

FCC TEST REPORT

Report No: STS1612247F03

Issued for

Covia Inc.

BENEX S-3, 3-20-8, 5F SHINYOKOHAMA, KOUHOKU-KU YOKOHAMA-CITY, KANAGAWA, JAPAN, 2220033

Product Name:	IOT Gateway
Brand Name:	Covia
Model Name:	UM-125
Series Model:	N/A
FCC ID:	2AKROUM-125
Test Standard:	FCC Part 15.407

Any reproduction of this document must be done in full. No single part of this document may be repermission from STS, All Test Data Presented in this report is only applicable to presented Test s

TEST RESULT CERTIFICATION

A	opli	icant's	name		:	Covia	Inc.
---	------	---------	------	--	---	-------	------

Address BENEX S-3, 3-20-8, 5F SHINYOKOHAMA, KOUHOKU-KU

YOKOHAMA-CITY, KANAGAWA, JAPAN, 2220033

Manufacture's Name Amigo Technology Inc.

Address 5F., No.63, Ln. 77, Xing'ai Rd., Neihu Dist., Taipei City 114,

Taiwan (R.O.C.), Post code: 11494

Product description

Product name.....: IOT Gateway

Model and/or type reference : UM-125

Series Model N/A

Standards..... FCC Part15.407

Test procedure ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC&IC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test

Date of Issue...... 09 Mar. 2017

Test Result..... Pass

Testing Engineer :

(Leo li)

Technical Manager

(Tony liu)

Authorized Signatory:

(Vita Li)

lable of Contents	Page
1 . SUMMARY OF TEST RESULTS	5
1.1 TEST FACTORY	6
1.2 MEASUREMENT UNCERTAINTY	6
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST MODES	10
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	12
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	13
3 . EMC EMISSION TEST	14
3.1 CONDUCTED EMISSION MEASUREMENT	14
3.2 RADIATED EMISSION AND (BANDEDGE) MEASUREMENT	18
4.1 APPLIED PROCEDURES / LIMIT	29
5. POWER SPECTRAL DENSITY TEST	31
5.1 APPLIED PROCEDURES / LIMIT	31
6. BANDWIDTH MEASUREMENT	33
6.1 EMISSION BANDWIDTH (EBW) 26 BANDWID PROCEDURES / LIMIT	33
6.2 OCCUPIED BANDWIDTH (99%) TEST APPLIED PROCEDURES / LIMIT	34
6.3 MINIMUM EMISSION BANDWIDTH(6 DB) PROCEDURES / LIMIT	35
7. MAXIMUM CONDUCTED OUTPUT POWER	36
7.1 APPLIED PROCEDURES / LIMIT	36
8. FREQUENCY STABILITY MEASUREMENT	38
8.1 LIMIT OF FREQUENCY STABILITY	38
9.1 LIMIT OF AUTOMATICALLY DISCONTINUE TRANSMISSION	40
9.2 TEST RESULT OF AUTOMATICALLY DISCONTINUE TRANSMISSION	40
10. ANTENNA REQUIREMENT	41
10.1 STANDARD REQUIREMENT	41
10.2 EUT ANTENNA	41
APPENDIX - PHOTOS OF TEST SETUP	42

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	09 Mar. 2017	STS1612247F03	ALL	Initial Issue

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

§ 15.407,KDB 789033 D02 General U-NII Test Procedures New Rules v01r03

15.407, KDB 769033 D02 General O-INIT Test Procedures New Rules voltos					
FCC Part 15.407					
FCC standard	Test Item	Results			
15.207	AC Conducted Emission	PASS			
§ 15.407 (2) (26 dB) / § 15.407 (e) (6 dB)/ § 15.407 (a) (99%)	26dB/6dB &99% Bandwidth	PASS			
15.407(a) (1).(2).(3).(4).(5)	Maximum Conducted Output Power	PASS			
15.407(b)	Peak Excursion Ratio	PASS			
15.407(b)& 15.209	Radiated Emission And (bandedge Emissions) Measurement	PASS			
15.407(b)7	Conducted Emission And (bandedge Emissions) Measurement	PASS			
15.407(a) (1).(2).(3).(4).(5)	Power Spectral Density	PASS			
15.407(g)	Frequency Stability	PASS			
15.407(c)	Automatically Discontinue Transmission	PASS			
15.203/15.204	Antenna Requirement	PASS			

NOTE:

- (1)" N/A" denotes test is not applicable in this Test Report
- (2) all tests are according to ANSI C63.10-2013

1.1 TEST FACTORY

BZT Testing Technology Co., Ltd

Add.: Buliding 17, Xinghua Road Xingwei industrial Park Fuyong, Baoan District, Shenzhen,

Guangdong, China...

