▲ Try again once you are ready

Grade received 50%

Latest Submission Grade 50% To pass 80% or higher

Try again

1/1 point

- 1. Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word

 1/1 point in the i^{th} training example?
 - ① x(i)<j>
 - $\bigcirc \quad x^{< i > (j)}$
 - $\bigcirc \quad x^{(j) < i >}$
 - $\bigcirc \quad x^{< j > (i)}$

∠⁷ Expand

 \bigcirc Correct
We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

2. Consider this RNN:

This specific type of architecture is appropriate when:

- \bigcirc $T_x = T_y$
- $\bigcap T_x < T_y$
- $\bigcirc \quad T_x > T_y$
- $\bigcirc \quad T_x=1$

∠⁷ Expand

✓ Correct

It is appropriate when every input should have an output.

3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

1/1 point

- Speech recognition (input an audio clip and output a transcript)
- Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

✓ Correct

Image classification (input an image and output a label)

Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

✓ Correct!

...[№] Expand

4. Using this as the training model below, answer the following:

True/False: At the t^{th} time step the RNN is estimating $P(y^{< t>})$

- True
- False

∠⁷ Expand

⊗ Incorrect

In a training model we try to predict the next steps based on the knowledge of all prior steps.

0/1 point

0/1 point

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as \hat{y}^{erb} . (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\theta^{<2^{-}}$.(ii) Then pass the ground-truth word from the training set to the next time-sten
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{<t>}$ (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{\text{cfs.}}$ (ii) Then pass this selected word to the next time-step.

∠ⁿ Expand

 \otimes Incorrect

The probabilities output by the RNN are not used to pick the highest probability word.

- 6. You are training an RNN model, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?
 - Vanishing gradient problem.
 - Exploding gradient problem.
 - The model used the ReLU activation function to compute g(z), where z is too large.
 - \bigcirc The model used the Sigmoid activation function to compute g(z), where z is too large.

∠⁷ Expand

⊗ Incorrect

Vanishing and exploding gradients are common problems in training RNNs, but in this case, your weights and activations taking on the value of NaN does not imply that you have a vanishing gradient problem.

