

Lecture 7 Air Quality:

Air Pollution Control

Harish C. Phuleria CESE, IIT Bombay

Email: phuleria@iitb.ac.in

N2, H2O, CO2

Recap

- Similar to urban airshed, an indoor box model can be built
- e.g. a basic mass balance for pollution in the building/ room, assuming well-mixed conditions:

$$\begin{pmatrix} \text{rate of increase} \\ \text{in the box} \end{pmatrix} = \begin{pmatrix} \text{rate of pollution} \\ \text{entering the box} \end{pmatrix} - \begin{pmatrix} \text{rate of pollution} \\ \text{leaving the box} \end{pmatrix} - \begin{pmatrix} \text{rate of decay} \\ \text{in the box} \end{pmatrix}$$

$$V\frac{dC}{dt} = (S + C_{a}nV) - CnV - KCV$$

where, *n* is number of air changes per hour

$$C(t) = \left[\frac{(S/V) + C_a n}{n + K}\right] \left[1 - e^{-(n+K)t}\right] + C(0)e^{-(n+K)t}$$

$$C(\infty) = \frac{(S/V) + C_a n}{n + K}$$

$$C(t) = \left(\frac{S}{nV}\right)(1 - e^{-nt})$$

Today's Learning Objectives!

 To learn about air pollution control methods from mobile and stationary sources

Indoor Box Model: Example!

An outdoor airflow of 0.047 m³/s enters a 3 m high room having a 100 m² of new wall-to-wall carpet. If one square meter carpet gives off formaldehyde (HCHO) at a rate of 0.1 μ g/s, assuming outdoor air is formaldehyde free and formaldehyde is conservative:

- 1. What is the outdoor air change rate for the room?
- 2. What is the formaldehyde conc. under steady state?
- 3. If the carpet is removed very quickly from the room, how long would it take for the formaldehyde to reach 5% of its initial conc.?
- 1. Air change rate, n = Q/V

$$n = \frac{0.047m^3 / s}{(3m \times 100m^2)} \times 3600s / hr$$

$$= 0.56 / hr = 0.56 ACH$$

Indoor Box Model: Example!

An outdoor airflow of 0.047 m³/s enters a 3 m high room having a 100 m² of new wall-to-wall carpet. If one square meter carpet gives off formaldehyde (HCHO) at a rate of 0.1 μ g/s, assuming <u>outdoor air is formaldehyde free</u> and formaldehyde is <u>conservative</u>:

- 2. What is the formaldehyde conc. under steady state?
- 2. Formaldehyde conc. under steady state,

$$C(t) = \left[\frac{(S/V) + C_{a}n}{n+K}\right] \left[1 - e^{-(n+K)t}\right] + C(0)e^{-(n+K)t}$$

$$C(\infty) = \frac{S/V}{n} = \frac{S}{Q}$$

$$= \frac{0.1 \mu g/(s.m^2) \times 100 m^2}{0.0476 m^3/s} = 213 \mu g/m^3$$

Indoor Box Model: Example!

An outdoor airflow of 0.047 m³/s enters a 3 m high room having a 100 m² of new wall-to-wall carpet. If one square meter carpet gives off formaldehyde (HCHO) at a rate of 0.1 μ g/s, assuming <u>outdoor air is formaldehyde free</u> and formaldehyde is <u>conservative</u>:

- 3. If the carpet is removed very quickly from the room, how long would it take for the formaldehyde to reach 5% of its initial conc.?
- 3. Time for HCHO to reach its 5% value,

$$C(t) = \left[\frac{(S/V) + C_{a}n}{n+K}\right] \left[1 - e^{-(n+K)t}\right] + C(0)e^{-(n+K)t}$$

$$C(t) = C(0)e^{-nt}$$
 or $C(t)/C(0) = e^{-nt}$
=> $0.05 = e^{-0.56t}$

Therefore, t = 5.3 hr

Need for Indoor Models: ... so to estimate Indoor Exposures

- Outdoor models needed so to manage air quality in ambient environments where no measurements are available
- But as far as human health effects are concerned, what matters is not the pollutants' conc., but what humans get exposed to!

