Politechnika Łódzka

Wydział Elektrotechniki Elektroniki Informatyki i Automatyki

sem, zimowy, r ak. 2024/2025

Sprawozdanie z projektu BigData "Predykcja cen samochodów używanych"

Mateusz Grzybek 240678 Kamil Młynarczyk 240757

18 grudnia 2024

Spis treści

Wstęp

1.1 Założenia projektowe

Celem projektu jest zaimplementowanie aplikacji webowej pozwalającej użytkownikowi na predykcję ceny używanego samochodu na podstawie dostarczonego przez niego zestawu cech. Tematyka projektu daje możliwość wykorzystania różnorodnych technologii z dziedziny uczenia maszynowego, rozwoju aplikacji webowych, komunikacji pomiędzy serwisami, architektury oprogramowania oraz gromadzenia i przetwarzania danych. W celu zrealizowania przewidywanych funkcjonalności, aplikacja została podzielona na cztery komponenty, każdy z nich odpowiedzialny za realizację innego aspektu aplikacji.

1.2 Komponenty

- Aplikacja kliencka Interfejs graficzny użytkownika.
- Pośrednik Komponent pośredniczący w komunikacji pomiędzy aplikacją kliencką i serwisem predykcyjnym
- Komponent komunikacyjny Komponent zawierający szyny danych, które są wykorzystywane do dostarczania i odbierania informacji od serwisu predykcyjnego
- Serwis predykcyjny Komponent dokonujący predykcji na podstawie dostarczonych danych, z wykorzytaniem nauczonego modelu.

1.3 Konteneryzacja

Wszystkie komponenty zostały skonteneryzowane za pomocą narzędzi **Docker**¹ i **Docker Compose**², co pozwala na uruchomienie projektu bez konieczności dodatkowej konfiguracji. **Obrazy**³ **kontenerów**⁴ dla aplikacji klienckiej, pośrednika oraz serwisu predykcyjnego zostały zdefiniowane za pomocą plików **Dockerfile**⁵, natomiast dla komponentu komunikacyjnego wykorzystano gotowe obrazy Apache Kafka i Zookeeper z rejestru Docker.io.

¹Narzędzie do tworzenia, uruchamiania i zarządzania aplikacjami w izolowanych środowiskach zwanych kontenerami.

²Narzędzie usprawniające zarządzanie wieloma kontenerami jednocześnie.

³Gotowy do uruchomienia szablon do tworzenia kontenerów, zawierający system plików, aplikację i jej zależności.

⁴Lekkie, izolowane środowisko uruchomieniowe, które zawiera aplikację wraz z jej zależnościami.

⁵Plik tekstowy zawierający zestaw instrukcji do zbudowania obrazu Docker.

1.4 Sposób uruchamiania

- 1. Zainstalować Docker i Docker Compose.
- 2. Aplikacja kliencka Otworzyć katalog frontend i wewnątrz niego uruchomić skrypt run.sh lub uruchomić ręcznie komendy w terminalu. Wyłączenia kontenera można dokonać skryptem clean.sh.
 - Skrypt run.sh:

```
#!/bin/bash

# Builds docker image from local Dockerfile
# and sets image name to "frontend-image"
docker build -t frontend-image .

# Creates and runs container with name "frontend" from
frontend-image
# in detached mode and container-host port mapping to
9091
docker run --name frontend -d -p 9091:9091 frontend-image
```

• Skrypt clean.sh:

```
#!/bin/bash

# Stops and removes the "frontend" container
docker stop frontend
docker rm frontend
```

3. Pozostałe komponenty — Otworzyć katalog projektu i uruchomić komendę docker compose up. Do wyłączenia kontenerów należy użyć komendy docker compose down.

```
# Run containers
docker compose up

# Stop containers
docker compose down
```

1.5 Dane

Do utworzenia modelu predykcyjnego wykorzystany został zestaw danych "Used Car Price Prediction Dataset" z platformy Kaggle.

Cechy zbioru danych:

- brand Marka lub nazwa firmy produkującej samochody.
- mode Model pojazdu.
- model_year Rok produkcji pojazdu.
- milage Przebieg samochodu w milach.
- fuel_type Rodzaj paliwa wykorzystywanego przez samochód.
- engine Typ silnika.
- transmission Typ skrzyni biegów.
- ext_col Kolor zewnętrzny pojazdu.
- int_col Kolor wnętrza pojazdu.
- accident Historia wypadków
- clean_title Czy pojazd posiada czysty tytuł własności.
- price Cena samochodu według sprzedającego.

