Report for the Markov model (cohort state-transition model)

Results from the paper

These two tables are from the result part of the paper by Yaqin Si.

Table 1: Increased QALY with no screening

	est	LB	UB
strategy1	498	103	894
strategy2 strategy3	$691 \\ 654$	$\frac{233}{105}$	194 1108

Table 2: Prevent CVD events est LBUB298155 441 strategy1 strategy2374181 567 strategy3 346 154 538

Data and parameters

% latex table generated in R 3.6.3 by xtable 1.8-4 package % Sat Jan 16 00:45:23 2021

Table 3: Data from Global Health Data Exchange

	Table 9. Bata from Global frontin Bata Exchange				
	index	sex	incidence	$death_CVD$	$death_nonCVD$
1	40	male	0.003888	0.000819	0.002494
2	45	$_{\mathrm{male}}$	0.006729	0.001340	0.003399
3	50	male	0.010564	0.002302	0.004951
4	55	male	0.015291	0.003665	0.007282
5	60	$_{\mathrm{male}}$	0.022078	0.006404	0.011159
6	65	male	0.030980	0.011155	0.016946
7	70	male	0.043589	0.019978	0.026305
8	40	female	0.004545	0.000351	0.001137
9	45	female	0.007094	0.000643	0.001620
10	50	female	0.010133	0.001206	0.002475
11	55	female	0.013734	0.002014	0.003705
12	60	female	0.018272	0.003872	0.005850
13	65	female	0.023744	0.006996	0.009060
14	70	female	0.033907	0.013398	0.014907

```
## General setup
source("./function/transform_func.R")
# rate_data <- rate_data[1:7,]</pre>
n_t <- 10  # time horizon, number of cycles</pre>
# S1: live; S2: cvd; S3: cvdth; S4: oth_death
v_names_states <- c("S1", "S2", "S3", "S4")</pre>
n_states <- length(v_names_states) # number of health states</pre>
v_names_str <- c("Strategy0", "Strategy1", "Strategy2", "Strategy3") # store the strategy names
            <- length(v_names_str) # number of strategies</pre>
n_str
# Health utilities
out_cvd_free <- 1  # utility when being S1</pre>
out_cvd <- 0.9 # utility when being S2
out_dth <- 0 # utility when being S3 and S4 together
out_trans_to_cvd <- -0.038
                              # TODO
uti_values <- c(out_cvd_free, out_cvd, out_dth, out_dth)
HR_cvdhistory_cvd <-</pre>
                        1.37
HR_cvdhistory_cvdth <- 3.12</pre>
HR_high_live_cvdth <- 1.17</pre>
p_live_oth_death <- rate_to_prob(r=rate_data$death_nonCVD,t = 1)</pre>
p_live_cvd <- rate_to_prob(r=rate_data$incidence, t=1)</pre>
```

```
p_live_cvdth <- rate_to_prob(r=rate_data$death_CVD, t=1)
# transition probability from S2 to S3
p_ccvd_acvd <- rate_to_prob(rate_data$incidence*HR_cvdhistory_cvd, t=1)
p_ccvd_cvdth <- rate_to_prob(rate_data$death_CVD*HR_cvdhistory_cvdth,t=1)
set.seed(100)
p_acvd_cvdth <- rep(runif(1,min=0.02,max=0.1),length=length(p_live_cvd))</pre>
```

Component 1: A transition probability matrix P_t

状态转换概率矩阵

状态	未患心血管病	患有心血管病	死于心血管病	死于非心血管病
未患心血管病	P4	P1	P2	P3
患有心血管病		P6	P5	Р3

$$P_t = \begin{cases} p_{[1,1,t]} & p_{[1,2,t]} & p_{[1,3,t]} & p_{[1,4,t]} \\ p_{[2,1,t]} & p_{[2,2,t]} & p_{[2,3,t]} & p_{[2,4,t]} \\ p_{[3,1,t]} & p_{[3,2,t]} & p_{[3,3,t]} & p_{[3,4,t]} \\ p_{[4,1,t]} & p_{[4,2,t]} & p_{[4,3,t]} & p_{[4,4,t]} \end{cases}$$

Thus,

```
\begin{split} P4 &= 1 - P1 - P2 - P3 \\ P1 &= p\_live\_cvd* (1 - p\_acvd\_cvdth) \\ P2 &= p\_live\_cvdth + p\_live\_cvd* p\_acvd\_cvdth \\ P3 &= p\_live\_oth\_death \\ P6 &= 1 - (p\_ccvd\_cvdth + p\_ccvd\_acvd* p\_acvd\_cvdth) - p\_live\_oth\_death \\ P5 &= p\_ccvd\_cvdth + p\_ccvd\_acvd* p\_acvd\_cvdth \end{split}
```

Strategy 0 (a male 40-45)

In what follows, an example for the groups of male patients, aging from 40 to 45 is illustrated.

```
#### Create transition arrays ####
                        = c(n_states, n_states, 10),
a_P <- array(0, dim
               dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a_P["S1", "S1", 1:5] \leftarrow 1-(p_live_cvd[1]*(1-p_acvd_cvdth[1]) +
                             p_live_cvdth[1]*p_live_cvd[1]*p_acvd_cvdth[1] +
                             p_live_oth_death[1])
a_P["S1", "S2", 1:5] <- p_live_cvd[1]*(1-p_acvd_cvdth[1])
a_P["S1", "S3", 1:5] <- p_live_cvdth[1]*p_live_cvd[1]*p_acvd_cvdth[1]
a_P["S1", "S4", 1:5]
                      <- p_live_oth_death[1]</pre>
a_P["S2", "S1", 1:5] <- 0
a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[1]-
  (p_ccvd_cvdth[1]+p_ccvd_acvd[1]*p_acvd_cvdth[1])
a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[1]+
 p_ccvd_acvd[1]*p_acvd_cvdth[1]
a_P["S2", "S4", 1:5] <- p_live_oth_death[1]
a_P["S3", "S3", 1:5] <- 1
a_P["S4", "S4", 1:5] <- 1
## From S1, S2, S3, S4
a_P["S1", "S1", 6:10] \leftarrow 1-(p_live_cvd[1+1]*(1-p_acvd_cvdth[1+1])+
                             p_live_cvdth[1+1]*p_live_cvd[1+1]*p_acvd_cvdth[1+1] +
                              p live oth death[1+1])
a_P["S1", "S2", 6:10] <- p_live_cvd[1+1]*(1-p_acvd_cvdth[1+1])
a_{p}["S1", "S3", 6:10] <- p_live_cvdth[1+1]*p_live_cvd[1+1]*p_acvd_cvdth[1+1]
a_P["S1", "S4", 6:10] <- p_live_oth_death[1+1]</pre>
a_P["S2", "S1", 6:10] <- 0
a P["S2", "S2", 6:10] <- 1-p live oth death[1+1]-
  (p ccvd cvdth[1+1]+p ccvd acvd[1+1]*p acvd cvdth[1+1])
a_P["S2", "S3", 6:10] <- p_ccvd_cvdth[1+1]+p_ccvd_acvd[1+1]*p_acvd_cvdth[1+1]
a_P["S2", "S4", 6:10] <- p_live_oth_death[1+1]
a_P["S3", "S3", 6:10] <- 1
a_P["S4", "S4", 6:10] <- 1
# is the constructed transition matrix in 10 cycles
# depends on the specific population (age and gender)
```

