Συναρτήσεις Ασύμπτωτες

Κωνσταντίνος Λόλας

Ναι αλλά "καταλήγουμε" κάπου?

Σχεδόν τελειώσαμε την σχεδίαση. Εμεινε να δούμε, αν πλησιάζουμε σε ευθείες και πότε!

Ζωγραφική 1 από 3

Φτιάξτε συνάρτηση που να τείνει να γίνει η ευθεία x=1

Τι παρατηρείτε για την συνάρτηση όσο x o 1?

Ζωγραφική 1 από 3

Φτιάξτε συνάρτηση που να τείνει να γίνει η ευθεία x=1 Τι παρατηρείτε για την συνάρτηση όσο $x\to 1$?

Κατακόρυφη ασύμπτωτη

Ορισμός

Η $x=x_0$ είναι <u>κατακόρυφη ασύμπτωτη</u> της C_f αν ένα τουλάχιστον από τα όρια $\lim_{x\to x_0^+}f(x)$ ή $\lim_{x\to x_0^-}f(x)$ είναι $+\infty$ ή $-\infty$.

Λόλας Συναρτήσεις 4/21

Ζωγραφική 2 από 3

Φτιάξτε συνάρτηση που $\underline{\delta\epsilon\xi \text{\rm L}\dot{\alpha}}$ να τείνει να γίνει η ευθεία y=1

Τι παρατηρείτε για την συνάρτηση όσο $x o +\infty$?

Ζωγραφική 2 από 3

Φτιάξτε συνάρτηση που <u>δεξιά</u> να τείνει να γίνει η ευθεία y=1 Τι παρατηρείτε για την συνάρτηση όσο $x\to +\infty$?

Οριζόντια ασύμπτωτη

Ορισμός

Η y=a είναι <u>οριζόντια ασύμπτωτη</u> της C_f στο $+\infty$ αν $\lim_{x \to +\infty} f(x)=a$

και αντίστοιχα

Ορισμός

Η y=a είναι <u>οριζόντια ασύμπτωτη</u> της C_f στο $-\infty$ αν $\lim_{x \to -\infty} f(x)=a$

Λόλας Συναρτήσεις 6/21

Ζωγραφική 3 από 3

Φτιάξτε συνάρτηση που δεξιά να τείνει να γίνει η ευθεία y=2x+1 Προσπαθήστε να ορίσετε συνθήκη για να είναι μία ευθεία ασύμπτωτη της f(x)

Λόλας Συναρτήσεις 7/21

Ζωγραφική 3 από 3

Φτιάξτε συνάρτηση που δεξιά να τείνει να γίνει η ευθεία y=2x+1 Προσπαθήστε να ορίσετε συνθήκη για να είναι μία ευθεία ασύμπτωτη της f(x)

Λόλας Συναρτήσεις 7/21

Πλάγια ασύμπτωτη

Ορισμός

H
$$y=ax+b$$
 είναι $\underline{\text{ασύμπτωτη}}$ της C_f στο $+\infty$ αν $\lim_{x\to +\infty}\left[f(x)-(ax+b)\right]=0$

και αντίστοιχα

Ορισμός

Η
$$y=ax+b$$
 είναι $\underline{\text{ασύμπτωτη}}$ της C_f στο $-\infty$ αν $\lim_{x\to -\infty}\left[f(x)-(ax+b)\right]=0$

Λόλας Συναρτήσεις 8/21

Μην μπερδευτούμε μόνο

- ullet η ασύμπτωτη με a=0 ονομάζεται οριζόντια
- ullet η ασύμπτωτη με $a \neq 0$ ονομάζεται πλάγια
- ullet η ασύμπτωτη που δεν ορίζεται το a ονομάζεται κατακόρυφη

Μην μπερδευτούμε μόνο

- ullet η ασύμπτωτη με a=0 ονομάζεται οριζόντια
- ullet η ασύμπτωτη με $a \neq 0$ ονομάζεται πλάγια
- ulletη ασύμπτωτη που δεν ορίζεται το a ονομάζεται κατακόρυφη

Μην μπερδευτούμε μόνο

- ullet η ασύμπτωτη με a=0 ονομάζεται οριζόντια
- ullet η ασύμπτωτη με $a \neq 0$ ονομάζεται πλάγια
- ullet η ασύμπτωτη που δεν ορίζεται το a ονομάζεται κατακόρυφη

Και λίγοι υπολογισμοί

Ξέροντας ότι

$$\lim_{x\to +\infty} \left[f(x) - (ax+b) \right] = 0$$

να βρείτε τα a και b.

