Матан

Сергей Григорян

20 сентября 2024 г.

Содержание

1	Лег	кция 5	
	1.1	Монотонные п-ти	
	1.2	Последовательность вложенных отрезков	
2	Лекция 6		
	2.1	Бесконечные пределы	
	22	Дополнения к ранним теоремам	
	4.4	дополнения к ранним теоремам	

1 Лекция 5

Пример.

$$a_n = \frac{1}{n^2 + 1} + \frac{2}{n^2 + 2} + \dots + \frac{n}{n^2 + n}, n \in \mathbb{N}$$

$$\frac{1 + 2 + \dots + n}{n^2 + n} \le a_n \le \frac{1 + 2 + \dots + n}{n^2 + 1}$$

$$\frac{n(n+1)}{2(n^2 + n)} \le a_n \le \frac{n(n+1)}{2(n^2 + 1)}$$

$$\frac{1}{2} \le a_n \le \frac{1 + \frac{1}{n}}{2 + \frac{2}{n^2}} (\frac{2}{n^2} \to 0, \frac{1}{n} \to 0)$$

$$\Rightarrow \lim_{n \to \infty} a_n = \frac{1}{2}$$

Определение 1.1. Посл-ть $\{\alpha_n\}_1^\infty$ наз-ся беск. малой, если

$$\lim_{n\to\infty}\alpha_n=0$$

Замечание.

$$\lim_{n\to\infty} a_n = a \iff a_n = a + \alpha_n, \, \text{rde } \alpha_n \text{ - 6. M.}$$

Пример. Пусть $\{\alpha_n\}_1^{\infty}$ - б. м., а $\{\beta_n\}_1^{\infty}$ - огранич. Тогда: $\{\alpha_n\beta_n\}_1^{\infty}$ - б. м.

Доказательство. Т. к. $\{\beta_n\}_1^\infty$ - огр., то $\exists C>0\colon \forall n(|\beta_n|\leq C)$

$$-C|\alpha_n| \le \alpha_n \beta_n \le C|\alpha_n|$$

Крайние части $\to 0 \Rightarrow \Pi$ о. т. о двух полицейских $\lim_{n\to\infty} \alpha_n \beta_n = 0$

1.1 Монотонные п-ти

<u>Определение</u> **1.2.** П-ть $\{a_n\}_1^\infty$ наз-ся **нестрого возрастающей** (**строго возрастающей**), если

$$a_n \le a_{n+1}(a_n < a_{n+1}), \forall n \in \mathbb{N}$$

П-ть $\{a_n\}_1^\infty$ наз-ся **нестрого убывающей (строго убыв.**), если:

$$a_n \ge a_{n+1}(a_n > a_{n+1}), \forall n \in \mathbb{N}$$

Такие п-ти наз-ся монотонными.

<u>Замечание</u>. Из onp-я следует, что $\{a_n\}_1^\infty$ нестрого возрастает \iff $\{-a_n\}_1^\infty$ нестрого убывает.

<u>Замечание</u>. Если $a_n \leq a_{n+1}, \forall n \in \mathbb{N} \Rightarrow \forall n, m (n < m \to a_n \leq a_m)$

Теорема 1.1 (Теорема о пределе монотонной п-ти). ПУсть $\{a_n\}_1^{\infty}$ нестрово возрастает и огр. сверху, тогда $\{a_n\}_1^{\infty}$ сходиться и $\lim_{n\to\infty} a_n = \sup\{a_n\}_1^{\infty}$

Пусть $\{a_n\}_1^\infty$ нестрого убывает и огр снизу, тогда $\{a_n\}_1^\infty$ сходиться $u\lim_{n\to\infty}a_n=\inf\{a_n\}_1^\infty$

Доказательство. Док-ем первое утв. По условию $\exists c = \sup\{a_n\}_1^\infty \in \mathbb{R}$. Зафикс. $\varepsilon > 0$. По опр. супремума $\forall n(a_n \leq c)$, также:

$$\exists N(a_N > c - \varepsilon)$$

Поскольку $\{a_n\}_1^\infty$ нестрого возр., то $a_n \ge a_N, \forall n \ge N \Rightarrow$ при всех таких $n \ge N$ имеем:

$$a_N \le a_n$$
 $c-arepsilon < a_N \le a_n \le c < c+arepsilon,$ откуда $|a_n-c| $\Rightarrow \lim_{n \to \infty} a_n = c$$

Второе утв. док-ся аналогично.

<u>Лемма</u> 1.2 (Нер-во Бернулли). *Если* $n \in \mathbb{N}$ u $x \ge -1$, mo:

$$(1+x)^n \ge 1 + nx$$

Доказательство. МММ:

n = 1 Верно.

