DIGITAL LOGIC DESIGN LAB (EET1211)

LAB VI: DESIGN OF MAGNITUDE COMPARATOR DECODER, ENCODER AND MULTIPLEXER CIRCUIT

Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar

Branch: CS	E		Section: M		
S. No.	Name	Registration No.	Signature		
F •	BISWARANJAN SAHOO	2141019075	Bisnearonjon		

Maules	
Marks:	710

Remarks:

Teacher's Signature

I. OBJECTIVE:

Design a combinational circuit that compares two 4-bit numbers to check if they are education.
 The circuit output is equal to 1 if the two numbers are equal and 0 otherwise.

- Design a 2 X 1 Multiplexer that will select the binary information from one of the two input lines and direct it to a single output line based on the value of a selection line.
- 3. Design a 4 bit priority encoder with inputs D_3 (MSB), D_2 , D_1 and D_0 (LSB) and outputs X, Y and V. The priority assigned to inputs is $D_3 > D_2 > D_1 > D_0$. The output V shows a value 1 when one or more inputs are equal to one. If all inputs are 0, V is equal to 0. When V=0, then other two outputs are not inspected and are specified as don't care conditions.
- 4. Design a full adder using 3 to 8 line decoder and external OR gates.

II. PRE-LAB

For Obj. 1:

- a. Write the truth table for the circuit.
- b. Derive the Minimized Boolean expression for the output of the circuit.
- c. Draw the logic diagram for the circuit.
- d. Write HDL code.

margin a character of the experi-

For Obj. 2:

- a. Write the truth table for the circuit.
- b. Derive the Minimized Boolean expression for the output of the circuit.
- c. Draw the logic diagram for the circuit.
- d. Write HDL code.

For Obj. 3:

- a. Write the truth table for the circuit.
- b. Derive the Minimized Boolean expression for each output of the circuit.
- c. Draw the logic diagram for the circuit.
- d. Write HDL code.

For Obj. 4:

- a. Write the truth table for the circuit.
- b. Derive the Boolean expression for each output of the circuit.
- c. Draw the logic diagram for the circuit.
- d. Write HDL code.

OBJECTIVE - 1

d> HDL Coole

module obj 1 (A3, A2, A1, A0, B3, B2, B1, B0, F); input A3, A2, A1, A0, B3, B2, B1, B0; output F;

assign F= (!(A3^B,)) dd(!(A2^B2))&d(!(A1^B,)) dd(!(40^B0)); end module

OBJECTIVE - 2

Y = SA, + SA.

S	Ao	AL	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
l	0	1	1
1	1	0	0
1	1	1	1

1	1	
	1	

HDL Coole module abj2 (S, Ao, A, Y); input S, Ao, A1;

output Y;

assign Y = (8ddA1)11 (~SddA0); enof module OBJECTIVE-3

\mathbf{p}_3	> D2	>DI	>Do	×	Y	V
0	0	0	0	×	×	0
0	0	0	1	0	0	1
0	0	t	×	0	1	1
0	1	×	×	1	0	1
١	×	×	×	1	1	1

module abj
$$^3(D_0, D_1, D_2, D_3, \times, \vee, \vee);$$

irfurd $D_0, D_1, D_2, D_3;$

audfurd $\times, \vee, \vee;$

assign $\times = D_2 11D_3;$

assign $\vee = (D_1 & ^2 \sim D_2) 11D_3;$

assign $\vee = D_0 11D_1 11D_2 11D_3;$

end module

OBJECTT VE - 4

2

Α	B	C	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
ı	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	t	1

×	Y	Z	Dz	D ₆	D5	Dq	D_3	D2	Di	Do
0	0	O	0	0	0	0	0	0	0	ı
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	t	l	١	0	0	0	0	0	0	0

module abj4(n, y, z, sum, carry); infend n, y, z; outful sum, carry;

assign sum = (~ nd~ydz) 1 (~ ndyd-z) 1 (nd-yd-z) 1 (ndydz);
assign casay = (~ ndydz) 1 (nd~yd~z) 1 (ndyd-z) 1 (ndydz);
endmedule