YAZILIM MÜHENDİSLİĞİ GÜNCEL KONULAR

2019-2020 eğitim öğretim yılı bahar döneminde Yazılım Mühendisliği Güncel Konular dersi kapsamında Çevre ve Şehircilik Bakanlığının sunmuş olduğu Hava İzleme sisteminde sunulan verilerin kullanılması ile veri bilimi, veri madenciliği, istatistik ve olasılık, yapay zeka gibi bilgisayar bilimlerinden faydalanarak yararlı çıkarımlarda bulunulması amaçlanmaktadır. Bu doğrultuda:

Verilerin Toplanması ve Eksik Verilerin Giderilmesi

Çevre ve Şehircilik bakanlığının sunmuş olduğu veriler arasından Gaziantep iline ait veriler temin edilmiştir. Bu veriler 01.10.2019 tarihi ile 17.04.2020 tarihleri arasını kapsamaktadır. Aynı zamanda aynı tarihlerde bulunan Gaziantep Büyükşehir Belediyesine ait katı atık miktarı tablosu elde edilmiştir. Bununla beraber elde edilen veriler de birçok eksik verinin mevcut olduğu saptanmıştır. Eksik veriler data.mean metodu kullanılarak giderilmiştir.

Örnek olarak verilen görselde veri setinin ilk 5 elemanı gösterilmiştir. Veri setinin ilk 5 elamanından da görüleceği gibi birçok eksik veri mevcut.

Tarih	PM10	SO2	HavaSıcaklığı	RüzgarHızı	BağılNem	HavaBasıncı	KabinSıcaklığı	RuzgarYönü
17.04.2020	62,8980155	6,457410667						
16.04.2020		6,715259375						
15.04.2020	79,51455333	6,916564875						
14.04.2020	76,94138182	7,32634975						
13.04.2020	51,04132333	7,324113375						

Eksik verilerin çokluğu elde edilecek olan sonuçlarda yanlışlıklara sebep olacaktır bu nedenle eksik olan veri ya veri setinden çıkarılmalı ya da uygun yöntemler ile tamamlanmalıdır.

```
#veri tipinin floata cevrilmesi
data['PM10'] = data['PM10'].astype('float')
data['S02'] = data['S02'].astype('float')
data['HavaSıcaklığı'] = data['HavaSıcaklığı'].astype('float')
data['RüzgarHızı'] = data['RüzgarHızı'].astype('float')
data['BağılNem'] = data['BağılNem'].astype('float')
data['HavaBasıncı'] = data['HavaBasıncı'].astype('float')
data['KabinSıcaklığı'] = data['KabinSıcaklığı'].astype('float')
data['RuzgarYönü'] = data['RuzgarYönü'].astype('float')
data = data.fillna(data.mean())#eksikverilerin tamamlanması
print(data)
```

Yukarıda görülen data.mean metodu ile veri setimizdeki eksik veriler doldurulmuştur.

```
Tarih PM10 ... KabinSicakliği RuzgarYönü
0 2020-04-17 00:00:52 62.898016 ... 21.781476 6.620709
1 2020-04-16 00:00:52 55.971997 ... 21.781476 6.620709
2 2020-04-15 00:00:52 79.514553 ... 21.781476 6.620709
3 2020-04-14 00:00:52 76.941382 ... 21.781476 6.620709
4 2020-04-13 00:00:52 51.041323 ... 21.781476 6.620709
```

Görüldüğü üzere veri setindeki eksik veriler doldurulmuştur.

Verinin Görselleştirilmesi ve Sunumu

Elde edilen veri setini görselleştirmek ve sunmak verileri anlamak yorumlamak ve dikkat çekici olmasını sağlamak için önemlidir. Bu nedenle elde edilen veri setinin çeşitli yöntemler ile görselleştirilmesi gerekmektedir.

Yukarıda ki tabloda veri setimizde ki bütün verilerin zamana göre değişimi verilmektedir.

Başka bir örnek verecek olursak yukarıda hava basıncı değerinin zamana bağlı olarak değişimleri mevcut. Bu tabloyu elde edebilmek için aşağıdaki kodlar kullanılmıştır.

```
plt.subplot(2,2,2)
plt.plot(data.Tarih,data.HavaBasıncı,color="green")
plt.xlabel("Tarih")
plt.ylabel("Hava Basıncı")
plt.title("Zamana Göre Hava Basıncı değişimi")
plt.show()
```


Yukarıda bulunan tablolarda ise verilerin birbirleri ile olan ilişkisi görselleştirilmiştir. Bu yöntemle verilerin birbirleri ilişkisi gözlemlenebilir ve yorumlanabilir olacaktır. Bir örnek verecek olursak "Rüzgar Yönü-Rüzgar Hızı" tablosunu incelediğimizde bu iki değerin birbiri ile doğru orantılı olarak artış sağladığını gözlemleyebiliriz.

