Data Mining Anomaly Detection: Finding "weirdness"

João Brandão

Anomaly

"Something that deviates from what is standard, normal, or expected"
Oxford Dictionary

Anomaly

- Outliers
- Abnormalities
- Exceptions
- Discordant observations
- Surprises

Importance

Importance

Importance

Applicable Domains

- Manufacturing Process
- Machine Monitoring
- Fraud
- Security
- Healthcare

Anomalies Types

Point Anomalies
 Data point(s) considered anomalous
 with respect to the rest of the data.

Anomalies Types

- Contextual Anomalies
 - Context variables
 - Longitude ,latitude, sequence position
 - Behavior variables
 - Amount produced, temperature, duration, ...

Anomalies Types

- Collective Anomalies
 - Relationship among data instances
 - Sequence, spatial, combinations, ...

Challenges

- Defining a normal region
- The evolution of normal
- Anomaly adaptation
- Application domain specificity
- No labeled data
- Rare is not anomalous

Data Nature

- Nature of input data
 - Univariate vs Multivariate
 - Categorical, nominal, continuous,...
- Related Instances
 - Temporal, spatial, spatiotemporal

Techniques

Techniques – Visual Detection

Techniques – Visual Detection

Techniques – Visual Detection

Techniques

- Machine Learning
- Statistics
- Information theory
- Spectral theory

Classification

- One-Class Anomaly
- Multi-Class Anomaly

(a) Multi-class Anomaly Detection

(b) One-class Anomaly Detection

Classification - Neuronal Network

- Multi -Class
 - Train classes with normal data
 - Test of accept/reject
- One-Class
 - Replicator Neural Networks
 - Auto Encoders
 - Look at the error %

input

encode

Classification - Naive Bayesian Network

- Multi-class
- Relationship between events
- Prior probabilities

- To occurrence of certain events influence the probability of other events occurring.
- Based on observed properties

Classification - SVM

- Support Vector Machine
 - One-class
 - Maximize weigh if the margin
- Normal data records belong to high density data regions

Evaluation

- Accuracy is not enough
 - 99% is normal data
- Signal Detection Theory
- Detection rate (recall)
 - Hits/(Hits + Missed)
- False Alarm rate
 - False Alarm/(False Alarm + Correct Rejections)

	Target Present	Target Absent
Response: Yes	Hit	False Alarm
Response: No	Miss	Correct Rejection

Nearest Neighbor

Distance

- Anomalies occur far from their closest neighbors
- Distance (or similarity)
 - Euclidian distance between data distances
 - Matching Coefficient for categorical attributes.
- Score
 - Total distance of data instance to its k-th nearest neighbor

Density

- Normal data instances occur in dense neighborhoods
- Global density
 - Count the number of nearest neighbors (n) that are not more than d distance
 - Nº Equal Attributes for same Category (Categorical Attributes)
- Score
 - Inverse Density

Nearest Neighbor

- Local Outlier Factor
 - Density based techniques perform poorly if the data has multiple regions
 - Compare the local density of a point with the densities of its neighbors
 - Local Density = k/volume of the hyper-sphere

Association Rules

Low support

- Not usual happen
- Is **not usual** to snow in Braga

• 1/Confidence

- When happens X usually Y doesn't happen
- When it snows usually people
 do not wear a t-shirt outside

Create control limits

$$Support = \frac{frq(X,Y)}{N}$$

$$Rule: X \Rightarrow Y \longrightarrow Confidence = \frac{frq(X,Y)}{frq(X)}$$

$$Lift = \frac{Support}{Supp(X) \times Supp(Y)}$$

Statistical Techniques

- Checking Normality
 - Histogram
 - Quantile plot
 - Z-Value
- Decide use Parametric or Non-Parametric
 - It is very important for small datasets
- Data Transformation
 - Log(x) or Log(x+c)

Statistical Techniques

- Gaussian distribution
 - Uses medium and st. dev
 - Recalculate medium, st. dev with a sliding window
- Anomalies change a lot the St. Dev and the Mean
 - Use Median Absolute Deviation
 - Recalculate median and st. dev.
 - New (modified) z-score

Time Series - Seasonal Hybrid ESD

- Generalized ESD
- Twitter
- Global vs Local Anomalies

data(raw_data)
res = AnomalyDetectionTs(raw_data, max_anoms=0.02, direction='both', plot=TRUE)
res\$plot

Time Series

- Estimate % anomalies that you are looking for
- G-Score (Absolute Dev. Z-Score)
- Seasonal Decomposition
 - Trend
 - Seasonal
 - Residual (or Random) Components

Decomposition of additive time series

Others

- Information Theory
 - Use entropy concepts
 - Measure quantity of new information
 - Unsupervised
- Spectral
 - Dimensional reduction
 - Principal component analysis (PCA)
 - How changes vectors change with new data point

Output

- Score
 - Each instance is given an anomaly score
 - Threshold alert needed
- Label
 - Each instance is flagged as normal/anomaly
 - Usually used in classification

Quick overview

- Very Important subject for the present and future
- Many challenges, many options
- You don't have a do all things algorithm
- Online anomaly detection challenge
- Fixed rules, still have a place
- Visual detection, still have a place

jpabrandao@gmail.com

linkedin.com/in/jpabrandao

