Linear Combination of vectors

Given two vectors $u\rightarrow$ and $v\rightarrow$ we name linear combination of $u\rightarrow$ and $v\rightarrow$ to any expression of form: $\lambda u \rightarrow +\mu v \rightarrow$ where λ and μ are numbers.

a linear combination Α vector w→ is of $u \rightarrow and v \rightarrow if$ real (scalar) numbers (escalars) λ and μ exist such that we can express $w \rightarrow$ as follows: $w \rightarrow = \lambda u \rightarrow + \mu v \rightarrow$.

The vectors we have been working with until now are vectors on the plane, so they have two components. In this case we can express any vector w→ as a linear combination of two non parallel vectors $u \rightarrow$ and $v \rightarrow$. This combination is unique.

We want to find λ and μ so as $\vec{w} = \lambda \vec{u} + \mu \vec{v}$. We have: $(-1,3) = \lambda(1,2) + \mu(0,3) = (\lambda,2\lambda) + (0,3\mu) = (\lambda,2\lambda + 3\mu)$

Is the vector $ec{w}=(-1,3)$ a linear combination of the vectors of $ec{u}=(1,2)$ and $ec{v}=(0,3)$?

Therefore:

$$-1 = \lambda \\ 3 = 2\lambda + 3\mu \} \Rightarrow \lambda = -1, \ \mu = \frac{5}{3}$$
 We have just found values for λ and μ for which $\vec w = \lambda \vec u + \mu \vec v$ is true. So the answer is "yes", we can

express $ec{w}=(-1,3)$ as a linear combination of $ec{u}=(1,2)$ and $ec{v}=(0,3).$