Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP2005/020687

International filing date:

04 November 2005 (04.11.2005)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2004-322996

Filing date:

05 November 2004 (05.11.2004)

Date of receipt at the International Bureau:

13 December 2005 (13.12.2005)

Remark:

Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

OFFICE **PATENT**

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年11月

出 Application Number:

特願2004-322996

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

JP2004-322996

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出 願

株式会社半導体エネルギー研究所

Applicant(s):

2005年11月23日

特許庁長官 Commissioner. Japan Patent Office.

【書類名】 特許願 【整理番号】 P008299 【提出日】 平成16年11月 5日 【あて先】 特許庁長官 殿 【発明者】 神奈川県厚木市長谷398番地 株式会社半導体エネルギー研究 【住所又は居所】 所内 熊木 大介 【氏名】 【発明者】 神奈川県厚木市長谷398番地 株式会社半導体エネルギー研究 【住所又は居所】・ 所内 瀬尾 哲史 【氏名】 【特許出願人】 【識別番号】 000153878 【氏名又は名称】 株式会社半導体エネルギー研究所 山崎 舜平 【代表者】 【手数料の表示】 【予納台帳番号】 002543 【納付金額】 16,000円 【提出物件の目録】 【物件名】 特許請求の範囲! 【物件名】 明細書

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

【書類名】特許請求の範囲

【請求項】】

対向するように設けられた第1の電極と第2の電極との間に、

第1の層と、第2の層と、第3の層と、

を有し、

前記第1の層は正孔を発生し、

前記第2の層は電子を発生し、

前記第3の層は発光物質を含み、

前記第1の層と前記第2の層と前記第3の層とは順に積層され、

前記第1の層は、前記第1の電極と接し、

前記第3の層は、前記第2の電極と接し、

前記第1の電極の電位よりも前記第2の電極の電位の方が高くなるように電圧を印加したときに、前記第2の層で発生した電子が前記第3の層へ注入されるように、前記第2の層と前記第3の層とが接合されている

ことを特徴とする発光素子。

【請求項2】

対向するように設けられた第1の電極と第2の電極との間に、

第1の層と、第2の層と、第3の層と、

を有し、

前記第1の層は正孔を発生し、

前記第2の層は電子を発生し、

前記第3の層は発光物質を含み、

前記第1の層は、前記第2の層よりも前記第1の電極側に設けられ、

前記第3の層は、前記第2の層よりも前記第2の電極側に設けられ、

前記第1の電極の電位よりも前記第2の電極の電位の方が高くなるように電圧を印加したときに、前記第2の層で発生した電子が前記第3の層へ注入されるように、前記第2の層と前記第3の層とが接合されている

ことを特徴とする発光素子。

【請求項3】

対向するように設けられた第1の電極と第2の電極との間に、

第1の層と、第2の層と、第3の層と、

を有し、

前記第1の層は、電子または正孔のいずれか一方の移動度に対する他方の移動度の比の値が100以下である第1の物質と、前記第1の物質に対して電子受容性を示す第2の物質とを含み、

前記第2の層は、電子または正孔のいずれか一方の移動度に対する他方の移動度の比の値が100以下である第3の物質と、前記第3の物質に対して電子供与性を示す第4の物質とを含み、

前記第3の層は、発光物質を含み、

前記第1の層と前記第2の層と前記第3の層とは順に積層され、

前記第1の層は、前記第1の電極と接し、

前記第3の層は、前記第2の電極と接し、

前記第1の電極の電位よりも前記第2の電極の電位の方が高くなるように電圧を印加したときに、前記第2の層で発生した電子が前記第3の層へ注入されるように、前記第2の層と前記第3の層とが接合されている

ことを特徴とする発光素子。

【請求項4】

対向するように設けられた第1の電極と第2の電極との間に、

第1の層と、第2の層と、第3の層と、

を有し、

前記第1の層は、電子または正孔のいずれか一方の移動度に対する他方の移動度の比の値が100以下である第1の物質と、前記第1の物質に対して電子受容性を示す第2の物質とを含み、

前記第2の層は、電子または正孔のいずれか一方の移動度に対する他方の移動度の比の値が100以下である第3の物質と、前記第3の物質に対して電子供与性を示す第4の物質とを含み、

前記第3の層は、発光物質を含み、

前記第1の層は、前記第2の層よりも前記第1の電極側に設けられ、

前記第3の層は、前記第2の層よりも前記第2の電極側に設けられ、

前記第1の電極の電位よりも前記第2の電極の電位の方が高くなるように電圧を印加したときに、前記第2の層で発生した電子が前記第3の層へ注入されるように、前記第2の層と前記第3の層とが接合されている

ことを特徴とする発光素子。

【請求項5】

請求項3または請求項4に記載の発光素子において、前記第2の物質は、前記第1の物質に対し、0.5~2のモル比となるように含まれていることを特徴とする発光素子。

【請求項6】

対向するように設けられた第1の電極と第2の電極との間に、

第1の層と、第2の層と、第3の層と、

を有し、

前記第1の層は、一般式(1)または一般式(2)のいずれかで表される第1の物質と、前記第1の物質に対して電子受容性を示す第2の物質とを含み、

前記第2の層は、一般式(1)または一般式(2)のいずれかで表される第3の物質と、前記第3の物質に対して電子供与性を示す第4の物質とを含み、

前記第3の層は、発光物質を含み、

前記第1の層と前記第2の層と前記第3の層とは順に積層され、

前記第1の層は、前記第1の電極と接し、

前記第3の層は、前記第2の電極と接し、

前記第1の電極の電位よりも前記第2の電極の電位の方が高くなるように電圧を印加したときに、前記第2の層で発生した電子が前記第3の層へ注入されるように、前記第2の層と前記第3の層とが接合されている

ことを特徴とする発光素子。

【化01】

$$Ar^{3} \xrightarrow{Ar^{4}} Ar^{1}$$

$$N \xrightarrow{N} N$$

$$R^{4} \xrightarrow{N} R^{1}$$

$$R^{3} R^{2}$$

$$(1)$$

(式中、 $R^1 \sim R^4$ は、それぞれ、水素、アルキル基のいずれか、または、 $R^1 \succeq R^2$ 、 $R^2 \succeq R^3$ 、 $R^3 \succeq R^4 \succeq m$ 、それぞれ、結合して芳香環を表す。 $Ar^1 \sim Ar^4$ は、それぞれ独立に、炭素数 $6 \sim 1.4$ のアリール基を表す。)

$$A_{r^{16}-N} = A_{r^{17}} + A$$

(式中、 $A r^{1}$ ~ $A r^{18}$ は、それぞれ独立に、炭素数 $6 \sim 1.4$ のアリール基を表す。) 【請求項 7 】

対向するように設けられた第1の電極と第2の電極との間に、

第1の層と、第2の層と、第3の層と、

を有し

前記第1の層は、一般式(1)または一般式(2)のいずれかで表される第1の物質と、前記第1の物質に対して電子受容性を示す第2の物質とを含み、

前記第2の層は、一般式(1)または一般式(2)のいずれかで表される第3の物質と、前記第3の物質に対して電子供与性を示す第4の物質とを含み、

前記第3の層は、発光物質を含み、

前記第1の層は、前記第2の層よりも前記第1の電極側に設けられ、

前記第3の層は、前記第2の層よりも前記第2の電極側に設けられ、

前記第1の電極の電位よりも前記第2の電極の電位の方が高くなるように電圧を印加したときに、前記第2の層で発生した電子が前記第3の層へ注入されるように、前記第2の層と前記第3の層とが接合されている

ことを特徴とする発光素子。

【化03】。

$$Ar^{3} \xrightarrow{Ar^{4}} Ar^{2} \xrightarrow{Ar^{2}} N \xrightarrow{N} Ar^{1}$$

$$R^{4} \xrightarrow{R^{3}} R^{2}$$

$$(1)$$

(式中、 $R^1 \sim R^4$ は、それぞれ、水素、アルキル基のいずれか、または、 $R^1 \geq R^2$ 、 $R^2 \geq R^3$ 、 $R^3 \geq R^4 \geq m$ 、それぞれ、結合して芳香環を表す。 $Ar^1 \sim Ar^4$ は、それぞれ独立に、炭素数 $6 \sim 1.4$ のアリール基を表す。)

$$Ar^{16} - N$$
 Ar^{15}
 $N - Ar^{14}$
 $N - Ar^{12}$
 $Ar^{18} - N$
 Ar^{17}
 Ar^{17}
 Ar^{17}
 Ar^{17}
 $Ar^{18} - N$
 Ar^{17}

(式中、 $A r^{1}$ ~ $A r^{18}$ は、それぞれ独立に、炭素数 $6 \sim 14$ のアリール基を表す。) 【請求項 8】

請求項6または請求項7に記載の発光素子において、前記第1の物質と前記第3の物質とが同じであることを特徴とする発光素子。

【請求項9】

対向するように設けられた第1の電極と第2の電極との間に、

電子または正孔のいずれか一方の移動度に対する他方の移動度の比の値が100以下である第1の物質を含む第1の層と、

発光物質を含む第2の層と、

を有し、

前記第1の層は、

前記第1の物質に対して電子受容性を示す第2の物質をさらに含む第1の領域と、

前記第1の物質に対して電子供与性を示す第3の物質をさらに含む第2の領域と、

を有し

前記第1の領域は前記第2の領域よりも前記第1の電極側に設けられ、

前記第1の電極の電位よりも前記第2の電極の電位の方が高くなるように電圧を印加したときに、前記第2の領域で発生した電子が前記第2の層へ注入されるように、前記第1の層と前記第2の層とが接合されている

ことを特徴とする発光素子。

【請求項10】

対向するように設けられた第1の電極と第2の電極との間に、

一般式(1)または一般式(2)で表される第1の物質を含む第1の層と、

発光物質を含む第2の層と、

を有し、

前記第1の層は、

前記第1の物質に対して電子受容性を示す第2の物質をさらに含む第1の領域と、

前記第1の物質に対して電子供与性を示す第3の物質をさらに含む第2の領域と、

を有し、

前記第1の領域は前記第2の領域よりも前記第1の電極側に設けられ、

前記第1の電極の電位よりも前記第2の電極の電位の方が高くなるように電圧を印加したときに、前記第2の領域で発生した電子が前記第2の層へ注入されるように、前記第1の層と前記第2の層とが接合されている

