1.NumPy

NumPy是高性能科学计算和数据分析的基础包。部分功能如下:

- o ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组。
- 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。
- 。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。
- 。 线性代数、随机数生成以及傅里叶变换功能。
- 用于集成C、C++、Fortran等语言编写的代码的工具。首先要导入numpy库: import numpy as np

A NumPy函数和属性:

类型	类型代码	说明
int8、uint8	i1、u1	有符号和无符号8位整型(1字节)
int16、uint16	i2、u2	有符号和无符号16位整型(2字节)
int32、uint32	i4、u4	有符号和无符号32位整型(4字节)
int64、uint64	i8、u8	有符号和无符号64位整型(8字节)
float16	f2	半精度浮点数
float32	f4、f	单精度浮点数
float64	f8、d	双精度浮点数
float128	f16、g	扩展精度浮点数
complex64	c8	分别用两个32位表示的复数
complex128	c16	分别用两个64位表示的复数
complex256	c32	分别用两个128位表示的复数
bool	?	布尔型
object	О	python对象
string	Sn	固定长度字符串,每个字符1字节,如S10
unicode	Un	固定长度Unicode,字节数由系统决定,如U10

表2.1.A.1 NumPy类型

生成函数	作用
np.array(x) np.array(x, dtype)	将输入数据转化为一个ndarray 将输入数据转化为一个类型为type的ndarray
np.asarray(array)	将输入数据转化为一个新的(copy)ndarray
np.ones(N) np.ones(N, dtype) np.ones_like(ndarray) np.zeros(N) np.zeros(N, dtype)	生成一个N长度的一维全一ndarray 生成一个N长度类型是dtype的一维全一ndarray 生成一个形状与参数相同的全一ndarray 生成一个N长度的一维全零ndarray 生成一个N长度类型位dtype的一维全零ndarray
np.zeros_like(ndarray) np.empty(N) np.empty(N, dtype) np.empty(ndarray)	类似np.ones_like(ndarray) 生成一个N长度的未初始化一维ndarray 生成一个N长度类型是dtype的未初始化一维 ndarray 类似np.ones_like(ndarray)
np.eye(N) np.identity(N)	创建一个N * N的单位矩阵(对角线为1,其余为0)
np.arange(num) np.arange(begin, end) np.arange(begin, end, step)	生成一个从0到num-1步数为1的一维ndarray 生成一个从begin到end-1步数为1的一维ndarray 生成一个从begin到end-step的步数为step的一 维ndarray
np.mershgrid(ndarray, ndarray,)	生成一个ndarray * ndarray *的多维ndarray
np.where(cond, ndarray1, ndarray2)	根据条件cond,选取ndarray1或者ndarray2, 返回一个新的ndarray
np.in1d(ndarray, [x,y,])	检查ndarray中的元素是否等于[x,y,]中的一个, 返回bool数组
矩阵函数	说明
np.diag(ndarray) np.diag([x,y,])	以一维数组的形式返回方阵的对角线(或非对角 线)元素 将一维数组转化为方阵(非对角线元素为0)
np.dot(ndarray, ndarray)	矩阵乘法
np.trace(ndarray)	计算对角线元素的和
排序函数	说明

排序,返回副本

np.sort(ndarray)