Exposure = concentration x duration of time in contact

Contact duration depends on where people spend their time

Air Pollution Exposures

Some of the largest emissions may have lowest exposures and

vice-versa

Air Pollution Control: Mobile Sources

India Emission Standards

Standard	Reference	Date	Region	
India 2000	Euro 1	2000	Nationwide	
Bharat Stage II	Euro 2	2001	NCR*, Mumbai, Kolkata, Chennai	
		2003.04	NCR*, 11 cities†	
		2005.04	Nationwide	
Bharat Stage III	Euro 3	2005.04	NCR*, 11 cities†	
		2010.04	Nationwide	
Bharat Stage IV	Euro 4	2010.04	NCR*, 13 cities‡	
		2015.07	Above plus 29 cities mainly in the states of Haryana, Uttar Pradesh, Rajasthan and Maharastra [3231]	
		2015.10	North India plus bordering districts of Rajasthan (9 States) [3232]	
		2016.04	Western India plus parts of South and East India (10 States and Territories) [3232]	
		2017.04	Nationwide [3232]	
Bharat Stage V	Euro 5	n/a ^a		
Bharat Stage VI	Euro 6	2020.04	Nationwide [3349]	

^{*} National Capital Region (Delhi)

[†] Mumbai, Kolkata, Chennai, Bangalore, Hyderabad, Secunderabad, Ahmedabad, Pune, Surat, Kanpur and Agra

[‡] Above cities plus Solapur and Lucknow. The program was later expanded with the aim of including 50 additional cities by March 2015

 $^{^{\}rm a}$ Initially proposed in 2015.11 $^{[3297][3298]}$ but removed from a 2016.02 proposal $^{[3349]}$

Emission control of IC engines

 Maintaining a stoichiometric air/fuel ratio

Air (20.9% 02)

•
$$C_7H_{13} + 10.25O_2$$
 $\longrightarrow 7CO_2 + 6.5H_2O$
 $\stackrel{\text{gg}}{\longrightarrow}$

• Air/Fuel =
$$(10.25x32 + 38.5x28)$$

 $(12x7+1x13)$
= 14.5 kg/kg

Petrol vs. Diesel emissions

All-to-fuel fatio (10/10, kg/kg

Total emissions from IC engines:

Petrol vs. Diesel

Three-way Catalytic converter

A three-way catalytic converter has three simultaneous tasks:

 Reduction of nitrogen oxides to nitrogen and oxygen:

$$2NO_x \rightarrow xO_2 + N_2$$

 Oxidation of carbon monoxide to carbon dioxide:

$$\mathbf{2CO}\,+\,\mathbf{O_2}\rightarrow\mathbf{2CO_2}$$

Oxidation of unburnt hydrocarbons (HC) to carbon dioxide and water:

$$\mathbf{C_xH_{2x+2}\,+\,2xO_2} \rightarrow \mathbf{xCO_2}\,+\,\mathbf{2_xH_2O}$$

ES 200/ 22.Aug.2017

Cleaner/Alternative fuel

- Vaporization of gasoline should be reduced
- Oxygen containing additives reduce air requirement., e.g. ethanol, MTBE (Hazardous)
 - Methanol: Less photochemically reactive VOC, but emits HCHO (eye irritant), difficult to start in winters: can be overcome by M85 (85% methanol, 15% gasoline)
 - Ethanol: E10 (10% ethanol & 90% gasoline; used as an oxygenate to reduce CO emissions
 - Biodiesel: produced from animal fats, vegetable oils; generally blended with diesel e.g. B2, B5 and B20 are common
 - CNG: Low HC, high NO_x, inconvenient refueling, leakage hazard
 - LPG: Propane, high NO_x
 - Electric /hybrid vehicles

Landmarks dates in Delhi NCR clean up!