⁶https://www.kaggle.com/datasets/taeefnajib/used-car-price-prediction-dataset

Diagramy

2.1 Diagram przypadków użycia

Rysunek 2.1: Przebieg interakcji użytkownika z aplikacją

2.2 Diagram sekwencji zdarzeń

Rysunek 2.2: Przebieg operacji komponentów i działań użytkownika podczas procesu predykcji ceny samochodu

Aplikacja kliencka

3.1 Opis

Aplikacja kliencka stanowi pojedynczą stronę dostępną za pośrednictwem przeglądarki, udostępnianą pod adresem **localhost**¹, na porcie **9091**. Strona zawiera informacje związane z aplikacją oraz pola do wprowadzania wartości, na podstawie których następnie dokonywana jest predykcja ceny samochodu. Aplikacja łączy się z komponentem middleware za pośrednictwem protokołu **HTTP**² w architekturze **REST**³.

3.2 Technologie

- React Framework JavaScript do tworzenia interfejsów użytkownika w oparciu o komponenty.
- HTML Język znaczników do tworzenia struktury strony internetowej.
- CSS Język stylów wykorzystywany do definiowania wyglądu stron internetowych.
- JavaScript Język programowania wykorzystywany do tworzenia dynamicznych i interaktywnych elementów stron internetowych.
- Axios Biblioteka JavaScript służąca do wykonywania zapytań HTTP.
- Vite Narzędzie do budowania i uruchamiania aplikacji front-endowych.

 $^{^{1}}$ loopback address — adres pętli zwrotnej, który jest wykorzystywany do komunikacji urządzenia z samym sobą.

²HyperText Transfer Protocol — protokół komunikacyjny używany do przesyłania danych w sieci.

³Representational State Transfer — architektura komunikacji oparta o protokół HTTP definiujący sposoby identyfikacji i manipulacji zasobami za pomocą zapytań HTTP.

3.3 Widoki aplikacji

3.3.1 Strona

Rysunek 3.1: Widok strony

3.3.2 Okno z ceną

Rysunek 3.2: Widok okna z ceną

3.3.3 Okno z błędem

Rysunek 3.3: Widok okna z błędem

Komponent pośredniczący

4.1 Opis

Komponent pośredniczący pełni rolę pośrednika pomiędzy aplikacją kliencką i serwisem predykcyjnym. Otrzymywane od **frontendu**¹ dane w formie \mathbf{JSON}^2 są w tym komponencie przetwarzane na wiadomości w formacie odpowiadającym wejściu modelu, z uwzględnieniem procesu **kodowania liczbowego**³ pól. Otrzymane w tym procesie wiadomości zapisywane są na \mathbf{temat}^4 wejściowy Kafki. Pośrednik jest również odpowiedzialny za odczytywanie danych z tematu wyjściowego i przekazywanie uzyskanych z nich informacji do klienta.

4.2 Technologie

- Java Obiektowy język programowania.
- SpringBoot Framework dla języka Java nastawiony na wytwarzanie aplikacji webowych i mikroserwisów
- Gradle Narzędzie do automatyzacji budowania projektów.

 $^{^1\}mathrm{Cz}$ é
ć aplikacji, z którą użytkownik wchodzi w bezpośednią interakcję, w tym
 wszystko co widzi oraz elementy wizualne i interaktywne.

 $^{^2 {\}rm JavaScript~Object~Notation}$ — format danych zapewniający kompaktowe rozmiary i jest czytelny dla ludzi i maszyn.

³Technika zamiany wartości danych tekstowych na wartości liczbowe, poprzez przypisanie unikalnej liczby każdej unikalnej wartości tekstowej.

⁴Podstawowy komponent Apache Kafka służący do kategoryzacji napływających wiadomości.

Komponent komunikacyjny

5.1 Opis

Komponent komunikacyjny odpowiedzialny jest za transport danych pomiędzy komponentem pośredniczącym i serwisem predykcyjnym. Wykorzystuje w tym celu skonteneryzowany **broker**¹ wiadomości Apache Kafka wraz z dwoma tematami: input oraz output, wykorzystywanych odpowiednio do gromadzenia danych odczytywanych przez serwis predykcyjny i gromadzenia danych odczytywanych przez pośrednika. Do zarządzania brokerem wykorzystywany jest Apache Zookeeper.

