

Filters

2 55sec +1.0 -0.33

Consider the circuit as shown in the figure below:

The Q-factor of the inductor is

1.
$$\sqrt{20}$$

2.
$$\sqrt{18}$$

3.
$$\sqrt{50}$$

4.
$$\sqrt{49}$$

T Filters

Correct Answers Is: 1

35% got this right

SOLUTION

Concept:

The quality factor is given by:

$$Q=rac{1}{R}\sqrt{rac{L}{C}}$$

where Q = Quality factor

R = Resistance

L = Inductor

C = Capacitance

Calculation:

Given R= 5Ω , L= 1H, C= 2mF

$$Q=rac{1}{5}\sqrt{rac{1}{2 imes10^{-3}}}$$

$$Q=\sqrt{rac{1000}{2 imes25}}$$

$$Q=\sqrt{20}$$

Hide Solution

Y Filters

Simplify circuit given below into current source -

Y Filters

Use source transformation in dotted region

The circuit can be redrawn as

Calculation of V_{TH}:

$$I_1 = (2-4)/(2+2) = -(1/2) A$$

$$I_2 = (-6 - 3)/(3 + 1) = -(9/4) A$$

$$V_{TH} = 2I_1 + 4 + I_2 + 3 = (2 \times -1/2) + 4 + (-9/4) +$$

Filters

$$V_{TH} = 2I_1 + 4 + I_2 + 3 = (2 \times -1/2) + 4 + (-9/4) +$$

$$3 = 15/4 \text{ V or } 3.75 \text{ V}$$

Calculation of R_{TH}:

$$R_{TH} = (2||2) + (3||1) = 7/4 \Omega$$

$$I_N = V_{TH} / R_{TH} = (15/4)/(7/4) = 15/7 A$$

Norton equivalent circuit:

Was this solution helpful?

Hide Solution

▼ Filters

Obtain the current 'I' in the network shown below -

Correct Answers Is: 1

47% got this right

Filters

Concept:

Nodal analysis is a method that provides a general procedure for analyzing circuits using node voltages as the circuit variables. Nodal Analysis is also called the **Node-Voltage Method.**

Nodal Analysis is based on the application of Kirchhoff's Current Law (KCL).

Calculation:

Use Nodal analysis at the node VX

$$2 + (V_R/2) + (V_X - 3V_R)/5 = 0$$

$$\Rightarrow$$
 2 + (V_R/2) + (4 + V_R - 3V_R)/5 = 0 [: V_X = 4 +

 V_R

$$\Rightarrow$$
 2 + (V_R/2) + (4 - 2V_R)/5 = 0

$$\Rightarrow$$
 V_R = -28 V

$$I_R = V_R/2 = -28/2 = -14 A$$

$$I = 2 + I_R = 2 + (-14) = -12 A$$

5 42sec +1.0 -0.33

The time constant of the network shown in the figure below is

2RC 1.

2. 3RC

Correct Answers Is: 4

76% got this right

T Filters

Which of the following conditions holds good for a 2-port network to be reciprocal?

1.
$$Z_{11} = Z_{22}$$

2.
$$H_{12} = H_{21}$$

3.
$$Y_{12} = -Y_{21}$$

4. BC - AD = -1

Correct Answers Is: 4

57% got this right

SOLUTION

Y Filters

$$V_1 \longrightarrow V_2$$

$$V_1 \longrightarrow V_2$$

A network is said to be reciprocal if the voltage appearing at port 2 due to a current applied at port 1 is the same as the voltage appearing at port 1 when the same current is applied to port 2.

Two Port Parameters	Condition for Symmetry	for	
Z Parameters	Z ₁₁ = Z ₂₂	$Z_{12} = Z_{21}$	
Y parameters	Y ₁₁ = Y ₂₂	Y ₁₂ = Y ₂₁	
ABCD parameters	A = D	ΔT = AD - BC = 1	
H parameters	$egin{array}{l} \Delta h \ = h_{11}h_{22} \ - h_{12}h_{21} \ = 1 \end{array}$	$egin{aligned} h_{12} = - \ h_{21} \end{aligned}$	

▼ Filters

8

4min 19sec

+2.0 -0.66

...

