Del 1

Oppgave 1 Flervalgsoppgaver

Skriv svarene for oppgave 1 på eget svarskjema i vedlegg 2.

(Du skal altså ikke levere inn selve eksamensoppgaven med oppgaveteksten.)

a) Analyse

En vannløsning av et hvitt salt er basisk. Vannløsningen inneholder et av saltene nedenfor. Hvilket av saltene må det være?

- A. CaCl₂
- B. FeCl₃
- C. NH₄CI
- D. Na₂HPO₄

b) Analyse

Et hvitt salt løste seg lett i vann. En løsning av saltet ble fordelt på to reagensrør.

Til det ene reagensrøret ble det tilsatt noen dråper 1 mol/L HCl. Det ble ingen synlig reaksjon.

Til det andre reagensrøret ble det tilsatt noen dråper 1 mol/L NaOH. Det ble dannet et hvitt bunnfall.

Hvilket av saltene må det være?

- A. BaSO₄
- B. MgBr₂
- C. K_2CO_3
- D. $Pb(CH_3COO)_2$

c) Buffer

Hvilken kombinasjon av stoffer løst i vann kan gi en buffer?

- A. HCl og NaOH
- B. NaCl og NaOH
- C. H₃PO₄ og NaOH
- D. Na₂CO₃ og NaOH

d) Buffer

Til 100 mL 0,2 mol/L etansyre blir det tilsatt 0,02 mol fast natriumhydroksid, NaOH(s).

Hvilken beskrivelse passer best på den nye løsningen?

- A. Løsningen er en basisk løsning uten bufferegenskaper.
- B. Løsningen er en sur løsning uten bufferegenskaper.
- C. Løsningen er en nøytral bufferløsning.
- D. Løsningen er en sur bufferløsning.

e) Organisk analyse

Når but-1-en ristes med en løsning av brom, Br₂, blir løsningen fargeløs. Under er det tre påstander om denne reaksjonen.

- i) Brom blir addert til but-1-en.
- ii) I reaksjonen dannes 1,2-dibrombutan.
- iii) Det blir dannet to speilbildeisomere former av 1,2-dibrombutan.

Er noen av disse påstandene riktige?

- A. Ja, men bare i).
- B. Ja, men bare i) og ii).
- C. Ja, men bare i) og iii).
- D. Ja, alle er riktige.

f) Organisk analyse

Hvor mange ulike hydrogenmiljøer viser ¹H-NMR-spekteret til dietyleter, CH₃CH₂OCH₂CH₃?

- A. 1
- B. 2
- C. 4
- D. 10

g) Organisk syntese

Glysin reagerer med seg selv i en kondensasjonsreaksjon og gir et dipeptid, slik reaksjonslikningen viser:

$$2H_2NCH_2COOH \rightarrow H_2NCH_2CONHCH_2COOH + H_2O$$

I en reaksjon gir 1 mol glysin 0,30 mol dipeptid.

Hva er utbytteprosenten i denne reaksjonen?

- A. 20 %
- B. 30 %
- C. 60 %
- D. 80 %

h) Organisk syntese

Figur 1 viser melkesyre, 2-hydroksypropansyre. Under er det fire påstander om melkesyre.

- i) Melkesyre har ingen kirale C-atomer.
- ii) Dersom du substituerer hydroksygruppen med en aminogruppe, blir det dannet en aminosyre.
- iii) Melkesyre kan oksideres.
- iv) Melkesyre kan være monomeren til en kondensasjonspolymer.

Figur 1: Melkesyre

Er noen av påstandene riktige?

- A. Ja, men bare ii) og iii).
- B. Ja, men bare i), ii) og iii).
- C. Ja, men bare ii), iii) og iv).
- D. Ja, alle er riktige.

i) Aminosyrer

Under er det tre påstander om aminosyren glysin.

- i) Ved pH = 6 har glysin netto ladning lik null.
- ii) Ved pH = 1 har glysin overskudd av negativ ladning.
- iii) Molekyltoppen i massespekteret til glysin har m/z = 75 u.

Er noen av påstandene riktige?

- A. Ja, men bare i) og ii).
- B. Ja, men bare i) og iii).
- C. Ja, men bare ii) og iii).
- D. Ja, alle er riktige.

j) Biologiske molekyler

Figur 2 viser forbindelsen cystin.

Under er det to påstander om cystin.

- i) Cystin inneholder en disulfidbro.
- ii) Cystin er satt sammen av to aminosyrer.

Er noen av påstandene riktige?

- A. Ja, begge to.
- B. Ja, men bare i).
- C. Ja, men bare ii).
- D. Nei, begge to er gale.

Figur 2: Cystin

k) Enzymer

Under er det fire påstander om en likevektsreaksjon som foregår ved hjelp av et enzym.

- i) Enzymet blir brukt opp.
- ii) Aktiveringsenergien senkes.
- iii) Likevekten innstiller seg raskere.
- iv) Enzymet deltar ikke i reaksjonen.

Er noen av påstandene riktige?

- A. Ja, men bare i) og ii).
- B. Ja, men bare ii) og iii).
- C. Ja, men bare ii) og iv).
- D. Ja, men bare ii), iii) og iv).

I) Redoksreaksjoner

Du har tre ulike begerglass. I hvert begerglass blander du ulike reagenser.

I begerglass 1: en bit natriummetall i vann

I begerglass 2: en bit kobbermetall i sinksulfatløsning I begerglass 3: bly(II)nitratløsning og natriumsulfatløsning

I hvilke(t) begerglass skjer det en redoksreaksjon?

- A. I begerglass 1.
- B. I begerglass 2 og 3.
- C. I begerglass 1 og 3.
- D. I alle begerglassene.

m) Oksidasjonstall

I hvilken av følgende forbindelser har svovel, S, det høyeste oksidasjonstallet?

- A. S₈
- B. H₂S
- C. H_2SO_3
- D. H₂SO₄

n) Antioksidanter

Askorbinsyre, C-vitamin, er en antioksidant. Figur 3 viser askorbinsyre og et av produktene som kan bli dannet når askorbinsyre virker som antioksidant, dehydroaskorbinsyre.

Hvilken påstand er riktig om de to forbindelsene?

- A. Både askorbinsyre og dehydroaskorbinsyre tester positivt med kromsyrereagens.
- B. Ingen av forbindelsene har kirale karbonatomer.
- C. Askorbinsyre er et oksidasjonsmiddel i reaksjonen til dehydroaskorbinsyre.
- D. Reaksjonen fra askorbinsyre til dehydroaskorbinsyre er en reduksjon.

Figur 3

o) Redoksreaksjoner

Hvilken av disse reaksjoner er ikke en redoksreaksjon?

- A. $Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$
- B. $4NH_3(aq) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(l)$
- C. $2H_2S(aq) + 3O_2(g) \rightarrow 2H_2SO_3(aq)$
- D. $Ba(OH)_2(aq) + 2HNO_3(aq) \rightarrow Ba(NO_3)_2(aq) + 2H_2O(I)$

p) Redoksreaksjoner

Hva er oksidasjonsmiddelet i denne redoksreaksjonen?

$$2MnO_4(aq) + 5C_2O_4(aq) + 16H(aq) \rightarrow 2Mn^{2+}(aq) + 10CO_2(g) + 8H_2O(l)$$

- A. $CO_2(g)$
- B. $Mn^{2+}(aq)$
- C. $C_2O_4^{2-}(aq)$
- D. MnO_4 (aq)

q) Elektrokjemi

Figur 4 viser en type galvanisk celle, Daniellcellen.

I en galvanisk celle skjer det flere kjemiske reaksjoner.

Hva er riktig om Daniellcellen når den leverer strøm?

- A. Sinkmetall blir oksidert til sinkioner, og kobberioner blir redusert til kobber.
- B. Sinkioner blir redusert til sinkmetall, og kobbermetall oksidert til kobberioner.

Figur 4: Daniellcelle

r) Redoksreaksjoner

Natriummetall og klorgass reagerer og gir natriumklorid.

Hva er riktig om denne reaksjonen?

- A. Både Na(s) og $Cl_2(g)$ blir oksidert.
- B. Både Na(s) og Cl₂(g) blir redusert.
- C. Na(s) blir redusert, og Cl₂(g) blir oksidert.
- D. Na(s) blir oksidert, og $Cl_2(g)$ blir redusert.

s) Polymerer

Hvilken av disse polymerene er en addisjonspolymer?

- A. polypropen
- B. polyamid
- C. polyester
- D. cellulose

t) Polymerer

Polystyren er en addisjonspolymer og lages av monomeren styren. Hvilken av strukturene i figur 5 viser den repeterende enheten til polystyren?

Styren

$$(-CH_2-CH_2-)_n \quad (-CH_2-)_n \quad (-CH_2-)_n \quad (-CH_2-)_n$$
Struktur 1 struktur 2 struktur 3 struktur 4

Figur 5

- A. struktur 1
- B. struktur 2
- C. struktur 3
- D. struktur 4

Oppgave 2

a)

- 1) Skriv strukturformelen til produktet som dannes når vann adderes til sykloheksen.
- 2) Figur 6 viser 2-brom-2-metylbutan. HBr kan spaltes av fra denne forbindelsen i en eliminasjonsreaksjon.

Tegn strukturformlene til de to isomere organiske produktene som blir dannet.

Figur 6: 2-brom-2-metylbutan

- 3) Figur 7 viser et tripeptid. Tegn av figuren i besvarelsen din.
 - Sett en ring rundt peptidbindingene på figuren.
 - Marker kirale C-atomer med en stjerne (*) på figuren.

