

Joseph Cunningham

Contents

Ι	Quantum Mechanics	3
1	Measurement theory	4
2	Postulates 2.1 States, observables and measurement 2.1.1 States 2.1.2 Effects	5 5 5
3	Quantum theory 3.1 Quantum statistics 3.2 Time evolution 3.2.1 The Schrödinger equation 3.2.2 Schrödinger and Heisenberg pictures 3.2.3 Adiabatic theorem	6666666666
4	Approximations 4.1 Approximating eigenvectors	9 9
5	Stepped potentials	10 10 10
II	Quantum Information and computation	.1
1	Bras and kets	12
2	2.1.1 Qubits	13 13 14 14 14

		2.2.2 Controlled gates	15
3	Eige 3.1 3.2 3.3	Quantum Zeno effect	16 16 16 16
4	Var	ational quantum algorithms	17
5	Alg	prithms	18
	5.1	Some building blocks	18
		5.1.1 Preparing states	18
		5.1.1.1 Uniform superposition	18
		5.1.2 Quantum Fourier transform	18
	5.2	Quantum oracle querying	18
		5.2.1 Oracle set-up	18
		5.2.2 Deutsch's problem	19
		5.2.3 Grover's search algorithm	20
		5.2.3.1 The algorithm	20
		5.2.3.2 Analogue Grover	21
		5.2.3.3 Adiabatic Grover	22
		5.2.3.4 Poisson projective measurement	23
\mathbf{A}	Bib	iography	25

Part I Quantum Mechanics

Measurement theory

Postulates

2.1 States, observables and measurement

2.1.1 States

A $\underline{\text{state}}$ on a Hilbert space is a positive trace class operator with trace 1.

Proposition I.1. Let ρ be a state. The following are equivalent:

- 1. ρ is extremal;
- 2. ρ is a projector;
- 3. $\rho = \rho^2$;
- 4. $Tr[\rho^2] = 1;$
- 5. $\|\rho\| = 1$;
- 6. $S(\rho) := -\operatorname{Tr}[\rho \ln \rho] = 0$.

The quantity $S(\rho) \coloneqq -\operatorname{Tr}[\rho \ln \rho]$ is called the <u>von Neumann entropy</u>.

2.1.2 Effects

An $\underline{\text{effect}}$ on a Hilbert space is a bounded operator in $[0, \mathrm{id}]$.

Quantum theory

- 3.1 Quantum statistics
- 3.2 Time evolution
- 3.2.1 The Schrödinger equation

$$H = i\hbar \frac{\mathrm{d}}{\mathrm{d}t}$$

Lemma I.2. $U = e^{Ht/i\hbar} = e^{-iHt/\hbar}$.

3.2.2 Schrödinger and Heisenberg pictures

Lemma I.3. Let \mathcal{H} be a Hilbert space and $\{e_i\}$ an orthonormal basis. Let U be a unitary operator on \mathcal{H} . Then $\{Ue_i\}$ is also an orthonormal basis for \mathcal{H} .

 $\{e_i\}$ gives Schrödinger and $\{Ue_i\}$ gives Heisenberg.

3.2.3 Adiabatic theorem

Theorem I.4. Let \mathcal{H} be a Hilbert space and consider a path $H:[0,1] \to \mathcal{SA}(\mathcal{H}): s \mapsto H(s)$ of self-adjoint operators on the Hilbert space.

Take $\epsilon > 0$. If the Hamiltonian of a system is given by $H(\epsilon t)$ for times $t \in [0, \epsilon^{-1}]$. Then the state ρ of the system satisfies

$$i\epsilon \frac{\mathrm{d}\rho(s)}{\mathrm{d}s} = [H(s), \rho(s)],$$

where $s = \epsilon t \in [0, 1]$.

Assume $\lambda(s) \in \sigma(H(s))$ is an isolated point of the spectrum for all $s \in [0,1]$. It is an eigenvalue and let P(s) be the orthogonal projector onto the eigenspace. Set $\Delta(s) := \inf d(\lambda, \sigma(H(s)) \setminus \{\lambda(s)\})$.

Assume $\rho(0) \leq P(0)$. Consider the fidelity $F(s) := \text{Tr}(P(s)\rho(s))$. Then

$$F(1) \ge 1 - \epsilon O\left(\frac{\|H'\|^2}{\Delta^3} + \frac{\|H''\|}{\Delta^2}\right).$$

Proof. We first write down a differential equation for the fidelity (where $t = \frac{d}{ds}$)

$$\frac{\mathrm{d}F(s)}{\mathrm{d}s} = \mathrm{Tr}(P'\rho) + \mathrm{Tr}(P\rho').$$

The second term is zero because P commutes with H:

$$\begin{aligned} \operatorname{Tr}(P\rho') &= -\epsilon^{-1}i\operatorname{Tr}\left(P\big[H,\rho\big]\right) \\ &= -\epsilon^{-1}i\operatorname{Tr}\left(P(H\rho - \rho H)\right) \\ &= -\epsilon^{-1}i\operatorname{Tr}\left(PH\rho\right) + \epsilon^{-1}i\operatorname{Tr}\left(\rho HP\right) \\ &= -\epsilon^{-1}i\operatorname{Tr}\left(PH\rho\right) + \epsilon^{-1}i\operatorname{Tr}\left(\rho PH\right) \\ &= -\epsilon^{-1}i\operatorname{Tr}\left(PH\rho\right) + \epsilon^{-1}i\operatorname{Tr}\left(\rho PH\right) \\ &= -\epsilon^{-1}i\operatorname{Tr}\left(PH\rho\right) - \epsilon^{-1}i\operatorname{Tr}\left(\rho PH\right) \end{aligned}$$

by XV.161.

