A joint distribution theorem with applications to extremal primes

Neha Prabhu

University of Pune

(Joint with Amita Malik)

Equidistribution of a sequence

A sequence of real numbers $\{x_n\}$ in [0,1] is said to be uniformly distributed, or equidistributed in [0,1] if, for every subinterval $[a,b]\subseteq [0,1]$, the following holds.

$$\lim_{N\to\infty}\frac{\#\{n\leq N: a_n\in [a,b]\}}{N}=b-a.$$

- The sequence of fractional parts of $\{n\alpha\}$, where α is a fixed irrational number, is an equidistributed sequence.
- The sequence of fractional parts of {log n} is not uniformly distributed.

More generally, a sequence $\{x_n\}$ is equidistributed w.r.t the measure μ if

$$\lim_{N\to\infty}\frac{\#\{n\leq N: a_n\in [a,b]\}}{N}=\int_a^b d\mu.$$

Sato-Tate conjecture

For $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ with $\Delta(a, b) = 4a^3 + 27b^2 \neq 0$, let E(a, b) be the elliptic curve given in Weierstrass form by

$$y^2 = x^3 + ax + b.$$

Reducing $a, b \mod p$, where p is a prime not dividing the discriminant $\Delta(a, b)$, the number of \mathbb{F}_p points is given by

$$\#E_p = p + 1 - a_E(p).$$

Hasse's theorem:

$$\frac{\mathsf{a}_{\mathsf{E}}(p)}{\sqrt{p}} \in [-2,2].$$

 \sim 1960: M. Sato and J. Tate independently conjectured the distribution of this sequence.

Theorem (Sato-Tate for elliptic curves)

For $I \subseteq [-2,2]$ and a non-CM elliptic curve E, Let

$$N_I(E,x) = \#\{p < x : p \text{ prime}, p \nmid N_E, \tilde{a}_E(p) \in I\},\$$

where $\tilde{a}_E(p) = \frac{a_E(p)}{\sqrt{p}}$. Then

$$\lim_{x\to\infty}\frac{N_I(E,x)}{\pi(x)}=\frac{1}{2\pi}\int_I\sqrt{4-t^2}dt.$$

Proved by L. Clozel, M. Harris, N. Shepherd-Barron and R. Talyor. (2008-2010)

Histogram plot showing the distribution of $a_E(p)/\sqrt{p}$ for the curve $y^2=x^3+x+1$ for $p\leq 10^6$.

It is evident from the graph that there are fewer primes at the ends of the interval, so it is interesting to see if we can say something precise.

Definition

An **extremal prime** for an elliptic curve E is a prime of good reduction satisfying

$$a_E(p) = \pm [2\sqrt{p}].$$

Extremal primes were first studied by Kevin James et al, who conjectured that, as $x \to \infty$,

$$\#\left\{p \leq x \ : \ a_E(p) = \pm [2\sqrt{p}]\right\}$$

$$\sim \begin{cases} \frac{8}{3\pi} \ \frac{x^{1/4}}{\log x} & \text{if E does not have complex multiplication (CM) ,} \\ \\ \frac{2}{3\pi} \ \frac{x^{3/4}}{\log x} & \text{if E has complex multiplication.} \end{cases}$$

(An elliptic curve has CM if its endomorphism ring is bigger than \mathbb{Z} .)

Progress towards conjecture

- The asymptotic for CM curves was proven by James and Pollack in 2017.
- ② For non-CM curves, the asymptotic was shown to hold on average by Giberson in 2017.
- **1** Upper bound of $x^{1/2}$ under GRH by C. David, A. Gafni, A. Malik, N. Prabhu, and C. Turnage-Butterbaugh in 2020.
- **3** An unconditional upper bound of $\frac{x(\log \log x)^2}{(\log x)^2}$ by Gafni-Thorner-Wong in 2021.
- (Prabhu, in preparation) An unconditional upper bound of

$$x^{3/4}e^{-c\sqrt{\log x}}$$
.

We investigate a related quantity. For ℓ prime, what can we say about

$$\#\{p \leq x : p \nmid N_E, a_E(p) \equiv [2\sqrt{p}] \mod \ell\}$$
?

We prove

Theorem (Malik-Prabhu, preprint)

Let E be a non-CM elliptic curve over \mathbb{Q} . Assume that GRH holds for the Dedekind zeta functions of the ℓ -torsion fields $\mathbb{Q}(E[\ell])/\mathbb{Q}$. For $\ell \ll (x^{1/18}\log^{-8/9}x)$, as $x \to \infty$

$$\# \{x
$$= \frac{x}{\ell \log x} + O\left(\frac{x}{\ell (\log x)^2} + \ell^{5/4} x^{7/8} (\log x)^{3/2} + \ell^{7/2} x^{3/4} (\log x)^3\right).$$$$

Here, $\mathbb{Q}(E[\ell])$ is the field obtained by adjoining the coordinates of all the ℓ -torsion points of E to \mathbb{Q} .

