

Explainable Neural Approaches to Question Classification

Group 7:

Kai Liang, Xiaoxiao Wen, Weitao Luo, Yijie Zhang

Introduction

- Text classification is a classical task for natural language processing (NLP)
- We revisit the task of question classification, which is important for question answering
- Our study focuses on two parts
 - Implement neural classifiers (LSTM and TextCNN) to compare with non-neural baseline (FastText)
 - Add an unsupervised component to increase interpretability
 - A layer of binary latent variables that extract rationales (short and meaningful tokens)
 from input to use for classification
 - Train the model via variational inference using REINFORCE

Related Work

- Traditional text classifiers
 - Nearest neighbours, Naive Bayes, decision trees and SVMs with hand-crafted features
- Recently, the task is dominated by complex neural models
 - LSTM, TextCNN, RCNN and BERT
- Limitation of neural models
 - Processing speed
 - Previous work tackle by proposing simple but powerful non-neural models (e.g. FastText)
 - Interpretability
 - Deterministic scope: attention mechanism
 - Generative scope: add latent variables that extract rationales from input sequence to feed into the classifiers

Methods

- FastText
- 2. LSTM
- 3. TextCNN
- 4. Rationale Extraction

FastText

- A simple and efficient model for text classification
- It is many orders of magnitude faster than neural models for both training and evaluation
- Comparable to deep learning classifiers in terms of accuracy
- Model architecture similar to CBOW
 - Except that the goal is changed from predicting the middle word to the label of the text sequence
- Average n-gram features of input to obtain the hidden vector, and project to output space using a linear layer

LSTM

- LSTM is proposed to overcome the gradient vanishing problem of vanilla RNN
- Adaptive gating mechanism
- Components of a LSTM unit: A cell, an input gate, an output gate and a forget gate

LSTM

- Bidirectional LSTM: capture both the past and future information at the same time
- Two sub-networks for the forward and backward pass respectively

$$\overrightarrow{\mathbf{h}_{t}} = \overrightarrow{f} \left(\mathbf{x}_{t}, \overrightarrow{\mathbf{h}_{t-1}} \right)$$

$$\overleftarrow{\mathbf{h}_{t}} = \overleftarrow{f} \left(\mathbf{x}_{t}, \overleftarrow{\mathbf{h}_{t+1}} \right)$$

$$\mathbf{h}_{t} = \left[\overrightarrow{\mathbf{h}_{t}} \oplus \overleftarrow{\mathbf{h}_{t}} \right]$$

TextCNN

- CV vs NLP
- Image vs sentence
- Local features in image
- Model architecture
 - Embedding layer (pre-trained word vectors, e.g. word2vec or Glove)
 - Convolution layer (capture key local features)
 - Max-Pooling layer
 - Full-Connection layer
 - Softmax layer
- replicate CNN's success in the context of text classification

Rationale Extraction

Task: Extract a subset of tokens (rationales) from the input sequence ${\bf x}$

Requirements: Concise

- 1. Short
- 2. Meaningful

Network Architecture

Components

- 1. Generator (Rationale Extractor)
- 2. Encoder (Classifier)

Generator

Pre-generator **pregen**($\cdot | \phi$)

- 2-layer bidirectional LSTM connected to
 - a fully-connected layer or average-pooling layer
 - with Sigmoid activation
- Input: **x**
- Output: p (probability parameters for each token in x)

Generator

Bernoulli distribution (z|p)

- Sample binary latent variable z using learned p
- Obtain rationales by computing element-wise product of x and z

Given x, z, for all t in the input sequence is independent

$$p(\mathbf{z}|\mathbf{x},\phi) = \prod_{t=1}^{l} p(\mathbf{z}_t|\mathbf{x},\phi)$$

Encoder

Encoder **enc**($\cdot | \theta$)

- Arbitrary classifier for the classification task suffices (here we use TextCNN)
- Input: x ⊙ z (or generally any input sequence x)
- Output: y

The predicted class label y follows the categorical distribution $Cat(y|\mathbf{enc}(\mathbf{x}\odot\mathbf{z}|\theta))$

Objective

2 models -> 2 aspects

- 1. Generator: extract short and meaningful rationales from input x
- 2. Encoder: predict the correct label y for given input sequence

Objective

Task: Maximize the conditional likelihood of the targe $p(y|\mathbf{x}, \theta) = \mathbf{Cat}(y|\mathbf{enc}(\mathbf{x}|\theta))$

