1. Låb
$$A = \begin{pmatrix} -3 & 11 & 10 \\ -2 & 10 & 10 \end{pmatrix}$$
. Avegor vilha av Söljande $2 - 11 - 11$ volkbover som år egenvektorer bill A, och vad de egenvektorerna har för egenvärden.

$$\overline{u}_{1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \overline{u}_{2} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \quad \overline{u}_{3} = \begin{pmatrix} 3 \\ 3 \\ -4 \end{pmatrix} \quad \overline{u}_{4} = \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} \quad \overline{u}_{5} = \begin{pmatrix} 3 \\ -4 \\ 5 \end{pmatrix} \quad \overline{u}_{6} = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$$

Losning! Vi undersöher genom direkt berähning om
$$A\bar{u}_k = \lambda \bar{u}_k$$
 för vägon skalär λ .

 $A\bar{u}_l = \begin{pmatrix} -3 & 11 & 10 \\ -2 & 10 & 10 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 & -11 & -11 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 & -11 & -11 \end{pmatrix} \begin{pmatrix} 1 \\ 2 & -11 & -11 \end{pmatrix} = \begin{pmatrix} 18 \\ -20 \end{pmatrix} \neq \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ & egenvektor.

$$A\bar{u}_2 = \begin{pmatrix} -3 & 11 & 10 \end{pmatrix} \begin{pmatrix} 1 \\ -2 & 10 & 10 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -2+10-10 \\ 2-11+11 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix} = -2 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
. Exemplify, e.g., Exemplify, e.g., Exemplify, e.g., Exemplify, e.g., $\frac{1}{2} \begin{pmatrix} -2 & 1 \\ 2 & -1 \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix}$.

$$A_{\overline{1}\overline{3}} = \begin{pmatrix} -3 & 11 & 10 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} = \begin{pmatrix} -9 + 33 - 40 \\ -6 + 30 - 40 \end{pmatrix} = \begin{pmatrix} -16 \\ -16 \end{pmatrix} \neq \lambda \begin{pmatrix} 3 \\ 3 \end{pmatrix} \text{ Sion alla } \lambda, \\ 2 - 11 - 11 \end{pmatrix} \begin{pmatrix} -4 \\ -4 \end{pmatrix} \begin{pmatrix} 6 - 33 + 44 \\ -4 \end{pmatrix} = \begin{pmatrix} 17 \\ 17 \end{pmatrix} \begin{pmatrix} -4 \\ -4 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \neq \frac{16}{3} \neq \frac{17}{4}.$$
Ej egenvektor.

$$A\overline{u}_{4} = \begin{pmatrix} -3 & 11 & 10 \end{pmatrix} \begin{pmatrix} 4 \\ -2 & -2 & 10 \end{pmatrix} \begin{pmatrix} -12-22+30 \\ -2 & -8-20+30 \end{pmatrix} = \begin{pmatrix} -4 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 4 \\ -2 & -1 \end{pmatrix}. Egenvelsor, 3 + 22-33 \end{pmatrix} \begin{pmatrix} -3 & -3 & -3 \end{pmatrix} \begin{pmatrix} -3 & -20+30 \\ -3 & -3 & -3 \end{pmatrix} \begin{pmatrix} -3 & -20+30 \\ -3 & -3 & -3 \end{pmatrix}$$

$$A\bar{u}_{5} = \begin{pmatrix} -3 & 11 & 10 \\ -2 & 10 & 10 \\ 2 & -11 & -11 \end{pmatrix} \begin{pmatrix} 3 \\ -4 \end{pmatrix} = \begin{pmatrix} -9 & -44 + 50 \\ -6 & -40 + 50 \\ 6 & +44 - 55 \end{pmatrix} = \begin{pmatrix} -3 \\ 4 \end{pmatrix} = -1 \cdot \begin{pmatrix} -4 \\ -4 \end{pmatrix}.$$
 Egenvelsor, $\begin{pmatrix} -3 & 11 & 10 \\ 4 & -2 & 10 & 10 \\ 2 & -11 & -11 \end{pmatrix} \begin{pmatrix} 1 \\ 2 & -2 + 20 - 20 \\ 2 & -22 + 22 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 & -2 \end{pmatrix}.$ Egenvelsor, $\begin{pmatrix} -3 + 22 - 20 \\ 2 & -22 + 22 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 & -2 \end{pmatrix}.$ Egenvelsor, $\begin{pmatrix} -3 & 11 & 10 \\ 2 & -2 & -22 + 22 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 2 & -22 + 22 \end{pmatrix}.$ Egenvelsor, $\begin{pmatrix} -3 & 11 & 10 \\ 2 & -2 & -22 + 22 \end{pmatrix}$ (i.g.n.!).