ことを特徴とする発光素子。

$$A^{r^3} \xrightarrow{N} A^{r^4} A^{r^2} \xrightarrow{N} A^{r^1}$$

$$N \xrightarrow{N} A^{r^1}$$

$$R^4 \xrightarrow{N} R^2$$

$$R^3 \qquad R^2$$

$$R^3 \qquad R^2$$

(式中、 $R^1 \sim R^4$ は、それぞれ、水素、アルキル基のいずれか、または、 $R^1 \geq R^2$ 、 $R^2 \geq R^3$ 、 $R^3 \geq R^4 \geq m$ 、それぞれ、結合して芳香環を表す。 $Ar^1 \sim Ar^4$ は、それぞれ独立に、炭素数 $6 \sim 14$ のアリール基を表す。)

【化06】

$$Ar^{18}-N$$
 $Ar^{18}-N$
 $Ar^$

(式中、 $A r^{1}$ $\sim A r^{18}$ は、それぞれ独立に、炭素数 $6 \sim 14$ のアリール基を表す。) 【請求項 11】

請求項9または請求項10に記載の発光素子において、前記第2の物質若しくは前記第3の物質は、前記第1の物質に対し、0.5~2のモル比となるように含まれていることを特徴とする発光素子。

【請求項12】

対向するように設けられた第1の電極と第2の電極との間に、

第1の層と、第2の層と、第3の層と、

を有し、

前記第1の電極は、50%~100%の反射率を有する導電物から成り、

前記第2の電極は、可視光を透過できる導電物から成り、

前記第1の層は、電子または正孔のいずれか一方の移動度に対する他方の移動度の比の値が100以下である第1の物質と、前記第1の物質に対して電子受容性を示す第2の物質とを含み、

前記第2の層は、電子または正孔のいずれか一方の移動度に対する他方の移動度の比の値が100以下である第3の物質と、前記第3の物質に対して電子供与性を示す第4の物質とを含み、

前記第3の層は、発光層を含みx層(xは任意の正の整数)から成る層であり、

前記第1の層と前記第2の層と前記第3の層とは順に積層され、

前記第1の層は、前記第1の電極と接し、

前記第3の層における第1層目の層は、前記第2の層と接し、

前記第3の層における第x層目の層は、前記第2の電極と接し、

前記発光層と前記第2の層との間には、y層(y≦x、yは正の整数)の層を有し、

前記第1の電極の電位よりも前記第2の電極の電位の方が高くなるように電圧を印加したときに、前記第2の層で発生した電子が前記第1層目の層へ注入されるように、前記第2の層と前記前記第1層目の層とは接合され、

前記第1の層の膜厚と前記第2の層の膜厚は、数式(1)、数式(2)、数式(3)を満たすように調節されている

ことを特徴とする発光素子。

【数01】

$$n_i d_i + n_{ii} d_{ii} + \sum_{k=1}^{y} n_k d_k + n_j d_j = \frac{(2m-1)\lambda}{4} \cdot \cdot \cdot (1)$$

$$0 \le d_i \le d_{emi} \cdots (2)$$

$$d_i \geq d_{ii} \cdot \cdot \cdot (3)$$

(数式(1)、数式(2)、数式(3)において、 n_i は第1の層の屈折率、 d_i は第1の層の膜厚、 n_{ii} は第2の層の屈折率、 d_{ii} は第2の層の膜厚、 n_{k} は発光層と第2の層との間に含まれる層の中の第k番目の層の屈折率、 d_{k} は発光層と第2の層との間に含まれる層の中の第k番目の層の膜厚、 n_{j} は発光層の屈折率、 d_{j} は発光層における第1の電極側の膜面から発光領域までの距離、 λ は発光素子からの発光の波長、mは任意の正の整数、 d_{emi} は発光層の膜厚を表す。)

【請求項13】

請求項1乃至請求項12のいずれか一項に記載の発光素子を画素部に含むことを特徴とする発光装置。

【請求項14】

請求項13に記載の発光装置を表示部として用いていることを特徴とする電子機器。

【書類名】明細書

【発明の名称】発光素子およびそれを用いた発光装置

【技術分野】

 $[0\ 0\ 0\ 1\]$

本発明は、一対の電極間に発光物質を含む層を有する発光素子に関し、特に発光素子の層構造に関する。

【背景技術】

[00002]

近年、ディスプレイ等に利用されている発光素子の多くは、一対の電極間に発光物質を含む層が挟まれた構造を有する。このような発光素子では、一方の電極から注入された電子と他方の電極から注入された正孔とが再結合することによって形成された励起子が、基底状態に戻るときに発光する。

[0003]

このような発光素子の多くは、発光時間が蓄積するに伴って、駆動電圧が増加するという問題を抱えている。

[0004]

このような問題を解決する技術の一例として、例えば特許文献1では、或特定の構造を有する化合物を適用した有機EL素子とすることで、素子の駆動時の駆動電圧の上昇等を抑えた有機EL素子について開示している。

[0005]

【特許文献1】WO98/30071号公報

【発明の開示】

【発明が解決しようとする課題】

[0006]

本発明は、発光時間の蓄積に伴った駆動電圧の増加の少ない発光素子を提供することを 課題とする。また、本発明は、膜厚の増加に伴った抵抗値の増加の少ない発光素子を提供 することを課題とする。

【課題を解決するための手段】

[0007]

本発明の発光素子の一は、対向するように設けられた第1の電極と第2の電極との間に、第1の層と、第2の層と、第3の層とを有する。第1の層と第2の層と第3の層とは、第2の層を間に挟むように順に積層されており、第1の層は第1の電極に接し、第3の層は第2の電極に接する。第1の層は正孔を発生する層であり、第2の層は電子を発生する層である。また、第3の層は、発光物質を含む層である。そして、第1の電極の電位よりも第2の電極の電位が高くなるように電圧を印加したときに、第2の層で発生した電子が第3の層へ注入されるように、第2の層と第3の層とは接合されている。

[0008]

本発明の発光素子の一は、対向するように設けられた第1の電極と第2の電極との間に、第1の層と、第2の層と、第3の層とを有する。第1の層と第2の層と第3の層とは、第2の層を間に挟むように順に積層されており、第1の層は第1の電極に接し、第3の層は第2の電極に接する。第1の層はバイボーラ性物質と、その物質に対して電子受容性を示す物質とを含む層である。また、第2の層はバイボーラ性物質と、その物質に対して電子供与性を示す物質とを含む層である。また、第3の層は、発光物質を含む層である。そして、第1の電極の電位よりも第2の電極の電位が高くなるように電圧を印加したときに、第2の層で発生した電子が第3の層へ注入されるように、第2の層と第3の層とは接合されている。

[0009]

本発明の発光素子の一は、対向するように設けられた第1の電極と第2の電極との間に 、第1の層と、第2の層と、第3の層とを有する。第1の層は第2の層よりも第1の電極 側に設けられ、第3の層は第2の層よりも第2の電極側に設けられている。第1の層は正 孔を発生する層であり、第2の層は電子を発生する層である。また、第3の層は、発光物質を含む層である。そして、第1の電極の電位よりも第2の電極の電位が高くなるように電圧を印加したときに、第2の層で発生した電子が第3の層へ注入されるように、第2の層と第3の層とは接合されている。

[0010]

本発明の発光素子の一は、対向するように設けられた第1の電極と第2の電極との間に、第1の層と、第3の層とを有する。第1の層は第2の層よりも第1の電極側に設けられている。第1の層はバイボーラ性物質と、その物質に対して電子受容性を示す物質とを含む層である。また、第2の層はバイボーラ性物質と、その物質に対して電子供与性を示す物質とを含む層である。また、第3の層は、発光物質を含む層である。そして、第1の電極の電位よりも第2の電極の電位が高くなるように電圧を印加したときに、第2の層で発生した電子が第3の層へ注入されるように、第2の層と第3の層とは接合されている。

[0011]

本発明の発光素子の一は、対向するように設けられた第1の電極と第2の電極との間に、バイボーラ性物質を含む層と、発光物質を含む層とを有する。バイボーラ性物質を含む層は第1の電極に接し、発光物質を含む層は第2の電極に接する。バイボーラ性物質を含む層は、バイボーラ性物質を含む層に加えてさらにバイボーラ性物質に対して電子受容性を示す物質を含む第1の領域と、バイボーラ性物質を含む層に加えてさらにバイボーラ性物質に対して電子供与性を示す物質を含む第2の領域と、を有する。第1の領域は、第2の領域よりも第1の電極側に設けられている。そして、第1の電極の電位よりも第2の電極の電位が高くなるように電圧を印加したときに、第2の領域で発生した電子が発光物質を含む層へ注入されるように、バイボーラ性物質を含む層と、発光物質を含む層とは接合されている。

[0012]

本発明の発光素子の一は、対向するように設けられた第1の電極と第2の電極との間に、バイボーラ性物質を含む層と、発光物質を含む層とを有する。バイボーラ性物質を含む層は、発光物質を含む層はの電極側に設けられている。バイボーラ性物質を含む層は、バイボーラ性物質を含む層に加えてさらにバイボーラ性物質に対して電子受容性を示す物質を含む第1の領域と、バイボーラ性物質を含む層に加えてさらにバイボーラ性物質に対して電子供与性を示す物質を含む第2の領域と、を有する。第1の領域は、第2の領域よりも第1の電極側に設けられている。そして、第1の電極の電位よりも第2の電極の電位が高くなるように電圧を印加したときに、第2の領域で発生した電子が発光物質を含む層へ注入されるように、バイボーラ性物質を含む層と、発光物質を含む層とは接合されている。

[0013]