- April 1995: Mandatory fitting of catalytic convertors
- April 1996: Low sulphur diesel introduced
- April 1998: Introduction of CNG buses in Delhi
- Sept 1998: Complete removal of lead in petrol
- Dec 1998: Restrict plying of goods vehicles during the day
- Sept 1999: Amendment of Motor Vehicles Act to include CNG
- April 2000: Private vehicles to be registered only if they conform to Euro II standards
- April 2000: Eight-year-old commercial vehicles phased out
- Nov 2002: Conversion of all public transport buses to CNG

ES 200/ 22.Aug.2017

Air Pollution Control: Stationary Sources

- Pre-combustion Control
 - Switching to less S and less N fuel
- Combustion Control
 - Improving the combustion process
 - \circ New burners to reduce NO $_{\mathsf{x}}$
 - Integrated Gasification combined cycle
- Post-Combustion Control
 - Particulate collection devices
 - Flue gas desulfurization

ES 200/ 22.Aug.2017

Air Pollution Control: PM

- Device selection depends on
 - Particle size
 - Concentration
 - Corrosivity
 - Volumetric flow rate
 - Required collection efficiency
 - Cost
- Mechanical

- Gravity based: Settling Chambers > 20 μm

- Inertia based: Cyclones $> 10 \mu m$

- Diffusion based: Filters $> 0.1 \mu m$

Electrical

- Electrostatic Precipitators > 0.1 μm

Mechanical - Gravity

Gravitational Settlers

Particle settling:

Gravitational forces are balanced by drag and buoyancy forces. This leads to Stokes law - settling velocity of particles.

When $F_d = F_g$, settling velocity is given by

$$v_t = g d^2 \frac{\rho_p}{18 \,\mu}$$

V_t (1μm particle) = 0.006 cm/s where,

g - gravity acceleration 9.8 m/s²

d - particle diameter (m)

 r_p – particle density (g/m³)= 2 x 10⁶ g/m³

 μ - air viscosity = 0.0172 g/m.s

Mechanical - Gravity

slurry in

Gravitational Settlers

D _p (μ m)	V _t (m/s)	V _t (m/hr)
0.01	6.3E-09	2.3E-05
0.1	6.3E-07	2.3E-03
0.2	2.5E-06	9.1E-03
0.5	1.6E-05	0.06
1	6.3E-05	0.23
2	2.5E-04	0.91
5	0.0016	5.70
10	0.0063	22.79
20	0.0253	91.16
50	0 1583	569.77
100	0.6331	2279.07
200	2.5323/	9116.28
500	15.8269	56976.74
1000	63.3075	227906.98

 V_t (1 μ m particle) = 0.006 cm/s

$$v_t = g d^2 \frac{\rho_p}{18 \,\mu}$$

Mechanical - Inertia

Cyclones

- For PM $> 5 \mu m$
- Efficiency > 90%
- Maintenance-free
- Low-cost

Mechanical - Inertia

Cyclones

In parallel

Mechanical - Filtration

Bag filters

Filtration through fibrous material via:

- Diffusion
- Impaction
- Interception
- (NOT SIEVING)

Mechanical - Filtration

Bag filters

- Efficiency 100% for particles $> 0.01-1 \mu m$
- Cannot operate in moist environment
- Large & expensive
- Competitive with ESP

Electrostatic Precipitators (ESP)

- Principle: Electrodes at high voltage create a corona effect (ionized atmosphere) surrounding them
- This charges the passing particles
- Once charged, particles are subject to a transverse electrostatic force that pulls them toward the collecting plates
- Plates are periodically "rapped" (vibrated) to make the collected particles fall down into a receiver basket

Electrostatic Precipitators (ESP)

- Removal>98%, all sizes
- Little pressure drop, low O&M cost, but expensive
- Occupy large space
- Plate area requirement depends on required efficiency

Air Pollution Control - Gases

- Absorption/ Adsorption
- Incineration
- Chemical Reactions
 - Catalysts: e.g. selective catalytic reduction (SCR) for NO_x control; NH₃ is injected into boiler flue gas and the mix is passed through a catalyst bed where NO_x is reduced to N₂:

$$4NO + 4NH_3 + O_2 \longrightarrow 4N_2 + 6H_2O$$

 Flue gas desulfurisation: Finely pulverized limestone (CaCO₃) is mixed with water to create a slurry that is sprayed into the flue gas; about 90% SO₂ can be captured:

$$CaCO_3 + SO_2 + 2H_2O \longrightarrow CaSO_3.2H_2O + CO_2$$

Air quality policies do matter!

Good luck for the ES 200 end-sem exam !!!

Mon, 11.Sep, 17:30-20:30

ES 200/ 22.Aug.2017 27