Figur 7: Et tripeptid

b)

- 1) Du har en bufferløsning med bufferkapasitet på 1 mol mot sterk syre og sterk base. Forklar hvorfor det ikke er endring i pH når løsningen har blitt fortynnet 10 ganger.
- 2) Du skal lage en bufferløsning med pH = 3,4. Forklar hvorfor du kan bruke sitronsyre som sur komponent til å lage denne bufferen. Oppgi også hva som er basisk komponent i bufferen.
- 3) Forklar hvorfor det **ikke** er mulig å ha en konsentrasjon på 0,5 mol/L av både sur og basisk komponent i bufferen fra 2).

c)

Vitamin A kan blant annet tas opp og lagres i kroppen som retinyletanat, se figur 8. I netthinnen i øyet blir retinyletanat omdannet til retinal via retinol.

Figur 8: Strukturformelen til retinyletanat

- 1) Tegn strukturformelen for retinol.
- 2) Forklar hva som er **forskjellen** i m/z for molekylionene til retinol og retinal i et massespekter.
- 3) Retinyletanat reagerer til retinol, og retinol reagerer videre til retinal, se figur 9.

Hva slags reaksjonstype er reaksjon 1 og reaksjon 2 i figur 9?

retinyletanat
$$\xrightarrow{\text{reaksjon 1}}$$
 retinol $\xrightarrow{\text{reaksjon 2}}$ retinal Figur 9

Del 2

Oppgave 3

Her er en liste med 10 organiske stoffer:

Heptan

Heks-1-en

Sykloheksen

Metanol

2-Metylpropanal

Propanon

Butanon

Etansyre

Propensyre

Etylmetanat

En væske består av en blanding av tre organiske stoffer fra denne lista. Du skal finne ut hvilke.

a) 500 mL av blandingen ble separert i tre fraksjoner ved enkel destillasjon. Tabell 1 viser hvilket temperaturintervall de ulike fraksjonene ble destillert ved. Hver av fraksjonene inneholder bare ett av de tre stoffene.

Tabell 1

	Temperaturintervall for fraksjonen
Fraksjon 1 med stoff 1	Opptil 70 °C
Fraksjon 2 med stoff 2	Mellom 75 og 85 °C
Fraksjon 3 med stoff 3	Over 90 °C

Grupper de 10 organiske stoffene etter hva som kan være i de ulike fraksjonene.

b) Du tester først alle fraksjonene med brom. Det ble positivt resultat i fraksjon 2 og negativt resultat i de to andre fraksjonene.

Forklar hva stoff 2 må være.

c) Deretter skal du finne ut hvilket stoff som er i fraksjon 1. Forklar hvordan du ved hjelp av relevante kjemiske tester kan avgjøre hva som er i fraksjon 1.

d) Figur 10 viser massespekteret til stoff 3.

Figur 10: Massespekteret til stoff 3

- Forklar hvilket stoff dette er.
- Tegn en mulig strukturformel til fragmentet som gir hovedtoppen. Husk eventuell ladning.

e) ¹H-NMR-spekteret til stoff 1 har kjemisk skift som vist i Tabell 2.

Tabell 2

Торр	Kjemisk skift, ppm	Splitting
A	1,2	Triplett
В	4,2	Kvartett
С	8,0	Singlett

Bruk all informasjon i tabell 2 og resultatene fra a) til å forklare hva stoff 1 må være.

Oppgave 4

En type galvanisk celle som ble benyttet til å drive telegrafstasjoner i en kort periode på midten av 1800-tallet, har et cellediagram som kan skrives slik:

$$Zn(s) | Zn^{2+}(aq) | | HNO_3(kons) | NO(g) | C(s)$$

Grafitt, C(s), deltar ikke i reaksjonen.

- a) Skriv halvreaksjonene for reaksjonene ved anoden og katoden.
 - Skriv den balanserte totalreaksjonen.
- b) Figur 11 viser en enkel skisse av cellen. Saltbroen i denne cellen er et porøst materiale som slipper gjennom ioner.

Tegn av en stor kopi av denne figuren i besvarelsen din. Figuren skal være minst en halv side høy for å gi plass til tekst og markeringer.

På figuren skal du markere hva som er positiv og negativ pol, og hvilken vei elektronene beveger seg i lederen.

- Vurder om man kan erstatte grafitt med kobber eller gull.
- d) Beregn teoretisk batterikapasitet til denne galvaniske cellen dersom det er 200 g sink og 200 mL 15,8 mol/L HNO₃ i cellen.
- e) Denne galvaniske cellen ble bare brukt i en kort periode og ble så erstattet av Daniellcellen, se oppgave 1 q. Forklar, med hensyn på farlige gasser som kan bli dannet i ulike reaksjoner og løsningene i cellene, hvorfor Daniellcellen var klart å foretrekke.

Figur 11

Oppgave 5

Melk er en viktig proteinkilde. Innholdet av protein i melken blir testet nøye, og er en indikator på kvaliteten.

a) En viktig aminosyre fra melkeprotein er lysin. Ved hvilken pH-verdi vil mesteparten av lysin foreligge som vist i figur 12: pH = 4, pH = 9,7 eller pH = 13? Begrunn svaret.

Figur 12: Lysin

b) Innholdet av protein i skummet melk ble analysert ved bruk av kolorimetri. Et bestemt fargestoff reagerer med proteiner i melk.

Figur 13 viser standardkurven. Bruk informasjonen i figuren til å finne proteininnholdet i denne melken når absorbansen er 0,75. Melken var fortynnet 1000 ganger.

Gi svaret i gram protein per 100 mL melk.

Figur 13

c) Melkeprøven i b) ble tilsatt en buffer før analysen.

Til å lage 1 liter av denne bufferløsningen bruker man:

8 g NaCl 0,2 g KCl 1,44 g Na₂HPO₄ 0,24 g KH₂PO₄

Alle ingrediensene blir løst i vann, og volumet blir regulert til 1 liter.

- Identifiser den sure og den basiske bufferkomponenten i denne bufferen.
- Beregn pH i bufferen.
- d) Det totale innholdet av nitrogen i en matvare kan finnes ved å bruke Kjeldahls metode. For å finne massen til protein i melk multipliserer man massen nitrogen med 6,3.
 - Forklar hvorfor det er mulig å anslå proteininnholdet i en matvare basert på totalt nitrogeninnhold.
 - Dersom matvaren er hvetemel, multipliserer man med 5,4. Nevn en årsak til at tallet som vi multipliserer med, er forskjellig, avhengig av hvilken type matvare som blir analysert.
- e) Innholdet av nitrogen i 8,25 g melk ble analysert ved hjelp av Kjeldahls metode.
 - Først ble nitrogen i melken overført til ammoniakkgass, NH₃(g).
 - Ammoniakkgassen ble ledet ned i en kolbe med 50,0 mL 0,100 mol/L HCl.
 - Overskudd av HCl ble titrert til endepunktet med 19,1 mL NaOH med konsentrasjon 0,100 mol/L.

 $Masse(protein) = Masse(nitrogen) \times 6,3$

Hva var proteininnholdet i gram protein per 100 g i denne melken?

Tabeller og formler i REA3012 Kjemi 2 (versjon 16.11.2015)

Dette vedlegget kan brukes under både del 1 og del 2 av eksamen.

STANDARD REDUKSJONSPOTENSIAL VED 25 °C

Halvreaksjon				
oksidert form	+ ne ⁻	→	redusert form	E° mål i V
F ₂	+ 2e ⁻	→	2F ⁻	2,87
O ₃ (g) + 2H ⁺	+ 2e ⁻	→	O ₂ (g) +H ₂ O	2,08
H ₂ O ₂ + 2H ⁺	+ 2e ⁻	→	2H ₂ O	1,78
Ce ⁴⁺	+ e ⁻	→	Ce ³⁺	1,72
PbO ₂ + SO ₄ ²⁻ + 4H ⁺	+ 2e ⁻	→	PbSO ₄ + 2H ₂ O	1,69
MnO ₄ ⁻ +4H ⁺	+ 3e ⁻	→	MnO ₂ +2H ₂ O	1,68
2HCIO + 2H ⁺	+2e ⁻	→	Cl ₂ + 2H ₂ O	1,63
MnO ₄ ⁻ + 8H ⁺	+ 5e ⁻	→	Mn ²⁺ + 4H ₂ O	1,51
Au ³⁺	+ 3e ⁻	→	Au	1,40
Cl ₂	+ 2e ⁻	→	2Cl ⁻	1,36
Cr ₂ O ₇ ²⁻ + 14H ⁺	+ 6e ⁻	→	2Cr ³⁺ + 7H ₂ O	1,36
O ₂ + 4H ⁺	+ 4e ⁻	→	2H ₂ O	1,23
MnO ₂ + 4H ⁺	+ 2e ⁻	→	Mn ²⁺ + 2H ₂ O	1,22
2IO ₃ ⁻ + 12H ⁺	+ 10e ⁻	→	I ₂ + 6H ₂ O	1,20
Br ₂	+ 2e ⁻	→	2 Br ⁻	1,09
NO ₃ ⁻ + 4H ⁺	+ 3e ⁻	→	NO + 2H ₂ O	0,96
2Hg ²⁺	+ 2e ⁻	→	Hg ₂ ²⁺	0,92
Cu ²⁺ + I ⁻	+ e ⁻	→	Cul(s)	0,86
Hg ²⁺	+ 2e ⁻	→	Hg	0,85
CIO ⁻ + H ₂ O	+ 2e ⁻	→	Cl ⁻ + 2OH ⁻	0,84
Hg ₂ ²⁺	+ 2e ⁻	→	2Hg	0,80
Ag ⁺	+ e ⁻	→	Ag	0,80
Fe ³⁺	+ e ⁻	→	Fe ²⁺	0,77
O ₂ + 2H ⁺	+ 2e ⁻	→	H ₂ O ₂	0,70
l ₂	+ 2e ⁻	→	21-	0,54
Cu⁺	+ e ⁻	→	Cu	0,52
O ₂ + 2H ₂ O	+ 4e ⁻	→	40H ⁻	0,40
Cu ²⁺	+ 2e ⁻	→	Cu	0,34
Ag ₂ O + H ₂ O	+ 2e ⁻	→	2Ag + 2OH ⁻	0,34
SO ₄ ²⁻ + 4H ⁺	+ 2e ⁻	→	H ₂ SO ₃ + H ₂ O	0,17
Cu ²⁺	+ e ⁻	→	Cu ⁺	0,16
Sn ⁴⁺	+ 2e ⁻	→	Sn ²⁺	0,15

