

Theory of Computation CS F351

Vishal Gupta
Department of Computer Science and Information Systems
Birla Institute of Technology and Science
Pilani Campus, Pilani

Lecture - 18

=(V-Z)XV*

- 1. Deterministic FA is defined as a quintuple (Q, \sum, δ, s, F) .
 - δ is a transition function from Q x \sum to Q.
- 2. NDFA is defined as a quintuple (Q, \sum , δ , s, F).
 - δ is a transition relation and is a finite subset of $(Q \times (\sum U \{ \epsilon \}) \times Q)$
- 3. CFG is defined as four tuples (V, \sum, R, S) .
 - V is a finite set of non-terminals. <a>c <a>c
 - ∑ is a finite set of terminals.
 - R is the set of production rules and is a finite subset of $V \times V^*$. In other words, its elements are of the form $\alpha \rightarrow \beta$, where $\alpha \in \mathcal{N}$, and $\beta \in \mathcal{N}$. $(V \cup Z)^{\times}$
 - S is the start symbol (or non-terminal), and $S \in V$.
- 4. PDA is defined as a six tuple (Q, ∑, τ, Δ, s, F).
 - Δ is defined as a transition relation and is a finite subset of (Q x (∑ U {ε}) x τ*) x (Q x τ*)
 - What is the acceptance criteria of a string by a given PDA?

bushed on the stack (*) x (Q x T*)

BITS Pilani, Pilani Campus

1. Every Finite Automata can be viewed as a PDA that never operates on its stack: True/False.

Given a DFA
$$M = (Q, \overline{z}, S, s, \overline{t})$$
, eorstruid a correspond
PDA $M_1 = (Q', \overline{z}', \Gamma, \Delta, s', \overline{t}')$
 $M_1 = (Q, \overline{z}, \phi, \Delta, s, F)$
 $\Delta \Rightarrow ?$ for every $(P, u, q) \in S$,
include (P, u, ϵ) (q, ϵ) in Δ .

1. For every ambiguous grammar, there always exists a corresponding unambiguous grammar. True/False.

innovate achieve lead

Review

There always exists an unambiguous grammar for each regular language. True / False.

What is a leftmost derivation and rightmost derivation?

Theorem: Each CFG is accepted by some PDA.

- 1) Let $G = (V, \sum, R, S)$ be a CFG. Construct a corresponding PDA M such that L(G) = L(M).
- 2) Let $M = (Q, \sum, \tau, \Delta, s, F)$ be a PDA, Construct a corresponding G such that L(M) = L(G)

Proof of (1)

 $M = (Q, \sum, \tau, \Delta, s, F)$

= $(\{p, q\}, \sum, V \cup \sum, \Delta, \{q\})$, where Δ contains the following transitions:

- $((p, \epsilon, \epsilon), (q, S))$
- $((q, \epsilon, A), (q, \alpha))$, for each rule $A \rightarrow \alpha$ in R
- $((q, a, a), (q, \epsilon)),$ for each terminal $a \in \mathbb{R}$.

$$L(M) = L(M_1) - L(M_2)$$

You know that Regular Languages are closed under intersection operation. Is there a direct proof for intersection. In other words, given 2 DFA's M1 and M2, how to directly construct a DFA for M, where $(L(M) = L(M1) \cap L(M2))$.

$$M_{1} = (Q_{1}, \sum, S_{1}, Q_{1}, f_{1}) \qquad M_{2} = (Q_{2}, \sum, S_{2}, Q_{2}, f_{2})$$

$$M = (Q, \sum, S, A, F) , L(M) = L(M_{1}) \wedge L(M_{2})$$

$$Q = Q_{1} \times Q_{2}$$

$$S \Rightarrow S((P_{1}, P_{2}), a)$$

$$= (S(P_{1}, a), S(P_{2}, a))$$

$$BC \Rightarrow BD$$

$$BC \Rightarrow BD$$

- OI) Given a DIAM.
 - @ is L(r) = \$?
 - (b) is L(n) finite?
 - © Griven two DFA's MI, M2, is L(MI) C L(M2).