2.2 组合逻辑电路的分析与设计

- 2.2.1 组合逻辑电路的分析
- > 逻辑表达式法
- > 穷举法(真值表法)
- > 波形图法
- 2.2.2 组合逻辑设计步骤、设计举例
- > 组合逻辑设计步骤
- > 设计举例

2.2.1 组合逻辑电路的分析

电路分析的目的:根据给定电路,分析该电路输出与输入之间的逻辑关系,得出电路的逻辑功能的描述,进而评估此电路的性能,还可进一步改进电路。

组合逻辑电路的特点: 电路输出仅取决于当时的输入, 而与过去的输入情况无关。

分析的一般步骤:如下图所示:

1)利用表达式分析电路

根据电路逐级写出各门的输出表达式,直至写出输出逻辑表达式。

例:
$$P1=\overline{AB}$$

$$P2=\overline{A}+C$$

$$P3=B\oplus \overline{C}$$

$$P4=P1\cdot P2=\overline{AB}\cdot \overline{A}+C$$

$$F=\overline{P3+P4}=B\oplus C$$

这是输出函数 F 的最简表达式,该电路实现了两个变量B 和C的异或运算。

2) 利用真值表分析电路

穷举法的结果是真值表。即列出n个输入变量的所有2n个输入组合,并根据每一个输入组合决定所有门的输出,逐级推出电路的输出,得到真值表。

例:分析如图三输入——输出的逻辑电路。

X	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

第二节组合电路分析与设计

3) 数字波形图分析法

这种方法是对逻辑门的所有输入变量施以输入波形,逐级画出各个 门电路的输出波形,乃至画出最后的输出波形。

例,下图右所示的逻辑电路有A、B、C、D四个输入变量,输入输出波形如下图左所示。

2.2.2 组合逻辑电路设计

目的:根据要实现的逻辑功能,利用逻辑代数方法实现逻辑电路设计的一般步骤,如下图所示:

要求: 电路用最少的逻辑门(集成块)、最少的输入端数。

1)逻辑问题描述—真值表—逻辑表达式

例1设计一个二进制一位全加器。("加")

半加器 Half-Adder

输入变量:加数A、B

输出函数:和 S_h 、进位 C_h

全加器Full-Adder

输入变量:被加数 A_i 、加数 B_i 、

来自低位的进位 Ci.

输出函数:本位和 S_i 、本位向高位的进位 C_i

▶半加器 Half-Adder

输入变量:加数A、B

输出函数: 和 S_h 、进位 C_h

A— B—	半加器	— S _h — C _h
----------	-----	--------------------------------------

A B	S _h C _h
0 0	0 0
0 1	1 0
1 0	1 0
1 1	0 1

设订

▶全加器Full-Adder

输入变量:被加数 A_i 、加数 B_i 、来自低位的进位 C_{i-1}

输出函数:本位和 S_i 、本位向高位的进位 C_i

$A_i B_i$	C _{i-1}	$S_i C_i$
0 0	0	0 0
0 0	1	1 0
0 1	0	1 0
0 1	1	0 1
1 0	0	1 0
1 0	1	0 1
1 1	0	0 1
1 1	1	1 1

第二章组合逻辑电路 用二级与或电路实现: $S_{i} = A_{i} \oplus B_{i} \oplus C_{i-1}$ 図读 $= \overline{A_{i}} \overline{B_{i}} C_{i-1} + \overline{A_{i}} \overline{B_{i}} \overline{C_{i-1}}$ $+ A_{i} \overline{B_{i}} \overline{C_{i-1}} + A_{i} B_{i} C_{i-1}$

$$C_i = A_i B_i + A_i C_{i-1} + B_i C_{i-1}$$

二级与或电路

阅读

用异或门和与、或门构成电路实现全加器:

$$S_{i} = A_{i} \oplus B_{i} \oplus C_{i-1}$$

$$C_{i} = A_{i}B_{i} + A_{i}C_{i-1} + B_{i}C_{i-1}$$

用"半加器"实现全加器:

$$\begin{split} S_{i} &= A_{i} \, \oplus \, B_{i} \, \oplus \, C_{i-1} \\ & \boxtimes \Xi = S_{h1} \, \oplus \, C_{i-1} \\ &= S_{h2} \end{split} \qquad \begin{split} C_{i} &= A_{i}B_{i} + A_{i}\,B_{i}\,C_{i-1} + A_{i}\,B_{i}\,C_{i-1} \\ &= C_{h1} + C_{i-1}\,(\overline{A_{i}}\,B_{i} + A_{i}\,\overline{B_{i}}) \\ &= C_{h1} + C_{i-1}\,(A_{i} \, \oplus \, B_{i}) \\ &= C_{h1} + C_{i-1}\,S_{h1} \\ &= C_{h1} + C_{h2} \end{split}$$

