2010-12086 YoungSuk Hwang

Conducted 100 experiments(sorts) for per method, per size.

Method / arrSize	100	1000	10000
Selection sort	12	83	4652
Quicksort	36	75	100
Heapsort w/o ini	9	32	171
Heapsort with ini	6	27	169
BST sort	11	38	188
Splaysort	10	75	263
Merge sort	6	24	105

Unit: Mili-seconds

- 1. Selection sort is $O(n^2)$, so the time-consumption increases quadratically as the size of n increases.
- 2. The others are generally O(n*logn), so the time-consumption tend to increase in that order.
- 3. Heapsort with initialization is theoretically faster than that without initialization, and the result shows that tendency.
- 4. Quicksort is very fast in large size as generally known.
- 5. There can be variances in time-consumption, depending on either the distribution or the sequence of the list to be sorted.