Precalculus Lecture 15

Todor Miley

https://github.com/tmilev/freecalc

2020

Outline

- Quadratic Functions
 - Standard Form
 - Geometric Features
 - Quadratic Equations
 - Vieta's Formulas
 - Factoring quadratics
 - Plotting Quadratics
 - Maxima and Minima

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein

Definition

Let a, b, c be real numbers with $a \neq 0$. The function

$$f(x) = ax^2 + bx + c$$

is called a quadratic function.

Definition

Let a, b, c be real numbers with $a \neq 0$. The function

$$f(x) = ax^2 + bx + c$$

is called a quadratic function.

• The graph of a quadratic function is called a parabola.

Example (Completing the square)

Complete the square.

$$3x^2 - 5x + 1$$

Example (Completing the square)

Complete the square.

$$3x^2 - 5x + 1 = 3(x^2 - 7x) + 1$$

Example (Completing the square)

Complete the square.

$$3x^2 - 5x + 1 = 3\left(x^2 - \frac{5}{3}x\right) + 1$$

Example (Completing the square)

Complete the square.

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$
$$= 3\left(x^{2} - \frac{5}{2 \cdot 3}x\right) + 1$$

Example (Completing the square)

Complete the square.

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + ? - ?\right) + 1$$

Example (Completing the square)

Complete the square.

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + ? - ?\right) + 1$$

Example (Completing the square)

Complete the square.

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

Example (Completing the square)

Complete the square.

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

Example (Completing the square)

Complete the square.

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

$$= 3\left(? - ?\right) + 1$$

Example (Completing the square)

Complete the square.

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

$$= 3\left(\left(x - \frac{5}{6}\right)^{2} - ?\right) + 1$$

Example (Completing the square)

Complete the square.

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

$$= 3\left(\left(x - \frac{5}{6}\right)^{2} - \frac{?}{2}\right) + 1$$

Example (Completing the square)

Complete the square.

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

$$= 3\left(\left(x - \frac{5}{6}\right)^{2} - \frac{25}{36}\right) + 1$$

Example (Completing the square)

Complete the square.

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

$$= 3\left(\left(x - \frac{5}{6}\right)^{2} - \frac{25}{36}\right) + 1$$

$$= 3\left(x - \frac{5}{6}\right)^{2} - \frac{25}{12} + 1$$

Example (Completing the square)

Complete the square.

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

$$= 3\left(\left(x - \frac{5}{6}\right)^{2} - \frac{25}{36}\right) + 1$$

$$= 3\left(x - \frac{5}{6}\right)^{2} - \frac{25}{12} + 1$$

Example (Completing the square)

Complete the square.

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

$$= 3\left(\left(x - \frac{5}{6}\right)^{2} - \frac{25}{36}\right) + 1$$

$$= 3\left(x - \frac{5}{6}\right)^{2} - \frac{25}{12} + 1$$

$$= 3\left(x - \frac{5}{6}\right)^{2} + ?$$

Example (Completing the square)

Complete the square.

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

$$= 3\left(\left(x - \frac{5}{6}\right)^{2} - \frac{25}{36}\right) + 1$$

$$= 3\left(x - \frac{5}{6}\right)^{2} - \frac{25}{12} + 1$$

$$= 3\left(x - \frac{5}{6}\right)^{2} - \frac{13}{12}.$$

Definition (Completing the square)

$$ax^2 + bx + c$$

Definition (Completing the square)

$$ax^2 + bx + c = a\left(x^2 + \frac{b}{a}x\right) + c$$

Definition (Completing the square)

$$ax^2 + bx + c = a\left(x^2 + \frac{b}{a}x\right) + c$$

Definition (Completing the square)

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$
$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

Definition (Completing the square)

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \left(\begin{array}{c} \\ \end{array}\right)^{2} - \left(\begin{array}{c} \\ \end{array}\right)^{2}\right) + c\left(\begin{array}{c} \text{Add \& subtract} \\ \end{array}\right)^{2}$$

Definition (Completing the square)

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c\left(\frac{b}{2a}\right)^{2}$$
Add & subtract $\left(\frac{b}{2a}\right)^{2}$

Definition (Completing the square)

Let $a \neq 0$. To *complete the square* means to carry out the following algebraic manipulation.

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} + \frac{b^{2}}{2a^{2}} + \frac{b^{2}}$$

Definition (Completing the square)

Let $a \neq 0$. To *complete the square* means to carry out the following algebraic manipulation.

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} + \frac{b^{2}}{2a^{2}} + \frac{b^{2}}{2a^{2}}$$

Definition (Completing the square)

Let $a \neq 0$. To *complete the square* means to carry out the following algebraic manipulation.

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \\ \text{use} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \\ \text{use} \\ \left(A + \frac{B}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}} \end{vmatrix} + c$$

Definition (Completing the square)

Let $a \neq 0$. To *complete the square* means to carry out the following algebraic manipulation.

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} + \frac{b}{2a}x + \frac{b}{2a$$

Definition (Completing the square)

Let $a \neq 0$. To *complete the square* means to carry out the following algebraic manipulation.

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - a \cdot \frac{b^{2}}{4a^{2}} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - a \cdot \frac{b^{2}}{4a^{2}} + c$$

Definition (Completing the square)

Let $a \neq 0$. To *complete the square* means to carry out the following algebraic manipulation.

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \\ \text{use} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \\ \text{use} \\ \left(A + B\right)^{2} = A^{2} + 2AB + B^{2} \end{vmatrix}$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - a \cdot \frac{b^{2}}{4a^{2}} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} + c - \frac{b^{2}}{4a}.$$

Definition (Completing the square)

Let $a \neq 0$. To complete the square means to carry out the following algebraic manipulation.

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \\ \text{use} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \\ \text{use} \\ (A + B)^{2} = A^{2} + 2AB + B^{2} \end{vmatrix}$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - A \cdot \frac{b^{2}}{4a^{2}} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} + c - \frac{b^{2}}{4a}.$$

Let $a \neq 0$ and let $f(x) = ax^2 + bx + c$. Then we have the equality

$$f(x) =$$

Let $a \neq 0$ and let $f(x) = ax^2 + bx + c$. Then we have the equality

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$$

complete the square

Let $a \neq 0$ and let $f(x) = ax^2 + bx + c$. Then we have the equality

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$$
 complete the square
$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{b^2 - 4ac}{4a}$$

Let $a \neq 0$ and let $f(x) = ax^2 + bx + c$. Then we have the equality

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$$
 complete the square
$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{b^2 - 4ac}{4a}$$

Let $a \neq 0$ and let $f(x) = ax^2 + bx + c$. Then we have the equality

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$$
 complete the square
$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{b^2 - 4ac}{4a}$$

Definition (Discriminant of quadratic function)

The quantity $D = b^2 - 4ac$ is called the *discriminant* of the quadratic function $ax^2 + bx + c$.

Let $a \neq 0$ and let $f(x) = ax^2 + bx + c$. Then we have the equality

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$$
 complete the square
$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{b^2 - 4ac}{4a}$$

$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}.$$

Definition (Discriminant of quadratic function)

The quantity $D = b^2 - 4ac$ is called the *discriminant* of the quadratic function $ax^2 + bx + c$.

Let $a \neq 0$ and let $f(x) = ax^2 + bx + c$. Then we have the equality

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$$
 complete the square
$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{b^2 - 4ac}{4a}$$

$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}.$$

Definition

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and $k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$ is called the standard form of $ax^2 + bx + c$.

Definition (Discriminant of quadratic function)

The quantity $D = b^2 - 4ac$ is called the *discriminant* of the quadratic function $ax^2 + bx + c$.

Let $a \neq 0$ and let $f(x) = ax^2 + bx + c$. Then we have the equality

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$$
 complete the square
$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{b^2 - 4ac}{4a}$$

$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}.$$

Definition

The expression $f(x) = a(x - h)^2 + k$, where $\frac{h}{h} = -\frac{b}{2a}$ and $k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$ is called the standard form of $ax^2 + bx + c$.

Definition (Discriminant of quadratic function)

The quantity $D = b^2 - 4ac$ is called the *discriminant* of the quadratic function $ax^2 + bx + c$.

Let $a \neq 0$ and let $f(x) = ax^2 + bx + c$. Then we have the equality

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$$
 complete the square
$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{b^2 - 4ac}{4a}$$

$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}.$$

Definition

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and $k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$ is called the standard form of $ax^2 + bx + c$.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

• The graph of $y = x^2$ is a parabola; its shape is assumed known.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of $y = x^2$ is a parabola; its shape is assumed known.
- The standard form shows how the graph of an arbitrary quadratic is obtained from the graph of y = x²:

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of $y = x^2$ is a parabola; its shape is assumed known.
 - The standard form shows how the graph of an arbitrary quadratic is obtained from the graph of $y = x^2$:
 - ax^2 stretches $y = x^2$ by factor of a and possibly reflects across the x axis.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of $y = x^2$ is a parabola; its shape is assumed known.
 - The standard form shows how the graph of an arbitrary quadratic is obtained from the graph of $y = x^2$:
 - ax^2 stretches $y = x^2$ by factor of a and possibly reflects across the x axis.
 - $a(x-h)^2$ shifts $y=ax^2$ by h units right.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of $y = x^2$ is a parabola; its shape is assumed known.
- The standard form shows how the graph of an arbitrary quadratic is obtained from the graph of y = x²:
 - ax^2 stretches $y = x^2$ by factor of a and possibly reflects across the x axis.
 - $a(x h)^2$ shifts $y = ax^2$ by h units right.
 - $a(x-h)^2 + k$ shifts $y = a(x-h)^2 + k$ by k units up.

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

• The graph of a quadratic function is a parabola.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.
- When |a| increases, the parabola becomes steeper.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.
- When |a| increases, the parabola becomes steeper.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.
- When |a| increases, the parabola becomes steeper.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.
- When |a| increases, the parabola becomes steeper.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.
- When |a| increases, the parabola becomes steeper.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.
- When |a| increases, the parabola becomes steeper.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.
- When |a| increases, the parabola becomes steeper.
- The point $(h, k) = \left(-\frac{b}{2a}, -\frac{D}{4a}\right)$ is called the vertex of the parabola.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.
- When |a| increases, the parabola becomes steeper.
- The point $(h, k) = \left(-\frac{b}{2a}, -\frac{D}{4a}\right)$ is called the vertex of the parabola.
- The parabola is symmetric with respect to the line $x = h = -\frac{b}{2a}$, i.e., the vertical line through its vertex.

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.
- When |a| increases, the parabola becomes steeper.
- The point $(h, k) = \left(-\frac{b}{2a}, -\frac{D}{4a}\right)$ is called the vertex of the parabola.
- The parabola is symmetric with respect to the line $x = h = -\frac{b}{2a}$, i.e., the vertical line through its vertex.

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

 When we change h and k we move the vertex of the parabola without change in steepness.

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

 When we change h and k we move the vertex of the parabola without change in steepness.

