Relational Algebra

Databases

2018-2019

Jesús Correas – jcorreas@ucm.es

Departamento de Sistemas Informáticos y Computación Universidad Complutense de Madrid

Bibliografía

- Basic Bibliography:
 - R. Elmasri, S.B. Navathe. Fundamentals of Database Systems (6th ed). Addison-Wesley, 2010. (in Spanish: Fundamentos de Sistemas de Bases de Datos (5a ed). Addison-Wesley, 2007).
 Chapter 6 (5th, 6th eds).
- Additional Bibliography:
 - A. Silberschatz , H. F. Korth, S. Sudarshan. Database Systems
 Concepts (5th ed) McGraw-Hill, 2006. (in Spanish: Fundamentos de Bases de Datos (5a ed) McGraw-Hill, 2006).
 Chapter 2.

Relational DB query languages

- Query languages are designed to request information from relational databases.
 - ▶ In principle they do not allow to modify data in the DB. We will see data modification operations later in SQL.
- There are two kinds of query languages:
 - Procedural languages: The language tells the DB system a series of operations that must be done to obtain the result.
 - Non-procedural languages: The information that must be retrieved is described, but no specific procedure is given to obtain the information.
- Several formal languages have been proposed to perform queries on a relational DB:
 - Procedural: relational algebra.
 - Non-procedural: tuple relational calculus and domain relational calculus.
- We will see relational algebra, since it establishes the foundations of the query subset of SQL.

Relational Algebra

- It is a formal language for queries based on algebra of sets in mathematical set theory:
 - It does not include data modification operations.
 - ► Each operation of Relational Algebra produces **a new relation** in the RM that can be further manipulated using operations of the algebra.
- Queries are defined as the application of a series of operations on relations in a relational DB:
 - ▶ Operations from set theory: union U, intersection ∩, set difference \ and cartesian product X.
 - ▶ Rename ρ .
 - ▶ Selection σ .
 - ▶ Proyection π .
 - ▶ Join ⋈.
 - ▶ Division ÷.
- We also use the assignment (←) operation on temporary relations to give a name to intermediate results.

Operations from set theory

- Union, intersection, set difference, and cartesian product.
- All are binary operations.
- They are more restrictive than usual set theoretic operations:
 Operands in the first three operations (∪, ∩ and \) must contain
 tuples of the same type: instances of relation schemas with the
 same number of attributes, defined in the same domains and in
 the same order:

$$R(A_1,\ldots,A_n), S(B_1,\ldots,B_n), Dom(A_i) = Dom(B_i)(\forall i \leq n)$$

- Union: $R \cup S$ produces a relation that includes all valid tuples that are either in R or in S. Duplicate tuples are eliminated.
- Intersection: $(R \cap S)$ produces a relation containing the valid tuples that are in both R and S.
- **Set difference:** $R \setminus S$ produces a relation that contains the valid tuples that are **in** R **but not in** S.
- We will see the cartesian product later.

Rename operation

- There are some operations in which the names of attributes and relations are important. It is thus useful to have a renaming operation.
- Given $R(A_1,...,A_n)$, the **rename operation** $\rho_{S(B_1,...,B_n)}(R)$ produces the following relation:
 - ▶ The **name** of the schema is *S*.
 - ▶ Schema attributes: $B_1, ..., B_n$.
 - ▶ **Relation instance:** The valid tuples in *R*.
- Examples: Given EMPL(<u>Id</u>, Name, LastName, Salary):
 - Rename attribute Id:

```
\rho_{\mathtt{EMPL}} (COD, Name, LastName, Salary) (EMPL)
```

► Rename all attributes:

```
\rho_{\text{EMPL}}(\text{COD}, \text{N}, \text{L}, \text{S})(\text{EMPL})
```

▶ Rename schema name to *employees*, keeping attribute names:

```
\rho_{\text{employees}}(\text{EMPL})
```

Selection operation

- The **selection** operation selects the tuples of a relation that satisfy a **selection condition** given as a **Boolean expression**.
- Given a relation schema $R(A_1, \ldots, A_n)$ and a Boolean expression C specified on the attributes of R, $\sigma_C(R)$ produces a relation with the following characteristics:
 - **Schema attributes:** the same attributes as *R*.
 - ▶ **Relation instance:** contains the tuples of *R* that satisfy *C*.
- Valid conditions are Boolean expressions of the form:

$$C \rightarrow attribute \ \mathbf{OP} \ attribute$$

$$C \rightarrow attribute \ \mathbf{OP} \ constant$$

$$C \rightarrow C \wedge C$$

$$C \rightarrow C \lor C$$

$$C \rightarrow \neg C$$

- ▶ attribute is an attribute of R.
- constant is a constant value.
- ▶ **OP** is a relational operator: $\{<,>,\leq,\geq,=,\neq\}$.
- The selection condition is evaluated for each tuple contained in the input relation.

Selection operation

- If we see a relation as a table of values, the selection operation
 performs a "horizontal partition" of the input relation into two sets
 of tuples, discarding the tuples that do not satisfy the condition.
- Examples: Given the schema EMPL(<u>Id</u>, Name, LastName, Salary):
 - Select the employee with Id '27347234T':
 σ_{Id='27347234T'} (EMPL)
 - ► Select the employees with a salary between 1200 and 1500 \in : σ (salary>1200) \wedge (salary<1500) (EMPL)
 - ► Employees whose family name is 'García' or have a salary of less than 1000 €:

```
\sigma (LastName = 'García') \vee (salary<1000) (EMPL)
```

► The input relation can be another expression of relational algebra. What is the meaning of the following expression?

```
\sigma_{\text{LastName}} = \sigma_{\text{Garcia'}}(\sigma_{\text{salary} < 1000}(\text{EMPL}))
```

Projection operation

- The projection operation extracts columns (values of attributes) from a relation.
- Given a relation schema $R(A_1, \ldots, A_n)$ and a subset of attributes $\{B_1, \ldots, B_k\} \subseteq \{A_1, \ldots, A_n\}$, the operation $\pi_{(B_1, \ldots, B_k)}(R)$ produces a relation with the following characteristics:
 - ▶ Schema attributes: $\{B_1, \ldots, B_k\}$.
 - ▶ **Relation instance:** the set of tuples composed of the values of attributes $B_1, ..., B_k$ in the set of valid tuples of R.
- Observe that the relation obtained may contain less tuples than the ones contained in R if the primary key is not contained in $\{B_1, \ldots, B_k\}$.
 - ▶ Relation instances are **sets**: the result of a projection is a **set** of tuples and **cannot contain duplicate tuples**.

Projection operation

- If we see a relation as a table of values, the projection operation performs a "vertical partition" of the input relation, keeping a subset of columns (attributes).
- Examples: Given the schema EMPL(<u>Id</u>, Name, LastName, Salary):
 - ► Obtain the Id and salary of employees:

$$\pi_{(Id,Salary)}(EMPL)$$

▶ Id of employees with salary greater than 1200 euros:

$$\pi$$
 (Id) $(\sigma_{\text{(salario}>1200)}(\text{EMPL}))$

▶ We can use **temporary relation names** for intermediate results:

$$\begin{array}{l} \mathtt{Emp1} \leftarrow \sigma_{\mathtt{(salary} > 1200)}(\mathtt{EMPL}) \\ \mathtt{Emp2} \leftarrow \pi_{\mathtt{(Id)}}(\mathtt{Emp1}) \end{array}$$

- The cartesian product combines the values contained in two relations.
- The relational cartesian product slightly differs from the standard set-theoretic cartesian product.
- Given $R(A_1, ..., A_m)$ and $S(B_1, ..., B_n)$, the cartesian product produces a relation schema $R \times S$ with the following characteristics:
 - ▶ **Schema attributes:** The output schema has m + n attributes: $A_1, \ldots, A_m, B_1, \ldots, B_n$
 - ▶ If two attributes A_i and B_j have the same name, they are renamed using the relation name as prefix: $R.A_i$ y $S.B_i$.
 - ▶ **Relation instance:** The tuples of the result are those coming from the set-theoretic cartesian product of the sets of tuples *R* and *S*.
- We can avoid the automatic renaming of attribute names if we apply a rename operation to the input relations before applying the cartesian product.
 - ► Otherwise, we can always use attribute names prefixed by relation names in conditions. Example: EMPL.Id = DPTO.Id

• **Example:** Given the following relation schemas:

```
EMPL(<u>Id</u>, Name, LastName, Salary)
PROJECT(PrjCode, Description, ManagerId)
```

 Name of the employees that are managers of (at least) one project:

• **Example:** Given the following relation schemas:

```
EMPL(<u>Id</u>, Name, LastName, Salary)
PROJECT(PrjCode, Description, ManagerId)
```

- Name of the employees that are managers of (at least) one project:
 - ► We can combine both tables using the **cartesian product**:

 Managers1 ← EMPL × PROJECT

This obtains all possible combinations of employees with projects.

• **Example:** Given the following relation schemas:

```
EMPL(<u>Id</u>, Name, LastName, Salary)
PROJECT(PrjCode, Description, ManagerId)
```

- Name of the employees that are managers of (at least) one project:
 - ► We can combine both tables using the **cartesian product:**

```
{\tt Managers1} \leftarrow {\tt EMPL} \times {\tt PROJECT}
```

This obtains all possible combinations of employees with projects.

▶ We can then **select** those tuples in which the employee Id matches the manager of the project (in the same tuple):

```
Managers2 \leftarrow \sigma_{(Id=ManagerId)}(Managers1)
```

• **Example:** Given the following relation schemas:

```
EMPL(<u>Id</u>, Name, LastName, Salary)
PROJECT(PrjCode, Description, ManagerId)
```

- Name of the employees that are managers of (at least) one project:
 - We can combine both tables using the cartesian product: Managers1 ←EMPL×PROJECT

This obtains all possible combinations of employees with projects.

▶ We can then **select** those tuples in which the employee Id matches the manager of the project (in the same tuple):

```
Managers2 \leftarrow \sigma_{(Id=ManagerId)}(Managers1)
```

- ► Finally, we **project** the name of the managers to obtain the final result:

 Managers ← π (Name, LastName) (Managers2)
- Observe that each manager appears only once **even though that** manager possibly manages several projects.
- In a compositional way:

```
\pi_{\text{(Name, LastName)}}(\sigma_{\text{(Id=ManagerId)}}(\text{EMPL} \times \text{PROJECT}))
```

• **Another example:** Given the following relation schemas:

```
EMPL(<u>Id</u>, Name, LastName, Salary)
PROJECT(<u>PrjCode</u>, Description, ManagerId)
ALLOCATION(PrjCode, EmplId, Hours)
```

Name of the employees that work on a project more than 10 hours:

Another example: Given the following relation schemas:

```
EMPL(<u>Id</u>, Name, LastName, Salary)
PROJECT(<u>PrjCode</u>, Description, ManagerId)
ALLOCATION(PrjCode, EmplId, Hours)
```

- Name of the employees that work on a project more than 10 hours:
 - We first select the allocations of employees to projects of more than 10 hours:

```
Distr10 \leftarrow \sigma_{\text{Hours}>10}(\text{ALLOCATION})
```

• Another example: Given the following relation schemas:

```
EMPL(<u>Id</u>, Name, LastName, Salary)
PROJECT(<u>PrjCode</u>, Description, ManagerId)
ALLOCATION(PrjCode, EmplId, Hours)
```

- Name of the employees that work on a project more than 10 hours:
 - We first select the allocations of employees to projects of more than 10 hours:

```
\texttt{Distr10} \leftarrow \sigma_{\texttt{Hours} > \texttt{10}}(\texttt{ALLOCATION})
```

▶ We then **combine** this result with the EMPL relation to get the information of those employees:

```
Empl10 \leftarrow \sigma_{(Id=Empl1d)}(Distr10 \times EMPL)
```

Another example: Given the following relation schemas:

```
EMPL(<u>Id</u>, Name, LastName, Salary)
PROJECT(<u>PrjCode</u>, Description, ManagerId)
ALLOCATION(PrjCode, EmplId, Hours)
```

- Name of the employees that work on a project more than 10 hours:
 - We first select the allocations of employees to projects of more than 10 hours:

```
\texttt{Distr10} \leftarrow \sigma_{\texttt{Hours} > \texttt{10}}(\texttt{ALLOCATION})
```

▶ We then **combine** this result with the EMPL relation to get the information of those employees:

```
Empl10 \leftarrow \sigma_{(Id=Empl1d)}(Distr10 \times EMPL)
```

► Finally, we **project** the name of the selected employees:

```
Result \leftarrow \pi_{(Name, LastName)}(Empl10)
```

• In a single expression:

```
\pi_{\text{(Name, LastName)}}(\sigma_{\text{(Id=Emplid)}}(\sigma_{\text{Hours}>10}(\text{ALLOCATION})\times \text{EMPL}))
```

Yet another example: Given the same relation schemas:

```
EMPL(<u>Id</u>, Name, LastName, Salary)
PROJECT(<u>PrjCode</u>, Description, ManagerId)
ALLOCATION(PrjCode, EmplId, Hours)
```

• Id of the employees that are allocated to at least two projects:

Yet another example: Given the same relation schemas:

```
EMPL(<u>Id</u>, Name, LastName, Salary)
PROJECT(<u>PrjCode</u>, Description, ManagerId)
ALLOCATION(PrjCode, EmplId, Hours)
```

- Id of the employees that are allocated to at least two projects:
 - ▶ We first rename the ALLOCATION relation:

```
ALLOC_R \leftarrow \rho_{ALLOC_R (CodR, IdR, HR)} (ALLOCATION)
```

Yet another example: Given the same relation schemas:

```
EMPL(<u>Id</u>, Name, LastName, Salary)
PROJECT(<u>PrjCode</u>, Description, ManagerId)
ALLOCATION(PrjCode, EmplId, Hours)
```

- Id of the employees that are allocated to at least two projects:
 - ▶ We first rename the ALLOCATION relation:

```
ALLOC_R \leftarrow \rho_{ALLOC_R (CodR, IdR, HR)} (ALLOCATION)
```

▶ We then **combine** this intermediate result with ALLOCATION to get all combinations of ALLOCATION pairs:

```
\texttt{En2} \leftarrow \sigma_{\texttt{(EmplId=IdR} \ \land \ \texttt{PrjCode} \neq \texttt{CodR)}}(\texttt{ALLOC\_R} \times \texttt{ALLOCATION})
```

• Yet another example: Given the same relation schemas:

```
EMPL(<u>Id</u>, Name, LastName, Salary)
PROJECT(<u>PrjCode</u>, Description, ManagerId)
ALLOCATION(PrjCode, EmplId, Hours)
```

- Id of the employees that are allocated to at least two projects:
 - ▶ We first rename the ALLOCATION relation:

```
ALLOC_R \leftarrow \rho_{ALLOC_R (CodR, IdR, HR)} (ALLOCATION)
```

▶ We then **combine** this intermediate result with ALLOCATION to get all combinations of ALLOCATION pairs:

```
\texttt{En2} \leftarrow \sigma_{\texttt{(Emplid=IdR } \land \texttt{PrjCode} \neq \texttt{CodR)}}(\texttt{ALLOC\_R} \times \texttt{ALLOCATION})
```

- Finally, we **project** the Id of employees:
 - Result $\leftarrow \pi_{\mathsf{Emplid}}(\mathtt{En2})$
- ▶ **Note:** This kind of queries is usually solved differently in SQL.

Join operation

- The conditional join is the combination of two operations: a cartesian product and a selection.
- Given $R(A_1, ..., A_m)$ and $S(B_1, ..., B_n)$, the **conditional join** of R and S is defined as:

$$R \bowtie_{\mathcal{C}} S = \sigma_{\mathcal{C}}(R \times S)$$

- Although it is a derived operation, it has its own operator symbol because it is **one of the most used operations.**
 - ▶ It simplifies the queries, that can be very complex.
- If the selection condition C does not hold for any tuple, ⋈ C
 produces an empty set.
- If a tuple contains NULL in an attribute used in the condition, the tuple is not included in the result.

Join operation

• Examples: Given the same relation schemas:

```
EMPL(<u>Id</u>, Name, LastName, Salary)
PROJECT(<u>PrjCode</u>, Description, ManagerId)
ALLOCATION(PrjCode, EmplId, Hours)
```

• Name of the employees that are managers of projects:

```
π(Name,LastName) (EMPL ⋈ (Id=ManagerId) PROJECT)
```

Name of the employees that work on a project more than 10 hours:

```
\pi_{\text{(Name, LastName)}}(\text{ALLOCATION} \bowtie_{\text{(Id=Emplid} \land \text{Hours}>10)} \text{ EMPL})
```

• Id of the employees that work on at least two projects:

```
ALLOC_R \leftarrow \rho_{\texttt{ALLOC\_R}(\texttt{CodR}, \texttt{IdR}, \texttt{HR})} (ALLOCATION)

Res \leftarrow \pi_{\texttt{EmplId}}(\texttt{ALLOC\_R} \bowtie_{\texttt{(EmplId=IdR}\land \texttt{PrjCode} \neq \texttt{CodR})} ALLOCATION)

(This query is usually solved differently in SQL, using an aggregation function.)
```

- A very common case of conditional join is the one in which the condition is a conjunction of equalities of those attributes with the same name in both relations.
- Example: Given the relation schemas:

```
EMPL(<u>Id</u>, Name, LastName, Salary)
PROJECT(<u>PrjCode</u>, Description, ManagerId)
ALLOCATION(<u>PrjCode</u>, <u>Id</u>, Hours)
```

- ▶ Name of the employees that work on at least one project $\pi_{(Name, LastName)}(Allocation \bowtie_{(Allocation.id=EMPL.id)} EMPL)$
- The result of this expression will repeat the attributes included in the condition with exactly same value and name (from different relations).
- We can avoid duplicate columns and condition using the Natural Join operation.

- A natural join is like a conditional join in which the condition is composed of all attributes with the same name in both operands.
- The condition in ⋈ is omitted as it is not necessary.
- Moreover, duplicate attributes are removed in the result.
- Given $R(A_1, ..., A_m)$ and $S(B_1, ..., B_n)$ where the attributes with the same name in R and S are $C_1, ..., C_j$, the **natural join** $R \bowtie S$ produces a schema with:
 - ▶ **Schema attributes:** $\{A_1, ..., A_m\} \cup \{B_1, ..., B_n\}$ (no duplicate attributes).
 - ▶ **Relation instance:** Valid tuples are the combination of valid tuples of R and S that have the same value in C_1, \ldots, C_j .
- If there are no attributes with the same name in both relations, the natural join works just like the cartesian product.

• **Examples:** Given the following relation schemas:

```
EMPL(<u>Id</u>, Name, LastName, Salary)
PROJECT(<u>PrjCode</u>, Description, ManagerId, DptId)
DEPARTMENT(DptId, Name)
```

 List of all projects with the name of the department they are assigned to:

• **Examples:** Given the following relation schemas:

```
EMPL(Id, Name, LastName, Salary)
PROJECT(PrjCode, Description, ManagerId, DptId)
DEPARTMENT(DptId, Name)
```

 List of all projects with the name of the department they are assigned to:

```
\pi_{(Description, Name)}(PROJECT \bowtie DEPARTMENT)
```

• ¿What is the result of the following query?: EMPL ⋈DEPARTMENT

• **Examples:** Given the following relation schemas:

```
EMPL(Id, Name, LastName, Salary)
PROJECT(PrjCode, Description, ManagerId, DptId)
DEPARTMENT(DptId, Name)
```

 List of all projects with the name of the department they are assigned to:

```
\pi_{\text{(Description, Name)}}(\text{PROJECT} \bowtie \text{DEPARTMENT})
```

- ¿What is the result of the following query?: EMPL ⋈DEPARTMENT
- List of employees that manage projects and the departments that the projects are assigned to:

• **Examples:** Given the following relation schemas:

```
EMPL(<u>Id</u>, Name, LastName, Salary)
PROJECT(<u>PrjCode</u>, Description, ManagerId, DptId)
DEPARTMENT(DptId, Name)
```

 List of all projects with the name of the department they are assigned to:

```
\pi_{\text{(Description, Name)}}(\text{PROJECT} \bowtie \text{DEPARTMENT})
```

- ¿What is the result of the following query?: EMPL ⋈DEPARTMENT
- List of employees that manage projects and the departments that the projects are assigned to:

```
\label{eq:mngrs} \begin{split} & \texttt{Mngrs} \leftarrow \rho_{\texttt{EMPL}\,(\texttt{ManagerId},\,\texttt{ManagerName},\,\texttt{LastName},\,\texttt{Salary})}\left(\texttt{EMPL}\right) \\ & \texttt{Result} \leftarrow \pi_{\,(\texttt{ManagerName},\,\texttt{Name})}\left(\left(\texttt{Mngrs}\,\bowtie\,\texttt{PROJECT}\right)\bowtie\,\texttt{DEPARTMENT}\right) \end{split}
```

Extensions to the Relational Algebra

- A number of additional operators have been proposed to extend the Relational Algebra in order to simplify complex queries.
- Most operations can be implemented with a basic set: $\{\cup, \setminus, \times, \sigma, \pi, \rho\}$, but the resulting queries can be **very complex.**
- For example, intersection could be implemented as follows:

$$R \cap S = R \setminus (R \setminus S).$$

- On the other hand, **join operators** $R \bowtie_{[C]} S$ only produce the combinations of tuples that **actually match in both** R **and** S.
 - ► Tuples in *R* that do not match with any tuple in *S* are not included in the result, and vice versa.
 - There are specific operators that preserve all tuples from one of the operands: they are called **outer joins**.

- The **left outer join** $R \supset S$ is a natural join that produces **all tuples** in R combined with those in S that match with a tuple in R.
 - ► Those tuples from *R* that do not match any tuple in *S* are filled with NULL values in the attributes from *S*.
- The **right outer join** $R \bowtie S$ is defined the same way, but producing all tuples from its right hand operand, combined with the matching tuples from its left hand operand.
- Finally, a **full outer join** $R \bowtie S$ produces all tuples in both relations, combined with the matching tuples of the other relation, or NULL if there are no matching tuples.

Example:

	EMPL					PROJECT			
EmpId	Name	LastNar	ne	Salary	PrjId	Descr.	EmpId		
37X	Juan	Sánchez	Martín	1500	4	Accounting	24Y		
24Y	Adela	García	Sanz	2300	7	Marketing	55Z		

Example:

EMPL					PROJECT			
EmpId	Name	LastNar	ne	Salary	PrjId	Descr.	EmpId	
37X	Juan	Sánchez	Martín	1500	4	Accounting	24Y	
24Y	Adela	García	Sanz	2300	7	Marketing	55Z	

EMPL ⋈ PROJECT

EmpId	Name	LastN	ame	Salary	PrjId	Descr.
24Y	Adela	García	Sanz	2300	4	Accounting

Example:

EmpId	Name	LastNar	ne	Salary	PrjId	Descr.	EmpId
37X	Juan	Sánchez	Martín	1500	4	Accounting	24Y
24Y	Adela	García	Sanz	2300	7	Marketing	55Z

EMPL ⋈PROJECT

EmpId	Name	LastN	ame	Salary	PrjId	Descr.
24Y	Adela	García	Sanz	2300	4	Accounting

EMPL ⋈PROJECT

EmpId	Name	LastNaı	ne	Salary	PrjId	Descr.
37X	Juan	Sánchez	Martín	1500	NULL	NULL
24Y	Adela	García	Sanz	2300	4	Accounting

Example:

EMPL PROJECT

EmpId	Name	LastNar	ne	Salary	PrjId	Descr.	EmpId
37X	Juan	Sánchez	Martín	1500	4	Accounting	24Y
24Y	Adela	García	Sanz	2300	7	Marketing	55Z

EMPL MPROJECT

EmpId	Name	LastN	ame	Salary	PrjId	Descr.
24Y	Adela	García	Sanz	2300	4	Accounting

EMPL ⋈PROJECT

EmpId	Name	LastNar	ne	Salary	PrjId	Descr.
37X	Juan	Sánchez	Martín	1500	NULL	NULL
24Y	Adela	García	Sanz	2300	4	Accounting

EMPL ⋈ PROJECT

EmpId	Name	LastN	ame	Salary	PrjId	Descr.
24Y	Adela	García	Sanz	2300	4	Accounting
55Z	NULL	NULL	NULL	NULL	7	Marketing

Example (cont'd):

Juan

Adela

37X

24Y

EMPL Empld Name LastName Salary

Sánchez

García

Martín

Sanz

	PRODECT	
PrjId	Descr.	EmpId
4	Accounting	24Y
7	Marketing	55Z

DDO.TECT

EMPL ⋈ PROJECT

1500

2300

EmpId	Name	LastName		Salary	PrjId	Descr.
37X	Juan	Sánchez	Martín	1500	NULL	NULL
24Y	Adela	García	Sanz	2300	4	Accounting
55Z	NULL	NULL	NULL	NULL	7	Marketing

Division operation

- The division operation may be helpful for some DB queries.
- Produces the tuples in a relation such that some attributes take all values that are contained in another relation.
- Given $R(A_1, \ldots, A_m)$ and $S(B_1, \ldots, B_n)$ such that $\{B_1, \ldots, B_n\} \subset \{A_1, \ldots, A_m\}$, the operation $R \div S$ produces a relation schema with the following characteristics:
 - ▶ Schema attributes: $\{C_1, \ldots, C_j\} = \{A_1, \ldots, A_m\} \setminus \{B_1, \ldots, B_n\}$.
 - ▶ **Relation instance:** A tuple *t* is in $T = R \div S$ if $\{t\} \times S$ is in *R*.
 - ▶ Informally, a tuple *t* is in *T* if *t* appears in *R* with **all values** contained in *S*.
- This operation requires the use of universal quantification. DBMS do not implement such kind of operations usually.
- We will see how it works with an example:

Division operation

• **Example:** Given the following relation schemas:

```
EMPL(Empid, Name, LastName, Salary)
ALLOCATION(PrjId, EmpId, Hours)
```

- List the personal info of all employees that work in all projects that work the employee with Empld 8967866R:
 - We select first the projects in which that employee works:
 PrjEmp←π_{PrjId}(σ (EmpId=' 8667866R') (ALLOCATION))
 - ► Next, we select the Emplds of the employees that work in every project: EmpldPrj←π (Prild, Empld) (ALLOCATION)
 - ▶ We then obtain the Emplds of the sought employees using the division operation:

```
SoughtEmpId←EmpIdPrj ÷ PrjEmp
```

► And finally, we obtain the personal info of those employees:

Result←SoughtEmpId ⋈EMPL

Handling of null values

- Any **relational operation** $(<,>,\leq,\geq,=,\neq)$ applied to a NULL value produces an **unknown result**.
- Any Boolean operation with an unknown value produces an unknown result.
- Therefore, Boolean conditions may return three possible values: **true**, **false**, or **unknown**.
- Algebra operations behave as follows:
- **Selection** $\sigma_C(R)$: The result contains the tuples in R for which the condition C is **true** (they are **not** included if the result is unknown).
- Projection, union, intersection, set difference: Null values are handles just like any other value for removing duplicate tuples.

Handling of null values

- Conditional join, natural join: The following equivalence is used: $R \bowtie_C S = \sigma_C(R \times S)$.
 - Tuples with a NULL value in the connection attribute (or the attributes with the same name in natural join) do not match and therefore do not appear in the result.

Outer joins:

- ▶ Work like inner joins for tuples that match the join condition.
- ▶ The tuples that **do not match the join condition** are included in the result (depending on the type of outer join) filling with NULL values.