思考:设计二进制一位半减器、二进制一位全减器半减器:

输入变量:被减数A、减数B

全减器:

输入变量:被减数 A_i 、减数 B_i 、来自低位的借位 b_{i-1}

输出函数:本位差 S_i 、本位向高位的借位 b_i

- 2) 逻辑问题描述—简化真值表—逻辑表达式
 - > 比较器 Comparators

输入变量:两个正整数 $x = x_2x_1$, $y = y_2y_1$

输出函数: 三个比较结果 $F_1(x>y)$, $F_2(x<y)$, $F_3(x=y)$

①根据先比较高位后 比较低位的原则,列出使 函数为1的简化真值表:

$\mathbf{x}_2 \mathbf{y}_2$	$\mathbf{x}_1 \mathbf{y}_1$	$\mathbf{F_1} \mathbf{F_2} \mathbf{F_3}$
1 0	d d	1 0 0
0 1	d d	0 1 0
	1 0	1 0 0
0 0	0 1	0 1 0
UU	0 0	0 0 1
	1 1	0 0 1
	1 0	1 0 0
1 1	0 1	0 1 0
1 1	0 0	0 0 1
	1 1	0 0 1

②由简化真值表直接写出逻辑表达式:

$$\mathbf{F}_1 = \mathbf{x}_2 \mathbf{y}_2 + \mathbf{x}_2 \mathbf{y}_2 \mathbf{x}_1 \mathbf{y}_1 + \mathbf{x}_2 \mathbf{y}_2 \mathbf{x}_1 \mathbf{y}_1$$

$$\mathbf{F}_2 = \mathbf{x}_2 \mathbf{y}_2 + \mathbf{x}_2 \mathbf{y}_2 \mathbf{x}_1 \mathbf{y}_1 + \mathbf{x}_2 \mathbf{y}_2 \mathbf{x}_1 \mathbf{y}_1$$

$\mathbf{x_2} \mathbf{y_2}$	$\mathbf{x_1} \mathbf{y_1}$	$\mathbf{F_1} \mathbf{F_2} \mathbf{F_3}$
1 0	d d	1 0 0
0 1	d d	0 1 0
	1 0	1 0 0
0 0	0 1	0 1 0
UU	0 0	0 0 1
	1 1	0 0 1
	1 0	1 0 0
1 1	0 1	0 1 0
1 1	0 0	0 0 1
	1 1	0 0 1

$$\mathbf{F}_{3} = \mathbf{x}_{2}\mathbf{y}_{2}\mathbf{x}_{1}\mathbf{y}_{1} + \mathbf{x}_{2}\mathbf{y}_{2}\mathbf{x}_{1}\mathbf{y}_{1} + \mathbf{x}_{2}\mathbf{y}_{2}\mathbf{x}_{1}\mathbf{y}_{1} + \mathbf{x}_{2}\mathbf{y}_{2}\mathbf{x}_{1}\mathbf{y}_{1} + \mathbf{x}_{2}\mathbf{y}_{2}\mathbf{x}_{1}\mathbf{y}_{1}$$

逻辑电路图参见书P58图2.28(c)。

3) 逻辑问题描述—逻辑表达式

由逻辑问题描述直接写出逻辑表达式。

例 设计一个房间报警电路

如果 ①意外事件发生输入PANIC为1;

②使能输入ENABLE为1、出口标志输入EXITING为0、 房间没有加密(SECURE);

