第3章 正则语言

(Part 1 of 3)

王 鑫

wangx AT tju.edu.cn

天津大学 智能与计算学部

Outline

- Finite Automata
- Nondeterminism

A Computational Model

The theory of computation begins with a question:

What is a computer?

A Computational Model

The theory of computation begins with a question:

What is a computer?

• Computational model: an idealized computer.

A Computational Model

The theory of computation begins with a question:

What is a computer?

- Computational model: an idealized computer.
- Several different computational models
 - Finite automata or finite state machine 有穷自动机
 - Pushdown automata 下推自动机
 - Linear-bounded automata 线性有界自动机
 - Turing machine 图灵机

Outline

- Finite Automata
 - Formal Definition of a Finite Automaton
 - Examples of Finite Automata
 - Formal Definition of Computation
 - Designing Finite Automata
 - The Regular Operations
- Nondeterminism

Example: An Automatic Door

Example: An Automatic Door

Example: An Automatic Door

inpute signal

		NEITHER	FRONT	REAR	BOTH
state	CLOSED	CLOSED	OPEN	CLOSED	CLOSED
	OPEN	CLOSED	OPEN	OPEN	OPEN

- ullet the **state diagram** of M_1
- ullet three **states**: q_1 , q_2 , and q_3
- the **start state**: q_1
- the *accept state*: q_2
- transitions: the arrows going from one state to another

例 (A finite automaton M_1)

Feed the input string 1101 to the machine M_1

Xin Wang (TJU)

例 (A finite automaton M_1)

Feed the input string 1101 to the machine M_1

1 Start in state q_1

Xin Wang (TJU)

例 (A finite automaton M_1)

- $lue{1}$ Start in state q_1
- 2 Read 1, follow transition from q_1 to q_2

例 (A finite automaton M_1)

- Start in state q_1
- $oldsymbol{2}$ Read 1, follow transition from q_1 to q_2
- **3** Read 1, follow transition from q_2 to q_2

例 (A finite automaton M_1)

- lacktriangle Start in state q_1
- 2 Read 1, follow transition from q_1 to q_2
- \odot Read 1, follow transition from q_2 to q_2
- **4** Read 0, follow transition from q_2 to q_3

例 (A finite automaton M_1)

- Start in state q_1
- **2** Read 1, follow transition from q_1 to q_2
- **3** Read 1, follow transition from q_2 to q_2
- lacktriangle Read 0, follow transition from q_2 to q_3
- **5** Read 1, follow transition from q_3 to q_2

例 (A finite automaton M_1)

- Start in state q_1
- 2 Read 1, follow transition from q_1 to q_2
- **3** Read 1, follow transition from q_2 to q_2
- **4** Read 0, follow transition from q_2 to q_3
- **5** Read 1, follow transition from q_3 to q_2
- **3** Accept because M_1 is in an accept state q_2 at the end of the input

定义 (DFA (确定型有穷自动机))

定义 (DFA (确定型有穷自动机))

A deterministic finite automaton (DFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$,

where

定义 (DFA (确定型有穷自动机))

A *deterministic finite automaton* (DFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

Q is a finite set called the states,

定义 (DFA (确定型有穷自动机))

- Q is a finite set called the states,

定义 (DFA (确定型有穷自动机))

- Q is a finite set called the states,
- ② Σ is a finite set called the *alphabet*,
- **3** $\delta: Q \times \Sigma \to Q$ is the *transition function*,

定义 (DFA (确定型有穷自动机))

- Q is a finite set called the states,
- ② Σ is a finite set called the **alphabet**,
- **3** $\delta: Q \times \Sigma \to Q$ is the *transition function*,
- \bullet $q_0 \in Q$ is the **start state**, and

定义 (DFA (确定型有穷自动机))

- Q is a finite set called the states,
- ② Σ is a finite set called the **alphabet**,
- **3** $\delta: Q \times \Sigma \to Q$ is the *transition function*,
- \bullet $q_0 \in Q$ is the **start state**, and
- **5** $F \subseteq Q$ is the **set of accept states**.

例 (A finite automaton M_1)

 $M_1 = (Q, \Sigma, \delta, q_1, F)$, where

例 (A finite automaton M_1)

 $M_1 = (Q, \Sigma, \delta, q_1, F)$, where

 $Q = \{q_1, q_2, q_3\}$

例 (A finite automaton M_1)

 $M_1 = (Q, \Sigma, \delta, q_1, F)$, where

- $Q = \{q_1, q_2, q_3\}$
- **2** $\Sigma = \{0, 1\}$

例 (A finite automaton M_1)

 $M_1 = (Q, \Sigma, \delta, q_1, F)$, where

- $Q = \{q_1, q_2, q_3\}$
- **2** $\Sigma = \{0, 1\}$
- $oldsymbol{\delta}$ is described as: $\delta(q_1,0)=q_1$, $\delta(q_1,1)=q_2$, $\delta(q_2,0)=q_3$, $\delta(q_2,1)=q_2$, $\delta(q_3,0)=q_2$, $\delta(q_3,1)=q_2$

Xin Wang (TJU) 第 3 章 正则语言 (Part 1 of 3) September 27, 2024 10 / 66

例 (A finite automaton M_1)

