Лекция 4.

Разложение Вольда.

Разложение Вольда действует во временной области. Суть разложения состоит в том, что любая стационарная в широком смысле последовательность $\xi = (\xi_n), n \in \mathbb{Z} = \{...-1,0,1,...\}, \xi_n \in L^2(\Omega,\mathcal{F},P)$, представляется в виде суммы двух стационарных последовательностей, одна из которых *полностью предсказуема* (то есть её значения полностью восстанавливаются по «прошлому»), а вторая этим свойством *не обладает*.

Пусть $H_n(\xi) = \overline{L}^2(\xi^n)$ и $H(\xi) = \overline{L}^2(\xi)$ - замкнутые линейные многообразия, порождённые величинами $\xi^n = (\dots, \xi_{n-1}, \xi_n)$ и $\xi = (\dots \xi_{n-1}, \xi_n, \dots)$ соответственно. Введём также замкнутое линейное подпространство

$$S(\xi) = \bigcap_n H_n(\xi).$$

Очевидно, что

$$H_n(\xi) \uparrow H(\xi), n \to \infty.$$

$$H_n(\xi) \downarrow S(\xi), n \to -\infty.$$

Для любой элемента $\eta \in H(\xi)$ обозначим через

$$\hat{\pi}_n(\eta) = E(\eta|H_n(\xi))$$

проекцию элемента η на подпространство $H_n(\xi)$. Обозначим также

$$\hat{\pi}_{-\infty}(\eta) = E(\eta | S(\xi)).$$

проекцию элемента η на подпространство $S(\xi)$. Очевидно, имеет место разложение

$$\eta = \hat{\pi}_{-\infty}(\eta) + (\eta - \hat{\pi}_{-\infty}(\eta)),$$

где $\eta - \hat{\pi}_{-\infty}(\eta) \perp \hat{\pi}_{-\infty}(\eta)$.

Поэтому пространство $H(\xi)$ представляется в виде ортогональной суммы

$$H(\xi) = S(\xi) \oplus R(\xi),$$

где $S(\xi)$ состоит из проекций $\hat{\pi}_{-\infty}(\eta)$ с $\eta \in H(\xi)$, а $R(\xi)$ - из элементов вида $\eta - \hat{\pi}_{-\infty}(\eta)$. Всюду в дальнейшем предполагаем, что $E\xi_n = 0$, $Var\xi_n > 0$. Тем самым пространство $H(\xi)$ состоит не только из нулевого элемента.

Определение. Стационарная последовательность $\xi = (\xi_n)$ называется *регулярной*, если

$$H(\xi) = R(\xi)$$

(то есть пространство $S(\xi)$ тривиально, состоит только из нулевого элемента), и *сингулярной*, если

$$H(\xi) = S(\xi)$$
.

(то есть пространство $R(\xi)$ тривиально, состоит только из нулевого элемента). Сингулярные последовательности называют также *детерминированными*, регулярные – *чисто недетерминированными или вполне недетерминированными*. В промежуточном случае, если $S(\xi)$ есть собственное (т.е. ненулевое) подпространство $H(\xi)$, то последовательность ξ называют просто *недетерминированной*. Рассмотрим два «крайних» случая. Пример 1. $\xi = (...\zeta, \zeta, \zeta, ...), E\zeta = 0. D\zeta > 0$. В этом случае для любого n $H_n(\xi) = \overline{L}^2(\zeta) = S(\xi) = H(\xi)$ и поэтому такая последовательность является детерминированной (сингулярной).

Пример 2. ξ_i – белый шум, н.о.р.с.в., $E\xi_i=0$, $D\xi_i=1$. В этом случае любой элемент $S(\xi)$ ортогонален $H(\xi)$ и, поскольку $S(\xi)\subseteq H(\xi)$, то $S(\xi)$ - тривиальное подпространство, $H(\xi)=R(\xi)$ и поэтому такая последовательность является чисто недетерминированной (регулярной).