, , 1

```
##
##
                         S2
                                      S3
                                                   S4
             S1
## S1 0.9938017 0.003707301 1.417524e-07 0.002490893
## S2 0.0000000 0.994720043 2.789064e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
##
  , , 2
##
##
                         S2
                                      S3
                                                   S4
## S1 0.9938017 0.003707301 1.417524e-07 0.002490893
## S2 0.0000000 0.994720043 2.789064e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
## , , 3
##
##
                                                   S4
                         S2
                                      S3
## S1 0.9938017 0.003707301 1.417524e-07 0.002490893
## S2 0.0000000 0.994720043 2.789064e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
## , , 4
##
             S1
                         S2
                                      S3
## S1 0.9938017 0.003707301 1.417524e-07 0.002490893
## S2 0.0000000 0.994720043 2.789064e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
## , , 5
##
##
             S1
                         S2
                                      S3
                                                   S4
## S1 0.9938017 0.003707301 1.417524e-07 0.002490893
## S2 0.0000000 0.994720043 2.789064e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
## , , 6
##
##
             S1
                         S2
                                      S3
                                                  S4
## S1 0.9901992 0.006407162 4.007247e-07 0.00339323
## S2 0.0000000 0.992025236 4.581534e-03 0.00339323
## S3 0.0000000 0.000000000 1.000000e+00 0.00000000
## S4 0.0000000 0.000000000 0.000000e+00 1.00000000
##
  , , 7
##
##
##
             S1
                         S2
                                      S3
## S1 0.9901992 0.006407162 4.007247e-07 0.00339323
## S2 0.0000000 0.992025236 4.581534e-03 0.00339323
## S3 0.0000000 0.000000000 1.000000e+00 0.00000000
## S4 0.0000000 0.000000000 0.000000e+00 1.00000000
```

```
##
##
  , , 8
##
##
                                       S3
                                                  S4
             S1
                         S2
## S1 0.9901992 0.006407162 4.007247e-07 0.00339323
## S2 0.0000000 0.992025236 4.581534e-03 0.00339323
## S3 0.0000000 0.000000000 1.000000e+00 0.00000000
## S4 0.0000000 0.000000000 0.000000e+00 1.00000000
##
##
  , , 9
##
##
             S1
                         S2
                                       S3
                                                  S4
## S1 0.9901992 0.006407162 4.007247e-07 0.00339323
## S2 0.0000000 0.992025236 4.581534e-03 0.00339323
## S3 0.0000000 0.000000000 1.000000e+00 0.00000000
## S4 0.0000000 0.000000000 0.000000e+00 1.00000000
##
  , , 10
##
##
##
             S1
                         S2
                                       S3
                                                  S4
## S1 0.9901992 0.006407162 4.007247e-07 0.00339323
## S2 0.0000000 0.992025236 4.581534e-03 0.00339323
## S3 0.0000000 0.000000000 1.000000e+00 0.00000000
## S4 0.0000000 0.000000000 0.000000e+00 1.00000000
```

Component 2: The cohort trace matrix M

3 0.9815200 0.010994609 3.132364e-05 0.007454053 ## 4 0.9754362 0.014575348 6.212744e-05 0.009926300 ## 5 0.9693901 0.018114626 1.029173e-04 0.012392312 ## 6 0.9598894 0.024181206 1.862985e-04 0.015743143 ## 7 0.9504817 0.030138534 2.974702e-04 0.019082321 ## 8 0.9411662 0.035988076 4.359318e-04 0.022409791 ## 9 0.9319420 0.041731284 6.011895e-04 0.025725500 ## 10 0.9228083 0.047369591 7.927563e-04 0.029029397

```
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m_M <- matrix(0,nrow</pre>
                        = (n_t+1), ncol = n_states,
              dimnames = list(0:(n_t), v_names_states))
m_M[1, ] <- v_s_init
for(t in 1:10){
  m_M[t + 1, ]
                     <- m_M[t, ]
                                      %*% a_P[, , t]
}
m_M
##
             S1
                          S2
                                        S3
                                                    S4
     1.0000000 0.000000000 0.000000e+00 0.000000000
      0.9938017 0.003707301 1.417524e-07 0.002490893
      0.9876417 0.007372048 1.062253e-05 0.004975580
```

This matrix is the trace matrix of the specific population (male, 40-45) during these 10 cycles. The whole cohort starts in S1 state and transitions to the rest of the states over time.

Table 4: Incidence rate					
Item		CVD incidence(HR)	CVD cause-specific mortality (HR)		
	Low risk	0.63	1		
Strategy 1	Medium risk	1.56	1		
	High risk	1.6	1.7		
	Low risk	0.43	1		
Strategy 2	Medium risk	0.97	1		
	High risk	2.06	1.7		
	Low risk	0.63	1		
Strategy 3	Medium risk	1.09	1		
	High risk	2.11	1.7		
Intervention	Weight control	0.93	0.93		
	Smoke cession	0.85	0.72		
	Salt reduction	0.81	0.66		
Medication	Statin and antihypertensive	0.7	0.82		

```
# calculation of the per CVD prevented events
CVD_prevented <- sum(m_M[,1]*p_live_cvd[1])
CVD_prevented</pre>
```

