Job No.:
 SHEDROBT - KJ2472
 Address:
 8 Kersey Ave, Darfield, New Zealand
 Date:
 19/08/2024

 Latitude:
 -43.494005
 Longitude:
 172.132652
 Elevation:
 191 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N4	Ground Snow Load	1.05 KPa	Roof Snow Load	0.73 KPa
Earthquake Zone	2	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	3.8 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	38.22 m/s
Wind Pressure	0.88 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 1.75 m Cpe = -1.2 pe = -0.95 KPa pnet = -0.95 KPa

For roof CP,e from 1.75 m To 3.5 m Cpe = -0.75 pe = -0.59 KPa pnet = -0.59 KPa

For wall Windward $Cp_i = -0.3$ side Wall $Cp_i = -0.3$

For wall Windward and Leeward CP,e from 0 m To 9 m Cpe = 0.7 pe = 0.55 KPa pnet = 0.81 KPa

For side wall CP,e from 0 m To 3.5 m Cpe = pe = -0.51 KPa pnet = -0.51 KPa

Maximum Upward pressure used in roof member Design = 0.95 KPa

Maximum Downward pressure used in roof member Design = 0.34 KPa

Maximum Wall pressure used in Design = 0.81 KPa

Maximum Racking pressure used in Design = 0.78 KPa

Design Summary

Purlin Design

Purlin Spacing = 800 mm Purlin Span = 3850 mm Try Purlin 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.68 S1 Downward = 9.63 S1 Upward = 19.79

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	0.5 Kn-m	Capacity	1.26 Kn-m	Passing Percentage	252.00 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	1.53 Kn-m	Capacity	1.68 Kn-m	Passing Percentage	109.80 %
M0.9D-WnUp	-1.07 Kn-m	Capacity	-1.43 Kn-m	Passing Percentage	153.76 %
V _{1.35D}	0.52 Kn	Capacity	7.24 Kn	Passing Percentage	1392.31 %

Second page

$V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	1.59 Kn	Capacity	9.65 Kn	Passing Percentage	606.92 %
V _{0.9D-WnUp}	-1.12 Kn	Capacity	-12.06 Kn	Passing Percentage	1076.79 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 13.83 mm

Limit by Woolcock et al, 1999 Span/240 = 15.83 mm

Deflection under Dead and Service Wind = 15.45 mm

Limit by Woolcock et al, 1999 Span/100 = 38.00 mm

Reactions

Maximum downward = 1.59 kn Maximum upward = -1.12 kn

Number of Blocking = 0 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design External

External Rafter Load Width = 2000 mm External Rafter Span = 4310 mm Try Rafter 300x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.94

K8 Upward =0.94 S1 Downward =13.93 S1 Upward =13.93

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	1.57 Kn-m	Capacity	4.72 Kn-m	Passing Percentage	300.64 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	4.78 Kn-m	Capacity	6.30 Kn-m	Passing Percentage	131.80 %
M0.9D-WnUp	-3.37 Kn-m	Capacity	-7.87 Kn-m	Passing Percentage	233.53 %
V _{1.35D}	1.45 Kn	Capacity	14.47 Kn	Passing Percentage	997.93 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	4.44 Kn	Capacity	19.30 Kn	Passing Percentage	434.68 %
V0.9D-WnUp	-3.12 Kn	Capacity	-24.12 Kn	Passing Percentage	773.08 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 5.27 mm

Limit by Woolcock et al, 1999 Span/240= 18.75 mm

Deflection under Dead and Service Wind = 5.89 mm

Limit by Woolcock et al, 1999 Span/100 = 45.00 mm

Reactions

Maximum downward = 4.44 kn Maximum upward = -3.12 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J5 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 50 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

 $V = phi \times k1 \times k4 \times k5 \times fs \times b \times ds \dots (Eq 4.12) = -25.20 \text{ kn} > -3.12 \text{ Kn}$