FCC Registration No.: 701733

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$ where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$ providing a level of confidence of approximately $\mathbf{95}$ % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission (9KHz-150KHz)	±2.88dB
2	Conducted Emission (150KHz-30MHz)	±2.67dB
3	RF power,conducted	±0.70dB
4	Spurious emissions,conducted	±1.19dB
5	All emissions,radiated(<1G) 30MHz-200MHz	±2.83dB
6	All emissions,radiated(<1G) 200MHz-1000MHz	±2.94dB
7	All emissions,radiated(>1G)	±3.03dB
8	Temperature	±0.5°C
9	Humidity	±2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	IOT Gateway			
Trade Name	Covia			
Model Name	UM-125			
Series Model	N/A			
Model Difference	N/A			
	The EUT is a IOT Gateway			
	Operation Frequency: IEEE 802.11a/n/ac(HT20) 5.180GHz-5.240GHz IEEE 802.11n/ac(HT40) 5.190GHz-5.310GHz IEEE 802.11ac(HT80) 5.210GHz			
	Modulation Type: IEEE for 802.11a/n/ac: OFDM(BPSK/QPSK/16QAM)			
Product Description	Antenna Designation: See Note 3			
	Max.Output Power(Conducted): 8.84dBm			
	The duty cycle of WLAN 802.11a/n were 98 %			
	More details of EUT technical specification, please refer to the User's Manual.			
Test Channel	Please refer to the Note 2.			
Adapter	Input: AC 100-240V, 0.5A, 50/60 Hz			
Ασαριοί	Output: DC 12V, 2A			
Hardware version	V3.0			
number	VO.O			
Software version	W 4 0 0			
number	Ver1.0.0			
Connecting I/O Port(s)	Please refer to the User's Manual			

^{&#}x27;Note:For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

NOTE: Only 802.11a is SISO mode ,other modes are MIMO mode only

1.	Operation Frequency of channel					
	5.	.180GHz-5.240GHz				
	Channel	Frequency	Channel	Frequency		
	36	5180	44	5220		
	38	5190	46	5230		
	40	5200	48	5240		
	42	5210				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Carrier Frequency Channel

5GHz:

For 802.11a/n/ac (HT20)			
Channel Freq.(MHz)			
36	5180		
40	5200		
48	5240		

For 802.11n/ac (HT40)			
Channel	Freq.(MHz)		
38	5190		
46	5230		

For 802.11ac (HT80)			
Channel Freq.(MHz)			
42	5210		

- 2. KDB 662911 D01 Multiple Transmitter Output v02r01
 - 2) Directional Gain Calculations for In-Band Measurements
 - a) Basic methodology with NANT transmit antennas, each with the same directional gain GA NT dBi, being driven by NANT transmitter outputs of equal power. Directional gain is to be computed as follows:
 - (i) If any transmit signals are correlated with each other,

Directional gain = GANT + 10 log(NANT) dBi

(ii) If all transmit signals are completely uncorrelated with each other,

Directional gain = GANT

ANT A=2.96 dBi

ANT B=2.96 dBi

GANT + 10 log(NANT) dBi

Directional gain= 2.96+10log2=5.97dBi

Ant	Brand	Model Name	Ant Type	Connector	Gain (dBi)	NOTE
A	Covia	UM-125	PIFA Ant	N/A	5.97	WIFI Ant

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Worst Mode	Description	Data Rate
Mode 1	TX IEEE 802.11a HT20 CH36&CH40&CH48	6 Mbps
Mode 2	TX IEEE 802.11n HT20 CH36&CH40&CH48	MCS 0
Mode 3	TX IEEE 802.11ac HT20 CH36&CH40&CH48	NSS1 MCS0
Mode 4	TX IEEE 802.11n HT40 CH38&CH46	MCS 0
Mode 5	TX IEEE 802.11ac HT40 CH38&CH46	NSS1 MCS0
Mode 6	TX IEEE 802.11ac HT80 CH42	NSS1 MCS0

Note: (1) The measurements are performed at the highest, middle, lowest available channels.

- (2) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported
- (3) We have be tested for all avaiable U.S. voltage and frequencies(For 120V 60Hz) for which the device is capable of operation.

AC Conducted Emission

7 CO COMAGOCOA EMI	GOLOTT
	Test Case
AC Conducted Emission	Mode 7: Keeping TX + WLAN Link

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious EmissionTest

Conducted Emission Test

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	IOT Gateway	Covia	UM-125	N/A	EUT
E-2	serial port plate	N/A	N/A	N/A	N/A
E-3	PC	HP	500-320cx	N/A	N/A

Item	Shielded Type	Ferrite Core	Length	Note
C-1	unshielded Cable	NO	30cm	N/A
C-2	unshielded Cable	NO	120cm	N/A
C-3	network cable	NO	100cm	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [®] Length ^a column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Kind of Equipment		Type No.	Serial No.	Last calibration	Calibrated until
Spectrum Analyzer	Agilent	E4407B	MY50140340	2016.10.23	2017.10.22
Spectrum Analyzer	Agilent	AV4051F	Y20141343	2016.10.23	2017.10.22
Test Receiver	R&S	ESCI	101427	2016.10.23	2017.10.22
Bilog Antenna	TESEQ	CBL6111D	34678	2014.11.24	2017.11.23
Horn Antenna	Schwarzbeck	BBHA 9120D(1201)	9120D-1343	2015.03.05	2018.03.04
Horn Antenna	Schwarzbeck	BBHA 9170	9170-0741	2016.03.06	2019.03.05
50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2016.06.06	2017.06.05
PreAmplifier	Agilent	8449B	60538	2016.10.23	2017.10.22
Loop Antenna	EMCO	6502	9003-2485	2016.03.06	2019.03.05
Low frequency cable	EM	R01	N/A	NCR	NCR
High frequency cable	SCHWARZBECK	AK9515H	SN-96286/9628 7	NCR	NCR

