How to be both rich and happy: Combining quantitative and qualitative strategic reasoning in multi-player games

Valentin Goranko

Technical University of Denmark and

Nils Bulling

Clausthal University of Technology, Germany

Highlights'2013 Paris, September 21, 2013

strategic abilities of agents in multi-player games

Two traditions:

strategic abilities of agents in multi-player games

Two traditions:

Quantitative: study of the abilities of rational players achieve quantitative objectives: optimizing payoffs or, more generally, preferences on outcomes.

strategic abilities of agents in multi-player games

Two traditions:

Quantitative: study of the abilities of rational players achieve quantitative objectives: optimizing payoffs or, more generally, preferences on outcomes.

Typical models:

normal form games, repeated games, extensive games.

strategic abilities of agents in multi-player games

Two traditions:

Quantitative: study of the abilities of rational players achieve quantitative objectives: optimizing payoffs or, more generally, preferences on outcomes.

Typical models:

normal form games, repeated games, extensive games.

Qualitative: study of strategic abilities of players for achieving qualitative objectives: reaching or maintaining outcome states with desired properties, e.g., winning states, or safe states, etc.

strategic abilities of agents in multi-player games

Two traditions:

Quantitative: study of the abilities of rational players achieve quantitative objectives: optimizing payoffs or, more generally, preferences on outcomes.

Typical models:

normal form games, repeated games, extensive games.

Qualitative: study of strategic abilities of players for achieving qualitative objectives: reaching or maintaining outcome states with desired properties, e.g., winning states, or safe states, etc.

Typical models:

multi-agent transition systems, a.k.a. concurrent game models.

strategic abilities of agents in multi-player games

Two traditions:

Quantitative: study of the abilities of rational players achieve quantitative objectives: optimizing payoffs or, more generally, preferences on outcomes.

Typical models:

normal form games, repeated games, extensive games.

Qualitative: study of strategic abilities of players for achieving qualitative objectives: reaching or maintaining outcome states with desired properties, e.g., winning states, or safe states, etc.

Typical models:

multi-agent transition systems, a.k.a. concurrent game models.

We develop a logical framework combining both traditions.

strategic abilities of agents in multi-player games

Two traditions:

Quantitative: study of the abilities of rational players achieve quantitative objectives: optimizing payoffs or, more generally, preferences on outcomes.

Typical models:

normal form games, repeated games, extensive games.

Qualitative: study of strategic abilities of players for achieving qualitative objectives: reaching or maintaining outcome states with desired properties, e.g., winning states, or safe states, etc.

Typical models:

multi-agent transition systems, a.k.a. concurrent game models.

We develop a logical framework combining both traditions.

Builds on several existing types of models and logics.

Concurrent game model with payoffs and guards (GGMPG): extend concurrent game models by associating with every state a strategic game with payoffs. Thus:

Concurrent game model with payoffs and guards (GGMPG): extend concurrent game models by associating with every state a strategic game with payoffs. Thus:

 at every state each player chooses an action; all actions are applied simultaneously and determine transition to successor state;

Concurrent game model with payoffs and guards (GGMPG): extend concurrent game models by associating with every state a strategic game with payoffs. Thus:

- at every state each player chooses an action; all actions are applied simultaneously and determine transition to successor state;
- the collective action also determines each player's payoff;

Concurrent game model with payoffs and guards (GGMPG): extend concurrent game models by associating with every state a strategic game with payoffs. Thus:

- at every state each player chooses an action; all actions are applied simultaneously and determine transition to successor state;
- the collective action also determines each player's payoff;
- same happens at the successor state, etc., thus eventually generating an infinite play;

Concurrent game model with payoffs and guards (GGMPG): extend concurrent game models by associating with every state a strategic game with payoffs. Thus:

- at every state each player chooses an action; all actions are applied simultaneously and determine transition to successor state;
- the collective action also determines each player's payoff;
- same happens at the successor state, etc., thus eventually generating an infinite play;

So, players accumulate utilities in the course of the play;

Concurrent game model with payoffs and guards (GGMPG): extend concurrent game models by associating with every state a strategic game with payoffs. Thus:

- at every state each player chooses an action; all actions are applied simultaneously and determine transition to successor state;
- the collective action also determines each player's payoff;
- same happens at the successor state, etc., thus eventually generating an infinite play;

So, players accumulate utilities in the course of the play;

The players' current utility values determine their available actions at the current state, by means of guards – arithmetical constraints over the current utilities.

Concurrent game model with payoffs and guards (GGMPG): extend concurrent game models by associating with every state a strategic game with payoffs. Thus:

- at every state each player chooses an action; all actions are applied simultaneously and determine transition to successor state;
- the collective action also determines each player's payoff;
- same happens at the successor state, etc., thus eventually generating an infinite play;

So, players accumulate utilities in the course of the play;

The players' current utility values determine their available actions at the current state, by means of guards – arithmetical constraints over the current utilities.

CGMPGs: games with qualitative and quantitative objectives.

Valentin Goranko

The guards for both players are defined at each state so that the player may:

The guards for both players are defined at each state so that the player may:

• apply any action if she has a positive current accumulated utility,

The guards for both players are defined at each state so that the player may:

- apply any action if she has a positive current accumulated utility,
- only apply action C if she has accumulated utility 0,

The guards for both players are defined at each state so that the player may:

- apply any action if she has a positive current accumulated utility,
- only apply action C if she has accumulated utility 0,
- must play an action maximizing her minimum payoff in the current game if she has a negative accumulated utility.