则 报警输出ALARM为1。

如果 窗(WINDOW)、门(DOOR)及车库(GARAGE)都是1 则 房间加密(SECURE)。

ALARM = PANIC + ENABLE • EXITING • SECURE

SECURE = WINDOW • DOOR • GARAGE

ALARM = PANIC + ENABLE • EXITING

• (WINDOW • DOOR • GARAGE) 第二节组合电路分析与设计

报警电路逻辑图

思考题: 1. 设计一个两位二进制数乘法器。

分析: 输入变量 $X = x_2 x_1$

$$\mathbf{Y} = \mathbf{y_2} \mathbf{y_1}$$

 \mathbf{Z}_1

		输	出	变量	皇 7	Z =	Z ₄ Z	$\mathbf{z}_3\mathbf{z}_2$	\mathbf{z}_1
y_2y_1	2X	1							
			1						1
								1	1
			\mathbb{Z}_4				Z	3	
			1	1			1	1	
		1		1			1	1	
		1	1						

 \mathbf{Z}_2

$ \begin{array}{ccccccccccccccccccccccccccccccccc$	$\mathbf{Z}_4\mathbf{Z}_3\mathbf{Z}_2\mathbf{Z}_1$
$0 \ 0 \ 0 \ 0$	0 0 0 0
0 0 0 1	$0 \ 0 \ 0 \ 0$
0 0 1 0	$0 \ 0 \ 0 \ 0$
0 0 1 1	$0 \ 0 \ 0 \ 0$
0 1 0 0	$0 \ 0 \ 0 \ 0$
0 1 0 1	0 0 0 1
0 1 1 0	0 0 1 0
0 1 1 1	0 0 1 1
1 0 0 0	0 0 0 0
1 0 0 1	0 0 1 0
1 0 1 0	0 1 0 0
1 0 1 1	0 1 1 0
1 1 0 0	$0\ 0\ 0\ 0$
1 1 0 1	0 0 1 1
1 1 1 0	0 1 1 0
1 1 1 1	1 0 0 1

思考题: 1.设计一个两位二进制数乘法器。

分析: 输入变量 $X = x_2x_1$

$$\mathbf{Y} = \mathbf{y}_2 \mathbf{y}_1$$

输出变量 Z = Z₄Z₃Z₂Z₁

思考题: 2.码制转换电路

第一步:填出所有的"d"

\ AB					AB					ABCD	$Y_3Y_2Y_1Y_0$
CD \			d	CD \				d		0 0 0 0	0 0 1 1
			u					u		0 0 0 1	0 1 0 0
	d		d			d		d		0 0 1 0	0 1 0 1
	d					d				0 0 1 1	0 1 1 0
	u					u			_	0 1 0 0	0 1 1 1
	d		d			d		d		0 1 0 1	d
		Y_3					$\mathbf{Y_2}$			$0\ 1\ 1\ 0$	d
\ A.D.		- 3			4 D		1 2			0 1 1 1	d
AB					AB					$1 \ 0 \ 0 \ 0$	d
CD `			d	CD `				d		1 0 0 1	d
	١,		-			_		,	-	1 0 1 0	d
	d		d			d		d	-	1 0 1 1	1 0 0 0
	d					d				1 1 0 0	1 0 0 1
			•			•		,		1 1 0 1	1 0 1 0
	d		d			d		d		1 1 1 0	1 0 1 1
		Y_1					$\mathbf{Y_0}$			1 1 1 1	1 1 0 0

第二章组合逻辑电路

第二步: 按 Y_3 、 Y_2 、 Y_1 和 Y_0 分别填完卡诺图

	AB					AB				ABCD	$\mathbf{Y}_3\mathbf{Y}_2\mathbf{Y}_1\mathbf{Y}_0$
CD `			1	d	CD `		1		d	0 0 0 0	0 0 1 1
		d	1	d		1	d		d	$\left[\begin{array}{cccc}0&0&0&1\\0&0&1&0\end{array}\right]$	$\left[\begin{array}{cccc}0&1&0&0\\0&1&0&1\end{array}\right]$
		d	1	1		1	d	1		0 0 1 1	0 1 1 0
		d	1	d		1	d		d	0 1 0 0 0 1 0 1	0 1 1 1
			Y_3					$\mathbf{Y_2}$		$0 \ 1 \ 0 \ 1$	d d
	AB		- 3			AB		- 2		0 1 1 1	d
CD	1	1		d	CD	1	1	1	d	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d
	1	1		u		1	1	1	u	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d
		d	1	d			d		d	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & \mathbf{d} \\ \hline 1 & 0 & 0 & 0 \end{array}$
	1	d					d			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		d	1	d		1	d	1	d	1101	1 0 1 0
				I					I	1 1 1 0	1 0 1 1

