# Enhancing Effect of $SiO_x$ Monolayer Coverage of $TiO_2$ on the Photoinduced Oxidation of Rhodamine 6G in Aqueous Media

# Hiroaki Tada,\*,† Manabu Akazawa,‡ Yasuyuki Kubo,‡ and Seishiro Ito‡

Environmental Science Research Institute, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, 577-8502, Japan, and Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, 577-8502, Japan

Received: January 27, 1998; In Final Form: April 20, 1998

The effect of coating  $TiO_2$  with a  $SiO_x$  monolayer on the photoinduced oxidation of rhodamine 6G (R-6G, counteranion  $X = Cl^-$ ,  $NO_3^-$ ) has been studied. The surface treatment increased 2.6-fold the saturated adsorption amount ( $\Gamma_s$ ) and 2.6-fold the adsorption strength ( $\beta$ ) of R-6G<sup>+</sup> ions. The rate of the liquid-phase oxidation was found to be dependent on X and increased remarkably with the  $SiO_x$  monolayer coating, in contrast to its inhibitive effect in the gas-phase oxidation. A modified Langmuir—Hinshelwood mechanism, where the reaction rate is assumed to be proportional to the coverage of the R-6G<sup>+</sup> ion determined by the balance between the adsorption rate and the decomposition rate at the photostationary state, was proposed. As a result of kinetic analyses, the promoting effect in the liquid-phase oxidation was attributable to the increases in  $\beta$ ,  $\Gamma_s$ , and/or the decrease in the adsorption amount of counteranions, which cannot be realized in the gas-phase reaction.

#### Introduction

The possibility of the application to water decontamination has driven many researchers to develop semiconductor photocatalysts. TiO<sub>2</sub> is believed to be the best material for that purpose at present because of its powerful oxidation strength, high photostability in water, and nontoxicity. The essential object to be achieved is the increase of the efficiency of the photocatalytic oxidation.<sup>2</sup> In principle, the photocatalytic oxidation of organics is induced by holes (h<sup>+</sup>) generated in the valence band (VB) of TiO<sub>2</sub> upon the band gap excitation. It has been established in many reaction systems that heterogeneous photocatalytic oxidation obeys the Langmuir-Hinshelwood (LH) mechanism.<sup>3</sup> This means that the degradation proceeds via quasi-bimolecular reaction between organic compounds adsorbed and charge carriers (or surface trapped carriers) on the surface. Two strategies can be envisaged in order to increase the reaction efficiency per unit surface area. The first is to increase the rate of charge transport to the surface at the photostationary state; this is chiefly associated with bulk properties of TiO<sub>2</sub> such as high crystallinity and purity.<sup>4</sup> The second is to increase the adsorption rate of organic substrates at the photostationary state. Especially in practical dilute reaction systems, the second factor becomes of more importance. However, photocatalysts capable of increasing the adsorption rate are not present except for the materials comprised of TiO<sub>2</sub> and adsorbents, whose activities per unit weight are inevitably decreased.5

 ${
m SiO_x}$  monolayers are formed on the surface of  ${
m TiO_2}$  by a method consisting of chemisorption of 1,3,5,7-tetramethylcy-clotetrasiloxane (TMCTS) and subsequent irradiation ( $\lambda > 300$  nm).<sup>6</sup> The preceding paper reported that the rate of  ${
m TiO_2}$ 

photoinduced oxidation of a cationic surfactant, cetylpyridinium bromide (CPB), in aqueous solution is increased with the  $SiO_x$  monolayer coverage. It was suggested that the increase in the rate of adsorption due to the electrostatic attraction between the parent surfactant ion (CP<sup>+</sup>) and the surface (Si<sub>s</sub> $-O^-$ ) is responsible for the finding. This paper describes a remarkable enhancing effect of the  $SiO_x$  monolayer coverage on the  $TiO_2$  photoinduced oxidation of a cationic dye, rhodamine 6G (R-6G). Particular emphasis was placed on the kinetic analyses to clarify the origin of the effect.

## **Experimental Section**

1,3,5,7-Tetramethylcyclotetrasiloxane (200 mL) (TMCTS, >98% pure, Shin-Etsu Chemical Co.) was allowed to react with 2 g of TiO<sub>2</sub> particles (A-100, Ishihara Sangyo Co., anatase, average particle diameter =  $0.15 \mu m$ , BET surface area = 8.1 $\rm m^2~g^{-1}$ ) placed in a vacuum chamber under 0.6  $\pm$  0.1 Torr at 80 °C for 0.5 h. Then the temperature was raised to 100 °C, and evacuation continued for an additional 0.5 h to remove the physisorbed TMCTS. After the particles obtained (TMCTS/ TiO<sub>2</sub>) had been floated on the surface of 100 mL of aerated H<sub>2</sub>O, they were irradiated under magnetic stirring with a 400 W high-pressure mercury arc (H-400P, Toshiba). The light intensity integrated between 320 and 400 nm impinging on the sample corresponds to an energy flux of 8.0 mW cm<sup>-2</sup> ( $I_{320-400}$ ). Upon irradiation, the particles began to sink because of the oxidation of hydrophobic Si-CH3 groups of chemisorbed TMCTS to hydrophilic Si-OH groups. When irradiation was continued for 1 h, the particles were completely dispersed into the solution. Then the particles were recovered with centrifugation (rotation speed = 12 000 rpm) and dried in a vacuum desiccator at room temperature (SiO<sub>x</sub>/TiO<sub>2</sub>, BET surface area  $= 6.8 \text{ m}^2 \text{ g}^{-1}$ ).