Πλάγια ασύμπτωτη

Η ευθεία y=ax+b λέγεται πλάγια ασύμπτωτη της C_f στο $+\infty$ αν και μόνο αν

$$\lim_{x \to +\infty} \frac{f(x)}{x} = a \in \mathbb{F}$$

KOLL

$$\lim_{c \to +\infty} \left(f(x) - ax \right) = b \in \mathbb{I}$$

Και λίγοι υπολογισμοί

Ξέροντας ότι

$$\lim_{x\to +\infty} \left[f(x) - (ax+b) \right] = 0$$

να βρείτε τα a και b.

Πλάγια ασύμπτωτη

Η ευθεία y=ax+b λέγεται πλάγια ασύμπτωτη της C_f στο $+\infty$ αν και μόνο αν

$$\lim_{x\to +\infty}\frac{f(x)}{x}=a\in \mathbb{R}$$

και

$$\lim_{x\to +\infty}\left(f(x)-ax\right)=b\in\mathbb{R}$$

Λόλας Συναρτήσεις 10/21

- Ποιό είναι τα μοναδικα πολυώνυμα που έχουν ασύμπτωτες και ποιές?
- Τι πρέπει να ισχύει για τις ρητές συναρτήσεις ώστε να έχουν πλάγιες ασύμπτωτες?
- Ποιές συναρτήσεις έχουν κατακόρυφες ασύμπτωτες?
- Πού ψάχνουμε κατακόρυφες ασύμπτωτες?

- Ποιό είναι τα μοναδικα πολυώνυμα που έχουν ασύμπτωτες και ποιές?
- Τι πρέπει να ισχύει για τις ρητές συναρτήσεις ώστε να έχουν πλάγιες ασύμπτωτες?
- Ποιές συναρτήσεις έχουν κατακόρυφες ασύμπτωτες?
- Πού ψάχνουμε κατακόρυφες ασύμπτωτες?

- Ποιό είναι τα μοναδικα πολυώνυμα που έχουν ασύμπτωτες και ποιές?
- Τι πρέπει να ισχύει για τις ρητές συναρτήσεις ώστε να έχουν πλάγιες ασύμπτωτες?
- Ποιές συναρτήσεις έχουν κατακόρυφες ασύμπτωτες?
- Πού ψάχνουμε κατακόρυφες ασύμπτωτες?

- Ποιό είναι τα μοναδικα πολυώνυμα που έχουν ασύμπτωτες και ποιές?
- Τι πρέπει να ισχύει για τις ρητές συναρτήσεις ώστε να έχουν πλάγιες ασύμπτωτες?
- Ποιές συναρτήσεις έχουν κατακόρυφες ασύμπτωτες?
- Πού ψάχνουμε κατακόρυφες ασύμπτωτες?

Να βρείτε τις κατακόρυφες ασύμπτωτες των γραφικών παραστάσεων των παρακάτω συναρτήσεων

$$f(x) = \frac{\ln x}{x}$$

$$f(x) = \frac{x}{x-2}$$

$$f(x) = \varepsilon \varphi x$$

Λόλας Συναρτήσεις 12/21

Να βρείτε τις κατακόρυφες ασύμπτωτες των γραφικών παραστάσεων των παρακάτω συναρτήσεων

- ① $f(x) = \frac{\ln x}{x}$ ② $f(x) = \frac{x}{x-2}$

Να βρείτε τις κατακόρυφες ασύμπτωτες των γραφικών παραστάσεων των παρακάτω συναρτήσεων

- $f(x) = \frac{\ln x}{x}$ $f(x) = \frac{x}{x-2}$ $f(x) = \varepsilon \varphi x$

①
$$f(x) = \frac{x}{x^2 + 1}$$

② $f(x) = \frac{e^x}{1 + e^x}$

$$f(x) = \frac{e^x}{1 + e^x}$$

4
$$f(x) = e^{\frac{1}{x}}$$

①
$$f(x) = \frac{x}{x^2 + 1}$$

1
$$f(x) = \frac{x}{x^2 + 1}$$
2 $f(x) = \frac{e^x}{1 + e^x}$
3 $f(x) = \frac{\eta \mu x}{x}$
4 $f(x) = e^{\frac{1}{x}}$