Configuration in $\mathfrak{M}=(\mathcal{S}, \mathsf{payoff}, \{g_{\mathbf{a}}\}_{\mathbf{a}\in\mathbb{A}}, \{d_{\mathbf{a}}\}_{\mathbf{a}\in\mathbb{A}})$: a pair (s, \overrightarrow{u}) of a state s and a vector $\overrightarrow{u}=(u_1,\ldots,u_k)$ of currently accumulated utilities of the agents at that state.

```
Configuration in \mathfrak{M}=(\mathcal{S}, \mathsf{payoff}, \{g_{\mathbf{a}}\}_{\mathbf{a}\in\mathbb{A}}, \{d_{\mathbf{a}}\}_{\mathbf{a}\in\mathbb{A}}): a pair (s,\overrightarrow{u}) of a state s and a vector \overrightarrow{u}=(u_1,\ldots,u_k) of currently accumulated utilities of the agents at that state. The set of possible configurations: \mathsf{Con}(\mathfrak{M})=S\times \mathrm{D}^{|\mathbb{A}|}.
```

Configuration in $\mathfrak{M}=(\mathcal{S}, \mathsf{payoff}, \{g_{\mathbf{a}}\}_{\mathbf{a}\in\mathbb{A}}, \{d_{\mathbf{a}}\}_{\mathbf{a}\in\mathbb{A}})$: a pair (s,\overrightarrow{u}) of a state s and a vector $\overrightarrow{u}=(u_1,\ldots,u_k)$ of currently accumulated utilities of the agents at that state. The set of possible configurations: $\mathsf{Con}(\mathfrak{M})=S\times \mathrm{D}^{|\mathbb{A}|}$.

$$\widehat{\mathsf{out}} : \mathsf{Con}(\mathfrak{M}) \times \mathsf{Act}_{\mathbb{A}} \dashrightarrow \mathsf{Con}(\mathfrak{M})$$

Configuration in $\mathfrak{M}=(\mathcal{S}, \mathsf{payoff}, \{g_{\mathbf{a}}\}_{\mathbf{a}\in\mathbb{A}}, \{d_{\mathbf{a}}\}_{\mathbf{a}\in\mathbb{A}})$: a pair (s,\overrightarrow{u}) of a state s and a vector $\overrightarrow{u}=(u_1,\ldots,u_k)$ of currently accumulated utilities of the agents at that state. The set of possible configurations: $\mathsf{Con}(\mathfrak{M})=S\times \mathrm{D}^{|\mathbb{A}|}$.

Partial configuration transition function:

$$\widehat{\mathsf{out}} : \mathsf{Con}(\mathfrak{M}) \times \mathsf{Act}_{\mathbb{A}} \dashrightarrow \mathsf{Con}(\mathfrak{M})$$

where $\widehat{\operatorname{out}}((s,\overrightarrow{u}),\overrightarrow{\alpha})=(s',\overrightarrow{u'})$ iff:

Configuration in $\mathfrak{M}=(\mathcal{S}, \mathsf{payoff}, \{g_{\mathbf{a}}\}_{\mathbf{a}\in\mathbb{A}}, \{d_{\mathbf{a}}\}_{\mathbf{a}\in\mathbb{A}})$: a pair (s, \overrightarrow{u}) of a state s and a vector $\overrightarrow{u}=(u_1,\ldots,u_k)$ of currently accumulated utilities of the agents at that state.

The set of possible configurations: $Con(\mathfrak{M}) = S \times D^{|\mathbb{A}|}$.

$$\widehat{\mathsf{out}} : \mathsf{Con}(\mathfrak{M}) \times \mathsf{Act}_{\mathbb{A}} \dashrightarrow \mathsf{Con}(\mathfrak{M})$$

where
$$\widehat{\operatorname{out}}((s, \overrightarrow{u}), \overrightarrow{\alpha}) = (s', \overrightarrow{u'})$$
 iff:

(i) out
$$(s, \overrightarrow{\alpha}) = s'$$

Configuration in $\mathfrak{M}=(\mathcal{S}, \mathsf{payoff}, \{g_{\mathbf{a}}\}_{\mathbf{a}\in\mathbb{A}}, \{d_{\mathbf{a}}\}_{\mathbf{a}\in\mathbb{A}})$: a pair (s,\overrightarrow{u}) of a state s and a vector $\overrightarrow{u}=(u_1,\ldots,u_k)$ of currently accumulated utilities of the agents at that state.

The set of possible configurations: $Con(\mathfrak{M}) = S \times D^{|\mathbb{A}|}$.

$$\widehat{\mathsf{out}} : \mathsf{Con}(\mathfrak{M}) \times \mathsf{Act}_{\mathbb{A}} \dashrightarrow \mathsf{Con}(\mathfrak{M})$$

where
$$\widehat{\operatorname{out}}((s,\overrightarrow{u}),\overrightarrow{\alpha})=(s',\overrightarrow{u'})$$
 iff:

- (i) out $(s, \overrightarrow{\alpha}) = s'$
- (ii) the value $u_{\mathbf{a}}$ assigned to $v_{\mathbf{a}}$ satisfies $g_{\mathbf{a}}(s,\alpha_{\mathbf{a}})$ for each $\mathbf{a}\in\mathbb{A}$

Configuration in $\mathfrak{M}=(\mathcal{S}, \mathsf{payoff}, \{g_{\mathbf{a}}\}_{\mathbf{a}\in\mathbb{A}}, \{d_{\mathbf{a}}\}_{\mathbf{a}\in\mathbb{A}})$: a pair (s, \overrightarrow{u}) of a state s and a vector $\overrightarrow{u}=(u_1,\ldots,u_k)$ of currently accumulated utilities of the agents at that state.

