

class Node &	
int data;	
mode ment;	
3 Cx) show	
data =x;	
۲,	
wode += new wode (1)	ο)', <u>/</u>
	•
f. west = new node (so	<u>) ', </u>
timentiment = new No	da (2.02)
tilled in the time to	100 C 50) [
	IOIC
	data: 10
	(wort = sak)
F= 10k	
Ç	20k
	data = 20
	ment = 3ak
	30 10
	went = wm
	West = wm

T.C-> O(x) (worst case o(m))

vode mn= new vode (80); nn. nest- head head = mm 3 (9 tm; v +mi, book about) sitatusem show vode m= new vode (V); 1f (P==0) & no nest- head head = mm , boat newlere Node temp- head; for (1=1; 1<=p-1; 1+4) & temp- temp. next; man, mant = temp, ment, f. man = tages. t , best newlere 3 1. (3 O(P) (worst om)) tas, to tradui une hed 11

Over Detetion in a LL -110E rac → 30 → YU 20 10 6.911 X- 20 **lac** 6.33) x=10 YOK → 30 → YU Solm X=40. +2 t -370E rac 1 50K 10 O Node seup- head I (temp. ment ! - mull) & 14 (temp. next. data = =x) & temp2 - temp, mest; took (tups) 11 C++; temps temp, nest,

node temp- head rehite (temp. ment! = mull &

if (toup. next. data = = x) {

toup = toup. next. next., ~

toup = toup. next., ~

3 (x fm', bead abour) stated show
ig (head.data = = x) {
tead: head next;
selven tead',
12
Node seup- head
solile (temp. ment ! - mull) &
(y Cteup. nest. data = =x) { -
temp 3 - temp, nest, ~
temp2 = temp. ment, -
tore (trues) /1 Cat; 3 everen read;
temps temp. west.
3
\ <u>3</u>
T. C→ O(n)

node revouse (node tead) &

node c= head;

node p= mul;

nohile (c!= mul) &

node next= c.mext

c. mext= p;

P= c;

P= c;

Lead= p; 118kip & rodom p directly,

subturn h;

J. C → O(1)

Btep-1:-

find Ion of Liz.

n=0', +eup= head',

while Cheup! = mul) &

m++',

tech = temb. west !

11 m = 6

int hay len = m/2;

Node tent = head:

for (i=0; i < halflen-1; i++) €

temp = Lemprosensit .

vade toad 2 = temp. ment.

teep, nest = new;

headl = revenue (headl);

nede t, = h', node t2 = h2

3 (mun = 12 3 3 mm = 1 + 1) slinen

; { (+1. data! = t2. data) {

| sublean fahe;

| t1=t.mept;

12 = t2. mept;

endern True!

T. C→ Om) 8. C→ O(1)

u u u u u u u u u u u u u u u u u u u	