知平

首页 发现 等你来答

隔离病毒, 不隔离爱

提问

深度学习(Deep Learning)

关注者 415

被浏览 33,933

如果在前向传播的过程中使用了不可导的函数,是不是就不能进行反 向传播了?

关注问题

✓ 写回答

+ 邀请回答

● 添加评论 7 分享 ■ 举报 …

北京邮电大学 计算机科学与技术博士在读

👸 专业 已有 2 人赠与了专业徽章

740 人赞同了该回答

这个问题非常有意思,我在刚接触深度学习的时候也疑惑过.当时主要是对ReLU激活函数在x=0的求导 比较困惑,后来发现除了不可导的函数之外,深度学习中还有很多不可导的操作.

下面简单的梳理一下

Houye: 盘点深度学习中的不可导操作(次 梯度和重参数化)

@ zhuanlan.zhihu.com

深度学习中的不可导操作(次梯度和重参数化).

主要包括两大类

[TOC]

次梯度

深度学习算法通常需要反向传播来进行优化,这就涉及到求导的问题. 激活函数需要满足单调,处处可 导,有界等条件. 如传统的sigmoid函数,但是现在很多激活函数并不是处处可导的.

如ReLU函数

ReLU(x) = max(0, x)

其图像如下

关于作者

Houye

公众号:【图与推荐】

🔮 北京邮电大学 计算机科学与技术博士 在读

文章

回答 85

19 1,117

关注者

被收藏 733 次

机器学习/深度学习 444 人关注 凌景冰 创建 机器学习 381 人关注 黄锦华 创建 机器学习 206 人关注 tom pareto 创建 52 人关注 机器学习相关 魏天闻 创建 机器学习 6人关注 浣熊侠 创建

相关问题

为什么代价函数要非负? 9个回答

在神经网络中,先进行BatchNorm还是先 运行激活函数? 16 个回答

知乎

5 发现

等你来答

隔离病毒,不隔离爱

Q

提问

很明显在 x=0 处不可导,那么如何实现反向传播和模型优化呢?答案就是:次梯度

次梯度

$$c <= \frac{f(x)-f(x_0)}{x-x_0}$$

对于ReLU函数,当x>0的时候,其导数为1;当x<0时,其导数为0.则ReLU函数在x=0的次梯度是 $c \in [0,1]$,这里是次梯度有多个,可以取0、1之间的任意值.工程上为了方便取c=0即可.

重参数技巧

VAE中对高斯分布的重参数

这里是对连续分布的重参数.

VAE中隐变量z一般取高斯分布,即 $z = \mathcal{N}(\mu, \sigma^2)$,然后从这个分布中采样.但是这个采样操作是**不可导**的,进而导致整个模型无法BP. 解决方法就是Reparametrization tricks重参数技巧.

我们首先从从均值为0,标准差为1的高斯分布中采样,再放缩平移得到2.

$$\mathbf{z}_i = \mu_i + \sigma_i * \epsilon, \epsilon \sim \mathcal{N}(0, \mathbf{I})$$

这样从 ϵ 到 \mathbf{Z} 只涉及了线性操作(平移缩放),采样操作在NN计算图之外,而 ϵ 对于NN来说只是一个常数.

离散分布的采样Gumbel-softmax

Gumbel-Softmax Trick

VAE的例子是一个连续分布(正态分布)的重参数,离散分布的情况也一样,首先需要可以采样,使得离散的概率分布有意义而不是只取概率最大的值,其次需要可以计算梯度。那么怎么做到的,具体操作如下:

对于n维概率向量 π ,对 π 对应的离散随机变量 x_{π} 添加Gumbel噪声,再取样

 $x_{\pi} = rg \max(\log(\pi_i) + G_i)$

其中 G_i 是是独立同分布的标准Gumbel分布的随机变量,标准Gumbel分布的CDF为 $F(x) = e^{-e^{-x}}, F^{-1}(x) = -\log(-\log(x))$.这就是Gumbel-Max trick。可以看到由于这中间有一

神经网络多样性的意义何在? 既然多层感 知机在理论上已经可以拟合任何函数,为 什么要有不同的形式? 15 个回答

神经网络为什么可以(理论上)拟合任何函数? 74个回答

相关推荐

深度学习: 彻底解决你的知

识焦虑

207 人读过

□阅读

深度学习理论与实战:基础

篇

深度学习在动态媒体中的应 用与实践

— 4人读

□阅读

刘看山·知乎指南·知乎协议·知乎隐私保护指引

应用·工作·申请开通知平机构号

侵权举报·网上有害信息举报专区

京 ICP 证 110745 号

京 ICP 备 13052560 号 - 1

🧶 京公网安备 11010802010035 号

互联网药品信息服务资格证书 (京) - 非经营性 - 2017 - 0067

违法和不良信息举报: 010-82716601

儿童色情信息举报专区

证照中心

联系我们 ◎ 2020 知乎

知乎

发现

等你来答

隔离病毒,不隔离爱

Q

提问

上述的 argmax操作是不可导的. 所以尝试用softmax来代替,即Gumbel-Softmax Trick. 这里我们假设argmax返回的是一个one-hot向量,那么我们需要找到argmax的一个显式且光滑的逼近. 这里的 G_i 可以利用 $F_{-1}(x)$ 从均匀分布中采样得到,即 $G_i = -\log(-\log(U_i)), U_i \sim U(0,1)$.

