CS711008Z Algorithm Design and Analysis Lecture 5. FFT and DIVIDE AND CONQUER

Dongbo Bu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

Outline

- DFT: evaluate a polynomial at n special points;
- FFT: an efficient implementation of DFT;
- Applications of FFT: multiplying two polynomials (and multiplying two n-bits integers); time-frequency transform; solving partial differential equations;
- Appendix: relationship between continuous and discrete Fourier transforms.

DFT: Discrete Fourier Transform

- DFT evaluates a polynomial $A(x)=a_0+a_1x+...+a_{n-1}x^{n-1}$ at n distinct points $1,\omega,\omega^2,...,\omega^{n-1}$, where $\omega=e^{\frac{2\pi}{n}i}$ is the n-th complex root of unity.
- Thus, it transforms the complex vector $a_0, a_1, ..., a_{n-1}$ into another complex vector $y_0, y_1, ..., y_{n-1}$, where $y_k = A(w^k)$, i.e.,

• Matrix form:

$$\begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega^1 & \omega^2 & \dots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \dots & \omega^{2(n-1)} \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & \omega^{(n-1)^2} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

FFT: a fast way to implement DFT [Cooley and Tukey, 1965]

 \bullet Direct matrix-vector multiplication requires $O(n^2)$ operations when using the Horner's method, i.e.,

$$A(x) = a_0 + x(a_1 + x(a_2 + \ldots + xa_{n-1})).$$

- FFT: reduce $O(n^2)$ to $O(n\log_2 n)$ using divide-and-conquer technique.
- How does FFT achieve this? Or what calculations are redundant in the direct matrix-vector multiplication approach?
- Note: The idea of FFT was proposed by James Cooley and John Tukey in 1965 when analyzing earth-quake data, but the idea can be dated back to F. Gauss.

Let's evaluate A(x) at four special points

- It is easy to evaluate any 1-degree polynomial $A(x)=a_0+a_1x$ at two points 1,-1. Now let's evaluate a 3-degree polynomial $A(x)=a_0+a_1x+a_2x^2+a_3x^3$ at four special points 1,i,-1,-i.
- Divide: Break the polynomial into even and odd terms, i.e.,
 - $\bullet \ A_{even}(x) = a_0 + a_2 x$
 - $A_{odd}(x) = a_1 + a_3 x$

Then we have the following equations:

•
$$A(x) = (a_0 + a_2 x^2) + x(a_1 + a_3 x^2) = A_{even}(x^2) + xA_{odd}(x^2)$$

• $A(-x) = (a_0 + a_2 x^2) - x(a_1 + a_3 x^2) = A_{even}(x^2) - xA_{odd}(x^2)$

- Combine: For the 4 special points 1, i, -1, -i, we have
 - $A(1) = A_{even}(1) + A_{odd}(1)$
 - $A(i) = A_{even}(-1) + iA_{odd}(-1)$
 - $A(-1) = A_{even}(1) A_{odd}(1)$
 - $A(-i) = A_{even}(-1) iA_{odd}(-1)$
- In other words, the values of A(x) at $\mathbf{4}$ points $\mathbf{1}, i, -1, -i$ can be calculated based on the values of $A_{even}(x), A_{odd}(x)$ at $\mathbf{2}$ points $\mathbf{1}, -1$.

An example: n=4

• Objective: Evaluate A(x) at 4 points: $1,\omega,\omega^2,\omega^3$, where $\omega=e^{\frac{1}{4}2\pi i}$.

Step 1: Simplification

$$y_0 = a_0 + a_1 + a_2 + a_3$$

$$y_1 = a_0 + a_1\omega^1 + a_2\omega^2 + a_3\omega^3$$

$$y_2 = a_0 + a_1\omega^2 + a_2 + a_3\omega^2$$

$$y_3 = a_0 + a_1\omega^3 + a_2\omega^2 + a_3\omega^1$$

Step 2. Divide into odd- and even-terms

$$y_0 = a_0 + a_2 + a_1 + a_3$$

$$y_1 = a_0 + a_2\omega^2 + a_1\omega^1 + a_3\omega^3$$

$$y_2 = a_0 + a_2 + a_1\omega^2 + a_3\omega^2$$

$$y_3 = a_0 + a_2\omega^2 + a_1\omega^3 + a_3\omega^1$$

Key observation: redundant calculations

$$y_{0} = \begin{bmatrix} a_{0} + a_{2} \\ y_{1} = \begin{bmatrix} a_{0} + a_{2} \\ a_{0} + a_{2} \\ \omega^{2} \end{bmatrix} + \begin{bmatrix} a_{1} + a_{3} \\ a_{1} \\ \omega^{1} + a_{3} \\ \omega^{3} \end{bmatrix}$$

