Lie Groups

Devesh Rajpal

Contents

1	4th January 23	2
2	9th Jan 2023	2
3	11th Jan 2023	4
4	18 Jan 2023	5
5	23 Jan 2023	8
6	25 Jan 2023	9
7	30 Jan 2023	10
8	1 Feb 2023	12
9	6 Feb 2023	14
10	6 Feb	15
11	8 Feb	15
12	13 Feb	15
13	15 Feb	17
14	1 March	18
15	6 March	19
16	8 March	19
17	13 March	19
18	20 March	19
19	22 March	21
20	27 March	23

21 29 March	23
22 3 April	23
23 5 April	23
24 10 April	26
25 12 April	29
26 17 April	31

1 4th January 23

One can study Lie Groups from several points of view. The course is aimed to understand the structure of Lie Groups.

Definition 1.1. A smooth manifold M is a Hausdorff space which is locally Euclidean with a smooth atlas i.e. (i) given any $x \in M$, \exists a chart (U, ϕ) , $x \in U \subset M$ with $\phi : U \to \phi(U)$ open in \mathbb{R}^m .

(ii) We have collection $\{(U,\phi)\}$ of charts such that

$$\phi(U \cap V) \xrightarrow{\psi \circ \phi^{-1}} \psi(U \cap V)$$

is a diffeomorphism.

Suppose $f: M \to N$ is a continuous map between manifolds. We say that f is smooth if for $(U, \phi) \in \Pi(M), (V, \psi) \in \Pi(N)$ such that $f(U) \subset V$ and $\psi \circ f \circ \phi^{-1}$ is smooth.

TO DO : Construction of tangent bundle and vector bundle

2 9th Jan 2023

Definition 2.1. G is a Lie group if

- 1. G is a smooth manifold
- 2. G is also a group s.t

$$\mu: G \times G \to G$$
$$(g,h) \mapsto gh$$

and

$$i: G \to G$$

 $g \mapsto g^{-1}$

are smooth maps.

Definition 2.2. A real (or complex) vector space V together with a bilinear map

$$[,]:V\times V\to V$$

is called a Lie Algebra if

- 1. [X, Y] = -[Y, X] skew symmetry
- 2. [[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0 Jacobi identity

Example. 1. $(\mathbb{R},+)$, $(\mathbb{C},+)$, V any f.d vector space over \mathbb{R} or \mathbb{C} .

- 2. $(\mathbb{R}^{\times}, \cdot), (\mathbb{C}^{\times}, \cdot)$
- 3. $S^1 = \{ z \in \mathbb{C}^\times | |z| = 1 \}$
- 4. $GL_n(\mathbb{R}), GL_n(\mathbb{C})$
- 5. $\mathbb{R}^n/\mathbb{Z}^n \cong (\mathbb{R}^n/\mathbb{Z}^n) \cong (S^1)^n$
- 6. Suppose $\Gamma \subset V$ is a discrete subgroup. Then V/Γ is a Lie group.
- 7. N = unipotent upper triangular matrices, B = upper triangular matrices. As manifolds $N \cong \mathbb{R}^{\binom{n}{2}}$ and $B \cong (\mathbb{R}^{\times})^n \times N$.
- 8. $\operatorname{SL}_n(\mathbb{R}) = \{ X \in \operatorname{GL}_n(\mathbb{R}) | \det X = 1 \}, \operatorname{SL}_n(\mathbb{C}).$
- 9. O(n), SO(n).
- 10. U(n), SU(n).
- 11. \mathbb{H}^{\times} , S^3 with quaternion multiplication.
- 12. $Sp(n) = \{X \in GL_n(\mathbb{R}) | X \text{ preserves quaternion structure as a subset of } Aut_{\mathbb{H}} \mathbb{H}^n \}$

Problem. $V/\Gamma \cong \mathbb{R}^k \times (S^1)^{n-k}$ for *n*-dimensional vector space V.

Theorem 2.1. Suppose G is a compact, connected, simple Lie group. Then G is locally isomorphic to

- 1. $SU(n), n \geq 2$ denoted by A_{n-1}
- 2. $SO(2n+1), n \geq 2$ denoted by B_n
- 3. $Sp(n), n \ge 1$ denoted by C_n
- 4. $SO(2n), n \geq 2$ denoted by D_n

or one of the following exceptional Lie group G_2, F_4, E_6, E_7, E_8 .

Problem. Prove that $SL_n(\mathbb{R})$ and O(n) are smooth manifold, hence Lie groups.

Examples of Lie algebra -

1. $(V, [\cdot, \cdot] \equiv 0)$ is called trivial Lie algebra.

- 2. $(\mathfrak{gl}_n(\mathbb{R}), [A, B] = AB BA)$, $\mathfrak{gl}_n(\mathbb{C})$ 3. $\mathfrak{sl}_n(\mathbb{R})$ $(\mathfrak{sl}_n(\mathbb{C}))$ is the Lie subalgebra of $\mathfrak{gl}_n(\mathbb{R})$ $(\mathfrak{gl}_n(\mathbb{C}))$ consisting of trace 0.
- 4. \mathfrak{so}_n is Lie subalgebra of $\mathfrak{gl}_n(\mathbb{R})$ consisting of skew-symmetric matrices.

Definition 2.3. A vector field X on a Lie group G is called left invariant if $(L_g)_*(X_h) = X_{gh}$

3 11th Jan 2023

Recall $\mathbb{H} = \{a + bi + cj + dk : (a, b, c, d) \in \mathbb{R}^4, i^2 = -1, j^2 = -1, k^2 = -1, ij = k, jk = l, ki = j\}$ is the quaternion division algebra with the norm

$$||a + bi + cj + dk||^2 = a^2 + b^2 + c^2 + d^2$$

which satisfies $||q_1 \cdot q_2|| = ||q_1|| \cdot ||q_2||$

We can put this multiplication on $S^3 \cong SU(2)$ to get a compact Lie group. To get the isomorphism $SU(2) \cong S^3$, we define a map

$$\phi: S^3 \to SU(2)$$

$$(a, b, c, d) \mapsto \begin{bmatrix} a+bi & c+di \\ -(c-di) & a-bi \end{bmatrix}$$

which is an algebra isomorphism.

Definition 3.1. The Lie algebra of G is the space of all left-invariant vector fields on G.

We have an isomorphism

$$\mathfrak{g} = \operatorname{Lie}(G) \to T_e G$$

$$X \mapsto X_e$$

Example. Let $G = \mathbb{R}^n$, with identity element $0 \in \mathbb{R}^n$ and left-invariant vector fields $\{\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\}$. Then the Lie bracket is

$$[\cdot,\cdot] \equiv 0$$

Remark. In general for any abelian Lie group G, the Lie bracket is $[\cdot,\cdot] \equiv 0$.

Theorem 3.1. Let G be a connected Lie group. Then

- 1. Lie(G) = \mathfrak{g} is isomorphic as a vector space to $T_e(G)$.
- 2. Left-invariant vector fields are smooth.
- 3. Lie(G) is closed under Lie bracket.

Proof. 1. Let X be a left-invariant vector field on G. We need to show that Xf is smooth for each $f \in C^{\infty}(G)$.

$$(Xf)(g) = X_g f$$

= $(d\lambda_g X_e) f$
= $X_e (f \circ \lambda_g)$

To show that Xf is smooth, it suffices to show that $X_e(f \circ \lambda_g)$ is smooth. We realize $X_e(f \circ \lambda_g)$ as evaluation of a smooth function on a smooth function.

Let Y be a smooth vector field on G such that $Y_e = X_e$

$$Y_e(f \circ \lambda_q) = X_e(f \circ \lambda_q)$$

We look at λ_g as the composition of

$$G \xrightarrow{i_g^2} G \times G \xrightarrow{\mu} G$$
$$x \mapsto (g, x) \mapsto gx$$

Regard Y as the vector field (0, Y) on $G \times G$. Now

$$(0,Y)(f \circ \mu) \circ i_e^1(g) = (0,Y)_{(g,e)}(f \circ \mu)$$

$$= 0_g(f \circ \mu \circ i_g^1) + Y_e(f \circ \mu \circ i_g^2)$$

$$= Y_e(f \circ \lambda_g)$$

which proves the smoothness.

2. Let X, Y left-invariant vector fields on G. We must show that [X, Y] is a left-invariant vector field.

$$\begin{split} d\lambda_g([X,Y]_e)f &= [X,Y]_g f \\ &= [X,Y]_e (f \circ \lambda_g) \\ &= X_e(Y(f \circ \lambda_g)) - Y_e(X(f \circ \lambda_g)) \\ &= X_e(d\lambda_g(Yf)) - Y_e(d\lambda_g(Yf)) \end{split}$$

4 18 Jan 2023

Lemma 4.1. Suppose $\psi: M \to N$ is a smooth map. Let X_1, X_2 be vector fields on M, Y_1, Y_2 be vector fields on N such that X_i is ψ -related to Y_i . Then $[X_1, X_2]$ is ψ -related to $[Y_1, Y_2]$.

Proof. Notice that

$$d\psi[X_1, X_2](f) = [X_1, X_2](f \circ \psi)$$

$$= X_1(X_2 f \circ \psi) - X_2(X_1 f \circ \psi)$$

$$= X_1(d\psi X_2 f) - X_2(Y_1 f \circ \psi)$$

$$= X_1(Y_2 f \circ \psi) - X_2(Y_1 f \circ \psi)$$

$$= d\psi X_1(Y_2 f) - d\psi X_2(Y_1 f)$$

$$= Y_1 Y_2 f \circ \psi - Y_2 Y_1 f \circ \psi$$

$$= [Y_1, Y_2](f) \circ \psi$$

This lemma proves that the set of left-invariant vector fields forms a Lie algebra.

