Matemática Discreta I Primer Parcial - 1 de octubre de 2014

Apellido y Nombre: Ledesma Christian

Nota: (a) No puede usar calculadora o celular. Justifique sus respuestas.

- 1. (20 puntos)
 - (i) Enunciar y demostrar la fórmula del binomio de Newton.
 - (ii) Definir conjunto inductivo y probar que la intersección arbitraria de conjuntos inductivos es inductivo.
- 2. (30 puntos) Demostrar las siguientes afirmaciones.
 - (i) Para todo $n \in \mathbb{N}$, se satisface que $2^n \ge n^2$.
 - (ii) Para todo $n \in \mathbb{N}$

$$\sum_{j=1}^{n} \frac{j}{2^{j}} = 2 - \frac{n+2}{2^{n}}.$$

(iii) Sea $\{a_n\}$ la sucesión definida recursivamente por

$$a_0 = 2$$
, $a_1 = 1$, $a_n = a_{n-1} + 2a_{n-2}$ para $n \ge 2$.

Demostrar que $a_n = 2^n + (-1)^n$ para todo $n \ge 0$.

- 3. (30 puntos) Dado un mazo de 52 cartas de poker (1,2,3,4,5,6,7,8,9,10,J,Q,K con 4 palos, diamantes rojos, corazones rojos, picas negras y tréboles negros), se reparten 5 cartas a un jugador. Calcular de cuantas formas un jugador puede recibir sus cartas si:
 - (i) al menos una carta es roja;
 - (ii) recibe una Q pero ningún as;
 - (iii) todas sus cartas son de trébol;
- 4. (20 puntos)
 - (i) ¿Cuántos números distintos de 10 dígitos pueden hacerse con 5,5,5,2,2,7,7,4,6,8?
 - (ii) ¿Cuántos números distintos de 10 dígitos pueden hacerse con 5,5,5,2,2,7,7,4,6,8 si se pide que los dígitos impares se alternen con los pares?

1(i)	1(ii)	2(i)	2(ii)	2(iii)	3(i)	3(ii)	3(iii)	4(i)	4(ii)
10	4	8	10	10	10	0	10	10	8

8

Christian Lederma

$$(a+b)^n = \sum_{i=0}^{n} (n) a^i b^{n-i}$$

i)
$$P(i): (a+b)^{i} = \sum_{i=0}^{i} {\binom{i}{i}} a^{i} b^{i-i}$$
 Verdadero

$$(i) P(n): (a+b)^n = \sum_{i=0}^{N} \binom{n}{i} a^i b^{n-i} \Rightarrow P(n+i) = (a+b)^{n+1} = \sum_{i=0}^{n+1} \binom{n+1}{i} a^i b^{n+1-i}$$

$$(a+b)^{n+1} = (a+b), (a+b)^n = a, (a+b)^n + b, (a+b)^n$$

por HI =
$$\alpha \cdot \left(\sum_{i=0}^{n} \binom{n}{i} a^{i} b^{n-i} \right) + b \cdot \left(\sum_{i=0}^{n} \binom{n}{i} a^{i} b^{n-i} \right)$$

$$= \sum_{i=0}^{n} \binom{n}{i} a^{i+1} b^{n-i} + \sum_{i=0}^{n} \binom{n}{i} a^{i} b^{n+1-i}$$

$$8 = \sum_{i=0}^{N-1} \binom{n}{i} a^{i+1} b^{n-i} + \binom{n}{n} a^{i+1} + \binom{n}{0} b^{N-i} + \sum_{i=1}^{N} \binom{n}{i} a^{i} b^{N+1-i}$$