Теорема. Всякая стационарная в широком смысле последовательность ξ допускает и притом единственное разложение

$$\xi_n = \xi_n^r + \xi_n^s,$$

где $\xi^r = (\xi^r_n)$ - регулярная, а $\xi^s = (\xi^s_n)$ – сингулярная последовательности. При этом ξ^r и ξ^s ортогональны $(\xi^r_n \perp \xi^s_m$ для всех n и m).

$$\xi_n^s = E(\xi_n | S(\xi)), \xi_n^r = \xi_n - \xi_n^s.$$

Поскольку $\xi_n^r \perp S(\xi)$ для любого n, то $H_n(\xi^r) \perp S(\xi)$ для любого n, и $S(\xi^r) = \bigcap_n H_n(\xi^r) \perp S(\xi)$. С другой стороны, $\xi_n^r \in H_n(\xi)$ (поскольку $\xi_n^s \in S(\xi) \subseteq H_n(\xi)$) и, поэтому, $H_n(\xi^r) \subseteq H_n(\xi)$ и, переходя к пересечениям, получим $S(\xi^r) \subseteq S(\xi)$. Подпространство $S(\xi^r)$ содержится в $S(\xi)$ и ортогонально $S(\xi)$, следовательно $S(\xi^r)$ - тривиально (содержит лишь случайные величины, почти наверное совпадающие с нулём). Мы доказали, таким образом, что процесс ξ^r является регулярным.

Ортогональность $\xi_n^r \perp \xi_m^s$ для всех n и m следует из того, что ξ_m^s всегда является элементом $S(\xi)$ (по построению), а ξ_n^r ортогонален $S(\xi)$. Для индикаторов событий I_A , $A \in \sigma(S(\xi))$, ортогональность $\xi_n^r \perp I_A$ следует из определения условного математического ожидания: $\langle \xi_n^r, I_A \rangle = E(\xi_n^r I_A) = E(\xi_n^r I_A) - E(\xi_n^s I_A) = 0$, для произвольной $\eta \in S(\xi)$ пользуемся плотностью линейных комбинаций индикаторов в $L^2\left(\Omega, \sigma(S(\xi))\right)$. Далее, поскольку $\xi_n = \xi_n^r + \xi_n^s$ и $\xi_n^r \perp \xi_m^s$ для всех n и m, мы имеем:

$$H_n(\xi) \subseteq H_n(\xi^s) \oplus H_n(\xi^r) \subseteq H_n(\xi)$$

правое включение имеет место, поскольку $H_n(\xi^s) \subseteq H_n(\xi)$ и $H_n(\xi^r) \subseteq H_n(\xi)$ и, значит

$$S(\xi) \subseteq H_n(\xi) = H_n(\xi^s) \oplus H_n(\xi^r). \tag{1}$$

Поскольку $S(\xi) \perp H_n(\xi^r)$, из (1) следует, что $S(\xi) \subseteq H_n(\xi^s)$, и, значит, $S(\xi) \subseteq S(\xi^s) \subseteq H(\xi^s)$. Но $\xi_n^s = E(\xi_n \big| S(\xi)) \in S(\xi)$, поэтому $H(\xi^s) \subseteq S(\xi)$. Следовательно, $S(\xi) = S(\xi^s) = H(\xi^s)$, и последовательность ξ^s является сингулярной.

Пусть имеем другое разложение $\xi_n = \eta_n^r + \eta_n^s$, где η_n^r и η_n^s - регулярные и сингулярные ортогональные последовательности соответственно. Из сингулярности η^s следует, что $S(\eta^s) = H_n(\eta^s) = H(\eta^s)$ для всех n, поэтому

$$H_n(\xi) = H_n(\eta^r) \oplus H_n(\eta^s) = H_n(\eta^r) \oplus H(\eta^s)$$

и, значит, $S(\xi) = S(\eta^r) \oplus H(\eta^s)$. Но $S(\eta^r)$ тривиально, поэтому $S(\xi) = H(\eta^s)$. Поскольку $\eta_n^s \in H(\eta^s) = S(\xi)$, а $\eta_n^r \perp H(\eta^s) = S(\xi)$, то $E(\xi_n | S(\xi)) = E(\eta_n^r + \eta_n^s | S(\xi)) = \eta_n^s$

То есть η_n^s совпадает почти наверное с ξ_n^s , что доказывает единственность разложения. Теорема доказана.

Определение. Пусть $\xi = (\xi_n)$ - невырожденная стационарная последовательность. Случайную последовательность $\varepsilon = (\varepsilon_n)$ назовём обновляющей последовательностью, если:

- 1) $\varepsilon=(\varepsilon_n)$ состоит из попарно ортогональных с.в. с $E\varepsilon_n=0$, $E|\varepsilon_n|^2=1$.
- 2) $H_n(\xi) = H_n(\varepsilon)$ для любого $n \in \mathbb{Z}$.

Термин «обновление» связан с тем, что ε_{n+1} как бы привносит новую «информацию», не содержащуюся в $H_n(\xi)$, которая необходима для образования $H_{n+1}(\xi)$.

Теорема. Для того, чтобы невырожденная последовательность ξ была регулярной, необходимо и достаточно, чтобы нашлась такая обновляющая последовательность $\varepsilon = (\varepsilon_n)$ и последовательность комплексных чисел $(a_n), n \ge 0$, с $\sum_{n=0}^{\infty} |a_n|^2 < \infty$, что (P-n, h)

$$\xi_n = \sum_{k=0}^{\infty} a_k \varepsilon_{n-k}.$$

Доказательство. Необходимость. Представим $H_n(\xi)$ в виде

$$H_n(\xi) = H_{n-1}(\xi) \oplus B_n(\xi_n), \tag{2}$$

где $B_n(\xi_n)$ - пространство с.в. вида $\beta \cdot \xi_n$, где β - комплексные числа. Ни при каком n пространство $H_n(\xi)$ не может совпадать с $H_{n-1}(\xi)$. В самом деле, если при каком-то n пространство $B_n(\xi_n)$ тривиально, то, в силу стационарности, $B_k(\xi_k)$ тривиально при любом k. Но тогда $H(\xi) = S(\xi)$, что противоречит предположению о регулярности последовательности ξ . Итак, пространство $B_n(\xi_n)$ содержит хотя бы один ненулевой элемент, скажем, η_n .

Этот ненулевой элемент может быть разложен следующим образом: $\eta_n = \eta'_n + \eta''_n$, где $\eta''_n \in H_{n-1}(\xi)$, $\eta'_n \perp H_{n-1}(\xi)$, $\eta'_n \neq 0$. Положим

$$arepsilon_n = rac{{\eta'}_n}{\|{\eta'}_n\|}$$
, где $\|{\eta'}_n\|^2 = E|{\eta'}_n|^2 > 0.$

Для фиксированных n и k рассмотрим разложение (итерируя разложение (2))

$$H_n(\xi) = H_{n-k}(\xi) \oplus B_{n-k+1}(\xi_{n-k+1}) \oplus \dots \oplus B_n(\xi_n).$$

Тогда $\, \varepsilon_{n-k+1}, \dots, \varepsilon_n \,$ образуют ортонормированный базис в

$$B_{n-k+1}(\xi_{n-k+1}) \oplus ... \oplus B_n(\xi_n)$$
 и

$$\xi_n = \sum_{j=0}^{k-1} a_j \varepsilon_{n-j} + \hat{\pi}_{n-k}(\xi_n), \tag{3}$$

где $\hat{\pi}_{n-k}(\xi_n)=E(\xi_n|H_{n-k}(\xi))$ - ортогональная проекция ξ_n на $H_{n-k}(\xi)$, $a_j=\langle \xi_n, \varepsilon_{n-j} \rangle=E(\xi_n \varepsilon_{n-j}).$

В силу неравенства Бесселя

$$\sum_{j=0}^{\infty} \left| a_j \right|^2 \le \|\xi_n\|^2 < \infty.$$

Таким образом, ряд $\sum_{j=0}^{\infty} a_{j} \varepsilon_{n-j}$ сходится в среднеквадратическом и, если мы докажем, что $\hat{\pi}_{n-k}(\xi_{n}) \stackrel{L^{2}}{\to} 0$, $k \to \infty$, то доказательство необходимости завершается переходом к пределу $k \to \infty$ в (3).

Достаточно рассмотреть случай n=0. Имеем

$$\hat{\pi}_{-k}(\xi_0) = \hat{\pi}_1(\xi_0) + \sum_{i=0}^k [\hat{\pi}_{-i}(\xi_0) - \hat{\pi}_{-i+1}(\xi_0)],$$

причем слагаемые в сумме ортогональны. В самом деле, рассмотрим, например,

$$E[\hat{\pi}_{-i}(\xi_0) - \hat{\pi}_{-i+1}(\xi_0)][\hat{\pi}_{-i-1}(\xi_0) - \hat{\pi}_{-i}(\xi_0)] =$$

$$E\{E[\hat{\pi}_{-i}(\xi_0)\hat{\pi}_{-i-1}(\xi_0)|H_{-i-1}(\xi)]\} - E\{E[\hat{\pi}_{-i+1}(\xi_0)\hat{\pi}_{-i-1}(\xi_0)|H_{-i-1}(\xi)]\} +$$

$$E\{E[\hat{\pi}_{-i+1}(\xi_0)\hat{\pi}_{-i}(\xi_0)|H_{-i}(\xi)]\} - E(\hat{\pi}_{-i}(\xi_0))^2 =$$

$$E(\hat{\pi}_{-i-1}(\xi_0))^2 - E(\hat{\pi}_{-i-1}(\xi_0))^2 + E(\hat{\pi}_{-i}(\xi_0))^2 - E(\hat{\pi}_{-i}(\xi_0))^2 = 0.$$

Поскольку

$$\sum_{i=0}^{k} \|\hat{\pi}_{-i}(\xi_0) - \hat{\pi}_{-i+1}(\xi_0)\|^2 = \left\| \sum_{i=0}^{k} [\hat{\pi}_{-i}(\xi_0) - \hat{\pi}_{-i+1}(\xi_0)] \right\|^2 = \|\hat{\pi}_{-k}(\xi_0) - \hat{\pi}_{1}(\xi_0)\|^2 \le 4\|\xi_0\|^2 < \infty,$$

существует предел в среднеквадратическом $\hat{\pi}_{-k}(\xi_0)$, $k \to \infty$. Для каждого k проекция $\hat{\pi}_{-k}(\xi_0) \in H_{-k}(\xi)$ и, значит, предел должен принадлежать $\bigcap_{k \ge 0} H_{-k}(\xi) = S(\xi)$. Но по предположению $S(\xi)$ тривиально, поэтому $\lim_{k \to \infty} \hat{\pi}_{-k}(\xi_0) = 0$, $k \to \infty$.

Достаточность. Пусть невырожденная последовательность ξ допускает представление

$$\xi_n = \sum_{k=0}^{\infty} a_k \varepsilon_{n-k},$$

где $\varepsilon = \varepsilon_n$ — некоторая ортонормированная система (не обязательно удовлетворяющая свойству $H_n(\xi) = H_n(\varepsilon), n \in \mathbb{Z}$). Тогда $H_n(\xi) \subseteq H_n(\varepsilon)$, откуда $S(\xi) = \bigcap_{k \le n} H_k(\xi) \subseteq H_n(\varepsilon)$ для любого n. Но $\varepsilon_{n+1} \perp H_n(\varepsilon)$, поэтому $\varepsilon_{n+1} \perp S(\xi)$ (поскольку $S(\xi) \subseteq H_n(\varepsilon)$). В то же самое время (ε_n) является базисом в $H(\varepsilon)$. Пространство ортогональное базису — тривиально, т.е. $S(\xi)$ тривиально, т.е последовательность ξ регулярна. Теорема доказана.

В качестве следствия получаем следующий результат.

Теорема (разложение Вольда). Если $\xi = (\xi_n)$ - невырожденная стационарная в широком смысле последовательность, то

$$\xi_n = \xi_n^s + \xi_n^r = \xi_n^s + \sum_{k=0}^{\infty} a_k \varepsilon_{n-k},$$

где $\sum_{k=0}^{\infty}|a_k|^2<\infty$ и $\varepsilon=(\varepsilon_n)$ – некоторая обновляющая последовательность для ξ_n^r .