Annarhning: $\overline{u}_{\gamma} = \overline{u}_{5} + \overline{u}_{6}$, så om två av dem har samma egenvärde mårbe även den tredje ha det egenvärdet.

2. Berähne ovståndet mellon linjen l: (x,y,z)=(0,7,14)+6(-3,8,5)

för telk och punkten A=(1,2,3).

Lösning, Betchna B = (0,7,14) och $\overline{u} = (-3,8,5)$. Situationen ken då illustreras som B

Det solba avstændet kan berähnas som längden av den homposant av vehtorn AB som är vinhelrät mot linjens rihbningsvektor u, dvs.

| AB - proju (AB)|.

Berähningerna blir:

$$\overrightarrow{AB} = B - A = (0,7,14) - (1,2,3) = (-1,5,11)$$

 $proj_{\overline{AB}} = \frac{\overrightarrow{AB} \cdot \overline{a}}{u \cdot u} = \frac{(-1,5,11) \cdot (-3,8,5)}{(-3,8,5) \cdot (-3,8,5)} = \frac{3+40+55}{u} = \frac{98}{u} = \overline{u}$

$$|\vec{AB} - \text{proj}_{\vec{a}}(\vec{AB})| = (-1,5,11) - (-3,8,5) = (-1+3,5-8,11-6) = (2,-3,6)$$

$$||\vec{AB} - \text{proj}_{\vec{a}}(\vec{AB})|| = \sqrt{2+(-3)+6^2} = \sqrt{4+9+36} = \sqrt{49} = 7$$

Svan? Avsbandet mellon linjen loch punken A är F.

Svan; $(x,y,z) = (2,0,2) + s(-1,0,1) + t(0,5,\frac{5}{2})$ för s,66/R.

6 Auge på parameter fri form en chrabion för planet som Innehåller punkterna A, B och C.

Løsning. For parameterfri form behøver vi en puntet, t.ex. A, och en normal till planet. En sådan normal kan man hitta som kryssprodukten av de två riktningsvektorerna.

 $\overrightarrow{AB} \times \overrightarrow{AC} = (-\overrightarrow{e_1} + \overrightarrow{e_3}) \times (5\overrightarrow{e_3} + \frac{5}{2}\overrightarrow{e_3}) = -5\overrightarrow{e_3} + \frac{5}{2}\overrightarrow{e_2} - 5\overrightarrow{e_1} = \frac{5}{2}(-2\overrightarrow{e_1} + \overrightarrow{e_2} - 2\overrightarrow{e_3})$

En normalwester är alltså $\bar{n} = (-2, 1, -2)$, så planets ekvobron på punkt-normal-form blir

 $0 = \overline{n} \cdot ((x,y,z) - (2,0,2)) = (-2,1,-2) \cdot (x-2,y,z-2)$ = -2(x-2) + y - 2(z-2) =

=-2x+4+y-2z+4=

=-2X+y-2z+8

Flytlar man över variablerna till VL blir det

Svan: 2x-y+2= = 8

Koll 4

(xy,z)=A ger $VL=2x-y+2z=2\cdot2-0+2\cdot2=4+4=8=HL$ (x,y,z)=B ger $VL=2x-y+2z=2\cdot1-0+2\cdot3=2+6=8=HL$ (x,y,z)=C ger $VL=2x-y+2z=2\cdot2-5+2\cdot\frac{9}{2}=4-5+9=8=HL$

Alla stämmer.