np.unique(ndarray)	返回ndarray中的元素,排除重复元素之后,并进 行排序
np.intersect1d(ndarray1, ndarray2) np.union1d(ndarray1, ndarray2) np.setdiff1d(ndarray1, ndarray2) np.setxor1d(ndarray1, ndarray2)	返回二者的交集并排序。 返回二者的并集并排序。 返回二者的差。 返回二者的对称差
一元计算函数	说明
np.abs(ndarray) np.fabs(ndarray)	计算绝对值 计算绝对值 (非复数)
np.mean(ndarray)	求平均值
np.sqrt(ndarray)	计算x^0.5
np.square(ndarray)	计算x^2
np.exp(ndarray)	计算e^x
log、log10、log2、log1p	计算自然对数、底为10的log、底为2的log、底为 (1+x)的log
np.sign(ndarray)	计算正负号: 1 (正) 、0 (0) 、-1 (负)
np.ceil(ndarray) np.floor(ndarray) np.rint(ndarray)	计算大于等于改值的最小整数 计算小于等于该值的最大整数 四舍五入到最近的整数,保留dtype
np.modf(ndarray)	将数组的小数和整数部分以两个独立的数组方式 返回
np.isnan(ndarray)	返回一个判断是否是NaN的bool型数组
np.isfinite(ndarray) np.isinf(ndarray)	返回一个判断是否是有穷(非inf,非NaN)的 bool型数组 返回一个判断是否是无穷的bool型数组
cos、cosh、sin、sinh、tan、tanh	普通型和双曲型三角函数
arccos、arccosh、arcsin、arcsinh、arctan、 arctanh	反三角函数和双曲型反三角函数
np.logical_not(ndarray)	计算各元素not x的真值,相当于-ndarray
多元计算函数	说明
np.add(ndarray, ndarray) np.subtract(ndarray, ndarray) np.multiply(ndarray, ndarray) np.divide(ndarray, ndarray)	相加 相减 乘法 除法
np.floor_divide(ndarray, ndarray) np.power(ndarray, ndarray)	圆整除法 (丟弃余数) 次方 北塔

πρ.που(πασταγ, πασταγ <i>)</i>	小洋
np.maximum(ndarray, ndarray)	求最大值
np.fmax(ndarray, ndarray)	求最大值 (忽略NaN)
np.minimun(ndarray, ndarray)	求最小值
np.fmin(ndarray, ndarray)	求最小值 (忽略NaN)
np.copysign(ndarray, ndarray)	将参数2中的符号赋予参数1
np.greater(ndarray, ndarray)	>
np.greater_equal(ndarray, ndarray)	>=
np.less(ndarray, ndarray)	<
np.less_equal(ndarray, ndarray)	<=
np.equal(ndarray, ndarray)	==
np.not_equal(ndarray, ndarray)	!=
logical and(ndarray, ndarray)	&
logical or(ndarray, ndarray)	
logical_xor(ndarray, ndarray)	^
np.dot(ndarray, ndarray)	计算两个ndarray的矩阵内积
np.ix_([x,y,m,n],)	生成一个索引器,用于Fancy indexing(花式索引)
文件读写	说明
np.save(string, ndarray)	将ndarray保存到文件名为 [string].npy 的文件中(无压缩)
np.savez(string, ndarray1, ndarray2,)	将所有的ndarray压缩保存到文件名为 [string].npy的文件中
np.savetxt(sring, ndarray, fmt, newline='\n')	将ndarray写入文件,格式为fmt
np.load(string)	读取文件名string的文件内容并转化为ndarray对象(或字典对象)
np.loadtxt(string, delimiter)	读取文件名string的文件内容,以delimiter为分 隔符转化为ndarray

表2.1.A.2 np常用函数

B NumPy.ndarray函数和属性:

ndarray.ndim	获取ndarray的维数
ndarray.shape	获取ndarray各个维度的长度
ndarray.dtype	获取ndarray中元素的数据类型
ndarray.T	简单转置矩阵ndarray

表2.1.B.1 ndarray属性

函数	说明
ndarray.astype(dtype)	转换类型,若转换失败则会出现TypeError
ndarray.copy()	复制一份ndarray(新的内存空间)
ndarray.reshape((N,M,))	将ndarray转化为N*M*的多维ndarray(非copy)
ndarray.transpose((xIndex,yIndex,))	根据维索引xIndex,yIndex进行矩阵转置,依赖于 shape,不能用于一维矩阵(非copy)
ndarray.swapaxes(xIndex,yIndex)	交换维度(非copy)
计算函数	说明
ndarray.mean(axis=0)	求平均值
ndarray.sum(axis= 0)	求和
ndarray.cumsum(axis=0)	累加
ndarray.cumprod(axis=0)	
ndarray.std() ndarray.var()	万左 标准差
ndarray.max()	最大值
ndarray.min()	最小值
ndarray.argmax()	最大值索引
ndarray.argmin()	最小值索引
ndarray.any()	是否至少有一个True
ndarray.all()	是否全部为True
ndarray.dot(ndarray)	计算矩阵内积
排序函数	说明
ndarray.sort(axis=0)	排序,返回源数据

表2.1.B.2 ndarray函数

ndarray[n]	选取第n+1个元素
ndarray[n:m]	选取第n+1到第m个元素
ndarray[:]	选取全部元素
ndarray[n:]	选取第n+1到最后一个元素
ndarray[:n]	选取第0到第n个元素
ndarray[bool_ndarray]	进 <u></u> 加升+nua的 <u>二</u> 寿

注: bool_ndarray表示bool类型的ndarray	ルトサンス い U CED ソルテン
ndarray[[x,y,m,n]]	选取顺序和序列为x、y、m、n的ndarray
ndarray[n,m] ndarray[n][m]	选取第n+1行第m+1个元素
ndarray[n,m,] ndarray[n][m]	选取n行n列的元素

表2.1.B.3 ndarray索引/切片方式

C NumPy.random函数和属性:

函数	说明
seed()	
seed(int)	确定随机数生成种子
seed(ndarray)	
permutation(int)	返回一个一维从0~9的序列的随机排列
permutation(ndarray)	返回一个序列的随机排列
shuffle(ndarray)	对一个序列就地随机排列
rand(int)	产生int个均匀分布的样本值
randint(begin,end,num=1)	从给定的begin和end随机选取num个整数
randn(N, M,)	生成一个N*M*的正态分布(平均值为0,标准差为1)的ndarray
normal(size=(N,M,))	生成一个N*M*的正态(高斯)分布的ndarray
beta(ndarray1,ndarray2)	产生beta分布的样本值,参数必须大于0
chisquare()	产生卡方分布的样本值
gamma()	产生gamma分布的样本值
uniform()	产生在[0,1)中均匀分布的样本值

2.1.C.1 random常用函数

D NumPy.linalg函数和属性:

函数	说明
det(ndarray)	计算矩阵列式
eig(ndarray)	计算方阵的本征值和本征向量
inv(ndarray) pinv(ndarray)	计算方阵的逆 计算方阵的Moore-Penrose伪逆
qr(ndarray)	计算qr分解
svd(ndarray)	计算奇异值分解svd

solve(ndarray)	解线性方程组Ax = b,其中A为方阵
lstsq(ndarray)	计算Ax=b的最小二乘解

2.1.D.1 linalg常用函数

附加:

numpy linalg模块

线性代数

numpy.linalg模块包含线性代数的函数。使用这个模块,可以计算逆矩阵、求特征值、解线性方程组以及求解行列式等。

import numpy as np

1. 计算逆矩阵

创建矩阵

```
A = np.mat("0 1 2;1 0 3;4 -3 8")
print (A)
#[[ 0 1 2]
# [ 1 0 3]
# [ 4 -3 8]]
```

使用inv函数计算逆矩阵

```
inv = np.linalg.inv(A)
print (inv)
#[[-4.5 7. -1.5]
# [-2. 4. -1.]
# [ 1.5 -2. 0.5]]
```

检查原矩阵和求得的逆矩阵相乘的结果为单位矩阵

```
print (A * inv)
#[[ 1. 0. 0.]
# [ 0. 1. 0.]
# [ 0. 0. 1.]]
```

#注:矩阵必须是方阵且可逆,否则会抛出LinAlgError异常。

2. 求解线性方程组

numpy.linalg中的函数solve可以求解形如 Ax = b 的线性方程组,其中 A 为矩阵, b 为一维或二维的数组, x 是未知变量 import numpy as np #创建矩阵和数组 B = np.mat("1 -2 1;0 2 -8;-4 5 9")

调用solve函数求解线性方程

b = np.array([0,8,-9])

```
x = np.linalg.solve(B,b)
print (x)
#[ 29. 16. 3.]
使用dot函数检查求得的解是否正确
print (np.dot(B, x))
# [[ 0. 8. -9.]]
```

3. 特征值和特征向量

```
#特征值 (eigenvalue) 即方程 Ax = ax 的根,是一个标量。其中, A是一个二维矩阵, x
是一个一维向量。特征向量 (eigenvector) 是关于特征值的向量
# numpy.linalg模块中, eigvals函数可以计算矩阵的特征值, 而eig函数可以返回一个包含
特征值和对应的特征向量的元组
import numpy as np
# 创建一个矩阵
C = np.mat("3 -2;1 0")
# 调用eigvals函数求解特征值
c0 = np.linalg.eigvals(C)
print (c0)
# [ 2. 1.]
# 使用eig函数求解特征值和特征向量(该函数将返回一个元组,按列排放着特征值和对应的
特征向量,其中第一列为特征值,第二列为特征向量)
c1,c2 = np.linalq.eiq(C)
print (c1)
# [ 2. 1.]
print (c2)
#[[ 0.89442719 0.70710678]
# [ 0.4472136 0.70710678]]
#使用dot函数验证求得的解是否正确
for i in range(len(c1)):
print ("left:",np.dot(C,c2[:,i]))
print ("right:",c1[i] * c2[:,i])
#left: [[ 1.78885438]
# [ 0.89442719]]
```

#right: [[1.78885438] # [0.89442719]] #left: [[0.70710678] # [0.70710678]] #right: [[0.70710678] # [0.70710678]]

4.奇异值分解

SVD (Singular Value Decomposition, 奇异值分解) 是一种因子分解运算, 将一个矩 阵分解为3个矩阵的乘积 # numpy.linalg模块中的svd函数可以对矩阵进行奇异值分解。该函数返回3个矩阵——U、 Sigma和V,其中U和V是正交矩阵,Sigma包含输入矩阵的奇异值。 import numpy as np # 分解矩阵 D = np.mat("4 11 14;8 7 -2")#使用svd函数分解矩阵 U,Sigma,V = np.linalg.svd(D,full matrices=False) print ("U:",U) #U: [[-0.9486833 -0.31622777] # [-0.31622777 0.9486833]] print ("Sigma:",Sigma) #Sigma: [18.97366596 9.48683298] print ("V",V) #V [[-0.33333333 -0.66666667 -0.66666667] # [0.66666667 0.33333333 -0.66666667]] # 结果包含等式中左右两端的两个正交矩阵U和V,以及中间的奇异值矩阵Sigma #使用diag函数生成完整的奇异值矩阵。将分解出的3个矩阵相乘 print (U * np.diag(Sigma) * V) #[[4. 11. 14.] # [8. 7. -2.]]

5. 广义逆矩阵

使用numpy.linalg模块中的pinv函数进行求解,
注: inv函数只接受方阵作为输入矩阵,而pinv函数则没有这个限制
import numpy as np
创建一个矩阵
E = np.mat("4 11 14;8 7 -2")
使用pinv函数计算广义逆矩阵
pseudoinv = np.linalg.pinv(E)
print (pseudoinv)
#[[-0.00555556 0.07222222]
[0.02222222 0.04444444]

```
# [ 0.0555556 -0.0555556]]
# 将原矩阵和得到的广义逆矩阵相乘
print (E * pseudoinv)
#[[ 1.00000000e+00 -5.55111512e-16]
# [ 0.00000000e+00 1.00000000e+00]]
```

6. 行列式

numpy.linalg模块中的det函数可以计算矩阵的行列式 import numpy as np # 计算矩阵的行列式 F = np.mat("3 4;5 6") # 使用det函数计算行列式 print (np.linalg.det(F)) # -2.0