

Experiment No. 2

Analyze the Titanic Survival Dataset and apply appropriate regression technique

Date of Performance:

Date of Submission:

Vidyavardhini's College of engineering & Technology Department of Computer Engineering

Aim:

Analyze the Titanic Survival Dataset and apply appropriate Regression Technique.

Objective:

Able to perform various feature engineering tasks, apply logistic regression on the given dataset and maximize the accuracy.

Theory:

Logistic Regression was used in the biological sciences in early twentieth century. It was then used in many social science applications. Logistic Regression is used when the dependent variable(target) is categorical and is binary in nature. In order to perform binary classification the logistic regression techniques makes use of Sigmoid function.

For example,

To predict whether an email is spam (1) or (0)

Whether the tumor is malignant (1) or not (0)

Consider a scenario where we need to classify whether an email is spam or not. If we use linear regression for this problem, there is a need for setting up a threshold based on which classification can be done. Say if the actual class is malignant, predicted continuous value 0.4 and the threshold value is 0.5, the data

point will be classified as not malignant which can lead to serious consequence in real time.

From this example, it can be inferred that linear regression is not suitable for classification problem. Linear regression is unbounded, and this brings logistic regression into picture. Their value strictly ranges from 0 to 1.

Dataset:

The sinking of the Titanic is one of the most infamous shipwrecks in history.

On April 15, 1912, during her maiden voyage, the widely considered "unsinkable" RMS Titanic sank after colliding with an iceberg. Unfortunately, there weren't enough lifeboats for everyone onboard, resulting in the death of 1502 out of 2224 passengers and crew.

While there was some element of luck involved in surviving, it seems some groups of people were more likely to survive than others.

In this challenge, we ask you to build a predictive model that answers the question: "what sorts of people were more likely to survive?" using passenger data (ie name, age, gender, socio-economic class, etc).

economic class, etc).

Variable	Definition	Key
survival	Survival	0 = No, 1 = Yes
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd
sex	Sex	
Age	Age in years	
sibsp	# of siblings / spouses aboard the Titanic	
parch	# of parents / children aboard the Titanic	
ticket	Ticket number	
fare	Passenger fare	
cabin	Cabin number	
embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton

Variable Notes

pclass: A proxy for socio-economic status (SES)

1st = Upper, 2nd = Middle, 3rd = Lower

age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5

sibsp: The dataset defines family relations in this way...,

Sibling = brother, sister, stepbrother, stepsister

Spouse = husband, wife (mistresses and fiancés were ignored)

parch: The dataset defines family relations in this way...

Parent = mother, father

Child = daughter, son, stepdaughter, stepson

Some children travelled only with a nanny, therefore parch=0 for them.

Code:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score, confusion_matrix

import warnings.

warnings.filterwarnings('ignore')

df = pd.read_csv('train.csv')

printing the first 5 rows of the dataframe df.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

number of rows and Columns df.shape (891, 12)

getting some informations about the data df.info()

df.isnull().sum()

```
PassengerId 0
Survived 0
Pclass 0
Name 0
Sex 0
Age 177
SibSp 0
Parch 0
Ticket 0
Fare 0
Cabin 687
Embarked 2
dtype: int64
```

```
# drop the "Cabin" column from the dataframe
df = df.drop(columns='Cabin', axis=1)
```

```
# replacing the missing values in "Age" column with mean value df['Age'].fillna(df['Age'].mean(), inplace=True)
```

finding the mode value of "Embarked" column
print(df['Embarked'].mode())

```
0 S
dtype: object
```

print(df['Embarked'].mode()[0])

```
S
```

 $\#\ replacing\ the\ missing\ values\ in\ "Embarked"\ column\ with\ mode\ value$

df['Embarked'].fillna(df['Embarked'].mode()[0], inplace=**True**)

```
PassengerId 0
Survived 0
Pclass 0
Name 0
Sex 0
Age 0
SibSp 0
Parch 0
Ticket 0
Fare 0
Embarked 0
dtype: int64
```

getting some statistical measures about the data df.describe()

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	13.002015	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	22.000000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	29.699118	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	35.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

finding the number of people survived and not survived df['Survived'].value_counts()

```
0 549
1 342
Name: Survived, dtype: int64
```

making a count plot for "Survived" column
sns.countplot(x='Survived', data=df)

df['Sex'].value_counts()

```
male 577
female 314
Name: Sex, dtype: int64
```

making a count plot for "Sex" column
sns.countplot(x='Sex', data=df)

number of survivors Gender wise
sns.countplot(x='Sex', hue='Survived', data=df)

making a count plot for "Pclass" column
sns.countplot(x='Pclass', data=df)

sns.countplot(x='Pclass', hue='Survived', data=df)

df['Sex'].value_counts()

```
male 577
female 314
Name: Sex, dtype: int64
```

df['Embarked'].value_counts()

```
S 646
C 168
Q 77
Name: Embarked, dtype: int64
```

converting categorical Columns

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
0	1	0	3	Braund, Mr. Owen Harris	0	22.0	1	0	A/5 21171	7.2500	0
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	1	38.0	1	0	PC 17599	71.2833	1
2	3	1	3	Heikkinen, Miss. Laina	1	26.0	0	0	STON/O2. 3101282	7.9250	0
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	35.0	1	0	113803	53.1000	0
4	5	0	3	Allen, Mr. William Henry	0	35.0	0	0	373450	8.0500	0

X = df.drop(columns = ['PassengerId','Name','Ticket','Survived'],axis=1) Y = df['Survived']

X.head(3)

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	3	О	22.0	1	О	7.2500	0
1	1	1	38.0	1	О	71.2833	1
2	3	1	26.0	О	О	7.9250	0

Y.head(3)

#Splitting the data into training data & Test data

 X_{train} , X_{test} , Y_{train} , $Y_{test} = train_{test_split}(X,Y, test_{size}=0.2, random_{state}=2)$

model = LogisticRegression()

training the Logistic Regression model with training data model.fit(X_train, Y_train)

accuracy on training data

X_train_prediction = model.predict(X_train)

X_train_prediction

```
array([0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
      1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
      1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0,
      0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
      1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
      0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0,
      1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,
      1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
      0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0,
      0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0,
      0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0,
      0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,
      0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1,
      0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1,
      0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
      0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1,
      0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1,
      0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
      1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0,
      0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
      1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
      1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0,
      0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1,
      0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
      0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1,
      1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
      1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0,
      1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0,
      0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0,
      0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0,
      1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 1, 1, 0, 0, 1, 0], dtype=int64)
```

training_data_accuracy = accuracy_score(Y_train, X_train_prediction)
print('Accuracy score of training data : ', training_data_accuracy)

accuracy on test data

X_test_prediction = model.predict(X_test)

X_test_prediction

test_data_accuracy = accuracy_score(Y_test, X_test_prediction)
print('Accuracy score of test data : ', test_data_accuracy)

print("Confusion matrix :-")
sns.heatmap(confusion_matrix(Y_test, X_test_prediction), annot=True)

from sklearn.metrics import classification_report print(classification_report(Y_test, X_test_prediction))

	precision	recall	f1-score	support
0	0.75	0.91	0.82	100
1	0.84	0.62	0.72	79
accuracy			0.78	179
macro avg	0.80	0.77	0.77	179
weighted avg	0.79	0.78	0.78	179

conclusion:

1. What are features have been chosen to develop the model? Justify the features chosen to determine the survival of a passenger.

Pelass-Ticket class

- \triangleright Sex sex
- ➤ Age in years
- ➤ Sibsp No. of siblings/spouses abord the titanic e. Parch No. of parents/children aboard the titanic
- > Fare Passenger fare
- > Embarked-Port of Embarkation

These features were chosen after performing appropriate feature engineering on the dataset such as handling missing values and converting categorical columns such as the attributes Sex and Embarked. These features also contributed in the prediction of the final outcome

- 2. Comment on the accuracy obtained.
 - ➤ The Accuracy score obtained by our logistic regression model on the testing data is 0.78
 - ➤ which means our model is 78% accurate on the testing data.