The set of possible configurations: $Con(\mathfrak{M}) = S \times D^{|\mathbb{A}|}$.

$$\widehat{\mathsf{out}} : \mathsf{Con}(\mathfrak{M}) \times \mathsf{Act}_{\mathbb{A}} \dashrightarrow \mathsf{Con}(\mathfrak{M})$$

where
$$\widehat{\operatorname{out}}((s, \overrightarrow{u}), \overrightarrow{\alpha}) = (s', \overrightarrow{u'})$$
 iff:

- (i) out $(s, \overrightarrow{\alpha}) = s'$
- (ii) the value $u_{\mathbf{a}}$ assigned to $v_{\mathbf{a}}$ satisfies $g_{\mathbf{a}}(s,\alpha_{\mathbf{a}})$ for each $\mathbf{a}\in\mathbb{A}$
- (iii) $u_{\mathbf{a}}' = u_{\mathbf{a}} + \mathsf{payoff}_{\mathbf{a}}(s, \overrightarrow{\alpha})$ for each $\mathbf{a} \in \mathbb{A}$

Configuration in $\mathfrak{M}=(\mathcal{S}, \mathsf{payoff}, \{g_{\mathbf{a}}\}_{\mathbf{a}\in\mathbb{A}}, \{d_{\mathbf{a}}\}_{\mathbf{a}\in\mathbb{A}})$: a pair (s, \overrightarrow{u}) of a state s and a vector $\overrightarrow{u}=(u_1,\ldots,u_k)$ of currently accumulated utilities of the agents at that state.

The set of possible configurations: $Con(\mathfrak{M}) = S \times D^{|\mathbb{A}|}$.

Partial configuration transition function:

$$\widehat{\mathsf{out}} : \mathsf{Con}(\mathfrak{M}) \times \mathsf{Act}_{\mathbb{A}} \dashrightarrow \mathsf{Con}(\mathfrak{M})$$

where $\widehat{\operatorname{out}}((s, \overrightarrow{u}), \overrightarrow{\alpha}) = (s', \overrightarrow{u'})$ iff:

- (i) out $(s, \overrightarrow{\alpha}) = s'$
- (ii) the value $u_{\mathbf{a}}$ assigned to $v_{\mathbf{a}}$ satisfies $g_{\mathbf{a}}(s,\alpha_{\mathbf{a}})$ for each $\mathbf{a}\in\mathbb{A}$
- (iii) $u_{\mathbf{a}}' = u_{\mathbf{a}} + \mathsf{payoff}_{\mathbf{a}}(s, \overrightarrow{\alpha})$ for each $\mathbf{a} \in \mathbb{A}$

The configuration graph on \mathfrak{M} with an initial configuration $(s_0, \overrightarrow{u_0})$ consists of all configurations in \mathfrak{M} reachable from $(s_0, \overrightarrow{u_0})$ by out.

Configuration in $\mathfrak{M}=(\mathcal{S},\mathsf{payoff},\{g_{\mathbf{a}}\}_{\mathbf{a}\in\mathbb{A}},\{d_{\mathbf{a}}\}_{\mathbf{a}\in\mathbb{A}})$: a pair (s,\overrightarrow{u}) of a state s and a vector $\overrightarrow{u}=(u_1,\ldots,u_k)$ of currently accumulated utilities of the agents at that state.

The set of possible configurations: $Con(\mathfrak{M}) = S \times D^{|\mathbb{A}|}$.

Partial configuration transition function:

$$\widehat{\mathsf{out}} : \mathsf{Con}(\mathfrak{M}) \times \mathsf{Act}_{\mathbb{A}} \dashrightarrow \mathsf{Con}(\mathfrak{M})$$

where $\widehat{\mathrm{out}}((s,\overrightarrow{u}),\overrightarrow{\alpha})=(s',\overrightarrow{u'})$ iff:

- (i) out $(s, \overrightarrow{\alpha}) = s'$
- (ii) the value $u_{\mathbf{a}}$ assigned to $v_{\mathbf{a}}$ satisfies $g_{\mathbf{a}}(s,\alpha_{\mathbf{a}})$ for each $\mathbf{a}\in\mathbb{A}$
- (iii) $u_{\mathbf{a}}' = u_{\mathbf{a}} + \mathsf{payoff}_{\mathbf{a}}(s, \overrightarrow{\alpha})$ for each $\mathbf{a} \in \mathbb{A}$

The configuration graph on \mathfrak{M} with an initial configuration $(s_0, \overrightarrow{u_0})$ consists of all configurations in \mathfrak{M} reachable from $(s_0, \overrightarrow{u_0})$ by out.

A play in \mathfrak{M} : an infinite sequence $\pi = c_0 \overrightarrow{\alpha_0}, c_1 \overrightarrow{\alpha_1}, \ldots$ from $(\mathsf{Con}(\mathfrak{M}) \times \mathsf{Act})^\omega$ such that $c_n \in \widehat{\mathsf{out}}(c_{n-1}, \overrightarrow{\alpha}_{n-1})$ for all n > 0.

Configuration in $\mathfrak{M}=(\mathcal{S},\mathsf{payoff},\{g_{\mathbf{a}}\}_{\mathbf{a}\in\mathbb{A}},\{d_{\mathbf{a}}\}_{\mathbf{a}\in\mathbb{A}})$: a pair (s,\overrightarrow{u}) of a state s and a vector $\overrightarrow{u}=(u_1,\ldots,u_k)$ of currently accumulated utilities of the agents at that state.

The set of possible configurations: $Con(\mathfrak{M}) = S \times D^{|\mathbb{A}|}$.

