DISCRETE MATHEMATICS ASSIGNMENT ELEMENT 1

Name: Kaloyan Lalov

Student ID: 21368509

Computer Games Technology

University of West London

Question 1

(a) State the converse, contrapositive and the inverse of the following conditional statement:

$$P \rightarrow Q$$

"If it is sunny today, then I will go for a run".

Converse:

$$Q \rightarrow P$$

If I will go for a run, then it is sunny today.

Contrapositive:

$$\neg Q \rightarrow \neg P$$

If I don't go for a run, then it is not sunny today.

Inverse:

$$\neg P \rightarrow \neg Q$$

If it's not sunny today, I will not go for a run.

(b) Write the if-then form, the converse, the inverse and the contrapositive of the following conditional statement, identifying whether each statement is true or false:

"Saxophone players are musicians".

We let P be "Saxophone players" and Q be "musicians.

If-then form

If you are a Saxophone player, then you are a musician.

P	Q	$P \rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

Converse

If you are a musician, then you are a saxophone player

Q	P	$Q \rightarrow P$
T	T	T
T	F	F
F	T	T
F	F	T

Contrapositive

If you are not a musician, then you are not a saxophone player.

P	Q	$\neg P$	$\neg Q$	$\neg P \rightarrow \neg Q$
T	T	F	F	T
T	F	F	T	T
F	T	T	F	F
F	F	T	T	T

Inverse

If you are not a saxophone player, then you are not a musician.

Q	P	$\neg Q$	$\neg P$	$\neg Q \rightarrow \neg P$
T	T	F	F	T
T	F	F	T	T
F	T	T	F	F
F	F	T	T	T

(c)

(i) 01 1011 0111

11 0011 1010

OR

01 1011 0111

11 0011 1011

11 1011 1111

AND

01 1011 0111

11 0011 1010

01 0011 0010

XOR

01 1011 0111

11 0011 1010

10 1000 1101

(ii) 101 1100 100 0111

OR

101 1100

100 0111

101 1111

AND

101 1100

100 0111

100 1100

XOR

101 1100

100 0111

001 1011

Question 2 [12 marks]

Use truth values to verify the following Logical Equivalence Laws:

(a) (i) First Associative law: $(P \lor Q) \lor R \equiv P \lor (Q \lor R)$

P	Q	R	P v Q	Q v R	(P v Q) v R	Pv(QvR)
T	T	T	T	T	T	T
T	T	F	T	T	T	T
T	F	T	T	T	T	T
T	F	F	T	F	T	T
F	T	T	T	T	T	T
F	T	F	T	T	T	T
F	F	T	F	T	T	T
F	F	F	F	F	F	F

(ii) First Absorption law:

$$P v (P \land Q) \equiv P$$

P	Q	P ^ Q	P v (P ^ Q)
T	T	T	T
T	F	F	T
F	T	F	F
F	F	F	F

(b) Let R be a relation on the non-empty set A. By choosing a suitable set A and relation R, determine if your relation R has the relevant properties: reflexive, symmetric, antisymmetric and transitive. If your chosen relation fails to have a property, give an example showing why it fails in this case.

$$A = \{1,2,3,4\}$$

$$R = \{(a, b) \ a \in A, b \in A, a \ge b\}$$

$$R = \{(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4)\}$$

It's reflexive, due to the fact that (1,1),(2,2),(3,3),(4,4) exist in the data set. If any one of the 4 was missing, the data set wouldn't be reflexive.

Antisymmetric

If 1,2 and 2,1 were in the data set, it would have been symmetric, so it's antisymmetric.

Not transitive.

If
$$x = 1$$
, $y = 2$ and $z = 3$

However due to the set being a greater that or equal to b, this is not the case as 1,2 and 2,3 are not in the data set, so 1,3 isn't in the set as well.

Question 3

(a) Use logical equivalences to establish the following set of equalities, employing also set builder notation:

A U (B U C) = (A U B) U C

$$\{A|A = 1,3,5\}$$

 $\{B|B = 2,4,6\}$
 $\{C|C = 7,8\}$

The union of B and C equals:

B U C =
$$\{2,4,6,7,8\}$$

The union of (B U C) and union of A equals:

$$A U (B U C) = \{1,2,3,4,5,6,7,8\}$$

The union of A and B equals:

A U B =
$$\{1,2,3,4,5,6\}$$

The union of (A U B) and union of C equals:

$$(A U B) U C = \{1,2,3,4,5,6,7,8\}$$

$$(A \cap B) U (A \cap \overline{B}) = A$$

$${A|A = \{1,2,3\}}$$

$$\{B|B = \{2,4,5,6\}$$

$$A \cap B = \{2\}$$

$$A \cap \overline{B} = \{1,2,3\}$$

$$(A \cap B) U (A \cap B) = \{1,2,3\}$$

$$A = \{1,2,3\}$$

They're equal

(b)Using Venn

diagrams, show that:

$$(\overline{A \cap B}) = \overline{A} U \overline{B}$$

(c) Using a Venn diagram and by using a suitable example for your chosen non-empty

and different A, B, C sets, show that:

$$(A - B) U (C - B) \neq A - (B U C)$$

$$\{A|A = \{1,2,3\}$$

$$\{B|B = \{2,4,5,6\}$$

$$\{C \mid C = \{5,6,7,8\}$$

$$(A-B)U(C-B)$$

$$A - B = \{1,3\}$$

$$C - B = \{7, 8\}$$

$$(A - B) U (C - B) = \{1,3,7,8\}$$

$$A - (B U C)$$

B U C =
$$\{2,4,5,6,7,8\}$$

$$A - (B U C) = \{1,3\}$$

A – (B U C)