```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import statsmodels.formula.api as smf
import matplotlib.pyplot as plt
from sklearn import linear_model
```

In [2]: df=pd.read_csv('delivery_time.csv')
df

Out[2]:

	Delivery Time	Sorting Time
0	21.00	10
1	13.50	4
2	19.75	6
3	24.00	9
4	29.00	10
5	15.35	6
6	19.00	7
7	9.50	3
8	17.90	10
9	18.75	9
10	19.83	8
11	10.75	4
12	16.68	7
13	11.50	3
14	12.03	3
15	14.88	4
16	13.75	6
17	18.11	7
18	8.00	2
19	17.83	7
20	21.50	5

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 21 entries, 0 to 20 Data columns (total 2 columns):

Column Non-Null Count Dtype Delivery Time 21 non-null float64 1 Sorting Time 21 non-null int64 dtypes: float64(1), int64(1) memory usage: 464.0 bytes

In [4]: | df.describe()

Out [4]:

	Delivery Time	Sorting Time
count	21.000000	21.000000
mean	16.790952	6.190476
std	5.074901	2.542028
min	8.000000	2.000000
25%	13.500000	4.000000
50%	17.830000	6.000000
75%	19.750000	8.000000
max	29.000000	10.000000

In [38]: |df.dtypes

Out[38]: Delivery Time float64 Sorting Time int64 Deliverd_predict float64

dtype: object

In [39]: df.isnull()

Out[39]:

	Delivery Time	Sorting Time	Deliverd_predict
0	False	False	False
1	False	False	False
2	False	False	False
3	False	False	False
4	False	False	False
5	False	False	False
6	False	False	False
7	False	False	False
8	False	False	False
9	False	False	False
10	False	False	False
11	False	False	False
12	False	False	False
13	False	False	False
14	False	False	False
15	False	False	False
16	False	False	False
17	False	False	False
18	False	False	False
19	False	False	False
20	False	False	False

In [41]: df.isnull().sum()

Out[41]: Delivery Time 0 Sorting Time 0 Deliverd_predict 0

dtype: int64

In [42]: sns.pairplot(data = df)

Out[42]: <seaborn.axisgrid.PairGrid at 0x7fe97035c460>

In [44]: sns.histplot(data = df)

Out[44]: <AxesSubplot:ylabel='Count'>

In [5]: sns.distplot(df['Delivery Time'])

/opt/anaconda3/lib/python3.9/site-packages/seaborn/distributions.p y:2619: FutureWarning: `distplot` is a deprecated function and wil l be removed in a future version. Please adapt your code to use ei ther `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[5]: <AxesSubplot:xlabel='Delivery Time', ylabel='Density'>

In [6]: sns.distplot(df['Sorting Time'])

/opt/anaconda3/lib/python3.9/site-packages/seaborn/distributions.p y:2619: FutureWarning: `distplot` is a deprecated function and wil l be removed in a future version. Please adapt your code to use ei ther `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[6]: <AxesSubplot:xlabel='Sorting Time', ylabel='Density'>

In [7]: df.corr()

Out[7]:

	Delivery Time	Sorting Time
Delivery Time	1.000000	0.825997
Sorting Time	0.825997	1.000000

In [8]: df['Sorting Time'].describe()

Out[8]: count 21.000000 6.190476 mean std 2.542028 2.000000 min 25% 4.000000 50% 6.000000 75% 8.000000 10.000000 max

Name: Sorting Time, dtype: float64

 std
 5.074901

 min
 8.000000

 25%
 13.500000

 50%
 17.830000

 75%
 19.750000

 max
 29.000000

Name: Delivery Time, dtype: float64

In [10]: |sns.pairplot(df)

Out[10]: <seaborn.axisgrid.PairGrid at 0x7fe96f79bdf0>

In [11]: model = smf.ols("df['Delivery Time']~df['Sorting Time']",data = df)

In [12]: model.summary()

Out[12]:

OLS Regression Results

Dep. Variable	: df[ˈDe	df['Delivery Time']		R-squared:		0.682
Mode	:	OL	.S Ad	j. R-squared:		0.666
Method	l: Lo	east Square	es	F-sta	tistic:	40.80
Date	: Thu,	01 Dec 202	22 Pro k	(F-stat	tistic):	3.98e-06
Time	:	02:01:4	10 Lo	g-Likeli	hood:	-51.357
No. Observations	:	2	21		AIC:	106.7
Df Residuals	:	1	9		BIC:	108.8
Df Mode	l :		1			
Covariance Type: nonrobust			st			
	coe	ef std err	t	P> t	[0.025	0.975]
Intercept	6.582	7 1.722	3.823	0.001	2.979	10.186
df['Sorting Time']	1.649	0 0.258	6.387	0.000	1.109	2.189
Omnibus:	3.649	Durbin-V	Vatson:	1.248		
Prob(Omnibus):	0.161	Jarque-Be	era (JB):	2.086		
Skew:	0.750	Pı	ob(JB):	0.352		
Kurtosis:	3.367	Co	nd. No.	18.3		

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [13]: print(model.summary())
prediction = model.predict(df.iloc[:,1])
```

	OLS Regression Results					
======================================	df['Delivery	 / Time']	R-squared:			
0.682 Model:		0LS	Adj. R-squa	ared:		
0.666	Land		,			
Method: 40.80		•	F-statistic			
Date: 3.98e-06	Thu, 01 [Dec 2022	Prob (F-sta	atistic):		
Time: -51.357	(02:01:40	Log-Likelih	nood:		
No. Observations:		21	AIC:			
106.7 Df Residuals:		19	BIC:			
108.8 Df Model:		1				
Covariance Type:	nc	onrobust 				
[0.025 0.975]	== coef	std err	t	P> t		
	 6.5827	1.722	2 3.823	0.001		
2.979 10.186 df['Sorting Time'] 1.109 2.189	1.6490	0.258	6.387	0.000		
======================================	========	3.649	Durbin-Watso	on:		
1.248 Prob(Omnibus):		0.161	Jarque-Bera	(JB):		
2.086 Skew:		0.750	Prob(JB):			
0.352 Kurtosis: 18.3		3.367	Cond. No.			

Notes:

==========

[1] Standard Errors assume that the covariance matrix of the error s is correctly specified.

```
In [14]: slr_model=smf.ols("df['Delivery Time']~df['Sorting Time']",data=df)
    print(slr_model.summary())
    predict=slr_model.predict(df.iloc[:,1])
    import matplotlib.pylab as plt
```

```
plt.scatter(x=df['Sorting Time'],y=df['Delivery Time'])
plt.plot(df['Sorting Time'],predict,color='black')
plt.xlabel("Sorting Time")
plt.ylabel("Delivery Time")
plt.title("slr_model plotting")
plt.show()
```

OLS Regression Results ______ ========= Dep. Variable: df['Delivery Time'] R-squared: 0.682 Model: Adj. R-squared: 0LS 0.666 F-statistic: Method: Least Squares 40.80 Thu, 01 Dec 2022 Prob (F-statistic): Date: 3.98e-06 Time: 02:01:40 Log-Likelihood: -51.357No. Observations: 21 AIC: 106.7 Df Residuals: 19 BIC: 108.8 Df Model: 1 Covariance Type: nonrobust ______ std err t P>|t| coef [0.025 0.975] 1.722 6.5827 3.823 Intercept 0.001 2.979 10.186 df['Sorting Time'] 1.6490 0.258 6.387 0.000 1.109 2.189 Omnibus: 3.649 Durbin-Watson: 1.248 Prob(Omnibus): 0.161 Jarque-Bera (JB): 2.086 Prob(JB): Skew: 0.750 0.352 Kurtosis: 3.367 Cond. No. 18.3

Notes:

[1] Standard Errors assume that the covariance matrix of the error s is correctly specified.

20	slr_model plotting

OLS Regression Results

