1 Leistung

Bauteil	Maximale Leistung	Testbedingungen
Raspberry Pi	$4\mathrm{W}$	Maximallast im normalen Betrieb[1]
Display	$1.1\mathrm{W}$	Maximale Helligkeit[2]
Modem	$6.6\mathrm{W}$	Alle Kommunikationskanäle aktiv [3]
Relais	$0.72\mathrm{W}$	Zwei Relais, schaltend [4]

2 Bauteilwahl

	\mathbf{Typ}	Funktion	Anforderungen	Gewähltes Bauteil	Bemerkungen
[4]	Hauptrechner	Verarbeiten der Sensorsignale Benutzerinteraktion	Etabliert und verbreitet Vorexistierende Hard-und Softwareschnittstellen Passt in das Gehäuse	Raspberry Pi 3B	SD-Karte als nicht-flüchtiger S 3.3 V Versorgung ist nur für eingebaute K
	Relais	Umschalten beliebiger Signale	max. 5V Spulenspannung Schalten von 230V und 10A Passt in das Gehäuse	Serie 36 Relais	-[4]
	Display	Benutzerinterface	Kompatibel mit der Wahl des Hauptrechners Passt in das Gehäuse	4DPi-24-HAT	- [2]
	Hall-IC	Strommessung	Messung bis 10 A 1 kV Durchschlagsfestigkeit 3.3 V oder 5 V Spannungsversorgung	ACS72(4/5)	Wandelt Strom zu proportionaler Spannur
	IO-Verstärker	Schalten der Ausgabeelemente	Schalten mit 3.3 V 100 mA pro Kanal für Relais	ULN2003A	eingebaute Freilaufdioden [7]
	AD-Wandler	Erfassen der Stromwerte	Gleicher Spannungsbereich wie die Hall-ICs 3 Kanäle Serielle Schnittstelle	MAX11612	I2C-Interface [8]
	UART-Bus-Multiplexer	Multiplexen der Sensorverbindungen	3 Kanäle parallel	SC16IS740	I2C-Interface 1 IC pro Kanal
	Modem Pegelwandler Schaltregler	Versand von SMS Verbindung von $5\mathrm{V}$ und $3.3\mathrm{V}$ Stromversorgung	Integrierte Lösung Bidirektionale Verbindung 5 V zu 3.3 V bei über 2 A	SIM900 NLSX4373 LM2596	-[10] Entwickelt für I2C [11] 3A, integrierter Schalter [12]

References

- [1] Raspberry Pi Foundation, "What are the power requirements?" [Online]. Available: https://www.raspberrypi.org/help/faqs/#powerReqs
- $[2] \ 4D \ Systems, \ "4dpi-24-hat." \ [Online]. \ Available: \ http://www.4dsystems.com.au/productpages/4DPi-24-HAT/downloads/4DPi-24-HAT_datasheet_R_1_6.pdf$
- [3] Simcom, "Sim900 reference design guide." [Online]. Available: http://simcom.ee/documents/SIM900/AN_SIM900 Reference Design Guide_V1.02.pdf
- [4] Finder, "36 series." [Online]. Available: http://gfinder.findernet.com//assets/Series/356/S36EN.pdf
- [5] Raspberry Pi Foundation, "Raspberry pi 3 is out now! specs, benchmarks & more." [Online]. Available: https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks/
- [6] Allegro MicroSystems, "Acs725 datasheet." [Online]. Available: http://www.allegromicro.com/ /media/Files/Datasheets/ACS725-Datasheet.ashx

- [7] Texas Instuments, "Uln200x, ulq200x high-voltage, high-current darlington transistor arrays." [Online]. Available: http://www.ti.com/lit/ds/symlink/uln2003a.pdf
- $[8] \ \ Maxim \ Integrated, \ "Max11612-max11617." \ [Online]. \ \ Available: \ https://datasheets.maximintegrated.com/en/ds/MAX11612-MAX11617.pdf$
- $[9] \ NXP \ Semiconductors, \ "Sc16 is 740/750/760." \ [Online]. \ Available: \ http://www.nxp.com/documents/data_sheet/SC16 IS 740_750_760.pdf$
- [10] Simcom, "Sim900." [Online]. Available: http://simcom.ee/documents/SIM900/SIM900_SPEC_1405.pdf
- [11] ON Semiconductor, "Nlsx4373." [Online]. Available: http://www.onsemi.com/pub_link/Collateral/NLSX4373-D.PDF
- [12] Texas Instruments, "Lm2596 simple switcher." [Online]. Available: http://www.ti.com/lit/ds/symlink/lm2596.pdf