 $M_1 = (Q, \Sigma, \delta, q_1, F)$, where

- $Q = \{q_1, q_2, q_3\}$
- **2** $\Sigma = \{0, 1\}$
- $oldsymbol{\delta}$ is described as: $\delta(q_1,0)=q_1$, $\delta(q_1,1)=q_2$, $\delta(q_2,0)=q_3$, $\delta(q_2,1)=q_2$, $\delta(q_3,0)=q_2$, $\delta(q_3,1)=q_2$
- $oldsymbol{4}$ q_1 is the start state, and

例 (A finite automaton M_1)

 $M_1 = (Q, \Sigma, \delta, q_1, F)$, where

- **1** $Q = \{q_1, q_2, q_3\}$
- $\Sigma = \{0, 1\}$
- δ is described as: $\delta(q_1,0)=q_1, \quad \delta(q_1,1)=q_2,$ $\delta(q_2,0) = q_3, \quad \delta(q_2,1) = q_2, \quad \delta(q_3,0) = q_2, \quad \delta(q_3,1) = q_2$
- Q_1 is the start state, and
- **5** $F = \{q_2\}$

Xin Wang (TJU)

Language of DFA

• If A is the set of all strings that machine M accepts, we say that A is the *language of machine* M and write L(M) = A.

Language of DFA

- If A is the set of all strings that machine M accepts, we say that A is the *language of machine* M and write L(M) = A.
- ullet We say that M recognizes A.

4□ > 4□ > 4≡ > 4≡ > 300

Language of DFA

- If A is the set of all strings that machine M accepts, we say that A is the **language of machine** M and write L(M) = A.
- We say that M recognizes A.
- A machine may accept several strings, but it always recognizes only one language.

◄□▶◀圖▶◀불▶◀불▶ 불 ∽

Language of DFA

- If A is the set of all strings that machine M accepts, we say that A is the **language of machine** M and write L(M) = A.
- We say that M recognizes A.
- A machine may accept several strings, but it always recognizes only one language.
- What about the machine accepts no strings?

4 D > 4 D > 4 E > 4 E > E = 990

Language of DFA M_1

$\mathsf{DFA}\ \mathit{M}_1$

$$L(M_1) = ?$$

Language of DFA M_1

DFA M_1

$$L(M_1) = ?$$

$L(M_1) =$

 $A = \{ w \mid w \text{ contains at least one 1 and} \}$ an even number of 0s follow the last 1 $\}$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 夕久○

$$M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$$

$$\delta: \begin{array}{c|c} 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \end{array}$$

$\overline{\mathsf{DFA}}\ \overline{M_2}$

$$M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$$

$$\delta: \begin{array}{c|c} 0 & 1 \\ \hline q_1 & q_1 & q_2 \end{array}$$

 q_2

 q_2

 q_1

$$L(M_2) = ?$$

DFA M_2

$$M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$$

$$\delta: \begin{array}{c|c} 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ \hline q_2 & q_1 & q_2 \end{array}$$

$$L(M_2) = ?$$
 try 1101,

$\overline{\text{DFA}}\ \overline{M_2}$

$$M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$$

$$0 \quad 1$$

$$\delta: \begin{array}{c|cccc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \end{array}$$

$$L(M_2) = ?$$

try 1101, try 110

$\overline{\mathsf{DFA}}\ \overline{M_2}$

$$M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$$

$$\delta: \begin{array}{c|ccc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \end{array}$$

$$L(M_2) = ?$$

try 1101, try 110

$$L(M_2) = \{ w \mid w \text{ ends in a } 1 \}$$

4 11 1 4 4 12 1 4 12 1 1 2 1 2 2 2 2

$\overline{\mathsf{DFA}}\ \overline{M_3}$

$$M_3 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_1\})$$

$$\delta: \begin{array}{c|cccc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \end{array}$$

DFA M_3

$$M_3 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_1\})$$

$$\delta: \begin{array}{c|cc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ \hline q_2 & q_1 & q_2 \end{array}$$

$$L(M_3) = ?$$

DFA M_3

$$M_3 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_1\})$$

$$\delta: \begin{array}{c|ccc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \end{array}$$

$$L(M_3) = ?$$

 $L(M_3) = \{ w \mid w \text{ is the empty string } \varepsilon \text{ or ends in a 0} \}$

DFA M_3

$$M_3 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_1\})$$

$$\begin{array}{c|cccc}
 & 0 & 1 \\
 \hline
 & q_1 & q_1 & q_2 \\
 & q_2 & q_1 & q_2
\end{array}$$

$$L(M_3) = ?$$

$$L(M_3) = \{ w \mid w \text{ is the empty string } \varepsilon \text{ or ends in a 0} \}$$

What is the relationship between $L(M_2)$ and $L(M_3)$?

$$L(M_4) =$$

第 3 章 正则语言 (Part 1 of 3)

 $L(M_4) = \{ w \mid w \text{ starts and ends with the same symbol } \}$

◆□▶◆御▶◆意▶◆意▶ 意 めの@

$$L(M_5) =$$

第 3 章 正则语言 (Part 1 of 3)

Example: Generalization of ${\it M}_{\rm 5}$

 $\bullet \ \Sigma = \{<\!\mathsf{RESET}\!> \text{, 0, 1, 2}\}$

- $\Sigma = \{ \langle \mathsf{RESET} \rangle, 0, 1, 2 \}$
- ullet For each $i \geq 1$ let A_i be the language of all strings where the sum of the numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol <RESET> appears.