Tomamos este mismbro y hactmas cambio de variable

par cambio de
$$\sum_{i=0}^{N-1} \binom{n}{i} a^{i+1} b^{n-i} = \sum_{i=1}^{N} \binom{n}{i-1} a^{i} b^{n+1-i}$$

$$\mathbf{e} = \binom{n}{n} a^{\frac{1}{n+1}} + \sum_{i=1}^{n} \binom{n}{i-1} a^{i} b^{n+1-i} + \sum_{i=1}^{n} \binom{n}{i} a^{i} b^{n+1-i} + \binom{n}{0} b^{n-i}$$

$$= \binom{n}{n} \stackrel{\text{diff}}{\text{diff}} + \sum_{i=1}^{n+1} \binom{\binom{n}{i-1} + \binom{n}{i}} \stackrel{\text{diff}}{\text{diff}} + \binom{n}{i}} \stackrel{\text{diff}}{\text{diff}} + \binom{n}{i} \stackrel{\text{diff}}{\text{diff}} + \binom{n}{i} \stackrel{\text{diff}}{\text{diff}} + \binom{n}{i}} \stackrel{\text{diff}}{\text{diff}} + \binom{n}{i} \stackrel{\text{diff}}{\text{diff}} + \binom{n}{i}} \stackrel{\text{diff}}{\text{diff}} \stackrel{\text{diff}}{\text{diff}} + \binom{n}{i} \stackrel{\text{diff}}{\text{diff}} + \binom{n}{i}} \stackrel{\text{diff}}{\text{diff}} + \binom{n}{i} \stackrel{\text{diff}}{\text{diff}} + \binom{n}{i}} \stackrel{\text{diff}}{\text{diff}} + \binom{n}{i} \stackrel{\text{diff}}{\text{diff}} + \binom{n}{i} \stackrel{\text{diff}}{\text{diff}} + \binom{n}{i}} \stackrel{\text{diff}}{\text{diff}} + \binom{n}{i} \stackrel{\text{diff}}{\text{diff}} + \binom{n}{i} \stackrel{\text{diff}}{\text{diff}} + \binom{n}{i}} \stackrel{\text{diff}}{\text{diff}} + \binom{n}{i} \stackrel{\text{diff}}{\text{diff}} + \binom{n}{i$$

 $2^{K+1} \ge (K+1).(K+1)$

2K+1 2 (K+1)2

Christian Ledesma

$$(2ii)$$
 para todo $n \in \mathbb{N}$
$$\sum_{j=1}^{n} \frac{j}{2^{j}} = 2 - \frac{n+2}{2^{n}}$$

por principio de inducción

$$P(1): \sum_{j=1}^{1} \frac{1}{2^{j}} = 2 - \frac{1+2}{2^{j}}$$

$$\frac{1}{2^{j}} = 2 - \frac{3}{2}$$

$$\frac{1}{2^{j}} = 2 - \frac{3}{2}$$

$$\frac{1}{2} = \frac{1}{2}$$
Voidade(0)

por lo tanto

$$\sum_{j=1}^{K+1} \frac{j}{2^{j}} = \sum_{j=1}^{K} \frac{j}{2^{j}} + \frac{K+1}{2^{K+1}}$$

$$por HI = 2 - \frac{K+2}{2^{K}} + \frac{K+1}{2^{K+1}}$$

$$= 2 + \frac{(-2) \cdot (K+2) + K+1}{2^{K+1}}$$

$$= 2 + (-2K - 9 + K + 1)$$

$$= 2^{K+1}$$

$$= 2 + \frac{(-K-3)}{2^{K+1}}$$

$$= 2 - \frac{K+3}{2^{K+1}}$$

2 iii) se
$$\{a_n\}$$
 la succesión definida recursivamente por $a_0 \neq 2$, $a_1 = 1$, $a_n = a_{n-1} + 2a_{n-2}$ para todo $n \geq 3$ Demostrar que $a_n = 2^n + (-1)^n$ para todo $n \geq 0$ Por principie de inducción fuerte

por lo tanto

P(K+1):
$$0_{K+1} = 0_{K} + 2_{K} + 2_{K-1}$$

por HIF = $2^{K} + (-1)^{K} + 2 \cdot (2^{K-1} + (-1)^{K-1})$
= $2^{K} + (-1)^{K} + 2 \cdot 2^{K-1} + 2 \cdot (-1)^{K-1}$
= $2^{K} + (-1)^{K} + 2^{K} + 2 \cdot (-1)^{K-1}$
= $2^{K} + 2^{K} + (-1)^{K} + 2 \cdot (-1)^{K-1}$
= $2^{K} + 2^{K} + (-1)^{K} + 2 \cdot (-1)^{K-1}$
= $2^{K+1} + (-1)^{K} \cdot (1-2)$
= $2^{K+1} + (-1)^{K} \cdot (-1)$
= $2^{K+1} + (-1)^{K} \cdot (-1)$