	800		
	80000		
	O 8		
	O 100		
	∠ ⁷ Expand		
	✓ Correct		
	Correct, Γ_u is a vector of dimension equal to the number	of hidden units in the LSTM.	
8.	Sarah proposes to simplify the GRU by always removing the Γu .		0 / 1 point
GRU by removing the fr. l. e., setting fr= 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?			
GRU $ \bar{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) $			
	$\Gamma_{u} = \sigma(W_{u}[c^{< t-1>}, x^{< t>}] + b_{u})$		
$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$ $c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$			
	$a^{< t>} = c^{< t>}$		
	$igcup ext{Sarah's model (removing Γ_u), because if $\Gamma_r pprox 1$ for a timestep of the state of the st$), the gradient can propagate	
back through that timestep without much decay. $ Sarah's model (removing \ \Gamma_u), because if \ \Gamma_r \approx 0 \ for a timestep, the gradient can propagate back through that timestep without much decay. Ashely's model (removing \ \Gamma_v), because if \ \Gamma_u \approx 0 \ for a timestep, the gradient can propagate back through that timestep without much decay. $			
	Ashely's model (removing Γ _p), because if Γ _u ≈1 for a timestep, the gradient can propagate back through that timestep without much decay.		
	∠ ⁿ Expand		
	⊗ Incorrect No. For the signal to backpropagate without vanishing, w.	e need $c^{< t>}$ to be highly dependent on $c^{< t-1>}$.	
	⊗ Incorrect	e need $c^{<\!t>}$ to be highly dependent on $c^{<\!t-1>}$.	
9.	⊗ Incorrect		1/1 point
9.	⊗ Incorrect No. For the signal to backpropagate without vanishing, w True/False: Using the equations for the GRU and LSTM below th State		1/1 point
9.	⊗ Incorrect No. For the signal to backpropagate without vanishing, we have been signal to backpropagate without vanishing. The signal to backpropagate without vanishing we have been signal to backpropagate without vanishing. The signal to backpropagate without vanishing we have been signal to be a signal to backpropagate without vanishing we have been signal to be a signal to be	e Update Gate and Forget Gate in the LSTM play a	1/1point
9.	⊗ Incorrect No. For the signal to backpropagate without vanishing, w True/False: Using the equations for the GRU and LSTM below th different role to Γu and 1- Γu. GRU	e Update Gate and Forget Gate in the LSTM play a $ LSTM $ $ \mathcal{E}^{} = \tanh(W_c[a^{}, x^{}] + b_c) $	1/1 point
9.	⊗ Incorrect No. For the signal to backpropagate without vanishing, we have signal to backpropagate without vanishing with the signal to be signal to be signal to be signal to backpropagate without vanishing with the signal to be	e Update Gate and Forget Gate in the LSTM play a $ LSTM $ $ \bar{c}^{} = \tanh(W_c[a^{},x^{}]+b_c) $ $ \Gamma_u = \sigma(W_u[a^{},x^{}]+b_u) $	1/1 point
9.	⊗ Incorrect No. For the signal to backpropagate without vanishing, w True/False: Using the equations for the GRU and LSTM below th different role to Γ u and 1- Γ u. GRU $\vec{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$ $\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$	e Update Gate and Forget Gate in the LSTM play a $ LSTM $ $ \mathcal{E}^{} = \tanh(W_c[a^{}, x^{}] + b_c) $	1/1 point
9.		e Update Gate and Forget Gate in the LSTM play a	1/1point