- $\Sigma = \{ \langle \mathsf{RESET} \rangle, 0, 1, 2 \}$
- For each $i \geq 1$ let A_i be the language of all strings where the sum of the numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol <RESET> appears.
- For each A_i we give a DFA B_i , recognizing A_i .

- $\Sigma = \{ \langle \mathsf{RESET} \rangle, 0, 1, 2 \}$
- For each $i \geq 1$ let A_i be the language of all strings where the sum of the numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol <RESET> appears.
- For each A_i we give a DFA B_i , recognizing A_i .
- $B_i = \{Q_i, \Sigma, \delta_i, q_0, \{q_0\}\}$

- $\Sigma = \{ \langle \mathsf{RESET} \rangle, 0, 1, 2 \}$
- For each $i \geq 1$ let A_i be the language of all strings where the sum of the numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol <RESET> appears.
- For each A_i we give a DFA B_i , recognizing A_i .
- $B_i = \{Q_i, \Sigma, \delta_i, q_0, \{q_0\}\}\$
 - $Q_i = \{q_0, q_1, q_2, \dots, q_{i-1}\}$

- $\Sigma = \{ \langle \mathsf{RESET} \rangle, 0, 1, 2 \}$
- For each $i \geq 1$ let A_i be the language of all strings where the sum of the numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol <RESET> appears.
- For each A_i we give a DFA B_i , recognizing A_i .
- $B_i = \{Q_i, \Sigma, \delta_i, q_0, \{q_0\}\}$
 - $Q_i = \{q_0, q_1, q_2, \dots, q_{i-1}\}$
 - We design the transition function δ_i so that for each j, if B_i is in q_j , the running sum is j, modulo i.

- $\Sigma = \{ \langle \mathsf{RESET} \rangle, 0, 1, 2 \}$
- For each $i \geq 1$ let A_i be the language of all strings where the sum of the numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol <RESET> appears.
- For each A_i we give a DFA B_i , recognizing A_i .
- $B_i = \{Q_i, \Sigma, \delta_i, q_0, \{q_0\}\}$
 - $Q_i = \{q_0, q_1, q_2, \dots, q_{i-1}\}$
 - We design the transition function δ_i so that for each j, if B_i is in q_j , the running sum is j, modulo i.
 - $\delta_i(q_j,0)=q_j$ $\delta_i(q_j,1)=q_k$, where k=j+1 modulo i $\delta_i(q_j,2)=q_k$, where k=j+2 modulo i $\delta_i(q_i,<\mathsf{RESET}>)=q_0$

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.
- Let $w = a_1 a_2 \dots a_n$ be a string where $a_i \in \Sigma$.
- Then M accepts w if a sequence of states r_0, r_1, \ldots, r_n in Q exists with three conditions:

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.
- Let $w = a_1 a_2 \dots a_n$ be a string where $a_i \in \Sigma$.
- Then M accepts w if a sequence of states r_0, r_1, \ldots, r_n in Q exists with three conditions:
 - $0 r_0 = q_0$

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.
- Let $w = a_1 a_2 \dots a_n$ be a string where $a_i \in \Sigma$.
- Then M accepts w if a sequence of states r_0, r_1, \ldots, r_n in Q exists with three conditions:
 - $0 r_0 = q_0$
 - $\delta(r_i, a_{i+1}) = r_{i+1}, \text{ for } i = 0, \dots, n-1$

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.
- Let $w = a_1 a_2 \dots a_n$ be a string where $a_i \in \Sigma$.
- Then M accepts w if a sequence of states r_0, r_1, \ldots, r_n in Q exists with three conditions:
 - $0 r_0 = q_0$
 - $\delta(r_i, a_{i+1}) = r_{i+1}, \text{ for } i = 0, \dots, n-1$
 - $r_n \in F$

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.
- Let $w = a_1 a_2 \dots a_n$ be a string where $a_i \in \Sigma$.
- Then M accepts w if a sequence of states r_0, r_1, \ldots, r_n in Q exists with three conditions:

 - $\delta(r_i, a_{i+1}) = r_{i+1}, \text{ for } i = 0, \dots, n-1$
 - $r_n \in F$

We say that M recognizes language A if $A = \{w \mid M \text{ accepts } w\}$

定义 (regular language)

A language is called a regular language if some DFA recognizes it.

定义 (regular language)

A language is called a regular language if some DFA recognizes it.

例

- ullet Take DFA M_5
- w = 10 < RESET > 22 < RESET > 012

定义 (regular language)

A language is called a regular language if some DFA recognizes it.

例

- ullet Take DFA M_5
- w = 10 < RESET > 22 < RESET > 012
- The sequence of states M_5 enters when computing on w is $q_0,\,q_1,\,q_0,\,q_2,\,q_1,\,q_0,\,q_0,\,q_1,\,q_0$

which satisfies the three conditions.

定义 (regular language)

A language is called a regular language if some DFA recognizes it.