Proof outline

$$\{p \le x : a_E(p) \equiv [2\sqrt{p}] \mod \ell\}$$

$$= \sum_{a \bmod \ell} \# \{p \le x : a_E(p) \equiv a \bmod \ell \text{ and } [2\sqrt{p}] \equiv a \bmod \ell\}$$

where
$$2\sqrt{p} = [2\sqrt{p}] + \{2\sqrt{p}\}.$$

The condition $[2\sqrt{p}] \equiv a \mod \ell$ translates to $\left\{\frac{2\sqrt{p}}{\ell}\right\} \in \left(\frac{a}{\ell}, \frac{a+1}{\ell}\right)$. If $[2\sqrt{p}] = k\ell + a$, then

$$2\sqrt{p} = k\ell + a + \{2\sqrt{p}\} \Longleftrightarrow \frac{2\sqrt{p}}{\ell} = k + \frac{a}{\ell} + \frac{\{2\sqrt{p}\}}{\ell}$$

Unpacking the condition $a_E(p) \equiv a \mod \ell$ is less straightforward.

→□▶ →□▶ → □▶ → □▶ → □
→□▶ → □▶ → □▶ → □
→□ → □▶ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□</p

Let $E[\ell]$ denote the ℓ -torsion subgroup of $E(\overline{\mathbb{Q}})$. The action of the Galois group $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $\operatorname{Aut}(E[\ell])$ can be expressed using a Galois representation

$$\rho_{E,\ell}:\mathsf{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})\to\mathsf{Aut}_{\mathbb{F}_\ell}(E[\ell])\cong\mathsf{GL}_2(\mathbb{F}_\ell).$$

- (Serre, '81): The map $\rho_{E,\ell}$ is surjective for all but finitely many primes ℓ .
- The field $\mathbb{Q}(E[\ell])$ is the fixed field in $\overline{\mathbb{Q}}$ of $\mathrm{Ker}\rho_{E,\ell}$.

Recall: If $H \leq G = Gal(E/F)$ is a normal subgroup, then

$$\operatorname{\mathsf{Gal}}(E^H/F) \cong \operatorname{\mathsf{Gal}}(E/F)/H.$$

Thus for a large enough prime ℓ , it follows that $Gal(\mathbb{Q}(E[\ell])/\mathbb{Q})$ is isomorphic to $GL_2(\mathbb{F}_{\ell})$.

$$ho_{E,\ell}: \mathsf{Gal}(ar{\mathbb{Q}}/\mathbb{Q}) o \mathsf{Aut}_{\mathbb{F}_\ell}(E[\ell]) \cong \mathsf{GL}_2(\mathbb{F}_\ell).$$

For each rational prime $p \in \mathbb{Q}$, there is a distinguished automorphism in $\mathrm{Gal}(\mathbb{Q}(E[\ell])/\mathbb{Q})$, called the Frobenius automorphism σ_p . It turns out that the characteristic polynomial of $\rho_{E,\ell}(\sigma_p)$ is given by

$$x^2 - a_E(p)x + p \pmod{\ell}$$
.

That is, $a_E(p) \mod \ell$ is the trace of the Frobenius automorphism σ_p . Therefore, for $a \in \mathbb{F}_\ell$, if $C_\ell(a)$ denotes the union of conjugacy classes in $\mathrm{GL}_2(\mathbb{F}_\ell)$ of elements of trace $a \mod \ell$, then

$$a_E(p) \equiv a \mod \ell \iff \sigma_p \in C_\ell(a).$$

So we have

$$\begin{split} \# \left\{ p \leq x \ : \ a_{E}(p) &\equiv [2\sqrt{p}] \bmod \ell \right\} \\ &= \sum_{a \bmod \ell} \# \left\{ p \leq x \ : \ \sigma_{p} \in C_{\ell}(a) \ \text{and} \ \left\{ \frac{2\sqrt{p}}{\ell} \right\} \in \left[\frac{a}{\ell}, \frac{a+1}{\ell} \right] \right\} \end{split}$$

Recall:

- 1. $C_{\ell}(a)$ is the union of conjugacy classes in $\mathsf{GL}_2(\mathbb{F}_{\ell})$ of trace a.
- 2. $\{\cdot\}$ denotes the fractional part.

Now,

The quantity

$$\#\left\{p\leq x\ :\ \sigma_p\in C_\ell(a)\right\}$$

can be computed using the Chebotarev Density Theorem:

Theorem (Lagarias-Odlyzko, 1977)

Let L/K be a finite Galois extension of number fields with Galois group G and C be a conjugacy class in G. If $\zeta_L(s)$ satisfies GRH, then

$$\#\{p \leq x : \sigma_p = C\} = \frac{|C|}{|G|}\pi(x) + Error.$$

On the other hand, the quantity $\#\left\{p\leq x:\left\{\frac{2\sqrt{p}}{\ell}\right\}\in\left[\frac{a}{\ell},\frac{a+1}{\ell}\right]\right\}$ can be computed using the equidistribution of fractional parts of αp^{θ} :

Theorem (Balog, Harman, etc.)

