实验四-2、(T,S,s)库存系统的建模与仿真

1. 实验目的

进一步熟悉 AutoMod 软件,学习其对库存问题的建模与仿真分析方法。通过对(T,S,s)库存系统的建模与仿真,加深对 AutoMod 建模的认识和理解,并观察最优的策略分别是多少。

2. 实验内容

(1) 对象系统描述:

T: 查库周期, S: 最大库存量, s:最小库存量。

(T, S, s) 中涉及销售商、供应商、客户。销售商向供应商进货卖给客户商品。下面 我们将用到以下几个名词:客户的需求量,销售商向供应商的订货量,销售商的库存水平, 销售商的最大最小库存量。

销售商以 T 为周期检查库存,如果库存水平 I 小于最小库存 s,则需要订货。即

$$Z = \begin{cases} S - I & \text{if } I < s \\ 0 & \text{if } I > s \end{cases}$$

其中I是月初的库存水平。

当需求发生时,如果库存水平至少与需求量一样,则此需求会立即被满足。如果需求超过库存水平,则超过的部分需要订货,并在以后的交付中满足。在订货到达时,首先用来尽可能地冲销未结的数目,剩下的订货才回加到库存。

只销售单一产品的公司采用(T.S.s)的策略对(S,s)进行决策。

月初,公司查库,并决定是否从供应商订货,订多少件。如果公司订了 Z 件,则花费为 K+iZ,其中,K=\$32,为准备成本,而i=\$3为每件订货的边际成本(如果Z=0,则无任何花费)。当下订单后,订货到达所需时间(称为到货提前期)是一个在 0.5 至 1 个月之间均匀分布的随机变量。需求的间隔时间是均值为 0.1 个月的独立同分布的指数随机变量。需求量 D 是独立同分布的随机变量(与需求发生时间是独立的),其中

$$D = \begin{cases} 1 & w.p.1/6 \\ 2 & w.p.1/3 \\ 3 & w.p.1/3 \\ 4 & w.p.1/6 \end{cases}$$

其中 w.p.表示"概率为"(with probability)

除订货成本外,还要考虑到两类附加成本,储备成本每件每月h = \$1,短缺成本每件每月 $\pi = 5 。

假设初始库存水平为I(0) = 60, 并且无订货出现, 对此库存系统做 n=120 个月的仿真, 并利用每月平均总成本(是每月平均订货成本、每月平均储备成本和每月平均短缺成本之和) 来比较下面 9 个库存策略。

S	20	20	20	20	40	40	40	60	60
S	40	60	80	100	60	80	100	80	100

(2) 实验内容

- ① 完成该库存系统模型的建模。
- ② 对最大和最小库存量进行仿真分析和决策。
- ③ 求出最优时对应的成本及最小最大库存。

3. 建模设计

以下是其中一种建模方法,以供参考:

销售商仓库	Q_Warehouse
订单	L_Order
货物(商品)	L Product
在途货物	Q_In
库存尚未满足的订单在队列中等待	Q_Shortage

4. 实验步骤

- (1) 新建一个模型(自动创建一个 process system);
- (2) 定义 Loads、Queues 等实体单元;
- (3) 定义系统各个变量;
- (4) 编辑 source file 文件,编写相应代码,定义系统的流程逻辑;
- (5) 根据系统特征设定运行时间;
- (6) 运行模型;
- (7) 查看仿真动画和仿真输出结果,分析不同策略的成本。

