Predicting Students' Academic Performance

Alexandros Zervopoulos - ΠΜΕ201905

Data Mining and Knowledge Management May 13, 2020

Introduction

- Goal: Predict academic student performance
 - Useful in personalized identification of problematic background and lackluster habits
- Methodology
 - Search for relevant publications and datasets
 - Compare different approaches
 - Reproduce their results
 - Using Machine Learning (ML) techniques

Datasets

- Two different datasets were experimented with
- <u>Dataset 1</u>: Student Academics Performance
 - o 300 instances
 - o 22 features
 - o available: UCI¹
 - o Introduced in [1]
- <u>Dataset 2</u>: Students' Academic Performance
 - 480 instances
 - o 17 features
 - o available: **Kaggle**²
 - o Introduced in [2]

¹ https://archive.ics.uci.edu/ml/datasets/Student+Academics+Performance

² https://www.kaggle.com/aljarah/xAPI-Edu-Data

Dataset 1

- Constructed in [1] from students enrolled in three colleges in India
- Includes features
 - Demographic
 - Gender, family size, family income, father/mother education and profession
 - Academic Background
 - Past grades, free/paid admission, class attendance
 - Personal
 - Studying habits, number of friends
- Performance Class
 - Best, Very Good, Good, Pass, Fail

Dataset 2

- Constructed in [2] from Kalboard, a learning management system
- Obtains behavioral features from API
 - Demographic
 - Gender, nationality, place of birth, parent responsible for student
 - Academic Background
 - Current stage, grade level, semester, topic, absence days
 - Behavioral
 - Discussion groups, visited resources, raised hand on class, viewing announcements
 - Parent Participation
 - Parent answering survey, parent school satisfaction
- Performance Class
 - o Low, Medium, High

Methodology

- Weka was used in both [1, 2]
- Here, a standard Python-based toolkit is utilized
 - o <u>Scikit-learn</u> for classification, feature selection
 - pandas for data management and preprocessing
 - o <u>seaborn</u> and <u>matplotlib</u> for visualization and plotting
- All conducted experiments are available on Github³
 - o In Jupyter notebook format

³ https://github.com/p15zerv/academic-performance-prediction-sklearn

Preprocessing and Visualization

- Distribution of all features, colored by class
- For preprocessing
 - All nominal attributes are mapped to a numeric scale
 - o Other categorical attributes are dropped or one-hot encoded
- Correlation heatmaps and pairwise relation plots are generated

Pairwise Pearson correlation heatmap for Dataset 2

Pairwise relation plot for numerical features of Dataset 2

Baseline Classification - Dataset 1

DT AdaBoost (AB)

- No mention of train-test split or cross validation!
- Only 131 instances seem to be available in the online dataset!

Algorithm	Current Accuracy	Reported Accuracy	Corresponding algorithm [1]
Naive Bayes (NB)	48.89%	-	-
-	-	65.33%	BayesNet
Logistic Regression (LR)	61.08%	-	_
Decision Tree (DT)	57.92%	73%/74.33%	J48/PART
Random Forest (RF)	61.88%	99%	Random Forest

58.91%

Baseline Classification - Dataset 2

DT AdaBoost (AB)

Artificial Neural Network

•	10-fold cross validation

Algorithm	Current Accuracy	Reported Accuracy	Corresponding algorithm [2]
Naive Bayes (NB)	72.5%	75.8%	Naive Bayes
Logistic Regression (LR)	75.21%	-	-
Decision Tree (DT)	69.17%	75.8%	J48
Random Forest (RF)	70.42%	75.6%	Random Forest

65.83%

76%

77.7%

79.1%

Boosting - J48

Artificial Neural Network

Baseline Classification - Dataset 2

- 70:30 train test split
- 10-fold cross validation

Decision Tree Model - Dataset 2

RF Features Importances - Dataset 2

Feature Selection - Dataset 2

- Select top *k* features for various *k*
 - Features ranked according to mutual information
- Compare performance
 - Using 70:30 train-test split

Feature Selection - Dataset 2

- 10-fold cross validation
- Using Recursive Feature Elimination
 - Except for Naive Bayes

Algorithm	Accuracy w/o Feature Selection	Accuracy w Feature Selection	Number of Features
Naive Bayes (NB)	72.5%	78.81%	7
Logistic Regression (LR)	75.21%	75.21%	10
Decision Tree (DT)	69.17%	68.54%	6
Random Forest (RF)	70.42%	70.83%	10
DT AdaBoost (AB)	65.83%	65.83%	7

Thank you for your attention!

Any questions?

References

[1] Amrieh, E. A., Hamtini, T., & Aljarah, I. (2016). Mining educational data to predict student's academic performance using ensemble methods. International Journal of Database Theory and Application, 9(8), 119-136.

[2] Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students' academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.