$TD n^{\circ}1$

Exercice 1 : Suite différée et exponentielle discrète.

Dans cet exercice on cherche à prouver que $\exp(z) = \lim_{n \to +\infty} \left(1 + \frac{z}{n}\right)^n, \forall z \in \mathbb{C}.$

- 1°) On pose $\forall z \in \mathbb{C}$, la suite $U_n = \left(1 + \frac{z}{n}\right)^n$ et $V_n = \ln(U_n)$. Prouver que V_n peut s'écrire $\frac{\ln(1+zx_n)}{x_n}$. Avec $x_n \in \mathbb{Q}, \forall n \in \mathbb{N}^*$.
- 2°) Exprimer V_n comme le taux d'accroissement en 0 de la fonction $f(x) = \ln(1+zx)$. En déduire la limite $\lim_{x\to 0} \frac{\ln(1+zx)}{x}$
- 3°) En déduire la limite de la suite $\lim_{n\to+\infty} U_n$.

Exercice 2: Exponentielle complexe.

- 1°) Prouver les propriétés suivantes de l'exponentielle $t \to \exp(t)$:
 - 1. $\cos(t+t') = \cos t \cos t' \sin t \sin t'$.
 - 2. $\sin(t+t') = \sin t \cos t' + \cos t \sin t'$.
 - 3. $\cos(t + \pi/2) = -\sin(t)$.
 - 4. $\sin(t + \pi/2) = \cos(t)$.
 - 5. $\cos(\pi/2 t) = \sin(t)$.
 - 6. $\sin(\pi/2 t) = \cos(t)$.
- 2°) Montrer que la fonction f définie par $f(x) = \frac{e^x 1}{e^x + 1}$ est impaire.

Exercice 3 : Série de Fourier discrète d'une fonction créneau.

Soit la fonction $f: \mathbb{Z} \to \mathbb{C}$ définie par :

$$f(n) = \begin{cases} 1, & \text{si } n \in [-1, 1] \\ 0, & \text{si } n \in [-2, -1[\cup]1, 2] \end{cases}$$

périodique de période N=4.

- 1°) tracer le graphe de f sur $n \in [0,3]$.
- 2°) Calculer les coordonnées \hat{f} de f dans la base des (E_k) . Avec $E_k(m) = \exp(2\pi i k \frac{m}{N})$.
- 3°) A partir des coordonnées \hat{f} de f, reconstituer f sur l'intervalle n = [0, 3].
- 4°) Montrer que nous aurions pu nous restreindre à l'étude de $\hat{f}(0), \hat{f}(N/2), Re(\hat{f}(1))$ et $Im(\hat{f}(1))$ pour caractériser f tout entier.

Exercice 4 : Espace \mathbb{F}_N (Espace des fonctions périodiques de période N).

1°) Montrer que la famille (E_k) définie par $E_k(m) = \exp(2\pi i k \frac{m}{N})$ est orthonormée.

Exercice 5 : Transformée de Fourier discrète.

- 1°) Calculer les coordonnées \hat{a} du signal discret a = [1, 0, 0, 1] dans la base des (E_k) .
- 2°) Appliquer la transformée de Fourier inverse à $\hat{b} = [2, -1 i, 0, -1 + i]$.