Week 12 - Lecture Notes

Dynamic Programming Topics:

- memoization and subproblems

- fibonacci

- Shortest paths | Enamples

- quessing and DAG views

Computational Complexity

Dynamic Programming (DP)

- · Big idea, hard, yet simple
- · Powerful algorithmic design technique
- · Large class of seemingly exponential problems have a polynomial solution ("only") via DP.
- · Particularly for optimization problems (min/max) - Example: Shortest paths.

A dynamic programming is a controlled brute-force method.

It uses recursion and re-use.

ie. DP = "controlled - brute-force"

DP = "recursion and re-use"

Fibonacci Numbers

Fibonacci numbers are of the form $f_1 = f_2 = 1$, $f_n = F_{n-1} + f_{n-2}$

Goal: Compute Fn

Naive Algorithm

tollows recursive definition.

tib (n):

- 1. if n ≤ 2 return f=1
- 2. else return j: fib(n-1) +fib(n-2)

⇒
$$T(n) = T(n-1) + T(n-2) + O(1)$$

⇒ $F_n \approx +^n$
⇒ $2T(n-2) + O(1)$
⇒ $2^{n/2}$

Exponential - BAD!

Memoized DP Algorithm

```
1. memo = {}

fib(n):

2. if n is in memo: return memo[n]

3. else: if n \( \) 2: \( f = 1 \)

4. else \( f = \) \( f \) \( b \) \( (n-1) + \) \( f \) \( b \) \( n - 2 \)

5. memo [n] = \( f \)

6. return \( f \)
```

- · tib(K) only recurses first time called * K
- · onlynnonmemoized cells: K= 1,2,...,n
- · memoized calls free (B(1) time)
- <u>Ali) time</u> per coll lignoring recursion)

 Polynomial Good!
- · DP = "recursion + memoization"
 - memoize (remember) and re-use solutions to subproblems that help solve problem

 in Fibonacci, subproblems are f., F.,..., fn

 ⇒ time = # subproblems . (time per subproblem)
 - Fibonacci: # subproblems = n

 time per subproblem = 0(1)

 ∴ time = 0(n) lignoring recursions)

Bottom-up DP Algorithm

```
1. fib = {}
2. for K in [1,2,...,n]:
3. if K \( \leq 2 : f = 1 \)
4. else: f = fib [K-1] + fib [K-2] \( \text{Oli)} \)
5. fib[K] = f
6. return fib[n]
```

- · exactly the same computation as memoized DP (recursion "unrolled")
- in general: topological sort of subproblem dependency DAG.

- · practically taster: no recursion
- · analysis more obvious
- · can save space: last 2 fibs ⇒ B(1)

Shortest Paths

- · Recursive formulation Sluw = min {wluw) + Sls,u) | (uw) EE }
- · Memoized DP algorithm: takes infinite time if cycles. (necessary to handle negative cycles)
- Works for directed acyclic graphs in O(V+E)
 ~(effectively DFS/
 topological sort + Bellman
 ford rolled into single
 recursion)

- · Subproblem dependency should be acyclic.
 - -more subproblems remove cyclic dependence $S_k(s,v)$: shortest sor path using & k edges
 - recurrence: $S_{K}(5,v)$ = min $\{S_{K-1}(5,u) + \omega(u,v) \mid (u,v) \in E\}$ $S_{0}(5,v) = \infty$ for $S_{0}(v)$ base case $S_{0}(5,v) = 0$ for any Kif no negative cycle exists $S_{0}(5,v) = S_{0}(5,v)$
 - -memoize
 - -time: # subproblems. [time per subproblems)

 [VIIVI 0/V) = 0(V)
 - actually θ (indegree (v)) for $\delta_{\kappa}(5, v)$
 - => time D(V & indegree (v)) = D(VE)

BELLMAN FORD!

Guessing

How to design recurrence

· want shortest sov path

- · what is the last edge in path? don't know
- · guess it is (u,v)
- path is shortest s→u path + edge (u,v)
 by optimal substructure
- cost is $S_{K-1}(S,u) + \omega(u,v)$ another subproblem
- · to find best guess, try all (IVI choices) and use best.
- *Key: small (polynomial) # possible quesses per Subproblem typically this dominates time/subproblem.
- "DP & recursion + memoization + guessing

DAG view

-like replicating graph to represent time

- converting shortest paths in graph to shortest poths in DAG

DP2 shortest paths in some DAG

Summary

- · DP & careful brute force
- questing + recursion + memoization
- dividing into reasonable # subproblems whose solution relate acyclicly usually via guessing parts of solution
- •time = # subproblems x [time per subproblem)

 treating recursive calls as Oli)

 (usually mainly quessing)
 - essentially an amortization
 - count each subproblem only once; after first time, costs Oli) via memoization
- · DP & Shortest paths in some DAG.

