

10 特許出願公告

許 公 報(B2) ⑫特

 $\Psi 3 - 80338$

®Int. Cl. 5

識別記号

庁内整理番号

200公告 平成3年(1991)12月24日

H 01 L 21/316 21/26

SL 6940-4M 7738-4M

発明の数 1 (全4頁)

会発明の名称 半導体素子の製造方法

> 20特 顧 昭60-33183

69公 開 昭61-193456

多出 願 昭60(1985) 2月21日 @昭61(1986) 8 月27日

山部 紀久夫 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合 個発 明 者 研究所内

個発 明 者 髙 井 佉 平 山形県西置賜郡小国町大字小国町378番地 東芝セラミツ

クス株式会社小国製造所内

個発 明 者 白 井 宏 山形県西置賜郡小国町大字小国町378番地 東芝セラミツ

クス株式会社小国製造所内

明 渡 辺 īΕ 雷 個発 者

東京都新宿区西新宿1丁目26番2号 東芝セラミツクス株

式会社内

株式会社東芝 勿出 願 人

神奈川県川崎市幸区堀川町72番地

の出 願 人 東芝セラミツクス株式 東京都新宿区西新宿1丁目26番2号

会社

四代 理 人 弁理士 鈴江 武彦 外2名

審査官 福原 淑 弘

❷参考文献 特開 昭51-147250 (JP, A) 特開 昭51-115299(JP,A)

特開 昭50-91272 (JP, A)

特開 昭52-86070(JP,A)

1

発明の詳細な説明

法。

(発明の技術分野)

本発明は、半導体素子の製造方法に係わり、特 む非酸化性雰囲気中で前記シリコンウエハを1100 5 にシリコンウエハの表面に形成される熱酸化膜中 の欠陥発生を抑えた半導体素子の製造方法に関す

2

(発明の技術的背景とその問題点)

従来、ゲート酸化膜を形成する場合、ゲート酸 10 化の直前にRCA処理(文献; N.Kern and D.W. Puotinen, "RCA Review", 31187(1970)) 等の 薬品による清浄を行つた後、純水洗浄を行つてい る。この場合、純水洗浄によつて、必ず自然酸化 膜が7~15[&] 形成されることになる。

一方、近年の半導体集積回路の高集積化は目覚 ましく、案子の微細化及び薄膜化に対する要求は 極めて厳しいものがある。そして、高集積回路に

切特許請求の範囲

1 シリコンウエハの表面に熱酸化膜を形成する 工程を含む半導体素子の製造方法において、前記 熱酸化膜を形成する工程の直前に、水素ガスを含 [℃] 以上の温度で熱処理することを特徴とする 半導体素子の製造方法。

- 2 前記熱処理の時間を、1分以下に設定したこ とを特徴とする特許請求の範囲第1項記載の半導 体素子の製造方法。
- 3 前記熱酸化膜は、ゲート酸化膜であることを 特徴とする特許請求の範囲第1項配載の半導体素 子の製造方法。
- 4 前記熱処理するに際し、ハロゲンランプ等の 光加熱により前記シリコンウエハの表面を1100 15 [℃] 以上の温度に加熱することを特徴とする特 許請求の範囲第1項記載の半導体素子の製造方

用いられるゲート酸化膜の100[🐧] 以下を要求さ れる場合もでている。このため、前記した自然酸 化膜のゲート酸化膜に及ぼす影響は大きい。

また、前記純水洗浄を省略し、弗酸系薬品によ つて自然酸化膜を除去した後に直接ゲート酸化に 5 至る場合、シリコンウエハの表面は不飽和結合を 多く有し、極めて活性な表面となつている。その 結果、シリコンウエハの表面は汚染物質が被着し 易くなつている。従つて、このような表面上に形 成されたゲート酸化膜は、初期短絡不良を示す欠 10 た。 陥が多くなつてしまう。

〔発明の目的〕

本発明は上配の事情を考慮してなされたもの で、その目的とするところは、熱酸化膜の形成工 工程でその酸化膜に取り込まれる欠陥を効果的に 低減することができ、素子特性の向上等をはかり 得る半導体素子の製造方法を提供することにあ る。

〔発明の概要〕

本発明の骨子は、シリコンウエハを水素雰囲気 中で熱処理することにより、シリコンウエハ表面 の不飽和結合に水素を結合させ、熱酸化膜を形成 する際の電気伝導上の欠陥発生を抑制することに ある。

即ち本発明は、シリコンウエハの表面に熱酸化 膜を形成する工程を含む半導体素子の製造方法に おいて、前記熱酸化膜を形成する工程の直前に、 水素ガスを含む雰囲気中で前記シリコンウエハを 時間) 熱処理するようにした方法である。

〔発明の効果〕

本発明によれば、より確実に理想に近い状態で シリコンウェハの表面を自然酸化膜がなく且つ不 活性な状態に制御することができるので、該ウエ 35 八上に形成する熱酸化膜の欠陥発生を低減するこ とができ、特に100[人] 以下の薄い熱酸化膜を十 分な耐圧を持たせて作ることができる。このた め、MOS集積回路等の信頼性向上、微細化及び はシリコンウェハの表面をエツチングすることは ないので、熱酸化膜形成の前処理でウエハ表面が 荒れる等の不都合も生じない。

