Report - Sistema di Gestione Dati Pazienti con Snowflake

1. Obiettivo del Progetto

Realizzare un sistema centralizzato, sicuro e scalabile su Snowflake per la gestione dei dati clinici e amministrativi di un ospedale, garantendo conformità GDPR, accesso controllato e aggiornamenti automatici dai file CSV su Google Cloud Storage (GCS).

2. Struttura del modello - Health Data Platform

2.1 Tabelle

Entità	Descrizione breve	
pazienti	Informazioni anagrafiche dei pazienti	
ricoveri	Dati sui ricoveri ospedalieri	
visite	Dettagli delle visite effettuate	
terapie	Farmaci prescritti ai pazienti	
sensori_iot	Dati biometrici raccolti da sensori	
utenti	Personale medico, infermieristico e amministrativo	
accessi_log	Tracciamento degli accessi ai dati	

2.2 Relazioni tra entità

Relazione	Tipo	Spiegazione
ricoveri.ID_Paziente → pazienti.ID_Paziente	1:N	Un paziente può avere più ricoveri
visite.ID_Paziente → pazienti.ID_Paziente	1:N	Un paziente può avere più visite
terapie.ID_Paziente → pazienti.ID_Paziente	1:N	Un paziente può avere più terapie
$sensori_iot.ID_Paziente \rightarrow pazienti.ID_Paziente$	1:N	Un paziente può avere più rilevazioni IoT
$accessi_log.ID_Utente \rightarrow utenti.ID_Utente$	1:N	Un utente può accedere più volte
accessi_log.ID_Paziente → pazienti.ID_Paziente	1:N	Ogni accesso si riferisce a un paziente

2.3 Chiavi Primarie / Esterne

Tabella	Chiave Primaria	Chiavi Esterne
pazienti	ID_Paziente	-
ricoveri	ID_Ricovero	ID_Paziente
visite	ID_Visita	ID_Paziente
terapie	ID_Terapia	ID_Paziente
sensori_iot	ID_Rilevazione	ID_Paziente
utenti	ID_Utente	-
accessi_log	ID_Accesso	ID_Utente, ID_Paziente

2.4 Sicurezza

- RBAC (Role-Based Access Control): Ruoli medico, infermiere, amministrativo
- Mascheramento: Codice fiscale mascherato a chi non è medico/infermiere
- Log accessi: ogni accesso tracciato in accessi log

3. Setup Iniziale

• Creazione dei file CSV sul PC:

Nome	Ultima modifica	Tipo	Dimensione
accessi_log.csv	12/07/2025 11:10	Microsoft Excel Co	1 KB
pazienti.csv	12/07/2025 11:10	Microsoft Excel Co	1 KB
ricoveri.csv	12/07/2025 11:10	Microsoft Excel Co	1 KB
sensori_iot.csv	12/07/2025 11:10	Microsoft Excel Co	1 KB
terapie.csv	12/07/2025 11:10	Microsoft Excel Co	1 KB
utenti.csv	12/07/2025 11:10	Microsoft Excel Co	1 KB
visite.csv	12/07/2025 11:10	Microsoft Excel Co	1 KB

• Creazione Progetto GCP:

• Creazione Bucket:

o Nome bucket: health-data-bucket-sg

o **Posizione:** europe-west1

Default storage class: Standard
 Controllo accessi: Uniforme

Caricamento file CSV

• Creazione Integrazione con GCS:

CREATE OR REPLACE STORAGE INTEGRATION gcs_integrazione
TYPE = EXTERNAL_STAGE
STORAGE_PROVIDER = GCS
ENABLED = TRUE
STORAGE ALLOWED LOCATIONS = ('gcs://health-data-bucket-sg');

DESC INTEGRATION gcs integrazione;

• Aggiunta autorizzazione accesso bucket GCS:

• Database e Schema:

```
CREATE OR REPLACE DATABASE health_data;
USE DATABASE health_data;

CREATE OR REPLACE SCHEMA raw_data;
USE SCHEMA raw_data;
```

• Stage Esterno:

```
CREATE OR REPLACE STAGE health_data_stage

URL = 'gcs://health-data-bucket-sg'

STORAGE_INTEGRATION = gcs_integrazione

FILE FORMAT = (TYPE = CSV FIELD OPTIONALLY ENCLOSED BY = '''' SKIP HEADER = 1);
```

4. Creazione Tabelle Cliniche e Amministrative

Sono state create 7 tabelle per rappresentare:

- Dati anagrafici dei pazienti (pazienti)
- Ricoveri ospedalieri (ricoveri)
- Visite mediche (*visite*)
- Terapie (terapie)
- Dati sensori IoT (sensori iot)
- Utenti ospedalieri (utenti)
- Log di accesso ai dati (accessi log)

Per ogni tabella è stato effettuato il caricamento tramite:

5. Caricamento Dati da GCS

Per ogni tabella è stato effettuato il caricamento tramite:

```
COPY INTO <nome_tabella>
FROM @health_data_stage/<nome_file>.csv
FILE FORMAT = (TYPE = CSV FIELD OPTIONALLY ENCLOSED BY = "" SKIP HEADER = 1);
```

6. Sicurezza - Ruoli e Permessi RBAC

- Ruoli creati:
 - o medico
 - o infermiera
 - amministrativo

• Permessi assegnati:

-- MEDICO

```
GRANT SELECT ON TABLE pazienti TO ROLE medico;
GRANT SELECT ON TABLE ricoveri TO ROLE medico;
GRANT SELECT ON TABLE visite TO ROLE medico;
GRANT SELECT ON TABLE terapie TO ROLE medico;
```

GRANT SELECT ON TABLE sensori iot TO ROLE medico;

-- INFERMIERA

GRANT SELECT ON TABLE pazienti TO ROLE infermiera; GRANT SELECT ON TABLE ricoveri TO ROLE infermiera;

-- AMMINISTRATIVO

GRANT SELECT ON TABLE utenti TO ROLE amministrativo; GRANT SELECT ON TABLE accessi log TO ROLE amministrativo;

7. Creazione Utenti Snowflake

CREATE USER luca_verdi ... DEFAULT_ROLE = medico; CREATE USER anna_russo ... DEFAULT_ROLE = infermiera; CREATE USER marco_conti ... DEFAULT_ROLE = amministrativo;

GRANT ROLE medico TO USER luca_verdi; GRANT ROLE infermiera TO USER anna_russo; GRANT ROLE amministrativo TO USER marco conti;

8. Viste

• Vista Anonimizzata per GDPR:

CREATE OR REPLACE VIEW vista_anonimizzata_pazienti AS SELECT ID_Paziente, Sesso, Data_Nascita FROM pazienti;

• Vista con JOIN per report visite:

```
CREATE OR REPLACE VIEW vista_visite_completa AS

SELECT v.ID_Visita, p.Nome, p.Cognome, v.Data_Visita, v.Tipo_Visita, v.Medico

FROM visite v

JOIN pazienti p ON v.ID Paziente = p.ID Paziente;
```

	# ID_VISITA	A NOME	A COGNOME	© DATA_VISITA	A TIPO_VISITA	A MEDICO
1	501	Mario	Rossi	2024-03-15	Controllo	Dr. Bianchi
2	502	Laura	Bianchi	2024-04-10	Visita di controllo post-ricoνε	Dr. Verdi
3	503	Giulia	Neri	2024-06-05	Neurologica	Dr. Neri

9. Mascheramento Dinamico (GDPR)

CREATE OR REPLACE MASKING POLICY mask_codice_fiscale AS (val STRING)

RETURNS STRING ->

CASE WHEN CURRENT ROLE() IN ('medico', 'infermiera') THEN val ELSE '*********** END;

ALTER TABLE pazienti MODIFY COLUMN Codice Fiscale SET MASKING POLICY mask codice fiscale;

10. Task di Aggiornamento Automatico

• Task principale orario:

```
CREATE OR REPLACE TASK task_aggiorna_dati_gcs ... SCHEDULE = '1 HOUR' ...

BEGIN

COPY INTO ... -- tutte le tabelle

END;

ALTER TASK task aggiorna dati gcs RESUME;
```

• Task analitico per report ricoveri:

```
CREATE TABLE report_ricoveri (...);

CREATE OR REPLACE TASK aggiorna_report_ricoveri SCHEDULE = 'USING CRON 0 * * * * UTC' AS INSERT INTO report_ricoveri SELECT CURRENT_TIMESTAMP, COUNT(*) FROM ricoveri;

ALTER TASK aggiorna_report_ricoveri RESUME;
```

11. Conclusioni

Questo sistema cerca di soddisfare tutti i requisiti funzionali e normativi per una moderna gestione dei dati sanitari:

- Centralizzazione, automazione e protezione dei dati con accesso sicuro in base ai ruoli
- Conformità con GDPR e mascheramento dinamico
- Supporto alla business intelligence tramite viste e report periodici

HealthDataPro è ora in grado di offrire un'infrastruttura scalabile, efficiente e sicura per le esigenze ospedaliere moderne.