Deadlocks

Chapter 7

Using 2 mutexes....

- Recall if two threads are attempting to enter two different critical sections (A and B)
 - All is well if both ask for A, then B
 - All is well if both ask for B, then A
 - Things can be very bad if one asks for A, then B and the other the opposite order!
- □ If things break just right (or badly) we could be deadlocked.

Deadlocks

- □ Deadlocks are not just about "data" synchronization...
 - Deadlocks occur in resource allocation
 - DVD/CD
 - CPU
 - Disks
 - Printers
 - Mutex/Monitor

Deadlock Requirements

Mutual Exclusion

■ Hold & Wait

No Preemption

Circular Wait

Modeling Resource Allocation

- Can define deadlocks as cycles in a directed graph:
 - Resources & Process are Nodes/Vertices
 - Assignment Edges
 - Request Edges

Handling Deadlocks

- Eliminate Them
 - Prevention algorithms attack requirements
 - Avoidance algorithms careful planning

Detection Algorithms - recovery mechanisms

Avoidance Algorithms

- System can be in either a safe or unsafe state with respect to deadlocks
 - safe implies no deadlocks
 - unsafe implies there *may* be a deadlock
- Resource Graph Solution
- Banker's Algorithm

Deadlock Detection & Recovery

- Use graphs to detect deadlocks
 - When do we run the algorithm?
 - Does it matter?
- Recovery:
 - Terminate processes?
 - who?
 - Preempt resource (take it away)?
 - who?
 - what?