Data Mining Toolkits in Python

Zheng Li

October 14, 2021

- Ovewview
- 2 Example 1
 - Kaggle Dataset
 - Preprocessing: Read dataset and parse attributes
 - Preprocessing: Working with Missing Data
 - Preprocessing: Noise Reduction
 - Data Visualization
 - Preprocessing: Data Reduction
 - Preprocessing: Partition Continuous Features into Discrete Values
 - Classification: Decision Tree
- 3 Example 2
 - Preprocessing: Encoding Categorical Attributes
 - Preprocessing: Dimensionality Reduction
 - Classification: MLP

Overview

Figure: Click Figure to view popular APIs for data mining.

numpy linear algebra algorithm library, operations on the n-dimensional array.

matplotlib data visualization.

pandas data structures and operations for manipulating tables.

scipy optimization, interpolation, statistic, sparse matrix.

scikit-learn Preprocessing, Clustering, Classification, Regression

tensorflow Parallel Computing.

keras Deep Learning.

- Ovewview
- 2 Example 1
 - Kaggle Dataset
 - Preprocessing: Read dataset and parse attributes
 - Preprocessing: Working with Missing Data
 - Preprocessing: Noise Reduction
 - Data Visualization
 - Preprocessing: Data Reduction
 - Preprocessing: Partition Continuous Features into Discrete Values
 - Classification: Decision Tree
- 3 Example 2
 - Preprocessing: Encoding Categorical Attributes
 - Preprocessing: Dimensionality Reduction
 - Classification: MLP

Titanic - Machine Learning from Disaster

This is a classical data set in Kaggle, it consists of

- train.csv This table contains all the train data(features and labels).
 - test.csv This table contains the feature attributes of the test data.

gender.submission.csv This table contains the label attributes of the test data.

While using python data mining toolkits, we do not have to know the exact meaning of each attribute or the background of the dataset, because the preprocessing and data visualization can help us parse the attributes.

- Ovewview
- Example 1
 - Kaggle Dataset
 - Preprocessing: Read dataset and parse attributes
 - Preprocessing: Working with Missing Data
 - Preprocessing: Noise Reduction
 - Data Visualization
 - Preprocessing: Data Reduction
 - Preprocessing: Partition Continuous Features into Discrete Values
 - Classification: Decision Tree
- 3 Example 2
 - Preprocessing: Encoding Categorical Attributes
 - Preprocessing: Dimensionality Reduction
 - Classification: MLP

Read dataset and parse attributes

When we already obtain the dataset, the first step is reading the dataset to the RAM.

```
train = pd.read_csv("datasetstrain.csv")
```

Combining data from two or more tables, based on the primary key.

```
test = pd.merge(
    left=pd.read_csv("datasetsgender_submission.csv"),
    right=pd.read_csv("datasetstest.csv"),
    on="PassengerId")
```

Remark

Pandas is a hybrid of Python and SQL language. Many python-based web frameworks(ex. Django) use Pandas instead of traditional SQL operations.

It is convenient to view all the fields of the table by one-line command.

train.info()

Read dataset and parse attributes

The main usage of printing this table is to help us to work with the missing data.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
    Column
               Non-Null Count
                            Dtype
    PassengerId 891 non-null
                            int64
    Survived 891 non-null int64
              891 non-null
    Name
              891 non-null
              891 non-null
              714 non-null
              891 non-null
    Parch
              891 non-null
              891 non-null
              891 non-null float64
              204 non-null
    Embarked
               889 non-null
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

- Ovewview
- 2 Example 1
 - Kaggle Dataset
 - Preprocessing: Read dataset and parse attributes
 - Preprocessing: Working with Missing Data
 - Preprocessing: Noise Reduction
 - Data Visualization
 - Preprocessing: Data Reduction
 - Preprocessing: Partition Continuous Features into Discrete Values
 - Classification: Decision Tree
- 3 Example 2
 - Preprocessing: Encoding Categorical Attributes
 - Preprocessing: Dimensionality Reduction
 - Classification: MLP

Working with Missing Data

Filling missing values with a new class

Filling missing values with the mean value

Droping samples with missing attributes.

```
train = train.dropna()
```

Of course, we must do the same implementation in the testing dataset. After working with the missing data, It is convenient to view the statistics by one-line command.

```
print(train.describe())
print(test.describe())
```

Working with Missing Data

The main usage of printing this table is to help us to remove the noise.