Rates of  $TiO_2$  (or  $SiO_x/TiO_2$ ) photoinduced decomposition of R-6G (reagent grade, >97% pure, Kanto Chemicals) were determined directly with R-6G solutions having various con-

<sup>\*</sup>To whom correspondence should be addressed. Telephone: +81-6-721-2332. Fax: +81-6-721-3384. E-mail: h-tada@apsrv.apch.kindai.ac.jp.

<sup>†</sup> Environmental Science Research Institute.

<sup>‡</sup> Department of Applied Chemistry.



Figure 1. Adsorption isotherms of R-6G from aqueous solutions on  $TiO_2$  (a) and  $SiO_x/TiO_2$  (b) particles at 25  $\pm$  0.1 °C (pH = 5.7).  $C_{eq}$ was measured after 2 h. Catalyst concentration was fixed at 1 g/L. The inset is the Langmuir plots for TiO2 (a) and SiOx/TiO2 (b) systems.

centrations at  $21 \pm 1$  °C (initial pH = 5.7). A slurry of 50 mL of distilled H<sub>2</sub>O (air-saturated) and 0.05 g of catalyst was prepared in a photochemical reaction vessel made of Pyrex glass. Steady-state irradiations were carried out using the same ultraviolet (UV) light source as in the preparation of SiO<sub>x</sub>/TiO<sub>2</sub>  $(I_{320-400} = 1.2 \text{ mW cm}^{-2})$ . A 300 W Xe lamp (Wacom, model XDS-301S) was used for visible (vis) light illumination ( $\lambda$  > 420 nm,  $I_{420-480} = 2.2 \text{ mW cm}^{-2}$ ). Aliquots of 10 mL were periodically removed and centrifuged, and the concentration of R-6G was determined from the absorbance of the peak maximum at 527 nm ( $\epsilon_{\rm max} = 8.09 \times 10^4 \, {\rm M}^{-1} \, {\rm cm}^{-1}$ ) on a Hitachi U-400 spectrophotometer. Adsorption isotherms were obtained in a similar way by exposing the catalysts to solutions with different concentrations of R-6G in the absence of irradiation followed by centrifugation and spectrophotometric analysis of R-6G remaining in the solutions. The Cl<sup>-</sup> counteranion of R-6G<sup>+</sup> was exchanged into NO<sub>3</sub><sup>-</sup> using an anion-exchange resin (DOWEX 1-X8). An amount of 80 g of the anion-exchange resin pretreated with a 4 wt % NaOH solution was added to 0.4 L of a R-6G solution (6  $\times$  10<sup>-5</sup> M, pH = 5.7) and stirred for 24 h. The resin was separated from the solution by filtration. The same procedures were repeated three times so that free Cl<sup>-</sup> ions could not be detected in the filtrate by adding a AgNO<sub>3</sub> solution. Finally, the pH of the filtrate (pH = 9.8) was controlled at 5.1 with a dilute HNO<sub>3</sub> solution.

In gas-phase reactions, different amounts of R-6G were preadsorbed on the photocatalysts as follows. An amount of 0.1 g of photocatalysts was dispersed into 100 mL of R-6G solutions with varying concentrations (1  $\times$  10<sup>-6</sup> < C < 6  $\times$ 10<sup>-6</sup> M) and stirred for 24 h at 25 °C. The particles were recovered by centrifugation (rotation speed = 12 000 rpm). After evaporation, the residual water was removed by drying in a vacuum desiccator at room temperature for more than 24 h. The particles adsorbed with R-6G in the air were irradiated with UV light ( $\lambda > 300 \text{ nm}$ ,  $I_{320-400} = 3.1 \text{ mW cm}^{-2}$ ). From the variation of the absorbance at 527.5 nm determined from the diffuse reflectance method using the UV-vis spectrophotometer, the rate constant of the gas-phase decomposition of R-6G was obtained by applying the first-order rate equation. 5b,6b

The energy eigenvalues of the R-6G<sup>+</sup> ion were obtained by the PM3 molecular orbital (MO) calculations. A newer MO model, PM3, is a modification of Dewar et al.'s improved





**Figure 2.** (A) Electronic absorption spectra of TiO<sub>2</sub> (a) and R-6G (b); the transmission spectrum of Pyrex glass (c). (B) Time courses of the photoinduced degradation of R-6G:  $\lambda > 300$  nm irradiation without photocatalysts ( $r_1$ ); dark reaction in the presence of TiO<sub>2</sub> ( $r_2$ );  $\lambda > 300$ nm irradiation in the presence of  $TiO_2$  (a) and  $SiO_x/TiO_2$  (b);  $\lambda > 420$ nm irradiation in the presence of TiO<sub>2</sub> (c). In these experiments, irradiation was started after reaching the adsorption equilibrium for each system.

version of MNDO, termed AM1.8 The energy eigenvalues for the optimized structure were calculated within MOPAC, version 5.0, with the PM3 method, where the H<sub>2</sub>O solvent effect was taken into account by the conductor-like screening method.