5.2 Technologie

- Apache Kafka Platforma przetwarzania danych w czasie rzeczywistym.
- Apache Zookeeper Usługa koordynacyjna systemów rozproszonych.

 $^{^1\}mathrm{Serwer}$ Apache Kafka zawierający dane należące do tematów i partycji, na które może być podzielony temat.

Przygotowanie danych

6.1 Opis

Model jest skuteczny, gdy dane na których się go trenuje są odpowiednio przygotowane. Początkowo należy przeanalizować potencjalne zagrożenia w postaci braków poszczególnych wartości w polach danych oraz wartości odstających, mogących zniekształcić miary statystyczne. Na końcu należy zfaktoryzować, a zatem znumeryzować dane kategoryczne tak aby model mógł się na nich uczyć.

6.2 Wizualizacja danych

Kilka wykresów pokazujących zbiór danych

Rysunek 6.1: Średnia cena pojazdu danej marki

Rysunek 6.2: Średnia ilość przejechanych mil pojazdów danej marki

Rysunek 6.3: Wykres gęstości cen pojazdów, widać że najwięcej jest ich w okolicach 17 tyś. USD

6.3 Puste pola

Postanowiliśmy usunąć puste pola zamiast stosować inne metody sztucznego ich wypełniania na przykład średnią, ponieważ zestaw danych jest obszerny i usunięcie próbek z pustymi wartościami nie odbije się na dokładności modelu.

Przed usunięciem wartości odstających	188533
Po usunięciu wartości odstających	162610

Tabela 6.1: Wielkość zbioru danych przed i po usunięciu wartości odstających

6.4 Zestaw danych z wartościami odstającymi

Rysunek 6.4: Niektóre wartości są zbyt duże, należy się ich pozbyć

6.5 Wykrywanie i usuwanie wartości odstających za pomocą metody IQR

Aby wykryć i usunąć wartości odstające w zbiorze danych na podstawie kolumn price oraz milage, wykonaliśmy następujące kroki:

1. Obliczenie kwartyli

Pierwszy kwartyl (Q_1) oraz trzeci kwartyl (Q_3) wyznaczane są dla każdej kolumny. Odpowiadają one 25. i 75. percentylowi:

$$Q_1 = 25$$
. percentyl, $Q_3 = 75$. percentyl

2. Obliczenie rozstępu międzykwartylowego (IQR)

Rozstęp międzykwartylowy (IQR) oblicza się jako:

$$IQR = Q_3 - Q_1$$

3. Definiowanie granic wartości odstających

Wartości odstające to te, które znajdują się poza przedziałem:

Dolna granica =
$$Q_1 - 1.5 \cdot IQR$$
, Górna granica = $Q_3 + 1.5 \cdot IQR$

Dla kolumn price oraz milage wyznacza się odpowiednio:

Dolna granica_{price} =
$$Q_{1,\text{price}} - 1.5 \cdot IQR_{\text{price}}$$
, Górna granica_{price} = $Q_{3,\text{price}} + 1.5 \cdot IQR_{\text{price}}$

Dolna granica_{milage} =
$$Q_{1,\text{milage}} - 1.5 \cdot IQR_{\text{milage}}$$
, Górna granica_{milage} = $Q_{3,\text{milage}} + 1.5 \cdot IQR_{\text{milage}}$

4. Filtrowanie wierszy bez wartości odstających

Zbiór danych jest filtrowany w taki sposób, aby wartości w kolumnach price oraz milage spełniały następujące warunki:

$$Q_1 - 1.5 \cdot IQR \le X \le Q_3 + 1.5 \cdot IQR$$

6.6 Zestaw danych bez wartości odstających

Rysunek 6.5: Brak lub mała ilość wartości odstających

6.7 Wyodrębnienie znaczących informacji o silniku

W zestawie danych istniała kolumna o nazwie engine, w której wartości przedstawiały krótki opis silnika, zawierający takie informacje jak liczba koni mechanicznych, pojemność silnika oraz inne cechy. Przykładowy opis to:

```
172.0HP 1.6L 4 Cylinder Engine Gasoline Fuel
```

Z takiego opisu, za pomocą wyrażeń regularnych, wyodrębniliśmy dwie główne informacje: pojemność silnika oraz liczbę koni mechanicznych.