c Berähna arean av Grangeln ABC.
Lögning. Om A,B,C år fre punkter i R så kan arean av brangeln ABC berähnas som [//ABXAC]/ eftersom
briangeln ABC berähnas som
eftersom
kryssprodukt av bre vektorer i R3 har som längd arean av
det parallellogram som velstorerna spanner upp, och en trangel
är ett halve parallellogram. Vå den kryssproduksen redæn
) berähnets i (b) behöver vi bara normen av densamma.
$\ \vec{AB} \times \vec{AC}\ = \ \frac{5}{2}(-2\bar{e_1} + \bar{e_1} - 2\bar{e_3})\ = \frac{5}{2} \cdot \ (-2,1,-2)\ =$
$= \frac{5}{2} \cdot \sqrt{(-2)^2 + 1^2 + (-2)^2} = \frac{5}{2} \cdot \sqrt{4 + 1 + 4} = \frac{5}{2} \sqrt{9} = \frac{5}{2} \cdot 3$
Allbjæ är areæn = $\frac{1}{2} AB \times A\tilde{c} = \frac{1}{2} \cdot \frac{5}{2} \cdot 3 = \frac{15}{9}$
Soars Arean av briangeln ABC är 15.
5, Låt v, = 5e, + 7e, +6e3, v2 = 4e, +8e, +9e3 och v3 = 3e, +1e, +2e3
bin E. E. E. betechnor vehborerna i standardbasen.
Obrych u = 386 + 42e, + 46e3 som en ungarhombendown av
T, Troch T3, eller parisa att della inte ar möjligt.
Liening Dot har är ett basbytesproblem. Eftersom till-base
Løsning. Det har år ett basbytesproblem. Eftersom till-base är utbryllet i från-basen (snarare an tvarbom) så är det fråga
om det jobbigore fallet av basbyte. Eftersom V, V2, V3 vikere

bara har positiva element så år det dessubom uppenbart alt de inte år ortogonala; någon gemåg medges inte utan I blir trungna alt sbålla upp och lösa ett linjart elwations-Når man gör det, så hjelper det att uttrycha alla Whorer som kolumnmatriser; $\bar{V}_1 = \begin{pmatrix} 5 \\ 7 \end{pmatrix}, \bar{V}_2 = \begin{pmatrix} 8 \\ 9 \end{pmatrix}, \bar{V}_3 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \bar{u} = \begin{pmatrix} 38 \\ 42 \\ 46 \end{pmatrix}$ Vi søber 1,5,6 GR sålæna att rv, +5v2 +6v3 = u, vilket uppsbällt som ubvidgad matris blir

 $-6s=-12 \Leftrightarrow s=2$, Insalbuing i-2/s+8t=-2 ger -4/2+8t=-2 $\Leftrightarrow 8f=40 \Leftrightarrow t=5$, Insalbuing i r+5s-t=8 ger r+10-5=8 $\Leftrightarrow r=8-10+5=3$. Loxuingen är allbra (r,s,6)=(3,2,5).

Svar: $\overline{u} = 3\overline{v_1} + 2\overline{v_2} + 5\overline{v_3}$ är det söhba ultrycheb.

Ann. Hade systemet sahnat lørning shelle svaret istællet ha værit att u inde går att utbryche som en sådan linjärhombination.

6. Låt i v, v ER vara vehlorer med tre element, Breva en 3x3-mabris och r vara en godbychlig shalår, Vilha av de nedensbäende lähheberna är allmänt gilliga identibeter? Svara "sant", "salsho" eller "vet inte".

(a)
$$(\bar{u}+\bar{r}) \cdot \bar{w} = \bar{u} \cdot \bar{v} + \bar{u} \cdot \bar{w}$$
 FALSKT! (H) sha vara $\bar{u} \cdot \bar{w} + \bar{r} \cdot \bar{w}$.)

(e)
$$\overline{u}_{X}(\overline{v}+\overline{w}) = \overline{u}_{X}\overline{v} + \overline{u}_{X}\overline{w}$$
 SANT!

(b)
$$det(rB) = r^3 det(B)$$
 SANT!