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

 When we change h and k we move the vertex of the parabola without change in steepness.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- When we change h and k we move the vertex of the parabola without change in steepness.
- Therefore when we change b and c we move the vertex of the parabola without change in steepness.

Quadratic Functions Geometric Features 9/27

Example

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

Quadratic Functions Geometric Features 9/27

Example

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^2+k = y$$

Standard form

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^2 + k = y$$

 $a(x-?)^2 + ? = y$

Standard form

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^2 + k = y$$

 $a(x-1)^2 + 2 = y$

Standard form
Vertex at (1,2)

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x - h)^2 + k = y$$

 $a(x - 1)^2 + 2 = y$

Standard form
Vertex at (1,2)

Write an equation of a parabola with vertex at $(1, \frac{2}{2})$ that passes through the point $(2, \frac{3}{2})$.

$$a(x-h)^2 + k = y$$

 $a(x-1)^2 + 2 = y$

Standard form
Vertex at (1,2)

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^2 + k = y$$

 $a(x-1)^2 + 2 = y$
 $a(2-1)^2 + 2 = \frac{3}{2}$

Vertex at (1,2)

Standard form

Passes through $(2, \frac{2}{3})$

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^2 + k = y$$

 $a(x-1)^2 + 2 = y$
 $a(2-1)^2 + 2 = \frac{3}{2}$

Standard form

Vertex at (1,2)

Passes through $(2, \frac{2}{3})$

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^2 + k = y$$

 $a(x-1)^2 + 2 = y$
 $a(2-1)^2 + 2 = \frac{3}{2}$

Standard form

Vertex at (1,2)

Passes through $(2, \frac{2}{3})$

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^2 + k = y$$

 $a(x-1)^2 + 2 = y$
 $a(2-1)^2 + 2 = \frac{3}{2}$
 $a = \frac{3}{2} - 2$

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^{2} + k = y$$

 $a(x-1)^{2} + 2 = y$
 $a(2-1)^{2} + 2 = \frac{3}{2}$
 $a = \frac{3}{2} - 2$

Standard form Vertex at (1,2) Passes through $(2,\frac{2}{3})$

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^{2} + k = y$$

 $a(x-1)^{2} + 2 = y$
 $a(2-1)^{2} + 2 = \frac{3}{2}$
 $a = \frac{3}{2} - 2 = -\frac{1}{2}$

Standard form

Vertex at (1,2)

Passes through $(2, \frac{2}{3})$

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^{2} + k = y$$

$$a(x-1)^{2} + 2 = y$$

$$a(2-1)^{2} + 2 = \frac{3}{2}$$

$$a = \frac{3}{2} - 2 = -\frac{1}{2}$$

$$y = -\frac{1}{2}(x-1)^{2} + 2$$
Standard form

Vertex at $(1,2)$

Passes through $(2,\frac{2}{3})$

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^{2} + k = y$$

$$a(x-1)^{2} + 2 = y$$

$$a(2-1)^{2} + 2 = \frac{3}{2}$$

$$a = \frac{3}{2} - 2 = -\frac{1}{2}$$

$$y = -\frac{1}{2}(x-1)^{2} + 2$$
Standard form

Vertex at $(1,2)$

Passes through $(2,\frac{2}{3})$

Quadratic Functions Geometric Features 9/27

Example

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^{2} + k = y$$

$$a(x-1)^{2} + 2 = y$$

$$a(2-1)^{2} + 2 = \frac{3}{2}$$

$$a = \frac{3}{2} - 2 = -\frac{1}{2}$$

$$y = -\frac{1}{2}(x-1)^{2} + 2$$

$$y = -\frac{1}{2}x^{2} + x + \frac{3}{2}$$

Standard form

Vertex at (1,2)

Passes through $(2, \frac{2}{3})$

Final answer

Alternative answer

Problem (Quadratic equation formula)

Solve the general quadratic equation

$$ax^2 + bx + c = 0$$

Problem (Quadratic equation formula)

Solve the general quadratic equation

$$ax^{2} + bx + c = 0$$
 | complete the square $a\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a} = 0$

Problem (Quadratic equation formula)

Solve the general quadratic equation

$$ax^{2} + bx + c = 0$$
 complete the square $a\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a} = 0$ where $D = b^{2} - 4ac$

complete the square

where
$$D = b^2 - 4ac$$

Problem (Quadratic equation formula)

Solve the general quadratic equation

$$ax^{2} + bx + c = 0$$

$$a\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a} = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a^{2}}\right) = 0$$

complete the square

where
$$D = b^2 - 4ac$$

Problem (Quadratic equation formula)

Solve the general quadratic equation

$$ax^{2} + bx + c = 0$$

$$a\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a} = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a^{2}}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{\sqrt{D}}{2a}\right)^{2}\right) = 0$$

complete the square where $D = b^2 - 4ac$

Problem (Quadratic equation formula)

Solve the general quadratic equation

$$ax^{2} + bx + c = 0$$

$$a\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a} = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a^{2}}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{\sqrt{D}}{2a}\right)^{2}\right) = 0$$

complete the square where $D = b^2 - 4ac$

Problem (Quadratic equation formula)

Solve the general quadratic equation

ax² + bx + c = 0 | complete the square
$$a\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a} = 0 | where D = b^{2} - 4ac$$

$$a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a^{2}}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{\sqrt{D}}{2a}\right)^{2}\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0 | use A^{2} - B^{2} = (A - B)(A + B)$$

Problem (Quadratic equation formula)

Solve the general quadratic equation

Solve the general quadratic equation
$$ax^2 + bx + c = 0 \qquad | complete the square$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a} = 0 \qquad | where D = b^2 - 4ac$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a^2}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0 \qquad | use A^2 - B^2 = (A - B)(A + B)$$

Problem (Quadratic equation formula)

Solve the general quadratic equation

Solve the general quadratic equation
$$ax^2 + bx + c = 0 \qquad \text{complete the square}$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a} = 0 \qquad \text{where } D = b^2 - 4ac$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a^2}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0 \qquad \text{use } A^2 - B^2 = (A - B)(A + B)$$

Problem (Quadratic equation formula)

Solve the general quadratic equation

Solve the general quadratic equation
$$ax^2 + bx + c = 0 \qquad | complete the square$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a} = 0 \qquad | where D = b^2 - 4ac$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a^2}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0 \qquad | use A^2 - B^2 = (A - B)(A + B)$$

$$x + \frac{b}{2a} - \frac{\sqrt{D}}{2a} = 0 \qquad or \quad x + \frac{b}{2a} + \frac{\sqrt{D}}{2a} = 0$$

Problem (Quadratic equation formula)

Solve the general quadratic equation

Solve the general quadratic equation
$$ax^2 + bx + c = 0 \qquad | complete the square$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a} = 0 \qquad | where D = b^2 - 4ac$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a^2}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0 \qquad | use A^2 - B^2 = (A - B)(A + B)$$

$$x + \frac{b}{2a} - \frac{\sqrt{D}}{2a} = 0 \qquad or \quad x + \frac{b}{2a} + \frac{\sqrt{D}}{2a} = 0$$

Problem (Quadratic equation formula)

Solve the general quadratic equation

Solve the general quadratic equation
$$ax^2 + bx + c = 0$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a} = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a^2}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0$$

$$x + \frac{b}{2a} - \frac{\sqrt{D}}{2a} = 0$$

$$x = \frac{-b + \sqrt{D}}{2a}$$

$$x = \frac{-b + \sqrt{D}}{2a}$$

Problem (Quadratic equation formula)

Solve the general quadratic equation

solve the general quadratic equation
$$ax^2 + bx + c = 0$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a} = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a^2}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0$$

$$x + \frac{b}{2a} - \frac{\sqrt{D}}{2a} = 0$$

$$x = \frac{-b + \sqrt{D}}{2a}$$

$$x = \frac{-b + \sqrt{D}}{2a}$$

Problem (Quadratic equation formula)

Solve the general quadratic equation

Solve the general quadratic equation
$$ax^2 + bx + c = 0 \qquad | complete the square$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a} = 0 \qquad | where D = b^2 - 4ac$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a^2}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0 \qquad | use A^2 - B^2 = (A - B)(A + B)$$

$$x + \frac{b}{2a} - \frac{\sqrt{D}}{2a} = 0 \qquad or \quad x + \frac{b}{2a} + \frac{\sqrt{D}}{2a} = 0$$

$$x = \frac{-b + \sqrt{D}}{2a} \quad or \quad x = \frac{-b - \sqrt{D}}{2a}.$$

Todor Milev 2020 Lecture 15

Quadratic Equations Quadratic Functions 10/27

Problem (Quadratic equation formula)

Solve the general quadratic equation

Solve the general quadratic equation
$$ax^2 + bx + c = 0 \qquad \text{complete the square}$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a} = 0 \qquad \text{where } D = b^2 - 4ac$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a^2}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0 \qquad \text{use } A^2 - B^2 = (A - B)(A + B)$$

$$x + \frac{b}{2a} - \frac{\sqrt{D}}{2a} = 0 \qquad \text{or} \quad x + \frac{b}{2a} + \frac{\sqrt{D}}{2a} = 0$$

$$x = \frac{-b + \sqrt{D}}{2a} \qquad \text{or} \qquad x = \frac{-b - \sqrt{D}}{2a}.$$

Problem (Quadratic equation formula)

Solve the general quadratic equation

Solve the general quadratic equation
$$ax^2 + bx + c = 0$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a} = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a^2}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right) \left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0$$

$$x + \frac{b}{2a} - \frac{\sqrt{D}}{2a} = 0$$

$$x = \frac{-b + \sqrt{D}}{2a}$$
or
$$x = \frac{-b - \sqrt{D}}{2a}$$

$$x = \frac{-b - \sqrt{D}}{2a}$$

Problem (Quadratic equation formula)

Solve the general quadratic equation

$$ax^2 + bx + c = 0$$

$$x = \frac{-b + \sqrt{D}}{2a}$$
 or

$$x = \frac{-b - \sqrt{D}}{2a}.$$

Theorem

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = \frac{-b + \sqrt{D}}{2a}$$
 or $x = \frac{-b - \sqrt{D}}{2a}$

Theorem

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = \frac{-b + \sqrt{D}}{2a}$$
 or $x = \frac{-b - \sqrt{D}}{2a}$

where
$$D = b^2 - 4ac$$

Theorem

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = x_1 = \frac{-b + \sqrt{D}}{2a}$$
 or $x = x_2 = \frac{-b - \sqrt{D}}{2a}$,

where
$$D = b^2 - 4ac$$

Theorem

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = x_1 = \frac{-b + \sqrt{D}}{2a}$$
 or $x = x_2 = \frac{-b - \sqrt{D}}{2a}$,

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Theorem

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = x_1 = \frac{-b + \sqrt{D}}{2a}$$
 or $x = x_2 = \frac{-b - \sqrt{D}}{2a}$,

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Theorem

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = x_1 = \frac{-b + \sqrt{D}}{2a}$$
 or $x = x_2 = \frac{-b - \sqrt{D}}{2a}$,

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Theorem

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = x_1 = \frac{-b + \sqrt{D}}{2a}$$
 or $x = x_2 = \frac{-b - \sqrt{D}}{2a}$,

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Theorem

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = x_1 = \frac{-b + \sqrt{D}}{2a}$$
 or $x = x_2 = \frac{-b - \sqrt{D}}{2a}$,

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Theorem

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = x_1 = \frac{-b + \sqrt{D}}{2a}$$
 or $x = x_2 = \frac{-b - \sqrt{D}}{2a}$,

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Theorem

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = x_1 = \frac{-b + \sqrt{D}}{2a}$$
 or $x = x_2 = \frac{-b - \sqrt{D}}{2a}$,

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Find the *x*-intercepts of $\frac{x^2}{2} - x - 1$.

