Mathematik 3 für Physikstudierende

Winter 2023/24 Dr. Peter Gladbach Dr. Adrien Schertzer

Präsenzaufgabenblatt 4.

Präsenzaufgabe 1. Es seien

$$M_1 := \{ z \in \mathbb{C} : \text{Re}(z) = 0, |\text{Im}(z)| \le 1 \},$$

 $M_2 := \{ x + iy \in \mathbb{C} : x > 0, y = \sin(1/x) \}.$

Wir definieren $M = M_1 \cup M_2$. Zeigen Sie, dass die Menge M zusammenhängend jedoch nicht wegzusammenhängend ist, indem sie wie folgt vorgehen.

- (i) Nehmen Sie an, es gibt einen Pfad $\gamma \in C([0,1],M)$ mit $\gamma(0)=0$ und $\gamma(1)=1/\pi$. Zeigen Sie, dass es dann eine Folge $t_k \searrow 0, k \to \infty$ gibt mit $\lim_{k\to\infty} \gamma(t_k)=i$ und folgern Sie, dass M nicht wegzusammenhängend ist.
- (ii) Zeigen Sie, dass M zusammenhängend ist, indem Sie annehmen, dass $M = A \cup B$ für zwei disjunkte, in M offene Mengen A, B. Argumentieren Sie, dass M_1 und M_2 wegzusammenhängend sind und demzufolge jeweils ganz in A oder B enthalten sein müssen. Zeigen Sie außerdem, dass in jeder offenen Umgebung eines Punktes von M_1 ein Punkt aus M_2 liegt und folgern Sie, dass entweder A = M oder B = M.

Präsenzaufgabe 2. Es sei R>0 und $\gamma_R(t)=Re^{it}, t\in [0,2\pi].$ Berechnen Sie das folgende Wegintegral:

 $\int_{\gamma_R} \frac{1}{(z-a)(z-b)} dz, \text{ wobei } |a| < R < |b|.$

Präsenzaufgabe 3. Zeigen Sie, dass die Abschätzung

$$\left| \int_{\gamma} f(z) dz \right| \leq \int_{\gamma} |f(z)| \, dz$$

im Allgemeinen nicht richtig ist, selbst wenn die rechte Seite reel ist.

Präsenzaufgabe 4. Zeigen Sie, dass die Menge $\mathbb{C} \setminus \mathbb{R}_{-} = \mathbb{C} \setminus (-\infty, 0]$ mit dem Betrag einfach zusammenhängende metrischen Räume sind.