Christian Ledesma

3i) al menos una carta es roja

para que el jugados pueda recibir almenos una carta roja podemos calcular el total de cartas o sea (52) y te restamos aquellas que no son rojas osea el complemento (26) en donde 26 = a las 13 cartas de picas negras y 13 treboles negras. Por lo tanto $\begin{pmatrix} 52 \\ 5 \end{pmatrix} - \begin{pmatrix} 26 \\ 5 \end{pmatrix}$

=> tenemos 52 cartas masacamas todas les as que son 4 entonces 52-4=48 y contamos aparte las por lo tanto tambien las sa camos, enton- ces 48-4=44 y calculamos (4) (44)

3 m) (13) 13 es el numero de cantidad de cartas que son trebol

4i) c Countos numeros distintas de 10 digitos pueden hacerse con 5,5,5,2,2,7,7,4,6

 $\frac{(3+2+2+1+1+1)!}{3! \ 2! \ 2!} = \frac{10!}{3! \ 2! \ 2!} \leftarrow \text{repetaciones}$

4ii) tenemos 2 casos

PIPIPIPI

I P I P I P I P

y tenemos 5 impares -> 5 repetide 3 veces

\$ 7 repetide 3 veces

y 5 pares con 2 repetido 2 veces

por 10 tante tenemes

5! x 5! + 5! x 5! 2! 3!3! 3!3! 2! Ejercicios resueltas del parcial

Probar por induccion las signientes afirmaciones

$$\sum_{j=1}^{n} \frac{j}{2^{j}} = 2 - \frac{n+2}{2^{n}}$$

Para n=1

$$\sum_{j=1}^{1} \frac{1}{2^{1}} = 2 - \frac{1+2}{2^{1}}$$

$$\sum_{j=1}^{1} \frac{3}{2^{j}} = \frac{1}{2^{1}} = \frac{1}{2}; 2 - \frac{1+2}{2^{1}} = 2 - \frac{3}{2} = \frac{4-3}{2} = \frac{1}{2}$$

$$j=1$$

así
$$\sum_{j=1}^{9} \frac{3}{2^{j}} = 2 - \frac{1+2}{2!}$$

suponemos el resultado para n= K

es decir
$$\sum_{j=1}^{K} \frac{3}{2^{j}} = 2 - \frac{K+2}{2^{K}}; \text{ queremos ver para } K+1$$

$$\sum_{j=1}^{K+1} \frac{j}{2^{j}} = 2 - \frac{(K+1)+2}{2^{K+1}}$$

$$\sum_{j=1}^{K+1} \frac{j}{2^{j}} = \sum_{j=1}^{K} \frac{j}{2^{j}} + \frac{K+1}{2^{K+1}}$$

por hipotesis
$$\leftarrow = 2 - \frac{K+2}{2^K} + \frac{K+1}{2^{K+1}}$$

$$=2-\left(\frac{k+2}{2^{k}}-\frac{k+1}{2^{k+1}}\right)=2-\left(\frac{2k+4-(k+1)}{2^{k+1}}\right)$$

$$= 2 - \left(\frac{k+3}{2^{k+1}}\right) = 2 - \left(\frac{(k+1)+2}{2^{k+1}}\right)$$

U sea an dada por:
$$a_1 = 1$$
; $a_2 = 9$; $a_n = 9a_{n-1} - 20a_{n-2}$ $(n \ge 3)$

