MATH2033 Mathematical Analysis (2021 Spring) Problem Set 3

Problem 1

Prove that the following sets are countably infinite using the definition.

- (a) $A = \{n \in \mathbb{N} | n \text{ is not multiple of 5} \}.$
- **(b)** $B = \{n \in \mathbb{Z} | n \text{ is odd number} \}.$

Problem 2

We let $A_1, A_2, A_3, ...$ be subsets of \mathbb{R} . Suppose that the set

$$S = A_1 \times A_2 \times A_3 \times ...$$

is countable. Prove that there are only finitely many sets that have more than one elements.

Problem 3

We let $f_1, f_2, f_3, ... : \mathbb{R} \to [0, \infty)$ be a collection of functions from \mathbb{R} to $[0, \infty)$. For any positive integer n, we define

$$A_n = \{x \in \mathbb{R}: f_n(x) = 0\}.$$

We consider a set defined by

$$S = \left\{ x \in \mathbb{R} | \sum_{n=1}^{\infty} f_n(x) = 0 \right\}$$

- (a) Show that if A_n is countable for some $n \in \mathbb{N}$, then S is countable.
- **(b)** Suppose A_n is uncountable for all $n \in \mathbb{N}$,
 - (i) Is it true that S is always uncountable?(♥Note: If your answer is yes, give a proof. If your answer is no, give a counterexample.)
 - (ii) Is it true that S is always countable?

(Solution Note: If your answer is yes, give a proof. If your answer is no, give a counterexample.)

Problem 4

Determine if the set C defined by

$$C = \{(x, y) \in \mathbb{R} \times \mathbb{R} | x^2 + y^2 = r^2 \}$$

is countable.

(\bigcirc Hint: Recall that $x^2 + y^2 = r^2$ represents the equation of circle with radius r in \mathbb{R}^2 -plane)

Problem 5

(a) Determine if the set D defined by

$$D = \{x \in \mathbb{R}: \tan^{10} x - 3 \tan^3 x + 1 = 0\}$$

is countable.

(b) Determine if the set *E* defined by

$$E = \{x \in \mathbb{R} | a\cos 2x + b\cos x + c = 0 \text{ for some } a, b, c, \in \mathbb{Q} \setminus \{0\} \}$$
 is countable.

Problem 6

We let $f: A \rightarrow B$ be a function, where A, B are non-empty set.

- (a) If A is countable, determine if f(A) is countable.
- **(b)** We consider the case when *A* is uncountable
 - (i) If f is injective, show that f(A) is also uncountable by mimicking the proof of the injection theorem.
 - (ii) Is f(A) always uncountable if the function f is not injective? Explain your answer.

Problem 7

We let $A, B \subseteq \mathbb{R}$ be two uncountable sets.

- (a) Is it always true that $A \setminus B$ is uncountable?
- **(b)** Is it always true that $A \setminus B$ is countable?

(SNote: If your answer is yes, give a proof. If your answer is no, give a counter-example.)

Problem 8 (Harder)

We let A be set of all functions from the set $\{0,1\}$ to the set of positive integers \mathbb{N} . That is, $A = \{f | f : \{0,1\} \to \mathbb{N}\}.$

Show that *A* is countable.

Problem 9

Show that for any open interval (a, b), there are infinitely many irrational numbers that lie in this interval.