例

- Take DFA M₅
- w = 10 < RESET > 22 < RESET > 012
- The sequence of states M_5 enters when computing on w is $q_0, q_1, q_1, q_0, q_2, q_1, q_0, q_0, q_1, q_0$ which satisfies the three conditions

 $L(M_5) = \{w \mid \text{ the sum of the symbols in } w \text{ is 0 modulo 3,}$ except that <RESET> resets the count to 0 }

Designing Finite Automata

An approach helpful: "reader as automaton"

- put yourself in the place of the machine you are trying to design
- and then see how you would go about performing the machine's task

Designing Finite Automata

An approach helpful: "reader as automaton"

- put *yourself* in the place of the machine you are trying to design
- and then see how you would go about performing the machine's task

例

- $\Sigma = \{0, 1\}$
- The language consists of all strings with an odd number of 1s.
- Construct a finite automaton E_1 to recognize this language.

- $\Sigma = \{0, 1\}$
- The language consists of all strings with an odd number of 1s.
- Construct a finite automaton E_1 to recognize this language.

- $\Sigma = \{0, 1\}$
- The language consists of all strings with an odd number of 1s.
- ullet Construct a finite automaton E_1 to recognize this language.
 - $\mathbf{0}$ q_{even} : even so far
 - \mathbf{Q} q_{odd} : odd so far

例

- $\Sigma = \{0, 1\}$
- The language consists of all strings with an odd number of 1s.
- ullet Construct a finite automaton E_1 to recognize this language.
 - $\mathbf{0}$ q_{even} : even so far
 - Q_{odd} : odd so far

例

- $\Sigma = \{0, 1\}$
- The language consists of all strings with an odd number of 1s.
- ullet Construct a finite automaton E_1 to recognize this language.
 - $\mathbf{0}$ q_{even} : even so far
 - 2 q_{odd} : odd so far

例

- $\Sigma = \{0, 1\}$
- The language consists of all strings with an odd number of 1s.
- ullet Construct a finite automaton E_1 to recognize this language.
 - **1** q_{even} : even so far
 - Q q_{odd} : odd so far

- $\Sigma = \{0, 1\}$
- The language of all strings that contain the string 001 as a substring.
- ullet To design a finite automaton E_2 to recognize this language.

- $\Sigma = \{0, 1\}$
- The language of all strings that contain the string 001 as a substring.
- ullet To design a finite automaton E_2 to recognize this language.
 - q: haven't just seen any symbols of the pattern

- $\Sigma = \{0, 1\}$
- The language of all strings that contain the string 001 as a substring.
- ullet To design a finite automaton E_2 to recognize this language.
 - q: haven't just seen any symbols of the pattern
 - 2 q_0 : have just seen a 0

- $\Sigma = \{0, 1\}$
- The language of all strings that contain the string 001 as a substring.
- ullet To design a finite automaton E_2 to recognize this language.
 - q: haven't just seen any symbols of the pattern
 - 2 q_0 : have just seen a 0
 - \bullet q_{00} : have just seen 00

- $\Sigma = \{0, 1\}$
- The language of all strings that contain the string 001 as a substring.
- ullet To design a finite automaton E_2 to recognize this language.
 - q: haven't just seen any symbols of the pattern
 - 2 q_0 : have just seen a 0

 - 4 q_{001} : have seen the entire pattern 001

- The language of all strings that contain the string 001 as a substring.
 - 1 q: haven't just seen any symbols of the pattern
 - q_0 : have just seen a 0
 - \bullet q_{00} : have just seen 00
 - q_{001} : have seen the entire pattern 001

例

- The language of all strings that contain the string 001 as a substring.
 - q: haven't just seen any symbols of the pattern
 - $oldsymbol{Q} q_0$: have just seen a $oldsymbol{0}$
 - 3 q_{00} : have just seen 00
 - ullet q_{001} : have seen the entire pattern 001

DFA E_2

 (q_{001})

例

- The language of all strings that contain the string 001 as a substring.
 - q: haven't just seen any symbols of the pattern
 - \mathbf{Q} q_0 : have just seen a \mathbf{Q}
 - 3 q_{00} : have just seen 00
 - 4 q_{001} : have seen the entire pattern 001

例

- The language of all strings that contain the string 001 as a substring.
 - 1 q: haven't just seen any symbols of the pattern
 - 2 q_0 : have just seen a 0
 - $\mathbf{3}$ q_{00} : have just seen 00
 - $oldsymbol{4}$ q_{001} : have seen the entire pattern 001

例

- The language of all strings that contain the string 001 as a substring.
 - q: haven't just seen any symbols of the pattern
 - q_0 : have just seen a 0
 - q_{00} : have just seen 00
 - q_{001} : have seen the entire pattern 001

DFA E_2

Xin Wang (TJU)

例

- The language of all strings that contain the string 001 as a substring.
 - q: haven't just seen any symbols of the pattern
 - \mathbf{Q} q_0 : have just seen a \mathbf{Q}

 - q_{001} : have seen the entire pattern 001

DFA E_2

29 / 66

例

- The language of all strings that contain the string 001 as a substring.
 - q: haven't just seen any symbols of the pattern
 - \mathbf{Q} q_0 : have just seen a \mathbf{Q}

 - \bullet q_{001} : have seen the entire pattern 001

定义 (regular operations)

Let A and B be language. We define the regular operations **union**, **concatenation**, and **star** as follows:

定义 (regular operations)

Let A and B be language. We define the regular operations **union**, **concatenation**, and **star** as follows:

• Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

定义 (regular operations)

Let A and B be language. We define the regular operations **union**, **concatenation**, and **star** as follows:

- Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$

定义 (regular operations)

Let A and B be language. We define the regular operations **union**, **concatenation**, and **star** as follows:

- Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$
- Star: $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ and each } x_i \in A\}$

例

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.

