

VERIFICATION PLAN

AHB-LITE INTERFACE

MINAHIL NAVEED 2021-MSEE-33

AHB-Lite Protocol:

AHB-Lite implements the features required for high-performance, high clock frequency systems including:

- burst transfers
- Single-clock edge operation
- Non-tristate implementation
- Wide data bus configurations, 64, 128, 256, 512, and 1024 bits.

The most common AHB-Lite slaves are internal memory devices, external memory interfaces, and high bandwidth peripherals. Although low-bandwidth peripherals can be included as AHB-Lite slaves, they typically reside on the AMBA Advanced Peripheral Bus (APB) for system performance reasons. Bridging between this higher level of bus and APB is done using an AHB-Lite slave, known as an APB bridge. Figure 1-1 shows a single master AHB-Lite system design with one AHB-Lite master and three AHB-Lite slaves. The bus interconnect logic consists of one address decoder and a slave-to-master multiplexor. The decoder monitors the address from the master so that the appropriate slave is selected and the multiplexor routes the corresponding slave output data back to the master.

Working of Protocol:

Global Signals:

Name	Destination	Description
HCLK	Clock source	Clock source for all operations on the
		protocol. Input signals are sampled at
		rising edge and changes in output
		signals happen after the rising edge
HRESTn	Reset Controller	Asynchronous primary reset for all bus
		elements

Master Signals:

Name	Destination	Description
HADDR [31:0]	Slave and	Address bus of 32 bits
	Decoder	
HBURST [2:0]	Slave	Indicates the type of burst signal
		including wrapping and incrementing
		bursts
HSIZE [2:0]	Slave	Indicates the size of transfer from 8 bits
		to 1024 bits

Slave Signals:

Name	Destination	Description
HRDATA [31:0]	Multiplexor	Read data bus to transfer the data from
		a Slave's location to the Master via
		multiplexor
HREADYOUT	Multiplexor	Indicates transfer has finished on the
		bus and is used to extend the data phase
HRESP	Multiplexor	Provides additional information that the
		transfer was successful or failed

Decoder Signals:

Name	Destination	Description
HSELx	Slave	Indicates current transfer is for
Note: x is a unique identifier		intended for selected slave
for AHB lite slave		

Multiplexor Signals:

Name	Destination	Description
HRDATA [31:0]	Master	Read data bus to rout to Master
HREADY	Master and Slave	Indicates completion of previous
		transfer
HRESP	Master	Transfer response

Fig 1.1

Working Protocol

The master starts a transfer by driving the address and control signals. These signals provide information about the address, direction, width of the transfer, and indicate if the transfer forms part of a burst. Transfers can be of different type's for instance single, incrementing bursts that do not wrap at address boundaries, wrapping bursts that wrap at particular address boundaries, etc. The write data bus moves data from the master to a slave, and the read data bus moves data from a slave to the master.

Every transfer consists of two phases:

- 1) Address phase: one address and control cycle
- 2) Data phase: one or more cycles for the data.

A slave cannot request that the address phase is extended and therefore all slaves must be capable of sampling the address during this time. However, a slave can request that the master extends the data phase by using HREADY. This signal when LOW, causes wait states to be inserted into the transfer and enables the slave to have extra time to provide or sample data. The slave uses a response signal to indicate the success or failure of a transfer.

VERIFICATION PLAN

No	Features	Test Description	Ref.	Type	Result	Expected	Comments
						outcome	
1	Write Transfer from	An address B is	3.1	TR		Address phase	HWRITE is
	Master to Slave	driven onto the bus.				should not be	high,
		The slave will				more than one	indicating a
		sample the address				cycle.	write transfer
		B on the next rising				The slave must	and the
		clock edge.				only sample	master
		Afterward, the slave				address when	broadcasts
		will drive the				HREADY is	data on the
		HREADY response.				high.	write data
		This response is				The Data (B)	bus,
		sampled on the next				must be written at	HWDATA
		rising edge of				the address B	[31:0].
		HCLK.				and a completed	
						transfer is	
						signalled i.e.,	
						HRESP should	
						be low and	
						HREADY should	
						be high.	
						C	
2	Read Transfer from	An address B is	3.1	TR		The address phase	HWRITE is
	Slave to Master	driven onto the bus.				should not be	low, a read
		The slave will				more than one	transfer is
		sample the address				cycle.	performed
		B on the next rising				The slave must	and the slave
		clock edge.				only sample	must
		Afterward, the slave				address on when	generate the
		will drive the				HREADY is	data on the
		HREADY response.				high.	read data
		This response is				The Data (B)	bus,
		sampled on the next				must be read from	HRDATA
		rising edge of				the address B and	[31:0].
		HCLK.				completed	[31.0].
		IICLIX.				transfer is	
						signalled i.e., HRESP should be	
						low and	