12/27

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-1) \pm \sqrt{(-1)^{2} - 4 \cdot \frac{1}{2} \cdot (-1)}}{2 \cdot \frac{1}{2}}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-1) \pm \sqrt{(-1)^{2} - 4 \cdot \frac{1}{2} \cdot (-1)}}{2 \cdot \frac{1}{2}}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-1) \pm \sqrt{(-1)^{2} - 4 \cdot \frac{1}{2} \cdot (-1)}}{2 \cdot \frac{1}{2}}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-1) \pm \sqrt{(-1)^{2} - 4 \cdot \frac{1}{2} \cdot (-1)}}{2 \cdot \frac{1}{2}}$$

Find the *x*-intercepts of $\frac{x^2}{2} - x - 1$.

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-1) \pm \sqrt{(-1)^{2} - 4 \cdot \frac{1}{2} \cdot (-1)}}{2 \cdot \frac{1}{2}}$$

$$= 1 \pm \sqrt{3}$$

Find the *x*-intercepts of $\frac{x^2}{2} - x - 1$.

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-1) \pm \sqrt{(-1)^{2} - 4 \cdot \frac{1}{2} \cdot (-1)}}{2 \cdot \frac{1}{2}}$$

$$= 1 \pm \sqrt{3}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-1) \pm \sqrt{(-1)^{2} - 4 \cdot \frac{1}{2} \cdot (-1)}}{2 \cdot \frac{1}{2}}$$

$$= 1 \pm \sqrt{3}$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$= \frac{4 \pm \sqrt{4}}{2}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$= \frac{4 \pm \sqrt{4}}{2}$$

Find the *x*-intercepts of $x^2 - 4x + 3$.

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$= \frac{4 \pm \sqrt{4}}{2}$$

$$= \frac{4 \pm 2}{2}$$

Find the *x*-intercepts of $x^2 - 4x + 3$.

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$= \frac{4 \pm \sqrt{4}}{2}$$

$$= \frac{4 \pm 2}{2}$$

$$= \begin{cases} \frac{4 + 2}{2} \\ \frac{4 - 2}{2} \end{cases}$$

Find the *x*-intercepts of $x^2 - 4x + 3$.

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$= \frac{4 \pm \sqrt{4}}{2}$$

$$= \frac{4 \pm 2}{2}$$

$$= \begin{cases} \frac{4 + 2}{2} = \frac{6}{2} \\ \frac{4 - 2}{2} = \frac{6}{2} \end{cases}$$

Find the *x*-intercepts of $x^2 - 4x + 3$.

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$= \frac{4 \pm \sqrt{4}}{2}$$

$$= \frac{4 \pm 2}{2}$$

$$= \begin{cases} \frac{4+2}{2} = \frac{6}{2} = 3 \\ \frac{4-2}{2} = \frac{6}{2} = 3 \end{cases}$$

Find the *x*-intercepts of $x^2 - 4x + 3$.

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$= \frac{4 \pm \sqrt{4}}{2}$$

$$= \frac{4 \pm 2}{2}$$

$$= \begin{cases} \frac{4 + 2}{2} = \frac{6}{2} = 3\\ \frac{4 - 2}{2} = \frac{2}{2} \end{cases}$$

Find the *x*-intercepts of $x^2 - 4x + 3$.

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$= \frac{4 \pm \sqrt{4}}{2}$$

$$= \frac{4 \pm 2}{2}$$

$$= \begin{cases} \frac{4 + 2}{2} = \frac{6}{2} = 3\\ \frac{4 - 2}{2} = \frac{2}{2} = 1 \end{cases}$$

Find the *x*-intercepts of $x^2 - 4x + 3$.

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$= \frac{4 \pm \sqrt{4}}{2}$$

$$= \frac{4 \pm 2}{2}$$

$$= \begin{cases} \frac{4+2}{2} = \frac{6}{2} = 3\\ \frac{4-2}{2} = \frac{2}{2} = 1 \end{cases}$$

Find the *x*-intercepts of $x^2 - 2x + 3$.

14/27

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (3)}}{2 \cdot 1}$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{\frac{2a}{2 \cdot 1}}$$

$$= \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (3)}}{2 \cdot 1}$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (3)}}{2 \cdot 1}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-2) \pm \sqrt{(-2)^{2} - 4 \cdot 1 \cdot (3)}}{2 \cdot 1}$$

$$= \frac{2 \pm \sqrt{-8}}{2}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-2) \pm \sqrt{(-2)^{2} - 4 \cdot 1 \cdot (3)}}{2 \cdot 1}$$

$$= \frac{2 \pm \sqrt{-8}}{2}$$

Quadratic Functions Quadratic Equations 14/27

Example

Find the *x*-intercepts of $x^2 - 2x + 3$.

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-2) \pm \sqrt{(-2)^{2} - 4 \cdot 1 \cdot (3)}}{2 \cdot 1}$$

$$= \frac{2 \pm \sqrt{-8}}{2}$$
no real solutions

Quadratic Functions Quadratic Equations 14/27

Example

Find the *x*-intercepts of $x^2 - 2x + 3$.

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (3)}}{2 \cdot 1}$$

$$= \frac{2 \pm \sqrt{-8}}{2}$$
no real solutions
$$no x - intercepts$$

Proposition

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

Todor Miley Lecture 15 2020

Proposition

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = \frac{a^2}{(x_1 - x_2)^2}$.

Proof.

$$a^{2}(x_{1}-x_{2})^{2} = a^{2}\left(\frac{-b+\sqrt{D}}{2a}-\frac{-b-\sqrt{D}}{2a}\right)$$

Proposition

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

$$a^{2}(x_{1}-x_{2})^{2} = a^{2}\left(\frac{-b+\sqrt{D}}{2a}-\frac{-b-\sqrt{D}}{2a}\right)$$

Todor Miley Lecture 15 2020

٦

Proposition

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

$$a^{2}(x_{1}-x_{2})^{2} = a^{2}\left(\frac{-b+\sqrt{D}}{2a}-\frac{-b-\sqrt{D}}{2a}\right)$$

Proposition

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

$$a^{2}(x_{1}-x_{2})^{2} = a^{2}\left(\frac{\cancel{b}+\sqrt{D}}{2a}-\frac{\cancel{b}-\sqrt{D}}{2a}\right)$$
$$= a^{2}\left(\frac{2\sqrt{D}}{2a}\right)^{2}$$

Proposition

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

$$a^{2}(x_{1}-x_{2})^{2} = a^{2}\left(\frac{\cancel{b}+\sqrt{D}}{2a}-\frac{\cancel{b}-\sqrt{D}}{2a}\right)$$
$$= a^{2}\left(\frac{\cancel{2}\sqrt{D}}{\cancel{2}a}\right)^{2}$$

Proposition

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

$$a^{2}(x_{1}-x_{2})^{2} = a^{2}\left(\frac{\cancel{-b}+\sqrt{D}}{2a} - \frac{\cancel{-b}-\sqrt{D}}{2a}\right)$$
$$= a^{2}\left(\frac{\cancel{2}\sqrt{D}}{\cancel{2}a}\right)^{2}$$
$$= a^{2}\frac{\cancel{D}}{a^{2}}$$

Proposition

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

$$a^{2}(x_{1}-x_{2})^{2} = a^{2}\left(\frac{\cancel{-b}+\sqrt{D}}{2a} - \frac{\cancel{-b}-\sqrt{D}}{2a}\right)$$
$$= a^{2}\left(\frac{\cancel{2}\sqrt{D}}{\cancel{2}a}\right)^{2}$$
$$= a^{2}\frac{D}{a^{2}}$$

Proposition

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

$$a^{2}(x_{1}-x_{2})^{2} = a^{2}\left(\frac{\cancel{-b}+\sqrt{D}}{2a} - \frac{\cancel{-b}-\sqrt{D}}{2a}\right)$$

$$= a^{2}\left(\frac{\cancel{2}\sqrt{D}}{\cancel{2}a}\right)^{2}$$

$$= a^{2}\frac{\cancel{D}}{\cancel{a}}$$

$$= D$$

Proposition Let $ax^2 + bx + bx = 0$

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

$$a^{2}(x_{1} - x_{2})^{2} = a^{2} \left(\frac{\cancel{b} + \sqrt{D}}{2a} - \frac{\cancel{b} - \sqrt{D}}{2a} \right)$$

$$= a^{2} \left(\frac{\cancel{2}\sqrt{D}}{\cancel{2}a} \right)^{2}$$

$$= a^{2} \frac{\cancel{D}}{\cancel{a}^{2}}$$

$$= D, \text{ as desired.}$$

Proposition

Let $ax^2 + bx + c$, $a \ne 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

$$a^{2}(x_{1} - x_{2})^{2} = a^{2} \left(\frac{\cancel{b} + \sqrt{D}}{2a} - \frac{\cancel{b} - \sqrt{D}}{2a} \right)$$

$$= a^{2} \left(\frac{\cancel{2}\sqrt{D}}{\cancel{2}a} \right)^{2}$$

$$= a^{2} \underbrace{\frac{D}{\cancel{a}}}_{a}$$

$$= D, \text{ as desired.}$$

Discriminant is zero
 ⇔ the quadratic has non-distinct roots

Todor Milev Lecture 15 2020

Proposition

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

$$a^{2}(x_{1}-x_{2})^{2} = a^{2}\left(\frac{\cancel{b}+\sqrt{D}}{2a} - \frac{\cancel{b}-\sqrt{D}}{2a}\right)$$

$$= a^{2}\left(\frac{\cancel{2}\sqrt{D}}{\cancel{2}a}\right)^{2}$$

$$= a^{2}\left(\frac{\cancel{D}}{\cancel{2}a}\right)^{2}$$

$$= D, \text{ as desired.}$$

Discriminant is zero
 ⇔ the quadratic has non-distinct roots, hence
 the discriminant discriminates between the two roots.