9.	⊗ Incorrect No. For the signal to backpropagate without vanishing, we have for the signal to backpropagate without vanishing, we have form the signal to backpropagate without vanishing, we have form the signal to backpropagate without vanishing, we have form the signal to backpropagate without vanishing, we have form the signal to backpropagate without vanishing, we have form the signal to backpropagate without vanishing, we have form the signal vanishing without vanishing without vanishing without vanishing without vanishing without vanishing without vanishing vani	e Update Gate and Forget Gate in the LSTM play a $ \begin{aligned} \mathbf{LSTM} \\ \bar{c}^{} &= \tanh(W_c[a^{}, x^{}] + b_c) \\ \Gamma_u &= \sigma(W_u[a^{}, x^{}] + b_u) \\ \Gamma_f &= \sigma(W_f[a^{}, x^{}] + b_f) \\ \Gamma_o &= \sigma(W_o[a^{}, x^{}] + b_o) \\ c^{} &= \Gamma_u * \bar{c}^{} + \Gamma_f * c^{} \end{aligned} $	1/1 point
9.	⊗ Incorrect No. For the signal to backpropagate without vanishing, we have for the signal to backpropagate without vanishing, we have form the signal to backpropagate without vanishing, we have form the signal to backpropagate without vanishing, we have form the signal to backpropagate without vanishing, we have form the signal to backpropagate without vanishing, we have form the signal to backpropagate without vanishing, we have form the signal vanishing without vanishing without vanishing without vanishing without vanishing without vanishing without vanishing vani	LSTM $\bar{c}^{} = \tanh(W_c[a^{}, x^{}] + b_c)$ $\Gamma_u = \sigma(W_u[a^{}, x^{}] + b_u)$ $\Gamma_f = \sigma(W_f[a^{}, x^{}] + b_f)$ $\Gamma_o = \sigma(W_o[a^{}, x^{}] + b_f)$	1/1 point
9.	⊗ Incorrect No. For the signal to backpropagate without vanishing, we have value of the signal to backpropagate without vanishing, we have value value value vanishing, we have value va	e Update Gate and Forget Gate in the LSTM play a $ \begin{aligned} \mathbf{LSTM} \\ \bar{c}^{} &= \tanh(W_c[a^{}, x^{}] + b_c) \\ \Gamma_u &= \sigma(W_u[a^{}, x^{}] + b_u) \\ \Gamma_f &= \sigma(W_f[a^{}, x^{}] + b_f) \\ \Gamma_o &= \sigma(W_o[a^{}, x^{}] + b_o) \\ c^{} &= \Gamma_u * \bar{c}^{} + \Gamma_f * c^{} \end{aligned} $	1/1 point
9.	⊗ Incorrect No. For the signal to backpropagate without vanishing, we have for the signal to backpropagate without vanishing, we have form the signal to backpropagate without vanishing, we have form the signal to backpropagate without vanishing, we have form the signal to backpropagate without vanishing, we have form the signal to backpropagate without vanishing, we have form the signal to backpropagate without vanishing, we have form the signal vanishing without vanishing without vanishing without vanishing without vanishing without vanishing without vanishing vani	e Update Gate and Forget Gate in the LSTM play a $ \begin{aligned} \mathbf{LSTM} \\ \bar{c}^{} &= \tanh(W_c[a^{}, x^{}] + b_c) \\ \Gamma_u &= \sigma(W_u[a^{}, x^{}] + b_u) \\ \Gamma_f &= \sigma(W_f[a^{}, x^{}] + b_f) \\ \Gamma_o &= \sigma(W_o[a^{}, x^{}] + b_o) \\ c^{} &= \Gamma_u * \bar{c}^{} + \Gamma_f * c^{} \end{aligned} $	1/1 point
9.	⊗ Incorrect No. For the signal to backpropagate without vanishing, we have value of the signal to backpropagate without vanishing, we have value value value vanishing, we have value va	e Update Gate and Forget Gate in the LSTM play a $ \begin{aligned} \mathbf{LSTM} \\ \bar{c}^{} &= \tanh(W_c[a^{}, x^{}] + b_c) \\ \Gamma_u &= \sigma(W_u[a^{}, x^{}] + b_u) \\ \Gamma_f &= \sigma(W_f[a^{}, x^{}] + b_f) \\ \Gamma_o &= \sigma(W_o[a^{}, x^{}] + b_o) \\ c^{} &= \Gamma_u * \bar{c}^{} + \Gamma_f * c^{} \end{aligned} $	1/1 point
9.		e Update Gate and Forget Gate in the LSTM play a $ \begin{aligned} \mathbf{LSTM} \\ \bar{c}^{} &= \tanh(W_c[a^{}, x^{}] + b_c) \\ \Gamma_u &= \sigma(W_u[a^{}, x^{}] + b_u) \\ \Gamma_f &= \sigma(W_f[a^{}, x^{}] + b_f) \\ \Gamma_o &= \sigma(W_o[a^{}, x^{}] + b_o) \\ c^{} &= \Gamma_u * \bar{c}^{} + \Gamma_f * c^{} \end{aligned} $	1/1 point