Consider the Lie group $\mathrm{GL}_n(\mathbb{R})$. We want to verify the Lie algebra structure on $\mathfrak{gl}_n(\mathbb{R}) = M_n(\mathbb{R})$ with the isomorphism

$$Lie(\mathrm{GL}_n(\mathbb{R})) \to \mathfrak{gl}_n(\mathbb{R})$$

$$X \stackrel{\beta}{\mapsto} X_e$$

Lemma 4.2.

$$\beta([X,Y]) = [\beta(X),\beta(Y)]$$

Proof. Evaluating the bracket on coordinate function x_{ij} .

$$[X,Y]_e(x_{ij}) = X_e(Y(x_{ij})) - Y_e(X(x_{ij}))$$
(1)

Now

$$Y(x_{ij})(g) = d\lambda_g Y_e(x_{ij})$$

$$= Y_e(x_{ij} \circ \lambda_g)$$

$$= \sum_k x_{ik}(g) Y_e(x_{kj})$$

Considering the above as function of g and substituting this in Eq. (1) we get

$$[X,Y]_{e}(x_{ij}) = X_{e}Y_{e}(x_{ij}) - Y_{e}X_{e}(x_{ij})$$

$$= \sum_{k} \{X_{e}(x_{ik})Y_{e}(x_{kj}) - Y_{e}(x_{ik})X_{e}(x_{kj})\}$$

$$= [X_{e}, Y_{e}](x_{ij})$$

Definition 4.1. A **Lie subgroup** H of a Lie group G is a submanifold $H \xrightarrow{\alpha} G$ where α is smooth and a group homomorphism.

We say that H is closed Lie subgroup if it is Lie subgroup such that $H \to \alpha(H)$ is a diffeomorphism.

Example. Consider the map $\mathbb{R} \to S^1 \times S^1$ given by

$$t \mapsto (e^{2\pi it}, e^{2\pi i\sqrt{2}t})$$

The image is a Lie subgroup of $S^1 \times S^1$ but it is not a closed Lie subgroup. It is also known as "Skew-line" in the torus.

Definition 4.2. Let $\mathfrak{g},\mathfrak{h}$ be Lie algebras and $f:\mathfrak{g}\to\mathfrak{h}$ be a vector space homomorphism. Then we say that f is a Lie algebra homomorphism if

$$f([X,Y]) = [f(X), f(Y)]$$

Theorem 4.3. Suppose that $\psi: G \to H$ is a Lie group homomorphism. Let X be a left-invariant vector field on G. Extend $d\psi(X_e) = Y_e \in T_eH$ to a left-invariant vector field Y on H. Then X and Y are ψ -related. This implies $d\psi_e: \mathfrak{g} \to \mathfrak{h}$ is a Lie algebra homomorphism.

Proof. Consider the commutative diagram

$$TG \xrightarrow{d\psi} TH$$

$$X \left(\bigcup_{\psi} \bigvee_{\psi} Y \right)$$

$$G \xrightarrow{\psi} H$$

We want to show that $Y \circ \psi = d\psi \circ Y$. Now

$$\lambda_{\psi(q)} \circ \psi = \psi \circ \lambda_q$$

so

$$Y_{\psi(g)} = d\lambda_{\psi(g)} Y_e$$

$$= d\lambda_{\psi(g)} d\psi X_e$$

$$= d(\lambda_{\psi(g)} \circ \psi)(X_e)$$

$$= d(\psi \circ \lambda_g)(X_e)$$

$$= d\psi d\lambda_g(X_e)$$

$$= d\psi X_g$$

Theorem 4.4. Let G, H be Lie groups with G connected. Let

$$\phi, \psi: G \to H$$

be homomorphism of Lie groups such that

$$d\phi = d\psi : T_eG \to T_eH$$

Then $\phi = \psi$.

5 23 Jan 2023

I missed the class. Regardless here are some definitions from Warner covered on this day.

Definition 5.1. Let M be a smooth d-dimensional manifold. For any integer $1 \leq c \leq d$, a c-dimensional distribution \mathscr{D} on manifold is a choice of c-dimensional subspace $\mathscr{D}_p \subset T_pM$. \mathscr{D} is smooth if for each $p \in M$ there is an open neighborhood U of p and there are c smooth vector fields X_1, \ldots, X_c on U which span \mathscr{D}_m for each $p \in U$.

We say \mathscr{D} is **involutive** if $[X,Y] \in \mathscr{D}$ whenever $X,Y \in \mathscr{D}$.

Definition 5.2. A submanifold (N, ϕ) of M is an integral manifold of a distribution \mathcal{D} if

$$d\phi(N_p) = \mathscr{D}_{\phi(p)}$$

Suppose there exists an integral manifold N for a distribution \mathcal{D} , then for the points on N the distribution \mathcal{D} is necessarily involutive. Frobenius theorem states that it is sufficient condition for a distribution to be integral.

Theorem 5.1. (Frobenius) Let \mathscr{D} be a c-dimensional involutive smooth distribution on M. Then there exists an integral manifold of \mathscr{D} passing through each point of M.

Differential Ideals

Let $E^*(M) = \bigoplus_{i=0}^{\infty} E^i(M)$ denote the graded algebra of smooth differential forms over manifold M.

Definition 5.3. Let $\mathscr D$ be a smooth p-dimensional distribution on M. A q-form ω is said to annihilate $\mathscr D$ if for each $x\in M$

$$\omega_x(v_1,\ldots,v_q)=0$$
 whenever $v_1,\ldots,v_q\in\mathscr{D}_x$

A form $\omega \in E^*(M)$ is said to annihilate \mathscr{D} if each of the homogenous components of ω annihilate \mathscr{D} . Define

$$\mathscr{I}(\mathscr{D}) \doteq \{\omega \in E^*(M) : \omega \text{ annihilates } \mathscr{D}\}\$$

Definition 5.4. An ideal $\mathscr{I} \in E^*(M)$ is called a **differential ideal** if it is closed under exterior differentiation; i.e.

$$d(\mathscr{I}) \subset \mathscr{I}$$
.

Theorem 5.2. A smooth distribution \mathscr{D} on M is involutive if and only if the ideal $\mathscr{I}(\mathscr{D})$ is a differential ideal.

6 25 Jan 2023

Theorem 6.1. If $\phi: H \to G$ is a homomorphism of Lie groups and if ω is a left-invariant differential form on G, then $\phi^*(\omega)$ is again a left-invariant form on H.

Suppose that $\phi: H \to G$ is a homomorphism of Lie groups. Let $\omega_1, \ldots, \omega_d$ be a basis for $E^1_{inv}(G)$. Then

$$\mathcal{I}_{\phi} = \langle \{ \pi_1^* \phi^*(\omega_j) - \pi_2^*(\omega_j) \} : 1 \le j \le d \rangle$$

is a left-invariant differential ideal of $H \times G$.

Lemma 6.2. Suppose X_1, \ldots, X_d is a basis of \mathfrak{g} dual to $\omega_1, \ldots, \omega_d$. Suppose the Lie bracket is given by

$$[X_i, X_j] = \sum c_{ij}^k X_k$$

Then the C^{∞} functions c_{ij}^k are constant. Further,

$$d\omega_i = -c_{kj}^i \omega_k \wedge \omega_j$$

Proof. Notice that

$$d\omega_k(X_i, X_j) = -\omega_k([X_i, X_j])$$
$$= -c_{ij}^k$$

which is a constant because a left-invariant 1-form evaluated on a left-invariant vector field is a constant. \Box

Remark. The c_{ij}^k are called the structural constants of G with respect to the basis $\{X_i\}$ of \mathfrak{g} .

Proof. Theorem 4.4. Notice that $\mathcal{I}_{\psi} = \mathcal{I}_{\phi}$ since $d\phi = d\psi$ and these are invariant differential ideals; hence integral manifolds of \mathcal{I}_{ϕ} and \mathcal{I}_{ψ} passing through (e, e) are the same. Thus, $\phi = \psi$

Lemma 6.3. Suppose G is any Hausdorff topological group which is connected. Suppose $e \in U \subset G$ is any open set. Then

$$G = \bigcup_{n>1} U^n$$

where $U^n = \{x_1 \cdots x_n | x_i \in U\}$

Proof. Since $e \in U$ is open, $U^{-1} = \{x^{-1} | x \in U\}$ is also an open neighborhood of e. Let $V = U \cap U^{-1}$. Note that

$$H \doteqdot \bigcup_{n \ge 1} V^n$$

is a subgroup of G, and it is open. Since the cosets gH are also open it follows that $G = \bigcup_g H$ being connected must be H.

Theorem 6.4. Let G be a Lie group and $\mathfrak{h} \subset \mathfrak{g}$ be a Lie subalgebra of \mathfrak{g} . Then there exists connected Lie subgroup H of G such that $T_eH = \mathfrak{h}$.

Proof. Consider the distribution \mathcal{D} defined as

$$\mathscr{D}_q = \{ X_q | X \in \mathfrak{h} \}$$

on G. Suppose X_1, \ldots, X_c is a basis of \mathfrak{h} . Then \mathscr{D} is generated by X_1, \ldots, X_c and \mathscr{D} is involutive.

Corollary. (a) There is a one-to-one correspondence between connected Lie subgroups of G and Lie subalgebras of \mathfrak{g} .

(b) Suppose $(H, i) \leftrightarrow \mathfrak{h} \subset \mathfrak{g}$. Then (H, i) is an embedded manifold if and only if H is closed.

Theorem 6.5. Suppose that $A \subset G$ is an abstract subgroup of G and if A has a manifold structure such that $(A, i) \to G$ is a submanifold. Then the manifold structure is unique, A is a Lie group and hence (A, i) is a Lie subgroup of G.

Theorem 6.6. (Adó) Suppose that \mathfrak{g} is a finite dimensional Lie algebra. Then \mathfrak{g} can be realized as a subalgebra of $\mathfrak{gl}(n,\mathbb{R})$.

Given any connected Lie group G, it has a universal cover $\tilde{G} \xrightarrow{\pi} G$. Choose $\tilde{e} \in \pi^{-1}(e) \in \tilde{G}$ such that the following diagram

commutes.

