DRAFT Primordial Black Holes and Loop Quantum Gravity: Implications for Cosmology

Antoine Dierckx

Supervisors:

Sébastien Clesse, Université Libre de Bruxelles (ULB) Francesca Vidotto, Western University

Contents

Intr	roduction
1.1	Motivation and Background
	1.1.1 Cosmology
	1.1.2 Primordial Black Holes
	1.1.3 Loop Quantum Gravity
	1.1.4 Loop Quantum Cosmology
	1.1.5 Remnants
1.2	Objectives of the Thesis
1.3	Structure of the Thesis
Ove	erview of Cosmology
2.1	Standard Cosmological Model
	2.1.1 Basic equations
	2.1.2 Inflation
	2.1.3 Cosmic Microwave Background
2.2	Early Universe Physics
	2.2.1 Necessity of Primordial Black Holes
	2.2.2 Alternative scenarios
Pri	mordial Black Holes
3.1	Formation Mechanisms of PBHs
	3.1.1 PBH formation during inflatio and during radiation or matter domination
	3.1.2 Critical parameters for PBH formation
3.2	PBHs as Dark Matter Candidates
_	3.2.1 mass spectra of PBHs
	3.2.2 Observational constraints on PBHs
3.3	Role of PBHs in Cosmology
0.0	3.3.1 Contribution of PBHs to structure formation
3.4	Gravitational wave signals related to PBH mergers
-	Evaporation of PBHs and Remnants
0.0	3.5.1 Hawking radiation
3.6	Remnants
0.0	Loop Quantum Gravity
0.1	3.7.1 Overview of LQG
	3.7.2 Loop Quantum Cosmology
Ma	thematical Details of LQC Derivations
	merical Codes and Data
	1.1 1.2 1.3 Ove 2.1 2.2 Pri 3.1 3.2 3.3 4 3.5 3.6 3.7

Chapter 1

Introduction

This is the introduction to the thesis.

1.1 Motivation and Background

1.1.1 Cosmology

This section is based on [Baumann, 2022; Peter and Uzan, 2013] for the general introduction. The inflation part is inspired from [Baumann, 2011].

Definition 1.1.1. The Hubble parameter is defined as:

$$H \equiv \frac{\dot{a}}{a} \tag{1.1.1}$$

1.1.2 Primordial Black Holes

This section is based on [Carr et al., 2024; Bagui et al., 2023] for the PBHs and on [Chrusciel, 2023] for the basics of black holes.

1.1.3 Loop Quantum Gravity

This section is based on [Rovelli and Vidotto, 2014]

1.1.4 Loop Quantum Cosmology

Question 1.1.1. Find an article

1.1.5 Remnants

This section is based on [Rovelli and Vidotto, 2024].

1.2 Objectives of the Thesis

1.3 Structure of the Thesis

Chapter 2

Overview of Cosmology

- 2.1 Standard Cosmological Model
- 2.1.1 Basic equations
- 2.1.2 Inflation
- 2.1.3 Cosmic Microwave Background
- 2.2 Early Universe Physics
- 2.2.1 Necessity of Primordial Black Holes
- 2.2.2 Alternative scenarios

Chapter 3

Primordial Black Holes

- 3.1 Formation Mechanisms of PBHs
- 3.1.1 PBH formation during inflatio and during radiation or matter domination
- 3.1.2 Critical parameters for PBH formation
- 3.2 PBHs as Dark Matter Candidates
- 3.2.1 mass spectra of PBHs
- 3.2.2 Observational constraints on PBHs
- 3.3 Role of PBHs in Cosmology
- 3.3.1 Contribution of PBHs to structure formation
- 3.4 Gravitational wave signals related to PBH mergers
- 3.5 Evaporation of PBHs and Remnants
- 3.5.1 Hawking radiation
- 3.6 Remnants

3.7 Loop Quantum Gravity

3.7.1 Overview of LQG

quantization of space background independence spin networks

3.7.2 Loop Quantum Cosmology

Big Bounce

Bibliography

- Eleni Bagui, Sebastien Clesse, Valerio De Luca, Jose María Ezquiaga, Gabriele Franciolini, Juan García-Bellido, Cristian Joana, Rajeev Kumar Jain, Sachiko Kuroyanagi, Ilia Musco, Theodoros Papanikolaou, Alvise Raccanelli, Sébastien Renaux-Petel, Antonio Riotto, Ester Ruiz Morales, Marco Scalisi, Olga Sergijenko, Caner Unal, Vincent Vennin, and David Wands. Primordial black holes and their gravitational-wave signatures, 2023. URL https://arxiv.org/abs/2310.19857.
- Daniel Baumann. Inflation. In Theoretical Advanced Study Institute in Elementary Particle Physics: Physics of the Large and the Small, pages 523–686, 2011. doi: 10.1142/9789814327183_0010.
- Daniel Baumann. Cosmology. Cambridge University Press, 7 2022. ISBN 978-1-108-93709-2, 978-1-108-83807-8. doi: 10.1017/9781108937092.
- B.J. Carr, S. Clesse, J. García-Bellido, M.R.S. Hawkins, and F. Kühnel. Observational evidence for primordial black holes: A positivist perspective. *Physics Reports*, 1054:1–68, February 2024. ISSN 0370-1573. doi: 10.1016/j.physrep.2023.11.005. URL http://dx.doi.org/10.1016/j.physrep.2023.11.005.
- Piotr Chrusciel. Geometry of Black Holes. International Series of Monographs on Physics. Oxford University Press, 4 2023. ISBN 978-0-19-887320-4, 978-0-19-885541-5.
- Patrick Peter and Jean-Philippe Uzan. *Primordial Cosmology*. Oxford Graduate Texts. Oxford University Press, 2 2013. ISBN 978-0-19-966515-0, 978-0-19-920991-0.
- Carlo Rovelli and Francesca Vidotto. Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 11 2014. ISBN 978-1-107-06962-6, 978-1-316-14729-0.
- Carlo Rovelli and Francesca Vidotto. Planck stars, White Holes, Remnants and Planck-mass quasi-particles. The quantum gravity phase in black holes' evolution and its manifestations. 7 2024.

Appendix A

Mathematical Details of LQC Derivations

Mathematical Details of LQC Derivations

Appendix B

Numerical Codes and Data

Here is the mathematica notebook used for this master thesis:

```
(* :: Package:: *)
(* :: Title:: *)
(*PBH - v1*)
(* ::Subtitle:: *)
(*Constants*)
(* :: Input:: *)
(*(* Taken from the PDG, in SI *)*)
(*c = 299792458)
                                                                 (*speed of light
    in vacuum, [m s^-1]*)*)
(*h = 6.62607015*10^{-34})
                                                      (*Planck constant [Js]*)*)
(*hbar = h/2*Pi
                                                                (*reduced Planck
  constant [Js]*)*)
(*Q_e = 1*)
(**)
(**)
```