

Cyber-insurance: What is the right price?

Henry Skeoch

UCL Centre for Doctoral Training in Cyber-Security

Myths

Cyber-insurance won't pay out if I'm attacked....

If the attack comes from a nation state, the insurer might claim it's an act of war...

We invest heavily in security, we don't need cyber-insurance...

Reality

Does your organization purchase cyber liability insurance?

Share of organizations with cyber liability insurance worldwide 2011-2018

What is Cyber-Insurance?

"Cyber insurance covers the losses relating to damage to, or loss of information from, IT systems and networks" (Association of British Insurers)

First-party insurance

- Loss or damage to digital assets
- Business interruption
- · Cyber exhortation
- Customer notification expenses
- Reputational damage
- Theft of money or digital assets

Third-party insurance

- Investigative or defensive costs associated with security and privacy breaches
- Multi-media liability (e.g. breach of privacy or negligence in publication in electronic or print media)
- · Loss of third-party data

Adapted from the Association of British Insurers

The field as it stands...

Insurance Economics

- Well-established
- Spans a vast array of different types of insurance products
- Theory of the demand and supply sides of insurance very well developed and studied.

Information Security Economics

- Relatively new
- Saw strong growth in the early 2000s
- Seminal early contribution was the Gordon & Loeb model (plenty on this in due course)

Cyber-Insurance

- Research coverage is sparse and the current body of literature is not cohesive
- Discipline needs structure and rigour to move forward
- Partnership between industry and academia is crucial

What are the barriers to research in Cyber-Insurance?

- Lack of actuarial data
- Little commercial advantage to providers sharing data
- Constantly evolving nature of the threat landscape
- Presented as a unified product to the customer, but actually typically an amalgamation of existing product lines

Three good papers on cyber-insurance, which navigate these issues

Romanosky et al (2017)

https://weis2017.econinfosec.org/wp-content/uploads/sites/3/2017/06/WEIS_2017_paper_28.pdf

Woods et al (2017)

http://dx.doi.org/10.1186/s13174-017-0059-y

Nurse et al (2020)

https://kar.kent.ac.uk/80965/

The Gordon and Loeb Model

- Published as "The Economics of Information Security Investment" ~ TISSEC (2002)
- Introduces the concept of a security breach function S(z,v) where z is investment and v vulnerability, with three assumptions:

A1:
$$S(z, 0) = 0$$
 for all z

A2: For all
$$v, S(0, v) = v$$

- A3: For all $v \in (0,1)$ and all z, $S_z(z,v) < 0$ and $S_{zz}(z,v) > 0$ where S_z and S_{zz} are the first and second partial derivatives of the security breach probability function with respect to z.
- Key parameters of an information set are the vulnerability, v; the loss conditioned on a breach occurring, I; and probability of a threat occurring, τ. The expected loss is then:

$$E[L] = \tau v l$$

The key output we are interested in is the expected net benefit of investment in information security, ENBIS:

$$ENBIS(z) = [v - S(z, v)]\tau l - z$$

Gordon-Loeb Security Breach functions

Two Security Breach functions proposed in the original paper:

$$S^{I}(z,v) = \frac{v}{(az+1)^{\beta}} \qquad \qquad S^{II}(a,v) = v^{\alpha z+1}$$

• A key result of the Gordon-Loeb model is that for both these forms: $z^*(v) < (1/e)v au l$

How can the Gordon-Loeb Model be expanded to cyber-insurance?

Consider a two-state model, loss or no loss...

$$E[U] = (1 - S(v, z))u(B_{sec} - z - P(C)) + S(z, v)u(B_{sec} - z - P(C) - \tau lS(z, v) + C)$$

P is premium, C is cover, B is budget. If we express P as a percentage of cover (p) and adding the constraint that the combination
of investment and insurance bought CANNOT exceed the Gordon-Loeb limit, then formally:

$$z + pC \le \frac{v\tau l}{e}$$

This constraint then yields the optimisation problem:

$$\bar{u}(C,z) = (1 - S(v,z))u(B_{sec} - z - pC) + S(z,v)u(B_{sec} - z - \tau lS(z,v) + C(1-p))$$

This can be solved via the use of a Lagrangian:

$$Z = U + \lambda (\frac{v\tau l}{e} - pC - z)$$

• The Kuhn-Tucker (i.e. first-order) conditions resulting are:

$$Z_C = U_C - p\lambda \le 0$$
 $C \ge 0$ $C.Z_C = 0$ $Z_z = U_z - \lambda \le 0$ $z \ge 0$ $z.Z_z = 0$ $Z_\lambda = \frac{v\tau l}{e} - pC - z \ge 0$ $\lambda \ge 0$ $\lambda.Z_\lambda = 0$