7 30 Jan 2023

Lemma 7.1. Suppose that G is a connected Lie group. Then $\pi_1(G)$ is abelian.

Proof. Suppose $\sigma, \tau: I \to G$ be two loops. Define $\sigma \cdot \tau$ by

$$(\sigma \cdot \tau)(s) = \sigma(s) \cdot \tau(s)$$

Then we have

$$\sigma * \tau \cong \sigma \cdot \tau$$

where * denote the product in the fundamental group $\pi_1(G)$ (given by concatenation) and \cong denotes equivalent in homotopy. Also,

$$\sigma \cdot \tau \cdot \sigma^{-1} \cong \tau$$

which implies $\sigma \tau \cong \tau \cdot \sigma$

Theorem 7.2. Suppose that G and H are Lie groups with Lie algebras \mathfrak{g} and \mathfrak{h} with G simply connected. Let $\tilde{\phi}: \mathfrak{g} \to \mathfrak{h}$ be a Lie algebra homomorphism. Then there exists a Lie group homomorphism

$$\phi: G \to H$$

such that $d\phi_e: T_e(G) = \mathfrak{g} \to \mathfrak{h} = T_eH$ is equal to $\tilde{\phi}$.

Proof. Let $\{\omega_i\}$ be a basis for invariant differential forms in $E^1(H)$. Let \mathscr{I} be the ideal generated by $\{\pi_1^*\tilde{\phi}^*(\omega_j) - \pi_2^*(\omega_j) | 1 \leq j \leq d\}$. Then \mathscr{I} is an invariant differential ideal of $G \times H$, so it comes from vanishing of an integrable submanifold of $G \times H$ passing through (e, e).

Then M is a Lie subgroup of $G \times H$ and $M \xrightarrow{p} G$ obtained by restriction of π_1 is a group homomorphism and also a local diffeomorphism. So $p: M \to G$ is a covering projection but G is simply connected so p is a diffeomorphism

$$G \xrightarrow{p^{-1}} M \hookrightarrow G \times H \to H.$$

Corollary. 1. Suppose $\mathfrak{g} \cong \mathfrak{h}$ as Lie algebras and G and H are simply connected. Then $G \cong H$ as Lie groups.

- 2. There exists a one-to-one correspondence between (finite dimensional) Lie algebras and simply connected Lie groups.
- 3. The differential structure of a Lie group is determined by its Lie algebra.

If G is a topological group which is locally Euclidean, does it support a Lie group structure? The answer is yes but the proof is quite difficult.

Exponential map

Let X be a left-invariance vector field on G. We have a Lie algebra homomorphism

$$\operatorname{Lie}(\mathbb{R}) \cong \mathbb{R} \to \mathfrak{g}$$

$$c \frac{d}{dt} \to cX$$

This yields a Lie group homomorphism

$$\mathbb{R} \xrightarrow{\exp_X} G$$
$$x \mapsto \exp_X(x)$$

then $d \exp_X(c\frac{d}{dt}) = cX$. The map

$$\mathfrak{g} \xrightarrow{\exp} G$$
$$X \mapsto \exp_X(1)$$

is called the **exponential map**.

Theorem 7.3. Let $X \in \text{Lie}(G)$. Then

- 1. $\exp(tX) = \exp_X(t)$
- 2. $\exp(t_1X_1 + t_2X) = \exp(t_1X) \cdot \exp(t_2X)$
- 3. $\exp(-tX) = (\exp(tX))^{-1}$
- 4. $\exp: \mathfrak{g} \to G$ is smooth and $d\exp: T_0\mathfrak{g} \to T_eG = \mathfrak{g}$ is the identity map
- 5. $\lambda_g \circ \exp_X : \mathbb{R} \to G$ is the unique integral curve of X which is based at g.
- 6. The left-invariant vector fields are complete, i.e. their integral curves exist for all time.
- 7. The one-parameter group of diffeomorphism $\psi_{X,t}$ for $t \in \mathbb{R}$ is given by

$$\psi_{X,t} = \rho_{exp_X(t)}$$

where ρ_g denote right-multiplication by g.

Theorem 7.4. Suppose $\psi: H \to G$ is a Lie group homomorphism. Then

commutes.

[DO THIS COMMUTATIVE DIAGRAM.]

8 1 Feb 2023

Theorem 8.1. Suppose that $\mathfrak{h} \subset \mathfrak{g}$ is a Lie subalgebra where Lie(G). Let $A \subset G$ an abstract subgroup such that there exists a neighbourhood $0 \in V \subset \mathfrak{g}$ such that

$$\exp(V \cap \mathfrak{h}) = U \cap H$$

for some neighborhood $e \in U \subset G$. Then H has a unique manifold structure such that $(H,i) \hookrightarrow G$ is an embedded submanifold of G and H is closed in subset topology.

Remark. Lines with irrational slope in torus doesn't satisfy the hypothesis.

Matrix exponentiation

Recall that $\mathfrak{gl}(n,\mathbb{R})$ denotes the Lie algebra of $n\times n$ matrices over \mathbb{R} and similarly for $\mathfrak{gl}(n,\mathbb{C})$.

Definition 8.1. Define a map

$$\mathfrak{gl}(n,\mathbb{C}) \to \mathrm{GL}(n,\mathbb{C})$$

$$A \mapsto e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

It can be proved that the series is convergent with sup norm and further we have a lemma

Lemma 8.2. If AB = BA then

$$e^{A+B} = e^A e^B$$

which can be used to prove that $e^A \in GL(n,\mathbb{C})$, so the definition makes sense.

Fix A and consider the function

$$\mathbb{R} \ni t \mapsto e^{tA} \in \mathrm{GL}(n, \mathbb{C})$$

then its derivative is

$$\left. \frac{d}{dt} \right|_{t=0} e^{tA} = A$$

because we can differentiate term by term in uniform convergence. This confirms Theorem 7.3 4th part.

The left-invariant vector field given by $A \in \mathfrak{gl}(n,\mathbb{C})$ is just multiplication by A on the right. Thus, $t \mapsto e^{tA}$ is the integral curve associated to the vector field $A \in \mathfrak{gl}(n,C)$ based at I. Hence, this is the exponential map in the cases of $\mathrm{GL}(n,\mathbb{C})$.

Theorem 8.3. The exponential map $\exp : \mathfrak{g} \to G$ is smooth.

Proof. Let $X \in \mathfrak{g}$ and consider the map

$$V: G \times \mathfrak{g} \to TG \times \mathfrak{g}$$

 $(g, X) \mapsto (X_g, 0)$

then V is smooth. Also, V is left-invariant on $G \times \mathfrak{g}$. Consider the integral curve γ based at (g, X) of V. Then

$$\gamma_V(t) = (g \exp_X(t), X)$$

because of left invariance so

$$\gamma_V(1) = (g \exp(X), X)$$

$$G \times \mathfrak{g} \xrightarrow{\gamma_V(1)} G \times \mathfrak{g} \xrightarrow{\pi} G$$
$$(e, X) \mapsto \gamma_V(1) \to \exp(X)$$

9 6 Feb 2023

Note that exponential map commutes with Lie group homomorphisms. Using Ado's theorem we get that for any Lie group

$$G \xrightarrow{\psi} GL(n, \mathbb{C})$$

$$\uparrow \exp \qquad \exp \qquad \downarrow \exp$$

$$\mathfrak{g} \xrightarrow{\psi} \mathfrak{gl}(n, \mathbb{C})$$

Consider the Lie group $\mathrm{SL}(n,\mathbb{C}) = \{X \in \mathrm{GL}(n,\mathbb{C}) | \det(X) = 1\}$, for any $A \in \mathfrak{gl}(n,\mathbb{C})$ upper triangular with diagonal entries $\lambda_1, \ldots, \lambda_n$ then

$$\det(e^A) = e^{\lambda_1 + \dots + \lambda_n} = e^{\operatorname{tr}(A)}$$

Now $\mathfrak{sl}(n,\mathbb{C}) = \{A \in \mathfrak{gl}(n,\mathbb{C}) | \operatorname{tr}(A) = 0\}$, then $\mathfrak{sl}(n,\mathbb{C})$ is a Lie subalgebra of $\mathfrak{gl}(n,\mathbb{C})$ and exponential maps $\mathfrak{sl}(n,\mathbb{C})$ to the Lie subgroup $\operatorname{SL}(n,\mathbb{C})$. As $\operatorname{SL}(n,\mathbb{C})$ is a closed subgroup of $\operatorname{GL}(n,\mathbb{C})$ and dimension $2(n^2-1)$. Using Theorem 8.1 on an appropriate neighborhood we can complete the proof.

Lie subgroup Lie subalgebra
$$\mathfrak{gl}(n,\mathbb{C})$$
 $U(n)\longleftrightarrow u(n)=$ skew-Hermitian matrices $SU(n)\longleftrightarrow su(n)=$ skew-Hermitian $+$ trace $=0$

Prove the above given correspondence using this lemma (TO DO).

Lemma 9.1. Suppose that $P \in GL(n, \mathbb{C})$ and $A \in \mathfrak{gl}(n, \mathbb{C})$, then

$$Pe^{A}P^{-1} = e^{PAP^{-1}}$$

Theorem 9.2 (Baker-Campbell-Hausdorff formula). Let \mathfrak{g} be a Lie algebra corresponding to a connected Lie group G. Then in a neighborhood U of the identity, the multiplication $U \times U \to G$ is completely determined by Lie algebra structure of \mathfrak{g} . There is a formula for $Z = Z(X,Y), X,Y \in V \subset \mathfrak{g}$, where $e^X \cdot e^Y = e^Z$

$$Z = X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}[X, [X, Y]] + \dots$$

Consider

$$e^{tX} \cdot e^{tY} = \left(\sum \frac{t^k X^k}{k!}\right) \left(\sum \frac{t^l Y^l}{l!}\right)$$
$$= \sum_{m>0} \left(\sum_{k+l=m} \frac{X^k Y^l}{k! l!}\right) t^m$$

Suppose $Z = tZ_1 + t^2Z_2 + t^3Z_3...$, then

$$e^{Z} = 1 + (tZ_1 + t^2 Z_2 + \dots) + \frac{(tZ_1 + t^2 Z_2 +)}{2!} + \dots$$

= $1 + t(Z_1) + t^2 \left(Z_2 + \frac{Z_1^2}{2!} \right)$

So we get $Z_1 = X + Y$,

$$\begin{split} \frac{X^2}{2!} + XY + \frac{Y^2}{2!} &= Z_2 + \frac{Z_1^2}{2!} \\ &= Z_2 + \frac{1}{2} \left(X^2 + XY + YX + Y^2 \right) \end{split}$$

so
$$Z_2 = XY - \frac{1}{2}(XY + YX) = \frac{1}{2}(XY - YX) = \frac{1}{2}[X, Y]$$

Theorem 9.3. Suppose that $\psi: R \to G$ is a continuous homomorphism. The ψ is smooth.