					HREADY should	
					be high	
3	Random transfers	Random addresses	3.1	TR	Just like in test 1	Based on the
		A, B, C and D with			and test 2 the	type of
		zero wait states are			slave must only	transfer i.e.,
		driven onto the bus.			sample the	read transfer
					address A, B, C	or write
		The slave will			and D when	transfer
		sample the addresses			HREADY is high	HWRITE
		A, B, C and D on			and completion of	will be set
		rising clock edged of			transfer must be	low and high
		their address phase.			signalled by the	respectively.
		F			slave i.e.,	
					HRESP should	
					be low and	
					HREADY should	
					be high.	
					8	
					Based on the basic	
					transfer type i.e.,	
					write or read	
					Data(B), Data(B),	
					Data(C) and	
					Data(D) will be	
					driven on the	
					HWDATA [31:0]	
					bus or HRDATA	
					[31:0] bus	
					respectively.	
4	Read or Write	An address B is	3.1	A	During the wait	Adding wait
	transfer with wait	driven onto the bus.			state, the slave	states causes
	states	The slave will	5.1		must provide	latency in the
		sample the address			transfer pending	read or write
		on the rising edge of	5.1.2		response i.e.,	transfer. The
		the clock provided			HREADY and	master
		that HREADY is			HRESP must be	cannot
		high.			low before	cancel the
		After sampling the			completion.	transfer.
		address. Wait states			Afterward, a	
		are added in the data			successful	
		phase by keeping			complete transfer	
		HREADY low for			is signalled when	
		two cycles after we			HREADY is high	

		have sampled the			and HRESP is	
		address			low.	
5	Multiple transfers	Three addresses A,	3.1	TR	Since the data	When a
	extended	B, and C are driven	3.1	110	phase of address,	transfer is
	CAtchaca	onto the bus. The			A is extended the	extended it
		addresses are			address phase of	has side
		sampled on rising			B is extended by	effects of
		clock edges during			one cycle.	extending the
		their address phases.			one cycle.	address
		then address phases.			The address phase	phase of the
		Wait states are added			of C is extended	next transfer.
		using HREADY .			by three cycles.	next transfer.
		Transfer to address			by timee cycles.	
		B is one wait state.				
		Transfer to address B				
		is two wait states.				
6	Write followed by	An address B is	3.1	TR	Based on the	During the
0	Read transfer	driven onto the bus	3.1	1 K		Write
	Read transfer	twice. The slave will			*	transfer the
					the memory. Read transfer should	completed
		sample the address B on the first and				transfer is
					produce the	
		second rising clock			updated Data (B).	signalled i.e.,
		edge for write and				HRESP
		read transfer				should be
		respectively.				low and
		E. 4 HAMBINE:				HREADY
		Firstly, HWRITE is				should be
		high, indicating a				high.
		write transfer and				ъ .
		the master				During the
		broadcasts data on				Read transfer
		the write data bus,				the
		HWDATA [31:0].				completed
		I 4 INVOIDE:				transfer is
		Lastly, HWRITE is				signalled i.e.,
		set low, a read				HRESP
		transfer is performed				should be
		and the slave must				low and
		generate the data on				HREADY
		the read data bus,				should be
		HRDATA [31:0].				high.
7	Read followed by	An address B is	3.1	TR	Based on the	During the
	Write transfer	driven onto the bus			specifications of	Read transfer
		twice. The slave will			the memory.	the