$$y_{2} = \begin{bmatrix} a_{0} + a_{2} \\ a_{0} + a_{2} \\ \omega^{2} \end{bmatrix} + \begin{bmatrix} a_{1} \\ a_{1} \\ \omega^{2} + a_{3} \\ a_{1} \\ \omega^{3} + a_{3} \\ \omega^{1} \end{bmatrix}$$

Note that the calculations in the two red frames are identical, and the calculations in the blue frames are also identical after multiplying by ω^2 . Here $\omega^2=-1$ as $\omega=e^{\frac{2\pi}{4}i}$.

Step 3: Divide-and-conquer

$$y_0 = a_0 + a_2 + a_1 + a_3$$

$$y_1 = a_0 + a_2\omega^2 + a_1\omega^1 + a_3\omega^3$$

$$y_2 = a_0 + a_2 + a_1\omega^2 + a_3\omega^2$$

$$y_3 = a_0 + a_2\omega^2 + a_1\omega^3 + a_3\omega^1$$

Thus the calculations in the top-left and bottom-right frames are redundant. We need only $2+4+2=4\times\log_24$ calculations.

Another example: n = 8

• Objective: Evaluate A(x) at 8 points: $1,\omega,\omega^2,...,\omega^7$, where $\omega=e^{\frac{1}{8}2\pi i}$.

Step 1: Simplification

Step 2. Divide into odd- and even-terms

The specific order of these terms will be explained later.

Key observation: redundant calculations

Note that the calculations in the two red frames are identical, and the calculations in the blue frames are also identical after multiplying by $\omega^4.$ Here $\omega^4=-1$ as $\omega=e^{\frac{2\pi}{8}i}.$

Step 3: Divide-and-conquer

Thus the calculations in the top-left and bottom-right frames are redundant.

Step 3: Divide-and-conquer

Finally, we need only $2+4+2+8+2+4+2=8\times \log_2 8$ calculations.

The final order

FFT Algorithm

FFT $(n, a_0, a_1, ..., a_{n-1})$ 1: **if** n == 1 **then** 2: **return** a_0 ;

```
3: end if
 4: (E_0, E_1, ..., E_{\frac{n}{2}-1}) = FFT(\frac{n}{2}, a_0, a_2, ..., a_{n-2});
 5: (O_0, O_1, ..., \tilde{O}_{\frac{n}{2}-1}) = \text{FFT}(\frac{n}{2}, a_1, a_3, ..., a_{n-1});
 6: for k = 0 to \frac{n}{2} - 1 do
 7: \omega^k = e^{\frac{2\pi}{n}ki}
 8: y_k = E_k + \omega^k O_{\iota}:
 9: y_{\frac{n}{2}+k} = E_k - \omega^k O_k;
10: end for
11: return (y_0, y_1, ..., y_{n-1});
   • Here FFT(\frac{n}{2}, a_0, a_2, ..., a_n) computes the polynomial
      A_{even}(x) = a_0 + a_2 x + ... + a_n x^{\frac{n}{2}} at \frac{n}{2} points
      1,\omega^2,\omega^4,...,\omega^{n-2}, and \mathrm{FFT}(\frac{n}{2},a_1,a_3,...,a_{n-1}) computes the
      polynomial A_{odd}(x)=a_1+a_3x+...+a_{n-1}x^{\frac{n}{2}} at these points.
```

Inverse Discrete Fourier Transform

- Inverse Discrete Fourier Transform: to determine coefficients of a polynomial $a_0, a_1, ..., a_{n-1}$ based on n point-value pairs $(1, y_0), (\omega, y_1), ..., (\omega^{n-1}, y_{n-1})$, where $y_k = A(\omega^k)$, and $A(x) = a_0 + a_1 x + a_2 x^2 + ... + a_{n-1} x^{n-1}$.
- Matrix form

$$\begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega^1 & \omega^2 & \dots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \dots & \omega^{2(n-1)} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & \omega^{(n-1)^2} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

• It takes $O(n^3)$ to calculate the inverse matrix when using the Gaussian elimination technique.