[1] 0.04118741

Strategy 1 (a male 40-45)

```
p_live_cvd_l <- ProbFactor(p_live_cvd,HR_l_stg1)</pre>
p_live_cvd_m <- ProbFactor(p_live_cvd,HR_m_stg1*</pre>
                              HR_smk_cvd*HR_salt_cvd*HR_wtc_cvd) # lifestyle intervention
p_live_cvd_h <- ProbFactor(p_live_cvd, HR_h_stg1*</pre>
                              HR_smk_cvdth*HR_salt_cvdth*HR_wtc_dth*
                                                                           # lifestyle intervention
                              HR_hpt_lip_cvdth) # treatment intervention
# transition probability to death
p_live_cvdth_l <- ProbFactor(p_live_cvdth,1)</pre>
                                                   # equal
p_live_cvdth_m <- ProbFactor(p_live_cvdth,1*</pre>
                                 HR_smk_cvd*HR_salt_cvd*HR_wtc_cvd) # lifestyle intervention
p_live_cvdth_h <- ProbFactor(p_live_cvdth,1.7*</pre>
                                 HR_smk_cvdth*HR_salt_cvdth*HR_wtc_dth* # lifestyle intervention
                                 HR_hpt_lip_cvdth) # treatment intervention
# again get cvd
p_ccvd_acvd <- ProbFactor(p_live_cvd, HR_cvdhistory_cvd)</pre>
p_ccvd_cvdth <- ProbFactor(p_live_cvdth, HR_cvdhistory_cvdth)</pre>
```

状态转换概率矩阵

状态	未患心血管病	患有心血管病	死于心血管病	死于非心血管病
未患心血管病	P4	P1	P2	P3
患有心血管病		P6	P5	P3

Thus, we take the example of individuals in the low level

```
\begin{array}{l} \underline{P4} = 1 - P1 - P2 - P3 \\ \underline{P1} = p\_live\_cvd\_l*(1 - p\_acvd\_cvdth) \\ \underline{P2} = p\_live\_cvdth\_l + p\_live\_cvd\_l*p\_acvd\_cvdth \\ \\ P3 = p\_live\_oth\_death \\ P6 = 1 - (p\_ccvd\_cvdth + p\_ccvd\_acvd*p\_acvd\_cvdth) - p\_live\_oth\_death \\ \\ P5 = p\_ccvd\_cvdth + p\_ccvd\_acvd*p\_acvd\_cvdth \\ \end{array}
```

We say that the screening strategy will have an influence on the first line of the transition matrix.

```
#### Create transition arrays ####
a_P <- array(0, dim
                       = c(n_states, n_states, 10),
               dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
                    <- 1-(p_live_cvd_l[1]*(1-p_acvd_cvdth[1]) +
a_P["S1", "S1", 1:5]
                             p_live_cvdth_l[1]*p_live_cvd_l[1]*p_acvd_cvdth[1] +
                             p_live_oth_death[1])
a_P["S1", "S2", 1:5] <- p_live_cvd_l[1]*(1-p_acvd_cvdth[1])
a_P["S1", "S3", 1:5] <- p_live_cvdth_1[1]*p_live_cvd_1[1]*p_acvd_cvdth[1]
a_P["S1", "S4", 1:5] <- p_live_oth_death[1]
a P["S2", "S1", 1:5] <- 0
a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[1]-
  (p_ccvd_cvdth[1]+p_ccvd_acvd[1]*p_acvd_cvdth[1])
a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[1]+
 p_ccvd_acvd[1]*p_acvd_cvdth[1]
a_P["S2", "S4", 1:5] <- p_live_oth_death[1]
a_P["S3", "S3", 1:5] <- 1
a_P["S4", "S4", 1:5] <- 1
## From S1, S2, S3, S4
a_P["S1", "S1", 6:10] <- 1-(p_live_cvd_1[1+1]*(1-p_acvd_cvdth[1+1])+
                             p_live_cvdth_l[1+1]*p_live_cvd_l[1+1]*p_acvd_cvdth[1+1] +
                             p live oth death[1+1])
a_P["S1", "S2", 6:10] <- p_live_cvd_l[1+1]*(1-p_acvd_cvdth[1+1])
a_P["S1", "S3", 6:10] <- p_live_cvdth_1[1+1]*p_live_cvd_1[1+1]*p_acvd_cvdth[1+1]
a_P["S1", "S4", 6:10] <- p_live_oth_death[1+1]
a_P["S2", "S1", 6:10] <- 0
a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[1+1]-
 (p ccvd cvdth[1+1]+p ccvd acvd[1+1]*p acvd cvdth[1+1])
a_P["S2", "S3", 6:10] \leftarrow p_ccvd_cvdth[1+1] + p_ccvd_acvd[1+1] * p_acvd_cvdth[1+1]
a_P["S2", "S4", 6:10] <- p_live_oth_death[1+1]
```

```
a_P["S3", "S3", 6:10] <- 1
a_P["S4", "S4", 6:10] <- 1
a_P
## , , 1
##
##
             S1
                         S2
## S1 0.9951701 0.002338958 8.943242e-08 0.002490893
## S2 0.0000000 0.994722422 2.786685e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
## , , 2
##
##
             S1
                         S2
## S1 0.9951701 0.002338958 8.943242e-08 0.002490893
## S2 0.0000000 0.994722422 2.786685e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
## , , 3
##
##
             S1
                         S2
                                      S3
## S1 0.9951701 0.002338958 8.943242e-08 0.002490893
## S2 0.0000000 0.994722422 2.786685e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
## , , 4
##
##
                         S2
                                      S3
                                                   S4
             S1
## S1 0.9951701 0.002338958 8.943242e-08 0.002490893
## S2 0.0000000 0.994722422 2.786685e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
## , , 5
##
##
                         S2
                                      S3
## S1 0.9951701 0.002338958 8.943242e-08 0.002490893
## S2 0.0000000 0.994722422 2.786685e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
## , , 6
##
           S1
                       S2
## S1 0.99256 0.004046553 2.530846e-07 0.00339323
## S2 0.00000 0.992031641 4.575129e-03 0.00339323
## S3 0.00000 0.000000000 1.000000e+00 0.00000000
## S4 0.00000 0.000000000 0.000000e+00 1.00000000
##
## , , 7
```

```
##
##
                       S2
                                    S3
                                                S4
           S1
## S1 0.99256 0.004046553 2.530846e-07 0.00339323
## S2 0.00000 0.992031641 4.575129e-03 0.00339323
## S3 0.00000 0.000000000 1.000000e+00 0.00000000
## S4 0.00000 0.000000000 0.000000e+00 1.00000000
##
  , , 8
##
##
           S1
                       S2
                                    S3
                                                S4
## S1 0.99256 0.004046553 2.530846e-07 0.00339323
## S2 0.00000 0.992031641 4.575129e-03 0.00339323
## S3 0.00000 0.000000000 1.000000e+00 0.00000000
## S4 0.00000 0.000000000 0.000000e+00 1.00000000
##
## , , 9
##
##
                                    S3
                                                S4
           S1
                       S2
## S1 0.99256 0.004046553 2.530846e-07 0.00339323
## S2 0.00000 0.992031641 4.575129e-03 0.00339323
## S3 0.00000 0.000000000 1.000000e+00 0.00000000
## S4 0.00000 0.000000000 0.000000e+00 1.00000000
##
  , , 10
##
##
           S1
                       S2
                                    S3
## S1 0.99256 0.004046553 2.530846e-07 0.00339323
## S2 0.00000 0.992031641 4.575129e-03 0.00339323
## S3 0.00000 0.000000000 1.000000e+00 0.00000000
## S4 0.00000 0.000000000 0.000000e+00 1.00000000
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m_M \leftarrow matrix(0, nrow = (n_t+1), ncol = n_states,
              dimnames = list(0:(n_t), v_names_states))
m_M[1, ] <- v_s_init</pre>
for(t in 1:10){
  m_M[t + 1,]
                    <- m_M[t, ]
                                    %*% a_P[, , t]
}
m_M
##
             S1
                         S2
                                       S3
## 0 1.0000000 0.000000000 0.000000e+00 0.000000000
## 1 0.9951701 0.002338958 8.943242e-08 0.002490893
     0.9903634 0.004654274 6.696371e-06 0.004975580
     0.9855801 0.006946129 1.975494e-05 0.007454063
## 4 0.9808198 0.009214701 3.919975e-05 0.009926339
## 5 0.9760825 0.011460165 6.496594e-05 0.012392408
## 6 0.9688204 0.015318616 1.176447e-04 0.015743367
     0.9616123 0.019116935 1.879745e-04 0.019082777
## 8 0.9544579 0.022855820 2.756803e-04 0.022410617
## 9 0.9473567 0.026535961 3.804902e-04 0.025726867
## 10 0.9403083 0.030158042 5.021354e-04 0.029031509
```

