

IN THE SPECIFICATION:

Please amend Page 36, Line 16 to Page 37, Line 5 as set forth below. This paragraph corresponds to Paragraph [0084] in Patent Application Publication No. US 2005/0110648 A1 dated May 26, 2005.

For example, FIGURE 10 illustrates a three dimensional spherical polar coordinate system [[have]] having coordinates R , Θ , Φ . FIGURE 10 also illustrates the relationships between a Cartesian coordinate system superimposed on the spherical polar coordinate system. The coordinate R is a radial coordinate. The magnitude of R equals the distance from the origin of the coordinate system to the end of a vector that originates at the origin. The coordinate Θ is an angular coordinate that measures the angle between the vector and the z axis. The coordinate $[[\Phi]] \Theta$ is measured in the plane formed by the vector and the z axis. The coordinate Φ is an angular coordinate that measures the angle between the x axis and the projection of the vector on the x - y plane. The coordinate Φ is measured in the x - y plane.