: R \to R$.

Definiția 11. Morfismul de inele $f: R \to S$ se numește **izomorfism** de inele dacă:

- i) f este funcție inversabilă și
- ii) f^{-1} este morfism de inele.

Propoziția 12. Fie R și S două inele și o funcție $f: R \to S$. Atunci, f este izomorfism de inele dacă și numai dacă f este morfism bijectiv de inele.

Definiția 13. Inelele R și S se numesc **izomorfe** dacă există un izomorfism de inele între ele.

Exemplul 14. Fie $m, n \in \mathbb{N}^*$. Atunci, inelele $\mathbb{Z}_m \times \mathbb{Z}_n$ şi \mathbb{Z}_{mn} sunt izomorfe dacă şi numai dacă (m, n) = 1.

Demonstrație: " \Leftarrow ": Definim $f: \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$, $f(a + mn\mathbb{Z}) = (a + m\mathbb{Z}, a + n\mathbb{Z})$. Este imediat (temă!) că f este corect definită şi morfism injectiv de inele. Cum însă domeniul şi codomeniul lui f au ambele de cardinal mn, rezultă că f este bijecție.

,, \Rightarrow ": Cum caracteristica lui \mathbb{Z}_{mn} este mn, iar cea a lui $\mathbb{Z}_m \times \mathbb{Z}_n$ este [m, n], presupunerea de izomorfism ne conduce la egalitatea [m, n] = mn = m, n, de unde (m, n) = 1. \square

Definiția 15. Numim **automorfism de inele** orice izomorfism de inele $f: R \to R$.

Exemplul 16. Dacă R este un inel, atunci $\mathbf{1}_R$ este un automorfism de inele.

Notații:

 $\mathbf{Hom_{Rng}}(\mathbf{R}, \mathbf{S})$ este mulțimea morfismelor de inele de la R la S.

 $\mathbf{End}_{\mathbf{Rng}}(\mathbf{R})$ este mulțimea endomorfismelor de inel ale lui R.

 $Aut_{Rng}(R)$ este mulțimea automorfismelor de inel ale lui R.

Dacă din context se subînțelege că este vorba de morfisme de inele, putem să omitem indicele Rng din notațiile anterioare.

Theorem 17. (Teorema de corespondență pentru subinele și ideale.) Fie $f: R \to S$ un morfism de inele. Atunci:

(i) Dacă A este un subinel al lui R atunci f(A) este subinel al lui S. În particular, Im(f) := f(R) este subinel al lui S;

- (ii) Dacă B este subinel al lui S atunci $f^{-1}(B)$ este subinel al lui R;
- (iii) Dacă J este ideal stâng (respectiv drept, bilateral) al lui S atunci $f^{-1}(J)$ este ideal stâng (respectiv drept, bilateral) al lui R. În particular $Ker(f) := f^{-1}(\{0\})$ este ideal bilateral al lui R;
- (iv) Dacă f este surjectiv atunci $\forall I$ ideal stâng (respectiv drept, bilateral) al lui R avem că f(I) este ideal stâng (respectiv drept, bilateral) al lui S. Mai mult, dacă f este surjectiv atunci există o corespondnță bijectivă între mulțimea idealelor stângi (respectiv drepte, bilaterale) ale lui R ce conțin pe Ker(f) și mulțimea idealelor stângi (respectiv drepte, bilaterale) ale lui S.

Demonstrație: Similară cu cea de la grupuri.

2. Inel factor, teorema fundamentală de izomorfism PENTRU INELE

Fie R un inel şi I un ideal bilateral al său. In particular, I este subgrup al grupului abelian (R, +) și, deci, are sens să considerăm grupul factor $(\frac{R}{I}, +)$. Operația · de pe R induce operația pe $\frac{R}{I}$: $\hat{a} \cdot \hat{b} =$ $\hat{ab}, \, \forall \, a,b \in R$. Aceasta este bine definită deoarece: $\hat{a} = \hat{a'}$ și $\hat{b} = \hat{b'}$ implică a = a' + x și b = b' + y, pentru anumite elemente $x, y \in I$. Rezultă că

$$ab - a'b' = \underbrace{a'y}_{\in I} + \underbrace{xb'}_{\in I} + \underbrace{xy}_{\in I} \in I \iff \widehat{ab} = \widehat{a'b'}.$$

Theorem 18. Fie R inel și I un ideal bilateral al său. Atunci grupul $factor\left(\frac{R}{I},+\right)$ împreună $cu \cdot definită mai sus admite o structură de inel,$ numit inel factor al lui R prin I. În plus,

