Logistic Regression

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Learn the logistic regression classifier
 - Understand why the logistic regression is better suited than the linear regression for classification tasks
 - Understand the logistic function
 - Understand the logistic regression classifier
 - Understand the approximation approach for the open form solutions
- Learn the gradient descent algorithm
 - Know the tailor expansion
 - Understand the gradient descent/ascent algorithm
- Learn the different between the naïve Bayes and the logistic regression
 - Understand the similarity of the two classifiers
 - Understand the differences of the two classifiers
 - Understand the performance differences

LOGISTIC REGRESSION

Optimal Classification and Bayes Risk

Detour: Credit Approval Dataset

- http://archive.ics.uci.edu/ml/datasets/Cr edit+Approval
- To protect the confidential information, the dataset is anonymized
 - Feature names and values, as well
- A1: b, a.
 - A2: continuous.
 - A3: continuous.
 - A4: u, y, l, t.
 - A5: g, p, gg.
 - A6: c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff. A7: v, h, bb, j, n, z, dd, ff, o.

 - A8: continuous.
 - A9: t, f.
 - A10: t. f.
 - A11: continuous.
 - A12: t, f.
 - A13: g, p, s.
 - A14: continuous.
 - A15: continuous.

C: +,- (class attribute)

Some Counting Result

- 690 instances total
- 307 positive instances
- Considering A1
 - 98 positive when a
 - 112 negative when a
 - 206 positive when b
 - 262 negative when b
 - 3 positive when?
 - 9 negative when?
- Considering A9
 - 284 positive when t
 - 77 negative when t
 - 23 positive when f
 - 306 negative when f

Which is a better attribute to include in the feature set of the hypothesis?

Classification with One Variable

- Let's predict the class, C, with an attribute, A15
 - Imagine that the Y axis shows P(Y|X)
 - There is a decision boundary
 - You can see it intuitively
- Then, How to find the boundary?

Linear Function vs. Non-Linear Function

- Problem of fitting to the linear function
 - Violate the probability axiom
 - Slow response to the examples
- Better to fit to the logistic function
 - Keep the probability axiom
 - Quick response around the decision boundary
- Which function to use?
 - Logistic function a special case of sigmoid function

Blue = (X,Y_{true}) Red = $(X,P_{lin}(Y|X))$ Green= $(X,P_{log}(Y|X))$

