بسم الله الرحمن الرحيم

فصل دوم

آتوماتای متناهی (۲)

Finite Automata (2)

کاظم فولادی kazim@fouladi.ir دانشکدهی مهندسی برق و کامپیوتر دانشگاه تهران

Non Deterministic Automata

Nondeterministic Finite Accepter (NFA)

Alphabet = $\{a\}$

Nondeterministic Finite Accepter (NFA)

Alphabet =
$$\{a\}$$

Nondeterministic Finite Accepter (NFA)

Alphabet =
$$\{a\}$$

Observation

```
An NFA accepts a string
if
there is a computation of the NFA
that accepts the string
```

Example

aa is accepted by the NFA:

Lambda Transitions

(read head doesn't move)

String aa is accepted

Language accepted: $L = \{aa\}$

Another NFA Example

Another String

Language accepted

$$L = \{ab, abab, ababab, ...\}$$

= $\{ab\}^+$

Another NFA Example

Language accepted

$$L = {\lambda, 10, 1010, 101010, ...}$$

= ${10}*$

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: Set of states, i.e. $\{q_0,q_1,q_2\}$

 Σ : Input applied, i.e. $\{a,b\}$

 δ : Transition function

$$\delta: Q \times (\Sigma \cup \{\lambda\}) \to 2^Q$$

 q_0 : Initial state

F: Final states

Transition Function δ

$$\delta(q_0,1) = \{q_1\}$$

$$\delta(q_1,0) = \{q_0,q_2\}$$

$$\delta(q_0,\lambda) = \{q_0,q_2\}$$

$$\delta(q_2,1) = \emptyset$$

Extended Transition Function δ^*

$$\delta * (q_0, a) = \{q_1\}$$

$$\delta * (q_0, aa) = \{q_4, q_5\}$$

$$\delta * (q_0, ab) = \{q_2, q_3, q_0\}$$

Formally

It holds
$$q_j \in \delta^*(q_i, w)$$

if and only if

there is a walk from q_i to q_j with label w

The Language of an NFA $\,M\,$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta * (q_0, aa) = \{q_4, q_5\}$$
 $aa \in L(M)$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$q_3$$

$$\delta * (q_0, ab) = \{q_2, q_3, q_0\}$$
 $ab \in L(M)$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta * (q_0, abaa) = \{q_4, q_5\}$$
 $aaba \in L(M)$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$\lambda$$

$$\delta * (q_0, aba) = \{q_1\} \qquad aba \notin L(M)$$

$$L(M) = \{aa\} \cup \{ab\}^* \cup \{ab\}^+ \{aa\}$$

Formally

The language accepted by NFA M is:

$$L(M) = \{w_1, w_2, w_3, ...\}$$

where
$$\delta^*(q_0, w_m) = \{q_i, q_j, ...\}$$

and there is some
$$q_k \in F$$
 (final state)

Equivalence of NFAs and DFAs

Equivalence of Machines

For DFAs or NFAs:

Machine $\,M_1\,$ is equivalent to machine $\,M_2\,$

if
$$L(M_1) = L(M_2)$$

Example

NFA M_1

Since
$$L(M_1) = L(M_2) = \{10\}$$
*

machines M_1 and M_2 are equivalent

DFA
$$M_2$$

$$q_0$$

$$q_1$$

$$q_2$$

Equivalence of NFAs and DFAs

Question: NFAs = DFAs?

Same power?

Accept the same languages?

Equivalence of NFAs and DFAs

Question: NFAs = DFAs? YES!

Same power?

Accept the same languages?

We will prove:

```
Languages
accepted
by NFAs
Languages
accepted
by DFAs
```

We will prove:

NFAs and DFAs have the same computation power

```
Languages
accepted
by NFAs
Languages
accepted
by DFAs
```

Proof: Every DFA is also an NFA

Proof: Every DFA is also an NFA

A language accepted by a DFA is also accepted by an NFA

```
Languages
accepted
by NFAs
Languages
accepted
by DFAs
```

Proof: Any NFA can be converted to an equivalent DFA

Proof: Any NFA can be converted to an equivalent DFA

A language accepted by an NFA is also accepted by a DFA

DFA

DFA

NFA to DFA

NFA to DFA

NFA to DFA

NFA to DFA: Remarks

We are given an NFA M

We want to convert it to an equivalent DFA $\,M'$

With
$$L(M) = L(M')$$

If the NFA has states

$$q_0, q_1, q_2, \dots$$

the DFA has states in the powerset

$$\emptyset, \{q_0\}, \{q_1\}, \{q_1, q_2\}, \{q_3, q_4, q_7\}, \dots$$

1. Initial state of NFA: q_0

Initial state of DFA: $\{q_0\}$

2. For every DFA's state $\{q_i,q_j,...,q_m\}$

Compute in the NFA

$$\left.\begin{array}{l} \delta^*(q_i,a), \\ \delta^*(q_j,a), \end{array}\right\} = \{q_i',q_j',...,q_m'\}$$

Add transition

$$\delta(\{q_i, q_j, ..., q_m\}, a) = \{q'_i, q'_j, ..., q'_m\}$$

Repeat Step 2 for all letters in alphabet, until no more transitions can be added.

NFA

3. For any DFA state $\{q_i,q_j,...,q_m\}$

If some q_i is a final state in the NFA

Then,
$$\{q_i,q_j,...,q_m\}$$
 is a final state in the DFA

NFA

$$q_1 \in F$$

Theorem

Take NFA M

Apply procedure to obtain DFA $\,M'$

Then M and M' are equivalent:

$$L(M) = L(M')$$

Finally

We have proven

We have proven

Regular Languages

We have proven

Regular Languages

Regular Languages