oksidert form	+ ne ⁻	→	redusert form	E° mål i V
S + 2H ⁺	+ 2e ⁻	→	H₂S	0,14
S ₄ O ₆ ²⁻	+ 2e ⁻	→	2S ₂ O ₃ ²⁻	0,08
2H ⁺	+ 2e ⁻	→	H ₂	0,00
Fe ³⁺	+ 3e ⁻	→	Fe	-0,04
Pb ²⁺	+ 2e ⁻	\rightarrow	Pb	-0,13
Sn ²⁺	+ 2e ⁻	→	Sn	-0,14
Ni ²⁺	+ 2e ⁻	→	Ni	-0,26
PbSO ₄	+ 2e ⁻	→	Pb + SO ₄ ²⁻	-0,36
Cd ²⁺	+ 2e ⁻	→	Cd	-0,40
Cr ³⁺	+ e ⁻	→	Cr ²⁺	-0,41
Fe ²⁺	+ 2e ⁻	→	Fe	-0,45
S	+ 2e ⁻	→	S ²⁻	-0,48
2CO ₂ + 2H ⁺	+ 2e ⁻	→	H ₂ C ₂ O ₄	-0,49
Zn ²⁺	+ 2e ⁻	→	Zn	-0,76
2H ₂ O	+ 2e ⁻	→	H ₂ + 2OH ⁻	-0,83
Mn ²⁺	+ 2e ⁻	→	Mn	-1,19
ZnO + H ₂ O	+ 2e ⁻	→	Zn + 2OH ⁻	-1,26
Al ³⁺	+ 3e ⁻	→	Al	-1,66
Mg ²⁺	+ 2e ⁻	→	Mg	-2,37
Na ⁺	+ e ⁻	→	Na	-2,71
Ca ²⁺	+ 2e ⁻	→	Ca	-2,87
K ⁺	+ e ⁻	→	К	-2,93
Li ⁺	+ e ⁻	→	Li	-3,04

NOEN KONSTANTER

Avogadros tall: $N_A = 6.02 \cdot 10^{23} \text{ mol}^{-1}$

Molvolumet av en gass: $V_m = 22,4 \text{ L/mol ved } 0 \text{ °C og } 1 \text{ atm,}$

24,5 L/mol ved 25 °C og 1 atm

Faradays konstant: F = 96485 C/mol

SYREKONSTANTER (Ka) I VANNLØSNING VED 25 °C

Navn	Formel	Ka	p <i>K</i> a
Acetylsalisylsyre	C ₈ H ₇ O ₂ COOH	3,3 · 10 ⁻⁴	3,48
Ammoniumion	NH ₄ ⁺	5,6 · 10 ⁻¹⁰	9,25
Askorbinsyre	$C_6H_8O_6$	9,1 · 10 ⁻⁵	4,04
Hydrogenaskorbation	C ₆ H ₇ O ₆ ⁻	2,0 · 10 ⁻¹²	11,7
Benzosyre	C ₆ H ₅ COOH	6,3 · 10 ⁻⁵	4,20
Benzylsyre (2-fenyleddiksyre)	C ₆ H ₅ CH ₂ COOH	4,9 · 10 ⁻⁵	4,31
Borsyre	B(OH) ₃	5,4 · 10 ⁻¹⁰	9,27
Butansyre	CH ₃ (CH ₂) ₂ COOH	1,5 · 10 ⁻⁵	4,83
Eplesyre (malinsyre)	HOOCCH₂CH(OH)COOH	4,0 · 10 ⁻⁴	3,40
Hydrogenmalation	HOOCCH₂CH(OH)COO⁻	7,8 · 10 ⁻⁶	5,11
Etansyre (eddiksyre)	CH₃COOH	1,8 · 10 ⁻⁵	4,76
Fenol	C ₆ H ₅ OH	1,0 · 10 ⁻¹⁰	9,99
Fosforsyre	H₃PO₄	6,9 · 10 ⁻³	2,16
Dihydrogenfosfation	H ₂ PO ₄ ⁻	6,2 · 10 ⁻⁸	7,21
Hydrogenfosfation	HPO ₄ ²⁻	4,8 · 10 ⁻¹³	12,32
Fosforsyrling	H ₃ PO ₃	5,0 · 10 ⁻²	1,3
Dihydrogenfosfittion	H ₂ PO ₃ ⁻	2,0 · 10 ⁻⁷	6,70
Ftalsyre (benzen-1,2-dikarboksylsyre)	C ₆ H ₄ (COOH) ₂	1,1 · 10 ⁻³	2,94
Hydrogenftalation	C ₆ H ₄ (COOH)COO ⁻	3,7 · 10 ⁻⁶	5,43
Hydrogencyanid (blåsyre)	HCN	6,2 · 10 ⁻¹⁰	9,21
Hydrogenfluorid (flussyre)	HF	6,3 · 10 ⁻⁴	3,20
Hydrogenperoksid	H ₂ O ₂	2,4 · 10 ⁻¹²	11,62
Hydrogensulfation	HSO ₄ ⁻	1,0 · 10 ⁻²	1,99
Hydrogensulfid	H ₂ S	8,9 · 10 ⁻⁸	7,05
Hypoklorsyre (underklorsyrling)	HCIO	4,0 · 10 ⁻⁸	7,40
Karbonsyre	H ₂ CO ₃	4,5 · 10 ⁻⁷	6,35
Hydrogenkarbonation	HCO₃ ⁻	4,7 · 10 ⁻¹¹	10,33
Klorsyrling	HCIO ₂	1,1 · 10 ⁻²	1,94
Kromsyre	H₂CrO₄	1,8 · 10 ⁻¹	0,74
Hydrogenkromation	HCrO₄ [−]	3,2 · 10 ⁻⁷	6,49
Maleinsyre (<i>cis</i> -butendisyre)	HOOCCH=CHCOOH	1,2 · 10 ⁻²	1,92
Hydrogenmaleation	HOOCCH=CHCOO ⁻	5,9 · 10 ⁻⁷	6,23
Melkesyre (2-hydroksypropansyre)	CH₃CH(OH)COOH	1,4 · 10 ⁻⁴	3,86
Metansyre (mausyre)	НСООН	1,8 · 10 ⁻⁴	3,75
Oksalsyre	(COOH) ₂	5,6 · 10 ⁻²	1,25
Hydrogenoksalation	(COOH)COO ⁻	1,5 · 10 ⁻⁴	3,81
Propansyre	CH₃CH₂COOH	1,3 · 10 ⁻⁵	4,87
Salisylsyre (2-hydroksybenzosyre)	C ₆ H ₄ (OH)COOH	1,0 · 10 ⁻³	2,98
Salpetersyrling	HNO ₂	5,6 · 10 ⁻⁴	3,25
Sitronsyre	C ₃ H ₄ (OH)(COOH) ₃	7,4 · 10 ⁻⁴	3,13
Dihydrogensitration	C ₃ H ₄ (OH)(COOH) ₂ COO ⁻	1,7 · 10 ⁻⁵	4,76
Hydrogensitration	C ₃ H ₄ (OH)(COOH)(COO ⁻) ₂	4,0 · 10 ⁻⁷	6,40
Svovelsyrling	H ₂ SO ₃	1,4 · 10 ⁻²	1,85
Hydrogensulfittion	HSO ₃ ⁻	6,3 · 10 ⁻⁸	7,2
Vinsyre (2,3-dihydroksybutandisyre, <i>L</i> -tartarsyre)	(CH(OH)COOH) ₂	1,0 · 10 ⁻³	2,98
Hydrogentartration	HOOC(CH(OH))₂COO⁻	4,6 · 10 ⁻⁵	4,34

BASEKONSTANTER (Kb) I VANNLØSNING VED 25 °C

Navn	Formel	К _b	р <i>К</i> _b
Acetation	CH₃COO ⁻	5,8 · 10 ⁻¹⁰	9,24
Ammoniakk	NH ₃	1,8 · 10 ⁻⁵	4,75
Metylamin	CH ₃ NH ₂	4,6 · 10 ⁻⁴	3,34
Dimetylamin	(CH ₃) ₂ NH	5,4 · 10 ⁻⁴	3,27
Trimetylamin	(CH ₃) ₃ N	6,3 · 10 ⁻⁵	4,20
Etylamin	CH ₃ CH ₂ NH ₂	4,5 · 10 ⁻⁴	3,35
Dietylamin	(C ₂ H ₅) ₂ NH	6,9 · 10 ⁻⁴	3,16
Trietylamin	(C₂H₅)₃N	5,6 · 10 ⁻⁴	3,25
Fenylamin (Anilin)	C ₆ H ₅ NH ₂	$7,4 \cdot 10^{-10}$	9,13
Pyridin	C ₅ H ₅ N	1,7 · 10 ⁻⁹	8,77
Hydrogenkarbonation	HCO ₃ ⁻	2,0 · 10 ⁻⁸	7,65
Karbonation	CO ₃ ²⁻	2,1 · 10 ⁻⁴	3,67

