Chapter 4: Classification

Esben Eickhardt

2023-07-04

Introduction

In this chapter we focus on classfication. This includes logistic regression, linear discriminant analysis, quadratic discriminant analysis, naive Bayes and K-nearest neighbors.

All the same things can also be learned by following the following Statquest playlist.

Data

In this chapter we will try to predict if a person will default or not based on income and account balance (see figure).

Figure 1: dataset

Why not Linear Regression?

Unfortunately the coding of output variable would imply an ordering on the outcomes, which would mess up the model. Even for two classes a model would not output probabilities, but it would also output values outside the interval [0:1].

1. Logistic Regression

Instead of fitting a line to the data, a logistic regression fits an S-shaped logistic function with the max and minimum values 1 and 0. Despite the function having a different shape, logistic regression is still considered a linear model. A logistic regression, for a binary outcome, calculates the probability for one of the outcomes p(default), and has the formula:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

This model is fit using *maximum likelihood*, which is basically fitting a bunch of S-shaped lines and calculating their probabilities given the data. The line with *maximum likelihood* is the picked.

In logistic regression the y-axis is transformed from probability to log(odds), such that its y-axis can go from -infinity to +infinity, just like that of linear regression.

Figure 2: Probability vs Log Odds

The translation between probability and log odds can see for a sample in the table inderneath.

Propability	Odds	Log.Odds
0.1	0.1111111	-2.1972246
0.2	0.2500000	-1.3862944
0.3	0.4285714	-0.8472979
0.4	0.6666667	-0.4054651
0.5	1.0000000	0.0000000
0.6	1.5000000	0.4054651
0.7	2.33333333	0.8472979
0.8	4.0000000	1.3862944
0.9	9.0000000	2.1972246

1.1 Coefficients

Unlike linear regression, we can't easily compare the complicated model to the simple model e.g.:

Obesity predicted by Weight + Genotype

VS

Obesity predicted by Weight + Genotype + Age

STATQUEST: https://www.youtube.com/watch?v=yIYKR4sgzI8&list=PLblh5JKOoLUKxzEP5HA2d-Li7IJkHfXSe

X. Chapter Exercises & Answers

As most exercises are redundant for my brush up on statistical methods, I will only be solving select exercises. Great answers by Liam Morgan to all of the exercises can be found at RPubs.

X.1 Logistic Regression

Here we download the **Heart Disease Dataset** to classify if a person is healthy or unhealthy.

```
library(tidyverse)
library(cowplot)
# Downloading data
url <- "http://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/processed.cleveland.data
data <- read.csv(url, header=FALSE)</pre>
# Adding column names
colnames(data) <- c("age", "sex", "cp", "trestbps", "chol", "fbs", "restcg", "thalach", "exang", "oldpe
# Fixing column types
data[data == "?"] <- NA</pre>
data$sex <- ifelse(data$sex == 0, "F", "M")</pre>
data$ca <- as.integer(data$ca)</pre>
data$thal <- as.integer(data$thal)</pre>
data$hd <- ifelse(data$hd == 0, "Healthy", "Unhealthy")</pre>
factor_columns <- c("sex","cp", "fbs", "restcg", "exang", "slope", "ca", "thal", "hd")</pre>
data[factor_columns] <- lapply(data[factor_columns], factor)</pre>
# Removing samples with missing data
data <- data[!(is.na(data$ca) | is.na(data$thal)),]</pre>
```

Now we will make increasingly more complex models predicting health

```
# Making a logistic regression model
model <- glm(hd ~ sex, data=data, family = "binomial")</pre>
summary(model)
##
## Call:
## glm(formula = hd ~ sex, family = "binomial", data = data)
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.0438
                           0.2326 -4.488 7.18e-06 ***
                 1.2737
                           0.2725
                                   4.674 2.95e-06 ***
## sexM
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
```

```
## Null deviance: 409.95 on 296 degrees of freedom
## Residual deviance: 386.12 on 295 degrees of freedom
## AIC: 390.12
##
## Number of Fisher Scoring iterations: 4
```

The output equations is:

```
hearth\ disease = -1.0438 + IsMale*1.2737
```

The output value of the equation is the *log odds* that a person has a heart disease. Translation between probability, odds and log odds are best explained in this table.