4
$$f(x) = e^{\frac{1}{x}}$$

1
$$f(x) = \frac{x}{x^2 + 1}$$

1
$$f(x) = \frac{x}{x^2 + 1}$$
2 $f(x) = \frac{e^x}{1 + e^x}$
3 $f(x) = \frac{\eta \mu x}{x}$
4 $f(x) = e^{\frac{1}{x}}$

$$f(x) = e^{\frac{1}{x}}$$

1
$$f(x) = \frac{x}{x^2 + 1}$$

1
$$f(x) = \frac{x}{x^2 + 1}$$
2 $f(x) = \frac{e^x}{1 + e^x}$
3 $f(x) = \frac{\eta \mu x}{x}$
4 $f(x) = e^{\frac{1}{x}}$

4
$$f(x) = e^{\frac{1}{x}}$$

Δίνεται η συνάρτηση $f(x) = \sqrt{x^2 + 1}$

- $\ \, \textbf{Ω} \,$ Να βρείτε στο $+\infty$ και στο $-\infty$ τις ασύμπτωτες ε_1 και ε_2 αντίστοιχα της C_f
- ② Να δείξετε ότι η C_f βρίσκεται πάνω από την ε_1 κοντά στο $+\infty$ και πάνω από την ε_2 κοντά στο $-\infty$

Λόλας Συναρτήσεις 14/21

Δίνεται η συνάρτηση $f(x) = \sqrt{x^2 + 1}$

- **1** Να βρείτε στο $+\infty$ και στο $-\infty$ τις ασύμπτωτες ε_1 και ε_2 αντίστοιχα της
- ② Να δείξετε ότι η C_f βρίσκεται πάνω από την ε_1 κοντά στο $+\infty$ και πάνω από την ε_2 κοντά στο $-\infty$

Λόλας Συναρτήσεις 14/21

Εστω $f, g: \mathbb{R} \to \mathbb{R}$ δύο συναρτήσεις για τις οποίες ισχύει:

$$g(x)=f(x)-2x+\frac{x}{x^2+1}\text{, }x\in\mathbb{R}$$

και η ευθεία y=3x-2 η οποία είναι ασύμπτωτη της C_f στο $+\infty$

- Να βρείτε την ασύμπτωτη της C_a στο $+\infty$

$$\lim_{x \to +\infty} \frac{xf(x) - 3x^2 + \lambda x - 1}{\lambda f(x) - 4x + 5} = 1$$

Λόλας Συναρτήσεις 15/21

Εστω $f, g: \mathbb{R} \to \mathbb{R}$ δύο συναρτήσεις για τις οποίες ισχύει:

$$g(x)=f(x)-2x+\frac{x}{x^2+1}\text{, }x\in\mathbb{R}$$

και η ευθεία y=3x-2 η οποία είναι ασύμπτωτη της C_f στο $+\infty$

- Να βρείτε την ασύμπτωτη της C_a στο $+\infty$
- Να βρείτε τις τιμές του λ , για τις οποίες ισχύει:

$$\lim_{x \to +\infty} \frac{xf(x) - 3x^2 + \lambda x - 1}{\lambda f(x) - 4x + 5} = 1$$

Λόλας Συναρτήσεις 15/21

Να δείξετε ότι η ευθεία y = x είναι πλάγια ασύμπτωτη της γραφικής παράστασης της συνάρτησης $f(x)=\frac{x^2-x+1}{x-1}$ στο $+\infty$

> Λόλας Συναρτήσεις 16/21

Να βρείτε τις πλάγιες ή οριζόντιες ασύμπτωτες στο $+\infty$ των γραφικών παραστάσεων των παρακάτω συναρτήσεων

1
$$f(x) = x - 1 + \frac{1}{x}$$

①
$$f(x) = x - 1 + \frac{1}{x}$$

② $f(x) = 2 + \frac{1}{x+1}$

Να βρείτε τις πλάγιες ή οριζόντιες ασύμπτωτες στο $+\infty$ των γραφικών παραστάσεων των παρακάτω συναρτήσεων