SYRE-BASE-INDIKATORER

Indikator	Fargeforandring	pH- omslagsområde
Metylfiolett	gul-fiolett	0,0 - 1,6
Tymolblått	rød-gul	1,2 - 2,8
Metyloransje	rød-oransje	3,2 - 4,4
Bromfenolblått	gul-blå	3,0 - 4,6
Kongorødt	fiolett-rød	3,0 - 5,0
Bromkreosolgrønt	gul-blå	3,8 - 5,4
Metylrødt	rød-gul	4,8 - 6,0
Lakmus	rød-blå	5,0 - 8,0
Bromtymolblått	gul-blå	6,0 - 7,6
Fenolrødt	gul-rød	6,6 - 8,0
Tymolblått	gul-blå	8,0 - 9,6
Fenolftalein	fargeløs-rosa	8,2 - 10,0
Alizaringul	gul-lilla	10,1 - 12,0

SAMMENSATTE IONER, NAVN OG FORMEL

Navn	Formel	Navn	Formel
acetat, etanat	CH ₃ COO⁻	jodat	10 ₃ -
ammonium	NH ₄ ⁺	karbonat	CO ₃ ²⁻
arsenat	AsO ₄ ³⁻	klorat	ClO ₃ -
arsenitt	AsO ₃ ³ -	kloritt	ClO ₂ -
borat	BO ₃ ³⁻	nitrat	NO ₃ -
bromat	BrO ₃ -	nitritt	NO ₂ -
fosfat	PO ₄ ³⁻	perklorat	ClO ₄ -
fosfitt	PO ₃ ³⁻	sulfat	SO ₄ ²⁻
hypokloritt	CIO	sulfitt	SO ₃ ²⁻

MASSETETTHET OG KONSENTRASJON TIL NOEN VÆSKER

Forbindelse	Kjemisk formel	Masseprosent konsentrert løsning	Massetetthet $(\frac{g}{mL})$	Konsentrasjon $(\frac{\text{mol}}{\text{L}})$
Saltsyre	HCI	37	1,18	12,0
Svovelsyre	H ₂ SO ₄	98	1,84	17,8
Salpetersyre	HNO₃	65	1,42	15,7
Eddiksyre	CH₃COOH	96	1,05	17,4
Ammoniakk	NH ₃	25	0,88	14,3
Vann	H ₂ O	100	1,00	55,56

STABILE ISOTOPER FOR NOEN GRUNNSTOFFER

Grunnstoff	Isotop	Relativ	Grunnstoff	Isotop	Relativ
		forekomst (%)			forekomst (%)
		i jordskorpen			i jordskorpen
Hydrogen	¹ H	99,985	Silisium	²⁸ Si	92,23
	² H	0,015		²⁹ Si	4,67
Karbon	¹² C	98,89		³⁰ Si	3,10
	¹³ C	1,11	Svovel	³² S	95,02
Nitrogen	¹⁴ N	99,634		³³ S	0,75
	¹⁵ N	0,366		³⁴ S	4,21
Oksygen	¹⁶ O	99,762		³⁶ S	0,02
	¹⁷ O	0,038	Klor	35Cl	75,77
	¹⁸ O	0,200		³⁷ Cl	24,23
			Brom	⁷⁹ Br	50,69
				⁸¹ Br	49,31

LØSELIGHETSTABELL FOR SALTER I VANN VED 25 °C

	Br ⁻	Cl ⁻	CO ₃ ²⁻	CrO ₄ ²⁻	_	O ²⁻	OH⁻	S ²⁻	SO ₄ ²⁻
Ag ⁺	U	U	U	U	U	U	-	U	Т
Al ³⁺	R	R	1	ı	R	U	U	R	R
Ba ²⁺	L	L	C	U	L	R	L	Т	C
Ca ²⁺	L	L	U	T	L	Т	U	Т	Т
Cu ²⁺	L	L	1	U	ı	U	U	U	L
Fe ²⁺	L	L	U	U	L	U	U	U	L
Fe ³⁺	R	R	ı	U	ı	U	U	U	L
Hg ₂ ²⁺	U	U	U	U	U	-	U	-	U
Hg ²⁺	Т	L	-	U	U	U	U	U	R
Mg ²⁺	L	L	U	L	L	U	U	R	L
Ni ²⁺	L	L	U	U	L	U	U	U	L
Pb ²⁺	Т	T	U	U	U	U	U	U	U
Sn ²⁺	R	R	U	-	R	U	U	U	R
Sn ⁴⁺	R	R	ı	L	R	U	U	U	R
Zn ²⁺	L	L	U	U	L	U	U	U	L

U = uløselig. Det løses mindre enn 0,01 g av saltet i 100 g vann.

T = tungtløselig. Det løses mellom 0,01 og 1 g av saltet i 100 g vann.

L = lettløselig. Det løses mer enn 1 g av saltet per 100 g vann.

^{- =} Ukjent forbindelse, eller forbindelse dannes ikke ved utfelling, R = reagerer med vann.

LØSELIGHETSPRODUKT (Ksp) FOR SALT I VANN VED 25 °C

Navn	Kjemisk formel	K _{sp}	Navn	Kjemisk formel	K _{sp}
Aluminiumfosfat	AIPO ₄	9,84 · 10 ⁻²¹	Kvikksølv(I)bromid	Hg ₂ Br ₂	6,40 · 10 ⁻²³
Bariumfluorid	BaF ₂	1,84 · 10 ⁻⁷	Kvikksølv(I)jodid	Hg ₂ I ₂	5,2 · 10 ⁻²⁹
Bariumkarbonat	BaCO ₃	2,58 · 10 ⁻⁹	Kvikksølv(I)karbonat	Hg ₂ CO ₃	3,6 · 10 ⁻¹⁷
Bariumkromat	BaCrO ₄	1,17 · 10 ⁻¹⁰	Kvikksølv(I)klorid	Hg ₂ Cl ₂	1,43 · 10 ⁻¹⁸
Bariumnitrat	Ba(NO ₃) ₂	4,64 · 10 ⁻³	Kvikksølv(II)bromid	HgBr ₂	6,2 · 10 ⁻²⁰
Bariumoksalat	BaC ₂ O ₄	1,70 · 10 ⁻⁷	Kvikksølv(II)jodid	Hgl ₂	2,9 · 10 ⁻²⁹
Bariumsulfat	BaSO ₄	1,08 · 10 ⁻¹⁰	Litiumkarbonat	Li ₂ CO ₃	8,15 · 10 ⁻⁴
Bly(II)bromid	PbBr ₂	6,60 · 10 ⁻⁶	Magnesiumfosfat	Mg ₃ (PO ₄) ₂	1,04 · 10-24
Bly(II)hydroksid	Pb(OH) ₂	1,43 · 10 ⁻²⁰	Magnesiumhydroksid	Mg(OH) ₂	5,61 · 10 ⁻¹²
Bly(II)jodid	PbI ₂	9,80 · 10 ⁻⁹	Magnesiumkarbonat	MgCO ₃	6,82 · 10 ⁻⁶
Bly(II)karbonat	PbCO₃	7,40 · 10 ⁻¹⁴	Magnesiumoksalat	MgC ₂ O ₄	4,83 · 10 ⁻⁶
Bly(II)klorid	PbCl ₂	1,70 · 10 ⁻⁵	Mangan(II)karbonat	MnCO ₃	2,24 · 10 ⁻¹¹
Bly(II)oksalat	PbC ₂ O ₄	8,50 · 10 ⁻⁹	Mangan(II)oksalat	MnC ₂ O ₄	1,70 · 10 ⁻⁷
Bly(II)sulfat	PbSO ₄	2,53 · 10 ⁻⁸	Nikkel(II)fosfat	Ni ₃ (PO ₄) ₂	4,74 · 10 ⁻³²
Bly(II)sulfid	PbS	3 · 10 ⁻²⁸	Nikkel(II)hydroksid	Ni(OH) ₂	5,48 · 10 ⁻¹⁶
Jern(II)fluorid	FeF ₂	2,36 · 10 ⁻⁶	Nikkel(II)karbonat	NiCO ₃	1,42 · 10 ⁻⁷
Jern(II)hydroksid	Fe(OH) ₂	4,87 · 10 ⁻¹⁷	Nikkel(II)sulfid	NiS	2 · 10 ⁻¹⁹
Jern(II)karbonat	FeCO ₃	3,13 · 10 ⁻¹¹	Sinkhydroksid	Zn(OH) ₂	3 · 10 ⁻¹⁷
Jern(II)sulfid	FeS	8 · 10 ⁻¹⁹	Sinkkarbonat	ZnCO ₃	1,46 · 10 ⁻¹⁰
Jern(III)fosfat	FePO ₄ ×2H ₂ O	9,91 · 10 ⁻¹⁶	Sinksulfid	ZnS	2 · 10 ⁻²⁴
Jern(III)hydroksid	Fe(OH) ₃	2,79 · 10 ⁻³⁹	Sølv(I)acetat	AgCH ₃ COO	1,94 · 10 ⁻³
Kalsiumfluorid	CaF ₂	3,45 · 10 ⁻¹¹	Sølv(I)bromid	AgBr	5,35 · 10 ⁻¹³
Kalsiumfosfat	Ca ₃ (PO ₄) ₂	2,07 · 10 ⁻³³	Sølv(I)jodid	AgI	8,52 · 10 ⁻¹⁷
Kalsiumhydroksid	Ca(OH)₂	5,02 · 10 ⁻⁶	Sølv(I)karbonat	Ag ₂ CO ₃	8,46 · 10 ⁻¹²
Kalsiumkarbonat	CaCO₃	3,36 · 10 ⁻⁹	Sølv(I)klorid	AgCl	1,77 · 10 ⁻¹⁰
Kalsiummolybdat	CaMoO ₄	1,46 · 10 ⁻⁸	Sølv(I)kromat	Ag ₂ CrO ₄	1,12 · 10 ⁻¹²
Kalsiumoksalat	CaC ₂ O ₄	3,32 · 10 ⁻⁹	Sølv(I)sulfat	Ag ₂ SO ₄	1,20 · 10 ⁻⁵
Kalsiumsulfat	CaSO ₄	4,93 · 10 ⁻⁵	Sølv (I) sulfid	Ag ₂ S	8 · 10 ⁻⁵¹
Kobolt(II)hydroksid	Co(OH) ₂	5,92 · 10 ⁻¹⁵	Tinn(II)hydroksid	Sn(OH) ₂	5,45 · 10 ⁻²⁷
Kopper(I)bromid	CuBr	6,27 · 10 ⁻⁹			
Kopper(I)klorid	CuCl	1,72 · 10 ⁻⁷			
Kopper(I)oksid	Cu₂O	2 · 10 ⁻¹⁵			
Kopper(I)jodid	Cul	1,27 · 10 ⁻¹²			
Kopper(II)fosfat	Cu ₃ (PO ₄) ₂	1,40 · 10 ⁻³⁷			
Kopper(II)oksalat	CuC ₂ O ₄	4,43 · 10 ⁻¹⁰			
Kopper(II)sulfid	CuS	8 · 10 ⁻³⁷			