Probar que $a_n = 5^n - 4^n$ $\forall n \in \mathbb{N}$

Pem

1° $P(1)$ $a_1 = 5^1 - 4^2 = 1$

2° $P(K) \implies P(K+1)$

HI TESIS

H₁
$$Q_{K} = 5^{K} - 4^{K}$$
 $P(K+1) = Q_{K+1} = 5^{K+1} - 4^{K+1}$

1° $K+1 = 3 \leftrightarrow K \ge 2$

por def $\rightarrow 2^{\circ}$ $K = 2$

3° $K+1 \ge 3$

Tenemos que usar induccion fuerte

$$P(1), P(2), \dots, P(K) \Rightarrow P(K+1)$$
HI

HI
$$q_1 = 5^1 - 4^1$$
 $N=1$ $a_K = 5^K - 4^K$ $N=K$

$$a_{K-1} = 5^{K-1} - 4^{K-1}$$

$$N=K-1$$

$$q_{k+1} \stackrel{\text{H!}}{=} 9(5^{k} - 4^{k}) - 20(5^{k-1} - 4^{k-1})$$

$$= (4+5).(5^{k} - 4^{k}) - 4.5(5^{k-1} - 4^{k-1})$$

$$= 4.5^{k} - 4^{k+1} + 5^{k+1} - 5.4^{k} - 4.5^{k} + 5.4^{k}$$

$$= 5^{k+1} - 4^{k+1}$$

Ejercicios vesuel tos del parcial

Dadas las letras: A, A, A, P, P, I, I, Z, L, M

i d De cuantas maneras distintas se pueden ordenar?

ilè De cuantas maneras distintas se pueden ordenar si consonantes y vocales deben alternarse?

i Como tenemos 10 letras las posibles combinaciones son 10!, pero A se repite 3 veces, P se repite 2 veces al igual que I.

ii Numero de consonantes 5 -> P se repite 2 veces

Numero de vocales 5 - DA se repite 3 veces \[\text{I se repite 2 veces} \]

$$\frac{5!}{2!} \cdot \frac{5!}{3! \cdot 2!} + \frac{5!}{3! \cdot 2!} \cdot \frac{5!}{2!}$$

se tiene un juego de 20 cartas formado por

- . 10 cartas numeradas del 1al 10
- · 10 cartas con las letras de la Aala]

de forma fai que:

· el jugador recibe mas letras que numeros?

$$\begin{pmatrix} 10 \\ 3 \end{pmatrix} \begin{pmatrix} 10 \\ 2 \end{pmatrix} + \begin{pmatrix} 10 \\ 4 \end{pmatrix} \begin{pmatrix} 10 \\ 1 \end{pmatrix} + \begin{pmatrix} 10 \\ 5 \end{pmatrix}$$

- · el jugador recibe solo consonantes?
 - 7 consonantes (7)
- · el jugador no recibe ningun numero impar?

{10L, 5P} 15 posibles cartas (15)

· el jugador recibe al menos una vocal y ningun numero par?

3 vocales, 7 consonantes. y 5 impares

$$\begin{pmatrix} 3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 12 \\ 4 \end{pmatrix} + \begin{pmatrix} 3 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 12 \\ 3 \end{pmatrix} + \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 12 \\ 2 \end{pmatrix}$$

Recursado de Matemática Discreta I Segundo Parcial - 14 de noviembre de 2014

Apellido y Nombre: Ledesma Christian

Nota: No puede usar calculadora o celular. Justifique sus respuestas.

- 1. (15 puntos)
 - (i) Enunciar la unicidad del Teorema fundamental de la aritmética.
 - (ii) Sean $a,b,n,z\in\mathbb{N}$ tales que $az\equiv b$ (n), demostrar que $(a,n)\mid b.$
 - (iii) Si $m \equiv n$ (a) $c \equiv b$ (a) demostrar que $mc \equiv nb$ (a).
- 2. (10 puntos) Demostrar que $(n^3, 7n + 1) = 1$ para todo $n \in \mathbb{N}$.
- 3. (30 puntos) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justifique apropiadamente.
 - (i) Para todo $n \in \mathbb{N}$ si se cumple que $a^2 \equiv b^2$ (n) entonces $a \equiv b$ (n).
 - (ii) $17^{16} \equiv 3$ (10).
 - (iii) La cifra de las decenas de 7^{50} es 7.
- 4. (10 puntos) Demostrar que 10 | $9^{2n}-1$, para todo $n\in\mathbb{N}$.
- 5. (20 puntos) Encontrar todos los x que satisfacen la ecuación

$$264 x \equiv 2 (175).$$

Dar aquellas soluciones que además verifiquen que -100 < x < 200.