If $A = \{ \text{ good, bad} \}$ and $B = \{ \text{boy, girl} \}$, then

例

Let the alphabet Σ be the standard 26 letters {a, b, ..., z}.

If $A = \{ \text{ good, bad} \}$ and $B = \{ \text{boy, girl} \}$, then

• $A \cup B = \{ good, bad, boy, girl \}$

例

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.

If $A=\{\mbox{ good, bad}\}$ and $B=\{\mbox{boy, girl}\}$, then

- $A \cup B = \{ good, bad, boy, girl \}$
- $A \circ B = \{ \text{goodboy, goodgirl, badboy, badgirl} \}$

例

Let the alphabet Σ be the standard 26 letters {a, b, ..., z}.

If $A = \{ \text{ good, bad} \}$ and $B = \{ \text{boy, girl} \}$, then

- $A \cup B = \{ good, bad, boy, girl \}$
- $A \circ B = \{\text{goodboy, goodgirl, badboy, badgirl}\}\$
- $A^* = \{ \varepsilon$, good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, goodbadgood, goodbadbad,... $\}$

Closed

Closed

定理

The class of regular languages is closed under the union operation.

Closed

定理

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Closed

定理

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof.

Closed

定理

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof.

Let M_1 recognize A_1 , where $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, and

 M_2 recognize A_2 , where $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Closed

定理

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof.

Let M_1 recognize A_1 , where $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, and

 M_2 recognize A_2 , where $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Construct M to recognize $A_1 \cup A_2$, where $M = (Q, \Sigma, \delta, q_0, F)$.

Closed

定理

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof.

Let M_1 recognize A_1 , where $M_1=(\mathit{Q}_1,\Sigma,\delta_1,\mathit{q}_1,\mathit{F}_1)$, and

 M_2 recognize A_2 , where $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$.

Construct M to recognize $A_1 \cup A_2$, where $M = (Q, \Sigma, \delta, q_0, F)$.

Closed

定理

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof.

Let M_1 recognize A_1 , where $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, and

 M_2 recognize A_2 , where $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Construct M to recognize $A_1 \cup A_2$, where $M = (Q, \Sigma, \delta, q_0, F)$.

- Σ is the same as in M_1 and M_2

定理

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof.

• For each $(r_1, r_2) \in Q$ and each $a \in \Sigma$, let $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$

定理

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof.

- For each $(r_1, r_2) \in Q$ and each $a \in \Sigma$, let $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- q_0 is the pair (q_1, q_2)

定理

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof.

- For each $(r_1, r_2) \in Q$ and each $a \in \Sigma$, let
 - $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- \bullet q_0 is the pair (q_1, q_2)

The Regular Operations

定理

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \circ A_2$.

The Regular Operations

定理

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \circ A_2$.

Problem: M doesn't know where to break the input string?

Outline

- Finite Automata
- Nondeterminism
 - Formal Definition of a Nondeterministic Finite Automaton
 - Equivalence of NFAs and DFAs
 - Closure Under the Regular Operations

Nondeterminism 非确定性

- Determinism: When the machine is in a given state and reads the next input symbol, we know what the next state will be it is determined. We call this deterministic computation.
- **Nondeterminism**: In a **nondeterministic** machine, several choices may exist for the next state at any point.

Nondeterminism 非确定性

- Determinism: When the machine is in a given state and reads the next input symbol, we know what the next state will be it is determined. We call this deterministic computation.
- Nondeterminism: In a nondeterministic machine, several choices may exist for the next state at any point.
- Nondeterminism is a generalization of determinism,
- so every deterministic finite automaton is automatically a nondeterministic finite automaton.

Nondeterministic Finite Automata

NFA N_1

• Nondeterministic finite automata may have additional features.

Nondeterministic Finite Automata

NFA N_1

Nondeterministic finite automata may have additional features.

- DFA: deterministic finite automaton 确定型有穷自动机
- NFA: nondeterministic finite automaton 非确定型有穷自动机

NFAs

$NFA \overline{N_1}$

- DFA:
 - every state of a DFA always has exactly one exiting transition arrow for each symbol in the alphabet.
- NFA:
 - a state may have zero, one, or many exiting arrows for each alphabet symbol.
 - 2 an NFA may have arrows labeled with members of the alphabet or ε .

Deterministic and Nondeterministic Computations

How Does an NFA Compute?

NFAs

•
$$L(N_1) = ?$$

NFAs

• $L(N_1) = {w \mid w \text{ contain either } 101 \text{ or } 11 \text{ as a substring}}$

- The language A:
 - {the language consisting of all strings over $\{0,1\}$ containing a 1 in the third position from the end}
 - e.g., $000100 \in A$, $0011 \notin A$

- The language A:
 - {the language consisting of all strings over $\{0,1\}$ containing a 1 in the third position from the end}
 - ullet e.g., $000100 \in A$, $0011 \notin A$

例 (NFA N_2)

- The language A:
 - {the language consisting of all strings over $\{0,1\}$ containing a 1 in the third position from the end}
 - e.g., $000100 \in A$, $0011 \notin A$

例 (NFA N_2)

$$L(N_2) = A$$

Every NFA can be converted into an equivalent DFA.