α -AMINOSYRER VED PH = 7,4.

Vanlig navn Forkortelse pH ved isoelektrisk	Strukturformel	Vanlig navn Forkortelse pH ved isoelektrisk	Strukturformel
punkt		punkt	
Alanin Ala 6,0	O C	Arginin Arg 10,8	HN CH ₂ CH ₂ CH ₂ CH ₃ O CH ₂ CH ₃ NH ₃ NH ₃ CH ₂ CH ₂ CH ₃ CH
Asparagin Asn 5,4	H ₂ N CH ₂ CH O NH ₃	Aspartat (Asparagin- syre) Asp 2,8	O
Cystein Cys 5,1	HS CH ₂ CH O NH ₃	Fenylalanin Phe 5,5	HC CH CH2 CH O
Glutamin Gln 5,7	O CH ₂ CH ₂ CH O NH ₃	Glutamat (Glutamin- syre) Glu 3,2	O CH2 CH CH NH2
Glysin Gly 6,0	O	Histidin His 7,6	HC CH CH O

Vanlig navn		Vanlig navn						
Forkortelse pH ved isoelektrisk punkt	Strukturformel	Forkortelse pH ved isoelektrisk punkt	Strukturformel					
Isoleucin Ile 6,0	H ₃ C CH C O	Leucin Leu 6,0	H ₃ C CH ₂ CC O CH CH CH CH ₃ NH ₃					
Lysin Lys 9,7	H ₃ N ⁺ CH ₂ CH ₂ CH ₂ CH ₂ O NH ₃ O	Metionin Met 5,7	H ₃ C CH ₂ CH O NH ₃					
Prolin Pro 6,3	H ₂ C CH ₂ O CH	Serin Ser 5,7	HO CH ₂ CH O NH ₃					
Treonin Thr 5,6	CH ₃ 0	Tryptofan Trp 5,9	CH CH CH CH NH3					
Tyrosin Tyr 5,7	HC CH CH CH NH3	Valin Val 6,0	CH ₃ O CH CH CH NH ₃ C					

¹H-NMR-DATA

Typiske verdier for kjemisk skift, δ , relativt til tetrametylsilan (TMS) med kjemisk skift lik 0. R = alkylgruppe, HAL= halogen (CI, Br eller I). Løsningsmiddel kan påvirke kjemisk skift.

Hydrogenatomene som er opphavet til signalet, er uthevet.

Type proton	Kjemisk skift, ppm	Type proton	Kjemisk skift, ppm
– C H ₃	0,9 - 1,0	О R ^{-C} \О- н	10 - 13
−CH ₂ −R	1,3 - 1,4	O = C • H	9,4 - 10
-CHR ₂	1,4 - 1,6	0 = C O-R	Ca. 8
—C≡C— H	1,8 - 3,1	-CH=CH ₂	4,5 - 6,0
-CH ₂ -HAL	3,5 - 4,4	R/C O-C H	3,8 - 4,1
R-O-CH ₂ -	3,3 - 3,7	R-O-H	0,5 - 6
0 	2,2 - 2,7	0 RO C C H ₂	2,0 - 2,5
————	6,9 - 9,0	——ОН	4,0 - 12,0
− C H ₃	2,5 - 3,5	—С Н ₂ — ОН	3,4 - 4

ORGANISKE FORBINDELSER

Kp = kokepunkt,°C Smp = smeltepunkt,°C

HYDROKARBONER, METTEDE (alkaner)										
Navn	Formel	Smp	Кр	Diverse						
Metan	CH ₄	-182	-161							
Etan	C ₂ H ₆	-183	-89							
Propan	C ₃ H ₈	-188	-42							
Butan	C ₄ H ₁₀	-138	-0,5							
Pentan	C ₅ H ₁₂	-130	36							
Heksan	C ₆ H ₁₄	-95	69							
Heptan	C ₇ H ₁₆	-91	98							
Oktan	C ₈ H ₁₈	-57	126							
Nonan	C ₉ H ₂₀	-53	151							
Dekan	C ₁₀ H ₂₂	-30	174							
Syklopropan	C ₃ H ₆	-128	-33							
Syklobutan	C ₄ H ₈	-91	13							
Syklopentan	C ₅ H ₁₀	-93	49							
Sykloheksan	C ₆ H ₁₂	7	81							
2-Metyl-propan	C ₄ H ₁₀	-159	-12	Isobutan						
2,2-Dimetylpropan	C ₅ H ₁₂	-16	9	Neopentan						
2-Metylbutan	C ₅ H ₁₂	-160	28	Isopentan						
2-Metylpentan	C ₆ H ₁₄	-154	60	Isoheksan						
3-Metylpentan	C ₆ H ₁₄	-163	63							
2,2-Dimetylbutan	C ₆ H ₁₄	-99	50	Neoheksan						
2,3-Dimetylbutan	C ₆ H ₁₄	-128	58							
2,2,4-Trimetylpentan	C ₈ H ₁₈	-107	99	Isooktan						
2,2,3-Trimetylpentan	C ₈ H ₁₈	-112	110							
2,3,3-Trimetylpentan	C ₈ H ₁₈	-101	115							
2,3,4-Trimetylpentan	C ₈ H ₁₈	-110	114							
HYDR	OKARBONE	R, UMETTED	E, alkener							
Navn	Formel	Smp	Кр	Diverse						
Eten	C ₂ H ₄	-169	-104	Etylen						
Propen	C₃H ₆	-185	-48	Propylen						
But-1-en	C ₄ H ₈	-185	-6							
<i>cis</i> -But-2-en	C ₄ H ₈	-139	4							
trans-But-2-en	C ₄ H ₈	-106	1							
Pent-1-en	C ₅ H ₁₀	-165	30							
<i>cis</i> -Pent-2-en	C ₅ H ₁₀	-151	37							
trans-Pent-2-en	C ₅ H ₁₀	-140	36							
Heks-1-en	C ₆ H ₁₂	-140	63							
<i>cis</i> -Heks-2-en	C ₆ H ₁₂	-141	69							