- (i) $p: R \to \frac{R}{I}$ definit de $p(a) = \hat{a} \ \forall a \in R$ este morfism surjectiv de inele (numit surjecția canonică);
- (ii) $\frac{R}{I}$ este unitar (respectiv comutativ) dacă R este unitar (respectiv comutativ);
- (iii) Proprietatea de universalitate a inelului factor: pentru orice morfism $f: R \to S$ de inele există un unic morfism de inele $\overline{f}: \frac{R}{I} \to S$ astfel încăt $\overline{f} \circ p = f$ dacă și numai dacă $I \subset \operatorname{Ker}(f)$. Dacă există \overline{f} ca mai sus atunci:
 - \overline{f} este injectiv $\Leftrightarrow I = \text{Ker}(f)$;

Demonstrație: Este imediată. De notat că (iii) rezultă în mare parte din proprietatea de universalitate a grupului factor; pentru (iii): $\overline{f}(\hat{a}) =$ $f(a), \forall \hat{a} \in \frac{R}{I}$.

4 SAI

Theorem 19. (Teorema fundamentală de izomorfism pentru inele.) Fie $f: R \to S$ un morfism de inele. Atunci

- (i) Ker(f) este ideal bilateral al lui R iar Im(f) este subinel al lui S.
- (ii) $F: \frac{R}{\operatorname{Ker}(f)} \to \operatorname{Im}(f)$ dat de $F(\hat{a}) = f(a) \ \forall \ \hat{a} \in \frac{R}{\operatorname{Ker}(f)}$ este bine definit şi un izomorfism de inele.

Demonstrație: Partea (i) a fost demonstrată mai sus.

(ii) Ştim de la grupuri că F este bine definit şi un izomorfism de grupuri. Este un izomorfism de inele fiindcă $F(\hat{a} \cdot \hat{b}) = F(\hat{ab}) = f(ab) = f(a)f(b) = F(\hat{a})F(\hat{b}) \ \forall \ \hat{a},\hat{b}$. Dacă f este morfism unitar (de inele unitare), $F(\hat{1}) = f(1) = 1$ şi, deci, F este un izomorfism de inele unitare.

Exemplul 20. Fie $f: \mathbb{Z}[i] \to \mathbb{Z}_2$ dat de $f(a+bi) = \overline{a+b}$ pentru orice $a, b \in \mathbb{Z}$. Atunci f este morfism surjectiv de inele unitare cu $\operatorname{Ker}(f) = (1+i)\mathbb{Z}[i] = \{a+bi \mid a \equiv b \pmod{2}\}$. Prin urmare, $F: \frac{\mathbb{Z}[i]}{(1+i)\mathbb{Z}[i]} \to \mathbb{Z}_2$ dat de $F(\widehat{a+bi}) = \overline{a+b}$, pentru orice $a, b \in \mathbb{Z}$, este bine definit \mathfrak{z}_i un izomorfism de inele.

3. INELE DE POLINOAME

În acest paragraf, R va desemna un inel comutativ şi unitar. Pe mulţimea $R^{\mathbb{N}}$ a şirurilor (a_0, a_1, \ldots) de elemente din R introducem operaţiile

$$(a_0, a_1, \ldots) + (b_0, b_1, \ldots) = (a_0 + b_0, a_1 + b_1, \ldots, a_n + b_n, \ldots)$$

 $(a_0, a_1, \ldots) \cdot (b_0, b_1, \ldots) = (a_0 b_0, a_0 b_1 + a_1 b_0, \ldots, \sum_{i+j=n} a_i b_j, \ldots).$

 $R^{\mathbb{N}}$ are în raport cu aceste operații o structură de inel comutativ și unitar (temă: demonstrați această afirmație!); notând $X=(0,1,0,0,\ldots)\in R^{\mathbb{N}}, X^0=1$, și identificând R cu $\phi(R)$, unde ϕ este morfismul injectiv de inele de la R la $R^{\mathbb{N}}$ dat prin $a\mapsto (a,0,0,\ldots)$, constatăm că $(a_0,a_1,\ldots)=\sum_{i\geq 0}a_iX^i$. Această construcție justifică următoarele:

Definiția 21. Inelul definit mai sus se numește inelul seriilor formale în nedeterminata X cu coeficienți în R.

Notația standard pentru inelul seriilor formale în nedeterminata X cu coeficienți în inelul R este R[[X]]. Din acest moment, vom folosi și noi această notație.

Definiția 22. Prin **ordinul** seriei formale nenule $f = \sum_{i \geq 0} a_i X^i \in R[[X]]$ înțelegem cel mai mic număr natural j pentru care $a_j \neq 0$. Convenim că ordinul seriei formale nule este $+\infty$.

Vom nota ordinul seriei formale $f \in R[[X]]$ cu ord f.

