The following questions help you think a little more about cos(x). If g(x) = cos(x),

1. Use the definition of the derivative to show that $g'(x) = -\sin(x)$. [4pt] From the definition of derivatives, we have

$$g'(x) = \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}$$
 (1)
=
$$\lim_{h \to 0} \frac{\cos(x)\cos(h) - \sin(x)\sin(h) - \cos(x)}{h}$$
 (1)
=
$$\cos(x)\lim_{h \to 0} \frac{\cos(h) - 1}{h} - \sin(x)\lim_{h \to 0} \frac{\sin(h)}{h}$$
 (1)
=
$$-\sin(x)$$

since $\lim_{h\to 0} \frac{\cos(h)-1}{h} = 0$ and $\lim_{h\to 0} \frac{\sin(h)}{h}$ is 1. (1)

- 2. True of False: g''(x) = -g(x). Explain your answer. [1pt] True, since $g''(x) = -\cos(x) = -g(x)$.
- 3. Graph $y = \cos(x)$ on $[-2\pi, 2\pi]$.
- 4. Why is $\cos(x)$ not invertible on $[-2\pi, 2\pi]$.? [1pt] $\cos(x)$ is not one-to-one on $[-2\pi, 2\pi]$.
- 5. What is the simplest domain on which $\cos(x)$ is invertible? [1pt] $\cos(x)$ is invertible on $[0, \pi]$.
- 6. Let's call the inverse of cos(x) on that domain cos⁻¹(x), or arccos x. What is the domain of cos⁻¹(x)? The range? [1pt]
 The domain of cos⁻¹(x) is [-1, 1], and the range is [0, π].
- 7. What is $\cos(\cos^{-1} x)$? For which values of x is that true? [1pt] $\cos(\cos^{-1} x)$ is x for x in [-1, 1].
- 8. What is $\cos^{-1}(\cos x)$? For which values of x is that true? [1pt] $\cos^{-1}(\cos x)$ is x for x in $[0, \pi]$.
- 9. Sketch a graph of $y = \cos^{-1} x$.