1

The Trigonometric Functions

What is the period of the function $f(x) = \tan(3x)$? 16 6

Solution 1

Solution

- (A) $\frac{\pi}{3}$
- (C) 3π
- (D) 6π

16 The circle centred at O has radius 5. Arc AB has length 7 as shown in the diagram.

What is the area of the shaded sector OAB?

- (A) $\frac{35}{1}$
- (B) $\frac{35}{2} \pi$
- (D) $\frac{125}{14} \pi$

16 8 How many solutions does the equation $|\cos(2x)| = 1$ have for $0 \le x \le 2\pi$? (B) 3 (C) 4

Solution 1

Solution

Solution

16 11 Find the gradient of the tangent to the curve $y = \tan x$ at the point where $x = \frac{\pi}{8}$.

Give your answer correct to 3 significant figures.

- Solution 2 16 11 Solve $\sin\left(\frac{x}{2}\right) = \frac{1}{2}$ for $0 \le x \le 2\pi$? g
- 16 **13** The curve $y = \sqrt{2} \cos \left(\frac{\pi}{4} x \right)$ meets the line y = x at P(1, 1), as shown in the diagram.

Find the exact value of the shaded area.

15 What is the value of the derivative of $y = 2\sin 3x - 3\tan x$ at x = 0?

(A) -1

- (B) 0
- (C) 3
- (D) -9

Solution 1

2

- 11 15 Evaluate $\int_{0}^{\frac{\pi}{4}} \cos 2x \ dx$. g
- 15 12 Find the solutions of $2 \sin \theta = 1$ for $0 \le \theta \le 2\pi$.

Solution

Solution

- 14 How many solutions of the equation $(\sin x - 1)(\tan x + 2) = 0$ lie between 0 and 2π ? (B) 2 (C) 3 (D) 4
- 1 **Solution**

14 11 Evaluate $\int_{0}^{\frac{\pi}{2}} \sin \frac{x}{2} dx$. **Solution**

- 14 The angle of a sector in a circle of radius 8
 - g cm is $\frac{\pi}{7}$ radians, as shown in the diagram.

Find the exact value of the perimeter of the sector.

Solution 2

- Differentiate $3 + \sin 2x$. 14 13 (i)
 - Hence, or otherwise, find $\int \frac{\cos 2x}{3 + \sin 2x} dx$.

Solution 1

2

1

14 Find all solutions of $2\sin^2 x + \cos x - 2 = 0$, where $0 \le x \le 2\pi$.

Solution 3

- 14 16 a

Use Simpson's Rule with five function values to show that $\int_{0}^{\frac{\pi}{3}} \sec dx \approx \frac{\pi}{9} \left(3 + \frac{8}{\sqrt{3}} \right)$.

Solution 3

Solution

- 13 What is the derivative of $\frac{x}{\cos x}$?

- (A) $\frac{\cos x + x \sin x}{\cos^2 x}$ (B) $\frac{\cos x x \sin x}{\cos^2 x}$ (C) $\frac{x \sin x \cos x}{\cos^2 x}$ (D) $\frac{-x \sin x \cos x}{\cos^2 x}$
- 13 Which diagram shows the graph $y = \sin(2x + \frac{\pi}{3})$?

Solution 1

(A)

(B)

(C)

(D)

Differentiate $(\sin x - 1)^8$. 13 11

Solution

- 13 13
 - The population of a herd of wild horses is given by $P(t) = 400 + 50 \cos \left(\frac{\pi}{6}t\right)$, where

Solution

- t is time in months.
- Find all times during the first 12 months when the population equals (i) 375 horses.
- 2

Sketch the graph of P(t) for $0 \le t \le 12$. (ii)

2

Solution

- 13 The region ABC is a sector of a circle with radius 30 cm,
 - centred at C. The angle of the sector is θ . The arc DE lies on a circle also centred at C, as shown in the diagram.

The arc DE divides the sector ABC into two regions of equal area.

Find the exact length of the interval *CD*.

Solution 3

13 The right-angled triangle ABC has hypotenuse AB = 13.

The point D is on AC such that DC = 4,

$$\angle DBC = \frac{\pi}{6}$$
 and $\angle DBC = x$.

Using the sine rule, or otherwise, find the exact value of $\sin x$.

- 12 What are the solutions of $\sqrt{3} \tan x = -1$ for $0 \le x \le 2\pi$?
- **Solution**
- (A) $\frac{2\pi}{3}$ and $\frac{4\pi}{3}$ (B) $\frac{2\pi}{3}$ and $\frac{5\pi}{3}$ (C) $\frac{5\pi}{6}$ and $\frac{7\pi}{6}$
- (D) $\frac{5\pi}{6}$ and $\frac{11\pi}{6}$

- Find the length of the arc of the sector.
- The area of a sector of a circle of radius 6 cm is 50 cm². 11

Solution 2

Solution

12 11 g

12

Find $\int_{1}^{2} \sec^2 \frac{x}{2} dx$.

