Statistical Methods in Cancer Epidemiology using R

Janne Pitkäniemi

Faculty of Social Sciences, University of Tampere Finnish Cancer Registry

Lecture 2b

janne.pitkaniemi@cancer.fi

Feb,17 2020

Confounding and effect modification

Consider another factor Z which is

also a risk factor of the outcome,

- possibly associated with exposure X in study population,
- not a causal consequence of X.
- ⇒ Adjustment for possible *confounding* and evaluation of *effect* modification needed.

Confounder

- ► Confounders (Z) are variables that
 - ▶ is both an ancestor of the exposure (X)
 - and an ancestor of the outcome (Y) (along a path that does not include the exposure).

Effect modification

- Unfortunately, there's not an agreed upon way to show effect modification/moderation/interaction.
- effects are assumed to be heterogeneous by default in causal models. (JP)

Example: OS vs. PN (cont'd)

Failure of treatment depends also on initial condition of patient, like extent and severity of disease.

Results stratified by initial diameter size of the stone:

Size	Trt	Fails	Npats	Fail-%	RD(%)
< 2 cm	OS	6	87	6.9	
	PN	35	270	13.0	-6.1
$\geq 2~\text{cm}$	OS	71	263	27.0	
	PN	25	80	31.3	-4.3

OS seems more successful in both subgroups, even though overall PN appeared better.

IS THERE A PARADOX?

Confounding

Solution: Treatment groups are not *comparable* w.r.t. initial size. Size of the stone is a *confounder* of the association between operation type and failure risk, because it is

- an independent determinant of outcome (failure), based on external knowledge,
- statistically associated with operation type in the study population,
- not causally affected by operation type.

This is an instance of "confounding by indication":

ightharpoonup patient status affects choice of treatment ightarrow bias in comparing treatments.

This bias would be best to avoid in planning:

→ randomized allocation of treatments!

Stratified analysis

Stratification of cohort data with proportions

▶ at each level k of factor Z results are summarized:

Exposure to	Number of	Number of	Group
risk factor	cases	non-cases	size
yes	D_{1k}	C_{1k}	N_{1k}
no	D_{0k}	C_{0k}	N_{0k}
Total	D_{+k}	C_{+k}	N_{+k}

Stratum-specific incidence proportions by exposure group:

$$R_{1k} = \frac{D_{1k}}{N_{1k}}, \qquad R_{0k} = \frac{D_{0k}}{N_{0k}}$$

Adjusted estimation of risk difference

Let π_{jk} be true risk in exposure group j (j = 0, 1) as to X and stratum k (k = 0, ..., K) of Z. Let also

$$\theta_k = \pi_{1k} - \pi_{0k}$$

be the risk difference in stratum k.

Many approaches to combine stratum specific results into one summary estimator that adjusts for confounding.

These are all somehow weighted averages of stratum-specific estimators.

- ▶ Different weighting principles:
 - Maximum likelihood (ML),
 - ► Mantel-Haenszel (MH) weights,
 - Standardization either by external standard population or by "indirect" standardization.

Model-based adjustment of risk difference

Define generalized linear model for binary outcome with

- one binary exposure variable X and
- ▶ one binary stratifying factor or covariate Z (easily generalized to polytomous factors).

Random part: Number of cases D_{jk} in exposure group j (j=0,1) of X and level k (k=0,1) of Z is assumed to be binomially distributed

$$D_{jk} \sim \text{Binomial}(N_{jk}; \pi_{jk}),$$

Model-based adjustment of risk difference (cont'd)

Systematic part:

$$\pi_{jk} = \alpha + \beta X_j + \gamma Z_k,$$

where X_i is 0/1-indicator as before, and

- $ightharpoonup Z_k = 1$ for level k = 1 of Z, otherwise $Z_k = 0$,
- $\sim \alpha = \pi_{00} = \text{baseline ("corner cell") risk,}$
- $\beta = \pi_{10} \pi_{00} = \theta_0 = \pi_{11} \pi_{01} = \theta_1,$

How do we read this?

Model-based adjustment of risk difference (cont'd)

Implications of model definition

- ▶ the model assumes *homogeneity* of true risk difference θ associated with factor X (exposed vs. unexposed) across levels of Z: $\theta_1 = \theta_0 = \beta$,
- ▶ inclusion of Z in the model leads to adjustment of it when estimating the "true" effect θ of X,
- γ = risk difference between levels 1 and 0 of Z; this is same in both exposure groups (j=0,1)
 - \Rightarrow homogeneity of the effect of Z is assumed, too.