This matrix is the trace matrix of the specific population (male, 40-45) during these 10 cycles under Strategy1. The whole cohort starts in S1 state and transitions to the rest of the states over time.

```
CVD_prevented_1 <- sum(m_M[,1]*p_live_cvd_l[1])
CVD_prevented_1

## [1] 0.02619713

CVD_prevented_m <- sum(m_M[,1]*p_live_cvd_m[1])
CVD_prevented_m

## [1] 0.04114232

CVD_prevented_h <- sum(m_M[,1]*p_live_cvd_h[1])
CVD_prevented_h</pre>
```

[1] 0.02414187

We perform the same procedure for all risk levels: low, medium and high, and then obtain the following tables for the health benefit results.

Table 5: prevented CVD (a male patient aged 40-45)

Stratification	pervented CVD events
Low risk	0.0261971
Medium risk	0.0411423
High risk	0.0241419

Health benefits of Strategy1

```
CVD_prevented_h <- matrix(NA,nrow=14,ncol=1)</pre>
# i specify the group of male patients (age)
for(i in 1:6){
 a_P <- array(0, dim
                           = c(n_states, n_states, 10),
                dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a_P["S1", "S1", 1:5]
                       <- 1-(p_live_cvd_h[i]*(1-p_acvd_cvdth[i]) +
                               p_live_cvdth_h[i]*p_live_cvd_h[i]*p_acvd_cvdth[i] +
                               p live oth death[i])
a_P["S1", "S2", 1:5] <- p_live_cvd_h[i]*(1-p_acvd_cvdth[i])
a_P["S1", "S3", 1:5] <- p_live_cvdth_h[i]*p_live_cvd_h[i]*p_acvd_cvdth[i]
a_P["S1", "S4", 1:5] <- p_live_oth_death[i]</pre>
a_P["S2", "S1", 1:5] <- 0
a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[i]-
  (p_ccvd_cvdth[i]+p_ccvd_acvd[i]*p_acvd_cvdth[i])
a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[i]+
 p_ccvd_acvd[i]*p_acvd_cvdth[i]
a_P["S2", "S4", 1:5] <- p_live_oth_death[i]</pre>
a_P["S3", "S3", 1:5] <- 1
a_P["S4", "S4", 1:5] <- 1
## From S1, S2, S3, S4
a_P["S1", "S1", 6:10] <- 1-(p_live_cvd_h[i+1]*(1-p_acvd_cvdth[i+1])+
                               p_live_cvdth_h[i+1]*p_live_cvd_h[i+1]*p_acvd_cvdth[i+1] +
                               p live oth death[i+1])
a_P["S1", "S2", 6:10] <- p_live_cvd_h[i+1]*(1-p_acvd_cvdth[i+1])
a_P["S1", "S3", 6:10] <- p_live_cvdth_h[i+1]*p_live_cvd_h[i+1]*p_acvd_cvdth[i+1]
a_P["S1", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
a_P["S2", "S1", 6:10] <- 0
a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[i+1]-
  (p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1]*p_acvd_cvdth[i+1])
a_P["S2", "S3", 6:10] \leftarrow p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1]*p_acvd_cvdth[i+1]
a_P["S2", "S4", 6:10] \leftarrow p_live_oth_death[i+1]
a_P["S3", "S3", 6:10] <- 1
a_P["S4", "S4", 6:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m_M \leftarrow matrix(0, nrow = (n_t+1), ncol = n_states,
              dimnames = list(0:(n_t), v_names_states))
m_M[1, ] <- v_s_init</pre>
for(t in 1:10){
                  m_M[t + 1,]
CVD_prevented_h[i] <- sum(m_M[,1]*p_live_cvd_h[i])</pre>
}
# the group of the male patients aged 70-75
a_P \leftarrow array(0, dim = c(n_states, n_states, 10),
```

```
dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a_P["S1", "S1", 1:10]
                        \leftarrow 1-(p_live_cvd_h[7]*(1-p_acvd_cvdth[7]) +
                               p_live_cvdth_h[7]*p_live_cvd_h[7]*p_acvd_cvdth[7] +
                               p_live_oth_death[7])
a_P["S1", "S2", 1:10] <- p_live_cvd_h[7]*(1-p_acvd_cvdth[7])
a P["S1", "S3", 1:10] <- p live cvdth h[7]*p live cvd h[7]*p acvd cvdth[7]
a_P["S1", "S4", 1:10] <- p_live_oth_death[7]
a_P["S2", "S1", 1:10] <- 0
a_P["S2", "S2", 1:10] <- 1-p_live_oth_death[7]-
  (p_ccvd_cvdth[7]+p_ccvd_acvd[7]*p_acvd_cvdth[7])
a_P["S2", "S3", 1:10] <- p_ccvd_cvdth[7]+
  p_ccvd_acvd[7]*p_acvd_cvdth[7]
a_P["S2", "S4", 1:10] <- p_live_oth_death[7]</pre>
a_P["S3", "S3", 1:10] <- 1
a_P["S4", "S4", 1:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m_M <- matrix(0,nrow</pre>
                        = (n_t+1), ncol = n_states,
              dimnames = list(0:(n_t), v_names_states))
m_M[1, ] <- v_s_init
for(t in 1:10){
 m M[t + 1, ] <- m M[t, ] %*% a P[, , t]
CVD_prevented_h[7] <- sum(m_M[,1]*p_live_cvd_h[7])</pre>
# i specify the group of female patients (age)
for(i in 8:13){
  a_P <- array(0, dim
                           = c(n_states, n_states, 10),
                dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a_P["S1", "S1", 1:5] <- 1-(p_live_cvd_h[i]*(1-p_acvd_cvdth[i]) +
                               p_live_cvdth_h[i]*p_live_cvd_h[i]*p_acvd_cvdth[i] +
                               p_live_oth_death[i])
a_P["S1", "S2", 1:5] <- p_live_cvd_h[i]*(1-p_acvd_cvdth[i])
a_P["S1", "S3", 1:5] <- p_live_cvdth_h[i]*p_live_cvd_h[i]*p_acvd_cvdth[i]
a_P["S1", "S4", 1:5] <- p_live_oth_death[i]</pre>
a_P["S2", "S1", 1:5] <- 0
a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[i]-