## **Results and Discussion**

Figure 1 shows adsorption isotherms of R-6G from aqueous solutions on  $TiO_2$  (a) and  $SiO_x/TiO_2$  (b) particles at 25  $\pm$  0.1 °C (pH = 5.7). Each curve demonstrates Langmuir-type behavior. A drastic increase in the amount of R-6G adsorbed ( $\Gamma$  mol m<sup>-2</sup>) with the SiO<sub>r</sub> monolayer coverage is apparent below  $2.8 \times 10^{-5}$  M of the equilibrium concentration of R-6G  $(C_{\text{eq}})$ . According to the Langmuir model,  $\Gamma$  can be expressed by the equation of  $\Gamma = \Gamma_s \beta C_{eq}/(1 + \beta C_{eq})$ , where  $\Gamma_s$  is the saturation amount of adsorption and  $\beta$  is  $K_1/a_1$  ( $K_1$  is the equilibrium constant for adsorption process;  $a_1$  is the activity of H<sub>2</sub>O in the solution). As shown in the inset, both the plots of  $C_{\text{eq}}\Gamma^{-1}$  vs  $C_{\text{eq}}$  are linear (curve a, R=0.987; curve b, R=0.987) 0.994). From the slopes and the intercepts at  $C_{\rm eq}=0$ , the adsorption parameters  $\Gamma_{\rm s}$  and  $\beta$  were determined to be 1.13  $\times$  $10^{-7}$  mol m<sup>-2</sup> and  $1.44 \times 10^5$  M<sup>-1</sup>, respectively, for TiO<sub>2</sub> and  $2.97 \times 10^{-7} \text{ mol m}^{-2} \text{ and } 3.71 \times 10^5 \text{ M}^{-1}$ , respectively, for SiO<sub>x</sub>/TiO<sub>2</sub>. These results indicate that the SiO<sub>x</sub> monolayer coverage of TiO2 remarkably increases the adsorption strength

#### **SCHEME 1**



#### **SCHEME 2**



for R-6G ( $\beta$ ) and  $\Gamma_s$  relative to naked TiO<sub>2</sub>. In the previous work, the SiO<sub>x</sub> monolayer coverage of TiO<sub>2</sub> was revealed to shift the point of zero charge (pzc) from 7.5 (TiO<sub>2</sub>) to 3.2 (SiO<sub>x</sub>/TiO<sub>2</sub>) that is near the value for SiO<sub>2</sub>.<sup>7,9</sup> This fact suggests that a large portion of the TiO<sub>2</sub> surface is covered with the SiO<sub>x</sub> monolayer, although the surface coverage could not be determined quantitatively.<sup>10</sup> The increase in the electrostatic attraction between R-6G<sup>+</sup> ions and the surface (Si<sub>s</sub>-O<sup>-</sup>) would be responsible for the increases in  $\beta$  and  $\Gamma_s$ . From  $\Gamma_s$  and the area per molecule  $\sigma$  (1.2 nm<sup>2</sup> molecule<sup>-1</sup>),<sup>5b</sup> 8.1% (TiO<sub>2</sub>) and 21.6% (SiO<sub>x</sub>/TiO<sub>2</sub>) of the surfaces were estimated to be covered with R-6G; i.e., the adsorption is limited in a submonolayer region.

Figure 2A shows electronic absorption spectra of the components in the reaction system. TiO2 and SiOx/TiO2 have strong absorptions below 385 nm due to the band gap transition (curve a). R-6G has an intense absorption band peaked at 527 nm in the visible range and several bands in the UV range. Then light irradiation ( $\lambda \ge 300$  nm) excites both TiO<sub>2</sub> (or SiO<sub>x</sub>/TiO<sub>2</sub>) and R-6G. Figure 2B shows time courses of the photoinduced degradation of R-6G ( $C_0 \approx 3 \times 10^{-5}$  M); in these experiments, irradiation ( $\lambda > 300$  nm) was started after reaching the adsorption equilibrium for each system. Without either TiO<sub>2</sub> (or  $SiO_x/TiO_2$ ) (curve  $r_1$ ) or irradiation (curve  $r_2$ ), R-6G hardly decomposes in less than 2 h of reaction time. In the presence of TiO<sub>2</sub> (curve a), the concentration significantly decreases with an increase in irradiation time. Noticeably, the degradation rate further increases when SiOx/TiO2 is used as a photocatalyst (curve b).

Two reaction schemes are possible for the light-driven decomposition of R-6G (Schemes 1and 2). In Scheme 1,<sup>11</sup> the electron (e<sup>-</sup>) excited from the highest occupied molecular orbital (HOMO,  $E_{\rm HOMO} = -8.95$  eV) to the lowest unoccupied molecular orbital (LUMO,  $E_{\rm LUMO} = -1.69$  eV) of R-6G<sup>+</sup> is injected into the conduction band (CB) of TiO<sub>2</sub> ( $E_{\rm CB} = -11$  eV).<sup>12</sup> Because the LUMO of R-6G<sup>+</sup> is far higher than the CB edge, the electron transfer from the excited R-6G<sup>+</sup> to TiO<sub>2</sub> is thermodynamically allowed. The e<sup>-</sup> reduces O<sub>2</sub> adsorbed (O<sub>2ad</sub>) on the surface of TiO<sub>2</sub> to yield O<sub>2</sub><sup>-</sup>. O<sub>2</sub><sup>-</sup> further oxidizes R-6G<sup>2+</sup> radicals. On the other hand, in Scheme 2, redox reactions are initiated from the band gap excitation of TiO<sub>2</sub>. The hole (h<sup>+</sup>) generated in its valence band (VB,  $E_{\rm VB} = -14$  eV) oxidizes R-6G<sup>+</sup><sub>ad</sub> after diffusing to the surface. The h<sup>+</sup>

