Topic 3 - Statistical Inference

STAT 525 - Fall 2013

STAT 525

Outline

- Normal error regression model
- Inference concerning β_1
- Inference concerning β_0
- Inference concerning prediction

Topic 3

_

STAT 525

Normal Error Regression Model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- β_0 is the intercept
- β_1 is the slope
- ε_i is the i^{th} random error term
 - $\varepsilon_i \sim N(0, \sigma^2) \longleftarrow \mathbf{NEW}$
 - Uncorrelated \longrightarrow independent error terms
- Defines distribution of random variable Y

$$Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$$

STAT 525

Normal Error Model

- Normal error assumption greatly simplifies the theory of analysis
- Sampling distributions used to construct confidence intervals / perform hypothesis tests follow known distributions (e.g., t, F)
- While not always true in practice, most inference only sensitive to large departures from normality
- See pages 31-32 for more details

 ${\bf Topic}\ 3$

3

Topic 3

STAT 525

SAS Proc Reg

```
proc reg data=a1;
   model lean=year/clb p r;
   output out=a2 p=pred r=resid;
   id year;

proc gplot data=a2;
   plot resid*year/ vref=0;
   where lean ne .;
run;
```

Topic 3

5

STAT 525

Testing for Linear Relationship

- Term $\beta_1 X_i$ defines linear relationship
- Will then test $H_0: \beta_1 = 0$
- Test requires
 - Test statistic
 - Sampling distribution of the test statistic

Note: form of test statistic is often

 $\frac{\text{point estimate} - E(\text{point estimate}|H_0)}{s(\text{point estimate})}$

 Sum of
 Mean

 Source
 DF
 Squares
 Square
 F Value
 Pr > F

 Model
 1
 15804
 15804
 904.12
 <.0001</td>

 Error
 11
 192.28571
 17.48052

Analysis of Variance

Corrected Total 12 15997

Root MSE 4.18097 R-Square 0.9880 Dependent Mean 693.69231 Adj R-Sq 0.9869

Coeff Var 0.60271

Parameter Standard

Variable DF Estimate Pr > |t|Error t Value -61.12088 -2.43Intercept 25.12982 0.0333 year 9.31868 0.30991 30.07 <.0001

Variable DF 95% Confidence Limits
Intercept 1 -116.43124 -5.81052
year 1 8.63656 10.00080

Topic 3

6

STAT 525

Distribution of b_1

• Rewrite $b_1 = \sum k_i Y_i$ where

$$k_i = \frac{X_i - \overline{X}}{\sum (X_i - \overline{X})^2}$$

Note:
$$\sum (X_i - \overline{X})(Y_i - \overline{Y}) = \sum (X_i - \overline{X})Y_i$$

 $\sum k_i = 0$ and $\sum k_i X_i = 1$

• Can now describe distribution of b_1

Topic 3

7

Topic 3

-

Distribution of b_1

• Normal since linear combination of i.i.d. Y_i 's

$$E(b_1) = E(\sum k_i Y_i)$$

$$= \sum k_i E(Y_i)$$

$$= \sum k_i \beta_0 + \sum k_i \beta_1 X_i$$

$$= 0 + \beta_1$$

$$Var(b_1) = Var(\sum k_i Y_i)$$

$$= \sum k_i^2 var(Y_i)$$

$$= \sigma^2 / \sum (X_i - \overline{X})^2$$

Topic 3

9

STAT 525

Steps of Hypothesis Test

- $H_0: \beta_1 = 0 \text{ and } H_a: \beta_1 \neq 0$
- Compute the test statistic

$$t^* = \frac{b_1 - 0}{s(b_1)} = \frac{9.32 - 0}{0.31} = 30.07$$

• Compute P-value using sampling dist

$$P(|t_{n-2}| > |t^*|) = 6.5 \times 10^{-12} (< .0001)$$

• Compare to α and draw conclusion

Reject H_0 at $\alpha = .05$ level, evidence suggests a positive linear relationship