本発明の発光素子の一は、対向するように設けられた第1の電極と第2の電極との間に第1の層と、第2の層と、第3の層とを有する。第1の層と第2の層と第3の層とは、第2の層を間に挟むように順に積層されている。第1の層はバイボーラ性物質と、その物質に対して電子供与性を示す物質とを含む層である。また、第3の層は、発光できる。など、第3の層は、第3の層は、第3の層は、第3の層は第2の電極と接する。ここで、第1の電極、、第3の層と接し、第8層目の層は、第2の層と接し、第8層目の層は第2の電極と接する。ここで、第1の収入のでは、次回では、次回でででは、第3の層を有する。また、第1の電位なりも第2の間には、次回でで発生した電子が第1番目の間はが高くなるように電圧を印加したときに、第2の層で発生した電子が第1番目の層とは入されるように、第2の層と第1層目の層とは接合されている。そして、第1の層と第2の層とは、数式(1)、(2)、(3)を満たすように膜厚を調節されていることを特徴とする。

[0014]

$$n_i d_i + n_{ii} d_{ii} + \sum_{k=1}^{y} n_k d_k + n_j d_j = \frac{(2m-1)\lambda}{4} \cdot \cdot \cdot (1)$$

 $0 \le d_j \le d_{emi} \cdot \cdot \cdot (2)$

 $d_i \geq d_{ii} \cdot \cdot \cdot (3)$

[0015]

数式(1)、(2)、(3)において、 n_i は第1の層の屈折率、 d_i は第1の層の膜厚、 n_{ii} は第2の層の屈折率、 d_{ii} は第2の層の膜厚、 n_k は発光層と第2の層との間に含まれる層の中の第k番目の層の屈折率、 d_k は発光層と第2の層との間に含まれる層の中の第k番目の層の屈折率、 d_i は発光層と第2の層との間に含まれる層の中の第k番目の層の膜厚、 n_i は発光層の屈折率、 d_i は発光層における第1の電極側の膜面から発光領域までの距離、 λ は発光素子からの発光の波長、mは任意の正の整数を表す。 d_{emi} は発光層の膜厚である。

【発明の効果】

[0016]

本発明によって、発光時間の蓄積に伴った駆動電圧の増加が少なく、信頼性の高い発光 素子が得られる。

[0017]

また、本発明によって、正孔を発生する層の膜厚に依存した、抵抗値の増加が少ない発光素子が得られる。その結果、電極間の距離を容易に変えられる発光素子が得られる。そして、電極間の距離を長くすることによって、電極間の短絡を防ぐことができる。また、電極間の距離を調節することで、発光の取り出し効率が最大となるように、光学距離を調節することが容易となる。また、電極間の距離を調節することで、採光面を見る角度に依存した発光スペクトルの変化が少なくなるように、光学距離を調節することが容易となる

[0018]

また、本発明によって得られた発光素子を、発光装置に適用することによって、長時間の使用に耐える信頼性のよい発光装置を得ることができる。また、本発明によって得られた発光素子を、表示機能を有する発光装置に適用することによって、発光を効率よく外部に取り出すことができ、また光面を見る角度に依存した発光スペクトルの変化が少ない良好な画像を表示できる発光装置を得ることができる。

【発明を実施するための最良の形態】

$[0\ 0\ 1\ 9\]$

以下、本発明の一態様について説明する。但し、本発明は多くの異なる態様で実施することが可能であり、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本形態の記載内容に限定して解釈されるものではない。

[0020]

(実施の形態1)

本発明の一態様について図1の発光素子の断面図を用いて説明する。

[0021]

第1の電極801と第2の電極802との間に第1の層811と第2の層812と第3の層813とを有する。第1の層811と第2の層812と第3の層813とは、順に積層している。そして、第1の層811は第1の電極801と接し、第3の層813は第2の電極802と接する。

[0022]

また、本形態の発光素子は、次の様に動作する。先ず、第1の電極801よりも第2の電極802の電位の方が高くなるように電圧を印加すると、第1の層811から第1の電極801へは正孔が注入され、第2の層812から第3の層813へは、電子が注入される。また、第2の電極802から第3の層813へは正孔が注入される。第2の電極802から注入された正孔と、第2の層812から注入された電子とは、第3の層813において再結合し、発光物質を励起状態にする。そして、励起状態の発光物質は基底状態に戻るときに発光する。

[0023]

このような構成とすることによって、正孔を発生する層(第1の層811)の膜厚に依存した、任意の電流を流すために印加する電圧の変化が少ない発光素子を得ることができる。

[0024]

以下、各層、電極等について具体的に説明する。

[0025]

【0026】

【化03】

$$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$$

[0027]

[0028]

第2の層812は、電子を発生する層である。正孔を発生する層として、例えば、バイボーラ性物質と、その物質に対して電子受容性を示す物質とを含む層を用いることができる。バイボーラ性物質としては、先に述べたTPAQn、NPADiBzQn、D一TriPhAQn等を用いることができるが、この他のものを用いてもよい。また、バイボーラ性物質の中でも複素芳香環を骨格に含む物質を用いることがより好ましい。また、バイボーラ性物質を有するバイボーラ性物質を用いることがさらに好ましい。また、バイボーラ性物質に対して電子供与性を示す物質について特に限定はなく、例えば、リチウム、セシウム等のアルカリ金属、マグネシウム、カルシウム等のアルカリ土類金属、エルビウム、イッテルビウム等の希土類金属等を用いることができる。また、リチウム酸化物(Li $_1$ 0)、カルシウム酸化物(CaO)、ナトリ

ウム酸化物(Na_2O)、カリウム酸化物(K_2O)、マグネシウム酸化物(MgO)等、アルカリ金属酸化物若しくはアルカリ土類金属酸化物を、電子輸送性物質に対して電子供与性を示す物質として用いても構わない。なお、アルカリ金属酸化物、アルカリ土類金属酸化物等は、反応性が低く、取り扱いが容易である。ここで、バイボーラ性物質に対して電子供与性を示す物質は、バイボーラ性物質に対して、モル比が $0.5\sim2$ (=バイボーラ性物質に対して電子供与性を示す物質/バイボーラ性物質)と成るように含まれていることが好ましい。

[0029]

なお、第1の層811に含まれるバイボーラ性物質と第2の層812とに含まれるバイボーラ性物質とは、それぞれ異なっていてもよいし、または同一であってもよい。第1の層811と第2の層812とを同じバイボーラ性物質を用いて形成する場合、一般式(1)または一般式(2)で表されるような、トリフェニルアミンと複素芳香環とを骨格に有するキノキサリン誘導体を用いることが特に好ましい。このようなキノキサリン誘導体の具体例としては、TPAQn、NPADiBzQn、D一TriPhAQn等が挙げられる。なお、第1の層811と第2の層812とに含まれるバイボーラ性物質が同じである場合、第1の層811と第2の層812とを連続的に形成することができ、製造に係る手間を軽減することができる。

【0030】

$$A_{I^{3}} \xrightarrow{A_{I}^{4}} A_{I^{3}} \xrightarrow{A_{I}^{2}} A_{I^{3}} \xrightarrow{N} A_{I^{3}}$$

$$N \xrightarrow{N} N \xrightarrow{N} R^{1}$$

$$R^{4} \xrightarrow{N} R^{2}$$

$$R^{4} \xrightarrow{N} R^{2}$$

$$R^{2} \xrightarrow{N} R^{2}$$

$$R^{3} \xrightarrow{R^{2}} R^{2}$$

[0031]

一般式(1)において、 $R^1 \sim R^4$ は、それぞれ、水素、アルキル基のいずれかを表す。ここで、 $R^1 \succeq R^2 \subset R^3 \subset R^3 \succeq R^4$ とは、それぞれ、互いに結合して芳香環を形成してもよい。また、 $Ar^1 \sim Ar^4$ は、それぞれ独立に、炭素数 $6 \sim 1$ 4 のアリール基を表す

【0032】 【化05】

[0033]

一般式(2)において、A $\mathbf{r}^{1!}\sim$ A \mathbf{r}^{18} は、それぞれ独立に、炭素数 $6\sim 1$ 4 のアリー

ル基を表す。

[0034]

第3の層813は、発光層を含む層である。第3の層813の層構造について特に限定はなく、単層でも多層でも構わない。例之は、図1に示すように、第3の層813は、発光層822の他、電子輸送層821、正孔輸送層823、正孔注入層824を含んでいてもよいし、或いは発光層のみから成る単層であってもよい。

[0035]

「発光層822は発光物質を含む層である。ここで、発光物質とは、発光効率が良好で、所望の発光波長の発光をし得る物質である。第3の層813について特に限定はないが、発光物質が、発光物質の有するエネルギーギャップよりも大きいエネルギーギャップを有する物質からなる層中に、分散して含まれた層であることが好ましい。これによって、発光物質からの発光が、濃度に起因して消光してしまうことを防ぐことができる。なお、エネルギーギャップとはLUMO準位とHOMO準位との間のエネルギーギャップを言う。

[0036]

