- 3.1 Funzioni Ricorsive
- 3.2 Equazioni Ricorsive
- 3.3 Merge Sort
- 3.4 Quick Sort

Componenti delle Funzioni Ricorsive

Prendiamo il seguente algoritmo di ordinamento ricorsivo

Possiamo distinguere i 3 componenti fondamentali di una funzione ricorsiva

```
Chiamate Ricorsive

1  if V.length == 1
2     return V
3  else
4     L = SORT(first half of V)
5     R = SORT(second half of V)
```

```
S = MERGE(L, R)
return S
```

Vengono definite ricorsione in testa se avvengono prima del passo ricorsivo, ricorsione in coda se avvengono dopo

Regole della Ricorsione

Le regole per il corretto funzionamento di una funzione ricorsiva sono

- 1. I casi base devono essere risolti correttamente
- Qualunque sia l'input, le catene delle chiamate ricorsive devono essere ben fondate, ovvero devono sempre arrivare ad un caso base
- Assumendo corretti i risultati delle chiamate ricorsive, il passo ricorsivo deve produrre una soluzione corretta

Divide et Impera

Dividi et Impera (Dividi e Comanda) è una tecnica di risoluzione dei problemi generale, che si prostra perfettamente per la risoluzione di problemi ricorsivi

```
△ Definizione
```

 Se l'istanza del problema da risolvere è troppo complicata per essere risolta direttamente, dividila in sottoproblemi

- Usa la stessa tecnica ricorsivamente per risolvere i singoli sottoproblemi
- Combina le soluzioni trovate per i sottoproblemi in una soluzione per il problema originario

Equazioni Ricorsive

Per calcolare il **costo computazionale di una funzione ricorsiva**, si usano delle speciali equazioni ricorsive

Consideriamo la funzione

FUN1(n) 1 if n = 1 2 return 1 3 else 4 return FUN1(n - 1)

Analizziamo i costi delle singole parti

- ullet Il caso base n=1 avrà un costo c_1
- Per ogni n>1 avremo un costo $T(n-1)+c_2$ dove c_2 è il costo del passo ricorsivo

Quindi otterremo un sistema

$$T(n)=egin{cases} c_1 & n=1 \ T(n-1)+c_2 & n>1 \end{cases}$$

$$T(2) = T(1) + c_2 = c_1 + c_2$$

 $T(3) = T(2) + c_2 = c_1 + 2c_2$

$$T(n)=c_1+c_2(n-1)=\Theta(n)$$

⊘ Osservazione

 c_1 e c_2 sono **costanti additive** che non influiscono sull'ordine di grandezza del costo computazionale

Consideriamo ora invece

FUN2(n) 1 if n = 1: 2 return 1 3 else 4 return FUN2(n - 1) + FUN2(n - 1)

Possiamo aggiungere al sistema una nuova costante $c_3=2$ che corrisponderà al **numero di chiamate ricorsive** nella funzione

$$T(n) = egin{cases} c_1 & n = 1 \ c_3 T(n-1) + c_2 & n > 1 \end{cases}$$

$$T(n) = \frac{c_1 c_3^{n+1} + c_2 c_3^{n} - c_1 c_3^{n} - c_2 c_3}{c_3(c_3 - 1)}$$

Per semplificare, possiamo considerare solo

$$T(n) = \Theta(c_3{}^n)$$

⊘ Osservazione

 c_3 è una **costante moltiplicativa** che incide gravemente sull'ordine di grandezza del costo computazionale

Ordini di Grandezza

Siccome abbiamo visto che **solo le costanti moltiplicative implicano** sull'ordine di grandezza del costo computazionale, possiamo semplificare l'equazione di una funzione ricorsiva utilizzando gli ordini di grandezza