  (p_ccvd_cvdth[i]+p_ccvd_acvd[i]*p_acvd_cvdth[i])
a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[i]+
 p_ccvd_acvd[i]*p_acvd_cvdth[i]
a_P["S2", "S4", 1:5] <- p_live_oth_death[i]
a_P["S3", "S3", 1:5] <- 1
a_P["S4", "S4", 1:5] <- 1
## From S1, S2, S3, S4
a_P["S1", "S1", 6:10] \leftarrow 1-(p_live_cvd_h[i+1]*(1-p_acvd_cvdth[i+1])+
                               p_live_cvdth_h[i+1]*p_live_cvd_h[i+1]*p_acvd_cvdth[i+1] +
```

```
p_live_oth_death[i+1])
a_P["S1", "S2", 6:10] <- p_live_cvd_h[i+1]*(1-p_acvd_cvdth[i+1])
a_P["S1", "S3", 6:10] <- p_live_cvdth_h[i+1]*p_live_cvd_h[i+1]*p_acvd_cvdth[i+1]*p_live_cvd_h[i+1]*p_acvd_cvdth[i+1]*p_live_cvd_h[i+1]*p_acvd_cvdth[i+1]*p_live_cvd_h[i+1]*p_acvd_cvdth[i+1]*p_live_cvd_h[i+1]*p_acvd_cvdth[i+1]*p_live_cvd_h[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p_acvd_cvdth[i+1]*p
a_P["S1", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
a_P["S2", "S1", 6:10] <- 0
a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[i+1]-
    (p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1]*p_acvd_cvdth[i+1])
a P["S2", "S3", 6:10] <- p ccvd cvdth[i+1]+p ccvd acvd[i+1]*p acvd cvdth[i+1]
a_P["S2", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
a_P["S3", "S3", 6:10] <- 1
a_P["S4", "S4", 6:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m_M <- matrix(0,nrow</pre>
                                              = (n_t+1), ncol = n_states,
                           dimnames = list(0:(n_t), v_names_states))
m_M[1, ] <- v_s_init</pre>
for(t in 1:10){
   m_M[t + 1, ] <- m_M[t, ] %*% a_P[, , t]
}
CVD_prevented_h[i] <- sum(m_M[,1]*p_live_cvd_h[i])</pre>
                                                 = c(n_states, n_states, 10),
a_P <- array(0, dim
                               dimnames = list(v_names_states, v_names_states, 1:10))
a_P["S1", "S1", 1:10] <-1-(p_live_cvd_h[7]*(1-p_acvd_cvdth[7]) +
                                                             p_live_cvdth_h[7]*p_live_cvd_h[7]*p_acvd_cvdth[7] +
                                                             p_live_oth_death[7])
a_P["S1", "S2", 1:10] <- p_live_cvd_h[7]*(1-p_acvd_cvdth[7])
a_P["S1", "S3", 1:10] <- p_live_cvdth_h[7]*p_live_cvd_h[7]*p_acvd_cvdth[7]
a_P["S1", "S4", 1:10] <- p_live_oth_death[7]
a_P["S2", "S1", 1:10] <- 0
a_P["S2", "S2", 1:10] <- 1-p_live_oth_death[7]-
    (p_ccvd_cvdth[7]+p_ccvd_acvd[7]*p_acvd_cvdth[7])
a_P["S2", "S3", 1:10] <- p_ccvd_cvdth[7]+
 p_ccvd_acvd[7]*p_acvd_cvdth[7]
a_P["S2", "S4", 1:10] <- p_live_oth_death[7]</pre>
a_P["S3", "S3", 1:10] <- 1
a_P["S4", "S4", 1:10] <- 1
## Initial state vector: All starting healthy
v s init \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
                                              = (n_t+1), ncol = n_states,
m M <- matrix(0,nrow
                           dimnames = list(0:(n_t), v_names_states))
m_M[1, ] <- v_s_init</pre>
for(t in 1:10){
   m_M[t + 1, ] <- m_M[t, ] %*% a_P[, , t]
CVD_prevented_h[14] <- sum(m_M[,1]*p_live_cvd_h[14])</pre>
```

```
CVD_prevented_m <- matrix(NA,nrow=14,ncol=1)</pre>
# i specify the group of male patients (age)
for(i in 1:6){
  a_P <- array(0, dim
                           = c(n_states, n_states, 10),
                dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a_P["S1", "S1", 1:5] <- 1-(p_live_cvd_m[i]*(1-p_acvd_cvdth[i]) +
                                p live cvdth m[i]*p live cvd m[i]*p acvd cvdth[i] +
                                p_live_oth_death[i])
a_P["S1", "S2", 1:5] <- p_live_cvd_m[i]*(1-p_acvd_cvdth[i])
a_P["S1", "S3", 1:5] <- p_live_cvdth_m[i]*p_live_cvd_m[i]*p_acvd_cvdth[i]
a_P["S1", "S4", 1:5] <- p_live_oth_death[i]</pre>
a_P["S2", "S1", 1:5] <- 0
a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[i]-
  (p_ccvd_cvdth[i]+p_ccvd_acvd[i]*p_acvd_cvdth[i])
a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[i]+
 p_ccvd_acvd[i]*p_acvd_cvdth[i]
a_P["S2", "S4", 1:5] <- p_live_oth_death[i]
a_P["S3", "S3", 1:5] <- 1
a_P["S4", "S4", 1:5] <- 1
## From S1, S2, S3, S4
a_P["S1", "S1", 6:10] \leftarrow 1-(p_live_cvd_m[i+1]*(1-p_acvd_cvdth[i+1])+
                                p_live_cvdth_m[i+1]*p_live_cvd_m[i+1]*p_acvd_cvdth[i+1] +
                                p live oth death[i+1])
a_P["S1", "S2", 6:10] <- p_live_cvd_m[i+1]*(1-p_acvd_cvdth[i+1])
a_P["S1", "S3", 6:10] \leftarrow p_live_cvdth_m[i+1]*p_live_cvd_m[i+1]*p_acvd_cvdth[i+1]
a_P["S1", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
a_P["S2", "S1", 6:10] <- 0
a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[i+1]-
  (p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1]*p_acvd_cvdth[i+1])
a_P["S2", "S3", 6:10] \leftarrow p_ccvd_cvdth[i+1] + p_ccvd_acvd[i+1] * p_acvd_cvdth[i+1]
a_P["S2", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
a_P["S3", "S3", 6:10] <- 1
a_P["S4", "S4", 6:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m_M \leftarrow matrix(0, nrow = (n_t+1), ncol = n_states,