〔発明の実施例〕

以下、本発明の詳細を図示の実施例によつて説 明する。

第1図a~eは本発明の一実施例方法に係わる MOSキャパシタ製造工程を示す断面図である。 まず、CZ法により形成されウエハ状に切り出さ れた面方位100、比抵抗 5~20[Ωcm]のシリコン ウェハを用い、1000[℃]で水素燃焼酸化を100分 間行い、第1図aに示す如くシリコンウエハ11 の表面に厚さ5000[人]の熱酸化膜 1 2 を形成し

次いで、第1図bに示す如く全面にレジスト1 3を塗布したのち、写真蝕刻法によりゲート酸化 膜形成領域の酸化膜 12をエツチング除去した。 その後、第1図cに示す如くRCAリンス処理と 程で、その目的とするところは、熱酸化膜の形成 15 水洗により上記シリコンウエハ 1 1 を洗浄した。 このとき、ウェハ11の露出表面には、薄い自然 酸化膜14が形成される。

> 次いで、シリコンウエハ11の表面に、例えば ハロゲンランプを照射し、ウエハ表面温度を1100 20 [℃] まで上昇させ、10%の水素を含むアルゴン ガス中に1分間晒し、第1図dに示す如く前記自 然酸化膜14を除去した。このとき、シリコンウ エハ11の表面の不飽和結合には水素原子が結合 されることになる。

次いで、上記第1図dに示す工程の直後に、20 25 [%] の乾燥酸素を含むアルゴンガス中で900[℃] 20分間シリコンウエハ11を酸化し、第1図eに 示す如くシリコンウエハ**11の表面に厚さ40[Å**] の熱酸化膜(ゲート酸化膜)15を形成した。続 1100[℃] 以上の温度で (望ましくは1分以下の 30 いて、多結晶シリコン膜16をLPCCVD法によ り約0.4[µm] 形成した。さらに、例えば1000 [℃] 10分間のPOCL拡散法により、多結晶シリ コン膜16の抵抗を低下させた後、写真蝕刻法に よりゲート電極パターンを形成した。

上記形成された試料の耐圧不良率を測定したと ころ、第2図に示す如き結果が得られた。ここ で、図中Aは本実施例による場合、Bは従来の場 合である。なお、いずれの場合も、ゲート面積は 10元、ゲート酸化膜厚は50[Å] とした。第2図 高集積化をはかることができる。また、水素ガス 40 から判るように、本実施例の場合、従来例に比し て、酸化膜の耐圧不良率が飛躍的に改善されるこ とが判る。

> このように本実施例方法によれば、シリコンウ エハ11の表面に形成される熱酸化膜15の欠陥

5

密度を著しく低減させることができる。このため、半導体集積回路の高集積化に大きな効果が得られる。例えば、ゲート酸化膜の薄膜化を容易にし、MOS素子の動作特性向上及び信頼性の向上が可能となる。

なお、本発明は上述した実施例方法に限定されるものではない。例えば、希釈不活性ガスとして、アルゴンを用いたが、その他ネオン、へりウム等の費ガスは勿論、窒素等の活性度の低いガスを用いてもよい。さらに、ゲート電極として、リン添加多結晶シリコンを用いたが、Al, Mo, W等の高融点金属若しくはそのシリサイドを用いてもよい。また、ゲート酸化膜等の熱酸化膜形成前の熱処理温度は1100[℃]に限るものではなく、それ以上の温度であればよい。さらに、このときの処理時間は、高温熱処理による半導体ウェハへの種々の影響を考慮すると1分以下の短時間とす

6

るのが望ましい。

また、実施例ではMOSキャパシタの製造に応用したが、MOSFET及びMOS集積回路は勿論のこと、他の熱酸化膜を有する半導体素子の製造に 適用することが可能である。その他、本発明の要旨を逸脱しない範囲で、種々変形して実施することができる。

図面の簡単な説明

ム等の貴ガスは勿論、窒素等の活性度の低いガス 第1図a~eは本発明の一実施例方法に係わる を用いてもよい。さらに、ゲート電極として、リ 10 MOSキャパシタ製造工程を示す断面図、第2図ン添加多結晶シリコンを用いたが、Al, Mo, W は上配実施例の効果を説明するためのもので熱酸 等の高融点金属若しくはそのシリサイドを用いて 化膜の耐圧不良率を示す特性図である。

第2図

【公報種別】特許法第64条の規定による補正の掲載 【部門区分】第7部門第2区分 【発行日】平成6年(1994)11月2日

【公告番号】特公平3-80338 【公告日】平成3年(1991)12月24日 【年通号数】特許公報3-2009 【出願番号】特願昭60-33183 【特許番号】1821817 【国際特許分類第5版】

H01L 21/316

S 7352-4M

21/26

L 8617-4M

1 「特許請求の範囲」の項を「1 シリコンウェハの 表面に熱酸化膜を形成する工程を含む半導体素子の製造 方法において、前記熱酸化膜を形成する工程の直前に、 水素ガスを不活性ガスで希釈した雰囲気中で、前記シリ コンウェハを1100 [℃] 以上の温度で熱処理することを特徴とする半導体素子の製造方法。

2 前記熱処理の時間を、1分以下に設定したことを特徴とする特許請求の範囲第1項記載の半導体素子の製造

方法。

- 3 前記熱酸化膜は、ゲート酸化膜であることを特徴と する特許請求の範囲第1項記載の半導体素子の製造方 注
- 4 前記熱処理するに際し、ハロゲンランプ等の光加熱により前記シリコンウェハの表面を1100 [℃] 以上の温度に加熱することを特徴とする特許請求の範囲第1項記載の半導体素子の製造方法。」と補正する。