Partial configuration transition function:

$$\overline{\mathsf{out}} : \mathsf{Con}(\mathfrak{M}) \times \mathsf{Act}_{\mathbb{A}} \dashrightarrow \mathsf{Con}(\mathfrak{M})$$

where $\widehat{\mathrm{out}}((s,\overrightarrow{u}),\overrightarrow{\alpha})=(s',\overrightarrow{u'})$ iff:

- (i) out $(s, \overrightarrow{\alpha}) = s'$
- (ii) the value $u_{\mathbf{a}}$ assigned to $v_{\mathbf{a}}$ satisfies $g_{\mathbf{a}}(s,\alpha_{\mathbf{a}})$ for each $\mathbf{a}\in\mathbb{A}$
- (iii) $u_{\mathbf{a}}' = u_{\mathbf{a}} + \mathsf{payoff}_{\mathbf{a}}(s, \overrightarrow{\alpha})$ for each $\mathbf{a} \in \mathbb{A}$

The configuration graph on \mathfrak{M} with an initial configuration $(s_0, \overrightarrow{u_0})$ consists of all configurations in \mathfrak{M} reachable from $(s_0, \overrightarrow{u_0})$ by out.

A play in \mathfrak{M} : an infinite sequence $\pi = c_0 \overrightarrow{\alpha_0}, c_1 \overrightarrow{\alpha_1}, \ldots$ from $(\mathsf{Con}(\mathfrak{M}) \times \mathsf{Act})^\omega$ such that $c_n \in \widehat{\mathsf{out}}(c_{n-1}, \overrightarrow{\alpha}_{n-1})$ for all n > 0.

A history: any finite initial sequence of a play in Plays $_{\mathfrak{M}}$.

A strategy of a player a is a function s_a : Hist \rightarrow Act that respects the guards, i.e., if $s_a(h) = \alpha$ then $h^u[last]_a \models g_a(h^s[last], \alpha)$.

A strategy of a player a is a function s_a : Hist \rightarrow Act that respects the guards, i.e., if $s_a(h) = \alpha$ then $h^u[last]_a \models g_a(h^s[last], \alpha)$.

NB: strategies are based on histories of configurations and actions.

A strategy of a player a is a function s_a : Hist \rightarrow Act that respects the guards, i.e., if $s_a(h) = \alpha$ then $h^u[last]_a \models g_a(h^s[last], \alpha)$.

NB: strategies are based on histories of configurations and actions.

Some natural restrictions: state-, action-, or configuration-based; memoryless, bounded memory, of perfect recall strategies.

A strategy of a player a is a function s_a : Hist \rightarrow Act that respects the guards, i.e., if $s_a(h) = \alpha$ then $h^u[last]_a \models g_a(h^s[last], \alpha)$.

NB: strategies are based on histories of configurations and actions.

Some natural restrictions: state-, action-, or configuration-based; memoryless, bounded memory, of perfect recall strategies.

We assume that two classes of strategies S^p and S^o are fixed as parameters, resp. for the proponents and opponents to select from.

Strategies

A strategy of a player a is a function s_a : Hist \rightarrow Act that respects the guards, i.e., if $s_a(h) = \alpha$ then $h^u[last]_a \models g_a(h^s[last], \alpha)$.

NB: strategies are based on histories of configurations and actions.

Some natural restrictions: state-, action-, or configuration-based; memoryless, bounded memory, of perfect recall strategies.

We assume that two classes of strategies \mathcal{S}^p and \mathcal{S}^o are fixed as parameters, resp. for the proponents and opponents to select from.

A unique outcome_play_{\mathfrak{M}} $(c, (s_A, s_{\mathbb{A} \setminus A}))$ emerges from the execution of any strategy profile $(s_A, s_{\mathbb{A} \setminus A})$ from configuration c.

Strategies

A strategy of a player a is a function s_a : Hist \rightarrow Act that respects the guards, i.e., if $s_a(h) = \alpha$ then $h^u[last]_a \models g_a(h^s[last], \alpha)$.

NB: strategies are based on histories of configurations and actions.

Some natural restrictions: state-, action-, or configuration-based; memoryless, bounded memory, of perfect recall strategies.

We assume that two classes of strategies \mathcal{S}^p and \mathcal{S}^o are fixed as parameters, resp. for the proponents and opponents to select from.

A unique outcome_play_{\mathfrak{M}} $(c, (s_A, s_{\mathbb{A} \setminus A}))$ emerges from the execution of any strategy profile $(s_A, s_{\mathbb{A} \setminus A})$ from configuration c.

Effective strategies: bounded memory strategies determined by transducers with transitions and outputs defined by arithmetical constraints on the current configurations.

Language AC of arithmetic formulae over accumulated utilities: Boolean combinations of equalities and inequalities between terms built by applying addition over a set of variables $V_{\mathbb{A}} = \{v_{\mathbf{a}} \mid \mathbf{a} \in \mathbb{A}\}$ for the accumulated utilities and a fixed set X of constants.

Language AC of arithmetic formulae over accumulated utilities: Boolean combinations of equalities and inequalities between terms built by applying addition over a set of variables $V_{\mathbb{A}} = \{v_{\mathbf{a}} \mid \mathbf{a} \in \mathbb{A}\}$ for the accumulated utilities and a fixed set X of constants.

Language of QATL*. Extends ATL* with formulae from AC:

Language AC of arithmetic formulae over accumulated utilities: Boolean combinations of equalities and inequalities between terms built by applying addition over a set of variables $V_{\mathbb{A}} = \{v_{\mathbf{a}} \mid \mathbf{a} \in \mathbb{A}\}$ for the accumulated utilities and a fixed set X of constants.