≡ Esempio

FUN3(n)

```
for i = 1 to n
            return 1
                                      × = 1
if n = 1
                        else
```

$$c_3=1$$
 $=egin{cases} c_1 & n=\ c_3T(n-1)+c_2n & n> \end{cases}$

return FUN3(n - 1)

$$T(n) = egin{cases} c_1 & n = 1 \ c_3 T(n-1) + c_2 n & n > 1 \ = egin{cases} \Theta(1) & n = 1 \ c_3 T(n-1) + \Theta(n) & n > 1 \ = \Theta\left(egin{cases} 1 \ c_3 T(n-1) + n & n > 1 \ \end{array}
ight) \end{cases}$$

$$T(n) = \Theta(n^2)$$

Metodi di Risoluzione

Per risolvere le equazioni ricorsive, si possono usare due metodi principali

- Sostituzione
- Albero della Ricorsione

Sostituzione

Per il metodo tramite sostituzione si prova a indovinare una soluzione per poi confermarla tramite principio di induzione

· Principio di Induzione

Il principio di induzione permette di dire che se

- 1. La nostra affermazione è vera per $n=n_{
 m 0}$
- 2. Supponendo vera la nostra affermazione per ogni $m \mid n_0 \le m \le n-1$ possiamo dimostrare che è vera anche per \boldsymbol{n}

Allora la nostra affermazione è vera $orall n \geq n_0$

≡ Esempio

$$T(n) = \begin{cases} 4 & n = 1 \\ T(n-1) + 3n & n > 1 \end{cases}$$

[potizziamo che la soluzione sia

$$T(n) = \Theta(n^2)$$

Iniziamo dimostrando che

$$T(n) = O(n^2) \iff \exists \ k > 0 \mid T(n) \le kn^2$$

Supponiamo che per $1 \leq m \leq n-1$ l'affermazione sia vera e dimostriamo per

$$T(n) = T(n-1) + 3n$$

= $k(n-1)^2 + 3n$
= $kn^2 - 2kn + k + 3n$
= $kn^2 - n(2k - 3) + k$

$$kn^{2} - n(2k - 3) + k \le kn^{2}$$
 $-n(2k - 3) + k \le 0$
 $n(2k - 3) + k \ge 0$
 $n \ge \frac{k}{2k - 3}$

La nostra equazione è verificata asintoticamente

Possiamo analogamente dimostrare anche $T(n) = \Omega(n^2)$

≡ Controesempio

$$T(n)=egin{cases} 4 & n=1 \ T(n-1)+3n & n>1 \end{cases}$$

Ipotizziamo che la soluzione sia

$$T(n) = \Theta(n)$$

Sappiamo che $T(n)=\Omega(n)$ in quanto abbiamo 3n + quantità positiva nell'equazione

Dobbiamo quindi dimostrare che

$$T(n) = O(n) \iff \exists \ k > 0 \mid T(n) \le kn$$

Supponiamo che per $1 \leq m \leq n-1$ l'affermazione sia vera e dimostriamo per n

$$T(n) = T(n-1) + 3n$$

= $k(n-1) + 3n$
= $kn - k + 3n$

$$kn - k + 3n \le kn$$
 $3n - k \le 0$ $n \le \frac{k}{3}$

L'equazione non è verificata asintoticamente

Albero della Ricorsione

Prendiamo come esempio l'equazione del <u>merge sort</u>

$$T(n) = egin{cases} 1 & n = 1 \\ 2T\left(rac{n}{2}
ight) + n & n > 1 \end{cases}$$

Albero della ricorsione della funzione Merge-Sort

♥ Proprietà

Possiamo rappresentare le chiamate ricorsive come un **albero bilanciato**

- La ricorsione finirà quando si arriva al piano h dove si incontra $T({\rm caso\ base}),$ quindi h sarà l'altezza dell'albero
- Ogni livello dell'albero **escluse le foglie** somma a \boldsymbol{n}
- Il livello delle foglie somma a T(1)n