              dimnames = list(0:(n_t), v_names_states))
m_M[1, ] <- v_s_init
for(t in 1:10){
 m_M[t + 1, ] <- m_M[t, ] %*% a_P[, , t]
CVD_prevented_m[i] <- sum(m_M[,1]*p_live_cvd_h[i])</pre>
# the group of the male patients aged 70-75
a_P <- array(0, dim
                         = c(n_states, n_states, 10),
                dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a_P["S1", "S1", 1:10] \leftarrow 1-(p_live_cvd_m[7]*(1-p_acvd_cvdth[7]) +
```

```
p_live_cvdth_m[7]*p_live_cvd_m[7]*p_acvd_cvdth[7] +
                               p_live_oth_death[7])
a_P["S1", "S2", 1:10] \leftarrow p_live_cvd_m[7]*(1-p_acvd_cvdth[7])
a_P["S1", "S3", 1:10] <- p_live_cvdth_m[7]*p_live_cvd_m[7]*p_acvd_cvdth[7]
a_P["S1", "S4", 1:10]
                        <- p_live_oth_death[7]</pre>
a_P["S2", "S1", 1:10] <- 0
a P["S2", "S2", 1:10] <- 1-p live oth death[7]-
  (p ccvd cvdth[7]+p ccvd acvd[7]*p acvd cvdth[7])
a_P["S2", "S3", 1:10] <- p_ccvd_cvdth[7]+
 p_ccvd_acvd[7]*p_acvd_cvdth[7]
a_P["S2", "S4", 1:10] <- p_live_oth_death[7]</pre>
a P["S3", "S3", 1:10] <- 1
a_P["S4", "S4", 1:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m_M \leftarrow matrix(0, nrow = (n_t+1), ncol = n_states,
              dimnames = list(0:(n_t), v_names_states))
m_M[1, ] <- v_s_init
for(t in 1:10){
                                    %*% a P[, , t]
 m M[t + 1,]
                  <- m M[t, ]
CVD prevented m[7] <- sum(m M[,1]*p live cvd h[7])
# i specify the group of female patients (age)
for(i in 8:13){
                         = c(n_states, n_states, 10),
 a_P <- array(0, dim
                dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a_P["S1", "S1", 1:5] <-1-(p_live_cvd_m[i]*(1-p_acvd_cvdth[i]) +
                               p_live_cvdth_m[i]*p_live_cvd_m[i]*p_acvd_cvdth[i] +
                               p_live_oth_death[i])
a_P["S1", "S2", 1:5] <- p_live_cvd_m[i]*(1-p_acvd_cvdth[i])
a_P["S1", "S3", 1:5] <- p_live_cvdth_m[i]*p_live_cvd_m[i]*p_acvd_cvdth[i]
a_P["S1", "S4", 1:5] <- p_live_oth_death[i]</pre>
a_P["S2", "S1", 1:5] <- 0
a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[i]-
  (p_ccvd_cvdth[i]+p_ccvd_acvd[i]*p_acvd_cvdth[i])
a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[i]+
 p_ccvd_acvd[i]*p_acvd_cvdth[i]
a_P["S2", "S4", 1:5] <- p_live_oth_death[i]
a_P["S3", "S3", 1:5] <- 1
a_P["S4", "S4", 1:5] <- 1
## From S1, S2, S3, S4
a_P["S1", "S1", 6:10] \leftarrow 1-(p_live_cvd_m[i+1]*(1-p_acvd_cvdth[i+1])+
                               p_live_cvdth_m[i+1]*p_live_cvd_m[i+1]*p_acvd_cvdth[i+1] +
                               p_live_oth_death[i+1])
a_P["S1", "S2", 6:10] <- p_live_cvd_m[i+1]*(1-p_acvd_cvdth[i+1])
```

```
a_P["S1", "S3", 6:10] <- p_live_cvdth_m[i+1]*p_live_cvd_m[i+1]*p_acvd_cvdth[i+1]
a_P["S1", "S4", 6:10] <- p_live_oth_death[i+1]
a_P["S2", "S1", 6:10] <- 0
a P["S2", "S2", 6:10] <- 1-p_live_oth_death[i+1]-
  (p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1]*p_acvd_cvdth[i+1])
 a_P["S2", "S3", 6:10] \leftarrow p_ccvd_cvdth[i+1] + p_ccvd_acvd[i+1] * p_acvd_cvdth[i+1] 
a_P["S2", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
a_P["S3", "S3", 6:10] <- 1
a_P["S4", "S4", 6:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
                       = (n_t+1), ncol = n_states,
m_M <- matrix(0,nrow</pre>
              dimnames = list(0:(n_t), v_names_states))
m_M[1, ] <- v_s_init</pre>
for(t in 1:10){
                  m_M[t + 1, ]
CVD_prevented_m[i] <- sum(m_M[,1]*p_live_cvd_h[i])</pre>
a_P <- array(0, dim
                        = c(n_states, n_states, 10),
                dimnames = list(v names states, v names states, 1:10))
a_P["S1", "S1", 1:10] \leftarrow 1-(p_live_cvd_m[7]*(1-p_acvd_cvdth[7]) +
                               p_live_cvdth_m[7]*p_live_cvd_m[7]*p_acvd_cvdth[7] +
                               p live oth death[7])
a_P["S1", "S2", 1:10] <- p_live_cvd_m[7]*(1-p_acvd_cvdth[7])
a_P["S1", "S3", 1:10] <- p_live_cvdth_m[7]*p_live_cvd_m[7]*p_acvd_cvdth[7]
a_P["S1", "S4", 1:10] <- p_live_oth_death[7]</pre>
a_P["S2", "S1", 1:10] <- 0
a_P["S2", "S2", 1:10] <- 1-p_live_oth_death[7]-
 (p_ccvd_cvdth[7]+p_ccvd_acvd[7]*p_acvd_cvdth[7])
a_P["S2", "S3", 1:10] <- p_ccvd_cvdth[7]+
 p_ccvd_acvd[7]*p_acvd_cvdth[7]
a_P["S2", "S4", 1:10] <- p_live_oth_death[7]
a_P["S3", "S3", 1:10] <- 1
a_P["S4", "S4", 1:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m M <- matrix(0,nrow
                        = (n t+1), ncol = n states,
              dimnames = list(0:(n_t), v_names_states))
m_M[1, ] <- v_s_init</pre>
for(t in 1:10){
                                    %*% a P[, , t]
 m_M[t + 1,]
                  <- m_M[t, ]
CVD_prevented_m[14] <- sum(m_M[,1]*p_live_cvd_h[14])</pre>
CVD_prevented_l <- matrix(NA,nrow=14,ncol=1)</pre>
```

```
17
```