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESPI	102086	2016.10.23	2017.10.22
LISN	R&S	ENV216	101242	2016.10.23	2017.10.22
LISN	EMCO	3810/2NM	000-23625	2016.10.23	2017.10.22
Conduction Cable	EM	C01	N/A	NCR	NCR

RF Connected Test

Kind of Equipment	Kind of Equipment Manufacturer		Kind of Equipment Manufacturer Type No.		Serial No.	Last calibration	Calibrated until
USB RF power sensor	DARE	RPR3006W	15I00041SNO03	2016.10.23	2017.10.22		
Spectrum Analyzer	Agilent	E4407B	MY50140340	2016.10.23	2017.10.22		
Signal Analyzer	Agilent	N9020A	MY49100060	2016.10.23	2017.10.22		

3. EMC EMISSION TEST

3.1CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

EDECLIENCY (MH-2)	Class B	Standard		
FREQUENCY (MHz)	Quasi-peak	Average	Startuaru	
0.15 -0.5	66 - 56 *	56 - 46 *	CISPR	
0.50 -5.0	56.00	46.00	CISPR	
5.0 -30.0	60.00	50.00	CISPR	

0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.1.3 DEVIATION FROM TEST STANDARD

No deviation

3.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.6 TEST RESULTS

Temperature:	23.6 ℃	Relative Humidity:	48%
Pressure:	1010hPa	Phase:	L
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 7

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	Remark
0.1900	40.84	9.23	50.07	64.04	-13.97	QP
0.1900	23.52	9.23	32.75	54.04	-21.29	AVG
0.3780	31.99	9.37	41.36	58.32	-16.96	QP
0.3780	18.13	9.37	27.50	48.32	-20.82	AVG
0.5500	28.13	9.17	37.30	56.00	-18.70	QP
0.5500	16.55	9.17	25.72	46.00	-20.28	AVG
1.7380	30.96	9.22	40.18	56.00	-15.82	QP
1.7380	17.99	9.22	27.21	46.00	-18.79	AVG
4.9420	26.65	9.27	35.92	56.00	-20.08	QP
4.9420	15.44	9.27	24.71	46.00	-21.29	AVG
16.4740	28.06	9.60	37.66	60.00	-22.34	QP
16.4740	19.50	9.60	29.10	50.00	-20.90	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Margin = Result (Result = Reading + Factor)-Limit 100.0 dBuV

Temperature:	23.6 ℃	Relative Humidity:	48%
Pressure:	1010hPa	Phase:	N
Test Voltage	AC 120V/60Hz	Test Mode	Mode 7

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	Remark
0.1860	41.52	9.23	50.75	64.21	-13.46	QP
0.1860	24.66	9.23	33.89	54.21	-20.32	AVG
0.2940	32.01	9.14	41.15	60.41	-19.26	QP
0.2940	18.33	9.14	27.47	50.41	-22.94	AVG
1.6540	27.84	9.22	37.06	56.00	-18.94	QP
1.6540	16.63	9.22	25.85	46.00	-20.15	AVG
3.2260	27.39	9.26	36.65	56.00	-19.35	QP
3.2260	15.58	9.26	24.84	46.00	-21.16	AVG
8.4820	27.30	9.39	36.69	60.00	-23.31	QP
8.4820	15.88	9.39	25.27	50.00	-24.73	AVG
28.2380	29.92	9.90	39.82	60.00	-20.18	QP
28.2380	16.49	9.90	26.39	50.00	-23.61	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Margin = Result (Result = Reading + Factor)—Limit 100.0 dBuV

3.2 RADIATED EMISSION AND (BANDEDGE) MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

In case the emission fall within the restricted band specified on 15.407(b)7& 15.205/209(a), then the (a); limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Class B (dBuV/m) (at 3M)		
PREQUENCT (IVID2)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15E.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak	
Start Frequency	1000 MHz(Peak/AV)	
Stop Frequency	10th carrier harmonic(Peak/AV)	
RB / VB (emission in restricted band)	1 MHz / 1 MHz, AV=1 MHz /3 MHz	

For Band edge

Spectrum Parameter	Setting	
Detector	Peak	
RB / VB (emission in restricted band)	1 MHz / 1 MHz, AV=1 MHz /3 MHz	

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarizations of the antenna are set to make the measurement
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed test to three orthogonal axis. The worst case emissions were reported

3.2.2 DEVIATION FROM TEST STANDARD

No deviation

3.2.3 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.5 TEST RESULTS (BETWEEN 9KHZ - 30 MHZ)

Temperature:	26 ℃	Relative Humidtity:	60%
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX Mode	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

3.2.6 TEST RESULTS (BETWEEN 30MHZ - 1GHZ)

Temperature	176 (Relative Humidity:	60%
Pressure	1010 hPa	Test Voltage	AC 120V/60Hz
Test Mode	Mode 1-6(Mode 2 worst mode)	Polarization	Horizontal

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
47.8260	42.61	-20.36	22.25	40.00	-17.75	QP
99.8777	35.68	-19.20	16.48	43.50	-27.02	QP
250.3012	37.18	-16.29	20.89	46.00	-25.11	QP
350.4768	33.50	-13.57	19.93	46.00	-26.07	QP
463.9696	37.61	-9.99	27.62	46.00	-18.38	QP
750.1083	35.80	-3.56	32.24	46.00	-13.76	QP

