	/
	Problem 1:
	Given the data is zero mean
	Elx(n)=0 & b, c=0 as they can be drapped for simplicity.
	N_{pw} : $\hat{x}^{(m)} = (w_{x}^{(m)})$
	don function: \(\frac{\mathcal{E}}{n^{2}}\) \(\dot{\alpha}^{(n)} - \hat{\alpha}^{(n)} \) \(\dot{\alpha}^{(n)}\) \(\dot{\alpha}^{(n)}\)
	= 2 x(m) - V(wx(n)))2
	Now:
_	Do d for L
	3 11x-10x112 = -2 (X-10x)x7w1 =>0
	$(x-vwx)(x^{T}w^{T})=0$ $vwxx^{T}w^{T}=xx^{T}w^{T}=vw^{T}=w^{T}=a_{1}xx^{T}c_{2}b_{3}$ $canceled$
	Given XXT is non-degenerate in subspace of W,
	V=WT WWT=I Since Wig projection matrix

•

7

__/__/___

7

9

1

1

m

M

M

D

0

1

0

7

Problem 2:

E: 1 E oc (m) (xm) T E R dxd This is, Sample Constitute

N 121

matrix

11x-w1wx)|2 = 1/x|12 - 2 trace (x1w1wx)+11w7wx)|2

Miniming the LHS & Maximizing RHS.

(WTW=I) Drthogonal

Let $\mathcal{E} = U \Lambda U^{T}$ is the eigen-decomposition of \mathcal{E} , where $\Lambda = \text{diag}(\lambda_{1}, \dots, \lambda_{d})$ with $\lambda_{1} \geq \lambda_{2} \geq \dots \lambda_{d} \geq 0$ and $U = [u_{1}, u_{2}, \dots, u_{d}]$. The top x principal components one u_{1}, \dots, u_{K} . Thus optimal w has rower $\{u_{1}, \dots, u_{K}, \dots, u_{K}, \dots, u_{K}, \dots, u_{K}\}$

w7: [u, uz, uk)

V= WT= [21, 22, . 4x]

Hence the columns of wi are an orthonormal bar for top k-