Test 1 Key

()
$$t-3 \ge 0$$
 $4t-16=0$ $D=\{\frac{1}{4} \mid t \ge 3, t \ne 4\}$
 $t \ge 3$ $t=\frac{16}{4}=4$ or $[3,4)\cup(4,\infty)$

(2) $3(x+h)^2-z(x+h)+4-(3x^2-zx+4)$
 h

$$= \frac{3(x^2+2xh+h^2)-zx-zh+4-3x^2+zx-4}{h}$$

$$= \frac{6xh+3h^2-zh}{h}=6x+3h-2$$
(3) $a \ge 0$ $a \ge 0$

local max: (-2,6), (2,10)

7 a)
$$\frac{x - intercept: (-16, 0)}{x - 0^2 = -16}$$
 $x = -16$
b) For $x - axis: x - (-y)^2 = -16$
 $x - y^2 = -16$ Some $x - axis$

So symmetric w.n.f. $x - axis$

So $x - axis$

C) $\frac{4}{x - axis}$

So $x - axis$

So $x - axis$

(a) $\frac{4}{x - axis}$

So $x - axis$

So $x - axis$

(b) $\frac{4}{x - axis}$

A $\frac{4}{x - axis}$

So $x - axis$

So $x - axis$

A $\frac{4}{x - axis}$

So $x - axis$

A $\frac{4}{x - axis}$

So $x - axis$

A $\frac{4}{x - axis}$

So $x - axis$

So $x - axis$

A $\frac{4}{x - axis}$

So $x - axis$

So $x - axis$

So $x - axis$

A $\frac{4}{x - axis}$

So $x - axis$

A $\frac{4}{x - axis}$

So $x - axis$

So $x - axis$

A $\frac{4}{x - axis}$

So $x - axis$

So $x - axis$

A $\frac{4}{x - axis}$

So $x - axis$

So $x - axis$

A $\frac{4}{x - axis}$

So $x - axis$

So $x - axis$

A $\frac{4}{x - axis}$

So $x - axis$

So $x - axis$

A $\frac{4}{x - axis}$

So $x - axis$

A $\frac{4}{x - axis}$

So $x - axis$

So $x - axis$

A $\frac{4}{x - axis}$

So $x - axis$

So $x - axis$

A $\frac{4}{x - axis}$

So $x - axis$

So $x - axis$

So $x - axis$

A $\frac{4}{x - axis}$

So $x - axis$

So $x - axis$

A $\frac{4}{x - axis}$

So $x - axis$

So $x - axis$

So $x - axis$

So $x - axis$

A $\frac{4}{x - axis}$

So $x - axis$

A $\frac{4}{x - axis}$

So $x - axis$

So $x - axis$

So $x - axis$

A $\frac{4}{x - axis}$

A $\frac{4}{x - a$

) a)
$$\frac{x-intercept}{x-0^2=-16}$$
 (-16,0) $\frac{y-intercept}{x-16}$ (0, +4) $\frac{x-0^2=-16}{x-16}$ (0, +4) $\frac{x-16}{x-16}$ (0, +4) $\frac{y-16}{x-16}$ (10, 10, +4) $\frac{y-16$

(a)
$$(f-g)(x) = (3x-1) - (5x+6)$$

$$= -2x-7$$

$$(f-g)(2) = -2(2)-7 = -11$$

$$y = \frac{4}{3}x-4$$

$$x = -6/5$$

yes, the point (-1,2) is on the graph b) $f(z) = 3(z)^2 - z - z = 1z - z - z = 8$. The point (z, 8)c) $3x^2 - x - z = -2$ The points (0, -2), $(\frac{1}{3}) - z$) and $(3x^2 - x) = 0$ on the graph. $(3x^2 - x) = 0$ on the graph.

e)
$$3x^{2} \times -2 = 0$$
 $(-\frac{2}{3})0)$, $(1,0)$

$$f)(0,-2)$$
 $g)-2/3,1$

(13)
$$d = \sqrt{(32-25)^2+(15-10)^2}$$

 $= \sqrt{7^2+5^2} = \sqrt{49+25} = \sqrt{74}$
 $M = \left(\frac{25+32}{2}\right)\frac{10+15}{2} = \left(\frac{57}{2}\right)\frac{25}{2}$

$$(0,-2), (3,-2)$$
 and paph.

(1) (1) (3) -2) and Fry ap to 300 minutes, the cost is 34.99\$

b) 25(400) - 40.01

= 59.99\$

y= 4x-4

 $m = \frac{4}{3} (0, -4)$