 $n \Rightarrow n+1$ Пусть утв. верно для n. Тогда:

$$(1+x)^{n+1} = (1+x)(1+x)^n \ge (1+x)(1+nx) = 1 + (n+1)x + nx^2 \ge 1 + (n+1)x$$

Пример. Для $\forall x \in \mathbb{R}$ n-mb $a_n = (1 + \frac{x}{n})^n$ сходится.

Доказательство. Зафикс. $m \in \mathbb{N}$, что $m \geq |x|$. Тогда при:

$$n \ge m \colon a_n(x) > 0,$$

а также:

$$\frac{a_{n+1}(x)}{a_n(x)} = \frac{\left(1 + \frac{x}{n+1}\right)^{n+1}}{\left(1 + \frac{x}{n}\right)^n} = \left(1 + \frac{x}{n}\right) \left(\frac{1 + \frac{x}{n} - \frac{x}{n} + \frac{x}{n+1}}{1 + \frac{x}{n}}\right)^{n+1} = \left(1 + \frac{x}{n}\right) \left(1 - \frac{\frac{x}{n(n+1)}}{1 + \frac{x}{n}}\right)^{n+1}$$

Исследуем: $\left(-\frac{\frac{x}{n(n+1)}}{1+\frac{x}{n}}\right)$. Она:

$$\begin{cases} > 0, x < 0 \\ \ge -1, x \ge 0 \end{cases}$$

По нер-ву Бернулли:

$$(1+\frac{x}{n})\left(1-\frac{\frac{x}{n(n+1)}}{1+\frac{x}{n}}\right)^{n+1} \ge (1+\frac{x}{n})(1-\frac{\frac{x}{n}}{1+\frac{x}{n}}) = 1$$

Итак, $\{a_n\}_1^\infty(x)$ нестрого возр. при $n \ge m$. По доказанному $a_n(-x) \ge a_m(-x)$, при $n \ge m$.

Т. к.

$$a_n(x)a_n(-x) = \left(1 - \frac{x^2}{n}\right)^n \le 1,$$

TO:

$$a_n(x) \le \frac{1}{a_n(-x)} \le \frac{1}{a_m(-x)}$$
, T. e.

 $\{a_n\}_1^\infty$ огр. сверху.

Сл-но, по теореме о пределе монот. посл-ти. $\{a_n(x)\}_1^{\infty}$ сход-ся.

Определение 1.3.

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Задача 1.1. Док-те, что 2 < e < 3

1.2 Последовательность вложенных отрезков

Определение 1.4. П-ть отрезков $\{[a_n, b_n]\}_1^{\infty}$ наз-ся вложенной, если $\forall n \in \mathbb{N}([a_{n+1}, b_{n+1}] \subset [a_n, b_n])$

Если к тому же, $b_n-a_n\to 0$, то п-ть $\{[a_n,b_n]\}_1^\infty$ наз-ся **стягиваю- щейся**.

Теорема 1.3 (Кантор). Всякая п-ть вложенных отрезков имеет общую точку. Если п-ть стягивающаяся, то такая точка единственная.

Доказательство. Пусть задана п-ть $\{[a_n,b_n]\}_1^{\infty}$ вложенных отр-ов. Тогда:

$$\forall n \in \mathbb{N} \colon a_1 \le a_n \le a_{n+1} \le b_{n+1} \le b_n \le b_1$$

П-ть $\{a_n\}_1^{\infty}$ нестрого возр. и огр. сверху (числом b_1). П-ть $\{b_n\}_1^{\infty}$ нестрого убыв. и огр. снизу (числом a_1) $\Rightarrow \{a_n\}_1^{\infty}, \{b_n\}_1^{\infty}$ сход., $a_n \to \alpha, b_n \to \beta$ и $\alpha \le \beta$. Итак $\forall n (a_n \le \alpha \le \beta \le b_n)$, т. е.:

$$[\alpha, \beta] \subset \bigcap_{n=1}^{\infty} [a_n, b_n]$$

Если п-ть $\{[a_n,b_n]\}_1^{\infty}$ - стягив., то $b_n-a_n\to 0$ Пусть $x,y\in \bigcap_{n=1}^{\infty}[a_n,b_n]$, тогда $|x-y|\le b_n-a_n\Rightarrow x=y$ Т. е. $\bigcap_{n=1}^{\infty}[a_n,b_n]=x$, где $x=\alpha=\beta$.