5 easy steps to Dynamic Programming

define subproblems

quess (part of solution) count # choices

relate subproblem solutions compute time per subproblem

recurse + memoize problems time: (time per subproble)

OR

X# subproblems

build DP table bottom-up

check subproblems acyclic/topological order.

Solve original problem: => extra time = a subproblem OR by counting subproblem solutions.

Enamples	Fi bona cci	Shortest paths
Subpro blems	Fk	8k(s,v) for VEV, 0 = K = [V]
	for 1 = K = n	= min s > v poth using = Kedge
#subproblems	м	$\sqrt{2}$
guess	nothing	edge into v (if any)
# choices	1	indegree(v) + 1
recurrence	FK = FK-1 + FK+2	8 (5, v) = min {8 x-1 (5, 4) + w(0, v)
time per subproblem		lluiv) ∈ E }
subproblem	0(1)	Ol1+ indegree(v))
topological order	for K=1,, n	for K=0,1, V -1 for YEV
total time	0 (m)	BIVE)
		+ Olve) unless efficient about
original Problem	Fn	indegree
problem		SIVI-1 (5.2) for VEV
entra time	(i)	D(v)

Computational Complexity

Definitions:

P= {problems solvable in (n') time } (polynomial)

EXP: { problems solvable in (2") time } (exponential)

R = { problems solvable in finite time } "recursive"

Examples:

negative-weight cycles detection EP

**NXM Chess EEXP but & P

**Who wins from given board configuration!

Tetris EEXP but don't know whether EP

**Survive given pieces from given board.

Halting Problem

Given a computer program, does it ever halt (stop)?

- · uncomputable (¢R): no algorithm solves it (correctly in finite time on all inputs)
- · decision problem: answer is YES or NO

Most Decision Problems are Uncomputable

- · program ≈ binary string ≈ nonnegative integer EN
- · decision problem = a function from binary strings (≈ nonneg. intergers) to {YES (1), NO (0)}
- ≈ infinite sequence of bits = real number ER

 |N|<|R|: no assignment of unique nonnegative integers

 to real numbers (Runcountable)
- · => not nearly enough programs for all problems
- · each program solves only one problem
- · => almost all problems cannot be solved

NP

- NP= { Decision problems solvable in polynomial time via a lucky algorithm? "The lucky algorithm can make lucky gueses, always "right" without trying all options
 - nondeterministic model: algorithm makes gueses and then says YES or NO
 - · guesses guaranteed to lead to TES outcome if possible

Example:

Tetris ENP

- nondeterministic algorithm: guess each move.

 did I survive?
- · proof of YES: list what moves to make (rules of Tetris are easy)

NP

NP = {decision problems with solutions that can be 'checked" in polynomial time }

=> when answer is YES, it can be proved, and polynomial-time algorithm can check proof.

P + NP

It is a big conjecture (worth \$1,000,000)

- · *cannot engineer luck
- · « generating (proofs of) solutions can be harder than checking them

Hardness and completeness

Claim:

If P + NP, then Tetris ENP-P

Proof:

· Tetris is NP-hard = "as hard as" every problem ENP
Infact

· Tetris is NP-complete = NP N (NP-hard)

· Chess is EXP-complete = EXPN EXP-hard.

EXP-hard is as hard as every problem in EXP.

If NP # EXP, then Chess & EXP NP.

Whether NP + EXP is also an open problem but less"

jamous / "important".

Reductions

Convert the problem into a problem that is already known how to solve (instead of solving from scratch)

- · most common algorithm design technique
- · unweighted shortest path → weighted (set weights:))
- · min product path -> shortest path (take logs)
- · longest path -> shortes path (negative weights
- Shortest order tour -> shortest path (K copies of the graph)
- · Cheapest leaky-tank path > shortest path

 (graph reduction)

All of the above are One-call reductions:

A problem - B problem - B solution - A solution

Multicall reductions:

· solve A using free calls to B,

"in this sense, every algorithm reduces problem -> model of computation."

NP- Complete Problems

NP- Complete problems are all interreducible using polynomial time reductions (some difficulty)

We can use reductions to prove NP-hardness -> Tetris.

Enamples of NP- Complete Problems

- · Knapsack
- · 3- partition: given n integers, divide them into triples of equal sum?
- · Travelling Salesman Problem:
 - of a given graph
 - is minimum weight fr? (decision version)
- · longest common subsequence of K strings
- · Mine sweeper, Soduku and most puzzles
- SAT: given a Boolean formula (and, or, not), is it ever true?
- · Shortest paths amidst obstacles in 3D
- · 3-coloring a given graph
- · find largest clique in a given graph.