Fix $\theta, \delta \in (0,1)$. Then

$$\#\{p \le x : \{p^{\theta}\} < \delta\} = \delta\pi(x) + Error.$$

We require a theorem that combines the above two, i.e., a joint distribution theorem.

Roughly, we prove

$$\#\{x$$

More precisely,

Consider a finite Galois extension L/\mathbb{Q} , with Galois group G, and $n_L = [L:\mathbb{Q}]$. Let $\alpha > 0$ and $[\delta_1, \delta_2] \subseteq [0,1]$ be an interval of length δ . Let $\theta \in [0,1]$ be fixed. Define

$$\pi(x, C, G) := \#\{x$$

where C is a union of conjugacy classes in G.

Theorem (Malik-Prabhu, preprint)

Assume that GRH holds for $\zeta_{L/K}(s)$ and the condition

$$\alpha^{\frac{1}{4}} \delta^{\frac{-1}{2}} n_L^{\frac{1}{2}} (\log x)^2 \ll x^{\frac{1-\theta}{4}}$$

is satisfied. Then, the following holds.

$$\#\{x$$

$$\ll \frac{|C|}{|G|} n_L (\log x)^3 \left(\frac{\delta^{\frac{1}{2}} \alpha^{\frac{1}{4}}}{n_L^{\frac{1}{2}} (\log x)^{\frac{3}{2}}} x^{\frac{3+\theta}{4}} + \frac{\delta}{\alpha^{\frac{1}{2}}} x^{1-\frac{\theta}{2}} \right) \\
+ \delta^{\frac{1}{2}} \alpha^{\frac{1}{4}} n_L^{\frac{1}{2}} x^{\frac{1+\theta}{4}} (\log x)^{\frac{3}{2}} + \frac{|C|}{|G|} \frac{\delta x}{(\log x)^2}. \tag{1}$$

uniformly for L/K, δ and α . Here, the implied constant may depend on θ .

イロト (何) (4) (1) (4) (4) (4) (4)

(from previous slide)

$$\#\{x$$

Applying this to our case:

$$L/K = \mathbb{Q}(E[\ell])/\mathbb{Q}$$
 $G = \operatorname{GL}_2(\mathbb{F}_\ell)$
 $\frac{|C|}{|G|} = \frac{|C_\ell(a)|}{|G|} = \frac{1}{\ell} + O\left(\frac{1}{\ell^2}\right)$
 $n_L = (\ell^2 - 1)(\ell^2 - \ell)$
 $\{\alpha p^{\theta}\} = \left\{\frac{2}{\ell}p^{1/2}\right\}$
 $[\delta_1, \delta_2] = [a/\ell, (a+1)/\ell] \text{ so } \delta = 1/\ell$

Using the above joint distribution theorem with these substitutions, we deduce (under GRH)

$$\begin{split} \# \left\{ p \leq x \ : \ a_{E}(p) &\equiv [2\sqrt{p}] \ \mathsf{mod} \ \ell \right\} \\ &= \sum_{a \ \mathsf{mod} \ \ell} \# \left\{ p \leq x \ : \ \sigma_{p} \in C_{\ell}(a) \ \mathsf{and} \ \left\{ \frac{2\sqrt{p}}{\ell} \right\} \in \left[\frac{a}{\ell}, \frac{a+1}{\ell} \right) \right\} \\ &= \sum_{a \ \mathsf{mod} \ \ell} \frac{1}{\ell} \pi \left(x, C_{\ell}(a), G_{\ell} \right) \\ &+ O\left(\frac{x}{\ell^{2} (\log x)^{2}} + x^{7/8} \ell^{1/4} (\log x)^{3/2} + x^{3/4} \ell^{5/2} \log^{3} x. \right) \\ &= \frac{x}{\ell \log x} \\ &+ O\left(\frac{x}{\ell (\log x)^{2}} + \ell^{5/4} x^{7/8} (\log x)^{3/2} + \ell^{7/2} x^{3/4} (\log x)^{3} \right). \end{split}$$

Remarks on the joint distribution result

Recall that the joint distribution result studied the quantity

$$\#\{x$$

- A Carmichael number is a composite number n such that $b^n \equiv b \mod n$ for all integers b. In 2013, Banks-Gulöglu-Yeager showed that there are infinitely many Carmichael numbers n solely composed of primes p satisfying a Chebotarev condition.
- A Piatetski-Shapiro prime is a prime number of the form $\lfloor n^c \rfloor$ with c>0 and $n \in \mathbb{N}$. In 2015, Gulöglu-Yildirim proved a joint distribution of Piatetski-Shapiro primes satisfying a Chebotarev condition.

Thank you for your attention!