LITERATURE SURVEY ON HAND WRITTEN DIGIT RECOGNITION

S.NO	ISSN No.	TITLE	BASE PAPER LINK	AUTHOR NAME	CONTENT
1.	2393- 8374	A novel method for handwritten digit recognition	http://troindia.in/journal /ijcesr/vol6iss6part2/32- 36.pdf	Rohini.M , Dr.D.Surendran	Handwritten digit recognition has recently been of very interest among the researchers because of the evolution of various Machine Learning, Deep Learning and Computer Vision algorithms. In this report, We compare the results of some of the most widely used Machine Learning Algorithms like CNN- convolution neural networks and with Deep Learning algorithm like multilayer CNN using Keras with Theano and Tensorflow. MNIST is a dataset which is widely used for handwritten digit recognition. The dataset consist of 60,000 training images and 10,000 test images. The artificial neural neworks can all most mimic the human brain and are a key ingredient in image processing field. For example Convolution Neural networks with back propagation for image processing. The applications where these handwritten digit recognition can be used are Banking sector where it can be used to maintain the security pin numbers, it can be also used for blind peoples by using sound
2.	0975- 4350	Handwritten Digit Recognition Using Machine Learning Algorithms	https://www.researchgat e.net /publication/326408524 Handwritten Digit Recog nition Using Machine Learning Algorithms	S. M. Shamim, Md Badrul Alam Miah, Angona Sarker, <u>Masud</u> Rana, Abdullah Al Jobair	output. Handwritten character recognition is one of the practically important issues in pattern recognition applications. The applications of digit recognition includes in postal mail sorting, bank check processing, form data entry, etc. The heart of the problem lies within the ability to develop an efficient algorithm that can recognize hand written digits and which is submitted by users by

				the way of a scanner, tablet, and other digital devices. This paper presents an approach to off-line handwritten digit recognition based on different machine learning technique. The main objective of this paper is to ensure effective and reliable approaches for recognition of handwritten digits. Several machines learning algorithm namely, Multilayer Perceptron, Support Vector Machine, Naïve Bayes, Bayes Net, Random Forest, J48 and Random Tree has been used for the recognition of digits using WEKA.
3	2456-2165	Handwritte n Digit Recognition using CNN	<u>IJISRT19JU358.pdf</u>	Digit Recognition is a noteworthy and important issue. As the manually written digits are not of a similar size, thickness, position and direction, in this manner, various difficulties must be considered to determine the issue of handwritten digit recognition. The uniqueness and assortment in the composition styles of various individuals additionally influence the example and presence of the digits. It is the strategy for perceiving and arranging transcribed digits. It has a wide range of applications, for example, programmed bank checks, postal locations and tax documents and so on. The aim of this project is to implement a classificatio n algorithm to recognize the handwritten digits. The after effects of probably the most broadly utilized Machine Learning Algorithms like SVM, KNN and RFC and with Deep Learning calculation like multilayer CNN utilizing Keras with Theano and Tensorflow. Utilizing these, the accuracy of 98.70% utilizing CNN (Keras + Theano) when contrasted with 97.91% utilizing SVM, 96.67%

				utilizing KNN, 96.89% utilizing RFC
				was obtained
4	A Survey on		Muhammad	The detection and recognition of
	using Neural		Ramzan,	handwritten content is the
	Network		Shahid	process of converting non-
	based		Mehmood	intelligent information such as
	Algorithms		Awan	images into machine edit-able
	for Hand		7.00	text. This research domain has
				become an active research area
	Written			due to vast applications in a
	Digit			number of fields such as
	Recognition			handwritten filing of forms or
				documents in banks, exam form
				, ,
				• • • • • • • • • • • • • • • • • • • •
				Generally, the handwritten
				content recognition process
				consists of four steps: data
				preprocessing, segmentation, the
				feature extraction and selection,
				application of supervised learning
				algorithms. In this paper, a
				detailed survey of existing
				techniques used for Hand Written
				Digit Recognition(HWDR) is
				carried out. This review is novel as
				it is focused on HWDR and also it
				only discusses the application of
				Neural Network (NN) and its
				modified algorithms. We discuss
				an overview of NN and different
				algorithms which have been
				adopted from NN. In addition, this
				research study presents a detailed
				survey of the use of NN and its
				variants for digit recognition. Each
				existing work, we elaborate its
				steps, novelty, use of dataset and
				advantages and limitations as
				well. Moreover, we present a
				Scientometric analysis of HWDR
				which presents top journals and
				sources of research content in this
				research domain. We also present
				research challenges and potential
				future work.
5	A Novel	http://dx.doi.org/10.339	Ali Abdullah	An enormous number of CNN
	Handwritte	0/s21186273	Yahya	classification algorithms have
	n Digit	<u>0/3211002/3</u>	lanya	been proposed in the literature.
	C			Nevertheless, in these algorithms,
	Classificatio			appropriate filter size selection,
	n System			appropriate litter size selection,