Dla przykładu:

```
172.0HP 1.6L 4 Cylinder Engine Gasoline Fuel \rightarrow 1.6, 172.0
```

Zastąpienie kolumny engine nowymi kolumnami:

Po wyodrębnieniu informacji o pojemności silnika oraz liczbie koni mechanicznych, zastąpiliśmy istniejącą kolumnę engine dwiema nowymi kolumnami:

- engine horsepower zawierającą moc silnika w koniach mechanicznych (HP).
- engine capacity zawierającą pojemność silnika w litrach (L).

6.8 Faktoryzacja danych

Modele uczenia maszynowego wymagają danych numerycznych jako wejścia. Wartości tekstowe (kategoryczne) muszą być przekonwertowane na liczby w sposób, który zachowa sens danych, ale jednocześnie nie wprowadzi sztucznej relacji między kategoriami. Do każdej wartości kategorycznej został przypisany numer, następnie dzięki słownikowi zamieniliśmy wszystkie próbki w wektory cech w następujący sposób:

Dane przed faktoryzacją

Przykład danych wejściowych przed faktoryzacją:

```
{
   "brand": "Toyota",
   "transmission": "Automatic",
   "fuel_type": "Gasoline",
   "ext_col": "Red",
   "int_col": "White",
   "accident": "No accident",
}
```

Dane po faktoryzacji

Po zastosowaniu faktoryzacji 'Label-Encoding' (przypisaniu liczb do kategorii), dane będą wyglądać następująco:

```
{
  "brand": 5,
  "transmission": 0,
  "fuel_type": 0,
  "ext_col": 3,
  "int_col": 5,
  "accident": 0,
}
```

Przykładowy wiersz danych po faktoryzacji:

Nazwa zmiennej	Wartość
model_year	2002
milage	143250.0
price	4999
engine_capacity	3.9
engine_horsepower	252.0
brand_numeric	17.0
$transmission_numeric$	0.0
fuel_type_numeric	0.0
ext_col_numeric	3.0
$int_col_numeric$	1.0
accident_numeric	1.0

Rysunek 6.6: Macierz korelacji wszystkich cech, cechy korelującę się w największym stopniu z ceną: rok produkcji modelu, przebieg samochodu oraz konie mechaniczne

Serwis predykcyjny

7.1 Opis

Zadaniem serwisu predykcyjnego jest dokonanie predykcji ceny samochodu na podstawie dostarczonego zestawu cech. W tym celu wykorzystuje gotowy, zapisany model przygotowany przy użyciu modułu SparkML. Dane przekazywane do modelu są odczytywane z tematu input za pomocą frameworka Spark. Cena zwrócona przez model zostaje zapisana na temat wyjściowy output.

7.2 Technologie

- Python Język skryptowy.
- Apache Spark Framework do sprawnego przetwarzania zbiorów danych w pamięci.
- Apache SparkML Moduł Apache Spark przeznaczony do uczenia maszynowego.

7.3 Wybór modelu

Podczas wyboru modelu kierowaliśmy się strukturą danych. Skorzystaliśmy z **Label Encoding**, czyli przypisania unikalnych wartości liczbowych dla każdej kategorii, np.:

```
"BMW"\rightarrow 0. "Audi"\rightarrow 1.
```

W tym przypadku **modele regresji liniowej** nie są skuteczne, ponieważ takie kodowanie może prowadzić do błędnych założeń o istnieniu relacji liczbowych między kategoriami. Przykładowo:

Różnica między 0 a 1 = Różnica między 1 a 2,

co nie ma sensu w przypadku zmiennych kategorycznych.

Rozwiązaniem są modele oparte na drzewach decyzyjnych, takie jak:

- Drzewo decyzyjne,
- Las losowy.

7.4 Testowanie modeli

7.4.1 Las Losowy

Do testowania modeli użyliśmy metod z biblioteki pyspark.ml.tuning. Jednym z kluczowych kroków było zdefiniowanie siatki hiperparametrów za pomocą ParamGridBuilder.