```
=========
                    df['Delivery Time']
Dep. Variable:
                                           R-squared:
0.695
Model:
                                     0LS
                                           Adj. R-squared:
0.679
Method:
                          Least Squares
                                           F-statistic:
43.39
                       Thu, 01 Dec 2022
                                           Prob (F-statistic):
Date:
2.64e-06
Time:
                                02:01:41
                                           Log-Likelihood:
-50.912
No. Observations:
                                      21
                                           AIC:
105.8
Df Residuals:
                                      19
                                           BIC:
107.9
Df Model:
                                       1
Covariance Type:
                               nonrobust
                                                                     P
                                   coef
                                           std err
>|t|
           [0.025
                       0.975]
```

Intercept .642 -3.978 6.297	1.1597	2.455	0.472	0
np.log(df['Sorting Time']) .000 6.170 11.917	9.0434	1.373	6.587	0
=======================================				
Omnibus:	5.552	Durbin-Wats	on:	
1.427 Prob(Omnibus): 3.481	0.062	Jarque-Bera	(JB):	
Skew:	0.946	Prob(JB):		
0.175	2 620			
Kurtosis: 9.08 	3.628 	Cond. No.		

========

Notes:

[1] Standard Errors assume that the covariance matrix of the error s is correctly specified.


```
In [16]: exp_model=smf.ols("np.log(df['Delivery Time'])~(df['Sorting Time'])
    print(exp_model.summary())
    predict_exp=exp_model.predict(pd.DataFrame(df['Sorting Time']))
    pred_exp=np.exp(predict_exp)

import matplotlib.pylab as plt
%matplotlib inline
    plt.scatter(x=df['Sorting Time'],y=df['Delivery Time'])
    plt.plot(df['Sorting Time'],np.exp(predict_exp),color='black')
    plt.title("Exponential_model plotting")
    plt.xlabel("Sorting Time")
    plt.ylabel("Delivery Time")
    plt.show()
```

OLS Regression Results

Dep. Variab	 ======= le: r	 == np.log(df['	Delivery	Time'])	R-sq	 uared:
0.711 Model:			•	0LS		R-squared:
0.696				ULS	Auj.	N-Squareu.
Method:			Least	Squares	F-st	atistic:
46.73 Date:			Thu. 01 D	ec 2022	Prob	(F-statistic
):	1.59e-0	96	-			
Time: 7.7920			0	2:01:41	Log-	Likelihood:
No. Observa	tions:			21	AIC:	
-11.58				4.0	5.7.0	
Df Residuals	5:			19	BIC:	
Df Model:				1		
Covariance ⁻	Гуре:		nc	nrobust		
=========		- <i></i> =				
[0.025	0 . 975]	coef	std er	r 	t 	P> t
Intercept		- 2.1214	0.10)3 20	.601	0.000
1.906 df['Sorting 0.073		0.1056	0.01	.5 6	836	0.000
======================================	=======================================	=======	1.238	 -Durbin	====== -Watson	======== :
1.325						
Prob(Omnibus	5):		0.538	Jarque-	-Bera (.	JB):
Skew:			0.393	Prob(JE	3):	
0.762 Kurtosis: 18.3			3.067	Cond. N	lo.	

Notes:

=========

[1] Standard Errors assume that the covariance matrix of the error ${\sf s}$ is correctly specified.


```
In [20]: np.sqrt(np.mean((df['Delivery Time']-predict)**2))
Out[20]: 2.7916503270617654
In [22]: np.sqrt(np.mean((df['Delivery Time']-predict_exp)**2))
Out[22]: 14.795516941016686
In [24]: np.sqrt(np.mean((df['Delivery Time']-log_predict)**2))
Out[24]: 2.733171476682066
In [25]: from sklearn.linear_model import LinearRegression linear_model = LinearRegression()
In [26]: linear_model=smf.ols("df['Delivery Time']~df['Sorting Time']",data
In [27]: linear_model=linear_model.fit()
In [28]: linear_model.params
Out[28]: Intercept 6.582734
```

1.649020

df['Sorting Time']

dtype: float64