9.		e Update Gate and Forget Gate in the LSTM play a $ \begin{aligned} \mathbf{LSTM} \\ \bar{c}^{} &= \tanh(W_c[a^{}, x^{}] + b_c) \\ \Gamma_u &= \sigma(W_u[a^{}, x^{}] + b_u) \\ \Gamma_f &= \sigma(W_f[a^{}, x^{}] + b_f) \\ \Gamma_o &= \sigma(W_o[a^{}, x^{}] + b_o) \\ c^{} &= \Gamma_u * \bar{c}^{} + \Gamma_f * c^{} \end{aligned} $	1/1 point
9.		e Update Gate and Forget Gate in the LSTM play a $ \begin{aligned} \mathbf{LSTM} \\ \bar{c}^{} &= \tanh(W_c[a^{}, x^{}] + b_c) \\ \Gamma_u &= \sigma(W_u[a^{}, x^{}] + b_u) \\ \Gamma_f &= \sigma(W_f[a^{}, x^{}] + b_f) \\ \Gamma_o &= \sigma(W_o[a^{}, x^{}] + b_o) \\ c^{} &= \Gamma_u * \bar{c}^{} + \Gamma_f * c^{} \end{aligned} $	1/1 point
9.		e Update Gate and Forget Gate in the LSTM play a	1/1 point
9.		e Update Gate and Forget Gate in the LSTM play a	1/1 point
9.	⊗ Incorrect No. For the signal to backpropagate without vanishing, we have signal to backpropagate with value of the signal to backpropagate with value and value of the signal to backpropagate with value and value of the signal to backpropagate with value and value of the signal to backpropagate with value and val	e Update Gate and Forget Gate in the LSTM play a	1/1 point
	⊗ Incorrect No. For the signal to backpropagate without vanishing, we have the signal of the signal	e Update Gate and Forget Gate in the LSTM play a	1/1 point 0/1 point
	⊗ Incorrect No. For the signal to backpropagate without vanishing, we have the signal to backpropagate value of the signal to bac	LSTM $ c^{} = \tanh(W_c[a^{}, x^{}] + b_c) $ $ \Gamma_u = \sigma(W_u[a^{}, x^{}] + b_u) $ $ \Gamma_f = \sigma(W_f[a^{}, x^{}] + b_f) $ $ \Gamma_o = \sigma(W_f[a^{}, x^{}] + b_f) $ $ \Gamma_o = \sigma(W_o[a^{}, x^{}] + b_o) $ $ c^{} = \Gamma_u * \tilde{c}^{} + \Gamma_f * c^{} $ $ a^{} = \Gamma_o * \tanh c^{} $	
	⊗ Incorrect No. For the signal to backpropagate without vanishing, we have signal to backpropagate without vanishing, we have signal to backpropagate without vanishing, we have signal to \$\text{First the GRU}\$ and \$L\$TM below the different role to \$\Gamma\$ u and \$1-\Gamma\$ u. GRU $\vec{c}^{} = \tanh(W_c[\Gamma_r * c^{}, x^{}] + b_c)$ $\Gamma_u = \sigma(W_u[c^{}, x^{}] + b_v)$ $c^{} = \Gamma_u * \vec{c}^{} + (1 - \Gamma_u) * c^{}$ $a^{} = c^{}$ $a^{} = c^{}$ © True $\vec{c}^* = \vec{c}^* = c$	LSTM $ c^{} = \tanh(W_c[a^{}, x^{}] + b_c) $ $ \Gamma_u = \sigma(W_u[a^{}, x^{}] + b_u) $ $ \Gamma_f = \sigma(W_f[a^{}, x^{}] + b_f) $ $ \Gamma_o = \sigma(W_f[a^{}, x^{}] + b_f) $ $ \Gamma_o = \sigma(W_o[a^{}, x^{}] + b_o) $ $ c^{} = \Gamma_u * c^{} + \Gamma_f * c^{} $ $ a^{} = \Gamma_o * \tanh c^{} $ $ a^{} = \Gamma_o * tanh c^{} $ $ a^{} = \Gamma_o * tanh c^{} $ $ a^{} = \Gamma_o * tanh c^{} $ $ a^{ a^{ a^{ a^{ a^{ a^{ a^{$	
	⊗ Incorrect No. For the signal to backpropagate without vanishing, we have signal to backpropagate without vanishing, we different role to Γu and $1 - \Gamma u$. GRU $\vec{c}^{} = \tanh(W_c[\Gamma_r * c^{}, x^{}] + b_c)$ $\Gamma_u = \sigma(W_u[c^{}, x^{}] + b_u)$ $\Gamma_r = \sigma(W_r[c^{}, x^{}] + b_r)$ $c^{} = \Gamma_u * \vec{c}^{} + (1 - \Gamma_u) * c^{}$ $a^{} = c^{}$ $\vec{c}^{} = c^{}$ $\vec{c}^{} = c^{ \vec{c}^{ \vec{c}$	e Update Gate and Forget Gate in the LSTM play a	

- (iii) Bidirectional KNN, because this allows the prediction of mood on day t to take into account . Unidirectional RNNL because the value of $y^{<1>}$ depends only on $x^{<1>},\dots,x^{<1>}$, but not on $x^{<1>},\dots,x^{<36>}$. O Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
 - ∠⁷ Expand

⊗ Incorrect
Your mood is contingent on the current and past few days' weather, not on the current, past, AND future days' weather.

Output

Description:

Output

Descripti