The Big Picture

CPSC 1050 - Chapter 1

Objectives

- Describe the course objectives
- Introduce the layers of a computing system
- Describe the concept of abstraction and its relationship to computing
- Look at the history of computer hardware and software

Course Objectives

- Giving you a solid, broad understanding of how a computing system works
- Developing an appreciation for and understanding of the evolution of modern computing systems
- Giving you enough information about computing so that you can decide whether you wish to pursue the subject further

Course Topics

- History of Computer Science
- Information and Data Representation
- Computer Hardware and Architecture
- Algorithmic Problem Solving
- An Introduction to Programming (C++)
- Operating Systems

- Networks
- Applications (Spreadsheets, Database)
- World Wide Web
- Computer Security

We will study 16 chapters!

FIGURE 1.1 The layers of a computing system

Chapter 1
History

Chapters 2-3
Data as 1s, 0s

Chapters 4-5
Chips, Circuits

Chapters 6-9
Instructions

Chapters 10-11
Linux, Windows

Chapter 12
Excel, Database

Chapters 15-16
WWW, Networks

Chapters 17-18
Security, Limitations

We have a lot to learn!

- Let's make it simpler!
 - You want to drive. Do you need to know how an engine works?
 - o You are a data entry clerk. Do you need to know programming? o You want to write a program. Do you need to know hardware?
- This is called Abstraction that focuses on external view and hides complex details
 - for example, when we run an application, we don't have to be concerned with how the program was written
- Some examples:
 - Texting on a smartphone o Surfing on the Internet o Printing a document

What is a Computing System?

- A Computing System is
 - is not just a single computer o is a dynamic entity that solves problems and interact with its environment
 - is often connected to other systems and Input/Output devices (also called I/O devices or Peripherals)
 - performs calculations, stores and processes data, and makes logical decisions

What is a Computing System?

- Computing System is composed of:
 - Hardware is the collection of physical elements that makes
 up the machine and its related pieces (boxes, wires, circuit boards, keyboards, monitors, printers, ...)

- Software is the collection of programs that provide the
 - instructions for a computer to execute
- Data is the heart of a computing system
- Without data, the hardware and software are useless

What happened in the past?

History of Computers

Long time ago ...

- Muhammad Al-Khwarizmi
 - Developed the concept of Algorithm
 - He was a Persian mathematician and astronomer of 9th century
- Do you think zero was always there?!
 - He introduced Algebra and the concepts of zero and negative numbers
 - o NO!

 He is known as the "father of Algebra" and the "grandfather of computer science"

You will learn a lot of algorithms in this course!

Later ...

Binary System

base of computer systems: 0 and 1 o was developed by Gottfried Leibniz o The
 German philosopher in 17th century

We also need Boolean Algebra

to represent logical circuits
 George
 Boole developed this model
 The British mathematician in 19th century

Let's start with Computational Devices!

- We have to jump back to 16th century!
- Have you ever seen this device?!

- It is called Abacus
 o An early device to record numeric values and perform basic arithmetic
- Do you know <u>how</u> it works?

Another Computational Device

This device is called Pascaline or mathematical calculator
 It could perform addition and subtraction

• It was invented by Blaise Pascal in Pascaline 17th century • He was a French mathematician

- Do you remember Leibniz?
 - He later added multiplication feature to this device

What About Programming?

- Have you ever seen a punched The punched card was used card? in early programming!
 - It is a perforated card
- Do you think it can represent 0 and 1?
- It was first used in 18th century by Joseph Jacquard in Jacquard's Loom for weaving cloth
 - It dictates the pattern into the cloth

Jacquard's Loom

First Steps into Computers

- Not much happened till 19th century
- Then, Charles Babbage, the British mathematician, designed Analytical Engine of first mechanical computer of included many of computer components such as memory and input of but too complex to be built!

He is called the "Father of Computer"

First Steps into Computers

Ada Lovelace was the first programmer!

- She was an English mathematician and writer
- She extended the ideas of Babbage
- She developed the concept of the loops
- There was a programming language named after Ada

Early Computers

A lot more happened in the 20th century

Herman Hollerith developed the first electronic tabulator of Designed to assist in summarizing information stored on punched cards

He formed the company IBM

Alan Turing invented Turing Machine, a mathematical model

Foundation of computing theory o <u>Code</u>
 <u>Breakers</u>!

Can machines think?

•

Early Computers

- First all-programmable computer
- Harvard Mark I (1944)
 - o from IBM given to Harvard
- ENIAC (1946) / EDVAC (1950)
 - John von Neumann worked on both
- UNIVAC I (1951)
- First commercial computer used for Colossus (1943)

US Census

Eniac was the

 The era of early computers size of a room! ended at this point!

