NAME OF THE THEME: Physical & Mathematical Sciences

Highly efficient orange-red emitting lumino-magnetic nanophosphor for biomedical applications

Vishnu V. Jaiswal^{1,#}, R. N. Bhargava² and D. Haranath^{1,*}

Abstract: There is a stringent global need for a unique nanophosphor system that is capable of emitting efficient photoluminescence together with magnetic property. In the current study we report a detailed synthesis mechanism, structural, morphological, magnetic and optical properties of ultra-violet (~311 nm) excitable samarium doped gadolinium yttrium orthovanadate, Gd_xY_{1-x}VO₄:Sm³⁺, nanophosphors. The X-ray diffraction studies confirmed the tetragonal structure with space group 141/amd. Enhanced photoluminescence intensity of Gd_xY_{1-x}VO₄:Sm³⁺ is compared to the existing YVO₄:Sm³⁺ bulk phosphor. The energy transfer occurring between VO₄³⁻ and Sm³⁺ via sensitization of ⁶P_J energy level of Gd³⁺ ions has been discussed in detail. The optical band gap was estimated using UV-VIS-NIR absorption spectroscopy that revealed a slightly higher band gap (3.75 eV) for YVO₄ as compared to (3.50 eV) for GdYVO₄. Furthermore, luminescence decay parameters and chromaticity coordinates (x = 0.591, y = 0.368) have supplemented our studies, which established the suitability of these nanophosphors for achieving orange-red (~610 nm) emitting nanophosphor. The magnetic property associated with $Gd_xY_{1-x}VO_4:Sm^{3+}$ investigated by Vibrating Sample Magnetometer (VSM) showed paramagnetic nature, which establishes the suitability of the lumino-magnetic nanophosphor for biomedical related applications. A detailed clinical case study has also been performed on mice and the results are presented.

Keywords: Nanophosphor, lumino-magnetic, bio-medical

Paper ID:

¹Department of Physics, National Institute of Technology (NIT), Warangal 506 004, Telangana, India

²Nanotheranostics, Inc., 33W Main St., Suite 505, Elmsford, New York 10523, USA

^{*} Corresponding author e-mail: haranath@nitw.ac.in