Lecture 10. Optimisation

COMP90051 Statistical Machine Learning

Semester 2, 2015 Lecturer: Andrey Kan

Weeks 6 – 12

- Lecturer: Andrey Kan
 - * MS: Moscow
 - PhD: Melbourne
- Past: software engineer
 - Optimising compilers
 - * Multimedia framework
- Present: research officer
 - Computational immunology
 - Medical image analysis

- Email: <u>andrey.kan@unimelb.edu.au</u>
- Office hour (same): Tuesday after lecture, DMD 6.26

Model Parameters

- All types of models involve parameters
 - * Example 1: $\hat{y} = w_0 + \sum_{j=1}^{d} w_j x_j$
 - * Example 2: Power Plant model with *Pr(HG|HT,FG)*, etc.
- Parameters link models to data
 - * Denote parameters of a generic model as $\boldsymbol{\theta}$
 - * Model predictions are $f(x, \theta)$
- Discrepancy with training data as a function of $oldsymbol{ heta}$
 - * Example 1: $RSS(\theta) = \sum_{i=1}^{n} (y_i f(x_i, \theta))^2$
 - * Example 2: neg. log-likelihood = $-\sum_{i=1}^{n} \ln f(y_i|x_i,\boldsymbol{\theta})$

Supervised learning

Choose/design a model

learning ≈ **optimisation**

Choose/design discrepancy function

3. Find parameter values that minimize discrepancy with training data

Also know as

- * Training
- * Learning
- * Model fitting
- Parameter estimation

Optimisation

- Find $\widehat{\boldsymbol{\theta}} = argmin_{\boldsymbol{\theta} \in \Theta} \ D(tr.data, \boldsymbol{\theta})$
 - * E.g., $\widehat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w}} \sum_{i} (y_i \mathbf{X}_i \cdot \mathbf{w})^2$
 - Analytic (aka closed form) solution
 - Iterative approach
- Analytic solution
 - * Known only in limited number of cases

* Solve
$$\frac{\partial D}{\partial \theta_1} = \dots = \frac{\partial D}{\partial \theta_n} = 0$$

* E.g., for linear regression $\hat{w} = (X^T X)^{-1} X^T y$

Iterative optimisation

- 1. Initialisation: choose starting guess $\theta^{(0)}$, i=0
- 2. Compute discrepancy $D(tr. data, \boldsymbol{\theta}^{(i)})$
- 3. Termination: decide whether to stop
- 4. Update: $\boldsymbol{\theta}^{(i+1)} \leftarrow_{some\ rule} \boldsymbol{\theta}^{(i)}$, $i \leftarrow i+1$
- 5. Go to Step 2

Gradient descent

- In this example, a model has 2 parameters
- Each location corresponds to a particular combination of parameter values
- Depth indicates discrepancy between model with those values and data

Gradient

• Direction can be represented by a set of numbers $[d_1, ..., d_2]$

• Gradient (at point θ) is the direction of maximal change of $D(\theta)$ when departing from point θ

* That is, gradient is $\left[\frac{\partial D}{\partial \theta_1}, \dots, \frac{\partial D}{\partial \theta_n}\right]^T$ each computed at $\boldsymbol{\theta}$

Shorthand notation

*
$$\nabla D \stackrel{\text{def}}{=} \left[\frac{\partial D}{\partial \theta_1}, \dots, \frac{\partial D}{\partial \theta_n} \right]^T$$
 computed at point $\boldsymbol{\theta}$

* Here ▼ is the nabla symbol

Gradient descent

• Update: $\boldsymbol{\theta}^{(i+1)} = \boldsymbol{\theta}^{(i)} - \eta \nabla D(\boldsymbol{\theta}^{(i)})$