		sample the address			Read transfer	completed
		B on the first and			should produce	transfer is
		second rising clock			the Data (B)	signaled i.e.,
		edge for read and			which was stored	HRESP
		write transfer			before Write	should be
		respectively.			transfer.	low and
		respectively.			transior.	HREADY
		Firstly, HWRITE is			The Write transfer	should be
		set low, a read			will update	high.
		transfer is performed			Data(B).	mgn.
		and the slave must			Data(B).	During the
		generate the data on				Write
		the read data bus,				transfer the
		HRDATA [31:0].				completed
		TIKDATA [31.0].				transfer is
		Lastly, HWRITE is				signaled i.e.,
		high, indicating a				HRESP
		write transfer and the				should be
		master broadcasts				low and
		data on the write data				HREADY
						should be
		, , , , , , , , , , , , , , , , , , ,				
		[31:0].				high.
8	Wrapping burst	We have transfer	3.5	A	In WRAP4 the	Wrapping
	types:	size of 4-byte (32-	3.0	11	burst is a four-	bursts wrap
	types.	bit) which is a word.	3.5.3		beat burst of word	when they
	• WRAP4	oit) wineii is a word.	3.5.5		transfers; the	cross an
	· WMH +	In WRAP4, firstly			addresses wrap at	address
	• WRAP8	address B+4,			16-byte boundary.	boundary.
	,,,,,,,	address B+8 and			10 byte boundary.	boundary.
	• WRAP16	address B+12 is			In WRAP8 the	Address
		driven onto the bus			burst is an eight-	boundary =
		which are sampled			beat burst of word	HBURST x
		by the slave on the			transfers; the	HSIZE
		rising clock edges of			addresses wrap at	
		their address phases.			32-byte boundary.	Note:
		After the transfer at			52-byte boundary.	Different
		address B+12, we			In WRAP16 the	combinations
		have reached the			burst is a sixteen-	of read and
		address boundary			beat burst of word	write
		therefore next			transfers; the	transfers can
		transfer is wrapped			addresses wrap at	be used
		to address B.	1		64-byte boundary.	which were
İ						implicitly

		Similarly, we drive addresses on the bus for WRAP8 and WRAP16 to check if they wrap at the address boundaries.	For all the above scenarios the slave will provide a completed transfer signal.	checked in previous tests.
9	Incrementing burst type: INCR4 INCR8 INCR16	We have transfer size of 4-byte (32-bit) which is a word. Firstly, address B +4, B+8 and B+12 is driven onto the bus which are sampled by the slave on the rising clock edges of their address phases. After the transfer at address B+12, we have reached the address boundary. Since we are using incrementing burst type. Instead of wrapping around it will transfer to the next location which is B+16. Similarly, we drive addresses on the bus for INCR8, INCR 16 to check if they increment at the address boundaries.	In INCR4, the transfers are incremented by 4. In INCR8, the transfers are incremented by 8. In INCR16, the transfers are incremented by 16. For all the above scenarios the slave will provide a completed transfer signal.	Incrementing bursts access sequential locations. The addresses of each transfer in the burst are an increment of the previous address.
10	Incrementing burst type:	First burst is driven on the bus which consists of two half	In first burst, the transfer address is	

	INCR and undefined length burst	word transfers at an address B. The second burst is read consisting of three word read transfers starting at address B			incremented by two. In the second burst, the transfer address is incremented by four. For all the above scenarios the slave will provide a completed transfer signal.	
11	Protection signals HPROT [3:0]: • 4'b0000 • 4'b1111	An address B is driven on the bus. The timing of HPROT and address bus must be same. The must remain constant throughout the burst transfer. The protection signal HPROT [3:0] = 4'b0000 corresponds to non-cacheable, non-buffer able, unprivileged opcode fetch. The protection signal HPROT [3:0] = 4'b1111 corresponds	3.7	A	The protection signal basically gives extra information which can be used to determine an exception for instance illegal instruction, illegal access and etc. For instance, Data (B) can't be accessed because only a privileged level can access that information. The response is entirely dependent how the design	The test is dependent on master's ISA (Instruction Set Architecture) and design. Used by a module that wants to implement some level of protection.
12	HRESETn	to cacheable, buffer able, privileged data access. It is an active low signal. When	7.1.2	A	engineer implemented it. All the bus elements will	
		HRESETn is asserted then HREADYOUT must be HIGH and			reset and HRESETn is disserted synchrounsly	