Language of QATL*. Extends ATL* with formulae from AC:

State formulae $\varphi ::= p \mid ac \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle A \rangle \rangle \gamma$

Language AC of arithmetic formulae over accumulated utilities: Boolean combinations of equalities and inequalities between terms built by applying addition over a set of variables $V_{\mathbb{A}} = \{v_{\mathbf{a}} \mid \mathbf{a} \in \mathbb{A}\}$ for the accumulated utilities and a fixed set X of constants.

Language of QATL*. Extends ATL* with formulae from AC:

 $\mathsf{State} \ \mathsf{formulae} \ \varphi ::= \mathsf{p} \ | \ \mathsf{ac} \ | \ \neg \varphi \ | \ \varphi \land \varphi \ | \ \langle\!\langle \mathsf{A} \rangle\!\rangle \gamma$

Path formulae: $\gamma ::= \varphi \mid \neg \gamma \mid \gamma \wedge \gamma \mid \mathcal{X}\gamma \mid \mathcal{G}\gamma \mid \gamma \mathcal{U}\gamma$

Language AC of arithmetic formulae over accumulated utilities: Boolean combinations of equalities and inequalities between terms built by applying addition over a set of variables $V_{\mathbb{A}} = \{v_{\mathbf{a}} \mid \mathbf{a} \in \mathbb{A}\}$ for the accumulated utilities and a fixed set X of constants.

Language of QATL*. Extends ATL* with formulae from AC:

State formulae $\varphi ::= p \mid ac \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle A \rangle \rangle \gamma$

Path formulae: $\gamma ::= \varphi \mid \neg \gamma \mid \gamma \wedge \gamma \mid \mathcal{X}\gamma \mid \mathcal{G}\gamma \mid \gamma \mathcal{U}\gamma$

where $A \subseteq \mathbb{A}$, ac \in AC and $p \in$ Prop.

Language AC of arithmetic formulae over accumulated utilities: Boolean combinations of equalities and inequalities between terms built by applying addition over a set of variables $V_{\mathbb{A}} = \{v_{\mathbf{a}} \mid \mathbf{a} \in \mathbb{A}\}$ for the accumulated utilities and a fixed set X of constants.

Language of QATL*. Extends ATL* with formulae from AC:

State formulae
$$\varphi ::= p \mid ac \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle A \rangle \rangle \gamma$$

Path formulae: $\gamma ::= \varphi \mid \neg \gamma \mid \gamma \land \gamma \mid \mathcal{X}\gamma \mid \mathcal{G}\gamma \mid \gamma \mathcal{U}\gamma$
where $A \subseteq \mathbb{A}$, $ac \in AC$ and $p \in Prop$.

An extension: with arithmetic formulae over entire plays. Requires adding discounting factors on payoffs. Will not be discussed here.

Given: \mathfrak{M} be a GCGMP, c a configuration, φ state formula, $\gamma, \gamma_1, \gamma_2$ path formulae, \mathcal{S}^p and \mathcal{S}^o two classes of strategies.

Given: \mathfrak{M} be a GCGMP, c a configuration, φ state formula, $\gamma, \gamma_1, \gamma_2$ path formulae, \mathcal{S}^p and \mathcal{S}^o two classes of strategies. $\mathfrak{M}, c \models p$ iff $p \in \mathsf{L}(c^s)$;

Given: \mathfrak{M} be a GCGMP, c a configuration, φ state formula, $\gamma, \gamma_1, \gamma_2$ path formulae, \mathcal{S}^p and \mathcal{S}^o two classes of strategies. $\mathfrak{M}, c \models p$ iff $p \in L(c^s)$; $\mathfrak{M}, c \models ac$ iff $c^u \models ac$,

```
Given: \mathfrak{M} be a GCGMP, c a configuration, \varphi state formula, \gamma, \gamma_1, \gamma_2 path formulae, \mathcal{S}^p and \mathcal{S}^o two classes of strategies. \mathfrak{M}, c \models p iff p \in L(c^s); \mathfrak{M}, c \models ac iff c^u \models ac, \mathfrak{M}, c \models \langle\!\langle A \rangle\!\rangle \gamma iff there is a \mathcal{S}^p-strategy s_A such that for all \mathcal{S}^o-strategies s_{\mathbb{A} \setminus A}: \mathfrak{M}, outcome_play \mathfrak{M}(c, (s_A, s_{\mathbb{A} \setminus A})) \models \gamma.
```

```
Given: \mathfrak{M} be a GCGMP, c a configuration, \varphi state formula, \gamma, \gamma_1, \gamma_2 path formulae, \mathcal{S}^p and \mathcal{S}^o two classes of strategies. \mathfrak{M}, c \models p iff p \in L(c^s); \mathfrak{M}, c \models ac iff c^u \models ac, \mathfrak{M}, c \models \langle\!\langle A \rangle\!\rangle \gamma iff there is a \mathcal{S}^p-strategy s_A such that for all \mathcal{S}^o-strategies s_{\mathbb{A}\backslash A}: \mathfrak{M}, outcome_play (c, (s_A, s_{\mathbb{A}\backslash A})) \models \gamma. \mathfrak{M}, \pi \models \varphi iff \mathfrak{M}, \pi[0] \models \varphi,
```

```
Given: \mathfrak{M} be a GCGMP, c a configuration, \varphi state formula, \gamma, \gamma_1, \gamma_2 path formulae, \mathcal{S}^p and \mathcal{S}^o two classes of strategies. \mathfrak{M}, c \models p iff p \in L(c^s); \mathfrak{M}, c \models ac iff c^u \models ac, \mathfrak{M}, c \models \langle\!\langle A \rangle\!\rangle \gamma iff there is a \mathcal{S}^p-strategy s_A such that for all \mathcal{S}^o-strategies s_{\mathbb{A}\backslash A}: \mathfrak{M}, outcome_play \mathfrak{M}(c, (s_A, s_{\mathbb{A}\backslash A})) \models \gamma. \mathfrak{M}, \pi \models \varphi iff \mathfrak{M}, \pi[0] \models \varphi, \mathfrak{M}, \pi \models \mathcal{X} \gamma iff \mathfrak{M}, \pi[1] \models \gamma,
```

```
Given: \mathfrak{M} be a GCGMP, c a configuration, \varphi state formula,
\gamma, \gamma_1, \gamma_2 path formulae, \mathcal{S}^p and \mathcal{S}^o two classes of strategies.
\mathfrak{M}, c \models p \text{ iff } p \in L(c^s);
\mathfrak{M}, c \models ac \text{ iff } c^u \models ac,
\mathfrak{M}, c \models \langle \langle A \rangle \rangle \gamma iff there is a \mathcal{S}^p-strategy s_A such that for all
\mathcal{S}^o-strategies s_{\mathbb{A}\setminus A}: \mathfrak{M}, outcome_play \mathfrak{M}(c,(s_A,s_{\mathbb{A}\setminus A})) \models \gamma.
\mathfrak{M}, \pi \models \varphi \text{ iff } \mathfrak{M}, \pi[0] \models \varphi
\mathfrak{M}, \pi \models \mathcal{X}\gamma \text{ iff } \mathfrak{M}, \pi[1] \models \gamma
\mathfrak{M}, \pi \models \mathcal{G}\gamma \text{ iff } \mathfrak{M}, \pi[i] \models \gamma \text{ for all } i \in \mathbb{N},
```

```
Given: \mathfrak{M} be a GCGMP, c a configuration, \varphi state formula,
\gamma, \gamma_1, \gamma_2 path formulae, \mathcal{S}^p and \mathcal{S}^o two classes of strategies.
\mathfrak{M}, c \models p \text{ iff } p \in L(c^s);
\mathfrak{M}, c \models ac \text{ iff } c^u \models ac,
\mathfrak{M}, c \models \langle \langle A \rangle \rangle \gamma iff there is a \mathcal{S}^p-strategy s_A such that for all
\mathcal{S}^o-strategies s_{\mathbb{A}\setminus A}: \mathfrak{M}, outcome_play \mathfrak{M}(c,(s_A,s_{\mathbb{A}\setminus A})) \models \gamma.
\mathfrak{M}, \pi \models \varphi \text{ iff } \mathfrak{M}, \pi[0] \models \varphi,
\mathfrak{M}, \pi \models \mathcal{X}\gamma \text{ iff } \mathfrak{M}, \pi[1] \models \gamma
\mathfrak{M}, \pi \models \mathcal{G}\gamma \text{ iff } \mathfrak{M}, \pi[i] \models \gamma \text{ for all } i \in \mathbb{N},
\mathfrak{M}, \pi \models \gamma_1 \mathcal{U} \gamma_2 iff there is j \in \mathbb{N}_0 such that \mathfrak{M}, \pi[j] \models \gamma_2 and
\mathfrak{M}, \pi[i] \models \gamma_1 for all 0 < i < i.
```

Given: \mathfrak{M} be a GCGMP, c a configuration, φ state formula, $\gamma, \gamma_1, \gamma_2$ path formulae, \mathcal{S}^p and \mathcal{S}^o two classes of strategies. $\mathfrak{M}, c \models p$ iff $p \in L(c^s)$; $\mathfrak{M}, c \models ac$ iff $c^u \models ac$, $\mathfrak{M}, c \models \langle\!\langle A \rangle\!\rangle \gamma$ iff there is a \mathcal{S}^p -strategy s_A such that for all \mathcal{S}^o -strategies $s_{\mathbb{A}\backslash A}$: \mathfrak{M} , outcome_play $\mathfrak{M}(c, (s_A, s_{\mathbb{A}\backslash A})) \models \gamma$. $\mathfrak{M}, \pi \models \varphi$ iff $\mathfrak{M}, \pi[0] \models \varphi$,

 $\mathfrak{M},\pi\models\mathcal{G}\gamma\text{ iff }\mathfrak{M},\pi[i]\models\gamma\text{ for all }i\in\mathbb{N}\text{,}$

 $\mathfrak{M}, \pi \models \mathcal{X}\gamma \text{ iff } \mathfrak{M}, \pi[1] \models \gamma$,

 $\mathfrak{M}, \pi \models \gamma_1 \mathcal{U} \gamma_2$ iff there is $j \in \mathbb{N}_0$ such that $\mathfrak{M}, \pi[j] \models \gamma_2$ and $\mathfrak{M}, \pi[i] \models \gamma_1$ for all $0 \le i < j$.

Ultimately, we define $\mathfrak{M}, c \models \varphi$ iff $\mathfrak{M}, c, 0 \models \varphi$.

