

Convolution

Convolution

In mathematics convolution is a mathematical operation on two functions (f and g) to produce a third function that expresses how the shape of one is modified by the other.

Source: Wikipedia

CONVOLUTION

There are several possible notations to indicate the convolution of two (multi-dimensional) signals to produce an output signal. The most common are:⊖

$$c = a \otimes b = a * b$$

We shall use the first form, $c = a \otimes b$, with the following formal definitions.

In 2D continuous space:

$$c(x,y) = a(x,y) \otimes b(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} a(\chi,\zeta)b(x-\chi,y-\zeta)d\chi d\zeta$$

In 2D discrete space:

$$c[m,n] = a[m,n] \otimes b[m,n] = \sum_{j=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} a[j,k]b[m-j,n-k]$$

What We See

Considering only one channel

What Computers See

35	40	41	45	50
40	40	42	46	52
42	46	50	55	55
48	52	56	58	60
56	60	65	70	75

0	1	0	Г
0	0	0	
0	0	0	Г
		170	\vdash

0	0	0	0	0
0	0	-1	0	0
0	-1	5	-1	0
0	0	-1	0	0
0	0	0	0	0

	21 - 13		
0	1	0	3
1	-4	1	
0	1	0	
	2 3		

1,1	1,0	1,	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	

Image

Convolved Feature

Kernel Effects

Exercise

• Download the script *Deep_Intro_Convolution* and visualize the effect of differents kernels on the image cat.jpg

Deep Learning

An introduction to Convolutional Neural Networks

4x4 One channel

а	b	С	

4x4 One channel

a	b	С	d

а	b	С	d
е			

a	b	С	d
е	f		

а	b	С	d
е	f	g	

а	b	С	d
е	f	g	h

а	b	С	d
е	f	g	h
i			

а	b	С	d
е	f	g	h
i	j		

а	b	С	d
е	f	g	h
i	j	k	

а	b	С	d
е	f	g	h
i	j	k	I

а	b	С	d
е	f	g	h
i	j	k	1
m			

а	b	С	d
е	f	g	h
i	j	k	I
m	n		

а	b	С	d
е	f	g	h
i	j	k	1
m	n	I	

а	b	С	d
е	f	g	h
i	j	k	I
m	n	I	0

а	b	С	d
е	f	g	h
i	j	k	I
m	n	1	0

4x4 One channel

	а	b	С	d
	е	f	g	h
а	b	С	d	I
е	f	g	h	0
i	j	k	I	
m	n	I	0	

4x4 One channel

4x4 One channel

			а	b	С	d
		а	b	С	d	h
		е	f	g	h	I
	а	b	С	d	I	0
	е	f	g	h	0	
а	b	С	d	I		
е	f	g	h	0		
i	j	k	I		J	
m	n	I	0			

4X4x4

4x4 One channel

4X4x4

				\Box	
- 9	4	2	5	7	_
3	0	1 2	8	6 1	
1	2 3	- 6	4 5	2	
2 2	3	- 1	7 2	6	

4D TENSOR
VECTOR OF CUBES

Stride and Padding

X	У

х	У
Z	

х	У
Z	W

Summary Stages

Convolution and Relu

Exercise 1

- Download the script *Deep_Convolution_Layer_Relu*
- Review the effects of ReLU function after a convolution is applied.
- Note that this operation highligths several properties of the image

Exercise 2

- Download the script *DeepLearning_ConvolutionNetwork*
- Review the process to create a convolution network using the dataset included in file miml_dataset.zip

AlexNet Architecture

Exercise 3

- Convolution Netwo Application
- Pose Estimation