Example. Treatment of renal calculi (cont'd)

- ▶ Define new variable size = initial stone size (0 for small, 1 for large)
- Extended data matrix comprises four observational units (rows) and four variables (columns):

size	trt	fails	npats
0	1	6	87
0	0	35	270
1	1	71	263
1	0	25	80

▶ These may be read in as before, e.g.

```
library(Epi)
size <- c( 0, 0, 1, 1) ; trt <- c( 1, 0, 1, 0)
fails <- c( 6, 35, 71, 25)
npats <- c( 87, 270, 263, 80)
props <- fails/npats</pre>
```

Fitting model for adjusted risk difference

As before, but model formula supplemented by + size

```
Estimate StdErr z P 2.5% 97.5% (Intercept) 0.128 0.019 6.596 0.000 0.090 0.166 trt -0.056 0.030 -1.888 0.059 -0.114 0.002 size 0.195 0.032 6.106 0.000 0.132 0.258
```

Reading the results:

- $\widehat{\alpha} = 0.128 = \widehat{\pi}_{00}$, fitted baseline risk,
- $ightharpoonup \widehat{\gamma} = extbf{0.195}$, RD between large and small stones,
- $\widehat{\beta} = -$ **0.0561** [- **0.114**, **0.002**], estimated common treatment effect $\widehat{\theta}$ for OS *vs.* PN. = Weighted average of $\widehat{\theta}_0 = -0.061$ and $\widehat{\theta}_1 = -0.043$.

Effect modification

Homogeneity assumption – true differences were put equal:

$$\theta_k = \pi_{1k} - \pi_{0k} = \theta$$

across all levels *k* of covariate *Z*. *Is this realistic?*

Example. Is the true risk difference for treatment failure between OS and PN similar for small and big stones?

Empirical differences of failure proportions were

small stone:
$$\hat{\theta}_0 = 0.069$$
 - $0.130 = -0.061$ large stones: $\hat{\theta}_1 = 0.270$ - $0.313 = -0.043$

Is the contrast -0.043 - (-0.061) = 0.018 between these differences due to chance only, or is there essential effect modification present?

Modelling modification of risk difference

The random part is the same, but the systematic part is

$$\pi_{jk} = \alpha + \beta X_j + \gamma Z_k + \tau U_{jk}.$$

- $lackbrack U_{jk} = X_j \times Z_k$, product of values of X and Z,
- $\alpha = \pi_{00} = \text{baseline ("corner cell") risk,}$
- $\beta = \pi_{10} \pi_{00} = \theta_0, \qquad \gamma = \pi_{01} \pi_{00},$
- $\tau = \theta_1 \theta_0 = (\pi_{11} \pi_{01}) (\pi_{10} \pi_{00}),$ interaction parameter

au describes, how much greater is the risk difference between levels 1 and 0 of risk factor X among those at level 1 of factor Z than in those at level 0.

Fitting model with modification

- ► Generation of an interaction of *product term*:
- ▶ trtsize = size*treat
- Expanded and rearranged data matrix:

fails	npats	size	trt	trtsize
35	270	0	0	0
6	87	0	1	0
25	80	1	0	0
71	263	1	1	1

```
size <- c( 0, 0, 1, 1) ;
trt <- c( 0, 1, 0, 1);
trtsize <- c(0,0,0,1)
fails <- c( 35, 6, 25, 71)
npats <- c( 270, 87, 80, 263)
props <- fails/npats</pre>
```

Fitting model with modification (cont'd)

Fitting the model including the product term:

Results and interpretation:

```
round( ci.lin(RDmod3)[ , -(3:4)], 4)
```

(Intercept) 0.1296 0.0204 0.0896 0.1697 trt -0.0607 0.0340 -0.1273 0.0060 size 0.1829 0.0557 0.0737 0.2921 trtsize 0.0181 0.0678 -0.1147 0.1509

• $\hat{\beta} = -0.061 = \hat{\theta}_0 = \text{RD for OS } \textit{vs.}$ PN in small stones, • $\hat{\gamma} = -0.183 = \text{RD btw large and small stones for OS}.$

Estimate StdErr 2.5% 97.5%

▶ estimate [95 % CI] of the interaction parameter:

$$\hat{\tau} = 0.0181[-0.115, 0.151]$$

Final comments

- Nhen risk ratio ϕ or odds ratio ψ is the parameter of interest, adjustment for confounding and evaluation of modification can be done by fitting an analogous binomial GLM with relevant link function.
- Modelling can easily be extended to cover one or more polytomous and/or continuous covariates. Flexible functional forms may be specified to describe the effects of the latter type of variables.
- ▶ Binomial models are not limited to grouped data but may be fitted on individual data with binary outcomes, too.
- Nith more complicated models, especially involving continuous variables, the identity link (sometimes log link, too) violates the basic range restriction:\ outcome probabilities π must remain within 0 and 1.