School of Mathematics

Thapar University, Patiala

UMA003: Mathematics-I, (Tutorial Sheet 06)

(1) For what values of x does the series converge absolutely and conditionally? Also, find the series radius of convergence and interval of convergence.

(a)
$$\sum_{n=1}^{\infty} \frac{nx^n}{n+2}$$

(b)
$$\sum_{n=1}^{\infty} \frac{x^{2n+1}}{n!}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(2x+3)^{2n+1}}{n!}$$

(d)
$$\sum_{n=2}^{\infty} \frac{x^n}{n(\ln n)^2}$$

the series radius of co
(a)
$$\sum_{n=1}^{\infty} \frac{nx^n}{n+2}$$

(b) $\sum_{n=1}^{\infty} \frac{x^{2n+1}}{n!}$
(c) $\sum_{n=1}^{\infty} \frac{(2x+3)^{2n+1}}{n!}$
(d) $\sum_{n=2}^{\infty} \frac{x^n}{n(\ln n)^2}$
(e) $\sum_{n=1}^{\infty} \frac{(4x-5)^{2n+1}}{n^{3/2}}$

(f)
$$\sum_{n=1}^{\infty} \frac{(x-\sqrt{2})^{2n+1}}{2^n}$$

(2) Find the Taylor series generated by the following functions at x = a:

(a)
$$f(x) = x^3 - 2x + 4$$
, $a = 2$

(b)
$$f(x) = e^x \text{ at } a = 2$$

(c)
$$f(x) = \frac{x}{1-x}$$
, $a = 0$

(d)
$$f(x) = \frac{1}{x^2} at \ a = 1$$

(3) Find Maclaurin series for the following functions:

(a)
$$f(x) = xe^x$$

(b)
$$f(x) = x^2 \sin x$$

(c)
$$f(x) = \cos^2 x$$

(d)
$$f(x) = x \ln(1 + 2x)$$

(4) For approximately what values of x, $\sin x$ can be replaced by $x - \frac{x^3}{3!}$ with an error of magnitude no greater than 5×10^{-4} ? Give reason for your answer.

(5) When $0 \le h \le 0.01$, show that e^h may be replaced by 1 + h with an error of magnitude no greater than 0.6% of h. (use $e^{0.001} = 1.01$)

(6) Estimate the error in the approximation $\sinh x = x + \frac{x^3}{3!}$, when |x| < 0.5.