Single Shear Capacity under short term loads = -10.84 Kn > -3.12 Kn

Intermediate Design Sides

Intermediate Spacing = 2250 mm

Intermediate Span = 3500 mm

Try Intermediate 2x200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =1.00 S1 Downward =11.27 S1 Upward =0.70

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.81 Kn-m	Capacity	7.46 Kn-m	Passing Percentage	412.15 %
V _{0.9D-WnUp}	2.07 Kn	Capacity	32.16 Kn	Passing Percentage	1553.62 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 22.71 mm

Limit by Woolcock et al, 1999 Span/100 = 35.00 mm

Reactions

Maximum = 2.07 kn

Girt Design Front and Back

Girt's Spacing = 700 mm

Girt's Span = 4000 mm

Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.65 S1 Downward = 9.63 S1 Upward = 20.31

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 Mwind+Snow
 1.13 Kn-m
 Capacity
 1.38 Kn-m
 Passing Percentage
 122.12 %

 V0.9D-WnUp
 1.13 Kn
 Capacity
 12.06 Kn
 Passing Percentage
 1067.26 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 38.14 mm

Limit by Woolcock et al, 1999 Span/100 = 40.00 mm

Sag during installation = 15.52 mm

Reactions

Maximum = 1.13 kn

Girt Design Sides

Girt's Spacing = 1300 mm

Girt's Span = 2250 mm

Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.89 S1 Downward =9.63 S1 Upward =15.23

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mw $_{\text{ind+Snow}}$ 0.67 Kn-m Capacity 1.87 Kn-m Passing Percentage 279.10 % V0.9D-WnUp 1.18 Kn Capacity 12.06 Kn Passing Percentage 1022.03 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 7.09 mm

Limit by Woolcock et al. 1999 Span/100 = 22.50 mm

Sag during installation =1.55 mm

Reactions

Maximum = 1.18 kn

End Pole Design

Geometry For End Bay Pole

Geometry

150 SED H5 (Minimum 175 dia. at Floor Level) Dry Use 3500 mm Height 20729 mm2 15546.6796875 mm2 Area As 34210793 mm4 421056 mm3 Ix Zx34210793 mm4 Zx421056 mm3 Iy

Lateral Restraint mm c/c

Loads

Total Area over Pole = 9 m^2

2.25 Kn Live 2.25 Kn Dead Wind Down 3.06 Kn Snow 6.57 Kn Moment Wind 2.81 Kn-m Moment snow 1.33 Kn-m Phi 0.8 K8 0.60

K1 snow	0.8	K1 Dead	0.6
---------	-----	---------	-----

K1wind 1

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	178.07 Kn	PhiMnx Wind	7.29 Kn-m	PhiVnx Wind	36.81 Kn
PhiNcx Dead	106.84 Kn	PhiMnx Dead	4.38 Kn-m	PhiVnx Dead	22.09 Kn
PhiNcx Snow	142.46 Kn	PhiMnx Snow	5.84 Kn-m	PhiVnx Snow	29.45 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.46 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.22 < 1 OK$

Deflection at top under service lateral loads = 17.95 mm < 37.90 mm

L= 1300 mm Pile embedment length

f1 = 2850 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 9 m^2

Moment Wind =	2.81 Kn-m	Moment Snow =	1.33 Kn-m
Shear Wind =	0.99 Kn	Shear Snow =	1.33 Kn

Pile Properties

Safety Factory 0.55

Hu = 4.72 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 7.94 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.35 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L = 1300 mm Pile embedment length

f1 = 2850 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 2.81 Kn-m Moment Snow = 1.33 Kn-m Shear Wind = 0.99 Kn Shear Snow = 1.33 Kn

Pile Properties

Safety Factory 0.55

Hu = 4.72 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 7.94 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.35 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m³

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1300) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1300)

Skin Friction = 13.65 Kn

Weight of Pile + Pile Skin Friction = 17.91 Kn

Uplift on one Pile = 13.05 Kn

Uplift is ok