transfer from  $TiO_2$  to  $R-6G^+$  is also thermodynamically permitted because the VB edge is lower than the HOMO energy of  $R-6G^+$ . The  $e^-$  excited to the CB also participates in the oxidation of  $R-6G^+$  via reduction of  $O_{2ad}$  in the same manner as in Scheme 1. Visible light ( $\lambda > 420$  nm) illumination only excites R-6G. Under this condition, no degradation of R-6G was observed in the same range of reaction time (curve c of Figure 2B). It is clear that Scheme 1 can be ruled out and the degradation of R-6G is mainly induced from direct photoexcitation of  $TiO_2$  (or  $SiO_x/TiO_2$ ) basically according to Scheme 2. Since the position of the absorption peak at 527 nm was not changed with adsorption, most of light capable of exciting  $R-6G_{ad}$  is absorbed by  $R-6G^+$  ions in the bulk solution. This inner filter effect seems to be partly responsible for the fact that no reaction occurred upon visible light illumination.

Figure 3A shows the dependence of the initial rate of R-6G (counteranion,  $X = Cl^-$ ) removal from the solution  $(v_0)$  on its initial concentration  $(C_0)$ ; in these experiments, irradiation was started just after dispersing the photocatalysts into the reaction solutions. In each case (curve a, TiO<sub>2</sub>; curve b, SiO<sub>x</sub>/TiO<sub>2</sub>),  $v_0$  increases monotonically with increasing  $C_0$ . When compared at the same  $C_0$ , the value of  $v_0$  for SiO<sub>x</sub>/TiO<sub>2</sub> is greater than for TiO<sub>2</sub> over the whole range of  $C_0$  tested  $(1 \times 10^{-6} < C_0 < 1 \times 10^{-5} \, \text{M})$ . A plausible reaction mechanism on the TiO<sub>2</sub> (or SiO<sub>x</sub>/TiO<sub>2</sub>) photoinduced degradation of R-6G is presented in Scheme 3.

#### **SCHEME 3**

$$R-6G^{+} \xrightarrow{k_a} R-6G^{+}_{ad}$$
 (S1)

$$X^{-} \stackrel{K_1}{\longleftrightarrow} X_{ad}^{-} \tag{S2}$$

$$O_2 \stackrel{K_2}{\longleftrightarrow} O_{2ad}$$
 (S3)

$$TiO_2 + h\nu \xrightarrow{I_a\phi} h^+(VB) + e^-(CB)$$
 (S4)

$$h^+(VB) + e^-(CB) \xrightarrow{k_{rec}} heat$$
 (S5)

$$h^+(VB) + Ti_s - OH \xrightarrow{k_t} Ti_s OH^+$$
 (S6)

$$Ti_s - OH^+ + R-6G^+_{ad} \frac{k_{ol}}{rds}$$
 oxidation (S7)

$$Ti_s - OH^+ + X^- \xrightarrow{k_{o2}} X$$
 (S8)

$$e^{-}(CB)$$
 (or  $Ti_s^{3+}$ ) +  $O_2 \xrightarrow{k_r} O_2^{-} \rightarrow \text{oxidation}$  (S9)

In the usual LH kinetics, the value of  $\theta$  at the equilibrium state under dark conditions is approximately adopted and the following equation is obtained:<sup>13</sup>

$$\frac{1}{v_0} = \frac{1}{k_L} + \frac{1}{k_L K C_0}, \quad (k_L \ll k_a C)$$
 (1)

where  $k_{\rm L}$  is the apparent rate constant of photodecomposition,  $k_{\rm a}$  is the rate constant of adsorption (min<sup>-1</sup>), and K is the equilibrium constant of R-6G adsorption.

It should be noted that this formulation is strictly valid only when  $k_L \ll k_a C$ . However, in separate experiments on the rate of adsorption,  $k_L/(k_a C)$  is estimated to be above unity in the concentration range below  $3 \times 10^{-5}$  M for both the TiO<sub>2</sub> and SiO<sub>x</sub>/TiO<sub>2</sub> systems (data not shown). Then the removal of R-6G<sup>+</sup> ions from the solution was assumed to be accomplished



**Figure 3.** (A) Initial rates of R-6G ( $X = Cl^-$ ) removal from the solution  $(v_0)$  as a function of initial concentrations  $(C_0)$  for TiO<sub>2</sub> (a) and SiO<sub>x</sub>/ TiO<sub>2</sub> (b) systems. In these experiments, irradiation was started just after dispersing the photocatalysts into the reaction solutions. (B) Plots of  $v_0^{-1}$  vs  $C_0^{-1}$  for TiO<sub>2</sub> (a) and SiO<sub>x</sub>/TiO<sub>2</sub> (b) systems. (C) Dependence of coverage  $(\theta')$  on  $C_0$  for  $TiO_2$  (a) and  $SiO_x/TiO_2$  (b) systems. The coverages at the initial stage of the reaction was calculated from  $k_a$ ,  $k_L$ , and  $C_0$  using eq 1.

