

Training models on atlas-scale single-cell datasets

Ryan Williams

SOMA Software
Engineer, TileDB

Spencer Seale
Solutions Architect, TileDB

scverse Conference | September 12, 2024

The workshop in a nutshell

WE WILL COVER

- What is CellxGene Census?
- What are TileDB and TileDB-SOMA?
- Understanding the Census and its data.
- Using the Census to:
 - Gain a high-level understanding of its contents.
 - Access and slicing data efficiently.
 - Performing computations efficiently.
 - Export data to single-cell toolkit.
- Utilizing Census PyTorch loaders for scalable modelling.
 - Training a classifier for Cell Type Annotation (immune cells)
- Cell Type Annotation via similarity search (vector search) for immune cells

This will be a hands-on workshop

If you didn't receive an invitation to join TileDB Cloud via email, **email** spencer.seale@tiledb.com now.

If you did receive an invitation, accept it, and follow the instructions to create a TileDB Cloud account.

Alternatively, you can passively along, or view the notebook at TileDB-Inc/scverse-ml-workshop-2024 on GitHub.

Questions? Message us in Zulip!

▶ 1 Login at cloud.tiledb.com

- **5** Launch your notebook with the configurations:
 - us-west-2
 - Genomics
 - Large server

Display server

[tile]DB + Chan Zuckerberg Initiative®

CELLXGENE Discover Census

Visual tools democratize access to single-cell data

https://cellxgene.cziscience.com/

Explore individual datasets [tile] DB

Inspect Gene Expression per tissue

Browse and download

Learn about cell types with Cell Guide

https://cellxgene.cziscience.com/

UNIQUE CELLS

DATASETS

90M

1486

Human Mouse 55M 30M

DISEASES

132

TOP TISSUES

CELL TYPES

907

ASSAYS

- 10x RNA-seq
- sci-RNA-seq
- microwell-sea
- Drop-seq
- Seq-Well
- Smart-seg2 and v4
- BD Rhapsody
- GEXSCOPE
- MARS-seq
- Visium 10x

CONSTANT RATE OF DATA INGESTION

All data at CZI CELLxGENE Discover is curated for data reuse and integration

https://cellxgene.cziscience.com/

GENE EXPRESSION

Normalized data Raw counts

FEATURE METADATA

e mpowered

UNIVERSALLY AVAILABLE CELL METADATA

뛯 Tissue

Assay

Cell type

Suspension

Disease

https://github.com/chanzuckerberg/single-cell-curation/blob/main/schema/5.1.0/schema.md

What is Census?

Built from >800 datasets Census is a **data object + API**. It gives efficient access to the largest aggregation of standardized single-cell data ready for analysis and modelling at scale. https://chanzuckerberg.github.io/cellxgene-census/

Census stack

Census is built atop TileDB-SOMA, which is built atop SOMA and TileDB

https://github.com/chanzuckerberg/cellxgene-census

https://github.com/single-cell-data/TileDB-SOMA

https://github.com/single-cell-data/SOMA

https://github.com/TileDB-Inc/TileDB

For this workshop we will use **TileDB-Cloud** to skip the installation process

https://cloud.tiledb.com/

Coming to Census soon

Newly released **Census Similarity Search**Now available to use!

Similarity Search Documentation

SOMA (data model) - TileDB (database)

What is SOMA?

(Stack Of Matrices, Annotated)

Data Model

A language-agnostic data model for representing collections of annotated matrices and derived results on disk.

API Specification

A language-agnostic API specification for interacting with the data model.

SOMA Data Model

Goals for SOMA

Open source

V

specification & reference implementations

Language-independent

- support both R & Python
- option to add more languages in the future

Interoperable with popular single-cell analysis frameworks

- ✓ AnnData/ScanPy (Python)
- Seurat (R)
- ✓ Bioconductor (R)

Designed for atlas-scale datasets

- support for cloud object stores
- out-of-core reads
- efficient querying

TileDB is a multi-modal database that morphs for any application

Why TileDB?

KEY TECHNICAL FEATURES

- ✓ Universal Format Sparse and dense ND arrays, key-value data, data frames
- ✓ Flexible Indexing Supports ints, floats, dates, and strings for versatile queries
- ✓ Scalable Design Uses tiling for selective memory loading during queries
- ✓ Columnar Enables efficient compression and selective attribute queries
- ✓ Cloud-Native Seamlessly works with local and cloud-based storage
- ✔ High Performance Fully parallelized I/O operations, multi-reader/writer concurrency
- ✓ Cross-Platform APIs for Python, R, Java, and many other languages

SUMMARY

TileDB offers **unparalleled flexibility** and **scalability**, enabling researchers to **handle diverse and growing datasets** with ease.

Scaling SOMA with TileDB Cloud

Why TileDB Cloud?

Commercial product for pharma, biotechs, and research institutions

- stores all types of multi-omics data as arrays and groups
- multiple ingestors
- provides a holistic catalog
- decentralizes data ownership
- centralizes governance and sharing of notebooks and dataset
- ✓ provides a common and scalable compute infrastructure and APIs
- ✓ allows definition and documentation of "data products" with the concept of shareable virtual "groups"

BENEFIT

Significantly reduced data engineering and infrastructure hassles

Let's dive in!

Training and inference

▶ 1 Login at cloud.tiledb.com

- 5 Launch your notebook with the configurations:
 - us-west-2
 - Genomics
 - Large server

Display server

Thank you!

TileDB

company/tiledb-inc

Ryan Williams, TileDB

ryan.williams@tiledb.com

@ryan-williams

CZI-wide

@ChanZuckerberg

in company/chan-zuckerberg-initiative

Maximilian Lombardo, CZI

mlombardo@chanzuckerberg.com

@MaximilianLombardo

Similarity search UX survey:

