Outline

- ☐Field Programmable Gate Arrays
 - Historical perspective
- Programming Technologies
- Architectures
 - PALs, PLDs, and CPLDs
 - FPGAs
 - ✓ Programmable logic
 - ✓Interconnect network
 - ✓I/O buffers
 - √ Specialized cores
- Programming Interfaces

History

- ☐ Programmable Logic Arrays ~ 1970
 - Can implement any set of sum-of-products logic equations
 - Incorporated in VLSI devices
- ☐ Programmable Logic Devices ~ 1980
 - MMI Programmable Array Logic (PAL)
 - √ 16L8 combinational logic only
 - √ 16R8 sequential logic only
 - AMD 22V10 and Lattice 16V8
 - Complex PLDs arrays of PLDs with routing network
- ☐ Field Programmable Gate Arrays ~ 1985
 - Xilinx Logic Cell Array (LCA)
- CPLD & FPGA architectures became similar ~ 2000

Programming Technologies

- □ PLAs were mask programmable
- □ PALs used fuses for programming
- Early PLDs & CPLDs used floating gate technology
 - Erasable Programmable Read Only Memory (EPROM)
 - ✓ Ultra-violet erasable (UVEPROM)
 - ✓ Electrically erasable (EEPROM)
 - ✓ Flash memory came later and was used for CPLDs.
- FPGAs used RAM for programming
- Later trends
 - Fuses were replaced with anti-fuses
 - ✓ Better reliability
 - Large CPLDs went to RAM-based programming

Programming Technologies

- □ RAM
 - Volatile must configure after power-up
 - In-System Re-programmable (ISR)
 - Run-Time Reconfiguration (RTR)
 - √ dynamic reconfiguration while system is operating
- ☐ Floating gate technologies
 - Non-volatile but re-usable
 - ✓ UV EPROM, EEPROM, and flash memory
 - In-System Programmable (ISP)
 - ✓ EEPROM and flash memory
 - In-System Re-programmable (ISR)
 - ✓ Flash memory
- ☐ Fuse/anti-fuse
 - Non-volatile but not re-usable
 - One Time Programmable (OTP)

PALs

- 16L8 combinational logic
- 10 to 16 inputs, each with true and complement signal
- 2 to 8 outputs, each with
 - 7 product terms can AND any of up to 16 inputs or their complements
 - Tri-state control product term for inverting output buffer
 - ✓ When output in tri-state, I/O pin can be used as input
 - High impedance output with no signal driven

PALs

16R8 – sequential logic

- 8 inputs, each with true & complement
- 8 outputs, each with
 - D flip-flop
 - ✓ With feedback for FSMs
 - 8 product terms that can. AND any of:
 - √ 8 inputs or their complements
 - √ 8 feedbacks or their complements from D flipflops
- One clock for all FFs
- One tri-state control for all outputs

PLDs

22V10 replaced all PALs

Combinational and/or sequential logic

□ Global

CPLDs

- An array of PLDs
 - Global routing resources for connections
 - ✓ PLDs to other PLDs
 - ✓ PLDs to/from I/O pins
- ☐ Example: Cypress 39K
 - Each Logic Block (LB) similar to a 22V10
 - Each cluster of 8 LBs has two 8K RAMs & one 4K dual-port RAM/FIFO
 - Programmable Interconnect Modules (PIMs) provide interconnections
 - Array of up to 24 clusters with global routing

Field Programmable Gate Arrays

Configuration Memory Programmable **Logic Blocks** (PLBs) Programmable Input/Output Cells Programmable Interconnect

Typical Complexity = 5 million - 1 billion transistors

Basic FPGA Operation

- □ Writing configuration memory ⇒ defines system function
 - Input/Output Cells
 - Logic in PLBs
 - Connections between PLBs & I/O cells
- □ Changing configuration memory data ⇒ changes system function
 - Can change at anytime
 - Even while system function is in operation

FPGAs

- ☐ Configuration memory (42K bits to 80M bits)
- Array of Programmable Logic Blocks (PLBs)
 - 250 to over 25,000 PLBs per FPGA
- Programmable routing network
 - Wire segments (45 to over 400 per PLB)
 - Programmable switches (130 to over 3,600 per PLB)
- Programmable I/O cells around periphery
 - Bi-direction buffer w/ flip-flops/latches (60 to over 1,200 per FPGA)
- Recent trend is to incorporate specialized cores
 - RAMs single-port, dual-port, FIFOs
 - √ 128 bits to over 36K bits per RAM
 - √ 4 to over 575 per FPGA
 - DSPs 18x18-bit multiplier, 48-bit accumulator, etc.
 - ✓ up to 512 per FPGA
 - Microprocessors and/or microcontrollers (up to 2 per FPGA)

Ranges of Resources

	FPGA Resource	Small FPGA	Large FPGA
Logic	PLBs per FPGA	256	25,920
	LUTs and flip-flops per PLB	1	8
Routing	Wire segments per PLB	45	406
	PIPs per PLB	139	3,462
Specialize d Cores	Bits per memory core	128	36,864
	Memory cores per FPGA	16	576
	DSP cores	0	512
Other	Input/output cells	62	1,200
	Configuration memory bits	42,104	79,704,832

Basic PLB Architecture

- Look-up Table (LUT) implements truth table
- ■Memory elements:
 - Flip-flop/latch
 - Some FPGAs LUTs can also implement small RAMs
- Carry & control logic implements fast adders/subtractors

C. Stroud 8/06

A Simple PLB

- ☐ Two 3-input LUTs
 - Can implement any 4-input combinational logic function

Combinational Logic Fucntions

- ☐Gates are combined to create complex circuits
- Multiplexer example

$$\P$$
If $S = 0$, $Z = A$

♦ If
$$S = 1$$
, $Z = B$

- Very common digital circuit
- Heavily used in FPGAs
 - ✓S input controlled by configuration memory bit
 - ✓ We'll see it again

Memory Elements

☐Static memory based on cross-coupled logic gates

Storage obtained by feedback and amplification
Data

Flip-flops are static

■Dynamic memory based on capacitance

No feedback or amplification

√Voltage decays in time

Flip-Flops

- ■Use a collection of gates to enable a sample control signal called Clock
- ☐ Basic structure is cross-coupled NOR gates
- AND gates provide for sampling control signal -Clock (CK)
- ☐ This is a latch flip-flops are more complicated

Look-up Tables

- Recall multiplexer example
- Configuration memory holds outputs for truth table
- Internal signals connect to control signals of multiplexers to select value of truth table for any given input value

Multiplexer

Truth table					
SAB	Z				
000	0				
0 0 1	0				
0 1 0	1				
0 1 1	1				
100	0				
1 0 1	1				
1 1 0	0				
111	1				

Look-up Table Based RAMs

- Normal LUT mode performs read operations
- Address decoder with write enable generates clock signals to latches for write operations
- Small RAMs but can be combined for larger RAMs

Xilinx FPGAs

- ☐ Virtex and Spartan II
 - Array of 96 to 6,144 PLBs
 - √ 4 LUTs/RAMs (4-input)
 - √ 4 FF/latches
 - 4 to 32 4K-bit dual-port RAMs
- Virtex II, Virtex II Pro, and Spartan 3
 - Array of 192 to 11,204 PLBs
 - √ 8 LUTs/RAMs (4-input)
 - √ 8 FF/latches
 - 4 to 444 18K-bit dual-port RAMs
 - 4 to 444 18×18-bit multipliers
 - 0 to 2 PowerPC processor cores
- ☐ Virtex 4
 - Array of 1,536 to 22,272 PLBs
 - √ 4 LUTs/RAMs (4-input)
 - √ 4 LUTs (4-input)
 - √ 8 FF/latches
 - 48 to 552 18K-bit dual-port RAMs
 - ✓ Also operate as FIFOs
 - * 32 to 512 DSP cores 48-bits
 - 0 to 2 PowerPC processor cores

Spartan 3 (XC3S200)

- □PLBs = 24 rows x 20 columns = 480
 - 4 slices/PLB
 - ✓2 L slices
 - ➤ L= logic
 - ✓2 M slices
 - ➤ M= memory
- □RAMs = 12 18Kbit dual port RAMs
- ☐Multipliers = 12 18x18-bit signed

Spartan 3 PLB Slices

Specialized Cores

Specialized Cores

Programmable RAMs

- □ 18 Kbit dual-port RAM
- ☐ Each port independently configurable as
 - 512 words x 36 bits
 - ✓ 32 data bits + 4 parity bits
 - 1K words x 18 bits
 - ✓ 16 data bits + 2 parity bits
 - 2K words x 9 bits
 - √ 8 data bits + 1 parity bit
 - 4K words x 4 bits (no parity)
 - 8K words x 2 bits (no parity)
 - 16K words x 1 bit (no parity)
- ☐ Each port has independently programmable
 - clock edge
- *active levels for write enable, RAM enable, reset

 Overview of FPGAs

 Overview of FPGAs

Input/Output Cells

- ■Bi-directional buffers
 - Programmable for input or output
 - Tri-state control for bi-directional operation
 - Flip-flops/latches for improved timing
 - ✓ Set-up and hold times
 - √Clock-to-output delay
 - Pull-up/down resistors
- Routing resources
 - Connections to core of array
- Programmable I/O voltage & current levels

Spartan 3 I/O Cell

Interconnect Network

- ■Wire segments of varying length
 - ❖xN = N PLBs in length
 - √1, 2, 4, and 6 are most common
 - xH = half the array in length
 - xL = length of full array
- Programmable Interconnect Points (PIPs)
 - ✓ Also known as Configurable Interconnect Points (CIPs)
 - Transmission gate connects to 2 wire segments
 - Controlled by configuration memory bit
 - √0 = wires disconnected
 - √1 = wires connected

PIPs

- ☐ Break-point PIP
 - Connect or isolate 2 wire segments
- Cross-point PIP
 - Turn corners
- Multiplexer PIP
 - Directional and buffered
 - Select 1-of-N inputs for output
 - ✓ Decoded MUX PIP N config bits select from 2^N inputs
 - ✓ Non-decoded MUX PIP 1 config bit per input
- □ Compound cross-point PIP
 - Collection of 6 break-point PIPs
 - ✓ Can route to two isolated signal nets

Spartan 3 Routing Resources switch matrix over 2,400 PIPsmostly MUX PIPs PLB consists of 4 slices x6 wire segments x2 wire segments xH & xL wire segments over 450 total wire segments in PLB C. Stroud 8/06 Overview of FPGAs 30

Configuration Interfaces

- Master FPGA retrieves its own configuration from ROM after power-up
 - Serial or Parallel options
- □ Slave FPGA configured by external source (i.e., a μP)
 - Serial or Parallel options
 - Used for dynamic reconfiguration
 - Can also read configuration memory contents
- Boundary Scan Interface
 - 4-wire IEEE standard serial interface for testing
 - Write and read access to configuration memory
 - ✓ Not available in all FPGAs
 - ✓ Used for dynamic partial reconfiguration
 - Interfaces to FPGA core
 - ✓ Not available in all FPGAs
 - Connections between Boundary Scan Interface and internal routing network and PLBs (Xilinx provides 2 of these ports)
- Other configuration interfaces in some FPGAs

Xilinx Configuration Interface Pins

Name	Direction	Driver Type	Description	
Dedicated Pins				
CCLK	Input/Output	Active	Configuration clock. Output in Master mode.	
PROGRAM	Input		Asynchronous reset to configuration logic.	
DONE	Input/Output	Active/ Open-Drain	Configuration status and start-up control.	
M2, M1, M0	Input		Configuration mode selection.	
TMS	Input		Boundary-scan tap controller.	
TCK	Input		Boundary-scan clock.	
TDI	Input		Boundary-scan data input.	
TDO	Output	Active	Boundary-scan data output.	
Dual Function Pins				
DIN (D0)	Input/Output	Active Bidirectional	Serial configuration data input.	
D[0:7]	Input/Output	Active Bidirectional	Slave Parallel configuration data input, readback data output.	
CS	Input		Chip Select (Slave Parallel only).	
WRITE	Input		Active Low write select, read select (Slave Parallel only).	
BUSY/ DOUT	Output	Open-Drain/ Active	Busy/Ready status for Slave Parallel (open- drain). Serial configuration data output for serial daisy-chains (active).	
ĪNIT	Input/Output	Open-Drain	Delay configuration, indicate configuration clearing or error.	

Master mode

- Configuration sequence during power-up of device
 - Typically from
 - ✓ Serial EPROM
 - Master Serial
 - ✓ Parallel EPROM
 - Master Parallel
 - 8-bit
 - 32-bit

C. Stroud 8/06

33

Daisy Chain Configuration

Slave Configuration

35

Boundary Scan Interface

C. Stroud 8/06

Overview of FPGAs

Typical Boundary Scan Cell

Typical Boundary Scan Cell

- ☐ Primarily designed to test external surface mount connections on printed circuit board
 - EXTEST instruction
 - ✓ Capture logic values at BSCs
 - Output responses from previous test patterns
 - ✓ Shift in test patterns through BSCs
 - As we shift out captured logic values
 - ✓ Update test patterns into BSCs
 - New test patterns are applied
- Optional: can be used to test inside chip
 - INTEST instruction
 - ✓ Same basic procedure as EXTEST but test patterns and responses are to/from device (FPGA) core

Boundary Scan Access to FPGA

- Configuration memory
 - Write and read usually separate instructions
 - Other registers for partial reconfiguration
 - ✓ Command, frame address, etc.

□Core access

- Ports from TAP to PLB and routing resources
 - √Good interface for accessing FPGA core
 - ✓ Not supported by all FPGA manufacturers
- Includes TCK, TDI, TDO access to core with active enable when core access instruction is in IR

FPGA Configuration Memorys

- PLB addressable
 - Good for partial reconfiguration
 - X-Y coordinates of PLB location to be written
 - Requires tag to identify which resources will be configured
- ☐Frame addressable
 - Vertical or horizontal frame
 - Access to all PLBs in frame
 - ✓Only portion of logic and routing resources accessible in a given frame
 - ✓ Many frames to configure PLBs
 - Major address for column, minor address for frame