Análisis Avanzado - Lista de ejercicios

- 1. Sea $(B_i)_{i\in I}$ una familia de bolas abiertas y disjuntas de \mathbb{R}^n . Probar que el conjunto I es contable.
- 2. Sea $F \subset \mathbb{R}$ un conjunto cerrado, F' el conjunto de sus puntos de acumulación y $A = F \setminus F'$ el conjunto de sus puntos aislados.
 - (a) Probar que A es a lo sumo numerable.
 - (b) Sea B = F'. ¿Puede B tener puntos aislados? En caso afirmativo, dar un ejemplo. En caso contrario, dar una demostración.
- 3. Sean $f, g : \mathbb{R} \to \mathbb{R}$ dos funciones tales que f y g son continuas en 0 y f(0) > g(0). Probar que existe $\delta > 0$ tal que $\inf_{|x| < \delta} f(x) > \sup_{|x| < \delta} g(x)$.
- 4. Decidir en cada caso si las siguientes afirmaciones son verdaderas o falsas, dando un contraejemplo sin son falsas o una demostración si son verdaderas: Sea (E,d) espacio métrico y $A,B\subseteq E$;
 - (a) Si $A \subsetneq B$, entonces $\overline{A} \subsetneq B$;
 - (b) $(A \setminus B)^{\circ} = A^{\circ} \setminus B^{\circ}$;
 - (c) $\partial(\overline{A}) \subseteq \partial(A)$.
- 5. Sea (E,d) un espacio métrico y $S\subseteq E$. Para $\varepsilon>0$ definimos $S_\varepsilon:=\{x\in E:d(x,S)<\varepsilon\}$. Probar que

$$\bigcap_{\varepsilon > 0} S_{\varepsilon} = \overline{S}.$$

6. Sea, (E,d) y (E',d') espacios métricos. Definimos en $E\times E'$ la función \overline{d} como

$$\overline{d}((x, x'), (y, y')) := \sqrt{d(x, y)^2 + d'(x', y')^2}.$$

Probar que $(E \times E', \overline{d})$ es un espacio métrico.

7. Sea, (E,d) y (E',d') espacios métricos y $f:E\to E'$ una funión contínua. Probar que el conjunto $gráfico\ de\ f$ definido como

$$G(f) = \{(x, f(x)) : x \in E\},\$$

es cerrado en $E \times E'$ con la mátrica \overline{d} del ejercicio anterior.

- 8. (a) Probar que si $K \subseteq \mathbb{R}^n$ es compacto, entonces $\overline{K^{\circ}}$ también lo es.
 - (b) Sea $K \subseteq \mathbb{Q}$ dado por $K = \{x \in \mathbb{Q} : 0 < x^2 < 2\}$. ¿Es $\overline{K^{\circ}}$ compacto?

9. Sea (E,d)un espacio métrico. Para $K\subseteq E$ y $\varepsilon>0$ definimos

$$B(K,\varepsilon) = \bigcup_{x \in K} B(x,\varepsilon).$$

Probar que si K es compacto y $U\subseteq E$ es un abierto tal que $K\subseteq U$, entonces existe $\varepsilon>0$ tal que $B(K,\varepsilon)\subseteq U$.