6. (15 puntos) Demostrar que para todo $n \in \mathbb{N}$, 9 divide a $4^n + 15n - 1$.

1(i)	1(ii)	1(iii)	2	3(i)	3(ii)	3(iii)	4	5	6	
5	5	5	0	0	10	10	10	3	3	51

1) i) unicidad del Teorema fundamental de la aritmética

Si m E IN, m>1 entonces m se factorien como producto de primos positivos de manera única salvo el orden. Si m < -1 entonces -m E IN y m=- I p, donde la factorización es única salvo en el orden de los factories.

ii) scan qb,n, & EIN tales que az = b (n), demostrarque (a,n) b

Dem: S. Z. es una solución, entonces toda solución es de la forma

E + n K KE Z - solution general

Observación: esto nos dice que existe una unica solución \tilde{z} tal que millo $0 \le \tilde{z} \le \frac{n}{(g,n)}$

 $\Rightarrow (a,n)|b$

como (a,n)|b => b=(a,n).h, con h & 7/2

por otro lado, Isit & Zlan) = a.s + n.t

multiplicando por h se tiene que

(a,n).h = a.s.h + n.t.h

b HI← pues nth = 0 (n)

a 3 h (n)

Z

: Zo = s.h es una solución

```
(u) m=n (a) ^{\wedge} c=b (a) \Longrightarrow m.c=n.b (a)
M = N (a) \Rightarrow a M + N \Rightarrow M - N = a k \Rightarrow M = N + a k
c=b (a) = a (-b = c-b = a.x = > c = b + a K
m.c=n,b(a) am.c-n,b=m.c-n,b=ak,
(*) => m.c = (n+ak). (b+ak)
     m.c=nb+nak +ak,b+ak,ak
      m (= nb + a(nK + K, b + K, K)
mc-nb=a.(nk+ K+b+K+K2) => n | mc-nb
                                     \Rightarrow mc = nb (a)
2) demostrar que (nº, 7n+1) = 1 para todo n EIN
 podemos decir que (n3, 7n+1) = d con d = 1
 Si d #1 => Ip primo tal que pld >> pln3 y p 7n+1
 MARK MINERS PORTONIA
    i) para todo n & IN si se cumple que a = b (n) => a = b (n)
    a^{\dagger} \equiv b^{\dagger} (n) \Rightarrow q.q \equiv b.b (n)
                                    m = n(a) \land c = b(a) \Rightarrow mc = nb(a)
    por ejectico 1 ili sobemas que
                                    q = b(n)^{1} q = b(n) \Rightarrow a, a = b, b(n)
  por lo tanto si decimos que
                                                           \Rightarrow a^2 = b^2 (n)
 por esto se sigue que 3 è es verdadero
                                                     y felso, este es la
```

3 ii)
$$17^{16} = 3 (10)$$
 Foilso ya que $17^{16} = 1 (10)$
 $17^2 = 7^2 = 9 (10)$
 $17^3 = 17^2 \cdot 7 = 9 \cdot 7 = 63 = 3 \cdot (10)$
 $17^3 = 17^2 \cdot 7 = 9 \cdot 7 = 63 = 3 \cdot (10)$
 $17^3 = 17^4 \cdot 17 = 1 \cdot 7 = 7 \cdot (10)$
 $17^5 = 17^4 \cdot 17 = 1 \cdot 7 = 7 \cdot (10)$
 $17^6 = (17^4)^4 = 1^4 = 1 \cdot (10)$