Now set Q(s) = id - P(s) and consider the pseudoinverse $(H - \lambda id)^+$ (TODO by continuous functional calculus?). Then $(H - \lambda id)(H - \lambda id)^+ = Q = (H - \lambda id)^+(H - \lambda id)$ by continuous functional calculus (TODO ref). Now we can expand P' = PP'Q + QP'P (by XIII.18.2), so

$$\frac{dF(s)}{ds} = \operatorname{Tr}(P'\rho) \\
= \operatorname{Tr}(PP'Q\rho + QP'P\rho) \\
= \operatorname{Tr}\left(PP'(H - \lambda \operatorname{id})^{+}(H - \lambda \operatorname{id})\rho + (H - \lambda \operatorname{id})(H - \lambda \operatorname{id})^{+}P'P\rho\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}(H - \lambda \operatorname{id})\rho + (H - \lambda \operatorname{id})^{+}P'P\rho(H - \lambda \operatorname{id})\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}(H\rho - \rho \lambda P) + (H - \lambda \operatorname{id})^{+}P'(\rho \mu - \lambda P\rho)\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}(H\rho - \rho H)P + (H - \lambda \operatorname{id})^{+}P'P(\rho H - H\rho)\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho]P - (H - \lambda \operatorname{id})^{+}P'P[H, \rho]\right) \\
= \operatorname{Tr}\left(PP'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'P[H, \rho]\right) \\
= \operatorname{Tr}\left(P'Q(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}QP'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^{+}P'[H, \rho]\right) \\
= \operatorname{Tr}\left(P'(H - \lambda \operatorname{id})^{+}[H, \rho] - (H - \lambda \operatorname{id})^$$

Integrating this w.r.t. s gives

$$F(1) - F(0) = i\epsilon \int_0^1 \operatorname{Tr}\left(\left[P', (H - \lambda \operatorname{id})^+\right] \rho'\right) \mathrm{d}s.$$

We fill in that F(0) = 1 and perform integration by parts to obtain

$$F(1) = 1 + i\epsilon \int_0^1 \text{Tr}\left(\left[P', (H - \lambda \operatorname{id})^+\right] \rho'\right) ds$$
$$= 1 + i\epsilon \operatorname{Tr}\left(\left[(H - \lambda \operatorname{id})^+, P'\right] \rho\right)_0^1 - i\epsilon \int_0^1 \operatorname{Tr}\left(\left[(H - \lambda \operatorname{id})^+, P'\right]' \rho\right) ds$$

Approximations

- 4.1 Approximating eigenvectors
- 4.1.1 Power series expansion of a non-degenerate level
- 4.2 Approximating evolutions

Investigations of systems

5.1 Stepped potentials

(Use density to solve general potentials?)

- 5.2 Coulomb interaction
- 5.3 Harmonic oscillator

Part II Quantum Information and computation

Bras and kets

Let A be some set. We denote the Hilbert space $\ell^2(A)$ by \mathcal{H}_A and define the ket function

$$|-\rangle:A\to\ell^2(A):a\mapsto|a\rangle$$

by

$$|a\rangle(x) = \delta_{ax}.$$

In particular $\mathcal{H}_n \cong \mathbb{C}^n$ for all $n \in \mathbb{N}$.

The set $\{|a\rangle\}_{a\in A}$ forms a Hilbert basis of \mathcal{H}_A . In particular $\{|0\rangle, |1\rangle\}$ is a basis of \mathbb{C}^2 .

Circuit model

2.1 Qubits

A <u>qubit</u> is an element of $\mathbb{C}P^2$.

2.1.1 $\mathfrak{su}(2)$ and the Pauli matrices

The qubit Hamiltonians are elements of $\mathfrak{u}(2)$. Getting rid of the arbitrary global phase gives us elements of $\mathfrak{su}(2)$.

Lemma II.1. For all $\sigma \in \mathfrak{su}(2)$, the eigenvalues λ_1, λ_2 are real and $\lambda_1 = -\lambda_2$.

Proof. For all $\sigma \in \mathfrak{su}(2)$, σ is self-adjoint and $Tr[\sigma] = \lambda_1 + \lambda_2 = 0$.

Corollary II.1.1. For all $\sigma \in \mathfrak{su}(2)$, we have $\|\sigma\|_2 = \sqrt{2} \|\sigma\|$, where $\|\cdot\|_2$ is the Hilbert-Schmidt norm

Proof. We have
$$\|\sigma\|_2 = \sqrt{\lambda_1^2 + \lambda_2^2} = \sqrt{2}|\lambda_1| = \sqrt{2}\|\sigma\|$$
.

Corollary II.1.2. The inner product

$$\langle \cdot, \cdot \rangle : (\sigma_1, \sigma_2) \mapsto \frac{1}{2} \operatorname{Tr}[\sigma_1 \sigma_2]$$

on $\mathfrak{su}(2)$ yields the operator norm as the norm associated with this inner product.

Corollary II.1.3. Let σ be a unit vector in $\mathfrak{su}(2)$. Then σ has eigenvalues ± 1 . This means σ is unitary.