Proof. It is enough to show that ψ is smooth at 0. Let U be a star-like neighborhood of $0 \in \mathfrak{g}$ such that $\exp |_U : U \to G$ is a diffeomorphism onto $\exp(U)$. Let $U' = \{\frac{X}{2} | X \in U\}$. Choose $Y \in U'$ and let $\psi(t_0) = \exp(Y)$. Choose $t_0 > 0$ such that

$$\psi([-t_0, t_0]) \subset \exp(U')$$

Let $n \geq 2$, and suppose that $X \in U'$ such that $\exp(X) = \psi(\frac{t_0}{n})$. Claim nX = Y

10 6 Feb

11 8 Feb

12 13 Feb

Definition 12.1. Let $\mathfrak{a} \in \mathfrak{g}$ be a Lie subalgebra of a Lie algebra \mathfrak{g} . We say that \mathfrak{a} is an **ideal** in \mathfrak{g} if $[X,Y] \in \mathfrak{a}$ for all $X \in \mathfrak{g}$ and $Y \in \mathfrak{a}$.

Theorem 12.1. Suppose $A \subset g$ is a connected Lie subgroup of a connected Lie group G. Then A is normal in G if and only if $\mathfrak{a} = \text{Lie}(A)$ is an ideal in \mathfrak{g} .

Proof. Suppose that $\mathfrak{a} \subset \mathfrak{g}$ is an ideal. Let $g \in G$, $h \in A$. We must show that $ghg^{-1} \in A$, to do this it is enough to show this for g in a neighborhood of e and h in a neighborhood of e in A. So we may write $g = \exp X$, $h = \exp Y$

$$ghg^{-1} = \exp \circ \operatorname{Ad}_{g}(Y)$$

$$= \exp \operatorname{Ad}_{\exp(X)}(Y)$$

$$= (\exp (\exp(id_{X})))$$

$$= \exp \left(I + \operatorname{ad}_{X} + \frac{\operatorname{ad}_{X}^{2}}{2!} + \dots\right)(Y)$$

$$= \exp \left(Y + [X, Y] + \frac{[X, [X, Y]]}{2!} + \dots\right) \in A$$

Now assume A is normal in G. Let $X \in \mathfrak{g}$, $Y \in \mathfrak{a}$. Write $g_t = \exp tX$. We know that

$$A \ni g_t(\exp(sY))g_t^{-1} = \exp(\operatorname{Ad}_{g_t}(sY))$$
$$= \exp(s\operatorname{Ad}_{g_t})$$
$$= \exp(s\exp\operatorname{ad}_{tX}(Y))$$

This implies $\exp \operatorname{ad}_{tX}(Y) \in \mathfrak{a}$ so $Y + t[X,Y] + \frac{t^2}{2!}[X,[X,Y]] + \dots$ and using $\frac{d}{dt}\Big|_{t=0} \exp \operatorname{ad}_{tX}(Y) = [X,Y] \in \mathfrak{a}.$

Definition 12.2. The center of a Lie algebra \mathfrak{g} is the vector space $\mathfrak{z} = \mathfrak{z}(\mathfrak{g}) = \{X \in \mathfrak{g} \mid [X,Y] = 0 \,\forall Y \in \mathfrak{g}\}.$

Remark. Note that \mathfrak{z} is trivial Lie subalgebra of \mathfrak{g} .

Theorem 12.2. Let Z = Z(G) be the center of G. Then $Z(G) = \ker(\operatorname{Ad}: G \to \operatorname{GL}(\mathfrak{g}))$.

Proof. If $\mathfrak{g} \in Z(G)$, then $i_g : G \to G = \mathrm{id}_G$ where i_g is the conjugation map. Taking the differential, this implies $A_g : \mathfrak{g} \to \mathfrak{g}$ is identity, hence $g \in \ker(\mathrm{Ad})$.

Suppose that $g \in \ker(\operatorname{Ad})$, so $\operatorname{Ad}_q(X) = X$. Let $X \in \mathfrak{g}$ then

$$\exp tX = \exp(t \operatorname{Ad}_g(X))$$
$$= g \exp(tX)g^{-1}$$

so g commutes with elements $\exp(tX)$ in a neighborhood of e, but that is enough since elements of the form $\exp tX$ for any $t \in \mathbb{R}, X \in \mathfrak{g}$ generate G. Therefore, $g \in Z(G)$.

Proposition 12.3. If $X, Y \in \mathfrak{g}$ are such that [X, Y] = 0. Then

$$\exp(X + Y) = \exp(X) \exp(Y)$$
.

Proof. Let $\mathfrak{a} = \mathbb{R}X + \mathbb{R}Y$. Then \mathfrak{a} is abelian subalgebra of \mathfrak{g} . Then the corresponding Lie subgroup A is abelian. Define $\alpha : \mathbb{R} \to G$ such that

$$\alpha(t) = \exp(tX) \exp(tY) \in A$$

It follows that $\alpha(s+t) = \alpha(s)\alpha(t)$ since A is abelian. Now $\alpha(t) = \exp(tZ)$ for some $Z \in \mathfrak{g}$ where $Z = \frac{d}{dt} \Big|_{t=0} \alpha(t)$.

$$\frac{d}{dt}\alpha(t) = \frac{d}{dt}\Big|_{t=0} \exp(tX) + \frac{d}{dt}\Big|_{t=0} \exp(tY)$$
$$= X_e + Y_e$$

So $Z_e = X_e + Y_e$ and $\exp(tZ) = \exp(tX) \exp(tY)$ for all $t \in \mathbb{R}$.

13 15 Feb

Motivation. We will try to look into automorphism group of Lie group now and the expectation is that it is a Lie group itself.

Let $\psi: V \otimes V \to V$ be a linear map. Consider the sets

$$A_{\psi}(V) = \{ \alpha \in \operatorname{GL}(V) | (\alpha u, \alpha v) = \alpha((u, v)) \},$$

i.e. the diagram commutes

$$\begin{array}{cccc} V \otimes V & \stackrel{\psi}{----} & V \\ \downarrow & & \downarrow \\ \downarrow & & \downarrow \\ V \otimes V & \stackrel{\psi}{----} & V \end{array}$$

and

$$Dev_{\psi}(V) = \{ f \in End(V) | f(\psi(u, v)) = \psi(f(u), v) + \psi(u, f(v)) \}$$

Proposition 13.1. 1. $A_{\psi}(V)$ is a closed subgroup of GL(V).

2. $Dev_{\psi}(V)$ is a Lie subalgebra of $\mathfrak{g}(V)$.

Proof. TO DO

Theorem 13.2. Lie algebra of $A_{\psi}(V)$ equals $Dev_{\psi}(V)$.

Proof. Let $\mathfrak{a} = Lie(A_{\psi}(V)) \subset \mathfrak{g}(V) = End(V)$. We must show that $\mathfrak{a} = Dev_{\psi}(V)$. Suppose that $f \in \mathfrak{a}$, then $\exp(tf) \in A_{\psi}(V)$ for all t. We need to show that

$$f \circ \psi = \psi \circ (f \otimes 1 + 1 \otimes f)$$

To do this, let $u, v \in V$, then

$$\exp tf(u,v) = (\exp tf(u), \exp tf(v))$$
$$= (u,v) + (tf(u),v) + (u,tf(v)) + \text{higher powers of } t$$

so

$$f(u,v) = \frac{d}{dt}\Big|_{t=0} \exp tf(u,v) = (f(u),v) + (u,f(v))$$

so $f \in Dev_{\psi}(V)$.

Let $f \in Dev_{\psi}(V)$, we must show that

$$\exp(tf)(u,v) = (\exp(tf)u, \exp(tf)v)$$
i.e
$$\exp(tf) \circ \psi = \psi \circ (\exp(tf) \otimes \exp(tf)) \qquad \forall u, v \in V \text{ and } \forall t \in \mathbb{R}$$

As $f \in Dev_{\psi}(V)$, we have

$$f \circ \psi = \psi \circ (f \otimes 1 + 1 \otimes f)$$
$$f^{2} \circ \psi = f \circ f \circ \psi$$
$$= f \circ \psi \circ (f \otimes 1 + 1 \otimes f)$$
$$= \psi \circ (f \otimes 1 + 1 \otimes f)^{2}$$