12 12 Differentiate with respect to x: Solution

- а (ii)
- Find the exact values of x such that $2 \sin x = -\sqrt{3}$, where $0 \le x \le 2\pi$. 11 2b

Solution

11 Differentiate $\frac{x}{\sin x}$ with respect to x. **Solution**

2

1

Solution

11 6c The diagram shows the graph $v = 2\cos x$.

(i) State the coordinates of *P*.

- (iii) Using parts (ii) and (iii), or otherwise, find the area of the region bounded by the curve $y = 2\cos x$ and the x-axis, between x = 0and $x = 2\pi$.
- Using the parts above, write down the value of $\int_{0}^{2\pi} 2\cos x \, dx$. 1 (v)
- 10 Differentiate $x^2 \tan x$ with respect to x. 2 Solution
- Solution 10 2a 2 Differentiate $\frac{\cos x}{x}$ with respect to x.
- **Solution** 10 5b Prove that $\sec^2 x + \sec x \tan x = \frac{1 + \sin x}{\cos^2 x}$. 1 (i)
 - Hence prove that $\sec^2 x + \sec x \tan x = \frac{1}{1 \sin x}$. (ii)
 - (iii) Hence, use the table of standard integrals to find the exact value of 2

$$\int_{0}^{\frac{\pi}{4}} \frac{1}{1-\sin x} \ dx.$$

10 6b The diagram shows a circle with centre O and radius 5 cm.

> The length of the arc PQ is 9 cm. Lines drawn perpendicular to OP and OQ at P and Q respectively meet at T.

- Prove that $\triangle OPT$ is congruent to $\triangle OQT$. (ii)
- Find the length of *PT*. (iii)
- Find the area of the shaded region. (iv)

Solution

2 1

2

(Not to scale)

Solution

Solution

10 8c

The graph shown is $y = A \sin bx$.

- (i) Write down the value of A.
- (ii) Find the value of b.
- (iii) Copy or trace the graph into your writing booklet. On the same set of axes, draw the graph $y = 3\sin x + 1$, for $0 \le x \le \pi$.

10 The circle $x^2 + y^2 = r^2$ has radius r and centre O.

The circle meets the positive x-axis at B. The point A is on the interval OB. A vertical line through A meets the circle at P. Let $\theta = \angle OPA$.

(i) The shaded region bounded by the arc PB and the intervals AB and AP is rotated about the x-axis. Show that the volume, V, formed is given by

$$V = \frac{\pi r^3}{3} (2 - 3\sin\theta + \sin^3\theta).$$

(ii) A container is in the shape of a hemisphere of radius r metres. The container is initially horizontal and full of water. The container is then tilted at an angle of θ to the horizontal so that some water spills out.

- (1) Find θ so that the depth of water remaining is one half of the original depth.
- (2) What fraction of the original volume is left in the container?

2 Solution

1

2

- **19** Find the exact value of θ such that $2 \cos \theta = 1$, where $0 \le \theta \le \frac{\pi}{2}$.
- **09 2a** (i) Differentiate with respect to x: $x \sin x$

2 Solution

09 **5c** The diagram shows a circle with centre O and radius 2 centimetres. The points A and B lie on the circumference of the circle and $\angle AOB = \theta$.

There are two possible values of θ for which area of \triangle AOB is $\sqrt{3}$ square centimetres. One value is $\frac{\pi}{3}$. Find the other value.

Suppose that $\theta = \frac{\pi}{3}$. (ii)

- Find the area of the sector AOB.
- Find the exact length of the perimeter of the minor (2) segment bounded by the chord AB and the arc AB.

1 2

2

09 The diagram shows the region bounded by the curve $y = \sec x$, the lines $x = \frac{\pi}{2}$ and $x = -\frac{\pi}{3}$, and the x-axis. The region is rotated about the

Solution

Solution

x-axis.

Find the volume of the solid of revolution formed.

Solution

(i) What is the period of the function *h*?

- 1
- What was the value of h at low tide, and at what time did low tide occur? (ii)
- 2
- (iii) A ship is able to enter the harbour only if the height of the tide is at least 1.35 m. Find all times between 5 am and 5 pm on 3 March 2009 during which the ship was able to enter the harbour.
- 3

08 Evaluate 2 cos $\frac{\pi}{5}$ correct to three significant figures.

Solution 2

08 Differentiate with respect to x: $\frac{\sin x}{x+4}$ 2a (iii)

Solution 2

08 **2c** **Solution**

- Evaluate $\int_{12}^{12} \sec^2 3x \ dx$. (ii)
- Differentiate $log_e(cos x)$ with respect to x. 08 3b

Solution 2

Hence, or otherwise, evaluate $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan x \ dx$. (ii)

2

Solution

- The gradient of a curve is given by $\frac{dy}{dx} = 1 6\sin 3x$.