i specify the group of male patients (age)

```
for(i in 1:6){
  a_P <- array(0, dim</pre>
                           = c(n \text{ states}, n \text{ states}, 10),
                dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a_P["S1", "S1", 1:5] <- 1-(p_live_cvd_l[i]*(1-p_acvd_cvdth[i]) +
                                p_live_cvdth_l[i]*p_live_cvd_l[i]*p_acvd_cvdth[i] +
                                p_live_oth_death[i])
a_P["S1", "S2", 1:5] <- p_live_cvd_l[i]*(1-p_acvd_cvdth[i])
a_P["S1", "S3", 1:5] <- p_live_cvdth_l[i]*p_live_cvd_l[i]*p_acvd_cvdth[i]
a_P["S1", "S4", 1:5] <- p_live_oth_death[i]</pre>
a P["S2", "S1", 1:5] <- 0
a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[i]-
  (p_ccvd_cvdth[i]+p_ccvd_acvd[i]*p_acvd_cvdth[i])
a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[i]+
 p_ccvd_acvd[i]*p_acvd_cvdth[i]
a_P["S2", "S4", 1:5] <- p_live_oth_death[i]</pre>
a_P["S3", "S3", 1:5] <- 1
a_P["S4", "S4", 1:5] <- 1
## From S1, S2, S3, S4
a_P["S1", "S1", 6:10] <- 1-(p_live_cvd_1[i+1]*(1-p_acvd_cvdth[i+1])+
                                p_live_cvdth_l[i+1]*p_live_cvd_l[i+1]*p_acvd_cvdth[i+1] +
                                p_live_oth_death[i+1])
a_P["S1", "S2", 6:10] <- p_live_cvd_l[i+1]*(1-p_acvd_cvdth[i+1])
a_P["S1", "S3", 6:10] \leftarrow p_live_cvdth_l[i+1]*p_live_cvd_l[i+1]*p_acvd_cvdth[i+1]
a_P["S1", "S4", 6:10] <- p_live_oth_death[i+1]
a_P["S2", "S1", 6:10] <- 0
a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[i+1]-
  (p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1]*p_acvd_cvdth[i+1])
a_P["S2", "S3", 6:10] \leftarrow p_ccvd_cvdth[i+1] + p_ccvd_acvd[i+1] * p_acvd_cvdth[i+1]
a_P["S2", "S4", 6:10] <- p_live_oth_death[i+1]
a_P["S3", "S3", 6:10] <- 1
a_P["S4", "S4", 6:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m M \leftarrow matrix(0, nrow = (n t+1), ncol = n states,
              dimnames = list(0:(n_t), v_names_states))
m_M[1, ] <- v_s_init</pre>
for(t in 1:10){
 m_M[t + 1, ] <- m_M[t, ] %*% a_P[, , t]
CVD prevented l[i] <- sum(m M[,1]*p live cvd h[i])
}
# the group of the male patients aged 70-75
a_P \leftarrow array(0, dim = c(n_states, n_states, 10),
                dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a_P["S1", "S1", 1:10] \leftarrow 1-(p_live_cvd_l[7]*(1-p_acvd_cvdth[7]) +
                                p_live_cvdth_1[7]*p_live_cvd_1[7]*p_acvd_cvdth[7] +
```

```
p_live_oth_death[7])
a_P["S1", "S2", 1:10] <- p_live_cvd_l[7]*(1-p_acvd_cvdth[7])
a_P["S1", "S3", 1:10] <- p_live_cvdth_1[7]*p_live_cvd_1[7]*p_acvd_cvdth[7]
a_P["S1", "S4", 1:10] <- p_live_oth_death[7]</pre>
a_P["S2", "S1", 1:10] <- 0
a_P["S2", "S2", 1:10] <- 1-p_live_oth_death[7]-
  (p ccvd cvdth[7]+p ccvd acvd[7]*p acvd cvdth[7])
a P["S2", "S3", 1:10] <- p ccvd cvdth[7]+
 p_ccvd_acvd[7]*p_acvd_cvdth[7]
a_P["S2", "S4", 1:10] <- p_live_oth_death[7]
a_P["S3", "S3", 1:10] <- 1
a_P["S4", "S4", 1:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m_M \leftarrow matrix(0,nrow = (n_t+1), ncol = n_states,
              dimnames = list(0:(n_t), v_names_states))
m_M[1, ] <- v_s_init
for(t in 1:10){
                  m_M[t + 1, ]
CVD_prevented_1[7] <- sum(m_M[,1]*p_live_cvd_h[7])</pre>
# i specify the group of female patients (age)
for(i in 8:13){
  a_P <- array(0, dim</pre>
                         = c(n \text{ states}, n \text{ states}, 10),
                dimnames = list(v_names_states, v_names_states, 1:10))
## From S1, S2, S3, S4
a_P["S1", "S1", 1:5] <-1-(p_live_cvd_l[i]*(1-p_acvd_cvdth[i]) +
                               p_live_cvdth_l[i]*p_live_cvd_l[i]*p_acvd_cvdth[i] +
                               p_live_oth_death[i])
a_P["S1", "S2", 1:5] <- p_live_cvd_l[i]*(1-p_acvd_cvdth[i])
a_P["S1", "S3", 1:5] <- p_live_cvdth_1[i]*p_live_cvd_1[i]*p_acvd_cvdth[i]
a_P["S1", "S4", 1:5] <- p_live_oth_death[i]</pre>
a_P["S2", "S1", 1:5] <- 0
a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[i]-
  (p_ccvd_cvdth[i]+p_ccvd_acvd[i]*p_acvd_cvdth[i])
a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[i]+
  p ccvd acvd[i]*p acvd cvdth[i]
a_P["S2", "S4", 1:5] <- p_live_oth_death[i]
a_P["S3", "S3", 1:5] <- 1
a_P["S4", "S4", 1:5] <- 1
## From S1, S2, S3, S4
a_P["S1", "S1", 6:10] < 1-(p_live_cvd_l[i+1]*(1-p_acvd_cvdth[i+1])+
                               p_live_cvdth_l[i+1]*p_live_cvd_l[i+1]*p_acvd_cvdth[i+1] +
                               p_live_oth_death[i+1])
a_P["S1", "S2", 6:10] <- p_live_cvd_l[i+1]*(1-p_acvd_cvdth[i+1])
a_P["S1", "S3", 6:10] <- p_live_cvdth_l[i+1]*p_live_cvd_l[i+1]*p_acvd_cvdth[i+1]
```

```
a_P["S1", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
a P["S2", "S1", 6:10] <- 0
a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[i+1]-
  (p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1]*p_acvd_cvdth[i+1])
a_P["S2", "S3", 6:10] \leftarrow p_ccvd_cvdth[i+1] + p_ccvd_acvd[i+1] * p_acvd_cvdth[i+1]
a_P["S2", "S4", 6:10] <- p_live_oth_death[i+1]
a_P["S3", "S3", 6:10] <- 1
a_P["S4", "S4", 6:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
m_M \leftarrow matrix(0, nrow = (n_t+1), ncol = n_states,
              dimnames = list(0:(n_t), v_names_states))
m_M[1, ] <- v_s_init</pre>
for(t in 1:10){
                  m_M[t + 1,]
CVD_prevented_l[i] <- sum(m_M[,1]*p_live_cvd_h[i])</pre>
}
a_P <- array(0, dim
                       = c(n_states, n_states, 10),
                dimnames = list(v_names_states, v_names_states, 1:10))
a_P["S1", "S1", 1:10] \leftarrow 1-(p_live_cvd_l[7]*(1-p_acvd_cvdth[7]) +
                               p_live_cvdth_1[7]*p_live_cvd_1[7]*p_acvd_cvdth[7] +
                               p live oth death[7])
a_P["S1", "S2", 1:10] <- p_live_cvd_l[7]*(1-p_acvd_cvdth[7])
a_P["S1", "S3", 1:10] <- p_live_cvdth_l[7]*p_live_cvd_l[7]*p_acvd_cvdth[7]
a_P["S1", "S4", 1:10] <- p_live_oth_death[7]
a_P["S2", "S1", 1:10] <- 0
a_P["S2", "S2", 1:10] <- 1-p_live_oth_death[7]-
  (p_ccvd_cvdth[7]+p_ccvd_acvd[7]*p_acvd_cvdth[7])
a_P["S2", "S3", 1:10] <- p_ccvd_cvdth[7]+
  p_ccvd_acvd[7]*p_acvd_cvdth[7]
a_P["S2", "S4", 1:10] <- p_live_oth_death[7]
a_P["S3", "S3", 1:10] <- 1
a_P["S4", "S4", 1:10] <- 1
## Initial state vector: All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for Markov model
                        = (n t+1), ncol = n states,
m M <- matrix(0,nrow
              dimnames = list(0:(n_t), v_names_states))
m_M[1, ] <- v_s_init
for(t in 1:10){
 m_M[t + 1, ]
                  <- m_M[t, ]
                                    %*% a_P[, , t]
CVD_prevented_l[14] <- sum(m_M[,1]*p_live_cvd_h[14])</pre>
```

