CMPT 379 – Fall 2013 – Midterm

(1) (10pts) The following CFG describes regular expressions:

$$R \rightarrow R'|'R|RR|R'''''$$
 ('R')' | $a|b$

a. Convert this grammar into an unambiguous CFG that resolves ambiguity by assuming that Kleene closure, '*' has the highest priority, followed by concatenation, RR, followed by alternation, '|'. Also assume that each operation associates to the left, e.g. RRR should be treated as (RR)R and R|R|R should be treated as (R|R)|R. To make grading easier, for any new non-terminals that you introduce to solve this question, please use numeric subscripts, e.g. R_1, R_2, R_3, \ldots

Answer:

$$R \rightarrow R'| R_1 | R_1$$

$$R_1 \rightarrow R_1 R_2 | R_2$$

$$R_2 \rightarrow R_3 ** | R_3$$

$$R_3 \rightarrow `(` R `)` | a | b$$

b. Use your unambiguous grammar to provide the parse tree for the regular expression a | b*b | a.

c. For the input string *abba* provide the lexemes that would be returned by a greedy longest match lexical analyzer assuming that the only token is defined by the (unambiguous) regular expression in Q(1b).

Answer: a - bb - a (note that the regexp can be reduced to a|b+).

(2) (10pts) Consider the augmented CFG G with S' as the start symbol:

$$S' \rightarrow S$$
 (1)

$$S \rightarrow A a A b$$
 (2)

$$S \rightarrow BbBa \tag{3}$$

$$S \rightarrow \epsilon$$
 (4)

$$A \rightarrow \epsilon$$
 (5)

$$B \rightarrow \epsilon$$
 (6)

a. Use the canonical LR(1) set-of-items construction and create an action/goto table for LR parsing for grammar G. Use the rule numbers that follow each rule in G above in your table. Write down the table clearly and legibly.

Answer:

$$0: S' \rightarrow \bullet S, \$$$

 $S \rightarrow \bullet AaAb, \$$

 $S \rightarrow BbBa, \$$

 $S \rightarrow \epsilon \bullet$, \$

 $A \quad \to \quad \epsilon \bullet \;,\; a$

 $B \quad \to \quad \epsilon \bullet \; , \; b$

1: $S' \rightarrow S \bullet$, \$

 $2: S \rightarrow A \bullet aAb, \$$

 $3: S \rightarrow B \bullet bBa, \$$

5:	S	\rightarrow	$Bb \bullet$	Ba,	\$
	~			,	

 $B \rightarrow \epsilon \bullet$, a

 $6: S \rightarrow AaA \bullet b, \$$

7: $S \rightarrow BbB \bullet a, \$$

 $8: S \rightarrow AaAb \bullet, \$$

 $9: S \rightarrow BbBa \bullet, \$$

	a	b	\$	S	Α	В
0:	r5	r6	r4	1	2	3
1:			acc			
2:	s4					
3:		s5				
4:		r5			6	
5:	r6					7
6:		s8				
7:	s9					
8:			r2			
9:			r3			

b. Provide the LL(1) parsing table for G.

Answer:					
		а	b	\$	
	S'	$S' \rightarrow S$	$S' \rightarrow S$	$S' \rightarrow S$	
	S	$S \rightarrow AaAb$	$S \rightarrow BbBa$	$S \to \epsilon$	
	A	$A \rightarrow \epsilon$	$A \rightarrow \epsilon$		
	В	$B \rightarrow \epsilon$	$A \to \epsilon$		