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

Temperature	126 °C	Relative Humidtity:	60%
Pressure	1010 hPa	Test Voltage	AC 120V/60Hz
Test Mode	Mode 1-6(Mode 2 worst mode)	Polarization	Vertical

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
31.3992	41.38	-11.91	29.47	40.00	-10.53	QP
36.6375	43.55	-14.59	28.96	40.00	-11.04	QP
91.1746	40.17	-20.07	20.10	43.50	-23.40	QP
140.8351	34.60	-17.55	17.05	43.50	-26.45	QP
222.9502	44.22	-18.93	25.29	46.00	-20.71	QP
750.1083	32.39	-3.56	28.83	46.00	-17.17	QP

Remark:

1. Margin = Result (Result = Reading + Factor)—Limit

3.2.7 TEST RESULTS (ABOVE 1000 MHZ) Band I 5150-5250MHz

	0150-525			Ban	d I(5.15-5.25) GHz				
Frequency	Reading	Amplifier	Loss	Antenna Factor	Orrected Factor	Emission Level	Limit	Margin	Detector	Comment
(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBuV/m)	(dB)		
				Low Channe	el (802.11n20)/ 5180 MHz)		<u> </u>		
3255.25	43.87	44.70	6.70	28.20	-9.80	34.07	74.00	-39.93	PK	Vertical
3255.25	41.19	44.70	6.70	28.20	-9.80	31.39	54.00	-22.61	AV	Vertical
3259.72	45.07	44.70	6.70	28.20	-9.80	35.27	74.00	-38.73	PK	Horizontal
3259.72	41.95	44.70	6.70	28.20	-9.80	32.15	54.00	-21.85	AV	Horizontal
3986.86	39.98	44.20	7.90	29.70	-6.60	33.38	74.00	-40.62	PK	Vertical
3986.86	36.53	44.20	7.90	29.70	-6.60	29.93	54.00	-24.07	AV	Vertical
3993.80	39.52	44.20	7.90	29.70	-6.60	32.92	74.00	-41.08	PK	Horizontal
3993.80	35.86	44.20	7.90	29.70	-6.60	29.26	54.00	-24.74	AV	Horizontal
7230.24	36.63	43.50	11.40	35.50	3.40	40.03	74.00	-33.97	PK	Vertical
7230.24	34.59	43.50	11.40	35.50	3.40	37.99	54.00	-16.01	AV	Vertical
7222.19	37.56	43.50	11.40	35.50	3.40	40.96	74.00	-33.04	PK	Horizontal
7222.19	34.61	43.50	11.40	35.50	3.40	38.01	54.00	-15.99	AV	Horizontal
10360.19	39.93	44.50	13.80	38.80	8.10	48.03	74.00	-25.97	PK	Vertical
10360.19	35.70	44.50	13.80	38.80	8.10	43.80	54.00	-10.20	AV	Vertical
10360.06	39.64	44.50	13.80	38.80	8.10	47.74	74.00	-26.26	PK	Horizontal
10360.06	35.96	44.50	13.80	38.80	8.10	44.06	54.00	-9.94	AV	Horizontal
11026.10	33.22	43.60	14.30	39.50	10.20	43.42	74.00	-30.58	PK	Vertical
11026.10	30.40	43.60	14.30	39.50	10.20	40.60	54.00	-13.40	AV	Vertical
11032.61	32.88	43.60	14.30	39.50	10.20	43.08	74.00	-30.92	PK	Horizontal
11032.61	29.76	43.60	14.30	39.50	10.20	39.96	54.00	-14.04	AV	Horizontal
13295.47	31.74	42.60	15.90	38.90	12.20	43.94	74.00	-30.06	PK	Vertical
13295.47	29.05	42.60	15.90	38.90	12.20	41.25	54.00	-12.75	AV	Vertical
13286.85	32.11	42.60	15.90	38.90	12.20	44.31	74.00	-29.69	PK	Horizontal
13286.85	29.68	42.60	15.90	38.90	12.20	41.88	54.00	-12.12	AV	Horizontal
15540.22	31.09	44.10	17.81	39.20	12.91	44.00	74.00	-30.00	PK	Vertical
15540.22	27.97	44.10	17.81	39.20	12.91	40.88	54.00	-13.12	AV	Vertical
15540.23	30.85	44.10	17.81	39.20	12.91	43.76	74.00	-30.24	PK	Horizontal
15540.23	27.70	44.10	17.81	39.20	12.91	40.61	54.00	-13.39	AV	Horizontal
17996.64	27.57	42.70	19.40	46.50	23.20	50.77	74.00	-23.23	PK	Vertical
17996.64	25.94	42.70	19.40	46.50	23.20	49.14	54.00	-4.86	AV	Vertical
17998.24	26.95	42.70	19.40	46.50	23.20	50.15	74.00	-23.85	PK	Horizontal
17998.24	19.82	42.70	19.40	46.50	23.20	43.02	54.00	-10.98	AV	Horizontal