实验四-2 详细解析

本实验学习的重点在于对各个变量的设置,以及通过改变进货量观察成本的变化以得到(T,S,s)的最佳库存策略。以下是完成本系统模型所需要的项目设置。

表 4-1 (T, S, s) 库存系统建模与仿真项目设置

か - 1 (1, 0, 3) 片切 小元及(5つ 10 六 次 11 以直 n 五 / 5					
-#: H		Process系统			
项目	名称	备注			
	P_Start	初始库存进入仓库			
	P Check	月初查库			
	P Supply	供应商供货			
Process	P_Wait	交货延迟			
	P_inWh	供应商供货进入仓库			
	P Gendmd	需求产生			
	P Out	需求部分出库			
	P_Average	计算各部分平均成本并输出			
	L_Check	查库的驱动型load, constant 30days			
Loads	L_Cost	计算成本的驱动型load, constant 3600days			
Loads	L CusOrder	需求产生的驱动型load, e 3days			
	L Product	货物			
LoadAttributes	LA_Buy	订货量			
Loading Clibates	LA_OrderQty	顾客需求量			
	Q In	供应商供货延迟等待队列			
Queues	Q Shortage	缺货队列			
	Q_Warehouse	储存队列			
	OL_Wh	储存队列的逻辑缓存区			
Order Lists	OL in	供货延迟队列的逻辑缓存区			
	OL Shortage	缺货订单的逻辑缓存区			
	T	查库周期,Int			
	V_AvgHoldingCost	每月平均储存成本,Real			
	V_AvgPrepareCost	每月平均准备成本,Real			
	V AvgTotalCost	每月平均总成本,Real			
	V_CSoutputfile	输出到文件,FilePtr			
	V_Excess	满足需求后剩余货物量,int			
	V_AvgInventory	每月平均库存,Real			
	V Loss	缺货量,int			
	V Month	仿真月份数, int			
	V_PrepareCost	准备成本,Real			
	<u>V_</u> S	最大库存量,int			
Varibles	V_AvgLoss	每月平均缺货量,Real			
varibles	Vs	最小库存量,int			
	V_Order	订单到达时刻,Time, 100000维			
	V_SumInventory	总库存量,Real			
	V_SumLoss	总缺货量,Real			
	V wait	到货提前期,每一次进货到达的时刻, Real			
	i	对订单计数, int, 初值设为1			
	j	对查库计数, int			
	V_Inventory	订单i到达时的库存水平, int, 100000维			
	V LossQty	订单i到达时的缺货情况, int, 100000维			
	V OrderQty	订单i的订单量, int, 100000维			
	V Arrive	进货到达时刻, Real, 100000维			
	V AvgShortageCost	平均缺货成本,Real			

1. 新建一个模型()。

修改单元格长度为米,并保存和输出模型。

2. 新建 Process (按表 4-1)。

Process 视窗

3. 新建 Loads。

Edit A LoadType 视窗

Define A Creation Spec 视窗

注: L_Check、L_Cost、L_Order 是驱动型 load,是不需要在模型中产生实体的,只需要设置 new Creation 即可,不要 Place 到模型中。而 L_Product 是货物,是需要在模型中产生实体的,其产生是在代码中控制的,只需要 Place 到模型中即可。

4. 新建队列。

Step4-1 新建 Q_In

Edit A Queue 视窗

Edit A Container Definition 视窗

Edit Queue Graphics 视窗

Step4-2 新建 Q_Warehohuse

Edit A Queue 视窗

Edit A Container Definition 视窗

Edit Queue Graphics 视窗

Step4-3 新建 Q_Shortage。

Edit A Queue		7 = 1	3 3 3 3	
Name Number of Queues Default Capacity Report Containers:	O_Shortage 1 Infinite Default	ind		New Capacity Default
Containers.				New Edit
Find			*	Copy Delete Edit Graphic
Title	ancel OK	OK/Nev	v Edit G	raphic

Edit A Queue 视窗

Edit Queue Graphics 视窗

5. 新建 Order List。

Edit An Order List 视窗

6. 新建 Variables。

Define a Var	able		
Name	ī	Dimension 1:	1
Туре	Integer ▼	Dimension 2:	
	integer	Dimension 3:	
Initial value	0	Dimension 4:	
Title			
Cancel	OK OK, New		

Variables 视窗

类似地,新建如下的各变量。

7. 新建 Source File 文件。注:文件后缀一定要加.m。

代码见指导书最后。

8. 设 Run Control。

Define Snap Control 视窗

9. 设置 Business Graphics。

Business Graphics 视窗

10. 运行模型。

Step10-1 查看 Business Graphics。

Step10-2 查看输出文件 Cost.txt。

改变库存策略,可以得到,每种情况下各部分的成本,进行比较得出最佳库存策略。

(T, S, s)	V_AvgTotalCost	V_AvgPrepareCost	V_AvgHoldingCost	V_AvgShortageCost
(30, 40, 20) (30, 60, 20) (30, 80, 20) (30, 100, 20) (30, 60, 40) (30, 80, 40) (30, 100, 40) (30, 80, 60) (30, 100, 60)	128. 321311 125. 884624 131. 757498 147. 797926	98. 858333 87. 716667 83. 641667 82. 733333 99. 133333 88. 383333 84. 191667 99. 633333 88. 883333	10. 632526 19. 036135 27. 361504 37. 497575 28. 613896 36. 924914 47. 072140 48. 164263 56. 474823	12. 227645 9. 867275 7. 643240 5. 181097 0. 574082 0. 576376 0. 493692 0. 000329 0. 000329

附相关成本计算的讨论:

每月平均储备成本=每月平均库存*每月每件储备成本 同理,

每月平均短缺成本=每月平均短缺库存*每月每件短缺成本每月平均准备成本=总准备成本/月数

准备成本比较好理解。

下面说一下储备成本和短缺成本,这两个都涉及到每月平均库存。下面先说一下平均库存的 计算。

横轴:时间;纵轴:库存水平

每月平均库存是有横轴上方的函数积分除以月数得到,实际上就是每一方块的面积总和除以月数。同理,每月平均短缺库存是横轴下方的函数积分除以月数得到,实际上就是每一方块的面积总和除以月数。

所以我们只需计算方块面积总和即可。(V SumInventory 和 V SumLoss)

订单 i 到达时:

- 1. 库存水平(V Inventory(i))能够满足顾客订单的需求(V OrderQty(i))
- (1) 订单 i 和订单 i-1 之间没有发生进货到达,要么都大于进货到达时刻,要么都小于进货到达时刻,这是两种情况。此时,会有储备成本。

set V_SumInventory = ((V_Order(i) - V_Order(i-1))/2592000)*V_Inventory(i) + V_SumInventory V_Order 是一组数组,用来记录每张顾客订单的到达时刻,单位是秒,所以我们需要将其转化为月,然后进行累加。

(2) 订单 i 和 i-1 之间发生了进货到达,分三种情况:

① 没有发生缺货情况。

set $V_SumInventory = ((V_Arrive/30) - (V_Order(i-1)/2592000)) * (V_Inventory(i-1) - V_OrderQty(i-1)) + V_SumInventory$

 $\label{eq:condition} \begin{array}{llll} \text{set} & V_SumInventory & = & ((V_Order(i)/2592000) & - & (V_Arrive/30))*V_Inventory(i) & + & \\ & V_SumInventory & & & & \\ \end{array}$

面积的计算分为两段,被进货到达的时刻分开。

第一段:库存为订单 i-1 到达时的库存-订单 i-1 的需求量

第二段:库存为订单 i 到达时的库存

② 发生了缺货情况,但订单 i-1 到达时库存大于 0,发生缺货,但订单 i 到达之前就有进货到达。

 $set\ V_SumLoss = ((V_Arrive/30)\ - (V_Order(i-1)/2592000))\ *\ (V_OrderQty(i-1)-V_Inventory(i-1)) + V\ SumLoss$

 $\label{eq:v_sum_norm} \begin{array}{lll} \text{set} & V_SumInventory & = & ((V_Order(i)/2592000) & - & (V_Arrive/30))*V_Inventory(i) & + & \\ & V_SumInventory & & & & \\ \end{array}$

面积的计算有储备也有缺货。分为两段。

第一段:缺货:订单 i-1 的需求量-订单 i-1 到达时的库存

第二段: 订单 i 到达时的库存

③ 发生了缺货情况,且订单 i-1 到达时库存小于 0,订单 i 到达之前就有进货到达。

 $set\ V_SumLoss = ((V_Arrive/30) - (V_Order(i-1)/2592000)) * (V_LossQty(i-1) + V_OrderQty(i-1)) + V_SumLoss$

set $V_{SumInventory} = ((V_{Order(i)/2592000}) - (V_{Arrive/30}))*V_{Inventory(i)} + V_{SumInventory}$

面积的计算同样分为两段。储备和缺货。

第一段:订单 i-1 到达时的 backorder+订单 i-1 的需求量 backorder 是缓存区等待被满足(所缺的)的 load 数量 第二段:订单 i 到达时的库存

2. 库存水平(V_Inventory(i))不能满足顾客订单的需求(V_OrderQty(i))

① 订单 i 到达发生缺货,订单 i 到达时库存大于 0 set V_SumInventory = ((V_Order(i) - V_Order(i-1))/2592000)*V_Inventory(i) + V_SumInventory

- ② 订单 i 到达时库存为 0,而且有缺货,但订单 i-1 到达时库存大于 0 订单 i 到达时需要计算缺货库存 set V_SumLoss = ((V_Order(i) - V_Order(i-1))/2592000)*V_LossQty(i) + V_SumLoss 缺货为订单 i-1 的需求量-订单 i-1 到达时的库存
- ③ 订单 i 到达时和订单 i-1 到达时的库存均为 0,且都有缺货 set V_SumLoss = ((V_Order(i) V_Order(i-1))/2592000)*(V_LossQty(i-1)+V_OrderQty(i-1)) + V_SumLoss 缺货量为订单 i-1 到达时的 backOrder 数量+订单 i-1 的需求量