Quantitative Text Analysis

Meeting 8

Unsupervised Machine Learning

Machine Learning

- Supervised
 - An outcome variable is defined
 - Focus is on prediction
- Unsupervised
 - No outcome variable has been defined
 - Focus is on patterns

Machine Learning

- Supervised
 - An outcome variable is defined
 - Focus is on prediction
- Unsupervised
 - No outcome variable has been defined
 - Focus is on patterns

How to use the supervised methods?

- Easy
- At least conceptually
- Clear objective function

How to use the supervised methods?

$$Y = (y_1, y_2, ..., y_n)$$

 $X = (x_1, x_2, ..., x_n)$
 $(y_1, x_1), (y_2, x_2), ..., (y_n, x_n)$

Task to predict \hat{y} as close to y

How to use the supervised methods?

$$L(y, \hat{y}) = (y - \hat{y})^{2}$$

$$\hat{y} = \underset{\theta}{\operatorname{argmin}} E\left[L(model(\mathbf{x}, \theta), y)\right]$$

Objective function?

- Objective function?
- Quantity of interest?

- Objective function?
- Quantity of interest?
- Objective function = your quantity of interest

- Objective function?
- Quantity of interest?
- Objective function = your quantity of interest
- This is difficult

Measurement

A collection of quantitative or numerical data that describes a property of an object or event

Measurement

- A collection of quantitative or numerical data that describes a property of an object or event
- What is the object?

Measurement

In Social Science

- Operationalisation → Data Collection → Analyses → Measurement
- The quantity of interest is extrinsic to the model

Measurement In Computer Science

- Model Building

 Measurement of Performance
- The quantity of interest is *intrinsic* to the model

$$L(\theta, \hat{\theta}) = (\hat{\theta} - \theta)^2$$

Main quantity of Interest for computer science

$$L(\theta, \hat{\theta}) = (\hat{\theta} - \theta)^2$$

Means to an end for social science

Main quantity of Interest for computer science

$$L(\theta, \hat{\theta}) = (\hat{\theta} - \theta)^2$$

Means to an end for social science

Main quantity of Interest for computer science

$$\hat{\theta} \approx \theta$$

What social science wants

Prediction vs. Inference

- Computer scientists often emphasise prediction
- Social scientists are often more interested in inference
- Vast, multidimensional parameter space = not suitable for inference
 - Good for prediction
- E.g., Turing test
 - Machine passes
 - Why does it pass/not pass

Problems

- Translation of Social Science concepts
- Connecting Methods to Theory
- Difficult to understand what is being measured

Unsupervised Learning Example

- Clustering algorithms are great tools
- Not well suitable for the "standard" social science paradigm
- Needs external validation, but there is no "best" method
- "Validation" based on "theory" or "expectation" leads to biases

The paradigm

Approximating a data-generating process

The paradigm

- Approximating a data-generating process
- Assumption: there is one (and only one) "true" data-generating process

The paradigm

- Approximating a data-generating process
- Assumption: there is one (and only one) "true" data-generating process
- It is the reality

Sticking to the paradigm

- The "normal" paradigm works only if we assume that there is one "correct" classification
- Need to adapt to different methods

Sticking to the paradigm

- The "normal" paradigm works only if we assume that there is one "correct" classification
- Need to adapt to different methods
- Unsupervised methods are meaningless in conjunction with the "true" datagenerating process assumption

Focus on Discovery

Objectives

- Descriptive analysis/Discriminating words:
 - What are the characteristics of a corpus? How do some documents compare to each other
 - Collocation analysis, readability scores, Cosine/Jaccard similarity
- Clustering and scaling:
 - What groups of documents are in the corpus? Can the documents be placed on a dimension?
 - Cluster analysis, principal component analysis, wordfish...
- Topic modeling:
 - What are the main themes in a corpus?
 - LDA, STM

K-Means Clustering

- Simple(ish) algorithmic method
- Partitions the data into K non-overlapping clusters

Setup

$$C_1, C_2, ..., C_k$$

$$C_1 \cup C_2 \cup ... \cup C_K = \{1, ..., n\}$$

$$C_k \cap C_{k'} = \emptyset \text{ for all } k \neq k'$$

Assumption and task

 Optimal clustering solution is the one where within-cluster variation is as small as possible

$$W(C_k)$$

$$\underset{C_1,...,C_K}{\text{minimize}} \left\{ \sum_{k=1}^K W(C_k) \right\}$$

Within cluster variation

$$W(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2$$

Algorithm

- Randomly assign cluster numbers (1 through K) for each observation
 - Iterate until no further changes to the cluster assignment:
 - For each cluster determine the centroid (average of all observations in the cluster)
 - Re-assign observations to a cluster with the closest centroid (calculated with a distance metric).

Guarantees convergence at a local optimum

- Cannot guarantee the best solution
- But are rather good one
- Sensitive to random assignment at the start

Cluster Algorithms Validation

- Data assumptions (think data generation)
- Internal validity (best results for the data)
- External validity (matches with pre-existing understanding of data)
- Cross-validity (similar results across similar datasets)
- You are the validation method

Questions?

Topic Modelling

- A model to discover latent topics
- Not synonymous with LDA
- LDA is one of topic models

- Latent semantic analysis
- Singular value decomposition
- Even clustering methods (like the one we just discussed)

Latent Dirichlet Allocation

- Bayesian generative hierarchical model
- First introduced as a way to simultaneously model traits and genes (Pritchard, 2000)
- Adjusted for text analysis ML applications (Blei et al., 2003)

Latent Dirichlet Allocation

• Estimates a distribution of words across documents across latent topics

Latent Dirichlet Allocation

- By modelling distributions of topics over words and words over documents, topic models identify the most discriminatory groups of documents automatically.
- Assumption: if a document is about a certain topic, one would expect words that are related to that topic to appear in the document more often than in documents that deal with other topics.

Mixture Models

$$P(x) = \sum_{k=1}^{K} \pi_k \times P(x \mid \theta_k)$$

$$y = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + \epsilon$$

$$y \sim Normal(\mu, \sigma)$$

$$\mu = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k$$

$$\beta \sim Normal(0, 5)$$

$$\sigma \sim Exponential(1)$$

$$y \sim Normal(\mu, \sigma)$$

$$\mu = \beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k$$

$$\beta \sim Normal(0,5)$$

$$\sigma \sim Exponential(1)$$

Prior Distribution of Parameters

$$y \sim Normal(\mu, \sigma)$$

$$\mu = \beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k$$

$$\beta \sim Normal(0,5)$$

$$\sigma \sim Exponential(1)$$

Hyperparameters

 $\theta_k \sim Dirichlet(\alpha)$

for each topic k

 $\eta_d \sim Dirichlet(\beta)$

for each document d

 $z_{d,w} \sim Multinomial(\eta_d)$

for each word w in document d

 $x_{d,w} \sim Multinomial(\theta_{z_{d,w}})$

for each word w in document d

- θ_k is the topic-word distribution for topic k, representing the probability of each word given the topic.
- η_d is the document-topic distribution for document d, representing the probability of each topic in the document.
- z_d,w is the topic assignment for word w in document d, indicating which topic generated the word.
- x_d,w is the observed word in document d.

- For each topic k ∈ {1, ..., K}:
- Draw a distribution over words $\theta_k \sim \text{Dirichlet}(\alpha)$, where α is a hyperparameter representing the topic-word prior.
- For each document d ∈ {1, ..., D}:
- Draw a distribution over topics $\eta_d \sim \text{Dirichlet}(\beta)$, where β is a hyperparameter representing the document-topic prior.
- For each word w in document d:
- Draw a topic assignment z_d , $w \sim Multinomial(\eta_d)$, indicating which topic generated the word.
- Draw a word $x_d, w \sim Multinomial(\theta_{z_d, w})$, indicating the specific word generated by the chosen topic.

- The goal of LDA is to infer the posterior distributions of the latent variables θ and η given the observed documents.
- Once the posterior distributions are estimated, LDA can be used to assign topics to new documents or extract the most probable words for each topic.

Tricky to estimate

Structural Topic Models (Roberts et al., 2014)

Add additional distribution for additional structure in the text:

Allows to add additional covariates to the estimation

Validating topic models

Tests of:

- topic semantic validity: assess the extent to which the keywords within each topic have a coherent underlying meaning, and how these meanings behave across topics (e.g., Quinn et al., 2010, p. 210)
- convergent validity: topic probabilities per document are compared with an external trusted variable like manual coding for the same documents (e.g., Guo et al., 2016)

 A possible validation workflow proposed by Maier et al. (2018): combi of quantitative topic summary metrics (e.g., NPMI; Lau et al., 2014) and human expert evaluations.

Text scaling methods

- Attempts to fit documents into a unidimensional space
- Documents are "scaled" based on the frequency of used terms
- Assume "discriminating" words have a Poisson distribution

"Ideological" successor to log odds ratio we've seen

Wordfish (Slapin and Proksch 2008)

$$egin{aligned} w_{ik} &\sim \operatorname{Poisson}(\lambda_{ik}) \ \lambda_{ik} &= \exp(lpha_i + \psi_k + eta_k imes heta_i) \ lpha_i & ext{Text size from type i} \ \psi_k & ext{Frequency of word k} \ eta_k & ext{Discrimination power of word k} \ eta_k & ext{Ideological position of type i} \end{aligned}$$

Wordfish (Slapin and Proksch 2008)

$$w_{ik} \sim \operatorname{Poisson}(\lambda_{ik})$$
 $\lambda_{ik} = \exp(\alpha_i) + \psi_k + \beta_k \times \theta_i$
 α_i Text size from type i
 ψ_k Frequency of word k
 β_k Discrimination power of word k
 θ_i Ideological position of type i

Wordfish (Slapin and Proksch 2008)

$$egin{aligned} w_{ik} &\sim \operatorname{Poisson}(\lambda_{ik}) \ \lambda_{ik} &= \exp(lpha_i + \psi_k) + \beta_k imes heta_i) \ lpha_i & ext{Text size from type i} \ \psi_k & ext{Frequency of word k} \ eta_k & ext{Discrimination power of word k} \ eta_i & ext{Ideological position of type i} \end{aligned}$$

Questions?