発光物質について特に限定はなく、発光効率が良好で、所望の発光波長の発光をし得る 物質を用いれはよい。例えば、赤色系の発光を得たいときには、4ージシアノメチレンー 2 - イソプロピルー6 - [2 - (1, 1, 7, 7 - テトラメチルジュロリジンー9 - イル) エテニル】-4H-ピラン(略称:DCJTI)、4-ジシアノメチレンー2-メチル H-ピラン (略称: DCJT)、4-ジシアノメチレン-2-tert-ブチルー6-[2 - (1, 1, 7, 7 - テトラメチルジュロリジン-9 - イル) エテニル] - 4 H - ピラ ン(略称:DCJTB)やペリフランテン、2,5-ジシアノー1,4-ピス【2-(1 0-メトキシー1,1,7,7-テトラメチルジュロリジン-9-イル) エテニル] ベン ゼン等、600nmから680nmに発光スペクトルのピークを有する発光を呈する物質 を用いることができる。また緑色系の発光を得たいときは、N,N,ージメチルキナクリ ドン (略称: DMQd)、クマリン6やクマリン545T、トリス(8-キノリノラト) アルミニウム(略称:Alg3)等、500nmから550nmに発光スペクトルのピー クを有する発光を呈する物質を用いることができる。また、青色系の発光を得たいときは 、 9 , 1 0 - ピス (2 - ナフチル) - t e r t - ブチルアントラセン (略称: t - B u D NA)、9,9′ーピアントリル、9,10一ジフェニルアントラセン(略称:DPA) 、9,10-ピス(2-ナフチル) アントラセン(略称:DNA)、ピス(2-メチルー 8-キノリノラト)-4-フェニルフェノラトーガリウム(略称:BGag)、ピス(2ーメチルー8ーキノリノラト) ー4ーフェニルフェノラトーアルミニウム(略称:BAI q) 等、420nmから500nmに発光スペクトルのピークを有する発光を呈する物質 を用いることができる。以上のように、蛍光を発光する物質の他、ピス[2-(3,5-ピス (トリフルオロメチル) フェニル) ピリジナト-N, C^{2}] イリジウム (III) ピ コリナート (略称:Ir (CF3ppy)) (pic))、ピス [2-(4,6-ジフルオ ロフェニル) ピリジナト-N, C^{2}] イリジウム (III) アセチルアセトナート (略称 :F I r (acac))、ピス [2ー(4,6ージフルオロフェニル)ピリジナトーN, C^{2}] イリジウム(III) ピコリナート(FIr(pic))、トリス(2ーフェニル ヒリジナトーN, C¹) イリジウム(略称:Ir(ppy)3)等の燐光を発光する物質 も発光物質として用いることができる。

[0037]

また、発光物質を分散状態にするために用いる物質について特に限定はなく、例えば、9、10-ジ(2ーナフチル)-2-tert-プチルアントラセン(略称:t-BuDNA)等のアントラセン誘導体、または4、4'-ピス(N-カルパゾリル)ピフェニル(略称:CBP)等のカルパゾール誘導体の他、ピス [2-(2-ヒドロキシフェニル)ピリジナト] 亜鉛(略称:Znpp2)、ピス [2-(2-ヒドロキシフェニル)ペンゾオキサゾラト] 亜鉛(略称:ZnBOX)等の金属錯体等を用いることができる。

[0038]

以上のような、発光素子において、第2の層812に含まれる電子輸送性物質の電子親和力と、第3の層813に含まれる層のうち第2の層812と接する層に含まれる物質の電子親和力との差は、好ましくは2eV以下、より好ましくは1.5eV以下である。また、第2の層812かn型の半導体から成るとき、n型の半導体の仕事関数と、第3の層813に含まれる層のうち第2の層812と接する層に含まれる物質の電子親和力との差は、好ましくは2eV以下、より好ましくは1.5eV以下である。

[0039]

なお、第3の層813に含まれる層のうち第2の層812と接する層とは、第3の層813が本形態のような層構造を有するときは電子輸送層821がこれに該当する。そして、第3の層813が発光層のみから成るとき、または、電子輸送層821等を有しないときは発光層がこれに該当する。発光層が第2の層812と接する場合において、第3の層813に含まれる層のうち第2の層812と接する層に含まれる物質とは、発光物質を分散状態とするための物質、または発光物質そのものである。これは、A1 q_3 等のように特に分散状態としなくても発光することができ、且つキャリアの輸送性の良い発光物質では、分散状態とすることなくA1 q_3 のみから成る層そのものを発光層として機能させることができるためである。このように、第3の層813が第2の層812と第3の層813とを接合することによって、第2の層812から第3の層813への電子の注入が容易になる。

[0040]

ここで、第1の電極801と第2の電極802とは、いずれか一若しくは両方が可視光を透過でき、導電性を有する物質で形成されていることが好ましい。これによって、第1の電極801と第2の電極802の少なくとも一方の電極を介して発光を外部に取り出すことができる。

[0041]

第1の電極801について特に限定はなく、アルミニウムの他、インジウム錫酸化物(ITO)、または酸化珪素を含むインジウム錫酸化物、2~20%の酸化亜鉛を含む酸化インジウムの他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)等を用いることができる。

[0042]

また、第2の電極802についても特に限定はないが、本形態の発光素子のように第3の層813へ正孔を注入する機能を担うときは、仕事関数の大きい物質で形成されていることが好ましい。具体的には、インジウム錫酸化物(ITO)、または酸化珪素を含むインジウム錫酸化物、2~20%の酸化亜鉛を含む酸化インジウムの他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、バラジウム(Pd)等を用いることができる。なお、第2の電極802は、例えばスパッタリング法や蒸着法等を用いて形成することができる。

[0043]

なお、前述のように、本形態では、第2の層812と発光層822との間に電子輸送層821を有する。ここで、電子輸送層821とは、注入された電子を発光層822へ輸送する機能を有する層である。このように、電子輸送層821を設け、第1の電極801および金属が含まれた第2の層812と、発光層822とを離すことによって、発光が金属に起因して消光することを防ぐことができる。

[0044]

電子輸送層821について特に限定はなく、電子輸送性物質、またはバイポーラ性物質を用いて形成することができる。バイポーラ性物質として、例えば、TPAQn、NPADiBzQn、D-TriPhAQn等が挙げられる。電子輸送性物質とは、正孔よりも電子の移動度が高く、電子移動度と正孔移動度とを比較したときに、電子移動度の正孔移動度に対する比の値が100よりも大きい物質をいう。電子輸送性物質としては、例えば

、トリス(8-キノリノラト)アルミニウム(略称:Ala₃)、トリス(4-メチルー 8-キノリノラト)アルミニウム (略称:Alm q3)、ピス (10-ヒドロキシベンゾ [h] ーキノリナト) ベリリウム (略称: $BeBq_2$)、ピス (2-メチルー8-キノリノラト) - 4 - フェニルフェノラトーアルミニウム (略称: B A l q)、ピス [2 - (2 ーヒドロキシフェニル)ペンゾオキサゾラト]亜鉛(略称:Zn(BOX)ゥ)、ビス[$2-(2-ヒドロキシフェニル) ベンゾチアゾラト] 亜鉛(略称:<math>Zn(BTZ)_2$)等 の金属錯体の他、2-(4-ピフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ピス[5-(p-tert-プチルフェニル)-1,3,4-オキサジアゾール-2-イル】ペンゼン(略称:OXD ル) -1, 2, 4-トリアゾール (略称: TAZ)、3-(4-tert-ブチルフェニ n = 1 n =ール(略称:p-EtTAZ)、パソフェナントロリン(略称:BPhen)、パソキュ プロイン(略称:BCP)等か挙げられる。また、電子輸送性物質およびバイポーラ性物 質の中でも特に、1×10⁻⁶ c m²/V s 以上の電子移動度を有する電子輸送性物質、ま たは1×10⁻⁶cm²/Vs以上の電子移動度を有するバイポーラ性物質を用いて電子輸 送層821を形成することがより好ましい。これによって、発光素子の駆動電圧を下げる ことができる。また、電子輸送層821は、以上に述べた物質から成る層を二以上組み合 わせて形成した多層構造の層であってもよい。

[0045]

また、本形態では、第2の電極802と発光層822との間には、図1に示すように、正孔輸送層823を有する。ここで、正孔輸送層823とは、第2の電極802から注入された正孔を発光層822へ輸送する機能を有する層である。このように、正孔輸送層823を設け、第2の電極802と発光層822とを離すことによって、発光か金属に起因して消光することを防ぐことができる。

[0046]

正孔輸送層823について、特に限定はなく、正孔輸送性物質、またはパイポーラ性物 質を用いて形成することができる。ここで正孔輸送性物質とは電子よりも正孔の移動度が 高い物質であり、正孔移動度の電子移動度に対する比の値が100よりも大きい物質をい う。正孔輸送性物質としては、4,4'ーピス[Nー(1ーナフチル)ーNーフェニルア ミノ] ピフェニル(略称:NPB)、4,4′ーピス [N-(3-メチルフェニル)-N ーフェニルアミノ] ピフェニル(略称:TPD)、4,4',4''ートリス(N,N-ジフェニルアミノ) トリフェニルアミン (略称:TDATA)、4,4',4',一トリ ス [N-(3-メチルフェニル) -N-フェニルアミノ] トリフェニルアミン(略称:MTDATA)、4,4'-ピス[N-{-4-(N,N-ジーm-トリルアミノ)フェニル } - N - フェニルアミノ] ピフェニル(略称:DNTPD)、1,3,5--トリス [N, Nージ(mートリル)アミリ] ペンゼン(略称:m-MTDAB)、4,4′,4′、一 トリス(N-カルパゾリル)トリフェニルアミン(略称:TCTA)、フタロシアニン(. 略称:H₁Pc)、銅フタロシアニン(略称:CuPc)、パナジルフタロシアニン(略 称:VOPc)等が挙げられる。バイポーラ性物質としては、TPAQn、NPADiB zQn、D-TriPhAQn等が挙げられる。また、正孔輸送性物質およびパイポーラ 性物質の中でも特に、1×10⁻⁶cm²/Vs以上の正孔移動度を有する正孔輸送性物質 、または1×10⁻⁶cm²/Vs以上の正孔移動度を有するバイポーラ性物質を用いて電 子輸送層821を形成することがより好ましい。これによって、発光素子の駆動電圧を下 けることができる。また、正孔輸送層823は、以上に述べた物質から成る層を二以上組 み合わせて形成した多層構造の層であってもよい。

[0047]

さらに、第2の電極802と正孔輸送層823との間には、図1に示すように、正孔注入層824を有していてもよい。ここで、正孔注入層824とは、第2の電極802から正孔輸送層823へ正孔の注入を補助する機能を有する層である。

[0048]