Propoziția 23. Dacă $f, g \in R[[X]]$, atunci

- a) $\operatorname{ord}(f+g) \ge \min\{\operatorname{ord} f, \operatorname{ord} g\}$
- b) $\operatorname{ord}(fg) \ge \operatorname{ord} f + \operatorname{ord} g$.

Dacă, în plus, R este domeniu de integritate, atunci

b') $\operatorname{ord}(fg) = \operatorname{ord} f + \operatorname{ord} g$.

Observația 24. Dacă R este domeniu de integritate, atunci și R[[X]] este domeniu de integritate.

Propoziția 25.
$$U(R[[X]]) = \{a_0 + a_1X + \cdots \in R[[X]] : a_0 \in U(R)\}.$$

Demonstrație: Fie $f = a_0 + a_1 X + \cdots \in R[[X]]$. Dacă f este inversabilă, atunci există $g = b_0 + b_1 X + \cdots \in R[[X]]$ astfel încât fg = 1. Rezultă $a_0b_0 = 1$, deci $a_0 \in U(R)$. Reciproc, dacă $a_0 \in U(R)$, punem $b_0 = a_0^{-1}$ și, presupunând construite b_0, b_1, \ldots, b_n , definim $b_{n+1} = -a_0^{-1}(a_1b_n + a_2b_{n-1} + \cdots + a_{n+1}b_0)$. Este clar că $b_0 + b_1 X + \ldots$ este inversa lui f. \square

Este imediat faptul că submulțimea lui R[[X]] alcătuită din acele serii formale care au un număr finit de coeficienți nenuli este subinel al lui R[[X]]. Această submulțime are o structură de inel în raport cu legile induse de adunarea şi înmulțirea din R[[X]].

Definiția 26. Inelul definit mai sus se numește **inelul de polinoame** în nedeterminata X cu coeficienți în R. Elementele acestui inel se numesc **polinoame** în nedeterminata X cu coeficienți în R.

Notația standard pentru inelul polinoamelor în nedeterminata X cu coeficienți în inelul R este R[X].

Observația 27. Orice polinom $f \in R[X] \setminus \{0\}$ se reprezintă în mod unic sub forma $a_0 + a_1X + \cdots + a_nX^n$ cu $a_0, a_1, \ldots, a_n \in R$ şi $a_n \neq 0$. Două polinoame $f = \sum_{i=0}^m a_iX^i, g = \sum_{j=0}^n b_jX^j \in R[X]$ sunt egale dacă şi numai dacă $a_0 = b_0, a_1 = b_1, \ldots, a_{\max\{m,n\}} = b_{\max\{m,n\}}$.

Definiția 28. Dat fiind polinomul $f = \sum_{i=0}^{n} a_i X^i \in R[X]$ cu $a_n \neq 0$, a_0 se numește **termenul liber** al lui f, iar a_n se numește **coeficientul dominant** al lui f. Dacă $a_n = 1$, polinomul f se numește **monic**. Dacă f nu are alți coeficienți nenuli decât (eventual) pe a_0 , el se numește **constant**.

Definiția 29. Prin **gradul** polinomului nenul $f = \sum_{i=0}^{n} a_i X^i \in R[X]$ înțelegem numărul natural $\max\{j \in \mathbb{N} | a_j \neq 0\}$. Convenim că gradul polinomului nul este $-\infty$.

Vom nota gradul polinomului $f \in R[X]$ cu grad f.

6 SAI

Propoziția 30. Dacă $f, g \in R[X]$, atunci

- a) $grad(f+g) \le max\{grad f, grad g\}$
- b) $\operatorname{grad}(fg) \leq \operatorname{grad} f + \operatorname{grad} g$.

Dacă, în plus, R este domeniu de integritate, atunci

b') $\operatorname{grad}(fg) = \operatorname{grad} f + \operatorname{grad} g$.

Propoziția 31. Fie R un inel comutativ și unitar și $f \in R[X]$. Atunci: i) f este nilpotent dacă și numai dacă toți coeficienții săi sunt nilpotenți. ii) f este inversabil dacă și numai dacă termenul său liber este inversabil, iar toți ceilalți coeficienți ai săi sunt nilpotenți.

- iii) f este idempotent dacă și numai dacă este element idempotent al lui R.
- iv) f este divizor al lui zero dacă și numai dacă există $a \in R \setminus \{0\}$ astfel încât af = 0.

Observația 32. Funcția $j: R \to R[X]$, j(a) = a este morfism unitar de inele. Acest morfism se numește **injecția canonică** a lui R în R[X].