It is conditioned on
$$\mathbf{z}$$
 as $p(y|\mathbf{x}, \theta) = \int_{\mathbf{z}} p(y|\mathbf{x}, \mathbf{z}, \theta) p(\mathbf{z}|\mathbf{x}, \phi) d\mathbf{z} = \mathbb{E}_{p(\mathbf{z}|\mathbf{x}, \phi)}[p(y|\mathbf{x}, \mathbf{z}, \theta)]$

Jensen's inequality $\log p(y|\mathbf{x}, \theta) = \log \mathbb{E}_{p(\mathbf{z}|\mathbf{x}, \phi)}[p(y|\mathbf{x}, \mathbf{z}, \theta)] \ge \mathbb{E}_{p(\mathbf{z}|\mathbf{x}, \phi)}[\log p(y|\mathbf{x}, \mathbf{z}, \theta)]$

Lower Bound $\mathcal{E}(\phi, \theta) = \mathbb{E}_{p(\mathbf{z}|\mathbf{x}, \phi)}[\log p(y|\mathbf{x}, \mathbf{z}, \theta)]$

• where $p(y|\mathbf{x}, \mathbf{z}, \theta) = \operatorname{Cat}(y|\operatorname{enc}(\mathbf{x} \odot \mathbf{z}|\theta))$

Maximize Lower Bound ⇔ Minimize Cross Entropy Loss

Objective

To extract short and coherent rationales, 2 additional regularizers

- 1. Penalize length of the selected tokens (or **z**) $\lambda_1 \|\mathbf{z}\|$
- 2. Penalize discontinuity in the selected tokens $\lambda_2 \sum_{t=2}^{l} |\mathbf{z}_t \mathbf{z}_{t-1}|]$

Final loss

$$\mathcal{L}(y, \mathbf{x}, \mathbf{z}) = \mathbb{E}_{p(\mathbf{z}|\mathbf{x}, \phi)}[L(y, \mathbf{x}, \mathbf{z})]$$

$$= \mathbb{E}_{p(\mathbf{z}|\mathbf{x}, \phi)}[\mathbf{CrossEnt}(y, \mathbf{enc}(\mathbf{x} \odot \mathbf{z}|\theta))$$

$$+ \lambda_1 \|\mathbf{z}\| + \lambda_2 \sum_{t=2}^{l} |\mathbf{z}_t - \mathbf{z}_{t-1}|]$$

Gradient Estimation: REINFORCE

1. Gradient estimation for the generator

$$\frac{\partial \mathcal{L}(y, \mathbf{x}, \mathbf{z})}{\partial \phi} = \frac{\partial \mathbb{E}_{p(\mathbf{z}|\mathbf{x}, \phi)}[L(y, \mathbf{x}, \mathbf{z})]}{\partial \phi}$$
$$= \mathbb{E}_{p(\mathbf{z}|\mathbf{x}, \phi)}[L(y, \mathbf{x}, \mathbf{z}) \frac{\partial \log p(\mathbf{z}|\mathbf{x}, \phi)}{\partial \phi}]$$

2. Gradient estimation for the encoder

$$\frac{\partial \mathcal{L}(y, \mathbf{x}, \mathbf{z})}{\partial \theta} = \mathbb{E}_{p(\mathbf{z}|\mathbf{x}, \phi)} \left[\frac{\partial L(y, \mathbf{x}, \mathbf{z})}{\partial \theta} \right]$$

Experiments

- Dataset
 - Question Classification Dataset
 - Preprocessing
 - Pre-trained Word Embeddings
- Models settings
 - Hyperparameter settings

Dataset

- Question Classification Dataset
 - Contains 6 coarse classes: abbreviation, entity, description, human, location and numeric
 - Training set
 - The first 90% for training (9180 data)
 - The rest 10% for validation (1020 data)
 - Test set (500 data)
- Preprocessing
 - The tokens are stemmed by the Porter stemmer
 - Input sequences are padded to the length of longest input sequence in a batch
- Pre-trained Word Embeddings
 - o Google's pre-trained 300d word2vec, <unk> is initialized randomly, <pad> with zeros

Model Settings

- Hyperparameter settings are obtained by performing grid search on all models
- Final settings are listed in the tables given below

Parameter	Value	Parameter	Value
lr	0.1	lr	0.001
epoch	70	epoch	10
lr_update_rate	100	batch_size	64
embed_dim	100	max_grad_norm	5.0
window_size	5	lstm_layer	2
min_count	1	lstm_direction	2

Parameter	Value
lr	0.001
epoch	10
batch_size	64
max_grad_norm	5.0
kernel_size	(2, 3, 4)
kernel_num	32
dropout	0.5

Parameter	Value
lr	0.001
epoch	50
batch_size	64
max_grad_norm	5.0
lstm_layer	2
lstm_direction	2
λ_1	0.01
λ_2	0.001