=====	====== Wo	rking with M	issing Data	=========	:====		
	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	889.000000	889.000000	889.000000	889.000000	889.000000	889.000000	889.000000
mean	446.000000	0.382452	2.311586	29.653446	0.524184	0.382452	32.096681
std	256.998173	0.486260	0.834700	12.968366	1.103705	0.806761	49.697504
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	224.000000	0.000000	2.000000	22.000000	0.000000	0.00000	7.895800
50%	446.000000	0.000000	3.000000	29.699118	0.000000	0.000000	14.454200
75%	668.000000	1.000000	3.000000	35.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200
	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	417.000000	417.000000	417.000000	417.000000	417.000000	417.000000	417.000000
mean	1100.635492	0.364508	2.263789	30.081832	0.448441	0.393285	35.627188
std	120.923774	0.481870	0.842077	12.563849	0.897568	0.982419	55.907576
min	892.000000	0.000000	1.000000	0.170000	0.000000	0.00000	0.000000
25%	996.000000	0.000000	1.000000	23.000000	0.000000	0.00000	7.895800
50%	1101.000000	0.000000	3.000000	29.699118	0.000000	0.000000	14.454200
75%	1205.000000	1.000000	3.000000	35.000000	1.000000	0.000000	31.500000
max	1309.000000	1.000000	3.000000	76.000000	8.000000	9.000000	512.329200

- Ovewview
- 2 Example 1
 - Kaggle Dataset
 - Preprocessing: Read dataset and parse attributes
 - Preprocessing: Working with Missing Data
 - Preprocessing: Noise Reduction
 - Data Visualization
 - Preprocessing: Data Reduction
 - Preprocessing: Partition Continuous Features into Discrete Values
 - Classification: Decision Tree
- 3 Example 2
 - Preprocessing: Encoding Categorical Attributes
 - Preprocessing: Dimensionality Reduction
 - Classification: MLP

Noise Reduction

From the statistics above, we find that

- train["Parch"].mean() ≈ test["Parch"].mean()
- train["Parch"].std() \approx test["Parch"].std()
- train["Parch"].max() ~≈ train["Parch"].max()

It implices that there exists noise in the attribute 'Parch'. One-line command to remove such noise.(It is equivalent to the 'where' command in SQL language)

$$test = test[test["Parch"] \le 8]$$

We also notice that $train["Fare"].std() \gg 1$, it implices that there exists noise in the attribute 'Fare'. We can use cluster algorithm to remove such noise.

- Ovewview
- Example 1
 - Kaggle Dataset
 - Preprocessing: Read dataset and parse attributes
 - Preprocessing: Working with Missing Data
 - Preprocessing: Noise Reduction
 - Data Visualization
 - Preprocessing: Data Reduction
 - Preprocessing: Partition Continuous Features into Discrete Values
 - Classification: Decision Tree
- 3 Example 2
 - Preprocessing: Encoding Categorical Attributes
 - Preprocessing: Dimensionality Reduction
 - Classification: MLP

Data Visualization

Except printing the 'describe' table, we can also use data visualization to help us with data preprocessing.

- Ovewview
- 2 Example 1
 - Kaggle Dataset
 - Preprocessing: Read dataset and parse attributes
 - Preprocessing: Working with Missing Data
 - Preprocessing: Noise Reduction
 - Data Visualization
 - Preprocessing: Data Reduction
 - Preprocessing: Partition Continuous Features into Discrete Values
 - Classification: Decision Tree
- 3 Example 2
 - Preprocessing: Encoding Categorical Attributes
 - Preprocessing: Dimensionality Reduction
 - Classification: MLP

Data Reduction

From the data visualization above, we find that the attribute 'Cabin' contains too many classes, make the correlation analysis to check the validity of this attribute.

```
cross_table = pd.crosstab(train["Cabin"].values,
train["Survived"].values)
if stats.chi2_contingency(observed=cross_table.values)[1] < 0.05:
    train = train.drop(columns=["Cabin"])
    test = test.drop(columns=["Cabin"])</pre>
```

Since $p_{val} = 2.71e - 06$, we need drop this field. Check the information of the two datasets again to have a view of the attributes.

```
train.info()
test.info()
```

Data Reduction

These tables show us, the attributes contain continuous values and discrete values, so we have to convert them into the same datatype in the next step.

```
========== Data Reduction ==========
<class 'pandas.core.frame.DataFrame'>
Int64Index: 836 entries, 0 to 890
Data columns (total 8 columns):
             Non-Null Count Dtype
    Survived 836 non-null
                             int64
             836 non-null
             836 non-null
             836 non-null
             836 non-null
             836 non-null
             836 non-null
    Embarked
             836 non-null
dtypes: float64(2), int64(4), object(2)
memory usage: 58.8+ KB
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 386 entries, 0 to 417
Data columns (total 8 columns):
    Column
              Non-Null Count Dtype
    Survived 386 non-null
              386 non-null
              386 non-null
              386 non-null
    SibSp 386 non-null
    Parch 386 non-null
              386 non-null
                             float64
    Embarked 386 non-null
dtypes: float64(2), int64(4), object(2)
memory usage: 27.1+ KB
```

(a) Train

- Ovewview
- 2 Example 1
 - Kaggle Dataset
 - Preprocessing: Read dataset and parse attributes
 - Preprocessing: Working with Missing Data
 - Preprocessing: Noise Reduction
 - Data Visualization
 - Preprocessing: Data Reduction
 - Preprocessing: Partition Continuous Features into Discrete Values
 - Classification: Decision Tree
- 3 Example 2
 - Preprocessing: Encoding Categorical Attributes
 - Preprocessing: Dimensionality Reduction
 - Classification: MLP

Partition Continuous Features into Discrete Values

By using the histogram above, the continuous variables can be binning easily.

```
train["Age"] = (train["Age"] // 16) * 16
train["Fare"] = (train["Fare"] // 19) * 19
test["Age"] = (test["Age"] // 16) * 16
test["Fare"] = (test["Fare"] // 19) * 19
```

Remark

- For different attributes, we can use different standards in binning the values. but for the same attribute in different datasets, we must obey the same rule when binning the values.
- when we using clustering methods to discrete the continuous values, we should make sure the class is sorted in order.

Now the data preprocessing is completed. Let's view these two tables

```
print(train)
print(test)
```

Data Reduction

====		== Discr	etizatio				
	Survived						Embarked
				16.0		0.0	
				32.0			
			female	16.0		0.0	
				32.0		38.0	
				32.0		0.0	
886				16.0		0.0	
887			female	16.0		19.0	
888				16.0		19.0	
889				16.0		19.0	
890 [836				32.0		0.0	
	rows x 8				SibSp		Embarked
	rows x 8			Age 32.0	SibSp 0	Fare	Embarked
[836 0 1	rows x 8 Survived 0 1		Sex male female	Age 32.0 32.0	SibSp 0	Fare 0.0	Embarked (
[836 0 1 2	rows x 8 Survived 0 1		Sex male female male	Age 32.0 32.0 48.0	SibSp 0 1	Fare 0.0 0.0	Embarkeo C S
[836 0 1 2 3	rows x 8 Survived 0 1 0		Sex male female male male	Age 32.0 32.0 48.0 16.0	SibSp 0 1 0	Fare 0.0 0.0 0.0 0.0	Embarked C S C
[836 0 1 2 3	rows x 8 Survived 0 1		Sex male female male	Age 32.0 32.0 48.0 16.0	SibSp 0 1	Fare 0.0 0.0 0.0 0.0	Embarked C S C
[836 0 1 2 3	rows x 8 Survived 0 1 0		Sex male female male male	Age 32.0 32.0 48.0 16.0	SibSp 0 1 0	Fare 0.0 0.0 0.0 0.0	Embarked S S S
[836 0 1 2 3 4 	rows x 8 Survived 0 1 0 1		Sex male female male female 	Age 32.0 32.0 48.0 16.0 16.0	SibSp 0 1 0 0 1	Fare 0.0 0.0 0.0 0.0 0.0 0.0	Embarkec S C S S
[836 0 1 2 3 4	rows x 8 Survived 0 1 0 1		Sex male female male male female	Age 32.0 32.0 48.0 16.0 16.0 	SibSp 0 1 0 0 1 1 0	Fare 0.0 0.0 0.0 0.0 0.0 0.0	Embarked C S C S S
[836 0 1 2 2 3 3 4 413	rows x 8		Sex male female male male female female female	Age 32.0 32.0 48.0 16.0 16.0 16.0 32.0	SibSp 0 1 0 0 1	Fare 0.0 0.0 0.0 0.0 0.0 0.0 0.0 95.0	Embarked S S S S S

- Ovewview
- 2 Example 1
 - Kaggle Dataset
 - Preprocessing: Read dataset and parse attributes
 - Preprocessing: Working with Missing Data
 - Preprocessing: Noise Reduction
 - Data Visualization
 - Preprocessing: Data Reduction
 - Preprocessing: Partition Continuous Features into Discrete Values
 - Classification: Decision Tree
- 3 Example 2
 - Preprocessing: Encoding Categorical Attributes
 - Preprocessing: Dimensionality Reduction
 - Classification: MLP

Decision Tree

```
Step 1: Converting tables to n-dimensional arrays
train['Sex'] = train['Sex'].map('male': 0, 'female': 1).astype(int)
train['Embarked'] = train['Embarked'].map('S': 0, 'C': 1, 'Q': 2).astype(int)
x_train = train[["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked"]].values
y_train = train["Survived"].values
Of course, we must do the same implementation in the testing dataset.
Step 2: Training the model
decision_tree = tree.DecisionTreeClassifier()
decision_tree.fit(x_train, y_train)
Step 3: Computing the accuracy
y_pred = decision_tree.predict(x_test)
print("Train accuracy: {} %".format(round(decision_tree.score(x_train, y_train) * 100, 2)))
print("Test accuracy: {} %".format(round(decision_tree.score(x_test, y_test) * 100, 2)))
```

======== Decision Tree ===========

Train accuracy: 87.56 Test accuracy: 81.35

Decision Tree

Step 4: Printing the Decision Tree

```
print(tree.export_text(decision_tree, feature_names=["Pclass", "Sex", "Age", "SibSp",
"Parch", "Fare", "Embarked"]))
```

- Ovewview
- 2 Example 1
 - Kaggle Dataset
 - Preprocessing: Read dataset and parse attributes
 - Preprocessing: Working with Missing Data
 - Preprocessing: Noise Reduction
 - Data Visualization
 - Preprocessing: Data Reduction
 - Preprocessing: Partition Continuous Features into Discrete Values
 - Classification: Decision Tree
- 3 Example 2
 - Preprocessing: Encoding Categorical Attributes
 - Preprocessing: Dimensionality Reduction
 - Classification: MLP

Encoding Categorical Attributes

Before using any Neural Network to do the classification task, we have to convert the Categorical Values to vectors. The most popular encoding algorithm is one-hot. It is widely used in classification tasks.

```
encoder = preprocessing.OneHotEncoder()
encoder.fit(train[["Pclass", "Sex", "Embarked"]].values)
```

Example

The output of encoder.transform([[3, "male", "Q"], [3, "female", "S"]] is

- Ovewview
- 2 Example 1
 - Kaggle Dataset
 - Preprocessing: Read dataset and parse attributes
 - Preprocessing: Working with Missing Data
 - Preprocessing: Noise Reduction
 - Data Visualization
 - Preprocessing: Data Reduction
 - Preprocessing: Partition Continuous Features into Discrete Values
 - Classification: Decision Tree
- 3 Example 2
 - Preprocessing: Encoding Categorical Attributes
 - Preprocessing: Dimensionality Reduction
 - Classification: MLP

Dimensionality Reduction

Before constructing a neural network, We can use PCA to reduce the dimension of features. PCA is an SVD-based method. Its core is to remain the parts with high Singular Values which is similar to the image compression technology.

Remark

For Deep Learning, PCA is not necessary.

- Ovewview
- 2 Example 1
 - Kaggle Dataset
 - Preprocessing: Read dataset and parse attributes
 - Preprocessing: Working with Missing Data
 - Preprocessing: Noise Reduction
 - Data Visualization
 - Preprocessing: Data Reduction
 - Preprocessing: Partition Continuous Features into Discrete Values
 - Classification: Decision Tree
- 3 Example 2
 - Preprocessing: Encoding Categorical Attributes
 - Preprocessing: Dimensionality Reduction
 - Classification: MLP


```
x_train = np.concatenate([
   encoder.transform(train[["Pclass", "Sex", "Embarked"]].values).toarray(),
   train[["Age", "SibSp", "Parch", "Fare"]].values
], axis=1)
y_train = train["Survived"].values
Of course, we must do the same implementation in the testing dataset.
Step 2: Build the model
model = tf.keras.models.Sequential([
   tf.keras.layers.Dense(512, activation='relu'),
   tf.keras.layers.BatchNormalization(),
   tf.keras.layers.Dense(256, activation='relu'),
   tf.keras.layers.BatchNormalization(),
   tf.keras.layers.Dense(128, activation='relu'),
   tf.keras.layers.BatchNormalization(),
   tf.keras.layers.Dense(2)
1)
model.compile(
   optimizer=tf.keras.optimizers.Adam(0.005),
   loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
   metrics=['accuracy'])
```

Step 1: Converting tables to n-dimensional arrays

MLP

The computer will print the training logs in the terminal

Step 4: Open the tensorboard to view the data plot of training logs in a web browser.

\$ tensorboard -logdir logs

Figure: Computational Graph

Figure: Loss and Accuracy

Figure: Distibutions of model parameters

Figure: Histogram of model parameters