Работу выполнил Просвирин Кирилл, 712гр. 13 октября 2017 19 октября 2017

Лабораторная работа № 1.4.5

Изучение колебаний струны

Цель работы: изучение поперечных стоячих волн на струне; определение собственных частот колебаний струны; исследование зависимости скорости распростронения поперечных волн на струне в зависимости от ее натяжения.

В работе используется: закрепленная на станине стальная струнаб, набор грузов, элкетромагнитные датчики, звуковой генератор, двухканальный осциллограф, частотометр.

1 Теоретическая справка

Волны на струне

Уравнение свободных малых поперечных колебаний струны:

$$\frac{\partial^2 y}{\partial t^2} = u^2 \frac{\partial y}{\partial x^2}.\tag{1}$$

Уравнение (1) называют *волновым уравнением*. Кроме волн на струне, оно может описывать волновые процессы в самых разных системах, в том числе волны в сплошных средах, электромагнитные и т.д.

Бегущие волны

Общее решение дифференциального уравнения в частных производных (1) представимо в виде суммы двух волн произвольной формы, бегущих в противоположные стороны со скоростями $\pm u$:

$$y(x,t) = y_1(x - ut) + y_2(x + ut), (2)$$

где $u=\frac{T}{\rho_l}$ — скорость распространения волны. Заметим, что скорость u распространения попереченых волн на струне зависит только от силы натяжения струны T и ее погонной плотности ρ_l .

Для гармонических волн:

$$y(x,t) = a\cos(\omega t - kx) + b\cos(\omega t + kx). \tag{3}$$

Собственные колебания струны. Стоячие волны

Собственные колебания струны с *закреплеными концами*. Положив x=0 и x=L, используя (3) находим:

$$y(0,t) = a\cos\omega t + b\cos\omega t,\tag{4}$$

откуда следует, что a=-b. Тогда после тригонаметрических преобразований выражение (4) примет вид:

$$y = (x, t) = 2a\sin kx \cdot \sin \omega t. \tag{5}$$

Колебания струны, описываемые функцией (5), называются *стоячими волнами*. Видно, что стоячая волна может быть получена как интерференция двух гармонических бегущих волн, имеющих равную амплитуду и движущихся навстречу друг другу.

Замечание: В точках, где $\sin kx = 1$, амплитуда колебаний максимальна — называются *пучностями*. Точки, в которых $\sin kx = 0$, неподвижны, называются *узлами*.

Из второго граничного условия y=(L,t)=0 найдем условие образования стоячих волн на струне: $y=(x,t)=2a\sin kL\cdot\sin\omega t=0$, откуда

$$\sin kL = 0 \quad \to \quad k = \frac{\pi n}{2}, \quad n \in \mathbb{N}.$$
 (6)

Таким образом, стоячие волны на струне с закрепленными концами могут быть образованы только если на длине струны укладывается целое число полуволн:

$$L = \frac{\lambda_n}{2}n. (7)$$

Поскольку длина волны однозначно связана с ее частотой, струна может колебаться только с определенными частотами:

$$\nu_n = \frac{u}{\lambda_n} = \frac{n}{2L} \sqrt{\frac{T}{\rho_l}}, \quad n \in \mathbb{N}$$
 (8)

Набор $(cne\kappa mp)$ разрешенных частот ν_n называют cofcmbe e h h h h w u u cmoma mu колебаний струны. Наименьшая частота ν_1 называется также ochobh e h h m moho m, а остальные $(\nu_2 = 2\nu_1, \nu_3 = 3\nu_1, \ldots) - ofep moha mu$.

2 Экспериментальная установка

Рис. 1: Схема установки

Оборудование:

- 1. Струна
- 2. 3. Стойка
- 4. Станина
- Груз
- 6. Возбуждающий датчик
- 7. Генератор
- 8. Регистрирующий датчик
- 9. Осциллограф

3 Ход работы

- 1. Оценим скорость распространения волны по формуле $u=\frac{T}{\rho_l}$. Расчитаем частоту основной гармоники.
- 2. Проведем частот не менее 5 nevenhux (n = 1, 3, 5, 7, 9) гармоник стоячх волн. Для этого регистририующий датчик разместим в центре под струной.
- 3. Измерим частоты *четных* (n = 2, 4, ...) гармоник.
- 4. Проведем опыты 2 и 3 не менее, чем для пяти различных натяжений струны
- 5. Для каждого значения натяжения струны T построим график зависимости частоты от резонанса ν_n от n.
- 6. Построим график зависимости u^2 от T. По наклону прямой определим погонную плотность струны ρ_l .