Definiowanie siatki hiperparametrów:

Listing 7.1: Siatka hiperparametrów dla modelu

```
paramGrid = ParamGridBuilder() \
    .addGrid(rf.numTrees, [50, 100]) \
    .addGrid(rf.maxDepth, [5, 10]) \
    .addGrid(rf.minInstancesPerNode, [1, 2, 4]) \
    .addGrid(rf.maxBins, [32, 64, 128]) \
    .addGrid(rf.subsamplingRate, [0.5, 0.7, 1.0]) \
    .addGrid(rf.featureSubsetStrategy, ['all', 'sqrt', 'log2']) \
    .build()
```

Tworzenie obiektu ewaluatora: Aby obliczyć dokładność modelu według metryki RMSE (Root Mean Squared Error), użyliśmy RegressionEvaluator.

Listing 7.2: Ewaluator dla metryki RMSE

```
evaluator_rmse = RegressionEvaluator(
    labelCol="price",
    predictionCol="prediction",
    metricName="rmse"
)
```

Walidacja krzyżowa: W celu strojenia hiperparametrów wykorzystaliśmy CrossValidator, który przeprowadza walidację krzyżową z podziałem na K-podbiorów. Technika ta polega na:

- 1. Podziale danych na K-podzbiorów (folds),
- 2. Trenowaniu modelu K-razy na K-1-podzbiorach,
- 3. Użyciu pozostałego podzbioru do walidacji,
- 4. Uśrednieniu wyników dla ostatecznej oceny modelu.

Listing 7.3: CrossValidator do walidacji krzyżowej

```
crossval = CrossValidator(
    estimator=rf,
    estimatorParamMaps=paramGrid,
    evaluator=evaluator_rmse,
    numFolds=3 # 3-fold cross-validation
)
```

Uczenie modelu: Najlepszy model z najmniejszym RMSE został zapisany do zmiennej best_model.

Listing 7.4: Uczenie modelu i wybór najlepszego

```
cv_model = crossval.fit(train_data)
best_model = cv_model.bestModel
```

Najlepsze znalezione parametry Lasu losowego

Parametr	Wartość
NumTrees	100
MaxDepth	10
${\bf Min Instances Per Node}$	4
MaxBins	64
SubsamplingRate	0.5
FeatureSubsetStrategy	sqrt
MaxMemoryInMB	256

Czas trenowania: 116 minut

Metryki ewaluacyjne dla powyższych hiperparametrów

Metryka	Wartość
Root Mean Squared Error (RMSE)	11011.20
Mean Absolute Error (MAE)	7962.28
R-squared (R^2)	0.6625

7.4.2 Drzewo decyzyjne

Definiowanie siatki hiperparametrów:

Listing 7.5: Siatka hiperparametrów dla modelu drzewa decyzujnego

```
paramGrid = ParamGridBuilder() \
    .addGrid(dt.maxDepth, [10, 15]) \
    .addGrid(dt.maxBins, [20, 30, 40]) \
    .addGrid(dt.minInstancesPerNode, [1, 2, 4]) \
    .addGrid(dt.minInfoGain, [0.0, 0.1, 0.2]) \
    .addGrid(dt.maxMemoryInMB, [512, 1024]) \
    .addGrid(dt.cacheNodeIds, [True, False]) \
    .addGrid(dt.checkpointInterval, [10, 20]) \
    .build()
```

Obiekt ewaluatora oraz walidacji krzyżowej są takie same jak w przypdaku Lasu losowego

Najlepsze znalezione parametry Drzewa decyzyjnego

Parametr	Wartość
MaxDepth	10
MaxBins	20
${\bf Min Instances Per Node}$	4
MinInfoGain	0.0
${\bf MaxMemoryInMB}$	512
CacheNodeIds	True
CheckpointInterval	10

Metryki ewaluacyjne dla powyższych hiperparametrów

Metryka	Wartość
Root Mean Squared Error (RMSE)	11318.40
Mean Absolute Error (MAE)	8143.66
R-squared (R^2)	0.6434

Czas trenowania: 66 minut

7.4.3 Podsumowanie

Na podstawie miar ewaluacji obu modeli, Las Losowy ma niewielką przewagę nad Drzewem decyzyjnym, jednak trening tego modelu oraz znalezienie najlepszych parametrów zająło blisko godzinę więcej.