System on Chip Course Embedded Systems (SEm) SoC

Silvan Zahno / François Corthay

Degree program Systems Engineering
Specialization Infotronics – Embedded Systems

Current content of the topic in the course

SoC Introduction

- ARM vs. Intel
- SoC Elements
- Example Apple M1

π School of Engineering

ARM vs Intel

- ARM
 - Mobile Chips
 - Small and Light
 - Low Energy Consumption

- Intel
 - High End Powerful μProcessors
 - Broad Product Range

ARM vs Intel

Тур	ARM	Intel
Architecture	RISC Reduced instruction set computer	CISC Complex instruction set computer
Speed	Moderate	Important
Power Consumption	Important	Moderate
Compiler	Important	Moderate

ARM

- ARM vs. Intel
- SoC Elements
- Example Apple M1

SoC Elements

- Basic SoC
 - Bus
 - Processor(s)
 - Periphery
 - Thunderbolt
 - USB 2,3,4
 - PCI, PCI-E
 - CAN, RS232
 - Memory
 - Cache
 - RAM (Random Access Memory)
- Advanced SoC
 - GPU (Graphical Processing Unit)
 - DAC & ADC (Digital ⇔ Analog Converters)
 - Machine learning Core

- ARM vs. Intel
- SoC Elements
- Example Apple M1

Example Apple M1

Example Apple M1

High-performance cores

Ultra-wide execution architecture 192KB instruction cache 128KB data cache Shared 12MB L2 cache

High-efficiency cores

Wide execution architecture 128KB instruction cache 64KB data cache Shared 4MB L2 cache

8-core GPU

128 execution units <24,567 concurrent threads 2.6 teraflops 82 gigatexels/second 41 gigapixels/second

16-core Neural Engine Machine learning accelerator

Example Apple M1

Thunderbold

Performance Controller

Secure Enclave

On the fly encryption Key storage

USB4.0

Media Encoder & Decoder ISP (Image Signal Processing)

AMD Radeon RX550

7nm

- [m1] (English) Apple M1
 https://www.apple.com/mac/m1/
- [soc] (Deutsch) SoC
 https://deacademic.com/dic.nsf/dewiki/377773
- [pic] (English) Fritzchens Fritz https://www.flickr.com/photos/130561288@N04/
- [ibex] (English) Ibex Risc-V
 https://awesomeopensource.com/project/lowRISC