综上总体思路:

- 1. 基于Gumbel Distribution采样来避免不可导问题
- 2. 在1中引入了argmax又导致了不可导(Gumbel max)
- 3. 又引入softmax函数来对argmax进行光滑近似,使得可导(Gumbel softmax)

具体步骤如下:

- 对于网络输出的一个n维向量v, 生成n个服从均匀分布U(0,1)的独立样本 $\epsilon_1, \ldots, \epsilon_n$
- 通过 $G_i = -\log(-\log(\epsilon_i))$ 计算得到 G_i
- 对应相加得到新的值向量 $v' = [v_1 + G_1, v_2 + G_2, \dots, v_n + G_n]$
- 通过softmax函数

$$\sigma_{ au}(v_i') = rac{e^{v_i'/ au}}{\sum\limits_{j=1}^n e^{v_j'/ au}}$$

这里 $\sigma_{ au}(v_i)$ 就可以实现对argmax的显式且光滑的逼近

$$\lim_{\tau \to 0} \sigma_{\tau}(v_i') = \operatorname{argmax}$$

温度参数 au 的影响: au 越小(趋近于0), 越接近categorical分布; au 越大(趋近于无穷), 越接近均匀分布

Figure 1: The Gumbel-Softmax distribution interpolates between discrete one-hot-encoded categorical distributions and continuous categorical densities. (a) For low temperatures ($\tau=0.1, \tau=0.5$), the expected value of a Gumbel-Softmax random variable approaches the expected value of a categorical random variable with the same logits. As the temperature increases ($\tau=1.0, \tau=10.0$), the expected value converges to a uniform distribution over the categories. (b) Samples from Gumbel-Softmax distributions are identical to samples from a categorical distribution as $\tau=0.0$. At higher temperatures, Gumbel-Softmax samples are no longer one-hot, and become uniform as $\tau=0.0$.

证明

常规的softmax形式为

$$\pi_k = rac{e^{x_k}}{\sum_{k'=1}^K e^{x_k'}}$$

其中, π_k 是softmax之后得到一个概率密度函数. 那么有没有某个分布能够等价于上述的分布呢?

如果对每个 x_k 添加独立标准的gumbel噪声(位置为0,尺度为1),并选择值最大的维度输出,每次的输出结果有一个概率密度函数.这样一个概率密度同样为 π_k .

化简

等你来答

隔离病毒,不隔离爱

提问

$$\begin{split} &= \int e^{-\sum_{k'\neq k} e^{-(z_k - x_{k'})} - (z_k - x_k) - e^{-(z_k - x_k)}} \, dz_k \\ &= \int e^{-\sum_{k'=1}^K e^{-(z_k - x_{k'})} - (z_k - x_k)} \, dz_k \\ &= \int e^{-(\sum_{k'=1}^K e^{-z_{k'}}) e^{-z_k} - z_k + x_k} \, dz_k \\ &= \int e^{-(\sum_{k'=1}^K e^{-z_{k'}}) e^{-z_k} - z_k + x_k} \, dz_k \\ &= \int e^{-e^{-z_k + \ln(\sum_{k'=1}^K e^{-z_{k'}})} - z_k + x_k} \, dz_k \\ &= \int e^{-e^{-(z_k - \ln(\sum_{k'=1}^K e^{-z_{k'}}))} - (z_k - \ln(\sum_{k'=1}^K e^{-z_{k'}})) - \ln(\sum_{k'=1}^K e^{-z_{k'}}) + x_k} \, dz_k \\ &= e^{-\ln(\sum_{k'=1}^K e^{-z_{k'}}) + x_k} \int e^{-e^{-(z_k - \ln(\sum_{k'=1}^K e^{-z_{k'}}))} - (z_k - \ln(\sum_{k'=1}^K e^{-z_{k'}}))} \, dz_k \\ &= \frac{e^{z_k}}{\sum_{k'=1}^K e^{z_{k'}}} \int e^{-e^{-(z_k - \ln(\sum_{k'=1}^K e^{-z_{k'}}))} - e^{-(z_k - \ln(\sum_{k'=1}^K e^{-z_{k'}}))} \, dz_k \\ &= \frac{e^{z_k}}{\sum_{k'=1}^K e^{z_{k'}}} \int e^{-(z_k - \ln(\sum_{k'=1}^K e^{-z_{k'}})) - e^{-(z_k - \ln(\sum_{k'=1}^K e^{-z_{k'}}))}} \, dz_k \end{split}$$

积分里面是 $\mu = \ln(\sum_{k=1}^{K} e^{x_k})$ 的gumbel分布,整个积分为1,则

$$P(z_k \geq z_{k'}; \forall k' \neq k | \{x_{k'}\}_{k'=1}^K) = \frac{e^{x_k}}{\sum_{k'=1}^K e^{x_{k'}}}$$

结果与softmax的分布一致.

为什么需要gumbel-softmax

乍看起来,gumbel-softmax 的用处令人费解。比如上面的代码示例,直接使用 softmax,也可以达 到类似的参数训练效果。但两者有着根本的区别。 原理上,常规的 softmax 直接建模了一个概率分 布(多项分布),基于交叉熵的训练准则使分布尽可能靠近目标分布;而 gumbel-softmax 则是对 多项分布采样的一个近似。使用上,常规的有监督学习任务(分类器训练)中,直接学习输出的概 率分布是自然的选择;而对于涉及采样的学习任务(VAE 隐变量采样、强化学习中对actions 集合进 行采样以确定下一步的操作), gumbel-softmax 提供了一种再参数化的方法, 使得模型可以以端到 端的方式进行训练。

Ref

CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX

@ arxiv.org

救命稻草人: Reparametrization tricks重 参数技巧(在VAE、Gumbel-softmax G...

@ zhuanlan.zhihu.com

The Gumbel-Softmax Trick for Inference of Discrete Variables

@ casmls.github.io

http://lips.cs.princeton.edu/the-gumbelmax-trick-for-discrete-distributions/

@ lips.cs.princeton.edu

https://blog.csdn.net/jackytintin/article/de tails/53641885

@blog.csdn.net

@ amid.fish