				Mid Chann	el (802.11 n2	:0/ 5200 MHz)			
3260.60	44.23	44.70	6.70	28.20	-9.80	34.43	74.00	-39.57	PK	Vertical
3260.60	41.94	44.70	6.70	28.20	-9.80	32.14	54.00	-21.86	AV	Vertical
3247.19	45.12	44.70	6.70	28.20	-9.80	35.32	74.00	-38.68	PK	Horizontal
3247.19	41.95	44.70	6.70	28.20	-9.80	32.15	54.00	-21.85	AV	Horizontal
3998.54	39.09	44.20	7.90	29.70	-6.60	32.49	74.00	-41.51	PK	Vertical
3998.54	36.72	44.20	7.90	29.70	-6.60	30.12	54.00	-23.88	AV	Vertical
3990.13	39.58	44.20	7.90	29.70	-6.60	32.98	74.00	-41.02	PK	Horizontal
3990.13	36.08	44.20	7.90	29.70	-6.60	29.48	54.00	-24.52	AV	Horizontal
7235.66	37.67	43.50	11.40	35.50	3.40	41.07	74.00	-32.93	PK	Vertical
7235.66	33.44	43.50	11.40	35.50	3.40	36.84	54.00	-17.16	AV	Vertical
7233.20	36.76	43.50	11.40	35.50	3.40	40.16	74.00	-33.84	PK	Horizontal
7233.20	34.49	43.50	11.40	35.50	3.40	37.89	54.00	-16.11	AV	Horizontal
10400.36	39.64	44.50	13.80	38.80	8.10	47.74	74.00	-26.26	PK	Vertical
10400.36	36.58	44.50	13.80	38.80	8.10	44.68	54.00	-9.32	AV	Vertical
10400.27	38.77	44.50	13.80	38.80	8.10	46.87	74.00	-27.13	PK	Horizontal
10400.27	36.30	44.50	13.80	38.80	8.10	44.40	54.00	-9.60	AV	Horizontal
11035.66	34.01	43.60	14.30	39.50	10.20	44.21	74.00	-29.79	PK	Vertical
11035.66	30.97	43.60	14.30	39.50	10.20	41.17	54.00	-12.83	AV	Vertical
11028.66	33.19	43.60	14.30	39.50	10.20	43.39	74.00	-30.61	PK	Horizontal
11028.66	29.88	43.60	14.30	39.50	10.20	40.08	54.00	-13.92	AV	Horizontal
13281.48	31.84	42.60	15.90	38.90	12.20	44.04	74.00	-29.96	PK	Vertical
13281.48	29.43	42.60	15.90	38.90	12.20	41.63	54.00	-12.37	AV	Vertical
13281.43	32.63	42.60	15.90	38.90	12.20	44.83	74.00	-29.17	PK	Horizontal
13281.43	29.94	42.60	15.90	38.90	12.20	42.14	54.00	-11.86	AV	Horizontal
15600.13	31.09	42.70	18.00	37.10	12.40	43.49	74.00	-30.51	PK	Vertical
15600.13	27.80	42.70	18.00	37.10	12.40	40.20	54.00	-13.80	AV	Vertical
15599.80	30.75	42.70	18.00	37.10	12.40	43.15	74.00	-30.85	PK	Horizontal
15599.80	27.34	42.70	18.00	37.10	12.40	39.74	54.00	-14.26	AV	Horizontal
17993.97	28.22	42.70	19.40	46.50	23.20	51.42	74.00	-22.58	PK	Vertical
17993.97	25.41	42.70	19.40	46.50	23.20	48.61	54.00	-5.39	AV	Vertical
17998.24	27.75	42.70	19.40	46.50	23.20	50.95	74.00	-23.05	PK	Horizontal
17998.24	19.05	42.70	19.40	46.50	23.20	42.25	54.00	-11.75	AV	Horizontal