Dacă R este un inel comutativ și unitar, iar j este injecția canonică a lui R în R[X], are loc:

Propoziția 33. (Proprietatea de universalitate a inelului de polinoame într-o nedetereminată) Pentru orice inel comutativ unitar S, orice morfism unitar de inele $u: R \to S$ și orice $s \in S$ există un unic morfism de inele unitare $v: R[X] \to S$ cu proprietățile v(X) = s și $v \circ j = u$.

Demonstrație: Presupunând mai întâi că există un morfism v ca în concluzia propoziției, constatăm că, dat fiind $f = a_0 + a_1 X + \cdots + a_n X^n \in R[X]$, condițiile din enunț implică $v(f) = u(a_0) + u(a_1)s + \cdots + u(a_n)s^n$, de unde unicitatea lui v. Definind acum v prin formula anterioară, constatăm cu uşurință că el este morfism de inele, ceea ce justifică și afirmația de existență din enunț. \square

Definiția 34. Prin valoarea polinomului $f = \sum_{i=0}^{n} a_i X^i \in R[X]$ în elementul $r \in R$ înțelegem elementul $\sum_{i=0}^{n} a_i r^i \in R$. Vom nota acest element cu f(r).

Definiția 35. Prin funcția polinomială asociată polinomului $f \in R[X]$ înțelegem funcția $\widetilde{f} : R \to R$, $\widetilde{f}(x) = f(x)$.

Observația 36. La polinoame egale corespund funcții polinomiale egale. Reciproca nu este numaidecât adevărată.

Theorem 37. (Teorema împărțirii cu rest pentru polinoame.) Fie R inel comutativ unitar și $f, g \in R[X]$ astfel încăt g are coeficientul

dominant inversabil (deci g este nenul). Atunci există şi sunt unice polinoamele $q, r \in R[X]$ cu proprietățile:

$$f = qg + r$$
 și grad(r) $<$ grad(g).

Demonstrație: Pentru a arăta existența polinoamelor q și r, considerăm $X:=\{\operatorname{grad}(f-hg)\mid h\in R[X]\}\subseteq \mathbb{N}\cup\{-\infty\}$. Dacă $-\infty\in X$ atunci există $q\in R[X]$ a.î. f=qg, caz în care iau r=0.

Dacă $-\infty \notin X$ sunt două posibilități. Prima, dacă f=0 iau q=r=0. A doua, dacă $f\neq 0$ atunci $X\subseteq \mathbb{N}$ și îi iau primul element: cum \mathbb{N} este bine ordonată, există $q\in R[X]$ a.î. $\operatorname{grad}(f-qg)$ este prim element al lui X. Notez $0\neq r=f-qg\in R[X]$.

Dacă $\operatorname{grad}(r) \geq \operatorname{grad}(g)$, iau αX^n monomul ce definește gradul lui r și βX^m monomul ce definește gradul lui g. Reamintim că $\alpha \neq 0$, $\beta \in U(R)$ și $n \geq m$. Atunci $r - \alpha \beta^{-1} X^{n-m} g = f - (q + \alpha \beta^{-1} X^{n-m}) g \in R[X]$ este polinom de grad mai mic strict decât $\operatorname{grad}(r)$, prim element în X; contradicție! Deci $\operatorname{grad}(r) < \operatorname{grad}(g)$.

Unicitatea: fie f = qg + r = q'g + r' cu $\operatorname{grad}(r), \operatorname{grad}(r') < \operatorname{grad}(g)$. Avem r - r' = (q' - q)g și $\operatorname{grad}(r - r') \leq \operatorname{grad}(r) < \operatorname{grad}(g)$. Cum g are coeficientul dominant inversabil, dacă $q - q' \neq 0$ atunci $\operatorname{grad}((q' - q)g) \geq \operatorname{grad}(g)$, o contradicție. Rezultă că q' - q = 0 și r - r' = 0.

Terminologie: q se numeste câtul împărțirii lui f la q iar r restul.

Corolar 38. (Teorema lui Bézout.) Fie R inel comutativ unitar şi $f \in R[X]$. Dacă $a \in A$, atunci restul împărțirii lui f la X - a este $\widetilde{f}(a) \in R$, unde \widetilde{f} este funcția polinomială atașată lui f.

Demonstrație: f = (X - a)q + r cu grad(r) < 1. Clar, $r = \widetilde{f}(a) \in R$.

BIBLIOGRAFIE

- [1] T. Dumitrescu, Algebra, Ed. Universității din București, 2006.
- [2] I. D. Ion, N. Radu, Algebra, Ed. Universității din București, 1981.
- [3] C. Năstăsescu, C. Niţă, C. Vraciu, *Bazele algebrei*, Ed. Academiei, Bucureşti, 1986.