		HTRANS must			=	
		IDLE				
13	Cancellation of transfer	After a master started a transfer, master cannot cancel a transfer.	5.1	A	The transfer should be completed once the master started	
14	Master Signal: IDLE HTRANS [1:0] =b00	An address A is driven onto the bus. An IDLE transfer is inserted to this address.	3.2	A	The transfer must be ignored by the slave. Slave provides a zero-wait OKAY response.	Master Signal: IDLE HTRANS [1:0] =b00
15	Master Signal: BUSY HTRANS [1:0] =b01	Address A and B are driven onto the bus. When a BUSY transfer is inserted on address A then the address and control signals must reflect the next burst transfer i.e., address B. A sequential transfer is signalled for address B.	3.2	A	After the complete transfer signal from the slave for address A; address B is sampled during the sequential transfer.	Master Signal: BUSY HTRANS [1:0] =b01
16	Transfer type changes from IDLE to NONSEQ during waited states	Address A, B, C, and X are driven onto the bus. One IDLE transfer is inserted to address B and address C. The transfer type is changed to NONSEQ and initiates a transfer to address x. With HREADY low, the HTRANS is kept constant.	3.6.1	A	The slave will sample address A at the rising clock edge of the address phase. After successful transfer to address A the slave will ignore the IDLE transfers i.e., transfers associated with addresses B and C will be neglected.	Transfer type changes from IDLE to NONSEQ during waited states

17	Transfer type changes from BUSY to SEQ during waited states for a fixed-length burst	A sequential address A is driven onto the bus. Then a busy transfer is inserted and address B is driven on the bus. Wait states are added by keeping HREADY low. A sequential address C is driven on the bus. The transfer type changes from BUSY to SEQ. HTRANS is kept constant and slaves must keep HREADY low during this phase. Then HREADY is set high.	3.6.1	A	Then, address B will be sampled in its address phase. Transfer to address B will complete and slave will signal a complete transfer response. Transfer to address A completes when HREADY is set high. In the next cycle, the transfer to address B completes, and then in the next cycle the transfer to address C completes.	Transfer type changes from BUSY to SEQ during waited states for a fixed-length burst
18	Transfer type changes from BUSY to NONSEQ during waited states for an undefined length burst	We have an undefined length burst. A sequential address A is driven onto the bus. Then a busy transfer is inserted to address B and is driven onto the bus.	3.6.1		The undefined length burst completes with HREADY high. The burst is terminated due to the NONSEQ transfer type.	Transfer type changes from BUSY to NONSEQ during waited states for an undefined length burst

		Wait states are				Then the transfer		
		added by keeping				of address C is		
		HREADY low.				signalled		
						completed by the		
		Then a non				slave.		
		sequential address C						
		is driven onto the				In the next cycle,		
		bus. The transfer				the transfer to		
		type changes from				address B		
		BUSY to NONSEQ.				completes, and		
						then in the next		
		HTRANS is kept				cycle the transfer		
		constant and slaves				to address C		
		must keep				completes.		
		HREADY low						
		during this phase						
		Then HREADY is						
		set high.						
19	Address change	A single burst is	3.6.2			During the	Address	
	during wait state	initiated to address				address phases of	change	
	with IDLE transfer	A and is driven onto				address A and	during	wait
		the bus.				address B the	state	with
						slave samples the	IDLE	
		Then another				addresses at the	transfer	
		address Y is initiated				rising edge of the		
		onto the bus. An				clock cycle.		
		IDLE transfer is						
		inserted to this				The slave will		
		address				signal a		
						completed		
		The slave inserts a				transfer after the		
		wait state by keeping				transfer to address		
		HREADY low.				A		
		TD1 .1						
		Then another				The IDLE		
		address Z is initiated				transfers are		
		onto the bus. An				ignored by the		
		IDLE transfer is				slave between		
		inserted to this				addresses A and		
		address.				В.		
		İ	i	I	1			

		There a NOSEO		I	Then the classes	
		Then, a NOSEQ			Then, the slave	
		transfer is inserted to			will signal a	
		another address B,			completer transfer	
		and is driven onto			after the transfer	
		the bus. The transfer			to address B.	
		type changes to				
		NONSEQ.				
		Until HREADY goes				
		HIGH, no more				
		address changes are				
		permitted.				
20	Address change	•	3.6.2		The addresses are	Address
20		Two sequential	3.0.2			
	during awaited	addresses A and B			sampled at the	change
	transfer after an	are driven onto the			rising edge of the	during
	ERROR	bus.			clock cycle in	awaited
					their address	transfer after
		The address phase of			phases.	an ERROR
		address A is one				
		cycle whereas the			During the first	
		address phase of			cycle of the data	
		address B is			phase of address	
		extended to two			A, the slave	
		cycles			provides an	
					OKAY response.	
		Then an address C is			1	
		inserted with IDE			During the first	
		transfer and driven			cycle of the data	
		onto the bus. As a			phase of address	
		result, the transfer			B, the slave	
		type is changed to			provides an	
		IDLE.			OKAY response.	
		IDLE.			OKAT Tesponse.	
					Since the address	
					phase was	
					extended therefor	
					in the next cycle	
					slave will	
					generate an	
					ERROR response.	
					During this cycle,	
					the transfer type	