_

Proposition (Vieta's formulas)

$$a(x-x_1)(x-x_2) = ax^2 + bx + c$$

Proposition (Vieta's formulas)

Let $ax^2 + bx + c$ be a quadratic functions with zeros x_1 and x_2 . Then:

$$\frac{a(x-x_1)(x-x_2)}{ax^2-axx_2-ax_1x+a(-x_1)(-x_2)} = \frac{ax^2+bx+c}{ax^2+bx+c}$$

Proposition (Vieta's formulas)

Let $ax^2 + bx + c$ be a quadratic functions with zeros x_1 and x_2 . Then:

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - axx_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

Proposition (Vieta's formulas)

Let $ax^2 + bx + c$ be a quadratic functions with zeros x_1 and x_2 . Then:

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - axx_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

Proposition (Vieta's formulas)

Let $ax^2 + bx + c$ be a quadratic functions with zeros x_1 and x_2 . Then:

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - axx_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

Proposition (Vieta's formulas)

Let $ax^2 + bx + c$ be a quadratic functions with zeros x_1 and x_2 . Then:

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - ax x_2 - ax_1 x + a(-x_1)(-x_2) = ax^2 + bx + c$$

$$ax^2 - a(x_2 + x_1)x + ax_1 x_2 = ax^2 + bx + c$$

Proposition (Vieta's formulas)

Let $ax^2 + bx + c$ be a quadratic functions with zeros x_1 and x_2 . Then:

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - axx_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

$$ax^2 - a(x_2 + x_1)x + ax_1x_2 = ax^2 + bx + c$$

Proposition (Vieta's formulas)

Let $ax^2 + bx + c$ be a quadratic functions with zeros x_1 and x_2 . Then:

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - ax_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

$$ax^2 - a(x_2 + x_1)x + ax_1x_2 = ax^2 + bx + c$$

Proposition (Vieta's formulas)

Let $ax^2 + bx + c$ be a quadratic functions with zeros x_1 and x_2 . Then:

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - axx_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

$$ax^2 - a(x_2 + x_1)x + ax_1x_2 = ax^2 + bx + c$$

Proposition (Vieta's formulas)

Let $ax^2 + bx + c$ be a quadratic functions with zeros x_1 and x_2 . Then:

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - axx_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

$$ax^2 - a(x_2 + x_1)x + ax_1x_2 = ax^2 + bx + c$$

$$ax_1x_2 = c$$

Proposition (Vieta's formulas)

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - axx_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

$$ax^2 - a(x_2 + x_1)x + ax_1x_2 = ax^2 + bx + c$$

$$ax_1x_2 = c$$

$$x_1x_2 = \frac{c}{a}$$

Proposition (Vieta's formulas)

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - axx_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

$$ax^2 - a(x_2 + x_1)x + ax_1x_2 = ax^2 + bx + c$$

$$ax_1x_2 = c$$

$$x_1x_2 = \frac{c}{a}$$

$$-a(x_1 + x_2) = b$$

Proposition (Vieta's formulas)

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - axx_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

$$ax^2 - a(x_2 + x_1)x + ax_1x_2 = ax^2 + bx + c$$

$$ax_1x_2 = c$$

$$x_1x_2 = \frac{c}{a}$$

$$-a(x_1 + x_2) = b$$

$$x_1 + x_2 = -\frac{b}{a}$$

Proposition (Vieta's formulas)

Let $ax^2 + bx + c$ be a quadratic functions with zeros x_1 and x_2 . Then:

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - axx_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

$$ax^2 - a(x_2 + x_1)x + ax_1x_2 = ax^2 + bx + c$$

$$ax_1x_2 = c$$

$$x_1x_2 = \frac{c}{a}$$

$$-a(x_1 + x_2) = b$$

$$x_1 + x_2 = -\frac{b}{a}$$

The last two formulas are called Vieta's formulas (after François Viète (1540-1603), Latinized name: Franciscus Vieta).

Theorem

The quadratic $ax^2 + bx + c$ factors as follows.

$$ax^2 + bx + c = a(x - x_1)(x - x_2),$$

where x_1 and x_2 are the roots of the quadratic, given by:

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Theorem

The quadratic $ax^2 + bx + c$ factors as follows.

$$ax^2 + bx + c = a(x - x_1)(x - x_2),$$

where x_1 and x_2 are the roots of the quadratic, given by:

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Theorem

The quadratic $ax^2 + bx + c$ factors as follows.

$$ax^2 + bx + c = a(x - x_1)(x - x_2),$$

where x_1 and x_2 are the roots of the quadratic, given by:

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example

Factor the polynomial. If possible, guess the factorization. $3x^2 + 8x - 11$

$$3x^2 + 8x - 11$$

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = ($$
 ?)(?)

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + ?)(x + ?)$$

$$3x^2 + 8x - 11 = (3x + p)(x + q)$$

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + ?)(x + ?)$$

$$3x^{2} + 8x - 11 = (3x + p)(x + q)$$
$$= 3x^{2} + 3xq + px + pq$$

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + ?)(x + ?)$$

$$3x^{2} + 8x - 11 = (3x + p)(x + q)$$

= $3x^{2} + 3xq + px + pq$

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + ?)(x + ?)$$

$$3x^2 + 8x - 11 = (3x + p)(x + q)$$

= $3x^2 + 3xq + px + pq$

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + ?)(x + ?)$$

$$3x^2 + 8x - 11 = (3x + p)(x + q)$$

= $3x^2 + 3xq + px + pq$

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + ?)(x + ?)$$

$$3x^{2} + 8x - 11 = (3x + p)(x + q)$$

$$= 3x^{2} + 3xq + px + pq$$

$$= 3x^{2} + x(3q + p) + pq$$

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + ?)(x + ?)$$

$$3x^{2} + 8x - 11 = (3x + p)(x + q)$$

$$= 3x^{2} + 3xq + px + pq$$

$$= 3x^{2} + x(3q + p) + pq$$

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + ?)(x + ?)$$

$$3x^{2} + 8x - 11 = (3x + p)(x + q)$$

= $3x^{2} + 3xq + px + pq$
= $3x^{2} + x(3q + p) + pq$
This means that :
 $8 = 3q + p$

$$8 = 3q + p$$
$$-11 = pq$$

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + ?)(x + ?)$$

If there is a factorization using integers, it should be of the form

$$3x^{2} + 8x - 11 = (3x + p)(x + q)$$

$$= 3x^{2} + 3xq + px + pq$$

$$= 3x^{2} + x(3q + p) + pq$$
This means that:
$$8 = 3q + p$$

$$- 11 = pq$$

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + ?)(x + ?)$$

If there is a factorization using integers, it should be of the form

$$3x^{2} + 8x - 11 = (3x + p)(x + q)$$

$$= 3x^{2} + 3xq + px + pq$$

$$= 3x^{2} + x(3q + p) + pq$$
(Viota's formulas) This magnetic that

(Vieta's formulas) This means that :

$$8 = 3q + p$$
$$-11 = pq$$

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + ?)(x + ?)$$

If there is a factorization using integers, it should be of the form

$$3x^{2} + 8x - 11 = (3x + p)(x + q)$$

$$= 3x^{2} + 3xq + px + pq$$

$$= 3x^{2} + x(3q + p) + pq$$

(Vieta's formulas) This means that :

$$8 = 3q + p$$
$$-11 = pq$$

p, q must be divisors of 11: $\pm 1, \pm 11$

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + ?)(x + ?)$$

If there is a factorization using integers, it should be of the form

$$3x^{2} + 8x - 11 = (3x + p)(x + q)$$

$$= 3x^{2} + 3xq + px + pq$$

$$= 3x^{2} + x(3q + p) + pq$$

(Vieta's formulas) This means that :

$$8 = 3q + p$$
$$-11 = pq$$

p, q must be divisors of 11: $\pm 1, \pm 11$

$$p = ?$$
 $q = ?$

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + 11)(x - 1)$$

If there is a factorization using integers, it should be of the form

$$3x^2 + 8x - 11 = (3x + p)(x + q)$$

= $3x^2 + 3xq + px + pq$
= $3x^2 + x(3q + p) + pq$
(Vieta's formulas) This means that :

$$8 = 3q + p$$

$$-11 = pq$$

$$p, q \text{ must be divisors of } 11: \pm 1, \pm 11$$

$$p = 11$$
$$q = -1$$

Todor Milev Lecture 15 2020

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + 11)(x - 1)$$

= $3(x - (-\frac{11}{3}))(x - 1)$

If there is a factorization using integers, it should be of the form

$$3x^{2} + 8x - 11 = (3x + p)(x + q)$$

$$= 3x^{2} + 3xq + px + pq$$

$$= 3x^{2} + x(3q + p) + pq$$

$$8 = 3q + p$$

$$-11 = pq$$

$$p, q \text{ must be divisors of } 11: \pm 1, \pm 11$$

$$\begin{array}{ccc} p & = & 11 \\ q & = & -1 \end{array}$$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + 11)(x - 1)$$

= $3(x - (-\frac{11}{3}))(x - 1)$

If there is a factorization using integers, it should be of the form

$$3x^{2} + 8x - 11 = (3x + p)(x + q)$$

$$= 3x^{2} + 3xq + px + pq$$

$$= 3x^{2} + x(3q + p) + pq$$

$$8 = 3q + p$$

$$-11 = pq$$

$$p, q \text{ must be divisors of } 11: \pm 1, \pm 11$$

$$\begin{array}{ccc} p & = & 11 \\ q & = & -1 \end{array}$$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + 11)(x - 1)$$

= $3(x - (-\frac{11}{3}))(x - 1)$

If there is a factorization using integers, it should be of the form

$$3x^{2} + 8x - 11 = (3x + p)(x + q)$$

$$= 3x^{2} + 3xq + px + pq$$

$$= 3x^{2} + x(3q + p) + pq$$

$$8 = 3q + p$$

$$-11 = pq$$

$$p, q \text{ must be divisors of 11: } \pm 1, \pm 11$$

$$p = 11$$
$$q = -1$$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

Factor the polynomial. If possible, guess the factorization.

$$3x^{2} + 8x - 11 = (3x + 11)(x - 1)$$
$$= 3(x - (-\frac{11}{3}))(x - 1)$$

If there is a factorization using integers, it should be of the form

$$3x^{2} + 8x - 11 = (3x + p)(x + q)$$

$$= 3x^{2} + 3xq + px + pq$$

$$= 3x^{2} + x(3q + p) + pq$$

$$8 = 3q + p$$

$$-11 = pq$$

$$p, q \text{ must be divisors of 11: } \pm 1, \pm 11$$

$$\begin{array}{ccc} p & = & 11 \\ q & = & -1 \end{array}$$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + 11)(x - 1)$$

= $3(x - (-\frac{11}{3}))(x - 1)$

If there is a factorization using integers, it should be of the form

$$3x^{2} + 8x - 11 = (3x + p)(x + q)$$

$$= 3x^{2} + 3xq + px + pq$$

$$= 3x^{2} + x(3q + p) + pq$$

$$8 = 3q + p$$

$$-11 = pq$$

$$p, q \text{ must be divisors of } 11: \pm 1, \pm 11$$

$$\begin{array}{ccc} p & = & 11 \\ q & = & -1 \end{array}$$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + 11)(x - 1)$$

= $3(x - (-\frac{11}{3}))(x - 1)$

• What if we can't guess the factorization?