第三步: 找出最小覆盖并写出最简表达式

第二章组合逻辑电路

阅读

十进制数的常用代码一览表

BCD码	2421码	余3码	Gray码(1)	步进码
0 0 0 0 0	0 0 0 0 0	0 0 0 0 d	0 0 0 0 0	00000 0 10000 9
0 0 0 1 1	0 0 0 1 1	0 0 0 1 d	0 0 0 1 1	000011 10001 d
0 0 1 0 2	0 0 1 0 2	0 0 1 0 d	0 0 1 0 3	00010 d 10010 d
0 0 1 1 3	0 0 1 1 3	0 0 1 1 0	0 0 1 1 2	000112 10011 d
0 1 0 0 4	0 1 0 0 4	0 1 0 0 1	0 1 0 0 d	00100 d 10100 d
0 1 0 1 5	0 1 0 1 d	0 1 0 1 2	0 1 0 1 d	00101 d 10101 d
0 1 1 0 6	0 1 1 0 d	0 1 1 0 3	0 1 1 0 4	00110 d 10110 d
0 1 1 1 7	0 1 1 1 d	0 1 1 1 4	0 1 1 1 d	001113 10111 d
1 0 0 0 8	1 0 0 0 d	1 0 0 0 5	10009	01000 d 11000 8
10019	1 0 0 1 d	10016	10018	01001 d 11001 d
1 0 1 0 d	1 0 1 0 d	1 0 1 0 7	10106	01010 d 11010 d
1 0 1 1 d	1 0 1 1 5	10118	10117	01011 d 11011 d
1 1 0 0 d	1 1 0 0 6	1 1 0 0 9	1 1 0 0 d	01100 d 11100 7
1 1 0 1 d	1 1 0 1 7	1 1 0 1 d	1 1 0 1 d	01101 d 11101 d
1 1 1 0 d	1 1 1 0 8	1 1 1 0 d	1 1 1 0 5	01110 d 11110 6
1 1 1 1 d	11119	1 1 1 1 d	1 1 1 1 d	011114 111115

红色数字表示该编码所对应的十进制数值,其它均为无效编码即无关项d。

 $\mathbf{B_2}$

 G_1G

例2 输入为十进制Gray码G₃G₂G₁G₀

练习 输出为BCD码B₈B₄B₂B₁

②填卡诺图,先填出所有"d"

G_3G	2					
	d	d		d	d	
	d	d		d	d	
	d	d		d	d	
		B_8			B_4	
	d	B ₈		d	B ₄	
	d	d		d	d	

	①列出真值表		
•	$G_3G_2G_1G_0$	B ₈ B ₄ B	
	0 0 0 0	0 0	

数值	$G_3G_2G_1G_0$	$\mathbf{B_8B_4B_2B_1}$
0	0 0 0 0	0 0 0 0
1	$0 \ 0 \ 0 \ 1$	0 0 0 1
2	0 0 1 1	0 0 1 0
3	0 0 1 0	0 0 1 1
4	0 1 1 0	0 1 0 0
5	1 1 1 0	0 1 0 1
6	1 0 1 0	0 1 1 0
7	1 0 1 1	0 1 1 1
8	1 0 0 1	1 0 0 0
9	1 0 0 0	1 0 0 1
	0 1 0 0	d
	0 1 0 1	d
	0 1 1 1	d
	1 1 0 0	d
	1 1 0 1	d
	1 1 1 1	d

 \mathbf{B}_1

③按真值表逐行填出卡诺图,只填1,不填0

_								
G_3G_2								
	d	d	1			d	d	
	d	d	1			d	d	
	d	d				d	d	1
						1	1	1
	$\mathbf{B_8}$]	B_4	
	d	d				d	d	1
	d	d			1	d	d	
1	d	d	1			d	d	1
1			1		1		1	
		$\mathbf{B_2}$					B_1	

数值	$G_3G_2G_1G_0$	$B_8B_4B_2B_1$
0	0 0 0 0	0 0 0 0
1	0 0 0 1	0 0 0 1
2	0 0 1 1	0 0 1 0
2 3 4	0 0 1 0	0 0 1 1
4	0 1 1 0	0 1 0 0
5	1 1 1 0	0 1 0 1
6	1 0 1 0	0 1 1 0
7	1 0 1 1	0 1 1 1
8	1 0 0 1	1 0 0 0
9	1 0 0 0	1 0 0 1
	0 1 0 0	d
	0 1 0 1	d
	0 1 1 1	d
	1 1 0 0	d
	1 1 0 1	d
	1 1 1 1	d