Inverse Discrete Fourier Transform cont'd

Matrix form

$$\begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} = \frac{1}{n} \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \bar{\omega}^1 & \bar{\omega}^2 & \dots & \bar{\omega}^{n-1} \\ 1 & \bar{\omega}^2 & \bar{\omega}^4 & \dots & \bar{\omega}^{2(n-1)} \\ \vdots \\ 1 & \bar{\omega}^{n-1} & \bar{\omega}^{2(n-1)} & \dots & \bar{\omega}^{(n-1)^2} \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{bmatrix}$$

 Reason: it turns out that it is nearly its own inverse. More precisely, the conjugate transpose of this matrix is its own inverse.

IFFT Algorithm

some treatments.

```
IFFT(n, y_0, y_1, ..., y_{n-1})
 1: if n == 1 then
        return y_0;
 3: end if
 4: (E_0, E_1, ..., E_{\frac{n}{2}-1}) = IFFT(\frac{n}{2}, y_0, y_2, ..., y_{n-2});
 5: (O_0, O_1, ..., \tilde{O}_{\frac{n}{2}-1}) = IFFT(\frac{n}{2}, y_1, y_3, ..., y_{n-1});
 6: for k = 0 to \frac{\hbar}{2} - 1 do
 7: \omega^k = e^{-\frac{2\pi}{n}ki}
 8: a_k = E_k + \omega^k O_k:
 9: a_{\frac{n}{2}+k} = E_k - \omega^k O_k;
10: end for
11: return \frac{1}{n}(a_0, a_1, ..., a_{n-1});
Here we assume n is the power of 2 for simplicity. The
normalization factors multiplying FFT and IFFT (here 1 and \frac{1}{n})
and the signs of exponents are merely conventions, and differ in
```

Application: fast multiplication of two polynomials (or two integers)

Multiplify two polynomials: convolution

- Given two polynomials $A(x) = a_0 + a_1x + a_2x^2 + \ldots + a_{n-1}x^{n-1}, \text{ and } B(x) = b_0 + b_1x + b_2x^2 + \ldots + b_{n-1}x^{n-1}$
- Let's calculate its product $C(x) = A(x)B(x) = c_0 + c_1x + c_2x^2 + ... + c_{2n-2}x^{2n-2}$
- Brute-force (convolution): $c_k = \sum_{i=0}^k a_i b_{k-i}$.
- It costs $O(n^2)$ time if using the convolution technique.

Conversion between two representations of polynomials

• An efficient conversion between these two representations is extremely useful when multiplying two polynomials.

$$a_0, a_1, ..., a_{n-1}$$
 $(x_0, y_0), ..., (x_{n-1}, y_{n-1})$

Using FFT to speed up multiplication

Given two polynomials

$$A(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1}, \text{ and } B(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_{n-1} x^{n-1}$$

- Let's calculate its product
 - $C(x) = A(x)B(x) = c_0 + c_1x + c_2x^2 + \dots + c_{2n-2}x^{2n-2}$
- Brute-force: $c_k = \sum_{i=0}^k a_i b_{k-i}$. Cost $O(n^2)$ time
- Using FFT and IFFT: $O(n \log n)$

An example

- A(x) = 1 + 2x
- B(x) = 3 + 4x
- $C(x) = A(x)B(x) = c_0 + c_1x + c_2x^2 + c_3x^3$

\overline{x}	1	-i	-1	i
A(x)	3	1-2i	-1	1 + 2i
B(x) $C(x)$	7	3-4i	-1	3 + 4i
C(x)	21	-5 - 10i	1	-5 + 10i

- By running IFFT(4, (21, -5 10i, 1, -5 + 10i)), we obtained the coefficients as $c_0 = 3$, $c_1 = 10$, $c_2 = 8$, and $c_3 = 0$.
- Extension: given two n-bit integers $a = a_{n-1}...a_1a_0$, and $b = b_{n-1}...b_1b_0$, it takes $O(n\log n)$ complex arithmetic steps to calculate $c = a \times b$.
- In 1971, A. Schönhage and V. Strassen proposed an algorithm for multiplication that uses $O(n \log n \log \log n)$ bit operations.