2 Лекция 6

Paccm. $\bigcap_{i=1}^{\infty} (0, \frac{1}{n})$

По аксиоме Архимеде, заключаем, что $\bigcap_{i=1}^{\infty}(0,\frac{1}{n})=\emptyset$

2.1 Бесконечные пределы

Выделим классы п-ть, расход. особым образом:

Определение 2.1. Говорят, что $\{a_n\}_1^{\infty}$ стремится к $+\infty$, если $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N} (n \geq N \Rightarrow a_n > \frac{1}{\varepsilon})$

Обозначение. Пишут вот так: $\lim_{n\to\infty} a_n = +\infty$ или $a_n \to +\infty$

Определение 2.2. Говорят, что $\{a_n\}_1^{\infty}$ стремится к $-\infty$, если $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N} (n \geq N \Rightarrow a_n < -\frac{1}{\epsilon})$

<u>Обозначение</u>. Пишут, что $\lim_{n\to\infty} a_n = -\infty$ или $a_n \to -\infty$

Определение 2.3. П-ть $\{a_n\}_1^\infty$ наз-ся беск. большой, если $\lim_{n\to\infty}|a_n|=+\infty$

Замечание. Из onp-ий следует, что $a_n \to -\infty \iff (-a_n) \to +\infty$

Пример. 1)

$$a_n = n^2, n \in \mathbb{N} \Rightarrow a_n \to +\infty$$

Возъмём $N=\left|\frac{1}{\sqrt{\varepsilon}}\right|+1\Rightarrow n\geq N\Rightarrow n^2\geq \frac{1}{\varepsilon}$

$$(-n^2) \to -\infty$$

3)
$$(-1)^n n^2 - 6$$
. 6., $no, (-1)^n n^2 \not\to +\infty, (-1)^n n^2 \not\to -\infty$

Задача 2.1. Док-ть, что всякая ББ п-ть является неограниченной.

<u>Замечание</u>. П-ть не может одновременно стремиться к числу и к символу $+\infty$ (T. к. она либо ограничена, либо неогр.), а также к бесконечностям разных знаков. Таким образом, если n-ть имеет предел в \mathbb{R} , то он единственный.

<u>Лемма</u> 2.1. Пусть $a_n \neq 0, \forall n \in \mathbb{N}, mor\partial a \{a_n\}_1^{\infty} - BE \iff \{\frac{1}{a_n}\}_1^{\infty} - BM$

Доказательство. Это следует из
$$|a_n| > \frac{1}{\varepsilon} \iff \left|\frac{1}{a_n}\right| < \varepsilon$$

2.2 Дополнения к ранним теоремам

Теорема 2.2 (4'). Пусть $a_n \leq b_n, \forall n \in \mathbb{N}$. Тогда:

- 1) Ecau $a_n \to +\infty$, mo $b_n \to +\infty$
- 2) Если $b_n \to -\infty$, то $a_n \to -\infty$

Доказательство. 1) Заф. $\varepsilon > 0$. По опр. предела $\exists N \in \mathbb{N}, \forall n \geq N \colon (a_n > \frac{1}{\varepsilon})$. Тогда $b_n \geq a_n > \frac{1}{\varepsilon}, \forall n \geq N$. Тогда $b_n \to +\infty$

2) Вытекает из (1): $(-b_n) \to +\infty, -b_n \le -a_n, \forall n \to (-a_n) \to +\infty \Rightarrow a_n \to -\infty$

Теорема 2.3 (6'). 1) Если п-ть $\{a_n\}_1^{\infty}$ нестрого возр. и неогр. свер-xy, то $\exists \lim_{n\to\infty} a_n = +\infty$

2) Если п-ть $\{a_n\}_1^\infty$ нестрого убыв. и неогр. снизу, то $\exists \lim_{n\to\infty} a_n = -\infty$

 \mathcal{A} оказательство. 1) Зафикс. $\varepsilon>0$. Из неогр. сверху следует, что $\exists N\colon a_N>\frac{1}{\varepsilon}\Rightarrow$ Тогда $a_n\geq a_N>\frac{1}{\varepsilon}, \forall n\geq N\Rightarrow \lim_{n\to\infty}a_n=+\infty$

2) Аналогично (1), или с помощью сведения a_n к $(-a_n)$

<u>Следствие</u>. Всякая монотонная n-ть имеет предеел в $\overline{\mathbb{R}}$: если $\{a_n\}_1^\infty$ нестрого возр., то $\exists \lim_{n\to\infty} a_n = \sup\{a_n\}$

Если n-ть $\{a_n\}_1^\infty$ нестрого убыв., то $\exists \lim_{n\to\infty} a_n = \inf\{a_n\}$

<u>Задача</u> **2.2.** Д-те, что теорема 5 (арифм. операции с пределами), остаётся верно и для $a,b \in \overline{\mathbb{R}}$ (с допуст. операциями)

Пример. Пусть $\lim_{n\to\infty}a_n=x\in\mathbb{R}, x<0,\ a\lim_{n\to\infty}b_n=+\infty.$ Тогда $\lim_{n\to\infty}a_nb_n=-\infty$

Доказательство.