4找出最小覆盖并写出最简表达式

练习

$$\begin{split} \mathbf{B}_8 &= \mathbf{G}_3 \overline{\mathbf{G}}_1 \\ \mathbf{B}_4 &= \mathbf{G}_3 \mathbf{G}_1 + \mathbf{G}_2 \mathbf{G}_1 \\ \mathbf{B}_2 &= \overline{\mathbf{G}}_2 \mathbf{G}_1 \\ \mathbf{B}_1 &= \mathbf{G}_3 \mathbf{G}_2 + \overline{\mathbf{G}}_3 \mathbf{G}_0 + \mathbf{G}_1 \mathbf{G}_0 + \mathbf{G}_3 \overline{\mathbf{G}}_1 \overline{\mathbf{G}}_0 \end{split}$$

阅读> 逻辑电路的变换 transform of Logic Circuit

为了提高电路的速度,提高器件的利用率,从而减少IC的数量、也减少外部的连接线和提高电路的可靠性,需要对从逻辑表达式直接画出的逻辑电路图进行变换,尽可能使其用同一类型的输出端带非的门来实现。

阅读对应的二个不同的电路如下:

$$F = \overline{A} + BC + DEH + G$$

$$= \overline{A} \overline{BC} \overline{DEH} \overline{G}$$

(与一或) (与非一与非)

与非一与非电路

阅读二、"或—与"电路变换为"或非—或非"电路

例
$$F = (A + B)(C + D)(E + H + G)$$

 $= \overline{(A + B)(C + D)(E + H + G)}$ (原函数二次求反)
 $= \overline{(A + B) + (C + D) + (E + H + G)}$ (运用反演规则)
 $= \overline{(A + B)} \bullet \overline{(C + D)} \bullet \overline{(E + H + G)}$ (运用反演规则)

阅读三、"与—或"电路变换为"与或非"电路

例
$$F = \overline{A}\overline{C} + A\overline{B}$$
 (图a)
= $\overline{\overline{A}\overline{C} + A\overline{B}}$ (原函数二次求反) (图b)

$$\overline{\mathbf{F}} = \overline{\overline{\mathbf{A}}\overline{\mathbf{C}} + \mathbf{A}\overline{\mathbf{B}}}$$

$$= (\mathbf{A} + \mathbf{C})(\overline{\mathbf{A}} + \mathbf{B})$$

$$= \mathbf{A}\mathbf{B} + \overline{\mathbf{A}}\mathbf{C}$$

$$\mathbf{F} = \mathbf{A}\mathbf{B} + \overline{\mathbf{A}}\mathbf{C} \quad (\mathbf{B}\mathbf{c})$$

4) 减少集成块的数量 Reduce the Numbers of IC

目前采用的小规模门电路SSI是把几个相同的门封装在同一个集成块中,在逻辑电路中使用的SSI的数目越少,则电路的印刷电路板的面积、功耗、总成本越小,而可靠性越高。

所以,减少SSI的数目是化简的最终目标。

在实际统计中,对SSI的计算与分立元件的计算不一

样。例: $F_1 = x_2y_2 + x_2y_2x_1$

 $F_1 = x_2 y_2 + x_2 y_2 x_1 y_1 + x_2 y_2 x_1 y_1$

 $F_2 = \overline{x}_2 y_2 + \overline{x}_2 \overline{y}_2 \overline{x}_1 y_1 + x_2 y_2 \overline{x}_1 y_1$

 $F_3 = \overline{x_2} \overline{y_2} \overline{x_1} \overline{y_1} + \overline{x_2} \overline{y_2} \overline{x_1} \overline{y_1} + \overline{x_2} \overline{y_2} \overline{x_1} \overline{y_1} + \overline{x_2} \overline{y_2} \overline{x_1} \overline{y_1}$

分立元件: 非(X4)、2与(X2)、4与(X8)、3或(X2)、4或(X1)

SSI器 件: 4与非(×9):74LS20—4输入双与非门(×5)

(全用 3与非(×2):74LS10—3输入三与非门(×1)

与非门) 2与非(×2):用上面74LS20或10剩余的一个与非门

4非(×4): 74LS04—六非门(×1) (有两个门未用)

门的数目最少与所用集成块的最少并不是完全等同的。