Verinin Analiz Edilmesi

Veri analizi veriyi anlamak yorumlamak ve doğru çıkarımlarda bulunmak için önemlidir. Bu nedenle elde ettiğimiz veri setini analiz etmek yorumlamak ve çıkarımlarda bulunmak yaptığımız çalışmalara yön verecektir. Bununla beraber bu duruma örnek olarak So2(Kükürt Dioksit) gazının Gaziantep ilinde en yüksek ve en düşük değerler gösterdiği tarihleri inceleyebilir ve yorumlayabiliriz.

```
MaxSO2=(max(data['SO2']))
MinSO2=(min(data['SO2']))
MaxTarih=[]
MinTarih=[]
say=0
for i in data.502:
    if i==MaxSO2:
        MaxTarih.append(data.Tarih[say])
        say=0
        break
    say=say+1
for i in data. SO2:
    if i==MinSO2:
        MinTarih.append(data.Tarih[say])
        say=0
        break
    say=say+1
print("So2 değerinin maximum olduğu gün", MaxTarih, "\n")
print("\n So2 değerinin minimum olduğu gün", MinTarih)
```

Yukarıdaki yaptığımız çalışma ile So2 gazının maksimum ve minimum değerler ulaştığı tarihleri elde edebiliriz.

```
So2 değerinin maximum olduğu gün [Timestamp('2019-12-17 00:00:52')]

So2 değerinin minimum olduğu gün [Timestamp('2019-10-22 00:00:52')]
```

Kükürt dioksit (SO2), renksiz, keskin kokulu reaktif bir gaz olup kömür, fuel-oil gibi kükürt içeren yakıtların yanması sırasında, metal eritme işlemleri ve diğer endüstriyel işlemler sonucu oluşur. Bu açıklama ile Gaziantep'te bulunan organize sanayinin genel olarak havayı kötü etkilediği ve havada ki kükürt oranının normalin üzerinde seyir etmesine sebep olduğu yorumlanabilir.

Model Oluşturma

Oluşturduğumuz veri setinde bulunan hava izleme verilerini kullanarak bölgede toplanan katı atık miktarı(gün/ton) tahmini yapılmaya çalışıldı. Model oluşturma aşamasında öncelikle YSA modeli denendi. Yapılan denemeler sonucu elde edilen model başarımları ve sonuçlar doğrultusunda YSA modeli yerine LSTM kullanılarak günlük katı atık miktarı tahmin edilmeye çalışılmıştır ve YSA modeline göre daha iyi sonuçlar elde edilmiştir.

LSTM MODELİ:

Bu model oluşturulurken verilerin %80 eğitim verisi %20 test verisi olarak ayrılmıştır.

```
data = veri.filter(['KatıAtık'])
dataset = data.values
training_data_len = math.ceil( len(dataset) *.8)
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(dataset)
```

Epoks değeri birçok deneme sonucunda 90 olarak karar verilmiştir. Bunun sebebi daha düşük değerlerde başarımın düşmektedir. Daha yüksek değerlerde ise tahmin değerleri tekrara düşmektedir.

```
model = Sequential()
model.add(LSTM(units=75, return_sequences=True,input_shape=(x_train.shape[1],1)))
model.add(LSTM(units=50, return_sequences=False))
model.add(Dense(units=25))
model.add(Dense(units=1))
model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(x_train, y_train, batch_size=1, epochs=90)
```

Bu örneklerle beraber LSTM modeli sonucunda elde edilen sonuçlar şu şekildedir. Gaziantep iline ait hava izleme verileri ile Gaziantep Büyükşehir belediyesine ait katı atık toplama verilerinin tahmini yapılmaya çalışılmıştır. Bu doğrultuda yapılan tahminlerin gerçek verilere yakın olduğu saptanmıştır. Aşağıdaki tabloda görüldüğü üzere modelimiz tahmin konusunda belli bir başarım yakalamıştır.

	KatıAtık	Tahmin	179	1617	1594.185425
160	1562	1609.807373	180	1631	1576.742310
161	1606	1591.533813	181	1552	1589.541748
162	1611	1588.945923	182	1611	1605.175415
163	1589	1594.175293	183	1643	1605.976807
164	1600	1595.051147	184	1580	1602.356689
165	1650	1595.822998	185	1628	1582.064575
166	1580	1588.933594	186	1560	1599.278442
167	1639	1581.406372	187	1635	1616.045776
168	1597	1622.074341	188	1605	1607.667969
169	1586	1608.215942	189	1594	1593.039429
170	1564	1602.318970	190	1550	1584.295288
171	1562	1601.611328	191	1616	1604.769653
172	1631	1604.680298	192	1600	1605.560913
173	1596	1607 585938	193	1593	1603.348511
174	1613	1592.560303	194	1590	1593.148926
175	1553	1573.788208	195	1638	1588.572510
176	1640	1637.289429	196	1578	1591.978882
			197	1610	1594.535889
177	1587	1614.243530	198	1609	1606.134766
178	1637	1607.022705	199	1568	1602 366089

Çıkarımlar

Yapılan çalışmanın sonucunda günlük yaşantımızda binlerce ton atık madde ürettiğimizi ve bu doğrultuda hava kalitesini birçok yönden olumsuz etkilediğimiz kanısına vardım. Yaşadığımız çevrenin yaşam kalitesini bunun ile beraber hava kalitesini arttırmak için geri dönüşüm konusuna büyük önem vermemiz gerektiğini düşünüyorum. Bu doğrultuda ülkemizde yapılmakta olan 'Sıfır Atık Yönetimi' gibi projelerin çoğalması, etkilediği insan sayısının artması gerektiğini düşünüyorum.