A

In the network given below, the output voltage V_0 , when V_1 and I_1 are 10 V and 8 A respectively is:

1. 10 V

2. 30 V

3. 24 V

▼ Filters

Correct Answers Is: 2

45% got this right

SOLUTION

The voltage V_0 is contributed by the two sources present in the network.

$$\therefore$$
 Let $V_0 = \alpha V_1 + \beta I_1$

Case 1:
$$V_1 = 5 \text{ V}$$
, $I_1 = 0 \text{ A}$, $V_0 = 3 \text{ V}$

$$V_0 = \alpha V_1 + \beta I_1$$

$$\Rightarrow$$
 3 = 5 α

$$\Rightarrow \alpha = 0.6$$

Case 2:
$$V_1 = 0 \text{ V}, I_1 = 2 \text{ A}, V_0 = 6 \text{ V}$$

$$V_0 = \alpha V_1 + \beta I_1$$

$$\Rightarrow$$
 6 = 0 + 2 β

$$\Rightarrow \beta = 3$$

$$V_0 = 0.6 V_1 + 3 I_1$$

Now,
$$V_1 = 10 \text{ V}$$
, $I_1 = 8 \text{ A}$

$$V_0 = 0.6 (10) + 3 (8) = 30 V$$

Was this solution helpful?

Hide Solution

T Filters

2sec +2.0 -0.0

The Thevenin equivalent voltage, V_{th}, in V across the load resistance (R_L) of the network shown below, is _____

Answer

Correct Answers Is: 27.9-28.1 19% got this right

SOLUTION

▼ Filters

SOLUTION

By open circuiting the load terminals to evaluate the open circuit Thevenin voltage, the circuit becomes:

By applying KVL in the outer loop, we can write:

$$40 - 6I + 8 - 3I = 0$$

$$I = \frac{48}{9} = \frac{16}{3} A$$

Since 4 A of current will flow across the 1 Ω resistance, by applying KVL to the left side of the circuit, we can write:

$$40+4 imes 1-V_{th}-3 imes rac{16}{3}=0$$

$$40 + 4 - V_{th} - 16 = 0$$

$$V_{th} = 28 \text{ V}$$

Was this solution helpful?

▼ Filters

1sec +2.0 -0.0

For the parallel RLC circuit given below, the magnitudes of currents I_L and I_C are four times that of I_R .

The value of the inductance L is $_$ (ir μ H)

Answer

Correct Answers Is: 3.1-3.2 22% got this right

COLLITION

Filters

Correct Answers Is: 3.1-3.2 22% got this right

SOLUTION

$$|I_L| = |I_C| = 4 I_R$$

 \overline{I}_L and \overline{I}_C are equal in magnitude and opposite in phase, $\overline{I}_L + \overline{I}_C = 0$

$$\Rightarrow \overline{I} = \overline{I}_R$$

Therefore, the circuit is working under the resonance condition.

Quality factor,
$$Q_o = rac{|I_L|}{|I_R|} = rac{4|I_R|}{|I_R|} = 4$$

For a parallel RLC circuit, the quality factor is

$$Q=R\sqrt{rac{C}{L}}$$

From the given circuit diagram,

$$R = 5 \Omega$$
, $C = 2 \mu F$

$$\Rightarrow 4 = 5\sqrt{rac{2 imes 10^{-6}}{L}}$$

$$\Rightarrow$$
 L = 3.125 µH

Was this solution helpful?

← CT 35: Digital Electronics (...

1

Filters

20sec

+1.0 -0.33

In a 4-stage ripple counter, the propagation delay of a flip-flop is 100 ns. For a pulse width of the strobe as 100 ns, the maximum frequency at which the counter operates reliably is?

- 1. 1 MHz
- 2. 2 MHz

3. 500 MHz

4. 0.5 MHz

Correct Answers Is: 2

46% got this right

SOLUTION

For a n stage ripple counter the time period of

← CT 35: Digital Electronics (...

▼ Filters

4. 0.5 MHz

Correct Answers Is: 2

46% got this right

SOLUTION

For a n stage ripple counter the time period of clock is given by

$$T_{CLK} \ge 4(100)$$

$$f_{CLK} \leq rac{1}{400} imes 10^9$$

$$f_{CLK} \leq 2.5~\mathrm{MHz}$$

Hence from given options, the maximum frequency at which the counter operates reliably is 2 MHz

Was this solution helpful?

Hide Solution

Filters

27sec

+1.0 -0.0

The minimum number of flip flops required to implement the following state diagram which has 4 valid states.

Answer

Correct Answers Is: 3-3

58% got this right

COLUTION

▼ Filters

Answer

Correct Answers Is: 3-3

58% got this right

SOLUTION

The state diagram shown in the figure has only four states. But a 3-bit counter is required to implement this sequence because the maximum binary count is seven.

So, number of flip flops required = 3

Was this solution helpful?

Hide Solution

CT 35: Digital Electronics (...

Filters

9sec +1.0 -0.33

Three T flip flops are connected to form a counter. The maximum states possible for the counter will be:

1. 5

2. 3

3. 8

Correct Answers Is: 3

72% got this right

SOLUTION

Concept:

For a counter with 'n' flip flops:

The total number of etates = 2n (n to 2n −

← CT 35: Digital Electronics (...