Navn	Formel	Smp	Кр	Diverse				
trans-Heks-2-en	C ₆ H ₁₂	-133	68					
<i>cis</i> -Heks-3-en	C ₆ H ₁₂	-138	66					
trans-Heks-3-en	C ₆ H ₁₂	-115	67					
Hept-1-en	C ₇ H ₁₄	-119	94					
<i>cis</i> -Hept-2-en	C ₇ H ₁₄		98					
trans-Hept-2-en	C ₇ H ₁₄	-110	98					
<i>cis</i> -Hept-3-en	C ₇ H ₁₄	-137	96					
trans-Hept-3-en	C ₇ H ₁₄	-137	96					
Okt-1-en	C ₈ H ₁₆	-102	121					
Non-1-en	C ₉ H ₁₈	-81	147					
Dek-1-en	C ₁₀ H ₂₀	-66	171					
Sykloheksen	C ₆ H ₁₀	-104	83					
1,3-Butadien	C ₄ H ₆	-109	4					
Penta-1,2-dien	C ₅ H ₈	-137	45					
trans-Penta-1,3-dien	C₅H ₈	-87	42					
cis-Penta-1,3-dien	C ₅ H ₈	-141	44					
Heksa-1,2-dien	C ₆ H ₁₀		76					
cis-Heksa-1,3-dien	C ₆ H ₁₀		73					
trans-Heksa-1,3-dien	C ₆ H ₁₀	-102	73					
Heksa-1,5-dien	C ₆ H ₁₀	-141	59					
Heksa-1,3,5-trien	C ₆ H ₈	-12	78,5					
HYDR	KARBONER, UMETTEDE, alkyner							
Navn	Formel	Smp	Кр	Diverse				
Etyn	C ₂ H ₂	-81	-85	Acetylen				
Propyn	C ₃ H ₄	-103	-23	Metylacetylen				
But-1-yn	C ₄ H ₆	-126	8					
But-2-yn	C ₄ H ₆	0.0						
Pent-1-yn	04116	-32	27					
· + y · ·	C ₅ H ₈	-32 -90	27 40					
Pent-2-yn								
-	C₅H ₈	-90	40					
Pent-2-yn	C₅H ₈ C₅H ₈	-90 -109	40 56					
Pent-2-yn Heks-1-yn	C ₅ H ₈ C ₅ H ₈ C ₆ H ₁₀	-90 -109 -132	40 56 71					
Pent-2-yn Heks-1-yn Heks-2-yn Heks-3-yn	C_5H_8 C_5H_8 C_6H_{10} C_6H_{10}	-90 -109 -132 -90 -103	40 56 71 85 81					
Pent-2-yn Heks-1-yn Heks-2-yn Heks-3-yn	C ₅ H ₈ C ₅ H ₈ C ₆ H ₁₀ C ₆ H ₁₀ C ₆ H ₁₀	-90 -109 -132 -90 -103	40 56 71 85 81	Diverse				
Pent-2-yn Heks-1-yn Heks-2-yn Heks-3-yn AF	C_5H_8 C_5H_8 C_6H_{10} C_6H_{10} C_6H_{10} $ROMATISKE$	-90 -109 -132 -90 -103 HYDROKARE	40 56 71 85 81 BONER	Diverse				
Pent-2-yn Heks-1-yn Heks-2-yn Heks-3-yn AF	C_5H_8 C_5H_8 C_6H_{10} C_6H_{10} C_6H_{10} $ROMATISKE$ Formel	-90 -109 -132 -90 -103 HYDROKARE	40 56 71 85 81 30NER Kp	Diverse				
Pent-2-yn Heks-1-yn Heks-2-yn Heks-3-yn AF Navn Benzen	C_5H_8 C_5H_8 C_6H_{10} C_6H_{10} C_6H_{10} C_6H_{10} C_6H_{10} C_6H_{10}	-90 -109 -132 -90 -103 HYDROKARE Smp 5	40 56 71 85 81 80NER Kp	Diverse				
Pent-2-yn Heks-1-yn Heks-2-yn Heks-3-yn AF Navn Benzen Metylbenzen	C_5H_8 C_5H_8 C_6H_{10} C_6H_{10} C_6H_{10} $ROMATISKE$ $Formel$ C_6H_6 C_7H_8	-90 -109 -132 -90 -103 HYDROKARE Smp 5 -95	40 56 71 85 81 SONER Kp 80 111	Diverse Styren, vinylbenzen				
Pent-2-yn Heks-1-yn Heks-2-yn Heks-3-yn AF Navn Benzen Metylbenzen Etylbenzen, fenyletan	C_5H_8 C_5H_8 C_6H_{10} C_6H_{10} C_6H_{10} $COMATISKE$ Formel C_6H_6 C_7H_8 C_8H_{10}	-90 -109 -132 -90 -103 HYDROKARE Smp 5 -95	40 56 71 85 81 BONER Kp 80 111 136					
Pent-2-yn Heks-1-yn Heks-2-yn Heks-3-yn AF Navn Benzen Metylbenzen Etylbenzen, fenyletan Fenyleten	C_5H_8 C_5H_8 C_6H_{10} C_6H_{10} C_6H_{10} $ROMATISKE$ $Formel$ C_6H_6 C_7H_8 C_8H_{10} C_8H_8	-90 -109 -132 -90 -103 HYDROKARE Smp 5 -95 -95 -31	40 56 71 85 81 SONER Kp 80 111 136 145	Styren, vinylbenzen				
Pent-2-yn Heks-1-yn Heks-2-yn Heks-3-yn AF Navn Benzen Metylbenzen Etylbenzen, fenyletan Fenyleten Fenylbenzen	$\begin{array}{c} C_5H_8 \\ C_5H_8 \\ C_6H_{10} \\ C_6H_{10} \\ C_6H_{10} \\ \\ \textbf{COMATISKE} \\ \hline \textbf{Formel} \\ C_6H_6 \\ C_7H_8 \\ C_8H_{10} \\ C_8H_8 \\ C_{12}H_{10} \\ \end{array}$	-90 -109 -132 -90 -103 HYDROKARE Smp 5 -95 -95 -95 -31 69	40 56 71 85 81 BONER Kp 80 111 136 145 256	Styren, vinylbenzen				
Pent-2-yn Heks-1-yn Heks-2-yn Heks-3-yn AF Navn Benzen Metylbenzen Etylbenzen, fenyletan Fenyleten Fenylbenzen Difenylmetan	$\begin{array}{c} C_5H_8 \\ C_5H_8 \\ C_6H_{10} \\ C_6H_{10} \\ \hline \\ C_6H_{10} \\ \hline \\ \textbf{COMATISKE} \\ \hline \textbf{Formel} \\ C_6H_6 \\ C_7H_8 \\ C_8H_{10} \\ \hline \\ C_8H_8 \\ \hline \\ C_{12}H_{10} \\ \hline \\ C_{13}H_{12} \\ \end{array}$	-90 -109 -132 -90 -103 HYDROKARE Smp 5 -95 -95 -31 69 25	40 56 71 85 81 BONER Kp 80 111 136 145 256 265	Styren, vinylbenzen Difenyl, bifenyl				
Pent-2-yn Heks-1-yn Heks-2-yn Heks-3-yn AF Navn Benzen Metylbenzen Etylbenzen, fenyletan Fenyleten Fenylbenzen Difenylmetan Trifenylmetan	$\begin{array}{c} C_5H_8 \\ C_5H_8 \\ C_6H_{10} \\ C_6H_{10} \\ C_6H_{10} \\ \end{array}$	-90 -109 -132 -90 -103 HYDROKARE Smp 5 -95 -95 -95 -31 69 25 94	40 56 71 85 81 BONER Kp 80 111 136 145 256 265 360	Styren, vinylbenzen Difenyl, bifenyl Tritan				
Pent-2-yn Heks-1-yn Heks-2-yn Heks-3-yn AF Navn Benzen Metylbenzen Etylbenzen, fenyletan Fenyleten Fenylbenzen Difenylmetan Trifenylmetan 1,2-Difenyletan	$\begin{array}{c} C_5H_8 \\ C_5H_8 \\ C_6H_{10} \\ C_6H_{10} \\ \hline \\ C_6H_{10} \\ \hline \\ C_6H_{10} \\ \hline \\ C_6H_{10} \\ \hline \\ \hline \\ C_6H_{10} \\ \hline \\ \hline \\ C_6H_{10} \\ \hline \\ C_6H_{10} \\ \hline \\ C_6H_{6} \\ \hline \\ C_7H_8 \\ \hline \\ C_8H_{10} \\ \hline \\ C_8H_{10} \\ \hline \\ C_8H_{8} \\ \hline \\ C_{12}H_{10} \\ \hline \\ C_{13}H_{12} \\ \hline \\ C_{19}H_{16} \\ \hline \\ C_{14}H_{14} \\ \hline \end{array}$	-90 -109 -132 -90 -103 HYDROKARE Smp 5 -95 -95 -31 69 25 94 53	40 56 71 85 81 BONER Kp 80 111 136 145 256 265 360 284	Styren, vinylbenzen Difenyl, bifenyl Tritan Bibenzyl				

ALKOHOLER										
Navn	Formel	Smp	Кр	Diverse						
Metanol	CH₃OH	-98	65	Tresprit						
Etanol	C ₂ H ₆ O	-114	78							
Propan-1-ol	C₃H ₈ O	-124	97	<i>n</i> -propanol						
Propan-2-ol	C₃H ₈ O	-88	82	Isopropanol						
Butan-1-ol	C ₄ H ₁₀ O	-89	118	<i>n</i> -Butanol						
Butan-2-ol	C ₄ H ₁₀ O	-89	100	sec-Butanol						
2-Metylpropan-1-ol	C ₄ H ₁₀ O	-108	180	Isobutanol						
2-Metylpropan-2-ol	C ₄ H ₁₀ O	-26	82	tert-Butanol						
Pentan-1-ol	C ₅ H ₁₂ O	-78	138	<i>n</i> -Pentanol, amylalkohol						
Pentan-2-ol	C ₅ H ₁₂ O	-73	119	sec-amylalkohol						
Pentan-3-ol	C ₅ H ₁₂ O	-69	116	Dietylkarbinol						
Heksan-1-ol	C ₆ H ₁₄ O	-47	158	Kapronalkohol, n-heksanol						
Heksan-2-ol	C ₆ H ₁₄ O		140							
Heksan-3-ol	C ₆ H ₁₄ O		135							
Heptan-1-ol	C ₇ H ₁₆ O	-33	176	Heptylalkohol, <i>n</i> -heptanol						
Oktan-1-ol	C ₈ H ₁₈ O	-15	195	Kaprylalkohol, <i>n</i> -oktanol						
Sykloheksanol	C ₆ H ₁₂ O	26	161							
Etan-1,2-diol	C ₂ H ₆ O ₂	-13	197	Etylenglykol						
Propan-1,2,3-triol	C ₃ H ₈ O ₃	18	290	Glyserol, inngår i fettarten						
				triglyserid						
Fenylmetanol	C ₇ H ₈ O	-15	205	Benzylalkohol						
2-fenyletanol	C ₈ H ₁₀ O	-27	219	Benzylmetanol						
	KARBONYLI	FORBINDEL	SER							
Navn	Formel	Smp	Кр	Diverse						
Metanal	CH₂O	-92	-19	Formaldehyd						
Etanal	C ₂ H ₄ O	-123	20	Acetaldehyd						
Fenylmetanal	C ₇ H ₆ O	-57	179	Benzaldehyd						
Fenyletanal	C ₈ H ₈ O	-10	193	Fenylacetaldehyd						
Propanal	C ₃ H ₆ O	-80	48	Propionaldehyd						
2-Metylpropanal	C ₄ H ₈ O	-65	65							
Butanal	C ₄ H ₈ O	-97	75							
3-Hydroksybutanal	C ₄ H ₈ O ₂		83							
3-Metylbutanal	C ₅ H ₁₀ O	-51	93	Isovaleraldehyd						
Pentanal	C ₅ H ₁₀ O	-92	103	Valeraldehyd						
Heksanal	C ₆ H ₁₂ O	-56	131	Kapronaldehyd						
Heptanal	C ₇ H ₁₄ O	-43	153							
Oktanal	C ₈ H ₁₆ O		171	Kaprylaldehyd						
Propanon	C₃H ₆ O	-95	56	Aceton						
Butanon	C ₄ H ₈ O	-87	80	Metyletylketon						
3-Metylbutan-2-on	C ₅ H ₁₀ O	-93	94	Metylisopropylketon						