The convenience of having ε arrows

例 (NFA N_3)

The convenience of having ε arrows

例 (NFA N_3)

 $L(N_3) = \{$ all strings of the form 0^k where k is a multiple of 2 or 3. $\}$

例 (NFA N_4)

- ullet it accepts the strings ε , a, baba, baa
- it accepts it doesn't accept the strings b, bb, babba

Formal Definition of a Nondeterministic Finite Automaton

定义 (NFA)

A *nondeterministic finite automaton* (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- $oldsymbol{0}$ Q is a finite set of states,
- ${f 2}$ Σ is a finite alphabet,
- $\bullet \ \delta: \, Q \times \Sigma_{\varepsilon} \to \mathcal{P}(\,Q) \ \text{is the transition function,}$
- $\mathbf{0} \ q_0 \in Q$ is the start state, and
- **5** $F \subseteq Q$ is the set of accept states.
- \bullet $\mathcal{P}(Q)$ is the power set of Q
- $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$

Example: The Formal Definition of NFA N_1

例 (Recall the NFA N_1)

 $N_1 = (Q, \Sigma, \delta, q_1, F)$, where

- $Q = \{q_1, q_2, q_3, q_4\}$
- $\Sigma = \{0, 1\}$
- ullet δ is given as
- \bullet q_1 is the start state
- $F = \{q_4\}$

	0	1	ε
q_1	$\{q_1\}$	$\{q_1, q_2\}$	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	Ø

4□ > 4₫ > 4 를 > 4 를 > 4 €

Formal Definition of Computation for an NFA

- Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA.
- Let w be a string over Σ .
- Then N accepts w if we can write w as $w=a_1a_2\cdots a_n$, where $a_i\in \Sigma_\varepsilon$ and a sequence of states r_0,r_1,\ldots,r_n exists in Q with three conditions:
 - $0 r_0 = q_0$
 - **2** $r_{i+1} \in \delta(r_i, a_{i+1})$, for $i = 0, \dots, n-1$
 - $r_n \in F$

DFA and NFA recognize the same class of languages.

DFA and NFA recognize the same class of languages.

 Surprising: NFAs appear to have more power than DFAs, so we might expect that NFAs recognize more languages

DFA and NFA recognize the same class of languages.

- Surprising: NFAs appear to have more power than DFAs, so we might expect that NFAs recognize more languages
- Useful: describing an NFA for a given language sometimes is much easier than describing a DFA for that language

DFA and NFA recognize the same class of languages.

- Surprising: NFAs appear to have more power than DFAs, so we might expect that NFAs recognize more languages
- Useful: describing an NFA for a given language sometimes is much easier than describing a DFA for that language

Equivalent

Say that two machines are *equivalent* if they recognize the same language.

定理

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

定理

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Proof.

- Let $N=(Q,\Sigma,\delta,q_0,F)$ be the NFA recognizing some language A.
- \bullet We construct a DFA $M=(\mathit{Q}',\Sigma,\delta',\mathit{q}'_0,\mathit{F}')$ recognizing A.
- Before doing the full construction, let's first consider the easier case wherein N has no ε arrows. Later we take the ε arrows into account.

定理

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Proof.

- \bullet For $R \in Q'$ and $a \in \Sigma$,

$$\delta'(R,a) = \{ q \in Q \mid q \in \delta(r,a) \text{ for some } r \in R \}$$

$$\delta'(R, a) = \bigcup_{r \in R} \delta(r, a)$$

Xin Wang (TJU)

定理

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Proof.

- $q_0' = \{q_0\}$
- $F' = \{R \in Q' \mid R \text{ contains an accept state of } N\}$

Proof.

Now we need to consider the ε arrows.

Proof.

Now we need to consider the ε arrows.

- For any state R of M, $E(R) = \{q \mid q \text{ can be reached from } R \text{ by traveling along } 0 \text{ or more } \varepsilon \text{ arrows} \}$
 - E(R) is the collection of states that can be reached from members of R by going only along ε arrows, including the members of R themselves.
- $\delta'(R, a) = \{ q \in Q \mid q \in E(\delta(r, a)) \text{ for some } r \in R \}$
- $q'_0 = E(\{q_0\})$

◆□▶ ◆□▶ ◆■▶ ◆■ ◆○○(

Proof.

Now we need to consider the ε arrows.

- For any state R of M, $E(R) = \{q \mid q \text{ can be reached from } R \text{ by traveling along } 0 \text{ or more } \varepsilon \text{ arrows} \}$
 - E(R) is the collection of states that can be reached from members of R by going only along ε arrows, including the members of R themselves.
- $\delta'(R, a) = \{ q \in Q \mid q \in E(\delta(r, a)) \text{ for some } r \in R \}$
- $q'_0 = E(\{q_0\})$

We have now completed the construction of the DFA M that simulates the NFA N.

定理

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

推论

A language is regular if and only if some nondeterministic finite automaton recognizes it.

