Foundations of Data Science

Master in Data Science 2021 / 2022

EXPLORATORY DATA ANALYSIS

Exploratory Data Analysis

• "It is important to understand what you CAN DO before you learn to measure how WELL you seem to have done it."

John W. Tukey, Exploratory Data Analysis, 1977

Exploratory Data Analysis

• "It is important to understand what you CAN DO before you learn to measure how WELL you seem to have done it."

John W. Tukey, Exploratory Data Analysis, 1977

- Investigative process to know the data
 - Look for anomalies: outliers, spurious values
 - Uncover patterns and potential associations
 - Generate hypotheses
 - Nowadays it is mostly graph-based

EDA

Visual inspection

- Get early understanding of the data just by 'looking at it'
- Get early insights such as 'what are the columns / measurements' 'how are these encoded' 'how are missing values represented'
- Can help spot initial data problems


```
titanic.info()

√ 0.7s

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
                  Non-Null Count Dtype
     survived
                  891 non-null
                                   int64
     pclass
                  891 non-null
                                   int64
                  891 non-null
                                   object
                  714 non-null
                                   float64
     sibsp
                  891 non-null
                                   int64
     parch
                  891 non-null
                                   int64
     fare
                  891 non-null
                                   float64
     embarked
                  889 non-null
                                   object
                                   category
     class
                  891 non-null
                  891 non-null
                                   object
    adult male
                  891 non-null
                                   bool
 11 deck
                  203 non-null
                                   category
    embark_town
                  889 non-null
                                   object
                  891 non-null
                                   object
                  891 non-null
                                   bool
 14 alone
dtypes: bool(2), category(2), float64(2), int64(4), object(5)
```

memory usage: 80.6+ KB

Categorical data

- Count the frequency of each category
- With bivariate categorical data, count frequency of combinations
- With multivariate categorical data, use several aggregations
 - Pandas: groupby, pivot_table, MultiIndex

```
titanic.groupby(['class', 'deck']).size()

✓ 0.7s

class deck
First A 15
B 47
C 59
D 29
E 25
F 0
G 0
Second A 0
B 0
C 0
D 4
E 4
F 8
G 0
```

- Categorical data
 - Count the frequency of each category
 - With bivariate categorical data, count freque

	class	First	Second	Third
sex	age			
female	(0, 18]	10.0	14.0	22.0
	(18, 60]	70.0	54.0	24.0
	(60, 100]	2.0	NaN	1.0
male	(0, 18]	4.0	9.0	11.0
	(18, 60]	35.0	5.0	27.0
	(60, 100]	1.0	1.0	0.0

- With multivariate categorical data, use several aggregations
 - Pandas: groupby, pivot_table, MultiIndex

- Univariate continuous data
 - Tukey's five number summary minimum value, lower quartile, median, upper quartile, maximum value

						ÞΞ
	tanic.descri	be()				
✓ 0	.1s					
	survived	pclass	age	sibsp	parch	fare
count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Skewness

Measure of the asymmetry of the probability distribution of a real-valued random variable about its mean.

Skew = 0.389

Kurtosis = **0.178**

Kurtosis

Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution.

Data sets with high kurtosis tend to have a distinct peak near the mean, decline rather rapidly, and have heavy tails.

- Bivariate/Multivariate continuous data
 - Covariance a measure of the joint variability of two random variables
 - Correlation a measure of linear correlation between two sets of data (Pearson's)

titani	c.cov()							
√ 0.8s								Pythor
	survived	pclass	age	sibsp	parch	fare	adult_male	alone
survived	0.236772	-0.137703	-0.551296	-0.018954	0.032017	6.221787	-0.132720	-0.048451
pclass	-0.137703	0.699015	-4.496004	0.076599	0.012429	-22.830196	0.038494	0.055347
age	-0.551296	-4.496004	211.019125	-4.163334	-2.344191	73.849030	2.012292	1.428550
sibsp	-0.018954	0.076599	-4.163334	1.216043	0.368739	8.748734	-0.136916	-0.315568
parch	0.032017	0.012429	-2.344191	0.368739	0.649728	8.661052	-0.138108	-0.230242
fare	6.221787	-22.830196	73.849030	8.748734	8.661052	2469.436846	-4.428757	-6.613861
adult_male	-0.132720	0.038494	2.012292	-0.136916	-0.138108	-4.428757	0.239723	0.097026
alone	-0.048451	0.055347	1.428550	-0.315568	-0.230242	-6.613861	0.097026	0.239723

	c.corr()							Dud
✓ 0.1s								Pyt
	survived	pclass	age	sibsp	parch	fare	adult_male	alone
survived	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307	-0.557080	-0.203367
pclass	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500	0.094035	0.135207
age	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067	0.280328	0.198270
sibsp	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651	-0.253586	-0.584471
parch	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225	-0.349943	-0.583398
fare	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000	-0.182024	-0.271832
adult_male	-0.557080	0.094035	0.280328	-0.253586	-0.349943	-0.182024	1.000000	0.404744
alone	-0.203367	0.135207	0.198270	-0.584471	-0.583398	-0.271832	0.404744	1.000000

