

Università degli Studi di Verona, Dipartimento di Informatica

Reti di Calcolatori, Prof. D. Carra, A.A. 2012/2013 Appello d'esame del 19 Luglio 2013

- Scrivere **nome**, **cognome** e **numero di matricola** su ciascun foglio che si intende consegnare (non e' obbligatorio consegnare la brutta copia)
- I risultati verranno pubblicati sugli avvisi della pagina del corso oggi, Venedì 19 Luglio, dopo le 15
- · La correzione dei temi d'esame può essere visionata durante la registrazione
- Orali (facoltativi) e registrazioni si terranno oggi, Venerdì 19 Luglio, alle 16.00 in aula "I".

Domande sulla teoria (4 punti ciascuna)

Lo studente risponda in maniera concisa, ma precisa, alle seguenti domande riguardanti la parte teorica. E' necessario che lo studente ottenga almeno 7 punti (su un totale di 12 punti a disposizione). In caso contrario, gli esercizi non verranno considerati e il voto finale sarà insufficiente.

- 1. Si spieghi il funzionamento del protocollo ARP (Address Resolution Protocol), senza necessariamente entrare nei dettagli del protocollo stesso, specificando il motivo per cui è stato introdotto tale protocollo.
- 2. L'header IP contiene un campo di 16 bit denominato "Identification": si spieghi che cosa contiene tale campo e come viene utilizzato.
- 3. In riferimento al livello di trasporto, si spieghi come viene stimato il Round Trip Time (RTT) e il Retransmission Timeout (RTO).

Esercizio 1 (7 punti)

Un Bridge è attestato contemporaneamente su due segmenti distinti di rete; agli estremi dei due segmenti di rete vi sono due stazioni A e B (si veda la figura a fianco). Il Bridge è un particolare tipo di stazione che memorizza ciascuna trama che arriva da un segmento di rete e, una volta ricevuta completamente, la ritrasmette sull'altro segmento di rete (tale comportamento è valido, in modo indipendente l'uno dall'altro,

in entrambi i sensi); le trame restano in memoria del Bridge fino a quando la trasmissione sull'altro segmento non è andata a buon fine.

Le stazioni e il Bridge utilizzano un protocollo CSMA persitent (1-persistent) per la trasmissione delle trame; le caratteristiche del sistema sono:

- velocità del segmento 1: 1.2 Mbit/s;
- velocità del segmento 2: 1.5 Mbit/s;
- lunghezza delle trame generate sia da A che da B: 1500 byte;
- ritardo di propagazione tra la stazione A e il Bridge: 2 msec;
- ritardo di propagazione tra la stazione B e il Bridge: 1 msec.

Le stazioni generano le seguenti trame:

- stazione A: una trama (A1) all'istante tA1=600 msec, una trama (A2) all'istante tA2=627 msec, e una trama (A3) all'istante tA3=640 msec, tutte dirette a B;
- stazione B: una trama (B1) all'istante tB1=615 msec, e una trama (B2) all'istante tB2=617 msec, entrambe dirette ad A.

In caso di collisione, si supponga che le stazioni decidono di ritrasmettere Z millisecondi <u>dopo</u> la fine della trasmissione della trama corrotta; il numero Z viene deciso secondo il seguente metodo:

- si attende un tempo pari a Z = Sc * N + T, dove
 - o Sc = somma delle cifre che compongono l'istante di inizio trasmissione
 - o N = numero di collisioni subite da quella trama
 - o T tempo di trama

ad esempio, se l'istante di inizio trasmissione è 418 msec, Z = (4+1+8)*N + T Determinare:

- 1. graficamente le trasmissioni delle diverse trame, indicando se avviene collisione, in quali istanti essa viene eventualmente avvertita e da quali apparati;
- 2. il periodo di vulnerabilità del sistema preso in considerazione.

Università degli Studi di Verona, Dipartimento di Informatica

Reti di Calcolatori, Prof. D. Carra, A.A. 2012/2013 Appello d'esame del 19 Luglio 2013

Esercizio 2 (7 punti)

Si consideri la rete mostrata in figura, ove è utilizzato l'algoritmo Distributed Bellman-Ford (DBF) classico senza alcun meccanismo aggiuntivo. Si ipotizzi che la situazione sia a regime, ovvero tutte le tabelle di routing siano stabili. Al tempo t_{quasto} il link tra B e C si guasta.

1. Si mostrino le tabelle di routing a regime prima del guasto (ovvero prima di t_{quasto})

2. Si mostrino i messaggi scambiati successivamente al guasto, fino al raggiungimento di una situazione di regime.

Esercizio 3 (7 punti)

Un'applicazione A deve trasferire 174000 byte all'applicazione B utilizzando il protocollo TCP. Si supponga che la connessione tra A e B sia già stata instaurata. La trasmissione dei segmenti inizia al tempo t=0. Sono noti i seguenti parametri:

MSS concordata pari a 1200 byte;

- RCVWND annunciata da B ad A pari a 19200 byte; a partire dal tempo $t_a>5.0$ la destinazione annuncia una RCVWND pari a 26400 byte; a partire dal tempo $t_b>9.0$ la destinazione annuncia una RCVWND pari a 4800 byte; a partire dal tempo $t_c>14.0$ la destinazione annuncia una RCVWND pari a 19200 byte;
- SSTHRESH iniziale = RCVWND;
- CWND= 1 segmento a t=0;
- RTT pari a 1.0 secondo, costante per tutto il tempo di trasferimento;
- RTO base = 2*RTT; nel caso di perdite consecutive dello stesso segmento, i timeout seguenti raddoppiano fino ad un massimo di 4 volte il RTO base (incluso), dopodiché la connessione viene abbattuta;
- il tempo di trasmissione dei segmenti è trascurabile rispetto RTT;
- · il ricevitore riscontra immediatamente i segmenti.

Inoltre si supponga che la rete vada fuori servizio nei seguenti intervalli di tempo:

- da $t_1=9.5s$ a $t_2=10.5s$;
- da t₃=18s a t₄=20s;

Si tracci l'andamento della CWND nel tempo e si determini in particolare:

- 1. il valore finale di CWND (sia graficamente, sia esplicitandolo);
- 2. i valori assunti dalla SSTHRESH durante il trasferimento (graficamente);
- 3. il tempo necessario per il trasferimento dei dati (sia graficamente, sia esplicitandolo);
- 4. il numero di segmenti trasmessi ad ogni intervallo, specificando se ne vengono ricevuti i riscontri o meno (sia graficamente, sia esplicitando i valori).