正孔注入層824について特に限定はなく、モリブデン酸化物やバナジウム酸化物、ルテニウム酸化物、タンクステン酸化物、マンガン酸化物等の金属酸化物によって形成されたものを用いることができる。この他、上述したH2Pc、CuPC、VOPc等のフタロシアニン系の化合物、DNTPD等の芳香族アミン系の化合物、或いはポリ(エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)混合物(PEDOT/PSS)等の高分子によっても正孔注入層824を形成することができる。また、バイポーラ性物質と、その物質に対して電子受容性を示す物質とを混合させて、正孔注入層824を形成してもよい。

[0049]

以上に述べた本発明の発光素子は、発光時間の蓄積に伴った駆動電圧の増加が少なく、信頼性の高い素子である。これは、バイポーラ性物質と、バイポーラ性物質に対して電子受容性若しくは電子供与性を示す物質とを混合することによって第1の層若しくは第2の層が結晶化し難くなる為である。なお、ここでは、任意の輝度を得るために印加する電圧を駆動電圧という。

[0050]

また、本発明の発光素子は、正孔を発生する層(第1の層811)の膜厚に依存した、任意の電流を流すために印加する電圧の変化が少ない。その為、例えば、第1の層811の膜厚を厚くし、電極間の距離を長くすることによって、第1の電極801と第2の電極802との短絡を防ぐことが容易である。

[0051]

(実施の形態2)

本形態では、正孔を発生する層の膜厚を調節することによって、発光の外部取り出し効率が高く、また採光面を見る角度に依存した発光スペクトルの変化が少なくなるように反射面から採光面までの光学距離を調節した発光素子の態様について図12を用いて説明する。

[0052]

図12の発光素子は、第1の電極201と第2の電極202との間に、正孔を発生する第1の層211と、電子を発生する第2の層212と、発光物質を含む第3の層213とを有する。第1の層211と第2の層212と第3の層213とは、第2の層212を間に挟むように順に積層し、第1の層211は第1の電極と接し、第3の層213は第2の電極202と接する。

[0053]

ここで、第1の電極 201 は、反射率の高い導電物から成る電極、所謂反射電極である。反射率の高い導電物としては、アルミニウム、銀の他、これら金属の合金(A1:Li 合金、Mg:Ag 合金など)等も用いることができる。また、反射率は、 $50\% \sim 100$ %が好ましい。また、第2の電極 202 は、可視光を透過できる導電物から成る電極である。可視光を透過できる導電物について特に限定はなく、インジウム錫酸化物の他、酸化 珪素を含むインジウム錫酸化物、 $2\sim20\%$ の酸化亜鉛を含む酸化インジウム等を用いることができる。

[0054]

第1の電極201の電位よりも第2の電極202の電位の方が高くなるように電圧を印加したとき、第1の層211から第1の電極201へは正孔が注入され、第2の層212から第3の層213へは電子が注入される。また第2の電極202から第3の層213へは正孔が注入される。

[0055]

第3の層213において電子と正孔とは再結合し、これによって発光物質が励起状態となる。そして、励起状態になった発光物質が基底状態に戻るときに発光する。このようにして発光が生じる領域を特に発光領域という。そして、発光領域が形成されるように、発光物質を含んだ層を発光層という。なお、発光領域は、発光層の少なくとも一部において

形成される。

[0056]

本形態の発光素子において、第3の層213は、発光層222の他、電子輸送層221、正孔輸送層223、正孔注入層224とを含む。但し、第3の層213の層構造は、図12に示したものに限定されるものではなく、例えば発光層のみから成る単層構造のものであってもよい。

[00.57]

また、第1の層211、第2の層212、第3の層213は、それぞれ、実施の形態1に記載の第1の層811、第2の層812、第3の層813と同様の物質を用いて形成すればよい。また、電子輸送層221、発光層222、正孔輸送層223、正孔注入層224についても、それぞれ、実施の形態1に記載の電子輸送層821、発光層822、正孔輸送層823、正孔注入層824と同様の物質を用いて形成すればよい。

[0058]

反射電極に光が入射した場合、反射光には位相の反転が生じる。これによって生じる光の干渉効果により、発光領域と反射電極との光学距離(即ち、屈折率×距離)が、発光波長の(2m-1)/4倍(mは任意の正の整数)、即ち、m=1/4、3/4、5/4・・・倍の時には発光の外部取り出し効率が高くなり、m/2倍(mは任意の正の整数)即ち、m=1/2、1、3/2・・・倍の時には発光の外部取り出し効率が低くなる。

[0059]

したがって、本形態の発光素子において、発光領域が発光層 2 2 2 と正孔輸送層 2 2 3 との界面近傍である場合は、下記数式(4)を満たすように第 1 の層 2 1 1、第 2 の層 2 1 2、電子輸送層 2 2 1、発光層 2 2 2 の各膜厚を調節することが好ましい。これによって、発光を効率よく外部に取り出すことができる。また、 d_i 、 d_{ii} の膜厚増加に伴う抵抗値の増加を低く抑えることができる。ここで、抵抗値とは、印加した電圧値(V)を、印加した電圧に応じて発光素子に流れる電流(MA)で割ることによって得られる値である。

[0060]

【数0.2】

$$n_i d_i + n_{ii} d_{ii} + n_1 d_1 + n_p d_p = \frac{(2m-1)\lambda}{4} \cdot \cdot \cdot (4)$$

[0061]

数式(4)において、 n_i は第1の層211の屈折率、 d_i は第1の層211の膜厚、 n_i は第2の層212の屈折率、 d_{ii} は第2の層212の膜厚、 n_i は電子輸送層221の屈折率、 d_{i} は電子輸送層221の膜厚、 n_{i} は発光層222の屈折率、 d_{i} は発光層222の原厚、 λ は発光素子からの発光の波長、mは任意の正の整数を表す。

[0062]

[0063]

【数03】

$$n_i d_i + n_{ii} d_{ii} + n_1 d_1 - \frac{(2m-1)\lambda}{4} \cdot \cdot \cdot (5)$$

[0064]

数式(5)において、 n_i は第1の層211の屈折率、 d_i は第1の層211の膜厚、 n_i は第2の層212の屈折率、 d_{ii} は第2の層212の膜厚、 n_i は電子輸送層221の

屈折率、d₁は電子輸送層221の膜厚、入は発光素子からの発光の波長、mは任意の正の整数を表す。

[0065]

また、本形態の発光素子において、発光層222の全域に渡り発光領域が形成される場合は、数式(6)を満たすように第1の層211、第2の層212、電子輸送層221の各膜厚を調節することが好ましい。これによって、発光を効率よく外部に取り出すことができる。

【数04】

$$\frac{(2m-1)\lambda}{4} - n_{ii}d_{ii} - n_{1}d_{1} - n_{p}d_{p} \leq n_{i}d_{i} \leq \frac{(2m-1)\lambda}{4} - n_{ii}d_{ii} - n_{1}d_{1} \cdot \cdot \cdot (6)$$

[0066]

数式(6)において、 n_i は第1の層 2 1 1 の屈折率、 d_i は第1の層 2 1 1 の膜厚、 n_i は第 2 の層 2 1 2 の屈折率、 d_{ii} は第 2 の層 2 1 2 の展厚、 n_i は電子輸送層 2 2 1 の展厚、 n_i は発光層 2 2 2 の屈折率、 d_i は発光層 2 2 2 の屈折率、 d_i は発光層 2 2 2 の限厚、 d_i は発光素子からの発光の波長、 d_i は発光素子からの発光の波長、 d_i は発光素子からの発光の波長、 d_i は発光素子からの発光の波長、 d_i は発光素子からの発光の波長、 d_i は発光素子がらの発光の波長、 d_i は発光素子がらの発光の波長、 d_i は発光素子がらの発光の波長、 d_i は発光素子がらの発光の波長、 d_i は発光素子がらの発光の波長、 d_i は第 1 の

[0067]

数式(4)、(5)、(6)において、mは1≦m≦10であることが好ましい。また、発光素子からの発光とは、発光素子外部に放射される、発光物質に由来した発光のことである。また、発光の波長とは、発光スペクトルにおいて極大値を示す波長についての理論値である。

[0068]

[0069]

(実施の形態3)

本発明の発光素子は、発光時間の蓄積に伴った駆動電圧の増加が少なく信頼性の高い素子であるため、本発明の発光素子を例えば画素部に適用することで、消費電力の増加の少ない発光装置を得ることができる。また、本発明の発光素子は、電極間の短絡を防ぐことが容易なため、本発明の発光素子を画素部に適用することで、短絡に起因した欠陥の少ない良好な画像を表示できる発光装置を得ることができる。また、本発明の発光素子は、発光の外部取り出し効率を容易にすることが容易なため、本発明の発光素子を画素部に適用することで、低消費電力で表示動作を行うことができる発光装置を得ることができる。

[0070]

本形態では、表示機能を有する発光装置の回路構成および駆動方法について図3~6を 用いて説明する。

[0071]

図3は本発明を適用した発光装置を上面からみた模式図である。図3において、基板6500上には、画素部6511と、ソース信号線駆動回路6512と、書込用ゲート信号線駆動回路6512と、書込用ゲート信号線駆動回路6513と、消去用ゲート信号線駆動回路6513と、消去用ゲート信号線駆動回路6513と、消去用ゲート信号線駆動回路6513と、消去用ゲート信号線駆動回路6512と、書込用ゲート信号線駆動回路6513と、消去用ゲート信号線駆動回路6512と、書込用ゲート信号線駆動回路6513と、消去用ゲート信号線駆動回路6512と、者なれぞれ、FPC6503からビデオ信号、クロック信号、スタート信号、リセット信号等を受け取る。またFPC6503にはブリント配線基盤(PWB)6504が取り付けられている。なお、駆動回路部は、上記のように必ずしも画素部6511と同一基板上に設けられている必要はなく、例えば、配線バターンが形成されたFPC上に

ICチップを実装したもの(TCP)等を利用し、基板外部に設けられていてもよい。

. [0072]

画素部6511には、列方向に延びた複数のソース信号線が行方向に並んで配列している。また、電流供給線が行方向に並んで配列している。また、画素部6511には、行方向に延びた複数のゲート信号線が列方向に並んで配列している。また画素部6511には、発光素子を含む一組の回路が複数配列している。