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$
, where $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Example

$$3x^2 + 8x - 11 = (3x + 11)(x - 1)$$

= $3(x - (-\frac{11}{3}))(x - 1)$

- What if we can't guess the factorization?
- Use the formulas for x_1, x_2 .

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$
, where $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Example

$$3x^2 + 8x - 11 = (3x + 11)(x - 1)$$

= $3(x - (-\frac{11}{3}))(x - 1)$

- What if we can't guess the factorization?
- Use the formulas for x_1, x_2 .

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 3 \cdot (-11)}}{2 \cdot 3}$$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$
, where $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Example

$$3x^{2} + 8x - 11 = (3x + 11)(x - 1)$$
$$= 3(x - (-\frac{11}{3}))(x - 1)$$

- What if we can't guess the factorization?
- Use the formulas for x_1, x_2 .

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 3 \cdot (-11)}}{2 \cdot 3}$$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$
, where $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Example

$$3x^2 + 8x - 11 = (3x + 11)(x - 1)$$

= $3(x - (-\frac{11}{3}))(x - 1)$

- What if we can't guess the factorization?
- Use the formulas for x_1, x_2 .

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 3 \cdot (-11)}}{2 \cdot 3}$$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$
, where $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Example

$$3x^2 + 8x - 11 = (3x + 11)(x - 1)$$

= $3(x - (-\frac{11}{3}))(x - 1)$

- What if we can't guess the factorization?
- Use the formulas for x_1, x_2 .

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 3 \cdot (-11)}}{2 \cdot 3}$$
$$= \frac{-8 \pm \sqrt{64 + 132}}{6}$$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$
, where $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Example

$$3x^2 + 8x - 11 = (3x + 11)(x - 1)$$

= $3(x - (-\frac{11}{3}))(x - 1)$

- What if we can't guess the factorization?
- Use the formulas for x_1, x_2 .

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 3 \cdot (-11)}}{2 \cdot 3}$$
$$= \frac{-8 \pm \sqrt{64 + 132}}{6}$$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$
, where $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Example

$$3x^2 + 8x - 11 = (3x + 11)(x - 1)$$

= $3(x - (-\frac{11}{3}))(x - 1)$

- What if we can't guess the factorization?
- Use the formulas for x_1, x_2 .

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 3 \cdot (-11)}}{2 \cdot 3}$$
$$= \frac{-8 \pm \sqrt{64 + 132}}{6}$$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$
, where $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Example

$$3x^2 + 8x - 11 = (3x + 11)(x - 1)$$

= $3(x - (-\frac{11}{3}))(x - 1)$

- What if we can't guess the factorization?
- Use the formulas for x_1, x_2 .

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 3 \cdot (-11)}}{2 \cdot 3}$$
$$= \frac{-8 \pm \sqrt{64 + 132}}{6} = \frac{-8 \pm \sqrt{196}}{6}$$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$
, where $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Example

$$3x^2 + 8x - 11 = (3x + 11)(x - 1)$$

= $3(x - (-\frac{11}{3}))(x - 1)$

- What if we can't guess the factorization?
- Use the formulas for x_1, x_2 .

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^{2} - 4 \cdot 3 \cdot (-11)}}{2 \cdot 3}$$
$$= \frac{-8 \pm \sqrt{64 + 132}}{6} = \frac{-8 \pm \sqrt{196}}{6}$$
$$= \frac{-8 \pm 14}{6}$$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$
, where $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + 11)(x - 1)$$

= $3(x - (-\frac{11}{3}))(x - 1)$

- What if we can't guess the factorization?
- Use the formulas for x_1, x_2 .

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^{2} - 4 \cdot 3 \cdot (-11)}}{2 \cdot 3}$$

$$= \frac{-8 \pm \sqrt{64 + 132}}{6} = \frac{-8 \pm \sqrt{196}}{6}$$

$$= \frac{-8 \pm 14}{6} = \begin{cases} \frac{-8 + 14}{6} \\ \frac{-8 - 14}{6} \end{cases}$$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$
, where $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + 11)(x - 1)$$

= $3(x - (-\frac{11}{3}))(x - 1)$

- What if we can't guess the factorization?
- Use the formulas for x_1, x_2 .

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^{2} - 4 \cdot 3 \cdot (-11)}}{2 \cdot 3}$$

$$= \frac{-8 \pm \sqrt{64 + 132}}{6} = \frac{-8 \pm \sqrt{196}}{6}$$

$$= \frac{-8 \pm 14}{6} = \begin{cases} \frac{-8 + 14}{6} = \frac{6}{6} = 1\\ \frac{-8 - 14}{6} \end{cases}$$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$
, where $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + 11)(x - 1)$$

= $3(x - (-\frac{11}{3}))(x - 1)$

- What if we can't guess the factorization?
- Use the formulas for x_1, x_2 .

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^{2} - 4 \cdot 3 \cdot (-11)}}{2 \cdot 3}$$

$$= \frac{-8 \pm \sqrt{64 + 132}}{6} = \frac{-8 \pm \sqrt{196}}{6}$$

$$= \frac{-8 \pm 14}{6} = \begin{cases} \frac{-8 + 14}{6} = \frac{6}{6} = 1\\ \frac{-8 - 14}{6} = -\frac{22}{6} = -\frac{11}{3} \end{cases}$$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$
, where $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + 11)(x - 1)$$

= $3(x - (-\frac{11}{3}))(x - 1)$

- What if we can't guess the factorization?
- Use the formulas for x_1, x_2 .

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^{2} - 4 \cdot 3 \cdot (-11)}}{2 \cdot 3}$$

$$= \frac{-8 \pm \sqrt{64 + 132}}{6} = \frac{-8 \pm \sqrt{196}}{6}$$

$$= \frac{-8 \pm 14}{6} = \begin{cases} \frac{-8 + 14}{6} = \frac{6}{6} = 1\\ \frac{-8 - 14}{6} = -\frac{22}{6} = -\frac{11}{3} \end{cases}$$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$
, where $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^{2} + 8x - 11 = (3x + 11)(x - 1)$$
$$= 3(x - (-\frac{11}{3}))(x - 1)$$

- What if we can't guess the factorization?
- Use the formulas for x_1, x_2 .

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^{2} - 4 \cdot 3 \cdot (-11)}}{2 \cdot 3}$$

$$= \frac{-8 \pm \sqrt{64 + 132}}{6} = \frac{-8 \pm \sqrt{196}}{6}$$

$$= \frac{-8 \pm 14}{6} = \begin{cases} \frac{-8 + 14}{6} = \frac{6}{6} = 1\\ \frac{-8 - 14}{6} = -\frac{22}{6} = -\frac{11}{3} \end{cases}$$

Proposition (Vieta's formulas)

$$a(x-x_1)(x-x_2) = ax^2 + bx + c$$

Proposition (Vieta's formulas)

Let $ax^2 + bx + c$ be a quadratic functions with zeros x_1 and x_2 . Then:

$$\frac{a(x-x_1)(x-x_2)}{ax^2-axx_2-ax_1x+a(-x_1)(-x_2)} = \frac{ax^2+bx+c}{ax^2+bx+c}$$

Proposition (Vieta's formulas)

Let $ax^2 + bx + c$ be a quadratic functions with zeros x_1 and x_2 . Then:

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - axx_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

Proposition (Vieta's formulas)

Let $ax^2 + bx + c$ be a quadratic functions with zeros x_1 and x_2 . Then:

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - axx_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

Proposition (Vieta's formulas)

Let $ax^2 + bx + c$ be a quadratic functions with zeros x_1 and x_2 . Then:

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - axx_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

Proposition (Vieta's formulas)

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - ax x_2 - ax_1 x + a(-x_1)(-x_2) = ax^2 + bx + c$$

$$ax^2 - a(x_2 + x_1)x + ax_1 x_2 = ax^2 + bx + c$$

Proposition (Vieta's formulas)

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - axx_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

$$ax^2 - a(x_2 + x_1)x + ax_1x_2 = ax^2 + bx + c$$

Proposition (Vieta's formulas)

Let $ax^2 + bx + c$ be a quadratic functions with zeros x_1 and x_2 . Then:

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - ax \frac{x_2}{2} - ax_1 x + a(-x_1)(-x_2) = ax^2 + bx + c$$

$$ax^2 - a(\frac{x_2}{2} + \frac{x_1}{2})x + ax_1 x_2 = ax^2 + bx + c$$

Proposition (Vieta's formulas)

Let $ax^2 + bx + c$ be a quadratic functions with zeros x_1 and x_2 . Then:

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - axx_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

$$ax^2 - a(x_2 + x_1)x + ax_1x_2 = ax^2 + bx + c$$

Proposition (Vieta's formulas)

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - axx_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

$$ax^2 - a(x_2 + x_1)x + ax_1x_2 = ax^2 + bx + c$$

$$ax_1x_2 = c$$

Proposition (Vieta's formulas)

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - axx_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

$$ax^2 - a(x_2 + x_1)x + ax_1x_2 = ax^2 + bx + c$$

$$ax_1x_2 = c$$

$$x_1x_2 = \frac{c}{a}$$

Proposition (Vieta's formulas)

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - axx_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

$$ax^2 - a(x_2 + x_1)x + ax_1x_2 = ax^2 + bx + c$$

$$ax_1x_2 = c$$

$$x_1x_2 = \frac{c}{a}$$

$$-a(x_1 + x_2) = b$$

Proposition (Vieta's formulas)

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - axx_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

$$ax^2 - a(x_2 + x_1)x + ax_1x_2 = ax^2 + bx + c$$

$$ax_1x_2 = c$$

$$x_1x_2 = \frac{c}{a}$$

$$-a(x_1 + x_2) = b$$

$$x_1 + x_2 = -\frac{b}{a}$$

Quadratic Functions Factoring quadratics 19/27

Proposition (Vieta's formulas)

Let $ax^2 + bx + c$ be a quadratic functions with zeros x_1 and x_2 . Then:

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - axx_2 - ax_1x + a(-x_1)(-x_2) = ax^2 + bx + c$$

$$ax^2 - a(x_2 + x_1)x + ax_1x_2 = ax^2 + bx + c$$

$$ax_1x_2 = c$$

$$x_1x_2 = \frac{c}{a}$$

$$-a(x_1 + x_2) = b$$

$$x_1 + x_2 = -\frac{b}{a}$$

The last two formulas are called Vieta's formulas (after François Viète (1540-1603), Latinized name: Franciscus Vieta).

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

$$x_1 + x_2 = -\frac{b}{a}$$

$$x_1x_2 = \frac{c}{a}$$
Vieta's formulas

$$x^2 + 5x + 6$$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

$$x_1 + x_2 = -\frac{b}{a}$$

$$x_1x_2 = \frac{c}{a}$$
Vieta's formulas

Factor the quadratic.

$$x^2 + 5x + 6 = (x + ?)(x + ?)$$

• The product of the two roots: $x_1x_2 = 6$.