 The curve passes through the point (0, 7).

 What is the equation of the curve?
- **08 6a** Solve $2\sin^2 \frac{x}{3} = 1$ for $-\pi \le x \le \pi$.
- 7b The diagram shows a sector with radius r and angle θ where $0 \le \theta \le 2\pi$.

 The arc length is $\frac{10\pi}{3}$.

 (i) Show that $r \ge \frac{5}{3}$.
 - (i) Show that $r \ge \frac{5}{3}$. (ii) Calculate the area of the sector when r = 4.

07

2a

O and C.

- (ii) Calculate the area of the sector when r = 4.
 2

 (ii) Differentiate with respect to x: $(1 + \tan x)^{10}$.
 2 Solution
- **07 2b** (i) Find $\int (1 + \cos 3x) dx$.
- **2c** The point $P(\pi, 0)$ lies on the curve $y = x \sin x$. Find the equation of the tangent to the curve at P.
- **07 4a** Solve $\sqrt{2} \sin x = 1$ for $0 \le x \le 2\pi$.
- O7 4c An advertising logo is formed from two circles, which intersect as shown in the diagram. The circles intersect at A and B and have centres at

The radius of the circle centred at O is

1 metre and the radius of the circle centred at C is $\sqrt{3}$ metres. The length of OC is 2 metres.

Not to scale

- (i) Use Pythagoras' theorem to show that $\angle OAC = \frac{\pi}{2}$.
- (ii) Find $\angle ACO$ and $\angle AOC$.
- (iii) Find the area of the quadrilateral AOBC.(iv) Find the area of the major sector ACB.
- (iv) Find the area of the major sector ACB.(v) Find the total area of the logo (the sum of all the shaded areas).

7b The diagram shows the graphs of y

= $\sqrt{3} \cos x$ and $y = \sin x$. The first two points of intersection to the right of the y-axis are labelled Aand B.

region in the diagram.

06 2a Differentiate with respect to *x*:

Solution

Solution

(i) $x \tan x$

2

3

(ii) $\frac{\sin x}{x+1}$

2c Find the equation of the tangent to the curve $y = \cos 2x$ at the point whose x-coordinate is $\frac{\pi}{6}$.

Solution

06 4a In the diagram, *ABCD* represents a garden. The sector *BCD* has centre *B* and

 $\angle DBC = \frac{5\pi}{6}$. The points A, B and C lie on a

straight line and AB = AD = 3 metres. Copy or trace the diagram into your writing booklet.

- (i) Show that $\angle DAB = \frac{2\pi}{3}$.
- (ii) Find the length of BD.
- (iii) Find the area of the garden ABCD.

Solution

- 06 5b
- (i) Show that $\frac{d}{dx}\log_e(\cos x) = -\tan x$.

Solution

(ii) The shaded region in the diagram is bounded by the curve $y = \tan x$ and the lines y = x and $x = \frac{\pi}{4}$.

Using the result of part (i), or otherwise, find the area of the shaded region.

3

1

06 7b A function f(x) is defined by $f(x) = 1 + 2\cos x$.

(i) Show that the graph of y = f(x) cuts the x-axis at $x = \frac{2\pi}{3}$.

- 1
- (ii) Sketch the graph of y = f(x) for $-\pi \le x \le \pi$ showing where the graph cuts each of the axes.
- 3
- (iii) Find the area under the curve y = f(x) between $x = -\frac{\pi}{2}$ and $x = \frac{2\pi}{3}$.
- 3

Solution 05 **1**c Find a primitive of $4 + \sec^2 x$. 2 Solution 05 2a Solve $\cos \theta = \frac{1}{\sqrt{2}}$ for $0 \le \theta \le 2\pi$. Differentiate with respect to *x*: Solution 05 2b (i) x sin x 05 **2**c Evaluate $\int_{0}^{\frac{\pi}{6}} \cos 3x \ dx.$ **Solution** (ii) Solution 05 A pendulum is 90 cm long and swings through an angle of 0.6 radians. The extreme positions of the pendulum are indicated by the points A and B in the diagram. 90 cm Find the length of the arc AB. (i) (ii) Find the straight-line distance between the 1 extreme positions of the pendulum. 2 (iii) Find the area of the sector swept out by the pendulum. 2