By induction,

$$f^n \circ \psi = \psi \circ (f \otimes 1 + 1 \otimes f)$$

and $f \otimes 1, 1 \otimes f : V \otimes V \to V \otimes V$ commutes. It follows that

$$\exp(tf) \circ \psi = \sum \left(\frac{t^k f^k}{k!} \circ \psi \right)$$

$$= \sum \frac{t^k}{k!} \psi \circ (f \otimes 1 + 1 \otimes f)^k$$

$$= \psi \circ \sum \frac{t^k}{k!} (f \otimes 1 + 1 \otimes f)^k$$

$$= \psi \circ \exp(tf \otimes 1 + 1 \otimes tf)$$

$$= \psi \circ (tf \otimes 1) \circ \exp(1 \otimes tf)$$

$$= \psi \circ \exp(tf \otimes tf)$$

$$= \psi (\exp(tf) \otimes \exp(tf))$$

Let $V = \mathfrak{g} = \mathrm{Lie}(G)$ and $\psi = [\cdot, \cdot] : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$ be the Lie bracket. Then

$$A_{\psi}(V) = \operatorname{Aut}_{Lie}(\mathfrak{g}) \subset \operatorname{GL}(\mathfrak{g})$$

and

$$\mathrm{Der}_{\psi}(V) = \mathrm{Lie}(\mathrm{Aut}(\mathfrak{g}))$$

by the theorem. Note that $G \xrightarrow{\operatorname{Ad}} \operatorname{GL}(\mathfrak{g})$ factors through $G \to \operatorname{Aut}_{\operatorname{Lie}}(\mathfrak{g})$ and $\mathfrak{g} \xrightarrow{\operatorname{ad}} \operatorname{Der}(\mathfrak{g})$. Let V be a finite dimensional vector space. Consider a bilinear form

$$B: V \times V \to F$$

equipped with a linear map

$$V \otimes V \to F$$

An element $g \in GL(V)$ is B-invariant if

$$(u, v) = (gu, gv)$$
 $\forall u, v \in V$

An element $f \in \text{End}(V)$ is B-invariant if

$$(fu, v) + (u, fv) = 0$$

Then $O_B(V) = \{g \in GL(V) | g \text{ is } B\text{-invariant}\}$ is a closed Lie subgroup of GL(V) with Lie algebra B-invariant linear map endomorphisms of V.

Example. Take $V = \mathbb{R}^n$ and B is the standard inner product. Then $O_B(V) = O(n)$.

14 1 March

Missed

15 6 March

Missed

16 8 March

Missed

17 13 March

Fundamental group of Lie groups

Reference - Hall (?)

Complexification

Let V be a real vector space. Then the complexification is the vector space $V \otimes_{\mathbb{R}} \mathbb{C} = V_{\mathbb{C}}$. If V is a Lie algebra, then $V_{\mathbb{C}}$ is a Lie algebra where the bracket operates on $V_{\mathbb{C}}$ is the \mathbb{C} -linear extension of that on V. It is given by

$$[X + iY, X' + iY'] = [X, X'] - [Y, Y'] + i([X, Y'] + [X', Y])$$

for all $X, Y, X', Y' \in V$. Suppose that V is a real Lie algebra and W is a complex Lie algebra. Suppose $f: V \to W$ is a Lie algebra homomorphism where W is regarded as a \mathbb{R} -Lie algebra. Then f extends to a unique complex Lie algebra homomorphism

$$f_{\mathbb{C}}: V \otimes \mathbb{C} \to W$$

Suppose that W = V + iV as \mathbb{C} vector space and where $V \cap iV = 0$ (internal direct sum). Then we say that V is a real form of W.

Suppose W is a complex Lie algebra and V is a real Lie subalgebra contained in W which is a real form of W. Then

$$V_{\mathbb{C}} \equiv W$$

as C-Lie algebra.

- Q. Given a Lie algebra, when is it the Lie algebra of a compact Lie group?
- A. Something about Killing form and non-degeneracy of complexified Lie algebra and semisimple Lie algebra.

18 20 March

Suppose that $\psi: H \to G$ is a Lie algebra homomorphism into a connected \mathbb{C} -Lie group G. Then $d\psi: \mathfrak{h} \to \mathfrak{g}$ extends to a complex Lie algebra homomorphism

$$\mathfrak{h}_{\mathbb{C}} \xrightarrow{d\psi \otimes \mathbb{C}} \mathfrak{g}.$$

Definition 18.1. We say that $\psi: H \to G$ is a complexification of H if for any complex Lie group L and any real Lie group homomorphism $f: H \to L$, there exists a unique complex

Lie group homomorphism $\phi: G \to L$ such that

$$f = \phi \circ \psi$$
.

Also,

Definition 18.2. A homomorphism of Lie groups $\psi: G \to L$ is a complex Lie group homomorphism if G, L are complex and $d\psi: \mathfrak{g} \to \mathfrak{l}$ is a complex Lie algebra homomorphism.

Idea: Like we can complexify a real Lie algebra, we would like to have a concept of complexification of a Lie group, but we may not be able to do so for all real Lie groups.

Given a complex Lie group G, any (H, ψ) whose complexification is G will be called a real form. For a given complex Lie group there can be more than one real form. E.g. consider $SU(n) \subset SL(n, \mathbb{C})$, and it can be proven that SU(n) is a real form of $SL(n, \mathbb{C})$ (also called compact form since SU(n) is compact) by dimension analysis.

Consider the diagram

where L is a complex Lie group. At the Lie algebra level

where $\mathfrak{sl}(n,\mathbb{C}) = \mathfrak{su}(n) + i\mathfrak{su}(n)$, $\exists \operatorname{SL}(n,\mathbb{C}) \xrightarrow{\phi} L$ such that $d\phi = \theta$ since $\operatorname{SL}(n,\mathbb{C})$ is simply connected. Then ϕ restricts to f since $d\phi|_{\mathfrak{su}(n)} = df$.

Theorem 18.1. Let K be a compact connected Lie group. Then there exists a complex Lie group $K_{\mathbb{C}}$ and a Lie group homomorphism $f: K \to K_{\mathbb{C}}$ such that

- 1. $f_*: \pi_1(K) \to \pi_1(K_{\mathbb{C}})$ is an isomorphism.
- 2. $\operatorname{Lie}(K_{\mathbb{C}}) = \operatorname{Lie}(K) \otimes \mathbb{C}$.
- 3. K_C is the compactification of K.

Theorem 18.2. Suppose that G is a complex linear connected semisimple Lie group. Then any maximal compact Lie subgroup $K \subset G$ is a real form of G.

19 22 March

Let β be a symmetric bilinear form on V, where V is a finite-dimensional vector space over \mathbb{R} or \mathbb{C} . Let Q be the associated quadratic form

$$Q: V \to \mathbb{R}$$
 or $Q: V \to \mathbb{C}$
$$Q(\lambda v) = \lambda^2 v$$

We have $Q(V) = \beta(v, v)$, and $\beta(u, v) = \frac{Q(u+v)-Q(u)-Qv}{2}$. Suppose that (V, β) , (V, β') are quadratic spaces. Then we say that (V, β) , (V, β') are equivalent if there exists $T: V \to V$ such that

$$\beta'(u, v) = \beta(Tu, TV) \quad \forall u, v \in V$$

Suppose that v_1, \ldots, v_n is a basis for V. Then the matrix of β is $B = (\beta(v_i, v_j))$.

Let B, B' be the matrices of β, β' . Then $(V, \beta), (V, \beta')$ are equivalent if there exists $T \in M_n(F)$ such that

$$B = {}^{t}TBT$$

where ^t denotes transpose. Now if $x = (x_1 \dots x_n)^t$, $y = (y_1, \dots, y_n)^t$ are vectors in $F^n \equiv V$, then

$$x^t B y = \beta(x, y)$$

and

$$\beta'(x,y) = \beta(Tx, Ty)$$
$$= x^{t}T^{t}BTy$$
$$= x^{t}B'y$$

which proves the statement. Suppose $E_1 \subset E$, (E, β) is a quadratic space. Then $(E_1, \beta|_{E_1})$ is a quadratic space.

$$E_1^{\perp} = \{ x \in E : \beta(x, y) = 0 \, \forall y \in E_1 \}$$

Lemma 19.1. Suppose that $E_1 \subset E$ and $(E, \beta|_{E_1})$ is non-degenerate. Then

$$E = E_1 \oplus E_1^{\perp} = E_1 \perp E_1^{\perp}$$

If (E,β) is non-degenerate, then $(E_1^{\perp},\beta_{E_1^{\perp}})$ is also non-degenerate.

Proof. TO DO.

Example - Consider the quad space (H,β) where $H=\mathbb{R}^2$ and $Q((x,y))=x^2-y^2$. Then $(H,\beta)\cong (H,\beta')$ where Q'((x,y))=xy. One can calculate that

$$B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

and

$$B' = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

so the forms are non-degenerate and similar using transformation $T=\frac{1}{\sqrt{2}}\begin{bmatrix}1&&1\\1&&-1\end{bmatrix}$. Suppose (V,β) is non-singular, if $\beta|_E\equiv 0$, then dim $E\leq \frac{1}{2}\dim V$. Further

Lemma 19.2. If (V, β) is non-singular then

$$V = V_1 \oplus \cdots \oplus V_n$$

where each V_i is 1-dimensional and $(V_i, \beta|_{V_i})$ is non-degenerate, $V_i \perp V_j$ if $i \neq j$, i.e. there exists a basis of V with respect to the matrix B of β is diagonal.

Proof. The proof is by induction on dimension. First suppose that $v \in V$ is non-zero then choose $V_1 = Fv$ then

$$V = V_1 \oplus V_1^{\perp}$$

and $(V_1^\perp,\beta|_{V_1^\perp})$ is non-degenerate. Apply induction to $(V_1^\perp,\beta|_{V_1^\perp}).$

Suppose $\beta(v,v) = 0$. Choose by non-degeneracy of β a vector $V \in V$ such that $\beta(u,v) = 0$. Notice that $\beta(u+v,u+v) = 2\beta(u,v) \neq 0$ which lands us in earlier case.

Now suppose that (V,β) is arbitrary. Let $V_0=\mathrm{rad}(\beta)=\{x\in V:\beta(x,y)=0\forall y\in V\}$ Consider the quotient $(\frac{V}{V_0},\overline{\beta})$ with

$$\overline{\beta}(u+V_0,v+V_0) = \beta(u,v)$$

and $\operatorname{rad}(\beta) = 0$, so $(\frac{V}{V_0}, \overline{\beta})$ is non-degenerate. Main theorem

Theorem 19.3. Over \mathbb{R} any non-degenerate β is equivalent to the bilinear form with basis

$$\begin{bmatrix} I_k & & \\ & -I_l \end{bmatrix}$$

with k + l = n. Moreover, k, l are uniquely determined by β .