$Application: \ time-frequency \ transform$

DFT: time-domain vs. frequency-domain

• DFT, denoted as $\mathbf{X} = \mathcal{F}\{\mathbf{x}\}$, transforms a sequence of N complex numbers $x_0, x_1, ..., x_{N-1}$ (time-domain) into a N-periodic sequence of complex numbers $X_0, X_1, ..., X_{N-1}$ (frequency-domain):

$$X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi}{N}ikn}, \quad k = 0, 1, ..., N-1$$

- Here, X_k encodes both amplitude and phase of a sinusoidal component $e^{-\frac{2\pi}{N}kni}$ of the function x_n (the sinusoid's frequency is k cycles per N samples).
- Inverse transform of DFT:

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{\frac{2\pi}{N}ikn}$$

An interpretation of DFT is that its inverse transform is the **discrete analogy** of the formula for **a Fourier series**:

$$f(x) = \sum_{n=0}^{+\infty} F_n e^{inx}, \ F_n = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{-inx} dx$$

Time-frequency transformation

• FFT transforms the input data $a_0, a_1, ..., a_{n-1}$ (time-domain samples) into $y_0, y_1, ..., y_{n-1}$ (frequency domain). For example,

• Here y_k encodes both amplitude and phase of a sinusoidal component of the time-domain samples $a_0, a_1, ..., a_7$.

FFT: an example

```
N = 8;
t = 0:1/N:1-1/N;
a = 1*cos(2*pi*1*t) + 2*sin(2*pi*3*t);
Freq = 0:N-1;
bar( Freq, abs(fft(a)), "b", 0.2 );
```


y_k encodes amplitude and phase of a sinusoidal component

- $y_k=a_0+a_1\omega^k+a_2\omega^{2k}+\ldots+a_7\omega^{7k}$ computes the dot product of two vectors: the time-domain samples $a_0,a_1,...,a_7$, and a sinusoid signal $1,\omega^k,\omega^{2k},...,\omega^{7k}$. Here $\omega=e^{\frac{2\pi}{8}i}$ and thus the sinusoid has frequency of k cycles per 8 samples.
- The dot product $y_k=0$ if the time-domain samples $a_0,\,a_1,\,...,\,a_7$ do not consist of any sinusoidal component of such frequency. The reason is that:
 - The dot product of these two vectors $y_k = \sum_{j=0}^7 a_j \omega^{jk}$ is essentially a discrete analogy of the integral of two sinusoids, say $\int_0^{2\pi} \cos mx \cdot \cos nx \mathrm{d}x$.
 - The orthogonality of sinusoids states that for two integers m, n,

$$\int_0^{2\pi} \cos mx \cdot \sin nx dx = 0, \text{ and }$$

$$\int_0^{2\pi} \sin mx \cdot \sin nx dx = 0, \int_0^{2\pi} \cos mx \cdot \cos nx dx = 0 \ (m \neq n)$$

Calculation of y_1

• $1, \omega^1, \omega^2, ..., \omega^7$ represents a sinusoidal signal of frequency 1 cycle per 8 samples, and the existence of such sinusoidal component in the time-domain samples $a_0, a_1, ..., a_7$ is encoded by the dot product $y_1 = a_0 + a_1 \omega^1 + a_2 \omega^2 + ... + a_7 \omega^7$.