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

$$x_1 + x_2 = -\frac{b}{a}$$

$$x_1x_2 = \frac{c}{a}$$
Vieta's formulas

$$x^2 + 5x + 6 = (x + ?)(x + ?)$$

- The product of the two roots: $x_1x_2 = 6$.
- The divisors of 6 are $\pm 1, \pm 2, \pm 3, \pm 6$.

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

$$x_1 + x_2 = -\frac{b}{a}$$

$$x_1x_2 = \frac{c}{a}$$
Vieta's formulas

$$x^2 + 5x + 6 = (x + ?)(x + ?)$$

- The product of the two roots: $x_1x_2 = 6$.
- The divisors of 6 are ± 1 , ± 2 , ± 3 , ± 6 .
- Therefore the pair x_1, x_2 is $\pm 1, \pm 6$ or $\pm 2, \pm 3$.

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

$$x_1 + x_2 = -\frac{b}{a}$$

$$x_1x_2 = \frac{c}{a}$$
Vieta's formulas

$$x^2 + 5x + 6 = (x + ?)(x + ?)$$

- The product of the two roots: $x_1x_2 = 6$.
- The divisors of 6 are $\pm 1, \pm 2, \pm 3, \pm 6$.
- Therefore the pair x_1, x_2 is $\pm 1, \pm 6$ or $\pm 2, \pm 3$.

Quadratic Functions Factoring quadratics 20/27

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

$$x_1 + x_2 = -\frac{b}{a}$$

$$x_1x_2 = \frac{c}{a}$$
Vieta's formulas

Example

Factor the quadratic.

$$x^2 + 5x + 6 = (x + ?)(x + ?)$$

- The product of the two roots: $x_1x_2 = 6$.
- The divisors of 6 are $\pm 1, \pm 2, \pm 3, \pm 6$.
- Therefore the pair x_1, x_2 is $\pm 1, \pm 6$ or $\pm 2, \pm 3$.
- The sum of the two roots: $x_1 + x_2 = -5$

Quadratic Functions Factoring quadratics 20/27

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

$$x_1 + x_2 = -\frac{b}{a}$$

$$x_1x_2 = \frac{c}{a}$$
Vieta's formulas

Example

Factor the quadratic.

$$x^2 + 5x + 6 = (x + ?)(x + ?)$$

- The product of the two roots: $x_1x_2 = 6$.
- The divisors of 6 are $\pm 1, \pm 2, \pm 3, \pm 6$.
- Therefore the pair x_1, x_2 is $\pm 1, \pm 6$ or $\pm 2, \pm 3$.
- The sum of the two roots: $x_1 + x_2 = -5$

Quadratic Functions Factoring quadratics 20/27

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

$$x_1 + x_2 = -\frac{b}{a}$$

$$x_1x_2 = \frac{c}{a}$$
Vieta's formulas

Example

Factor the quadratic.

$$x^2 + 5x + 6 = (x + 2)(x + 3)$$

- The product of the two roots: $x_1x_2 = 6$.
- The divisors of 6 are $\pm 1, \pm 2, \pm 3, \pm 6$.
- Therefore the pair x_1, x_2 is $\pm 1, \pm 6$ or $\pm 2, \pm 3$.
- The sum of the two roots: $x_1 + x_2 = -5$

$$ax^2 + bx + c = a(x - x_1)(x - x_2),$$
 $x_1x_2 = \frac{a}{a}b$
 $x_1 + x_2 = -\frac{b}{a}$

$$x^2 + 3x + 1$$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic.

$$x^2 + 3x + 1 = (x + ?)$$

• The product of the two roots: $x_1x_2 = 1$.

$$ax^2 + bx + c = a(x - x_1)(x - x_2),$$
 $\begin{vmatrix} x_1x_2 &= \frac{c}{a} \\ x_1 + x_2 &= -\frac{b}{a} \end{vmatrix}$

$$x^2 + 3x + 1 = \left(x + ? \right) \left(x + ?\right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1$, $x_2 = 1$ and $x_1 = -1$, $x_2 = -1$.

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

$$x^2 + 3x + 1 = \left(x + ? \right) \left(x + ? \right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.

•
$$(x-1)(x-1)$$

 $(x+1)(x+1)$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

$$x^2 + 3x + 1 = \left(x + ? \right) \left(x + ?\right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.

•
$$(x-1)(x-1)$$

 $(x+1)(x+1)$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic.

$$x^2 + 3x + 1 = \left(x + ? \right) \left(x + ? \right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.

•
$$(x-1)(x-1) = (x-1)^2 = x^2 - 2x + 1$$

 $(x+1)(x+1) = (x+1)^2 = x^2 + 2x + 1$ both don't work.

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic.

$$x^2 + 3x + 1 = \left(x + ? \right) \left(x + ? \right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1$, $x_2 = 1$ and $x_1 = -1$, $x_2 = -1$.
- $(x-1)(x-1) = (x-1)^2 = x^2 2x + 1$ $(x+1)(x+1) = (x+1)^2 = x^2 + 2x + 1$ both don't work.
- No easy factorization; must use quadratic formula.

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic.

$$x^2 + 3x + 1 = \left(x + ? \right) \left(x + ? \right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.
- $(x-1)(x-1) = (x-1)^2 = x^2 2x + 1$ $(x+1)(x+1) = (x+1)^2 = x^2 + 2x + 1$ both don't work.
- → No easy factorization; must use quadratic formula.

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic.

$$x^2 + 3x + 1 = \left(x + ? \right) \left(x + ? \right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.
- $(x-1)(x-1) = (x-1)^2 = x^2 2x + 1$ $(x+1)(x+1) = (x+1)^2 = x^2 + 2x + 1$ both don't work.
- → No easy factorization; must use quadratic formula.

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic.

$$x^2 + 3x + 1 = (x + ?)$$
 $(x + ?)$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.
- $(x-1)(x-1) = (x-1)^2 = x^2 2x + 1$ $(x+1)(x+1) = (x+1)^2 = x^2 + 2x + 1$ both don't work.
- → No easy factorization; must use quadratic formula.

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic.

$$x^2 + 3x + 1 = \left(x + ? \right) \left(x + ? \right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.
- $(x-1)(x-1) = (x-1)^2 = x^2 2x + 1$ $(x+1)(x+1) = (x+1)^2 = x^2 + 2x + 1$ both don't work.
- No easy factorization; must use quadratic formula.

$$\Rightarrow \text{ No easy factorization; must use quadratic formula.}$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

$$= \frac{-3 \pm \sqrt{5}}{2}$$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic.

$$x^2 + 3x + 1 = (x + ?)$$
 $(x + ?)$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.
- $(x-1)(x-1) = (x-1)^2 = x^2 2x + 1$ $(x+1)(x+1) = (x+1)^2 = x^2 + 2x + 1$ both don't work.
- No easy factorization; must use quadratic formula.

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

$$= \frac{-3 \pm \sqrt{5}}{2}$$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic.

$$x^2 + 3x + 1 = \left(x - \left(\frac{-3 + \sqrt{5}}{2}\right)\right) \left(x - \left(\frac{-3 - \sqrt{5}}{2}\right)\right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.
- $(x-1)(x-1) = (x-1)^2 = x^2 2x + 1$ $(x+1)(x+1) = (x+1)^2 = x^2 + 2x + 1$ both don't work.
- No easy factorization; must use quadratic formula.

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

$$= \frac{-3 \pm \sqrt{5}}{2}$$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $x_{1} + x_{2} = -\frac{b}{a}$

Factor the quadratic, using complex numbers if needed.

$$x^2 + x + 1$$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic, using complex numbers if needed.

$$x^2 + x + 1 = \left(x + ?\right) \left(x + ?\right)$$

• The product of the two roots: $x_1x_2 = 1$.

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic, using complex numbers if needed.

$$x^2 + x + 1 = \left(x + ? \right) \left(x + ? \right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic, using complex numbers if needed.

$$x^2 + x + 1 = \left(x + ? \right) \left(x + ?\right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1$, $x_2 = 1$ and $x_1 = -1$, $x_2 = -1$.

•
$$(x-1)(x-1)$$

 $(x+1)(x+1)$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic, using complex numbers if needed.

$$x^2 + x + 1 = \left(x + ? \right) \left(x + ?\right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.

•
$$(x-1)(x-1)$$

 $(x+1)(x+1)$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic, using complex numbers if needed.

$$x^2 + x + 1 = \left(x + ? \right) \left(x + ? \right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.
- $(x-1)(x-1) = (x-1)^2 = x^2 2x + 1$ $(x+1)(x+1) = (x+1)^2 = x^2 + 2x + 1$ both don't work.

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic, using complex numbers if needed.

$$x^2 + x + 1 = \left(x + ? \right) \left(x + ? \right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.
- $(x-1)(x-1) = (x-1)^2 = x^2 2x + 1$ $(x+1)(x+1) = (x+1)^2 = x^2 + 2x + 1$ both don't work.
- → No easy factorization; must use quadratic formula.

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic, using complex numbers if needed.

$$x^2 + x + 1 = \left(x + ? \right) \left(x + ? \right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.
- $(x-1)(x-1) = (x-1)^2 = x^2 2x + 1$ $(x+1)(x+1) = (x+1)^2 = x^2 + 2x + 1$ both don't work.
- ◆ No easy factorization; must use quadratic formula.

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic, using complex numbers if needed.

$$x^2 + x + 1 = \left(x + ? \right) \left(x + ? \right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.
- $(x-1)(x-1) = (x-1)^2 = x^2 2x + 1$ $(x+1)(x+1) = (x+1)^2 = x^2 + 2x + 1$ both don't work.
- No easy factorization; must use quadratic formula.

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic, using complex numbers if needed.

$$x^2 + x + 1 = \left(x + ? \right) \left(x + ?\right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.
- $(x-1)(x-1) = (x-1)^2 = x^2 2x + 1$ $(x+1)(x+1) = (x+1)^2 = x^2 + 2x + 1$ both don't work.
- No easy factorization; must use quadratic formula.

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic, using complex numbers if needed.

$$x^2 + x + 1 = \left(x + ? \right) \left(x + ? \right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.
- $(x-1)(x-1) = (x-1)^2 = x^2 2x + 1$ $(x+1)(x+1) = (x+1)^2 = x^2 + 2x + 1$ both don't work.
- No easy factorization; must use quadratic formula.

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{\frac{2a}{2}} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

$$= \frac{-1 \pm \sqrt{-3}}{2}$$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic, using complex numbers if needed.

$$x^2 + x + 1 = \left(x + ? \right) \left(x + ? \right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.
- $(x-1)(x-1) = (x-1)^2 = x^2 2x + 1$ $(x+1)(x+1) = (x+1)^2 = x^2 + 2x + 1$ both don't work.
- ullet \Rightarrow No easy factorization; must use quadratic formula.