				<u> </u>	
		Based on			data preparation, limitations in
		Convolution			datasets, and noise have not been
		al Neural			taken into consideration. As a
		Network			consequence, most of the
		Approach			algorithms have failed to make a
					noticeable improvement in
					classification accuracy. To address
					the shortcomings of these
					algorithms, our paper presents the following contributions:
					the following contributions: Firstly, after taking the domain
					knowledge into consideration, the
					size of the effective receptive field
					(ERF) is calculated. Calculating the
					size of the ERF helps us to select a
					typical filter size which leads to
					enhancing the classification
					accuracy of our CNN. Secondly,
					unnecessary data leads to
					misleading results and this, in
					turn, negatively affects
					classification accuracy. To
					guarantee the dataset is free from
					any redundant or irrelevant
					variables to the target variable,
					data preparation is applied before
					implementing the data
					classification mission. Thirdly, to
					decrease the errors of training and
					validation, and avoid the
					limitation of datasets, data
					augmentation has been proposed.
					Fourthly, to simulate the real-
					world natural influences that can
					affect image quality, we propose
					to add an additive white Gaussian
					noise with $\sigma = 0.5$ to the MNIST
					dataset. As a result, our CNN
					algorithm achieves state-of-the-
					art results in handwritten digit
					recognition, with a recognition
					accuracy of 99.98%, and 99.40%
6	0975-	A novel	https://www.google.com	MALOTHU	with 50% noise. Character recognition plays an
	9646	method for	/url?sa=t&source=web&r	NAGU*1, N	important role in the modern
	3040	Handwritte	ct=j&url=http://ijcsit.com	VIJAY	world. It can solve more complex
		n Digit	/docs/Volume%25202/vo	SHANKAR#	problems and makes humans' job
		Recognition	l2issue4/ijcsit201102046	2,K.ANNAPUR	easier. An example is handwritten
		with Neural	3.pdf&ved=2ahUKEwjvuY	NA	character recognition. This is a
		Networks	Cuvlr6AhWPTGwGHa-9C-		system widely used in the world to
	<u> </u>		QQFnoECBEQAQ&usg=A		recognize zip code or postal code
	<u> </u>		<u>aarnocobcanaausg-A</u>	I	1 . 2308.1120 Zip code of postal code

7 Handwritten Digit Recognitio Using Imag Processing and Neural Networks	/url?sa=t&source=web&r ct=j&url=https://www.re searchgate.net/publicatio n/44261163 Handwritte	Faisal Tehseen Shah	for mail sorting. There are different techniques that can be used to recognize handwritten characters. Two techniques researched in this paper are Pattern Recognition and Artificia Neural Network (ANN). Both techniques are defined and different methods for each technique is also discussed Bayesian Decision theory, Nearest Neighbor rule, and Linea Classification or Discrimination is types of methods for Pattern Recognition. Shape recognition Chinese Character and Handwritten Digit recognition uses Neural Network to recognize them. Neural Network to recognize them. Neural Network is used to train and identify written digits. After training and testing, the accuracy rate reached 99%. This accuracy rate is very high. This working prototype system can detect handwritten digit from a scanned image of an input form by using Neural network technique. Hand writing recognition and Image detection through this methodology, which is comparably slow. In the initial phase for handwritten digit input we have designed a form which can take hand writing samples from different people. The form must have specific format so use can give multiple input in 10 rows and hand write 0,1,2,3,4,5,6,7,8,9 in the corresponding sampling cells (rows* columns). The cel must also have width according to your requirement (e.g set it to 20*2 pixels). Once the blank forms have been manually filled by different people then scan these forms with the help of scanner. So now we have images of hand writing samples of digits. In the

8	Multi- Language Handwritte n Digits Recognition based on	https://www.google.com /url?sa=t&source=web&r ct=j&url=https://library.i maging.org/admin/apis/p ublic/api/ist/website/do wnloadArticle/jist/63/2/a	Jaafar M. Alghazo, Ghazanfar Latif	2nd phase, we use image slicing technique to slice sample image of size 16*16 pixel for each digit from the scanned form [1]. Each scanned form image will make nearly 100 images of 16*16 pixels. Repeat the same step for all scanned sample forms and place all these 16*16 pixel images (sample pool) into one location. In the detection phase, a three-layered neural network is used: After training, the obtained weight and bias are stored for each digit sequence(signature). It is now possible to identify the meaning of any hand written digit with the help of Al engine. So now when ever any handwritten digit will be given as sample input in to the system, the output array will automatically give the digit whose corresponding match value is detected. The above process is a blueprint of human cognitive thinking process. Index Terms—Neural Network, Hand Written, Recognition, Neurons, Training, Automated handwritten script recognition is an important task for several applications. In this article, a multi-language handwritten numeral recognition system is proposed using novel
	Novel Structural Features	rt00004&ved=2ahUKEwj 02pvSvYr6AhVVFbcAHWi rCxs4FBAWegQICxAB&us g=AOvVaw3QynwJXDON 6433Ky_5LnTI		structural features. A total of 65 local structural features are extracted and several classifiers are used for testing numeral recognition. Random Forest was found to achieve the best results with an average recognition of 96.73%. The proposed method is tested on six different popular languages, including Arabic Western, Arabic Eastern, Persian, Urdu, Devanagari, and Bangla. In recent studies, single language digits or multiple languages with digits that resemble each other are targeted. In this study, the digits in the languages chosen do

			not resemble each other. Ye
			using the novel feature extraction method a high recognition accuracy rate is achieved
			Experiments are performed or well-known available datasets o
			each language. A dataset for Urdu language is also developed in this study and introduced as PMU-UD
			Results indicate that the proposed method gives high recognition
			accuracy as compared to othe methods. Low error rates and low confusion rates were also
			observed using the novel method proposed in this study. c 2019
			Society for Imaging Science and Technology.