Corollary II.1.4. There is a bijection between the unit vectors in $\mathfrak{su}(2)$ and the rank-1 projections on \mathbb{C}^2 given by $\mathfrak{su}(2)/\mathbb{R} \to \sigma \mapsto E_1^{\sigma}$, where E_1^{σ} is the eigenspace of σ associated with eigenvalue +1.

Proof. We construct an inverse of the map. Let P_1 be the orthogonal projector on E_1^{σ} . Then $\sigma = 2P_1 - \mathrm{id}$.

Proposition II.2. Let $\sigma \in \mathfrak{su}(2)$. Then $\sigma^2 = \|\sigma\|^2 \mathbf{1}$.

Proof. We have

$$\sigma^{2} = \|\sigma\|^{2} \left(\frac{\sigma}{\|\sigma\|}\right)^{2} = \|\sigma\|^{2} \frac{\sigma}{\|\sigma\|} \left(\frac{\sigma}{\|\sigma\|}\right)^{*} = \|\sigma\|^{2} \mathbf{1},$$

where we have used that $\frac{\sigma}{\|\sigma\|}$ is unitary by II.1.3.

Corollary II.2.1. The real algebra generated by $\mathfrak{su}(2)$ is the Clifford algebra $\mathrm{Cl}_{3,0}$. The unit pseudoscalar is i1.

Note that $\mathfrak{su}(2)$ is a Lie algebra and thus closed under the Lie bracket, but not an algebra under operator composition. Thus the algebra generated by $\mathfrak{su}(2)$ is larger than $\mathfrak{su}(2)$ (indeed $\sigma^2 = \|\sigma\|^2 \mathbf{1} \notin \mathfrak{su}(2)$).

Proposition II.3 (Pauli matrices). The Clifford algebra $\mathfrak{su}(2)$ has an orthonormal basis

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad and \qquad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

We cal

• the eigenbasis of σ_z the <u>Z-basis</u> or <u>computational basis</u> and write the elements

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix};$$

• the eigenbasis of σ_x the <u>X-basis</u> or <u>coherence basis</u> and write the elements

$$|+\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \qquad |-\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{|0\rangle - |1\rangle}{\sqrt{2}}.$$

2.1.2 The Bloch sphere

Because $\mathfrak{su}(2)$ is the Clifford algebra $\text{Cl}_{3,0}$, we can use the unit sphere in \mathbb{R}^3 to represent the unit vectors in $\mathfrak{su}(2)$. By II.1.4 we can also use it to represent the rank-1 projections on \mathbb{C}^2 . The unit sphere with as x, y, z axes the Pauli matrices $\sigma_x, \sigma_y, \sigma_z$ is called the Bloch sphere. TODO image of Bloch sphere.

TODO spherical coordinates: $\cos \theta/2 |0\rangle + e^{i\phi} \sin \theta/2 |1\rangle$

Lemma II.4.

$$e^{\phi/2i\sigma}e^{\theta/2i\sigma^{\perp}}\left|1\right\rangle = \cos\theta/2\left|0\right\rangle + e^{i\phi}\sin\theta/2\left|1\right\rangle$$

2.2 Gates

2.2.1 One-qubit gates

2.2.1.1 Hadamard gate

The <u>Hadamard gate</u> or <u>Walsh-Hadamard gate</u> W is the linear operation determined by

the following matrix:

$$W = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

We have the following mappings

$$W |0\rangle = |+\rangle$$
 $W |+\rangle = |0\rangle$ $W |1\rangle = |-\rangle$ $W |-\rangle = |1\rangle$

Lemma II.5. The Hadamard gate is its own inverse: $W^2 = 1$.

2.2.1.2 Pauli gates

Each of the Pauli matrices determines an operation on \mathbb{C}^2 . In this context we often write X, Y and Z for σ_x, σ_y and σ_z .

Lemma II.6. The Pauli gates are their own inverses: $X^2 = Y^2 = Z^2 = 1$.

2.2.2 Controlled gates

Let H_1, H_2 be two Hilbert spaces. Let P be a projector on H_1 and L an operator on H_2 . The operation of L controlled by P is the operation $P \otimes L + (\mathrm{id}_{H_1} - P) \otimes \mathrm{id}_{H_2}$ in $H_1 \otimes H_2 \to H_1 \otimes H_2$.

Eigenpath traversal

3.1 Quantum Zeno effect

Proposition II.7. Consider a path of states $|\psi(s)\rangle$ where $s \in [0,1]$. Assume that, for fixed d and all δ ,

$$|\langle \psi(s)|\psi(s+\delta\rangle|^2 \ge 1 - d^2\delta^2.$$

Then

3.2 Adiabatic quantum computation

3.3 Evolution through measurement

3.3.1 Phase randomisation

$$|\psi_0\rangle = |E_0(0)\rangle = \sum_i \alpha_i |E_i(s_1)\rangle$$

$$\rho(s_1) = \frac{1}{T} \int_0^T e^{-iH(s_1)t} |\psi_0\rangle \langle \psi_0| e^{iH(s_1)t} dt$$

$$= \sum_{i,j} \alpha_i \alpha_j^* \frac{1}{T} \left(\int_0^T e^{-i(E_i - E_j)t} dt \right) |E_i\rangle \langle E_j|$$

$$= \sum_{i,j} \alpha_i \alpha_j^* \left(\frac{i(e^{-i(E_i - E_j)T} - 1)}{T(E_i - E_j)} \right) |E_i\rangle \langle E_j|$$