3 iii) $1_0 \cdot (1_1 \cdot 1_1 \cdot 1_2 \cdot 1_3 \cdot 1_4 \cdot 1_$

3 hi es Faiso ya que la cifra de la decena de 70 es 4

```
4) probat que 2º7 + 1 es multiplo de 10
 eso quiere dear que 10/927-1
  por lotanto 927-1=10.K
                   92" = 10 K+1 (H1)
planteamos (n+1)
   92(1+1) = 1 = 9211+2 -7
             = 9 = 4, 9 = 11
             = 921 81 - 1
             = 927. (80+1)-1
              = 92" . 80 + 92" -1
       POL HI = 924 80 + 10K +4 -1
              = 92" - 8 10 + 10K
              = 10.(924.8+K)
 6) prober que Va CIN 9/9" + 15n+1
 eso quiere decir que 4n+15n-1=9. K
                          9" =9.K-15n+1 (HD)
planteamos(H11)
 4n+1 + 15(n+1) -1 = 4n 9 + 15n + 15 + 1
             = 9^{n} \cdot (3+1) + 15n + 15 + 1
              =4".3+4" +15n+15+1
              -4".3+9K-18n+1+18n+15-1
              = 410, 3+9K +15
```

$$\times$$
 86 = 3.25 + $\boxed{1}$ \longrightarrow $CL \Rightarrow 1 = $a.r + n.s$$

_&269 X = 2 (175)

(-S1), 264 x = 2. (-51) (171)

x = 2 (-51) (175)

x = -102 = 73 (175)

X=73 (175)

>175 x-73

=> X-73=175.K

X = 175, K+73

Con K = 0

 $1 = 86 + (-25) \cdot 3$ $1 = 86 + (-25) \cdot (89 + (-1) \cdot 86)$ $1 = 86 + (-25) \cdot 89 + 25 \cdot 86$ $1 = (-25) \cdot 89 + 86 \cdot (1 + 25)$ $1 = (-27) \cdot 89 + (175 + (-1) \cdot 89) \cdot 26$ $1 = (-21) \cdot 89 + (175 + (-1) \cdot 89) \cdot 26$

1=(-21).89+175.26+(-26).89

1=89.(-25+626)+175.26

1=89.(-51) + 175.26

1=(264+(-1).175).(-51)+175.26

1=264 (-51) + 51 . 175 + 175,26

1 = 264 (-51) + 175 (51 + 26)

1:269.(-11) + 175.(77)

Ejercicios del segundo parcial

Asumimos que $(n^3, 7n+1)=d$ y $d \neq 1$ $\Rightarrow \exists p \text{ primo tq pld}$ Por lo tanto $d \mid n^2, d \mid 7n+1 \Rightarrow p \mid n^3 \text{ y pl} 7n+1$ $\Rightarrow p \mid n \Rightarrow p \mid 7n$ $\Rightarrow p \mid 1 \text{ (abs)}$

.. d=1

$$a^2 \equiv b^2$$
 (n) $\Rightarrow a \equiv b$ (n)
ya que $(-1)^2 \equiv (1)^2$ (3) $\Rightarrow -1 \not\equiv 1$ (3)

$$7^2 = 49 (100)$$

$$7^2 \equiv 43 \quad (100)$$

$$(7^4)^{12} \equiv 1^{12} \equiv 1 \ (100)$$

$$7^{48} \equiv (7^{12})^4 \equiv 1^4 \equiv 1 (100)$$

$$7^{49} \equiv 7^{48}.7 \equiv 1.7 \equiv 7 \pmod{9}$$

$$7^{50} = 7^{49}$$
. $7 = 7.7 = 49 (100)$

Demostrac 10 | 92n -1

$$9^2 = 81 = 1 (10)$$

 $9|4^{n}+15n-1$ pemostrar

por induccion en n asumamos que vale para n

es decir $9|4^{n}+15n-1$ $4^{n+1}+15(n+1)-1=4.4^{n}+15n+15-1$ $=4.(4^{n}+15n-1)+15n-60n+14+4$ $=4.(4^{n}+15n-1)+15n-60n+14+4$ =4.9.K-45n+18 =4.9.K-45n+18 =4.9.K-45n+18

 $\Rightarrow 9 | 4^{n+1} + 15 (n+1) - 1$