with adsorption followed by the photocatalytic decomposition before desorption. This would be a good approximation for the dilute reaction systems containing reactants with large  $\beta$ values. The rate of adsorption  $(v_a)$  is expressed by  $v_a = -dC/$  $dt = k_a C(1 - \theta')$ , where  $\theta'$  ( $<\theta$ ) is the coverage of R-6G<sup>+</sup>  $(=\Gamma/\Gamma_s)$ , and is not for dark conditions but for the photostationary state. The lifetime of  $h^+$  ranges from  $10^{-19}$  to  $10^{-3}$  s and the diffusion time across the space charge region in n-TiO<sub>2</sub> was calculated to be on the order of  $10^{-14}$  s.<sup>13a</sup> Thus, the surface, upon illumination, will come rapidly to an active steady state including  $h^+$ . Since  $\theta'$  is determined by the balance between  $v_a$  and the rate of decomposition written as  $k_{\rm L}\theta'$ , the equation of  $\theta' = k_a C/(k_L + k_a C)$  is derived. Substituting this expression for  $\theta'$  in the differential equation, one can obtain eq 2 relating  $C_0$  to  $v_0$  at the initial stage of the reaction:

$$\frac{1}{v_0} = \frac{1}{k_L} + \frac{1}{k_a C_0}, \quad (k_L \ge k_a C)$$
 (2)

In a limiting case ( $k_L \gg k_a C$ ), the rate of the reaction is completely controlled by the diffusion process and eq 2 is reduced to eq 3:

$$v_0 = k_a C_0$$
,  $(k_L \gg k_a C \text{ and } \theta' \approx 0)$  (3)

As shown in Figure 3B, plots of  $v_0^{-1}$  vs  $C_0^{-1}$  for both systems yield straight lines (curve a, R = 0.999; curve b, R = 0.996). From the slopes and intercepts, the values of  $k_a$  and  $k_L$  for X = Cl<sup>-</sup> were calculated to be  $0.053 \, \mathrm{min^{-1}}$  and  $5.4 \times 10^{-7} \, \mathrm{M \, min^{-1}}$ , respectively, for TiO<sub>2</sub> and 0.089 min<sup>-1</sup> and  $5.2 \times 10^{-7}$  M min<sup>-1</sup>, respectively, for SiO<sub>x</sub>/TiO<sub>2</sub>. The rate of R-6G<sup>+</sup> adsorption increases by a factor of 1.7 with the  $SiO_x$  monolayer coating, while the rate of the photodecomposition on the surface remains almost constant. A similar result was obtained in the system of CPB.7

Figure 4A shows plots of  $v_0$  vs  $C_0$  for R-6G (X = NO<sub>3</sub><sup>-</sup>). The  $v_0$  increases with increasing  $C_0$  in each case (curve a, TiO<sub>2</sub>; curve b, SiO<sub>x</sub>/TiO<sub>2</sub>). The accelerating effect of the SiO<sub>x</sub> monolayer coverage is further enhanced compared with the system of  $X = Cl^-$ , whereas the value of  $v_0$  is smaller. Plots of  $v_0^{-1}$  vs  $C_0^{-1}$  give two straight lines also in these cases (Figure 4B). From the same analysis described above, the values of  $k_a$ and  $k_{\rm L}$  for X = NO<sub>3</sub><sup>-</sup> were obtained to be 0.036 min<sup>-1</sup> and  $1.23 \times 10^{-7} \text{ M min}^{-1}$ , respectively, for TiO<sub>2</sub> and 0.095 min<sup>-1</sup> and  $3.39 \times 10^{-7} \text{ M min}^{-1}$ , respectively, for SiO<sub>x</sub>/TiO<sub>2</sub>. When  $X = NO_3^-$ ,  $k_a$  and  $k_L$  are increased remarkably with the  $SiO_x$ monolayer coverage. Figures 3C and 4C show  $\theta'$  values calculated from the  $k_a$  and  $k_L$  values as a function of  $C_0$ . Clearly,  $k_aC$  are comparable to  $k_L$  under the present experimental conditions; this also substantiates the validity of the kinetic analyses using eq 2.

Taking into account only the concentration gradient as the driving force of the diffusion for the TiO<sub>2</sub> system, one can obtain eq 4:

$$k_{\rm a} = -\frac{1}{C_0} \left( \frac{dC}{dt} \right)_0 = -\frac{1}{C_0} \left( \frac{JS}{v} \right)_0$$
 (4)

where J is the flux of R-6G from the bulk solution to the surface, S is the active surface area, and  $\nu$  is the volume of the reaction suspension. Since  $J = -D(dC/dx)_0$ ,

$$k_{\rm a} = \frac{DS(dC/dx)_0}{C_0 \nu} = \frac{DS}{\nu \delta x}$$
 (5)

where D is the diffusion coefficient of R-6G and  $\delta x$  is the thickness of the diffusion layer.

The absorption length of the TiO<sub>2</sub> suspension was calculated to be ca. 0.8 cm using the absorption coefficient of TiO<sub>2</sub> ( $\alpha \approx$  $5 \times 10^4 \text{ cm}^{-1}$ ) and the volume fraction of the particles in the suspension (2.6  $\times$  10<sup>-5</sup>). Since the depth of the suspension in the direction of incident light is 8 cm, the value of S was estimated to be 400 cm<sup>2</sup> from BET surface area × (0.8 cm/8 cm). Substitution of appropriate numerical values ( $D = 2 \times$ 



**Figure 4.** (A) Plots of  $v_0$  vs  $C_0$  for TiO<sub>2</sub> (a) and SiO<sub>x</sub>/TiO<sub>2</sub> (b) systems (X = NO<sub>3</sub><sup>-</sup>). In these experiments, irradiation was started just after dispersing the photocatalysts into the reaction solutions. (B) Plots of  $v_0^{-1}$  vs  $C_0^{-1}$  for TiO<sub>2</sub> (a) and SiO<sub>x</sub>/TiO<sub>2</sub> (b) systems. (C) Dependence of  $\theta'$  on  $C_0$  for TiO<sub>2</sub> (a) and SiO<sub>x</sub>/TiO<sub>2</sub> (b) systems.

 $10^{-6} \text{ cm}^2 \text{ s}^{-1}$ ,  $^{14} v = 50 \text{ cm}^3$ ,  $\delta x = 0.05 \text{ cm}$ ,  $^{15} S = 400 \text{ cm}^2$ ) into eq 5 yields a  $k_a$  value of 0.02 min $^{-1}$ , which is in good agreement with the experimental values for the TiO<sub>2</sub> systems.

The gas-phase photodecomposition of R-6G adsorbed on  $\text{TiO}_2$  (a) and  $\text{SiO}_x/\text{TiO}_2$  (b) in the air was studied. This reaction is quite different from the liquid-phase one in that it does not involve the diffusion process of R-6G. In each absorption spectrum, an absorption band and a shoulder, respectively due to R-6G monomers and dimers, are observed at 528 and 490 nm (data not shown). Upon irradiation ( $\lambda > 300$  nm), their



**Figure 5.** Conversions of R-6G adsorbed on  $TiO_2$  (a) and  $SiO_x/TiO_2$  (b) as a function of illumination time. Photoillumination ( $\lambda > 300$  nm) was carried out in the air.

intensities decline with increasing time. Figure 5 shows conversions of R-6G as a function of illumination time; the conversion was calculated from the variation of the absorbance at 528 nm. The rate constants of the photodecomposition ( $k_{\rm G1}$ ) for TiO<sub>2</sub> and SiO<sub>x</sub>/TiO<sub>2</sub> systems were determined to be 2.6  $\pm$  0.2 and 1.05  $\pm$  0.05 min<sup>-1</sup>, respectively, by applying the first-order rate equation.<sup>5b</sup> A similar retarding effect of the SiO<sub>x</sub> monolayer coating was also observed in the gas-phase photo-induced oxidation of the TMCTS monolayer chemisorbed on TiO<sub>2</sub> films ( $k_{\rm G2}({\rm TiO_2}) = 0.013~{\rm min^{-1}}$ ,  $k_{\rm G2}({\rm SiO_x/TiO_2}) = 0.005~{\rm min^{-1}}$ ).<sup>6b</sup>

The kinetic parameters for the liquid-phase and gas-phase reactions are summarized in Table 1. First, in the liquid-phase reaction,  $k_a$  is as much as 1.7 (X = Cl<sup>-</sup>) and 2.6 (X = NO<sub>3</sub><sup>-</sup>) times increased by coating  $TiO_2$  with the  $SiO_x$  monolayer. This fact is attributable to the 2.6-fold increase in  $\beta$  due to the electrostatic attraction between R-6G<sup>+</sup> and the surface (Si<sub>s</sub>-O<sup>-</sup>). As anticipated from eq 2, the contribution of the increase in  $k_a$  to the increase in  $v_0$  becomes greater with decreasing concentration of R-6G (Figures 3B and 4B). This finding means that the effect of the SiO<sub>x</sub> monolayer coverage is emphasized as the concentration decreases, which is of great importance in the practical water purification using TiO2 photocatalysts. Practically, the concentration of water contaminants lies in the range from ppb to ppm levels. Figure 6 shows the dependence of  $v_0$  on the pH of the solution for TiO<sub>2</sub> (a) and SiO<sub>x</sub>/TiO<sub>2</sub> (b) systems (X = Cl<sup>-</sup>). In each system,  $v_0$  increases with increasing pH, i.e., with decreasing amount of the surface positive charge or increasing amount of the surface negative charge. A remarkable increase in  $v_0$  with the  $SiO_x$  monolayer coverage is observed over the whole pH range tested (3 < pH < 10). However, the difference in  $v_0$  between systems a and b decreases as the pH approaches the pzc value of the SiO<sub>x</sub>/TiO<sub>2</sub> particles (3.2). This result again points to the significance in the electrostatic interaction between R-6G<sup>+</sup> and the surface of the photocatalyst. It should also be noted that the increase in  $v_0$ with increasing pH in system a is much smaller than that with the  $SiO_x$  monolayer coating.

The second striking point is that the  $k_{\rm L}$  value for SiO<sub>x</sub>/TiO<sub>2</sub> is comparable to (X = Cl<sup>-</sup>) or 2.8-fold greater (X = NO<sub>3</sub><sup>-</sup>) than for TiO<sub>2</sub>, while  $k_{\rm G1}$  and  $k_{\rm G2}$  decrease with the SiO<sub>x</sub> monolayer coating by a factor of 0.4. Because the SiO<sub>x</sub> monolayer has no absorption for  $\lambda$  > 300 nm, the photon quantity absorbed by TiO<sub>2</sub> is invariant with its coating. The inhibition of the interfacial charge transfer by the SiO<sub>x</sub> insulating monolayer, i.e., decrease in  $k_{\rm O1}$  in Scheme 3, may be responsible

TABLE 1: Comparison of Kinetic Parameters in the TiO<sub>2</sub>- and SiO<sub>x</sub>/TiO<sub>2</sub>-Photoinduced Decomposition of R-6G

|                                                 | liquid phase                |                                    |                                             |                                                | gas phase                    |                                    |                               |                                    |
|-------------------------------------------------|-----------------------------|------------------------------------|---------------------------------------------|------------------------------------------------|------------------------------|------------------------------------|-------------------------------|------------------------------------|
|                                                 | $k_{\rm a}({\rm min}^{-1})$ |                                    | $k_{\rm L}$ (M min <sup>-1</sup> )          |                                                | $k_{\rm G1}~({ m min}^{-1})$ |                                    | $k_{\rm G2}~({\rm min}^{-1})$ |                                    |
| X                                               | TiO <sub>2</sub>            | SiO <sub>x</sub> /TiO <sub>2</sub> | TiO <sub>2</sub>                            | SiO <sub>x</sub> /TiO <sub>2</sub>             | $TiO_2$                      | SiO <sub>x</sub> /TiO <sub>2</sub> | TiO <sub>2</sub>              | SiO <sub>x</sub> /TiO <sub>2</sub> |
| Cl <sup>-</sup><br>NO <sub>3</sub> <sup>-</sup> | 0.053<br>0.036              | 0.089<br>0.095                     | $5.43 \times 10^{-7}$ $1.23 \times 10^{-7}$ | $5.18 \times 10^{-7}$<br>$3.39 \times 10^{-7}$ | $2.6 \pm 0.2$                | $1.05 \pm 0.005$                   | 0.013                         | 0.005                              |



**Figure 6.** Dependence of  $v_0$  on the pH of the solution for TiO<sub>2</sub> (a) and  $SiO_x/TiO_2$  (b) systems (X = Cl<sup>-</sup>). In these experiments, irradiation was started just after dispersing the photocatalysts into the reaction solution. The initial concentration was fixed at  $5 \times 10^{-6}$  M.

for the decrease in  $k_G$ . An exponential decrease in the reaction rate with increasing SiO<sub>x</sub> film thickness was observed in the gas-phase oxidation of the chemisorbed TMCTS monolayer. 6b The fact suggests that the oxidation is limited by the formation rate of oxidants on the surface via tunneling of photogenerated charge carriers through the SiO<sub>r</sub> film, although further experiments are necessary to specify the active surface oxidant species.<sup>17</sup> Since this seems to be true also for the liquid-phase reaction (decreases in  $k_{o1}$  and  $k_{o2}$ ), a mode of action for improving the reaction efficiency, which is unique in the liquidphase reaction, must be taken into account to explain the fact of  $k_{\rm L}({\rm SiO_y/TiO_2}) \ge k_{\rm L}({\rm TiO_2})$ . In Scheme 3, if step 7 is presumed to be the rate-determining step (rds) of the photoinduced decomposition of R-6G, eq 6 is obtained by applying the steadystate approximation to [Ti<sub>s</sub>-OH<sup>+</sup>] and [h<sup>+</sup>] for a low light intensity condition,

$$k_{\rm L} = \frac{I_{\rm a}\phi k_{\rm o1}}{k_{\rm o1}\theta + k_{\rm o2} \frac{[{\rm X}^{-}_{\rm ad}]}{[{\rm R-6G}^{+}_{\rm ad}]_{\rm s}}}$$
(6)

where [R-6G<sup>+</sup><sub>ad</sub>]<sub>s</sub> is the saturated adsorption concentration of R-6G.

For simplicity, the adsorption sites for R-6G<sup>+</sup> and X<sup>-</sup> were assumed to be different and mutually independent in the derivation. Since  $\theta(SiO_x/TiO_2) \ge \theta(TiO_2)$  (Figures 3C and 4C), the increase in  $k_L$  would result from the second term in the denominator. The 2.6-fold increase in [R-6G+  $_{ad}$ ] $_{s}$  or  $\Gamma_{s}$  is confirmed in the adsorption experiments (Figure 1), indicating the increase in the number of adsorption sites (Si<sub>s</sub>-O<sup>-</sup>). Also, Matthews et al. reported that some anions suppress the rate of the photocatalytic oxidation of organics in aqueous solutions. 18 Also, Schwartz et al. have more recently confirmed, using the electron paramagnetic resonance technique, that the concentration of OH radicals in illuminated TiO2 suspensions is decreased in the presence of various anions.<sup>19</sup> These facts were accounted for by the participation of the anions in the redox reaction as

an h<sup>+</sup> or OH radical (Ti<sub>s</sub>-OH<sup>+</sup>) scavenger. It is suggested that h<sup>+</sup> or Ti<sub>s</sub>OH<sup>+</sup> is consumed by the oxidation of both R-6G<sup>+</sup> and X<sup>-</sup> in the case of TiO<sub>2</sub>, while R-6G<sup>+</sup> is predominantly oxidized in the case of SiO<sub>x</sub>/TiO<sub>2</sub> because of anion exclusion from the surface due to the electrostatic repulsion between X<sup>-</sup> and Si<sub>s</sub>- $O^-$  (decrease of  $[X^-_{ad}]$  in eq 2). Consequently, the increase in  $k_{\rm L}$  with the SiO<sub>x</sub> monolayer coverage is rationalized in terms of the increase in  $[R-6G^{+}_{ad}]_{s}$  and/or decrease in  $[X^{-}_{ad}]$ . According to Herrmann and Pichat, because Cl- ions can withstand the TiO<sub>2</sub> photocatalytic oxidation,<sup>20</sup> the large gap in k<sub>L</sub> between the substrates with different anions may be associated with anion oxidizability and/or adsorbability ([X-ad]) of anions. However, further studies are necessary to draw this conclusion.