[0073]

図4は、一画素を動作するための回路を表した図である。図4に示す回路には、第1のトランジスタ901と第2のトランジスタ902と発光素子903とが含まれている。

[0074]

第1のトランジスタ901と、第2のトランジスタ902とは、それぞれ、ゲート電極と、ドレイン領域と、ソース領域とを含む三端子の素子であり、ドレイン領域とソース領域の間にチャネル領域を有する。ここで、ソース領域とドレイン領域とは、トランジスタの構造や動作条件等によって変わるため、いずれがソース領域またはドレイン領域であるかを限定することが困難である。そこで、本形態においては、ソースまたはドレインとして機能する領域を、それぞれ第1電極、第2電極と表記する。

[0075]

ゲート信号線911と、書込用ゲート信号線駆動回路913とはスイッチ918によって電気的に接続または非接続の状態になるように設けられている。また、ゲート信号線取動回路914とはスイッチ919によって電気的に接続または非接続の状態になるように設けられている。また、ソース信号線912は、スイッチ920によってソース信号線駆動回路915または電源916のいずれかに電気的に接続するように設けられている。そして、第1のトランジスタの第1電極はソース信号線912に電気的に接続している。また、第1のトランジスタの第1電極と電気的に接続している。第2のトランジスタ902のゲートを電気的に接続している。第2のトランジスタ902の第1電極は電流供給線917と電気的に接続している。第2のトランジスタ902の第1電極は電流性治線917と電気的に接続している。第2では発光素子903に含まれる一の電極と電気的に接続している。なお、スッチ918は、書込用ゲート信号線駆動回路913に含まれていてもよい。また、スイッチ920についてもソース信号線駆動回路915の中に含まれていてもよい。

[0076]

また画素部におけるトランジスタや発光素子等の配置について特に限定はないが、例えば図5の上面図に表すように配置することができる。図5において、第1のトランジスタ1001の第1電極はソース信号線1004に接続し、第2の電極は第2のトランジスタ1002のゲート電極に接続している。また第2トランジスタの第1電極は電流供給線105に接続し、第2電極は発光素子の電極1006に接続している。ゲート信号線1003の一部は第1のトランジスタ1001のゲート電極として機能する。

[0077]

次に、駆動方法について説明する。図6は時間経過に伴ったフレームの動作について説明する図である。図6において、横方向は時間経過を表し、縦方向はゲート信号線の走査 段数を表している。

[0078]

本発明の発光装置を用いて画像表示を行うとき、表示期間においては、画面の書き換え動作と表示動作とが繰り返し行われる。この書き換え回数について特に限定はないが、画像をみる人がちらつき(フリッカ)を感じないように少なくとも1秒間に60回程度とすることが好ましい。ここで、一画面(1フレーム)の書き換え動作と表示動作を行う期間を1フレーム期間という。

[0079]

1 フレームは、図 6 に示すように、書き込み期間 5 0 1 a 、 5 0 2 a 、 5 0 3 a 、 5 0 4 a と保持期間 5 0 1 b 、 5 0 2 b 、 5 0 3 b 、 5 0 4 b とを含む 4 つのサブフレーム 5

01、502、503、504に時分割されている。発光するための信号を与えられた発光素子は、保持期間において発光状態となっている。各々のサブフレームにおける保持期間の長さの比は、第1のサブフレーム501:第2のサブフレーム502:第3のサブフレーム503:第4のサブフレーム504= 2^3 : 2^2 : 2^1 : 2^0 =8:4:2:1となっている。これによって4 ピット階調を表現することができる。但し、ビット数及び階調数はここに記すものに限定されず、例えば8つのサブフレームを設け8 ピット階調を行えるようにしてもよい。

[0800]

1フレームにおける動作について説明する。まず、サブフレーム501において、1行目から最終行まで順に書き込み動作が行われる。従って、行によって書き込み期間の開始時間が異なる。書き込み期間501aが終了した行から順に保持期間501bへと移る。当該保持期間において、発光するための信号を与えられている発光素子は発光状態となっている。また、保持期間501bが終了した行から順に次のサブフレーム502へ移り、サブフレーム501の場合と同様に1行目から最終行まで順に書き込み動作が行われる。以上のような動作を繰り返し、サブフレーム504の保持期間504b迄終了する。サブフレーム504における動作を終了したら次のフレームへ移る。このように、各サプフレームにおいて発光した時間の積算時間が、1フレームにおける各々の発光素子の発光時間となる。この発光時間を発光素子ごとに変えて一画素内で様々に組み合わせることによって、明度および色度の異なる様々な表示色を形成することができる。

[0081]

[0082]

なお、本形態では、サブフレーム501乃至504は保持期間の長いものから順に並んでいるが、必ずしも本実施例のような並びにする必要はなく、例えば保持期間の短いものから順に並べられていてもよいし、または保持期間の長いものと短いものとがランダムに並んでいてもよい。また、サブフレームは、さらに複数のフレームに分割されていてもよい。つまり、同じ映像信号を与えている期間、ゲート信号線の走査を複数回行ってもよい

[0083]

ここで、書込期間および消去期間における、図4で示す回路の動作について説明する。

[0084]

まず書込期間における動作について説明する。書込期間において、 n 行目(n は自然数)のゲート信号線 9 1 1 は、スイッチ 9 1 8 を介して書込用ゲート信号線駆動回路 9 1 3 と電気的に接続し、消去用ゲート信号線駆動回路 9 1 4 とは非接続である。また、ソース信号線 9 1 2 はスイッチ 9 2 0 を介してソース信号線駆動回路と電気的に接続している。ここで、 n 行目(n は自然数)のゲート信号線 9 1 1 に接続した第1のトランジスタ 9 0 1 はオンとなる。そして、 2 の時、 1 列目から最終列目迄のソース信号線に同時に映像信号が入力される。なお、各列のソース信号線 9 1 2 から入力される映像信号は互いに独立したものである。ソース信号線 9 1 2 から入力される映像信号は互いに独立したものである。ソース信号線 9 1 2 から入力された映像信号は、各々のソース信号線に接続した第1のトランジスタ 9 0 2 に入力された。この時第2のトランジスタ 9 0 2 に入力された信号によって、電流供給線 9 1 7 から発光素子 9 0 3 へ供給される電流値が決まる。そして、その電流値に依存して発光素子 9 0 3 は発光または非発光が

決まる。例えば、第2のトランジスタ902かPチャネル型である場合は、第2のトランジスタ902のゲート電極にLow Levelの信号が入力されることによって発光素子903が発光する。一方、第2のトランジスタ902がNチャネル型である場合は、第2のトランジスタ902のゲート電極にHigh Levelの信号が入力されることによって発光素子903が発光する。

[0085]

次に消去期間における動作について説明する。消去期間において、n行目(nは自然数)のゲート信号線911は、スイッチ919を介して消去用ゲート信号線駆動回路リート信号線駆動回路リート信号線駆動回路リート信号線駆動回路リート信号線駆動回路リート信号線駆動回路リート信号線駆動回路リート信号線 11に接続した第1のトランジスタ901に接続した第1のトランジスタ901はオンとなる。ソース信号線リース信号線に接続した第1のトランジスタ901を介して、この時、1列目の大力に信号が入力される。ソース信号線リース信号線に接続した第1のトランジスタ901を介して第2のトランジスタ901を介して第2のトランジスタ902によって第2のトランジスタ902によった信号によって発光素子903は非発光となる。一方、第2のトランジスタ902がNチャネル型である場合は、第2のトランジスタ902がアートでである場合は、第2のトランジスタ902がアートで表となる。一方、第2のケートであるよって発光素子903は非発光となる。して発光表子903は非発光となる。して発光表子903は非発光となる。

[0086]

なお、消去期間では、n行目(nは自然数)については、以上に説明したような動作によって消去する為の信号を入力する。しかし、前述のように、n行目が消去期間であると共に、他の行(m行目(mは自然数)とする。)については書込期間となる場合がある。このような場合、同じ列のソース信号線を利用してn行目には消去の為の信号を、m行目には書込の為の信号を入力する必要があるため、以下に説明するような動作させることが好ましい。

[0087]

先に説明した消去期間における動作によって、n行目の発光素子903が非発光となった後、直ちに、ゲート信号線と消去用ゲート信号線駆動回路914とを非接続の状態とすると共に、スイッチ918を切り替之てソース信号線とソース信号線駆動回路915とを接続させる。そして、ソース信号線とソース信号線駆動回路915とを接続させる共に、ゲート信号線と書込用ゲート信号線駆動回路913とを接続させる。そして、書込用ゲート信号線駆動回路913からm行目の信号線に選択的に信号が入力され、第1のトランジスタがオンすると共に、ソース信号線駆動回路915からは、1列目から最終列目迄のソース信号線に書込の為の信号が入力される。この信号によって、m行目の発光素子は、発光または非発光となる。

[0088]

以上のようにしてm行目について書込期間を終えたら、直ちに、n+1行目の消去期間に移行する。その為に、ゲート信号線と書込用ゲート信号線駆動回路913を非接続とすると共に、スイッチ918を切り替えてソース信号線を電源916と接続する。また、ゲート信号線と書込用ゲート信号線駆動回路913を非接続とすると共に、ゲート信号線については、消去用ゲート信号線駆動回路914と接続状態にする。そして、消去用ゲート信号線駆動回路914からn+1行目のゲート信号線に選択的に信号を入力して第1のトランジスタに信号をオンする共に、電源916から消去信号が入力される。このようにして、n+1行目の消去期間を終えたら、直ちに、m行目の書込期間に移行する。以下、同様に、消去期間と書込期間とを繰り返し、最終行目の消去期間まで動作させればよい。

[0089]

なお、本形態では、n行目の消去期間とn+l行目の消去期間との間にm行目の書込期

間を設ける態様について説明したが、これに限らず、n-1行目の消去期間とn行目の消去期間との間にm行目の書込期間を設けてもよい。

[0090]