• a =
$$\begin{bmatrix} 1 & 2.1 & -2 & 0.7 & -1 & -2.1 & 2 & -0.7 \end{bmatrix}$$

c = $\begin{bmatrix} 1 & 0.7 & 0 & -0.7 & -1 & -0.7 & 0 & 0.7 \end{bmatrix}$
s = $\begin{bmatrix} 0 & 0.7 & 1 & 0.7 & 0 & -0.7 & -1 & -0.7 \end{bmatrix}$
sqrt($(a*c')\wedge 2 + (a*s')\wedge 2$) = 4

Calculation of y_2

- $1, \omega^2, \omega^4, ..., \omega^{14}$ represents a sinusoidal signal of frequency 2 cycles per 8 samples, and the existence of such sinusoidal component in time-domain samples $a_0, a_1, ..., a_7$ is encoded by the dot product $y_2 = a_0 + a_1\omega^2 + a_2\omega^4 + ... + a_7\omega^{14}$.
- a = [1 2.1 -2 0.7 -1 -2.1 2 -0.7] c = [1 0 -1 0 1 0 -1 0] s = [0 1 0 -1 0 1 0 -1] sqrt((a*c')\\(\lambda\) + (a*s')\\(\lambda\)) = 0

Calculation of y_3

- $1, \omega^3, \omega^6, ..., \omega^{21}$ represents a sinusoidal signal of frequency 3 cycles per 8 samples, and the existence of such sinusoidal component in time-domain samples $a_0, a_1, ..., a_7$ is encoded by the dot product $y_3 = a_0 + a_1 \omega^3 + a_2 \omega^6 + ... + a_7 \omega^{21}$.
- a = $\begin{bmatrix} 1 & 2.1 & -2 & 0.7 & -1 & -2.1 & 2 & -0.7 \end{bmatrix}$ c = $\begin{bmatrix} 1 & -0.7 & 0 & 0.7 & -1 & 0.7 & 0 & -0.7 \end{bmatrix}$ s = $\begin{bmatrix} 0 & 0.7 & -1 & 0.7 & 0 & -0.7 & 1 & -0.7 \end{bmatrix}$ sqrt($(a*c') \land 2 + (a*s') \land 2$) = 8

Appendix: Relationship between continuous and discrete Fourier transforms

Fourier series, Fourier transform, DTFT, and DFT

- Fourier series decomposes a periodic function into a set of sine/cosine waves, and one of the motivations of Fourier transform comes from the extension of Fourier series to non-periodic functions.
- DTFT uses discrete-time samples of a continuous function as input, and generates a continuous function of frequency.
- Using a finite sequence of equally-spaced samples of a function as input, DFT computes a sequence of identical length, representing equally-spaced samples of DTFT. The interval at which the DTFT is sampled is reciprocal of the duration of the input sequence.
- The inverse DFT is a Fourier series using the DTFT samples as coefficients of corresponding frequency, and it is essentially a periodic summation of the original input sequence.

Fourier series: history

Figure: Jean-Baptiste Joseph Fourier (1768-1830)

- In 1807, Joseph Fourier proposed the idea of Fourier series when solving heat equation, a partial differential equation.
- Prior to Fourier's work, no solution to heat equation was known in the general case. However, when the heat source was a simple sine or cosine wave, solutions were known (called eigensolutions).
- Thus, Fourier modelled complicated heat source as a superposition of simple sine/cosine waves, and rewrote the solution as superposition of corresponding-eigensolutions.

Fourier series

• Fourier series is a way to represent a **periodic function** of time as the sum of a set of simple sines and cosines (or, equivalently, complex exponentials). For example, the Fourier series of a periodic function f(x) (period 2π) is:

$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

where

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(t) dt$$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos nt dt \quad (n = 1, 2, ...)$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(t) \sin nt dt \quad (n = 1, 2, ...)$$

Fourier series: orthogonality of basis functions

• Unlike Taylor's expansion, the basis functions of Fourier series are orthogonal over $[0,2\pi]$, i.e., for two integers m,n,

$$\int_0^{2\pi} 1 \cdot \sin x dx = 0, \quad \int_0^{2\pi} 1 \cdot \cos x dx = 0$$

$$\int_0^{2\pi} \sin mx \cdot \sin nx dx = 0, \quad \int_0^{2\pi} \cos mx \cdot \cos nx dx = 0 \quad (m \neq n)$$

$$\int_0^{2\pi} \cos mx \cdot \sin nx dx = 0$$

• The orthogonality plays an important role in solving coefficients a_0, a_n, b_n .

