

CT101 Computing Systems

Dr. Bharathi Raja Chakravarthi Lecturer-above-the-bar

Email: bharathi.raja@universityofgalway.ie

University of Galway.ie

Recap

Gate-Level Minimization

- Gate-level minimization is the design task of finding an optimal gate-level implementation
 of the Boolean functions describing a digital circuit.
- This task is well understood but is difficult to execute by manual methods when the logic has more than a few inputs.
- Computer-based logic synthesis tools can minimize a large set of Boolean equations efficiently and quickly.

K-map

- A K-map is a diagram made up of squares, with each square representing one minterm of the function that is to be minimized.
- The map presents a visual diagram of all possible ways a function may be expressed in standard form.
- The simplified expressions produced by the map are always in one of the two standard forms:
 - sum of products or
 - products of sums

Two-Variable K-Map

- The two-variable map is shown here.
- Four minterms for two variables.

- (b) shows the relationship between the squares and the two variables x and y.
- 0 and 1 designate the values of variables.
- Variable x appears primed in row 0 and unprimed in row 1.
- Similarly, y appears primed in column 0 and unprimed in column 1.

Two-Variable K-Map

- The two-variable map becomes another useful way to represent any one of the 16 Boolean functions of two variables.
- Example, the function xy is shown Fig. (a).

Three-Variable K-Map

A three-variable K-map is shown here.

- Eight minterms for three binary variables; the map consists of eight squares.
- Only one bit changes in value from one adjacent column to the next.

Examples

Simplify the Boolean function $F(x, y, z) = \sum(3, 4, 6, 7)$

- 1. Mark squares with 1s in the Karnaugh Map (minterms 011, 100, 110, 111).
- 2. Two adjacent squares are combined in the third column to give a two-literal term yz.
- 3. The remaining two squares with 1's are also adjacent by the new definition.
- 4. These two squares, when combined, give the two-literal term xz.
- 5. Results the simplified function:

$$F = yz + xz'$$

Examples

- 6. Simplification Principle:
 - Four adjacent squares in a three-variable map represent the logical sum of four minterms, resulting in an expression with only one literal.
 - Example: The sum of adjacent minterms 0, 2, 4, and 6 simplifies to z'.
 - Consider the logical sum of the four adjacent minterms 0, 2, 4, and 6.
 - Simplified to the single literal term z':

$$m_0 + m_2 + m_4 + m_6 = x'y'z' + x'yz' + xy'z' + xyz'$$

$$= x'z'(y' + y) + xz'(y' + y)$$

$$= x'z' + xz' = z'(x' + x) = z'$$

Adjacent Squares and Literal Reduction

The number of Adjacent Squares and Literal Reduction:

- The number of adjacent squares combined should always be a power of two (e.g., 1, 2, 4, 8).
- One square represents a term with three literals.
- Two adjacent squares represent a term with two literals.
- Four adjacent squares represent a term with one literal.
- Eight adjacent squares encompass the entire map and result in a function always equal to 1.

Four-Variable K-Map

 Rows and columns are numbered in a Gray code sequence, with only one digit changing between adjacent rows or columns.

\	\ yz	,	<i>y</i>				
wx		00	01	11	10	'	
	Ì	m_0		m_3	m_2		
	00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'		
		m_4	m_5	m_7	m_6	1	
	01	w'xy'z'	w'rv'z		w'rvz'		
	01	" Xy 2	" xy 2	" " "	" " "		
		m ₁₂	m_{13}	m_{15}	m_{14}	x	
	11	m_{12} $wxy'z'$	wxy'z	wxyz	wxyz'		
w		201	201	***	***	J	
	10	m_8 $wx'y'z'$	// =		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	10	wx y z	wx y z	wx yz	wx yz		
	L				,		
			2	7			

- The minterm for each square is obtained by concatenating the row and column numbers.
- For example, the third row (11) and the second column (01) when concatenated yield the binary number 1101, equivalent to decimal 13.
- Thus, the square in the third row and second column represents minterm \mathbf{m}_{13} .

yz				<u>y</u>				
	wx	\langle	00	01	11	10		
	0	<u></u>	m_0 $w' v' v' \tau'$	m_1 $w'x'y'z$	m ₃	m ₂		
	U			W X y Z	W X YZ		,	
	0	1	m_4 $w'xy'z'$	m_5 $w'xy'z$	m_7 $w'xyz$	m_6 $w'xyz'$		
	ſ		m_{12}	m_{12}	nıs	m_{14}	\ X	
	1	1	wxy'z'	m_{13} $wxy'z$	wxyz	wxyz'		
V	v {	_	m_8	m_9	n_{11}	m_{10}	J	
	1	0	wx'y'z'	wx'y'z	wx'yz	wx'yz'		
	(,	l	
				Z				

Four-Variable K-Map

- Minimization of four-variable Boolean functions is similar to the method used for threevariable functions.
- Adjacent squares are defined as those next to each other.
- The map is considered to be on a surface where the top and bottom edges, as well as the right and left edges, touch each other to form adjacent squares.
- For example, m0 and m2 are adjacent squares, and so are m3 and m11.