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{\frac{2a}{2}} = \frac{-1 \pm \sqrt{1^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$
$$= \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm \sqrt{3}i}{2}$$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$

$$\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$$

Factor the quadratic, using complex numbers if needed.

$$x^2 + x + 1 = \left(x + ?\right) \left(x + ?\right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.
- $(x-1)(x-1) = (x-1)^2 = x^2 2x + 1$ $(x+1)(x+1) = (x+1)^2 = x^2 + 2x + 1$ both don't work.
- ullet \Rightarrow No easy factorization; must use quadratic formula.

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{\frac{2a}{2}} = \frac{-1 \pm \sqrt{1^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$
$$= \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm \sqrt{3}i}{2}$$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic, using complex numbers if needed.

$$x^{2} + x + 1 = \left(x - \left(\frac{-1 + \sqrt{3}i}{2}\right)\right) \left(x - \left(\frac{-1 - \sqrt{3}i}{2}\right)\right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.
- $(x-1)(x-1) = (x-1)^2 = x^2 2x + 1$ $(x+1)(x+1) = (x+1)^2 = x^2 + 2x + 1$ both don't work.
- ullet \Rightarrow No easy factorization; must use quadratic formula.

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{\frac{2a}{2}} = \frac{-1 \pm \sqrt{1^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$
$$= \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm \sqrt{3}i}{2}$$

• Find the vertex of the parabola.

Todor Milev Lecture 15 2020

- Find the vertex of the parabola.
- Find the *y* intercept.

- Find the vertex of the parabola.
- Find the y intercept.
- Find the x intercept(s) if any.

- Find the vertex of the parabola.
- Find the *y* intercept.
- Find the x intercept(s) if any.

 Select (or re-select) axes scale so all important points found in the preceding items fit in the plot.

- Find the vertex of the parabola.
- Find the y intercept.
- Find the x intercept(s) if any.

- Find the vertex of the parabola.
- Find the y intercept.
- Find the x intercept(s) if any.

 If a > 0 your parabola should open upwards, if a < 0 your parabola should open downwards

- Find the vertex of the parabola.
- Find the y intercept.
- Find the x intercept(s) if any.

- Plot the parabola freehand, making sure that the parabola passes through all special points you found in the preceding items.
- If a > 0 your parabola should open upwards, if a < 0 your parabola should open downwards.
- For |a| > 1 we should aim to draw the graph steeper than $a = x^2$, for |a| < 1 we should aim to draw the graph flatter than $a = x^2$.

$$X =$$

$$y = 2$$

Plot roughly by hand the graph of $f(x) = \frac{2x^2 + 7x + 2}{2x^2 + 7x + 2}$

$$f(x) = -\frac{2}{3}x^2 + 7x + 3.$$

• The vertex of the parabola is given by:

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})}$$

$$y = 2$$

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})}$$

$$y = ?$$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

• The vertex of the parabola is given by:

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})}$$

$$y = 7$$

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = ?$$

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = ?$$

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = ?$$

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = ?$$

Plot roughly by hand the graph of
$$f(x) = -\frac{2}{3}x^2 + 7x + 3$$
.

• The vertex of the parabola is given by:

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

 $y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + \frac{7}{3}x + 3$.

• The vertex of the parabola is given by:

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4(-\frac{2}{3})3}{4(-\frac{2}{3})}$$

Quadratic Functions

Plot roughly by hand the graph of
$$f(x) = -\frac{2}{3}x^2 + 7x + 3$$
.

• The vertex of the parabola is given by:

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4(-\frac{2}{3})3}{4(-\frac{2}{3})}$$

Quadratic Functions

Plot roughly by hand the graph of
$$f(x) = -\frac{2}{3}x^2 + 7x + 3$$
.

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4(-\frac{2}{3})}{4(-\frac{2}{3})}$$

Quadratic Functions

Plot roughly by hand the graph of
$$f(x) = -\frac{2}{3}x^2 + 7x + 3$$
.

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4(-\frac{2}{3})3}{4(-\frac{2}{3})} = \frac{49 + 8}{\frac{8}{3}}$$

Quadratic Functions

• The vertex of the parabola is given by:

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4(-\frac{2}{3})3}{4(-\frac{2}{3})} = \frac{49 + 8}{\frac{8}{3}}$$

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f\left(-\frac{b}{2a}\right) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4\left(-\frac{2}{3}\right)\mathcal{S}}{4\left(-\frac{2}{3}\right)} = \frac{49 + 8}{\frac{8}{3}}$$

Quadratic Functions

Plot roughly by hand the graph of
$$f(x) = -\frac{2}{3}x^2 + 7x + 3$$
.

• The vertex of the parabola is given by:

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4(-\frac{2}{3})3}{4(-\frac{2}{3})} = \frac{49 + 8}{\frac{8}{3}}$$

Quadratic Functions

Plot roughly by hand the graph of
$$f(x) = -\frac{2}{3}x^2 + 7x + 3$$
.

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f\left(-\frac{b}{2a}\right) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4\left(-\frac{2}{3}\right)3}{4\left(-\frac{2}{3}\right)} = \frac{49 + 8}{\frac{8}{3}}$$

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4(-\frac{2}{3})3}{4(-\frac{2}{3})} = \frac{49 + 8}{\frac{8}{3}}$$

• The vertex of the parabola is given by:

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f\left(-\frac{b}{2a}\right) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4\left(-\frac{2}{3}\right)3}{4(-\frac{2}{3})} = \frac{49 + 8}{\frac{8}{3}}$$

$$= \frac{3 \cdot \frac{57}{8}}{\frac{1}{8}}$$

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f\left(-\frac{b}{2a}\right) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4\left(-\frac{2}{3}\right)\mathcal{S}}{4\left(-\frac{2}{3}\right)} = \frac{49 + 8}{\frac{8}{3}}$$

$$= \frac{3 \cdot 57}{8}$$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

• The vertex of the parabola is given by:

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f\left(-\frac{b}{2a}\right) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4\left(-\frac{2}{3}\right)\cancel{3}}{4\left(-\frac{2}{3}\right)} = \frac{49 + 8}{\frac{8}{3}}$$

$$= \frac{3 \cdot 57}{8} = \frac{171}{8}.$$

Quadratic Functions

Vertex at: $(\frac{21}{4}, \frac{171}{8})$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

• The vertex of the parabola is given by:

The vertex of the parabola is given by:

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4(-\frac{2}{3})3}{4(-\frac{2}{3})} = \frac{49 + 8}{\frac{8}{3}}$$

$$= \frac{3 \cdot 57}{8} = \frac{171}{8}.$$

Vertex at: $(\frac{21}{4}, \frac{171}{8})$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

• The vertex of the parabola is given by:

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4(-\frac{2}{3})3}{4(-\frac{2}{3})} = \frac{49 + 8}{\frac{8}{3}}$$

$$= \frac{3 \cdot 57}{8} = \frac{171}{8}.$$

24/27

• The *y*-intercept is f(0) = ?.

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3 Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

• The vertex of the parabola is given by:

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4(-\frac{2}{3})3}{4(-\frac{2}{3})} = \frac{49 + 8}{\frac{8}{3}}$$

$$= \frac{3 \cdot 57}{8} = \frac{171}{8}.$$

• The *y*-intercept is f(0) = 3.

• The *x* intercepts are given by the solutions of $-\frac{2}{3}x^2 + 7x + 3 = 0$

24/27

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3

• The x intercepts are given by the solutions of

$$-\frac{2}{3}x^2 + 7x + 3 = 0$$
$$-2x^2 + 21x + 9 = 0$$

.3

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3

.3

Example

• The x intercepts are given by the solutions of

$$-\frac{2}{3}x^2 + 7x + 3 = 0$$

$$-2x^2 + 21x + 9 = 0$$

$$x = ?$$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3

.3

Example

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

• The x intercepts are given by the solutions of

$$-\frac{2}{3}x^{2} + 7x + 3 = 0$$

$$-2x^{2} + 21x + 9 = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

Todor Milev Lecture 15 2020

Vertex at: $(\frac{21}{4}, \frac{171}{8})$ y-intercept at y = 3 Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$\begin{array}{c|c}
-\frac{2}{3}x^2 + 7x + 3 = 0 & | \cdot 3 \\
-2x^2 + 21x + 9 = 0 & | \\
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\
= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)}
\end{array}$$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

• The x intercepts are given by the solutions of

The x intercepts are given by the solution
$$-\frac{2}{3}x^2 + 7x + 3 = 0$$

$$-2x^2 + 21x + 9 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)}$$

Todor Milev Lecture 15 2020

Vertex at: $(\frac{21}{4}, \frac{171}{8})$ y-intercept at y = 3 Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$\begin{array}{c|c}
-\frac{2}{3}x^2 + 7x + 3 = 0 & | \cdot 3 \\
-2x^2 + 21x + 9 = 0 & | \\
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\
= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)}
\end{array}$$

Vertex at: $(\frac{21}{4}, \frac{171}{8})$ y-intercept at y = 3 Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$\begin{array}{c|c}
-\frac{2}{3}x^2 + 7x + 3 = 0 & | \cdot 3 \\
-2x^2 + 21x + 9 = 0 & \\
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} & \\
= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)} & \\
= \frac{-21 \pm \sqrt{441 + 72}}{-4}
\end{array}$$

Vertex at: $(\frac{21}{4}, \frac{171}{8})$ y-intercept at y = 3 Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$\begin{vmatrix}
-\frac{2}{3}x^2 + 7x + 3 = 0 \\
-2x^2 + 21x + 9 = 0
\end{vmatrix}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)}$$

$$= \frac{-21 \pm \sqrt{441 + 72}}{-4}$$

Vertex at: $(\frac{21}{4}, \frac{171}{8})$ y-intercept at y = 3 Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$\begin{vmatrix}
-\frac{2}{3}x^2 + 7x + 3 & | & \cdot 3 \\
-2x^2 + 21x + 9 & | & \cdot 3
\end{vmatrix}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)}$$

$$= \frac{-21 \pm \sqrt{441 + 72}}{-4}$$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$\begin{array}{c|c}
-\frac{2}{3}x^2 + 7x + 3 = 0 & | \cdot 3 \\
-2x^2 + 21x + 9 = 0 & | \\
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} & | \\
= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{4} & | \\
= \frac{21 \pm \sqrt{513}}{4} & | \\
\end{array}$$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$\begin{array}{c|c}
-\frac{2}{3}x^2 + 7x + 3 = 0 & | \cdot 3 \\
-2x^2 + 21x + 9 = 0 & | \\
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} & | \\
= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{-4} & | \\
= \frac{21 \mp \sqrt{513}}{4} & | \\
\end{array}$$

Vertex at: $(\frac{21}{4}, \frac{171}{8})$ y-intercept at y = 3 Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$\begin{array}{c|c}
-\frac{2}{3}x^2 + 7x + 3 = 0 & | \cdot 3 \\
-2x^2 + 21x + 9 = 0 & \\
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\
= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)} \\
= \frac{-21 \pm \sqrt{441 + 72}}{4} \\
= \frac{21 \pm \sqrt{513}}{4} \\
= \frac{21 \pm \sqrt{9 \cdot 57}}{4}
\end{array}$$

Vertex at: $(\frac{21}{4}, \frac{171}{8})$ y-intercept at y = 3 Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$\begin{array}{c|c}
-\frac{2}{3}x^2 + 7x + 3 = 0 & | \cdot 3 \\
-2x^2 + 21x + 9 = 0 & | \\
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\
= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)} \\
= \frac{-21 \pm \sqrt{441 + 72}}{-4} \\
= \frac{21 \pm \sqrt{9 \cdot 57}}{4} \\
= \frac{21 \mp \sqrt{9} \sqrt{57}}{4}
\end{array}$$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3 The x intercepts are given by the solutions of $-\frac{2}{3}x^2 + 7x + 3 = 0$ $-2x^2 + 21x + 9 = 0$.3 $X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$\begin{array}{c|c}
-\frac{2}{3}x^2 + 7x + 3 = 0 & | \cdot 3 \\
-2x^2 + 21x + 9 = 0 & \\
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\
= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)} \\
= \frac{-21 \pm \sqrt{441 + 72}}{-4} \\
= \frac{21 \mp \sqrt{513}}{4} \\
= \frac{21 \mp \sqrt{9} \cdot 57}{4} \\
= \frac{21 \mp 3\sqrt{57}}{4}
\end{aligned}$$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4}$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers ?