例 (NFA N_4)

NFA $N_4 = (Q, \Sigma, \delta, q_0, F)$

•
$$Q = \{1, 2, 3\}$$

•
$$\Sigma = \{a, b\}$$

- δ
- $q_0 = 1$
- $F = \{1\}$

Construct a DFA D that is equivalent to N_4

NFA
$$N_4 = (Q, \Sigma, \delta, q_0, F)$$

DFA
$$D = (Q', \Sigma, \delta', q'_0, F')$$

Xin Wang (TJU)

NFA $N_4 = (Q, \Sigma, \delta, q_0, F)$

DFA
$$D = (Q', \Sigma, \delta', q'_0, F')$$

• $Q' = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

Xin Wang (TJU)

NFA
$$N_4 = (Q, \Sigma, \delta, q_0, F)$$

DFA
$$D = (Q', \Sigma, \delta', q'_0, F')$$

- $\bullet \ \ Q' = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$
- $\bullet \ \Sigma = \{ \mathsf{a}, \, \mathsf{b} \}$

Xin Wang (TJU)

NFA $N_4 = (Q, \Sigma, \delta, q_0, F)$

DFA
$$D = (Q', \Sigma, \delta', q'_0, F')$$

- $Q' = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$
- $\bullet \ \Sigma = \{\mathsf{a},\,\mathsf{b}\}$
- $q'_0 = E(\{q_0\}) = E(\{1\}) = \{1, 3\}$

NFA $N_4 = (Q, \Sigma, \delta, q_0, F)$

DFA
$$D = (Q', \Sigma, \delta', q'_0, F')$$

- $Q' = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$
- $\bullet \ \Sigma = \{\mathsf{a},\,\mathsf{b}\}$
- $q'_0 = E(\{q_0\}) = E(\{1\}) = \{1, 3\}$
- $F' = \{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}$

例 (DFA D that is equivalent to the NFA N_4) a,b b $\{1, 2\}$ {1} {2} Ø a,b b а a $\{2, 3\}$ {3} $\{1, 3\}$ $\{1, 2, 3\}$ а b b

例 (DFA D after removing unnecessary states)

- No arrows point at states {1} and {1, 2}
- They may be removed without affecting the performance of DFA.

定理

The class of regular languages is closed under the union operation.

定理

The class of regular languages is closed under the union operation.

Proof.

П

定理

The class of regular languages is closed under the union operation.

Proof.

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 , and

 $N_2=(\mathit{Q}_2,\Sigma,\delta_2,\mathit{q}_2,\mathit{F}_2)$ recognize $A_2.$

定理

The class of regular languages is closed under the union operation.

Proof.

Let $N_1=(\mathit{Q}_1,\Sigma,\delta_1,\mathit{q}_1,\mathit{F}_1)$ recognize A_1 , and

 $N_2=\left(\,Q_2,\Sigma,\delta_2,q_2,F_2
ight)$ recognize $A_2.$

定理

The class of regular languages is closed under the union operation.

Proof.

Let $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ recognize A_1 , and

 $N_2=\left(\,Q_2,\Sigma,\delta_2,q_2,F_2
ight)$ recognize $A_2.$

$$Q = \{q_0\} \cup Q_1 \cup Q_2$$

定理

The class of regular languages is closed under the union operation.

Proof.

Let $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ recognize A_1 , and

 $N_2=\left(\,Q_2,\Sigma,\delta_2,q_2,F_2
ight)$ recognize $A_2.$

- $Q = \{q_0\} \cup Q_1 \cup Q_2$
- \mathbf{Q} q_0 is the start state of N

定理

The class of regular languages is closed under the union operation.

Proof.

Let $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ recognize A_1 , and

 $N_2=(\mathit{Q}_2,\Sigma,\delta_2,\mathit{q}_2,\mathit{F}_2)$ recognize $A_2.$

- $Q = \{q_0\} \cup Q_1 \cup Q_2$
- \mathbf{Q} q_0 is the start state of N
- $F = F_1 \cup F_2$

定理

The class of regular languages is closed under the union operation.

Proof.

Let $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ recognize A_1 , and

 $N_2=(\mathit{Q}_2,\Sigma,\delta_2,\mathit{q}_2,\mathit{F}_2)$ recognize $A_2.$

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

 $Q = \{q_0\} \cup Q_1 \cup Q_2$

- $\bullet \ \, \text{For any} \,\, q \in Q \,\, \text{and any} \,\, a \in \Sigma_{\varepsilon}$
- \mathbf{Q} q_0 is the start state of N
- $F = F_1 \cup F_2$

定理

The class of regular languages is closed under the union operation.

Proof.

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 , and

 $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

- Q_0 is the start state of N
- **3** $F = F_1 \cup F_2$

$$\delta(q,a) = \begin{cases} & \delta_1(q,a) \quad q \in Q_1 \\ & \delta_2(q,a) \quad q \in Q_2 \\ & \{q_1,q_2\} \quad q = q_0 \text{ and } a = \varepsilon \\ & \emptyset \qquad q = q_0 \text{ and } a \neq \varepsilon \end{cases}$$

Construction of an NFA \overline{N} to recognize $A_1 \cup A_2$

Construction of an NFA N to recognize $A_1 \cup A_2$

定理

The class of regular languages is closed under the concatenation operation.