Propability	Odds	Log.Odds
0.1	0.1111111	-2.1972246
0.2	0.2500000	-1.3862944
0.3	0.4285714	-0.8472979
0.4	0.6666667	-0.4054651
0.5	1.0000000	0.0000000
0.6	1.5000000	0.4054651
0.7	2.3333333	0.8472979
0.8	4.0000000	1.3862944
0.9	9.0000000	2.1972246

So the results are interpreted as if your log odds for heart disease will increase by 1.2737 if you are a male. The standard error and z-value are for calculating the Wald's test, while the p-value states its significance.

Now it is time for a mode fancy models with all the variables.

```
# Making a logistic regression model
model <- glm(hd ~ ., data=data, family = "binomial")
summary(model)</pre>
```

```
##
## Call:
## glm(formula = hd ~ ., family = "binomial", data = data)
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
                                      -2.113 0.034640
## (Intercept) -6.253978
                            2.960399
## age
               -0.023508
                            0.025122
                                      -0.936 0.349402
## sexM
                            0.552486
                                       3.023 0.002503 **
                1.670152
## cp2
                1.448396
                            0.809136
                                       1.790 0.073446
## cp3
                0.393353
                            0.700338
                                       0.562 0.574347
## cp4
                2.373287
                            0.709094
                                       3.347 0.000817 ***
                                       2.359 0.018300 *
## trestbps
                0.027720
                            0.011748
## chol
                0.004445
                            0.004091
                                       1.087 0.277253
## fbs1
               -0.574079
                            0.592539
                                      -0.969 0.332622
## restcg1
                1.000887
                            2.638393
                                       0.379 0.704424
## restcg2
                0.486408
                            0.396327
                                       1.227 0.219713
## thalach
               -0.019695
                            0.011717
                                      -1.681 0.092781 .
## exang1
                0.653306
                            0.447445
                                       1.460 0.144267
## oldpeak
                            0.239173
                                       1.633 0.102373
                0.390679
```

```
## slope2
               1.302289
                          0.486197 2.679 0.007395 **
                          0.939324 0.646 0.518309
## slope3
               0.606760
                          0.514770 4.346 1.38e-05 ***
## ca1
               2.237444
## ca2
               3.271852
                          0.785123 4.167 3.08e-05 ***
## ca3
               2.188715
                          0.928644
                                    2.357 0.018428 *
              -0.168439
                          0.810310 -0.208 0.835331
## thal6
               1.433319
                          0.440567 3.253 0.001141 **
## thal7
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 409.95 on 296 degrees of freedom
## Residual deviance: 183.10 on 276 degrees of freedom
## AIC: 225.1
##
## Number of Fisher Scoring iterations: 6
# Calculating McFadden's Pseudo R^2
11.null <- model$null.deviance/-2</pre>
11.proposed <- model$deviance/-2</pre>
(ll.null-ll.proposed)/ll.null
## [1] 0.5533531
# Calculating p-value using a chi-squared distribution
1 - pchisq(2*(11.proposed - 11.null), df=(length(model$coefficients)-1))
```

[1] 0

The $McFaddan\ Pseudo\ R^2$ can be interpreted as the overall effect size, and its p-value is significant as it if very close to zero. Now let's draw a graph with the predictions.

```
# Making predictions
predicted.data <- data.frame(
    probability.of.hd=model$fitted.values,
    hd=data$hd
)

# Ordering data
predicted.data <- predicted.data[order(predicted.data$probability.of.hd, decreasing = F),]

# Adding index
predicted.data$index <- seq(1, nrow(predicted.data))

# Plotting data
ggplot(predicted.data, aes(index, probability.of.hd, color=hd)) +
    geom_point() +
    ylab("Predicted probability of\ngetting heart disease") +
    labs(color='Heart Status') +
    theme_bw()</pre>
```


Libraries library(tidyverse)

NEXT: "Odds and Log(Odds) clearly explained", "Odds Ratios and Log(Odds Ratios) clearly explained", "Saturated Models and Deviance Statistics"