Multiple Comparison Procedures To A Control For AN(C)OVA Models

Statsomat.com

Contributors*

21 Juli 2021

Contents

Basic Information	2
Model Information	3
Descriptive Plots Dependent Variable	
Multiple Comparisons of Means to a Control Dunnet	9
References	9

^{*}Denise Welsch, Markus Neuhäuser, Viktoria Daum, Linda Müller, Damian Nink, Simone Schüttler, Daniela Wüller

Basic Information

Automatic statistics for the file:	
	File
	warpbreaks.csv
Your selection for the encoding: UTF-8 Your selection for the decimal character: . Observations (rows with at least one non-missing value): 54 Variables (columns with at least one non-missing value): 3 Variables considered continuous: 1	
	Variables considered continuous breaks
	Dieaks
Variables considered categorical: 2	
	Variables considered categorical
	wool
	tension

Model Information

You defined the following linear model: breaks~wool

You are interested in the factor: wool

You are interested in pairwise comparisons to the control factor level: A

Descriptive Plots

Dependent Variable

Histogram of breaks

Boxplot of breaks

Dependent Against Categorical Factors

Boxplot of breaks ~ wool

Boxplot of breaks ~ tension

Table 4: Parameter Estimates

Variable	Value	Std.Error	t.value	pvalue	sign. level ¹	Significance at 5 percent error
(Intercept)	28.15	1.77	15.92	< 0.001	***	Intercept Significant.
wool1	2.89	1.77	1.63	0.108		Not Significant. No difference between the effect of wool1 and its reference.

¹ '***': sign. to 0.1% error. '**': sign. to 1% error. '*': sign. to 5% error. '. ': sign. to 10% error. ' ': not sign. ' - ': no statement.

Anova Table (Type III tests)

Response: breaks

Sum Sq Df F value Pr(>F)

(Intercept) 42785 1 253.3355 <2e-16 ***

wool 451 1 2.6684 0.1084

Residuals 8782 52

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Multiple Comparisons of Means to a Control

Theoretical background: Testing multiple hypotheses simultaneously and each at the same pre-specified significance level, increases the probability of false positive effects. The probability to commit at least one false positive decision increases with the number of hypotheses. A solution to overcome this problem is given by multiple comparisons procedures. Here, we do not control the per-hypothesis Type I error but the probability of committing at least one Type I error over all hypotheses. Using p-values adjusted for multiplicity, individual hypotheses can be finally compared with the pre-specified significance level.

Dunnet

Test whether the factor level A of the factor wool is different from the other levels. The Null Hypothesis is for example B - A = 0.

Multiple Comparison: Dunnet Contrasts

Null Hypothesis	Value	Std.Error	T.value	adjusted P.value	Sign. level ¹	Significance at 5 percent Type I error
B - A = 0	-5.78	3.54	-1.63	0.11		Not Significant. Level A of factor wool is not different than B ²

¹ '***': sign. to 0.1% error. '**': sign. to 1% error. '*': sign. to 5% error. '. ': sign. to 10% error. '. ': not sign. '. ': no statement.

Simultaneous Confidence Intervals which includes the true value of the difference between the reference level A and the other levels of wool Simultaneous Confidence Intervals: Dunnet Contrasts

Null Hypothesis	Value	Lower bound	Upper bound	Interpretation
B - A = 0	-5.78	-12.88	1.32	The interval (-12.88, 1.32) traps the true difference B-A with probability 95 percent. ²

¹ Remark: Zero is not in the conidence interval.

References

Fox, John, and Sanford Weisberg. 2019. An R Companion to Applied Regression. Third. Thousand Oaks CA: Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.

Gross, Juergen, and Uwe Ligges. 2015. Nortest: Tests for Normality. https://CRAN.R-project.org/package=nortest.

Madsen, Jacob H. 2018. DDoutlier: Distance & Density-Based Outlier Detection. https://CRAN.R-project.org/package=DDoutlier.

R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Zeileis, Achim, and Torsten Hothorn. 2002. "Diagnostic Checking in Regression Relationships." R News 2 (3): 7–10. https://CRAN.R-project.org/doc/Rnews/.

² H1 does not hold significantly.

³ H1 holds significantly.

² Remark: Zero is in the confidence interval.