_	\ yz	:					y	
wx		00		01	11	Г	10	
		m_0 $w'x'y'z'$	и		m_3 $w'x'y$	ζ	w'x'yz'	
		<i>m</i> ₄	***	5	m_7		₀	7
	01	w'xy'z'	1	v'xy'z	w'xy:	7	w'xyz'	║.
1	11	m_{12}	m	13	m_{15}		m_{14}	k {
		wxy'z'		wxy'z	wxyz		wxyz'	
w		m_8	m	9	m_{11}		m_{10}	
	10	m_8 $wx'y'z'$	1	vx'y'z	wx'y	7	wx'yz'	

Four-Variable K-Map

The combination of adjacent squares during simplification can be determined from inspection of the four-variable map:

- One square represents a minterm, resulting in a term with four literals.
- Two adjacent squares represent a term with three literals.
- Four adjacent squares represent a term with two literals.
- Eight adjacent squares represent a term with one literal.
- Sixteen adjacent squares yield a function that is always equal to 1.

Choosing adjacent squares in a map:

- 1. Ensure all the minterms of the function are covered when we combine the squares,
- 2. Ensure the number of terms in the expression is minimized
- 3. Ensure that, there are no redundant terms (i.e., minterms already covered by other terms).

- A prime implicant is a product term obtained by combining the maximum possible number of adjacent squares in the map.
- If a minterm in a square is covered by only one prime implicant, that prime implicant is said to be essential.
- The prime implicants of a function can be obtained from the map by combining all possible maximum numbers of squares.

- A single 1 on the map represents a prime implicant if it's not adjacent to any other 1's.
- Two adjacent 1's form a prime implicant, provided they are not within a group of four adjacent squares.
- Four adjacent 1's form a prime implicant if they are not within a group of eight adjacent squares, and so on.

Essential Prime Implicants:

- To find essential prime implicants, examine each square marked with a 1 and check how many prime implicants cover it.
- If a square is covered by only one prime implicant, that prime implicant is considered essential.

Gate-Level Minimization

Sum-of-Products Form:

 The minimized Boolean functions obtained from Karnaugh maps were expressed in the sum-of-products form.

Obtaining Product-of-Sums Form:

- To derive a minimized function in product-of-sum form, consider the basic properties of Boolean functions.
- The 1's in the map represent the minterms of the function, while minterms not included in the standard sum-of-products form denote the complement of the function.

Complement Representation:

- The complement of a function is represented in the map by squares not marked with 1's.
- By marking the empty squares with 0's and combining them into valid adjacent squares, a simplified sum-of-products expression of the complement of the function (F') is obtained.

DeMorgan's Theorem:

- The complement of F' gives back the original function F, thanks to DeMorgan's theorem.
- This process ensures that the derived function is automatically in product-of-sums form.

Example Illustration:

The best way to understand this is through practical examples.

Simplify the following Boolean function into (a) sum-of-products form and (b) product-of-sums form:

$$F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10)$$

- 1. Identify Minterms: In the map, 1's represent included minterms, and 0's represent excluded minterms.
- 2. Sum-of-Products Form: Combine 1's to obtain the simplified function:

$$F = B'D' + B'C' + A'C'D$$

(b) Product-of-Sums Form:

 Identify Missing Minterms: Combine squares marked with 0's to obtain the complemented function:

$$F' = AB + CD + BD'$$

 Apply DeMorgan's Theorem: The product-of-sums form is obtained by taking the dual and complementing each literal:

$$F = (A' + B')(C' + D')(B' + D)$$

Gate-Level Implementation:

- Sum-of-Products Implementation (a): Implemented with a group of AND gates, one for each AND term. The outputs of the AND gates are connected to a single OR gate.
- **Product-of-Sums Implementation (b):** Implemented with a group of OR gates, one for each OR term. The outputs of the OR gates are connected to the inputs of a single AND gate.