Early Computers

Thomas Watson, president of IBM, in 1943 predicted that:

"I think there is a world market for maybe five computers!!"

- But a new era began in mathematics, physics, engineering, and economics
 - focus was not only on faster devices, but also on developing more productive components
- The following "generations" are based on the technologies they use

 $_{\circ}$ first we talk about hardware generations $_{\circ}$ then we go on with software generations

HW 1st Generation (1951-1959)

Vacuum Tube

- used to generate electricity
- o large, not reliable, a lot of heat

Magnetic Drum

- o rotated under a read/write head
- used as memory

HW 1st Generation (1951-1959)

- Card Reader
- was the input device
- Magnetic Tape Drive
 - sequential (?) storage device

HW 2nd Generation (1959-1965)

- Transistor
- replaced vacuum tubes
- produces electricity
- fast, small, durable, reliable, cheap

Magnetic Core ⁵

replaced magnetic drives

- used as memory
- info available instantly

HW 2nd Generation (1959-1965)

- Magnetic Disk
 - used as storage
 - data can be accessed directly (not sequential)
- Circuit Board o all components assembled on boards

HW 3rd Generation (1965-1971)

Integrated Circuit (IC)

replaced circuit boards

- contained transistors and other components with their connections
- o smaller, cheaper, faster, more reliable

 an input/output device with a keyboard and screen

Moore's Law

The number of circuits on a single IC was doubling each year

HW 4th Generation (1971-?)

- Large-Scale Integration (LSI)
 o build a whole microcomputer on one chip
- New companies emerge: Apple, Atari, Sun, Dell ...
- Personal Computers (PC) and Workstations emerge
- Networking allowed computer interactions
- No end date as circuit boards are still used

Moore's Law

Computers will either double in power at the same price or halve in cost for the same power every 18 months

SW 1st Generation (1951-1959)

There are 3 types of Programming Languages:

1. Machine Language

Computer programs written in binary (1s and 0s)

2. Assembly Language

English-like abbreviations (mnemonic codes) to write basic operations

Translator programs (assemblers) convert assembly to machine language

SW 1st Generation (1951-1959)

OPCODES

Binary	Mnemonic	Short Explanation
1111	STP	Stop the computer
0001	ADD	Add accumulator to operand
0010	SUB	Subtract operand from accumulator
0011	LOD	Load memory cell into accumulator
0100	LDI	Load immediate into accumulator
0101	ST0	Store accumulator memory cell
0110	INP	Input value and store accumulator
0111	OUT	Output value from accumulator
1000	JMP	Jump to instruction
1001	JNG	Jump to instruction if accumulator < 0
1010	JZR	Jump to instruction if accumulator = 0

Super Simple CPU Instruction Set

SW 2nd Generation (1959-1965)

3. High-Level Language o English-like statements made programming easier o Fortran, COBOL, Lisp o Compiler converts high-level language into machine language

SW 3rd Generation (1965-1971)

Human operators slow down the computers

- Systems Software were created The other type of software
 - 1. Utility programs perform common is Application Software tasks
 - 2. Language translators (assemblers and compilers)
 - 3. Operating System controls the computers instead of humans
- Separation between user and programmer
 - Computer programmers write programs to be used by users

SW 4th Generation (1971-1989)

Programming techniques improved: Structured

Programming

 A logical, disciplined approach to programming based on hierarchy of tasks o Pascal, C++

- More powerful operating systems developed
 - UNIX, DOS, graphical user interface by Apple
- High-quality Applications Software
 - Spreadsheets, Word processors,
 Database Management Systems

SW 5th Generation

Generation (1990-Present)

• Rise of Microsoft o Windows operating system and other Microsoft application programs dominate the market

Object-Oriented Design

The other type is tructured programming

used for large programming projects

based on a hierarchy of objects (e.g. Java)

- World Wide Web
 - o allows easy global communication through the Internet
- New users
 - today's user needs no computer knowledge

Summary

We start a broad study of computer systems including o
 Hardware that makes up the devices o Software programs executed by the machine o
 Data managed and manipulated by both

- The history of computing reveals the roots from which modern computing systems grew
- The rest of the book examines the different layers of a computing system

Additional Resources

- To Read!
 - A Brief History of Computer Science
 The
 Very Brief History of Computer Science
- To Watch!

 The videos on this Crash o Early Computing Course Computer

 Science are recommended! o Electronic Computing