Nel caso del merge sort

$$rac{n}{2^{h-1}}=1\iff n=2^{h-1}\iff h-1=\log_2(n)\iff h=\log_2(n)+1$$

$$T(1)n=n$$

L'equazione ricorsiva quindi diventa

$$T(1)n\cdot (\log_2(n)+1)=n+n\log_2(n)$$

$$=\Theta(n\log n)$$

Master Theorem

Metodo di risoluzione generale di

$$T(n) = aT\left(rac{n}{b}
ight) + f(n)$$

Abbiamo 3 casistiche

$$1. \ \exists \ \epsilon > 0 \mid f(n) = O(n^{\log_b(a) - \epsilon}) \implies T(n) = \Theta(n^{\log_b(a)})$$

$$2. \ f(n) = \Theta(n^{\log_b(a)}) \implies T(n) = \Theta(n^{\log_b(a)} \log(n))$$

$$egin{align*}{ll} \exists f(x) & f(x) & f(x) & f(x) \end{array} \ 3. \ \exists \ \epsilon > 0, \ c < 1, \ n_0 > 0 \ | \ & \forall n \geq n_0, \ f(n) = \Omega(n^{\log_b(a) + \epsilon}) \wedge af\left(rac{n}{b}
ight) \leq c f(n) \ & \Longrightarrow \ T(n) = \Theta(f(n)) \end{array}$$

Merge Sort

O Idea

- Se il vettore da ordinare contiene un solo elemento è già ordinato, altrimenti dividilo in due metà
- 2. Chiama ricorsivamente la funzione sulle due metà
- 3. Costruisci una soluzione fondendo insieme le due metà ordinate

Viene definito un **algoritmo bottom-up** in quanto la logica di ordinamento parte dal fondo quanto la divisione arriva ai casi base per poi ricostruire il vettore risalendo l'albero

MERGE-SORT(A, p, r)

Parametri: A=vettore, p=indice inizio vettore, r=indice fine vettore

MERGE(A, p, q, r)

Parametri: A=vettore, p=indice inizio vettore, q=indice mediano vettore, r=indice fine vettore

Costo Computazionale

Possiamo calcolare che il costo computazionale della **funzione merge** è

$$T(n) = \Theta(n)$$

L'equazione ricorsiva sarà quindi

$$T(n) = egin{cases} \Theta(1) & n=1 \ 2T\left(rac{n}{2}
ight) + \Theta(n) & n>1 \end{cases}$$

L'albero della ricorsione sarà quindi

Albero della Ricorsione

Prendiamo come esempio l'equazione del <u>merge sort</u>

$$T(n) = egin{cases} 1 & n=1 \ 2T\left(rac{n}{2}
ight) + n & n>1 \end{cases}$$

Albero della ricorsione della funzione Merge-Sort

⊗ Proprietà

Possiamo rappresentare le chiamate ricorsive come un **albero bilanciato** dove

- La ricorsione finirà quando si arriva al piano h dove si incontra $T({\rm caso\ base})$, quindi h sarà l'altezza dell'albero
- Ogni livello dell'albero **escluse le foglie** somma a n
- Il livello delle foglie somma a T(1)n

Nel caso del merge sort

$$rac{n}{2^{h-1}}=1\iff n=2^{h-1}\iff h-1=\log_2(n)\iff h=\log_2(n)+1$$
 $T(1)n=n$

L'equazione ricorsiva quindi diventa

$$T(1)n\cdot (\log_2(n)+1)=n+n\log_2(n)$$

$$= \Theta(n \log n)$$

Non si presentano parti dipendenti dal valore dell'input, di conseguenza **tutte e tre le casistiche saranno equivalenti**

· Costi Computazionali

- Caso Pessimo: $\Theta(n\log(n))$
- Caso Medio: $\Theta(n\log(n))$
- ullet Caso Ottimo: $\Theta(n\log(n))$

Quick Sort

O Idea

- 1. Se il vettore da ordinare contiene un solo elemento è già ordinato
- 2. Scegli un elemento di pivot e partiziona il vettore intorno al pivot
- 3. Chiama ricorsivamente Quick Sort sui due vettori ottenuti

 $A[j] \le x \implies \text{scambio } A[i+1] \text{ con } A[j]$

PARTITION(A, p, r)

Parametri: A=vettore, p=indice inizio vettore, r=indice fine vettore Return: posizione del pivot nel vettore a fine partizionamento

QUICK-SORT(A, p, r)

Parametri: A=Vettore, p=indice inizio vettore, r=indice fine vettore

◎ Osservazione: Confronto con Merge Sort

Nonostante il <u>caso peggiore</u> di ordine più grande rispetto al <u>merge sort,</u> grazie alla tecnica di <u>randomizzazione del pivot</u> si ricade sempre nel caso medio, il quale ha un ordine di grandezza equivalente ma utilizzando

operazioni molto meno costose rispetto al merge.

