アルゴリズムとデータ構造(9) ~ グラフ ~

鹿島久嗣

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

グラフ: 定義と基本アルゴリズム

- ■グラフの定義
 - -グラフ、木、配列
- グラフ上のアルゴリズム
 - -探索
 - -最短経路
 - -最大流(次回)

グラフ

グラフ: 頂点を辺でつないだもの

- ■グラフG = (V, E): 頂点を辺(= 枝)でつないだもの
 - V:頂点集合(有限集合)
 - -E: 辺の集合 (V上の2項関係; $E \subseteq V \times V$)
- $辺e = (u, v) \in E$ に向きがあるかどうかで有向グラフ、無向グラフに分類される
 - *u, v* は「隣接する」という
- ●グラフの例:交通網、Web、ソーシャルネットワーク、 生体ネットワーク、化合物、構文解析木、...

グラフ関連の用語定義①: 部分グラフ、パス

- 部分グラフ:
 - 2つのグラフ $G_1 = (V_1, E_1), G_2 = (V_2, E_2)$ が $V_1 \subseteq V_2$ かつ $E_1 \subseteq E_2$ のとき G_1 は G_2 の部分グラフであるという
- ■パス(道): 頂点系列 $v_1, v_2, ..., v_k$ で、 $(v_1, v_2) \in E$ (長さk-1)であるもの
 - $-v_1, v_2, ..., v_k$ がすべて異なるときパスは単純であるという
 - $-v_1, v_2, ..., v_{k-1}$ がすべて異なり $v_1 = v_k$ のとき閉路という
 - ―有向グラフのとき:パス(含まれる辺の向きが揃ってなくともよい)と有向パス(向きが揃っている)がある

グラフ関連の用語定義②: 連結、木

- ■連結: G上のどの2点(u,v)に対しても、uからvへの (有向) パスがあるとき、Gは連結であるという
 - —特に、有向グラフの場合、uからvへのパスと、vからuへパスの両方があるとき、強連結という
- ■木:閉路のない、連結な無向グラフ
 - -根付き木:根とよばれる特別な頂点をもつ木
 - -頂点数をnとすると辺の数はn-1本

グラフ上の探索

グラフ上の探索: グラフの頂点列挙問題

- Webのクローリング: あるページから出発して、リンクをたどりながらページを列挙する (Webの地図をつくる)
- G 上のある頂点v₀から開始して、
 G 上を巡回してすべての頂点を列挙することを考える
 - -仮定:既に訪れた頂点に隣接する頂点は認識できる (列挙したことにできる)
- ■基本方針:これまでに挙げた頂点に隣接する頂点のうち、 まだ訪問していないものひとつを選んで移動…を繰り返す

グラフ上の探索: グラフの頂点列挙問題

- Webのクローリング: あるページから出発しながらページを列挙する(Webの地図を1
- G上のある頂点 v_0 から開始して、G上を巡回してすべての頂点を列挙するこ

―仮定:既に訪れた頂点に隣接する頂点は認識できる (列挙したことにできる)

■基本方針:これまでに認識(列挙)した頂点のうち、まだ訪問していないものひとつを選んで移動…を繰り返す

グラフ上の頂点列挙の方針: 列挙済み/未訪問の頂点の管理が肝

- ■考えるべき2つのデータ構造:
 - A: すでに列挙した頂点集合を管理するデータ構造
 - B: これから訪問すべき頂点集合を管理するデータ構造
- 1. v_0 をAとBにいれる

認識(列挙)はしたがまだ行ってない

- 2. *B*から頂点をひとつ (*v*) とりだす
- 3. vに隣接する頂点でAに入っていないものがあれば、 それらを全てAとBの両方に加える
- 4. Bが空なら、Aがすべての頂点集合。そうでなければ2へ。