INIVERSITY OF GALWAY

- In Boolean functions, the logical sum of minterms specifies when the function equals 1, while it equals 0 for all other minterms.
- In practical applications, some variable combinations might not be specified or needed.
- These unspecified conditions are known as "don't-care" conditions.
- They allow for further simplification of Boolean expressions by optimizing the function, and we often don't need to know the specific output values for these conditions.
- These situations are common in real-world applications and are referred to as incompletely specified functions.
- Pon't-care conditions can be used on a map to simplify Boolean expressions even further.

- They allow for further simplification of Boolean expressions by optimizing the function, and we often don't need to know the specific output values for these conditions.
- These situations are common in real-world applications and are referred to as incompletely specified functions.
- Don't-care conditions can be used on a map to simplify Boolean expressions even further.

- Don't-Care Minterms: These minterms represent combinations of variables where the logical value is unspecified.
- These minterms are not marked with a 1 in the map because that would imply the function is always 1 for such combinations.
- Likewise, marking them with 0 would imply the function is always 0 for those combinations.

Representation:

- An X is used to distinguish the don't-care condition from 1's and 0's.
- An X is used inside a square in the map to indicate that we don't care whether the value of 0 or 1 is assigned to F for the particular minterm, distinguishing it from 1's and 0's.

Flexibility in Simplification:

- When simplifying the function using a map, we have the flexibility to treat don'tcare minterms as either 0 or 1.
- This choice depends on which combination results in the simplest expression.

Example

Simplify the Boolean function

$$F(w, x, y, z) = \sum (1, 3, 7, 11, 15)$$

which has the don't-care conditions

$$d(w, x, y, z) = \sum (0, 2, 5)$$

Map Simplification:

- Minterms of F are marked with 1's.
- Don't-care minterms of d are marked with X's.
- Remaining squares are filled with 0's.

Example

- Sum-of-Products Form: To simplify F in sum-of-products form, all five 1's in the map must be included.
- Term YZ: The term yz covers the four minterms in the third column.
- Remaining Minterms: Minterm m_1 can be combined with m_3 to give the three-literal term $\mathbf{w'x'z}$.
- Using Don't-Care Minterms: By including one or two adjacent X's, we can combine four adjacent squares to give a two-literal term.

Example

- Two Simplified Functions:
 - In Fig. (a), don't-care minterms 0 and 2 are included with the 1's, resulting in the simplified function **F** = **yz** + **w'x'**.
 - In Fig. (b), don't-care minterm 5 is included with the 1's, and the simplified function is now F = yz + w'z.
- Either Expression Works: Either one of the preceding two expressions satisfies the conditions stated for this example.

- In the previous example, the don't-care minterms in the map are initially marked with X's, and they can be considered as either 0 or 1.
- Choice in Simplification: The <u>choice between 0 and 1</u> for the don't-care minterms depends on the <u>way the incompletely specified function is simplified</u>.
- Resulting Simplified Functions:
 - The first expression is $F(w, x, y, z) = yz + w'x' = \sum(0, 1, 2, 3, 7, 11, 15)$.
 - The second expression is $F(w, x, y, z) = yz + w'z = \sum(1, 3, 5, 7, 11, 15)$.

- Both expressions include minterms 1, 3, 7, 11, and 15, making **F equal to 1**.
- Don't-care minterms (0, 2, and 5) are handled differently in each expression.
- The first expression includes 0 and 2 with 1's and assigns 0 to minterm 5.
- The second expression includes minterm 5 with 1's and assigns 0 to 0 and 2.

- These two expressions represent different functions, not algebraically equal.
- Both cover specified minterms but handle don't-care minterms differently.
- In the context of the incompletely specified function, either expression is acceptable, differing only in the value of F for don't-care minterms.

- Simplifying the function from Figure in product-of-sums form:
 - Combining the 0's by including don't-care minterms 0 and 2 with them.
 - This results in the simplified complemented function: F' = z' + wy'.
 - Taking the complement of F' gives the simplified expression in product-of-sums form: $F = z(w' + y) = \sum(1, 3, 5, 7, 11, 15)$.
 - This expression includes minterms 0 and 2 with the 0's and 5 with the 1's.

(b) F = yz + w'z

References

- Computer Organization and Architecture Designing for Performance Tenth Edition by William Stallings
- Digital Design With an Introduction to the Verilog HDL FIFTH EDITION by M Morris, M. and Michael, D., 2013.

Thank you