4 Проведение измерений

1. Расчитаем частоту основной гармоники для груза $m_1 = 1018,6$ г. Воспользуемся формулой (8):

$$\nu_1 = \frac{n}{2L} \sqrt{\frac{T}{\rho_l}} = \frac{1}{2 \cdot 0.5 \text{M}} \sqrt{\frac{1018.6 \cdot 10^{-3} \text{K} \cdot 0.8 \frac{\text{M}}{\text{c}^2}}{568.4 \cdot 10^{-6} \frac{\text{K} \cdot \Gamma}{\text{M}}}} \approx 132.52 \Gamma \text{I} \cdot 1.0 \Gamma \cdot 1.0$$

2. Настроим струну примерно на основную гармонику, которую мы посчитали в 1 пункте: $\nu_1 \approx 132{,}52\Gamma$ ц.

Настроим частоту генератора таким образом, чтобы амлитуда сигнала была максимальна. Запцишем окончательное значение основной гармоники: $\nu_1 = 129,12\Gamma$ ц

Замечание. Всю дальнейшую регистрацию стоячих волн будем осуществлять с помощью осциллографа.

3. Проведем измерение для нечетных гармоник для пяти различных натяжений струны. Получившиеся результаты запишем в таблицу 1.

Таблица 1: Результаты измерений для нечетных гармоник

	ν_1	ν_3	ν_5	ν_7	ν_9	
T_1	100,58	306,49	512,49	726,79	942,79	$T_1 = 5,57H$
T_2	129,12	401,57	$642,\!58$	944,58	1222,21	$T_2 = 9.98H$
T_3	152,58	470,58	787,28	1106,13	1454,68	$T_3 = 14,83H$
T_4	178,48	542,48	912,58	1280,68	1650,58	$T_4 = 19,66H$
T_5	200,79	603,59	1003,37	1408,37	1810,37	$T_5 = 24{,}39H$

4. Проведем измерение для четных гармоник для пяти различных натяжений струны.

Таблица 2: Результаты измерений для четных гармоник

	ν_2	ν_4	ν_6	ν_8
T_1	203,49	410,49	621,39	831,39
T_2	269,65	540,57	815,31	1087,08
T_4	320,28	643,08	966,38	1295,48
T_3	364,08	729,68	1098,18	1466,24
T_5	401,58	804,77	1207,17	1634,79

5. Для каждого значения натяжения струны T построим график зависимости ν_n от n.

Рис. 2: График зависимости частоты ν_n от n

По наклону прямой с помощью формулы (8) определим скорость u волн при данном натяжении.

	T_1	T_2	T_3	T_4	T_5
u	105,7	136,42	162,14	184,1	202,5
u^2	11039,7049	18610,4164	26289,379	33856	41006,25

Таблица 3: Зависимость скорости волны в зависимости от натяжения

Погрешность σ_u будем считать по формуле:

$$\sigma_u = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - b^2},$$
 где $y = \nu_n, \ x = n$

Тогда получим:

$$u(T_1) = (105.7 \pm 1.9) \text{M/c}$$

$$u(T_2) = (136.4 \pm 2.5) \text{M/c}$$

$$u(T_3) = (162.1 \pm 2.9) \text{M/c}$$

$$u(T_4) = (184.1 \pm 3.3) \text{M/c}$$

$$u(T_5) = (202.5 \pm 3.7) \text{M/c}$$

6. Построим график зависимости u^2 от T. По наклону прямой определим погонную плотность струны ρ_l .

Рис. 3: График зависимости u^2 от T

По наклону прямой с помощью формулы $u=\sqrt{\frac{T}{\rho_l}}$ определим погонную плотность струны $\rho_l.$

$$\rho_l = \frac{1}{1588,2} \text{kg/m} = 559,64 \text{mg/m}$$

Погрешность погонной плотности будем также считать по формуле:

$$\sigma_u = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2}},$$

где $y = u^2, \, x = T$

Тогда получим:

$$ho_l = (559,\!64 \pm 16) \; {
m M}{
m \Gamma}/{
m M}$$

Истинное значение ρ_l указанного на установке, попадает в область определение нашего ρ_l , к оторое мы нашли экспериментальным путем.