

Departamento de Matemática, Universidade de Aveiro

Cálculo I - Agrupamento II — Exame da Época de Recurso 2 de fevereiro de 2017

Duração: 2h 30m

1. Considere a função F definida por $F(x)=\int_0^{x^3} \operatorname{e}^{t^2} dt, \ \operatorname{em} \ \mathbb{R}.$

[5pts] (a) Justifique a diferenciabilidade de F em \mathbb{R} .

[10pts] (b) Determine F'(x) para $x \in \mathbb{R}$.

[10pts] (c) Calcule, caso exista, o limite $\lim_{x\to 0} \frac{F(x)}{x^3}$.

2. Considere a função **contínua** f definida por $f(x) = \begin{cases} 2\arccos(ax-1) & \text{se } x < 1, \\ \pi + \ln(2x-1) & \text{se } x \geq 1. \end{cases}$

[5pts] (a) Determine o valor de a.

[15pts] (b) Mostre que existe $c \in]0,1[$ tal que $\pi + f'(c) = 0.$

[20pts] (c) Determine a área da região \mathcal{R} limitada pelo gráfico de f, pelo eixo das abcissas e pelas retas de equações x=1 e x=2.

[15pts] 3. Seja f uma função real de variável real diferenciável com derivada crescente. Mostre que se a < b e f(a) = f(b) então, para todo o $x \in]a, b[, f(x) \le f(a).$

4. Calcule os seguintes integrais indefinidos.

[15pts] (a) $\int \frac{(\ln x)^{\frac{3}{4}}}{3x} dx$

[20pts] (b) $\int \sqrt{4-\sqrt{x}} dx$ Sugestão: Utilize a mudança de variável $t=4-\sqrt{x}$, justificando, convenientemente, o domínio adequado a esta substituição.

[20pts] 5. (a) Determine a natureza do seguinte integral impróprio e, caso seja convergente, calcule o seu valor.

 $\int_{2}^{+\infty} \frac{2}{x^{2}(x+1)} \, dx$

[20pts] (b) Determine a natureza da seguinte série, dizendo, em caso de convergência, se é simples ou absoluta.

 $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2(n+1)}$

6. Determine a natureza das seguintes séries numéricas e, em caso de convergência, calcule o seu valor.

[15pts] (a) $\sum_{n=1}^{+\infty} \frac{2^{3n+1}}{3^{2n-1}}.$

[15pts] (b) $\sum_{n=1}^{+\infty} \cos\left(\frac{1}{n} - \frac{1}{n+3}\right)$.

[15pts] 7. Discuta para que valores de $a \in \mathbb{R}$ a série $\sum_{n=1}^{+\infty} na^n$ é convergente.