	HIGH Channel (802.11 n20/ 5240 MHz)									
3260.88	45.00	44.70	6.70	28.20	-9.80	35.20	74.00	-38.80	PK	Vertical
3260.88	41.36	44.70	6.70	28.20	-9.80	31.56	54.00	-22.44	AV	Vertical
3260.25	44.70	44.70	6.70	28.20	-9.80	34.90	74.00	-39.10	PK	Horizontal
3260.25	40.82	44.70	6.70	28.20	-9.80	31.02	54.00	-22.98	AV	Horizontal
3996.76	40.04	44.20	7.90	29.70	-6.60	33.44	74.00	-40.56	PK	Vertical
3996.76	35.78	44.20	7.90	29.70	-6.60	29.18	54.00	-24.82	AV	Vertical
3988.12	39.90	44.20	7.90	29.70	-6.60	33.30	74.00	-40.70	PK	Horizontal
3988.12	35.72	44.20	7.90	29.70	-6.60	29.12	54.00	-24.88	AV	Horizontal
7235.32	36.56	43.50	11.40	35.50	3.40	39.96	74.00	-34.04	PK	Vertical
7235.32	33.60	43.50	11.40	35.50	3.40	37.00	54.00	-17.00	AV	Vertical
7217.18	37.76	43.50	11.40	35.50	3.40	41.16	74.00	-32.84	PK	Horizontal
7217.18	34.81	43.50	11.40	35.50	3.40	38.21	54.00	-15.79	AV	Horizontal
10480.27	39.85	44.50	13.80	38.80	8.10	47.95	74.00	-26.05	PK	Vertical
10480.27	36.55	44.50	13.80	38.80	8.10	44.65	54.00	-9.35	AV	Vertical
10480.43	38.70	44.50	13.80	38.80	8.10	46.80	74.00	-27.20	PK	Horizontal
10480.43	36.09	44.50	13.80	38.80	8.10	44.19	54.00	-9.81	AV	Horizontal
11031.14	34.13	43.60	14.30	39.50	10.20	44.33	74.00	-29.67	PK	Vertical
11031.14	30.88	43.60	14.30	39.50	10.20	41.08	54.00	-12.92	AV	Vertical
11034.88	32.85	43.60	14.30	39.50	10.20	43.05	74.00	-30.95	PK	Horizontal
11034.88	30.38	43.60	14.30	39.50	10.20	40.58	54.00	-13.42	AV	Horizontal
13294.65	32.20	42.60	15.90	38.90	12.20	44.40	74.00	-29.60	PK	Vertical
13294.65	29.90	42.60	15.90	38.90	12.20	42.10	54.00	-11.90	AV	Vertical
13298.68	32.93	42.60	15.90	38.90	12.20	45.13	74.00	-28.87	PK	Horizontal
13298.68	29.63	42.60	15.90	38.90	12.20	41.83	54.00	-12.17	AV	Horizontal
15719.86	31.09	42.70	19.40	46.50	23.20	54.29	74.00	-19.71	PK	Vertical
15719.86	27.48	42.70	19.40	46.50	23.20	50.68	54.00	-3.32	AV	Vertical
15719.89	30.21	42.70	19.40	46.50	23.20	53.41	74.00	-20.59	PK	Horizontal
15719.89	27.95	42.70	19.40	46.50	23.20	51.15	54.00	-2.85	AV	Horizontal

Remark:

- 1. Factor = Antenna Factor + Cable Loss Pre-amplifier.
- 2. Scan with 802.11a Ant A Ant B and MIMO mode of 802.11n (HT-20),802.11n (HT-40), 802.11ac (HT-20),802.11ac (HT-40), 802.11ac (HT-80) all have been tested, only worse case 802.11n (HT-20) MIMO mode is reported.
- 3. The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

3.2.8 BAND EDGE

Band I (5				Band	I I(5.15-5.35)	GHz				
Frequency	Reading	Amplifier	Loss	Antenna Factor	Orrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
				802	11a BW20N	lHz				
5150	39.49	44.20	8.98	31.60	-3.62	35.87	74	-38.13	Peak	Vertical
5150	28.92	44.20	8.98	31.60	-3.62	25.30	54	-28.70	AVG	Vertical
5150	42.03	44.20	8.98	31.60	-3.62	38.41	74	-35.59	Peak	Horizontal
5150	28.19	44.20	8.98	31.60	-3.62	24.57	54	-29.43	AVG	Horizontal
5350	43.34	44.20	9.35	31.60	-3.25	40.09	74	-33.91	Peak	Vertical
5350	28.10	44.20	9.35	31.60	-3.25	24.85	54	-29.15	AVG	Vertical
5350	41.15	44.20	9.35	31.60	-3.25	37.90	74	-36.10	Peak	Horizontal
5350	31.60	44.20	9.35	31.60	-3.25	28.35	54	-25.65	AVG	Horizontal
				802	.11n BW20N	lHz				
5150	39.81	44.20	8.98	31.60	-3.62	36.19	74	-37.81	Peak	Vertical
5150	28.94	44.20	8.98	31.60	-3.62	25.32	54	-28.68	AVG	Vertical
5150	39.77	44.20	8.98	31.60	-3.62	36.15	74	-37.85	Peak	Horizontal
5150	29.16	44.20	8.98	31.60	-3.62	25.54	54	-28.46	AVG	Horizontal
5350	46.10	44.20	9.35	31.60	-3.25	42.85	74	-31.15	Peak	Vertical
5350	31.21	44.20	9.35	31.60	-3.25	27.96	54	-26.04	AVG	Vertical
5350	41.54	44.20	9.35	31.60	-3.25	38.29	74	-35.71	Peak	Horizontal
5350	28.78	44.20	9.35	31.60	-3.25	25.53	54	-28.47	AVG	Horizontal
				802	.11n BW40N	lHz				
5150	40.98	44.20	8.98	31.60	-3.62	37.36	74	-36.64	Peak	Vertical
5150	29.71	44.20	8.98	31.60	-3.62	26.09	54	-27.91	AVG	Vertical
5150	38.38	44.20	8.98	31.60	-3.62	34.76	74	-39.24	Peak	Horizontal
5150	29.00	44.20	8.98	31.60	-3.62	25.38	54	-28.62	AVG	Horizontal
5350	44.77	44.20	9.35	31.60	-3.25	41.52	74	-32.48	Peak	Vertical
5350	29.71	44.20	9.35	31.60	-3.25	26.46	54	-27.54	AVG	Vertical
5350	38.92	44.20	9.35	31.60	-3.25	35.67	74	-38.33	Peak	Horizontal
5350	27.98	44.20	9.35	31.60	-3.25	24.73	54	-29.27	AVG	Horizontal

