The group G is isomorphic to the group labelled by [28, 3] in the Small Groups library. Ordinary character table of $G \cong D28$:

	1a	2a	2b	2c	14a	7a	14b	14c	7b	7c
χ_1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	-1	1	-1	-1	1	1
χ_3	1	-1	1	-1	-1	1	-1	-1	1	1
χ_4	1	1	-1	-1	1	1	1	1	1	1
χ_5	2	-2	0	0	$-E(7)^2 - E(7)^5$	$E(7) + E(7)^6$	$-E(7)^3 - E(7)^4$	$-E(7) - E(7)^6$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$
χ_6	2	-2	0	0	$-E(7) - E(7)^6$	$E(7)^3 + E(7)^4$	$-E(7)^2 - E(7)^5$	$-E(7)^3 - E(7)^4$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$
χ_7	2	-2	0	0	$-E(7)^3 - E(7)^4$	$E(7)^2 + E(7)^5$	$-E(7) - E(7)^6$	$-E(7)^2 - E(7)^5$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$
χ_8		2	0	0	$E(7)^2 + E(7)^5$	$E(7) + E(7)^6$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$
χ_9	2	2	0	0	$E(7) + E(7)^6$	$E(7)^3 + E(7)^4$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$
χ_{10}	2	2	0	0	$E(7)^3 + E(7)^4$	$E(7)^2 + E(7)^5$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$

Trivial source character table of $G \cong D28$ at n=2

Trivial source character table of $G \cong D28$ at $p=2$:	<u> </u>										
Normalisers N_i		N_1				N_2					N_5
p-subgroups of G up to conjugacy in G		P_1				P_2					P_5
Representatives $n_j \in N_i$	1 <i>a</i>	7b	7c	7a	1a	7a	7b	7c	1a	1 <i>a</i>	1 <i>a</i>
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	4	4	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4				0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	$2*E(7) + 2*E(7)^6$	$2*E(7)^2 + 2*E(7)^5$	$2*E(7)^3 + 2*E(7)^4$	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10}$	4	$2*E(7)^3 + 2*E(7)^4$	$2*E(7) + 2*E(7)^6$	$2*E(7)^2 + 2*E(7)^5$	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	2	2	2	2	2	2	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	2	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	2	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10}$		$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	2	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	2	2	0	0	0	0	2	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	2	2	0	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	1	1	1	1	1	1	1	1	1	1

```
P_1 = Group([()]) \cong 1
```

 $N_2 = Group([(1,2)(3,5)(4,26)(6,24)(7,28)(8,22)(9,27)(10,20)(11,25)(12,18)(13,23)(14,16)(15,21)(17,19), (1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,21)(20,23)(22,25)(24,27)(26,28), (1,4,8,12,16,20,24)(2,6,10,14,18,22,26)(3,7,11,15,19,23,27)(5,9,13,17,21,25,28)]) \cong D28$ $N_3 = Group([(1,2)(3,5)(4,26)(6,24)(7,28)(8,22)(9,27)(10,20)(11,25)(12,18)(13,23)(14,16)(15,21)(17,19), (1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,21)(20,23)(22,25)(24,27)(26,28)]) \cong C2 \times C2$ $N_4 = Group([(1,5)(2,3)(4,28)(6,27)(7,26)(8,25)(9,24)(10,23)(11,22)(12,21)(13,20)(14,19)(15,18)(16,17), (1,2)(3,5)(4,26)(6,24)(7,28)(8,22)(9,27)(10,20)(11,25)(12,18)(13,23)(14,16)(15,21)(17,19), (1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,21)(20,23)(22,25)(24,27)(26,28)]) \cong C2 \times C2$ $N_5 = Group([(1,2)(3,5)(4,26)(6,24)(7,28)(8,22)(9,27)(10,20)(11,25)(12,18)(13,23)(14,16)(15,21)(17,19), (1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,21)(20,23)(22,25)(24,27)(26,28)]) \cong C2 \times C2$

 $N_1 = Group([(1,2)(3,5)(4,26)(6,24)(7,28)(8,22)(9,27)(10,20)(11,25)(12,18)(13,23)(14,16)(15,21)(17,19),\\ (1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,21)(20,23)(22,25)(24,27)(26,28),\\ (1,4,8,12,16,20,24)(2,6,10,14,18,22,26)(3,7,11,15,19,23,27)(5,9,13,17,21,25,28)]) \cong D28$

 $P_2 = Group([(1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,21)(20,23)(22,25)(24,27)(26,28)]) \cong \mathbb{C}_2$

 $P_3 = Group([(1,2)(3,5)(4,26)(6,24)(7,28)(8,22)(9,27)(10,20)(11,25)(12,18)(13,23)(14,16)(15,21)(17,19)]) \cong C2$

 $P_4 = Group([(1,5)(2,3)(4,28)(6,27)(7,26)(8,25)(9,24)(10,23)(11,22)(12,21)(13,20)(14,19)(15,18)(16,17)]) \cong \mathbb{C}_2$

 $P_5 = Group([(1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,21)(20,23)(22,25)(24,27)(26,28), (1,2)(3,5)(4,26)(6,24)(7,28)(8,22)(9,27)(10,20)(11,25)(12,18)(13,23)(14,16)(15,21)(17,19)]) \cong \mathbf{C2} \times \mathbf{C2}$