Distribution of $\frac{b_1-\beta_1}{s(b_1)}$

• Rewrite as

$$\frac{b_1 - \beta_1}{\sigma(b_1)} \div \frac{s(b_1)}{\sigma(b_1)}$$

- Since Y_i 's are i.i.d. normal
 - b_1 is normal \longrightarrow 1st term is standard normal
 - The quantity $\sum (Y_i \hat{Y}_i)^2 / \sigma^2 \sim \chi_{n-2}^2$
 - The variable $s^2(b_1)/\sigma^2(b_1) \sim \chi^2_{n-2}/(n-2)$
 - This variable is independent of b_0 and b_1

$$\downarrow \\ \frac{b_1-\beta_1}{s(b_1)} \sim t_{n-2}$$

Topic 3

10

STAT 525

Distribution of b_0

• Rewrite $b_0 = \sum k_i Y_i$ where

$$k_i = \frac{1}{n} - \frac{\overline{X}(X_i - \overline{X})}{\sum (X_i - \overline{X})^2}$$

Note: $\sum k_i = 1$ and $\sum k_i X_i = 0$

• Can now describe distribution of b_0

Distribution of b_0

• Normal since linear combination of i.i.d. Y_i 's

$$E(b_0) = E(\sum k_i Y_i)$$

$$= \sum k_i E(Y_i)$$

$$= \sum k_i \beta_0 + \sum k_i \beta_1 X_i$$

$$= \beta_0 + 0$$

$$Var(b_0) = Var(\sum k_i Y_i)$$

$$= \sum k_i^2 var(Y_i)$$

$$= \sigma^2 \left(\frac{1}{n} + \frac{\overline{X}^2}{\sum (X_i - \overline{X})^2} \right)$$

Topic 3

13

STAT 525

Confidence Intervals

- Could also form confidence intervals
- General form for parameter β_l

$$b_l \pm t(1 - \alpha/2, n - 2)s(b_l)$$

- Reject $H_0: \beta_l = \beta_{l0}$ if β_{l0} is not in CI
- These CIs generated in SAS with clb option

Steps of Hypothesis Test

- $H_0: \beta_0 = 0$ and $H_a: \beta_0 \neq 0$
- Compute the test statistic

$$t^{\star} = \frac{b_0 - 0}{s(b_0)} = \frac{-61.12 - 0}{25.13} = -2.43$$

• Compute P-value using sampling dist

$$P(|t_{n-2}| \ge |t^*|) = 0.0333$$

• Compare to α and draw conclusion

Reject H_0 at $\alpha=.05$ level, evidence suggests the intercept is different from zero

Topic 3

STAT 525

Topic 3

Comments

- Test of intercept usually not of interest
- When errors not normal, procedures are generally reasonable approximations
 - Bootstrapping as alternative approach
- Procedures can be modified for one-sided test / confidence bound
- At design stage
 - Var (b_1) smaller when $\sum (X_i \overline{X})^2$ large
 - $Var(b_0)$ smallest when $\overline{X} = 0$

Topic 3

15

Interval Estimation of $E(Y_h)$

• Often interested in estimating the mean response for particular X_h

$$\hat{Y}_h = b_0 + b_1 X_h$$

- Need sampling dist of \hat{Y}_h to form CI
 - Rewrite $\hat{Y}_h = \sum k_i Y_i$ where

$$k_i = \frac{1}{n} + \frac{(X_h - \overline{X})(X_i - \overline{X})}{\sum (X_i - \overline{X})^2}$$

- Similar construction as b_0 (i.e., $X_h = 0$)
- $E(\hat{Y}_h) = E(Y_h)$
- $\operatorname{Var}(\hat{Y}_{h}) = \sigma^{2} \left(\frac{1}{n} + \frac{(X_{h} \overline{X})^{2}}{\Sigma (X_{i} \overline{X})^{2}} \right)$
- CI: $\hat{Y}_h \pm t(1 \alpha/2, n 2)s(\hat{Y}_h)$

Topic 3

17

STAT 525

Interval Estimation of $Y_{h(new)}$

- Consider predicting future observation
- Unlike the expected value, a new observation does not fall directly on the regression line. Must account for added variability.
- In other words, $\hat{Y}_{h(new)} = E(\hat{Y}_h) + \varepsilon_h$
- Consider variability of $Y|X_h \longrightarrow \sigma^2$
- $Var(\hat{Y}_{h(new)}) = \sigma^2 \left(1 + \frac{1}{n} + \frac{(X_h \overline{X})^2}{\Sigma(X_i \overline{X})^2} \right)$

Topic 3

STAT 525

Topic 3

SAS Commands

STAT 525

Topic 3

Obs size

Dependent Variable: hours

Analysis	of	Variance
----------	----	----------

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	252378	252378	105.88	<.0001
Error	23	54825	2383.71562		
Cor Total	24	307203			