Y Filters

Concept:

For a counter with 'n' flip flops:

- The total number of states = 2ⁿ (0 to 2ⁿ 1)
- The largest number that can be stored in the counter = 2ⁿ - 1

To construct a counter with any MOD number, the minimum number flip flops required must satisfy:

Modulus ≤ 2ⁿ

Where n is the number of flip-flops and is the minimum value satisfying the above condition.

<u>Calculation</u>:

The total number of states required when n = 3:

$$2^3 \geq 8$$

The states will vary from (0 to 7)

So the maximum states possible for the counter will be 8.

Was this solution helpful?

Hide Solution

1

Y Filters

5

Consider the sequential circuit given below.

If the initial state of the flip-flops $Q_0 Q_1 Q_2$ is 101, which of the following is/are true?

*This question may have multiple correct answers

- 1. The modulus of the counter is 3
- 2. The value of Q₀ Q₁ Q₂ after 6 clock pulses is 101

You missed this answer

3. The value of Q₀ Q₁ Q₂ after 5 clock pulses is 010

You missed this answer

4. Number of unused states are 5

▼ Filters

Number of unused states are 5

Correct Answers Is: 2, 3

43% got this right

SOLUTION

From the given, sequential circuit, $J_0 = \overline{Q}_2$ bar, $J_1 = Q_0$, $J_2 = Q_1$

Clock pulse	$Q_0 Q_1 Q_2$	$J_0 K_0$	J ₁ K ₁	$J_2 K_2$
Initial	101	0 1	11	01
1	010	11	01	11
2	101			

After two clock pulses, it reaches its initial value. ∴ The Modulus of the counter will be 2.

Number of unused states = 8 - 2 = 6After 5^{th} clock pulse, $Q_0 Q_1 Q_2 = 0.1.0$ After 6^{th} clock pulse, $Q_0 Q_1 Q_2 = 1.0.1$

Was this solution helpful?

▼ Filters

3sec

+2.0 -0.0

For the multistage counter arrangement of the given figure, determine the frequency of the output signal in Hz.

Answer

SOLUTION

Input frequency = 1 MHz.

4-bit binary ripple counter has 2⁴ = 16 states Now, the frequency =

$$rac{1 imes 10^6}{16} = 62.5 imes 10^3 Hz$$

← CT 35: Digital Electronics (...

▼ Filters

Answer

Correct Answers Is: 125-125 23% got this right

SOLUTION

Input frequency = 1 MHz.

4-bit binary ripple counter has 2⁴ = 16 states

Now, the frequency =

$$rac{1 imes 10^6}{16} = 62.5 imes 10^3 Hz$$

5-bit ring counter has 5 states.

Now, the frequency = . $rac{62.5 imes10^3}{5}=12.5~kHz$

BCD counter has 10 states

Now, the frequency = $rac{12.5 imes10^3}{10}=1250~Hz$

5-bit Johnson counter has $2 \times 5 = 10$ states.

The output frequency = $\frac{1250}{10} = 125~Hz$

Was this solution helpful?

Filters

2min 25sec

+2.0 -0.33

The propagation delay of flip-flop and logic is zero, which of the following will be the waveform of output If Q₀ is reset to '0'

1. A

2. B

← CT 35: Digital Electronics (...

▼ Filters

Concept:

Characteristic table of JK flip flop:

J	K	Q _{n+1}		
0	0	Q		
0	1	0		
1	0	1		
1	1	Q		

Truth Table of NAND gate:-

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

<u> Analysis:-</u>

From the circuit diagram, it is clear that the applied clock is a negative edged Trigger.

Since, J = K = 1, the Next state will always be the complement to its previous state.

Y Filters

3 0sec +0.0 -0.0

A finite state machine with 4 possible states as 00, 01, 10, and 11 are implemented using two D Flip flops (Q_A is the MSB and Q_B is the LSB). The FSM is initialized to states 00, and the input x is constant throughout the operation.

Which of the following statements is/are true?

- *This question may have multiple correct answers
 - The FSM produces all possible states when x is 0.
 - The FSM produces all possible states when x is 1.

You missed this answer

The FSM produces 3 possible states when x is 0.

3

▼ Filters

$$D_A = Q_B \odot 1$$

$$D_B = Q_A x$$

We will take two conditions for x, that is when x = 0 and when x = 1

$$x = 0$$

Q _A	Q _B	D _A	D _B	Q _A ⁺	Q _B ⁺
0	0	0	0	0	0
0	1	1	0	1	0
1	0	0	0	0	0
1	1	1	0	1	0

 \therefore When x = 0, we can have only two out of the four possible states.

$$x = 1$$

Q _A	Q _B	DA	D _B	Q _A +	Q _B +
0	0	0	0	0	0
0	1	1	0	1	0
1	0	0	1	0	1
1	1	1	1	1	1

∴ When x = 1, we can have all four possible states.

