CS1200 Module-1: Discrete Structures	(1)
Cobserve: DAOB = (A-B) U (B-A) -> why? think.	
②AB= (AUB)-(ANB) ->why?think.	
Food for thought: (TIY-TRY IT YOURSELF)	
D'Can the symmetric différence operation be generalized	
to any number of sets!	
@ If YES, how? If NO, why NO!!	
(Hinto Try examples with 3 & 4 sets.)	
(We will answer these questions in Module -2.)	
Enough of Set Theory (for now).	
Relation (dictionary meaning): The way in which two (more) people or things are connected use will focus on this	etuses
Question: Have we seen any relations so for?	
Answer: 1 Divisibility / divides	
2) Subset / is a subset of	
Question: Do you know of any other relations in math Maybe you have seen some in high school?	?
Answer: \leq , \Rightarrow , $=$, $>$, $<$	

Question: There is something special about the parity relationship (=) that is NOT true for any of the other relations we have discussed so far. What is it?

Hint: Consider the relations =, <, >, and \.

on the set N.

Observe that

all of these all of these are related with each other by \equiv .

However, if $x \in \mathbb{O}$ & $y \in \mathbb{E}$ then $x \neq y$.

So, we are able to nicely break partition the set N using the = relation.

Question ?:

(an we do this)

for any other relation

(\leq , \geq , |) that we

have discussed so

far?

Answer: NO.

(why NOT?)

(what is so special about = relation?)

CS 1200 Module-1: Discrete Structures The parity (=) relation (on IN) satisfies some special Properties, and some of these special properties are NOT satisfied by other relations we have discussed (in pasticular: \le , \ge , 1). Let us discuss & define these special properties: : universe R: a relation (defined on U) For members a & b of U, we write [aRb] to indicate that a is related to b through the relation R. > dictionary meaning: Special Property 1: Reflexivity the fact of someone We say that R is reflexive (or being able to examine their own feelings, that R satisfies reflexivity) if reactions & motives and how these a Ra for every element a (of U). influence what they do or think For example: \leq , \geq 1 and $1 \equiv$ (on N) in a situation are reflexive, whereas < & > are NOT. (gramara) showing that the I is NOT reflexive since 0/0. person who does the action is also However, I is reflexive In the lecture, I made a on {1,2,3,....}= IN-{0}. In the lecture, I made a on {1,2,3,....} = IN-{0}. Mistake. As per our defin, o does not divide 0. the person who is affected by it

Equivalence relation: a relation that is reflexive, symmetric & transitive.

They play an extremely important role in CS & in mathematics.

| Why?

Any equivalence relation R defined on a set U nicely breaks / partitions the set I I into disjoint sets called requiremence classes.

Examples (before formal definitions):

	odl	1
even #s	#5	
0,2,5,	1,3,5,	

Equivalence classes (of M)
with respect to
parity (=) relation

Equivalence classes (of IN) with respect to equality (=) relation

S1200 Module-1: Discrete Structures Special Property 2: Symmetry We say that R is symmetric (or that R [satisfies symmetry]) if whenever aRb (for any two members a & b of U) then bRa also holds. For example: = (on M) is symmetric whereas <, >, <, > & | are NOT symmetric. Special Property 3: Transitivity We say that R is [transitive] (or that R satisfies transitivity) if whenever aRb & bRc (thefor any 3 members a, b & c of U) then a Rc also holds. For example: All of the relations we have discussed (in particular: <,>,<,>,=&1) on IN are transitive. TIY: Come up with some "natural" relation (on IN)

A geometric example that is symmetric but NOT

transitive: two lines (in IR2) being perpendicular.