また、本形態では、サプフレーム504のように非発光期間504dを設けるときおいて、消去用ゲート信号線駆動回路914と或る一のゲート信号線とを非接続状態にすると共に、書込用ゲート信号線駆動回路913と他のゲート信号線とを接続状態にする動作を繰り返している。このような動作は、特に非発光期間を設けないフレームにおいて行っても構わない。

$\{0091\}$

(実施の形態4)

本発明の発光素子を含む発光装置の断面図の一態様について、図7を用いて説明する。

[0092]

図7において、点線で囲まれているのは、本発明の発光素子12を駆動するために設けられているトランジスタ11である。発光素子12は、第1の電極13と第2の電極14との間に正孔を発生する層と電子を発生する層と発光物質を含む層とが積層された層15を有する本発明の発光素子である。トランジスタ11のドレインと第1の電極13とは、第1層間絶縁膜16(16a、16b、16c)を貫通している配線17によって電気的に接続されている。また、発光素子12は、隔壁層18によって、隣接して設けられている別の発光素子と分離されている。このような構成を有する本発明の発光装置は、本形態において、基板10上に設けられている。

[0093]

なお、図7に示されたトランジスタ11は、半導体層を中心として基板と逆側にゲート電極が設けられたトップゲート型のものである。但し、トランジスタ11の構造については、特に限定はなく、例えばボトムゲート型のものでもよい。またボトムゲートの場合には、チャネルを形成する半導体層の上に保護膜が形成されたもの(チャネル保護型)でもよいし、或いはチャネルを形成する半導体層の一部が凹状になったもの(チャネルエッチ型)でもよい。なお、21はゲート電極、22はゲート絶縁膜、23は半導体層、24は n型の半導体層、25は電極、26は保護膜である。

[0094]

また、トランジスタ11を構成する半導体層は、結晶性、非結晶性のいずれのものでもよい。また、セミアモルファス等でもよい。

[0095]

なお、セミアモルファスな半導体とは、次のようなものである。非晶質と結晶構造(単 結晶、多結晶を含む)の中間的な構造を有し、自由エネルギー的に安定な第3の状態を有 する半導体であって、短距離秩序を持ち格子歪みを有する結晶質な領域を含んでいるもの である。また少なくとも膜中の一部の領域には、0.5~20nmの結晶粒を含んでいる 。ラマンスペクトルか520cm‐!よりも低波数側にシフトしている。X線回折ではSi 結晶格子に由来するとされる(111)、(220)の回折ピークが観測される。未結合 手(ダングリングボンド)の中和剤として水素またはハロゲンを少なくとも1原子%また はそれ以上含ませている。所謂微結晶半導体(マイクロクリスタル半導体)とも言われて いる。珪化物気体をグロー放電分解(ブラズマCVD)して形成する。珪化物気体として は、 SiH_4 、その他にも Si_2H_6 、 SiH_2Cl_2 、 $SiHCl_3$ 、 $SiCl_4$ 、 SiF_4 な とを用いることができる。この珪化物気体を H_2 、又は、 H_2 とHe、Ar、Kr、Ne mら選ばれた一種または複数種の希ガス元素で希釈しても良い。希釈率は2~1000倍の 範囲。圧力は概略0.1Pa~133Paの範囲、電源周波数は1MHz~120MHz 、好ましくは13MHz~60MHz。基板加熱温度は300℃以下でよく、好ましくは 100~250℃。膜中の不純物元素として、酸素、窒素、炭素などの大気成分の不純物 は 1×10^{20} /cm 3 以下とすることが望ましく、特に、酸素濃度は 5×10^{19} /cm 3 以 下、好ましくは1×10¹⁹/cm³以下とする。なお、セミアモルファスなものを有する 半導体を用いたTFT(薄膜トランジスタ)の移動度はおよそ1~10m2/Vsecと

[0096]

また、半導体層が結晶性のものの具体例としては、単結晶または多結晶性の珪素、或いはシリコンゲルマニウム等から成るものが挙げられる。これらはレーザー結晶化によって 形成されたものでもよいし、例えばニッケル等を用いた固相成長法による結晶化によって 形成されたものでもよい。

[0097]

なお、半導体層が非晶質の物質、例えばアモルファスシリコンで形成される場合には、トランジスタ11およびその他のトランジスタ(発光素子を駆動するための回路を構成するトランジスタ)は全てNチャネル型トランジスタで構成された回路を有する発光装置であることが好ましい。それ以外については、Nチャネル型またはPチャネル型のいずれかーのトランジスタで構成された回路を有する発光装置でもよいし、両方のトランジスタで構成された回路を有する発光装置でもよい。

[0098]

さらに、第1層間絶縁膜16は、図7(A)、(C)に示すように多層でもよいし、または単層でもよい。なお、16aは酸化珪素や窒化珪素のような無機物から成り、16bはアクリルやシロキサン(シリコン(Si)と酸素(O)との結合で骨格構造が構成され、置換基に少なくとも水素を含む物質)、塗布成膜可能な酸化珪素等の自己平坦性を有する物質から成る。さらに、16cはアルゴン(Ar)を含む窒化珪素膜から成る。なお、各層を構成する物質については、特に限定はなく、ここに述べたもの以外のものを用いてもよい。また、これら以外の物質から成る層をさらに組み合わせてもよい。このように、第1層間絶縁膜16は、無機物または有機物の両方を用いて形成されたものでもよいし、または無機膜と有機膜のいずれか一で形成されたものでもよい。

[0099]

隔壁層18は、エッジ部において、曲率半径が連続的に変化する形状であることが好ましい。また隔壁層18は、アクリルやシロキサン、レジスト、酸化珪素等を用いて形成される。なお隔壁層18は、無機膜と有機膜のいずれか一で形成されたものでもよいし、または両方を用いて形成されたものでもよい。

[0100]

なお、2 (C)では、第1層間絶縁膜1 6のみがトランジスタ1 1と発光素子1 2の間に設けられた構成であるが、2 (B)のように、第1層間絶縁膜1 6 (1 6 a、1 6 b)の他、第2層間絶縁膜1 9 (1 9 a、1 9 b)が設けられた構成のものであってもよい。2 (B)に示す発光装置においては、第1の電極1 3 は第2層間絶縁膜1 9 を貫通し、配線1 7 と接続している。

[0101]

第2層間絶縁膜19は、第1層間絶縁膜16と同様に、多層でもよいし、または単層でもよい。19aはアクリルやシロキサン(シリコン(Si)と酸素(O)との結合で骨格構造が構成され、置換基に少なくとも水素を含む物質)、塗布成膜可能な酸化珪素等の自己平坦性を有する物質から成る。さらに、19bはアルゴン(Ar)を含む窒化珪素膜から成る。なお、各層を構成する物質については、特に限定はなく、ここに述べたもの以外のものを用いてもよい。また、これら以外の物質から成る層をさらに組み合わせてもよい。このように、第2層間絶縁膜19は、無機物または有機物の両方を用いて形成されたものでもよいし、または無機膜と有機膜のいずれか一で形成されたものでもよい。

[0102].

発光素子12において、第1の電極および第2の電極がいずれも透光性を有する物質で構成されている場合、図7(A)の白抜きの矢印で表されるように、第1の電極13側と第2の電極14側の両方から発光を取り出すことができる。また、第2の電極14のみが透光性を有する物質で構成されている場合、図7(B)の白抜きの矢印で表されるように、第2の電極14側のみから発光を取り出すことができる。この場合、第1の電極13は反射率の高い材料で構成されているか、または反射率の高い材料から成る膜(反射膜)が

第1の電極13の下方に設けられていることが好ましい。また、第1の電極13のみが透光性を有する物質で構成されている場合、図7(C)の白抜きの矢印で表されるように、第1の電極13側のみから発光を取り出すことができる。この場合、第2の電極14は反射率の高い材料で構成されているか、または反射膜が第2の電極14の上方に設けられていることが好ましい。

[0103]

また、発光素子12は、第1の電極13の電位よりも第2の電極14の電位が高くなるように電圧を印加したときに動作するように層15が積層されたものであってもよいし、或いは、第1の電極13の電位よりも第2の電極14の電位が低くなるように電圧を印加したときに動作するように層15が積層されたものであってもよい。前者の場合、トランジスタ11はNチャネル型トランジスタであり、後者の場合、トランジスタ11はPチャネル型トランジスタである。

[0104]

[0105]

(実施の形態5)

本発明の発光装置を実装することによって、表示部等に関する消費電力の増加が少ない電子機器を得ることができる。また、本発明の発光装置を実装することによって、画素の欠陥等が少なく良好な画像を表示できる表示装置等の電子機器を得ることができる。また、本発明の発光装置を実装することによって、消費電力の少ない電子機器を得ることが出来る。

[0106]

本発明を適用した発光装置を実装した電子機器の一実施例を図8に示す。

[0107]

図8(A)は、本発明を適用して作製したノート型のバーソナルコンピュータであり、本体5521、筐体5522、表示部5523、キーボード5524などによって構成されている。本発明の発光素子を有する発光装置を表示部として組み込むことでバーソナルコンピュータを完成できる。

[0108]

図8(B)は、本発明を適用して作製した電話機であり、本体5552には表示部5551と、音声出力部5554、音声入力部5555、操作スイッチ5556、5557、アンテナ5553等によって構成されている。本発明の発光素子を有する発光装置を表示部として組み込むことで電話機を完成できる。

[0109]

図8 (C)は、本発明を適用して作製したテレビ受像機であり、表示部5531、筐体5532、スピーカー5533などによって構成されている。本発明の発光素子を有する

発光装置を表示部として組み込むことでテレビ受像機を完成できる。

[0110]

以上のように本発明の発光装置は、各種電子機器の表示部として用いるのに非常に適している。

[0111]

なお、本形態では、パーソナルコンピュータについて述べているが、この他に電話機、 ナビゲイション装置、或いは照明機器等に本発明の発光素子を有する発光装置を実装して も構わない。

[0112]

(実施の形態6)

