IBM Exploratory Data Analysis for Machine Learning Course Project

By Javier A. Jaime-Serrano June 4th, 2021

Abstract

For this Project we used the Major Project dataset from the province of Alberta in Canada [1], it contains more than 700 currently active projects on the province, this Data set if filtered for Projects valued at \$5 million or greater.

This Dataset contain a lot of valuable information on the Major Projects. The Estimated Cost, Sector & Type and the Location data will be used.

From this dataset, we will like to find the features that can predict the cost of the project for a given project type in a sector.

Data Cleaning

In order to prepare and clean the dataset:

- We drop the projects where there is no estimated cost.
- Made some assumptions about schedule completion and status.
- Drop not required columns and renamed the remaining columns.
- Made corrections on project types and sectors.

A problem encountered was how to extract the location coordinates (Longitude & Latitude) from a GeoJASON column. The problem was solved with Python code that loop over all rows and extract the start (first) locations by a type condition.

Data Cleaning

Figure 1. Cleaned Dataset

	Project Name	Estimated Cost (millions)	Municipality	Forecasted Completion	Sector	Туре	Stage	Developer	Start Latitude	Start Longitude
ProjectId										
7	StoneGate Landing	3000.0	Calgary	2021	Mixed-Use	Mixed-Use	Started	WAM Development Group / AIMCo	51.172501	-113.975800
11	Shepard Station Suburban Office Campus Building 1	22.0	Calgary	2020	Commercial	Office: Low- Rise	Started	Shepard Development Corp.	50.931721	-113.970596
22	Barron Building Renovation	100.0	Calgary	2021	Residential	Apartment: Mid-Rise	Proposed	Strategic Group	51.046070	-114.076614
26	Quarry Crossing II Office Building	72.8	Calgary	2027	Commercial	Office: Low- Rise	Proposed	Remington Development Corp.	50.966900	-114.002899
32	Nolan Hill TownHomes	5.0	Calgary	2027	Residential	Townhouses	Proposed	Jayman Modus	51.162041	-114.160912

We explored the data, first with descriptive statistics and bar charts (see Figure 2).

Second, we used box plots for the cost estimate ranges by type (see Figure 3).

Third, we used folium library to create a map using latitude and longitude values (See Figure 4).

Figure 2. Project types bar chart

Figure 3. Box Plot Estimated Cost for Power Sector

Figure 4.
Projects Map

Key Findings and Insights

After corrections, we ended with 58 unique types in 9 sectors (see figure 6).

For the feature engineering, we extracted size and capacity data by type from the dropped project details column, adding units and cleaning it manually in excel.

A filter was set to remove extreme values, from a percentage range in relation to average cost, divided by capacity per type of projects, and labeled with conditional formulas in excel.

Only 97 projects were properly classified as "In the Range", and Only 3 types has more than 10 Projects in this valid range.

_	•		•		
_	In	\sim	In	α	
	11			U.	
•		•		g	
				_	

Figure 6.

Unique Sectors

and Types

ors	
Industrial	
Infrastructure	

Sector

Commercial

Туре	
Business Park	10
Distribution Centre	5
Office Renovation	13
Offices	18
Other Commercial	4
Agriculture	7
Bioproduct	4
Chemical	4
Metals	4
Other Industrial	14
Telecommunication	9
Airport	4
Flood Mitigation	10
Other Infrastructure	16
Roadwork	79
Transit	12
Water/Wastewater	37

Project Name

•	
Apartment:	
Apartment	
Co	
Other R	
To	
Auto [Retail
Big-	
N	
Ot	
Shop	
Shopp	
Arts ar	Tourism
А	
Commun	
Ev	
Othe	
Spor	

	Apartment: High-Ris
	Apartment: Low-Ris
	Apartment: Mid-Ris
	Communit
	Other Residentia
	Townhouse
ı	Auto Dealershi
	Big-Box Stor
	Mixed-Us
	Other Reta
	Shopping Ma
	Shopping Plaz
ı	Arts and Cultur
	Attraction
	Community Centr
	Event Space
	Hote
	Other Tourism
	Par
	Sports Facility

18

61

33

12

24

We want to be able to estimate the cost of similar projects, with a rough order of magnitude (ROOM). In order to test the predictive features with correlation, we need first to pick a sector, for this case we choose the power sector (see figure 7).

Is Size/Capacity in Megawatts is correlated with the Estimated Cost?

State the hypothesis:

- Null Hypotesis (H0): Size/Capacity is not correlated with Estimated Cost
- Alternative Hypotesis (H1): Size/Capacity is correlated with Estimated Cost Since they are both continuous variables we can use a pearson correlation test and draw a scatter plot (see figure 8).

Figure 7. Power Sector Data

	Project Name	Estimated Cost (millions)	Туре	Start Latitude	Start Longitude	Size/Capacity	\$1000/Capacity
ProjectId							
642	Sundance 7 Gas-Fired Power Plant	1600.0	Gas Power	53.547501	-114.445000	856.0	1869.158879
644	Genesee Generating Station Units 4 and 5 Project	1400.0	Gas Power	53.547501	-114.445000	1060.0	1320.754717
649	Peace Butte Wind Farm	200.0	Wind	49.896000	-110.856003	120.0	1666.666667
653	Harvest Operations Gas Fired Power Plant	10.0	Gas Power	52.514198	-111.926003	5.6	1785.714286
2086	Vulcan Solar Project	155.0	Solar	50.093319	-112.848129	77.5	2000.000000

Figure 8.
Estimated Cost Vs.
Size/Capacity
Scatter Plot

A second hypotesis will be: Does Estimate Cost differ by Project Type?

An ANOVA test can be used for the Second hypotesis.

A third hypotesis will be: Is there is an association between Solar and Wind Project Types.

A T-Test can be used for the third hypotesis.

See figure 9 for the correlation by project type.

Figure 9. Scatter Plot by Project Type

Results

- Null Hypotesis (H0): Size/Capacity is not correlated with Estimated Cost
- Alternative Hypotesis (H1): Size/Capacity is correlated with Estimated Cost

Using the Pearson Correlation from SciPy we obtain:

Correlation Coeficient: 0.9676147594295178

Two-tailed p-value: 6.958427885850458e-19

Conclusion: Since the p-value < 0.05, we reject the Null hypothesis and conclude that there exists a relationship between Size/Capacity and the Estimated Cost.

Conclusions

Using the Major Project dataset from the province of Alberta, after preparation and cleaning, we were able to extract valuable but limited information.

After exploring the dataset, we were able to do some feature engineering and filter the data set to extract valid information.

We performed significance testing to prove the correlation between the Capacity in Megawatts in the Power Sector and the Estimated Cost.

Most of the projects has not enough data for the engineered features of size and/or capacity. Further work is required to search for capacity data from other sources (company websites, industry associations, etc.).

References

- [1] Alberta Major Projects: https://majorprojects.alberta.ca/
- [2] Scikit-learn library: https://scikit-learn.org/stable/
- [3] Jupiter Notebook: https://github.com/javier-jaime/IBM-Machine-Learning-Capstone/