FastText LSTM TextCNN Generator Network

Results

• Classification results on full input sequences

Model Overall	Overall	Abbreviation			Entity		Description			Human			Location			Numeric			
Model	Accuracy	P	R	F1	P	R	F1	P	R	F1	P	R	F1	P	R	F1	P	R	F1
FastText	0.860	1.00	0.78	0.88	0.83	0.62	0.71	0.79	0.98	0.87	0.87	0.94	0.90	0.88	0.86	0.87	0.97	0.88	0.92
LSTM	0.862	0.83	0.56	0.67	0.86	0.76	0.80	0.81	0.95	0.88	0.88	0.89	0.89	0.82	0.90	0.86	0.98	0.82	0.89
TextCNN	0.876	0.83	0.56	0.67	0.93	0.66	0.77	0.82	0.99	0.90	0.88	0.92	0.90	0.84	0.93	0.88	0.96	0.88	0.92

 Model performance are evaluated in terms of overall accuracy, per-category precision, recall and f1-score, which are common metrics of such tasks

Results

• Classification results on extracted rationales alone (Keep Rate: portion of selected tokens)

Model	Overall Accuracy	Keep Rate
LSTM-FC	0.706	0.503
LSTM-AP	0.594	0.276

• Examples of the extracted rationales

Model	Extracted Rationales	Class
LSTM-FC	what is maryland <unk> state bird <unk></unk></unk>	Entity
LSTM-AP	who discov <unk> <unk></unk></unk>	Human

Discussion

- The classification results reveal that both of the neural models are superior to the non-neural baseline (i.e. FastText) in terms of the overall accuracy
- Also, our TextCNN model achieves the best performance not only in the overall accuracy, but also in the f1-score of 4/6 classes, which proves its strong model capacity

Discussion

- The rationale extraction results show that when the aggregation of the LSTM output is learned with a fully-connected layer, the overall accuracy for classification is decreased by 19.4%, while only 50.3% of tokens are used
- On the other hand, when the aggregation is simply averaging over the LSTM output, the overall accuracy for classification is decreased by 32.2%, while only 27.6% tokens are used
- From the qualitative results, for both models, the generator network is able to extract rationales that have the largest contribution to the classification
 - 'who' for the class 'Human'
 - 'state' for the class 'Entity'

Conclusion

- In this study, we firstly implement and compare a set of models (i.e. FastText, LSTM and TextCNN) for the task of question classification
- We conclude that both the neural models (i.e. LSTM and TextCNN) outperform the non-neural model (i.e. FastText) in terms of various metrics, and TextCNN achieves the best performance in our dataset
- We then combine unsupervised learning with the classification models by adding a layer of binary latent variables to extract rationales from the input sequences for classification, which is trained via a REINFORCE-style algorithm
- Our results confirm that the extracted rationales as features are able to reach a similar-level of test performance as the original sequences, which enables better interpretability of our neural models

References

- 1) Bastings, J., Aziz, W., & Titov, I. (2019). Interpretable Neural Predictions with Differentiable Binary Variables. arXiv preprint arXiv:1905.08160.
- 2) Chen, K., Wang, J., Chen, L. C., Gao, H., Xu, W., & Nevatia, R. (2015). Abc-cnn: An attention based convolutional neural network for visual question answering. *arXiv* preprint *arXiv*:1511.05960.
- 3) Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
- 4) Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016). LSTM: A search space odyssey. *IEEE transactions on neural networks and learning systems*, 28(10), 2222–2232.
- 5) Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. *Neural computation*, 9(8), 1735-1780.
- 6) Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2016). Bag of tricks for efficient text classification. *arXiv* preprint arXiv:1607.01759.
- 7) Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.
- 8) Lai, S., Xu, L., Liu, K., & Zhao, J. (2015, February). Recurrent convolutional neural networks for text classification. In Twenty-ninth AAAI conference on artificial intelligence.
- 9) Lei, T., Barzilay, R., & Jaakkola, T. (2016). Rationalizing neural predictions. arXiv preprint arXiv:1606.04155.

References

- Li, X., & Roth, D. (2002, August). Learning question classifiers. In *Proceedings of the 19th international conference on Computational linguistics-Volume* 1 (pp. 1–7). Association for Computational Linguistics.
- 11) Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In *Advances in neural information processing systems* (pp. 3111-3119).
- Porter, M. F. (1997). Readings in information retrieval. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 313-316.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In *Advances in neural information processing systems*(pp. 5998-6008).
- Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine learning*, 8(3-4), 229-256.
- Thang, D., & Lee, W. S. (2003, July). Question classification using support vector machines. In Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 26-32). ACM.