本形態では、一般式(1)で表されるキノキサリン誘導体の合成方法の一態様について 説明する。

先ず、ジフェニルアミンまたはNー(1ーナフチル)ーNーフェニルアミン等のジフェニルアミンを骨格に含む化合物と、4ープロモベンジルとを反応させて、2,3ーピス(4ープロモフェニル)キノキサリンを骨格に含む化合物Aを合成する。そして、ジアリールアミンと化合物Aとを反応させて、プロモ基をジアリールアミノ基に置換する。このようにして一般式(1)で表されるキノキサリン誘導体を得ることができる。(実施の形態7)

本形態では、一般式(2)で表されるキノキサリン誘導体の合成方法の一態様について 説明する。

先ず、ジアミノベンジジン等と、4-プロモベンジルとを反応させて、2, 3-ビス(4-プロモフェニル)キノキサリンを骨格に含む2, 2, 3, 3, 3, -テトラ(4-プロモフェニル)-6, 6, 6, -ビスキノキサリン(化合物 B)を合成する。そして、ジアリールアミンと化合物 Bとを反応させて、プロモ基をジアリールアミノ基に置換する。このようにして一般式(2)で表されるキノキサリン誘導体を得ることができる。

【実施例1】

[0113]

本実施例では、三つの発光素子、発光素子(1)、発光素子(2)、発光素子(3)の作製方法と、それらの素子の特性について図2を用いて説明する。

[0114]

基板551上に、シリコンを含有したインジウム錫酸化物を、スパッタリング法によって成膜し、第2の電極552を形成した。ここで、膜厚は110nmとなるようにした。なお、基板551はガラスから成るものを用いた。

[0115]

次に、第2の電極552の上に、モリブデン酸化物とTPAQnと共蒸着法によって成膜し、モリブデン酸化物とTPAQnとを含む第11の層553を形成した。ここで、発光素子(12)においては、モリブデン酸化物はTPAQnとの質量比は0.5対4(=モリブデン酸化物:TPAQn)となるように調節した。また、発光素子(13)においては、モリブデン酸化物:TPAQn)となるように調節した。また、発光素子(14)においては、モリブデン酸化物はTPAQn)となるように調節した。ここで、膜厚は、それぞれの発光素子につき、50nmとなるようにした。

[0116]

次に、第11の層553上に、4, 4 ーピス [Nー(1ーナフチル) ー Nーフェニルアミノ] ピフェニル(略称:NPBまたは α – NPD)を、真空蒸着法によって成膜し、NPBから成る第12の層554を形成した。ここで、膜厚は10nmとなるようにした

[0117]

次に第12の層554の上に、Alagとクマリン6とを、共蒸着法によって成膜し、トリス(8―キノリノラート)アルミニウム(略称:Alag)とクマリン6とを含む第

13の層555を形成した。ここで、 $A1q_3$ とクマリン6との質量比は1対0.01となるように調節した。これによって、クマリン6は $A1q_3$ の中に分散された状態となる。また、膜厚は、40nmとなるようにした。なお、共蒸着法とは、真空蒸着法のひとつであり、ひとつの処理室内に設けられた複数の蒸発源から同時に蒸着を行う蒸着法である

[0118]

次に第13の層555の上に、 $A1q_3$ を、真空蒸着法によって成膜し、 $A1q_3$ から成る第14の層556を形成した。ここで、膜厚は10nmと成るようにした。

[0119]

次に、第14の層556の上に、TPAQnとリチウムとを原料とし、共蒸着法によって、TPAQnとリチウム(Li)とを含む第2の層557を形成した。ここで、TPAQnとリチウムとの質量比1:0.01(TPAQn:Li)、モル比に換算すると1(=TPAQn/リチウム)となるように調節した。また、膜厚は10nmとなるようにした。

[0120]

次に、第2の層557の上に、TPAQnとモリブデン酸化物(VI)とを原料とし、共蒸着法によって、TPAQnとモリブデン酸化物とを含む第1の層558を形成した。ここで、TPAQnとモリブデン酸化物との質量比は4:2(=TPAQn:モリブデン酸化物)、モル比に換算すると0.5(=TPAQn/モリブデン酸化物)となるように調節した。また、膜厚は、10nmとなるようにした。

[0121]

次に、第1の層558の上に、アルミニウムを、真空蒸着法によって成膜し、第1の電極559を形成した。膜厚は、200nmとなるようにした。

[0122]

[0123]

[0124]

本実施例の発光素子の電圧一輝度特性を図9に、電流密度一輝度特性を図10に、電圧一電流特性を図11に示す。図9において、横軸は電圧(V)、縦軸は輝度(c d/ m^2)を表す。また、図10において、横軸は電流密度(m A/c m^2)、縦軸は輝度(c d/ m^2)を表す。また、図11において、横軸は電圧(V)、縦軸は電流(m A)を表す。図9~11において、 Δ 印は発光素子(1)、〇印は発光素子(2)、 Δ 印は発光素子(3)の特性を表す。

[0125]

図9~11、から、いずれの発光素子についても、良好に動作していることが分かる。

【実施例2】

[0126]

実施例1において用いているTPAQnの製造方法について説明する。

[0127]

[ステップ1]

まず、10g(27.4mmol)の4-プロモベンジルと3.5g(33.5mmol)の0-フェニレンジアミンを500mlのナス型フラスコに入れ、クロロフォルム中にて8時間撹拌・還流を行った。次に、室温まで冷却後、カラムクロマトグラフィーにより残留した0-フェニレンジアミンを除去し、2,3-ピス(4-ブロモフェニル)キノキサリンを得た。

[012.8]

[ステップ2]

さらに、上記で得られた 2 、 3 ーピス(4 ープロモフェニル)キノキサリンを 4 . 4 0 g (1 0 . 0 mm o 1) 秤量して三つロフラスコに入れ、窒素気流下にて 7 5 m 1 のトルエンに溶解させた。次に、0 . 2 2 g (0 . 2 mm o 1) の P d (d b a) 2、2 . 8 8 g (3 0 mm o 1) の N a O ー t 一 B u 、 3 . 4 6 g (2 0 . 4 mm o 1) の 2 フェニルアミンを加え、さらにトリ(t ー ブチルホスフィン)の 1 0 w t % へキサン溶液を 1 . 8 m 1 加え、8 0 2 に 7 8 時間加熱撹拌した。

[0 1 2 9]

次に、室温まで冷却後、水を加えて反応を終了させ、クロロフォルムで抽出を行った。さらに飽和食塩水で洗浄後、 $MgSO_4$ で乾燥させた。その後、クロロフォルムから再結晶を行い、2, 3-ビス(4-ジフェニルアミノフェニル)キノキサリン(略称:TPAQn)を得た(黄緑色結晶、収量 2, 7g(収率:44%))。

[0130]

以上に説明した合成の合成スキームを次に示す。

[0131]

[0132]

なお、得られたTPAQnの分解温度は411℃であった。なお、測定は示唆熱熱重量 同時測定装置(セイコー電子株式会社製、TG/DTA 320型)を用いて行った。

[0133]

基板上に、110nmの厚さとなるように形成されたインジウム錫酸化物から成る層の上に、TPAQnから成る層を800nmの厚さとなるように形成した。さらにTPAQnから成る層の上に、200nmの厚さとなるようにアルミニウムから成る層を形成した後、タイムオブフライト法(TOF法)を用いてTPAQnにおける正孔および電子の移動度をそれぞれ測定した。その結果、正孔の移動度は、 1×10^{-6} c m^2/V s 、電子の移動度は 1×10^{-5} c m^2/V s であることが分かった。

【図面の簡単な説明】

[0134]

- 【図1】本発明の発光素子の積層構造の一態様を表した図。
- 【図2】本発明の発光素子の積層構造を表した図。
- 【図3】本発明を適用した発光装置の一態様について説明する図。
- 【図4】本発明を適用した発光装置に含まれる回路の一態様について説明する図。
- 【図5】本発明を適用した発光装置の上面図。
- 【図6】本発明を適用した発光装置のフレーム動作について説明する図。
- 【図7】本発明を適用した発光装置の断面図。
- 【図8】本発明を適用した電子機器の図。
- 【図9】本発明の発光素子の電圧-輝度特性の図。
- 【図10】本発明の発光素子の電流密度-輝度特性の図。
- 【図11】本発明の発光素子の電圧一電流特性の図。
- 【図12】本発明の発光素子の積層構造の一態様を表した図。
- 【図13】本発明を適用した発光装置の斜視図。

【符号の説明】

[0135]

801 第1の電極

802 第2の電極

811 第1の層

812 第2の層

813 第3の層

821 電子輸送層

				-			
8 2 2	発光層	•	•	•			
8 2 3	正孔輸送層	_		•			
8 2 4	正孔注入層	•					
2 0 1	第1の電極						
2 0 2	第2の電極		•				
2 1 1	第1の層	•					
2 1 2	第2の層	•					-
2 1 3	第3の層	•					
2 2 2	発光層					* * .	•
2 2 1	電子輸送層						
2 2 3	正孔輸送層			•		•	
2 2 4	正孔注入層						
•	• .						
· ·	:				-		•

【図2】

【図4】

[210]

【図12】

【書類名】要約書

【要約】

【課題】本発明は、発光時間の蓄積に伴った駆動電圧の増加の少ない発光素子を提供することを課題とする。また、本発明は、膜厚の増加に伴った抵抗値の増加の少ない発光素子を提供することを課題とする。

【解決手段】 本発明の発光素子の一は、対向するように設けられた第1の電極と第2の電極との間に、第1の層と、第2の層と、第3の層とを有する。第1の層は第2の層よりも第1の電極側に設けられている。第1の層はバイボーラ性物質と、その物質に対して電子受容性を示す物質とを含む層である。また、第2の層はバイボーラ性物質と、その物質に対して電子供与性を示す物質とを含む層である。また、第3の層は、発光物質を含む層である。

【選択図】図1

000153878
19900817
新規登録

神奈川県厚木市長谷398番地 株式会社半導体エネルギー研究所