Per questo motivo, il Quick Sort è generalmente la **scelta preferita in campo** di algoritmi di ordinamento

Costo Computazionale

Sapendo che il costo computazionale del partizionamento è

$$T(n) = \Theta(n)$$

Possiamo avere due casi principali

 Il partizionamento avviene perfettamente bilanciato (A[q] era il valore mediano del vettore)

$$T(n) = egin{cases} \Theta(1) & n = 1 \ 2T\left(rac{n}{2}
ight) + \Theta(n) & n > 1 \end{cases}$$

$$T(n) = \Theta(n\log(n))$$

 Il partizionamento avviene completamente sbilanciato (A[q] era il più piccolo o più grande valore del vettore)

$$T(n) = egin{cases} \Theta(1) & n=1 \ T(n-1) + \Theta(n) & n>1 \end{cases}$$

$$T(n) = \Theta(n^2)$$

Per trovare l'ordine di grandezza del caso medio abbiamo due metodi

Possiamo considerare che Il caso medio consiste semplicemente in partizioni
bilanciate e sbilanciate alternate, che quindi si compensano tra di loro

2. bilanciata:

$$T(n) = T(n-1) + \Theta(n)$$
 $T(n) = 2T\left(\frac{n-1}{2}\right) + \Theta(n) + \Theta(n)$

$$T(n) = egin{cases} \Theta(1) & n = 1 \ 2T\left(rac{n-1}{2}
ight) + \Theta(n) & n > 1 \end{cases}$$

$$T(n) = \Theta(n\log(n))$$

- Possiamo considerare le partizioni come $\frac{1}{k}n$ elementi da un lato e $\frac{k-1}{k}n$ elementi dall'altro

$$T(n) = egin{cases} eta(1) & n = 1 \ T\left(rac{k-1}{k}n
ight) + T\left(rac{k-1}{k}n
ight) + \Theta(n) & n > 1 \end{cases}$$

$$T(n) = \Theta(n \log(n))$$

◎ Osservazione: Albero Sbilanciato

Anche se l'<u>albero della ricorsione</u> è sbilanciato da uno dei due lati, essendo le due funzioni sommate tra di loro l'ordine di grandezza corrisponderà al più grande tra le due, che possiamo calcolare essere $\Theta(n\log(n))$

· Costi Computazionali

ullet Caso Ottimo: $\Theta(n\log(n))$

- Caso Medio: $\Theta(n\log(n))$

ullet Caso Pessimo: $\Theta(n^2)$

Randomizzazione del Pivot

O Idea

Per la legge dei grandi numeri, se si sceglie un **pivot casuale ogni volta che si esegue una partizione**, si cadrà sempre nel <u>caso medio</u> in quanto è infinitesimamente piccola la probabilità che la divisione sia sempre sbilanciata

RANDOMIZED-QUICK-SORT(A, p, r)

```
1 if p < r
2    q = RANDOMIZED-PARTITION(A, p, r)
3    RANDOMIZED-QUICK-SORT(A, p, q-1)
4    RANDOMIZED-QUICK-SORT(A, q + 1, r)</pre>
```

Parametri: A=vettore, p=indice inizio vettore, r=indice fine vettore

RANDOMIZED-PARTITION(A, p, r)

```
1 i = RANDOM(p, r) // random pivot
2 exchange A[r] with A[i]
3 return PARTITION(A, p, r)
```

Parametri: A=vettore, p=indice inizio vettore, r=indice fine vettore Return: posizione del pivot nel vettore a fine partizionamento