Definition 19.1. Let (V,Q) be a quadratic space. The **Clifford algebra** C(Q) associated to it is an algebra over F with a homomorphism $\theta: V \to C(Q)$ such that

- $1. \ \theta(x)^2 = Q(x)$
- 2. C(Q) is universal with respect to 1st property, i.e. if $\psi: V \to A$ is any vector space homomorphism to an F-algebra such that

$$\psi(x)^2 = Q(x)$$

then there exists a unique algebra homomorphism f such that

commutes.

We can construct the Clifford algebra by

$$C(Q) = \frac{T(V)}{\langle x \otimes x - \psi(x) \rangle}$$

where T(V) is the tensor algebra of V.

Example. 1.
$$V = \mathbb{R}, Q(x) = -x^2$$
 then

$$T(V) = \mathbb{R} \oplus \mathbb{R} e_1 \oplus \mathbb{R} (e_1 \otimes e_1) \oplus \dots$$

and
$$C(Q) = \mathbb{R} \oplus \mathbb{R} e_1$$
, $e_1^2 = -1$ so $C(Q) \cong \mathbb{C}$.

$$C(Q') = \mathbb{R} \oplus \mathbb{R}e$$

and $C(Q) = \mathbb{R} \oplus \mathbb{R}e_1$, $e_1^2 = -1$ so $C(Q) \cong \mathbb{C}$. 2. $V = \mathbb{R}$, $Q'(x) = x^2$, then $C(Q') = \mathbb{R} \oplus \mathbb{R}e_1$ with $e_1^2 = 1$ so it is the polynomial ring $\frac{\mathbb{R}[x]}{(x^2 - 1)}$.

20 27 March

Missed

21 29 March

Missed

22 3 April

Missed

23 5 April

Lemma 23.1 (Schur's lemma). Suppose that G is a compact Lie group. Let V_0, V_1 be a finite dimensional irreducible representation over \mathbb{C} . Then any G-homomorphism $\psi: V_0 \to V_1$ is either 0 or an isomorphism. Moreover, any G-homomorphism $V_0 \to V_0$ is a scalar multiple of the identity.

Proof. If V is any irreducible representation, then V is simple i.e. the only subrepresentation of V are 0 and V. Now $\operatorname{im}(\psi) \subset V_1$ is a subrepresentation. Assume $\psi \neq 0$. Then $\operatorname{im}(\psi) = V_1$.

Also, ker $\psi \subset V_0$ is a subrepresentation. If ker $\psi = V_0$, then $\psi = 0$ therefore ker $\psi \neq V_0$ which implies $\ker \psi = 0$. Since V_0 is irreducible, the map ψ is one-one hence ψ is an isomorphism.

For the second part, suppose $\phi: V_0 \to V_0$ is a G-homomorphism. Let λ be an eigenvalue of ϕ . Then $(\lambda I - \phi)$ is singular and is a G-homomorphism. By previous part we get $\lambda I - \phi \equiv 0$ or $\phi = \lambda I$.

Representation ring of G

Let [V] denote the isomorphism class of finite dimensional G-representation V/\mathbb{C} . Consider the free abelian group A with basis $\{[V]: V \text{ is a } G\text{-representation}\}$. We consider the subgroup of elements of the form

$$S = \{[V_0 \oplus V_1] - [V_0] - [V_1] : V_0, V_1 \text{ are } G - \text{representations}\}$$

then RG = A/S is an abelian group. Further we can define multiplication by

$$[V] \cdot [W] = [V \otimes W]$$

Distributivity follows from $(V_1 \oplus V_2) \otimes W \cong (V_1 \otimes W) \oplus (V_2 \otimes W)$

Remark: Given two representations (V,π) and (W,σ) the tensor $(V\otimes W,\rho)$ is also Grepresentation via

$$\rho(g)(a \otimes b) = \pi(g)a \otimes \sigma(g)b$$

i.e. $g \cdot (a \otimes b) = ga \otimes gb$.

This makes RG a ring generated by the classes of irreducible representations of G.

Example. Any irreducible representation of S^1 is one-dimensional. Let

$$\chi_n: S^1 \to U(1) = S^1$$

 $z \mapsto z^n$

If
$$V_n=(\mathbb{C},\chi_n)$$
, then $V_m\otimes V_n=\mathbb{C}$ as a vector space.
$$g(u_1\otimes u_2)=gu_1\otimes gu_2=g^mu_1\otimes g^nu_2=g^{m+n}u_1\otimes u_2$$

Further calculations gives $RS^1 \cong \mathbb{Z}[\chi_1, \chi_1^{-1}]$

Let V be a G-representation over \mathbb{C} endowed with a G-invariant. Fix $u, v \in V$, we have a function $\psi_{\pi,u,v}:G\to\mathbb{C}$ given by

$$\psi_{\pi,u,v}(g) = \langle \pi(g)u,v \rangle$$
.

This is called a matrix coefficient of G. Then $\psi_{\pi,u,v} \in L^2(G)$.

Remark. Matrix coefficients form a dense subset of $L^2(G)$ but we will not prove it.

Given a representation (V, π) of G, we have a function

$$\chi_{\pi}: G \to \mathbb{C}$$

$$\chi_{\pi}(g) = \operatorname{tr}(\pi(g)).$$

This is called the characteristic function of V. Properties

- 1. $\chi_{\pi} = \chi_{\sigma} \text{ if } \pi \cong \sigma.$
- $2. \ \chi_{\pi \oplus \sigma} = \chi_{\pi} + \chi_{\sigma}$
- 3. $\chi_{\pi \otimes \sigma} = \chi_{\pi} \cdot \chi_{\sigma}$

Lemma 23.2. The characteristic function χ_{π} is a matrix coefficient.

Proof. Let v_1, \ldots, v_n be a Hermitian basis, i.e. $\langle v_i, v_j \rangle = \delta_{ij}$. Then

$$\pi(g) = (\langle \pi(g)v_i, v_j \rangle)_{i,j}$$

therefore

$$\chi_{\pi}(g) = \sum_{i=1}^{n} \langle \pi(g)v_i, v_j \rangle$$

Now it is enough to show that sum of two matrix coefficients is again a matrix coefficient. Suppose ρ_1, ρ_2 are G-representation and $u_i, v_i \in V_i$,

$$\psi_{\rho_1,u_1,v_1}(g) + \psi_{\rho_2,u_2,v_2}(g) = \psi_{\rho_1 \oplus \rho_2,(u_1,u_2),(v_1,v_2)}(g)$$

on
$$V_{\rho_1\oplus\rho_2}=V_{\rho_1}\oplus V_{\rho_2}$$
.

Theorem 23.3 (Schur orthogonality). If (V_1, ρ_1) and (V_2, ρ_2) are irreducible representations over \mathbb{C} of a compact Lie group G, then

$$\langle \chi_{\rho_1}, \chi_{\rho_2} \rangle = \begin{cases} 0 \text{ if } V_1 \neq V_2 \\ 1 \text{ if } V_1 \cong V_2 \end{cases}$$

Let Ch(G) or χG denote the ring given by characteristic of representation of G.

$$RG \xrightarrow{\chi} \chi G$$
$$[V_{\pi}] \mapsto \chi_{\pi}$$

is a ring homomorphism.

Theorem 23.4. $RG \cong \chi(G)$

Proof. We need only show that χ is a monomorphism. Suppose

$$a = \sum a_i[V_i]$$

where V_i are irreducible such that $\chi(a) = 0$. So

$$\sum a_i \chi_{V_i} = 0$$

this implies

$$\sum a_i \delta_{ij} = \sum a_i \left\langle \chi_{V_i}, \chi_{V_j} \right\rangle = 0$$

for all j. Thus, $a_j = 0$ hence a = 0.

Suppose that $g \sim h$ in G, so $g = xhx^{-1}$ for some $x \in G$. Then $\chi_{\pi}(g) = \chi_{\pi}(h)$, i.e. χ_{π} is constant on conjugacy classes.

Suppose $T \subset G$ is torus and G is compact connected. We say that T is a maximal torus if

$$T \subset T'$$

and T' a torus implies T' = T.

Lemma 23.5. Any $g \in G$ is contained in a maximal torus.

Theorem 23.6. Fix any maximal torus $T \subset G$. Then

$$G = \bigcup_{x \in G} xTx^{-1}.$$

$$RG \xrightarrow{res} RT$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\chi(G) \xrightarrow{res} \chi(T)$$

where zigzag lines denote isomorphism. Further

$$R(G \times H) = RG \otimes RH$$

$$R(T^n) = \mathbb{Z}[\chi_1, \chi_1^{-1}, \dots, \chi_n, \chi_n^{-1}]$$

24 10 April

Lemma 24.1. Suppose that $\langle \cdot, \cdot \rangle$ is a G-invariant Hermitian inner product on V_1 where G is compact. Let $v_i \in V_i$. Then we obtain a linear transformation $T: V_1 \to V_2$ defined by

$$T(\omega) = \int_G \langle \pi_1(g)w, v_1 \rangle \, \pi_2(g^{-1})v_2 dg \in V_2$$

where dg is a Haar measure (unimodular here because G is compact). Then T is a G-equivariant, i.e. $T(\pi_1(h)\omega) = \pi_2(h)T(\omega)$.