```
In [29]: predicteddata = linear_model.predict(df)
         predicteddata
Out[29]: 0
                23.072933
          1
                13.178814
          2
                16.476853
          3
                21,423913
          4
                23.072933
          5
                16.476853
         6
                18.125873
          7
                11.529794
          8
                23.072933
          9
                21.423913
          10
                19.774893
                13.178814
          11
          12
                18.125873
          13
                11.529794
          14
                11.529794
          15
                13.178814
          16
                16.476853
          17
                18.125873
          18
                 9.880774
          19
                18.125873
                14.827833
          20
         dtype: float64
In [30]: |print(model.tvalues, '\n', model.pvalues)
                                 3.823349
          Intercept
          df['Sorting Time']
                                 6.387447
          dtype: float64
                                  0.001147
          Intercept
          df['Sorting Time']
                                 0.000004
          dtype: float64
In [31]: #R squared values
          (model.rsquared,model.rsquared_adj)
Out [31]: (0.6822714748417231, 0.6655489208860244)
```

In [32]: model.summary()

Out[32]:

OLS Regression Results

Dep. Variable	: df['De	df['Delivery Time']		R-squared:		0.682
Model	:	OL	S Ad	Adj. R-squared:		0.666
Method	: Le	ast Square	es	F-sta	tistic:	40.80
Date	: Thu, C	1 Dec 202	2 Pro k	(F-stat	tistic):	3.98e-06
Time	:	02:04:1	5 Lo	g-Likeli	hood:	-51.357
No. Observations	:	2	:1		AIC:	106.7
Df Residuals	:	1	9		BIC:	108.8
Df Model	:		1			
Covariance Type	:	nonrobus	st			
	coef	std err	t	P> t	[0.025	0.975]
Intercept	6.5827	1.722	3.823	0.001	2.979	10.186
df['Sorting Time']	1.6490	0.258	6.387	0.000	1.109	2.189
Omnibus:	3.649	Durbin-V	Vatson:	1.248		
Prob(Omnibus):	0.161	Jarque-Be	ra (JB):	2.086		
Skew:	0.750	Pr	ob(JB):	0.352		
Kurtosis:	3.367	Co	nd. No.	18.3		

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [34]: Deliverd_predict=pd.DataFrame(Deliverd, columns=['Salary_hike']) Deliverd_predict

Out[34]:

	Salary_hike
0	23.072933
1	13.178814
2	16.476853
3	21.423913
4	23.072933
5	16.476853
6	18.125873
7	11.529794
8	23.072933
9	21.423913
10	19.774893
11	13.178814
12	18.125873
13	11.529794
14	11.529794
15	13.178814
16	16.476853
17	18.125873
18	9.880774
19	18.125873
20	14.827833

In [35]: Deliverd_predict=pd.DataFrame(Deliverd, columns=['Salary_hike'])
Deliverd_predict

Out[35]:

	Salary_hike
0	23.072933
1	13.178814
2	16.476853
3	21.423913
4	23.072933
5	16.476853
6	18.125873
7	11.529794
8	23.072933
9	21.423913
10	19.774893
11	13.178814
12	18.125873
13	11.529794
14	11.529794
15	13.178814
16	16.476853
17	18.125873
18	9.880774
19	18.125873
20	14.827833

In [36]: df['Deliverd_predict'] = Deliverd_predict
df

Out[36]:

	Delivery Time	Sorting Time	Deliverd_predict
0	21.00	10	23.072933
1	13.50	4	13.178814
2	19.75	6	16.476853
3	24.00	9	21.423913
4	29.00	10	23.072933
5	15.35	6	16.476853
6	19.00	7	18.125873
7	9.50	3	11.529794
8	17.90	10	23.072933
9	18.75	9	21.423913
10	19.83	8	19.774893
11	10.75	4	13.178814
12	16.68	7	18.125873
13	11.50	3	11.529794
14	12.03	3	11.529794
15	14.88	4	13.178814
16	13.75	6	16.476853
17	18.11	7	18.125873
18	8.00	2	9.880774
19	17.83	7	18.125873
20	21.50	5	14.827833

In []:

In []: