

Teorija informacij in sistemov, predavanje

U. Lotric

5.8.3 Paritetni

5.8.4 Kodiranje

5.8.5 Strojna izvedba

5.8.6 Dekodiranj

5.8.7 Zmožnost

5.8.8 Ciklični kodi v

5.9 Kodi s prepletanjem

Teorija informacij in sistemov, predavanje $8\,$

Uroš Lotrič

Univerza v Ljubljani, Fakulteta za računalništvo in informatiko

5.10

5.8.3 Polinom za preverjanje sodosti 1

- Teorija informacij in sistemov, predavanje 8
- U. Lotric
- 5.8.3 Paritetni
- polinom 5.8.4
- Kodiranje 5.8.5
- izvedba
- 5.8.6 Dekodiranj
- Zmožnost 5.8.8 Ciklični

5.8.7

kodi v praksi 5.9 Kodi s

- ▶ Zveza $g(p)h(p) = 0 \mod (p^n + 1)$ spominja na zvezo $\mathbf{G}\mathbf{H}^T = \mathbf{0}$, ki velja za vse linearne bločne kode
- ▶ Izraz x(p) = z(p)g(p) pomnožimo na obeh straneh s h(p)
- $x(p)h(p) = z(p)g(p)h(p) = z(p) 0 = 0 \mod (p^n + 1)$
- \blacktriangleright Iz x(p)h(p)=0 vidimo, da ima h(p) podobno vlogo kot matrika ${\bf H}$
- ▶ Naredimo množenje bolj podrobno:

$$x(p)h(p) = \sum_{i=0}^{n-1} x_i p^i \sum_{l=0}^k h_l p^l = \sum_{i=0}^{n-1} x_i p^i \sum_{l=0}^{n-1} h_l p^l = 0$$

▶ to smo lahko naredili, če vzamemo $h_{k+1} = \ldots = h_{n-1} = 0$. Vzemimo še j = i + l

$$x(p)h(p) = \sum_{i=1}^{n-1} \sum_{i=1}^{n-1} x_i h_{j-i} p^j = 0$$

5.8.3 Polinom za preverjanje sodosti 2

Teorija informacij in sistemov, predavanje

U. Lotric

Paritetni polinom 5.8.4 Kodiranje

5.8.5 izvedba

5.8.8 Ciklični kodi v

praksi 5.9 Kodi s niem

 Za vsako stopnjo polinoma mora torej veljati $\sum_{i=0}^{n-1} x_i h_{i-i} = 0$

 \blacktriangleright V matrični obliki $(\mathbf{x}\mathbf{H}^T)^T = \mathbf{H}\mathbf{x}^T = \mathbf{0}$

$$\begin{pmatrix} h_0 & \dots & h_k & 0 & \dots & 0 & 0 \\ 0 & h_0 & \dots & h_k & 0 & \dots & 0 \\ \vdots & & & & & \vdots \\ 0 & 0 & \dots & 0 & h_0 & \dots & h_k \end{pmatrix} \cdot \begin{pmatrix} x_{n-1} \\ \vdots \\ x_0 \end{pmatrix} = \mathbf{0}$$

▶ Primer: paritetni polinom za $g(p) = p^3 + p^2 + 1$

$$h(p) = p^7 + 1 : p^3 + p^2 + 1 = 1 + p^2 + p^3 + p^4$$

$$\mathbf{H} = \left(\begin{array}{ccccccc} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{array}\right)$$

To je ciklični Hammingov kod, saj nastopajo vsi stolpci od 1 do $2^m - 1$ (gledano desetiško)

5.8.4 Kodiranje z množenjem

Teorija informacij in sistemov, predavanje

U. Lotric

5.8.3 Paritetni

5.8.4

Kodiranje 5.8.5

5.8.6 5.8.7

Ciklični

5.8.8

kodi v 5.9 Kodi s niem

- Kodne zamenjave so večkratniki generatorskega polinoma.
- ▶ velja

$$x(p) = z(p) \cdot g(p) \mod (p^n + 1)$$

z(p) je polinom, ki ustreza podatkovnemu vektorju **z**

- ▶ Kod, ki smo ga dobili z množenjem, ustreza generatorski matriki, ki ima v vrsticah koeficiente $p^{k-1}g(p), \ldots, pg(p), g(p),$ zato ni sistematičen.
- ► Primer: $q(p) = p^3 + p^2 + 1$, $\mathbf{z} = (1010)$, $\mathbf{x} = (1110010)$

5.8.4 Kodiranje z deljenjem 1

- Teorija informacij in sistemov, predavanje 8
- U. Lotric
- 5.8.3
- Paritetni polinom
- 5.8.4 Kodiranje
- 5.8.5 Stroina
- izvedba 5.8.6
- 5.8.7 Zmožnosti
- 5.8.8 Ciklični kodi v praksi
 - V splošnem nastavek seveda ne bo deljiv, velja pa $p^m z(p) = g(p)t(p) + r(p)$, kjer je t(p) količnik, r(p) pa ostanek, s stopnjo manj on m

- ► Kodiranje na osnovi deljenja ustvari sistematičen cikličen kod
 - ► Kodna zamenjava je zato sestavljena iz sporočila (podatkovnega bloka) in varnostnega bloka znakov, $\mathbf{x} = (\mathbf{z}|\mathbf{r})$
 - Polinom podatkovnega bloka je $z(p) = z_{k-1}p^{k-1} + \ldots + z_1p^1 + z_0p^0$
 - ▶ Če polinom pomnožimo s p^m , dobimo na desni m ničel $p^m z(p) = z_{k-1} p^{n-1} + \ldots + z_1 p^{m+1} + z_0 p^m$
- ▶ To ustreza bloku **z**, premaknjenemu za m znakov v levo, $(z_{k-1} \dots z_0 0 \dots 0)$.
- Vzemimo, da je to naš nastavek. Če je to dobra kodna zamenjava, mora biti deljiva z generatorskim polinomom.

njem 5.10

5.9 Kodi s

5.8.4 Kodiranje z deljenjem 2

Teorija informacij in sistemov, predavanje 8

U. Lotric

5.8.3 Paritetni

pominor

5.8.4 Kodiranje

5.8.5 Strojna izvedba

5.8.6 Dekodiranj

5.8.7 Zmožnost

5.8.8 Ciklični kodi v praksi

5.9 Kodi s

▶ Ostanek lahko zapišemo v obliki niza kot $(0 \dots 0r_{m-1} \dots r_0)$

▶ Polinom $p^m z(p) + r(p) = g(p)t(p)$ je deljiv z g(p) in je zato ustrezna kodna zamenjava.

▶ Kodno zamenjava tako dobimo, če ostanek deljenja z generatorskim polinomom prištejemo k osnovnemu nastavku, $(z_{k-1} \dots z_0 | r_{m-1} \dots r_0)$.

▶ Primer: $g(p) = p^3 + p^2 + 1$, $\mathbf{z} = (1010)$, $\mathbf{x} = (1010|001)$.

5.8.5 Strojna izvedba kodirnika 1

Teorija informacij in sistemov, predavanje 8

U. Lotric

5.8.3 Paritetni

5.8.4 Kodiranje

5.8.5 Strojna izvedba

5.8.6 Dekodiranje 5.8.7

Zmožnosti 5.8.8 Ciklični

praksi 5.9 Kodi s prepleta-

kodi v

► Kodirnik lahko izvedemo kot enostaven končni avtomat, zasnovan kot premikalni register s povratnimi povezavami - kodirnik LFSR (ang. Linear Feedback Shift Register)

► Enostavna strojna izvedba je eden pomembnih razlogov za popularnost cikličnih kodov

 Uporabljeni trije tipi elementov: pomnilna celica tipa D, seštevalnik (XOR), množenje s konstanto (1=povezava, 0=ni povezave)

 Kodiranje na osnovi množenja, kodiranje na osnovi deljenja

5.8.5 Strojna izvedba kodirnika 2

Teorija informacij in sistemov, predavanje 8

U. Lotric

5.8.3 Paritetni

5.8.4 Kodiranje

5.8.5 Strojna izvedba

5.8.6 Dekodiranj 5.8.7

5.8.8 Ciklični kodi v praksi

praksi
5.9 Kodi s
prepletaniem

▶ Kodiranje na osnovi množenja (za ogrevanje, to ni LFSR)

• polinom $g(p) = p^3 + p^2 + 1$, niz $\mathbf{z} = (1010)$

vezje:

► procesiranje:

korak	0	1	2	vhod	izhod
0	0	0	0	1	1

5.10

5.8.5 Strojna izvedba kodirnika 3

Teorija informacij in sistemov, predavanje 8

U. Lotric

5.8.3 Paritetni

5.8.4

Kodiranje 5.8.5

Strojna izvedba

5.8.6 Dekodiranj

5.8.7 Zmožnosti

5.8.8 Ciklični kodi v

5.9 Kodi s prepletanjem

5 10

- ► Kodiranje na osnovi deljenja:
 - polinom $g(p) = p^3 + p^2 + 1$, niz $\mathbf{z} = (1010)$
 - ► vezje:

procesiranje:

	korak	0	1	2	vhod	p^3	izhdo
•	0	0	0	0	1	1	1
	4	1	0	0			0

v prvih 4 korakih se na izhod pošiljajo kar vhodni znaki, v naslednjih 3 pa še vsebina pomnilnih celic od zadaj naprej

5.8.6 Dekodiranje

Teorija informacij in sistemov, predavanje 8

U. Lotric

5.8.3 Paritetni

5.8.4 Kodiranje

5.8.5

izvedba

5.8.6 Dekodiranje

5.8.7 Zmožnosti

5.8.8 Ciklični kodi v

5.9 Kodi s

Dekodiranje cikličnih kodov sloni na linearnih bločnih kodih.

- ▶ Vzemimo, da je pri prenosu prišlo do napake $\mathbf{y} = \mathbf{x} + \mathbf{e}$, ali polinomsko y(p) = x(p) + e(p) = z(p)g(p) + e(p).
- Najprej izračunamo sindrom. Ekvivalent enačbe $\mathbf{s} = \mathbf{y}\mathbf{H}^T$ v polinomskem zapisu je y(p) = q(p)g(p) + s(p) oziroma $s(p) = y(p) \mod g(p)$.
- ightharpoonup Če je ostanek deljenja y(p) z g(p) različen od nič, je prišlo do napake.

5.8.6 Dekodiranje: odkrivanje napak

Teorija informacij in sistemov, predavanje 8

U. Lotric

5.8.3 Paritetni polinom

5.8.4 Kodiranje

5.8.5 Strojna izvedba

5.8.6 Dekodiranje

 $\begin{array}{c} 5.8.7 \\ {\rm Zmožnosti} \end{array}$

5.8.8 Ciklični kodi v praksi

5.9 Kodi s prepletanjem

- Strojna izvedba dekodirnika z odkrivanjem napak
- ▶ Pri sistematičnih kodih uporabimo isto vezje
- ▶ Primer:
 - polinom $g(p) = p^3 + p^2 + 1$, niz $\mathbf{z} = (1010)$

Če so na koncu v pomnilnih celicah same ničle, se je kodna zamenjava pravilno prenesla.

5.8.6 Dekodiranje: odpravljanje napak

- Teorija informacij in sistemov, predavanje 8
- U. Lotric
- 5.8.3 Paritetni polinom

5.8.4

Kodiranje

5.8.5 Strojna izvedba

5.8.6 Dekodiranje

 $\begin{array}{c} 5.8.7 \\ \mathrm{Zmožnosti} \end{array}$

5.8.8 Ciklični kodi v praksi

praksi 5.9 Kodi s prepletaniem

- ▶ Iz $s(p) = y(p) \mod g(p)$ sledi, da je v primeru, ko je napaka na zadnjih m mestih, stopnja e(p) manj kot m in velja kar e(p) = s(p).
- ▶ Kaj pa ostale napake? Izkoristimo lahko cikličnost kodov.
- \blacktriangleright Naredimo trik: osnovno enačbo premaknemo za i mest, $p^iy(p)=p^ix(p)+p^ie(p)$
- Če najdemo pravi i, bo veljalo $p^i e(p) = s(p)$
- ▶ Kateri i je pravi? Igra verjetnosti pravi, da tisti, pri katerem bo imel e(p) najmanj enic.
- ► To izkorišča algoritem za popravljanje napak na cikličnih kodih. Uporablja se zelo redko.

5.8.6 Dekodiranje: klasifikacija napak

Teorija informacij in sistemov, predavanje 8

U. Lotric

5.8.3 Paritetni polinom

5.8.4 Kodiranje

5.8.5 Strojna izvedba

5.8.6 Dekodiranje

5.8.7 Zmožnosti

5.8.8 Ciklični kodi v

5.9 Kodi s prepletaniem

- ▶ Napaki, ki se pojavi na izhodu odposlane kodne zamenjave neodvisno od morebitnih napak na sosednjih znakih, pravimo **posamična** ali **neodvisna** napaka.
- ▶ Do posamičnih napak pride zaradi motenj, ki so krajše od časa pošiljanja enega znaka.
- Povezanim napakam na več zaporednih znakih pravimo izbruh. Dolžina izbruha je število znakov med prvim in zadnjim napačno sprejetim znakom.
- ▶ Do izbruha pride, če je trajanje motenj daljše od časa pošiljanja enega znaka.
- Ciklični kodi so posebej primerni za ugotavljanje izbruhov napak.

5.8.7 Zmožnosti cikličnih kodov 1

Teorija informacij in sistemov, predavanje

U. Lotric

5.8.3 Paritetni

5.8.4 Kodiranje 5.8.5

izvedba

5.8.6 5.8.7 Zmožnosti

5.8.8 Ciklični kodi v

5.9 Kodi s

- ▶ Odkrivanje napak s cikličnimi kodi 1 < st(g(p)) < n
 - Kod odkrije vsako posamično napako: $e(p) = p^i$ (pokaži)
 - ► Za določene generatorske polinome odkrije tudi dve posamični napaki do dolžine bloka $n = 2^m - 1$ (pokaži)
 - ▶ Odkrije poljubno število lihih napak, če p+1 deli g(p)(pokaži)
 - Odkrije vsak izbruh napak do dolžine m (pokaži)
 - Odkrije vse razen $2^{-(m-1)}$ izbruhov dolžine m+1(pokaži)
 - \blacktriangleright Kod odkrije tudi vse razen delež 2^{-m} izbruhov daljših od m+1 (pokaži)
- Popravljanje napak s cikličnimi kodi 1 < st(g(p)) < n
 - ► Izračun sindroma
 - Ciklično prilagajanje sindroma prenesenemu bloku y
 - ▶ Popravijo lahko do $e = \lfloor \frac{d-1}{2} \rfloor$ posamičnih napak, kjer je d Hammingova razdalja koda.
 - ▶ Popravijo lahko tudi izbruhe napak do dolžine $e = \lfloor \frac{m}{2} \rfloor$.

5.8.8 CRC 1

Teorija informacij in sistemov, predavanje 8

U. Lotric

5.8.3 Paritetni polinom

5.8.4 Kodiranje

5.8.5 Strojna izvedba

5.8.6 Dekodiranje

5.8.7 Zmožnosti

5.8.8 Ciklični kodi v praksi

5.9 Kodi s prepletaniem

- ► CRC (ang. Cyclc Redundancy Check) temelji na cikličnih kodih.
- ▶ Dodatni triki, ki jih vključujejo standardi:
 - ▶ registri v LFSR so na začetku nastavljeni na 1; osnovni CRC ne loči sporočil, ki imajo različno število vodilnih ničel. Ta sprememba, ki je enaka negiranju prvih m bitov sporočila, to težavo odpravi.
 - ▶ na koncu sporočila dodamo *m*-bitov odvisno od implementacije LFSR. Pri naši se to ne dela.
 - operacija XOR na fiksnem vzorcu ostanka deljenja; običajno je to kar negacija vseh bitov
 - vrstni red bitov v bajtu nekateri serijski protokoli najprej oddajajo najmanj pomembne bite (najmanj pomembni bit ima najvišjo stopnjo polinoma)
 - vrstni red bajtov pomnilniška organizacija računalnikov (little endian, big endian)

5.8.8 CRC 2

Teorija informacij in sistemov, predavanje 8

U. Lotric

5.8.3 Paritetni polinom

5.8.4 Kodiranje

5.8.5

Strojna izvedba

5.8.6 Dekodiranje

5.8.7 Zmožnosti

5.8.8 Ciklični kodi v praksi

5.9 Kodi s prepletanjem ▶ Notacija CRC polinomov – biti označujejo prisotnost faktorja. Večkrat se izpušča eden od faktorjev - p^m ali 1.

▶ Primer CRC-16-ANSI: $g(p) = p^{16} + p^{15} + p^2 + 1$: z biti = 1|1000|0000|0000|0101 = 0x18005 -> 0x8005

▶ Veliko uporabljani CRCji:

	CRC-16	CRC-16	CRC-32
	(ANSI)	(CCITT)	(IEEE)
polinom	0x8005	0x1021	0x04C11DB7
registri	0x0000	0xFFFF	0xFFFFFFFF
XOR na CRC	0x0000	0x0000	0xFFFFFFFF
prezrcali bajt	da	ne	da
prezrcali CRC	da	ne	da
uporaba	USB	Bluetooth	Ethernet

5.10

5.8.8 CRC 3

Teorija informacij in sistemov, predavanje 8

U. Lotric

5.8.3 Paritetni polinom

5.8.4 Kodiranje

5.8.5 Strojna izvedba

5.8.6 Dekodiranj

5.8.7 Zmožnosti

5.8.8 Ciklični kodi v praksi

5.9 Kodi s prepletanjem

- ► Omenjeni CRC-ji odkrijejo
 - ▶ enojne in dvojne posamične napake
 - liho število napak
 - ▶ vse izbruhe do dolžine 16/32
- ▶ Omenjeni CRCji ne odkrijejo:
 - \rightarrow 3,1 · 10⁻⁵/4,6 · 10⁻¹⁰ 17/33-bitnih izbruhov
 - $\blacktriangleright 1.5 \cdot 10^{-5}/2.3 \cdot 10^{-10}$ izbruhov dolžine 18/34 ali več
- Polinomi, uporabljeni v standardih izpred 30-50 let, niso najboljši. Pred 10 leti so z brute-force iskanjem našli polinome, ki dajo boljšo Hammingovo razdaljo koda.
- ► Enega od predlaganih polinomov uporablja naslednik TCP (Stream Control Transmission Protocol).
- Ciklični kodi so odlični za detekcijo napak. Za popravljanje napak danes obstajajo boljši kodi.

5.9 Prepletanje 1

- Teorija informacij in sistemov, predavanje 8
- U. Lotric
- Paritetni polinom 5.8.4
- Kodiranje
- 5.8.5 Strojna
- 5.8.6 Dekodiranje
- 5.8.7 Zmožnosti
- 5.8.8 Ciklični
- kodi v

5.9 Kodi s prepletaniem

- ► Motnje so mnogokrat v obliki izbruhov. V takih primerih pride na določenih kodnih zamenjavah do velikega števila napak, na drugih pa napak ni.
- ► S prepletanjem bitov se da napake porazdeliti med več kodnih zamenjav.
- ► Enostavna rešitev: kodne zamenjave v kodirnik vpisujemo vrstico po vrstico, oddaja pa jih stolpec po stolpec. Obratno je na strani dekodirnika
- ▶ Načeloma je vzorec skoraj naključen. Matriko prepletanja poznata kodirnik in dekodirnik.
- ► Enostavna rešitev z zakasnitvijo: izmenično signali potujejo gor/dol, ena veja je zakasnjena.
- ▶ Dejanske rešitve bolj kompleksne: več vej, zakasnitve tudi do 20.

5.10 Konvolucijski kodi 1

- Teorija informacij in sistemov, predavanje 8
- U. Lotric
- 5.8.3 Paritetni
- 5.8.4 Kodiranje
- 5.8.5
- Strojna izvedba 5.8.6
- 5.8.7
- Zmožnosti
- 5.8.8 Ciklični kodi v
- 5.9 Kodi s prepletaniem

- Primerni za popravljanje napak.
- ▶ Kovolucijske kode generiramo z linearnimi premikalnimi registri, ki so sestavljeni iz pomnilnih celic D in vrat XOR.
- Gre za nelinearne kode.
- Kovolucijski kodi so v bistvu avtomati stanj: izhod je odvisen od trenutnega stanja in vhoda - kodirnik ima spomin!
- Število pomnilnih bitov, od katerih je odvisen izhod, določa omejevalno dolžino koda (constraint length). Omejevalna dolžina koda je običajno za eno večja od števila pomnilnih bitov.
- ▶ Uporaba: GSM, komunikacija s sateliti, brezžična omrežja 802.11

5.10 Konvolucijski kodi 2

▶ Primer: NASA (Voyager 1977, zdaj 802.11), omejevalna dolžina 7, hitrost koda 1/2, kod ni sistematičen

Primer: vhod: (111), notranje stanje: (100000), (110000), (111000), izhod: (11|10|01)

- Dekodiranje: kompleksno, za vsak korak in vsako notranje stanje ugotavlja kakšna vhodna kombinacija bi pripeljala do želenega zaporedja z najmanj napakami
- ▶ Dela lahko z verjetnostmi. Super v primerih, ko v kanalu logične vrednosti niso točno določene (0.9 V je zelo verjetno 1 V)

in sistemov, predavanje 8

Teorija

informacij

- U. Lotric
- Paritetni polinom 5.8.4 Kodiranje
- 5.8.5 Strojna
- 5.8.6 Dekodirani
- 5.8.8 Ciklični kodi v

5.9 Kodi s

5.8.7

njem 5.10

5.10 Turbo kodi

- Teorija Primerni za popravljanje napak. informacij in sistemov,
 - - ► Zelo popularni pred 2000.
 - ► Zgrajeni so tako, da posamezen znak vpliva na kodno zamenjavo na zelo širokem območju.
 - Dekodiranje je zelo kompleksno, dostikrat vredno truda.
 - Kombinacija prepletanja in kovolucijskih kodov (hitrost koda je 1/3)

Dekodiranje: gradnja približnega sporočila, iterativno izboljševanje z večkratnim pošiljanjem popravljenega sporočila skozi kodirnik.

U. Lotric

predavanie

- 5.8.3 Paritetni
- 5.8.4 Kodiranje
- 5.8.5
- 586
- 5.8.7 5.8.8
- Ciklični kodi v
- 5.9 Kodi s niem

5.10

5.11 Kodi LDPC

- Teorija informacij in sistemov, predavanje 8
- U. Lotric
- 5.8.3 Paritetni
- 5.8.4
- Kodiranje 5.8.5
- Strojna izvedba
- 5.8.6 Dekodiranje
- 5.8.7 Zmožnosti

5.8.8

Ciklični kodi v praksi 5.9 Kodi s

- ▶ Kodi LDPC (ang. Low Density Parity Check) so linearni bločni kodi.
- Prvič omenjeni 1962, pozabljeni do 1995 zaradi kompleksnosti.
 - ▶ Primerni za popravljanje napak.
 - Vsak bit v kodni zamenjavi je zgrajen iz majhnega števila podatkovnih bitov. Kodi imajo zato zelo redko matriko za preverjanje sodosti (malo enic).
- Dekodiranje poteka z algoritmom, ki iterativno izboljšuje rešitev, da najde najustreznejšo kodno zamenjavo.
- ▶ So super za velike bloke podatkov, hitrost je blizu Shannonovi kapaciteti, zelo majhen delež neodkritih napak.
 - ▶ Najdemo jih v 802.11, 10 Gbps Ethernet

Teorija informacij in sistemov, predavanje 8

U. Lotric

5.8.3 Paritetni polinom

5.8.4 Kodiranje

5.8.5

izvedba 5.8.6

Dekodiran

Zmožnosti 5.8.8 Ciklični

kodi v praksi 5.9 Kodi s prepletaniem

- ightharpoonup Posplošitev linearnih cikličnih kodov: namesto posameznih bitov obravnavajo meta-znake sestavljene iz q osnovnih znakov
- ▶ Zelo kompleksna matematika Galousovih obsegov.
- ▶ So linearni, ciklični, lahko so sistematični.
- ▶ Kodne zamenjave so dolge $2^q 1$ meta znakov.
- ► Trenutno najbolj vroči kodi.
- ▶ Uporaba: DSL (digital subscription line), satelitska komunikacija, CD, DVD, BlueRay

Teorija informacij in sistemov, predavanje 8

U. Lotric

5.8.3 Paritetn

5.8.4 Kodiranje

5.8.5 Strojna izvedba

5.8.6 Dekodiranje

5.8.7 Zmožnosti

5.8.8 Ciklični kodi v praksi

5.9 Kodi s prepletanjem ▶ Kodiranje poteka tako, da skozi točke (meta-znake) potegnemo najboljši polinom. Polinom stopnje m je popolnoma podan zm+1 točko.

Dodatne točke na krivulji (varnostni biti) so redundantne, kar lahko izkoristimo pri dekodiranju s popravljanjem napak.

Teorija informacij in sistemov, predavanje 8

U. Lotric

5.8.3 Paritetni polinom

5.8.4 Kodiranje

5.8.5 Strojna izvedba

5.8.6 Dekodiranje

5.8.7 Zmožnosti 5.8.8

Ciklični kodi v praksi

5.9 Kodi s prepletaniem Tako kot ciklični kodi lahko popravijo izbruhe do dolžine m/2, kjer je m število varnostnih meta-znakov

▶ Ker dela z meta znaki dolžine q sta posamična napaka in izbruh dolžine q obravnavana enako

 \blacktriangleright Na nivoju bitov lahko kod popravi izbruhe do dolžine $m\cdot q.$

Običajno je q = 8, tako da je 1 meta znak = 1 bajt. V tem primeru se najpogosteje uporablja kod RS(255, 223) z 32 varnostnimi meta-znaki.

 Tak kod lahko odkrije in popravi izbruhe napak do dolžine 16 ⋅ 8 = 128 za binarni simetrični kanal oziroma dvakrat toliko za kanal z brisanjem

▶ Veliko se kombinirajo s konvolucijskimi kodi, ki so odlični za popravljanje posamičnih napak.

Teorija informacij in sistemov, predavanje 8

T T -4-

U. Lotric

5.8.3 Paritetni

5.8.4 Kodiranje

5.8.5 Strojna

5.8.6 Dekodiranje

5.8.7

5.8.8 Ciklični kodi v

5.9 Kodi s prepletanjem ▶ Primer: RS(255, 223): vsak meta simbol je predstavljen kot točka v ustreznem odtenku sive, vsaka vrstica predstavlja eno kodno zamenjavo.

Kljub napakam (črte dolžine 5 točk) kod pravilno popravi kodne zamenjave.