$$\exists N_1, \forall n \ge N_1(a_n < \frac{x}{2})$$
$$\exists N_2, \forall n \ge N_2(b_n > \frac{2}{|x| \varepsilon})$$

Возьмём $N = max(N_1, N_2) \Rightarrow \forall n \geq N$:

$$a_n b_n < \frac{x}{2} \frac{2}{|x| \, \varepsilon} = \frac{1}{\varepsilon}$$

2.3 Подпоследовательности

Определение 2.4. Пусть $\{a_n\}_1^{\infty}$ - п-ть и $\{n_k\}_1^{\infty}$ строго возрастающая п-ть нат. чисел. П-ть $\{b_k\}_1^{\infty}$, где $b_k=a_{n_k}, k\in\mathbb{N}$, наз-ся подпоследовательностью и об-ся $\{a_{n_k}\}_1^{\infty}$

Пример.

$$a_n = n, n \in \mathbb{N}$$

$$a_{n_k} = k^2, k \in \mathbb{N} - no\partial n - mb$$

<u>Замечание</u>. 1) Подп-ть $\{a_{n_k}\}$ - это композиция строго возрастающей ϕ -ции $\sigma: \mathbb{N} \to \mathbb{N}, \sigma(k) = n_k,$ и самой n-ти $a: \mathbb{N} \to \mathbb{N}$

2) Верно, что $n_k \ge k, \forall k$ $(n_1 \ge 1, n_k \ge k, n_{k+1} > n_k \ge k \Rightarrow n_{k+1} \ge k+1)$

<u>Лемма</u> **2.4.** Если n-ть $\{a_n\}$ имеет предел в $\overline{\mathbb{R}}$, то любая её подn-ть имеет тот же предел

Доказательство. Пусть $\lim_{n\to\infty} a_n = a$, a $\{a_{n_k}\}$ - подп-ть $\{a_n\}$

- а) Пусть $a \in \mathbb{R}$. Зафикс. $\varepsilon > 0$. По опр. предела $\exists N, \forall n \geq N(|a_n a| < \varepsilon)$ Тогда $|a_{n_k} a| < \varepsilon$ при всех $k \geq N$ (т. к. $n_k \geq k \geq N$) Сл-но, $\lim_{k \to \infty} a_{n_k} = a$.
- b) Если $a=+\infty$, получаем результат, если заменить $|a_n-a|<\varepsilon$ на $a_n>\frac{1}{\varepsilon}(a_n<-\frac{1}{\varepsilon})$

Теорема 2.5 (Больцано-Вейерштрасса). Всякая огр. посл-ть имеет сход. nodnocn-mb.

$$\Rightarrow \exists [c,d] \ni a_n, \forall n \in \mathbb{N}$$

Определим п-ть отрезков $[c_k,d_k]$ Положим $[c_1,d_1]=[c,d]$. Если определён отрезок $[c_k,d_k]$, то разделим его пополам $(y=\frac{c_k+d_k}{2})$

$$[c_{k+1},d_{k+1}]=egin{cases} [c_k,y],$$
если $\{\,k\mid a_k\in [c_k,y]\,\}\,$ - бесконечно $[y,d_k],$ иначе

П-ть $\{[c_k, d_k]\}$ стягивающаяся:

$$\forall k : \begin{cases} [c_{k+1}, d_{k+1}] \subset [c_k, d_k] \\ d_k - c_k = \frac{d-c}{2^k} \end{cases}$$

По т. Кантора $\exists a \in \bigcap_{k=1}^{\infty} [c_k, d_k]$, причём $c_k \to a, d_k \to a$ Определим a_{n_k} :

 $a_{n_1} = a_1$, если определён a_{n_k} , то положим

$$a_{n_{k+1}} \in [c_{k+1}, d_{k+1}], n_{k+1} \ge n_k$$

Т. к. $c_k \leq a_{n_k} \leq d_k$, то по т. о зажатой п-ти (о двух полицейских), то $a_{n_k} \to a$

Теорема 2.6. Если n-ть неограничена сверху (снизу), то она имеет nodnocn-ть, стремящуюся $\kappa + \infty$ $(-\infty)$

Доказательство. Пусть дана п-ть $\{a_n\}$ - неогр. сверху.

$$a_{n_1} > 1$$

Пусть определён эл-т a_{n_k} , определим:

$$a_{n_{k+1}} > max \{ k + 1, a_{n_1}, \dots, a_{n_k} \} \Rightarrow n_{k+1} > k$$

Опр-на
$$\{a_{n_k}\}$$
. Т. к. $a_{n_k} > k, \forall k \Rightarrow a_{n_k} \to +\infty$ (По теореме 4')

Следствие. Всякая n-ть имеет подпосл-ть, стремящуюся κ некот. $\exists n$ -т $y \in \overline{\mathbb{R}}$