A quick primer in economic utility

- Key contribution was the work by Von Neumann and Morgenstern in the 1940s, which broadly states that under axioms of rational behaviour, a decision maker faced with a risky problem will behave as if they are maximising the expected value of a function defined over potential outcomes.
- We focus on functions with constant absolute risk aversion (CARA):

$$u(z) = \frac{1 - e^{-az}}{a}$$

And also constant relative risk aversion (CRRA):

$$u(z) = \begin{cases} z^{(1-\gamma)}/(1-\gamma) & \text{if } \gamma \neq 1\\ ln(z) & \text{if } \gamma = 1 \end{cases}$$

$$A(z) = -\frac{u''(z)}{u'(z)}$$

$$R(z) = \frac{-zu''(z)}{u'(z)} = zA(z)$$

Key simulation parameters

$$\alpha = 1.5 * 10^{-5}$$
$$\beta = 1$$

Gordon-Loeb Security Breach Function Parameters

$$l = $500,000$$

 $\tau = 0.8$

Properties of the dataset, which are fixed in the Gordon-Loeb model

$$a = 10^{-5}$$

Coefficient for the utility functions

The vulnerability v, is initially fixed at 0.65 and then this assumption is relaxed. Recall that z is the investment and z* is the optimal investment recommended by the Gordon-Loeb model.

Optimal investment, variable cover

Maximum cover to respect the Gordon-Loeb cash constraint:

$$min(\tau lS(v,z^*), \frac{(1/e)\tau vl-z^*}{p})$$

 Results suggest that utility is generally maximised at maximum insurance coverage with the assumption of defensive investment of z* recommended by the Gordon-Loeb model.

Variable Investment, maximum cover (part 1)

Maximum available cover under the cash constraint at different levels of z

Variable Investment, maximum cover (part 2)

How does the model change for different vulnerabilities?

Tabular presentation of the main model results

V	$z_{max}(\$)$	$z^{I*}(\$)$	$z^{II*}(\$)$	$S^I(v, z^{I*})$	$S^{II}(v, z^{II*})$	$P_{max}^{I}(\$)$	$P_{max}^{II}(\$)$	$p^I_{max}(\%)$	$p_{max}^{II}(\%)$
0.20	29,430	6,363	$27,\!264$	0.183	0.104	23,067	2,166	31.6	5.2
0.25	36,788	14,983	$35,\!207$	0.204	0.120	21,805	1,581	26.7	3.3
0.30	44,146	22,776	$42,\!826$	0.224	0.138	$21,\!369$	1,320	23.9	2.4
0.35	$51,\!503$	29,943	$50,\!203$	0.242	0.159	$21,\!561$	1,300	22.3	2.0
0.40	58,861	36,613	$57,\!336$	0.258	0.182	$22,\!248$	$1,\!525$	21.5	2.1
0.45	$66,\!218$	$42,\!878$	64,140	0.274	0.209	23,340	2,079	21.3	2.5
0.50	$73,\!576$	48,803	70,413	0.289	0.240	24,773	3,163	21.5	3.3
0.55	80,933	$54,\!439$	75,772	0.303	0.279	$26,\!494$	$5,\!162$	21.9	4.6
0.60	88,291	59,824	$79,\!506$	0.316	0.326	$28,\!467$	8,785	22.5	6.7
0.65	$95,\!649$	64,989	80,292	0.329	0.387	30,659	$15,\!357$	23.3	9.9
0.70	103,006	69,959	$75,\!541$	0.342	0.467	33,047	$27,\!465$	24.2	14.7
0.75	110,364	74,755	59,829	0.354	0.579	35,609	$50,\!534$	25.2	21.8

Utility functions with varying vulnerability (optimal investment, full coverage)

Next steps...

Multi-period case/stochastic budget?

$$B_t = B_0 - P - \sum_{t=0}^{t} (s_t^{(p)} + s_t^{(u)} - c_t)$$

 The two-state model is too simplistic; there is a rich potential avenue of research in merging rigorous analysis of systems with economic modelling.

- The choice of vulnerability parameter is pretty arbitrary; perhaps can be estimated using Partially Observable Markov Decision Processes (POMDPs)...
- Multi-attribute utility functions (e.g. combination of Confidentiality/Integrity/Availability).