Navn	Formel	Smp	Кр	Diverse
Pentan-2-on	C ₅ H ₁₀ O	-77	102	Metylpropylketon
Pentan-3-on	C ₅ H ₁₀ O	-39	102	Dietylketon
4-Metylpentan-2-on	C ₆ H ₁₂ O	-84	117	Isobutylmetylketon
2-Metylpentan-3-on	C ₆ H ₁₂ O		114	Etylisopropylketon
2,4-Dimetylpentan-3-on	C ₇ H ₁₄ O	-69	125	Di-isopropylketon
2,2,4,4-Tetrametylpentan-3-on	C ₉ H ₁₈ O	-25	152	Di- <i>tert</i> -butylketon
Sykloheksanon	C ₆ H ₁₀ O	-28	155	Pimelicketon
trans-Fenylpropenal	C ₉ H ₈ O	-8	246	trans-Kanelaldehyd
	ORGAN	IISKE SYRER		<u>.</u>
Navn	Formel	Smp	Кр	Diverse
Metansyre	CH ₂ O ₂	8	101	Maursyre, $pK_a = 3,75$
Etansyre	C ₂ H ₄ O ₂	17	118	Eddiksyre, $pK_a = 4,76$
Propansyre	C ₃ H ₆ O ₂	-21	141	Propionsyre, $pK_a = 4,87$
2-Metylpropansyre	C ₄ H ₈ O ₂	-46	154	pK _a = 4,84
2-Hydroksypropansyre	C ₃ H ₆ O ₃		122	Melkesyre, $pK_a = 3,86$
3-Hydroksypropansyre	C ₃ H ₆ O ₃			Dekomponerer ved oppvarming, $pK_a = 4,51$
Butansyre	C ₄ H ₈ O ₂	-5	164	Smørsyre, p $K_a = 4.83$
3-Metylbutansyre	C ₅ H ₁₀ O ₂	-29	177	Isovaleriansyre , $pK_a = 4,77$
Pentansyre	C ₅ H ₁₀ O ₂	-34	186	Valeriansyre, pK _a = 4,83
Heksansyre	C ₆ H ₁₂ O ₂	-3	205	Kapronsyre, p K_a = 4,88
Propensyre	C ₃ H ₄ O ₂	12	141	pK _a = 4,25
cis-But-2-ensyre	C ₄ H ₆ O ₂	15	169	cis-Krotonsyre, pK _a = 4,69
trans-But-2-ensyre	C ₄ H ₆ O ₂	72	185	<i>trans</i> -Krotonsyre, $pK_a = 4,69$
But-3-ensyre	C ₄ H ₆ O ₂	-35	169	pK _a = 4,34
Etandisyre	C ₂ H ₂ O ₄			Oksalsyre, $pK_{a1} = 1,25$, $pK_{a2} = 3,81$
Propandisyre	C ₃ H ₄ O ₄			Malonsyre, p K_{a1} = 2,85, p K_{a2} = 5,70
Butandisyre	C ₄ H ₆ O ₄	188		Succininsyre(ravsyre), $pK_{a1} = 4,21$, $pK_{a2} = 5,64$
Pentandisyre	C ₅ H ₈ O ₄	98		Glutarsyre, p K_{a1} = 4,32, p K_{a2} = 5,42
Heksandisyre	C ₆ H ₁₀ O ₄	153	338	Adipinsyre, $pK_{a1} = 4,41$, $pK_{a2} = 5,41$
Askorbinsyre	C ₆ H ₈ O ₆	190-192		$pK_{a1} = 4,17, pK_{a2} = 11,6$
trans-3-Fenylprop-2-ensyre	C ₉ H ₈ O ₂	134	300	Kanelsyre, $pK_a = 4,44$
cis-3-Fenylprop-2-ensyre	C ₉ H ₈ O ₂	42		pK _a = 3,88
Benzosyre	C ₇ H ₆ O ₂	122	250	
Fenyleddiksyre	C ₈ H ₈ O ₂	77	266	pK _a = 4,31
	E	STERE		
Navn	Formel	Smp	Кр	Diverse
Benzyletanat	C ₉ H ₁₀ O ₂	-51	213	Benzylacetat, lukter pære og jordbær

Navn	Formel	Smp	Кр	Diverse
Butylbutanat	C ₈ H ₁₆ O ₂	-92	166	Lukter ananas
Etylbutanat	C ₆ H ₁₂ O ₂	-98	121	Lukter banan, ananas og jordbær
Etyletanat	C ₄ H ₈ O ₂	-84	77	Etylacetat, løsemiddel
Etylheptanat	C ₉ H ₁₈ O ₂	-66	187	Lukter aprikos og kirsebær
Etylmetanat	$C_3H_6O_2$	-80	54	Lukter rom og sitron
Etylpentanat	C ₇ H ₁₄ O ₂	-91	146	Lukter eple
Metylbutanat	C ₅ H ₁₀ O ₂	-86	103	Lukter eple og ananas
3-Metyl-1-butyletanat	C ₇ H ₁₁ O ₂	-79	143	Isoamylacetat, isopentylacetat, lukter pære og banan
Metyl-trans-cinnamat	C ₁₀ H ₁₀ O ₂	37	262	Metylester av kanelsyre, lukter jordbær
Oktyletanat	C ₁₀ H ₂₀ O ₂	-39	210	Lukter appelsin
Pentylbutanat	C ₉ H ₁₈ O ₂	-73	186	Lukter aprikos, pære og ananas
Pentyletanat	C ₇ H ₁₄ O ₂	-71	149	Amylacetat, lukter banan og eple
Pentylpentanat	C ₁₀ H ₂₀ O ₂	-79	204	Lukter eple
C	ORGANISKE FORBINI	DELSER ME	D NITROGEN	
Navn	Formel	Smp	Кр	Diverse
Metylamin	CH ₅ N	-94	-6	pK _b = 3,34
Dimetylamin	C ₂ H ₇ N	-92	7	pK _b = 3,27
Trimetylamin	C₃H ₉ N	-117	2,87	pK _b = 4,20
Etylamin	C ₂ H ₇ N	-81	17	pK _b = 3,35
Dietylamin	$C_4H_{11}N$	-28	312	$pK_b = 3,16$
Etanamid	C₂H₃NO	79-81	222	Acetamid
Fenylamin	C ₆ H ₇ N	-6	184	Anilin
1,4-Diaminbutan	$C_4H_{12}N_2$	27	158-160	Engelsk navn: putrescine
1,6-Diaminheksan	$C_6H_{16}N_2$	9	178-180	Engelsk navn: cadaverine
(ORGANISKE FORBIN	DELSER ME	D HALOGEN	
Navn	Formel	Smp	Кр	Diverse
Klormetan	CH₃Cl	-98	-24	Metylklorid
Diklormetan	CH ₂ Cl ₂	-98	40	Metylenklorid, mye brukt som løsemiddel
Triklormetan	CHCl₃	-63	61	Kloroform
Tetraklormetan	CCI ₄	-23	77	Karbontetraklorid
Kloretansyre	C ₂ H ₃ ClO ₂	63	189	Kloreddiksyre, p K_a = 2,87
Dikloretansyre	$C_2H_2Cl_2O_2$	9,5	194	Dikloreddiksyre, p K_a = 1,35
Trikloretansyre	C ₂ HCl ₃ O ₂	57	196	Trikloretansyre, $pK_a = 0.66$
Kloreten	C ₂ H ₃ Cl	-154	-14	Vinylklorid,monomeren i