Proof.

$$T(\pi_1(h)\omega) = \int_G \langle \pi_1(g)\pi_1(h)\omega, v_1 \rangle \, \pi_2(g^{-1})(v_2)dg$$
$$= \int_G \langle \pi_1(gh)\omega, v_1 \rangle \, \pi_2(g^{-1})v_2dg$$

Put gh = x, then $g = xh^{-1} = \rho_h(x)$ and dg = dx. So

$$T(\pi_1(h)\omega) = \int_G \langle \pi_1(x)\omega, v_1 \rangle \, \pi_2(h) \pi_2(x^{-1}) v_2 dx$$
$$= \pi_2(h) \int_G \langle \pi_1(x)\omega, v_1 \rangle \, \pi_2(x^{-1}) v_2 dx$$
$$= \pi_2(h) T(\omega)$$

Recall

Lemma 24.2 (Schur's ortho). Suppose that (π_1, V_1) and (π_2, V_2) are irreducible. Then every matrix coefficient $\psi_{\pi_1, u, v}$ is orthogonal to $\psi_{\pi_2, u', v'}$ or (π_1, V_1) is isomorphic to (π_2, V_2) .

Now

Proof. continuing Assume $\psi_{\pi_1,u,v}$ and $\psi_{\pi_2,u',v'}$ are not orthogonal. So

$$0 \neq \int_{G} \langle \pi_{1}(g)u, v \rangle \overline{\langle \pi_{2}u', v' \rangle} dg$$

$$= \int_{G} \langle \pi_{1}(g)u, v \rangle \langle v', \pi_{2}(g)u', v' \rangle dg$$

$$= \int_{G} \langle \pi_{1}(g)u, v \rangle \langle \pi_{2}(g^{-1})v', u' \rangle dg$$

which is $\langle T(u), u' \rangle$ hence T is non-zero so by T is an isomorphism by Schur's lemma.

Let T be a subgroup of G, then we know that there is a map

$$RG \xrightarrow{Res} RT$$

Basic fact : If (π, V) is an irreducible representation of a torus T. Then V is one-dimensional. **Proof.** Let $t \in T$. Consider $\pi(t) : V \to V$. Because T is abelian, $\pi(t)$ is T-linear, i.e.

$$\pi(ts)(v) = \pi(t)(\pi(s)v) = \pi(s)\pi(t)v = \pi(st)(v)$$

hence by Schur's lemma

$$\pi(t)v = \chi(t)v$$

for all v where $\chi: T \to C^{\times}$ so

$$\chi(st) = \chi(s)\chi(t)$$

holds. Now

$$\chi(st)v = \pi(st)v = \pi(s)\pi(t)v$$
$$= \pi(s)(\chi(t)v) = \chi(t)\pi(s)v$$
$$= \chi(t)\chi(s)v$$

Since every non-zero subspace of V is a T-representation (as $\pi(t) = \chi(t)I$) we must have $\dim V = 1$ as V is irreducible.

Example. Let G = SU(2) with torus

$$T = \left\{ \begin{bmatrix} e^{i\theta} & \\ & e^{-i\theta} \end{bmatrix} : 0 \le \theta \le 2\pi \right\}$$

where T is maximal since the only matrices in SU(2) which commute with every $\begin{bmatrix} e^{i\theta} & e^{-i\theta} \end{bmatrix}$ is itself diagonal and hence in T.

Std: $V = \mathbb{C}^2 = V_1 \oplus V_2$ be irreducible where $V_i = \mathbb{C}e_i$ and

$$\begin{pmatrix} e^{i\theta} & \\ & e^{-i\theta} \end{pmatrix} e_1 = \begin{pmatrix} e^{i\theta} & \\ & e^{-i\theta} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = e^{i\theta} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

thus

$$\chi_1 \begin{pmatrix} e^{i\theta} & \\ & e^{-i\theta} \end{pmatrix} = e^{i\theta}$$

similarly

$$\chi_2 \begin{pmatrix} e^{i\theta} \\ e^{-i\theta} \end{pmatrix} = e^{-i\theta}$$

Let $S^k(V)$ be the k-th symmetric power of V which is same as polynomials of degree k in e_1, e_2 . The characters of S^k are

$$\begin{pmatrix} e^{i\theta} & & \\ & e^{-i\theta} \end{pmatrix} e_1^j e_2^{k-j} = e^{ij\theta} e^{-i(k-j)\theta} e_1^j e_2^{k-j} = e^{i(2j-k)\theta} e_1^j e_2^{k-j}$$

$$RSU(2) \xrightarrow{Res} RT$$

 $S^k \mapsto V_k \oplus V_{k-2} \oplus \cdots \oplus V_{-k}$

where $V_i \leftrightarrow x_i$

Theorem 24.3. The S^k are the only irreducible representations of SU(2).

Known as SL(2) theory.

Let G be a compact connected Lie group. Let T be a maximal torus. Then we define the Weyl group W = W(G,T) of G with respect to T as

$$W = N_G(T)/T$$

where $N_G(T) = \{g \in G : gTg^{-1} = T\}$ and $N_G \subset \operatorname{Aut}(T)$ via conjugation. Hence, W acts in T via automorphism.

Theorem 24.4. W is a finite group.

Proof. W acts on Lie(T) as linear map. Consider the projection map

$$\mathbb{R}^n \cong \operatorname{Lie}(T) \xrightarrow{p} T \cong \mathbb{R}^n / \mathbb{Z}^n$$
$$(t_1, \dots, t_n) \mapsto (e^{2\pi i t_1}, \dots, e^{2\pi i t_n})$$

where $w(\mathbb{Z}^n) = \mathbb{Z}^n$ for all $w \in W$. Now $N_G(T)$ is closed in G and hence compact. So W is compact and W is finite since $W \subset GL(n,\mathbb{Z})$ which is discrete.

Example. Take
$$G = U(n)$$
 and $T = \left\{ \begin{pmatrix} t_1 & \dots \\ & \ddots \\ & \dots & t_n \end{pmatrix} : t_i \in S^1 \right\}$ Noe that $U(n) = 1$

 $\bigcup_{g\in U(n)} gT^{-1}g^{-1}$ since given any $x\in U(n)$, there exists a unitary basis $\mathcal{U}=u_1,\ldots,u_n$ of \mathbb{C}^n such that the matrix of x with respect to \mathcal{U} is diagonal. Take g to be such that $g(e_i)=u_i$ for all i. Then $(g^{-1}xg)(e_i)=g^{-1}x(u_i)=\lambda_ig^{-1}u_i=\lambda_ie_i$

On the other hand if $gTg^{-1} = T$, then choose

$$g\begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} g^{-1} \in T$$

where $\lambda_1, \ldots, \lambda_n$ are pairwise distinct. This implies $ge_i = z_i e_{\sigma(i)}$ for some j, for some $\sigma \in S_n$. Thus N(T) is a monomial matrix which implies $N(T)/T \cong S_n$.

25 12 April

Let G be a compact connected Lie group and $T \subset G$ be a maximal torus. Define $W = W(G,T) = N_G(T)/T$ as the Weyl group of G with respect to W. It is finite.

$$RG \to RT = R(S^1)^n = \mathbb{Z}[\chi_1^{\pm}, \dots, \chi_n^{\pm}], \qquad \chi_j : T \to S^1 \text{ is projection}$$

where n is the dimension of T and is called the rank of G.

Theorem 25.1. 1.
$$RG \hookrightarrow (RT)^W$$

2. Equality holds if G is simply connected. Here $RT^W=$ fixed ring for the W-action on RT.

Recall: (π, V_{π}) , (σ, V_{σ}) are isomorphic as G-representation if $\exists f : V_{\pi} \to V_{\sigma}$ a \mathbb{C} -linear isomorphism such that $\forall g \in G$,

$$V_{\pi} \xrightarrow{f} V_{\sigma}$$

$$\downarrow^{\pi(g)} \qquad \qquad \downarrow^{\sigma(g)}$$

$$V_{\pi} \xrightarrow{f} V_{\sigma}$$

Also since V_{π} is determined by its characters $\chi_{\pi}: G \to \mathbb{C}$ with $g \mapsto \operatorname{tr}(\pi(g))$. If $H \xrightarrow{\theta} G$ is a homomorphism of compact Lie groups then θ induces a ring automorphism

$$\theta^*: RG \to RH$$

If $\theta: G \to G$ is an inner automorphism then $\theta^* = \mathrm{id}: RG \to RG$

N(T) acts on T via automorphism therefore it acts on RT via ring automorphism. $N(T) \subset G$ acts via conjugation inducing identity on RG. Since N(T) action on RT passes to W action on RT, we obtain the first part of the previous theorem.

Example. Consider G = U(n) with $T = U(1)^n \subset U(n)$, then $W = S_n$ the set of permutation matrices. If $\sigma \in S_n$, viewed as a permutation, then

$$\sigma \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \sigma^{-1} = \begin{pmatrix} \lambda_{\sigma(1)} & & \\ & \ddots & \\ & & \lambda_{\sigma(n)} \end{pmatrix}$$

and

$$RG \xrightarrow{\sigma^*} RT$$
$$\mathbb{Z}[\chi_1^{\pm}, \dots, \chi_n^{\pm}] \xrightarrow{\sigma^*} \mathbb{Z}[\chi_1^{\pm}, \dots, \chi_n^{\pm}]$$

with $\sigma^* \chi_j = \chi_{\sigma(j)}$. From this can conclude that the fixed ring is the ring of symmetric polynomials given by

Lemma 25.2. $RT^W = \mathbb{Z}[\lambda_1, \dots, \lambda_n, \lambda_n^{-1}]$ where $\lambda_n^{-1} = \chi_1^{-1} \cdots \chi_n^{-1}$. Also

$$\chi_1^{-1} + \dots, \chi_n^{-1} = \frac{\lambda_{n-1}}{\chi_1 \cdots \chi_n}$$

U(n) operates on \mathbb{C}^n is the standard representation of U(n). $\Lambda^j(V)$ is also U(n)-representation.

$$V = \mathbb{C}e_1 \oplus \cdots \oplus \mathbb{C}e_n = V_{\chi_1} \oplus \cdots \oplus V_{\chi_n}$$

as a T-representation. Therefore $V = \lambda_1 \in RT^W$

$$\Lambda^{j}(V) = \sum_{1 \leq i_{1} < \dots < i_{j} \leq n} V_{i_{1}} \otimes \dots \otimes V_{i_{n}}$$

as T-representation. Therefore $[\Lambda^j(V) = \lambda_j] \in RT$ and $\det V = \Lambda^n(V)$ as a T-representation is $V_1 \otimes \cdots \otimes V_n$.