 \triangleright QATL* extends ATL*, so it can express all purely qualitative ATL* properties,

 $\,\vartriangleright\, QATL^*$ extends $ATL^*,$ so it can express all purely qualitative ATL^* properties, like

$$\langle\!\langle A \rangle\!\rangle (\mathcal{G}p \wedge q\mathcal{U}r)$$

 \rhd QATL* extends ATL*, so it can express all purely qualitative ATL* properties, like

$$\langle\!\langle A \rangle\!\rangle (\mathcal{G}p \wedge q\mathcal{U}r)$$

 \triangleright QATL* extends ATL*, so it can express all purely qualitative ATL* properties, like

$$\langle\!\langle A \rangle\!\rangle (\mathcal{G}p \wedge q\mathcal{U}r)$$

$$\langle\!\langle\{\mathbf{a}\}\rangle\!\rangle\mathcal{G}(v_{\mathbf{a}}>0)$$

"Player a has a strategy to maintain his accumulated utility positive",

 $\,\rhd\, QATL^*$ extends ATL*, so it can express all purely qualitative ATL* properties, like

$$\langle\!\langle A \rangle\!\rangle (\mathcal{G}p \wedge q\mathcal{U}r)$$

⊳ QATL* can also express quantitative properties, e.g.:

$$\langle\!\langle \{\mathbf{a}\}\rangle\!\rangle \mathcal{G}(v_{\mathbf{a}}>0)$$

"Player a has a strategy to maintain his accumulated utility positive",

 \triangleright QATL* extends ATL*, so it can express all purely qualitative ATL* properties, like

$$\langle\!\langle A \rangle\!\rangle (\mathcal{G}p \wedge q\mathcal{U}r)$$

$$\langle\!\langle \{a\} \rangle\!\rangle \mathcal{G}(v_a > 0)$$

"Player a has a strategy to maintain his accumulated utility positive",

$$\langle\!\langle \{\mathbf{a}\}\rangle\!\rangle ((\mathbf{a} \text{ is happy}) \ \mathcal{U} \ (v_{\mathbf{a}} \geq 10^6))$$

 $\,\vartriangleright\, QATL^*$ extends $ATL^*,$ so it can express all purely qualitative ATL^* properties, like

$$\langle\!\langle A \rangle\!\rangle (\mathcal{G}p \wedge q\mathcal{U}r)$$

▷ QATL* can also express quantitative properties, e.g.:

$$\langle\!\langle\{\mathbf{a}\}\rangle\!\rangle\mathcal{G}(v_{\mathbf{a}}>0)$$

"Player a has a strategy to maintain his accumulated utility positive",

$$\langle\!\langle \{\mathbf{a}\} \rangle\!\rangle ((\mathbf{a} \text{ is happy}) \ \mathcal{U} \ (v_{\mathbf{a}} \geq 10^6))$$

"Player **a** has a strategy to reach accumulated utility of one million and meanwhile stay in "happy" states."

1.
$$\langle \langle \{I, II\} \rangle \rangle \mathcal{F}(p_1 \wedge v_I > 100 \wedge v_{II} > 100)$$

- 1. $\langle\!\langle \{I, II\} \rangle\!\rangle \mathcal{F}(p_1 \wedge v_I > 100 \wedge v_{II} > 100)$
- 2. $\langle \langle \{I,II\} \rangle \rangle \mathcal{X} \mathcal{X} \langle \langle \{II\} \rangle \rangle (\mathcal{G}(p_2 \wedge v_I = 0) \wedge \mathcal{F} v_{II} > 100)$.

- 1. $\langle \langle \{I, II\} \rangle \rangle \mathcal{F}(p_1 \wedge v_I > 100 \wedge v_{II} > 100)$
- 2. $\langle \langle \{I,II\} \rangle \rangle \mathcal{X} \mathcal{X} \langle \langle \{II\} \rangle \rangle (\mathcal{G}(p_2 \wedge v_I = 0) \wedge \mathcal{F} v_{II} > 100)$.
- 3. $\neg \langle \langle \{I\} \rangle \rangle \mathcal{G}(p_1 \vee v_I > 0)$

- 1. $\langle\!\langle \{I, II\} \rangle\!\rangle \mathcal{F}(p_1 \wedge v_I > 100 \wedge v_{II} > 100)$
- 2. $\langle \langle \{I,II\} \rangle \rangle \mathcal{X} \mathcal{X} \langle \langle \{II\} \rangle \rangle (\mathcal{G}(p_2 \wedge v_I = 0) \wedge \mathcal{F} v_{II} > 100)$.
- 3. $\neg \langle \langle \{I\} \rangle \rangle \mathcal{G}(p_1 \vee v_I > 0)$
- 4. $\neg \langle \langle \{I,II\} \rangle \rangle \mathcal{F}(p_3 \wedge \mathcal{G}(p_3 \wedge v_I + v_{II} > 0))$.

The framework is very general and easily leads to undecidable MC.

The framework is very general and easily leads to undecidable MC.

Lemma (Reduction from the Halting problem for Minsky machines) For any Minsky machine (2-counter automaton) A a finite 2-player GCGMP \mathfrak{M}^A using a proposition halt can be constructed so that:

A halts on empty input iff there is a play π in \mathfrak{M}^A which reaches a halt-state.

The framework is very general and easily leads to undecidable MC.

Lemma (Reduction from the Halting problem for Minsky machines) For any Minsky machine (2-counter automaton) A a finite 2-player GCGMP \mathfrak{M}^A using a proposition halt can be constructed so that:

A halts on empty input iff there is a play π in \mathfrak{M}^A which reaches a halt-state.

Thm Model checking in the logic QATL* is undecidable, even for the fragment with no nested cooperation modalities, where $S^p = S^{mem}$ and $S^o = S^{pos}$, in each of the following cases:

Some undecidability results about QATL*

The framework is very general and easily leads to undecidable MC.

Lemma (Reduction from the Halting problem for Minsky machines) For any Minsky machine (2-counter automaton) A a finite 2-player GCGMP \mathfrak{M}^A using a proposition halt can be constructed so that: A halts on empty input iff

there is a play π in \mathfrak{M}^A which reaches a halt-state.

Thm Model checking in the logic QATL* is undecidable, even for the fragment with no nested cooperation modalities, where $S^p = S^{mem}$ and $S^o = S^{pos}$, in each of the following cases:

1. Two players, no arithmetic constraints in the formula.

Some undecidability results about QATL*

The framework is very general and easily leads to undecidable MC.