KVALITATIV UORGANISK ANALYSE. REAKSJONER SOM DANNER FARGET BUNNFALL ELLER FARGET KOMPLEKS I LØSNING

	HCI	H ₂ SO ₄	NH ₃	KI	KSCN	K₃Fe(CN) ₆	K₄Fe(CN) ₆	K₂CrO₄	Na₂S (mettet)	Na ₂ C ₂ O ₄	Na ₂ CO ₃	Dimetylglyoksim (1%)
Ag⁺	Hvitt			Lysgult	Hvitt	Oransjebrunt	Hvitt	Rødbrunt	Svart	Gråhvitt		
Pb ²⁺	Hvitt	Hvitt	Hvitt	Sterkt gult	Hvitt		Hvitt	Sterkt gult	Svart	Hvitt	Hvitt	
Cu ²⁺			Sterkt blåfarget	Gulbrunt	Grønnsort	Gulbrun- grønt	Brunt	Brunt	Svart	Blåhvitt		Brunt
Sn ²⁺			Hvitt			Hvitt	Hvitt	Brungult	Brunt			
Ni ²⁺						Gulbrunt	Lyst grønnhvitt		Svart			Lakserødt
Fe²+			Blågrønt			Mørkeblått	Lyseblått	Brungult	Svart			Blodrødt med ammoniakk
Fe³+			Brunt	Brunt	Blodrødt	Sterkt brunt	Mørkeblått	Gulbrunt	Svart		Oransje- brunt	Brunt
Zn ²⁺						Guloransje	Hvitt	Sterkt gult	Gulhvitt		Hvitt	Rødbrunt
Ba ²⁺		Hvitt					Hvitt	Sterkt gult	Gulhvitt kan forekomme	Hvitt	Hvitt	
Ca ²⁺									Gulhvitt kan forekomme	Hvitt	Hvitt	

Grunnstoffenes periodesystem

Gruppe 1	Gruppe 2				Forklariı		ai ii 13 t c	71101103	p 01.10	accycl	0111	Gruppe 13	Gruppe 14	Gruppe 15	Gruppe 16	Gruppe 17	Gruppe 18
1 1,008 H					At	omnummer Atommasse Symbol	35 79,90 Br	Fargekoder		metall							2 4,003 He
2,1 Hydrogen					Elektronegat		2,8 Brom		Me	etall							- Helium
3 6,941	4 9,012				() betyr m			Aggregat- tilstand	Fast	stoff B		5 10,81	6 12,01	7 14,01	8 16,00	9 19,00	10 20,18
Li 1,0	Be				isotopen * Lantanoi	der		ved 25 °C og 1 atm	Væsk	е Нg		B 2,0	C 2,5	N 3,0	O 3,5	F 4,0	Ne
Lithium	Beryl- lium				** Aktinoid	der			Gas	ss N		Bor	Karbon	Nitrogen	Oksygen	Fluor	Neon
11 22,99	12 24,31											13 26,98	14 28,09	15 30,97	16 32,07	17 35,45	18 39,95
Na 0,9 Natrium	Mg 1,2 Magne- sium	3	4	5	6	7	8	9	10	11	12	Al 1,5 Alumini- um	Si 1,8 Silisium	P 2,1 Fosfor	S 2,5 Svovel	CI 3,0 Klor	Ar - Argon
19 39,10	20 40,08	21 44,96	22 47,87	23 50,94	24 52,00	25 54,94	26 55,85	27 58,93	28 58,69	29 63,55	30 65,38	31 69,72	32 72,63	33 74,92	34 78,97	35 79,90	36 83,80
K 0,8	Ca 1,0	Sc 1,3	Ti 1,5	V 1,6	Cr 1,6	Mn 1,5	Fe 1,8	Co 1,9	Ni 1,9	Cu 1,9	Zn 1,6	Ga	Ge 1,8	As 2,0	Se 2,4	B (*) 2,8	Kr
Kalium	Kalsium	Scan- dium	Titan	Vana- dium	Krom	Mangan	Jern	Kobolt	Nikkel	Kobber	Sink	Gallium	Germa- nium	Arsen	Selen	Brom	Krypton
37 85,47	38 87,62	39 88,91	40 91,22	41 92,91	42 95,95	43 (98)	44 101,07	45 102,91	46 106,42	47 107,87	48 112,41	49 114,82	50 118,71	51 121,76	52 127,60	53 126,90	54 131,29
Rb 0,8	Sr 1,0	Y 1,2	Zr 1,4	Nb 1,6	Mo 1,8	Tc 1,9	Ru 2,2	Rh 2,2	Pd 2,2	Ag 1,9	Cd	In 1,7	Sn 1,7	Sb 1,8	Te 2,1	2,4	Xe
Rubidium	Stron- tium	Yttrium	Zirko- nium	Niob	Molyb- den	Techne- tium	Ruthe- nium	Rhodium	Palla- dium	Sølv	Kad- mium	Indium	Tinn	Antimon	Tellur	Jod	Xenon
55 132,91	56 137,33	57 138,91	72 178,49	73 180,95	74 183,84	75 186,21	76 190,23	77 192,22	78 195,08	79 196,97	80 200,59	81 204,38	82 207,2	83 208,98	84 (209)	85 (210)	86 (222)
Cs 0,7	Ba 0,9	La	Hf 1,3	Ta	W 1,7	Re	Os 2,2	lr 2,2	Pt 2,2	Au 2,4	出g 1,9	TI 1,8	Pb	Bi 1,9	Po 2,0	At 2,3	Rn
Cesium	Barium	Lantan*	Hafnium	Tantal	Wolfram	Rhenium	Osmium	Iridium	Platina	Gull	Kvikk- sølv	Thallium	Bly	Vismut	Poloni- um	Astat	Radon
87 (223)	88 (226)	89 (227)	104 (267)	105 (268)	106 (271)	107 (270)	108 (269)	109 (278)	110 (281)	111 (280)	112 (285)	113 (286)	114 (289)	115 (289)	116 (293)	117 (294)	118 (294)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
0,7 Francium	0,9 Radium	1,1 Actinium **	- Ruther- fordium	Dub- nium	Sea- borgium	- Bohrium	- Hassium	- Meit- nerium	- Darm- stadtiu	- Rønt- genium	- Coper- nicium	- Unun- trium	- Flero- vium	- Unun- pentium	- Liver- morium	- Unun- septium	- Unun- oktium
			5.7	50		(0)			m						(0)	70	
		*	57 138,91	58 140,12	59 140,91	60 144,24	61 (145)	62 150,36	63 151,96	64 157,25	65 158,93	66 162,50	67 164,93	68 167,26	69 168,93	70 173,05	71 174,97
			La	Ce	Pr 1,1	Nd 1,1	Pm	Sm	Eu 1,2	Gd	Tb	Dy	Ho 1,2	Er 1.2	Tm	Yb	Lu 1,3
			Lantan	Cerium	Praseo- dym	Neodym	Prome- thium	Sama- rium	Euro- pium	Gado- linium	Terbium	Dyspro- sium	Hol- mium	Erbium	Thulium	Ytter- bium	Lute- tium
		**	89 (227)	90 232,04	91 231,04	92 238,03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (266)
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			1,1 Actinium	1,3 Thorium	1,4 Protacti-	1,4 Uran	1,4 Neptu-	1,3 Pluto-	1,1 Ame-	1,3 Curium	1,3 Berke-	1,3 Califor-	1,3 Einstein-	1,3 Fer-	1,3 Mende-	1,3 Nobel-	1,3 Lawren-
					nium		nium	nium	ricium		lium	nium	ium	mium	levium	ium	cium

Kjelder

- Dei fleste opplysningane er henta frå *CRC HANDBOOK OF CHEMISTRY and PHYSICS*, 89. UTGÅVE (2008–2009), ISBN 9781420066791
- Oppdateringar er gjorde ut frå *CRC HANDBOOK OF CHEMISTRY and PHYSICS*, 96. UTGÅVE (2015–2016): http://www.hbcpnetbase.com/ (sist besøkt 16.11.15)
- For ustabile radioaktive grunnstoff blei periodesystemet til «Royal Society of Chemistry» brukt: http://www.rsc.org/periodic-table (sist besøkt 15.01.15)
- Gyldendals tabeller og formler i kjemi, Kjemi 1 og Kjemi 2, Gyldendal, ISBN: 978-82-05-39274-8
- Esterduft: http://en.wikipedia.org/wiki/Ester (sist besøkt 10.09.2013)
- Stabilitetskonstantar: http://bilbo.chm.uri.edu/CHM112/tables/Kftable.htm (sist besøkt 03.12.2013) og, http://www.cem.msu.edu/~cem333/EDTATable.html (sist besøkt 03.12.2013)
- Kvalitativ uorganisk analyse ved felling mikroanalyse er henta frå *Kjemi 3KJ*, *Studiehefte* (Brandt mfl.), Aschehoug (2003), side 203.

Kilder

- De fleste opplysningene er hentet fra CRC HANDBOOK OF CHEMISTRY and PHYSICS, 89. UTGÅVE (2008–2009), ISBN 9781420066791
- Oppdateringer er gjort ut fra *CRC HANDBOOK OF CHEMISTRY and PHYSICS*, 96. UTGÅVE (2015–2016): http://www.hbcpnetbase.com/ (sist besøkt 16.11.15)
- For ustabile radioaktive grunnstoff ble periodesystemet til «Royal Society of Chemistry» brukt: http://www.rsc.org/periodic-table (sist besøkt 15.01.15)
- Gyldendals tabeller og formler i kjemi, Kjemi 1 og Kjemi 2, Gyldendal, ISBN: 978-82-05-39274-8
- Esterduft: http://en.wikipedia.org/wiki/Ester (sist besøkt 10.09.2013)
- Stabilitetskonstanter: http://bilbo.chm.uri.edu/CHM112/tables/Kftable.htm (sist besøkt 03.12.2013) og, http://www.cem.msu.edu/~cem333/EDTATable.html (sist besøkt 03.12.2013)
- Kvalitativ uorganisk analyse ved felling mikroanalyse er hentet fra *Kjemi 3KJ*. *Studiehefte* (Brandt mfl.), Aschehoug (2003), side 203.