- ① $f(x) = x 1 + \frac{1}{x}$ ② $f(x) = 2 + \frac{1}{x+1}$

Εστω η συνάρτηση $f(x)=\dfrac{x^2+x+2a}{x-a^2}$. Να βρείτε τις τιμές του $\alpha\in\mathbb{R}$, για τις οποίες η ευθεία $\varepsilon:x=1$ είναι ασύμπτωτη της C_f

Λόλας Συναρτήσεις 18/21

Δίνεται η συνάρτηση $f(x)=\dfrac{a^2x^n+5x+1}{x^2+1}$. Να βρείτε τις τιμές των $a\in\mathbb{R}^*$ και $n\in\mathbb{N}-0,1$ για τις οποίες η ευθεία $\varepsilon:y=1$ είναι οριζόντια ασύμπτωτη της C_f στο $+\infty$

Λόλας Συναρτήσεις 19/21

Να βρείτε τις τιμές των α και $\beta \in \mathbb{R}$, ώστε

$$\lim_{x \to +\infty} \left(\frac{\alpha x^2 + \beta x + 3}{x - 1} - x \right) = 2$$

Λόλας Συναρτήσεις 20/21 Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

Εστω ότι η f έχει σημείο καμπής στο x_0 με κυρτή αριστερά και κοίλη δεξιά του σημείου.

Αρα $f'(x) < f'(x_0)$ για κάθε $x < x_0$ και $f'(x) < f'(x_0)$ για κάθε $x > x_0$ Αφού f' παραγωγίσιμη, θα υπάρχει το όριο

$$f''(x_0) = \lim_{x \to x_0^-} \frac{f'(x) - f'(x_0)}{x - x_0} \ge 0$$

όμοια

$$f''(x_0) = \lim_{x \to x_0^+} \frac{f'(x) - f'(x_0)}{x - x_0} \le 0$$

Αρα $f''(x_0)=0$ Πίσω στη θεωρία

Εστω ότι η f έχει σημείο καμπής στο x_0 με κυρτή αριστερά και κοίλη δεξιά του σημείου.

Αρα $f'(x) < f'(x_0)$ για κάθε $x < x_0$ και $f'(x) < f'(x_0)$ για κάθε $x > x_0$ Αφού f' παραγωγίσιμη, θα υπάρχει το όριο

$$f''(x_0) = \lim_{x \to x_0^-} \frac{f'(x) - f'(x_0)}{x - x_0} \ge 0$$

όμοια

$$f''(x_0) = \lim_{x \to x_0^+} \frac{f'(x) - f'(x_0)}{x - x_0} \le 0$$

Αρα $f''(x_0)=0$ (Πίσω στη θεωρία

Εστω ότι η f έχει σημείο καμπής στο x_0 με κυρτή αριστερά και κοίλη δεξιά του σημείου.

Αρα $f'(x) < f'(x_0)$ για κάθε $x < x_0$ και $f'(x) < f'(x_0)$ για κάθε $x > x_0$ Αφού f' παραγωγίσιμη, θα υπάρχει το όριο

$$f''(x_0) = \lim_{x \to x_0^-} \frac{f'(x) - f'(x_0)}{x - x_0} \ge 0$$

όμοια

$$f''(x_0) = \lim_{x \to x_0^+} \frac{f'(x) - f'(x_0)}{x - x_0} \le 0$$

Αρα $f''(x_0)=0$ Πίσω στη θεωρία

Εστω ότι η f έχει σημείο καμπής στο x_0 με κυρτή αριστερά και κοίλη δεξιά του σημείου.

Αρα $f'(x) < f'(x_0)$ για κάθε $x < x_0$ και $f'(x) < f'(x_0)$ για κάθε $x > x_0$ Αφού f' παραγωγίσιμη, θα υπάρχει το όριο

$$f''(x_0) = \lim_{x \to x_0^-} \frac{f'(x) - f'(x_0)}{x - x_0} \ge 0$$

όμοια

$$f''(x_0) = \lim_{x \to x_0^+} \frac{f'(x) - f'(x_0)}{x - x_0} \le 0$$

Αρα $f''(x_0) = 0$ Πίσω στη θεωρία

Λόλας Συναρτήσεις 1/1