We assume *D* is differentiable

- η is usually also updated (next slide)
- Simple method, but ...
 - Convergence can be slow
 - * Flat regions cause problems

plot adapted from Joris Gillis, Wikimedia Commons

Line search

- Consider optimisation iteration i
 - * We first find the <u>direction</u> **d** of the next step
 - * Example, $d = -\nabla D(\boldsymbol{\theta}^{(i)})$ in gradient descent
 - But how far should we go in that direction (coefficient η)?
- Find η that gives sufficiently good decrease!
 - Optimisation within optimisation
- Example: backtracking line search
 - Start with a large η and $c, \tau \in (0,1)$
 - 2. If $D(\boldsymbol{\theta}^{(i)} + \eta \boldsymbol{d}) \leq D(\boldsymbol{\theta}^{(i)}) c\eta \boldsymbol{d}^T \nabla D(\boldsymbol{\theta}^{(i)})$ then stop
 - 3. Update $\eta \leftarrow \tau \eta$
 - 4. Go to Step 2

Ensures the gradient will converge to zero

Newton-Raphson method

- Method for finding roots (zeros) of a function
 - * In our case the function is D' (derivative of discrepancy)

Tangent line:

$$y = D''(\theta^{(i)})(x - \theta^{(i)}) + D'(\theta^{(i)})$$

Solving for y = 0:

$$x = \theta^{(i+1)} = \theta^{(i)} - \frac{D'(\theta^{(i)})}{D''(\theta^{(i)})}$$

- Update: $\boldsymbol{\theta}^{(i+1)} = \boldsymbol{\theta}^{(i)} [\boldsymbol{H}D(\boldsymbol{\theta}^{(i)})]^{-1} \nabla D(\boldsymbol{\theta}^{(i)})$
 - * Where Hf(x) is the Hessian matrix (bunch of second derivatives)

Newton-Raphson method

- <u>1D case</u>: $\theta^{(i+1)} = \theta^{(i)} \frac{D'(\theta^{(i)})}{D''(\theta^{(i)})}$
 - * $D(\theta^{(i)} + \Delta\theta) \approx D(\theta^{(i)}) + D'(\theta^{(i)}) \Delta\theta + \frac{1}{2}D''(\theta^{(i)}) \Delta\theta^2$
 - * Derivative of the RHS w.r.t. $\Delta\theta$: $D'(\theta^{(i)}) + D''(\theta^{(i)})\Delta\theta$
 - * This is zero when $\Delta \theta = -\frac{D'(\theta^{(i)})}{D''(\theta^{(i)})}$

Taylor expansion of $D(\theta^{(i)})$ around $\theta^{(i)}$

Ill-posed problems

- Find $\widehat{\boldsymbol{\theta}} = argmin_{\boldsymbol{\theta} \in \Omega} D(tr.data, \boldsymbol{\theta})$
- Ill-posed if
 - Solution is not unique OR
 - Solution does not exist.
- Possible approach
 - $\min_{\mathbf{w}} \sum_{i} (y_i \mathbf{X}_i \cdot \mathbf{w})^2 + \lambda \|\mathbf{w}\|_2$

* E.g., cross-validation

Cross-validation (revisited)

- Split training data into [training] and [validation]
- 2. Choose some candidate value $\lambda = \lambda_i$
- 3. Train model (find parameter values for \mathbf{w}) using λ_i
 - 1. Here λ_i values is fixed
 - 2. Find w that minimise discrepancy with training data
- 4. Test on the validation set
- 5. Repeat with a different value of $\lambda = \lambda_{i+1}$

Convex functions

- Funciton is convex if the line segment between any two points lies above the graph
 - * More formally, $\forall x_1, x_2$ and $\forall t \in [0,1]$:
 - * $f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$
- For convex functions, gradient descent and NR method converge to the global minimum

Summary

- Learning ≈ optimisation
 - Find model parameters that minimise discrepancy with training data
- Before doing optimisation
 - Check if the problem is well-posed
 - Check if the problem is convex
- Optimisation is hard in general
 - Particular models can have analytical solution
 - Convexity helps
 - * Being able to compute derivatives helps
- <u>Design of machine learning methods is heavily influenced by optimisation considerations</u>