				802	2.11ac BW20	MHz				
5150	40.58	44.20	8.98	31.60	-3.62	36.96	74	-37.04	Peak	Vertical
5150	27.58	44.20	8.98	31.60	-3.62	23.96	54	-30.04	AVG	Vertical
5150	38.81	44.20	8.98	31.60	-3.62	35.19	74	-38.81	Peak	Horizontal
5150	28.47	44.20	8.98	31.60	-3.62	24.85	54	-29.15	AVG	Horizontal
5350	42.97	44.20	9.35	31.60	-3.25	39.72	74	-34.28	Peak	Vertical
5350	28.00	44.20	9.35	31.60	-3.25	24.75	54	-29.25	AVG	Vertical
5350	39.73	44.20	9.35	31.60	-3.25	36.48	74	-37.52	Peak	Horizontal
5350	29.05	44.20	9.35	31.60	-3.25	25.80	54	-28.20	AVG	Horizontal
				802	2.11ac BW40	MHz				
5150	40.54	44.20	8.98	31.60	-3.62	36.92	74	-37.08	Peak	Vertical
5150	29.12	44.20	8.98	31.60	-3.62	25.50	54	-28.50	AVG	Vertical
5150	38.52	44.20	8.98	31.60	-3.62	34.90	74	-39.10	Peak	Horizontal
5150	27.67	44.20	8.98	31.60	-3.62	24.05	54	-29.95	AVG	Horizontal
5350	46.00	44.20	9.35	31.60	-3.25	42.75	74	-31.25	Peak	Vertical
5350	31.92	44.20	9.35	31.60	-3.25	28.67	54	-25.33	AVG	Vertical
5350	41.60	44.20	9.35	31.60	-3.25	38.35	74	-35.65	Peak	Horizontal
5350	30.45	44.20	9.35	31.60	-3.25	27.20	54	-26.80	AVG	Horizontal
				802	2.11ac BW80	MHz				
5150	39.13	44.20	8.98	31.60	-3.62	35.51	74	-38.49	Peak	Vertical
5150	30.05	44.20	8.98	31.60	-3.62	26.43	54	-27.57	AVG	Vertical
5150	39.49	44.20	8.98	31.60	-3.62	35.87	74	-38.13	Peak	Horizontal
5150	30.15	44.20	8.98	31.60	-3.62	26.53	54	-27.47	AVG	Horizontal
5350	45.83	44.20	9.35	31.60	-3.25	42.58	74	-31.42	Peak	Vertical
5350	30.35	44.20	9.35	31.60	-3.25	27.10	54	-26.90	AVG	Vertical
5350	40.04	44.20	9.35	31.60	-3.25	36.79	74	-37.21	Peak	Horizontal
5350	31.93	44.20	9.35	31.60	-3.25	28.68	54	-25.32	AVG	Horizontal

4. Conducted Spurious Emissions and bandedge

4.1 APPLIED PROCEDURES / LIMIT

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

4.1.1 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	1000 KHz/3000 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting
Detector	Peak
Stort/Stop Fraguesov	Lower Band Edge: 5700 to 5725 MHz
Start/Stop Frequency	Upper Band Edge: 5850 to 5870 MHz
RB / VB (emission in restricted band)	1000 KHz/3000 KHz
Trace-Mode:	Max hold

4.1.2 DEVIATION FROM STANDARD

No deviation.

4.1.3 TEST SETUP

The EUT which is powered by the Battery, is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1000 kHz. In order to make an accurate measurement, set the span greater than RBW.

4.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

4.1.5 TEST RESULTS

Conducted measurement N/A

Radiated measurement: Refer to 3.2.8

5. POWER SPECTRAL DENSITY TEST

5.1 EMISSION BANDWIDTH (EBW) 26 BANDWID PROCEDURES / LIMIT

See list of measuring instruments of this test report.

5.1.1 TEST PROCEDURE

- 1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03
- 2. Set RBW = approximately 1% of the emission bandwidth.
- 3. Set the VBW > =RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- 6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

5.1.2 DEVIATION FROM STANDARD

No deviation.

5.1.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

5.1.5 TEST RESULTS

6. BANDWIDTH MEASUREMENT

6.1 EMISSION BANDWIDTH (EBW) 26 BANDWID PROCEDURES / LIMIT

See list of measuring instruments of this test report.

6.1.1 TEST PROCEDURE

- 1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03
- 2. Set RBW = approximately 1% of the emission bandwidth.
- 3. Set the VBW > = RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- 6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

6.1.5 TEST RESULTS

Data see Appendix C

6.2 OCCUPIED BANDWIDTH (99%) TEST APPLIED PROCEDURES / LIMIT

The following procedure shall be used for measuring (99 %) power bandwidth:

6.2.1 TEST PROCEDURE

- 1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures v01r03. The following procedure shall be used for measuring (99 %) power bandwidth:
- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1% to 5% of the OBW
- 4. Set VBW ≥ 3 · RBW
- 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- 6. Use the 99 % power bandwidth function of the instrument (if available).
- 7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

6.2.2 DEVIATION FROM STANDARD

No deviation.

6.2.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.2.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

6.2.5 TEST RESULTS

Data See Appendix C

6.3 MINIMUM EMISSION BANDWIDTH(6 DB) PROCEDURES / LIMIT

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.725-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

6.3.1 TEST PROCEDURE

- 1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures v01r03.
- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.3.2 DEVIATION FROM STANDARD

No deviation.