Root MSE 48.82331 R-Square 0.8215 Dependent Mean 312.28000 Adj R-Sq 0.8138 Coeff Var 15.63447

Parameter Estimates

Parameter Standard

Variable Estimate Error t Value Pr > |t| 62.36586 26.17743 2.38 0.0259 size 3.57020 0.34697 10.29 <.0001

Topic 3

STAT 525

23

27

100

STAT 525

Output Statistics

		Dep Var	Predicted	Std Error		
0bs	size	hours	Value	Mean Predict	90% CL	Predict
1	80	399.0000	347.9820	10.3628	262.4411	433.5230
2	30	121.0000	169.4719	16.9697	80.8847	258.0591
3	50	221.0000	240.8760	11.9793	154.7171	327.0348
4	90	376.0000	383.6840	11.9793	297.5252	469.8429
5	70	361.0000	312.2800	9.7647	226.9460	397.6140
6	60	224.0000	276.5780	10.3628	191.0370	362.1189
7	120	546.0000	490.7901	19.9079	400.4244	581.1558
8	80	352.0000	347.9820	10.3628	262.4411	433.5230
9	100	353.0000	419.3861	14.2723	332.2072	506.5649
10	50	157.0000	240.8760	11.9793	154.7171	327.0348
11	40	160.0000	205.1739	14.2723	117.9951	292.3528
12	70	252.0000	312.2800	9.7647	226.9460	397.6140
22	90	468.0000	383.6840	11.9793	297.5252	469.8429
23	40	244.0000	205.1739	14.2723	117.9951	292.3528
24	80	342.0000	347.9820	10.3628	262.4411	433.5230
25	70	323.0000	312.2800	9.7647	226.9460	397.6140
26	65		294.4290	9.9176	209.0432	379.8148
27	100		419.3861	14.2723	332.2072	506.5649

399,0000 347.9820 10.3628 330.2215 365.7425 2 30 121.0000 169.4719 16.9697 140.3880 198.5559 3 221.0000 240.8760 11.9793 220.3449 376.0000 383.6840 11.9793 363.1530

Value Mean Predict

Std Error

90% CL Mean

Output Statistics

Dep Var Predicted

hours

261.4070 404.2151 361.0000 312.2800 9.7647 295.5446 329.0154 224.0000 276.5780 10.3628 258.8175 294.3385 120 546.0000 490.7901 19.9079 456.6706 524.9096 352,0000 347.9820 10.3628 330.2215 365.7425 8 353.0000 419.3861 394.9251 9 100 14.2723 443.8470 157.0000 240.8760 220.3449 261.4070 10 11.9793 180.7130 11 160.0000 205.1739 14.2723 229.6349 9.7647 329.0154 252.0000 312.2800 295.5446 12 468.0000 22 383.6840 11.9793 363.1530 404.2151 23 244.0000 205.1739 14.2723 180.7130 229.6349 24 342.0000 347.9820 10.3628 330.2215 365.7425 25 323.0000 312.2800 295.5446 9.7647 329.0154 26 65 294.4290 277.4315 311.4264 9.9176

Topic 3

14.2723

394.9251

443.8470

22

24

Confidence Band

• Consider looking at entire regression line

419.3861

- Want to define likely region where line lies
- Replace $t(1-\alpha/2, n-2)$ with Working-Hotelling value in each confidence interval

$$W^2 = 2F(1-\alpha; 2, n-2)$$

- Boundary values define a hyperbola
- Confidence level α covers all X_h

$$\Pr(|\hat{Y}_h - Y_h| \le Ws(\hat{Y}_h), \forall X_h) \ge 1 - \alpha$$

• Will be discussed more in Chapter 4

STAT 525

Confidence Bands

- Prediction wider than confidence interval
- Band narrowest at \overline{X}
- Theory comes from fact that (b_0, b_1) is multivariate normal
 - Joint confidence region for (β_0, β_1) is an ellipse
 - $\operatorname{Cov}(b_0, b_1) = \operatorname{Cov}(\sum k_{i0}Y_i, \sum k_{i1}Y_i) = -\overline{X}\operatorname{Var}(b_1)$
- $\bullet\,$ Band width for $X_h>$ individual CI width
- \bullet Can find α for individual CIs that gives same results

Background Reading

- Appendix A
- \bullet KNNL Chapters 2 and 3
- SAS template file knnl054.sas

Topic 3

Topic 3 25