Total No. of Que	stions: 4]	3	SEAT No.:	
PB71	[6268];-266	[Total No. of Pa	ges:2
S.E. (Automobile and Mechanical Engineering)/				
(Mechanica	l Sandwich)/ (Automa	tion and Ro	botics Engg.) (Ins	em)
ENGINEERING MATHEMATICS-III				
(2019 Pattern) (Semester-IV) (207002)				
Time : 1 Hour]	30,000	C	[Max. Mar	ks:30
Instructions to the	() (),		9	
1) (Answer Q.1 or Q.2, Q.3 or Q. Neat diagrams must be drawi		SCAPU S	
	Figures to the right side indi			
4)	Assume suitable data, if nece			
		2		
<i>Q1</i>) a) Solve	e any two of the following:	0, 10,		[10]
i)	$(D^2+1) y = e^{3x} + \cos(2x)$	S. O. A.		
ii)	$(D^2 - 6D + 9)y = \frac{e^{3x}}{2}$ (Solve)	ye by method	of variation of param	eters)
iii)	$x^2 \frac{d^2 y}{dx^2} - 4x \frac{dy}{dx} + 6y = x^3$			State: 38
b) Solve	$\frac{dx}{y + zx} = \frac{dy}{x^2 - yz} = \frac{dz}{x^2 - yz}$	$\overline{y^2}$	30103101A.08:11	[5]
	O	R		
Q2) a) Solve	e any two of the following		50,00	[10]
	$(D^2 - D + 1) y = 3x^2 + 1$			
ii)	$(D^2+1) y = \sec x \text{ (use Met)}$	hod of variati	on of Parameters)	
:::	$(x+1)^2 \frac{d^2y}{dx^2} - 4(x+1)\frac{dy}{dx^2}$	$\pm 6y = x$		

ii) $(D^2+1) y = \sec x$ (use Method of variation of Parameters) iii) $(x+1)^2 \frac{d^2y}{dx^2} - 4(x+1)\frac{dy}{dx} + 6y = x$

P.T.O.

- A body of Weight W=3N stretches a spring to 15cm. If the weight is b) pulled down 10 cm below the equilibrium position and then given a downward velocity 60 cm/sec, determine the amplitude, period and frequency of motion. [5]
- Find the Laplace transform of the $f^n f(t) = e^{-3t} (3 \cosh 3t 2 \sin h 4 t)$ [5] *Q3*) a)

b) Find the inverse Laplace transform of
$$F(s) = \frac{3s+7}{(s-2)(s+1)}$$
 [5]

- Find the fourier cosine transform of f(x)c) [5]
- Find the fourier sine transform of the fⁿ [5]
 - Solve the integral equation b) [5]

$$\int_{0}^{\infty} f(x) \sin \lambda x \, dx = \begin{cases} 1, & 0 \le \lambda < 1 \\ 2, & 1 \le \lambda < 2 \\ 0, & \lambda \ge 2 \end{cases}$$

9.149.16.29 [1103/10]
9.149.16.29 [1103/10]
9.149.16.29 [1103/10] Find the inverse Laplace transform of $F(s) = \frac{3s+1}{(s-1)(s^2+1)}$ c)