					changed successfully. In the next cycle, the slave responds with an OKAY signal.	
21	Transfer type changes from IDLE to NONSEQ during waited states	Address A, B, C, and X are driven onto the bus. One IDLE transfer is inserted to address B and address C. The transfer type is changed to NONSEQ and initiates a transfer to address x. With HREADY low, the HTRANS is kept constant.	3.6.1	A	The slave will sample address A at the rising clock edge of the address phase. After successful transfer to address A the slave will ignore the IDLE transfers i.e., transfers associated with addresses B and C will be neglected. Then, address B will be sampled in its address phase. Transfer to address B will complete and slave will signal a complete transfer response.	Transfer type changes from IDLE to NONSEQ during waited states
22	Transfer type changes from BUSY to SEQ during waited states for a fixed-length burst	A sequential address A is driven onto the bus. Then a busy transfer is inserted and address B is driven on the bus. Wait states are added by keeping HREADY low.	3.6.1	A	Transfer to address A completes when HREADY is set high. In the next cycle, the transfer to address B completes, and then in the next cycle the transfer	Transfer type changes from BUSY to SEQ during waited states for a fixed-length burst

type
SY
EQ
ates
1
rst
S ta

24	Address change	A single burst is	3.6.2		During the	Address
	during wait state	initiated to address			address phases of	change
	with IDLE transfer	A and is driven onto			address A and	during wait
		the bus.			address B the	state with
					slave samples the	IDLE
		Then another			addresses at the	transfer
		address Y is initiated			rising edge of the	
		onto the bus. An			clock cycle.	
		IDLE transfer is				
		inserted to this			The slave will	
		address			signal a	
					completed	
		The slave inserts a			transfer after the	
		wait state by keeping			transfer to address	
		HREADY low.			A	
		Then another			The IDLE	
		address Z is initiated			transfers are	
		onto the bus. An			ignored by the	
		IDLE transfer is			slave between	
		inserted to this			addresses A and	
		address.			B.	
		Then, a NOSEQ			Then, the slave	
		transfer is inserted to			will signal a	
		another address B,			completer transfer	
		and is driven onto			after the transfer	
		the bus. The transfer			to address B.	
		type changes to			to address B.	
		NONSEQ.				
		TTOTIBLEQ.				
		Until HREADY goes				
		HIGH, no more				
		address changes are				
		permitted.				
25	Address change	Two sequential	3.6.2		The addresses are	Address
	during awaited	addresses A and B			sampled at the	change
	transfer after an	are driven onto the			rising edge of the	during
	ERROR	bus.			clock cycle in	awaited
					their address	transfer after
		The address phase of			phases.	an ERROR
		address A is one				
		cycle whereas the			During the first	
		address phase of			cycle of the data	

		address B is			phase of address
		extended to two			A, the slave
		cycles			provides an
					OKAY response.
		Then an address C is			
		inserted with IDE			During the first
		transfer and driven			cycle of the data
		onto the bus. As a			phase of address
		result, the transfer			B, the slave
		type is changed to			provides an
		IDLE.			OKAY response.
					Since the address
					phase was
					extended therefor
					in the next cycle
					slave will
					generate an
					ERROR response.
					•
					During this cycle,
					the transfer type
					changed
					successfully.
					In the next cycle,
					the slave responds
					with an OKAY
					signal.
					organi.
26	Slave response:	The transfer is	5.1.1	A	Slave must give
	Transfer done	completed			HREADY HIGH
		successfully.			and HRESP
					OKAY
27	Slave response:	Transfer is pending	5.1.2	A	Slave must give
	Transfer pending				HREADY LOW
					and HRESP
					OKAY
28	Slave response:	The transfer is not	5.1.3	A	HRESP must be
	transfer failed	completed			HIGH. Two cycle
		successfully			response is
					required for an
					error condition.

29	HREADYOUT	When HIGH the	2.3	A		
		transfer has finish on				
		the bus				
30	HREADY	If the transfer is	6.1.1	A		
		extended then the				
		master must hold the				
		valid data until the				
		transfer completes				