Theorem II.8 (Randomised dephasing). Let $|\psi(s)\rangle$ be a nondegenerate eigenstate of H(s) and $\{\omega_j\}$ the energy differences to the other eigenstates $|\psi_j(s)\rangle$. Let T be a random variable. Then, for all states ρ , we have

$$\left\| (M_l - e^{-iH(s)T} \rho e^{-iH(s)T} \right\|_{tr} \le \epsilon = \sup_{\omega_j} |\Phi(\omega_j)|$$

Variational quantum algorithms

Algorithms

5.1 Some building blocks

5.1.1 Preparing states

5.1.1.1 Uniform superposition

Lemma II.9. Consider the Hilbert space $\mathcal{H}_{\mathbb{F}_2^k}$. We can generate a uniform superposition of computational basis states by applying a Hadamard gate to each register, initialised to zero:

$$\frac{1}{2^k} \sum_{b \in \mathbb{F}_2^k} |b\rangle = W^{\otimes k} |0\rangle^{\otimes k}.$$

Projection on the *n*-dimensional uniform superposition is given by $\frac{1}{n}\mathbb{J}_{n\times n}$.

5.1.2 Quantum Fourier transform

5.2 Quantum oracle querying

5.2.1 Oracle set-up

For any finite set A, we define a mapping

$$O: (A \to \mathbb{F}_2) \to \operatorname{End}(\mathcal{H}_A \otimes \mathcal{H}_{\mathbb{F}_2}): f \mapsto O_f$$

where

$$O_f(|k\rangle \otimes |q\rangle) := |k\rangle \otimes |f(k) + q\rangle.$$

We call O_f the <u>quantum oracle</u> of f.

Lemma II.10. We can convert an oracle O_f to a unitary operator $U_f: \mathcal{H}_A \to \mathcal{H}_A: |k\rangle \mapsto$

 $(-1)^{f(k)}|k\rangle$ using only a constant number of Hadamard and NOT gates:

If A is finite, then $U_f = \operatorname{id} -2 \sum_{k \in f^{-1}(1)} |k\rangle\langle k|$, which is a Householder matrix.

Proof. We show that the circuit transforms $|k\rangle$ into $(-1)^{f(k)}|k\rangle$.

Given input $|k\rangle$, the oracle acts on $|k\rangle \otimes |-\rangle = |k\rangle \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) = \frac{|k\rangle \otimes |0\rangle}{\sqrt{2}} - \frac{|k\rangle \otimes |1\rangle}{\sqrt{2}}$ and produces

$$\frac{|k\rangle \otimes |f(k)\rangle}{\sqrt{2}} - \frac{|k\rangle \otimes |f(k) + 1\rangle}{\sqrt{2}} = \begin{cases} |k\rangle \otimes |-\rangle & (f(k) = 0) \\ -|k\rangle \otimes |-\rangle & (f(k) = 1) \end{cases}$$
$$= (-1)^{f(k)} |k\rangle \otimes |-\rangle.$$

Given that XW is the inverse of WX, the output $U_f|k\rangle$ is equal to $(-1)^{f(k)}|k\rangle$. The second register is left in the state $|0\rangle$, thus we can either measure of just discard it. Finally, assume A finite. Then

$$\begin{split} U_f &= U_f \operatorname{id} = U_f \sum_{k \in A} |k\rangle\langle k| = \sum_{k \in f^{-\downarrow}(0)} U_f |k\rangle\langle k| + \sum_{k \in f^{-\downarrow}(1)} U_f |k\rangle\langle k| \\ &= \sum_{k \in f^{-\downarrow}(0)} |k\rangle\langle k| - \sum_{k \in f^{-\downarrow}(1)} |k\rangle\langle k| \\ &= \sum_{k \in f^{-\downarrow}(0)} |k\rangle\langle k| - \sum_{k \in f^{-\downarrow}(1)} |k\rangle\langle k| + \sum_{k \in f^{-\downarrow}(1)} |k\rangle\langle k| - \sum_{k \in f^{-\downarrow}(1)} |k\rangle\langle k| \\ &= \left(\sum_{k \in f^{-\downarrow}(0)} |k\rangle\langle k| + \sum_{k \in f^{-\downarrow}(1)} |k\rangle\langle k| \right) - 2 \sum_{k \in f^{-\downarrow}(1)} |k\rangle\langle k| \\ &= \operatorname{id} -2 \sum_{k \in f^{-\downarrow}(1)} |k\rangle\langle k| \end{split}$$

5.2.2 Deutsch's problem

Problem statement

Suppose we have a 1-bit to 1-bit function $f:\{0,1\}\to\{0,1\}:x\mapsto f(x)$. Determine whether f is

- constant, i.e. f(0) = f(1); or
- balanced, i.e. $f(0) \neq f(1)$.

Proposition II.11. The classical query complexity of Deutch's problem is 2. The quantum query complexity is 1.

Proof. The classical case is clear.

In the quantum case, we have access to the unitary $U_f: \mathcal{H}_{\mathbb{F}_2} \to \mathcal{H}_{\mathbb{F}_2}$ from II.10. The state $WU_fW|0\rangle$ is as follows:

$$WU_{f}W|0\rangle = WU_{f}|+\rangle = WU_{f}\left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right)$$

$$= W\left(\frac{(-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle}{\sqrt{2}}\right)$$

$$= W\left\{\frac{(-1)^{f(0)}\frac{|0\rangle + |1\rangle}{\sqrt{2}} = (-1)^{f(0)}|+\rangle \quad (f(0) = f(1))}{(-1)^{f(0)}\frac{|0\rangle - |1\rangle}{\sqrt{2}} = (-1)^{f(0)}|-\rangle \quad (f(0) \neq f(1))}$$

$$= \begin{cases} (-1)^{f(0)}|0\rangle \quad (f(0) = f(1))\\ (-1)^{f(0)}|1\rangle \quad (f(0) \neq f(1)) \end{cases}$$

If we measure this state, then we will certainly measure 0 is f is constant and 1 if f is balanced.

5.2.3 Grover's search algorithm

Problem statement

Suppose we have a set \mathcal{N} of N items, some of which are marked. WLOG we can take \mathcal{N} to be the set of bit strings of length ν . The marked items form a subset \mathcal{M} of size M. Suppose we have an oracle that tells us whether an object is marked or not:

$$f: \mathcal{N} \to \{0, 1\}: x \mapsto \begin{cases} 0 & (x \in \mathcal{M}) \\ 1 & (x \notin \mathcal{M}) \end{cases}$$

The problem is to find any marked item.

Classically we need to check $\Theta(N/M)$ items on average. Grover's algorithm has a query complexity of $O(\sqrt{N/M})$.

5.2.3.1 The algorithm

Define the states

$$|\mathcal{N}\rangle \coloneqq \frac{1}{\sqrt{N}} \sum_{n \in \mathcal{N}} |n\rangle \langle n|, \quad \text{and} \quad |\mathcal{M}\rangle \coloneqq \frac{1}{\sqrt{M}} \sum_{m \in \mathcal{M}} |m\rangle \langle m|.$$

Using II.10, construct the unitary $U_f = \mathrm{id}_{\mathcal{H}_N} - 2\sum_{m \in \mathcal{M}} |m\rangle\langle m|$. Also construct the Householder matrix

$$U = W^{\otimes \nu}(\operatorname{id} - 2|0\rangle\langle 0|)W^{\otimes \nu} = \operatorname{id} - \mathbb{J}_{2\times 2}^{\otimes \nu} = \operatorname{id} - \mathbb{J}_{2\nu \times 2\nu} = \operatorname{id} - 2|\mathcal{N}\rangle\langle \mathcal{N}|.$$

(TODO Householder circuit).

Now consider the subspace $S := \operatorname{span}\{|\mathcal{M}\rangle, |\mathcal{N}\rangle\}$. We take an orthonormal basis $\{|\mathcal{M}\rangle, |\mathcal{M}'\rangle\}$ of S where

$$|\mathcal{M}'
angle \coloneqq \sqrt{rac{N}{N-M}} \, |\mathcal{N}
angle - \sqrt{rac{M}{N-M}} \, |\mathcal{M}
angle = rac{1}{\sqrt{N-M}} \sum_{k \in \mathcal{N} \setminus M} |k
angle \, .$$

Then we can write

$$|\mathcal{N}\rangle = \sqrt{\frac{N-M}{N}} |\mathcal{M}'\rangle + \sqrt{\frac{M}{N}} |\mathcal{M}\rangle$$

and (using id = $|\mathcal{M}\rangle\langle\mathcal{M}| + |\mathcal{M}'\rangle\langle\mathcal{M}'|$)

$$\begin{split} U_f &= \mathrm{id} - 2|\mathcal{M}\rangle\langle\mathcal{M}| = -|\mathcal{M}\rangle\langle\mathcal{M}| + |\mathcal{M}'\rangle\langle\mathcal{M}'| \\ U &= \mathrm{id} - 2\left(\sqrt{\frac{N-M}{N}}\,|\mathcal{M}'\rangle + \sqrt{\frac{M}{N}}\,|\mathcal{M}\rangle\right)\left(\sqrt{\frac{N-M}{N}}\,\langle\mathcal{M}'| + \sqrt{\frac{M}{N}}\,\langle\mathcal{M}|\right) \\ &= \frac{N-2M}{N}|\mathcal{M}\rangle\langle\mathcal{M}| + \frac{2M-N}{N}|\mathcal{M}'\rangle\langle\mathcal{M}'| - 2\left(\frac{\sqrt{M}\sqrt{N-M}}{N}\right)\left(|\mathcal{M}\rangle\langle\mathcal{M}'| + |\mathcal{M}'\rangle\langle\mathcal{M}|\right) \end{split}$$

So S is invariant under both U and U_f and we can write the matrix G of $-UU_f$ in this basis:

$$G = \begin{pmatrix} 1 - \frac{2M}{N} & -2\frac{\sqrt{M}\sqrt{N-M}}{N} \\ 2\frac{\sqrt{M}\sqrt{N-M}}{N} & 1 - \frac{2M}{N} \end{pmatrix}.$$

We note that $1 - \frac{2M}{N}$ is some number between -1 and 1, so we can write it as $\cos \alpha$. Then

$$\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - \left(1 - 2\frac{M}{N}\right)^2} = \sqrt{4\frac{M}{N} - 4\frac{M^2}{N^2}} = 2\sqrt{\frac{M}{N}}\sqrt{1 - \frac{M}{N}} = 2\frac{\sqrt{M}\sqrt{N - M}}{N}.$$

Thus

$$G = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} = R_{\alpha}.$$

We now want to apply G a certain number of times, say k, such that

$$G^k |\mathcal{N}\rangle = G^k \left(\frac{\sqrt{M/N}}{\sqrt{1 - M/N}} \right) = R_{k\alpha} R_{\tan^{-1}(\sqrt{N/M-1})} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \approx \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |\mathcal{M}\rangle.$$

TODO:

$$\sqrt{\frac{N}{M}} \approx T_k(\cos \alpha) - \sqrt{\frac{N}{M} - 1} U_{k-1}(\cos \alpha)$$

or

$$0 \approx \sqrt{\frac{N}{M} - 1} T_k(\cos \alpha) + U_{k-1}(\cos \alpha) \sin \alpha$$

and

$$(\cos \alpha + \sin \alpha)^k = T_k(\cos \alpha) + \sin \alpha U_{k-1}(\cos \alpha).$$

We also have $\cos\alpha+\sin\alpha=\frac{(\sqrt{N-M}-\sqrt{M})^2+2M}{N}$

5.2.3.2 Analogue Grover

Consider the Hamiltonian $H = |\mathcal{M}\rangle\langle\mathcal{M}| + |\mathcal{N}\rangle\langle\mathcal{N}|$, which we can rewrite in terms of $|\mathcal{M}\rangle$ and $|\mathcal{M}'\rangle$:

$$H = \left(1 + \frac{M}{N}\right) |\mathcal{M}\rangle\langle\mathcal{M}| + \left(1 - \frac{M}{N}\right) |\mathcal{M}'\rangle\langle\mathcal{M}'| + \frac{\sqrt{M}\sqrt{N-M}}{M} \left(|\mathcal{M}\rangle\langle\mathcal{M}'| + |\mathcal{M}'\rangle\langle\mathcal{M}|\right),$$

This operator is self-adjoint and leaves the subspace S invariant, so S has a basis of eigenvectors for it.

By XVII.11.2, all elements of $e^{-iHt} |\mathcal{N}\rangle$ lie in S. W.r.t. the basis $\{|\mathcal{M}\rangle, |\mathcal{M}'\rangle\}$, we have

$$e^{-iHt} |\mathcal{N}\rangle = \begin{pmatrix} \sqrt{M/N}\cos(\sqrt{M/N}t) - i\sin(\sqrt{M/N}t) \\ \sqrt{1 - M/N}\cos(\sqrt{M/N}t) \end{pmatrix}.$$

Thus $\langle \mathcal{M}|e^{-iHt}|\mathcal{N}\rangle = \frac{M}{N}\cos^2(\sqrt{M/N}t) + \sin^2(\sqrt{M/N}t)$. This is equal to 1 when $t = \frac{\pi}{2}\sqrt{\frac{N}{M}}$. Thus we can produce $|\mathcal{M}\rangle$ in $O(\sqrt{N/M})$ time. TODO: optimality.

5.2.3.3 Adiabatic Grover

$$H_0 = \mathbf{1} - |\mathcal{N}\rangle\langle\mathcal{N}| = \mathbb{1} - \mathbb{J}/N$$

$$H_f = \mathbf{1} - \sum_{m \in \mathcal{M}} |m\rangle\langle m| = \begin{pmatrix} 0 & 0 \\ 0 & \mathbb{1}_{N-M} \end{pmatrix}.$$

Then

$$\begin{split} H(s) &= (1-s)H_0 + sH_f = \begin{pmatrix} (1-s)\mathbb{1} + \frac{s-1}{N}\mathbb{J} & \frac{s-1}{N}\mathbb{J} \\ \frac{s-1}{N}\mathbb{J} & \mathbb{1} + \frac{s-1}{N}\mathbb{J} \end{pmatrix} = \begin{pmatrix} (1-s)\mathbb{1}_M & 0 \\ 0 & \mathbb{1}_{N-M} \end{pmatrix} + \frac{s-1}{N}\mathbb{J}. \end{split}$$
 Then, setting $A = \begin{pmatrix} (1-s-\lambda)\mathbb{1}_M & 0 \\ 0 & (1-\lambda)\mathbb{1}_{N-M} \end{pmatrix}$
$$\det(H(s) - \lambda) = \det\left(A + \frac{s-1}{N}\mathbb{J}^{n\times 1}\mathbb{J}^{1\times n}\right)$$

$$= \det(A)\det\left(\mathbb{1}_N + \frac{s-1}{N}A^{-1}\mathbb{J}^{n\times 1}\mathbb{J}^{1\times n}\right)$$

$$= \det(A)\det\left(1 + \frac{s-1}{N}\mathbb{J}^{1\times n}A^{-1}\mathbb{J}^{n\times 1}\right)$$

$$= (1-s-\lambda)^M(1-\lambda)^{N-M}\left(1 + \frac{M(s-1)}{(1-s-\lambda)N} + \frac{(N-M)(s-1)}{(1-\lambda)N}\right)$$

$$= (1-s-\lambda)^{M-1}(1-\lambda)^{N-M-1}\left(\lambda^2 - \lambda + s(1-s)\frac{N-M}{N}\right), \end{split}$$

where we have used the matrix determinant lemma to simplify the calculation. We see that there are four distinct eigenvalues:

$$\lambda_{0,1} = \frac{1}{2} \left(1 \pm \frac{\sqrt{N + 4(Ns^2 - Ns - Ms^2 + Ms)}}{\sqrt{N}} \right) \qquad \text{with multiplicity } 1$$

$$\lambda_2 = 1 - s \qquad \qquad \text{with multiplicity } M - 1$$

$$\lambda_3 = 1 \qquad \qquad \text{with multiplicity } N - M - 1.$$

Next we are interested in the eigen vectors associated to $\lambda_{0,1}$. Let Q_1 be a unitary transfor-

mation that maps
$$\mathbb{J}^{M\times 1}$$
 to $\begin{pmatrix} \sqrt{M} \\ 0 \\ 0 \\ \vdots \end{pmatrix} \in \mathbb{C}^M$. Similarly let Q_2 be a unitary transformation that

maps
$$\mathbb{J}^{(N-M)\times 1}$$
 to $\begin{pmatrix} \sqrt{N-M} \\ 0 \\ 0 \\ \vdots \end{pmatrix} \in \mathbb{C}^{(N-M)}$ and define $Q = \begin{pmatrix} Q_1 & 0 \\ 0 & Q_2 \end{pmatrix}$, which is also unitary.

Then we have

$$\begin{split} QH(s)Q^{-1} &= \begin{pmatrix} (1-s)\mathbb{1}_M & 0 \\ 0 & \mathbb{1}_{N-M} \end{pmatrix} + \frac{s-1}{N}Q\mathbb{J}^{N\times 1}(\mathbb{J}^{N\times 1})^*Q^* \\ &= \begin{pmatrix} (1-s)\mathbb{1}_M & 0 \\ 0 & \mathbb{1}_{N-M} \end{pmatrix} + \frac{s-1}{N}\begin{pmatrix} \sqrt{M} \\ 0 \\ \vdots \\ 0 \\ \sqrt{N-M} \\ 0 \\ \vdots \end{pmatrix} \begin{pmatrix} \sqrt{M} \\ 0 \\ \vdots \\ 0 \\ \sqrt{N-M} \\ 0 \\ \vdots \end{pmatrix}. \end{split}$$

All but two of the eigenvectors are just elements of \mathcal{N} . To study the other two we can simplify by "removing the zeros". Now the eigenvalue problem becomes

$$\left(\begin{pmatrix} 1 - s - \lambda_{0,1} & 0 \\ 0 & 1 - \lambda_{0,1} \end{pmatrix} + \frac{s - 1}{N} \left(\frac{\sqrt{M}}{\sqrt{N - M}} \right) \left(\frac{\sqrt{M}}{\sqrt{N - M}} \right)^* \right) \mathbf{v} = 0.$$

Setting $\mathbf{v} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ gives us the equations

$$0 = (1 - s - \lambda_{0,1})x_1 + \frac{s - 1}{N}(Mx_1 + \sqrt{M}\sqrt{N - M}x_2)$$
$$0 = (1 - \lambda_{0,1})x_2 + \frac{s - 1}{N}(\sqrt{M}\sqrt{N - M}x_1 + (N - M)x_2)$$

reshuffling and dividing these equations gives

$$\frac{(1-s-\lambda_{0,1})x_1}{(1-s-\lambda_{0,1})x_2} = \frac{-\frac{s-1}{N}(Mx_1+\sqrt{M}\sqrt{N-M}x_2)}{-\frac{s-1}{N}(\sqrt{M}\sqrt{N-M}x_1+(N-M)x_2)} = \frac{\sqrt{M}(\sqrt{M}x_1+\sqrt{N-M}x_2)}{\sqrt{N-M}(\sqrt{M}x_1+\sqrt{N-M}x_2)} = \frac{\sqrt{M}(\sqrt{M}x_1+\sqrt{M}x_1+\sqrt{M}x_2)}{\sqrt{M}(\sqrt{M}x_1+\sqrt{M}x_2)} = \frac{\sqrt{M}(\sqrt{M}x_1+\sqrt{M}x_1+\sqrt{M}x_2)}{\sqrt{M}(\sqrt{M}x_1+\sqrt{M}x_2)} = \frac{\sqrt{M}(\sqrt{M}x_1+\sqrt{M}x_1+\sqrt{M}x_2)}{\sqrt{M}(\sqrt{M}x_1+\sqrt{M}x_2)} = \frac{\sqrt{M}(\sqrt{M}x_1+\sqrt{M}x_1+\sqrt{M}x_2)}{\sqrt{M}(\sqrt{M}x_1+\sqrt{M}x_1+\sqrt{M}x_2)} = \frac{\sqrt{M}(\sqrt{M}x_1+\sqrt{M}x$$

So we have eigenvectors $\mathbf{v}_{0,1} = (\sqrt{M}(1-\lambda_{0,1}), \sqrt{N-M}(1-s-\lambda_{0,1}))^{\mathrm{T}}$ of $QH(s)Q^{-1}$. The corresponding eigenvectors of H(s) are then given by

$$Q^* \mathbf{v}_{0,1} = \begin{pmatrix} (1 - \lambda_{0,1}) \mathbb{J}^{M \times 1} \\ (1 - s - \lambda_{0,1}) \mathbb{J}^{(N-M) \times 1} \end{pmatrix}.$$

For computational ease we will keep on working with the eigenvectors $\mathbf{v}_{0,1}$ of $QH(s)Q^{-1}$. We denote by $|0\rangle$ and $|1\rangle$ the normalisation of $\mathbf{v}_{0,1}$.

5.2.3.4 Poisson projective measurement

The dynamics of the system is governed by the differential equation

$$\frac{\mathrm{d}\rho}{\mathrm{d}s} = \Lambda(|0\rangle\langle 0|\rho|0\rangle\langle 0| + |1\rangle\langle 1|\rho|1\rangle\langle 1| - \rho).$$

Now we can rewrite $\frac{\mathrm{d}\rho}{\mathrm{d}t}$ in the basis $|0\rangle$, $|1\rangle$: let $i,j,k,l=0,1\mod 2$ with implicit summation

$$\begin{split} \frac{\mathrm{d}\rho}{\mathrm{d}s} &= \frac{\mathrm{d}}{\mathrm{d}s} \left(|i\rangle\langle i|\rho|j\rangle\langle j| \right) \\ &= \frac{\mathrm{d}}{\mathrm{d}s} \left(\langle i|\rho|j\rangle \right) |i\rangle\langle j| + \langle i|\rho|j\rangle \frac{\mathrm{d}}{\mathrm{d}s} \left(|i\rangle\langle j| \right) \\ &= \frac{\mathrm{d}}{\mathrm{d}s} \left(\langle i|\rho|j\rangle \right) |i\rangle\langle j| + \langle i|\rho|j\rangle |k\rangle\langle k| \frac{\mathrm{d}}{\mathrm{d}s} |i\rangle\langle j| - \langle i|\rho|j\rangle |i\rangle\langle j| \frac{\mathrm{d}}{\mathrm{d}s} |l\rangle\langle l| \\ &= \frac{\mathrm{d}}{\mathrm{d}s} \left(\langle i|\rho|j\rangle \right) |i\rangle\langle j| + \langle i|\rho|j\rangle |i+1\rangle\langle i+1| \frac{\mathrm{d}}{\mathrm{d}s} |i\rangle\langle j| - \langle i|\rho|j\rangle |i\rangle\langle j| \frac{\mathrm{d}}{\mathrm{d}s} |j+1\rangle\langle j+1| \\ &= \left(\frac{\mathrm{d}}{\mathrm{d}s} \left(\langle i|\rho|j\rangle \right) + \langle i+1|\rho|j\rangle\langle i| \frac{\mathrm{d}}{\mathrm{d}s} |i+1\rangle - \langle i|\rho|j+1\rangle\langle j+1| \frac{\mathrm{d}}{\mathrm{d}s} |j\rangle \right) |i\rangle\langle j|. \end{split}$$

For each $|i\rangle\langle j|$ we get an equation, four in total. One of these is redundant by the zero trace requirement. Writing $y_{i,j} \coloneqq \langle i|\rho|j\rangle$ and $\omega_{ij} \coloneqq \langle i|\frac{\mathrm{d}}{\mathrm{d}s}|j\rangle$ the three remaining equations are

$$\begin{split} \frac{\mathrm{d}\rho_{00}}{\mathrm{d}s} &= -\rho_{10}\omega_{01} + \rho_{01}\omega_{10} \\ \frac{\mathrm{d}\rho_{01}}{\mathrm{d}s} &= -\Lambda\rho_{01} - (1 - \rho_{00})\omega_{01} + \rho_{00}\omega_{01} \\ \frac{\mathrm{d}\rho_{10}}{\mathrm{d}s} &= -\Lambda\rho_{10} - \rho_{00}\omega_{10} + (1 - \rho_{00})\omega_{10} \end{split}$$

Setting $\omega = \omega_{10} = -\omega_{01}$ and $y = \rho_{00} - 1/2$ we obtain the equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}s^2} = \left(\frac{\frac{\mathrm{d}\omega}{\mathrm{d}s}}{\omega} - \Lambda\right) \frac{\mathrm{d}y}{\mathrm{d}s} - 4\omega^2 y.$$

Setting $\mathbf{y} = \begin{pmatrix} y \\ y' \end{pmatrix}$ this second order differential equation is equivalent to the first order system

$$\begin{pmatrix} y \\ y' \end{pmatrix}' = \begin{pmatrix} 0 & 1 \\ -4 & -\Lambda/\omega \end{pmatrix},$$

which is in the form $\mathbf{y}' = A\mathbf{y}$. Now A is similar to $\begin{pmatrix} \omega/\Lambda & 0 \\ -4 & -\Lambda/\omega \end{pmatrix}$, so it is bounded if both Λ and Λ^{-1} are bounded functions.

Then by the Picard-Lindelöf theorem the initial value problem has a unique solution on [0,1]. In addition let y_1 be the solution obtained using Λ_1 and y_2 using Λ_2 . Then

$$\Lambda_1 \leq \Lambda_2 \implies y_1 \leq y_2.$$

To see this, we may first remark that

$$\{t \in [0,1] \mid y_1(t) \le y_2(t) \land y_1'(t) \le y_2'(t)\} = (y_2 - y_1)^{-1} [[0,+\infty[]] \cap (y_2' - y_1')^{-1} [[0,+\infty[]]]$$

is a closed and bounded set that contains 0. Let t_1 be its supremum. This means that $y_1(t_1) \le y_2(t_1)$ and $y_1'(t_1) \le y_2'(t_1)$, but $y_1(t) > y_2(t)$ or $y_1'(t) > y_2'(t)$ on some open set $]t_1, t_1 + \delta[$.

Appendix A

Bibliography

- Quantum Theory Peres
- QM Schwabl