定理

The class of regular languages is closed under the concatenation operation.

Proof.

定理

The class of regular languages is closed under the concatenation operation.

Proof.

Let $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ recognize A_1 , and

$$N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$$
 recognize A_2 .

定理

The class of regular languages is closed under the concatenation operation.

Proof.

Let $N_1=(\mathit{Q}_1,\Sigma,\delta_1,\mathit{q}_1,\mathit{F}_1)$ recognize A_1 , and

$$N_2=(\mathit{Q}_2,\Sigma,\delta_2,\mathit{q}_2,\mathit{F}_2)$$
 recognize $A_2.$

定理

The class of regular languages is closed under the concatenation operation.

Proof.

Let $N_1=(\mathit{Q}_1,\Sigma,\delta_1,\mathit{q}_1,\mathit{F}_1)$ recognize A_1 , and

 $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

Construct $N=(Q,\Sigma,\delta,q_1,F_2)$ to recognize $A_1\circ A_2.$

定理

The class of regular languages is closed under the concatenation operation.

Proof.

Let $N_1=(\mathit{Q}_1,\Sigma,\delta_1,\mathit{q}_1,\mathit{F}_1)$ recognize A_1 , and

 $N_2=(\mathit{Q}_2,\Sigma,\delta_2,\mathit{q}_2,\mathit{F}_2)$ recognize $A_2.$

- 2 q_1 is the same as the start state of N_1

定理

The class of regular languages is closed under the concatenation operation.

Proof.

Let $N_1=(\mathit{Q}_1,\Sigma,\delta_1,\mathit{q}_1,\mathit{F}_1)$ recognize A_1 , and

 $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

- $Q = Q_1 \cup Q_2$
- ${f Q}$ q_1 is the same as the start state of N_1
- The accept states F₂ are the same as the accept states of N₂

定理

The class of regular languages is closed under the concatenation operation.

Proof.

Let $N_1=(\mathit{Q}_1,\Sigma,\delta_1,\mathit{q}_1,\mathit{F}_1)$ recognize A_1 , and

 $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$.

- $\bullet \ \, \text{For any} \,\, q \in Q \,\, \text{and any} \,\, a \in \Sigma_{\varepsilon}$
- ② q_1 is the same as the start state of N_1
- The accept states F_2 are the same as the accept states of N_2

定理

The class of regular languages is closed under the concatenation operation.

Proof.

Let $N_1=(\,Q_1,\Sigma,\delta_1,\,q_1,F_1)$ recognize A_1 , and

 $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$.

 $Q = Q_1 \cup Q_2$

- $\bullet \ \, \text{For any} \,\, q \in Q \,\, \text{and any} \,\, a \in \Sigma_{\varepsilon}$
- 2 q_1 is the same as the start state of N_1
- The accept states F_2 are the same as the accept states of N_2

$$\delta(q,a) = \left\{ \begin{array}{ll} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\ \delta_2(q,a) & q \in Q_2 \end{array} \right.$$

Construction of N to recognize $A_1 \circ A_2$

定理

The class of regular languages is closed under the star operation.

定理

The class of regular languages is closed under the star operation.

Proof.

定理

The class of regular languages is closed under the star operation.

Proof.

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 .

定理

The class of regular languages is closed under the star operation.

Proof.

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 .

定理

The class of regular languages is closed under the star operation.

Proof.

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 .

$$Q = \{q_0\} \cup Q_1$$

定理

The class of regular languages is closed under the star operation.

Proof.

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 .

Construct $N=(Q,\Sigma,\delta,q_0,F)$ to recognize $A_1^*.$

- $Q = \{q_0\} \cup Q_1$
- 2 q_0 is the new start state.

定理

The class of regular languages is closed under the star operation.

Proof.

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 .

Construct $N=(Q,\Sigma,\delta,q_0,F)$ to recognize A_1^* .

- $Q = \{q_0\} \cup Q_1$
- 2 q_0 is the new start state.
- $F = \{q_0\} \cup F_1$

定理

The class of regular languages is closed under the star operation.

Proof.

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 .

- Q_0 is the new start state.
- $F = \{q_0\} \cup F_1$

定理

The class of regular languages is closed under the star operation.

Proof.

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 .

- $Q = \{q_0\} \cup Q_1$
- $\bullet \ \, \text{For any} \,\, q \in Q \,\, \text{and any} \,\, a \in \Sigma_{\varepsilon}$

- 2 q_0 is the new start state.
- **3** $F = \{q_0\} \cup F_1$

$$\delta(q,a) = \left\{ \begin{array}{ll} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 & \square \\ \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\ \\ \{q_1\} & q = q_0 \text{ and } a = \varepsilon \\ \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon \end{array} \right.$$

Conclusion

Conclusion

DFA

- Formal Definitions of a DFA
- Computation of a DFA
- From DFAs to languages
- From languages to DFAs
- The Regular Operations

Conclusion

- DFA
 - Formal Definitions of a DFA
 - Computation of a DFA
 - From DFAs to languages
 - From languages to DFAs
 - The Regular Operations

- NFA
 - Formal Definitions of an NFA
 - Equivalence of NFAs and DFAs
 - Closure Under the Regular Operations