6.3.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.3.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

6.3.5 TEST RESULTS

N/A

7. MAXIMUM CONDUCTED OUTPUT POWER

7.1 APPLIED PROCEDURES / LIMIT

For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz, If transmitting antennas of directional gain greater than 6 dBi are used.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used.

FCC Part15 (15.407) , Subpart E					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
		0.25 watt	5150-5250		
15.407(a) (1) (iv)		The lesser of 250 mW or 11 dBm + 10 log (26 dB emission bandwidth)	5250-5350 5470-5725	PASS	
15.407(a) (3)		1 watt	5725-5825		

7.1.1 TEST PROCEDURE

The EUT was directly connected to the Power Sensor&PC

7.1.2 DEVIATION FROM STANDARD

No deviation.

7.1.3 TEST SETUP

7.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 5 Unless otherwise a special operating condition is specified in the follows during the testing.

7.1.5 TEST RESULTS

NOTE: 1. Antenna A Power> Antenna B Power, Both antenna A and B have been test

2. 802.11a model cannot output Power at the same time.

Band I (5.15-5.25GHz)

Band I (5.15-5.25GHz)								
Test	Frequency	PK Power	PK Power	PK Power	AV Power	AV Power	AV Power	LIMIT
Channel	(MHz)	A(dBm)	B(dBm)	Total(dBm)	(dBm)	B(dBm)	Total(dBm)	(dBm)
	802.11a							
36	5180	5.82	5.48		3.32	3.16	5.82	23.98
40	5200	5.91	5.61		3.77	3.97	5.91	23.98
48	5240	6.02	5.83		4.34	3.94	6.02	23.98
				802.11n(HT20)				
36	5180	5.76	5.48	8.63	3.37	3.47	6.43	23.98
40	5200	5.83	5.52	8.69	3.71	3.99	6.86	23.98
48	5240	5.92	5.73	8.84	4.16	3.59	6.89	23.98
802.11n(HT40)								
38	5190	4.91	4.83	7.88	3.12	3.17	6.16	23.98
46	5230	5.12	4.92	8.03	3.38	2.64	6.04	23.98
802.11ac(HT20)								
36	5180	5.63	5.48	8.57	3.80	3.11	6.48	23.98
40	5200	5.75	5.45	8.61	3.66	3.91	6.80	23.98
48	5240	5.86	5.62	8.75	3.60	3.28	6.45	23.98
802.11ac(HT40)								
38	5190	4.85	4.79	7.83	3.24	2.85	6.06	23.98
46	5230	5.02	4.81	7.93	3.15	2.64	5.91	23.98
	802.11ac(HT80)							
42	5210	4.48	4.42	7.46	2.74	2.48	5.62	23.98

Note:

1. For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 0.25 W.

8. FREQUENCY STABILITY MEASUREMENT

8.1 LIMIT OF FREQUENCY STABILITY

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an Emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

8.1.1 MEASURING INSTRUMENTS

See list of measuring instruments of this test report.

8.1.2 TEST PROCEDURES

- 1. To ensure emission at the band edge is maintained within the authorized band, those values shall be measured by radiation emissions at upper and lower frequency points, and finally compensated by frequency deviation as procedures below.
- 2. The EUT was operated at the maximum output power, and connected to the spectrum analyzer, which is set to maximum hold function and peak detector. The peak value of the power envelope was measured and noted. The upper and lower frequency points were respectively measured relatively 10dB lower than the measured peak value.
- 3. The frequency deviation was calculated by adding the upper frequency point and the lower frequency point divided by two. Those detailed values of frequency deviation are provided in table below.

8.1.3 TEST SETUP

8.1.4 TEST RESULTS

NOTE: 1. Antenna A Power> Antenna B Power, Both antenna A and B have all bandwidth and mode been test, Only the worst data

Voltage	Band I (5.15-5.25GHz)Measurement Frequency(MHz)
AC (V)	5200
MAX (AC132V)	5199.9266
Nom (AC120V)	5199.9288
MIN (AC108V)	5199.9287
Max.Deviation(MHz)	0.0734
Max.Deviation(ppm)	14.12

Temperature Vs. Frequency Stabilty:

Temperature	Measurement Frequency(MHz)		
(°C)	5200		
-30	5199.9312		
-20	5199.9293		
-10	5199.9274		
0	5199.9282		
10	5199.9273		
20	5199.9292		
30	5199.9285		
40	5199.926		
50	5199.9291		
Max.Deviation(MHz)	0.0740		
Max.Deviation(ppm)	14.23		

9. Automatically Discontinue Transmission

9.1 LIMIT OF AUTOMATICALLY DISCONTINUE TRANSMISSION

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

9.2 TEST RESULT OF AUTOMATICALLY DISCONTINUE TRANSMISSION

During no any information transmission, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission

10. ANTENNA REQUIREMENT

10.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

10.2 EUT ANTENNA

The EUT antenna is internal PIFA Antenna. It comply with the standard requirement.

APPENDIX - PHOTOS OF TEST SETUP

Radiated Measurement Photos

Conducted Measurement Photos

****END OF THE REPORT***