グラフ上の頂点列挙の方針: 列挙済み/未訪問の頂点の管理が

- ■考えるべき2つのデータ構造:
 - A: すでに列挙した頂点集合を管理
 - B:これから訪問すべき頂点集合を
- 1. v_0 をAとBにいれる
- Bから頂点をひとつ (v) とりだす
- 3. vに隣接する頂点でAに入っていないものがあれば、 それらを全てAとBの両方に加える
- 4. Bが空なら、Aがすべての頂点集合。そうでなければ2へ。

列挙済み頂点の管理: ハッシュを使えば効率的にできる

■考えるべき2つのデータ構造:

A:すでに列挙した頂点集合の管理

B: これから訪問すべき頂点集合の管理

- ある頂点を既に列挙したかどうかを効率よくチェックする:
 vに隣接する頂点集合N(v)のそれぞれがAに含まれているか?
- 素朴にやると: O(|A||N(v)|)
- ハッシュを使って:O(|N(v)|)

これから訪問すべき頂点の管理: キューやスタックで管理する

■考えるべき2つのデータ構造:

A: すでに列挙した頂点集合の管理

B:これから訪問すべき頂点集合の管理

- 2通りの実現法:実現方法によって訪問順が変わる
 - キュー:幅優先探索
 - スタック:深さ優先探索

幅優先探索

深さ優先探索

キューとスタック: それぞれ FIFO / LIFO のデータ構造

- ■キュー: First-in-first-out (FIFO)のデータ構造
 - -2つのポインタ: headとtail
 - -追加:tail位置に追加して、tail+1
 - -取り出し: head位置を読み出して、head+1
- ■スタック: Last-in-first-out (LIFO)のデータ構造
 - ーポインタ: top
 - -追加:top+1の位置に追加して、topを+1する
 - --取り出し: top位置を取り出し、topを-1する

← head

最短経路問題

グラフ上の最短経路問題: 始点から終点へのコスト最小のパスをみつける問題

- ■グラフG = (V, E)において:
 - -各辺 $e \in E$ に、非負の実数コストl(e)が与えられている
 - $-特別な頂点である始点<math>v_s$ と終点 v_t がある
- •始点 v_s から終点 v_t へ至るパスのうち、パス上の枝のコストの和が最小になるようなパスをみつけたい

ダイクストラ法:

始点から各頂点への最短コストの更新を繰り返す

- 1. $d(v_s) \leftarrow 0$; $V \{v_s\}$ に属するすべての頂点 vに対して $d(v) \leftarrow \infty$; $A \leftarrow \{v_s\}$
- 2. Aの頂点のうち、d(v)が最小のvをとりだす

Aはまだ最短コストが確定していない頂点集合

- 3. $v = v_t$ ならば、 $d(v_t)$ を出力して終了
- 4. *v*に隣接する各頂点wに対して:

初めて訪問したケース

- 1. if $d(w) = \infty$ then $w \in A$ に追加して $d(w) \leftarrow d(v) + l(v, w)$
- 2. else if d(w) > d(v) + l(v, w) then $d(w) \leftarrow d(v) + l(v, w)$
- 5. Step 2 にもどる 2回目以降の訪問ではより短い経路が見つかれば置き換える

ダイクストラ法の計算量: ヒープを使って実現すると $O(|E|\log|V|)$ でできる

- 初期化の計算量はO(|V|): ノード数|V|に比例
- Aの頂点のうち d(v)が最小のvをとりだす計算量はO(log |V|)
 - d(v)をプライオリティキュー(ヒープ等)で管理するとする
 - -全部まとめてO(|V| log |V|)
- vに隣接する各頂点wをチェックする計算量は:
 - -vに隣接する頂点数|N(v)|
 - $-w \in N(v)$, d(w)の更新にあわせ、ヒープを作り変えるのは $O(\log |V|)$
 - $-\sum_{v \in V} |N(v)| = 2|E|$ なので、全部まとめると $O(|E| \log |V|)$

