Real numbers and complex numbers are examples of fields. That is, they are each a set closed under addition and multiplication that satisfy

Field axioms

Addition

- (A1) x + y = y + x.
- (A2) (x + y) + z = x + (y + z).
- (A3) There exists an element 0 such that for all x, x + 0 = x.
- (A4) For all x, there exists an element -x such that x + (-x) = 0.

Multiplication

- (M1) xy = yx.
- (M2) (xy)z = x(yz).
- (M3) There exists an element $1 \neq 0$ such that for all x, $1 \cdot x = x$.
- (M4) If $x \neq 0$, then there exists an element x^{-1} such that $x \cdot x^{-1} = 1$.

Distributive law

(D)
$$x(y+z) = xy + xz$$
.

Example: \mathbb{F}_2

Here is an example of a field \mathbb{F}_2 with exactly two elements (which must be 0 and 1, of course!), and addition and multiplication mod 2 (The addition and multiplication tables are as follows).

Addition:	+	0	1	Multiplication:		0	1
	0	0	1		0	0	0
	1	1	0		1	0	1