#### Conclusions

The effect of coating  $TiO_2$  with the  $SiO_x$  monolayer on the photoinduced oxidation of R-6G in aqueous solutions was studied. Adsorption experiments showed that the surface treatment significantly increases the saturated adsorption amount and the adsorption strength of R-6G. It was further demonstrated that the liquid-phase oxidation of R-6G is remarkably enhanced with the treatment, whereas it suppresses the gasphase reaction. A modified Langmuir-Hinshelwood mechanism was proposed, explaining the promoting effect in the liquid-phase reaction in terms of the increases in the rate of adsorption, the saturation amount of adsorption, and/or the decrease in the adsorption amount of anions. This work exhibits high validity of oxide monolayer coverage in purifying watercontaining ionic contaminants using TiO<sub>2</sub> photocatalysts. The key is to increase the rate of adsorption without decreasing the rate of decomposition on the surface. This methodology is going to be developed to accelerate photooxidation of anionic substrates in our laboratory.

**Acknowledgment.** The authors express sincere gratitude to Ishihara Techno Co. for the gift of the TiO<sub>2</sub> particles (A-100) and to Dr. M. Iwasaki of Kinki University for valuable comments.

## References and Notes

- (1) (a) In Photocatalytic Purification and Treatment of Water and Air; Ollis, F. D., Al-Ekabi, H., Eds.; Elsevier Science: Amsterdam, 1993. (b) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. **1995**, 95, 69.
  - (2) Chem. Eng. News 1996, 29.
- (3) (a) Al-Sayyed, G.; D'Oliveria, J. C.; Pichat, P. J. Photochem. Photobiol. A 1991, 58, 99. (b) Terzian, R.; Serpone, N.; Minero, C.; Pelizzetti, E. J. Catal. 1991, 128, 352. (c) Sabate, J.; Anderson, M. A.; Kikkawa, H.; Edwards, M.; Hill, G. G. J. Catal. 1991, 127, 127. (d) Matthews, R. W. In Photochemical Conversion and Storage of Solar Energy; Pelizzetti, E., Schiavello, M., Eds.; Kluwer Academic: Dordrecht, Netherlands, 1988.
- (4) (a) Tada, H.; Tanaka, M. Langmuir 1997, 13, 360. (b) Hattori, A.; Tada, H.; Yamomoto, M.; Ito, S. Chem. Lett., in press.
- (5) (a) Sampath, S.; Uchida, H.; Yoneyama, H. J. Catal. 1994, 149, 189. (b) Anderson, C.; Bard, A. J. J. Phys. Chem. **1995**, 99, 9882. (c) Anderson, C.; Bard, A. J. J. Phys. Chem. B **1997**, 101, 2611.
- (6) (a) Tada, H. Langmuir 1995, 11, 3281. (b) Tada, H. Langmuir 1996,
  - (7) Tada, H.; Kubo, Y.; Akazawa, M.; Ito, S. Langmuir 1998, 14, 2936.

- (8) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. **1985**, 107, 3902.
- (9) Odenbrand, C. V. I.; Bransin, J. G. M.; Busca, G. J. Catal. 1992, 135, 505.
- (10) In the  $SiO_x$  monolayer formed on plain  $TiO_2$  films, the thickness of the  $SiO_x$  layer (d) was confirmed by ellipsometry to increase in proportion to the coating times (n). Also, the slope of the plot of d vs n provided a value of ca. 0.2 nm/time, which corresponds to the thickness of the  $SiO_2$  monolayer. For details, see ref 6a.
  - (11) Kamat, P. V. Chem. Rev. 1993, 93, 267.
- (12) The VB and CB energy levels were adopted from the following literature. Hoffmann, R. A Chemist's View of Bonding in Extended Structures; VCH Publishers: New York, 1993.
- (13) (a) Pruden, A. L.; Ollis, D. F. J. Catal. 1983, 82, 404. (b) Ohtani, B.; Okugawa, Y.; Nishimoto, S.-i.; Kagiya, T. J. Phys. Chem. 1987, 91,

- 3550. (c) Matthews, R. W. J. Chem. Soc., Faraday Trans. 1 1989, 85, 1291. (d) Cunningham, J.; Al-Sayyed, G. J. Chem. Soc., Faraday Trans. 1990, 86, 3935.
- (14) Glasstone, S.; Laidler, K. J.; Eyring, H. *The Theory of Rate Processes*; Mcgraw-Hill, Inc.: New York, 1964.
- (15) Bockris, J. O'M.; Reddy, A. K. N. Modern Electrochemistry; Plenum Press: New York, 1970.
- (16) Hayakawa, K.; Satake, I.; Kwak, J. C. T.; Gao, Z. Colloids Surf. **1990**, *50*, 309.
  - (17) Fox, M. A.; Dulay, M. T. Chem. Rev. 1993, 93, 341.
- (18) Abdullah, M.; Low, G. K.-C.; Matthews, R. W. J. Phys. Chem. 1990, 94, 6820.
- (19) Schwarz, P. F.; Turro, N. J.; Bossmann, S. H.; Braun, A. M.; Wahab, A.-M. A. A.; Durr, H. *J. Phys. Chem. B* **1997**, *101*, 7127.
- (20) Herrmann, J.-M.; Pichat, P. J. Chem. Soc., Faraday Trans. 1, 1980, 76, 1138.