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3 x-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4}$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4}$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3 x-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3 x-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4}$

2020

Example

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3 x-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4} = \frac{21-24}{4}$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4} = \frac{21-24}{4} = -\frac{3}{4}$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3 x-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4} = \frac{21-24}{4} = -\frac{3}{4}$ which is close to -1.

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3 x-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4} = \frac{21-24}{4} = -\frac{3}{4}$ which is close to -1.
 - The parabola vertex is less than 22 units high and the parabola opens downwards.

24/27

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4} = \frac{21-24}{4} = -\frac{3}{4}$ which is close to -1.
 - The parabola vertex is less than 22 units high and the parabola opens downwards.
 - Axes height of 22 units appears reasonable.

y-intercept at y = 3x-intercepts at $x = \frac{21-3\sqrt{57}}{4}$, $x = \frac{21+3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4}=\frac{21-24}{4}=-\frac{3}{4}$ which is close to -1.
 - The parabola vertex is less than 22 units high and the parabola opens downwards.
 - Axes height of 22 units appears reasonable.
 - A grid of width 3 units appears reasonable.

Vertex at: $(\frac{21}{4}, \frac{171}{8})$ y-intercept at y = 3x-intercepts at

$$X = \frac{21 - 3\sqrt{57}}{4},$$

$$X = \frac{21 + 3\sqrt{57}}{4}.$$

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4}=\frac{21-24}{4}=-\frac{3}{4}$ which is close to -1.
 - The parabola vertex is less than 22 units high and the parabola opens downwards.
 - Axes height of 22 units appears reasonable.
 - A grid of width 3 units appears reasonable.
 - Plot all relevant points.

Vertex at: $(\frac{21}{4}, \frac{171}{8})$ y-intercept at y = 3x-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$,

 $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4} = \frac{21-24}{4} = -\frac{3}{4}$ which is close to -1.
 - The parabola vertex is less than 22 units high and the parabola opens downwards.
 - Axes height of 22 units appears reasonable.
 - A grid of width 3 units appears reasonable.
 - Plot all relevant points.

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3x-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$,

 $X = \frac{21+3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4} = \frac{21-24}{4} = -\frac{3}{4}$ which is close to -1.
 - The parabola vertex is less than 22 units high and the parabola opens downwards.
 - Axes height of 22 units appears reasonable.
 - A grid of width 3 units appears reasonable.
 - Plot all relevant points.

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4}=\frac{21-24}{4}=-\frac{3}{4}$ which is close to -1.
 - The parabola vertex is less than 22 units high and the parabola opens downwards.
 - Axes height of 22 units appears reasonable.
 - A grid of width 3 units appears reasonable.
 - Plot all relevant points.
 - Finally "connect the dots with a freehand drawing".

Vertex at: $(\frac{21}{4}, \frac{171}{8})$ y-intercept at y = 3x-intercepts at $x = \frac{21-3\sqrt{57}}{4}$,

$$X = \frac{4}{4}$$
, $X = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4}=\frac{21-24}{4}=-\frac{3}{4}$ which is close to -1.
 - The parabola vertex is less than 22 units high and the parabola opens downwards.
 - Axes height of 22 units appears reasonable.
 - A grid of width 3 units appears reasonable.
 - Plot all relevant points.
 - Finally "connect the dots with a freehand drawing".

Quadratic Functions Maxima and Minima 25/27

Maximum or minimum value of a quadratic function

- Let $f(x) = ax^2 + bx + c$ quadratic $(a \neq 0)$.
- Let *D* be the discriminant $D = b^2 4ac$.

$$f(x) = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
 complete the square

Todor Milev Lecture 15 2020

Quadratic Functions Maxima and Minima 25/27

Maximum or minimum value of a quadratic function

- Let $f(x) = ax^2 + bx + c$ quadratic $(a \neq 0)$.
- Let *D* be the discriminant $D = b^2 4ac$.

$$f(x) = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
 complete the square

• Therefore if a > 0 then $f(x) = a(\text{square}) - \frac{U}{4a}$

Todor Milev Lecture 15 2020 Quadratic Functions Maxima and Minima 25/27

Maximum or minimum value of a quadratic function

- Let $f(x) = ax^2 + bx + c$ quadratic $(a \neq 0)$.
- Let *D* be the discriminant $D = b^2 4ac$.

$$f(x) = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
 complete the square

• Therefore if a > 0 then $f(x) = a(\text{square}) - \frac{D}{4a} \ge -\frac{D}{4a}$.

Todor Milev Lecture 15 2020

Maximum or minimum value of a quadratic function

- Let $f(x) = ax^2 + bx + c$ quadratic $(a \neq 0)$.
- Let *D* be the discriminant $D = b^2 4ac$.

$$f(x) = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
 complete the square

- Therefore if a > 0 then $f(x) = a(\text{square}) \frac{D}{\Delta a} \ge \frac{D}{\Delta a}$.
- Similarly if a < 0 then $f(x) = a(square) \frac{D}{4a} \le -\frac{D}{4a}$.

Todor Milev Lecture 15 2020

Maximum or minimum value of a quadratic function

- Let $f(x) = ax^2 + bx + c$ quadratic $(a \neq 0)$.
- Let *D* be the discriminant $D = b^2 4ac$.

$$f(x) = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
 complete the square

- Therefore if a > 0 then $f(x) = a(\text{square}) \frac{D}{\Delta a} \ge \frac{D}{\Delta a}$.
- Similarly if a < 0 then $f(x) = a(\text{square}) \frac{D}{Aa} \le -\frac{D}{Aa}$.

Todor Milev Lecture 15 2020

Recall
$$f(x) = ax^2 + bx + c = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
.

Proposition

Let $f(x) = ax^2 + bx + c$, $a \neq 0$ and let $D = b^2 - 4ac$.

- If a > 0 then f(x) has no maximum and has minimum at $x = -\frac{b}{2a}$.
- If a < 0 then f(x) has no minimum and has maximum at $x = -\frac{b}{2a}$.
- In both cases, the extremal value (either maximum or minimum) is $f\left(-\frac{b}{2a}\right) = -\frac{b^2-4ac}{4a} = -\frac{D}{4a}$.

Recall
$$f(x) = ax^2 + bx + c = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
.

Proposition

Let $f(x) = ax^2 + bx + c$, $a \neq 0$ and let $D = b^2 - 4ac$.

- If a > 0 then f(x) has no maximum and has minimum at $x = -\frac{b}{2a}$.
- If a < 0 then f(x) has no minimum and has maximum at $x = -\frac{b}{2a}$.
- In both cases, the extremal value (either maximum or minimum) is $f\left(-\frac{b}{2a}\right) = -\frac{b^2-4ac}{4a} = -\frac{D}{4a}$.

Recall
$$f(x) = ax^2 + bx + c = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
.

Proposition

Let $f(x) = ax^2 + bx + c$, $a \neq 0$ and let $D = b^2 - 4ac$.

- If a > 0 then f(x) has no maximum and has minimum at $x = -\frac{b}{2a}$.
- If a < 0 then f(x) has no minimum and has maximum at $x = -\frac{b}{2a}$.
- In both cases, the extremal value (either maximum or minimum) is $f\left(-\frac{b}{2a}\right) = -\frac{b^2-4ac}{4a} = -\frac{D}{4a}$.

Example

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

Example

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

Maximizing:

ΧZ

Example

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$

Maximizing:

XZ

Example

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

ΧZ

Example

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$

Example

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Example

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Example

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola opens down

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$x = ?$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$x = -\frac{b}{2a}$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$

= $-x^2 + 12x$

$$\begin{array}{rcl} X & = & -\frac{b}{2a} \\ & = & -\frac{12}{-2a} \end{array}$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$\begin{array}{rcl}
x & = & -\frac{b}{2\epsilon} \\
& = & -\frac{12}{-2}
\end{array}$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$x = -\frac{b}{2a}$$
$$= -\frac{12}{-2} = 6$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$x = -\frac{b}{2a}$$
$$= -\frac{12}{-2} = 6$$
$$z = 12 - x$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$x = -\frac{b}{2a} = -\frac{12}{-2} = 6 z = 12 - x = 12 - 6$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$x = -\frac{b}{2a}$$

$$= -\frac{12}{-2} = 6$$

$$z = 12 - x = 12 - 6 = 6$$

Example

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola opens down ⇒ has maximum, attained at:

$$x = -\frac{b}{2a}$$

$$= -\frac{12}{-2} = 6$$

$$z = 12 - x = 12 - 6 = 6$$

Max. product = xz

Example

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola opens down ⇒ has maximum, attained at:

$$x = -\frac{b}{2a}$$

$$= -\frac{12}{-2} = 6$$

$$z = 12 - x = 12 - 6 = 6$$

Todor Miley Lecture 15 2020

Max. product = $xz = 6 \cdot 6$

Example

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola opens down ⇒ has maximum, attained at:

$$x = -\frac{b}{2a}$$

$$= -\frac{12}{-2} = 6$$

$$z = 12 - x = 12 - 6 = 6$$

Max. product = $xz = 6 \cdot 6$

Example

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola opens down ⇒ has maximum, attained at:

$$x = -\frac{b}{2a}$$

$$= -\frac{12}{-2} = 6$$

$$z = 12 - x = 12 - 6 = 6$$

Max. product = $xz = 6 \cdot 6 = 36$.

Example

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola opens down ⇒ has maximum, attained at:

$$x = -\frac{12}{2a}$$

= $-\frac{12}{-2} = 6$
 $z = 12 - x = 12 - 6 = 6$

Max. product = $xz = 6 \cdot 6 = 36$.