+75/1/52+

51

2/2

-1/2

-1/2

2/2

2/2

2/2

2/2

2/2

-1/2

2/2

2/2

THLR Contrôle (35 questions), Septembre 2016

Nom et prénom, lisibles :	Identifiant (de haut en bas):
Genra	
Gésard Anthony	
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. [I] J'ai lu les instructions et mon sujet est complet: les 5 entêtes sont +75/1/xx+····+75/5/xx+.	
Q.2 Un langage est:	
un ensemble fini un ensemble	une suite finie un ensemble ordonné
Q.3 Le langage $\{ \overset{\text{\tiny b}}{=}^n \overset{\text{\tiny b}}{=}^n \forall n \text{ premier, codable } \in \mathbb{R}^n \}$	en binaire sur 64 bits} est
🛛 fini 🌘	infini 🗌 vide
Q.4 Que vaut $\{\varepsilon, a, b\} \cdot \{\varepsilon, a, b\}$?	
	b}
Q.5 Que vaut Fact({ab, c}) (l'ensemble des facteurs	s):
\square \emptyset \blacksquare $\{ab,a,b,c,\varepsilon\}$	
Q.6 Que vaut $(\{a\}\{b\}^*\{a\}^*) \cap (\{a\}^*\{b\}^*\{a\})$	
Q.7 Pour toutes expressions rationnelles e, f , on a	$a e + f \equiv f + e.$
☐ faux	vrai vrai
Q.8 Pour toutes expressions rationnelles e, f , on a	$a(ef)^*e \equiv e(fe)^*.$
wrai vrai	☐ faux
Q.9 Pour toutes expressions rationnelles e, f , sim	plifier $e^*(e+f)^*f^*$.
$\Box e^* + f \Box e + f^* \Box$	$e^{\star}f^{\star}$ \boxtimes $(e+f)^{\star}$ \bigcirc $e^{\star}+f^{\star}$
Q.10 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L \subseteq \Sigma^*$,	
faux	
Q.11 L'expression Perl '[-+]?[0-9]+(,[0-9]+)?	
'42e42' 📳 '42,e42'	☐ '42,4e42' ☐ '42,42e42'

correcte.

Q.17 Le langage $\{ \overset{w}{=}^n \overset{w}{=}^n | \forall n \text{ premier, codable en binaire sur } 64 \text{ bits} \}$ est

	Q.27 En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il		
-1/2	 □ accepte un langage infini □ a des transitions spontanées □ accepte le mot vide □ est déterministe 		
	Q.28 Il est possible de déterminer si une expression rationnelle et un automate correspondent au même langage.		
0/2	☐ faux en temps infini ☐ faux en temps fini ☐ vrai en temps constant ☐ vrai en temps fini		
	Q.29 Combien d'états a l'automate minimal qui accepte le langage $\{a,b,c,\cdots,y,z\}^+$?		
-1/2	☐ 26 ⑤ 52 ☐ Il en existe plusieurs! ☐ 1		
	Q.30 Combien d'états a l'automate minimal qui accepte le langage $\{a,b\}^+$?		
-1/2	☐ 1 @ Il en existe plusieurs! ☐ 2 ☐ 3		
	Q.31 Considérons \mathcal{P} l'ensemble des <i>palindromes</i> (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.		
-1/2	\square Il existe un DFA qui reconnaisse $\mathcal P$ \square Il existe un NFA qui reconnaisse $\mathcal P$ \square P ne vérifie pas le lemme de pompage \square Il existe un ε -NFA qui reconnaisse $\mathcal P$		
	Q.32 a b c Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :		
-1/2	$\boxtimes a^*b^*c^* \qquad \square (a+b+c)^* \qquad \square a^*+b^*+c^* \qquad \textcircled{1} (abc)^*$		
	Q.33 ® Quels états peuvent être fusionnés sans changer le langage reconnu.		
1/2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Q.34		
-1/2	Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0?		
	Q.35 Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de $\xrightarrow{a,b}$?		
2/2			

Q.36 Sur $\{a, b\}$, quel est le complémentaire de b

2/2

Fin de l'épreuve.