Lemma (Reduction from the Halting problem for Minsky machines) For any Minsky machine (2-counter automaton) A a finite 2-player GCGMP \mathfrak{M}^A using a proposition halt can be constructed so that: A halts on empty input iff

there is a play π in \mathfrak{M}^A which reaches a halt-state.

Thm Model checking in the logic QATL* is undecidable, even for the fragment with no nested cooperation modalities, where $S^p = S^{mem}$ and $S^o = S^{pos}$, in each of the following cases:

- 1. Two players, no arithmetic constraints in the formula.
- 2. Two players, state-based guards.

Some undecidability results about QATL*

The framework is very general and easily leads to undecidable MC.

Lemma (Reduction from the Halting problem for Minsky machines) For any Minsky machine (2-counter automaton) A a finite 2-player GCGMP \mathfrak{M}^A using a proposition halt can be constructed so that:

A halts on empty input iff there is a play π in \mathfrak{M}^A which reaches a halt-state.

Thm Model checking in the logic QATL* is undecidable, even for the fragment with no nested cooperation modalities, where $S^p = S^{mem}$ and $S^o = S^{pos}$, in each of the following cases:

- 1. Two players, no arithmetic constraints in the formula.
- 2. Two players, state-based guards.
- 3. Three players, no guards, non-negative payoffs only.

Thm: MC in the logic QATL* is decidable in the following cases:

Thm: MC in the logic QATL* is decidable in the following cases:

1. Many players, all executing bounded memory effective strategies.

Thm: MC in the logic QATL* is decidable in the following cases:

- 1. Many players, all executing bounded memory effective strategies.
- 2. Two-player turn-based GCGMPs, for the fragment with formulae involving only player 1's accumulated utility.

Thm: MC in the logic QATL* is decidable in the following cases:

- 1. Many players, all executing bounded memory effective strategies.
- 2. Two-player turn-based GCGMPs, for the fragment with formulae involving only player 1's accumulated utility.

Conjectures: Model checking in the logic QATL* is decidable in each of the following cases:

Thm: MC in the logic QATL* is decidable in the following cases:

- 1. Many players, all executing bounded memory effective strategies.
- 2. Two-player turn-based GCGMPs, for the fragment with formulae involving only player 1's accumulated utility.

Conjectures: Model checking in the logic QATL* is decidable in each of the following cases:

1. Two players and non-negative payoffs.

Thm: MC in the logic QATL* is decidable in the following cases:

- 1. Many players, all executing bounded memory effective strategies.
- 2. Two-player turn-based GCGMPs, for the fragment with formulae involving only player 1's accumulated utility.

Conjectures: Model checking in the logic QATL* is decidable in each of the following cases:

- 1. Two players and non-negative payoffs.
- 2. Many players, no guards, restriction to the quantitative atomic formulae to only allow comparisons between players' payoffs and constants, i.e. of the type $v_i \circ c$ but not $v_i \circ v_j$, where $o \in \{>, =, <\}$.

Valentin Goranko

We have proposed a logical framework combining qualitative with quantitative reasoning in multi-payer games.

> Three perspectives of research agenda:

- > Three perspectives of research agenda:
 - Logic: Expressiveness, formal reasoning, deduction.

- > Three perspectives of research agenda:
 - Logic: Expressiveness, formal reasoning, deduction.
 - Computation: decidability, algorithms and complexity for model checking and synthesis.

- > Three perspectives of research agenda:
 - Logic: Expressiveness, formal reasoning, deduction.
 - Computation: decidability, algorithms and complexity for model checking and synthesis.
 - Game theory: solution concepts, equilibria, extending results from repeated games (e.g., folk theorems), etc.

- > Three perspectives of research agenda:
 - Logic: Expressiveness, formal reasoning, deduction.
 - Computation: decidability, algorithms and complexity for model checking and synthesis.
 - Game theory: solution concepts, equilibria, extending results from repeated games (e.g., folk theorems), etc.
- ▶ Many still unexplored directions, including:

- - Logic: Expressiveness, formal reasoning, deduction.
 - Computation: decidability, algorithms and complexity for model checking and synthesis.
 - Game theory: solution concepts, equilibria, extending results from repeated games (e.g., folk theorems), etc.
- ▶ Many still unexplored directions, including:
 - games with imperfect information,

- > Three perspectives of research agenda:
 - Logic: Expressiveness, formal reasoning, deduction.
 - Computation: decidability, algorithms and complexity for model checking and synthesis.
 - Game theory: solution concepts, equilibria, extending results from repeated games (e.g., folk theorems), etc.
- ▶ Many still unexplored directions, including:
 - games with imperfect information,
 - satisfiability testing and model synthesis,

- > Three perspectives of research agenda:
 - Logic: Expressiveness, formal reasoning, deduction.
 - Computation: decidability, algorithms and complexity for model checking and synthesis.
 - Game theory: solution concepts, equilibria, extending results from repeated games (e.g., folk theorems), etc.
- ▶ Many still unexplored directions, including:
 - games with imperfect information,
 - satisfiability testing and model synthesis,
 - stochastic games with probabilistic strategies, etc.

We have proposed a logical framework combining qualitative with quantitative reasoning in multi-payer games.

- - Logic: Expressiveness, formal reasoning, deduction.
 - Computation: decidability, algorithms and complexity for model checking and synthesis.
 - Game theory: solution concepts, equilibria, extending results from repeated games (e.g., folk theorems), etc.
- ▶ Many still unexplored directions, including:
 - games with imperfect information,
 - · satisfiability testing and model synthesis,
 - stochastic games with probabilistic strategies, etc.

The End