- Range and distribution
 - Histograms

<AxesSubplot:xlabel='age', ylabel='Count'>

- Range and distribution
 - Kernel Density Estimation


```
sns.histplot(data=titanic, x='age', hue='sex', kde=

v 0.8s

<AxesSubplot:xlabel='age', ylabel='Count'>

60
50
40
20
10
20
30
40
50
60
70
80
```

- Range and distribution
 - Box and whiskers

- Bivariate relations
 - Scatter

Chart Suggestions—A Thought-Starter

EDA — TRANSFORMATIONS

Scaling and Normalization

Clipping

Min-max scaling

$$x' = (x - x_{min})/(x_{max} - x_{min})$$

• Z-score normalization $x' = (x - x_{mean})/std(x)$

$$x' = (x - x_{mean})/std(x)$$

Log transformation

$$x' = log(x)$$

Clipping

```
data = pd.DataFrame(np.random.randn(1000, 4))
data.describe()
```

	0	1	2	3
count	1000.000000	1000.000000	1000.000000	1000.000000
mean	0.006937	-0.001148	0.005534	-0.071845
std	0.997755	0.996284	0.956239	0.968821
min	-3.469708	-3.480299	-3.318964	-3.061939
25%	-0.667270	-0.635888	-0.626244	-0.753025
50%	0.001361	0.019188	0.019076	-0.085168
75%	0.678818	0.635179	0.591785	0.565218
max	3.320355	3.926691	3.343637	4.079920

```
data[np.abs(data) > 2] = np.sign(data) * 2
data.describe()

$\square 0.1s$
```

	0	1	2	3
count	1000.000000	1000.000000	1000.000000	1000.000000
mean	0.008778	-0.003545	0.006757	-0.072724
std	0.957944	0.938595	0.922174	0.929572
min	-2.000000	-2.000000	-2.000000	-2.000000
25%	-0.667270	-0.635888	-0.626244	-0.753025
50%	0.001361	0.019188	0.019076	-0.085168
75%	0.678818	0.635179	0.591785	0.565218
max	2.000000	2.000000	2.000000	2.000000

Clipping

```
data = pd.DataFrame(np.random.randn(1000, 4))
                                                                      data[np.abs(data) > 2] = np.sign(data) * 2
   data.describe()
                                                                      data.describe()
✓ 0.1s
                                                                   ✓ 0.1s
60
                                50
40
                                                                  20
                                25
20
75
                                60
50
                                40
                                                                  20
25
                                20
```

Tukey's ladder of powers

- How the distribution of [0,+∞) variables can be transformed to near symmetry using power transformations
 - Positively skewed data can be symmetrically transformed using negative powers
 - Negatively skewed data can be symmetrically transformed using positive powers

Power	Description	Skewness	Effect
-3	Inverse cubic	+	Drastic
-2	Inverse square	+	\uparrow
-1	Inverse	+	Reciprocal
$-\frac{1}{2}$	Inverse square root	+	\downarrow
$-\frac{1}{3}$	Inverse cubic root	+	Mild
\log_b	Logarithmic transformation	+	
$\frac{1}{3}$	Cubic root	-	Mild
$\frac{1}{2}$	Square root		↑
1	Identity	_	None
2	Square	_	\downarrow
3	Cubic		Drastic

Example

Binning

 Sometimes the continuous (raw) values are not informative, but value ranges (bins) can be

- Represent the data by bins
 - Equally spaced bins
 - Equally sized bins (quantile binning)
 Better representation of skewed values

Binning

See also:

pd.qcut

```
pd.cut(ages, age_bins)

✓ 0.6s

[(20, 30], (90, 100], (50, 60], (70, 80], (20, 30], ..., (90, 100], (40, 50], (30, 40], (70, 80], (70, 80]]

Length: 20

Categories (9, interval[int64]): [(10, 20] < (20, 30] < (30, 40] < (40, 50] ... (60, 70] < (70, 80] < (80, 90] < (90, 100]]
```

The pandas function cut returns a special Categorical object

Categorical features

Ordinal encoding

Categorical features

• Indicator features / One hot encoding

```
titanic['embark_town'].unique()

v 0.6s

array(['Southampton', 'Cherbourg', 'Queenstown', nan], dtype=object)

pd.get_dummies titanic['embark_town'])

v 0.5s

Cherbourg Queenstown Southampton
```

	Cherbourg	Queenstown	Southampton
0	0	0	1
1	1	0	0
2	0	0	1
3	0	0	1
4	0	0	1

Categorical features

Dummy features

```
cities = list(titanic['embark_town'].unique())
pd.get_dummies(titanic['embark_town'], drop_first=True)
$\square 0.6s$
```

	Queenstown	Southampton
0	0	1
1	0	0
2	0	1
3	0	1
4	0	1
5	1	0