ダイクストラ法の正当性: このアルゴリズムは最短経路を求めることが保証される

- 定理:ステップ 2 「Aの頂点のうち、d(v)が最小のvをとりだす」で、Aの頂点のうちd(v)が最小の頂点vは、その時点のd(v)が v_S からvまでの最短経路長になっている
 - –つまりステップ2で頂点が取り出されるたびに、頂点がひとつずつ最短経路が確定していく
- ■数学的帰納法による証明:
 - I. ステップ 2 が初めて実行されたとき、 $d(v) = d(v_S) = 0$ である
 - II. ある時点まで定理が成り立っていると仮定すると、
 - III. 次にステップ 2 が実行されるときに定理が成り立つことを示す

ダイクストラ法の正当性: 数学的帰納法による証明(Ⅲ)

- Ⅲ. 次にステップ2が実行されるときに成り立つことを示す
 - -とりだされたvまでの最短経路においてvのひとつまえの頂点をwとする
 - -wが過去に取り出された頂点集合Fに含まれているかで場合わけ:
 - 含まれている場合:d(w)は最短経路長。以前wをとりだしたときのステップ $4 \, \overline{c} \, d(v)$ はすでに最短経路長に更新されているはず
 - 含まれていない場合:
 - -経路上で初めてFに含まれていない頂点xに対し、そのひとつ前のyに対するd(y)は最短経路長
 - -以前yをとりだしたときのステップ 4 でd(x)はすでに最短経路長に更新されているはず。それならばvよりもxのほうが先に取り出されるべき
 - \rightarrow (実際にvが取り出されているということは) そのようなxはない

ダイクストラ法の正当性: 数学的帰納法による証明(Ⅲ)

- Ⅲ. 次にステップ2が実行されるときに成り立つことを示す
 - とりだされたvまでの最短経路においてvのひとつまえの頂点をwとする
 - -wが過去に取り出された頂点集合Fに含まれているかで場合わけ:
 - 含まれている場合:d(w)は最短経路長。以前wをとりだしたときのステップ $4 \, \overline{c} \, d(v)$ はすでに最短経路長に更新されているはず
 - 含まれていない場合:
 - -経路上で初めてFに含まれていなしするd(y)は最短経路長

- -以前yをとりだしたときのステップ 4 でd(x)はすでに最短経路長に更新されているはず。それならばvよりもxのほうが先に取り出されるべき
 - \rightarrow (実際にvが取り出されているということは) そのようなxはない

ダイクストラ法の正当性: 数学的帰納法による証明(Ⅲ)

- Ⅲ. 次にステップ2が実行されるときに成り立つことを示す
 - とりだされたvまでの最短経路においてvのひとつまえの頂点をwとする
 - -wが過去に取り出された頂点集合Fに含まれているかで場合わけ:
 - 含まれている場合:d(w)は最短経路長。以前 $4 \, \text{で} \, d(v)$ はすでに最短経路長に更新されている

- 含まれていない場合:
 - 経路上で初めてFに含まれていない頂点xに対し、そのひとつ前のyに対するd(y)は最短経路長
 - -以前yをとりだしたときのステップ 4 でd(x)はすでに最短経路長に更新されているはず。それならばvよりもxのほうが先に取り出されるべき
 - \rightarrow (実際にvが取り出されているということは) そのようなxはない

A*アルゴリズム:

最短経路の見積もりを使って探索を効率化

- ダイクストラ法ではd(v)として現時点まで明らかになっている最短経 路長の上界をつかって探索順序を決定した
 - -つまり、未来の情報はつかっていない
- d(v)を一般化する:a(v) = d(v) + h(v)
 - -ヒューリスティクス関数h(v): vから v_t への最短経路の下界
 - たとえば2次元平面上での問題であれば、vと v_t のユークリッド距離を使用できる
 - -ゴールを向いた方向を優先して探索する
 - ダイクストラ法ではh(v) = 0

付録: ダイクストラ法の例 – Step 1

付録: ダイクストラ法の例 – Step 2

付録: ダイクストラ法の例 – Step 3

付録: ダイクストラ法の例 – Step 4

付録: ダイクストラ法の例 – Step 5

付録: ダイクストラ法の例 – Step 6

