JEE MAINS

1

EE1030 JULY 25 - SHIFT - 2

Homa Harshitha Vuddanti (EE24BTECH11062)

1) For $z \in C$ if the minimum value of $(|z - 3\sqrt{2}| + |z - p\sqrt{2}i|)$ is $5\sqrt{2}$, then a value of

c) 4

d) $\frac{9}{2}$

QUESTIONS- 1 TO 15

b) $\frac{7}{2}$

SECTION A

a) 3

2)	The number of real values λ , such that the system of linear equations $2x-3y+5z=9$ $x+3y-z=-18$ $3x-y+\left(\lambda^2- \lambda \right)z=16$ has no solution, is					
	a) 0	b) 1	c) 2	d) 4		
3)	The number of bijective functions $f: 1, 3, 5, 7, \dots 99 \mapsto 2, 4, 6, 8, \dots 100$, such that $f(3) \ge f(9) \ge f(15) \ge f(21) \ge \dots \ge f(99)$, is					
	a) ${}^{50}P_{17}$	b) ${}^{50}P_{33}$	c) 33! × 17!	d) $\frac{50!}{2}$		
4)	The remainer when $(11)^1 011 + (1011)^1 1$ is divided by 9 is					
	a) 1	b) 4	c) 6	d) 8		
5)	The sum $\sum_{n=1}^{21} \frac{3}{(4n-1)(4n+3)}$ is equal to					
	a) $\frac{7}{87}$	b) $\frac{7}{29}$	c) $\frac{14}{87}$	d) $\frac{21}{29}$		
6)	$\lim_{x \to \frac{\pi}{4}} \frac{8\sqrt{2} - (\cos x + \sin x)}{\sqrt{2} - \sqrt{2}\sin 2x}$	⁷ is equal to				
	a) 14	b) 7	c) $14\sqrt{2}$	d) $7\sqrt{2}$		
7)	$\lim_{x \to \frac{1}{2^n}} \left(\frac{1}{\sqrt{1 - \frac{1}{2^n}}} + \frac{1}{\sqrt{1 - \frac{1}{2^n}}} \right)$	$\frac{1}{1-\frac{2}{2n}} + \frac{1}{\sqrt{1-\frac{3}{2n}}} + \cdots + -$	$\frac{1}{\sqrt{1-\frac{2^n-1}{2^n}}}$ is equal to			

d) -2

d) $\frac{7}{8}$

d) $\frac{104}{e}$

10)	Let the point $\mathbf{P}(\alpha, \beta)$ be at a unit distance from each of the two lines $L_1: 3x-4y+12=0$ and $L_2: 8x+6y+11=0$. If \mathbf{P} lies below L_1 and above L_2 , then $100(\alpha+\beta)$ is equal to					
	a) -14	b) 42	c) -22	d) 14		
11)	Let a smooth curve $y = f(x)$ be such that the slope of the tangent at any point (x, y) on it is directly proportional to $\frac{-y}{x}$. If the curve passes through the point $(1, 2)$ and $(8, 1)$, then $ y(\frac{1}{8}) $ is equal to					
	a) 2 ln 2	b) 4	c) 1	d) 4 ln 2		
12)	If the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ meets the line $\frac{x}{7} + \frac{y}{2\sqrt{6}} = 1$ on the x-axis and the line $\frac{x}{7} - \frac{y}{2\sqrt{6}} = 1$ on the y-axis, then the eccentricity of the ellipse is					
	a) $\frac{5}{7}$	b) $\frac{2\sqrt{6}}{7}$	c) $\frac{3}{7}$	d) $\frac{2\sqrt{5}}{7}$		
13)	The tangents at the point $\mathbf{A}(1,3)$ and $\mathbf{B}(1,-1)$ on the parabola $y^2-2x-2y=1$ meet at the point \mathbf{P} . Then the area of the triangle PAB is					
	a) 4	b) 6	c) 7	d) 8		
14)	If the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{7} = 1$ and the hyperbola $\frac{x^2}{144} - \frac{y^2}{\alpha} = \frac{1}{25}$ coincide. Then the length of the latus rectum of the hyperbola is					
	a) $\frac{32}{9}$	b) $\frac{18}{5}$	c) $\frac{27}{4}$	d) $\frac{27}{10}$		
15)	A plane <i>E</i> is perpendicular to the two planes $2x - 2y + z = 0$ and $x - y + 2z = 4$, and passes through the point $\mathbf{P}(1, -1, 1)$. If the distance of the plane <i>E</i> from the point $\mathbf{Q}(a, a, 2)$ is $3\sqrt{2}$. Then $(PQ)^2$ is equal to					

c) 2

c) $\frac{5}{4}$

c) $\frac{52(2+e)}{e}$

8) If A and B are two events such that $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{5}$ and $P(A \cup B) = \frac{1}{2}$ then

9) Let [t] denote the greatest integer less than or equal to t. Then the value of the

b) 1

b) $\frac{5}{8}$

integral $\int_{-3}^{101} ([\sin(\pi x)]) + e^{\cos(2\pi x)} dx$ is equal to

b) $\frac{52}{e}$

 $P(A \mid B') + P(B \mid A')$ is equal to

a) $\frac{1}{2}$

a) $\frac{3}{4}$

a) $\frac{52(1-e)}{e}$

a) 9

c) 21

d) 33