Fourier series: complex exponential form

• According to the Euler's formula $e^{ix}=\cos x+i\sin x$, we have $\cos x=\frac{1}{2}(e^{ix}+e^{-ix})$, $\sin x=\frac{1}{2i}(e^{ix}-e^{-ix})$, and

$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

$$= a_0 + \sum_{n=1}^{\infty} (a_n \frac{1}{2} (e^{inx} + e^{-inx}) + b_n \frac{1}{2i} (e^{inx} - e^{-inx}))$$

$$= a_0 + \sum_{n=1}^{\infty} (\frac{1}{2} (a_n - ib_n) e^{inx} + \frac{1}{2} (a_n + ib_n) e^{-inx})$$

• Define $F_0 = a_0$, and $F_n = \frac{1}{2}(a_n - ib_n)$ (n > 0). We have $F_{-n} = \frac{1}{2}(a_n + ib_n)$, and thus rewrite the Fourier series as:

$$f(x) = \sum_{n=0}^{+\infty} F_n e^{inx}, F_n = \frac{1}{2} (a_n - ib_n) = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-int} dt$$

• Complex exponential form is necessary as the complex coefficients F_n (called *frequency spectrum*) could encode both amplitude and phase of basic waves.

Fourier series: example 1

• Periodic function $f(x) = \begin{cases} \frac{1}{2}(\pi - x) & 0 < x \le 2\pi \\ f(x + 2\pi) & \text{otherwise} \end{cases}$

• Fourier series: $f(x) = \sum_{n=1}^{\infty} \frac{1}{n} \sin nx$ (since $a_n = 0$, $b_n = \frac{1}{n}$)

Fourier series: extension to f(x) with period of 2L

• For a periodic function f(x) with period of 2L, the Fourier series is:

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{\pi}{L} nx + b_n \sin \frac{\pi}{L} nx \right)$$

• The coefficients are:

$$a_0 = \frac{1}{2L} \int_0^{2L} f(t) dt$$

$$a_n = \frac{1}{L} \int_0^{2L} f(t) \cos \frac{\pi}{L} nt dt$$

$$b_n = \frac{1}{L} \int_0^{2L} f(t) \sin \frac{\pi}{L} nt dt$$

Fourier series: example 2

• Fourier series:

$$f(x) = \frac{1}{2T} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin(\frac{\pi}{2T}n) \cos(\frac{2\pi}{T}nx)$$

Convergence of Fourier series: Dirichlet's conditions

- Dirichlet's theorem states the sufficient conditions for the convergence of Fourier series, i.e., if f(x) satisfies the following conditions:
 - **1** f(x) is periodic, and absolutely integrable over a period;
 - ② f(x) must have a finite number of maxima and minima in any bounded interval;

Then

$$a_0 + \sum_{n=1}^{m} (a_n \cos nx + b_n \sin nx) \to \frac{1}{2} (f(x+0) + f(x-0))$$

when $m \to \infty$.

• A succinct proof using Dirac's δ function can be found in Mathematical Methods for Physics (by Q. Gu).

Proof.

• Since $a_n \cos nx + b_n \sin nx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos n(x-t) dt$, the partial sum of Fourier series is:

$$S_m(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) [1 + 2\sum_{n=1}^{m} \cos n(x-t)] dt$$
$$= \int_{-\pi}^{\pi} f(t) \frac{\sin((m + \frac{1}{2})(x-t))}{2\pi \sin \frac{1}{2}(x-t)} dt$$
$$= \int_{-\pi}^{\pi} f(t) D_m(x-t) dt$$

• Here $D_m(x) = \frac{1}{2\pi}(1 + 2\cos x + 2\cos 2x + ... + 2\cos mx)$.

(by Q. Gu) for complete proof.