% latex table generated in R 3.6.3 by x table 1.8-4 package % Sat Jan 16 00:45:24 2021

Table 6: prevented CVD events under the screening of Strategy 1

	index	sex	V3	V4	V5
1	40	male	0.0241418741114777	0.02392088550814	0.0241152147524632
2	45	$_{\mathrm{male}}$	0.0411977580213452	0.040575837118562	0.0411223796823456
3	50	$_{\mathrm{male}}$	0.0633906156178216	0.0619526626771687	0.063215276181939
4	55	$_{\mathrm{male}}$	0.0892169300114954	0.0863498492167005	0.0888645118763197
5	60	$_{\mathrm{male}}$	0.123598398830557	0.118079980101286	0.1229125728295
6	65	$_{\mathrm{male}}$	0.163583856805719	0.15373856110733	0.162341889585844
7	70	$_{\mathrm{male}}$	0.217135761953413	0.200865719238674	0.215059599394895
8	40	female	0.0283814498112105	0.0280892355621036	0.0283461766530984
9	45	female	0.0438372600085826	0.0431607623198179	0.0437552796109982
10	50	female	0.0617637548542279	0.0604407107161249	0.0616026727975055
11	55	female	0.0822147922467317	0.079874842475357	0.0819282634734733
12	60	female	0.106657199033764	0.102719143091753	0.106171503988571
13	65	female	0.1335248314275	0.1271005371714	0.132723889671539
14	70	female	0.169046209493589	0.156379530248852	0.167429859392378