For $t \in T$ $t \cdot (e_1 \wedge \cdots \wedge e_n) = te_1 \wedge \cdots \wedge e_n = \chi_1(t)\chi_2(t) \dots \chi_n(t)e_1 \wedge \cdots \wedge e_n$ so $\Lambda^n V = \lambda_n$. Next example done is $G = SU(n) \subset U(n)$ where

$$T_0 = \left\{ \begin{pmatrix} t_1 & & \\ & \ddots & \\ & & t_n \end{pmatrix} : \Pi t_i = 1 \text{ and } |t_i| = 1 \right\} \cong (S^1)^{n-1}$$

with $RT_0 = \mathbb{Z}[y_1^{\pm}, \dots, y_n^{\pm}]/\langle y_1 \cdots y_n - 1 \rangle \cong \mathbb{Z}[y_1^{\pm}, \dots, y_{n-1}^{\pm}]$ $W = W(SU(n), T_0)$ and $W \cong S_n$, $RSU(n) = \mathbb{Z}[\lambda_1, \dots, \lambda_{n-1}] = \mathbb{Z}[y_1^{\pm}, \dots, y_n^{\pm}]^{S_n}/\sim$ Next example G = SO(n). Let n = 2m, then

$$T = \begin{pmatrix} (R(\theta_1)) & & \\ & \ddots & \\ & & (R(\theta_n)) \end{pmatrix}$$

where
$$R(\theta_j) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 is a torus

Lemma 25.3. $T \subset G = SO(2m)$ is a maximal torus.

Let $V = \mathbb{R}^{2m} = \mathbb{R}^n$ be the standard representation of SO(n). Write $V_j = \mathbb{R}e_{2j-1} \oplus \mathbb{R}e_{2j}$, $1 \leq j \leq m$. The V_j is a T-representation and $V = V_1 \oplus \cdots \oplus V_m$

Lemma 25.4. If $g \in SO(n)$ is such that

$$gt = tg$$

 $\forall g \in G$, then $g \in T$.

This is because, $gV_j = V_j \ \forall j$ and

$$gtg^{-1}(g(V_j)) = g(V_j)$$
$$t(g(V_j)) = g(V_j)$$

Therefore, $gV_j = V_{\sigma(j)}$ for some permutation σ of $\{1, \ldots, m\}$. σ has to be identity:

$$\sigma \begin{pmatrix} R(\theta_1) & & \\ & \ddots & \\ & & R(\theta_n) \end{pmatrix} \sigma^{-1} = \begin{pmatrix} R(\theta_{\sigma(1)}) & & \\ & \ddots & \\ & & R(\theta_{\sigma(n)}) \end{pmatrix}$$

a lot of calculations . . .

Write $RT = \mathbb{Z}[\chi_1^{\pm}, \dots, \chi_m^{\pm}]$ where $\chi_j : T \to S^1$ and $\chi_j(R(\theta_1, \dots, \theta_m)) = e^{2\pi i \theta_j}$ Then $W \cong S_m \ltimes \mathbb{Z}_2^m$. It acts on RT as follows : S_m permutes χ_1, \dots, χ_m the jth factor of \mathbb{Z}_2 interchanges $\chi_j \longleftrightarrow \chi_j^{-1}$

Let $Y = V \otimes \mathbb{C}$ be the complexification of the standard representation \mathbb{R}^{2n} of SO(2m) $\Lambda^{j}Y$, $1 \leq j \leq n$.

$$*: \Lambda^{j} Y \to \Lambda^{n-j} Y$$

$$e_{i_1} \wedge \dots \wedge e_{i_i} \mapsto \pm e_{k_1} \wedge \dots \wedge e_{k_{n-i}}$$

where $i_1 < \cdots < i_j$ and $k_1 < \cdots < k_{n-j}$. Further,

$$** = (-1)^{j(n-j)}$$

so for $j=m, **=(-1)^{m^2}=(-1)^m$ and we get a splitting

$$\Lambda^m V = \Lambda^m_+ V \oplus \Lambda^m_- V$$

where Λ_{+} is itself has an SO representation.

26 17 April

Consider the representation ring RSO(2m) which acts linearly on \mathbb{R}^{2m} . Denote its complexification by V.

$$\lambda_1 = [V] \in RSO(2m)$$

and

$$\lambda_j = [\Lambda^j V], \qquad 1 \le j \le m$$

We have the Hodge * operator

$$*: \Lambda^j V \xrightarrow{\sim} \Lambda^{2m-j}$$

is an isomorphism of SO(2m). Also $** = (-1)^m \operatorname{id}_{V^m}$ for j = m. Decompose $\Lambda^m V$ as $W^+ \oplus W^-$, V^+, V^- are the ± 1 (or $\pm i$) are eigenspaces of *. Now let $g \in G$,

$$*(gv) = g * (v)$$

= $g(cv) = cg(v)$ $\forall v \in W^+$

Therefore V^+, V^- are again SO(2m) representation.

Theorem 26.1.
$$RSO(2m)=\mathbb{Z}[\lambda_1,\ldots,\lambda_{m-1},\lambda^+,\lambda^-]/\sim \qquad \subset RT=\mathbb{Z}[u_1^{\pm 1},\ldots,u_m^{\pm 1}]$$
 $\lambda^{\pm}=[W^{\pm}]$

Proof. Recall
$$T=(\mathrm{SO}(2))^m=\begin{pmatrix} \mathrm{SO}(2) & & \\ & \ddots & \\ & & \mathrm{SO}(2) \end{pmatrix}\subset \mathrm{SO}(2m)$$
 and $W=S_m\ltimes (\mathbb{Z}_2)^{m-1}$

For even dimension, let n = 2m + 1 and let

$$T = \begin{pmatrix} SO(2) & & & \\ & \ddots & & \\ & & SO(2) & \\ & & & 1 \end{pmatrix}$$

Lemma 26.2. $T \subset SO(2m+1)$ is a maximal torus.

And the Weyl group is $W = S_m \ltimes \mathbb{Z}_2^m$.

$$RT = \mathbb{Z}[u_1^{\pm}, \dots, u_m^{\pm}]$$

and

$$RSO(2m+1) = \mathbb{Z}[\lambda_1, \dots, \lambda_{2m}] = RT^W$$

which is a polynomial algebra even though it is not simply connected. Reference: Husemoller and Fulton-Harris.

Now we come to Spin groups. Recall the commutative diagram

$$Spin(n) \xrightarrow{p} SO(n)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$p^{-}1(T) \xrightarrow{p} T$$

Lemma 26.3. Suppose G is compact connected Lie group. Then $Z(G) = \bigcup_{g \in G} gTg^{-1}$, for any maximal torus of G.

Proof. If $z \in gTg^{-1}$, then z commutes with every element of gTg^{-1} . Since $G = \cup gTg^{-1}$ it follows that z commutes with any $x \in G$ (since $x \in gTg^{-1}$ for some g). This implies $\cup gTg^{-1} \subset Z(G)$.

From this,

$$W(\operatorname{Spin}(n), p^{-1}(T)) \cong W(\operatorname{SO}(n), T)$$

Q: What is $RT \to R\tilde{T}$ where $\tilde{T} = p^{-1}(T)$.

Let $v:(u_1\cdots u_m)^{\frac{1}{2}}:\tilde{T}\to S^1$ be the "unique" (upto conjugation) homomorphism such that $v^2=u_1\cdots u_m:T\to S^1$ where u_i are the projection maps of the torus (previously denoted by χ) which are characters as well.

with $\ker(p) = \{\pm 1\}$. Then $R\tilde{T} = \mathbb{Z}[u_1^{\pm}, \dots, u_m^{\pm}, v]/\sim \text{and } v^2 = u_1 \dots u_m \text{ and } R\tilde{T} \subset \mathbb{Z}[v_1^{\pm}, \dots, v_m^{\pm}] \text{ where } u_i = v_i^2$.

 $W = W(\operatorname{Spin}(n), \tilde{T})$ operates on $R\tilde{T}$ by permuting the suffixes and inventing (even number of) $v_i \mapsto v_j^{-1}$ for n = 2m + 1 (n = 2m).

Representation of Spin(n) - We have the representations $\lambda_1, \ldots, \lambda_m$ arising from SO(n) representation. n = 2m or n = 2m + 1. Consider

$$\Delta = \sum v_1^{\epsilon_1} \dots v_m^{\epsilon_m} \in (R\tilde{T})^W, \qquad \epsilon_j = \pm 1$$

where n = 2m, then

$$\Delta = \Delta^+ + \Delta^-$$

where $\Delta^+ = \sum v_1^{\epsilon} \dots v_m^{\epsilon_m}$ with $\Pi \epsilon_i = 1$ and $\Delta^{-1} = \sum v_1^{\epsilon} \dots v_m^{\epsilon_m}$ with $\Pi \epsilon_i = -1$

Theorem 26.4.

$$R \operatorname{Spin}(2m) = \mathbb{Z}[\lambda_1, \dots, \lambda_{m-2}, \Delta^+, \Delta^-]$$

is a polynomial algebra.

$$R \operatorname{Spin}(2m+1) = \mathbb{Z}[\lambda_1, \dots, \lambda_{m-1}, \Delta].$$

Let G be a compact connected Lie group. Let $T \subset G$ be a maximal torus. Let $\mathfrak{g} = \text{Lie}(G)$, viewed as the adjoint representation of G. Restrict it to T. This is a real representation. Since T is abelian any irreducible representation of T is either one-dimensional (which is trivial) or two-dimensional, given by a homomorphism

$$\chi: T \to SO(2)$$

Therefore

$$Lie(G) = V_0 \oplus_{\alpha \in R'} V_{\alpha}$$

where V_0 is trivial and R' consists of non-zero characters.

Lemma 26.5. $\dim V_0 = \dim T = \operatorname{rank}(G)$.