- Note that $\lim_{m\to\infty} D_m(x) = \delta(x)$ since $\int_{-\pi}^{\pi} D_m(x) dx = 1$ and $D_m(0) = \frac{1}{2\pi} (2m+1) \to \infty$.
- Thus, we have $\lim_{m\to\infty}S_m(x)=\int_{-\pi}^{\pi}f(t)\delta(x-t)=f(x)$ (when f(x) is continous at x). Please refer to Mathematical Methods for Physics

Fourier transform (in terms of angular frequency ω)

• Fourier transform of a function of time (a signal) is a complex-valued function of frequency (represented as angular frequency ω), whose absolute value represents the amount of that frequency present in the original function.

$$F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-ix\omega} dx, \ f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega x} d\omega$$

- Fourier transform, denoted as $F(\omega) = \mathcal{F}\{f(x)\}$, is called frequency representation of the original signal, and $F(\omega)$ is called spectral density.
- For example, the Fourier transform of $f(x) = \begin{cases} 1 & |x| \leq \frac{1}{4} \\ 0 & \text{otherwise} \end{cases}$ is

$$F(\omega) = \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx = \frac{2}{\omega}\sin(\frac{\omega}{4})$$

Fourier transform (in terms of ordinary frequency ν)

- For a sinusoidal wave with period T (measured in seconds), its frequency can be measured using angular frequency ω (measured in $radians\ per\ second$) or using ordinary frequency ν (measured in $cycles\ per\ second$, or hertz), where $\omega=2\pi\nu$, and $\nu=\frac{1}{T}$.
- When using angular frequency ω , Fourier transform is defined as:

$$F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-ix\omega} dx$$
$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega x} d\omega$$

• Replacing ω with $\omega=2\pi\nu$, we obtain another representation of Fourier transform in terms of ordinary frequency ν :

$$F(\nu) = \int_{-\infty}^{\infty} f(x)e^{-2\pi ix\nu} dx$$
$$f(x) = \int_{-\infty}^{\infty} F(\nu)e^{2\pi ix\nu} d\nu$$

Connection between Fourier series and Fourier transform

 For a function that are zero outside an interval, we can calculate Fourier series on any larger interval. As we lengthen the interval, the coefficients of Fourier series will approach Fourier transform.

Fourier transform: deduction

- Consider a periodic function f(x) with period 2L. Its Fourier series $f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos \frac{\pi}{L} nx + b_n \sin \frac{\pi}{L} nx)$ can be rewritten as $f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos \omega_n x + b_n \sin \omega_n x)$, where $\omega_n = \frac{\pi}{L} n$ represents angular frequency.
- Intuitively, when $L \to \infty$, f(x) becomes a non-periodic function over $(-\infty, \infty)$, and

$$\sum_{n=1}^{\infty}...\Delta\omega\to\int_{0}^{\infty}...\mathrm{d}\omega.$$

• In particular, we have $a_0 = \frac{1}{2L} \int_{-L}^{L} f(t) dt \xrightarrow{L \to \infty} 0$ since f(x) is absolutely integrable, and

$$\sum_{n=1}^{\infty} a_n \cos \omega_n x = \sum_{n=1}^{\infty} \frac{1}{L} \left[\int_{-L}^{L} f(t) \cos \omega_n t dt \right] \cos \omega_n x$$

$$= \sum_{n=1}^{\infty} \frac{\Delta \omega}{\pi} \left[\int_{-L}^{L} f(t) \cos \omega_n t dt \right] \cos \omega_n x$$

$$\rightarrow \int_{0}^{\infty} d\omega \left[\frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \cos \omega t dt \right] \cos \omega x$$

Similarly, we have

$$\sum_{n=1}^{\infty} b_n \sin \omega_n x \to \int_0^{\infty} d\omega \left[\frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \sin \omega t dt \right] \sin \omega x$$

and rewrite Fourier series as:

$$\begin{split} f(x) &= \frac{1}{\pi} \int_{\omega=0}^{\infty} \int_{t=-\infty}^{\infty} f(t) (\cos \omega x \cos \omega t + \sin \omega x \sin \omega t) \mathrm{d}t \mathrm{d}\omega \\ &= \frac{1}{\pi} \int_{\omega=0}^{\infty} \int_{t=-\infty}^{\infty} f(t) \cos \omega (x-t) \mathrm{d}t \mathrm{d}\omega \\ &= \frac{1}{2\pi} \int_{\omega=0}^{\infty} \int_{t=-\infty}^{\infty} f(t) (e^{i\omega(x-t)} + e^{-i\omega(x-t)}) \mathrm{d}t \mathrm{d}\omega \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{0}^{\infty} f(t) e^{i\omega(x-t)} \mathrm{d}\omega + \int_{0}^{\infty} f(t) e^{-i\omega(x-t)} \mathrm{d}\omega \right] \mathrm{d}t \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) e^{i\omega(x-t)} \mathrm{d}\omega \mathrm{d}t \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) e^{i\omega(x-t)} \mathrm{d}\omega \mathrm{d}t \end{split}$$

Fourier transform: properties

- Linear operations performed in one domain (time or frequency) have corresponding operations in the other domain.
- Differentiation in time domain corresponds to multiplication in the frequency domain, usually making it easier to analyze.
- Convolution in the time domain corresponds to the ordinary multiplication the frequency domain.
- Functions that are localized in one domain have Fourier transforms that are spread out across the other domain, known as the *uncertainty principle*.
- The Fourier transform of a Gaussian function is another Gaussian function.

Fourier transform: Poisson summation formula

- For a function f(x) with its Fourier transform (in terms of ordinary frequency) $F(\nu) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \nu} \, \mathrm{d}x$, the Poisson summation formula states $\sum_{k=-\infty}^{\infty} f(k) = \sum_{k=-\infty}^{\infty} F(k)$.
- For example, the Fourier transform of $f(x) = \begin{cases} 1 & |x| \leq \frac{1}{4} \\ 0 & \text{otherwise} \end{cases}$ is

$$F(\nu) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i\nu x} dx = \frac{1}{\pi\nu}\sin(\frac{\pi\nu}{2})$$

Poisson summation formula states that

$$\sum_{k=-\infty}^{\infty} f(k) = 1 = \sum_{k=-\infty}^{\infty} F(k).$$

• Discrete-time Fourier transform (DTFT) refers to Fourier analysis on the uniformly-spaced samples of a continuous function, i.e., a Fourier series with x_n as coefficients:

$$X(\omega) = \sum_{n=-\infty}^{\infty} x_n e^{-in\omega}$$

Here, the frequency variable ω has normalized units of radians/sample.

Inverse transform of DTFT

• DTFT is itself a periodic function of frequency $X(\omega)$. From this function, the original samples x_n can be readily recovered as below:

$$x_n = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{in\omega} d\omega$$

• For example, the DTFT is $X(\omega) = 1 + 2\cos\omega + 2\cos2\omega$. The original samples can be recovered as:

$$x_0 = \frac{1}{2\pi} \int_{-\infty}^{\infty} (1 + 2\cos\omega + 2\cos2\omega) d\omega = 1$$

Similarly, we obtained $x_{-1} = x_1 = x_2 = x_{-2} = 1$.

DTFT and DFT

- From these samples, DTFT produces a function of frequency that is a periodic summation of the Fourier transform of the original continuous function.
- The sampling theorem states the theoretical conditions under which the original function can be perfectly recovered from DTFT of the samples.
- When the input data sequence x_n is N-periodic, DTFT reduces to DFT, i.e.,

$$X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi}{N}kni}$$

 Alternatively, DTFT is itself a continuous function, and the discrete samples of it can be efficiently calculated using DFT.

Appendix: Dirac's δ function

ullet Dirac's δ function has the following two properties:

$$\delta(x) = \begin{cases} \infty & x = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\int_{-\infty}^{+\infty} \delta(x) \mathrm{d}x = 1$$

- We can prove the following properties:
 - For any contineous function f(x),

$$\int_{-\infty}^{+\infty} f(x)\delta(x-x_0)dx = f(x_0)$$

• $\delta(x)$ is the Fourier transform of 1 since

$$\mathcal{F}\{\delta(x)\} = \int_{-\infty}^{+\infty} \delta(x)e^{-ix\omega} dx = 1$$

• According to the inverse Fourier transform of 1, we have:

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega x} \mathrm{d}\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega x} \mathrm{d}\omega$$

